FAMILIES OF SINGULAR KÄHLER-EINSTEIN METRICS

by

Eleonora Di Nezza, Vincent Guedj & Henri Guenancia

Abstract. — Refining Yau’s and Kolodziej’s techniques, we establish very precise uniform a priori estimates for degenerate complex Monge-Ampère equations on compact Kähler manifolds, that allow us to control the blow up of the solutions as the cohomology class and the complex structure both vary.

We apply these estimates to the study of various families of possibly singular Kähler varieties endowed with twisted Kähler-Einstein metrics, by analyzing the behavior of canonical densities, establishing uniform integrability properties, and developing the first steps of a pluripotential theory in families. This provides interesting information on the moduli space of stable varieties, extending works by Berman-Guenancia and Song, as well as on the behavior of singular Ricci flat metrics on (log) Calabi-Yau varieties, generalizing works by Rong-Ruan-Zhang, Gross-Tosatti-Zhang, Collins-Tosatti and Tosatti-Weinkove-Yang.

Contents

Introduction ... 1
1. Chasing the constants .. 7
2. Uniform integrability .. 13
3. Normalization in families .. 24
4. Densities along a log canonical map 31
5. Negative curvature .. 36
6. Log Calabi-Yau families .. 43
References ... 53

Introduction

Let \(p : X \to Y \) be a proper, surjective holomorphic map with connected fibers between Kähler varieties. It is a central question in complex geometry to relate the geometry of \(X \) to the one of \(Y \) and the fibers \(X_y \) of \(p \). An important instance of such a situation is when one can endow \(X_y \) with a Kähler-Einstein metric and study the geometry of \(X \) induced by the properties of the resulting family of metrics. This is the main theme of this article.
Einstein metrics are a central object of study in differential geometry. A Kähler-Einstein metric on a complex manifold is a Kähler metric whose Ricci tensor is proportional to the metric tensor. This notion still makes sense on mildly singular varieties as was observed in [EGZ09, section 7]. The solution of the (singular) Calabi Conjecture [Yau78, EGZ09] provides a very powerful existence theorem for Kähler-Einstein metrics with negative or zero Ricci curvature. It is important to study the ways in which these canonical metrics behave when they are moving in families. In this paper we consider the case when both the complex structure and the Kähler class vary and we try to understand how the corresponding metrics can degenerate.

Constructing singular Kähler-Einstein metrics on a mildly singular variety \(V \) boils down to solving degenerate complex Monge-Ampère equations of the form

\[
(\omega + i\partial \overline{\partial} \varphi)^n = f e^{\lambda \varphi} dV_X,
\]

where
- \(\pi : X \to V \) is a resolution of singularities, \(dV_X \) is a volume form on \(X \),
- \(\omega = \pi^* \omega_V \) is the pull-back of a Kähler form on \(V \),
- the sign of \(\lambda \in \mathbb{R} \) depends on that of \(c_1(V) \),
- \(f \in L^p(X) \) with \(p > 1 \) if the singularities of \(V \) are mild (klt singularities),
- \(\varphi \) is the unknown. The latter should be \(\omega \)-plurisubharmonic (\(\omega \)-psh for short), i.e. it is locally the sum of a psh and a smooth function, and satisfies \(\omega + i\partial \overline{\partial} \varphi \geq 0 \) in the weak sense of currents. We let \(PSH(X, \omega) \) denote the set of all such functions.

The uniform estimate. — A crucial step in order to prove the existence of a solution to the above equation is to establish a uniform a priori estimate. In order to understand the behavior of the solution \(\varphi \) as the cohomology class \(\{\omega_V\} \) and the complex structure of \(V \) vary, we revisit the proof by Yau [Yau78], as well as its recent generalizations [Koł98, EGZ09], and establish the following (see Theorem 1.1):

Theorem A. — Let \(X \) be a compact Kähler manifold of complex dimension \(n \in \mathbb{N}^* \) and let \(\omega \) be a semi-positive form such that \(V := \int_X \omega^n > 0 \). Let \(\nu \) and \(\mu = f \nu \) be probability measures, with \(0 \leq f \in L^p(\nu) \) for some \(p > 1 \). Assume the following assumptions are satisfied:

- (H1) there exists \(\alpha > 0 \) and \(A_\alpha > 0 \) such that for all \(\psi \in PSH(X, \omega) \),
 \[
 \int_X e^{-\alpha (\psi - \sup_X \psi)} d\nu \leq A_\alpha;
 \]

- (H2) there exists \(C > 0 \) such that \(\left(\int_X |f|^p d\nu \right)^{1/p} \leq C \).

Let \(\varphi \) be the unique \(\omega \)-psh solution \(\varphi \) to the complex Monge-Ampère equation

\[
V^{-1}(\omega + i\partial \overline{\partial} \varphi)^n = \mu,
\]

normalized by \(\sup_X \varphi = 0 \). Then \(-M \leq \varphi \leq 0\) where

\[
M = 1 + C^{1/n} A_\alpha^{1/nq} a^{n/q} b_n \left[5 + e \alpha^{-1} C(q!)^{1/q} A_\alpha^{1/q} \right],
\]

\(1/p + 1/q = 1 \) and \(b_n \) is a constant such that \(\exp(-1/x) \leq b_n^n x^{2n} \) for all \(x > 0 \).
We also establish slightly more general versions of this result valid for less regular densities (Theorem 1.5) or big cohomology classes (Theorem 1.9). We then move on to checking hypotheses (H1) and (H2) in various geometrical contexts.

- **Hypothesis (H1).** If \(\pi : X \to \mathbb{D} \) is a projective family whose fibers \(X_t = \pi^{-1}(t) \) have degree \(d \) with respect to a given projective embedding \(X \subset \mathbb{P}^N \times \mathbb{D} \), and \(\omega = \omega_t \) is the restriction of the Fubini-Study metric, we observe in Proposition 2.5 that
 \[
 V = \int_{X_t} \omega^n_t = \int_{\mathbb{P}^N} \omega^n_{FS} \wedge [X_t] = d
 \]
is independent of \(t \) and for all \(\psi \in \text{PSH}(X_t, \omega_t) \),
 \[
 \int_{X_t} e^{-\frac{1}{nd}(\psi - \sup_{X_t} \psi)} \omega^n_t \leq (4n)^n \cdot d \cdot \exp\left\{ -\frac{1}{nd} \int_{X_t} \psi \omega^n_t \right\}.
 \]
The hypothesis (H1) is thus satisfied in this projective setting, with \(\alpha = 1/nd \), as soon as we can uniformly control the \(L^1 \)-norm of \(\psi \). We take care of this in Section 3. This non-trivial control requires the varieties \(X_t \) to be irreducible (see Example 3.3).

- **Hypothesis (H2).** We analyze (H2) in section 4. We show that, up to shrinking the base, it is always satisfied if the \(f_t \)’s are canonical densities associated to a proper, holomorphic surjective map \(\pi : X \to \mathbb{D} \) from a normal, \(\text{Q-Gorenstein} \) Kähler space \(X \) to the unit disk such that the central fiber has only canonical singularities, cf Lemma 4.4 and its application to families of Calabi-Yau varieties, Theorem D.

While previous works tend to use sophisticated arguments from Variations of Hodge Structures (see e.g. the Appendix by Gross in [RZ11a]), we use here direct elementary computations in adapted coordinates, in the spirit of [EGZ09, section 6].

In the context of families of varieties with negative curvature though, it is essential to allow worse singularities than the ones described above, cf Setting 4.1 for the precise context. The trade-off is that the canonical densities do not satisfy condition (H2) anymore, reflecting the fact that the local potentials of the Kähler-Einstein metrics at stake need not be bounded anymore. This legitimizes the introduction of a weaker condition (H2’) (see Theorem 1.5 and Lemma 4.6). This allows us to derive an almost optimal control of the potentials of Kähler-Einstein metrics along a stable family, cf Theorem C below.

Let us end this paragraph by emphasizing that our approach enables us to work with singular families (i.e. families where the generic fiber is singular, cf Theorems C and D) as opposed to all previously known results on that topic, requiring to approximate a singular variety by smooth ones using either a smoothing or a crepant resolution.

Families of manifolds of general type. — Let \(X \) be an irreducible and reduced complex space endowed with a Kähler form \(\omega \) and a proper, holomorphic map \(\pi : X \to \mathbb{D} \). We assume that for each \(t \in \mathbb{D} \), the (schematic) fiber \(X_t \) is a \(n \)-dimensional Kähler manifold of general type, i.e. such that its canonical bundle \(K_{X_t} \) is big. In particular, \(X \) is automatically non-singular and the map \(\pi \) is smooth.
We fix Θ a closed differential $(1, 1)$-form on \mathcal{X} which represents $c_1(K_{\mathcal{X}/D})$ and set $\theta_t = \Theta|_{X_t}$.

It follows from [BEGZ10], a generalization of the Aubin-Yau theorem [Aub78, Yau78], that there exists a unique Kähler-Einstein current on X_t. This is a positive closed current T_t in $c_1(K_{X_t})$ which is a smooth Kähler form in the ample locus $\text{Amp} (K_{X_t})$, where it satisfies the Kähler-Einstein equation

$$\text{Ric}(T_t) = - T_t.$$

It can be written $T_t = \theta_t + dd^c \phi_t$, where ϕ_t is the unique θ_t-psh function with minimal singularities that satisfies the complex Monge-Ampère equation

$$(\theta_t + dd^c \phi_t)^n = e^{\phi_t} \omega^n_t \quad \text{on} \quad \text{Amp} (K_{X_t}),$$

where h_t is such that $\text{Ric}(\omega_t) - dd^c h_t = -\theta_t$ and $\int_{X_t} e^{h_t} \omega^n_t = \text{vol}(K_{X_t})$. For $x \in \mathcal{X}$, set

$$\phi(x) := \phi_{\pi(x)}(x)$$

and consider

$$V_\Theta = \sup\{u \in \text{PSH}(\mathcal{X}, \Theta); \ u \leq 0\}.$$

It follows from Theorem A and the plurisubharmonic variation of the T_t’s ([CGP17, Thm. A]) that $\phi - V_\Theta$ is uniformly bounded on compact subsets of \mathcal{X}, cf Theorem 5.5 and Remark 5.6:

Theorem B. — Let $\pi : \mathcal{X} \to \mathbb{D}$ be a smooth Kähler family of manifolds of general type, let $\Theta \in c_1(K_{\mathcal{X}/D})$ be a smooth representative and let ϕ be the Kähler-Einstein potential as in (0.1). Given any compact subset $K \subseteq \mathcal{X}$, there exists a constant M_K such that the following inequality

$$- M_K \leq \phi - V_\Theta \leq M_K$$

holds on K, where V_Θ is defined by (0.2).

The same results can be proved if the family $\pi : \mathcal{X} \to \mathbb{D}$ is replaced by a smooth family $\pi : (\mathcal{X}, B) \to \mathbb{D}$ of pairs (X_t, B_t) of log general type, i.e. such that (X_t, B_t) is klt and $K_{X_t} + B_t$ is big for all $t \in \mathbb{D}$.

Stable families. — A stable variety is a projective variety X such that X has semi-log canonical singularities and the Q-line bundle K_X is ample. We refer to [Kov13, Kol] for a detailed account of these varieties and their connection to moduli theory.

In [BG14], it was proved that a stable variety admits a unique Kähler-Einstein metric ω, i.e. a smooth Kähler metric on X_{reg} such that, if $n = \dim_{\mathbb{C}} X$,

$$\text{Ric}(\omega) = - \omega \quad \text{and} \quad \int_{X_{\text{reg}}} \omega^n = (K^n_X).$$

The metric ω extends canonically across X_{sing} to a closed, positive current in the class $c_1(K_X)$. It is desirable to understand the singularities of ω near X_{sing}. In [GW16, Thm. B], it is proved that ω has cusp singularities near the double crossings of X. Moreover, it is proved in [Son17] that the potential φ of ω with respect to a given Kähler form
\(\omega_X \in c_1(K_X) \), i.e. \(\omega = \omega_X + dd^c \varphi \), is locally bounded on the klt locus of \(X \). We make this assertion more precise by establishing that for any \(\varepsilon > 0 \), there is a constant \(C_\varepsilon \) such that

\[
(0.3) \quad \varphi \geq -(n + 1 + \varepsilon) \log(-\log|s|) - C_\varepsilon
\]

where \((s = 0)\) is any reduced divisor containing the non-klt locus of \(X \), cf. Proposition 5.9.

This estimate is almost optimal. Indeed, if \(X \) is the Satake-Baily-Borel compactification of a ball quotient, it is a normal stable variety and it admits a resolution \((\overline{X}, D)\) which is a toroidal compactification of the ball quotient obtained by adding disjoint abelian varieties. The, the potential \(\varphi \) of the Kähler-Einstein metric on \((\overline{X}, D)\) with respect to a smooth form in \(c_1(K_\overline{X} + D) \) satisfies

\[
\varphi = -(n + 1) \log(-\log|s_D|) + O(1)
\]

if \((s_D = 0) = D\).

A slight refinement of Theorem A allows us to establish a uniform family version of the estimate \((0.3)\). In order to state it, let \(\mathcal{X} \) be a normal Kähler space and let \(\pi : \mathcal{X} \to \mathbb{D} \) be a proper, surjective, holomorphic map such that each fiber \(X_t \) has slc singularities and \(K_{\mathcal{X}/\mathbb{D}} \) is an ample \(\mathbb{Q} \)-line bundle. If \(\omega_{\mathcal{X}} \in c_1(K_{\mathcal{X}/\mathbb{D}}) \) is a relative Kähler form and \(\omega_{X_t} := \omega_{\mathcal{X}}|_{X_t} \), then the Kähler-Einstein metric of \(X_t \) can be written as \(\omega_{X_t} + dd^c \varphi_t \) where \(\varphi_t \) is uniquely determined by the equation \((5.8)\) from section 5. The behavior of \(\varphi_t \) is then described by the following (see Theorem 5.11)

Theorem C. — Let \(\mathcal{X} \) be a normal Kähler space and let \(\pi : \mathcal{X} \to \mathbb{D} \) be a proper, surjective, holomorphic map such that

- Each schematic fiber \(X_t \) has semi-log canonical singularities.
- \(K_{\mathcal{X}/\mathbb{D}} \) is an ample \(\mathbb{Q} \)-line bundle.

In particular, \(X_t \) is a stable variety for any \(t \in \mathbb{D} \). Assume additionally that the central fiber \(X_0 \) is irreducible.

Let \(\omega_{X_t} + dd^c \varphi_t \) be the Kähler-Einstein metric of \(X_t \) and let \(D = (s = 0) \subset \mathcal{X} \) be a divisor which contains \(\text{Nklt}(\mathcal{X}, X_0) \), cf \((4.4)\). Fix some smooth hermitian metric \(\cdot \mid_{\mathcal{O}_X(D)} \). Up to shrinking \(\mathbb{D} \), then for any \(\varepsilon > 0 \), there exists \(C_\varepsilon > 0 \) such that the inequality

\[
C_1 \geq \varphi_t \geq -(n + 1 + \varepsilon) \log(-\log|s|) - C_\varepsilon
\]

holds on \(X_t \) for any \(t \in \mathbb{D} \).

Let us finally mention the very recent results of Song, Sturm and Wang [SSW20] where similar bounds are derived in the context of smoothings of stable varieties over higher dimensional bases, with application towards Weil-Petersson geometry of the KSBA compactification of canonically polarized manifolds.

Families of Q-Calabi-Yau varieties. — A Q-Calabi-Yau variety is a compact, normal Kähler space \(X \) with canonical singularities such that the Q-line bundle \(K_X \) is torsion. Up to taking a finite, quasi-étale cover referred to as the index 1 cover (cf e.g. [KM98, Def. 5.19]), one can assume that \(K_X \sim_{\mathbb{Z}} \mathcal{O}_X \). Given any Kähler class \(\alpha \) on \(X \), it follows from [EGZ09] and [Pău08] that there exists a unique singular Ricci flat Kähler metric
$\omega_{\text{KE}} \in \alpha$, i.e. a closed, positive current $\omega_{\text{KE}} \in \alpha$ with globally bounded potentials inducing a smooth, Ricci-flat Kähler metric on X_{reg}.

Now, we can consider families of such varieties and ask how the bound on the potentials vary. This is the content of the following (see Theorem 6.1 and Remark 6.2)

Theorem D. — Let X be a normal, Q-Gorenstein Kähler space and let $\pi : X \to \mathbb{D}$ be a proper, surjective, holomorphic map. Let α be a relative Kähler cohomology class on X represented by a relative Kähler form ω. Assume additionally that

- The relative canonical bundle $K_{X/\mathbb{D}}$ is trivial.
- The central fiber X_0 has canonical singularities.

Up to shrinking \mathbb{D}, each fiber X_t is a Q-Calabi-Yau variety. Let $\omega_{\text{KE},t} = \omega_t + dd^c\varphi_t$ be the singular Ricci-flat Kähler metric in α_t, normalized by $\int_{X_t} \varphi_t \omega_t^n = 0$. Then, given any compact subset $K \subseteq \mathbb{D}$, there exists $C = C(K) > 0$ such that one has

$$\text{osc}_{X_t} \varphi_t \leq C$$

for any $t \in K$, where $\text{osc}_{X_t}(\varphi_t) = \sup_{X_t} \varphi_t - \inf_{X_t} \varphi_t$.

In the case of a projective smoothing (i.e. when X admits a π-ample line bundle and X_t is smooth for $t \neq 0$), the result above has been obtained previously by Rong-Zhang [RZ11a] by using Moser iteration process.

Log Calabi-Yau families. — Let X be a compact Kähler manifold and let $B = \sum b_i B_i$ be an effective \mathbb{R}-divisor such that the pair (X, B) has klt singularities and $c_1(K_X + B) = 0$.

It follows from [Yau78, EGZ09, BEGZ10] that one can find a unique Ricci flat metric in each Kähler class α_t. A basic problem is to understand the asymptotic behavior of these metrics as α_t approaches the boundary of the Kähler cone. Despite motivations coming from mirror symmetry, not much is known when the norm of α_t converges to $+\infty$ (this case is expected to be the mirror of a large complex structure limit, see [KS01]).

We thus only consider the case when $\alpha_t \to \alpha_0 \in \partial K_X$.

The non-collapsing case ($\text{vol}(\alpha_0) > 0$) can be easily understood by using Theorem A (see Theorem 6.5). We describe here a particular instance of the more delicate collapsing case $\text{vol}(\alpha_0) = 0$. Let $f : X \to Z$ be a surjective holomorphic map with connected fibers, where Z is a normal Kähler space. Let ω_X (resp. ω_Z) be a Kähler form on X (resp. Z). Set $\omega_t := f^* \omega_Z + t \omega_X$. There exists a unique singular Ricci-flat current $\omega_{q_t} := \omega_t + dd^c \varphi_t$ in $\{ f^* \omega_Z + t \omega_X \}$ for $t > 0$, where $f_X \varphi_t \omega_X^n = 0$. It satisfies

$$\omega_{q_t}^n = V_t \cdot \mu_{(X,B)}, \quad \text{where} \quad \mu_{(X,B)} = (s \wedge \bar{s})^\frac{1}{m} e^{-\varphi_B}.$$

Here, $s \in H^0(X, m(K_X + B))$ is any non-zero section (for some $m \geq 1$) and φ_B is the unique singular psh weight on $O_X(B)$ solving $dd^c \varphi_B = [B]$ and normalized by

$$\int_X (s \wedge \bar{s})^\frac{1}{m} e^{-\varphi_B} = 1.$$

The probability measure $f_* \mu_{(X,B)}$ has $L^{1+\epsilon}$-density with respect to $\omega_{q_t}^n$ thanks to [EGZ18, Lem. 2.3]. It follows therefore from [EGZ09] that there exists a unique current $\omega_{\infty} \in \{ \omega_Z \}$ solution of the Monge-Ampère equation

$$\omega_{\infty}^n = f_* \mu_{(X,B)}.$$
In the case where \(X \) is smooth, \(B = 0 \) and \(c_1(X) = 0 \), the Ricci curvature of \(\omega_\infty \) coincides with the Weil-Petersson form of the fibration \(f \) of Calabi-Yau manifolds.

Understanding the asymptotic behavior of the \(\omega_{\phi_t} \)'s as \(t \to 0 \) is an important problem with a long history, we refer the reader to the thorough survey [Tos20] for references.

We prove here the following:

Theorem E. — Let \((X, B)\) be a log smooth klt pair such that \(c_1(K_X + B) = 0 \) and such that \(X \) admits a fibration \(f : X \to Z \). With the notations above, the conic Ricci-flat metrics \(\omega_{\phi_t} \in \{f^*\omega_Z + t\omega_X\} \) converge to \(f^*\omega_\infty \) as currents on \(X \) when \(t \) goes to \(0 \).

When \(B = 0 \) is empty, it has been shown in [Tos10, GTZ13, TWY18, HT18] that the metrics \(\omega_{\phi_t} \) converge to \(f^*\omega_\infty \) in the \(C^a \)-sense on compact subsets of \(X \setminus S_X \) for some \(a > 0 \), where \(S_X = f^{-1}(S_Z) \) and \(S_Z \) denotes the smallest proper analytic subset \(\Sigma \subset Z \) such that \(\Sigma \) contains the singular locus \(Z_{\text{sing}} \) of \(Z \) and the map \(f \) is smooth on \(f^{-1}(Z \setminus \Sigma) \).

The proof of Theorem E follows the strategy developed by the above papers with several twists that notably require the extensive use of Theorem A and conical metrics.

Acknowledgement. — We thank S.Boucksom, M.Păun, J.Song and A.Zeriahi for several interesting discussions. The authors are partially supported by the ANR project GRACK.

1. Chasing the constants

Our goal in this section is to establish the following a priori estimate which is a refinement of the main result of Kolodziej [Kol98] (see also [EGZ09, EGZ08, DP10]):

Theorem 1.1. — Let \((X, \omega_X)\) be a compact Kähler manifold of complex dimension \(n \in \mathbb{N}^* \) and let \(\omega \) be a semi-positive form which is big, i.e. such that

\[
0 < \text{Vol}_{\omega}(X) = \int_X \omega^n.
\]

Let \(\nu \) and \(\mu = f \nu \) be probability measures, with \(0 \leq f \in L^p(\nu) \) for some \(p > 1 \). Assume the following two assumptions are satisfied:

(H1) there exists \(\alpha > 0 \) and \(A_\alpha > 0 \) such that for all \(\psi \in \text{PSH}(X, \omega) \),

\[
\int_X e^{-\alpha(\psi - \sup_X \psi)} d\nu \leq A_\alpha;
\]

(H2) there exists \(C > 0 \) such that \((\int_X |f|^p d\nu)^{1/p} \leq C \).

Let \(\varphi \) be the unique \(\omega \)-psh solution to the complex Monge-Ampère equation

\[
V^{-1}(\omega + dd^c \varphi)^n = \mu,
\]

normalized by \(\sup_X \varphi = 0 \). Then \(-M \leq \varphi \leq 0 \) where

\[
M = 1 + C^{1/n} A_\alpha^{1/nq} e^{a/nq} b_n \left[5 + e^{a/q} C / A_\alpha^{1/q} \right],
\]

\(1/p + 1/q = 1\) and \(b_n \) is a constant such that \(\exp(-1/x) \leq b_n x^{2n} \) for all \(x > 0 \).
Here \(d = \partial + \overline{\partial} \) and \(d^c = \frac{i}{2}(\partial - \overline{\partial}) \) so that \(dd^c = i d \overline{\partial} \). Recall that a function \(\varphi : X \to \mathbb{R} \cup \{-\infty\} \) is \(\omega \)-plurisubharmonic (\(\omega \)-psh for short) if it is locally given as the sum of a smooth and a psh function, and such that \(\omega + dd^c \varphi \geq 0 \) in the weak sense of currents.

We let \(\text{PSH}(X, \omega) \) denote the set of all \(\omega \)-psh functions.

We will use this result to obtain uniform a priori estimates on normalized solutions \(\varphi_t \) to families of complex Monge-Ampère equations

\[
V_t^{-1}(\omega_t + dd^c \varphi_t)^n = \mu_t,
\]

when the hypotheses (H1,H2) are satisfied, i.e. the constants \(1/\alpha_t, A_{\alpha_t}, q_t, C_t \) in the theorem are actually bounded from above by uniform constants \(1/\alpha, A, q, C \) independent of \(t \). Here \(q \) denotes the conjugate exponent of \(p > 1 \), \(1/p + 1/q = 1 \). The assumption on this exponent is thus that \(p > 1 \) stays bounded away from 1.

The reader should keep in mind that assumption (H1) is the strongest of all. In some applications one can assume \(f \equiv 1 \) hence (H2) is trivially satisfied.

We are going to eventually obtain a version of Theorem 1.1 that applies to big cohomology classes. The proof is almost identical but explaining the statement requires to introduce various notions and technical notations, so we first treat the case of semi-positive classes and postpone the big case to section 1.4.

1.1. Preliminaries on capacities. — For the convenience of the reader we recall here a few facts contained in [GZ05]. Let \(K \subset X \) be a compact set and consider

\[
V_{K,\omega} := (\sup \{ \psi \mid \psi \in \text{PSH}(X, \omega) \text{ and } \psi \leq 0 \text{ on } K \})^*.
\]

The Alexander-Taylor capacity is the following:

\[
T_\omega(K) := \exp \left(- \sup_X V_{K,\omega} \right).
\]

It is shown in [GZ17, Lem. 9.17] that If \(K \) is pluripolar then \(V_{K,\omega} \equiv +\infty \) and \(T_\omega(K) = 0 \). When \(K \) is not pluripolar then

- \(0 \leq V_{K,\omega} \in \text{PSH}(X, \omega) \) and \(V_{K,\omega} = 0 \) on \(K \) off a pluripolar set;
- the Monge-Ampère measure \(\text{MA}(V_{K,\omega}) \) is concentrated on \(K \).

We denote here and in the sequel by

\[
\text{MA}(u) = \frac{1}{V} (\omega + dd^c u)^n
\]

the normalized Monge-Ampère measure of a \(\omega \)-psh function \(u \), where \(V = \int_X \omega^n = \{ \omega \}^n \) is the volume of the cohomology class \(\{ \omega \} \). The Monge-Ampère capacity is

\[
\text{Cap}_\omega(K) := \sup \left\{ \int_K \text{MA}(u) ; u \in \text{PSH}(X, \omega) \text{ and } 0 \leq u \leq 1 \right\}.
\]

This capacity also characterizes pluripolar sets, i.e.

\[
\text{Cap}_\omega^*(P) = 0 \iff P \text{ is pluripolar}.
\]

The Monge-Ampère and the Alexander-Taylor capacities compare as follows:
Lemma 1.2. —

\[T_\omega(K) \leq \exp \left[1 - \frac{1}{\text{Cap}_\omega(K)^{1/n}} \right]. \]

We refer the reader to [GZ05, Proposition 7.1] for a proof which also provides a reverse inequality that is not needed in the sequel.

1.2. Proof of Theorem 1.1. —

1.2.1. Domination by capacity. — It follows from Hölder inequality and (H2) that

\[\mu \leq C \nu^{1/q}, \]

where \(q \) is the conjugate exponent, \(1/p + 1/q = 1 \).

Let \(K \subset X \) be a non pluripolar Borel set. Recall that \(V_{K,\omega}(x) = 0 \) for \(\nu \)-almost every point \(x \in K \). The hypothesis (H1) therefore implies that

\[\nu(K) \leq \int_X e^{-a V_{K,\omega}} \, d\nu \leq A_a T_\omega(K)^a. \]

Combining previous information we obtain

\[\mu(K) \leq C A_a^{1/q} e^{\alpha/q} \exp \left[-\frac{\alpha/q}{\text{Cap}_\omega(K)^{1/n}} \right] \leq D \text{Cap}_\omega(K)^2, \]

where

\[D = b_n^n C A_a^{1/q} e^{\alpha/q}, \]

with \(b_n \) a numerical constant such that \(\exp(-1/x) \leq b_n x^{2n} \) for all \(x > 0 \).

We now need to relate the Monge-Ampère capacity of the sublevel sets of a \(\omega \)-psh function to the Monge-Ampère measure of similar sublevel sets:

Lemma 1.3. — Let \(\varphi \) be a bounded \(\omega \)-psh function. For all \(s > 0 \) and \(0 < \delta < 1 \),

\[\delta^n \text{Cap}_\omega(\{ \varphi < -s - \delta \}) \leq \text{MA}(\varphi)(\{ \varphi < -s \}) \]

We refer to [EGZ09, Lemma 2.2] for a proof.

1.2.2. Bounding the solution from below. — Under our assumptions (H1,H2), it follows from general arguments that there is a unique bounded \(\omega \)-psh solution \(\varphi \) of \(\text{MA}(\varphi) = \mu \) normalized by \(\sup_X \varphi = 0 \). The non-expert reader could even think that \(\varphi \) is smooth: the point here is to establish a uniform a priori bound from below.

We let \(f : \mathbb{R}^+ \to \mathbb{R}^+ \) denote the function defined by

\[f(s) := -\frac{1}{n} \log \text{Cap}_\omega(\{ \varphi < -s \}). \]

Observe that \(f \) is non decreasing and such that \(f(+\infty) = +\infty \). It follows from our previous estimates that for all \(s > 0 \) and \(0 < \delta < 1 \),

\[f(s + \delta) \geq 2 f(s) + \log \delta - \frac{\log D}{n}. \]

Our next lemma guarantees that such a function reaches \(+\infty\) in finite time:

Lemma 1.4. — \(f(s) = +\infty \) for all \(s \geq 5D^{1/n} + s_0 \), where

\[s_0 = \inf\{s > 0 \mid eD^{1/n} \text{Cap}_\omega(\{ \varphi < -s \}) < 1 \}. \]
Proof. — We define a sequence \((s_j)\) of positive reals by induction as follows,

\[s_{j+1} = s_j + \delta_j \] \quad \text{with} \quad \delta_j = e^{D^{1/n}} \exp(-f(s_j)). \]

We fix \(s_0\) large enough (as in the statement of the Lemma) so that \(\delta_0 < 1\). It is straightforward to check, by induction, that the sequence \((s_j)\) is increasing, while \((\delta_j)\) is decreasing. Thus \(0 < \delta_j < 1\) and

\[f(s_{j+1}) \geq f(s_j) + 1, \quad \text{hence} \quad f(s_j) \geq j. \]

We infer \(\delta_j \leq e^{D^{1/n}} \exp(-j)\) and

\[s_\infty = s_0 + \sum_{j \geq 0} (s_{j+1} - s_j) \leq s_0 + \sum_{j \geq 0} e^{D^{1/n}} \exp(-j) \leq s_0 + 5D^{1/n}. \]

It remains to obtain a uniform bound on \(s_0\). It follows from Chebyshev inequality and Lemma 1.3 (used with \(\delta = 1\)) that for all \(s > 0\),

\[\text{Cap}_\omega(\{ \varphi < -s - 1 \}) \leq \frac{1}{s} \int_X (-\varphi) d\mu, \]

since \(\text{MA}(\varphi) = \mu\). Hölder inequality and (H2) yield

\[\int_X (-\varphi) d\mu \leq C \left(\int_X (-\varphi)^q d\nu \right)^{1/q}. \]

Observe that for all \(t \geq 0\),

\[t^q \leq \frac{q!}{\alpha^q} \exp(\alpha t) \]

and use (H1) to conclude that

\[\text{Cap}_\omega(\{ \varphi < -s - 1 \}) \leq \frac{C(q!)^{1/q} A_\alpha^{1/q}}{\alpha s}. \]

Thus

\[s_0 = 1 + e^{D^{1/n}} \frac{C(q!)^{1/q} A_\alpha^{1/q}}{\alpha} \]

is a convenient choice. This yields the desired a priori estimate and concludes the proof.

1.3. More general densities. — The setting of Theorem 1.1 is the most commonly used in geometric applications, as it allows e.g. to construct Kähler-Einstein currents on varieties with log-terminal singularities (see section 6). For varieties of general type with semi log-canonical singularities (see section 5.2), one has to deal with slightly more general densities:

Theorem 1.5. — Let \((X, \omega_X)\) be a compact Kähler manifold of complex dimension \(n \in \mathbb{N}^*\) and let \(\omega\) be a semi-positive form with \(V := \text{Vol}_\omega(X) = \int_X \omega^n > 0\). Let \(\nu\) and \(\mu = f \nu\) be probability measures, with \(0 \leq f \in L^1(\nu)\). Assume the following assumptions are satisfied:

(H1) there exists \(\alpha > 0\) and \(A_\alpha > 0\) such that for all \(\psi \in \text{PSH}(X, \omega)\),

\[\int_X e^{-\alpha(\psi - \sup_x \psi)} d\nu \leq A_\alpha; \]
(H2’) there exists $C, \varepsilon > 0$ such that $\int_X |f| |\log f|^{n+\varepsilon} dv \leq C$.

Let φ be the unique ω-psh solution φ to the complex Monge-Ampère equation
\[
V^{-1}(\omega + dd^c \varphi)^n = \mu,
\]
normalized by $\sup_X \varphi = 0$. Then $-M \leq \varphi \leq 0$ where $M = M(C, \varepsilon, n, A_\alpha)$.

Proof. — The proof follows the same lines as that of Theorem 1.1, so we only emphasize the main technical differences. Set, for $t \geq 0$,
\[
\chi(t) = (t + 1) \sum_{j=0}^{n+1} (-1)^{n+1-j} \frac{(n+1)!}{j!} (\log(t+1))^j.
\]
Observe that χ is a convex function such that $\chi(0) = 0$ and $\chi'(t) = (\log(t+1))^{n+1}$. Its Legendre transform is
\[
\chi^*(s) = \sup_{t>0} \{ s \cdot t - \chi(t) \} = st - \chi(t(s)),
\]
where $1 + t(s) = \exp(s \frac{\cdot}{\chi'(t(s))})$ satisfies $s = \chi'(t(s))$, thus
\[
\chi^*(s) = P(s \frac{\cdot}{\chi'(t(s))}) \exp(s \frac{\cdot}{\chi'(t(s))}) - s,
\]
where P is the following polynomial of degree n,
\[
P(X) = \sum_{j=0}^n (-1)^{n-j} \frac{(n+1)!}{j!} X^j.
\]

We let the reader check that (H2’) is equivalent to $||f||_\chi \leq C'$, where $||f||_\chi$ denotes the Luxembourg norm of f,
\[
||f||_\chi := \inf \left\{ r > 0, \int_X \chi(f/r) dv \leq 1 \right\}.
\]
Let $K \subset X$ be a non pluripolar Borel set. It follows from Hölder-Young inequality that
\[
\mu(K) \leq 2C' ||1_K||_{\chi^*},
\]
where $||1_K||_{\chi^*} = \inf \{ r > 0, \nu(K) \chi^*(1/r) \leq 1 \} = r_K$, with
\[
\chi^*(1/r_K) = \frac{1}{\nu(K)}.
\]

We are interested in the behavior of this function as $\nu(K)$ approaches zero, i.e. for small values of r_K. Observe that $\chi^*(s) \leq \exp(2s \frac{\cdot}{\chi'(t(s))})$ for $s \geq 1/r_K$, hence
\[
\nu(K) \leq \delta_n \implies \mu(K) \leq 2C' r_K \leq \frac{2^{n+2}C'}{(-\log \nu(K))^{n+1}}.
\]

Recall that (H1) and Lemma 1.2 yield
\[
\nu(K) \leq A_\alpha \exp \left(-\frac{\alpha}{\text{Cap}_\omega(K)^{1/n}} \right)
\]
It follows that for $\nu(K) \leq \delta_n$,
\[
\mu(K) \leq C'' \text{Cap}_\omega(K)^{1+1/n},
\]
and we can then conclude by reasoning as in Lemma 1.4. This completes the proof when $\varepsilon = 1$. The proof for arbitrary $\varepsilon > 0$ is similar, the crucial point being the domination of μ by a multiple of $\text{Cap}^{1+\varepsilon/n} \omega$, with an exponent $1 + \varepsilon/n > 1$.

1.4. Big cohomology classes. — We now consider a similar situation where the reference cohomology class α is still big but no longer semi-positive. We assume for convenience that the ambient manifold (X, ω_X) is again compact Kähler, but one could equally well develop this material when X belongs to the Fujiki class (i.e. when X is merely bimeromorphic to a Kähler manifold).

By definition α is big if it contains a Kähler current, i.e. there is a positive current $T \in \alpha$ and $\varepsilon > 0$ such that $T \geq \varepsilon \omega_X$. It follows from [Dem92] that one can further assume that T has analytic singularities, i.e. it can be locally written $T = \partial \bar{\partial} u$, with

$$u = \frac{c}{2} \log \left[\sum_{j=1}^{s} |f_j|^2 \right] + v,$$

where $c > 0$, v is smooth and the f_j’s are holomorphic functions.

Definition 1.6. — We let $\text{Amp}(\alpha)$ denote the ample locus of α, i.e. the Zariski open subset of all points $x \in X$ for which there exists a Kähler current in α with analytic singularities which is smooth in a neighborhood of x.

It follows from the work of Boucksom [Bou04] that one can find a single Kähler current T_0 with analytic singularities in α such that

$$\text{Amp}(\alpha) = X \setminus \text{Sing} T_0.$$

We fix θ a smooth closed differential $(1,1)$-form representing α. Following Demailly, one defines the following θ-psh function with minimal singularities:

$$V_\theta := \sup\{u; u \in \text{PSH}(X, \theta) \text{ and } u \leq 0\}.$$

Definition 1.7. — A θ-psh function φ has minimal singularities if for every other θ-psh function u, there exists $C \in \mathbb{R}$ such that $u \leq \varphi + C$.

There are plenty of such functions, which play the role here of bounded functions when α is semi-positive. Demailly’s regularization result [Dem92] insures that α contains many θ-psh functions which are smooth in $\text{Amp}(\alpha)$. In particular a θ-psh function φ with minimal singularities is locally bounded in $\text{Amp}(\alpha)$. The Monge-Ampère measure $(\theta + \partial \bar{\partial} \varphi)^n$ is thus well defined in the sense of Bedford and Taylor [BT82].

Definition 1.8. — It follows from the work of Boucksom [Bou02] that

$$\int_{\text{Amp}(\alpha)} (\theta + \partial \bar{\partial} \varphi)^n =: V_\alpha > 0$$

is independent of φ, it is the volume of the cohomology class α.

One can therefore develop a pluripotential theory in the Zariski open set $\text{Amp}(\alpha)$. This was done in [BEGZ10], where the following properties have been established:

– the class $\text{PSH}(X, \theta)$ enjoys several compactness properties;
- the operator $\text{MA}(\varphi) = V_{\alpha}^{-1}(\theta + dd^c \varphi)^n$ is a well defined probability measure on the set of θ-psh functions with minimal singularities;
- the extremal functions $V_{K,\theta} = \sup \{u; u \in \text{PSH}(X, \theta) \text{ and } u < 0 \text{ on } K\}$ and the Alexander-Taylor capacity $T_{\theta}(K) = \exp(-\sup_X V_{K,\theta})$ enjoy similar properties as in the semi-positive case;
- in particular it compares similarly to the Monge-Ampère capacity

$$\text{Cap}_\theta(K) := \sup \left\{ \int_K \text{MA}(u); u \in \text{PSH}(X, \theta) \text{ and } 0 \leq u - V_\theta \leq 1 \right\};$$

- the comparison principle holds so Lemma 1.3 holds here as well.

The same proof as above therefore produces the following uniform a priori estimate, which is a refinement of [BEGZ10, Thm. 4.1]:

Theorem 1.9. — Let (X, ω_X) be a compact Kähler manifold of complex dimension $n \in \mathbb{N}^*$. Let α be a big cohomology class of volume $V_\alpha > 0$ and fix θ a smooth closed differential $(1,1)$-form representing α.

Let ν and $\mu = f \nu$ be probability measures, with $0 \leq f \in L^p(\nu)$ for some $p > 1$. Assume the following assumptions are satisfied:

(H1) $\exists \alpha > 0, A_\alpha > 0$ such that $\forall \psi \in \text{PSH}(X, \theta)$, $\int_X e^{-a(\psi - \sup_X \psi)} dv \leq A_\alpha$;
(H2) there exists $C > 0$ such that $(\int_X |f|^p dv)^{1/p} \leq C$.

Let φ be the unique θ-psh function with minimal singularities such that

$$V_\alpha^{-1}(\theta + dd^c \varphi)^n = \mu,$$

and $\sup_X \varphi = 0$. Then $-M \leq \varphi - V_\theta \leq 0$ where

$$M = 1 + C^{1/n} A_\alpha^{1/nq} e^{\alpha/nq} b_n \left[5 + e\alpha^{-1} C(q!)^{1/q} A_\alpha^{1/q} \right],$$

where b_n is a uniform constant such that $\exp(-1/x) \leq b_n x^{2n}$ for all $x > 0$.

2. Uniform integrability

We wish to apply the previous uniform estimates when the complex structure of the underlying manifold is moving. In this section we pay a special attention to assumption (H1), by generalizing an integrability result of Skoda-Zeriahi [Sko72, Zer01].

2.1. Notations. — In all what follows, given a positive real number r, we denote by $\mathbb{D}_r := \{z \in \mathbb{C}; |z| < r\}$ the open disk of radius r in the complex plane. If $r = 1$, we simply write \mathbb{D} for \mathbb{D}_1.

Setting 2.1. — Let X be an irreducible and reduced complex Kähler space. We let $\pi : X \to \mathbb{D}$ denote a proper, surjective holomorphic map such that each fiber $X_t = \pi^{-1}(t)$ is a n-dimensional, reduced, irreducible, compact Kähler space, for any $t \in \mathbb{D}$.

For later purposes, we pick a covering $\{U_t\}_t$ of X by open sets admitting an embedding $j_t : U_t \to \mathbb{C}^N$ for some $N \geq n + 1$. Moreover, we fix a Kähler form ω on X and set

$$\omega_t := \omega|_{X_t}.$$
An easy yet important observation is the following.

Lemma 2.2. — In the Setting 2.1 and using the notation above, the quantity \(\int_{X_t} \omega^n_t \) is independent of \(t \in \mathbb{D} \). We will denote it by \(V \) in the following.

Proof. — The function \(\mathbb{D} \ni t \mapsto \int_{X_t} \omega^n_t \) is smooth and coincides with the push-forward current \(\pi_* \omega^n \) of bidimension \((1,1)\). Its differential is zero as \(d \) commutes with \(\pi_\ast \) and \(\omega \) is closed. \(\square \)

We fix a smooth, closed differential \((1,1)\)-form \(\Theta \) on \(X \) and set \(\theta_t = \Theta|_{X_t} \). Up to shrinking \(\mathbb{D} \), one will always assume that there exists a constant \(C_\Theta > 0 \) such that

\[-C_\Theta \omega \leq \Theta \leq C_\Theta \omega.\]

In particular, one has the inclusion \(\operatorname{PSH}(X_t, \theta_t) \subseteq \operatorname{PSH}(X_t, C_\Theta \omega_t) \). We assume that the cohomology classes \(\{ \theta_t \} \in H^{1,1}(X_t, \mathbb{R}) \) are psef, i.e. the sets \(\operatorname{PSH}(X_t, \theta_t) \) are non-empty for all \(t \). The notions of (quasi-)plurisubharmonic functions, positive currents and Monge-Ampère measure are well defined on singular spaces [Dem85].

2.2. Uniform integrability index.

— Recall from [Dem82, Déf. 3] that if \(T \) is a closed, positive current of bi-dimension \((p,p)\) on a complex space \(X \) and if \(x \in X \) is a closed point, then the Lelong number of \(T \) at \(x \) is defined as the limit

\[\nu(T, x) := \lim_{r \to 0} \frac{1}{r^p} \int_{\{ \phi < r \}} T \wedge (dd^c \phi)^p \]

where \(\psi := \sum_{i \in I} |g_i|^2 \) and \((g_i)_{i \in I} \) is a (finite) system of generators of the maximal ideal \(\mathfrak{m}_{X,x} \subset \mathcal{O}_{X,x} \). It is proved in loc. cit. that the limit above is a decreasing limit, independent of the choice of the generators. Moreover, one has the formula

\[\nu(T, x) = \int_{\{ x \}} T \wedge (dd^c \log \phi)^p\]

cf [Dem82, bottom of p. 45]. Finally, if \(\phi \) is a \(\theta \)-psh function on \(X \) for some smooth, closed \((1,1)\)-form \(\theta \), then the Lelong number of \(\phi \) at a given point \(x \in X \) is defined to be the quantity \(\nu(\theta + dd^c \phi, x) \).

Proposition 2.3. — In the Setting 2.1, let \(\varphi_t \in \operatorname{PSH}(X_t, \theta_t) \) be a collection of \(\theta_t \)-psh functions on \(X_t \). Then

\[\sup_{t \in \mathbb{D}_{1/2}} \sup_{x \in X_t} \nu(\varphi_t, x) < +\infty.\]

Proof. — Let \(U'_a \subseteq U_a \) be a relatively compact open subset such that the \(U'_a \) are still a covering of \(X \). Up to adding more elements to the initial covering, one can always assume that one can find such a refinement. One picks cut-off functions \(\chi_a \) such that \(\chi_a \equiv 1 \) on \(U'_a \) and \(\operatorname{Supp}(\chi_a) \subseteq U_a \). Now, let \(x \in X \); there exists \(a = a(x) \) such that \(x \in U'_a \). Recall that we have an embedding \(f_a : U_a \to \mathbb{C}^N \); we set \(x' := f_a(x) \) and \(G_{x'} : \mathbb{C}^N \ni z \mapsto \log(\sum_{i=1}^N |z_i - x'_i|^2) \). One can easily check that there exists a constant \(A > 0 \), independent of the point \(x \) now ranging in the compact set \(\pi^{-1}(\mathbb{D}_{1/2}) \), such that the function

\[H_x := \chi_a \cdot j_a^* G_{x'} \]
defines an $A\omega$-psh function on the whole X. By the formula (2.2), one has

\[
\nu(\varphi_t, x) = \int_{\{x\}} (\theta_t + dd^c \varphi_t) \wedge (dd^c (j^*_{\omega_t})|_{X_t})^{n-1}
\]

\[
\leq \int_{U_t \cap X_t} (\theta_t + dd^c \varphi_t) \wedge (dd^c H_x)^{n-1}
\]

\[
\leq \int_{U_t \cap X_t} (\theta_t + dd^c \varphi_t) \wedge (A \omega_t + dd^c H_x)^{n-1}
\]

\[
\leq \int_{X_t} (C_\Theta \omega_t + dd^c \varphi_t) \wedge (A \omega_t + dd^c H_x)^{n-1}
\]

\[
= C_\Theta A^{n-1} V.
\]

The conclusion follows.

It follows from Skoda’s integrability theorem [Sko72] that the Lelong number $\nu(\varphi_t, x)$ controls the local integrability index $\alpha(\varphi_t, x)$ of a θ_t-psh function φ_t,

\[
\alpha(\varphi_t, x) := \sup \left\{ c > 0 ; e^{-c \varphi_t} \in L^2_{\text{loc}}(X_t, x) \right\},
\]

via

\[
\frac{1}{\nu(\varphi_t, x)} \leq \alpha(\varphi_t, x) \leq \frac{n}{\nu(\varphi_t, x)}.
\]

Proposition 2.3 thus yields:

Corollary 2.4. — In the Setting 2.1, the following quantity

\[
\alpha(\Theta) := \inf \left\{ \alpha(\varphi_t, x) ; t \in \overline{D}_{1/2}, x \in X_t, \varphi_t \in \text{PSH}(X_t, \theta_t) \right\}
\]

is positive.

When $\pi : \mathcal{X} \to \mathcal{D}$ is a projective family whose fibers have degree d with respect to a given projective embedding, one can check that $\alpha(\omega_{FS}) \geq 1/2nd$, cf Remark 2.6.

2.3. Skoda’s integrability theorem in families: the projective case

Zeriahi [Zer01] has established a uniform version of Skoda’s integrability theorem. We now further generalize Zeriahi’s result by establishing its family version.

We first provide a very explicit result in the projective case. This should also help the reader in following the somehow tricky computations in the general Kähler case.

Proposition 2.5. — Let $V \subseteq \mathbb{P}^N$ be a projective variety of complex dimension n and degree d. Let $\omega = \omega_{FS}|_V$ and $\varphi \in \text{PSH}(V, \omega)$ be such that $\sup_V \varphi = 0$. Then

\[
\int_V e^{-\frac{1}{4n} \varphi} \omega^n \leq (4n)^n \cdot d \cdot \exp \left\{ - \frac{1}{nd} \int_V \varphi \omega^n \right\}.
\]

Remark 2.6. — When $\pi : \mathcal{X} \to \mathcal{D}$ is a projective family whose fibers have degree d with respect to a given projective embedding, the above result gives the uniform integrability of $e^{-\frac{1}{4n} \varphi}$ on $V_t := \pi^{-1}(t)$.
Proof. — We first claim that it is enough to prove the Proposition when φ is smooth. Indeed, thanks to [CGZ13, Cor. C], there exists a sequence of smooth functions $q_n \in \text{PSH}(V, \omega_{FS})$ decreasing pointwise to φ. Let $\varepsilon_n := \sup_V q_n$; by Hartog’s theorem, we have $\varepsilon_n \to 0$. If the Proposition holds for smooth functions, we will have

$$
\int e^{-\frac{1}{n}q_n} \omega^n \leq e^{\frac{4n^{d-1}}{d}} (4n)^n \cdot d \cdot \exp\left\{-\frac{1}{nd} \int q_n \omega^n \right\}
$$

Using Fatou Lemma and the monotone convergence theorem, we deduce the expected inequality for φ. From now on, one assumes that φ is smooth.

The projective logarithmic kernel on $\mathbb{P}^N \times \mathbb{P}^N$ is defined by the following formula

$$
G(x, y) := \log \left(\frac{||x \wedge y||}{||x|| \cdot ||y||} \right), \quad x, y \in \mathbb{P}^N,
$$

writing x, y in homogeneous coordinates. By [AAZ18, Lem. 4.1], for any fixed y, $x \mapsto G(x, y)$ is a non positive ω_{FS}-psh function in \mathbb{P}^N such that $(\omega_{FS} + dd^c G(\cdot, y))^n = \delta_y$. We set $g = G|_V$ and $g_y = g(\cdot, y)$. By definition, g_y has Lelong number one at y. Therefore, it follows from [Dem85, Cor. 4.8] that $\omega^n_{g_y}(\cdot) := (\omega + dd^c g(\cdot, y))^n \geq \delta_y$. From Stokes formula (cf Lemma 2.11 below) it follows that

$$
\varphi(y) \geq \int_V q \omega^n_{g_y} = \int_V \varphi(\omega + dd^c g_y) \wedge \omega^{n-1}_{g_y} \\
= \int_V q \omega \wedge \omega^{n-1}_{g_y} + \int_V g_y(\omega + dd^c \varphi) \wedge \omega^{n-1}_{g_y} - \int_V g_y \omega \wedge \omega^{n-1}_{g_y} \\
\geq \int_V q \omega \wedge \omega^{n-1}_{g_y} + \int_V g_y \omega \wedge \omega^{n-1}_{g_y},
$$

using that $g_y \leq 0$. One obtains similarly

$$
\int_V q \omega \wedge \omega^{n-1}_{g_y} \geq \int_V q \omega^2 \wedge \omega^{n-2}_{g_y} + \int_V g_y \omega \wedge \omega^{n-2}_{g_y} \\
\geq \int_V q \omega^2 \wedge \omega^{n-2}_{g_y} + \int_V g_y \omega \wedge \omega^{n-1}_{g_y},
$$

where the second inequality follows from

$$
\int_V g_y \omega \wedge \omega^{n-2}_{g_y} = \int_V g_y \omega \wedge \omega^{n-1}_{g_y} + \int_V d g_y \wedge d^c g_y \wedge \omega^{n-1}_{g_y} \geq \int_V g_y \omega \wedge \omega^{n-1}_{g_y}.
$$

Iterating the process n times we end up with

$$
\varphi(y) \geq \int_V q \omega^n + n \int_V g_y \omega \wedge \omega^{n-1}_{g_y}.
$$

Hence

$$
\int_V e^{-\frac{1}{n}q} \omega^n \leq \exp\left\{-\frac{1}{nd} \int_V q \omega^n \right\} \cdot I
$$

where

$$
I := \int_{y \in V} \exp\left\{-\frac{1}{d} \int_{x \in V} g_y(x) \omega \wedge \omega^{n-1}_{g_y}(x) \right\} \omega(y)
$$
The (n,n)-form $\frac{1}{d} \cdot \omega_{\varphi} \wedge \omega_{S_y}^{n-1}$ induces a probability measure on V given that
\[
\int_V \omega_{\varphi} \wedge \omega_{S_y}^{n-1} = \int_{\mathbb{P}^N} \omega_{\varphi} \wedge \omega_{S_y}^{n-1} \wedge [V] = \{\omega_{FS}\}^n \cdot \{V\} = d.
\]
From Jensen’s inequality, one can then derive
\[
I \leq \frac{1}{d} \int_{y \in V} \int_{x \in V} e^{-g(x,y)} \omega_{\varphi}(x) \wedge (\omega(x) + dd^c g(x,y))^{n-1} \wedge \omega(y)^n.
\]
Lemma 2.8 (i) yields
\[
\omega_{\varphi}(x) \wedge (\omega(x) + dd^c g(x,y))^{n-1} \leq e^{-2(1-\frac{1}{n})g(x,y)} \omega_{\varphi}(x) \wedge \omega(x)^{n-1}.
\]
Lemma 2.8 (iii) below (for $\delta = 1/2n$) now yields
\[
I \leq \frac{1}{d} \int_{y \in V} \int_{x \in V} e^{-(2n+1)g(x,y)} \omega_{\varphi}(x) \wedge \omega(x)^{n-1} \wedge \omega(y)^n
\]
\[
= \frac{1}{d} \int_{x \in V} \left(\int_{y \in V} \left[e^{-2(1-\frac{1}{n})g(x,y)} \omega(y)^n \right] \right) \omega_{\varphi}(x) \wedge \omega(x)^{n-1}
\]
\[
\leq (4n)^n \int_{x \in V} \left(\frac{1}{d} \int_{y \in V} \left(\omega + dd^c \chi_{\delta} \circ g \right)^n \right) \omega_{\varphi}(x) \wedge \omega(x)^{n-1}
\]
\[
= (4n)^n \int_{x \in V} \omega_{\varphi}(x) \wedge \omega(x)^{n-1} = (4n)^n \cdot d.
\]

Remark 2.7. — The same arguments as above show that for any $\gamma \in (0,2)$
\[
\int_V e^{-\frac{\gamma}{nd} q} \omega^n \leq C_{\gamma} \cdot d \exp \left\{ -\frac{\gamma}{nd} \int_V q \omega^n \right\},
\]
where $C_{\gamma} > 0$ depends on n and γ. We have fixed $\gamma = 1$ in the above proposition to simplify the statement.

Lemma 2.8. — With the notations of the proof of Proposition 2.5 above, we fix a point $y \in V$ and set $g := g_y$. Moreover, let $\delta \in (0,1)$ be a given number. Then, the following set of inequalities hold as currents on V.

(i) $\omega_\delta \leq e^{-2\delta g} \omega$

(ii) $\frac{1}{2} e^{-2(1-\delta)g} \omega \leq \omega + dd^c \chi_{\delta} \circ g$

Here, χ_{δ} is the function defined on \mathbb{R} by the expression $\chi_{\delta}(t) := \frac{e^{\delta t}}{4\delta}$.

It is understood here that we take derivatives w.r.t. x and the estimates are uniform both in x and y.

Proof. — We proceed in three steps.

Step 1. Reduction to a computation on \mathbb{C}^N.

First of all we observe that the function g as well as the $(1,1)$-currents ω and ω_δ are the restriction to V of a function or $(1,1)$-currents on \mathbb{P}^N. As positivity is preserved by restriction to a subvariety, it is enough to prove the inequalities of currents above on the whole \mathbb{P}^N where they make sense as well.
Now, recall that $\text{PU}(N, C)$ acts transitively on \mathbb{P}^N by transformations preserving ω_{FS} and an isometry u sends g_y to $g_{u(y)}$. Therefore it suffices to prove all the inequalities above on \mathbb{P}^N, for the special point $y = [1:0: \cdots :0]$. We work in the affine chart (U_1, z) where $U_1 := \{x \in \mathbb{P}^N : x_1 \neq 0\}$ and $z := (z_j)_{j}$, $z_j = x_j/x_1$. In these coordinates $\omega_{FS}|_{U_1} = \frac{1}{2} dd^c \log (1 + ||z||^2)$. Note that U_1 is dense in \mathbb{P}^N and both ω_{FS}, ω_G are smooth on the complement $\mathbb{P}^N \setminus U_1$; thus it is sufficient to prove the inequalities on $U_1 \simeq \mathbb{C}^N$.

We actually claim that is is sufficient to prove the inequalities on $U_1 \setminus \{x\}$, where all the currents involved are smooth differential forms. This is because neither of the positive currents $e^{-2G} \omega_{FS}, \omega + dd^c \chi_\delta \circ g$ and $\omega_{FS}^{n-1} \wedge \omega_{FS}$ on \mathbb{P}^N puts any mass on $\{x\}$. This follows from the integrability of e^{-2G} for the first one, the boundedness of $\chi_\delta \circ g$ for the second one whereas for the third one, it follows from the fact that the Lelong number of ω_{FS}^{-n+1} at x vanishes.

As observed in [AAZ18, Lem. 4.1], for $(x, y := [1:0: \cdots :0]) \in U_1 \times U_1$ we have

$$G(x,y) = N(z,0) - \frac{1}{2} \log(1 + ||z||^2)$$

where $z = z(x)$ and $N(z,0) := \frac{1}{2} \log ||z||^2$. Thus in U_1 we have $e^{-2G} = 1 + \frac{1}{||z||^2}$ and

$$\omega(x) + dd^c g(y,x) = dd^c N(z,0) = \frac{1}{2} dd^c ||z||^2.$$

Let us define $\beta := dd^c ||z||^2 = i \sum_{k=1}^N dz_k \wedge d\bar{z}_k$ and let $\alpha_i := \sum_{k=1}^N z_k dz_k$.

Step 2. Proof of Item (i).

Standard computations give

$$(\omega_{FS})^\beta_j = \frac{(1 + ||z||^2) \delta^\beta_j - z_j \bar{z}_j}{2(1 + ||z||^2)^2} \quad \text{and} \quad N_j = \frac{1}{2} \frac{||z||^2 \delta^\beta_j - z_j \bar{z}_j}{||z||^4}$$

or equivalently

$$\omega_{FS} = \frac{1}{2} \left(\frac{1}{1 + ||z||^2} \beta - \frac{1}{(1 + ||z||^2)^2} i \alpha_1 \wedge \bar{\alpha}_1\right) \quad \text{and} \quad \omega_G = \frac{1}{2} \left(\frac{1}{||z||^4} \beta - \frac{1}{||z||^2} i \alpha_1 \wedge \bar{\alpha}_1\right)$$

The matrix $A(z) := (z_i \bar{z}_j)$ is semipositive with rank at most one and trace $||z||^2$. Therefore, if $\lambda, \mu \in \mathbb{R}$ (they can depend on z), the matrix $\lambda I + \mu A$ is hermitian with eigenvalues λ (with multiplicity $N - 1$) and $\lambda + ||z||^2 \cdot \mu$ (with multiplicity one). In particular, it is semipositive if and only if $\lambda \geq \max(0, -||z||^2 \cdot \mu)$.

The computations above show that the eigenvalues of the $(1,1)$-form $\lambda \beta + \mu i \alpha_1 \wedge \bar{\alpha}_1$ with respect to β are λ and $\lambda + ||z||^2 \cdot \mu$. Now, if C is some non-negative constant, the $(1,1)$-form $Ce^{-2G} \omega_{FS} - \omega_G$ can be rewritten as follows

$$\frac{1}{2(1 + ||z||^2)||z||^4} \cdot [(C - 1)||z||^2(1 + ||z||^2) \cdot \beta + \left((1 + ||z||^2) - C||z||^2\right) \cdot i \alpha_1 \wedge \bar{\alpha}_1].$$

The latter form is semipositive if and only if $C \geq 1$. This proves (i).

Step 3. Proof of Item (ii).
Observe that χ_δ is convex increasing with $0 \leq \chi_\delta \leq 1/2$ for $t \leq 0$. Standard computations give $dd_c^* \chi_\delta \circ G = \chi_\delta' \circ G \, dd_c G + \chi_\delta'' \circ G \, dG \wedge d^c G$. Next, we have

$$
\begin{align*}
\frac{1}{2||z||^2(1+||z||^2)}
&
\left[
\beta - \frac{1+2||z||^2}{||z||^2(1+||z||^2)} \cdot i\bar{\lambda}_1 \wedge \bar{\lambda}_1
\right]
\end{align*}
$$

with the notation introduced in Step 1. Similarly, one finds

$$
\begin{align*}
dG \wedge d^c G &= \frac{1}{4||z||^4(1+||z||^2)^2} i\bar{\lambda}_1 \wedge \bar{\lambda}_1.
\end{align*}
$$

To lighten notation, we will from now on write χ (resp. χ') to denote $\chi_\delta' \circ G$ (resp. $\chi_\delta'' \circ G$). One has

$$
\omega_{FS} + dd_c^\ast \chi_\delta \circ G = \frac{1}{2(1+||z||^2)} \left[(1+\frac{\chi'}{||z||^2}) \beta + \frac{\chi'' - \chi'(1+2||z||^2)}{||z||^4(1+||z||^2)} i\bar{\lambda}_1 \wedge \bar{\lambda}_1 \right].
$$

As a result, the two eigenvalues λ, μ of $\omega_{FS} + dd_c^\ast \chi_\delta \circ G$ with respect to ω_{FS} are given by

$$
\begin{align*}
\lambda &= 1 + \frac{\chi'}{||z||^2}, \\
\mu &= (1+||z||^2) \left(1 + \frac{\chi'}{||z||^2} + \frac{\chi'' - \chi'(1+2||z||^2)}{||z||^4(1+||z||^2)} \right) = (1+||z||^2 - \chi') + \frac{\chi''}{2||z||^2}
\end{align*}
$$

Using the definition of χ and the fact that $e^{-2s} = 1 + \frac{1}{||z||^2}$, one easily sees that $\lambda \geq \frac{1}{2}e^{-2(1-\delta)G}$ and $\mu \geq \frac{\delta}{2}e^{-2(1-\delta)G}$. The conclusion follows.

2.4. Skoda’s integrability theorem in families: the general case. In this section, we bypass the projectivity assumption and establish a quite general family version of Skoda’s integrability theorem, valid for families of compact Kähler varieties:

Theorem 2.9. In Setting 2.1, let us choose a positive number $\alpha \in (0, \alpha(\Theta))$, which is possible thanks to Corollary 2.4. Then, there exist constant $A_\alpha, C > 0$ such that for all $t \in \overline{D}_{1/2}$ and for all $\varphi_t \in \text{PSH}(X_t, \theta_t)$ with $\sup_{X_t} \varphi_t = 0$,

$$
\int_{X_t} e^{-a \varphi_t} \omega_t^n \leq C \exp \left\{ -A_\alpha \int_{X_t} \varphi_t \omega_t^n \right\}.
$$

Proof. The proof follows the same strategy as in [Zer01], as presented in [GZ17, Thm. 2.50]. There exists a finite number of trivializing charts $\{U_t\}$ of \mathcal{X} such that $\pi^{-1}(\overline{D}_{1/2}) \subset \cup_t U_t$. The statement will then follow if we prove the bound for the integral on the left-hand side replacing X_t by $X_t \cap U_t$. Moreover, w.l.o.g we can assume that we have an immersion $j_t : U_t \hookrightarrow \mathbb{B}$, where \mathbb{B} is the unit ball in \mathbb{C}^N. Up to shrinking U_t, one can also assume that there exists a smooth function ρ on \mathbb{B} such that $\sup_{\mathbb{B}} \rho = -2$ and $\Theta|_{U_t} = dd^c j_t^* \rho$. We define $\rho_t := (j_t^* \rho)|_{U_t \cap X_t}$; this is a potential of $\theta_t|_{U_t \cap X_t}$. Note that $\psi_t := \varphi_t + \rho_t$ is a non-positive psh function in $U_t \cap X_t$ such that

$$
\varphi_t - 2 \geq \psi_t \geq \varphi_t - C_t
$$

with $C_t := \inf_{U_t \cap X_t} \psi_t$. Then, for some $t \in (0, 1)$, we have

$$
\int_{X_t} e^{-a \varphi_t} \omega_t^n \leq C \exp \left\{ -A_\alpha \int_{X_t} \varphi_t \omega_t^n \right\}.
$$

Using the definition of χ and the fact that $e^{-2s} = 1 + \frac{1}{||z||^2}$, one easily sees that $\lambda \geq \frac{1}{2}e^{-2(1-\delta)G}$ and $\mu \geq \frac{\delta}{2}e^{-2(1-\delta)G}$. The conclusion follows.
for some constant $C_\tau > 0$ depending only on U_τ. It is also clear that proving (2.3) is equivalent to showing that

\begin{equation}
\int_{U_\tau \cap X_i} e^{-\psi_i} \omega_i^n \leq C_\tau \exp \left\{ -A_{\delta, \tau} \int_{X_i} \psi_1 \omega_1^n \right\},
\end{equation}

for some constants $C_\tau, A_{\delta, \tau}$ that do not depend on t.

Claim 2.10. — It is sufficient to prove (2.5) for smooth, non-positive psh functions ψ_1 on $U_\tau \cap X_i$ such that

\begin{equation}
\label{eq:2.6}
\ddc \psi_1 \geq (j_*^c \ddc \|z\|^2)|_{X_i}.
\end{equation}

Proof of Claim 2.10. — Indeed, as

\[\int_{U_\tau \cap X_i} e^{-\alpha \psi_i} \omega_i^n \leq e^\delta \int_{U_\tau \cap X_i} e^{-\alpha (\psi_1 + j_*^c \|z\|^2)} \omega_i^n,\]

we can replace ψ_i by the function $\psi_i + j_*^c \|z\|^2$, bounded above by -1. Next, thanks to a result of Fornaess-Narasimhan [FN80, Thm. 5.5], one can write ψ_i as a decreasing limit of non-positive, smooth psh functions on $U_\tau \cap X_i$ (up to shrinking U_τ possibly). The combination of the monotone convergence theorem and the integrability of $e^{-\alpha \psi_i}$ on X_i provided by Corollary 2.4 settles the claim. \(\square\)

From now on, we assume that ψ_i is smooth, and we work exclusively on U_τ that we view inside the unit ball \mathcal{B} of \mathbb{C}^N. By abuse of notation, we will denote by $\mathcal{B} \cap X_i$ the set $U_\tau \cap X_i$. In the same vein, we will identify the coordinate functions $z = (z_1, \ldots, z_N)$ on $\mathcal{B} \subset \mathbb{C}^N$ with their pull-back by j_τ on U_τ.

Let us pick some number $t \in \overline{D}_{1/2}$ and some point $x \in \mathcal{B} \cap X_i$. We denote by Φ_x the automorphism of the unit ball \mathcal{B} that sends x to the origin and consider

\[G_x(z) := \log \|\Phi_x(z)\|\]

the pluricomplex Green function of the unit ball \mathcal{B}. Recall that G_x is the unique plurisubharmonic function in \mathbb{B} such that $(ddc G_x)^N = \delta_x$ in the weak sense of currents, $G_x \leq 0$ and G_x is identically zero on $\partial \mathcal{B}$. Standard computations yield

\begin{equation}
\label{eq:2.7}
\ddc G_x \leq \frac{C_0}{\|\Phi_x(z)\|^2} \ddc \|z\|^2 \quad \text{on } \mathcal{B},
\end{equation}

for some dimensional constant $C_0 = C_0(N) > 0$.

Since $[X_i]_{\mathcal{B}}$ is a positive $(N - n, N - n)$-current on \mathcal{B} and the singular set of the restriction of the Green function $G_x|_X_i$ is compact (it is indeed equal to $\{x\}$), the mixed Monge-Ampère measure $(ddc G_x)^n \wedge [X_i]$ is well defined [GZ17, Prop. 3.15] and it has a Dirac mass with coefficient ≥ 1 at the point x. Since $\psi_i \leq 0$ we then have

\[\psi_i(x) \geq \int_{\mathcal{B}} \psi_i(ddc G_x)^n \wedge [X_i] = \int_{\mathcal{B} \cap X_i} \psi_i(ddc G_x)^n.\]

Now, recall the following result, which is Stokes’ formula in a context of isolated singularities.
Lemma 2.11. — Let $X \subset B_{CN}(0,2)$ be a a proper, n-dimensional complex subspace of the ball of radius 2 in CN, center at the origin. Let u, v, w be psh functions on $B_{CN}(0,2)$ with isolated singularities, i.e. they are smooth outside a discrete set of points in $B_{CN}(0,2)$ which we assume does not meet $\partial B_{CN}(0,1)$. Finally, let $B := B_{CN}(0,1) \cap X$. Then, we have

$$
\int_{\partial B} (ud^c \nu - vd^c \mu) \wedge (dd^c w)^{n-1} = \int_{B} (udd^c \nu - vdd^c \mu) \wedge (dd^c w)^{n-1}
$$

(2.8)

Applying Lemma 2.11 to $X = X_t, u = \psi_t, v = w = G_x$ (recall that $G_x|_{\partial B} \equiv 0$), we get

$$
\int_{B \cap X_t} \psi_t (dd^c G_x)^n = \int_{B \cap X_t} G_x dd^c \psi_t \wedge (dd^c G_x)^{n-1} + \int_{B \cap X_t} \psi_t d^c G_x \wedge (dd^c G_x)^{n-1}
$$

By Lemma 2.12, in order to get a lower bound for I_t, it is enough to bound from above the quantity $\int_{B \cap X_t} (-\psi_t) d^c \|z\|^2 \wedge (dd^c \|z\|^2)^{n-1}$. Applying (2.8) to $u = -\psi_t, v = w = \|z\|^2 - 1$, we find

$$
\int_{B \cap X_t} (-\psi_t) d^c \|z\|^2 \wedge (dd^c \|z\|^2)^{n-1} = \int_{B \cap X_t} (-\psi_t) (dd^c \|z\|^2)^n + \int_{B \cap X_t} (\|z\|^2 - 1) dd^c \psi_t \wedge (dd^c \|z\|^2)^{n-1}
$$

$$
\leq \int_{B \cap X_t} (-\psi_t) (dd^c \|z\|^2)^n
$$

$$
\leq C_1^n \left[\int_{X_t} (-\psi_t) \omega_1^n + C_\tau \cdot V \right],
$$

where C_1 is such that $dd^c \|z\|^2 \leq C_1 \omega$ on B and C_τ is given in (2.4).

We now take care of the most singular term I_t. Set

$$
\gamma_t(x) := \int_{B} dd^c \psi_t \wedge (dd^c G_x)^{n-1} \wedge [X_t]
$$

so that $\mu := \gamma_t^{-1} dd^c \psi_t \wedge (dd^c G_x)^{n-1} \wedge [X_t]$ is a probability measure on B (depending on x). We claim that for any $x \in B$ there exists a constant $\nu > 0$ independent of t and x such that $1 \leq \gamma_t \leq \nu$. The uniform upper bound follows from the same computations in the proof of Proposition 2.3. By (2.6) we can infer that

$$
\int_{B} dd^c \psi_t \wedge (dd^c G_x)^{n-1} \wedge [X_t] \geq \nu ((dd^c G_x)^{n-1} \wedge [X_t], x) \geq \nu ([X_t], x) = m(X_t, x) \geq 1
$$

In the second inequality we used the fact that $r \to \frac{1}{r^2} \int_{B_r} dd^c \|z\|^2 \wedge T$ is decreasing to $\nu(T, x)$ when $r \downarrow 0$ (see (2.1)). The first equality follows from (2.2) while the second one comes from Thie’s theorem. Recall that the origin of B is identified with the point x.
We now use Jensen’s formula and (2.7) to obtain
\[
\exp(-au(x)) = \exp \left(\int_{x \in \mathcal{B}} -\alpha \gamma t G_x d\mu \right)
\]
\[
\leq \frac{1}{\gamma t} \int_{x \in \mathcal{B}} e^{-\alpha \gamma t G_x} dd^c \psi_t \wedge (dd^c G_x)^{n-1} \wedge [X_t]
\]
\[
= \frac{1}{\gamma t} \int_{x \in \mathcal{B}} \frac{dd^c \psi_t \wedge (dd^c G_x)^{n-1} \wedge [X_t]}{||\Phi_t(z)||^{\alpha \gamma t}}
\]
\[
\leq C_0 \int_{x \in \mathcal{B}} \frac{dd^c \psi_t \wedge (dd^c ||z||^2)^{n-1} \wedge [X_t]}{||\Phi_t(z)||^{\alpha \gamma t+2n-2}},
\]
where we can assume w.l.o.g. that \(\alpha \nu < 2 \). By Fubini’s theorem, we have
\[
\int_{x \in \mathcal{B}_{1/2}} e^{-a \psi} \omega^n \wedge [X_t] \leq \int_{x \in \mathcal{B}_{1/2}} e^{-\alpha(\nu + \nu)} \omega^n \wedge [X_t]
\]
\[
\leq K \cdot \int_{x \in \mathcal{B}_{1/2}} e^{-\alpha \nu} \omega^n \wedge [X_t]
\]
\[
\leq C_0 \cdot K \cdot \int_{x \in \mathcal{B}_{1/2}} \left(\int_{x \in \mathcal{B}} \frac{dd^c \psi_t \wedge (dd^c ||z||^2)^{n-1} \wedge [X_t]}{||\Phi_t(z)||^{\alpha \nu+2n-2}} \right) \omega^n \wedge [X_t]
\]
\[
\leq C_0 \cdot K \cdot \int_{x \in \mathcal{B}} \left(\int_{x \in \mathcal{B}_{1/2}} \frac{(dd^c ||x||^2)^n \wedge [X_t]}{||\Phi_t(z)||^{\alpha \nu+2n-2}} \right) dd^c \psi_t \wedge (dd^c ||z||^2)^{n-1} \wedge [X_t],
\]
where \(K := \exp(-aC_0^n \int_{x} \psi_t \omega^n) \).

Moreover, using the same computation as in the proof of Lemma 2.13 below, one can check that if \(\beta := \frac{2 - \alpha \nu}{2n} > 0 \), there exists a constant \(C_{\beta} > 0 \) such that the inequality of \((n, n)\)-currents below holds on \(\mathcal{B} \)
\[
(2.9) \quad C_{\beta}^{-1} (dd^c ||\Phi_t(z)||^2)^n \leq \frac{1}{||\Phi_t(z)||^{\alpha \nu+2n-2}} (dd^c ||x||^2)^n \leq C_{\beta} (dd^c ||\Phi_t(z)||^2)^n
\]
Fix \(z \in \mathcal{B} \) and for any \(x \in \mathcal{B} \) let \(f_z(x) := ||\Phi_t(z)|| \). We define an extension of \(f_z \) to \(\mathcal{X} \) by
\[
F_z(x) := \begin{cases} \chi \cdot f_z(x) & \text{if } x \in \mathcal{B} \\ 0 & \text{else.} \end{cases}
\]
Here, \(\chi \) is a smooth cut-off function such that \(\text{Supp}(\chi) \subset \mathcal{B} \) and \(\chi \equiv 1 \) on \(\mathcal{B}_{1/2} \). It is easy to check that \(F_z \) is an \(A \omega \)-psh function on \(\mathcal{X} \) for some \(A = A_{\tau} \) big enough (that a priori depends on \(U_{\tau} \) but can be chosen independently of \(x \in \mathcal{B}_{1/2} \)). Thus
\[
\int_{x \in \mathcal{B}_{1/2}} \frac{1}{||\Phi_t(z)||^{\alpha \nu+2n-2}} (dd^c ||x||^2)^n \wedge [X_t] \quad \leq \quad C_\beta \int_{x \in \mathcal{B}_{1/2}} (dd^c ||\Phi_t(z)||^2)^n \wedge [X_t]
\]
\[
\quad \leq \quad C_\beta \int_{x \in \mathcal{X}} (A \omega + dd^c F_z(z)^{2\beta})^n \wedge [X_t]
\]
\[
\quad \leq \quad C_\beta \cdot A^n \cdot V := C_2.
\]
It then follows that
\[
\int_{x \in \mathcal{B}_{1/2}} e^{-a \psi_t} \omega^n \wedge [X_t] \leq C_0 \cdot C_2 \cdot K \cdot \int_{x \in \mathcal{B}} dd^c \psi_t \wedge (dd^c ||z||^2)^{n-1} \wedge [X_t] \leq C_3 \cdot K,
\]
where \(C_3 := C_0 C_2 C_\beta C_{\gamma t}^{-1} \cdot V \). This is the conclusion. \(\Box \)
Lemma 2.12. — With the notations introduced at the beginning of the proof of Theorem 2.9, there exists a constant $C = C(n) > 0$ such that for all $x \in \mathcal{B}_{1/2} \subset \mathbb{C}^N$ and $z \in X_t \cap S^{2N-1}$,
\begin{equation}
\frac{1}{C} d^c \|z\|^2 \wedge (dd^c \|z\|^2)^{n-1} \leq d^c G_x \wedge (dd^c G_x)^{n-1} \leq C d^c \|z\|^2 \wedge (dd^c \|z\|^2)^{n-1}
\end{equation}

Proof. — One knows that there exists a neighborhood U of $S^{2N-1} \subset \mathbb{C}^N$ not containing x such that $dd^c \|\Phi_x\|^2$ defines a Kähler form ω_x on U. This follows for instance from the fact that Φ_x can be extended as an holomorphic map to an open neighborhood of the closed ball — and that neighborhood can be chosen to be independent of $x \in \mathcal{B}_{1/2}$. On U, ω_x is comparable to the euclidean metric on \mathbb{C}^N and therefore, ω_x and ω_{eucl} induce uniformly equivalent Riemannian metrics g_x and g_{eucl} on $U \cap X_t$ first, and then as well on the real hypersurface $X_t \cap S^{2N-1}$, we denote them by g_x' and g_{eucl}' respectively. In particular their volume forms $dV_{g_x'}, dV_{g_{eucl}'}$ are equivalent too. One has $dV_{g_{eucl}'} = t_v dV_{g_{eucl}'}$ where v is the restriction to X_t of the unit outward radial vector
\[\sum_{j=1}^{n+k} \left(z_j \frac{\partial}{\partial z_j} + z_j \frac{\partial}{\partial z_j} \right). \]
Hence, on $X_t \cap S^{2N-1}$ one has
\[dV_{g_{eucl}'} = t_v (dd^c \|z\|^2)^n = 2 \left(\frac{i}{\pi} \right)^{n-1} d^c \|z\|^2 \wedge (dd^c \|z\|^2)^{n-1}. \]
In the same way, $dV_{g_x'} = t_v dV_{g_x}$, where v_x is the restriction to X_t of the unit outward vector with respect to $dd^c \|\Phi_x\|^2$, hence $v_x = \Phi_x v$. Therefore one has on $X_t \cap S^{2N-1}$,
\[dV_{g_x'} = t_v (dd^c \|\Phi_x\|^2)^n = \Phi_x(t_v (dd^c \|z\|^2)^n) = 2 \left(\frac{i}{\pi} \right)^{n-1} d^c \|\Phi_x\|^2 \wedge (dd^c \|\Phi_x\|^2)^{n-1} \]
\[= 2^{n+1} \left(\frac{i}{\pi} \right)^{n-1} d^c G_x \wedge (dd^c G_x)^{n-1}. \]
given that $G_x = \frac{1}{n} \log \|\Phi_x\|^2$ vanishes on the sphere and that $d^c \log u \wedge (dd^c \log u)^{n-1} = \frac{1}{n} d^c u \wedge (dd^c u)^{n-1}$ for any smooth function u. This shows that the above two volume forms on $X_t \cap S^{2N-1}$ are uniformly equivalent on $X_t \cap S^{2N-1}$ hence it ends the proof.

Lemma 2.13. — Let $\beta > 0$ and $\mathcal{B} \subset \mathbb{C}^n$ be the unit ball. Then $\|z\|^{2\beta}$ is psh on \mathcal{B} and there exists a constant $C_\beta > 0$ (that depends only on β) such that
\[\frac{C_\beta}{\|z\|^{2(1-\beta)}} \cdot dd^c \|z\|^2 \leq dd^c \|z\|^{2\beta} \leq \frac{C_\beta}{\|z\|^{2(1-\beta)}} \cdot dd^c \|z\|^2. \]

Proof. — Let $\chi : \mathbb{R}^+ \to \mathbb{R}^+$ be defined as $\chi(t) := t^\beta$ and $u := \|z\|^2$. One has
\[dd^c \chi \circ u = \beta u^{\beta-1} \left(dd^c u - (1 - \beta) u^{-1} du \wedge d^c u \right). \]
Note that $\min\{1, \beta\} \cdot dd^c u \leq dd^c u - (1 - \beta) u^{-1} du \wedge d^c u \leq \max\{1, \beta\} \cdot dd^c u$. Observe that he hermitian matrix associated to the $(1, 1)$-form $du \wedge d^c u$ is $(z_i z_j)_{i,j}$. The latter has rank one and its non-zero eigenvalue coincides with its trace, i.e. u. Therefore the eigenvalues of the hermitian matrix $A := I_n - (1 - \beta) u^{-1} (z_i z_j)_{i,j}$ are 1 (with multiplicity $n-1$) and β (multiplicity 1). This ends the proof.
3. Normalization in families

Previous section allows us to check hypothesis (H1), as soon as the mean value of sup-normalized ω_t-psh functions is uniformly controlled. It is classical that one can compare the supremum and the mean value of ω-psh functions on a fixed compact Kähler variety (see [GZ17, Prop. 8.5]). We now establish a similar result for families:

Proposition 3.1. — In the Setting 2.1, there exists a constant $C > 0$ such that: the inequality

$$\sup_{X_t} \varphi_t - C \leq \frac{1}{V} \int_{X_t} \varphi_t \omega_t^n \leq \sup_{X_t} \varphi_t$$

holds for all $t \in \mathbb{D}_{1/2}$ and for every function $\varphi_t \in \text{PSH}(X_t, \theta_t)$.

By combining the above result with Theorem 2.9, we get the following

Theorem 3.2. — In Setting 2.1, let us choose a positive number $\alpha \in (0, \alpha(\Theta))$, which is possible thanks to Corollary 2.4. Then, there exists a constant $C_\alpha > 0$ such that for all $t \in \mathbb{D}_{1/2}$ and for all $\varphi_t \in \text{PSH}(X_t, \theta_t)$, we have

$$\int_{X_t} e^{-\alpha(\varphi_t - \sup_{X_t} \varphi_t)} \omega_t^n \leq C_\alpha.$$

3.1. Irreducibility of the fibers

The irreducibility of all the fibers is a necessary assumption for the left-hand-side inequality to hold as the following example shows:

Example 3.3. — Consider $\mathcal{X} \subset \mathbb{P}^2 \times \mathbb{C}$ where

$$\mathcal{X} := \{(x : y : z) ; xy - tz^2 = 0\}.$$

The variety \mathcal{X} is smooth and comes equipped with the proper morphism $\pi : \mathcal{X} \to \mathbb{C}$ induced by the second projection $\mathbb{P}^2 \times \mathbb{C} \to \mathbb{C}$. Set $X_t = \{(x : y : z) \in \mathbb{P}^2 : xy = tz^2\}$. Note that X_t is a smooth conic for $t \neq 0$ while $X_0 = \{(x : y : z) \in \mathbb{P}^2 : xy = 0\}$ is the union of two lines. The quasi-psh function φ on \mathbb{P}^2 defined by

$$\varphi([x : y : z]) = \frac{1}{2} \left(\log(|x|^2 + |z|^2) + \log |y|^2 \right) - \log(|x|^2 + |y|^2 + |z|^2) + \log 2$$

clearly induces a ω-psh function Φ on \mathcal{X}, where $\omega = \omega_{FS} + dd^c|t|^2$,

$$\Phi([x : y : z], t) = \varphi([x : y : z]).$$

We set $\varphi_t := \Phi|_{X_t}$ and $\omega_t := \omega|_{X_t}$. A simple computation shows that $\sup_{\mathcal{X}} \Phi = 0$ and it is attained at points $([x : y : z], t)$ such that $|y|^2 = |x|^2 + |z|^2$. We also find that $\sup_{X_t} \varphi_t = 0$ and the supremum is attained on the set

$$S_t := \left\{ [x : 1 : z] : |x| = \frac{1}{2|t|} \left(\sqrt{4|t|^2 + 1} - 1 \right), z^2 = xt^{-1} \right\}.$$

As $t \to 0$, S_t becomes the circle $C := \{(0 : 1 : e^{i\theta}) ; \theta \in \mathbb{R}\} \subset X_0$. Note also that $X_0 = \ell \cup \ell'$, where $\ell := \{(0 : y : z)\}$ and $\ell' := \{x : 0 : z\}$ and $C \subset \ell$. The open annulus $U_t := \{[z^2 : t : z] ; 1 < |z|^2 < 2\} \subset X_t$ satisfies

$$\int_{U_t} \omega_t \geq \delta.$$
for some $\delta > 0$ independent of t as well as
\[\varphi_t|_{U_t} \leq \log |t| + 1 \]
from which it follows that
\[\lim_{t \to 0} \int_{X_t} \varphi_t \omega_t = -\infty. \]

3.2. Sobolev and Poincaré inequalities. — In this section, we work in the Setting 2.1 above and we assume that the relative dimension $n = \dim_X X_t$ satisfies $n > 1$. For $t \in \mathbb{D}$, we set $X_t := \pi^{-1}(t)$ and denote by X^reg_t the regular locus of X_t. We fix a Kähler form ω on X and set
\[\omega_t := \omega|_{X_t}. \]

Proposition 3.4. — Let $K \in \mathbb{D}$. There exists $C_S = C_S(K)$ such that
\[\forall t \in K, \forall f \in C^0_0(X^\text{reg}_t), \quad \left(\int_{X_t} |f|^{\frac{2n}{n-1}} \omega_t^n \right)^{\frac{n-1}{n}} \leq C_S \int_{X_t} (|f|^2 + |df|_{\omega_t}^2) \omega_t^n. \]

Remark 3.5. — The inequality above extends immediately to the functions $f \in W^{1,2}(X^\text{reg}_t)$, i.e. such that $f, df \in L^2(X^\text{reg}_t, \omega_t)$.

Proof. — Because of the existence of partition of unity, the statement above is local. That means that it is enough to show the above inequality for any $t \in K$ and any $f \in C^0_0(U_t \cap X^\text{reg}_t)$ where $U_t \subset X$ are open sets such that $\cup U_t = X$.

We fix such an open set U_t and we drop the index i in what follows. Without loss of generality, one can assume that there exists an embedding $U_t \hookrightarrow \mathbb{C}^N$ and that $\omega|_{U_t}$ and $\omega_{\mathbb{C}^N}|_{U_t}$ are quasi-isometric. Because Sobolev inequality is essentially insensitive to quasi-isometry, it is enough to show the inequality replacing ω_t by $\omega_{\mathbb{C}^N}|_{U_t}$ where $U_t := U \cap X_t$.

Now, the isometric embeddings $(U^\text{reg}_t, \omega_{\mathbb{C}^N}|_{U_t}) \hookrightarrow (\mathbb{C}^N, \omega_{\mathbb{C}^N})$ provide a family of minimal submanifolds (i.e. with zero mean curvature vector) of the euclidean space by virtue of Wirtinger inequality. The expected inequality is now a direct application of Michael-Simon’s Sobolev inequality [MS73, Thm. 2.1].

Proposition 3.6. — Let $K \in \mathbb{D}$. There exists $C_P = C_P(K)$ such that
\[\forall t \in K, \forall f \in W^{1,2}_0(X^\text{reg}_t), \quad \int_{X_t} |f|^2 \omega_t^n \leq C_P \int_{X_t} |df|_{\omega_t}^2 \omega_t^n. \]

In the statement above, the space $W^{1,2}_0(X^\text{reg}_t)$ is defined as the space of functions f on X^reg_t such that $f, df \in L^2(X^\text{reg}_t, \omega_t)$ and $\int_{X_t} f \omega_t^n = 0$.

Proof. — First, we claim that for each $t \in \mathbb{D}$, there exists such a Poincaré constant $C_{P,t}$. Indeed, thanks to [Be19, Thm. 0.2], the Laplacian Δ_{ω_t} is positive, self-adjoint and its spectrum is discrete. It remains to show that its kernel is one-dimensional. Now, if $f \in W^{1,2}(X^\text{reg}_t)$ is such that $\Delta_t f = 0$, it means that for every $u \in W^{1,2}(X^\text{reg}_t)$, we have $\langle \nabla u, \nabla f \rangle = 0$. In particular, taking $u = f$ shows that f is locally constant on X^reg_t. As X_t is irreducible, X^reg_t is connected and the result follows.
Given the absolute case explained above, the family version of Poincaré inequality follows from Proposition 3.4 and the irreducibility of the fibers: we refer the reader to [RZ11b, Prop. 3.2] for a detailed argument (the projectivity assumption made by Ruan-Zhang being unnecessary for this part of the argument).

3.3. Heat kernels and Green’s functions. — In this section as well as in the following section 3.4, we go back to the absolute case and consider an irreducible and reduced Kähler space \((X, \omega)\) of dimension \(n = \dim_C X\) satisfying \(n > 1\).

When \(X\) is smooth, it is well-known (cf e.g. [Cha84, § VII]) that there exists a smooth, positive function \(H : X \times X \times (0, +\infty)\), symmetric in its space variable and such that if \(\Delta := \tr_\omega \ddc\), one has

\[(-\Delta + \partial t)H(x, y, t) = 0.\]

For every \(x \in X\), one has weak convergence \(H(x, \cdot, t) \rightharpoonup \delta_x\).

In the general case where \(X\) may have singularities, one can introduce \(X_\varepsilon = X \setminus V_\varepsilon\) where \(V_\varepsilon\) is a closed \(\varepsilon\)-neighborhood of \(X_{\text{sing}}\) with smooth boundary. Then, there exists a unique smooth, positive function \(H_\varepsilon\) on \(X_\varepsilon \times X_\varepsilon \times (0, +\infty)\) such that

\[(-\Delta + \partial t)H_\varepsilon(x, y, t) = 0,\]

\(H_\varepsilon(x, y, t) \to 0\) whenever \(x\) or \(y\) approaches \(\partial X_\varepsilon\).

Moreover, given \((x, y, t) \in X_\varepsilon \times X_\varepsilon \times (0, +\infty)\), the function \((0, \varepsilon\!_0) \ni \varepsilon \mapsto H_\varepsilon(x, y, t)\) is decreasing. Using [Cha84, VII.2 Thm. 4], we additionally see that the limit \(\hat{H} := \lim_\varepsilon H_\varepsilon\) satisfies

\[H\text{ is positive and smooth on } X_{\text{reg}} \times X_{\text{reg}} \times (0, +\infty).
\]

\[(-\Delta + \partial t)\hat{H}(x, y, t) = 0.\]

For all \(x, y \in X_{\text{reg}}\) and \(t, s > 0\), one has

\[H(x, y, t + s) = \int_X H(x, \cdot, t)H(\cdot, y, s)\omega^n.\]

For any \(x \in X_{\text{reg}},\) one has

\[\forall t > 0, \int_X H(x, \cdot, t)\omega^n = 1 \quad \text{and} \quad H(x, \cdot, t) \rightharpoonup \delta_x \text{ weakly}.\]

Remark 3.7. — When \(X \subset \mathbb{P}^N\) is projective and \(\omega = \omega_{\mathbb{P}^N}|_X\), Li and Tian have showed in [LT95] that there is an absolute inequality

\[H(x, y, t) \leq H_{\mathbb{P}^N}(x, y, t)\]

for any \(x, y \in X_{\text{reg}}\) and \(t \in (0, +\infty)\), where \(H_{\mathbb{P}^N}\) is the heat kernel of \((\mathbb{P}^N, \omega_{\mathbb{P}^N})\). We will not use that result and establish a similar estimate holding for families, cf Lemma 3.8.(5) below.

Below are a few more properties that will be useful later, which are certainly standard in the smooth case. For this purpose, one introduces the function

\[G(x, y, t) := H(x, y, t) - \frac{1}{V}\]
where \(V := \int_X \omega^n \). The key information for us will be given by the fourth item, for which the arguments are borrowed from [CL81], see also [Siu87, App. A].

Lemma 3.8. — Let \(x, y \in X_{\text{reg}} \). We have

1. \(G(x, y, t) > -\frac{1}{t^2} \), \(\int_X G(x, \cdot, t) \omega^n = 0 \) and \(\int_X |G(x, \cdot, t)| \omega^n \leq 2 \).
2. \(|G(x, y, t)|^2 \leq G(x, x, t)G(y, y, t) \).
3. \(H(x, x, t) \to +\infty \) when \(t \to 0 \).
4. There exists a constant \(C_0 \) depending only on the Sobolev and Poincaré constant of \((X_{\text{reg}}, \omega)\) such that
 \[
 |G(x, x, t)| \leq C_0 t^{-n}
 \]
 for any \(x \in X_{\text{reg}} \) and any \(t > 0 \).
5. There exists a constant \(C_1 > 0 \) depending only on the Sobolev and Poincaré constants and the volume of \((X_{\text{reg}}, \omega)\) such that
 \[
 H(x, y, t) \leq C_1 (1 + t^{-n}) \cdot e^{-d(x, y)^2/5t}
 \]
 for any \(x, y \in X_{\text{reg}} \) and any \(t > 0 \).
6. For any \(x \in X_{\text{reg}} \), one has \(H(x, \cdot, t) \in W^{1,2}(X_{\text{reg}}) \).

Proof. — The first item is a trivial consequence of the positivity of \(H \) and the fact that \(\int_X H(x, \cdot, t) \omega^n = 1 \). The second property can be checked for \(G_x := H_x - \frac{1}{t} \) using the Sturm-Liouville decomposition \(H_t(x, y, t) = \sum_{i \geq 0} e^{-\lambda_i t} \phi_i(x) \phi_i(y) \) where \(\langle \phi_i \rangle \) is an orthonormal basis of \(L^2(X_x) \) consisting of Dirichlet eigenfunctions of \(-\Delta \) with eigenvalues \(\lambda_i \), cf [Cha84, VII (31)]. The third point follows in the same way as \(\sum \phi_i(x)^2 \) is the norm of the unbounded functional \(L^2 \cap C^0(X_x) \ni f \mapsto f(x) \).

For the fourth point, we start from the identity (3.1), which holds for \(G \). Taking \(y = x \) and differentiating with respect to \(s \) and eventually setting \(s := t \), one finds
\[
-G'(x, x, 2t) = \|dG(x, \cdot, t)\|_{L^2}^2 \geq (C_\omega(C_\rho + 1))^{-1} \|G(x, \cdot, t)\|_{L^{\frac{2n}{n-1}}}^2
\]
since \(\int_X G(x, \cdot, t) \omega^n = 0 \). Moreover, the interpolation inequality gives
\[
G(x, x, 2t) = \|G(x, \cdot, t)\|_{L^2}^2 \leq \|G(x, \cdot, t)\|_{L^{\frac{2n}{n-1}}}^2 \cdot \|G(x, \cdot, t)\|_{L^{\frac{2n}{n-1}}} \|
\]
hence
\[
\|G(x, \cdot, t)\|_{L^{\frac{2n}{n-1}}}^2 \geq 2^{-\frac{n}{2}} G(x, x, 2t)^{\frac{4}{n-1}}
\]
and
\[
-\frac{1}{n} G'(x, x, t) G(x, x, t)^{-1} \geq C^{-1}
\]
for \(C = n4^{\frac{n}{2}} \cdot C_\omega(C_\rho + 1) \). Integrating this inequality w.r.t. \(t \) and using the second item, we get the fourth item – recall that \(G(x, x, t) > 0 \) for any \(x \in X_{\text{reg}} \) given its expansion as power series.

The fifth item follows from the on-diagonal estimate just established above combined with [Gri97, Thm. 1.1], for instance. The last item follows easily from the bound above, cf e.g. [LT95, Lem. 3.1].
Thanks to Lemma 3.8 above, the integral
\[G(x, y) := \int_{0}^{+\infty} G(x, y, t) dt \]
is convergent whenever \(x \neq y \) and defines a function \(G \) on \(X_{\text{reg}} \times X_{\text{reg}} \) such that \(G(x, \cdot) \in L^1(X_{\text{reg}}) \). Moreover, since \((-\Delta + \partial_t)G(x, \cdot, t) = 0\), \(G(x, \cdot, t) \to 0 \) and \(G(x, \cdot, t) \to \delta_x - \frac{1}{t} \), we have
\[\Delta G(x, \cdot) = \frac{1}{V} - \delta_x, \]
i.e. for all \(f \in C^0(X_{\text{reg}}) \), we have
\[\int_X \Delta f \cdot G(x, \cdot) \omega^n = \frac{1}{V} \int_X f \omega^n - f(x). \]
Finally, the results of Section 3.3 enable us to find a lower bound of the Green function as follows
\[G(x, y) = \int_{0}^{1} G(x, y, t) dt + \int_{1}^{+\infty} G(x, y, t) dt \]
\[\geq - \frac{1}{V} - \frac{C}{n - 1} \]
where \(C \) only depends on the Sobolev and Poincaré constants of \((X_{\text{reg}}, \omega)\).

3.4. Green’s inequality for general psh functions. — Let us first generalize Formula 3.3 to some functions \(f \in C^\infty(X_{\text{reg}}) \) that are not necessarily compactly supported. For that purpose, let \(p : Y \to X \) a log resolution of singularities, let \(D \) be the exceptional divisor of \(p \) and let \(Y^o := p^{-1}(X_{\text{reg}}) = Y \setminus D \). We claim that for any \(f \in C^\infty(X_{\text{reg}}) \) such that \(p^* f \) extends smoothly across \(D \), the formula
\[\int_{X_{\text{reg}}} \Delta f \cdot G(x, \cdot) \omega^n = \frac{1}{V} \int_{X_{\text{reg}}} f \omega^n - f(x) \]
holds. First observe that all the terms are well-defined as one sees by pulling back by \(p \), which is an isomorphism over \(X_{\text{reg}} \). Indeed, recall that \(x \in X_{\text{reg}} \) and that \(G(x, \cdot) \) is locally bounded near \(X_{\text{sing}} \) so that \(p^* G(x, \cdot) \) is in \(L^1(Y^o, \omega_Y) \) for any Kähler form \(\omega_Y \) on \(Y \).

Next, we choose a family \((\chi_\delta)_\delta \) of cut-off functions for \(D \). As they are identically 0 on \(D \), they come from \(X \) under \(p \) and one can see them either as functions on \(X \) or \(Y \) interchangeably. It is classical (cf e.g. [CGP13, Sect. 9]) that one can choose \(\chi_\delta \) such that both \(d\bar{\partial} \chi_\delta \) and \(\pm d\bar{\partial} \chi_\delta \) are dominated by some fixed Poincaré metric \(\omega_p \) (independently of \(\delta \)). In particular, using Cauchy-Schwarz and the dominated convergence theorem, one finds
\[\lim_{\delta \to 0} \int_{X_{\text{reg}}} G(x, \cdot) \left[f d\bar{\partial} \chi_\delta + df \wedge d\bar{\partial} \chi_\delta + d\chi_\delta \wedge d\bar{\partial} f \right] \wedge \omega^{n-1} = 0 \]
by the dominated convergence theorem. Formula (3.5) is now a direct application of (3.3).

The next result is the key for the proof of Proposition 3.1.
Claim 3.9. — Let \(\varphi \in \text{PSH}(X, \omega) \), \(V = \int_X \omega^n \) and let \(x \in X_{\text{reg}} \). Then, one has

\[
\frac{1}{V} \int_X \varphi \omega^n - \varphi(x) \geq nV \cdot \inf_{X_{\text{reg}}} G(x, \cdot).
\]

Proof. — Replacing \(\varphi \) by \(\max(\varphi, -j) \) and letting \(j \to +\infty \), one sees that it is enough to prove the claim for bounded functions \(\varphi \). Next, thanks to Demaillyʼs regularization theorem, one can write \(p^*\varphi \) as a pointwise decreasing limit of smooth function \(\psi_x \) satisfying \(p^*\omega + \varepsilon\omega_Y + dd^c\psi_x \geq 0 \) for some fixed Kähler metric \(\omega_Y \) on \(Y \). Using (3.5) and setting \(G_x := G(x, \cdot) \), one finds

\[
\frac{1}{V} \int_X \varphi \omega^n - \varphi(x) = \lim_{\epsilon \to 0} \int_{Y^\circ} np^*G_x dd^c\psi_x \wedge p^*\omega^{n-1}.
\]

Moreover, as \(G_x \) have zero mean value, one has

\[
\int_{Y^\circ} p^*G_x dd^c\psi_x \wedge p^*\omega^{n-1} = \int_{Y^\circ} (p^*G_x - \inf_{X_{\text{reg}}} G_x) dd^c\psi_x \wedge p^*\omega^{n-1}
\]

\[
= \int_{Y^\circ} (p^*G_x - \inf_{X_{\text{reg}}} G_x)(p^*\omega + \varepsilon\omega_Y + dd^c\psi_x) \wedge p^*\omega^{n-1}
\]

\[
- \int_{Y^\circ} p^*G_x \wedge (p^*\omega + \varepsilon\omega_Y) \wedge p^*\omega^{n-1}
\]

\[
+ \inf_{X_{\text{reg}}} G_x \cdot (V + \varepsilon \int_Y \omega_Y \wedge p^*\omega^{n-1})
\]

\[
\geq \inf_{X_{\text{reg}}} G_x \cdot V + \varepsilon \left(\inf_{X_{\text{reg}}} \int_Y \omega_Y \wedge p^*\omega^{n-1} - \int_{Y^\circ} p^*G_x \omega_Y \wedge p^*\omega^{n-1} \right)
\]

Taking the limit as \(\epsilon \to 0 \), we get the expected result. \(\square \)

3.5. Proof of Proposition 3.1. — We can now prove Proposition 3.1. We distinguish two cases, according to whether \(n = \dim_C X_t \) satisfies \(n > 1 \) or \(n = 1 \).

First, let us assume that \(n > 1 \). Then, we know from section 3.2 that \((X_t^\text{reg}, \omega_t) \) admit uniform Poincaré and Sobolev constants. As the volume \(V \) of \((X_t, \omega_t) \) is constant, it follows from (3.4) that there exists \(C_G > 0 \) independent of \(t \) such that

\[
\forall x, y \in X_t^\text{reg}, \ G_t(x, y) \geq -C_G,
\]

where \(G_t(\cdot, \cdot) \) is the Green function of \((X_t, \omega_t) \). As \(\varphi_t \) is sup-normalized and upper semi-continuous, there exists \(x_t \in X_t^\text{reg} \) such that \(\varphi_t(x_t) \geq -1 \). Applying Claim 3.9 to \(\varphi := \varphi_t \) and \(x := x_t \), we find

\[
\frac{1}{V} \int_{X_t} (-\varphi_t) \omega^n_t \leq nVC_G + 1.
\]

When \(n = 1 \), we provide the sketch of a very different argument as the singularities of the complex curve \(X_t \) are necessarily isolated. The maximum principle for psh functions allows one to choose points \(x_t \in X_t \) such that \(\varphi_t(x_t) \geq -1 \) and \(d(x_t, Z) \geq \delta \) for some fixed \(\delta > 0 \), where \(Z \) is a one-dimensional analytic subset containing the singular locus of \(\pi \). Using local trivializations of \(\pi \) outside \(Z \), one can control uniformly the integrals \(\int_{K \cap X_t} \varphi_t \omega_t \) for any \(K \subseteq X \setminus Z \). The missing pieces \(\int_{X \cap (X \setminus K)} \varphi_t \omega_t \) can be controlled using an integration by parts via a cohomological argument. Indeed, on one
hand, one can write $\omega = \theta + dd^c\psi$ for some smooth $(1, 1)$-form θ supported outside Z and on the other hand, $\int_{X_t} (\omega_t + dd^c \varphi_t)$ is independent of t. The Proposition is proved.
4. Densities along a log canonical map

We now pay attention to hypotheses (H2) and (H2'). We focus in this section on the integrability properties of some canonical densities.

4.1. Semi-stable model. —

Setting 4.1. — Let \(\pi : \mathcal{X} \to \mathcal{D} \) be a proper, holomorphic surjective map from a Kähler space \(\mathcal{X} \) with connected fibers to the unit disk of relative dimension \(n \). We make the following assumption

\[(4.1) \quad \text{For each } t \in \mathcal{D}, \text{the pair } (\mathcal{X}, X_t) \text{ has log canonical singularities} \]

where \(X_t = \pi^{-1}(t) \) is the schematic fiber at \(t \in \mathcal{D} \), cf [KM98, Def. 7.1].

About the singularities. In Setting 4.1, the following properties hold

1. Every fiber is reduced, \(K_{\mathcal{X}/\mathcal{D}} \) is Q-Cartier and \(\mathcal{X} \) has log canonical singularities.
2. The space \(\mathcal{X} \) has canonical singularities if and only if the general fiber \(X_t \) has canonical singularities, cf [KM98, Lem. 7.2].
3. The condition (4.1) is preserved by finite base change from a smooth curve, cf [KM98, Lem. 7.6].
4. If \((\mathcal{X}, X_0)\) has lc singularities, then \((\mathcal{X}, X_t)\) has lc singularities for \(|t| \ll 1 \), see [Kol13, Cor. 4.10 (2)] and [Kol18, Thm. 2.3].
5. By loc. cit., the condition (4.1) is equivalent to asking \(\mathcal{X} \) to be normal, Q-Gorenstein, and that each fiber \(X_t \) has semi-log canonical singularities.

By [KKMSD73], one can find a semi-stable model of \(\pi \). More precisely, up to shrinking \(\mathcal{D} \), there exists a finite cover \(\varphi : t \mapsto t^k \) of the disk for some integer \(k \geq 1 \) and a proper, surjective birational morphism \(f : \mathcal{X}' \to \mathcal{X} \times \varphi \mathcal{D} \)

\[\begin{array}{ccc}
\mathcal{X}' & \xrightarrow{f} & \mathcal{X} \\
\downarrow{\pi'} & & \downarrow{\pi} \\
\mathcal{D} & \xrightarrow{\varphi} & \mathcal{D}
\end{array}\]

such that \(f \) is isomorphic over the smooth locus of \(\pi \) and such that around any point \(x' \in X'_0 \), there exists an integer \(p \leq n + 1 \) and a system of coordinates \((z_0, \ldots, z_n)\) centered at \(x' \) and such that \(\pi'(z_0, \ldots, z_n) = z_0 \cdots z_p \).

Additional assumption. Up to shrinking \(\mathcal{D} \), one will assume that \(\pi' \) is smooth away from 0 so that for any \(t \neq 0 \), the induced morphism \((g \circ f)|_{X'_t} : X'_t \to X_t\) is a resolution of singularities. Note that \(X'_t \) need not be connected.

Let \(m \geq 1 \) be an integer such that \(mK_{\mathcal{X}/\mathcal{D}} \) is a Cartier divisor. We can cover \(\mathcal{X} \) with open sets \(U_i \) such that \(U_i \cap X'^{\text{reg}}_t \) admits a nowhere vanishing section \(\Omega_{U_i} \in H^0(U_i \cap X'^{\text{reg}}_t, mK_{\mathcal{X}/\mathcal{D}}) \). For any \(t \in \mathcal{D} \), the restriction \(\Omega_{U_i}|_{X'^{\text{reg}}_t} \) defines a nowhere vanishing section \(\Omega_{U_i}|_{X'^{\text{reg}}_t} \in H^0(U_i \cap X^{\text{reg}}_t, mK_{X_t}) \). In particular, \(mK_{X_t} \) is a Cartier divisor for all \(t \). We want to understand the behavior of the volume forms
for some holomorphic function g components of Y such that order at most $(4.4) N_klt$ simple normal crossing support. Under our assumptions, the analytic set family still satisfies the condition (4.1).

4.2. Analytic expression of the densities in a semi-stable model. — Let us start with some notation. Once and for all, we fix an open set $U := U_{i_0}$ for some i_0. We set $\Omega := \Omega_U$ and $\Omega_i := \Omega|_{\Omega_{i_0}^{\text{reg}}}$. One can cover $f^{-1}(U)$ by a finite number of open subsets $V_j \subset X'$ isomorphic to the unit polydisk of C^{n+1} and endowed with a system of coordinates as above. We let $V := V_{i_0}$ be one of them. The goal is to understand $f^*\Omega$ when restricted to V, using our preferred set of coordinates. Finally, we set $U_j := U \cap X_j$ and $V_j := V \cap X_j'$.

Next, we write

$$K_{X'} + Y_0 = f^* (K_X + X_0) + \sum_i a_i E_i$$

where the E_i's are f-exceptional divisors with $a_i \geq -1$ for all i and Y_0 is the strict transform of X_0. Note that some of the divisors E_i's may be irreducible components of X'_0. The others surject onto \mathbb{D} thanks to the additional assumption made in the previous section. The divisor $E := \sum_i E_i$ is the exceptional locus of f and $E + Y_0$ has simple normal crossing support. Under our assumptions, the analytic set

$$N_{\text{klt}}(X, X_0) := f\left(\bigcup_{a_i = -1} E_i \right)$$

contains the non-klt locus of every fiber X_t, $t \in \mathbb{D}$. This is an easy consequence of the adjunction formula, at least when the X_i's are normal.

We now let $x' \in Y_0$ and we assume that the coordinates mentioned above are chosen such that $Y_0 = (z_0 \cdots z_r = 0)$ locally for $0 \leq r \leq p$ being the number of irreducible components of Y_0 minus one on that chosen open set.

On V_t, $t \neq 0$, the functions (z_1, \ldots, z_n) induce a system of coordinates and the form $f^*\Omega$ on V can be seen as a collection of m-th powers of holomorphic n-forms

$$f^*\Omega_t = g_t(z_1, \ldots, z_n)(dz_1 \wedge \cdots \wedge dz_n)^\otimes m$$

for some holomorphic function g_t on $V_1 \setminus E$, with poles of order at most $(-ma_i)_+ \text{ along } E_i \cap X_t$. The form $\Omega \wedge \pi^*(\varphi\wedge m)$ is trivialisation of $m(K_X + X_0)$ over U_{reg}. The pull-back $f^*(\Omega \wedge \pi^*(\varphi\wedge m))$ is a well-defined m-th power of a $(n+1)$-form on $f^{-1}(U)_{\text{reg}}$ with logarithmic poles along Y_0 that extends meromorphically to $f^{-1}(U)$ with poles of order at most $(-ma_i)_+ \text{ along } E_i$. As

$$f^*\pi^*(\frac{dt}{\bar{t}}) = (\pi')^*(\frac{dt}{\bar{t}}) = \sum_{i=0}^p \frac{dz_i}{z_i}.$$
on V, the form $f^*(\Omega \wedge \pi^*(\frac{dz}{T})^\otimes m)$ is equal on that set to
\[
(-1)^{mn}(z_1 \cdots z_r)^m g_{\pi'(z)}(z_1, \ldots, z_n) \left(\frac{dz_0}{z_0} \wedge \frac{dz_1}{z_1} \wedge \cdots \wedge \frac{dz_r}{z_r} \wedge dz_{r+1} \wedge \cdots \wedge dz_n\right)^\otimes m
\]
so that the function $(V \setminus E \cup Y_0) \ni z \mapsto (-1)^{mn}(z_1 \cdots z_r)^m g_{\pi'(z)}(z_1, \ldots, z_n)$ extends to a meromorphic function h on V, holomorphic along Y_0 and with poles of order at most $(-ma_i)_+$ along E_i and satisfying
\[
f^*\Omega_t = (-1)^{mn} \frac{h(z)}{(z_1 \cdots z_r)^m} (dz_1 \wedge \cdots \wedge dz_n)^\otimes m
\]
on V_t, for $t \neq 0$. When $t = 0$, one can also obtain a formula as above for $f^*\Omega_0$ but it requires to first choose a component $Y_0^{(k)}$ of Y_0. Let $0 \leq i \leq r$ such that $Y_0^{(k)} \cap V_0 = (z_i = 0)$. On that set (say after removing E), one has
\[
f^*\Omega_0 = (-1)^{i+mn} \frac{h(z)}{(z_1 \cdots z_i \cdots z_r)^m} \left(dz_0 \wedge \cdots \wedge \frac{dz_i}{z_i} \wedge \cdots \wedge dz_n\right)^\otimes m.
\]
Note that if X_0 (or equivalently, Y_0) is irreducible, then $r = 0$ in the formula above.

Claim 4.2. — If X_0 has canonical singularities, then $r = 0$ and the meromorphic function $V \ni z \mapsto h(z)$ is holomorphic on V.

Proof. — As X_0 is normal, it is irreducible, hence Y_0 is smooth and irreducible. In particular, the map $f|_{Y_0} : Y_0 \to X_0$ induces a resolution of singularities.

As X_0 has canonical singularities, the pull-back $f^*\Omega_0$ of the form Ω_0 on $X_0^{\text{reg}} \cap U$ extends holomorphically across $Y_0 \cap E$. Given (4.6), it means that $h|V \cap Y_0$ extends holomorphically along each $E_i \cap Y_0$. As h is holomorphic on V and does not vanish outside V_0, its divisor is an n-dimensional variety supported on $V \cap E$, therefore $\text{div}(h) = \sum b_i E_i$ for some integers b_i. As $E + Y_0$ is snc, the decomposition $\text{div}(h|_{Y_0}) = \sum b_i (E_i \cap Y_0)$ is the decomposition into irreducible components. As $h|_{Y_0}$ is holomorphic along the non-empty set $Y_0 \cap E_i$, we have necessarily $b_i \geq 0$ for any i. The claim is proved.

4.3. Integrability properties of the canonical densities.

Definition 4.3. — In Setting 4.1, let ω be a Kähler form on \mathcal{X}. We define the function γ on $U \cap \mathcal{X}_{\text{reg}}$ by
\[
(\Omega \wedge \overline{\Omega})^{\frac{3}{2}} = e^{-\gamma} \omega^n.
\]

We want to analyze the integrability properties of $e^{-\gamma}$. Arguing as in the proof of [RZ11a, Thm. B.1(i)] (see also [EGZ09, Lem. 6.4]), it is easy to infer from the normality of \mathcal{X} that given any small open set $U' \subset U$, there exist bounded holomorphic functions (f_1, \ldots, f_r) on U' such that $V(f_1, \ldots, f_r) \subset U'_{\text{sing}}$ and
\[
\gamma|_{U'_{\text{reg}}} \simeq \log \sum_i |f_i|^2.
\]
Lemma 4.4. — Assume that X_0 has canonical singularities and set $\omega_t := \omega|_{X_t}$. Then up to shrinking D, there exists $p > 1$ and a constant $C > 0$ such that for any $t \in D$, one has
\[
\int_{U_t} e^{-p\gamma} \omega^n_t \leq C.
\]
Proof. — Given (4.7), there exists a constant $A > 0$ such that
\[
f^* \gamma \geq A \log |s_E|^2
\]
where $s_E \in H^0(\mathcal{X}, \mathcal{O}_F(E))$ cuts out the exceptional divisor E and $|\cdot|$ is a smooth hermitian metric on $\mathcal{O}_F(E)$. Therefore, letting $p := 1 + \delta$, we have
\[
\int_{U_t} e^{-p\gamma} \omega^n_t = \int_{f^{-1}(U_t)} e^{-\delta f^* \gamma} f^* (\Omega_i \wedge \overline{\Omega}_i)^{\frac{m}{2}} \leq \int_{f^{-1}(U_t)} |s_E|^{-2\delta A} f^* (\Omega_i \wedge \overline{\Omega}_i)^{\frac{m}{2}}.
\]
Now, one can cover $f^{-1}(U_t)$ by finitely many open sets $V_t = V \cap X'_t$ as above. On V_t, the system of coordinates (z_0, \ldots, z_n) induces a system of coordinates (z_1, \ldots, z_n) such that we have
\[
|s_E|^{-2\delta A} f^* (\Omega_i \wedge \overline{\Omega}_i)^{\frac{m}{2}} \leq C \prod_{i=1}^p |z_i|^{-2\delta A} idz_1 \wedge d\bar{z}_1 \wedge \cdots \wedge idz_n \wedge d\bar{z}_n
\]
for some uniform constant C thanks to (4.5) and Claim 4.2. Recall that $V = \prod_{i=0}^n \{ |z_i| < 1 \} \subset C^{n+1}$ and
\[
V_t = V \cap \{ z_0 \cdots z_p = t \} \subset \{ (z_1, \ldots, z_n) \in C^n; t \leq |z_i| < 1 \} \subset D^n.
\]
The integrability of the function $[0,1] \ni r \mapsto r^{-\delta A}$ for δ small enough concludes the proof. \(\Box\)

For the next lemma, we come back to the general case. We start by choosing a component $Y_0^{(k_0)}$ of Y_0, and we denote by $X^{(k_0)}_0$ the irreducible component of X_0 birational to $Y_0^{(k_0)}$ via f. Next, we consider the reduced divisor F on \mathcal{X}' whose support consists of the union of the other components $Y_0^{(k)}$, $k \neq k_0$, along with the divisors E_i whose discrepancy a_i is equal to -1, cf (4.3).

Let h_F be a smooth hermitian metric on $\mathcal{O}_{\mathcal{X}'}(F)$ and let $s_F \in H^0(\mathcal{X}', \mathcal{O}_{\mathcal{X}'}(F))$ such that $\text{div}(s_F) = F$. We let
\[
\psi_F := -\log(\log |s_F|^2_{U_{t_0}}).
\]
Similarly, let $F_{\text{hlt}} := E - F \cap E$, and let $\psi_{\text{hlt}} := \log |s_{F_{\text{hlt}}}|^2$.

Claim 4.5. — There exists $\delta > 0$ small enough such that for any $\varepsilon > 0$, there exists a constant C_ε such that for any $t \in D$,
\[
\int_{f^{-1}(U_t)} e^{(1+\varepsilon)\psi_F - \delta \psi_{\text{hlt}}} f^* (\Omega_i \wedge \overline{\Omega}_i)^{\frac{m}{2}} \leq C_\varepsilon.
\]
Proof. — The statement is local on \mathcal{X}', so it is enough to control the integrals over V_t. Up to relabelling, one can assume that $Y_0^{(k_0)} \cap V = (z_0 = 0)$, $F \cap V = (z_1 \cdots z_{s} = 0)$ so that for $s + 1 \leq i \leq p$, h has a pole of order at most $m - 1$ along $(z_i = 0)$. We implicitly assume that V meets $Y_0^{(k_0)}$; it actually does not matter much for the computation which
is insensitive to whether that condition is fulfilled or not. Using (4.5), our integral is bounded by the following one
\[
\int_{V_t} \prod_{i=1}^{s} \left| z_i \right|^{2(\log |z_i|)} \cdot \prod_{i=s+1}^{p} \frac{1}{|z_i|^{2(\delta-a_i)}} \cdot d\lambda_{C^0}
\]
where \(-1 < a_i < 0\) and \(V = \prod_{i=0}^{n} \{ |z_i| < 1 \} \subset \mathbb{C}^{n+1}\) and \(V_t = V \cap \{ z_0 \cdots z_p = t \}\). By Fubini theorem, one can reduce the integral to \(V_t^p := V_t \cap C^{p+1}\) (i.e. fixing \(z_{p+1}, \ldots, z_n\)). There is no harm in assuming that \(\delta < \min \frac{1+\epsilon}{2}\) so that the integral is bounded by
\[
\int_{V_t^p} \prod_{i=1}^{s} \left| z_i \right|^{2(-\log |z_i|)^{1+\epsilon}} \cdot \prod_{i=s+1}^{p} \frac{1}{|z_i|^{2(1-\delta/2)}} \cdot d\lambda_{C^p}
\]
Using polar coordinates, one can assume that \(t\) is real (in \((0,1)\)) and the integral becomes over \(W_i := \{ (r_i)_{1 \leq i \leq p} \in [0,1/2]^p, r_1 \cdots r_p > t \}\)
\[
\int_{W_i} \prod_{i=1}^{s} \frac{1}{r_i(-\log r_i)^{1+\epsilon}} \cdot \prod_{i=s+1}^{p} \frac{1}{r_i^{1+\delta/2}} \cdot d\lambda_{R^p}
\]
As \(W_i \subset \prod_{i=1}^{p} \{ t \leq r_i \leq 1/2 \}\) and the functions \(r \mapsto \frac{1}{r(-\log r)^{1+\epsilon}}\) and \(r \mapsto \frac{1}{r^{1+\delta/2}}\) are integrable on \([0,1/2]\), the conclusion follows from Fubini’s theorem.

The result above allows us to generalize Lemma 4.4 when no assumption on the central fiber is made. To do so, we first need some notation. The function \(\psi_F\) is well defined on \(\mathcal{X}'\) but it does not necessarily come from \(\mathcal{X}\). It will be convenient to choose a divisor \(D = (s_D = 0) \subset \mathcal{X}\) containing \(\text{Nklt}(\mathcal{X}, X_0)\) (see (4.4)) and to fix a smooth hermitian metric \(h_D\) on \(\mathcal{O}_{\mathcal{X}}(D)\). We then define
\[
\psi_D := \frac{1}{2} \log(-\log |s|^2_{h_D}) \text{ on } \mathcal{X}.
\]
Up to scaling \(h_D\), one can assume that \(f^* \psi_D \leq \psi_F\). Next, we introduce for \(\epsilon > 0\) the function \(\gamma_\epsilon := \gamma - (n + 1 + 2\epsilon) \psi_D\) defined on \(U\). In other words, one has
\[
e^{(n+1+2\epsilon)\psi_D} (\Omega \wedge \overline{\Omega})^{\frac{1}{n}} = e^{-\gamma_\epsilon \omega^n}.
\]

Lemma 4.6. — With the notation above, there exists a constant \(\tilde{C}_\epsilon\) such that
\[
\int_{U_t} |\gamma_\epsilon|^{n+\epsilon} e^{-\gamma_\epsilon \omega^n} \leq \tilde{C}_\epsilon
\]
for any \(t \in D\).

Proof. — In order to compute the integral, we pull it back by \(f\) and work on \(V_t\). Since
\[
|f^* \gamma_\epsilon| \lesssim - \log |s_F| + \log(-\log |s_F|) \lesssim - \log |s_F| - \log |s_{\text{Fkh}}|
\]
the integral to bound becomes
\[
\int_{V_t} \left[(-\log |s_F|)^{n+\epsilon} + (-\log |s_{\text{Fkh}}|)^{n+\epsilon} \right] e^{(n+1+2\epsilon)\psi} f^* (\Omega_t \wedge \overline{\Omega_t})^{\frac{1}{n}}
\]
which itself is controled by
\[\int_{V_i} e^{(1+\epsilon)\Phi_f} f^*(\Omega_t \wedge \overline{\Omega}_t)^{1,n} + \int_{V_i} e^{2\Phi_f - \delta \Phi_{\text{can}}} f^*(\Omega_t \wedge \overline{\Omega}_t)^{1,n} \]
for any given \(\delta > 0 \). The lemma now follows from Claim 4.5.

\[\square \]

5. Negative curvature

In this section we apply our previous results to the study of families of varieties with “negative canonical bundle”: we consider families of manifolds of general type, as well as families of “stable varieties”.

5.1. Families of manifolds of general type. —

Setting 5.1. — Let \(\mathcal{X} \) be an irreducible and reduced complex space endowed with a Kähler form \(\omega \) and a proper, holomorphic map \(\pi : \mathcal{X} \to \mathbb{D} \). We assume that for each \(t \in \mathbb{D} \), the (schematic) fiber \(X_t \) is a \(n \)-dimensional Kähler manifold \(X_t \) of general type, i.e. such that its canonical bundle \(K_{X_t} \) is big. In particular, \(\mathcal{X} \) is automatically non-singular and the map \(\pi \) is smooth. One can view the fibers \(X_t \) as deformations of \(X_0 \).

We fix \(\Theta \) a closed differential \((1,1)\)-form on \(\mathcal{X} \) which represents \(c_1(K_{\mathcal{X}/\mathbb{D}}) \) and set \(\theta_t = \Theta_{X_t} \). Shrinking \(\mathbb{D} \) if necessary and rescaling, we can assume without loss of generality that
\[-\omega \leq \Theta \leq \omega. \]

Lemma 5.2. — In the Setting 5.1, the quantity \(\text{vol}(K_{X_t}) \) is independent of \(t \in \mathbb{D} \).

Proof. — We work in two steps. First, we assume that the family \(\pi : \mathcal{X} \to \mathbb{D} \) is projective, i.e. there exists a positive line bundle \(L \) over \(\mathcal{X} \). In that case, we know that the invariance of plurigenera holds [Siu98, Pâu07] in that the function \(t \mapsto h^0(X_t, mK_{X_t}) \) is constant on \(\mathbb{D} \), without even assuming that \(X_t \) is of general type for all \(t \). In particular, it would even be enough to assume that only \(X_0 \) is of general type from which it results that \(X_t \) is of general type for all \(t \) and that the volume \(\text{vol}(K_{X_t}) \) is independent of \(t \).

Coming back to the general case, we know that \(K_{\mathcal{X}/\mathbb{D}} \) is big. Thanks to Demailly’s regularization theorem, there exists a Kähler current \(T \in c_1(K_{\mathcal{X}/\mathbb{D}}) \) with analytic singularities along \(V(\mathcal{I}) \) for some ideal sheaf \(\mathcal{I} \subset \mathcal{O}_\mathcal{X} \). Let \(f : \mathcal{X}' \to \mathcal{X} \) be a log resolution of \((\mathcal{X}, \mathcal{I}) \). By Hironaka’s theorem, we know that one can construct such a morphism \(\tilde{f} \) by a sequence of blow-ups along smooth centers only. We write \(f^*T = T' + [F] \) for some smooth semipositive form \(T' \) on \(\mathcal{X}' \) and some effective divisor \(F \). Remark that this sequence may be infinite; however, the centers project onto a locally finite family of subsets of \(\mathcal{X} \). Up to co-restricting \(f \) to \(\pi^{-1}(K) \) for some compact subset \(K \subset \mathbb{D} \), one can assume that \(f \) is a finite composition of blow-ups and that \(T' \geq \delta \pi^*\omega \) for some \(\delta > 0 \) small enough.

Let \(E \) be the exceptional divisor of \(f \), with irreducible components \(E = \sum_{k=1}^N E_k \). A classical argument (cf e.g. [DP04, Lem. 3.5]) allows one to find smooth \((1,1)\)-forms \(\theta_{E_k} \in c_1(E_k) \) with support in an arbitrarily small neighborhood of \(E_k \) along with positive numbers \((a_k) \) such that the sum \(\theta = \sum a_k \theta_{E_k} \) defines a \((1,1)\)-form on \(\mathcal{X}' \) which is negative definite along the fibers of \(f \). It follows that for \(\epsilon > 0 \) small enough, the smooth
form \(\pi^* \omega - \epsilon \theta_t \) is Kähler. In particular, \(T' - \delta \epsilon \theta \) is a Kähler form whose cohomology class belongs to \(\text{NS}_\mathbb{R}(\mathcal{X}') \). This implies that the Kähler cone of \(\mathcal{X}' \) meets \(\text{NS}_\mathbb{Z}(\mathcal{X}') \), i.e. \(\pi \circ f \) is projective.

Let \(X'_t := f^{-1}(X_t) \) and let \(K^0 \subset K \) be the set of regular value of \(\pi \circ f \). For any \(t \in K^0 \), the map \(f|_{X'_t} : X'_t \to X_t \) is birational hence \(\text{vol}(K_{X'_t}) = \text{vol}(K_{X_t}) \). By the first step, the volume \(\text{vol}(K_{X'_t}) \) is independent of \(t \in K^0 \), hence the same holds for \(\text{vol}(K_{X_t}) \).

The set \(K \setminus K^0 \) is finite and without loss of generality, one can assume that it consists of the single element \(\{0\} \). The fiber \(X'_0 \) can be decomposed as \(X'_0 = Y_0 + \sum E_i \) where \(f|_{Y_0} : Y_0 \to X_0 \) is birational and \(E_i \) is contracted by \(f|_{X'_0} \). Let \(Y'_0 \to Y_0 \) be a resolution of singularities. By \([\text{Tak}07, \text{Thm. 1.2}]\), we have \(\text{vol}(K_{Y'_0}) \leq \text{vol}(K_{Y_0}) \) for \(t \neq 0 \). As \(X_0 \) and \(Y_0 \) are smooth and birational, we have \(\text{vol}(K_{X_0}) = \text{vol}(K_{Y'_0}) \leq \text{vol}(K_{X_t}) \). Finally, as the function \(t \mapsto \text{vol}(K_{X_t}) \) is upper semi-continuous, we have \(\text{vol}(K_{X_0}) = \text{vol}(K_{X_t}) \) for any \(t \in K \). The lemma is proved.

Remark 5.3. — In the last step of the proof of Lemma 5.2, we could also use the existence of relative minimal models, provided \(D \) is replaced by a quasi-projective smooth curve \(C \). The general fiber of the projective morphism \(\mathcal{X}' \to C \) is a projective variety of general type, hence it admits a good minimal model over \(C \) by \([\text{BCHM}10]\). By \([\text{Fuj}16, \text{Thm. 3.3}]\) and \([\text{Tak}19, \text{Cor. 1.2}]\), it follows that \(\mathcal{X}' \to C \) admits a birational morphism \(\phi : \mathcal{X}' \to \mathcal{X}'' \) over \(C \) such that: \(\phi^{-1} \) does not contract any divisor, every fiber \(X''_t \) of \(\mathcal{X}'' \to C \) has canonical singularities and satisfies that \(K_{X''_t} \) is semiample and big. For any \(t \in C \), one has \(\text{vol}(K_{X''_t}) = (K_{X''_t})^n \). By flatness, this quantity does not depend on \(t \). Finally, we claim that \(X''_0 \) is birational to \(X_0 \). This is a combination of the following two facts. First, the variety \(X''_0 \) has canonical singularities and \(K_{X''_0} \) is birational hence it is of general type and, in particular, it is not uniruled. Next, \(X''_0 \) is birational to a component of \(X_0 \) and all of them but the strict transform of \(X_0 \) by \(f \) are covered by rational curves as \(f \) is a composition of blow-ups of smooth centers from a smooth manifold.

The positive \((n,n)\)-forms \((\omega^n_t)_{t \in D} \) induce a smooth hermitian metric on \(-K_{\mathcal{X}'/D} \). The Chern curvature of this metric, which in restriction to \(X_t \) is nothing but \(\text{Ric}(\omega_t) \), is cohomologous to \(-\Theta \). It follows from the \(\partial \bar{\partial} \)-lemma that there exists a smooth function \(\tilde{h} \) on \(\mathcal{X}' \) such that

\[-dd^c_X \log \omega^n_t = -\Theta + dd^c_X \tilde{h} \]

In particular, the restriction \(\tilde{h}_t := \tilde{h}|_{X_t} \) satisfies

\[(5.1) \quad \text{Ric}(\omega_t) = -\theta_t + dd^c_{X_t} \tilde{h}_t \quad \text{on } X_t.\]

The function \(\tilde{h} \) becomes unique (and remains smooth) if one imposes the following normalization

\[\int_{X_t} \tilde{h}_t \omega^n_t = 0.\]

We define a function \(h \) on \(\mathcal{X}' \) by imposing that \(h_t := h|_{X_t} \) satisfies

\[h_t = \tilde{h}_t - \log \left(\frac{1}{\sqrt{V_t}} \int_{X_t} e^{\tilde{h}_t} \omega^n_t \right).\]
In particular, one has

\[\int_{X_t} e^{\bar{h}} \omega^n_t = V_t := \text{vol}(K_{X_t}). \]

As \(\bar{h} \) is smooth on \(X \), one has the following obvious consequence.

Lemma 5.4. — Given any compact subset \(K \subset D \), one has
\[
\sup_{t \in K} \| h_t \|_{L^\infty(X_t)} < +\infty.
\]

It follows from \([\text{BEGZ10}]\), a generalization of the Aubin-Yau theorem \([\text{Aub78, Yau78}]\), that there exists a unique Kähler-Einstein current on \(X_t \). This is a positive closed current \(T_t \in c_1(K_{X_t}) \) which, by \([\text{EGZ09, BCHM10}]\), is a smooth Kähler form in the ample locus \(\text{Amp}(K_{X_t}) \), where it satisfies the Kähler-Einstein equation

\[\text{Ric}(T_t) = -T_t. \]

It can be written \(T_t = \theta_t + dd^c \varphi_t \), where \(\varphi_t \) is the unique \(\theta_t \)-psh function with minimal singularities that satisfies the complex Monge-Ampère equation

\[(\theta_t + dd^c \varphi_t)^n = e^{\varphi_t + h} \omega^n_t \text{ on } \text{Amp}(K_{X_t}). \]

The minimal singularity assertion is equivalent to the following uniform bound: for all \(x \in X_t \),

\[-M_t \leq \varphi_t(x) - \sup_{X_t} \varphi_t - V_{\theta_t}(x) \leq M_t \]

where

\[V_{\theta_t}(x) = \sup \{ u_t(x); u_t \in \text{PSH}(X_t, \theta_t) \text{ and } u_t \leq 0 \}. \]

We can choose \(M_t \) independent of \(t \) by using Theorem 1.9:

Theorem 5.5. — In Setting 5.1, let \(K \subset D \) be a compact subset. There exists a constant \(M_K \) such that for all \(x \in \pi^{-1}(K) \), one has

\[-M_K \leq \varphi_t(x) - \sup_{X_t} \varphi_t - V_{\theta_t}(x) \leq M_K \]

where \(t = \pi(x) \).

Proof. — From Lemma 5.2, it follows that the volume \(V_t \) of \(K_{X_t} \) is independent of \(t \). We denote it by \(V \).

Set \(\mu_t = e^{h} \omega^n_t / V \) and recall that this is a probability measure, by our choice of normalization. We first observe that

\[0 \leq \sup_{X_t} \varphi_t \leq - \inf_{\pi^{-1}(K)} h \leq C_K. \]

Let us first prove the left-hand side inequality. As the measures

\[\frac{1}{V} (\theta_t + dd^c \varphi_t)^n = e^{\varphi_t} \mu_t \]

have mass one, one has

\[1 \leq \int_{X_t} e^{\sup_{X_t} \varphi_t} d\mu_t = e^{\sup_{X_t} \varphi_t} \]

and therefore, \(\sup_{X_t} \varphi_t \geq 0 \).
To prove the inequality in the middle in (5.3), we observe that, since \(\theta_t \leq \omega_t \), \(\varphi_t \) is a subsolution of the equation
\[
(\omega_t + dd^c \varphi_t)^n \geq (\theta_t + dd^c \varphi_t)^n = e^{\varphi_t + h_t} \omega_t^n,
\]
while the constant function \(u_t(x) = -\inf_{\pi^{-1}(K)} h \) is a supersolution of the same equation,
\[
(\omega_t + dd^c u_t)^n = \omega_t^n \leq e^{u_t + h_t} \omega_t^n.
\]
It follows from the comparison principle [GZ17, Prop. 10.6] that \(\varphi_t \leq -\inf_{\pi^{-1}(K)} h \). The rightmost inequality in (5.3) follows from Lemma 5.4 above.

We can thus rewrite the complex Monge-Ampère equation as
\[
\frac{1}{V_t} (\theta_t + dd^c \psi_t)^n = e^{\psi_t + \sup_{X_t} \varphi_t} \mu_t = f_t \mu_t,
\]
where \(\psi_t = \varphi_t - \sup_{X_t} \varphi_t \) and \(f_t = \exp(\psi_t + \sup_{X_t} \varphi_t) \). Combining the inequalities \(\psi_t \leq 0 \) and (5.3), it follows that the densities \(f_t \) are uniformly bounded.

Thanks to Theorem 3.2, we can apply Theorem 1.9 with \(p = +\infty \) and \(0 < \alpha < \alpha(\Theta, X) \) and obtain
\[
-M_K \leq \psi_t - V_{\theta_t} \leq 0.
\]
Note that one used here that the volumes \(V_t \) stay away from zero. The conclusion follows since \(\psi_t - \varphi_t \) is uniformly bounded by (5.3).

Remark 5.6. — Set
\[
V_{\Theta}(x) = V_{\theta_{\pi(x)}}(x).
\]
and
\[
\phi(x) := \varphi_{\pi(x)}(x).
\]
It is tempting to compare \(\phi \) to
\[
\hat{V}_{\Theta} = \sup\{u \in \text{PSH}(X, \Theta); \ u \leq 0\}.
\]
Clearly \(\hat{V}_{\Theta} \leq V_{\Theta} \) hence \(\hat{V}_{\Theta} - M_K \leq \phi \). It follows from [CGP17, Thm. A] that \(\phi \) is \(\Theta \)-psh on \(X \), thus \(\phi - \sup_{\pi^{-1}(K)} \phi \leq \hat{V}_{\Theta} \) and
\[
-M_K \leq \phi - \hat{V}_{\Theta} \leq M_K.
\]

Remark 5.7. — The same results can be proved if the family \(\pi : X \to \mathbb{D} \) is replaced by a smooth family \(\pi : (X_t, B) \to \mathbb{D} \) of pairs \((X_t, B_t) \) of log general type, i.e. such that \((X_t, B_t) \) is klt and \(K_{X_t} + B_t \) is big for all \(t \in \mathbb{D} \).

5.2. Stable varieties

A stable variety is a projective variety \(X \) such that
1. \(X \) has semi-log canonical singularities.
2. The \(Q \)-line bundle \(K_X \) is ample.

We refer to [KSB88, Ale96, Kar00, Kov13, Kol] for a detailed account of these varieties and their connection to moduli theory.

In [BG14], it was proved that a stable variety admits a unique Kähler-Einstein metric \(\omega \). There are several equivalent definitions for such an object, but the simplest is probably the following:
Definition 5.8. — A Kähler-Einstein metric ω on a stable variety is a smooth Kähler metric on X_{reg} such that

$$\text{Ric}(\omega) = -\omega \quad \text{and} \quad \int_{X_{\text{reg}}} \omega^n = (K_X^n)$$

if $n = \dim_{\mathbb{C}} X$.

It is proved in loc. cit. that ω extends canonically across X_{sing} to a closed, positive current in the class $c_1(K_X)$. It is desirable to understand the singularities of ω near X_{sing}.

In [GW16, Thm. B], it is proved that ω has cusp singularities near the double crossings of X. Moreover, it is proved in [Son17] that the potential φ of ω with respect to a given Kähler form $\omega_X \in c_1(K_X)$, i.e. $\omega = \omega_X + dd^c \varphi$, is locally bounded on the klt locus of X.

More precisely, given any divisor $D = (s = 0)$ containing the non-klt locus of X and given any $\epsilon > 0$, there exists a constant $C_\epsilon > 0$ such that

$$\varphi \geq \epsilon \log |s|^2 - C_\epsilon,$$

where $|\cdot|$ is some smooth hermitian metric on $O_X(D)$. We wish to refine that estimate and obtain a version for families of canonically polarized manifolds degenerating to a stable variety.

Proposition 5.9. — Let X be a stable variety of dimension n and let $\omega_X \in c_1(K_X)$ be a Kähler metric. Next, let $\omega = \omega_X + dd^c \varphi$ be the Kähler-Einstein metric of X. Let $D = (s = 0)$ be a divisor containing the non-klt locus of X and let $|\cdot|$ be some smooth hermitian metric on $O_X(D)$. For any $\epsilon > 0$, there is a constant C_ϵ such that

$$\varphi \geq -(n + 1 + \epsilon) \log(-\log |s|) - C_\epsilon.$$

Remark 5.10. — The estimate (5.5) is an important refinement of (5.4), as it insures that φ belongs to the finite energy class $E^1(X, \omega_X)$, cf [GZ07] or [BEGZ10, Sect. 2] for the definitions and main properties of these classes.

This estimate is almost optimal. Indeed, if X is the Satake-Baily-Borel compactification of a ball quotient, it is a normal stable variety and it admits a resolution (\overline{X}, D) which is a toroidal compactification of the ball quotient obtained by adding disjoint abelian varieties. The, the potential φ of the Kähler-Einstein metric on (\overline{X}, D) with respect to a smooth form in $c_1(K_{\overline{X}} + D)$ satisfies

$$\varphi = -(n + 1) \log(-\log |s_D|) + O(1)$$

if $(s_D = 0) = D$.

Proof. — Let $f : Y \to X$ be a resolution of singularities of X such that f induces an isomorphism over X_{reg}. The complex Monge-Ampère equation satisfied by φ pulls back to Y and reads

$$(f^* \omega_X + dd^c f^* \varphi)^n = e^{f^* \varphi} d\mu_Y$$

where $d\mu_Y := \prod_{i=1}^r |t_i|^{2a_i} \omega_Y^{a_i}$ is a positive measure with possibly infinite mass. Here, ω_Y is a Kähler form on Y, and $(t_i = 0)$ are divisors sitting over X_{sing} (they need not be exceptional though, as X may have singularities in codimension one). Finally, one has $a_i \geq -1$ for all i, and any divisor $(t_i = 0)$ such that $a_i = -1$ sits above the non-klt locus of X.
Now, let F be an effective divisor on X and let $\sigma_X \in H^0(X, O_X(F))$ be a section cutting out F. Let h be a smooth hermitian metric on $O_X(F)$; there exists a constant C_F such that $\Theta_h(F) \leq C_F \omega_X$. One can scale h such that $|\sigma_X|^2_h < e^{-2(n+2)C_F}$ on X. Finally, let $\sigma_Y := f^* \sigma_X$ and let $\psi := -\log(-\log |\sigma_Y|^2)$. We have

$$dd^c \psi = \frac{\langle D \sigma_Y, D \sigma_Y \rangle}{|\sigma_Y|^2(-\log |\sigma_Y|^2)} - \frac{1}{(-\log |\sigma_Y|^2)} \cdot f^* \Theta_h(F).$$

By our choice of scaling, the function $A \psi$ is $f^* \omega_X$-psh for any $0 \leq A \leq 2(n+2)$. Moreover, it belongs to the class $\mathcal{E}(Y, f^* \omega_X)$ thanks to e.g. [Gue14, Prop. 2.3] and [DDNL18, Thm. 1.1(ii)].

We apply this construction to F some (very ample, say) divisor containing the non-klt locus of X. This yields a section σ_Y of $f^* F$ that vanishes at order at least one along the $(t_i = 0)$ for which $a_i = -1$. As a result, the measure

$$e^{(n+1+2\varepsilon)\psi} d\mu_Y \leq \prod_{a_i = -1} \frac{1}{|t_i|^2(-\log |t_i|^2)^{n+1+2\varepsilon}} \prod_{a_i > -1} |t_i|^{2a_i} \partial \omega^\varepsilon_Y,$$

has a density g_ε with respect to ω^ε_Y that satisfies

$$\int_Y g_\varepsilon |\log g_\varepsilon|^{n+\varepsilon} \omega^\varepsilon_Y < +\infty,$$

for any $\varepsilon > 0$. By Theorem 1.5, this implies that the unique solution $u_\varepsilon \in \mathcal{E}(Y, \frac{1}{2} f^* \omega_X)$ of the Monge-Ampère equation

$$\left(\frac{1}{2} f^* \omega_X + dd^c u_\varepsilon \right)^n = e^{u_\varepsilon + (n+1+2\varepsilon)\psi} d\mu_Y$$

is bounded, i.e. there exists a constant $C_\varepsilon > 0$ such that

$$(5.7) \quad \|u_\varepsilon\|_{L^\infty(Y)} \leq C_\varepsilon.$$

Now, the function $v_\varepsilon := u_\varepsilon + (n + 1 + 2\varepsilon)\psi \in \mathcal{E}(Y, f^* \omega_X)$ satisfies the inequality

$$(f^* \omega_X + dd^c v_\varepsilon)^n \geq \left(\frac{1}{2} f^* \omega_X + dd^c u_\varepsilon \right)^n$$

$$= e^{v_\varepsilon} d\mu_Y,$$

i.e. v_ε is a subsolution of (5.6). By the comparison principle, we obtain that $f^* \varphi \geq v_\varepsilon$ and it follows from (5.7) that

$$f^* \varphi \geq (n + 1 + 2\varepsilon)\psi - C_\varepsilon,$$

from which the conclusion follows.

5.3. Stable families. — Now one can establish a family version of the previous estimate, i.e. Proposition 5.9. In Setting 4.1, let us assume additionally that $K_{X/\mathbb{D}}$ is ample. We let h be a smooth hermitian metric on $K_{X/\mathbb{D}}$ whose curvature is a Kähler form $\omega_X := \Theta_h(K_{X/\mathbb{D}})$; we set $\omega_{X_j} := \omega_X|_{X_j}$. If Ω is a local trivialization of $mK_{X/\mathbb{D}}$, then the quantity

$$\mu_{X/\mathbb{D}, h} := \frac{\mu^2(\Omega \wedge \Omega^\perp)^{1/m}}{|\Omega|^2/m}$$

is independent of Ω or m (yet it depends on h) and for any $t \in \mathcal{D}$, it restricts to X_t^{sing} as a positive measure

$$
\mu_{X_t,h} := \mu_{X/h}|_{X_t^{\text{sing}}}
$$

which we extend by zero across X_t^{sing}. For each $t \in \mathcal{D}$, there exists a unique Kähler-Einstein metric $\omega_{KE,t} \in c_1(K_{X_t})$ which solves the Monge-Ampère equation

$$(\omega_{X_t} + dd^c \phi_t)^n = e^{\phi_t} \mu_{X_t,h}$$

on X_t. This is due to [Aub78, Yau78] when X_t is smooth and to [BG14] in general.

Theorem 5.11. — In Setting 4.1, assume that

- The relative canonical bundle $K_{X'/\mathcal{D}}$ is ample.
- The central fiber X_0 is irreducible.

Let $\omega_{X_t} + dd^c \phi_t$ be the Kähler-Einstein metric of X_t, solution of (5.8) and let $D = (s = 0) \subset X'$ be a divisor which contains $N\kappa h(X, X_0)$, cf (4.4). Fix $| \cdot |$ a some smooth hermitian metric on $\mathcal{O}_X(D)$. Up to shrinking \mathcal{D}, then for any $\varepsilon > 0$, there exists $C_\varepsilon > 0$ such that the inequality

$$
\phi_t \geq -(n + 1 + \varepsilon) \log(-\log|s|) - C_\varepsilon
$$

holds on X_t for any $t \in \mathcal{D}$.

This estimate improves an interesting control obtained previously by J. Song (see [Son17, Lem. 4.2]).

Proof. — Let $f : X' \to X$ be a semi-stable model as in (4.2). The first observation is that the behavior of $f^*(\Omega_t \wedge \overline{\omega}_t)^{1/m}$ and $f^* \mu_{X_t,h}$ on X_t is the same, uniformly in t, because there exists a constant $C > 0$ such that for any trivializing open set, one has $C \geq |\Omega|^2 \geq C^{-1}$, where Ω ranges among the finitely many trivializations of $mK_{X'/\mathcal{D}}$.

This follows from the fact h is a smooth hermitian metric on $mK_{X'/\mathcal{D}}$.

We set $\psi := f^*(-\log(-\log|s|^2))$; it is a quasi-psh function on X' satisfying

$$
\psi \leq \psi_F + O(1)
$$

where ψ_F is defined in (4.8).

By scaling the metric $| \cdot |$ on $\mathcal{O}_X(D)$, one can assume that $A\psi$ is $f^*\omega_X$-psh for any $0 \leq A \leq 2(n + 2)$. For any $t \in \mathcal{D}^*$, the function $\phi_t := \psi|_{X_t}$ belongs to $\mathcal{E}(X'_t, f^*\omega_{X_t})$ by the same argument as in the proof of Proposition 5.9.

Let $u_{t,\varepsilon} \in \mathcal{E}(X'_t, \frac{1}{2} f^* \omega_{X_t})$ be the unique solution of the Monge-Ampère equation

$$(\frac{1}{2} f^* \omega_{X_t} + dd^c u_{t,\varepsilon})^n = e^{u_{t,\varepsilon} + (n+1+2\varepsilon)\psi} f^* \mu_{X_t,h}.$$

First, it is classical to use Jensen’s inequality to get an upper bound $u_{t,\varepsilon} \leq C$. Next, we wish to apply Theorem 1.5; in order to do so, one has to check that hypotheses (H1) and (H2') are satisfied in our situation. For (H1), it is a consequence of Theorem 3.2 – recall that up to shrinking \mathcal{D}, all fibers X_t are irreducible since so is X_0. As for (H2'), it follows from Lemma 4.6 that we pull back via f to the smooth Kähler manifold X'_t. All in all, we can find $C_\varepsilon > 0$ independent of $t \in \mathcal{D}$ such that

$$
\|u_{t,\varepsilon}\|_{L^\infty(X'_t)} \leq C_\varepsilon.
$$
Now, the function \(v_{\epsilon, t} := u_{\epsilon, t} + (n + 1 + 2\epsilon) \psi_t \in \mathcal{E}(X_t', f^* \omega_{X_0}) \) satisfies the inequality
\[
(f^* \omega_{X_t} + dd^c v_{\epsilon, t})^n \geq \left(\frac{1}{2} f^* \omega_{X_t} + dd^c u_{\epsilon, t} \right)^n = e^{\psi_t} f^* \mu_{X_t/k_t}
\]
i.e. \(v_{\epsilon, t} \) is a subsolution of (5.8). By the comparison principle, we obtain that \(f^* \varphi_t \geq v_{\epsilon, t} \)
and it follows from (5.10) that
\[
f^* \varphi_t \geq (n + 1 + 2\epsilon) \psi_t - C_{\epsilon},
\]
from which the conclusion follows.

6. Log Calabi-Yau families

6.1. Families of Calabi-Yau varieties. — In Setting 4.1, let us assume additionally that \(K_{X/D} \) is relatively trivial and that \(X_0 \) has canonical singularities. For \(t \) small enough, \(X_t \) has canonical singularities as well and \(K_{X_t} \) is linearly trivial.

Let \(\alpha \) be a relative Kähler cohomology class on \(X \) represented by a relative Kähler form \(\omega \). We set \(\alpha_t := \alpha|_{X_t}, \omega_{X_t} := \omega|_{X_t} \) and \(V := \int_{X_t} \omega^n_t \); it does not depend on \(t \), cf Lemma 2.2. Let \(\Omega \) be a trivialization of \(K_{X/D} \), so that the quantity
\[
\mu_{X/D} := i^{n^2} \Omega \wedge \overline{\Omega}
\]
restricts to \(X_t^{\text{reg}} \) as a positive measure
\[
\mu_{X_t} := \mu_{X/D}|_{X_t^{\text{reg}}}
\]
which we extend by zero across \(X_t^{\text{sing}} \). We set \(c_t := \log \int_{X_t} d\mu_{X_t} \). For each \(t \in D \), there exists a unique Kähler-Einstein metric \(\omega_{\text{KE}, t} = \omega_t + dd^c \varphi_t \in \alpha_t \) which solves the Monge-Ampère equation
\[
\frac{1}{V} (\omega_t + dd^c \varphi_t)^n = e^{-c_t} \mu_{X_t}
\]
on \(X_t \) and that we normalize by \(\sup_{X_t} \varphi_t = 0 \). This is due to [Yau78] when \(X_t \) is smooth and to [EGZ09] in general.

Theorem 6.1. — In Setting 4.1, assume that

- The relative canonical bundle \(K_{X/D} \) is trivial.
- The central fiber \(X_0 \) has canonical singularities.

Let \(\omega_t + dd^c \varphi_t \) be the Kähler-Einstein metric of \(X_t \), solution of (6.1). Up to shrinking \(D \), there exists \(C > 0 \) such that one has
\[
\text{osc}_{X_t} \varphi_t \leq C
\]
for any \(t \in D \), where \(\text{osc}_{X_t}(\varphi_t) = \sup_{X_t} \varphi_t - \inf_{X_t} \varphi_t \).

A particular case of this result has been obtained previously by Rong-Zhang (see [RZ11a, Lemma 3.1]) by using Moser iteration process.
Remark 6.2. — One can replace the assumptions in Theorem 6.1 above by the following weaker ones: \(X \) is normal, \(\mathbb{Q} \)-Gorenstein, \(K_X + D \) is trivial and \(X_0 \) has canonical singularities. Indeed, it follows from the inversion of adjunction [Kol18, Thm. 2.3] that \((X_t, X_t) \) is lc for \(t \) close enough to 0. Moreover, an easy computation relying on the adjunction formula shows that \(X_t \) has canonical singularities for \(t \) close to 0.

Proof of Theorem 6.1. — A first observation is that the quantities \(c_t \) remain bounded when \(t \) varies thanks to Lemma 4.2. The result now follows from Theorem 1.1. Indeed, (H1) is satisfied thanks to Theorem 3.2 while (H2) holds thanks to Lemma 4.4 that we pull back to \(X_t \) via \(f \), with the notation of the Lemma.

6.2. The log Calabi-Yau setting. — In the sequel we use the following setting.

Setting 6.3. — Let \(X \) be an \(n \)-dimensional compact Kähler space and let \(B = \sum b_i B_i \) be an effective \(\mathbb{R} \)-divisor such that the pair \((X, B) \) has klt singularities. We assume furthermore that the log Kodaira dimension of the pair \((X, B) \) vanishes, i.e.

\[
\kappa(K_X + B) = 0.
\]

In what follows, we denote by \(E \) the (unique) effective \(\mathbb{Q} \)-divisor in \(c_1(K_X + B) \). Thanks to log abundance in numerical dimension zero (see e.g. the proof of [CGP19, Cor. 1.18]), a particular instance of such pairs is provided by klt pairs \((X, B) \) such that the Chern class \(c_1(K_X + B) \in H^2(X, \mathbb{R}) \) vanishes.

Definition 6.4. — In Setting 6.3, given a cohomology class \(\alpha \in H^{1,1}(X, \mathbb{R}) \) that is nef and big, it follows from [BEGZ10] that there exists a unique singular Ricci flat current \(T \in \alpha \), i.e. a closed, positive current of bidegree \((1,1) \) representing \(\alpha \), with the following properties:

\begin{enumerate}[(i)]
 \item \(T \) has minimal singularities in \(\alpha \);
 \item \(T \) is a Kähler form on the analytic open set \(\Omega_\alpha := (X_{\text{reg}} \setminus \text{Supp}(B + E)) \cap \text{Amp}(\alpha) \);
 \item \(\text{Ric}(T) = [B] - [E] \) on \(X_{\text{reg}} \).
\end{enumerate}

The current \(T \) can be found by solving the Monge-Ampère equation

\[
\text{vol}(\alpha)^{-1}(\theta + dd^c \varphi)^n = \mu_{(X,B)}
\]

where \(\theta \in \alpha \) is a smooth representative, \(\varphi \in \text{PSH}(X, \theta) \) is the unknown function and

\[
\mu_{(X,B)} = (s \wedge \bar{s}) \frac{1}{n} e^{-\varphi_B}.
\]

Here, \(s \in H^0(X, m(K_X + B)) \) is any non-zero section (for some \(m \geq 1 \)) and \(\varphi_B \) is the unique singular psh weight on \(\mathcal{O}_X(B) \) solving \(dd^c \varphi_B = [B] \) and normalized by

\[
\int_X (s \wedge \bar{s}) \frac{1}{n} e^{-\varphi_B} = 1.
\]

We let \(K_X \) denote the Kähler cone, i.e. the set of cohomology classes \(\alpha \in H^{1,1}(X, \mathbb{R}) \) which can be represented by a Kähler form. We fix \((\alpha_t)_{0 < t \leq 1} \subset K_X \) a path of Kähler classes and assume that \(\alpha_t \to \partial K_X \) as \(t \to 0 \).

When \(X \) is smooth and \(B = 0 \), the existence of a unique Ricci flat Kähler metric \(\omega_t \) in \(\alpha_t \) for each \(0 < t \leq 1 \) dates back to the celebrated work of Yau [Yau78]. A basic problem
is to understand the asymptotic behavior of the ω_t's, as $t \to 0$. This problem has a long history, we refer the reader to [GTZ13] for references.

Despite motivations coming from mirror symmetry, not much is known when the norm of α_t converges to $+\infty$ (this case is expected to be the mirror of a large complex structure limit, see [KS01] or the recent survey [Tos20]). We thus only consider the case when $\alpha_t \to \alpha_0 \in \partial \mathcal{K}_X$. There are two rather different settings, depending on whether α_0 is big (vol(α_0) > 0), or merely nef with vol(α_0) = 0.

6.3. The non-collapsing case. — We first consider the case when the volumes of the α_t’s are non-collapsing, i.e. vol(α_0) > 0. Then, we have the following result, generalizing theorems of Tosatti [Tos09] and Collins-Tosatti [CT15].

Theorem 6.5. — Let (X, B) be a pair as in Setting 6.3 and let $(\alpha_t)_{0 < t < 1} \subset \mathcal{K}_X$ be a smooth path of Kähler classes such that $\alpha_t \to \alpha_0 \in \partial \mathcal{K}_X$ as $t \to 0$, with vol(α_0) > 0. Then, the singular Ricci-flat currents $T_t \in \alpha_t$ converge to T_0 as $t \to 0$ weakly on X, and locally smoothly on Ω_α.

Proof. — One can work in a desingularization $p : Y \to X$ of X. The path α_t induces a path $\beta_t = p^* \alpha_t$ of semi-positive and big classes. The currents T_t can be decomposed as $T_t = \theta_t + dd^c \varphi_t$ where $\theta_t \in \beta_t$ is a smooth representative and φ_t are normalized by sup$_{X_t} \varphi_t = 0$ and solve the complex Monge-Ampère equation

$$\frac{1}{V_t} (\theta_t + dd^c \varphi_t)^n = \mu_Y = f dV_Y,$$

where the volumes $V_t = \alpha_t^n$ are bounded away from zero and infinity, $C^{-1} \leq V_t \leq C$, and $\mu_Y = f dV_Y$ is a fixed volume form, with $f \in L^p(Y)$ for some $p > 1$ (because (X, B) has klt singularities, see [EGZ09, Lem. 6.4]).

The hypothesis of Theorem 1.1 (H2) is thus trivially satisfied, while (H1) follows if we initially bound from above $\alpha_t \leq \gamma_X$ by a fixed Kähler class. The most delicate C^0-estimate follows thus here from Theorem 1.9. When X is smooth, the C^0-estimate in [Tos09] is obtained by using a Moser iteration argument as in Yau’s celebrated paper [Yau78], but this argument can no longer be applied in the present more singular setting.

The rest of the proof is then roughly the same as in the case of smooth manifolds. It consists in adapting Yau’s Laplacian estimate by using Tsuji’s trick (first used in [Tsu88]), the remaining higher order estimates being local ones.

6.4. The collapsing case. — We now consider the case when the volumes of the α_t’s are collapsing, i.e. vol(α_0) = 0. This case is more involved and only special cases are fully understood.

Suppose there is a surjective, holomorphic map with connected fibers $f : X \to Z$, where Z is a compact, normal Kähler space of positive dimension m. We denote by $k := n - m = \dim X - \dim Z$ the relative dimension of the fiber space f. We let S_Z denote the smallest proper analytic subset $\Sigma \subset Z$ such that

- Σ contains the singular locus Z_{sing} of Z,
- The map f is smooth on $f^{-1}(Z \setminus \Sigma)$,
- For any $z \in Z \setminus \Sigma$, Supp(B) intersects X_z transversally,
and we set $S_X = f^{-1}(S_Z)$. Finally, we set $Z^\circ := Z \setminus S_Z$ and $X^\circ := X \setminus S_X = f^{-1}(Z^\circ)$. By the last item, each component of $B|_{X^\circ}$ dominates Z°.

A general fiber X_z satisfies $\kappa(K_{X_z} + B_z) \geq 0$, but the inequality may be strict. If $c_1(K_X + B) = 0$, then log abundance implies that $K_{X_z} + B_z \sim Q O_{X_z}$ for z general. Moreover, Iitaka’s conjecture predicts that $\kappa(K_{X_z} + B_z)$ vanishes as soon as $\kappa(Z) \geq 0$, which in turn should be equivalent to Z not being uniruled.

Fix ω_Z a Kähler form on Z. For simplicity, we assume that $\int_Z \omega^n_Z = 1$. The form $f^*\omega_Z$ is a semi-positive form such that $f^*\omega^n_Z = 0$ for any $p > m$. We also choose a Kähler form ω_X on X. The quantity $\int_{X_z} \omega_X^k = f_*\omega_X^k$ is constant in $z \in Z$; up to renormalizing ω_X, we may assume that the constant is 1.

We assume that our path $(\alpha_t)_{t \geq 0}$ in $H^{1,1}(X, \mathbb{R})$ is given by $\alpha_0 = \{ f^*\omega_Z \}$ and $\alpha_t = \alpha_0 + t\{ \omega_X \}$. As a result, one has

\begin{equation}
V_t := \text{vol}(\alpha_t) = \left(\frac{n}{k} \right)^k \int_X f^*\omega^m_Z \wedge \omega_X^k + o(t^k) = \left(\frac{n}{k} \right)^k + o(k).
\end{equation}

We set $\omega_t := f^*\omega_Z + t\omega_X$ and let $\omega_{\phi_t} := \omega_t + dd^c \phi_t$ denote the singular Ricci-flat current in α_t, normalized by $\int_X \phi_t \omega_X^k = 0$. It satisfies

$$
\omega_{\phi_t}^m = V_t \cdot \mu_{(X,B)^r},$$

cf Eq. (6.3). The probability measure $f_* \mu_{(X,B)}$ has $L^{1+\varepsilon}$-density with respect to ω_Z^m thanks to [EGZ18, Lem. 2.3]. Therefore, there exists a unique positive current $\omega_\infty \in \{ \omega_Z \}$ with bounded potentials, solution of the Monge-Ampère equation

$$
\omega_{\infty}^m = f_* \mu_{(X,B)^r},
$$

cf [EGZ09]. In the case where X is smooth, $B = 0$ and $c_1(X) = 0$, the Ricci curvature of $f_* \mu_X$ (or, equivalently, ω_∞) coincides with the Weil-Petersson form of the fibration f of Calabi-Yau manifolds. We propose the following problem.

Problem 1. — Let $f : X \to Z$ be a surjective holomorphic map with connected fibers between compact, normal Kähler spaces. Assume that there exists an effective divisor B on X such that (X, B) is klt and $\kappa(K_X + B) = 0$. Let ω_X (resp. ω_Z) be a Kähler form on X (resp. Z) and let ω_{ϕ_t} be the unique singular Ricci-flat current in $\{ f^*\omega_Z + t\omega_X \}$ for $t > 0$.

Then, the currents ω_{ϕ_t} converge weakly to $f^*\omega_\infty$ when $t \to 0$, where $\omega_\infty \in \{ \omega_Z \}$ solves $\omega_{\infty}^\dim Z = f_* \mu_{(X,B)^r}$.

The Problem above is motivated by a string of papers (cf below) where the expected result is proved along with some additional information on the convergence.

Theorem 6.6. — [Tos10, GTZ13, TWY18, HT18] Assume that X is smooth, $B = 0$ and $c_1(K_X) = 0$. Then, the metrics ω_{ϕ_t} converge to $f^*\omega_\infty$ in the C^a_{loc}-sense on $X \setminus S_X$, for some $a > 0$.

In this section, we aim at providing a positive answer to Problem 1 whenever X is smooth, B has simple normal crossings support and $c_1(K_X + B) = 0$. We will follow the strategy of Tosatti [Tos10] rather closely. However, some adjustments need to be made, requiring the use of conical metrics and the results of the present paper.
Theorem 6.7. — In the Setting of Problem 1, assume furthermore that X is smooth, B has snc support and $c_1(K_X + B) = 0$. Then, $\omega_{\varphi_t} \to f^*\omega_\infty$ as currents on X, when t goes to 0.

Proof. — We will proceed in several steps, similarly to [Tos10]. In order to simplify some computations to follow, one will assume that S_Z is contained in a divisor D_Z, cut out by a section $\sigma_Z \in H^0(Z,\mathcal{O}_Z(D_Z))$. If Z is projective, this is not a restriction. The general case requires to follow Tosatti’s computations more closely but does not present significant additional difficulties.

Step 1. Choice of some suitable conical metrics
We list in the Proposition below the properties of the conical metric that will be important for the following. It is mostly a recollection of well-known results, cf e.g. [GP16].

By abuse of notation, we will not distinguish between B and Supp(B).

Proposition 6.8. — There exists a Kähler current $\omega_B \in \{\omega_X\}$ on X such that
1. ω_B is a smooth Kähler form on $X \setminus B$ and has conical singularities along B.
2. There exists a constant $C > 0$ and a quasi-psh function $\Psi \in C^\infty(X \setminus B) \cap L^\infty(X)$ such that the following inequalities of tensors hold in the sense of Griffiths on $X \setminus B$
 $$-(C\omega_B + dd^c\Psi) \otimes \text{Id}_{\omega_X} \leq \Theta_{\omega_B}(\omega_X) \leq C\omega_B \otimes \text{Id}_{\omega_X}.$$
3. Let $h := \omega_B^\nu/\omega_X^\nu$. There exists $p > 1$ such that for any $K \in Z^\nu$, one has
 $$\sup_{z \in K} \|h|_z\|_{L^p(\omega_X^k)} < +\infty.$$

Sketch of proof of Proposition 6.8. — To construct such a metric ω_B, one first chooses smooth metrics h_i on B_i, sections $s_i \in H^0(X,\mathcal{O}_X(B_i))$ cutting out B_i, and one sets $\omega_B := \omega_X + dd^c\sum |s_i|^{2(1-h_i)}$. Up to scaling down the metrics h_i, one can easily achieve the first condition. The third condition also follows easily.

The left-hand side inequality of 2 ("lower bound" on the holomorphic bisectional curvature) follows from [GP16, (4.3)] with $\varepsilon = 0$. As for the right-hand side inequality (upper bound on the holomorphic bisectional curvature), a proof has been given in [JMR16, App. A] in the case where B is smooth but a very simple argument has been found by Sturm, cf [RUB14, Lem. 3.14].

Step 2. Estimates
We list in the Proposition below various estimates on ω_{φ_t} that will be useful for the last step. First, we define for $z \in Z^\nu$ the quantity $q_t(z) := \int_{X_z} \varphi_t \omega_X^k$. In the following, we will not distinguish between q_t and f^*q_t.

Proposition 6.9. — There exist a constant $C > 0$ as well as a positive function $g \in C^\infty(X^\nu)$, both independent of t, such that
1. $\|q_t\|_{L^\infty(X)} \leq C$.
2. $\omega_{\varphi_t} \geq C^{-1} f^* \omega_Z$.
3. $|q_t - q_{t0}| \leq g \cdot t$.
4. $g^{-1} t \cdot \omega_B \leq \omega_{\varphi_t} \leq g \cdot \omega_B$.
5. $g^{-1} t \cdot \omega_B \leq \omega_{\varphi_t}|_{X_z} \leq g t \cdot \omega_B$ for all $z \in Z^\nu$.

Proof of Proposition 6.9. — In this proof, C will denote a constant that may change from line to line but is independent of t. In the same way, g will be a smooth, positive function on X^0 that should be thought as blowing up to $+\infty$ near S_X; it can be assumed to come from Z^0 via f.

1. This is a consequence of [EGZ08, Thm. A] or [DP10, p. 401].

2. Let us consider the holomorphic map $f : (X \setminus B, \omega_{\psi_f}) \to (Z, \omega_Z)$. Given that $\text{Ric}(\omega_{\psi_f}) = 0$ and that ω_Z is a smooth Kähler metric on the compact space Z, Chern-Lu’s formula [Che68, Lu68] provides a constant $C > 0$ such that the non-negative function $u = \text{tr}_{\omega_\psi} f^* \omega_Z$ satisfies

$$\Delta_{\omega_\psi} \log u \geq -C(1 + u)$$

on $X \setminus B$. Now,

$$\Delta_{\omega_\psi} (-\varphi_t) = \text{tr}_{\omega_\psi} (-\omega_{\psi_t} + f^* \omega_Z + t\omega_X) \geq u - n$$

so that setting $A = C + 1$, one finds

$$\Delta_{\omega_\psi} (\log u - A\varphi_t) \geq u - C.$$
thanks to 2. Observing that \(\omega_{\varphi_t} \vert X_s = (\omega_{\varphi_t} - dd^c \varphi_t) \vert X_s \), one sees from Eq. (6.5) that \((\varphi_t - \varphi_s) \vert X_s\) satisfies

\[
(\omega_{X_s} + dd^c (\frac{1}{t} (\varphi_t - \varphi_s) \vert X_s))^k \leq gh \vert X_s \cdot \omega_{X_s}^k
\]

where \(h = \omega_B^n / \omega_X^n \). Thanks to the third item of Proposition 6.8 and Theorem 1.1, we can derive 3. Actually, we used a version of that Theorem for higher-dimensional bases, but only for smooth morphisms, in which case the proofs in the one-dimensional case go through without any change.

4.a We first prove the right-hand side inequality. Let us start by writing \(\omega_B = \omega_X + dd^c \varphi_B \) where \(\varphi_B \in L^\infty(X) \cap C^\infty(X \setminus B) \). From the second item of Proposition 6.8 and Siu’s Laplacian inequality (cf \([GF16, (2.2)](6.14)\)), one concludes that

\[
\Delta \omega_{\varphi_t} (\log tr_{\omega_B} \omega_{\varphi_t} + \Psi) \geq -C(1 + tr_{\omega_{\varphi_t}} \omega_B).
\]

Next, one has

\[
\Delta \omega_{\varphi_t} (-\varphi_t + t\varphi_B) = tr_{\omega_{\varphi_t}} (-\omega_{\varphi_t} + f^* \omega_Z + t\omega_B) \geq t tr_{\omega_{\varphi_t}} \omega_B - n
\]

so that

\[
\Delta \omega_{\varphi_t} (\log tr_{\omega_B} \omega_{\varphi_t} + \Psi - \frac{1}{t} \varphi_t + A\varphi_B) \geq tr_{\omega_{\varphi_t}} \omega_B - \frac{C}{t}.
\]

We want to bound from below the term \(dd^c \varphi_t \). In order to achieve this, one writes

\[
(6.9) \quad dd^c \varphi_t = dd^c f_s (\varphi_t \omega_X^k) = f_s (dd^c \varphi_t \wedge \omega_X^k)
\]

\[
\geq - f_s (f^* \omega_Z \wedge \omega_X^k + tf_X^k + 1)
\]

\[
\geq - \omega_Z - tf_X^k + 1 \geq -g \cdot \omega_Z
\]

given that \(f_s \omega_X^k = 1 \). In particular, one has

\[
(6.10) \quad \Delta \omega_{\varphi_t} \varphi_t \geq -g
\]

thanks to 2. Combining that estimate with (6.8), one finds

\[
(6.11) \quad \Delta \omega_{\varphi_t} (\log tr_{\omega_B} \omega_{\varphi_t} + \Psi - \frac{1}{t} (\varphi_t - \varphi_s) + A\varphi_B) \geq tr_{\omega_{\varphi_t}} \omega_B - \frac{g}{t}.
\]

We now set \(F := \Psi - \frac{1}{t} (\varphi_t - \varphi_s) + A\varphi_B \); it is a bounded function on \(X \), smooth on \(X^\circ \setminus B \) such that

\[
(6.12) \quad |F| \leq g
\]

thanks to 3. Next, we set \(\rho := \chi + f^* \log |\sigma_Z|_{h_DZ}^2 \) where \(\chi \) is defined in the proof of 2 and \(h_DZ \) is a smooth hermitian metric on the divisor \(D_Z \) (containing \(S_Z \)). As \(\rho \) is quasi-psh on \(X \), there exists \(C_I > 0 \) such that

\[
(6.13) \quad dd^c \rho \geq -C_I \omega_{\varphi_t}.
\]

In particular, one has

\[
(6.14) \quad \Delta \omega_{\varphi_t} (\log tr_{\omega_B} \omega_{\varphi_t} + F + \delta \rho) \geq tr_{\omega_{\varphi_t}} \omega_B - \frac{g}{t}.
\]
as soon as \(\delta \in (0, C^{-1}) \). We choose such a \(\delta \) for the following. As the quantity \(\log \text{tr}_{\omega_{\check{y}}} \omega_{\varphi_i} + F \) is globally bounded on \(X \) and smooth on \(X^0 \setminus B \), the function \(\log \text{tr}_{\omega_n} \omega_{\varphi_i} + F + \delta \rho \) attains its maximum at a point \(y_{t,\delta} \in X^0 \setminus B \) such that
\[
\text{tr}_{\omega_{\varphi_i}} \omega_B(y_{t,\delta}) \leq \frac{\mathcal{G}}{t}
\]
thanks to the maximum principle. Combining this with 2, one finds
(6.15)
\[
\text{tr}_{\omega_{\varphi_i}} (f^* \omega_Z + t \omega_B)(y_{t,\delta}) \leq \mathcal{G}
\]
Using the standard inequality
\[
\text{tr}_{\omega^e} \omega \leq \frac{\omega^n}{\text{tr}_{\omega'}(\omega)} \langle \omega, \omega' \rangle^{n-1}
\]
valid for any two positive \((1,1)\)-forms, one gets from (6.15)
\[
\text{tr}_{f^* \omega_Z + t \omega_B} (\omega_{\varphi_i})(y_{t,\delta}) \leq \mathcal{G}
\]
since \(\omega^n_{\varphi_i} \simeq t^k \omega^n_B \) is uniformly comparable to \((f^* \omega_Z + t \omega_B)^n \) by Claim 6.10 below. As \(\omega_B \) dominates \(f^* \omega_Z + t \omega_B \), we infer from the inequality above the following
(6.16)
\[
\text{tr}_{\omega_B} \omega_{\varphi_i}(y_{t,\delta}) \leq \mathcal{G}.
\]
Given the definition of \(y_{t,\delta} \), the boundedness of \(F \) and that \(\delta > 0 \) is arbitrary, we find as in the proof of 2. above that (6.16) actually implies
\[
\text{tr}_{\omega_B} \omega_{\varphi_i} \leq \mathcal{G} \quad \text{on } X^0 \setminus B
\]
hence on the whole \(X^0 \).

To conclude the proof of the RHS inequality in 4., it remains to prove the following

Claim 6.10. — We have
(6.17)
\[
\mathcal{G}^{-1} t^k \cdot \omega^n_B \leq (f^* \omega_Z + t \omega_B)^n \leq \mathcal{G} t^k \cdot \omega^n_B
\]

Proof of Claim 6.10. — The statement is local, so one can assume that \(f : \mathbb{C}^n \to \mathbb{C}^m \) is given by the projection onto the last \(m \) factors and that \(B = \sum_{i=1}^{r} b_i(z_i = 0) \) for some \(r \leq k \). As the inequality is invariant under quasi-isometry, one can choose \(\omega_Z = \sum_{j=k+1}^{r} i dz_j \wedge d\bar{z}_j \) to be the euclidean metric on \(\mathbb{C}^m \) while
\[
\omega_B = \sum_{j=1}^{r} \frac{i dz_j \wedge d\bar{z}_j}{|z_j|^{2b}} + \sum_{j=r+1}^{n} i dz_j \wedge d\bar{z}_j
\]
is the standard cone metric. Setting \(K := \prod_{j=1}^{r} |z_j|^{-2b} \) and \(\omega_{\check{C}_n} := \sum_{j=1}^{n} i dz_j \wedge d\bar{z}_j \), one finds
\[
\omega^n_B = K \cdot \omega^n_{\check{C}_n} \quad \text{and} \quad (f^* \omega_Z + t \omega_B)^n = t^k (1 + t)^m K \cdot \omega^n_{\check{C}_n}
\]
which gives the expected result. \(\square \)

4.b We now move on to the LHS inequality in 4. Let us set \(v := \text{tr}_{\omega_{\varphi_i}} (t \omega_B) \). Remember from Proposition 6.8 2. that \(\omega_B \) has holomorphic bisectional curvature bounded from above on \(X \setminus B \). By Chern-Lu’s inequality, we get on \(X \setminus B \)
\[
\Delta_{\omega_{\varphi_i}} \log v \geq -Ct^{-1} v.
\]
Combining that inequality with (6.7)-(6.10) and (6.13), one finds, for $A = C + 1$
\[\Delta \omega_{\psi_t} (\log v - \frac{A}{t} (\varphi_t - \varphi_1) + A \psi_B + \delta \rho) \geq \frac{1}{t} (v - g). \]
Applying the maximum principle and arguing as before, we eventually find $v \leq g$ on $X^0 \setminus B$, hence on X^0.

5. The LHS inequality is a direct consequence of 4, by restriction. As for the RHS, it follows easily from the LHS since
\[\text{tr} \omega_B \varphi_t |_{X_z} \leq \frac{(\omega_{\psi_t} |_{X_z})^k}{\omega_B^k} \cdot (\text{tr} \omega_{\psi_t} |_{X_z} \omega_B)^{k-1} \leq \delta t^{k-(k-1)} \]
thanks to (6.6). This ends the proof of Proposition 6.9.

\[\text{Step 3. Convergence} \]
Thanks to Proposition 6.9 1., the family $(\varphi_t)_{0 < t < 1}$ is relatively compact for the L^1-topology. All we have to do is showing that all its clusters values coincide. Let φ_{∞} be such a cluster value; it is an $f^* \omega_Z$-psh function but f has connected fibers so that φ_{∞} is necessarily constant on the fibers. Equivalently, one has $\varphi_{\infty} = f^* \varphi_{\infty}$ for the (unique) ω_Z-psh function φ_{∞} satisfying $\varphi_{\infty}(z) := \int_{X^0} q_{\infty} \omega_X^k$ for $z \in Z^0$. We want to show that the following equality of measures

(6.18)
\[(\omega_Z + dd^c \varphi_{\infty})^m = f_* \mu_{(X,B)} \]
holds on Z. Given that Eq. 6.18 has a unique normalized bounded solution, this will prove the Theorem. As φ_{∞} is globally bounded on X thanks to Proposition 6.9 1. and $f_* \mu_{(X,B)}$ does not charge any pluripolar set, it is actually enough to show that the equality of measures (6.18) holds on Z^0. In order to prove (6.18) on Z^0, given that $f_* \omega_X^k = 1$, it is enough to prove instead that for any function $u \in C^0_{\nu}(Z^0)$, one has

(6.19)
\[\int_X f^* u \cdot (f^* \omega_Z + dd^c \varphi_{\infty})^m \wedge \omega_X^k = \int_X f^* u \cdot d\mu_{(X,B)}. \]

We start from the identity

(6.20)
\[\omega_{\psi_t}^n = (f^* \omega_Z + t \omega_X + dd^c \varphi_t)^n = V_t \cdot \mu_{(X,B)} \]
where $V_t = \binom{n}{k} t^k + o(t^k)$ when $t \to 0$, cf (6.4). Set $\psi_t := \varphi_t - \varphi_1$ and decompose ω_{ψ_t} as
\[\omega_{\psi_t} = f^* (\omega_Z + dd^c \varphi_t) + (t \omega_X + dd^c \psi_t). \]
By expanding, one obtains
\[\omega_{\psi_t}^n = \sum_{i=0}^n \binom{n}{i} f^* (\omega_Z + dd^c \varphi_t)^i \wedge (t \omega_X + dd^c \psi_t)^{n-i}. \]

- Case $i = m$.

We expand again
\[a_m = \sum_{j=0}^{k-1} \binom{k}{j} t^j f^*(\omega_Z + dd^c \varphi_l)^m \wedge \omega_X^j \wedge (dd^c \varphi_l)^{k-j} + t^k f^*(\omega_Z + dd^c \varphi_l)^m \wedge \omega_X^k. \]

Performing an integration by parts, one gets
\[\int_X f^* u \cdot \beta_j = \int_X \psi_1 \cdot f^* (dd^c u \wedge (\omega_Z + dd^c \varphi_l)^m) \wedge \omega_X^j \wedge (dd^c \varphi_l)^{k-j-1} = 0 \]
for degree reasons.

By dominated convergence theorem, we have that \(\varphi_l \to \varphi_\infty \) in the \(L^1_{\text{loc}}(Z^o) \) topology. Moreover, as \(B \) intersects the fibers of \(f \) transversally over \(Z^o \), an easy argument relying on partition of unity shows that \(f_*(\omega_B \wedge \omega_X^k) \) is a smooth \((1,1)\)-form on \(Z^o \).

Combining this with Proposition 6.9 4., we find \(dd^c \varphi_l = f_*(dd^c \varphi_l \wedge \omega_X^k) \leq f_*(g \omega_B \wedge \omega_X^k) \leq (f \circ g) \cdot \omega_Z \). Together with (6.9), this implies
\[
\tag{6.21}
\pm dd^c \varphi_l \leq (f \circ g) \cdot \omega_Z.
\]

By standard result, this shows that \(\varphi_l \to \varphi_\infty \) in \(C^1_{\text{loc}}(Z^o) \) for any \(\alpha < 1 \). In particular, the quasi-psh functions \(\varphi_l \) converge uniformly on \(\text{Supp}(u) \).

By Bedford-Taylor theory, one deduces that
\[\int_X f^* u \cdot f^*(\omega_Z + dd^c \varphi_l)^m \wedge \omega_X^k \to \int_X f^* u \cdot f^*(\omega_Z + dd^c \varphi_\infty)^m \wedge \omega_X^k. \]

In the end, one has showed that
\[
\tag{6.22}
\frac{1}{V_l} \int_X f^* u \cdot a_m \to \int_X f^* u \cdot f^*(\omega_Z + dd^c \varphi_\infty)^m \wedge \omega_X^k.
\]

• Case \(i < m \).

We expand
\[a_i = \sum_{j=0}^{n-i-1} \binom{n-i-1}{j} t^j f^*(\omega_Z + dd^c \varphi_l)^i \wedge \omega_X^j \wedge (dd^c \varphi_l)^{n-i-j} + t^{n-i} f^*(\omega_Z + dd^c \varphi_l)^i \wedge \omega_X^{n-i}. \]

From (6.21), we find
\[
\tag{6.23}
\frac{1}{V_l} \int_X f^* u \cdot f^*(\omega_Z + dd^c \varphi_l)^i \wedge \omega_X^{n-i} = O(t^{m-i}) = o(1).
\]

For the remaining terms, an integration by parts yields
\[\int_X f^* u \cdot \gamma_{ij} = \int_X \psi_1 \cdot f^* (dd^c u \wedge (\omega_Z + dd^c \varphi_l)^i) \wedge \omega_X^j \wedge (dd^c \varphi_l)^{n-i-j-1} \]
From Proposition 6.9 3., one has \(|\varphi_l| \leq \|g\| \). Moreover, among the \((n-i-j-1)\) eigenvalues of \(dd^c \varphi_l \) involved in the integral, at least \((n-i-j-1)-(m-i+1)) = k-j
must come from the fiber. Given Proposition 6.9, the integrand is a $O(t^{1+k-j})$. As a result,

\[
\frac{t^j}{V_t} \int_X f^* u \cdot \gamma_{ij} = O(t).
\]

Combining that result with (6.23), we see that for any $i > m$, one has

\[
(6.24) \quad \lim_{t \to 0} \frac{1}{V_t} \int_X f^* u \cdot \alpha_i = 0.
\]

Putting together (6.20), (6.22) and (6.24), we obtain

\[
\int_X f^* u \cdot d\mu_{(X,B)} = \frac{1}{V_t} \int_X f^* u \cdot \omega^m_{\phi_t}
\]

\[
= \lim_{t \to 0} \sum_{i=0}^{m} \binom{n}{i} \frac{1}{V_t} \int_X f^* u \cdot \alpha_i
\]

\[
= \lim_{t \to 0} \frac{1}{V_t} \int_X f^* u \cdot \alpha_m
\]

\[
= \int_X f^* u \cdot f^* (\omega_Z + dd^c \varphi_\omega)^m \wedge \omega_X^k.
\]

In summary, (6.19) is proved, which concludes the proof of the Theorem. \qed

References

[AAZ18] S. Asserda, F. Assila & A. Zeriahi – “Projective Logarithmic Potentials”, Preprint arXiv:1803.03253, to appear in Indiana University Math. Journal, 2018.

[Ale96] V. Alexeev – “Log canonical singularities and complete moduli of stable pairs”, Preprint arXiv:alg-geom/9608013, 1996.

[Aub78] T. Aubin – “Équations du type Monge-Ampère sur les variétés kählériennes compacts”, Bull. Sci. Math. (2) 102 (1978), no. 1, p. 63–95.

[BCHM10] C. Birkar, P. Cascini, C. Hacon & J. McKernan – “Existence of minimal models for varieties of log general type”, J. Amer. Math. Soc. 23 (2010), p. 405–468.

[BEGZ10] S. Boucksom, P. Eyssidieux, V. Guedj & A. Zeriahi – “Monge-Ampère equations in big cohomology classes.”, Acta Math. 205 (2010), no. 2, p. 199–262.

[Bei19] F. Bei – “On the Laplace–Beltrami operator on compact complex spaces”, Trans. Amer. Math. Soc. 372 (2019), no. 12, p. 8477–8505.

[BG14] R. J. Berman & H. Guenancia – “Kähler-Einstein metrics on stable varieties and log canonical pairs”, Geometric and Function Analysis 24 (2014), no. 6, p. 1683–1730.

[Bou02] S. Boucksom – “On the volume of a line bundle.”, Int. J. Math. 13 (2002), no. 10, p. 1043–1063.

[Bou04] S. Boucksom, “Divisorial Zariski decompositions on compact complex manifolds”, Ann. Sci. École Norm. Sup. (4) 37 (2004), no. 1, p. 45–76.

[BT82] E. Bedford & B. Taylor – “A new capacity for plurisubharmonic functions”, Acta Math. 149 (1982), no. 1-2, p. 1–40.

[CGP13] F. Campana, H. Guenancia & M. Păun – “Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields”, Ann. Scient. Éc. Norm. Sup. 46 (2013), p. 879–916.
[CGP17] J. CAO, H. GUENANCIA & M. PĂUN – “Variation of singular Kähler-Einstein metrics: positive Kodaira dimension”, Preprint arXiv:1710.01825, 2017.

[CGP19] ———, “Variation of singular Kähler-Einstein metrics: Kodaira dimension zero”, Preprint arXiv:1908.08087, 2019.

[CGZ13] D. COMAN, V. GUEDJ & A. ZERIAHI – “Extension of plurisubharmonic functions with growth control”, J. Reine Angew. Math. 676 (2013), p. 33–49.

[Cha84] I. CHAVEL – *Eigenvalues in Riemannian geometry*, Pure and Applied Mathematics, vol. 115, Academic Press, Inc., Orlando, FL, 1984, Including a chapter by Burton Randol, With an appendix by Jozef Dodziuk.

[Che68] S.-S. CHERN – “On holomorphic mappings of hermitian manifolds of the same dimension”, in *Entire Functions and Related Parts of Analysis* (Proc. Sympos. Pure Math., La Jolla, Calif., 1966), Amer. Math. Soc., Providence, R.I., 1968, p. 157–170.

[CL81] S. Y. CHENG & P. LI – “Heat kernel estimates and lower bound of eigenvalues”, Comment. Math. Helv. 56 (1981), no. 3, p. 327–338.

[CT15] T. COLLINS & V. TOSATTI – “Kähler currents and null loci”, Invent. Math. 202 (2015), no. 3, p. 1167–1198.

[DDNL18] T. DARVAS, E. DI NEZZA & C. H. LU – “On the singularity type of full mass currents in big cohomology classes”, Compos. Math. 154 (2018), no. 2, p. 380–409.

[Dem82] J.-P. DEMAILLY – “Sur les nombres de Lelong associés à l’image directe d’un courant positif fermé”, Ann. Inst. Fourier (Grenoble) 32 (1982), no. 2, p. ix, 37–66.

[Dem85] ———, “Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines”, Mém. Soc. Math. France (N.S.) (1985), no. 19, p. 124.

[Dem92] ———, “Regularization of closed positive currents and intersection theory”, J. Algebraic Geom. 1 (1992), no. 3, p. 361–409.

[DP04] J.-P. DEMAILLY & M. PĂUN – “Numerical characterization of the Kähler cone of a compact Kähler manifold”, Ann. of Math. (2) 159 (2004), no. 3, p. 1247–1274.

[DP10] J.-P. DEMAILLY & N. PALI – “Degenerate complex Monge-Ampère equations over compact Kähler manifolds”, Internat. J. Math. 21 (2010), no. 3, p. 357–405.

[EGZ08] P. EYSSIDIEUX, V. GUEDJ & A. ZERIAHI – “A priori L^∞-estimates for degenerate complex Monge-Ampère equations”, Int. Math. Res. Not. (2008), p. Art. ID rnn 070, 8.

[EGZ09] ———, “Singular Kähler-Einstein metrics”, J. Amer. Math. Soc. 22 (2009), p. 607–639.

[EGZ18] ———, “Convergence of weak Kähler-Ricci flows on minimal models of positive Kodaira dimension”, Comm. Math. Phys. 357 (2018), no. 3, p. 1179–1214.

[FN80] J. E. FORNÆSS & R. NARASIMHAN – “The Levi problem on complex spaces with singularities”, Math. Ann. 248 (1980), no. 1, p. 47–72.

[Fuj16] O. FUJINO – “Direct images of relative pluricanonical bundles”, Algebr. Geom. 3 (2016), no. 1, p. 50–62.

[GP16] H. GUENANCIA & M. PĂUN – “Conic singularities metrics with prescribed Ricci curvature: the case of general cone angles along normal crossing divisors”, J. Differential Geom. 103 (2016), no. 1, p. 15–57.

[Gri97] GRIGOR’YAN, ALEXANDER – “Gaussian upper bounds for the heat kernel on arbitrary manifolds”, J. Differential Geom. 45 (1997), no. 1, p. 33–52.

[GTZ13] M. GROSS, V. TOSATTI & Y. ZHANG – “Collapsing of abelian fibered Calabi-Yau manifolds”, Duke Math. J. 162 (2013), no. 3, p. 517–551.
[Gue14] H. Guenancia – “Kähler-Einstein metrics with mixed Poincaré and cone singularities along a normal crossing divisor”, *Ann. Inst. Fourier* 64 (2014), no. 6, p. 1291–1330.

[GW16] H. Guenancia & D. Wu – “On the boundary behavior of Kähler-Einstein metrics on log canonical pairs”, *Math. Annalen* 366 (2016), no. 1, p. 101–120.

[GZ05] V. Guedj & A. Zeriahi – “Intrinsic capacities on compact Kähler manifolds.”, *J. Geom. Anal.* 15 (2005), no. 4, p. 607–639.

[GZ07] ———, “The weighted Monge-Ampère energy of quasi plurisubharmonic functions”, *J. Funct. An.* 250 (2007), p. 442–482.

[GZ17] ———, *Degenerate complex Monge-Ampère equations*, EMS Tracts in Mathematics, vol. 26, European Mathematical Society (EMS), Zürich, 2017.

[HT18] H.-J. Hein & V. Tosatti – “Higher-order estimates for collapsing Calabi-Yau metrics”, Preprint arXiv:1803.06697, 2018.

[JMR16] T. Jeffres, R. Mazzeo & Y. A. Rubinstein – “Kähler-Einstein metrics with edge singularities”, *Ann. of Math. (2)* 183 (2016), no. 1, p. 95–176, with an Appendix by C. Li and Y. Rubinstein.

[Kar00] K. Karu – “Minimal models and boundedness of stable varieties”, *J. Algebraic Geom.* 9 (2000), no. 1, p. 93–109.

[KKMSD73] G. Kempf, F. F. Knudsen, D. Mumford & B. Saint-Donat – *To torial embeddings. I*, Lecture Notes in Mathematics, Vol. 339, Springer-Verlag, Berlin-New York, 1973.

[KM98] J. Kollár & S. Mori – *Birational geometry of algebraic varieties*, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998, With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original.

[Kol] J. Kollár – “Book on moduli of surfaces”, ongoing project, available at the author’s webpage Book.

[Kol98] S. Kolodziej – “The complex Monge-Ampère operator”, *Acta Math.* 180 (1998), no. 1, p. 69–117.

[Kol13] J. Kollár – *Singularities of the minimal model program*, Cambridge Tracts in Mathematics, vol. 200, Cambridge University Press, Cambridge, 2013, With a collaboration of Sándor Kovács.

[Kol18] J. Kollár – “Families of varieties of general type”, 2018, Book in preparation, available at https://web.math.princeton.edu/~kollar/.

[Kov13] S. J. Kovács – “Singularities of stable varieties”, in *Handbook of moduli. Vol. II*, Adv. Lect. Math. (ALM), vol. 25, Int. Press, Somerville, MA, 2013, p. 159–203.

[KS01] M. Kontsevich & Y. Soibelman – “Homological mirror symmetry and torus fibrations”, in *Symplectic geometry and mirror symmetry (Seoul, 2000)*, World Sci. Publ., River Edge, NJ, 2001, p. 203–263.

[KSB88] J. Kollár & N. I. Shepherd-Barron – “Threefolds and deformations of surface singularities”, *Invent. Math.* 91 (1988), no. 2, p. 299–338.

[LT95] P. Li & G. Tian – “On the heat kernel of the Bergmann metric on algebraic varieties”, *J. Amer. Math. Soc.* 8 (1995), no. 4, p. 857–877.

[Lu68] Y.-C. Lu – “On holomorphic mappings of complex manifolds.”, *J. Diff. Geom.* 2 (1968), p. 299–312.

[MS73] J. H. Michael & L. M. Simon – “Sobolev and mean-value inequalities on generalized submanifolds of \mathbb{R}^n”, *Comm. Pure Appl. Math.* 26 (1973), p. 361–379.
ELEONORA DI NEZZA, Institut Mathématique de Jussieu, Sorbonne Université, France
E-mail: eleonora.dinezza@imj-prg.fr

VINCENT GUEJJ, Institut de Mathématiques de Toulouse; UMR 5219, Université de Toulouse; CNRS,
UPS, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
E-mail: vincent.guedj@math.univ-toulouse.fr

HENRI GUENANCIA, Institut de Mathématiques de Toulouse; UMR 5219, Université de Toulouse;
CNRS, UPS, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
E-mail: henri.guenancia@math.cnrs.fr