Semi-analytic calculation of the monopole order parameter in QCD

Adriano Di Giacomo

aDipartimento di Fisica Universita’ Pisa and INFN Sezione di Pisa, 3 Largo B. Pontecorvo 56127 Pisa ,ITALY

The monopole order parameter of QCD is computed in terms of gauge invariant field strength correlators. Both quantities are partially known from numerical simulations on the lattice. A new insight results on the structure of the confining vacuum.

1. Introduction

The mechanism of confinement by dual superconductivity of the QCD vacuum \cite{123} is confirmed by numerical simulations on a lattice. Chromoelectric flux tubes connecting \(q - \bar{q}\) pairs produced by dual Meissner effect are indeed observed in lattice configurations with the expected form of the electric and magnetic fields\cite{4}. An extensive analysis has been performed by exploring the vacuum by means of an order parameter \((\mu)\) \cite{47}, which is the vacuum expectation value of a magnetically charged operator \(\mu\).

In the confined phase \((\mu) \neq 0\), which implies Higgs breaking of the magnetic U(1) symmetry, in the deconfined phase \((\mu) = 0\) and the magnetic charge is superselected. In SU(N) gauge theory there exist \(N - 1\) magnetic charges and \(N - 1\) independent operators \(\mu^a, (a = 1, \ldots, N - 1)\), which create monopoles of the species \(a\) \cite{10}. They can be written

\[
\mu^a(x, t) = e^{\frac{iq}{2\beta}} \int d^3y \tilde{b}_{\perp}(x-y) \text{Tr}(\Phi^a E)(y,t)
\] (1)

where \(\tilde{b}_{\perp}\) is the field of a Dirac monopole with \(\nabla \tilde{b}_{\perp} = 0\) and \(\nabla \wedge \tilde{b}_{\perp} = \frac{F}{2\pi} + \text{Dirac string}\). \(\Phi^a(x) \equiv U(x,y)\Phi^a_d U^\dagger(x,y)\) (2) with \(U(x,y)\) an arbitrary gauge transformation. We will take for \(U\) a parallel transport to \(x\) from a reference point \(y\) along a path \(C\), \(\langle \mu^a \rangle\) is gauge invariant. In Eq(2)

\[
\langle \mu^a \rangle = \frac{1}{2\pi} \int d\beta \rho^a(\beta)
\] (8)

\(\rho^a\) has been measured by lattice simulation for various gauge theories: compact \(U(1)\) \cite{11}, SU(2) \cite{8} , SU(3) \cite{9} and \(N_f = 2\) QCD \cite{11}. In all these systems \(\rho^a \to \infty\) in the confined phase in the thermodynamical limit \(V \equiv L^3 \to \infty\). By use of Eq(8) this means \(\langle \mu^a \rangle \neq 0\).

In the deconfined phase \(T > T_c\)

\[
\rho^a \approx -|c|L_s + c' \quad \text{or} \quad \langle \mu^a \rangle = 0
\] (9)

In the gauge in which \(\Phi^a = \Phi^a_d\) (Abelian Projection)

\[
\mu^a(x, t) = e^{\frac{iq}{2\beta}} \int d^3y \tilde{b}_{\perp}(x-y) \tilde{E}_{\perp}^a(y,t)
\] (4)

where \(\tilde{E}_{\perp}^a\) is the transverse chromoelectric field along the color direction \(T^a\)

\[
T^a = diag(0, \ldots, 0, 1, -1, 0, \ldots, 0)
\] (5)

In the deconfined phase \(\langle \mu^a \rangle = 0\), \(T^a\) creates a Dirac monopole at \((x, t)\) in the residual gauge symmetry after abelian projection. It proves convenient to use instead of \(\langle \mu^a \rangle\) the susceptibility

\[
\rho^a = \frac{\partial}{\partial \beta} \text{ln} \langle \mu^a \rangle
\] (7)

Here \(\beta\) is the usual variable of the lattice formulation \(\beta \equiv \frac{2N}{g^2}\).

\[
\langle \mu^a \rangle = e^\beta \int_0^1 d\beta \rho^a(\beta)
\] (8)

\[
\rho^a \approx -|c|L_s + c' \quad \text{or} \quad \langle \mu^a \rangle = 0
\] (9)
or, again by Eq(8) $\langle \mu^a \rangle = 0$.

In the critical region $T \approx T_c$ the scaling law holds

$$\rho^a \approx f(\tau L_x^\frac{1}{2})$$

(10)

Here $\tau = 1 - \frac{T}{T_c}$, ν is the critical index of the correlation length of the order parameter. ρ^a is independent of the choice of the abelian projection $[12]$ $[13]$ $[14]$. Expanding the exponential which defines $\langle \mu^a \rangle$ one has

$$\langle \mu^a \rangle = \Sigma_0 \frac{i q}{2N} \frac{2^n}{n!} \int d^3 y_1 \cdots d^3 y_n b^a_i(\vec{x} - \vec{y}_1) \cdots b^a_n(\vec{x} - \vec{y}_n)$$

$$\equiv \langle \mu^a_i \rangle \equiv \rho^a_i$$

(11)

The notation is $\langle \Phi^a_\tau \rangle$.

In the critical region $T \approx T_c$ the scaling law holds $\rho^a \approx f(\tau L_x^\frac{1}{2})$ (10), and are used as an input in stochastic QCD. For those correlators $\langle E^a E^b \rangle = \delta^{ab} \Phi$, so that ρ^a is independent on a. This is also the case in lattice determinations of ρ^a $[9]$. The cluster expansion is generically expected to work at large distances, and in the study of confinement we are looking for infrared properties. Anyhow a direct check of it can be obtained by looking at the dependence of ρ^a on q. The truncated ρ^a is proportional to q^2: higher correlators would introduce terms proportional to higher powers of q. Old data $[8]$ $[15]$ seem to agree with q^2 but a systematic study of this dependence will be done.

3. The Field Correlators

A general parametrization of field strength correlators dictated by invariance arguments $[20]$ $[21]$ is

$$\Phi_{\mu_1,\nu_1,\mu_2,\nu_2}^a(z_1 - z_2) \equiv \frac{1}{N} (\langle Tr F^a_{\mu_1,\nu_1}(z_1) \rangle) V(z_1, z_2) F^a_{\mu_2,\nu_2}(z_2) V^\dagger(z_1, z_2)$$

(14)

$$\Phi_{\mu_1,\nu_1,\mu_2,\nu_2}^{ab}(z_1 - z_2) = \delta^{ab}$$

$$\langle D(z_1 - z_2) \delta_{\mu_1,\nu_1} \delta_{\mu_2,\nu_2} \rangle + \frac{1}{2} \frac{\partial}{\partial z_{\mu_1}} [D_1(z_1 - z_2) \delta_{\mu_1,\mu_2} \delta_{\nu_1,\nu_2} - z_{\nu_2} \delta_{\mu_1,\nu_2} - z_{\mu_2} \delta_{\mu_1,\nu_1} - z_{\mu_2} \delta_{\nu_1,\nu_2}]$$

(15)

At $T \neq 0$ the electric field correlators do not coincide with the magnetic ones, and there are four form factors, D_E, D_{1E}, D_H, D_{1H}.

For correlators of electric fields E_{i_1}, E_{i_2} Eq(15) gives

$$\Phi_{i_1, i_2}^{ab} = \delta^{ab} [\delta_{i_1, i_2} (D_E + \frac{1}{2} D_{1E}) + \frac{\partial}{\partial i_{11}}]$$

(16)

In the convolution with b_{\perp} the derivative terms give 0. For the same reason

$$\delta_{i_1 i_2} \rightarrow \delta_{i_1 i_2} - \frac{k_{i_1} k_{i_2}}{k^2}$$

Going to the Fourier transform we get for ρ^a Eq(13)

$$\rho^a = -\frac{q^2}{16} \frac{\partial}{\partial \beta} [\beta \int \frac{d^3 k}{(2\pi)^3} b^a_1(\vec{k}) b^a_2(-\vec{k})]$$

We shall identify $\Phi^a_{i_1, i_2}$ with the two point correlators defined with a straight line parallel transport.
\[D_E(k^2) \frac{1}{k^2} [k^2 \delta_{ij}k^2 - k_i k_j] \] (17)

Here \(\bar{D}_E(k^2) \) is the Fourier transform of \((D_E + \frac{1}{2} D_{1E})\).

Since

\[(k^2 \delta_{ij} - k_i k_j)b^i_\perp(\vec{k})b^j_\perp(\vec{-k}) = |\vec{H}(\vec{k})|^2 \] (18)

we can use the explicit form of \(\vec{H}(\vec{k}) \)

\[\vec{H}(\vec{k}) = \vec{k} \wedge \vec{b}_\perp(\vec{k}) \] (19)

with \(\vec{n} \) the direction of the Dirac string (we shall call it \(z \)), and get

\[|\vec{H}(\vec{k})|^2 = -\frac{1}{k^2} + \frac{1}{k_z^2} \] (20)

For \(\rho^a \) we then have

\[\rho^a = \frac{q^2}{16} \frac{\partial}{\partial \beta} \int \frac{d^3k}{(2\pi)^3} \left(\frac{1}{k^2} - \frac{1}{k_z^2} \right) f(k^2) \] (21)

where \(f(k^2) \equiv \frac{k^2}{8 \pi^2} \bar{D}_E(k^2) \).

Identifying our correlators with those of the stochastic model simply explains that \(\rho^a \) is independent both on \(a \) and on the abelian projection. At large \(\beta \) (deconfined phase) \(f(k^2) \) can be approximated by first order perturbation theory

\[f(k^2) = \frac{1}{2Nk} \] (22)

The only dependence on \(\beta \) is the explicit factor in Eq(21) so that

\[\rho^a = \frac{q^2}{16N} \int \frac{d^3k}{(2\pi)^3} \frac{1}{k^2} - \frac{1}{k_z^2} \] (23)

The integral is easily computed with UV cut-off \(\frac{1}{a} \) (\(a \) the lattice spacing) and IR cut-off \(\frac{1}{L_{\text{iso}}} \) (\(L_s \) the spacial size of the lattice). The result is

\[\rho^a = \frac{q^2}{16N} \frac{1}{(2\pi)^2} (-\sqrt{2}L_s + 2\ln(L_s) + \text{const}) \] (24)

By comparison with Eq(8) this means that \(\langle \mu^a \rangle = 0 \) in the thermodynamical limit \(L_s \to \infty \). The correlators have been measured on the lattice both at \(T = 0 \) and at \(T \neq 0 \). In the range of distances \(1 fm \leq x \leq 1 fm \) they are well parametrized by a form \[\text{(17)} \]

\[D_E = Ae^{-\frac{L_s}{x}} + \frac{b}{x^4}e^{-\frac{L_s}{x}} \] (25)

with \(\lambda_a \approx 2\lambda_b \) and \(\lambda_b \approx .3 fm \) \(A \) and \(b \) are independent on \(\beta \) within statistical errors in the range from \(T = 0 \) up to \(T \approx .95T_c \). Approaching further \(T_c \) \(A \) rapidly decreases to zero.\[19\]

In fact the parametrization Eq(25) cannot be valid at shorter distances, where the operator product expansion and the non-existence of condensates of dimension less than 4 require that

\[D_E \approx \frac{b}{2} \left(\frac{1}{(x+ie)^4} + \frac{1}{(x-ie)^4} \right) + c + dx^2 \] (26)

The prescription on the singularity is the same as in perturbation theory. At larger distances a stronger infrared cut-off at some distance \(\Lambda \), must exist, since colored particles cannot propagate at infinite distance. This feature needs a further numerical investigation of correlators at large distance on the lattice.

Up to \(T \approx .95T_c \) the only dependence on \(\beta \) in Eq(21) is again the explicit factor so that the result coincides with Eq(24) except that the lattice size \(L_s \) is replaced by the infrared cut-off \(\Lambda \)

\[\rho^a = \frac{q^2}{16} \frac{1}{(2\pi)^2} (-\sqrt{2}\Lambda + 2\ln(\Lambda) + \text{const}) \] (27)

The integral of the exponential term of Eq(25) is included in the constant. This expression gives a finite value of \(\rho^a \) for \(T < T_c \) independent of the volume and hence \(\langle \mu^a \rangle = 0 \). This means dual superconductivity for any finite value of the UV cut-off \(a \). However in the continuum limit \(a \to 0 \) \(\rho^a \) diverges so that \(\langle \mu^a \rangle \) needs a renormalization. This is similar to what happens for the Polyakov line \[23\]. Existing Lattice data support this statement [See Fig(2) of ref.\[3\]] , but we plan to do a more systematic investigation of this issue. By approaching the critical temperature both the IR cut-off \(\Lambda \) and the coefficient \(A \) in Eq(25) strongly depend on \(\beta : \Lambda \) diverges and \(A \) tends to zero. A more detailed calculation, which will be reported elsewhere, gives

\[\rho^a = \frac{q^2}{16N} \frac{\partial}{\partial \beta} \left(\frac{1}{(2\pi)^2} (-\sqrt{2} \Lambda + 2\ln(\Lambda) \right) + \text{const}) \] (28)

Numerical determinations of the dependence of \(A_E \) on of the temperature around \(T_c \) exist in the
literature[19]. Not much is known about the behavior of Λ. Further study is needed to understand how the scaling law of ρ^a Eq(10) described in Sect 1 comes out of Eq(28).

4. Conclusions

We close with a few remarks.

Checking the dependence $\rho^a \propto q^2$ is a test of the Stochastic Vacuum model.

The independence of ρ^a on a and on the abelian projection are also an important test of it.

The existence of confinement depends on a strong infrared cut-off of the field correlators. This can be directly checked on lattice.

ρ^a diverges in the continuum limit, but provides a good description of confinement at any fixed value of the UV cut-off.

An interesting interplay emerges of confinement with infrared properties of gauge invariant field strength correlators.

Useful discussions with H.G. Dosch, Y.A. Simonov,M.D’Elia, E. Meggiolaro, G.Paffuti are acknowledged.

REFERENCES

1. G. ’tHooft : High Energy Physics EPS International Conference, Palermo 1975,A. Zichichi ed.
2. S. Mandelstam:Phys. Repts23C (1976) 245
3. G. ’tHooft,Nucl. Phys.B190 (1981) 455
4. H.B.Nielsen,P.Olesen,Nucl. Phys.B57 (1973) 367
5. A.DiGiacomo:ActaPhys.Polon.B25, (1994)215
6. L. Del Debbio, A. Di Giacomo, G. Paffuti,P.Pieri :Phys.Lett.B355(1995) 513
7. A.DiGiacomo,G.Paffuti:Phys.Rev.D56 (1997) 6816
8. A. Di Giacomo, B. Lucini, L. Montesi and G.Paffuti:Phys. Rev. D 61 (2000) 034503
9. A.Di Giacomo, B.Lucini, L.Montesi and G.Paffuti:Phys. Rev. D 61 (2000) 034504
10. L. Del Debbio, A. Di Giacomo, B. Lucini, G. Paffuti: Abelian projection in SU(N) gauge theories.e-Print Archive, hep-lat/0203023
11. M. D’Elia,A. Di Giacomo, B. Lucini, G. Paffuti,C. Pica:Phys. Rev. D71 (2005) 114502
12. A.Di Giacomo: "Independence on the Abelian projection of monopole condensation in QCD," arXiv:hep-lat/0206018
13. J.M.Carmona, M. D’Elia, A.Di Giacomo, B.Lucini and G.Paffuti:Phys. Rev. D 64 (2001) 114507
14. See also A. Di Giacomo, G. Paffuti: Nucl.Phys. Proc. Supp129 (2004) 647.
15. M. D’Elia, A. Di Giacomo and B. Lucini:Phys. Rev. D 69 (2004) 077504
16. J.M. Carmona, M. D’Elia, L. Del Debbio, A. Di Giacomo, B. Lucini and G. Paffuti :Phys. Rev. D 66 (2002) 011503
17. A. Di Giacomo, H. Panagopoulos:Phys. LettB285 (1992) 133
18. M. D’Elia, A. Di Giacomo, E. Meggiolaro:Phys. Lett.B408 (1997) 315
19. M. D’Elia, A. Di Giacomo, E. Meggiolaro: Phys. Rev. D67 (2003) 114504
20. H. G. Dosch :Phys. Lett.B 190 (1987) 177
21. Yu. A. Simonov: Nucl. Phys.B307 (1988) 512
22. For a review see A. Di Giacomo, H.G. Dosch, V. I. Shevchenko,Yu.A. Simonov:Phys. Rep C372 (2002) 320
23. F. Zantow, O. Kaczmarek, F. Karsch, P. Petreczky:Phys. Lett.B543 (2002) 41
24. A.DiGiacomo,E.Meggiolaro, H.Panagopoulos:Nucl. Phys.B 483(1997) 315