A FAMILY OF POTENTIAL WELLS FOR A WAVE EQUATION

YANG LIU
College of Mathematics and Computer Science, Northwest Minzu University
Lanzhou 730124, China

WENKE LI*
College of Power and Energy Engineering, Harbin Engineering University
Harbin, Heilongjiang 150001, China

(Communicated by Runzhang Xu)

Abstract. In this paper, a family of potential wells are introduced by means of the modified depths of the potential wells. These potential wells are employed to study the initial-boundary value problem for a wave equation. The expression of the depths of the potential wells is derived. Global existence and finite time blow-up of weak solutions with the subcritical initial energy and the critical initial energy are obtained, respectively. Moreover, some numerical simulations of the depths of the potential wells are carried out.

1. Introduction. In this paper, we study the following initial-boundary value problem for a wave equation with single source term

\[
\begin{align*}
 &u_{tt} - \Delta u = |u|^{p-1}u, \ (x,t) \in \Omega \times (0, \infty), \\
 &u(x,t) = 0, \ (x,t) \in \partial \Omega \times [0, \infty), \\
 &u(x,0) = u_0(x), \ u_t(x,0) = u_1(x), \ x \in \Omega,
\end{align*}
\]

where \(\Omega \) is a bounded domain of \(\mathbb{R}^N \) (\(N \geq 1 \)) with a smooth boundary \(\partial \Omega \), and the power index \(p \) of the source term satisfies

\[
1 < p < \begin{cases}
 \infty & \text{if } N \leq 2, \\
 \frac{N}{N-2} & \text{if } N > 2.
\end{cases}
\]

Eq. (1) is the classical wave equation that has been widely investigated. We omit further comments. We focus on a family of new potential wells and their applications to Eq. (1). The potential well is proposed by Sattinger [15] (see also Payne and Sattinger [14]). In general, making use of the energy functional \(J(u) \) and the Nehari functional \(I(u) \), we are able to define the potential well

\[
W = \{ u \in H^1_0(\Omega) | I(u) > 0, J(u) < d \} \cup \{0\},
\]

2010 Mathematics Subject Classification. Primary: 35L05, 35A01, 35B44.
Key words and phrases. Wave equations, global existence, blow-up, potential wells.
* Corresponding author: Wenke Li, liwenke@hrbeu.edu.cn.
and its outside set
\[V = \{ u \in H^1_0(\Omega) | I(u) < 0, J(u) < d \}, \]
where the depth of the potential well
\[d = \inf_{u \in \mathcal{N}} J(u), \]
the Nehari manifold
\[\mathcal{N} = \{ u \in H^1_0(\Omega) | I(u) = 0 \} \setminus \{0\}. \]

When the initial energy is controlled by the depth of the potential well, the well-posedness of solutions for problem under consideration can be investigated by the potential well theory (see e.g. [2, 3, 4, 6, 13, 16, 18, 22] and the references therein).

Moreover, Liu [8] introduced a family of potential wells and their outside sets
\[W_\delta = \{ u \in H^1_0(\Omega) | J_\delta(u) > 0, J(u) < d(\delta) \} \cup \{0\}, \]
\[V_\delta = \{ u \in H^1_0(\Omega) | J_\delta(u) < 0, J(u) < d(\delta) \}, \]
where \(J_\delta(u) \) is an auxiliary functional originated from \(J(u) \), and \(d(\delta) \) (namely the depths of the potential wells) needs to be estimated in advance. Subsequently, Liu and Zhao [12] introduced
\[W_\delta = \{ u \in H^1_0(\Omega) | I_\delta(u) > 0, J(u) < d(\delta) \} \cup \{0\}, \]
\[V_\delta = \{ u \in H^1_0(\Omega) | I_\delta(u) < 0, J(u) < d(\delta) \}, \]
where
\[d(\delta) = \inf_{u \in \mathcal{N}_\delta} J(u), \]
\[\mathcal{N}_\delta = \{ u \in H^1_0(\Omega) | I_\delta(u) = 0 \} \setminus \{0\}, \]
and \(I_\delta(u) \) is an auxiliary functional originated from \(I(u) \). Through the study on the properties of \(d(\delta) \), \(W_\delta \) and \(V_\delta \), many nonlinear evolution equations can be handled (see e.g. [11, 19, 20, 21]). Thus the potential well theory has been enriched and developed greatly.

The main purpose of this paper is to construct a family of new potential wells and their outside sets by modifying the depths of the potential wells inspired by [17]. Thus it is unnecessary to introduce the Nehari functional and the Nehari manifold. The innovation of this paper is that the depths of the potential wells can be computed exactly by an effective approach instead of being estimated so that it is easy to understand the spatial structure of the potential wells. Then the applications of this family of potential wells to the problems concerned can simplify the proofs of the corresponding results. We take problem (1) as an object to illustrate our ideas, which can be applied to a lot of other similar models [1, 5, 9, 10].

This paper is organized as follows. In Section 2, we handle problem (1) by modifying the depths of the potential wells and constructing a family of potential wells. Global existence and finite time blow-up of weak solutions for problem (1) with the subcritical initial energy are obtained. In Section 3, global existence and finite time blow-up of weak solutions for problem (1) with the critical initial energy are obtained. In Section 4, through numerical simulations, we show some intuitive relations between the depths of the potential wells and several parameters.
2. Problem (1) with the subcritical initial energy.

2.1. Introduction of a family of potential wells and computation of their depths. Throughout the paper, in order to simplify the notations, we denote
\[\| \cdot \|_p := \| \cdot \|_{L^p(\Omega)}, \quad \| \cdot \| := \| \cdot \|_2, \quad (u, v) := \int_{\Omega} uv \, dx. \]

We define the total energy function related to problem (1)
\[E(t) = \frac{1}{2} \| u_t(t) \|^2 + \frac{1}{2} \| \nabla u(t) \|^2 - \frac{1}{p + 1} \| u(t) \|_{p+1}^{p+1}, \]
which satisfies the energy identity \(E(t) = E(0) \) for all \(t \geq 0 \). Moreover, we introduce the auxiliary functional
\[J_\delta(u) = \frac{\delta}{2} \| \nabla u \|^2 - \frac{1}{p + 1} \| u \|_{p+1}^{p+1}, \quad 0 < \delta \leq 1. \]

Now we are in a position to define the depths of the potential wells
\[d(\delta) = \max_{y \in [0, \infty)} g_\delta(y), \]
where \(y = \| \nabla u \| \),
\[g_\delta(y) = \frac{\delta}{2} y^2 - \frac{C_1^{p+1}}{p + 1} y^{p+1}, \]
and \(C_1 \) is the best Sobolev constant for the embedding from \(H_0^1(\Omega) \) into \(L^{p+1}(\Omega) \).

Obviously, this definition is different from those in the works mentioned before.

Let \(g_\delta'(y) = 0 \), then
\[y_\delta = \delta^{\frac{1}{p+1}} C_1^{-\frac{p+1}{p+1}}. \]

Hence
\[d(\delta) = g_\delta(y_\delta) = \frac{p - 1}{2(p + 1)} \delta^{\frac{p+1}{p+1}} C_1^{-\frac{2(p+1)}{p+1}}. \]

By virtue of (2) and (3), we can get
\[y_\delta = \left(\frac{2(p+1) d(\delta)}{p-1} \right)^{\frac{1}{2}}. \]

Thus we can define a family of potential wells
\[W_\delta = \left\{ u \in H_0^1(\Omega) \left| \| \nabla u \| < \left(\frac{2(p+1) d(\delta)}{p-1} \right)^{\frac{1}{2}} \right. \right\}, \]
and their outside sets
\[V_\delta = \left\{ u \in H_0^1(\Omega) \left| \| \nabla u \| > \left(\frac{2(p+1) d(\delta)}{p-1} \right)^{\frac{1}{2}} \right. \right\}. \]

Obviously,
\[\partial W_\delta = \partial V_\delta = \left\{ u \in H_0^1(\Omega) \left| \| \nabla u \| = \left(\frac{2(p+1) d(\delta)}{p-1} \right)^{\frac{1}{2}} \right. \right\}. \]

Lemma 2.1. Let \(u \in H_0^1(\Omega) \).

(i) If \(u \in W_\delta \) and \(\| \nabla u \| \neq 0 \), then \(\delta \| \nabla u \|^2 > \| u \|_{p+1}^{p+1} \).

(ii) If \(u \in \partial W_\delta \), then \(\delta \| \nabla u \|^2 \geq \| u \|_{p+1}^{p+1} \).

(iii) If \(\delta \| \nabla u \|^2 < \| u \|_{p+1}^{p+1} \), then \(u \in V_\delta \).
(iv) If $\delta \|\nabla u\|^2 = \|u\|_{p+1}^{p+1}$ and $\|\nabla u\| \neq 0$, then $u \in H^1_0(\Omega) \setminus W_\delta = V_\delta \cup \partial V_\delta$.

Proof. (i) Since $u \in W_\delta$, we have

$$\|\nabla u\| < \left(\frac{2(p+1) d(\delta)}{p-1} \right)^{\frac{1}{2}}$$

which, together with (3), gives

$$\|\nabla u\| < \delta^{\frac{1}{p-1}} C_1^{\frac{p+1}{p-1}}.$$

We further get

$$\delta > C_1^{p+1} \|\nabla u\|^{-p-1}.$$

Since $\|\nabla u\| \neq 0$, multiplying the above inequality by $\|\nabla u\|^2$, we obtain

$$\delta \|\nabla u\|^2 > C_1^{p+1} \|\nabla u\|^{p+1},$$

and so

$$\delta \|\nabla u\|^2 > \|u\|_{p+1}^{p+1}.$$

(ii) From $u \in \partial W_\delta$ we have

$$\|\nabla u\| = \left(\frac{2(p+1) d(\delta)}{p-1} \right)^{\frac{1}{2}}.$$

By similar arguments in (i), we get $\delta \|\nabla u\|^2 \geq \|u\|_{p+1}^{p+1}$.

(iii) Taking into account $\|\nabla u\| \neq 0$, we obtain

$$\delta \|\nabla u\|^2 < \|u\|_{p+1}^{p+1} \leq C_1^{p+1} \|\nabla u\|^{p+1},$$

i.e.,

$$C_1^{p+1} \|\nabla u\|^{p-1} > \delta.$$

We further get

$$\|\nabla u\| > \delta^{\frac{1}{p-1}} C_1^{\frac{p+1}{p-1}}.$$

Combining this with (3), we obtain

$$\|\nabla u\| > \left(\frac{2(p+1) d(\delta)}{p-1} \right)^{\frac{1}{2}}.$$

Hence $u \in V_\delta$.

(iv) From the proof of (iii) we know that $\delta \|\nabla u\|^2 = \|u\|_{p+1}^{p+1}$ and $\|\nabla u\| \neq 0$ imply

$$\|\nabla u\| \geq \left(\frac{2(p+1) d(\delta)}{p-1} \right)^{\frac{1}{2}}.$$

Hence $u \in H^1_0(\Omega) \setminus W_\delta = V_\delta \cup \partial V_\delta$.

\square
2.2. Invariance of the potential wells and their outside sets. In this subsection, we show that W_δ and V_δ are both invariant under the flow of problem (1) with the subcritical initial energy.

Definition 2.2. A function $u = u(x, t)$ is called a weak solution of problem (1) on $\Omega \times [0,T)$ if $u \in L^\infty(0,T; H^1_0(\Omega))$, $u_t \in L^\infty(0,T; L^2(\Omega))$, $u(0) = u_0$ in $H^1_0(\Omega)$, $u_t(0) = u_1$ in $L^2(\Omega)$, and
\[
(u_t(t), v) + \int_0^t (\nabla u(\tau), \nabla v) \, d\tau = \int_0^t (|u(\tau)|^{p-1}u(\tau), v) \, d\tau + (u_1, v),
\]
for all $v \in H^1_0(\Omega)$ and a.e. $t \in (0,T)$.

(4) implies that
\[
\langle u_t(t), v \rangle + \langle \nabla u(t), \nabla v \rangle = \langle |u(t)|^{p-1}u(t), v \rangle,
\]
where $\langle \cdot, \cdot \rangle$ denotes the duality pairing between $H^1_0(\Omega)$ and its dual space $H^{-1}(\Omega)$.

Theorem 2.3. Let u be a solution of problem (1) on $\Omega \times [0,T)$. Assume that $u_0 \in H^1_0(\Omega)$, $u_1 \in L^2(\Omega)$ and $0 < E(0) < d(\delta)$.

(i) If $u_0 \in W_\delta$, then $u(t) \in W_\delta$ for all $t \in [0,T]$.

(ii) If $u_0 \in V_\delta$, then $u(t) \in V_\delta$ for all $t \in [0,T]$.

Proof. (i) Suppose that $u(t) \notin W_\delta$ for some $0 < t < T$. Then we see from $u_0 \in W_\delta$ that there exists the first time $0 < t_0 < T$ such that $u(t_0) \in \partial W_\delta$. Thus
\[
\|\nabla u(t_0)\| = \left(\frac{2(p+1)}{p-1} \frac{d(\delta)}{\delta}\right)^{\frac{1}{2}}.
\]

Consequently, we deduce from (ii) in Lemma 2.1 that
\[
J_\delta(u(t_0)) = \frac{\delta}{2} \|\nabla u(t_0)\|^2 - \frac{1}{p+1} \|u(t_0)\|^{p+1}
\]
\[
= \delta \left(\frac{1}{2} - \frac{1}{p+1}\right) \|\nabla u(t_0)\|^2 + \frac{1}{p+1} \left(\delta \|\nabla u(t_0)\|^2 - \|u(t_0)\|^{p+1}\right)
\]
\[
\geq \frac{(p-1)\delta}{2(p+1)} \|\nabla u(t_0)\|^2
\]
\[
= d(\delta).
\]

Clearly, this contradicts
\[
E(0) = E(t) = \frac{1}{2} \|u_t(t)\|^2 + J_1(u(t)) < d(\delta), \quad \forall t \in [0,T).
\]

Hence $u(t) \in W_\delta$ for all $t \in [0,T)$.

(ii) Again arguing by contradiction, there exists the first time $0 < t_0 < T$ such that $u(t_0) \in \partial V_\delta$. The remainder of proof is the same as that in (i), and so it is omitted here.

2.3. Global existence and blow-up. In this subsection, we address global existence and finite time blow-up of solutions for problem (1).

Theorem 2.4. Assume that $u_0 \in W_\delta$, $u_1 \in L^2(\Omega)$ and $0 < E(0) < d(\delta)$. Then problem (1) admits a solution $u(t) \in W_\delta$ for all $t \in [0,\infty)$.
According to [7, Chapter 1, Lemma 1.3], we have
\[u_n(t) = \sum_{j=1}^{n} \xi_{jn}(t)w_j, \quad n = 1, 2, \cdots, \]
which satisfies
\[(u_{nt}(t), w_j) + (\nabla u_n(t), \nabla w_j) = (|u_n(t)|^{p-1}u_n(t), w_j), \quad j = 1, 2, \cdots, n, \quad (5) \]
\[u_n(0) = \sum_{j=1}^{n} \xi_{jn}(0)w_j \rightharpoonup u_0 \quad \text{in} \quad H^1_0(\Omega), \quad (6) \]
\[u_{nt}(0) = \sum_{j=1}^{n} \xi'_{jn}(0)w_j \rightharpoonup u_1 \quad \text{in} \quad L^2(\Omega). \quad (7) \]
Multiplying (5) by \(\xi'_{jn}(t) \) and summing for \(j \), we get
\[\frac{d}{dt} \left(\frac{1}{2} u_{nt}(t) \right) + \frac{1}{2} \| \nabla u_n(t) \|^2 - \frac{1}{p+1} \| u_n(t) \|^{p+1}_{p+1} \right) = 0. \]
Integrating this with respect to \(t \) from 0 to \(t \), we get
\[E_n(t) = \frac{1}{2} \| u_{nt}(t) \|^2 + \frac{1}{2} \| \nabla u_n(t) \|^2 - \frac{1}{p+1} \| u_n(t) \|^{p+1}_{p+1} = E_n(0), \quad (8) \]
where
\[E_n(0) = \frac{1}{2} \| u_{nt}(0) \|^2 + \frac{1}{2} \| \nabla u_n(0) \|^2 - \frac{1}{p+1} \| u_n(0) \|^{p+1}_{p+1}. \]
It follows from (6) and (7) that \(E_n(0) \rightarrow E(0), 0 < E_n(0) < d(\delta) \) and \(u_n(0) \in W_\delta \) for sufficiently large \(n \). By similar arguments in (i) in Theorem 2.3, we have \(u_n(t) \in W_\delta \) for all \(t \in [0, \infty) \). Consequently,
\[\| \nabla u_n(t) \| < \left(\frac{2(p+1) d(\delta)}{p-1} \right)^{\frac{1}{2}}, \quad \forall t \in [0, \infty), \]
and
\[\| u_n(t) \|_{p+1} \leq C_1 \| \nabla u_n(t) \| < C_1 \left(\frac{2(p+1) d(\delta)}{p-1} \right)^{\frac{1}{2}}, \quad \forall t \in [0, \infty). \]
When \(\| \nabla u_n(t) \| \neq 0 \), in terms of (i) in Lemma 2.1 and (8), we have
\[\| u_{nt}(t) \|^2 < 2d(\delta), \quad \forall t \in [0, \infty). \]
When \(\| \nabla u_n(t) \| = 0 \), by means of (8), the above inequality remains valid.

Therefore, there exist \(u, \chi \) and a subsequence of \(\{u_n\} \), always relabeled as the same and we shall not repeat, such that, as \(n \rightarrow \infty \),
\[u_n \rightharpoonup u \quad \text{weakly star in} \quad L^\infty(0, \infty; H^1_0(\Omega)), \quad \text{and} \quad u_n \rightharpoonup u \quad \text{a.e. in} \quad \Omega \times [0, \infty), \]
\[u_{nt} \rightharpoonup u_t \quad \text{weakly star in} \quad L^\infty(0, \infty; L^2(\Omega)). \]
\[|u_n|^{p-1}u_n \rightharpoonup \chi \quad \text{weakly star in} \quad L^\infty(0, \infty; L^r(\Omega)), \quad r = \frac{p+1}{p}. \]
According to [7, Chapter 1, Lemma 1.3], we have \(\chi = |u|^{p-1}u \).

For fixed \(j \), integrating (5) with respect to \(t \) and taking \(n \rightarrow \infty \), we get
\[(u_t(t), w_j) + \int_0^t (\nabla u(\tau), \nabla w_j) d\tau = \int_0^t (|u(\tau)|^{p-1}u(\tau), w_j) d\tau + (u_1, w_j). \]
Moreover, it is easy to see from (6) and (7) that \(u(0) = u_0 \) in \(H^1_0(\Omega) \), \(u_t(0) = u_1 \) in \(L^2(\Omega) \). Therefore, \(u \) is a solution of problem (1) in the sense of Definition 2.2. In addition, according to (i) in Theorem 2.3, we have \(u(t) \in W_\delta \) for all \(t \in [0, \infty) \). \(\square \)

Theorem 2.5. Assume that \(u_0 \in V_\delta \), \(u_1 \in L^2(\Omega) \) and \(E(0) < d(\delta) \). Then solutions of problem (1) blow up in finite time.

Proof. Let \(u \) be a solution of problem (1). Next, we prove \(T < \infty \). If it is not true, then \(T = \infty \). We consider the auxiliary function \(M(t) = ||u(t)||^p, \ t \in [0, \infty) \). A direct calculation yields \(M'(t) = 2u(t), u_t(t) \), and

\[
M''(t) = 2||u_t(t)||^2 + 2(u(t), u_t(t)) = 2||u_t(t)||^2 - 2||\nabla u(t)||^2 + 2||u(t)||_{p+1}^p
\]

\[
= (p + 3)||u_t(t)||^2 + (p - 1)||\nabla u(t)||^2 - 2(p + 1)E(0). \quad (9)
\]

When \(0 < E(0) < d(\delta) \), by virtue of \(u_0 \in V_\delta \) and (ii) in Theorem 2.3, we have \(u(t) \in V_\delta \) for all \(t \in [0, \infty) \), and so

\[
||\nabla u(t)||^2 > \frac{2(p + 1)d(\delta)}{p - 1} \delta.
\]

Hence

\[
\frac{\delta(p - 1)||\nabla u(t)||^2}{2(p + 1)d(\delta)} > 2(p + 1)d(\delta) > 2(p + 1)E(0),
\]

which, together with (9), gives

\[
M''(t) > (p + 3)||u_t(t)||^2.
\]

When \(E(0) \leq 0 \), on account of (9), the above inequality still holds. Therefore, there exists a \(t_0 > 0 \) such that \(M(t_0) > 0 \) and \(M'(t) \geq M'(t_0) > 0 \) for a.e. \(t \in [t_0, \infty) \). Then \(M(t) \geq M'(t_0)(t - t_0) + M(t_0) > 0 \) for a.e. \(t \in [t_0, \infty) \).

It follows from the Cauchy-Schwarz inequality that

\[
M(t)M''(t) - \frac{p + 3}{4}(M'(t))^2 \geq (p + 3)(||u(t)||^2||u_t(t)||^2 - (u(t), u_t(t))^2) \geq 0.
\]

Consequently,

\[
(M^{-\beta}(t))' = -\beta M^{-(1 + \beta)}(t)M'(t) < 0,
\]

and

\[
(M^{-\beta}(t))'' = \frac{-\beta}{M^{\beta + 2}(t)}(M(t)M''(t) - (\beta + 1)M^2(t)) \leq 0,
\]

for a.e. \(t \in [t_0, \infty) \), where \(\beta = \frac{p - 1}{4} \). Then there exists a \(T_0 \) such that

\[
\lim_{t \to T_0} M(t) = \infty,
\]

which contradicts \(T = \infty \). Thus the proof of Theorem 2.5 is complete. \(\square \)

3. **Problem (1) with the critical initial energy.** Next, in the critical case \(E(0) = d(\delta) \), we discuss the invariance of the outside sets of the potential wells as well as global existence and finite time blow-up of solutions for problem (1).

Lemma 3.1. Let \(u \in H^1_0(\Omega) \) and \(||\nabla u|| \neq 0 \). \(J_\delta(\rho u) \) is strictly increasing for \(\rho \in (0, \rho_*, \delta) \), strictly decreasing for \(\rho \in (\rho_*, \delta, \infty) \), and attains the maximum at \(\rho = \rho_*, \delta \).
Proof. It follows from definition of $J_\delta(u)$ that
\[J_\delta(\rho u) = \frac{\delta}{2} \|\nabla(\rho u)\|^2 - \frac{1}{p+1} \|\rho u\|_{p+1}^{p+1} \]
\[= \rho^2 \frac{\delta}{2} \|\nabla u\|^2 - \frac{p^p+1}{p+1} \|u\|_{p+1}^{p+1}. \]
Hence
\[\frac{d}{d\rho} J_\delta(\rho u) = \rho \delta \|\nabla u\|^2 - \rho^p \|u\|_{p+1}^{p+1}. \]
Clearly, there is a $\rho_{*,\delta} = \rho_{*,\delta}(u) > 0$ such that $\delta \|\nabla u\|^2 = \rho_{*,\delta}^{-1} \|u\|_{p+1}^{p+1}$, i.e.,
\[\frac{d}{d\rho} J_\delta(\rho u) \bigg|_{\rho = \rho_{*,\delta}} = 0. \]
Moreover, $\frac{d}{d\rho} J_\delta(\rho u) > 0$ for $\rho \in (0, \rho_{*,\delta})$, $\frac{d}{d\rho} J_\delta(\rho u) < 0$ for $\rho \in (\rho_{*,\delta}, \infty)$. \hfill \Box

Theorem 3.2. Suppose that $u_0 \in W_\delta$, $u_1 \in L^2(\Omega)$ and $E(0) = d(\delta)$. Then problem (1) admits $u(t) \in W_\delta = W_\delta \cup \partial W_\delta$ for all $t \in [0, \infty)$.

Proof. We may perform this proof by considering the following two cases.

(i) $\|\nabla u_0\| \neq 0$.

Let $u_{0m} = \lambda_m u_0$, where $\lambda_m = 1 - \frac{1}{m}$, $m = 2, 3, \ldots$. Next, we consider the following problem
\[
\begin{cases}
 u_{tt} - \Delta u = |u|^{p-1} u, \quad (x,t) \in \Omega \times (0, \infty), \\
 u(x,t) = 0, \quad (x,t) \in \partial \Omega \times [0, \infty), \\
 u(x,0) = u_{0m}(x), \quad u_t(x,0) = u_1(x), \quad x \in \Omega,
\end{cases}
\]
whose energy is
\[E_m(t) = \frac{1}{2} \|u_{mt}(t)\|^2 + \frac{1}{2} \|\nabla u_m(t)\|^2 - \frac{1}{p+1} \|u_m(t)\|_{p+1}^{p+1}. \]

From $u_0 \in W_\delta$ and Lemma 2.1 it follows that
\[\delta \|\nabla u_0\|^2 > \|u_0\|_{p+1}^{p+1}. \] \hfill (11)

Hence
\[\delta \|\nabla u_0\|^2 > \lambda_m^{p-1} \|u_0\|_{p+1}^{p+1}, \]
and so
\[\delta \|\nabla u_{0m}\|^2 > \|u_{0m}\|_{p+1}^{p+1}. \]

Consequently,
\[J_\delta(u_{0m}) = \frac{\delta}{2} \|\nabla u_{0m}\|^2 - \frac{1}{p+1} \|u_{0m}\|_{p+1}^{p+1} > 0. \]

It follows from (11) and the proof of Lemma 3.1 that there exists a $\rho_{*,\delta} = \rho_{*,\delta}(u_0) > 1$ such that $J_\delta(\rho u_0)$ attains its maximum. Thus, according to Lemma 3.1, $J_\delta(\rho u_0)$ is strictly increasing on $[\lambda_m, 1]$, and $J_1(\lambda_m u_0) < J_1(u_0)$. As a result,
\[0 < E_m(0) = \frac{1}{2} \|u_1\|^2 + J_1(u_{0m}) < \frac{1}{2} \|u_1\|^2 + J_1(u_0) = E(0) = d(\delta). \]
Theorem 3.3. Let u be a solution of problem (1) on $\Omega \times [0,T)$. Assume that $u_0 \in V_\delta$, $u_1 \in L^2(\Omega)$, $E(0) = d(\delta)$ and $(u_0, u_1) \geq 0$. Then $u(t) \in V_\delta$ for all $t \in [0,T)$.

Proof. Suppose that $u(t) \notin V_\delta$ for some $0 < t < T$. Then we see from $u_0 \in V_\delta$ that there exists the first time $0 < t_0 < T$ such that $u(t_0) \in \partial V_\delta$. Thus,

$$\|\nabla u(t_0)\| = \left(\frac{2(p+1)\,d(\delta)}{p-1}\frac{1}{\delta} \right)^{\frac{1}{2}},$$

(15)
and
\[\|\nabla u(t)\| > \left(\frac{2(p+1) d(\delta)}{p-1} \right)^{\frac{1}{2}}, \quad \forall t \in [0, t_0). \] (16)

By (15) and (ii) in Lemma 2.1, we have
\[\delta \| \nabla u(t_0) \|^2 \geq \| u(t_0) \|_{p+1}^{p+1}. \]

Hence
\[
J_\delta(u(t_0)) = \frac{\delta}{2} \| \nabla u(t_0) \|^2 - \frac{1}{p+1} \| u(t_0) \|_{p+1}^{p+1}
\geq \frac{(p-1)\delta}{2(p+1)} \| \nabla u(t_0) \|^2
= d(\delta). \quad (17)
\]

Set \(M(t) = \| u(t) \|^2, \) \(t \in [0, T). \) A direct calculation yields \(M'(t) = 2(u(t), u_t(t)). \) From \(E(0) = d(\delta), \) (16) and (9), it follows that \(M''(t) > 0 \) for \(t \in [0, t_0). \) Hence \(M'(t) \) is increasing on \([0, t_0]. \) We further get \(M'(t_0) > M'(0), \) which, together with \(M'(0) = (u_0, u_1) \geq 0, \) gives \(M'(t_0) = (u(t_0), u_t(t_0)) > 0. \) Thus \(\| u(t_0) \| || u_t(t_0) || \geq (u(t_0), u_t(t_0)) > 0. \) Again by
\[
E(t_0) = \frac{1}{2} \| u_t(t_0) \|^2 + J_1(u(t_0)) = E(0) = d(\delta),
\]
we get \(J_1(u(t_0)) < d(\delta), \) which contradicts (17). Therefore, \(u(t) \in V_\delta \) for all \(t \in [0, T). \)

Theorem 3.4. Assume that \(u_0 \in V_\delta, u_1 \in L^2(\Omega), E(0) = d(\delta) \) and \((u_0, u_1) \geq 0. \) Then the solutions of problem (1) blow up in finite time.

Proof. Let \(u \) be a solution of problem (1). Next, we prove \(T < \infty. \) If it is not true, then \(T = \infty. \) From \(u_0 \in V_\delta, (u_0, u_1) \geq 0 \) and Theorem 3.3, it follows that \(u(t) \in V_\delta \) for all \(t \in [0, \infty). \) Hence
\[
\| \nabla u(t) \|^2 > \frac{2(p+1) d(\delta)}{p-1}.
\]
Combining this with \(E(0) = d(\delta), \) we obtain
\[\delta(p-1) \| \nabla u(t) \|^2 > 2(p+1)d(\delta) = 2(p+1)E(0). \]
Hence, for \(M(t) \) introduced in the proof of Theorem 3.3, it follows from (9) that
\[M''(t) > (p+3)\| u_t(t) \|^2, \]
for a.e. \(t \in [0, \infty). \) The remainder of proof is the same as that in Theorem 2.5, and so it is omitted here.

Taking \(\delta = 1, \) we see that \(d = d(1) \) equals to that in [14].

4. Numerical simulations. This section is devoted to some numerical simulations of \(d(\delta). \) We see from the definition of \(J_\delta(u) \) that the parameter \(\delta \) is introduced in order to adjust the potential energy. We have Figure 1 that shows the relation between \(d(\delta) \) and \(\delta. \)

Next, we explore the relations among \(d(\delta), C_1, y_\delta \) and \(p \) under \(N = 2. \)

We first demonstrate the relations: \(d(\delta) \sim C_1, p \) when \(\delta = 0.5 \) by Figure 2; \(d(\delta) \sim p, \delta \) when \(C_1 = 2 \) by Figure 3.
A FAMILY OF POTENTIAL WELLS FOR A WAVE EQUATION

Figure 1. $d(\delta) \sim \delta; p = 3, C_1 = 2$

Figure 2. $d(0.5) \sim C_1, p$

By fixing $\delta = 1, C_1 = 2, p = 2, 3, 4, 5$, we obtain the relation: $g_\delta(y) \sim y_\delta$ by Figure 4.

Moreover, we would like to do some simulations about the relations: $y_\delta \sim d(\delta), p$ when $\delta = 1$ by Figure 5; $y_\delta \sim C_1, p$ when $\delta = 0.5$ by Figure 6.

Acknowledgments. This work is supported by the Fundamental Research Funds for the Central Universities (Grant No. 31920190090).

REFERENCES

[1] M. Bertsch, H. Izuhara, M. Mimura and T. Wakasa, Standing and travelling waves in a parabolic-hyperbolic system, Discrete Contin. Dyn. Syst., 39 (2019), 5603–5635.
[2] J. A. Esquivel-Avila, Qualitative analysis of a nonlinear wave equation, Discrete Contin. Dyn. Syst., 10 (2004), 787–804.
[3] F. Gazzola and M. Squassina, Global solutions and finite time blow up for damped semilinear wave equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 185–207.
[4] R. Ikehata, Some remarks on the wave equations with nonlinear damping and source terms, Nonlinear Anal., 27 (1996), 1165–1175.
Figure 3. \(d(\delta) \sim \delta, p; C_1 = 2 \)

Figure 4. \(g_1(y) \sim y\delta \)

Figure 5. \(y_1 \sim d(1), p \)
REFERENCES

[5] C. E. Kenig, The method of energy channels for nonlinear wave equations, *Discrete Contin. Dyn. Syst.*, 39 (2019), 6979–6993.

[6] W. Lian and R. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, *Adv. Nonlinear Anal.*, 9 (2020), 613–632.

[7] J.-L. Lions, *Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires*, Dunod, Paris, 1969.

[8] Y. Liu, On potential wells and vacuum isolating of solutions for semilinear wave equations, *J. Differential Equations*, 192 (2003), 155–169.

[9] M. Liu and C. Wang, Global existence for semilinear damped wave equations in relation with the Strauss conjecture, *Discrete Contin. Dyn. Syst.*, 40 (2020), 709–724.

[10] Y. Liu and R. Xu, Wave equations and reaction-diffusion equations with several nonlinear source terms of different sign, *Discrete Contin. Dyn. Syst. Ser. B*, 7 (2007), 171–189.

[11] Y. Liu and R. Xu, Global existence and blow up of solutions for Cauchy problem of generalized Boussinesq equation, *Phys. D*, 237 (2008), 721–731.

[12] Y. Liu and J. Zhao, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, *Nonlinear Anal.*, 64 (2006), 2665–2687.

[13] M. Nakao and K. Ono, Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations, *Math. Z.*, 214 (1993), 325–342.

[14] L. E. Payne and D. H. Sattinger, Sadle points and instability of nonlinear hyperbolic equations, *Israel J. Math.*, 22 (1975), 273–303.

[15] D. H. Sattinger, On global solution of nonlinear hyperbolic equations, *Arch. Rational Mech. Anal.*, 30 (1968), 148–172.

[16] G. Todorova, Stable and unstable sets for the Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms, *J. Math. Anal. Appl.*, 239 (1999), 213–226.

[17] S. Wang and H. Xue, Global solution for a generalized Boussinesq equation, *Appl. Math. Comput.*, 204 (2008), 130–136.

[18] R. Xu, Y. Chen, Y. Yang, S. Chen, J. Shen, T. Yu and Z. Xu, Global well-posedness of semilinear hyperbolic equations, parabolic equations and Schrödinger equations, *Electron. J. Differential Equations*, 2018 (2018), Paper No. 55, 52 pp.

[19] R. Xu, W. Lian and Y. Niu, Global well-posedness of coupled parabolic systems, *Sci. China Math.*, 63 (2020), 321–356.

[20] R. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, *J. Funct. Anal.*, 264 (2013), 2732–2763.

[21] R. Xu and Y. Yang, Global existence and asymptotic behaviour of solutions for a class of fourth order strongly damped nonlinear wave equations, *Quart. Appl. Math.*, 71 (2013), 401–415.
[22] R. Xu, M. Zhang, S. Chen, Y. Yang and J. Shen, The initial-boundary value problems for a class of six order nonlinear wave equation, *Discrete Contin. Dyn. Syst.*, **37** (2017), 5631–5649.

Received March 2020; revised April 2020.

E-mail address: liuyangnu@163.com

E-mail address: liwenke@hrbeu.edu.cn