ON CONJUGATE PSEUDO-HARMONIC FUNCTIONS.

YEVGEN POLULYAKH

Abstract. We prove the following theorem. Let U be a pseudo-harmonic function on a surface M^2. For a real valued continuous function $V : M^2 \to \mathbb{R}$ to be a conjugate pseudo-harmonic function of U on M^2 it is necessary and sufficient that V is open on level sets of U.

Keywords: a pseudo-harmonic function, a conjugate, a surface, an interior transformation

Let M^2 be a surface, i.e. a 2-dimensional and separable manifold, $U : M^2 \to \mathbb{R}$ be a real-valued function on M^2. Denote also by $D = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 < 1\}$ the open unit disk in the plane.

Definition 1 (see [1, 2]). A function U is called pseudo-harmonic in a point $p \in M^2$ if there exist a neighbourhood N of p on M^2 and a homeomorphism $T : D \to N$ such that $T(0, 0) = p$ and a function

$$u = U \circ T : D \to \mathbb{R}^2$$

is harmonic and not identically constant.

A neighbourhood N is called simple neighbourhood of p.

We can even choose N and T from previous definition to comply with the equality

$$u(z) = U \circ T(z) = \text{Re} z^n + U(p), \quad z = x + iy \in D,$$

for a certain $n = n(p) \in \mathbb{N}$ (see [2]).

Definition 2 (see [1, 2]). A function U is called pseudo-harmonic on M^2 if it is pseudo-harmonic in each point $p \in M^2$.

Let $U : M^2 \to \mathbb{R}$ be a pseudo-harmonic function on M^2 and $V : M^2 \to \mathbb{R}$ be a real valued function.

Definition 3 (see [1]). A function V is called a conjugate pseudo-harmonic function of U in a point $p \in M^2$ if there exist a neighbourhood N of p on M^2 and a homeomorphism $T : D \to N$ such that $T(0, 0) = p$ and

$$u = U \circ T : D \to \mathbb{R}^2 \quad \text{and} \quad v = V \circ T : D \to \mathbb{R}^2$$

Institute of mathematics of NAS of Ukraine, e-mail: polulyah@imath.kiev.ua.
are conjugate harmonic functions.

We can choose N and T from previous definition in such way that
\[u(z) = U \circ T(z) = \text{Re} \, z^n + U(p), \]
\[v(z) = V \circ T(z) = \text{Im} \, z^n + V(p), \quad z = x + iy \in D, \]
for a certain $n = n(p) \in \mathbb{N}$ (see [2]).

Definition 4 (see [1]). A function V is called a conjugate pseudo-harmonic function of U on M^2 if it is a conjugate pseudo-harmonic function of U in every $p \in M^2$.

Definition 5. Let U and V be continuous real valued functions on a surface M^2. We say that V is open on level sets of U if for every $c \in U(M^2)$ a mapping
\[V|_{U^{-1}(c)} : U^{-1}(c) \to \mathbb{R} \]
is open on the space $U^{-1}(c)$ in the topology induced from M^2.

Theorem 1. Let U be a pseudo-harmonic function on M^2. For a real valued continuous function $V : M^2 \to \mathbb{R}$ to be a conjugate pseudo-harmonic function of U on M^2 it is necessary and sufficient that V is open on level sets of U.

Let us remind following

Definition 6 (see [3]). A mapping $G : M^2_1 \to M^2_2$ of a surface M^2_1 to a surface M^2_2 is called interior if it complies with conditions:

1) G is open, i. e. an image of any open subset of M^2_1 is open in M^2_2;

2) for every $p \in M^2_2$ its full preimage $G^{-1}(p)$ does not contain any nondegenerate continuum (closed connected subset of M^2_1).

In order to prove theorem 1 we need following

Lemma 1. Let U be a pseudo-harmonic function on M^2. Let a real valued continuous function V be open on level sets of U.

Then the mapping $F : M^2 \to \mathbb{C}$,
\[F(p) = U(p) + iV(p), \quad p \in M^2 \]
is interior.

First we will verify one auxiliary statement. Denote $I = [0,1]$, $\overset{\circ}{I} = (0,1) = I \setminus \{0,1\}$.

Proposition 1. In the condition of Lemma 1 the following statement holds true.

Let $\gamma : I \to M^2$ be a simple continuous curve and $\gamma(I) \subseteq U^{-1}(c)$ for a certain $c \in \mathbb{R}$. If the set $\gamma(I)$ is open in $U^{-1}(c)$ in the topology induced from M^2, then the function $V \circ \gamma : I \to \mathbb{R}$ is strictly monotone.
Proof. Suppose that contrary to the statement of Proposition the equality \(V \circ \gamma(\tau_1) = V \circ \gamma(\tau_2) \) is valid for certain \(\tau_1, \tau_2 \in I, \tau_1 < \tau_2 \).

Since the function \(V \circ \gamma \) is continuous and a set \([\tau_1, \tau_2]\) is compact, then following values

\[
d_1 = \min_{t \in [\tau_1, \tau_2]} V \circ \gamma(t),
\]

\[
d_2 = \max_{t \in [\tau_1, \tau_2]} V \circ \gamma(t),
\]

are well defined. Let us fix \(s_1, s_2 \in [\tau_1, \tau_2] \) such that \(d_i = V \circ \gamma(s_i), \)

\(i = 1, 2 \).

We designate \(W = (\tau_1, \tau_2) \). It is obviously the open subset of \(I \).

Let us consider first the case \(d_1 = d_2 \). It is clear that \([\tau_1, \tau_2] \subseteq (V \circ \gamma)^{-1}(d_1)\) in this case. So the open subset \(\gamma(W) \) of the level set \(U^{-1}(c) \) is mapped by \(V \) onto a one-point set \(\{d_1\} \) which is not open in \(\mathbb{R} \) and \(V \) is not open on level sets of \(U \).

Assume now that \(d_1 \neq d_2 \). Since \(V \circ \gamma(\tau_1) = V \circ \gamma(\tau_2) \) due to our previous supposition, then either \(s_1 \) or \(s_2 \) is contained in \(W \).

Let \(s_1 \in W \) (the case \(s_2 \in W \) is considered similarly). Then \(V \circ \gamma(W) \subseteq [d_1, +\infty) \) and the open subset \(\gamma(W) \) of the level set \(U^{-1}(c) \) can not be mapped by \(V \) to an open subset of \(\mathbb{R} \) since its image contains the frontier point \(d_1 = V \circ \gamma(s_1) \). So, in this case \(V \) is not open on level sets of \(U \).

The contradiction obtained shows that our initial supposition is false and the function \(V \circ \gamma \) is strictly monotone on \(I \). \(\square \)

Proof of Lemma 1. Let \(p \in M^2 \) and \(Q \) be an open neighbourhood of \(p \).

We are going to show that the set \(F(Q) \) contains a neighbourhood of \(F(p) \). At the same time we shall show that \(p \) is an isolated point of a level set \(F^{-1}(F(p)) \).

Without loss of generality we can assume that \(U(p) = V(p) = 0 \).

Let \(N \) be a simple neighbourhood of \(p \) and \(T : D \rightarrow N \) be a homeomorphism such that for a certain \(n \in \mathbb{N} \) the following equality holds true \(u(z) = U \circ T(z) = \text{Re} \ z^n, z \in D \) (see Definition 1 and the subsequent remark). It is clear that without losing generality we can regard that \(N \) is small enough to be contained in \(Q \).

Observe that for an arbitrary level set \(\Gamma \) of \(U \) an intersection \(\Gamma \cap T(D) = \Gamma \cap N \) is open in \(\Gamma \). Consequently, since \(T \) is homeomorphism then a mapping \(v = V \circ T : D \rightarrow \mathbb{R} \) is open on level sets of \(u = U \circ T : D \rightarrow \mathbb{R} \) (see Definition 5).

Let us consider two possibilities.

Case 1. Zero is a regular point of the smooth function \(u = U \circ T \), i. e. \(n = 1 \) and \(u(z) = \text{Re} \ z, z \in D \).

In this case \(u^{-1}(u(0)) = u^{-1}(U(p)) = T^{-1}(U^{-1}(U(p))) = \{0\} \times (-1, 1) \). According to Proposition 1 the function \(v \) is strictly monotone on every segment which is contained in this interval, so it is strictly
monotone on \{0\} \times (-1, 1). Consequently, for points \(z_1 = 0 - i/2\) and
\(z_2 = 0 + i/2\) the following inequality holds true \(v(z_1) \cdot v(z_2) < 0\).

Let us note that from previous it follows that \(V\) is monotone on the
arc \(\beta = T(\{0\} \times (-1, 1)) = U^{-1}(U(p)) \cap N\). And since \(F^{-1}(F(p)) \cap N \subset \beta\) then \(F^{-1}(F(p)) \cap N = \{p\}\) and \(p\) is an isolated point of its level set
\(F^{-1}(F(p))\).

Let \(d_1 = v(z_1) < 0\) and \(d_2 = v(z_2) > 0\) (The case \(d_1 > 0\) and \(d_2 < 0\)
is considered similarly). Denote
\[\varepsilon = \frac{1}{2} \min(|d_1|, |d_2|) > 0.\]

Function \(v\) is continuous, so there exists \(\delta > 0\) such that following
implications are fulfilled
\[|z - z_1| < \delta \Rightarrow |v(z) - d_1| < \varepsilon,\]
\[|z - z_2| < \delta \Rightarrow |v(z) - d_2| < \varepsilon.\]

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure1.png}
\caption{Figure 1.}
\end{figure}

Let us examine a neighbourhood \(W = (-\delta, \delta) \times (-1/2, 1/2)\) of 0,
which is depicted on Figure 1. It can be easily seen that for every
\(x \in (-\delta, \delta)\) following relations are valid
\[u(x + iy) = x, \quad y \in (-\varepsilon, \varepsilon),\]
\[v(x - i/2) < v(z_1) + \varepsilon < -2\varepsilon + \varepsilon = -\varepsilon,\]
\[v(x + i/2) > v(z_2) - \varepsilon > 2\varepsilon - \varepsilon = \varepsilon.\]

From two last lines and from the continuity of \(v\) on a segment \(\{x\} \times
[-1/2, 1/2]\) it follows that \(v(\{x\} \times [-1/2, 1/2]) \supseteq (-\varepsilon, \varepsilon)\). Therefore
\[F \circ T(\{x\} \times [-1/2, 1/2]) \supseteq \{x\} \times (-\varepsilon, \varepsilon), \quad x \in (-\delta, \delta).\]

Since \(T(W) \subseteq N \subseteq Q\) by the choice of \(N\), then
\[0 = F(p) \in (-\delta, \delta) \times (-\varepsilon, \varepsilon) \subseteq F \circ T(W) \subseteq F(Q).\]
Case 2. Zero is a saddle point of \(u = U \circ T \), i.e. \(u(z) = \text{Re } z^n \), \(z \in D \) for a certain \(n > 1 \).

In this case
\[
 u^{-1}(u(0)) = T^{-1}(U^{-1}(U(p))) = \{0\} \cup \bigcup_{k=0}^{2n-1} \gamma_k,
\]
where \(\gamma_k = \{z \in D \mid z = a \cdot \exp(\pi i (k - 1/2)/n), \ a \in (0,1)\}, \ k = 1, \ldots, 2n - 1 \).

As above, applying Proposition \(\overline{\Pi} \) we conclude that function \(v = V \circ T \) is strictly monotone on each arc \(\gamma_k \), \(k = 1, \ldots, 2n - 1 \). Since \(v \) is continuous and 0 is a boundary point for each \(\gamma_k \), then \(v(z) \neq v(0) \) for all \(z \in \bigcup_k \gamma_k \). Therefore, \(0 = (F \circ T)^{-1}(F \circ T(0)) \) and \(F^{-1}(F(p)) \cap N = \{p\} \), i.e. \(p \) is the isolated point if its level set \(F^{-1}(F(p)) \).

Let us designate by
\[
 R_k = \left\{ z \in D \mid z = ae^{i\varphi}, \ a \in [0,1), \ \varphi \in \left[\frac{\pi (k-1/2)}{2}, \frac{\pi (k+1/2)}{2}\right]\right\},
\]
\[
 k = 0, \ldots, 2n - 1
\]
sectors on which disk \(D \) is divided by the level set \(u^{-1}(u(0)) \).

We also denote
\[
 D_l = \{ z \in D \mid \text{Re } z \leq 0 \},
\]
\[
 D_r = \{ z \in D \mid \text{Re } z \geq 0 \}.
\]

Consider map \(\Phi : D \rightarrow D \) given by the formula \(\Phi(z) = z^n, \ z \in D \). It is easy to see that for every \(k \in \{0, \ldots, 2n - 1\} \) depending on its parity sector \(R_k \) is mapped homeomorphically by \(\Phi \) either onto \(D_l \) or onto \(D_r \). Let a mapping \(\Phi_k : R_k \rightarrow D_r \) is given by relation
\[
 \Phi_k = \begin{cases}
 \Phi|_{R_k}, & \text{if } k = 2m, \\
 \text{Inv} \circ \Phi|_{R_k}, & \text{if } k = 2m + 1,
 \end{cases}
\]
\[
 k = 0, \ldots, 2n - 1
\]
where \(\text{Inv} : D \rightarrow D \) is defined by formula \(\text{Inv}(z) = -z, \ z \in D \). Evidently, all \(\Phi_k \) are homeomorphisms.

We consider now inverse mappings \(\varphi_k = \Phi_k^{-1} : D_r \rightarrow D, \ k = 0, \ldots, 2n - 1 \). By construction all of these mappings are embeddings. Moreover, it is easy to see that
\[
 u_k(z) = u \circ \varphi_k(z) = \begin{cases}
 \text{Re } z, & \text{when } k = 2m, \\
 -\text{Re } z, & \text{when } k = 2m + 1.
 \end{cases}
\]

Let us fix \(k \in \{0, \ldots, 2n - 1\} \). It is clear that \(\varphi_k \) homeomorphically maps a domain
\[
 \tilde{D}_r = \{ z \in D \mid \text{Re } z > 0 \}
\]
ono into a domain
\[
 \tilde{R}_k = \left\{ z \in D \mid z = ae^{i\varphi}, \ a \in (0,1), \ \varphi \in \left(\frac{\pi (k-1/2)}{2}, \frac{\pi (k+1/2)}{2}\right)\right\},
\]
so with the help of argument similar to the observation preceding to case 1 we conclude that the mapping \(\hat{v}_k = v \circ \varphi_k |_{D_r} : \hat{D}_r \to \mathbb{R} \) is open on level sets of the function \(\hat{u}_k = u \circ \varphi_k |_{D_r} : \hat{D}_r \to \mathbb{R} \). As above, applying Proposition 11 we conclude that function \(\hat{v}_k \) is strictly monotone on each arc
\[
\alpha_c = \hat{u}_k^{-1}(\hat{u}_k(c + 0i)) = \{z \in \hat{D}_r \mid \Re z = c\}, \quad c \in (0, 1).
\]
We already know that the function \(v \) is strictly monotone on the arcs \(\gamma_k \) and \(\gamma_s \), where \(s \equiv k + 1 \) (mod \(2n \)). Therefore the function \(v_k = v \circ \varphi_k : D_r \to \mathbb{R} \) is strictly monotone on the arcs
\[
\alpha_- = \varphi_k^{-1}(\gamma_k) = \{z \in D_r \mid \Re z = 0 \text{ and } \Im z < 0\},
\]
\[
\alpha_+ = \varphi_k^{-1}(\gamma_s) = \{z \in D_r \mid \Re z = 0 \text{ and } \Im z > 0\}.
\]
Let us verify that \(v_k \) is strictly monotone on the arc
\[
\alpha_0 = \alpha_- \cup \{0\} \cup \alpha_+ = u_k^{-1}(u_k(0)) = \{z \in D_r \mid \Re z = 0\}.
\]
Since \(v_k(0) = v(0) = V(p) = 0 \) according to our initial assumptions and 0 is the boundary point both for \(\alpha_- \) and \(\alpha_+ \), then \(v_k \) is of fixed sign on each of these two arcs.
So we have two possibilities:
- either \(v_k \) has the same sign on \(\alpha_- \) and \(\alpha_+ \), then \(v_k|_{\alpha_0} \) has a local extremum in 0;
- or \(v_k \) has different signs on \(\alpha_- \) and \(\alpha_+ \), then \(v_k \) is strictly monotone on \(\alpha_0 \).

Suppose that \(v_k \) has the same sign on \(\alpha_- \) and \(\alpha_+ \).
We will assume that \(v_k \) is negative both on \(\alpha_- \) and \(\alpha_+ \). The case when \(v_k \) is positive on \(\alpha_- \) and \(\alpha_+ \) is considered similarly.
Denote \(z_1 = 0 - i/2 \in \alpha_- \), \(z_2 = 0 + i/2 \in \alpha_+ \). Let
\[
\hat{\varepsilon} = \frac{1}{2} \min(|v_k(z_1)|, |v_k(z_2)|) > 0.
\]
From the continuity of \(v_k \) it follows that there exists \(\hat{\delta} > 0 \) to comply with the following implications
\[
|z - z_1| < \hat{\delta} \Rightarrow |v_k(z) - v_k(z_1)| < \hat{\varepsilon},
\]
\[
(1) \quad |z - z_2| < \hat{\delta} \Rightarrow |v_k(z) - v_k(z_2)| < \hat{\varepsilon},
\]
\[
|z| = |z - 0| < \hat{\delta} \Rightarrow |v_k(z) - v_k(0)| = |v_k(z)| < \hat{\varepsilon}.
\]
Let \(c \in (0, \hat{\delta}) \). Then the point \(w_0 = c + i0 \) is situated on the curve \(\alpha_c \) between points \(w_1 = c - i/2 \) and \(w_2 = c + i/2 \). It follows from \(\text{(i)} \) that \(v_k(w_1) < -\hat{\varepsilon}, v_k(w_2) < -\hat{\varepsilon} \) and \(v_k(w_0) \in (-\hat{\varepsilon}, 0) \). But these three correlations can not hold true simultaneously since \(v_k \) is strictly monotone on \(\alpha_c \) as we already know.
The contradiction obtained shows us that \(v_k \) has different signs on \(\alpha_- \) and \(\alpha_+ \). So, \(v_k \) is strictly monotone on \(\alpha_0 \).
Now, repeating argument from case 1 we find such \(\varepsilon_k > 0 \) and \(\delta_k > 0 \) that the set
\[
\hat{W}_k = [0, \delta_k) \times (-\frac{1}{2}, \frac{1}{2})
\]
meets the relations
\[
\begin{align*}
F \circ T \circ \varphi_k(\hat{W}_k) & \supseteq [0, \delta_k) \times (-\varepsilon_k, \varepsilon_k), & \text{if } k = 2m, \\
F \circ T \circ \varphi_k(\hat{W}_k) & \supseteq (-\delta_k, 0] \times (-\varepsilon_k, \varepsilon_k), & \text{if } k = 2m + 1.
\end{align*}
\]

Let us denote \(W_k = \varphi_k(\hat{W}_k) \),
\[
W = \bigcup_{k=0}^{2n-1} W_k, \quad \delta = \min_{k=0,\ldots,2n-1} \delta_k > 0, \quad \varepsilon = \min_{k=0,\ldots,2n-1} \varepsilon_k > 0.
\]

\[\text{Figure 2.}\]

It is easy to show that \(W \) is an open neighbourhood of 0 in \(D \). From (2) and from our initial assumptions it follows that
\[
F(Q) \supseteq F(N) \supseteq F \circ T(W) \supseteq (-\delta, \delta) \times (-\varepsilon, \varepsilon).
\]

So, we have proved that for an arbitrary point \(p \in M^2 \) and its open neighbourhood \(Q \) a set \(F(Q) \) contains a neighbourhood of \(F(p) \). Hence the mapping \(F : M^2 \to \mathbb{C} \) is open.

At the same time we have shown that an arbitrary \(p \in M^2 \) is an isolated point of its level set \(F^{-1}(F(p)) \). It is easy to see now that any level set \(F^{-1}(F(p)) \) can not contain a nondegenerate continuum.

Consequently, the map \(F \) is interior. \(\square \)

Proof of Theorem 1 Necessity. Let \(U, V : M^2 \to \mathbb{R} \) be conjugate pseudoharmonic functions on \(M^2 \) (see Definitions 3 and 4).

Obviously, \(V \) is continuous on \(M^2 \). Suppose that contrary to the statement of Theorem there exists such \(c \in \mathbb{R} \) that \(V \) is not open on the level set \(\Gamma_c = U^{-1}(c) \subset M^2 \), i.e. a map \(V_c = V|_{\Gamma_c} : \Gamma_c \to \mathbb{R} \) is not open on \(\Gamma_c \) in the topology induced from \(M^2 \).
Let us verify that V_c has a local extremum in some $p \in \Gamma_c$.

Note that the space Γ_c is locally arcwise connected, i.e. for every point $a \in \Gamma_c$ and its open neighbourhood Q there exists a neighbourhood $\hat{Q} \subseteq Q$ of a such that every two points $b_1, b_2 \in \hat{Q}$ can be connected by a continuous curve in Q. This is a straightforward corollary of the remark subsequent to Definition 4.

Since the map V_c is not open by our supposition, then there exists an open subset O of Γ_c such that its image $R = V_c(O)$ is not open in \mathbb{R}. Therefore there is a point $d \in R \setminus \text{Int} R$. Fix $p \in V_c^{-1}(d) \cap O$.

Let us show that p is a point of local extremum of V_c. Fix a neighbourhood $\hat{O} \subseteq O$ of p such that every two points $b_1, b_2 \in \hat{O}$ can be connected by a continuous curve $\beta_{b_1,b_2} : I \to \Gamma_c$ which meets relations $\beta(0) = b_1, \beta(1) = b_2$ and $\beta(I) \subseteq O$. It is clear that an image of a path-connected set under a continuous mapping is path-connected, therefore following inclusions are valid

$$(V_c(b_1), V_c(b_2)) \subseteq V_c(I) \quad \text{if} \quad V_c(b_1) < V_c(b_2),$$
$$(V_c(b_2), V_c(b_1)) \subseteq V_c(I) \quad \text{if} \quad V_c(b_2) > V_c(b_1).$$

Evidently, p is not an interior point of $V_c(\hat{O})$ since it is not the interior point of $V_c(O)$ by construction and $V_c(\hat{O}) \subseteq V_c(O)$. Then there does not exist a pair of points $b_1, b_2 \in \hat{O}$ such that $V_c(b_1) < V_c(p) < V_c(b_2)$ and either $V(b) \leq V(p)$ for all $b \in \hat{O}$ or $V(b) \geq V(p)$ for all $b \in \hat{O}$, i.e. p is the point of local extremum of V_c.

Now, since V is the conjugate pseudo-harmonic function of U in the point p (see Definition 3), we can take by definition a neighbourhood N of p in \mathbb{M}^2 and a homeomorphism $T : D \to N$ such that a map $f : D \to \mathbb{C}$

$$f(z) = u(z) + iv(z), \quad z \in D$$

is holomorphic on D. Here $u = U \circ T : D \to \mathbb{R}$ and $v = V \circ T : D \to \mathbb{R}$.

It is clear that without loss of generality we can choose N so small that either $V(b) = V_c(b) \leq V_c(p) = V(p)$ for every $b \in N \cap \Gamma_c$ or $V(b) \geq V(p)$ for all $b \in N \cap \Gamma_c$.

Let for definiteness p is the local maximum of V_c and $V(b) \leq V(p)$ for every $b \in N \cap \Gamma_c$. The case when p is the local minimum of V_c is considered similarly.

On one hand it follows from what we said above that

$$\left(\{U(p)\} \times (V(p), +\infty)\right) \cap f(D) = \emptyset$$

since $u^{-1}(U(p)) = T^{-1}(\Gamma_c \cap N)$ and $v(z) = V(T(z)) \leq V(p)$ for all $z \in T^{-1}(\Gamma_c \cap N)$ by construction. Therefore a point $U(p) + iV(p) = f(T^{-1}(p))$ is not the interior point of a set $f(D)$.

On the other hand it is known that the holomorphic map f is open, so the point $f(T^{-1}(p))$ must be the interior point of the domain $f(D)$.

The contradiction obtained shows that our initial assumption is false and \(V \) is open on level sets of \(U \).

Sufficiency. Let \(U \) be a pseudo-harmonic function on \(M^2 \) and a continuous function \(V : M^2 \to \mathbb{R} \) be open on level sets of \(U \).

From Lemma 1 it follows that the mapping \(F : M^2 \to \mathbb{C}, F(p) = U(p) + iV(p), p \in M^2 \) is interior.

Let \(p \in M^2 \) and \(N \) is a simple neighbourhood of \(p \) in \(M^2 \). Then there exists a homeomorphism \(T : D \to N \). It is straightforward that for the open set \(N \) a mapping \(F_N = F|_N : N \to \mathbb{C} \) is interior and its composition \(F_N \circ T = F \circ T : D \to \mathbb{C} \) with the homeomorphism \(T \) is also an interior mapping.

Now from Stoilov theorem it follows that there exists a complex structure on \(D \) such that the mapping \(F \circ T \) is holomorphic in this complex structure (see [3]). But from the uniformization theorem (see [4]) it follows that a simply-connected domain has a unique complex structure. So the mapping \(F \circ T \) is holomorphic on \(D \) in the standard complex structure. Thus the functions \(u = \text{Re}(F \circ T) = U \circ T \) and \(v = \text{Im}(F \circ T) = V \circ T \) are conjugate harmonic functions on \(D \). Consequently, \(V \) is a conjugate pseudo-harmonic function of \(U \) in the point \(p \).

From arbitrariness in the choice of \(p \in M^2 \) it follows that \(V \) is a conjugate pseudo-harmonic function of \(U \) on \(M^2 \). \(\square \)

Corollary 1. Let \(U, V : M^2 \to \mathbb{R} \) be conjugate pseudoharmonic functions on \(M^2 \).

Then there exists a complex structure on \(M^2 \) with respect to which \(U \) and \(V \) are conjugate harmonic functions on \(M^2 \).

Proof. This statement follows from Theorem 1 Lemma 1 and the Stoilov theorem which says that there exists a complex structure on \(M^2 \) such that the interior mapping \(F(p) = U(p) + iV(p), p \in M^2 \) is holomorphic in this complex structure (see [3]). \(\square \)

References

[1] Y. Tôki, A topological characterization of pseudo-harmonic functions, Osaka Math. Journ., vol. 3, No 1, 1951, P. 101–122.

[2] M. Morse, Topological methods in the theory of functions of a complex variable, Princeton, 1947.

[3] Stoilow S., Leçons sur les principes topologiques de la théorie des functions analytiques, 2nd. edition, Paris, Gauthier-Villars, Paris, 1938.

[4] O. Forster, Lectures on Riemann Surfaces, Springer Graduate Texts in Math, V. 81, 1981.