Reemergence of high-T_c superconductivity in the (Li$_{1-x}$Fe$_x$)OHFe$_{1-y}$Se under high pressure

J.P. Sun1,2, P. Shahi1,2, H.X. Zhou1,2, Y.L. Huang1,2, K.Y. Chen1,2, B.S. Wang1,2, S.L. Ni1,2, N.N. Li3, K. Zhang3, W.G. Yang3,4, Y. Uwatoko5, G. Xing6,7, J. Sun6, D.J. Singh6, K. Jin1,2, F. Zhou1,2, G.M. Zhang8, X.L. Dong1,2, Z.X. Zhao1,2 & J.-G. Cheng1,2

In order to elucidate pressure-induced second superconducting phase (SC-II) in $A_xFe_{2-y}Se_2$ ($A = K, Rb, Cs$, and Tl) having an intrinsic phase separation, we perform a detailed high-pressure magnetotransport study on the isoelectronic, phase-pure (Li$_{1-x}$Fe$_x$)OHFe$_{1-y}$Se single crystals. Here we show that its ambient-pressure superconducting phase (SC-I) with a critical temperature $T_c \approx 40$ K is suppressed gradually to below 2 K and an SC-II phase emerges above $P_c \approx 5$ GPa with T_c increasing progressively to above 50 K up to 12.5 GPa. Our high-precision resistivity data uncover a sharp transition of the normal state from Fermi liquid for SC-I to non-Fermi liquid for SC-II phase. In addition, the reemergence of high-T_c SC-II is found to accompany with a concurrent enhancement of electron carrier density. Without structural transition below 10 GPa, the observed SC-II with enhanced carrier density should be ascribed to an electronic origin presumably associated with pressure-induced Fermi surface reconstruction.

1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China. 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China. 3 Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, 201203, China. 4 High Pressure Synergetic Consortium (HPSynC), Geophysical Laboratory, Carnegie Institution of Washington, 9700 S Cass Avenue, Argonne, IL 60439, USA. 5 The Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan. 6 Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211-7010, USA. 7 College of Materials Science and Engineering and Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China. 8 State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China. J. P. Sun, P. Shahi, and H. X. Zhou contributed equally to this work. Correspondence and requests for materials should be addressed to X.L.D. (email: dong@iphy.ac.cn) or to J.-G.C (email: jqcheng@iphy.ac.cn)
Among the iron-based superconductors, the structural simplest FeSe and its derived materials have attracted tremendous attention recently due to its peculiar electronic properties and the great tunability of the superconducting transition temperature T_c. The bulk FeSe displays a relatively low $T_c \approx 8.5$ K within the peculiar nonmagnetic nematic phase below $T_s \approx 90$ K. By intercalating some alkali-metal ions, ammonia, or organic molecules in between the adjacent FeSe layers, such as in $A_{x}Fe_{y}Se_2$ ($A = K, Rb, Cs$, and Ti)\cite{3,4}, $A_{x}(NH_3)_yFeSe_2$, and (Li,Fe) OHFeSe\cite{5,6}, high-T_c superconductivity with T_c above 30–40 K has been successfully achieved. More surprisingly, when a single unit-cell FeSe film is fabricated on the SrTiO$_3$ substrate, its T_c can be raised up to 65–100 K\cite{7,8}. Here we refer these high-T_c superconductors derived directly from FeSe as the SC-I phase. The superconducting mechanism for these SC-I phases has been subjected to extensive investigations, and the observed common Fermi surface (FS) topology consisting of only electron pockets in the Brillouin zone corners suggests that the electron doping plays an essential role for achieving high T_c\cite{9,10,11}, in agreement with the gate-voltage regulation experiments on the FeSe flakes\cite{12}.

Starting from the SC-I phase in $A_{x}Fe_{y}Se_2$, Sun et al.\cite{13} had reported a pressure-induced sudden reemergence of a second superconducting phase (denoted as SC-II hereafter) with higher T_c up to 48.7 K above ~10 GPa. A similar SC-II phase has also been observed in $Cs_{0.4}(NH_3)_xFeSe_2$ under high pressure\cite{14}. Although the reemergence of SC-II phase with higher T_c is quite intriguing and different pairing symmetry has been proposed theoretically\cite{15}, the intrinsic superconducting- and normal-state properties have been poorly characterized so far due to some sample and technical difficulties. For example, $A_{x}Fe_{y}Se_2$ superconductors are prone to phase separation accompanied with the intergrowth of antiferromagnetic insulating $A_{x}Fe_ySe_3$ phase\cite{16}. In addition, only polycrystalline samples have been studied under pressure for $Cs_{0.4}(NH_3)_xFeSe$, which is extremely sensitive to air\cite{14}. Moreover, high-pressure technique capable of both large pressure capacity and good hydrostaticity is required in order to obtain reliable superconducting- and normal-state properties. Therefore, these complexities have hampered a proper understanding on the intriguing SC-II phase of these FeSe-derived systems.

In order to approach this intriguing problem, we turn our attention to the recently discovered $(Li_{1-x}Fe_y)OHFe_{1-x}Se$, which is free from phase separation, relatively stable in air, and more importantly, can be obtained in high-quality single crystals via a specially designed hydrothermal ion-exchange method\cite{17}. $(Li_{0.84}Fe_{0.16})OHFeSe$ with an optimal $T_c \approx 41$ K is heavily electron doped having only electron pockets at the Brillouin zone corners, similar as $Fe_{2-y}Se_2$ and monolayer FeSe/SrTiO$_3$ films\cite{18,19}. In addition, the distance between two adjacent FeSe layers in $(Li_{1-x}Fe_y)OHFe_{1-x}Se$ is much larger than that in bulk FeSe and $Fe_{2-y}Se_2$, which signals a weak interlayer interaction and an enhanced two-dimensional nature of the electronic structure\cite{19}. It thus has been considered as a better proxy of the monolayer FeSe film but is more stable and free from interface effects\cite{19}. These factors together make it indispensable to perform a high-pressure study on $(Li_{1-x}Fe_y)OHFe_{1-x}Se$ single crystals.

Here we report detailed magnetotransport measurements on the $(Li_{1-x}Fe_y)OHFe_{1-x}Se$ single crystals under hydrostatic pressures up to 12.5 GPa with a cubic anvil cell (CAC) apparatus\cite{20}. We find that the ambient-pressure SC-I phase is suppressed gradually with increasing pressure to $P_c \approx 5$ GPa, above which a new SC-II phase with higher T_c over 50 K emerges gradually. Importantly, our high-pressure resistivity data enable us to uncover a sharp transition of the normal state from Fermi liquid for SC-I to non-Fermi liquid for SC-II phase. In addition, the reemergence of higher T_c SC-II phase is found to accompany with a concurrent enhancement of electron carrier density. Such information was unavailable in previous high-pressure studies on the FeSe-derived superconductors. The present work thus provides positive correlations between the high-T_c superconductivity in SC-II with a FS reconstruction, which is not induced by a structural transition as confirmed by our high-pressure structural study.

Fig. 1 High-pressure resistivity and AC magnetic susceptibility for $(Li_{1-x}Fe_y)OHFe_{1-x}Se$. a $\rho(T)$ curves in the whole temperature range illustrating the overall behaviors under pressure up to 12.5 GPa. b $\rho(T)$ curves below 100 K illustrating the variation with pressure of the superconducting transition temperatures. Except for data at 0.7 GPa, all other curves in b have been vertically shifted for clarity. The onset T_{c}^{onset} (down-pointing arrow) was determined as the temperature where resistivity starts to deviate from the extrapolated normal-state behavior, while the T_{c}^{zero} (up-pointing arrow) was determined as the zero-resistivity temperature. c $4\pi\chi(T)$ curves measured under different pressures up to 7 GPa. The superconducting diamagnetic signal appears below T_{c}^{zero}.
Results

High-pressure resistivity. Figure 1a shows the temperature dependence of resistivity $\rho(T)$ for a (Li$_{1−x}$Fe$_x$)OHFe$_{1−y}$Se single crystal ($x = 0.16$, $y ≈ 0.02$, and $T_c = 40$ K at ambient pressure) measured under various hydrostatic pressures up to 12.5 GPa in the whole temperature range. As can be seen, $\rho(T)$ in the normal state first decreases significantly and then becomes nearly unchanged above 6.5 GPa; the broad hump feature at high temperature also smears out gradually upon increasing pressure. The superconducting transition T_c displays a non-monotonic variation with pressure, which can be seen more clearly from the vertically shifted $\rho(T)$ data below 100 K as shown in Fig. 1b. Here we define the onset $T_{c \text{ onset}}$ (down-pointing arrow) as the temperature where $\rho(T)$ starts to deviate from the extrapolated normal-state behavior, and determine $T_{c \text{ zero}}$ (up-pointing arrow) as the zero-resistivity temperature. As can be seen, upon increasing pressure to 5 GPa, $T_{c \text{ onset}}$ is suppressed gradually to ~13 K and $T_{c \text{ zero}}$ can hardly be defined down to 1.4 K, the lowest temperature in the present study. Interestingly, when increasing pressure to 6.5 GPa, a broad superconducting transition appears again with the $T_{c \text{ onset}}$ raised to ~31 K and $T_{c \text{ zero}}$ at ~12 K, thus evidencing the emergence of the SC-II phase. With further increasing pressure, both $T_{c \text{ onset}}$ and $T_{c \text{ zero}}$ move up progressively and the superconducting transition becomes sharper. Finally, $T_{c \text{ onset}}$ and $T_{c \text{ zero}}$ reach 52.7 and 46.2 K, respectively, at $P_{\text{max}} = 12.5$ GPa. A closer inspection of the $\rho(T)$ data in Fig. 1b also reveals a gradual evolution of the temperature dependence of normal-state resistivity under pressure, which will be discussed in detailed below.

AC magnetic susceptibility. The superconducting transitions have been further verified by the AC magnetic susceptibility $4\pi\chi(T)$ shown in Fig. 1c, in which the superconducting diamagnetic signal appears below $T_{c \text{ onset}}$ as indicated by the arrows. The obtained $T_{c \text{ onset}}$ first decreases with pressure, reverses the trend near $P_c ≈ 5$ GPa, and then increases quickly with further increasing pressure, in well agreement with the resistivity data. In addition, the transition in $4\pi\chi(T)$ is broad when the resistivity transition is broad for $5 < P < 8$ GPa. Nevertheless, the superconducting shielding volume reaching over 60–70% confirmed the bulk nature of the observed superconductivity in both SC-I and SC-II phases.

Temperature-pressure phase diagram. The pressure dependences of the obtained $T_{c \text{ onset}}$, $T_{c \text{ zero}}$, and $T_{c \text{ onset}}$ for the studied (Li$_{1−x}$Fe$_x$)OHFe$_{1−y}$Se are displayed in Fig. 2a, which evidenced explicitly the gradual suppression of the SC-I phase followed by the reemergence of the SC-II phase above $P_c ≈ 5$ GPa. Such an evolution of superconducting phases is clearly different from that of bulk FeSe under high pressure21,22. It looks that the SC-II phase will exhibit a dome-shaped $T_c(P)$ with the maximum taking place around 12–13 GPa. It is interesting to note that in the SC-I region $T_{c \text{ onset}}$ agrees well with $T_{c \text{ zero}}$ as commonly seen in most superconductors, whereas in the SC-II region $T_{c \text{ onset}}$ follows the $T_{c \text{ onset}}$, implying that a considerable superconducting volume already appears near $T_{c \text{ onset}}$ despite of a broad transition. Although the observation of pressure-induced SC-II phase in (Li$_{1−x}$Fe$_x$)OHFe$_{1−y}$Se in the present study is qualitatively similar with those reported in A$_2$Fe$_2$Se$_2$ and CS$_{0.4}$(NH$_3$)$_2$FeSe13,14, there are some quantitative differences in comparison with those previously studies: (i) the obtained $T_{c \text{ onset}}$ here is higher, exceeding 50 K for the first time; (ii) $T_{c \text{ zero}}$ that has never been achieved for the SC-II phase in the previous studies using the diamond anvil cell (DAC) is successfully reached here due to a better sample quality and improved hydrostaticity in the CAC; (iii) the SC-II phase appears gradually and exists in a wide pressure range. We have measured another (Li$_{1−x}$Fe$_x$)OHFe$_{1−y}$Se sample with a lower $T_c ≈ 28$ K at ambient pressure and observed very similar behaviors featured by two superconducting domes separated at a lower critical pressure of $P_c ≈ 3$ GPa. Details can be found in the Supplementary Fig. 1. These experiments thus confirm that the pressure-induced reemergence of SC-II phase is likely a universal phenomenon in the (Li$_{1−x}$Fe$_x$)OHFe$_{1−y}$Se system, or even in the FeSe-derived high-T_c superconductors taking together the previous studies15,16.

Transition from Fermi liquid to non-Fermi liquid around P_c. To uncover the origin of such an intriguing phenomenon, experimentally we need to first characterize the normal-state properties, which are usually correlated tightly with the superconducting states for unconventional superconductors. A distinct change on the temperature dependence of normal-state $\rho(T)$ has already been noticed in Fig. 1b. To quantify this evolution, we display the $\rho(T)$ data in a double-logarithmic plot of $\log(\rho − \rho_0)$ vs. $\log T$ in Fig. 3a, where ρ_0 is the residual resistivity at zero temperature. The slope of these curves corresponds to the resistivity exponent α in $\rho \propto T^\alpha$, which
evolves from a Fermi-liquid $\alpha = 2$ for $0.7 \leq P \leq 4$ GPa, through some intermediate $1.5 < \alpha < 2$ for $P = 5$ and 6.5 GPa, and finally to non-Fermi-liquid $\alpha \leq 1.5$ for $P > 6.5$ GPa. Such an evolution can be visualized more profoundly in a contour plot of the resistivity exponent $\alpha \equiv \frac{d\log(\rho)}{d\log T}$ superimposed in Fig. 2a. The observed sharp transition of normal-state behavior just above T_c of electron-type carriers dominates the charge transport in both the SC-I and SC-II phases. In particular, the nearly linear-in-T behavior for the SC-II phase resembles those of the optimal doped cuprates and iron-pnictides superconductors, thus implying an unconventional mechanism for the emergent SC-II phase. We want to underline that our high-precision resistivity data enable us to unveil the non-Fermi-liquid normal state of the SC-II phase for the first time.

Enhanced carrier density above P_c. In order to gain further insights into the peculiar non-Fermi-liquid behavior of SC-II phase, we tried to probe the electronic structure information via measurements of magnetoresistance (MR) and Hall effect under pressure. Figure 3b, c displays the field dependence of in-plane MR(H) $\equiv [\rho(H)/\rho(0)] - 1$ x 100% and Hall resistivity $\rho_{xy}(H)$ in the normal state just above T_c under various pressures up to 8 GPa. As can be seen, the MR is small and decreases gradually from 3% at 0.7 GPa to below 0.5% at 8 GPa. All $\rho_{xy}(H)$ curves exhibit a linear-in-H behavior with a negative slope, signaling that the electron-type carriers dominate the charge transport in both the SC-I and SC-II phases. This observation also distinguishes the SC-II phase of (Li$_{1-x}$Fe$_x$)$_2$OHFe$_{1-y}$Se from the high-T_c phase of FeSe under high pressure showing the hole-dominated charge transport. In contrast with the monotonic decrease of MR, ρ_{xy} displays a non-monotonic variation with pressure. Here we obtained the Hall coefficient $R_{H} \equiv \frac{d\rho_{xy}}{dH}$ as the slope of a linear fitting to $\rho_{xy}(H)$, and plotted the pressure dependence of $R_{H}(P)$ in Fig. 2b. As can be seen, R_{H} is negative, and its magnitude first increases slightly with pressure and then experiences a quick reduction above 4 GPa. Assuming a simple one-band contribution, the electron-type carrier density can be estimated as $n_e = -1/(R_{H} e)$. As shown in Fig. 2b, n_e takes a relatively constant value of $\sim 2 \times 10^{27}$ m$^{-3}$ within the SC-I region for $P \leq 5$ GPa, above which it increases linearly to a large value of $\sim 9 \times 10^{27}$ m$^{-3}$ at 8 GPa, tracking nicely the trend of $T_c(P)$. These results demonstrate that the emergence of SC-II phase with higher T_c is accompanied by a concurrent enhancement of electron carrier density. Such a positive correlation between T_c and n_e is consistent with the observations in the FeSe-based superconductors as mentioned above, but the origin of the pressure-induced enhancement of n_e in the SC-II phase deserves in-depth investigations.

High-pressure synchrotron X-ray diffraction. To this end, we first checked if a structural transition takes place near $P_c \approx 5$ GPa. Figure 4a displays the high-pressure synchrotron X-ray diffraction (SXRD) patterns of (Li$_{1-x}$Fe$_x$)$_2$OHFe$_{1-y}$Se measured at room temperature up to 14 GPa. All the peaks can be indexed in the tetragonal $P4/mmm$ (No. 129) space group plus a trace amount of Selenium (Se) secondary phase (space group $P3_{1}21$) with the main peak located near $\sim 12^\circ$. As can be seen, no obvious structural transition can be discerned in the investigated pressure range. The relative peak intensities are altered when applying pressure above 0.8 GPa due to the development of preferred orientation, as exemplified by the (200) peak near 20°. In addition to the preferred orientation, the presence of light elements H, O, and Li, and the significant peak broadening has hampered reliable Rietveld structural refinements on these SXRD data. We thus have applied the LeBail fit to the SXRD patterns and extracted the unit-cell parameters as a function of pressure as depicted in Fig. 4b–d. As can be seen, both the lattice parameters a, c, and the unit-cell volume V decrease smoothly up to 10 GPa, above which a and c experiences some abnormal variations. Given a larger compressibility of the c axis, the c/a ratio decreases monotonically at least up to 10 GPa, Fig. 4c, which cannot explain the non-monotonic variations of $T_c(P)$.
Pressure dependence of unit-cell parameters a, c, V, and the c/a ratio. The solid line in (d) is the Birch-Murnaghan fitting curve used to extract the bulk modulus given in the inset.

Fig. 4 High-pressure synchrotron X-ray diffraction. a) SXRD patterns of (Li$_{1-x}$Fe$_x$)OHFe$_{1+x}$Se fitted with LeBail method. The first and second rows of tick marks in (a) represent the Bragg positions of the tetragonal $P4/nmm$ phase of (Li$_{1-x}$Fe$_x$)OHFe$_{1+x}$Se and the secondary phase Se with space group $P3_121$. b–d) Pressure dependence of the calculated electronic band structure near FS, e.g., with angle-resolved photoemission spectroscopy (ARPES), is impossible under high pressure. We then resorted to first-principles calculations as a function of pressure to check changes in the electronic structure. As detailed in the Supplementary Note 1, however, the calculated electronic structures up to 10 GPa do not show obvious changes related to our experimental findings here. Such a failed effort might arise from the fact that the band structural calculations cannot properly reproduce the experimentally observed FSs in (Li,Fe)OHFeSe via ARPES10. We need more dedicated calculations to address this issue in the future. Below we discuss briefly some possibilities that could lead to a FS reconstruction under pressure.

Recently, a second high-T_c dome and a second enhancement of superconductivity in the heavily electron-doped FeSe layers might take place via a pressure-induced FS reconstruction. Recent scanning tunneling spectroscopy study on the (Li$_{1-x}$Fe$_x$)OHFe$_{1+x}$Se single crystal has identified two electron pockets at the M point associated with the d_{xy} and $d_{xz/yz}$ orbitals, respectively28. The observed ($\pi,0.67\pi$) wave vector in the spin resonance spectroscopy with inelastic neutron scattering is consistent with the nesting vector between the two-dimensional electron Fermi pockets29. Whether these electron pockets at M point undergo reconstruction or another electron/hole pockets emerge near Γ point deserve further theoretical studies. According to a recent ARPES study on FeSe films by Phan et al.30, a compression strain realized in FeSe/CaF$_2$ will enlarge significantly both the holes and electron FSs in comparison with the strain-free FeSe. It is thus possible that compression on the FeSe planes above the critical pressure P_c can result in a FS reconstruction leading to a larger FS volume. In any case, the reemergence of higher T_c SC-II phase developed from the unusual non-Fermi-liquid normal state with enhanced electronic carrier density outlines important constrains for further investigations.

Discussion

Without a structural transition taking place at $P_c \approx 5$ GPa, we are left with an electronic origin for the observed SC-II phase. Unfortunately, a direct experimental probe of the electronic structure near FS, e.g., with angle-resolved photoemission spectroscopy (ARPES), is impossible under high pressure. We then resorted to first-principles calculations as a function of pressure to check changes in the electronic structure. As detailed in the Supplementary Note 1, however, the calculated electronic structures up to 10 GPa do not show obvious changes related to our experimental findings here. Such a failed effort might arise from the fact that the band structural calculations cannot properly reproduce the experimentally observed FSs in (Li,Fe)OHFeSe via ARPES10. We need more dedicated calculations to address this issue in the future. Below we discuss briefly some possibilities that could lead to a FS reconstruction under pressure.

Similarly, a second superconducting dome was also reported very recently in the surface K-dosed (Li$_{0.9}$Fe$_{0.1}$)OHFeSe27, and was ascribed to emergent electron pocket at the Γ point. But the obtained T_c is much lower than that of SC-II observed here under high pressure. Since no extra electron carriers were purposely doped into (Li$_{1-x}$Fe$_x$)OHFe$_{1+x}$Se in the present case, the dramatic enhancement of carrier density n_e and T_c above 5 GPa cannot be ascribed to a doping-induced Lifshitz transition. Some other factors might play a role at high pressure. On the one hand, the magnetism of the (Li,Fe)OH layer could be suppressed by pressure, releasing some charge carriers into the FeSe layer. However, such a scenario is unlikely since the reemergence of SC-II phase has been observed universally in different classes of FeSe-derived systems. Alternatively, a Lifshitz transition in the heavily electron-doped FeSe layers might take place via a pressure-induced FS reconstruction. Recent scanning tunneling spectroscopy study on the (Li$_{1-x}$Fe$_x$)OHFeSe single crystal has identified two electron pockets at the M point associated with the d_{xy} and $d_{xz/yz}$ orbitals, respectively28. The observed ($\pi,0.67\pi$) wave vector in the spin resonance spectroscopy with inelastic neutron scattering is consistent with the nesting vector between the two-dimensional electron Fermi pockets29. Whether these electron pockets at M point undergo reconstruction or another electron/hole pockets emerge near Γ point deserve further theoretical studies. According to a recent ARPES study on FeSe films by Phan et al.30, a compression strain realized in FeSe/CaF$_2$ will enlarge significantly both the holes and electron FSs in comparison with the strain-free FeSe. It is thus possible that compression on the FeSe planes above the critical pressure P_c can result in a FS reconstruction leading to a larger FS volume. In any case, the reemergence of higher T_c SC-II phase developed from the unusual non-Fermi-liquid normal state with enhanced electronic carrier density outlines important constrains for further investigations.

shown in Fig. 2a24. Since the SXRD peaks become relatively broad above 10 GPa due to the solidification of liquid pressure transmitting medium, the anomalous structure changes above 10 GPa deserve further studies with better resolved SXRD patterns by employing the gas pressure transmitting medium. But, our present high-pressure structural study rules out any structural transition below 10 GPa as the possible cause for the observed enhancement of carrier density and the emergence of SC-II phase.
Finally, it is noteworthy that the normal-state resistivity of the cuprate superconductors, e.g., the overdoped La$_2-x$Sr$_x$CuO$_4$ and La$_2-x$Ce$_x$CuO$_4$ phases, behaves as $\rho(T) \sim T^{1.6}$ at the verge of the superconducting dome, which has been attributed to quantum criticality. The observation of similar power-law behavior near the border of SC-II phase in the present (Li$_{1-x}$Fe$_x$)OHFe$_{1-x}$Se thus points to the common physics that awaits for in-depth explorations in future.

In summary, we have measured the resistivity of (Li$_{1-x}$Fe$_x$) OHFe$_{1-x}$Se single crystal under hydrostatic pressures up to 12.5 GPa with a CAC apparatus, and observed a gradual suppression of superconductivity followed by reemergence of a high- T_c SC-II phase above $P_c \approx 5$ GPa. The highest T_c reaches ~ 52 K, which is the highest among the bulk form of FeSe-derived superconductors. The SC-II phase is confirmed to develop from a peculiar non-Fermi-liquid normal state featured by dominant electron-type charge carriers and enhanced carrier density. Since no any structural transition was detected below 10 GPa, the observed SC-II phase with enhanced carrier density should be ascribed to an electronic origin associated with FS renormalization.

Methods

Sample preparation. (Li$_{1-x}$Fe$_x$)OHFe$_{1-x}$Se single crystals used in the present study were grown with a hydrothermal ion-exchange technique by using a large insulating K$_8$Fe$_4$Se$_8$ crystal as a matrix. Details about the crystal growth and sample characterizations at ambient pressure can be found in the previous study31.

High-pressure resistivity and AC magnetic susceptibility. High-pressure transport and AC magnetic susceptibility were performed in the palm CAC apparatus32. The standard four-probe method was employed for resistivity measurement with the current applied within the ab plane and the magnetic field along the c axis. The $\rho(H)$ and $\rho(T)$ data were anti-symmetrized (symmetrized) with respect to the magnetic field between $+5$ and -5 T. Glycerol was employed as the pressure transmitting medium. The pressure values inside the CAC were calibrated at room temperature by observing the characteristic transitions of bismuth. The mutual induction method was used for the AC magnetic susceptibility measurements.

High-pressure SXRD. High-pressure SXRD was measured with DAC at the BL15U1 beamline, Shanghai Synchrotron Radiation Facility of China. Glycerol was used as the pressure medium. The pressure in DAC was monitored with the ruby fluorescence method.

Data availability. The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Received: 28 August 2017 Accepted: 3 January 2018

Published online: 25 January 2018

References

1. Hsu, F. C. et al. Superconductivity in the PbO-type structure α-FeSe. Proc. Natl Acad. Sci. USA 105, 14426–14426 (2008).

2. Guo, J. G. et al. Superconductivity in the iron selenide K$_2$FeSe$_2$ (0.5 ≤ x ≤ 1). Phys. Rev. B 82, 180520(R) (2010).

3. Wang, H. D. et al. Superconductivity at 32 K and anisotropy in Tl$_{0.5}$Ba$_2$Ca$_2$Fe$_2$As$_2$ crystals. Euro. Phys. Lett. 93, 47004 (2011).

4. Scheidt, E. W. et al. Superconductivity at T_c=44 K in Li$_{1-x}$Fe$_{x}$Se(NH$_3$)$_2$. Eur. Phys. J. B 85, 279 (2012).

5. Lu, X. F. et al. Coexistence of superconductivity and antiferromagnetism in (Li$_{1-x}$Fe$_x$)OHFeSe. Nat. Mater. 14, 325–329 (2015).

6. Dong, X. et al. Phase diagram of (Li$_{1-x}$Fe$_x$)OHFeSe: a bridge between iron selenide and arsenide superconductors. J. Am. Chem. Soc. 137, 66–69 (2015).

7. Wang, Y.-Q. et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO$_3$. Chin. Phys. Lett. 29, 037402 (2012).

8. Ge, J. F. et al. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO$_3$. Nat. Mater. 14, 285–289 (2015).
high-pressure SXRD. G.X., J.S., D.J.S., and G.M.Z. performed theoretical calculations and analyses on the electronic structures under pressure. All authors discussed the results. J.P.S. and J.-G.C. wrote the paper with inputs from all authors.

Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-018-02843-7.

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.