The Phylogenetic Relatedness of bla_{NDM-1}
Harboring Extended-Spectrum β-Lactamase Producing Uropathogenic Escherichia coli and Klebsiella pneumoniae in the North of Iran

Samar Jamali1
Talaye Tavakoly1
Ali Mojtahedi2
Mohammad Shenagari1

1Department of Microbiology, Rasht Branch, Islamic Azad University, Rasht, Iran;
2Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran

Background: Escherichia coli and Klebsiella pneumoniae as an important part of Enterobacterales family are important causes of both community- and hospital-acquired infections. The present study aimed to investigate the prevalence of antibiotics resistance and molecular characteristics of uropathogenic isolates of E. coli and K. pneumoniae in Iranian patients.

Methods: This cross-sectional study performed on 223 Escherichia coli and 68 Klebsiella pneumoniae isolates obtained from hospitalized patients in the north of Iran. The isolates were identified by standard microbiologic tests and confirmed by API 20E strip. Disk diffusion method was applied to determine antibiotic susceptibility pattern. The presence of β-lactamases encoding genes was evaluated by PCR method. Analysis of the mutations and homology among sequences was done by the CLC sequence viewer (Qiagen, Denmark), and phylogenetic trees were constructed by the neighbor-joining method (Bootstrap: 1000 times).

Results: The overall rates of extended-spectrum β-lactamases (ESBLs)-producing E. coli and K. pneumoniae isolates were 37.7% and 32.4%, respectively. The overall presence of bla_{SHV}, bla_{NDM-1}, and bla_{OXA-1} genes was detected in 16 (5.5%), 12 (4.1%), and 48 (16.4%) of isolates, respectively. The neighbor-joining analysis for E. coli KU985246.1 strain showed that the most related bla_{NDM-1} sequences were from China, Singapore, UK, Thailand, and Bangladesh. While K. pneumoniae KU985245.1 strains were mostly related to bla_{NDM-1} sequences form Myanmar, and China.

Conclusion: In summary, the remarkable rate of ESBL-producing uropathogenic Enterobacterales along with the first prevalence of NDM-1 β-lactamases can be a serious concern in our region.

Keywords: uropathogenic, Escherichia coli, Klebsiella pneumoniae, antibiotic resistance, ESBL, NDM-1 β-lactamases

Introduction
Escherichia coli and Klebsiella pneumoniae are Gram negative, facultative anaerobic rods belonging to the family of Enterobacterales which are part of the gastrointestinal tract microbiota. These opportunistic pathogens lead to both community- and hospital-acquired infections with a wide range of complications, such as blood stream, respiratory tract, surgical wounds, gastrointestinal, and urinary tract infections.

Beta-lactam (β-lactam) antibiotics are amongst the widely prescribed agents for managing E. coli and K. pneumoniae related infections. However, recently extended-
spectrum beta-lactamases (ESBLs) producing strains have emerged as a critical health issue. The hydrolyzing activity of ESBLs which results in the inactivation of penicillins, broad-spectrum cephalosporins, and monobactams. These enzymes are divided into several main groups, including SHV, TEM, and CTX-M, which are able to inactivate the beta-lactams by hydrolyzing the beta-lactam ring.

ESBLs cannot efficiently inactivate cephamycins, beta-lactamase inhibitors, and particularly carbapenems. So, carbapenems act as important therapeutic options against multiple-drug resistant (MDR) strains. However, recently the trend of carbapenemase producing Enterobacterales has increased all around the world, as well as in Iran.

According to the Ambler classification of beta-lactamases, two main classes of carbapenemases were introduced. One of them is class B Zinc metallo-beta-lactamase (MBL), susceptible to metallic ion chelator such as EDTA, in which New Delhi metallo-beta-lactamase (NDM) is the most important enzyme. Secondly come oxacillinase (OXA) enzymes or class D beta-lactamas, subclassified based on single amino acid substitutions or deletions that are responsible for their effective hydrolyzing activity.

The beta-lactamase production is mostly associated with achievement of resistance determinant genes carried on large plasmids whose dissemination by horizontal gene transfer among different species has become a serious global health problem.

In regard to the importance of epidemiological data on ESBLs and carbapenem producing strains, we aimed to analyze the molecular characteristics of uropathogenic E. coli and K. pneumoniae and its antibiotics resistance pattern in northern Iran.

Materials and Methods

Study Design and Bacterial Isolates

This cross-sectional study was performed at 5 teaching hospitals in the north of Iran within six months. This study has been designed in accordance with the declaration of Helsinki and also the regional approval obtained by University Ethics Committee (IR.GUMS.REC.1394.641). The presumptive E. coli and K. pneumoniae isolates were isolated from clean-catch urine specimens using standard microbiologic tests and API 20E strips (API-bioMérieux, France).

Antimicrobial Susceptibility Testing

The antibiotic susceptibility of isolates was tested by standard disk diffusion method on Mueller-Hinton agar medium (Merck, Germany) according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. The antibiotic disks were ampicillin (10 µg), amoxicillin-clavulanate (20/10 µg), cefepime (30 µg), aztreonam (30 µg), gentamicin (10 µg), nalidixic acid (30 µg), ofloxacin (5 µg), ciprofloxacin (5 µg), cefoxitin (30 µg), cefixime (5 µg), ceftazidime (30 µg), cefotaxime (30 µg), imipenem (10 µg), tetracycline (30 µg), trimethoprim/sulfamethoxazole (25 µg), and nitrofurantoin (300 µg). E. coli ATCC 25922 strain was employed for quality check purpose. Multiple-drug resistant (MDR) isolates were defined non-susceptible (resistant or intermediate) to at least 1 agent in ≥3 antimicrobial categories according to previously mentioned definitions.

ESBL testing was performed by double-disk synergy test using cefotaxime (30 µg) and ceftazidime (30 µg), alone and in combination with clavulanate (10 µg).

Escherichia coli ATCC 25922 and K. pneumoniae ATCC 700603 were used as negative and positive control strains, respectively.

Plasmid DNA Extraction and Molecular Assays

Plasmid DNA extraction from the fresh isolates was done using gene JET plasmid miniprep Kit (Fermentas, Lithuania) according to its instructions. PCR was performed to detect blashv, blaOXA-1, and blaNDM genes by a Veriti 96-well thermal cycler instrument (Applied Biosystems at Life Technologies, Foster City, CA) as previously described. Primers were provided by Metabion Co, Germany. The list of used primers is shown in Table 1. PCR was done in a final volume of 20 µL containing Master Mix (Bioneer, South Korea), primers at concentrations of 0.3–0.4 µM, 3µL DNA templates and ddH2O. All controls for PCR were kindly provided by Pasteur Institute, Tehran, Iran. The PCR setup was an initial denaturation step at 94°C for 3 min, followed by 30 cycles of DNA denaturation at 94°C for 30 s, primer

Primer	Oligonucleotide Sequence (5' to 3')	Gene	Reference
SHV-F	ATGCGTTATATTGCGCTGTG	blashv	13
SHV-R	TGGTGTATTATCGGCGCAA	blashv	
NDM-F	GGCAGCTTGCTCGCGATGTGCGGC	blanmd	14
NDM-R	GTCCGGGGAGGTGAGGCGGCA	blanmd	
OXA-F	TTTTCTGTGTGGGTTGGTTT	blaoxa-1	15
OXA-R	TTCTTGGCCTTTATGCTTG	blaoxa-1	
annealing for 45 sec. Temperatures varied based on the sequences of primers, and primer extension at 72°C for 50 sec, followed by a final extension at 72°C for 5 min. The products were separated by electrophoresis in 1% agarose gels with 1 X TAE (Tris/Acetate/EDTA) buffer, stained with safe stain load dye (CinnaGen Co., Iran), and visualized under ultraviolet illumination.

DNA Sequencing

To confirm PCR products, a purified amplicon of tested genes was sent for sequencing by the ABI capillary system (Macrogen Research, Seoul, Korea). Afterwards, sequences were confirmed by comparison with available sequences on NCBI database (http://www.ncbi.nlm.nih.gov/BLAST/). These sequences were submitted in the GenBank nucleotide database under accession numbers: MG797557 (OXA-1, *E. coli*), KU985247.1 (OXA-1, *K. pneumoniae*), MG797558 (SHV-1, *E. coli*), MG797559 (SHV-1, *K. pneumoniae*), KU985246.1 (NDM-1, *E. coli*), and KU985245.1 (NDM-1, *K. pneumoniae*) available at National Center of Biotechnology Information website (http://www.ncbi.nlm.nih.gov). The mutations and homology among sequences were analyzed by the CLC sequence viewer (Qiagen, Denmark), and phylogenetic trees were constructed by the neighbor-joining method (Bootstrap: 1000 times).

Statistical Analysis

The distribution of antibiotic resistance and genes between groups was calculated by Chi-square and Fisher’s exact tests using SPSS™ software, version 21.0 (IBM Corp., USA). A P value of ≤0.05 was considered as statistically significant.

Results

Generally, 291 uropathogenic isolates, consisting of 223 *E. coli* and 68 *K. pneumoniae* isolates were included in our study. *E. coli* isolates were obtained from 169 (75.8%) female and 54 (24.2%) male subjects with a mean age of 35.8 ± 26.3 years. Also, *K. pneumoniae* isolates were obtained from 38 (55.9%) female and 30 (44.1%) male subjects with a mean age of 28.3 ± 26.7 years. In overall, the age range of included patients was from 1 month to 89 years.

The results revealed that *E. coli* isolates were mostly non-susceptible to ampicillin (84.8%) followed by nalidixic acid (78.5%) and tetracycline (65.5%) while the highest susceptibility belonged to imipenem (97.8%). Regarding antibiotic susceptibility among *K. pneumoniae* isolates, the lowest susceptibility rate was held by nalidixic acid (29.4%) followed by nitrofurantoin (47.1%), and the highest susceptibility belonged to imipenem (94.1%). Further analysis revealed that the rate of ESBL-producing *E. coli* and *K. pneumoniae* isolates were 37.7% and 32.4%, respectively. ESBL producers showed significantly higher antibiotic resistance compared to non-ESBLs (Tables 2 and 3). Moreover, the most effective in vitro agent against ESBL-producing in both uropathogenic isolates was imipenem. The distribution of ESBLs isolates according to patients age was 28 (26.4%) among patients less than 18 years, 55 (51.9%) among 19–64 years, and 23 (21.7%) among older than 65 years old.

The overall presence of *blaSHV*, *blaNDM-1*, and *blaOXA-1* genes was detected in 16 (5.5%), 12 (4.1%), and 48 (16.4%) of isolates, respectively. Full results of investigated genes separated by pathogen, MDR, ESBLs, and carbapenem resistance are presented in Table 4. The investigated genes were significantly more prevalent in ESBLs-producing isolates in both uropathogens whereas only the presence of *blaNDM-1* gene in *K. pneumoniae* was significantly associated with carbapenem-resistant isolates.

The neighbor-joining analysis for *E. coli* KU985246.1 strain indicated that the most related *blaNDM-1* sequences were from China, Singapore, UK, Thailand, and Bangladesh. However, *K. pneumoniae* KU985245.1 strains were mostly related to *blaNDM-1* sequences from Myanmar and China (Figure 1).

The pervasiveness of MDR isolates was estimated at 82.5% in *E. coli* and 60.3% in *K. pneumoniae* while the rate of MDR isolates was significantly higher in ESBLs-producing isolates, as 45.7% of *E. coli*, and 53.7% of *K. pneumoniae* isolates were MDR (P < 0.001).

The co-occurrence of β-lactamase genes in *E. coli* isolates was one *blaSHV*/*blaNDM-1*, and one *blaOXA-1*/*blaNDM-1* isolates. This pattern in *K. pneumoniae* isolates was one *blaSHV*/*blaNDM-1/*blaOXA-1, 3 *blaOXA-1/*blaNDM-1, and 7 *blaSHV*/*blaOXA-1 isolates.

Discussion

The emergence of MDR Enterobacteriales, particularly ESBLs-producing strains, is responsible for a large rate of nosocomial outbreaks, related to increased morbidity and mortality. Drug-resistant strains of *E. coli* and *K. pneumoniae* have acquired resistance to most—and in some cases to all antibiotics that are currently available in the clinic. This problem demands looking for novel antibiotics targeting drug-resistant Gram-negative pathogens.
Table 2 The Results of Antibiotic Susceptibility Pattern of *E. coli* Isolates

Antibiotic	Total No. 223	ESBLs-Positive No. 84	P value*				
	Susceptible	Intermediate	Resistant	Susceptible	Intermediate	Resistant	
Amoxicillin	34 (15.2)	8 (3.6)	181 (81.2)	1 (1.2)	1 (1.2)	82 (96.7)	<0.001
Amoxicillin-clavulanate	98 (43.9)	58 (26)	67 (30)	19 (22.6)	35 (41.7)	30 (35.7)	<0.001
Cefoxitin	176 (78.9)	21 (9.4)	26 (11.7)	61 (72.6)	13 (15.5)	10 (11.9)	0.073
Cefotaxime	99 (44.4)	16 (7.2)	108 (48.4)	1 (1.2)	0	83 (98.8)	<0.001
Ceftriaxime	115 (51.6)	20 (9)	88 (39.5)	6 (7.1)	10 (11.9)	68 (81)	<0.001
Cefixime	111 (49.8)	9 (4.0)	103 (46.2)	21 (25)	15 (17.9)	48 (57.1)	<0.001
Cefepime	148 (66.4)	19 (8.5)	56 (25.1)	21 (25.0)	3 (3.6)	80 (95.2)	<0.001
Ciprofloxacin	114 (51.1)	13 (5.8)	96 (43)	21 (25.0)	3 (3.6)	76 (90.5)	<0.001
Oxacillin	126 (56.5)	3 (1.3)	94 (42.2)	25 (29.8)	0	59 (70.2)	<0.001
Nalidixic acid	48 (21.5)	16 (7.2)	159 (71.3)	5 (6)	3 (3.6)	76 (90.5)	<0.001
Aztreonam	123 (55.2)	16 (7.2)	84 (37.7)	4 (4.8)	13 (15.5)	67 (79.8)	<0.001
Tetracycline	77 (34.5)	3 (1.3)	143 (64.1)	22 (26.2)	1 (1.2)	61 (72.6)	0.042
Gentamicin	191 (85.7)	7 (3.1)	25 (11.2)	63 (75)	4 (4.8)	17 (20.2)	<0.001
Trimethoprim/sulfamethoxazole	85 (38.1)	0	138 (61.9)	17 (20.2)	0	67 (79.8)	<0.001
Nitrofurantoin	199 (89.2)	6 (2.7)	18 (8.1)	66 (78.6)	2 (2.4)	15 (17.9)	<0.001
Imipenem	218 (97.8)	5 (2.2)	0	82 (97.6)	2 (2.4)	0	0.91

Note: *Compared with antibiotic resistance pattern of non-ESBL-producing isolates.

Table 3 The Results of Antibiotic Susceptibility Pattern of *K. pneumoniae* Isolates

Antibiotic	Total No. 68	ESBLs-Positive No. 22	P value*				
	Susceptible	Intermediate	Resistant	Susceptible	Intermediate	Resistant	
Amoxicillin-clavulanate	35 (51.5)	7 (10.3)	26 (38.2)	1 (4.5)	6 (27.3)	15 (68.2)	<0.001
Cefoxitin	55 (80.9)	2 (2.9)	11 (16.2)	16 (72.7)	2 (9.1)	4 (18.2)	0.24
Cefotaxime	39 (57.4)	0	29 (42.6)	0	1 (4.5)	21 (95.5)	<0.001
Cefixime	38 (55.9)	2 (2.9)	28 (41.2)	0	1 (4.5)	21 (95.5)	<0.001
Tetracycline	44 (64.7)	2 (2.9)	22 (32.4)	3 (13.6)	1 (4.5)	18 (81.8)	<0.001
Gentamicin	47 (69.1)	8 (11.8)	13 (19.1)	9 (40.9)	3 (13.6)	10 (45.5)	<0.001
Trimethoprim/sulfamethoxazole	53 (77.9)	2 (2.9)	13 (19.1)	12 (54.5)	1 (4.5)	9 (40.9)	0.001
Nitrofurantoin	20 (29.4)	26 (38.2)	22 (32.4)	4 (18.2)	6 (27.3)	12 (54.5)	0.16
Aztreonam	40 (58.8)	2 (2.9)	26 (38.2)	1 (4.5)	1 (4.5)	20 (90.9)	<0.001
Gentamicin	42 (61.8)	0	26 (38.2)	9 (40.9)	0	13 (59.1)	0.014
Trimethoprim/sulfamethoxazole	40 (69.1)	1 (1.5)	19 (27.9)	9 (40.9)	1 (4.5)	12 (54.5)	<0.001
Nitrofurantoin	30 (47.1)	12 (17.6)	24 (35.3)	5 (22.7)	5 (22.7)	12 (54.5)	0.005
Imipenem	64 (94.1)	1 (1.5)	3 (4.4)	19 (86.4)	1 (4.5)	2 (9.1)	0.06

Note: *Compared with antibiotic resistance pattern of non-ESBL-producing isolates.

Table 4 The Full Results of Investigated Genes Separated by Pathogen, MDR, ESBLs, and Carbapenem Resistance

Gene	*E. coli*	*K. pneumoniae*				
	Total No. 223	ESBLs No. 84	MDR No. 184	Total No. 68	ESBLs No. 22	MDR No. 41
bla*SHV	6	6	0	6	9	9
bldNDM	4	4	0	4	7	8
bldOXA-1	33	31	0	33	32	31

Note: *P value compared to susceptible isolates was statistically significant (P < 0.05).

Abbreviations: MDR, multiple-drug resistant; IMI-R, imipenem-resistant.
Darobactin is an example of the current efforts that showed a reasonable activity against important drug-resistant pathogens, *E. coli* and *K. pneumoniae*, including polymyxin-resistant, ESBLs and carbapenem-resistant isolates with a minimum inhibitory concentration (MIC) of 2 μg mL⁻¹. The periodic surveillance for knowing the distribution and mechanisms of antibiotic resistance has an important role in preventing and overcoming the risk of complications attributed to ESBL-producing strains. In our study, 36.4% of all isolates were ESBL producers with a high rate of antibiotic resistance. Despite the great discrepancy in the rate of ESBLs-producing *Enterobacterales*, our finding is consistent with the median values (range 13.4% to 69.2%) reported in different uropathogens and regions of Iran. The variations in the occurrence of ESBL producers can be in account of different infection control measures, infection types and studied population.

Regarding the emergence of ESBL-producing strains, the main concern is the spread of resistance determinants due to the horizontal gene transfer. *bla*_{TEM}, *bla*_{SHV}, and *bla*_{CTX-M} are the most frequent ESBLs encoding genes. In the present research, the proportion of *bla*_{SHV} genotype was low and found in 5.5% (2.7% in *E. coli* vs 14.7% in *K. pneumoniae*) of isolates. The prevalence of ESBLs genes among *Enterobacterales* was varied. Previously, the rates of *bla*_{SHV} containing *Enterobacterales* with a focus on uropathogenic isolates were reported 12.2% to 54.8% by Iranian authors. Meanwhile, several authors have shown the global spared of SHV type β-lactamases in uro-

Figure 1 The neighbor-joining dendrogram (Bootstrap: 1000) of two *bla*_{NDM-1} harboring isolates.
pathogenic Enterobacterales from China,30 India,31 Saudi Arabia,32 Turkey,33 Ukraine,34 and Morocco.35

In our results, 4.1\% of uropathogenic Enterobacterales contained \textit{blaNDM}-1, which to the best of our knowledge, is the first prevalence of this gene in Guilan province (North of Iran). Previously, the most reported origin of NDM-1 producing bacteria belonged to Asian countries, including China, India, Turkey, Pakistan and our neighboring countries in Persian Gulf region.10 Unfortunately, reports point out the increasing emergence of \textit{blaNDM}-1 harboring Enterobacterales in different regions of Iran. Concerning the emergence of \textit{blaNDM}-1 harboring Enterobacterales, there are some reports from the Capital (Tehran),6,36,37 central part (Isfahan),7 and southwest (Shiraz) of Iran.10

In the present study, the most prevailing \(\beta\)-lactamases encoding genes, generally 16.4\% of isolates, and 44.4\% of ESBLs-producing isolates were \textit{blaOXA-1} positive. Previously, Alizadeh et al, in a study conducted in the southwest of Iran (Kerman), showed that 17.2\% of uropathogenic isolates were OXA-1 producers.20 Reviewing global reports such as Brazil (60\%),38 Portugal (55\%),39 Saudi Arabia (54.8\%, and 48.3\%),\textsuperscript{32,40} and Bangladesh (47.5\%),41 indicate that the occurrence of OXA-1 \(\beta\)-lactamases can be varied based on type and source of isolates and the prevalence of ESBLs in each region.

The present work has some limitations: firstly, the \(\beta\)-lactamase expression was not assessed by real time-PCR, particularly concerning those isolates genetically positive for investigated genes yet phenotypically \(\beta\)-lactam susceptible. Secondly, other \(\beta\)-lactamases encoding genes reported in other Iranian studies should be further investigated. Finally, the availability of clinical features of the patient populations including treatments and outcomes of treatments could provide important information.

In summary, the prevalence of ESBL-producing uropathogenic Enterobacterales containing NDM-1 \(\beta\)-lactamases could be a major concern in our region. Carbapenems are still effective on our MDR isolates, but the co-occurrence of \(\beta\)-lactamases genes suggests restricted infection control policies and the rational prescription and use of antibiotics.

Disclosure

The authors report no conflicts of interest in this work.

References

1. Mehrad B, Clark NM, Zhaneg GG, Lynch JP 3rd. Antimicrobial resistance in hospital-acquired gram-negative bacterial infections. \textit{Chest}. 2015;147(5):1413–1421. doi:10.1378/chest.14-2171

2. Peleg AY, Hooper DC. Hospital-acquired infections due to gram-negative bacteria. \textit{N Engl J Med}. 2010;362(19):1804–1813. doi:10.1056/NEJMra0904124

3. Shaikh S, Fatima J, Shakil S, Rizvi SM, Kamal MA. Antibiotic resistance and extended spectrum beta-lactamas: types, epidemiology and treatment. \textit{Saudi J Biol Sci}. 2015;22(1):90–101. doi:10.1016/j.sjbs.2014.08.002

4. Ebrahim-Saraei HS, Nezhad NZ, Heidari H, Motamedifar A, Motamedifar M. Detection of antimicrobial susceptibility and integrons among extended-spectrum \(\beta\)-lactamase producing uropathogenic Escherichia coli isolates in Southwestern Iran. \textit{Oman Med J}. 2018;33(3):218–223. doi:10.5001/omj.2018.40

5. Drewz SM, Bonomo RA. Three decades of beta-lactamase inhibitors. \textit{Clin Microbiol Rev.} 2010;23(1):160–201. doi:10.1128/CMR.00379-09

6. Solgi H, Giske CG, Badmasi F, et al. Emergence of carbapenem resistant Escherichia coli isolates producing blaNDM and blaOXA-48-like carried on IncA/C and IncL/M plasmids at two Iranian university hospitals. \textit{Infect Genet Evol.} 2017;55:318–323. doi:10.1016/j.meegid.2017.10.003

7. Fazeli H, Norouzi-Barough M, Ahadi AM, Shokri D, Solgi H. Detection of New Delhi metallo-\(\beta\)-lactamase-1 (NDM-1) in carbapenem-resistant Klebsiella pneumonia isolated from a university hospital in Iran. \textit{Hippokratia}. 2015;19(3):205–209.

8. Sadeghi MR, Ghotaslu R, Akhi MT, Ashgarzadeh M, Hasani A. Molecular characterization of extended-spectrum \(\beta\)-lactamase, plasmid-mediated AmpC cephalosporinase and carbapenemase genes among Enterobacteriaceae isolates in five medical centres of East and West Azerbaijan, Iran. \textit{J Med Microbiol}. 2016;65(1):1322–1321. doi:10.1099/jmm.0.003356

9. Moghadam MN, Motamedifar M, Sarvari J, Sedigh E-S, Mousavi SM, Moghadan FN. Emergence of multidrug resistance and metallo-\(\beta\)-lactamase producing acinetobacter baumannii isolated from patients in Shiraz, Iran. \textit{Ann Med Health Sci Res}. 2016;6(3):162–167. doi:10.4103/2141-9248.183946

10. Hossein zadeh Z, Sedigh Ebrahim-Saraie H, Sarvari J, et al. Emergence of blaNDM-1 and blaOXA-48-like harboring carbapenem-resistant Klebsiella pneumoniae isolates from hospitalized patients in southwestern Iran. \textit{J Chin Med Assoc}. 2017.

11. van Hoek AH, Mevius D, Guerra B, Mullany P, Roberts AP, Aarts HJ. Acquired antibiotic resistance genes: an overview. \textit{Front Microbiol}. 2011;2:203. doi:10.3389/fmicb.2011.00203

12. Wayne PA. \textit{Performance Standards for Antimicrobial Susceptibility Testing}. Clinical and Laboratory Standards Institute (CLSI); 2016. 26th Informational Supplement.

13. Magiorakos A-P, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. \textit{Clin Microbiol Infect}. 2012;18(5):268–281. doi:10.1111/j.1469-0691.2011.03570.x

14. Hujer KM, Hujer AM, Hulten EA, et al. Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center. \textit{Antimicrob Agents Chemother}. 2006;50(12):4114–4123. doi:10.1128/AAC.00778-06

15. Doyle D, Peirano G, Lascols C, Lloyd T, Church DL, Pitout JD. Laboratory detection of Enterobacteriaceae that produce carbapenemases. \textit{J Clin Microbiol}. 2012;50(12):3877–3880. doi:10.1128/JCM.02117-12

16. Sugumar M, Kumar KM, Manoharan A, Anbarasu A, Ramaiah S. Detection of OXA-1 \(\beta\)-lactamase gene of Klebsiella pneumoniae from blood stream infections (BSI) by conventional PCR and in-silico analysis to understand the mechanism of OXA mediated resistance. \textit{PLoS One}. 2014;9(3):e91800. doi:10.1371/journal.pone.0091800

17. Giamarello H. Multidrug resistance in Gram-negative bacteria that produce extended-spectrum beta-lactamas (ESBLs). \textit{Clin Microbiol Infect}. 2005;11(Suppl 4):1–16. doi:10.1111/j.1469-0691.2005.01160.x
Infection and Drug Resistance

Infection and Drug Resistance is an international, peer-reviewed open-access journal that focuses on the optimal treatment of infectious diseases (bacterial, fungal and viral) and the development and institution of preventive strategies to minimize the development and spread of resistance. The journal is specifically concerned with the epidemiology of antibiotic resistance and the mechanisms of resistance development and diffusion in both hospitals and the community. The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.

Infection and Drug Resistance 2020:13

Submit your manuscript here: https://www.dovepress.com/infection-and-drug-resistance-journal

18. Imai Y, Meyer KJ, Iniishi A, et al. A new antibiotic selectively kills Gram-negative pathogens. Nature. 2019;576(7787):459–464. doi:10.1038/s41586-019-1791-1

19. Ghadiri H, Vaez H, Razavi-Azarkhiavi K, et al. Prevalence and antibiotic susceptibility patterns of extended-spectrum ss-lactamase and Metal-lo-ss-Lactamase-producing uropathogenic Escherichia coli isolates. Lab Med. 2014;45(4):291–296. doi:10.1309/LMHEP4VQHEY2POOK

20. Alizade H, Fallah F, Ghanbarpour R, et al. Genotyping of ESBL producing uropathogenic and diarrheagenic Escherichia coli in south-east of Iran. Infect Disord Drug Targets. 2015;15(2):118–124. doi:10.2174/1871526515666150724113847

21. Shakib P, Ramazanzadeh R, Taherikalani M, Nouri B. Detection of Extended-Spectrum Beta-Lactamases (ESBLs) and antibiotic susceptibility patterns in Klebsiella pneumoniae in Western, Iran. Infect Disord Drug Targets. 2017.

22. Poulaefar G, Bisatrania M, Anvarinejad M, Abbasi P, Amirmoezi F, Zare S. The antibiotic susceptibility patterns of uropathogens among children with urinary tract infection in Shiraz. Medicine (Baltimore). 2017;96(37):e78334. doi:10.1097/MD.0000000000007834

23. Chandramohan L, Revell PA. Prevalence and molecular characterization of extended-spectrum beta-lactamase-producing Enterobacteriaceae in a pediatric patient population. Antimicrob Agents Chemother. 2012;56(9):4765–4770. doi:10.1128/AAC.00666-12

24. Eftekhar F, Rostegar M, Golalipoor M, Mansourasmaniu N. Detection of extended spectrum β-lactamases in urinary isolates of klebsiella pneumoniae in relation to Bla, Bla and Bla gene carriage. Iran J Public Health. 2012;41(3):127–132.

25. Nakhaei Moghaddam M, Forghaniard MM, Moshrefi S. Prevalence and molecular characterization of Plasmid-mediated extended-spectrum beta-lactamase Genes (balaTEM, blCTX and blASHV) among urinary isolates of Klebsiella pneumoniae. Jundishapur J Microbiol. 2015;8(7):e19184. doi:10.5812/jjm.19184v2

26. Ranjarb R, Memariani H, Sorouri R. Molecular epidemiology of extended-spectrum beta-lactamase-producing klebsiella pneumoniae strains isolated from children with urinary tract infections. Arch Pediatr Infect Dis. 2017;5(2):e39000.

27. Ghafourian S, Sekawi Z, Neela V, Khosravi A, Rabhar M, Sadeghifar N. Incidence of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in patients with urinary tract infection. Sao Paulo Med J. 2012;130(1):37–43. doi:10.1590/ S1516-31802012000100007

28. Zamani H, Salehzadeh A, Zarrin S. Prevalence of ambler class β-lactamase-producing Escherichia coli strains isolated from Rasht city, Iran. Biosci J. 2017;33(5):1314–1320. doi:10.14393/BJ-v32n1a2016

29. Zhao R, Shi J, Shen Y, et al. Phylogenetic distribution of virulence genes among ESBL-producing uropathogenic Escherichia coli isolated from long-term hospitalized patients. J Clin Diag Res. 2015;9(7):De01–De04.

30. Jena J, Debata NK, Sahoo RK, Gaur M, Subudhi M. Molecular characterization of extended-spectrum beta-lactamase-producing Enterobacte-riaceae strains isolated from a tertiary care hospital. Microb Pathog. 2018;115:112–116. doi:10.1016/j.micpath.2017.12.056

31. El Bouamri MC, Arsalane L, Zerouali K, Katfy K, El Kamouni Y, et al. Characterization of carbapenemases, ESBLs, and plasmid-mediated quinolone determinants in carbapenem-insensitive Escherichia coli and Klebsiella pneumoniae in Riyadh hospitals. J Infect Public Health. 2018;11(1):64–68. doi:10.1016/j.jiph.2017.03.010

32. Copur Cicak A, Saral A, Ozad Duzgun A, et al. Nationwide study of Escherichia coli producing extended-spectrum β-lactamases TEM, SHV and CTX-M in Turkey. J Antimicrob Chemother. 2013;66(11):647–650. doi:10.1093/jac/djt331

33. Chub Ol, Bilschenko AV, Khalin I. Extended spectrum beta-lactamase production in uropathogens isolated from hospitalized patients with chronic pyelonephritis. Open Urol Nephrol J. 2015;8:71–75. doi:10.2174/1874303X01508010071

34. El Bouamri MC, Arsalane L, Zerouali K, Katfy K, El Kamouni Y, et al. Characterization of carbapenemases, ESBLs, and plasmid-mediated quinolone determinants in carbapenem-insensitive Escherichia coli and Klebsiella pneumoniae isolated from Iranian patients: first identification of blaKPC gene in Iran. Microb Drug Resist. 2014;20(4):285–293. doi:10.1089/mdr.2013.0074

35. Shahcheraghi F, Nobari S, Rahmati Ghezelgeh F, Valizadeh B. Molecular characterization of carbapenem-resistant strains of Klebsiella pneumoniae isolated from Iranian patients: first identification of blaKPC gene in Iran. Microb Drug Resist. 2014;20(4):285–293. doi:10.1089/mdr.2013.0074

36. Shahcheraghi F, Nobari S, Rahmati Ghezelgeh F, et al. First report of New Delhi metallo-beta-lactamase-1-producing Klebsiella pneumoniae in Iran. Microb Drug Resist. 2013;19(1):30–36. doi:10.1089/mdr.2012.0078

37. Flores C, Romão CMCPA, Bianco K, et al. Detection of antimicrobial resistance genes in beta-lactamase- and carbapenemase-producing Klebsiella pneumoniae by patient surveillance cultures at an intensive care unit in Rio de Janeiro, Brazil. J Bras Patol Med Lab. 2016;52:284–292. doi:10.5935/1676-2444.20160049

38. Oliveira C, Arzador P, Prudêncio C, Tomaz CT, Tavares-Ratado P, Fernandes R. ESBL and AmpC β-lactamases in clinical strains of Escherichia coli from Serra da Estrela, Portugal. Medicina (Kaunas). 2019;55(6):272. doi:10.3390/medicina55060272

39. Aylamani EJ, Khayami AM, Boqoq RJ, Majrashi MA, Bahwerth FS, Reckhina E. The occurrence of ESBL-producing Escherichia coli carrying aminoglycoside resistance genes in urinary tract infections in Saudi Arabia. Ann Clin Microbiol Antimicrob. 2017;16(1):1. doi:10.1186/s12941-016-0177-6

40. Lina TT, Khajanchi BK, Azmi IJ, et al. Phenotypic and molecular characterization of extended-spectrum beta-lactamase-producing Escherichia coli in a university hospital in Morocco, North Africa. Afr J Urol. 2015;21(3):161–166. doi:10.1016/j.afju.2015.02.005

41. Alyamani EJ, Khiyami AM, Booq RY, Majrashi MA, Bahwerth FS, Reckhina E. The occurrence of ESBL-producing Escherichia coli carrying aminoglycoside resistance genes in urinary tract infections in Saudi Arabia. Ann Clin Microbiol Antimicrob. 2017;16(1):1. doi:10.1186/s12941-016-0177-6

42. Lina TT, Khajanchi BK, Azmi IJ, et al. Phenotypic and molecular characterization of extended-spectrum beta-lactamase-producing Escherichia coli in a tertiary care unit in Rio de Janeiro, Brazil. J Bras Patol Med Lab. 2016;52:284–292. doi:10.5935/1676-2444.20160049

43. Oliveira C, Arzador P, Prudêncio C, Tomaz CT, Tavares-Ratado P, Fernandes R. ESBL and AmpC β-lactamases in clinical strains of Escherichia coli from Serra da Estrela, Portugal. Medicina (Kaunas). 2019;55(6):272. doi:10.3390/medicina55060272