Abstract

The aim of the study was to analyze the phonetic changes of a patient before and after prosthetic treatment and application of a gingival epithesis which may be a clue for forensic odontology. This proposed case was permanently stabilized by a resin bonded fixed partial denture for prevention of teeth luxation after periodontal and orthodontic treatment. The phonetic changes were tested by a computerized sound superposition programme after the application of the gingival epithesis. The results of these tests showed considerable sound alteration which should be taken into consideration, when conducting forensic phonetic research in the field of forensic odontology.

Keywords: Forensic odontology; Phonetic analysis; Dentistry; Prosthetic treatment; Gingival epithesis

Introduction

In general dental practice, a prosthetic replacement is considered to be ideal, when it fulfills esthetic, functional and phonetic demands. It is recommended to make speech tests after establishing occlusion for function and obtaining satisfactory esthetics in dentures [1]. A prosthetic solution should not be regarded as complete without optimal control of phonetic aspects. For this purpose, some special sounds such as “s”, “z”, “m”, “ch”, and “j” are pronounced. The proper pronunciation of these letters shows the correct vertical dimension by using closest speaking space [2,3]. In advanced periodontal cases where soft tissue recession has occurred a phonetic problem may arise due to evading sounds.

Problem of the Study

The aim of this research was to evaluate the phonetic changes before and after prosthetic treatment and application of a gingival epithesis of such a case indicating sound deficiencies due to tissue destruction.

Materials and Methods

A 43-year-old woman having 22 teeth and destructed bone and supporting tissues, applied for dental treatment (Figure 1). After completion of her periodontal and orthodontic therapy, arch splinting via adhesive partial crown construction were done at the first step of the prosthodontics (Figures 2 & 3). Then a flexible gingival epithesis was constructed for esthetic and phonetic requirements, by a one-component silicone material (Gingivamoll® Detax GmbH & Co.KG, Ettingen, Germany) which was produced according to the clinical and laboratory technique described by Iselin et al. [4] (Figure 4). Speech records were taken before and after the epithesis insertion, in a standard position where the distance between the 16 BIT stereo microphone and the patient was 40 cm’s in a sound proof room. Tests were performed in two steps, where sound characteristics were determined by the pronunciation of letter and text reading. During the speech tests, the letter sounds were classified according to their pronunciation specialties of basic articulations as sibilants, plosives, fricatives, liquids, glides and nasals which were previously defined by Burnett [5].

In the first step, a specific sound test was accomplished by sounding 28 letters including four sibilants (j, s, ş, z), six plosives (p, b, t, d, k, g), two fricatives (f, v), two liquids (l, r), and two nasal sounds (m, n), which were registered by a computerized programme. Then dimensions of the “voice on set time” of some selected sounds were calculated. In the second step, a text including words with the placement of the chosen consonant sounds as “j”, “l”, “n”, “s”, and “t” in the initial, plus an open vowel (a) and a closed vowel (e) were used. These special letters were evaluated from the point of vowel characteristics to establish if these additional vowels are effective on changing the sound dimensions of these consonant letters. Besides, this text sound test, a random speech...
test was performed disclosing the subjective speech defects, which also showed the words, which are difficult to pronounce. Sound tests of the patient were repeated in periodic check intervals with epithesis in 1, 3 and 6 months. The obtained results were matched with the similar sound records of 10 women age 35-45 having Angle Class I occlusions without any restorations. The computerized calculation and evaluation process of sound tests are given as follows:

i. The sound records were registered in a computer program called “The Creative Wave Studio” which shows the sound characteristics as sound wave vibration traces.

ii. On the wave vibration traces, the voice on set duration of each sound was measured numerically as byte sizes of waveform display units. Than these data are transferred to an Excel programme where the average values were calculated and their graphics were plotted.

iii. The images of the wave traces were amplified five times and exported to a picture processing programme called “i Photo Plus-4” and “Kodak Photo Imaging” programme.

iv. Each chosen sound character image, which was taken from patient and from the control group, were superposed and compared by arithmetical averages and graphics.

Results

The results of this research, concerning the application of a gingival epithesis was obtained initially and during the periodical controls (1, 3, 6 months duration). Clinical and computerized sound tests disclosed the fact that, patients articulation improved gradually, when compared to the data obtained from Class I occlusion unrestored cases (n = 10). According to the sound tests; which were selected in special sound groups, the “sound on set durations (SOD)” of consonants, consonant plus an open and closed vowel articulations were recorded and calculated (Figure 5) (Tables 1-6). The achieved data cleared that, before the epithesis construction and at the time of epithesis insertion the SOD were higher and these data showed a tendency to decrease in 1, 3 and 6 month period where the values come closer to the average data of SOD of natural Angle Class I cases.

Table 1: The "voice on set durations" and the average values of consonant sound data obtained from the sound records of 10 cases having Angle Class I occlusions without any restorations (byte).

Case	s	t	f	l	n
1	21014	20372	15177	22224	24076
2	26392	21442	21443	21442	23092
3	22319	21007	14442	19694	21006
4	21522	21521	18447	21522	23059
5	20205	15958	16837	19504	17731
6	27123	20342	18647	22037	22037
7	23900	23901	19120	20714	22307
8	25768	22087	20247	21480	19527
9	20862	17652	17652	20862	19257
10	24779	20133	15487	20133	23231
Average	23388	20442	17750	20961	21532
Phonetic Analysis in Forensic Odontology

Table 2: The “voice on set durations” of consonant sound data obtained from the patient before and after epithesis insertion showed improvement during six months (byte).

Epithesis	Date	s	t	f	l	n
Before	Insertion	26115	24106	20089	21626	24446
After	Insertion	32501	28168	23834	21669	23739
After	1 month	25583	20467	20466	20466	22172
After	3 month	28909	20649	19309	21006	21029
After	6 month	23004	20151	17865	20289	20696

Table 3: The “voice on set durations” and the average values of consonant plus open vowel sound data obtained from the sound records of 10 unrestored cases (byte).

Case	se	te	fe	le	na
1	12390	7743	10841	4264	4848
2	11398	7944	11208	3780	5750
3	11492	7182	10149	3204	3204
4	11974	6531	11346	3480	4928
5	12218	6787	10371	3648	4600
6	11414	7610	10878	3996	3760
7	10952	7740	9583	3872	4558
8	11517	7678	13306	3773	5355
9	9431	6736	10259	3780	6552
10	10909	7273	10260	3635	6045
Average	11370	7322	10820	3743	4960

Table 4: The “voice on set durations” and the average values of consonant plus closed vowel sound data obtained from the sound records of 10 unrestored cases (byte).

Case	se	te	fe	le	ne
1	8652	4996	3672	8711	2880
2	8946	4264	4264	8670	3196
3	8296	4854	3204	8070	3145
4	8582	4884	3480	8840	2870
5	8427	4500	3522	8132	3619
6	8540	3996	3066	9030	3195
7	8788	3872	3780	8736	3526
8	8130	3480	3930	8708	3450
9	8280	3780	3396	8520	3066
10	8185	3672	3927	7874	2952
Average	8483	4230	3624	8529	3190

Table 5: The “voice on set durations” of consonant plus open vowel sound data obtained from the patient before and after epithesis insertion showed improvement during six months (byte).

Epithesis	Date	se	te	fe	le	na
Before	Insertion	9897	7328	4020	12710	5810
After	Insertion	13112	8547	4032	10560	4080
After	1 month	12218	6786	3927	10200	3822
After	3 month	10594	7564	3780	10780	3596
After	6 month	10982	7306	3704	10366	3623

Table 6: The “voice on set durations” of consonant plus closed vowel sound data obtained from the patient before and after epithesis insertion showed improvement during six months (byte).

Epithesis	Date	se	te	fe	le	ne
Before	Insertion	8150	4914	4812	9408	3224
After	Insertion	8143	4161	4780	9246	3784
After	1 month	8642	3498	4264	8060	3283
After	3 month	8340	3750	4230	7820	3610
After	6 month	8910	3610	4032	9252	3744

Discussion

Alterations of the oral cavity can affect speech articulation [6,7]. Zitzmann et al. [8] claimed that the excessive air escape through the interproximal areas could cause speech problems. They advocated the construction of a buccal flange for removable overdenture prosthesis to avoid speech disruption and “s” sound deficiencies. These authors claimed that, the extension of the buccal and palatal denture flange establishes of the smile line, labial support and phonetic requirements [9]. To provide...
oral hygiene access these researchers also attract attention on creating adequate embrasures without phonetic disturbance [10]. In this research, these advantages were obtained with the usage of the flange of the epithesis. Witkowski [11] also recommended the construction of gingival epithesis over implant prostheses for correcting phonetics, supporting the lip profile, building up esthetics and preventing food impaction for patients having high smile line. In this research, the interproximal spaces were obstructed by the construction of a flexible epithesis, which also served as a foundation for the phonetic zone that is present at the anterior palatal region. This epithesis foundation was used as a buccal flange, which provided speech improvements approved by the speech tests. After the insertion of the epithesis, speech tests data have shown similar results with the control group having Class I unrestored occlusion.

Speech tests are preferable tests in general dental practice, as it’s also reported that, during the speech, patients exhibits seven informative facts which are affected by mandibular movements that directly relates to the vertical and horizontal overlap, lower anterior tooth display, former class of occlusion, vertical dimension, incisal guidance and maximum cusp height [12]. As an example the prolonged pronunciation of sibilant sounds as “s” and “z” when converted into a whistle or swish shows incorrect face height, and obliterated freeway space [1]. The phonetic control in denture construction phase usually includes this specific “s” sound and sibilant sounds which shows anterior speaking position of mandible and determines the occlusal vertical disruption dimension by establishing the closest speaking space as advocated by Silverman [3]. Therefore speech tests are accepted as aids for recording vertical dimension where trial bases are used and certain words such as “Mississippi, fifty-five” are pronounced by the patient without striking the rims together [13]. Besides the labio-dental sounds “f” and “v” which are produced by the contact of the lower lip with the maxillary anterior teeth is a guide for recording vertical dimension and when it is higher the “v” sound converts to an “f” sound [14]. These two letters are called the fricative, which gives the proper position of maxillary incisors, when the incisal edges of these teeth make contact with the lower lip. The plosives such as “p, b, t, d” and “n” are characterized by stopping and sudden releasing of the air stream. The nasals “m” and “n” produced by the occluding lips and passing the sound throughout the nasal cavity. The liquid sounds as “l” and “r” causes partially escaping of sounds from the tongue laterally and centrally respectively [1].

In this research the same pronunciation tests were performed after optimizing the articulation spaces of the patient by a gingival epithesis, which closes the interdental spaces. The aforementioned tests showed that, the initial SOD and the sound specialties of the patient changed significantly after the epithesis insertion. Even these data represented similar results with the control group having no restoration in their natural occlusions. As it is seen in that Tables 1-6, the comparison of the special sound groups revealed the following findings:

- **Sibilant sounds:** The patients SOD indicated a decrease for consonant “s”, and consonant plus open vowel “sa”, but a slight increase for the consonant plus closed vowel “se” when compared to normal unrestored case average values, which must be due to the direction of the sound towards the epithesis area and a difficult pronunciation of a whistle or swish type closed vowel.

- **Plosive sounds:** The plosive “t” sounds showed a tendency to decrease in SOD when compared to normal unrestored case average values in all three categories, by the ease of sudden explosive release of the airstream after the complete occlusion of the tongue to the hard palate.

- **Fricative sounds:** The fricatives or the labiodental sounds as “f” are found to be slightly decreased for all three categories, when compared to normal unrestored case average values as similar to sibilants, which may be due to the forced airstream through a narrow passageway of the epithesis area during pronunciation.

- **Liquid sounds:** The liquid or fluid half sounds, showed decrease in all three categories, when compared to normal unrestored case average values due to the difficult pronunciation of the sound, where the tongue apex occludes to the epithesis area, while the sound escapes through the bilateral narrow areas between the tongue and the hard palate.

- **Nasal sounds:** The nasals also showed an increase in the consonant plus a closed vowel “ne” categories, when compared to normal unrestored case average values, due to the occlusion of the tongue apex and tongue dorsum to the epithesis area and the hard palate, while the sound partially escapes through the nasal cavity and then partially between the epithesis area and the tip of the tongue while bilateral sides of the tongue contacts to the maxillary teeth.

In this research, the epithesis that was applied over a fixed prosthesis provided a phonetic correction.

Conclusion

Voice changes may occur after a prosthetic treatment such as, a gingival epithesis that is applied over a resin bonded fixed partial denture, due to the optimal reconstruction of the buccal flanges and phonetic zones. Therefore cases which has undergone prosthetic treatment should be taken into consideration when conducting phonetic research in the field of forensic odontology.

Acknowledgement

None.

References

1. Sharry JJ (1974) Complete denture prosthodontics. (3rd edn). Mc Graw- Hill, USA, pp. 130-148.
2. Boucher CO, Hickey JC, Zarb GA (1975) Prosthodontic treatment for edentulous patients. St. Louis: The CV Mosby, USA, pp. 271-275.
3. Silverman MM (1967) The whistle and swish sound in denture patients. J Prosthet Dent 17(2): 144-148.
4. Iselin W, Meier C, Lufi A, Lutz F (1990) The flexible gingival epithesis. Schweiz Monatschr Zahnmed 100(8): 967-976.
5. Burnett CA (1999) Mandibular incisor position for English consonant sounds. Int J Prosthodont 12(3): 263-271.
6. Seifert E, Runte C, Riebandt M, Lampecht Dimnesen A, Rollman F (1999) Can dental prostheses influence vocal parameters. J Prosthodont 81(5): 579-585.
7. Ichikawa T, Komoda J, Horiuchi M, Matsumoto N (1995) Influence of alterations in the oral environment on speech production. J Oral Rehabil 22(4): 295-299.
8. Zitzmann NU, Marinello CP (1999) Treatment plan for restoring the edentulous maxilla with implant supported restorations: Removable overdenture versus fixed partial denture design. J Prosthodont 82(2): 188-196.
9. Zitzmann NU, Marinello CP (1999) Clinical and technical aspects of implant supported restorations in the edentulous maxilla: The fixed partial denture design. Int J Prosthodont 12(4): 307-312.
10. Zitzmann NU, Marinello CP (1999) Implant supported removable overdentures in the edentulous maxilla: Clinical and technical aspects. Int J Prosthodont 12(5): 385-390.
11. Witkowski SWJ (1991) Die flexible zahnfleischmaske indikationsbeispiel implantatgetragene brücke. Quintessenz Zahntech 17: 541-557.
12. Pound E (1966) The mandibular movements of speech and their seven related values. J Prosthodont 34(9): 835-843.
13. Lucia VO (1986) Treatment of the edentulous patient. Quintessence, USA, pp. 187-193.
14. Lamb DJ (1993) Problems and solutions in complete denture prosthodontics. Quintessence, UK, pp. 109.