ORIGINAL ARTICLE

Oncolytic poxvirus armed with Fas ligand leads to induction of cellular Fas receptor and selective viral replication in FasR-negative cancer

M Sathaiah1,3, P Thirunavukkarasu1,3, ME O’Malley1, MA Kavanagh2, R Ravindranathan1, F Austin1, ZS Guo1 and DL Bartlett1,2

1Department of Surgery, University of Pittsburgh School of Medicine, and the University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA and 2Surgery Branch, National Cancer Institute, NIH, Bethesda, MD, USA

Tumor necrosis factor superfamily members, including Fas ligand and TRAIL, have been studied extensively for cancer therapy, including as components of gene therapy. We examined the use of FasL expression to achieve tumor-selective replication of an oncolytic poxvirus (vFasL), and explored its biology and therapeutic efficacy for FasR− and FasR+ cancers. Infection of FasR+ normal and MC38 cancer cells by vFasL led to abortive viral replication owing to acute apoptosis and subsequently showed both reduced pathogenicity in non-tumor-bearing mice and reduced efficacy in FasR+ tumor-bearing mice. Infection of FasR− B16 cancer cells by vFasL led to efficient viral replication, followed by late induction of FasR and subsequent apoptosis. Treatment with vFasL as compared with its parental virus (vJS6) led to increased tumor regression and prolonged survival of mice with FasR− cancer (B16) but not with FasR+ cancer (MC38). The delayed induction of FasR by viral infection in FasR− cells provides for potential increased efficacy beyond the limit of the direct oncolytic effect. FasR induction provides one mechanism for tumor-selective replication of oncolytic poxviruses in FasR− cancers with enhanced safety. The overall result is both a safer and more effective oncolytic virus for FasR− cancer.

Cancer Gene Therapy (2012) 19, 192–201; doi:10.1038/cgt.2011.77; published online 25 November 2011

Keywords: vaccinia virus; oncolytic virus; Fas ligand; Fas receptor; apoptosis

Introduction

Oncolytic virotherapy has been actively investigated as a novel approach for treating cancer.1–3 Poxviruses possess many properties that make them attractive vehicles for tumor-directed gene therapy and oncolytic virotherapy.2–4 Investigators have genetically engineered a number of oncolytic vaccinia viruses (VACV) that target various features of cancer cells or tumor tissues.5–9 Most importantly, results from a phase-I clinical trial suggested that the oncolytic VACV, JX-594, is effective in human patients with hepatocellular carcinomas.10 Although VACV is a promising oncolytic agent, enhanced safety and efficacy will improve this effective antitumor agent. Oncolytic viruses armed with genes encoding apoptosis-inducing proteins (such as TRAIL) have also been actively studied for cancer treatment.11–13 Combinatorial strategies have been shown to be highly effective in comparison with monotherapy.14–17 Despite the fact that oncolytic viruses have been tested in cancer patients in a number of clinical trials, improved efficacy and safety are needed for this to be a viable treatment option.

Fas receptor (FasR; Fas; CD95; APO-1, TNFRSF6) and Fas ligand (Fasl; CD95L; TNFSF6) belong to the tumor necrosis factor and receptor super-families.18 FasR is a 48-kDa, type-I transmembrane glycoprotein whereas Fasl is a 40-kDa, type-II transmembrane protein. The death factor Fasl was identified as the natural trigger of the FasR signaling pathway and as an inducer of FasR-dependent, activation-induced cell death. Tumor cell expression of Fasl has been proposed to aid in immune evasion through a FasR-mediated ‘tumor counterattack’ mechanism,19 but it has also been described as a proinflammatory factor.18 FasR and Fasl interactions are important in the control of malignant disease. In several cancer types such as breast cancer, lung cancer and osteosarcoma, Fasl loss of function tracks with an aggressive disease presentation and decreased patient survival.20–22 A recent study demonstrated that an additional FasR deficiency in ApcMin/+ mice causes a dramatic increase in the number of intestinal tumors.23

Combinatorial strategies have been shown to be highly effective in comparison with monotherapy.14–17 Despite the fact that oncolytic viruses have been tested in cancer patients in a number of clinical trials, improved efficacy and safety are needed for this to be a viable treatment option.

Fas receptor (FasR; Fas; CD95; APO-1, TNFRSF6) and Fas ligand (Fasl; CD95L; TNFSF6) belong to the tumor necrosis factor and receptor super-families.18 FasR is a 48-kDa, type-I transmembrane glycoprotein whereas Fasl is a 40-kDa, type-II transmembrane protein. The death factor Fasl was identified as the natural trigger of the FasR signaling pathway and as an inducer of FasR-dependent, activation-induced cell death. Tumor cell expression of Fasl has been proposed to aid in immune evasion through a FasR-mediated ‘tumor counterattack’ mechanism,19 but it has also been described as a proinflammatory factor.18 FasR and Fasl interactions are important in the control of malignant disease. In several cancer types such as breast cancer, lung cancer and osteosarcoma, Fasl loss of function tracks with an aggressive disease presentation and decreased patient survival.20–22 A recent study demonstrated that an additional FasR deficiency in ApcMin/+ mice causes a dramatic increase in the number of intestinal tumors.23
FasL exists in both soluble and membrane-bound forms. The two forms of FasL show opposing effects on inflammation and tumor cell survival. The soluble form of FasL (26 kDa), a trimer as the bioactive form, is thought to be released from tumor cells after enzymatic cleavage of membrane-bound FasL by matrix metalloproteinases. Its ability to cross-link the receptor and induce apoptosis of FasR+ cells is reduced relative to membrane-bound FasL. Membrane-bound FasL is constitutively expressed in lungs, testes, the anterior chambers of the eyes, activated B cells, T cells and NK cells. When sFasL or activating anti-FasR antibodies are administered systemically to mice, it results in rapid death owing to hepatic injury.

FasR–FasL engagement results in apoptosis. As apoptotic cell death is a natural response to cellular stress and a means of shutting down viral replication, VACV encodes numerous anti-apoptotic proteins as a means of self-preservation. We hypothesized that replication of an oncolytic poxvirus expressing FasL would be aborted by FasR-mediated apoptosis in FasR+ cells. This should lead to enhanced attenuation in normal tissues while retaining efficacy in FasR– tumors. The late induction of FasR in FasR– tumors may even lead to an enhanced therapeutic effect. Any apoptosis induction signaling late in the infection cycle would work synergistically or additively with the oncolytic virus to enhance tumor cell killing. The results presented in this study support our hypothesis and indicate that vFasL may be a novel and highly effective agent to treat FasR-negative cancers, which are difficult to treat with currently available therapies.

Materials and methods

Cell lines
CV-1 cells and murine melanoma (B16) and colorectal (MC38) cancer cells have been used in the laboratory. Other cell lines, such as human breast cancer MCF7 and melanoma MeWo, and mouse normal hepatocyte AML12 cells were obtained from American Type Culture Collection (Manassas, VA).

Construction of vFasL
In order to generate cDNA encoding murine FasL, total RNA was isolated from splenocytes of a female C57BL/6 mouse using the TRIzol reagent according to a protocol provided by the supplier (Invitrogen, Carlsbad, CA). PCR primers were generated from the published murine FasL sequence with flanking SalI or EcoRI sites, respectively. Reverse transcription-PCR using these primers and total RNA from mouse splenocytes was performed to obtain the cDNA encoding FasL (GenBank accession no. NM_010177). The cDNA was then isolated and digested with SalI and EcoRI, and inserted into the transfer plasmid pCB023-II, in which the transgene is driven by vaccinia viral pSE/L promoter. The plasmid pCB023-II-FasL was amplified in Escherichia coli DH5α cells. The inserted DNA was sequenced to confirm its identity.

To construct the new virus (vFasL), a tk-gene deleted WR strain of VACV vJS6 was used as the parental virus. vFasL was made in CV-1 cells by homologous recombination of transfected plasmid pCB023-II-FasL and infection of cells with the parental virus vJS6. The caspase inhibitor z-VAD-fmk (20 μM) was included in the media of the transfection mixture and subsequent clone isolation was performed. PCR was then used to confirm the correct identity of the viral construct. The virus vFasL was expanded in HeLa cells without the presence of z-VAD-fmk in the growth medium. All viral tiers were determined by plaque assays on CV1 cells.

Western blot analysis
CV1 cells were infected with vJS6 or vFasL at a multiplicity of infection (MOI) of 5.0 in serum-free growth media. Infected CV1 cells and supernatants were harvested at 24 h after infection and lysed in NuPAGE sample buffer (Invitrogen, Carlsbad, CA). Cell lysates and supernatants were run on NuPAGE gel according to the manufacturer’s instructions (45 min at 200 V) and then blotted onto a nitrocellulose membrane for 1 h at 30 V. The presence of murine FasL protein in cells after infection with vFasL was confirmed by using the Western Breeze immune detection system as per the manufacturer’s instructions using an anti-FasL monoclonal antibody (mAb) (H11) (Alexis Biochemicals, San Diego, CA).

Flow cytometry
Mouse and human cells were harvested and probed using a phycoerythrin-conjugated anti-mouse FasR mAb with an isotype control (mouse IgG1) or an anti-human FasR mAb and an isotype control (eBioscience, San Diego, CA). To test for FasR upregulation in virus-infected cells, mouse and human cancer cells were infected with vJS6 at an MOI of 0.1, and harvested at various time points and probed with a phycoerythrin-conjugated anti-FasR mAb.

In vitro viral growth
MC38, B16 and AML12 cells were infected with vJS6 or vFasL at an MOI of 1.0, and the cells were harvested at 12-h intervals. The cells were homogenized and the quantity of infectious virus was determined by plaque assays on CV1 cells.

Apo-BrdU TUNEL assay
Cancer cells were infected with vJS6 or vFasL at an MOI of 1.0 or 0.1, and the cells were then harvested at various time intervals, fixed with 4% paraformaldehyde and stored at −20°C in 70% ethanol. Apo-BrdU (Apo-5-bromodeoxyuridine) assay was performed using a kit per the manufacturer’s instructions (eBioscience), then run on fluorescence-activated cell sorting. Results presented are a composite of three repeated experiments.

Mice
Female athymic nude mice 5–6 weeks old were obtained from either the NCI animal Facility (Frederick, MD) or...
Taconic Corporation (Germantown, NY). All animal studies conducted at the two institutions were approved by the Institutional Animal Care and Use Committees at the two institutions.

Viral pathogenicity and bio-distribution of viruses
For assays of viral pathogenicity, 10 nude mice per group were injected intraperitoneally with 1.0×10^8 plaque-forming units (PFU) per mouse of either vFasL or vJS6. The time of death was recorded and plotted on a Kaplan–Meier curve.

The bio-distribution of the viruses was determined in tumor-bearing nude mice. Bilateral flank tumors were obtained by injection of 2.0×10^5 MC38 and B16 cancer cells into the left and right flanks, respectively. Tumors were allowed to grow to approximately 60–70 mm3 in size (7–14 days). Mice were then injected intraperitoneally with 1.0×10^8 PFU per mouse of vFasL or vJS6. The tumors and normal tissues were harvested under sterile conditions, homogenized and the infectious virus was quantified by plaque assays on CV1 cells. Titer results were then normalized to tissue protein concentration and recorded as PFU/mg of protein, as described previously.6,7

Tumor models and treatments
MC38 and B16 tumors were established with 2.0×10^5 cells in the right flank of each nude mouse. When the tumors reached a volume of ~100 mm3, the mice were administered an intraperitoneal injection of either 1 x phosphate-buffered saline, vJS6, or vFasL in equal volumes with 1.0×10^7 PFU being administered to each mouse. The tumor growth was monitored, and tumor sizes measured at regular intervals.

Results
Construction and characterization of new virus vFasL
A new recombinant VACV with the murine membranous FasL gene inserted into the TK locus (vFasL) was created, isolated, and expanded. The parental tk-deleted virus vJS6 was used as the control (Figure 1a). CV1 cells were infected with vJS6 or vFasL, and then supernatants and cells were collected separately and analyzed by western blot analysis (Figure 1b). A band of approximately 40 kDa, identified with a mAb against murine FasL, is associated only with the cellular component of vFasL but not vJS6-infected CV1 cells, consistent with membrane-bound FasL in vFasL-infected cells. Of note, there is no band from the supernatant of the vFasL-infected cells, indicating that the protein sFasL is not secreted to a level detectable by western blot analysis.

In order to explore the utility of vFasL in cancer therapy, we have also examined the status of FasR expression on the cell surface by flow cytometry (Figure 1c). B16 cancer cells express little, if any, FasR on the cell surface, with 2% positive, whereas MC38 (cancer cells) and AML12 (normal cells) express high levels of FasR, with over 38% and 42% of cells, respectively, positive. We have also examined the expression of FasR in human breast cancer cells, with MCF7 showing 18.3% FasR$^+$ and melanoma MeWo cells showing only 0.3% FasR$^+$ (data not shown).

![Figure 1](https://example.com/figure1.png)
vFasL and vJS6 showed contrasting kinetics of viral replication and apoptosis induction in Fas− versus Fas+ cells

The replication of vJS6 and vFasL in FasR− or FasR+ cells was then examined. B16 (FasR−) melanoma cells, MC38 (FasR+) colon cancer cells, and AML12 (FasR+) normal hepatocytes were infected with vJS6 or vFasL at an MOI of 0.1 and harvested at various time points. The titers were determined by plaque assays. The viral growth curves in those cells were then plotted (Figure 2a). In FasR− B16 cells, after a latent period of time (~12 h), vJS6 replicated exponentially up to the endpoint of the assay, whereas vFasL replicated exponentially at the initial time period after latency, the titer peaked at 60 h (~60 PFU per cell) and then decreased. In FasR+ MC38 cells, vJS6 replicated exponentially, plateaued at 60 h (~30 PFU per cell) and then declined over time (because cells were mostly dead). By contrast, the replication peak of vFasL was much lower at 6 PFU per cell, and occurred at an earlier time point, compared with vJS6. In FasR+ AML12 normal cells, the replication of vFasL was similarly inhibited compared with vJS6 (Figure 2a). We have also examined the viral growth characteristics in cancer cells infected at an MOI of 1, and similar patterns were observed (data not shown). We examined the apoptosis of cells at 24 h after infection by TUNEL assays to confirm functional expression of mFasL from vFasL (Figure 2b). The results showed that the vJS6 virus caused minimal apoptosis in each of the three cell lines at this time point. By contrast, vFasL infection caused 39.6% and 29.8% of apoptosis in FasR+ MC38 and FasR+ AML12 cells, respectively, whereas only 4% apoptosis occurred in FasR− B16 cells.

Delayed and gradual induction of apoptosis in Fas− cells by vFasL

To seek a correlation of apoptosis, viral replication, and the status of FasR expression of host cells, we examined the cell morphology and apoptosis of cells infected with viruses at a lower MOI (MOI=0.1) at multiple time points. Cells were first examined by light microscopy for cell death. Apoptosis was confirmed by Apo-BrdU TUNEL assays by flow cytometry, and we tried to correlate with the yield of viruses in the cells. In FasR− B16 cells, we found little apoptosis in vJS6-infected cells, but significant and gradual increase in apoptosis of vFasL-infected cells at 48 and 72 h after infection (Figures 3a and d). In FasR+ MC38 cancer cells, more cells underwent apoptosis at early time points, with more death in vFasL-infected cells (Figures 3b and d). In FasR+ AML12 normal cells, cell death in vFasL-infected cells was evident as early as 12 h, whereas vJS6-infected cells showed signs of cell death at 48 h (Figure 3c).

In summary, a significant degree of apoptosis occurred at later time points in FasR− B16 cells infected with vFasL but not vJS6. In addition, a progressive degree of apoptosis occurred in FasR+ MC38 cells infected with vFasL.

![Figure 2](image-url) Viral replication and induction of apoptosis in infected cells as determined by TUNEL assay. (a) Viral replication curves for vJS6 and vFasL in (FasR−) B16 cancer and (FasR+) MC38 cancer and normal AML12 (FasR+) cells infected at an MOI of 0.1. Infected cells were harvested at the indicated time points and infectious viruses were determined by plaque assays on CV1 cells. Data are presented as the mean ± s.d. for PFU per cell. (b) Apoptosis of infected cells was determined by Apo-BrdU TUNEL assays, confirming the functional ability of apoptosis induction by vFasL at 24 h at an MOI of 1.0 (mean ± s.d., *P<0.01). BrdU, 5-bromodeoxyuridine; MOI, multiplicity of infection; PFU, plaque-forming units.
vFasL over time (Figure 3d). Thus, it was reasonable to postulate that FasR was induced in both B16 and MC38 cells infected by viruses, and this signal triggered cellular apoptosis at later time points.

Induction of FasR in cancer cells infected by oncolytic VACV

In order to test our hypothesis that VACV may induce the expression of FasR in infected cancer cells, we used flow cytometry to examine the amounts of FasR in mock- or VACV-infected cancer cells (Figure 4). Four lines of cancer cells, with low levels (B16 and MeWo) and high levels (MC38 and MCF7) of FasR expression (both human and murine origin), were infected with vJS6 at an MOI of 0.1, and cells were collected and probed with mAbs against FasR and subjected to flow cytometry. In FasR− B16 cancer cells, FasR expression increased from undetectable to ~5% positive at 24 h, 11% at 48 h and ~70% at 72 h. In FasR + MC38 cells, the basal level was ~65%, and we observed the value increased to 95% at 48 h (Figure 3a). We also observed time-dependent enhanced FasR expression in the two human cancer cell lines, MeWo and MCF7. Even though FasR induction was seen in all four cell lines, FasR− cell lines showed a more considerable upregulation from their baseline when compared with the FasR + cell lines, which have higher baselines of expression (Figure 4).

vFasL showed reduced pathogenicity in nude mice and reduced viral titers in normal tissues

We then examined the pathogenicity of the two viruses in nude mice. Athymic nude mice were injected with either vJS6 or vFasL, and followed for survival. As expected, vJS6, the control parental virus, was quite virulent, with mice surviving a median of 17 days. The virus of interest, vFasL, showed much milder virulence, with median
survival not yet reached after 120 days ($P < 0.0001$) (Figure 5a). The bio-distribution of normal tissues in non-tumor-bearing nude mice showed reduced viral titers in vFasL-treated mice compared with vJS6 (Figure 5b). Brain and lung showed a two-log decrease, whereas liver and spleen showed one-log decrease (independent sample t-test, $P < 0.02$, mean ± s.e.m.). This reduced pathogenicity correlated with abortive viral replication in normal tissues.

Bio-distribution of the viruses in tumor-bearing mice
We then examined the replication and persistence of the viruses in tumor tissues in mice bearing (FasR−/C0) B16 and (FasR+) MC38 tumors in the right and left flanks. When tumors reached a size of about 5×5 mm in diameter, the viruses were injected into mice intraperitoneally at a dose of 1.0×10^6 PFU. On days 3, 4, and 5, groups of mice were killed and tumor tissues were collected. Infectious virions were determined by plaque assays on CV1 cells (Figure 5c). On day 3, we observed similar titers of vJS6 from both tumors, but lower titers of vFasL from (FasR+) MC38 than (FasR−) B16 cancer. This trend was maximized on days 4 and 5, when we did not recover any vFasL virus from MC38 tumors, yet high levels of vFasL from (FasR−) B16 tumors (independent sample t-test, mean ± s.e.m., $P \leq 0.05$). By contrast, we observed high and comparable titers of vJS6 from both B16 and MC38 tumors.

The anti-tumoral effect of vFasL in FasR− and FasR+ tumor models
The efficacy of vFasL versus vJS6 in treating Fas-negative and -positive tumors was examined in FasR− B16 and FasR+ MC38 tumor models (Figure 6). In the FasR− B16 tumor model, vFasL is more effective than vJS6, (on day 7: 2711 versus 1453 mm3; analysis of variance (ANOVA) = 0.001; one-tailed, independent sample t-test, $P = 0.04$). On the other hand, vFasL is less efficacious than vJS6 in the FasR+ MC38 tumors (on day 14: 1746 versus 3999 mm3; ANOVA = 0.011; one-tailed independent sample t-test, $P = 0.046$). Paradoxically, vFasL showed a superior antitumor effect in the FasR-negative cancer model, whereas vJS6 was superior to vFasL in the FasR-positive tumor model. This is consistent with our original hypothesis, and it correlates with the viral recovery data reported above.

Discussion
Cancer therapy using genetically engineered and multi-mechanistic VACV is efficacious and safe in both preclinical models and early clinical trials.3,10 We have previously demonstrated the tumor selectivity and oncolytic potency of an oncolytic VACV with a mutated viral tk gene.5,26 In the current study, we set out to further enhance the safety and selectivity of this oncolytic VACV by arming it with the gene encoding the membrane-bound FasL. Our goal was to inhibit replication in normal cells through induction of apoptosis, whereas the virus would replicate normally in tumor cells which lack FasR.

Our data demonstrated enhanced safety of the vFasL virus compared with the parent vJS6 virus. The median
survival of nude mice treated with 1×10^7 PFU of VACV improved from 15 to over 120 days with addition of FasL expression. While all cells infected with the virus ultimately die, inhibition of viral replication leads to a safer virus. While other factors may contribute to this safety in vivo, including the immune response (even in
nude mice), the enhanced safety correlates with decreased viral recovery from normal tissue. This also correlated with induction of apoptosis and decreased replication in FasR⁺ cells in vitro.

Induction of apoptosis is a cell’s natural defense to viral infection, and VACV produces many proteins, which inhibit different cellular apoptotic pathways for its own protection. Intentional induction of apoptosis for the purpose of inhibiting replication and improving safety is a novel strategy. Investigators have used gene therapy to produce pro-apoptotic proteins for the purpose of an antitumor response, and have tried to selectively avoid the induction of apoptosis in normal tissues. In general, the efficiency of gene transduction has limited the effectiveness of this approach. For efficient, replicating viruses like VACV, the antitumor effect of the replicating virus-mediated cellular destruction outweighs the effect of the therapeutic transgene expression, especially if that transgene inhibits viral replication. The toxicity to organs and tissues, such as the brain, depends not on the initial infection of the virus at the time of injection, but on ongoing viral replication in the tissue. By inhibiting viral replication, normal tissues are spared destruction and safety is enhanced.

In FasR⁺ tumor cells, viral delivery of FasL will also lead to apoptosis and tumor cell death. However, our hypothesis suggests that this will paradoxically lead to decreased viral replication and a decreased antitumor response. In fact, our data demonstrated this paradox. FasL-expressing virus was statistically inferior to the response. In species, our data demonstrated this paradox. FasL-expressing virus was statistically inferior to the response. In species, our data demonstrated this paradox. FasL-expressing virus was statistically inferior to the response. In species, our data demonstrated this paradox. FasL-expressing virus was statistically inferior to the response. In species, our data demonstrated this paradox. FasL-expressing virus was statistically inferior to the response. In species, our data demonstrated this paradox. FasL-expressing virus was statistically inferior to the response. In species, our data demonstrated this paradox. FasL-expressing virus was statistically inferior to the response. In species, our data demonstrated this paradox. FasL-expressing virus was statistically inferior to the response.
died rapidly owing to acute toxicity when a high titer of the virus vFasL was administered (data not shown). Minimal toxicity was observed when virus at the dose used in our experiments was used to treat tumor-bearing mice. Our results were consistent with another published report showing that when FasL is expressed from an oncolytic adenovirus selectively in the tumor, it shows minimal toxicity.48

In summary, we have established that selective induction of apoptosis is a mechanism for tumor-selective viral replication and enhanced safety of oncolytic poxviruses. The Fas pathway is only one of many mechanisms by which this can be accomplished, and application of this strategy to other oncolytic viruses is certainly possible. Delayed induction of FasR provides the added benefit of a bystander killing beyond the limit of the oncolytic effect. The result is both a safer and a more effective oncolytic virus.

Conflict of interest

DLB serves as a consultant for Jennerex Biotherapeutics, a company developing oncolytic viruses. The other authors have declared that no competing interests exist.

Acknowledgements

We thank Dr Ravikumar Muthusamy at the University of Pittsburgh for technical assistance with flow cytometry and real-time PCR, and Dr Shayam Sukumar at the University of Michigan for statistical analyses of the data presented in Figure 5b. This work was supported in part by NIH Grant R01CA100415, the Intramural Research Program of the NIH and by the David C Koch Regional Therapy Cancer Center. This project was also supported by a NIH training grant T32 CA113263-01. This project used the UPCI Flow Cytometry Core Facility and was supported in part by NIH award P30CA047904.

References

1 Kelly E, Russell SJ. History of oncolytic viruses: genesis to genetic engineering. Mol Ther 2007; 15: 651–659.
2 Guo ZS, Thorne SH, Bartlett DL. Oncolytic virotherapy: molecular targets in tumor-selective replication and carrier cell-mediated delivery of oncolytic viruses. Biochim Biophys Acta 2008; 1785: 217–231.
3 Breitbach CJ, Reid T, Burke J, Bell JC, Kirn DH. Navigating the clinical development landscape for oncolytic viruses and other cancer therapeutics: no shortcuts on the road to approval. Cytokine Growth Factor Rev 2010; 21: 85–89.
4 Guo ZS, Bartlett DL. Vaccinia as a vector for gene delivery. Expert Opin Biol Ther 2004; 4: 901–917.
5 Puhlmann M, Brown CK, Grant M, Huang J, Libutti SK, Alexander HR et al. Vaccinia as a vector for tumor-directed gene therapy: biodistribution of a thymidine kinase-deleted mutant. Cancer Gene Ther 2000; 7: 66–73.
6 McCart JA, Ward JM, Lee J, Hu Y, Alexander HR, Libutti SK et al. Systemic cancer therapy with a tumor-selective vaccinia virus mutant lacking thymidine kinase and vaccinia growth factor genes. Cancer Res 2001; 61: 8751–8757.
7 Guo ZS, Naik A, O’Malley ME, Popovic P, Demarco R, Hu Y et al. The enhanced tumor selectivity of an oncolytic vaccinia lacking the host range and antiapoptosis genes SPI-1 and SPI-2. Cancer Res 2005; 65: 9991–9998.
8 Kirn DH, Wang Y, Liang W, Contag CH, Thorne SH. Enhancing poxvirus oncolytic effects through increased spread and immune evasion. Cancer Res 2008; 68: 2071–2075.
9 Zhang Q, Liang C, Yu YA, Chen N, Dandekar T, Szalay AA. The highly attenuated oncolytic recombinant vaccinia virus GLV-1h68: comparative genomic features and the contribution of F14.5L inactivatation. Mol Genet Genomics 2009; 282: 417–435.
10 Liu TC, Hwang T, Park BH, Bell J, Kirn DH. The targeted oncolytic poxvirus JX-594 demonstrates antitumor, anti-vascular, and anti-HBV activities in patients with hepatocellular carcinoma. Mol Ther 2008; 16: 1637–1642.
11 Chaklikonda S, Kivlen MH, O’Malley ME, Eric Dong XD, McCart JA, Gorry MC et al. Oncolytic virotherapy for ovarian carcinomatosis using a replication-selective vaccinia virus armed with a yeast cytosine deaminase gene. Cancer Gene Ther 2008; 15: 115–125.
12 Kottke T, Hall G, Pulido J, Diaz RM, Thompson J, Chong H et al. Antiangiogenic cancer therapy combined with oncolytic virotherapy leads to regression of established tumors in mice. J Clin Invest 2010; 120: 1551–1560.
13 Ziauddin MF, Guo ZS, O’Malley ME, Austin F, Popovic PJ, Kavanagh MA et al. TRAIL gene-armed oncolytic poxvirus and oxaliplatin can work synergistically against colorectal cancer. Gene Ther 2010; 17: 550–559.
14 Dong F, Wang L, Davis JJ, Hu W, Zhang L, Guo W et al. Eliminating established tumor in nu/nu nude mice by a tumor necrosis factor-alpha-related apoptosis-inducing ligand-armed oncolytic adenovirus. Clin Cancer Res 2006; 12: 5224–5230.
15 Alvarez-Breckenridge C, Kaur B, Chiocca EA. Pharmacologic and chemical adjuvants in tumor virotherapy. Chem Rev 2009; 109: 3125–3140.
16 Bridle BW, Stephenson KB, Boudreau JE, Koshy S, Kazdhan N, Pullenayegum E et al. Potentiating cancer immunotherapy using an oncolytic virus. Mol Ther 2010; 18: 1430–1439.
17 Ottolino-Perry K, Diallo JS, Lichy BD, Bell JC, McCart JA. Intelligent design: combination therapy with oncolytic viruses. Mol Ther 2010; 18: 251–263.
18 Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001; 104: 487–501.
19 Bennett MW, O’Connell J, O’Sullivan GC, Brady C, Roche D, Collins JK et al. The Fas counterattack in vivo: apoptotic depletion of tumor-infiltrating lymphocytes associated with Fas ligand expression by human esophageal carcinoma. J Immunol 1998; 160: 5669–5675.
20 Koomagi R, Volm M. Expression of Fas (CD95/APO-1) and Fas ligand in lung cancer, its prognostic and predictive relevance. Int J Cancer 1999; 84: 233–243.
21 Motolese M, Buglioni S, Bracalenti C, Cardarelli MA, Ciabocco L, Giannarelli D et al. Prognostic relevance of altered Fas (CD95)-system in human breast cancer. Int J Cancer 2000; 89: 127–132.
22 Takeda K, Stagg J, Yagita H, Okumura K, Smyth MJ. Targeting death-inducing receptors in cancer therapy. Oncogene 2007; 26: 3745–3757.
23 Guillen-Ahlers H, Suckow MA, Castellino FJ, Plplois VA. Fas/CD95 deficiency in ApcMin/+ mice increases intestinal tumor burden. PLoS One 2010; 5: e9070.
24 Hohlbaum AM, Moe S, Marshak-Rothstein A. Opposing effects of transmembrane and soluble Fas ligand expression on inflammation and tumor cell survival. J Exp Med 2000; 191: 1209–1220.
25 Taylor JM, Barry M. Near death experiences: poxvirus regulation of apoptotic death. Virology 2006; 344: 139–150.
26 McCart JA, Puhlmann M, Lee J, Hu Y, Libutti SK, Alexander HR et al. Complex interactions between the replicating oncolytic effect and the enzyme/prodrug effect of vaccinia-mediated tumor regression. Gene Ther 2000; 7: 1217–1223.
27 Takizawa T, Matsukawa S, Higuchi Y, Nakamura S, Nakanishi Y, Fukuda R. Induction of programmed cell death (apoptosis) by influenza virus infection in tissue culture cells. J Gen Virol 1993; 74: 2347–2355.
28 Ennaciri J, Menezes J, Proulx F, Toleodano BJ. Induction of apoptosis by herpes simplex virus-1 in neonatal, but not adult, neutrophils. Pediatr Res 2006; 59: 7–12.
29 O’Donnell DR, Milligan L, Stark JM. Induction of CD95 (Fas) and apoptosis in respiratory epithelial cell cultures following respiratory syncytial virus infection. Virology 1999; 257: 198–207.
30 Clarke P, Beckham JD, Leser JS, Hoyt CC, Tyler KL. Fas-mediated apoptotic signaling in the mouse brain following reovirus infection. J Virol 2009; 83: 6161–6170.
31 Xu XN, Scrauten GR, Gotch FM, Dong T, Tan R, Almond N et al. Evasion of cytotoxic T lymphocyte (CTL) responses by nef-dependent induction of Fas ligand (CD95L) expression on simian immunodeficiency virus-infected cells. J Exp Med 1997; 186: 7–16.
32 Chen X, Zachar V, Zdravkovic M, Guo M, Ebbesen P, Liu X. Role of the Fas/Fas ligand pathway in apoptotic cell death induced by the human T cell lymphotrophic virus type I Tax transactivator. J Gen Virol 1997; 78(Pt 12): 3277–3285.
33 Badley AD, McElhinny JA, Leibson PJ, Lynch DH, Alderson MR, Paya CV. Upregulation of Fas ligand expression by human immunodeficiency virus in human macrophages mediates apoptosis of uninfected T lymphocytes. J Virol 1996; 70: 199–206.
34 Liao H, Xu J, Huang J. FasL/Fas path way is involved in dengue virus induced apoptosis of the vascular endothelial cells. J Med Virol 2010; 82: 1392–1399.
35 Krzyzowska M, Cymerys J, Winnicka A, Niemialtowski M. Involvement of Fas and FasL in Ectromelia virus-induced apoptosis in mouse brain. Virus Res 2006; 115: 141–149.
36 Gaddy DF, Lyles DS. Oncolytic vesicular stomatitis virus induces apoptosis via signaling through PKR, Fas, and Daxx. J Virol 2007; 81: 2792–2804.
37 Shunmei E, Zhao Y, Huang Y, Lai K, Chen C, Zeng J et al. Heat shock factor 1 is a transcription factor of Fas gene. Mol Cells 2010; 29: 527–531.
38 Seet BT, Johnston JB, Brunetti CR, Barrett JW, Everett H, Cameron C et al. Poxviruses and immune evasion. Annu Rev Immunol 2003; 21: 377–423.
39 Gedey R, Jin XL, Hinthong O, Shiaker JL. Poxviral regulation of the host NF-kappaB response: the vaccinia virus M2L protein inhibits induction of NF-kappaB activation via an ERK2 pathway in virus-infected human embryonic kidney cells. J Virol 2006; 80: 8676–8685.
40 Starace D, Riccioli A, D’Alessio A, Giampietri C, Petrunurowo S, Galli R et al. Characterization of signaling pathways leading to Fas expression induced by TNF-alpha: pivotal role of NF-kappaB. FASEB J 2005; 19: 473–475.
41 Dupont PJ, Warrens AN. Fas ligand exerts its pro-inflammatory effects via neutrophil recruitment but not activation. Immunology 2007; 120: 133–139.
42 Chen JJ, Sun Y, Nabel GJ. Regulation of the proinflammatory effects of Fas ligand (CD95L). Science 1998; 282: 1714–1717.
43 Koshkina NV, Khanna C, Mendoza A, Guan H, DeLauter L, Kleiinnerman ES. Fas-negative osteosarcoma tumor cells are selected during metastasis to the lungs: the role of the Fas pathway in the metastatic process of osteosarcoma. Mol Cancer Res 2007; 5: 991–999.
44 Lafleur EA, Koshkina NV, Stewart J, Jia SF, Worth LL, Duan X et al. Increased Fas expression reduces the metastatic potential of human osteosarcoma cells. Clin Cancer Res 2004; 10: 8114–8119.
45 Leithauser F, Dhein J, Mechtner HE, Koretz K, Bruderlein S, Henne C et al. Constitutive and induced expression of APO-1, a new member of the nerve growth factor/tumor necrosis factor receptor superfamily, in normal and neoplastic cells. Lab Invest 1993; 69: 415–429.
46 Leithauser F, Dhein J, Mechtner HE, Koretz K, Bruderlein S, Henne C et al. Constitutive and induced expression of APO-1, a new member of the nerve growth factor/tumor necrosis factor receptor superfamily, in normal and neoplastic cells. Lab Invest 1993; 69: 415–429.
47 Lombard C, McKallip RJ, Hylemon PB, Nagarkatti PS, Nagarkatti M. Fas ligand-dependent and -independent mechanisms of toxicity induced by T cell lymphomas in lymphoid organs and in the liver. Clin Immunol 2003; 109: 144–153.
48 Li X, Liu YH, Zhang YP, Zhang S, Pu X, Gardener TA et al. Fas ligand delivery by a prostate-restricted replicative adenovirus enhances safety and antitumor efficacy. Clin Cancer Res 2007; 13: 5465–5473.