Refractory IgG4-related Pleural Disease with Chylothorax: A Case Report and Literature Review

Komei Sakata¹, Jun Kikuchi¹, Katsura Emoto², Tomomi Kotaki¹, Yuichiro Ota¹, Naoshi Nishina¹, Hironari Hanaoka¹, Kotaro Otomo¹, Katsuya Suzuki¹, Yuko Kaneko¹ and Tsutomu Takeuchi¹

Abstract:
We herein report a rare case of a 66-year-old man with refractory chylothorax. Although he had been treated with moderate doses of prednisolone (PSL) on suspicion of pleuritis with Sjögren syndrome, the pleural effusion expanded after the reduction of PSL. Further workup including histopathological examinations of pleura led to the diagnosis of IgG4-RD with bilateral chylothorax without any leakage from the thoracic duct. Combination therapy with high-dose PSL plus rituximab successfully decreased the pleural effusion. This is a very rare case of IgG4-related pleuritis with chylothorax and the first report of its successful treatment with rituximab.

Key words: IgG4-related disease, pleuritis, chylothorax, rituximab

(Intern Med 60: 2135-2143, 2021)
(DOI: 10.2169/internalmedicine.6313-20)

Introduction
Immunoglobulin G4-related disease (IgG4-RD) is a systemic fibro-inflammatory disease characterized by serum IgG4 elevation and distinctive histopathological findings, such as lymphoplasmacytic infiltrate with abundant IgG4-positive plasma cells, storiform fibrosis, and obliterative phlebitis (1, 2). Almost all organs in the body, such as the central nervous system (CNS), lacrimal glands, salivary glands, thyroid, lungs, pancreas, biliary duct, liver, gastrointestinal tract, kidneys, prostate, retroperitoneum and lymph nodes, can be affected by IgG4-RD (3).

While the lungs are involved in 9-18% of IgG4-RD patients (4-7), pleural involvement is observed in only 4% (4, 5). Pleural effusion is uncommon, but previous reports have shown that it is usually exudative (8).

Chylothorax, which is characterized by milky-appearing pleural fluid with elevated triglyceride levels or the presence of chylomicrons, is caused by the extravasation of chyle into the pleural space due to obstruction or damage of a thoracic duct or its tributaries or transdiaphragmatic flow from the peritoneal cavity (9). The etiologies of chylothorax include several causes, such as trauma (surgical or non-surgical), malignancy, lymphatic disorders, infection, chylous ascites, and other miscellaneous causes (10); however, chylothorax due to IgG4-RD has almost never been reported.

We experienced a rare case of IgG4-RD with refractory chylothorax that was successfully treated with high-dose prednisolone (PSL) and rituximab (RTX). We report this case with a review of previous case reports of IgG4-related pleuritis.

Case Report
A 66-year-old Japanese man with a history of pollen allergy and thyroidectomy for Graves-Basedow disease was admitted to another hospital with a 2-month history of leg edema, eyelid edema, and dyspnea on exertion. Computed tomography (CT) demonstrated pleural and pericardial effusions, and a pericardiocentesis revealed the fluid as a non-specific inflammatory effusion with increased numbers of
lymphocytes without any infection. Increasing the levothyroxine dose for latent hypothyroidism and initiation of furosemide therapy did not decrease the effusion. He was transferred to our department.

At his first admission to our hospital, whole-body CT demonstrated pericardial effusion, bilateral pleural effusion, and testicular hydrocele. No swelling of the lacrimal or salivary glands nor pancreatic enlargement was observed. The right pleural effusion was exudative with a total cell count of 2,410/µm³ (lymphocytes, 75%) and neither malignant cells nor bacteria. Serum anti-SS-A/Ro antibody was slightly positive (15.4 U/mL; normal range, <10.0 U/mL) on an enzyme-linked immunosorbent assay but negative with the double immunodiffusion method. Other autoantibodies, including anti-SS-B/La, anti-CCP, anti-dsDNA, anti-RNP, anti-Scl70, and anti-neutrophil cytoplasmic antibodies, were all negative. Sialometry showed a rate of 1.008 mL/minute (within normal range), while salivary gland scintigraphy showed a slightly decreased uptake and secretory function. A lip biopsy demonstrated grade 2 lymphocytic infiltration according to Greenspan’s classification (11), with only a few A lip biopsy demonstrated grade 2 lymphocytic infiltration

Table 1. Laboratory Data on 2nd Admission.

Parameter	Value
Peripheral blood	
WBC (cells/µL)	8,200
Neut (% of WBC)	87.7
Lymphocytes (%)	8.7
Eosinophils (%)	0.2
Basophil (%)	0.2
RBC (cells/µL)	5.05 x10^12/µL
Hb (g/dL)	15.5
Plt (x10^12/µL)	288
Biochemistry/Serology	
TP (g/dL)	7.4
Alb (g/dL)	4.2
T-Bil (µg/dL)	0.5
BUN (mg/dL)	24.2
Cre (mg/dL)	1.25
UA (mg/dL)	9.2
Na (mEq/L)	139.5
K (mEq/L)	3.8
Cl (mEq/L)	100
AST (U/L)	13
ALT (U/L)	10
LDH (U/L)	163
ALP (U/L)	235
γ-GTP (U/L)	55
Amy (U/L)	62
CK (U/L)	70
T-cho (mg/dL)	192
HbA1c (%)	7.0
KL-6 (U/mL)	193
BNP (pg/mL)	8.0
fT3 (ng/dL)	2.9
fT4 (ng/dL)	1.7
TSH (µIU/mL)	1.67
CRP	0.04 mg/dL
Pleural effusion	
Cell count	810/µL
LDH (U/L)	88
Tumor marker	
sIL-2R (U/L)	394
CEA (µg/mL)	1.0
proGRP (µg/mL)	41.5
Infection marker	
procalciton (<0.03 ng/mL)	
T-SPOT (negative)	
CMV-Ag (negative)	
β-D (<6.0 pg/mL)	

TP: total protein, **Alb**: albumin, **T-Bil**: total bilirubin, **BUN**: blood urea nitrogen, **Cre**: creatinine, **UA**: uric acid, **Amy**: amylase, **T-cho**: total cholesterol, **KL-6**: Krebs von den Lungen-6, **BNP**: brain natriuretic peptide, **fT3**: free triiodothyronine, **fT4**: free thyroxine, **TS: thyroid-stimulating hormone, CRP**: C-reactive protein, **ESR**: erythrocyte sedimentation rate, **ANA**: antinuclear antibody, **SS-A**: anti-SS-A/Ro antibody, **SS-B**: anti-SS-B/La antibody, **ds-DNA**: anti-double-stranded DNA antibody, **RNP**: anti-RNP antibody, **MPO-ANCA**: myeloperoxidase-anti-neutrophil cytoplasmic antibody, **PR3-ANCA**: proteinase3-anti-neutrophil antibody, **sIL-2R**: soluble interleukin-2 receptor, **GPlcore-IgA**: glycopeptidolipid core IgA antibody, **CMV-Ag**: cytomegalovirus antigenemia, **β-D**: (1,3)-β-D-glucan, **ADA**: adenosine deaminase.
Figure 1. Pleural effusion and CT images before and after treatment. The right pleural effusion appeared as turbid yellow fluid (A). Bilateral pleural effusion and pericardial effusion were seen at the second admission (B). After treatment with a combination of high-dose corticosteroids and rituximab, the pleural and pericardial effusion was significantly decreased (C).

We performed another lip biopsy, and the specimen showed excessive IgG4-positive plasma cell infiltration [48 cells/high-power field (HPF)] with >50% IgG4/IgG (Fig. 4). According to the diagnostic criteria of IgG4-related respiratory disease (13), the patient met the following: i) pleural involvement with CT, ii) elevated serum IgG4 level, iii) pleural biopsy findings (lymphoplasmacytic infiltration and increased IgG4 positive cells), and iv) IgG4-related sialadenitis confirmed with a lip biopsy. Thus, we diagnosed him with “definite” IgG4-related disease.

Regarding mimickers of IgG4-RD, sarcoidosis was considered unlikely because of the lack of any elevation in the level of angiotensin-converting enzyme (ACE) or hypercalcemia on blood tests and no findings of granulomas in the biopsy specimens. The pleural specimens did not show angiocentricity or granuloma formation, so lymphomatoid granulomatosis was also deemed unlikely in this case. No
fever or high CRP levels were observed in this patient, which made Multicentric Castleman disease unlikely.

The treatment and clinical course of this patient are shown in Fig. 5. We first performed continuous drainage of the pleural fluid with fasting, intravenous hyperalimentation, and octreotide for two weeks. The octreotide was used in an off-label manner with the patient’s consent to reduce lymphatic flow in the thoracic duct (14). The pleural drainage decreased the effusion temporarily, but the production of new fluid did not cease, resulting in the marked loss of serum levels of albumin, IgG, and IgG4. We started high-dose PSL 70 mg (1 mg/kg/day) with RTX (375 mg/m², weekly, 4 times). The off-label use of RTX for IgG4-RD was approved by the authorized committee in our hospital [approval number: 2020-012] with informed consent from the patient. The pleural effusion gradually decreased. Later, we switched from PSL to methylprednisolone (mPSL) due to the latter’s lower mineralocorticoid activity and better transferability to the lung (15, 16). Six months from induction therapy, the pleural effusion had significantly improved (Fig. 1C).

Discussion

The present patient developed refractory chylothorax due
Figure 4. Histopathological images from the lip biopsy. A lip biopsy revealed focal IgG4-positive plasma cell infiltration, with up to 48 cells/HPF and an IgG4/IgG ratio exceeding 50%. HE: Hematoxylin and Eosin staining, LPF: low-power field, HPF: high-power field

Figure 5. Summary of clinical course of this patient. The pleuritis showed an insufficient response to the first induction therapy with moderate-dose PSL and diuretics. However, the second induction therapy with high-dose PSL and RTX resulted in the significant improvement of pleuritis and a reduction in the serum IgG4 levels. PSL: prednisolone, mPSL: methylprednisolone, RTX: rituximab, Tx: treatment
Table 2. A Summary of 37 Previous Case Reports with IgG4-RD Related Pleuritis.

Case No.	Reference	Age	Gender	Side	Pleural effusion test	Pleural biopsy	Serum									
					Cell count (µL)	Lymph (%)	IgG (mg/dL)	IgG4 (mg/dL)	ADA (IU/L)	IgG4-secretive plasma cells (MPF)	IgG4IgG (mg/dL)	IgG4 (mg/dL)	Associated diseases	Initial PSL dose (mg)	Immunosuppressant	PSL effect for pleuritis
1	18	74	M	Right	N/D	N/D	N/D	N/D	N/D	46	N/D	N/D	none	none	Good response	
2	20	62	M (al)	N/D	N/D	N/D	N/D	N/D	N/D	3,005	1,510	N/D	none	3,142	1194%	Good response
3-7 (cases)	20	62	M (al)	N/D	N/D	high in n/3 cases (30%)	high in n/2 cases (30%)	2,450	420	history of autoimmune pancreatitis	N/D	N/D	3/5 cases	30 mg	Good response	
4	21	61	F	Bilateral	bloody	N/D	lymphocyte and mononuclear cell dominant	N/D	590	34.1-46.7	1.76	85.4	1,004	483	-	Partial response
6	22	78	M	Bilateral	N/D	N/D	N/D	N/D	4,121	2,740	N/D	N/D	salivary glands, lymph nodes, orbital lesion, bile duct, gastric glands, pericarditis, pancreatic fibrosis, Milanese's disease	N/D	N/D	Good response
7	23	85	M	Bilateral (Left dominant)	Exudative	2,600	N/D	N/D	N/D	4,219	1,500	N/D	N/D	Good response		
10	24	73	M	Right	Exudative (Bloody)	74%	2,109	122	N/D	N/D	428	284	none	40 mg	MTX (for Pa)	

M: male, F: female, N/D: not determined, MTX: methotrexate, AIZ: azathioprine, CYC: cyclophosphamide, MMF: mycophenolate mofetil, RTX: rituximab
to IgG4-RD diagnosed histopathologically with a pleural specimen. The response to a moderate dose of PSL was poor. High-dose PSL and additional RTX resulted in marked improvement. Chylothorax presenting as IgG4-related pleuritis is quite rare, and to our knowledge, this is the first report of the successful treatment of IgG4-related pleuritis with RTX.

Pleural involvement is reportedly rare; indeed, Fei et al. found that 87 of 248 patients with IgG4-RD in a prospective cohort (35.1%) had intrathoracic involvement (17), although the involvement was mainly in the lungs and lymph nodes, including hilar and mediastinal lymphadenopathy, in 52.9%, solid nodules in the lungs in 25.3%, alveolointerstitial opacities in 20.7%, round ground-glass opacities in 9.2%, and bronchovascular opacities in 20.7%. Pleural nodules and thickening were observed in 16.1%, but pleural effusion was seen in only 4.6%.

We summarized 37 previous case reports with IgG4-RD related pleuritis in Table 2 (18-48). Patients with IgG4-related pleuritis were predominantly men (78%), and the mean age was 63.5±14.7 years old. Bilateral pleural effusion was seen in 21 cases, while 11 cases (right, n=7 cases; left, n=4) had unilateral effusion. In the 24 cases with pleural effusion findings available, 22 showed an exudative pattern, while bloody effusion was seen in 2 cases and transudative effusion in 1 case. Pleural effusion cytometry revealed predominantly lymphocytes among total cases, with a high concentration of IgG4 revealed in 10 cases. Our present findings were consistent with those of previous cases with regard to the age, percentage of men, and rate of bilateral exudative pleural effusion.

Interestingly, in previously reported cases of IgG4-related pleuritis, 10 out of 15 cases showed high levels of ADA in the pleural fluid (>40 U/L), which is usually measured as an auxiliary tool for the diagnosis of tuberculous pleuritis (49). Although careful ruling out of tuberculous pleuritis is necessary using other examinations, such as Ziehl-Neelsen staining (50), elevated ADA levels in pleural fluid may be useful for identifying IgG4-RD pleuritis because such a condition reflects the strong activation of lymphocytes. The levels of ADA in the pleural fluid of the present case were within normal limits.

Only two previous cases of IgG4-related pleuritis presenting as chylothorax have been reported (47, 48). Kato et al. reported a 69-year-old man with IgG4-related pleuritis, demonstrating right-sided chylothorax and left-sided non-chylothorax pleuritis (47). The right-side chylothorax persisted while the left-side pleuritis improved with corticosteroids. Another case, reported by Goag et al., was a young man with bilateral chylothorax (48) unresponsive to high-dose PSL with azathioprine or octreotide and a limited low-fat diet with medium-chain triglyceride supplementation. He ultimately had to undergo exploratory thoracotomy and surgical obliteration. In contrast to most non-chylothorax IgG4-pleuritis patients, who tend to show a good response to treatment, IgG4-related pleuritis with chylothorax is likely to have a poor response to PSL. The pathogenesis of chylothorax in IgG4-RD is unclear. Lymphangiography in our case did not reveal any leakage from the thoracic duct, suggesting potential micro-damage to the lymphatic channels hampering centripetal lymph propulsion from the periphery of the pleural surface. However, we lacked histological evidence of this, so more cases need to be accumulated to clarify the mechanism involved.

Many kinds of immunosuppressant drugs, such as azathioprine, methotrexate, cyclophosphamide, and mycophenolate mofetil, have been used to try to treat refractory IgG4-RD, but the optimal drug in combination with PSL is still unclear (51). Reports of the effectiveness of RTX in IgG4-RD have been increasing (51-54). Regarding the mechanisms underlying IgG4-RD, RTX, which depletes peripheral B cells, is a reasonable addition to therapy not only to prevent the repletion of short-lived plasmablasts and plasma cells but also to interfere with the maintenance of CD4+ T cell memory (55). Furthermore, a French nationwide study demonstrated the efficacy of RTX for both induction therapy and the maintenance of remission (56). Therefore, we selected RTX in our refractory case, and his pleural effusion gradually disappeared with a steroid-sparing effect. To our knowledge, this is the first case report suggesting the effectiveness of RTX in IgG4-related pleuritis.

In conclusion, we experienced a case of refractory IgG4-related pleuritis with chylothorax that was improved with high-dose PSL and RTX. More cases need to be accumulated in order to clarify the clinical manifestations of IgG4-RD pleuritis and its appropriate treatment.

We declare that we have obtained written informed consent from this patient to publish this case report.

The authors state that they have no Conflict of Interest (COI).

References

1. Stone JH, Zen Y, Deshpande V. IgG4-related disease. N Engl J Med 366: 539-551, 2012.
2. Kamisawa T, Zen Y, Pillai S, Stone JH. IgG4-related disease. Lancet 385: 1460-1471, 2015.
3. Umehara H, Okazaki K, Masaki Y, et al. A novel clinical entity, IgG4-related disease (IgG4RD): general concept and details. Mod Rheumatol 22: 1-14, 2012.
4. Zen Y, Nakamura Y. IgG4-related disease: a cross-sectional study of 114 cases. Am J Surg Pathol 34: 1812-1819, 2010.
5. Fernández-Codina A, Martinez-Valle F, Pinilla B, et al. IgG4-related disease: results from a multicenter Spanish registry. Medicine (Baltimore) 94: e1275, 2015.
6. Wallace ZS, Deshpande V, Matteo H, et al. IgG4-related disease: clinical and laboratory features in one hundred twenty-five patients. Arthritis Rheumatol 67: 2466-2475, 2015.
7. Inoue D, Yoshida K, Yoneda N, et al. IgG4-related disease: dataset of 235 consecutive patients. Medicine (Baltimore) 94: e680, 2015.
8. Ryu JH, Sekiguchi H, Yi ES. Pulmonary manifestations of immunoglobulin G4-related sclerosing disease. Eur Respir J 39: 180-186, 2012.
9. Merrigan BA, Winter DC, O’Sullivan GC. Chylothorax. Br J Surg
22. Sekiguchi H, Horie R, Utz JP, Ryu JH. IgG4-related systemic disease presenting with lung entrapment and constrictive pericarditis. Intern Med 50: 893-897, 2011.

23. Tanaka H, Ichiyasu H, Notsute D, Yamashita K, Moriyama M, Aizawa K, et al. Case of IgG4-related pleuritis and lymphadenopathy needed to distinguish IgG4-related disease from multicentric Castleman’s disease. Nihon Kokyuki Gakkai Zasshi 50: 97-102, 2011 (in Japanese, Abstract in English).

24. Sekiguchi H, Horie R, Utz JP, Ryu JH. IgG4-related systemic disease presenting with lung entrapment and constrictive pericarditis. Chest 142: 781-785, 2012.

25. Kojima M, Nakazato Y, Kaneko Y, Sugihara S, Masawa N, Nakamura N. Cytological findings of IgG4-related pleural effusion: a case report. Cytopathology 24: 338-340, 2013.

26. Hara Y, Shinkai M, Yamaguchi N, et al. Case of steroid effective pleuritis and lymphadenopathy needed to distinguish IgG4-related disease from multicentric Castleman’s disease. Nihon Kokyuki Gakkai Zasshi 50: 544-549, 2013 (in Japanese, Abstract in English).

27. Ishida M, Hodohara K, Furuya A, et al. Concomitant occurrence of IgG4-related pleuritis and periaortitis: a case report with review of the literature. Int J Clin Exp Pathol 7: 808-814, 2014.

28. Ishida A, Furuya N, Nishisaka T, Mineshita M, Miyazawa T. IgG4-related pleuritis presenting as a massive bilateral effusion. J Bronchology Interv Pulmonol 21: 237-241, 2014.

29. Choi JH, Sim JK, Oh JY, et al. A case of IgG4-related disease presenting as massive pleural effusion and thrombophlebitis. Tuberc Respir Dis (Seoul) 76: 179-183, 2014.

30. Kusakabe H, Ichiyasu H, Notsute D, Yamashita A, Hamamoto J, Yamamoto H, Suzuki T, Yasuo M, et al. IgG4-related pleuritis and periaortitis associated with recurrent pleural effusion. J Clin Neuromuscul Dis 16: 210-219, 2015.

31. Ohkubo H, Miyazaki M, Oguri T, Arakawa A, Kobashi Y, Niimi A. A rare case of IgG4-related disease involving the uterus. Rheumatology (Oxford) 54: 1124-1125, 2015.

32. Gajewska ME, Ryczewicka-Kielek BA, Strensens K, Kubik M, Hilberg O, Bendstrup E. Immunoglobulin G4-related pleuritis - A case report. Respir Med Case Rep 19: 18-20, 2016.

33. Kuriyama Y, Hachiya T, Komatsu M, Nakamura T, Yamamoto H, Hanaoka M. A case of pleuritis diagnosed with IgG4-related disease. Nihon Kokyuki Gakkai Zasshi 6: 78-83, 2017 (in Japanese, Abstract in English).

34. Krause ML, Yi ES, Warrington KJ. Pulmonary IgG4-related disease and colon adenocarcinoma: possible paraneoplastic syndrome. Int J Rheum Dis 20: 654-656, 2017.

35. Tong X, Bal M, Wang W, Han Q, Tian P, Fan H. IgG4-related disease involving polyserous effusions with elevated serum interleukin-6 levels: a case report and literature review. Immunol Res 65: 944-950, 2017.

36. Vu K, Gupta R, Frater J, Atkinson J, Ranganathan P. A 55-year-old man with periorbital and inguinal masses, pericarditis, and pleuritis. Arthritis Care Res (Hoboken) 69: 730-736, 2017.

37. Kita T, Araya T, Ichikawa Y, et al. IgG4-related pleuritis with no other organ involvement. Am J Med Sci 356: 487-491, 2018.

38. Nagayasu A, Kubo S, Nakano K, et al. IgG4-related pleuritis with elevated adenosine deaminase in pleural effusion. Intern Med 57: 2251-2257, 2018.

39. Fuku T, Makimoto G, Ohashi K, Taniguchi K, et al. IgG4-related pleural disease presenting as a massive bilateral effusion. Intern Med Case Rep 28: 100938, 2019.

40. Yokosaka N, Shirai R, Tanaka H, Kurose K, Oga T, Oka M. Thoracoscopic findings in IgG4-related pleuritis. Intern Med 59: 257-260, 2020.

41. Kato E, Nakamura K, Ichiyasu H, et al. Cytologically proven IgG4-positive plasma cells in pleural effusion of a patient clinically compatible with IgG4-related disease. Jpn Soc Clin Cytol 57: 50-55, 2018 (in Japanese).

42. Makimoto G, Ohashi K, Taniguchi K, et al. Long-term spontaneous remission with active surveillance in IgG4-related pleuritis: a case report and literature review. Respir Med Case Rep 28: 100938, 2019.

43. Yoshosaka N, Shirai R, Tanaka H, Kurose K, Oga T, Oka M. Thoracoscopic findings in IgG4-related pleuritis. Intern Med 59: 257-260, 2020.

44. Gouy EK, Park JE, Lee EH, et al. A case of extensive IgG4-related disease presenting as massive pleural effusion, mediastinal mass, and mesenteric lymphadenopathy in a 16-year-old male. Tuberc Respir Dis (Seoul) 78: 396-400, 2015.

45. Aggarwal AN, Agarwal R, Sehgal IS, Dhooria S. Adenosine deaminase for diagnosis of tuberculous pleural effusion: a system-
atic review and meta-analysis. PLoS One 14: e0213728, 2019.
50. Shaw JA, Diacon AH, Koegelenberg CFN. Tuberculous pleural ef-
fusion. Respirology 24: 962-971, 2019.
51. Akiyama M, Takeuchi T. IgG4-related disease: beyond glucocorti-
coids. Drugs Aging 35: 275-287, 2018.
52. Carruthers MN, Topazian MD, Khosroshahi A, et al. Rituximab for IgG4-related disease: a prospective, open-label trial. Ann Rheum Dis 74: 1171-1177, 2015.
53. Khosroshahi A, Carruthers MN, Deshpande V, Unizony S, Bloch DM, Stone JH. Rituximab for the treatment of IgG4-related disease: lessons from 10 consecutive patients. Medicine (Baltimore) 91: 57-66, 2012.
54. Hart PA, Topazian MD, Witzig TE, et al. Treatment of relapsing autoimmune pancreatitis with immunomodulators and rituximab: the Mayo Clinic experience. Gut 62: 1607-1615, 2013.
55. Mahajan VS, Mattoo H, Deshpande V, Pillai SS, Stone JH. IgG4-related disease. Annu Rev Pathol 9: 315-347, 2014.
56. Ebbo M, Grados A, Samson M, et al. Long-term efficacy and safety of rituximab in IgG4-related disease: data from a French nationwide study of thirty-three patients. PLoS One 12: e0183844, 2017.

The Internal Medicine is an Open Access journal distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view the details of this license, please visit (https://creativecommons.org/licenses/by-nc-nd/4.0/).