Ultrasonography in the diagnosis of hemorrhagic cystitis – a complication of bone marrow transplantation in pediatric oncology patients

Urszula Zaleska-Dorobisz, Anna Biel, Dąbrówka Sokołowska-Dąbek, Cyprian Olchowy, Mateusz Łasecki

Division of General and Pediatric Radiology, Department of Radiology, Wrocław Medical University, Curie-Skłodowskiej 68, 50-369 Wrocław, Poland, e-mail: ulador@rad.am.wroc.pl, tel.: +48 71 784 26 51

DOI: 10.15557/JoU.2014.0026

Streszczenie

Cel: Celem pracy była ocena przydatności ultrasonografii w diagnostyce krwotocznego zapalenia pęcherza moczowego, dość częstego powikłania po przeszczepach szpiku kostnego u dzieci. Material i metoda: W pracy przeanalizowano materiał kliniczny i wyniki badań obrazowych 334 pacjentów po transplantacji komórek hematopoetycznych. Analizie poddano wyniki badań ultrasonograficznych wykonanych u 42 dzieci z krwotocznym zapaleniem pęcherza moczowego. Na podstawie USG oceniano stopień zaawansowania krwotocznego zapalenia pęcherza moczowego, a wyniki porównywano z oceną kliniczną procesu w skali Drollera, badaniami laboratoryjnymi i endoskopowymi. Wyniki: W analizowanej grupie dzieci krwotocze zapalenie pęcherza moczowego rozpoznano po transplantacjach allogenicznych u 12,5% badanych, u 73,8% było to przeszczepek od dawcy niespokrewnionego, u 26,2% – od zgodnego rodu. Wykazano częstsze występowanie krwotocznego zapalenia pęcherza moczowego u dzieci starszych, powyżej 10. roku życia. Stopień 3. w skali Drollera stwierdzono u 42,9% dzieci, stopień 2. – u 30,9%, stopień 4. – u 14,3%, a stopień 1. – u 11,9% dzieci. Liczba badań ultrasonograficznych i rozpoznanie zależały od objawów klinicznych, stopnia zaawansowania, czasu trwania oraz współwystępowania innych powikłań po transplantacji i wynosiła 1–15 (średnio 4,6). Trzeci i czwarty stopień wiązały się ze złym stanem klinicznym chorą, a także wydłużeniem czasu hospitalizacji. W okresie tym wzrastało ryzyko uszkodzenia czynności nerek i ostrej niewydolności nerek, pozapalnego zwężenia moczowodów, wodonercza, a w końcowym stadium zwłoknięcia pęcherza moczowego. Stwierdzono istotną zależność obrazu ultrasonograficznego zmienionej w przebiegu zapalenia ściany pęcherza moczowego, ze stopniem klinicznego zaawansowania. Wnioski: Badanie ultrasonograficzne z opcjami dopplerowskimi pozostaje podstawowym badaniem diagnostycznym w ocenie krwotocznego zapalenia pęcherza moczowego, jest przydatne w rozpoznawaniu, określaniu stopnia zaawansowania choroby i monitorowaniu leczenia.
Abstract

Objective: The aim of this study was to evaluate the usefulness of ultrasonography in the diagnosis of hemorrhagic cystitis following bone marrow transplantation in children. Material and methods: The study involved an analysis of clinical material and the results of imaging tests performed in 334 patients who underwent hematopoietic cell transplantation. Ultrasonographic findings in 42 patients with hemorrhagic cystitis were analyzed in detail. The ultrasound images served to assess the severity of hemorrhagic cystitis and the results were compared with the clinical assessment of the disease on the Droller scale, as well as the laboratory and endoscopic tests. Results: In the studied group of patients hemorrhagic cystitis following allogeneic transplantation was diagnosed in 12.5% cases. 73.8% patients received transplants from unrelated donors, 26.2% – from compatible siblings. The study revealed a higher incidence of hemorrhagic cystitis in children above 10 years of age. Grade 3 according to the Droller was diagnosed in 42.9%, grade 2 – in 30.9%, grade 4 – in 14.3%, and grade 1 – in 11.9% patients. The number of ultrasound examinations depended on the clinical symptoms, severity, duration and co-occurrence of other complications following the transplantation and was within the 1–15 range (average: 4.6). Grades 3 and 4 were related to the poor clinical condition of the patients and to their longer hospitalization. During this period there was an increased risk of renal malfunction and acute renal failure, post-inflammatory narrowing of the ureters, hydronephrosis, and in grade 4 the fibrosis of the bladder with reduced bladder capacity. Analyses demonstrated a significant correlation between the ultrasound image of the bladder wall and the clinical severity. Conclusions: Ultrasound with Doppler options remains the primary diagnostic tool in the evaluation of hemorrhagic cystitis, and is useful in terms of its diagnosis, determination of the severity, and monitoring of the treatment.

Introduction

Hemorrhagic cystitis is a fairly common complication of bone marrow transplants in pediatric cancer patients. By definition, it is characterized by severe hematuria of varying intensity with accompanying symptoms of the urinary tract dysfunction manifested as bladder and urethra pain, polyuria, dysuria and the occurrence of urgency episodes. Less often it takes the form of asymptomatic hematuria.

The incidence of hemorrhagic cystitis varies in children, it occurs mainly after allogeneic transplants (allo-transplants) in which blood stem cells are derived from a related or unrelated donor, compatible or partly compatible in terms of the human histocompatibility system – HLA. Its incidence is less common after autogenic transplants (autotransplants) in which progenitor cells are derived from the recipient (the patient himself is the donor) . After allogeneic transplants haemorrhagic cystitis occurs in 6–26.9% patients and after autotransplants – in 0.85–96% patients. Depending on the time of its occurrence, hemorrhagic cystitis is classified as early-onset and late-onset. The early onset is detected when the disease manifests itself during preparations for the transplantation, or within 72 hours after the completion of preconditioning. After that time, it is diagnosed as late-onset.

The early onset is caused by damage done to the urothelium by toxic drug metabolites, the late onset is caused by viruses which act on the urothelium that is damaged due to conditioning. The late onset is characterized by greater severity and leads to intricate complications.
powikłań[18,20,24,25]. Proces chorobowy trwa najczęściej kilka do kilkunastu dni i ma tendencję do samoograniczania się. Wyjątkowo rzadko stosowane leczenie nie przynosi oczekiwanych rezultatów i zapalenie przedłuża się, nawet do kilku miesięcy[9–11,22,23,25]. Aby rozpoznać KZPM, należy wykluczyć załagodzenia układu moczowego (bakterijne i grzybicze), a także zaburzenia krzepnięcia[8,9,16–18]. W podstawowej diagnostyce KZPM wykorzystywane są Badania ultrasonograficzne – USG (B-mode, dopplerowskie techniki przepływu tkankowych, objętościowe 3D/4D) i badania laboratoryjne, oprócz tradycyjnej analizy moczu stosuje się jakościowe i ilościowe metody łańcuchowej reakcji polimerazy – PCR w celu identyfikacji i oceny liczby kopii wirusa w próbie moczu oraz osoczu[18,19,25–27].

W różnych ośrodkach do oceny klinicznej zmian w pęcherzu moczowym i powstałych w ich następstwie zaburzeń funkcjonalnych stosowane są różne skale stopnia zaawansowania choroby[10–12]. Najszerszy przyjętym kryterium jest skala Drollera, w której wyróżnia się cztery stopnie nasilenia zmian w przebiegu KZPM[10]. W tab. 1 przedstawiono stopnie zaawansowania procesu zapalnego według skali Drollera.

Celem pracy jest ocena wartości badania USG w diagnostyce KZPM u dzieci poddanych transplantacji komórek hematopoietycznych oraz określenie przydatności ultrasonografii w ocenie stopnia zaawansowania zmian i porównanie ze skalą Drollera, wynikami badań laboratoryjnych i cystoskopią.

Material i metody badań

W pracy przeanalizowano materiał kliniczny obejmujący dane chorobowe i wyniki badań przeprowadzonych u 334 pacjentów, którzy w okresie od stycznia 2008 do grudnia 2012 roku byli poddani przeszczepowi komórek hematopoietycznych w Klinice Transplantacji Szpiku, Onkologii i Hematologii Dziecięcej Uniwersytetu Medycznego we Wrocławiu. Do badanej grupy włączono 283 (84,5%) dzieci z chorobami nowotworowymi i 51 (15,5%) z chorobami nienowotworowymi, takimi jak ciężkie, złożone niedobory odporności, wrodzone choroby metaboliczne, anemia plastykowa. Uwzględniając rodzaj komórek hematopoetycznych krwi, wyszczególniono trzy rodzaje transplantacji: allogeniczne – u 257 (76,5%), autologiczne – u 78 (23,2%) i syngeneiczne – u 1 (0,3%) dziecka.

Wśród dzieci poddanych transplantacji allogenicznej 91 (35,4%) pacjentów stanowiły dzieci do 5. roku życia, 57 (22,2%) – dzieci pomiędzy 5. a 10. rokiem życia, 109 (42,4%) – dzieci powyżej 10. roku życia; przeważali chłopcy (61,5%). W grupie przeszczepów autogenicznych było 33 (43,3%) pacjentów do 5. roku życia, 11 (14,1%) pomiędzy 5. a 10. rokiem życia i 34 (43,6%) powyżej 10. roku życia; większość stanowi chłopcy – 52 (66,7%, dziewczynki – 26). Charakterystykę grupy dzieci poddanych transplantacji allogenicznej i rodzaj rozpoznania wstępnego przedstawiono w tab. 1.

Charakterystyka grupy dzieci poddanych transplantacji autologicznej z uwzględnieniem rozpoznania wstępnego

The disease process usually lasts from several to over a dozen days, and tends to be self-limited. It is extremely rare for the applied treatment not to produce the desired results and for the inflammation to continue up to several months[8–10,11,22,23,25]. In order to diagnose hemorrhagic cystitis, one must exclude urinary tract infections (bacterial and fungal) and coagulation disorders[8,9,16–18]. The primary diagnosis of hemorrhagic cystitis includes ultrasound screening (B-mode, Doppler tissue flow techniques, 3D/4D volume) and laboratory testing. Apart from traditional urine analysis, the applied procedures also include qualitative and quantitative methods of polymerase chain reaction (PCR) in order to identify and assess the amount of viral load in the urine sample and the plasma[18,19,25–27].

In their clinical evaluation of changes in the bladder and functional disorders resulting from them, various centers follow different severity scales of hemorrhagic cystitis[10–12]. The most widely accepted grading system is the Droller scale, in which the author distinguishes four degrees of hemorrhagic cystitis severity[10]. Table 1 shows the grades of the inflammatory process according to the Droller scale.

The aim of this paper is to assess the value of ultrasound in the diagnosis of hemorrhagic cystitis in pediatric patients undergoing hematopoietic stem cell transplantation as well as to determine the usefulness of ultrasonography in the assessment of the severity of changes and compare it with the Droller scale, laboratory test and cystoscopy results.

Material and methods

The study involved an analysis of the clinical material comprising disease data and medical test results of 334 patients who underwent hematopoietic stem cell transplantation at the Department of Bone Marrow Transplantation, Oncology and Hematology of the Medical University in Wrocław during the period from January 2008 to December 2012. The study group included 283 (84.5%) pediatric patients with cancer and 51 (15.5%) with non-neoplastic diseases, such as severe combined immunodeficiencies, congenital metabolic diseases and aplastic anemia. Taking into account the hematopoietic blood cell types, three kinds of transplants were listed: allogeneic – in 257 (76.5%) patients, autologous – in 78 (23.2%), and syngeneic – in 1 (0.3%).

The group of patients who underwent allogeneic transplantation consisted of 91 (35.4%) children under the age of 5, 57 (22.2%) children between 5 and 10, 109 (42.4%) children aged 10, and the entire group was predominated by boys (61.5%). In autologous transplant group 33 (43.3%) patients were below 5 years of age, 11 (14.1%) between 5 and 10, and 34 (43.6%) above 10, and the group was also predominated by boys – 52 (66.7% girls – 26). The characteristics of the group of children with allogeneic transplants and the types of initial diagnosis are presented in tab. 1.

The characteristics of the group of patients with autologous transplants and the initial diagnoses are presented.
Ultrasonography in the diagnosis of hemorrhagic cystitis – a complication of bone marrow transplantation in pediatric oncology patients

została przedstawiona w tab. 2. W tabeli uwzględniono rozpoznania u dzieci poddanych przeszczepom autogenicznym.

W pierwszym etapie badań przeprowadzono analizę częstotliwości występowania i charakteru powikłań występujących po transplantacjach komórek hematopoetycznych w zależności od płci, wieku, rodzaju choroby podstawowej, źródła komórek progenitorowych, rodzaju transplantaacji, a także ocenę wyników badań diagnostycznych obrazowych ze szczególnym uwzględnieniem ultrasonografii. W kolejnym etapie przeprowadzono analizę obrazów USG uzyskanych u 42 pacjentów z rozpoznaniem KZPM.

Częstość i rodzaj badanych powikłań po transplantacji komórek progenitorowych zamieszczono na ryc. 1.

Badania USG wykonano aparatem BK Pro Focus z użyciem prezentacji B-mode i technik dopplerowskich: kolorowego dopplera, dopplera mocy oraz duplex doppler. Obrazy USG rejestrowano w postaci dokumentacji.

The first stage of the study involved an analysis of the incidence and nature of complications occurring after hematopoietic stem cell transplantations depending on patients’ gender and age, the type of primary disease, the source of progenitor cells, and the type of transplant. It also included an evaluation of diagnostic imaging results with particular emphasis on ultrasound. In the second stage an analysis of ultrasound images obtained in 42 patients diagnosed with hemorrhagic cystitis was carried out.

The incidence and types of complications following a transplantation of progenitor cells are presented in fig. 1.

The ultrasound was performed with a BK Pro Focus apparatus with the use of the B-mode presentation and the Doppler techniques: color Doppler, power Doppler and duplex Doppler. The ultrasound images were recorded in the

Rozpoznanie	Liczba pacjentów	Odsetek pacjentów
Anemia aplastyczna	24	9,3%
Aplastic anemia		
Ostra białaczka limfoblastyczna	84	32,7%
Acute lymphoblastic leukemia		
Ostra białaczka mieloblastyczna	56	21,8%
Acute myeloblastic leukemia		
Chłoniaki	11	4,3%
Lymphomas		
Choroby metaboliczne	6	2,3%
Metabolic diseases		
Przewlekła białaczka mieloblastyczna	27	10,5%
Chronic myeloblastic leukemia		
Zespoły mielodysplastyczne	22	8,6%
Myelodysplastic syndromes		
Niedobory immunologiczne	22	8,6%
Immunodeficiencies		
Nowotwory narządowe	5	1,9%
Organic cancers		
Razem	257	100%

Tab. 1. Rozpoznania w grupie dzieci poddanych allotransplantacji

Rozpoznanie	Liczba pacjentów	Odsetek pacjentów
Ostra białaczka limfoblastyczna	2	2,6%
Acute lymphoblastic leukemia		
Ostra białaczka mieloblastyczna	11	14,1%
Acute myeloblastic leukemia		
Chłoniaki	9	11,5%
Lymphomas		
Nowotwory narządowe	56	71,8%
Organic cancers		
Razem	78	100%

Tab. 2. Rozpoznania w grupie dzieci poddanych autotransplantacji

Tab. 1. Diagnoses in the group of pediatric patients with allotransplants

Tab. 2. Diagnoses in the group of pediatric patients with autotransplants
zdjęciowej z wideodrukarki oraz w formie cyfrowej na dysku aparatu USG. Wybór głowic do badania zależał od wieku i wielkości pacjenta. Noworodki i małe dzieci badano głowicą o częstotliwości 3,3–5 MHz, dzieci starsze i dorosłych – głowicą 2,5–6 MHz. Dodatkowo wszystkich pacjentów badano głowicą liniową o częstotliwości 6–12 MHz.

W badaniu USG B-mode oceniano objętość pęcherza mocowego, grubość ściany, obecność nieprawidłowych struktur w jego świetle, w opcjach dopplerowskich unaczynienie ściany, charakter i parametry przepływu naczyniowego. Prawidłowa ściana wypełnionej pęcherza mocowego u dzieci wg Jequier i Rousseau ma grubość do 0,3 cm\(^2\). Przy ocenie grubości ściany pęcherza mocowego określano długość zajętego odcinka ściany. Oceniano wymiary skrzępów, przyjmując następujące kryteria: skrzepy małe – do 1 cm, średnie – 1–3 cm, duże – powyżej 3 cm, następnie ich liczbę (pojedyncze lub mnogie) i lokalizację (przyścienne lub centralne). W przypadku gdy skrzepy łączyły się ze sobą, oceniano wielkość całych „konglomeratów”, ewentualnie analizowano, jaka część objętości światła pęcherza mocowego była przez nie zajęta. Wyniki badań USG pęcherza mocowego porównywano ze skalą Drollera, przedstawioną w tab. 3. W trakcie badania zwracano uwagę na inne nieprawidłowości. Razem u wszystkich pacjentów przeanalizowano wyniki 843 badań USG jamy brzusznej.

Zdecydowana większość badań była wykonywana w okresie do 100 dni od momentu infuzji komórek hematopoetycznych (tzw. wczesny okres poprzeszczepowy).

Dane pacjentów wykorzystane w analizie statystycznej zgromadzono w bazie komputerowej w programie STATISTICA. Do analiz statystycznych wykorzystano pakiet STATISTICA 7.0 firmy StatSoft. Dla wszystkich form of photographic documentation from a videoprinter and in the digital form on an ultrasound disc. The choice of the transducer heads for testing depended on patient’s age and size. Infants and small children were tested with a 3.3–5.0 MHz frequency transducer head, older children and adults with a 2.5–6 MHz one. Additionally, all patients were tested with a 6–12 MHz linear transducer head.

The B-mode ultrasound test evaluated bladder capacity, the thickness of bladder walls and the presence of abnormal structures in its lumen, while the Doppler options tested the vascularity of the wall, as well as the nature and parameters of the vascular flow. According to Jequier and Rousseau, a normal wall of a full bladder in children has the thickness of 0.3 cm\(^2\). The assessment of the bladder wall thickness also included the evaluation of the length of the affected section of the wall. The sizes of clots were assessed according to the following criteria: small blood clots – up to 1 cm, medium ones – 1–3 cm, large ones – more than 3 cm. Next, the number of the clots (single or multiple) and their location (extending along the wall or located centrally) were determined. If the clots were connected, the size of the entire “conglomerate” was evaluated or it was analyzed how much of the volume of the bladder lumen it occupied. The results of the bladder ultrasound were compared with the Droller scale presented in tab. 3. In the course of the examination attention was also paid to other irregularities. Altogether, the results of 843 abdominal ultrasound tests were analyzed in all the patients.

A vast majority of the tests were performed during the period of up to 100 days after the infusion of hematopoietic cells (the so-called early post-transplant period).

The patients’ data used for the statistical analysis were stored in the STATISTICA computer database and the analyses were carried out using the STATISTICA 7.0 StatSoft package. The distribution type was checked for all

Ryc. 1. Najczęstsze powikłania po przeszczepie

Fig. 1 The most common complications following the transplantation

	aGVHD jelita	aGVHD wątroba	zapalenie pęcherza moczowego	VOD	hepatitis virusowe	niedrożność jelita	zapalenie pęcherza żółciowego
%	7%	13%	16%	14%	8%	7%	4%
liczba	132	50	42	33	8	7	4
zmiennych mierzalnych (ilościowych) sprawdzono typ rozkładu. Zastosowano test Shapiro–Wilk i test χ² (chi-kwadrat). Istotność różnic wartości średnich w więcej niż dwóch grupach (wyniki badań klinicznych w podgrupach o różnym stopniu nasilenia zmian) weryfikowano, korzystając z jednokryształowej analizy wariancji (ANOVA).

Wyniki

W analizowanej grupie dzieci KZPM stwierdzono u 42 (12,5%) badanych, których poddano transplantacji allogenicznej. U 31 (73,8%) dzieci był to przeszczep od dawcy niespokrewnionego, u 11 (26,2%) – od zgodnego rodzeństwa, co wiązało się ze stosowaniem najbardziej agresywnej profilaktyki przeciwko chorobie przeciwciał komórkowych (graft-versus-host disease, GvHD) w tym przypadku, gdy dawcą materiału przeszczepnego był dawca niespokrewniony.

W analizie statystycznej nie stwierdzono istotnej współzależności między płcią, rodzajem choroby podstawowej, źródłem komórek progenitorowych a występowaniem KZPM (p > 0,05). Zaobserwowano natomiast istotną statystycznie współzależność między wiekiem pacjentów a częstością występowania powikłań. Znamiennie częściej występowało ono u dzieci powyżej 10. roku życia, co przedstawiono w tab. 4.

W analizowanej grupie 42 dzieci najczęściej rozpoznawano 3. stopień ciężkości KZPM w skali Drollera – wynik potwierdzono u wszystkich dzieci badaniem USG. Stwierdzono go u 18 (42,9%) dzieci, stopień 2. – u 13 (30,9%), stopień 4. – measurable (quantitative) variables. The Shapiro–Wilk test and the χ² (chi-squared) test were applied. The significance of differences in mean values in more than two groups (the results of clinical trials in subgroups with varying degrees of the severity of changes) were verified using the one-way analysis of variance (ANOVA).

In the analyzed patient group hemorrhagic cystitis was found in 42 (12.5%) children who underwent allogeneic transplantation. Thirty one (73.8%) received a transplant from unrelated donors, 11 (26.2%) from compatible siblings, which required the most aggressive prophylaxis against graft-versus-host disease in the cases where the donor of the transplant material was unrelated.

The statistical analysis showed no significant correlation between patients’ gender, type of the underlying disease, the source of progenitor cells and the occurrence of hemorrhagic cystitis (p > 0.05). There was, however, a statistically significant correlation between the patients’ age and the incidence of the complication. It occurred significantly more often in children over the age of 10, as shown in tab. 4.

In the analyzed group of 42 children the most commonly diagnosed hemorrhagic cystitis severity grade was grade 3 on the Droller scale – this result was confirmed in ultrasound tests carried out in all the patients. Grade 3 was

KZPM	Grupa wiekowa	Łcznie			
	Age group	Total			
	Do 5 lat	5–10 lat	Powyżej 10 lat		
Tak	Below 5	5	27	42	
Nie	No	113	63	116	292
Ogółem	Total	124	68	143	334

χ² = 9,07; p = 0,0107.

Tab. 4. Korelacja KZPM z wiekiem pacjentów i wynik testu chi-kwadrat
Tab. 4. A correlation between hemorrhagic cystitis and patients’ age and the chi-square test result
u 6 (14,3%), a stopień 1. – u 5 (11,9%) dzieci. Liczba badań USG zależała od stopnia ciężkości KZPM, czasu jego trwania oraz współwystępowania innych powikłań po transplantacji i wynosiła 1–15 (średnio 4,6 badania). Trzeci i czwarty stopień zazwyczaj zawierały klinicznego KZPM w skali Drollera wiązał się ze zły stanem klinicznym chorego, a także wydłużeniem czasu hospitalizacji. W okresie tym wzrastało ryzyko wystąpienia poważnych powikłań, do których zaliczamy: uszkodzenie czynności nerek i ich nie-wydolność, pozapalenie zwężenie moczowodów, wodoner-cze, a w końcowym stadium zwłokięcie pęcherza moczo- wego z ograniczeniem jego pojemności(24,25,27–29).

U 41 spośród 42 dzieci rozpoznano pogrubienie ściany pęcherza mocowego powyżej 0,5 cm, średnio 1,0 cm (ryc. 2). U 14 dzieci pogrubienie miało charakter odcinkowy, u 22 obejmowało ścianę całego pęcherza mocowego (ryc. 4, 5). Forty one out of 42 children were diagnosed with the bladder wall thickening greater than 0.5 cm, 1.0 cm on average (fig. 2). In 14 patients it was sectional and in 22 the entire found in 18 (42.9%) children, grade 2 – in 13 (30.9%), grade 4 – in 6 (14.3%) and grade 1 – in 5 patients (11.9%). The number of ultrasound tests depended on the severity of hemorrhagic cystitis, its duration and co-occurrence of other complications following the transplantation and it was within 1–15 range (median of 4.6 tests). Grades 3 and 4 of hemorrhagic cystitis were associated with the poor clinical condition of the patient, as well as their longer hospitalization. During this period there was an increased risk of serious complications, such as renal malfunction and failure, post-inflammatory narrowing of the ureters, hydronephrosis, and in grade 4 the fibrosis of the bladder with reduced bladder capacity(24,25,27–29).

![Ryc. 2. Pogrubiała ściana pęcherza mocowego u 6-letniego chłopca z młodzieńcą białaczką mielomonocytową po przeszczepieniu komórek hematopoetycznych od matki – 3. stopień KZPM w skali Drollera](image2)

Fig. 2. Thickened bladder wall in a 6-year-old boy with juvenile myelomonocytic leukemia after hematopoietic cell transplant from the mother – grade 3 of hemorrhagic cystitis on the Droller scale

![Ryc. 3. Nierregularne pogrubienie ściany z hiperwaskularyzacją i niewielkimi skrzepami u 5-letniej dziewczynki z oстрой białaczką limfoblastyczną po transplantacji komórek progenitorowych od zgodnego rodzeństwa](image3)

Fig. 3. Irregular thickening of the wall with hypervascularization and small blood clots in a 5-year-old girl with acute lymphoblastic leukemia after progenitor cell transplant from a compatible sibling

![Ryc. 4. Odcinkowe pogrubienie ściany pęcherza mocowego z obrzękiem błony śluzowej i podłużowej, z hiperwaskularyzacją](image4)

Fig. 4. Segmental bladder wall thickening with mucosal and sub-mucosal edema and hypervascularization

![Ryc. 5. Pogrubiała do 1,1 cm ściana pęcherza mocowego w przebiegu KZPM 2. stopnia u 5-letniego chłopca z oстрой białaczką limfoblastyczną po transplantacji komórek progenitorowych od zgodnego rodzeństwa](image5)

Fig. 5. Bladder wall thickened to 1.1 cm in the course of grade 2 hemorrhagic cystitis in a 5-year-old boy with acute lymphoblastic leukemia after progenitor cell transplant from a compatible sibling
Na podstawie analiz statystycznych wykazano istotną zależność między zapalnie zmienioną, pogrubiałą ścianą pęcherza moczowego w obrazie USG a stopniem ciężkości KZPM, co przedstawiono w tab. 5.

U 4 pacjentów z 1. stopniem KZPM (80%) stwierdzono odcinkowe pogrubienie ściany, u 8 z 2. stopniem (61,5%) – pogrubienie całej ściany lub jej części. U 15 (83,3%) dzieci z 3. stopniem KZPM uwidoczniło się w zakresie całego pęcherza moczowego (ryc. 3). U wszystkich pacjentów z 4. stopniem w obrazie USG wykazano znacznego stopnia pogrubienie całej ściany pęcherza moczowego – powyżej 1,9 cm (ryc. 4, 5). Wyniki tych badań przedstawiono w tab. 6 i 7.

Badania przepływów w ścianie pęcherza moczowego wykazały istotną współzależność między wzrostem liczby naczyń a stopniem zaawansowania KZPM, co ujęto w tab. 8 i 9.

W stopniach 1. i 2. przekrwienie ściany stwierdzono w 9 na 18 (50%), natomiast w stopniach 3. i 4. – w 21 na 24 (87,5%) przypadków.

Badanie USG wykazało prawie 100-proc. czułość w wykrywaniu skrzepów w pęcherzu moczowym. Stwierdzono bladder wall was thickened (fig. 4, 5). The statistical analyses revealed a significant correlation between the inflamed, thickened bladder wall in the ultrasound image and the severity of hemorrhagic cystitis, as shown in tab. 5.

Four patients with grade 1 of hemorrhagic cystitis (80%) were diagnosed with segmental wall thickening, 8 with grade 2 (61.5%) with the thickening of the entire wall or a portion thereof. In 15 (83.3%) children with grade 3 of hemorrhagic cystitis changes were revealed in the entire bladder (fig. 3). In all patients with grade 4 the ultrasound image showed a significant degree of the thickening of the entire wall of the bladder – over 1.9 cm (figs. 4, 5). The results of these tests are shown in tabs. 6 and 7.

A study of vascular flows in the bladder wall showed a significant correlation between an increased number of vessels and the severity grade of hemorrhagic cystitis, which is presented in tabs. 8 and 9.

In grades 1 and 2 the hypervascularization of the wall was diagnosed in 9 out of 18 (50%) patients, while in grades 3 and 4 in 21 out of 24 (87.5%) cases.

The ultrasound examination showed a nearly 100-per cent sensitivity in the detection of blood clots in the bladder.

Table 5: A correlation between changes in the bladder wall (edema, loss of definition, increased diameter) in the ultrasound image and the clinical grade of hemorrhagic cystitis severity

Stopień ciężkości KZPM	Pogrubienie ściany	Liczba pacjentów	
	Tak (Yes)	Nie (No)	
1	4	1	5
2	13	0	13
3	18	0	18
4	6	0	6
Ogółem (Total)	41	1	42

$\chi^2 = 7.58; p = 0.056.$

Table 6: Types of changes in the bladder wall – “segmental” occupation or occupation of the entire bladder in various severity grades on the Droller scale

Stopień ciężkości KZPM	Odcinkowe	Całość	Liczba pacjentów
	Segmental	Whole	Number of patients
1	4	0	4
2	8	1	9
3	2	15	17
4	0	6	6
Ogółem (Total)	14	22	36

Table 7: The average thickness of the bladder wall in various grades of hemorrhagic cystitis

Stopień ciężkości KZPM	Średnia grubość ściany [cm]
	Average thickness of the wall [cm]
1	0.58
2	0.93
3	1.47
4	1.98

Table 8: Charakter zmian ściany pęcherza moczowego – zwięzło „odcinkowe” lub całego pęcherza moczowego w poszczególnych stopniach skali Drollera

Stopień ciężkości KZPM	Odcinkowe	Całość
1	4	0
2	8	1
3	2	15
4	0	6
Ogółem (Total)	14	22

Stopień ciężkości KZPM	Średnia grubość ściany [cm]
1	0.58
2	0.93
3	1.47
4	1.98

Table 9: Średnia grubość ściany w fazach KZPM

Stopień ciężkości KZPM	Średnia grubość ściany [cm]
1	0.58
2	0.93
3	1.47
4	1.98

Stopień ciężkości KZPM	Średnia grubość ściany [cm]
1	0.58
2	0.93
3	1.47
4	1.98
istotnie częstsze ich występowanie w cięższych postaciach KZPM, co potwierdzono badaniami endoskopowymi pęcherza moczowego (ryc. 6, 7).

Skrzepy były rozpoznawane głównie u pacjentów z 3. i 4. stopniem KZPM.

W badanej grupie dzieci lokalizacja skrzepów nie zawsze była zgodna ze skalą Drollera. U 5 pacjentów z 2. stopniem uwidoczniło się kliniczne skrzepy w ścień pęcherza moczowego, u 4 – przyściennie. U 6 (37,5%) chorych z 3. stopniem stwierdzono liczne skrzepy w ścień pęcherza, u 6 (37,5%) – zarówno w ścień, jak i przyściennie, u 4 (25%) – wyłącznie przyściennie.

U 6 dzieci z 4. stopniem uwidoczniiono masowe skrzepy wypełniające ponad 50% objętości pęcherza moczowego, co przedstawia tab. 10.

Stopień ciężkości KZPM	Wzmożony przepływ naczyniowy przez ścianę	Liczba pacjentów		
	Tak	Nie	No	
1	2	3	5	
2	7	6	13	
3	15	3	18	
4	6	0	6	
Ogółem	30	12	42	

\[\chi^2 = 8.04; p = 0.045. \]

Tab. 8. Korelacja między wzmożonym przepływem naczyniowym przez ścianę pęcherza moczowego a stopniem ciężkości KZPM

Tab. 8. A correlation between increased vascular flow through the bladder wall and hemorrhagic cystitis severity

Their presence was significantly higher in more severe forms of hemorrhagic cystitis, which was confirmed by endoscopic tests of the bladder (figs. 6, 7).

In the examined group of children the location of clots was not always compatible with the Droller scale. In 5 patients with grade 2 of hemorrhagic cystitis the clots were visualized in the lumen of the bladder, in 4 – extending along its walls. In 6 (37.5%) patients with grade 3 multiple clots were found in the lumen of the bladder, in another 6 (37.5%) – both in the lumen and extending along the walls, in 4 (25%) – only the latter.

In 6 children with grade 4 massive clots filling over 50% of the bladder volume were revealed, as shown in tab. 10.

Stopień ciężkości KZPM	Skrzepy w pęcherzu	Liczba pacjentów	
	Clots in the bladder	Number of patients	
	Tak	Nie	No
1	1	4	5
2	8	5	13
3	16	2	18
4	6	0	6
Ogółem	30	12	42

\[\chi^2 = 12.7; p = 0.005. \]

Tab. 9. Obecność skrzepów w pęcherzu moczowym w zależności od stopnia KZPM

Tab. 9. The presence of clots in the bladder depending on the severity grade of hemorrhagic cystitis
U 35 pacjentów badanie endoskopowe pęcherza moczo-
owego potwierdziło rozpoznanie ultrasonograficzne uszkó-
dzenia urothelium i zapalenia ściany pęcherza. U 7 dzieci
powikłaniem po KZPM było wodonerce obstrunne wywołane
utrudnieniem odpływu moczu z miedniczek nerkowych. Utrudnienie odpływu moczu i jego zastój w układach zbiorczych spowodowały upośledzenie funkcji
nerek manifestujące się wzrostem poziomu kreatyniny oraz mocznika w surowicy. Obrazowanie w technice B-mode
da dopplerowskiej wykazało znamienne poszerzenie ukladu
kielichowo-miedniczkowego i zmiany widma dopplerowsko-
skiego przepływu nerkowego ze wzrostem oporu naczyńo-
wego i wskaźnika oporu naczyniowego oraz odchyleniami
badaniami laboratoryjnymi. Zaburzoną strukturę miąższu
nerek stwierdzono u 17 spośród 42 pacjentów z KZPM
(40,5%), co zależało od stopnia ciężkości KZPM.

Omówienie

KZPM jako jedno z częstych powikłań po transplantacji
komórek hematopoeitycznych stanowi ważny problem kli-
niczny. Wśród 334 poddanych analizie pacjentów KZPM
różniano je u 42 dzieci (12,5%). Wszystkie dzieci w
badanej grupie, w których rozpoznało KZPM, były po
transplantacjach allogenicznych. W dostępnej literaturze
częstość tego powikłania po allo-HSCT waha się od 6 do
26,9% (1,3–5,9,12,14,15,20,21).

W przeprowadzonych analizach statystycznych nie stwier-
dzono istotnych zależności między płcią, rodzajem choroby
podstawowej, źródłem komórek progenitornych a występu-
aniem KZPM, co jest zgodne z doniesieniami innych
autorów (18,19–21).

Istotnym statystycznym czynnikiem ryzyka wystąpienia
KZPM był wiek powyżej 10 lat, co odnotowywali również
inni autorzy, choć różna była przyjęta granica wieku (16,27,29,30). W badaniach Gorczyńskiej (9,11) oraz Seber
i wsp. (21) starsze dzieci miały powyżej 10 lat, w badaniach
Konda i wsp. (19) – powyżej 6 lat.

Klinicznie KZPM manifestuje się najczęściej bólem okolicy
nadłonowej, częstomocem, krwionośnym oraz wydala-
niem różnej wielkości skrzepów krwi. Taki obraz kliniczny
uznaj pomimo transplantacji komórek hematopoeitycznych

Discussion

Hemorrhagic cystitis is one of the most frequent compli-
cations following hematopoietic stem cell transplantations
as and such it is an important clinical problem. Among
the 334 analyzed patients 42 children were diagnosed with
hemorrhagic cystitis (12.5%). All children in the study
group who were diagnosed with hemorrhagic cystitis had
undergone allogeneic transplantations. In the available lit-
erature, the incidence of this complication following allo-
HSCT ranges from 6 to 26.9% (1,3–5,9,12,14,15,20,21).

The conducted statistical analyses revealed no significant
correlations between patient’s sex, type of the underlying
disease, the source of progenitor cells, and the incidence of
hemorrhagic cystitis, which is consistent with the findings
made by other authors (16,19–21).

A statistically significant risk factor of the hemorrhagic cys-
titis incidence was the patient’s being over 10 years old,
which also noted by other authors, although a different age
limit was adopted (16,27,29,30). In the studies by Gorczyńska (9,11)
and Seber et al. (21) older children were more than 10 years
old, in the study by Konda et al. (19) they were over 6.

Hemorrhagic cystitis is clinically manifested mostly by
subpubic pain, urinary frequency, hematuria and excre-
tion of blood clots of various sizes. This clinical picture in
jest wskazaniem do wykonania badania USG jamy brzusznej, nerek i pęcherza moczowego. Wszystkie przeanalizowane przez autorów badania w tej grupie pacjentów były wykonane po wystąpieniu objawów sugerujących początek KZPM. W literaturze podkreślła się rolę ultrasonografii w diagnozie KZPM. W przenioskowym badaniu umożliwia ocenę morfologiczną ściany pęcherza moczowego, grubości i struktury ściany, pozwala na ocenę jej waskularyzacji. Ponadto pozwala na ocenę światła pęcherza moczowego, występujących skrępów krwi, ich liczby, wielkości i lokalizacji, a także ocenę nerek.

Objawy KZPM związane są z uszkodzeniem nablona pęcherza moczowego i procesem zapalnym w obrębie jego ścian, który ultrasonograficznie manifestuje się ich pogrubieniem, zatarciem i zmianą struktury ściany oraz hiperwaskularyzacją. W badanej grupie chorych pogrubienie ściany pęcherza moczowego stwierdzono u 97,6% badanych dzieci z klinicznie rozpoznawanym KZPM. W przeprowadzonej analizie statystycznej nie zaobserwowano korelacji pomiędzy wystąpieniem obrzęku ściany pęcherza moczowego a stopniem ciężkości KZPM w skali Drollera. Wynika to z faktu, iż pogrubienie ściany pęcherza moczowego wystąpiło u wszystkich pacjentów z KZPM. Należy więc przyjąć, że w badanej grupie jest to cecha charakterystyczna dla omawianego powikłania i na tej podstawie można wnioskować o rozpoznaniu, ale nie można różnicować stopnia zawałowania zmian. Zaobserwowano różnicę w lokalizacji obrzęku w zależności od zawałowania klinicznego KZPM. Odcinkowe pogrubienie ściany występuło częściej w leżęcych postaciach KZPM (stopnie 1. i 2.), natomiast obrzęk i wzrost średnicy ściany całego pęcherza moczowego z zajęciem tkanki otaczającej pęcherz moczowy – w ciężkich postaciach (stopnie 3. i 4.). W poszczególnych stopniach zawałowania klinicznego KZPM zgodnie ze skalą Drollera zmienia się znacząco średnia grubość ściany pęcherza mierzona w centymetrach – z około 0,6 cm w stopniach 1. i 2. do około 2 cm w stopniach 3. i 4. Można więc przyjąć, że z każdym stopniem ciężkości średnia grubość ściany pęcherza moczowego wzrasta o około 0,5 cm.

Podobne wyniki dotyczące zmian morfologicznych ściany pęcherza moczowego uzyskali w swoich badaniach Cartoni i wsp. (22), którzy przeanalizowali wyniki badań USG u 12 pacjentów z KZPM i porównali je z wynikami cystoskopii. W badaniach endoskopowych potwierdzili wzrost przekrwienia błony słuzowej, liczby teleangiektazji oraz zwiększenie powierzchni aktywnego krwawienia w pęcherzu moczowym u pacjentów z ciężkimi postaciami KZPM. McCarville w swojej pracy podkreśliła rolę badań USG dopplerowskich w ocenie stopnia ciężkości KZPM u chorych po przeszczepach szpiku (9,16).

U 71,4% dzieci w badaniu USG wykazano krwawienie do światła pęcherza moczowego z tworzącymi się skrępami w różnej fazie ewolucji. Podobną częstość występowania krwawienia ze ściany pęcherza moczowego i tworzenia się skrępów w jego świetle wykazali Cartoni i wsp. w swoich badaniach – odpowiednio 41,7% i 36% (22,24,28). Praca ta dotyczy jednak znacznie mniejszych grup pacjentów.

Similar results concerning the morphological changes of the bladder wall were obtained in the studies by Cartoni et al. (22), who analyzed the results of ultrasound tests in 12 patients with hemorrhagic cystitis and compared them with cystoscopy results. The endoscopy confirmed mucosal hyperemia, increase in telangiectasia, and enlarged area of active bleeding in the bladder in patients with severe forms of hemorrhagic cystitis. In her study McCarville emphasized the role of the Doppler ultrasound in the assessment of hemorrhagic cystitis severity in patients after bone marrow transplantation (9,16).

In 71.4% of pediatric patients the ultrasound revealed bleeding into the lumen of the bladder with the formation of clots in various stages of evolution. A similar incidence of bleeding from the wall of the bladder and the formation of clots in its lumen was demonstrated by Cartoni et al. in their studies – 41.7% and 36%, respectively (22,24,28). This work, however, concerns a much smaller group of patients.
Ultrasonography in the diagnosis of hemorrhagic cystitis – a complication of bone marrow transplantation in pediatric oncology patients

W przeprowadzonych analizach statystycznych stwierdzono związek między występowaniem powikłań pokrowotocznych a obecnością skrzepów krwi w pęcherzu moczowym oraz ich wielkością a stopniem zawałowania procesu. Powikłania pokrowoteczne z tworzeniem się skrzeplin, zajmujących powyżej 50% objętości pęcherza moczowego, występowały częściej w stopniach 3 i 4. Nie stwierdzono natomiast zależności lokalizacji skrzepów od stopnia ciężkości omawianego powikłania, tym bardziej że w wielu przypadkach skrzepy widoczne były zarówno przyścienne, jak i w świecie pęcherza moczowego.

W stanach chorobowych, w których dochodzi do uszkodzenia tkanki, wzrasta stężenie białka ostrej fazy (CRP), które eliminuje powstające wówczas substancje toksyczne. Ze względu na duże czułość i swoistość jest to parametr o istotnej wartości diagnostycznej, a zmiany procesu zapalnego mają szybkie odniesienie do jego stężenia w surowicy. U 88% dzieci ze zmianami w ścieśnieniu pęcherza moczowego stwierdzonymi w obrazie USG wykazano wzrost poziomu CRP, uzyskując istotny statystycznie związek pomiędzy badanymi cechami (p < 0,05). W innych dostępnych pracach nie badano takich zależności, a nieustannie potwierdzali ona wartość badań USG w diagnostyce KZPM.

W przebiegu KZPM może dojść do zastoju moczu w układach zbiorczych nerek. Powikłanie to nie było często w analizowanej grupie chorych. Analiza statystyczna 7 przypadków wykazała istotną zależność pomiędzy częstością występowania wodonercza a stopniem ciężkości KZPM. Na 42 dzieci z rozpoznanym KZPM zastąpić w układach zbiorczych nerek stwierdzono u 7 pacjentów (16,7%), przy czym powikłanie to dotyczyło chorych z 4. stopniem zawałowania w skali Drollera. Najbardziej prawdopodobną przyczyną wystąpienia wodonercza w tych przypadkach było zamknięcie ujść moczowodów przez konglomeraty skrzepów. Wodonercze wystąpiło u 5 pacjentów z niższym stopniem zawałowania KZPM, jednak u dzieci tych proces zapalny przedłużał się. W wyniku przewlekłego procesu zapalnego doszło do zaburzeń kruczliwości pęcherza moczowego. Ograniczona czynność skurczowo-rozkurczowa pęcherza moczowego doprowadziła do zmniejszenia jego pojemności, refluksu pęcherzowo-moczowodowego i zastoju moczu. Długo utrzymywały się błędy moczowe z nerek wywołane KZPM u 8 dzieci skutkowało upośledzonym function of nerek manifestującym się nieprawidłowymi wartościami w badaniach laboratoryjnych (stężenia kreatyniny w surowicy i GFR – wskaźnik filtracji kłębkowej). Czynniki nefrotokscyczne, terapia lekami uszkadzającymi nerek i/lub lekami o wąskim spektrum terapeutycznym wydalany głównie przez nerkę, wirusy nefrotokscyczne, m.in. BKV, wstrząs hipowolemiczny czy wstrząs septyczny doprowadziły u 10 dzieci do uszkodzenia mięśnia nerek, które w badaniu USG objawiało się zatarciem echostruktury mięśnia nerek i zmianami widma dopplerowskich przepływów nerkowych. Do leków najczęściej wywołujących KZPM należą cyklofosfamid oraz busulfan. Oba leki (12 and 11, respectively) and the percentage of patients with milder forms of hemorrhagic cystitis is also bigger.

The performed statistical analyses revealed a correlation between the occurrence of posthemorrhagic complications in which blood clots of various sizes were present in the bladder and the severity grade of hemorrhagic cystitis. Posthemorrhagic complications with the formation of clots taking up over 50% of the volume of the bladder were more common in grades 3 and 4. However, a correlation between the location of the clots and the severity of the complication was not observed, especially since in many cases the clots were visible both extending along the walls of the bladder as well as in its lumen.

In diseases involving tissue damage there is an increasing concentration of acute phase protein (CRP) which eliminates the generated toxic substances. Due to its high sensitivity and specificity, it is an important diagnostic parameter and the changes in the inflammatory process may be quickly referred to its concentration in the serum. Eighty-eight percent of pediatric patients with changes in the bladder wall detected in the ultrasound were diagnosed with a higher level of CRP, which demonstrated a significant correlation between the measured features (p < 0.05). In other available studies such a correlation was not investigated, which has undoubtedly confirmed the value of ultrasonography in the diagnosis of hemorrhagic cystitis.

Hemorrhagic cystitis may lead to retention of urine in the renal collecting systems. This complication was not frequent in the analyzed patient group. A statistical analysis of 7 cases showed a significant correlation between the incidence and severity of hydronephrosis and hemorrhagic cystitis. Out of 42 children diagnosed with hemorrhagic cystitis urine retention in the renal systems was observed in 7 patients (16,7%), and the complication concerned patients with severity grade 4 on the Droller scale. The most likely cause of hydronephrosis in these cases was the closure of the mouths of the ureters by conglomerates of clots. Hydronephrosis occurred in 5 patients with a lower degree of hemorrhagic cystitis severity, but the inflammatory process was prolonged in these cases. The chronic inflammation resulted in impairing bladder contractility. Limited systolic and diastolic functions of the bladder led to a reduction of its capacity, vesicourethral reflux and urinary stagnation. In 8 children a prolonged impeded outflow of urine from the kidneys caused by hemorrhagic cystitis resulted in impaired renal function manifested as abnormalities in laboratory tests (creatinine concentrations in the serum and GFR – glomerular filtration rate). Nephrotoxic agents, treatment with the use of kidney-damaging drugs and/or drugs with a narrow therapeutic range exerted mainly through the kidneys, nephrotoxic viruses including BKV, hypovolemic shock or septic shock resulted in the damage to renal parenchyma in 10 patients, which in the ultrasound imaging was manifested as the loss of definition of the echostructure of renal parenchyma and changes in the Doppler spectrum of renal flow. Drugs that most commonly cause hemorrhagic cystitis include cyclophosphamide and busulfan. Both are used
Akroleina działa toksycznie na nablonek z komórka przejściowych wyścielających drogi moczowe i może doprowadzić do uszkodzenia miedniczek nerkowych, moczowodów, pęcherza moczowego oraz cewki moczowej.

Ponieważ moczu, wraz z zawartymi w nim substancjami toksycznymi, najdłużej znajduje się w pęcherzu moczowym, to właśnie tam dochodzi do największych uszkodzeń. Stopień podrażnienia nabloneka przejściowego zależy od czasu jego kontaktu ze związkami toksycznymi, a także od ich stężenia w moczu. Im dłuższy czas i im większe stężenie substancji drażniących, tym masywniejsze uszkodzenia ściany pęcherza moczowego. Głównym metabolitem busulfanu w moczu jest metanosulfonowy, który w 10–50% jest wydalany w formie niezmienionej przez nerek. Len indukuje hiperplazję nabloneka pęcherza moczowego, powodując jego uszkodzenie.

W niektórych procedurach przygotowujących do przeszczepienia stosowane jest napromieniowanie całego ciała (total body irradiation, TBI), które również nie pozostaje obojętne dla poszczególnych narządów. Nie można więc wykluczyć roli promieniowania jonizującego w fizykochimicznym uszkodzeniu nabloneka pęcherza moczowego i w etiologii stanu zapalnego. Według niektórych autorów rola TBI w fizycznym uszkodzeniu urothelium jest niewielka, istotnie jednak wpływa ono na upośledzenie odporności naświetlanego organizmu, który staje się bardziej podatny na reaktywację lub infekcję novo wirusami o działaniu cytopatycznym. Do wirusów odgrywających największy róÅł w etiologii KZPM należą ludzkie wirusy poliomielityczne BK i JC. Jest to rodzina wirusów zaliczana do grupy Papovaviridae. Dużą rzadziej u pacjentów z krwotocznym zapałeniem pęcherza moczowego identyfikuje się inne wirusy, takie jak JCV, ADV czy SV-40.

Wirus BK należy do wirusów bezotoczkowych o ikosedralnym kapsydie i genomie zawierającym koli DNA. Jest wirusem szeroko rozpowszechnionym w przyrodzie. Do pierwotnej infekcji BKV dochodzi najczęściej w dzieciństwie drogą kropelkową, rzadziej drogą flekalno-oralną. U 50% dzieci 3–4-letnich stwierdza się przebiegania swoiste przeciwcia BKV, wśród dorosłych odsetek ten sięga nawet 80%.

Pierwotne zakażenia BKV przebiegają najczęściej z objawami łagodnej infekcji górnych dróg oddechowych lub bezobjawowo. Wirusy namazują się w nabłonku dróg oddechowych, a następnie z krwią dostają się do układu moczowego. U pacjentów w immunosupresji (w tym również po przeszczepieniu komórek macierzystych krwi) in high-dose chemotherapy prior to hematopoietic stem cell transplantation. They belong to chemotherapeutic agents from the group of alkylating drugs used in the treatment of neoplastic diseases. Active metabolites of the drug, 4-hydroxycyclophosphamide and aldophosphamide are transported through the bloodstream to tumor cells. Aldophosphamide undergoes spontaneous fission into phosphoramid and acrolein, which are excreted in the urine.

Acrolein has toxic effect on transitional epithelium that lines the urinary tract and can cause damage to the renal pelvis, ureters, bladder and urethra.

Since urine, along with the toxic substances it contains, remains in the bladder the longest, it is there where the greatest damage is done. The degree of irritation of the transitional epithelium depends on the time of its contact with toxic compounds, as well as on their concentration in the urine. The longer and higher the concentration of irritants, the more massive damage is done to the bladder wall. The main metabolite of busulfan in the urine is methane sulfonic acid, which in 10–50% is excreted through kidneys unchanged. This drug induces hyperplasia of the bladder epithelium, resulting in its damage.

Some transplantation preparatory procedures involve total body irradiation (TBI), which does not remain indifferent to the individual organs. Hence, we cannot exclude the role of ionizing radiation in the physicochemical damage of the urothelium and in the etiology of the inflammatory process. According to some authors, the role of TBI in the physiological damage to the urothelium is small, but significantly compromises the immune system of the irradiated organism which becomes more susceptible to reactivation or de novo infection with cytopathic viruses. Viruses that play the biggest role in the etiology of hemorrhagic cystitis include polyoma BK and JC human viruses. They belong to a family of viruses known as Papovaviridae group. Much more rarely, patients with hemorrhagic cystitis are diagnosed with other viruses, such as JCV, ADV or SV-40.

The BK virus is a non-enveloped virus with an icosahedral capsid and a genome containing circular DNA. It is widespread in nature. Primary infection with BKV occurs mostly in childhood by droplet transmission, rarely via the faecal-oral route. In 50% of 3–4-year-old children specific antibodies against BKV are found, while in adults this percentage is as high as 80%.

Primary BKV infections occur frequently accompanied by symptoms of mild upper respiratory tract infections or show no symptoms at all. The viruses multiply in the epithelium of the respiratory tract, then enter the urinary system through the bloodstream. In patients with immunosuppression (including those after blood stem cells transplants) virus activation, viremia and viruria may occur. In immunocompromised patients the disease progresses, which is associated with viral replication in the nuclei of infected cells. BKV proliferation induces a cytopathic effect and...
może dojść do ukazywania wirusa, wiremii i wirurii. U pacjentów z obniżoną odpornością następuje rozwój choroby, co wiąże się z replikacją wirusa w jądrach zakażonych komórek. Namnożenie się BKV wywołuje efekt cytotoxiczny i liżę komórek[15,28,33–35]. Reinfekcja BKV może być bezbożowna, może też przebiegać z objawami uszkodzenia komórek i silną reakcję zapalną błoną śluzową pęcherza moczowego, wywołując objawy KZPM[15,33].

Reakcja zapalna ściany pęcherza moczowego i manifestacja kliniczna choroby zależą od stopnia immunosupresji pacjenta oraz intensywności replikacji wirusa. Im głębsza immunoinsupresja i im więcej kopii wirusa stwierdzanych jest w moczu pacjenta, tym cięższy przebieg kliniczny zapalenia pęcherza moczowego. Przezcie latentnych wirusów w formy aktywne nie zawsze wywołuje kliniczne objawy KZPM. Kliniczne cechy KZPM obserwowano tylko u niespełna 50% pacjentów po transplantacjach z potwierdzoną wirurią[15,33–35]. W wielu przypadkach dochodzi do uszkodzenia nerek, co potwierdzono u 17 chorych. Rozpoznanie ustalone w oparciu o badanie USG nerek. Zmiany strukturalne miażdży nerek zostały we wszystkich przypadkach potwierdzone badaniami laboratoryjnymi. Zmiany w obrązcie USG nerek stwierdzono istotnie częściej u dzieci z cięższymi postaciami KZPM, przy czym nie było ono widoczne w pierwszych badaniach – najczęściej ujawniało się w kolejnych. Istotnie częstszego upośledzenie funkcji nerek z widocznymi nieprawidłowością w badaniu USG u dzieci z 3. i 4. stopniem w skali Drollera może wynikać z masowej infekcji wirusami poloma BK, które oddziałują na uszkodzony kondycjonowanie nabłonków dróg mocowych.

Konflikt interesów

Autorzy nie zgłaszają żadnych finansowych ani osobistych powiązań z innymi osobami lub organizacjami, które mogłyby negatywnie wpłynąć na treść publikacji oraz rościć sobie prawo do tej publikacji.

Piśmiennictwo/References

1. Kowalczyk JR, Dudkiewicz E, Balwierz W, Boguszewski Droller M, Sokal R, Prazmo A: Incidence of childhood cancers in Poland in 1995–2009. Med Sci Monit 2012; 8: CR587–CR590.
2. Kramarów E, Stiller CA: The international classification of childhood cancer. Int J Cancer 1996; 68: 739–765.
3. Pizzo PA, Poplack DG (eds.): Principles and Practice of Pediatric Oncology. Lippincott Williams & Wilkins, Philadelphia 2011.
4. Chybicka A, Sawicz-Birkowska K (eds.): Onkologia i hematologia dziecięca. Wydawnictwo Lekarskie PZWL, Warszawa 2008.
5. Ljungman P, Urbano-Ispizua A, Cavazzana-Calvo M, Demirer T, Dini G, Einsele H et al.: European Group for Blood and Marrow: Allogeneic and autologous transplantation for haematological diseases, solid tumours and immune disorders: definitions and current practice in Europe. Bone Marrow Transplant 2006; 37: 439–449.
6. Myers KC, Davies SM: Hematopoietic stem cell transplantation for bone marrow failure syndromes in children. Biol Blood Marrow Transplant 2009; 15: 279–292.
7. Espigado I, Marin-Niebla A, Perez-Hurtado JM, Rios E, Carmona M, Plaza E et al.: Hematopoietic stem cell transplantation in childhood: reduction in mortality and improvement of survival over the years. Transplant Proc 2005; 37: 1555–1556.
8. Wójcik B, Kowalczyk JR, Chybicka A, Wachowiak J, Drabko K, Zaucha-Prazmo A et al.: [Autologous stem-cell transplantations in children with non-Hodgkin lymphomas]. Przegl Lek 2004; 61 Suppl 2: 53–56.
9. Gorczyńska E: Krwotoczne zapalenie pęcherza jako problem epidemiologiczny i kliniczny u dzieci po przeszczepieniu komórek hematopoetycznych. Rozprawa habilitacyjna. Wrocław 2008.
10. Droller MJ, Saral R, Santos G: Prevention of cyclophosphamide-induced hemorrhagic cystitis. Urology 1982; 20: 256–258.
11. Gorczyńska E, Turkiewicz D, Rybka K, Toporski J, Kalwak K, Dyla A et al.: Incidence, clinical outcome, and management of virus-induced hemorrhagic cystitis in children and adolescents after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 2005; 11: 797–804.
12. Azzi A, Fasci R, Bosi A, Ciappi S, Zakrzewska K, de Santis R et al.: Monitoring of polymavirus BK viruria in bone marrow transplantation patients by DNA hybridization assay and by polymerase chain reaction: an approach to assess the relationship between BK viruria and hemorrhagic cystitis. Bone Marrow Transplant 1994; 14: 235–240.
13. Eser B, Angelucci E, Baronzio D, Tomassucci M, Giardini C, Gazzin J: Hemorrhagic cystitis after allogeneic bone marrow transplantation for thalassemia. Bone Marrow Transplant 1993; 12 Suppl 1: 93–95.
14. Russell SJ, Vowels MR, Vale T: Haemorrhagic cystitis in paediatric bone marrow transplant patients: an association with infective agents, GVHD and prior cyclophosphamide. Bone Marrow Transplant 1994; 13: 533–539.

15. Erard V, Kim HW, Corey L, Limaye A, Huang ML, Myerson D et al.: BK DNA viral load in plasma: evidence for an association with hemorrhagic cystitis in allogeneic hematopoietic cell transplant recipients. Blood 2005; 106: 1130–1132.

16. McCarville MB, Hoffer FA, Gingrich JR, Jenkins JJ 3rd: Imaging findings of hemorrhagic cystitis in pediatric oncology patients. Pediatr Radiol 2000; 30: 131–138.

17. Decker DB, Karam JA, Wilcox DT: Pediatric hemorrhagic cystitis. J Pediatr Urol 2009; 5: 254–264.

18. Kirsten D, Hartert A, Willenbacher N, Basara N, Blau A, Fauser A et al.: Incidence and outcome of BK-Virus-induced hemorrhagic cystitis in patients receiving allogeneic BMT/PBSCT. Bone Marrow Transplant 1999; 23 Suppl 1: S117.

19. Kondo M, Kojima S, Kato K, Matsuyama T: Late-onset hemorrhagic cystitis after hematopoietic stem cell transplantation in children. Bone Marrow Transplant 1998; 22: 995–998.

20. Lee GW, Lee JH, Choi SJ, Kim S, Seol M, Kim WK et al.: Hemorrhagic cystitis following allogeneic hematopoietic cell transplantation. Bone Marrow Transplant 1999; 23 Suppl 1: S117.

21. Seber A, Shu XO, Defor T, Sencer S, Ramsay N: Risk factors for severe hemorrhagic cystitis after bone marrow transplantation. Bone Marrow Transplant 1999; 23: 35–40.

22. Cartoni C, Arcese W, Avvisati G, Corinto L, Capua A, Meloni G: Role of ultrasonography in the diagnosis and follow-up of hemorrhagic cystitis after bone marrow transplantation. Bone Marrow Transplant 1993; 12: 463–467.

23. Shah AI, Lenarsky G, Kapoor N, Crooks GM, Kohn DB, Parkman R et al.: Busulfan and cyclophosphamide as a conditioning regimen for pediatric acute lymphoblastic leukemia patients undergoing bone marrow transplantation. J Pediatr Hemol Oncol 2004; 26: 91–97.

24. Jequier S, Rousseau O.: Sonographic measurements of the normal bladder wall in children. AJR Am J Roentgenol 1987; 149: 563–566.

25. Hassan Z, Reemberger M, Svenberg P, Elbender M, Omazic B, Mattsson J et al.: Hemorrhagic cystitis: a retrospective single-center survey. Clin Transplant 2007; 21: 659–667.

26. Brock N, Stekar J, Pohl J, Niemeyer U, Scheffler G: Acrolein, the causative factor of urototoxic side-effects of cyclophosphamide, ifosfamide, trofosfamide and sudiofamide. Arzneimittelforschung 1979; 29: 659–661.

27. Hale GA, Rochester RJ, Heslop HE, Krance RA, Gingrich JR, Benaim E et al.: Hemorrhagic cystitis after allogeneic bone marrow transplantation in children: clinical characteristics and outcome. Biol Blood Marrow Transplant 2003; 9: 698–705.

28. Hassan Z, Reemberger M, Svenberg P, Elbender M, Omazic B, Mattsson J et al.: Hemorrhagic cystitis: a retrospective single-center survey. Clin Transplant 2007; 21: 659–667.