Exhausting pants graphs of punctured spheres by finite rigid sets

Rasimate Maungchang

May 12, 2017

Abstract

Let $S_{0,n}$ be an n-punctured sphere. For $n \geq 4$, we construct a sequence $(X_i)_{i \in \mathbb{N}}$ of finite rigid sets in the pants graph $P(S_{0,n})$ such that $X_1 \subset X_2 \subset \ldots \subset P(S_{0,n})$ and $\bigcup_{i \geq 1} X_i = P(S_{0,n})$.

1 Introduction

Let $S = S_{g,n}$ be an orientable surface of genus g with n punctures and let $\text{Mod}^\pm(S) = \pi_0(\text{Homeo}(S))$ be the extended mapping class group. Ivanov [6], Korkmaz [7], and Luo [8] proved that, for most surfaces, the curve complexes $\mathcal{C}(S)$ is rigid, that is, $\text{Aut}(\mathcal{C}(S)) \cong \text{Mod}^\pm(S)$. In [2], Aramayona and Leininger proved that curve complexes contain finite rigid sets; meaning a finite subgraph such that every simplicial embedding is a restriction of an element of $\text{Mod}^\pm(S)$. Later in [3], they showed that there exists an exhaustion of the curve complexes by finite rigid sets.

For the pants graphs $P(S)$, the rigidity property was proved by Margalit [9] using the result of Ivanov, Korkmaz, and Lou. Aramayona [10] extended Margalit’s result to prove a stronger form of rigidity, that is, if S and S' are surfaces such that the complexity of S is at least 2, then every injective simplicial map $\phi : P(S) \to P(S')$ is induced by a π_1-injective embedding $f : S \to S'$. In [10], we refined Aramayona’s result by showing that the pants graphs of punctured spheres are finitely rigid.

In this paper, we modify the tools Aramayona and Leininger built in [3], together with the finite rigid sets we constructed [10], to prove that we can exhaust the pants graphs of punctured spheres by finite rigid sets:
Theorem 1.1. Let $S_{0,n}$ be an n-punctured sphere. For $n \geq 4$, there exists a sequence of finite rigid sets $X_1 \subset X_2 \subset \ldots \subset \mathcal{P}(S_{0,n})$ such that $\bigcup_{i \geq 1} X_i = \mathcal{P}(S_{0,n})$.

Outline of the paper. Section 2 contains the relevant background and definitions. In Section 3 we describe the adjustments to the tools Aramayona and Leininger [3] developed to enlarge their rigid sets in the curve complex so we can use them in our setting. We use these tools to prove the main theorem in Section 4.

Acknowledgments. The author would like to thank Christopher J. Leininger for his guidance, useful conversations, and suggestions.

2 Background and definitions

This section contains necessary definitions and background restricted to punctured spheres, for general settings see [1] and [9]. Let $S = S_{0,n}$ be an n-punctured sphere. A simple closed curve on S is essential if it does not bound a disk or a once-punctured disk on S. Throughout this paper, a curve is a homotopy class of essential simple closed curves on S. Given two curves γ and γ', we denote their geometric intersection number by $i(\gamma, \gamma')$, which is the minimum number of transverse intersection points among the representatives of γ and γ'. The two curves are disjoint if $i(\gamma, \gamma') = 0$.

A multicurve Q is a set of pairwise distinct, disjoint curves on S. For a given multicurve Q, the nontrivial piece $(S - Q)_0$ of the complement of the curves in Q is the union of the non thrice-punctured sphere components of the complement. We call a thrice-punctured sphere, a pair of pants.

A pants decomposition P is a maximal multicurve: the complement in S is a disjoint union of pairs of pants. A pants decomposition always contains $n - 3$ curves and we call this number the complexity $\kappa(S)$ of S. The deficiency of a multicurve Q is the number $\kappa(S) - |Q|$. If Q is a deficiency-1 multicurve then $(S - Q)_0$ is homeomorphic to $S_{0,4}$.

Let P and P' be pants decompositions of S. We say that P and P' differ by an elementary move if there are curves α, α' on S and a deficiency-1 multicurve Q such that $P = \{\alpha\} \cup Q, P' = \{\alpha'\} \cup Q$ and $i(\alpha, \alpha') = 2$; see Figure 1 for an example of elementary moves.

The pants graph $\mathcal{P}(S)$ of S is a graph with the set of vertices corresponding to pants decompositions. Two vertices are connected by an edge if the corresponding pants decompositions differ by an elementary move. The
pants graph $\mathcal{P}(S)$ is connected and the pants graph $\mathcal{P}(S_{0,4})$ of a 4-punctured sphere is isomorphic to a Farey graph, see [5].

A path in $\mathcal{P}(S)$ is an edge path determined by a sequence of distinct adjacent vertices of $\mathcal{P}(S)$. A cycle in $\mathcal{P}(S)$ is a subgraph homeomorphic to a circle. We call a cycle, a triangle, rectangle, or pentagon if it has 3, 4, or 5 vertices, respectively.

Let $X \subset \mathcal{P}(S_{0,n})$ and $\phi : X \to \mathcal{P}(S_{0,m})$ be an injective simplicial map. We say that a π_1-injective embedding $f : S_{0,n} \to S_{0,m}$ induces ϕ if there is a deficiency-$(n-3)$ multicurve Q on $S_{0,m}$ such that $f(S_{0,n}) = (S_{0,m} - Q)_0$ and the simplicial map

$$f^Q : \mathcal{P}(S_{0,n}) \to \mathcal{P}(S_{0,m}),$$

defined by $f^Q(u) = f(u) \cup Q$ satisfies $f^Q(u) = \phi(u)$ for any vertex $u \in X$.

Definition 2.1. For $n \geq 4$, we say that $X \subset \mathcal{P}(S_{0,n})$ is rigid if for any punctured sphere $S_{0,m}$ and any injective simplicial map

$$\phi : X \to \mathcal{P}(S_{0,m}),$$

there exists a π_1-injective embedding $f : S_{0,n} \to S_{0,m}$ that induces ϕ.

For $n = 4$, the isotopy class of f is unique up to precomposing by an element $\sigma \in \text{Mod}(S_{0,4})$ inducing the identity on $\mathcal{P}(S_{0,4})$.

For $n \geq 5$, the isotopy class of f is unique.

The following theorem is a refinement of Aramayona’s result [11] that we proved in [10].

Theorem 2.2. For $n \geq 4$, there exists a finite rigid subgraph $X_n \subset \mathcal{P}(S_{0,n})$.

![Figure 1: Example of an elementary move.](image)
3 Tools for enlarging rigid sets

This section contains the definitions and theorems Aramayona and Leininger \cite{ar} developed to enlarge their rigid sets in the curve complexes. We make some necessary adjustments to them in order to enlarge rigid sets in the pants graphs.

Definition 3.1. Let $n \geq 5$. A set $X \subset \mathcal{P}(S_{0,n})$ is said to be **weakly rigid** if whenever $f_1, f_2 : S_{0,n} \to S_{0,m}$ are π_1-injective embeddings satisfy

$$f_1^{Q_1}|_X = f_2^{Q_2}|_X,$$

for some deficiency-$(n-3)$ multicurves Q_1 and Q_2 on $S_{0,m}$, then

$$Q_1 = Q_2$$

up to isotopy.

It is easy to see from the definition that a superset of a weakly rigid set is also weakly rigid.

Lemma 3.2. For $n \geq 5$, let $X_1, X_2 \subset \mathcal{P}(S_{0,n})$ be rigid sets. If $X_1 \cap X_2$ is weakly rigid then $X_1 \cup X_2$ is rigid.

Proof. Let $\phi : X_1 \cup X_2 \to \mathcal{P}(S_{0,m})$ be an injective simplicial map. Since X_i is rigid, there exist a π_1-injective embedding $f_i : S_{0,n} \to S_{0,m}$ and a deficiency-$(n-3)$ multicurve Q_i such that $f_i^{Q_i}|_{X_i} = \phi|_{X_i}$. Hence $f_1^{Q_1}|_{X_1 \cap X_2} = f_2^{Q_2}|_{X_1 \cap X_2}$. The weakly rigidity of $X_1 \cap X_2$ implies that $Q_1 = Q_2 = Q$ and $f_1 = f_2 = f$. Therefore f is a π_1-injective embedding such that $f^{Q}|_{X_1 \cup X_2} = \phi$ which implies the rigidity of $X_1 \cup X_2$. \hfill \square

The following proposition is the key to enlarge rigid sets.

Proposition 3.3. For $n \geq 5$, let $\mathcal{X} \subset \mathcal{P}(S_{0,n})$ be a finite rigid set such that $\text{Mod}(S_{0,n}) \cdot \mathcal{X} = \mathcal{P}(S_{0,n})$. Suppose there exists a finite subset C of curves on $S_{0,n}$ such that:

1. The set $\{T_{\alpha}^{i} \mid \alpha \in C\}$ generates $\text{Mod}(S_{0,n})$;
2. $\mathcal{X} \cap T_{\alpha}^{i}(\mathcal{X})$ is weakly rigid, for all $\alpha \in C$, and $i \in \{-1, 1\}$.

Then there exists a sequence $\mathcal{X} = \mathcal{X}_1 \subset \mathcal{X}_2 \subset ... \subset \mathcal{X}_n \subset ...$ such that each \mathcal{X}_i is a finite rigid set, and

$$\bigcup_{i \in \mathbb{N}} \mathcal{X}_i = \mathcal{P}(S_{0,n}).$$
Proof. Since \mathcal{X} is rigid and a half twist is a homeomorphism, $T^i_\alpha(\mathcal{X})$ is rigid for all $\alpha \in C$, and $i \in \{-\frac{1}{2}, \frac{1}{2}\}$. Given $\alpha, \beta \in C$ and $i, j \in \{-\frac{1}{2}, \frac{1}{2}\}$. By assumption (2) and by applying Lemma 3.2 we see that $\mathcal{X} \cup T^i_\alpha(\mathcal{X})$ is rigid. Recall that a superset of a weakly rigid set is also weakly rigid. Hence $(\mathcal{X} \cup T^i_\alpha(\mathcal{X})) \cap T^j_\beta(\mathcal{X})$, which contains $\mathcal{X} \cap T^j_\beta(\mathcal{X})$, is weakly rigid. Apply Lemma 3.2, we see that $\mathcal{X} \cup T^i_\alpha(\mathcal{X}) \cup T^j_\beta(\mathcal{X})$ is weakly rigid. By repeating above arguments, the set $\mathcal{X}_n := \mathcal{X} \cup \bigcup_{\alpha \in C} T^{\pm \frac{1}{2}}_\alpha(\mathcal{X}_n)$ is rigid. We define
\[
\mathcal{X}_{n+1} := \mathcal{X}_n \cup \bigcup_{\alpha \in C} T^{\pm \frac{1}{2}}_\alpha(\mathcal{X}_n),
\]
for $n \geq 2$. Since a weakly rigid set $\mathcal{X} \cap T^i_\alpha(\mathcal{X})$ is a subset of $\mathcal{X}_n \cap T^i_\alpha(\mathcal{X}_n)$, $\mathcal{X}_n \cap T^i_\alpha(\mathcal{X}_n)$ is weakly rigid. Again, by applying 3.2 repeatedly and use induction, we conclude that \mathcal{X}_n is rigid for all n. Then the first claim is proved.

Since $\{T^{\pm \frac{1}{2}}_\alpha \mid \alpha \in C\}$ generates $\text{Mod}(S_{0,n})$ and $\text{Mod}(S_{0,n}) \cdot \mathcal{X} = P(S_{0,n})$,
\[
\bigcup_{i \in \mathbb{N}} \mathcal{X}_i = P(S_{0,n}).
\]

\[\Box\]

4 The proof of the main theorem

We note that for $n \leq 3$, the pants graphs $P(S_{0,3})$ is empty. We give a separate proof for $n = 4$ as follow.

Proof of Theorem 1.1 for $S = S_{0,4}$. The pants graph of $S_{0,4}$ is isomorphic to the Farey graph. Any triangle in $S_{0,4}$ is rigid as proved in \cite{10}. Then we let \mathcal{X}_1 to be a triangle. Each edge in a pants graph of any punctured sphere is contained in exactly two triangles which are both in the same Farey graph. Then we can define \mathcal{X}_{n+1} inductively; let \mathcal{X}_{n+1} be an enlargement of \mathcal{X}_n obtained by attaching one more triangle to each edge of \mathcal{X}_n contained in only one triangle. Hence \mathcal{X}_{n+1} is rigid for all $n \geq 1$, and by the construction, $\bigcup_{i \in \mathbb{N}} (\mathcal{X}_i) = P(S_{0,4})$. We conclude that sequence $(\mathcal{X}_n)_{n \in \mathbb{N}}$ is an exhaustion of $P(S_{0,4})$. \[\Box\]
For \(n \geq 5 \), we begin by recalling the construction of finite rigid sets \(X_n \) in [10]. First we construct \(S_{0,n} \) with a set of curves, then define \(X_5 \), and finally, define \(X_n \) for \(n \geq 6 \).

Consider a regular \(n \)-gon with the \(n \) vertices removed and label the sides as \(1, 2, \ldots, n \), cyclically. For each non-adjacent pair of sides of the \(n \)-gon, draw a straight line segment to connect the two sides. Then double the \(n \)-gon to obtain \(S_{0,n} \) and a set of curves \(\Gamma_n \), see Figure 2 for the case of \(S_{0,8} \) and Figure 3 for the case of \(S_{0,5} \). Let \(a_{i,j} \in \Gamma_n \) be the curve connecting the \(i \)th side to the \(j \)th side of \(S_n \). We call \(a_{i,j} \) such that \(i - j \equiv \pm 2 \mod n \), a chain curve. Compare to [2, Section 3].

Let \(Z_n \) be a subgraph of \(P(S_{0,n}) \) induced by the set of vertices corresponding to pants decompositions consisting of curves from \(\Gamma_n \).

For \(P(S_{0,5}) \), we defined

\[
X_5 = Z_5 \cup \bigcup_{c \in \Gamma_5} T_c^{\frac{1}{2}}(Z_5),
\]

where \(T_c^{\frac{1}{2}} \) is a simplicial map on \(P(S_{0,5}) \) induced by the half-twist around the curve \(c \).

See Figure 3 for a partial figure of \(X_5 \). The subgraph \(X_5 \) consists of the alternating pentagon \(Z_5 \) and 10 of its images under the twists. Those 10 images form 10 triangles attached to \(Z_5 \). In [10], we proved that \(X_5 \) is rigid.

For \(n \geq 6 \), we construct \(X_n \) as follows. Let \(W \subset \Gamma_n \) be a deficiency-2 multicurve such that \((S_{0,n} - W)_0 \cong S_{0,5} \). Let \(\Gamma_5^W = \{ \alpha \in \Gamma_n \mid \alpha \text{ is disjoint from all curves in } W \} \). There is a natural homeomorphism \(h : S_{0,5} \to (S_{0,n} - W)_0 \) such that \(h(\Gamma_5) = \Gamma_5^W \), see [10, Lemma 3.1]. Let

\[
X_5^W = h^W(X_5) = \{ h(u) \cup W \mid u \in X_5 \},
\]

where \(h^W : P(S_{0,5}) \to P(S_{0,n}) \) is the induced map of \(h \) defined by \(h^W(u) = h(u) \cup W \). Then \(X_5^W \cong X_5 \). Finally we let

\[
X_n = Z_n \cup \bigcup_W X_5^W,
\]

where the union is taken over all deficiency-2 multicurves in \(\Gamma_n \) with a 5-punctured sphere component. In [10], we proved that \(X_n \) is rigid.

We need the following lemmas to prove the main theorem for \(n \geq 5 \).

Lemma 4.1. \(\text{Mod}(S_{0,n}) \cdot X_n = P(S_{0,n}) \)
Proof. In the first part of this proof, we will show that, for a given vertex \(P \) in \(\mathcal{P}(S_{0,n}) \), there exist a vertex \(P' \) in \(X_n \) and \(f \in \text{Mod}(S_{0,n}) \) such that \(f(P') = P \). To do this, we obtain a pants decomposition \(P' \) from a dual graph of the pants decomposition \(P \). For the second part, we will show that there is a homeomorphism that send a given edge in \(\mathcal{P}(S_{0,n}) \) to an edge in \(Z_n \subset X_n \).

Given a vertex \(P \) in \(\mathcal{P}(S_{0,n}) \). Recall that we consider \(S_{0,n} \) as a double of a regular \(n \)-gon. Consider \(P \) as a pants decomposition on \(S_{0,n} \). The following construction of a dual graph of \(P \) was given in [5]. For each pair of pants component of \((S_{0,n} - P) \), we mark a vertex on the interior of the component. We also mark the \(n \) punctures as \(n \) vertices. Two vertices are connected by an edge if (1) they are vertices on the interior of two pants components which have a common boundary, or (2) one of the vertices is on the interior of a pair of pants component and another vertex is a puncture of the same component. The result is a tree with \(2n - 2 \) vertices; all puncture-vertices have degree 1, while the rest of the vertices have degree 3, see Figure 3.

Since a tree is planar, we can redraw this tree on the plane inside a regular \(n \)-gon so that all \(n \) puncture-vertices are the \(n \) vertices of the \(n \)-gon. We reconstruct a pants decomposition consisting of curves in \(\Gamma_n \) by drawing a curve connecting two sides of the regular \(n \)-gon whenever this curve can cross exactly one edge of the tree and both endpoints of this edge are not puncture-vertices. Double the regular \(n \)-gon. We now have a pants decomposition \(P' \) consisting of curves in \(\Gamma_n \), i.e., \(P' \) is a vertex in \(Z_n \subset X_n \).

The above construction of \(P' \) from \(P \) gives a one-to-one correspondence between the pants components \(S_{0,n} - P \) and the pants components \(S_{0,n} - P' \).
This correspondence describes a homeomorphism f such that $f(P') = P$, as desired.

Next we show that if P_1 and P_2 are adjacent vertices in $\mathcal{P}(S_{0,n})$, then after applying some homeomorphisms on $S_{0,n}$ to P_1 and P_2, we get two vertices that are adjacent in Z_n.

Given adjacent vertices P_1 and P_2 in $\mathcal{P}(S_{0,n})$, then there exist curves u_1, u_2 on $S_{0,n}$ and a deficiency-1 multicurve Q such that $P_1 = \{u_1\} \cup Q$ and $P_2 = \{u_2\} \cup Q$. By the first part of the proof, there is $f \in \text{Mod}(S_{0,n})$ such that $f(P_1)$ is a vertex in Z_n. If $f(P_2)$ is also in Z_n, then we are done.

Suppose $f(P_2)$ is not in Z_n. Use Figure 5 as a reference for the rest of the proof. We note that $f(Q) \subset \Gamma_n$ and it has deficiency-1. The nontrivial component $(S_{0,n} - f(Q))_0 \cong S_{0,4}$ contains exactly two curves in Γ_n; one curve is $f(u_1)$ and we call the other curve α. Then $i(f(u_2), \alpha) = 2n$ for some $n \in \mathbb{N}$.

\[A = \{\alpha, \beta\} \]
\[B = \{\delta, \beta\} \]
\[C = \{\delta, \epsilon\} \]
\[D = \{\gamma, \epsilon\} \]
\[E = \{\alpha, \gamma\} \]
Applying one full twist around \(f(u_1) \) in an appropriate direction reduces the intersection number by 4. \(f(P_i) \) is invariant under this full twist. So we can choose a new \(f \) (by composing the old one with some power of full twists) and assume that \(i(f(u_2), \alpha) = 0 \) or \(i(f(u_2), \alpha) = 2 \). If \(i(f(u_2), \alpha) = 0 \), then \(f(u_2) = \alpha \) and we are done.

Suppose \(i(f(u_2), \alpha) = 2 \). We compose \(f \) by an appropriate half twist \(T \) around \(f(u_1) \): here a half twist in \(f(u_1) \) is a homeomorphism on \(S_{0,n} \), whose square is the Dehn twist in Lemma 4.2. Around \(T \), we assume that \(f \) whose square is the Dehn twist in Lemma 4.2.

Let \(\alpha \) be a curve on \(S_{0,n} \). We defined \(P_\alpha(S_{0,n}) \) to be a subgraph of \(P(S_{0,n}) \) induced by vertices corresponding to pants decompositions containing \(\alpha \).

The following lemma is proved in [10] and we use this lemma to prove Lemma 4.3.

Lemma 4.2. For \(n \geq 6 \), let \(\alpha \) be a chain curve on \(S_{0,n} \) and let \(X_{n-1}^\alpha = X_n \cap P_\alpha(S_{0,n}) \).

Then \(X_{n-1}^\alpha \cong X_{n-1} \). Moreover, this isomorphism is induced by \(h : S_{0,n-1} \to (S_{0,n} - \alpha)_0 \) as \(h^\alpha(v) = h(v) \cup \{\alpha\} \in X_{n-1}^\alpha \).

Lemma 4.3. \(X_n \cap T_i^\alpha(X_n) \) is weakly rigid, for \(i \in \{-\frac{1}{2}, \frac{1}{2}\} \) and for all chain curves \(\alpha \) in \(S_{0,n} \).
Figure 5: Example of an edge \{f(P_1), f(P_2)\} and its images after composing with a power of full twist around the curve \(f(u_1)\) and a *half twist* around the same curve.

Proof. Let \(\alpha\) be a chain curve and \(i \in \{-\frac{1}{2}, \frac{1}{2}\}\). Suppose \(f_1, f_2 : S_{0,n} \to S_{0,m}\) are \(\pi_1\)-injective embeddings such that

\[
\left. f_1 \right|_{X_n \cap T_i^\alpha(X_n)} = \left. f_2 \right|_{X_n \cap T_i^\alpha(X_n)},
\]

for some deficiency-\((n-3)\) multicurves \(Q_1\) and \(Q_2\) on \(S_{0,m}\).

We first prove the case of \(n = 5\). Recall the definition of \(X_5\). By a direct calculation, we see that \(X_5 \cap T_i^\alpha(X_5)\) consists of two alternating pentagons which are \(Z_5 = T_i^\alpha(T_\alpha^{-i}(Z_5))\) and \(T_i^\alpha(Z_5)\). They share an edge together with four triangles as shown in Figure 5. Since \(Z_5\) is an alternating pentagon and \(\left. f_1^{Q_1} \right|_{Z_5} = \left. f_2^{Q_2} \right|_{Z_5}\), \(^\square\) Lemma 4.2 implies that \(Q_1 = Q_2\) and

\[
f_1 = f_2 \text{ or } f_1 = f_2 \circ e,
\]

where \(e : S_{0,5} \to S_{0,5}\) is the involution exchanging the two pentagons (as we consider \(S_5\) as a double of a pentagon). The map \(e\) induces a simplicial map on \(P(S_{0,5})\) that fixes \(Z_5\) and exchanges two triangles on each side of \(Z_5\). But \(f_1\) and \(f_2\) also agree on the four triangles attached to \(Z_5\) so \(f_1 = f_2\). Hence the case of \(n = 5\) is proved.
Figure 6: Examples of half twist around the thick curves. Two pants decompositions in \mathbb{Z}_{10} and \mathbb{Z}_{11} are given to help visualize the homeomorphisms. Note that after a half twisting, we get a new pants decomposition that is still in \mathbb{Z}_{10} or \mathbb{Z}_{11}.

Let $n \geq 6$ and let α be any chain curve. By Lemma 4.2, a subgraph $X_{n-1}^\alpha = X_n \cap P_\alpha(S_{0,n}) \cong X_{n-1}$. Since each vertex of X_{n-1}^α contains α, $T_\alpha(X_{n-1}^\alpha) = X_{n-1}^\alpha$. Hence $X_n \cap T_\alpha(X_n)$ contains $X_{n-1}^\alpha \cong X_{n-1}$. Consider the restrictions of f_1 and f_2 on the subsurface $(S_{0,n} - \{\alpha\})_0$. Since X_{n-1}^α is rigid, so is X_{n-1}^α, and the uniqueness part of Definition 2.1 implies that f_1 agrees with f_2 on $(S_{0,n} - \{\alpha\})_0$ and $Q_1 \cup \{f_1(\alpha)\} = Q_2 \cup \{f_1(\alpha)\}$.

We can see that X_{n-1}^α is a proper subgraph of $X_n \cap T_\alpha(X_n)$. For example, choose a vertex P in $Z_n \cap P_\alpha(S_{0,n}) \subset X_{n-1}^\alpha$. Then change P to P' by the elementary move which replaces α by the other curve α' in Γ_n. The vertex $T_\alpha(P')$ is adjacent to P and it is a vertex in $X_n \cap T_\alpha(X_n)$. Hence f_1 and f_2 agree on $T_\alpha(P')$. Since Q_1 and Q_2 are the intersections of all vertices in $f_1(X_n \cap T_\alpha(X_n))$ and $f_2(X_n \cap T_\alpha(X_n))$, respectively, and $\alpha \notin T_\alpha(P')$, it follows $f_1(\alpha) = f_2(\alpha)$ is not in the intersection. Therefore $Q_1 = Q_2$ and $f_1 = f_2$.

Proof of Theorem 1.1 for $S_{0,n}, n \geq 5$. We are ready to prove the main theorem for $n \geq 5$. We check that all conditions in Proposition 3.3 are satisfied.
Let $\mathcal{X} = X_n$. Lemma 4.1 states that $\text{Mod}(S_{0,n}) \cdot \mathcal{X} = \mathcal{P}(S_{0,n})$. The set

$$C = \{T^{\pm \frac{1}{2}}(\alpha) \mid \alpha \text{ a chain curve}\}$$

generates $\text{Mod}(S_{0,n})$, see [4, Corollary 4.15]. And by Lemma 4.3, $X_n \cap T_{i}^\alpha(X_n)$ is weakly rigid, for $i \in \{-\frac{1}{2}, \frac{1}{2}\}$ and for all chain curves α in $S_{0,n}$. Therefore Proposition 3.3 gives us a sequence of finite rigid set $\mathcal{X} = \mathcal{X}_1 \subset \mathcal{X}_2 \subset \ldots \subset \mathcal{X}_m \subset \ldots$ such that $\bigcup_{i \in \mathbb{N}} \mathcal{X}_i = \mathcal{P}(S_{0,n})$, as desired.

\[\square\]

References

[1] J. Aramayona. Simplicial embeddings between pants graphs. *Geometriae Dedicata*, 144(1):115–128, 2010.

[2] J. Aramayona and C. J. Leininger. Finite rigid sets in curve complexes. *Journal of Topology and Analysis*, 5(2):183–203, 2013.

[3] J. Aramayona and C. J. Leininger. Exhausting curve complexes by finite rigid sets. *Pacific Journal of Mathematics*, 282(2):257–283, 2016.

[4] B. Farb and D. Margalit. *A Primer on Mapping Class Groups (PMS-49)*. Princeton University Press, 2011.

[5] A. Hatcher and W. Thurston. A presentation for the mapping class group of a closed orientable surface. *Topology*, 19(3):221–237, 1980.

[6] N. V. Ivanov. Automorphism of complexes of curves and of teichmüller spaces. *International Mathematics Research Notices*, 1997(14):651–666, 1997.

[7] M. Korkmaz. Automorphisms of complexes of curves on punctured spheres and on punctured tori. *Topology Appl.*, 95(2):85–111, 1999.

[8] F. Luo. Automorphisms of the complex of curves. *Topology*, 39(2):283–298, 2000.

[9] D. Margalit. Automorphisms of the pants complex. *Duke Mathematical Journal*, 121(3):457–479, 2004.

[10] R. Maungchang. Finite rigid subgraphs of the pants graphs of punctured spheres. *arXiv preprint arXiv:1303.3873*, 2013.