Coccidioidomycosis in pregnancy: Case report and literature review of associated placental lesions

Heloise Labuschagne a, C. Burns b, Stacy Martinez c, Maira Carrillo d, Melissa Waggoner d, Irene Schwanninger c, James Maher d, Moss Hampton d, Javier Flores-Guardado a,⁎, Natalia E. Schlabritz-Loutevitch d,⁎⁎

⁎ Department of Internal Medicine, Texas Tech University Health Sciences Center at the Permian Basin, Odessa, TX, USA
⁎⁎ Corresponding author at: Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center at the Permian Basin, 501 W. 5th Street, Odessa, TX 79763, USA.
E-mail addresses: Javier.flores-guardado@ttuhsc.edu (J. Flores-Guardado), natalia.schlabritz-loutevitch@ttuhsc.edu (N.E. Schlabritz-Loutevitch).

Abstract

Background: Coccidioidomycosis is an endemic fungal infection found most commonly in the Southwestern United States, Northwestern Mexico, and parts of Central and South America. Although infection is relatively uncommon during pregnancy, it is imperative to have an index of suspicion in order to diagnose and begin timely treatment to prevent dissemination and dire consequences. The right upper and middle lobes of the lung were resected due to continuous bleeding. A subsequent pregnancy was uneventful. Coccidioidomycosis titers remained negative throughout the second pregnancy.

Discussion: This case demonstrates the potential for severe pulmonary coccidioidomycosis and vascular strain of pregnancy-associated vascular expansion in the first trimester of pregnancy and the possibility of a favorable pregnancy outcome in subsequent pregnancies after appropriate treatment. The route of feto-maternal transmission and placental lesions in coccidioidomycosis are discussed.

© 2016 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Coccidioidomycosis also known as Valley Fever, is an infection caused by the fungi of the genus Coccidioides [1]. Coccidioides spp. are dimorphic, soil-dwelling fungi known to cause a broad spectrum of symptoms ranging from a mild febrile illness to severe pulmonary manifestations or disseminated disease [2,3]. The genus Coccidioides is comprised of two genetically distinct species: C. immitis and C. posadasii [4]. These two species cause similar clinical symptoms, however they are present in different geographic regions. C. immitis is found in central and southern California, with the San Joaquin Valley being the region of greatest endemicity [3]. The most concentrated region for C. posadasii is in Arizona and sporadic sites in southern Utah and Nevada. Outside the U.S., C. posadasii is present in parts of Mexico and Central and South America [3,4]. Cases of coccidioidomycosis in pregnancy are rare and were extensively described in a review by Crum and Ballon-Landa [5]. Maternal and fetal mortality, associated with the disseminated disease, is high. Medical pregnancy termination has been advised when disseminated infection is detected in early pregnancy [6,7]. Recent reports showed discrepancies between Coccidioidomycosis-related perinatal mobility and mortality and the disease-associated placental lesions. Here, we report a case of coccidioidomycosis in a woman with a non-viable pregnancy with a subsequent unaffected pregnancy and non-specific placental lesion. A literature review of placental findings associated with coccidioidomycosis cases, published since 1948, is provided.

2. Case report

A 30-year-old Hispanic female with an intrauterine pregnancy at 7 weeks of gestation was admitted to the hospital with mild
tion was performed at 37 weeks (due to 2 previous cesarean sections) and the patient remained negative throughout the pregnancy. An elective cesarean section was performed in triplicate. A standard curve was prepared from dilutions of a \textit{Coccidioides immitis} control DNA (VirCell, Granda, Spain). The dilutions used to make the standard curve were 60,000 copies/rxn, 6000 copies/rxn, 600 copies/rxn, and 60 copies/rxn. The placental tissue samples were negative for \textit{Coccidioides immitis} DNA (Fig. 1).

3. Discussion

Coccidioidomycosis is caused by \textit{Coccidioides immitis} or \textit{C. posadasii}, endemic to the Southwestern United States, northwestern parts of Mexico, Central and South America [10]. The exact incidence of coccidioidal infections is difficult to calculate because approximately 60% of infected individuals are asymptomatic or have subclinical disease and never seek medical attention. An estimated 150,000 infections occur annually in the United States [11]. The incidence of coccidioidal infections in Arizona, Nevada, California, New Mexico, and Utah has increased from 5.3 per 100,000 in 1988 to 42.6 per 100,000 in 2011 [12]. Around 75,000 deaths per year result from the infection. This increase in the disease occurrence requires particular attention in the pregnant population, since the consequences could manifest not only in the dissemination of coccidioidomycosis, but also result in fetal disease, congenital anomalies and other developmental sequels [5]. Despite the fact that coccidioidomycosis has been more common among men than women (55–66% of cases collected from surveillance data from Arizona [1993–2006] involved men), pregnant women experience dissemination 40–100 times more frequently than men [13–15]. Pregnancy alters the maternal immune system which potentially increases maternal and fetal vulnerability to common viral and parasitic infections [16]. The consequences could be far greater for women, than for men. The usual route of \textit{Coccidioides} transmission is through inhalation of spores that are found in the soil of endemic areas. Spores get lodged in the lungs and produce spherules [17]. After infection, a wide spectrum of manifestations is possible. Early symptoms such as cough, fever, and arthralgia are fairly common. Primary infections most commonly manifest as community-acquired pneumonia approximately 7–21 days after exposure. Complications of coccidioidomycosis include severe pneumonia with respiratory failure and bronchopleural fistulas requiring resection, lung nodules, and dissemination. Dissemination may be rapid with fatal consequences. Any organ of the body can be involved in dissemination, but \textit{Coccidioides} species have an affinity for the lungs, skin, soft tissue, joints, brain, and especially the meninges. Hemoptysis may occur and suggests the development of a pulmonary cavity. Cavities present in approximately 2 to 8% of adults infected with a \textit{Coccidioides} species. Pregnant women are at a higher risk for dissemination and re-activation of the infection [18], however not all pregnant women who develop coccidioidomycosis are at risk for dissemination – Wack et al. [3] reported only 10 cases of coccidioidomycosis in 47,120 pregnancies in an endemic area of Arizona in 1988 (2.1 cases per 10,000 pregnancies). Only 2
Fig. 2. (A) Microphotographs of the placenta, demonstrating villous calcification shown at 100× magnification, (B) increased number of syncytial knots shown at 100× magnification, (C) edematous villi shown at 100× magnification, and (D) necrosis (arrows) shown at 40× magnification.

Fig. 1. A. Melting curve for β-actin (pink color, melting temperature 87.5 °C) and Coccidioides spp. (blue color, melting temperature 85.5 °C) in the control DNA samples, placental samples (placenta, attached to placenta umbilical cord, fetal membranes) and soil samples. Note: placental samples do not show specific amplification. B. Standard curve for quantifying Coccidiosis spp. that was created by using 4 standards with the following dilutions: 60,000 copies/rxn, 6000 copies/rxn, 600 copies/rxn, and 60 copies/rxn.
Age	Time of Diagnosis	Disseminated sites of disease in article	Titer	Treatment	Fetal outcome	Maternal outcome	Geographic area	Strain	Reference		
20	Day of delivery	Yes	1:64	Amphotericin B, postpartum	Infected infant	Multiple foci of acute inflammation with numerous Coccidioides spherules.	Fatal	San Francisco, CA	C. immitis	[18]	
38	34 weeks	Disease reactivation during pregnancy	1:04	Amphotericin IV	Healthy infant	Normal placenta, weighed 310 g at 36 weeks.	Recovered	NR	C. immitis	[17]	
30	18–19 weeks	NR	1:16	Fluconazole	Healthy infant	Unremarkable	Recovered	NR	Recent travel to Arizona and Mexico	C. immitis	[6]
							N/A	N/A	N/A	N/A	[22]
							N/A	N/A	N/A	N/A	[24]
							N/A	N/A	N/A	N/A	[26]
Week(s)	During pregnancy	Test Result	Treatment	Description							
---------	------------------	-------------	-----------	-------------							
20	16 weeks	1:128	NR	Delivered by postmortem C-section, death after 10 h							
27	Postmortem	1:128	NR	Coagulative necrosis of chorionic villi and an intense infiltration by neutrophils, lymphocytes, and plasma cells in the intervillous space. Spheres filled with round fungal endospores and scattered individual sporangiospores of *Coccidioides* were identified adjacent to areas of placental infarction.							
27	26 weeks	NR	Ampotericin B, vancomycin, and voriconazole	Fetal death at 26 weeks							
34	20 weeks	Actidone	NR	Healthy infant delivered at term, titer 1:2							
N/A	Third trimester	N/A	N/A	N/A							
38	32 weeks	NR	NR	Healthy infant, weighed 2381 g.							
22	18 weeks	1:128	Ampotericin B lipid complex (ABLC)	Multiple granulomas and large numbers of *Coccidioides* organisms. Abundant numbers of *C. Immitis* grew from placental and cervical cultures.							
21	24 weeks	NR	Metacortin	Normal placenta							
21	28 weeks	NR	Ampotericin after delivery	Healthy infant delivered preterm at 32 weeks							
37	24 weeks	1:8	Ampotericin B	Healthy infant delivered at 38 weeks							
19	37 weeks	NR	NR	Healthy infant, labor induced at 37 weeks							
Animal report	Alpaca (Vicugna pacos)	1:256	N/A	Death							

Notes:
- *Coccidioides immitis*
- NR stands for not recorded.
- Placenta weighed 359 g, had necrosis, acute inflammation, presence of the spherules. The area between necrotic lesions was normal.
- **Recovered** indicates clinical recovery.
- **Fatal** indicates infant death.
of the 10 patients developed systemic illness that presented as fevers, pulmonary infiltrates and meningitis.

In a recent study of 32 cases of coccidioidomycosis in pregnant women residing in Kern County, California, dissemination developed in 3 women [19]. The risk of dissemination increases as the weeks of gestation advance, with the third trimester and immediate postpartum period having the highest risk. The mechanism of increased risk might be associated with depressed cellular immunity or changes in 17β-estрадiol and progesterone levels, which enhance the maturation and growth of C. immitis [20–22]. The question regarding the transplacental passage of the spherules is controversial [23–26]. The spherules were found in the placenta (Table 1) and documented to destroy the villi, however sporules were not found in fetal circulation [20]. The pathognomonic features of coccidioidomycosis in the placenta and the absence of inflammatory response were described by McCaffee and Benirschke [20]: “Coccidioides organisms were located in occasional microscopic foci of necrosis without inflammatory cell proliferation. Although this kind of bland necrotizing change is also characteristic of herpes simplex placenta, the two diseases are differentiated by the morphologic features of the respective organisms.” Taking into consideration multiple placental lesions, found in the cases of maternal coccidioidomycosis, it was suggested that placental insufficiency might contribute to fetal demise [27]. In the reviewed cases of placental lesions, acute placental inflammatory response was reported in three cases with the fatal outcome. Increased fibrin deposition is a common placental lesion associated with this disorder (Table 1).

This fibrin deposition is part of the pathogenesis of coccidioidomycosis: a fibrillar material, released by endospor, inhibits polymorphonuclear cell access to the emerging endospores [28]. The non-permissiveness of the placenta to coccidioidomycosis was also explained by the characteristic thrombotic segregation of the organism, which may “eliminate viable capillaries” and thus prevent transmission to the fetus [29,30]. The placental lesions described in present case were non-specific for coccidioidomycosis.

While the causative relationship between coccidioidomycosis and pregnancy loss cannot be determined, Coccidioides posadasii and immitis has been associated with abortion in animal examples [27,31]. African Americans, Filipinos, and Hispanics are known to be at higher risk for dissemination. In the present case, the patient had at least three risk factors making her more susceptible to a severe form of infection – Hispanic race, pregnancy, and diabetes. Treatments for coccidioidomycosis depend on the severity of the disease, presence of dissemination, and the site involved. Amphotericin B deoxyolate, azoles, or both are available as treatment options. Amphotericin B deoxyolate is considered to be the safest during pregnancy (category B). Lipid preparations of Amphotericin B are preferred over amphotericin deoxyolate due to reduced toxicity. Azoles have been used as treatment for coccidioidomycosis for over 20 years, however soon after their introduction it became evident that Azoles might be teratogenic [32]. Currently, fluconazole is a category D drug. The patient in the presented case was initiated on fluconazole as her pregnancy was considered to be nonviable during her admission at early gestation, indeed this pregnancy resulted in spontaneous abortion.

Women with a history of resolved pulmonary coccidioidomycosis have a minimal risk of disease reactivation during pregnancy, whereas in women with a history of disseminated coccidioidomycosis this risk is increased [18]. In agreement with the later observation, in the presented case the second pregnancy was not associated with reactivation of the disease and placental lesions were nonspecific for coccidioidomycosis.

In conclusion, the described case demonstrates the potential for severe pulmonary coccidioidomycosis and vascular strain of pregnancy-associated vascular expansion in the first trimester of pregnancy and the possibility of a favorable pregnancy outcome in subsequent pregnancies after appropriate treatment.

References

[1] Cox RA, Magee DM. Coccidioidomycosis: host response and vaccine development. Clin Microbiol Rev. 2004;17(4):804–39 (table of contents).

[2] Johnson SM, Simmons KA, Pappagianis D. Amplification of coccidioidal DNA in clinical specimens by PCR. J Clin Microbiol. 2004;42(5):1982–5.

[3] Wack EE, Ampel NM, Galgains JN, Bronnimann DA. Coccidioidomycosis during pregnancy. An analysis of ten cases among 47,120 pregnancies. Chest 1988;94(2):376–9.

[4] Spinello IM, Johnson RH. A 19-year-old pregnant woman with a skin lesion and respiratory failure. Chest 2006;130(2):611–5.

[5] Crum NF, Ballon-Ganda C. Coccidioidomycosis in pregnancy: case report and review of the literature. Am J Med 2006;119(11):983.e11–7.

[6] Arnold CA, et al. Unsuspected, disseminated coccidioidomycosis without maternal morbidity diagnosed by placental examination: case report and review of the literature. Clin Infect Dis 2008;46(11):e119–23.

[7] Stevens DA. Coccidioidomycosis. N Engl J Med 1995;332(16):1077–82.

[8] Brocato B, et al. Endocannabinoid crosstalk between placenta and maternal fat in a baboon model (Papio spp.) of obesity. Placenta 2013;34(11):983–9.

[9] Sheff KW, et al. Development of a rapid, cost-effective TaqMan Real-Time PCR assay for identification and differentiation of Coccidioides immitis and Coccidioides posadasi. Med Mycol 2010;48(1):466–9.

[10] Stockamp NW, Thompson GR 3rd. Coccidioidomycosis. Infect Dis Clin N Am 2015.

[11] Twarog M, Thompson 3rd GR. Coccidioidomycosis: Recent Updates. Semin Respir Crit Care Med 2015;36(5):746–55.

[12] Sondermeyer GL, Lee LA, Gillis D, McCarty JM, Vugia DJ. Epidemiology of pediatric coccidioidomycosis in California, 2000–2012. Pediatr Infect Dis J 2016;35(2):166–71.

[13] Galgiani JN, et al. Coccidioidomycosis. Clin Infect Dis 2005;41(9):1217–23.

[14] Nguyen C, et al. Recent advances in our understanding of the environmental, epidemiological, immunological, and clinical dimensions of coccidioidomycosis. Clin Microbiol Rev 2013;26(3):605–25.

[15] AMZ J. Immune mechanisms in Coccidioidomycosis. Journal of Chin Esh Clinical Medicine 2009;4(9).

[16] Cytomegalovirus, Parvovirus B19, varicella zoster, and toxoplasmosis in pregnancy. ACOG Practice Bulletin. American College of Obstetricians and Gynecologists; 2015.

[17] Brown J, Benedict K, Park BJ, Thompson 3rd GR. Coccidioidomycosis: epidemiology. J Clin Epidemiol 2015;3:185–95.

[18] Walker MP, Brody CZ, Resnik R. Reactivation of coccidioidomycosis in pregnancy. Obstet Gynecol 1992;79(5 Pt 2):815–7.

[19] Lauer A, Baal JD, Ball JC, Verma M, Chen JM. Detection of Coccidioides immitis in Kern County, California, by multiplex PCR. Mycologia 2012;104(1):62–9.

[20] McCaffee MA, Adsulker C, Benirschke K. Placental coccidioidomycosis without fetal disease. Arch Pathol Lab Med 1978;102(10):512–4.

[21] Powell BL, Drutz DJ. Identification of a high-affinity binder for estradiol and a low-affinity binder for testosterone in Coccidioides immitis. Infect Immun 1984;45(3):784–9.

[22] Drutz DJ, Huppert M, Sun SH, McGuire WL. Human sex hormones stimulate the growth and maturation of Coccidioides immitis. Infect Immun 1981;32(2):897–907.

[23] Chantara N, Raxmell K, Selving S. Intratracheal transmission of coccidioidomycosis. Pediatr Infect Dis J 1999;18(6):561–3.

[24] Spark RP. Does transplacental spread of coccidioidomycosis occur? Report of a neonatal fataly and review of the literature. Arch Pathol Lab Med 1981;105(7):347–50.

[25] Cohen R. Placental coccidioides: proof that congenital coccioides is nonexistent. Arch Pathol 1951;68(2):59–66.

[26] Shafai T. Neonatal coccidioidomycosis in premature twins. Am J Dis Child 1978;132(6):634.

[27] Diab S, et al. Case report: abortion and disseminated infection by Coccidioides posadasii in an alpaca (Vicugna pacos) fetus in Southern California. Med Mycol Case Rep 2013;2:159–62.

[28] Peterson CM, Schuppert K, Kelly PC, Pappagianis D. Coccidioidomycosis and pregnancy. Obstet Gynecol Surv 1991;46(3):149–56.

[29] Harrison HH. Fatal maternal coccidioidomycosis: a case report and review of sixteen cases from the literature. Am J Obstet Gynecol 1958;75(4):813–20.

[30] Harris RE. Coccidioidomycosis complicating pregnancy. Report of 3 cases and review of the literature. Obstet Gynecol 1966;28(3):401–5.

[31] Stoltz JH, Johnson BJ, Walker RL. Pappagianis. Coccidioides immitis abortion in an Arabian mare. Vet Pathol 1994;31(2):258–9.

[32] Lopez-Rangel E, Van Allen M. Prenatal exposure to fluconazole: an identifiable dysmorphic phenotype. Birth Defects Res A Clin Mol Teratol 2005;77(1):919–23.