Luminal Breast Cancer Cell Lines Overexpressing ZNF703 Are Resistant to Tamoxifen through Activation of Akt/mTOR Signaling

Xi Zhang1, Xin Mu2, Ou Huang1, Zuoquan Xie3, Min Jiang1, Meiyu Geng3, Kunwei Shen1*

1 Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China, 2 Department of Urology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China, 3 Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China

Abstract

Background: Selective estrogen receptor modulators, such as tamoxifen, play a pivotal role in the treatment of luminal-type breast cancer. However, in clinical applications, nearly half of breast cancer patients are insensitive to tamoxifen, a small number of whom have early recurrence or disease progression when receiving tamoxifen. The underlying mechanism of this resistance has not been determined. ZNF703 is a novel oncogene in the 15% of breast cancers that harbor 8p12 amplifications. Therefore, the goal of our study was to explore the role of ZNF703 in tamoxifen resistance.

Methodology/Principal Findings: We used immunohistochemistry techniques to examine ZNF703 expression in stage I-III primary breast cancer specimens and found a positive expression rate of 91.3%. All patients were divided into either high or low ZNF703 expression groups. We found that high ZNF703 expression mainly occurred in ER+ and PR+ breast cancers. Furthermore, 4-hydroxytamoxifen had different modes of action in breast cancer cell lines with high or low ZNF703 expression. ZNF703 overexpression in MCF-7 breast cancer cells activated the Akt/mTOR signaling pathway, downregulated ERs, and reduced the antitumor effect of tamoxifen. Low-dose tamoxifen did not suppress, but rather, stimulated the growth of cells overexpressing ZNF703. ZNF703 knockdown in MDA-MB-134 and HCC1500 luminal B-type breast cancer cell lines by siRNA significantly decreased survival rates when cells were treated with tamoxifen. Furthermore, targeting ZNF703 with a mTOR inhibitor increased the inhibitory effects of tamoxifen in ZNF703-overexpressing cells.

Conclusion/Significance: Our study suggests that ZNF703 expression levels may predict tamoxifen sensitivity. Tamoxifen should be administered with caution to those patients bearing tumors with ZNF703 overexpression. However, large clinical trials and prospective clinical studies are needed to verify these results.

Introduction

The molecular typing of breast cancer provides a basis for the prognosis and treatment of breast cancer. There are four major molecular subtypes of breast cancers: triple negative/basal-like, human epidermal growth receptor (HER)-2 positive, Luminal A, and Luminal B [1]. Most breast cancers are luminal tumors. Luminal A and B tumors tend to be estrogen receptor-positive (ER+) and/or progesterone receptor-positive (PR+). A variety of endocrine therapies act through different mechanisms to antagonize the growth of tumors stimulated by estrogen. Selective estrogen receptor modulators (SERM), such as tamoxifen, can antagonize ER activity, and have been used in breast cancer therapy. Tamoxifen is very effective for the treatment of luminal breast cancer; 5 years of tamoxifen therapy can reduce the risk of recurrence and death by 41% and 33%, respectively [2]. However, of those patients who receive adjuvant tamoxifen therapy for 5 years, 8% have early recurrence (within less than 2.5 years), and another 8% have recurrence within 2.5 years to 5 years [3]. In addition, one-third of women treated for 5 years will eventually relapse within 15 years, as their tumors often become endocrine-resistant [4]. In luminal metastatic breast cancer, the objective response rate for tamoxifen treatment is only 30%, and 20% show stable disease. In regard to neo-adjuvant tamoxifen therapy, the clinical objective response rate is 30% to 60%, with 30% to 50% having stable disease, and about 3% having disease progression during treatment [5,6].

Tamoxifen resistance may be primary or acquired. Insensitive molecular subtypes include luminal B, HER2+, and triple negative [7,8]. With the exception of those subtypes, predictors of tamoxifen resistance are poorly defined, making it difficult to identify patients who are less likely to benefit from tamoxifen.
treatment. Some clinical and pathological factors that can predict early recurrence include cancers that are lymph node-positive or low ER-expressing as well as a multigene score called EndoPredict Index [3,9–13]. The failure of tamoxifen to prevent many early relapses highlights the need for more effective therapies to improve clinical outcomes.

The ER signaling pathway plays a key role in the development of estrogen dominant breast cancer. However, this pathway is not the only survival pathway of tumors; thus, when the ER signaling pathway is blocked, the escape pathways function [14]. Importantly, these proliferative pathways can cross-talk with the ER pathway and regulate ER to affect endocrine therapy [15–18]. Activation of these pathways leads to the formation of ER-independent tumors. These pathways can be activated by amplification or overexpression of oncogenes, or by loss of function of downstream signaling molecules [19]. Studies have revealed that phosphorylation of protein kinase B (PKB/Akt) or mammalian target of rapamycin (mTOR) can directly alter sensitivity to tamoxifen, leading to tamoxifen resistance [20,21]. However, the factors that induce ER pathways and activate Akt remains unknown. Many clinical trials have been designed that block these escape pathways to increase the survival benefit in luminal breast cancer patients who have endocrine resistance.

Zinc finger 703 (ZNF703) is an oncogenic transcription factor that regulates many genes involved in multiple aspects of the cancer phenotype, including proliferation, increased self-renewal, and invasion [22–24]. ZNF703 was recently identified as a novel breast cancer oncogene in the 15% of breast cancers that harbor 8p12 amplifications, amplified second only to the well-known oncogenes, ERBB2 and cyclin D1 (CCND1) [25,26]. Nevertheless, ZNF703 is still largely unknown in the breast cancer field; for example, it remains to be determined how the expression or function of the encoded protein can be regulated, and the major downstream effectors of its oncogenic functions have not been identified. In the present study, we hypothesized that ZNF703 might contribute to endocrine resistance. We assessed ZNF703 expression in clinical breast cancer specimens, and used breast cancer cell lines to investigate the role of and underlying mechanisms of ZNF703 in endocrine therapy.

Results

ZNF703 is Highly Expressed in Luminal Breast Tumors

We examined ZNF703 expression in breast cancer tissue microarray. In 127 breast cancer patients, the positive expression rate of ZNF703 protein was 91.3%. ZNF703 was mainly localized in the nucleus, although it was also expressed in the cytoplasm of some cells. All patients were divided into high and low ZNF703 expression groups (Figure 1A, B). In the high expression group, 49.3% of patients were ER+, whereas only 23.1% of the low expression group was ER+. This difference was statistically significant (Figure 1C, P<0.003). Similarly, 58.7% of patients were PR+ in the high expression group compared to only 26.9% in the low expression group. This difference was also statistically significant (Figure 1C, P=0.001). In addition, high ZNF703 expression was associated with an intermediate grade (Table S1, P=0.04).

Inhibitory Effects of TAM in Breast Cancer Cell Lines with High or Low ZNF703 Expression

Given the involvement of ZNF703 in luminal-type breast cancer, we assessed ZNF703 mRNA expression levels in breast cancer cell lines by real time and reverse transcription polymerase chain reaction (RT-PCR) (Figure 2A). The MCF-7 luminal A-type breast cancer cell line had low ZNF703 expression levels, while MDA-MB-134 and HCC1500, luminal B-type breast cancer cell lines, had high expression levels, similar to observations in previous studies [22,23]. The normal mammary epithelial cell line MCF-10A had almost no expression of ZNF703. Next, we performed experiments to determine if ZNF703 impacted 4-hydroxytamoxifen (TAM) sensitivity in breast cancer cell lines. The results showed that the inhibitory effects of TAM differed between breast cancer cell lines. In MCF-7 cells, increasing concentrations of TAM caused inhibitory rates to gradually increase (Figure 2B). A concentration of 50 μM, the inhibitory rate reached 100%. In contrast, in the hormone receptor negative BT-549 cell line, the inhibitory rates were close to 0 within the range of 1 to 1×10−3 μM TAM, indicating that BT-549 cells were insensitive to tamoxifen (Figure 2C). Notably, although HCC1500 and MDA-MB-134 cell lines were much more sensitive to tamoxifen than BT-549, they exhibited particular modes of tamoxifen resistance. In HCC1500 cells, although the inhibitory rate reached 100% at 10 μM TAM, inhibitory rates of less than 50% were achieved in the range of 1 to 1×10−3 μM (Figure 2D). After treatment with 100 μM TAM, the inhibitory rate in MDA-MB-134 cells was still less than 100%. Notably, 10−2 μM and 10−3 μM tamoxifen promoted the growth of MDA-MB-134 cells (Figure 2E).

ZNF703 Overexpression Activates the Akt Signaling Pathway and Reduces the Antitumor Effects of TAM

To determine the effect of ZNF703 on endocrine therapy, we overexpressed ZNF703 in MCF-7 cells (MCF-7-ZNF703 cells). These cells were treated with several concentrations of TAM, and the expression levels of several signaling proteins were measured. We detected considerable upregulation of phosphorylated Akt (p-Akt; P<0.01) and down-regulation of both ERα (P<0.05) and E-cadherin (P<0.05) in MCF-7-ZNF703 cells; total Akt protein levels remained unchanged (P>0.05). After treatment with increasing concentrations of TAM, p-Akt (Ser473) and ERα levels decreased in a dose-dependent manner in MCF-7-vector cells, whereas E-cadherin was upregulated (Figure 3A). In MCF-7-ZNF703 cells, increasing concentrations of TAM abrogated these effects, causing down-regulation of p-Akt (P<0.01) and upregulation of ERα (P<0.001).

We next examined the effect of TAM on the survival of MCF-7-ZNF703 cells, and found that MCF-7-ZNF703 had significantly reduced inhibitory rates after treatment with various concentrations of TAM compared to MCF-7-vector cells (Figure 3B, P<0.01), indicating the occurrence of resistance. Surprisingly, low-dose TAM (10−5 to 10−1 μM) resulted in a 20% to 40% increase in the growth of MCF-7-ZNF703 cells, which is consistent with what we previously observed in MDA-MB-134 cells (Figure 2E). We performed colony formation assay to verify the reduced inhibitory rate of MCF-7-ZNF703 cells upon treatment with TAM compared to MCF-7-vector cells (Figure 3C). We also observed that low-dose TAM (10−5 to 10−4 μM) stimulated the growth of MCF-7-ZNF703 cells in a time-dependent manner (Figure 4A), as 6 days of low-dose TAM treatment resulted in a 2-fold increase in cell growth compared to control cells.

siRNA-mediated Depletion of ZNF703 Counteracts the Effects of Anti-TAM

To determine whether targeting ZNF703 could reverse tamoxifen resistance in ZNF703-overexpressing cell lines, small interfering RNAs (siRNAs) were used to knockdown ZNF703.
siRNA depletion of ZNF703 in MDA-MB-134 cells significantly increased the inhibitory effect of TAM compared to control cells (Figure 4B, \(P < 0.05 \)). The stimulatory effect on cell growth by low-dose TAM was also eliminated. There was no difference between MDA-MB-134 siRNA-1 and MDA-MB-134 siRNA-2-treated cells (\(P > 0.05 \)).

Similar results were obtained in the HCC1500 cell line; siRNA depletion of ZNF703 revealed significantly increased inhibitory effects of TAM compared to control cells (Figure 4C, \(P < 0.05 \)). Treatment with siRNA-2 led to better knockdown efficiency of ZNF703 compared to treatment with siRNA-1; therefore, slightly lower survival rates were observed in HCC1500 cells treated with siRNA-2 (\(P < 0.05 \)).

Rapamycin Increases the Effect of TAM on Cell Viability in ZNF703-overexpressing Cell Lines

To further elucidate whether the Akt signaling pathway was responsible for tamoxifen resistance in ZNF703-overexpressing cell lines, we treated cells with the mTOR inhibitor, rapamycin. Rapamycin significantly blocked p-mTOR (S2448) in MCF-7-vector cells in a dose dependent manner, p-mTOR (S2448) was upregulated in MCF-7-ZNF703 cells, and treatment with rapamycin significantly inhibited its expression (Figure 5A). In addition, rapamycin inhibited phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and cyclin-dependent kinase inhibitor 1B (p27kip) decreased. Both p-4E-BP1 (T37/46) and p-4E-BP1 (T70) significantly decreased upon mTOR inhibition in both MCF-7-vector and MCF-7-ZNF703 cells, with subsequent recovery of p27kip expression (Figure 5B, D). In addition, rapamycin down-regulated ZNF703 expression.

To determine the effect of blocking mTOR on cell viability, we treated MCF-7-ZNF703 cells with either TAM alone or TAM in combination with rapamycin at a concentration selected based on its predetermined half maximal inhibitory concentration (IC50). TAM significantly decreased the number of viable cells when combined with rapamycin in MCF-7-ZNF703 cells (Figure 5C).

Discussion

The ER signaling pathway plays a key role in the development of breast cancer. Tamoxifen has been widely used in the treatment of luminal breast cancer for over 30 years. However, nearly half of breast cancer patients are insensitive to tamoxifen therapy, some of whom relapse or have progressive disease when receiving tamoxifen, and thus have tamoxifen resistance. Although previous studies have reported various mechanisms of tamoxifen resistance, there are many “unknowns” that need further clarification.

ZNF703 is the most significant luminal potential oncogene [28]. ZNF703 is overexpressed in some breast cancer cell lines, but has
low expression in normal mammary epithelial cells. Overexpression of ZNF703 increases genome instability and contributes to tumor aggressiveness. Moreover, one single-nucleotide polymorphism near ZNF703 is significantly associated with breast size [29]. IHC was used to evaluate ZNF703 expression in the breast cancer specimens, and high ZNF703 was mainly found in luminal breast cancers. In addition, overexpression of ZNF703 correlated with an intermediate grade, suggesting a moderate prognosis in breast cancer [30].

The modes of tamoxifen action were distinct between breast cancer cell lines with high or low ZNF703 expression. ZNF703 overexpression reduced the antitumor effect of tamoxifen. Both MDA-MB-134 and HCC1500 are luminal cell lines [31–33], with high ZNF703 levels. siRNA depletion of ZNF703 combined with tamoxifen increased its antitumor effects. Compared to luminal A-

Figure 2. Breast cancer cell lines with high ZNF703 expression have different modes of tamoxifen resistance. (A) RT-PCR was used to evaluate ZNF703 mRNA expression levels in 11 breast cancer cell lines and the normal breast epithelial cell line MCF-10A. (B, C) MCF-7 and BT-549 cells were treated with DMSO or different concentrations of TAM, with the addition of 1 nM estradiol in each well. Inhibitory rates were examined using the SRB cell growth assay after 4 days. (D, E) MDA-MB-134 cells were treated with DMSO or different concentrations of TAM. The double-arrow shows where the inhibitory rate was less than 30% after treatment with 1 μM TAM. The single-arrow indicates that 10^{-2} μM or 10^{-3} μM TAM stimulated growth of MDA-MB-134 cells. Data are representative of three experiments and are presented as mean ± SD. doi:10.1371/journal.pone.0072053.g002
type, luminal B-type breast tumors are not sensitive to tamoxifen [7,8]. Several studies use MDA-MB-134 and HCC1500 as representatives of luminal B-type breast cancer cell lines [22,23,34]. Our findings provide a basis for potential cellular mechanisms of tamoxifen resistance in luminal B breast cancer.

Preclinical experiments have shown that the phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR pathway is a potential escape pathway that functions after the ER signaling pathway is blocked [20,21]. In this regard, studies have shown that ER+ breast cancer patients with excessive activation of p-Akt (Ser473) who receive tamoxifen treatment have an increased recurrence rate and a reduced overall survival rate [35]. Levels of p-Akt (S473), p-mTOR (S2448), p-ER (S167), and p-ER (S305) expression can predict tamoxifen efficacy [36]. Early studies have shown that the mTOR signaling pathway is essential for the growth of estrogen-dependent luminal breast cancer cells. mTOR inhibitors with endocrine therapy synergizes to induce cell death [37]. Bolero-2 Phase III clinical trials showed that endocrine therapy combined with Everolimus can improve progression-free survival in luminal breast cancer patients with disease progression [20,38,39]. Overexpression of ZNF703 in MCF-7 cells can activate the Akt/mTOR signaling pathway. A mTOR inhibitor combined with siRNA knockdown of ZNF703 increased the antitumor effect of tamoxifen. Our results reveal that ZNF703 is a new molecule that can activate this pathway.

![Figure 3. Overexpression of ZNF703 activates p-AKT and induces tamoxifen resistance.](image)

(A) MCF-7-vector and MCF-7-ZNF703 cells were treated with DMSO, 1 μM, 2 μM or 5 μM TAM for 24 hours, followed by western blot analysis of the indicated proteins. GAPDH was used as a loading control. ImageJ software was used to measure p-AKT levels and normalize to GAPDH levels (y-axis). (B) Western blot analysis of ZNF703 protein expression in MCF-7-vector and MCF-7-ZNF703 cells. MCF-7-vector and MCF-7-ZNF703 cells were treated with DMSO or different concentrations of TAM for 72 hours and inhibitory rates were examined. (C) Tamoxifen-mediated cell growth inhibition in MCF-7-vector and MCF-7-ZNF703 cells was evaluated by the colony formation assay. MCF-7-vector and MCF-7-ZNF703 cells were treated with DMSO or 1 μM TAM for 15 days, and colony forming areas were calculated to compare the differences before and after administration in both cell lines. Data are representative of three independent experiments and are presented as mean ± SD. *P<0.05, **P<0.01.

doi:10.1371/journal.pone.0072053.g003
Previous studies have found that mutations or loss of ER\(\alpha\) led to primary tamoxifen resistance. However, the factors that induce ER\(\alpha\) loss remain unclear. Varying degrees of ER\(\alpha\) loss can be detected in 15% to 20% of tamoxifen-resistant breast tumors [40]. ZNF703 overexpression decreased ER\(\alpha\) levels, leading to less tamoxifen targets, and high-dose TAM resulted in the recovery of ER\(\alpha\). The phenomenon that ZNF703 repressed ER\(\alpha\) expression is not contradictory with our results showing that ZNF703 was highly expressed in luminal breast cancer. However, further studies are needed to verify if ZNF703 is negatively correlated with ER expression in breast cancer patients.

The ER signaling pathway is closely related to the growth factor receptor pathway. First, the ER signaling pathway can be modulated by membrane receptor tyrosine kinases (RTKs), such as epidermal growth factor receptor (EGFR), HER-2, and insulin-like growth factor-1 receptor (IGF1-R) [15]. These RTKs can eventually phosphorylate ER and its co-activators or co-repressors, thereby affecting their function [16,41,42]. Second, estrogen increases the expression of growth factors, such as transforming growth factor (TGF-\(\alpha\)) and IGF1, and activates downstream signaling [43]. In turn, activated PI3K/Akt and p42/44 mitogen-activated protein kinase (MAPK) pathways can reduce the
Figure 5. ZNF703-mediated activation of Akt/mTOR signaling can be inhibited by rapamycin. (A) MCF-7-vector and MCF-7-ZNF703 cells were treated with DMSO, 0.1 μM rapamycin, or 1 μM rapamycin for 24 hours before cell lysis. Western blot analysis of lysates using the indicated antibodies. A GAPDH antibody was used as a loading control. (B) MCF-7-vector and MCF-7-ZNF703 cells were treated with DMSO, 0.01 μM rapamycin, or 0.1 μM rapamycin for 24 hours. Western blot analysis using the indicated antibodies. (C) DMSO or various concentrations of TAM were added to three MCF-7-ZNF703 cell groups that were treated with DMSO, 0.1 μM rapamycin, or 1 μM rapamycin for 72 hours. Survival rates were examined by the SRB assay. MCF-7-ZNF703 DMSO vs. MCF-7-ZNF703 0.1 μM rapamycin, P<0.001; MCF-7-ZNF703 DMSO vs. MCF-7-ZNF703 1 μM rapamycin, P<0.01; MCF-7-ZNF703 0.1 μM rapamycin vs. MCF-7-ZNF703 1 μM rapamycin, P>0.05, paired t-test was performed. (D) Expression of p-mTOR (S2448), p-eIF-BP1 (T37/46) and p-eIF-BP1 (T70) in (B) were measured using ImageJ software and normalized to GAPDH levels (y-axis). *P<0.05, **P<0.01.

doi:10.1371/journal.pone.0072053.g005
expression of ER and PR [44–49]. In addition, ER which functions in non-nuclear transcription, can alter the amount of proteins regulated by growth factor receptors [17,18]. Excessive activation of growth factor receptor pathways can increase the number of non-nuclear ERs and non-transcriptional activity, while non-nuclear ER activity can also be activated by estrogen or tamoxifen, resulting in tamoxifen resistance. Overexpression of RTKs causes tamoxifen to increase the function of non-nuclear ER and activate RTK downstream pathways, leading to tamoxifen resistance. We found that fibroblast growth factor receptor 4 was upregulated in MCF-7-ZNF703 cells (data not shown). Interestingly, mimicking endogenous estrogen levels, low-dose tamoxifen stimulated the growth of tumor cells upon ZNF703 overexpression. Therefore, ZNF703 is likely to increase the expression of RTKs as well as non-nuclear ER activity, which further activates the PI3K/Akt pathway, leading to cell proliferation and antagonism of tamoxifen.

Many regulatory proteins related to the cell cycle have been found. For example, cyclin-dependent kinase inhibitors (CDKI) negatively regulate the cell cycle, and RB is a negative regulator of the transition from the G1 to S phase. Studies have shown that low p27 [50–52], CCND1 expression abnormalities [53,54], and RB inactivation are associated with tamoxifen resistance [55]. We found that overexpression of ZNF703 caused down-regulation of p27 and RB1, as well as upregulation of CCND1 (data not shown). These results suggest that ZNF703 can participate in tamoxifen resistance through intrinsic cell cycle mechanisms.

Furthermore, fibroblast growth factor receptor 1 amplification (also in 8p12) leads to tamoxifen resistance [56]. Several signaling molecules, including the Hedgehog pathway molecules [57], ΔEF1 [50], CUEDC2 [59], LMTK3 [60,61], HOXB7 [62], and HER-1/HER-2 [63] are associated with tamoxifen resistance. However, more research is needed to determine which of these proteins drive tamoxifen resistance.

In summary, our data demonstrates the important role of ZNF703 as a novel molecule in tamoxifen resistance induced by activation of the Akt/mTOR signaling pathway and down-regulation of ERα. Our findings provide a potential mechanism of early- or late-recurring tamoxifen-resistant luminal breast cancers. It can be predicted that targeting ZNF703 and its downstream signaling pathway can increase the efficacy of endocrine therapy in patients with ZNF703-overexpressing luminal breast cancer. In addition, tamoxifen should be used with caution in patients with ZNF703 overexpression.

Materials and Methods

Ethics Statement
Written informed consent was obtained from all patients. The study protocol was designed according to the principles of the Helsinki guidelines, and approved by the Institutional Review Board of Ruijin hospital (China).

Antibodies, Hormones, and Reagents
Anti-ZNF703 polyclonal antibody was used at a 1:50 dilution for immunohistochemistry (Sigma, St. Louis, MO, USA). The following monoclonal antibodies were used for western blotting: p27Kip at a 1:500 dilution (Abcam, Cambridge, England), GAPDH at a 1:10,000 dilution (Cell Signaling Technology, Boston, MA, USA), ZNF703 (Abcam), ERα, RB1, AKT, p-AKT (Ser473), p-mTOR, mTOR, 4E-BP1, p-4E-BP1(T37/46), p-4E-BP1 (T70), and E-cadherin (all at a 1:1000 dilution purchased from Cell Signaling); 17β-oestradiol (E2) and TAM were purchased from Sigma, and rapamycin was purchased from Selleck Chemicals (Houston, TX, USA).

Cell Culture
All breast cancer cell lines were purchased from American Type Culture Collection (Manassas, VA, USA) and cultured in complete growth medium as described by the company. Cell lines were monitored by performing polymerase chain reaction (PCR) using the Mycoplasma Detection Kit (Invitrogen, Carlsbad, CA, USA) on the Applied Biosystems Real-Time PCR System. Briefly, MDA-MB-154 cells were grown in L-15 medium (Gibco, Carlsbad, CA, USA) with 20% fetal bovine serum (FBS; Gibco); HCC1500 and BT-549 cells were cultured in RPMI 1640 medium (Gibco) supplemented with 2 mM L-glutamine with 10% FBS; MCF-7 cells were cultured in Minimum Essential Media (Gibco) supplemented with 10% FBS.

ZNF703 Stable Cell Lines
The pCMV6-myc-DDK and pCMV6-myc-DDK-ZNF703 plasmids were purchased from OriGene Company. For stable transfections, MCF-7 cells were transfected with pCMV6-Myc-DDK or pCMV6-Myc-DDK-ZNF703 plasmids with Lipofectamine LTX (Invitrogen) according to the manufacturer's instructions. Pools of stable polyclonal cells were established under continuous selection with geneticin (G418, Invitrogen) for 7 days.

Immunoblot Analysis
The indicated cell lines were grown in 6-well plates, treated as indicated, and lysed in lysis buffer (20 mM Tris-HCl (pH 7.4), 150 mM NaCl, 0.1% SDS, 1% Triton X-100, 1% sodium deoxycholate) containing protease and phosphatase inhibitors (Beyotime, Shanghai, China). Lysates were subjected to SDS-PAGE and western blotting with the indicated antibodies as previously described [62]. Briefly, cell lysates were resolved by SDS-PAGE and electrotransferred to polyvinylidene difluoride membranes (Millipore, Billerica, MA, USA). After blocking at room temperature in 5% nonfat milk in TBST (20 mM Tris-HCl, 150 mM NaCl, 0.1% w/v Tween 20) buffer for 1 h, the membranes were incubated overnight at 4°C with the appropriate primary antibodies. The next day, the membranes were washed three times with TBST, and then incubated with peroxidase-conjugated secondary antibodies for 1 h at room temperature. After three more washes with TBST, proteins were visualized using a Chemiluminescence Detection Kit (Millipore). GAPDH was used as a loading control.

Quantitative RT-PCR
Quantitative real-time PCR was performed using SYBR (Takara, Japan) on the ABI Prism 7500 fast system (Applied Biosystems, Carlsbad, CA, USA) using standard curve method. The following primers were used: ZNF703 primer: 5'-AC-CCTGTTTCCAGACACCTAAGC-3' (forward); 5'-TTGAG-GAAAGGGCATTAAACTCG-3' (reverse); ERα primer: 5'-AA-GAAAGACACAGACGAGATGTC-3' (forward); 5'-GGGCTATGCTTGGTATACATC-3' (reverse). GAPDH primer: 5'-CTTAGACCCCTGGGCAAAG-3 (forward); 5'-GATGTTCTCGAGAGGCCCGG-3' (reverse).

siRNA Transfection and Cell Line Drug Sensitivity
Target sequences for ZNF703 siRNA using RNAiMAX (30 nM final concentration, Invitrogen) were as follows: siRNA-1 (sense strand: 5'-CCACACACUUUGGCGCUUA dTdT 3'; antisense strand: 3'-dTdT GGUGUGUAGAAACCGGGAUU 5'), siRNA-2
(sense strand- 5' GGACCUACUAUUGCGCAU dTdT 3';
antisense strand- 3' dTdT CCU/GGAGUAUAGCGGUUA 5').
Non-targeting control (NC) siRNA was designed and synthesized by
Guangzhou RuiBoBio (Guangzhou, China). For assessment of
endocrine therapy, cells were maintained in phenol red-free
media, supplemented with 10% charcoal/DOC stripped serum
(Tissue Culture Biologicals, Long Beach, CA, USA) and 1 nM
estradiol, and then plated in 96-well plates and treated for 3 to
6 days with a range of TAM concentrations. Cell proliferation was
determined using the sulforhodamine B (SRB) (Sigma) assay.
Relative growth was calculated as the value relative to dimethyl
sulfoxide (DMSO) treated cells (control).

Colony-forming Assay
Cells were seeded into 6-well plates (1000 cells per well).
Standard growth medium, with TAM or DMSO, was changed
every other day. On day 15, colonies were fixed in 10% methanol,
10% acetic acid, and 80% ddH2O, and then stained with crystal
violet (0.5% w/v).

Analysis of ZNF703 Expression in Tissue Microarray
Tissue specimens were obtained from archived tissue samples of
patients with primary breast cancer who underwent surgical
therapy at Ruijin Hospital (China) between January 2001 and
December 2003. The selection criteria were as follows: (1) subjects
had a diagnosis of stage-I-III primary breast cancer and no history
of other tumors; (2) subjects had complete clinical data, such as
gender, age, stage, lymph node status, tumor size (as according to
pathology reports), and pathological type. Patients receiving
chemotherapy or radiotherapy prior to surgery were excluded.
IHC analysis of ZNF703 protein was performed on tissue
microarray sections with antibodies against ZNF703, as previously
described [64]. ZNF703 expression was independently evaluated
by two pathologists, both of whom were blinded to the
clinopathologic data. Specimens were assigned scores according
to the intensity of nuclear staining (no staining = 0; weak staining
= 1, moderate staining = 2, strong staining = 3), and to
the percentage of stained cells (0% = 0, 1–20% = 1, 21–40% = 2,
41–60% = 3, 61–80% = 4, 81–100% = 5). The final immunoreac-
tive score was determined by multiplying the intensity score by
the score representing the percentage of stained cells, and ranged from
0 (minimum score) to 15 (maximum score). Cases were further
classified into negative/low and high expression groups according
to the median score of nuclear acid staining. Evaluation of hormone
receptor expression was based on the Allred scoring
method [65].

Statistics
Each experiment was repeated at least three times. Data were
presented as mean ± the standard deviation (SD) of each
experiment. Data analysis was performed using SPSS 17.0.
Student’s t-test was used to evaluate the numerical data. Chi-
square test was used for comparisons of categorical data. Statistical
tests were two-sided, and P values less than 0.05 were considered
statistically significant.

Supporting Information
Table S1 ZNF703 expression in 127 breast cancer patients.

Author Contributions
Conceived and designed the experiments: XZ MYG KWS. Performed
the experiments: XZ XM. Analyzed the data: XZ ZQX. Contributed
reagents/materials/analysis tools: OH ZQX MJ. Wrote the paper: XZ.

Acknowledgments
We thank Doctor David H. Garfield for kindly revising this manuscript. We also thank Min Huang, Xun Huang, Jing Ai, Aljun Shen, and
Xiaoxiong Chen for suggestions of experiment designing. Thank Hongchun Liu, Shui Tang, Xiahuayue, Danzi Sun, Haotian Zhang, Dadong Zhang,
Wenyi Sun, Chenlin Liu, Lu Wang, Yinchen Ji, Liping Zhang, Hanlin Zeng and Ying Wang for technical helps.

Author Contributions
Conceived and designed the experiments: XZ MYG KWS. Performed
the experiments: XZ XM. Analyzed the data: XZ ZQX. Contributed
reagents/materials/analysis tools: OH ZQX MJ. Wrote the paper: XZ.

References
1. Tran B, Bedard PL (2011) Luminal-B breast cancer and novel therapeutic
targets. Breast Cancer Res 13: 221.
2. Chia S, Bryce C, Gelmon K (2005) The 2000 EBCTCG overview: a widening
gap. Lancet 365: 1603–1666.
3. Knemecke H, McArthur H, Olivotto IA, Speers C, Rajkij C, et al. (2008) Risk of
early recurrence among postmenopausal women with estrogen receptor-positive
early breast cancer treated with adjuvant tamoxifen. Cancer 112: 1437–1444.
4. (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on
cancer recurrence and 15-year survival: an overview of the randomised trials. Lancet
365: 1607–1717.
5. Dixon JM, Jackson J, Rennhov L, Miller WR (2003) Neoadjuvant tamoxifen and
aromatase inhibitors: comparisons and clinical outcomes. The Journal of Steroid
Biochemistry and Molecular Biology 86: 295–299.
6. Maurer L (2002) Neoadjuvant tamoxifen for hormone-sensitive non-metastatic
breast carcinomas in early postmenopausal women. Annals of Oncology 13:
293–298.
7. Nielsen TO, Parker JS, Leung S, Voduc D, Ebbert M, et al. (2010) A
comparison of PAM50 intrinsic subtyping with immunohistochemistry and
clinical prognostic factors in tamoxifen-treated estrogen receptor-positive breast
cancer. Clin Cancer Res 16: 5222–5232.
8. Cheang MC, Chia SK, Voduc D, Gao D, Leung S, et al. (2009) K67 index,
HER2 status, and prognosis of patients with luminal B breast cancer. J Natl
Cancer Inst 101: 736–750.
9. Smith IE, Dowsett M, Ebbs SR, Dixon JM, Skene A, et al. (2005) Neoadjuvant
treatment of postmenopausal breast cancer with anastrozole, tamoxifen, or both
in combination: the Immediate Preoperative Anastrozole, Tamoxifen, Or
Combined with Tamoxifen (IMPACT) multicenter double-blind randomized
trial. J Clin Oncol 23: 5108–5116.
10. Filipovic M, Ruda M, Jakub R, Dubsky P, Fisal F, et al. (2011) A new molecular
predictor of distant recurrence in ER-positive, HER2-negative breast cancer adds
independent information to conventional clinical risk factors. Clin Cancer Res
17: 6012–6020.
11. Deuker C, Kronenwett R, Schlake W, Bohmann K, Penez R, et al. (2012)
Decentral gene expression analysis for ER+/Her2- breast cancer: results of a
proficiency testing program for the EndoPredict assay. Virchows Arch 460:
251–259.
12. Muller BM, Brase JC, Haufe F, Weber KE, Budaj E, et al. (2012) Comparison
of the RNA-based EndoPredict multigene test between core biopsies and
corresponding surgical breast cancer sections. J Clin Pathol 65: 660–662.
13. Dubsky P, Filipits M, Jakub R, Rudas M, Singer CF, et al. (2013) EndoPredict
improves the prognostic classification derived from common clinical guidelines
in ER-positive, HER2-negative early breast cancer. Ann Oncol 24: 640–647.
14. Osborne CK, Schaff R (2011) Mechanisms of endocrine resistance in breast
cancer. Annu Rev Med 62: 233–247.
15. Schaff R, Masarweh SA, Shou J, Bhawari L, Mehmud SK, et al. (2004) Cross-
talk between estrogen receptor and growth factor pathways as a molecular target
for overcoming endocrine resistance. Clin Cancer Res 10: 331S–336S.
16. Shou J, Masarweh S, Osborne CK, Wakeling AE, Ali S, et al. (2004)
Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/teu
cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst 96: 926–935.
17. Levin ER, Petras RJ (2008) Estrogen receptors outside the nucleus in breast
cancer. Breast Cancer Res Treat 108: 351–361.
18. Schaff R, Fan P, Zhang F, Bao Y, Song RX, et al. (2009) Estrogen signals via
an extra-nuclear pathway involving IGF-1R and EGFR in tamoxifen-resistant
and -resistant breast cancer cells. Steroids 74: 586–594.
19. Shonnan N, Klassen S, McFadden A, Bicks MG, Torlakovich E, et al. (2005)
Reduced PTEN expression predicts relapse in patients with breast carcinoma
reduced by tamoxifen. Mod Pathol 18: 250–259.
20. Basela J, Campone M, Piccart M, Buriu HA, . (2012) Everolimus in
postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med
366: 520–529.
21. Cavazzoni A, Bonelli MA, Fumara C, La Monica S, Airold K, et al. (2012)
Overcoming acquired resistance to letrozole by targeting the PI3K/AKT1/mTOR
pathway in breast cancer cell clones. Cancer Lett 323: 77–87.
44. Bayliss J, Hilger A, Vishnu P, Diehl K, El-Ashry D (2007) Reversal of the estrogen receptor negative phenotype in breast cancer and restoration of antiestrogen response. Clin Cancer Res 13: 7029–7036.

45. Lopez-Tarruella S, Schiff R (2007) The dynamics of estrogen receptor status in breast cancer: reshaping the paradigm. Clin Cancer Res 13: 6921–6925.

46. Cui X, Zhang P, Deng W, Oesterreich S, Lu Y, et al. (2003) Insulin-like growth factor-I inhibits progesterone receptor expression in breast cancer cells via the phosphatidylinositol 3-kinase/Akt/ mammalian target of rapamycin pathway: progesterone receptor as a potential indicator of growth factor activity in breast cancer. Mol Endocrinol 17: 575–581.

47. Cui X, Schiff R, Arpino G, Osborne CK, Lee AV (2003) Biology of progesterone receptor loss in breast cancer and its implications for endocrine therapy. J Clin Oncol 23: 7721–7735.

48. Guo S, Sonenshein GE (2004) Forkhead box transcription factor FOXO3a regulates estrogen receptor alpha expression and is repressed by the Her-2/neu/ phosphatidylinositol 3-kinase/Akt signaling pathway. Mol Cell Biol 24: 8661–8690.

49. Creighton CJ, Fu X, Hemmessy BT, Casa AJ, Zhang Y, et al. (2010) Proteomic and transcriptional profiling reveals a link between the PI3K pathway and lower estrogen-receptor (ER) levels and activity in ER+ breast cancer. Breast Cancer Res 12: R40.

50. Cartiou S, Donovan JC, Flanagan WM, Milic A, Bhattacharyya N, et al. (2000) Down-regulation of p21WAF1/CIP1 or p27Kip1 abrogates estrogen-mediated cell cycle arrest in human breast cancer cells. Proc Natl Acad Sci U S A 97: 9042–9046.

51. Chu IM, Hengt L, Slingerland JM (2008) The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer 8: 253–267.

52. Carroll JS, Lynch DK, Swaarwick A, Renorio JM, Sarcevic B, et al. (2003) p27Kip1 induces quiescence and growth factor insensitivity in tamoxifen-treated breast cancer cells. Cancer Res 63: 4322–4326.

53. Butt AJ, McNeil CM, Musgrove EA, Sutherland RI (2005) Downstream targets of growth factor and oestrogen signalling and endocrine resistance: the potential roles of c-Myc, cyclin D1 and cyclin E. Endocr Relat Cancer 12 Suppl 1: 847–59.

54. Lange CA, Yee D (2011) Killing the second messenger: targeting loss of cell cycle control in estrogen-resistant breast cancer. Endocr Relat Cancer 18: C19–24.

55. Bosco EE, Wang Y, Xu H, Zilfou JT, Knudsen KE, et al. (2007) The retnoblastoma tumor suppressor modifies the therapeutic response of breast cancer. J Clin Invest 117: 218–228.

56. Turner N, Pearson A, Sharpe R, Lambros M, Geyer F, et al. (2010) FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res 70: 2085–2094.

57. Ramaswamy B, Lu Y, Teng KY, Nuovo G, Li X, et al. (2012) Hedgehog signaling is a novel therapeutic target in tamoxifen-resistant breast cancer aberrantly activated by PI3K/ AKT pathway. Cancer Res 72: 5048–5059.

58. Guo S, Li Y, Tong Q, Guo F, Zhu T, et al. (2012) DeltaEFL1 Down-Regulates ERα Expression and Confers Ttamoxifen Resistance in Breast Cancer. PLoS One 7: e52380.

59. Pan X, Zhou T, Tai YH, Wang C, Zhao J, et al. (2011) Elevated expression of CUEDC2 protein confers estrogen resistance in breast cancer. Nat Med 17: 701–714.

60. Gianas G, Filipovic A, Jacob J, Messier W, Zhang H, et al. (2011) Kinome screening for regulators of the estrogen receptor identifies LMTK3 as a new therapeutic target in breast cancer. J Clin Oncol 29: 3474–3483.

61. Stehberg J, Filipovic A, Ellis IO, Green AR, D’Silva TR, et al. (2012) LMTK3 expression in breast cancer: association with tumor phenotype and clinical outcome. Breast Cancer Res Treat 132: 337–344.

62. Kim J, Kong X, Shah T, Peut MF, Wides F, et al. (2012) The HOXB7 protein renders breast cancer cells resistant to tamoxifen through activation of the EGFR pathway. Proc Natl Acad Sci U S A 109: 2736–2741.

63. Arpino G, Green SJ, Alfred DC, Lew D, Martino S, et al. (2004) HER-2 amplification, HER-1 expression, and tamoxifen response in estrogen receptor-positive metastatic breast cancer: a southwest oncology group study. Clin Cancer Res 10: 5670–5676.

64. Jeong H, Ryu YJ, Jan J, Lee Y, Kim A (2012) Epithelial-mesenchymal transition in breast cancer correlates with high histological grade and triple-negative phenotype. Histopathology 60: 867–95.

65. Harvey JM, Clark GM, Osborne CK, Alfred DC (1999) Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol 17: 1474–1481.