The transcription factors Egr1 and Egr2 have opposing influences on adipocyte differentiation

KB Boyle1,2, D Hadaschik1, S Virtue1, WP Cawthorn1, SH Ridley1, S O’Rahilly1 and K Siddle*1

The zinc finger-containing transcription factors Egr1 (Krox24) and Egr2 (Krox20) have been implicated in the proliferation and differentiation of many cell types. Egr2 has earlier been shown to play a positive role in adipocyte differentiation, but the function of Egr1 in this context is unknown. We compared the roles of Egr1 and Egr2 in the differentiation of murine 3T3-L1 adipocytes. Egr1 protein was rapidly induced after addition of differentiation cocktail, whereas Egr2 protein initially remained low before increasing on days 1 and 2, concomitant with the disappearance of Egr1. In marked contrast to the effects of Egr2, differentiation was inhibited by ectopic expression of Egr1 and potentiated by knockdown of Egr1. The pro-adipogenic effects of Egr1 knockdown were particularly notable when isobutylmethylxanthine (IBMX) was omitted from the differentiation medium. However, knockdown of Egr1 did not affect CCAAT/enhancer binding protein (C/EBP)β protein expression or phosphorylation of CREB Ser133. Further, Egr1 did not directly affect the activity of promoters for the master adipogenic transcription factors, C/EBPα or peroxisome proliferator-activated receptor-γ, as assessed in luciferase reporter assays. These data indicate that Egr1 and Egr2 exert opposing influences on adipocyte differentiation and that the careful regulation of both is required for maintaining appropriate levels of adipogenesis. Further, the pro-differentiation effects of IBMX involve suppression of the inhibitory influence of Egr1.

Cell Death and Differentiation (2009) 16, 782–789; doi:10.1038/cdd.2009.11; published online 20 February 2009

Adipose tissue plays a central role in the maintenance of whole-body energy homeostasis. Studies of obese and lipodystrophic humans and rodents show that both increased and decreased adipose tissue mass are associated with insulin resistance and abnormal glucose and lipid metabolism, primary causes of type II diabetes.1,2 Tight control of adipocyte development, size and insulin sensitivity is therefore of critical importance. Adipose tissue responds to increases in energy flux in part by the differentiation of new adipocyte cells from preadipocyte and stem-cell precursors. The differentiation process requires the carefully orchestrated expression of a cascade of transcription factors.3,4 It is well established that the core of the transcriptional cascade involves activation of CCAAT/enhancer binding protein (C/EBP) family members C/EBPβ and C/EBPδ followed, in turn, by activation of C/EBPα and the nuclear hormone receptor peroxisome proliferator-activated receptor-γ (PPARγ). Together, PPARγ and C/EBPα control the expression of key genes that confer the differentiated phenotype, including the ability to store lipid in an insulin-sensitive manner. The central adipogenic role of PPARγ is highlighted by the ability of ectopically expressed PPARγ to induce an adipocyte-like phenotype in non-adipose cells.5,6 The pro-adipogenic transcription factor CREB is also capable of promoting differentiation of preadipocytes in the absence of normal differentiation medium.7,8

Many other proteins have been identified that impinge on the differentiation process, both positively and negatively. Among these are transcription factors of the Kruppel-like factor (KLF) family, of which KLF5, KLF6 and KLF15 have positive effects, whereas KLF2 and KLF7 have negative effects on adipogenesis.3,4 Indeed, sequential binding of KLFs to target promoters seems to play a key role in orchestrating differentiation. Other factors that modulate transcription factor activity and promoter accessibility have been shown to be important in fine-tuning the adipogenic process. The co-activator TRAP2209 and histone acetylase CBP/p30010,11 promote differentiation, whereas the co-repressor ETO/MTG812 and histone deacetylase HDAC13 inhibit differentiation. Studies of the signaling pathways that impact on the adipogenic transcriptional cascade have highlighted the role of secreted proteins such as TGFβ and members of the Wnt and BMP families.3,4

Early growth response gene 2 (Egr2, also known as Krox20) is a recently described positive regulator of adipogenesis, that apparently exerts its effects through both C/EBPβ-dependent and -independent mechanisms.14

References

1Department of Clinical Biochemistry, Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
2Corresponding author: K Siddle, Department of Clinical Biochemistry, Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK. Tel: +44 1223 336 789; Fax: +44 1223 330 598; E-mail: ks14@mole.bio.cam.ac.uk
3Current address: Inositide Laboratory, Babraham Institute, Babraham, Cambridge CB22 3AT, UK

Abbreviations: aP2, fatty-acid binding protein 2; C/EBP, CCAAT/enhancer binding protein; DMEM, Dulbecco’s modified Eagle’s medium; GLUT4, glucose transporter 4; HTNC, His-TAT-NLS-Cre recombinase fusion protein; IBMX, isobutylmethylxanthine; IPTG, isopropyl β-D-thiogalactoside; KLF, Kruppel-like factor; MDI, IBMX-dexamethasone and insulin; PBS, phosphate buffered saline; PTB, phosphate Tris buffer; PPAR, peroxisome proliferator-activated receptor; SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis; RT-PCR, reverse transcriptase polymerase chain reaction; shRNA, short hairpin ribonucleic acid

Received 29.5.08; revised 28.11.08; accepted 12.1.09; Edited by M Federici; published online 20.2.09
Ectopic expression of Egr2 promoted differentiation in murine 3T3-L1 cells and compensated for the absence of insulin from the differentiation medium.14 Egr2 belongs to a family of Cys-His\textsubscript{2} Zinc-finger transcription factors that also includes Egr1 (also known as NGFI-A, Krox24, tis8 and zif268), Egr3 and Egr4. Egr1 and Egr2 were identified as serum-response genes twenty years ago,15–17 and are induced by diverse mitogenic stimuli in many different cells. Although Egr1 has been implicated in differentiation of several cell types,18–20 its role in adipogenesis has not been investigated. This study thus sought to compare the roles of Egr1 and Egr2 in differentiation of 3T3-L1 adipocytes. In contrast to Egr2, Egr1 was found to have an anti-adipogenic action.

Results

Egr1 and Egr2 expression profiles during adipogenesis. As Egr1 and Egr2 are immediate-early genes induced by a wide variety of stimuli, their expression pattern was assessed in 3T3-L1 cells after addition of differentiation cocktail (MDI: iso-butyl-Methylxanthine, Dexamethasone and Insulin) (Figure 1a). The level of Egr1 protein increased substantially by 1 h and then decreased. In contrast, Egr2 protein did not increase from its initial low level during 4 h after addition of MDI. Levels of Egr1 and Egr2 protein were also determined throughout 6 days of differentiation (Figure 1b). Egr1 protein decreased to near undetectable levels on days 1 and 2, but increased twofold above day 0 levels on day 3 (yet considerably below the peak achieved 1 h after addition of MDI on day 0), which was followed by a return to day 0 levels on days 4 and 5 and a further reduction on day 6. In contrast, Egr2 protein levels increased approximately twofold on days 1 and 2, but decreased to preadipocyte levels thereafter. In general, Egr2 protein expression was highest when Egr1 was lowest, and vise versa, suggesting that they may have distinct roles during differentiation. The exchanges of differentiation medium on days 2, 4 and 5 induced transient increases in expression of Egr1 protein, as on day 0 (data not shown).

Sustained expression of Egr1 inhibits, whereas Egr2 promotes differentiation. We next compared the effects of ectopically expressing Egr1 and Egr2. Sustained ectopic expression of Egr2 was earlier shown to promote differentiation of 3T3-L1 cells.14 Initial attempts to generate 3T3-L1 preadipocyte cell lines stably overexpressing Egr1 using a retroviral vector were unsuccessful (data not shown), possibly because constitutive expression of Egr1 at high levels is inhibitory to proliferation.21 We therefore employed a strategy for inducible expression of Egrs involving the Cre-inducible retroviral vector pLPNX.22 In this system translation of Egr protein from a bi-cistronic mRNA is initiated only after Cre-mediated excision of the upstream intervening sequence encoding the neomycin resistance gene. For flexible introduction of Cre, a recombinant membrane-permeant Cre fusion protein HTNC (His-TAT-NLS-Cre)23 was used. Optimal conditions for incubation of 3T3-L1 cells with HTNC protein so as to maximize the efficiency of gene induction were determined using cells stably expressing an inducible pLPNX-EGFP construct (Figure 2a). These conditions were then used to induce expression of Egr1 and Egr2 proteins and Western blotting was performed to confirm their induction. No alteration in expression of either Egr1 or Egr2 protein was detectable in the non-induced state. Treatment of confluent pLPNX-Egr1 or -Egr2 cells with HTNC increased expression of the respective protein, which was maintained for up to 10 days after addition of MDI differentiation cocktail (Figure 2b).

To assess the effects of sustained ectopic expression of Egr1 and Egr2 on differentiation, confluent 3T3-L1 cells stably transfected with pLPNX-Egr1 or -Egr2 were incubated with HTNC protein before addition of MDI cocktail. Lipid accumulation was visualized by oil red O staining after a further 6 days (Figure 2c). Cells expressing Egr1 contained markedly less lipid than controls, whereas cells expressing Egr2 accumulated more lipid. Quantification of oil red O stain showed an approximately twofold decrease in lipid in Egr1-expressing cells and a 2.5-fold increase in Egr2-expressing cells (Figure 2d).
Figure 2 Effects of Cre-mediated induction of Egr1 and Egr2 on adipocyte differentiation. Stably transfected 3T3-L1 cell lines were generated using a pLNPX-based retrovirus harboring a Cre-inducible cassette for expression of Egr1, Egr2, EGFP or empty vector control (e.v.). Confluent 3T3-L1 cells harboring pLNPX-Egr1, -Egr2 or e.v. control were treated with or without HTNC protein and differentiation was induced 32 h later. Whole-cell lysates were prepared at the indicated times and were subjected to Western blotting with the indicated antibodies. PI3-kinase p85 subunit channel, was determined by flow cytometry (a). Confluent 3T3-L1 harboring pLNPX-Egr1, -Egr2 or e.v. control were treated with or without HTNC protein and differentiation was induced 32 h later. Whole-cell lysates were prepared at the indicated times and were subjected to Western blotting with the indicated antibodies. PI3-kinase p85 subunit was used as loading control (b). On day 6, lipid accumulation was visualized by staining with oil red O (c) and quantified by subsequent extraction and absorbance measurement at 515 nm (error bars represent the range of two independent experiments) (d) Relative mRNA levels of biochemical markers of adipogenesis (PPARγ2, C/EBPα, aP2 and GLUT4) determined by semi-quantitative RT-PCR (sqRT-PCR) immediately before addition of MDI (day 0), on days 3 and 6 after addition of MDI (e). Data for each marker are expressed relative to empty vector control on day 3 of differentiation. Open bars, control (e.v.) cells; hatched bars, Egr1-expressing cells; black bars, Egr2-expressing cells. Error bars represent the S.E.M. of three independent experiments, and statistical significance is indicated *P<0.05

To gain additional insight into the effects of ectopic expression of Egr1 or Egr2 the mRNA levels of biochemical markers of differentiation (C/EBPα, PPARγ2, fatty-acid binding protein 2 (aP2) and glucose transporter 4 (GLUT4)) were determined (Figure 2e). Samples were taken on day 0 to assess effects of overexpression before commencement of differentiation, day 3 as the mid-point of differentiation and day 6 for comparison with oil red O staining. The levels of each marker increased substantially during differentiation of each cell line. On day 0 expression of C/EBPα was already significantly lower in cells expressing Egr1 than in controls, and this difference was maintained at 3 and 6 days of differentiation. In contrast, in cells expressing Egr2 there was a tendency to increased expression of C/EBPα. On day 0 expression of PPARγ2 was already higher in cells expressing Egr2 than in controls and the difference became even greater after 3 and 6 days of differentiation, whereas in Egr1-expressing cells by day 6 expression of PPARγ2 was significantly lower than in controls. The late differentiation markers largely mirrored oil red O staining and expression patterns of the transcription factors C/EBPα and PPARγ2. Compared with controls, levels of both aP2 and GLUT4 were decreased on days 3 and 6 in cells expressing Egr1 and increased in cells expressing Egr2. These data are broadly consistent with earlier studies in suggesting that Egr2 is a pro-adipogenic factor, but indicate that Egr1 has an opposite effect and inhibits differentiation when constitutively overexpressed. Further, they indicate that Egr1 exerts its effects in the initial days of differentiation.

Knockdown of Egr1 potentiates, whereas knockdown of Egr2 inhibits, differentiation. To complement the overexpression studies, we tested the effects of RNAi-mediated knockdown of Egr1 and Egr2 on differentiation. Preadipocyte cell lines stably expressing short hairpin RNAs (shRNA) were generated using the pSiren-RetroQ RNAi-Ready retroviral vector. As controls, cells harboring an empty vector or stably expressing an irrelevant shRNA (against the luciferase gene) were used. Similar data were obtained for both controls throughout and data are shown only for one control. Western blotting was used to determine the efficacy of the shRNAs at times, which would otherwise exhibit peak protein expression (Figure 3a and b). Egr1 protein was undetectable in shEgr1 cells 1–2 h after treatment with MDI cocktail, whereas shEgr2 cells exhibited approximately 50% decrease of Egr2 protein on day 1 of differentiation. Therefore, the shEgr1 construct mediates almost complete knockdown of Egr1 protein expression, whereas the shEgr2 construct mediates only partial knockdown of Egr2 protein. To address the effects of Egr1 or Egr2 knockdown on 3T3-L1 differentiation, shEgr1, shEgr2 and shLuc cell lines were differentiated and after 6 days lipid accumulation was visualized by oil red O staining (Figure 3c). Consistent with published work, shEgr2 cells exhibited a marked decrease in lipid accumulation, whereas shEgr1 cells exhibited a slight increase in lipid accumulation compared with well-differentiated controls. Effects of Egr knockdown were also assessed under sub-optimal differentiation conditions by omission of individual components of the MDI cocktail. Removal of any
one of the components greatly impaired differentiation of control cells and no additional inhibitory effects of Egr2 knockdown were visible. Similarly, in the absence of either dexamethasone or insulin shEgr1 cells failed to differentiate. However, in the absence of isobutylmethylxanthine (IBMX), knockdown of Egr1 induced substantial differentiation, with lipid accumulation comparable with that observed in control cells treated with full MDI cocktail. Therefore, knockdown of Egr1 is pro-adipogenic to the extent that lack of Egr1 can effectively compensate for the absence of IBMX.

To gain additional insight into the effects of Egr knockdown, the mRNA levels of biochemical markers of adipogenesis were determined in cells treated with differentiation medium lacking IBMX (Figure 3d). As in the overexpression studies, samples were taken on days 0, 3 and 6 of differentiation. The levels of each of the four markers increased very substantially (30–500-fold) during differentiation of all cell lines. Knockdown of Egr2 had no statistically significant effects on any of the markers at any time point, other than a small inhibition of C/EBPγ on day 3. However, knockdown of Egr1 had more widespread effects. On day 0, when all the genes were expressed at relatively low levels, Egr1 knockdown induced a small, but statistically significant increase in only aP2 expression. By day 3 of differentiation all the markers showed higher levels in Egr1 knockdown cells and similar patterns were observed at day 6, when absolute levels of expression had increased still further. Such changes are consistent with the increased lipid deposition in Egr1 knockdown cells. Of the genes studied, C/EBPγ was least affected by Egr1 knockdown.

Interrelationships between IBMX and Egr1. The finding that knockdown of Egr1 compensated for the absence of IBMX during differentiation suggested that the roles of Egr1 and IBMX are interrelated, and that IBMX may act to inhibit the activity of Egr1 for differentiation to proceed. However, induction of Egr1 protein by differentiation cocktail on day 0 was the same whether or not IBMX was present (Supplementary Figure 1), and Egr1 protein was localized to the nuclear fraction under both conditions (data not shown).

The transcription factor CREB plays an important role in adipocyte differentiation,7,24 and IBMX would be expected to activate CREB through inhibition of cAMP phosphodiesterases, elevation of intracellular cAMP and phosphorylation of Ser133 by cAMP-dependent protein kinase. We therefore tested whether knockdown of Egr1 might potentiate this action of IBMX (Figure 4). Basal phosphorylation of CREB Ser133 was very low, but robust phosphorylation was observed within 10 min of addition of full MDI cocktail. Phosphorylation only returned to basal levels between 8 and 24 h. Profiles of CREB phosphorylation were very similar in both shEgr1 cells and controls. Surprisingly, similar levels of CREB phosphorylation were observed after addition of DI cocktail (lacking IBMX), except for a modest decrease at 8 h, but again knockdown of Egr1 did not affect the profile. We conclude that Egr1 does not influence CREB phosphorylation in the early stages of adipocyte differentiation and that the induction of CREB phosphorylation is not substantially dependent on IBMX.

C/EBPβ is an important early transcriptional regulator of adipogenesis and a target of IBMX in preadipocytes.25,26 In addition to inducing C/EBPβ directly, IBMX is permissive for
The omission of IBMX from differentiation cocktail attenuated (approx 15-fold at 2 h) in each shRNA-expressing cell line. We therefore investigated whether induction of C/EBPβ was influenced by knockdown of Egr1 or Egr2 (Figure 5). MDI cocktail induced robust and similar increases in C/EBPβ mRNA expression (approx 15-fold at 2 h) in each shRNA-expressing cell line. The omission of IBMX from differentiation cocktail attenuated

the induction of C/EBPβ by Egr2/Krox20.14 We therefore investigated whether induction of C/EBPβ was influenced by knockdown of Egr1 or Egr2 (Figure 5). MDI cocktail induced robust and similar increases in C/EBPβ mRNA expression (approx 15-fold at 2 h) in each shRNA-expressing cell line. The omission of IBMX from differentiation cocktail attenuated
of 3T3-L1 differentiation and confirm that the related protein Egr2 (Krox20) acts as a positive regulator. Specifically, stable knockdown of Egr1 enhanced differentiation and largely compensated for the absence of IBMX from differentiation cocktail, whereas induction of ectopic Egr1 expression inhibited differentiation. In contrast, knockdown of Egr2 inhibited differentiation, whereas induction of Egr2 enhanced differentiation.

Our findings in relation to Egr2 are generally in line with the published work of Friedman and colleagues, but differ from it in some important respects. Friedman and colleagues documented the expression of Egr2 mRNA, which reached an early peak 1–2 h after addition of differentiation cocktail to confluent 3T3-L1 preadipocytes, declined to a low level by 6 h and then remained essentially undetectable. We confirmed that Egr2 mRNA was rapidly and substantially induced by differentiation medium (data not shown), but found that this was not coupled to an immediate increase in the level of Egr2 protein (Figure 1a). Indeed, Egr2 protein expression increased only between days 1 and 2 of differentiation, and only by a modest amount. It was shown by Friedman and colleagues that ectopic overexpression of Egr2 potentiated the early IBMX- and dexamethasone-dependent increase in C/EBPβ expression. More recently it was shown that Egr2 cooperates with the IBMX-regulated transcription factor KLF4 to induce C/EBPβ expression. However, the specific window within which this mode of C/EBPβ regulation occurs during the differentiation process remains unclear as Egr2 is expressed only at very low levels in the initial hours of adipogenesis and knockdown of Egr2 has no effect on acute expression of C/EBPβ (Figure 5). It is noteworthy that knockdown of C/EBPβ only partially impaired the pro-adipogenic effect of Egr2, indicating that effects of Egr2 are not entirely C/EBPβ-independent. The IBMX dependency of both Egr1 inhibition of adipogenesis (as shown here) and KLF4 expression suggests a possible link between the two factors.

Our observation that there is no dramatic early increase in Egr2 protein in differentiating 3T3-L1 cells at the time of initial C/EBPβ induction calls into question the importance of C/EBPβ in mediating pro-adipogenic effects of endogenous Egr2. Indeed, we found that partial knockdown of Egr2 (achieved using the published shRNA sequence) did not affect the acute induction of C/EBPβ mRNA in response to differentiation cocktail (Figure 5a). The finding that Egr2 binds directly to KLF4 to induce expression of C/EBPβ does not conflict with the suggestion that Egr2 also exerts part of its pro-adipogenic effects in parallel with C/EBPβ.

A mechanistic link between C/EBPβ and the anti-differentiative effects of Egr1 was suggested by the observation that knockdown of Egr1 rescued the defect in C/EBPβ mRNA induction mediated by the removal of IBMX from differentiation medium, although there was no comparable rescue of the attenuation of C/EBPβ protein expression (Figure 5). The reasons for this discrepancy are unclear. Further investigation is clearly required to determine whether Egr1 influences the expression or activity of C/EBPβ at later stages of differentiation. Nevertheless, the finding that knockdown of Egr1 enhanced differentiation in medium lacking IBMX, but not dexamethasone or insulin, suggests that under normal differentiation conditions IBMX may act in part by inhibiting Egr1 action. However, we could not show any effect of IBMX on the expression (Supplementary Figure 1) or nuclear localization (data not shown) of Egr1 protein, nor was there any effect of Egr1 knockdown on the phosphorylation of CREB (Figure 4), a known target of IBMX and important regulator of adipogenesis.

It seems paradoxical that a protein with the capacity to inhibit differentiation should exhibit a rapid and substantial increase in expression as an early response to addition of MDI cocktail. However, the critical time window within which Egr1 exerts its inhibitory effect on the overall differentiation program is unknown. Clearly, the transient MDI-induced induction of Egr1 expression is dispensable for differentiation (Figure 3) and it is likely that the later decrease in Egr1 expression, between days 1 and 2, is more important for differentiation to occur. Unfortunately, currently available techniques do not allow rapid and reversible knockdown or overexpression of proteins within narrow time windows so as to determine the critical period of Egr1 action.

Important outstanding questions are whether the opposing effects of Egr1 and Egr2 on adipogenesis are exerted at the same or distinct phases of the differentiation program and whether they reflect antagonistic actions on shared or distinct targets. There is a degree of reciprocity in the fluctuating levels of Egr1 and Egr2 proteins, in that Egr1 is near undetectable by day 2 of differentiation, concomitant with maximum expression of Egr2, whereas Egr1 reappears on day 3 as Egr2 decreases (Figure 1). Sequential binding of Egr1 and Egr2 to target promoters may be necessary to orchestrate the differentiation process. Egr1 and Egr2 share almost identical consensus binding sites, and consensus sites within certain promoters have been shown to be capable of interacting with either Egr1 or Egr2. However, other binding sites, usually dependent on promoter sequence context, can interact with one of these Egrs, but not the other. Such differential modulation of gene expression is attributed to the ability of different Egr proteins to interact with different secondary factors through their divergent activation domains. Although we found that cells overexpressing Egr1 or Egr2 had altered levels of both PPARγ2 and C/EBPα mRNA, there was no evidence in promoter–reporter assays that Egr1 or Egr2 could directly modulate the expression of either gene. Whether Egr proteins affect C/EBP-dependent expression from these promoters requires further investigation. Egr1 can induce expression of other genes, such as Pref-1 and PAI-1, which are known to inhibit adipocyte differentiation.

In conclusion, our data add to the growing body of evidence that Egr proteins play important, but complex, roles in the differentiation of a number of cell types. However, the effects of Egr1 and Egr2 are cell- and context-dependent. Similar to the situation described here Egr1 and Egr2 displayed opposing expression patterns and function during Schwann cell differentiation and T-cell activation. Indeed, the latter study provided evidence that Egr2 can suppress Egr1 expression mechanistically. In contrast, Egr proteins were found to play similar and redundant roles in both the suppression of neutrophil differentiation, in favor of macrophage differentiation, and the promotion of thymocyte differentiation.
understand the mechanisms by which the differentiation of different cell types is regulated by the tonic balance of Egr1 and Egr2.

Materials and Methods

Reagents. All laboratory chemicals were from Sigma Aldrich (Gillingham, UK), except where stated.

Cell culture and differentiation. 3T3-L1 preadipocytes (ATCC) were maintained in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% neonatal calf serum plus 2 mM L-glutamine, 100 μg/ml penicillin and 0.1 mg/ml streptomycin (NCS medium), in a humidified incubator under 5% CO2/5% air. Two days after confluence (differentiation day 0) medium containing 0.5 mM IBMX, 1 μM dexamethasone and 5 μg/ml insulin (MDI cocktail) and 10% fetal calf serum (FCS) was added. After four days cells were maintained in medium containing FCS alone, with fresh medium added daily. For submaximal differentiation of 3T3-L1 cells, the relevant components of the MDI cocktail, as indicated in figure legends, were omitted for the entire period that they would normally be used. The retroviral packaging cell line HEK293-BOSC was maintained in DMEM containing 10% FCS, 100 U/ml penicillin and 0.1 mg/ml streptomycin. After four days this was replaced with medium containing 5 μg/ml insulin and FCS. After four days cells were maintained in medium containing FCS alone, with fresh medium added daily.

Plasmids and retroviral infection. Stable knockdown of Egr1 and Egr2 was achieved using a retroviral-based shRNA expression system. An siRNA against Egr1 was designed using a web-based tool (Dharmacon, CO, USA) and modified to include a loop sequence (see below) to make it a functional shRNA. The shRNA targeting Egr2 was as described earlier.14 The relevant pairs of oligonucleotides were annealed and introduced into the BamHI/EcoRI sites of pSiren-RetroQ RNAi-Ready (Clontech, CA, USA). A shRNA targeting the luciferase gene (Clontech) and circularized empty vector were included as controls. Retroviruses were generated by transfection of the HEK293-BOSC packaging cell line with the relevant plasmids using Fugene 6 (Roche, Lewes, UK). Viral medium supplemented with 2 μg/ml polybrene was added to 3T3-L1 cells 48 h later. 3T3-L1 cells were selected using 2 μg/ml L-glutamine, 100 μl/ml penicillin and 0.1 mg/ml streptomycin, in a humidified incubator under 10% CO2/90% air.

Western blotting. Whole-cell lysates were extracted into lysis buffer (20 mM HEPES, 50 mM NaF, 30 mM C6H12N2O4P, 5 mM EDTA, 10 mM Na3P04, 1% (v/v) Triton X100, 4 mM Na2VO3 and protease inhibitor cocktail (1:200 Sigma) and diluted 1:5 (v/v) in Laemmli loading buffer (containing 100 mM DTT final concentration). Equivalent amounts of lysates were subjected to SDS-PAGE using Mini-Protean II apparatus (Bio-Rad, Paisley, UK), and transferred to PVDF membrane (Millipore, Watford, UK) using semi-dry Western blotting apparatus. Membranes were probed with primary antibodies: Egr1 (sc-189, Santa Cruz, CA, USA), Egr2 (CRP Inc., PA, USA), phospho-CREB and CREB (cat. #9196 and #9197, Cell Signalling, MA, USA), C/EBPα (sc-150, Santa Cruz), β-actin (AbCam, Cambridge, UK) and PI3-kinase-p85 subunit (generated in-house). Membranes were then incubated in HRP-conjugated secondary antibodies (DAKO Ltd, Ely, UK) and emission detected using enhanced chemiluminescence, Hyper-ECL film (Amersham, Little Chalfont, UK) and X-OMAT (Fujiﬁlm, Bedfordshire, UK). For quantification of Western blots relevant ECL exposures were scanned and densitometry analysis performed using NIH software (Raytest Isotopenmessgeraete, Germany). Egr1 and Egr2 expression values were normalized to PI3-kinase p85α expression.

Transduction of cells with HTNC protein. Cell-permeant Cre recombinase fusion protein containing a nuclear localization signal (HTNC) was generated in E coli using the pTrEx1.1 construct, as described.23 Bacteria were grown and induced with 0.5 mM isopropyl β-D-thiogalactoside (IPTG). After centrifugation the bacterial pellet was resuspended in 10 mM phosphate Tris buffer (pH 7.4) and incubated at room temperature first with lysosome (1 mg/ml, 20 min) and then benzonase (1:1000, 15 min, Novagen, Nottingham, UK). After sonication 1 ml of cold tarteric acid salt buffer (TSH: 2 M L-tartaric acid, 20 mM Na2HPO4, 20 mM NaCl) was added per ml of suspension, mixed and incubated on ice for 5 min. The solution was centrifuged for 30 min at 17 000 rpm (SS 34, Kendro) at 4°C and 2 ml of washed 50% NI-NTA slurry (Qiagen) per liter culture was added to the supernatant and shaken gently for 1 h at 4°C. The suspension was applied onto a column (Bio-Rad), washed twice with 5 ml resin volumes of wash buffer (1 × P50 mM NaCl, 20 mM imidazole) and protein eluted (1 × P50 mM NaCl, 250 mM imidazole) with 2–3 resin volumes. Eluant was filtered (0.22 μm) and dialysed firstly against high salt buffer (600 mM NaCl, 20 mM HEPES, pH 7.4) then against 50% (v/v) glycerol (containing 500 mM NaCl, 20 mM HEPES, pH 7.4) and dialysed overnight at 4°C in 50% pyrophosphate at 4°C. After dialysis the suspension was concentrated using ultrafiltration tubes (Amicon, MA, USA) and aliquots stored at −80°C. Optimal conditions for induction of HTNC protein with 3T3-L1 preadipocytes were determined using inducible pLPNPX-EFPG cells. On the day of confluency fresh NCS medium was added to 3T3-L1 cells 4–6 h before addition of HTNC. Cells were washed twice with serum-free medium and HTNC protein was incubated at 8°C for 16 h in serum-free medium. Cells were rinsed and allowed to recover in NCS-medium for 32 h, after which differentiation was induced.

Flow cytometry. 3T3-L1 preadipocytes were washed twice with phosphate buffered saline (PBS) and detached (trypsin 1 : 5 in 5 mM EDTA/PBS) and stored at 4°C. Analysis was performed using a FACSCalibur instrument (BD Biosciences, Bedford, MA, USA) and a FACSDiva software package (BD Biosciences, Bedford, MA, USA). Egr1 and Egr2 expression values were normalized to PI3-kinase p85α expression.

Cell Death and Differentiation
amounts of Eg1 and Eg2 protein expression from pDEST-475 was confirmed by transient transfection of HEK293 cells and detection by anti-HA antibody (data not shown). Empty vector pcDNA3.1 was used to equalize DNA quantity per transfection. Luciferase expression levels were assayed 24 h after transfection by using a dual luciferase reporter assay system (Promega, Southampton, UK). Values were normalized to pRL-CMV constitutive Renilla luciferase reporter vector.

Acknowledgements. We are very grateful to the Wellcome Trust for financial support for the Biological Atlas of Insulin Resistance (BAIR) program (GR066786), and to all members of the BAIR consortium for helpful discussion. We also acknowledge support from the BBSRC (project grant C20109 for SHR), MRC (studendships for SV and WPC) and European Union COST Action BM0602. We thank Dr. P Edenhofer (Institute of Reconstructive Neurobiology, University of Bonn, Germany) for the pTREx1.1 plasmid and advice on the production of HTNC protein, Dr. MJ Bimbam (Howard Hughes Medical Institute, PA, USA) for pLPNEPX1 plasmid and Dr. Justin Rochford (University of Cambridge) for helpful discussion.

1. Moltra J, Mason MM, Olive M, Krylov D, Gavrilova O, Marcus-Samuels B et al. Life without white fat: a transgenic mouse. Genes Dev 1998; 12: 3188–3198.
2. Petersen KF, Oral EA, Dufour S, Beteloy D, Ariyon C, Yu C et al. Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J Clin Invest 2002; 109: 1345–1350.
3. Farmer SR. Transcriptional control of adipocyte formation. Cell Metab 2006; 4: 263–273.
4. Rosen ED, MacDougall OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 2006; 7: 886–896.
5. El-Jack AK, Hammad JK, Pitch PF, Farmer SR. Reconstitution of insulin-sensitive glucose transport in fibroblasts requires expression of both PPARgamma and C/EBPalpha. J Biol Chem 1999; 274: 7964–7961.
6. Wu Z, Rosen ED, Brun R, Hauser S, Adelmant G, Troy AE et al. Cross-regulation of C/EBPalpha and PPARgamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol Cell 1999; 3: 151–159.
7. Fox KE, Farkkila DM, Erickson PF, Majka SM, Crossno Jr JT, Klemm DJ. Depletion of cAMP-response element-binding protein/ATF1 inhibits adipogenic conversion of 3T3-L1 cells ectopically expressing CCAAT/enhancer-binding protein (C/EBP) alpha, C/EBP beta, or PPAR gamma 2. J Biol Chem 2006; 281: 40341–40353.
8. Klemm DJ, Leitner JW, Watson P, Nesterova A, Reusch JE, Gaalstone ML et al. Insulin-induced adipocyte differentiation. Activation of CREB rescues adipogenesis from the arrest caused by inhibition of prenylation. J Biol Chem 2001; 276: 28340–28345.
9. Ge K, Guermah M, Yuan CX, Ito M, Wallberg AE, Spiegelman BM et al. Transcription coactivator TRAP220 is required for PPARgamma 2-stimulated adipogenesis. J Biol Chem 2003; 278: 2215–2226.
10. Law M, Pflanckluech R, Rajewsky K, Edenhofer F. Ability of the hydrophobic FGF and basic TAT peptides to promote cellular uptake of recombinant Cre recombinase: a tool for efficient genetic engineering of mammalian genomes. Proc Natl Acad Sci USA 2002; 99: 4489–4494.
11. Sattler M, Milbrandt J. A nerve growth factor-induced gene encodes a possible transcriptional regulator of the zinc finger genes Krox-20 and Krox-24 (Egr-1) suggests antagonistic roles for Krox-20 and Krox-24 (Egr-1) inhibits adipogenesis. KB Boyle et al

Supplementary Information accompanies the paper on Cell Death and Differentiation website (http://www.nature.com/cdd)