Splenic Marginal Zone Lymphoma in Turkey: Association with Hepatitis B Instead of Hepatitis C Virus as an Etiologic and Possible Prognostic Factor - A Multicenter Cohort Study

Türkiye’de Splenik Marjinal Zon Lenfoma: Hepatit C Virüs Yerine Hepatit B Virüsünün Etiyolojik ve Olası Prognostik Faktör Oluşu-Çok Merkezli Kohort Çalışması

DOI: 10.4274/tjh.galenos.2019.2019.0177

Address for Correspondence/Yazışma Adresi: Müfide Okay, M.D., Hacettepe University Faculty of Medicine, Department of Internal Medicine, Division of Hematology, Ankara, Turkey

Received/Geliş tarihi: May 5, 2019
Accepted/Kabul tarihi: October 18, 2019

Müfide Okay1, Tuncay Aslan1, Evren Özdemir2, Ayşegül Üner3, Arzu Sağlam3, Elif Güngör4, Ayşe Uysal5, Nevin Alayvaz Aslan6, Esra Yıldızhan7, Abdullah Ağıt3, Mehmet Sinan Dal9, Serdal Korkmaz10, Sinem Namdaroğlu11, Serdar Sivgin12, Gülşüm Akgün Çağlıyan13, Sinan Demircioğlu14, İbrahim Barışta15, Esra Özhamam16, Filiz Vural17, Bülent Eser7, Gülşüm Özet8, Rahşan Yıldırım18, Mehmet Hilmi Doğu19, İlhame Berber20, Mehmet Ali Erkurt21, Ümit Yavuz Malkan22, Fevzi Altuntaş9,23, Yahya Büyükaşık1

1Hacettepe University Faculty of Medicine, Department of Internal Medicine, Division of Hematology, Ankara, Turkey
2Medicana International Ankara Hospital, Clinic of Medical Oncology, Ankara, Turkey
3Hacettepe University Faculty of Medicine, Department of Pathology, Ankara, Turkey
4Trakya University Faculty of Medicine, Department of Internal Medicine, Edirne, Turkey
5University of Health Sciences, Trabzon Kanuni Training and Research Hospital, Division of Hematology, Trabzon, Turkey
6Onodokuz Mayıs University Faculty of Medicine, Department of Hematology, Samsun, Turkey
7Erciyes University Faculty of Medicine, Department of Hematology, Kayseri, Turkey
8Ankara Numune Training and Research Hospital, Division of Hematology, Ankara, Turkey
9University of Health Sciences, Ankara Oncology Training and Research Hospital, Clinic of Hematology and BMT Unit, Ankara, Turkey
10Kayseri Training and Research Hospital, Division of Hematology, Kayseri, Turkey
11University of Health Sciences, İzmir, Turkey
12Acıbadem Kayseri Hospital, Kayseri, Turkey
13Denizli State Hospital, Division of Hematology, Denizli, Turkey
14Yüzüncü Yıl University Faculty of Medicine, Department of Hematology, Van, Turkey
15Hacettepe University Faculty of Medicine, Department of Medical Oncology, Ankara, Turkey
16Ankara Numune Training and Research Hospital, Division of Pathology, Ankara, Turkey
17Ege University Faculty of Medicine, Department of Internal Medicine, Division of Hematology, İzmir, Turkey
18Atatürk University Faculty of Medicine, Department of Hematology, Erzurum, Turkey
19İstanbul Training and Research Hospital, Clinic Hematology, İstanbul, Turkey
20Malatya Training and Research Hospital, Division of Hematology, Malatya, Turkey
21İnönü University Faculty of Medicine, Department of Internal Medicine, Division of Hematology, Malatya, Turkey
22University of Health Sciences, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Clinic of Hematology, Ankara, Turkey
23Yıldırım Beyazıt University Faculty of Medicine, Department of Internal Medicine, Division of Hematology, Ankara, Turkey

Copyright 2020 by Turkish Society of Hematology
Turkish Journal of Hematology, Published by Galenos Publishing House

84
Objective: Chronic antigenic stimulation is frequently blamed in the pathogenesis of extranodal marginal zone lymphomas including splenic marginal zone lymphoma (SMZL). Chronic hepatitis C is frequently observed in SMZL patients in some geographical regions. However, these reports are largely from North America and Europe, and data from other countries are insufficient. In this multicenter study we aimed to identify the clinical characteristics of SMZL patients in Turkey, including viral hepatitis status and treatment details.

Materials and Methods: Data were gathered from participating centers from different regions of Turkey using IBM SPSS Statistics 23 for Windows. Hepatitis B virus surface antigen (HBsAg), anti–HBs antibody, anti–HB core antigen antibody (anti–HBcAg), HB viral load, anti–hepatitis C virus (HCV) antibody, HCV viral load results were analyzed.

Results: One hundred and four patients were reported. Hepatitis C virus positivity was observed in only one patient. However, hepatitis B virus surface antigen (HBsAg) positivity was observed in 11.2% and HBsAg and/or anti–HB core antigen antibody (anti–HBcAg) positives were seen in 34.2% of the patients. The median age was 60 years (range=35–87). Median follow-up duration was 21.2 months (range=0.2–212; 23.2 months for surviving patients). Median overall survival was not reached. Estimated 3-year and 10-year survival rates were 84.8% and 68.9%, respectively. Older age, no splenectomy, platelet count of <90x10^3/µL, β2-microglobulin, and HBsAg positivity were associated with increased risk of death. Only albumin remained significant in multivariable analysis.

Conclusion: These results indicate that hepatitis B virus may be a possible risk factor for SMZL in our population. It may also be an indirect prognostic factor.

Keywords: Low-grade lymphoma, Hepatitis B virus, Hepatitis C virus, Risk factors

Introduction

Splenic marginal zone lymphoma (SMZL) is a rare B-cell lymphoma. It constitutes less than 2% of lymphoid neoplasms [1]. The majority of patients have an indolent course with median overall survival of about 10 years [2,3].

Chronic hepatitis C is frequently observed in SMZL patients. However, these reports are largely from North America and Europe [4,5]. Data from various countries with different hepatitis prevalence rates are lacking.

Many prognostic factors have been described for SMZL, such as leukocytosis, thrombocytopenia, elevated β2-microglobulin, anemia, elevated lactate dehydrogenase (LDH), decreased albumin, impaired performance status, advanced age, bone marrow involvement, and histologic transformation [6,7,8,9,10]. Various clinical prognostic scores have been described, but no universally accepted risk stratification formula has been identified.

No curative treatment has been described for this indolent neoplastic disorder. Treatment is indicated in the case of symptomatic disease and/or significant cytopenia. Splenectomy, rituximab, rituximab plus single-agent or multigent chemotherapy regimen, and recently ibrutinib and idelalisib have been reported to give high treatment success rates [11]. In this multicenter cohort study we aimed to identify the clinical characteristics of SMZL patients in Turkey including viral hepatitis status, treatment details, and survival.

Materials and Methods

Data were gathered from voluntarily participating centers from different regions of Turkey using IBM SPSS Statistics 23 for Windows (IBM Corp., Armonk, NY, USA). The diagnosis of SMZL, established by the local hematopathologist, was accepted. Diagnoses were based on widening of the white pulp without predominant red pulp involvement and a wide immunohistochemical panel that helped rule out other low-grade B-cell lymphomas and clinicopathologic correlation.
The neoplastic B-cell population was immunophenotypically required to lack cyclin D1, CD10, Bcl-6, CD123, annexin-1, and co-expression of CD5 and CD23. A central review in our department of pathology was not obligatory, but statistical evaluations were repeated in the group of cases (n=40) diagnosed at the primary research center, Hacettepe University’s Faculty of Medicine (HUFM). In the case of atypical clinical presentation (e.g., presence of prominent lymphadenopathies in addition to splenomegaly), unexpected morphological, and/or immunophenotypic findings, the submitting center was contacted to confirm the diagnosis. As presented in Table 1, the following data were recorded: age; sex; main reasons for admission to the hospital; leukocyte, lymphocyte, and neutrophil counts and hemoglobin level, platelet count, serum albumin, and β2-microglobulin at diagnosis; CD5, CD10, CD20, CD23, CD7, CD163, surface Ig, cyclin D1, and FMC7 results (immunohistochemical or flow cytometry); spleen size; bone marrow involvement; extranodal involvement site; ECOG performance status; and hepatitis B virus surface antigen (HbsAg), anti-HBs antibody, anti-HB core antigen antibody (anti-HBc), HB viral load, anti-hepatitis C virus (HCV) antibody, and HCV viral load results. In addition, the first treatment choice (watch-and-wait, splenectomy, chemoimmunotherapy, etc.), treatment response, and survival status were recorded. Treatment responses were defined as previously reported [12]: 1) hematological improvement (after splenectomy): at least 50% improvement in blood counts; 2) partial response: ≥50% improvement in spleen size, cytopenias, and lymphadenopathies if present, and decrease in the level of marrow lymphoid infiltration; 3) complete response: resolution of organomegaly, normalization of blood counts (hemoglobin >12 g/dL, platelet count >100x10^3/µL, neutrophils >1.5x10^3/µL), no evidence of circulating clonal B cells, and no or minor BM infiltration detected by immunohistochemistry; 4) no response or progressive disease: less than partial response or disease progression.

Statistical Analysis

Categorical and continuous data were expressed as ratio (%) and median (range) and they were compared by chi-square and independent samples t-tests, respectively. Survival analyses were computed by the Kaplan–Meier method. Overall survival (OS) was calculated from presentation to the date of mortality due to any reason. Patients who had not died at the last follow-up were censored at that time. Parameters related to survival were investigated by Cox regression univariate and multivariate analyses. All 7 parameters in Table 2 were included in the multivariable model. All patients gave informed consent for their treatment and information analyses. This study complied with the Declaration of Helsinki. IBM SPSS Statistics 23 for Windows was used for statistical analyses. Values of p<0.05 were considered statistically significant.

Results

A total of 104 patients, diagnosed between June 1999 and November 2017, were reported from 23 hematology/oncology centers. Forty-seven (45%) of these were diagnosed/confirmed at our center. Data on baseline clinical characteristics are presented in Table 1. The median age was 60 years (range=35-87).

Table 1. Baseline characteristics and main treatment details of patients.
Clinical Parameters
Median age, years (range)
Female/male
Median (range) interval between admission and diagnosis (months)
Main reason for admission
Cytopenia symptoms
Abdominal complaints
B symptoms
Liver dysfunction
Frequency of symptoms at diagnosis
Cytopenia symptoms
Abdominal complaints
B symptoms
Coincidental
ECOG performance score at diagnosis
Asymptomatic
1
2
3
Bone marrow involvement
Peripheral blood involvement
Lymphadenopathy
Extramedial involvement
Spleen length on ultrasound/computed tomography, median (range)
HbsAg
Anti-HCV
HbsAg or anti-HBc
Upfront management
Watch-and-wait
Splenectomy
CH(O)P±R*
Purine analog ± R
Other
Best responses (in treated patients) during follow-up
No response
Hematological improvement
Partial response
Complete response

*CH(D)OP±R: Cyclophosphamide, doxorubicin, vincristine, prednisone ± rituximab.
and 62.5% of the patients were female. Cytopenia(s) and/or related symptoms (26.8%) and abdominal discomfort (45.4%) were the most frequent reasons for hospital admission. At presentation, 46.1% of patients had B symptoms (fever, night sweats, weight loss), while 8.6% of the patients lacked disease-related symptoms and were diagnosed incidentally. According to ECOG performance scoring, 22.1%, 47.4%, 23.2%, and 7.4% of patients were scored as 0, 1, 2, and 3, respectively. At diagnosis, 77.9% and 49% of patients had bone marrow and peripheral blood involvement, respectively, while 17.3% of patients had prominent lymphadenopaties in addition to splenomegaly.

Eleven of 98 (11.2%) evaluable patients had HBsAg positivity and only 1 of 93 (1.1%) evaluable patients had HCV positivity. Twenty-two of 74 (29.7%) evaluable patients had anti-HBc positivity. The rate of HBsAg and/or anti-HBc positivity was 34.2%. The rate of HBsAg and/or anti-HBc positivity was 30.2% in these cases. The rates of HBsAg and anti-HBc positivities were 13% and 27.9%, respectively, in the cases diagnosed at HUFM. All positive HBV patients received antiviral prophylaxis.

Wait-and-watch strategies, splenectomy, and chemo(immune)-therapy were the frontline management methods for 18.4%, 49.5%, and 32.1% of patients, respectively. Only 79 patients were evaluated for response. Hematological improvement and complete response were obtained in the majority of patients (Table 1). Median follow-up duration was 21.2 months (range=0.2-212; 23.2 months for surviving patients). Fourteen (13.4%) patients died during follow-up. Estimated 3-year and 10-year survival rates were 84.8% and 68.9%, respectively (Figure 1).

Older age [hazard ratio (HR), confidence interval (CI): 1.10 (1.03-1.17)], no splenectomy during follow-up [3.88 (1.26-11.88)], platelet counts of <90x10^3/µL at presentation [3.84 (1.31-11.20)], lower albumin [0.13 (0.03-0.47)], elevated LDH [1.00 (1.00-1.00)], higher β_2-microglobulin [1.00 (1.00-1.00)], and HBsAg positivity [0.27 (0.08-0.88)] were associated with increased risk of death in the univariate analyses. Only serum albumin level remained marginally significant in multivariate analysis [0.09 (0.00-1.04)]. Univariate and multivariate analyses for survival are shown in Table 2.

Discussion

In this analysis we report increased prevalence of chronic HBV infection in SMZL patients. HBV exposure is prevalent among adults in Turkey. The reported rate of HBsAg positivity in blood donors was approximately 2%-3% during the last decade [13,14]. In recent epidemiological data, the prevalence was reported as close to 4% [15]. Anti-HCV positivity was reported to be close to 1% in our country [16]. HBsAg was 3.7% and anti-HCV Ab positivity was 2.8% in lymphoma patients in another study from Turkey [17]. We previously reported interim results of this study in 2016 [18]. To the best of our knowledge, we were the first group to suggest a possible association between

![Figure 1. Overall survival of all patients.](image)

Parameter	Univariate analysis	Multivariate analysis				
	P	Odds ratio (OR)	95% confidence interval	p	OR	95% confidence interval
Age	0.00	1.10	1.03-1.17	0.23	1.07	0.95-1.22
Albumin	0.00	0.13	0.03-0.47	0.05	0.09	0.00-1.04
HBsAg positivity	0.03	0.27	0.08-0.88	0.18	0.16	0.01-2.44
Lactate dehydrogenase	0.02	1.00	1.00-1.00	0.96	1.00	0.99-1.00
Splenectomy	0.01	3.88	1.26-11.88	0.46	2.33	0.24-22.13
Platelets <90x10^3/µL	0.01	3.84	1.31-11.20	0.24	2.40	0.54-10.66
β_2-microglobulin	0.00	1.00	1.00-1.00	0.94	1.00	1.00-1.00
HBV and SMZL in a considerably large SMZL cohort. Some other studies reported on only a few patients with SMZL associated with HBV [19,20,21,22,23]. Recently, Fetcă et al. [24] from Romania found HBV infection in 3 patients out of 34 SMZL patients in the same time period as our early report. A more recent study from China reported HBsAg positivity in 25/160 (16%) and resolved HBV infection (HBsAg negative, anti-Hbc positive) in 54/160 (34%) patients [25]. A summary of the data in the literature on HBV and HCV seropositivity is shown in Table 3 [19,20,21,22,23,24,25,26,27,28,29].

Chronic antigenic stimulation is frequently blamed in the pathogenesis of extranodal marginal zone lymphomas. The association between gastric mucosa-associated lymphoid tissue lymphoma and chronic Helicobacter pylori infection is the classical example for this relationship. An association between HCV and SMZL has been previously reported in some geographic regions, mostly in South Europe [2,5,29]. Now we can suggest that the association between SMZL and chronic viral hepatitis is not specific for HCV. HBV may also be involved in SMZL lymphomagenesis.

Splenectomy and rituximab-based chemoimmunotherapies were the most frequently used treatments in our cohort. This is in concordance with current treatment strategies for SMZL. Responses (most commonly hematological improvement after splenectomy as expected) were very frequent (94.9%) in our cohort. The median follow-up duration (21.2 months) in our patients was relatively short for this indolent lymphoma. Estimated 10-year survival was 68.6%. We found many parameters (lower albumin, splenectomy, thrombocytopenia, elevated LDH, higher β2-microglobulin, and HBsAg positivity) to be associated with overall survival, but albumin was the only parameter to retain marginal significance in multivariate analysis (Figure 2). HBsAg positivity was an adverse prognostic factor in univariate analysis, but not in the multivariate test. It is possible that HBV may indirectly affect survival by lowering serum albumin levels due to liver impairment. This suggestion should be investigated in further studies.

Arcaini et al. [2] reported 10-year OS as 65% in SMZL. In that study, the authors proposed a prognostic model including hemoglobin of <12 g/dL, elevated LDH, and albumin level of <3.5

Table 3. Summary of the data in the literature about hepatitis B and C.

Reference	Type	Number of patients	Important clinical features
[19]	Case report	1	56-year-old Lebanese male patient with B symptoms and elevated liver enzymes was diagnosed with HBV infection; after 6 months, SMZL was diagnosed due to persistent splenomegaly
[20]	Letter to the editor	1	38-year-old male Greek patient with a history of chronic HBV infection was diagnosed with SMZL with developing B symptoms and splenomegaly
[22]	Case report	1	64-year-old Chinese man with cirrhosis (HBV-positive) was diagnosed with hepatocellular cancer and SMZL (mass in liver and spleen)
[26]	Case report	1	42-year-old Caucasian male patient with a history of chronic HCV infection was diagnosed with SMZL with increased lymphocyte count and mild splenomegaly
[23]	Research article	129	129 adult patients were consecutively diagnosed with SMZL in Italian hematological centers; HCV seropositivity was 16/129 (16%)
[24]	Research article	34	731 lymphoma cases from Romania with Hodgkin lymphoma (160 cases), NHLs (571 cases), and SMZL (34 cases); results of tests for viral hepatitis infection were available for 17 cases (17/34); 2/17 (11.7%) patients were positive for HCV and 3/17 (17.7%) patients were positive for HBV
[27]	Research article	140	1052 MZL cases with EMZL (633 cases), NMZL (157 cases), and SMZL (140 cases) and 13766 controls from 12 case-control studies; HCV seropositivity was 3.2%, OR was 3.04 (95% CI: 1.65–5.60)
[28]	Research article	100	Study was based on real-life data from Italy; HCV positivity was 3.1% in 100 SMZL patients
[25]	Research article	160	Study was conducted with 160 SMZL patients from China; 25 patients (16%) were HBsAg-positive and 54 (34%) patients had resolved HBV infection; IGH gene was analyzed in 39 patients; patients with HBV infection presented biased IGHV-D-J rearrangements and mutational status
[29]	Research article	15	9 SMZL patients with HCV infection from France who received IFN alpha had remission; in contrast, none of the six HCV-negative patients had a response to IFN therapy

HBV: Hepatitis B infection, HCV: hepatitis C infection, MZL: marginal zone lymphoma, EMZL: extranodal marginal zone lymphoma, NMZL: nodal marginal zone lymphoma, OR: odds ratio, CI: confidence interval, IFN alpha: interferon alpha.
Figure 2. Overall survival according to serum albumin level at diagnosis.

g/dL as adverse prognostic factors. In another study, Montalbán et al. [5] developed a continuous model for estimating lymphoma-specific survival including decreased hemoglobin level, lower platelet count, elevated LDH, and extrahilar lymphadenopathy as unfavorable prognostic indicators. In a recent Chinese study [25], the authors also suggested a new prognostic system. Decreased hemoglobin, HBsAg positivity, and complex karyotype were related to decreased survival in that study. We did not intend to develop a prognostic scoring system or to test previously suggested scoring systems in our study, but it is convincing to observe that many of the risk factors we identified in univariate analyses have been previously reported to have prognostic significance in SMZL.

The major limitations of this study are its retrospective design and somewhat limited number of patients.

Conclusion

Our results in association with some recent literature data indicate that HBV may be a possible risk factor for development of SMZL in some geographical regions, similar to HCV in some Western countries. It may also be an indirect prognostic factor. Larger studies about this rare lymphoma would obviously provide better data and firmer conclusions on this relationship and the prognostic impact of HBV.

Ethics

Ethics Committee Approval: Retrospective study.

Informed Consent: Approval was obtained from the patients during their first hospitalization as most of them were being treated in the hospital.

Authorship Contributions

Concept: M.O., H.G., Y.B.; Design: M.O., H.G., Y.B.; Data Collection or Processing: M.O., T.O., E.O., E.G., A.U., N.A.A., E.Y., A.A., M.S.D., S.K., S.N., S.S., G.A.C., S.D., I.B., E.O., F.V., M.T., B.E., G.O., R.Y., M.H.D., I.B., M.A.E., F.A., Y.B.; Analysis or Interpretation: M.O., U.Y.M., Y.B.; Literature Search: M.O., U.Y.M., Y.B.; Writing: M.O., U.Y.M., Y.B.

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: This research did not receive any specific grants from funding agencies in the public, commercial, or not-for-profit sectors.

Acknowledgments: The interim results of this study were presented at the American Society of Hematology 2016 Annual Meeting.

Gülssüm Emel Pamuk, M.D., previously affiliated with Trakya University’s Faculty of Medicine, could not be contacted during the preparation and submission of this paper. We would like to thank her for her contributions.

References

1. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, Advani R, Ghielmini M, Salles GA, Zelenetz AD, Jaffe ES. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016;127:2375-2390.

2. Arcaini L, Lazzarino M, Colombo N, Burcheri S, Boveri E, Paulli M, Morra E, Gambacorta M, Cortelazzo S, Tucci A, Ungari M, Ambrosi S, Menestrina F, Orsucci L, Novero D, Pulsoni A, Frezzato M, Gaidano G, Vallisa D, Minardi V, Tripodo C, Callea V, Baldini L, Merli F, Federico M, Franco V, Iannitto E; Integroup Italy Italiano Linfomi. Splenic marginal zone lymphoma: a prognostic model for clinical use. Blood 2006;107:4643-4649.

3. Olszewski AJ, Castillo JJ. Survival of patients with marginal zone lymphoma: analysis of the Surveillance, Epidemiology, and End Results database. Cancer 2013;119:629-638.

4. Peveling-Obereg H, Crisman S, Schmidt A, Döring C, Lucioni M, Arcaini L, Rattotti S, Hartmann S, Pipper A, Hofmann WP, Paulli M, Küppers R, Zeuzem S, Hansmann ML. Dysregulation of global microRNA expression in splenic marginal zone lymphoma and influence of chronic hepatitis C virus infection. Leukemia 2012;26:1654-1662.

5. Montalbán C, Abraira V, Arcaini L, Domingo-Domech E, Guisado-Vasco P, Iannitto E, Mollejo M, Matutes E, Ferreri A, Salar A, Rattotti S, Carpaneto A, Pérez Fernández R, Bello JL, Hernández M, Caballero D, Carbone F, Pajares MA; Splenic Marginal Zone Lymphoma Study Group. Risk stratification for splenic marginal zone lymphoma based on haemoglobin concentration, platelet count, high lactate dehydrogenase level and extrahilar lymphadenopathy: development and validation on 593 cases. Br J Haematol 2012;159:164-171.

6. Thieblemont C, Felman P, Berger F, Dumontet C, Arnaud P, Hequet O, Arcache J, Callet-Bauchu E, Salles G, Cofferier B. Treatment of splenic marginal zone B-cell lymphoma: an analysis of 81 patients. Clin Lymphoma 2002;3:41-47.

7. Troussard X, Valensi F, Duchayne E, Garand R, Felman P, Tuliez M, Henry-Amar M, Bryan PA, Fladrin G. Splenic lymphoma with villous lymphocytes: clinical presentation, biology and prognostic factors in a series of 100 patients. Groupe Francais d’Hématologie Cellulaire (GFHC). Br J Haematol 1996;93:731-736.

8. Parry-Jones N, Matutes E, Gruszka-Westwood AM, Swansbury GJ, Wotherspoon AC, Catovsky D. Prognostic features of splenic lymphoma with villous lymphocytes: a report on 129 patients. Br J Haematol 2003;120:759-764.
9. Chacín JL, Mollejo M, Muñoz E, Algarra P, Mateo M, Lopez L, Andrade J, Carbonero IG, Martínez B, Piris MA, Cruz MA. Splenic marginal zone lymphoma: clinical characteristics and prognostic factors in a series of 60 patients. Blood 2002;100:1648–1654.

10. Lenglet J, Traullé C, Mounier N, Benet C, Munoz-Bongrand N, Amorin S, Noguera ME, Traverse-Glehen A, Frenich M, Bassegord I, Felman P, Callet-Bauchu E, Brice P, Berger F, Saîles G, Brière J, Coiffier B, Thieblemont C. Long-term follow-up analysis of 100 patients with splenic marginal zone lymphoma treated with splenectomy as first-line treatment. Leuk Lymphoma 2014;55:1854–1860.

11. Dreyling M, Thieblemont C, Gallaminì A, Arcainì L, Campo E, Hermine O, Kluin-Nelemans JC, Ladedot M, Le Gouill S, Iannitò E, Pilerì S, Rodríguez J, Schmitz N, Wotherspoon A, Zinzani P, Zucca E. ESMO Consensus conferences: guidelines on malignant lymphoma. part 2: marginal zone lymphoma, mantle cell lymphoma, peripheral T-cell lymphoma. Ann Oncol 2013;24:857–877.

12. Matutes E, Oscier D, Montalban C, Berger F, Callet-Bauchu E, Dogan A, Felman P, Franco V, Iannitò E, Mollejo M, Papadaki T, Remstein ED, Salar A, Solé F, Stamatopoulos K, Thieblemont C, Traverse-Glehen A, Wotherspoon A, Coiffier B, Piris MA. Splenic marginal zone lymphoma proposals for a revision of diagnostic, staging and therapeutic criteria. Leukemia 2008;22:487–495.

13. Yakut U, Güney M, Doğanay ÜD, Koçak A, Avcı İ. Bir kan merkezinde başvuranlarla uygulan mikrobiyolojik tarama testleri sonuçlarının on yıllık değerlendirilmesi. Türk Mikrobiyol Cem Derg 2010;40:201–206.

14. Çelebi D, Çelebi Ö, Altopaşak Ü, Kök A. Kan donörlerinde HBoAg, anti-HCV, anti-HIV, sifilis seroprevalansı ve macro-ECLA sonuçlarının optik dansite değerlerine göre değerlendirilmesi. Türk Mikrobiyol Cem Derg 2012;42:137–141.

15. Özkán H. Epidemiology of chronic hepatitis B in Turkey. Euroasian J Hepatogastroenterol 2018;8:73–74.

16. Tozun N, Ozdogan O, Çakaloglu Y, Idiliman R, Karasu Z, Akarca U, Kaymakoglu S, Ergonul O. Seroprevalence of hepatitis B and C virus infections and risk factors in Turkey: a fieldwork TURHEP study. Clin Microbiol Infect 2015;21:1020–1026.

17. Sonmez M, Bektas O, Yılmaz M, Durmuş A, Akdoğan E, Topbas M, Ertürk M, ovali E, Omary SB. The relation of lymphoma and hepatitis B virus infections in the region of East Black Sea, Turkey. Tumori 2007;93:536–539.

18. Aslan T, Özdemir E, Uner A, Gungor E, Alayvaz Aslan N, Yıldızhan E, Agit A, Korkmaz S, Akgın Caglayan G, Barista I, Ozhaman E, Pamuk GE, Turgut M, Eser B, Ozet G, Yildirim R, Buyukasik Y. Splenic marginal zone lymphoma in an East Mediterranean/Middle Eastern population cohort: possible association with hepatitis B instead of hepatitis C virus as an etiologic and prognostic factor (THREG-NHL01 Study). Blood 2016;128:5332.

19. Koot AW, Visscher AP, Huits RM. Remission of splenic marginal zone lymphoma in a patient treated for hepatitis B: a case of HBV-associated lymphoma. Acta Clin Belg 2015;70:301–303.

20. Christou L, Kalambokis G, Bai M, Kamina S, Tsianos E. Splenic marginal zone lymphoma in a patient with chronic hepatitis B. J Gastrointestin Liver Dis 2009;18:511–512.

21. Mathew J, Aldean I. Splenic marginal zone lymphoma associated with hepatitis B virus infection: a case report. Internet J Surg 2002;5:3.

22. Zhang SH, Xu AM, Zheng JM, He MX. Coexistence of splenic marginal zone lymphoma with hepatocellular carcinoma: a case report. Diagn Pathol 2007;2:5.

23. Iannitò E, Minardi V, Calla V, Stelitano C, Calvaruso G, Tripodo C, Quintini G, De Cantis S, Ambrosi S, Pizzolo G, Franco V, Florea AM, Abbadessa V. Assessment of the frequency of additional cancers in patients with splenic marginal zone lymphoma. Eur J Haematol 2006;76:134–140.

24. Feticca B, Pop B, Blaga ML, Fulop A, Dima D, Zâncu C, Me I, Cvetković M, Bojan AS, Achimas-Cadariu P, Lisencu CI, Irimie A, Weissenberger DD. High prevalence of viral hepatitis in a series of splenic marginal zone lymphomas from Romania. Blood Cancer J 2016;6:498.

25. Yi S, Yan Y, Xiong W, Lv R, Yu Z, Liu W, Liu E, Li H, Liu H, Li Z, An G, Xu Y, Ru K, Zou D, Gao L. Distinct clinical characteristics draw a new prognostic model for splenic marginal zone lymphoma in HBV high prevalent region. Oncotarget 2017;8:98757–98770.

26. Rossozzi R, Travi G, Pazzi A, Baiguera C, Morra E, Puoti M. Rapid clearance of HCV-related splenic marginal zone lymphoma under an interferon-free, NS5A/NS4A inhibitor-based treatment. A case report. J Hepatol 2015;62:234–237.

27. Bracci PM, Benavente Y, Turner JJ, Paltiel O, Slager SL, Vajdic CM, Norman AD, Cserhan JR, Chiou BC, Becker N, Cocco P, Dogan A, Nieters A, Holly EA, Kane EV, Smedby KE, Maynadie M, Spinnelli JJ, Roman E, Glimelius B, Wang SS, Sampson JN, Morton LM, de Sanjose S. Medical history, lifestyle, family history, and occupational risk factors for marginal zone lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. J Natl Cancer Inst Monogr 2014;2014:52–65.

28. Perrone S, D’Elia GM, Annechini G, Ferretti A, Tosti M, Frö A, Pulsoni A. Splenic marginal zone lymphoma: prognostic factors, role of watch and wait policy, and other therapeutic approaches in the rituximab era. Leuk Res 2016;44:53–60.

29. Hermine O, Lefrère F, Bronowicki JP, Mariette X, Jondeau K, Eclache-Sauvadeau V, Delmas B, Valensi F, Courcoul P, Brechet C, Varet B, Troussard X. Regression of splenic lymphoma with villous lymphocytes after treatment of hepatitis C virus infection. N Engl J Med 2002;347:89–94.