Thermal Investigation and Kinetic Evaluation of CuO Coated Carbon Nanofibers in Hybrid Nanocomposite Energetic Composition

Ahmed K. Hussein 1, Mohamed G. Zaki 1, Mahmoud Abdelhafiz 1, Ahmed Elbeih 1,2*

1 Military Technical College, Kobry Elkobbah, Cairo, Egypt
* Correspondence: elbeih.czech@gmail.com (A.E.);

Abstract: Nanomaterial additives have been broadly used in different applications to enhance the energy output of energetic materials. Herein, the carbon nanosized fibrous surfaces (CNF) were subjected to a pretreatment process followed by catalysis to ensure the successful deposition of a thin layer of nanocopper. The obtained Cu-coated layer was then galvanized at 250°C then sonicated with aluminum nanoparticles (120 nm average particle size), producing CuO-coated CNF nanosized thermite colloids in isopropanol. These colloids could act as a recommended oxidizer agent for Al nanoparticles. Finally, the obtained nanosized thermite colloids were combined with trinitrohexahydrotriazine (RDX) crystals. The impact of this combination on the RDX decomposition behavior was investigated utilizing the modified Kissinger-Akahira-Sunose (KAS) method. Interestingly, the average activation value was decreased by 40.5%, which could be attributed to the high reactivity of the developed thermite colloids together with a combination that occurred with RDX nitramine particles.

Keywords: carbon nanofibers; metal nanoparticles; electroless-plating; thermal study.

© 2022 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Carbon is considered a high chemical bonding flexible element, which could be the backbone for various organic and inorganic particles. Carbon possesses numeral allotropes such as fullerenes, graphite, and diamond [1]. One from the underscore of carbon is carbon nanofibers (CNFs). It is a promising modern revolution participating in many fields, especially materials science, and is recommended to open new routes into nanotechnology [2]. The low cost of CNFs supported their application in a variety of modern thermal and electrical improvements as well as their usage in electromagnetic protective shielding and composite materials additives [3-5]. CNFs have extensively been employed as a reinforcing material in different polymeric formulations regarding their electrical, mechanical, and thermal properties [6,7]. CNFs can find wide applications in powder rolling and other metallurgic processing via plating with metal particles [8,9].

A unique structure of carbon nanofibers (CNFs) offers a structure full of pores that induce high catalytic efficiencies, enabling nanofibers to work effectively as desirable carriers for communal nanoparticles and energetic fillers [10-12]. CNFs provide an optimum surface for uniformly loading the catalyst [13]. Catalyst active centers on CNF could enhance the uniform contribution in the redox reaction when mixed with energetic fillers [14]. However,
enhancing the CNF characteristics by deposited metal particles is limited because CNFs cannot be deposited by metal particles. Therefore, surface modification techniques are considered for metal deposition. Working at the normal room temperature [15] is considered one of the major advantages of the metal electroless technique over others, such as the molecular-level mixing [16] and the chemical/physical vapor deposition [17]. Moreover, the electroless technique offers the simplicity and feasibility of depositing a wide variety of metals, such as nickel, silver, copper, gold, and cobalt, onto CNFs [18]. This could be attributed to enhancing the CNFs/deposited metal wettability regarding the increased active spots over the surface [19-21].

Energetic Materials (EMs) are well-known in the military field and for their valuable civilian applications such as in airbags, smoke formulations, and pyrotechnics. Moreover, EMs could be mixed with metal powder and metal oxide, which act as fuel-oxidant compositions such as "Thermite" [22]. They can undergo exothermic reduction-oxidation reactions converting metals into stable metals oxide or producing free metals from their oxides based on their oxygen content [23-24]. Alternatively, thermite can be used effectively as gas generator material or in incendiary devices and welding applications regarding its relatively huge amount of heat released during the exothermic reaction. Furthermore, the metals obtained from these redox reactions could be used to produce more energy through the combustion reactions in the presence of additional oxygen content and high temperatures [25-27]. Also, nano-thermites are interested in various implementations such as micro/nano-joining and energy generation devices for modern, energetic materials. These applications depend on their relatively small sizes, high density, and tunable reaction parameters, such as ignition temperature and reaction rate [28-30]. 1,3,5-trinitro-1,3,5-triazinane (RDX) is a traditional high energy material that is used as a shaped charge filler [31,32] and has several applications in composite propellants and explosives [33]. It is still one of the most usable compositions in the energetic materials field [34].

In this study, CNFs coated with copper oxide were successfully synthesized through the electroless plating technique. This enabled the improvement of the interfacial bonding of CNFs with aluminum matrix regarding the molecular-level mixing process. Herein, the CNFs were mixed with the Cu in an optimized plating bath, which encouraged the homogenous distribution of the CuO nanoparticles over the whole surface of the pre-treated CNFs mixed with Al nanoparticles to obtain a hybrid meta-intermolecular nanomaterial based on CNFs. TEM micrographs demonstrated the homogenous coating of CNFs with Cu. The XRD investigation recognized the formation of the highly crystalline material. The effective integration and dispersion into energetic systems were studied for improving (enhancing) the performance. The obtained hybrid material was dispersed in the energetic nitramine RDX using acetone with aluminum nanoparticles. Finally, the impact of the synthesized hybrid material, based on CuO plated CNFs, upon the thermal and kinetic decomposition of RDX was also evaluated.

2. Materials and Methods

2.1. Materials.

Carbon nanofibers were obtained from Pyrograf Products, Inc., Copper(II) sulfate pentahydrate (CuSO₄·5H₂O) was obtained from Sigma-Aldrich, Germany. Sodium Citrate (C₆H₅Na₃O₇·2H₂O) was purchased from the Bio shop, while Sodium hydroxide (NaOH), Stannous chloride (SnCl₂), Stannous chloride dihydrate (SnCl₂·2H₂O, 98%), and Hydrochloric
Acid were acquired from CALEDON Laboratory Chemicals. Acetone (99.9%) was bought from Penta chemicals. Palladium (II) chloride (PdCl₂, 100%) was obtained from Artcraft chemicals Inc. RDX crystals were synthesized in our local laboratory. All reagents were utilized as received with no need to perform any additional purification procedures.

2.2. CNFs catalyzation.

CNFs catalyzation is a pretreatment procedure consisting of two consecutive processes: sensitization and surface activation 6. This procedure improves the surface adhesion to acquire the deposition of metal coatings successfully. Firstly, 2 g of SnCl₂ is used accompanied by 10 ml conc. HCl, in the presence of 90 ml of deionized water, generates active spots on the CNFs surfaces, which is known as "sensitization". The mixture is mixed for 30 min using an ultrasonic probe sonicator (Q500 Qsonica); thus, a surface catalyst was effectively created. The CNFs were then rinsed with water, filtered, and dried at 70 °C for 1 hr with a vacuum. The obtained CNFs were activated using the mixture of (0.04 g PdCl₂, 3 ml HCl, and 150 ml water) for 30 minutes with the aid of the sonicator.

2.3. Copper metallization of activated CNFs.

Herein, electroless plating was performed to deposit copper nanoparticles upon the activated CNFs. This process was done through a reduction reaction with a stoichiometric ratio of γ =16 (w/w) [37, 38]. This emerging method provides a continual Cu deposition layer through dispersing 0.3 gram of CNF in 200 ml solution; 18.5 g CuSO₄·5H₂O, 44 g Na₃C₆H₅O₇·2H₂O, deionized water, and 55 ml HCHO. Sonication of CNFs was achieved for 1 h by ultrasonic probes. Meanwhile, 500 ml of NaOH solution with a concentration of 2N was added slowly to set the solution at a pH in the range of 9 to 10. The reaction is completed once the black color turns red-brown. Finally, the reaction mixture was washed, filtered, and dried for 4 h at 250 °C to obtain CNFs coated with CuO. Interestingly, this process develops a uniform coating distribution. The whole process is schematically represented in Figure 1.

![Figure 1. The procedure of obtaining CNFs plated by CuO.](image)

2.4. Characterization of CuO-CNFS.

TEM, JEM-2010F, and XRD, Bruker D8, have been applied to clarify the morphology and the crystalline structure of both CNFs and CuO-CNFS, respectively. XRD was connected with a Davinci diffractometer operating where the experiments were performed at 35 kV, 45 mA, and C₀-Kα radiation (λ(avg) = 1.79026 Å). SEM was connected to an energy dispersive X-ray spectrometer (EDX) Bruker Quantax 200 to investigate the elemental analysis.

2.5. Dispersion of CuO-CNFS and Alex into RDX matrix.

The dispersion process for CuO-CNFS/Al into the RDX energetic matrix was successfully performed via the solvent blending methodology. Firstly, CuO-CNFS were added to aluminum nanoparticles (Alex) in acetone. The mixture was ultrasonicated to ensure the
effective distribution of solid particles in solvent and to eliminate any physical aggregations. Meanwhile, RDX crystals were dissolved in acetone and then added to the first mixture. The hybrid mixture was subjected to a continuous sonication accompanied by a slowly heating up. This heating guarantees the plenary dispersion of the hybrid mixture into the RDX matrix and evaporates acetone gradually.

2.6. Thermal analysis study.

Thermogravimetric analysis, TGA55, TA Instruments, USA, together with the differential scanning calorimetry technique, DSC Q-2000, TA Instruments, USA, were utilized to clarify the thermal behavior of the obtained compositions. The heating rates were 3, 5, 7, and 10 K min\(^{-1}\) in the case of TGA measurements and 5 K min\(^{-1}\) in the case of DSC measurements. The sample weight ranges between 1.5 and 2 mg for each test at a temperature range between 40 and 350 °C.

2.7. Thermal analysis study.

The kinetic triplet and the reaction model \((f(\alpha))\) were studied. The evaluation of the solid phase reactions could be investigated by various techniques [39]. Different isothermal or nonisothermal methods could be applied to obtain the decomposition kinetics.

The isoconversional method could be investigated depending on the change in the rate of the process.

\[
\frac{d\alpha}{dt} = k(T)f(\alpha)
\]

In this case, the reaction model is \(f(\alpha)\), and \(k(T)\) is a rate constant (depending on the temperature) and could be determined by applying the Arrhenius equation

\[
k(T) = A\exp\left(-\frac{E}{RT}\right)
\]

By adding eq. 2 to eq.1, the kinetic differentiation could be:

\[
\frac{d\alpha}{dt} = A\exp\left(-\frac{E}{RT}\right)f(\alpha)
\]

By the integration of eq.3, the following equation was obtained

\[
g(\alpha) \equiv \int_0^\alpha \frac{d\alpha}{f(\alpha)} = A \int_0^\beta \exp\left(-\frac{E}{RT}\right) d\beta
\]

Here, \(g(\alpha)\) represents the integrated order for the model of the reaction.

In the iso-conversional method, the model of the reaction is based on Eq. 1 and does not depend on the temperature. In this study, the modified Kissinger-Akahira-Sunose (KAS) methods were investigated:

\[
\ln\left(\frac{\beta_1}{T_{1.92}^{1.92}}\right) = \text{const} - 1.0008 \left(\frac{E_a}{RT_{1.92}}\right)
\]

The symbol \(T_p\) represents the exothermic peak temperature at the selected rates and \(\beta\) is the selected heating rate. By plotting of \(\ln\left(\frac{\beta_1}{T_{1.92}^{1.92}}\right)\) against \(\left(\frac{1}{T_{1.92}}\right)\) (at the various heating rates), the slope of the obtained straight line represents the activation energy [40].
3. Results and Discussions

3.1. Characteristics of CuO-CNFs.

Figure 2 showed the TEM micrographs for the synthesized CNFs where the average diameter started from 50 to 100 nm, while the particles' average length was 50-200 μm. As given in Figures 2 (c and d), it is also clear that CNFs surfaces were homogeneously coated with CuO particles through the effective electroless plating approach.

![TEM micrographs of synthesized CNF](image)

Figure 2. TEM micrographs of synthesized CNF (a) and (b) before catalyzation, (c) and (d) after catalyzation and deposition of CuO onto –CNF.

![XRD pattern](image)

Figure 3. XRD patterns of CuO/CNF composition.

The XRD pattern in Figure 3 indicated ten distinctive CuO peaks, which confirmed the high crystallinity of the synthesized CuO-CNFs. These results coincided with the international JCPDS standard data (PDF-04-007-1375). Also, the XRD results confirmed the high purity of the synthesized CuO-CNF particles regarding the reflection of CuO to CNFs ratio (16:1).
3.2 Thermal decomposition of the prepared nanocomposite and the pure RDX.

TG/DTG thermograms obtained for pure RDX and CuO-CNF-Al nano-thermite, given in Figure 4 and Table 1, showed that both investigated compositions possessed a single decomposition procedure. However, the onset decomposition temperature at a heating rate of 3 °C min\(^{-1}\) was increased from 161.2°C, in the case of pure RDX, to 172.7°C for the synthesized RDX/CNF/Al/CuO colloids.

Type	TG curve	DTG curve
RDX+ 5%Al+1%CuO-CNFS	3(min\(^{-1}\)) 172.7°C 95.1% 208.6°C	217.1°C
	5(min\(^{-1}\)) 181.7°C 95.8% 212.9°C	224.5°C
	7(min\(^{-1}\)) 190.4°C 95.5% 215.8°C	224.9°C
	10(min\(^{-1}\)) 202.2°C 95.6% 226.5°C	236.7°C
RDX	3(min\(^{-1}\)) 161.2°C 99.9% 205.6°C	218.5°C
	5(min\(^{-1}\)) 168.3°C 99.0% 210.6°C	224.3°C
	7(min\(^{-1}\)) 178.3°C 98.8% 213.5°C	225.7°C
	10(min\(^{-1}\)) 181.5°C 99.4% 220.2°C	235.4°C

Also, the maximum decomposition peak was increased from 205.6 °C, for pure RDX, to 208.6 °C for the nano-thermite colloids. Moreover, the RDX decomposition was ended at 218.5°C, while the decomposition was ended at 217.1 °C in the case of the hybrid nano-thermite colloids. The quick finishing of the RDX/CNF/Al/CuO decomposition could be attributed to the ability of new colloids to cover the RDX crystals and prevent heat loss from the surface of the crystals.

As a result, a homogenous distribution of heat occurred, which accelerated the autocatalytic effect of the gaseous pieces and resulted in the quick finishing of the decomposition process. At the end of decomposition, pure RDX was found to leave about 1% of the original mass, which confirms the complete decomposition of RDX into gaseous products. On the other hand, RDX/CNF/Al/CuO remained 4.5% of its original mass regarding Al and CuO residuals. These results confirmed the significant impact of CNF/Al/CuO on the thermal decomposition behavior of RDX crystals.
3.3. Kinetic parameters obtained by nonisothermal technique.

Since the synthesized RDX/CNF/Al/CuO hybrid composition is a novel energetic formulation, it is essential to investigate its thermal properties. These thermal characteristics directly relate to the combustion and explosive characteristics of the whole composition [41-45]. Moreover, evaluating this composition's activation energy (Ea) and thermal stability is crucial to fully characterize this novel energetic material [46-50]. In this research, the modified Kissinger-Akahira-Sunose (KAS) was chosen as the most recommended iso-conversional approach to characterize the thermal decomposition behavior of energetic compositions [39]. KAS was performed at conversion rates of 5-90%, and a mean value interval of 0.25-0.85 was selected to avoid the inaccuracy of the tail peaks. As given in Table 2, the Ea of the obtained RDX/CNF/Al/CuO composition was found to be 107.9 kJ mol\(^{-1}\), while the activation energy for the pure RDX crystals was 181.5 kJ mol\(^{-1}\). The obvious decrease in Ea with 40.5% reflects the significant impact of adding the synthesized hybrid colloids to RDX crystals. This could be attributed to the existence of the relatively high surface area regarding the addition of nanosized particles, thus increasing the active site. As more active sites are initiated, more reactivity of RDX exists, and a lower decomposition peak temperature obtains [51]. The addition of the nanoparticles, which developed a higher surface area, together with CNFs, which possess a high heat conductivity, is responsible for the dramatic conversion of the pure RDX decomposition mechanism [52] into a complex nonlinear one. This could be due to the improvement of the conductivity of the reaction surface and the absorption of some of the gaseous products via the higher surface area provided. As a result, the decomposition reaction remains in the condensed phase and thus increasing the overall catalytic ability.

3.4 Effect of the extent of the reaction conversion on the kinetic parameters

In this part, the dependency between the reaction conversion (\(\alpha\)) and the reaction temperature was investigated for either pure RDX crystals or the hybrid RDX/CNF/Al/CuO composition. As shown in Figure 5, both curves were found to be similar regarding the reaction conversion. However, a slight change was observed in the case of the reaction temperature.
These results confirmed that the addition of the synthesized nano-thermite colloids did not negatively influence the thermal stability of the RDX crystals.

Table 2. Kinetic parameters of the energetic nanocomposite and the individual RDX.

α reacted	Nanocomposite of RDX				RDX			
0.05	128.1	16.8	0.9958	186.2	21.0	0.9635		
0.10	116.6	15.0	0.9989	184.0	20.7	0.9765		
0.15	112.9	14.4	0.9995	182.9	20.6	0.9865		
0.20	110.7	14.0	0.9995	181.8	20.4	0.9828		
0.25	109.5	13.8	0.9997	172.4	19.3	0.9817		
0.30	110.3	13.8	0.9995	171.7	19.1	0.9828		
0.35	110.0	13.7	0.9992	173.4	19.3	0.9828		
0.40	108.7	13.5	0.9995	174.5	19.3	0.9850		
0.45	108.6	13.4	0.9995	174.4	19.3	0.9882		
0.50	107.2	13.2	0.9997	172.5	19.0	0.9852		
0.55	106.5	13.1	0.9998	178.8	19.6	0.9917		
0.60	106.5	13.0	0.9999	182.4	20.0	0.9932		
0.65	104.6	12.8	0.9994	188.9	20.6	0.9958		
0.70	106.6	12.9	0.9995	189.2	20.6	0.9973		
0.75	107.7	13.0	0.9994	189.6	20.6	0.9973		
0.80	108.3	13.1	0.9990	190.9	20.7	0.9990		
0.85	108.4	13.0	0.9971	189.4	20.6	0.9987		
0.90	108.8	13.0	0.9987	190.0	20.6	0.9987		

Mean value | 107.9±0.54 | 13.2±0.11 | 181.6±2.5 | 20.1±0.22 |

Figure 5. The α-T curves at different heating rates for (a) RDX+ 5%Al+1%CuO-CNFs, (b) RDX.

Also, the impact of the conversion extent on the activation energy was examined, as shown in Figure 6. It was found that the activation energy of the RDX/CNF/Al/CuO was constant versus the conversion extent except at the beginning of the conversion, which showed a slight change. On the other hand, the activation energy of pure RDX was constant until it reached the conversion extent of 0.55. Afterward, the activation energy increased by 10 kJ mol\(^{-1}\) then remained constant until the end of the conversion. These results confirmed our previous conclusion that the addition of nanoparticles increases the surface area and the available active sites, thus increasing the molecular energy level [53,54]. Moreover, these outputs coincided with Joseph et al.’s results that metal nanoparticles were able to develop physical adsorption, which forms what is known as "hotspots" that promote the HMX thermal decomposition [54]. This explanation could also be used to confirm our conclusion that nano CNF was the reason...
behind the thermal conductivity enhancement of the obtained hybrid composition, which leads
to the reduction of the activation energy of the energetic nanocomposite.

![Activation energy and conversion extent graph]

Figure 6. The activation energy and the conversion extent of the nano-thermite composition and the individual RDX through the modified KAS method.

4. Conclusions

The study of nanoscale hybrid thermite compositions represents advanced research in the energetic materials field. The CNFs were successfully catalyzed through a surface pretreatment process. The CNFs surfaces were homogeneously coated with CuO particles through the effective electroless plating approach. The dispersion of the thermite mixture with the catalyzed CNFs was observed by the TEM. According to TGA results, the presence of nano-thermite with the RDX exhibits decomposition behavior similar to the individual RDX. While the nanocomposite has different decomposition kinetics and its activation energy was lower than the RDX. The individual RDX and the nanocomposite have activation energies of 181.6 kJ mol\(^{-1}\) and 107.9 kJ.mol\(^{-1}\), respectively. The addition of nanoparticles, which developed a high surface area, together with the CNFs, is responsible for the conversion of the pure RDX decomposition mechanism into a complex nonlinear one. The activation energy of the RDX/CNF/Al/CuO was constant at different extents of the reaction conversion. The thermite mixture was able to perform physical adsorption of the gaseous products, which forms what is known as "hotspots" that promoted the RDX thermal decomposition. The CNFs were the reason behind the enhancement of thermal conductivity, resulting in a great decrease of the activation energy of the energetic hybrid composition.

Funding

This research received no external funding.

Acknowledgments

The authors acknowledge collaborations with Dr. Ahmed Saleh and Dr. Ahmed Azazy (Science and Technology Center of Excellence, Ministry of Military Production, Egypt) for their technical support.
Conflicts of Interest

The authors declare no conflict of interest.

References

1. Park, S.J. Carbon fibers and their composites. *CNC Press* 2005, 1st Ed, https://doi.org/10.1201/9781420028744.

2. Yadav, D.; Amini, F.; Ehmann, A. Recent advances in carbon nanofibers and their applications – a review. *European Polymer Journal* 2020, 138, 109963, https://doi.org/10.1016/j.europolyjm.2020.109963.

3. Zheng, Y.; Ni, D.; Li, N.; Chen, W.; Lu, W. Nano-channel carbon fiber film with enhanced mechanical and electrochemical properties by centrifuged electrospinning for all-solid-state flexible symmetric supercapacitors. *Microporous and Mesoporous Materials* 2021, 316, 110972, http://doi:10.1016/j.micromeso.2021.110972.

4. Mechin, P.Y.; Keryvin, V.; Grandidier, J.C. Limitations on adding nano-fillers to increase the compressive strength of continuous fibre / epoxy matrix composites. *Composites Science and Technology* 2020, 192, 108099, http://doi:10.1016/j.compscitech.2020.108099.

5. Afzal, M.T.; Khushnood, R.A. Influence of carbon nano fibers (CNF) on the performance of high strength concrete exposed to elevated temperatures. *Construction and Building Materials* 2021, 268, 121108, http://doi.org/10.1016/j.conbuildmat.2020.121108.

6. Fulmali, A.O.; Nayak, B.A.; Dasari, S.; Prusty, R.K.; Ray, B.C. Effect of 1D carbon nano-tube and fiber reinforcement on the long-term creep performance of glass fiber/epoxy composite using the time-temperature superposition principle. *Materials Today: Proceedings* 2021, 47, 3263, http://doi.org/10.1016/j.matpr.2021.06.451.

7. Bilkar, D.; Keshavamurthy, R.; Tambrallimath, V. Influence of carbon nanofiber reinforcement on mechanical properties of polymer composites developed by FDM. *Materials Today: Proceedings* 2021, 46, 4559, http://doi.org/10.1016/j.matpr.2020.09.707.

8. Chakradhary, V.K.; Akhter, M.J. Absorption properties of CNF mixed cobalt nickel ferrite nanocomposite for radar and stealth applications. *Journal of Magnetism and Magnetic Materials* 2021, 525, 167592, http://doi.org/10.1016/j.jmmm.2020.167592.

9. Mazo, M.A.; Sanguino, J.; Martin-Gullon, I.; Rubio, J. Formation of carbon nanofibers with Ni catalyst supported on a micro-mesoporous glass. *Microporous and Mesoporous Materials* 2020, 323, 111168, http://doi.org/10.1016/j.micromeso.2021.111168.

10. He, G.; Wang, P.; Dai, Y.; Sun, Y.; Zhang, J.; Yang, Z. Carbon nanofillers repair strategy for high-efficiency thermal conductivity enhancement of PBX composites at ultralow mass fraction. *Composites Part A: Applied Science and Manufacturing* 2021, 148, 106492, http://doi.org/10.1016/j.compositesa.2021.106492.

11. Behera, A.; Sahu, P.; Mohapatra, S.K.; Ghadei, S.K. Characterization of carbon based nanofibers in nanocomposites and their applications. *Materials Today: Proceedings* 2020, 33, 5714-5719, http://doi.org/10.1016/j.matpr.2020.04.531.

12. He, T.; Li, X.; Wang, Y.; Bai, T.; Weng, X.; Zhang, B. Carbon nano-fibers/ribbons with meso/macro pores structures for supercapacitor. *Journal of Electroanalytical Chemistry* 2020, 878, 114597, http://doi.org/10.1016/j.jelechem.2020.114597.

13. Zarko, V.E.; Gromov A. Energetic nanomaterials: synthesis, characterization, and applications. *Elsevier* 2016, http://doi.org/10.1016/C2014-0-01661-9.

14. Li, P.; Huang, D.; Huang, J.; Tang, J.; Zhang, P.; Meng, F. Development of magnetic porous carbon nanofibers for application as adsorbents in the enrichment of trace Sudan dyes in foodstuffs. *Journal of Chromatography A* 2020, 1625, 461305, http://doi.org/10.1016/j.chroma.2020.461305.

15. Chen, X.; Xia, J.; Peng, J.; Li, W.; Xie, S. Carbon-nanotube metal-matrix composites prepared by electroless plating. *Composites Science and technology* 2000, 60, 301-306, http://doi.org/10.1016/S0266-3538(99)00127-X.

16. Cha, S.I.; Kim, K.T.; Arshad, S.N.; Mo, C.B.; Hong, S.H. Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing. *Advanced Materials* 2005, 17, 1377-1381, http://doi.org/10.1002/adma.200401933.

17. Trzciński, W.A.; Cudziło, S.; Szymańczyk, L. Studies of detonation characteristics of aluminum enriched RDX compositions. *Propellants, Explosives, Pyrotechnics* 2007, 32, 392-400, http://doi.org/10.1002/prep.200700201.

18. Sahraei, A.A.; Saed, H.N.; Fathi, A.; Baniassadi, M.; Afrookh, S.S.; Givi, M.K.B. Formation of homogenous copper film on MWNTs by an efficient electroless deposition process. *Science and Engineering of Composite Materials* 2017, 24, 345-352 http://doi.org/10.1515/secm-2015-0081.

19. Arai, S.; Endo, M. Carbon nanofiber–copper composite powder prepared by electrodeposition. *Electrochemistry Communications* 2003, 5, 797-799, http://doi.org/10.1016/j.elecom.2003.08.002.
20. Arai, S.; Endo, M.; Kaneko, N. Ni-deposited multi-walled carbon nanotubes by electrodeposition. *Carbon* **2004**, *42*, 641-644, [10.1016/j.carbon.2003.12.084]

21. Yamagishi, K.; Yae, S.; Okamoto, N.; Fukumuro, N.; Matsuda, H. Adsorbates formed on non-conducting substrates by two-step catalyzyation pretreatment for electroless plating. *Journal of the Surface Finishing Society of Japan*, **2003**, *54*, 150-154. [10.4139/sfj.54.150]

22. Zaky, M.G.; Elsheinawy, T. Review of Nano-thermites: A Pathway to Enhanced Energetic Materials. *Central European Journal of Energetic Materials*, **2021**, *18*, 63-85, [https://doi.org/10.22211/cejem/134953]

23. Wang, C.A.; Xu, J.B.; Shen, Y.; Wang, Y.T.; Yang, T.L.; Zhang, Z.H.; Li, F.W.; Shen, R.Q.; Ye, Y.H. Thermodynamics and performance of Al/CuO nanothermite with different storage time. *Defence Technology* **2021**, *17*, 741-747, [https://doi.org/10.1016/j.dt.2020.05.003]

24. Yetter, R.A. Progress towards nanoengineered energetic materials. *Proceedings of the Combustion Institute* **2021**, *38*, 57-81, [https://doi.org/10.1016/j.proci.2020.09.008]

25. Luo, Q.P.; Long, X.P.; Liu, G.X.; Wu, C. Deflagration to detonation transition in weakly confined conditions for a type of potentially novel green primary explosive: Al/Fe2O3/RDX hybrid nanocomposites. *Defence Technology* **2021**, [https://doi.org/10.1016/j.dt.2021.11.011]

26. Tawfik, S.M.; Saleh, A.; Elsheinawy, T.M. Reactive nanocomposites as versatile additives for composite propellants. *Zeitschrift für anorganische und allgemeine Chemie* **2016**, *642*, 1222-1229, [https://doi.org/10.1002/zaac.201600285]

27. Luo, Q.; Liu, G.; Zhu, M.; Jiang, X. Constant volume combustion properties of Al/Fe2O3/RDX nanocomposite: the effects of its particle size and chemical constituents. *Combustion and Flame* **2022**, *213*, 111938, [https://doi.org/10.1016/j.combustflame.2021.111938]

28. Wang, Y.; Dai, J.; Xu, J.; Shen, Y.; Wang, C.A.; Ye, Y.; Shen, R. Experimental and numerical investigations of the effect of charge density and scale on the heat transfer behavior of Al/CuO nano-thermite. *Vacuum* **2021**, *184*, 109878, [https://doi.org/10.1016/j.vacuum.2020.109878]

29. Xiao, L.; Zhao, L.; Ke, X.; Zhang, T.; Hao, G.; Hu, Y.; Zhang, G.; Guo, H.; Jiang, W. Energetic metastable Al/CuO/PVDF/RDX microspheres with enhanced combustion performance. *Chemical Engineering Science* **2021**, *231*, 116302, [https://doi.org/10.1016/j.ces.2020.116302]

30. Yang, Z.; Fu-sheng, Y.; Feng-qi, Z.; Si-yu, X. Interaction Mechanism between Metal Hydrides and Energetic Compounds: an Extensive Literature Survey. *FirePhysChem* **2021**, [https://doi.org/10.1016/j.fpc.2021.11.003]

31. Elsheinawy, T.; Elsheinawy, A.; Li, Q.M. A modified penetration model for copper-tungsten shaped charge jets with non-uniform density distribution. *Central European Journal of Energetic Materials* **2016**, *13*, 927-943, [https://doi.org/10.22211/cejem/65141]

32. Elsheinawy, T.; Elsheinawy, A.; Klapötke, T.M. A numerical method for the determination of the virtual origin point of shaped charge jets instead of using flash X-ray radiography. *Journal of Energetic Materials* **2018**, *36*, 127-140, [https://doi.org/10.1080/07370652.2017.1324532]

33. Elsheinawy, A.; Zeman, S. Characteristics of melt cast compositions based on cis-1, 3, 4, 6-tetranitrooctahydroimidazo-[4, 5 d] imidazole (BCHMX)/TNT. *Central European Journal of Energetic Materials* **2014**, *11*, 501.

34. Zeman, S.; Elsheinawy, A.; Akštein, Z. Preliminary study on several plastic bonded explosives based on cyclic nitramines. *Hanneng Cailiao/Chinese Journal of Energetic Materials* **2011**, *19*, 8-12, [https://doi.org/10.3969/j.issn.1006-9941.2011.01.003]

35. Bak, S.M.; Kim, K.H.; Lee, C.W.; Kim, K.B. Mesoporous nickel/carbon nanotube hybrid material prepared by electroleless deposition. *Journal of Materials Chemistry* **2011**, *21*, 1984-1990, [https://doi.org/10.1039/C0JM00922A]

36. Jagannatham, M.; Sankaran, S.; Prathap, H. Electroless nickel plating of arc discharge synthesized carbon nanotubes for metal matrix composites. *Applied Surface Science* **2015**, *324*, 475-481, [https://doi.org/10.1016/j.apsusc.2014.10.150]

37. Ang, L.M.; Hor, T.A.; Xu, G.Q.; Tung, C.H.; Zhao, S.; Wang, J.L. Electroless plating of metals onto carbon nanotubes activated by a single-step activation method. *Chemistry of Materials* **1999**, *11*, 2115-2118, [https://doi.org/10.1021/cm9900781]

38. Fang, W.; Ara, S.; Endo, M. The preparation of multi-walled carbon nanotubes with a Ni catalyst coating through an electroleless deposition process. *Carbon* **2005**, *43*, 1716-1721, [https://doi.org/10.1016/j.carbon.2005.02.015]

39. Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Poppescu, C.; Shibrazzuoli, N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. *Thermochimica Acta* **2011**, *520*, 1-19, [https://doi.org/10.1016/j.tca.2011.03.034]

40. Svoboda, R.; Málek, J. Is the original Kissinger equation obsolete today? *Journal of Thermal Analysis and Calorimetry* **2014**, *115*, 1961-1967, [https://doi.org/10.1007/s10973-013-3486-4]

41. Hussein, A.K.; Elsheinawy, A.; Zeman, S. Thermal decomposition kinetics and explosive properties of a mixture based on cis-1, 3, 4, 6-tetranitrooctahydroimidazo-[4, 5 d] imidazole and 3-nitro-1, 2, 4-triazol-5-one (BCHMX/NT). *Thermochimica Acta* **2017**, *655*, 292-301, [https://doi.org/10.1016/j.tca.2017.07.016]
42. Abd-Elghany, M.; Klapötke, T.M.; Elbeih, A. Investigation of 2, 2, 2-trinitroethyl-nitrocarbamate as a high energy dense oxidizer and its mixture with Nitrocellulose (thermal behavior and decomposition kinetics). *Journal of Analytical and Applied Pyrolysis* 2017, 128, 397-404, http://doi.org/10.1016/j.jaap.2017.09.010.
43. Nair, U.; Asthana, S.; Rao, A.S.; Gandhe, B. Advances in high energy materials. *Defence Science Journal* 2010, 60, 137, http://doi.org/10.14429/dsj.60.327.
44. Beckstead, M.W.; Puduppakkam, K.; Thakre, P.; Yang, V. Modeling of combustion and ignition of solid-propellant ingredients. *Progress in Energy and Combustion Science* 2007, 33, 497-551, http://doi.org/10.1016/j.pecs.2007.02.002.
45. Hussein, A.K.; Elbeih, A.; Zeman, S. The effect of glycidyl azide polymer on the stability and explosive properties of different interesting nitramines. *RSC advances* 2018, 8, 17272-17278, http://doi.org/10.1039/C8RA02994F.
46. Abd-Elghany, M.; Elbeih, A.; Klapötke, T.M. Thermo-analytical study of 2, 2, 2-trinitroethyl-formate as a new oxidizer and its propellant based on a GAP matrix in comparison with ammonium dinitramide. *Journal of Analytical and Applied Pyrolysis* 2018, 133, 30-38, http://doi.org/10.1016/j.jaap.2018.05.004.
47. Elbeih, A.; Abd-Elghany, M.; Klapötke, T.M. Kinetic parameters of PBX based on Cis-1, 3, 4, 6-tetranitroocta-hydroimidazo-[4, 5-d] imidazole obtained by isocconversional methods using different thermal analysis techniques. *Propellants, Explosives, Pyrotechnics* 2017, 42, 468-476, http://doi.org/10.1002/prep.201700032.
48. Abd-Elghany, M.; Klapötke, T.M.; Elbeih, A. Thermal behavior and decomposition kinetics of Bis (2, 2-trinitroethyl)-oxalate as a high energy dense oxidizer and its mixture with nitrocellulose. *Propellants, Explosives, Pyrotechnics* 2017, 42, 1373-1381, http://doi.org/10.1002/prep.201700179.
49. Hussein, A.K.; Zeman, S.; Elbeih, A. Thermo-analytical study of glycidyl azide polymer and its effect on different cyclic nitramines. *Thermochimica Acta* 2018, 660, 110-123, http://doi.org/10.1016/j.tca.2018.01.003.
50. Abd-Elghany, M.; Klapötke, T.; Elbeih, A.; Hassanein, S.; Elshenawy, T. Study of thermal reactivity and kinetics of HMX and its PBX by different methods. *Huoqihua Xuebao. Chinese Journal of Explosives & Propellants* 2017, 2, 24-32, http://doi.org/10.14077/j.issn.1007-7812.2017.02.004.
51. Yan, Q.L.; Gozin, M.; Zhao, F.Q.; Cohen, A.; Pang, S.P. Highly energetic compositions based on functionalized carbon nanomaterials. *Nanoscale* 2016, 8, 4799-4851, http://doi.org/10.1039/C5NR07855E.
52. Yan, Q.L.; Zhao, F.Q.; Kuo, K.K.; Zhang, X.H.; Zeman, S.; DeLuca, L.T. Catalytic effects of nano additives on decomposition and combustion of RDX-, HMX-, and AP-based energetic compositions. *Progress in Energy and Combustion Science* 2016, 57, 75-136, http://doi.org/10.1016/j.pecs.2016.08.002.
53. Zhang, C.; Peng, Q.; Wang, L.; Wang, X. Thermal Sensitivity of HMX Crystals and HMX-Based Explosives Treated under Various Conditions. *Propellants, Explosives, Pyrotechnics* 2010, 35, 561-566, http://doi.org/10.1002/prep.200800010.
54. Jiang, Z.; Li, S.F.; Zhao, F.Q.; Chen, P.; Yin, C.M.; Li, S.W. Effect of nano metal powder on the thermal decomposition characteristics of HMX. *Tuijin Jishu/Journal of Propulsion Technology* 2002, 23, 258-261.