Research Article

Longbiao Li*

Temperature-dependent proportional limit stress of SiC/SiC fiber-reinforced ceramic-matrix composites

Abstract: In this paper, the temperature-dependent proportional limit stress (PLS) of SiC/SiC fiber-reinforced ceramic-matrix composites (CMCs) is investigated using the micromechanical approach. The PLS of SiC/SiC is predicted using an energy balance approach considering the effect of environment temperature. The relation between the environment temperature, PLS, and composite damage state is established. The effects of the fiber volume, interface properties, and matrix properties on the temperature-dependent PLS and composite damage state of SiC/SiC composite are analyzed. The experimental PLS and interface debonding length of 2D SiC/SiC composites with the PyC and BN interphase at elevated temperatures are predicted. The temperature-dependent PLS of SiC/SiC composite increases with the fiber volume, interface shear stress and interface debonding energy, and the matrix fracture energy and decreases with the interface frictional coefficient at the same temperature.

Keywords: ceramic-matrix composites (CMCs), proportional limit stress (PLS), matrix cracking, interface debonding

1 Introduction

Continuous SiC/SiC fiber-reinforced ceramic-matrix composites (CMCs) have excellent properties such as high specific strength, high specific modulus, wear resistance, oxidation resistance, corrosion resistance, radiation resistance, and insensitivity to cracks and noncatastrophic fracture, which make it a new type of thermal structural material in the application prospects of aviation, aerospace, and energy [1–3]. SiC/SiC composites are mainly used for hot section components of high-performance aeroengines and industrial gas turbines and have potential applications in nuclear fusion reactors and fission reactors [4–9]. Solar Turbines Company uses SiC/SiC as the combustion chamber lining of Solar’s Centaur 505 engine. In the 35,000-h test run, the NOx and CO content of the exhaust gas is lower than that of the ordinary engine [10]. A comparative test of fiber-reinforced CMC combustor lining was carried out in Germany. The results show that after a 10-h test in the gas engine, the delamination and debonding between the substrate and the coating appeared in the CVD-SiC coated C/SiC combustor; however, the SiC/SiC combustor did not suffer any damage after a 90-h test [11]. In cooperation with SNECMA to develop fiber-reinforced CMC nozzle seals for the F100-PW-229 aero engine, P&W is also using CMC nozzle flaps and seals, validated under the IHPTET program to improve the F119 aeroengine, which powered the world’s most advanced fighter F-22. With the new flaps, the durability of the aeroengine is improved significantly while the quality and the cost are reduced. GE has signed a multiyear development contract with Goodrich to develop C/SiC nozzle flaps and seals for the higher temperature F414 engine. Goodrich is responsible for providing lightweight and long-life CMCs, and GE is responsible for testing and evaluation. Now, GE has conducted production and flight testing of CMC standard parts. GE also developed and demonstrated the CMC combustion chamber under the support of the TECH56 program. The CMC combustion chamber can provide high temperature rise and possess a long life and need few cooling airs.

The nonlinear stress–strain behavior of fiber-reinforced CMCs under tensile loading is mainly due to the internal damages of matrix cracking and the fiber/matrix interface debonding [12]. The proportional limit stress (PLS) of fiber-reinforced CMCs corresponds to the first matrix cracking stress [13]. Below the PLS, the composite
stress–strain response is linearly elastic and without macroscopic damage. Above the PLS, the matrix cracking occurs, leading to the exposure of the fibers to the application atmosphere/environment. The macro-tensile curves of fiber-reinforced CMCs can be divided into three stages: (1) the linear-elastic stage till the proportional limit stress, (2) the nonlinear stage of matrix cracking propagation and interface debonding stage till the saturation of the matrix cracking, and (3) the fibers failure stage after the saturation of matrix cracking [14–17]. Among the three stages mentioned above, the proportional limit stress is a key parameter for composite structure or component design. To ensure the safety of CMCs components, the design safety factor should satisfy \(\sigma_{PLS}/\sigma_d > 1 \) (i.e., \(\sigma_d \) is the design stress). The theoretical analysis of PLS can be divided into two cases, i.e., the energy balance approach, including the ACK model [18], BHE model [19], SH model [20], and Chiang model [21–23], and the stress intensity factor approach, including MCE model [24], MC model [25], and Chiang model [26]. Pavia et al. [27] predicted the PLS in micro/nanohybrid brittle matrix composites based on the ACK shear-lag model. It was found that the presence of a small function of strong stiff nanotubes provides significant enhancements in the PLS. Acoustic emission and electrical resistance can be used to monitor the matrix cracking behavior of fiber-reinforced CMCs [17]. The micromatrix cracking first occurred in the matrix-rich region due to the thermal residual stress which can be monitored using the acoustic emission or electrical resistance method that does not affect the linear behavior of fiber-reinforced CMCs. When this short matrix cracking propagates into the long steady-state matrix cracking, the tensile stress–strain curve begins to deflect. The steady-state matrix cracking stress corresponds to the PLS. Li [28] investigated the interface properties on the evolution of multiple matrix cracking of fiber-reinforced CMCs. Low interface shear stress leads to the low matrix cracking density. Singh et al. [29] investigated the effect of interface shear stress on the PLS of SiC/Zircon composite. With increasing interface shear stress (ISS), the PLS increases. At elevated temperatures, the ISS changes with temperature due to the thermal expansion coefficient mismatch between the fiber and the matrix. However, the relation between the temperature, ISS, and the PLS of SiC/SiC composites has not been established [30,31].

In this paper, the temperature-dependent PLS of SiC/SiC composite is investigated using the energy balance approach. The effect of environment temperature on the fiber and matrix elastic modulus, fiber/matrix interface shear stress and interface debonding energy, and the matrix fracture energy is considered. The effects of the fiber volume, fiber/matrix interface properties, and matrix properties on the temperature-dependent PLS and composite internal damages are analyzed. The experimental PLS and fiber/matrix interface debonding length of 2D SiC/SiC composites with different interphase at elevated temperatures are predicted.

2 Theoretical analysis

The energy balance relation to evaluate the PLS of fiber-reinforced CMCs can be determined by equation (1) [19]:

\[
\frac{1}{2} \int_{-\infty}^{\infty} \left\{ \frac{V_f}{E_f(T)} \left[\sigma_{fu}(T) - \sigma_d(T) \right]^2 + \frac{V_m}{E_m(T)} \left[\sigma_{mu}(T) - \sigma_{md}(T) \right]^2 \right\} dx + \frac{V_m}{2\pi R^2 G_m(T)} \int_{-l_d(T)}^{l_d(T)} \int_{r_1}^{r_2} \left[\frac{n \pi(x, T)}{r} \right] 2\pi r dr dx = V_m \zeta_m(T) + \frac{4V_m l_d(T)}{\eta} \zeta_d(T)
\]

where \(V_f \) and \(V_m \) are the fiber and matrix volume fraction, respectively; \(E_f(T) \) and \(E_m(T) \) are the temperature-dependent fiber and matrix elastic modulus, respectively; \(\zeta_m(T) \) and \(\zeta_d(T) \) are the temperature-dependent matrix fracture energy and interface debonding energy, respectively.

\[
\sigma_{fu}(T) = \frac{E_f(T) \sigma}{E_c(T)}
\]

\[
\sigma_{mu}(T) = \frac{E_m(T) \sigma}{E_c(T)}
\]

\[
\sigma_{id}(x, T) = \begin{cases} \frac{\sigma}{V_l} - \frac{2\pi(T)}{\eta_l} x, & x \in [0, l_d(T)] \\
\frac{E_f(T) \sigma}{E_c(T)} x, & x \in \left[l_d(T), \frac{l_c(T)}{2} \right]
\end{cases}
\]

\[
\sigma_{md}(x, T) = \begin{cases} 2 \frac{V_f}{V_m} \pi_l(T) \frac{x}{\eta_l} x, & x \in [0, l_d(T)] \\
\frac{E_m(T) \sigma}{E_c(T)} x, & x \in \left[l_d(T), \frac{l_c(T)}{2} \right]
\end{cases}
\]

\[
l_d(T) = \frac{n V_m E_m(T) \sigma}{2V_f E_c(T) \pi_l(T)} - \frac{n V_m E_f(T) \zeta_d(T)}{E_c(T) \pi_l(T)}
\]
\[\tau(T) = \tau_0 + \mu \frac{[\alpha_f(T) - \alpha_m(T)](T_m - T)}{A} \]

(7)

Substituting the upstream and downstream temperature-dependent fiber and matrix axial stresses of equations (2), (3), (4), and (5) and the temperature-dependent fiber/matrix interface debonding length of equation (6) into equation (1), the energy balance equation leads to the following equation:

\[\alpha \sigma^2 + \beta \sigma + \gamma = 0 \]

(8)

where

\[\alpha = \frac{V_m E_m(T) l_d(T)}{V_f E_f(T) E_c(T)} \]

(9)

\[\beta = -\frac{2 \tau(T)}{\eta E_f(T) l_d^2(T)} \]

(10)

\[\gamma = \frac{4}{3} \int \frac{\tau(T)^2}{\eta} \frac{V_f E_f(T)}{V_m E_m(T)} l_d(T) \frac{1}{\eta} \left[\frac{4 V_m \zeta_m(T)}{\eta} - V_m \zeta_m(T) \right] \]

(11)

3 Discussion

The ceramic composite system of SiC/SiC is used for the case study and its material properties are given by [32]:

- \(V_f = 30\% \), \(r_f = 7.5 \mu m, \zeta_m = 25 \)J/m² (at room temperature), \(\zeta_d = 0.1 \)J/m² (at room temperature), \(\alpha_f = 2.9 \times 10^{-6}/K \), and \(\alpha_f = 3.9 \times 10^{-6}/K \).

The temperature-dependent SiC matrix elastic modulus \(E_m(T) \) can be determined by equation (12) [33]:

\[E_m(T) = \frac{350}{460} \left[460 - 0.04 T \exp \left(-\frac{962}{T} \right) \right], \quad T \in [300–1773 \ K] \]

(12)

The temperature-dependent SiC matrix axial and radial thermal expansion coefficient of \(\alpha_{im}(T) \) and \(\alpha_{rm}(T) \) can be determined by equation (13) [33]:

\[\alpha_{im}(T) = \alpha_m(T) \]

\[\alpha_{rm}(T) = \begin{cases} 1.8276 + 0.0178T & T \in [125–1,273 \ K] \\ -1.5544 \times 10^{-2}T^2 & 5.0 \times 10^{-6}/K, \quad T > 1,273 \ K \\ +4.5246 \times 10^{-3}T^3 \end{cases} \]

(13)

The temperature-dependent interface debonding energy \(\zeta_d(T) \) and the matrix fracture energy \(\zeta_m(T) \) can be determined by equations (14) and (15) [34]:

\[\zeta_d(T) = \zeta_{do} \left[1 - \frac{\int C_f(T) dT}{\int C_f(T) dT} \right] \]

(14)

\[\zeta_m(T) = \zeta_{mo} \left[1 - \frac{\int C_f(T) dT}{\int C_f(T) dT} \right] \]

(15)

where \(T_o \) denotes the reference temperature; \(T_m \) denotes the fabricated temperature; and \(\zeta_{do} \) and \(\zeta_{mo} \) denote the interface debonding energy and matrix fracture energy at the reference temperature of \(T_o \).

\[C_f(T) = 76.337 + 109.039 \times 10^{-3}T - 6.535 \times 10^2T^2 - 27.083 \times 10^{-6}T^2 \]

(16)

The effects of the fiber volume, interface properties, and matrix properties on the temperature-dependent PLS of SiC/SiC composite are discussed.

3.1 Effect of the fiber volume on temperature-dependent interface debonding and PLS

The PLS and the fiber/matrix interface debonding length versus the temperature curves for different fiber volume (i.e., \(V_f = 25, 30, \) and \(35\% \)) are shown in Figure 1. When the temperature increases from \(T = 873 \) to \(1,273 \) K, the PLS and fiber/matrix interface debonding length decrease with increasing temperature. At the same temperature, the PLS increases with the fiber volume, and the fiber/matrix interface debonding length decreases with the fiber volume. When the fiber volume increases, the stress transfer between the fiber and the matrix increases, the stress carried by the matrix increases, leading to the increase of the PLS and the decrease of the fiber/matrix interface debonding length.

When the fiber volume is \(V_f = 25\% \), the PLS decreases from \(\sigma_{PLS} = 103 \) MPa at an elevated temperature of \(T = 873 \) K to \(\sigma_{PLS} = 87 \) MPa at an elevated temperature of \(T = 1,273 \) K; and the fiber/matrix interface debonding length decreases from \(l_d/r_f = 6.1 \) at \(\sigma_{PLS} = 103 \) MPa to \(l_d/r_f = 5.0 \) at \(\sigma_{PLS} = 87 \) MPa. When the fiber volume is \(V_f = 30\% \), the PLS decreases from \(\sigma_{PLS} = 117 \) MPa at an elevated temperature of \(T = 873 \) K to \(\sigma_{PLS} = 99 \) MPa at an elevated temperature of \(T = 1,273 \) K; and the fiber/matrix interface debonding length decreases from...
When the fiber volume is $V_f = 35\%$, the PLS decreases from $\sigma_{\text{PLS}} = 130 \text{ MPa}$ at an elevated temperature of $T = 873 \text{ K}$ to $\sigma_{\text{PLS}} = 110 \text{ MPa}$ at an elevated temperature of $T = 1,273 \text{ K}$; and the fiber/matrix interface debonding length decreases from $l_d/r_f = 4.6$ at $\sigma_{\text{PLS}} = 130 \text{ MPa}$ to $l_d/r_f = 3.9$ at $\sigma_{\text{PLS}} = 110 \text{ MPa}$.

3.2 Effect of the ISS on the temperature-dependent PLS and interface debonding

The PLS and the fiber/matrix interface debonding length versus the temperature curves for different ISS (i.e., $\tau_i = 15, 20, \text{ and } 25 \text{ MPa}$) are shown in Figure 2. When the temperature increases from $T = 873$ to 1,273 K, the PLS and fiber/matrix interface debonding length decrease with the increasing temperature. The PLS increases with the ISS, and the fiber/matrix interface debonding length decreases with the ISS at the same temperature. When the ISS increases, the stress transfer between the fiber and the matrix increases, leading to an increase in the PLS and a decrease in the interface debonding length.

When the fiber/matrix ISS is $\tau_i = 15 \text{ MPa}$, the PLS decreases from $\sigma_{\text{PLS}} = 89 \text{ MPa}$ at an elevated temperature of $T = 873 \text{ K}$ to $\sigma_{\text{PLS}} = 81 \text{ MPa}$ at an elevated temperature of $T = 1,273 \text{ K}$; and the fiber/matrix interface debonding length decreases from $l_d/r_f = 6.8$ at $\sigma_{\text{PLS}} = 89 \text{ MPa}$ to $l_d/r_f = 5.9$ at $\sigma_{\text{PLS}} = 81 \text{ MPa}$. When the fiber/matrix ISS is $\tau_i = 20 \text{ MPa}$, the PLS decreases from $\sigma_{\text{PLS}} = 104 \text{ MPa}$ at an elevated temperature of $T = 873 \text{ K}$ to $\sigma_{\text{PLS}} = 90 \text{ MPa}$ at an elevated temperature of $T = 1,273 \text{ K}$; and the fiber/matrix interface debonding length decreases from $l_d/r_f = 5.9$ at $\sigma_{\text{PLS}} = 104 \text{ MPa}$ to $l_d/r_f = 5$ at $\sigma_{\text{PLS}} = 90 \text{ MPa}$. When the fiber/matrix ISS is $\tau_i = 25 \text{ MPa}$, the PLS decreases from

Figure 1: Effect of the fiber volume on (a) the PLS versus temperature curves and (b) the fiber/matrix interface debonding length versus temperature curves of SiC/SiC composite.

Figure 2: Effect of the interface shear stress on (a) the PLS versus temperature curves and (b) the fiber/matrix interface debonding length versus temperature curves of SiC/SiC composite.
3.3 Effect of the interface frictional coefficient on temperature-dependent PLS and interface debonding

The PLS and the fiber/matrix interface debonding length versus the temperature curves for different interface frictional coefficient (i.e., $\mu = 0.02$, 0.03, and 0.04) are shown in Figure 3. When the temperature increases from $T = 873$–$1,273$ K, the PLS and fiber/matrix interface debonding length decrease with the increasing temperature. At the same temperature, the PLS decreases with the interface frictional coefficient, and the fiber/matrix interface debonding length increases with the interface frictional coefficient. When the interface frictional coefficient increases, the ISS decreases at the same temperature, leading to a decrease in the PLS and an increase in the interface debonding length.

When the fiber/matrix interface frictional coefficient is $\mu = 0.02$, the PLS decreases from $\sigma_{PLS} = 117$ MPa at an elevated temperature of $T = 873$ K to $\sigma_{PLS} = 99$ MPa at an elevated temperature of $T = 1,273$ K, and the fiber/matrix interface debonding length decreases from $l_d/r_f = 5.3$ at $\sigma_{PLS} = 117$ MPa to $l_d/r_f = 4.4$ at $\sigma_{PLS} = 99$ MPa. When the fiber/matrix interface frictional coefficient is $\mu = 0.03$, the PLS decreases from $\sigma_{PLS} = 113$ MPa at an elevated temperature of $T = 873$ K to $\sigma_{PLS} = 98$ MPa at an elevated temperature of $T = 1,273$ K, and the fiber/matrix interface debonding length decreases from $l_d/r_f = 5.5$ at $\sigma_{PLS} = 113$ MPa to $l_d/r_f = 4.4$ at $\sigma_{PLS} = 98$ MPa. When the fiber/matrix interface frictional coefficient is $\mu = 0.04$, the PLS decreases from $\sigma_{PLS} = 109$ MPa at an elevated temperature of $T = 873$ K to $\sigma_{PLS} = 97$ MPa at an elevated temperature of $T = 1,273$ K, and the fiber/matrix interface debonding length decreases from $l_d/r_f = 5.7$ at $\sigma_{PLS} = 109$ MPa to $l_d/r_f = 4.5$ at $\sigma_{PLS} = 97$ MPa.

3.4 Effect of the interface debonding energy on temperature-dependent PLS and interface debonding

The PLS and the fiber/matrix interface debonding length versus the temperature curves for different interface debonding energy (i.e., $\zeta_d = 0.1$, 0.2, and 0.3 J/m2) are shown in Figure 4. When the temperature increases from $T = 873$–$1,273$ K, the PLS and fiber/matrix interface debonding length decrease with the increasing temperature. At the same temperature, the PLS increases with the interface debonding energy, and the fiber/matrix interface debonding length decreases with the interface debonding energy. When the interface debonding energy increases, the resistance for the interface debonding increases, leading to an increase in the PLS and a decrease in the interface debonding length.

When the interface debonding energy is $\zeta_d = 0.1$ J/m2, the PLS decreases from $\sigma_{PLS} = 117$ MPa at an elevated temperature of $T = 873$ K to $\sigma_{PLS} = 99$ MPa at an elevated temperature of $T = 1,273$ K, and the fiber/matrix interface debonding length decreases from $l_d/r_f = 5.3$ at $\sigma_{PLS} = 117$ MPa to $l_d/r_f = 4.4$ at $\sigma_{PLS} = 99$ MPa. When the fiber/matrix interface debonding energy is $\zeta_d = 0.2$ J/m2, the PLS decreases from $\sigma_{PLS} = 121$ MPa at an elevated temperature of $T = 873$ K to $\sigma_{PLS} = 101$ MPa at

\begin{align*}
\sigma_{PLS} &= 117 \text{ MPa at an elevated temperature of } T = 873 \text{ K to } \\
\sigma_{PLS} &= 99 \text{ MPa at an elevated temperature of } T = 1,273 \text{ K; and the fiber/matrix interface debonding length decreases from } l_d/r_f = 5.3 \text{ at } \sigma_{PLS} = 117 \text{ MPa to } l_d/r_f = 4.4 \text{ at } \sigma_{PLS} = 99 \text{ MPa.}
\end{align*}
an elevated temperature of $T = 1,273$ K, and the fiber/matrix interface debonding length decreases from $l_d/r_f = 4.8$ at $\sigma_{PLS} = 121$ MPa to $l_d/r_f = 4.1$ at $\sigma_{PLS} = 101$ MPa. When the fiber/matrix interface debonding energy is $\zeta_d = 0.3 \text{ J/m}^2$, the PLS decreases from $\sigma_{PLS} = 125$ MPa at an elevated temperature of $T = 873$ K to $\sigma_{PLS} = 103$ MPa at an elevated temperature of $T = 1,273$ K, and the fiber/matrix interface debonding length decreases from $l_d/r_f = 4.5$ at $\sigma_{PLS} = 125$ MPa to $l_d/r_f = 3.9$ at $\sigma_{PLS} = 103$ MPa.

3.5 Effect of the matrix fracture energy on temperature-dependent PLS and interface debonding

The PLS and the fiber/matrix interface debonding length versus the temperature curves for different matrix fracture energy (i.e., $\zeta_m = 15$, 20, and 25 J/m2) are shown in Figure 5. When the temperature increases from $T = 873$–1,273 K, the PLS and fiber/matrix interface debonding length decrease with the increasing temperature. At the same temperature, the PLS and the fiber/matrix interface debonding length increase with the matrix fracture energy. When the matrix fracture energy increases, the energy needed for the matrix cracking increases, leading to an increase in the PLS and the interface debonding length.

When the matrix fracture energy is $\zeta_m = 15$ J/m2, the PLS decreases from $\sigma_{PLS} = 117$ MPa at an elevated temperature of $T = 873$ K to $\sigma_{PLS} = 99$ MPa at an elevated temperature of $T = 1,273$ K, and the fiber/matrix interface debonding length decreases from $l_d/r_f = 5.3$ at $\sigma_{PLS} = 117$ MPa to $l_d/r_f = 4.4$ at $\sigma_{PLS} = 99$ MPa. When the matrix fracture energy is $\zeta_m = 20$ J/m2, the PLS decreases from $\sigma_{PLS} = 132$ MPa at an elevated temperature of $T = 873$ K to $\sigma_{PLS} = 110$ MPa at an elevated temperature of $T = 1,273$ K,
and the fiber/matrix interface debonding length decreases from \(l_d/r_f = 6.2 \) at \(\sigma_{PLS} = 132 \text{ MPa} \) to \(l_d/r_f = 5 \) at \(\sigma_{PLS} = 110 \text{ MPa} \). When the matrix fracture energy is \(\zeta_m = 25 \text{ J/m}^2 \), the PLS decreases from \(\sigma_{PLS} = 145 \text{ MPa} \) at an elevated temperature of \(T = 873 \text{ K} \) to \(\sigma_{PLS} = 119 \text{ MPa} \) at an elevated temperature of \(T = 1,273 \text{ K} \); and the fiber/matrix interface debonding length decreases from \(l_d/r_f = 6.9 \) at \(\sigma_{PLS} = 145 \text{ MPa} \) to \(l_d/r_f = 5.5 \) at \(\sigma_{PLS} = 119 \text{ MPa} \).

4 Experimental comparisons

Guo and Kagawa [35] investigated the tensile behavior of 2D SiC/SiC composites with the PyC and BN interphase at elevated temperatures. The experimental tensile stress–strain curves of Nicalon™ SiC/PyC/SiC and Hi-Nicalon™ SiC/BN/SiC composites at room and elevated temperatures are shown in Figures 6 and 7. For the Nicalon™ SiC/PyC/SiC composite, the PLS decreases from \(\sigma_{PLS} = 65 \text{ MPa} \) at an elevated temperature of \(T = 298 \text{ K} \) to \(\sigma_{PLS} = 33 \text{ MPa} \) at an elevated temperature of \(T = 1,200 \text{ K} \); and for the Hi-Nicalon™ SiC/PyC/SiC composite, the PLS decreases from \(\sigma_{PLS} = 75 \text{ MPa} \) at \(T = 298 \text{ K} \) to \(\sigma_{PLS} = 45 \text{ MPa} \) at \(T = 1,400 \text{ K} \). The experimental and predicted PLS versus temperature curves of Nicalon™ SiC/PyC/SiC and Hi-Nicalon™ SiC/PyC/SiC are shown in Figure 8.

For the 2D Nicalon™ SiC/SiC composite with the PyC interphase, the ISS of SiC/C/SiC composite decreases at an elevated temperature of \(T = 800 \text{ K} \) from that of \(T = 298 \text{ K} \) and then increases again at an elevated temperature of \(T = 1,200 \text{ K} \) [35]. When the ISS decreases, the stress transfer between the fiber and the matrix decreases, leading to a decrease of the PLS [1]. The PLS decreases from \(\sigma_{PLS} = 65 \text{ MPa} \) at an elevated temperature of \(T = 298 \text{ K} \) to \(\sigma_{PLS} = 33 \text{ MPa} \) at an elevated temperature of \(T = 1,200 \text{ K} \), and the fiber/matrix interface debonding length decreases from \(l_d/r_f = 12.8 \) at \(\sigma_{PLS} = 65 \text{ MPa} \) to \(l_d/r_f = 7.3 \) at \(\sigma_{PLS} = 33 \text{ MPa} \).

For the 2D Hi-Nicalon™ SiC/SiC composite with the BN interphase, the interface shear stress of SiC/BN/SiC at room and elevated temperatures is much lower than those of the SiC/C/SiC composite, due to the better oxidation resistance of BN-coating on the Hi-Nicalon™ fiber surface than C-coating on the Nicalon™ fiber surface [35]. The PLS decreases from \(\sigma_{PLS} = 75 \text{ MPa} \) at an elevated temperature of \(T = 298 \text{ K} \) to \(\sigma_{PLS} = 45 \text{ MPa} \) at an elevated temperature of \(T = 1,400 \text{ K} \), and the fiber/matrix interface debonding length decreases from \(l_d/r_f = 7.3 \) at \(\sigma_{PLS} = 75 \text{ MPa} \) to \(l_d/r_f = 2.9 \) at \(\sigma_{PLS} = 45 \text{ MPa} \).

Figure 6: Experimental tensile stress–strain curves of Nicalon™ SiC/C/SiC at (a) \(T = 298 \text{ K} \), (b) \(T = 800 \text{ K} \), and (c) \(T = 1,200 \text{ K} \).
In this paper, the temperature-dependent PLS of SiC/SiC composite is investigated using the energy balance approach. The effects of the fiber volume, interface properties, and matrix properties on the temperature-dependent PLS and interface debonding length are analyzed. The experimental PLS and interface debonding length of 2D SiC/SiC composites with the PyC and BN interphase at elevated temperatures are predicted.

(1) When the fiber volume, ISS, and interface debonding energy increase, the PLS increases and the interface debonding length decreases at the same temperature.

(2) When the interface frictional coefficient increases, the PLS decreases and the fiber/matrix interface debonding length increases at the same temperature.

5 Conclusion

In this paper, the temperature-dependent PLS of SiC/SiC composite is investigated using the energy balance approach. The effects of the fiber volume, interface properties, and matrix properties on the temperature-dependent PLS and interface debonding length are analyzed. The experimental PLS and interface debonding length of 2D SiC/SiC composites with the PyC and BN interphase at elevated temperatures are predicted.

Figure 7: Experimental tensile stress–strain curves of Nicalon™ SiC/C/SiC at (a) $T = 298\, \text{K}$, (b) $T = 1,200\, \text{K}$, and (c) $T = 1,400\, \text{K}$.

Figure 8: Experimental and predicted PLS versus the temperature curves of (a) SiC/SiC composite with the PyC interphase and (b) SiC/SiC composite with the BN interphase.
(3) When the matrix fracture energy increases, the PLS and the interface debonding length increase at the same temperature.

Acknowledgments: The work reported here is supported by the Fundamental Research Funds for the Central Universities (Grant No. NS2019038). The author also wishes to thank the anonymous reviewer and editors for their helpful comments on an earlier version of the paper.

References

[1] Li, L. Damage, Fracture and Fatigue of Ceramic-matrix Composites, Springer Nature Singapore Pte Ltd, Singapore, 2018.
[2] Naslain, R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview, Composites Science and Technology, Vol. 64, 2004, pp. 155–170.
[3] Kotani, M., K. Konaka, and S. Ogihara. The effect on the tensile properties of PIP-processed SiC/SiC composite of a chemical vapor-infiltrated SiC layer overlaid on the pyrocarbon interface layer, Composites Part A, Vol. 87, 2016, pp. 123–130.
[4] J. Kabel, Y. Yang, M. Balooch, C. Howard, T. Koyanagi, K. A. Terrani, Y. Katoh, and P. Hosemann. Micro-mechanical evaluation of SiC–SiC composite interface properties and debond mechanisms, Composites Part B, Vol. 131, 2017, pp. 173–183.
[5] Hasegawa, A., A. Kohyama, R. H. Jones, L. L. Sneed, B. Riccardi, and P. Fenici. Critical issues and current status of SiC/SiC composites for fusion, Journal of Nuclear Materials, Vol. 283–287, 2000, pp. 128–137.
[6] Ivecovic, A., S. Novak, G. Drazić, D. Blagojeva, and S. Vicente. Current status and prospects of SiC/SiC for fusion structural applications, Journal of the European Ceramic Society, Vol. 33, 2013, pp. 1577–1589.
[7] Udayakumar, A., M. Stalin, M. B. Abhayalakshmi, R. Harirharan, and M. Balasubramanian. Effect of thermal cycling of SiC/SiC composites on their mechanical properties, Journal of Nuclear Materials, Vol. 442, 2013, pp. 5384–5389.
[8] Katoh, Y., K. Ozawa, C. Shih, T. Nozawa, R. J. Shinavski, A. Hasegawa, and L. L. Sneed. Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: properties and irradiation effects, Journal of Nuclear Materials, Vol. 448, 2014, pp. 448–476.
[9] Singh, G., K. Terrani, and Y. Katoh. Thermo-mechanical assessment of full SiC/SiC composite cladding for LWR applications with sensitivity analysis, Journal of Nuclear Materials, Vol. 499, 2018, pp. 126–143.
[10] Kimmel, J., N. Miriyala, J. Price, K. More, P. Tortorelli, H. Eaton, G. Linsey, and E. Sun. Evaluation of CFCC liners with EBC after field testing in a gas turbine, Journal of the European Ceramic Society, Vol. 22, 2002, pp. 2769–2775.
[11] Filsinger, D., S. Munz, A. Schulz, S. Wittig, and G. Andreu. Experimental assessment of fiber-reinforced ceramics for combustor walls. The Journal of Engineering for Gas Turbines and Power, Vol. 123, 2001, pp. 271–276.
[12] Li, L. Micromechanical modeling for tensile behavior of carbon fiber-reinforced ceramic-matrix composites. Applied Composite Materials, Vol. 22, 2015, pp. 773–790.
[13] Jenkins, M. G., and L. P. Zawada. Elastic modulus and proportional limit stress in ceramic matrix composites: comparison of methods and results, Ceramic Engineering and Science Proceedings, Vol. 22, No. 3, 2001, pp. 503–511.
[14] Morscher, G. N., M. Singh, J. D. Kiser, M. Freedman, and R. Bhatt. Modeling stress-dependent matrix cracking and stress–strain behavior in 2D woven SiC fiber reinforced CVI SiC composites, Composites Science and Technology, Vol. 67, 2007, pp. 1009–1017.
[15] Li, L., Y. Song, and Y. Sun. Modeling tensile behavior of cross-ply C/SiC ceramic-composite lamina, Mechanics of Composite Materials, Vol. 51, 2015, pp. 358–376.
[16] Li, L., Y. Song, and Y. Sun. Modeling tensile behavior of unidirectional C/SiC ceramic matrix composites, Mechanics of Composite Materials, Vol. 49, 2014, pp. 659–672.
[17] Morscher, G. N., and N. A. Gordon. Acoustic emission and electrical resistance in SiC-based laminate ceramic composites tested under tensile loading, Journal of the European Ceramic Society, Vol. 37, 2017, pp. 3861–3872.
[18] Aveston, J., G. A. Cooper, and A. Kelly. Single and multiple fracture, In The Properties of Fiber Composites, Conference on Proceedings. National Physical Laboratory, Guildford: IPC Science and Technology Press, 1971, pp. 15–26.
[19] Budiansky, B., J. W. Hutchinson, and A. G. Evans. Matrix fracture in fiber-reinforced ceramics, Journal of the Mechanics and Physics of Solids, Vol. 34, 1986, pp. 167–189.
[20] Sutcu, M., and W. B. Hillig, The effects of fiber-matrix debond energy on the matrix cracking strength and debond shear strength, Acta Metallurgica et Materialia, Vol. 38, 1990, pp. 2653–2662.
[21] Chiang, Y. A. S. D. Wang, and T. W. Chou. On matrix cracking in fiber reinforced ceramics, Journal of the Mechanics and Physics of Solids, Vol. 41, 1993, pp. 1137–1154.
[22] Chiang, Y. On fiber debonding and matrix cracking in fiber-reinforced ceramics, Composites Science and Technology, Vol. 61, 2001, pp. 1743–1756.
[23] Chiang, Y. On a matrix cracking model using Coulomb's friction law, Engineering Fracture Mechanics, Vol. 74, 2007, pp. 1602–1616.
[24] Marshall, D. B., B. N. Cox, and A. G. Evans. The mechanics of matrix cracking in brittle-matrix fiber composites, Acta Metallurgica, Vol. 33, 1985, pp. 2013–2021.
[25] Marshall, D. B., and B. N. Cox. Tensile fracture of brittle matrix composites: influence of fiber strength, Acta Metallurgica, Vol. 35, 1987, pp. 2607–2619.
[26] Chiang, Y. Tensile failure in fiber reinforced ceramic matrix composites, Journal of Material Science, Vol. 35, 2000, pp. 5449–5455.
[27] Pavia, F., A. Letertre, and W. A. Curtin. Prediction of first matrix cracking in micro/nanohybrid brittle matrix composites.
[28] Li, L. Synergistic effects of fiber/matrix interface wear and fibers fracture on matrix multiple cracking in fiber-reinforced ceramic-matrix composites, Composite Interfaces, Vol. 26, 2019, pp. 193–219.

[29] Singh, R. N. Influence of interfacial shear stress on first-matrix cracking stress in ceramic–matrix composites, Journal of the American Ceramic Society. Vol. 73, 1990, pp. 2930–2937.

[30] Li, L. Synergistic effects of temperature and time on proportional limit stress of silicon carbide fiber-reinforced ceramic-matrix composites. Composite Interfaces, Vol. 27, 2019, pp. 341–353.

[31] Li, L. Time-dependent proportional limit stress of carbon fiber-reinforced silicon carbide ceramic-matrix composites considering interface oxidation, Journal of the Ceramic Society of Japan, Vol. 127, 2019, pp. 279–287.

[32] Fantozzi, G., P. Reynaud, and D. Rouby. Thermomechanical behavior of long fibers ceramic–ceramic composites. Sil Industrial, Vol. 66, 2001, pp. 109–119.

[33] Snead, L. L., T. Nozawa, Y. Katoh, T. S. Byun, S. Kondo, and D. A. Petti. Handbook of SiC properties for fuel performance modeling, Journal of Nuclear Materials, Vol. 371, 2007, pp. 329–377.

[34] Wang, R. Z., W. G. Li, D. Y. Li, and D. N. Fang A new temperature dependent fracture strength model for the ZrB2–SiC composites, Journal of the European Ceramic Society, Vol. 35, 2015, pp. 2957–2962.

[35] Guo, S., and Y. Kagawa. Tensile fracture behavior of continuous SiC fiber-reinforced SiC matrix composites at elevated temperatures and correlation to in situ constituent properties, Journal of the European Ceramic Society, Vol. 22, 2002, pp. 2349–2356.