NLO automated tools for QCD and beyond

Nikolas Kauer
Department of Physics, Royal Holloway, University of London, Egham TW20 0EX, UK
n.kauer@rhul.ac.uk

Abstract Theoretical predictions for scattering processes with multi-particle final states at next-to-leading order (NLO) in perturbative QCD are essential to fully exploit the physics potential of present and future high-energy colliders. The status of NLO QCD calculations and tools is reviewed.

1 Introduction

The study of hard scattering processes at the Large Hadron Collider (LHC) and a future TeV-scale linear collider is our primary means to probe and extend the Standard Model of particle physics. It is driven by the comparison of experimental measurements with theoretical predictions, which depends on our ability to compute collider cross sections in perturbative QCD with adequate accuracy. This can only be achieved by going beyond leading order (LO) in QCD. When using conventional measures, LO scale uncertainties are typically large compared to experimental uncertainties. Moreover, for theoretical reasons a reliable estimation of the scale uncertainty is not feasible at LO. Consequently, an assessment of different scale choices, which is particularly important for many-particle/jet processes, is not possible. Furthermore, the convergence of the perturbative series cannot be assessed at LO. When going beyond LO by including NLO corrections, the situation improves significantly. At NLO, scale uncertainties can be assessed more reliably, and the residual uncertainties are often comparable to experimental uncertainties. NLO calculations thus deliver accurate predictions not only for the overall normalisation, but also for kinematic distributions including peripheral phase space regions. This is in part due to the fact that new sub-processes often become active at NLO, which modify the normalisation and kinematic distributions. Our ability to determine the uncertainty of parton distribution functions (PDF) and to model the structure of jets is also greatly enhanced at NLO.

1Presented at Linear Collider 2011: Understanding QCD at Linear Colliders in searching for old and new physics, 12-16 September 2011, ECT*, Trento, Italy
2For processes with vastly differing scales, the resummation of large logarithms of ratios of scales may also be necessary.
3Notable exceptions are the hadroproduction of Higgs and $Wb\bar{b}$ with $\sigma_{NLO}/\sigma_{LO} \approx 2$.
In Section 2 the state-of-the-art methods, implementations and tools for parton-level NLO calculations are briefly reviewed. In Section 3 the status of collider physics applications is described. The review ends with a summary.

2 Methods, implementations and tools

The structure and implied modularity of NLO calculations is illustrated in Eqs. (1)–(3):

\[
\sigma_{\text{NLO}} = \sigma_{\text{Born}} + \sigma_{\text{corr}}
\]

\[
\sigma_{\text{Born}} = \int d\phi_n \frac{1}{2s} |A_{\text{LO}}|^2
\]

\[
\sigma_{\text{corr}} = \int d\phi_n \frac{\alpha_s}{2s} \left[\sum_j \int d\phi_j D_j + A_{\text{LO}} A_{\text{NLO,V}}^* + A_{\text{LO}}^* A_{\text{NLO,V}} \right] + \int d\phi_{n+1} \frac{\alpha_s}{2s} \left[|M_{\text{NLO,R}}|^2 - \sum_j D_j \right]
\]

The new components of the NLO correction \(\sigma_{\text{corr}} \) are\(^5\) the virtual corrections (involving one-loop amplitudes), the real corrections (involving tree amplitudes) and the infrared subtraction terms.\(^6\) The resulting procedure for NLO calculations is given in Table 1. The Bin oth Les Houches Accord, a standard interface for combining the tree-level and loop-level contributions, has been defined in Ref. \([6]\) and is implemented in many automated tools (see below).

Until circa 2005, the limiting factor of NLO calculations was the computation of the virtual corrections, which typically applied Passarino-Veltman (PV) \([7]\) or PV-inspired \([8]\) tensor integral reduction methods to evaluate the form factors of a Feynman-diagram-based amplitude representation. Several one-loop integral libraries are available as public codes: LoopTools \([9, 10]\), QCDLoop \([11]\), Golem95 \([12]\), OneLOop \([13]\) and PJFry \([14]\). The PV approach is general, but practical limitations arise due to the factorial growth of the number of Feynman graphs with \(N = n + 2 \), the strong growth of the number of reduction terms with \(N \) and due to numerical instabilities for exceptional kinematic configurations, which are caused by vanishing Gram determinants. It has nevertheless been used successfully to create collections of NLO calculations based on analytic formulae and semi-automated methods, such as MCFM \([15, 16]\), MC@NLO \([17]\) and VBFNLO \([18, 19, 20, 21]\)\(^7\). Since 2004, tremendous improvements have been achieved for the calculation of multi-leg one-loop amplitudes due to the exploitation of on-shell

\(^4\)The important topics of next-to-next-to-leading order (NNLO) calculations and combining parton-level fixed-order calculations and parton-shower event generators are beyond the scope of this review.

\(^5\)The Born amplitude is assumed to be at tree level.

\(^6\)An alternative to the widely used subtraction formalism \([4]\) is the phase space slicing method \([5]\).

\(^7\)The POWHEG BOX \([22]\) library project \([23, 24]\) was inspired by these collections.
1. Real correction: generate and evaluate $2 \rightarrow n + 1$ tree-level amplitudes
2. Subtract soft and collinear singularities due to single unresolved real radiation to obtain finite result
3. Integrate over $(n + 1)$-particle phase space
4. Virtual correction: generate and evaluate UV-renormalised $2 \rightarrow n$ one-loop amplitude after extraction of soft and collinear singularities to obtain finite result
5. Confirm cancellation of soft/collinear singularities (absorb initial state collinear singularities into PDF)
6. Integrate over n-particle phase space
7. Combine $2 \rightarrow n + 1$ and $2 \rightarrow n$ contributions
8. Convolve with NLO PDF
9. Repeat for all contributing subprocesses

Table 1: Steps to calculate the NLO QCD corrections for a $2 \rightarrow n$ process. n excludes elec-troweak decays.

...
for the LHC physics programme [48]. This experimenter’s NLO “wish list” has guided theoretical efforts and was subsequently revised and updated in 2007 [49] as well as 2009 [50]. The most recent version is displayed in Table 2.

Due to the groundbreaking advances outlined in Section 2 since 2009 the frontier for collider physics applications of NLO techniques has also advanced considerably. The following 2 → 4 processes – most are on the wish list – have now been calculated at NLO QCD

\[pp \rightarrow W\gamma\gamma + \text{jet} \] [21],

\[pp \rightarrow W^+W^- + \text{3 jets} \] [62, 63, 66, 67],

\[pp \rightarrow Z, \gamma^* + \text{3 jets} \] [68],

\[pp \rightarrow t\bar{t}b\bar{b} \] [59, 60, 61, 69],

\[pp \rightarrow t\bar{t}jj \] [64, 70],

\[pp \rightarrow b\bar{b}bb \] [71],

\[pp \rightarrow W^+W^-bb \] [72],

\[pp \rightarrow W^\pm W^{\pm}\text{jet} \] [24, 73],

\[pp \rightarrow W^+W^-jj \] [74],

and most recently \[pp \rightarrow 4\text{ jets} \] [75]. Leptonic decays of weak bosons can be included trivially. At the same level of complexity, complete off-shell effects for \[pp \rightarrow t\bar{t} \] with dileptonic decay, i.e. \[pp \rightarrow e^+\nu_e, b\mu^-\bar{\nu}_b \], have been calculated at NLO QCD in Ref. [76], which allowed to explicitly confirm the \(\mathcal{O}(\alpha_s \Gamma/M) \) effect predicted by Ref. [77]. Advancing the frontier for linear collider physics, the process \[e^+e^- \rightarrow 5\text{ jets} \] has recently been calculated at NLO [78], which allowed to extract a competitive value of \(\alpha_s(M_Z) \) from 5-jet LEP data. Going beyond 4-particle final states in general requires the computation of 7-point one-loop amplitudes or higher. This is the current complexity frontier. At this level, NLO cross sections in leading-colour approximation have been calculated for \(V + 4\text{ jets} \) by the BlackHat/Sherpa collaboration (\(pp \rightarrow W + 4\text{ jets} \) [79] and \(pp \rightarrow Z + 4\text{ jets} \) [80]) and for \(e^+e^- \rightarrow n\text{ jets} \) up to \(n = 7 \) [81]. The \(n = 7 \) case required the computation of a one-loop 8-point function.

4 Summary

NLO QCD predictions for multi-particle processes are essential to fully exploit the physics potential of the LHC and a future linear collider. In recent years, tremendous progress has been made in developing the calculational methods and tools that are required to compute NLO corrections for hard scattering processes with 6, 7 or more external particles. At this level a (semi-)manual approach is no longer feasible, and the transition from collections of codes for specific processes to automated code generation for any process up to a maximum complexity has now been achieved. Several such automated tools are available or will become public in the near future. The modularity of NLO calculations allows to interface many tool components on the basis of the Binoth Les Houches Accord.

\[^9pp \text{ is given as initial state, but } p\bar{p} \text{ is also implied.} \]

\[^{10}\text{Recently, the full-colour virtual contribution to } pp \rightarrow W + 4\text{ jets has been calculated [82].} \]
Process \((V \in \{Z, W, \gamma\})\)	Comments
Calculations completed since Les Houches 2005	
1. \(pp \to VV+\text{jet}\)	\(WW+\text{jet} \) completed by Dittmaier/Kallweit/Uwer \cite{51, 52}; Campbell/Ellis/Zanderighi \cite{53}. \(ZZ+\text{jet} \) completed by Binoth/Gleisberg/Karg/Kauer/Sanguinetti \cite{54}.
2. \(pp \to \text{Higgs}+2\text{jets}\)	NLO QCD to the \(gg\) channel completed by Campbell/Ellis/Zanderighi \cite{10}; NLO QCD+EW to the VBF channel completed by Ciccolini/Denner/Dittmaier \cite{55, 56}.
3. \(pp \to VVV\)	\(ZZZ\) completed by Lazopoulos/Melnikov/Petriello \cite{57} and \(WWZ\) by Hankele/Zeppenfeld \cite{19}. (see also Binoth/Ossola/Papadopoulos/Pittau \cite{58}).
4. \(pp \to \bar{t}t \bar{b}\bar{b}\)	relevant for \(t\bar{t}H\) computed by Bredenstein/Denner/Dittmaier/Pozzorini \cite{59, 60} and Bevilacqua/Czakon/Papadopoulos/Pittau/Worek \cite{61}.
5. \(pp \to V+3\text{jets}\)	calculated by the Blackhat/Sherpa \cite{62} and Rocket \cite{63} collaborations
Calculations remaining from Les Houches 2005	
6. \(pp \to \bar{t}t+2\text{jets}\)	relevant for \(t\bar{t}H\) computed by Bevilacqua/Czakon/Papadopoulos/Worek \cite{64}.
7. \(pp \to VVb\bar{b}\)	relevant for VBF \(\to H \to VV, t\bar{t}H\)
8. \(pp \to VV+2\text{jets}\)	relevant for VBF \(\to H \to VV\) VBF contributions calculated by (Bozzi/)
\(\ddot{A}\)ger/Oleari/Zeppenfeld \cite{20}.	
NLO calculations added to list in 2007	
9. \(pp \to b\bar{b}b\bar{b}\)	\(gg\) channel calculated by Golem collaboration \cite{65}.
NLO calculations added to list in 2009	
10. \(pp \to V+1\text{jets}\)	top pair production, various new physics signatures
11. \(pp \to Wb\bar{b}\)	top, new physics signatures
12. \(pp \to tt\bar{t}\)	various new physics signatures
Calculations beyond NLO added in 2007	
13. \(gg \to W^*W^* C(\alpha^2\alpha^3)\)	backgrounds to Higgs
14. NNLO \(pp \to t\bar{t}\)	normalisation of a benchmark process
15. NNLO to VBF and \(Z/\gamma+\text{jet}\)	Higgs couplings and SM benchmark
Calculations including electroweak effects	
16. NNLO QCD+NLO EW for \(W/Z\)	precision calculation of a SM benchmark

Table 2: The experimenter’s wish list for LHC processes in early 2010 (from \cite{50}).
Acknowledgments

I would like to thank the organisers for the invitation to speak at Linear Collider 2011 and commend G. Pancheri and her team for hosting this well-organised and thoroughly enjoyable meeting. The hospitality of the European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*) as well as partial support from ECT* and INFN are gratefully acknowledged. This work was carried out as part of the research programme of the Royal Holloway and Sussex Particle Physics Theory Consortium and the NExT Institute. Financial support under the SEPenet Initiative from the Higher Education Funding Council for England and the Science and Technology Facilities Council (STFC) is gratefully acknowledged. This work was supported by STFC grant ST/J000485/1.

References

[1] J. M. Butterworth, G. Dissertori and G. P. Salam, arXiv:1202.0583 [hep-ex].

[2] G. P. Salam, PoS ICHEP 2010 (2010) 556 [arXiv:1103.1318 [hep-ph]].

[3] G. Zanderighi, arXiv:1201.3905 [hep-ph].

[4] R. K. Ellis, D. A. Ross and A. E. Terrano, Nucl. Phys. B 178 (1981) 421.

[5] K. Fabricius, G. Kramer, G. Schierholz and I. Schmitt, Z. Phys. C 11 (1981) 315; G. Kramer and B. Lampe, Fortsch. Phys. 37 (1989) 161; B. W. Harris and J. F. Owens, Phys. Rev. D 65 (2002) 094032 [hep-ph/0102128].

[6] T. Binoth et al., Comput. Phys. Commun. 181 (2010) 1612 [arXiv:1001.1307 [hep-ph]].

[7] G. ’t Hooft and M. J. G. Veltman, Nucl. Phys. B 153 (1979) 365; G. Passarino and M. J. G. Veltman, Nucl. Phys. B 160 (1979) 151.

[8] A. Denner and S. Dittmaier, Nucl. Phys. B 658 (2003) 175 [hep-ph/0212259]; T. Binoth, J. P. Guillet, G. Heinrich, E. Pilon and C. Schubert, JHEP 0510 (2005) 015 [hep-ph/0504267]; A. Denner and S. Dittmaier, Nucl. Phys. B 734 (2006) 62 [hep-ph/0509141].

[9] G. J. van Oldenborgh and J. A. M. Vermaseren, Z. Phys. C 46 (1990) 425.

[10] T. Hahn and M. Perez-Victoria, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565].

[11] R. K. Ellis and G. Zanderighi, JHEP 0802 (2008) 002 [arXiv:0712.1851 [hep-ph]].
[12] T. Binoth, J.-P. Guillet, G. Heinrich, E. Pilon and T. Reiter, Comput. Phys. Commun. 180 (2009) 2317 [arXiv:0810.0992 [hep-ph]]; G. Cullen, J. P. Guillet, G. Heinrich, T. Kleinenschmidt, E. Pilon, T. Reiter and M. Rodgers, Comput. Phys. Commun. 182 (2011) 2276 [arXiv:1101.5595 [hep-ph]].

[13] A. van Hameren, Comput. Phys. Commun. 182 (2011) 2427 [arXiv:1007.4716 [hep-ph]].

[14] J. Fleischer and T. Riemann, Phys. Rev. D 83 (2011) 073004 [arXiv:1009.4436 [hep-ph]].

[15] R. K. Ellis and S. Veseli, Phys. Rev. D 60 (1999) 011501 [hep-ph/9810489]; J. M. Campbell and R. K. Ellis, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386]; J. M. Campbell and R. K. Ellis, Phys. Rev. D 62 (2000) 114012 [hep-ph/0006304]; J. M. Campbell and R. K. Ellis, Phys. Rev. D 65 (2002) 113007 [hep-ph/0202176]; J. M. Campbell, R. K. Ellis, F. Maltoni and S. Willenbrock, Phys. Rev. D 67 (2003) 095002 [hep-ph/0204093]; J. M. Campbell, R. K. Ellis and D. L. Rainwater, Phys. Rev. D 68 (2003) 094021 [hep-ph/0308195]; J. M. Campbell, R. K. Ellis, F. Maltoni and S. Willenbrock, Phys. Rev. D 69 (2004) 074021 [hep-ph/0312024]; J. M. Campbell, R. K. Ellis and F. Tramontano, Phys. Rev. D 70 (2004) 094012 [hep-ph/0408158]; J. M. Campbell and F. Tramontano, Nucl. Phys. B 726 (2005) 109 [hep-ph/0506289]; J. M. Campbell, R. K. Ellis, F. Maltoni and S. Willenbrock, Phys. Rev. D 73 (2006) 054007 [Erratum-ibid. D 77 (2008) 019903] [hep-ph/0510362]; J. M. Campbell, R. Frederix, F. Maltoni and F. Tramontano, Phys. Rev. Lett. 102 (2009) 182003 [arXiv:0903.0005 [hep-ph]]; J. M. Campbell, R. K. Ellis and C. Williams, Phys. Rev. D 81 (2010) 074023 [arXiv:1001.4495 [hep-ph]]; S. Badger, J. M. Campbell and R. K. Ellis, JHEP 1103 (2011) 027 [arXiv:1011.6647 [hep-ph]]; J. M. Campbell, R. K. Ellis and C. Williams, JHEP 1107 (2011) 018 [arXiv:1105.0020 [hep-ph]]; J. M. Campbell, R. K. Ellis and C. Williams, JHEP 1110 (2011) 005 [arXiv:1107.5569 [hep-ph]].

[16] J. M. Campbell, R. K. Ellis and G. Zanderighi, JHEP 0610 (2006) 028 [hep-ph/0608194].

[17] S. Frixione and B. R. Webber, JHEP 0206 (2002) 029 [hep-ph/0204244]; S. Frixione, P. Nason and B. R. Webber, JHEP 0308 (2003) 007 [hep-ph/0305252]; S. Frixione, E. Laenen, P. Motylinski and B. R. Webber, JHEP 0603 (2006) 092 [hep-ph/0512250]; S. Frixione, E. Laenen, P. Motylinski, B. R. Webber and C. D. White, JHEP 0807 (2008) 029 [arXiv:0805.3067 [hep-ph]]; S. Frixione, F. Stoeckli, P. Torrielli and B. R. Webber, JHEP 1101 (2011) 053 [arXiv:1010.0568 [hep-ph]]; B. Fuks, M. Klasen, F. Ledroit, Q. Li and J. Morel, Nucl. Phys. B 797 (2008) 322 [arXiv:0711.0749 [hep-ph]].

[18] T. Figy, C. Oleari and D. Zeppenfeld, Phys. Rev. D 68 (2003) 073005 [hep-ph/0306109]; T. Figy, S. Palmer and G. Weiglein, arXiv:1012.4789 [hep-ph]; T. Figy, V. Hankele and D. Zeppenfeld, JHEP 0802 (2008) 076 [arXiv:0710.5621 [hep-ph]]; C. Oleari and D. Zeppenfeld, Phys. Rev. D 69 (2004) 093004 [hep-ph/0310156]; C. Englert, B. Jager, M. Worek
and D. Zeppenfeld, Phys. Rev. D 80 (2009) 035027 [arXiv:0810.4861 [hep-ph]]; C. Englert, B. Jager and D. Zeppenfeld, JHEP 0903 (2009) 060 [arXiv:0812.2564 [hep-ph]]; K. Arnold, T. Figy, B. Jager and D. Zeppenfeld, JHEP 1008 (2010) 088 [arXiv:1006.4237 [hep-ph]]; F. Campanario, V. Hankele, C. Oleari, S. Prestel and D. Zeppenfeld, Phys. Rev. D 78 (2008) 094012 [arXiv:0809.0790 [hep-ph]]; G. Bozzi, F. Campanario, V. Hankele and D. Zeppenfeld, Phys. Rev. D 81 (2010) 094030 [arXiv:0911.0438 [hep-ph]]; G. Bozzi, F. Campanario, M. Rauch, H. Rzehak and D. Zeppenfeld, Phys. Lett. B 696 (2011) 380 [arXiv:1011.2206 [hep-ph]]; G. Bozzi, F. Campanario, M. Rauch and D. Zeppenfeld, Phys. Rev. D 83 (2011) 114035 [arXiv:1103.4613 [hep-ph]]; G. Bozzi, F. Campanario, M. Rauch and D. Zeppenfeld, Phys. Rev. D 84 (2011) 074028 [arXiv:1107.3149 [hep-ph]]; F. Campanario, C. Englert, M. Spannowsky and D. Zeppenfeld, Europhys. Lett. 88 (2009) 11001 [arXiv:0908.1638 [hep-ph]]; F. Campanario, C. Englert and M. Spannowsky, Phys. Rev. D 83 (2011) 074009 [arXiv:1010.1291 [hep-ph]]; F. Campanario, C. Englert, S. Kallweit, M. Spannowsky and D. Zeppenfeld, JHEP 1007 (2010) 076 [arXiv:1006.0300 [hep-ph]]; F. Campanario, C. Englert and M. Spannowsky, Phys. Rev. D 82 (2010) 054015 [arXiv:1006.3090 [hep-ph]]; V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt and D. Zeppenfeld, Phys. Rev. Lett. 87 (2001) 122001 [hep-ph/0105129]; V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt and D. Zeppenfeld, Nucl. Phys. B 616 (2001) 367 [hep-ph/0108030]; V. Del Duca, G. Klamke, D. Zeppenfeld, M. L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A. D. Polosa, JHEP 0610 (2006) 016 [hep-ph/0608158]; G. Klamke and D. Zeppenfeld, JHEP 0704 (2007) 052 [hep-ph/0703202]; F. Campanario, M. Kubocz and D. Zeppenfeld, Phys. Rev. D 84 (2011) 095025 [arXiv:1011.3819 [hep-ph]]; K. Arnold, M. Bahr, G. Bozzi, F. Campanario, C. Englert, T. Figy, N. Greiner and C. Hackstein et al., Comput. Phys. Commun. 180 (2009) 1661 [arXiv:0811.4559 [hep-ph]]; K. Arnold, J. Bellm, G. Bozzi, M. Brieg, F. Campanario, C. Englert, B. Feigl and J. Frank et al., arXiv:1107.4038 [hep-ph].

[19] V. Hankele and D. Zeppenfeld, Phys. Lett. B 661 (2008) 103 [arXiv:0712.3544 [hep-ph]].

[20] B. Jager, C. Oleari and D. Zeppenfeld, JHEP 0607 (2006) 015 [hep-ph/0603177]; B. Jager, C. Oleari and D. Zeppenfeld, Phys. Rev. D 73 (2006) 113006 [hep-ph/0604200]; G. Bozzi, B. Jager, C. Oleari and D. Zeppenfeld, Phys. Rev. D 75 (2007) 073004 [hep-ph/0701105].

[21] F. Campanario, C. Englert, M. Rauch and D. Zeppenfeld, Phys. Lett. B 704 (2011) 515 [arXiv:1106.4009 [hep-ph]]; F. Campanario, JHEP 1110 (2011) 070 [arXiv:1105.0920 [hep-ph]].

[22] P. Nason, JHEP 0411 (2004) 040 [hep-ph/0409146]; S. Frixione, P. Nason and C. Oleari, JHEP 0711 (2007) 070 [arXiv:0709.2092 [hep-ph]]; S. Alioli, P. Nason, C. Oleari and E. Re, JHEP 1006 (2010) 043 [arXiv:1002.2581 [hep-ph]].
[23] S. Alioli, P. Nason, C. Oleari and E. Re, JHEP **0807** (2008) 060 [arXiv:0805.4802 [hep-ph]]; S. Alioli, P. Nason, C. Oleari and E. Re, JHEP **1101** (2011) 095 [arXiv:1009.5594 [hep-ph]]; S. Alioli, P. Nason, C. Oleari and E. Re, JHEP **0909** (2009) 111 [Erratum-ibid. **1002** (2010) 011] [arXiv:0907.4076 [hep-ph]]; E. Re, Eur. Phys. J. C **71** (2011) 1547 [arXiv:1009.2450 [hep-ph]]; S. Alioli, P. Nason, C. Oleari and E. Re, JHEP **0904** (2009) 002 [arXiv:0812.0578 [hep-ph]]; P. Nason and C. Oleari, JHEP **1002** (2010) 037 [arXiv:0911.5299 [hep-ph]]; S. Alioli, K. Hamilton, P. Nason, C. Oleari and E. Re, JHEP **1104** (2011) 081 [arXiv:1012.3380 [hep-ph]]; S. Frixione, P. Nason and G. Ridolfi, JHEP **0709** (2007) 126 [arXiv:0707.3088 [hep-ph]]; T. Melia, P. Nason, R. Rontsch and G. Zanderighi, Eur. Phys. J. C **71** (2011) 1670 [arXiv:1102.4846 [hep-ph]]; T. Melia, P. Nason, R. Rontsch and G. Zanderighi, JHEP **1111** (2011) 078 [arXiv:1107.5051 [hep-ph]]; C. Oleari and L. Reina, JHEP **1108** (2011) 061 [Erratum-ibid. **1111** (2011) 040] [arXiv:1105.4488 [hep-ph]]; E. Bagnaschi, G. Degrassi, P. Slavich and A. Vicini, [arXiv:1111.2854 [hep-ph]]; C. Bernaciak and D. Wackeroth, [arXiv:1201.4804 [hep-ph]]; L. Barze’, G. Montagna, P. Nason, O. Nicrosini and F. Piccinini, [arXiv:1202.0465 [hep-ph]].

[24] B. Jager and G. Zanderighi, JHEP **1111** (2011) 055 [arXiv:1108.0864 [hep-ph]].

[25] Z. Bern, L. J. Dixon, D. C. Dunbar and D. A. Kosower, Nucl. Phys. B **425** (1994) 217 [hep-ph/9403226]; Z. Bern, L. J. Dixon, D. C. Dunbar and D. A. Kosower, Nucl. Phys. B **435** (1995) 59 [hep-ph/9409265]; Z. Bern, L. J. Dixon and D. A. Kosower, Nucl. Phys. B **513** (1998) 3 [arXiv:hep-ph/9708239]; R. Britto, F. Cachazo and B. Feng, Nucl. Phys. B **725** (2005) 275 [arXiv:hep-th/0412103]; G. Ossola, C. G. Papadopoulos and R. Pittau, Nucl. Phys. B **763** (2007) 147 [arXiv:hep-ph/0609007]; R. K. Ellis, W. T. Giele and Z. Kunszt, JHEP **0803** (2008) 003 [arXiv:0708.2398 [hep-ph]]; W. T. Giele, Z. Kunszt and K. Melnikov, JHEP **0804** (2008) 049 [arXiv:0801.2237 [hep-ph]]; R. K. Ellis, W. T. Giele, Z. Kunszt and K. Melnikov, Nucl. Phys. B **822** (2009) 270 [arXiv:0806.3467 [hep-ph]].

[26] C. F. Berger, Z. Bern, L. J. Dixon, F. Febres Cordero, D. Forde, H. Ita, D. A. Kosower and D. Maitre, Phys. Rev. D **78** (2008) 036003 [arXiv:0803.4180 [hep-ph]].

[27] G. Ossola, C. G. Papadopoulos and R. Pittau, JHEP **0803** (2008) 042 [arXiv:0711.3596 [hep-ph]].

[28] W. T. Giele and G. Zanderighi, JHEP **0806** (2008) 038 [arXiv:0805.2152 [hep-ph]]; R. K. Ellis, W. T. Giele, Z. Kunszt, K. Melnikov and G. Zanderighi, JHEP **0901** (2009) 012 [arXiv:0810.2762 [hep-ph]].

[29] P. Mastrolia, G. Ossola, T. Reiter and F. Tramontano, JHEP **1008** (2010) 080 [arXiv:1006.0710 [hep-ph]].
[30] A. van Hameren, JHEP 0907 (2009) 088 [arXiv:0905.1005 [hep-ph]]; S. Becker, C. Reuschle and S. Weinzierl, JHEP 1012 (2010) 013 [arXiv:1010.4187 [hep-ph]]; F. Cascioli, P. Maierhofer and S. Pozzorini, arXiv:1111.5206 [hep-ph].

[31] R. K. Ellis, Z. Kunszt, K. Melnikov and G. Zanderighi, arXiv:1105.4319 [hep-ph].

[32] S. Catani and M. H. Seymour, Nucl. Phys. B 485 (1997) 291 [Erratum-ibid. B 510 (1998) 503] [hep-ph/9605323]; S. Catani, S. Dittmaier, M. H. Seymour and Z. Trocsanyi, Nucl. Phys. B 627 (2002) 189 [hep-ph/0201036].

[33] S. Frixione, Z. Kunszt and A. Signer, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328]; S. Frixione, Nucl. Phys. B 507 (1997) 295 [hep-ph/9706545].

[34] D. A. Kosower, Phys. Rev. D 57 (1998) 5410 [hep-ph/9710213]; A. Gehrmann-De Ridder, T. Gehrmann and E. W. N. Glover, JHEP 0509 (2005) 056 [hep-ph/0505111]; A. Daleo, T. Gehrmann and D. Maitre, JHEP 0704 (2007) 016 [hep-ph/0612257].

[35] C. H. Chung, M. Kramer and T. Robens, JHEP 1106 (2011) 144 [arXiv:1012.4948 [hep-ph]].

[36] T. Gleisberg and F. Krauss, Eur. Phys. J. C 53 (2008) 501 [arXiv:0709.2881 [hep-ph]].

[37] R. Frederix, T. Gehrmann and N. Greiner, JHEP 0809 (2008) 122 [arXiv:0808.2128 [hep-ph]]; R. Frederix, T. Gehrmann and N. Greiner, JHEP 1006 (2010) 086 [arXiv:1004.2905 [hep-ph]].

[38] M. Czakon, C. G. Papadopoulos and M. Worek, JHEP 0908 (2009) 085 [arXiv:0905.0883 [hep-ph]].

[39] R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, JHEP 0910 (2009) 003 [arXiv:0908.4272 [hep-ph]].

[40] M. H. Seymour and C. Tevlin, arXiv:0803.2231 [hep-ph].

[41] K. Hasegawa, S. Moch and P. Uwer, Comput. Phys. Commun. 181 (2010) 1802 [arXiv:0911.4371 [hep-ph]].

[42] V. Hirschi, R. Frederix, S. Frixione, M. V. Garzelli, F. Maltoni and R. Pittau, JHEP 1105 (2011) 044 [arXiv:1103.0621 [hep-ph]]; R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, R. Pittau and P. Torrielli, Phys. Lett. B 701 (2011) 427 [arXiv:1104.5613 [hep-ph]]; R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, R. Pittau and P. Torrielli, JHEP 1109 (2011) 061 [arXiv:1106.6019 [hep-ph]]; R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, R. Pittau and P. Torrielli, arXiv:1110.4738 [hep-ph]; R. Frederix, S. Frixione, V. Hirschi,
F. Maltoni, R. Pittau and P. Torrielli, JHEP 1202 (2012) 048 [arXiv:1110.5502 [hep-ph]]; J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, JHEP 1106 (2011) 128 [arXiv:1106.0522 [hep-ph]].

[43] T. Gleisberg, S. Hoeche, F. Krauss, M. Schonherr, S. Schumann, F. Siegert and J. Winter, JHEP 0902 (2009) 007 [arXiv:0811.4622 [hep-ph]].

[44] A. van Hameren, C. G. Papadopoulos and R. Pittau, JHEP 0909 (2009) 106 [arXiv:0903.4665 [hep-ph]]; G. Bevilacqua, M. Czakon, M. V. Garzelli, A. van Hameren, A. Kardos, C. G. Papadopoulos, R. Pittau and M. Worek, [arXiv:1110.1499 [hep-ph]]; A. Cafarella, C. G. Papadopoulos and M. Worek, Comput. Phys. Commun. 180 (2009) 1941 [arXiv:0710.2427 [hep-ph]].

[45] G. Cullen, N. Greiner, G. Heinrich, G. Luisoni, P. Mastrolia, G. Ossola, T. Reiter and F. Tramontano, arXiv:1111.2034 [hep-ph].

[46] T. Hahn, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260].

[47] T. Binoth, D. Goncalves Netto, D. Lopez-Val, K. Mawatari, T. Plehn and I. Wigmore, Phys. Rev. D 84 (2011) 075005 [arXiv:1108.1250 [hep-ph]].

[48] C. Buttar, S. Dittmaier, V. Drollinger, S. Frixione, A. Nikitenko, S. Willenbrock, S. Abdullin and E. Accomando et al., hep-ph/0604120.

[49] Z. Bern et al. [NLO Multileg Working Group Collaboration], arXiv:0803.0494 [hep-ph].

[50] J. R. Andersen et al. [SM and NLO Multileg Working Group Collaboration], arXiv:1003.1241 [hep-ph].

[51] S. Dittmaier, S. Kallweit and P. Uwer, Phys. Rev. Lett. 100 (2008) 062003 [arXiv:0710.1577 [hep-ph]].

[52] S. Dittmaier, S. Kallweit and P. Uwer, Nucl. Phys. B 826 (2010) 18 [arXiv:0908.4124 [hep-ph]].

[53] J. M. Campbell, R. K. Ellis and G. Zanderighi, JHEP 0712 (2007) 056 [arXiv:0710.1832 [hep-ph]].

[54] T. Binoth, T. Gleisberg, S. Karg, N. Kauer and G. Sanguinetti, Phys. Lett. B 683 (2010) 154 [arXiv:0911.3181 [hep-ph]].

[55] M. Ciccolini, A. Denner and S. Dittmaier, Phys. Rev. Lett. 99 (2007) 161803 [arXiv:0707.0381 [hep-ph]].

11
[56] M. Ciccolini, A. Denner and S. Dittmaier, Phys. Rev. D \textbf{77} (2008) 013002 \texttt{arXiv:0710.4749 [hep-ph]].

[57] A. Lazopoulos, K. Melnikov and F. Petriello, Phys. Rev. D \textbf{76} (2007) 014001 \texttt{arXiv:hep-ph/0703273}.

[58] T. Binoth, G. Ossola, C. G. Papadopoulos and R. Pittau, JHEP \textbf{0806} (2008) 082 \texttt{arXiv:0804.0350 [hep-ph]].

[59] A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, Phys. Rev. Lett. \textbf{103} (2009) 012002 \texttt{arXiv:0905.0110 [hep-ph]].

[60] A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, JHEP \textbf{1003} (2010) 021 \texttt{arXiv:1001.4006 [hep-ph]].

[61] G. Bevilacqua, M. Czakon, C. G. Papadopoulos, R. Pittau and M. Worek, JHEP \textbf{0909} (2009) 109 \texttt{arXiv:0907.4723 [hep-ph]].

[62] C. F. Berger, Z. Bern, L. J. Dixon, F. Febres Cordero, D. Forde, T. Gleisberg, H. Ita and D. A. Kosower \textit{et al.}, Phys. Rev. D \textbf{80} (2009) 074036 \texttt{arXiv:0907.1984 [hep-ph]].

[63] R. K. Ellis, K. Melnikov and G. Zanderighi, JHEP \textbf{0904} (2009) 077 \texttt{arXiv:0901.4101 [hep-ph]].

[64] G. Bevilacqua, M. Czakon, C. G. Papadopoulos and M. Worek, Phys. Rev. Lett. \textbf{104} (2010) 162002 \texttt{arXiv:1002.4009 [hep-ph]].

[65] T. Binoth \textit{et al.}, PoS \textbf{RADCOR2009} (2010) 026 \texttt{arXiv:1001.4905 [hep-ph]].

[66] C. F. Berger, Z. Bern, L. J. Dixon, F. Febres Cordero, D. Forde, T. Gleisberg, H. Ita and D. A. Kosower \textit{et al.}, Phys. Rev. Lett. \textbf{102} (2009) 222001 \texttt{arXiv:0902.2760 [hep-ph]].

[67] R. K. Ellis, K. Melnikov and G. Zanderighi, Phys. Rev. D \textbf{80} (2009) 094002 \texttt{arXiv:0906.1445 [hep-ph]].

[68] C. F. Berger, Z. Bern, L. J. Dixon, F. Febres Cordero, D. Forde, T. Gleisberg, H. Ita and D. A. Kosower \textit{et al.}, Phys. Rev. D \textbf{82} (2010) 074002 \texttt{arXiv:1004.1659 [hep-ph]].

[69] A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, JHEP \textbf{0808} (2008) 108 \texttt{arXiv:0807.1248 [hep-ph]].

[70] G. Bevilacqua, M. Czakon, C. G. Papadopoulos and M. Worek, Phys. Rev. D \textbf{84} (2011) 114017 \texttt{arXiv:1108.2851 [hep-ph]].
[71] T. Binoth, N. Greiner, A. Guffanti, J. Reuter, J. P. Guillet and T. Reiter, Phys. Lett. B 685 (2010) 293 [arXiv:0910.4379 [hep-ph]]; N. Greiner, A. Guffanti, T. Reiter and J. Reuter, Phys. Rev. Lett. 107 (2011) 102002 [arXiv:1105.3624 [hep-ph]].

[72] A. Denner, S. Dittmaier, S. Kallweit and S. Pozzorini, Phys. Rev. Lett. 106 (2011) 052001 [arXiv:1012.3975 [hep-ph]].

[73] T. Melia, K. Melnikov, R. Rontsch and G. Zanderighi, JHEP 1012 (2010) 053 [arXiv:1007.5313 [hep-ph]].

[74] T. Melia, K. Melnikov, R. Rontsch and G. Zanderighi, Phys. Rev. D 83 (2011) 114043 [arXiv:1104.2327 [hep-ph]].

[75] Z. Bern, G. Diana, L. J. Dixon, F. Febres Cordero, S. Hoeche, D. A. Kosower, H. Ita and D. Maitre et al., [arXiv:1112.3940 [hep-ph]].

[76] G. Bevilacqua, M. Czakon, A. van Hameren, C. G. Papadopoulos and M. Worek, JHEP 1102 (2011) 083 [arXiv:1012.4230 [hep-ph]].

[77] V. S. Fadin, V. A. Khoze and A. D. Martin, Phys. Rev. D 49 (1994) 2247.

[78] R. Frederix, S. Frixione, K. Melnikov and G. Zanderighi, JHEP 1011 (2010) 050 [arXiv:1008.5313 [hep-ph]].

[79] C. F. Berger, Z. Bern, L. J. Dixon, F. Febres Cordero, D. Forde, T. Gleisberg, H. Ita and D. A. Kosower et al., Phys. Rev. Lett. 106 (2011) 092001 [arXiv:1009.2338 [hep-ph]].

[80] H. Ita, Z. Bern, L. J. Dixon, F. F. Cordero, D. A. Kosower and D. Maitre, [arXiv:1108.2229 [hep-ph]].

[81] S. Becker, D. Goetz, C. Reuschle, C. Schwan and S. Weinzierl, Phys. Rev. Lett. 108 (2012) 032005 [arXiv:1111.1733 [hep-ph]].

[82] H. Ita and K. Ozeren, [arXiv:1111.4193 [hep-ph]].