Amniotic membrane transplantation in a patient with impending perforated corneal ulcer caused by *Streptococcus mitis*: A case report and review of literature

Fang-Chi Hsiao, Yaa-Jyuhn James Meir, Lung-Kun Yeh, Hsin-Yuan Tan, Ching-Hsi Hsiao, David Hui-Kang Ma, Wei-Chi Wu, Hung-Chi Chen

Abstract

Streptococcus mitis (*S. mitis*) is an opportunistic pathogen that can lead to severe ocular infections. In previous reports, penetrating keratoplasty (PK) was usually adopted for the treatment of persistent corneal ulcers. This report describes an unusual case of nonhealing descemetocele caused by *S. mitis* treated by antibiotics plus amniotic membrane transplantation (AMT).

CASE SUMMARY

A 63-year-old woman presented with a right persistent corneal ulcer that she had suffered from for the past 9 mo. The culture of a corneal scraping yielded *S. mitis*. The right eye descemetocele decreased in diameter from 3 to 0.8 mm after the continuous administration of topical vancomycin and ceftriaxone for 2 wk. Due to the slow healing, AMT was performed. Her corneal erosion healed and gradually became clear. Her visual acuity recovered from initially counting fingers to 100/200 at the last follow-up, 67 mo after AMT.

CONCLUSION
Hsiao FC et al. AMT for perforated Streptococcus mitis keratitis

Antibiotics plus AMT may be an effective alternative treatment other than PK to promote epithelialization and to reduce inflammation in the corneas complicated by S. mitis keratitis.

Key Words: Persistent corneal ulcer; Amniotic membrane transplantation; Streptococcus mitis; Case report

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: In this case, we described the clinical and treatment course of an impending perforated corneal ulcer caused by Streptococcus mitis (S. mitis). We also demonstrated that treatment with antibiotics and amniotic membrane transplantation was successful, without the need for penetrating keratoplasty, and this could be considered an alternative treatment for nonhealing descemetoceles induced by S. mitis, as compared to the previous treatment.

Citation: Hsiao FC, Meir YJJ, Yeh LK, Tan HY, Hsiao CH, Ma DHK, Wu WC, Chen HC. Amniotic membrane transplantation in a patient with impending perforated corneal ulcer caused by Streptococcus mitis: A case report and review of literature. World J Clin Cases 2022; 10(12): 3923-3929
URL: https://www.wjgnet.com/2307-8960/full/v10/i12/3923.htm
DOI: https://dx.doi.org/10.12998/wjcc.v10.i12.3923

INTRODUCTION

Streptococcus mitis (S. mitis) is an alpha-hemolytic, facultative anaerobic species of the viridans group streptococci. S. mitis is a commensal of the human oropharynx and is also found on the skin, in the gastrointestinal tract, and in the female genital tract. Although the low virulence and pathogenicity of this bacteria are recognized, S. mitis is considered an opportunistic pathogen that can lead to the development of severe infections, including endophthalmitis, infective endocarditis, bacteremia, upper respiratory tract infection, and meningitis[1,2]. Moreover, corneal ulcers caused by S. mitis are rare and have seldom been described. In previous reports, penetrating keratoplasty (PK) was usually adopted for the treatment of persistent corneal ulcers[3-5].

As an alternative treatment to reconstruct the ocular surface, amniotic membrane transplantation (AMT) has been proposed to promote epithelial healing and to reduce neovascularization, inflammation, and scarring, and this method has been demonstrated to be effective in promoting wound healing and in preventing corneal perforation in infectious keratitis[6-9]. In this case, we demonstrated that AMT may be successfully used to treat a patient with a nonhealing descemetocele caused by S. mitis rather than performing PK.

CASE PRESENTATION

Chief complaints
A 63-year-old Taiwanese Han woman presented with right eye pain for 9 mo.

History of present illness
The patient had experienced right persistent corneal ulcers for 9 mo despite the use of biweekly therapeutic soft contact lenses along with unknown topical agents, which resulted in recurrent symptoms of ocular redness, pain, and blurred vision. Within a few years prior to the current event, she reported repeated episodes that occurred approximately two to three times yearly of right eye redness accompanied by photophobia that resolved spontaneously.

History of past illness
This patient had a history of herpes zoster ophthalmicus 18 years ago and an underlying disease of hypertension.

Personal and family history
The patient denied any known family history.

Physical examination
Upon the initial ocular examination, her right visual acuity (VA) was counting fingers. A 3 mm × 2 mm
central epithelial defect with stromal infiltration and a 1 mm × 1 mm inferonasal paracentral descemetocele were noted at her right eye (Figure 1A). The VA change is listed in Table 1.

Laboratory examinations
A corneal culture yielded *S. mitis* growth.

Imaging examinations
Not applicable.

FINAL DIAGNOSIS
An impending perforated corneal ulcer was caused by *S. mitis*.

TREATMENT
Famciclovir (250 mg, two tablets, TID), topical tobramycin ointment (3.5 g/tube, BID), and levofloxacin (0.5%, 25 mg/5 mL/bottle, Q1H) were prescribed initially. A subsequent corneal culture yielded *S. mitis* growth. Therefore, hourly topical vancomycin (25 mg/mL) and ceftriaxone (25 mg/mL) were initiated in place of the previous antiviral and antimicrobials based on the susceptibility test. AMT was performed after 2 wk of topical vancomycin and ceftriaxone.

OUTCOME AND FOLLOW-UP
The size of the descemetocele initially increased to 3 mm in diameter and was accompanied by the development of a 1 mm hypopyon. With the continuous administration of topical vancomycin and ceftriaxone for 2 wk, the descemetocele gradually decreased to 0.8 mm × 0.8 mm, and the hypopyon resolved (Figure 1B). Superficial manual keratectomy with AMT was performed due to the minimal healing and the lack of further shrinkage of the descemetocele despite intensive topical antibiotic treatment (Figure 1C).

During the course of the corneal ulcer treatment, the patient reported an abrupt onset of left eye redness with abundant discharge. Pterygium at eight o’clock of the cornea and 360° chemosis with conjunctival injection (OS) were found. Topical sulfamethoxazole (4%, TID) and fluorometholone (0.1%, QID) were used, but the symptoms persisted. Therefore, the diagnostic aspiration of aqueous (OS) was performed. Fortunately, neither viral DNA nor organism was identified, and the severity of the chemosis and conjunctival injection gradually improved afterwards.

In a postoperative clinic follow-up, the amniotic membrane remained in situ without further epithelial defects or leakage at 6 mo post-AMT (Figure 1D). We switched the topical antibiotics to 0.5% levofloxacin and gradually tapered the dose. The cornea gradually healed with faint subepithelial haze as demonstrated by slit lamp biomicroscopy (Figure 2A) and anterior segment optical coherence tomography (Figure 2B), and best corrected VA was 100/200 at the last follow-up, 67 mo after the AMT was performed.

DISCUSSION
Well-documented treatments of *S. mitis* keratitis are rare, and most of the reported cases had poor visual outcomes or were treated with PK that were reported several years ago[3,5,10]. *S. mitis* is a normal flora of the human oropharynx and is also found on the skin, in the gastrointestinal tract, and in the female genital tract. Despite having low virulence and pathogenicity, reports have shown that *S. mitis* can cause severe infections, including endophthalmitis, infective endocarditis, bacteremia, upper respiratory tract infection, and meningitis[1,2]. This organism has been identified in patients with postsurgical endophthalmitis that resulted in poor visual outcomes[11]. In addition, the viridans group streptococci is one of the most common organisms implicated in the rare corneal infectious disease infectious crystalline keratopathy[12]. Although corneal ulcers caused by *S. mitis* have seldom been described, we treated the impending perforated ulcer with antibiotics for 2 wk before performing AMT.

Previously, in a 10-year review of microbial keratitis from 1972 to 1981, *S. mitis* was reported in 7% (3/44) of polymicrobial keratitis cases and in less than 5% of the 133 cases of monomicrobial keratitis[3]. The vision of one patient was limited to 2/200 by corneal scarring after antibacterial and antifungal therapies. The final vision of another patient was 10/200[3]. In 2005, there was a case report of a 39-year-old woman who presented with an *S. mitis* corneal ulcer with total corneal opacification and a 2.5 mm ×
Table 1 Visual acuity change 2 wk before and after amniotic membrane transplantation

Weeks after AMT	OD	OS	
−2	VA	CF/15 cm	0.5
1.6	VA	CF/10 cm	0.4–2
3.6	VA	HM/60 cm	0.3
6.6	VA	CF/80 cm	0.3
12.6	VA	CF/30 cm	0.5
20.6	VA	CF/20 cm	0.5
29.6	VA	CF/10 cm	0.7–2
37.6	VAcPG	0.05	1
54.6	VAcPG	CF/30 cm	1
63.6	VAcPG	CF/20 cm	0.8
73.6	VA	0.08	0.3
268.0	VA	100/200	0.5

AMI: Amniotic membrane transplantation; VA: Visual acuity; VAcPG: Visual acuity with glasses; OD: Oculus dexter; OS: Oculus sinister.

Figure 1 External eye photograph of the cornea before and after treatment. A: At the initial ocular examination, a 3 mm × 2 mm central epithelial defect with stromal infiltration and a 1 mm × 1 mm inferonasal paracentral descemetocele were observed; B: After the continuous administration of topical vancomycin and ceftriaxone for 2 wk, the descemetocele gradually decreased to 0.8 mm × 0.8 mm, and the hypopyon resolved; C: After manual superficial keratectomy combined with amniotic membrane transplantation (AMT), the descemetocele was successfully repaired with smooth epithelialization; D: During the postoperative follow-up, the AM remained in situ without further epithelial defects or leakage at 9 mo.

2.5 mm descemetocele. Antibiotics were used, but eventually, it progressed to a perforated cornea and was successfully treated with PK with a final VA of 20/200[4]. In 2016, another case was published of an S. mitis/oralis corneal ulcer that occurred 1 year after corneal transplantation. Although broad-spectrum antibiotics were given and infection was controlled, the corneal graft was complicated by scar formation. Regrafting was subsequently performed, and the new graft remained clear[5].
Figure 2 Anterior segment imaging of the cornea 67 mo after amniotic membrane transplantation. A: The patient’s right cornea was intact with subepithelial opacity, of which a close-up view is shown in an insert (arrow); B: On anterior segment optical coherence tomography, there was hyperreflectivity in the anterior stroma (arrow).

Giving initial topical empiric broad-spectrum antibiotics before available culture data is the general treatment of suppurative keratitis. Surgical treatment options include tissue adhesives, tarsorrhaphy, conjunctival flaps, and PK[13]. The management of a perforated corneal ulcer or descemetocele involves the repair of the mechanical disruption and the promotion of reepithelialization while reducing inflammation[13]. AMT is an alternative treatment for reconstructing the ocular surface, and it has been proposed to be antimicrobial, to promote epithelial healing, and to reduce neovascularization, inflammation, and scarring[6,7].

AM is the innermost layer of the placenta composed of epithelium, basement membrane, and stroma. It was first used in ocular surface reconstruction in 1940 by de Rötth[14]. Later, few ophthalmologists adopted AM for surgery until Batlle and Perdomo used it for conjunctival reconstruction in the 1990s [15]. AMT can provide a physical barrier against infection and retention of antibiotics[16] and has antimicrobial properties via human beta-defensins[17], elafin[18], leukocyte protease inhibitor[19], and cystatin E[20]. In a rabbit model, AM was proven to subside pseudomonas keratitis[21]. A previous report also showed the effectiveness of AM in the treatment of infectious corneal ulcer[22].

As for mechanism of epithelial healing, the basement membrane of AM is similar to the conjunctiva that is mainly composed of type IV, V, and VII collagen that help the adhesion, migration, growth, and differentiation of epithelial progenitor cell[23,24]. The AM stroma contains several growth factors such as epidermal growth factor, hepatocyte growth factor, and basic fibroblast growth factor supporting epithelization[25-27]. In addition, protease inhibitors and heavy chain-hyaluronan/pentraxin 3 decrease the local inflammation and scarring[28,29]. In a recent meta-analysis, adjuvant AMT for infectious keratitis showed the promotion of corneal healing and the improvement of uncorrected VA[30].

The documented treatment for corneal ulcer caused by *S. mitis* was PK. While PK can resolve the pathology, it has the disadvantage of limited source of grafts and potential complications such as astigmatism, epithelial defects, and graft failure[8,9]. Considering the mechanism and effectiveness of AMT in infectious keratitis though not in *S. mitis*, we adopted AMT to treat the patient’s chronic infectious corneal ulcer. The patient’s final VA was good.

Comparing to documented treatment, PK for corneal ulcer caused by *S. mitis*, several studies have reported that AMT is effective in promoting corneal ulcer healing and in preventing corneal perforation in infectious keratitis though not in *S. mitis*. We presented a case of corneal ulcer caused by *S. mitis* treated by topical antibiotics with adjuvant AMT.

CONCLUSION
In this case, we described the clinical and treatment course of an impending perforated corneal ulcer caused by *S. mitis*. We also demonstrated that treatment with antibiotics and AMT was successful, without the need for PK, and this could be considered an alternative treatment for nonhealing descemetocoele induced by *S. mitis*, as compared to the previous treatment[3-5]. Given the current single case report, larger-scale studies are needed for AMT to become a standard treatment modality for
persistent corneal ulcers prior to PK.

ACKNOWLEDGEMENTS

The authors thank the advice from Dr. Scheffer CG Tseng at the Ocular Surface Center, Miami, FL, United States.

FOOTNOTES

Author contributions: Hsiao FC conducted the literature search, collected the data, interpreted the data, and prepared the manuscript; Meir YJ and Yeh LK collected the data and interpreted the data; Tan HY and Hsiao CH interpreted the data and edited the manuscript; Ma HK and Wu WC interpreted the data and critically revised the draft; Chen HC designed the study, interpreted the data, edited the manuscript, and critically revised the draft.

Informed consent statement: Written informed consent was obtained from the patient for the publication of this case report and any accompanying images.

Conflict-of-interest statement: The authors have no conflicts of interest relevant to this article.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Taiwan

ORCID number: Fang-Chi Hsiao 0000-0002-4543-3198; Yaa-Jyuhn James Meir 0000-0002-8562-5995; Lung-Kun Yeh 0000-0003-1925-2039; Hsin-Yuan Tan 0000-0002-6210-9912; Chung-Hsi Hsiao 0000-0001-5745-9371; David Hui-Kang Ma 0000-0003-1847-8961; Wei-Chi Wu 0000-0003-3760-7255; Hung-Chi Chen 0000-0002-1117-7878.

REFERENCES

1 Mitchell J. Streptococcus mitis: walking the line between commensalism and pathogenesis. Mol Oral Microbiol 2011; 26: 89-98 [PMID: 21375700 DOI: 10.1111/j.2041-1014.2010.00601.x]
2 Chung JK, Lee SJ. Streptococcus mitis/oralis endophthalmitis management without phakic intraocular lens removal in patient with iris-fixated phakic intraocular lens implantation. BMC Ophthalmol 2014; 14: 92 [PMID: 25023762 DOI: 10.1186/1471-2415-14-92]
3 Jones DB. Polymicrobial keratitis. Trans Am Ophthalmol Soc 1981; 79: 153-167 [PMID: 7342399]
4 Hsu VJ, Affeldt J, Blanton C. Streptococcus Mitis Corneal Ulcer. Invest Ophthalmol Vis Sci 2005; 46: 2632
5 Khan ID, Sati A, Mehdi I, Bhatt P, Jain V, Konar J, Sahu C, Kumar Ramphal S, Pandit P. Streptococcus Mitis/Oralis Corneal Ulcer After Corneal Transplantation. J Basic Clin Med 2016; 5: 8-10
6 Hick S, Demers PE, Brunette I, La C, Mabon B, Duchesne B. Amniotic membrane transplantation and fibrin glue in the management of corneal ulcers and perforations: a review of 33 cases. Cornea 2005; 24: 369-377 [PMID: 15829790 DOI: 10.1097/01.ico.0000151547.08113.d1]
7 Kim JS, Kim JC, Hahn TW, Park WC. Amniotic membrane transplantation in infectious corneal ulcer. Cornea 2001; 20: 720-726 [PMID: 1158424 DOI: 10.1097/00003226-200110000-00010]
8 Chen JH, Ma DH, Tsai RJ. Amniotic membrane transplantation for pseudomonal keratitis with impending perforation. Chang Gung Med J 2002; 25: 144-152 [PMID: 12022734]
9 Chen HC, Tan HY, Hsiao CH, Huang SC, Lin KK, Ma DH. Amniotic membrane transplantation for persistent corneal ulcers and perforations in acute fungal keratitis. Cornea 2006; 25: 564-572 [PMID: 16783145 DOI: 10.1097/01.ico.0000227885.19124.6f]
10 Cristina N, Szlabela S, Ivan Ozana I. Complicated corneal ulcer. Case report. Rom J Ophthalmol 2017; 61: 239-243 [DOI: 10.22336/rjo.2017.43]
11 Durand ML. Endophthalmitis. Clin Microbiol Infect 2013; 19: 227-234 [PMID: 23438028 DOI: 10.1111/j.1469-0691.2011.2118]
Khalid TT, Jones DB, Wilhelmus KR. Infectious crystalline keratopathy caused by gram-negative bacteria. *Am J Ophthalmol* 1997; 124: 19-23 [PMID: 9222227 DOI: 10.1016/s0002-9394(14)71638-1]

Dukhil TAB, Stone DU, Gritz DC. Adjunctive Therapies for Bacterial Keratitis. *Middle East Afr J Ophthalmol* 2017; 24: 11-17 [PMID: 28546687 DOI: 10.4103/meaj.oa_26_16]

de Röth A. Plastic Repair of Conjunctival Defects with Fetal Membranes. *JAMA Ophthalmol* 1940; 23: 522-525 [DOI: 10.1001/archopht.1940.00661.30586006]

Battle J, Perdomo F. Placental membranes as a conjunctival substitute. *Ophthalmology* 1993; 100: 107

Ramuta TŽ, Stachon T, Mamede AC. Amniotic Membrane Tissue Homogenate]. *Stachon T, Mamede AC. Membrane Extract Preparation: What is the Best Method?* *Mahbod M, King AE, Khater TT, Abrahamson M, Zhang M, Fernandez MA, Grubb A, Su J, Yu GL, Li Y, Parmelee D, Xing L, Coleman TA, Gentz S, Niknejad H, Peirovi H, Jorjani M, Ahmadiani A, Ghanavi J, Khabazkhoob M, Beheshtnejad AH, Bakhshandeh H, Atyabi F, Hashemi H. Amniotic Membrane Properties of the amniotic membrane for treating severe corneal ulcers: a comparative, retrospective control study. *Invest Ophthalmol Vis Sci* 2017; 58: 3670-3678 [PMID: 28289487 DOI: 10.1093/iovs/055019]

Niknejad H, Peirovi H, Jorjani M, Ahmadiani A, Ghanavi J, Seifalian AM. Properties of the amniotic membrane for potential use in tissue engineering. *Eur Cell Mater* 2008; 15: 88-99 [PMID: 18446690 DOI: 10.22203/ecm.v015a07]

King AE, Paltoo A, Kelly RW, Sallnave JM, Bocking AD, Challis JR. Expression of natural antimicrobials by human placenta and fetal membranes. *Placenta* 2007; 28: 161-169 [PMID: 16513165 DOI: 10.1016/j.placenta.2006.01.006]

Ni J, Abrahamson M, Zhang M, Fernandez MA, Grubb A, Su J, Yu GL, Li Y, Parmelee D, Xing L, Coleman TA, Gentz S, Thotakura R, Nguyen N, Hesselberg M, Gentz R. Cystatin E is a novel human cysteine protease inhibitor with structural resemblance to family 2 cystatins. *J Biol Chem* 1997; 272: 10853-10858 [PMID: 9099741 DOI: 10.1074/jbc.272.16.108533]

Dallal MMS, Nikkhahi F, Imeni SM, Molaei S, Hosseini SK, Kalafi Z, Yazdi SS, Mirzaei HMA. Amniotic Membrane Transplantation for Persistent Epithelial Defects and Ulceration due to Pseudomonas Keratitis in a Rabbit Model. *J Ophthalmic Vis Res* 2021; 16: 552-557 [DOI: 10.18502/jovr.v16i4.9744]

Yin HY, Cheng AMS, Tighe S, Kurochkin P, Nord J, Dhanireddy S, Swan R, Alpert S. Self-retained cryopreserved amniotic membrane for treating severe corneal ulcers: a comparative, retrospective control study. *Sci Rep* 2020; 10: 17008 [PMID: 33046729 DOI: 10.1038/s41598-020-73672-2]

Fukuda K, Chikama T, Nakamura M, Nishida T. Differential distribution of subchains of the basement membrane component type IV collagen and laminin among the amniotic membrane, cornea, and conjunctiva. *Cornea* 1999; 18: 73-79 [PMID: 9894941]

Shao C, Sima I, Zhang SX, Jin I, Reinch P, Wang Z, Ma JX. Suppression of Corneal Neovascularization by PEDF Release from Human Amniotic Membranes. *Invest Ophthalmol Vis Sci* 2004; 45: 1758-1762 [DOI: 10.1167/iovs.03-0882]

Mahbod M, Shahhosseini S, Khabazkhoob M, Beheshtnejad AH, Bakshbandeh H, Ayahi F, Hashemi H. Amniotic Membrane Extraction Preparation: What is the Best Method? *J Ophthalmic Vis Res* 2014; 9: 314-319 [PMID: 25667731 DOI: 10.4103/2008-322X.143367]

Mamede AC, Botelho MF. Amniotic membrane: origin, characterization and medical applications: Springer; 2015: IX, 254 [DOI: 10.1007/978-94-017-9975-1]

Stachon T, Bischoff M, Seitz B, Huber M, Gawada M, Langenbucher A, Szentmáry N. [Growth Factors and Interleukins in Amniotic Membrane Tissue Homogenate]. *Klin Monbl Augenheilk* 2015; 232: 858-862 [PMID: 25581044 DOI: 10.1055/s-0034-1383393]

He H, Li W, Tseng DY, Zhang S, Chen SY, Day AJ, Tseng SC. Biochemical characterization and function of complexes formed by hyaluronan and the heavy chains of inter-alpha-inhibitor (HC*HA) purified from extracts of human amniotic membrane. *J Biol Chem* 2009; 284: 20136-20146 [PMID: 19491101 DOI: 10.1074/jbc.M109.021881]

Shay E, He H, Sakurai S, Tseng SC. Inhibition of angiogenesis by HC*HA, a complex of hyaluronan and the heavy chain of inter-o-inhibitor, purified from human amniotic membrane. *Invest Ophthalmol Vis Sci* 2011; 52: 2669-2678 [PMID: 21228375 DOI: 10.1167/iovs.10-5888]

Ting DSJ, Henein C, Said DG, Dua HS. Amniotic membrane transplantation for infectious keratitis: a systematic review and meta-analysis. *Sci Rep* 2021; 11: 13007 [PMID: 34155280 DOI: 10.1038/s41598-021-92366-x]
