Biomolecular Aspect of Apoptosis Pathway: Caspase-8 and Caspase-9 on Polifenol Exposure of *Phaleria macrocarpa* (Scheff.) Boerl. on Mice Balb/c

Theopilus Wilhelmus Watuguly

General Biology Laboratory, Universitas Pattimura, Ambon, Moluccas Province, Indonesian

Abstract
Objective: The Polyphenol compound of *Phaleria macrocarpa* has potential as an anticancer agent, and it has shown to inhibit lung carcinogenesis. The objective of this study was to elucidate the role of polyphenol induced apoptosis via caspase-8 and caspase-9.
Methods: Balb/c mice were randomly divided into 2 groups: Group 1: control group with administration of sterile aquades and group 2: treatment group with administration of 50 mg polyphenols. The development of lung tumors was confirmed by observing post-operation tissue at week 8, 17 and 26. The expression of caspase-8 and caspase-9 were assayed. Data was analyzed using Kruskal-Wallis, Mann-Whitney, one way ANOVA, Post hoc LSD test, with a significance level of p < (0.05).
Results: Administration of 50 mg polyphenols from *P. macrocarpa* extract, showed inhibition of lung carcinogenesis through increased expression of caspase-8 and caspase-9 in the treatment group at week 8, 17 and 26 (p = 0.000).
Conclusion: The administration of poliphenol from *P. macrocarpa* extract was shown to effectively inhibited lung carcinogenesis through increased of caspase-8 and caspase-9 in mice strain Balb/c.
Keyword
Polyphenols, *Phaleria macrocarpa*, Lung Carcinogenesis, Caspase-8, Caspase-9

1. Background
Chemoprevention by the use of natural materials (phytochemicals) has been shown to inhibit long cancer progression. According to [1], defects in apoptotic mechanisms are known to be important causes of carcinogenesis. Cancer cells require resistance to apoptosis through overexpression of antiapoptosis proteins and/or through decreases or mutations of proapoptotic proteins.
P53 induced apoptosis is required to eliminate the aberrant cells. Bax, which is a pro-apoptotic member of the Bcl-2 family, also appears to be a target of p53 and is up-regulated in some systems during p53-mediated apoptosis. On the other hand, up-regulation of Bax and down-regulation Bcl-2 expression may lead to up-regulation of caspase-9 thus activating caspase-3 during apoptosis [2]. According to [3], [4], the role of p53 in apoptosis is quite complex and includes the pathway of death receptors and mitochondrial pathways. In the death receptor pathway, p53 can initiate this pathway in response to DNA damage P53 may activate protein Fas/CD95 as target gene Directly by p53, where through the Fas protein, caspase-8 can be activated resulting in the process of cell death/apoptosis [5].

Various studies indicate that natural materials can modulate the complex multiscale processes of carcinogens [6]. Several studies began to be directed at testing the potential of natural materials as chemopreventive agents that have potential as chemotherapeutic agents. Ultimately, the goal of using natural products is to increase the sensitivity of cancer cells and reduce the side effects of conventional chemotherapeutic agents. Polyphenolic compounds are natural phenolic that have anticancer properties and are potential inhibitors of cancer cell growth [7]; [8]. Research conducted by [9] showed that polyphenols function as anticancer and play a role in cancer prevention. As anticancer, the polyphenols from God`s crown plant or *Phaleria macrocarpa* are expected to induce apoptosis.

Phaleria macrocarpa (Mahkota Dewa or god`s crown Plant) is an indigenous medicinal plant of Indonesia and has been known to empirically have anticancer activity and inhibit cancer growth in previous studies [10]; [11]; [12]; [13]. Based on phytochemical analysis and standardization, polyphenols are one of the main compounds found in the *P. macrocarpa* [14]; [15]; [13]. This inhibition is thought to be related to the role of polyphenols in the *P. macrocarpa*, for that to be tested in-vivo. The objective of the study was to
find out that the polyphenols of the *P. macrocarpa* could induce apoptosis through increased caspase-8 and caspase-9 expression in Balb/c mice via histopathology observation.

2. Method and Material

Animal Experiments: Balb/c 1-2-week, weighing 20-30 gram weight were obtained from UGM Laboratory (LPPT-IV). Mice feed for maintenance during treatment and observation in the laboratory was obtained from LPPT Unit IV UGM. Benzo(a)Pyrene (BaP) 1x1 gram to induce lung cancer was obtained from SIGMA-ALDRICH USA (catalog number: B1760-1G).

In this study, Ethical clearance for experimental animal use in research has been obtained from the Health Research Ethics Commission (KEPK) of the Faculty of Medicine, Diponegoro University at Dr. Kariadi hospital Semarang, Reg. No. 38 / EC / FK / RSDK / 2010. Week 4 after subcutaneous injection in sub-scapula, Balb/c were divided into 2 randomized study groups. In the treatment group, polyphenol crown of god 1x / day, with a dose of 0.02 1x every day. This treatment was carried out for 24 weeks. Each animal from 2 groups (BP control and treatment [BP + polyphenol 50 mg]), terminated at weeks 8, 17 and 26 for observation of different parameters. The total number of experimental animals was 30 (N = 30, n = 5 for each time point), plus 8 for the first and second surgery aimed at knowing that the mice had entered hyperplasia, resulting in 40 animals. Dropouts were performed on 2 mice that died after induction of Benzo(a)Pyrene (BaP) stage 2.

Experimental Design: total of 40 Balb/c 1-2 weeks old were adapted for a week by sterilization with adequate lighting. Induction of lung tumor was done according to carcinogen test conducted by [16]; [17]; [18]. The first induction was performed on day 1 with a dose of 0.2 ml/0.025 cc. Second induction at day 8 with dose 0.4 ml/0.025 cc and third induction at day 15 with dose 0.8 ml/0.025 cc. Each mice received subcutaneous lung tumor induction at the subcapsular region with 0.1 ml of the concentration suspension B(a)P 0.2 mg dissolved in DMSO (single dose). Carcinogens are used within 1 hour after emulsification. After injection, the mice were left alive with their mother, fed water and food ad libitum during the weaning process. DMSO was used as dilution solution and dissolved the BaP (inductor). Further, 8 mice were sacrificed to be able to ascertain the growth of tumor successively in the 4th and 5th weeks; to better observe the development of carcinogenesis entering stage of hyperplasia and dysplasia in mice epithelial cells. Beginning of week 5, Balb/c had entered the hyperplasia stage, were divided into 2 groups at random.

Mice from 2 groups (control and treatment) were terminated at 8th, 17th and 26th weeks for stages of developmental studies. The entire lung organ was excised and washed with 0.9% NaCl solution, dried and fixed with 10% buffer formaldehyde solution for 24 hours and were ready for paraffin blocks. 5 lung lobes were cut on each slide size 4 microns with 4 pieces of tissue and observations were made. The next process, the network was processed into histologic preparations through stages of fixation, dehydration, impregnation and embedding. The tissues of the 2 groups that had been made into paraffin blocks were cut 4 microns thick and then stained with Hematoxylin Eosin (H&E) to calculate the incidence of hyperplasia and dysplasia of the bronchiolar epithelium in lung tissue by light microscopy using 400x magnification. The last process, each paraffin block were cut again into 4 microns thick, histopathology preparations were made for immunohistochemistry (IHC) (the procedure attached). The Preparations were further studied by conducting observations using a light microscope. Positive cell count calculations expressed p53 (wild type), Bcl-2 and Bax, caspase-3,-8,-9 proteins using a light microscope with 400x enlargement in 5 fields of view. The cell cytoplasm that expresses the protein were shown in a brownish color.

Immunohistochemistry: IHC Painting used antibodies labeled horseradish peroxidase enzymes. These antibodies will be bound to their specific proteins. In cells that express proteins positively, labeled enzymes on antibodies recurred will be bound to their specific proteins. In cells that express the protein were shown in a brownish color.

3. Results and Discussion

Research result
Expression Caspase-8

The role polyphenols of the *P. Macrocarpa* to caspase-8 expression was assessed by immunohistochemical analysis which aimed at the evaluation of histopathological observations. Based on observations on caspase-8 expression, there was an increase in caspase-8 expression in the treatment group. Figure 1 shows that the number of positive cells in the bronchiolar region is reduced in the group treated with polyphenolic from Mahkota Dewa or god’s crown plant when compared with the carcinogen control group.

In the carcinogen control group, caspase-8 expression respectively at week 8 was 0.32 ± 0.10, at week 17 of 0.36 ± 0.08 and 0.72 ± 0.30 at week to -26. The control group appeared relatively constant. The treatment group experienced a significant increase. In the polyphenol treatment group at week 8 of 0.64 ± 0.16, it increased at week 17 of 0.92 ± 0.22 and 2.02 ± 1.05 at 26 weeks (see boxplot chart 1). The results of the statistical tests using the Kruskal-Wallis Test showed significant improvement (p = 0.000) by oral polyphenol against caspase-8 expression during carcinogenesis. Further differences between the experimental groups were analyzed using the Mann-Whitney Test as will be discussed in the next section.
Mann-Whitney Test, showing caspase-8 expression was increased in the 8th, 17th and 26th treatment groups compared with the control group. Statistical test of significance level on caspase-8 expression showed significantly higher treatment group compared to control group. Test of significance level on caspase-8 expression showed significantly higher treatment group compared to control group. In the 8th week control group, the test results showed significant ($p = 0.008$) in the 17th and 26th week control groups, while significantly ($p = 0.008$) in the 8th, 17th and 26th treatment groups. At week 17, showed significant ($p = 0.008$) in all treatment groups both at weeks 8, 17 and 26. While control group week 26, test result showed significant ($p = 0.008$) in whole weeks of treatment group.

At week 8, the control group test showed significant ($p = 0.016$) with treatment group. At week 17, the control group test showed significant ($p = 0.008$) with treatment group. While week 26, the control group test showed significant ($p = 0.032$) with treatment group.

Caspase-9 Expression

The role polyphenols of *P. Macrocarpa* to caspase-9 expression was assessed by immunohistochemical analysis aimed at the evaluation of histopathological observations. Based on observations on caspase-9 expression, there was an increase in caspase-9 expression in the treatment group. Figure 2 shows that the number of positive cells in the bronchiolar area decreases in the treated group when compared with the carcinogen control group.

In the control group of carcinogens, the expression of caspase-9 protein each at week 8 was 0.32 ± 0.10, at week 17 of 0.48 ± 0.22 and 0.28 ± 0.10 at week To-26. In the control group it remained relatively constant, although at week 17 it was slightly elevated. In the polyphenol treatment group each experienced a significant increase. In the polyphenol treatment group at week 8 of 0.56 ± 0.16 increased at week 17 of 1.00 ± 0.20 and 2.60 ± 0.28 at 26 weeks (see Boxplot 2 chart). The result of statistical test using Kruskal-Wallis Test showed significant improvement ($p = 0.000$) by oral polyphenol to caspase-9 expression during carcinogenesis. Furthermore, further differences between the experimental groups were analyzed using the Mann-Whitney Test.
A

Group control

No	Group	week	control	treatment
1	Control	8	-	0.016*
		17	-	0.008*
		26	-	0.032*
2	Treatment	8	-	0.016*
		17	-	0.008*
		26	-	-

Group treatment

No	Group	week	control	treatment
1	Control	8	0.016*	0.008*
		17	0.008*	0.008*
		26	0.008*	0.008*
2	Treatment	8	0.016*	0.008*
		17	0.008*	0.008*
		26	-	-

Significant level (p<0.05)
Research data, 2017

B

Caspase-9 Expression

C

No	Group	week	Group/week	
			control	treatment
1	Control	8	0.016*	0.008*
		17	0.008*	0.008*
		26	0.008*	0.008*
2	Treatment	8	0.016*	0.008*
		17	0.008*	0.008*
		26	-	-

Research data, 2017
Figure 2. A. Immunohistochemical analysis shows lung cell populations induced by caspase-9 exposed BaP in the carcinogen control group and the treatment group. Treatment with polyphenols results in an increase in caspase-9 expression in the bronchiolar epithelium. The brown color of the cytoplasm indicates a caspase-9 expression. The cell core looks round-oval in blue-purple (black arrow). Observations with 400X magnification. P1 shows the first surgery of the 8th week and P2 shows the third surgery of the 26th week. B. Boxplot graph of polyphenol effect of crown of god on control group and treatment group on caspase-9 expression on BaP-induced Balb / c strain of mice. C. Results of significance level of caspase-8 expression in control group and treatment group.

Mann-Whitney Test, showing the caspase-9 expression was elevated in the treatment groups at weeks 8, 17 and 26 compared with the control group. Statistical test of significance level on caspase-9 expression showed significantly higher treatment group compared to control group.

Test of significance level on caspase-8 expression showed significantly higher treatment group compared to control group. In the 8th week control group, the test results showed significant (p = 0.016) in the control groups at weeks 17 and 26, whereas significantly (p = 0.008) showed in the 8th, 17th and 26th treatment groups. -17, showed significant (p = 0.008) in all treatment groups both at weeks 8, 17 and 26.

At week 8, the control group test showed significant (p = 0.056) with treatment group. At week 17, the control group test showed a significant (p = 0.016) with the treatment group. While week 26, the control group test showed significant (p = 0.008) with treatment group.

4. Discussion

In this study, caspase-8 and caspase-9 expression in pulmonary carcinogenesis was observed after IHC painting using antibodies labeled horseradish peroxidase enzyme. These antibodies were bound to their specific proteins. The blue color of the cytoplasm indicates caspase-9 expression. The cell core looks round-oval in blue-purple (black arrow). Observations with 400X magnification. P1 shows the first surgery of the 8th week and P2 shows the third surgery of the 26th week. B. Boxplot graph of polyphenol effect of crown of god on control group and treatment group on caspase-9 expression on BaP-induced Balb / c strain of mice. C. Results of significance level of caspase-8 expression in control group and treatment group.

Mann-Whitney Test, showing the caspase-9 expression was elevated in the treatment groups at weeks 8, 17 and 26 compared with the control group. Statistical test of significance level on caspase-9 expression showed significantly higher treatment group compared to control group.

Test of significance level on caspase-8 expression showed significantly higher treatment group compared to control group. In the 8th week control group, the test results showed significant (p = 0.016) in the control groups at weeks 17 and 26, whereas significantly (p = 0.008) showed in the 8th, 17th and 26th treatment groups. -17, showed significant (p = 0.008) in all treatment groups both at weeks 8, 17 and 26.

At week 8, the control group test showed significant (p = 0.056) with treatment group. At week 17, the control group test showed a significant (p = 0.016) with the treatment group. While week 26, the control group test showed significant (p = 0.008) with treatment group.

In this study, caspase-8 and caspase-9 expression in pulmonary carcinogenesis was observed after IHC painting using antibodies labeled horseradish peroxidase enzyme. These antibodies were bound to their specific proteins. In cells that express proteins positively, enzymes labeled on antibodies recurred with DAB chromogen into brown color of the cytoplasm indicates a caspase-9 expression. The cell core looks round-oval in blue-purple (black arrow). Observations with 400X magnification. P1 shows the first surgery of the 8th week and P2 shows the third surgery of the 26th week. B. Boxplot graph of polyphenol effect of crown of god on control group and treatment group on caspase-9 expression on BaP-induced Balb / c strain of mice. C. Results of significance level of caspase-8 expression in control group and treatment group.

4. Discussion

In this study, caspase-8 and caspase-9 expression in pulmonary carcinogenesis was observed after IHC painting using antibodies labeled horseradish peroxidase enzyme. These antibodies were bound to their specific proteins. In cells that express proteins positively, enzymes labeled on antibodies recurred with DAB chromogen into brown color of the cytoplasm indicates a caspase-9 expression. The cell core looks round-oval in blue-purple (black arrow). Observations with 400X magnification. P1 shows the first surgery of the 8th week and P2 shows the third surgery of the 26th week. B. Boxplot graph of polyphenol effect of crown of god on control group and treatment group on caspase-9 expression on BaP-induced Balb / c strain of mice. C. Results of significance level of caspase-8 expression in control group and treatment group.

Mann-Whitney Test, showing the caspase-9 expression was elevated in the treatment groups at weeks 8, 17 and 26 compared with the control group. Statistical test of significance level on caspase-9 expression showed significantly higher treatment group compared to control group.

Test of significance level on caspase-8 expression showed significantly higher treatment group compared to control group. In the 8th week control group, the test results showed significant (p = 0.016) in the control groups at weeks 17 and 26, whereas significantly (p = 0.008) showed in the 8th, 17th and 26th treatment groups. -17, showed significant (p = 0.008) in all treatment groups both at weeks 8, 17 and 26.

At week 8, the control group test showed significant (p = 0.056) with treatment group. At week 17, the control group test showed a significant (p = 0.016) with the treatment group. While week 26, the control group test showed significant (p = 0.008) with treatment group.

In this study, caspase-8 and caspase-9 expression in pulmonary carcinogenesis was observed after IHC painting using antibodies labeled horseradish peroxidase enzyme. These antibodies were bound to their specific proteins. In cells that express proteins positively, enzymes labeled on antibodies recurred with DAB chromogen into brown color of the cytoplasm indicates a caspase-9 expression. The cell core looks round-oval in blue-purple (black arrow). Observations with 400X magnification. P1 shows the first surgery of the 8th week and P2 shows the third surgery of the 26th week. B. Boxplot graph of polyphenol effect of crown of god on control group and treatment group on caspase-9 expression on BaP-induced Balb / c strain of mice. C. Results of significance level of caspase-8 expression in control group and treatment group.

Mann-Whitney Test, showing the caspase-9 expression was elevated in the treatment groups at weeks 8, 17 and 26 compared with the control group. Statistical test of significance level on caspase-9 expression showed significantly higher treatment group compared to control group.

Test of significance level on caspase-8 expression showed significantly higher treatment group compared to control group. In the 8th week control group, the test results showed significant (p = 0.016) in the control groups at weeks 17 and 26, whereas significantly (p = 0.008) showed in the 8th, 17th and 26th treatment groups. -17, showed significant (p = 0.008) in all treatment groups both at weeks 8, 17 and 26.

At week 8, the control group test showed significant (p = 0.056) with treatment group. At week 17, the control group test showed a significant (p = 0.016) with the treatment group. While week 26, the control group test showed significant (p = 0.008) with treatment group.
then activate procaspase-3 and procaspase-7. Activated Caspase will then activate procaspase-9 and form a positive reciprocal activation path [21]; [28].

In this study, oral administration polyphenolic p. Macrocarpa could increase caspase-9 expression in the treatment group compared with the control group (not treated) in mice. This result is shown through statistical tests with (p = 0.000). Because of the p value <0.05 (0.000), the crown polyphenols of the gods can harbor cell apoptosis by increasing the caspase-9 expression in Balb/c.

The results of this study support previous studies conducted by [29] in which the administration of black tea polyphenols in the treatment group increased the expression of caspase-9 compared to the control group [29]. This increase is related to the role of polyphenols in inhibiting the activation of procaspase-9 which may lead to activation of caspase-9 thus activating caspase-3.

5. Conclusions and Recommendations

Based on the analysis of the results and discussion of the research, it can be concluded that there is an increase in expression of caspase-8 and caspase-9 expression in the mice of Balb/c induced Benzo(a)pyrene.

There is a need to conduct further research to find out more on the role of polyphenols of P. Macrocarpa as anti-cancer by evaluating on the receptor path of death, it is necessary to measure the FAS protein that contributes to the increase in caspase-8. In addition, in this pathway, TNF-α is also required to contribute to NF-κβ that causes apoptosis. The study is still limited to molecular marker of cell proliferation and apoptosis. For that, further research is needed related to molecular changes in cancer so that testing can be continued in clinical research for patients with lung cancer.

Acknowledgement

1. Laboratory chief LPPT-IV Gadjah Mada University of Yogyakarta. Prof. Dr. drh. Pudji Astuti, M.P who has allowed and assisted in conducting animal research in laboratory experiments.
2. Laboratory chief Anatomical Pathology Faculty of Medicine Universitas Gadjah Mada dr. Priyono Tirtoprodjo, Sp.PA (K) who has assisted in making preparations with HE painting, performed IHC cuts in the laboratory.
3. Laboratory chief Anatomical Pathology dr. Sardjito Yogyakarta dr. Priyono Tirtoprodjo, Sp.PA(K) who has assisted in conducting IHC painting in the Laboratory.
4. Mr. Yunadir and Mr. Sumantri in Anatomical Pathology UGM and Mrs. Agustine Siswantono, in Anatomical Pathology RSUD dr. Sardjito is very helpful in immunohistochemical rolling and painting during the study.
5. Dr. dr. Harijadi, Sp.PA(K), staff Anatomical Pathology Universitas Gadjah Mada Yogyakarta who has taken the time to read the results of the research.

REFERENCES

[1] Li Y, Li X, Hussain M & Sarkar FH. Regulation of microtubule, apoptosis, and cell cycle-related genes by Taxotere in prostate cancer cells analyzed by microarray. Neoplasia 2004, 6(2): 158-167.
[2] Choudhuri T, Pal S, Agwawal ML, Das T, Sa G. Curcumin induces apoptosis in human breast cancer cell through p53-dependent Bax induction. FEBS Letters 2002; 512: 334-340.
[3] Voussen KH, Lu X. Live or let die: the cell's response to p53. Nat Rev Cancer. 2002 Aug; 2(8): 594-604.
[4] Shivapurkar N, Reddy I, Chaudhary PM, Gazdar AF. Apoptosis and lung cancer: a review. J. of Cell. Biochem. 2003; 88; 885-898.
[5] Crighton D and Ryan KM. Splicing DNA-damage responses to tumor cell death. Biochimica et Biophysica Acta 2004; 1705: 3-15.
[6] Bode AM, Dong Z. Targeting signal transduction pathways by chemopreventive agents. Mutat. Res 2004b; 555: 33-51.
[7] Zhai S, Dai R, Friedman F, Vestal R. Comparative inhibition of human cytochromes p450 1A1 and 1A2 by flavonoids. Drug Metabolism and Disposition 2008; 26: 989-992.
[8] Singh RP, Agarwal P, Yim D, Agarwal C, Agarwal R. Acacetin inhibits cell growth and cell cycle progression and induced apoptosis in human prostate cancer cells: structure-activity relationship with linarin and linarin acetate. Carcinogenesis 2005; 26: 845-85.
[9] Frei B and Higdon J. V. Antioxidant activity of tea polyphenols in vivo: evidence from animal studies. Journal of Nutrition 2003; 133: 3275S-3284S.
[10] Wardhani HR, Nawawi A, Adnyana KI. Bioenophenone glikosida from red fruit of Paleria macrocarpa and activity to DPPH and murine leukemia P-388 cells. Indonesian bulletin about natural chemical products 2004; 4 (2): 67-70.
[11] Rahmawati E, Dewoto HR, Wuyung PE. Anticancer activity study of ethanol extract of mahkota dewa fruit pulp (Phaleria macrocarpa) (Scheff.) Boerl.) in C3H mouse mammary tumor induced by transplantation. Med. Indonesia 2006; 15(4): 217-222.
[12] Widyasari A, Riastiti Y, Astuti I, Susilowati R, Harijadi. Efect of Paleria macrocarpa to expretion caspase-3 activity to cel line Ca colon WiDr. Berkala Ilmu Kedokteran 2006; 38(1): 24-29.
[13] Faried A, Kurnia D, Faried L. S, Usman N, Miyazaki T, Kato H, Kuwano H. Anticancer effects of gallic acid isolated from Indonesian herbal medicine, Phaleria
Biomolecular Aspect of Apoptosis Pathway: Caspase-8 and Caspase-9 on Polifenol Exposure of *Phaleria macrocarpa* (Scheff.) Boerl. on Mice Balb/c

1. Lisdavati E. *Buah mahkota dewa* (*Phaleria macrocarpa* (Scheff.) Boerl.), toksisitas, efek antioksidan dan efek antikanker berdasarkan uji penapisan farmakologi. J. Med. Indo. 2002; 9(3): 34-39.

2. Watuguly T, Yotopranoto S, Subekti S. Toxicity test of bioinsecticide extracts of *Phaleria papuana* to mortalitas stadium larva *Aedes aegypti* Linn. In laboratorium. Maj. Ked. Trop. Indo. 2005; 17(1): 33-46.

3. Murwanti R, Meiyanto E, Kristina S. A. Anticarcinogenic effect of ethanolic extract of *Curcuma zedoaria* Rosc. on the growth of lung tumor induced by benzo(a)pyrene. Majalah Farmasi Indonesia 15(1): 156-161.

4. Banerjee S, Manna S, Mukherjee S, Pal Debalina, Panda CKr, Das S. Black tea polyphenols restrict benzo(a)pyrene-induced mouse lung cancer progression through inhibition of Cox-2 and induction of caspase-3 expression. Asian Pacific J Cancer Prev 2006a; 7: 661-666.

5. Mohan KPVC, Devaraj H, Prathiba D, Hara Y, Nagini S. Antiproliferative and apoptosis inducing effect of lactoferrin and black tea polyphenol combination on hamster buccal pouch carcinogenesis. Bioch. et Biophy. Acta 2006; 1760(10): 1536-44.

6. Letchoumy PV, Mohan KVPC, Prathiba D, Hara Y, Siddavaram N. Comparative evaluation of antiproliferative, antiangiogenic and apoptosis inducing potential of black tea polyphenols in the hamster buccal pouch carcinogenesis model. Journal of Carcinogenesis 2007; 6(19): 1-13.

7. Arnoult D, Gaume B, Karbowiak M, Sharpe JC, Cecconi F, Youle RJ. Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. EMBO J 2003, 22: 4385-4399.

8. Viktorsson K and Lewensohn R. Apoptotic signaling pathways in lung cancer. Journal of Thoracic Oncology 2007; 2(3): 175-179.

9. Fennell DA. Caspase regulation in non–small cell lung cancer and its potential for therapeutic exploitation. Clinical Cancer Research 2005; 11: 2097-2105.

10. Kischkel FC, Lawrence DA, Tinel A. Death receptor recruitment of endogeneus caspase-10 and apoptosis initiation in the absence of caspase-8. J Biol Chem 2001; 276: 46639-46.

11. Zhang Y. Cancer-preventive isothiocyanates: measurement of human exposure and mechanism of action. Mutat. Res. 2004; 555: 173-190.

12. Hayakawa S, Saeki K, Sazuka M, et al. Apoptosis induction by epigallocatechin gallate involves its binding to Fas. Biochem Biophys Res Commun 2001, 285: 1102-6.

13. Selvendiran K, Koga H, Ueno T, Yoshida T, Maeyama M, Torimura T, Yano H, Kojiro M, Sata M. Luteolin promotes degradation in signal transducer and activator of transcription 3 in human hepatoma cells: an implication for the antitumor potential of flavonoids. Cancer Res 2006; 66: 4826-34.

14. Johnson CR and Jarvis WD. Caspase-9 regulation: An update. Apoptosis 2004; 9: 423-427.

15. Letchoumy PV, Mohan KVPC, Prathiba D, Hara Y, Siddavaram N. Comparative evaluation of antiproliferative, antiangiogenic and apoptosis inducing potential of black tea polyphenols in the hamster buccal pouch carcinogenesis model. Journal of Carcinogenesis 2007; 6(19): 1-13.