Niclosamide Suppresses the Expansion of Follicular Helper T Cells and Alleviates Disease Severity in Two Murine Models of Lupus via STAT3

Se Gwang Jang
The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea https://orcid.org/0000-0003-0518-5975

Jaeseon Lee
The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

Seung-Min Hong
The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

Young-Seok Song
The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

Min Jun Kim
The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

Seung-Ki Kwok
Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

Mi-La Cho
The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

Sung-Hwan Park (rapark@catholic.ac.kr)
Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea https://orcid.org/0000-0003-1711-2060

Research

Keywords: systemic lupus erythematosus, MRL/lpr, R848-induced model, Niclosamide, STAT3, follicular helper T cells
Abstract

Background. Autoantibody production against endogenous cellular components is a pathogenic feature of systemic lupus erythematosus (SLE). Follicular helper T (T_{FH}) cells aid in B cell differentiation into autoantibody-producing plasma cells (PCs). The IL-6 and IL-21 cytokine-mediated STAT3 signaling are crucial for the differentiation to T_{FH} cells. Niclosamide is an anti-helminthic drug used to treat parasitic infections but also exhibits a therapeutic effect on autoimmune diseases due to its potential immune regulatory effects. In this study, we examined whether Niclosamide treatment could relieve lupus-like autoimmunity by modulating the differentiation of T_{FH} cells in two murine models of lupus.

Methods. Ten-week-old MRL/lpr mice were orally administered with 100 mg/kg of Niclosamide or with 0.5% methylcellulose (MC, vehicle) daily for 7 weeks. TLR7 agonist, resiquimod was topically applied to an ear of 8-week-old C57BL/6 mice 3 times a week for 5 weeks. And they were orally administered with 100 mg/kg of Niclosamide or with 0.5% MC daily for 5 weeks. Every mouse was analyzed for lupus nephritis, proteinuria, autoantibodies, immune complex, immune cell subsets at the time of the euthanization.

Results. Niclosamide treatment greatly improved proteinuria, anti-dsDNA antibody levels, immunoglobulin subclass titers, histology of lupus nephritis, and C3 deposition in MRL/lpr and R848-induced mice. In addition, Niclosamide inhibited the proportion of T_{FH} cells and PCs in the spleens of these animals, and effectively suppressed differentiation of T_{FH}-like cells and expression of associated genes in vitro.

Conclusions. Niclosamide exerted therapeutic effects on murine lupus models by suppressing T_{FH} cells and plasma cells through STAT3 inhibition.

Background

Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune disease, with manifestations in multiple organ systems [1]. Damage to tissues in SLE results from the production of autoantibodies and immune complexes, mediated by the interplay between the innate and adaptive immune responses of autoreactive B and T lymphocytes [2, 3]. Although the exact pathogenesis of SLE has not yet been elucidated, various factors are known to be involved in driving SLE [1, 4].

Follicular helper T (T_{FH}) cells are a specialized subset of CD4^+ T cells required for germinal center (GC) formation and ultimately the development of memory B cells and high-affinity long-lived plasma cells (PCs) [5]. T_{FH} cells express high levels of the chemokine receptor CXCR5, which promotes the migration of T_{FH} cells to the B cell follicles in response to the specific ligand CXCL13 [6]. The transcription factor B cell lymphoma 6 (Bcl-6) is a master regulator of T_{FH} cells and is critical for T_{FH} cell differentiation [7]. However, additional transcription factors, including interferon-regulatory factor 4 (IRF4), basic leucine zipper transcriptional factor ATF-like (BATF), and MAF, also play an important role in T_{FH} cell differentiation [8]. B lymphocyte-induced maturation protein 1 (Blimp-1) has been found to be the most
downregulated transcription factor in T_{FH} cells [9], and acts as a suppressor of T_{FH} cell differentiation [10]. Circulating T_{FH} cells are significantly increased in the blood of SLE patients and correlate with disease severity. In addition, T_{FH} cells are expanded in lupus-prone mice and lead to an increase in IL-21 production [4, 11].

Signal transducer and activator of transcription 3 (STAT3) plays a key role in regulating inflammation and innate/adaptive immune responses [12]. STAT3 promotes T_{FH} cell differentiation by positively regulating the transcription factors Bcl-6 and T cell factor 1 (TCF-1) [13, 14]. STAT3 signaling is enhanced by IL-6 and IL-21, which promotes the expression of Bcl-6. Previous studies have demonstrated that STAT3 is involved in the pathogenesis of SLE; indeed, a STAT3 genetic deficiency, STAT3 inhibitors, and agents that inhibit expression of STAT3 all provide a protective effect against SLE [15–18].

Niclosamide is an FDA-approved anti-helminthic drug, but it is multifunctional and has also been reported by several groups to play a potential role in the treatment of various solid tumors [19, 20]. In addition, it may also be effective against autoimmune diseases and renal fibrosis due to its potential anti-inflammatory effects [21, 22]. Further, Niclosamide is a potent inhibitor of STAT3 signaling [23]. However, the effect of Niclosamide on T_{FH} cells in lupus-prone mice has not yet been investigated.

In this study, we examined whether in vivo treatment with Niclosamide had a therapeutic effect in lupus-prone MRL/lpr and R848-induced mice by examining proportion of T_{FH} cells and PCs in the spleen and peripheral blood (PB). We additionally investigated the impact of Niclosamide on T_{FH}-like cells in vitro. The T_{FH} cells were sensitive to inhibition of STAT3 signaling both in vitro and in vivo. STAT3 signaling inhibition resulted in decreased numbers of T_{FH} cells in the spleen, which was correlated with an improvement in the lupus manifestation. Our findings demonstrate that Niclosamide is a critical regulator of T_{FH} cells, which are a therapeutic target for SLE.

Materials And Methods

Animals

MRL/lpr mice were purchased from SLC Inc. (Japan). C57BL/6 mice were purchased from OrientBio (Korea). Niclosamide (Sigma-Aldrich, St Louis, MO, USA) was resuspended in 0.5% methyl cellulose (Sigma-Aldrich, St Louis, MO, USA) for in vivo studies or in 5% DMSO for in vitro use. Female 10-week-old MRL/lpr mice received daily administration of vehicle ($n = 7$) or Niclosamide ($n = 7$; 100 mg/kg) for 7 weeks by oral gavage. All mice were sacrificed at 16 weeks of age. Female 8-week-old C57BL/6 mice were treated via epicutaneous application of 50 μg of the TLR7 agonist resiquimod (R848; Sigma-Aldrich) dissolved in 10 μl of acetone, with or without 10 mg/kg of Niclosamide daily for 4 weeks, or acetone alone as a control, to the right ear three times a week until euthanasia. All procedure of animal research were provided in accordance with the Laboratory Animals Welfare Act, the Guide for the Care and Use of Laboratory Animals and the Guidelines and Policies for Rodent experiment provided by the
IACUC (Institutional Animal Care and Use Committee) in school of medicine, The Catholic University of Korea. (Approval numbers: CUMS-2018-0341-02 and 2018-0236-02).

Enzyme-linked immunosorbent assay (ELISA)

Cytokines in sera or spleen lysates were assayed using mouse IL-6 and IL-21 Duoset ELISA kits (R&D systems, Minneapolis, MN, USA) according to the manufacturer’s instructions. The serum levels of anti-dsDNA IgG antibodies were measured by ELISA following the manufacturer’s instructions (Alpha Diagnostics, San Antonio, TX, USA). Total IgG, IgG1, IgG2a, and IgM levels in the sera of the mice were measured by ELISA following the manufacturer’s instructions (Bethyl Laboratories, Montgomery, TX, USA).

Measurement of urine albumin to creatinine ratio

Urine albumin and creatinine concentrations were measured using a mouse albumin ELISA assay (Bethyl Laboratories) and a creatinine assay (R&D systems), respectively, according to the manufacturer’s directions. Urine albumin excretion was expressed as the ratio of urine albumin to creatinine (ACR).

Histological assessment of the kidney

Kidney tissues were fixed with formalin and embedded in paraffin, cut into 3 μm sections, and stained with periodic acid–Schiff (PAS) stain. Kidney histological pathology was evaluated using the lupus nephritis classification system, as described [24].

Immunofluorescence

Kidney tissues were stained with anti-C3 (Abcam, Cambridge, UK) at 4 °C overnight, followed by 2 h incubation with secondary antibodies conjugated to Alexa488. Nuclei were stained with 4',6-diamidino-2-phenylindole (DAPI; Invitrogen, Carlsbad, CA, USA). Isotype control staining was conducted via probing with rat/rabbit/mouse IgG, rather than primary antibodies. Confocal images were acquired using an LSM 800 confocal microscope (Zeiss, Oberkochen, Germany).

Flow cytometry

Spleens were minced in RPMI 1640 medium and filtered through a 40-μm cell strainer to prepare single-cell suspensions. For intracellular staining, cells were stimulated with 25ng/mL phorbol 12-myristate 13-acetate (PMA, Sigma-Aldrich) and 250ng/mL ionomycin (Sigma-Aldrich) with monensin-containing GolgiStop (BD biosciences, San Jose, CA, USA) for 5h. Cells were harvested and stained with surface eFluor780-fixable viability dye (FVD) (eBioscience, Carlsbad, CA, USA), Pacific Blue-anti-CD90.2 (Biolegend, San Diego, CA, USA), PerCP-Cy5.5-anti-CD4 (Biolegend), FITC-anti-CXCR5 (Biolegend), Brilliant Violet 605-anti-PD-1 (Biolegend), APC-anti-CD19 (Biolegend), PE-anti-CD138 (BD Biosciences), and Alexa Fluor A488-anti-GL7 (eBioscience) antibodies. Blood samples were collected from the retro-orbital sinus. Red blood cell were lysed with an ammonium-chloride-potassium lysis buffer, then stained with surface
eFluor 780-Fixable viability dye (eBioscience), Pacific Blue-anti-CD90.2, PerCP-Cy5.5-anti-CD4, and PE-anti-CD8 antibodies. Flow cytometric analysis was performed on a LSRII Fortessa (BD biosciences), and the data were analyzed using FlowJo software (Tree Star, Ashland, OR, USA).

Western Blot

Total protein was extracted using RIPA buffer containing Halt protease/phosphatase inhibitor cocktail (Thermo Fisher Scientific, Rockford, IL, USA). For immunoblotting, 30 µg of protein was separated using 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), then transferred onto polyvinylidene fluoride membrane (Bio-Rad, Hercules, CA, USA), and probed with the following antibodies: anti-p-STAT3 Y705, anti-STAT3, anti-Bcl-6, anti-TCF-1 (Cell signaling technology, Danvers, MA, USA), and anti-β-actin (Sigma-Aldrich). Subsequently, the membranes were incubated with horseradish peroxidase-conjugated goat anti-rabbit IgG or goat anti-mouse IgG (Thermo Fisher Scientific). Reactive proteins on the membrane were visualized using SuperSignal® West Pico Chemiluminescent substrate (Thermo Fisher Scientific), and the membrane was then exposed on an Amersham Imager 600 (GE healthcare, Healthcare, Chicago, IL, USA).

Real-time PCR

Total RNA was collected using an RNA iso plus reagent (Takara, Kusatsu, Japan). Up to 1 ~ 2 µg of total RNA was converted to complementary DNA using a Transcriptor First-Strand cDNA Synthesis kit (Roche Diagnostics, Penzberg, Germany). A LightCycler 96 instrument (Roche) was used for PCR amplification and analysis. All reactions were performed with SYBR Green I Master Mix, according to the manufacturer's instructions. Primers were designed using the web tool from GenScript® (http://www.genscript.com). Sequences are as follows (forward and reverse, respectively): *beta actin*, 5′-GGACTTCGAGCAAGAGATGG -3′ and 5′- TGTGTTGGGGGTACAGGTCTTT -3′; *Bcl-6*, 5′-GCCGGCTCAATAATCTCGTAACA -3′ and 5′- CCAGCAGTATGGAGGCACATCT -3′; *CXCR5*, 5′-ACTCCTTACCAGTCACC -3′ and 5′- GGAAACGGGAGGTGAACCA -3′; and *Blimp-1*, 5′-ATGGAGGACGCTGATATGAC -3′ and 5′- CCTTACTTACCACGCCAATAAC -3′. All mRNA expression levels were normalized to *beta actin* expression. Relative fold induction was calculated, following the equation $2^{- (ΔCq)}$ or $2^{- (ΔΔCq)}$, where ΔCq is ΔCq (target) - ΔCq (*beta actin*), ΔCq is Cq (stimulated)-Cq (unstimulated), and Cq is the cycle at which the threshold is crossed. PCR product quality was monitored using post-PCR melting curve analysis.

TFH-like cell differentiation

CD4⁺ T cells were purified from spleens of MRL/lpr and C57BL/6 mice using the CD4⁺ T cell Isolation Kit (Miltenyi Biotec, Bisley, UK) according to the manufacturer's instructions. For TFH-like cell differentiation, purified CD4⁺ T cells were seeded at 1 x 10⁶ cells/well and were activated with mouse T-activator CD3/CD28 Dynabeads™ (Invitrogen), and treated with 20 ng/ml IL-6, 20 ng/ml IL-21, 10 µg/ml anti-IL-4, 10 µg/ml anti-IFN-γ, and 20 µg/ml anti-TGF-β (R&D Systems) for 4 days with or without Niclosamide.
Co-culture of mouse B cells and T\textsubscript{FH}-like cells

T\textsubscript{FH}-like cells from spleens of C57BL/6 mice were first cultured for 4 days with or without Niclosamide. B cells were purified from spleens of C57BL/6 mice using a B cell Isolation kit (Miltenyi Biotec) according to the manufacturer's instructions. CD19+ B cells were co-cultured with T\textsubscript{FH}-like cells (1 × 106 cells/well, 1:1 ratio) and were stimulated with 50 ng/ml IL-4 (PeproTech, Rocky Hill, NJ, USA), 5 μg/ml anti-IgM (Jackson ImmunoResearch, West Grove, PA, USA), and 5 μg/ml anti-CD40 (eBioscience) in Roswell Park Memorial Institute (RPMI)-1640 medium (Gibco, Carlsbad, CA, USA) with 10% FBS for 3 days. IgG were measured using an ELISA kit (Bethyl Laboratories).

Statistics analysis

Statistical analyses were performed in GraphPad Prism version 7.0 software (GraphPad, San Diego, CA, USA). Statistical significance was determined by t-tests for two groups, and by one-way ANOVA with Tukey's multiple comparisons tests for three or more groups. P < 0.05 was considered statistically significant.

Results

Effects of Niclosamide on lupus nephritis in MRL/lpr mice

To assess whether Niclosamide ameliorates clinical features of LN, we orally administered 10-week-old MRL/lpr mice with Niclosamide or vehicle daily for 7 weeks. While the kidney weights increased with disease progression in this spontaneous lupus model, Niclosamide treatment inhibited kidney enlargement (Fig. 1a). Proteinuria, one of the major measures of LN, was reduced upon Niclosamide treatment, in contrast to the vehicle (Fig. 1b). We next measured autoantibodies in these mice, which is the hallmark of SLE. Niclosamide treatment decreased serum levels of anti-dsDNA IgG (Fig. 1c), in addition to the serum levels of IgG, IgG1, and IgM (Fig. 1d). IL-6 and IL-21 are pro-inflammatory cytokine for lupus progression, and also important regulators of T\textsubscript{FH} cell generation. We found that Niclosamide treatment significantly decreased the serum levels of IL-6 and IL-21 (Fig. 1e).

In addition, MRL/lpr mice developed severe renal injury, which was characterized by diffuse glomerular, perivascular, and interstitial mononuclear cell infiltration, tubular cast deposition, increased mesangial matrix, and immune complex deposition. Niclosamide ameliorated these renal pathological features, as judged by changes in the histological scores and C3 immune complex deposition (Fig. 1f and g). These data suggest that Niclosamide treatment significantly prevented LN in MRL/lpr mice.

Niclosamide inhibits CD90.2+ T cell, DNT cell, T\textsubscript{FH} cell and PC differentiation in MRL/lpr mice

To investigate the cell types related to the decreased disease severity by Niclosamide in MRL/lpr mice, we analyzed the proportion of T cell and B cell subsets in spleens and PB. CD90.2+CD4−CD8− double-negative T cells (DNT cells) are expanded in SLE patients, as well as massive splenomegaly and
lymphadenopathy caused by hyperproliferation of DNT cells in MRL/\textit{lpr} mice [25]. T_{FH} cells, defined as CD4^{+} CXCR5^{+} PD-1^{+}, play a crucial role in GC formation and the production of antigen-specific memory B cells and PCs, thereby contributing to SLE disease progression [4, 26]. We analyzed the proportion of CD90.2^{+} T cells, DNT cells, T_{FH} cells and PCs in the spleens and PB of MRL/\textit{lpr} mice. Niclosamide treatment had a significantly lower proportion of spleen CD90.2^{+} T cells than the vehicle treatments. The proportion of PB CD90.2^{+} T cells was significantly decreased in the Niclosamide treatment compared with the vehicle treatment (Fig. 2a and b). Likewise, the spleen DNT cells proportion was decreased by Niclosamide treatment (Fig. 2c and d). We found that the proportion of T_{FH} cells in both samples from these mice were significantly decreased by Niclosamide treatment (Fig. 2e and f). In addition, The proportion of Th1, Th17, and regulatory T (Treg) cells were analyzed in spleen samples using flow cytometry. The alteration of the spleen Th1 and Th17 cells proportion was not significant (Additional file 1: Figure S1a-c). However, Treg cells, characterized by immunomodulatory capabilities, were significantly increased by Niclosamide treatment (Additional file 1: Figure S1d and e). In addition to, the proportion of PCs in both samples from these mice were significantly reduced by Niclosamide treatment (Fig. 2g and h). These data indicate that Niclosamide could suppress the number of CD90.2^{+} cells, DNT cells, T_{FH} cells and PCs in the spleens and PB of MRL/\textit{lpr} mice.

Niclosamide regulates major transcription factors involved in T_{FH} cell differentiation

We next analyzed the activity of the STAT3 / Bcl-6 / TCF-1 pathways in the spleens of each animal group to elucidate the molecular mechanisms regulating the effects of Niclosamide treatment. Western blot analysis revealed that expression of p-STAT3 / Bcl-6 / TCF-1 was significantly decreased in the splenocytes of Niclosamide-treated mice as compared to vehicle-treated mice (Fig. 3a). Previous studies have shown that Bcl-6, CXCR5, and Blimp-1 are important regulators of T_{FH} cell differentiation [9, 27]. Niclosamide significantly reduced \textit{Bcl-6} and \textit{CXCR5} mRNA expression, while the mRNA levels of \textit{Blimp-1}, which acts as a T_{FH} cell differentiation suppressor, was not significantly increased in spleen CD4^{+} T cells (Fig. 3b). In addition, Niclosamide treatment significantly decreased the spleen levels of IL-6 and IL-21 (Fig. 3c). Collectively, these results indicate that Niclosamide is effective in regulating T_{FH} cell-related factors.

STAT3 is important for T_{FH}-like cell differentiation and B cell IgG production in vitro

We further investigated the influence of Niclosamide on T_{FH}-like cell differentiation \textit{in vitro}, and found that Niclosamide could inhibit T_{FH}-like cell differentiation (Fig. 4a). Niclosamide treatment reduced the protein levels of p-STAT3 and TCF-1 in cultured T_{FH}-like cells (Fig. 4b). In addition, Niclosamide inhibited mRNA expression of \textit{Bcl-6} and \textit{CXCR5}, and increased \textit{Blimp-1} during the differentiation of T_{FH}-like cells (Fig. 4c). We next examined whether T_{FH}-like cells might play a pathogenic role in SLE by supporting the production of autoantibodies. When B cells were cultured with T_{FH}-like cells, IgG production was significantly increased compared to CD4^{+} T cells. However, when B cells were cultured with Niclosamide-
treated T_{FH}-like cells, IgG production markedly decreased (Fig. 4d). By enhancing antibody production \textit{in vitro}, T_{FH}-like cells thus demonstrated their capacity to promote an antibody response. Overall, these results indicate that Niclosamide not only inhibits T_{FH}-like cell differentiation, but also B cell IgG production.

Effects of Niclosamide on lupus nephritis in an R848-induced mouse model

To further verify our findings in a different murine model, wild-type C57BL/6 mice received topical treatment on their right ears with the TLR-7 agonist R848 3 times weekly for 5 weeks. We orally administered 8-week-old R848-induced mice with Niclosamide or vehicle daily for 5 weeks. R848-induced mice exhibited splenomegaly, while Niclosamide treatment significantly reduced the spleen enlargement in these animals, although the cervical lymph node (cLN) size was not significantly different (Fig. 5a–c). The R848 group developed proteinuria compared with the control group, but the Niclosamide-treated animals showed significantly diminished proteinuria compared with the R848 group (Fig. 5d). Serum levels of anti-dsDNA IgG, IgG, and IgG2a were significantly increased in the R848-induced mice as compared to the control mice. However, Niclosamide treatment significantly decreased the levels of these factors (Fig. 5e and f). In addition, serum levels of IL-6 and IL-21 were increased following R848 stimulation, while Niclosamide treatment prevented these increases (Fig. 5g). R848-induced mice also developed enlarged hypercellular glomeruli, an increase in the mesangial matrix, moderate perivascular mononuclear cell infiltration, glomerular basement membrane thickening, and immune complex deposition. Niclosamide relieved these renal pathological features, decreased histological scores, and inhibited C3 immune complex deposition (Fig. 5h and i). These results suggest that mice topically treated with R848 developed systemic autoimmunity, but this effect was significantly alleviated by Niclosamide treatment.

Niclosamide inhibits CD4$^+$ T cell, T_{FH} cell, GC B cell, and PC differentiation in R848-induced mice

We next sought to determine whether the proportion of T cell and B cell subsets expanded in response to R848 treatment, and whether this response would be inhibited by Niclosamide. CD4$^+$ T cells, T_{FH} cells, GC B cells, and PCs were significantly increased in the spleens of R848-induced mice (Fig. 6). However, Niclosamide significantly decreased the proportion of CD4$^+$ T cells (Fig. 6a and b). The proportion of T_{FH} cells was also significantly decreased by Niclosamide treatment (Fig. 6a and d). Additionally, when the T cell subsets analysis was performed, Th1 cells were significantly decreased by Niclosamide, while Th17 cells were not affected (Additional file 2: Figure S2). GC B cell proportion in R848-induced mice were inhibited by Niclosamide (Fig. 6e and f). The proportion of PCs in these mice was significantly reduced by Niclosamide treatment (Fig. 6g and h). These data suggest that R848 enhanced CD4$^+$ T cell, T_{FH} cell, GC B cell, and PC differentiation, but the expansion of these cells was dramatically prevented by Niclosamide.

Discussion
Autoreactive antibody production is one of the hallmarks of SLE and plays a critical pathogenic role in LN [28]. T\textsubscript{FH} cells promote autoantibody-producing B cell differentiation in autoimmune diseases. Abnormal expansion of T\textsubscript{FH} cells is a common feature of lupus patients with active disease and is also found in spontaneous and induced models of murine lupus, which suggests that T\textsubscript{FH} cells affect lupus pathogenesis [29, 30]. We hypothesized that STAT3-mediated regulation of T\textsubscript{FH} cells could potentially limit the pathogenicity of the disease. To address this, we used MRL/\textit{lpr} mice and R848-induced mice. MRL/\textit{lpr} mice spontaneously develop a severe lupus-like disease that shares several of the immunologic and clinical manifestations of human lupus [31]. Several studies have shown that T\textsubscript{FH} cells are expanded in the spleens of MRL/\textit{lpr} mice [32, 33]. R848 is an immune-response modifier that activates immune cells through Toll-like receptors (TLRs) 7 and 8 [34]. Epicutaneous application of R848 to C57BL/6 mice induces the development of lupus-like phenotypes, including mild LN [35]. Activation of plasmacytoid dendritic cells (pDCs) by R848 play a critical role in antigen presentation and T cell responses [36]. pDCs induce T\textsubscript{FH} cell differentiation through cytokine secretion, such as type I IFN and IL-6 [26, 37]. Although the T\textsubscript{FH} cell differentiation mechanisms differ between the two mouse models, the differentiation of these cells was significantly inhibited by Niclosamide, thereby alleviating the symptoms of lupus.

STAT3 serves multiple biological functions, including playing roles in proliferation, differentiation, and survival through cytokine-mediated signaling in various cells. STAT3 is especially critical for T\textsubscript{FH} and Th17 cell differentiation [38, 39]. Th17 cells significantly contribute to SLE pathogenesis [40], while inhibition of STAT3 delays the development of lupus pathogenesis by suppressing Th17 cell differentiation [41]. However, we found that Niclosamide did not reduce Th17 cell numbers. In addition, DN T cells, which play a crucial pathological role in the course of lupus disease, are expanded in MRL/\textit{lpr} mice and patients with SLE. In MRL/\textit{lpr} mice, DNT cells have been found to be the most expanded T cell subset, which lead to splenomegaly and lymphadenopathy [25]. Although we suggested that splenomegaly and lymphadenopathy were not significantly reduced by Niclosamide treatment, DNT cell numbers were significantly inhibited. In further studies, we will explore the mechanisms of DNT cell regulation by Niclosamide.

Blimp-1 is a well known antagonist of Bcl-6 that can directly inhibit Bcl-6 expression in T and B cells [42]. Conversely, Bcl-6 can suppress the expression of Blimp-1 [43]. Blimp-1 is a key transcription factor for regulating PC differentiation in B cell lines [44]. Genome-wide association studies have identified multiple SLE-related genes and new susceptibility loci, including Blimp-1 [45]. As mentioned previously, Bcl-6 is strongly upregulated in T\textsubscript{FH} cells [7], while conversely Blimp-1 is the most downregulated transcription factor in T\textsubscript{FH} cells [46]. Bcl-6 and Blimp-1 are mutual master transcription factors regulating T\textsubscript{FH} cell differentiation, and the presence of Bcl-6 coupled with the absence of Blimp-1 is required for T\textsubscript{FH} cell differentiation [9]. In our study, we found that Bcl-6 was significantly decreased in CD4+ T cells by Niclosamide administration in MRL/\textit{lpr} mice, while Blimp-1 was not significantly increased. Further, during T\textsubscript{FH}-like cell differentiation \textit{in vitro}, Bcl-6 was significantly decreased and Blimp-1 was significantly increased by Niclosamide treatment.
TCF-1 is crucial for T cell development, as this transcription factor promotes the formation of memory CD8⁺ T cells, Th2 cells, and TFH cells. TCF-1 is highly expressed and regulates the early stages process of TFH cell differentiation [13]. Xu et al. reported that TCF-1 functions as an upstream regulator of the Bcl-6 / Blimp-1 axis, critical for TFH differentiation [47]. Certain cytokines secreted by immune cells in the disease milieu, such as IL-6 and IL-21 [48, 49], might induce the immediate upregulation of TCF-1 expression through STAT3 signaling. We found that Niclosamide decreased serum levels of IL-6 and IL-21. Niclosamide also inhibited TCF-1 expression in the spleens of MRL/lpr mice and in TFH-like cells.

Conclusion

This study confirmed the therapeutic strategy of Niclosamide for the treatment of lupus. The present study showed that Niclosamide significantly alleviated SLE-like characteristics in MRL/lpr and R848-induced mice models. Our data also demonstrated the regulatory function of Niclosamide on TFH cells in vivo and in vitro. Targeting STAT3 signaling using Niclosamide could be an effective therapy for treating LN.

Abbreviations

SLE: Systemic lupus erythematosus; Tfh: Follicular helper T; PCs: Plasma cells; STAT3: Signal transducer and activator of transcription 3; MC: Methylcellulose; TLR7: Toll-like receptor 7; GC: Germinal center; Bcl-6: B cell lymphoma 6; IRF4: Interferon regulatory factor 4; BATF: Basic leucine zipper transcriptional factor ATF-like; Blimp-1: B lymphocyte-induced maturation protein 1; TCF-1: T cell factor 1; PB: Peripheral blood; ACR: Albumin to creatinine ratio; PAS: Periodic acid–Schiff; DAPI: 4’,6-diamidino-2-phenylindole; PMA: phorbol 12-myristate 13-acetate; FVD: Fixable viability dye; SDS-PAGE: Sodium dodecyl sulfate polyacrylamide gel electrophoresis; DNT: Double-negative T; Treg: regulatory T; cLN: Cervical lymph node; pDC: Plasmacytoid dendritic cells.

Declarations

Acknowledgements

None.

Authors’ contributions

Study conception and design were performed by SGJ, JSL, SKK, SHP, data acquisition was performed by SGJ, JSL, SMH, YSS, MJK and data analysis and interpretation were performed by SGJ, JSL, SKK, MLC, SHP. All authors read and approved the final manuscript.

Funding
This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HI20C1496), Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2020R111A1A01074126).

Availability of data and materials

All data are available in the manuscript or upon request to the authors

Ethics approval and consent to participate

All procedure of animal research were provided in accordance with the Laboratory Animals Welfare Act, the Guide for the Care and Use of Laboratory Animals and the Guidelines and Policies for Rodent experiment provided by the IACUC(Institutional Animal Care and Use Committee) in school of medicine, The Catholic University of Korea. (Approval numbers: CUMS-2018-0341-02 and 2018-0236-02).

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interest.

References

1. Tsokos GC. Systemic lupus erythematosus. N Engl J Med. 2011;365:2110-21.
2. Furumoto Y, Smith CK, Blanco L, et al. Tofacitinib Ameliorates Murine Lupus and Its Associated Vascular Dysfunction. Arthritis Rheumatol. 2017;69:148-60.
3. Vlachou K, Mintzas K, Glymenaki M, et al. Elimination of Granulocytic Myeloid-Derived Suppressor Cells in Lupus-Prone Mice Linked to Reactive Oxygen Species-Dependent Extracellular Trap Formation. Arthritis Rheumatol. 2016;68:449-61.
4. Xu B, Wang S, Zhou M, et al. The ratio of circulating follicular T helper cell to follicular T regulatory cell is correlated with disease activity in systemic lupus erythematosus. Clin Immunol. 2017;183:46-53.
5. Crotty S. Follicular helper CD4 T cells (TFH). Annu Rev Immunol. 2011;29:621-63.
6. Breitfeld D, Ohl L, Kremmer E, et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med. 2000;192:1545-52.
7. Yu D, Rao S, Tsai LM, et al. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity. 2009;31:457-68.
8. Tangye SG, Ma CS, Brink R, Deenick EK. The good, the bad and the ugly - TFH cells in human health and disease. Nat Rev Immunol. 2013;13:412-26.
9. Johnston RJ, Poholek AC, DiToro D, et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science. 2009;325:1006-10.

10. Nurieva RI, Podd A, Chen Y, et al. STAT5 protein negatively regulates T follicular helper (Tfh) cell generation and function. J Biol Chem. 2012;287:11234-9.

11. Gensous N, Schmitt N, Richez C, Ueno H, Blanco P. T follicular helper cells, interleukin-21 and systemic lupus erythematosus. Rheumatology (Oxford). 2017;56:516-23.

12. Hillmer EJ, Zhang H, Li HS, Watowich SS. STAT3 signaling in immunity. Cytokine Growth Factor Rev. 2016;31:1-15.

13. Chen Y, Yu D. TCF-1 at the Tfh and Th1 Divergence. Trends Immunol. 2015;36:758-60.

14. Wu T, Shin HM, Mousean EA, et al. TCF1 Is Required for the T Follicular Helper Cell Response to Viral Infection. Cell Rep. 2015;12:2099-110.

15. Hodge DR, Hurt EM, Farrar WL. The role of IL-6 and STAT3 in inflammation and cancer. Eur J Cancer. 2005;41:2502-12.

16. Ding C, Chen X, Dascani P, et al. STAT3 Signaling in B Cells Is Critical for Germinal Center Maintenance and Contributes to the Pathogenesis of Murine Models of Lupus. J Immunol. 2016;196:4477-86.

17. Edwards LJ, Mizui M, Kyttaris V. Signal transducer and activator of transcription (STAT) 3 inhibition delays the onset of lupus nephritis in MRL/lpr mice. Clin Immunol. 2015;158:221-30.

18. Dang WZ, Li H, Jiang B, et al. Therapeutic effects of artemisinin on lupus-prone MRL/lpr mice are dependent on T follicular helper cell differentiation and activation of JAK2-STAT3 signaling pathway. Phytomedicine. 2019;62:152965.

19. Sack U, Walther W, Scudiero D, et al. Novel effect of antihelminthic Niclosamide on S100A4-mediated metastatic progression in colon cancer. J Natl Cancer Inst. 2011;103:1018-36.

20. Yo YT, Lin YW, Wang YC, et al. Growth inhibition of ovarian tumor-initiating cells by niclosamide. Mol Cancer Ther. 2012;11:1703-12.

21. Thatikonda S, Pooladanda V, Godugu C. Repurposing an old drug for new use: Niclosamide in psoriasis-like skin inflammation. J Cell Physiol. 2020;235:5270-83.

22. Chang X, Zhen X, Liu J, et al. The antihelmenthic phosphate niclosamide impedes renal fibrosis by inhibiting homeodomain-interacting protein kinase 2 expression. Kidney Int. 2017;92:612-24.

23. Ren X, Duan L, He Q, et al. Identification of Niclosamide as a New Small-Molecule Inhibitor of the STAT3 Signaling Pathway. ACS Med Chem Lett. 2010;1:454-9.

24. Kim YY, Park KT, Jang SY et al. HM71224, a selective Bruton's tyrosine kinase inhibitor, attenuates the development of murine lupus. Arthritis Res Ther. 2017;19:211.

25. Wang J, Mizui M, Zeng LF, et al. Inhibition of SHP2 ameliorates the pathogenesis of systemic lupus erythematosus. J Clin Invest. 2016;126:2077-92.

26. Ballesteros-Tato A, Randall TD. Priming of T follicular helper cells by dendritic cells. Immunol Cell Biol. 2014;92:22-7.
27. He L, Gu W, Wang M, et al. Extracellular matrix protein 1 promotes follicular helper T cell differentiation and antibody production. Proc Natl Acad Sci U S A. 2018;115:8621-6.

28. Yu D, Vinuesa CG. Multiple checkpoints keep follicular helper T cells under control to prevent autoimmunity. Cell Mol Immunol. 2010;7:198-203.

29. Craft JE. Follicular helper T cells in immunity and systemic autoimmunity. Nat Rev Rheumatol. 2012;8:337-47.

30. Faliti CE, Gualtierotti R, Rottoli E, et al. P2X7 receptor restrains pathogenic Tfh cell generation in systemic lupus erythematosus. J Exp Med. 2019;216:317-36.

31. Liu J, Karypis G, Hippen KL, et al. Genomic view of systemic autoimmunity in MRL/lpr mice. Genes Immun. 2006;7:156-68.

32. Yang X, Yang J, Chu Y, et al. T follicular helper cells mediate expansion of regulatory B cells via IL-21 in Lupus-prone MRL/lpr mice. PLoS One. 2013;8:e62855.

33. Yang J, Yang X, Yang J, Li M. Baicalin ameliorates lupus autoimmunity by inhibiting differentiation of Tfh cells and inducing expansion of Tfr cells. Cell Death Dis. 2019;10:140.

34. Lee J, Chuang TH, Redecke V, et al. Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: activation of Toll-like receptor 7. Proc Natl Acad Sci U S A. 2003;100:6646-51.

35. Yokogawa M, Takaishi M, Nakajima K, et al. Epicutaneous application of toll-like receptor 7 agonists leads to systemic autoimmunity in wild-type mice: a new model of systemic Lupus erythematosus. Arthritis Rheumatol. 2014;66:694-706.

36. Rajagopal D, Paturel C, Morel Y, Uematsu S, Akira S, Diebold SS. Plasmacytoid dendritic cell-derived type I interferon is crucial for the adjuvant activity of Toll-like receptor 7 agonists. Blood. 2010;115:1949-57.

37. Blanco P, Ueno H, Schmitt N. T follicular helper (Tfh) cells in lupus: Activation and involvement in SLE pathogenesis. Eur J Immunol. 2016;46:281-90.

38. Egwuagu CE. STAT3 in CD4+ T helper cell differentiation and inflammatory diseases. Cytokine. 2009;47:149-56.

39. Ray JP, Marshall HD, Laidlaw BJ, Staron MM, Kaech SM, Craft J. Transcription factor STAT3 and type I interferons are corepressive insulators for differentiation of follicular helper and T helper 1 cells. Immunity. 2014;40:367-77.

40. Kono M, Yoshida N, Maeda K, Tsokos GC. Transcriptional factor ICER promotes glutaminolysis and the generation of Th17 cells. Proc Natl Acad Sci U S A. 2018;115:2478-83.

41. Kluger MA, Melderis S, Nosko A, et al. Treg17 cells are programmed by Stat3 to suppress Th17 responses in systemic lupus. Kidney Int. 2016;89:158-66.

42. Martins G, Calame K. Regulation and functions of Blimp-1 in T and B lymphocytes. Annu Rev Immunol. 2008;26:133-69.

43. Shaffer AL, Yu X, He Y, Boldrick J, Chan EP, Staudt LM. BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity. 2000;13:199-212.
44. Shapiro-Shelef M, Lin KI, Savitsky D, Liao J, Calame K. Blimp-1 is required for maintenance of long-lived plasma cells in the bone marrow. J Exp Med. 2005;202:1471-6.

45. Gateva V, Sandling JK, Hom G, et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat Genet. 2009;41:1228-33.

46. Fazilleau N, McHeyzer-Williams LJ, Rosen H, McHeyzer-Williams MG. The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding. Nat Immunol. 2009;10:375-84.

47. Xu L, Cao Y, Xie Z, et al. The transcription factor TCF-1 initiates the differentiation of T(FH) cells during acute viral infection. Nat Immunol. 2015;16:991-9.

48. Cronin JG, Kanamarlapudi V, Thornton CA, Sheldon IM. Signal transducer and activator of transcription-3 licenses Toll-like receptor 4-dependent interleukin (IL)-6 and IL-8 production via IL-6 receptor-positive feedback in endometrial cells. Mucosal Immunol. 2016;9:1125-36.

49. Deng XM, Yan SX, Wei W. IL-21 acts as a promising therapeutic target in systemic lupus erythematosus by regulating plasma cell differentiation. Cell Mol Immunol. 2015;12:31-9