Hybridogenic Activity of Invasive Species of Asteraceae

Maria A. Galkina and Yulia K. Vinogradova

Abstract

We studied taxa from genus *Bidens*, *Solidago*, and *Erigeron*, sect. *Conyza* (Asteraceae). By analyzing the nucleotide sequences of the internal transcribed spacer (ITS1)-ITS2 site, the hybrid origin of the *Bidens × decipiens*, previously attributed to the North American alien species *B. connata*, was confirmed. The analysis of trnL-trnF sequences showed that the native *B. cernua* is the maternal species and the invasive *B. frondosa* is the paternal species in all probabilities. Diagnostic morphological features of the three *Solidago* taxa growing together in the vicinity of Pskov have been studied: a native *S. virgaurea*, an invasive species of North American origin *S. canadensis*, and their hybrid *S. × niederederi*. *S. × niederederi* has an intermediate position between *S. virgaurea* and *S. canadensis*. The hybrid origin of *S. × niederederi* is proven by molecular analysis of nuclear DNA nucleotide sequences (ITS1-ITS2 site). It is not yet possible to unambiguously answer the question which parent species is maternal and which is paternal. We also studied invasive species of the genus *Erigeron* sect. *Conyza* in the Mediterranean. Occasionally occurring in Southern Europe, individuals of *E. canadensis × E. sumatrensis* with intermediate morphological features, described as “*Conyza × rouyana*,” are likely unstable and soon “absorbed” by the parent species *E. sumatrensis*. Contrary to the hypothesis by C. Elton explaining the success of plant invasion in a new homeland by strengthening hybridization processes in the secondary distribution range.

Keywords: hybrids, hybridization, invasive species, *Bidens × decipiens*, *Solidago × niederederi*, *Erigeron canadensis*, *E. sumatrensis*, ITS1-ITS2 site, rpl32-trnL intergenic spacer, *trnL-trnF* intergenic spacer

1. Introduction

There is a hypothesis that the strengthening of hybridization processes in the secondary distribution range contributes to more successful existence of plants in their new homeland [1, 2]. Under unusual conditions, alien species can form hybrids with closely related native species, as well as with other alien plants inhabiting a given area. Often, hybrids are better adapted to secondary distribution range conditions than parent taxa [3–5], resulting in landscapes in a new home area. Successful recombination of genetic traits of parent species reduces the lag phase (a period of adaptation of an alien taxon to new conditions during which there is not yet active introduction into natural phytocoenosis and expansion of the secondary distribution range) and leads to the formation of new active “species transformers.”
Cross-pollinated plant species are the most predisposed to hybridization. Sympatric species are less likely to be cross-species hybridized than allopatric species or populations [6]. The share of hybrid taxa among invasive species of Middle Russia reaches 10% [7].

For a long time, the most important factor in limiting hybridization was geographical isolation, but nowadays closely related taxa come into contact with each other through a multitude of anthropogenic “corridors” [8]. Thus, inter-regional immigration occurs by means of the introduction of plants, which can be frequent and repetitive, and therefore it significantly increases immigration flow [9]. If we consider the situation where conditions for the hybridization of closely related taxa already exist, there may be several possible developments that coexist: (a) New hybrid taxon may appear, and (b) native taxon disappears. During hybridization, genetic assimilation occurs, and new genes are injected into one or both parent species. Hybrids, even being fertile, can, however, be reproductively isolated from parent plants due to the effect of the selection on reproductive traits (allopolyploidy, heterozygous translocations, recombination, mitochondrial DNA-specific differences) and/or due to factors that predetermine crossing (flowering phenology, separation of ecological niches). Interspecific hybridization may also facilitate the naturalization of rare genotypes and cause an increase in their proportion by inverse crossbreeding with alien parent taxa or hybridization between the hybrids themselves. Greater selection advantages for alien alleles should lead to faster replacement of natural alleles through hybridization and slower replacement without hybridization [10]. The period of displacement (substitution) decreases significantly with increasing immigration flow and selective differentiation. Immigration and selection operate in a variety of ways: increasing immigration levels result in the substitution of native species by suppressing them, while increasing selective differentiation in favor of an alien species results in the substitution of an alien species by genetic assimilation without leaving “pure” native species. At moderate and high immigration rates, the loss of native species can be rapid with or without hybridization. Given the high number of species introduced by humans, the loss of native species can increase only as a result of hybridization [11].

Hybridization increases the threat of extinction of many species due to introgression [12, 13]. High degree of introgression is often manifested by wind-pollinated species such as oaks. Hybridization and introgression can lead to a hybrid complex consisting of many hybrids due to a large number of loci. Thus, multiloci seem to increase the number of hybrid types and genetic complexes and accelerate the reduction of “pure” natural species. In addition, the large number of loci essentially reduces the probability of having a “pure” individual of any parent origin [11]. Without introgression, hybrids, being reproductively isolated, can quickly form a new species. With introgression, speciation slows down as inverse crosses with parent lines occur. The impact of hybridization and introgression on the rate of substitution of native species by closely related ones has been addressed by a mathematical model involving a one-loop bipartite inheritance scheme with different levels of cross-species hybridization [11]. Although the model did not take into account vegetatively propagating hybrids, the results showed that the substitution of natural taxa by alien ones could occur very quickly (in less than five generations). According to the results, hybridization and introgression can increase the degree of substitution of native species by non-native ones. Introgression increases species substitution with low immigration, but prevents substitution when an indigenous species has a significant advantage in selection as well as with higher immigration levels. However, as introductions are associated with increased frequency of hybrids, the impact on the indigenous taxon remains high, and the likelihood of extinction increases significantly [11].
It is known that the highest invasive activity is exhibited by species of Asteraceae family [14], so we have focused our attention on representatives of this group of alien species. It is often impossible to say with certainty whether plants with intermediate morphological features are hybrids (between two species of the same genus). This may also be the case for new ecological forms, resulting from microevolution of species. To confirm or disprove the hypothesis about hybrid origin of certain taxon, it is best to use molecular genetic methods.

2. Materials and methods

DNA was extracted from silica gel dried leaves of *Bidens*, *Solidago*, and *Erigeron* taxa according to the method by Rogers and Bendich [15]. The herbarium specimens are stored in the herbarium of the Tsitsin Main Botanical Garden (MHA). Polymerase chain reaction (PCR) was carried out in a DNA Engine Dyad Peltier Thermal Cycler amplifier (Bio-Rad, United States). For the nuclear ribosomal internal transcribed spacer (ITS) 1-2 (ITS1-ITS2), *nnc18s10* (forward) and *c26A* (reverse) primers with an annealing temperature of 50°C were used. For the chloroplast loci (*rpl32-trnL* and *trnL-trnF* intergenic spacers), primers were used at the annealing temperature from 0.3 to 65°C [16]. For the chloroplast locus *rpl32-trnL*, we used primers *rpl32F* (forward) and *trnL UAG* (reverse), and for the other chloroplast locus *trnL-trnF*, we used primers *c* (forward) and *f* (reverse). Purification of the PCR product for sequencing was carried out in a mixture of ammonium acetate with ethanol. The nucleotide DNA sequences were determined on an automatic sequencer (Syntol). Further processing of the nucleotide sequences was carried out in the BioEdit program. The data were sent to GenBank (2019), in which these nucleotide sequences can be found by the additional numbers assigned to them (Table 1). Phylogenetic trees were constructed using SplitsTree4.

3. *Bidens × decipiens*

Bidens connata Muhl. ex Willd. is a North American species whose natural area extends from Alaska in the north to Mexico in the south [17]. The species has high polymorphism within native area, and several varieties have been described: *B. connata* var. *ambivaera* Fassett, var. *anomala* Farwell, var. *fallax* (Warnstorff) Sherff, var. *gracilipes* Fernald, var. *inundata* Fernald, var. *petiolata* (Nuttall) Farwell, var. *pinnata* S. Watson, and var. *submutica* Fassett [18, 19]. In the second half of the twentieth century, American botanists made suggestions about the hybrid nature of *B. connata* based on morphological features [20]. This species was indicated as an alien for Europe [21]. However, European plants called “*B. connata*” are morphologically different from American samples. Their outer leaves are clearly leaf-shaped, well-developed, and 3–6 cm long, with no reedy flowers, and the first real leaves are less narrow and with more pronounced petioles than those of *B. connata* and fewer denticles on the leaves, and the denticles, in turn, are usually larger and less regularly located [22]. Plants from European populations have been described as *B. × decipiens* Warnst. in 1895. The typical excrement material collected by Carl Warnstorff is stored in the herbaria of Edinburgh (E), Frankfurt (FR), and Charles University in Prague (PRC) [23]. In Europe, the locations of *B. × decipiens* are few and far between. A map of the gradual eastward expansion of this species was previously compiled by the authors of this paper [24] and is shown in Figure 1. Previously, we studied morphological features of *B. × decipiens* in Russia and found that features of this species are intermediate between the North American invasive
Sample no.	Number of ITS/rpl32-trnL–trnF sequence in GeneBank	Taxon	Date and place of collection, notes
de_1a	MK559763/–/MK575566	Bidens decipiens (= “B. connata”)	Russia, Kaluga region, Milyatinsky Reservoir, 2013 54.4914° N, 34.3393° E
de_1b	MK559764/–/MK575567		Russia, Kaliningrad region, 2013 54.95° N, 20.49° E
de_1c	MK559765/–/MK575568		
de_1d	MK559766/–/MK575569		
de_2a	MK559767/–/MK575570		
de_2b	MK559768/–/MK575571		
de_2c	MK559769/–/MK575572		
de_2d	MK559770/–/–		
de_3a	MK559771/–/MK575573		Russia, Vladimir region, near Tasinsky village, 2014 Formed with dissected lower leaves 55.567° N, 40.172° E
de_3b	MK559772/–/–		
de_3c	MK559773/–/MK575574		
de_4a	MK559774/–/MK575575		Russia, Vladimir region, near Tasinsky village, 2014 Formed with whole lower leaves 55.567° N, 40.172° E
de_4b	MK559775/–/MK575576		
fr_5a	MK559780/–/MK575581	B. frondosa	Russia, Vladimir region, near Tasinsky village, 2014 55.567° N, 40.172° E
fr_5b	MK559781/–/MK575582		Russia, Vladimir region, near Tasinsky village, 2018 55.567° N, 40.172° E
fr_5c	MK559782/–/MK575583		
cr_6a	MK559755/–/MK575559	B. cernua	Russia, Moscow region, near Zvenigorod town, 2014 55.69° N, 36.74° E
cr_6b	MK559756/–/MK575560		
t_7	MK559754/–/MK575558	B. tripartita	Russia, Vladimir region, near Tasinsky village, 2018 55.567° N, 40.172° E
cr_8a	MK559757/–/MK575561	B. cernua	
cr_8b	MK559758/–/MK575562		
cr_8c	MK559759/–/–		
cr_9a	MK559760/–/MK575563		Belarus, Dzerzhinsk, 2018 53.693° N, 27.165° E
cr_9b	MK559761/–/MK575564		
cr_9c	MK559762/–/MK575565		
fr_10a	MK559783/–/MK575584	B. frondosa	
fr_10b	MK559784/–/MK575585		
de_11a	MK559776/–/MK575577	B. decipiens (= “B. connata”)	Russia, Moscow, park near Sviblovo estate, 2018 55.8639° N, 37.6396° E
de_11b	MK559777/–/MK575578		
de_11c	MK559778/–/MK575579		
de_13	MK559779/–/MK575580		
v_1a	MK491849/MK474079/–	Solidago virgaurea	Russia, Pskov region, Pskov district, vicinity of Pskov, idle field, 2018 57.80° N, 28.25° E
v_1b	MK491850/MK474080/–		
v_1c	MK491851/MK474081/–		
n_2a	MK491852/MK474082/–	S. × niedederi	
B. frondosa L. and the native B. cernua L. × decipiens are covered with two types of hairs—duplex, from two cells (as in B. frondosa), and simple multicellular (as in B. cernua). In addition, the seeds of B. × decipiens are quadrilateral and have four axes (as in B. cernua) and are covered with warts (as in B. frondosa). Heads of B. × decipiens are similar in size and shape to heads of B. frondosa, and the leaves are whole, as in B. cernua. On the basis of these data, we hypothesize the hybrid origin of B. × decipiens [25].

Nucleotide sequence analysis shows that not all individuals defined as B. × decipiens can be called hybrids. The point is that in cases of nucleotide substitutions

Sample no.	Number of ITS/rpl32–trnL/trnL–trnF sequence in GeneBank	Taxon	Date and place of collection, notes
n_2b	MK491853/MK474083/–		
n_2c	–/MK474084/–		
c_3a	MK491854/MK474085/–	S. canadensis	Russia, Moscow region, Chekhov district, near the village of Chudinovo, idle field, 2018 55.1° N, 37.5° E
c_3b	MK491855/MK474086/–		
c_3c	MK491856/MK474087/–		
v_4	–/MK474088/–	S. virgaurea	Russia, Moscow region, “Losiny Ostrov” National Park, Pine forest, 2014 55.89° N, 37.77° E
c_5a	MK491857/MK474090/–	S. canadensis	Italy, Pompeii, 2016 40.7° N, 14.5° E
c_5b	–/MK474089/–		
v_6a	MK491858/–/–	S. virgaurea	Italy, the Island of Ischia, 2016 40.7° N, 13.9° E
v_6b	MK491859/–/–		
3	MK397980/–/–	Erigeron sumatrensis	Italy, Pompeii, 2016 40.7° N, 14.5° E
5a	MK397981/–/–	E. sumatrensis × E. canadensis (?)	Italy, Naples, 2016 40.8° N, 14.2° E
5b	MK397982/–/–		
6	MK397984/–/–		
8a	MK397986/–/–	E. sumatrensis × E. canadensis (?)	Italy, the Island of Ischia, 2016 40.7° N, 13.9° E
8b	MK397987/–/–		
10a	MK397988/–/–	Italy, Pompeii, 2016 40.7° N, 14.5° E	
10b	MK397989/–/–		
13a	MK397991/–/–	E. canadensis	Italy, the Island of Ischia, 2016 40.7° N, 13.9° E
13b	MK397992/–/–		
16	MK397985/–/–	Portugal, Lisbon, 2017 38.7° N, 9.1° W	
18	MK397993/–/–	Spain, Madrid, park, 2017 40.4° N, 3.7° W	
19	MK397994/–/–	Erigeron sp.	
20	MK397995/–/–	E. canadensis	
22	MK397990/–/–		

Note: “E. sumatrensis × E. canadensis (?)” – putative hybrids.
at the ITS1-ITS2 site differentiating *B. frondosa* and *B. cernua*, we encounter heterozygosity of samples of *B. × decipiens* (and, accordingly, ambiguity of reading of the sequence) in many cases, but still not in all (as it should be expected for the hybrid F). At the same time, each of our samples of *B. × decipiens* is characterized by at least some such ambiguous readings of nucleotides (C or T, A or T, A or C) (Figure 2) in the case of substitutions, which, of course, confirms the hypothesis of the hybrid origin of this taxon. Populations of *B. × decipiens* from different parts of the range differ in the number of substitutions. Thus, samples from the banks of the Milyatinskoye reservoir in the Kaluga region demonstrate in most cases the presence of ambiguous readings in the case of nucleotide substitutions, with the exception of sample de_1a, in which heterozygosity is not observed in all cases of substitutions. It means that this population is a hybrid one. In addition, both parent species grow on the banks of the Milyatinskoye reservoir in close proximity to the population of *B. × decipiens*, which indirectly supports this view [26]. Probably, the differences in the sample de_1a are due to the presence of introgression, i.e., this sample is a backcross resulting from crossing of *B. × decipiens* with *B. cernua*, because ITS1-ITS2 of this sample has a stronger DNA area similar to *B. cernua* than others. The same situation is observed with individuals of *B. × decipiens* from Belarus. *B. × decipiens* specimens from the Kaliningrad region, by contrast, in most cases show similarities with *B. cernua* in the case of substitutions rather than heterozygosity, except for sample de_2a. In this case, there are two possible variants—in the first case, we collected samples of backcrosses and see the result of introgression; in the second case, the parent form is another form of *B. frondosa*, not the widespread *B. frondosa* var. *frondosa*. The second variant is less probable. However, other forms of *B. frondosa* have been recently found [27]. Among plants of *B. × decipiens* collected in the Vladimir region, two forms distinct on lower leaves—with a dissected sheet plate (samples de_3a, de_3b, and de_3c) and with a whole sheet plate (de_4a, de_4b)—are clearly distinguished. As it turned out, these forms have genetic differences, but samples 4a and 4b are also not identical in the ITS1-ITS2 section sequences. In this case, it is only possible to estimate which form is closer to *B. cernua* and which one to *B. frondosa* using statistical methods. The plant collected on the territory of Sviblovo Estate in Moscow and based on a set of morphological features defined as *B. × decipiens*, in the section ITS1-ITS2, has a very high...
similarity with *B. cernua*. However, in one case this specimen still has heterozygosity in nucleotide substitutions differentiating *B. cernua* and *B. frondosa*, so we cannot say that this specimen is a form of *B. cernua*; most likely, it is the result of introgressive hybridization (Figure 2). It is possible that in the case of introgressive hybridization, not only *B. × decipiens × B. cernua* but also backcrosses are formed (*B. × decipiens × B. frondosa*). It is interesting that ambiguous readings of a certain nucleotide are also observed for all *B. frondosa* samples in the same position, but they are not related to nucleotide substitutions in other taxa (Figure 2). It is not excluded that *B. frondosa* itself is a species of hybrid origin. This is indirectly proved by the high polymorphism of this species in its natural area.

Based on the nucleotide sequences of the ITS1-ITS2 site in the SplitsTree program, the dendrogram is built using the UPGMA method (Figure 3). With high probability (with 100% bootstrap support), two clades were separated—sample t_7 (*B. tripartita*). One clade was separated by species, specimens *B. frondosa* (fr_5a, fr_5b, fr_5b, fr_10a, fr_10b), and the other clade included all samples of *B. × decipiens* and *B. cernua*, indicating a high similarity.

For trnL-trnF site of chloroplast DNA, samples of *B. × decipiens* and *B. cernua* have no differences (this applies to all plants, including those collected in different regions), while *B. frondosa* differs from these taxa by six substitutions of one to two nucleotides and deletion of seven nucleotides (Figure 4). *B. tripartita* has another deletion (Figure 4), which is absent in other taxa, which once again indirectly confirms its non-participation to the hybrid origin of *B. × decipiens*. This means that the aboriginal *B. cernua* is the maternal species and *B. frondosa* is the paternal species.
We have set ourselves the task to study the features of Solidago hybrids in northwest Russia, because in contemporary publications the most numerous references to S. × niederederi are in the northeastern part of Europe and the Pskov region is the closest region of Russia to it. Previously, on the basis of the analysis of the highly variable noncoding chloroplast region rpl32-trnL by Polish botanists, it was found that hybridization between S. canadensis and S. virgaurea can occur in both

4. Solidago × niederederi

We have set ourselves the task to study the features of Solidago hybrids in northwest Russia, because in contemporary publications the most numerous references to S. × niederederi are in the northeastern part of Europe and the Pskov region is the closest region of Russia to it. Previously, on the basis of the analysis of the highly variable noncoding chloroplast region rpl32-trnL by Polish botanists, it was found that hybridization between S. canadensis and S. virgaurea can occur in both
directions and both species can be both mother and father plants [28]. We aimed to
determine the situation with respect to parental taxa in the Pskov populations of
these species.

The main difference between the hybrid *S. × niederederi* and its parents is the
structure of shoot systems (mainly the inflorescence structure, Figure 5). In *S.
canadensis* numerous heads are collected in a compound raceme, and in *S. ×
niederederi* the number of heads is smaller and is collected in a compressed com-
pound raceme, whereas in *S. virgaurea* the number of heads is smaller, and the
branches of the compound raceme are so short that the inflorescence is more like a
spike.

The size of the heads themselves also varies (Figure 6). *S. × niederederi* heads
have an oval shape and occupy an intermediate position in diameter between
parental species, 2201 ± 45 μm (mean ± error average) with a maximum spread of
1762 to 2728 μm, while for *S. virgaurea* and *S. canadensis*, these values are
3132 ± 30 μm (2874–3548 μm) and 1591 ± 22 μm (1428–1939 μm), respectively [29].

With regard to the length of the head, *S. × niederederi* plants in Pskov cannot be
clearly distinguished from *S. canadensis* due to the high variability of this indicator
in *S. canadensis*. However, in terms of average head lengths, the hybrid also occupies
an intermediate position between parent species (Figure 6). *S. canadensis* and *S. ×
niederederi* shoots are pubescent, while *S. virgaurea* shoots are glabrous, glossy, and
sometimes reddish. The leaves of *S. × niederederi* in the middle part of the shoot are
linear-lanceolate and dentate along the edge, with three distinct veins (as in *S.
canadensis*), while in the basal part of the shoot large, ovate, with reticulate veins (as
in *S. virgaurea*). To confirm hybrid origin of *S. × niederederi* population in the
vicinity of Pskov, nucleotide sequences of nuclear and chloroplast DNA of Pskov
individuals (both parent and hybrid species) as well as individuals of parent species
from Moscow region were analyzed. The analysis of the ITS1-ITS2 site showed that
in all cases of nucleotide substitutions differentiating *S. virgaurea* and *S. canadensis*,
S. × niederederi has ambiguous readings (Table 2), indicating heterozygosity, which
confirms the hybrid origin of individuals from this population. One sample of *S.
canadensis* (c_3c) showed heterozygosity in three cases of nucleotide substitutions
out of four, although morphologically this sample did not differ from other indi-
viduals of *S. canadensis*, which indicates the presence of introgressive hybridization

![Figure 5](image_url)

Panicles of Solidago × niederederi and its parental species.
within the Solidago genus. It is likely that this sample is a backcross (result of crossbreeding S. × niederederi with the parent species S. canadensis).

The analysis of the rpl32-trnL high-variable intergenic spacer made it impossible to give an unambiguous answer which species is maternal to S. × niederederi and which is paternal. In contrast to the results obtained by A. Plizhko and J. Zalevska-Galosh [30], our samples of S. canadensis have a higher variability of this section of chloroplast DNA. For example, a sample of s_3a from the Pskov region has a DNA fragment that is absent in other plants of S. canadensis not only in the Pskov region but also near Moscow (242–264 nucleotides, Table 3). The area occupying positions 271–306 in the alignment of our sequences (292–330 for sample c_3a, Table 3) and differentiating parental species in Polish populations [30] may differ not only in S. × niederederi but also in both parental species. The analysis of another noncoding site of chloroplast DNA, trnL-trnF, also failed to answer this question because all the samples examined were identical in this site. Based on the data obtained, we can only

Table 2.
ITS1-ITS2 polymorphism for the Solidago × niederederi hybrid and parental species.

Sample no.	Position in the alignment	384	431	508	549
v_1a	T	A	C	A	
v_1b	T	A	C	A	
v_1c	T	A	C	A	
n_2a	Y	M	Y	R	
n_2b	Y	M	Y	R	
c_3a	C	C	T	G	
c_3b	C	C	T	G	
c_3c	Y	M	T	R	
c_5a	C	C	T	G	
v_6a	T	A	C	A	
v_6b	T	A	C	A	

The nucleotides are coded using IUPAC nomenclature.
Sample no.	Position in the alignment	Position in the alignment	v_1a	v_1b	v_1c	n_2a	n_2b	n_2c	c_3a	c_3b	c_3c	v_4	c_5a	c_5b
191	242–264	271–306 (292–330)												
v_1a	A	—	TGTCTAAAAGAATAATTCTTGTATTTCTT	T	C									
v_1b	C	—	TGTCTAAAAGAATAATTCTTGTATTTCTT	T	C									
v_1c	C	—	TGTCTAAAAGAATAATTCTTGTATTTCTTGAATTCT	—	C									
n_2a	C	—	TGTCTAAAAGAATAATTCTTGTATTTCTTGAATTCT	—	C									
n_2b	C	—	TGTCTAAAAGAATAATTCTTGTATTTCTTGAATTCT	T	C									
n_2c	C	—	TGTCTAAAAGAATAATTCTTGTATTTCTTGAATTCT	T	C									
c_3a	A	GAATCTTAATGTATATGTCTAAA	TGTCTAAAAGAATAATTCTTGTATTTCTT	T	A									
c_3b	A	—	TGTCTAAAAGAATAATTCTTGTATTTCTTGAATTCT	TTTT	A									
c_3c	C	—	—	—	C									
v_4	C	—	TGTCTAAAAGAATAATTCTTGTATTTCTTGAATTCT	TT	C									
c_5a	C	—	—	T	C									
c_5b	A	—	—	TTTT	A									

The nucleotides are coded using IUPAC nomenclature.

Table 3.
Polymorphism of the rpl32-trnL region for the Solidago × niederederi hybrid and parental species.
assume that hybridization occurs in both directions in the Pskov population, but there is also a possibility that only one species may be maternal and the other paternal, and it is necessary to search for other, more variable sites of chloroplast DNA.

5. *Erigeron* sect. *Conyza*

Earlier we studied in detail morphological differences between species of the genus *Erigeron* that grow in Eurasia [30], and they are shown in Table 4.

Previously a hybrid of *Erigeron canadensis* and *E. sumatrensis*—*Conyza × royana* Sennen—was described. A typical specimen of this taxon (P04315552), collected by F. Sennen in Catalonia in 1904, is kept in the herbarium of the Museum of Natural History in Paris [P] [7]. Nevertheless, some botanists did not recognize this hybrid and referred C. × royana to *E. floribundus* [31], which is now treated as synonymous with *E. sumatrensis*. However, it cannot be excluded that morphological differences in several individuals could have been caused not by hybrid processes but by adverse environmental conditions.

The analysis of the ITS1-ITS2 site of 16 samples of *Erigeron* sect. *Conyza* (supposed hybrids and parent taxa) confirmed our conclusions about the higher polymorphism of *E. sumatrensis* than *E. canadensis*: ITS1-ITS2 sites of *E. canadensis* samples were identical, while *E. sumatrensis* has substitutions and ambiguous readings (Table 5). As for the supposed hybrids (samples 8a, 8b, 10a, 10b, and 22), only in one case an ambiguous reading of the nucleotides coincides with the substitution differentiating *E. canadensis* and *E. sumatrensis*, which indicates that the hybridization has taken place, but since in other cases the substitutions are identical (Table 5) and the supposed hybrids have no ambiguous readings, most likely, the reason for their morphological differences is the high polymorphism of *E. sumatrensis* taxon, to which they can be classified.

Features	*E. canadensis*	*E. bonariensis*	*E. sumatrensis*
Number of heads/ generative shoot	500–600	No more 30	less 500
Diameter of heads, mm	4.8 ± 0.1 × 2.4 ± 0.1	6.1 ± 0.1 × 5.2 ± 0.2	6.6 ± 0.1 × 3.2 ± 0.2
Structure of shoot systems	The main shoot is barely branched off and ends in a compound raceme occupying the upper third of the escape	The lower lateral deciduous axes of the inflorescence overturn the main shoot axis; the inflorescence covers the upper third of the shoot	The lower lateral deciduous inflorescences are shorter than the main axis of the shoot; the diamond-shaped compound raceme is half the length of the generative shoot
Shape of leaves	Linear-lanceolate with denticle margin	Almost linear with 3–5 denticles	Lanceolate-oval with a serrated margin
Type of pubescence	The leaves are light green, slightly pubescent, the stem is light green, strongly pubescent	The leaves are gray-green, the pubescent leaves and stems are strongly pubescent with long silvery trichomes	The leaves are dark green, softly pubescent, the stems are grayish with abundant soft pubescence

Table 4. Diagnostic morphological features of *Erigeron* species.
Sample no.	Taxa	Position in the alignment
3	Erigeron sumatrensis	T C A C C C T YY C C G G
5a	E. sumatrensis ×	
5b	E. canadensis (?)	
5c	E. canadensis	
6	E. canadensis sp.	
13a	E. canadensis	
13b	E. canadensis	
18	E. canadensis	
19	Erigeron sp.	
20	E. canadensis	

The nucleotides are coded using IUPAC nomenclature.
Note: "E. sumatrensis × E. canadensis (?)" - putative hybrids.

Table 5.
ITS1-ITS2 polymorphism for different taxa of Erigeron sect. Conyza in the Mediterranean.
6. Conclusions

Thus, the obtained data on hybrid activity among the Asteraceae family of invasive species are ambiguous.

Hybrid B. × decipiens has a low polymorphism. B. cernua is the most polymorphic taxon, and we can assume the presence of introgressive hybridization of B. × decipiens with a maternal species. The analysis of ITS1-ITS2 and trnL-trnF sequences showed that B. × decipiens is of hybrid origin and its maternal form is an aboriginal sequence of B. cernua and the paternal one is probably invasive B. frondosa. It is possible that B. × decipiens in its present form has already appeared by introgression, but no morphological differences between supposed hybrids (Belarusian and Kaluga plants) and supposed backcrosses (plants from Moscow and Kaliningrad region) have been revealed. It should be noted that B. frondosa itself may be of hybrid origin.

In the northwest of Russia, the populations of three taxa of Solidago genus—an invasive species of North American origin of S. canadensis, an indigenous species of S. virgaurea, and their hybrid S. × niederederi—grow together in the vicinity of the city of Pskov, which was confirmed by the sequence analysis of the ITS1-ITS2 site. Since both parents, especially S. canadensis, are quite polymorphic taxa, it is impossible to answer unambiguously which of the two species is maternal and which is paternal.

In Southern Europe, the hybriogenic activity of representatives of the genus Erigeron is close to zero. The low hybriogenic activity can also be explained by differences in the chromosome set: in E. canadensis 2n = 18 and in E. sumatrensis 2n = 54 [32].

Our data on the rare occurrence of hybrids in comparison with parental species in the Asteraceae family contradict the hypothesis explaining the success of plant growth in the new homeland by strengthening hybridization processes in the secondary distribution range [1, 2], but this situation may change in the coming decades, so the hybriogenic activity of invasive species requires attention of the scientific community.

Acknowledgements

This study was carried out with partial support from the Russian Foundation for Basic Research, grant no. 18-04-00411.

Conflict of interest

The authors declare no conflict of interest.
References

[1] Elton C. The Ecology of Invasions by Animals and Plants. London: Methuen; 1958. p. 181

[2] Ellstrand N, Shierenbeck K. Hybridization as a stimulus for the evolution of invasiveness in plants? Euphytica. 2006;148:35-46. DOI: 10.1007/s10681-006-5939-3

[3] Abbott R, James J, Milne R, Gillies A. Plant introduction, hybridization and gene flow. Philosophical Transactions of the Royal Society. 2003;358:1123-1132. DOI: 10.1098/rstb.2003.1289

[4] Bleecker W, Schmitz U, Ristow M, et al. Biological Conservation. 2007;137, 2:248-253. DOI: 10.1016/j.biocon.2007.02.004

[5] Zalapa J, Brunet J, Guries R. Patterns of hybridization and introgression between invasive Ulmus pumila (Ulmaceae) and native U. rubra. American Journal of Botany. 2009;96:1116-1128. DOI: 10.3732/ajb.0800334

[6] Albuquerque G, Tauber C, Tauber M. Postmating reproductive isolation between Chrysopa quadripunctata and Chrysopa slossonae: Mechanisms and geographic variation. Evolution. 1996;50:1598-1606. DOI: 10.2307/2410896

[7] Yu V, Maiorov S. Duration of lag-phase as a reflection of microevolution of the plants in secondary range. In: Materialsl XII Moskovskogo soveshchaniya po filogenii rastenii (Proc. XII Moscow Conf. on the Plant Phylogeny); 2–6 February 2015. Moscow: Maks Press; 2015. pp. 70-74

[8] Williamson M. Biological Invasions. London: Chapman and Hall; 1996. p. 33

[9] Heywood V. Patterns, extents and modes of invasions by terrestrial plants. In: Biological Invasions: A Global Perspective. Chichester: Wiley; 1989. pp. 31-60

[10] Tokhtar VK, Vinogradova YK, Groshenko AS. Microevolution and invasiveness of Oenothera L. species (subsect. Oenothera, Onagraceae) in Europe. Russian Journal of Biological Invasions. 2011;2(4):273-280. DOI: 10.1134/S207511711040138

[11] Huxel G. Rapid displacement of native species by invasive species: Effects of hybridization. Biological Conservation. 1999;89:143-152. DOI: 10.1016/S0006-3207(98)00153-0

[12] Levin D, Francisco-Ortega J, Jansen R. Hybridization and the extinction of rate plant species. Conservation Biology. 1996;10:10-16. DOI: 10.1046/j.1523-1739.1996.10010010.x

[13] Rhymer JM, Simberloff D. Extinction by hybridization and introgression. Annual Review of Ecology and Systematics. 1996;27:83-109. DOI: 10.1146/annurev.ecolsys.27.1.83

[14] Yu V, Maiorov S, Khorun L. Chernaya kniga flory Srednei Rossii (The Black Book of Flora of Central Russia). GEOS: Moscow; 2010. p. 502

[15] Rogers S, Bendich A. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Molecular Biology. 1985;5:69-76. DOI: 10.1007/BF00020088

[16] Shaw J, Lickey E, Schilling E, Small R. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: The tortoise and the hare III. American Journal of Botany. 2007;94(3):275-288. DOI: 10.3732/ajb.94.3.275

[17] Strother J, Weedon R. Bidens Linnaeus. In: Flora of North America Editorial Committee, editor. Flora of
North America, North of Mexico.
Vol. 21. Magnoliophyta: Asteridae, Pt. 8: Asteraceae, P. 3. Oxford: Oxford University Press; 2006. pp. 205-206

[18] Sherff E. The genus Bidens. Publications of Field Museum of Natural History, Botanical Series. 1937;16:16-74

[19] Sherff E. Further notes on the distribution of Bidens connata vars. pinnata and gracilipes. Rhodora. 1962; 64(757):23-28

[20] Crowe D, Parker W, et al. Hybridization and agamospermy of Bidens in north-western Ontario. Taxon. 1981;30(4):749-760

[21] Andreau J, Vila M. Risk analysis of potential invasive plants of Spain. Journal for Nature Conservation. 2010; 18(1):34-44. DOI: 10.1016/j.jnc.2009.02.002

[22] Mayorov S, Vinogradova Yu. Formation of secondary distribution range and intraspecific variability of Bidens connata [thesis]. Pirenopolis: 12th Reunion on Ecology and Management of Alien Plant Invasions; 2013

[23] Global Plants on JSTOR [Internet]. 2019. Available from: https://plants.jstor.org [Accessed: 03 March 2019]

[24] Galkina M, Vinogradova Y. On the issue of hybridogenic origin of Bidens × decipiens Warnst. Russian Journal of Biological Invasions. 2019;10(4): 315-324. DOI: 10.1134/S207511719040039

[25] Yu V, Galkina M. On the possibility of hybrid origin of Bidens connata. In: Materialy XIII Moskovskogo soveshchaniya po filogenii rastenii (Proc. XIII Moscow Conf. on the Plant Phylogeny); 2-6 February 2015. Moscow: Maks Press; 2015. pp. 64-69

[26] Galkina M, Ryabchenko A. Species of the genus Bidens on the banks of the Milyatinskoye reservoir in the Kaluga oblast. Vestn. Tver. Gos. Univ., Ser. Biol., 2013;32, 31:75-83

[27] Galkina M, Vinogradova Yu, Shantser I. Biological and morphological features and microevolution of invasive species of the genus Bidens L. Izv. Akad. Nauk, Ser. Biol., 2015;4:382-392. DOI: 10.1134/S1062359015040056

[28] Pliszko A, Zalewska-Gałosh J. Molecular evidence for hybridization between invasive Solidago canadensis and native S. virgaurea. Biological Invasions. 2016;18:3103-3108. DOI: 10.1007/s10530-016-1213-3

[29] Galkina M, Vinogradova Y. Invasive taxa of the genus Solidago L. in the vicinity of the city of Pskov. Ecosystem Transformation. 2019;2(2):12-18. DOI: 10.23859/estr-190207

[30] Vinogradova Y. Sravnitelny analiz biomorfologicheskikh priznakov invazionnykh vidov roda Conyza Less. Bulletin of the Main Botanical Garden. 2012;3:46-50

[31] Marshall J. Conyza – Taxa found in Britain. Watsonia. 1973;9:372-373

[32] Krivenko D, Kazanovsky S, Yu V, Verkhozina A, Knyazev M, Murtazaliev R. Chromosome count (Asteraceae). Taxon. 2017;66(6): 1491-1492. DOI: 10.12705/666.30