Entropy bounds in cosmology and conformal field theories1

G. Siopsis2 3
Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN 37996 - 1200, USA.

Abstract: We study the ratio of the entropy to the total energy in conformal field theories at finite temperature. For the free field realizations of $\mathcal{N} = 4$ super Yang-Mills theory in $D = 4$ and the $(2,0)$ tensor multiplet in $D = 6$, the ratio is bounded from above. The corresponding bounds are less stringent than the recently proposed Verlinde bound. For strongly coupled CFTs with AdS duals, we show that the ratio obeys the Verlinde bound even in the presence of rotation. For such CFTs, we point out an intriguing resemblance in their thermodynamic formulas with the corresponding ones of two-dimensional CFTs.4

1 Introduction

The Bekenstein bound [2] for the ratio of the entropy S to the total energy E of a closed physical system that fits in a sphere in three spatial dimensions reads [3]

$$\frac{S}{2\pi RE} \leq 1,$$

where R denotes the radius of the sphere. Despite many efforts, the microscopic origin of the bound remains elusive. A recent interesting development is Verlinde’s observation [4] that CFTs possessing AdS duals satisfy a version of the bound (1). One firstly observes that for general CFTs on $\mathbb{R} \times S^{D-1}$, with the radius of S^{D-1} being R, the product ER is independent of the total spatial volume V. If one defines the sub-extensive part E_C of the total energy through the scaling property $E_C(\lambda S, \lambda V) = \lambda^{1\frac{D-2}{D-1}} E_C(S, V)$ and $E = E_{ext} + \frac{1}{2} E_C$, it follows that

$$E_C = DE - (D - 1)TS.$$

The observation of Verlinde is that for strongly coupled CFTs with AdS duals the entropy is given by a generalized Cardy formula

$$S = \frac{2\pi R}{D-1} \sqrt{E_C(2E - E_C)}.$$

1Presented at “Frontiers in Contemporary Physics II,” Vanderbilt University, March 2001
2gsiopsis@utk.edu
3Research supported in part by the US Department of Energy under grant DE-FG05-91ER40627.
4The discussion is based on ref. [1]
To show this, one employs the results for the entropy and total energy of the corresponding D-dimensional CFT that fits into a $(D-1)$-dimensional sphere at finite temperature [5]. From (3) one obtains a bound similar to (1), namely\(^5\)

\[
\frac{S}{2\pi R E} \leq \frac{1}{D-1}.
\]

(4)

In view of the above developments, a natural question arising is whether there exists a microscopic derivation of Verlinde’s formula (3) within the thermodynamics of CFTs. This question could be checked in the context of CFTs whose microscopic thermodynamics is well understood, such as free CFTs on $\mathbb{R} \times S^{D-1}$ [6].

Here, we further analyze the results in [6] for free CFTs in dimensions $D = 4, 6$. We find that for the specific cases of $\mathcal{N} = 4$ $U(N)$ SYM theory in $D = 4$ and the $(2,0)$ tensor multiplet in $D = 6$, the ratio of the entropy to the total energy is bounded from above, however the corresponding bounds are less stringent than (4). Although bounds for the ratio of the entropy to the total energy seem to arise quite generically in CFTs, their exact values depend on the details of the underlying CFT, e.g., it seems that the bounds become more stringent as one goes from weak to strong coupling.

Next we turn our attention to strongly coupled CFTs with AdS duals. We show that the Verlinde formula (3) remains valid also in the case of strongly coupled CFTs in a rotating Einstein universe. We then point out an intriguing resemblance of the formulas of $(D+1)$-dimensional AdS black hole thermodynamics to corresponding formulas in the thermodynamics of two-dimensional CFTs. Particularly interesting is the fact that the entropy of the black hole resembles the C-function of a two-dimensional system.

2 CFTs at weak coupling

In this section, we discuss the thermodynamics of conformal field theories. For a general statistical mechanical system, one defines the partition function (we put $k = \hbar = 1$)

\[
Z = \sum_E \rho(E) e^{-E/T},
\]

(5)

where $\rho(E)$ is the number of states with energy E. In general, (5) can be evaluated using a saddle point approximation. The exponent is stationary when

\[
dS = \frac{dE}{T}, \quad S = \ln \rho,
\]

(6)

\(^5\)Henceforth we call (4) the Verlinde CFT bound to avoid confusion with the cosmological entropy bound suggested by Verlinde also in [4].
where S is the entropy of the system. This approximation is valid for a large number of degrees of freedom, i.e. if the underlying theory is a CFT with a large central charge. The free energy

$$F = -T \ln Z,$$

(7)

at the saddle point is the exponent in (5),

$$F = E - TS,$$

(8)

and on account of (6), the entropy is given by

$$S = -\frac{\partial F}{\partial T}.$$

(9)

As an application, consider C free massless bosons living on a three-dimensional spatial sphere of radius R at finite temperature. The energy levels and corresponding degeneracies of the various modes are [6]

$$E_n = \frac{n}{R}, \quad d_n = n^2.$$

(10)

Therefore, the partition function reads

$$Z_B^{(4)} = \prod_{n=1}^{\infty} (1 - q^n)^{-Cn^2}, \quad q = e^{-2\pi\delta}, \quad \delta = \frac{1}{2\pi RT}.$$

(11)

To cast this into the form (5), we exploit the modular properties of the partition function $Z_B^{(4)}$. Using a Mellin transform, one obtains

$$Z_B^{(4)} = e^{\frac{2\pi C}{360} \delta^{-3}} e^{\frac{4\pi C}{120} \delta} Z,$$

(12)

where Z is a slowly varying function (approximately constant) near the saddle point. Therefore, the free energy (7) in the saddle point approximation is

$$-F_B^{(4)} R = \frac{C}{240} \left(\frac{1}{3} \delta^{-4} + 1 \right),$$

(13)

where we multiplied by the negative radius $-R$ for convenience. The entropy and energy of the system are easily deduced from the thermodynamical relations (8) and (9),

$$S = \frac{\pi C}{90} \delta^{-3}, \quad E = \frac{C}{240} \left(\delta^{-4} - 1 \right).$$

(14)

For comparison, in two dimensions, the partition function of C free bosons is

$$Z_B^{(2)} = \prod_{n=1}^{\infty} (1 - q^n)^{-C},$$

(15)

leading to the free energy

$$-F_B^{(2)} R = \frac{C}{24} \left(\delta^{-2} - 1 \right),$$

(16)
while the entropy and energy read, respectively
\[S = \frac{\pi C}{6} \delta^{-1}, \quad ER = \frac{C}{24} (\delta^{-2} + 1). \]

(17)

We should point out that in this case there is a contribution from the zero modes of the form \(\delta^{C/2} \). This is a slowly varying function and does not contribute to the rapidly varying exponentials that comprise the free energy at the saddle point. The contribution of the zero modes becomes significant when the saddle-point approximation breaks down, for a small central charge. Here, we are interested in the large \(C \) limit, so such contributions will be ignored.

Eq. (17) implies the Cardy formula \[S = 2\pi \sqrt{\frac{C}{6} \left(E - \frac{C}{24} \right)}. \]

(18)

and the Bekenstein bound (1) for the ratio
\[\frac{S}{2\pi ER} = \frac{2\delta}{1 + \delta^2} \leq 1. \]

(19)

The above results also hold for fermions, because the free energy for a fermion is \(F_F^{(2)} \).

Returning to four dimensions, we note from (14) that there is a transition point at \(\delta = 1 \) where \(ER = 0 \). At that point the ratio \(S/E \) diverges because the entropy remains finite. Thus, it seems as if the ratio of the entropy to the total energy is not bounded for free bosons. Similar results hold for Weyl fermions and vector bosons. However, in systems with diverse mode species there is a chance that the above ratio is bounded. Consider the free energy of a system of \(N_B \) bosons, \(N_W \) Weyl fermions and \(N_V \) vectors that reads \[-FR = a_4 \delta^{-4} + a_2 \delta^{-2} + a_0, \]

(20)

where
\[a_4 = \frac{1}{720} (N_B + \frac{7}{4} N_F + 2N_V), \quad a_2 = -\frac{1}{24} (\frac{1}{4} N_F + 2N_V), \quad a_0 = \frac{1}{240} (N_B + \frac{17}{4} N_F + 22N_V). \]

(21)

satisfying the constraint \(3a_4 = a_2 + a_0 \). The entropy and energy are, respectively,
\[S = 2\pi (4a_4 \delta^{-3} + 2a_2 \delta^{-1}), \quad ER = 3a_4 \delta^{-4} + a_2 \delta^{-2} - a_0. \]

(22)

The Bekenstein-Verlinde ratio is
\[\frac{S}{2\pi ER} = \delta \frac{4a_4 + 2a_2 \delta^2}{3a_4 + a_2 \delta^2 - a_0 \delta^4} = \frac{2\delta}{1 + \delta^2} \frac{2a_4 + a_2 \delta^2}{3a_4 - a_0 \delta^2}. \]

(23)

Remarkably, for the \(\mathcal{N} = 4 \) SYM model, we have \(a_2 = -6a_4 \), which implies
\[\frac{S}{2\pi ER} = \frac{2}{3} \frac{2\delta}{1 + \delta^2}. \]

(24)

\(^{6}\)We thank D. Kutasov for pointing out this to us.
One might now think that (24) generally implies the bound $S/(2\pi ER) \leq 2/3$. However, we have to keep in mind that (20) and (22) are high temperature expansions and should not be trusted for large-δ. Starting from high temperatures (small-δ), there is a critical point at which both S and ER vanish for

$$\delta_c^2 = -\frac{2a_4}{a_2} = \frac{1}{3}.$$ \hspace{1cm} (25)

We should not expect that (23) makes sense for $\delta \geq \delta_c$. Nevertheless, for $\delta \leq \delta_c$, we obtain the bound

$$\frac{S}{2\pi ER} \leq \frac{\sqrt{3}}{3},$$

which is weaker than the Verlinde CFT bound (4) $S/(2\pi ER) \leq 1/3$.

It is perhaps worth mentioning that if one imposes periodic boundary conditions on the gaugino, as suggested by Tseytlin [8] to account for the disagreement on the number of degrees of freedom between the weak and strong coupling regimes, the above results still hold. Indeed, the partition function for a gaugino with periodic boundary conditions is

$$\tilde{Z}_F = \prod_{n=0}^{\infty} (1 - q^{n+1/2})^{2n(n+1)},$$

which leads to the free energy for \tilde{N}_F gauginos,

$$\tilde{F}R = \tilde{N}_F(\tilde{a}_4\delta^{-4} + \tilde{a}_2\delta^{-2} + \tilde{a}_0),$$

where

$$\tilde{a}_4 = -\frac{1}{360}, \quad \tilde{a}_2 = \frac{1}{48}, \quad \tilde{a}_0 = -\frac{7}{240}.$$ \hspace{1cm} (29)

For the $\mathcal{N} = 4$ SYM model with such gauginos, the coefficients of the free energy (20) still satisfy $3a'_4 = a'_2 + a'_0$ and the ratio a'_2/a'_4 is unchanged

$$\frac{a'_2}{a'_4} = -30 \frac{\frac{1}{4} N_F - \frac{1}{2} \tilde{N}_F + 2N_V}{N_B + \frac{7}{4} N_F - 2\tilde{N}_F + 2N_V} = -6.$$ \hspace{1cm} (30)

Thus, the only effect of imposing periodic boundary conditions on the gauginos is the reduction of the free energy by an overall factor of $a'_4/a_4 = 3/4$.

Next we turn to the $(2,0)$ tensor multiplet in $D = 6$. The free energy is [6]

$$-FR = a_6\delta^{-6} + a_4\delta^{-4} + a_2\delta^{-2} + a_0.$$ \hspace{1cm} (31)

The entropy is given by

$$\frac{S}{2\pi} = TSR\delta = -T \frac{\partial (FR)}{\partial T} \delta = 6a_6\delta^{-5} + 4a_4\delta^{-3} + 2a_2\delta^{-1},$$

and the energy by

$$ER = 5a_6\delta^{-6} + 3a_4\delta^{-4} + a_2\delta^{-2} - a_0.$$ \hspace{1cm} (33)
Considering the same ratio as before we obtain
\[
\frac{S}{2\pi RE} = \delta \frac{6a_6 + 4a_4\delta^2 + 2a_2\delta^4}{5a_6 + 3a_4\delta^2 + a_2\delta^4 - a_0\delta^6}.
\] (34)

The coefficients are related through [6]
\[
5a_6 - 3a_4 + a_2 + a_0 = 0,
\] (35)
and we have \(a_6, a_2 > 0, a_4, a_0 < 0\). The denominator can be factorized into
\[
5a_6 + 3a_4\delta^2 + a_2\delta^4 - a_0\delta^6 = (1 + \delta^2)(5a_6 + (a_2 + a_0)\delta^2 - a_0\delta^4).
\] (36)

Using the explicit values \(a_6 = 1/5, a_4 = -5/3, a_2 = 19, a_0 = -25\) we obtain
\[
\frac{S}{2\pi ER} = \frac{2\delta}{1 + \delta^2} \frac{\frac{3}{5} - \frac{10}{3}\delta^2 + 19\delta^4}{1 - 6\delta^2 + 25\delta^4}.
\] (37)

This is a well-behaved function of \(\delta\), which has a maximum of 0.824. We therefore conclude that
\[
\frac{S}{2\pi ER} \leq 0.824,
\] (38)
which is less stringent than the Verlinde CFT bound (4).

3 CFTs at strong coupling

In this section we turn our attention to strongly coupled CFTs in \(D\)-dimensions, possessing AdS duals. The thermodynamics of such theories follows quite generally from the thermodynamics of \((D + 1)\)-dimensional AdS black holes, through holography. We consider the rotating Kerr-AdS (KAdS) black hole in \((D + 1)\)-dimensions given by [10]
\[
ds^2 = -\frac{\Delta_r}{\rho^2}(dt - \frac{a}{\Xi} \sin^2 \theta d\phi)^2 + \frac{\rho^2}{\Delta_r} dr^2 + \frac{\rho^2}{\Delta_\theta} d\theta^2 + \frac{\Delta_\theta \sin^2 \theta}{\rho^2} [adt - \frac{r^2 + a^2}{\Xi} d\phi]^2 + r^2 \cos^2 \theta d\Omega_{D-3}^2,
\] (39)

where \(d\Omega_{D-3}^2\) denotes the standard metric on the unit \(S^{D-3}\) and
\[
\Delta_r = (r^2 + a^2 + \left(1 + \frac{r^2}{R^2}\right) - 2Mr^{4-D},
\]
\[
\Delta_\theta = 1 - \frac{a^2}{R^2}\cos^2 \theta,
\]
\[
\Xi = 1 - \frac{a^2}{R^2},
\]
\[
\rho^2 = r^2 + a^2 \cos^2 \theta.
\] (40)

\(^7\)For simplicity we restrict ourselves to the case of only one rotation parameter.
The inverse temperature, free energy, entropy, energy and angular momentum read [10, 11]

\[
\beta = \frac{4\pi(r_+^2 + a^2)}{(D-2)(1 + a^2/r_+^2)r_+ + Dr_+^2 + \frac{(D-4)a^2}{r_+}}, \quad (42)
\]

\[
F = -\frac{V_{D-1}}{16\pi G_{D+1} \Xi} r_+^{D-4}(r_+^2 + a^2) \left(\frac{r_+^2}{R^2} - 1 \right), \quad (43)
\]

\[
S = \frac{V_{D-1}}{4G_{D+1} \Xi} r_+^{D-3}(r_+^2 + a^2), \quad (44)
\]

\[
E = \frac{(D-1)V_{D-1}}{16\pi G_{D+1} \Xi} r_+^{D-4}(r_+^2 + a^2) \left(\frac{r_+^2}{R^2} + 1 \right), \quad (45)
\]

\[
J = \frac{aV_{D-1}}{8G_{D+1} \Xi} r_+^{D-4}(r_+^2 + a^2) \left(\frac{r_+^2}{R^2} + 1 \right), \quad (46)
\]

where \(G_{D+1} \) is Newton’s constant, \(V_{D-1} \) denotes the volume of the unit \(S^{D-1} \), \(r_+ \) (the horizon radial coordinate) is the largest root of \(\Delta r = 0 \), and the rotation parameter \(a \) is restricted to the range \(0 \leq a < R \). According to the AdS/CFT duality conjecture [5], the above thermodynamical quantities are associated to a strongly coupled \(D \)-dimensional CFT residing on the conformal boundary of the spacetime (39), i.e. on a rotating Einstein universe.

Defining \(\Delta = R/r_+ \), and the Bekenstein entropy \(S_B = 2\pi ER/(D - 1) \), we obtain from (44) and (45)

\[
\frac{S}{S_B} = \frac{2\Delta}{1 + \Delta^2} \leq 1. \quad (47)
\]

The Bekenstein bound is saturated for \(\Delta = 1 \), i.e. at the Hawking-Page transition point [9], where the free energy becomes zero. We further note that we can write

\[
2ER = \frac{D - 1}{2\pi} S \frac{R}{r_+} [\Delta^{-2} + 1], \quad (48)
\]

which, for arbitrary \(D \), is exactly the behavior of a two-dimensional CFT (17) with characteristic scale \(R \), temperature \(\tilde{T} = 1/(2\pi R\Delta) = r_+/(2\pi R^2) \), and central charge proportional to \(SR/r_+ \). This resemblance motivates us to define the Casimir energy as the sub-extensive part of (48), i.e.

\[
E_C = \frac{(D - 1) S}{2\pi} r_+ = \frac{D - 1}{2\pi} \frac{V_{D-1}}{4G_{D+1} \Xi} r_+^{D-4}(r_+^2 + a^2). \quad (49)
\]

Note that in the non-rotating case \(a = 0 \), (49) coincides with the expression 8 given in [4].

One now easily verifies that the quantities (44), (45) and (49) satisfy exactly the Verlinde formula (3). We can also define the ”Casimir entropy” [4] by

\[
S_C = \frac{2\pi}{D - 1} E_C R = S \frac{R}{r_+}, \quad (50)
\]

\[8\]The expressions in [4] are related to ours by \(L = R^2/r_+ \) and \(\frac{c}{4\pi G_{D+1}} = \frac{V_{D-1}}{4G_{D+1}} \).
which allows to write the free energy as
\[-FR = \frac{S_C}{4\pi} [\Delta^{-2} - 1]. \tag{51} \]

Comparing (51) with the corresponding relation of a two-dimensional bosonic CFT (16), we see that the Casimir entropy \(S_C \) is essentially proportional to the central charge \([4]\), or equivalently to the number of degrees of freedom coupled at the critical point.

Within such an interpretation for \(S_C \) we can now see that the temperature \(\tilde{T} = r_+/(2\pi R^2) \) makes thermodynamic sense as a temperature of a two-dimensional system. Considering for simplicity the case when \(a = 0 \) and constant volume, the second law of black hole mechanics reads
\[dE(S, N) = TdS + \mu dN, \tag{52} \]
where by virtue of (50) and (44) we defined the number of degrees of freedom (generalized central charge) as
\[N = \frac{V_{D-1} R^{D-1}}{16\pi G_{D+1}} = \frac{S_C}{4\pi} \left(\frac{R}{r_+} \right)^{D-2}, \tag{53} \]
and \(\mu \) is the chemical potential. After some algebra, we find
\[\mu = - \left(\frac{r_+}{R} \right)^{D-2} \left(\frac{r_+^2}{R^2} - 1 \right) \frac{1}{R}. \tag{54} \]

The free energy (51) can then be written simply as
\[F = \mu N. \tag{55} \]

Furthermore, for \(S_C = \text{const.} \), we have
\[d\tilde{E} = \tilde{T} dS, \tag{56} \]
where
\[\tilde{E} = E \frac{1}{D-1}, \quad \tilde{T} = \frac{1}{D-1} \left(T + \mu \frac{dN}{dS} \right) = \frac{r_+}{2\pi R^2}. \tag{57} \]

Notice that \(\tilde{E} = E \) and \(\tilde{T} = T \) for \(D = 2 \), as expected.

Remarkably enough, these results generalize to the \(a \neq 0 \) case. Even with the addition of one more potential and the attendant generalization of the second law of black hole mechanics to
\[dE = TdS + \mu dN + \Omega dJ, \tag{58} \]
the condition \(dS_C = 0 \) still describes a two-dimensional system.

Finally, as in [4] we define the "Bekenstein-Hawking energy" \(E_{BH} \) as the energy for which the black hole entropy \(S \) (44) and the Bekenstein entropy \(S_B \) are equal, \(2\pi E_{BH} R/(D - 1) = S \), yielding
\[E_{BH} = E_C \frac{r_+}{R}. \tag{59} \]
One checks that $E_{BH} \leq E$. Furthermore, because we are above the Hawking-Page transition point, we have $r_+ \geq R$, and therefore

$$E_C \leq E_{BH} \leq E, \quad S_C \leq S \leq S_B,$$

(60)

where equality holds when the HP phase transition is reached. As the entropy S is a monotonically increasing function of E_C (or, equivalently, of r_+), the maximum entropy is reached when $E_C = E_{BH}$, i.e., at the HP phase transition $r_+ = R$. It is quite interesting to observe that at this point the central charge $c/12 = S_C/(2\pi)$ takes e.g. for $D = 4, N = 4$ $U(N)$ SYM theory the value\(^9\) $c = 6N^2$. This is exactly the central charge of a two-dimensional free CFT containing the $6N^2$ scalars of $D = 4, N = 4$ SYM.

4 Cosmological implications

In this section, we discuss the implications of our results for cosmology. As in in Ref. [4], consider a radiation dominated closed Friedman-Robertson-Walker (FRW) universe. The FRW metric takes the form

$$ds^2 = -d\tau^2 + R^2(\tau)d\Omega^2_{D-1}, \quad (61)$$

where $R(\tau)$ represents the radius of the universe at a given time τ. Note that the metric (61) is conformally equivalent to

$$d\tilde{s}^2 = -dt^2 + R^2d\Omega^2_{D-1}, \quad (62)$$

where $dt = Rd\tau/R(\tau)$. If the radiation is described by a CFT, one can equally well use (62) instead of (61). If, in addition, this CFT admits an AdS dual, it can be described by a Schwarzschild-AdS black hole at some temperature T, because (62) is precisely the metric on the conformal boundary of (39) for $a = 0$. The observations made by Verlinde [4] concerning entropy, energy and temperature bounds in a radiation dominated universe then fit nicely into this AdS black hole description. In particular, the universe is weakly (strongly) self-gravitating if $H\mathcal{R} \leq 1$ ($H\mathcal{R} \geq 1$), where $H = \dot{R}/R$ denotes the Hubble constant, and the dot refers to differentiation with respect to τ. One has $H\mathcal{R} = 1$ iff the Bekenstein-Hawking entropy S equals the Bekenstein entropy S_B. We saw above that this happens precisely at the HP transition point $r_+ = R$, so the borderline between the weakly and strongly self-gravitating regime is the Hawking-Page phase transition temperature $T_{HP} = (D - 1)/2\pi R$. This identification makes indeed sense, because below T_{HP} (weakly gravitating) one has AdS space filled with thermal radiation which collapses above T_{HP} ($r_+ \geq R$, strongly gravitating) to form a black hole. Furthermore, in [4] a limiting temperature was found for the early universe,

$$T \geq T_H = -\frac{\dot{H}}{2\pi H} \quad \text{for } H\mathcal{R} \geq 1. \quad (63)$$

We conclude therefore that Verlinde’s limiting temperature T_H corresponds to the temperature T_{HP} where the HP phase transition takes place.

\(^9\)Here we used the AdS/CFT dictionary $N^2 = \frac{\pi R^2}{2G_5}$.

9
5 Conclusions

Concerning further developments of our ideas, it might be interesting to study our generalized central charge defined in (53). We discussed in the text that this quantity intriguingly resembles a standard two-dimensional central charge. Such an interpretation leads to the conjecture that there might exist a two-dimensional CFT model whose dynamics in the presence of irrelevant operators underlies the dynamics of the D-dimensional CFTs possessing AdS duals. Such a conjecture might explain the fact that the latter theories share unexpectedly many of the properties of two-dimensional CFTs [13].

It would also be interesting to understand what happens if the sub-extensive part of the total energy becomes negative. This is e.g. the case for hyperbolic AdS black holes. As E_C corresponds somehow to a central charge, this would indicate that the underlying CFT is non-unitary or that the theory has a thermally unstable ground state.

References

[1] D. Klemm, A. C. Petkou, and G. Siopsis, Nucl. Phys. B, to appear, hep-th/0101076; and references therein.
[2] J. D. Bekenstein, Phys. Rev. D23, 287 (1981).
[3] R. Brustein, S. Foffa and G. Veneziano, hep-th/0101083.
[4] E. Verlinde, hep-th/0008140.
[5] E. Witten, Adv. Theor. Math. Phys. 2 (1998) 505, hep-th/9803131.
[6] D. Kutasov and F. Larsen, JHEP 0101 (2001) 001, hep-th/0009244.
[7] J. L. Cardy, Nucl. Phys. B270 (1986) 186.
[8] S. S. Gubser, I. R. Klebanov and A. W. Peet, Phys.Rev. D54 (1996) 3915, hep-th/9602135.
[9] S. W. Hawking and D. N. Page, Commun. Math. Phys. 87 (1983) 577.
[10] S. W. Hawking, C. J. Hunter and M. M. Taylor-Robinson, Phys. Rev. D59 (1999) 064005, hep-th/9811056.
[11] M. M. Caldarelli, G. Cognola and D. Klemm, Class. Quant. Grav. 17 (2000) 399, hep-th/9908022.
[12] J. L. Cardy, Les Houches Summer School on “Fields, strings and critical phenomena”, E. Brezin and J. Zinn-Justin. eds. North-Holland, (1990).
[13] D. Anselmi, Nucl. Phys. B541 (1999) 369, hep-th/9809195; Nucl. Phys. B554 (1999) 415, hep-th/9811149.