Influence of light absorption on the performance characteristics of UV LEDs with emission between 239 and 217 nm

Frank Mehnke*, Luca Sulmoni, Martin Guttmann, Tim Wernicke, and Michael Kneissl

Technische Universität Berlin, Institut für Festkörperphysik, Hardenbergstr. 36, EW 6-1, 10623 Berlin, Germany

E-mail: mehnke@physik.tu-berlin.de

Received November 2, 2018; accepted December 10, 2018; published online January 4, 2019

The development of ultraviolet AlGaN multiple quantum well (MQW) light emitting diodes (LEDs) in the wavelength range between 239 and 217 nm is presented. The effects of aluminum composition in the MQW active region and of the underlying AlGaN/N:Si current spreading layer on the emission characteristics and operating voltages are investigated. A strong reduction in output power is observed with decreasing emission wavelength which is partly attributed to light absorption within the underlying AlGaN/N:Si. Additionally, a reduced carrier injection efficiency is identified as the root cause for the reduced emission power with decreasing emission wavelength. Emission powers at a dc current of 20 mA between 310 and 0.15 μW have been achieved for LEDs emitting between 239 and 217 nm. The maximum light output in pulsed mode operation of these LEDs ranged between 4.6 mW and 3.6 μW, respectively. © 2019 The Japan Society of Applied Physics

The demand for deep ultraviolet (UV) light emitting diodes (LEDs) is growing rapidly due to new applications in the area of gas sensing and medical diagnostics. For example, in the UV spectral region below 240 nm, applications such as gas sensing (NO: λ = 226 nm, NH3: λ = 217 nm)1,2) would greatly benefit from the development of LEDs with sufficiently high spectral power. However, the fabrication of such short wavelength AlGaN-based LEDs is very demanding as carrier injection and confinement as well as light extraction become extremely challenging.3) In addition, the sheet and contact resistivities in n- and p-AlGaN layers as well as at the semiconductor/metal interfaces increase significantly with increasing aluminum mole fraction.4,5) So far, the shortest wavelength AlN-based LED has been reported by Ref. 6 emitting at 210 nm with an optical output power (Popt) of 0.125 μW and an external quantum efficiency (EQE) of 10⁻⁵%. Reference 7 reported 222 and 227 nm LEDs operating in pulsed mode with Popt = 15 μW and Popt = 150 μW, respectively, corresponding to a maximum EQE of 0.003% and 0.2%. Recently, Refs. 8, 9 demonstrated cw operation of 226 nm and 229 nm LEDs utilizing p-type Si nanomembranes with Popt = 225 μW and Popt = 160 μW corresponding to EQEs of 0.2% and 0.03%, respectively. Furthermore, Ref. 10 presented 230 nm LEDs on bulk AlN exhibiting Popt = 210 μW and an EQE of 0.025%. Recently, we demonstrated 263 nm to 235 nm LEDs exhibiting output powers between 880 μW for 263 nm and 2.1 μW for 235 nm emission corresponding to EQEs ranging from 0.93% to 0.002%, respectively.11) After further optimization of the AlGaN heterostructure design, doping profile, and the AlGaN barrier composition, flip-chip mounted 232 nm LEDs were successfully deployed in a NO gas detection system.12)

However, the root causes for the rapidly dropping emission power levels and EQEs with decreasing emission wavelength have not been well understood. Typically, this behavior is attributed to several mechanisms, mainly a reduced internal quantum efficiency (IQE), a reduced carrier injection efficiency (CIE), and a reduced light extraction efficiency (LEE).10,11) due to the change of the optical polarization of the emitted light from transverse electric (TE) to transverse magnetic (TM) at emission wavelengths of around 240 nm1,2,13) for fully strained multiple quantum wells (MQWs) on AlN. Besides these mechanisms, reabsorption of the emitted light within the n-side of the LED heterostructure is typically not considered. However, as the n-side conductivity strongly decreases with increasing aluminum mole fraction, there is a conductivity-transparency dilemma. In this paper, we have made a comprehensive study of the influence of the composition of the underlying AlGaN/N:Si current spreading layer on the emission characteristics and operation voltages of UV LEDs emitting between 239 and 217 nm. In particular, a variation of the aluminum composition of the AlGaN MQWs of LEDs grown on AlGaN/N:Si current spreading layer with aluminum mole fractions as high as x = 0.95 will be presented.

All LEDs have been grown by metalorganic vapor phase epitaxy on (0001) epitaxially laterally overgrown (ELO) AlN/sapphire with threading dislocation densities (TDD) of 1×10¹⁲ cm⁻².15) After growth of an AlN buffer layer, a 1.2 μm thick Si-doped AlGaN current spreading layer with 0.79 < x < 0.95 was deposited. The composition of each layer was determined by X-ray diffraction with Δx = 0.01.16) In order to reduce the resistivity of the current spreading layer, the silicon doping concentration was optimized by a variation of the SiH₄/III partial pressure ratio from 8×10⁻⁵ to 4×10⁻⁵ for different aluminum compositions.5) The resulting Si-concentration as determined by wavelength dispersive X-ray spectroscopy ranged between 1.4×10¹⁵ cm⁻³ for x = 0.79 and 8×10¹⁴ cm⁻³ for x = 0.95.16) Subsequently, a threefold AlₓGa₁−ₓN/AlₓGa₁−ₓN MQW was deposited with an aluminum mole fraction of 0.68 < x < 0.86 in the QW's and 0.80 < y < 0.97 in the barriers. The QW and barrier thicknesses were kept constant at 1 nm and 5 nm, respectively. The heterostructure is completed by a 6 nm AlN electron blocking layer (EBL), a 25 nm thick Mg-doped AlₓGa₁−ₓN/AlₓGa₁−ₓN short period superlattice hole injection layer, a 100 nm thick Mg-doped AlₓGa₁−ₓN/AlₓGa₁−ₓN superlattice, and a 40 nm thick GaN:Mg contact layer. Note that the LEDs are designed as bottom emitters as the p-layers are non-transparent for the emitted light. After activation of the Mg-dopants, the heterostructures have been fabricated into UV LEDs with emitting areas ranging between 0.04 and 0.1 mm².

© 2019 The Japan Society of Applied Physics
Pd-based electrodes were used as n- and p-contacts, respectively. After processing, the LEDs were measured on-wafer without any active cooling by electroluminescence spectroscopy (EL) using a calibrated compact optical fiber spectrometer and a calibrated UV enhanced Si-photodiode. The luminescence contributions of the AlGaN MQWs were separated by fitting a Gaussian function. In cw operation, nine LEDs have been measured across each wafer in order to check for wafer homogeneity and the averaged emission powers and operation voltages are given in the paper. For pulsed mode EL measurements, a dc bias voltage close to the turn-on voltage was applied via a bias tee and current pulses with a pulse width of 1 μs and a repetition rate of 20 kHz were applied. Transmission measurements were performed on AlGaN:Si calibration samples with backside polished sapphire substrates and full LED heterostructures without backside polishing using a Shimadzu UV-2600 UV-VIS spectrophotometer. The relative absorption \(\alpha \cdot d \) was calculated using Beer–Lambert law.

In order to maximize the wall plug efficiency (WPE) of deep UV LEDs, a tradeoff between the absorption and the conductivity of the AlGa\(_{1-x}\)N:Si current spreading layer has to be found. The UV absorption can be reduced by increasing the aluminum content of the AlGaN:Si current spreading layer, e.g. Al\(_{0.80}\)Ga\(_{0.20}\)N:Si with a bandgap of \(E_{\text{G}} = 5.39 \text{ eV} \) is transparent to emission wavelength as short as 232 nm. However, inhomogeneous broadening of the UV LED emission spectrum and sub-bandgap absorption of the AlGaN:Si current spreading layer can lead to partial absorption of the short wavelength contributions of the UV LED emission spectrum. In order to investigate this, 232 nm LEDs have been grown on AlGa\(_{1-x}\)N:Si current spreading layers with aluminum composition ranging between \(x = 0.79 \) and \(x = 0.95 \). Figure 1 shows representative emission spectra of 232 nm LEDs at a fixed current of 20 mA grown on AlGa\(_{1-x}\)N:Si with \(x = 0.79 \) (black triangles), \(x = 0.85 \) (open red triangles), \(x = 0.90 \) (green circles), and \(x = 0.95 \) (open blue squares) as well as the corresponding absorption spectra (solid lines) measured on the full LED heterostructures (absorption in the AlGaN:Mg superlattice and GaN:Mg is similar for all LEDs and not shown). The spectra were normalized at 240 nm assuming negligible absorption for all AlGa\(_{1-x}\)N:Si current spreading layers at this wavelength. The spectral power of the long wavelength contributions (i.e. at wavelengths above peak emission) is very similar for all LEDs. This indicates that the inhomogeneous broadening of the emission spectra is independent of the aluminum composition of the underlying AlGa\(_{1-x}\)N:Si. In contrast, on the short wavelength side of the emission spectrum (i.e. at wavelengths below peak emission), a strong reduction in spectral power is observable for the LEDs grown on Al\(_{0.85}\)Ga\(_{0.15}\)N:Si and Al\(_{0.90}\)Ga\(_{0.10}\)N:Si. The cutoff of the short wavelength contributions of the LED spectra (i.e. the wavelength at which the spectral power falls below 10% of the normalized value) is shifted from 228 nm for growth on Al\(_{0.70}\)Ga\(_{0.30}\)N:Si to 224 nm for growth on Al\(_{0.85}\)Ga\(_{0.15}\)N:Si. For LEDs grown on Al\(_{0.90}\)Ga\(_{0.10}\)N:Si and Al\(_{0.95}\)Ga\(_{0.05}\)N:Si, the spectra are identical indicating full transparency of the current spreading layers. Additionally, a shift in the peak emission wavelength is observed with decreasing aluminum composition of the AlGa\(_{1-x}\)N:Si current spreading layer from 232 nm for \(x = 0.95 \) and \(x = 0.90 \) to 233 nm for \(x = 0.85 \) and to 235 nm for \(x = 0.79 \). This is accompanied by a slight reduction in spectral power at peak emission due to sub-bandgap absorption. Consequently, one would prefer high aluminum mole fraction AlGaN:Si current spreading layers in order to avoid the reabsorption of the emitted light. Unfortunately, increasing the aluminum content in the AlGa\(_{1-x}\)N:Si current spreading layer induces an exponential increase of the layer resistivity. Furthermore, the formation of n-contacts on AlGa\(_{1-x}\)N:Si layers with high aluminum content becomes more challenging which originates in the decreasing electron affinity of AlGa\(_{1-x}\)N with increasing aluminum mole fraction. Additionally, difficulties of Si-doping of AlGa\(_{1-x}\)N with aluminum compositions \(x > 0.80 \) limits the ionized donor concentration and results in relatively high contact resistivities with non-ohmic behavior.

To improve the n-contacts on AlGa\(_{1-x}\)N:Si, the V/Al/Ni/Au electrode configuration and the rapid thermal annealing during contact formation (800 °C for 60 s under \(N_2 \) atmosphere, details will be published elsewhere) was optimized. The n-contact resistivities evaluated by linear transfer length method (TLM) at 100 A cm\(^{-2}\) were as low as \(2.5 \times 10^{-3} \Omega \text{cm}^2 \) for \(x = 0.79 \), \(2.8 \times 10^{-3} \Omega \text{cm}^2 \) for \(x = 0.85 \), \(3.5 \times 10^{-3} \Omega \text{cm}^2 \) for \(x = 0.90 \), and \(7.6 \times 10^{-3} \Omega \text{cm}^2 \) for \(x = 0.95 \). The applied bias voltage at a fixed current of 1 mA for a contact spacing of 8 μm increases from 0.24 V for contacts on AlGa\(_{1-x}\)N:Si with \(x = 0.79 \) to 1.1 V for \(x = 0.85 \) to 1.9 V for \(x = 0.90 \) to 5.4 V for \(x = 0.95 \). Both the contact resistivity and the voltage at 1 mA gradually increase with the aluminum composition. This is also observable in the IV characteristics of the LEDs as the forward voltages at 20 mA increase from 7 V to 7.9 V, 10.2 V, and 17.3 V for AlGa\(_{1-x}\)N:Si layers with \(x = 0.79 \), \(x = 0.85 \), \(x = 0.90 \), and \(x = 0.95 \), respectively, showing the same trend as the TLM measurements. Since higher sheet and contact resistivities result in Joule heating (especially for dc operation at higher currents) which is detrimental for the EQE and WPE of the devices, the aluminum mole fraction of the AlGa\(_{1-x}\)N:Si current spreading layer needs to be chosen as low as possible, without reducing the spectral power at the application relevant wavelength.

In order to explore the limits for shorter wavelength LEDs, the composition of the AlGa\(_{1-x}\)N/AlGa\(_{1-x}\)N MQW active
region was varied between $0.68 < x < 0.86$ and $0.80 < y < 0.97$, keeping the band offset between QWs and barriers constant. The Al$_{0.91}$Ga$_{0.09}$N:Si current spreading layer compositions $x = 0.90$ and $x = 0.95$ were chosen in order to avoid light absorption for shorter wavelength LEDs. Representative EL emission spectra of the realized UV LEDs as well as absorption spectra of backside polished Al$_{0.91}$Ga$_{0.09}$N:Si calibration samples with equal composition (solid lines). (b) Averaged integrated QW EL emission power including standard deviation of nine devices (green and blue for growth on $x = 0.90$ and $x = 0.95$) and operation voltage at 20 mA (magenta).

Fig. 2. (Color online) (a) Spectral power of representative LEDs with varied emission wavelength grown on Al$_{1-x}$Ga$_x$N:Si with $x = 0.90$ (greenish circles) and $x = 0.95$ (open blueish squares) as well as absorption spectra of backside polished Al$_{0.91}$Ga$_{0.09}$N:Si calibration samples with equal composition (solid lines). (b) Averaged integrated QW EL emission power including standard deviation of nine devices (green and blue for growth on $x = 0.90$ and $x = 0.95$) and operation voltage at 20 mA (magenta).
Finally, in order to investigate the maximum device performance and EQE, a 239 nm, a 232 nm, and a 228 nm LED grown on Al$_{0.90}$Ga$_{0.10}$N:Si as well as a 222 nm and a 217 nm LED grown on Al$_{0.95}$Ga$_{0.05}$N:Si have been measured in pulsed mode operation. The emitting area for the LEDs on Al$_{0.90}$Ga$_{0.10}$N:Si was 0.1 mm2 whereas the emitting area for the LEDs on Al$_{0.95}$Ga$_{0.05}$N:Si was 0.04 mm2 in order to take into account the reduced current spreading length in these higher resistive layers. Exemplarily, Fig. 3 shows the LIV characteristics of the 239 nm LED grown on Al$_{0.90}$Ga$_{0.10}$N:Si. The emission power maximum under cw operation is 730 μW and occurs at a dc current of 76 mA followed by thermal rollover due to Joule heating. The maximum EQE under cw operation is reached at 2.4×10^{-3}% at a dc current of 36 μA. Under pulsed mode operation the thermal effects are greatly reduced and rollover is observed at a current of 500 μA achieving 4.6 mW in output power. The EQE maximum under pulsed mode operation is as high as 3.3×10^{-4}% as achieved at a current of 100 μA. With decreasing wavelength the maximum emission power under pulsed mode operation is 1.2 mW, 320 μW, and 19 μW for 232 nm, 228 nm, and 222 nm emission, respectively. The shortest wavelength LED with a peak emission of 217 nm showed a maximum emission power of 3.6 μW at 135 mA under pulsed mode operation. Even though these power levels are relatively modest, the light output is already sufficient to enable applications in the area of gas sensing, e.g. ammonia or nitrogen oxide. The corresponding maximum EQEs are decreasing from 9.6×10^{-2}%, 2.7×10^{-2}%, 2.0×10^{-3}%, and 4.9×10^{-4}% for 232 nm, 228 nm, 222 nm, and 217 nm emission, respectively. This trend is in good agreement to recent literature values as shown in Fig. 4.

In conclusion, we investigated the emission characteristics and operation voltages of deep UV LEDs with emission wavelengths between 239 and 217 nm. When increasing the aluminum composition of the Al$_{x}$Ga$_{1-x}$N/Al$_{x}$Ga$_{1-x}$N MQW active region, i.e. decreasing the emission wavelength, a strong reduction in light output and EQE is observed. Our findings indicate that this behavior is most likely originating in a decreasing CIE. Additionally, the influence of absorption of the underlying Al$_G$A$_{1-x}$N:Si current spreading layer on the spectral characteristics was investigated. By increasing the aluminum composition up to $x = 0.95$, full transparency was maintained for emission > 222 nm thus leading to high EQE, however, at the cost of strongly increasing the operation voltage. LEDs emitting at 217 nm grown on Al$_{0.95}$Ga$_{0.05}$N:Si with on-wafer measured quantum well emission powers of 0.15 μW at 20 mA and 20.1 V were demonstrated in cw operation. Additionally, 239 nm LEDs grown on Al$_{0.90}$Ga$_{0.10}$N:Si with a maximum integrated output power of 4.6 mW at 500 mA in pulsed mode operation were presented.

Acknowledgments

The authors would like to thank Sylvia Hagedorn (Ferdinand-Braun-Institut, Berlin) for providing ELO AlN/sapphire templates, Neysha Lobo-Ploch (UV Photonics NT GmbH, Berlin) for careful proof reading and helpful discussion, and Praphat Sonka (Technische Universität Berlin) for technical support and sapphire polishing. This work was partially supported by the German Federal Ministry of Education and Research (BMBF) within the “Advanced UV for Life” project and by the Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Center “Semiconductor Nanophotonics” (SFB 787).

ORCID iDs

Frank Mehneke https://orcid.org/0000-0001-5406-0832
References

1) M. Kneissl and J. Rass, *III-Nitride Ultraviolet Emitters—Technology and Applications* Springer Series in Material Science (Springer, Cham, 2016) Vol. 227.

2) F. Mehnke et al., *IEEE J. Sel. Top. Quantum Electron.* **23**, 2000108 (2017).

3) M. Kneissl et al., *Semicond. Sci. Technol.* **26**, 014036 (2011).

4) R. France, T. Xu, P. Chen, K. Chandrasekaran, and T. D. Moustakas, *Appl. Phys. Lett.* **90**, 062115 (2007).

5) F. Mehnke, N. T. Trinh, H. Pingel, T. Wernicke, E. Janzén, N. T. Son, and M. Kneissl, *J. Appl. Phys.* **120**, 145702 (2016).

6) Y. Taniyasu and M. Kasu, *Appl. Phys. Lett.* **96**, 221110 (2010).

7) H. Hirayama, S. Fujikawa, N. Noguchi, J. Norimatsu, T. Takano, K. Tsubaki, and N. Kamata, *Phys. Status Solidi A* **206**, 1176 (2009).

8) D. Liu et al., *Appl. Phys. Lett.* **113**, 011111 (2018).

9) D. Liu et al., *Appl. Phys. Lett.* **112**, 081101 (2018).

10) C. G. Moe, S. Sugiyama, J. Kasai, J. R. Gradusky, and L. J. Schowalter, *Phys. Status Solidi A* **215**, 1700660 (2017).

11) F. Mehnke et al., *Appl. Phys. Lett.* **105**, 051113 (2014).

12) R. G. Banal, M. Funato, and Y. Kawakami, *Phys. Rev. B* **79**, 121308(R) (2009).

13) C. Reich et al., *Appl. Phys. Lett.* **107**, 142101 (2015).

14) A. Knauer, A. Mogilatenko, S. Hagedorn, J. Enslin, T. Wernicke, M. Kneissl, and M. Weyers, *Phys. Status Solidi B* **253**, 1228 (2016).

15) G. Kusch et al., *Appl. Phys. Lett.* **107**, 072103 (2015).

16) G. Kusch, F. Mehnke, J. Enslin, P. R. Edwards, T. Wernicke, M. Kneissl, and R. W. Martin, *Semicond. Sci. Technol.* **32**, 035020 (2017).

17) S. P. Grabowski, M. Schneider, H. Nienhaus, W. Mönch, R. Dimitrov, O. Ambacher, and M. Stutzmann, *Appl. Phys. Lett.* **78**, 2503 (2001).

18) K. Ban, J. Yamamoto, K. Takeda, K. Ide, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, and H. Amano, *Appl. Phys. Express* **4**, 052101 (2011).

19) T. A. Henry, A. Armstrong, A. A. Allerman, and M. H. Crawford, *Appl. Phys. Lett.* **100**, 043509 (2012).

20) H. Hirayama, Y. Tsukada, T. Maeda, and N. Kamata, *Appl. Phys. Express* **3**, 031002 (2010).