Social structure and demography of a remnant Asian elephant (*Elephas maximus*) population and the implications for survival.

LAUREN J. HALE, KUN SHI, TANIA C. GILBERT, KELVIN S.-H. PEH, PHILIP RIORDAN

PHILIP RIORDAN (Corresponding Author) Marwell Wildlife, Thompson’s Lane, Colden Common, Winchester, SO21 1JH, United Kingdom. Email philipr@marwell.org.uk.
orcid.org/0000-0001-6285-8596.

LAUREN J. HALE School of Biological Sciences, University of Southampton, U.K. and

Marwell Wildlife, Winchester U.K.

KUN SHI Wildlife Institute, School of Nature Conservation, Beijing Forestry University, China and Wildlife Without Borders, Chelmsford U.K.

TANIA C. GILBERT Marwell Wildlife, Winchester U.K. and School of Biological Sciences, University of Southampton, U.K.

KELVIN S.-H. PEH School of Biological Sciences, University of Southampton, U.K., and

Conservation Science Group, Department of Zoology, University of Cambridge, U.K.

PHILIP RIORDAN Marwell Wildlife, Winchester U.K., School of Biological Sciences, University of Southampton, U.K., Wildlife Institute, School of Nature Conservation, Beijing Forestry University, China and Wildlife Without Borders, Chelmsford U.K.

Abstract

The Asian elephant is at risk of extinction due to anthropogenic pressures, and remaining populations are often small and fragmented remnants, occupying a fraction of the species’ former range. Once widely distributed across China, only a maximum of 245 elephants are estimated to survive across seven small populations. We assessed the Asian elephant population in Nangunhe National Nature Reserve in Lincang Prefecture, China using camera traps between May to July 2017, to estimate the population size and structure of this genetically important population. Our results indicate that whilst detection probability was low (0.31), we estimated a total population size of approximately 20 individuals, and an effective density of 0.39 elephants per km2. Social structure indicated a strong sex ratio bias towards females, with only one adult male detected within the population. Most of the elephants associated as one herd but three adult females remained separate from the herd throughout the trapping period. These results highlight the fragility of remnant elephant
populations such as Nangunhe and we suggest options such as a managed metapopulation approach for their continued survival in China and more widely.

Keywords

Habitat fragmentation, population thresholds, demographic survival, camera trapping, protected areas, People’s Republic of China, Yunnan Province.

Introduction

Global elephant populations are declining. All surviving elephant species, the African bush elephant (*Loxodonta africana*), African forest elephant (*L. cyclotis*) and Asian elephant (*Elephas maximus*) are currently at risk of extinction due to habitat loss and fragmentation. These threats are further compounded by illegal poaching for ivory, meat and skin (Blanc, 2008; Choudhury et al., 2008). Once widespread across Asia, the Asian elephant is now the most threatened among the extant species, listed as Endangered by the IUCN Red List of Threatened Species (Choudhury et al., 2008). There are an estimated 41,000-52,000 animals in the wild, occurring in restricted populations in remaining range countries (Choudhury et al., 2008). Given the increased extinction risk posed by population restriction and fragmentation (Lacy, 2000; Frankham, 2005), especially for larger-bodied species (Hilbers et al., 2017), it is important to understand the demography of remaining small populations so that effective management can be enacted.

Once widely distributed over Southern China, only 221-245 elephants are now estimated to remain in Lincang, Pu’Er and Xishuangbanna Prefectures in southern Yunnan Province (Zhang et al., 2015). The population is fragmented into seven poorly connected sub-populations, with only four of these containing more than 40 individuals (Zhang et al., 2015). Fragmentation has been driven by ongoing human population expansion, rapid land conversion to agriculture and expanding urbanisation (Choudhury et al., 2008). Remnant populations are restricted to ‘pocketed herds’ in small forest fragments within a human-dominated landscape (Choudhury et al., 2008). These small isolated populations are likely to suffer from genetic impoverishment and demographic stochasticity leading to an increased risk of extinction (Frankham, 2003; Lande, 1993).
This study aims to determine the demographic and social structures of elephants in a remnant population in Nangunhe National Nature Reserve (南滚河国家级自然保护区), Lincang Prefecture, situated on the border between China and Myanmar. Previous studies of elephants in Nangunhe have focused on either habitat associations (Feng et al., 2010) or as part of national assessments of population size (e.g. Zhang et al., 2015). The elephant population in Nangunhe is regarded as genetically distinct, despite a small population size estimated at 20-23 individuals in 2014, with the highest nucleotide and mitochondrial haplotype diversity of all China’s elephant populations (Zhang et al., 2015). The importance of the Nangunhe population for elephant conservation in China, and the region more generally, is therefore potentially significant. Here, we aim to provide important insights that might improve conservation of Asian elephants, offering support for a metapopulation management approach.

Study area

Nangunhe National Nature Reserve is a 708 km² national protected area located in the south of Lincang Prefecture (Bohnett et al., 2015). It lies within the southwest monsoon climate zone and supports bamboo forest, monsoon evergreen broadleaved forest, seasonal rainforest, shrubland and tall grassland (Liu et al., 2016). The reserve includes an 85.3 km² core zone, 89.4 km² buffer zone and 101.8 km² experimental zone within Cangyuan county, with the remaining 431.5 km² in Gengma county. Elephants are restricted to the section of the reserve in Cangyuan county, predominantly utilising the core zone in the west (fig. 1), which experiences minimal human disturbance (Yunnan Forestry Administration, unpublished data). The reserve is isolated from other forested protected areas supporting elephant populations in China as the human-dominated landscape prevents elephant movement between fragments.

Methods

A total of 36 active motion-triggered camera traps (26 Onick AM-999, eight Ltl Acorn 6210 and two ScoutGuard SG560K), with infra-red illumination, were placed over a 44 km² area within the core zone of the reserve (23°14’38” N 99°00’24” E) to determine elephant population size, density and social structure (fig. 1). The cameras were active for 47 days between May and July 2017 (the rainy season), although not all cameras were continually operational over the entire period, giving 1,394 trap days. The reserve manager advised that
elephants predominantly use the core zone as the surrounding buffer and experimental zones contain steep slopes, farmlands, roads and settlements. To maximise detectability, cameras were installed along recorded elephant trails at approximately 1.0 km intervals, across all vegetation types. Cameras were set at a height of 1.5m, at a focal distance of approximately 5m (Varma et al., 2006). Cameras were directed either north or south to avoid sun glare and any overhanging vegetation was cleared to prevent false triggers. One camera was set per station, which were set in positions where angle of view was along trails, with little potential for movement outside of the camera’s field of view. Cameras were configured to take three photographs and 10 seconds of video per trigger, although malfunctions caused eight cameras to take exclusively either photographs or video, and two cameras took a three second video only.

Individuals were identified, aged and sexed using distinguishing traits, and ages of non-adults were estimated by comparing animal heights relative to an adult female where they co-occurred in the same photograph (Silva et al., 2011; Vidya et al., 2014). Individuals were grouped into four age classes: new-born (≤ 6 months), infant (7 months-2 years), juvenile (3-7 years) and adult (≥ 8 years). The adult age class incorporated sub-adults, as distinguishing between adults and sub-adults based on relative height measurements is unreliable. All juveniles and adults were assigned a sex, but new-borns and infants were left unsexed as these age classes lack the discriminating sexually dimorphic features (Varma et al., 2012).

Population size was estimated using Chao’s moment estimator (Mth model) in programme CAPTURE (Hines, 1987), which accounted for the effects of time (t) and individual differences (h) (Seltmann et al., 2018). A ‘closure test’ was applied to ensure that the population met the assumption of a closed population.

Capture probabilities across the survey area and elephant density were assessed using a spatially explicit capture-recapture model in the package secr implemented in R (Efford, 2018). The spatial scale of capture location data (σ) was estimated to be 1.8 km, as a proxy of elephant home range size in the reserve, calculated as the mean maximum distance moved (MMDM). The initial secr buffer width was taken as 2σ (3.6 km), which was adequate for density estimates to stabilize across the camera grid.
Social structure was determined by assigning individuals to the same group if they were captured within 15 minutes of each other (Head et al., 2013). Any residual individuals were considered part of a group if they were captured with one or more of its members. Individual elephants captured more than 30 minutes apart on the same camera were considered to be independent capture events.

Results
Camera trapping in Nangunhe NNR yielded a total of 154 images and 43 videos of elephants on six of the 36 camera traps. Of which, 89 images (58%) and 37 videos (86%) were suitable for elephants to be individually identified, sexed and assigned an age class. Sixteen elephants were individually identified: eight adult females; one adult male; three juvenile males; two infants and two new-borns, both pairs of indeterminate sex (Table S1). Using Chao’s Mth model, the total population size in the reserve was estimated to be 20 individuals, with 95% confidence intervals between 17 and 33 animals. The spatially-explicit likelihood capture model estimated the detection probability \((g_0) \) to be 0.31 (95% CI: 0.26 - 0.37 km\(^{-2}\)) over the trapping grid, with an elephant density of 0.39 animals km\(^{-2}\) (95% CI: 0.14 - 0.67 animals km\(^{-2}\)).

Of the 16 elephants identified, 11 formed one herd (Table S2), although not all members were captured together on every occasion (Table S3). Females F04 and F06, juveniles J01 and J03, and calves C04 and C06 were recorded together in four capture events on camera traps 2 and 3. Female F05, juvenile J02 and calf C05 were absent from one capture event. Adult female F07 was captured only once in the presence of a recognized herd member (juvenile male J02), although there was a 22-minute separation, and more than an hour after the rest of the herd was captured on the same camera trap. An adult female (F02) was captured once with her calf (C02) on camera trap 5 (fig. 1). Three solitary adult females (F01, F03, and F08) were detected, with F03 and F08 captured once on camera traps 1 and 2, respectively, and F01 captured in seven separate events on camera traps 3, 4, 5 and 6 (fig. 1). Only one adult male (M01) was encountered, detected on his own three times on camera trap 2, and once with the herd on camera trap 3, although one capture on camera 2, on 29th May, was only 24 minutes after the other herd members.
The elephant population of Nangunhe National Nature Reserve was estimated at 20 individuals, with an estimated density of 0.39 elephants per km2. This density is relatively low, with densities of 3.3 elephants/km2 estimated in Nalkeri Reserve Forest, India (Karanth & Sunquist, 1992) and 5.0 elephants/km2 in Bandipur National Park, India (Johnsingh, 1983), although densities can be <0.1 elephants/km2 (Sukumar, 1989). The area of suitable habitat for elephants in Nangunhe covers just 29km2 of the reserve (Liu et al., 2016), which is less than the minimum species’ home range size estimated at 100 km2 (Jathanna et al., 2015; Liu et al., 2016) and potentially limits the carrying capacity of Nangunhe (Zhang et al., 2015).

The elephant population in Nangunhe has not increased for more than four decades, which equates to approximately two generations (Choudhury et al., 2008). The size of the population has reportedly fluctuated around 20 individuals since 1976, with the exception of a decline to 12 individuals in 1983 (Zhang et al., 2015). Although apparently stable over this period, the population remains vulnerable to accelerated inbreeding and loss of genetic diversity leading to inbreeding depression and a compromised ability to respond to changing environmental conditions (Frankham, 2003; 2005). This is compounded by demographic and environmental stochasticity and local catastrophes that together lead to an increased risk of population extinction (Lande, 1993). From the data collected, we determined there to be at least eight adult females, although their ages and reproductive status cannot be determined using our methods. There were seven young animals, at least four of which (two infants and two new-borns) were assumed to be dependents. Asian elephants are known to experience senescence, with reproductive success declining beyond the age of 18 years (Hayward et al., 2014). The age of first reproduction for females is between six and nine years and the average interbirth interval is between 2.5 to four years (Sukumar, 2003). Without further details of female ages it is not possible to predict future demographic trends.

However, the detection of only one adult male in Nangunhe suggests a reduced effective population size exacerbating the risks of inbreeding and reducing the long-term sustainability of the population (Allendorf et al., 2008; Frankham, 2005). The observed adult sex-ratio of the population was female-biased (1:8). It is possible that the number of males was underestimated, particularly if they range more widely than females (Sukumar, 1989). We also acknowledge the low detection rate indicated by capture models, which might result in missed individuals. Anecdotally, the reserve manager reported knowledge of only two adult
males in the Nangunhe population over the last five years (Li pers. comm.). This suggests a
strong female-biased adult sex-ratio, seldom seen in undisturbed populations that tend to
exhibit adult sex ratios in the region of 1 adult male: 2 adult females (Gupta et al., 2016). The
underlying reasons for the sex ratio skew in Nangunhe are unclear. There are recorded
incidences of poaching of adult male elephants in Nangunhe, though not in the last 14 years.
Of eight animal deaths reported between 1987 and 2003, one adult male was killed in
retaliation for crop-raiding in 1996 and another was poached for ivory in 2003 (Liu et al.,
2016). The sex of other animals killed was not recorded.

Assessments of sex-ratios at birth, or examination of differential survival and mortality rates
in younger animals, are thwarted by our inability to distinguish the sex of new-born or infant
elephants. Theories exist to explain sex-ratio biases at birth and the effect of maternal
(Rosenfeld & Roberts, 2004; Trivers & Willard, 1973) or paternal (Malo et al., in press)
conditions which may have relevance given the largely sub-optimal habitat of Nangunhe and
potential levels of inbreeding.

An important consideration is that elephants are highly complex social animals, and it is
highly probable that their breeding biology is in turn similarly complex. For example, Asian
elephants do not breed well in captivity (Wiese & Willis 2004; Rees 2003; Taylor & Poole
1998), where groups are structured artificially. In response to severely reduced population
size, the elephant population in Cat Tien National Park, Vietnam, coalesced into a single
group, comprised of many matrilines (Vidya et al., 2007) The impact of historical hunting,
which is often highly selective, may affect population demography by removing key
individuals such as experienced females or reproductively successful males and altering
social relationships (Archie & Chiyo, 2012) and, in African elephants, can result in a bias
towards adult females (Jones et al., 2018). Prior to the recorded poaching in Nangunhe, the
population will have been subject to the same pressures that caused the decline of elephants
across China more widely (Elvin, 2006). As a consequence, the structure of the Nangunhe
population, probably like many other small populations, is an artefact of human activity
rather than natural processes and therefore, in common with captive groups, the requisite
social processes required to facilitate breeding in this highly complex species may be lacking.

The identified presence of lone female elephants in Nangunhe corresponds with similar
findings reported by Fernando & Lande (2000) who identified female Asian elephants in
Ruhuna National Park, Sri Lanka that spent considerable time away from their natal herds to maximize foraging opportunities. The low male to female ratio amongst adult elephants might also influence the dispersal of females. In elephants, males typically seek mates, however in African elephants, a lack of mating opportunities has also been found to increase female dispersal rates (Archie et al., 2007).

The picture developing for elephants in Nangunhe, from ours and other studies, suggests a remnant population that is at risk of being lost due to social, genetic, ecological and human factors resulting from its isolation. The spatial and temporal scales that are relevant for elephant conservation efforts create further problems. The long generation length (20-25 years) of Asian elephants (Choudhury et al., 2008) means that any detrimental effects of inbreeding may take a substantial period of time to manifest in the population (Ling et al., 2016), but is likely to present a long-term problem for the elephants of Nangunhe unless gene flow is restored between unrelated populations. The addition of only one breeding immigrant might substantially reduce inbreeding depression in an inbred population (Vilà et al., 2003). However, there are no current natural migratory routes between Nangunhe and the six other elephant populations in China. Corridors for elephants have been successfully created elsewhere (Green et al., 2018), though can require substantial land-use changes and agreement from stakeholders in the interstitial areas between reserves. Efforts to develop transboundary corridors linking Nangunhe to potentially large areas of suitable habitat (Leimgruber et al., 2003) and elephant populations in Myanmar would likely prove even more complicated. Remaining options include translocations between elephant populations within China (Ishida et al., 2018), or assisted reproductive technologies to restore gene flow (Hermes et al., 2013), each requiring significant investments of effort and resources.

We suggest that the continued existence of elephants in Nangunhe, and the six other remaining populations in China, requires a wider landscape and metapopulation approach to species management, which has been shown to work elsewhere (e.g. Flagstad et al., 2012). This should be conducted in concert with continued information gathering about the status of these populations, perhaps taking advantage of increasingly accessible technologies. Indeed, to enact a sufficiently robust and adaptive collective management approach to these populations, more detailed information about social structures and relatedness will be required.
As throughout much of Asia, rural communities surrounding NGH are dependent on agriculture, potentially exacerbating conflict as seen in other areas where ranges of elephants and people overlap significantly (Fernando et al., 2019). As in China, protected areas are rarely sufficient to maintain viable populations of Asian elephants (Fernando et al., 2006), making their long-term survival dependent on suitability of surrounding wildlands (Leimgruber et al., 2003) and perhaps less optimal habitats (Evans et al., 2018). Efforts to address issues of habitat and human disturbance within and around reserves should be maintained, and indeed enhanced. But it is only by considering these fragmented populations as a single entity, with appropriate linking management perhaps akin to a breeding programme, that we can hope to ensure the long-term survival of Asian elephants in China and the region.

Author Contributions
LJH designed the project, carried out fieldwork, collected field data, analysed data, wrote and edited manuscript text. KS designed the project, facilitated fieldwork, wrote and edited manuscript text. TCG analysed data, wrote and edited manuscript text, KSHP designed the project, wrote and edited manuscript text, PR designed the project, analysed data, wrote and edited manuscript text.

Acknowledgements
We would like to thank Mr Li, the Reserve Manager at Nangunhe National Nature Reserve, China, research assistants Wenwen Liu, Xu Chao and Liu Yu, and the rangers of Nangunhe National Nature Reserve for their support during data collection. This work was funded by Marwell Wildlife, through their joint MRes degree programme in Wildlife Conservation with University of Southampton, with additional support from the Wildlife Institute at Beijing Forestry University.

Conflicts of Interest
None

Ethical Standards
This work complies with the journal’s Code of Conduct. All work was cleared by Marwell Wildlife’s Ethics Committee and the ethical review processes of the University of Southampton and Beijing Forestry University.
References

Allendorf, W.F. England, P.R. Luikart, G. Ritchie, P.A. Ryman, N. (2008). Genetic effects of harvest on wild animal populations. *Trends Ecol. Evol.*, **23**, 327-337

Archie, E.A., Hollister-Smith, J.A., Poole, J.H., Lee, P.C., Moss, C.J., Maldonado, J.E., Fleischer, R.C. & Alberts, S.C. (2007) Behavioural inbreeding avoidance in wild African elephants. *Molecular Ecology*, **16**, 4138-4148.

Archie, E. A. and Chiyo, P. I. (2012) Elephant behaviour and conservation: social relationships, the effects of poaching, and genetic tools for management. *Molecular Ecology*, **21**, 765-778, doi.org/10.1111/j.1365-294X.2011.05237

Blanc, J. (2008). *Loxodonta africana* (African Elephant) IUCN Red List. Retrieved January 7, 2018, from http://www.iucnredlist.org/details/12392/0.

Bohnett, E., Riordan, P. and Shi, K. (2015). Initial assessment on large and medium sized terrestrial mammal assemblage using camera trapping in Nangunhe Nature Reserve in Yunnan, China. *Journal of Resource Ecology*, **6**(5), 331-344.

Choudhury, A., Lahiri Choudhury, D.K., Desai, A., Duckworth, J.W., Easa, P.S., Johnsingh, A.J.T., Fernando, P., Hedges, S., Gunawardena, M., Kurt, F., Karanth, U., Lister, A., Menon, V., Riddle, H., Rübel, A. & Wikramanayake, E.I.S.A.E.S.G. (2008) *Elephas maximus*. The IUCN Red List of Threatened Species 2008: doi.org/10.2305/IUCN.UK.2008.RLTS.T7140A12828813

Efford, M. (2018) secr 3.1 - spatially explicit capture–recapture in R. https://cran.r-project.org/web/packages/secr/vignettes/secr-overview.pdf

Elvin, M. (2006) *The Retreat of the Elephants: An Environmental History of China*. Yale University Press.

Evans, L.J., Asnera, G.P. & Goossens, B. (2018) Protected area management priorities crucial for the future of Bornean elephants. *Biological Conservation*, **221**, 365–373.

Feng, L., Z. Wang, L. Lin, S. Yang, B. Zhou, C. Li, Y. M. Xiong and L. Zhang (2010). Habitat selection in dry season of Asian elephant (*Elephas maximus*) and conservation strategies in Nangunhe National Nature Reserve, Yunnan, China. *Acta Theriol. Sin.* **30**: 1–10.

Fernando, P. & Lande, R. (2000) Molecular genetic and behavioral analysis of social organization in the Asian elephant (*Elephas maximus*). *Behavioral Ecology and Sociobiology*, **48**, 84-91.
Fernando, P., Wikramanayake, E.D., Weerakoon, D., Janaka, H.K., Gunawardena, M., Jayasinghe, L.K.A., Nishantha, H.G. and Pastorini, J., (2006) The future of Asian elephant conservation: setting sights beyond protected area boundaries. In Conservation Biology in Asia (eds J.A. McNeely, T.M. McCarthy, A. Smith, L. Olsvig-Whittaker & E.D. Wikramanayake), pp. 252 – 260, Society for Conservation Biology–Asia Section, Kathmandu, Nepal.

Fernando, P., De Silva, M. K. C. R., Jayasinghe, L. K. A., Janaka, H. K., & Pastorini, J. (2019). First country-wide survey of the Endangered Asian elephant: towards better conservation and management in Sri Lanka. Oryx, 1-10. doi:10.1017/S0030605318001254

Flagstad, Ø., Pradhan, N. M. B., Kvernstuen, L. G., & Wegge, P. (2012). Conserving small and fragmented populations of large mammals: Non-invasive genetic sampling in an isolated population of Asian elephants in Nepal. Journal for Nature Conservation, 20(3), 181-190. doi:https://doi.org/10.1016/j.jnc.2012.01.006.

Frankham, R. (2003) Genetics and Conservation Biology. Comptes Rendus Biologies 326, S22-S29. doi.org/10.1016/S1631-0691(03)00023-4

Frankham, R. (2005) Genetics and extinction. Biological Conservation 126: 131–140

Green, S., Davidson, Z, Kaaria, T., and Doncaster, C.P. (2018). Do wildlife corridors link or extend habitat? Insights from elephant use of a Kenyan wildlife corridor. African Journal of Ecology, 56, 860–871. doi.org/10.1111/aje.12541

Gupta, M., Ravindranath, S., Prasad, D. & Vidya, T.N.C. (2016) Short-term variation in sex ratio estimates of Asian elephants due to space use differences between the sexes. Gajah, 44, 5-15.

Hayward, A. D., K. U. Mar, M. Lahdenperä and V. Lummaa (2014). "Early reproductive investment, senescence and lifetime reproductive success in female Asian elephants." Journal of Evolutionary Biology 27(4): 772-783.

Head, J. S. et al. (2013): Effective sociodemographic population assessment of elusive species in ecology and conservation management. Ecology and Evolution 3 (9), 2903-2916

Hermes, R., Saragusty, J., Göritz, F., Bartels, P., Potier, R., Baker, B., Streich, W.J. & Hildebrandt, T.B. (2013) Freezing African elephant semen as a new population management tool. Plos One, 8, e57616 doi.org/10.1371/journal/pone.0057616

Hilbers, J. P., Santini, L., Visconti, P., Schipper, A. M., Pinto, C., Rondinini, C. and Huijbregts, M. A. (2017), Setting population targets for mammals using body mass as a
Ishida, Y., Gugala, N.A., Georgiadis, N.J. & Roca, A.L. (2018) Evolutionary and demographic processes shaping geographic patterns of genetic diversity in a keystone species, the African forest elephant (*Loxodonta cyclotis*). *Ecology and Evolution, 8*, 4919-4931.

Jathanna, D., Karanth, K.U., Kumar, N.S., Karanth, K.K. & Goswami, V.R. (2015) Patterns and determinants of habitat occupancy by the Asian elephant in the Western Ghats of Karnataka, India. *Plos One, 10*, e0133233.

Johnsingh, A.J.T. (1983) Large mammalian prey-predators in Bandipur. *Journal of Bombay Natural History Society, 80*, 1-57.

Jones, T., Cusack, J.J., Pozo, R.A., Smit, J., Mkuburo, L., Baran, P., Lobora, A.L., Mduma, S. & Foley, C. (2018) Age structure as an indicator of poaching pressure: Insights from rapid assessments of elephant populations across space and time, *Ecological Indicators, 88*, 115-125, ISSN 1470-160X, doi.org/10.1016/j.ecolind.2018.01.030.

Karanth, K.U. & Sunquist, M.E. (1992) Population structure, density and biomass of large herbivores in the tropical forests of Nagarahole. *Journal of Tropical Ecology, 8*, 21-35.

Lacy, R.C. (2000) Considering threats to the viability of small populations using individual-based models. *Ecological Bulletins, 48*, 39-51.

Lande, R. (1993) Risks of population extinction from demographic and environmental stochasticity and random catastrophes. *American Naturalist, 142*, 911-927.

Leimgruber, P., Gagnon, J.B., Wemmer, C., Kelly, D.S., Songer, M.A. & Selig, E.R. (2003) Fragmentation of Asia’s remaining wildlands: implications for Asian elephant conservation. *Animal Conservation, 6*, 347-359.

Ling, L.E., Ariffin, M. & Manaf, L.A. (2016) Threats to the conservation of Asian elephants: a review study. *Journal of Governance & Development, 12*, 123-139.

Liu, P., Wen, H., Lin, L., Liu, J. & Zhang, L. (2016) Habitat evaluation for Asian elephants (*Elephas maximus*) in Lincang: conservation planning for an extremely small population of elephants in China. *Biological Conservation, 198*, 113-121.

Malo, A. Gilbert, T. & Riordan, P. (in press) Drivers of sex ratio bias in the Eastern bongo: lower inbreeding increases the probability of being born male. *Proc. Royal Soc. B. RSPB-2019-0345.R1.*

Rees, P.A. (2003) Asian elephants in zoos face global extinction: should zoos accept the inevitable? *Oryx, 37*(1), 20-22.
Rosenfeld, C.S. & Roberts, R.M. (2004) Maternal Diet and Other Factors Affecting Offspring Sex Ratio. *Biology of Reproduction*, 71, 1063-1070.

Seltmann, M. W., S. Helle, M. J. Adams, K. U. Mar, and M. Lahdenperä. 2018. Evaluating the personality structure of semi-captive Asian elephants living in their natural habitat. *Royal Society Open Science* 5(2), doi.org/10.1098/rsos.172026.

de Silva, S., A. D. G. Ranjeewa, and S. Kryazhimskiy. (2011). The dynamics of social networks among female Asian elephants. *BMC Ecology* 11:17.

Sukumar, R. (1989) The Asian Elephant: Ecology and Management. Cambridge University Press, New York, USA.

Sukumar, R. (2003). The Living Elephants: Evolutionary Ecology, Behaviour and Conservation. Oxford University Press, Oxford, U.K.

Taylor, V.J. & Poole, T.B. (1998) Captive breeding and infant mortality in Asian elephants: a comparison between twenty western zoos and three eastern elephant centers. *Zoo Biology*, 17, 311-332.

Trivers, R.L. & Willard, D.E. (1973) Natural-Selection of Parental Ability to Vary Sex-Ratio of Offspring. *Science*, 179, 90-92.

Varma, S., Pittet, A. & Jamadagni, H.S. (2006) Experimenting usage of camera-traps for population dynamics study of the Asian elephant *Elephas maximus* in southern India. *Current Science*, 91(3), 324-331.

Varma, S., Baskaran, N. & Sukumar, R. (2012) *Field key for elephant population estimation and age and sex classification*. Asian Nature Conservation Foundation, Innovation Centre, Indian Institute of Science, Bangalore, Karnataka.

Vidya, T.N.C., Varma, S., Dang, N.X., Thanh, T.V. & Sukumar, R. (2007) Minimum population size, genetic diversity, and social structure of the Asian elephant in Cat Tien National Park and its adjoining areas, Vietnam, based on molecular genetic analyses. *Conservation Genetics*, 8, 1471-1478.

Vidya, T.N.C. Prasad, D. Ghosh, A. (2014). Individual identification in Asian elephants. *Gajah*, 40, 3-17

Vilà, C., Sundqvist, A.-K., Flagstad, Ø., Seddon, J., Björnerfeldt, S., Kojola, I., Casulli, A., Sand, H., Wabakken, P. & Ellegren, H. (2003) Rescue of a serverly bottlenecked wolf (*Canis lupus*) population by a single immigrant. *Proceedings of the Royal Society B*, 270, 91-97.

Wiese, R.J. & Willis, K. (2004) Calculation of longevity and life expectancy in captive elephants. *Zoo Biology*, 23, 365-373.
Zhang, L., Dong, L., Lin, L., Feng, L., Yan, F., Wang, L., Guo, X. & Luo, A. (2015) Asian elephants in China: estimating population size and evaluating habitat suitability. *Plos One, 10*, e0124834.
Fig. 1
Hale et al. Social structure and demography of a remnant Asian elephant (*Elephas maximus*) population and the implications for survival

Supplementary Materials

Table S1. Sex and ages classes of individual elephants encountered on camera traps in Nangunhe National Nature Reserve.

Elephant ID	Sex	Age class
C02	Unknown	Infant
C04	Unknown	Infant
C05	Unknown	New born
C06	Unknown	New born
F01	Female	Adult
F02	Female	Adult
F03	Female	Adult
F04	Female	Adult
F05	Female	Adult
F06	Female	Adult
F07	Female	Adult
F08	Female	Adult
J01	Male	Juvenile
J02	Male	Juvenile
J03	Male	Juvenile
M01	Male	Adult
Table S2. Encounter matrix between elephants in Nangunhe National Nature Reserve, showing the number of occasions on which individuals were captured on camera trap images within 15 minutes of each other (after Head et al, 2013 – see Methods in main text).

	C02	C04	C05	C06	F01	F02	F03	F04	F05	F06	F07	F08	J01	J02	J03	M01	
C02	-																
C04		-															
C05			-														
C06				4	2	-											
F01																	
F02																1	
F03																	
F04															4	2	4
F05															3	2	3
F06															4	2	4
F07																	
F08																	
J01															4	2	4
J02															3	2	3
J03															4	3	4
M01															1	1	1

Table S3. Individual elephant camera trapping capture histories in Nangunhe National Nature Reserve, by date and camera ID. Elephant IDs indicate sex of adults ("M" or "F" prefixes referring to males and females respectively), with juveniles and calves denoted with "J" and "C" prefixes respectively.

Date	May	June													
	22	29	30	31	02	03	08	09	15	Total					
	25	28	29	30	31										
Camera ID:	5	1	3	6	2	5	2	2	6	5	4	2	2	3	
-----------	---	---	---	---	---	---	---	---	---	---	---	---	---	---	
Elephant ID															
C02	1														
C04	1	1	1	1		1	1							4	
C05	1						1							2	
C06	1	1	1	1				1						4	
F01	1	1	1		2	1	1	1						7	
F02		1						1						1	
F03		1												1	
F04	1	1	1	1				1	1					5	
F05	1				1			1			1			3	
F06	1	1	1			1	1							5	
F07							1							1	
F08								1						1	
J01	1	1	1			1								4	
J02	1	1	1			1								4	
J03	1	1	1				1							4	
M01	1	1	1					1						4	
Total	1	1	10	1	1	1	8	9	2	2	1	10	3	1	51

Figure S1. Accumulation curve for number of individual elephants encountered in Nangunhe National Nature Reserve during camera trapping during May and June 2017.
