In vitro antiplasmodial activity of marine sponge Stylissa carteri associated bacteria against Plasmodium falciparum

Samuel Jacob Inbaneson, Sundaram Ravikumar*

School of Marine Sciences, Department of Oceanography and Coastal Area Studies, Alagappa University, Thondi Campus, Thondi–623 409, Ramanathapuram District, Tamil Nadu, India

Keywords:
Antiplasmodial compounds
Biochemical constituents
IC50
Plasmodium falciparum
Sponge bacteria
Stylissa carteri

Objective: To identify the possible antiplasmodial drugs from bacteria associated with marine sponge Stylissa carteri (S. carteri). Methods: The S. carteri samples were collected from Thondi coast and subjected for enumeration and isolation of associated bacteria. Filter sterilized extracts (100, 50, 25, 12.5, 6.25 and 3.125 μg/mL) from isolated bacterial isolates were screened for antiplasmodial activity against Plasmodium falciparum (P. falciparum) and potential extracts were also screened for biochemical constituents. Results: Twelve samples of S. carteri were collected and subjected for enumeration and isolation of associated bacteria. The count of bacterial isolates were maximum in November 2007 (34×10⁴ CFU/g) and the average count was maximum during the monsoon season (203×10³ CFU/g). Thirty two morphologically different bacterial isolates were isolated from S. carteri and the ethyl acetate bacterial extracts were screened for antiplasmodial activity against P. falciparum. The antiplasmodial activity of a isolate THB17 (IC50 20.56 μg/mL) extract is highly comparable with the positive control chloroquine (IC50 19.59 μg/mL) and 13 bacterial extracts which showed IC50 value of more than 100 μg/mL. Statistical analysis reveals that, significant in vitro antiplasmodial activity (P<0.05) was observed between the concentrations and time of exposure. The chemical injury to erythrocytes showed no morphological changes in erythrocytes by the ethyl acetate extract of bacterial isolates after 48 h of incubation. The in vitro antiplasmodial activity might be due to the presence of reducing sugars and alkaloids in the ethyl acetate extracts of bacterial isolates. Conclusions: The ethyl acetate extract of THB17 possesses lead compounds for the development of antiplasmodial drugs.

1. Introduction

Natural products and their derivatives continue to play an important role in the development of drugs for the treatment of human diseases[1]. Marine invertebrates, such as sponges, have proven to be a rich source of biologically active and pharmacologically valuable natural products, with a high potential to become effective drugs for therapeutic use[2]. These marine sponges are the oldest metazoan group, having an outstanding importance as a living fossil[3]. These simplest animals are very efficient filter feeders. It has been estimated that, some of them are able to filter their own body volume of water every 5 seconds[4]. Earlier investigations reveals that, bacterial isolates associated with marine sponges had the ability to produce compounds that are similar and in some cases identical to those isolated from sponges[5,6]. The marine sponge associated bacteria are considered as a rich source of novel antiplasmodial agents and these potential resources were scarcely explored. The present study reported the findings of antiplasmodial potential of marine sponge Stylissa carteri (S. carteri) associated bacteria collected from the Palk Strait region, South east coast of India.

2. Materials and methods

2.1. Isolation of sponge associated bacteria

Marine sponge S. carteri was collected by by–catch at Thondi (Lat. 9°44’ 10’’ N and Lon. 79°10’ 12’’ E) in the Palk
Strait region of Tamil Nadu and was authenticated by Dr. S. Lazarus, Emeritus Fellow (Retired), Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District, Tamil Nadu, India. All the collected samples were washed thrice with tap water and twice with distilled water to remove the adhering associated animals. One gram of sponge samples was cut into small pieces and serially diluted. Diluted sample was subjected for continuous shaking in a thermostat shaker and plated in triplicate on Zobell Marine agar 2216 medium (HiMedia Laboratories Pvt. Limited, Mumbai, India) using pour plate method. The plates were incubated in an inverted position for 24 h at (28±2 °C) and the colonies were counted and recorded. Based on the morphological characteristics (forms, elevation, margin and colour of the colony), the colonies were selected and restreaked thrice in a nutrient agar medium (HiMedia Laboratories Pvt. Limited, Mumbai, India) and stored on nutrient agar slants.

2.2. Mass cultivation of total heterotrophic bacteria

A loopful inoculum of 32 isolated bacterial isolates were further inoculated into 500 mL conical flask containing 100 mL of nutrient broth (pH 7.2) prepared with 50% of aged seawater and kept at (28±2 °C) for 24 h with continuous shaking. Twenty milliliter of the broth culture was then transformed to 1000 mL of nutrient broth prepared with 50% of aged seawater and incubated for 4–5 days under continuous shaking.

2.3. Extraction of bioactive principles from bacteria

The mass cultures of isolated 32 isolates were adjusted to pH 5.0 using 1 N hydrochloric acid and centrifuged at 3000 rpm for 5 min to remove cells. The supernatant was collected and was mixed with equal volume of ethyl acetate in a separating funnel. After vigorous shaking, the flask was kept undisturbed until two separate layers obtained (aqueous and organic). The upper organic phase was concentrated in a vacuum evaporator at 40 °C and the crude extract was obtained. This process was repeated three times to obtain complete extraction of active principles.

2.4. Parasite cultivation

The antimalarial activity of isolated bacterial extracts was assessed against Plasmodium falciparum (P. falciparum) obtained from the Jawaharlal Nehru Centre for Advanced Scientific Research, Indian Institute of Science, Bangalore, India. P. falciparum are cultivated in human O Rh− red blood cells using RPMI 1640 medium (HiMedia Laboratories Private Limited, Mumbai, India) supplemented with 0 Rh− serum (10%), 5% sodium bicarbonate (HiMedia Laboratories Private Limited, Mumbai, India) and 40 μg/mL of gentamycin sulphate (HiMedia Laboratories Private Limited, Mumbai, India). Hematocrits were adjusted at 5% and parasite cultures were used when they exhibited 2% parasitaemia[8].

2.5. In vitro antimalarial assay

Filter sterilized extracts (100, 50, 25, 12.5, 6.25 and 3.125 μg/mL) from 32 bacterial isolates were incorporated into 96 well tissue culture plate containing 200 μL of P. falciparum culture with fresh red blood cells diluted to 2% hematocrit. Negative control was maintained with fresh red blood cells and 2% parasitized P. falciparum diluted to 2% hematocrit, positive control was maintained with parasitized blood cells culture treated with chloroquine and artemether[9]. Parasitaemia was evaluated after 48 h by Giemsa stain and the average percentage suppression of parasitaemia was calculated by the following formula: Average % suppression of parasitaemia = (Average % parasitaemia in control – Average % parasitaemia in test)/Average % parasitaemia in control×100.

2.6. Antiplasmodial activity calculation and analysis

The antimalarial activities of isolated bacteria were expressed by the inhibitory concentrations (IC50) of the drug that induced a 50% reduction in parasitaemia compared to the control (100% parasitaemia). The IC50 values were calculated (concentration of extract in X axis and percentage of inhibition in Y axis) using Office XP (SDAS) software with linear regression equation. This activity was analyzed in accordance with the norms of antimalarial activity of Rasoanaivo et al. According to this norms[10], an extract is very active if IC50<5 μg/mL, active 5 μg/mL<IC50< 50 μg/mL, weakly active 50 μg/mL<IC50<100 μg/mL and inactive IC50> 100 μg/mL.

2.7. Chemical injury to erythrocytes

To assess any chemical injury to erythrocytes that might be attributed to the extract, 200 μL of erythrocytes were incubated with 100 μg/mL of the extract at a dose equal to the highest used in the antimalarial assay. The conditions of the experiment were maintained as in the case of antimalarial assay. After 48 h of incubation, thin blood smears were stained with Giemsa stain and observed for morphological changes under high–power light microscopy. The morphological findings were compared with those in erythrocytes that were uninfected and not exposed to extract[11].

3. Results

The counts of isolated bacterial isolates from S. carteri sponge samples are represented in Table 1. The bacterial count was maximum in the month of November 2007 (34×106 CFU/g) and minimum in the month of August 2007, March 2008 and April 2008 (1×104 CFU/g). The average count was maximum during monsoon season (November–January) (203×106 CFU/g) and followed by summer season (May–July) (43×106 CFU/g). A total of 32 different bacterial isolates were isolated from S. carteri based on the morphological characteristics (Table 2). The extract of THB17 (20.56 μg/mL) showed minimum level of IC50 value and followed by THBS (35.09 μg/mL) and THB31 (45.27 μg/mL). The extracts from THB4, THB44, THB56, THB57, THB58, THB83, THB97, THB98, THB99, THB111, THB125, THB136 and THB138 showed IC50 values more than 100 μg/mL. Among 32 bacterial extracts screened for
antiplasmodial activity, THB6, THB18, THB30, THB32, THB45, THB69, THB70, THB74, THB85, THB110, THB112, THB126, THB127, THB137, THB147 and THB148 extracts showed IC₅₀ values between 50 to 100 μg/mL (Table 2). 9%, 50% and 41% of extracts from isolated bacterial isolates were classified as active, weakly active and inactive respectively.

Table 1.
Counts of associated bacterial isolates from marine sponges *S. carteri*.

| Month of collection | THB x 10⁶ CFU/g | Season |
|---------------------|------------------|--------|
| August 2007         | 1                | Pre monsoon |
| September 2007      | 2                |         |
| October 2007        | 2                |         |
| November 2007       | 34               | Monsoon |
| December 2007       | 24               |         |
| January 2008        | 3                |         |
| February 2008       | 8                | Post monsoon |
| March 2008          | 1                |         |
| April 2008          | 1                |         |
| May 2008            | 2                | Summer  |
| June 2008           | 9                |         |
| July 2008           | 2                |         |

The microscopic observation of uninfected erythrocytes added with the ethyl acetate extracts from bacterial isolates and uninfected erythrocytes from the blank column of the 96-well plate showed no morphological differences after 48 h of incubation. The analysis of preliminary biochemical constituents revealed that, the extracts from bacterial isolates have variety of biochemical constituents, namely alkaloids and reducing sugars (Table 3).

Table 3.
Biochemical constituents in chosen sponge associated bacterial isolates extracts.

| Name of the biochemical constituents | THB5 | THB17 | THB31 |
|--------------------------------------|------|-------|-------|
| Reducing sugars                      | +    | +     | -     |
| Amino acids                          | -    | -     | -     |
| Proteins                             | -    | -     | -     |
| Alkaloids                            | +    | +     | +     |
| Steroids                             | -    | -     | -     |
| Triterpenoids                         | -    | -     | -     |

"+" indicates positive "-" indicates negative

Table 2.
Morphological characteristics and antiplasmodial IC₅₀ values of isolated bacterial isolates.

| Isolate No. | Form | Elevation | Margin | Colour of the colony | IC₅₀ (μg/mL) |
|-------------|------|-----------|--------|-----------------------|--------------|
| THB4        | Circular | Raised | Entire | Brownish yellow | >100         |
| THB5        | Irregular | Umbonate | Lobate | Light yellow | 35.09        |
| THB6        | Circular | Raised | Entire | Yellow | 54.47        |
| THB17       | Circular | Convex | Entire | Dark yellow | 20.56        |
| THB18       | Circular | Flat | Entire | Light yellow | 55.76        |
| THB30       | Circular | Convex | Entire | Light white | 63.67        |
| THB31       | Irregular | Raised | Lobate | Waxy | 45.27        |
| THB32       | Circular | Convex | Entire | White | 65.13        |
| THB44       | Circular | Convex | Entire | Light yellow | >100         |
| THB45       | Circular | Raised | Entire | Transparent White | 87.89        |
| THB56       | Irregular | Raised | Undulate | Dull white | >100         |
| THB57       | Circular | Raised | Entire | Whitish yellow | >100         |
| THB58       | Irregular | Raised | Undulate | Light whitish yellow | >100         |
| THB69       | Circular | Flat | Entire | Waxy | 90.31        |
| THB70       | Irregular | Flat | Undulate | White | 77.72        |
| THB83       | Circular | Flat | Entire | Dull white | >100         |
| THB84       | Circular | Raised | Entire | Whitish yellow | 79.17        |
| THB85       | Circular | Raised | Undulate | Waxy | 75.30        |
| THB97       | Circular | Raised | Entire | Whitish yellow | >100         |
| THB98       | Circular | Flat | Entire | Light yellow | >100         |
| THB99       | Circular | Raised | Entire | White | >100         |
| THB110      | Circular | Raised | Undulate | Dull white | 68.39        |
| THB111      | Circular | Raised | Entire | White | >100         |
| THB112      | Circular | Raised | Undulate | Dull white | 78.14        |
| THB125      | Circular | Convex | Entire | Transparent yellow | >100         |
| THB126      | Circular | Raised | Entire | Waxy | 89.62        |
| THB127      | Circular | Flat | Entire | Transparent waxy | 71.35        |
| THB136      | Circular | Flat | Entire | Light orange | >100         |
| THB137      | Circular | Raised | Entire | Light yellow | 63.47        |
| THB138      | Circular | Raised | Entire | Blackish green | >100         |
| THB147      | Circular | Convex | Entire | Milky white | 61.32        |
| THB148      | Circular | Convex | Entire | Yellow | 89.04        |

Positive control Chloroquine 19.59
Artemether 4.09

Values are found significant between concentrations and time of exposure (P<0.05).
4. Discussion

Marine microorganisms have attracted increasing attention in the search for new pharmaceutical or agrochemical lead structures[12]. Many marine microorganisms are symbiotic with marine sponges and other invertebrates. Their secondary metabolites might contribute to protecting their hosts by chemically mediated defense mechanisms from dangers like predation. There are evidences that, symbiotic or associated marine microorganisms are the true sources of bioactive metabolites originally isolated from their hosts. Thus, the microorganisms associated with marine animals and plants are expected to be potential sources for new bioactive agents[13-18]. Earlier investigations reported that, the marine bacteria associated with marine organisms have many biological activities[19-22]. The spread of multistrain resistant *P. falciparum* has highlighted the urgent need to develop new antiplasmodial agents from marine bacteria associated with sponges.

The present study has collected 12 *S. carteri* samples throughout the year at different seasons and all samples have reported to harbour bacterial isolates due to the filter feeding nature of sponges containing large numbers of associated bacteria[23,24]. The maximum count of bacteria was isolated in the month of November 2007 (34×10^6 CFU/g). Likewise, Muscholl–Silberborn et al isolated 9.5×10^6 CFU/g of bacteria from *Chondrosia reniformis* collected from Mediterranean sea[25]. The present study also observed that, the bacterial stains were maximum during the monsoon season (November–January). This might be due to the higher nutrient derived from the fresh water runoff from the adjacent river which supports the maximum growth of bacteria during rainy season. The present findings states that, THB17 showed antiplasmodial IC₅₀ value of 20.56 μg/mL and this could be comparable to the positive control chloroquine. Many researchers found that, the marine microorganisms showed potential antiplasmodial activity against *P. falciparum*[26-28]. According to Rasoanaivo et al., 9%, 50% and 41% of extracts from isolated bacterial isolates were classified as active, weakly active and inactive respectively[10].

The biochemical constituent analysis of potential extracts showed the presence of reducing sugars and alkaloids. The mode of action could be due to the inhibition of *P. falciparum* merozoites invasion into the erythrocytes[29] and disruption of *P. falciparum* rosettes[30] by the carbohydrates; inhibition of *P. falciparum* fatty acid biosynthesis[31], inhibition of hemozoin biocrystallization by the alkaloids[32]. Otoguro et al reported that, polysaccharides, polyketides and polysaccharide derivatives are having potential antiplasmodial activity[33-37]. Stierle et al report supports the present study that, the presence of alkaloids and reducing sugars showed potential in vitro antiplasmodial activity[38]. Earlier investigations reported that a number of alkaloids from marine sources possess antimalarial activity[39,40]. Moreover, alkaloid derivatives viz., 8–hydroxy–manzamine, manzamine, cyclopropidigiosin, heptyl prodigiosin, ascosalipyrrolidinone A were reported from marine microbial community[41-43]. El Sayed et al reported that the marine sponge associated microbial alkaloids possess antiplasmodial activity[44]. These findings could encourage the microbes derived compounds for the antiplasmodial drug development.

It is concluded from the present study that the *S. carteri* associated bacterial isolates proved as massive source to come across the novel antiplasmodial drugs. Investigations are in progress to identify the active antiplasmodial compounds of bacterial extracts by bioassay–guided fractionation.

**Conflict of interest statement**

We declare that we have no conflict of interest.

**Acknowledgments**

The authors are thankful to the authorities of Alagappa University for providing required facilities and also to Indian Council of Medical Research, New Delhi for financial assistance. The authors are also grateful to Prof. Dr. Hemalatha Balaraman, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore for providing us the parasite culture. The grant number assigned by the funding agency (ICMR) is No.59/6/2002/BMS/TRM.

**References**

[1] Harvey AL. Natural products as a screening resource. *Car Opi Chem Biol* 2007; 11: 480–484.
[2] Hentschel U, Usher KM, Taylor MW. Marine sponges as microbial fermenters. *FEMS Microbiol Ecol* 2006; 55: 167–177.
[3] Wang G. Diversity and biotechnological potential of the sponges–associated microbial consortia. *J Ind Microbiol Biotechnol* 2006; 33: 545–551.
[4] Taylor MW, Radix R, Steger D, Wagner M. Sponge–associated microorganisms: evolution, ecology and biotechnological potential. *Microbiol Mol Biol Rev* 2007; 71: 295–347.
[5] Hochmuth T, Piel J. Polyketide synthases in sponges–evolution based applications in natural products research. *Phytochem* 2009; 70: 1841–1849.
[6] Piel J. Metabolites from symbiotic bacteria. *Nat Prod Rep* 2009; 26: 338–362.
[7] Ravikumar S, Ramanathan G, Jacob Inbaneson S, Ramu A. Antiplasmodial activity of two marine polyherbal preparations from Chaetomorpha antennina and Aegiceras corniculatum against Plasmodium falciparum, *Parasitol Res* 2011; 108: 107–113.
[8] Trager W. The cultivation of Plasmodium falciparum; applications in basic and applied research in malaria. *Ann Trop Med Parasitol* 1987; 82: 511–529.
[9] Azas N, Laurencin N, Delmas F, Di Giorgio C, Gasquet M, Laget M, et al. Synergistic *in vitro* antimalarial activity of plant extracts used as traditional herbal remedies in Mali. *Parasitol Res* 2002; 88:2: 165–171.
[10] Rasoanaivo P, Ratsimamanga Uverg S, Ramanitrhasimbola D, Rafatso H, Rakoto Ratsimamanga A. Criblage d’extraits de plantes de Madagascar pour recherche d’activite antipaludique et d’effet potentialisateur de la chloroquine. *J Ethnopharmacol* 1992; 46: 117–126.
[11] Wauko PJ, Katuura E, Smith P, Folah P. East African medicinal plants as a source of lead compounds for the development of new antimalarial drugs. *Afr J Ecol* 2007; 45(1): 102–106.
[12] Williams PG. Panning for chemical gold: marine bacteria as sources of a wide range of bioactive compounds. *Nat Prod Rep* 2006; 23: 1–29.
a source of new therapeutics. *Trends in Biotechnol* 2008; 27(1): 45–52.

[13] Ravikumar S, Gnanadesigan M, Thajuddin N, Deepan Chakkaravarthi VS, Beula Banerjee M. Anticancer property of sponge associated actinomycetes along Palk Strait. *J Phar Res* 2010; 3(10): 2415–2417.

[14] Ravikumar S, Jacob Inbaneson S, Sengottuvvel R, Ramu R. Assessment of endophytic bacterial diversity among mangrove plants and their antibacterial activity against bacterial pathogens. *Ann Biol Res* 2010; 1(4): 240–247.

[15] Ravikumar S, Jacob Inbaneson S, Uthiraselvam M, Rajini Priya S, Ramu A, Beula Banerjee M. Diversity of endophytic actinomycetes from Karangkadu mangrove ecosystem and its antibacterial potential against bacterial pathogens. *J Phar Res* 2011; 4(1): 294–296.

[16] Ravikumar S, Krishnakumar S, Jacob Inbaneson S, Gnanadesigan M. Antagonistic activity of marine actinomycetes from Arabian sea coast. *Arch Appl Sci Res* 2010; 2(6): 273–280.

[17] Ravikumar S, Thajuddin N, Suganthi P, Jacob Inbaneson S, Vinodkumar T. Bioactive potential of seagrass bacteria against human pathogens. *J Environ Biol* 2010; 31: 387–389.

[18] Ravikumar S, Jacob Inbaneson S, Uthiraselvam M, Kaleeswari R, Ramu A, Beula Banerjee, et al. Antibacterial activity of heterotrophic endophytes from Karangkadu mangrove ecosystem, India. *J Phar Res* 2011; 4(1): 195–198.

[19] Dash S, Jin C, Lee OO, Xu Y, Qian PY. Antibacterial and antilarval-settlement–sentinel property and metabolite profiles of novel sponge-associated marine bacteria. *J IndMicrobiol Biotechnol* 2009; 36: 1047–1056.

[20] Zhang W, Li Z, Miao X, Zhang F. The screening of antimicrobial bacteria with diverse novel nonribosomal peptide synthetase (NRPS) genes from South China sea sponges. *Mar Biotechnol* 2009; 11: 346–355.

[21] Kanagasabhapathy M, Nagata S. Cross–species induction of antibacterial activity produced by epibiotic bacteria isolated from Indian marine sponge *Pseudoceratina parpaura*. *World J Microbiol Biotechnol* 2008; 24: 687–691.

[22] Kennedy J, Baker P, Piper C, Cotter PD, Walsh M, Mooij MJ, et al. Isolation and identification of bacteria with antimicrobial activities from the marine sponge *Haliclona simulans* collected from Irish Waters. *Mar Biotechnol* 2009; 11: 384–396.

[23] Li ZY, He LM, Wu J, Jiang Q. Bacterial community diversity based on 16S rDNA-DGGE fingerprinting. *J Exp Mar Bio Ecol* 2006; 329: 75–85.

[24] Li ZY, Hu Y, Liu Y, Huang Y, He LM, Miao XL. 16S rDNA clone library based bacterial phylogenetic diversity associated with three South China Sea sponges. *World J Microbiol Biotechnol* 2007; 23: 1265–1272.

[25] Muscholl–Silberhorn A, Thiél V, Imhoff JF. Abundance and bioactivity of cultured sponge–associated bacteria from the Mediterranean sea. *Microbial Ecol* 2008; 55: 94–106.

[26] McPhail KL, Correa J, Lintoning RG, Gonzalez J, Ortega–Barria E, Capson TL, et al. Antimalarial linear lipopeptidyl from Panamanian isolate of the marine cyanobacterium *Lyngbya majuscula*. *J Nat Prod* 2007; 70: 984–988.

[27] Lintoning RG, Clark BR, Trimble EE, Almanza A, Urena LD, Kyle DE, et al. Antimalarial peptides from marine cyanobacteria: isolation and structural elucidation of Gallinamide A. *J Nat Prod* 2009; 72(1): 14–17.

[28] Lintoning RG, Gonzalez J, Urena LD, Romero LL, Ortega–Barria E, Gerwick WH. Venturamides A and B: Antimalarial constituents of the Panamanian marine cyanobacterium *Oscillatoria* sp. *J Nat Produc* 2007; 70: 397–401.

[29] Adams Y, Smith SL, Schwartz–Albiez R, Andrews KT. Carrageenans inhibit the in vitro growth of *Plasmodium falciparum* and cytoadhesion to CD36. *Parasitol Res* 2005; 97: 290–294.

[30] Rowe A, Berendt AR, Marsh K, Newbold CI. *Plasmodium falciparum*: a family of sulphated glycoconjugates disrupts erythrocyte rosettes. *Exp Parasitol* 1994; 79: 506–516.

[31] Tadsemit Peri, Topaloglu B, Perozzo R, Brun R, O'Neill R, Carabellina NM, et al. Marine natural products from the Turkish sponge *Agelas orides* that inhibit the enoyl reductase from *Plasmodium falciparum*, *Mycobacterium tuberculosis* and *Escherichia coli*. *Bioorg Med Chem* 2007; 15: 6834–6845.

[32] Duhar F, Egan TJ, Pradines B, Kuter D, Neokazi K, Forge D, et al. The Antimalarial ferroquine: Role of the metal and intramolecular hydrogen bond in activity and resistance. *ACS Chem Biol* 2010; DOI: 10.1021/cb090322v.

[33] Otoguro K, Ishiyama A, Kobayashi M, Izuhara T, Sunazuka T, et al. In *vivo* and *in vivo* antimalarial activities of a carbohydrate antibiotic, prumycin against drug resistant isolates of Plasmodia. *J Antibiot* 2004; 57(6): 400–402.

[34] Sundaram R, Ganesan R, Murugesan G. *In vitro* antiplasmodial activity of spiro benzofuran compound from mangrove plant of Southern India. *Asian Pac J Trop Med* 2012; 5(5): 358–361.

[35] Okonok JE, Etebong EO, Udobang JA, Essien GE. Antiplasmodial and analgesic activities of *Clausena anisata*. *Asian Pac J Trop Med* 2012; 5(5): 214–219.

[36] Karou SD, Tchacondo T, Ouattara L, Anani K, Savadogo A, Agbonon A, et al. Micromycelia, antiplasmodial, haemolytic and antioxidant activities of crude extracts from three selected Togolese medicinal plants. *Asian Pac J Trop Med* 2011; 4(10): 808–813.

[37] Ajala TO, Igwilo CL, Oregaah IA, Odeku OA. The antiplasmodial effect of the extracts and formulated capsules of *Phyllanthus amarus* on *Plasmodium yoelii* infection in mice. *Asian Pac J Trop Med* 2011; 4(4): 283–287.

[38] Sierle AC, Cardellina JH, Singleton FL. A marine micrococcus produces metabolites ascribed to the sponge *Tedania ignis*. *Experientia* 1988; 44: 1021.

[39] Fattorusso E, O Taglialatela–Scafati, editors. *Modern alkaloids*. Germany: Wiley–VCH Publishers; 2008, p. 189–232.

[40] Mancini I, Guella G, Saurain M, Debatis C, Duigou A, Aussef F, et al. New 1,2,3,4-tetrahydropyrrolo[1,2-a]pyrimidinium alkaloids (phloeodictynes) from the new Caledonian shallow-water sponge *Drechslera dematioidea*. *J Nat Prod* 2002; 65(3): 290–294.

[41] Kim HS, Hayashi M, Shibata Y, Metamura T, Horii T, et al. Cycloprodigiosin hydrochloride obtained from *Pseudoalteromonas denitrificans* is a potent antimalarial agent. *Biof Phar Ball* 1999; 22: 532–534.

[42] Osterhage M, Konig G, Holler U, Wirtz D. Rare sesquiterpene from the algicolous fungus *Breachlera dematioides*. *J Nat Prod* 2002; 65(3): 306–313.

[43] El Sayed KA, Yousaf M, Hamann MT, Avery MA, Kelly M, Wipf P. Microbial and chemical transformation studies of the bioactive marine sesquiterpenes (S)-(+)-curcuphenol and –curcudiol isolated from a deep reef collection of the Jamaican sponge *Didiscus oxeata*. *J Nat Prod* 2002; 65(11): 1547–1553.