THE Q_p CARLESON MEASURE PROBLEM

JIE XIAO

In memory of Matts Essén

Abstract. Let μ be a nonnegative Borel measure on the open unit disk $D \subset \mathbb{C}$. This note shows how to decide that the Möbius invariant space Q_p, covering $BMOA$ and B, is boundedly (resp., compactly) embedded in the quadratic tent-type space $T_\infty^p(\mu)$. Interestingly, the embedding result can be used to determine the boundedness (resp., the compactness) of the Volterra-type and multiplication operators on Q_p.

1. Introduction

Continuing from [30], we answer the following question, i.e., the Carleson measure problem for the holomorphic Q-spaces (which are geometric in the sense that they are conformally invariant):

Question 1.1. Let μ be a nonnegative Borel measure on D. What geometric finite (resp., vanishing) property must μ have in order that Q_p is boundedly (resp., compactly) embedded in $T_\infty^p(\mu)$?

Here, $D = \{z \in \mathbb{C} : |z| < 1\}$ and $p \in (0, \infty)$ are given, and Q_p stands for the space of all holomorphic functions f on D satisfying

$$
\|f\|_{Q_p} = |f(0)| + \sup_{w \in \mathbb{D}} \sqrt{\int_D |f'(z)|^2 (1 - |\sigma_w(z)|^2)^p dm(z) < \infty},
$$

where $\sigma_w(z) = (w - z)/(1 - \bar{w} z)$ and dm are the Möbius map sending $w \in \mathbb{C}$ to 0 and the Lebesgue area measure on \mathbb{C} respectively; see [31] and [32] for an overview of the Q_p-theory (from 1995 to 2006) – in particular, $Q_{p_1} \subset Q_{p_2}$ when $0 < p_1 < p_2 \leq 1$ (see Aulaskari-Xiao-Zhao [6]); $Q_1 = BMOA$, John-Nirenberg’s BMO space of holomorphic functions on D (see Baernstein [7]); and $Q_p = B$, $p \in (1, \infty)$, Aulaskari-Lappan’s result in [4] (including Xiao’s $Q_2 = B$ in [29]) regarding the Bloch space B of all holomorphic functions f on D with $\sup_{z \in \mathbb{D}} |f'(z)|(1 - |z|^2) < \infty$. Meanwhile, $T_\infty^p(\mu)$ denotes the quadratic tent-type space of all μ-measurable functions f on D obeying

$$
\|f\|_{T_\infty^p(\mu)} = \sup_{S(I) \subseteq \mathbb{D}} \left(\int_{S(I)} \left| I \right|^{-p} \left| f \right|^2 d\mu < \infty; \right)
$$

where

$$
|I| = (2\pi)^{-1} \int_I |d\xi| \quad \text{and} \quad S(I) = \{r\xi \in \mathbb{D} : r \in [1 - |I|, 1], \xi \in I\}
$$

2000 Mathematics Subject Classification. Primary 28, 30C, 30H, 47B, 47G.
Supported in part by NSERC (Canada) and Dean of Science Start-up Funds of MUN (Canada).
are the normalized length of the subarc \(I \) of the unit circle \(T = \{ z \in \mathbb{C} : |z| = 1 \} \) and the Carleson square in \(\mathbb{D} \) respectively. In particular, \(d\mu(z) = (1 - |z|^2)^p dm(z) \) and \(p \in (0, 1) \) lead to the sphere tent space on \(\mathbb{D} \) extending the disc version of the classic one \((p = 1) \) on the upper-half Euclidean space discussed in \cite{11} and \cite{10}.

Because the norm of \(f \in \mathcal{Q}_p \) is comparably dominated by the geometric quantity (see also Aulaskari-Stegenga-Xiao \cite{5}):

\[
|f(0)| + \sup_{S(I) \subseteq \mathbb{D}} \sqrt{\frac{\mu(S(I))}{|I|^p \left(\log \frac{2}{|I|} \right)^{-2}}} < \infty \quad \text{(resp., } \lim_{|I| \to 0} \frac{\mu(S(I))}{|I|^p \left(\log \frac{2}{|I|} \right)^{-2}} = 0\text{)}
\]

our answer to Question 1.1 is naturally as follows.

Theorem 1.1. Let \(\mu \) be a nonnegative Borel measure on \(\mathbb{D} \). Then the identity operator \(\mathcal{Q}_p
\rightarrow \mathcal{T}_p^\infty(\mu) \) is bounded (resp., compact) if and only if

\[
|f(0)| + \sup_{S(I) \subseteq \mathbb{D}} \sqrt{\frac{\mu(S(I))}{|I|^p \left(\log \frac{2}{|I|} \right)^{-2}}} < \infty \quad \text{(resp., } \lim_{|I| \to 0} \frac{\mu(S(I))}{|I|^p \left(\log \frac{2}{|I|} \right)^{-2}} = 0\text{)}
\]

Based on the solution to Question 1.1, we also answer the following problem:

Question 1.2. Let \(g \) be holomorphic on \(\mathbb{D} \). What finite (resp., vanishing) property must \(V_g \) have in order that \(V_g \) or \(U_g \) or \(M_g \) is bounded (resp., compact) on \(\mathcal{Q}_p \)?

Here, \(V_g \) and \(U_g \) denote the Volterra-type operators with the holomorphic symbol \(g \) on \(\mathbb{D} \) respectively:

\[
V_g f(z) = \int_0^z g'(w)f(w)dw \quad \text{and} \quad U_g f(z) = \int_0^z g(w)f'(w)dw, \; z \in \mathbb{D}.
\]

At the same time, \(M_g \) is the pointwise multiplication determined by

\[
M_g f(z) = f(z)g(z) = f(0)g(0) + V_g f(z) + U_g f(z), \; z \in \mathbb{D}.
\]

Of course, in the above definition \(f \) is assumed to be holomorphic on \(\mathbb{D} \). Clearly, \(V_g f = U_f g \) and this operator generalizes the classic Cesaro operator \(\mathcal{C}(f)(z) = z^{-1} \int_0^z f(w)(1-w)^{-1}dw \) see also Siskakis \cite{21} for a survey on the study of such operators.

Below is the answer to Question 1.2.

Theorem 1.2. Let \(g \) be holomorphic on \(\mathbb{D} \), \(d\mu_{p,g}(z) = (1 - |z|^2)^p |g'(z)|^2 dm(z) \) and \(\|g\|_{\mathcal{H}^\infty} = \sup_{z \in \mathbb{D}} |g(z)| \). Then

(i) \(V_g \) is bounded (resp., compact) on \(\mathcal{Q}_p \) if and only if \(\|\mu_{p,g}\|_{\mathcal{C}} < \infty \) (resp., \(\lim_{|I| \to 0} |I|^{-p} \log^2(2/|I|)\mu_{p,g}(S(I)) = 0 \)).

(ii) \(U_g \) is bounded (resp., compact) on \(\mathcal{Q}_p \) if and only if \(\|g\|_{\mathcal{H}^\infty} < \infty \) (resp., \(g = 0 \)).

(iii) \(M_g \) is bounded (resp., compact) on \(\mathcal{Q}_p \) if and only if \(\|\mu_{p,g}\|_{\mathcal{C}} < \infty \) and \(\|g\|_{\mathcal{H}^\infty} < \infty \) (resp., \(g = 0 \)).

The proofs of Theorems 1.1-1.2 will be given in the subsequent two sections where the symbol \(U \approx V \) will mean that there are two constants \(c_1 \) and \(c_2 \) independent of said or implied variables or functions such that \(c_1 V \leq U \leq c_2 V \), and \(U \leq c_2 V \) will be simply written as \(U \preceq V \).

The author is grateful to K. Zhu for his helpful reply to a question on the compact multiplication operator on the Bloch space, but also to J. Pau and J. A. Pelaez for their valuable discussions on the \(\mathcal{Q}_p \)-multiplier conjecture posed in \cite{30}.
2. Proof of Theorem 1.1

Suppose the statement before the if and only if of Theorem 1.1 is true. Given a subarc \(I \) of \(\mathbb{T} \). If \(f_w(z) = \log(1 - \bar{w}z) \) where \(w = (1 - |I|)\zeta \) and \(\zeta \) is the center of \(I \), then

\[
|f_w(z)| \approx \log(2|I|^{-1}), \quad z \in S(I)
\]

and

\[
|I|^{-p} \int_{S(I)} |f_w|^2 d\mu \lesssim \|f_w\|_{\mathcal{D}_p}^2 \lesssim 1.
\]

Accordingly, \(\|\mu\|_{\mathcal{LCM}_p} \lesssim 1 \).

Conversely, let the statement after the if and only if of Theorem 1.1 be true. To approach the desired embedding inequality, we recall that a nonnegative Borel measure \(\nu \) on \(\mathbb{D} \) is said to be a Carleson measure for the weighted Dirichlet space \(\mathcal{D}_p \) of all holomorphic functions \(f \) obeying

\[
\|f\|_{\mathcal{D}_p} = |f(0)| + \sqrt{\int_{\mathbb{D}} |f'(z)|^2 (1 - |z|^2)^{\frac{1}{p-1}} dm(z)} < \infty
\]

provided \(\int_{\mathbb{D}} |f|^2 dv \lesssim \|f\|_{\mathcal{D}_p}^2 \) — see also Stegenga [24]. Note that \(p = 1 \) and \(p > 1 \) lead to the Carleson measure for the Hardy space \(\mathcal{H}^2 = \mathcal{D}_1 \) and the weighted Bergman space of all holomorphic functions in the Lebesgue space \(L^2((1 - |z|^2)^{p-1} dm(z)) \) with respect to \((1 - |z|^2)^{p-1} dm(z) \). The following important result (written as a lemma for our purpose) is due to Carleson [9] (for \(p = 1 \)), Hastings [13] (for \(p = 2 \)), Stegenga [24] (for \(p \in [1, \infty) \)), and Arcozzi-Rochberg-Sawyer [3] (for \(p \in (0, 1) \)).

Lemma 2.1. Let \(\nu \) be a nonnegative Borel measure on \(\mathbb{D} \).

(i) If \(p \in [1, \infty) \) then \(\nu \) is a Carleson measure for \(\mathcal{D}_p \) if and only if

\[
\|\nu\|_{\mathcal{LCM}_p} = \sup_{S(I) \subseteq \mathbb{D}} \sqrt{\int |I|^{-p\nu(S(I))}} < \infty.
\]

(ii) If \(p \in (0, 1) \), then \(\mu \) is a Carleson measure for \(\mathcal{D}_p \) if and only if

\[
\|\nu\|_{\mathcal{LCM}_p} = \sup_{w \in \mathbb{D}} \sqrt{\int S(w)^{-1} \left(\nu(S(z) \cap S(w))^2 (1 - |z|^2)^{-p-2} dm(z) \right)} < \infty,
\]

where

\[
S(w) = \{ z \in \mathbb{D} : 1 - |z| \leq 1 - |w|, \quad |\arg(wz)| \leq \pi(1 - |w|) \}
\]

and

\[
\bar{S}(w) = \{ z \in \mathbb{D} : 1 - |z| \leq 2(1 - |w|), \quad |\arg(wz)| \leq \pi(1 - |w|) \}
\]

are the Carleson and heightened Carleson boxes with vertex at \(w \in \mathbb{D} \) respectively.

Since \(\|\mu\|_{\mathcal{LCM}_p} < \infty \) and \(\lim_{|I| \to 0} \log(2|I|^{-1}) = \infty \), \(\mu \) is a Carleson measure for \(\mathcal{D}_p \). This fact in the case \(p \in [1, \infty) \) is clear from Lemma 2.1 (i) because of \(\|\mu\|_{\mathcal{LCM}_p} \lesssim \|\mu\|_{\mathcal{LCM}_p} \). If \(p \in (0, 1) \) then this fact is due to Pau-Pelaez [19] and follows from Lemma 2.1 but a short proof is included below for completeness.
Fixing a point $w \in \mathbb{D}$, we use Fubini’s theorem to get
\[
\int_{S(w)} (\mu(S(z) \cap S(w)))^2 (1 - |z|^2)^{-p - 2} dm(z)
\]
\[
\leq \int_{S(w) \setminus S(w)} \frac{\mu(S(z)) \mu(S(w))}{(1 - |z|^2)^{p+2}} dm(z) + \int_{S(w)} \frac{\mu(S(z) \cap S(w)))^2}{(1 - |z|^2)^{p+2}} dm(z)
\]
\[
\lesssim \|\mu\|_{LCMP}^2 \mu(S(w)) \left(\int_{S(w) \setminus S(w)} \frac{dm(z)}{(1 - |z|^2)^2} + \int_{S(w)} \frac{dm(z)}{(1 - |z|^2)^2 \log^2 \frac{2}{1 - |z|^2}} \right)
\]
\[
\lesssim \|\mu\|_{LCMP}^2 \mu(S(w)) \left(1 + \int_0^{|w|} \int_{\arg w + (1 - |z|)} \frac{dm(z)}{(1 - |z|^2)^2 \log^2 \frac{2}{1 - |z|^2}} \right)
\]
\[
\lesssim \|\mu\|_{LCMP}^2 \mu(S(w)) \left(1 + \int_0^1 \frac{dt}{(1 - t) \log^2 \frac{2}{1 - |z|^2}} \right)
\]
whence $\|\mu\|_{LCMP} \lesssim \|\mu\|_{LCMP} < \infty$ according to Lemma 2.1 (ii).

Given any subarc I of \mathbb{T}, let $w = (1 - |I|) \zeta$ and ζ be the center of I. Then
\[
|f(w)| \lesssim \|f\|_{Q_p} \log(2)|I|^{-1}, \quad f \in Q_p
\]
and
\[
(1 - |w|^2)/|1 - \bar{w}z|^2 \approx |I|^{-1}, \quad z \in S(I).
\]
Consequently, the above-verified fact that μ is a Carleson measure for D_p yields
\[
|I|^{-p} \int_{S(I)} |f|^2 d\mu
\]
\[
\lesssim |I|^{-p} \left(\int_{S(I)} |f(z) - f(w)|^2 d\mu(z) + |f(w)|^2 \mu(S(I)) \right)
\]
\[
\lesssim (1 - |w|^2)^p \int_D \left| f(z) - f(w) \right|^2 \frac{d\mu(z)}{(1 - |w|^2)^p} + \|f\|^2_{Q_p} \|\mu\|_{LCMP}^2
\]
\[
\lesssim \|\mu\|^2_{LCMP} \left(\frac{|f(0) - f(w)|^2 + \int_D \frac{d\mu}{(1 - |w|^2)^p} \left(|f(z) - f(w)| \right|^2 \frac{dm(z)}{(1 - |z|^2)^{p}} + \|f\|^2_{Q_p}}{(1 - |w|^2)^{p}} \right)
\]
\[
\lesssim \|\mu\|^2_{LCMP} \left(\|f\|^2_{Q_p} \left(1 + \frac{\log \frac{2}{1 - |w|^2}}{2} \right)^2 + \int_D \frac{d\mu}{(1 - |w|^2)^p} \left(|f(z) - f(w)| \right|^2 \frac{dm(z)}{(1 - |z|^2)^{p}} \right)
\]
\[
\lesssim \|\mu\|^2_{LCMP} \left(\|f\|^2_{Q_p} \int_D \left| f(z) - f(w) \right|^2 (1 - |\sigma_w(z)|^2)^p dm(z) \right)
\]
\[
\lesssim \|\mu\|^2_{LCMP} \|f\|^2_{Q_p}.
\]
In the last inequality we have used the following estimate:
\[
\Lambda(f, w, p) = \int_D \left| f(z) - f(w) \right|^2 (1 - |\sigma_w(z)|^2)^p dm(z) \lesssim \|f\|_{Q_p}.
\]
To check this estimate we extend largely Pau-Perlaez’s argument in [19] from $p \in (0, 1)$ to $p \in (0, \infty)$. Choosing $0 < \eta < p/2$ and $w = \sigma_\eta(v)$, we get by Zhu’s [36]
Theorem 1.12 (1)] that for any \(z \in \mathbb{D} \),

\[
\int_D \frac{(1 - |u|^2)^p - n}{|1 - zu|^{2n} |1 - wu|^2} dm(u) = \frac{1 - |z|^2}{|1 - w|^2} \int_D \frac{(1 - |u|^2)^p - n}{|1 - \bar{v}\sigma_z(w)|^2} dm(v) \leq \frac{(1 - |z|^2)^n}{|1 - w|^2} \int_D \frac{(1 - |u|^2)^n}{|1 - \bar{v}\sigma_z(w)|^2} dm(v) \leq \frac{(1 - |z|^2)^n}{|1 - w|^2}.
\]

The previous estimate, together with Rochberg-Wu-Zhu’s formula (see for example \[20\] (2.1) and \[35\], p. 75: Ex. 11), Cauchy-Bunyakovsky-Schwarz’s inequality, Fubini’s theorem and Zhu’s \[36\] Theorem 1.12 (3), implies a series of estimates below:

\[
\Lambda(f, w, p) = \int_D |f \circ \sigma_w(z) - f \circ \sigma_w(0)|^2 |1 - \bar{w}z|^{-2} (1 - |z|^2)^p dm(z) \approx \int_D |\int_D (f \circ \sigma_w)(u)(1 - |u|^2)^{1+p} \frac{1 - (1 - \bar{u}z)^{2+p}}{|1 - \bar{u}z|^{2+p}} dm(u)|^2 (1 - |z|^2)^p dm(z) \leq \int_D |(f \circ \sigma_w)(u)|^2 (1 - |u|^2)^{2+p+n} \frac{1 - (1 - |u|^2)^{2+p}}{|1 - |u|^2|^{2+p}} dm(u) \leq \int_D |f \circ \sigma_w(z)|^2 (1 - |z|^2)^{2+p+\eta} dm(z) \leq \int_D |f \circ \sigma_w(z)|^2 (1 - |z|^2)^{2+p+\eta} \leq \|f\|_{Q_p}^2.
\]

as desired.

Next, we verify the compactness part. According to Lemma 2.10 in \[25\], it suffices to show that any bounded sequence \(\{f_j\} \) in \(Q_p \) with \(f_j \rightarrow 0 \) being uniform on compacta of \(\mathbb{D} \) must obey \(\|f_j\|_{T_p^\infty(\mu)} \rightarrow 0 \).

Assume first the vanishing condition in Theorem 1.14 holds. For \(r \in (0, 1) \), define the cut-off measure \(d\mu_r = 1_{|z| \leq r} d\mu \), where \(1_E \) denotes the characteristic function of a set \(E \subseteq \mathbb{D} \). If \(r \rightarrow 1 \) then

\[
\sup_{S(I) \subseteq \mathbb{D}} \frac{\mu_r(S(I))}{|I|^p \left(\log \frac{2}{|I|} \right)^{-2}} \leq \sup_{|I| \leq 1-r} \frac{\mu(S(I))}{|I|^p \left(\log \frac{2}{|I|} \right)^{-2}} \rightarrow 0.
\]

Suppose \(\|f_j\|_{Q_p} \leq 1 \) and \(f_j \rightarrow 0 \) uniformly on compacta of \(\mathbb{D} \). Then the limit

\[
\lim_{j \rightarrow -\infty} \|f_j\|_{T_p^\infty(\mu)} = 0
\]

follows from

\[
\int_{S(I)} |f_j|^2 d\mu \leq \int_{S(I)} |f_j|^2 1_{|z| \leq r} d\mu + \|f_j\|_{Q_p}^2 \log^2(2|I|^{-1}) \mu_r(S(I)).
\]

On the other hand, suppose \(Q_p \mapsto T_p^\infty(\mu) \) is compact. Let \(\{I_j\} \) be a sequence of subarcs of \(\mathbb{T} \) such that \(|I_j| \rightarrow 0 \). If \(\zeta_j \) is the center of \(I_j \), \(w_j = (1 - |I_j|) \zeta_j \), and

\[
f_j(z) = \left(\log \frac{1}{1 - w_j^2} \right)^{-1} \left(\log \frac{1}{1 - \bar{z}w_j} \right)^2,
\]

then

\[
f_j(z) = \left(\log \frac{1}{1 - w_j^2} \right)^{-1} \left(\log \frac{1}{1 - \bar{z}w_j} \right)^2.
\]
then $\|f_j\|_{p,g} \leq 1$ and $f_j \to 0$ uniformly on compacta of \mathbb{D}. By the compactness of I, we achieve that if $j \to \infty$ then

$$0 \leq \|f_j\|_{p,g}^2 \geq |I_j|^{-p} \int_{S(I_j)} |f_j|^2 d\mu \geq \frac{\mu(S(I_j))}{|I_j|^p \left(\log \frac{2}{|I_j|}\right)^2}.$$

In other words, the desired vanishing condition is valid.

Remark 2.2. Using [28, Theorem 6] or [32, Theorem 2.5.2] we can readily prove

$$\|f\|_{Q_p} \lesssim |f(0)| + \sqrt{\sup_{w \in \mathbb{D}} \int_{\mathbb{D}} \left|\frac{f(z) - f(w)}{1 - |z|^2}\right|^2 (1 - |\sigma_w(z)|^2) \rho dm(z)},$$

which is slightly different from the conjectured-inequality:

$$\|f\|_{Q_p} \lesssim |f(0)| + \sup_{w \in \mathbb{D}} \sqrt{\Lambda(f, w, p)}.$$

If this last estimate is true, then a new derivative-free characterization of Q_p is discovered.

3. Proof of Theorem 1.2

(i) Note that $(V_g f)'(z) = f(z)g'(z)$. So, the boundedness part of Theorem 1.1 implies that V_g maps boundedly Q_p into itself is equivalent to $\|\mu_{p,g}\|_{LCM_p} < \infty$, as desired. The corresponding compactness can be demonstrated similarly. Nevertheless, in the sequel we provide a different argument which seems to be of independent interest. We begin with the following density result.

Lemma 3.1. If $\mathcal{L}Q_p$ and $\mathcal{L}Q_{p,0}$ denote the spaces of all holomorphic functions g on \mathbb{D} such that $\|\mu_{p,g}\|_{LCM_p} < \infty$ and $\lim_{|I| \to 0} |I|^{-p} \log^2 (2/|I|) \|\mu_{p,g}(S(I))\| = 0$ respectively, then $g \in \mathcal{L}Q_{p,0}$ if and only if $g \in \mathcal{L}Q_p$ and $\lim_{r \to 1} \|\mu_{p,g} - g\|_{LCM_p} = 0$, where $g_r(z) = g(rz)$ is the $(0, 1) \ni r$-dilation of g.

In fact, as in [30, Remark 1.6] we have that $g \in \mathcal{L}Q_p$, respectively, $g \in \mathcal{L}Q_{p,0}$, is equivalent to

$$\sup_{w \in \mathbb{D}} \left(\log \frac{2}{|w|} \right)^2 \int_{\mathbb{D}} \left(\frac{1 - |w|^2}{1 - w\zeta} \right)^p d\mu_{p,g}(\zeta) < \infty,$$

respectively,

$$g \in \mathcal{L}Q_p$$

and

$$\lim_{|w| \to 1} \left(\log \frac{2}{|w|} \right)^2 \int_{\mathbb{D}} \left(\frac{1 - |w|^2}{1 - w\zeta} \right)^p d\mu_{p,g}(\zeta) = 0.$$

Following the arguments for [22, Lemma 3.5] and [27, Theorem 2.1], we can reach the assertion described in Lemma 3.1.

Assume now V_g is compact on Q_p. For each natural number j let I_j be the subarc of T with center ζ_j and limit $|I_j| \to 0$. If $w_j = (1 - |I_j|)\zeta_j$, then $\{w_j\}$ has a cluster point $w_0 \in T$. Passing to a subsequence we may assume that $w_j \to w_0 \in T$ and $f_j \to f_0$ uniformly on compacta of \mathbb{D}, where

$$f_j(z) = \log(1 - \overline{w_j}z) \quad \text{and} \quad f_0(z) = \log(1 - \overline{w_0}z).$$
Accordingly, V is compact on Q_p. As a matter of fact, let \(\{ f_j \} \) be any sequence with \(\| f_j \|_{Q_p} \leq 1 \) and \(f_j \to 0 \) uniformly on compacta of \(\mathbb{D} \). Then for the polynomial \(p_k \), the number \(r \in (0, 1) \), and the cut-off measure \(dm_{p,r}(z) = (1 - |z|^2)^p 1_{\{ z \in \mathbb{D} : |z| > r \}} \), we use the boundedness part
Choosing function \(w \) Conversely, suppose \(\| f \|_{\mathcal{H}^{1}} \) According to the boundedness part of (ii), the compactness of \(U_g \) on \(\mathcal{Q}_p \) derives the compactness of \(V_g \) on \(\mathcal{Q}_p \).

(ii) If \(\| g \|_{\mathcal{H}^{\infty}} < \infty \), then the boundedness of \(U_g \) follows from

\[
\| U_g f \|_{\mathcal{Q}_p} \lesssim \| g \|_{\mathcal{H}^{\infty}} \| f \|_{\mathcal{Q}_p}, \quad f \in \mathcal{Q}_p.
\]

Conversely, suppose \(U_g \) is bounded on \(\mathcal{Q}_p \). Then its operator norm \(\| U_g \| < \infty \). Given a nonzero point \(w \in \mathbb{D} \), there exists a Carleson square \(S(I) \) such that

\[
\{ z \in \mathbb{D} : |\sigma_w(z)| < 2^{-1} \} \subset S(I) \quad \text{and} \quad 1 - |w|^2 \approx |I|.
\]

Choosing \(f_w(z) = (\bar{w})^{-1} \log(1 - \bar{w}z) \) we employ the boundedness of \(U_g \) to obtain \(\| f_w \|_{\mathcal{Q}_p} \approx 1 \) and

\[
|I|^p |g(w)|^2 \lesssim \int_{\{ z \in \mathbb{D} : |\sigma_w(z)| < 2^{-1} \}} \frac{|g(z)|^2(1 - |z|^2)^p}{|1 - \bar{w}z|^2} \, dm(z)
\]

\[
\lesssim \int_{S(I)} \frac{|g(z)|^2(1 - |z|^2)^p}{|1 - \bar{w}z|^2} \, dm(z)
\]

\[
\lesssim \| U_g(f_w) \|_{\mathcal{Q}_p}^2 |I|^p
\]

\[
\lesssim \| U_g \|_{\mathcal{Q}_p}^2 |I|^p,
\]

and consequently, \(g \in \mathcal{H}^{\infty} \).

As with the compactness, it is enough to verify that if \(U_g : \mathcal{Q}_p \to \mathcal{Q}_p \) is compact then \(g = 0 \). According to the boundedness part of (ii), the compactness of \(U_g \) on \(\mathcal{Q}_p \) implies \(g \in \mathcal{H}^{\infty} \). Now, assume \(g \) is not identically equal to 0. Then the boundary value function \(g|_{\partial} \) cannot be identically the zero function thanks to the maximum principle. Accordingly, there is a positive constant \(\delta \) and a sequence \(\{ w_j \} \) in \(\mathbb{D} \) such
that \(w_j \to w_0 \in \mathbb{T} \) and \(|g(w_j)| > \delta \). Using the classical Schwarz’s lemma for \(\mathcal{H}^\infty \), we readily get

\[
|g(z_1) - g(z_2)| \leq 2\|g\|_{\mathcal{H}^\infty} |\sigma_{z_1}(z_2)|, \quad z_1, z_2 \in \mathbb{D}.
\]

This inequality implies that there is a sufficiently small number \(r > 0 \) such that \(|g(z)| \geq \delta/2 \) for all \(j \) and \(z \) obeying \(|\sigma_{w_j}(z)| < r \). Note that each pseudo-hyperbolic ball \(\{ z \in \mathbb{D} : |\sigma_{w_j}(z)| < r \} \) is contained in a Carleson box \(S(I_j) \) with \(|I_j| \approx 1 - |w_j|^2 \).

So, if

\[
f_j(z) = \log(1 - \overline{w_j}z) \quad \text{and} \quad f_0(z) = \log(1 - \overline{w_0}z),
\]

then \(f_j - f_0 \to 0 \) uniformly on compacta of \(\mathbb{D} \). By making a change of variable \(z = \sigma_{w_j}(u) \) and noticing \(|\sigma_{w_j}(w_j)| = 1 \), we obtain a series of estimates below:

\[
\begin{align*}
\|U_g(f_j - f_0)\|_{\mathcal{Q}_p}^2 & \geq |I_j|^{-p} \int_{S(I_j)} |f_j(z) - f_0(z)|^2 |g(z)|^2(1 - |z|^2)^p \, dm(z) \\
& \approx |I_j|^{-p} \int_{S(I_j)} \left| \frac{\overline{w_j} - \overline{w_0}}{1 - \overline{w_j}z(1 - \overline{w_0}z)} \right|^2 |g(z)|^2(1 - |z|^2)^p \, dm(z) \\
& \geq \delta^2 |I_j|^{-p} \int_{\{z \in \mathbb{D} : |\sigma_{w_j}(z)| < r \}} \left| \frac{\overline{w_j} - \overline{w_0}}{1 - \overline{w_j}z(1 - \overline{w_0}z)} \right|^2 (1 - |z|^2)^p \, dm(z) \\
& \geq \delta^2 |I_j|^{-p}(1 - |w_j|^2)^p \int_{\{u \in \mathbb{D} : |u| < r \}} \frac{(1 - |u|^2)^p |\sigma_{w_j}(w_j)|^2}{|1 - \overline{w_j}u|^2 |1 - u\overline{w_0}|^2} \, dm(u) \\
& \geq \delta^2 \int_{\{u \in \mathbb{D} : |u| < r \}} (1 - |u|)^p \, dm(u).
\end{align*}
\]

However, the compactness of \(U_g \) on \(\mathcal{Q}_p \) forces \(\|U_g(f_j - f_0)\|_{\mathcal{Q}_p}^2 \to 0 \), and consequently, \(\delta = 0 \), contradicting \(\delta > 0 \). Therefore, \(g \) must be the zero function.

(iii) The “if” part follows immediately from the corresponding ones of (i) and (ii). To see the “only if” part, note that \(f_u(z) = \log(2/(1 - \overline{w}z)) \) belongs to \(\mathcal{Q}_p \) uniformly, i.e., \(\|f_u\|_{\mathcal{Q}_p} \lesssim 1 \) and any function \(f \in \mathcal{Q}_p \) has the growth

\[
|f(z)| \lesssim \|f\|_{\mathcal{Q}_p} \log \frac{2}{1 - |z|^2}, \quad z \in \mathbb{D}.
\]

So, if \(M_g \) is bounded on \(\mathcal{Q}_p \), then for fixed \(w \in \mathbb{D} \),

\[
|f_u(z)g(z)| \lesssim \|M_g f_u\|_{\mathcal{Q}_p} \log \frac{2}{1 - |z|^2} \lesssim \|M_g\| \log \frac{2}{1 - |z|^2}, \quad z \in \mathbb{D},
\]

and hence \(|g(w)| \lesssim \|M_g\| \) (upon taking \(z = w \) in the last estimate), that is, \(\|g\|_{\mathcal{H}^\infty} < \infty \). Equivalently, \(U_g \) is bounded on \(\mathcal{Q}_p \) by the boundedness part of (ii). Consequently, \(V_g f = M_g f - f(0)g(0) - U_g f \) gives the boundedness of \(V_g \) on \(\mathcal{Q}_p \) and then \(\|M_{f,g}\|_{C\mathbb{C}M_p} < \infty \).

Suppose now \(M_g \) is compact on \(\mathcal{Q}_p \). Then this operator is bounded and hence \(\|g\|_{\mathcal{H}^\infty} < \infty \). For any nonzero sequence \(\{w_j\} \) in \(\mathbb{D} \) let

\[
f_j(z) = \left(\log \frac{1}{1 - |w_j|^2} \right)^{-1} \left(\log \frac{1}{1 - \overline{w_j}z} \right)^2.
\]
Assume $|w_j| → 1$. Then $\|f_j\|_{Q_p} ≤ 1$ and $f_j → 0$ uniformly on any compacta of D. So, $\|M_g(f_j)\|_{Q_p} → 0$. Because of

$$|g(z)f_j(z)| = |M_g(f_j)(z)| \lesssim \|M_g(f_j)\|_{Q_p} \log \frac{2}{1 - |z|^2}, \quad z \in D,$$

we get (by letting $z = w_j$)

$$|g(w_j)| \log \frac{1}{1 - |w_j|^2} \lesssim \|M_g(f_j)\|_{Q_p} \log \frac{2}{1 - |w_j|^2},$$

whence $g(w_j) → 0$. Since g is bounded holomorphic function on D, it follows that $g = 0$. We are done.

Remark 3.2. The boundedness part of M_g, plus Xiao’s Theorem 1.3 (i) and Corollary 1.4 in [30], implies that

$$g \in M(Q_p) = \{g \in Q_p : M_g(Q_p) \subseteq Q_p\}$$

if and only if

$$g \in H^\infty \text{ and } \sup_{w \in D} \left(\log \frac{2}{1 - |w|^2} \right)^2 \int_D |g'(z)|^2(1 - |\sigma_w(z)|^2)^pdm(z) < \infty.$$

This equivalence proves Conjecture 1.5 in [30] (where $p \in (0, 1)$) which has been verified in Pau-Pelaez’s recent work [19]. Moreover, this equivalence and [30, Theorem 3.3] indicate that the Carleson’s corona decomposition theorem is valid for the multipliers of Q_p, $p \in (0, 1)$; that is, for finitely many of holomorphic functions $g_1, ..., g_n$ the following operator:

$$M_{(g_1, ..., g_n)}(f_1, ..., f_n) = \sum_{j=1}^n f_j g_j$$

maps $M(Q_p) \times \cdots \times M(Q_p)$ onto $M(Q_p)$ is completely determined by the following two conditions:

$$\inf_{z \in D} \sum_{j=1}^n |g_j(z)| > 0 \quad \text{and} \quad (g_1, ..., g_n) \in M(Q_p) \times \cdots \times M(Q_p).$$

This result has been proved recently by Pau in [18] using [32, Theorem 2.5.2]. Note that the case $p = 1$ of the result is due to Tolokonnikov [26], but the case $p > 1$ remains open. Of course, the corona type decompositions for all Q_p are known; see also [30] (for $p \in (0, 1)$), [16] (for $p = 1$), and [17] (for $p \in (1, \infty)$). Furthermore, the results on boundedness and compactness of V_g on $BMOA$ and B can be seen from Siskakis-Zhao [22], Zhao [33] and MacCluer-Zhao [14]; while the boundedness result of U_g acting on $BMOA$ is due to Danikas [12]. Finally, the boundedness descriptions of M_g acting on $BMOA$ and B can be found in Stegenga [23], Arazy [2], Brown-Shields [8] and Zhu [34]. Meanwhile, $M_g : B → B$ is never compact unless $g = 0$; see also Ohno-Zhao [15] and Zhu [37].

References

1. A. Aleman, M. Carlsson and A. M. Simbotin, Preduals of Q_p spaces and Carleson imbeddings of weighted Dirichlet spaces. Preprint. (2005).
2. J. Arazy, Multipliers of Bloch functions, University of Haifa Mathematics Publication Series. 52, 1982.
3. N. Arcozzi, R. Rochberg and E. Sawyer, Carleson measures for analytic Besov spaces. Rev. Mat. Iberoamericana 18 (2002), 443–510.
4. R. Aulaskari and P. Lappan, *Criteria for an analytic function to be Bloch and a harmonic or meromorphic function to be normal*. Complex analysis and its applications (Hong Kong, 1993), 136–146, Pitman Res. Notes Math. Ser., 305, Longman Sci. Tech., Harlow, 1994.

5. R. Aulaskari, D. Stegenga and J. Xiao, *Some subclasses of BMOA and their characterization in terms of Carleson measures*. Rocky Mountain J. Math. 26 (1996), 485–506.

6. R. Aulaskari, J. Xiao and R. Zhao, *On subspaces and subsets of BMOA and UBC*. Analysis 15 (1995), 101–121.

7. A. Baernstein II, *analytic functions of bounded mean oscillation*. Aspects of contemporary complex analysis (Proc. NATO Adv. Study Inst., Univ. Durham, Durham, 1979), pp. 3–36, Academic Press, London-New York, 1980.

8. L. Brown and A. L. Shields, *Multipliers and cyclic vectors in the Bloch space*. Michigan Math. J. 38 (1991), 141–146.

9. L. Carleson, *Interpolations by bounded analytic functions and the corona problem*. Ann. of Math. (2) 76 (1962), 547–559.

10. W. S. Cohn and I. E. Verbitsky, *Factorization of tent spaces and Hankel operators*. J. Funct. Anal. 175 (2000), 308–329.

11. R. R. Coifman, Y. Meyer and E. M. Stein, *Some new function spaces and their applications to harmonic analysis*. J. Funct. Anal. 62 (1985), 304–335.

12. N. Danilas, *Untersuchungen über analytische funktionen von beschränkter mittlerer oscillation*. Vom Fachbereich 3 Mathematik der Technischen Universität Berlin zur Verleihung des akademischen Grades Doktor der Naturwissenschaften genehmigte Dissertation, Berlin 1981.

13. W. W. Hastings, *A Carleson measure theorem for Bergman spaces*. Proc. Amer. Math. Soc. 52 (1975), 237–241.

14. B. MacCluer and R. Zhao, *Vanishing logarithmic Carleson measures*. Illinois J. Math. 46 (2002), 507–518.

15. S. Ohno and R. Zhao, *Weighted composition operators on the Bloch space*. Bull. Austral. Math. Soc. 63 (2001), 177–185.

16. J. M. Ortega and J. Fábián, *Pointwise multipliers and of corona type decomposition in BMOA*. Ann. Inst. Fourier (Grenoble) 46 (1996), 111–137.

17. J. M. Ortega and J. Fábián, *Pointwise multipliers and of decomposition theorems in analytic Besov spaces*. Math. Z. 235 (2000), 53–81.

18. J. Pau, *Multipliers of the Q_p spaces and the corona theorem*. Preprint (2007).

19. J. Pau and J. A. Pelaez, *Multipliers of Möbius invariant Q_p spaces*. Preprint (2007).

20. R. Rochberg and Z. Wu, *A new characterization of Dirichlet type spaces and applications*. Illinois J. Math. 37 (1993), 101–122.

21. A. G. Siskakis, *Semigroups of composition operators on spaces of analytic functions, a review*. Studies on composition operators (Laramie, WY, 1996), 229–252, Contemp. Math., 213, Amer. Math. Soc., Providence, RI, 1998.

22. A. G. Siskakis and R. Zhao, *A Volterra type operator on spaces of analytic functions*. Function spaces (Edwardsville, IL, 1998), 299–311, Contemp. Math., 232, Amer. Math. Soc., Providence, RI, 1999.

23. D. Stegenga, *Bounded Toeplitz operators on H^1 and applications of the duality between H^1 and the functions of bounded mean oscillation*. Amer. J. Math. 98 (1976), 573–589.

24. D. Stegenga, *Multipliers of the Dirichlet space*. Illinois J. Math. 24 (1980), 113–139.

25. M. Tjani, *Compact composition operators on some Möbius invariant Banach spaces*. PhD Thesis, Michigan State University, 1996.

26. V. A. Tolokonnikov, *The corona theorem in algebras of bounded analytic functions*. Amer. Math. Soc. Trans. 149 (1991), 61–93.

27. K. J. Wirths and J. Xiao, *Recognizing $Q_{p,0}$ functions per Dirichlet space structure*. Bull. Belg. Math. Soc. 8 (2001), 47–59.

28. H. Wulan and K. Zhu, *Derivative-free characterizations of Q_K spaces*. J. Austral. Math. Soc. (Series A) in press (2007).

29. J. Xiao, *Carleson measure, atomic decomposition and free interpolation from Bloch space*. Ann. Acad. Sci. Fenn. Ser. A. I. Math. 19 (1994), 35–46.

30. J. Xiao, *The Q_p corona theorem*. Pacific J. Math. 194 (2000), 491–509.

31. J. Xiao, *Holomorphic Q Classes*. Lecture Notes in Math. 1767. Springer-Verlag, Berlin, 2001.

32. J. Xiao, *Geometric Q_p Functions*. Frontiers in Math. Birkhäuser Verlag, Basel, 2006.

33. R. Zhao, *On logarithmic Carleson measures*. Acta Sci. Math. (Szeged) 69 (2003), 605–618.
34. K. Zhu, *Multipliers of BMO in the Bergman metric with applications to Toeplitz operators*. J. Funct. Anal. **87**(1989), 31–50.
35. K. Zhu, *Operator Theory in Function Spaces*. Marcel Dekker. New York, 1990.
36. K. Zhu, *Spaces of Holomorphic Functions in the Unit Ball*. Graduate Texts in Mathematics. 226. Springer-Verlag, New York, 2005.
37. K. Zhu, *E-mail communication dated on March 23, 2007*.

DEPARTMENT OF MATHEMATICS AND STATISTICS, MEMORIAL UNIVERSITY OF NEWFOUNDLAND,
ST. JOHN’S, NL A1C 5S7, CANADA
E-mail address: jxiao@math.mun.ca