Light Hadron Spectroscopy on Coarse Lattices with $O(a^2)$ Mean-Field Improved Actions

Frank X. Lee∗
Nuclear Physics Laboratory, Department of Physics, University of Colorado, Boulder, CO 80309-0446
TRIUMF, 4004 Wesbrook Mall Vancouver, BC, Canada V6T 2A3

Derek B. Leinweber†
Special Research Center for the Subatomic Structure of Matter, University of Adelaide 5005
Department of Physics and Mathematical Physics, University of Adelaide 5005, Australia
Department of Physics, University of Washington, Seattle, WA 98195, USA

Abstract

The masses and dispersions of light hadrons are calculated in lattice QCD using an $O(a^2)$ tadpole-improved gluon action and an $O(a^2)$ tadpole-improved next-nearest-neighbor fermion action originally proposed by Hamber and Wu. Two lattices of constant volume with lattice spacings of approximately 0.40 fm and 0.24 fm are considered. The results reveal some scaling violations at the coarser lattice spacing on the order of 5%. At the finer lattice spacing, the calculated mass ratios reproduce state-of-the-art results using unimproved actions. Good dispersion and rotational invariance up to momenta of $p a \sim 1$ are also found. The relative merit of alternative choices for improvement operators is assessed through close comparisons with other plaquette-based tadpole-improved actions.

PACS numbers: 12.38.Gc, 14.40.-n, 14.20.-c

Typeset using REVTEx
I. INTRODUCTION

Lattice discretization of the continuum QCD action introduces errors at finite lattice spacing a. The standard Wilson gauge action has $O(a^2)$ errors and the standard Wilson fermion action has $O(a)$ errors. Simulations using these actions have shown that lattice spacings of 0.1 fm or less and lattice volumes of 24^4 or larger are needed in order to hold systematic errors to the 10% level. Such simulations are major undertakings and require enormous computing power to extract even the most basic of hadronic observables, the hadron masses (see [1] for an example and [2] for a recent review).

During the past few years, considerable efforts have been devoted to improving lattice actions. The idea is to reduce or remove the discretization errors from the actions so that they have better continuum-like behavior. At the same time, errors due to the lattice regularization are accounted for through the renormalization of the coefficients multiplying the improvement operators. The hope is the use of improved actions will allow one to simulate efficiently and accurately on coarse lattices, such that computer resources may be redirected to the simulation of QCD rather than quenched QCD. Moreover, one may turn the focus of investigation towards quantities of experimental interest.

The way to develop improved discretizations of continuum actions is not unique. There are numerous programs in this endeavor having their foundation in one of two formulations. One is based on lattice perturbation theory which is used to derive the renormalized coefficients through a mean-field reordering of the perturbative expansion, as recently reviewed by Lepage [3]. The other is based on renormalization group theory to construct fixed-point (or perfect) actions, as recently reviewed by Hasenfratz [4].

In the pure gauge sector, the $O(a^2)$ tadpole-improved action of [5] leads to dramatic improvement in the static potential and glueball masses [6] up to lattice spacings of 0.4 fm. Excellent scaling and topological properties have been demonstrated in fixed-point actions [7]. In the light quark sector, hadron spectroscopy has been investigated with a variety of improved actions including the $O(a)$-improved SW action [8], the $O(a^2)$-improved D234 action [9] and its variants [3,10], and the $D\chi_{34}$ action of Hamber and Wu [11–14] considered here. Fixed-point fermion actions have been studied in free field theory [15,16] and in simulations [17].

In the present work, we report further calculations of the light hadron spectrum using the $O(a^2)$ tadpole-improved gluon action of [7] and the $D\chi_{34}$ action proposed by Hamber and Wu [11] many years ago. This action is an $O(a^2)$ next-nearest-neighbor fermion action with tadpole-improved estimates of the coupling renormalizations. This action is selected primarily due to its simplicity. The cost of simulating it is about a factor of two as compared to standard Wilson fermions. Our goal is to study its feasibility as an alternative action to SW which has the clover term, or to D234 which has both next-nearest-neighbor couplings and the clover term.

This work extends previous studies of the $D\chi_{34}$ action [13,14] through finer lattice spacings, improved statistics, and the simulation of additional observables. In particular, we examine dispersion relations and test the rotational symmetry of both the gauge and the
fermion actions. Hadron mass ratios are calculated for a wide variety of hadrons including hyperons. To explore scaling violations, we consider two coarse lattices of approximately fixed physical volume: $6^3 \times 12$ at a lattice spacing of 0.40 fm and $10^3 \times 16$ at 0.24 fm.

II. IMPROVED LATTICE ACTIONS

A. The Gauge Action

The improved gauge action employed in this investigation is given by [5]:

$$S_G = \beta \sum_{pl} \frac{1}{3} \text{Re} \, \text{Tr}(1 - U_{pl}) - \frac{\beta}{20 u_0^2} \sum_{rt} \frac{1}{3} \text{Re} \, \text{Tr}(1 - U_{rt}).$$

(1)

The second term removes the $O(a^2)$ errors at tree level. Perturbative corrections are estimated to be of the order of 2-3% [5]. Here, U_{rt} denotes the rectangular 1x2 plaquettes. u_0 is the tadpole factor that largely corrects for the large quantum renormalization of the links $U_\mu(x) = \exp(ig \int_x^{x+a\hat{\mu}} A(y) \cdot dy)$. In this calculation we use the mean plaquette to estimate u_0,

$$u_0 \equiv \left(\frac{1}{3} \text{Re} \langle U_{pl} \rangle \right)^{1/4},$$

(2)

and will focus our evaluation of lattice action improvement on other plaquette-based improved actions. u_0 is determined self-consistently in the simulation. An alternative choice is to use the mean link in Landau gauge $u_0 \equiv \langle \frac{1}{2} \text{Tr} U_\mu \rangle_{LG}$ [10].

B. The Dχ34 Fermion Action

The improvement program of Sheikoleslami and Wohlert (SW) [18] provides a systematic approach to the improvement of lattice fermion actions. However, the on-shell improvement program leaves some freedom in the relative values of the coefficients of the improvement operators. In this investigation, we consider a specific case of the general class of D234 actions [10] in which the improvement parameters are tuned to remove the second-order chiral-symmetry-breaking Wilson term. This fermion action may be written

$$M_{D\chi34} = m_q + \gamma \cdot \nabla + \frac{1}{6} \sum_\mu \left(-a^2 \nabla_\mu \Delta_\mu + ba^3 \Delta_\mu^3 \right)$$

(3)

where

$$\nabla_\mu \psi(x) = \frac{1}{2a} \left[U_\mu(x) \psi(x + \mu) - U^\dagger_\mu(x - \mu) \psi(x - \mu) \right],$$

(4)
\[\Delta_\mu \psi(x) = \frac{1}{a^2} \left[U_\mu(x) \psi(x + \mu) + U^\dagger_\mu(x - \mu) \psi(x - \mu) - 2 \psi(x) \right] . \]

(5)

The second-order term of the D234 action

\[\sum_\mu \Delta_\mu + \frac{1}{2} \sigma \cdot F \]

(6)

breaks chiral symmetry and does not appear in the Dχ34 action. However, the fourth-order term of (3) also breaks chiral symmetry and provides for the removal of the fermion doublers.

Explicit evaluation of (3) combined with a Wilson-fermion-style field renormalization factor of \((3 \kappa/2) \) discloses the following simple fermion action [11,12]:

\[S_F = \sum_x \bar{\psi}(x) \psi(x) \]

\[-\kappa \sum_{x,\mu} \left[\bar{\psi}(x) (b - \gamma_\mu) \frac{U_\mu(x)}{u_0} \psi(x + \mu) + \bar{\psi}(x + \mu) (b + \gamma_\mu) \frac{U^\dagger_\mu(x)}{u_0} \psi(x) \right. \]

\[+ \bar{\psi}(x) \left(-\frac{1}{4} b + \frac{1}{8} \gamma_\mu \right) \frac{U_\mu(x)}{u_0} \frac{U_\mu(x + \mu)}{u_0} \psi(x + 2\mu) \]

\[+ \bar{\psi}(x + 2\mu) \left(-\frac{1}{4} b - \frac{1}{8} \gamma_\mu \right) \frac{U^\dagger_\mu(x + \mu)}{u_0} \frac{U^\dagger_\mu(x)}{u_0} \psi(x) \right] . \]

(7)

The tadpole-improvement factors are explicit here. These coefficients remove both \(O(a) \) and \(O(a^2) \) errors at tree level. The bare quark mass is related to \(\kappa \) and \(b \) through

\[m_q = \frac{2}{3\kappa} - 4b . \]

(8)

Thus the renormalized quark mass is given by

\[m_q = \frac{2}{3} \left(\frac{1}{\kappa} - \frac{1}{\kappa_{cr}} \right) . \]

(9)

The wave function renormalization factor is also modified:

\[\psi_{\text{cont.}} = \sqrt{\frac{3\kappa}{2}} \psi_{\text{latt.}} . \]

(10)

The standard Wilson action can be recovered by truncating the two-link terms of the action, redefining \(\kappa \) and renormalizing the fermion field operators.

Free dispersion relations can be obtained by locating the poles in the fermion propagator. Fig. 1 shows free dispersion relations for the continuum, Wilson, and Dχ34 fermions. It is clear that Dχ34 fermions follow the continuum more closely than Wilson fermions. Note that there exists an unphysical high energy doubler (or ghost) in the Dχ34 action. It is very similar to that for the D234 action [3] and is a general feature of fermions with next-nearest-neighbor couplings. The doubler can be ‘pushed away’ from the low momentum region by various techniques, such as tuning the value of \(b \), or using an anisotropic lattice [10]. We simulate with \(b = 1 \), which gives good dispersion to \(p a \sim 1 \) as illustrated in Fig. 1.
FIG. 1. Free dispersion relations for $D\chi 34$, Wilson, and continuum fermions. Momentum p is along the (1,1,0) direction. Beyond the $D\chi 34$ branch point, the real part of the two conjugate roots is shown. The upper graph is for bare mass $m a = 0$, the lower $m a = 0.3$.
III. LATTICE SIMULATIONS

A. Methods and Parameters

Quenched gauge configurations were generated using the Cabibbo-Marinari pseudo-heat-bath method [19]. Periodic boundary conditions were used in all directions for the gauge field and in spatial directions for the fermion field. Dirichlet boundary conditions were used for the fermion field in the time direction. Configurations separated by 300 sweeps were selected after 4000 thermalization sweeps from a cold start.

Wilson loops were computed using a method developed in Ref. [20]. Both on-axis and off-axis loops were considered. The static potential was determined by fitting \(\exp(-V(R,T)) = W(R,T) \). The string tension \(\sigma \) was extracted from the ansatz \(V(R) = V_0 + \sigma R - E/R \) where \(V_0 \) and \(E \) are constants. Fig. 2 shows our results. Good rotational invariance of the static potential is observed. Table I gives the extracted string tension and the \(R_0 \) parameter, defined by \(R^2 dV(R)/dR = 1.65 \) at \(R_0 \) [21]. Its physical value is \(R_0 \simeq 0.50 \) fm and it is independent of the quenched approximation. Using \(\sqrt{\sigma} = 440 \) MeV to set the scale, the lattice spacings were determined as 0.40(6) fm and 0.23(1) fm, respectively. Using \(R_0 \) to set the scale, they are 0.40(3) fm and 0.22(1) fm. \(R_0 \) depends less on the functional form of \(V(R) \) than the string tension.

\(\beta \)	\(\sigma a^2 \)	\(R_0/a \)	\(R_{\text{min}}/a \)	\(R_{\text{max}}/a \)	\(\chi^2/N_{\text{DF}} \)
6.25	0.81(23)	1.26(11)	1.00	4.24	1.46
7.00	0.254(8)	2.279(18)	1.73	6.93	0.91

Five quark propagators were computed by the Stabilized Biconjugate Gradient algorithm [22] for each configuration. The five \(\kappa \) values correspond to quark masses of roughly 210, 180, 150, 120, 90 MeV, respectively, for both lattices. The second value, 180 MeV, was taken as the strange quark mass. A point source was used at space-time location \((x,y,z,t)=(1,1,1,2)\) on the \(6^3 \times 12 \) lattice and \((1,1,1,3)\) on the \(10^3 \times 16 \) lattice. The gauge-invariant smearing method of [23] was applied at the sink to increase the overlap of the interpolating operators with the ground states. Table II shows a summary of the parameters.

Statistical errors were estimated in a third-order, single-elimination jackknife, with bias

Lattice	\(\beta \)	\(N_U \)	\(u_0 \)	\(\kappa \)	\(\kappa_{\text{cr}} \)
\(6^3 \times 12 \)	6.25	155	0.820	0.175, 0.177, 0.180, 0.183, 0.187	0.1967(2)
\(10^3 \times 16 \)	7.00	100	0.866	0.170, 0.172, 0.174, 0.176, 0.178	0.1823(3)
FIG. 2. Static potential from Wilson loops. The empty circles are for $\beta = 6.25$, the solid circles for $\beta = 7.0$. The lines are best fits. The statistical errors were from 200 configurations in both cases.

corrections [24]. A third-order jackknife provides uncertainty estimates for the correlation functions, fits to the correlation functions, and quantities extrapolated to the chiral limit.

B. Effective Masses

Masses were extracted from lattice correlation functions in several time slice intervals. The effective hadron mass as a function of time is defined by

$$M(t + 0.5) = \log[G(t)] - \log[G(t + 1)]$$

where $G(t)$ is the standard two-point function in Euclidean space-time. As usual, effective mass plots for the pion are very flat. All fits of time slices 4 through 10 on our coarse lattice and 6 through 12 on our fine lattice agree within one standard deviation.

Fig. 3 displays effective mass plots for the ρ meson and nucleon. The ρ meson displays good plateau behavior. We find $\chi^2/N_{DF} \sim 0.5$ for correlation function fits from $t = 4$ through 10 on our coarse lattice and $\chi^2/N_{DF} \simeq 0.7$ for correlation function fits from $t = 6$ through 11 on our fine lattice. Again, all fits agree within one standard deviation.

On our coarse lattice the nucleon mass displays good plateau behavior. The χ^2/N_{DF} ranges from 1.0 to 0.1 for the lightest quark mass. All fits in the interval 4 through 10 agree within one standard deviation.
FIG. 3. Effective mass plots for the ρ and nucleon. The first column is for the coarser lattice, the second for the finer lattice. The five quark masses decrease by value from top down.

On our fine lattice, plateau behavior for the nucleon mass is excellent within the regime $t = 6$ through 9. For the heaviest three quark masses, however, the χ^2/N_{DF} identifies two separate fitting regimes providing acceptable fits, namely 6 through 9 and 9 through 12. The latter regime disappears for the lightest two quark masses while the former regime grows, providing acceptable fits for $t = 6$ through 10. Since the effective masses rise from below as a function of t for smeared sinks, we report results for the regime $t = 6$ through 9 where the signal is less likely to be dominated by noise.

We note that this drift in the effective mass plot is only significant as measured by the χ^2/N_{DF} for the ground state nucleon mass. We find that other quantities such as the nucleon energy or ρ-meson mass are sufficiently correlated to provide results insensitive to the fit regime. For example, dispersion relations agree within one standard deviation for all fits of $t = 6$ through 12 with no systematic drift in the central values. Moreover the extrapolated nucleon to rho mass ratios for the time slice regimes 6 through 9 and 9 through 12 are 1.44(5) and 1.41(13) respectively. Again, the deviation of central values of the distributions
is small relative to the statistical uncertainties.

Effective mass plots for Δ are acceptably flat but suffer a loss of signal earlier in Euclidean time as expected. On our coarse lattice we find acceptable $\chi^2/\text{N}_{\text{DF}} \simeq 1.0 \rightarrow 0.4$ for intervals $t = 4$ or 5 through 10 with smaller values corresponding to lighter masses. On our fine lattice we find acceptable $\chi^2/\text{N}_{\text{DF}} \simeq 1.0 \rightarrow 0.6$ for intervals $t = 6$ or 7 through 12, again with smaller values corresponding to lighter masses.

In summary, we report values taken from covariance matrix fits to the time slice interval 4 through 8 on our coarse lattice and 6 through 9 on our fine lattice. These regimes provide the best signal-to-noise and good correlated $\chi^2/\text{N}_{\text{DF}}$.

C. Hadron Masses

Fig. 4 shows the extracted hadron masses plotted as a function of the quark mass. For future reference, these results are tabulated in Table III. κ_{cr} is determined by linearly extrapolating m^2_{π} as a function of m_q to zero. The form $M = c_0 + c_1 m_q$ was used for other extrapolations to the chiral limit. Fits with an additional term $c_2 m_q^{3/2}$ were also considered and similar results were found with slightly larger error bars. The correct ordering of all the states is clearly seen at both values of β.

Ratios of the chirally extrapolated masses are given in Table IV along with the ratios as observed in nature [25]. At $\beta = 7.0$ the lattice spacing estimates follow the familiar pattern having the value based on the string tension lying between that of the ρ and nucleon based values. This is most likely an artifact of the quenched approximation. However, at $\beta = 6.25$ we find significant disagreement among the values and an unusual reordering of values.

Focusing first on ratios of hadrons having the same angular momentum, we see very little change in the values as the lattice spacing is decreased. These ratios are also remarkably similar to those observed in nature, despite the fact that these are quenched QCD calculations. In addition, these ratios support our selection for the strange quark mass.

This close resemblance to nature is not shared by ratios of hadrons with different angular momentum. All four classes of ratios significantly disagree with those of nature. Once again we see the familiar quenched artifact of the Octet/Vector ratio being too large and the Decuplet/Octet ratio being too small.

The standard failure of the K/ρ mass ratio in the quenched approximation is also seen here. This shortcoming has been widely realized through an examination of the J-parameter [26] defined by

$$J = m_\rho \frac{dm_\rho}{dm^2_\pi} \bigg|_{m_\rho/m_\pi=1.8} \simeq m_K \frac{m_{K^*} - m_\rho}{m^2_{K^*} - m^2_\pi}.$$ \hspace{1cm} (12)

Empirically this ratio is 0.48. However we find 0.40 on our coarse lattice and 0.38 on our fine lattice. The physics associated with this discrepancy was first reported in Ref. [27]. There it was pointed out that the self-energy generated by two-pion intermediate states
FIG. 4. Hadron masses in lattice units as a function of m_q. The upper graph is for the coarser lattice, the lower for the finer lattice. The lines are chiral fits, linear in the quark mass. For better viewing, the decuplet masses are shifted upward by 0.5 unit.
TABLE III. Hadron masses as a function of m_q (both in lattice units). The results were extracted from time slices 4 to 8 on the coarser lattice, and 6 to 9 on the finer lattice. The last column reports results after extrapolations to the chiral limit.

Hadron	$m_q=0.42$	$m_q=0.37$	$m_q=0.31$	$m_q=0.25$	$m_q=0.17$	$m_q=0$
π	1.321(6)	1.248(6)	1.136(6)	1.020(7)	0.855(8)	0
K	1.29(1)	1.25(1)	1.19(1)	1.14(1)	1.07(1)	0.91(1)
ρ	1.66(1)	1.61(1)	1.53(2)	1.46(2)	1.36(3)	1.15(4)
K^*	1.64(1)	1.61(1)	1.57(2)	1.54(2)	1.49(2)	1.39(2)
N	2.67(3)	2.57(3)	2.43(3)	2.29(4)	2.10(5)	1.70(6)
Λ	2.64(3)	2.57(3)	2.48(3)	2.38(3)	2.25(4)	1.98(5)
Σ	2.64(3)	2.57(3)	2.48(3)	2.39(3)	2.28(4)	2.02(5)
Ξ	2.61(3)	2.57(3)	2.52(3)	2.48(3)	2.41(3)	2.27(4)
Δ	2.86(4)	2.78(4)	2.66(4)	2.54(4)	2.40(6)	2.07(7)
Σ^*	2.83(4)	2.78(4)	2.70(4)	2.62(4)	2.52(5)	2.30(6)
Ξ^*	2.82(4)	2.78(4)	2.74(4)	2.65(4)	2.54(5)	

Hadron	$m_q=0.26$	$m_q=0.21$	$m_q=0.17$	$m_q=0.13$	$m_q=0.08$	$m_q=0$
π	0.967(7)	0.871(7)	0.772(7)	0.667(7)	0.548(8)	0
K	0.920(7)	0.871(7)	0.823(7)	0.775(7)	0.726(7)	0.637(5)
ρ	1.19(1)	1.12(1)	1.05(1)	0.99(2)	0.92(2)	0.80(2)
K^*	1.15(1)	1.12(1)	1.08(1)	1.05(1)	1.02(2)	0.96(2)
N	1.86(2)	1.74(2)	1.62(2)	1.50(2)	1.37(3)	1.15(3)
Λ	1.82(2)	1.74(2)	1.65(2)	1.57(2)	1.48(2)	1.33(2)
Σ	1.81(1)	1.74(2)	1.66(2)	1.59(2)	1.52(2)	1.38(3)
Ξ	1.78(2)	1.74(2)	1.69(2)	1.65(2)	1.61(2)	1.53(2)
Δ	2.00(2)	1.90(2)	1.80(2)	1.71(3)	1.62(4)	1.44(4)
Σ^*	1.97(2)	1.90(2)	1.84(2)	1.78(3)	1.72(3)	1.60(3)
Ξ^*	1.94(2)	1.90(2)	1.87(2)	1.84(2)	1.81(3)	1.75(3)
	$\beta=6.25$	$\beta=7.0$	Expt.			
-------------------	--------------	--------------	--------			
a_{st}	0.40(3) fm	0.220(2) fm				
a_ρ	0.30(1) fm	0.205(6) fm				
a_N	0.36(1) fm	0.242(6) fm				
Vector/Vector						
K^*/ρ	1.20(2)	1.20(2)	1.16			
ϕ/ρ	1.40(3)	1.39(3)	1.32			
Octet/Octet						
Λ/N	1.16(2)	1.16(1)	1.19			
Σ/N	1.19(2)	1.20(1)	1.27			
Ξ/N	1.34(3)	1.33(2)	1.40			
Decuplet/Decuplet						
Σ^*/Δ	1.12(1)	1.11(1)	1.12			
Ξ^*/Δ	1.24(3)	1.22(2)	1.24			
Ω/Δ	1.34(3)	1.33(2)	1.36			
Pseudoscalar/Vector						
K/ρ	0.79(2)	0.79(2)	0.64			
Octet/Vector						
N/ρ	1.48(6)	1.44(5)	1.22			
Λ/ρ	1.72(6)	1.66(5)	1.45			
Σ/ρ	1.76(6)	1.72(5)	1.55			
Ξ/ρ	1.97(6)	1.91(6)	1.71			
Decuplet/Vector						
Δ/ρ	1.79(7)	1.77(5)	1.60			
Σ^*/ρ	2.00(6)	1.97(6)	1.80			
Ξ^*/ρ	2.20(7)	2.16(6)	1.99			
Ω/ρ	2.40(7)	2.35(6)	2.17			
Decuplet/Octet						
Δ/N	1.21(5)	1.23(2)	1.31			
Σ^*/N	1.35(5)	1.37(2)	1.47			
Ξ^*/N	1.49(4)	1.50(3)	1.63			
Ω/N	1.63(4)	1.64(3)	1.78			
FIG. 5. Plot of the ρ-meson mass as a function of the squared pion mass obtained from our finer lattice. a_ρ has been used to set the scale. The dashed line illustrates the standard linear extrapolations of m_π^2 and m_ρ. The solid and dot-dash curves include the two-pion self-energy of the ρ meson [27] for dipole dispersion cut-off values of 1 and 2 GeV respectively. The increase in the slope at $m_\rho/m_\pi = 1.8$ ($m_\pi^2 \simeq 0.21$) provided by the two-pion self energy is the right order of magnitude to restore agreement with the empirical value.

of the ρ-meson, which is excluded in the quenched approximation, acts to increase the J parameter. Fig. 5 provides a sketch of how including the two-pion self-energy of the ρ can increase the value of J from 0.38 to 0.46.

Perhaps the most important information displayed in Table IV is that the Octet/Vector mass ratios display less than satisfactory scaling for the larger lattice spacing. To further examine scaling and make contact with other studies, we focus on the the N/ρ mass ratio which is among the the most revealing of ratios.

Fig. 6 shows a comparison of the N/ρ mass ratio versus $M_\rho a$ at the chiral limit. Fig. 7 shows the N/ρ mass ratio as a function of $M_\rho a$ at a fixed π/ρ mass ratio of 0.7 [29]. This method is free of complications from chiral extrapolations. Both cases clearly show the improvement provided by the Dχ34 action. Indeed, the Dχ34 action has reproduced the state-of-the-art quenched QCD ratios using unimproved actions at coarse lattice spacings of 0.24 fm. Our results at the chiral limit are compatible with those in [13], but lie slightly above the SW and D234 results. The results from various improved actions at fixed π/ρ ratio show a certain degree of universality over a wide range of lattice spacings. The performance of fixed-point actions at very coarse lattice spacings is remarkable.
FIG. 6. The N/ρ mass ratio versus $M_\rho a$ at the chiral limit. Solid symbols denote the standard Wilson action. Open symbols denote improved actions including SW \blacksquare (\diamond), D234 \blacksquare (\triangle), Dχ34 \blacksquare (\square), and Dχ34 (\circ) (this work).

FIG. 7. The N/ρ mass ratio versus $M_\rho a$ at a fixed π/ρ mass ratio of 0.7 for various actions. The solid symbols denote the standard actions: Wilson (square and diamond), staggered (circle). The open symbols denote improved actions: nonperturbatively-improved SW \blacksquare (\times), fixed-point action \blacksquare (\square), SW (\diamond), D234 (\triangle), and Dχ34 (\circ) (this work).
D. Dispersion and Rotational Symmetry

In addition to mass ratios, hadron states at finite momentum projections $\vec{p}a = \vec{n}(2\pi/L)$ were also calculated. Dispersion was examined by calculating the effective speed of light, c_{eff}, defined by $c_{\text{eff}}^2 = (E^2(p) - E^2(0))/p^2$, which is to be compared with 1.

A comparison with SW and D234 lattice actions [9] is made in Table V. The lattice spacings are based on charmonium for SW and D234 actions whereas the static quark potential is used for our results. As such, the lattice spacings in Table V are approximate. Lattice volumes range from 2.0 to 2.4 fm. Dχ34 results are based on simulations at $\kappa = 0.183$ for our coarse lattice and $\kappa = 0.176$ on our fine lattice. The dispersion for the $O(a)$-improved SW action is very poor relative to the excellent dispersions of the next-nearest-neighbor improved Dχ34 actions. The Dχ34 dispersion is excellent even at our coarse lattice spacing.

Hadron	a (fm)	SW	D234	Dχ34
π	0.40	0.63(2)	0.95(2)	0.99(3)
π	0.24		0.99(4)	1.04(4)
ρ	0.40	0.48(4)	0.93(3)	0.93(6)
ρ	0.24		1.00(6)	0.99(6)

Rotational symmetry is explored in Table VI, which reports results for $m_q \sim 180$ MeV. At the coarser lattice spacing, some drift in the central values is seen for the pion and nucleon. The drift in the pion is similar to that seen for the D234c action reported in Ref. [3]. However, the drift in dispersion for the ϕ meson reported in Ref. [3] is not apparent in our results for the Dχ34 action. However, a similar drift may be hidden in the uncertainties. The Dχ34 action has much better rotational symmetry than the SW action [3]. Moreover, the Dχ34 action provides satisfactory dispersion at our finer lattice spacing and is competitive with the D234 action [3].

a (fm)	\vec{n}	π	ϕ	N	Ω
0.40	(1,0,0)	0.98(2)	0.91(4)	1.00(7)	0.99(12)
	(1,1,0)	0.91(4)	0.91(6)	0.94(8)	0.91(7)
	(1,1,1)	0.86(9)	0.92(10)	0.92(7)	0.90(10)
0.24	(1,0,0)	1.04(3)	1.02(4)	1.10(6)	1.06(7)
	(1,1,0)	1.05(4)	1.02(4)	1.06(5)	1.11(5)
	(1,1,1)	0.98(6)	0.98(6)	1.06(6)	1.06(5)
IV. CONCLUSION

We have computed masses and dispersion relations of light hadrons in lattice QCD using tree-level $O(a^2)$ tadpole-improved gauge and fermion actions. Compared to standard Wilson actions, the gluon action has an additional six-link (rectangle) term while the $D\chi^3_4$ fermion action has an additional two-link (next-nearest-neighbor) term. These actions have the appeal of being simple to implement and inexpensive to simulate.

A great deal of effort is being directed toward finding the ultimate improved action that will facilitate simulations on the coarsest of lattices. We note however, that many quantities of phenomenological interest such as hadron form factors involve momenta on the order of a GeV. As such, a highly improved action which is costly to simulate may not be the ideal action for hadron phenomenology, especially for exploratory purposes.

The mass ratios obtained from the $D\chi^3_4$ action at 0.24 fm on a modest $10^3 \times 16$ lattice reproduce the state-of-the-art results using conventional unimproved actions. Excellent dispersion and rotational invariance up to $pa \approx 1$ are also found. These results demonstrate that the $D\chi^3_4$ action can serve as a viable candidate for the study of hadron phenomenology, and in our view is preferable to the highly-improved but more costly $D234$ action. We plan to use the $D\chi^3_4$ action to study hadron properties beyond the spectrum, such as multipole form factors of hadrons in general. These results also bode well for future explorations beyond the quenched approximation.

ACKNOWLEDGMENTS

It is a pleasure to thank R. Woloshyn and H. Trottier for helpful discussions in the early stage of this work, and T. DeGrand and T. Kovacs for their help in computing the static potential. We also thank T. DeGrand for a critical reading of this manuscript. Simulations on our smaller lattice were performed on a DEC Alpha workstation at TRIUMF. Simulations on our larger lattice were performed on the Cray C90 at NERSC through resources awarded to Institute of Nuclear Theory. This work was supported in part by the U.S. DOE under Grants DE-FG03-93DR-40774 and DE-FG06-88ER40427, and by the Natural Sciences and Engineering Research Council of Canada and the Australian Research Council.
REFERENCES

[1] Butler et al., Nucl. Phys. B 430, 179 (1994).
[2] T. Yoshié, hep-lat/9711017.
[3] P. Lepage, hep-lat/9707026.
[4] P. Hasenfratz, hep-lat/9709110.
[5] M. Alford, W. Dimm, P. Lepage, Phys. Lett. B361, 87 (1995).
[6] C. Morningstar and M. Peardon, hep-lat/9704011.
[7] T. DeGrand et. al., Nucl.Phys. B478, 349 (1996), Nucl.Phys. B475, 321 (1996), Nucl.Phys. B454, 615 (1995), Nucl.Phys. B454, 587 (1995).
[8] S. Collins, R.G. Edwards, U.M. Heller, and J. Sloan, Nucl. Phys. (Proc. Suppl.) B47, 366 (1997), Nucl. Phys. (Proc. Suppl.) B53, 206 (1997), Nucl. Phys. (Proc. Suppl.) B53, 877 (1997).
[9] M. Alford, T. Klassen and P. Lepage, Nucl.Phys. (Proc. Suppl.) B47, 370 (1996), hep-lat/9509087.
[10] M. Alford, T. Klassen and P. Lepage, hep-lat/9608113, hep-lat/9611010, hep-lat/9709126.
[11] H. Hamber and C.M. Wu, Phys. Lett. B133, 351 (1983); B136, 255 (1984).
[12] T. Eguchi and N. Kawamoto, Nucl. Phys. B237, 609 (1984).
[13] H.R. Fiebig and R.M. Woloshyn, Phys. Lett. B385, 273 (1996).
[14] F.X. Lee and D.B. Leinweber, Proceedings of 14th International Conference on Particles and Nuclei (PANIC '96) (World Scientific, Singapore), 617 (1997).
[15] W. Bietenholz, R. Brower, S. Chandrasekharan, U.J. Wiese, Nucl. Phys. (Proc. Suppl.) B53, 921 (1997).
[16] T. DeGrand, A. Hasenfratz, P. Hasenfratz, P. Kunszt, F. Niedermayer, Nucl. Phys. (Proc. Suppl.) B53, 942 (1997).
[17] T. DeGrand, hep-lat/9709052.
[18] B. Sheikholeslami and R. Wohlert, Nucl. Phys. B259 (1985) 609.
[19] N. Cabibbo and E. Marinari, Phys. Lett. B 119, 387 (1982).
[20] U. Heller, K. Bitar, R. Edwards, A. Kennedy, Phys. Lett. B335, 71 (1994).
[21] R. Sommer, Nucl. Phys. B411, 839 (1994).
[22] A. Frommer, V. Hannemann, B. Nöckel, T. Lippert and K. Schilling, hep-lat/9404013.
[23] S. Güskken, Nucl.Phys. (Proc. Suppl.) B17, 361 (1990).
[24] B. Efron, SIAM Rev. 21, 460 (1979); S. Gottlieb, P.B. MacKenzie, H.B. Thacker, and D. Weingarten, Nucl. Phys. B 263, 704 (1986).
[25] Particle Data Group, Phys. Rev. D 50, (1994).
[26] P. Lacock and C. Michael, Phys. Rev. D52, 5213 (1995).
[27] D.B. Leinweber and T. Cohen, Phys. Rev. D49, 3512 (1994).
[28] M. Göckeler, et. al., hep-lat/9707021.
[29] T. DeGrand, private communication.