Measurement of arbitrary two-photon entanglement state with the photonic Faraday rotation

Lan Zhou1,2 *

1College of Mathematics \& Physics, Nanjing University of Posts and Telecommunications, Nanjing, 210003, China

2Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education, Nanjing, 210003, China

We propose an efficient protocol for measuring the concurrence of arbitrary two-photon pure entangled state with the help of the photonic Faraday rotation. In the protocol, the concurrence of the photonic entangled state can be conversed into the total success probability for picking up the odd-parity photonic state. For completing the measurement task, we require some auxiliary three-level atoms, which are trapped in the low-quality cavities. Our protocol can be well realized under current experimental conditions. Moreover, under practical imperfect atom state detection and photonic Faraday rotation conditions, our protocol can also work well. Based on these features, our protocol may be useful in current quantum information processing.

PACS numbers: 03.67.Dd, 03.67.Hk, 03.65.Ud

I. INTRODUCTION

In the quantum information and computation field, entanglement plays an extremely important role. In almost all the quantum information tasks, such as the quantum teleportation \cite{1, 2}, quantum dense coding \cite{3-5}, quantum communication \cite{6-12}, quantum state
sharing \cite{13,15}, and entanglement-based quantum key distribution \cite{16,18}, the nonlocal parties need the entanglement to setup the quantum channel. Meanwhile, in various quantum computation tasks, such as the linear optics quantum computation \cite{19}, one-way quantum computation \cite{20,22}, and so on \cite{23,25}, we also need to create entanglement.

In practical applications, we usually need to know the exact information on the entanglement. In this way, during the past few years, the entanglement quantization has become an important and interesting topic in the quantum information processing. In the early works, both the entanglement witness and Bell inequality have been used to characterize the entanglement \cite{26,29}. However, they can only disclose the entanglement of some quantum states but fail for other states. In this way, they cannot provide satisfactory results in general. In 1999, White et al. proposed a straightforward method for measuring the entanglement based on the complete tomographic reconstruction of the quantum state \cite{30}. However, the reconstruction of a two-qubit state requires to know 15 parameters, which is so complicated in practical operations. So far, the entanglement of formation (EOF), which is firstly proposed by Bennett et al. in 1996, has been the most valuable entanglement quantization method \cite{31,32}. The EOF is often used to quantify the minimal cost to prepare a certain quantum state. It has been shown that the EOF for an arbitrary two-qubit state can be exactly defined by the concurrence (C). For an arbitrary two-qubit state ρ, the concurrence can be defined as \cite{32,34}

$$C(\rho) = \max\{0, \lambda_1 - \lambda_2 - \lambda_3 - \lambda_4\}, \tag{1}$$

where λ_i ($i=1,2,3,4$) are the non-negative eigenvalues in decreasing order of the Hermitian matrix $R = \sqrt{\rho \rho \rho}$. $\hat{\rho} = (\sigma_y \otimes \sigma_y) \rho^* (\sigma_y \otimes \sigma_y)$, where σ_y and ρ^* are the usual Pauli operator and the complex conjugate of ρ. For a pure state $|\Psi\rangle$, the concurrence can be rewritten as \cite{33,35}

$$C(|\Psi\rangle) = |\langle \Psi^* | \sigma_y \otimes \sigma_y | \Psi \rangle|, \sigma_y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}. \tag{2}$$

where σ_y is the Pauli matrix of $|\Psi\rangle$. More precisely, for a general two-qubit pure state as $|\Psi\rangle = a_1|00\rangle + a_2|01\rangle + a_3|10\rangle + a_4|11\rangle$, where $|a_0|^2 + |a_1|^2 + |a_2|^2 + |a_3|^2 = 1$, the concurrence can be simplified as

$$C(|\Psi\rangle) = 2|a_1a_4 - a_2a_3|. \tag{3}$$
In 2006, Walborn et al. experimentally realized the determination of entanglement with a single measurement in linear optics [36]. In their experiment, they successfully measured the concurrence for a partially entangled state $|\varphi\rangle = \alpha|01\rangle + \beta|10\rangle$, whose concurrence can be written as $C = 2|\alpha\beta|$. Later, Romero et al. proposed an effective way for detecting the concurrence of pure atomic state with the help of the controlled-not (CNOT) gate [37]. Recently, the group of Cao put forward two efficient methods for measuring the concurrence of the two-photon polarization entangled pure or mixed states, with the help of the cross-Kerr nonlinearity [34, 38].

During the past few years, available techniques have achieved the input-output process relevant to optical cavities with low-quality (Q) factors, such as the microtoroidal resonator (MTR) [39]. It is attractive and applicable to combine the input-output process with low-Q cavities, for if achieved, it can accomplish high-Q quantum tasks with currently available techniques. In 2009, An et al. put forward an innovative scheme to implement the quantum information tasks by moderate cavity-atom coupling with low-Q cavities [40]. They have shown that when the photon interacts with an atom trapped in a low-Q cavity, differently polarized photons can make different phase rotation, which is called photonic Faraday rotation. The photonic Faraday rotation only works in low-Q cavities and is insensitive to both cavity decay and atomic spontaneous emission. In 2012, based on the photonic Faraday rotation, the group of Peng proposed two entanglement concentration protocols (ECP) for arbitrary atomic state and photonic states, respectively [41], which were improved by our group later [42–45]. In 2008, Lee et al. adopted the atoms as the flying qubits to realize the measurement for the concurrence in a cavity quantum electrodynamics (QED) system [46].

Inspired by the previous works, in the paper, we design a protocol for measuring the concurrence of arbitrary two-photon pure entangled state with the photonic Faraday rotation in a low-Q cavity QED system. We require some auxiliary three-level atoms, which are trapped in the low-Q cavities. We make the photon pulse pass through the low-Q cavity and react with the three-level atom. Taking use of the photonic Faraday rotation, we can converse the concurrence of the photonic state into the total success probability for picking up the odd-parity photonic state, which can be measured directly. Our protocol does not require the complicated operation and can be realized under current imperfect experimental conditions. In this way, our protocol may be useful in current quantum information processing.
II. THE BASIC PRINCIPLE OF PHOTONIC FARADAY ROTATION

FIG. 1: A schematic drawing of the interaction between the photon pulse and the three-level atom in the low-Q cavity. We make a three-level atom trap in a low-Q cavity. \(|g_L\rangle\) and \(|g_R\rangle\) represent the two Zeeman sublevels of its degenerate ground state, and \(|e\rangle\) represents its excited state. The state \(|g_L\rangle\) and \(|g_R\rangle\) couple with a left (L) polarized and a right (R) polarized photon, respectively.

The photonic Faraday rotation is the key operation in our protocol. We would introduce the basic principle of the photonic Faraday rotation, before explaining the details of our protocol. As shown in Fig. 1, suppose that a three-level atom is trapped in the one-side low-Q cavity. The states \(|g_L\rangle\) and \(|g_R\rangle\) represent the two Zeeman sublevels of its degenerate ground state, and \(|e\rangle\) represents its excited state. A single photon pulse with the form of \(|\varphi_{in}\rangle = \frac{1}{\sqrt{2}}(|L\rangle + |R\rangle)\) enters the cavity and reacts with the three-level atom, where \(|L\rangle\) and \(|R\rangle\) represent the left-circularly polarization and right-circularly polarization of the input photon, respectively. When the atom absorbs or emits a \(|L\rangle\) (\(|R\rangle\)) polarized photon, it will cause the transitions \(|g_L\rangle \leftrightarrow |e\rangle\) (\(|g_R\rangle \leftrightarrow |e\rangle\)).

The Hamiltonian of the whole system can be written as \([40, 47–49]\),

\[
H = H_0 + \hbar \lambda \sum_{j=L,R} (a_j^{\dagger} \sigma_j - a_j^\dagger \sigma_j + a_j \sigma_j^+ + H_R, \tag{4}
\]

with

\[
H_0 = \sum_{j=L,R} \left[\frac{\hbar \omega_0}{2} \sigma_{jz} + \hbar \omega_e a_j^{\dagger} a_j \right], \tag{5}
\]

and

\[
H_R = H_{R0} + i \hbar \int_{-\infty}^{\infty} d\omega \sum_{j=L,R} \alpha(\omega) (b_j^{\dagger}(\omega) a_j + b_j(\omega) a_j^{\dagger}) \\
+ \int_{-\infty}^{\infty} d\omega \sum_{j=L,R} \bar{\alpha}(\omega) (c_j^{\dagger}(\omega) \sigma_j - c_j(\omega) \sigma_j^+). \tag{6}
\]
Here, λ is the atom-field coupling constant. a_j^\dagger and a_j ($j = L, R$) are the creation and annihilation operators of the field-mode in the cavity, respectively. σ^-_L and σ^+_L (σ^-_R and σ^+_R) are the lowering and raising operators of the transition L (R), respectively. ω_c, ω_p, and ω_0 represent the field frequency, photon frequency and atomic frequency, respectively. H_{R0} represents the Hamiltonian of the free reservoirs, and b_j, c_j (b_j^\dagger and c_j^\dagger) are the annihilation (creation) operators of the reservoirs.

By solving the Langevin equations of motion for cavity and atomic lowering operators analytically, we can obtain a single relation between the input and output single-photon state as \[r(\omega_p) \equiv \frac{a_{out,j}(t)}{a_{in,j}(t)} = \frac{[i(\omega_c - \omega_p) - \frac{\kappa}{2}][i(\omega_0 - \omega_p) + \frac{\gamma}{2}] + \lambda^2}{[i(\omega_c - \omega_p) + \frac{\kappa}{2}][i(\omega_0 - \omega_p) + \frac{\gamma}{2}] + \lambda^2}. \] (7)

Here, κ and γ are the cavity damping rate and atomic decay rate, respectively. If the atom uncouples to the cavity, which makes $\lambda = 0$, we can simplify Eq. (7) as

\[r_0(\omega_p) = \frac{i(\omega_c - \omega_p) - \frac{\kappa}{2}}{i(\omega_c - \omega_p) + \frac{\kappa}{2}}. \] (8)

Eq. (8) can be written as a pure phase shift $r_0(\omega_p) = e^{i\phi_0}$. On the other hand, in the interaction process, as the photon experiences an extremely weak absorption, we can consider that the output photon only experiences a pure phase shift without any absorption. In this way, with strong κ, weak γ and g, Eq. (7) can be simplified to $r(\omega_p) \simeq e^{i\phi}$. Therefore, if the photon pulse takes action, the output photon state will convert to $|\varphi_{out} \rangle = r(\omega_p)|L(R)\rangle \simeq e^{i\phi}|L(R)\rangle$, otherwise, the single-photon would only sense the empty cavity, and the output photon state will convert to $|\varphi_{out} \rangle = r_0(\omega_p)|L(R)\rangle = e^{i\phi_0}|L(R)\rangle$.

In this way, for an input single-photon state $|\varphi_{in} \rangle = \frac{1}{\sqrt{2}}(|L\rangle + |R\rangle)$, if the initial atom state is $|g_L \rangle$, the output photon state can evolve to

\[|\varphi_{out} \rangle_- = \frac{1}{\sqrt{2}}(e^{i\phi}|L\rangle + e^{i\phi_0}|R\rangle), \] (9)

while if the initial atom state is $|g_R \rangle$, the output photon state will evolve to

\[|\varphi_{out} \rangle_+ = \frac{1}{\sqrt{2}}(e^{i\phi_0}|L\rangle + e^{i\phi}|R\rangle). \] (10)

Based on Eq. (9) and Eq. (10), the angle $\Theta^- = \phi_0 - \phi$ or $\Theta^+_F = \phi - \phi_0$ is defined as the photonic Faraday rotation.
In Eq. (9) and Eq. (10), it can be found that in a certain case, i.e., \(\omega_0 = \omega_c, \omega_p = \omega_c - \frac{\kappa}{2} \), and \(g = \frac{\kappa}{2} \), we can obtain \(\phi = \pi \) and \(\phi_0 = \frac{\pi}{2} \), so that the relation between the input and output photonic state can be written as \[41 \]

\[
\begin{align*}
|L\rangle|g_L\rangle & \rightarrow -|L\rangle|g_L\rangle, \\
|R\rangle|g_L\rangle & \rightarrow i|R\rangle|g_L\rangle, \\
|L\rangle|g_R\rangle & \rightarrow i|L\rangle|g_R\rangle, \\
|R\rangle|g_R\rangle & \rightarrow -|R\rangle|g_R\rangle.
\end{align*}
\]

(11)

III. DETECTION OF THE CONCURRENCE OF ARBITRARY TWO-PHOTON ENTANGLED STATE

FIG. 2: A schematic drawing of the principle of our detection protocol. Three three-level atoms, here named "1", "2", and "3" are trapped in three low-Q cavities, respectively. All the three atoms have the same quantum state as \(\frac{1}{\sqrt{2}}(|g_L\rangle + |g_R\rangle) \). Alice and Bob share two pairs of photonic states with the form of \(|\phi\rangle = \alpha|RR\rangle_{a1b1} + \beta|RL\rangle_{a1b1} + \gamma|LR\rangle_{a1b1} + \delta|LL\rangle_{a1b1} \), which are generated by the single photon source \(S \). The QWP represents the quarter wave plate.

Now, we begin to introduce our protocol for detecting the concurrence of the photonic entangled state with the help of the photonic Faraday rotation. We suppose two nonlocal parties, Alice and Bob, share two pairs of arbitrary two-photon entangled states with the same form of

\[
\begin{align*}
|\phi_1\rangle_{a1b1} & = \alpha|RR\rangle_{a1b1} + \beta|RL\rangle_{a1b1} + \gamma|LR\rangle_{a1b1} + \delta|LL\rangle_{a1b1}, \\
|\phi_2\rangle_{a2b2} & = \alpha|RR\rangle_{a2b2} + \beta|RL\rangle_{a2b2} + \gamma|LR\rangle_{a2b2} + \delta|LL\rangle_{a2b2},
\end{align*}
\]

(12)

where \(\alpha, \beta, \gamma, \) and \(\delta \) are the entanglement coefficients of the photonic state, and \(|\alpha|^2 + |\beta|^2 + |\gamma|^2 + |\delta|^2 = 1 \).
In this way, the whole four-photon state can be written as

\[|\Phi\rangle_{a_{1}a_{2}b_{1}b_{2}} = |\phi_{1}\rangle_{a_{1}b_{1}} \otimes |\phi_{2}\rangle_{a_{2}b_{2}} \]

\[= (\alpha^{2}|RRRR\rangle + \alpha\beta|RRRL\rangle + \alpha\gamma|RLRR\rangle + \alpha\delta|RLRL\rangle + \beta\alpha|RRLR\rangle + \beta^{2}|RRLL\rangle + \beta\gamma|LRRR\rangle + \beta\delta|LRLR\rangle + \alpha\gamma|LRRR\rangle + \beta\gamma|LRRL\rangle + \gamma^{2}|LLRR\rangle + \gamma\delta|LLLR\rangle + \alpha\delta|LRLR\rangle + \beta\delta|LRLL\rangle + \beta\gamma|LLRL\rangle + \beta\delta|LLLL\rangle)_{a_{1}a_{2}b_{1}b_{2}}. \tag{13} \]

As shown in Fig. 2, Alice and Bob prepare three three-level atoms, here named "1", "2", and "3". All the three atoms are in the same state as \(|\varphi\rangle = \frac{1}{\sqrt{2}}(|g_{L}\rangle + |g_{R}\rangle) \), and trapped in three low-Q cavities, respectively. Each of two parties makes the two photons in his/her hand pass through one low-Q cavity and interact with the atom, successively. Based on Eq. (11), we can obtain the relation between the input and output photon-atom state as

\[|R\rangle|R\rangle(|g_{L}\rangle + |g_{R}\rangle) \rightarrow |R\rangle|R\rangle(-|g_{L}\rangle + |g_{R}\rangle), \]

\[|L\rangle|L\rangle(|g_{L}\rangle + |g_{R}\rangle) \rightarrow |L\rangle|L\rangle(|g_{L}\rangle - |g_{R}\rangle), \]

\[|R\rangle|L\rangle(|g_{L}\rangle + |g_{R}\rangle) \rightarrow -i|R\rangle|L\rangle(|g_{L}\rangle + |g_{R}\rangle), \]

\[|L\rangle|R\rangle(|g_{L}\rangle + |g_{R}\rangle) \rightarrow -i|L\rangle|R\rangle(|g_{L}\rangle + |g_{R}\rangle). \tag{14} \]

It can be found that if the two photons are in the even parity, such as \(|RR\rangle\) or \(|LL\rangle\), the atomic state will be changed, while if they are in the odd parity, such as \(|RL\rangle\) or \(|LR\rangle\), the atomic state will keep the same. After the photon-atom interaction, Alice and Bob detect the atomic states. If they select the items which make the atomic states not change, Eq. (13) will collapse to

\[|\Phi_{1}\rangle_{a_{1}a_{2}b_{1}b_{2}} = \alpha\delta(|RLRL\rangle_{a_{1}a_{2}b_{1}b_{2}} + |LRLR\rangle_{a_{1}a_{2}b_{1}b_{2}}) + \beta\gamma(|RLLR\rangle_{a_{1}a_{2}b_{1}b_{2}} + |LRRL\rangle_{a_{1}a_{2}b_{1}b_{2}}), \tag{15} \]

with the success probability of \(P_{1} = 2|\alpha\delta|^{2} + 2|\beta\gamma|^{2} \).

Next, Alice performs the Hadamard (H) operation on the photons in \(a_{1} \) and \(a_{2} \) modes by making them pass through the quarter wave plate (QWP). The H operation can make

\[|R\rangle \rightarrow \frac{1}{\sqrt{2}}(|R\rangle + |L\rangle), \quad |L\rangle \rightarrow \frac{1}{\sqrt{2}}(|R\rangle - |L\rangle). \tag{16} \]
After that, Eq. (15) will evolve to

\[
|\Phi_2\rangle_{a_1a_2b_1b_2} = (\alpha\delta + \beta\gamma)(|RR\rangle - |LL\rangle)_{a_1a_2}(|RL\rangle + |LR\rangle)_{b_1b_2}
\]

\[
+ (\alpha\delta - \beta\gamma)(|LR\rangle - |RL\rangle)_{a_1a_2}(|RL\rangle - |LR\rangle)_{b_1b_2}.
\] (17)

Then, Alice makes the two photons in a1 and a2 modes enter another cavity and interact with the atom "3". According to Eq. (14), Alice also selects the items, which make the atomic state not change. In this way, Eq. (17) will collapse to

\[
|\Phi_3\rangle_{a_1a_2b_1b_2} = (|LR\rangle - |RL\rangle)_{a_1a_2}(|RL\rangle - |LR\rangle)_{b_1b_2},
\] (18)

with the success probability of

\[
P_2 = \frac{|\alpha\delta - \beta\gamma|^2}{2(|\alpha\delta|^2 + |\beta\gamma|^2)}.
\]

Therefore, the total success probability for obtaining the state in Eq. (18) can be calculated as

\[
P_{\text{total}} = P_1P_2 = |\alpha\delta - \beta\gamma|^2 = \frac{C^2(\phi)}{4}.
\] (19)

Based on the relationship between the concurrence and the total success probability for obtaining Eq. (18), we can obtain the concurrence of the photonic state by detecting the \(P_{\text{total}}\). Of course, in the practical experiment, in order to measure the \(P_{\text{total}}\) exactly, we need to repeat the protocol for a large number of times and consume large number of photonic and atomic states.

IV. DISCUSSION AND SUMMARY

In the paper, we propose an effective protocol for detecting the concurrence of arbitrary two-photon pure entangled state. In the protocol, we adopt the photonic Faraday rotation to construct the quantum nondemolition measurement for the photonic states. After the photon-atom interaction, by measuring the atomic state in the low-Q cavity and selecting the photonic items which make the atomic state not change, we can distill the photonic states in the odd parity, with the success probability of \(P_{\text{total}}\). Based on the relationship between \(P_{\text{total}}\) and the concurrence in Eq. (19), we can directly obtain the concurrence of the arbitrary two-photon entangled state by exactly calculating the \(P_{\text{total}}\). In our protocol, in order to realize the photonic Faraday rotation, the three-level atom encoded in the low-Q cavity is the key element. Under current experimental conditions, \(^{87}\text{Rb}\) and \(^{85}\text{Rb}\) atoms encoded
in the fiber-based Fabry-Perot cavity have been proved to be good candidate systems. In Ref. [50], they choose the states of $|F = 2\rangle$, $m_F = \pm 1$ of the $5S_{1/2}$ to be the two ground states $|g_L\rangle$ and $|g_R\rangle$, respectively. Under this case, the transition frequency between the ground states and the excited state at $\lambda = 780nm$ is $\omega_0 = \frac{2\pi c}{\lambda} \approx 2.42 \times 10^{15}Hz$. The cavity length, cavity rate and the finesse are $L = 38.6\mu m$, $\kappa = 2\pi \times 53MHz$ and $F = 37000$, respectively. In the past few years, certain studies on the atom state detection of ^{85}Rb atoms coupled to an optical cavity have also been reported. For example, in 2005, Nußmann et al. have successfully controlled and adjusted the individual ultracold ^{85}Rb atoms coupled to a high-finesse optical cavity [51]. In 2007, Fortier et al. realized the deterministic loading of single ^{85}Rb atoms in a cavity by incorporating a deterministically loaded atom conveyor [52]. Based on the early experimental works, our protocol can be well realized under current experimental conditions.

In the above description, our protocol is operated under the ideal conditions that the atom detection efficiency $\eta_a = 100\%$ and the photonic Faraday rotation angle $\Theta_F^\pm = \phi - \phi_0 = \frac{\pi}{2}$. Actually, in practical experiment, both the imperfect detection of the atom state and the imperfect photonic Faraday rotation angle will cause some influence on the protocol.

In our protocol, for completing the detection task, we need to detect the atom state for three times. In experiment, the atom state detection efficiency $\eta_a < 100\%$. Considering this imperfect detection, the description of P_{total} can be revised as

$$P'_{total} = \eta_3^3|\alpha\delta - \beta\gamma|^2 = \eta_3^3 C^2(\phi)\frac{4}{4}.$$ (20)

In this way, in practical experiment, we need to detect η_a first. In the past few years, certain studies on the atom state detection of ^{85}Rb atoms coupled to an optical cavity have been reported. For example, Heine et al. reported their research result on the single atom detection. They have achieved $\eta_a = 66\%$ in the experiment [53]. Moreover, they have shown that with some improvement, the single atom detection efficiency can achieve $\eta_a > 95\%$ in theory.

On the other hand, in practical experiment, it is quite difficult to exactly control $\Theta_F^\pm = \pi/2$ exactly. Therefore, it is quite possible that $\Theta_F^\pm = \frac{\pi}{2} + \sigma$, where σ is a small quantity. Under this case, Eq. (14) can be modified as

$$|R\rangle|R\rangle(|g_L\rangle + |g_R\rangle) \rightarrow |R\rangle|R\rangle e^{2i\phi_0}(|g_L\rangle - e^{2i\sigma}|g_R\rangle),$$

$$|L\rangle|L\rangle(|g_L\rangle + |g_R\rangle) \rightarrow |L\rangle|L\rangle e^{2i\phi_0}(-e^{2i\sigma}|g_L\rangle + |g_R\rangle),$$
$$|R\rangle|L\rangle(|g_L\rangle + |g_R\rangle) \rightarrow |R\rangle|L\rangle e^{i(\phi + \phi_0)}(|g_L\rangle + |g_R\rangle),$$
$$|L\rangle|R\rangle(|g_L\rangle + |g_R\rangle) \rightarrow |L\rangle|R\rangle e^{i(\phi + \phi_0)}(|g_L\rangle + |g_R\rangle).$$

(21)

It can be found that if the two input photons in the odd parity as $|R\rangle|L\rangle$ and $|L\rangle|R\rangle$, the atomic state will also not change. However, if the two input photons are in the even parity as $|R\rangle|R\rangle$ or $|L\rangle|L\rangle$, the atomic state will change to $|g_L\rangle - e^{2i\sigma}|g_R\rangle$ or $|g_R\rangle - e^{2i\sigma}|g_L\rangle$. This case may also contribute to the $\frac{1}{\sqrt{2}}(|g_L\rangle + |g_R\rangle)$ with some probability and cause the detection error. Therefore, in each parity check process, we can calculate the error probability as

$$P_e = \frac{1}{\sqrt{2}}(|g_L\rangle + |g_R\rangle) \frac{1}{\sqrt{2}}(-e^{2i\sigma}|g_L\rangle + |g_R\rangle)^2 = \frac{|-e^{i2\sigma} + 1|^2}{4}. \quad \text{(22)}$$

In this way, in the practical experiment, the detected success probability in each parity check process can be modified as

$$P_1' = P_1 + (1 - P_1)\frac{|-e^{i2\sigma} + 1|^2}{4},$$
$$P_2' = P_2 + (1 - P_2)\frac{|-e^{i2\sigma} + 1|^2}{4}. \quad \text{(23)}$$

Based on Eq. (23), if the value of σ is known, we can easily calculate exact value of P_1 and P_2, and calculate the exact value of P_{total}. Therefore, under this imperfect photonic Faraday rotation condition, we can also obtain the concurrence of arbitrary photonic entanglement state.

In summary, in the paper, we put forward an efficient protocol for detecting the concurrence of arbitrary two-photon entangled state. In the protocol, we adopt the photonic Faraday rotation to construct the quantum nondemolition measurement for the photonic state and the concurrence can be conversed into the total success probability for picking up the odd-parity photonic state. For completing the detection task, we need to consume large number of photonic states and auxiliary three-level atoms, each of which is trapped in a low-Q cavity. Comparing with other detection protocol, we do not require the sophisticated CNOT gate or single-photon detector, and our protocol is feasible under current experimental technique. Moreover, under imperfect atom detection and photonic Faraday rotation angle, our protocol can also be well realized. All the features make our protocol useful in current quantum information processing.
V. ACKNOWLEDGEMENTS

This work is supported by the National Natural Science Foundation of China under Grant Nos. 11104159 and 11347110, the open research funds of Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education (No. NYKL201303), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

[1] Bennett C.H., Brassard G., Crepeau C., Jozsa R., Peres A. Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993).

[2] Karlsson A., Bourennane M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998); Deng F.G., Li C.Y., Li Y.S., Zhou H.Y., Wang Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72, 022338 (2005).

[3] Bennett C.H., Wiesner S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992).

[4] Liu X.S., Long G.L., Tong D.M., Feng L.: General scheme for superdense coding between multiparty. Phys. Rev. A 65, 022304 (2002).

[5] Wang C., Deng F.G., Li Y.S., Liu X.S., Long G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005).

[6] Deng F.G., Long G.L., Liu X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A, 68, 042317 (2003).

[7] Long G.L., Liu X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A, 65, 032302 (2002).

[8] Gu B., Huang Y.G., Fang X., Cheng Y.L: Robust quantum secure communication with spatial quantum states of single photons. Int. J. Theor. Phys. 52, 4461 (2013).

[9] Gu B., Xu F., Ding L.G., Zhang Y.A.: High-Capacity Three-Party Quantum Secret Sharing With Hyperentanglement. Int. J. Theor. Phys. 51, 3559 (2012).

[10] Gu B., Huang Y.G., Fang X., Cheng Y.L: Bidirectional Quantum Secure Direct Communica-
12

[11] Sheng Y.B., Deng F.G., Long G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010).

[12] Sheng Y.B., Zhou L.: Quantum entanglement concentration based on nonlinear optics for quantum communications. Entropy 15, 1776 (2013)

[13] Hillery M., Bužek V., Berthiaume A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999).

[14] Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999)

[15] Xiao, L., Long, G. L., Deng, F. G., Pan, J. W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

[16] Ekert A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991).

[17] Deng F.G., Long G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003).

[18] Li X.H., Deng F.G., Zhou H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008).

[19] Knill E., Laflamme R., Milburn G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001).

[20] Nielsen M.A.: Optical quantum computation using cluster states. Phys. Rev. Lett. 93, 040503 (2004).

[21] Zhou L., Sheng Y.B.: Arbitrary atomic cluster state concentration for one-way quantum computation. J. Opt. Soc. Am. B 31, 1 (2014).

[22] Zhao S.Y., Liu J., Zhou L., Sheng Y.B.: Two-step entanglement concentration for arbitrary electronic cluster state. Quan. Inform. Process. 12, 3633 (2013).

[23] Feng G., Xu G., Long G.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013).

[24] Ren B.C., Wei H.R., Deng F.G.: Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity. Laser Phys. Lett. 10, 095202 (2013).

[25] Wei H.R., Deng F.G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys. Rev. A 87, 022305 (2013).

[26] Horodecki M., Horodecki P., Horodecki R.: Separability of mixed states: necessary and suffi-
cient conditions. Phys. Lett. A 223, 1 (1996).

[27] Häffner H., Hänzel W., Roos C.F., Benhelm J., Chek-al-kar D., Chwalla M., Körber T., Rapol U.D., Riebe M., Schmidt P.O., Becher C., Gähne O., Dür W., Blatt R.: Scalable multiparticle entanglement of trapped ions. Nature 438, 643 (2005).

[28] Leibfried D., Knill E., Seidelin S., Britton J., Blakestad R.B., Chiaverini J., Hume D.B., Itano W.M., Jost J.D., Langer C., Ozeri R., Reichle R., Wineland D.J.: Creation of a six-atom 'Schrödinger cat' state. Nature 438, 639 (2005).

[29] Bell J.S., On the Einstein Podolsky Rosen paradox. Physics, 1, 195 (1964).

[30] White A.G., James D.F.V., Eberhard P.H., Kwiat P.G.: Nonmaximally entangled states: production, characterization, and utilization. Phys. Rev. Lett. 83, 3103 (1999).

[31] Bennett C.H., DiVincenzo D.P., Smolin J.A., Wootters W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996).

[32] Hill S., Wootters W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997).

[33] Wootters W.K.: Entanglement of Formation of an Arbitrary State of Two Qubits. Phys. Rev. Lett. 80, 2245 (1998).

[34] Zhang L.H., Yang M., Cao Z.L.: Direct measurement of the concurrence for two-photon polarization entangled pure states by parity-check measurements. Phys. Lett. A 377, 1421 (2013).

[35] Wootters W.K.: Entanglement of formation and concurrence. Quantum Inf. Comput. 1, 27 (2001).

[36] Walborn S.P., Souto Ribeiro P.H., Davidovich L., Mintert F., Buchleitner A.: Experimental determination of entanglement with a single measurement. Nature (London) 440, 1022 (2006).

[37] Romero G., López C.E., Lastra F., Solano E., Retamal J.C.: Direct measurement of concurrence for atomic two-qubit pure states. Phys. Rev. A 75, 032303 (2007).

[38] Zhang L.H., Yang Q., Yang M., Song W., Cao Z.L.: Direct measurement of the concurrence of two-photon polarization-entangled states. Phys. Rev. A 88, 062342 (2013).

[39] Dayan B., Parkins A.S., Aoki T., Ostby E.P., Vahala K.I., Kimble H.J.: A Photon Turnstile Dynamically Regulated by One Atom. Science 319, 1062 (2008).

[40] An J.H., Feng M., Oh C.H.: Fidelity in topological quantum phases of matter. Phys. Rev. A 79, 032303 (2009).
[41] Peng Z.H, Zou J., Liu X.J., Xiao Y.J. Kuang L.M.: Atomic and photonic entanglement concentration via photonic Faraday rotation. Phys. Rev. A 86, 034305 (2012).
[42] Zhou L., Wang X.F., Sheng Y.B.: Efficient entanglement concentration for arbitrary less-entangled N-atom GHZ state. Int. J. Theor. Phys. DOI 10.1007/s10773-013-1974-8 (2014).
[43] Zhou L.: Optimal multi-photon entanglement concentration with the photonic Faraday rotation. arXiv:1211.0351 (2013).
[44] Sheng Y.B., Zhou L., Wang L., Zhao S.M.: Efficient W-state entanglement concentration using quantum-dot and optical microcavities. Quan. Inform. Process. 12, 1885 (2013).
[45] Sheng Y.B., Zhao S.Y. Liu J., Zhou L.: Atomic entanglement purification using photonic Faraday rotation. Quan. Inform. Process. DOI 10.1007/s11128-013-0698-2 (2013).
[46] Lee S.M., Ji S.W., Lee H.W., Suhai Zubaairy M.: Proposal for direct measurement of concurrence via visibility in a cavity QED system. Phys. Rev. A 77, 040301(R) (2008).
[47] Chen J.J., An J.H., Feng M., Liu G.: Teleportation of an arbitrary multipartite state via photonic Faraday rotation. J. Phys. B 43, 095505 (2010).
[48] Bastos W.P., Cardoso W.B., Avelar A.T., de Almeida N.G., Baseia B.: Controlled teleportation via photonic Faraday rotations in low-Q cavities. Quant. Inf. Process. 11, 1867 (2012).
[49] Julsgaard B., Kozhekin A., Polzik E.S.: Experimental long-lived entanglement of two macroscopic objects, Nature (London). 413, 400 (2001).
[50] Colombe Y., Steinmetz T., Dubois G., Linke F., Hunger D., Reichel J.: Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip. Nature 450, 272 (2007).
[51] Nussmann S., Hijlkema M., Weber B., Rohde F., Rempe G., Kuhn A.: Submicron positioning of single atoms in a microcavity. Phys. Rev. Lett. 95, 173602 (2005).
[52] Fortier K.M., Kim S.Y., Gibbons M.J., Ahmadi P., Chapman M.S.: Deterministic loading of individual atoms to a high-finesse optical cavity. Phys. Rev. Lett. 98, 233601 (2007).
[53] Heine D., Rohringer W., Fischer D., Wilzbach M., Raub T., Loziczky S., Yuan L.X., Groth S., Hessmo B., Schmiedmayer J.: A single-atom detector integrated on an atom chip: fabrication, characterization and application. New J. Phys. 12 095005 (2010).