Denoising the 3-Base Periodicity Walks of DNA Sequences in Gene Finding

Changchuan Yin*
College of Natural Sciences, University of Phoenix Chicago Campus, IL 60173, USA
Email: cyinbox@email.phoenix.edu

Dongchul Yoo 1 and Stephen S.-T. Yau 2
1 Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, IL 60607, USA
2 Department of Mathematical Sciences, Tsinghua University, Beijing 100080, China
Email: dcyoo@math.uic.edu, syau@math.tsinghua.edu.cn

Abstract—A nonlinear Tracking-Differentiator is one-input-two-output system that can generate smooth approximation of measured signals and get the derivatives of the signals. The nonlinear tracking-Differentiator is explored to denoise and generate the derivatives of the walks of the 3-periodicity of DNA sequences. An improved algorithm for gene finding is presented using the nonlinear Tracking-Differentiator. The gene finding algorithm employs the 3-base periodicity of coding region. The 3-base periodicity DNA walks are denoised and tracked using the nonlinear Tracking-Differentiator. Case studies demonstrate that the nonlinear Tracking-Differentiator is an effective method to improve the accuracy of the gene finding algorithm.

Index Terms—genome, nonlinear Tracking-Differentiator, 3-periodicity, Fourier transform

I. INTRODUCTION

Identifying protein-coding regions of eukaryote genomes is one of the most fundamental tasks for genome analysis, but poses important challenges as protein-coding regions (exons) are usually flanked by non-coding regions (introns) in eukaryote genomes. There are no distinguished sequence features between exon and intron sequences. Despite a variety of statistics methods developed to predict exons such as GenScan [1] and MZFF [2], many issues remain unsolved, for example, short exons are still difficult to be identified correctly [3].

During last decades, a number of approaches have been suggested for differentiating between the protein-coding and non-protein-coding regions of DNA. Fourier transform time-frequency analysis has attracted significant attentions in the identification of exons. This method is based on the 3-base periodicity and measured as the Fourier power spectrum of a DNA sequence at the frequency 1/3. It was well-known that the 3-base periodicity exits in many exon sequences but not in intron sequences due to the non-uniform distribution of the four nucleotides A, C, T, G in protein-coding regions and uniform distribution in the non-coding regions [6], [7]. Derivatives of the 3-periodicity walks along DNA sequences are employed in the gene finding algorithm, however, the trajectories are not smooth, it is difficult to compute directly the derivatives of 3-base periodicity walks to determine exons from DNA sequences.

A nonlinear Tracking-Differentiator, proposed by Han and Wang [8], [9], is one-input-two-output system that can generate smooth approximation of measured signals and get the derivatives of the signals. Many theoretical aspects of this method have been studied to improve and extend the method during last decade [10], [11]. It has been applied in various applications such as motion control and online estimator [12], [13].

In this paper, we apply the nonlinear Tracking-Differentiator to smooth the walks of the 3-base periodicity of DNA sequences to develop an effective gene finding algorithm. Case studies show that the tracking method described in this paper is an effective way to design a gene prediction algorithm in terms of accuracy. This method may also hold prospective promises in other data processing fields of Bioinformatics.

II. SYSTEM AND METHODS

A. Nonlinear Tracking-Differentiator

Han and Wang [8, 9] proposed a nonlinear Tracking-Differentiator, which generates continuous and differential signals properly from those that are not differentiable. The nonlinear Tracking-Differentiator is a parameterized second-order system with one input and two outputs. Let \(v_1(t) \) denote the input of the tracking differentiator, and \(x_1(t), x_2(t) \) as the two outputs, where \(x_1(t) \) tracks \(v_1(t) \) and \(x_2(t) \) is the derivative of \(x_1(t) \). In general, the state space representation is used to describe the system of a linear TD. The following section illustrates the theory of the nonlinear TD [8],[9].

Theorem 2.1 If the system
is the sub ion of the maximum function. Two nonlinear functions are described as follow:

\[
\begin{align*}
 f(x_1, x_2) &= -|x_1|^{\alpha_1} \text{sgn}(x_1) - |x_2|^{\alpha_2} \text{sgn}(x_2) \\
 f(x_1, x_2) &= -\text{sgn}(x_1 + \frac{1}{2}|x_1| |x_2|)
\end{align*}
\]

where \(\text{sgn}(.) \) denotes sign function. By using the synthetic function based on the Isochronic region method, Han and Yuan [13] suggested the discrete form of TD to complement its performance as follows:

\[
\begin{align*}
 X_1[t/h] + 1 &= X_1[t/h] + hX_2[t/h] \\
 X_2[t/h] + 1 &= X_2[t/h] - h \text{fst}(t/h) \\
 &- V[t/h], X_2[t/h], R, h
\end{align*}
\]

where \(h \) is a sampling step size, \(V[t] \) is the input signal, \(X_1[t] \) and \(X_2[t] \) are the two output signals from TD, and \(R \) is an acceleration factor. The function \(\text{fst}(X_1, X_2, R, h) \) is defined as follows:

\[
\text{fst}(X_1, X_2, R, h) = \begin{cases}
-R(a/d), & |a| \leq d \\
-R\text{sgn}(a), & |a| > d
\end{cases}
\]

where \(d = Rh, d_0 = dh \), where \(y = vX_1 + hX_2, a_0 = \sqrt{d^2 + 8R|y|}, a = \begin{cases}
X_2 + \gamma_0, & |y| < d_0 \\
X_2 + \text{sgn}(y)(a_0 - d)/2, & |y| \geq d_0
\end{cases} \)

The nonlinear TD is a noise filter, which blocks any part of the signal with the acceleration exceeding \(R \), providing an efficient way to generate smooth approximations. Moreover, nonlinear TD is able to obtain the derivatives of a signal with noise that is too noisy to differentiate directly. The following is a numerical simulation for the nonlinear TD using the following input signal:

\[
v = x^2 + 10*\text{random}
\]

where random is a random function with mean is 0. Fig. 1 illustrates the input signal and its smooth approximation by the nonlinear TD.

![Figure 1. Smoothing the test function by Nonlinear TD with R = 0.5.](image)

B. Computing the 3-base periodicity of a DNA sequence

Number The 3-base periodicity is computed from the nucleotide distributions [14]. Let \(F_{a1}, F_{a2}, F_{a3} \) be the occurrence frequencies of the nucleotide \(x \in \{A, T, C, G\} \) in the first, the second and the third codon position, respectively. The 3-base periodicity, \(PS(N/3) \), is calculated as follows:

\[
\sum_{i=A,T,C,G} [F_{a1}^2 + F_{a2}^2 + F_{a3}^2 - (F_{a1} * F_{a2} + F_{a2} * F_{a3} + F_{a3} * F_{a1})]
\]

The Fourier spectrum background is determined by the length of the DNA sequence [6]. The ratio of the 3-base periodicity signal to spectrum background of a DNA sequence can be interpreted as the normalized strength of the 3-base periodicity per base pair of the DNA sequence.

C. Generation of the 3-base periodicity walks of DNA sequences

We design the following algorithm to generate the trajectories of 3-base periodicity of DNA sequences. For a DNA sequence of length \(N \), let \(D_k \) denote the DNA walk sequence of length \(k \), i.e., \(D_k \) is the sub-region of the DNA sequence ranging from the beginning to the position \(k \). The algorithm is described as follows:

1. Set \(k = 1 \).
2. Compute the 3-base periodicity \(PS(N/3) \) in \(D_k \) based on the nucleotide distributions in the three codon positions of \(D_k \), \(F_{ai} \in \{A, T, C, G\}, i \in \{1, 2, 3\} \). The nucleotide
distribution of a DNA walk of length k can be obtained recursively from the DNA walk sequence of length k-1 with the occurring frequencies of the nucleotides on the position k.

3. Increase k by 1 and repeat step 1 to step 2, until k = N.

D. Predicting exons by tracking the trajectories of 3-base periodicity

The 3-base periodicity trajectories of DNA sequences are not smooth, but with many noises. The nonlinear TD is used to smooth the trajectories and get the derivatives of the signals.

1. Smooth the 3-base periodicity trajectories by nonlinear TD and compute the derivatives. If the derivative at the position is larger than 0, set the nucleotide at the position as exon nucleotide; otherwise, set it as intron nucleotide.

2. Reduce false exon and false intron. There are only few exon or intron of length less than 50 bp. Thus, for a predicted exon of length less than 50 bp, the region is considered false positive; similarly, if a predicted intron less than 50 bp, the region is considered as false negative.

E. The performance evaluation of gene finding algorithm

The performance of gene finding method is measured in terms of sensitivity, specificity and accuracy, which are defined as follows [15]. The sensitivity $S_n = TP/(TP + FN)$ and the specificity $S_p = TN/(TN + FP)$, where TP is the true positive, which is the length of nucleotides of correctly predicted exons; TN is the true negative, which is the length of nucleotides of correctly predicted introns; FN is the false negative, which is the length of nucleotides of wrongly predicted exons; and FP is the false positive, which is the length of nucleotides of wrongly predicted exons. In other words, Sn is the proportion of coding sequences that have been correctly predicted as coding, and Sp is the proportion of non-coding sequences that have been correctly predicted as non-coding. The accuracy AC is defined as the average of Sn and Sp.

III. RESULTS AND DISCUSSION

It was shown that an exon displays an upward trend in the plot of the 3-base periodicity per base pair, while an intron displays a flat trend [14]. Thus, for a given DNA sequence, putative exons and introns can be identified from the derivatives of the 3-base periodicity per base pair along the DNA sequence [4]. Fig. 2(a) the plot of the 3-base periodicity per base pair of the gene at locus AAB26989.1 of Drosophila melanogaster (fruit fly). There are approximate changing points between exons and introns in the plot, and the plot are with a lot of noise. Fig. 2(b) and 2(c) are the plots of the 3-base periodicity per base pair of the gene after the data was filtered by the nonlinear TD with the gain values as 0.01 and 0.001, respectively. Fig. 2(b) and Fig. 2(c) shows the smoothness of the 3-base periodicity trajectories of DNA sequences by the nonlinear TD, indicating the nonlinear TD is an effective approach to approximate data to obtain derivatives.

To evaluate the performance of the algorithm in protein coding region prediction, the method is applied to predict the intron and exon of structure known genes from different organisms. As an example, Figure 3(a) is expected structure of the gene at locus AAB26989.1 of Drosophila melanogaster (fruit fly). Figure 2(b) is the predicted gene structures using the nonlinear TD with the gain values of 0.001. Fig. 2(c) is the predicted gene structure after removing the false intron and false exon. The values of Sn, Sp and AC of the prediction in Figure 3(c) are 0.9763, 0.5992 and 0.7877, respectively. Using the original method without TD smoothing described in [14], the values of Sn, Sp and AC of the prediction are 0.9169, 0.5908, and 0.7539, respectively. Optimizing the gene prediction method can be obtained through smoothing the 3-base periodicity trajectories at different levels at different gain values. For example, the AC values of the prediction using the gain values 0.1 and 0.0001 are 0.5537 and 0.7192, respectively. Both of them are lower than the one at the gain value of 0.001. This result indicates TD smoothing method using the gain value of 0.001 may improve the gene prediction accuracy about 3.5%.
Figure 3. Gene structure based on tracking the 3-base periodicity using the nonlinear TD. (a) Expected gene structure. (b) Predicted gene structure (R = 0.001 for the nonlinear TD). (c) Predicted gene structure after removing the false introns and false exons.

Many experiment data have local noise due to high sensitivity of measurement methods and may be corrupted by the noise. It is important to remove noise to enhance the signal to noise level before performing data analysis. There are several methods, such as Savitzky-Golay filter, polynomial regressing, discrete Wavelet transform, etc, to smooth signals with noise [16], but these methods may not get derivatives of the smoothed data directly and have other limitations. The derivatives of the signal changes are important to understand many mechanisms in biological systems, for example, the dynamics of the signals [17] and gene finding [14]. Among these smoothing, nonlinear TD is valuable for data processing for its capacity to find a smooth signal which converges to the original signal and obtain the derivative at the same time. It is easy to apply without considering of the complexity for the noised signal. In addition, using the exceeding factor R provides a fine tuning approach at different approximation levels.

ACKNOWLEDGMENT

This research is supported by the U.S. NSF grant (DMS-1120824) and National Natural Sciences Foundation of China (31271408).

REFERENCES

[1] C. Burge and S. Karlin, “Prediction of complete gene structures in human genomic DNA,” J. Mol. Biol., vol. 268, pp. 78–94, 1997.
[2] M. Zhang, “Identification of protein coding regions in the human genome by quadratic discriminant analysis,” Proc. Natl. Acad. Sci. USA, vol. 94, pp. 565–568, 1997.
[3] S. Marhon and S. Kremer, “Gene prediction based on DNA spectral analysis: A literature review,” J. Comput. Biol, vol. 34, pp. 353–367.
[4] S. Tiwari, S. Ramachandran, A. Bhattacharya, S. Bhattachrya, and R. Ramaswamy, “Prediction of probable genes by Fourier analysis of genomic sequences,” CABIOS, vol. 113, pp. 263–270, 1997.
[5] D. Anastassiou, “Frequency-domain analysis of biomolecular sequences,” Bioinformatics, vol. 16, pp. 1073–1081, 2000.
[6] S. Shah and A. Krishnamachari, “Frequency-domain analysis of biomolecular sequences: Origins and a non-Fourier approximation,” J. Comput. Biol, vol. 9, pp. 1153–1165, 2005.
[7] K. Shah and A. Krishnamachari, “On the origin of three base periodicity in genomes,” Biosystems, vol. 107, pp. 142–4, 2012.
[8] J. Han, “A new type of controller: NLPIID,” Control and Decision (in Chinese), vol. 19, pp. 401–407, 1994.
[9] J-Q. Han and W. Wang, “Nonlinear tracking-differentiator,” Systems Science and Mathematical Sciences (in Chinese), vol. 14, pp. 177–183, 1994.
[10] J. Han and L. Yuan, “The discrete form of the tracking differentiator,” Journal of Systems Science and Mathematical Sciences, vol. 19, pp. 268–273, 1999.
[11] X. Wang, S. T. Yau, and J. Huang, “A study of tracking-differentiator,” Proceedings of the 39th IEEE Conference on Decision and Control, vol. 1, 2002.
[12] Y. Su, C. Zheng, D. Sun, and B. Duan, “An enhanced fuzzy PID controller with two discrete nonlinear tracking differentiators,” IEEE Proc. Control Theory Appl., vol. 141, 2004.
[13] J. Han, “The discrete form of the tracking-differentiator,” Systems Science and Mathematical Sciences (in Chinese), vol. 19, pp. 177–183, 1999.
[14] C. Yin and S-T. Yau, “A Fourier characteristic of coding sequences: Origins and a non-Fourier approximation,” J. Theor. Biol., vol. 247, pp. 687–694, 2007.
[15] M. Burset and R. Guigo, “Evaluation of gene structure prediction programs,” Genomics, vol. 34, pp. 353–367, 1996.
[16] D. Reddy, R. N. G. P. Radhavdevi, J. Saiaba, and G. Varadan, “Peakwise smoothing of data models using wavelets,” World Academy of Science, Engineering and Technology, vol. 39, pp. 884–89, 2010.
[17] C. Tomlin and J. Alexro, “Biology by numbers: mathematical modeling in developmental biology,” Nature Reviews: Genetics, vol. 8, pp. 331–340, 2007.