State Space Reconstruction for Multivariate Time Series Prediction

I. Vlachos and D. Kugiumtzis
Department of Mathematical, Physical and Computational Sciences, Faculty of Technology, Aristotle University of Thessaloniki, Greece

(Dated: February 10, 2022)

In the nonlinear prediction of scalar time series, the common practice is to reconstruct the state space using time-delay embedding and apply a local model on neighborhoods of the reconstructed space. The method of false nearest neighbors is often used to estimate the embedding dimension. For prediction purposes, the optimal embedding dimension can also be estimated by some prediction error minimization criterion. We investigate the proper state space reconstruction for multivariate time series and modify the two abovementioned criteria to search for optimal embedding in the set of the variables and their delays. We pinpoint the problems that can arise in each case and compare the state space reconstructions (suggested by each of the two methods) on the predictive ability of the local model that uses each of them. Results obtained from Monte Carlo simulations on known chaotic maps revealed the non-uniqueness of optimum reconstruction in the multivariate case and showed that prediction criteria perform better when the task is prediction.

PACS numbers: 05.45.Tp, 02.50.St, 05.45.a

Keywords: nonlinear analysis, multivariate analysis, time series, local prediction, state space reconstruction

I. INTRODUCTION

Since its publication Takens’ Embedding Theorem (and its extension, the Fractal Delay Embedding Prevalence Theorem by Sauer et al.) has been used in time series analysis in many different settings ranging from system characterization and approximation of invariant quantities, such as correlation dimension and Lyapunov exponents, to prediction and noise-filtering. The Embedding Theorem implies that although the true dynamics of a system may not be known, equivalent dynamics can be obtained under suitable conditions using time delays of a single time series, treated as an one-dimensional projection of the system trajectory.

Most applications of the Embedding Theorem deal with univariate time series, but often measurements of more than one quantities related to the same dynamical system are available. One of the first uses of multivariate embedding was in the context of spatially extended systems where embedding vectors were constructed from data representing the same quantity measured simultaneously at different locations. Multivariate embedding was used for noise reduction and for surrogate data generation with equal individual delay times and equal embedding dimensions for each time series. In nonlinear multivariate prediction, the prediction with local models on a space reconstructed from a different time series of the same system was studied in [8]. This study was extended in [9] by having the reconstruction utilize all of the observed time series. Multivariate embedding with the use of independent components analysis was considered in [10] and more recently multivariate embedding with varying delay times was studied in [11, 12].

In this work, we focus on the state space reconstruction from multivariate time series from discrete dynamical systems, so that the investigation of optimal embedding does not involve the delay parameter but only the embedding dimension for each variable. For this, we adjust two well-known approaches used for univariate time series, i.e. the false nearest neighbor [13] and the optimal reconstruction for prediction evaluated in a test set [14, 15]. We study the consistency of the techniques in estimating the embedding dimensions as well as their performance by means of out-of-sample prediction using the selected embedding. Monte Carlo simulations at different settings of system complexity, system dimension and time series lengths are used to evaluate the embedding techniques.

In Section II the embedding for univariate time series is briefly discussed. In Section III the discussion is extended to multivariate time series and the suggested techniques for estimating the embedding are presented. Then in Section IV the results of Monte Carlo simulations are presented and in Section V the results are discussed and conclusions are given.

II. UNIVARIATE EMBEDDING

A dynamical system generates a trajectory in a D-dimensional manifold Γ. For discrete time the dynamical system is defined by the D-dimensional map $F: \Gamma \mapsto \Gamma$ as

$$ y_{n+1} = F(y_n), \quad n \in \mathbb{N}, $$

where $y_n \in \Gamma$ is the state vector at time step n.

The observed scalar time series $\{x_n\}_{n=1}^N$ of length N is the projection of the segment of the system trajectory $\{y_n\}_{n=1}^N$ given by a measurement function $h: \Gamma \mapsto \mathbb{R}$.
as $x_n = h(y_n)$. Despite the apparent loss of information of the system dynamics by the projection, the system dynamics may be recovered through suitable state space reconstruction from the scalar time series.

A. Reconstruction of the state space

According to Takens’ embedding theorem a trajectory formed by the points x_n of time-delayed components from the time series $\{x_n\}_{n=1}^N$ as

$$x_n = (x_n-(m-1)\tau, x_n-(m-2)\tau, \ldots, x_n),$$

(1)

under certain genericity assumptions, is an one-to-one mapping of the original trajectory of y_n provided that m is large enough.

Given that the dynamical system “lives” on an attractor $A \subset \Gamma$, the reconstructed attractor \tilde{A} through the use of the time-delay vectors is topologically equivalent to A. A sufficient condition for an appropriate unfolding of the attractor is $m \geq 2d+1$ where d is the box-counting dimension of A.

The embedding process is visualized in the following graph

$$\begin{align*}
 y_n \in A \subset \Gamma & \xrightarrow{F} y_{n+1} \in A \subset \Gamma \\
 x_n \in \mathbb{R} & \xrightarrow{h} x_{n+1} \in \mathbb{R} \\
 x_n \in \tilde{A} \subset \mathbb{R}^m & \xrightarrow{G} x_{n+1} \in \tilde{A} \subset \mathbb{R}^m
\end{align*}$$

where e is the embedding procedure creating the delay vectors from the time series and G is the reconstructed dynamical system on \tilde{A}. G preserves properties of the unknown F on the unknown attractor A that do not change under smooth coordinate transformations.

B. Univariate local prediction

For a given state space reconstruction, the local prediction at a target point x_n is made with a model estimated on the K nearest neighboring points to x_n. The local model can have a simple form, such as the zeroth order model (the average of the images of the nearest neighbors), but here we consider the linear model

$$\tilde{x}_{n+1} = a^{(n)} x_n + b^{(n)},$$

where the superscript (n) denotes the dependence of the model parameters ($a^{(n)}$ and $b^{(n)}$) on the neighborhood of x_n. The neighborhood at each target point is defined either by a fixed number K of nearest neighbors or by a distance determining the borders of the neighborhood giving a varying K with x_n.

C. Selection of embedding parameters

The two parameters of the delay embedding in (1) are the embedding dimension m, i.e. the number of components in x_n and the delay time τ. We skip the discussion on the selection of τ as it is typically set to 1 in the case of discrete systems that we focus on. Among the approaches for the selection of m we choose the most popular method of false nearest neighbors (FNN) and present it briefly below [13].

The measurement function h projects distant points $\{y_n\}$ of the original attractor to close values of $\{x_n\}$. A small m may still give badly projected points and we seek the reconstructed state space of the smallest embedding dimension m that unfolds the attractor. This idea is implemented as follows. For each point x_n^m in the m-dimensional reconstructed state space, the distance from its nearest neighbor $x_n^m(1)$ is calculated, $d(x_n^m, x_n^m(1)) = ||x_n^m - x_n^m(1)||$. The dimension of the reconstructed state space is augmented by 1 and the new distance of these vectors is calculated, $d(x_n^{m+1}, x_n^{m+1}(1)) = ||x_n^{m+1} - x_n^{m+1}(1)||$. If the ratio of the two distances exceeds a predefined tolerance threshold r the two neighbors are classified as false neighbors, i.e.

$$r_n(m) = \frac{d(x_n^{m+1}, x_n^{m+1}(1))}{d(x_n^m, x_n^m(1))} > r.$$

(2)

The criterion that the embedding dimension m is high enough to unfold the attractor is that the percentage of points for which $r_n(m) > r$, is essentially zero, typically requiring to be smaller than 1%.

The selection of r should be large enough to allow for exponential divergence. In [16], a stricter criterion is introduced, that the original distance of the point to its nearest neighbor in the m-dimensional space does not exceed the standard deviation of x_n divided by r. If it does the point is omitted from the percentage calculation, since the points are already too far apart to be real neighbors. A good and often used value for r is 10.

Another popular method for the selection of the embedding dimension m is from the optimization of the fit of a local linear model using a criterion for the goodness-of-fit [14] or the goodness-of-prediction [15]. The idea here is that for a local linear model fit to be optimum the attractor must be fully unfolded. After the selection of an appropriate τ, for state space reconstructions with m varying from 1 to a maximum m_{max}, the fit or prediction error of local prediction models is calculated. For the errors a statistic such as the normalized root mean square error (NRMSE) is used and the embedding dimension is chosen as the one that minimizes this statistic. Whereas the false nearest neighbors method determines a minimal sufficient embedding dimension, this method picks a dimension for which the attractor is unfolded (so as to give better predictions) that may be larger than the minimal.
III. MULTIVARIATE EMBEDDING

In Section II we gave a summary of the reconstruction technique for a deterministic dynamical system from a scalar time series generated by the system. However, it is possible that more than one time series are observed that are possibly related to the system under investigation. For p time series measured simultaneously from the same dynamical system, a measurement function $H: \Gamma \rightarrow \mathbb{R}^p$ is decomposed to h_i, $i = 1, \ldots, p$, defined as in Section II giving each a time series $\{x_{i,n}\}_{n=1}^{N}$. According to the discussion on univariate embedding any of the p time series can be used for reconstruction of the system dynamics, or better, the most suitable time series could be selected after proper investigation. In a different approach all the available time series are considered and the analysis of the univariate time series is adjusted to the multivariate time series.

A. From univariate to multivariate embedding

Given that there are p time series $\{x_{i,n}\}_{n=1}^{N}$, $i = 1, \ldots, p$, the equivalent to the reconstructed state vector in II for the case of multivariate embedding is of the form

$$\mathbf{x}_n = \left(x_{1,n}, \ldots, x_{p,n}\right) \in \mathbb{R}^m$$

and are defined by an embedding dimension vector $\mathbf{m} = (m_1, \ldots, m_p)$ that indicates the number of components used from each time series and a time delay vector $\mathbf{\tau} = (\tau_1, \ldots, \tau_p)$ that gives the delays for each time series. The corresponding graph for the multivariate embedding process is shown below.

$$y_n \in A \subset \Gamma \quad \mathcal{F} \quad y_{n+1} \in A \subset \Gamma$$

$$x_{1,n} \quad x_{2,n} \quad \cdots \quad x_{p,n} \quad x_{1,n+1} \quad x_{2,n+1} \quad \cdots \quad x_{p,n+1}$$

The total embedding dimension M is the sum of the individual embedding dimensions for each time series $M = \sum_{i=1}^{p} m_i$. Note that if redundant or irrelevant information is present in the p time series, only a subset of them may be represented in the optimal reconstructed points \mathbf{x}_n. The selection of \mathbf{m} and $\mathbf{\tau}$ follows the same principles as for the univariate case: the attractor should be fully unfolded and the components of the embedding vectors should be uncorrelated. A simple selection rule suggests that all individual delay times and embedding dimensions are the same, i.e. $\mathbf{m} = m \mathbf{1}$ and $\mathbf{\tau} = \tau \mathbf{1}$ with $\mathbf{1}$ a p-vector of ones [6, 7]. Here, we set again $\tau_i = 1$, $i = 1, \ldots, p$, but we consider both fixed and varying m_i in the implementation of the FNN method (see Section III D).

B. Multivariate local prediction

The prediction for each time series $x_{i,n}$, $i = 1, \ldots, p$, is performed separately by p local models, estimated as in the case of univariate time series, but for reconstructed points formed potentially from all p time series as given in (3) (e.g. see [3]).

We propose an extension of the NRMSE for the prediction of one time series to account for the error vectors comprised of the individual prediction errors for each of the predicted time series. If we have one step ahead predictions for the p available time series, i.e. $\hat{x}_{i,n}$, $i = 1, \ldots, p$ (for a range of current times $n - 1$), we define the multivariate NRMSE

$$\text{NRMSE} = \sqrt{\frac{\sum_n \| (x_{1,n} - \hat{x}_{1,n}, \ldots, x_{p,n} - \hat{x}_{p,n}) \|^2}{\sum_n \| (x_{1,n} - \hat{x}_{1,n}, \ldots, x_{p,n} - \hat{x}_{p,n}) \|^2}}$$

where \hat{x}_i is the mean of the actual values of $x_{i,n}$ over all target times n.

C. Problems and restrictions of multivariate reconstructions

A major problem in the multivariate case is the problem of identification. There are often not unique \mathbf{m} and $\mathbf{\tau}$ embedding parameters that unfold fully the attractor. A trivial example is the Henon map [17]

$$x_{n+1} = 1.4 - x_{2,n} + y_n$$

$$y_{n+1} = 0.3 x_n$$

It is known that for the state space reconstruction from the observable x_n the appropriate embedding parameters are $m = 2$ and $\tau = 1$. Due to the fact that y_n is a lagged multiple of x_n the attractor can obviously be reconstructed from the bivariate time series $\{x_n, y_n\}$ equally well with any of the following two-dimensional embedding schemes

$$\mathbf{x}_n = (x_{n}, x_{n-1}) \quad \mathbf{x}_n = (x_{n}, y_n) \quad \mathbf{x}_n = (y_n, y_{n-1})$$

since they are essentially the same. This example shows also the problem of redundant information, e.g. the state space reconstruction would not improve by augmenting the delay vector $\mathbf{x}_n = (x_{n}, x_{n-1})$ with the component y_n that actually duplicates x_{n-1}. Redundancy is inevitable in multivariate time series as synchronous observations of the different time series are generally correlated and the fact that these observations are used as components in the same embedding vector adds redundant information in them. We note here that in the case of continuous dynamical systems, the delay parameter τ_i may be selected so that the components of the i time series are not correlated with each other, but this does not imply that they are not correlated to components from another time series.
A different problem is that of irrelevance, when time series that are not generated by the same dynamical system are included in the reconstruction procedure. This may be the case even when a time series is connected to a multivariate time series generated by the system under investigation.

An issue of concern is also the fact that multivariate data don’t always have the same data ranges and correlations calculated on delay vectors with components from different ranges may depend highly on only some of the components. So it is often preferred to scale all the data to have either the same variance or be in the same data range. For our study we choose to scale the data to the range $[0, 1]$.

D. Selection of the embedding dimension vector

Taking into account the problems in the state space reconstruction from multivariate time series, we present three methods for determining m, two based on the false nearest neighbor algorithm, which we call FNN1 and FNN2, and one based on local models which we call prediction error minimization criterion (PEM).

The main idea of the FNN algorithms is as for the univariate case. Starting from a small value the embedding dimension is increased by including delay components from the p time series and the percentage of the false nearest neighbors is calculated until it falls to the zero level. The difference of the two FNN methods is on the way that m is increased.

For FNN1 we restrict the state space reconstruction to use the same embedding dimension for each of the p time series, i.e. $m = (m, m, \ldots, m)$ for a given m. To assess whether m is sufficient, we consider all delay embeddings derived by augmenting the state vector of embedding dimension vector (m, m, \ldots, m) with a single delayed variable from any of the p time series. Thus the check for false nearest neighbors in each p-plet of (m_1, m_2, \ldots, m_p) yields the increase from the embedding dimension vector (m, m, \ldots, m) to each of the embedding dimension vectors $(m + 1, m, \ldots, m)$, $(m, m + 1, \ldots, m)$, \ldots, $(m, m, \ldots, m + 1)$. Then the algorithm stops at the optimal $m = (m, m, \ldots, m)$ if the zero level percentage of false nearest neighbors is obtained for all p cases. A sketch of the first two steps for a bivariate time series is shown in Figure 1(a).

This method has been commonly used in multivariate reconstruction and is more appropriate for spatiotemporally distributed data (e.g. see the software package TISEAN [18]). A potential drawback of FNN1 is that the selected total embedding dimension M is always a multiple of p, possibly introducing redundant information in the embedding vectors.

We modify the algorithm of FNN1 to account for any form of the embedding dimension vector m and the total embedding dimension M is increased by one at each step of the algorithm. Let us suppose that the algorithm has reached at some step the total embedding dimension M. For this M all the combinations of the components of the embedding dimension vector $m = (m_1, m_2, \ldots, m_p)$ are considered under the condition $M = \sum_{i=1}^{p} m_i$. Then for each such $m = (m_1, m_2, \ldots, m_p)$ all the possible augmentations with one dimension are checked for false nearest neighbors, i.e. $(m_1 + 1, m_2, \ldots, m_p)$, $(m_1, m_2 + 1, \ldots, m_p)$, \ldots, $(m_1, m_2, \ldots, m_p + 1)$. A sketch of the first two steps of the extended FNN algorithm, denoted as FNN2, for a bivariate time series is shown in Figure 1(b).

The termination criterion is the drop of the percentage of false nearest neighbors to the zero level at every increase of M by one for at least one embedding dimension vector (m_1, m_2, \ldots, m_p). If more than one embedding dimension vectors fulfill this criterion, the one with the smallest cumulative FNN percentage is selected, where the cumulative FNN percentage is the sum of the p FNN percentages for the increase by one of the respective component of the embedding dimension vector.

The PEM criterion for the selection of $m = (m_1, m_2, \ldots, m_p)$ is simply the extension of the goodness-of-fit or prediction criterion in the univariate case to account for the multiple ways the delay vector can be formed from the multivariate time series. Thus for all possible p-plets of (m_1, m_2, \ldots, m_p) from $(1, 0, \ldots, 0)$, $(0, 1, \ldots, 0)$, etc up to some vector of maximum embedding dimensions $(m_{\text{max}}, m_{\text{max}}, \ldots, m_{\text{max}})$, the respective reconstructed state spaces are created, local linear models are applied and out-of-sample prediction errors are computed. So, totally $p^{\text{max}} - 1$ embedding dimension vectors are compared and the optimal is the one that gives the smallest multivariate NRMSE as defined in (4).

IV. MONTE CARLO SIMULATIONS AND RESULTS

A. Monte Carlo setup

We test the three methods by performing Monte Carlo simulations on a variety of known nonlinear dynamical systems. The embedding dimension vectors are selected using the three methods on 100 different realizations of each system and the most frequently selected embedding dimension vectors for each method are tracked. Also, for each realization and selected embedding dimension vec-
tor from each method, the multivariate NRMSE for out-of-sample prediction is computed. The average multivariate NRMSE over the 100 realizations for each method is then used as an indicator of the performance of each method in prediction.

The selection of the embedding dimension vector by FNN1, FNN2 and PEM is done on the first three quarters of the data, \(N_1 = 3N/4 \), and the multivariate NRMSE is computed on the last quarter of the data \((N - N_1) \). For PEM, the same split is used on the \(N_1 \) data, so that \(N_2 = 3N/4 \) data are used to find the neighbors (training set) and the rest \(N_1 - N_2 \) are used to compute the multivariate NRMSE (test set) and decide for the optimal embedding dimension vector. A sketch of the split of the data is shown in Figure 2. The number of neighbors for the local models in PEM varies with \(N \) and we set \(K_N = 10, 25, 50 \) for time series lengths \(N = 512, 2048, 8192 \), respectively. The parameters of the local linear model are estimated by ordinary least squares. For all methods the investigation is restricted to \(m_{\text{max}} = 5 \).

The multivariate time series are derived from nonlinear maps of varying dimension and complexity as well as spatially extended maps. The results are given below for each system.

B. One and two Ikeda maps

The Ikeda map is an example of a discrete low-dimensional chaotic system in two variables \((x_n, y_n)\) defined by the equations

\[
\begin{align*}
z_{n+1} &= 1 + 0.9 \exp(0.4i - 6i/(1 + |z_n|^2)), \\
x_n &= \text{Re}(z_n), \quad y_n = \text{Im}(z_n),
\end{align*}
\]

where \(\text{Re} \) and \(\text{Im} \) denote the real and imaginary part, respectively, of the complex variable \(z_n \). Given the bivariate time series of \((x_n, y_n)\), both FNN methods identify the original vector \(\mathbf{x}_n = (x_n, y_n) \) and find \(\mathbf{m} = (1, 1) \) as optimal at all realizations, as shown in Table I.

On the other hand, the PEM criterion finds over-embedding as optimal, but this improves slightly the prediction, which as expected improves with the increase of \(N \).

Next we consider the sum of two Ikeda maps as a more complex and higher dimensional system. The bivariate time series are generated as

\[
x_n = \text{Re}(z_{1,n} + z_{2,n}), \quad y_n = \text{Im}(z_{1,n} + z_{2,n}).
\]

The results of the Monte Carlo simulations shown in Table II suggest that the prediction worsens dramatically from that in Table I and the total embedding dimension \(M \) increases with \(N \).

The FNN2 criterion generally gives multiple optimal \(\mathbf{m} \) structures across realizations and PEM does the same but only for small \(N \). This indicates that high complexity degrades the performance of the algorithms for small sample sizes. PEM is again best for predictions but overall we do not observe large differences in the three methods.

An interesting observation is that although FNN2 finds two optimal \(\mathbf{m} \) with high frequencies they both give the same \(M \). This reflects the problem of identification, where different \(\mathbf{m} \) unfold the attractor equally well. This feature cannot be observed in FNN1 because the FNN1 algorithm inspects fewer possible vectors and only one for each \(M \), where \(M \) can only be multiple of \(p \) (in this case \((1, 1) \) for \(M=2 \), \((2, 2) \) for \(M=4 \), etc). On the other hand, PEM criterion seems to converge to a single \(\mathbf{m} \) for large \(N \), which means that for the sum of the two Ikeda maps this particular structure gives best prediction results. Note that there is no reason that the embedding dimension vectors derived from FNN2 and PEM should match as they are selected under different conditions. Moreover, it is expected that the \(\mathbf{m} \) selected by PEM gives always the lowest average of multivariate NRMSE as it is selected to optimize prediction.

TABLE I: Dimension vectors and NRMSE for the Ikeda map. Columns 2, 3 and 4 contain the embedding dimension vectors followed by their respective frequency of occurrence.

TABLE II: Dimension vectors and NRMSE for the sum of two Ikeda maps.
TABLE III: Dimension vectors and NRMSE for the KDR map

N	FNN1	FNN2	PEM	FNN1	FNN2	PEM
512	(1,1,1,1) 100	(2,2,2,2) 30	(1,1,1,1) 10	(1,0,1,1) 80	(0,1,1,1) 14	0.010
2048	(1,1,1,1) 55	(2,2,2,2) 39	(1,1,1,1) 37	(1,0,1,2) 21	(0,2,1,1) 79	0.120
8192	(2,2,2,2) 85	(1,1,1,1) 15	(1,1,1,1) 14	(2,2,1,1) 100	0.058	

TABLE IV: Dimension vectors and NRMSE for system of Driver-Response Henon system

N	C	FNN1	FNN2	PEM	FNN1	FNN2	PEM
512	0	(2,2) 100	(2,2) 98 (1,2) 1	(2,2) 75 (2,1) 10	0.190	0.196	0.198
0.4	(2,2) 100	(1,2) 89 (2,2) 8	(3,2) 33 (2,2) 25	0.102	0.127	0.116	
0.8	(2,2) 100	(2,0) 99 (2,1) 1	(3,0) 31 (0,3) 21	0.014	0.012	0.005	
2048	0	(2,2) 100	(2,2) 100	(2,2) 100	0.093	0.093	0.093
0.4	(2,2) 100	(1,2) 80 (2,2) 20	(3,3) 45 (4,3) 45	0.050	0.084	0.028	
0.8	(2,2) 100	(2,0) 99 (2,1) 1	(0,3) 20 (3,0) 19	0.007	0.006	0.001	
8192	0	(2,2) 100	(2,2) 100	(2,2) 100	0.051	0.051	0.051
0.4	(2,2) 100	(1,2) 100	(3,3) 72 (4,3) 25	0.027	0.027	0.011	
0.8	(2,2) 100	(2,0) 98 (0,2) 2	(0,4) 31 (4,0) 30	0.002	0.002	0.001	

C. Kicked Double Rotor map

The Kicked Double Rotor (KDR) map is a nonlinear chaotic system in four variables that describes the time evolution of the mechanical system with the same name [20]. The four time series \((x_{1,n}, x_{2,n}, y_{1,n}, y_{2,n})\) are generated from the equations

\[X_{n+1} = MY_n + X_n, \quad Y_{n+1} = LY_n + W(X_n) \]

where

\[X_n = (x_{1,n}, x_{2,n})^T \in S^1 \times S^1, \]
\[Y_n = (y_{1,n}, y_{2,n})^T \in \mathbb{R} \times \mathbb{R}, \]
\[W(X_n) = (6.36 \sin(x_{1,n}), 9 \sin(x_{2,n}))^T, \]
\[M = \begin{pmatrix} 0.49 & 0.21 \\ 0.21 & 0.70 \end{pmatrix}, \quad L = \begin{pmatrix} 0.24 & 0.27 \\ 0.27 & 0.51 \end{pmatrix}. \]

The simulation results on four time series of KDR map in Table III are similar to those on the sum of two Ikeda maps.

The selection of \(m\) from PEM outperforms the two FNN methods with respect to prediction and converges to a single optimal \(m\) with \(N\). For smaller \(N\) there seems to be large diversity of selected \(m\) by all methods.

D. Driver-Response Henon system

The Driver-Response Henon system consists of two Henon maps where the first Henon map (the variables \(x_{1,n}\) and \(y_{1,n}\) are defined as in [5]) drives the second Henon map [21] as follows

\[x_{2,n+1} = 1.4 - (C x_{1,n} x_{2,n} + (1-C)x_{2,n}^2) + y_{2,n} \]
\[y_{2,n+1} = 0.3x_{2,n} \]

for a driving strength \(C\). We set \(C = 0, 0.4, 0.8\) regarding three different states for the two systems: independent \((C=0)\), moderately dependent \((C=0.4)\) and strongly dependent \((C=0.8)\). The results of the Monte Carlo simulations for the bivariate time series of \((x_{1,n}, x_{2,n})\) are given in Table IV.

First we observe that FNN1 gives uniform results for all \(C\) and \(N\). When the two time series are independent \((C=0)\) there is actually no reason to apply multivariate embedding and all methods select for all \(N\) the same embedding dimension vector \((2,2)\) (less than 100% frequency only for \(N=512\) with FNN2 and PEM). Since the optimal embedding dimension for the Henon map is known to be 2 this result seems quite reasonable.

When \(C=0.4\) the moderate dependence of the second time series to the first affects the selection of the embedding dimension vector. FNN2 selects mostly \(m = (1,2)\), which means that this method detects that information of the driver time series is passed to the response, thus it utilizes more the response time series for unfolding the attractor. On the other hand PEM tends to select vectors with larger embedding dimension for the driver \((3,2)\) for \(N=512\) and \((4,3)\) for \(N=2048\) because this information is more useful for prediction purposes. Also PEM gives over-embedding as for the sum of two Ikeda maps.

The strong dependence of the second time series to the first when \(C=0.8\) implies that the system is less complex and so a smaller \(M\) is needed for embedding. For all \(N\), FNN2 almost always selects the vector \((2,0)\), whereas
TABLE V: Dimension vectors and NRMSE for Lattice of 3 coupled Henon maps

N	C	FNN1 (1,1,1,1)	FNN2 (1,1,1,1)	PEM (1,1,1,1)	FNN1 NRMSE	FNN2 NRMSE	PEM NRMSE
512	0.4 (2,2,2)	94 (1,1,1)	46 (1,1,1)	37 (1,1,1)	0.210	0.084	0.283
	0.8 (2,2,2)	98 (1,1,1)	2 (2,0,2)	91 (2,1,1)	0.225	0.064	0.210
2048	0.4 (2,2,2)	100 (1,1,1)	85 (1,1,1)	8 (1,2,2)	0.190	0.174	0.141
	0.8 (2,2,2)	100 (2,0,2)	65 (2,1,1)	14 (2,1,2)	0.229	0.072	0.170

TABLE VI: Dimension vectors and NRMSE for Lattice of 4 coupled Henon maps

N	C	FNN1 (1,1,1,1)	FNN2 (1,1,1,1)	PEM (1,1,1,1)	FNN1 NRMSE	FNN2 NRMSE	PEM NRMSE
512	0.4 (1,1,1,1)	100 (1,1,1)	42 (1,0,2,1)	17 (1,1,1,1)	0.285	0.363	0.288
	0.8 (1,1,1,1)	100 (1,1,1)	40 (1,0,2,1)	17 (1,1,1,1)	0.314	0.357	0.291
2048	0.4 (1,1,1,1)	88 (2,2,2)	12 (1,1,1,1)	7 (1,2,2)	0.229	0.228	0.220
	0.8 (1,1,1,1)	72 (2,2,2)	36 (1,0,2,1)	33 (2,1,1,2)	0.225	0.261	0.163
8192	0.4 (1,1,1,1)	85 (2,2,2)	15 (1,1,1,1)	8 (1,2,2)	0.197	0.200	0.137
	0.8 (2,2,2)	86 (1,1,1,1)	31 (1,0,2,1)	22 (3,2,3,3)	0.131	0.209	0.072

PEM cannot distinguish the two time series and selects with almost equal frequencies vectors of the form \((m,0)\) and \((0,m)\) giving again over-embedding as \(N\) increases. Thus PEM does not reveal the coupling structure of the underlying system and picks any embedding dimension structure among a range of structures that give essentially equivalent predictions. Here FNN2 seems to detect sufficiently the underlying coupling structure in the system resulting in a smaller total embedding dimension that gives however the same level of prediction as the larger \(M\) suggested by FNN1 and slightly smaller than the even larger \(M\) found by PEM.

E. Lattices of coupled Henon maps

The last system is an example of spatiotemporal chaos and is defined as a lattice of \(k\) coupled Henon maps \(\{x_{i,n}; y_{i,n}\}_{i=1}^k\) specified by the equations

\[
x_{i,n+1} = 1.4 - ((1 - C)x_{i,n} + \frac{C(x_{i-1,n} + x_{i+1,n})}{2})^2 + y_{i,n}
\]

\[
y_{i,n+1} = 0.3x_{i,n}
\]

The connection of the \(k\) maps is restricted between adjacent maps in the ordered list of maps, i.e. each \(x_{i,n}\), \(i = 2, ..., k - 1\) is connected to \(x_{i+1,n}\) and \(x_{i-1,n}\), with the “boundary” maps for \(i = 1, k\) being simple Henon maps. As in the case of driven-response Henon maps the complexity of the system and the nature of the dependence of the time series with each other is determined by their coupling strength, which here is fixed for all couplings in the lattice. The results for coupling strengths \(C=0.4\) and \(0.8\) and two lattice structures for \(k=3\) and \(k=4\) are given in Tables V and VI respectively.

For both lattices the results are similar to that of the driven-response Henon maps. For \(k = 3\), PEM does not single out an \(m\) structure for small sample sizes or for moderate coupling, where FNN2 generally does. PEM again gives the best prediction results and FNN2 is more conservative giving always the smallest \(M\) of all three methods. The lattice involving 4 maps is a more complicated system since there are more possible embedding dimension vectors for a given \(M\) and thus there is more diversity in the results. We note that for almost all combinations of data size, coupling strength and method (meaning FNN2 and PEM) there are multiple selected optimum dimension vectors. Beyond this, the differences in FNN2 and PEM discussed for \(k = 3\) persist also for \(k = 4\).

V. DISCUSSION

There does not seem to be an optimal scheme for state space reconstruction from multivariate time series. The simulation results on two schemes proposed in this work, one based on unfolding the attractor at any possible direction (FNN2) and the other aiming at optimizing prediction performance (PEM), seem to confirm this.

When the goal of state space reconstruction is to make predictions, selection of multivariate embedding with the prediction criterion PEM is best, but this results often to over-embedding (large total embedding dimension) and does not really estimates the actual degrees of freedom of the underlying system. This can also be justified from the fact that the dimension of the reconstructed state space selected by PEM tends to increase with the sam-
ple size, at least for the sizes we used in the simulations. Such a feature shows lack of consistency of the PEM criterion and suggests that the selection is led from factors inherent in the prediction process rather than the quality of the reconstructed attractor. For example the increase of embedding dimension with the sample size can be explained by the fact that more data lead to abundance of close neighbors used in local prediction models and this in turn suggests that augmenting the embedding vectors would allow to locate the K neighbors used in the model.

On the other hand, the two schemes used here that extend the method of false nearest neighbors (FNN) to multivariate time series aim at finding minimum embedding that unfolds the attractor, but often a higher embedding gives better prediction results. In particular, the second scheme (FNN2) that explores all possible embedding structures gives consistent selection of an embedding of smaller dimension than that selected by PEM. Moreover, this embedding could be justified by the underlying dynamics of the known systems we tested. However, lack of consistency of the selected embedding was observed with all methods for small sample sizes (somehow expected due to large variance of any estimate) and for the coupled maps (probably due to the presence of more than one optimal embeddings).

In this work, we used only a prediction performance criterion to assess the quality of state space reconstruction, mainly because it has the most practical relevance. There is no reason to expect that PEM would be found best if the assessment was done using another criterion not based on prediction. However, the reference (true) value of other measures, such as the correlation dimension, are not known for all systems used in this study. Another constraint of this work is that only noise-free multivariate time series from discrete systems are encountered, so that the delay parameter is not involved in the state space reconstruction and the effect of noise is not studied. It is expected that the addition of noise would perplex further the process of selecting optimal embedding dimension and degrade the performance of the algorithms. For example, we found that in the case of the Henon map the addition of noise of equal magnitude to the two time series of the system makes the criteria to select any of the three equivalent embeddings \((2,0),(0,2),(1,1)\) at random. It is in the purpose of the authors to extend this work and include noisy multivariate time series, also from flows, and search for other measures to assess the performance of the embedding selection methods.

Acknowledgments

This paper is part of the 03ED748 research project, implemented within the framework of the "Reinforcement Programme of Human Research Manpower" (PENED) and co-financed at 90% by National and Community Funds (25% from the Greek Ministry of Development-General Secretariat of Research and Technology and 75% from E.U.-European Social Fund) and at 10% by Rikshospitalet, Norway.

[1] F. Takens, Lecture Notes in Mathematics 898, 365 (1981).
[2] T. Sauer, J. A. Yorke, and M. Casdagli, Journal of Statistical Physics 65, 579 (1991).
[3] H. Kantz and T. Schreiber, Nonlinear Time Series Analysis (Cambridge University Press, 1997).
[4] J. Guckenheimer and G. Buzyna, Physical Review Letters 51, 1438 (1983).
[5] M. Paluš, I. Dvořák, and I. David, Physica A Statistical Mechanics and its Applications 185, 433 (1992).
[6] R. Hegger and T. Schreiber, Physics Letters A 170, 305 (1992).
[7] D. Prichard and J. Theiler, Physical Review Letters 73, 951 (1994).
[8] H. D. I. Abarbanel, T. A. Carroll, L. M. Pecora, J. J. Sidorowich, and L. S. Tsimring, Physical Review E 49, 1840 (1994).
[9] L. Cao, A. Mees, and K. Judd, Physica D 121, 75 (1998), ISSN 0167-2789.
[10] J. P. Barnard, C. Aldrich, and M. Gerber, Physical Review E 64, 046201 (2001).
[11] S. P. García and J. S. Almeida, Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 72, 027205 (2005).
[12] Y. Hirata, H. Suzuki, and K. Aihara, Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 74, 026202 (2006).
[13] M. B. Kennel, R. Brown, and H. D. I. Abarbanel, Physical Review A 45, 3403 (1992).
[14] D. T. Kaplan, in Chaos in Communications, edited by L. M. Pecora (SPIE-The International Society for Optical Engineering, Bellingham, Washington, 98227-0010, USA, 1993), pp. 236-240.
[15] B. Chun-Hua and N. Xin-Bao, Chinese Physics 13, 633 (2004).
[16] R. Hegger and H. Kantz, Physical Review E 60, 4970 (1999).
[17] M. Hénon, Communications in Mathematical Physics 50, 69 (1976).
[18] R. Hegger, H. Kantz, and T. Schreiber, Chaos: An Interdisciplinary Journal of Nonlinear Science 9, 413 (1999).
[19] K. Ikeda, Optics Communications 30, 257 (1979).
[20] C. Grebogi, E. Kostelich, E. O. Ott, and J. A. Yorke, Physica D 25 (1987).
[21] S. J. Schiff, P. So, T. Chang, R. E. Burke, and T. Sauer, Physical Review E 54, 6708 (1996).
[22] A. Politi and A. Torcini, Chaos: An Interdisciplinary Journal of Nonlinear Science 2, 293 (1992).