MAXIMAL EIGENVALUES OF A CASIMIR OPERATOR
AND MULTIPLICITY-FREE MODULES

GANG HAN

(Communicated by Gail R. Letzter)

Abstract. Let \(g \) be a finite-dimensional complex semisimple Lie algebra and \(b \) a Borel subalgebra. Then \(g \) acts on its exterior algebra \(\wedge g \) naturally. We prove that the maximal eigenvalue of the Casimir operator on \(\wedge g \) is one third of the dimension of \(g \), that the maximal eigenvalue \(m_i \) of the Casimir operator on \(\wedge^i g \) is increasing for \(0 \leq i \leq r \), where \(r \) is the number of positive roots, and that the corresponding eigenspace \(M_i \) is a multiplicity-free \(g \)-module whose highest weight vectors correspond to certain ad-nilpotent ideals of \(b \). We also obtain a result describing the set of weights of the irreducible representation of \(g \) with highest weight a multiple of \(\rho \), where \(\rho \) is one half the sum of positive roots.

1. Introduction

Let \(g \) be a finite-dimensional complex semisimple Lie algebra and \(U(g) \) its universal enveloping algebra. The study of the \(g \)-module structure of its exterior algebra \(\wedge g \) has a long history. Although this module structure is still not fully understood, Kostant has done a lot of important work on it; see for example [2] and [3].

Let \(\text{Cas} \in U(g) \) be the Casimir element with respect to the Killing form. Let \(m_i \) be the maximal eigenvalue of \(\text{Cas} \) on \(\wedge^i g \) and \(M_i \) be the corresponding eigenspace. Let \(p \) be the maximal dimension of commutative subalgebras of \(g \). In [2] it is proved that \(m_i \leq i \) for any \(i \) and \(m_i = i \) for \(0 \leq i \leq p \), and if \(m_i = i \), then \(M_i \) is a multiplicity-free \(g \)-module whose highest weight vectors correspond to \(i \)-dimensional abelian ideals of \(b \). The integer \(p \) for all the simple Lie algebras was determined by Malcev, and Suter gave a uniform formula for \(p \) in [6].

Fix a Cartan subalgebra \(\mathfrak{h} \) of \(g \) and a set \(\Delta^+ \) of positive roots. Let \(\rho \in \mathfrak{h}^* \) be one half the sum of all the positive roots. For any \(\lambda \in \mathfrak{h}^* \), let \(V_\lambda \) denote the irreducible representation of \(g \) with highest weight \(\lambda \).

In this paper we will prove the following result, which extends some theorems of Kostant. Let \(n = \dim g \), \(l = \text{rank} g \) and \(r \) be the number of positive roots.

Theorem 1.1 (Theorem 3.2). (1) One has \(m_i \leq n/3 \) for \(i = 0, 1, \cdots, n \), and \(m_i = n/3 \) if and only if \(i = r, r+1, \cdots, r+l \). For \(s = 0, 1, \cdots, l \), \(M_{r+s} = \binom{l}{s} V_{2\rho} \).
(2) For \(0 \leq i < r\) one has \(m_i < m_{i+1}\). For \(1 \leq i \leq r\), \(M_i\) is a multiplicity-free \(\mathfrak{g}\)-module, whose highest weight vectors correspond to certain ad-nilpotent ideals of \(\mathfrak{b}\). In fact \(\bigoplus_{i=0}^{r} M_i\) is also a multiplicity-free \(\mathfrak{g}\)-module.

Note that Kostant already proved in Remark 1.2 of [4] that \(m_i \leq n/3\) for all \(i\). Thus (1) of this theorem provides further information about the corresponding eigenspace of the maximal eigenvalue \(n/3\).

This result relates \(M_i\) to ad-nilpotent ideals of \(\mathfrak{b}\), which are classified in [5]. But it will be complicated to determine those ad-nilpotent ideals of \(\mathfrak{b}\) corresponding to the highest weight vectors of \(M_i\).

To prove this theorem, we need the following interesting result.

Proposition 1.2 (Proposition 2.1). Let \(k \in \mathbb{Z}^+\). The set of weights of \(V_{k\rho}\) (whose dimension is \((k+1)^r\)) is

\[
\{ \sum_{i=1}^{r} c_i \alpha_i | \alpha_i \in \Delta^+, c_i = -k/2, -k/2 + 1, \cdots, k/2 - 1, k/2 \}.
\]

2. Weights of a representation with highest weight a multiple of \(\rho\)

Let \(\mathfrak{g}\) be a finite-dimensional complex semisimple Lie algebra. Fix a Cartan subalgebra \(\mathfrak{h}\) of \(\mathfrak{g}\) and a Borel subalgebra \(\mathfrak{b}\) of \(\mathfrak{g}\) containing \(\mathfrak{h}\). Let \(\Delta\) be the set of roots of \(\mathfrak{g}\) with respect to \(\mathfrak{h}\) and \(\Delta^+\) be the set of positive roots whose corresponding root spaces lie in \(\mathfrak{b}\). Let \(\Lambda = h^*\) be the lattice of \(\mathfrak{g}\)-integral linear forms on \(\mathfrak{h}\) and \(\Delta^+\) be the subset of dominant integral linear forms. Let \((,)\) be the bilinear form on \(\mathfrak{h}^*\) induced by the Killing form. Let \(l = \dim \mathfrak{h}, r = |\Delta^+|\) and \(n = l + 2r = \dim \mathfrak{g}\).

Assume \(\Delta^+ = \{\alpha_1, \alpha_2, \cdots, \alpha_r\}\).

For any \(\lambda \in \Lambda\), let \(\pi_{\lambda} : \mathfrak{g} \to \text{End}(V_{\lambda})\) be the irreducible representation of \(\mathfrak{g}\) with highest weight \(\lambda\), and \(\Gamma(V_{\lambda})\) be the set of weights, with multiplicities. Any \(\gamma \in \Gamma(V_{\lambda})\) will appear \(k\) times if the dimension of the \(\gamma\)-weight space is \(k\). For example \(\Gamma(\mathfrak{g}) = \Delta \cup \{0, \cdots, 0\}\) \((l\text{ times})\). If \(U \subset V_{\lambda}\) is an \(\mathfrak{h}\)-invariant subspace, then we will also use \(\Gamma(U)\) to denote the the set of weights of \(U\) with multiplicities and define

\[
\langle U \rangle = \sum_{\gamma \in \Gamma(U)} \gamma.
\]

For any \(S \subset \Gamma(V_{\lambda})\), we also define \(\langle S \rangle = \sum_{\gamma \in S} \gamma\).

Let \(\rho \in \mathfrak{h}^*\) be one half the sum of all the positive roots. For any \(k \in \mathbb{Z}^+\), the representation \(V_{k\rho}\) of \(\mathfrak{g}\) has dimension \((k+1)^r\) by Weyl’s dimension formula. The following result describes the set of weights of \(V_{k\rho}\), which is well-known if \(k = 1\) (see e.g. [7]).

Proposition 2.1. The set of weights of \(V_{k\rho}\) is

\[
\Gamma(V_{k\rho}) = \{ \sum_{i=1}^{r} c_i \alpha_i | \alpha_i \in \Delta^+, c_i = -k/2, -k/2 + 1, \cdots, k/2 - 1, k/2 \},
\]

\[
\{ \gamma \in \mathfrak{h}^* | \gamma = c_1 \alpha_1 + \cdots + c_r \alpha_r \text{ and } c_i \geq 0 \text{ for all } i \}.
\]
or equivalently,
\[\Gamma(V_{k\rho}) = \{ k\rho - \sum_{i=1}^{r} c_i \alpha_i | \alpha_i \in \Delta^+, c_i = 0, 1, \cdots, k. \} . \]

Proof. By Weyl’s denominator formula,
\[\prod_{i=1}^{r} \left(e^{k+\frac{1}{2} \alpha_i} - e^{-k-\frac{1}{2} \alpha_i} \right) = \sum_{w \in W} \operatorname{sgn}(w) e^{w((k+1)\rho)}. \]

Then for \(c_i = -k/2, -k/2 + 1, \cdots, k/2 - 1, k/2 \) with \(i = 1, \cdots, r \),
\[
\sum_{c_1, \cdots, c_r} e^{\sum_{i=1}^{r} c_i \alpha_i} = \prod_{i=1}^{r} \left(e^{(-\frac{k}{2}) \alpha_i} + e^{(-\frac{k}{2}+1) \alpha_i} + \cdots + e^{(\frac{k}{2}-1) \alpha_i} + e^{(\frac{k}{2}) \alpha_i} \right) \\
= \prod_{i=1}^{r} \frac{e^{\frac{k+1}{2} \alpha_i} - e^{-\frac{k+1}{2} \alpha_i}}{e^{\frac{1}{2} \alpha_i} - e^{-\frac{1}{2} \alpha_i}} \\
= \frac{\sum_{w \in W} \operatorname{sgn}(w) e^{w((k+1)\rho)}}{\prod_{i=1}^{r} \left(e^{\frac{1}{2} \alpha_i} - e^{-\frac{1}{2} \alpha_i} \right)} = \operatorname{char}(V_{k\rho}). \]

Let \(\operatorname{Cas} \in U(\mathfrak{g}) \) be the Casimir element corresponding to the Killing form. For any \(\lambda \in \Gamma \), define \(\operatorname{Cas}(\lambda) = (\lambda + \rho, \lambda + \rho) - (\rho, \rho) \).

The following result is well-known.

Lemma 2.2. If \(\lambda \in \Lambda \), then \(\operatorname{Cas}(\lambda) \) is the scalar value taken by \(\operatorname{Cas} \) on \(V_\lambda \). For any \(\mu \in \Gamma(V_{\lambda}) \) one has \(\operatorname{Cas}(\mu) \leq \operatorname{Cas}(\lambda) \) and \(\operatorname{Cas}(\mu) < \operatorname{Cas}(\lambda) \) if \(\mu \neq \lambda \).

3. Maximal eigenvalues of a Casimir operator and the corresponding eigenspaces

Let \(\wedge \mathfrak{g} \) be the exterior algebra of \(\mathfrak{g} \). Then \(\mathfrak{g} \) acts on \(\wedge \mathfrak{g} \) naturally. Let \(m_i \) be the maximal eigenvalue of \(\operatorname{Cas} \) on \(\wedge^i \mathfrak{g} \) and \(M_i \) be the corresponding eigenspace.

One knows that \(\wedge^i \mathfrak{g} \) is isomorphic to \(\wedge^{n-i} \mathfrak{g} \) as \(\mathfrak{g} \)-modules for each \(i \), so one has
\[m_i = m_{n-i} \]

and
\[M_i \cong M_{n-i} \]

Let \(p \) be the maximal dimension of commutative subalgebras of \(\mathfrak{g} \). Kostant showed that \(m_i \leq i \) and \(m_i = i \) for \(0 \leq i \leq p \), and if \(m_i = i \), then \(M_i \) is spanned by \(\wedge^k \mathfrak{a} \), where \(\mathfrak{a} \) runs through \(k \)-dimensional commutative subalgebras of \(\mathfrak{g} \).

A nonzero vector \(w \in \wedge \mathfrak{g} \) is called decomposable if \(w = z_1 \wedge z_2 \wedge \cdots \wedge z_k \) for some positive integer \(k \), where \(z_i \in \mathfrak{g} \). In this case let \(\mathfrak{a}(w) \) be the corresponding \(k \)-dimensional subspace spanned by \(z_1, z_2, \cdots, z_k \).
Theorem 3.1 (Proposition 6 and Theorem 7 of [2]). (1) Let

\[w = z_1 \wedge z_2 \wedge \cdots \wedge z_k \in \wedge^k g \]

be a decomposable vector. Then \(w \) is a highest weight vector if and only if \(a(w) \) is \(b \)-normal, i.e., \([b, a(w)] \subset a(w)\). In this case the highest weight of the simple \(g \)-module generated by \(w \) is \(\langle a(w) \rangle \).

Thus there is a one-to-one correspondence between all the decomposably-generated simple \(g \)-submodules of \(\wedge^k g \) and all the \(k \)-dimensional \(b \)-normal subspaces of \(g \).

(2) Let \(a_1, a_2 \) be any two ideals of \(b \) lying in \(n \). Then \(\langle a_1 \rangle = \langle a_2 \rangle \) if and only if \(a_1 = a_2 \). Thus, if \(V_1 \subset \wedge^3 g, V_2 \subset \wedge^3 g \) are two decomposably-generated simple \(g \)-submodules which correspond to ideals of \(b \) lying in \(n \), then \(V_1 \) is equivalent to \(V_2 \) if and only if \(V_1 = V_2 \).

Theorem 3.2. (1) One has

\[m_i = \max \{ ||\rho + \gamma_1 + \cdots + \gamma_i||^2 - ||\rho||^2 \mid \{\gamma_t \mid t = 1, \cdots, i\} \subset \Gamma(g) \} \]

for any \(i \).

(2) One has \(m_i \leq n/3 \) for \(i = 0, 1, \cdots, n \), and \(m_i = n/3 \) if and only if \(i = r, r + 1, \cdots, r + l \). For \(s = 0, 1, \cdots, l \), \(M_{r+s} = \left(\frac{1}{s} \right) V_{2s} \).

(3) For \(0 \leq k < r \) one has \(m_k < m_{k+1} \). For \(1 \leq k \leq r \), \(M_k \) is a multiplicity-free \(g \)-module, whose highest weight vectors correspond to those \(k \)-dimensional ad-nilpotent ideals \(a \) of \(b \) such that \(\text{Cas}(\langle a \rangle) = m_k \). In fact \(\bigoplus_{k=0}^{r} M_k \) is also a multiplicity-free \(g \)-module.

Proof. (1) For \(j = 1, \cdots, r \), let \(x_j \) (resp. \(y_j \)) be a weight vector corresponding to \(\alpha_j \) (resp. \(-\alpha_j \)). Let \(\{h_1, \cdots, h_t\} \) be a basis of \(\mathfrak{h} \). Then

\[A = \{x_1, \cdots, x_r, y_1, \cdots, y_r, h_1, \cdots, h_t\} \]

is a basis of \(g \) consisting of weight vectors. Then

\[B_i = \{a_1 \wedge a_2 \wedge \cdots \wedge a_i \mid a_j \in A\} \]

is a basis of \(\wedge^i g \) consisting of weight vectors. Let

\[C_i = \{v \in B_i \mid \text{Cas}(\langle a(v) \rangle) = m_i\} \]

Then by Corollary 2.1 of [2], \(M_i \) is the direct sum of simple \(g \)-modules with highest weight vectors \(v \in C_i \). It is clear that

\[\text{Cas}(\langle a(v) \rangle) = ||\rho + \gamma_1 + \cdots + \gamma_i||^2 - ||\rho||^2 \]

if the weight of \(a_j \) is \(\gamma_j \); thus (1) follows.

(2) For any \(S = \{\gamma_j \mid j = 1, \cdots, i\} \subset \Gamma(g) \), \(\langle S \rangle \) is a weight of \(\pi_{2\rho} \) by Proposition 2.1. Thus by Lemma 2.2 \(\text{Cas}(\langle S \rangle) \leq \text{Cas}(2\rho) = 8||\rho||^2 = n/3 \), as \(||\rho||^2 = n/24 \) by Freudenthal’s strange formula. So \(m_i = n/3 \) if and only if there exists \(S \subset \Gamma(g) \) such that \(|S| = i \) and \(\langle S \rangle = 2\rho \). Then \(S \) must be of the form \(\{x_1, \cdots, x_r, h_{j_1}, \cdots, h_{j_s}\} \) and thus \(r \leq i \leq r + l \). For \(0 \leq s \leq l \), it is clear that

\[C_{r+s} = \{x_1 \wedge \cdots \wedge x_r \wedge h_{j_1} \wedge \cdots \wedge h_{j_s} \mid 1 \leq j_1 < j_2 < \cdots < j_s \leq l\} \]

thus \(M_{r+s} = \left(\frac{1}{s} \right) V_{2s} \).
(3) We first show that \(m_{k+1} > m_k \) for \(0 \leq k < r \), which clearly holds in the case \(k = 0 \). Assume \(1 \leq k < r \). Let \(v = a_1 \wedge \cdots \wedge a_k \in C_k \). Then \(v \) is a highest weight vector of \(M_k \), whose weight is \(\langle S \rangle \) with \(S = \Gamma(a(v)) \). Then \(\text{Cas}(\langle S \rangle) = m_k \), and \([b, a(v)] \subset a(v)\) by Theorem 3.1 (1). Recall that for \(\gamma = \sum_{i=1}^l k_i \gamma_i \in \Delta^+ \), where \(\{ \gamma_i | i = 1, \ldots, l \} \) is the set of simple roots, its height is defined as \(\sum_{i=1}^l k_i \). Choose a positive root \(\alpha \) in \(\Delta^+ \setminus S \) (which is nonempty as \(k < r \)) with largest height. Set \(T = S \cup \{ \alpha \} \). Let \(a \in A \) be the \(\alpha \)-weight vector and let \(u = v \wedge a \in B_{k+1} \). By the choice of \(\alpha \) it is clear that \([b, a(u)] \subset a(u)\); thus \(u \) is also a highest weight vector, whose weight is \(\langle T \rangle = \langle S \rangle + \alpha \). As

\[
\langle \langle T \rangle, \alpha \rangle = \langle \langle S \rangle, \alpha \rangle + \langle \alpha, \alpha \rangle > 0,
\]

\(\langle S \rangle \in \Gamma(V_\lambda) \) with \(\lambda = \langle T \rangle \). Then

\[
m_{k+1} \geq \text{Cas}(\langle T \rangle) > \text{Cas}(\langle S \rangle) = m_k.
\]

Now assume \(1 \leq k \leq r \). Let \(v = a_1 \wedge \cdots \wedge a_r \in C_k \), and let \(S = \Gamma(a(v)) \). We will show that \(S \subset \Delta^+ \). If not, let \(S' = S \setminus (S \cap (-S)) \). Then \(\langle S' \rangle = \langle S \rangle \) and \(|S'| = t < k \). Thus \(m_k = \text{Cas}(S) = \text{Cas}(S') \leq m_t \), which contradicts the previous result. Thus for \(1 \leq k \leq r \) one always has \(S \subset \Delta^+ \).

Any \(v \in C_k \) is a highest weight vector, so \([b, a(v)] \subset a(v)\). If \(1 \leq k \leq r \), we have just showed \(\Gamma(a(v)) \subset \Delta^+ \). Thus \(a(v) \) is an ad-nilpotent ideal of \(b \). Let \(\lambda(v) = (a(v)) \). Then

\[
M_k = \bigoplus_{v \in C_k} V_{\lambda(v)}.
\]

By Theorem 3.1 (2), if \(v_1, v_2 \in C_k \) with \(v_1 \neq v_2 \), then \(a(v_1) \neq a(v_2) \) and \(\lambda(v_1) \neq \lambda(v_2) \). Thus \(M_k \) is a multiplicity-free \(g \)-module, whose highest weight vectors corresponding to the ad-nilpotent ideals \(a \) of \(b \) such that \(\text{Cas}(\langle a \rangle) = m_k \). By Theorem 3.1 (2) one can further get that \(\bigoplus_{k=0}^r M_k \) is also a multiplicity-free \(g \)-module. \(\square \)

Note that Kostant already showed in Remark 1.2 of \([4]\) that \(m_i \leq n/3 \) for all \(i \) using different arguments.

Remark 3.3. Considering the isomorphism of \(g \)-modules \(\wedge^k g \) and \(\wedge^{n-k} g \), \(\wedge^k g \) is multiplicity-free for \(0 \leq k \leq r \) and \(n-r \leq k \leq n \). For \(r \leq k \leq r+l \) \((r+l = n-r) \), we have showed that \(M_k \) is primary of type \(\pi_{2\rho} \). As \(g \)-modules one has \(\wedge^l g = 2^l V_\rho \otimes V_\rho \) (see \([3]\)), so \(\wedge g \) contains exactly \(2^l \) copies of \(V_\rho \), which is just \(\bigoplus_{s=0}^l M_{r+s} \).

Acknowledgement

The author would like to thank the referee for drawing his attention to Kostant’s paper \([4]\).

References

1. B. Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. (2) 74 (1961), 329-387. MR0142696 (26:265)
2. B. Kostant, Eigenvalues of a Laplacian and commutative Lie subalgebras, Topology 3 (1965), suppl. 2, 147-159. MR0167567 (29:4839)
3. B. Kostant, Clifford algebra analogue of the Hopf-Koszul-Samelson theorem, the \(\rho \)-decomposition \(C(g) = \operatorname{End} V_\rho \otimes C(P) \), and the \(g \)-module structure of \(\wedge g \), Adv. Math. 125 (1997), 275-350. MR1434113 (98k:17009)
4. B. Kostant, *The set of abelian ideals of a Borel subalgebra, Cartan decompositions, and discrete series representations.* Internat. Math. Res. Notices **5** (1998), 225-252. MR1616913 (99c:17010)

5. P. Cellini, P. Papi, *ad-nilpotent ideals of a Borel subalgebra*, J. Algebra **225** (2000), no. 1, 130-141. MR1743654 (2001g:17017)

6. R. Suter, *Abelian ideals in a Borel subalgebra of a complex simple Lie algebra*, Invent. Math. **156** (2004), no. 1, 175-221. MR2047661 (2005b:17020)

Department of Mathematics, College of Science, Zhejiang University, Hangzhou 310027, People's Republic of China

E-mail address: mathhg@hotmail.com