Lateral Temporal Lobe: An Early Imaging Marker of the Presymptomatic GRN Disease?

Paola Caroppa, Marie-Odile Habert, Stanley Durleman, Aurélie Funkiewie, Vincent Perilberg, Valérie Hahn, Hugo Bertin, Malo Gaubert, Alexandre Routier, Didier Hannequin, Vincent Deramecourt, Florence Pasquier, Sophie Rivaud-Pechoux, Martine Vercelletto, Geoffrey Edouart, Romain Valabregue, Pascal Lejeune, Mira Didic, Jean-Christophe Corvo, Habib Benali, Stéphane Lehericy, Bruno Dubois, Olivier Colliot, Alexandre Routier, Isabelle Le Ber, and the Predict-PGRN study group

Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, ICM, Paris, France
Inserm, U1127, ICM, Paris, France
CNRS, UMR 7225, ICM, Paris, France
Institut du Cerveau et de la Moelle épinière (ICM), Hôpital de la Pitié Salpêtrière, Paris, France
Neurological Institute Carlo Besta, Milan, Italy
Sorbonne Universités, UPMC Univ Paris 06, UMR 7371, Laboratoire d’Imagerie Biomédicale, Paris, France
AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Département de Médecine Nucléaire, Paris, France
INRIA, project-team Aramis, Centre Paris-Rocquencourt, France
AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Institut de la Mémoire et de la maladie d’Alzheimer, Département de Neurologie, Paris, France
AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Centre de Référence des Démences Rares, Paris, France
AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Clinical Investigation Center (CIC-1422), Paris, France
INRIA, project-team Aramis, Centre Paris-Rocquencourt, France
Centre pour l’Acquisition et le Traitement des Images (http://www.cati-neuroimaging.com), Paris and Saclay, France
Service de Neurologie et CMRR, Inserm U1079, Centre Hospitalier Universitaire, Rouen, France
Inserm U1171, Université de Lille, Lille, France
Service de Neurologie, CHU Guillaume et René Laennec, Nantes, France
AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Clinical Investigation Center (CIC-1422), Paris, France
Centre de Neuroimagerie de Recherche (CENIR), Institut du Cerveau et de la Moelle épinière (ICM), Hôpital de la Pitié Salpêtrière, Paris, France
Service de neurologie, CHD La Roche sur Yon, France
Service de Neurologie et Neuropsychologie, APHM, CHU Timone et Aix Marseille Université, Inserm, INS UMR S 1106, 13005 Marseille, France
AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Département de Neurologie, Paris, France
AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Département de Génétique et Cytogénétique, Unité Fonctionnelle de Génétique Clinique, Paris, France
Handling Associate Editor: Eric Salmon
Accepted 9 May 2015

Correspondence to: Dr Isabelle Le Ber and Pr Alexis Brice, Service de Neurologie et Neuropsychologie, APHM, CHU Timone et Aix Marseille Université, Inserm, INS UMR S 1106, 13005 Marseille, France. Tel.: +033 015 727 4795; E-mail: isabelle.ber@apcm.fr, alexis.brice@apcm.fr.

ISSN 1387-2877/14/$27.50 © 2015 – IOS Press and the authors. All rights reserved
This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution-Non-Commercial License.
INTRODUCTION

Frontotemporal lobar degeneration (FTLD) are rare neurodegenerative disorders characterized by behavioral changes and language deficits. Mutations of the GRN (progranulin) gene, all leading to progranulin haploinsufficiency, are responsible for 25% of familial cases. The prevalent clinical phenotype of GRN patients is behavioral variant of frontotemporal dementia (bvFTD). Primary progressive non-fluent aphasia and corticobasal syndrome are less common presenting phenotypes [1, 2]. Neuroimaging pattern of GRN carriers is characterized by asymmetrical frontotemporal-parietal atrophy [3, 4].

So far, it is not known how long structural and functional changes occur before the clinical onset of FTLD disease. It is expected that biological alterations and morphological changes leading to dementia could occur decades before the first symptoms of FTLD, as demonstrated in other genetic forms of dementias such as Alzheimer’s disease [5]. Establishing how long these brain changes precede the clinical onset and their chronology during the presymptomatic stage is crucial because therapeutics such as HDAC inhibitors or amiodarone [6–8] are currently being developed to compensate progranulin haploinsufficiency. In this study, we performed a multimodal approach to investigate the chronology of brain structural and metabolic changes in a cohort of asymptomatic GRN carriers.

MATERIALS AND METHODS

Subjects

Forty-three neurologically healthy individuals with 50% risk to carry a GRN mutation (first degree relatives of GRN carriers from 15 unrelated families) were recruited in four French centers over a 3-years period (2011 to 2013). All participants have signed informed consent for the study that was approved by the Ethics Committee of ‘Assistance Publique-Hopitaux de Paris, Paris’.

At inclusion, asymptomatic status was ascertained based on relative’s interview, neurological examination and the normality of scores of behavioral scales and neuropsychological tests (Supplementary Methods 2, Supplementary Table 1). Three participants presented cognitive impairment at neuropsychological evaluation and were considered as ‘cognitively symptomatic non dementia’ (CSND); therefore, they were excluded from analyses because they did not undergo the full protocol, or because of the discovery of coincidental lesions on brain MRI a posteriori.

Finally, 33 healthy individuals were included in the analyses. GRN sequencing revealed that sixteen asymptomatic participants carried GRN mutation (aGRN+), see Supplementary Table 2 for the list of mutations; the 17 participants who did not carry mutation (GRN−) were used as control group. The characteristics of aGRN+ and GRN− groups are summarized in the Table 1 and Supplementary Table 1. There were no statistical differences in age at examination, gender composition, and educational level between the two groups (Table 1, Supplementary Methods 1). The 33 subjects underwent standard MRI and FDG-PET study at baseline (T0); all except 5 underwent a second evaluation 20 months later (T20) with the same cognitive and neuroimaging protocol (14 GRN carriers, 14 non-carriers, n = 28) (Table 1). Five participants (2 carriers, 3 non-carriers) refused to be reevaluated and dropped out the study. Baseline
Table 1

Demographic characteristics of GRN carriers (aGRN+) and controls (GRN−)

Demographic Characteristic	aGRN+	GRN−	p-value	aGRN+	GRN−	p-value	
Baseline visit (T0)							
Number of cases	16	17	−	14	14	−	
Gender Male/Female	4/12	6/11	−	4/10	5/9	−	
Education level (mean score)	2.7 ± 0.5	2.8 ± 0.5	0.8	4.1 ± 0.5	4.2 ± 0.9	0.9	
Age at examination, years (range)	27–58	27–60	19.5 ± 2	20.0 ± 6.2	2.0 ± 2	2.0 ± 6.2	0.9
Distance to estimated age at onset, years (range)	20 ± 10	20 ± 10	19.5 ± 2	20.0 ± 6.2	2.0 ± 2	2.0 ± 6.2	0.9
Follow-up visit (T20)							
Number of cases	14	14	−	14	14	−	
Gender Male/Female	4/10	5/9	−	4/10	5/9	−	
Education level (mean score)	2.8 ± 0.5	2.8 ± 0.5	0.8	2.8 ± 0.5	2.8 ± 0.9	0.9	
Age at examination, years (range)	27–58	27–60	19.5 ± 2	20.0 ± 6.2	2.0 ± 2	2.0 ± 6.2	0.9
Distance to estimated age at onset, years (range)	20 ± 10	20 ± 10	19.5 ± 2	20.0 ± 6.2	2.0 ± 2	2.0 ± 6.2	0.9

Means ± SD are reported. Significant p-value <0.05. Educational level has been scored as follow: score 1 (5–8 years of study); score 2 (9–12 years); score 3 (>12 years).

and longitudinal statistical analyses were performed for brain structural MRI and metabolism, as described below. The participants were age- and gender-matched for the analyses at each time points (Table 1). We estimated the distance from the age of clinical onset in aGRN+ by subtracting the age at examination to the mean age at onset in the family.

MRI protocols

MRI acquisition

MRIs were acquired with 3 Tesla and 1.5 Tesla scanners according to the scanner available in each center. All centers used the same MRI sequences protocol that was designed and optimized to minimize centers bias. Prior to the study, phantom acquisitions were performed in order to ensure the comparability of the results across centers. The same proportion of carriers and of non-carriers was investigated in each center, and baseline and follow-up MRIs were performed on the same scanners for each participant. High-resolution three-dimensional T1-weighted images were acquired with full brain coverage and isotropic voxels (TR: 2300 ms; TE: 4.18 ms; matrix = 256 mm; slice thickness = 1 mm).

Cortical thickness analysis

Cortical thickness analyses were performed on T1-weighted 3D images using FreeSurfer software (http://surfer.nmr.mgh.harvard.edu). Briefly, T1-weighted 3D images were preprocessed with intensity variations correction, normalization, affine registration to the Talairach atlas, skull stripping, and segmentation of grey and white matter. The pipeline for longitudinal processing has been used that includes the creation of an unbiased within-subject template using robust, inverse consistent registration [9]. For cortical thickness, we used surface-based analysis of thickness values at each vertex. Surface-based analyses of cortical thickness were performed using Surfstat software (http://www.math.mcgill.ca/keith/surfstat/) following the methodology previously used [10]. Cortical thickness maps were smoothed using a 20 mm surface-based kernel. The comparison of baseline cortical thickness between groups was carried out using a two-sample t-test at each vertex. For longitudinal analyses, a paired t-test was used. Statistics were corrected for multiple comparisons using the random field theory for non-isotropic images [11]. A statistical threshold of p < 0.005 was first applied (height threshold). An extent threshold of p < 0.05 corrected for multiple comparisons was then applied at the cluster level.

Positron emission tomography protocols

18FDG-PET scans were acquired in four departments of nuclear medicine with a standardized protocol. Phantom acquisitions were performed prior to the study in order to measure the spatial resolution (FWHM) of each scanner. A dose of 2 MBq/Kg of fluorodeoxyglucose (18FDG) was injected 30 to 45 min prior to an acquisition of 15 min. Patients rested in quiet surroundings with the eyes closed at least 20 min post-injection. Follow-up scans were performed on the same tomograph as the baseline, with the same protocol.

PET volumes were co-registered to their corresponding MRI volumes. MRI volumes were segmented into grey matter and white matter probability maps and spatially normalized to MNi space using SPM8. PET co-registered images were spatially normalized applying the transformation parameters of MRI normalization. Individual variability was taken into account by dividing for each subject voxel uptake by the mean pons uptake, yielding parametric images. Pons uptake was obtained from a Pickatlas (http://fmri.wfubmc.edu/software/pickatlas) region of interest. Parametric images were smoothed using an isotropic Gaussian kernel of 12 mm. Voxel-by-voxel comparison between carriers and non-carriers was then performed...
with a two-sample T-test on smoothed parametric images using an explicit mask. This mask was obtained from the mean of grey matter probability maps of each subject included in this analysis, with a threshold of 0.4. Age, gender, and tomograph spatial resolution were used as covariates. MarsBaR toolbox in SPM8 was used to extract $[^{18}F]$FDG-uptake adjusted values from significant clusters.

The method used to analyze the longitudinal data has been adapted from the one previously described by Fouquet et al. [12]. The follow-up MRI was coregistered to the baseline MRI, and a mean image was calculated. This mean image was used to calculate optimal transformation parameters to MNI space. Next, baseline and follow-up PET images were coregistered to the baseline MRI, spatially normalized to MNI using optimal transformation previously calculated, scaled with mean pons uptake, and smoothed with an isotropic Gaussian kernel of 4 mm. Individual percent annual changes maps or “PET-PAC” were then calculated. These maps represent the voxel-wise calculation of percent metabolic change over the 20-month follow-up period (i.e., the difference between follow-up and baseline scaled PET value divided by baseline PET value x 100) expressed in annual percent change. A voxel-by-voxel comparison of PET-PAC between carriers and non-carriers was then performed after a second smoothing of the individual PET-PAC maps with an isotropic Gaussian kernel of 10 mm, and using a mask obtained with the same method as for the cross-sectional analysis.

All results are reported with p-value <0.001 uncorrected for multiple comparisons with an extent threshold k corresponding to the expected number of voxels per cluster. Differences in spatially normalized FDG-PET scans obtained with scanners of different resolutions were minimized by the following measures: i) restricting the analysis to voxels with intensity 80% greater than the whole-brain mean, and ii) excluding voxels from the uppermost 10 slices (i.e., from the top 22.5 mm of the brain) and from the lowermost 5 slices, where significant inter-scanner effects due to different fields of view have been reported [13].

RESULTS

Groups did not differ for gender, age at examination ($p=0.8$), age at follow-up ($p=0.9$). The mean estimated distance to the age at clinical onset was 20 ± 10 years in $aGRN^+$ (Table 1).

Cortical thickness

At baseline, no significant difference was found for cortical thickness between $aGRN^+$ and $GRN^−$. At follow-up a reduction of cortical thickness was found in one cluster in the left middle (1607 voxels) and inferior (554 voxels) temporal gyri (Fig. 1) in $aGRN^+$.

![Fig. 1. Cluster with significant cortical thickness changes in $aGRN^+$ between the two time-points ($p<0.05$ corrected). L, left; R, right.]
with peak in the left middle temporal gyrus ($p < 0.05$, cluster-corrected).

18 Fluorodeoxyglucose-PET

At baseline a left middle temporal gyrus hypometabolism (183 voxels; MNI coordinates $x = −50; y = −40; z = −2$) was present in $aGRN+$ compared to $GRN−$ ($p < 0.001$ uncorrected) (Fig. 2).

The longitudinal analysis revealed areas of greater metabolism decrease ($p < 0.001$, uncorrected) in $aGRN+$ compared to $GRN−$ in the left inferior temporal, left middle frontal, left inferior orbital frontal, right superior orbital frontal gyri as well as in the left thalamus (Fig. 3; Supplementary Table 4). Mean and maximal percent annualized change values in the regions represented in Fig. 3 are given in Supplementary Table 4.
DISCUSSION

The major neuroanatomical signature of GRN disease in symptomatic patients carrying mutations is an asymmetric involvement of the inferior frontal, temporal, and parietal brain regions [1, 3, 4]. A recent study also demonstrated that the most important annual percentage change of atrophy occurs in temporal lobe (lateral, polar), parietal (lateral, posterior) lobes, and insula in GRN symptomatic patients, compared to all other genotypes [14].

In this study, we have evaluated the presymptomatic phase of GRN disease. We have conducted a multimodal analysis combining two neuroimaging approaches to evaluate the chronology of structural and metabolic brain changes occurring during the presymptomatic phase in GRN carriers. The mean distance from estimated age at onset in our series (20 ± 10 years) is longer than in most other studies (7 to 12 years, Supplementary Table 5) and allows detecting very early changes. We also evaluated the progression of brain changes across time in a longitudinal study. Importantly, this is the first longitudinal study conducted in GRN disease. In most studies, the progression in presymptomatic stage of dementia is evaluated by correlating changes to the mean distance to clinical onset, estimated as the difference between age at examination and mean age at onset in a family [15–18]. This estimation can be easily applied in genetic diseases where age at onset is highly variable within families, as in genetic forms of Alzheimer’s disease [5], but this approximation is less confident in GRN disease, where age at onset is highly variable within families. For this reason, we evaluated the progression of changes across time by longitudinal evaluation of presymptomatic GRN carriers, during a 20-month follow-up period.

At baseline, the absence of structural changes measured by cortical thickness in this study is consistent with one other study [18]. These negative results might be explained by the long distance to clinical onset. Otherwise, this method might be not sensitive enough to detect small effects in small groups of asymptomatic individuals. Only one cross-sectional study performed by Pievani et al. demonstrated reduced cortical thickness in five GRN carriers in the orbitofrontal cortex, middle frontal and precentral gyri that are not completely consistent with our results at baseline [19]. These inconsistencies might be due the age at examination that is higher than in our study, the population is thus closer to clinical onset, and to the sample size of carriers which is smaller than our cohort, possibly explaining different results at baseline. Furthermore, statistical methodology in our study is less liberal than that used by Pievani et al. and shall minimize the report of false positive findings. This may also explain why Pievani et al reported differences in a smaller group of carriers while we did not find significant differences at baseline. Importantly, even if no changes were present at baseline in our study, the cortical thickness reduced across time at follow-up in our aGRN+ individuals in lateral temporal lobe, in particular in the left middle and inferior temporal gyri. Notably, accordingly with our results, cortical thickness decreased faster with aging in the same regions in GRN carriers in another study [18]. Our results indicate that a comparison across time might be an appropriate method to detect affected brain regions during the presymptomatic stage.

Fig. 3. Regions of greater percentage of annualized changes of metabolism in aGRN+ compared to GRN− (p < 0.001 uncorrected). L, left; R, right (see Supplementary Table 4 for MNI coordinates and for values).
Hypometabolism was present at baseline in GRN carriers and was initially limited to the left middle temporal region. Unexpectedly, frontal lobes were not involved at baseline, although another metabolism study in atGRN+ carriers [17] found diffuse hypometabolism in frontal lobes. In the latter study, however, half of 9 carriers were cognitively asymptomatic, which might explain less selective impairment at a later stage of disease progression. These inconsistencies can also be partially related to different methodologies used in the two studies. Conversely, our follow-up evaluation evidenced a rapid metabolism decrease in atGRN+ involving the frontal lobe (left middle, orbital) in addition to the inferior temporal gyrus and thalamus. Our results suggest that metabolic abnormalities, detectable at baseline, could predate the structural changes, and be one of the earliest predictors of the pathological process. It also suggests that temporal lobe might be initially more susceptible to the pathological process which secondarily progress to the frontal cortex.

Finally, both our baseline and longitudinal studies provide converging results implicating the lateral temporal lobe as one of the earliest regions involved in GRN disease. Other studies [15, 20] also indicate that temporal areas could be noticeably impaired, before the frontal regions. A recent European study in a large cohort of aGRN+ carriers demonstrates that temporal atrophy is detectable 15 years before estimated clinical onset, before frontal involvement [21]. Consequently, one might hypothesize a dynamic model of the presymptomatic stage of GRN disease where temporal areas, involved many years before the clinical onset, could be the ‘epicenter’ of the pathological seeds, that might progress later toward frontal and/or parietal regions.

The left middle temporal gyrus, which is early and consistently involved in this study, is implicated in language and semantic processing as well as in the recognition and retrieval of semantic information [22]. The involvement of this region fits well with clinical presentation of language disorders, especially agrammatic/nonfluent variant of FTD, characterizing a subset of GRN patients [1, 3]. The lateral temporal lobe also plays a role in theory of mind [23] that is one of the first detectable cognitive deficits in the early stage of FTD, and that significantly decreases in GRN carriers approaching the age of onset of the disease [16].

A more rapid metabolic decrease was also detected in the thalamus, a key node in the prefrontal-basal ganglia circuits, as well as in the prefrontal cortex. Interestingly, thalamic atrophy is more frequently detected in symptomatic GRN carriers than in other FTD subtypes [24], and already detected in the presymptomatic stage of FTD [21]. Both thalamus and the prefrontal cortex generate and control goal-directed behaviors [25, 26] and are implicated in apathy, one of the predominant clinical symptom of FTD.

Studies in GRN presymptomatic carriers have some limitations. First, clinical heterogeneity of GRN disease, reflecting variable topography of lesions at onset, can diminish robustness of changes detection in presymptomatic carriers. Moreover, subtle changes detected during the presymptomatic stage, could also vary according to methodological approaches. Finally, disease-specific markers are not available in FTLD, thus possibly delaying the detection of presymptomatic changes in this pathology.

However, our study provides important results. First, it evidences that the pathological process develop a long time before clinical onset in GRN carriers, and that early metabolic changes might be detected approximately 20 years before estimated disease onset. Second, it shows that metabolic changes are detectable before structural modifications and cognitive deficits that possibly appear in a shorter delay from the clinical onset. Finally, our study contributes to demonstrate that structural and metabolic changes could represent possible biomarkers to monitor the progression of disease in the presymptomatic stage toward the clinical onset.

ACKNOWLEDGMENTS

The research leading to these results has received funding from the program “Investissements d’avenir” ANR-10-IAPU-06. P. Caroppo received a PhD Fellowship from Carlo Besta Institute, Milano, Italy. This work was funded by the Programme Hospitalier de Recherche Clinique (PHRC Predict-PGRN, to A.B.). We thank Ms. Lydia Guennec, Sylvie Forlani, and Christelle Dussert (DNA and cell bank of CRICM, Hôpital de la Pitié-Salpêtrière, Paris) for their excellent technical assistance, the URC: Hôpital de la Pitié-Salpêtrière and CIC_1422, Hôpital de la Pitié-Salpêtrière.

Authors’ disclosures available online (http://j-alz.com/manuscript-disclosures/15-0270r1).

The Predict-PGRN study group: Eric Guedj (CHU Timone, Marseille), Nadine Girard (CHU Timone, Marseille), Christine Rémy (CIC-Pitié-Salpêtrière, Paris), Ali Bouyahia (ICM, Paris), Marie Chupin (ICM, Paris), Basile Pinsard (ICM, Paris), Vanessa
Mourlon (IMMA, Paris), Anne De Septenville (ICM, Paris), Agnès Camuzat (ICM, Paris), Catherine Thomas-Anzéoni (Pem Ciel, Lyon), Michèle Puel (CHU Toulouse), Jérôme Patiente (CHU Toulouse), Isabelle Berry (CHU Toulouse), Pierre Payoux (CHU Toulouse), Elisabeth Auffray-Calvier (CHU Nantes), Amandine Fallart (CHU Nantes), Adeline Rollin (CHU Lille), Claude Delailhe (CHU Lille), Franc Semah (CHU Lille), Claude Hossein-Foucher (CHU Lille), Emmanuel Gerardin (CHU Rouen), Pierre Vera (CHU Rouen), Olivier Martinaud (CHU Rouen), David Wallon (CHU Rouen), Eric Bardinet (ICM, Paris), Aurélie Kas (CHU Pitie-Salpetrière, Paris), Valérie-Causse Lemercier (CHU Pitié-Salpêtrière, Paris), Ivan Mozzer (ICM, Paris), Arthur Tenenhaus (ICM, Paris).

SUPPLEMENTARY MATERIAL

The supplementary material is available in the electronic version of this article: http://dx.doi.org/10.1233/JAD-150270.

REFERENCES

1. Le Ber I, Camuzat A, Hansmann D, Pasquier F, Goullj D, Rovelli-Lecra A, Hain-Banma V, van de Zee J, Ciof F, Bakchine S, Puel M, Gobran M, Lacluche L, Mikol J, Deumierco V, Leprince P, de la Sayette V, Beliard S, Verceiliet M, Meyniert C, Van Broekhoven C, Lambert JC, Verpillat P, Campon D, Hubert MO, Dubois B, Bruce A, French research network on FTD/FTD-MND (2008) Phenotypic variability in progranulin mutation carriers: A clinical, neuropathological, imaging and genetic study. Brain 131, 732-746.

2. Van Swieten JC, Heutink P (2008) Mutations in progranulin gene: clinical and pathological phenotypes in frontotemporal dementia. Lancet Neurol 7, 965-974.

3. Rothen JD, Lantluy J, Söchtm JM, Werner JE, Mood S, Isaacs AM, Beck J, Hulsey J, de Silva R, Wanting E, Troska C, Al-Salaym K, Kang A, Borron B, Clarkson MJ, Ourcikh S, Holland J, Fox NC, Rossi T, Rossen MN, Warn JD (2011) Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration. Brain 134, 726S-734S.

4. Whitwell JL, Weigand SD, Boeve BF, Senjem ML, Gunter JL, DeLoren-Hernandez M, Rutherford MJ, Wroblew CK, Peterson RC, Rademakers R, Jack CR Jr, Joseph KA (2012) Neuroimaging signatures of frontotemporal dementia genetics. CSORF72, tau, progranulin and sporadics. Brain 135, 794-806.

5. Bateman RJ, Xiong C, Rengsinger TL, Fagar AM, Goate A, Fox NC, et al. Marcus DS, Cairns NJ, Xie X, Blazey TM, Holmes DM, Samouna E, Bucile V, Oliver A, Moulin K, Asen PS, Gbetti B, Klink WE, Mihalek E, Martin RN, Mtrotte CL, Meyniert C, Kingman JM, Rossen MN, Schofield PR, Spiling RA, Sallaway S, Morris J (2012) Dominantly Inherited Alzheimer Network. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 367, 795-804.

6. Crook SR, Septh CE, Dewey CM, Xian X, Wei S, Yu K, Niu W, Coppola G, Coulson SE, Ler SE, Deos DR, Almeida S, Gershon BHH, Gau FF, Miller BL, Farese RV Jr, Ponset BA, Yu G, Heiz J (2011) Subcortical white matter hyperintensity: Do you see what I see? Clinical and prognostic significance. JAMA Neurol 68, 766-770.

7. Lee WC, Almeida S, Prudencio M, Cudicell TF, Zhang YJ, Tay WM, Bauer PO, Chen J, Saugier H, James-West KR, Gendron TF, Stefler CT, Finch N, Mackenzie IR, Rademakers R, Gau BB, Prucka-Lomb L (2014) Targeted manipulation of the neurotlinin protein alters murine progranulin hypomutation. Hum Mol Genet 23, 1463-1478.

8. Alonci A, Accetti SA, Pelati A, Prem E, Cosoloto M, Bianchetti AM, Semenov F, Salvetti M, Maccione ML, Padovani A, Borroni B (2014) Results from a pilot study on antisense oligonucleotide administration in monogenic frontotemporal dementia with granulin mutation. Neuro Sci 35, 1223-1229.

9. Reuter M, Schirer NJ, Rossa HD, Fisch B (2012) Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage 64, 736-747.

10. Wroblew CK, Iannelli E, Andreason M, Koulis T, MacDonald D, Evans AC (1999) Changes in nonimaging images. Hum Brain Maps, 8, 94-101.

11. Fouquet M, Desgranges B, Landeau B, Chenecey E, Mérignon D, da Saporta V, Vuiller F, Baron JC, Justache I, Cheille G (2009) Longitudinal brain metabolic changes from amnestic mild cognitive impairment to Alzheimer’s disease. Brain 132, 2058-2067.

12. Mosconi L, Tsai SW, Perl HH, Kup A, Drezga A, Lucignani G, Reznick BA, Hohb, KB, Sero S, Détah-Schmid F, Pernetzcky R, Clerci F, Cassoli R, Brathen Baumann B, Kurz SA, Mosconi L, et al. (2008) Multicenter standardized 18FDG PET diagnosis of mild cognitive impairment. Alzheimer’s disease, and other dementias. J Nucl Med 49, 389-398.

13. Whitwell JL, Boeve BF, Weigand SD, Senjem ML, Guntor JL, Boeve MC, DeLores-Hernandez M, Knopman DS, Wroblew CK, Peterson RC, Rademakers R, Jack CR Jr, Joseph KA (2015) Brain atrophy over time in genetic and sporadic frontotemporal dementia: A study using serial magnetic resonance images. Eur J Neurol 22, 745-752.

14. Borroni B, Albert D, Gasparotti R, Presti L, Serra L, Cini C, Cosoloto M, Pernetzcky R, Tarlat M, Accetti SA, Gruppo R, Calabresi P, Padovani A, Bruno M (2012) 21 gamma-aminobutyric acid overexpression drives brain damage and reorganization from preclinical to symptomatic FTLD. Neurobiol Aging 33, 2506-2506.

15. Depper ES, Rembout SA, Jukov IC, Jhen Heijer T, de Graaf JR, de Kommm J, Hammerschlag AR, Selaar H, Sere- ley WW, Vee DI, van Buchem MA, Koura P, van Swieten J (2014) Structural and functional brain connectivity in...
presymptomatic familial frontotemporal dementia. Neurology 83, e19-e26.
[17] Jacovs C, Hoang GY, Tanwakamachot I, Dinelle K, McCormick S, Gonzalez M, Lee H, Singly P, Bouchard-Kerr P, Baker M, Radomakers R, Sossi V, Storseth AJ, Feldman HH, Mackenzie IR. (2013) Autonomic brain glucose hypometabolism predicts dementia in presymptomatic carriers. Neurology 81, 1322-1331.
[18] Moretto F, Soli-Llonch R, Burandtian M, Sanchez-Valle R, Estanga A, Bartels-Fiu D, Sistiega A, Alzamal A, Fernandez E, Marti Masso JH, Lopez de Munan A, Indaistestro B. (2013) Distinctive age-related temporal cortical thinning in asymptomatic granulin mutation carriers. Neurobiol Aging 34, 1462-1468.
[19] Pierotti C, Paternici D, Bemou L, Binetti G, Orlando A, Cobelli M, Magruldi S, Ghidoni R, Frisoni GB. (2012) Pattern of structural and functional brain abnormalities in asymptomatic granulin mutation carriers. Alzheimer Dis. 10, S354-356.e1.
[20] Premi E, Canes F, Gasparrini R, Diano M, Archetti S, Padovani A, Borroni B. (2014) Multimodal MRI resting-state functional connectivity in granulin mutations: the case of fronto-parietal dementia. PLoS One 9, e106500.
[21] Rohrer JD, Nicholas JM, Cash DM, van Swieten J, Dopper E, Jobert L, van Minkelen R, RomBIT SA, Cardoso MJ, Clegg S, Eysm M, Meiril S, Thomas ET, Dr Vitea E, Maccalll M, Black SE, Freedman M, Koren R, Machiots A, Rogaova E, Tang-Wai D, Tartaglia MC, Lutefrise J, Tlazarova F, Tzabtzi S, Primo S, Girolami M, Borroni B, Padovani A, Gabsbenti D, Scarpiniti E, Bazzini A, Fumagalli G, Rowe J, Cale G, Graf C, Falliotino M, Jezi V, Stiboltsk AR, Anderson C, Thomas H, Liles L, Frisoni GB, Pierri M, Bocchetti M, Bemou L, Ghidoni R, Piagge E, Serri S, S綜ian R, Lombardi G, Polito C, Waren JD, Uncial S, Fox NC, Rossen MN. (2015) Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional analysis. Lancet Neurol 14, 253-262.
[22] Demers NF, Wilkins DP, Van Valen RD Jr, Reall FM, Jaeger JH. (2004) lesion analysis of the brain areas involved in language comprehension. Cognition 92, 145-177.
[23] Ross LA, Olson BR. (2010) Social cognition and the anterior temporal lobes. Neuroimage 49, 3452-3462.
[24] Premi E, Gasbarreto V, Gazzin S, Formenti A, Archetti S, Gasparrini R, Padovani A, Borroni B. (2014) Subcortical and deep cortical atrophy in frontotemporal dementia due to granulin mutations. Dement Geriatr Cogn Dis Extra 4, 95-102.
[25] Donovan NJ, Wadsworth LP, Lentin N, Locascio JJ, Rentz DM, Johnson KA, Sperling RA, Marshall GA, Alzheimer Disease Neuroimaging Initiative. (2014) Regional cortical thinning predicts worsening apathy and hallucinations across the Alzheimer disease spectrum. Am J Geriatr Psychiatry 22, 1160-1179.
[26] Levy R, Dubois B. (2006) Apathy and the functional anatomy of the prefrontal cortex-basal ganglia circuits. Cereb Cortex 16, 916-928.