Retrospective analysis of incidence of complications of central venous catheterization at an intensive care unit

Pankaj Hiwarkar*1, Manish Sonkusare1, Rashmi Deshpande1 and Akash Kasatwar2

1Department of Anesthesiology, Jawaharlal Nehru Medical Collage Sawngi, Wardha, India
2Department of Oral and Maxillofacial Surgery, Sharad Pawar Dental College Sawngi, Wardha, India

*Correspondence Info:
Dr. Pankaj Hiwarkar,
Assistant professor
Department of Anesthesiology,
Jawaharlal Nehru Medical Collage Sawngi, Wardha, India
E-mail: pankaihiwarkar@rediffmail.com

Abstract
Objectives: To compare mechanical, infectious, and thrombotic complications of internal jugular; subclavian and femoral venous catheterization at an post surgical and medical intensive care units

Methods: It is a retrospective study in which the data from the medical records was evaluated and analyzed. Data, such as sex, date of insertion and removal, failure to place, malposition, complications and site of central venous catheterization were recorded. Landmark-based central venous catheterization using seldinger technique was performed under all aseptic precautions in 597 patients in postsurgical and medicine intensive care units. Central venous catheterization by three different routes i.e. IJV, SV and femoral vein were performed in critically ill patients.

Results: Incidence of mechanical, infectious, and thromboembolic complications of central venous catheterization was 8.71%, 7.37 %, and 2.68% respectively. Incidences of different mechanical complications are as follows, arterial puncture4.18%, hematoma 3.18%, pneumothorax 1 %, haemothorax 0.33% .Incidence of central venous catheter with failure to place at various sites were 11.72 %. Incidences of central venous catheter with malposition at various sites were 6.36%.

Conclusion: We found that complication rates of CVC insertion at our hospital are similar to those reported previously. Based on our experience, internal jugular venous access is associated with a low rate of mechanical complications like arterial punctures, hematoma, pneumothorax, thrombosis. Incidence with infection was least with subclavian cannulation.

Keywords: central venous catheter (CVC), complications

1.Introduction
Central venous catheters (CVC) are widely used in critically ill patients throughout the world. They permit hemodynamic monitoring and allow reliable access for the administration of fluids, blood products, medications and total parenteral nutrition (TPN)[1,2]. First venous catheterization was subclavian vein; it was first described in 1952 by Aubaniac. It was popularized in the United States by Wilson and his associates in 1962 as a method of monitoring central venous pressure [3,4]. These percutaneous techniques left the operating physician exclusively reliant upon the relationships between surface anatomic landmarks and the underlying deep anatomic structures [5]. Despite their utility, placement of central venous catheters is often associated with mechanical, infectious and thromboembolic complications [6]. CVC -related thrombosis and infections are frequently occurring complications [7-11]. The purpose of the study was to compare the incidence of mechanical, infectious, and thrombotic complications of internal jugular; subclavian and femoral venous catheterization at post surgical and medical intensive care unit.

2. Materials and Methods
2.1 Study design
This study was designed as a retrospective observational study.

2.2 Study area
This study was carried in Jawaharlal Nehru medical college (JNMC), Sawangi (Meghe), Wardha,
Maharashtra which is NAAC A accredited a tertiary care level hospital and teaching institute.

2.3 Study period
The study was conducted during July 2013 to June 2014.

2.4 Study size
Landmark-based central venous catheterization using seldinger technique was performed under all aseptic precautions in 597 patients in postsurgical and medicine intensive care unit.

2.5 Exclusion criteria
Central venous catheterization in bleeding disorder, on anticoagulation therapy, with distorted anatomy, burns at insertion site, severe dermatitis at insertion site, performed in operation theater, casualty and by inexperienced residents were excluded from study.

2.6 Statistical analysis
Data was recorded using a predesigned semi structured proforma and entered into Microsoft Excel worksheet. Appropriate tests were applied for analysis.

During cannulation if red bright colored blood gushed into the syringe, arterial puncture was suspected. If patient developed unexplained tachypnea and/or tachycardia during cannulation, procedure was abandoned and chest radiograph was taken to check for pneumothorax and air embolism. If patient had symptoms of catheter related blood stream infection (CRBSI) and/or local infection, blood culture/site swab was sent for culture and sensitivity. Catheter-associated infections were defined as follows: 1) Exit site infection – erythema, tenderness, induration, purulent discharge and growth on culture. (2) Catheter tip colonization – growth on culture of the distal segment of the CVC with clinical signs of infection. (3) CRBSI – isolation of the same organism from the catheter tip culture and from at least one of the two blood cultures, along with signs and symptoms of infection [12].

3. Results and discussion
Out of 597 Central venous catheterization, 289 (48.4%) patients were catheterized by internal jugular approach, 268(44.89%) patients by subclavian approach, and 40(6.70%) patients by femoral approach. Of the 597 catheterization, 218 were females (36.51%) and 379 males (63.48%).

Mechanical complication:-This retrospective study found that incidence of mechanical complications of central venous catheterization was 8.71%. Incidence of mechanical complication in internal jugular, subclavian and femoral venous cannulation were 8.30%, 8.85% and 12.5% respectively. The incidence of mechanical complication has been studied and our results are consistent with other studies. David et al[12] reported mechanical complications were occurred in between 5 to 19% of patient. This study also found that internal jugular and subclavian venous catheterization carry similar risks of mechanical complications. Kusminsky et al[13] reported that complication associate with central venous catheterization varies between 5 to 19%.

Figure 1: Incidence of mechanical complications in internal jugular, subclavian and femoral venous catheterization.

	% of complication
Internal jugular vein (IJV)	8.3
Subclavian vein (SV)	8.85
Femoral vein (FV)	12.5
Total	8.71

In this study, incidences of different mechanical complications are as follows, arterial puncture 4.18% (25/597), hematoma 3.18% (19/597), pneumothorax 1.0% (6/597), haemothorax 0.33% (2/597). These findings were consistent with other studies.

In present study, total number of CVC associate with arterial puncture were 4.18%. Out of this, 4.84% (14/289) arterial puncture occurred in
internal jugular venous catheterization, 2.98% (8/268) in subclavian catheterization and 7.5% (3/40) in femoral venous catheterization. Graham et al[14] found that incidence of arterial puncture during internal jugular, subclavian, and femoral venous catheterizations were 3%, 0.5%, and 6.25% respectively. Our study and this study show that incidence of arterial puncture is more with internal jugular cannulation than subclavian cannulation. Risk of arterial puncture was highest with femoral cannulation.

Total numbers of CVC associate with hematoma were 3.18% (19/597). Out of this, 2.76% (8/289) hematoma occurred in internal jugular venous catheterization, 3.35% (9/268) in subclavian catheterization and 5% (2/40) in femoral venous catheterization. David et al[12] reported incidence of hematoma during internal jugular, subclavian and femoral venous cannulation were 0.1–2.2%, 1.2–2.1%, and 3.8–4.4% respectively.

Total numbers of CVC associate with haemothorax were 0.33% (2/597). Out of this, all 0.74% (2/268) occurred in subclavian venous catheterization. Haemothorax was not found during internal jugular and femoral venous catheterization. Graham et al[14] found that incidence of haemothorax during internal subclavian catheterization was 0.4–0.6%.

Total numbers of CVC associate with pneumothorax were 1.00% (6/597). Out of this, 0.60% (2/289) pneumothorax occurred in internal jugular catheterization and 1.49% (4/268) in subclavian venous catheterization. Femoral venous catheterization was not associated with pneumothorax. Graham et al[14] found that incidence of pneumothorax during internal jugular, subclavian catheterization were 0.1-0.2%, and 1-3.1% respectively. Our result is consistent with study with maximum risk of pneumothorax with subclavian venous cannulation.

3.1 Infectious complications

In this study, 7.37% (44/597) cases of CVC-related infectious complications were documented; 8.60% (25/289) cases in internal jugular catheterization, 5.2% (14/268) in subclavian cannulation and 12.50% (5/40) cases in femoral venous catheterization. This study indicates that infectious complications were common with femoral venous cannulation and least with subclavian catheterization. Thus our results are consistent with other studies. David et al[12] reported infectious complications were occurred in between 5 to 26% of patient. Graham et al [14] reported infectious complications (rate per 1000 catheter-days) were 8.6%, 4%, 15.3%, in internal jugular, subclavian and femoral venous cannulation respectively. Sibylle et al[15] found that the incidence of bloodstream infection was 8.6% with the jugular access and 4.0% with the subclavian access.
Figure 3: Incidence of infectious complication in internal jugular, subclavian and femoral venous catheterization

% of patients	Internal jugular vein (IJV)	Subclavian vein (SV)	Femoral vein (FV)	Total
n=25	8.6	5.2	12.5	7.37
n=14				
n=5				
n=44				

Total numbers of patients with catheter related local infection (CRLI) was 5% (30/597) and with catheter related blood stream infection (CRBSI) was 2.68% (914/597). Leonardo et al [16] reported that the percentage of CVCs that developed CRLI was 4.43% and CRBSI was 2.04%.

Figure 4: Incidence of catheter related local infection (CRLI) and catheter related blood stream infection (CRBSI) in internal jugular, subclavian and femoral venous catheterization

3.2 Throboembolic complications

Total number of CVC associate with embolism were 0.5 % (3/597), there was occurrence of 0.6% (2/289) embolism in internal jugular veins and 0.3% (1/268) in subclavian veins cannulation. No embolism was found during femoral cannulation. Yildizeli et al[18] reported that incidence of embolism with central venous cannulation was 0.4% of patients.
3.3 Catheter Malposition

In our study, it was observed that total number of central venous catheter (CVC) with malposition at various sites were 6.36% (36/597). Out of this, 4.84% (14/289) malposition in internal jugular vein (IJV) and 8.95% (24/268) in subclavian vein (SV) cannulation. No malposition was found in femoral venous (FV) cannulation.

Masoud et al [19] reported that the incidence of the catheter tip malposition on both sides was 5.7%.

3.4 Failure to place CVC

Total numbers of central venous catheter (CVC) with failure to place at various sites were 11.72% (70/597). Out of this, 11.41% (33/289) internal jugular vein (IJV), 13.43% (36/268) subclavian vein (SV) and 2.5% (1/40) femoral vein (FV) catheters were fails to place. Lewis et al [7] found that the most common complication was failure to place, occurring in 22% of all attempts by intern, residents, fellows and attending. He also found that Subclavian, internal jugular and femoral catheterization attempts were unsuccessful 26%, 25%, and 15% respectively. He also observed that incidence of failure to place CVC by only fellow and attending was 10%. This finding was consistent with our study.

4. Conclusions

Central venous lines, although effective in establishing vascular access, were time-consuming to insert and are associated with high complication rates, with accompanying patient morbidity and mortality. We found that complication rates of CVC insertion at our hospital are similar to those reported previously. Based on our experience, internal jugular venous access is associated with a low rate of mechanical complications like arterial punctures, hematoma, pneumothorax, thrombosis. Incidence with infection was least with subclavian cannulation. Ultrasonography guided CVC are best performed to prevent mechanical complications and improve patient safety.

References

[1] Akmal A. H., Hasan M., Mariam A. The incidence of complications of central venous. *Annals Thoracic Med.* 2007; 2(2): 61–63.

[2] Reston N Smith, Jerry P Nolan. Central venous catheters. *BMJ* 2013; 347:f6570.

[3] Sally E. Michel, Robert A. Clark. Complications of central venous catheterization. *AJR* 1979; 133:467–476

[4] Deshpande KS, Hatem C, Ulrich HL, Currie BP, Aldrich TK, Bryan-Brown CW, Kvetan V. The incidence of infectious complications of central venous catheters at the subclavian, internal jugular, and femoral sites in an intensive care unit population. *Crit. Care Med.* 2005; 33(1):13-20; discussion 234-237.

[5] Michael P Bannon, Stephanie F Heller, Mariela Rivera. Anatomic considerations for central venous cannulation. *Risk Management and Healthcare Policy* 2011:4 27–39.

[6] Sasvary F, Somlo P, Nwanosike N. Complication of central venous catheterization in haemodialysis patients. *Brasstai Lek Listy* 2005; 106(1): 26-29.

[7] Lewis A. Eisen, Mangala Narasimhan, Jeffrey S. Berger, Paul H. Mayo, Mark J. Rosen. Roslyn F. Schneider. Mechanical Complications of Central Venous Catheters. *Journal of Intensive Care Medicine* 2006; 21(1).

[8] Theodoro D, Krauss M, Kolleff M, Evanoff B. Risk factors for acute adverse events during ultrasound-guided central venous cannulation in the emergency department. *Acad Emerg. Med.* 2010; 17(10):1055-61.
[9] Khanna Vinay, Mukhopadhyay Chiranjay, Vandana K. E., Verma Murlidhar and Dabke Partha. Evaluation of Central Venous Catheter Associated Blood Stream Infections: A microbiological Observational Study. *Journal of Pathogens*. Volume 2013 (2013).

[10] Boersma S., Jie K.S. G., Verbon A., van Pampus E. C. M., R & Schouten H. C. Thrombotic and infectious complications of central venous catheters in patients with hematological malignancies. *Annals of Oncology* 2008; 19: 433–442.

[11] Vanrooden C. J., Tesselaar M. E. T., Osanto S, Rosendaal R and Huisman M. V. Deep vein thrombosis associated with central venous catheters – a review. *J Thromb Haemost* 2005; 3: 2409–19.

[12] David C. McGee, Michael K. Gould. Preventing complications of central venous catheterization. *The New England Journal of Medicine* 2003; 348:1123-33.

[13] Kusminsky R. Complications of central venous catheterization. *J Am Coll Surg* 2007; 204:681-96.

[14] Graham Alan S., Ozment Caroline, Tegtmeyer Ken, Lai Susanna, M.P.H., and Braner Dana A.V. Central venous catheterization. *The New England journal of medicine*. 2007; 356:e21.

[15] Sibylle Ruesch, Bernhard Walder, Martin R. Tramèr. Complications of central venous catheters: Internal jugular versus subclavian access—A systematic review. *Crit Care Med* 2002; 30(2):454-460.

[16] Leonardo Lorente, Henry, Maria, Alejandro Jiménez, María L. Mora. Central venous catheter-related infection in a prospective and observational study of 2595 catheters. *Crit Care*. 2005; 9(6): 631–635.

[17] Jacques Merrer, Bernard De Jonghe, Franck Golliot, Jean-Yves Lefrant, Brigitte Raffy, Eric Barre, Jean-Philippe Rigaud, Dominique Casciani, Benoit Misset, Christophe Bosquet, Herve´ Outin, Christian Brun-Buisson, Gerard Nirenberg. Complications of femoral and subclavian venous catheterization in critically ill Patients. A randomized controlled trial. *Journal American Medical Association*. 2001; 286(6): 700-707. doi:10.1001/jama.286.6.700

[18] Yildizeli B., Luca T., Batirel H.F., Yuksel M. Complications and management of long-term central venous access catheters. *The Journal of Vascular Access* 2004; 5: 174-178.

[19] Masoud Tarbiat, Babak Manafi, Maryam Davoudi, Ziae Totonchi. Comparison of the complications between left side and right side subclavian vein catheter placement in Patients undergoing coronary artery bypass graft surgery. *J Cardiovasc Thorac Res*, 2014; 6(3): 147-151.