Molecular identification of three entomopathogenic fungi infecting the brown plant hopper pest in Indonesia

Endang Warih Minarni *, Loekas Soesanto, Agus Suyanto and Rostaman

Abstract

Background: Brown plant hopper (Nilaparvata lugens Stal.) is a very damaging pest to rice crops. One of the efforts to control it is the use of entomopathogenic fungi (EPF). Three fungal local isolates found in Indonesia were effective in controlling the brown plant hopper pest. This study aimed to molecularly identify the 3 fungal isolates. Molecular identification is very important to get the exact identity of these fungi. The accuracy of EPF identification will greatly determine the success of control. Molecular identification is based on a partial genetic analysis of the internal transcribed spacer (ITS) locus of ribosomal fungal DNA.

Result: Morphology of the local isolates named J22 and J60 were identified as Paecilomyces sp., while the isolate J34 was identified as Beauveria sp. The results of molecular identification of the isolates J22 and J60 were identified as the fungi Lecanicillium saksenae and Simplicillium sp., while isolate J34 was identified as Myrothecium sp. The results of literature search showed that the 3 fungi have never been previously reported to infect the brown plant hopper.

Conclusion: In Indonesia, 3 types of EPF, namely L. saksenae, Simplicillium sp., and Myrothecium sp., were found having the potential to control the brown plant hopper pest.

Keywords: Entomopathogenic fungus, Lecanicillium saksenae, Molecular identification, Myrothecium sp., Nilaparvata lugens, Simplicillium sp., Brown plant hopper

Background

Brown planthopper (BPH) Nilaparvata lugens is a major insect pest of rice that causes 20–80% yield loss through direct and indirect damage. The typical damage caused by BPH is drying of plants as if burning (hopperburn) (Balachiranjeevi et al. 2019). BPH can also transmit grassy stunt and ragged stunt viruses (Helina et al. 2019).

The frequency of BPH infestation is increasing frequently in developing Asian countries due to the killing of its natural enemies because of the use of synthetic chemical insecticides (Minarni et al. 2018). Entomopathogenic fungi (EPF) are fungi that can infect and kill insects (Litwin et al. 2020). The EPF that have been widely researched and known to be effective for controlling BPH pests are B. bassiana (Sumikarsih et al. 2019) and Metarhizium sp. (Chinniah et al. 2016). However, in their implementation in the field, the use of EPF to control BPH pests still has many weaknesses. After application in the field, insect pathogens are exposed to various abiotic stresses such as temperature and humidity (Hsia et al. 2014), UV radiation (Shafighi et al. 2014), and edaphic factors (Klingen et al. 2015).

In addition to biotic stress, the effectiveness of EPF in controlling insect pests is influenced by the diversity of varieties or strains or types of them. EPF have large genetic variations among different isolates. The pathogenicity, virulence, enzymatic characteristics, and DNA also varied among different isolates of different insects. The origin of the isolate affects the virulence diversity of the
fungus against the host insect, due to the type or race or strain of the fungus (Chen et al. 2017a, b).

The results of previous studies have reported 3 effective fungal isolates to control the brown plant hopper pest. The 3 isolates caused 70–80% mortality within 3.43–4.87 days. The 3 isolates were Pasir Kulon (J22), Cipete (J34), and Papringan (J60). According to morphological characteristics, isolates J22 (Pasir Kulon) and J60 (Papringan) were identified as Paecilomyces sp., while J34 (Cipete) isolate was identified as Beauveria sp. (Minarni et al. 2020).

Accuracy of identification is very important in the use of EPF for insect pest control. Identification based on morphological characters cannot be used to distinguish fungi to the species level so it is necessary to identify them molecularly (Imoulan et al. 2017). This research aimed to precisely identify the 3 previously mentioned EPF isolates that attack the brown plant hoppers.

Methods

Identification process

Fungal isolates J22 (Pasir Kulon), J34 (Cipete), and J60 (Papringan) were identified molecularly based on a partial genetic analysis on the internal transcribed spacer (ITS) locus of ribosomal DNA of fungi. Fungal isolates that will be identified previously were grown in potato dextrose broth (PDB) liquid media. After being incubated for 72 h, the fungal mycelia were harvested, using sterile filter paper and washed with sterile distilled water. The fungal mycelia were crushed in a sterile mortar by a sterile grinder and liquid nitrogen was added. Half a gram of dry fungal biomass was transferred to a 1.5-ml micro-tube containing 600 μl of cetyl trimethylammonium bromide (CTAB) buffer solution. Afterwards, the tube was shaken out and incubated at 65 °C for 30 min, then incubated in ice for 5 min. A mixture of chloroform and isoamyl alcohol with a ratio of 24:1 of 600 μl was added to the tube. The tubes were then centrifuged at 4 °C for 10 min at a speed of 25,000×g. The supernatant was transferred to a new tube and added with 0.1× volume of 2M NaOAc pH 5.2 and 3× volume of ethanol then incubated at −20 °C for 2 h.

Fungal DNA pellets were obtained by centrifugation at 25,000×g at 4 °C for 5 min. The fungal DNA pellets were dried in an airtight chamber for 5 min, then dissolved in 0.2× volume of RNase and 30 μl of sterile TE (TrisHCl 10 mM, pH 7.4, EDTA 1 mM) buffer and then incubated at 37 °C for 10 min and 70 °C for 10 min.

Extraction of fungal DNA was done using Nucleon PhytoPure reagent kit (Amersham LIFE SCIENCE, USA). PCR amplification was at ITS, using ITS Primer 4: 5′-TCC TCC GCT TAT TGA TAT GC-3′ and ITS Primer 5: 5′-GGA AGT AAA AGT CGT AAC AAG G-3′ (White et al. 1990). DNA amplification was carried out by making a volume of 30 μl containing 10.5 μl of alkaline free water, 15 μl 2× PCR mastermix (Promega), 0.75 μl and 10 pmol respectively of primer ITS 4 and ITS 5 and 3 μl (about 250 ng/μl) DNA template. The amplification reaction was carried out in 35 cycles as follows: pre-denaturation at 95 °C for 15 min, denaturation at 95 °C for 30 min, heating (annealing) at 55 °C for 30 s, lengthening at 72 °C for 1.5 min, re-extension at 72 °C for 5 min. and lastly stored at 25 °C for 10 min.

Purification of PCR products was carried out by using Polyethylen Glycol (PEG) precipitation method (Hiraishi et al. 1995) and continued with a sequencing cycle. The results of sequencing cycle were purified again, using the ethanol purification method. Analysis of nitrogen base sequence readings was done using an automated DNA sequencer (ABI PRISM 3130 Genetic Analyzer) (Applied Biosystems). The raw data resulting from the sequencing was then trimmed and assembled, using the BioEdit program (http://www.mbio.ncsu.edu/BioEdit/bioedit.html). Sequence data that was assembled was then carried out in BLAST with genomic data that was registered at the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/BLAST) to determine taxon or species that have the greatest homology/similarity and molecularly.

Results

Morphological identification

Fungal isolates, isolated from brown plant hoppers, were infected by EPF. Fungi were purified and cultured on potato dextrose agar (PDA) media. The results of the observation on morphological characteristics, the isolates J22 (Pasir Kulon) and J60 (Papringan) were identified as

Isolate	Color and shape of the colony	Conidial form	Conidial color	Genus	References
J22 and J60	Round, flat, white which then turns to be creamy in old age	fusiform, sometimes cylindrical, and smooth walled	Hyaline	Paecilomyces (Figs 1 and 3)	Dong et al. (2016), Nguyen et al. (2017)
J34	White, the edges are pale yellow and the base color is white, round shape, and widened growth	oval slightly rounded, stick to the ends and sides of the conidiophores (branches), have long crossed hyphae, and conidial growth clustered.	Hyaline	Beauveria (Fig. 2)	Rosmini and Lasmini (2010), Nuraida and Hasyim (2009)
Paecilomyces sp. while J34 (Cipete) isolate was identified as Beauveria sp. (Minarni et al. 2020). The morphological characters of each EPF isolate (J22, J34 and J60) are presented in (Table 1 and Figs. 1, 2, and 3).

Molecular identification
The results of the ITS rDNA sequencing of fungal isolates J22, J34, and J60 are as follows:

1. ITS rDNA isolate sequence
 (a) Pasir Kulon_ITS4

 | | | | | | |
|---|---|---|---|---|---|
| 1 | TCAGT | CCAGG | CCG | CACGTC | GATGGG |
| 51 | GGTGCGAG | GCTAG | GCT | GTTAGC | GCCAC |
| 101 | GATTTTGA | CAGCCGGA | GTAAGTCC | GGAGTAC | ATTC |
| 151 | AGGAAATC | AGGGAAGT | AGG | ACAAGC | CTAAGA |
| 201 | GTGGCGGG | GCAGGTTG | AAC | ACCACG | CAGAG |
| 251 | AATCCACA | ACTATAG | CCAG | CAAGCC | TAGCC |
| 301 | CAAGAAGA | GTGTTGTA | AAAG | AACTCA | GTCAA |
| 351 | GATTCCA | GATCCTA | CCG | CCGCTT | CAGGA |
| 401 | GCTCGAGT | CCGCGG | TAGG | CCAAGA | CCAAG |
| 451 | GTCGCC | CGAAA | GCA | ATCATC | CTTG |
| 501 | AAACCTCT | TAAGATCCC | GTG | TGTCGTTT | CAG |

(b) Pasir Kulon_ITS5

1	GTTGC	CTGG	GCCGATC	CAGCTG	CCAG
51	GGCAGG	CGGCCG	CGAAG	CAGTCG	GAC
101	AGTATCTT	CTGGG	GTTTCGG	GAG	CAGCCAA
151	AAACAGG	TAAGAAG	AAAG	ACTCAG	CTC
201	TAAGAAAT	GCTTAG	GAAG	CAGTGGA	GGCT
251	CTTGTCG	CCAG	GAG	CAGTGGA	GCC
501	AAACCTCT	TAAGATCCC	GTG	TGTCGTTT	CAG

(c) Contig-PasirKulon

1	GTAACAG	GTAG	GACCA	GAGGTAC	TT
51	CAAACT	CCAA	GAG	ACATACAT	TA
101	GGCAGG	CGGCCG	CGAAG	CAGTCG	GAC
151	CAGCAG	GCAG	AAAA	ATCAG	TA
201	GCCCAAG	GCAG	AAAA	ATCAG	TT
251	TGTGGCA	TCAG	GATGAAG	ATC	GAGAA
301	CAGAAT	TCAG	GAG	ATCAG	TA
351	ATCCGTC	GGGG	GTGGG	CAG	CAG
401	TTTGGGAA	TCAAAG	AGT	TAAACAA	CT
451	TTGGGA	TCG	GAAGT	CTG	GAG
501	CCGGAACC	AT	AAACA	AAACAA	TA
551	GACCTCG	CCAG	GTGAAGT	CTG	GAG

(d) Cipete_ITS4

1	CTGGGCGG	GCAG	CACAA	ATC	CTG
51	AGGGAGG	GAAG	CGCCGAC	TAG	GCC
101	CGGCCGAC	GAG	CACAA	ATC	CTG
151	CCGGG	CGG	AAAA	AAACAA	TA
201	CTTGGG	CTA	GAG	ATCAG	CTG
251	ACTTAA	TTCG	GAAGT	CTG	GAG
501	GACCTCG	CCAG	GTGAAGT	CTG	GAG

(Molecular identification (Continued))
Molecular identification (Continued)

151	AAATGACC	CAGACAGG	TGCCCGG	GATATGG	GCCGCAAT
201	GCGTCAAG	ATTCGATG	TCACGTAAT	CTTGCAATT	CATTACTT
251	CGCATTCGC	TGCGTCTCT	ATCGATGCC	GAACCAAG	ATTCGATGC
301	GAAAGTTG	ATTATTTT	AAAAAGCA	CATGAGAT	ATGAGAAT
351	AAGAGTTG	CTGCCCG	GCCTGCCG	GAAAGTG	ATCAGTAAG
401	CGGGGGGCC	ATGCCGAGA	GTCTCGCA	ATCGAGCA	AGGTGAGA
451	GTTGTTAAA	CTGGTATG	TGCTCCGA	ATCAGTAAG	AGGTGAGA

(e) Cipete_ITS5

1	TCGTGTGC	TGGCGGATC	CGGCGCCGC	CAGAATCC	CCGGATCC
51	GGGCGGC	GGGCGGC	CTGGCGGC	CAGAATCC	CCGGATCC
101	CTTTTTA	CAAT	AATAA	TAAA	AATAA
151	CATCGA	GAACGCA	ATGG	CTGG	CTGG
201	TGATGAA	ATC	GAATC	AATC	AATC
251	CGGGCGAT	GTCTCGA	CGGCGG	CTGG	CTGG
301	GGTGTTG	GC	CCACTG	CCACTG	CCACTG
351	AGTGACCG	GT	GTAGAT	GTAGAT	GTAGAT
401	GGAGGAGG	GC	CAGCTCG	CAGCTCG	CAGCTCG
451	TGAGATC	GAAG	TAGAATC	TAGAATC	TAGAATC

(f) Contig-Cipete

1	TCCGTGTC	AACCAG	GGGATCAT	CCGATTT	AACTCC
51	CCCATG	CAGACCTTCA	GGGATCATG	CCGACGC	GGGACCTTCA
101	TCGGTGCG	GGATCAG	GGGCGGC	GGACCTTA	TCTGTTCGG

(h) Papringan_ITS5

1	TAGTTGGG	TTTTACGG	TGGCGCGT	GATTTCC	GTGCAGGG
51	AGTTACGA	CAGAGGGC	ATCGAAGG	CGCAAGC	ATCGAAGG
101	GGGCGGCC	GGGCGGCC	GGGCGGCC	GGGCGGCC	GGGCGGCC
151	GGGTCGTT	CC	TGGCAGA	TGGCAGA	TGGCAGA
201	CAGAGCGG	TA	GAGAGTTG	GAGAGTTG	GAGAGTTG
251	ATTACGCT	TG	ATCGATT	ATCGATT	ATCGATT
301	TACGACG	CA	AGTTGAG	AGTTGAG	AGTTGAG
351	AGGGACG	GG	CTAGCCGT	CTAGCCGT	CTAGCCGT
401	TACTAGAC	AC	GCTGGG	GCTGGG	GCTGGG
451	TCACCAGG	ACGG	TGGG	TGGG	TGGG

| 501 | TCCGCCAACC | TT | TGTACG | TGTACG | TGTACG |

| 551 | CTGAA |
(i) Contig-Papringan

1	TCGGTTG	GACGCT	TGGCATC	TCAGTGT	TCAAATC	CCAGC
251	CGGGGTTA	GTCGGT	GTCGGGT	GTCGGG	GTCGGG	GTCGGG
301	TGGGGGCA	GTTGGT	GTCGGG	GTCGGG	GTCGGG	GTCGGG
351	GAAATTC	ACAATC	ACAATC	ACAATC	ACAATC	ACAATC
401	GCCGACGG	GACGCG	GACGCG	GACGCG	GACGCG	GACGCG
451	GACCTTCA	CTCATC	CTCATC	CTCATC	CTCATC	CTCATC

Discussion

Based on the results of the sequences, isolate J22 showed (99.83%) similarity to the *L. saksenae* strains GFRS14 and *L. saksenae* isolate Ecu121. Isolate J35 had a similarity with the sequences *Myrothecium* sp. F129 and *Myrothecium* sp. 1 TMS-2011 amounted to 98.82 and 98.93%, while isolate J60 had 99.10% similarities to the sequence *Simplicillium* sp. LCM 845.01 and 98.92% with *Simplicillium* sp. KYK00024 sequence (Table 2).

EPF isolates that showed high phylogenetic relationship and had a similarity value of 28S rDNA sequence of more than 99% with the reference species that could be expressed as one species. Ribosomal DNA sequences are used to identify and determine the phylogenetic relationships of organisms to taxa species (Bich et al. 2021). Based on the concept of phylogenetic species, it is stated that an organism is in one species when the difference in DNA sequences is between 0.2 and 1% (Shenoy et al. 2007). According to Henry et al. (2000) isolates, which have a similarity value of 100% can be stated as the same strain and a similarity value of 99% is stated as the same species, while the similarity value of 89–99% belongs to the same genus.

The similarity between 99 and 100% indicated that isolates J22, J34, and J60 each had the same chromosome number, genome size, and gene function as *L. saksenae* strain GFRS14 and *L. saksenae* strains isolate Ecu121, *Myrothecium* sp. F129, and *Myrothecium* sp. 1 TMS-2011 and *Simplicillium* sp. LCM 845.01 and *Simplicillium* sp. KYK00024, respectively.

The identification results based on morphological characters turned out to be different from molecular identification. Accuracy of identification is very important in the use of EPF for insect pest control. Identification based on morphological characters cannot be used as a definite reference. The genera *Lecanicillium, Simplicillium, Beauveria,* and *Isaria* have similar morphological characters, so that molecular identification is needed to determine the species certainty of EPF found in Banyumas Regency, Central Java Province, Indonesia. According to Lim et al. (2014) of the genus *Lecanicillium, Simplicillium* (both previously *Verticillium* spp.), *Beauveria* and *Isaria* belong to family Cordycipitaceae. According to Chen et al. (2016), the genus *Myrothecium* belongs to family Stachybotryaceae and has a worldwide distribution. Species in this genus were previously classified based on the asexual morphology, especially the characters of conidia and conidiophores. Morphology-based identification alone is imprecise because there are few characters to distinguish between species in the genus and, therefore, molecular sequence data are important in species identification.
Fig. 1

a Colony of 8 days old Pasir Kulon (J22) isolate.
b Paecilomyces sp. conidia (Minarni et al. 2020).
c Paecilomyces lilacinus conidia (Dong et al. 2016)

Fig. 2

a Colony of 8 days old Cipete (J34) isolate.
b Beauveria sp. conidia (Minarni et al. 2020).
c Beauveria bassiana conidia (Nuraida and Hasyim 2009)

Fig. 3

a Pure cultures of 8 days old Papringan isolate (J60).
b Paecilomyces sp. conidia (Minarni et al. 2020).
c Paecilomyces javanicus conidia (Dong et al. 2016)
Table 2 Results of the nearest fungi taxon BLAST homology ITS1, 5.8S, and ITS2 of rDNA in NCBI (https://www.ncbi.nlm.nih.gov/)

Isolate	Type	No accession / host	DNAsize (bp)	Similarity percentage (%)	Query coverage (%)	Totalscore
J22 (Pasir Kujon); No. accession/host/size, MWS31463/Nilaparvata lugens Stal/585 bp	Lecanicillium saksenae strain GFRS14	MT447482/Lycium barbarum L	585	99.83	100	1075
	Lecanicillium saksenae isolate Ecu121	KF472156/Coccoloba uvifera	585	99.83	100	1073
J34 (Cipete); No. accession/host/size, MWS31464/Nilaparvata lugens Stal/555 bp	Myrothecium sp. F129	KM979797/Glycine max cultivar Monarca	549	98.82	100	549
	Myrothecium sp. 1 TMS-2011	HQ631058/Saccharum officinarum	549	98.92	100	549
J60 (Papringan); No. accession/host/size, MWS31465/Nilaparvata lugens Stal/558 bp	Simplicillium sp. LCM 845.01	MF495400/Terminalia sp.	552	99.10	100	1002
	Simplicillium sp.KYK00024	AB378539/Acari	551	98.92	100	996

Simplicillium sp. is one of the dominant genera of symbiont fungi in unfertilized brown planthopper eggs. The other 3 genera are Microdochium, Fusarium, and Cladosporium (Shentu et al. 2020). One of the species of the genus Simplicillium is S. lanosoniveum. The fungi belong to this genus are known as mycoparasites. However, silkworms (Bombyx mori) inoculated with the fungus isolate S. Lanosoniveum, died during the larval or pupal stage, as shown by the EPF, B. bassiana. The first report on the entomopathogenicity of S. lanosoniveum and demonstrated its potential for use in insect biological control was recorded by Lim et al. (2014). The fungus S. lanosoniveum was able to cause mortality of Hysteroneura setariae ticks on Plum plants by 86.33% (Chen et al. 2017a, b). Chen et al. (2019) found 3 new species, namely Simplicillium cicadellidae, S. formicidae, and S. lepidopterorum. So far, there are limited reports of the fungus Simplicillium sp. being isolated from insects infected with the fungus.

The fungus L. lecanii effectively controlled brown plant hoppers with a density of 10^{10} conidia/ml, where the mortality value of (78.33%) and a time of death at 5.81 day after treatment occurred (Khoiroh et al. 2014). L. lecanii can cause more than 50% of brown planthopper mortality within 14 days after treatment (Atta et al. 2020), whereas according to Shaikh and Pandurang (2015), this fungus is less effective in controlling this pest. Sankar and Rani (2018) have found a new Lecanicillium isolate, namely L. saksenae, which can control stink bug (Leptocorisa acuta). This fungus can kill 100% of L. acuta nymphs and imago at 72 h after treatment at conidia densities 10^{7} and 10^{8}.

Myrothecium verrucaria has a high activity against extracellular insect cuticles and produces chitinase, proteinase, and lipase (Vidhate et al. 2015).

Based on the literature search, the 3 fungi Simplicillium sp., L. saksenae, and Myrothecium sp. have never been reported to infect brown plant hopper. Data obtained from the National Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/), also showed that these 3 fungi were not obtained from insect pests (Table 2). The results of this study revealed 3 types of new EPF that had the potential to be developed as control agents for brown plant hopper pests.

Conclusion
The results of molecular identification showed that the isolates J22, J34, and J 60 were fungi from L. saksenae, Myrothecium sp., and Simplicillium sp., respectively. The results of literature search showed that these 3 fungi had never been reported to infect brown plant hopper. So that the results of this study can be considered new finding of EPF as biological agents of the control brown plant hopper pests.

Abbreviations
BPH: Brown plant hopper; BLAST: Basic Local Alignment Search Tool; CTAB: Cetyl trimethylammonium bromide; DNA: Deoxyribonucleic acid; ITS: Internal transcribed spacer; PCR: Polymerase chain reaction; PDA: Potato dextrose agar; PDB: Potato dextrose broth; PEG: Polyethilen Glycol; UV: Ultraviolet

Acknowledgements
The author would like to thank the Head of the Laboratory of Plant Protection, Faculty of Agriculture, Jenderal Soedirman Purwokerto University, The Biology Laboratory of Indonesian Academy of Sciences, and all those who have helped research and write this scientific article.

Authors’ contributions
EWM performed the experiments on bioassay and analyzed the data. The manuscript was prepared by EWM, LS, AS, and R. All the authors read and approved the manuscript.

Funding
The author would like to thank the Directorate of Research and Community Service of the Ministry of Education and Culture of the Republic of Indonesia
for funding this research through the Doctoral Dissertation Research Grant in 2020.

Availability of data and materials

All data are available in the article and the materials used in this work are of high quality and grade.

Declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Received: 3 January 2021 Accepted: 6 April 2021

Published online: 16 April 2021

References

Atta B, Rizwan M, Sabir AM, Gogi MD, Farooq MA, Batta YA (2020) Efficacy of entomopathogenic fungi against brown planthopper Nilapavaraugus (Stål) (Homoptera: Delphaciidae) under controlled conditions. Gesunde Pflanzen 72(2):101–112. https://doi.org/10.3433/019-00490-6

Balachiranjeevi CH, Prahalada GD, Mahender A, Jamaloddin M, MAL S, Marfori-Wong C, Minarni EW, Soesanto L, Suyanto A, Rostaman M (2020) Exploration and pathogenicity test of entomopathogenic fungi from brown planthopper (Nilapavaraugus Stål) pest. Ecol Env Cons. 26(1):24–33. http://www.envirobiotechjournals.com/EJC/26Issue2020/EJC26-4.pdf

Chen RS, Chi CH, Jia CL, Jwu GT (2017a) Evaluation of characteristics of Simplicillium lansonesium on pathogenicity to aphids and in vitro antifungal potency against plant pathogenic fungi. Int J Environ Agric Res (IJOEAR) 3(1):55–61. https://ijoor期刊/Paper-January-2017/IJOEAR-JAN-2017-7.pdf

Chen WH, Chang L, Yan FH, Jian DL, Wei YZ, Zong QL (2019) Three novel insect-associated species of Simplicillium (Cordylophora, Hypocreales) from Southwest China Mycokeys 588–592. https://doi.org/10.3897/mycokeys.5837786

Chen Y, Ran SF, Dai DQ, Wang Y, Hyde KD, WU YM, Jiaoy QL (2016) Mycosphere essays. 2. Myrothecium. Mycosphere 7:164–80. https://doi.org/10.2493/ mycosphere/7/1/7

Chinniah C, Raikumar A, Kalyanasundaram M, Parthiban P (2016) Field evaluation of Metarhizium anisopliae liquid formulation (BioMigac*) against brown plant hopper, Nilapavaraugus Stål on rice. J Biopesticides 9(2):211–219 http://www.jbiopest.org/users/LW8/efiles/vol_9_2_211-219.pdf

Dong T, Zhang B, Jiang Y, Hu Q (2016) Isolation and classification of fungal whitefly entomopathogens from soils of Qingshi-Tibet Plateau and Gansu Corridor China. Plos One 11(5)e0156087. https://doi.org/10.1371/journal. pone.0156087

Hellina S, Sulandari S, Hartono S, Trisnoyo YA (2019) Detection and analysis of protein profile on rice infected by stunting virus with different severity on cherang and situ bagendit varieties. J Perlindungan Tanaman Indonesia 23(1):116–124. https://doi.org/10.22146/jaspt.36549

Henry T, Iwen PC, Hinrichs SH (2000) Identification of Aspergillus species using internal transcribed spacer regions 1 and 2. J Clin Microbiol. 38(4):1510–1515. https://doi.org/10.1128/CMC.38.4.1510-1515.2000

Hirash T, Kannagaya Y, Nakamura K (1995) Polymerase chain reaction amplification and restriction fragment length polymorphism analysis of 16S rRNA genes from methanogens. J Ferment Bioeng. 79(6):523–529. https://doi. org/10.1016/0922-3389(95)74742-A

Hsia KC, Islam MT, Ibrahim Y, How TY, Omar D (2014) Evaluation of conidial viability of entomopathogenic fungi as influenced by temperature and additive. Int J Agri Biol. 16(1):146–152 http://www.ijpb.org

Imoulan A, Hussain M, Kim PK, El Meziane A, Yao YJ (2017) Entomopathogenic fungus Beauveria: host specificity, ecology and significance of morpho-molecular characterization in accurate taxonomic classification. J Asia-Pac Entomol 20(4):1204–1212. https://doi.org/10.1016/j.aspen.2017.08.015

Khoiruf I, Binawati, Ulf I (2014) Patogenitas cendawan entomopathogen (Leccosporium lecanii) sebagai biopestisida untuk pengendalian hama wereng batang coklat secara in vivo. Lentera Bio. 3(2):115–121 http://epojournal. Lunesa.ac.id/index.php/lenterabio

Klingen I, Westrum K, Meyling NV (2015) Effect of Norwegian entomopathogenic fungal isolates against Ostrichyxsus sulfaticus larve at low temperatures and persistence in strawberry rhizospheres. Biol Control 81:1–7. https://doi.org/10.1007/s10526-014-9226-1

Lim SY, Lee S, Kong HG, Lee J (2014) Entomopathogenicity of Simplicillium lansonesium Isolated in Korea. Mycobiology 42(3):317–321. https://doi.org/10.5941/ MYCO2014.42.3.317

Litwin A, Nowak M, Rozaelsa S (2020) Entomopathogenic fungi: unconventional applications. Rev Environ Sci BioTechnol 19(1):23–42. https://doi.org/10.1007/ s11157-020-09525-1

Minarni EW, Soesanto L, Suyanto A, Rostaman M (2020) Entomopathogenic fungi of whitefly entomopathogens from soils of Qinghai-Tibet Plateau and Gansu Province China. MycoKeys 58:83–90. https://doi.org/10.3897/mycokeys.58.37176

Nguyen HC, Thi VAT, Quoc LN, Minh KN, Ngoc TN, Chia HS, Kuang HL (2017) Newly isolate Paecilomyces illicius and Paecilomyces javanicus as novel biocontrol agents for Plutella xylostella and Spodoptera litura. Not Bot Hort Obrogo 45(1):280–286. https://doi.org/10.1585/hiba.451107206

Nurada A, Hayim A (2009) Isolasi, identifikasi, dan karakterisasi jamur entomopathogen dari rizotip pertanaman perumbih. J Hort 19(4):419–432 http:// ejurnal.litbang.pertanian.go.id/index.php/hort/article/view/868

Rasmiti L, Rasmiti SA (2010) Identifikasi cendawan entomopathogen lokal dan tingkat patogenitasnya terhadap hama wereng hijau (Nephotettix virescens distant) vektor virus tungro pada tanaman padi sawah di Kabupaten Donggala. J Agroland 17(3):205–212. https://doi.org/10.22146/ja.2017.2105

Sarkar SS, Rani OPR (2018) Pathogenicity and field efficacy of the entomopathogenic fungus, Leccosporium spheniacum Kwushwaha, Kuriraha and Sukarom in the management of rice bug, Leptocoris acuta Thunberg. J Biol Control 32(4):230–238. https://doi.org/10.18313/jb.2018/19808

Shafghifi Y, Ziaee M, Ghosta Y (2014) Diatomaceous earth used against insect pests, applied alone or in combination with Metarhizium anisopliae and Beauveria bassiana. J Plant Prot Res 54(1):62–66. https://doi.org/10.2478/jppr-2014-0009

Shahdivid S, Pandurang M (2015) Effect of entomopathogenic fungi against brown plant hopper, Nilapavaraugus Stål (Hemiptera: Delphaciidae) infesting rice. Int J Sci Res (USR) 4(10):905–907 http://www.ijrr.net

Shenoy BD, Jeewon R, Hyde KD (2007) Impact of DNA sequence-data on the taxonomy of anamorphic fungi. Fungal Diver. 26:1–54 https://www.fungaldiversity.org/fdp/fdp6-26-1.pdf

Shenut X, Xiao Y, Song Y, Zao C, Zou J, Yu X (2020) Comparative analysis of the diversity of the microbial communities between non-fertilized and fertilized eggs of brown planthopper, Nilapavaraugus Stål. Insects 11(1):49; (1-13). https://doi.org/10.3390/insects11010049

Sumarisad KH, Gef kidnida S, Pruittyat U (2019) Conidial density and viability of Beauveria bassiana isolates from Java and Sumatra and their virulence against Nilapavaraugus Stål at different temperatures. AGRIVITA. J Agric Sci Technol 42(1):335–350. https://doi.org/10.17503/agrivita.v42i1.2105

Vidhate R, Jyoti S, Vandana G, Santosh BC, Amar P, Mukund VD (2015) Use of hydrolytic enzymes of Myrothecium verrucaria and Conidia of Metarhizium anisopliae, singly and sequentially to control pest and pathogens in grapes and their compatibility with pesticides used in the field. Biopestic Int. 11(1):432–438 http://ijurnal. ejourna leaps.org/index.php/jhort/article/view/863

White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal DNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols. Academic, San Diego, pp 315–322

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.