230Th-234U model ages of some uranium standard reference materials

By R. W. Williams and A. M. Gaffney*

Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, L-235, Livermore, CA 94550, USA

(Received December 21, 2009; accepted in final form November 11, 2010)

230Th-234U model age/ Nuclear forensics/ Uranium/ MC-ICP-MS

Summary. The “age” of a sample of uranium is an important aspect of a nuclear forensic investigation and of the attribution of the material to a source. The 230Th-234U chronometer can be used to determine the production date of even very recently-produced material (234U half life = 245 250 ± 490 years; 230Th half life = 75 690 ± 230 years [1]), provided that the 230Th-234U at the time of formation is known, and that there has been no Th-U fractionation in the sample since production. For most samples of uranium, ages determined with this chronometer are “model ages”, because they are based on the assumptions of a) some initial amount of 230Th in the sample, and b) closed-system behavior of the sample since production. The uranium standard reference materials originally prepared and distributed by the former US National Bureau of Standards and now distributed by New Brunswick Laboratory as certified reference materials (NBS SRM = NBL CRM) are good candidates for materials where these assumptions may be tested. The U isotopic standards have known purification and production dates and closed-system behavior in the solid form (232UO$_3$) may be reliably assumed. In addition, these materials are widely available and can serve as informal round-robin inter-laboratory comparison samples.

We determined 230Th-234U model ages for seven of these isotopic standards by isotope dilution mass spectrometry using a multi-collector ICP-MS. The standards dated for this study are U005-A, U010, U030-A, U100, U850, U900 and U970. Model ages obtained range from ~30 to ~52 years ago (reference date: 5-May-2009). The model age of U100 is the same as the purification date, within uncertainty. The other six standards analyzed all give model ages older than the purification dates of record. The magnitude of the discrepancy between model age and purification date does not correlate with the model age or the amount of 232Th in the samples. This indicates that excess 230Th in these six standards results from incomplete purification during production.

1. Introduction

Determining the age of a sample of illicitly obtained or transported uranium is an important aspect of a nuclear forensic investigation. The purification date of a uranium sample can be determined with the 230Th-234U chronometer. This chronometer has been utilized by geochemists to age-date corals and other natural samples with a very low Th/U ratio [2, 3]. Anthropogenic samples with abundant uranium allow the time limit and resolution of this method to be pushed to younger and more precise ages. For all samples, both natural and anthropogenic, the accuracy of dates determined with the 230Th-234U chronometer relies upon several assumptions: 1) complete separation of Th from U during sample formation; 2) closed-system behavior of the sample after formation; 3) accurate 230Th and 234U measurements; and 4) an accurate value for the 234U decay constant. Recent studies that determine 230Th-234U age-dates for samples of nuclear-era depleted, natural and enriched uranium report precision ranging from 0.3% to 11% (corresponding to 48 d and 7 years), depending on the 235U enrichment of the sample, the time of 230Th in-growth (the age), the amount of sample analyzed, and the analytical methods used [4–6].

This method determines the time of complete separation of 234U from its daughter, 230Th, during formation of a sample, such as during purification of uranium for use as a nuclear material. The amount, if any, of excess 230Th can be evaluated through the presence of significant natural Th (as 232Th) in the sample. Excess 230Th, resulting from incomplete separation or post-production contamination, will result in a model age older than the actual production age. For example, this is the case with NBL CRM 112-A (NBS SRM 960) uranium metal assay standard, which contains several ppm 232Th, and the model-age of which predates the Manhattan Project [3]. In contrast to natural samples, however, excess 230Th is not necessarily accompanied by 232Th in anthropogenic uranium.

For the uranium isotopic certified reference materials distributed by New Brunswick Laboratory (NBL CRMs), retention of 230Th in U$_2$O$_5$ (i.e., closed-system behavior) is a reliable assumption, so that any deviations of the model-age from the purification age can be ascribed either to variations in initial 230Th, to the analytical uncertainty, or to uncertainty in the fundamental constants used in the calculation (i.e., the decay constants). We determined the model ages for seven different CRMs using isotope dilution mass spectrometry (IDMS) and compared these results with the purification ages of the samples [7].

2. Methods

The seven CRMs selected for this study, ranging from depleted to highly enriched uranium, are: U005-A, U010,
U030-A, U100, U850, U900, and U970. Isotope dilution mass spectrometry (IDMS) analyses of 234U and 230Th are made using a 233U spike calibrated with a natural uranium standard solution prepared from NBL CRM 112-A, and a 229Th spike calibrated with the NIST SRM 4342A 230Th radioactivity solution. All sample and spike sizes were determined by weight. All calculations involving activity to atom conversions, and the model-age calculations themselves, use half-lives for 230Th and 234U of 75690 ± 230 years and 245250 ± 490 years, respectively [1].

Duplicate primary sample solutions were made for each sample, for a total of 14 primary solutions. Variable-sized samples of the uranium oxides were added to 125 mL Teflon bottles and dissolved in three mL of concentrated HNO3, and then diluted to approximately 100 mL with 4 M HNO3. For each set of duplicate solutions, solution No1 was left HF-free. Progressively less CRM U3O8 was dissolved for each sample from U005-A to U970, in order to crudely adjust the amount of 234U (and hence 230Th) in the primary solutions. Secondary dilutions of each of the 14 primary standards were made by weighing aliquots of these solutions and quantitatively diluting them in 250 mL polyethylene bottles with 1 M HNO3. The dilution factors for these secondary solutions were purposely varied from 1000 for U005-A to less than 200 for U970, to approximately equalize the amount of uranium in these solutions and to rationalize the sample-spike ratio for the IDMS analysis. Aliquots of the secondary standards were mixed with 233U spike, equilibrated by heating in sealed Teflon vials, dried, and then re-dissolved in 2% HNO3 for analysis by multi-collector inductively coupled plasma mass spectrometer (MC-ICPMS). The concentrations of 234U in the primary standard solutions were calculated from the results for the spiked secondary solutions.

For the 230Th analyses, aliquots of the primary standard solutions were weighed, spiked with 229Th, equilibrated, dried, re-dissolved in HCL and then dried again. Thorium was purified from these samples using standard anion exchange techniques: first, on a 2 mL AG1x8 resin bed in 9 M HCl in which U adsorbs and Th passes through; second, adsorbing Th on a 1 mL AG1x8 resin bed in 8 M HNO3, and then eluting it with 9 M HCl followed by 0.1 M HCl + 0.005 M HF; and third, by passing the Th through a final 0.3 mL AG1x8 resin bed in 9 M HCl. The purified Th fraction was dried, dissolved in a few drops of HNO3, dried again, and finally dissolved in 2% HNO3 + 0.005 M HF for analysis by MC-ICPMS.

For most of the spiked uranium samples, IDMS measurements were made in replicate using both the IsoProbe and the NuPlasma HR MC-ICP mass spectrometers at LLNL. The results from these instruments agreed with each other within analytical uncertainty, and the measured uranium isotopic compositions for all the samples agreed with the certified values. For samples measured in replicate, an average of the results from the two instruments was used in the calculation of the 234U content of the primary solutions. Instrumental mass bias and detector cross-calibration factors (i.e., Faraday/pulse-counter gains) were made using NBL CRM 129A and U010. The spiked Th samples were measured on the NuPlasma HR, in simultaneous pulse-counting mode on two secondary electron multipliers. All signals were first corrected for detector baseline and for memory effects due to incomplete rinse-out of Th from the system. This instrumental memory is determined by making an analysis of the acid used to dissolve the samples immediately prior to the sample analysis, and is less than 1 part-per-thousand relative to the Th beams from the samples. The relative detector gain factors were determined by peak-jumping a beam from 229Th on the two detectors, and the cross-over to the Faradays was determined using the 234U beam in U010. The instrumental mass bias determined for the U010 standard was used to correct the 230Th/229Th ratio for mass bias.

The analyses were completed in three batches. In May 2009, solutions were prepared in duplicate and 230Th and 234U IDMS measurements were made for all samples. In October 2009, new 230Th IDMS measurements were made on new aliquots of the original primary solutions for U030A No1 and No2, and U970 No1 and No2. At this time, new secondary solutions were prepared and new IDMS measurements were completed for U970 No1 and No2. In November 2009, the primary solutions were adjusted to 0.05 M HF, agi-

Fig. 1. Model ages of uranium standard reference materials, relative to reference date of 5 May 2009. Also shown for comparison are purification dates of reference materials. Symbol size is larger than expanded uncertainty (k = 2) on model ages. See Table 2 for actual uncertainty for each analysis as well as the analysis date for each sample.
tated, and new aliquots were taken and IDMS measurements were completed for 230Th concentrations for U030-A No1 and No2, and U970 No1 and No2.

Model-ages were calculated from the measured 230Th and 234U contents of the primary standards (Table 1) using a computer program to iteratively solve the full Bateman [8] equations from which $t = \text{time}$ cannot be separated. This program also considers the 238U content and can be used for samples of any age, but the simplified expressions for 230Th and 234U from the blank are trivial relative to the measured 230Th and 234U signals. The measured 230Th concentrations do not correlate with the apparent excess 230Th, i.e., with the difference between the measured ages and the purification ages. Expanded uncertainties ($k = 2$) are given in parentheses.

Table 2. Model ages of uranium standard reference materials.

Sample ID	Analysis date	Model age (years before 5-May-09)	Expanded uncertainty ($k = 2$)	Model date	Date purification finished [7]
U005-A No1	May 09	29.70	0.15	23 Aug 79	Jul-81
U005-A No2	May 09	29.53	0.15	26 Oct 79	Jul-81
U010 No1	May 09	51.04	0.26	22 Apr 58	5-Jun-58
U010 No2	May 09	51.44	0.24	26 Nov 57	5-Jun-58
U030-A No1	May 09	29.71	0.17	20 Aug 79	Jul-81
U030-A No2	May 09	30.39	0.24	15 Dec 78	Jul-81
U030-A No1 R1	Oct 09	28.55	0.13	16 Oct 80	Jul-81
U030-A No2 R1	Oct 09	28.53	0.13	23 Oct 80	Jul-81
U030-A No1 R2	Nov 09	29.24	0.16	07 Feb 80	Jul-81
U030-A No2 R2	Nov 09	29.21	0.16	18 Feb 80	Jul-81
U100 No1	May 09	50.21	0.24	16 Feb 59	8-Jan-59
U100 No2	May 09	50.17	0.25	06 Mar 59	8-Jan-59
U850 No1	May 09	51.94	0.21	26 May 57	31-Dec-57
U850 No2	May 09	52.31	0.22	13 Jan 57	31-Dec-57
U900 No1	May 09	51.85	0.21	27 Jun 57	24-Jan-58
U900 No2	May 09	51.64	0.21	14 Sep 57	24-Jan-58
U970 No1	May 09	44.35	0.21	29 Dec 64	Mar-65
U970 No2	May 09	44.70	0.17	23 Aug 64	Mar-65
U970 No1 R1	Oct 09	43.61	0.28	25 Sep 65	Mar-65
U970 No2 R1	Oct 09	43.28	0.28	21 Jan 66	Mar-65
U970 No1 R2	Nov 09	44.82	0.25	08 Jul 64	Mar-65
U970 No2 R2	Nov 09	44.61	0.24	26 Sep 64	Mar-65
Table 3. Representative uncertainty budget.

U100-No2 Model Age	Contribution to combined uncertainty (%)
50.17 ± 0.25 years	

230Th in U100-No2

- 229Th spike
 - 230Th NIST standard 14.61
 - 230Th spike calibration 9.34
- 230Th/238Th analysis
 - Weighing spike 1.73
 - Weighing sample 0.08
 - Mass bias correction 0.11
 - Ratio measurement 55.19

234U in U100-No2

- 235U spike
 - Primary U standard 0.03
 - 235U spike calibration 1.64
- 234U/238U analysis
 - Weighing spike 0.12
 - Sample weighings and dilutions 0.06
 - Mass bias correction < 0.01
 - Ratio measurement 0.94
- 230Th half-life < 0.01
- 234U half life 16.15
- Total 100.00

(within 1 h) for these relatively young samples (Table 2; Fig. 1).

A representative uncertainty budget for the age-dating analyses is given for sample U100-No2 in Table 3. The largest part of the uncertainty in these analyses comes from the 230Th measurement, of which the uncertainty on the primary NIST SRM used to calibrate the 229Th spike is a significant contributor. Improvement in the uncertainty could be obtained by increasing the sample size, thereby increasing the 230Th ion beam intensity and the precision on the measurement of the 230Th/238Th ratio. The uncertainty of the instrumental mass bias correction factors is minor, whereas the absolute uncertainty on the value used for the decay constant of 234U contributes 16% to the combined standard uncertainty for this sample.

3. Results

The model-ages calculated for the 14 samples and the corresponding purification dates are given in Table 2 and Fig. 1. The relative expanded uncertainties in Table 2 range from 0.4% to 1.1%, corresponding to 55 to 175 d. In all cases, the duplicate solutions for each standard analyzed at the same time yield identical ages, confirming that the CRM U$_3$O$_8$ oxide powders are homogeneous at the milligram-scale. The reanalyses of samples U030-A and U970 completed in October 2009 yield model ages that are younger than the respective ages determined from the May 2009 analyses by amounts ranging from 0.74 to 1.86 years. Following these analyses, additional hydrofluoric acid was added to the standard solutions to achieve a final composition of 4 M HNO$_3$ + 0.05 M HF. Subsequent analyses of these solutions in November 2009 agree within analytical uncertainty with the May 2009 results. We attribute these collective results to the precipitation of Th from the primary solutions between May and October, most likely by sorption of Th on the bottle walls as hydrolyzed species. Loss of Th resulted in younger model ages for the October analyses. The addition of HF to the primary solutions in November quantitatively brought Th back into solution, as indicated by model ages that are in agreement with those determined from the May analyses.

Comparing the average model age for each pair of duplicate samples with the purification date for that standard, all samples, except U100 (and the U970 October replicate analysis), have model ages that are older than the purification ages by amounts that exceed the expanded uncertainty. The average model-age for U100 is younger than the purification age by 0.3%, or 48 d in this case, and the expanded uncertainty on the model-age (90 d) covers this gap. The average model-ages for U005-A and U030-A are significantly older (by 1.8 and 2.2 years for the May 2009 analyses) than the purification dates. These differences are likely the result of excess initial 230Th. The 230Th content of these two samples is not systematically higher than the other samples, so that contamination by common Th cannot be called upon to explain the results. Instead, it is more likely that the production process for these two standards, prepared in 1981, was not as effective at eliminating 230Th as the methods used earlier. It should be noted that the purification dates in Table 2 are not necessarily the dates of final oxide production (i.e., system closure). The results presented here indicate that for most samples, if a pure uranium end-member (i.e., one without 230Th) ever existed, then it pre-dates the purification.

In a nuclear forensic investigation, the straightforward interpretation of the 230Th-234U age of sample of uranium as the “production date” is unwarranted. This study shows that even highly purified uranium oxides may retain some initial 230Th. However, the model-age of the sample will represent the maximum possible time since production, which is an important constraint on its origin.

4. Conclusions

We have determined the 230Th-234U model-ages for seven of the NBL uranium isotopic standards and find that six of the seven give ages older than the purification dates of record. We find the age for U100 to be identical within analytical uncertainty to the maximum possible age, which is important information for a nuclear forensic investigation.

Acknowledgment. The authors would like to thank Bill O'Connor and Lisa Szytel with the DOE/NNSA and Rob Cockerham with the US Department of State for their beneficence. We are grateful to Michael Kristo for providing the purification dates and to Ian Hutcheon for his support. This work was performed under the auspices of the US De-
department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-JRNL-421684.

References

1. Cheng, H., Edwards, R. L., Hoff, J., Gallup, C. D., Richards, D. A., Asmerom, Y.: The half-lives of uranium-234 and thorium-230. Chem. Geol. 169, 17 (2000).

2. Shen, C.-C., Li, K.-S., Sieh, K., Natawidjaja, D., Cheng, H., Wang, X., Edwards, R. L., Lam, D. D., Hsieh, Y.-T., Fan, T.-Y., Meltzner, A. J., Taylor, F. W., Quinn, T. M., Chiang, H.-W., Kilbourne, K. H.: Variation of initial 230Th/232Th and limits of high precision U-Th dating of shallow-water corals. Geochim. Cosmochim. Acta 72, 4201 (2008).

3. McCulloch, M. T., Mortimer, G. E.: Applications of the 238U-230Th decay series to dating of fossil and modern corals using MC-ICPMS. Austral. J. Earth Sci. 55, 955 (2008).

4. Wallenius, M., Morgenstern, A., Apostolidis, C., Mayer, K.: Determination of the age of highly enriched uranium. Anal. Bioanal. Chem. 374, 379 (2002).

5. LaMont, S. P., Hall, G.: Uranium age determination by measuring the 230Th/234U ratio. J. Radioanal. Nucl. Chem. 264, 423 (2005).

6. Varga, Z., Surányi, G.: Production date determination of uranium-oxide materials by inductively coupled plasma mass spectrometry. Anal. Chim. Acta 599, 16 (2007).

7. Oak Ridge National Laboratory: DOE/K25 Archives.

8. Bateman, H.: Solution of a system of differential equations occurring in the theory of radioactive transformations. Proc. Cambridge Phil. Soc. 15, 423 (1910).