A quantum walk on a line and a Weyl equation in a space

Takuya Machida

Abstract Discrete-time quantum walks are considered a discretization of Dirac equations and the study for them has been getting attention since around 2000. In this paper, we focus on a quantum walk on a line related to a Weyl equation in a space. The quantum walker with two inner states, also interpreted as a quantum particle with the down-spin and the up-spin state in physics, spreads on the line and we analyze the chance of finding the walker at each position after it carries out a unitary evolution a lot of times. The result is reported as a long-time limit distribution from which one can see an approximation to the finding probability.

Keywords Quantum walk · Weyl equation · Long-time limit distribution

1 Introduction

Quantum walks have been studied in physics, mathematics, and quantum information theory [1-3]. Since they are considered a discretization of Dirac equations, large attention is paid to the quantum walks in physics. While quantum walks are applied to quantum search algorithms in quantum information theory [5,6], physicists work on a possibility that quantum walks are applied to topological insulators [7]. In this paper, we see a discrete-time quantum walk on a line related to a Weyl equation in a space [8], and study a probability distribution with which the quantum walker is observed at each position on the line. The result for the probability distribution will be supplied in a long-time limit distribution. The study for the limit distributions of the quantum walks started in 2002 [9] which led to a Weyl equation in 2005 [10], and many types of limit distributions have been discovered [6]. Particularly, the long-time limit...
distributions play an important role to tell us approximations to the probability distributions when quantum walkers have repeated their evolutions a lot of times.

2 A quantum walk and a Weyl equation

Let us start with the description of a discrete-time quantum walk on a line. The quantum walker with the down-spin and the up-spin state locates at integer points on the line \(\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\} \) in superposition, and its system is described on a tensor Hilbert space \(\mathcal{H}_p \otimes \mathcal{H}_s \). The Hilbert space \(\mathcal{H}_p \) represents the integer points on the line and it is spanned by the orthogonal normalized basis \(\{ |x\rangle : x \in \mathbb{Z} \} \). Also, the Hilbert space \(\mathcal{H}_s \) represents the spin states and it is spanned by the orthogonal normalized basis \(\{ |0\rangle, |1\rangle \} \) in which \(|0\rangle \) is interpreted as the down-spin state and \(|1\rangle \) as the up-spin state. We are, for instance, allowed to define

\[
|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad |1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix},
\]

for the Hilbert space \(\mathcal{H}_s \). The system of quantum walk at time \(t (= 0, 1, 2, \ldots) \), represented by \(|\Psi_t\rangle \in \mathcal{H}_p \otimes \mathcal{H}_s \), updates with unitary operations \(U_1 \) and \(U_2 \) assigned a parameter \(\theta \in [0, \pi) \),

\[
|\Psi_{t+1}\rangle = \begin{cases} U_1 |\Psi_t\rangle \ (t = 0, 2, 4, \ldots) \\ U_2 |\Psi_t\rangle \ (t = 1, 3, 5, \ldots) \end{cases},
\]

where

\[
U_1 = \sum_{x \in \mathbb{Z}} |x - 2\rangle \langle x| \otimes (-\sin^2 \theta) |0\rangle \langle 1| \\
+ |x - 1\rangle \langle x| \otimes \cos \theta \sin \theta \left(|0\rangle \langle 0| - |1\rangle \langle 1|\right) \\
+ |x\rangle \langle x| \otimes \cos^2 \theta \left(|0\rangle \langle 1| + |1\rangle \langle 0|\right) \\
+ |x + 1\rangle \langle x| \otimes \cos \theta \sin \theta \left(|0\rangle \langle 0| - |1\rangle \langle 1|\right) \\
+ |x + 2\rangle \langle x| \otimes (-\sin^2 \theta) |1\rangle \langle 0|,
\]

\[
U_2 = \sum_{x \in \mathbb{Z}} |x - 2\rangle \langle x| \otimes \cos^2 \theta |1\rangle \langle 0| \\
+ |x - 1\rangle \langle x| \otimes \cos \theta \sin \theta \left(|0\rangle \langle 0| - |1\rangle \langle 1|\right) \\
+ |x\rangle \langle x| \otimes (-\sin^2 \theta) \left(|0\rangle \langle 1| + |1\rangle \langle 0|\right) \\
+ |x + 1\rangle \langle x| \otimes \cos \theta \sin \theta \left(|0\rangle \langle 0| - |1\rangle \langle 1|\right) \\
+ |x + 2\rangle \langle x| \otimes \cos^2 \theta \ |0\rangle \langle 1|.
\]
We assume in this study that the walker launches with a localized initial state $|\Psi_0\rangle = |0\rangle \otimes (\alpha |0\rangle + \beta |1\rangle)$ where the complex numbers α and β are supposed to satisfy the constraint $|\alpha|^2 + |\beta|^2 = 1$. The quantum walker is observed at position $x \in \mathbb{Z}$ at time $t \in \{0, 1, 2, \ldots\}$ with probability

$$P(X_t = x) = \langle \Psi_t | \{ |x\rangle \otimes (|0\rangle \otimes |0\rangle + |1\rangle \langle 1|) \} |\Psi_t\rangle,$$

where X_t denotes the position of the walker at time t.

Here, we see the Fourier transform of the quantum walk, which will be used to compute a limit distribution as $t \to \infty$. Let i be the imaginary unit. Putting

$$\hat{U}_1(k) = 2 \cos \theta \sin \theta \cos k (|0\rangle \langle 0| - |1\rangle \langle 1|) + (\cos^2 \theta - e^{2ik\sin^2 \theta}) |0\rangle \langle 1| + (\cos^2 \theta - e^{-2ik\sin^2 \theta}) |1\rangle \langle 0|,$$

$$\hat{U}_2(k) = 2 \cos \theta \sin \theta \cos k (|0\rangle \langle 0| - |1\rangle \langle 1|) + (-\sin^2 \theta + e^{-2ik\cos^2 \theta}) |0\rangle \langle 1| + (-\sin^2 \theta + e^{2ik\cos^2 \theta}) |1\rangle \langle 0|,$$

we get the evolution of the Fourier transform $|\hat{\psi}_t(k)\rangle = \sum_{x \in \mathbb{Z}} e^{-ikx} \{ |x\rangle \otimes (|0\rangle \otimes |0\rangle + |1\rangle \langle 1|) \} |\Psi_t\rangle$ $(k \in [-\pi, \pi]),$

$$|\hat{\psi}_{t+1}(k)\rangle = \begin{cases} \hat{U}_1(k) |\hat{\psi}_t(k)\rangle & (t = 0, 2, 4, \ldots) \\ \hat{U}_2(k) |\hat{\psi}_t(k)\rangle & (t = 1, 3, 5, \ldots) \end{cases},$$

from which

$$|\hat{\psi}_{2t}(k)\rangle = \left(\hat{U}_2(k)\hat{U}_1(k)\right)^t |\hat{\psi}_0(k)\rangle,$$

$$|\hat{\psi}_{2t+1}(k)\rangle = \hat{U}_1(k) \left(\hat{U}_2(k)\hat{U}_1(k)\right)^t |\hat{\psi}_0(k)\rangle,$$

follow for $t = 0, 1, 2, \ldots$. Equation (8) has come up from Eq. (2). The initial state of the Fourier transform is computed to be $|\hat{\psi}_0(k)\rangle = \alpha |0\rangle + \beta |1\rangle$. We should note that the system is reproduced by inverse Fourier transform

$$|\Psi_t\rangle = \sum_{x \in \mathbb{Z}} |x\rangle \otimes \int_{-\pi}^{\pi} e^{ikx} |\hat{\psi}_t(k)\rangle \frac{dk}{2\pi}.$$

The Fourier transform of the quantum walk is actually interpreted as the solution to a Weyl equation in a space. Let C be the set of complex numbers. The system of Weyl equation in the three-dimensional momentum space at time $\tau \in [0, \infty)$, represented by $|\Psi^W(\tau)\rangle \in C^2$, is defined by a periodic equation: For $t = 0, 1, 2, \ldots$,

$$i \frac{d}{d\tau} |\Psi^W(\tau)\rangle = \begin{cases} \frac{\nu}{2} H_1(k) |\Psi^W(\tau)\rangle & (2t \leq \tau < 2t + 1) \\ -\frac{\nu}{2} H_2(k) |\Psi^W(\tau)\rangle & (2t + 1 \leq \tau < 2t + 2) \end{cases},$$

where ν is the momentum.
where
\[
H_1(k) = (\cos^2 \theta - \sin^2 \theta \cos 2k) \sigma_x + (\sin^2 \theta \sin 2k) \sigma_y + (2 \cos \theta \sin \theta \cos k) \sigma_z,
\]
(13)
\[
H_2(k) = (-\sin^2 \theta + \cos^2 \theta \cos 2k) \sigma_x + (\cos^2 \theta \sin 2k) \sigma_y + (2 \cos \theta \sin \theta \cos k) \sigma_z,
\]
(14)

with \(k \in [-\pi, \pi] \), in which \(\sigma_x, \sigma_y, \) and \(\sigma_z \) denote the Pauli operations \(\sigma_x = |0\rangle \langle 1| + |1\rangle \langle 0|, \sigma_y = -i |0\rangle \langle 1| + i |1\rangle \langle 0|, \) and \(\sigma_z = |0\rangle \langle 0| - |1\rangle \langle 1| \). We should note that the operations \(H_1(k) \) and \(H_2(k) \) are not only Hermitian operations but also unitary operations, that is, we indeed have \(H_1(k) = U_1(k) \) and \(H_2(k) = U_2(k) \).

Moving the parameter \(k \) on interval \([-\pi, \pi]\), we catch the traces of the triples \((\cos^2 \theta - \sin^2 \theta \cos 2k, \sin^2 \theta \sin 2k, 2 \cos \theta \sin \theta \cos k)\) and \((-\sin^2 \theta + \cos^2 \theta \cos 2k, \cos^2 \theta \sin 2k, 2 \cos \theta \sin \theta \cos k)\), as shown in Fig. 1. Given an initial state at time 0, we have the solution at the integer times: For

\[
|\Psi^W(2t)\rangle = \left(e^{i \frac{\pi}{2} H_2(k)} e^{-i \frac{\pi}{2} H_1(k)} \right)^t |\Psi^W(0)\rangle
\]
(15)
\[
|\Psi^W(2t+1)\rangle = e^{-i \frac{\pi}{2} H_1(k)} |\Psi^W(2t)\rangle
\]
(16)

Taking a look back at Eqs. \(\text{(13)} \) and \(\text{(14)} \), we realize that the system of Weyl equation at the integer times is equivalent to the Fourier transform of the quantum walk launching at time 0 with the initial state \(|\Psi^W(0)\rangle \) or \(-i |\Psi^W(0)\rangle\).
Back to the quantum walk, we assert a theorem for the finding probability defined in Eq. (15).

Theorem 1 Assume that $\theta \neq 0, \pi/2$. Let c and s be the contractions of $\cos \theta$ and $\sin \theta$ respectively. For a real number x, we have

$$
\lim_{t \to \infty} \mathbb{P} \left(\frac{X_t}{t} \leq x \right) = \int_{-\infty}^{\infty} \left\{ f(y)\nu_+(\alpha, \beta; y)I_D(y) + f(-y)\nu_-(\alpha, \beta; y)I_D(-y) \right\} dy,
$$

where

$$
f(x) = \frac{\left(x + 2\sqrt{D(x)}\right)^2}{2\pi(4 - x^2)\sqrt{D(x)}\sqrt{W_+(x)}\sqrt{W_-(x)}},
$$

$$
D(x) = 1 - 16c^4s^4 + 4c^4s^4x^2,
$$

$$
W_+(x) = 2(1 + 4c^2s^2) - (1 + 2c^2s^2)x^2 - x\sqrt{D(x)}.
$$

The limit distribution is obtained from the convergence of the r-th moments \(\mathbb{E}[(X_t/t)^r] \) ($r = 0, 1, 2, \ldots$) as $t \to \infty$, and the convergence can be computed by Fourier analysis. The method for the computation of the long-time limit distributions by Fourier analysis was used to quantum walks in 2004 for the first time [11] and it has been useful to find limit theorems (e.g. [12]). The r-th moments of X_t have a representation with the Fourier transform $|\tilde{\psi}_t(k)|$,

$$
\mathbb{E}[X_t^r] = \int_{-\pi}^{\pi} \langle \hat{\psi}_t(k) \rangle \left(i \frac{d}{dk} \langle \hat{\psi}_t(k) \rangle \right) \frac{dk}{2\pi}.
$$

Recalling Eqs. (9) and (10), we express the Fourier transform $|\tilde{\psi}_t(k)|$ on the eigenspace of the unitary operation $\hat{U}_2(k)\hat{U}_1(k)$. The operation $\hat{U}_2(k)\hat{U}_1(k)$ has two eigenvalues, represented by $\lambda_j(k) (j = 1, 2)$, and they are of the form $\lambda_j(k) = g(k) - (-1)^j i \sqrt{1 - g(k)^2}$ with $g(k) = 2c^2s^2\sin^22k + \cos2k$.

Fig. 2 The blue lines represent the probability distribution $P(X_t = x)$ at time $t = 500$ and the red points represent the right side of Eq. (36) as $t = 500$. The limit density function approximately reproduces the probability distribution as time t becomes large enough. The walker launches with the localized initial state at the origin, $|\psi_0\rangle = |0\rangle \otimes (1/\sqrt{2}|0\rangle + i/\sqrt{2}|1\rangle)$.

We, moreover, hold one of the expressions for the normalized eigenvectors $|v_j(k)\rangle$ $(j = 1, 2)$ associated to the eigenvalues $\lambda_j(k)$,

$$|v_j(k)\rangle = \frac{1}{\sqrt{N_j(k)}} \left[\begin{array}{c} (c^4 + s^4 - 2c^2s^2 \cos 2k) \sin 2k + (-1)^{j} \sqrt{1 - g(k)^2} \sin 2k \\ + \sqrt{1 - g(k)^2} \end{array} \right] |0\rangle,$$

$$+ \frac{1}{\sqrt{N_j(k)}} \left[2c \cos k \left(1 - \cos 2k - i(c^2 - s^2) \sin 2k \right) \right] |1\rangle,$$

where the normalized factors are computed to be

$$N_j(k) = \left\{ (c^4 + s^4 - 2c^2s^2 \cos 2k) \sin 2k + (-1)^{j} \sqrt{1 - g(k)^2} \right\}^2$$

$$+ 4c^2s^2 \cos 2k \left\{ (1 - \cos 2k)^2 + (c^2 - s^2)^2 \sin^2 2k \right\}.$$

The decomposition of the initial state $|\psi_0(k)\rangle = \sum_{j=1}^{2} \langle v_j(k)|\phi\rangle |v_j(k)\rangle$ gives the representations

$$|\psi_{2t}(k)\rangle = \sum_{j=1}^{2} \lambda_j^t(k) \langle v_j(k)|\phi\rangle |v_j(k)\rangle,$$

$$|\psi_{2t+1}(k)\rangle = \hat{U}_1(k) \sum_{j=1}^{2} \lambda_j^t(k) \langle v_j(k)|\phi\rangle |v_j(k)\rangle.$$

from which
\[
\frac{d^r}{dt^r} |\bar{\psi}_{2r}(k)\rangle = \left\{ (t)^r \sum_{j=1}^{2} \lambda_j(k)^{t-r} (\lambda_j^*(k))^r \langle v_j(k)|\phi\rangle |v_j(k)\rangle \right\} + O(t^{r-1}),
\]
\[(31) \]

\[
\frac{d^r}{dt^r} |\bar{\psi}_{2r+1}(k)\rangle = \bar{U}_1(k) \left\{ (t)^r \sum_{j=1}^{2} \lambda_j(k)^{t-r} (\lambda_j^*(k))^r \langle v_j(k)|\phi\rangle |v_j(k)\rangle \right\} + O(t^{r-1}),
\]
\[(32) \]
follow with \((t) = t(t-1) \cdots (t-r-1)\). We finally reach the limits
\[
\lim_{t \to \infty} \mathbb{E} \left[\left(\frac{X_{2t}}{2t} \right)^r \right] = \lim_{t \to \infty} \mathbb{E} \left[\left(\frac{X_{2t+1}}{2t+1} \right)^r \right] = \int_{-\pi}^{\pi} \sum_{j=1}^{2} \frac{i\lambda_j(k)}{2\lambda_j(k)} \left\| \langle v_j(k)|\phi\rangle \right\|^2 \frac{dk}{2\pi},
\]
\[(33) \]
where the function \(i\lambda_j(k)/2\lambda_j(k)\) is organized to be of the form
\[
\frac{i\lambda_j(k)}{2\lambda_j(k)} = (-1)^j \frac{\sin 2k}{\sin 2k} \frac{1 - 4c^2s^2 \cos 2k}{\sqrt{1 - 4c^2s^2(c^2s^2 \sin^2 2k + \cos 2k)}} \quad (j = 1, 2).
\]
\[(34) \]
Putting \(i\lambda_j(k)/2\lambda_j(k) = x\), we achieve a desired representation of the convergence
\[
\lim_{t \to \infty} \mathbb{E} \left[\left(\frac{X_t}{t} \right)^r \right] = \int_{-\infty}^{\infty} x^r \left\{ f(x)\nu_+(\alpha, \beta; x)I_D(x) + f(-x)\nu_-(\alpha, \beta; x)I_D(-x) \right\} dx,
\]
\[(35) \]
and it guarantees the limit distribution Eq. (17). The limit density function reproduces the finding probability \(P(X_t = x)\) \((x \in \mathbb{Z})\) as \(t \to \infty\) in approximation,
\[
P(X_t = x) \sim \frac{1}{t} \left\{ f \left(\frac{x}{t} \right) \nu_+ \left(\alpha, \beta; \frac{x}{t} \right) I_D \left(\frac{x}{t} \right) + f \left(-\frac{x}{t} \right) \nu_- \left(\alpha, \beta; \frac{x}{t} \right) I_D \left(-\frac{x}{t} \right) \right\},
\]
\[(36) \]
which is demonstrated in Fig. 2.

Due to the limits \(\lim_{x \to +\sqrt{1 + 4c^2s^2}} W_+(x) = 0\) and \(\lim_{x \to -\sqrt{1 + 4c^2s^2}} W_-(x) = 0\), the limit density function generally has four singular points, except for \(\theta = \pi/4, 3\pi/4\), that is,
\[
\lim_{x \to +\sqrt{1 + 4c^2s^2}} \frac{d}{dx} \lim_{t \to \infty} P \left(\frac{X_t}{t} \leq x \right) = \begin{cases} +\infty & (\theta \neq \frac{\pi}{4}, \frac{3\pi}{4}) \\ \frac{2}{\pi^2} & (\theta = \frac{\pi}{4}, \frac{3\pi}{4}) \end{cases},
\]
\[(37) \]
\[
\lim_{x \to -\sqrt{1 + 4c^2s^2}} \frac{d}{dx} \lim_{t \to \infty} P \left(\frac{X_t}{t} \leq x \right) = \begin{cases} +\infty & (\theta \neq \frac{\pi}{4}, \frac{3\pi}{4}) \\ \frac{2}{\pi^2} & (\theta = \frac{\pi}{4}, \frac{3\pi}{4}) \end{cases},
\]
\[(38) \]
\[
\lim_{x \to \pm \sqrt{1 + 4c^2s^2}} \frac{d}{dx} \lim_{t \to \infty} P \left(\frac{X_t}{t} \leq x \right) = +\infty, \quad (39)
\]

\[
\lim_{x \to \pm \sqrt{1 + 4c^2s^2}} \frac{d}{dx} \lim_{t \to \infty} P \left(\frac{X_t}{t} \leq x \right) = +\infty. \quad (40)
\]

Equations (37)–(40) are true for any complex numbers \(\alpha\) and \(\beta\) which satisfy the constraint \(|\alpha|^2 + |\beta|^2 = 1\) and determine the initial state of the quantum walk. Also, we should note that if the value \(\pi/4\) or \(3\pi/4\) is assigned to the parameter \(\theta\), the edges of compact support \(\pm \sqrt{1 - 4c^2s^2}\) take the value 0 and then the gap around the origin in the probability distribution closes. These facts are confirmed in Fig. 2.

3 Summary

Let us summarize this paper. We took care of a quantum walk on a line related to a Weyl equation in a space and analyzed the finding probability as \(t \to \infty\). As a result, one can say that the probability distribution \(P(X_t = x)\) as \(t \to \infty\) holds a gap around the position where the walker localizes at the initial time. In the past studies, two quantum walks whose probability distributions could have a gap, were also reported [13,14]. Both papers were studies for limit distributions of time-dependent quantum walks on a line. Grünbaum and Machida [13] analyzed a quantum walk with two inner states and Machida [14] handled a quantum walk with three inner states. The quantum walk in this study was a different type from the time-dependent quantum walks, but we observed a gap in its probability distribution and the fact was surely demonstrated as the limit law in Theorem 1. Such a discovery could lead to applications of quantum walks, for instance, the band gap theory in material science.

Acknowledgements

The author is supported by JSPS Grant-in-Aid for Young Scientists (B) (No.16K17648).

References

1. S.P. Gudder (1988), Quantum probability, Academic Press. Probability and Mathematical Statistics.
2. Y. Aharonov, L. Davidovich and N. Zagury (1993), Quantum random walks, Phys. Rev. A, 48(2), pp. 1687–1690.
3. D.A. Meyer (1996), From quantum cellular automata to quantum lattice gases, Journal of Statistical Physics, 85(5-6), pp. 551–574.
4. A. Ambainis, E. Bach, A. Nayak, A. Vishwanath and J. Watrous One-dimensional quantum walks. In: Proceedings of the thirty-third annual ACM symposium on Theory of computing, ACM, (2001), pp. 37–49.
5. S. Venegas-Andraca (2008), Quantum Walks for Computer Scientists, Morgan & Claypool Publishers, Vol. 1.
6. S.E. Venegas-Andraca (2012), Quantum walks: a comprehensive review, Quantum Information Processing, 11(5), pp. 1015–1106.
A quantum walk on a line and a Weyl equation in a space

7. H. Obuse, S. Ryu, A. Furusaki and C. Mudry (2014), Spin-directed network model for the surface states of weak three-dimensional \mathbb{Z}_2 topological insulators, Phys. Rev. B, 89(15), 155315.
8. H. Weyl (1929), Elektron und gravitation. i, Zeitschrift für Physik A Hadrons and Nuclei, 56(5), pp. 330–352.
9. N. Konno (2002), Quantum random walks in one dimension, Quantum Information Processing, 1(5), pp. 345–354.
10. M. Katori, S. Fujino and N. Konno (2005), Quantum walks and orbital states of a weyl particle, Phys. Rev. A, 72(1), 012316.
11. G. Grimmett, S. Janson and P.F. Scudo (2004), Weak limits for quantum random walks, Phys. Rev. E, 69(2), 026119.
12. T. Machida (2016), In: Research Advances in Quantum Dynamics. InTech pp. 27–51.
13. F.A. Grünbaum and T. Machida (2015), A limit theorem for a 3-period time-dependent quantum walk, Quantum Information and Computation, 15(1 & 2), pp. 50–60.
14. T. Machida (2016), A localized quantum walk with a gap in distribution, Quantum Information and Computation, 16(5& 6), pp. 515–529.