Particle-type dependence of azimuthal anisotropy and nuclear modification of particle production in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV

J. Adams,3 C. Adler,12 M.M. Aggarwal,25 Z. Ahammad,38 J. Amonett,17 B.D. Anderson,17 M. Anderson,5 D. Arkiphaskin,11 G.S. Averichev,10 S.K. Baidyal,16 J. Balewski,13 O. Barannikova,28,10 L.S. Barnby,3 J. Baudot,15 S. Bekele,24 V.V. Belaga,10 R. Bellwied,43 J. Berger,12 B.I. Bezverkhny,43 S. Bhardwaj,29 P. Bhaskar,38 A.K. Bhati,25 H. Bichsel,40 A. Billmeier,31 L.C. Bland,2 C.O. Blyth,3 E.E. Bonner,39 M. Botje,23 A. Boucham,34 A. Brandin,21 A. Bravar,2 R.V. Cadman,1 X.Z. Cai,33 H. Caines,43 M. Calderón de la Barca Sánchez,2 J. Carroll,18 J. Castillo,18 M. Castro,41 D. Cebra,5 P. Chaloupka,9 S. Chattopadhyay,38 H.F. Chen,32 Y. Chen,6 S.P. Chernenko,10 M. Cherney,8 A. Chikanian,34 B. Choi,36 W. Christie,2 J.P. Coffin,15 T.M. Cornier,41 J.G. Cramer,40 H.J. Crawford,4 D. Das,38 S. Das,38 A.A. Derevschikov,27 L. Didenko,2 T. Dietel,12 W.J. Dong,6 X. Dong,32,18 J.E. Draper,5 F. Du,43 A.K. Dubey,14 V.B. Dumin,10 J.C. Dunlop,3 M.R. Dutta Majumdar,38 V. Eckardt,19 L.G. Efimov,10 V. Emelianov,21 J. Engel,4 G. Eppley,30 B. Erazmus,34 M. Estienne,34 P. Fanchi,2 V. Faine,2 J. Faivre,15 R. Fatemi,13 K. Filimonov,18 P. Filip,9 E. Finch,43 Y. Fisyak,2 D. Flierl,12 K.J. Foley,2 J. Fu,42 C.A. Gagliardi,35 N. Gagnonvchi,10 J. Gans,34 M.S. Ganti,38 L. Gaudichet,34 M. Germain,15 F. Geurts,30 V. Ghazikhanian,6 P. Ghosh,38 J.E. Gonzalez,6 O. Grachov,41 V. Grigoriev,21 S. Gronstal,8 D. Grosnick,37 M. Guedon,15 S.M. Guertin,4 A. Gupta,46 E. Gushin,21 T.D. Gutierrez,5 T.J. Hallman,2 D. Hardtke,18 J.W. Harris,43 M. Heinz,43 T.W. Henry,35 S. Heppelmann,26 T. Herston,28 B. Hippolyte,43 A. Hirsch,28 E. Hjort,18 G.W. Hoffmann,36 M. Horsley,34 H.Z. Huang,6 S.L. Huang,32 T.J. Humanic,24 G. Igo,6 A. Ishihara,36 P. Jacobs,18 W.W. Jacobs,13 M. Janik,39 H. Jiang,6,18 I. Johnson,18 P.G. Jones,3 E.G. Judd,4 S. Kabana,43 M. Kaneta,18 M. Kaplan,7 D. Keane,17 V. Yu. Khodyrev,27 J. Kiryluk6 A. Kisiel,39 J. Klay,18 S.R. Klein,18 A. Klyachko,13 D.D. Koetke,37 T. Kollegger,12 M. Kopytine,17 L. Kotchenda,21 A.D. Kovaltenko,10 M. Kramer,22 P. Kravtsov,21 I.V. Kravtsov,21 K. Krueger,1 C. Kuhn,15 A.I. Kulikov,10 A. Kumar,25 G.J. Kunde,43 C.L. Kunz,7 R.Kh. Kutuev,11 A.A. Kuznetsov,10 M.A.C. Lamont,3 J.M. Landgraf,2 S. Lange,12 C.P. Lansdell,26 B. Lasiik,24 F. Laue,2 J. Laurent,2 A. Lebedev,2 R. Lednický,10 M.J. LeVine,2 C. Li,32 Q. Li,41 S.J. Lindenbaum,22 M.A. Lisa,24 F. Liu,24 L. Liu,24 Z. Liu,24 Q.J. Liu,40 T. Ljubicic,2 W.J. Llope,30 H. Long,9 R.S. Longacre,2 M. Lopez-Noriega,24 W.A. Love,7 T. Ludlam,2 D. Lynn,2 J. Ma,6 Y.G. Ma,33 D. Magestro,24 S. Mahajan,16 L.K. Mangatopa,14 R. Majka,43 R. Manweiler,37 S. Margetis,17 C. Markert,43 L. Martin,34 J. Marx,18 H.S. Matia,18 Yu.A. Matulenko,72 T.S. McShane,8 F. Meissner,18 Y. Melnick,27 A. Mescholin,27 M. Messer,2 M.L. Miller,43 Z. Milesovič,7 N.G. Minaev,27 C. Mironov,17 D. Mishra,14 J. Mitchell,30 B. Mohanty,38 L. Mohlar,28 C.F. Moore,36 M.J. Mora-Corral,19 D.A. Morozov,27 V. Morozov,18 M.M. de Moura,31 M.G. Munhoz,31 B.K. Nandi,38 S.K. Nayak,16 T.K. Nayak,38 J.M. Nelson,3 P. Nevskii,2 V.A. Nikitin,11 L.V. Nogach,27 B. Norman,17 S.B. Nurusheva,27 G. Ovchinnikov,18 A. Ogawa,2 V. Okorokov,21 M. Oldenburg,18 D. Olson,18 G. Paic,24 S.U. Pandey,41 S.K. Pal,38 Y. Panebratsev,10 S.Y. Panitkin,2 A.I. Pavlinov,41 T. Pawlak,39 V. Perevozchikov,24 C. Perkins,2 W. Peryt,39 V.A. Petrov,11 S.C. Phatak,14 R. Picha,5 M. Planinčar,14 J. Pluta,39 N. Porile,28 J. Porter,2 A.M. Poskanzer,18 M. Potekhin,2 E. Potrebenikov,10 B.V.K.S. Potukuchi,16 D. Prindl,40 C. Pruneau,41 J. Putschke,19 G. Rai,18 G. Rakness,13 R. Ranjivala,29 S. Ranjivala,29 O. Ravel,34 R.L. Ray,36 S.V. Razin,10 D. Reichhold,28 J.G. Reid,40 G. Renaud,34 F. Retiere,18 A. Ridger,21 H.G. Ritter,18 J.B. Roberts,30 O.V. Rogachevskiy,10 J.L. Romero,5 A. Rose,41 C. Roy,34 L.J. Ruan,32 R. Sahoo,14 I. Sakrejda,18 S. Salur,43 J. Sandweiss,43 I. Savin,11 J. Schambach,36 R.P. Scharenberg,28 N. Schmitz,19 L.S. Schroeder,18 K. Schweda,18 J. Seger,8 D. Seliverstov,21 P. Seyboth,19 E. Shalaliev,10 M. Shao,32 M. Sharma,25 K.E. Shestakov,27 S.S. Shmamishkin,10 R.N. Singaraju,38 F. Simon,19 G. Skoro,10 N. Smirnov,43 R. Snellings,23 G. Sood,25 P. Sorensen,18 J. Sowinskas,13 H.M. Spinka,1 B. Srivastava,28 S. Stanislaus,37 R. Stock,32 A. Stolpovsky,41 M. Strikhanov,21 B. Stringfellow,28 C. Struck,12 A.A.P. Suade,13 E. Sugarbaker,24 C. Suire,2 M. Sumbera,9 B. Surrow,2 T.J.M. Symons,18 A. Szanto de Toledo,31 P. Szarvas,39 A. Tai,9 J. Takahashi,31 A.H. Tang,2,23 D. Thein,6 J.H. Thomas,18 V. Tikhonov,21 M. Tokarev,10 M.B. Tonjes,20 T.A. Trainor,40 S. Trendenthal,6 R.E. Tribble,35 M.D. Trivedi,38 V. Trofimov,21 O. Tsai,6 T. Ullrich,2 D.G. Underwood,1 G. Van Buren,2 A.M. VanderMolen,20 A.N. Vasilev,27 M. Vasilev,35 S.E. Vigdor,13 Y.P. Vinyo,38 S.A. Voloshin,41 W. Waggoner,8 F. Wang,28 G. Wang,17 X.L. Wang,32 Z.M. Wang,32 H. Ward,36 J.W. Watson,17 R. Wells,24 G.D. Westfall,20 C. Whitten Jr.,6 H. Wieman,24 R. Willson,24 S.W. Wissink,13 R. Witt,43 J. Wood,6 J. Wu,32 N. Xu,18 Z. Xu,2 Z.Z. Xu,32 E. Yamamoto,18 P. Yepes,30 V.I. Yurevich,10 Y.V. Zanevski,10 I. Zborovskij39 H. Zhang,43,2 W.M. Zhang,17 Z.P. Zhang,32 P.A. Zholnierzuk,13 R. Zoukarneva,11 J. Zoulkarnena,11 and A.N. Zubarev10
We present STAR measurements of the azimuthal anisotropy parameter v_2 and the binary-collision scaled centrality ratio R_{CP} for kaons and lambdas ($\Lambda + \bar{\Lambda}$) at mid-rapidity in Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$. In combination, the v_2 and R_{CP} particle-type dependencies contradict expectations from partonic energy loss followed by standard fragmentation in vacuum. We establish $p_T \approx 5 \text{ GeV}/c$ as the value where the centrality dependent baryon enhancement ends. The K_0^0 and $\Lambda + \bar{\Lambda}$ v_2 values are consistent with expectations of constituent-quark-number scaling from models of hadron formation by parton coalescence or recombination.

PACS numbers: 25.75.Ld, 25.75.Dw

The azimuthal anisotropy and system-size dependence of identified particle yields at moderate and high transverse momentum (p_T) may provide insight into the existence and properties of a deconfined partonic state in ultra-relativistic heavy-ion collisions [1, 2, 3, 4]. The azimuthal anisotropy parameter v_2 is thought to be sensitive to the earliest stages of heavy-ion collisions [5]. The parameters v_n are derived from a Fourier expansion of the azimuthal component (ϕ) of the momentum-space distribution; $dN/d\phi \propto 1 + \sum_n 2v_n \cos n(\phi - \Psi_{RP})$.

(Dated: March 30, 2022)
where Ψ_{RP} is the reaction-plane angle. Previous measurements at the Relativistic Heavy-Ion Collider (RHIC) established that v_2 for charged hadrons rises with p_T for $p_T < 2$ GeV/c and then saturates \[1, 3\]. At low p_T ($p_T < 1$ GeV/c), the dependence of v_2 on particle mass $\[2, 4\]$ is consistent with hydrodynamic calculations where local thermal equilibrium of partons has been assumed $\[2, 3, 4\]$.

Surface emission has been considered in relation to the large saturated v_2 at higher p_T $\[12\]$. The existence of a dense, opaque medium in which fast partons suffer energy loss can naturally lead to a surface emission pattern.

Parton energy loss in a dense medium may also suppress high p_T particle yields in central Au+Au collisions at RHIC $\[13\]$. High p_T particles are produced from initial hard parton scatterings whose cross-sections are assumed to be proportional to the number of binary nucleon-nucleon collisions N_{bin}. The N_{bin} scaled centrality ratio R_{CP} is a measure of the particle production’s dependence on the collision system’s size and density:

$$R_{CP}(p_T) = \frac{[\langle dN/dp_T \rangle / N_{\text{bin}}]_{\text{Central}}}{[\langle dN/dp_T \rangle / N_{\text{bin}}]_{\text{Peripheral}},}$$

where $R_{CP} = 1$ if particle production is equivalent to a superposition of independent nucleon-nucleon collisions. In central Au+Au collisions at $\sqrt{s_{NN}} = 130$ and 200 GeV, the moderate and high p_T neutral pion and charged hadron yields are suppressed relative to N_{bin} scaling (i.e. R_{CP} and the closely related nuclear modification factor R_{AA} are below unity) $\[12, 13\]$. For $1 < p_T < 4.5$ GeV/c, the neutral pion yield is more strongly suppressed than the charged hadron yield, indicating a particle-type dependence for R_{CP}. Within the framework of parton energy loss followed by standard fragmentation, the suppression and v_2 both reflect the magnitude of the energy loss. The particle-type dependence of v_2 and R_{CP} will provide a stringent test for energy loss models.

Quark coalescence or recombination $\[1, 2, 3, 5\]$ models for hadron formation are an alternative to the fragmentation models commonly used in energy loss calculations $\[12\]$. In these models, a particle-type dependence develops at hadronization with baryons developing a larger v_2 and R_{CP} than mesons. In this letter we present measurements of v_2 and R_{CP} at mid-rapidity ($|y| < 1$) for K_S^0 and $A + \bar{A}$ for $0.2 < p_T < 6.5$ and $0.4 < p_T < 6.0$ GeV/c respectively along with R_{CP} for K^+ from $0.2 < p_T < 3.0$ GeV/c in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. The K_S^0 and $A + \bar{A}$ analysis extends the measurement of v_2 and R_{CP} for identified particles to a p_T range where previously only neutral pion R_{CP} had been measured and establishes the particle-type dependence of v_2 and R_{CP} at intermediate p_T (1.5–4.0 GeV/c) and high p_T ($p_T > 5$ GeV/c).

This analysis uses 1.6×10^6 minimum–bias trigger events and 1.5×10^6 central trigger events from the Solenoidal Tracker at RHIC (STAR) experiment $\[10\]$. The K_S^0 and $A(\Lambda)$ were reconstructed from the topology of the decay channels, $K_S^0 \rightarrow \pi^+ + \pi^-$ and $A(\Lambda) \rightarrow p + \pi^- (\bar{p} + \pi^+)$. A detailed description of the analysis, such as track quality, decay vertex topology cuts, and detection efficiency, can be found in Refs. $\[3, 17, 18\]$. The K^+ are identified from one-prong decays as described in Ref. $\[19\]$. For both v_2 and R_{CP}, no difference is seen between A and \bar{A} within statistical errors. The reaction-plane angle is estimated from the azimuthal distribution of primary tracks $\[20\]$ with $0.1 < p_T < 2.0$ GeV/c and $|\eta| < 1.0$, where η is the pseudorapidity. To avoid auto-correlations, tracks associated with a K_S^0, A or \bar{A} decay vertex are excluded from the calculation of Ψ_{RP}.

Table I: The relative systematic errors (%) from background (bg) and non-flow effects (n-f) for v_2 (0–80%), and from background and the efficiency calculation (eff) for R_{CP} (0–5%/40–60%) are listed for three p_T values.

p_T (GeV/c)	K_S^0	K^+	$A + \bar{A}$
1.0	1.0	1.0	1.0
2.5	2.5	2.5	2.5
4.0	4.0	4.0	4.0

Systematic errors in the calculation of v_2 are due to correlations unrelated to the reaction plane (non-flow effects) and uncertainty in estimates of the background in the invariant mass distributions. Table II lists the dominant systematic errors. The systematic error in v_2 associated with the yield extraction (background) is found to be small and the non-flow systematic error is dominant. We estimate the non-flow contribution by comparing charged particle v_2 from a reaction-plane analysis and a four-particle cumulant analysis $\[4\]$. The four-particle cumulant analysis is thought to be insensitive to non-flow effects but leads to larger statistical errors. Any difference between the methods is assumed to arise from non-flow contributions. The non-flow contribution to v_2 has not been established experimentally for identified particles. We examined the effect of standard jet fragmentation on K_S^0 and $A + \bar{A}$ v_2 using superimposed p+p collisions generated with PYTHIA $\[21\]$. Within the measured p_T region, no significant differences are seen between $A + \bar{A}$ and K_S^0 non-flow effects from this source. We assume a similar magnitude of non-flow contribution to $A + \bar{A}$ and K_S^0 v_2 and use the difference between the charged particle v_2 from a reaction-plane and a four-particle cumulant analysis to estimate the upper limit of possible non-flow contributions to both $A + \bar{A}$ and K_S^0 v_2. Contributions to the systematic errors for R_{CP} come from the determination of the detector efficiency, extraction of the yields and uncertainty in the model calculation.
of N_{bin}.

Fig. 1 shows minimum-bias v_2 for K_S^0, $\Lambda + \bar{\Lambda}$ and charged hadrons (h^\pm). The analysis method used to obtain the charged hadron v_2 is described in Ref. [9]. Fig. 1 also shows hydrodynamic model calculations of v_2 for pions, kaons, protons, and lambdas [10]. At low p_T, v_2 is consistent with hydrodynamical calculations, in agreement with the previous results at $\sqrt{s_{NN}} = 130$ GeV [5]. This Letter establishes the particle-type dependence of the v_2 saturation at intermediate p_T. In contrast to hydrodynamical calculations, where at a given p_T, heavier particles have smaller v_2 values, at intermediate p_T, $v_2^\Lambda > v_2^K$. The p_T scale where v_2 deviates from the hydrodynamical prediction is ~ 2.5 GeV/c for $\Lambda + \bar{\Lambda}$ and ~ 1 GeV/c for K_S^0.

Fig. 2 shows v_2 of K_S^0 and $\Lambda + \bar{\Lambda}$ as a function of p_T for 30–70%, 5–30%, and 0–5% of the collision cross section. The error bars represent statistical errors only. The non-flow systematic errors for the 30–70%, 5–30% and 0–5% centralities are -25%, -20% and -80% respectively.

Fig. 2 shows v_2 of K_S^0 and $\Lambda + \bar{\Lambda}$ for three centrality intervals: 30–70%, 5–30%, and 0–5% of the geometrical cross section. In each centrality bin, $v_2(p_T)$ rises at low p_T and saturates at intermediate p_T. The values of v_2 at saturation are particle-type and centrality dependent.

If partons that fragment into (anti-)lambdas lose more energy than those that fragment into kaons, a particle-type dependence for v_2 may develop at high p_T with $v_2^\Lambda > v_2^K$. In this case, $\Lambda + \bar{\Lambda}$ yields should be more suppressed than kaon yields. Fig. 3 shows R_{CP} for K_S^0, K^\pm, and $\Lambda + \bar{\Lambda}$ using the 5% most central collisions, normalized by peripheral collisions (40-60% and 60-80%). For charged hadrons, these peripheral bins approximately follow N_{bin} scaling without medium modification [13]. The bands in Fig. 3 show the expected values of R_{CP} for binary and participant (N_{part}) scaling including systematic variations from the calculation [13]. For most of the intermediate p_T region, R_{CP} for $\Lambda + \bar{\Lambda}$ is similar to expectations of N_{bin} scaling and $R_{\text{CP}}^{K_S^0} < R_{\text{CP}}^{\Lambda}$. The p_T scales associated with the saturation and reduction of R_{CP} also depend on the particle type. For both species, the p_T where R_{CP} begins to decrease approximately coincides to the p_T where v_2 in Fig. 1 saturates. At high p_T ($p_T > 5.0$ GeV/c), R_{CP} values for K_S^0 and $\Lambda + \bar{\Lambda}$ are consistent with the value for charged hadron R_{CP}, indicating that the baryon enhancement observed at intermediate p_T in central Au+Au collisions ends at $p_T \approx 5$ GeV/c. The particle-type dependence of v_2 and R_{CP} at intermediate p_T are in contradiction to expectations from energy loss followed by fragmentation in vacuum.

Nuclear modifications such as shadowing and initial-state rescattering may affect R_{CP} but they are not expected to give rise to such a large variation with particle-type (e.g. [21]). At lower beam energy, the enhancement of yields in p+A collisions at intermediate p_T (i.e. the Cronin effect) is larger for baryons than mesons [22]. The Cronin effect has been attributed to initial-state rescattering, and is expected to decrease with increasing beam energy [23]. Alternatively, a strong particle-type dependence of the Cronin effect may indicate a nuclear modification to the parton fragmentation. Although the effects of shadowing, initial-state rescattering and non-flow deserve further investigation, the particle-type and p_T dependence of v_2 and R_{CP} may reveal a cross-over from a p_T region dominated by bulk partonic matter hadronization to one dominated by single parton fragmentation. Our measurements indicate that the cross-over would occur at $p_T \approx 4$–5 GeV/c.

The larger $\Lambda + \bar{\Lambda}$ R_{CP} at intermediate p_T shows that the $\Lambda + \bar{\Lambda}$ yield increases with parton density faster than the kaon yield. Multi-parton mechanisms such as gluon junctions [24], quark coalescence, or recombination can naturally lead to a stronger dependence on parton density for baryon production than meson production. Models using coalescence or recombination mechanisms in particle production predict that at intermediate p_T v_2 will follow a number-of-constituent-quark scaling. Fig. 2 shows v_2 of K_S^0 and $\Lambda + \bar{\Lambda}$ as a function of p_T, where...
At mid-rapidity calculated using centrality intervals, \(\Lambda \) are \(\frac{2}{s_{\Lambda}} \) at intermediate \(R_{CP} \), within errors, and \(\Lambda + \bar{\Lambda} \) are consistent with the value for charged hadrons, indicating that the centrality dependent baryon enhancement observed at intermediate \(p_T \) ends near \(p_T = 5 \) GeV/c. The measured features at intermediate \(p_T \) are consistent with the presence of multi-parton particle formation mechanisms beyond the framework of parton energy loss followed by standard fragmentation. The particle- and \(p_T \)-dependence of \(v_2 \) and \(R_{CP} \) constitute a unique means to investigate the anisotropy and hadronization mechanism of the bulk dense matter formed in nucleus-nucleus collisions at RHIC.

Acknowledgments: We thank the RHIC Operations Group and RCF at BNL, and the NERSC Center at LBNL for their support. This work was supported in part by the HENP Divisions of the Office of Science of the U.S. DOE; the U.S. NSF; the BMBF of Germany; IN2P3, RA, RPL, and EMN of France; EPSRC of the United Kingdom; FAPESP of Brazil; the Russian Ministry of Science and Technology; the Ministry of Education and the NNSFC of China; SFOF of the Czech Republic, DAE, DST, and CSIR of the Government of India; the Swiss NSF.

[1] Z. W. Lin and C. M. Ko, Phys. Rev. Lett. 89, 202302 (2002).
[2] D. Molnar and S. A. Voloshin, Phys. Rev. Lett. 91, 092301 (2003).
[3] R. C. Hwa and C. B. Yang, Phys. Rev. C 67, 064902 (2003); R. J. Fries, B. Muller, C. Nonaka and S. A. Bass, Phys. Rev. Lett. 90, 202303 (2003).

[4] V. Greco, C. M. Ko and P. Levai, Phys. Rev. Lett. 90, 202302 (2003).

[5] J.-Y. Ollitrault, Phys. Rev. D 46, 229(1992); H. Sorge, Phys. Rev. Lett. 82, 2048(1999).

[6] STAR Collaboration, C. Adler et al., Phys. Rev. C 66, 034904 (2002).

[7] STAR Collaboration, C. Adler et al., Phys. Rev. Lett. 90, 032301 (2003).

[8] STAR Collaboration, C. Adler et al., Phys. Rev. Lett. 87, 182301 (2001); PHENIX Collaboration, S. S. Adler et al., e-print nucl-ex/0305013.

[9] STAR Collaboration, C. Adler et al., Phys. Rev. Lett. 89, 132301 (2002).

[10] P. Huovinen, P.F. Kolb, U. Heinz, P. V. Ruuskanen, and S. A. Voloshin, Phys. Lett. B 503, 58(2001).

[11] D. Teaney, J. Lauret, and E. V. Shuryak, Phys. Rev. Lett. 86, 4783(2001).

[12] E. V. Shuryak, Phys. Rev. C 66, 027902 (2002).

[13] M. Gyulassy and X. N. Wang, Nucl. Phys. B 420, 583 (1994); R. Baier, D. Schiff and B. G. Zakharov, Ann. Rev. Nucl. Part. Sci. 50, 37 (2000); X. N. Wang, Phys. Rev. C 61, 064910 (2000); E. Wang and X. N. Wang, Phys. Rev. Lett. 89, 162301 (2002).

[14] PHENIX Collaboration, K. Adcox et al., Phys. Rev. Lett. 88, 022301 (2002); STAR Collaboration, C. Adler et al., Phys. Rev. Lett. 89, 202301 (2002); PHENIX Collaboration, S. S. Adler et al., Phys. Rev. Lett. 91, 072301 (2003).

[15] STAR Collaboration, J. Adams et al., e-print nucl-ex/0305015.

[16] STAR Collaboration, C. Adler et al., Nucl. Instr. Meth. A 499, 624 (2003).

[17] STAR Collaboration, C. Adler et al., Phys. Rev. Lett. 89, 092301 (2002).

[18] P. Sorensen, Ph.D. thesis, University of California–Los Angeles, 2003; e-print nucl-ex/0309003.

[19] STAR Collaboration, C. Adler et al., e-print nucl-ex/0206008. B. Norman, Ph.D. thesis, Kent State University, 2003.

[20] A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998).

[21] T. Sjöstrand, P. Eden, C. Friberg, L. Lonnblad, G. Miu, S. Mrenna and E. Norrbin, Comput. Phys. Commun. 135, 238 (2001).

[22] P.B. Straub et al., Phys. Rev. Lett. 68, 452(1992).

[23] A. Accardi, e-print hep-ph/0212148.

[24] M. Lev and B. Petersson, Z. Phys. C 21, 155 (1983).

[25] J.W. Cronin et al., Phys. Rev. Lett. 31, 1426(1973); J.W. Cronin et al., Phys. Rev. D 11, 3105(1975); D. Antreasyan et al., Phys. Rev. D 19, 764(1979).

[26] S.E. Vance and M. Gyulassy, Phys. Rev. Lett. 83, 1735 (1999).