SHUFFLE QUADRI-ALGEBRAS AND CONCATENATION

MOHAMED BELHAJ MOHAMED AND DOMINIQUE MANCHON

ABSTRACT. In this article, we study the shuffle quadri-algebra \mathcal{H}. We prove the existence of some relations between quadri-algebra laws which constitute shuffle product, the concatenation product and the deconcatenation coproduct. We also show that \mathcal{H} has two module-algebra structures on (\mathcal{H}, Π).

MSC Classification: 05E40, 17A30.
Keywords: quadri-algebra, dendriform algebra, shuffle, concatenation, module-algebra.

Contents

1. Introduction 1
2. Dendriform algebras 3
3. Quadri-algebras 4
4. from quadri-algebras to dendriform algebras 5
5. Shuffle quadri-algebra 5
6. Module-algebra structures on Shuffle quadri-algebra 19
References 23

1. Introduction

A dendriform algebra is a vector space equipped with an associative product which can be written as a sum of two operations $≺$ and $≻$ called left and right respectively, which satisfy the following three operations:

\[
(x ≺ y) ≺ z = x ≺ (y ≺ z) + x ≺ (y ≻ z) \\
(x ≻ y) ≺ z = x ≻ (y ≺ z) \\
(x ≺ y) ≻ z + (x ≻ y) ≻ z = x ≻ (y ≻ z)
\]

They were introduced by Jean-Louis Loday [11, §5] in 1995 with motivation from algebraic K-theory and have been studied by other authors in different domains [1, 5, 6, 7, 12, 13, 16].

In 2004, Marcelo Aguiar and Jean-Louis Loday introduced the notion of quadri-algebra in [2]. A quadri-algebra is an associative algebra the multiplication of which can be decomposed as the sum of four operations $\downarrow, \uparrow, \leftarrow$ and \rightarrow satisfying nine axioms. Two dendriform

\textit{Date:} June 2017.
structures are attached to a quadri-algebra: the first dendriform structure is given by the two operations \(\succ \) and \(\prec \) such that:

\[
\begin{align*}
x \succ y & := x \uparrow y + x \downarrow y, \\
x \prec y & := x \downarrow y + x \uparrow y,
\end{align*}
\]

and the second is given by the two operations \(\vee \) and \(\wedge \) where:

\[
\begin{align*}
x \vee y & := x \downarrow y + x \uparrow y, \\
x \wedge y & := x \uparrow y + x \downarrow y.
\end{align*}
\]

Quadri-algebras were studied by Loïc Foissy together with quadri-coalgebras and quadri-bialgebras [9].

In this article we revisit the canonical example of shuffle quadri-algebra, called also the symmetric functions quadri-algebra, [4, 11, 13, 15] treated by Marcelo Aguiar, Jean-Louis Loday and Loïc Foissy. We prove that there exists relations between the quadri-algebra laws, the concatenation product and the deconcatenation coproduct. We show that, for any \(u, v, w \in \mathcal{H} \), we have:

\[
\begin{align*}
u \uparrow (vw) & = \sum_{u=u^1u^2} (u^1 \downarrow v)(u^2 \wedge w) \\
& = \sum_{u=u^1u^2} (u^1 \succ v)(u^2 \wedge w), \\
u \downarrow (vw) & = \sum_{u=u^1u^2} (u^1 \downarrow v)(u^2 \vee w) \\
& = \sum_{u=u^1u^2} (u^1 \succ v)(u^2 \downarrow w), \\
u \uparrow (vw) & = \sum_{u=u^1u^2} (u^1 \wedge v)(u^2 \vee w) \\
& = \sum_{u=u^1u^2} (u^1 \prec v)(u^2 \downarrow w), \\
u \downarrow (vw) & = \sum_{u=u^1u^2} (u^1 \wedge v)(u^2 \wedge w) \\
& = \sum_{u=u^1u^2} (u^1 \prec v)(u^2 \uparrow w).
\end{align*}
\]
We derive from these results relations between the dendriform laws, the concatenation and the deconcatenation coproduct. We show that, for any $u, v, w \in H$, we have:

$$u \wedge (vw) = u \leftarrow (vw) + u \ll (vw)$$

$$= \sum_{u = u^1 u^2} (u^1 \lor v)(u^2 \land w),$$

$$u \prec (vw) = u \ll (vw) + u \leftarrow (vw)$$

$$= \sum_{u = u^1 u^2} (u^1 \prec v)(u^2 \succ w),$$

$$u \lor (vw) = u \leftarrow (vw) + u \ll (vw)$$

$$= \sum_{u = u^1 u^2} (u^1 \lor v)(u^2 \lor w),$$

$$u \succ (vw) = u \ll (vw) + u \leftarrow (vw)$$

$$= \sum_{u = u^1 u^2} (u^1 \succ v)(u^2 \succ w),$$

and consequently, two relations between the shuffle product, the concatenation and the deconcatenation coproduct. We show that, for any $u, v, w \in H$, we have:

$$u \equiv (vw) = \sum_{u = u^1 u^2} (u^1 \lor v)(u^2 \equiv w)$$

$$= \sum_{u = u^1 u^2} (u^1 \equiv v)(u^2 \equiv w).$$

At the end of this article, we prove the existence of two module-algebra structures on H given by \lor and \succ, in other words \lor and \succ verify:

$$m \circ (\lor \otimes \lor) \circ \tau_{23} \circ (\Delta \otimes I \otimes I) = \lor \circ (I \otimes m),$$

$$m \circ (\succ \otimes \succ) \circ \tau_{23} \circ (\Delta \otimes I \otimes I) = \succ \circ (I \otimes m).$$

Acknowledgements: we thank Loïc Foissy for his useful remarks.

2. Dendriform algebras

A dendriform algebra is a vector space D together with two operations $\prec: D \otimes D \to D$ and $\succ: D \otimes D \to D$, called left and right respectively, such that:

$$(x \prec y) \prec z = x \prec (y \prec z) + x \prec (y \succ z)$$

$$(x \succ y) \prec z = x \succ (y \prec z)$$

$$(x \prec y) \succ z + (x \succ y) \succ z = x \succ (y \succ z).$$
Dendriform algebras were introduced [11, §5]. See also [1, 5, 6, 7, 12, 13, 16] for additional work on this subject. Defining a new operation by:

\[x \star y := x \prec y + x \succ y \]

permits us to rewrite axioms (1) as:

\[(x \prec y) \prec z = x \prec (y \star z)\]

\[(x \succ y) \prec z = x \succ (y \prec z)\]

\[(x \star y) \succ z = x \succ (y \succ z)\].

By adding the three relations we see that the operation \(\star\) is associative. For this reason, a dendriform algebra may be regarded as an associative algebra \((D, \star)\) for which the multiplication \(\star\) can be decomposed as the sum of two coherent operations.

3. Quadri-algebras

In this section, we use definitions and results on quadri-algebra structures given by Marcelo Aguiar and Jean-Louis Loday in [2] and Loïc Foissy in [9]. A quadri-algebra structure consists in splitting an associative product into four operations, which in turn gives rise to two distinct dendriform structures.

Definition 1. A quadri-algebra is a vector space \(Q\) together with four operations:

\[\downarrow, \nearrow, \nwarrow, \swarrow : Q \otimes Q \rightarrow Q, \]

satisfying the nine axioms below. In order to state them, consider the following operations:

\[(x \succ y) := x \nearrow y + x \nwarrow y\]

\[(x \prec y) := x \swarrow y + x \searrow y\]

\[(x \vee y) := x \downarrow y + x \uparrow y\]

\[(x \wedge y) := x \nearrow y + x \searrow y\]

and:

\[(x \star y) := x \nearrow y + x \nwarrow y + x \swarrow y + x \searrow y\]

\[= x \succ y + x \prec y\]

\[= x \vee y + x \wedge y.\]

The nine axioms, stated by Marcelo Aguiar and Jean-Louis Loday in [2] are:

\[(x \nwarrow y) \nwarrow z = x \nwarrow (y \star z)\]

\[(x \nearrow y) \nwarrow z = x \nearrow (y \star z)\]

\[(x \swarrow y) \nwarrow z = x \swarrow (y \star z)\]

\[(x \prec y) \searrow z = x \searrow (y \star z)\]

\[(x \succ y) \searrow z = x \searrow (y \star z)\]

\[(x \star y) \searrow z = x \searrow (y \star z)\]
We refer to the operations $\nwarrow, \swarrow, \nearrow, \searrow$ as southeast, northeast, northwest, and southwest, respectively. Accordingly, we use north, south, west, and east for \wedge, \vee, \prec and \succ. The axioms are displayed in the form of a 3×3 matrix. We will make use of standard matrix terminology (entries, rows and columns) to refer to them.

Let Q be a quadri-algebra. Following [9], we extend the four products to $\bar{Q} \otimes \bar{Q} := (K \otimes Q) \oplus (Q \otimes Q) \oplus (Q \otimes K)$ in the following way: if $a \in Q$,

$$
a \nwarrow 1 = a \quad a \swarrow 1 = 0 \quad 1 \nwarrow a = 0 \quad 1 \swarrow a = 0
$$

$$
a \nearrow 1 = 0 \quad a \searrow 1 = 0 \quad 1 \nearrow a = 0 \quad 1 \searrow a = a
$$

It follows that we have for any $a \in Q$:

$$
a \wedge 1 = a \quad 1 \wedge a = 0 \quad 1 \vee a = a \quad a \vee 1 = 0
$$

$$
a \succ 1 = 0 \quad 1 \succ a = a \quad 1 \prec a = 0 \quad a \prec 1 = a
$$

4. FROM QUADRI-ALGEBRAS TO DENDRIFORM ALGEBRAS

The three column sums in the matrix of quadri-algebra axioms yield:

$$(x \prec y) \prec z = x \prec (y \star z), \quad (x \succ y) \prec z = x \succ (y \prec z) \quad \text{and} \quad (x \star y) \succ z = x \succ (y \succ z).$$

Thus, endowed with the operations west for left and east for right, Q is a dendriform algebra. We denote it by Q_h and call it the horizontal dendriform algebra associated to Q. Considering instead the three row sums in the matrix of quadri algebra axioms yields:

$$(x \wedge y) \wedge z = x \wedge (y \star z), \quad (x \vee y) \wedge z = x \vee (y \wedge z) \quad \text{and} \quad (x \star y) \vee z = x \vee (y \vee z).$$

Thus, endowed with the operations north for left and south for right, Q is a dendriform algebra. We denote it by Q_v and call it the vertical dendriform algebra associated to Q. The associative operations corresponding to the dendriform algebras Q_h and Q_v by means of (2) coincide, according to (8).

5. SHUFFLE QUADRI-ALGEBRA

Let k be a field, and let V be a k-vector space. Let $\mathcal{H} = T(V) = \bigoplus_{n \geq 0} V^\otimes n$ be the tensor algebra of V, where we denote by Δ the deconcatenation coproduct and by m the concatenation product. For all $u, v \in \mathcal{H}$, we have:

$$m(u \otimes v) = uv, \quad (9)$$

and

$$\Delta(u) = \sum_{u = u^1 \otimes u^2} u^1 \otimes u^2, \quad (10)$$
The shuffle product \(\triangledown \) is defined for any \(u = u_1u_2 \ldots u_p \) and \(v = u_{p+1}u_{p+2} \ldots u_{p+q} \) in \(H \) by:

\[
(11) \quad u \triangledown v = \sum_{\sigma \in \text{Sh}(p,q)} u_{\sigma^{-1}(1)}u_{\sigma^{-1}(2)} \ldots u_{\sigma^{-1}(p+q)},
\]

where \(\text{Sh}(p, q) \) denotes the set of \(\sigma \in S_{p+q} \) verifying \(\sigma(1) < \ldots < \sigma(p) \) and \(\sigma(p+1) < \ldots < \sigma(q) \).

The triple \((H, \triangledown, \Delta)\) becomes a commutative Hopf algebra called the shuffle Hopf algebra. The shuffle algebra of a vector space \(V \) provides an example of a commutative quadri-algebra (see Remark [1]). The quadri-algebra laws on \(H \) are defined by Marcelo Aguiar and Jean-Louis Loday in [2] recursively on the degrees of \(u \) and \(v \). Let \(a, b, c, d \in V \) and \(w, \theta \in V^{\otimes n} \).

1. If \(u = 1 \) and \(v \in H \), we have:

\[
1 \triangledown v = v
\]

and:

\[
1 \uparrow v = 0, \quad 1 \downarrow v = v, \\
1 \downarrow v = 0, \quad 1 \uparrow v = v,
\]

which immediately gives:

\[
1 \rhd v = v \quad 1 \lhd v = 0 \\
1 \uparrow v = 0 \quad 1 \downarrow v = v.
\]

2. If \(u, v \in V \), we have:

\[
u \triangledown v = uv + vu
\]

and:

\[
u \uparrow v = vu, \quad u \downarrow v = 0, \\
u \downarrow v = uv, \quad u \uparrow v = 0,
\]

which immediately gives:

\[
u \rhd v = vu \quad u \lhd v = uv \\
u \uparrow v = 0 \quad u \downarrow v = uv.
\]

3. If \(u \in V \), and \(v = c\theta d \in V^{\otimes n} \) for \(n \geq 2 \), we have:

\[
u \triangledown v = u \triangledown c\theta d
\]

\[
= uc\theta d + c(u \triangledown \theta)d + c\theta du + 0.
\]

The four quadri-algebra laws on \(H \) are given by:

\[
u \uparrow v = c\theta du \quad u \downarrow v = c(u \triangledown \theta)d \\
u \downarrow v = uc\theta d \quad u \uparrow v = 0,
\]

(12)
which immediately gives:

\[
\begin{align*}
 u \prec v &= u c \theta d \\
 u \succ v &= c(u \shuffle \theta) d + c \theta d u \\
 u \wedge v &= c \theta d u \\
 u \vee v &= c(u \shuffle \theta) d + u c \theta d.
\end{align*}
\]

(4) If \(u, v \in \mathcal{H} \), such that \(u, v \) of degree \(\geq 2 \), i.e., \(u = awb \) and \(v = c \theta d \), we have:

\[
\begin{align*}
 u \shuffle v &= a(wb \shuffle c \theta)d + c(awb \shuffle \theta)d + a(w \shuffle c \theta d)b + c(aw \shuffle \theta d)b.
\end{align*}
\]

The four quadri-algebra operations on \(\mathcal{H} \) are defined by:

\[
\begin{align*}
 u \nearrow v &= c(aw \shuffle \theta d)b & u \searrow v &= c(awb \shuffle \theta)d \\
 u \searrow v &= a(wb \shuffle c \theta)d & u \swarrow v &= a(w \shuffle c \theta d)b.
\end{align*}
\]

The dendriform algebra operations on \(\mathcal{H} \) are defined by:

\[
\begin{align*}
 u \succ v &= c(awb \shuffle \theta d) & u \prec v &= a(awb \shuffle \theta d) \\
 u \wedge v &= (aw \shuffle c \theta d)b & u \vee v &= (awb \shuffle c \theta d).
\end{align*}
\]

We verify easily then:

\[
\begin{align*}
 u \shuffle v := u \nearrow v + u \searrow v + u \swarrow v + u \searrow v &= u \succ v + u \prec v \\
 &:= u \vee v + u \wedge v.
\end{align*}
\]

The nine axioms of quadri-algebra laws can now be easily verified.

Remark 1. By the commutativity of the shuffle product the quadri-algebra laws verify:

\[
\begin{align*}
 u \nearrow v &= c(aw \shuffle \theta d)b \\
 &= c(\theta d \shuffle aw)b \\
 &= v \swarrow u.
\end{align*}
\]

\[
\begin{align*}
 u \searrow v &= c(awb \shuffle \theta)d \\
 &= c(\theta \shuffle awb)d \\
 &= v \swarrow u.
\end{align*}
\]
Remark 2. The four quadri-algebra operations also admit a non-recursive definition in terms of shuffles:

\[u \downarrow v = \sum_{\sigma \in Sh(p,q), \sigma^{-1}(1) \geq p+1} \sigma^{-1}(1) \sigma^{-1}(2) \ldots \sigma^{-1}(p+q), \]

\[u \triangleright v = \sum_{\sigma \in Sh(p,q), \sigma^{-1}(1) \geq p+1} \sigma^{-1}(1) \sigma^{-1}(2) \ldots \sigma^{-1}(p+q), \]

\[u \wedge v = \sum_{\sigma \in Sh(p,q), \sigma^{-1}(1) \leq p} \sigma^{-1}(1) \sigma^{-1}(2) \ldots \sigma^{-1}(p+q), \]

\[u \triangledown v = \sum_{\sigma \in Sh(p,q), \sigma^{-1}(1) \leq p} \sigma^{-1}(1) \sigma^{-1}(2) \ldots \sigma^{-1}(p+q). \]

We can now state the main result of this article.

Theorem 1. For any \(u, v, w \in H \), we have:

\[u \triangleright (vw) = \sum_{u = u^1 u^2} (u^1 \triangleright v)(u^2 \wedge w), \]

\[u \downarrow (vw) = \sum_{u = u^1 u^2} (u^1 \downarrow v)(u^2 \lor w), \]

\[u \wedge (vw) = \sum_{u = u^1 u^2} (u^1 \wedge v)(u^2 \triangleright w), \]

\[u \triangledown (vw) = \sum_{u = u^1 u^2} (u^1 \triangledown v)(u^2 \wedge w). \]

Proof. We will prove this theorem by induction on the length of \(u \). Let us verify that the theorem is true for \(u = 1 \) and for \(u \in V \).
For $u = 1$ and for $v, w \in \mathcal{H}$, we have:

$$u \triangleright (vw) = 1 \triangleright (vw) = 0,$$

and:

\[
\sum_{u=1} (u^1 \triangleright v)(u^2 \vee w) = (1 \triangleright v)(1 \vee w) = 0 = 1 \triangleright (vw).
\]

\[
\sum_{u=1} (u^1 \smalltriangleright v)(u^2 \triangleright w) = (1 \smalltriangleright v)(1 \triangleright w) = 0 = 1 \triangleright (vw).
\]

Similarly:

$$u \smalltriangleright (vw) = 1 \smalltriangleright vw = vw.$$

\[
\sum_{u=1} (u^1 \smalltriangleright v)(u^2 \vee w) = (1 \smalltriangleright v)(1 \vee w) = vw = 1 \smalltriangleright (vw).
\]

\[
\sum_{u=1} (u^1 \triangleright v)(u^2 \smalltriangleright w) = (1 \triangleright v)(1 \smalltriangleright w) = vw = 1 \smalltriangleright (vw),
\]

and by a similar computation, we prove that the two other assertions are true for $u = 1$.

For $u \in V$ and for any $v, w \in \mathcal{H}$, we have:

$$u \triangleright (vw) = vwu,$$

and:

\[
\sum_{u=1} (u^1 \triangleright v)(u^2 \vee w) = (1 \triangleright v)(u \vee w) + (u \triangleright v)(1 \vee w)
\]

\[= vw + u \triangleright (vw).
\]
\[\sum_{u=\theta \delta \theta} (u^1 \triangleright v)(u^2 \triangleright w) = (1 \triangleright v)(u \triangleright w) + (u \triangleright v)(0) \]
\[= uvw \]
\[= u \triangleright (vw). \]

Similarly:
\[u \triangleright (vw) = uvw. \]

\[\sum_{u=\theta \delta \theta} (u^1 \triangleright v)(u^2 \triangleright w) = (1 \triangleright v)(u \triangleright w) + (u \triangleright v)(0) \]
\[= uvw \]
\[= u \triangleright (vw). \]

\[\sum_{u=\theta \delta \theta} (u^1 \triangleright v)(u^2 \triangleright w) = (1 \triangleright v)(u \triangleright w) + (u \triangleright v)(0) \]
\[= uvw \]
\[= u \triangleright (vw). \]

By a similar computation, we prove that the two other assertions are true for \(u \in V \).

We will now use the induction hypothesis to prove the theorem. Let \(u = \theta \delta \theta \), \(v \) and \(w \) be three elements of \(\mathcal{H} \), we have:

Proof of (1):
\[\sum_{u=\theta \delta \theta} (u^1 \triangleright v)(u^2 \triangleright w) = (1 \triangleright v)(u \triangleright w) + \sum_{u=\theta \delta \theta} (u^1 \triangleright v)(u^2 \triangleright w). \]

The condition \(u^2 \neq 1 \) gives: \(u^2 = u^{12} \delta \theta \) where \(u^1 u^{12} = \theta \delta \theta \), hence:
\[\sum_{u=\theta \delta \theta} (u^1 \triangleright v)(u^2 \triangleright w) = \sum_{\theta \delta \theta = u^1 u^{12}} (u^1 \triangleright v)(u^{12} \delta \theta \triangleright w). \]

We distinguish here two cases, the first case where \(v \) is a single-letter word and the second case where \(v \) is a word of length \(\geq 2 \), i.e \(v = c \xi \delta \theta d \), where \(c, d \in V \) and \(\xi \in V^{\otimes n} \).

If \(v \in V \), by Remark \(\mathbf{1} \) we have \(u^1 \triangleright v = v \triangleright u^1 = 0 \) for all \(u^1 \neq 1 \) (see equation \(\mathbf{12} \)). Hence the sum \(\sum_{\theta \delta \theta = u^1 u^{12}} (u^1 \triangleright v)(u^{12} \delta \theta \triangleright w) \) gives one term where \(u^1 = 1 \), the other terms all vanish, we have:
\[
\sum_{u=u^1u^2}(u^1 \triangledown v)(u^2 \land w) = \sum_{a\theta=u^1u^{12}}(u^1 \triangledown v)(u^{12}b \land w) \\
= (1 \triangledown v)(u \land w) \\
= v(u \land w) \\
= u \mapsto (vw).
\]

Now if \(v = c\xi d \) we obtain the same result:

\[
\sum_{u=u^1u^2}(u^1 \triangledown v)(u^2 \land w) = \sum_{a\theta=u^1u^{12}}(u^1 \triangledown v)(u^{12}b \land w) \\
= \sum_{a\theta=u^1u^{12}}(u^1 \triangledown c\xi)(u^{12} \triangledown w)b \\
= \sum_{a\theta=u^1u^{12}}[(u^1 \triangledown c\xi)(u^{12} \triangledown dw)b + (u^1 \triangledown c\xi)(u^{12} \triangledown dw)b] \\
= (a\theta \triangledown vw)b + (a\theta \triangledown vw)b \quad \text{(induction hypothesis)} \\
= (a\theta \triangledown vw)b \\
= (a\theta b) \triangledown (c\xi dw) \\
= u \triangledown (vw).
\]

Similarly, we have:

\[
\sum_{u=u^1u^2}(u^1 \triangledown v)(u^2 \triangledown w) = (u \triangledown v)(1 \triangledown w) + \sum_{u^1 \neq u_1, u^2 \neq 1}(u^1 \triangledown v)(u^2 \triangledown w).
\]

The condition \(u^1 \neq u \) and \(u^2 \neq 1 \) gives: \(u^2 = u^{12}b \) where \(u^1u^{12} = a\theta \), hence:

\[
\sum_{u=u^1u^2}(u^1 \triangledown v)(u^2 \triangledown w) = \sum_{a\theta=u^1u^{12}}(u^1 \triangledown v)(u^{12}b \triangledown w) \\
= \sum_{a\theta=u^1u^{12}}(u^1 \triangledown v)(u^{12} \triangledown w)b \\
= \sum_{a\theta=u^1u^{12}}(u^1 \triangledown v)(u^{12} \triangledown w)b + \sum_{a\theta=u^1u^{12}}(u^1 \triangledown v)(u^{12} \triangledown w)b \\
= (a\theta \triangledown vw)b + (a\theta \triangledown vw)b \quad \text{(induction hypothesis)} \\
= (a\theta \triangledown vw)b \\
= c(a\theta \triangledown \xi dw)b \\
= (a\theta b) \triangledown (c\xi dw) \\
= u \triangledown (vw).
\]

Proof of (2): By a similar method we prove the second assertion:
We distinguish here two cases, the first case where v is a single-letter word and the second case where v is a word of length ≥ 2, i.e. $v = c\xi d$, where $c, d \in V$ and $\xi \in V^\otimes n$.

If $v \in V$, by Remark 1 we have $u^1 \downarrow v = v \downarrow u^1 = 0$ for all $u^1 \neq 1$ (see equation (12)). Hence the sum $\sum_{u=u^1u^2}(u^1 \downarrow v)(u^2 \vee w)$ gives one term where $u^1 = 1$ and $u^2 = u$, the other terms all vanish, we have:

$$\sum_{u=u^1u^2}(u^1 \downarrow v)(u^2 \vee w) = (1 \downarrow v)(u \vee w) = v(u \vee w) = u \downarrow (vw),$$

and if $v = c\xi d$, we have:

$$\sum_{u=u^1u^2}(u^1 \downarrow v)(u^2 \vee w) = \sum_{u=u^1u^2}(u^1 \downarrow c\xi d)(u^2 \vee w)$$

$$= \sum_{u=u^1u^2} \sum_{u^1=1}^{u_{11}} (u^1 \downarrow c)(u^2 \vee \xi d)(u^2 \vee w) \quad \text{(induction hypothesis)}$$

$$= \sum_{u=u_{11}u_{12}}(u^1 \downarrow c)(u^2 \vee \xi d)(u^2 \vee w)$$

$$= \sum_{u=u_{11}u'}(u^1 \downarrow c)(u' \vee \xi dw) \quad \text{(induction hypothesis)}$$

$$= \sum_{u=u_{11}u'}(c \downarrow u^1)(u' \vee \xi dw).$$

The last sum contain one term because $c \downarrow u^1 = 0$ if $u^1 \neq 1$, then we have:

$$\sum_{u=u^1u^2}(u^1 \downarrow v)(u^2 \vee w) = c(u \vee \xi dw)$$

$$= c(u \vee \xi dw)$$

$$= u \downarrow (c\xi dw)$$

$$= u \downarrow (vw).$$

Similarly, we distinguish here two cases, the first case where w is a single-letter word and the second case where w is a word of length ≥ 2, i.e. $w = e\eta f$, where $e, f \in V$ and $\eta \in V^\otimes n$.
If \(w \in V \), the sum \(\sum_{u=u^1u^2}(u^1 \succ v)(u^2 \searrow w) \) gives one term where \(u^1 = u \) and \(u^2 = 1 \), the other terms vanish, which gives:

\[
\sum_{u=u^1u^2} (u^1 \succ v)(u^2 \searrow w) = (u \succ v)(1 \searrow w) = (u \succ v)w = u \searrow (vw),
\]

and if \(w = e\eta f \), we have:

\[
\sum_{u=u^1u^2} (u^1 \succ v)(u^2 \searrow w) = \sum_{u=u^1u^2} (u^1 \succ v)(u^2 \searrow e\eta f) \quad \text{(induction hypothesis)}
\]

\[
= \sum_{u=u^1u^2} \sum_{u^1u^2 = u^2u^2} (u^1 \succ v)(u^2 \succ e\eta)(u^2 \searrow f)
\]

\[
= \sum_{u=u^1u^2} (u^1 \succ v)(u^2 \succ e\eta)(u^2 \searrow f)
\]

\[
= \sum_{u=u' u^22} \sum_{u'=u^1u^21} (u^1 \succ v)(u^2 \succ e\eta)(u^2 \searrow f) \quad \text{(induction hypothesis)}
\]

\[
= \sum_{u'=u' u^22} (u' \succ v e\eta)(u^2 \searrow f).
\]

The last sum contain one term because \(f \searrow u^{22} = 0 \) if \(u^{22} \neq 1 \), then we obtain:

\[
\sum_{u=u^1u^2} (u^1 \succ v)(u^2 \searrow w) = (u \succ v e\eta f)
\]

\[
= (u \succ c\xi d e\eta f)
\]

\[
= c(u \mathbin{n} \xi d e\eta f)
\]

\[
= u \searrow (c\xi d e\eta f)
\]

\[
= u \searrow (vw).
\]

Proof of (3):

\[
\sum_{u=u^1u^2} (u^1 \not\succ v)(u^2 \triangledown w) = \underbrace{(1 \not\succ v)(u \triangledown w)}_{0} + \sum_{u^1 \neq 1, u^2 \neq u} (u^1 \not\succ v)(u^2 \triangledown w).
\]
The condition $u^1 \neq 1$ gives: $u^1 = au^{11}$ where $u^{11}u^2 = \theta b$, hence:

$$
\sum_{u=u^1u^2} (u^1 \prec v)(u^2 \lor w) = \sum_{u=au^{11}u^2} (au^{11} \prec v)(u^2 \lor w) = \sum_{u=au^{11}u^2} a(u^{11} \lor v)(u^2 \lor w)
$$

$$
= \sum_{u=au^{11}u^2} a(u^{11} \prec v)(u^2 \lor w) + \sum_{u=au^{11}u^2} a(u^{11} \lor v)(u^2 \lor w)
$$

$$
= a(\theta b \prec vw) + a(\theta b \lor vw) \quad \text{(induction hypothesis)}
$$

$$
= a(\theta b \lor vw)
$$

$$
= (a\theta b) \lor (vw)
$$

$$
= u \lor (vw).
$$

Similarly, we have:

$$
\sum_{u=u^1u^2} (u^1 \prec v)(u^2 \land w) = (1 \prec v)(u \land w) + \sum_{u^1 \neq 1, u^2 \neq u} (u^1 \prec v)(u^2 \land w).
$$

The condition $u^1 \neq 1$ gives: $u^1 = au^{11}$ where $u^{11}u^2 = \theta b$, hence:

$$
\sum_{u=u^1u^2} (u^1 \prec v)(u^2 \land w) = \sum_{u=au^{11}u^2} (au^{11} \prec v)(u^2 \land w)
$$

we distinguish here two cases, the first case where w is a single-letter word and the second case where w is a word of length ≥ 2, i.e $w = e\eta f$, where $e, f \in V$ and $\eta \in V^\otimes n$.

If $w \in V$, the sum $\sum_{u=au^{11}u^2}(au^{11} \prec v)(u^2 \land w)$ gives one term where $u^2 = 1$, the other terms all vanish, we have:

$$
\sum_{u=u^1u^2} (u^1 \prec v)(u^2 \land w) = \sum_{u=au^{11}u^2} (au^{11} \prec v)(u^2 \land w)
$$

$$
= (u \prec v)(1 \land w)
$$

$$
= (u \prec v)w
$$

$$
= u \lor (vw).
$$
Now if \(w = e\eta f \), we have:

\[
\sum_{u = u^1u^2} (u^1 \prec v)(u^2 \searrow w) = \sum_{u = au^{11}u^2} (au^{11} \times v)(u^2 \searrow w)
\]

\[
= \sum_{u = au^{11}u^2} (au^{11} \times v)(u^2 \searrow e\eta f)
\]

\[
= \sum_{u = au^{11}u^2} a(u^{11} \vDash v)e(u^2 \vDash \eta f)
\]

\[
= \sum_{u = au^{11}u^2} a(u^{11} \lor ve)(u^2 \lor \eta f)
\]

\[
= \sum_{u = au^{11}u^2} a(u^{11} \searrow ve)(u^2 \searrow \eta f) + \sum_{u = au^{11}u^2} a(u^{11} \lor ve)(u^2 \lor \eta f)
\]

\[
= a(\theta b \searrow ve\eta f) + a(\theta b \lor ve\eta f) \quad \text{(induction hypothesis)}
\]

\[
= a(\theta b \lor vw)
\]

\[
= u \lor (vw),
\]

which proves the third assertion.

Proof of (4):

\[
\sum_{u = u^1u^2} (u^1 \lor v)(u^2 \land w) = \underbrace{(1 \lor v)(u \land w) + (u \lor v)(1 \land w)}_{0} + \sum_{u = u^1u^2, u \neq 1} (u^1 \lor v)(u^2 \land w)
\]

the condition \(u^1, u^2 \neq 1, u \) gives: \(u^1 = au^{11} \) and \(u^2 = u^{12}b \) where \(u^{11}u^{12} = \theta \), hence:

\[
\sum_{u = u^1u^2} (u^1 \lor v)(u^2 \land w) = \sum_{\theta = u^{11}u^{12}} (au^{11} \lor v)(u^{12}b \vDash w)b
\]

\[
= \sum_{\theta = u^{11}u^{12}} (au^{11} \lor v)(u^{12} \lor w)b + \sum_{\theta = u^{11}u^{12}} (au^{11} \lor v)(u^{12} \land w)b
\]

\[
= (a\theta \lor vw)b + (a\theta \land vw)b \quad \text{(induction hypothesis)}
\]

\[
= (a\theta \lor vw)b
\]

\[
= a(\theta \vDash vw)b
\]

\[
= (a\theta b) \vDash (vw)
\]

\[
= u \vDash (vw).
\]

Similarly we have:

\[
\sum_{u = u^1u^2} (u^1 \prec v)(u^2 \nearrow w) = \underbrace{(1 \prec v)(u \nearrow w) + (u \prec v)(1 \nearrow w)}_{0} + \sum_{u = u^1u^2, u \neq 1} (u^1 \prec v)(u^2 \nearrow w).
\]
The condition $u^1, u^2 \neq 1, u$ gives: $u^1 = au^{11}$ and $u^2 = u^{12}b$ where $u^{11}u^{12} = \theta$, hence:

$$\sum_{u=u^1u^2} (u^1 \prec v)(u^2 \succ w) = \sum_{\theta=u^{11}u^{12}} (au^{11} \prec v)(u^{12}b \succ w)$$

$$= \sum_{\theta=u^{11}u^{12}} (au^{11} \prec v)(u^{12} \succ w)b$$

$$= \sum_{\theta=u^{11}u^{12}} (au^{11} \prec v)(u^{12} \succ w)b + \sum_{\theta=u^{11}u^{12}} (au^{11} \prec v)(u^{12} \preceq w)b$$

$$= (a\theta \prec vw)b + (a\theta \preceq vw)b \text{ (induction hypothesis)}$$

$$= (a\theta \prec vw)b$$

$$= \theta \in \text{id} vw)b$$

$$= (a\theta)b \preceq (vw)$$

$$= u \preceq (vw),$$

which proves the fourth assertion. □

Remark 3. A non-recursive proof of Theorem 1 is available, at least when u, v and w are non-empty. Indeed, to prove the first assertion of (1) we note that $u \preceq (vw)$ is obtained by summing the shuffle of u with vw so that the first letter belongs to v and the last letter belongs to w. We cut each of these terms just after the last letter of v. The left part is obtained by shuffling a prefix of u with v such that the first and last letters are in v. The right part is obtained by shuffling a suffix of u with w such that the last letter is in w. We proceed similarly for the second assertion, cutting just before the first letter of w. Items (2), (3) and (4) can be handled similarly.

Corollary 1. Given three elements u, v and w of \mathcal{H}, we have:

(1) $$u \preceq (vw) = u \succ (vw) + u \preceq (vw)$$

$$= \sum_{u=u^1u^2} (u^1 \lor v)(u^2 \land w)$$

(2) $$u \prec (vw) = u \preceq (vw) + u \succeq (vw)$$

$$= \sum_{u=u^1u^2} (u^1 \prec v)(u^2 \succ w).$$

(3) $$u \lor (vw) = u \succeq (vw) + u \preceq (vw)$$

$$= \sum_{u=u^1u^2} (u^1 \lor v)(u^2 \lor w).$$
\[(4)\]

\[u \succ (vw) = u \triangleleft (vw) + u \triangleright (vw)\]
\[= \sum_{u = u^1 u^2} (u^1 \succ v)(u^2 \succ w).\]

Proof. We prove these results by summing the operations obtained in the previous theorem:

\[(1)\]

\[u \wedge (vw) = u \triangleright (vw) + u \triangleleft (vw)\]
\[= \sum_{u = u^1 u^2} (u^1 \wedge v)(u^2 \wedge w) + \sum_{u = u^1 u^2} (u^1 \wedge v)(u^2 \wedge w)\]
\[= \sum_{u = u^1 u^2} (u^1 \wedge v)(u^2 \wedge w)\]
\[= \sum_{u = u^1 u^2} (u^1 \wedge v)(u^2 \wedge w).\]

\[(2)\]

\[u \prec (vw) = u \triangledown (vw) + u \triangleright (vw)\]
\[= \sum_{u = u^1 u^2} (u^1 \prec v)(u^2 \prec w) + \sum_{u = u^1 u^2} (u^1 \prec v)(u^2 \prec w)\]
\[= \sum_{u = u^1 u^2} (u^1 \prec v)(u^2 \prec w)\]
\[= \sum_{u = u^1 u^2} (u^1 \prec v)(u^2 \prec w).\]

\[(3)\]

\[u \lor (vw) = u \triangleleft (vw) + u \triangledown (vw)\]
\[= \sum_{u = u^1 u^2} (u^1 \lor v)(u^2 \lor w) + \sum_{u = u^1 u^2} (u^1 \lor v)(u^2 \lor w)\]
\[= \sum_{u = u^1 u^2} (u^1 \lor v)(u^2 \lor w)\]
\[= \sum_{u = u^1 u^2} (u^1 \lor v)(u^2 \lor w).\]

\[(4)\]

\[u \triangleright (vw) = u \triangleright (vw) + u \triangleleft (vw)\]
\[= \sum_{u = u^1 u^2} (u^1 \triangleright v)(u^2 \triangleright w) + \sum_{u = u^1 u^2} (u^1 \triangleright v)(u^2 \triangleright w)\]
\[= \sum_{u = u^1 u^2} (u^1 \triangleright v)(u^2 \triangleright w)\]
\[= \sum_{u = u^1 u^2} (u^1 \triangleright v)(u^2 \triangleright w).\]
Corollary 2. For any $u, v, w \in \mathcal{H}$, we have:

\begin{align*}
(18) \quad u \ll (vw) &= \sum_{u=u'v^2} (u^1 \lor v)(u^2 \ll w) \\
(19) \quad u \gg (vw) &= \sum_{u=u'v^2} (u^1 \gg v)(u^2 \gg w)
\end{align*}

Proof. We use in this proof the property given by the Corollary

\begin{align*}
u \ll (vw) &= u \lor (vw) + u \land (vw) \\
&= \sum_{u=u'v^2} (u^1 \lor v)(u^2 \lor w) + \sum_{u=u'v^2} (u^1 \lor v)(u^2 \land w) \\
&= \sum_{u=u'v^2} (u^1 \lor v)(u^2 \lor w + u^2 \land w) \\
&= \sum_{u=u'v^2} (u^1 \lor v)(u^2 \ll w).
\end{align*}

Similarly, we prove the second assertion:

\begin{align*}
u \gg (vw) &= u \gg (vw) + u \ll (vw) \\
&= \sum_{u=u'v^2} (u^1 \gg v)(u^2 \gg w) + \sum_{u=u'v^2} (u^1 \ll v)(u^2 \gg w) \\
&= \sum_{u=u'v^2} (u^1 \gg v + u^1 \ll v)(u^2 \gg w) \\
&= \sum_{u=u'v^2} (u^1 \gg v)(u^2 \gg w).
\end{align*}

Example 1. An example of computation for $u = u_1u_2 \in V^\otimes 2$, $v = v_1v_2 \in V^\otimes 2$ and $w \in V$.

\[
 u \ll (vw) = (u_1u_2) \ll (v_1v_2w) = u_1u_2v_1v_2w + u_1v_1u_2v_2w + u_1v_1v_2u_2w + u_1u_2v_1v_2w + u_1v_1v_2wu_2 + v_1v_2u_1u_2w + v_1u_1v_2u_2w + v_1u_1v_2wu_2 + v_1v_2wu_1u_2 \\
\text{Also we have:} \\
\sum_{u=u'v^2} (u^1 \lor v)(u^2 \ll w) &= (1 \lor v)(u \ll w) + (u_1 \lor v)(u_2 \ll w) + (u_1u_2 \lor v)(1 \ll w) \\
&= v(u_1u_2w + u_1wu_2 + wu_1u_2) + (u_1v_1v_2 + v_1u_1v_2)(u_2w + wu_2) \\
&\quad + (u_1u_2v_1v_2 + u_1v_1u_2v_2 + v_1u_1u_2v_2)w \\
&= v_1v_2u_1u_2w + v_1v_2u_1wu_2 + v_1v_2wu_1u_2 + u_1v_1v_2u_2w + v_1u_1v_2u_2w + u_1v_1v_2wu_2 + v_1u_1v_2w + v_1u_1v_2w.
\]
and,
\[\sum_{u=u^1u^2} (u^1 \triangledown v)(u^2 \triangleright w) = (1 \triangledown v)(u \triangleright w) + (u_1 \triangledown v)(u_2 \triangleright w) + (u_1u_2 \triangledown v)(1 \triangleright w) \]
\[= v_1v_2wu_1u_2 + (u_1v_1v_2 + v_1u_1v_2 + v_1v_2u_1)wu_2 \]
\[+ (u_1u_2v_1v_2 + u_1v_1u_2v_2 + v_1u_1u_2v_2 + v_1v_1v_2u_2 + v_1v_2u_2u_2)w \]
\[= v_1v_2wu_1u_2 + u_1v_1v_2wu_2 + v_1u_1v_2wu_2 + v_1v_1u_2wu_2 + u_1u_2v_1v_2w \]
\[+ u_1u_2v_2w + u_1u_2v_2w + u_1v_1v_2u_2w + v_1u_1u_2w + v_1v_2v_2u_2w. \]

Then we have:
\[u \triangledown (vw) = \sum_{u=u^1u^2} (u^1 \triangledown v)(u^2 \triangledown w) \]
\[= \sum_{u=u^1u^2} (u^1 \triangledown v)(u^2 \triangleright w). \]

6. Module-algebra structures on Shuffle quadri-algebra

We consider the bialgebra \((\mathcal{H}, \triangledown, \Delta)\) and the infinitesimal bialgebra \((\mathcal{H}, m, \Delta)\).

Proposition 1. The two maps \(\triangledown\) and \(\triangleright\) are two actions of \((\mathcal{H}, \triangledown)\) on \(\mathcal{H}\). In other words, the two following diagrams are commutative:

\[
\begin{array}{ccc}
\mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H} & \overset{\triangledown \otimes I}{\longrightarrow} & \mathcal{H} \otimes \mathcal{H} \\
I \otimes \triangledown & \downarrow & \downarrow \triangledown \\
\mathcal{H} \otimes \mathcal{H} & \rightarrow & \mathcal{H}
\end{array}
\]

\[
\begin{array}{ccc}
\mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H} & \overset{id \otimes \triangleright}{\longrightarrow} & \mathcal{H} \otimes \mathcal{H} \\
\triangledown \otimes I & \downarrow & \downarrow \triangleright \\
\mathcal{H} \otimes \mathcal{H} & \rightarrow & \mathcal{H}
\end{array}
\]

That is to say:

\[(20)\quad \triangledown \circ (I \otimes \triangledown) = \triangledown \circ (\triangledown \otimes I),\]
\[(21)\quad \triangleright \circ (I \otimes \triangleright) = \triangleright \circ (\triangledown \otimes I).\]

Proof. Let \(a, u\) and \(v\) be three elements of \(\mathcal{H}\), we have:
\[\triangledown \circ (I \otimes \triangledown)(a \otimes u \otimes v) = \triangledown(a \otimes u \triangledown v) = a \triangledown (u \triangledown v). \]
\(\vee \circ (\underline{\mu} \otimes I)(a \otimes u \otimes v) = \vee (a \underline{\mu} b \otimes v) = (a \underline{\mu} u) \vee v = a \vee (u \vee v). \)

Then, we have:
\[\vee \circ (I \otimes \vee) = \vee \circ (\underline{\mu} \otimes I). \]
\[\succ \circ (I \otimes \succ)(a \otimes u \otimes v) = \succ (a \otimes u \succ v) = a \succ (u \succ v). \]
\[\succ \circ (\underline{\mu} \otimes I)(a \otimes u \otimes v) = \vee (a \underline{\mu} b \otimes v) = (a \underline{\mu} u) \succ v = a \succ (u \succ v). \]

Then, we have:
\[\succ \circ (I \otimes \succ) = \succ \circ (\underline{\mu} \otimes I). \]

\[\square \]

Theorem 2. \(\mathcal{H} \) admits two module-algebra structures on \(\mathcal{H} \). In other words, the two following diagrams are commutative:

That is to say:

(22) \[m \circ (\vee \otimes \vee) \circ \tau_{23} \circ (\Delta \otimes I \otimes I) = \vee \circ (I \otimes m), \]

(23) \[m \circ (\succ \otimes \succ) \circ \tau_{23} \circ (\Delta \otimes I \otimes I) = \succ \circ (I \otimes m). \]
Proof. To prove the commutativity of these diagrams, we will use the results of Corollary 2. Let u, v and w be three elements of \mathcal{H}, we have:

$$m \circ (\vee \otimes \vee) \circ \tau_{23} \circ (\Delta \otimes I \otimes I)(u \otimes v \otimes w) = m \circ (\vee \otimes \vee) \circ \tau_{23}(\sum_{u=u^1 u^2} u^1 \otimes u^2 \otimes v \otimes w)$$

$$= m \circ (\vee \otimes \vee) \circ (\sum_{u=u^1 u^2} u^1 \otimes v \otimes u^2 \otimes w)$$

$$= m(\sum_{u=u^1 u^2} (u^1 \vee v) \otimes (u^2 \vee w))$$

$$= \sum_{u=u^1 u^2} (u^1 \vee v)(u^2 \vee w),$$

whereas:

$$\vee \circ (I \otimes m)(u \otimes v \otimes w) = \vee(u \otimes vw)$$

$$= u \vee (vw)$$

$$= \sum_{u=u^1 u^2} (u^1 \vee v)(u^2 \vee w).$$

We also have:

$$m \circ (\succ \otimes \succ) \circ \tau_{23} \circ (\Delta \otimes I \otimes I)(u \otimes v \otimes w) = m \circ (\succ \otimes \succ) \circ \tau_{23}(\sum_{u=u^1 u^2} u^1 \otimes u^2 \otimes v \otimes w)$$

$$= m \circ (\succ \otimes \succ) \circ (\sum_{u=u^1 u^2} u^1 \otimes v \otimes u^2 \otimes w)$$

$$= m(\sum_{u=u^1 u^2} (u^1 \succ v) \otimes (u^2 \succ w))$$

$$= \sum_{u=u^1 u^2} (u^1 \succ v)(u^2 \succ w).$$

whereas:

$$\succ \circ (I \otimes m)(u \otimes v \otimes w) = \succ(u \otimes vw)$$

$$= u \succ (vw)$$

$$= \sum_{u=u^1 u^2} (u^1 \succ v)(u^2 \succ w).$$

\[\square\]

Remark 4. \mathcal{H} does not admit any module-bialgebra structure [14, 3] on \mathcal{H} given by \vee or \succ, because neither (\mathcal{H}, \vee) nor (\mathcal{H}, \succ) is a module-coalgebra on \mathcal{H}. In other words the two diagrams below are not commutative:
Proposition 2. The action \lor verifies the following diagram:

\[
\begin{array}{ccc}
\mathcal{H} \otimes \mathcal{H} & \xrightarrow{I \otimes \Delta} & \mathcal{H} \otimes \mathcal{H} \\
\lor & \downarrow & \Delta \otimes I \\
\mathcal{H} & \xrightarrow{\lor \otimes \lor} & \mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H}
\end{array}
\]

which means that Δ is a morphism of left \mathcal{H}-modules, making \mathcal{H} a right \mathcal{H}-comodule in the category of left \mathcal{H}-modules.

Remark 5. The previous diagram again commutes by replacing \lor by \triangleright and $\lor \otimes m$ by $m \otimes \triangleright$.

Remark 6. It is well-known that (\mathcal{H}, m, Δ) carries an infinitesimal bialgebra structure (in the category of vector spaces). This does not give rise to an infinitesimal bialgebra structure in the category of (\mathcal{H}, m)-modules, because \mathcal{H} is not a module-algebra on \mathcal{H}, in other words the diagram below is not commutative:

\[
\begin{array}{ccc}
\mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H} & \xrightarrow{\Delta \otimes I \otimes I} & \mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H} \\
I \otimes m & \downarrow & \tau_{23} \\
\mathcal{H} \otimes \mathcal{H} & \xrightarrow{\lor \otimes \lor} & \mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H}
\end{array}
\]

Proposition 3. The two following diagrams are commutative:

\[
\begin{array}{ccc}
\mathcal{H} \otimes \mathcal{H} & \xrightarrow{\Delta \otimes I \otimes I} & \mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H} \\
I \otimes m & \downarrow & \tau_{23} \\
\mathcal{H} \otimes \mathcal{H} & \xrightarrow{\lor \otimes \lor} & \mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H}
\end{array}
\]

\[
\begin{array}{ccc}
\mathcal{H} \otimes \mathcal{H} & \xrightarrow{\Delta \otimes I \otimes I} & \mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H} \\
I \otimes m & \downarrow & \tau_{23} \\
\mathcal{H} \otimes \mathcal{H} & \xrightarrow{\lor \otimes \lor} & \mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H}
\end{array}
\]
which means that \mathcal{H} acts on the left on \mathcal{H} by m, also \mathcal{H} is an \mathcal{H}-module in the category of left-hand \mathcal{H}-module and m is a left \mathcal{H}-module morphism.

References

[1] M. Aguiar, *Infinitesimal bialgebras, pre-Lie and dendriform algebras*, in Hopf algebras, Lecture Notes in Pure and Applied Mathematics vol 237 (2004) 1-33.

[2] M. Aguiar, J. L. Loday, *Quadri-algebras*, J. Pure Appl. Algebra 191 (2004), no. 3, 205-221, arXiv: [math/0309171](http://arxiv.org/abs/math/0309171).

[3] D. Calaque, K. Ebrahimi-Fard, D. Manchon, *Two interacting Hopf algebras of trees: a Hopf-algebraic approach to composition and substitution of B-series*, Advances in Applied Mathematics, 47, n°2, 282-308 (2011).

[4] G. Duchamp, F. Hivert, and J. Thibon, *Noncommutative symmetric functions. VI. Free quasi-symmetric functions and related algebras*, Internat. J. Algebra Comput. 12 (2002), no. 5, 671-717.

[5] K. Ebrahimi-Fard, D. Manchon, *A Magnus- and Fer-type formula in dendriform algebras*, Found. of Comput. Math. (to appear). preprint arXiv:0707.0607.

[6] K. Ebrahimi-Fard, D. Manchon, *Dendriform Equations*, preprint arXiv:0805.0762.

[7] K. Ebrahimi-Fard, D. Manchon, F. Patras, *New identities in dendriform algebras*, J. Algebra, 320 (2008), pp. 708-727.

[8] L. Foissy, *Bidendriform bialgebras, trees, and free quasi-symmetric functions*, J. Pure Appl. Algebra 209 (2007), no. 2, 439-459, arXiv:math/0505207.

[9] L. Foissy, *Free quadri-algebras and dual quadri-algebras*, arXiv: math.CO/1504.06056.

[10] L. Foissy and F. Patras, *Natural endomorphisms of shuffle algebras*, Internat. J. Algebra Comput. 23 (2013), no. 4, 989-1009, arXiv:1311.1464.

[11] J. L. Loday, *Dialgebras, Dialgebras and Related Operads*, Lecture Notes in Mathematics, no. 1763, Springer-Verlag, 2001, pp. 7-66.

[12] J. L. Loday and M. O. Ronco, *Hopf algebra of the planar binary trees*, Adv. Math. 139 (1998), no. 2, 293-309.

[13] J. L. Loday and M. O. Ronco, *Order structure on the algebra of permutations and of planar binary trees*, J. Alg. Combinatorics 15 (2002), 253-270.

[14] R. K. Molnar, *Semi-Direct Products of Hopf Algebras*, J. Algebra 47, 29-51 (1977).

[15] C. Reutenauer, *Free Lie Algebras*, Oxford University Press, New York, 1993.

[16] M. O. Ronco, *Primitive elements in a free dendriform algebra, New trends in Hopf algebra theory* (La Falda, 1999), 245-263, Contemp. Math., 267, Amer. Math. Soc., Providence, RI, 2000.

Laboratoire de mathématiques physique fonctions spéciales et applications, université de sousse, rue Lamine Abassi 4011 H. Sousse, Tunisie

E-mail address: mohamed.belhajmohamed@isimg.tn

Université Blaise Pascal, C.N.R.S.-UMR 6620, 63177 Aubière, France

E-mail address: manchon@math.univ-bpclermont.fr

URL: http://math.univ-bpclermont.fr/~manchon/