Findings of a pilot study investigating the effects of Mediterranean diet and aerobic exercise on cognition in cognitively healthy older people living independently within aged care facilities: the Lifestyle Intervention in Independent Living Aged Care (LIILAC) study.

Roy J Hardman,* 1 Denny Meyer, 1 Greg Kennedy, 1 Helen Macpherson, 2 Andrew B. Scholey, 1 Andrew Pipingas 1

1. Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Australia
2. Institute for Physical Activity and Nutrition, Deakin University, Geelong, Australia
*Corresponding Author: Dr Roy J Hardman
Mail Address: Faculty of Health, Art and Design
Swinburne University of Technology, Mail H98 Hawthorn, Victoria, Australia 3122
Tel: +61 3 9214 5215
E-mail: rhardman@swin.edu.au, rjhardman8@gmail.com

List of abbreviations:
6 Min Walk Test (6MWT)
Alzheimer’s disease (AD)
Augmentation index (Aix)
Augmentation pressure (AP)
Body mass index (BMI)
Brain-derived neurotrophic factor (BDNF)
C-reactive protein (hsCRP)
Composite memory measure (CompM)
Contextual memory (CM)
Depression Anxiety Stress Scale (DASS)
Delayed recognition memory (DRM)
Effect Size (η^2)
Extra virgin olive oil (EVOO)
Food Frequency Questionnaire (FFQ)
Generic Depression Scale (GDS)
Haemoglobin A1c (HbA1c)
Hip-to-waist ratio (HWR)
Immediate recognition memory (IRM)
Lifestyle Intervention Independent Living Aged Care (LIIILAC)
Mediterranean diet (MedDiet)
Mediterranean diet score (MedDietS)
Memory response time (MRT)
Min Mental State Examination (MMSE)
Perceived wellness score (PWS)
Profile of Mood States (POMS)
Pulse wave velocity (PWV)
Spatial Working Memory (SWM)
Swinburne University Computerised Cognitive Assessment Battery
(SUCCAB)
Source of financial support: No external financial funding for this research was received. Support in kind was given by Cobram Estate for the supply of Extra Virgin Olive Oil. Dorevitch Pathology support in kind for the storage and collection of bloods. Australian Unity, Villa Maria Catholic Homes, Baptcare and Churches of Christ Retirement Villages for the access to independent living Age Care sites in Melbourne. Health Care 2 U for the preparation in kind for the Mediterranean Diet Book and meal plans.

Ethical clearance and registrations

Ethical approval was granted by Swinburne University under SUHREC 2013/057 Swinburne University of Technology. The Australia and New Zealand Trial Register number is [ACTRN12614001133628]. The universal trial number is U1111-1161-5364. http://www.anzctrorg.au.

Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Short Running Head: Impact of lifestyle changes on cognition in an aging population

Number of Tables: 6
Number of Figures: 1 Word Count: 6455

ABSTRACT

Background: Cognitive decline and Alzheimer’s disease are more prevalent in our aging population. Modifiable risk factors, such as diet and sedentary lifestyle, have been proposed as key to potentially ameliorating cognitive decline. Both exercise and Mediterranean diet (MedDiet) have been linked to reduced levels of cardiovascular
disease and other comorbidities. Higher levels of exercise and MedDiet adherence may prove to be cognitively protective, both individually and synergistically.

Objectives: To investigate the effect of a six-month program of MedDiet, exercise, and a combination of both, on cognition, mood and, general health in older persons living independently in aged care communities.

Method: This LIILAC study (ACTRN12614001133628) involved 102 participants, aged 60–90, who were randomized to one of four intervention groups. Change in overall memory performance was assessed as the primary outcome. Additionally, change in cognitive task performance, as well as mood, wellness, cardiovascular function and blood biomarkers, were also investigated.

Results: While there was no significant change in overall memory performance, there was a significant improvement in spatial working memory (SWM) performance in the combined exercise and diet group, relative to controls. This combined intervention group also showed an overall improvement in their emotional state, as assessed by the Depression Anxiety Stress Scale (DASS), as did the exercise only group.

Conclusion: This research indicates that diet and exercise programs have the potential to improve aspects of cognition and mood in an aging population. However, given the lower than optimal sample size, and lack of resources to reinforce the interventions during the trial, further larger randomized controlled trials are required to substantiate whether the introduction of diet and exercise programs into independent living facilities is a viable method to preserve cognitive health in older people.

Keywords: Aging population, Impact of diet, Elderly, Cognition, Mediterranean diet, Exercise, Blood markers
INTRODUCTION

In Australia, as in the rest of the Western world, the average life expectancy has increased (1). Progressive aging of the population has led to an increase in the number of people living with age-related neurological disorders, such as Alzheimer’s disease (AD), characterized by cognitive deficits (2, 3). It has been estimated that in 2015, 47 million people around the world were living with various forms of dementia, and this is expected to increase to 75 million by 2030 and potentially 135 million by 2050 (4). Currently there are no effective medical treatments to alleviate the accelerated cognitive decline leading to AD. The increased incidence of AD has placed substantial financial demands on health and other related services. Of note, the aged care sector in Australia is experiencing an increasing demand for permanent residential aged care, with greater than 50% of permanent residential aged care residents living with dementia (5).

Cognitive aging research indicates that there is a general increase in intellectual and cognitive abilities in infancy and adolescence, and a decline thereafter throughout the adult lifespan (6). The extent to which cognitive faculties decline in adulthood is variable and partly attributable to modifiable factors such as diet and exercise (6, 7). Preventative strategies utilizing simple behavioural and lifestyle changes may provide an effective means to improve cognitive function in the short term and to potentially influence cognitive trajectories longer-term (8).

Modifiable risk factors for cognitive decline parallel those for cardiovascular and metabolic disorders (9). Risk factors such as high blood pressure, elevated cholesterol and obesity are prevalent in Western society and are the result of poor dietary habits and a sedentary lifestyle (10). A Western diet high in saturated fats and sugar, with high levels of processed food, can result in chronic inflammation that can adversely influence cardiovascular and metabolic function (11). Furthermore, a diet high in processed foods
can lead to higher oxidative stress, leading to chronic disorders such as diabetes that in turn can also affect cognitive function and decline (12).

The Mediterranean style diet (MedDiet) is rich in fresh fruit and vegetables, wholegrains, and uses olive oil as the primary source of fat. This is combined with low consumption of red meat and moderate alcohol consumption with meals (13, 14). This dietary profile has been shown to be associated with better health outcomes, including reduced incidence of cancer and cardiovascular disease (13, 15). The MedDiet is considered to possess anti-inflammatory properties that can reduce the risk of cardiovascular disease and other chronic diseases such as diabetes and metabolic syndrome (16, 17). Similar risk factors have been described for cognitive aging and chronic endpoints of aging, such as AD. More recent converging literature has shown that adherence to a MedDiet may improve cognition or reduce the risk of cognitive decline leading to AD (16-18).

Converging literature has also considered relationships with exercise and cognitive decline, with findings understandably positive given the overlap between cognitive health and cardiovascular and metabolic health. A recent meta-analysis demonstrated that physical exercise is effective in improving cognitive function in older adults, independently of their cognitive status prior to initiating an exercise program (19). Improvements in cognition have also been attributed to a number of other modifiable risk factors, as identified in a recent review (20).

Two major lifestyle factors, diet and exercise, may consequently have both separate and synergistic actions on cognition and cognitive decline. Within the literature there have been a number of lifestyle studies that have evaluated how diet and exercise have been successfully utilized for cardiovascular risk reduction yet very few controlled trials have evaluated the effects of both diet and exercise as a lifestyle intervention aimed at
improving cognitive functioning and/or reducing the rate of cognitive decline as outlined in a number of reviews (21-23).

This study aimed to investigate the effect of a change to a Mediterranean style of diet and/or an increase in walking-based exercise on cognition over six months. It was hypothesized that speed of memory in both the exercise and dietary intervention groups would improve relative to controls, and that the combined diet and exercise intervention would show the greatest improvement.

The study also aimed to investigate other potential markers or mechanisms of cognitive aging that may be related to diet and exercise, such as mood, wellness, cardiovascular function and blood biomarkers.

METHODS
Detailed methodology has been previously published in the LIILAC protocol. (24)

Subjects
Based on the protocol, the study aimed to recruit 148 participants aged 60–90 years, living independently in retirement and independent living facilities, in and around Melbourne, Australia. In our experimental protocol (24) we originally indicated that a total sample of 128 participants would be required to detect a moderate effect size ($f = 0.30$), power of 80% and a significance level of 5% with 37 individuals randomized into each arm to the study. However, this was not achieved. Initially, 102 participants were recruited at baseline and 81 remained at 6 months. Written informed consent was obtained from all the participants in the study prior to their participation.

Ethical clearance and registrations
Ethical approval was granted by Swinburne University under SUHREC 2013/057 Swinburne University of Technology. The Australia and New Zealand Trial Register
number is [ACTRN12614001133628]. The universal trial number is U1111-1161-5364. http://www.anzctr.org.au.

Inclusion criteria
Participants were required to be fluent in written and spoken English. Those who were taking vitamins, minerals and/or herbal supplements as part of their dietary regime were asked to continue their use for the duration of the trial, while those who were not taking any such supplements were requested to refrain from consuming these during the trial. Participants were also required to obtain approval from their general practitioner confirming that they were medically fit to participate in the trial and to continue taking any medications prescribed by their doctors during the trial.

Exclusion criteria
Participants were excluded from the trial if they had any significant visual impairment that would preclude them from reading a computer screen, a significant neurological or psychiatric disorder, or were unable to walk independently and safely. Individuals were not eligible if they were using illicit drugs or cognitive enhancing medications. Those participants with a suspected cognitive impairment (defined as a score < 24 on the Mini Mental State Examination [MMSE]), or a significant level of symptoms of depression (defined as a score > 9 on the Geriatric Depression Scale [GDS]), were also excluded.

Group allocation
This was a randomized, controlled, 2 x 2 factorial parallel groups study. The randomization sequence was created by permuting into blocks of four. For reasons of practicality, and to avoid cross-contamination between the requirements of each group, cohabiting couples were allocated to the same group. Due to the nature of the interventions this study was not blinded; both investigators and participants knew which intervention group they were allocated to, as participants were required to be actively
working toward maintaining the lifestyle change or in the case of the control group, maintaining their current lifestyle, for a period of six months. Participants were randomly allocated to one of the following four groups:

(1) Walking intervention (exercise)

(2) Adherence to a MedDiet intervention (diet)

(3) Combined walking and diet intervention (exercise and diet)

(4) Control: Maintenance of their current lifestyle

Intervention

The exercise group was requested to walk 30–40 minutes per day following a lead-in of 15 mins per day that was gradually increased over the first month. The distance covered was monitored via a pedometer. Participants were also requested to keep a log of their steps and the distance covered, which served to ensure compliance and was used as a motivational tool.

The diet groups received a collection of recipes to assist with preparing meals in keeping with a Mediterranean dietary style, which incorporates extra virgin olive oil (EVOO) as the primary source of fat. The recipes for breakfast, morning tea, lunch, afternoon tea, dinner, and dessert, were included in a printed six-week MedDiet meal plan that was prepared for the trial with the assistance of dietary consultants from Health Care 2 U.

As this was an unfunded study the participants were initially counseled regarding the MedDiet and how to change to a MedDiet style, however, no dietitian or food training was possible. The diet intervention was standardised across all participating sites. While it was recommended that participants follow the six-week plan, they could also choose specific recipes as per their preference. Participants were counseled on the use of this
dietary plan by the researchers at baseline and then at the follow-up interview at three months, to ensure they were on track. To assist with daily meal preparation, participants received EVOO provided gratis by Cobram Estate. Participants were requested to only use this EVOO and not to use any other cooking or baking oils.

Participants were asked to score their adherence to a Mediterranean style diet as described in the recipe book; at the end of each day; they provided a score from 1 to 4 indicating their adherence to the dietary intervention. These scores enabled the assessment of compliance to a Mediterranean Diet.

The exercise and diet group were requested to follow the interventions of both the exercise and diet groups as described above.

The control group were requested to maintain their lifestyle over the six-month trial period.

Diet assessment/Mediterranean diet score

Habitual diet was assessed using the Cancer Council of Victoria Dietary Questionnaire (Food Frequency Questionnaire [FFQ] for Epidemiological Studies Version 2 [DQES v2], November 2014) (25), both at baseline and following the six-month intervention period. The output of the FFQ was utilized to produce a Mediterranean diet score (MedDietS) in accordance with Trichopoulou et al. (2003). A sex-specific median of dietary intake across all participants in the study was calculated at baseline, allowing for a comparative cut-off to be made for each gender on food consumption (26). Foods classed as belonging to the MedDiet, such as vegetables, legumes, fruits, nuts, cereals, and fish, were assigned a value of 0 if a person’s consumption was below the sex derived median, and a score of 1 if it was equal to, or above, the median. For non-MedDiet food components, such as meat, poultry, and dairy, consumption above the median was scored
as 0, and intake below the median was scored as 1. For alcohol, a score of 1 was given, provided consumption was within 10 and 50 g/day for men and 5 and 25 g/day for women. When considering fat intake, the ratio of monounsaturated to polyunsaturated lipids was evaluated, with a ratio above the median being allocated a 1 and below the median, 0. The total MedDietS ranged from 0 (minimal adherence to the traditional MedDiet) to 9 (maximal adherence).

Assessment of walking ability
The 6 Min Walk Test (6MWT) was used to determine how far an individual could walk in six minutes. This was conducted at baseline and at six months. The 6MWT has been shown to be a valid and reliable test of physical walking ability that has been related to aerobic fitness (27). The 6MWT was performed along a flat, straight, hard surface inside or outside the testing facility. The walking course was 10 m in length. The objective of this test is to walk back and forth along the course as many times in six minutes.

Cognitive assessment
The assessment of cognitive performance utilized the SUCCAB. The SUCCAB is a validated computer-based cognitive battery consisting of eight measures that focus on the cognitive domains that decline with advancing age: simple and choice reaction times, immediate recognition (IRM), delayed recognition (DRM), congruent and incongruent Stroop colour-words, spatial working memory (SWM), and contextual memory (CM) (6). Mean correct response times and percentage response accuracy for each measure were automatically calculated by the SUCCAB system.

Additionally, overall performance on each task was assessed by dividing accuracy percentage by the mean response time for correctly performed trials. This calculation serves to reduce the number of measures, as well as accounting for any speed/accuracy trade off in performance present in this older group (28-32).
Primary outcome

The primary outcome, as defined in the LIILAC protocol paper (24), was the overall change in memory response times, calculated as a composite measure from the SUCCAB memory tests. This measure, the Composite Memory Measure (CompM), was calculated as the sum of the participant’s mean IRM, DRM, SWM and CM task response times. Change was then calculated as the difference in CompM scores between baseline and final assessment session at 6 months.

Secondary outcomes

These included the effects on the extended SUCCAB cognitive performance measures (Performance = accuracy/reaction time), mood, wellness, peripheral and central blood pressure, arterial stiffness, and blood biomarkers of inflammation, gluco-regulation, cholesterol, brain-derived neurotropic factor (BDNF) and homocysteine, as well as the levels of vitamins D, B6, and B12.

Demographic and morphometric measures

Age, gender, and education status were recorded. Age (in years) was calculated from self-reported birth date. Highest education level completed was reported as school, tertiary, or postgraduate. Height, weight, hip, and waist circumference were measured and recorded. Body mass index (BMI, weight in kg/height in meters) was computed. The hip-to-waist ratio (HWR) was computed using physical measurements of both the hips and waist. Refer to Table 1: Baseline Characteristics of the Groups.

Mood and wellness assessment

The Depression Anxiety Stress Scale (DASS) was used to assess changes in mood across the study. The DASS has three related negative emotional states of depression, anxiety
and stress and a total composite score is also calculated (33). A lower Total DASS score represents fewer combined negative symptoms.

The Profile of Mood States (POMS) was used to assess transient, fluctuating feelings and enduring affect states over the past week (34). It produces scores for six dimensions of mood (anger, anxiety, confusion, vigour, fatigue and depression). A total ‘mood disturbance’ score was derived.

The perceived wellness survey is a set of statements that are designed to provide information about a person’s wellness perceptions. The survey is a multidimensional measure of sublevels that consider perceived wellness perceptions in relation to an individual’s physical, spiritual, psychological, social, emotional, and intellectual dimensions. These scores can be evaluated separately. In this research we report a composite (perceived wellness score) PWS, with higher scores indicating greater perceived wellness (35).

Cardiovascular assessment measures

Peripheral and central blood pressures, as well as measures of arterial stiffness, were assessed using the SphygmoCor ® device (Model XCEL, AtCor Medical, Sydney, Australia).

Each participant was in the supine position lying on their back with the left arm placed in line with the height of the heart (a pillow or support was used to achieve this). Participants were requested to remain in the supine position for five minutes prior to measurement. For the last two minutes of the resting period and during the blood pressure assessment, the participant was instructed not to talk as this may have affected the reading. Standard brachial blood pressure was measured by taking three brachial pressure cuff assessments over the left arm. The first recording was discarded and the
average of the second and third recordings were used. Secondly, the SphygmoCor device was used to calculate central (aortic) blood pressure and measures of arterial stiffness, augmentation pressure (AP) and augmentation index (Aix) using central arterial pressure waveform analysis (36). Central pulse pressure was derived as the ratio of central systolic to central diastolic blood pressure.

Pulse wave velocity (PWV) is considered to be the gold standard measure of arterial stiffness and is derived using a femoral cuff to capture the femoral waveform and tonometer pressure sensor to capture the carotid waveform. PWV is calculated as the distance between the carotid and femoral measurement sites divided by the transit time (37, 38).

Blood biomarker assessments
During the consultation with their medical practitioner, each participant was given a pathology request to attend Dorevitch Pathology for blood collection. Blood results were accessed by researchers and the medical practitioner via a secure web-based portal organized by Dorevitch Pathology. The blood markers analyzed were cholesterol, glucose, high sensitivity C-reactive protein (hsCRP), vitamins B12, B6, and D, homocysteine, Haemoglobin A1c (HbA1c), Brain-derived neurotrophic factor (BDNF) and IGF1 (somatomedin C). All blood samples were evaluated using automated pathology equipment by Dorevitch Pathology, except BDNF, which was assessed in Swinburne University laboratories using a sandwich ELISA kit (Cat. No. CYT306).

Statistical analysis
Gender, age, and education were predicted to be associated with cognition, cardiovascular variables, mood and biomarkers, and were therefore used as control variable in Tables 2–5 in all group comparisons (39, 40).
Baseline comparisons of the groups (using the control group as the reference category) were conducted using ANOVA tests. Next, using age, gender (with female as the reference category), highest education level (with postgraduate education as the reference category) and any baseline measures that differed significantly between the groups as control variables. ANCOVA analyses were conducted to test for significant differences between the groups in terms of the above outcome measures at six months, with the control group regarded as the reference category in all cases.

All analyses were conducted using SPSS Statistics Version 24, and p values of less than 5% were regarded as significant. Effect sizes (η^2) of between 0.06 and 0.14 were regarded as moderate effects, with effect sizes of $\eta^2 > 0.14$ regarded as large effects.

RESULTS

Recruitment, allocation and profile of participants

Figure 1 illustrates the number of participants, their gender, and the breakdown of groups within the trial from initial recruitment to assessment at six months.

The intended sample size (148) was not met with 102 participants recruited at baseline. Additionally, although we predicted a 15% attrition rate, the actual rate was higher than anticipated at 20.5%, resulting in 81 participants remaining at the conclusion of the trial.

There was a 23% attrition in the exercise group, 28% within the diet group, and 25% within the exercise and diet group, and a 7% loss within the control group between the time of initial recruitment and the six-month assessment. However, there was no significant difference in attrition rates between the groups (Chi-square = 3.26, df = 3, p =
The loss of participants was the result of individuals not being able to maintain a commitment to the trial and changes in personal circumstances.

Baseline characteristics of the groups are presented in Table 1.

There were no significant differences between the groups in terms of mean age (F(3,98) = .25, p = .861) or gender (Chi-square = 2.243, df = 3, p = 0.523).

A table of complete baseline results including cognitive, mood, and wellness measures, cardiovascular measures and biomarkers, can be found in Appendix 1. This table shows no significant difference between the groups for any measure at baseline (T1) except for homocysteine, which was particularly low for the diet group. Homocysteine is therefore included in the ANCOVA analyses as a covariate.

The groups were compared in terms of the outcome measures at six months while controlling for the baseline values for each outcome measure, age, gender, highest education level, and baseline homocysteine. The reference categories were female in the case of gender, postgraduate in the case of education level and the control group in the case of group analysis. Parameter estimates are shown in all of the ANCOVA tables with effect sizes (\(\eta^2\)) displayed only in the case of the group effect.

Cognitive assessment

Table 2 shows the ANCOVA results for the composite memory measure reaction time as well as the secondary measures of cognitive performance (accuracy [%]/reaction time [s]).
There were no significant group effects for the primary composite memory measure.

For the extended SUCCAB cognitive measures, the exercise and diet intervention group demonstrated significantly better spatial working memory performance ($p < 0.05, \eta^2 = 0.06$) than the control group after six months.

In addition to cognitive changes for the groups, there were a number of significant associations with control variables. There was a significant decline in delayed recognition memory (DRM) with advancing age ($p < 0.05, \eta^2 = 0.06$). Males performed better than females in relation to choice reaction time (CRT) ($p < 0.01, \eta^2 = 0.10$) and congruent Stroop (CS) ($p < 0.05, \eta^2 = 0.10$).

Mood and wellness assessment

Table 3 shows the ANCOVA results for depression, anxiety, and stress from the DASS, the Total DASS, total POMS and PW5. The exercise group and the exercise and diet group demonstrated a significantly lower Total DASS score than the control group ($p < 0.05$ and $\eta^2 = 0.10$ and $p < 0.05$ and $\eta^2 = 0.09$) at six months. However, the exercise and diet group showed significantly reduced PW5 as compared with the control group ($p < 0.05, \eta^2 = 0.07$).

Cardiovascular assessment measures

Table 4 demonstrates that there were no significant differences between the groups and the control group with regard to cardiovascular assessments. Higher homocysteine levels were associated with significantly higher pulse wave velocity ($p < 0.05, \eta^2 = 0.07$) and there was significantly lower augmented pressure for males than females ($p < 0.05, \eta^2 = 0.10$).
Blood biomarker assessments

Table 5 results indicate that the exercise and diet group had significantly higher levels of vitamin B12 than the control group (p < 0.05, η² = 0.07) and in the exercise group vitamin B6 was significantly lower than for the control group (p < 0.05, η² = 0.07) at six months.

In addition to biomarker differences between the groups, there were a number of significant associations with control variables. Individuals with school and tertiary education as opposed to postgraduate education had significantly lower levels of CRP (p < 0.001, η² = 0.17 and 0.15 respectively). In addition higher homocysteine levels were associated with lower levels of CRP (p<.05, η² = 0.09).

Compliance

From the initiation of the trial, every person allocated to the MedDiet group was requested to complete a daily assessment of how well they believed they had complied with the Mediterranean diet plan by placing a number in a chart each day. Each number represented a compliance percentage with 1 = < 50%, 2 = 50–75%, 3 = 75–90% and 4 = 90%+. For participants who completed six months on the Mediterranean diet, 13.9% had an average of 1, 44.4% an average of 2, 33.4% an average of 3 and 8.3% an average of 4. There was a median value of 2 (SD = 0.83), suggesting a 50–75 % compliance rate on average.

Every participant within the walking groups was issued with a pedometer and requested to register steps, time and distance walked per day. A number of issues, such as replacement of pedometers, inaccurate recordings and times made a compliance estimate
difficult to assess. The improvement in walking distance, as assessed by the 6MWT, was the indicator for improvement.

Table 6 shows the mean changes in 6MWT and MedDietS for each of the groups over 6 months. However, no significant group differences were found at 6 months for the 6 minute walk test (F(3,72) = .536, p=.659) or the MedDiet Score (F(3,73) = .329, p=.804), when an ANCOVA analysis was conducted controlling for baseline levels.

DISCUSSION

The primary aim of the current study was to examine the six-month cognitive performance effects of change to a MedDiet or increased exercise through walking, or a combination of both, in an elderly population living independently in aged care facilities (24).

As shown in **Table 2**, contrary to expectations, the primary composite memory measure outcome did not show any significant differences between any of the intervention groups and the control group. However, those in the combined exercise and diet group demonstrated a significant improvement in spatial working memory (SWM) performance relative to controls. As neither the MedDiet or exercise interventions alone were associated with SWM performance improvement, it may be that the individual lifestyle interventions were not sufficiently effective in isolation to alter the modifiable risk factors within this timeframe. However, the results found with the combined diet and exercise group may be due to additive and or synergistic aspects of the individual interventions impacting on the mechanistic pathways to improve SWM.
SWM may be associated with a number of lifestyle factors. The neural underpinnings of SWM involve a network of regions including the medial prefrontal cortex and the hippocampus (41). These regions, particularly the hippocampus, are vulnerable to age-associated cognitive decline, and in particular, neurological disorders such as AD (42). Modifying risk factors such as cardiovascular function and oxidative stress, which are targets for lifestyle interventions, has been shown to impact on both cognitive function and the structural integrity of the brain. (43) Through a regimen of improved lifestyle it is possible that influencing these modifiable risk factors may in turn have altered brain structure and or function, ultimately influencing SWM. More speculatively, these lifestyle factors may have influenced brain plasticity. A comprehensive review has shown that diet modulation has functional implications, resulting in improved adult hippocampal neurogenesis (43).

For all cognitive assessments other than SWM, once the effects of the control variables were taken into account, there were no significant differences between the control group and any of the intervention groups. This is consistent with many previous studies using the SUCCAB cognitive test battery in older individuals, identifying spatial working memory as the most sensitive cognitive domain relevant to age-associated decline (6) and interventions (44). The lack of change in other cognitive domains may also indicate that these domains may require a longer intervention period or that greater compliance to lifestyle change is necessary to identify significant changes, together with greater numbers of participants.

In our secondary outcomes we assessed the effects on mood, quality of life, and overall perceived wellness in these groups (Table 3). We identified that both the exercise group and exercise and diet groups showed a significant reduction in total DASS score. This indicates an improvement in mood, specifically on a combined depression, anxiety, and
stress score. This finding is consistent with numerous studies within the extant literature which have found that a change to healthier dietary and exercise regimens are associated with improvements in mental health (45-47).

Conversely, one particularly unexpected result was in the measure of the perception of wellness. The exercise and diet intervention group demonstrated a lower Perceived Wellness Score (PWS) compared to the control group. It is not clear why self-reported wellness was reduced in the exercise and diet intervention group, particularly given that spatial working memory and DASS improved in this group. It may be that participants become more aware of their wellness through participation in the trial with a lower score at 6 months reflecting a realization that health and self-management of health could be better.

Blood pressure and other vascular health measures have previously been associated with cognitive performance in other studies. However, as shown in Table 4, there were no significant differences between any of the intervention groups and the control group, indicating that the improvement in spatial working memory in the combined intervention group may not be due to vascular changes. Alternatively, the relatively short time frame and group sizes may have limited the chance to detect any change, particular in conjunction with the use of medications, which may have inhibited the expression of change or masked any improvement that may have occurred (48).

Further to this there was also little change in blood biomarkers in this study, with the only significant changes being an increase in B12 in the combined exercise and diet group, and a decrease in B6 in the exercise only group. This may be due to the diet-specific components of the intervention or a potential synergistic effect, with increased
exercise and better diet resulting in improved absorption of B12. The decrease in B6 in the exercise only group is anomalous and the interpretation of this is currently unclear.

The study is one of very few that deals with an older, at-risk group, free from cognitive impairment. Cognition is the primary outcome, applying computerised tests sensitive to age-associated cognitive decline. The group was independently living, residing in supported accommodation and retirement villages; individuals potentially capable of modifying their own dietary and exercise routines. Moreover, the group were generally not excluded because of the medications they were taking in order to normalise their medical ailments. A strength of the trial was therefore the relevance of the group to the general population, in a setting where lifestyle interventions can potentially be applied to limit the transfer to facilities where a higher level of support in needed, such as, aged care facilities and dementia care. More evidence is needed to provide justification for governments to support lifestyle interventions that target modifiable risk factors to limit cognitive decline and potentially prevent or at least delay the onset of dementia.

Another strength of the trial was that participants were tested in their natural environment. Testing was conducted within these facilities negating the need for participants to travel to University test laboratories. The logistical and mental challenges associated with travel to, and testing within, unfamiliar surrounds, potentially confounds cognitive and other results, as well as having impacts on longer term compliance.

Notwithstanding this advantage of testing within independent living facilities, there were other impacts on the study that significantly affected study compliance, both in completion of testing at 6 months and in the ability of participants to comply to the diet and/or exercise modification requirements.
Potentially there was a lack of power for detecting significant changes in the subgroups – lower numbers than anticipated at 6 months and lack of compliance may have reduced the potential for detecting any significant changes with respect to each intervention. In relation to our published protocol (24), we initially estimated the sample size (148) which was not met with only 102 participants recruited at baseline. Additionally, although we predicted a 15% attrition rate, the actual rate was higher than anticipated at 20.5%, resulting in 81 participants remaining at the conclusion of the trial. The reasons participants gave for leaving the trial varied from their inability to maintain the intervention, the incapacity and illness of a partner or loved one, family commitments and a reduction in their health status. Additional recruitment in future studies (> 25%) may be required to ensure that there is adequate power for analysis at the conclusion of a similar type of trial.

As this research was a University-based pilot trial, conducted with limited financial support, there were constraints on resources to support participants with education and motivation in order to maintain their interventional compliance. This may have been another factor for attrition, with participants finding it difficult to adhere to the interventions or losing interest. Moreover, a lack of adherence to the intervention as seen in non-significant change scores for 6MWT and MedDietS relative to control, would’ve limited efficacy on cognitive and secondary outcomes. Future studies should consider the inclusion of specialist support for both the dietary and exercise regimens throughout the intervention period. This would enhance adherence and long-term compliance and help to reduce attrition rates. Additionally, given that it’s not possible to blind such interventions, it may be of value in future studies to consider cluster randomization by trial sites as a way to reduce the chance of cross-contamination between groups.
The overall results of this study had multiple tests performed at the 5% significance level. The results must therefore be interpreted cautiously. In addition, no transformations have been applied. This is appropriate in the case of cognitive variables as this allows for easier interpretation. Furthermore, we have not considered medication use in our analyses, as medications were held constant during the trial period. We have previously demonstrated the importance of medication use in the same cohort in assessing relationships between diet and cognition (49). Controlling for medication use at baseline may have allowed health factors to be controlled for, together with both the positive and the negative effects of medication use (50). However, the relatively small sample size meant that there was limited scope to also control for a large number of medications.

Compliance with exercise was also difficult due to the inability to have an exercise monitoring system that would ensure compliance. Participants used their pedometer as a way to encourage them to maintain and then increase their walking. However, this approach is too inaccurate to assess specific walking distances and longer term walking compliance. Future studies should consider using accelerometers for accurate measurement of physical activity pre and post intervention and pedometers/smart watches specifically for motivational purposes.

CONCLUSION

The primary outcome, the CompM, did not show a significant change in any of the three intervention groups relative to the control group; however, there was a significant improvement in SWM in the combined diet and exercise group relative to the control group. In addition, this combined exercise and diet group also demonstrated a reduction in negative mood symptoms as assessed by the DASS score over the trial, as did the
exercise only group. This suggests that the interventions, or at least the exercise component, may also improve mood. There were no significant cardiovascular effects and few blood biomarker changes.

Given the number of measures assessed and the small sample size, any interpretation of potential mechanisms from this study would be speculative. We therefore suggest that a study with more participants over a longer timeframe is required to further investigate our finding that a combined MedDiet and walking intervention may improve spatial working memory and mood in older people.

With the proliferation of aged care and retirement facilities within Australia, strategies to keep residents both physically and cognitively healthy are of paramount importance. It is critical to have more evidence-based research to substantiate efficacy, thereby supporting such intervention programs.

AUTHORS AND CONTRIBUTORS

All authors made a substantial contribution to the conception and design of this research. All authors have been involved in critically revising the work for important intellectual content. The final approval of the version to be published has been agreed by all authors and an agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work have been appropriately investigated and resolved.

ACKNOWLEDGEMENTS

The resources of the Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, have been utilized to produce this research and their contribution is greatly appreciated.
Blood collection, analysis, and storage was provided by Dorevitch Pathology Victoria. Access to participants was provided by Australian Unity Ltd, BapCare Ltd, Churches of Christ in Queensland Ltd., and Villa Maria Catholic Homes Ltd. Design and advice on nutritional requirements was given in the form of a working publication supplied by Health Care 2 U. We acknowledge the donation of extra virgin olive oil by Cobram Estate Victoria, and AtCor Medical for their technical expertise with equipment. This study would not have been possible without this support, and it is greatly appreciated by the Swinburne LIILAC team.

CONFLICT OF INTEREST STATEMENT
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

ETHICAL APPROVAL
Ethical approval was granted by Swinburne University under SUHREC 2013/057 Swinburne University of Technology. The Australia and New Zealand Clinical Trials Register number is [ACTRN12614001133628]. The universal trial number is U1111-1161-5364. http://www.anzctr.org.au/

REFERENCES
1. Australian Bureau of Statistics AG.
2. Government A. Internet: https://www.aihw.gov.au/reports-statistics/health-welfare-services/aged-care/overview.
3. Rakesh G, Szabo ST, Alexopoulos GS, Zannas AS. Strategies for dementia prevention: latest evidence and implications. Therapeutic Advances in Chronic Disease 2017;8(8-9):121-36. doi: 10.1177/2040622317712442.
4. Prince M, Ali GC, Guerchet M, Prina AM, Albanese E, Wu YT. Recent global trends in the prevalence and incidence of dementia, and survival with dementia. Alzheimers Research & Therapy 2016;8. doi: 10.1186/s13195-016-0188-8.
5. Care A. Internet: https://www.aihw.gov.au/reports-statistics/health-welfare-services/aged-care/overview.
6. Pipingas A, Harris E, Tournier E, King R, Kras M, Stough CK. Assessing the efficacy of nutraceutical interventions on cognitive functioning in the elderly. Current Topics in Nutraceutical Research 2010;8(2-3):79-87.
7. Gunstad J, Paul RH, Brickman AM, Cohen RA, Arns M, Roe D, Lawrence JJ, Gordon E. Patterns of cognitive performance in middle-aged and older adults: A cluster analytic examination. Journal of Geriatric Psychiatry and Neurology 2006;19(2):59-64. doi: 10.1177/089198705284738.

8. Scholey A. Nutrients for neurocognition in health and disease: measures, methodologies and mechanisms. Proceedings of the Nutrition Society 2018;77(1):73-83.

9. Trichopoulou A, Corella D, Martinez-González MA, Soriguer F, Ordovas JM. The Mediterranean diet and cardiovascular epidemiology. Nutrition Reviews 2006;64(10 SUPPL. 1):S13-S9. doi: 10.1301/nr.2006.oct.S13-S19.

10. Kanoski SE, Davidson TL. Western diet consumption and cognitive impairment: Links to hippocampal dysfunction and obesity. Physiology and Behavior 2011;103(1):59-68. doi: 10.1016/j.physbeh.2010.12.003.

11. Romaguera D, Bamia C, Pons A, Tur JA, Trichopoulou A. Food patterns and Mediterranean diet in western and eastern Mediterranean islands. Public Health Nutrition 2009;12(8):1174-81. doi: 10.1017/s1368980008003674.

12. Gotsis E, Anagnostis P, Mariolis A, Vlachou A, Katsiki N, Karagiannis A. Health Benefits of the Mediterranean Diet: An Update of Research Over the Last 5 Years. Angiology 2015;66(4):304-18. doi: 10.1177/0003319714532169.

13. Feart C, Samieri C, Alles B, Barberger-Gateau P. Potential benefits of adherence to the Mediterranean diet on cognitive health. Proceedings of the Nutrition Society 2013;72(1):140-52. doi: 10.1017/s0029665112002959.

14. Trichopoulou A, Kyrozis A, Rossi M, Katsoulis M, Trichopoulos D, La Vecchia C, Lagiou P. Mediterranean diet and cognitive decline over time in an elderly Mediterranean population. European Journal of Nutrition 2015;54(8):1311-21. doi: 10.1007/s00394-014-0811-z.

15. Keys A, Menotti A, Karvonen MJ, Aravanis C, Blackburn H, Buzina R, Djordjevic BS, Dontas AS, Fidanza F, Keys MH, et al. The diet and 15-year death rate in the 7 countries study. American Journal of Epidemiology 1986;124(6):903-15.

16. Hardman RJ, Kennedy G, Macpherson H, Scholey AB, Pipingas A. Adherence to a Mediterranean-Style Diet and Effects on Cognition in Adults: A Qualitative Evaluation and Systematic Review of Longitudinal and Prospective Trials. Frontiers in Nutrition 2016;3(22). doi: 10.3389/fnut.2016.00022.

17. Loughrey DG, Lavecchia S, Brennan S, Lawlor BA, Kelly ME. The Impact of the Mediterranean Diet on the Cognitive Functioning of Healthy Older Adults: A Systematic Review and Meta-Analysis. Advances in Nutrition 2017;8(4):571-86. doi: 10.3945/an.117.015495.

18. Petersson SD, Philippou E. Mediterranean Diet, Cognitive Function, and Dementia: A Systematic Review of the Evidence. Advances in Nutrition 2016;7(5):889-904. doi: 10.3945/an.116.012138.

19. Norrington GM, herbuin N PK, Smee DJ RB. Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. British Journal of Sports Medicine 2017(April). doi: 10.1136/bjsports-2016-096587.

20. Kennedy G, Hardman RJ, Macpherson H, Scholey AB, Pipingas A. How Does Exercise Reduce the Rate of Age-Associated Cognitive Decline? A Review of Potential Mechanisms. Journal of Alzheimers Disease 2017;55(1):1-18. doi: 10.3233/jad-160665.

21. Psaltopoulou T, Kyrozis A, Stathopoulos P, Trichopoulos D, Vassilopoulos D, Trichopoulou A. Diet, physical activity and cognitive impairment among elders: The EPIC-Greece cohort (European Prospective Investigation into Cancer and Nutrition). Public Health Nutrition 2008;11(10):1054-62. doi: 10.1017/s136898007001607.

22. Pinilla FG. The impact of diet and exercise on brain plasticity and disease. Nutrition and Health 2006;18(3):277-84.
23. Nash DT. Nutritional and exercise aspects of cognitive impairment. Journal of Clinical Lipidology 2007;1(4):242-7. doi: 10.1016/j.jacl.2007.07.001.

24. Hardman RJ, Kennedy G, Macpherson H, Scholey AB, Pipingas A. A randomised controlled trial investigating the effects of Mediterranean diet and aerobic exercise on cognition in cognitively healthy older people living independently within aged care facilities: the Lifestyle Intervention in Independent Living Aged Care (LIILAC) study protocol ACTRN12614001133628. Nutrition Journal 2015;14. doi: 10.1186/s12937-015-0042-z.

25. Victoria CCo. Internet: http://www.cancervic.org.au/research/epidemiology/nutritional_assessment_services1.

26. Trichopoulou A, Costacou T, Bamia C, Trichopoulos D. Adherence to a Mediterranean diet and survival in a Greek population. New England Journal of Medicine 2003;348(26):2599-608. doi: 10.1056/NEJMoA025039.

27. Troosters T, Gosselink R, Decramer M. Six minute walking distance in healthy elderly subjects. European Respiratory Journal 1999;14(2):270-4. doi: 10.1034/j.1399-3003.1999.14b06.x.

28. Brebion G. Language processing, slowing, and speed/accuracy trade-off in the elderly. Experimental Aging Research 2001;27(2):137-50. doi: 10.1080/036107301750073999.

29. Thorne DR. Throughput: A simple performance index with desirable characteristics. Behavior Research Methods 2006;38(4):569-73.

30. Jakobsen LH, Sorensen JM, Rask IK, Jensen BS, Kondrup J. Validation of reaction time as a measure of cognitive function and quality of life in healthy subjects and patients. Nutrition 2011;27(5):561-70. doi: 10.1016/j.nut.2010.08.003.

31. van Ede F, de Lange FP, Maris E. Attentional Cues Affect Accuracy and Reaction Time via Different Cognitive and Neural Processes. Journal of Neuroscience 2012;32(30):10408-12. doi: 10.1523/jneurosci.1337-12.2012.

32. Kennedy G, Hardman R, Macpherson H, Meyer D, Scholey A, Pipingas A. The LIILAC Trial: Effects of Aerobic Exercise and Mediterranean Diet on Cognition in Cognitively Healthy Older People Living Independently Within Aged Care Facilities. Journal of Aging and Physical Activity 2016;24:S19-S20.

33. Brown TA, Chorpita BF, Korotitsch W, Barlow DH. Psychometric properties of the Depression Anxiety Stress Scales (DASS) in clinical samples. Behaviour Research and Therapy 1997;35(1):79-89. doi: 10.1016/s0005-7967(96)00068-x.

34. McNair DM L, Droppleman LF. Profile of Mood States (POMS)-revised Manual. 1992.

35. Adams T, Bezner J, Steinhardt M. The conceptualization and measurement of perceived wellness: Integrating balance across and within dimensions. American Journal of Health Promotion 1997;11(3):208-18.

36. Pase MP, Pipingas A, Kras M, Nolidin K, Gibbs AL, Wesnes KA, Scholey AB, Stough C. Healthy middle-aged individuals are vulnerable to cognitive deficits as a result of increased arterial stiffness. Journal of Hypertension 2010;28(8):1724-9. doi: 10.1097/HJH.0b013e32833b1ee7.

37. Butlin M, Qasem A, Battista F, Bozec E, McMeniry CM, Millet-Amaury E, Pucci G, Wilkinson IB, Schillaci G, Boutouyrie P, et al. Carotid-femoral pulse wave velocity assessment using novel cuff-based techniques: comparison with tonometric measurement. Journal of Hypertension 2013;31(11):2237-43. doi: 10.1097/HJH.0b013e328363c789.

38. Mattace-Raso FUS, Hofman A, Verwoert GC, Witteman JCM, Wilkinson I, Cockcroft J, McMeniry C, Yasmin, Laurent S, Boutouyrie P, et al. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal
and reference values'. European Heart Journal 2010;31(19):2338-50. doi: 10.1093/eurheartj/ehq165.

39. van Hooren SAH, Valentijn AM, Bosma H, Ponds R, van Boxtel MPJ, Jolles J. Cognitive functioning in healthy older adults aged 64-81: A cohort study into the effects of age, sex, and education. Aging Neuropsychology and Cognition 2007;14(1):40-54. doi: 10.1080/138255809069483.

40. Guerrero-Berroa E, Ravona-Springer R, Schmeidler J, Silverman JM, Sano M, Koifmann K, Preiss R, Hoffman H, Heymann A, Beeri MS. Age, gender, and education are associated with cognitive performance in an older Israeli sample with type 2 diabetes. International Journal of Geriatric Psychiatry 2014;29(3):299-309. doi: 10.1002/gps.4008.

41. Wirt RA, Hyman JM. Integrating Spatial Working Memory and Remote Memory: Interactions between the Medial Prefrontal Cortex and Hippocampus. Brain Sciences 2017;7(4). doi: 10.3390/brainsci7040043.

42. Parizkova M, Lerch O, Moffat SD, Andel R, Mazancova AF, Nedelska Z, Vyhalek M, Hort J, Laczko J. The effect of Alzheimer’s disease on spatial navigation strategies. Neurobiology of Aging 2018;64:107-15. doi: 10.1016/j.neurobiolaging.2017.12.019.

43. Zainuddin MSA, Thuret S. Nutrition, adult hippocampal neurogenesis and mental health. British Medical Bulletin 2012;103(1):89-114. doi: 10.1093/bmb/lds021.

44. Macpherson H, Ellis KA, Sali A, Pipingas A. Memory improvements in elderly women following 16 weeks treatment with a combined multivitamin, mineral and herbal supplement. Psychopharmacology 2012;220(2):351-65. doi: 10.1007/s00213-011-2481-3.

45. Crombie KM, Brellenthin AG, Hillard CJ, KoltynKF. Psychobiological Responses to Aerobic Exercise in Individuals With Posttraumatic Stress Disorder. Journal of Traumatic Stress 2018;31(1):134-45. doi: 10.1002/jts.22253.

46. Crush EA, Frith E, Loprinzi PD. Experimental effects of acute exercise duration and exercise recovery on mood state. Journal of Affective Disorders 2018;229:282-7. doi: 10.1016/j.jad.2017.12.092.

47. Murri MB, Ekkekakis P, Menchetti M, Neviani F, Trevisani F, Tedeschi S, Latessa PM, Nerozzi E, Ermini G, Zocchi D, et al. Physical exercise for late-life depression: Effects on symptom dimensions and time course. Journal of Affective Disorders 2018;230:65-70. doi: 10.1016/j.jad.2018.01.004.

48. Hardman RJ, Meyer D, Kennedy G, Macpherson H, Scholey AB, Pipingas A. The association between adherence to a Mediterranean style diet and cognition in older people: The impact of medication. Clinical Nutrition. doi: 10.1016/j.clnu.2017.10.015.

49. Hardman RJ, Meyer D, Kennedy G, Macpherson H, Scholey AB, Pipingas A. The association between adherence to a Mediterranean style diet and cognition in older people: The impact of medication. Clinical Nutrition 2018;37(6):2156-65. doi: 10.1016/j.clnu.2017.10.015.

50. Hardman RJ, Kennedy G, MacPherson H, Scholey AB, Pipingas A. A randomised controlled trial investigating the effects of Mediterranean diet and aerobic exercise on cognition in cognitively healthy older people living independently within aged care facilities: The Lifestyle Intervention in Independent Living Aged Care (LIILAC) study protocol [ACTRN12614001133628]. Nutrition Journal 2015;14(1). doi: 10.1186/s12937-015-0042-z.
Table 1: Baseline Characteristics of the Groups

Group	N	Age (years)	BMI (kg/cm)	HWR (cm/cm)	Systolic BP	Diastolic BP
Exercise	26	77.50 ± 7.44	29.1±4.69	1.07± 0.09	138.04± 17.40	71.60± 11.08
Diet	25	77.68± 7.38	28.26± 5.37	1.07± 0.08	134.76± 16.83	69.32± 11.03
Exercise & diet	24	76.54± 7.37	26.64± 3.39	1.07± 0.10	133.00± 12.17	68.21± 8.17
Control	27	78.22± 5.81	29.01± 4.90	1.06± 0.07	136.89± 16.92	72.04± 10.56

HWR = hip to waist ratio
Table 2: Group comparison for cognition measures with control group as the reference group, controlling for the corresponding baseline measure, age, gender, education and baseline homocysteine levels

(unstandardized coefficients)

Outcome	CompM	ST	CT	IR	DR	ConS	InconS	SWM	CM
Baseline measure	0.48***	-0.773***	0.46***	0.49***	0.73***	0.60***	0.67***	0.73***	0.76***
Age	2.39	-0.01	0.04	-0.03	-0.05*	0.06	-0.01	-0.03	-0.01
Male	25.55	-0.93	1.39**	0.39	-0.19	1.61*	-0.67	0.46	-0.29
School	-64.69	-1.58	-0.08	-0.09	-0.35	-0.08	-0.24	0.76	-0.05
Tertiary	-61.03	-2.34	-0.09	0.05	-0.78	-0.09	-0.92	0.85	0.29
HcY	-8.78	0.18	-0.10	0.03	-0.02	-0.12	-0.07	0.04	0.03
Exercise Group	-4.34	-0.31	-0.82	-0.22	0.28	-0.51	-0.57	0.59	0.03
Diet Group	-36.62	0.02	-0.26	0.22	0.31	0.24	-0.54	0.22	0.27
Exercise & diet Group	-52.39	1.64	-0.04	0.65	0.05	-0.18	0.00	0.87d	0.58
Group Effect Size (η²)	0.01	0.05	0.03	0.05	0.01	0.01	0.05	0.07	0.02

CompM= Composite measure reaction time ; ST = Simple reaction time; CT = Choice Reaction Time; IR= Immediate Recognition; DR = Delayed Recognition; ConS = Congruent Stroop; InconS = Incongruent Stroop; SWM= Spatial Working Memory; CM= Contextual Memory; HcY: Homocysteine at Baseline

* p < 0.05, **p < 0.01 ***p < 0.001
Table 3: Group comparison for mood and wellness measures with control group as the reference group, controlling for the corresponding baseline measure, age, gender, education and baseline homocysteine levels
(unstandardized coefficients)

Outcomes	Depression	Anxiety	Stress	Total DASS	Total POMS	PWS
Baseline Measure	0.19***	0.15***	0.48***	0.95***	0.71***	0.08
Age	0.03	0.00	0.00	0.09	0.32	0.12
Male	-0.42	-0.36	0.23	0.59	3.01	-1.24
School	-0.20	0.02	-0.33	-0.66	6.55	-2.05
Tertiary	0.61	-0.25	0.19	-0.78	1.91	-2.30
HcY	0.07	-0.03	-0.06	-0.03	-0.57	-0.13
Exercise Group	-0.17	0.24	0.75	-2.76*	-7.19	-1.65
Diet Group	0.37	0.17	-0.31	-1.13	-0.74	-1.24
Exercise & diet Group	-0.31	-0.38	-0.57	-2.63*	-8.80	-2.64*
Group Effect Size (η^2)	0.03	0.04	0.04	0.13	0.08	0.07

DASS = Depression Anxiety Stress Scale; POMS=Profile of mood states; PWS= Perceived Wellness Score

* p < 0.05, **p < 0.01, ***p < 0.001
Table 4: Group comparison for cardio-vascular assessment with control group as
the reference group, controlling for the corresponding baseline measure, age,
gender, education and baseline homocysteine levels

(unstandardized coefficients)

Outcomes	Systolic	Diastolic	PWV	PP	AP	AIx
Baseline measure	0.57***	0.44***	0.70***	0.59***	0.32***	0.86
Age	0.30	0.00	0.02	0.25	0.20	0.99
Male	-2.11	0.32	0.62	-3.07	-4.43*	-5.69
School	1.91	2.22	0.17	0.65	0.45	2.91
Tertiary	3.09	4.14	0.09	0.62	0.03	-6.97
HcY	-0.04	0.17	0.08*	-0.25	-0.19	-1.62
Exercise Group	-1.55	-0.32	0.19	1.40	1.11	2.70
Diet Group	-6.78	-3.56	0.51	-1.73	-2.79	15.14
Exercise & Diet Group	2.17	0.58	0.48	3.48	2.38	2.77
Group Effect Size (η^2)	0.07	0.05	0.03	0.05	0.10	0.02

Systolic = peripheral systolic blood pressure; Diastolic = peripheral diastolic blood pressure; PWV = Pulse wave velocity; PP = central pulse pressure; AP = augmentation pressure; AIx = augmentation index (AIx = AP/PP x100); HcY: Homocysteine at Baseline

* p < 0.05, **p < 0.01, ***p < 0.001
Table 5: Group comparison for biomarker assessment with control group as the reference group, controlling for the corresponding baseline measure, age, gender, education and baseline homocysteine levels

(unstandardized coefficients)

Outcomes	TC	GF	CRP	B12	V D	V B6	HbA1c % range	HcY	Igf-1	BDNF
Baseline Measure	0.92***	7.21	0.23	0.77***	0.84**	0.66***	0.96***	0.39***	0.67**	0.82***
Age	0.001	0.43	0.04	4.69	0.54	-0.19	-0.00	0.06	-0.01	99.90
Male	-0.25	12.18	-1.64	+0.81	20.90	1.72	0.05	-0.29	0.31	-388.92
School	0.57	-10.85	-6.82**	43.99	2.05	14.53	0.17	0.67	0.36	-4619.19
Tertiary	0.59	-53.04	-6.85**	51.25	7.36	-9.99	0.06	1.40	0.29	-4733.67
HcY	-0.02	6.0	-0.32*	-0.04	-1.45	1.29	0.00	0.10	0.16	-72.04
Exercise Group	-0.03	-81.12	2.20	-3.19	-13.03	-28.88*	-0.20	2.15	-0.20	-1386.52
Diet Group	-0.55	24.41	-0.80	-9.23	-11.32	-17.17	0.14	1.04	0.17	-1848.35
Exercise & diet Group	-0.09	18.04	-1.47	110.11*	-10.76	-12.59	-0.17	-1.05	0.11	-918.03
Group Effect Size (η^2)	0.05	0.09	0.07	0.10	0.02	0.02	0.18	0.10	0.00	0.02

TC= Total Cholesterol; GF= Glucose Fasting; CRP = high sensitivity C-reactive protein; B12 = Vitamin B12; VD= Vitamin D; VB6= Vitamin B6; HbA1c = Haemoglobin A1c; HcY: Homocysteine at Baseline; Igf1 = Insulin-like growth factor 1; BDNF = brain-derived neurotrophic factor;

*p < 0.05, **p < 0.01, ***p < 0.001
Table 6: Shows the mean changes in 6MWT and MedDietS for each of the groups over 6 months.

Groups	Change in 6MWT (m)	Change in MedDietS	n
Control	-5.94 (44.32)	-0.50 (1.41)	24
Exercise	21.11 (41.10)	0.50 (1.25)	20
Diet	7.84 (54.31)	0.24 (1.50)	17
Exercise and Diet	22.31 (84.33)	0.06 (1.34)	17

6MWT=6 minute walk test; m= metres walked MedDietS=Mediterranean Diet Score
Figure 1: Recruitment, allocation and attrition of participants

Interested participants from independent living facilities screened at recruitment presentations or in their home: 169

Number who declined, were ineligible or withdrew after screening: 67

Number of participants recruited at 15 sites across Melbourne Australia: 102

Random allocation to one of four groups

Exercise (n = 26)
\[m = 8 / f = 18 \]

Diet (n = 25)
\[m = 5 / f = 20 \]

Exercise & Diet (n = 24)
\[m = 7 / f = 17 \]

Control (n = 27)
\[m = 9 / f = 18 \]

Exercise (n=20)
\[m = 7 / f = 13 \]

Diet (n=18)
\[m = 3 / f = 15 \]

Exercise &
\[m = 5 \]

Control (n = 25)
\[m = 9 / f = 16 \]
Appendix 1: Baseline Comparison of Groups

Mean (Standard Deviations)

Variables	Exercise	Diet	Diet & exercise	Control	P value	η^2
Cognitive measures						
Simple reaction time	33.89(5.27)	34.57(6.72)	34.49(5.05)	34.17(5.44)	0.97	0.002
Choice reaction time	19.73(3.11)	21.32(2.94)	20.25(2.28)	19.82(3.22)	0.20	0.46
Immediate recognition	6.08(1.86)	6.45(1.97)	6.54(1.65)	6.62(1.59)	0.74	0.14
Delayed recognition	6.02(1.51)	6.50(1.41)	6.36(1.52)	6.46(1.37)	0.63	0.18
Congruent Stroop	10.91(1.54)	11.83(1.65)	12.09(2.27)	11.21(1.60)	0.75	0.68
Incongruent Stroop	8.12(2.01)	9.03(2.02)	8.67(2.73)	7.94(2.09)	0.27	0.39
Spatial working memory	4.88(1.37)	4.80(1.13)	5.71(2.02)	4.73(1.49)	0.09	0.62
Contextual memory	6.17(2.37)	6.59(1.90)	6.25(1.91)	6.42(1.99)	0.89	0.006
Mood & wellness						
Depression	4.0(5.13)	1.49(2.19)	2.2(3.21)	2.3(3.3)	0.11	0.07
Anxiety	3.7(5.2)	1.1(1.6)	2.8(3.7)	2.0(2.86)	0.10	0.07
Stress	2.5(3.6)	1.3(1.9)	1.5(1.9)	1.8(2.6)	0.44	0.03
Total DASS	7.6(8.5)	5.8(3.1)	6.7(4.9)	3.8(2.5)	0.07	0.08
PWS	12.1(2.0)	12.2(2.0)	12.0(2.2)	12.7(1.8)	0.54	0.024
Total Mood	12.4(34.9)	2.7(13.1)	6.1(23.6)	0.22(13.7)	0.29	0.41
Cardiovascular						
Systolic	138(17.4)	134(16.8)	133(12.2)	137(16.9)	0.70	0.015
Diastolic	71.6(11.1)	69.3(11.0)	68.2(8.2)	72.0(10.6)	0.50	0.024
PWV	12.0(2.4)	11.4(1.83)	11.3(1.68)	11.3(1.74)	0.52	0.024
AP	15.7(7.3)	14.76(28)	15.3(6.26)	16.7(7.54)	0.78	0.011
AIx	30.4(10.5)	28.1(7.34)	29.8(10.1)	31.6(11.4)	0.64	0.17
Biomarkers	53 (11.7)	49.5 (10.6)	50.1 (11.3)	50 (10.1)	0.75	0.016
-----------------------------	-----------	-------------	-------------	-----------	------	-------
Total cholesterol mmol/L	4.84(1.28)	5.05(1.12)	4.72(0.73)	4.60(0.79)	0.44	0.29
Glucose fasting mmol/L	5.85(1.78)	5.36(0.52)	5.87(1.12)	5.66(0.86)	0.53	0.026
CRP mg/L	2.58(3.46)	3.09(4.65)	5.25(8.31)	2.19(4.29)	0.24	0.046
Vitamin B12 (x100) pmol/L	2.99(1.28)	3.53(1.83)	3.39(1.71)	3.14(1.28)	0.61	0.020
Vitamin D nmol/L	59.2(16.2)	62.5(22.4)	61.9(21.7)	66.0(22.4)	0.71	0.015
Vitamin B6 pmol/L	32.3(25.2)	48.9(54.5)	63.4(50.9)	62.5(72.8)	0.17	0.055
Homocysteine umol/L	17.3(6.36)	12.3(4.19)	15.2(5.59)	15.3(3.81)	0.009	0.12
HBA1c mmol/mol	5.76(0.64)	5.7(0.42)	5.8(0.49)	5.6(0.42)	0.59	0.021
IGF1 nmol/L	14.1(6.0)	15.5(4.1)	18.3(5.6)	16.2(5.3)	0.83	0.071
BDNF (x1000) pg/ml	27.5(7.5)	27.7(11.21)	30.4(13.0)	29.5(11.2)	0.77	0.013