COUNTEREXAMPLES FOR LOCAL ISOMETRIC EMBEDDING

NIKOLAI NADIRASHVILI AND YU YUAN

1. Introduction

In this paper, we construct metrics on 2-manifold which cannot be even locally isometrically embedded in the Euclidean space \mathbb{R}^3. By isometric embedding of (M^2, g) with $g = \sum_{i,j=1}^{2} g_{ij} dx_i dx_j$ in \mathbb{R}^3, we mean there exists a surface in \mathbb{R}^3 with the induced metric equaling g, namely, the three coordinate functions $(X(x_1, x_2), Y(x_1, x_2), Z(x_1, x_2))$ defined on M^2 satisfy

$$dX^2 + dY^2 + dZ^2 = \sum_{i,j=1}^{2} g_{ij} dx_i dx_j.$$

To be precise, we state the results in the following

Theorem 1.1. There exists a smooth metric g in $B_1 \subset \mathbb{R}^2$ with Gaussian curvature $K_g \leq 0$ such that there is no C^3 isometric embedding of $(B_r(0), g)$ in \mathbb{R}^3 for any $r > 0$.

Theorem 1.2. There exists a smooth metric g in $B_1 \subset \mathbb{R}^2$ with Gaussian curvature $K_g(0) = 0$ and $K_g(x) < 0$ for $x \neq 0$ such that there is no $C^{3,\alpha}$ isometric embedding of $(B_r(0), g)$ in \mathbb{R}^3 for any $r > 0$ and $\alpha > 0$.

Pogorelov [P2] constructed a simple $C^{2,1}$ metric g in $B_1 \subset \mathbb{R}^2$ with sign-changing Gaussian curvature such that (B_r, g) cannot be realized as a C^2 surface in \mathbb{R}^3 for any $r > 0$. Recently the first author [N] gave a C^∞ metric g on B_1 with no smooth isometric embedding of (B_r, g) in \mathbb{R}^3 for any $r > 0$. The sign of the Gaussian curvature K_g also changes.

On the positive side, when the sign of K_g for any smooth metric g does not change, the local smooth isometric embedding was settled by Pogorelov [P1], Nirenberg [Ni], and Hartman and Winter [HW2]. When $K_g \geq 0$ for the C^k metric with $k \geq 10$, there is a C^{k-6} isometric embedding of (B_{r_k}, g) in \mathbb{R}^3, this was done by Lin [L1]. When K_g changes sign cleanly, namely, $K_g(0) = 0, \nabla g(0) \neq 0$ for a C^k metric g, Lin [L2] showed that there exists a C^{k-3} isometric embedding in \mathbb{R}^3 for (B_{r_k}, g) with $k \geq 6$. When $K_g \leq 0$ and $\nabla^2 K_g(0) \neq 0$ for the smooth metric g, there is a local smooth isometric

Date: July 3, 2002.

Both authors are partially supported by NSF grants, and the second author also by a Sloan Research Fellowship.
embedding of \(g \) in \(\mathbb{R}^3 \), see Iwasaki [I]. When \(K_g = -x_1^{2m} \tilde{K}(x) \) with \(\tilde{K}(0) > 0 \) for the smooth metric \(g \), the same local isometric embedding also holds, see Hong [H]. Recently, Han, Hong, and Lin [HHL] showed that the local isometric embedding exists under the assumption \(K_g \leq 0 \) with a certain non-degeneracy of the gradient of \(K_g \), or \(K_g \leq 0 \) with finite order vanishing.

If one allows higher dimensional ambient space, say \(\mathbb{R}^4 \), Poznyak [Po1] proved that any smooth metric \(g \) on \(M^2 \) can be locally smoothly isometrically embedded in \(\mathbb{R}^4 \). In fact, any \(C^k \) metric on n-manifold \(M^n \) has a \(C^k \) global isometric embedding in \(\mathbb{R}^{N_n} \) with \(N_n \) large for \(3 \leq k \leq \infty \). This is the work by Nash [Na2].

If we start with an analytic metric \(g \) on \(M^n \), one always has a local analytic isometric embedding of \((M^n, g)\) in \(\mathbb{R}^{n(n+1)/2} \). This was proved by Janet [J], Cartan [C] very earlier on, and initiated by Schläfli in 1873!

Lastly, any \(C^0 \) metric \(g \) on a compact n-manifold \(M^n \) which can be differentially embedded in \(\mathbb{R}^{n+1} \) has a \(C^1 \) isometric embedding in \(\mathbb{R}^{n+1} \), see Nash [Na1] and Kuiper [K].

For general description and further results on isometric embedding problem, we refer to [GR], [P2] and [Y].

The heuristic idea of the construction is to arrange the metric \(g \) in \(B_1 \) so that the second fundamental form of any isometric embedded surface in \(\mathbb{R}^3 \), \(\Pi \iota \) vanishes at one point, where \(\iota : (B_1, g) \to \mathbb{R}^3 \) is the isometric embedding which is supposed to exist. Further we force \(\Pi \iota \) to vanish along the boundary of a small domain \(\Omega \) near the center of \(B_1 \), where the Gaussian curvature \(K_g < 0 \) (in \(\Omega \)). By the maximal principle, one cannot have a saddle surface with vanishing second fundamental form along the boundary. So \((\Omega, g)\) cannot be realized in \(\mathbb{R}^3 \). We repeat the construction near the center of \(B_1 \) at every scale so that \((B_1, g)\) is not isometrically embeddable in \(\mathbb{R}^3 \) near the center.

The way to force \(\Pi \iota \) to vanish at one point, say \(o \), is the following. We modify the flat metric \(g_0 = dx^2 \) in \(\mathbb{R}^2 \) only over certain region \(\Lambda \) slightly away from the center \(o \) to a new one \(g \) so that, for a segment \(A_1 A_2 \) with \(A_1, A_2 \in \partial \Lambda \), the length of \(A_1 A_2 \) under \(g \) is shorter than the one of the geodesic \(A_1 A_2 \) under the flat \(g_0 \), and \(K_g \leq 0 \) in a subregion \(\Lambda_s \) containing \(A_1 A_2 \). Because of \(\det \Pi(i(0)) = 0 \), we only need to deal with the other principle curvature. Suppose the second one \(\kappa_2 \neq 0 \), say \(\kappa_2 < 0 \). We show that there is a flat concave cylinder \(\Sigma \) near \(i(B_1) \), which is isometric to \((B_1, g_0)\) provided the embedding \(i \) is \(C^3 \) (This assertion for \(C^2 \) embedding case remains unclear to us). Now \(i(A_1 A_2) \) supported on the saddle surface \(i(\Lambda_s) \) can only stay above the concave cylinder \(\Sigma \). Then the length of \(i(A_1 A_2) \) is longer than the one of the projection of \(i(A_1 A_2) \) down to the flat \(\Sigma \), call it \(P \circ i(A_1 A_2) \).

We know the length of \(P \circ i(A_1 A_2) \) under \(g_0 \) is equal to or longer than that of the geodesic \(A_1 A_2 \) under \(g_0 \). But we start from \(A_1 A_2 \) with shorter length under \(g \) than under \(g_0 \). This contradiction shows that \(\Pi \iota(i(0)) \) vanishes.

Inevitably, \(K_g \) is positive somewhere in \(\Lambda \) if \(\Lambda \) is surrounded by flat region with metric \(dx^2 \). We add “tails” extending to the boundary \(\partial B_1 \) for the
modifying regions \(\Lambda \), modify the metric on the tails, then we have the \(\eta \) with \(K_\eta \leq 0 \) in \(B_1 \). It turns out that we cannot work with a segment in the construction, we go with a minimal tree connecting three points on \(\partial \Lambda \) for each \(\Lambda \), see section 2 for details.

Now that we have a non-isometrically embeddable metric (with nonpositive Gaussian curvature), the nearby metrics are almost non-isometrically embeddable. Based on this observation, we construct a non-isometrically embeddable metric with negative Gaussian curvature except for one point in section 3.

2. Metric with nonpositive curvature

Recall any three segments in \(\mathbb{R}^2 \) with equal angles \(\frac{2\pi}{3} \) at the common vertex form a minimal tree \(T \), namely, the length of \(T \) is less than that of any arcs connecting the other three vertices.

Lemma 2.1. Let \(u = -\text{Im} e^{\log^2 z} = -e^{\log^2 r - \theta^2} \sin (2\theta \log r) \), \(0 < \theta < 2\pi \).

Then there exists a large integer \(K \) such that

\[
\int_T u ds < 0,
\]

where the minimal tree \(T = AA_1 \cup AA_2 \cup AA_3 \) with \(A = (-e^{-K}, 0) \), \(A_2 = (-1, 0) \), \(A_1, A_2 \in \partial B_1 \), \(\angle A_1 AA_2 = \angle A_2 AA_3 = \frac{2\pi}{3} \). Moreover, \(u_r < 0 \) for \(r = 1 \).

Proof. Set \(\Omega_u = B_1 \cap \text{Sector} A_1 AA_2, \Omega_l = B_1 \cap \text{Sector} A_2 AA_3, \widehat{A_1 A_2} = \partial \Omega_u \cap \partial B_1, \widehat{A_2 A_3} = \partial \Omega_l \cap \partial B_1 \). Let the angle from \(A_1 A \) to \(x \) be \(\varphi \), or \(\varphi(x) = \angle A_1 Ax \), then \(0 \leq \varphi(x) \leq \frac{4\pi}{3} \) for \(x \in \Omega_u \cup \Omega_l \).

We apply Green formula to harmonic functions \(u \) and \(\varphi \) in \(\Omega_u \) and \(\Omega_l \),

\[
\int_{\partial \Omega_u} u \varphi \gamma ds = \int_{\partial \Omega_u} \varphi u \gamma ds
\]

\[
\int_{\partial \Omega_l} u \left(\varphi - \frac{4}{3} \pi \right) \gamma ds = \int_{\partial \Omega_l} \left(\varphi - \frac{4}{3} \pi \right) u \gamma ds,
\]

where \(\gamma \) is the outward unit normal of the integral domain. We then have

\[
\int_{AA_1} -uds + \int_{AA_2} uds = \int_{A_1 A_2} \varphi u_r ds + \int_{AA_2} \frac{2}{3} \pi u_\theta ds
\]

\[
\int_{AA_2} -uds + \int_{AA_3} uds = \int_{A_2 A_3} \left(\varphi - \frac{4}{3} \pi \right) u_r ds + \int_{AA_2} \frac{2}{3} \pi u_\theta ds.
\]

It follows that

\[
\int_{AA_1 \cup AA_3} uds = 2 \int_{AA_2} uds + \int_{A_1 A_2} -\varphi u_r ds + \int_{A_2 A_3} \left(\varphi - \frac{4}{3} \pi \right) u_r ds
\]

\[
= 2 \int_{AA_2} uds + \int_{A_1 A_2} \varphi e^{-\theta^2} 2\theta ds + \int_{A_2 A_3} \left(\frac{4}{3} \pi - \varphi \right) e^{-\theta^2} 2\theta ds.
\]
On the other hand,
\[
\int_{AA_2} u ds = \int_{e^{-K}}^{e^0} -e^{(\log^2 r - \pi^2)} \sin (2\pi \log r) \, dr
\]
\[
= \frac{1}{2\pi e^2} \int_{-2\pi K}^{0} -e^{\left(\frac{r^2}{4\pi^2} + \frac{4}{\pi^2} \right)} \sin t \, dt.
\]
We choose large enough integer \(K \) so that \(\int_{AA_2} u ds < 0 \) and
\[
2 \int_{AA_2} u ds + \int_{A_1 A_2} \varphi e^{-\theta^2} 2\theta ds + \int_{A_2 A_3} \left(\frac{4}{3\pi} - \varphi \right) e^{-\theta^2} 2\theta ds < 0.
\]
Therefore
\[
\int_{T} u ds < 0.
\]

Remark. By applying Green formula to the above harmonic function \(u \) and linear functions, one sees that \(\int_{T} u ds > 0 \) for any segment \(\Gamma \subset \Omega_u \cup \Omega_l \), connecting two boundary points on \(\partial B_1 \).

Lemma 2.2. There exists a function \(v \in C^\infty_0 (B_{1.1}) \) satisfying
\[
v = 0 \quad \text{in} \quad \{(x_1, x_2) | x_1 < 0.9\} \setminus B_1
\]
\[
\Delta v \geq 0 \quad \text{in} \quad B_1
\]
\[
\int_{T} v ds < 0
\]
where the minimal tree \(T = CC_1 \cup CA_2 \cup CC_3 \) with \(A_2 = (-1, 0) \), \(C = \left(-\frac{1}{10} e^{-K} - 0.8, 0 \right) \), \(C_1, C_3 \in \partial B_1 \) and \(\angle C_1 CA_2 = \angle A_2 CC_3 = \frac{2}{3}\pi \). Moreover \(T \subset \{(x_1, x_2) | x_1 < -0.1\} \).

Proof. Set \(D = (-e^{-2K}, 0) \), \(D_1, D_2 \in \partial B_1 \) with \(\angle D_1 DA_2 = \angle A_2 DD_3 = \frac{2}{3}\pi \), and \(D_4 = (20, x_2 (D_3)) \), \(D_5 = (20, x_2 (D_1)) \). Set \(\Omega_p = \text{Pentagon} D_1 DD_3 D_4 D_5 \).

Let \(w \) satisfy
\[
\Delta w = 0 \quad \text{in} \quad \Omega_p
\]
\[
w = u \quad \text{on} \quad D_1 D \cup D_3 D
\]
\[
w = 0 \quad \text{on} \quad D_1 D_5 \cup D_3 D_4
\]
\[
w = N \quad \text{on} \quad D_4 D_5
\]
\[
w = u \quad \text{in} \quad B_1 \setminus \text{Sector} D_1 DD_3,
\]
where \(u \) is the one in Lemma 2.1.

We choose large enough \(N \) so that \(w_\gamma > u_\gamma \) on \(D_1 D \cup D_3 D \) and \(w_\gamma > 0 \) on \(D_1 D_5 \cup D_3 D_4 \), where \(\gamma \) is the inward unit normal of \(\partial \Omega_p \) this time. (If one insists, we can smooth off \(\partial \Omega_p \).)
Next we mollify \(w \) by the usual (radially symmetric) mollifier \(\rho_\delta \in C_0^\infty (B_\delta) \) with \(0 < \delta < e^{-2K} \) to be determined later. We see that the smooth function \(w * \rho_\delta \) satisfies
\[
\begin{align*}
\triangle w * \rho_\delta (x) & \geq 0 \quad \text{for } x_1 \leq 19.9 \\
w * \rho_\delta (x) & = u \quad \text{for } x \text{ inside } \Omega_i = B_1 \setminus \text{Sector}D_1DD_3 \text{ and } \delta \text{ away from } \partial \Omega_i \\
w * \rho_\delta (x) & = 0 \quad \text{for } x \text{ outside } \Omega_o = (B_1 \setminus \text{Sector}D_1DD_3) \cup \Omega_p \text{ and } \delta \text{ away from } \partial \Omega_o.
\end{align*}
\]
Finally, set \(C_0 = (-0.8, 0) \) and
\[
v (x) = w * \rho_\delta (10 (x - C_0)).
\]
By making \(\delta \) even smaller yet positive if necessary so that \(\int_T v ds < 0 \), we obtain the desired function \(v \) in the above lemma.

Corollary 2.1. Let \(v \) be the function in Lemma 2.2. There exists a family of smooth metrics in \(\mathbb{R}^2 \)
\[
g_\delta = e^{2\delta v} dx^2 \quad \text{for } 0 < \delta < \delta_0
\]
such that
\[
\begin{align*}
g_\delta & = dx^2 \quad \text{in } \{(x_1, x_2) | x_1 < 0.9\} \setminus B_1 \\
K_{g_\delta} & \leq 0 \quad \text{in } B_1 \\
L (T, g_\delta) & < L (T, dx^2),
\end{align*}
\]
where \(L (T, g) \) is the length of the minimal tree \(T \) from Lemma 2.2 in metric \(g \).

Proof. We only prove the last two inequalities. One has
\[
K_{g_\delta} = -e^{-2\delta v} \triangle (\delta v) \leq 0 \quad \text{in } B_1.
\]
Also
\[L(T, g_\delta) = \int_T e^{\delta v} \, ds \]
\[\frac{dL}{d\delta} \bigg|_{\delta=0} = \int_T v \, ds < 0. \]
Thus there exists \(\delta_0 \) such that \(L(T, g_\delta) < L(T, dx^2) \) for \(0 < \delta < \delta_0 \). \(\square \)

Let \(\psi \in C^1([-1, 1]) \) satisfy \(0 \leq \psi \leq 1 \) and \(\psi(\pm 1) = 0 \). Set
\[\gamma = \{(x_1, x_2) \mid x_1 = \psi(x_2), \, |x_2| \leq 1\}, \quad Q = \{(x_1, x_2) \mid 0 < x_1 < \psi(x_2), \, |x_2| \leq 1\} \]
\[\Pi = [0, 2] \times [-2, 2] \subset R^2, \quad F = \Pi \setminus Q. \]

Lemma 2.3. Let \(f \in C^3(F) \). Assume the graph \(\Sigma \) of \(f \) is flat or \(\det D^2 f = 0 \) and \(D^2 f \neq 0 \) in \(F \). Also assume a unit \(C^1 \) continuous eigenvector \(V_0 \) for the zero eigenvalue of \(D^2 f \) is transversal to \(\gamma \). For any \(0 < \tau < 1 \), there exists \(\varepsilon > 0 \) so that if \(\|D^2 f - \begin{bmatrix} 0 & 0 \\ -\tau & 0 \end{bmatrix}\| \leq \varepsilon \tau \), one can extend \(f \) to \(\Pi \) with the graph of the extension being flat and concave.

Proof. We take the \(C^2 \) Legendre coordinate system on \(F \subset \Pi \) (cf. [HW1]).

\[
\begin{align*}
\begin{cases}
 t = x_1 \\
 s = f_2(x_1, x_2).
\end{cases}
\end{align*}
\]
Notice that the graph of \(f, \Sigma \) is flat, or \(\det D^2 f = 0 \), it follows that \(\{(x_1, x_2) \mid f_2(x_1, x_2) = s = \text{const}\} \) is a straight segment in \(\mathbb{R}^2 \) and \(x_1(t, s) \) (\(\|V_0\) is independent of \(t \). Also \(\frac{\partial f}{\partial t}(x(t, s)) \) is independent of \(t \). Hence we can represent a portion \(\Sigma^p \) of the graph \(\Sigma \) in the ruling form
\[(x_1, x_2, x_3)(t, s) = h(t, s) = c(s) + t\delta(s) = (t, x_2(t, s), f(t, x_2(t, s))), \]
where \(c(s), \delta(s) \in C^2 \) and \(s \in S = [f_2(2, 2), f_2(2, -2)], \quad t \leq 2 \).

We may assume \(\nabla f(2, 0) = 0 \). If \(\varepsilon \) is chosen small enough, then \(\delta(s) (\|V_0\) is close to \((1, 0, 0) \) in \(C^1 \) norm. Take \(\varepsilon \) small, then
\[\{(x_1, x_2, f(x_1, x_2)) \mid ((x_1, x_2) \in \gamma)\} \subset \partial \Sigma^p. \]
Set \(U = \{(t, s) \mid -1 \leq t \leq 2, \, s \in S\} \). Take \(\varepsilon \) small so that \(\|\delta(s) - (1, 0, 0)\|_{C^1} \) small, then \((t, s) \in U \) is a \(C^2 \) coordinate system for \(\Pi \).

Now \(\Sigma^\varepsilon = h(U) \) is a \(C^2 \), flat, concave graph over a domain \(\Omega \) in \(\mathbb{R}^2 \) with \(\Pi \subset \Omega \). Indeed, the normal of \(\Sigma^\varepsilon \) is
\[N = \frac{h_t \times h_s}{\|h_t \times h_s\|}. \]
We know
\[h_t = \left(1, \frac{-f_2}{f_2}, f_1 + f_2 \frac{f_2}{f_2}\right) \xrightarrow{\varepsilon \to 0} (1, 0, 0) \]
\[h_s = \left(0, \frac{1}{f_2}, \frac{f_2}{f_2}\right) \xrightarrow{\varepsilon \to 0} \left(0, -\frac{1}{\tau}, -\frac{8}{\tau}\right), \]
then \(h_t \times h_s \xrightarrow{\varepsilon \to 0} (0, \frac{\varepsilon}{t}, \frac{1}{t}) \). So \(\Sigma^e \) is a \(C^2 \) graph if we choose \(\varepsilon \) small enough.

Next, the second fundamental form of \(\Sigma^e \) is

\[
\begin{aligned}
H &= \begin{bmatrix}
\langle h_{tt}, N \rangle & \langle h_{ts}, N \rangle \\
\langle h_{st}, N \rangle & \langle h_{ss}, N \rangle
\end{bmatrix} \\
&= \frac{1}{\|h_t \times h_s\|} \begin{bmatrix}
0 & 0 \\
0 & \langle c'' + t\delta'', \delta \times (c' + t\delta') \rangle
\end{bmatrix}
\end{aligned}
\]

and the Gaussian curvature

\[K_g = 0. \]

Finally, the nonzero principle curvature of \(\Sigma^e \)

\[\kappa = \left[\frac{\tau^3}{(1 + s^2)\varepsilon} + o(\varepsilon) \right] \langle c'' + t\delta'', \delta \times (c' + t\delta') \rangle. \]

On the other hand, from the graph representation of \(\Sigma^p, \kappa \xrightarrow{\varepsilon \to 0} -\tau/(1 + s^2)^{3/2} \).

So for \(t \) in a certain range close to 2, say \(t \in [1, 2] \), the quadratic function in terms of \(t \),

\[\langle c'' + t\delta'', \delta \times (c' + t\delta') \rangle = a_0 + a_1 t + a_2 t^2 \]

is close to \(-1/\tau^2\) as \(\varepsilon \to 0 \). It follows that \(a_0 + a_1 t + a_2 t^2 \) is still close to \(-1/\tau^2\) for \(t \in [-1, 2] \), if we choose \(\varepsilon \) small enough. So \(\Sigma^e \) is concave.

Lemma 2.4. Let \(f \) be the extended function in Lemma 2.3, let \(w \in C^2 (\Pi) \) satisfy \(w = f \) on \(F \), det \(D^2 w \leq 0 \) in \(\Pi \), and \(\left\| D^2 w - \begin{bmatrix} 0 & 0 \\ 0 & -\tau \end{bmatrix} \right\|_C \leq \varepsilon \tau \).

Then

\[f \leq w \text{ in } \Pi. \]

Proof. Suppose there is a point \(x' = (x'_1, x'_2) \in M \) such that \(w(x') < f(x'). \)

We know \(x'_2 \in (-1, 1) \). For simplicity, we may assume

\[f(x') - w(x') = \sup_{x_2 \in [-1, 1]} \left[f(x'_1, x_2) - w(x'_1, x_2) \right]. \]

Then \(f_2(x') = w_2(x') \). It follows that the two tangent lines \(l_f, l_w \) to \(f \) and \(w \) at \(x' \) in the plane \(\{(x_1, x_2, x_3) | x_1 = x'_1 \} \) are parallel. Since \(w(x'_1, \cdot) \) is concave, \(l_w \) is above \(w \).

Let \(T \subset \mathbb{R}^3 \) be the tangent plane to the graph \(\Sigma_f \) of \(f \) at \((x', f(x')) \). Let \(R = T \cap \Sigma_f \). Then \(R \) is a segment (ruling) transversal to \(l_f \). Let \((x^0, z^0) \) be the extended function in Lemma 2.3, let \(\langle c'' + t\delta'', \delta \times (c' + t\delta') \rangle = a_0 + a_1 t + a_2 t^2 \)

\[\langle c'' + t\delta'', \delta \times (c' + t\delta') \rangle = a_0 + a_1 t + a_2 t^2 \]

is close to \(-1/\tau^2\) as \(\varepsilon \to 0 \). It follows that \(a_0 + a_1 t + a_2 t^2 \) is still close to \(-1/\tau^2\) for \(t \in [-1, 2] \), if we choose \(\varepsilon \) small enough. So \(\Sigma^e \) is concave.

Let \(m(x) \) be the linear function with graph as the plane \(E \) through \(l_w \) and \(l_0 \). Let \(V = \{(x_1, x_2) | |x'_1| < x_1 < 2, |x_2| < 2 \} \). Because \(\Sigma_w \) is a ruling surface on \(F \), then

\[w(x) \leq m(x) \text{ on } \partial V. \]
Note that det $D^2w \leq 0$, by the maximum principle,
$$w(x) \leq m(x) \quad \text{in} \quad V.$$
On the other hand, there is $(x^*, w(x^*)) \in R$ with $x^* \in V$ such that
$$w(x^*) > m(x^*).$$
This contradiction completes the proof of the above lemma. \hfill \Box

Let r be a rotation in \mathbb{R}^2 through an angle 1°. Let v be the function in Lemma 2.2, set
$$w(x) = \sum_{i=1}^{360} v \left(r^i (1000x) - (360, 0) \right).$$
Pick two sequences $z_n \in \mathbb{R}^2$ and $\rho_n > 0$ such that
$$z_n \to 0 \quad \text{as} \quad n \to +\infty$$
$$B_{\rho_n}(z_n) \cap B_{\rho_k}(z_k) = \emptyset \quad \text{for} \quad n \neq k.$$
Take another sequence $\delta_n > 0$ going to 0 fast enough so that the smooth metric g_{II} in \mathbb{R}^2 satisfying
$$g_{II} = e^{2\delta_n w(z_n+x/\rho_n)} dx^2 \quad \text{in} \quad B_{\rho_n}(z_n)$$
$$g_{II} = dx^2 \quad \text{otherwise.}$$

Remark. Certainly our v is only smooth in $B_{1,1}(0)$, that leaves the function w nonsmooth, even undefined near the corresponding tails. At this stage, we do not need any information on the metric g_{II} near those tails (Figure 1 and 3). We can make a smooth extension of v to \mathbb{R}^2 with $v \in C^\infty_0(B_2)$ if one insists. Then the Gaussian curvature of g would be positive near the transition region. In the proof of Theorem 1.1, we will extend the tails to the boundary, make v a smooth subharmonic function inside the unit ball. Then the Gaussian curvature would be nonpositive in the unit ball.

Proposition 2.1. Let i be a C^3 isometric embedding
$$i : (B_r(0), g_{II}) \to \mathbb{R}^3$$
for some $r > 0$. Then the second fundamental form of $i(B_r(0))$ vanishes at $i(0)$, or $II(i(0)) = 0$.

Proof. We may assume $i(B_r)$ is the graph Σ_w of a function $x_3 = w(x_1, x_2)$ and $w(0) = 0$, $\nabla w(0) = 0$. Then $II(i(0)) = D^2w(0)$ and det $D^2w(0) = 0$. Suppose
$$D^2w(0) \neq 0.$$
Let P_3 be the projection from \mathbb{R}^3 to x_1, x_2 plane. Set $J(x) = P_3(i(x))$. We may assume DJ is the identity map on the tangent space \mathbb{R}^2 at 0, and
$$D^2w(0, 0) = \begin{bmatrix} 0 & 0 \\ 0 & -\tau \end{bmatrix}.$$
For a sufficiently large n, $B_{\rho_n} (z_n) \subset B_r$ and
\[g_{11} = e^{2\delta_n v (r^{180}(1000(z_n+x/\rho_n))-(360,0))} \] in the 179° to 181° section of the ball $B_{\rho_n} (z_n)$.

In order to simply the presentation, we work with the metric $g_{\delta_n} = e^{2\delta_n v(x)} dx^2$ as in the Corollary 2.1. Let Σ^e be the flat, concave extension of $i \left(B_2 \setminus B_1 \right)$ by Lemma 2.3, where $B_\rho^c = \{ (x_1, x_2) \mid x_1 < 0 \} \cap B_\rho$. Note that we may consider the graph $x_3 = w_\varepsilon (x) = w (\varepsilon x)$ for small ε, then
\[\left\| D^2 w_\varepsilon - \begin{bmatrix} 0 & 0 \\ 0 & -\varepsilon^2 \tau \end{bmatrix} \right\|_{C^1} \leq \varepsilon^3, \]
make the extension, then scale back.

Since $i \left(B_2^c \right)$ is negatively curved, or $\det D^2 w \leq 0$ and concave, we apply Lemma 2.4 to conclude that $i \left(B_2^c \right)$ is above Σ^e.

Let P be the normal projection of points p above Σ^e down to Σ^e, that is $[p - P(p)] \perp \Sigma^e$. By concavity of Σ^e, we have
\[\text{Length} \left((T, g_{\delta_n}) \right) = \text{Length} \left((T, g_{\Sigma^e}) \right) \geq \text{Length} \left((P (i (T)), g_{\Sigma^e}) \right). \]
Where g_{Σ^e} and g_{Σ^e} is the induced metrics on Σ^e and Σ^e.

Note that $P \circ i (C_1) = i (C_1), P \circ i (C_3) = i (C_3), P \circ i (A_2) = i (A_2)$, there is an isometry $i_0 : \Sigma^e \rightarrow (\mathbb{R}^2, dx^2)$ such that $i_0 \circ P \circ i (C_1) = C_1, i_0 \circ P \circ i (C_3) = C_3, i_0 \circ P \circ i (A_2) = A_2$. Apply Corollary 2.1, we have
\[\text{Length} \left((P (i (T)), g_{\Sigma^e}) \right) = \text{Length} \left((i_0 \circ P \circ i (T), dx^2) \right) > \text{Length} \left((T, g_{\delta_n}) \right). \]

Thus we arrive at
\[\text{Length} \left((T, g_{\delta_n}) \right) > \text{Length} \left((T, g_{\delta_n}) \right). \]
This contradiction finishes the proof of the above proposition.

Now we give the constructive proof of Theorem 1.1.

Proof. Step1. Let \tilde{k} be a smooth function in \mathbb{R}^2 satisfying
\[\tilde{k} < 0 \quad \text{in} \quad B^n = B_{2^{-n}} (2^{-n}, 0), \quad n = 1, 2, 3, \cdots \]
\[\tilde{k} = 0 \quad \text{otherwise}. \]

Let u_1 be a smooth solution of
\[\triangle u_1 = \tilde{k}. \]

Then the Gaussian curvature of the metric $g_1 = e^{2u_1} dx^2$ satisfies
\[K_{g_1} = -e^{-2u_1} \triangle u_1 < 0 \quad \text{in} \quad B^n \]
\[K_{g_1} = 0 \quad \text{otherwise}. \]
Step 2. Choose a sequence $z_{n,k}$ outside each B^n and $\{(x_1, x_2) | x_2 = 0\}$ such that

$$\lim_{k \to \infty} z_{n,k} \in \partial B^n$$

$$\partial B^n \subset \{z_{n,k}\}^\infty_{k=1}.$$

For each $z_{n,k}$, choose a simply connected thin tail $T_{n,k}$ with $T_{n,k}$ connecting $z_{n,k}$ and the boundary ∂B_1 such that

- $z_{n,k} \in T_{n,k}$
- $\partial T_{n,k} \cap \partial B_1 = \text{a piece of arc with positive length}$
- $T_{n,k} \subset \mathbb{R}_+^2 = \{(x_1, x_2) | x_2 > 0\}$ for $x_2(z_{n,k}) > 0$
- $T_{n,k} \subset \mathbb{R}_-^2 = \{(x_1, x_2) | x_2 < 0\}$ for $x_2(z_{n,k}) < 0$
- $T_{n,k} \cap T_{m,j} = \emptyset$ for $(n,k) \neq (m,j)$.

![Figure 2. Tails extending to the boundary.](image)

We modify the metric $g_1 = e^{2u_1} dx^2$ over each tail $T_{n,k}$. But we proceed with the tails in the upper and lower half planes separately.

Since $K_{g_1} \equiv 0$ in the simply connected domain $\mathbb{R}_+^2 \setminus \cup_{n=1}^\infty B^n$. We represent $g_1 = dy_+^2$ in $\mathbb{R}_+^2 \setminus \cup_{n=1}^\infty B^n$ by a different coordinate system y_+. Over each $T_{n,k} \subset \mathbb{R}_+^2$, we plant a metric

$$g_2 = e^{2V_{n,k}} dy_+^2 \quad \text{in} \quad x^{-1}(T_{n,k}),$$

where $V_{n,k}$ is similar to the one in the construction before Proposition 2.1, but the 360 disjoint sub-tails extend to the boundary $x^{-1}(\partial B_1)$ within
We know $V_{n,k} = 0$ in $x^{-1}(B_1 \setminus T_{n,k})$. With $V_{n,k} = N_{n,k}$ chosen large enough on $x^{-1}(\partial B_1)$ intersection with the x pre-image of the 360 sub-tails, we make

$$\Delta V_{n,k} \geq 0 \text{ in } x^{-1}(B_1).$$

We modify the metric $g_1 = e^{2u_1} dx^2$ over the tails in the lower half plane \mathbb{R}^2_- with different coordinate system in the same way.

So far, we obtain a new metric $g_2 = e^{2u_2} dx^2$ in B_1 (which may not be smooth). We modify g_2 over the tails one last time.

Let

$$g_3 = e^{2\epsilon_{n,k} V_{n,k}} dy^2_\pm \text{ in } x^{-1}(T_{n,k}) \text{ for } T_{n,k} \subset \mathbb{R}^2_+$$

$$g_3 = e^{2\epsilon_{n,k} V_{n,k}} dy^2_- \text{ in } x^{-1}(T_{n,k}) \text{ for } T_{n,k} \subset \mathbb{R}^2_-.$$

By choosing $\epsilon_{n,k} > 0$, $\epsilon_{n,k} \to 0$ sufficiently fast for $k \to \infty$, we can assure $g_3 = e^{2u_3} dx^2$ is a smooth metric with $K_{g_3} \leq 0$ in B_1.

Step 3. Suppose there is an isometric embedding $i : (B_r, g) \to \mathbb{R}^3$ for some $r > 0$. Then there is n_* such that

$$B^{n_*} \subset B_r.$$

Applying Proposition 2.1, we have

$$II \circ i = 0 \text{ on } \partial B^{n_*}.$$

We may assume $i(B_r)$ is represented as a graph $x_3 = f(x_1, x_2)$ with $\nabla f(0, 0) = 0$. Also we may assume the projection of $i(B^{n_*})$ down to x_1, x_2 plane is a
domain \(\Omega \). Then
\[
\det D^2 f = K_g \left(1 + |\nabla f|^2 \right)^2 < 0 \quad \text{in} \quad \Omega
\]
\[
D^2 f = 0 \quad \text{on} \quad \partial \Omega.
\]
From \(D^2 f = 0 \) on \(\partial \Omega \), it follows that \(\nabla f = \text{const.} \) on \(\partial \Omega \) and \(f \) coincides with a linear function on \(\partial \Omega \). After subtracting the linear function from \(f \), we may further assume \(f = 0 \) on \(\partial \Omega \). We still have \(\det D^2 f < 0 \) in \(\Omega \). From the maximum principle, we see that \(f \equiv 0 \) in \(\Omega \). This contradiction finishes the proof of Theorem 1.1.

3. Metric with negative curvature except for one point

Relying on the metric constructed in Section 2, we construct a smooth metric \(g \) in \(B_1 \) with negative Gaussian curvature except for one point, namely, \(K_g (x) < 0 \) for \(x \neq 0 \), such that the surface \((B_1, g) \) is not \(C^{3,\alpha} \) isometrically embeddable in \(\mathbb{R}^3 \) even locally near 0.

For any surface \((\Omega, g) \), we define the \(C^{3,\alpha} \) isometric embedding norm by
\[
\| (\Omega, g) \|_E = \inf \left\{ \| II (i (\Omega)) \|_{C^{1,\alpha}} \mid \text{\(C^{3,\alpha} \) isometric embedding} \right\}.
\]

Now we give a constructive proof of Theorem 1.2.

Proof. Let the annulus \(A^n = B_{1/n} \setminus B_{1/(n+1)} \subset \mathbb{R}^2 \). We construct a metric \(g = e^{2u_0} dx^2 \) on \(B_1 \) such that a non-isometrically embeddable metric \(g \) as in Theorem 1.1 is planted (not just cut and pasted) over each annulus \(A^n \).

![Figure 4. Non-embeddable metric in each annulus.](image)
Set
\[\tilde{\varphi}_n(r) = \begin{cases}
 e^{-r^2/2} & r = |x| > \frac{1}{n} \\
 0 & 0 \leq r \leq \frac{1}{n}
\end{cases} \]

We choose \(\mu_1 > 0, \mu_2 > 0, \cdots, \mu_n > 0, \cdots \) such that \(\varphi_n = \mu_n \tilde{\varphi}_n \) satisfies that \(\sum_{n=1}^{\infty} \varphi_n \) is smooth and even \(\sum_{n=1}^{\infty} \epsilon_n \varphi_n \) is smooth for \((\epsilon_1, \epsilon_2, \cdots) \in \ell_+^\infty \).

For \(\epsilon = (\epsilon_1, \epsilon_2, \cdots) \in \ell_+^\infty \), that is \(\epsilon_1 > 0, \epsilon_2 > 0, \cdots \) and \(\|\epsilon\|_\infty = \max \epsilon_m < +\infty \), set
\[\Phi_\epsilon = \sum_{m=1}^{\infty} \epsilon_m \varphi_m \]
\[g_\epsilon = e^{2(\epsilon_0 + \epsilon)dx^2} \]

By the construction, \((A^n, e^{2u_0dx^2}) \) is not \(C^3 \) isometrically embeddable in \(\mathbb{R}^3 \) for any \(n \), then we have the following.

There exists \(0 < \eta_1 \) such that \(\|(A^1, g_{\Phi_\epsilon})\|_E \geq 1 \) for \(\epsilon \in \ell_+^\infty \) with \(\|\epsilon\|_\infty \leq \eta_1 \).

Next there exists \(0 < \eta_2 < \eta_1 \) such that \(\|(A^m, g_{\Phi_\epsilon})\|_E \geq m \) for \(m = 1, 2 \) and \(\epsilon = (\eta_1, \epsilon_2, \epsilon_3, \cdots) \in \ell_+^\infty \) with \(\|\epsilon\|_\infty \leq \eta_2 \).

Inductively there exists \(0 < \eta_k < \eta_{k-1} \) such that \(\|(A^m, g_{\Phi_\epsilon})\|_E \geq m \) for \(m = 1, 2, \cdots, k \) and with \(\epsilon = (\eta_1, \eta_2, \cdots, \eta_k, \epsilon_{k+1}, \epsilon_{k+2}, \cdots) \in \ell_+^\infty \) with \(\|\epsilon\|_\infty \leq \eta_k \).

Finally let \(\Psi = \sum_{m=1}^{\infty} \eta_m \varphi_m, g = g_{\Phi} \). We see that
\[\|(A^m, g)\|_E \geq m \text{ for } m = 1, 2, 3, \cdots \]
\[K_g(x) < 0 \text{ for } x \neq 0 \text{ and } K_g(0) = 0. \]

It follows that there is no \(C^{3, \alpha} \) isometric embedding of \((B_r(0), g) \) in \(\mathbb{R}^3 \) for any \(r > 0, \alpha > 0 \).

\[\square \]

References

[C] Cartan, E., _Sur la possibilité de plonger un espace riemannian donné dans un espace euclidien_, Ann. Soc. Pol. Math., 5 (1927), 1–7.

[GR] Gromov, M. L. and Rokhlin, V. A., _Embeddings and immersions in Riemannian geometry_, Uspehi Mat. Nauk, 25 (1970) 3–62; English translation in Russian Math. Survey 25 (1970), 1–57.

[HHL] Han, Q., Hong, J. X., and Lin, C. S., to appear.

[HW1] Hartman, P. and Winter, P., _On the asymptotic curves of a surface_, Amer. J. Math., 73 (1951), 149–172.

[HW2] Hartman, P. and Winter, P., _On hyperbolic partial differential equations_, Amer. J. Math., 74 (1952), 834–864.

[I] Iwasaki, N., _Applications of Nash-Moser theory to nonlinear Cauchy problems_, Proc. Sympos. Pure Math., 45 (1986) Part 1, 525–528.

[H] Hong, J. X., _Cauchy problems for degenerate hyperbolic Monge-Ampère equations and some applications_, J. Partial Differential Equations 4 (1991), 1–18.

[J] Janet, M., _Sur la possibilité de plonger un espace riemannian donné dans un espace euclidien_, Ann. Soc. Pol. Math., 5 (1926), 38–43.
[K] Kuiper, N. H., *On C^1-isometric embeddings, I, II*, Indag. Math., 17 (1955), 545–556, 683–689.

[L1] Lin, C. S., *The local isometric embedding in \mathbb{R}^3 of 2-dimensional Riemannian manifolds with nonnegative curvature*, J. Diff. Geom., 21 (1985), 213–230.

[L2] Lin, C. S., *The local isometric embedding in \mathbb{R}^3 of two-dimensional Riemannian manifolds with Gaussian Curvature changing sign cleanly*, Comm. Pure Appl. Math., 39 (1986), 867–887.

[N] Nadirashvili, N., *The local embedding problem for surfaces*, preprint, 2002.

[Na1] Nash, J., *C1 isometric imbeddings*, Ann. of Math., 60 (1954), 383–396.

[Na2] Nash, J., *The imbedding problem for Riemannian manifolds*, Ann. of Math., 63 (1956), 20–63.

[Ni] Nirenberg, L., *The Weyl and Minkowski problems in differential geometry in the large*, Comm. Pure Appl. Math., 6 (1953), 337–394.

[P1] Pogorelov, A. V., *Intrinsic estimates for the derivatives of the radius vector of a point on regular convex surface*, Dokl. Akad. Nauk SSSR (N.S.), 66 (1949), 805–808.

[P2] Pogorelov, A. V., *An example of a two-dimensional Riemannian metric that does not admit a local realization in E^3*, Dokl. Akad. Nauk SSSR, 198 (1971) 42–43; English translation in Soviet Math. Dokl. 12 (1971), 729–730.

[Po] Poznyak, È. G., *Isometric embeddings of two-dimensional Riemannian metrics in Euclidean space*, Uspekhi Mat. Nauk, 28 (1973), 47–76; English translation in Russian Math. Survey, 28 (1973), 47–77.

[Y] Yau, S.-Y., *Seminar on Differential Geometry*, Annals of Math. Studies, 102, Princeton, 1982.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, 5734 S. UNIVERSITY AVE., CHICAGO, IL 60637
E-mail address: nicholas@math.uchicago.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, 5734 S. UNIVERSITY AVE., CHICAGO, IL 60637, AND UNIVERSITY OF WASHINGTON, SEATTLE, WA 98195
E-mail address: yuan@math.uchicago.edu, yuan@math.washington.edu