2S and 3S State Masses and decay constants of heavy-flavour mesons in a non-relativistic QCD potential model with three-loop effects in V-scheme

Rashidul Hoque1,2,a, B. J. Hazarika1, D. K. Choudhury1,2

1 Center of Theoretical Studies, Pandu College, Guwahati 781012, India
2 Department of Physics, Gauhati University, Guwahati 781 014, India

Received: 28 June 2020 / Accepted: 13 December 2020 / Published online: 30 December 2020
© The Author(s) 2020

Abstract We make an analysis of three-loop effects of the strong coupling constant in the study of masses and decay constants of the heavy-flavour pseudo-scalar mesons (PSM) D, D_s, B, B_s, η_c and η_b in a non-relativistic QCD potential model using Dalgarno’s perturbation theory (DPT). The first order mesonic wavefunction is obtained using Dalgarno’s perturbation theory. The three-loop effects of strong coupling constant are included in the wave function in co-ordinate space and then used to examine the static and dynamic properties of the heavy-flavour mesons for 2S and 3S higher states. The results are compared with the other models available and are found to be compatible with available experimental values. In V-scheme, the three-loop effects on masses and decay constants of heavy-flavour mesons show a significant result.

1 Introduction

The non-relativistic predictions of Potential Models with a non-relativistic Hamiltonian for the heavy-light and heavy-heavy mesons are found to be in fair agreement with the updated experimental data, theoretical results like QCD sum rule [1,2], Lattice results [3] and relativistic harmonic confinement model (RHCM) [53]. The static potential between the two heavy quarks is a fundamental quantity in QCD [4]. While its one loop corrections are computed in [5,6], the corresponding two-loop effects were reported in late 1990’s [7–9]. Numerical results are obtained first for fermionic contributions [10–12], whereas the analytical results are more recent [12]. Some important hadronic properties are the pseudoscalar meson mass M_P and decay constant f_P. Phenomenological study of two-loop effects in the static and dynamic properties of heavy-flavour mesons using a linearly coupled Coulomb Cornell potential has been reported in the recent years [14,15]. In this work, quantum perturbation approach [16,17] is used to calculate the approximate analytical forms of heavy flavored mesons. Here specifically the linear part of the potential $V(r) = -\frac{4\alpha_s}{3r} + br$ is used as perturbation.

The most common perturbative method is Dalgarno’s perturbation theory (DPT) [21,23–25], which is a stationary static perturbation theory. The non-relativistic potential model has been found successful for heavy-heavy B, η_c and η_b families. The study of the wave functions of heavy-flavour mesons like B and D and η are important both analytically and numerically for studying the properties of strong interaction between heavy-light and heavy-heavy quarks as well as for investigating the mechanism of heavy meson decays. In this work, we have obtained a total first order corrected wavefunction for 2S and 3S states using Dalgarno’s method of perturbation [30] with linear part of the Cornell potential [19,31] as perturbation in co-ordinate space. This wavefunction is then used to estimate the masses and decay constants of heavy-light and heavy-heavy pseudo-scalar mesons in this improved QCD Potential model approach.

One aim of the present work is to make an analysis of the contribution of three-loop effects in the improved strong coupling constant α_V (2) in V-scheme, which in turn contributes to the spin–spin interaction [27–29] term present in the expression of mass and decay constant of the heavy-flavour meson. In addition, the non-relativistic binding energy effect between the two quark–antiquark composition of the heavy-flavour meson is newly incorporated in the expression of PSM mass, which was absent in our some previous works [23–25,37,39,41].

a e-mail: rashidul999@gmail.com (corresponding author)
The rest of the paper is organised as follows: Sect. 2 contains formalism, Sect. 3 contains results while Sect. 4 includes the conclusion.

2 Formalism

2.1 V-scheme: three-loop effects

V-scheme is a standard way of taking into account the higher order effects of QCD, which are expressed as power series in the running strong coupling constant $\alpha_{\overline{MS}}$ in \overline{MS}-scheme. The two-loop static potential in V-scheme which is also used as the three-loop static potential defined as [8, 33, 34],

$$V(r) = -\frac{C_F \alpha_{V} \left(\frac{q}{r}\right)}{r}$$ \hspace{1cm} \text{(1)}

Here, α_{V} is the effective strong coupling constant and C_F is the color factor, given as, $C_F = \frac{(N_C^2 - 1)}{2N_C}$, where N_C is the no. of colors. Generally, the quark–gluon interaction is characterised by strong coupling constant $\alpha_{\overline{MS}}(q^2)$ in a dimensionally independent \overline{MS}-scheme [7, 20]. As discussed in the introduction, three-loop effects have been reported numerically first for fermionic contribution [10] followed by the gluonic counter part [10–12]. Analytic three-loop static potential have been discussed only in the year 2016 [12]. These effects are invariably reported in momentum space where the author sets $q^2 = \mu^2$ as the renormalization scale to suppress the infrared logarithmics. For the three-loop effects, we follow [11] the numerical solution for the potential at three-loop level in momentum space is given by,

$$V(|q|) = -\frac{4\pi C_F \alpha_s(q^2)}{q^2} \times \left[1 + \left(\frac{\alpha_s}{\pi}\right)(2.5833 - 0.2778n_f) + \left(\frac{\alpha_s}{\pi}\right)^2 (28.5468 - 4.1471n_f + 0.0772n_f^2) + \left(\frac{\alpha_s}{\pi}\right)^3 (209.884 - 51.4048n_f + 2.9061n_f^2 - 0.0214n_f^3) \right]$$ \hspace{1cm} \text{(2)}

The corresponding expression in co-ordinate space will be,

$$V(r) = -\frac{C_F}{r} \alpha_s(\mu^2) \left[1 + \left(\frac{\alpha_s}{\pi}\right)(2.5833 - 0.2778n_f) + \left(\frac{\alpha_s}{\pi}\right)^2 (28.5468 - 4.1471n_f + 0.0772n_f^2) + \left(\frac{\alpha_s}{\pi}\right)^3 (209.884 - 51.4048n_f + 2.9061n_f^2 - 0.0214n_f^3) \right]$$ \hspace{1cm} \text{(3)}

Using Eq. (1), we obtain the relationship between the improved strong coupling constant $\alpha_{V}(\frac{1}{r})$ and the standard leading order strong coupling constant in \overline{MS}-scheme at N^3LO level is given by:

$$\alpha_{V} \left(\frac{1}{r}\right) = \alpha_s(\mu^2) \left[1 + \left(\frac{\alpha_s}{\pi}\right)(2.5833 - 0.2778n_f) + \left(\frac{\alpha_s}{\pi}\right)^2 (28.5468 - 4.1471n_f + 0.0772n_f^2) + \left(\frac{\alpha_s}{\pi}\right)^3 (209.884 - 51.4048n_f + 2.9061n_f^2 - 0.0214n_f^3) \right]$$ \hspace{1cm} \text{(4)}

From the above equation, it is observed that at one-, two- and three-loop order, a large screening of the nonfermionic contributions by the n_f terms which is most prominent in the case of α_3 for $n_f = 5$.

2.2 Dalgarno’s perturbation theory

2.2.1 2S state wave-function of the heavy-flavour mesons

For shell L, we take $n = 2$ and $l = 0$; the 2S state normalized wave-function [42] is given by:

$$\psi^{(0)}_{20}(r) = \left(\frac{1}{2\sqrt{2\pi}}\right) \left(\frac{1}{a_0}\right)^{\frac{1}{2}} \left(1 - \frac{r}{2a_0}\right) e^{-\frac{r}{a_0}}$$ \hspace{1cm} \text{(5)}

In Dalgarno’s perturbation theory, we make a small deformation to the Hamiltonian of the system as,

$$H = H_0 + H'$$ \hspace{1cm} \text{(6)}

where H_0 is the Hamiltonian of the unperturbed system and H' is the perturbed Hamiltonian. The approximation method is most suitable when H is close to the unperturbed Hamiltonian H_0, i.e. H' is small. The standard potential is [19],

$$V(r) = -\frac{4\alpha_V}{3r} + br.$$ \hspace{1cm} \text{(7)}

This Coulomb-plus-linear potential, called Cornell potential is an important ingredient of the model which is established on the two kinds of asymptotic behaviours: ultraviolet at short distance (Coulomb like) and infrared at large distance (linear confinement term).

The Schrödinger equation takes the form as,

$$H|\psi\rangle = (H_0 + H')|\psi\rangle = E|\psi\rangle$$ \hspace{1cm} \text{(8)}

so that the first-order perturbed eigenfunction $\psi^{(1)}$ and eigen energy $W^{(1)}$ can be obtained using the relation,

$$H_0\psi^{(1)} + H'\psi^{(0)} = W^{(0)}\psi^{(1)} + W^{(1)}\psi^{(0)}$$ \hspace{1cm} \text{(9)}
where H_0 and H' are the parent and perturbed Hamiltonian defined as,

$$H_0 = -\frac{\nabla^2}{2\mu} - \frac{A}{r}$$

$$H' = br$$

and

$$W^{(0)} = \langle \psi^{(0)} | H_0 | \psi^{(0)} \rangle = -\frac{\mu A^2}{2}$$

$$W^{(1)} = \langle \psi^{(0)} | H' | \psi^{(0)} \rangle$$

With Cornell potential we get two choices in DPT:

1. Coulomb Parent, Linear Perturbation (CP).
2. Linear Parent, Coulomb Perturbation (LP).

In our present analysis we consider the first option. The radial Schrodinger equation for $l = 0$ and $n = 2$ is,

$$\left[-\frac{1}{2\mu} \left(\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} + \frac{l(l+1)}{2} - \frac{A}{r} - W^{(0)}\right) + \mu A^2 \right] \psi_{20}^{(1)}$$

$$= -\left[br - W^{(1)}\right] \psi_{20}^{(0)}$$

$$= 2\mu \left[br - W^{(1)}\right] \psi_{20}^{(0)}$$

where $\psi_{20}^{(0)}$ is unperturbed wave function and is defined in Eq. (5) and $\psi_{20}^{(1)}$ is the first order correction to the wave function.

To solve the above equation, let us start from [24],

$$\psi_{20}^{(1)} = br R(r)$$

with this substitution, Eq. (15) takes the form as:

$$\left[br \frac{d^2 R(r)}{dr^2} + 4b \frac{d R(r)}{dr} + \frac{2br R(r)}{r} + \frac{2br R(r)}{a_0} - \frac{br R(r)}{a_0^2}\right]$$

$$= K \left[br - W^{(1)}\right] \left(1 - \frac{r}{2a_0}\right) e^{-\frac{r}{2a_0}}$$

with,

$$K = (2\mu) \frac{1}{2\sqrt{2\pi}} \left(\frac{1}{a_0}\right)^\frac{3}{2}$$

$$a_0 = \frac{1}{\mu A}$$

$$A = \frac{4\alpha}{3}$$

Putting as in [24],

$$R(r) = F(r) e^{-\frac{r}{2a_0}}$$

Equation (17) becomes,

$$(br)'(r) + \left(4b - \frac{br}{a_0}\right)'(r) + \left(\frac{2b}{r^2} - \frac{3br}{4a_0^2}\right) F(r)$$

$$= K \left[br - W^{(1)}\right] \left(1 - \frac{r}{2a_0}\right)$$

The method of Frobenius [56] is a power series solution. Considering the only four terms in the series and neglecting the higher order terms for $2S$ state,

$$F(r) = \frac{A_{-1}}{r} + A_0 + A_1 r + A_2 r^2$$

with this the final form of the Eq. (22) is obtained as,

$$\left(2ba_0 + \frac{ba_{-1}}{a_0}\right) \frac{1}{r} \left(6bA_1 - \frac{3bA_{-1}}{4a_0^2}\right) r^0$$

$$+ \left(12bA_2 - \frac{ba_1}{a_0} - \frac{3bA_0}{4a_0^2}\right) r - \left(\frac{2bA_2}{a_0} + \frac{3bA_1}{4a_0^2}\right) r^2$$

$$- \left(\frac{3bA_2}{4a_0^2}\right) r^3 = -\left(KW^1\right) r^0 + \left(Kb + \frac{KW^1}{2a_0}\right) r$$

$$- \frac{Kb}{2a_0} r^2$$

The expectation energy (eigen energy) is easily obtained using mathematica-9 as,

$$\langle W^{(1)} \rangle = \int_0^\infty 4\pi r^2 \psi^0 H' \psi^0 = 6ba_0$$

Equating co-efficients of r^{-1}, r^0 and r^2 on both sides of Eq. (24), we get the values of constants as:

$$A_{-1} = \frac{40K a_0^3}{3}$$

$$A_0 = \frac{20K a_0^2}{3}$$

$$A_1 = \frac{2K a_0}{3}$$

$$A_2 = 0$$

Hence Eq. (16) becomes,

$$\psi_{20}^{(1)} = K \left(K_1 - K_2 r + K_3 r^2\right) e^{-\frac{r}{2a_0}}$$

with, $K_1 = \frac{40ba_0^3 r}{3}$, $K_2 = \frac{20ba_0^2 r}{3}$, $K_3 = \frac{2ba_0}{r}$

Hence, using Dalgarno’s perturbation theory with Coulombic parent, we get the total wave-function of the form corrected up to first order,

$$\psi_{20}^{total}(r) = \psi_{20}^{(0)}(r) + \psi_{20}^{(1)}(r)$$

$$= N \left[P - Qr + Rr^2 \right] e^{-\frac{r}{2a_0}}$$

$$P = K \left[\frac{1}{2\mu} + K_1\right]$$
\begin{equation}
 Q = K \left[\frac{1}{4\mu_{A_0}} + K_2 \right]
\end{equation}
\begin{equation}
 R = K K_3
\end{equation}
where the normalization constant is,
\begin{equation}
 N = \frac{1}{\left[\int_0^\infty 4\pi r^2 \left[P - Q r + R r^2 \right]^2 e^{-\frac{e}{a}} dr \right]^{\frac{1}{2}}}
\end{equation}
where, \(a_0 = \frac{1}{\mu r} \); the value of \(b \) is \(b = 0.183 \text{ GeV}^2 \) is the confinement parameter [5,9], \(\mu = \frac{m_1 m_2}{m_1 + m_2} \) is the reduced mass.

2.2.2 3S state wave-function of the heavy-flavour mesons

For shell \(M \), we take \(n = 3 \) and \(l = 0 \); the 3S state normalized wave-function [42] is given by,
\begin{equation}
 \psi^{(0)}_{30}(r) = \left(\frac{1}{3\sqrt{3}\pi} \right) \left(\frac{1}{a_0} \right)^{\frac{3}{2}} \left(1 - \frac{2r}{2a_0} + \frac{2r^2}{27a_0^3} \right) e^{-\frac{r}{3a_0}}
\end{equation}
represents the unperturbed wave function for 3S state. For \(l = 0 \) and \(n = 3 \), the corresponding Eq. (15) for 3S state becomes,
\begin{equation}
 \left[\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} + \frac{2\mu A}{r} - \mu^2 A^2 \right] \psi^{(1)}_{30} = 2\mu \left[br - W^{(1)} \right] \psi^{(0)}_{30}
\end{equation}
where \(\psi^{(1)}_{30} \) is the first order correction to the wave function.

Similarly, as in Eq. (16) Let,
\begin{equation}
 \psi^{(1)}_{30} = br R(r)
\end{equation}
with this substitution the Eq. (37) takes the form as,
\begin{equation}
 \left(br \right) \frac{d^2 R(r)}{dr^2} + 4b \frac{d R(r)}{dr} + \frac{2b R(r)}{r} + \frac{2b R(r)}{a_0} - \frac{br R(r)}{a_0^2} = L \left(br - W^{(1)} \right) \left(1 - \frac{2r}{3a_0} + \frac{2r^2}{27a_0^3} \right) e^{-\frac{r}{3a_0}}
\end{equation}
with,
\begin{equation}
 L = \frac{(2\mu)}{3\sqrt{3}\pi} \left(\frac{1}{a_0} \right)^{\frac{3}{2}}
\end{equation}
The corresponding substitution as in Eq. (21):
\begin{equation}
 R(r) = F(r) e^{-\frac{r}{3a_0}}
\end{equation}
Therefore, Eq. (39) is obtained as,
\begin{equation}
 \left(br \right) F''(r) + \left(4b - \frac{2br}{3a_0} \right) F'(r) + \left(\frac{2b}{3a_0} - \frac{8br}{9a_0^2} + \frac{2b}{r} \right) F(r) = L \left(br - W^{(1)} \right) \left(1 - \frac{2r}{3a_0} + \frac{2r^2}{27a_0^3} \right) e^{-\frac{r}{3a_0}}
\end{equation}

Similar way, the corresponding only four terms in the method of Frobenius [56] for 3S state,
\begin{equation}
 F(r) = \frac{A_0^{-1}}{r} + A_0 + A_1 r + A_2 r^2
\end{equation}
With this, the final form of the Eq. (42) is obtained as,
\begin{equation}
 \left(\frac{2b A_0' + 4b A_1}{3a_0} \right) \frac{1}{r} + \left(\frac{6b A_0' + 2b A_1 - 8b A_2}{9a_0^2} - \frac{8b A_1}{9a_0^2} \right) r^0
\end{equation}
\begin{equation}
 + \left(\frac{12b A_2 - 8b A_1}{9a_0^2} \right) r - \left(\frac{2b A_2}{3a_0} + \frac{8b A_1}{9a_0^2} \right) r^2 - \left(\frac{8b A_2}{9a_0^2} \right) r^3
\end{equation}
\begin{equation}
 = L \left[br - \left(\frac{2b}{3a_0} \right) r^2 + \left(\frac{2b}{27a_0^3} \right) r^3 - W^{(1)} \right]
\end{equation}
\begin{equation}
 + \left(\frac{2r}{3a_0} W^{(1)} \right) r - \left(\frac{2r^2}{27a_0^3} W^{(1)} \right) r^2
\end{equation}

The expectation energy is obtained using mathematica-9 as,
\begin{equation}
 \langle W^{(1)} \rangle = \frac{4b}{a_0^2}
\end{equation}
Equating the co-efficients of \(r^{-1}, r, r^2 \) and \(r^3 \), we get the values of the constants as:
\begin{equation}
 A_0' = -\left(\frac{9b a_0^2}{4} + \frac{3L}{a_0} \right)
\end{equation}
\begin{equation}
 A_1' = \frac{39b a_0}{48} + \frac{L}{3a_0^2}
\end{equation}
\begin{equation}
 A_2' = -\frac{L}{12}
\end{equation}
Hence, Eq. (38) yields,
\begin{equation}
 \psi^{(1)}_{30} = b(A_0' r + A_1' r^2 + A_2' r^3) e^{-\frac{r}{3a_0}}
\end{equation}
Therefore, the total wave-function corrected up to first order using Dalgarno’s perturbation theory is,
\begin{equation}
 \psi^{total}_{30}(r) = \psi^{(0)}_{30}(r) + \psi^{(1)}_{30}(r)
 = N \left[L_1 + L_2 r + L_3 r^2 + L_4 r^3 \right] e^{-\frac{r}{3a_0}}
\end{equation}
with,
\[
K' = \frac{1}{3\sqrt{3\pi}} \left(\frac{1}{a_0} \right) ^\frac{3}{2}
\]
(52)
\[
L_1 = \left[K' + bA_1' \right]
\]
L_2 = \left[bA_0 - \frac{2K'}{3a_0} \right]
(53)
L_3 = \left[bA_1 + \frac{2K'}{27a_0} \right]
(54)
L_4 = \left[bA_2' \right]
(55)
where the normalization constant is obtained from,
\[
N' = \frac{1}{\int_0^\infty 4\pi r^2 \left[L_1 + L_2 r + L_3 r^2 + L_4 r^3 \right] e^{-\frac{2\pi}{\alpha_0}} dr} ^\frac{1}{2}
\]
(57)

2.3 Wave function at origin (WFO)

At origin, \(r = 0 \); WFO for 2S state (Eq. 31) is given by,
\[
\psi_{20}^{\text{total}}(0) = NP = NK \left(\frac{1}{2\mu} + \frac{40b\alpha_3^2}{3} \right)
\]
(58)
Similarly, WFO, for 3S state (Eq. 51) is given by,
\[
\psi_{30}^{\text{total}}(0) = N'L_1 = N' \left[K' + b \left(\frac{27L\alpha_0^3}{8} + \frac{9L}{2} \right) \right]
\]
(59)

2.4 The expression of mass and decay constant of pseudo-scalar meson

Fermi–Breit Hamiltonian: We take the non-relativistic two body Schrödinger equation (8) viz.,
\[
H\phi = (H_0 + H')\phi = E\phi
\]
(60)
Where \(H_0 \) is the free Hamiltonian for two quarks of masses \(m_i \) and \(m_j \) and three momenta \(P_i \) and \(P_j \), \(H_0 \) is defined as,
\[
H_0 = \frac{P_i^2}{2m_i} + \frac{P_j^2}{2m_j}
\]
(61)
and \(H \) is the Fermi–Breit Hamiltonian with confinement which is defined as \[51,55\],
\[
H(r) = H^{\text{Conf}}(r) + H^{\text{Hypl}}(r) + H^{S.O.}(r)
\]
(62)
Here,
\[
H^{\text{Conf}}(r) = \left(-\frac{\alpha_3(r)}{r} + \frac{3br}{4} + \frac{3c}{4} \right) (\vec{r},\vec{r})
\]
(63)
\[
H^{\text{Hypl}}(r) = \frac{\alpha_3(r)}{m_im_j} (\vec{r},\vec{r})
\]
\[
H^{S.O.}(r) = \frac{3(r)}{r^2} (\vec{r},\vec{r}) - \frac{3\delta(r)}{r^2}
\]
(64)
Here, \(S_i \) and \(S_j \) are the spins of the \(i^{th} \) and \(j^{th} \) quarks separated by a distance \(r \). For ground state \((l = 0) \), only the contact term proportional to \(\delta^3(r) \) contributes and the Hamiltonian takes the simpler form as:
\[
H = \frac{4\alpha_s}{3} \left(-\frac{1}{r} - \frac{8\pi}{3} \delta^3(r) \right) + br + c
\]
(68)

In the present work, \(c \) sets to be zero. To compute mass of the pseudoscalar mesons the spin–spin interaction possessing the form given by \[49,50\],
\[
\langle H_{ss} \rangle = -\frac{8\pi\alpha_s}{3m_im_j} |\psi(0)|^2 \equiv -\frac{8\pi\alpha_s}{3m_im_j} |\psi(0)|^2
\]
(69)

The mass and the decay constant of heavy-flavour pseudo-scalar meson including only spin–spin interaction are given in \[26,27\] as:
\[
M_P = m_1 + m_2 + E_{n,l} + \langle H_{ss} \rangle
\]
(70)
where, \(m_1 \) and \(m_2 \) are the masses of quark–antiquark and \(\alpha_s \) is the strong coupling constant identified as \(\alpha_s \) in the present work. \(E_{n,l} \) is the non-relativistic binding energy between the quark–antiquark composition and the van Royen–Weisskopf formula \[54\] for the decay of pseudo-scalar meson is,
\[
f_P = \sqrt{\frac{12|\psi(0)|^2}{M_P}}
\]
(71)
Here, \(\alpha_s \) is the improved strong coupling constant in V-scheme defined by Eq. (4) and \(|\psi(0)| \) is the wave function at origin (WFO).

The non-relativistic binding energy is given by \[29,30,32\],
\[
E_{n,l} = \frac{-2\mu A^2}{(2n - 1 + 1)^2 + (2l + 1)^2 + (4(n - 1) + 2)(2l + 1)}
\]
(72)
S-waves states: For the S-wave state \(l = 0 \), we have;
\[
E_{n,0} = \frac{-2\mu A^2}{(2n - 1 + 1)^2 + (4(n - 1) + 2) + 1}
\]
(73)
Now, for 2S state \((n = 2) \) and for 3S state \((n = 3) \), the \(E_{n,1} \) takes the form as:
\[
E_{2,0} = \frac{-2\mu A^2}{16}
\]
(74)
and

\[E_{3,0} = -\frac{2\mu A^2}{36} \]

(75)

3 Results

3.1 Input parameters used in the calculation

With the formalism developed in Sec.2, we calculate the masses and decay constants of pseudo-scalar heavy-flavour mesons using Eqs. (70) and (71) in 2S and 3S states, which are shown in Tables 6, 7, 8 and 9 respectively. The input parameters are taken as in [24,36,37,52]; \(m_{u/d} = 0.336 \text{ GeV}, m_b = 4.95 \text{ GeV}, m_c = 1.55 \text{ GeV}, m_s = 0.483 \text{ GeV}, \) and \(b = 0.183 \text{ GeV}^2. \) Also we calculated the effective strong coupling constant in V-scheme and found \(\alpha_V(\frac{1}{F}) = 0.73 \text{ for } n_f = 4 \) and \(\alpha_V(\frac{1}{F}) = 0.303 \text{ for } n_f = 4 \) at \(N^3LO \) level respectively. We make a comprehensive comparison of our results with QCD sum rule [1,2], Lattice results [3,19,43,44] other models like [24], RHCM [53] and the recent experimental values [36].

We use the usual expression for strong coupling constant in \(MS \) scheme for lowest order (LO) level

\[\alpha_s(q^2) = \alpha_{MS}(q^2) = \frac{4\pi}{\beta_0 \ln \left(\frac{m_Q^2}{\Lambda_{QCD}^2} \right)} \]

(76)

Here, \(m_Q \) is the mass of the heavy quark and \(\Lambda_{QCD} \) is the QCD scale parameter having values 0.292 GeV and 0.210 GeV for \(n_f = 4 \) and \(n_f = 5 \) respectively.

3.2 \(\alpha_V, E_{n,f} \) and different parameters used in V-scheme

3.2.1 Calculation of effective strong coupling constant \(\alpha_V(\frac{1}{F}) \)

Using Eq. (4), we tabulate the values of \(\alpha_V(\frac{1}{F}) \) taking into account one-loop (NLO), two-loop \((N^2LO) \) and three-loop \((N^3LO) \) in Table 1 for \(n_f = 4 \) and \(n_f = 5 \). It shows that for \(n_f = 4 \), the enhancements are respectively 21%, 48% and 62% while for \(n_f = 5 \), the corresponding enhancements are 8%, 14% and 17% respectively. The anti-screening effects of gluons seem to play an important role for \(n_f = 5 \).

\(n_f \)	\(2S \)	\(3S \)		
4	0.45	0.5445	0.67	0.73
5	0.259	0.28	0.297	0.303

3.2.2 Calculation of non-relativistic binding energy \(E_{n,f} \)

Following Eqs. (74) and (75) along with Eq. (20) we obtain the non-relativistic binding energy \(E_{n,f} \) (in GeV) of the heavy-flavour pseudo-scalar mesons \(D, D_s, B, B_s, B_c, \) \(\eta_c \) and \(\eta_b \) respectively and tabulated them in Table 2 below.

It is seen that from the above Table 2, the magnitude of the non-relativistic binding energy is always greater for 2S state than 3S state, which indicates, the non-relativistic binding energy decreases with increasing higher states.

3.2.3 Calculation of parameter \(A \)

Using Eq. (20) with the values of \(\alpha_V \) from Table 1, we calculate the parameter \(A \) for the same heavy-flavour pseudo-scalar mesons given in the Table 3 below.

3.2.4 Calculation of different parameters used in the expression of mass \(M_P \)

For the mentioned seven heavy-flavour pseudo-scalar mesons \(D, D_s, B, B_s, B_c, \) \(\eta_c \) and \(\eta_b \) respectively, the Eqs. (18), (19), (20), (32), (33), (34) and (35) along with Eqs. (58), (69) and (70) yield the values of the following parameters (Table 4):

Similarly, for the same heavy-flavour pseudo-scalar mesons, the corresponding Eqs. (19), (20), (52), (53), (54), (55), (56), (57) along with Eqs. (59), (69) and (70) yield the following Table 5.

\(n_f \)	\(2S \)	\(3S \)		
4	0.45	0.5445	0.67	0.73
5	0.259	0.28	0.297	0.303

| Table 2 Values \(E_{n,f} \) in GeV for 2S and 3S states |
|---|---|---|---|
| Meson | State | \(E_20 \) | State | \(E_30 \) |
| \(D(s\bar{c}/c\bar{d}) \) | 2S | −0.03 | 3S | −0.0145 |
| \(D_s(s\bar{s}/c\bar{c}) \) | 2S | −0.0432 | 3S | −0.0194 |
| \(B(u\bar{d}/d\bar{b}) \) | 2S | −0.0064 | 3S | −0.00285 |
| \(B_s(s\bar{d}/d\bar{d}) \) | 2S | −0.009 | 3S | −0.004 |
| \(B_c(s\bar{b}/b\bar{c}) \) | 2S | −0.0241 | 3S | −0.011 |
| \(\eta_c(s\bar{s}/c\bar{c}) \) | 2S | −0.0158 | 3S | −0.00703 |
| \(\eta_b(b\bar{b}/b\bar{b}) \) | 2S | −0.051 | 3S | −0.002245 |

| Table 3 Values of parameter \(A \) at \(LO, NLO, N^2LO \) and \(N^3LO \) level |
|---|---|---|---|
| Meson | \(A(LO) \) | \(A(NLO) \) | \(A(N^2LO) \) | \(A(N^3LO) \) |
| \(D(s\bar{c}/c\bar{d}) \) | 0.53 | 0.72 | 0.89 | 0.97 |
| \(D_s(s\bar{s}/c\bar{c}) \) | 0.53 | 0.72 | 0.89 | 0.97 |
| \(B(u\bar{d}/d\bar{b}) \) | 0.345 | 0.373 | 0.396 | 0.404 |
| \(B_s(s\bar{d}/d\bar{d}) \) | 0.345 | 0.373 | 0.396 | 0.404 |
| \(B_c(s\bar{b}/b\bar{c}) \) | 0.345 | 0.373 | 0.396 | 0.404 |
| \(\eta_c(s\bar{s}/c\bar{c}) \) | 0.345 | 0.373 | 0.396 | 0.404 |
| \(\eta_b(b\bar{b}/b\bar{b}) \) | 0.345 | 0.373 | 0.396 | 0.404 |
3.3 2S State masses and decay constants of heavy-flavour mesons and their comparison

Following Eqs. (58), (70), (71) and (76) along with the results of Tables 1, 2, 3 and 4; we calculate the masses M_P and decay constants f_P (in GeV) of the heavy-flavour pseudo-scalar mesons $D, D_s, B, B_s, B_c, \eta_c$ and η_b and tabulated them in Tables 6 and 7 respectively with the comparison of results of the other models like QCD sum rule [1,2], Lattice results [3,19,43,44], relativistic harmonic potential model (RHPM) [53] and experimental data [36,45–47].

3.4 3S State masses and decay constants of heavy-flavour mesons and their comparison

Using Eqs. (59), (70), (71) and (76) along with the results of Tables 1, 2, 3 and 5; we calculate the masses M_P and decay constants f_P (in GeV) of the same heavy-flavour pseudo-scalar mesons and tabulated them in Tables 8 and 9.

Comparative analysis of pseudo-scalar meson mass spectra from Tables 6 and 8 provides a well agreement of our results in both 2S and 3S states while the decay constants from Tables 7 and 9 are found to be in better harmony only for 2S state with experimental values and other models available.

3.5 Sources of uncertainties and possible future improvements

Let us discuss the sources of uncertainties in the calculation and the possible future improvements. The sources of uncertainties arise mainly:

(a) Due to the numerical values of quark masses. But for heavy-light meson, the uncertainty in the light quark mass does not play any significant role for $m_Q \gg m_q$, i.e., when the heavy quark mass is very large compared to the light quark mass.

(b) Another uncertainty is in the definition of strong coupling constant in the \overline{MS}-scheme for lowest order (LO level) defined by Eq. (76). Here the possible uncertainty is in preferring the choice of scale $Q^2 = m_Q^2$, where m_Q^2 is the square of the mass of heavy quark. However, even in an alternative choice of the scale $Q^2 = m_{meson}^2$, the differences in the predictions are still insignificant for heavy-light mesons as $m_Q \gg m_q$. For heavy-heavy mesons like η_c and η_b, where both the quarks are heavy, there will be a very minor change in the predictions of mass spectra and decay constants.
Table 6	Mass (M_P) in GeV					
Meson	$MP_{(Our)}$	RHCM [53]	Ref. [24]	Lattice [3]	Q. sum rule [1,2]	Exp. M_P [36,45–47]
$D(\pi/c\bar{d})$	1.80	2.653	2.378	1.885	1.87	1.869 ± 0.0016
$D_s(\pi/c\bar{s})$	1.886	2.778	2.500	1.969	1.97	1.968 ± 0.0033
$B(\bar{u}\bar{d}/d\bar{b})$	5.277	6.192	5.798	5.283	5.28	5.279 ± 0.0017
$B_s(\bar{s}\bar{d})$	5.420	6.264	5.902	5.366	5.37	5.366 ± 0.0024
$B_s(\bar{s}c)$	6.45	6.929	6.810	6.278	6.277 ± 0.006	
$\eta_c(\pi)$	2.91	3.626				2.980 ± 0.0012
$\eta_b(b\bar{b})$	9.80	10.012				9.461 ± 0.0026

Table 7	Decay constant (f_P) in GeV				
Meson	$f_P^{(Our)}$	RHCM [53]	QCD sum [1,2]	Latt. [3,19,43,44]	Exp. f_P
$D(\pi/c\bar{d})$	0.209	0.336	0.206 ± 0.002	0.220 ± 0.003	0.205 ± 0.085 ± 0.025\([45,46]\)
$D_s(\pi/c\bar{s})$	0.238	0.387	0.245 ± 0.015	0.258 ± 0.001	0.254 ± 0.050\([45,46]\)
$B(\bar{u}\bar{d}/d\bar{b})$	0.100	0.581	0.193 ± 0.012	0.218 ± 0.005	0.198 ± 0.014\([47]\)
$B_s(\bar{s}\bar{d})$	0.107	0.600	0.232 ± 0.018	0.228 ± 0.010	0.237 ± 0.017\([47]\)
$B_s(\bar{s}c)$	0.311	0.607			0.562\([48]\)
$\eta_c(\pi)$	0.832	0.420			
$\eta_b(b\bar{b})$	0.699	0.711			

Table 8	Mass (M_P) in GeV					
Meson	$MP_{(Our)}$	RHCM [53]	Ref. [24]	Lattice [3]	Q. sum rule [1,2]	Exp. M_P [36,45–47]
$D(\pi/c\bar{d})$	1.860	3.162	2.378	1.885	1.87	1.869 ± 0.0016
$D_s(\pi/c\bar{s})$	1.997	3.264	2.500	1.969	1.97	1.968 ± 0.0033
$B(\bar{u}\bar{d}/d\bar{b})$	5.279	6.732	5.798	5.283	5.28	5.279 ± 0.0017
$B_s(\bar{s}\bar{d})$	5.425	6.764	5.902	5.366	5.37	5.366 ± 0.0024
$B_s(\bar{s}c)$	6.48	7.308	6.810	6.278	6.277 ± 0.006	
$\eta_c(\pi)$	3.08	4.047				2.980 ± 0.0012
$\eta_b(b\bar{b})$	9.80	10.319				9.461 ± 0.0026

Table 9	Decay constant (f_P) in GeV				
Meson	$f_P^{(Our)}$	RHCM [53]	QCD sum [1,2]	Latt. [3,19,43,44]	Exp. f_P
$D(\pi/c\bar{d})$	0.100	0.336	0.206 ± 0.002	0.220 ± 0.003	0.205 ± 0.085 ± 0.025\([45,46]\)
$D_s(\pi/c\bar{s})$	0.110	0.387	0.245 ± 0.015	0.258 ± 0.001	0.254 ± 0.050\([45,46]\)
$B(\bar{u}\bar{d}/d\bar{b})$	0.085	0.581	0.193 ± 0.012	0.218 ± 0.005	0.198 ± 0.014\([47]\)
$B_s(\bar{s}\bar{d})$	0.087	0.600	0.232 ± 0.018	0.228 ± 0.010	0.237 ± 0.017\([47]\)
$B_s(\bar{s}c)$	0.09	0.607			0.562\([48]\)
$\eta_c(\pi)$	0.205	0.420			
$\eta_b(b\bar{b})$	0.200	0.711			
Let us now discuss about the possible future improvements and their applications: In the present work we have not introduced the relativistic effect in the light quark. For the future improvement the light quark can be considered relativistically with the Hamiltonian $H = M + \frac{p^2}{2m} + \sqrt{p^2 + m^2} + V(r)$, where M is the mass of heavy quark and m is the mass of light quark as in [33,37,57]. Similarly, the QCD correction factor $\tilde{C}^2(\alpha_S)$ [37,58] can also be introduced in van Royen–Weisskopf formula [37,54] for the decay of pseudo-scalar meson. The improved model then can be applied in the study of Branching ratio, Oscillation frequency, Leptonic decay as well [37].

4 Conclusion

The spectroscopic properties of heavy-light and extended heavy-heavy favour system mesons are studied as a potential scheme with Dalgarno’s Perturbation Theory. The study of mass spectroscopy and decay properties of the heavy-flavour mesonic states considering only spin–spin interaction provides us a fruitful results of the dynamics of quarks and gluons at the hadronic scale. The values of masses are found to be 1.80, 1.886, 5.277, 5.420, 6.45, 2.91 and 9.80 GeV and decay constants are found to be 0.209, 0.238, 0.100, 0.107, 0.311, 0.832, 0.699 GeV for $D, D_s, B, B_s, B_c, \eta_c$ and η_b respectively for pseudo-scalar mesons in $2S$ state. The corresponding masses and decay constants of the above seven pseudo-scalar mesons for $3S$ state are found to be 1.860, 1.997, 5.279, 5.425, 6.48, 3.08, 9.87 GeV and 0.100, 0.110, 0.085, 0.087, 0.09, 0.205, 0.200 GeV respectively. The values of M_P and f_P are in close agreement with the values available from other models and experimental data for 2S state. For 3S state the M_P values are in close proximity with other models but some of f_P values are smaller than the other models and experimental data. The success suggests the importance of the effects of three-loop contribution and the non-relativistic binding energy between the quark composite and the choice of renormalization scale parameter used as well as the potential forms for the understanding of the dynamics of the light-heavy and heavy-heavy quark systems. However, although mass spectroscopic results are quite good for 3S state, the values of decay constants f_P are smaller due to the small WFO values. It suggests limitation of the van Royen–Weisskopf formula (Eqn.71). Proper incorporation of QCD corrections $\tilde{C}^2(\alpha_S)$ [37,58] and relativistic effects at least minimally [37] are expected to improve the results.

In conclusion, the Dalgarno’s Perturbation approach with the option of linear perturbation and three-loop effects employed here is found to be successful in the study of heavy-flavour mesons with a Coulombic plus linear potential. Moreover, our results suggest, the treatment of light-flavour relativistically and heavy-flavour non-relativistically seems to be appropriate in light of the successful predictions of the various properties of heavy-light and heavy-heavy systems. The parameters and the results obtained here can be useful in the study of the leptonic and semi-leptonic decays of these mesons.

Acknowledgements One of the authors (R. Hoque) acknowledges Maulana Azad National Fellowship, India for financial support by providing Fellowship during the research work. He also thanks the Head of the department of Physics, Gauhati University and the Head of the department of Physics, Pandu College, Guwahati, India for providing the necessary facilities.

Data Availability Statement This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Our research work is basically to build a model to estimate static and dynamic properties of heavy-flavour mesons within phenomenological Quantum Chromodynamics. So, data deposition is not necessarily emphasized in our present work.]

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Funded by SCOAP3.

References

1. W. Lucha et al., J. Phys. G Nucl. Part. Phys. 38, 105002 (2011)
2. Z.G. Wang, Eur. Phys. J. C 75, 427 (2015). https://doi.org/10.1140/epjc/s10052-015-3653-9
3. R.J. Dowdall et al., HPQCD Collab., arXiv:1207.5749v1
4. N. Brambilla et al., Quarkonium Working Group, arXiv:hep-ph/0412158
5. W. Fischler, Nucl. Phys. B 129, 157 (1977)
6. A. Billoire, Phys. Lett. B 92, 343 (1980)
7. M. Peter, Phys. Rev. Lett. 78, 602 (1997). arXiv:hep-ph/9610209
8. M. Peter, Phys. B 501 (1997). arXiv:hep-ph/9702245
9. Y. Schroder, The static potential in QCD to two loops, DESY-98-191. arXiv:hep-ph/9812205
10. Alexander V. Smirnov et al., Fermionic contributions to the three-loop static potential. PLB 668, 293 (2008). arXiv:0809.1927v1
11. Alexander V. Smirnov et al., Three-loop static potential. PRL 104, 112002 (2010). arXiv:0911.4742v2
12. Roman N. Lee et al., Phys. Dev. D 94, 054029 (2016)
13. C. Anzai, Y. Kiyo, Y. Sumino, PRL 104, 112003 (2010)
14. M. Melles, Static QCD potential in co-ordinate space with quark masses through two-loops, Phys. Rev. D 62, 074019 (2000)
15. D.K. Choudhury, N.S. Bordoloi, Mod. Phys. Lett. A, 24(6), 443–451 (2009)
16. K.K. Pathak, D.K. Choudhury, Chin. Phys. Lett. 28, 101201 (2011)
17. D.K. Choudhury, N.S. Bordoloi, Mod. Phys. Lett. A. 17(29), 1909–1913 (2002)
18. Y. Schroder, The static potential in QCD to two loops, DESY-98-191. arXiv:hep-ph/9812205
19. E. Eichten et al., Phys. Rev. D 21, 203 (1980)
20. S.J. Brodsky, Commensurate scale relations and the Abelian correspondence principle, SLAC-PUB-7861 (1998)
21. A. Dalgaro, Stationary perturbation theory, in Quantum Theory: I Elements, ed. by D.R. Bates (Academic Press, New York, 1961)
22. D.K. Choudhury, N.S. Bordoloi, Int. J. Mod. Phys. A 15(23), 3667–3678 (2000)
23. K.K. Pathak, D.K. Choudhury, N.S. Bordoloi, Leptonic decay of heavy-light mesons in a QCD potential model. Int. J. Mod. Phys. A (2012). https://doi.org/10.1142/S0217751X13500103
24. T. Das et al., Int. J Mod. Phys. A (2016). https://doi.org/10.1142/S0217751X1650189X
25. T. Das, D.K. Choudhury, K.K. Pathak, Indian J. Phys. 90, 1307–1312 (2016). https://doi.org/10.1007/S12648-016-0866-1
26. W. Lucha, F.F. Schoberl, D. Gromes, Bound states of quarks. Phys. Rep. (Rev. Sect. Phys. Lett.) 200, 127–240 (1991)
27. H. Hassanabadi, M. Ghafourian, S. Rahmani, Study of heavy-light mesons properties via the variational method for Cornell potential interaction. Few-Body Syst. https://doi.org/10.1007/s00601-015-1040-6
28. C. Quigg, J.L. Rosner, Phys. Rep. 56, 167 (1979)
29. M. Moazami, H. Hassanabadi, S. Zarrinkamar, Heavy-light mesons under a new potential containing Cornell, Gaussian and inverse square terms. Few Body Syst. https://doi.org/10.1007/s00601-018-1422-7
30. A. Ghata, S. Lokanathan, Quantum Mechanics, Theory and Applications (TRINITY, New Delhi, 2017)
31. D. Griffiths, Introduction to Elementary Particles (Wiley, New York, 1987), p. 158
32. F. Halzen, A.D., Martin, Quarks and Leptons. Wiley, New York. ISBN:0-471-88741-2
33. A.K. Rai, R.H. Parmar, P.C. Vinodkumar, J. Phys. G Nucl. Part. Phys. 28, 22752282 (2002)
34. J. Lahkar, D.K. Choudhury, B.J. Hazarika, arXiv:1902.02079v1
35. G.P. Lepage, P.B. Mackenzie, Phys. Rev. D 48, 2250 (1993)
36. C. Patrignani and Particle Data Group, Chin. Phys. C 40, 100001 (2016)
37. J. Lahkar, D.K. Choudhury, B.J. Hazarika, Commun. Theor. Phys. 71, 49–55 (2019)
38. N. Isgur, M.B. Wise, Phys. Lett. B 232, 113 (1989)
39. B.J. Hazarika, K.K. Pathak, D.K. Choudhury, arXiv:1012.4377v3
40. A. Deur, S.J. Brodsky, G.F. de Teramond, arXiv:1604.08082v3
41. J. Lahkar, R. Hogue, D.K. Choudhury, Mod. Phys. Lett. A. 34, 1950106 (2019). https://doi.org/10.1142/S0217732319501062
42. B.H. Bransden, C.J. Joachain, Quantum Mechanics, 2nd edn. (Pearson, 2013), p. 363. ISBN:978-81-317-0839-2
43. Heechang Naetal, Phys. Rev. D 86, 034506 (2012). https://doi.org/10.1103/PhysRevD.86.034506
44. W. Chen et al., TWQCD Collaboration, Phys. Lett. B 736 (2014). https://doi.org/10.1016/j.physletb.2014.07.025
45. The LHCB Collaboration, arXiv:1304.4741v1 [hep-ex]
46. D. Asner et al., (Heavy Flavor Averaging Group), arXiv:1010.1589
47. B.I. Eisenstein et al., (CLEO Collaboration), Phys. Rev. D 78, 052003 (2008)
48. B. Patel, P.C. Vinodkumar, Chin. Phys. C 34 (2010). arXiv:0908.2212v1 (2009)
49. T. Barnes, S. Godfrey, E.S. Swanson, Phys. Rev. D 72, 054026 (2005)
50. B.H. Yazarloo, H. Mehrabran, EPL 116, 31004 (2016)
51. F.E. Close, An Introduction to Quarks and Partons (Academic Press, London), p. 396
52. H. Mutuk, Hindawi Adv. High Energy Phys. 2018, Article ID 8095653. https://doi.org/10.1155/2018/8095653
53. J.N. Pandya, P.C. Vinodkumar, Pramana J. Phys. 57(4), 821–827 (2001)
54. R. Van Royen et al., Nuovo Cimento 50, 617 (1967)
55. D.K. Choudhury et al., Pramana J. Phys. 44(6), 519–534 (1995)
56. G.B. Arfken et al., Mathematical Methods for Physics, 7th edn. (2012)
57. D.S. Hwang et al., Phys. Rev. D 53, 4951 (1996)
58. E. Braaten, S. Fleming, Phys. Rev. D 52, 181 (1995). https://doi.org/10.1103/PhysRevD.52.181