Cutting rules on a cylinder
and simplified diagrammatic approach to CP violation in quantum kinetic theory

Tomáš Blažek & Peter Maták
Based on 2102.05914, 2104.06395

DISCRETE 2020-2021
29 November to 3 December 2021, Bergen
Unitarity in the Boltzmann equation and CP asymmetric reaction rates from zero-temperature Feynman rules. [Phys. Rev. D 103, L091302]

Quantum thermal corrections to the lepton number source-term and their novel diagrammatic representation. [Eur. Phys. J. C (2021) 81:1050]

Mass-derivative relations for leptogenesis. [2111.03419]
\[S^\dagger S = 1 \quad \rightarrow \quad i T^\dagger = i T - i T i T^\dagger \quad \text{for} \quad i T = S - 1 \]
Truncated unitarity expansion

\[S^\dagger S = 1 \quad \rightarrow \quad i T^\dagger = i T - iT i T^\dagger \quad \text{for} \quad i T = S - 1 \]

\[|T_{fi}|^2 = -iT_{if}iT_{fi} = -iT_{if}iT_{fi} + \sum_n iT_{in}iT_{nf}iT_{fi} - \sum_{mn} iT_{im}iT_{mn}iT_{nf}iT_{fi} + \ldots \]

\[1 - iT^\dagger = (1 + iT)^{-1} \quad \rightarrow \quad iT^\dagger = iT - (iT)^2 + (iT)^3 - \ldots \]
CP violation and unitarity cancellations in a CPT symmetric theory

\[T_{fi} = C_{fi}^{\text{tree}} K_{fi}^{\text{tree}} + C_{fi}^{\text{loop}} K_{fi}^{\text{loop}} \rightarrow \Delta |T_{fi}|^2 \propto \text{Im} \left[C_{fi}^{\text{tree}} C_{fi}^{\text{loop*}} \right] \text{Im} \left[K_{fi}^{\text{tree}} K_{fi}^{\text{loop*}} \right] \] (6)

\[\Delta |T_{fi}|^2 = |T_{fi}|^2 - |T_{if}|^2 \] (7)

\[= \sum_n \left(i T_{in} i T_{nf} i T_{fi} - i T_{if} i T_{fn} i T_{ni} \right) \] [Covi, Roulet, Vissani '98]

\[- \sum_{mn} \left(i T_{im} i T_{mn} i T_{nf} i T_{fi} - i T_{if} i T_{fn} i T_{nm} i T_{mi} \right) \]

\[+ \ldots \]
\[T_{fi} = C_{fi}^{\text{tree}} K_{fi}^{\text{tree}} + C_{fi}^{\text{loop}} K_{fi}^{\text{loop}} \to \Delta |T_{fi}|^2 \propto \text{Im} \left[C_{fi}^{\text{tree}} C_{fi}^{\text{loop} *} \right] \text{Im} \left[K_{fi}^{\text{tree}} K_{fi}^{\text{loop} *} \right] \] (6)

\[\Delta |T_{fi}|^2 = |T_{fi}|^2 - |T_{if}|^2 \] (7)

\[\sum_{n} \left(i T_{in} i T_{nf} i T_{fi} - i T_{if} i T_{fn} i T_{ni} \right) \] [Covi, Roulet, Vissani ’98]

\[- \sum_{mn} \left(i T_{im} i T_{mn} i T_{nf} i T_{fi} - i T_{if} i T_{fn} i T_{nm} i T_{mi} \right) \]

\[+ \ldots \to \sum_{f} \Delta |T_{fi}|^2 = 0 \] [Dolgov ’79; Kolb, Wolfram ’80]
Unitarity in classical kinetic theory

\[\dot{n}_{i_1} + 3Hn_{i_1} = -\dot{\gamma}_{fi} + \dot{\gamma}_{if} + \ldots \] (8)

The classical \(i \rightarrow f \) reaction rates \(\dot{\gamma}_{fi} \) receive contributions from

\[\int [dp_{i_k}] \dot{\gamma}_{i_k} (p_{i_k}) \] for each initial-state particle,

\[\int [dp_{f_1}] \ldots [dp_{f_q}] (2\pi)^4 \delta^{(4)} (p_{i_1} + \ldots + p_{i_p} - p_{f_1} - \ldots - p_{f_q}) \] for each dotted line.

\(T_{fi} \) computed using zero-temperature quantum field theory.
Unitarity in classical kinetic theory

\[\dot{n}_{i_1} + 3Hn_{i_1} = -\dot{\gamma}_{f_i} + \dot{\gamma}_{i_f} + \ldots \]

(8)

The classical \(i \to f \) reaction rates \(\dot{\gamma}_{f_i} \) receive contributions from

In equilibrium, \(\dot{\gamma}_{f_i} \) acts like a trace.

\[f_{i_k}^\text{eq}(p_{i_k}) \to \exp\left\{ -E_{i_k}/T \right\} \]

implies

\[f_{i_1}^\text{eq}(p_{i_1}) \cdots f_{i_p}^\text{eq}(p_{i_p}) = f_{f_1}^\text{eq}(p_{f_1}) \cdots f_{f_q}^\text{eq}(p_{f_q}) \]

(9)

[Phys. Rev. D 103, L091302]
LO asymmetries in seesaw type-I leptogenesis

\[\dot{n}_{\Delta L} + 3Hn_{\Delta L} = \Delta \dot{\gamma}_{N_i \rightarrow lH} - \Delta \dot{\gamma}_{lH \rightarrow N_i} - 2\Delta \dot{\gamma}_{lH \rightarrow \bar{\nu}H} + \ldots \] (10)

[Flanz, Paschos '98]

\[\Delta \dot{\gamma}_{N_i \rightarrow lH} \supset \]

\[\Delta \dot{\gamma}_{lH \rightarrow \bar{\nu}H} \supset \]

\[\Delta \dot{\gamma}_{lH \rightarrow N_i} \supset \]

\[\Delta \dot{\gamma}^{eq}_{N_i \rightarrow lH} = \Delta \dot{\gamma}^{eq}_{lH \rightarrow \bar{\nu}H} = -\Delta \dot{\gamma}^{eq}_{lH \rightarrow N_i} \] (12)
NLO asymmetries and top-Yukawa corrections

\[\Delta \gamma_{N_i Q \rightarrow lt}^{eq} + \Delta \gamma_{N_i Q \rightarrow lHQ}^{eq} + \Delta \gamma_{N_i Q \rightarrow \bar{t}H}^{eq} + \Delta \gamma_{N_i Q \rightarrow \bar{l}Q\bar{t}}^{eq} = 0 \]

[Pilaftsis, Underwood ’05; Abada, et al. ’06; Nardi, Racker, Roulet ’07; Racker ’19]
Completing the classical picture

At the lowest order, the N_i number density evolution is given by

$$\dot{n}_{N_i} + 3Hn_{N_i} = -\dot{\gamma}_{N_i\rightarrow lH} - \dot{\gamma}_{N_i\rightarrow \bar{l}\bar{H}} + \dot{\gamma}_{lH\rightarrow N_i} + \dot{\gamma}_{\bar{l}\bar{H}\rightarrow N_i}$$

(14)

where

$$\dot{\gamma}_{N_i\rightarrow lH} = \quad \Quad
Completing the classical picture

At the lowest order, the N_i number density evolution is given by

\[\dot{n}_{N_i} + 3Hn_{N_i} = -\gamma_{N_i \rightarrow lH} - \gamma_{N_i \rightarrow \bar{l}H} + \gamma_{lH \rightarrow N_i} + \gamma_{\bar{l}H \rightarrow N_i} \]

(14)

where

\[\gamma_{N_i \rightarrow lH} = \ldots \]

(15)

To obtain a complete density evolution at the given order in the coupling, we should include all respective forward diagrams!

\[\gamma_{N_i H \rightarrow lHH} = \ldots \]

(16)
Completing the classical picture

\[\sum_{w=0}^{\infty} \left(f_{eq}^{H} \right)^w = \frac{1}{1 - \exp\{-E_H/T\}} = 1 + f_{eq}^{H} \quad (17) \]

\[\gamma_{N_i \to lH} = \int \cdots f_{N_i} (1 - f_{l}) (1 + f_{eq}^{H}) \quad (18) \]

General out-of-equilibrium densities? Technically, we may define

\[\delta f(p) = \left(\frac{f(p)}{1 \pm f(p)} \right)^{\pm 1} \quad \text{such that} \quad f(p) = \sum_{w=0} (\pm 1)^w \delta f^{w+1}(p). \quad (19) \]
Thermal propagators

\[
\frac{i}{p_H^2 + i\epsilon} + 2\pi \sum_{w=1}^{\infty} \delta(p_H^0) \delta(p_H^2) \rightarrow \frac{i}{p_H^2 + i\epsilon} + 2\pi f(p_H) \theta(p_H^0) \delta(p_H^2)
\]

(Eur. Phys. J. C (2021) 81:1050)
Lepton number source-term with quantum statistical factors

\[\Delta \gamma_{N_i \rightarrow lH} = \int \ldots f_{N_i} \left(1 - f_{eq}^l \right) \left(1 + f_{eq}^H \right) \left(1 - f_{eq}^l \right) \left(1 + f_{eq}^{\bar{H}} \right) \]

(21a)

\[\Delta \gamma_{lH \rightarrow \bar{l}H} = \int \ldots f_{eq}^l f_{eq}^H \left(1 - f_{eq}^l \right) \left(1 + f_{eq}^H \right) \left(1 - f_{eq}^l \right) \left(1 - f_{N_i} \right) \]

(21b)

\[\dot{n}_{\Delta L} + 3Hn_{\Delta L} = \Delta \gamma_{N_i \rightarrow lH} - \Delta \gamma_{lH \rightarrow \bar{l}H} + \ldots \]

(22)

\[= \int \ldots \delta f_{N_i} \left(1 - f_{eq}^l \right) \left(1 + f_{eq}^H \right) \left(1 - f_{eq}^l + f_{eq}^{\bar{H}} \right) + \ldots \]

[Garny, Hohenegger, Kartavtsev, Lindner ’09; ’10; Garny, Hohenegger, Kartavtsev ’10; Beneke, Garbrecht, Herranen, Schwaller ’10]
Thermal mass effects and NLO leptogenesis

\[\gamma_{N_i Q \rightarrow l t} = \gamma_{N_i Q \rightarrow l H Q} \]

is IR finite by the Kinoshita-Lee-Nauenberg theorem [Racker '19]
Thermal mass effects and NLO leptogenesis

\[\frac{i}{k^2 + i \epsilon} = \text{P.V.} \frac{i}{k^2} + \pi \delta(k^2) \rightarrow \]

\[\frac{1}{2} \left(k_0^2 - |k| \right)^2 \frac{\partial \delta(k_0^0 - |k|)}{\partial k_0^0} \]

\[\gamma_{N_i Q \rightarrow lHQ} = -2\text{P.V.} \left(k_0^0 \right) \delta(k^2) \text{P.V.} \frac{1}{k^2} = -\frac{1}{(k_0^0 + |k|)^2} \left(k_0^0 - |k| \right)^2 \frac{\partial \delta(k_0^0 - |k|)}{\partial k_0^0} \]

[Racker '19]
Thermal mass effects and NLO leptogenesis

\[-i\tilde{\Pi}_T(k^0, k) = \begin{array}{c}
Q \\
H
\end{array} + \begin{array}{c}
\bar{Q} \\
H
\end{array} + \begin{array}{c}
\bar{Q} \\
H
\end{array} + \begin{array}{c}
\bar{Q} \\
H
\end{array} \tag{25}\]

For Q and t in equilibrium

\[\dot{m}_H^2(T) = \tilde{\Pi}_T(k^0, k)_{k^0=|k|} = 12Y_t^2 \int [dp_t] \exp \{-E_t/T\} \tag{26}\]

and using dimensional regularization of IR divergences

\[\gamma_{N_i Q \rightarrow lHQ} + \gamma_{N_i \bar{Q} \rightarrow lH \bar{Q}} + \gamma_{N_i t \rightarrow lHt} + \gamma_{N_i \bar{t} \rightarrow lH \bar{t}} = \dot{m}_H^2(T) \frac{\partial}{\partial m_H^2} \bigg|_{m_H^2=0} \gamma_{N_i \rightarrow lH} \tag{27}\]

[2111.03419; See also: Fujimoto, et al. ’84; Salvio, Lodone, Strumia ’11]
Thermal mass effects and NLO leptogenesis

\[\gamma_{N_i H \rightarrow lHH} + \gamma_{N_i \bar{H} \rightarrow lH\bar{H}} = m^2_{H,\lambda}(T) \frac{\partial}{\partial m^2_H} \bigg|_{m^2_H = 0} \gamma_{N_i \rightarrow lH} \] (28)

\[\mathcal{F}(k^0, k) = \frac{1}{4\pi^2} (\mathcal{Y}^\dagger \mathcal{Y})_{ii} (M_i^2 - k^2) \delta_+ [(p_{N_i} - k)^2][1 + f_H(k^0)][1 - f_l(E_{N_i} - k^0)] \] (29)

\[\frac{\partial}{\partial k^0} \bigg|_{k^0 = |k|} \frac{\mathcal{F}(k^0, k)}{(k^0 + |k|)^2} = \frac{\partial}{\partial m^2_H} \bigg|_{m_H = 0} \frac{\mathcal{F}(E_k, k)}{2E_k} \] (30)
General one-particle densities

The hermiticity and positive definiteness of $\hat{\rho}$ allows us to write

$$\hat{\rho} = \frac{1}{Z} \exp \left\{ -\hat{F} \right\}, \quad Z = \text{Tr} \exp \left\{ -\hat{F} \right\},$$

assuming

$$\hat{F} = \sum_p \mathcal{F}_p a_p^\dagger a_p.$$ \hspace{1cm} (31)

where

$$Z = \sum_{\{i\}} \exp \{ -\mathcal{F}_1 i_1 - \mathcal{F}_2 i_2 - \ldots \} = \prod_p Z_p \quad \text{where} \quad Z_p = \frac{\exp\{\mathcal{F}_p\}}{\exp\{\mathcal{F}_p\} - 1} \hspace{1cm} (33)$$

$$f_p = \text{Tr} \left[\hat{\rho} a_p^\dagger a_p \right] = \frac{1}{\exp\{\mathcal{F}_p\} - 1} \quad \rightarrow \quad \hat{f}_p \overset{\text{def.}}{=} \exp \left\{ -\mathcal{F}_p \right\}$$
General one-particle densities

\[\hat{\rho}' = S\hat{\rho}S^\dagger \implies \hat{\rho}' - \hat{\rho} = T\hat{\rho}T^\dagger - \frac{1}{2} TT^\dagger \hat{\rho} - \frac{1}{2} \hat{\rho}TT^\dagger + \ldots \]

(McKellar, Thomson '94)

Tracing with \(a_p^\dagger a_p \) over \(|i_1, i_2, \ldots \rangle\) we get

\[f_p' - f_p = \text{Tr} \left[a_p^\dagger a_p \left(T\hat{\rho}T^\dagger - \hat{\rho}TT^\dagger \right) \right] = \ldots = \]

\[= \frac{1}{Z} \sum_{k=1}^{\infty} (-1)^k \sum_{\{i\}} \sum_{\{n\}} (n_p - i_p) \hat{o}_1^{i_1} \hat{o}_2^{i_2} \ldots (i T)^k_{in} i T_{ni} \]

leading to the same statistical factors as seen in equilibrium case. [Eur. Phys. J. C (2021) 81:1050]
Direct use of unitarity and CPT invariance makes CP asymmetry cancellations easy to track at any perturbative order. [Phys. Rev. D 103, L091302]

Thermal corrected rates in the quantum Boltzmann equations can be represented by diagrams with internal lines wound on a cylindrical surface and cut into as many pieces as kinematically allowed. [Eur. Phys. J. C (2021) 81:1050; 2111.03419]

Thank You!