The data presented here are related to the research paper entitled “Study of a Novel Agent for TCA Precipitated Proteins Washing - Comprehensive Insights into the Role of Ethanol/HCl on Molten Globule State by Multi-Spectroscopic Analyses” (Eddhif et al., submitted for publication) [1]. The suitability of ethanol/HCl for the washing of TCA-precipitated proteins was first investigated on standard solution of HSA, cellulase, ribonuclease and lysozyme. Recoveries were assessed by one-dimensional gel electrophoresis, Bradford assays and UPLC-HRMS. The mechanistic that triggers protein conformational changes at each purification stage was then investigated by Raman spectroscopy and spectrofluorometry.
Finally, the efficiency of the method was evaluated on three different complex samples (mouse liver, river biofilm, loamy soil surface). Proteins profiling was assessed by gel electrophoresis and by UPLC-HRMS.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area	Chemistry
More specific subject area	Proteomics, protein purification, protein precipitation, trichloroacetic acid
Type of data	Tables, Figures
How data was acquired	Raman (LabRAM HR800UV confocal microspectrometer, Horiba Jobin Yvon, Kyoto, Japan)
	Bradford assay (DC Protein Assay, Biorad)
	Electrophoresis (ImageJ software)
	UPLC-HRMS (Accela LC pumps, Q-Exactive Hybrid Quadrupole-Orbitrap mass spectrometer equipped of an ESI source, Thermo Fisher Scientific, Waltham, MA, USA)
	MASCOT search engine (Matrix Science, London, UK; version 2.6.0) and Skyline software (MacCoss Lab, Washington, US; version 3.7.0.10940)
	ProteomeXchange Consortium with identifier PXD008110
Data format	Raw, analyzed and processed data

Experimental factors	Proteins extraction was performed on 500 mg of soil, 10 mg of biofilm and 15 mg of mouse liver as starting material according to protocols of Choure et al. [2], Huang et al. [3] and Song et al. [4] respectively.
Experimental features	Proteins were precipitated with 25% (w/v) trichloroacetic acid (TCA). The washing of protein pellet was performed with three different agents (acetone, ethanol, or ethanol/HCl). The mixture was vortexed and kept at −20 °C for 1 h, centrifuged at 16,600 g for 15 min at 4 °C. The resulting pellets were dried in a SpeedVac concentrator, solubilized in a 50 mM of ammonium bicarbonate buffer containing 10 mM of Tris. Proteins were subjected to trypsin digestion for 24 h at 37 °C. Digestion was stopped with formic acid before gel, bradford and mass analysis.
Data source location	Poitiers, France
Data accessibility	data are with this article

Value of the data

- Data show a comprehensive evaluation of protein conformational changes throughout TCA precipitation and one single step purification with various solvents.
- Data highlight the efficiency of ethanol/HCl purification for TCA-precipitated proteins.
- Ethanol/HCl represents a quick and inexpensive purification agent for proteomics studies.
- Presence and variability of proteins are potential values to determine which purification method must be used for proteomics investigation.
1. Data

TCA precipitation is one of the most common and robust technique required for protein analyses [5–7]. However it leads to molten globule states which hamper the solubilization of proteins in aqueous buffers for mass spectrometry analysis.

1.1. Comparison of washing agents on standard solutions

A standard solution of HSA, cellulase (exoglucanases and endoglucanases mixture), lysozyme and ribonuclease A, 35 µg mL\(^{-1}\) each, was prepared in high purified water. Proteins were precipitated with 25% (w/v) trichloroacetic acid (TCA) (final concentration). The clean-up of protein pellet was performed following three different approaches: ethanol/HCl (1.25 M; 3.8%), acetone/HCl (0.06 M; 0.2%); acetone/HCl (1.25 M; 3.8%) (Fig. 1).

1.2. Extraction and purification of endogenous proteins from complex sample matrices

See Fig. 2.

1.3. Effects of successive ethanol/HCl washings on proteins recoveries

10 mg of biofilm samples were spiked with the standard solution of HSA, exoglucanase 1 from the mix of cellulase, lysozyme, and ribonuclease A (Rnase). Proteins final concentration was 1 µg mg\(^{-1}\) of matrix to enable HRMS detection of the proteins after the whole process. The mixture was vortexed and left during 24 h at room temperature to favor proteins adsorption on the matrix. After extraction following the published protocol of Huang et al. [3], protein pellets were subjected to one, two or three ethanol/HCl washing(s).

They were then dissolved in 50 mM of ammonium bicarbonate containing 10 mM of Tris (pH 8.5), diluted in a ratio of 1:3 using the same buffer and subjected to trypsin digestion.

![Fig. 1. Standard proteins quantification by Bradford assay and silver-staining on electrophoresis gel. The thin line bars represent standard deviations at the top of the Bradford histogram. For both methods, histograms were constructed from the mean value of three independent assays.](image)
Experiments were performed in triplicate. Fig. 3 gives the mean protein recoveries following the designed approach (Ethanol/HCl) on biofilm matrix after multiple washing steps.

1.4. Understanding the effect of ethanol/HCl on proteins conformation

1.4.1. Spectrofluorometry

To get insights into the role of ethanol/HCl on proteins solubility, their conformational changes were comprehensively investigated, as an extension of the results reported in Ref. [1]. These measures were performed at each purification stage with two spectroscopic techniques: spectrofluorometry and Raman.

Fig. 2. One-dimensional gel electrophoresis of complex matrices (biofilm, soil and mouse liver) after purification following the designed approach versus published protocols on complex matrices. The gel was stained with silver nitrate.

Fig. 3. Proteins recoveries following the designed approach on biofilm sample. The thin line bars represent standard deviations at the top of each column. Each bar shows mean ± s.e.m. from three independent purification assays. Protein recoveries in Tris buffer were determined by UPLC/HRMS in a full scan mode with a resolution of 70.000 and mass range of 200–3000 m/z.

Experiments were performed in triplicate. Fig. 3 gives the mean protein recoveries following the designed approach (Ethanol/HCl) on biofilm matrix after multiple washing steps.
Figs. 4–6 represent the fluorescence emission spectra of lysozyme, HSA and Rnase after TCA precipitation and washing steps (ethanol/HCl, ethanol or acetone).

1.4.2. Raman microspectroscopy

Raman spectrum for Rnase, is presented in Fig. 7. Spectra and curve fitting of the amide I band of proteins corresponding to lysozyme and HSA are presented in Figs. 5 and 6 in Ref. [1], respectively (Figs. 8–11).

Fig. 4. Emission spectra of lysozyme ($\lambda_{\text{exc}} = 400 \text{ nm}$) at different purification steps. Native lysozyme (grey spectrum); Lysozyme-TCA (orange spectrum); Lysozyme-ethanol/HCl (green spectrum); Lysozyme-ethanol (purple spectrum); Lysozyme-acetone (blue spectrum).

Fig. 5. Emission spectra of HSA ($\lambda_{\text{exc}} = 400 \text{ nm}$) at different purification steps. Native HSA (grey spectrum); HSA-TCA (orange spectrum); HSA-ethanol/HCl (green spectrum); HSA-ethanol (purple spectrum); HSA-acetone (blue spectrum).
The unfolding or aggregation of proteins usually involves some dynamic changes in their secondary structures. These changes are mainly monitored by the analysis of the amide I region (1600–1690 cm\(^{-1}\)) which is assumed to be sensitive to α-helical secondary structures [8].

1.5. Extraction and purification of proteins from complex samples: LC-HRMS analysis

We present processed data of UPLC-HRMS analysis of proteins from different samples (mouse liver, river biofilm, soil) after TCA precipitation and solvent purification. The datasets in XML format
can be used to evaluate ethanol/HCl purification for proteins profiling. Table 1 gives the HRMS features of peptides targeted for the standard proteins after in silico trypsic digestion. Table 2 presents endogenous proteins identified in soil, biofilm and mouse liver samples after purification following either the designed approach or published protocols (Mascot identification). Table 3 presents endogenous proteins detected in the mouse liver sample and quantified through Skyline with corresponding peptides and transitions for PRM. Table 4 presents endogenous proteins detected in the biofilm sample and quantified through Skyline with corresponding peptides and transitions for PRM (Table 5).
Fig. 10. Relative integrated intensities of lysozyme amide I contribution from peak #6 assigned to unordered structures (uo), peak #7 (ordered α helices, ho), peak #8 (unordered α helices and β sheets, hu+sh), and peak #9 (turns, tu) as obtained after profile fitting of amide I region of the Raman spectra (Fig. 5, Ref. [1]). Values on top of each bar correspond to the Raman shift on which the contribution peak was centred at the end of the fitting.

Fig. 11. Relative integrated intensities of HSA amide I contribution from peak #1 assigned to unordered structures (uo), peak #2 (ordered α helices, ho), peak #3 (unordered α helices and β sheets, hu+sh), and peak #4 (turns, tu) as obtained after profile fitting of amide I region of the Raman spectra shown in Fig. 6 [1]. Values on top of each bar correspond to the Raman shift on which the contribution peak was centred at the end of the fitting.

Table 1
HRMS features of peptides targeted for the four standard proteins after in silico tryptic digestion.

Protein name	Peptide sequence	[M+H]^[1]	[M+2H]^[2]	[M+3H]^[3]	[M+4H]^[4]
LYSO-1	FESNFNTQATNR	714.8288	476.8883		
LYSO-2	HGLDNYR	874.4166	437.7119	292.1437	
RNASE-1	CKPVNTFHVESLADVQAVCS QK	839.7457	630.0611		
RNASE-2	HIIACEGNPVYPVHFDASV	1112.5464	742.0334		
RNASE-3	YPNCAVK	458.2051	298.1293		
HSA-1	AVMDDFAAFVEK	671.8210	448.2164		
HSA-2	LVAASQAALGL	1013.5990	693.3200	448.2164	
HSA-3	YLYEIAR	927.4934	693.3200	448.2164	
EXO-1	GSCSTSSGVPAPQINESQSPNA K	1039.4764	693.3200	448.2164	
EXO-2	YGTGVYCDQCPR	732.2876	488.5275		
EXO-3	VTSNIK	808.4563	404.7282		
Table 2
Endogenous proteins identified in soil, biofilm and mouse liver after purification following either the designed approach or the published protocols.

Sample Location	Protein name	Phylum origin	Protein coverage (%)	Scorea	GRAVY	MW (Da)b
Soil Extracellular region	Endoglucanase EG-II	Hypocrea jecorina	18	161	–0.19	44883
	Xyloglucanase	Hypocrea jecorina	1	76	–0.21	87307
Soil Extracellular region	C-phycocyanin alpha chain	*Synechococcus sp,*	17	181	–0.11	17335
Biofilm Cellular thylakoid membrane; Peripheral membrane protein	C-phycocyanin alpha chain	*Synechocystis sp,*	20	209	–0.12	17756
Chloroplast thylakoid membrane; Peripheral membrane protein	Allophycocyanin alpha chain	*Micrastera diplosiphon*	11	76	–0.14	17411
Chloroplast thylakoid membrane; Peripheral membrane protein	R-phycoerythrin beta chain	*Porphyridium purpureum*	21	117	0.25	18884
Chromatophore thylakoid membrane; Stromal side	C-phycocyanin alpha chain	*Microastera diplosiphon*	21	138	0.21	19568
Cellular thylakoid membrane; Peripheral membrane protein	R-phycoerythrin beta chain	*Porphyra haitanensis*	23	129	0.26	18810
Chromatophore thylakoid membrane; Stromal side	C-phycocyanin-1 beta chain	*Micrastera diplosiphon*	16	64	0.17	18080
Cellular thylakoid membrane; Peripheral membrane protein	Allophycocyanin subunit alpha 1	*Nostoc sp,*	17	99	–0.09	17392
Chromatophore thylakoid membrane; Peripheral membrane protein	C-phycocyanin beta chain	*Aglaothamnion neglectum*	11	112	0.09	18290
Stromal side	Ribulose bisphosphate carboxylase large chain	*Trichodesmium erythraeum*	5	90	–0.32	53615
Ni	Allophycocyanin alpha chain	*Anabaena cylindrica*	6	84	0.01	17128
Cellular thylakoid membrane; Peripheral membrane protein	C-phycocyanin alpha chain	*Pseudanabaena tenuis*	18	144	–0.24	17780
Chromatophore thylakoid membrane; Multi-pass membrane protein	Photosystem II CP47 reaction center protein	*Odontella sinensis*	8	117	0.08	56436
NI Ribulose bisphosphate carboxylase large chain	Cyanothecae sp., 9 6 94 89 −0.27 53531					
chloroplast Ribulose bisphosphate carboxylase large chain (Fragment)	Calyptrosphaera sphaeroidea tenuistipitata var. liui, 8 10 111 132 −0.10 54442					
chloroplast Ribulose bisphosphate carboxylase large chain	Cylindrothece sp., 6 6 109 108 −0.12 54400					
chloroplast thylakoid membrane; Peripheral membrane protein; Stromal side chloroplast Ribulose bisphosphate carboxylase large chain	Cyanidium caldarium, 13 16 94 83 −0.04 17574					
chloroplast chloroplast	Cyanidium caldarium, 13 16 94 83 −0.04 17574					
chloroplast thylakoid membrane; Peripheral membrane protein; Stromal side chloroplast Ribulose bisphosphate carboxylase small chain	Antithamnion sp., 5 5 72 72 −0.58 16247					
chloroplast Chloroplast Ribulose bisphosphate carboxylase large chain (Fragment)	Synechocystis sp., 18 29 71 72 −0.19 11128					
chloroplast thylakoid membrane; Peripheral membrane protein; Stromal side chloroplast R-phycoerythrin beta chain	Aglaothamnion neglectum Haptofila hirta, 9 10 141 139 −0.11 51098					
chloroplast Chloroplast Ribulose bisphosphate carboxylase large chain	Antithamnion sp., 7 7 117 113 −0.12 54372					
chloroplast thylakoid membrane; Peripheral membrane protein; Stromal side chloroplast Allophycocyanin beta chain	Thermosynechococcus elongatus Gloeobacter violaceus, 2 2 78 75 0.15 96126					
chloroplast Allophycocyanin beta chain	Thermosynechococcus elongatus Gloeobacter violaceus, 2 2 78 75 0.15 96126					
chloroplast thylakoid membrane; Peripheral membrane protein; Stromal side chloroplast Photosystem I P700 chlorophyll a apoprotein A2	Aglaothamnion neglectum Synechocystis sp., 6 6 120 117 −0.29 53084					
chloroplast thylakoid membrane; Peripheral membrane protein; Stromal side chloroplast Allophycocyanin beta chain	Galdieria sulphuraria, 16 16 96 73 0.02 17536					
Cell inner membrane; Multi-pass membrane protein chloroplast thylakoid membrane; Peripheral membrane protein; Stromal side chloroplast Ribulose bisphosphate carboxylase large chain	Galdieria sulphuraria, 16 16 96 73 0.02 17536					
Mouse liver Nucleus, Mitochondrion Carbamoyl-phosphate synthase	Mus musculus 39 33 1637 1268 −0.12 16571					
Cytoplasm Arginase-1	Mus musculus 29 35 300 310 −0.19 34957					
Cytoplasmin, Membrane Selenium-binding protein	Mus musculus 31 28 526 405 −0.31 53147					
Cytoplasm Argininosuccinate synthase	Mus musculus 32 15 429 191 −0.11 46340					
Mitochondrion Glyceraldehyde-3-phosphate dehydrogenase	Mus musculus 31 32 321 298 −0.04 36072					
Cytosol Cytosolic 10-formyltetrahydrofolate dehydrogenase	Mus musculus 9 17 139 361 −0.36 99502					
Extracellular region 3-ketoacyl-CoA thiolase, mitochondrial	Mus musculus 10 20 137 216 −0.38 42260					
Sample Location	Protein name	Phylogenetic origin	Protein coverage (%)	Score^a	GRAVY	MW (Da)^b
--	-------------------------------	---------------------	-----------------------	---------------------	--------	---------------------
Serum albumin	Mus musculus	15	18	327	349	−0.09 70700
Alcohol dehydrogenase 1	Mus musculus	19	29	161	212	0.20 40601
Aspartate aminotransferase, mitochondrial	Mus musculus	15	16	231	215	−0.23 47780
Carboxylesterase 3B	Mus musculus	12	14	201	183	−0.12 63712
Glycine N-methyltransferase	Mus musculus	29	19	131	127	−0.25 33110
Cytochrome P450 2D10	Mus musculus	9	2	100	123	−0.06 57539
Aspartate aminotransferase, cytoplasm	Mus musculus	7	13	112	115	−0.25 46504
Adenosylhomocysteinase	Mus musculus	27	14	335	120	−0.07 47780
Fructose-1,6-bisphosphatase 1	Mus musculus	12	16	117	120	−0.12 37288
Carboxylesterase 3A	Mus musculus	13	9	220	139	−0.12 63677
Sarcosine dehydrogenase, mitochondrial	Mus musculus	8	6	182	209	−0.25 102644
UDP-glucuronosyltransferase 1-1	Mus musculus	4	8	94	141	0.09 60749
Hemoglobin subunit beta-1	Mus musculus	16	24	111	105	0.08 15944
Peroxosomal bifunctional enzyme	Mus musculus	3	2	98	78	−0.12 78822
Microsomal glutathione S-transferase	Mus musculus	17	21	80	87	0.15 17597
Cytochrome P450 2F2	Mus musculus	6	7	128	130	−0.13 56141
Pyrethroid hydrolase Ces2a	Mus musculus	9	5	100	76	−0.30 57539
Homogentisate 1,2-dioxygenase	Mus musculus	6	6	81	114	−0.34 50726
Regucalcin	Mus musculus	4	13	72	112	−0.28 33899
3-ketoacyl-CoA thiolase B, peroxisomal	Mus musculus	13	8	116	84	0.05 44481
Sorbitol dehydrogenase	Mus musculus	6	6	90	89	0.06 38795
ATP synthase subunit f, mitochondrial	Mus musculus	26	26	70	71	−0.30 10394
ATP synthase subunit alpha, mitochondrial	Mus musculus	14	10	193	160	−0.10 59830
Urocanate hydratase	Mus musculus	2	1	100	76	−0.14 75227
Fumarlylacetocetase	Mus musculus	3	6	75	74	−0.21 46488
Uricase	Mus musculus	17	11	157	97	−0.46 35245
Mus musculus	Mus musculus	15	13	180	119	−0.26 39938
Location/Function	Enzyme Name	Species	MASCOT Score	Peptide Count	Unique Peptide Count	MW
--	------------------------------------	-------------	--------------	---------------	----------------------	-----
Membrane	Fructose-bisphosphate aldolase B	Mus musculus	11	6	104	96
	UDP-glucuronosyltransferase 2B17		11	6	104	96
NI	Pyrethroid hydrolase	Mus musculus	9	7	108	89
Cytoplasm	3-hydroxyanthranilate 3,4-dioxygenase		9	6	90	87
Mitochondrion	Hydroxymethylglutaryl-CoA synthase, mitochondrial	Mus musculus	7	6	86	70
Mitochondrion	Trifunctional enzyme subunit alpha, mitochondrial	Mus musculus	9	7	90	81
Endoplasmic reticulum	Microsomal triglyceride transfer protein large subunit	Mus musculus	1	1	74	80
Membrane	Cytochrome b-c1 complex subunit 2, mitochondrial	Mus musculus	4	4	73	76

*a MASCOT score greater than 67.
b MW: Molecular weight.
Table 3
Endogenous peptides and transitions for PRM methods.

Protein name	Abreviation	Peptide	Precursor (m/z)	Product (m/z)
Carbamoyl-phosphate synthase	CPSM	TAVDSGIALTNFQVTK	898.4844	950.5306
			837.4465	736.3898
			1051.4725	722.3138
			591.2733	403.2300
		VLGTSVESIMATEDR	804.4009	926.5418
			617.3365	390.2096
		AFAMTNQILVER	696.8688	835.4495
			615.3647	472.2402
		GQNQPVLNITNR	677.3653	801.4829
			688.3988	587.3511
			696.4291	355.2340
			468.3180	231.1162
			832.4345	646.3705
			547.3021	491.3073
Argininosuccinate synthase	ASSY	EQGYDVIAVLNIGQK	891.4571	977.5415
			743.4410	630.3570
			1085.4972	556.3453
			485.3082	921.5768
			751.4713	541.3344
Selenium-binding protein 2	SBP2	GSFVLLDGETFEVK	770.8983	1037.515
			924.4309	809.404
			894.4971	821.4338
			708.3498	848.4989
			701.4304	588.3464
			957.5	858.4316
			545.2678	261.1598
			875.4469	746.4043
			889.4315	790.3631
			261.1598	261.1598
			261.1598	261.1598
Protein name	Abreviation	Peptide	Precursor (m/z)	Product (m/z)
--	-------------	----------------------------------	-----------------	--------------
Glyceraldehyde-3-phosphate dehydrogenase G3P	ARG1	VMEETFSYLLGR	722.8607	1214.6052
				855.4723
				708.4039
		EGLYITEEIYK	679.3479	1058.5405
				895.4771
				782.3931
		VSVVLGDHSLAVGSIHGAR	673.3641	866.9581
				817.4239
				760.8819
		SLEIIIGAPFSK	581.3293	606.3246
				556.3341
				478.266

Table 3 (continued)
Table 4
Endogenous peptides and transitions for PRM methods.

Protein name	Abreviattion	Peptide	PRM	Precursor (m/z) Product (m/z)
R-phycoerythrin alpha chain, Porphyra purpurea	PHEA_PORPU	SVITTISAADAAGR	717.3834	1134.5749 1033.5273 374.2146 715.3846 621.2515 587.3260 920.3956 663.2944 491.2460
		FPSSDLESVQGNIQR	588.6235	1033.5273 374.2146 715.3846 621.2515 587.3260
		NPGEAGDSQEK	566.2493	1134.5749 1033.5273 374.2146
C-phyocyanin-1 alpha chain, Synechococcus sp.	PHCA1_SYNP6	TPLTEAVAAADSQGR	743.8784	1175.5651 945.4748 775.3693 1194.6113 1107.5793 790.457
		FLSTTELQVAFGR	727.8855	1194.6113 1107.5793 790.457
C-phycoerythrin alpha chain, Synechocystis sp.	PHEA_SYNY1	TLGLPTAPYVEALSFAR	602.6647	1152.6048 793.4203 664.3777 688.3737 635.2671 560.3151
		FPSTSDLESVQGSIQR	584.2917	1152.6048 793.4203 664.3777 688.3737 635.2671 560.3151
C-phycoerythrin alpha chain, Microchaete diplosiphon	PHEA_MICDP	SSVTTTISAADAAGR	701.3834	1116.6008 815.437 374.2146 715.3846 621.2515 587.3260 920.3956 663.2944 491.2460
		ALGLPTAPYVEALSFAR	592.6612	1152.6048 793.4203 664.3777 688.3737 635.2671 560.3151
		FPSTSDLESVQGSIQR	584.2917	1152.6048 793.4203 664.3777 688.3737 635.2671 560.3151

Table 5
Total spectrum, peptide and protein counts after purification by our approach versus published protocols on complex matrices.

	Total spectrum count	Peptide count	Protein count
Biofilm-published approach\(^a\)	932	585	195
Biofilm-our approach\(^b\)	937	424	163
Mouse liver-published approach\(^c\)	1122	1408	416
Mouse liver-our approach\(^d\)	959	1205	355
Soil-published approach\(^e\)	946	293	72
Soil-our approach\(^f\)	932	488	128

Data from the ProteomeXchange Consortium via the PRIDE [10] repository with the dataset identifier PXD008110 and 10.6019/PXD008110.

\(^a\) Average of three replicates.
\(^b\) Counts of a single replicate.
2. Experimental design, materials and methods

Experimental design and materials and methods have been reported previously [1].

Acknowledgments

This research was carried out with the financial support of the French Ministère de l’Enseignement Supérieur et de la Recherche (5HU66) and the Ligue contre le Cancer (Maj 06-12-2016)

References

[1] B. Eddhif, J. Lange, N. Guignard, Y. Batonneau, S. Papot, C. Geoffroy-Rodier, P. Poinot, Study of a novel agent for TCA precipitated proteins washing - comprehensive insights into the role of ethanol/HCl on molten globule state by multi-spectroscopic analyses, J. Proteomics. 173 (2018) 77–88 (submitted for publication).
[2] K. Chourey, J. Jansson, N. VerBerkmoes, M. Shah, K.L. Chavarria, L.M. Tom, E.L. Brodie, R.L. Hettich, Direct cellular lysis/protein extraction protocol for soil metaproteomics, J. Proteome. Res. 9 (2010) 6615–6622. http://dx.doi.org/10.1021/pr100787q.
[3] H.-I. Huang, W.-Y. Chen, J.-H. Wu, Total protein extraction for metaproteomics analysis of methane producing biofilm: the effects of detergents, Int. J. Mol. Sci. 15 (2014) 10169–10184. http://dx.doi.org/10.3390/ijms15061069.
[4] S. Song, G.J. Hooiveld, W. Zhang, M. Li, F. Zhao, J. Zhu, X. Xu, M. Muller, C. Li, G. Zhou, Comparative proteomics provides insights into metabolic responses in rat liver to isolated soy and meat proteins, J. Proteome Res. 15 (2016) 1135–1142. http://dx.doi.org/10.1021/acs.jproteome.5b00922.
[5] L. Jiang, L. He, M. Fountoulakis, Comparison of protein precipitation methods for sample preparation prior to proteomic analysis, J. Chromatogr. A. 1023 (2004) 317–320. http://dx.doi.org/10.1016/j.chroma.2003.10.029.
[6] E. Fic, S. Kedracka-Krok, U. Jankowska, A. Pirog, M. Dziedzicka-Wasylewska, Comparison of protein precipitation methods for various rat brain structures prior to proteomic analysis, Electrophoresis. 31 (2010) 3573–3579.
[7] D.I. Jacobs, M.S. van Rijssen, R. van der Heijden, R. Verpoorte, Sequential solubilization of proteins precipitated with trichloroacetic acid in acetone from cultured Catharanthus roseus cells yields 52% more spots after two-dimensional electrophoresis, Proteomics 1 (2001) 1345–1350. http://dx.doi.org/10.1002/1615-9861(200111)1:11<1345::AID-PROT1345>3.0.CO;2-F.
[8] A. Rygula, K. Majzner, K.M. Marzec, A. Kaczor, M. Pilarczyk, M. Baranska, Raman spectroscopy of proteins: a review: raman spectroscopy of proteins, J. Raman Spectrosc. 44 (2013) 1061–1076. http://dx.doi.org/10.1002/jrs.4335.
[9] J.A. Vizcaíno, A. Csordas, N. del-Toro, J.A. Dianes, J. Griss, I. Lavidas, G. Mayer, Y. Perez-Riverol, F. Reisinger, T. Ternent, Q. W. Xu, R. Wang, H. Hermjakob, 2016 update of the PRIDE database and related tools, Nucleic Acids Res 44 (2016) D447–D456. http://dx.doi.org/10.1093/nar/gkv1145.