Quantum derivatives and high-frequency gain in semiconductor superlattices

A. V. Shorokhov and K. N. Alekseev

1 Institute of Physics and Chemistry, Mordovian State University, 430000 Saransk, Russia
2 Department of Physical Science, P.O. Box 3000, University of Oulu FI-90014, Finland

Abstract. We derive simple difference formulas describing a small-signal absorption of THz field in a semiconductor superlattice driven by a microwave pump. We give a transparent geometric interpretation of these formulas that allows a search of optimum conditions for the gain employing only a simple qualitative analysis. Our theoretical approach provides a powerful tool for finding the correspondence between quasistatic and dynamic regimes in ac-driven semiconductor superlattices.

Introduction
Semiconductor superlattices (SSL) have attracted growing attention in view of their unique electronic properties, which can be used for generation, amplification and detection of a high-frequency electromagnetic radiation [1]. Nonlinear transport properties of SSL allows a generation of THz radiation in conditions of negative differential conductance (NDC) [2]. However, the static NDC makes SSL unstable against formation of high-field electric domains [3]. These electric domains are believed to be destructive for the THz transport properties of SSL allows a generation of THz radiation [1]. Nonlinearities can be used for generation, amplification and detection of THz field in SSL under the action of microwave fields [1]. Because for typical SSLs the characteristic scattering time at room temperature is of the order of 100 fs, an interaction of the microwave fields with the miniband electrons is quasistatic ($\omega_1 \tau \ll 1$). Importantly, we have showed recently that such quasistatic pump field can completely suppress domains in SSLs [6]. Two distinct possibilities exist for the signal field: It can be also quasistatic ($\omega_2 \tau \ll 1$) or it cannot be described within the quasistatic approach if $\omega_2 \tau \gtrsim 1$. The later situation, i.e. $\omega_1 \tau \ll 1$ but $\omega_2 \tau \gtrsim 1$, can be called semiquasistatic interaction. Thus, the semiquasistatic approach is introduced to describe an amplification of THz field in SSL under the action of microwave field.

1. Quantum derivatives
Our main findings are following. We consider the response of miniband electrons to an action of the total electric field $E(t) = E_0 + E_1 \cos(\omega_1 t) + E_2 \cos(\omega_2 t)$, where E_0 is the dc bias and $E_1 = E_2 \cos(\omega_2 t)$ ($\omega_2 = m\omega_1$, $m \in \mathbb{N}$) is the weak signal (probe) field. In the real devices E_2 is a mode of the resonator tuned to a desirable THz frequency.

We define the dimensionless absorption of the weak ac probe field in SSL as $A(\omega_2) = 2 \langle I(U_{dc} + U_{ac} \cos(\omega_1 t)) \cos(m\omega_1 t) \rangle_t$, where $U_{dc} = eLE_0$ is the dc voltage, $L = Nd$ is the length of SSL (d is the period of SSL and N is the number spatial periods), $U_{ac} = eLE_1$ is the amplitude of ac voltage created by the pump field across SSL, the current $I(t)$ is normalized to the maximal current in SSL, I_0, corresponding to the maximal miniband velocity. Note that A^{harm} gives the main contribution to the absorption of a weak probe [6]. The expression for A^{harm} is not specific for the semiquasistic

dc voltage U_{dc} vs dc voltage U_{dc}

$A^{\text{harm}} = 2 \langle I(U_{dc} + U_{ac} \cos(\omega_1 t)) \cos(m\omega_1 t) \rangle_t$, (2)

where $U_{dc} = eLE_0$ is the dc voltage, $L = Nd$ is the length of SSL (d is the period of SSL and N is the number spatial periods), $U_{ac} = eLE_1$ is the amplitude of ac voltage created by the pump field across SSL, the current $I(t)$ is normalized to the maximal current in SSL, I_0, corresponding to the maximal miniband velocity. Note that A^{harm} gives the main contribution to the absorption of a weak probe [6]. The expression for A^{harm} is not specific for the semiquasistic

$A = A^{\text{harm}} + A^{\text{coh}} + A^{\text{incoh}}$. (1)
limit because of its independence on ω_2. However, our main finding is that the absorption components A^{coh} and A^{incoh} can be represented within semiquasistatic approach using the specific terms of quantum derivatives as

$$A^{coh} = eU_2 \left(\frac{I^{ET}(U_{dc} + U_{ac}\cos(\omega_1 t) + N\hbar\omega_2/e)}{2N\hbar\omega_2} \right)_t,$$

(3)

$$A^{incoh} = eU_2 \left(\frac{I^{ET}(U_{dc} + U_{ac}\cos(\omega_1 t) - N\hbar\omega_2/e)}{2N\hbar\omega_2} \right)_t,$$

(4)

where U_2 is the amplitude of small-signal voltage and

$$I^{ET}(U) = \frac{U/U_c}{1 + (U/U_c)^2},$$

(5)

is the Esaki-Tsu voltage-current (UI) characteristic ($U_c = \hbar N/e\tau$ is the critical voltage and I^{ET} is normalized to the maximal current $I_0 \equiv 2I^{ET}(U = U_c)$).

Importantly, following Eq. (5) in order to find the incoherent absorption in SSL at arbitrary high frequency ω_2 we need to know only

$$I_{dc}(U_{dc}) = \langle I^{ET}(U_{dc} + U_{ac}\cos(\omega_1 t)) \rangle_t,$$

(6)

that is, the time-averaged current induced by the quasistatic field (voltage). For a given amplitude of ac voltage U_{ac}, the dc current I_{dc} is a function of only dc bias U_{dc}. It is easy to calculate or to measure the modifications of UI characteristic caused by the action of microwave (quasistatic) field [9, 10]. Note that in the quasistatic case A^{incoh} goes into a usual derivative of current. The difference between these derivatives is shown on the Figure 1 where the dashed line is a derivative of dc current and the dotted line is a quantum derivative dependent on the number of harmonic m. The importance of finding of A^{incoh} is stipulated by the following fact: A^{incoh} plays an essential role in the stabilization of space-charge instability in SSL. We need to know A^{incoh} to determine the conditions of space-charge instabilities. It is surprise that we can determine it only measuring the dc current as a function a dc bias. Using only a finite difference we can select the working point of a generator that is optimal for its stability. Note that $A^{incoh} > 0$ in the quasistatic case and the system is stable against small fluctuations of internal field.

On the other hand, following Eq. (3) finding of the coherent component of absorption at the high frequency corresponding to mth harmonic of the pump frequency ($\omega_2 = m\omega_1$) is reduced to the calculation of mth harmonic of the current within quasistatic approach. That is, one needs to know

$$V_{m \text{ harm}}(U_{dc}) = 2 \langle I^{ET}(U_{dc} + U_{ac}\cos(\omega_1 t)) \rangle \cos(m\omega_1 t),$$

(7)

(Note that in comparison with (2) we have in (8): $I(U) \rightarrow I^{ET}(U))$. In analogy with A^{incoh}, the coherent absorption A^{coh} can be found if we know only the dependence on dc bias. A^{coh} is proportional to the quantum derivative of A^{harm} in the semiquasistatic case, and A^{coh} goes into a common derivative in the quasistatic case. These derivatives are shown in the Figure 2 ($V_m = A^{harm}(m\omega_1)$) for the case of 7 harmonic.

To the best of our knowledge this paper is the first work, where the quantum derivatives naturally appeared in a description of microstructure’s response to a bichromatic field. It is the exciting problem to understand whether our semiquasistatic approach, developed for superlattices operating in the miniband transport regime, can be generalized to other tunnelling structure.

Acknowledgement

This research was supported by Academy of Finland (grant 109758) and AQDJJ Programm of European Science Foundation.

References

[1] A. Wacker, Phys. Rep. 357, 1 (2002).
[2] S. A. Ktitorov, G. S. Simin and V. Ya. Sindalovskii, Sov. Phys. Solid State 13, 1872 (1972).
[3] A. A. Ignatov and V. I. Shashkin, Sov. Phys. JETP 66, 526 (1987).
[4] P. G. Savvidis et al, Phys. Rev. Lett. 92, 196802 (2004).
[5] H. Kroemer, cond-mat/0009311.
[6] K. N. Alekseev et al, Europhys. Lett. (in print) and cond-mat/0601056.
[7] F. Klappenberger et al, Appl. Phys. Lett. 84, 3924 (2004).
[8] V. V. Pavlovich, Sov. Phys. Solid State 19, 54 (1977).
[9] F. Klappenberger et al, Eur. Phys. J. B 39, 483 (2004).
[10] S. Winnerl et al, Phys. Rev. B 56, 10303 (1997).

Fig. 2. Geometrical meaning of the coherent component of absorption within semiquasistatic and quasistatic approaches. The $2m$th harmonic of quasistatic current $V_{2m \text{ harm}}$ vs dc voltage U_{dc} for $m = 7$. The current is induced by the quasistatic pump ($\omega_1 t = 0.14$) with the amplitude $U_{ac}/U_c = 8$. If we choose working point at $U_{dc} = 0$, then the dotted segment determines to the finite difference for the weak probe at $\omega_2 = 7\omega_1$, the dashed straight line corresponds to the derivative. The slopes of these lines determines A^{coh} within the semiquasistatic and quasistatic cases respectively.