Decrease in thyroid adenoma associated (THADA) expression is a marker of dedifferentiation of thyroid tissue

Lars Kloth1, Gazanfer Belge1, Käte Burchardt2, Siegfried Loeschke1, Werner Wosniok3, Xin Fu1, Rolf Nimzyk1, Salah A Mohamed4, Norbert Drieschner1, Volkhard Rippe1 and Jörn Bullerdiek1*

Abstract

Background: Thyroid adenoma associated (THADA) has been identified as the target gene affected by chromosome 2p21 translocations in thyroid adenomas, but the role of THADA in the thyroid is still elusive. The aim of this study was to quantify THADA gene expression in normal tissues and in thyroid hyper- and neoplasias, using real-time PCR.

Methods: For the analysis THADA and 18S rRNA gene expression assays were performed on 34 normal tissue samples, including thyroid, salivary gland, heart, endometrium, myometrium, lung, blood, and adipose tissue as well as on 85 thyroid hyper- and neoplasias, including three adenomas with a 2p21 translocation. In addition, NIS (sodium-iodide symporter) gene expression was measured on 34 of the pathological thyroid samples.

Results: Results illustrated that THADA expression in normal thyroid tissue was significantly higher ($p < 0.0001$, exact Wilcoxon test) than in the other tissues. Significant differences were also found between non-malignant pathological thyroid samples (goiters and adenomas) and malignant tumors ($p < 0.001$, Wilcoxon test, t approximation), anaplastic carcinomas (ATCs) and all other samples and also between ATCs and all other malignant tumors ($p < 0.05$, Wilcoxon test, t approximation). Furthermore, in thyroid tumors THADA mRNA expression was found to be inversely correlated with HMGA2 mRNA. HMGA2 expression was recently identified as a marker revealing malignant transformation of thyroid follicular tumors. A correlation between THADA and NIS has also been found in thyroid normal tissue and malignant tumors.

Conclusions: The results suggest THADA being a marker of dedifferentiation of thyroid tissue.
Studies by Drieschner et al. [4] revealed that the mRNA, the protein size, and the genomic organization is conserved among Homo sapiens, Canis familiaris, Chlorocebus aethiops, Gallus gallus, and Mus musculus. THADA proteins from the analyzed organisms showed significant assignments to the superfamily ARM repeat (SSF48371; Hidden Markov Models Superfamily database), indicating the presence of a protein-protein-interaction-domain of that type.

The exact function of THADA still remains unclear. Hypothetically, it belongs to the death receptor-interacting proteins and is assumed to bind to death receptor DR5 (Puduvalli VK and Ridgway L, GenBank accession reference note), involving it in the TRAIL-induced apoptosis. The truncated THADA derived from the rearranged allele might compete with the gene product of the normal allele thereby disturbing normal apoptosis of follicular cells, and subsequently altering the steady state between proliferation and cellular death leading to adenomatous growth in benign thyroid tumors with 2p21 translocations [3]. Nevertheless, there is a need for further studies elucidating the role of THADA in normal thyroid development and in tumorigenesis.

Recently, a THADA variant has also been linked to type 2 diabetes (T2D) [5], but this association has not been confirmed by the majority of further studies [6-20]. During a meta-analysis of three genome-wide association studies with individuals of European descent Zeggini et al. found evidence for an association of a SNP (rs7578597) in exon 24 of THADA and the susceptibility for T2D [5]. Further indication for a correlation between THADA and T2D was presented in several other publications [11,14,16,17,19], one reported an altered expression of THADA in pancreatic islets, using data from the Diabetes Genome Anatomy Project (DGAP) database [11]. In other investigations no correlation was detected [6-8,10,12,13,15,18,20], except for one publication [9], which reported an association between THADA SNP rs7578597 and a 2-h insulin level during an oral glucose tolerance test but no significant association between the THADA SNP and T2D risk, rendering the association disputable.

The aim of this study was to analyze THADA expression in thyroid tissue in comparison to other tissues and to thyroid hyper- and neoplasias to elucidate the possible correlation of THADA mRNA with thyroid differentiation and neoplastic growth.

Methods
Tissue specimen and RNA isolation
RNA from snap-frozen tissues was isolated using the RNeasy Mini Kit and RNeasy Lipid Tissue Mini Kit for the adipose tissue samples, respectively (QIAGEN, Hilden, Germany).

For the formalin-fixed paraffin-embedded (FFPE) tissues of thyroid tumors, histopathologic diagnoses were performed according to the World Health Organization Classification of Tumours [21] (table 1). As to RNA isolation, FFPE blocks were cut into six sections of 5 μm for each sample using a microtome. Total RNA isolations were performed using the Roche High Pure RNA Paraffin Kit (Roche, Mannheim, Germany) for the THADA expression investigation and the RNeasy FFPE Kit (QIAGEN, Hilden, Germany) for the NIS expression analysis. Three samples were cytogenetically characterized by 2p21 translocations. In all three cases, two of which published previously [22,23], the breakpoints were narrowed down to the THADA locus. One of the anaplastic thyroid samples served as the source of a newly established cell line. Cytogenetical analysis revealed a highly complex karyotype with a range of 80 to 117 chromosomes (100.8 on average). Several marker chromosomes, telomeric associations, and double minutes were detected.

cDNA-synthesis and real-time PCR expression analysis
RNAs were reverse-transcribed into cDNA by M-MLV Reverse Transcriptase (Invitrogen, Karlsruhe, Germany). Real-time PCR was performed using the Applied Biosystems 7300 sequence detection system according to TaqMan Gene Expression Assay Protocol (Applied Biosystems, Darmstadt, Germany) in 96-well microtiter plates with a total volume of 20 μl. In case of TaqMan gene expression assay of THADA (assay number Hs00152982, Applied Biosystems, Foster City, USA), targeting exons 31-32, and of NIS (assay number Hs00166567_m1), each reaction consisted of 2 μl of cDNA reverse transcribed from 25 ng of total RNA, 10 μl of TaqMan Universal PCR Master Mix (Applied Biosystems), 1 μl of TaqMan assay and 7 μl of ddH2O. For the 18S rRNA assay, using 18S forward and 18S rev primer pairs [24], each reaction consisted of 2 μl of cDNA (1:10 diluted, with regard to higher expression of 18S rRNA) reverse transcribed from 25 ng of total RNA, 10 μl of TaqMan Universal PCR Master Mix, 600 nM of forward and reverse primers, 200 nM of 18S probe [24] and 5.4 μl of ddH2O.

Thermal cycling conditions were 2 min at 50°C followed by 10 min at 95°C, 50 cycles at 95°C for 15 s and 60°C for 1 min. A non-template control of amplification and two previous negative controls of cDNA synthesis (one without RNA and one missing Reverse Transcriptase) were included in each plate. Software Sequence Detection Software 1.2.3 (Applied Biosystems) was programmed with the reaction condition. All testing reactions were performed in triplicate.

Serial dilutions were made using cDNA derived from 25, 5, 1, 0.2, and 0.04 ng of total RNA from FFPE tissue
of one thyroid adenoma for THADA and 18S rRNA, and from fresh frozen tissue of one normal thyroid sample for NIS. In each dilution, THADA, NIS, and 18S rRNA gene expression assays were performed using absolute quantification. Afterwards, the standard curves for both assays were plotted with the log ng of input cDNA for each dilution on the x-axis, and the matched CT value on the y-axis. Furthermore, in order to evaluate the differences of amplification efficiencies, the difference of two curve slopes was calculated. If the absolute difference of the slopes is less than 0.1, the amplification efficiencies of two assays are considered to be equal and the comparative CT method is valid (User Bulletin No. 2, ABI PRISM 7700 Sequence Detection System, Applied Biosystems). 18S rRNA was used as endogenous control as suggested previously [25-28]. The 18S rRNA assay showed an amplification efficiency of 92.6% (slope = -3.514, R² = 0.995). The THADA assay had an amplification efficiency of 92.0% (slope = -3.531) and an R²-value of 0.96. For NIS, the amplification efficiency was 93.4% (slope = -3.4917), the coefficient of determination amounted to 0.997). As recommended for FFPE samples [24,29-31] the fragment sizes amplified by all three assays were small, ranging between 60 and 78 bp, a validation of these values was performed via gel electrophoresis of the PCR-products (data not shown). When applying the comparative CT method, one histological normal thyroid tissue was used as calibrator sample. Afterwards, data were compared with results from conventional histology.

For statistical analysis, the Wilcoxon signed rank test was used to compare average values (two-sided, exact

Table 1 Histology of the malignant thyroid lesions.

case no.	age (years)	sex	histology	tumor diameter (cm)	TNM classification and grading
1	57	f	PTC	0.9	pT1
2	31	m	PTC	2.5	pT2 pN0
3	30	f	PTC	2.5	pT2 NX
4	85	m	PTC	4.0	pT3a
5	31	m	PTC	2.0	pT3 pN1
6	54	f	PTC	0.6	pT1 pNX pMX
7	49	f	PTC	1.2	pT2
8	38	f	PTC	0.6	pT1
9	50	f	PTC	2.2	pT2
10	21	f	PTC	1.0	pT1 pNX pMX
11	38	m	PTC	0.8	pT1; G1
12	34	f	PTC	2.3	pT2 pN1 pMX
13	66	f	PTC	2.0	pT3; G2
14	25	f	PTC	2.3	pT2 pN0
15	42	m	PTC	0.7	pT1 N0 MX
16	42	f	PTC	1.4	pT2a; G2
17	72	f	PTC	1.0	pT1
18	84	f	PTC	6.0	pT3 pNX
19	27	m	PTC	2.5	pT2
20	35	f	FTC	2.1	pT2 pN0 MX
21	66	f	FTC	2.0	pT1
22	67	m	FTC	5.5	pT3 pNX pM1
23	61	m	FTC	8.0	pT4
24	53	f	FTC		pT4 pN1
25	61	m	MTC	3.5	pT2 pN0
26	61	m	MTC	1.7	pT2
27	52	m	MTC	3.3	pT2
28	55	f	MTC	2.2	pT2
29	76	f	ATC	1.7	pT4b
30	76	f	ATC	3.8	pT4b
31	86	f	ATC	9.0	pT4 pN1 b pM1
32	65	f	ATC	2.0	pT4 N0; G4

All listed samples were used for the THADA expression investigation, for the NIS expression analysis samples 2, 3, 7, 13 and 24-28 were omitted. (PTC: papillary thyroid carcinoma; FTC: follicular thyroid carcinoma; MTC: medullary thyroid carcinoma; ATC: anaplastic thyroid carcinoma)
version for at most 40 cases involved, otherwise using the t approximation); relationships were quantified by linear regression and Spearman’s rank correlation coefficient. Sensitivity, specificity and decision limits were calculated from non-parametric density estimations. Therefore, sensitivity and specificity may differ from raw empirical values and decision limits need not coincide with measured values. A p-value of less than 0.05 was considered significant.

Ethics Statement
The use of human thyroid samples for this study was approved by the local medical ethics committee (Ethikkommission bei der Ärztekammer Bremen) and followed the guidelines of the declaration of Helsinki. Only samples that were initially taken for diagnostic purposes were secondarily used for the present study. During pathological examination, a sample of the tissue was snap-frozen. The procedure was approved by the local ethics committee. Because the samples were deidentified and were considered as samples normally discarded, the committee felt that there was no specific patient consent necessary.

As for the normal tissue samples, these were anonymously collected for earlier studies, each following the guidelines of the declaration of Helsinki.

Results
THADA expression in normal tissues
Thirty-four snap-frozen samples from eight different tissues were tested for the level of *THADA* expression. The mean level per tissue type ranged from 1 (blood) to 6.14 (thyroid), and the lowest single value for a thyroid sample (4.04) was above the highest one (3.39, myometrium) from any of the other tissues (Figure 1).

![Figure 1 THADA expression in normal tissues (snap-frozen samples)](image_url)
Accordingly, statistical analysis using Wilcoxon’s exact signed rank showed significant differences between normal thyroid tissues and the group of all other tissues ($p < 0.0001$). Using the $THADA$ expression to discriminate between thyroid and non-thyroid tissue, a sensitivity of 82.5%, a specificity of 97.4% and an efficiency of 95.2% with a decision limit value of 4.23 were achieved.

THADA expression in thyroid tumors

Ninety-three formalin-fixed-paraffin-embedded thyroid samples, including eight normal tissues (from four patients), 18 goiters, 35 benign, and 32 malignant tumors were measured. For single tumor samples the expression ranged between 0.065 (anaplastic carcinoma) and 2.986 (follicular adenoma) in relation to normal tissue, i.e. a ratio of $1 : 45.94$. Samples with a 2p21 translocation showed a level of expression of 1.123, 1.624, and 0.662 fold, respectively. The mean values for the different tumor entities ranged from 0.423 (anaplastic carcinoma) to 1.156 (adenoma) (Figure 2 and table 2).

Significant differences of $THADA$ expression were noted between benign and malignant thyroid lesions. Wilcoxon’s signed rank test showed a highly significant difference comparing the joint group of goiters and benign tumors with malignant tumors ($p = 0.0009$).

Using the exact Wilcoxon test, no significant differences were detected comparing the level of $THADA$ expression between normal tissue and benign lesions ($p = 0.2802$) and papillary carcinomas ($p = 0.2170$). In contrast, significant differences were found between anaplastic carcinomas (ATCs), the most dedifferentiated
type of thyroid tumors, and all other samples (p = 0.0107) and ATCs and all other malignant tumors (p = 0.0234). Comparing anaplastic carcinomas with each single group, the difference in expression between ATCs and goiters (p = 0.0049) and adenomas (p = 0.0058) were marked as significant. As this finding was a result of systematically comparing anaplastic carcinomas with the other lesions, a Bonferroni correction for multiple testing was used (corrected α = 0.0083). Without the need of correcting for multiple testing also normal tissue and papillary carcinoma would have been assessed as significantly different from anaplastic carcinoma (p = 0.0485 and p = 0.0350, respectively). Overall, significant results were mostly seen with the group of anaplastic carcinomas, indicating a relative stable level of expression in comparatively differentiated tissues with a significant reduction only in dedifferentiated tissues.

Recently HMG2 expression has been shown to indicate thyroid malignancy and can thus be considered marking the dedifferentiation of thyroid epithelium [32-34]. As to the study by Belge et al. [32] and the present one 48 samples were identical in both studies (seven normal tissues, one goiter, 15 adenomas and 25 carcinomas, including three anaplastic carcinomas). For these, RNA was isolated from adjacent cuts of the same FFPE block and, except for the different qRT-PCR assays, all samples were treated identical in both investigations. Thus, it was feasible to check these samples for a possible correlation between THADA and HMG2. Using Spearman’s rank correlation, there was a highly significant inverse correlation between THADA and HMG2 expression (correlation coefficient = -0.452; p = 0.0015), further underlining a possible role of THADA in thyroid differentiation.

NIS (sodium-iodide symporter), the transmembrane glycoprotein accountable for the uptake of iodine in thyroid cells, was found to be a marker of thyroid differentiation [35-38]. To validate our findings NIS expression was measured in 41 samples, including seven normal tissue samples, six nodular goiters, five adenomas, and 23 carcinomas (15 papillary, four follicular, and all four anaplastic thyroid carcinomas). Using Spearman’s rank correlation, no significant correlation (p = 0.1288) was detected comparing THADA and NIS expression from all samples. By contrast, a significant correlation was found constraining the analysis to the follicular and papillary carcinoma samples (p = 0.0497, r = 0.456, n = 19), an even stronger correlation between the expression of THADA and NIS was found in normal and all malignant samples (p = 0.0021, r = 0.540, n = 30), and in normal tissue and anaplastic carcinomas (p = 0.0128, r = 0.718, n = 11)

Transcription factors binding to THADA

Using the SABiosciene DECODE Transcription Factor Search, no THADA-promotor binding sites for thyroid-specific transcription factors paired box gene 8 (pax8), thyroid transcription factor 1 (TTF1), also known as NK2 homebox 1 (NKX2-1), and thyroid transcription factor (TTF-2), sometimes referred to as forkhead box protein E1 (FOXE1), were found. Amongst others cAMP response element-binding protein (CREB), activating transcription factor (ATF-2), c-Jun, hepatic leukemia factor (Hlf), and germ cell nuclear factor (GCNF) were marked as relevant, FOXC1, Nkx2-2, Nkx2-5, and Nkx6-1 were displayed with low relevance (data not shown). HHEX (hematopoietically expressed homebox) has been found to be expressed in the adult thyroid gland and in differentiated thyroid cell lines and to be correlated with thyroid differentiation [39-41], but is not included in the SABiosciene DECODE Transcription Factor Search. A manual search for this transcription factor revealed no assured binding sites in the THADA promotor.

Discussion

In this study, THADA turned out to be highly expressed in the thyroid compared to other normal tissues. In a group of eight different types of tissue thyroid samples showed a significantly higher THADA mRNA expression than salivary gland, lung, heart, myometrium, endometrium, blood, and adipose tissue, hinting at a possibly important role of THADA in the thyroid.

The results in part contradict data available online. NCBI ESTProfileViewer predicted a higher expression in heart and lung tissue and a slightly lower in the thyroid. For uterus and blood the data are in concordance with
from the other tissues. Overall, the more precise and accurate assessment of CREB, including the thyroid gene, is crucial to understanding its role in the differentiation of endocrine tissues. The search revealed a binding site of the cAMP response element-binding protein (CREB). CREB has been shown to play a crucial role in the differentiation of endocrine tissues, with thyroid hypoplasia associated with CREB mutants in transgenic mice. cAMP indirectly plays a role in this differentiation process.

The expression of THADA (sodium-iodide symporter) has been found to be decreased in anaplastic carcinomas and to be correlated with the expression of NIS, a marker of thyroid differentiation, and inversely correlated with that of HMGA2, a marker of malignant transformation of the thyroid and cancer stemness. It may thus have essential functions in maintaining the differentiation of the follicular epithelium.

Conclusions

THADA expression, though not restricted to the follicular cells of the thyroid, is higher in the thyroid than in other tissues tested (saliary gland, heart, endometrium, myometrium, lung, blood, and adipose tissue). As to its normal function, THADA expression has been found to be decreased in anaplastic carcinomas and to be correlated with the expression of NIS, a marker of thyroid differentiation, and inversely correlated with that of HMGA2, a marker of malignant transformation of the thyroid and cancer stemness. It may thus have essential functions in maintaining the differentiation of the follicular epithelium.

Acknowledgements and funding

We thank U. Bonk, D. Krisponi et, T. Löning, E. Vollmer, T. Goldmann, and C. Frantzen for kindly providing the samples used in this analysis. There was no external funding for this study.

Author details

1. Center for Human Genetics, University of Bremen, Leobener Str. ZHG, 28359 Bremen, Germany. 2. Department of Pathology, Clinical Center Bremen-Mitte, St. Jürgen Str. 1, 28177 Bremen, Germany. 3. Institute of Statistics, University of Bremen, Achterstr. 30, 28359 Bremen, Germany. 4. Department of Cardiac Surgery, University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.

Authors’ contributions

LK conceived and designed the study, carried out the molecular genetic studies, took part in the statistical analysis and the search for transcription factors and drafted the manuscript. GB provided the study material (FFPE and part of the snap-frozen samples), and revised the manuscript. KB carried out the clinical work and performed the pathological analysis. SL performed the pathological determination of the samples (verification). WW carried out the statistical analysis. XF took part in the molecular studies. RN took part in the search for transcription factors. SM provided the study material (part of the snap-frozen samples) and took part in the analysis and interpretation of the obtained data. NO provided background information of certain samples and took part in the analysis and interpretation of the obtained data. VR took part in the analysis and interpretation of the obtained data. JB conceived the study and participated in its design and coordination and helped to draft and revised the manuscript. All authors have read and approved the final manuscript.

Declaration of competing interests

The authors declare that they have no competing interests.
12. Raj SM, Howson JMM, Walker NM, Cooper JD, Smyth DJ, Field SF, Parikh H, Lyssenko V, Groop LC:
11. Hu C, Zhang R, Wang C, Wang J, Ma X, Lu J, Qin W, Hou X, Wang C, Bao Y, Boesgaard TW, Gjesing AP, Grarup N, Rutanen J, Jansson PA, Hribal ML, Staiger H, Machicao F, Kantartzis K, Schäfer SA, Kirchhoff K, Guthoff M, Grarup N, Andersen G, Krarup NT, Albrechtsen A, Schmitz O, Jørgensen T, Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T, de Bakker PI, Drieschner N, Kerschling S, Soller JT, Rippe V, Belge G, Bullerdiek J:
10. Sanghera DK, Been L, Ortega L, Wander GS, Mehra NK, Aston CE, Belge G, Roque L, Soares J, Bruckmann S, Thode B, Fonseca E, Clode A, References

Received: 11 July 2011 Accepted: 4 November 2011
Published: 4 November 2011

References
1. Belge G, Roque L, Soares J, Bruckmann S, Thode B, Fonseca E, Clode A, Bartnitzke S, Castedo S, Bullerdiek J: Cyto genetic investigations of 340 thyroid hyperplasias and adenomas revealing correlations between cytogenetic findings and histology. Cancer Genet Cytogenet 1998, 101:42-48.
2. Bol S, Belge G, Thode B, Bartnitzke S, Bullerdiek J: Structural abnormalities of chromosome 2 in benign thyroid tumors. Three new cases and review of the literature. Cancer Genet Cytogenet 1999, 114:75-77.
3. Ripppe V, Drieschner N, Meiboom M, Muraa Escobar H, Bonk U, Belge G, Bullerdiek J: Identification of a gene rearranged by 2p21 aberrations in thyroid adenomas. Oncogene 2003, 22:6111-6114.
4. Drieschner A, Kerschling S, Soller JT, Ripppe V, Belge G, Bullerdiek J, Nimzyk R: A domain of the thyroid adenoma associated gene (THADA) conserved in vertebrates becomes destroyed by chromosomal rearrangements observed in thyroid adenomas. Gene 2007, 403:110-117.
5. Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T, de Bakker PI, Drieschner N, Kerschling S, Soller JT, Rippe V, Belge G, Bullerdiek J, Kloth et al

http://www.biomedcentral.com/1472-6890/11/13

in tissues relevant for type 2 diabetes mellitus.

genome wide association studies using information on gene expression

recipients in Korea.

HHEX, IGF2BP2 and SLC30A8 are associated with type 2 diabetes in a aged Danes.

Diabetes obesity in a population-based sample of 4,516 glucose-tolerant middle-aged individuals.

Association data and large-scale replication identifies additional susceptiblility loci for type 2 diabetes.

of chromosome 2 in benign thyroid tumors. Three new cases and review of the literature. Cancer Genet Cytogenet 1999, 114:75-77.

Kloth et al

http://www.biomedcentral.com/1472-6890/11/13

in tissues relevant for type 2 diabetes mellitus.

genome wide association studies using information on gene expression

recipients in Korea.

HHEX, IGF2BP2 and SLC30A8 are associated with type 2 diabetes in a aged Danes.

Diabetes obesity in a population-based sample of 4,516 glucose-tolerant middle-aged individuals.

Association data and large-scale replication identifies additional susceptiblility loci for type 2 diabetes.

of chromosome 2 in benign thyroid tumors. Three new cases and review of the literature. Cancer Genet Cytogenet 1999, 114:75-77.

Kloth et al

http://www.biomedcentral.com/1472-6890/11/13

in tissues relevant for type 2 diabetes mellitus.

genome wide association studies using information on gene expression

recipients in Korea.
30. Lehmann U, Kreipe H: Real-time PCR analysis of DNA and RNA extracted from formalin-fixed and paraffin-embedded biopsies. Methods 2001, 25:409-418.

31. Specht K, Richter T, Muller U, Walch A, Werner M, Hofler H: Quantitative gene expression analysis in microdissected archival formalin-fixed and paraffin-embedded tumor tissue. Am J Pathol 2001, 158:419-429.

32. Belge G, Meyer A, Klemke M, Burchardt K, Stem C, Wosnok W, Lueschke S, Bullerdiek J: Upregulation of HMGA2 in thyroid carcinomas: a novel molecular marker to distinguish between benign and malignant follicular neoplasias. Genes Chromosomes Cancer 2008, 47:56-63.

33. Chiappetta G, Ferrarob A, Vuttarielloa E, Monacoa M, Galdieroa F, De Simonea V, Califonaoa D, Pallanteb P, Bottia G, Pozzufoa L, Pierantonib GW, Santorob M, Fusco A: HMGA2 mRNA expression correlates with the malignant phenotype in human thyroid neoplasias. Eur J Cancer 2008, 44:1015-1021.

34. Prasad NS, Somervell H, Tufana RP, Dackow AP, Marohn MR, Califano JA, Wang Y, Westra WH, Clark DP, Umbricht CB, Libutti SK, Zeiger MA: Identification of genes differentially expressed in benign versus malignant thyroid tumors. Clin Cancer Res 2008, 14:3327-3337.

35. Arturi F, Russo D, Schlumberger M, du Villard JA, Caillou B, Vigneri P, Wicker R, Chiefari E, Suarez HG, Filetti S: Iodide symporter gene expression in human thyroid tumors. J Clin Endocrinol Metab 1998, 83:2499-2496.

36. Dohan O, De la Vieja A, Paroder V, Riedel C, Artani M, Reed M, Ginter CS, Carrasco N: The sodium/iodide Symporter (NIS): characterization, regulation, and medical significance. Endocr Rev 2003, 24:48-77.

37. Ward LS, Santarosa Pi, Granja F, da Assumpção LV, Savoldi M, Goldman GH: Low expression of sodium iodide symporter identifies aggressive thyroid tumors. Cancer Lett 2003, 200:85-91.

38. Li W, Ain KB: Human sodium-iodide symporter (hNIS) gene expression is inhibited by a trans-active transcriptional repressor, NIS-repressor, containing PARP-1 in thyroid cancer cells. Endocr Relat Cancer 2010, 17:383-398.

39. Pellszari L, D’Elia A, Rustighi A, Manfioletti G, Tell G, Damante G: Expression and function of the homeodomain-containing protein Hex in thyroid cells. Nucleic Acids Res 2000, 28:2503-2511.

40. D’Elia AV, Tell G, Russo D, Arturi F, Puglisi F, Manfioletti G, Gatelli V, Mack DL, Cataldi P, Filetti S, Di Loreto C, Damante G: Expression and localization of the homeodomain-containing protein HEX in human thyroid tumors. J Clin Endocrinol Metab 2002, 87:1376-1383.

41. Puppin C, Presta I, D’Elia AV, Tell G, Arturi F, Russo D, Filetti S, Damante G: Functional interaction among thyroid-specific transcription factors: Pax8 regulates the activity of Hex promoter. Mol Cell Endocrinol 2004, 214:117-125.

42. Wen AY, Sakamoto KM, Miller LS: The role of the transcription factor CREB in immune function. J Immunol 2010, 185:6413-6419.

43. Rosenberg D, Groussin L, Jullian E, Perlemoine K, Bertagna X, Bertherat J: Role of the PKA-regulated transcription factor CREB in development and tumorigenesis of endocrine tissues. Ann N Y Acad Sci 2002, 968:65-74.

44. Brunetti A, Chiefari E, Filetti S, Russo D: The 3',5'-cyclic adenosine monophosphate response element binding protein (CREB) is functionally reduced in human toxic thyroid adenomas. Endocrinology 2000, 141:722-730.

45. Nguyen LQ, Kopp P, Martinson F, Stanfield K, Roth SJ, Jameson JL: A dominant negative CREB (cAMP response element-binding protein) isoform inhibits thyrocyte growth, thyroid-specific gene expression, differentiation, and function. Mol Endocrinol 2000, 14:1448-1461.