Daylight operation of a free space, entanglement-based quantum key distribution system

Matthew P Peloso1,2, Ilja Gerhardt1, Caleb Ho1, Antía Lamas-Linares1,2 and Christian Kurtsiefer1,2,3

1Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
2Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
E-mail: christian.kurtsiefer@gmail.com

New Journal of Physics 11 (2009) 045007 (13pp)
Received 10 December 2008
Published 30 April 2009
Online at http://www.njp.org/
doi:10.1088/1367-2630/11/4/045007

Abstract. Many quantum key distribution (QKD) implementations using a free space transmission path are restricted to operation at night time in order to distinguish the signal photons used for a secure key establishment from the background light. Here, we present a lean entanglement-based QKD system overcoming that limitation. By implementing spectral, spatial and temporal filtering techniques, we establish a secure key continuously over several days under varying light and weather conditions.
1. Introduction

Since its inception by Bennett and Brassard in 1984 [1], quantum cryptography has made the transition from a concept to a technology mature enough for commercial development [2, 3]. There are several flavors of quantum key distribution (QKD). The initial formulation and all current commercial systems implement the so-called prepare and send (PaS) protocols [4], where some degree of freedom of light is prepared by one party, Alice, and sent to the other party, Bob, who then measures it in one out of several complementary bases. Estimation of the errors in the measurement results of the receiver allows both parties to place an upper bound on the knowledge of an eavesdropper, and is used for a subsequent removal of this knowledge in a privacy amplification step.

Another family of protocols evolved out of a proposal by Ekert in 1991 (E91, [5]). These protocols use entanglement as the main resource, and combine some of the measurements on biphotons such that a Bell inequality can be tested, or the state is tomographically estimated [6] to evaluate the knowledge of an eavesdropper. An important development was an explicit way to calculate the amount of information leaked to an eavesdropper out of a less than perfect violation of a Bell inequality [7], which makes it possible to implement this idea in a practical system with imperfect sources and measurement devices [8]. These protocols reduce the assumptions about the physical implementation (like e.g. the size of the Hilbert space used to encode information) in comparison with most PaS QKD schemes.

An entanglement-based BB84-type QKD scheme was described by Bennett, Brassard and Mermin in 1992 (BBM92, [9]). There, the ‘prepare’ part of BB84 is replaced by a measurement scheme similar to the receiver side, but the knowledge of an eavesdropper is still evaluated from the observed errors. This results in a larger fraction of final key bits than under a full E91 protocol in its quantitative version [7], and probably maintains the insensitivity against an unknown size of the Hilbert space, as long as the measurement devices can be trusted. Furthermore, this scheme retrieves the randomness for the key used for encryption directly out of the measurement process on a quantum system, and does not need to provide an active choice of a key bit. This QKD scheme has been demonstrated in the field [10, 11] using optical fiber links without amplifiers or signal regeneration stages. If the link is to be established ad hoc, e.g. in a mobile environment, or it is not feasible to have a fiber deployed (e.g. in satellite QKD proposals [12, 13]), propagation of the photons through free space is necessary. A free space transmission channel using polarization encoding of the qubits has the advantage of not inducing decoherence (negligible birefringence of air), and has low absorption under clear weather conditions.
So far, such entanglement-based QKD systems over free space have been demonstrated at night, taking advantage of low background light levels [8], [14]–[17]. In contrast to the PaS protocols, which can benefit from narrow band lasers, most sources of entangled photons exhibit a larger optical bandwidth, which limits the effectiveness of spectral filtering. The resulting stress on the data acquisition system thus discouraged an earlier demonstration under daylight conditions for entanglement-based systems, while PaS implementations during daylight have been demonstrated much earlier [18, 19]. In this paper, we report on continuous operation over several full day/night cycles of a BBM92-based QKD system with a combination of several filtering techniques, bringing this scheme closer to the development stage of free space PaS protocols.

2. Background rate estimations

The main challenge for operating over a free space channel in daylight is to handle the high background from the sun. Firstly, actively quenched avalanche photodiode (APD) detectors may be a subject to irreversible destruction when exposed to an excessive amount of light; such a situation may occur if there is scattering in the optical communication link. For passively quenched APDs this is not a problem, since the electrical power deposited into the device can be limited to a safe operation regime at all times.

Secondly, saturation of detectors leads to a reduced probability of detecting photons at high light levels. This effect can usually be modeled by a dead time τ_d or recovery time for the device. For passively quenched APDs, this time is about $1 \mu s$, but may be over an order of magnitude smaller for actively quenched devices. While modeling the saturation with a single dead time, τ_d may not completely reflect the details of the re-arming of a detector, it gives a useful estimation of the fraction of time a detector can register photoevents. Given an initial photoevent rate r (i.e. the rate a detector with no recovery time would report), a detector with dead time τ_d will register a rate of

$$
r' = r(1 - r\tau_d) \quad \text{or} \quad r' = r \frac{1}{1 + r\tau_d}.
$$

(1)

Third, a high background rate will lead to detection events that are mistaken for the detection of a photon pair. These are uncorrelated in their polarization and lead to an increase in the quantum bit error ratio (QBER), which is used to establish a bound for the knowledge of an eavesdropper. In the following, we estimate the operational limit for generating a useful key under such conditions, assuming implementation of a symmetrical BBM92 protocol, i.e. both complementary measurement bases are chosen with an equal probability of 50% on both measurement units.

Assuming that all quoted rates already include detector efficiencies, we can characterize a pair source by its single event rates r_1, r_2 and its coincidence rate r_c. We denote the transmission of the entire optical channel as T, in which we include absorptive losses in optical components and air, geometrical losses due to imperfect mode transfer from an optical fiber and losses in spatial filters.

The signal or raw key rate for a symmetric BBM92 protocol is given by half of the detected coincidence rate,

$$
r_{\text{sig}} = \frac{1}{2} r_c T.
$$

(2)
For an external background event rate r_{bg}, a coincidence time interval of τ_c, and assuming no correlations between source and background events, the accidental coincidence rate with matching bases are given by

$$r_a = \frac{1}{2}(r_1 - Tr_c)(r_{bg} + T(r_2 - r_c)) \tau_c,$$

assuming that only one of the detectors, here with index 2, is exposed to the background events.

Imperfections in practical entangled photon pair sources and the detector projection errors are often characterized by visibilities of polarization correlations V_{HV} and $V_{\pm45\degree}$. The intrinsic QBER q_i of the QKD system with a symmetric usage of both bases is given by

$$q_i = \frac{1}{2} \left(1 - \frac{V_{HV} + V_{\pm45\degree}}{2} \right).$$

The polarization of background events on one side can be assumed to be uncorrelated with the photons detected on the other arm, thus the QBER due to accidentally identified coincidences is $1/2$. The total QBER q_t of the complete ensemble is given by

$$q_t = \frac{q_i r_{cT}}{2} + \frac{(r_1 - Tr_c) r_{bg} \tau_c}{2 \tau_c + r_1 r_{bg} \tau_c}.$$

The detector saturation modifies both signal and accidental rates similarly to equation (1) by the same dead time correction factor α, where we assume an equal distribution of photoevents over all four detectors, resulting in a dead time constant of $\tau_d/4$

$$\alpha = \frac{1}{1 + (r_{bg} + r_2 T) \tau_d/4}.$$

Therefore, the resulting QBER q_t in equation (5) does not get affected. However, the signal rate does, leading to the modified expression

$$r'_\text{sig} = \alpha r_\text{sig} = \frac{r_c T/2}{1 + (r_{bg} + r_2 T) \tau_d/4}.$$

For typical parameters in our experiment ($r'_1 = 78$ kcps, $r'_2 = 71$ kcps, $r'_c = 11$ kcps, $\tau_d = 1 \mu s$, $T = 15\%$, $q_i = 4.3\%$, and $\tau_c = 2 \text{ ns}$), the total detector rate $r_1 = \alpha (r_{bg} + 2 T)$ on the receiver side, the available raw key bit rate r'_sig and the resulting QBER q_t are plotted as a function of an external background rate r_{bg} in figure 6. Above a certain background rate, q_t would exceed the limit of 11% for which a secret key can be established for individual attack schemes [4].

It is instructive to consider the excess QBER due to background events

$$\Delta q = q_t - q_i = (r_1 - Tr_c) r_{bg} \tau_c \frac{1 - q_i}{r_c T + r_1 r_{bg} \tau_c}.$$

In a parameter regime useful for key generation, $q_i \ll 1/2, r'_\text{sig} \gg r_a$, and for simplicity assuming $r_1 \gg Tr_c$, this quantity can be approximated by

$$\Delta q \approx \frac{r_{bg} \tau_c}{2 T (r_c/r_1)}.$$
While the source property r_c/r_1 and the channel transmission T are already typically optimized, the only way to reduce the excess error Δq is to reduce the background rate r_{bg} and the coincidence time window τ_c. The limitation on reducing τ_c is the timing jitter of all detectors, which in our case is in the order of a nanosecond. Emphasis thus has to be placed on reducing the background rate r_{bg}.

3. Experimental setup

We prepare the polarization-entangled photon pairs in a source based on type-II parametric down conversion (PDC) in a non-collinear configuration [20]. It is pumped with a cw free-running diode laser with a power of 30 mW and a center wavelength of 406.5 nm, producing pairs at a degenerate wavelength around 813 nm (similar to [21]) captured by single-mode fibers. When directly connected to single-photon detectors, we typically observe single rate per arm of 78 and 71 kcps, with a coincidence rate of 12 kcps. The visibility of polarization correlations in the HV and $\pm 45^\circ$ basis are 97.5 \pm 0.5 and 92.1 \pm 0.8%, respectively. While these sources have been substantially surpassed in quality and brightness [22, 23], this particular device is both simple and robust.

As endpoints in our transmission channel, we use a pair of custom telescopes to transmit one member of the entangled photon pair across a distance of 350 m for convenient logistics. The minimal incident angle γ of the sun and the line of sight was about 16°. The relative orientation of both telescopes is adjusted using manual tip/tilt stages with an angular resolution of $\approx 10 \mu$rad, mounted on tripods intended for mobile satellite links. The telescopes are not actively stabilized, but this could be added for spanning larger distances, or to compensate for thermal drifts in the mounting stages [16, 24, 25].

Similarly to [15], the sending telescope consists of a fiber port, a small achromat with $f = 100$ mm to reduce the effective numerical aperture of the single-mode fiber, and a main achromat with $f = 310$ and 75 mm diameter, transforming the optical mode of the fiber to a collimated Gaussian beam with a waist parameter of 20 mm. Nominally, this results in a Rayleigh length of 1.6 km at our operation wavelength, well above our target distance.

A combination of spectral, spatial and temporal filtering is used to reduce the background to tolerable levels. At the receiving end, an identical $f = 310$ mm achromat as the front lens focuses the incoming light onto a pinhole of 30 μm diameter at its focal position for spatial filtering. Assuming diffraction-limited performance of that lens, this corresponds to a solid angle of 2.3×10^{-9} sr. The pinhole is then imaged with a magnification of 6.8 through an interference filter onto the passively quenched silicon avalanche detectors with an active diameter of 500 μm in a compact module that performs the random basis selection for the measurement [26] (see figure 1).

Our pair source has a measured spectral width of 8.7 nm, given by the phase matching conditions, and the geometry of the collection [27]. An interference filter with a peak transmission of 72% and a full-width at half-maximum of 6.7 nm was chosen to maximize the amount of signal transmitted and eliminate the background outside of the spectral region of the source (see figure 2). This filter reduces the ambient background level by about two orders of magnitude, much less than what can be achieved in PaS experiments based on extremely narrow band lasers and matching spectral filters.

A significant reduction of background events was also achieved addressing scattering from various elements in the field-of-view (FOV) of the detector, and from scatterers close to the

New Journal of Physics 11 (2009) 045007 (http://www.njp.org/)
Figure 1. Schematic diagram of the QKD setup. Components are a sending telescope (ST), single-mode fibers (SMF), fiber polarization controller (FPC), a waveplate (WP), compensating crystals (CC) to address birefringent walk-off; polarization analyzer units (PA) comprising a 50:50 beam splitter (BS), polarizing beam splitters (PBS) and a half-wave plate (HW); a timestamp unit (TU) referenced to a Rb oscillator (Rb), a receiving telescope (RT) with a pinhole (PH) for spatial filtering and an interference filter (IF) for spectral filtering. The classical channel is established by a wireless link (WL).

Figure 2. Spectral distribution of photons from the SPDC source, and transmission profile of the interference filter used to suppress background light outside that range. With this filter/source combination, a signal loss of 57% is introduced.
optical channel (see figure 3). Reduction of the FOV with a smaller pinhole is finally limited by diffraction; we found a 30 µm pinhole to be the optimal choice when considering pointing accuracy and signal transmission. This corresponds to a FOV of ≈ 73 mm diameter for our test range which will strongly contribute to daylight background counts. A circular area with a diameter of about 3 FOV as well as the inside of the sending telescope is covered with low scattering blackout material. The blackout area was also shielded against direct sunlight. Together, these steps reduce the background by about 12 dB. A set of apertures at the receiver telescope removes light coupled to the detector by multiple reflections from outside the line-of-sight. Five concentric apertures extending 30 cm upstream, and seven apertures with tapered diameters downstream of the main receiver lens matched the receiving mode and reduced the background by about 3–4 dB.

The processing of detection events into a final key has been described in [15] and the software is available as open source⁴. Each detector event results in a NIM pulse which is sent to a custom timestamp unit with a nominal resolution of 125 ps, referenced to a local Rb oscillator. Our time stamp units exhibit a dead time of 128 ns, and are able to transfer up to 6×10^6 events s$^{-1}$ to a commodity host PC via a USB connection. The timing information on one of the sides is then losslessly encoded as differences between consecutive events with an adaptive resolution, and together with the basis information sent to the other side on a classical channel, in our case over a standard wireless TCP/IP connection. The encoding, together with a small overhead, consumes about 13% more bandwidth than necessary due to the Shannon limit. To minimize the bandwidth for this communication, the timing information was sent from the source side with lower overall detection rate during daylight conditions.

To identify corresponding photon pair events, the temporal correlation of the two photons generated in the PDC process is used [28], with a coincidence time window determined by the combined timing jitter from both photodetector sets, the timestamp electronics and the time difference servoing.

For that process to work, an initial time difference between the two receiver units due to different timing origins and light propagation is determined to a resolution of 2 ns using a

⁴ All code is available under http://code.google.com/p/qcrypto

New Journal of Physics 11 (2009) 045007 (http://www.njp.org/)
tiered cross correlation technique on a set of detector events acquired over ≈5 s. Once that time difference is established, coincidences are identified within a time window of τc = 2 ns. Its center drift due to residual frequency differences between the two reference clocks is tracked with a servo loop with an integration time constant of 2 s for events falling in a time window ±3.75 ns around the expected center for coincidence events. We were able to resynchronize the system during daylight conditions at a coincidence rate of 3200 cps up to an ambient light level of 840 kcps, well below saturation of the detectors.

To maintain a common time frame when no useful signal is available for servoing, one of the clock frequencies was manually adjusted such that the relative frequency difference was ≈10⁻¹². This would allow a loss of signal over a period of 2 h without losing the timing lock. Again, the tight time correlation of the photon pairs emerging in PDC acts as a natural way of comparing differences and synchronizing clocks at a distance easily. The ability to resynchronize during daytime and the use of the PDC signal for mutual calibration of the clocks makes this system very robust against signal interruptions or temporal unavailability of the channel.

In the discussion of temporal filtering, we have assumed that all detectors on one side have the same relative lag, or more generally, that their temporal response is identical. This detector equivalence is not guaranteed, and is necessary for an efficient time filtering and, more importantly, to prevent information leakage to an eavesdropper [29]. Figure 4 shows the
Table 1. Correlation events between each of the four detectors on both sides.

Events	H	+45°	V	−45°
H	599	22791	34032	18409
+45°	18647	2894	17512	44841
V	29062	16422	2125	25246
−45°	14635	40558	22280	1498

measured time differences between those pairs of detector combinations that contribute to the key generation. The figure shows that detectors from the same basis are well matched, but there is a significant difference between the two bases. Given our detector assignment, the information leakage is 0.52% and 0.44% in the HV and ±45° basis, respectively. For continuously pumped sources, extraction of timing information by an eavesdropper would need a measurement of the presence of a photon in the communication channel without disturbing the polarization state; with pulsed sources, however, the problem becomes more acute, as the pulse train provides a clock with which to compare the publicly exchanged timing information.

4. Experimental results

The experiment was run continuously over a period from 9 November 2008, 18:00 SGT to 14 November 2008, 2:00 SGT over 4 consecutive days. In this period we saw extremely bright sunlight, tropical thunderstorms and partly cloudy weather; over the whole period the rate of detected pairs and background events varied by about two orders of magnitude. In figure 5, we show the results collected over 2 consecutive days. On the second day we identified 14.72×10^7 raw coincidences. After sift this resulted in 7.18×10^7 of raw uncorrected bits with a total of 3.5×10^6 errors corrected using a modified CASCADE protocol [30, 31], which was carried out over blocks of at least 5000 bits to a target bit error ratio of 10^{-9}.

For the privacy amplification step, we arrive at knowledge of an eavesdropper on the error-corrected raw key determined by (a) the actual information revealed in the error correction process and (b) the asymptotic (i.e. assuming infinite key length) expression for the eavesdropping knowledge inferred from the actually observed QBER q_t, $I_E = -q_t \log_2(q_t) - (1 - q_t) \log_2(1 - q_t)$ of an equivalent true single-photon BB84 protocol. Privacy amplification itself is carried out by binary multiplication/addition of blocks of raw key vectors with a length of at least 5000 bits with a rectangular matrix filled with a pseudorandom balanced bit stream from a 32 bit linear-feedback shift register, seeded with a number from a high-entropy source for each block. We are left with 3.33×10^7 of secure bits for this 24 h period, corresponding to an average key generation rate of 385 bits per second (bps). In these conditions, the key generation rates are far from uniform during the acquisition period; we see a maximum secure key generation rate of 533 bps in darkness and a minimum of 29 bps around noon in rainy conditions.

The raw key compression ratio in the privacy amplification step should actually also take care of a limited entropy in the raw key due to part-to-part variation in detector efficiencies. This information was obtained before the main key generation process by establishing the complete correlation matrix (see table 1) out of an ensemble of 148 493 coincidence events with matching
Figure 5. Experimental results for 10 and 11 November 2008. The top panel records the firing rate of the single-photon detectors. The stable trace (a) corresponds to a detector connected directly to one arm of the source and isolated from changes in ambient light. The other trace (b) is the detector coupled to the free space channel. The middle panel traces show (c) the number of raw pair events, (d) sifted events and (e) error corrected and privacy amplified key. The lower panel shows the number of ‘accidental’ pair events detected (g) and the QBER level as a percentage (f). All experimental points are sampled down, and the solid lines represent a moving average as a guide to the eye.

bases. The asymmetry between 0 and 1 results in the HV basis is $53.9 : 46.1 \pm 0.2\%$ and in the $\pm 45^\circ$ basis is $52.5 : 47.5 \pm 0.2\%$. Using again entropy as a simple measure of information leakage, this detector asymmetry would allow an eavesdropper to obtain 0.45% of the raw key for events in the HV basis and 0.18% in the $\pm 45^\circ$ basis. At the moment, however, it is not obvious that a simple reduction of the final key size in the privacy amplification step due to various information leakage channels would be sufficient to ensure that the eavesdropper has no access to any elements of the final key. We also note that the choice between the two measurement bases is not completely balanced; the ratio of HV versus $\pm 45^\circ$ coincidences is
Figure 6. Detection behavior due to an external background rate \(r_{bg} \) for parameters representative for our experiment: the detected background rate \(r'_{bg} \) shows saturation, due to the intrinsic dead time of the four detectors. Less counts are detected for higher count rates. The observed background rate increases up to \(\approx 450 \) kcps, which leads also to a reduction of the sifted key rate, \(r_{sig} \), by 20\% and an increase of the resulting QBER \(q_t \) up to 6.5\%. The efficient filtering of the ambient light prevents a higher background, which would lead to an increase of the QBER above the threshold of 11\% where no private key can be established between the two parties at a count rate of \(1.8 \times 10^6 \) cps. This threshold is not reached during the whole experiment, thus continuous operation is possible when the coupling between the parties is maintained.

42.5 : 57.5 ± 0.1\%. Furthermore, this asymmetry varies over time. For the combined asymmetry between logical ones and zeros in the raw key we find around 51.5\% during night time and 54.0\% during daytime. A system that captures this variability in detection efficiencies (and also would allow one to discover selective detector blinding attacks) would have to monitor this asymmetry continuously.

As introduced in section 2, we can estimate how well the experiment performs for a given number of background events. Figure 6 shows theoretical values for background- and signal rates according to equations (5) and (7), and experimental data for the 25 000 recorded outputs of the error correction module during 2 days of the experiment. The dead-time-affected detector response is also shown assuming \(\tau_d = 1 \) µs. The night time periods with \(r_{sig} \approx 12 \) kcps and a total dark count rate of 7 kcps contribute to events on the low background regime of the experiment forming a vertical line to the left of figure 6. We cannot differentiate between fluctuations due to changes in the source and those in the transmission channel, but since the source itself was protected against thermal fluctuations, we attribute them to variations in transmission \(T \) due to changes in the coupling of the telescopes. The strongly fluctuating background during daytime contributes to the broadly scattered data between \(r_{bg} = 20 \) and 500 kcps. If the source properties and channel coupling were constant, the deviation of \(q_t \) and \(r_{sig} \)
from the theoretical value would both be randomly distributed. Figure 6, however, shows more structure in \(r_{\text{sig}} \) than in \(q_t \), which we attribute to changes in the coupling between the telescopes due to thermal expansion. Nevertheless, the experimental values fit the theoretical prediction well. We note that saturation of the detectors is never a problem.

There are two contributors to the variability in key generation rate: first, atmospheric conditions such as rainfall reduce the transmission and thus the number of raw key events before the error correction and privacy amplification steps, but the QBER remains unchanged. On the other hand, we have extremely bright conditions where accidental coincidences increase significantly. In this regime, as the background rises, the signal rate is reduced due to the dead time of the detectors. Furthermore, the QBER increases according to equation (5), occasionally preventing the generation of a secure key [4]. But even under these conditions, the system still keeps track of the time drift between the two reference clocks with the time-correlated coincidences from the source without the need for re-synchronization.

5. Conclusions

We have demonstrated the continuous running of a free space entanglement QKD system over several full day–night cycles in variable weather conditions. A combination of filtering techniques is used to overcome the highly variable illumination and transmission conditions. The software and synchronization scheme can tolerate the remaining 16 dB variation in light levels without interruption of the key generation. We continuously generate error corrected, privacy amplified keys at an average rate of 385 bps. With the newly available bright pair sources, larger distances and/or higher key generation rates are possible.

Acknowledgment

This work is supported by the National Research Foundation and Ministry of Education, Singapore, and partly by a joint program of quantum information research between DSO and NUS.

References

[1] Bennett C and Brassard G 1984 Proc. IEEE Int. Conf. on Computers, Systems and Signal Processing (New York: IEEE) pp 175–9
[2] MagicQ, Somerville and Massachusetts USA; http://www.magiqtech.com
[3] ‘Cerberis’ and ‘Clavis2’ by ID Quantique, Geneva, Switzerland; http://www.idquantique.com
[4] Scarani V et al 2008 arXiv:0802.4155v2 [quant-ph]
[5] Ekert A 1991 Phys. Rev. Lett. 67 661
[6] Enzer D G, Hughes R J, Peterson C G and Kwiat P G 2002 New J. Phys. 4 45
[7] Acin A et al 2007 Phys. Rev. Lett. 98 230501
[8] Ling A et al 2008 Phys. Rev. A 78 020301
[9] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
[10] Tittel W, Brendel J, Zbinden H and Gisin N 1998 Phys. Rev. Lett. 81 3563
[11] Poppe A et al 2004 Opt. Express 12 3865
[12] Hughes R J et al 1999 Proc. QCQC 98 (Lect. Notes Comput. Sci. vol 1509) (Berlin: Springer) p 200 doi: 10.1007/3-540-49208-9_17
[13] Ursin R et al 2008 IAC Proc. A2.1.3
[14] Peng C Z et al 2005 Phys. Rev. Lett. 94 150501
[15] Marcikic I, Lamas-Linares A and Kurtsiefer C 2006 Appl. Phys. Lett. 89 101122
[16] Ursin R et al 2007 Nat. Phys. 3 481
[17] Erven C, Couteau C, Laflamme R and Weihs G 2008 Opt. Express 16 16840
[18] Hughes R J et al 2000 J. Mod. Opt. 47 549
[19] Hughes R J, Nordholt J E, Derkacs D and Peterson C G 2002 New J. Phys. 4 43
[20] Kwiat P G et al 1995 Phys. Rev. Lett. 75 4337
[21] Trojek P, Schmid C, Bourennane M, Weinfurter H and Kurtsiefer C 2004 Opt. Express 12 276
[22] Fedrizzi A, Herbst T, Poppe A, Jennewein T and Zeilinger A 2007 Opt. Express 15 15377
[23] Trojek P and Weinfurter H 2008 Appl. Phys. Lett. 92 211103
[24] Bienfang J C et al 2004 Opt. Express 12 2011
[25] Weier H, Schmitt-Manderbach T, Regner N, Kurtsiefer C and Weinfurter H 2006 Fortschr. Phys. 54 840
[26] Kurtsiefer C et al 2002 Proc. SPIE 4917 25
[27] Ling A, Lamas-Linares A and Kurtsiefer C 2008 Phys. Rev. A 77 043834
[28] Burnham D C and Weinberg D L 1970 Phys. Rev. Lett. 25 84
[29] Lamas-Linares A and Kurtsiefer C 2007 Opt. Express 15 9388
[30] Brassard G and Salvail L 1994 Advances in Cryptology—Proc. Eurocrypt’93 pp 410–423 doi: 10.1007/3-540-48285-7_35
[31] Sugimoto T and Yamazaki K 2000 IEICE Trans. Fundam. E83-A 1987 http://search.ieice.org/bin/summary.php?id=e83-a_10_1987&category=A&year=2000&lang=E&abst=