Wild-type p53 transgenic mice exhibit altered differentiation of the ureteric bud and possess small kidneys

Lucy A. Godley, Jeffrey B. Kopp, Michael Eckhaus, Jennifer J. Paglino, Jennie Owens, and Harold E. Varmus

Varmus Laboratory, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland 20892 USA and Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143 USA; Kidney Disease Section, Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, 20892 USA; Veterinary Resources Program, National Center for Research Resources, NIH, Bethesda, Maryland, 20892 USA; Office of the Director, NIH, Bethesda, Maryland, 20892 USA and Department of Microbiology and Immunology, University of California, San Francisco, California 94143 USA

Transgenic mice expressing wild-type murine p53 under the control of the mouse mammary tumor virus long terminal repeat (MMTV LTR) undergo progressive renal failure due to abnormal kidney development. Similar phenotypes are observed in two transgenic lines that express wild-type p53 within the ureteric bud but not in transgenic animals expressing a dominant-negative p53 mutant allele. Defective differentiation of the ureteric bud, as evidenced by altered marker expression during development, accompanies expression of the p53 transgene. At E17.5–18.5, metanephric mesenchymal cells undergo high rates of apoptosis, and fewer cells than normal are converted to tubular epithelium. As a result, p53 transgenic kidneys grow to only half of their expected size and contain about half of the normal number of nephrons, with compensatory hypertrophy of the glomeruli. In this setting, rather than arrest the cell cycle or induce apoptosis directly, abnormally high levels of wild-type p53 appear to alter cellular differentiation in embryonic ureteric buds and cause secondary effects (apoptosis and inefficient conversion to epithelium) in the adjacent undifferentiated mesenchyme.

[Key Words: p53; transgenic mice; kidney development; ureteric bud]

Received December 13, 1995; revised version accepted February 15, 1996.

The p53 tumor suppressor gene encodes a nuclear phosphoprotein that influences many important cellular functions, including transcription, DNA repair, cell cycle progression, and apoptosis (Clarke et al. 1993; Lowe et al. 1993b; Greenblatt et al. 1994; Jayaraman and Prives 1995; Lee et al. 1995; Reed et al. 1995; Thut et al. 1995). Loss of these functions, because of deletion or dominant-negative mutations of p53, is commonly associated with the generation of human and experimental neoplasms (Greenblatt et al. 1994) and may prevent normal responses to DNA damaging agents, including anti-cancer therapies (Lowe et al. 1993a, 1994; Bergh et al. 1995). Despite the several prominent roles attributed to the gene, mice generated by targeted mutagenesis that lack p53 usually appear to undergo normal development (Donehower et al. 1992, 1995).save for a minority of female embryos with exencephaly (Sah et al. 1995). With time, however, p53-deficient animals exhibit a variety of malignant tumors, most often T cell lymphomas and sarcomas (Donehower et al. 1992; Jacks et al. 1994; Purdie et al. 1994), corroborating many other lines of evidence that justify calling p53 a tumor suppressor gene (Greenblatt et al. 1994).

We have recently begun to study the contribution made by p53 mutations to multistep carcinogenesis by showing that the inheritance of two null alleles of p53 accelerates the appearance of mammary tumors in mice carrying an oncogenic transgene (Donehower et al. 1995). This transgene, which includes the Wnt-1 proto-oncogene linked to the mouse mammary tumor virus long terminal repeat (MMTV LTR), normally induces breast carcinomas through a stochastic process that does not appear to include mutation of the p53 gene. When accompanied by a deficiency of p53, however, the Wnt-1 transgene induces mammary tumors much earlier than usual, in both male and female animals, and the tumors have altered properties: reduced stroma, more anaplastic cells, a higher degree of aneuploidy, and a greater frequency of other chromosomal abnormalities (Donehower et al. 1995).

To pursue these findings, we have generated new lines of mice carrying transgenes composed of wild-type and a dominant-negative allele of p53 under the control of the
We constructed mice that express either a wild-type or a dominant-negative mutant \(\{A135V\}\) p53 allele [Michalovitz et al. 1990; Milner and Medcalf 1990] under the control of the MMTV LTR promoter/enhancer [Fig. 1A], with the initial purpose of crossing these mice to Wnt-1 transgenic mice either containing or lacking an endogenous p53 gene [see introductory section]. To improve expression from the p53 transgenes, we reinserted intron 4 into its proper position [see Materials and methods], as this intron contains an enhancer protein-binding site [Beenken et al. 1991]. The polyadenylation signal was derived from the SV40 early region.

Six wild-type and 10 mutant p53 transgenic founder animals were obtained, and each was bred separately to nontransgenic mice to establish lines of p53 transgenic mice. F\(_1\) males and females were observed for up to 1 year for evidence of mammary gland pathology. No mammary tumors arose in any mutant p53 transgenic mice, although other tumor types were observed occasionally [data not shown]. During this period of observation, wild-type p53 transgenic mice derived from two different founder animals [designated lines B and C] died from apparent renal failure. Transgenic mice descended from the other four wild-type p53 transgenic founder mice did not develop kidney disease, nor did any of the transgenic mice carrying the mutant p53 transgene.

We tested for the expression of the p53 transgene in the kidneys of transgenic animals by Northern blotting, which distinguishes the endogenous p53 transcript from that of the transgene based on their different sizes [Fig. 1B,C]. In kidneys from line B animals, RNA from the p53 transgene was most abundant during embryogenesis and declined with age [Fig. 1B]. A major transgenic transcript of the expected size (1.8 kb) was present at E18.5 but was barely detectable by 3 weeks of age [Fig. 1B]. Kidney expression of the wild-type p53 transgene remained low throughout the life of transgenic animals [data not shown]. In contrast, high levels of transgenic RNA were present in the kidneys of mutant p53 transgenic mice up to several months of age [data not shown; see Discussion]. Expression of the wild-type p53 transgene was observed only in mice from lines B and C, and not in mice descended from the four remaining wild-type p53 transgenic founders, consistent with the absence of renal disease [data not shown]. Northern blotting of RNA from additional organs demonstrated that the p53 transgene was expressed in the brain, lung, and salivary gland in line B animals [Fig. 1C]. Transgenic RNA was found at similar levels in these organs from line C animals and at lower levels in the mammary glands of female mice [data not shown].

More p53 transgenic animals from line B died of end-stage renal disease than did mice from line C [see below]. To generate p53 transgenic mice with a more severe phenotype from line C, we bred the line C p53 transgene to homozygosity. Homozygous line C mice were fertile and were used in subsequent studies presented below. We have attempted to do the same with p53 transgenic mice from line B. However, few homozygous line B mice survived long enough to breed or to permit a complete evaluation of renal function. A summary of some of the

Results

Wild-type, but not mutant, p53 transgenic mice exhibit a predominant phenotype within the kidney

We constructed mice that express either a wild-type or a

Abnormal kidney development in wild-type p53 transgenic mice

MMTV LTR, with the intention of measuring their effects on Wnt-1-initiated mammary tumorigenesis, in the presence or absence of endogenous p53 genes. Early in the course of deriving these transgenic animals, however, we noted that two lines of transgenic mice carrying the wild-type p53 transgene developed severe renal disease as a consequence of defective kidney development.

Reciprocal inductive events between two structures, the metanephric mesenchyme and the ureteric bud, are essential for proper kidney formation. The definitive kidney, also known as the metanephros, begins to develop at embryonic day 11 [hereafter denoted E11] in the mouse when the ureteric bud grows out from the mesonephric or Wolffian duct and enters collections of undifferentiated metanephric mesenchyme by E11.5 [Bard 1992]. The ureteric bud arborizes within the mesenchyme, causing the metanephric mesenchyme to condense and differentiate at the tips of the branching ureteric bud. By E18.5, there is a range of observable differentiation within the kidney, with the most developed structures located toward the center of the gland and the least differentiated elements positioned at the periphery.

Once induced by the ureteric bud, the metanephric mesenchyme first differentiates into a comma-shaped body, which then elongates and further differentiates into an S-shaped body. Eventually each S-shaped body fuses with the portion of the ureteric bud that induced it. Capillaries invade the most proximal segment of the S-shaped bodies to form the glomeruli, the structures in which filtration of the blood occurs. More distal portions of the S-shaped bodies become the proximal and distal tubules, sites for reabsorption from and excretion into the glomerular filtrate. Ureteric bud derivatives form the collecting tubules, where the urine is concentrated. Each nephron, the functional unit of the kidney, is thus composed of a glomerulus, proximal, distal, and collecting tubules, and produces urine. Urine ultimately drains through a single duct, the ureter, to collect in the bladder.

In this report we describe the unexpected renal phenotype of wild-type p53 transgenic mice and present evidence suggesting that ectopic expression of wild-type p53 disorders differentiation of the ureteric bud and augments apoptosis in adjacent metanephric mesenchyme. As a result, the kidneys from wild-type p53 transgenic mice are small, contain half the normal number of nephrons, and are susceptible to progressive functional and anatomic derangement. These findings, in conjunction with other recent reports [Jones et al. 1995; Montes de Oca Luna et al. 1995], indicate that normal development of vertebrate organisms is more vulnerable to excessive amounts of p53 than to deficiencies.

GENES & DEVELOPMENT 837
pathophysiologial findings observed in these wild-type p53 transgenic mice is given in Table 1. The presence of end-stage renal disease in two separate lines of p53 transgenic mice, as well as the high levels of transgene-derived RNA in embryonic kidneys, prompted us to examine renal development in these mice. As early as 3 days after birth, p53 transgenic animals could be identified based on kidney mass. Kidneys from p53 transgenic mice weighed half as much as those from nontransgenic sibling controls throughout the first several weeks of life (Fig. 2A). The weight of kidneys from homozygous line C animals was similar to that of kidneys from heterozygous line B mice (Fig. 2B). The decrease in kidney mass in p53 transgenic mice was proportional to a decrease in the number of nephrons, but the average glomerular volumes were greater in p53 transgenic kidneys (Table 1). The glomeruli in p53 transgenic mice appeared to have hypertrophied in response to the decrease in glomerular number (Table 1).

To compare renal function in p53 transgenic mice from lines B and C to that of their nontransgenic siblings, blood and urine samples were collected every 6–8 weeks for 10 months. Blood urea nitrogen (BUN) levels and urine protein/creatinine ratios are standard measurements of kidney function, with normal values occupying a narrow range. BUN levels were increased in line B p53 transgenic mice more often than in heterozygous line C p53 transgenic mice (Fig. 3), and BUN levels in adult mice homozygous for the line C transgene were consistently elevated (Fig. 3C). In general, urine protein/creatinine ratios paralleled BUN values (Table 1; data not shown).

Mice derived from two mutant p53 transgenic founders expressed the mutant p53 transgene in the kidney but did not develop renal disease as assessed by kidney mass or BUN values [data not shown]. Thus, the effects of expression of MMTV-driven p53 transgenes are specific to wild-type p53. We attempted to suppress the kidney phenotype produced by the line B transgene by breeding these mice to those carrying the A135V p53 transgene. However, like the line B p53 transgenic mice, the bitransgenic animals had small kidneys. The failure of the mutant p53 transgene to suppress the wild-type transgene may reflect the relatively weak dominant-negative effects of the Val 135 allele (Michalovitz et al. 1990; Milner and Medcalf 1990) or inadequate levels of expression of the A135V transgene. The histopathological manifestations of the renal dis-
was present in sclerotic glomeruli, with prominent IgM with increased extracellular matrix material, and effacement of glomerular epithelial cell foot processes [data not shown]. Areas of marked interstitial fibrosis and mild multifocal proteinaceous casts, and focal dilation (Fig. 4, cf. A and B).

Table 1. Abnormal renal anatomy and physiology in two lines of wild-type p53 transgenic mice

	FVB/N nontransgenic	Line B, heterozygous	Line C, heterozygous	Line C, homozygous
Kidney mass [mg]				
at 1 week	63 ± 8	23 ± 1*	35 ± 5*	27 ± 9*
at 3 weeks	152 ± 11	88 ± 12***	N.D.	N.D.
Glomerular number \(\times 10^{-3}\)				
at 3 weeks	7.7 ± 1.4	2.7 ± 1.2**	N.D.	4.5 ± 0.5**
at 6 weeks	8.0 ± 0.9	3.7 ± 1.4**	N.D.	4.7 ± 0.3**
Glomerular volume \(\times 10^{-5}, \text{in } \mu\text{m}^3\)				
at 3 weeks	6.3 ± 0.3	14.2 ± 1.9**	N.D.	7.9 ± 0.6**
at 6 weeks	9.3 ± 0.6	15.7 ± 2.0*	N.D.	13.7 ± 1.7*
Proteinuria [expressed as (protein)/creatinine]]				
at 1 week	12.5 ± 1.5	20.3 ± 9.2	12.5 ± 1.2	N.D.
at 12 weeks				

Parameters of kidney development and function were measured in line B p53 transgenic mice (heterozygous for the line B transgene) and in line C p53 transgenic mice (carrying the line C transgene in either the heterozygous or homozygous state). At least four animals of each genotype and age were used to calculate the average values shown for kidney mass (of both kidneys), glomerular number, glomerular volumes, and proteinuria. (N.D.) Not done. Glomerular number and volumes were determined as described in Materials and methods. To express the range of measurements for a particular line, the standard deviation (S.D.) for those values is given as follows: median value ± S.D. Each median value was compared to that obtained for the FVB/N nontransgenic mice: (*) \(P < 0.01\); (**) \(P < 0.001\); (***) \(P < 0.0001\). Statistical analysis was performed with Instat software (GraphPad, San Diego, CA). Comparisons between two groups were made with a two-tailed Student’s t-test. Comparisons among multiple groups were made with analysis of variance, and the control group (FVB/N nontransgenic mice) was compared to the various transgenic lines using Dunnett’s test for subgroup analysis. \(P < 0.05\) was taken as the level of significance.

Abnormal kidney development in wild-type p53 transgenic mice

Kidneys from lines B and C p53 transgenic mice with advanced disease contained fibrotic glomeruli of increased size (cf. examples from line B p53 transgenic mouse in Fig. 4, B and D, to those from nontransgenic mice in Fig. 4, A and C). The glomerular mesangial compartment was expanded by accumulated extracellular matrix protein (Fig. 4, cf. E and F). Synchiae, or adhesions of the glomerular tuft to Bowman’s capsule, were present (Fig. 4F). Most glomeruli manifested global glomerulosclerosis, but with early disease occasional glomeruli showed sclerosis confined to segments of the capillary tuft (data not shown). Glomerular cell numbers remained similar to that of nontransgenic FVB/N mice (Fig. 4E,F), indicating that the glomerular lesions were not inflammatory in nature. Immunoglobulin deposition was present in sclerotic glomeruli, with prominent IgM but lesser amounts of IgA and IgG (data not shown). This complement of immunoglobulins suggests a nonimmune-mediated renal disease, with nonspecific trapping of antibodies by a dysfunctional mesangium. Tubules were characterized by protein reabsorption droplets, proteinaceous casts, and focal dilation (Fig. 4, cf. A and B). Areas of marked interstitial fibrosis and mild multifocal perivascular mononuclear cell infiltrates were present. Ultrastructural changes included mesangial expansion, with increased extracellular matrix material, and effacement of glomerular epithelial cell foot processes (data not shown).

p53 transgenic mice are predisposed to renal insufficiency because of defective development of the kidney

The abnormality in kidney mass as early as 3 days after birth suggested that embryonic renal development was impaired in p53 transgenic mice. At E16.5, kidneys from p53 transgenic and nontransgenic embryonic littermates were difficult to distinguish histologically. However, by E18.5, kidneys from p53 transgenic animals could be distinguished unequivocally by a decrease in the number of undifferentiated mesenchymal cells, usually present at that age at the perimeter of the developing kidney (data not shown). At 1 week of age, kidneys from nontransgenic littermates still contained undifferentiated mesenchymal cells (Fig. 4G). Kidneys from heterozygous line B transgenic and nontransgenic embryonic littermates possessed even fewer undifferentiated mesenchymal cells than mice homozygous for the same transgene (Fig. 4I,J). Kidneys from heterozygous line B transgenic mice possessed even fewer undifferentiated mesenchymal cells than those from homozygous line C transgenic mice at this age (Fig. 4, cf. H and J).

Undifferentiated metanephric mesenchyme normally undergoes differentiation into proximal nephron segments and eventually fuses with the ureteric bud outgrowth that induced its differentiation to complete the formation of functional nephrons (Bard 1992). Therefore, the absence of undifferentiated cells at E18.5 represents a
Figure 2. Kidneys from wild-type p53 transgenic animals are abnormally small. (A) The combined kidney masses from nontransgenic littermates and line B p53 transgenic mice as a function of age. Both kidneys were weighed from animals of the indicated genotypes, at ages that ranged from the day of birth to 3 weeks. (□) Nontransgenic controls; (◇) line B p53 transgenic mice, heterozygous for the transgene. (B) The combined kidney masses from nontransgenic littermates, heterozygous or homozygous line C p53 transgenic mice, and homozygous line B p53 transgenic mice. Both kidneys were weighed from animals of the indicated genotypes at 1 week of age. The genotypes are as follows: (□) nontransgenic littermates; (◇) heterozygous line C p53 transgenic mice; (☉) homozygous line C p53 transgenic mice; (○) homozygous line B p53 transgenic mice.

Loss of potential nephrons. The extent of this loss is reflected in the decreased kidney mass and glomerular number observed in p53 transgenic mice.

Increased numbers of apoptotic cells are present within the undifferentiated mesenchyme at E17.5 in wild-type p53 transgenic mice

The severe reduction in numbers of uncommitted metanephrine mesenchymal cells at E18.5 suggested that these cells could be dying at an earlier age. We conducted TdT-mediated dUTP nick end labeling (TUNEL) assays within embryonic kidneys of wild-type p53 transgenic animals to examine the extent of apoptosis prior to E18.5. Transgenic kidneys at E16.5 contained about twice the number of apoptotic nuclei as nontransgenic kidneys (data not shown). By E17.5, there were ~10-fold more apoptotic nuclei in transgenic kidneys than in those from nontransgenic animals (Fig. 4K, L). These dying cells were grouped in clusters and were confined almost exclusively to the nephrogenic zone of the developing kidneys, which contains the undifferentiated mesenchyme.

To confirm that the TUNEL assay identified apoptotic nuclei, we performed electron microscopy on p53 transgenic and nontransgenic kidneys to identify ultrastructural hallmarks of apoptosis. Toluidine blue staining of the nephrogenic zone in p53 transgenic kidneys identified groups of pyknotic nuclei at E17.5, similar to the TUNEL-positive nuclei described above [Fig. 5B]. Thin
Abnormal kidney development in wild-type p53 transgenic mice

Figure 3. BUN measurements in p53 transgenic mice and controls. Mice were bled approximately every 6 weeks for >10 months, and BUN levels were determined. (A) BUN values from 10 male and 8 female nontransgenic control mice (○). (B) BUN measurements from 11 male and 6 female heterozygous line B p53 transgenic mice (○) and from 4 male homozygous line B p53 transgenic mice (●). (C) BUN levels from six male and eight female heterozygous line C p53 transgenic mice (○) and from four male and five female homozygous line C p53 transgenic mice (●).

sections were prepared from selected areas of p53 transgenic or nontransgenic kidneys for electron microscopy, which confirmed the presence of apoptotic nuclei at the periphery of p53 transgenic kidneys at E17.5 [Fig. 5C]. Apoptotic cells could be identified by the presence of condensed chromatin, early nuclear fragmentation, and clustering of organelles [Fig. 5C]. Thus, the absence of uncommitted mesenchymal cells at E18.5 is a result of earlier massive apoptosis.

The simplest explanation for apoptosis of undifferentiated metanephric mesenchymal cells is that they express the p53 transgene and die as a direct consequence of transgene expression. To address this possibility, in situ hybridizations were performed to identify the cell types that express the p53 transgene [Fig. 6]. Because differentiating mesenchymal cells express endogenous p53 at the comma and S-shaped tubule stages [Schmid et al. 1991], a probe complementary to the SV40 polyadenylation site was used to identify p53 transgenic transcripts specifically. Throughout the time period examined, E14.5–E18.5, p53 transgenic RNA was detected only in cells of the ureteric bud [Fig. 6]. Although transgene-derived RNA was readily observed at E14.5, levels were noticeably greater at E16.5 and still higher at E18.5. Because p53 transgenic RNA was observed only in cells of the ureteric bud, the undifferentiated mesenchymal cells appeared to die as an indirect consequence of transgene expression. The observation that the mesenchymal cells die in small clusters suggests that these cells require a survival and/or inductive signal at a precisely defined point. If these cells do not receive such a signal, they die because of apoptosis. Alternatively, expression of the p53 transgene might produce a factor that induces apoptosis in the undifferentiated mesenchymal cells.

Differentiation of the ureteric bud is defective in p53 transgenic kidneys

Histologic examination of kidneys ranging in age from E14.5 to several weeks after birth failed to identify any obvious defects in ureteric bud growth or branching in p53 transgenic animals compared to nontransgenic controls. Derivatives of the ureteric bud were seen to be arborized at the periphery of embryonic kidneys at E14.5 [Fig. 6A], as well as at older ages [data not shown]. To examine more precisely the ability of cells within the
Figure 4. Kidney histology of p53 transgenic and nontransgenic mice. (A–F) Renal pathology at 6 months of age. (A) Normal kidney from a 6-month-old nontransgenic mouse (50x, PAS stain). (B) Kidney from a 6-month-old line B p53 transgenic mouse showing enlarged glomeruli (arrowheads), with globally increased mesangial matrix, and dilated tubules (*) occupied by eosinophilic proteinaceous material (50x, PAS stain). (C) Normal kidney from a 6-month-old nontransgenic mouse (50x, Masson’s trichrome stain). (D) Kidney from a 6-month-old line B p53 transgenic mouse displaying enlarged glomeruli and bands of interstitial fibrosis, (arrowhead) (50x, Masson’s trichrome stain). (E) Higher power view of normal glomeruli from a 6-month-old nontransgenic mouse (200x, Masson’s trichrome stain). (F) Higher power view of a glomerulus from a 6-month-old line B p53 transgenic mouse showing diffuse increase in blue-staining mesangial matrix (200x, Masson’s trichrome stain). (G–J) Nephrogenic zones of kidneys from 1-week-old mice (50x, hematoxylin and eosin stain). Uncommitted mesenchymal cells can be identified as purple-staining nuclei in the periphery of the kidney that have not yet assembled into immature glomeruli. (G) Kidney from a nontransgenic mouse containing immature glomeruli (arrowheads) in the outermost cortical layer. (H) Kidney from a line B p53 transgenic mouse with fewer glomeruli (none are present in this field) and dilated collecting tubules (*). (I) Kidney from a heterozygous line C p53 transgenic mouse demonstrating occasional immature glomeruli (arrowhead) within the nephrogenic zone. (J) Kidney from a homozygous line C p53 transgenic mouse lacking immature glomeruli. A dilated collecting tubule. (K,L) Apoptosis in kidneys from E17.5 mice (100x, TUNEL assay visualized by diaminobenzidine staining with methyl green counterstain). (K) Kidney from a nontransgenic mouse with no TUNEL-positive cells. (L) Kidney from a line B p53 transgenic mouse containing many TUNEL-positive cells (arrowheads).

ureteric bud to pass through G₁ and enter S phase, BrdU labeling was performed. In both p53 transgenic and in nontransgenic kidneys, cells derived from the ureteric bud incorporated BrdU as efficiently as other cells within the kidney throughout the age range tested (E16.5 through 3 days postpartum), suggesting that cells from the ureteric bud are not undergoing G₁ cell cycle arrest (data not shown). In further support of this observation, Northern blots demonstrated no increase in RNA levels of p21/WAF1/Cip1 (data not shown), a gene that is induced by p53 and contributes to G₁ cell cycle arrest (Eldiery et al. 1993; Harper et al. 1993).

The inability of the ureteric bud to induce the meta-nephric mesenchyme properly could reflect inappropriate differentiation of the ureteric bud attributable to expression of the p53 transgene. To test this possibility, we examined several markers of kidney differentiation in developing p53 transgenic and nontransgenic kidneys. At E11.5, c-ret RNA is found throughout the length of the ureteric bud, but expression is confined later to the tips of the ureteric bud (Pachnis et al. 1993). In p53 transgenic kidneys, however, c-ret expression is not localized to the ureteric bud tips at E14.5 (Fig. 7B). By E16.5, some c-ret RNA is concentrated at the tips, but it is not present at the ends of the ureteric bud along the entire perimeter of the kidney (Fig. 7D). By E18.5, c-ret is ex-
Abnormal kidney development in wild-type p53 transgenic mice

pressed throughout the length of the ureteric bud, with very little at the tips [Fig. 7F], indicating a significant reordering of the differentiation process in the expanding ureteric bud system.

A second marker for derivatives of the ureteric bud is detected by staining with Dolichos biflorus (DB) lectin. DB lectin binds polysaccharides on an unidentified protein that is expressed exclusively in collecting tubules, derivatives of the induced mesenchyme. At E18.5, DB lectin staining was almost undetectable in p53 transgenic kidneys at E18.5 [Fig. 8F]. Thus, expression of three ureteric bud markers—c-ret, the glycoprotein that binds DB lectin, and aquaporin 2—is defective in p53 transgenic kidneys.

Although ureteric bud markers were affected in p53 transgenic mice, markers for differentiating mesenchyme were expressed normally. WT-1, the gene mutated in Wilms' tumors, is an early marker for committed mesenchyme [Kreidberg et al. 1993]. WT-1 RNA can be observed by E12.5 and is restricted to podocytes surrounding glomeruli by E16.5 [Bard 1992; Pritchard-Jones et al. 1990]. This expression pattern was observed in both nontransgenic and p53 transgenic kidneys [Fig. 7G,H]. A second mesenchymal differentiation marker was also unaffected in p53 transgenic kidneys. Lotus lectin binds polysaccharides on an unidentified protein that is expressed on proximal tubules, derivatives of the induced mesenchyme. At E18.5, lotus lectin immunofluorescence was equivalent in both transgenic and nontransgenic kidneys [Fig. 8G,H].

Thus, it appears that during the early stages of kidney development, induction takes place normally, so that about half of the expected number of nephrons are produced in p53 transgenic kidneys. However, expression of the p53 transgene in the ureteric bud from E14.5 to E18.5 causes altered differentiation of the bud system, abnormal inductive signaling, and loss of metanephric mesenchyme by apoptosis. The resulting kidneys grow to only half of their normal size.

Discussion

Transgenic mice expressing wild-type p53 from an MMTV LTR are predisposed to the development of early, severe renal degeneration due to abnormal development of the kidney. p53 transgenic kidneys grow to only half of their expected size because of the loss of uncommitted mesenchymal cells, mainly at E17.5. These cells undergo apoptosis presumably because proper inductive signals are not produced from the abnormal ureteric bud. The loss of mesenchymal stem cells results in fewer glomeruli in p53 transgenic newborn mice, and these glomeruli undergo compensatory hypertrophy. Proteinuria appears as early as 2 weeks of age, with azotemia beginning at 6 weeks of age in some animals. Most affected glomeruli ultimately show global glomerulosclerosis, but a few have segmental lesions. As evidence of its improper differentiation, the embryonic ureteric bud fails to appropriately express several markers, including c-ret, the binding protein for DB lectin, and aquaporin 2.

The effect of p53 overexpression is specific to the wild-type p53 transgene, as transgenic mice expressing a mutant p53 allele have normal kidneys. In another system in which transgenic mice express wild-type p53 within the lens, a phenotype of altered lens cell differentiation was rescued by creating bitransgenic mice which also expressed a mutant p53 transgene [Nakamura et al. 1995]. However, the degree of phenotypic rescue was dependent on the amount of mutant p53 transgene expres-

Figure 5. Demonstration of apoptotic mesenchymal cells by toluidine blue staining and electron microscopy of p53 transgenic kidneys at E17.5. (A) Kidney from a nontransgenic mouse (630x, toluidine blue stain). (B) Kidney from a line B p53 transgenic mouse, demonstrating subcapsular apoptotic cells indicated with arrowheads (630x, toluidine blue stain). (C) Electron micrograph demonstrating an apoptotic cell from the periphery of the renal cortex of an E17.5 heterozygous line B p53 transgenic mouse. Note the presence of condensed chromatin and early nuclear fragmentation (N) and clustered cytoplasmic organelles (arrowhead). The adjacent cells show no evidence of apoptosis. Magnification, 11,375x.
Expression of the wild-type p53 transgene in the kidney fades with time (Fig. 1A), possibly as a result of the altered differentiation of the ureteric bud. Expression of the mutant p53 transgene, however, is maintained for many months in A135Vp53 transgenic animals (data not shown). Presumably the ureteric bud is unaffected despite expression of the Val135 allele in A135Vp53 transgenic animals, and the kidneys develop normally.

Two individual lines of wild-type p53 transgenic mice exhibit similar phenotypes. p53 transgenic mice from one line (line B), display abnormal kidney development in the heterozygous state, whereas the mice derived from the other line (line C), exhibit a comparable phenotype in the homozygous state and a weaker phenotype in the heterozygous state. All p53 transgenic mice from lines B and C examined so far possess decreased amounts of metanephric mesenchyme late in embryogenesis, predisposing them to the development of end-stage renal disease. About 50% of the p53 transgenic mice from line B and 45% of mice homozygous for the line C transgene exhibit elevated BUN levels, indicating that renal function is impaired in these animals. Despite the reduction in nephron number, renal function is adequate in some p53 transgenic mice, as evidenced by normal BUN levels. However the degree of loss of metanephric mesenchyme correlates with susceptibility to developing end-stage renal disease, suggesting that decreased numbers of nephrons are largely responsible for the development of chronic renal failure.

The mechanism by which a decreased number of nephrons leads to end-stage renal disease has at least two components. First, fewer nephrons may predispose to renal disease, because of increased filtration loads within existing nephrons (Brenner et al. 1988). Conditions that reduce total glomerular filtration surface are associated with progressive renal disease characterized by focal segmental glomerulosclerosis (Hostetter et al. 1981) as observed in p53 transgenic mice. In addition, such changes have been seen in kidneys of adult rats subjected to reduction of renal mass (Howie et al. 1989). Second, those nephrons that do develop in p53 transgenic kidneys may not be normal. Serum albumin was found in the urine of p53 transgenic mice as early as two weeks after birth (data not shown), suggesting early functional compromise of the kidney. This may not be surprising considering the defects in marker expression.

Two outcomes have been described for cells in which wild-type p53 is overexpressed: induction of apoptosis.
Abnormal kidney development in wild-type p53 transgenic mice

Figure 7. Tests by in situ hybridization for markers of differentiation of renal components. p53 transgenic kidneys were derived from heterozygous line B p53 transgenic mice. Sense controls showed no signal for either probe [data not shown]. (A–F) Probe for c-ret, a marker for development of the ureteric bud. (A,B) E14.5 kidneys (50X, dark field) from nontransgenic control (A) and p53 transgenic (B) mice. (C,D) E16.5 kidneys (25X, dark field) from nontransgenic control (C) and p53 transgenic (D) mice. (E,F) E18.5 kidneys (25X, dark field) from nontransgenic control (E) and p53 transgenic (F) mice. (G,H) Probe for WT-1, a marker for renal epithelium. E18.5 kidneys (25X, dark field) from nontransgenic control (G) and p53 transgenic (H) mice.

[Yoish-Rouach et al. 1991], or G1 cell cycle arrest following DNA damage [Kastan et al. 1991; Kuerbitz et al. 1992]. In the p53 transgenic kidneys, there is little evidence that p53 acts in either of these modes to yield the observed phenotype. TUNEL assays revealed apoptosis only in the undifferentiated metanephric mesenchyme. Because these cells do not express the transgenic RNA at detectable levels, the p53 transgene cannot be directing apoptosis in these cells by a cell-autonomous mechanism. Neither is there evidence that p53 causes G1 cell cycle arrest of transgene-expressing cells derived from the ureteric bud. In p53 transgenic animals, the ureteric bud continues to grow and branch throughout development and contains normal numbers of cells in S-phase. Thus, in this context, p53 functions in a novel way to generate the renal phenotype.

p53 may have the ability to mediate effects on cellular differentiation other than induction of apoptosis or G1 cell cycle arrest. Two developmental phenotypes have been reported for p53-deficient mice: (1) exencephaly in ~17% of female embryos [Sah et al. 1995], and (2) persistence of certain blood vessels within the developing eye [Pan and Griep 1995]. Notably, no alteration in the number of apoptotic cells was observed in exencephalic embryos to account for the first phenotype [Sah et al. 1995]. Perhaps novel activities of p53 are responsible for such observations. Expression of wild-type human p53 under the control of the α-crystallin promoter alters lens cell differentiation leading to microphthalmia in transgenic mice [Nakamura et al. 1995]. This finding resembles the result presented here, as it suggests that p53 can affect cellular differentiation.

At least two types of transcriptional control by p53 could account for the altered differentiation of the ureteric bud. First, p53 might transcriptionally activate genes within cells of the ureteric bud, thereby interfering with proper differentiation. We have used Northern blotting to test for the induction of two p53 target genes, p21/WAF-1/Cip-1 [El-Diery et al. 1993; Harper et al. 1993] and thrombospondin-1 [Dameron et al. 1994] but have seen no differences between transgenic and nontransgenic kidneys [data not shown]. Second, p53 may bind to transcriptional activators and prevent them from promoting the transcription of genes that do not contain p53 binding sites [Seto et al. 1992; Agoff et al. 1993; Mack et al. 1993]. Though this has been demonstrated...
only in vitro, it is possible that p53 functions in this case by “squelching.”

The abnormal expression of several proteins (c-ret, the protein that binds to DB lectin, and aquaporin 2) suggests a generalized defect in ureteric bud differentiation. Loss of these proteins or others could partially account for the altered function of the ureteric bud in our p53 transgenic mice. For example, the abnormal expression of c-ret in embryonic kidneys could contribute to the observed phenotype. Renal agenesis or severe dysgenesis results from c-ret deficiency, with decreased branching of the ureteric bud and absence of mature collecting ducts (Schuchardt et al. 1994). Because the sequence of c-ret suggests that it encodes a transmembrane tyrosine kinase receptor, c-ret may transduce a signal from the mesenchyme to the ureteric bud. In these p53 transgenic mice, the ureteric bud may be unable to receive a signal from the metanephric mesenchyme during the period from E14.5 to E18.5, when c-ret expression is altered. This in turn could render the ureteric bud incapable of providing the necessary factors to the mesenchyme. Although we see defects in expression of c-ret from E14.5 to E18.5, some induction of the metanephric mesenchyme does occur during the first few days of this period. Thus, it is unlikely that altered c-ret expression completely explains the phenotype that we observe.

The proper expression of two markers of the proximal nephron (WT-1 and the protein that binds Lotus lectin) underscores the fact that the induction of metanephric mesenchyme that does take place is normal. The Wilms’ tumor protein is known to bind to p53 and to inhibit its ability to induce apoptosis (Maheswaran et al. 1993; Maheswaran et al. 1995). However, this interaction is probably irrelevant here, as WT-1 and the transgenic p53 are not expressed in the same cells. The defects noted within proximal nephron segments of p53 transgenic mice with end-stage disease probably result from abnormalities in more distal nephron segments.

The loss of uncommitted metanephric mesenchymal cells at E17.5 is most likely attributable to the ineffectual functioning of the ureteric bud at this time. Expression of the p53 transgene indirectly causes apoptosis of uninduced metanephric mesenchymal cells through its effects on the ureteric bud. It remains to be determined whether this apoptosis is dependent on endogenous p53 expression within mesenchymal cells (Schmid et al.
Abnormal kidney development in wild-type p53 transgenic mice

The death of a significant fraction of undifferentiated cells within the nephrogenic zone of developing kidneys causes p53 transgenic kidneys to be about half of their normal size. The phenotype exhibited by these wild-type p53 transgenic mice resembles a rare human disease—congenital oligomeganephronia. This condition is characterized by reduced renal mass, most commonly bilateral renal hypoplasia and occasionally unilateral renal agenesis, together with reduced nephron numbers and glomerular hypertrophy (Royer et al. 1962). Depending on severity of involvement, these patients develop proteinuria, focal segmental glomerulosclerosis, and ultimately renal failure [McGraw et al. 1984].

In addition to the p53 transgenic mice presented here, three other animal models for oligomeganephronia exist. Oligosyndactyly (os) mice are born with a 50% reduction in nephron numbers and develop glomerulosclerosis [He et al. 1995]. Mice deficient for cyclo-oxygenase 2 also develop segmental and global glomerulosclerosis in conjunction with reduced hypertrophied nephrons [Mortham et al. 1995]. Rats exposed in utero to gentamicin are born with a 20% reduction in nephron numbers and subsequently develop glomerular hypertrophy and increased numbers of sclerotic glomeruli [Gilbert et al. 1991]. Multiple inducers of oligomeganephronia in animals, then, suggest that the human disease may have multiple causes, either inherited through gene mutations or acquired through environmental insults.

Limited expression of wild-type p53, as presented here and by Nakamura et al. [1995], demonstrate the ability of p53 to affect cellular differentiation. Such transgenic systems may be viable because of the restricted range of p53 expression. mdm-2 deficient mice contain unopposed p53 and die at implantation [Jones et al. 1995; Montes de Oca Luna et al. 1995]. This lethality is rescued completely when mice also lack p53, suggesting that it is the action of p53 throughout the embryo that is incompatible with life. Because mice lacking an intact p53 gene usually proceed through embryogenesis without overt abnormalities [Donehower et al. 1992], mice appear to be more vulnerable to overexpression of p53 than to p53 deficiency.

Materials and methods

Construction of p53 transgenic fragments

The plasmids [pwtTG and pmutTG] containing the p53 transgenic fragments were constructed in three parts: insertion of intron 4 in p53 cDNA, placement of the MMTV LTR, and insertion of the SV40 polyadenylation site. Murine p53 cDNA in pBS KS(+1) was partially digested with NcoI to obtain the fragment generated by cuts at positions 259 and 467 within the p53 cDNA. pMVP53G18) from M. Oren (Weizmann Institute of Science, Rehovot, Israel) contains a murine p53 genomic clone and was cut with NcoI to isolate the fragment containing intron 4. The genomic p53 fragment containing intron 4 was ligated to the NcoI fragment isolated from the p53 cDNA to produce the plasmid called pmutp53.

The NcoI fragment obtained from the genomic clone contains a point mutation (GTG) at codon 135 (point mutation is given in bold). We performed site-directed mutagenesis on pmutp53 to produce plasmid pwtp53. In pwtp53, the mutant T base pair within codon 135 was replaced by C, so that this codon encodes Ala, the wild-type amino acid at that position. Site-directed mutagenesis was performed with the following mutagenesis primer: 5'-GCCGACTGGAGAAGTGCCGC-3'.

The MMTV LTR was released from pM5.3-12 [Tsukamoto et al. 1988] by digestion with BamHI and purified. PBS containing p53 cDNA/intron 4 was cut with BamHI and ligated to the MMTV LTR. The SV40 polyadenylation site was amplified by PCR using the following two primers: 5'-CGATAAGCTTTT-TACCTT-3' and 5'-CGTACCGCATCCAGACCATGATAA-3' so that a SalI site was added to the 3' end of the fragment. Finally, the plasmid containing the MMTV LTR/p53 cDNA/intron 4 was cut with HindIII and SalI and ligated with the SV40 polyadenylation site. In this orientation, the SV40 early polyadenylation signal is used. The p53 cDNA, the first 100 bp of intron 4, the SV40 polyadenylation signal, and the 3' end of the MMTV LTR were sequenced prior to injection of the fragment to confirm the integrity of the p53 sequence and the proper orientation of each fragment (Sequenase Kit, U.S. Biochemical). Both pmutp53 and pwtp53 were used in these ligation to produce two transgene-containing plasmids, one encoding wild-type p53 [pwtTG] and one encoding the mutant Val 135 allele [pmutTG].

Generation and maintenance of p53 transgenic mice

Plasmids pwTG and pmutTG were purified twice by CsCl banding, and the p53-containing fragment was released by digestion with SpeI and SalI and diluted to a final concentration of 3 ng/ml. Each fragment was microinjected separately into the pronuclei of FVB/N one-cell embryos using standard techniques [Hogan et al. 1986]. Transgenic progeny were identified by Southern blotting of tail genomic DNA digested with BamHI and probed with the 325-bp Xhol–ApaLI fragment from the p53 cDNA. Hybridizing digestion products represent the p53 pseudogene at 10 kb, the endogenous p53 gene at 6.4 kb, and the p53 transgene at 2.19 kb. Each founder animal was mated to an FVB/N animal of the opposite sex to establish individual lines. Transgenic animals were identified either by the Southern blotting protocol described above or by PCR. To identify transgenic animals by PCR, 1 ml of genomic tail DNA was used per 50 ml reaction containing 2 ml with 10 mm of each dNTP, 5 ml of 10X PCR buffer with gelatin, 15 mm MgCl2, 2 ml of 25 mm MgCl2, 0.5 ml of Taq polymerase, 0.5 ml each of the following p53 oligonucleotides at 90 pmoles/ml: 5'-CTCTCCCTT-CATAAAGCTATTCTC-3' and 5'-GGTGAGTGAGT-TTTAAAAGCAAGTA-3', and 1 ml each of the following β₂-microglobulin primers at 90 pmoles/ml: 5'-GTCATCAG- AAAGAAAAACCCCCATCATCC-3' and 5'-CATGCTCTGATC-CAGAAACCTTAGTC-3'. Cycling parameters of 94°C for 5 min, 94°C for 45 sec, 50°C for 1 min, 72°C for 2 min x 30 cycles, 72°C for 10 min, and 4°C hold yielded a p53 transgene-specific PCR product of ~800 bp and a positive control product of about 300 bp.

To generate mice homozygous for a particular transgene, mice heterozygous for that transgene were mated. Progeny were screened by Southern blotting, with quantitation of transgene copy number calculated using a PhosPhorImager (Molecular Dynamics, Inc.).

To distinguish wild-type p53 transgenic mice from those that contained the Val 135 allele, allele-specific oligonucleotide hybridization was used as described in [Hussussian et al. 1994]. The oligonucleotide used to identify the wild-type p53 allele
was 5'-CCAGCTGCGAAGACGT-3', and that used to identify the Val 135 allele was 5'-CCAGCTGGTGAAACGT-3'.

Northern blotting

Total RNA was extracted from either fresh tissues or those frozen at -80°C with RNAlater B Reagent (Tel-Test, Inc.) according to the manufacturer’s instructions. Poly(A)^+ RNA was isolated from total RNA by adsorbing the RNA to oligo(dT) - Sepharose (Collaborative Research, Inc.), washing, eluting with H_2O, and precipitating overnight at -20°C. One microgram of poly(A)^+ RNA was electrophoresed through a 1% agarose form- aldehyde gel and transferred to Hybond N (Amersham) in 20 x SSC. Hybridizations were performed using the following probes at the indicated temperatures: 525-bp KpnI-HindIII fragment of p53 cDNA at 65°C; p21 cDNA at 65°C.

Preparation of histological sections

Tissues were fixed for up to 3 days in 10% neutral buffered formalin and processed for either paraffin embedding or gelatin methacrylate plastic embedding. Sections of the indicated thicknesses were stained with hematoxylin and eosin (6 μm), periodic acid-Schiff (PAS) (4 μm), or Masson’s trichrome (6 μm). For frozen sections, tissues were fixed in freshly prepared 4% paraformaldehyde/1 x PBS, bathed in 30% sucrose/1 x PBS for 6 hr, and embedded in O.C.T. Compound (Miles, Inc.). Frozen sections (8 mm) were cut and used as indicated. For electron microscopy, kidney tissue was fixed in 2% glutaraldehyde in 0.1 M cacodylate buffer and embedded in Epon 812 resin (E.F. Fuh- man, Inc.). Semithin (0.5-mm) sections were used for toluidine blue staining, and thin sections (90 nm) were prepared for ex- amination by electron microscopy.

Glomerular counts and morphometry

Glomeruli were counted essentially as described previously [MacKay et al. 1987]. Histomorphometry was performed on 2 μm PAS-stained gelatin methacrylate sections. The outline of the glomerular tuft was traced using a Leica microscope equipped with a digitizing tablet, and the area of each tuft was calculated. All glomeruli per kidney section (ranging from 60 to 150 glomeruli per kidney) were measured. The mean glomerular volume, V_G, was calculated from the equation V_G = [b/k]A_c ^3/2, where b = 1.38 is the shape coefficient for spheres, k = 1.1 is a size distribution coefficient based on an estimate of the coef- ficient of variation of glomerular size (25%), and A_c is the mean glomerular area (Weibel 1979).

Clinical chemistry

Mice were bled retro-orbitally using heparinized capillary tubes (Fisher) and collected into Microvette serum separator tubes (Sarstedt). Clotted blood was spun at 7000 rpm for 5 min, and serum collected. BUN was measured by urease hydrolysis (Ek- tachem DT, Kodak). Urinary protein was measured by the bi- uret reaction, and urinary creatinine was measured by the Jaffe tachem DT, Kodak). Urinary protein was measured by the bi- method, in both cases using an Hitachi 717 analyzer (Boehringer-Mannheim). Urinary proteins were analyzed on 10% polyacryl- amide gels, stained with Coomassie blue.

TUNEL assay

The TUNEL procedure was performed as described by Lowe et al. (1994).

BrdU labeling and immunocytochemistry

Brd U [15 mg/ml] (Sigma) was freshly prepared in H_2O and ad- ministered to mice by intraperitoneal injection at a concentra- tion of 150 mg/kg. Mice were sacrificed 2 hr later, and tissues fixed in Bouins fixative (Sigma) at 4°C overnight. Tissues were rinsed with tap water for several changes and rinsed into 70% EtOH. Tissues were paraffin-embedded, and sections cut onto gelatin-coated slides as indicated. After paraffin wax was re- moved from slides by xylene, slides were rehydrated and treated with 3 M HCl for 15 min at 23°C. Slides were rinsed 5 x 3 min, and endogenous peroxidases blocked by incubation in 3% H_2O, in 70% EtOH for 10 min. Slides were preblocked in horse serum (Vectastain ABC Kit, Vector Laboratories) for 30 min, and in- cubated with anti-BrdU antibody (Becton Dickinson) at a 1:100 dilution in 1 x PBS for 30 min. Biotinylated secondary antibody and streptavidin/ peroxidase conjugate were added sequentially to slides for 30 min each. DAB substrate reaction (DAB Kit, Vector Laboratories) was performed for 10 min, and slides counterstained in methyl green, dehydrated, and mounted.

In situ hybridizations

In situ hybridizations were performed essentially as described in Christofori et al. (1994), with the following changes. Frozen sections were treated with 1 mg/ml of proteinase K. 35S-labeled sense and antisense probes were generated from a linearized subclone of the following genes using the indicated poly- mers: SV40 polyadenylation site (sense, T7 polymerase; antisense, T3 polymerase), rat c-ret clone (sense, T7 polymerase; antisense, T3 polymerase), and human WT-1 clone (sense, T7 polymerase; antisense, T3 polymerase). Slides were left on NTB2 nuclear emulsion for indicated periods of time: SV40 polyadenylation signal for 2 days; c-ret and WT-1 for 4 days.

Lectin and aquaporin 2 immunohistochemistry

The DB lectin and the lotus lectin were used as markers of the ureteric bud/collection tubule and proximal tubule, respec- tively. Frozen sections were brought to room temperature, fixed in acetone for 20 min at 4°C, and immersed in PBS. Sections were incubated with FITC-conjugated lectins (Sigma) at a final concentration of 50 and 25 μg/ml for DB lectin and lotus lectin, respectively, for 60 min at 37°C, followed by six washes with PBS over 1 hr. For aquaporin 2 immunofluorescence, sections were blocked with normal goat serum for 20 min, incubated with aquaporin 2 antibody [2 μg/ml] or normal rabbit IgG [2 μg/ml] as a control for 1 hr at 23°C, washed in PBS, and in- cubated in FITC-conjugated secondary antibody for 30 min at 37°C. The slides were mounted in an aqueous mounting me- dium and photographed using a microscope equipped for epi- fluorescence with a narrow-band pass filter.

Acknowledgments

We thank the following people: Wendy Hively, for expert tech- nical assistance; Dr. Gabriella Ryan, for guidance in kidney or- gan cultures; Violeta Bigornia, Nina Carter, Shelley Chu, Theresa Hernandez, Joe Isaac, and Annie Merriweather for as- sistance during portions of this work; Dr. Doug Hanahan, Paul Naik, and Dr. Valentina Factor, for advice in producing trans- genic mice, in situ hybridizations, and BrdU labeling, respec- tively; Drs. Vladimir Pecenka, Moshe Oren, Susanna Lee, Alan Perantoni, and David Beach for providing clones; Dr. Mark Knepper for providing anti-aquaporin 2 antibody; Dr. Liliane Striker, for advice in determining glomerular numbers and vol-
Abnormal kidney development in wild-type p53 transgenic mice

He, C., R.K. Zaulps, D.A. Henderson, G.E. Striker, and L.J. Striker. 1995. Molecular analysis of spontaneous glomerulosclerosis in Os/+ mice, a model with reduced nephron mass. Am. J. Physiol. 269: F266–F273.

Hogan, B., F. Costantini, and E. Lacy. 1986. In Manipulating the mouse embryo. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

Hostetter, T.H., J.L. Olson, H.G. Rennke, M.A. Venkatalachalam, and B.M. Brenner. 1981. Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am. J. Physiol. 79: F85–F93.

Howie, A.J., T. Kizaki, M. Beaman, C.M. Morland, R.J. Birtwistle, D. Adu, J. Michael, A.J. Williams, J. Walls, M. Matsuyama, and F. Shimizu. 1989. Different types of segmental sclerosing glomerular lesions in six experimental models of proteinuria. J. Pathol. 157: 141–151.

Hussussian, C.J., J.P. Strucvicng, A.M. Goldstein, P.A.T. Higgins, D.S. Ally, M.D. Sheahan, W.H. Clark, M.A. Tucker, and N.C. Dracopolis. 1994. Germline p16 mutations in familial melanoma. Nature Genet. 8: 15–21.

Jacks, T., L. Remington, B.O. Williams, E.M. Schmitt, S. Halachmi, R.T. Bronson, and R.A. Weinberg. 1994. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4: 1–7.

Jayaraman, L. and C. Prives. 1995. Activation of p53 sequence-specific DNA binding by short single strands of DNA requires the p53 C-terminus. Cell 81: 1021–1029.

Jones, S.N., A.E. Roe, L.A. Donehower, and A. Bradley. 1995. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378: 206–208.

Kastan, M.B., O. Onyekwere, D. Sidransky, B. Vogelstein, and R.W. Craig. 1991. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51: 6304–6311.

Kreidberg, J.A., H. Sariola, J.M. Loring, M. Maeda, J. Pelletier, D. Housman, and R. Jaenisch. 1993. WT-1 is required for early kidney development. Cell 74: 679–691.

Kuertiz, S.B., S.S. Plunkett, W.V. Walsh, and M.B. Kastan. 1992. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc. Natl. Acad. Sci. 89: 7491–7495.

Lee, S., B. Elenbaas, A. Levine, and J. Griffith. 1995. p53 and its 14kDa C-terminal domain recognize primary DNA damage in the form of insertion/deletion mismatches. Cell 81: 1013–1020.

Lowe, S.W., H.E. Ruley, T. Jacks, and D.E. Housman. 1993a. p53-deficient apoptosis modulates the cytotoxicity of anti-cancer agents. Cell 74: 957–967.

Lowe, S.W., E.M. Schmitt, B.A. Osborne, and T. Jacks. 1993b. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362: 847–849.

Lowe, S.W., S. Bodis, A. McClatchey, L. Remington, H.E. Ruley, D.E. Fisher, D.E. Housman, and T. Jacks. 1994. p53 status and the efficacy of cancer therapy in vivo. Science 266: 807–810.

Mack, D.H., J. Varticar, J.M. Papis, and L.A. Laimins. 1993. Specific repression of TATA-mediated but not initiator-mediated transcription by wild-type p53. Nature 363: 281–283.

MacKay, K., L.J. Striker, C.A. Pinkert, R.L. Brinster, and G.E. Striker. 1987. Glomerulocarcinosis and renal cysts in mice transgenic for the early region of SV40. Kidney Int. 32: 827–837.

Mabeswaran, S., S. Park, A. Bernard, J. Morris, F. Rauscher III, D. Hill, and D. Haber. 1993. Physical and functional interaction between WT1 and p53 proteins. Proc. Natl. Acad. Sci. 90: 5100–5104.

Mabeswaran, S., C. Engert, P. Bennett, G. Heinrich, and D.A. Haber. 1995. The WT1 gene product stabilizes p53 and inhibits p53-mediated apoptosis. Genes & Dev. 9: 2143–2156.
Godley et al.

McGraw, M., S. Poucell, J. Sweet, and R. Baumal. 1984. The significance of focal segmental glomerulosclerosis in oligomeganephronia. *Int. J. Pediatr. Nephrol.* 5: 67–72.

Michalovitz, D., O. Halevy, and M. Oren. 1990. Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. *Cell* 62: 671–680.

Milner, J. and E.A. Medcalf. 1990. Temperature-dependent switching between “wild-type” and “mutant” forms of p53-Val135. *J. Mol. Biol.* 216: 481–484.

Montes de Oca Luna, R., D.S. Wagner, and G. Lozano. 1995. Rescue of early embryonic lethality in *mdm2*-deficient mice by deletion of p53. *Nature* 378: 203–206.

Morham, S.G., R. Langenbach, D.S. Wagner, and G. Lozano. 1995. Rescue of early embryonic lethality in *mdm2*-deficient mice by deletion of p53. *Nature* 378: 203–206.

Morham, S.G., R. Langenbach, D.S. Wagner, and G. Lozano. 1995. Rescue of early embryonic lethality in *mdm2*-deficient mice by deletion of p53. *Nature* 378: 203–206.

Montes de Oca Luna, R., D.S. Wagner, and G. Lozano. 1995. Rescue of early embryonic lethality in *mdm2*-deficient mice by deletion of p53. *Nature* 378: 203–206.

Motulsky, D., O. Halevy, and M. Oren. 1990. Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. *Cell* 62: 671–680.

Michalovitz, D., O. Halevy, and M. Oren. 1990. Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. *Cell* 62: 671–680.

Michalovitz, D., O. Halevy, and M. Oren. 1990. Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. *Cell* 62: 671–680.
Wild-type p53 transgenic mice exhibit altered differentiation of the ureteric bud and possess small kidneys.

L A Godley, J B Kopp, M Eckhaus, et al.

Genes Dev. 1996, 10:
Access the most recent version at doi:10.1101/gad.10.7.836

References

This article cites 52 articles, 16 of which can be accessed free at: http://genesdev.cshlp.org/content/10/7/836.full.html#ref-list-1

License

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.