Realizing Giant Spin-Selective Reflection based on a Chiral Meta-structure Operating in the Visible-Infrared Regime

Asif Ali1, Syeda Rida Tahir2, and Muhammad Adnan3

1Department Electrical Engineering, University of Engineering and Technology Lahore, Pakistan
2Department of Electrical Engineering Lahore College for Women University, Punjab Lahore, Pakistan
3Department of Electrical Engineering, National University of Computer and Emerging Sciences (FAST-NU), Lahore, Pakistan

\textbf{Abstract}— The spin-selective reflection to introduce chirality which can have a lot of applications in real life such as spectroscopy, optical setups, media industry etc. In this paper, a reflection based metasurface proposed to introduce the giant chiroptical effects at broadband visible and infrared (IR) regimes. The optimization and results of basic unit also termed as nanostructure are demonstrated here. The reflectance at the optimal parameters for the proposed nanostructure shows the inclusion of multiband giant chiroptical effects in reflection mode. The results show that this metasurface can elicit large spin-selective reflection coefficients with moderate chirality covering the broadband wavelength. The circular dichroism in the visible and IR regime shows its potential applicability for a lot of applications in our daily life. This work also provides a new approach to achieve giant Spin Hall Effect at broadband wavelength ranges with low loss.

\textbf{Keywords—}CD; reflection parameters; spin-orbit interaction (SOI); optical sensing

I. INTRODUCTION

The past two decades have seen a lot of interest in artificial materials that can manipulate electromagnetic waves in novel ways, not possible with natural materials [1-5]. In particular, the engineered metasurfaces have demonstrated the ability to control the reflection and scattering of incident waves with subwavelength spatial resolution. This capability has led to a range of new applications such as lasing, cloaking, and imaging at the nanoscale [6-10]. Chirality is a property of objects that are not identical to their mirror images. An object can be chiral if it cannot be superposed on its mirror image. This occurs due to the lack of a plane of symmetry in the object. A chiral object and its mirror image are called enantiomers. The nature of light interaction with chiral objects is quite different from that of achiral objects [11-13]. When light interacts with a chiral object, it can be left-handed or right-handed depending on the object's handedness. The handedness of an object is determined by its chirality. Chirality in a nano-structure introduces the chiroptical effects such as optical activity (OA), asymmetric transmission (AT) and circular dichroism (CD) [14-18].

Circular dichroism (CD) is a type of optical activity that occurs when light interacts with chiral molecules. CD defined as the difference between the absorption for the left handed and right handed circularly polarized light. This phenomenon can be used to probe the structure and function of chiral molecules [19-20]. CD spectroscopy is a powerful tool for studying the conformational structure of proteins and other biomolecules. CD spectroscopy can be used to measure the strength of chiral interactions, as well as the handedness of chiral molecules [21-23]. CD spectroscopy can also be used to study the dynamics of chiral molecules, such as how they rotate and vibrate. Recent work has shown that metasurfaces can also be used to generate significant spin-orbit interactions (SOI) in visible frequency ranges [24-27]. The ability to generate such strong SOI with metasurfaces opens up the possibility of creating compact devices for a variety of applications such as spin-based optoelectronics and spintronics. In particular, metasurfaces offer a promising platform for achieving the giant Spin Hall Effect (SHE) [28-31].

Metal nanostructures may also be chiral, and their optical activity is typically greater than that of their molecular counterparts. The revelation that small clusters have a chiral response when coordinated with chiral ligands was one of the early achievements in this field [32-33]. During the initial years of chirality using metamaterials, metallic nanostructures were reported, Zhancheng et al proposed a chiral mirror using aluminium nanostructures for the manipulation of the optical waves and having the range of 1200 nm to 1600 nm [34]. Hentschel et al. used theoretical and experimental verification to show that a single layer chiral metamaterial with subwavelength thickness may produce significant variations in the transmittances of LCP and RCP. An interference mechanism causes the powerful chiroptical effect without compromising the reciprocity and mirror symmetry. As a result of this action, we may be able to manipulate light in a chiral fashion and create chiral optical devices using plasmonic materials [35,3]. Irrespective of chiral devices metals have been used to design a lot of optical devices such as amplifiers, absorbers, reflectors, resonators etc. [36-44].

Our work provides a new approach to achieve spin-switching giant chiroptical effects in visible and IR wavelengths. The metasurface studied in this work can elicit large spin-selective reflection coefficients with moderate chirality. The unit atom based on a partial ring structure is engineered in
such a way to introduce spin-switching chirality at the broadband wavelengths in visible and IR regime. In visible regime, the proposed chiral structure provides maximum reflectance for cross-polarized parameter of RCP incident light whereas minimum reflectance for cross-polarized parameter of LCP illumination. In contrast, for IR regime maximum reflectance obtained for cross-polarized parameter of LCP incident light whereas minimum reflectance for cross-polarized parameter of RCP illumination. This makes it an attractive platform for applications such as spin-based optoelectronics and spintronics.

II. DESIGN METHODOLOGY

The chirality, circular dichroism and giant reflection parameters can be used to design a metasurface that reflects left-handed or right-handed circularly polarized light. The parameters can also be used to control the degree of reflection and the handedness of the reflected light. The reflectance parameters of a chiral metasurface optimized for the required optical responses using the finite-difference time-domain (FDTD) method [45-46]. In this method, the metasurface is discretized into a three-dimensional grid, and the electromagnetic fields are evolved in time using the FDTD equations. The reflection coefficients of the metasurface are then obtained from the time-averaged values of the electromagnetic fields. The FDTD method is well suited for the design of reflection parameters, as it can take into account the effect of both the electric and magnetic fields on the metasurface. In addition, the FDTD method can be easily parallelized, making it possible to design large metasurfaces with a reasonable amount of computational resources. In Figure 1, nanostructure has been designed of dimensions $r_1 = 100\ nm$, $r_2 = 130\ nm$, $P_x = 900$ and $P_y = 900$.

![Figure 1: The proposed meta-atom schematic illustration to design chiral metasurface](image)

The proposed nanostructure optimized for the giant CD and the obtained results are presented and discussed in this section. It is shown that the reflectance parameters used to control the amplitude and the polarization of reflected circularly polarized (CP) light. The results may find applications in designing novel optical devices. For visible wavelengths, the right-hand circularly polarized (RCP) light is reflected by the metasurface with a positive reflectance, while the left-hand circularly polarized (LCP) light is reflected with a negative reflectance. The simulated results of the reflectance parameters R_{LR} and R_{RL} are plotted in Figure 2. In addition for IR wavelengths, left-hand circularly polarized (LCP) light is reflected by the metasurface with a positive reflectance whereas the right-hand circularly polarized (RCP) light is reflected with a negative reflectance. It can be seen that the unit atom have different optical responses to RCP and LCP light, which is in good agreement with the designed chirality.

Based on unit atom, the metasurface is designed to have an average reflectivity of 88% for right-handed circularly polarized light and 12% for left-handed circularly polarized light at visible wavelengths. However, for IR wavelengths, the metasurface exhibits a high degree of reflection for left-handed circularly polarized light and a low degree of reflection for right-handed circularly polarized light. The reflectivity of the chiral metasurface can be further increased by increasing the number of layers in the metasurface. For example, by increasing the number of layers from two to four, the reflectivity for right-handed circularly polarized light can be increased upto 100%.

![Figure 2: Reflectivity of the chiral metasurface for right-handed and right-handed circularly polarized light](image)

The circular dichroism for the designed nanostructure is presented in Figure 3. The phenomenon of circular dichroism is the differential absorption of left and right-handed CP light whereas optical activity is defined as the rotation of the plane of polarization of incident linearly polarized light. These CDs are crucial in agricultural, pharmacological, and biomedical research [47-51]. This phenomenon also used in CD spectroscopy to detect the differential absorption of an enantiomer irradiated with right circularly polarized light and left-circularly polarized (RCP/LCP) light. The circular dichroism spectroscopy (CDS) can both determine chiral
compounds' structure as well as the purity of a chiral solution [52]. Figure 3 depicts the average circular dichroism (CD) of ≈ 73%. The metasurfaces has the ability to be designed for on-chip nanophotonics using VLSI or deep learning techniques [53-57].

![Circular Dichroism (CD) spectra of the designed meta-structure](image1)

Figure 3: Circular Dichroism (CD) spectra of the designed meta-structure

![Dependency of absorption spectra on incident angles](image2)

Figure 4: Dependency of absorption spectra on incident angles

For oblique incident analysis, the dependency of the incident angle has been described in Figure 4. By varying the incident angle from 0 to 80 degrees the absorption has been observed.

IV. CONCLUSION

In this work, the chiral metasurface designed exhibits reflection parameters with giant chirality across all frequency bands in visible and IR regimes. The average circular dichroism (CD) obtained is of ≈ 73%. Moreover, the dependence on incident angle describe that no change in absorption has been observed. The circular dichroism parameter with high efficiency indicating that the proposed structure can be used to create optical filters with high selectivity. Overall, the designed chiral metasurface provides a versatile platform for manipulating light at different wavelengths. This makes the design well-suited for applications that require high levels of reflectivity, such as solar energy collection, light harvesting, and optical sensing.

REFERENCES

[1] N. Yu et al., “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science, vol. 334, no. 6054, pp. 333–337, 2011.

[2] A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic bragg reflector,” Optics express, vol. 14, no. 23, pp. 11318-11323, 2006.

[3] Y. Zhao, M. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nature communications, vol. 3, no. 1, pp. 1-7, 2012.

[4] A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Applied Physics Letters, vol. 90, no. 18, p. 181102, 2007.

[5] N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nature materials, vol. 13, no. 2, pp. 139-150, 2014.

[6] J. Laska et al., “Random sampling for analog-to-information conversion of wideband signals,” in 2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software, 2006: IEEE, pp. 119-122.

[7] A. Nieuwoudt and Y. Massoud, “Evaluating the impact of resistance in carbon nanotube bundles for VLSI interconnect using diameter-dependent modeling techniques,” IEEE Transactions on Electron Devices, vol. 53, no. 10, pp. 2460-2466, 2006.

[8] H. Zhu, S. Cheung, K. L. Chung, and T. I. Yuk, “Linear-to-circular polarization conversion using metasurface,” IEEE transactions on antennas and propagation, vol. 61, no. 9, pp. 4615-4623, 2013.

[9] S. Kirolos, T. Ragheb, J. Laska, M. F. Duarte, Y. Massoud, and R. G. Baraniuk, “Practical issues in implementing analog-to-information converters,” in 2006 6th International Workshop on System on Chip for Real Time Applications, 2006: IEEE, pp. 141-146.

[10] A. Nieuwoudt and Y. Massoud, "Understanding the impact of inductance in carbon nanotube bundles for VLSI interconnect using scalable modeling techniques," IEEE Transactions on Nanotechnology, vol. 5, no. 6, pp. 758-765, 2006.

[11] T. Ragheb, J. N. Laska, H. Nejati, S. Kirolos, R. G. Baraniuk, and Y. Massoud, "A prototype hardware for random demodulation based compressive analog-to-digital conversion," in 2008 51st Midwest Symposium on Circuits and Systems, 2008: IEEE, pp. 37-40.

[12] M. R. Akram, M. Q. Mehmood, X. Bai, R. Jin, M. Premaratne, and W. Zhu, "High efficiency ultrathin transmissive metasurfaces," Advanced Optical Materials, vol. 7, no. 11, p. 1801628, 2019.

[13] A. Hosseini, H. Nejati, and Y. Massoud, "Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors," Optics express, vol. 16, no. 3, pp. 1475-1480, 2008.

[14] A. Nieuwoudt and Y. Massoud, "On the optimal design, performance, and reliability of future carbon nanotube-based interconnect solutions," IEEE transactions on electron devices, vol. 55, no. 8, pp. 2097-2110, 2008.

[15] M. Mehmood et al., "Visible-frequency metasurface for structuring and spatially multiplexing optical vortices," Advanced Materials, vol. 28, no. 13, pp. 2533-2539, 2016.

[16] Y. Massoud, S. Majors, T. Bustami, and J. White, "Layout techniques for minimizing on-chip interconnect self inductance,"
in Proceedings of the 35th annual Design Automation Conference, 1998, pp. 566-571.

[17] Y. Massoud and J. White, "Simulation and modeling of the effect of substrate conductivity on coupling inductance and circuit cross-talk," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 10, no. 3, pp. 286-291, 2002.

[18] M. Mondal et al., “Thermally robust clocking schemes for 3D integrated circuits,” in 2007 Design, Automation & Test in Europe Conference & Exhibition, 2007: IEEE, pp. 1-6.

[19] T. Ragheb et al., “Implementation models for analog-to-information conversion via random sampling,” in 2007 50th Midwest Symposium on Circuits and Systems, 2007: IEEE, pp. 325-328.

[20] X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, "Photonic spin Hall effect at metasurfaces," Science, vol. 339, no. 6126, pp. 1405-1407, 2013.

[21] Y. Massoud and A. Nieuwoudt, "Modeling and design challenges and solutions for carbon nanotube-based interconnect in future high performance integrated circuits," ACM Journal on Emerging Technologies in Computing Systems (JETC), vol. 2, no. 3, pp. 155-196, 2006.

[22] A. Nieuwoudt and Y. Massoud, "On the impact of process variations for carbon nanotube bundles for VLSI interconnect," IEEE Transactions on Electron Devices, vol. 54, no. 3, pp. 446-455, 2007.

[23] C. Hu, X. Li, Q. Feng, X. N. Chen, and X. Luo, "Investigation on the role of the dielectric loss in metamaterial absorber," Optics Express, vol. 18, no. 7, pp. 6598-6603, 2010.

[24] Y. Massoud, S. Majors, J. Kawa, T. Bustami, D. MacMillen, and J. White, "Managing on-chip inductive effects," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 10, no. 6, pp. 789-798, 2002.

[25] Y. Massoud, J. Kawa, D. MacMillen, and J. White, "Modeling and analysis of differential signaling for minimizing inductive cross-talk," in Proceedings of the 38th annual Design Automation Conference, 2001, pp. 804-809.

[26] A. Nieuwoudt and Y. Massoud, "Variability-aware multilevel integrated spiral inductor synthesis," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 12, pp. 2613-2625, 2006.

[27] A. Hosseini, T. Ragheb, and Y. Massoud, "A fault-aware dynamic routing algorithm for on-chip networks," in 2008 IEEE International Symposium on Circuits and Systems, 2008: IEEE, pp. 2653-2656.

[28] M. Neviere, R. Petit, and M. Cadilhac, "About the theory of optical grating coupler-waveguide systems," Optics Communications, vol. 8, no. 2, pp. 113-117, 1973.

[29] A. Nieuwoudt and Y. Massoud, "Multi-level approach for integrated spiral inductor optimization," in Proceedings of the 42nd annual Design Automation Conference, 2005, pp. 648-651.

[30] Y. I. Ismail and E. G. Friedman, On-chip inductance in high speed integrated circuits. Springer Science & Business Media, 2001.

[31] Y. Massoud and J. White, "Improving the generality of the fictitious magnetic charge approach to computing inductances in the presence of permeable materials," in Proceedings of the 39th annual Design Automation Conference, 2002, pp. 552-555.

[32] Y. Cai and K. D. Xu, "Tunable broadband terahertz absorber based on multilayer graphene-sandwiched plasmonic structure," Opt Express, vol. 26, no. 24, pp. 31693-31705, Nov 26 2018, doi: 10.1364/OE.26.031693.

[33] A. Nieuwoudt, T. Ragheb, and Y. Massoud, "SOC-NLNA: Synthesis and optimization for fully integrated narrow-band CMOS low noise amplifiers," in 2006 43rd ACM/IEEE Design Automation Conference, 2006: IEEE, pp. 879-884.

[34] S. Eamchampati, A. Nieuwoudt, A. Gayasen, N. Vijaykrishnan, and Y. Massoud, "Assessing carbon nanotube bundle interconnect for future FPGA architectures," in 2007 Design Automation & Test in Europe Conference & Exhibition, 2007: IEEE, pp. 1-6.

[35] Zhancheng Li, W. Liu, H. Cheng, D.Y Choi, S. Chen & J. Tian, "Spin-Selective Full Dimensional Manipulation of Optical Waves with Chiral Mirror," ADVANCED MATERIALS, vol. 32, no. 26, p. 10, 2020.

[36] M. Hentschel, M. Schäferling, X. Duan, H. Giessen, N. Liu, "Chiral Plasmonics," SCIENCE ADVANCES, vol. 3, no. 5, p. 12, 2017.

[37] J. Saikawa, M. Miyazaki, M. Fujii, H. Ishizuki, and T. Taira, "High-energy, broadly tunable, narrow-bandwidth mid-infrared optical parametric system pumped by quasi-phase-matched devices," Optics letters, vol. 33, no. 15, pp. 1699-1701, 2008.

[38] Y. Massoud and J. White, "FastMag: a 3-D magnetostatic inductance extraction program for structures with permeable materials," in Proceedings of the 2002 IEEE/ACM international conference on Computer-aided design, 2002, pp. 478-484.

[39] A. Nieuwoudt, T. Ragheb, H. Nejati, and Y. Massoud, "Numerical design optimization methodology for wideband and multi-band inductively degenerated cascade CMOS low noise amplifiers," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 6, pp. 1088-1101, 2008.

[40] M. Mondal and Y. Massoud, "Reducing pessimism in RLC delay estimation using an accurate analytical frequency dependent model for inductance," in ICCAD-2005. IEEE/ACM International Conference on Computer-Aided Design, 2005., 2005: IEEE, pp. 691-696.

[41] S. Kirollos, Y. Massoud, and Y. Ismail, "Power-supply-variation-aware timing analysis of synchronous systems," in 2008 IEEE International Symposium on Circuits and Systems, 2008: IEEE, pp. 2418-2421.

[42] S. Eamchampati, N. Vijaykrishnan, A. Nieuwoudt, and Y. Massoud, "Predicting the performance and reliability of future field programmable gate arrays routing architectures with carbon nanotube bundle interconnect," IET circuits, devices & systems, vol. 3, no. 2, pp. 64-75, 2009.

[43] A. Nieuwoudt, M. S. Corcorudale, R. T. Borno, and Y. Massoud, "Efficient analytical modeling techniques for rapid integrated spiral inductor prototyping," in Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, 2005., 2005: IEEE, pp. 281-284.

[44] R. Bilal et al., "Elliptical metallic rings-shaped fractal metamaterial absorber in the visible regime," Scientific Reports, vol. 10, no. 1, pp. 1-12, 2020.

[45] H. Chen et al., "Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances," Journal of Applied Physics, vol. 115, no. 15, p. 154504, 2014.

[46] M. Alam and Y. Massoud, "RLC ladder model for scattering in single metallic nanoparticles," IEEE transactions on nanotechnology, vol. 5, no. 5, pp. 491-498, 2006.

[47] A. Nieuwoudt and Y. Massoud, "Analytical wide-band modeling of high frequency resistance in integrated spiral inductors," Analog Integrated Circuits and Signal Processing, vol. 50, no. 2, pp. 133-136, 2007.

[48] M. Mondal, T. Ragheb, X. Wu, A. Aziz, and Y. Massoud, "Provisioning on-chip networks under buffered rc interconnect delay variations," in 8th International Symposium on Quality Electronic Design (ISQED’07), 2007: IEEE, pp. 873-878.

[49] T. Ragheb and Y. Massoud, "On the modeling of resistance in graphene nanoribbon (GNR) for future interconnect applications,” in 2008 IEEE/ACM International Conference on Computer-Aided Design, 2008: IEEE, pp. 593-597.

[50] A. Nieuwoudt, T. Ragheb, and Y. Massoud, "Hierarchical optimization methodology for wideband low noise amplifiers," in 2007 Asia and South Pacific design automation conference, 2007: IEEE, pp. 68-73.

[51] P. Fei et al., "Versatile Cross-Polarization Conversion Chiral Metasurface for Linear and Circular Polarizations," Advanced Optical Materials, vol. 13, no. 1, pp. 2000070, 2020.

[52] A. Nieuwoudt, T. Ragheb, H. Nejati, and Y. Massoud, "Increasing manufacturing yield for wideband RF CMOS LNAs in the presence of process variations," in 8th International
[53] A. Nieuwoudt and Y. Massoud, "Robust automated synthesis methodology for integrated spiral inductors with variability," in ICCAD-2005. IEEE/ACM International Conference on Computer-Aided Design, 2005. IEEE, pp. 502-507.

[54] Y. Yang et al., "Graphene-based multilayered metamaterials with phototunable architecture for on-chip photonic devices," Acs Photonics, vol. 6, no. 4, pp. 1033-1040, 2019.

[55] A. Nieuwoudt, M. S. McCorquodale, R. T. Borno, and Y. Massoud, "Accurate analytical spiral inductor modeling techniques for efficient design space exploration," IEEE Electron Device Letters, vol. 27, no. 12, pp. 998-1001, 2006.

[56] Y. Massoud, M. Alam, and A. Nieuwoudt, "On the selection of spectral zeros for generating passive reduced order models," in 2006 6th International Workshop on System on Chip for Real Time Applications, 2006: IEEE, pp. 160-164, 2006.

[57] Reineke, Bernhard, Basudeb Sain, Ruizhe Zhao, Luca Carletti, Bingyi Liu, Lingling Huang, Costantino De Angelis, and Thomas Zentgraf. "Silicon metasurfaces for third harmonic geometric phase manipulation and multiplexed holography." Nano letters, vol. 19, no. 9, pp. 658, 2019.