Herbal Medicine Used in the Treatment of Human Diseases in the Rif, Northern Morocco

Noureddine Chaachouay, Allal Douira, Lahcen Zidane

Abstract
Since the beginning of time, the Moroccan people have used many medicinal plants as a popular medicine to cure many human and livestock health problems. Yet, few studies have been carried in the past to properly document and promote traditional ethnomedicinal knowledge. This study was conducted out from July 1st, 2016 to July 30th, 2018 in the Rif; it was aimed to establish the list of medicinal plants, together with the association of ethnomedicinal knowledge. The ethnomedicinal data obtained were from 1000 traditional healers using semi-structured discussions, free listing, and focus groups. Family importance value, plant part value, fidelity level, the relative frequency of citation, and informant consensus factor were applied in data interpretation. Plant species were accumulated, and deposited at the Plant, Animal Productions and agro-industry laboratory, Ibn Tofail University. A total of 280 medicinal plants belong to 204 genera and 70 families were documented. Asteraceae with 29 species was the most used family in this study area. Rosmarinus officinalis L. (RFC = 0.189) was the species the most commonly prescribed by local traditional healers. Similarly, the leaf was the most useful part of the plant (PPV = 0.364), the most frequent affections were osteoarticular affections (ICF = 0.983), and the majority of herbal remedies were prepared from a decoction (38.6%). The results of the present investigation confirmed the presence of indigenous ethnomedicinal information of plant species in the Rif’s area to treat various disorders. More investigation on phytochemical, pharmacological, and toxicological should be considered to determine new drugs from these reported plants.

Keywords Ethnopharmacology · Human diseases · Medicinal plants · Moroccan Rif · Traditional healers

1 Introduction
Medicinal plants have been prescribed and used extensively for thousands of years to treat various disorders and ailments in traditional herbal medicine systems all over the world [1]. In all ancient civilizations and on all continents, we find traces of this use. Thus, even today, despite advances in pharmacology, the therapeutic use of plants is very present in some countries, especially in developing countries [2]. The World Health Organization (WHO) estimates that unevenly, 80% of the people from developed and developing nations depend on traditional medicines, especially on plant-based medicine in primary healthcare [3].

The use of plant species for healing purposes is a matter of culture and tradition in Morocco. It should be noted that for the primary health needs, a large portion of Moroccan people utilizes traditional methods of medicine to treat their diseases [3–6]. The inability of many developing countries to supply contemporary pharmaceutical medications [7–12], and the high cost of many drugs, has forced local communities to search for alternative products, such as medicinal plants, that have proven effectiveness and safety and are culturally acceptable.

The Rif region is one of the most biologically diverse regions in the Mediterranean, with some of the rarest biogeographical areas in the world and biodiversity of primary importance with many plants of therapeutic interest [13]. For this reason, this region is the source of many medicinal plants marketed throughout Morocco and abroad and the use of plants in herbal medicine is still very present in this region. On the opposite, data on medicinal plants in this
region are rare and insufficient. To complete partial and fragmentary studies those have been carried out throughout the Rif [13, 14], Talassemtane National Park [15], and Tingitane Peninsula [16]. It is, therefore, necessary to undertake them to identify the local uses of plant species.

It is in this context that an ethnopharmacological study was carried out in the Rif, which has a lithological diversity, structural and floristic plants important enough to establish the catalog of medicinal plants used in the traditional treatment of diseases, especially herbal medicine, as an alternative to enhance, preserve and rationally use them.

2 Materials and Methods

2.1 Description of the Study Area

The current study was conducted out in the Tangier-Tetouan-Al Hoceima region (North of Morocco) where the Rif’s area was located. It extends between 34° and 36° of latitude in the North and 4° to 6° of longitude in the East. It is bounded in the North by the Strait of Gibraltar and the Mediterranean Sea, in the South by the Rabat-Sale-Kenitra region and Fez-Meknes region, in the East by the Eastern Region, and in the West by the Atlantic Ocean (Fig. 1). The total geographical area of the Rif is 11,570 km² and the population of the city is about 3,549,512 inhabitants with an average population density of 222.2/km² [17]. The population is mixed between Arabic and Amazigh ethnicity.

The Rif is marked by Mediterranean weather with the highest temperature up to 45 °C during summer (July–August) and below 0 °C during winter (December–January) and the average annual rainfall ranges from 700 to 1300 mm which falls mainly between October and February [18]. It is mountainous with elevations ranging from 145 to 2456 (Jbel Tidirhine) meters above mean sea level and the area dominated by species such as Abies marocana Trab., Pinus halepensis Mill., Cannabis sativa L., Cedrus atlantica (Endl.) Quercus suber L., Quercus ilex L., and Quercus canariensis Willd. Principally families of Rif

Fig. 1 The geographical position of the Rif region
are very much dependent on subsistence farming, livestock, and to a more secondary space, from forest resources for their livelihood.

2.2 Methodology

2.2.1 Ethnopharmacological Survey

Ethnopharmacological investigations were carried out from July 2016 to July 2018 to collect information on medicinal plants utilized to treat multiple human sicknesses in the Rif region. In this work, the sample has been developed through a mode of probabilistic sampling random stratified [19, 20] non-proportional, it is divided into 28 strata, having concerned the cities, villages, douars, and souks weekly in the area of study. It is based on environmental factors (climate, soil, and altitude), vegetation, and the distribution of the population. The techniques employed for data collection were semi-structured interviews [21], open-ended, group discussion, free listing, and noted and recorded with a digital voice recorder. 1000 informants within aged 17–95 were randomly selected for interviews (cautery installer, farmers, elder people, bonesetters, herbalists, and therapists) in Rif (weekly markets, pharmacies, hospitals, houses, and mosques). By conducting a stratified random sampling [22], samples are then formed in each of the 28 strata, including seven urban communes: [S1: Al Hoceim (40), S12: Chefchaouen (40), S15: Tétouan (40), S16: Martil (40), S20: Md’q (40), S21: Fnideq (40), S26: Tanger (41)] and twenty-one rural communes: [S2: Ajdir (35), S6: Izezafien (30), S7: Bni Hadifa (30), S9: Targuit (40), S9: Tizi n Tchin (30), S6: Issaguene (34), S6: Bab Berred (35), S6: Cherrafat (30), S10: Bab Taza (30), S11: Derrada (29), S12: Akchour (35), S13: Fifi (30), S16: Bni Karrich (40), S17: Mallalène (35), S18: Zinat (36), S22: Belyounich (35), S23: Melloussa (39), S24: Ksar Esghir (34), S25: Bni Ouassin (36), S27: Al Bahraouisynine (35), S28: Jouamaa (36)] and they are put together to make up the overall sample of 1000 informants. Knowing that the number of people surveyed varies from one stratum to another depending on the abundance of medicinal plants sought (Fig. 2).

The time spent on each interview was approximately 20 min to one hour. The information collected concerning the profile of the interviewee (age, gender, level of study, monthly income, family situation, and locality) and the ethnopharmacological data for each plant include the common local name, the route of administration, the method of preparation, the dosage, the part used, the condition of the plant used and the diseases treated “Appendix A”. The people in the Rif region speak Amazigh, Arabic dialects and therefore, interviews were conducted in Amazigh or Arabic dialects. All the documented data were later translated into English.

2.2.2 Vegetation data collection

Fertile specimens for the present study were collected in the field (197 plant species), in herbal stores (50 plant species), and at the homes of traditional healers (33 plant species) in the Rif. The informants were always provided with fresh plant material, either collected with them, by them, or available at their market stands (Fig. 3). Field observations were also used to record the habitat of each plant species with the assistance of local guides and interviewed informants.

2.2.3 Plant species identification, and deposition in Herbarium

Based on ethnopharmacological knowledge provided by our informants, plant specimens with their exact taxonomy were ordered alphabetically by ethnomedicinal uses, vernacular name, and family name. The identification and nomenclature of the collected material vegetal were done first in the field and completed at the Plant, Animal Productions, and Agro-industry Laboratory (Fig. 4). These plant species mentioned by the informants were taxonomically identified using floristic and taxonomic references, especially “The medicinal plants of the Morocco” [23], “List of vascular plants of Morocco tomes I and II” [24], and “Practical vegetation of Morocco” [25–27]. All voucher specimens have been preserved during documentation and deposited in the Ibn Tofail University, Morocco Herbarium for future reference.

2.2.4 Statistical Analysis

Ethnopharmacological data collected are recorded on questionnaire sheets to be analyzed, studied, and confirmed or overturned at the end. Then these data were registered and interpreted by Microsoft Excel 2010 and IBM-SPSS Statistics Base 21. A representative and the quantitative scientific method was applied to examine the socio-demographic data of the informants (ANOVA One-way and Independent Samples T-Test). Further, the recorded data were analyzed by various quantitative indices like family importance value (FIV), the relative frequency of citation (RFC), plant part value (PPV), fidelity level (FL), and informant consensus factor (ICF).

2.2.4.1 Family Importance Value (FIV)

The FIV identifies the significance of plant families. It is an indication of therapeutic importance that can be utilized in ethnobotany to assess the value of natural plant species. To determine family importance value, we adopt the following method: $FIV = \frac{FC_{\text{family}}}{N_{q}}$, where FC_{family} is the number of
informants mentioning the family and \(N_s \) = Total number of species within each family [28].

2.2.4.2 Relative Frequency of Citation (RFC) and Frequency (FC)
RFC is calculated by dividing FC by an entire number of interviewees in the research (N). The value of RFC for plant species is based on the citing portion of interviewees for every species. Relative Frequency of Citation was determined by applying the following formula [29]:

\[
\text{RFC} = \frac{\text{FC}}{\text{N}}
\]

with \((0 < \text{RFC} < 1)\).

2.2.4.3 Plant Part Value (PPV)
PPV was determined by applying this equation [30]:

\[
\text{PPV} = \frac{\text{RU}_{\text{plant part}}}{\text{RU}}
\]

where RU is the number of applications notified of total portions of the medicinal plant and \(\text{RU}_{\text{plant part}} \) is the number of uses reported per part of the medicinal plant. The part among the most important PPV is the most used by the informants.

2.2.4.4 Fidelity Level (FL)
Fidelity level is the rate of interviewees who mentioned the uses of certain medicinal plants to treat a particular disease in the study region. The FL ratio is determined using this equation [31]:

\[
\text{FL(\%)} = \frac{N_p}{N} \times 100
\]

where \(N_p \) is the number of interviewees that require the application of a plant species to cure a special affection and \(N \) is the sum of interviewees that use the medicinal species as a drug to treat any given illness.

2.2.4.5 Informant Consensus Factor (ICF)
Informant consensus factor (ICF) was determined to investigate an agreement between the interviewees on the related remedies for each group of diseases [32]:

\[
\text{ICF} = \frac{N_u - N_t}{N_u - 1}
\]

where \(N_u \) is the number of use-reports in each disease category and \(N_t \) is many species used. The values for the Informant Consensus Factor range from 0 to 1.
3 Results

3.1 Socio-demographic Data

A total of 1000 respondents were interviewed. Based on socio-demography, these participants were categorized into different classes as given in Table 1. Among the participants, 52.7% were females and the remaining were males 47.3%, with a sex ratio female/male of 1.11. From the total respondents, 76% were married, 10.8% divorced, 9.2% widowed, and 4% unmarried. In terms of age, the age groups of 40–60 were very high compared to other groups (47.6%). Just 30.6% were more than 60 years old, 21.4% were 20–40 years old, and 0.4% of informants were below 20 years old. Regarding educational status, the majority of respondents (69.1%) were illiterate, while 23% and 6.7% respondents attended primary and secondary school, respectively. Only 1.2% of respondents were attended higher education. Considering the income/month, most of the informants were unemployed (41.6%), while 38.6% of these informants had low income/month level, (17%) with average level income/month, and 2.8% with higher-level income/month.

3.2 Most Represented Botanical Family and Their Family Importance Value (FIV)

The floristic analysis of the results obtained identified 280 medicinal species and subspecies belonging to 204 genera and 70 plant families were reported as having rich ethnopharmacological uses in the Rif to treat different human ailments. In terms of the number of species, it appears that the Asteraceae family is the most represented with 29 species or 10.36% of the catalog developed, followed by Lamiauceae (22 species), Fabaceae and Poaceae (21 species each), Apiaceae (17 species), Solanaceae (12 species), Brassicaceae (11 species), Asparagaceae (10 species), Amaranthaceae and Cucurbitaceae (8 species each), Rutaceae (6 species), Myrtaceae and Rosaceae with 5 species each. Besides, Anacardiaceae, Caryophyllaceae, Cupressaceae, Euphorbiaceae, Lauraceae, and Zingiberaceae are each represented by 4 plant species. The Apocynaceae, Malvaceae, Moraceae, Oleaceae, Papaveraceae, Pinaceae, Rubiaceae, and Tamaricaceae are represented by 3 medicinal species each, whereas the other families are those with at most one or two medicinal plant species. Based on the family importance value (FIV), the families most cited by informants are Amaryllidaceae (FIV = 0.104), Lythraceae (FIV = 0.103) Caryophyllaceae (FIV = 0.084), Apocynaceae (FIV = 0.079), Capparaceae (FIV = 0.073), Linaceae (FIV = 0.065), Rubiaceae (FIV = 0.063), Nitrariaceae, Rhamnaceae and Verbenaceae (FIV = 0.053), Rutaceae (FIV = 0.052) and Arecaceae (FIV = 0.049). The vernacular names, scientific names of documented species, their families, used parts, methods of preparations, FL, FC, RFC, and FIV were illustrated in Tables 2, 3, 4, 5, 6, 7, 8, 9.

Fig. 3 Type of sachets used to preserve collected plant species
3.3 Diversity of Medicinal Plants

To assess the relative importance of the reported plant species, the relative frequency of citation (RFC) was calculated from the informants’ citations. In the present study, the highest value reported was 0.189, and the lowest value was 0.001 for each species as given in Tables 2, 3, 4, 5, 6, 7, 8, 9. In the current investigation, the highest RFC value was reported for *Rosmarinus officinalis* L. (RFC = 0.189), *Thymus sericeoides* Coss. (RFC = 0.176), *Dittrichia viscosa* (L.) Greuter. (RFC = 0.165), *Lawsonia inermis* L. (RFC = 0.154), *Arenaria rubra* L. (RFC = 0.153), and *Nerium oleander* L. (RFC = 0.146). Meanwhile, 60 medicinal plant species scored the least RFC value, which is 0.001.

3.4 Habitat of Medicinal Plants

The present study showed that 165 medicinal plant species (59%) used by the Moroccan pharmaceutical medicines today are collected from the agriculture (cultivated) (Fig. 5), 101 species 36% were collected from wasteland (Fig. 6) (All lands affected by water erosion, wind erosion, floods, water-logging, soil salinization, and soil alkalization) and only 14 species (5%) were introduced by marketing in other regions.

3.5 Medicinal Formulations Used During the COVID-19 Lockdown for Improving the Immune System

Medicinal plant species have a fundamental unit for use as alternative medicines systems in Morocco and are the basis for the discovery of natural ingredients for the development of therapeutic agents in pharmacology. The study conducted in the Salé region [33] shows that the local population uses some plants to prevent and treat the COVID-19, which was mentioned by the Moroccan Rif community. In Moroccan Rif, the uses of medicinal species have increased during the COVID-19 pandemic as a preventive behavior. *Citrus limon* (L.) Burm. f. has been used to relieve cough, and as an expectorant in bronchitis. *Allium sativum* L. *Allium cepa*
L. and *Zingiber officinale* Roscoe are indicated for respiratory disease (cold and cough), and other symptoms related to influenza. *Eucalyptus globulus* Labill. is indicated for symptoms of respiratory disease (bronchitis, rhinitis), due to the presence of 1–8-cineol [34]. Indications of respiratory conditions: *Foeniculum vulgare* Mill. *Plantago lanceolata* L., *Pimpinella anisum* L., *Silybum marianum* L., *Laurus nobilis* L., *Malva sylvestris* L., *Thymus vulgaris* L., and *Glycyrrhiza glabra* L. are indicated by informants for cough associated with a cold, sore throat, fever laryngitis, and tonsilitis. *Hedera helix* L. is indicated as antispasmodic, other indications are anti-inflammatory, and in the treatment of flu and fever. Black seeds of *Nigella sativa* L. are globally known as a spice and as such as a food item.

3.6 The Fidelity Level (FL) of Medicinal Plants Reported

Fidelity level (FL) designates the choice for medicinal plants to be better for other species in the treatment of a particular ailment. The plant species that are extensively used by the indigenous inhabitants have more important FL values than those that are few popular. In this study, the FL ranged from 45.5% to 100% for medicinal plant use age. The study determined 240 medicinal plant species (85.71%) achieve the greatest fidelity level (FL = 100%) and the remaining 40 plant species achieve reasonable FL.

3.7 Disease treated and their ICF values

The results of the ICF calculation show that the value in our study ranges from 0.944 to 0.983 per uses categories (Table 10). Results revealed that the very best ICF (0.983) value was obtained for osteoarticular diseases with 867 use-reports for 16 plant species. It’s followed by dermatological diseases (ICF = 0.981), neurological diseases (ICF = 0.974), genitourinary diseases (ICF = 0.973), metabolic diseases (ICF = 0.972), cardiovascular diseases (ICF = 0.968), digestive system diseases (ICF = 0.945), and respiratory system diseases (ICF = 0.944).

Categories	Number of informants	Percent (%)	Average ± E.T	F-Value	p-Value		
Gender							
Female	527	52.7	18.82 ± 2.842	5.753	0.02		
Male	473	47.3	16.89 ± 3.166				
Age ranges							
< 20 years	22	0.4	0.78 ± 0.832	306.208	0.000		
20–40 years	214	21.4	7.64 ± 1.889				
40–60 years	476	47.6	17.00 ± 3.042				
> 60 years	306	30.6	10.92 ± 1.783				
Family status							
Married	760	76	2.32 ± 4.784	441.234	0.000		
Divorced	108	10.8	3.85 ± 1.580				
Widower	92	9.2	3.28 ± 1.629				
Single	40	4	27.14 ± 2.927				
Educational level							
Illiterate	691	69.1	24.67 ± 3.464	673.173	0.000		
Primary school	230	23	8.21 ± 2.166				
Secondary school	67	6.7	2.39 ± 1.749				
Universitaire	12	1.2	0.42 ± 0.634				
Income/month							
Unemployed	416	41.6	14.85 ± 1.432	359.350	0.000		
250–1500 MAD	386	38.6	13.78 ± 2.024				
1500–5000 MAD	170	17	6.07 ± 2.508				
> 5000 MAD	28	2.8	1.00 ± 1.018				
Locality							
Rural area	497	49.7	17.75 ± 3.122	246.861	0.000		
Urban area	251	25.1	8.96 ± 1.990				
Village	229	22.9	8.17 ± 2.695				
Nomadic	23	2.3	0.82 ± 0.904				
Family and scientific name	Vernacular name	Used part	Method of preparation	FL (%)	FC	RFC	FIV
-----------------------------	----------------	-----------	----------------------	--------	----	-----	-----
Amaranthaceae							
Chenopodium album L.	Labda, Baremren	Leaf	Infusion	71	07	0.007	
Chenopodium murale L.	Talekutta	Other combination	Infusion	100	01	0.001	
Salsola kali L.	El Herd	Whole plant	Infusion	100	01	0.001	
Anacardiaceae							
Pistacia atlantica Desf	Btem	Leaf	Decoction	100	17	0.017	0.048
Apiaceae							
Ammi majus L.	Tiillane	Fruit	Other	100	32	0.032	
Ammi visnaga (L.) Lam	Bechnikha	Fruit	Infusion	91	22	0.022	
Ammodaucus leucotrichus Coss	Camoun Soufi	Seed	Cooked	100	41	0.041	
Apium graveolens L.	Lkrafess	Leaf	Decoction	100	04	0.004	
Carum carvi L.	Karwiya	Seed	Infusion	100	26	0.026	
Coriandrum sativum L.	Alkazbour	Seed	Raw	100	04	0.004	
Cumminum cyminum L.	Camoun	Seed	Infusion	100	03	0.003	
Eryngium ilicifolium Lam.	El Asfour, Chkour	Flower	Raw	100	15	0.015	
Foeniculum vulgare Mill.	Lbesbas	Seed	Decoction	100	68	0.068	
Smyrniun ulasratrum L.	Lheyyyar	Leaf	Infusion	100	43	0.043	
Apocynaceae							
Vinca minor L.	El Innakia	Whole plant	Cooked	100	01	0.001	0.079
Arecaceae							
Chamaerops humilis L.	Doum, El Ghaz	Fruit	Infusion	100	51	0.051	
Asparagaceae							
Asparagus acutifolius L.	Sekkom, Tazzut	Leaf	Decoction	100	01	0.001	0.013
Asparagus densiflora Kunh.	Sekkom, Tazzut	Whole plant	Other	100	01	0.001	
Asparagus officinalis L.	Sekkom, Tazzut	Whole plant	Other combination	100	02	0.002	
Asparagus plumousus Baker	Sekkom, Tazzut	Stem	Infusion	100	01	0.001	
Asparagus stipularis Forssk	Sekkom, Tazzut	Rhizome	Other	100	01	0.001	
Drinia maritima (L.) Stearn	Ansal	Bulb	Decoction	100	04	0.004	
Muscaria comosum (L.) Mill.	Bsyla	Bulb	Decoction	100	02	0.002	
Asteraceae							
Artemisia absinthium L.	Chiba	Other combination	Decoction	100	75	0.075	0.038
Cynara humilis L.	Khorchef, Timta	Stem	Raw	94	31	0.031	
Helichrysum italicum (Roth) G. Don	Dahab Eshams	Whole plant	Infusion	100	01	0.001	
Matricaria chamomilla L.	Babunj	Whole plant	Decoction	100	48	0.048	
Ormenis mixta (L.) Dumort	Hellâla	Other combination	Infusion	100	19	0.019	
Scolymus hispanicus L.	Garnina	Rhizome	Infusion	100	50	0.050	
Brassicaceae							
Brassica oleracea f. alba DC	Melfouf, Krub	Leaf	Other	100	07	0.007	0.012
Raphanus sativus L.	Fjel	Whole plant	Decoction	100	46	0.046	
Caryophyllaceae							
Silene vulgaris (Moench) Gareke	Tigheghet	Leaf	Decoction	100	08	0.008	0.084
Crassulaceae							
Umbilicus rupestris (Salisb.) Dandy	Sorrat El Ard	Whole plant	Infusion	100	01	0.001	0.001
Cucurbitaceae							
Bryonia dioica Jacq	Aineb Edib	Root	Decoction	60	05	0.005	0.013
Cucurbita maxima Duchesne	Elgraa Hamra	Flower	Infusion	100	15	0.015	
Cupressaceae							
Capressus sempervirens L.	Zembale, Sarw	Leaf	Infusion	100	01	0.001	0.043
Cyperaceae							
Cyperus rotundus L.	Tara	Whole plant	Decoction	100	01	0.001	0.001

This table represents the inventory of plant species used to treat digestive system disorders by indigenous people of Rif, with columns for Family and scientific name, Vernacular name, Used part, Method of preparation, FL %, FC, RFC, FIV.
Family and scientific name	Vernacular name	Used part	Method of preparation	FL %	FC	RFC	FIV
Fabaceae							
Lupinus angustifolius L.	Shengala, Bozghiba	Whole plant	Decoction	100	01	0.001	0.023
Cassia senna L.	Sna Mekki	Leaf	Decoction	100	05	0.005	
Ceratonia siliqua L.	Salghwa, Kharroub	Fruit	Decoction	100	67	0.067	
Glycyrrhiza glabra L.	Arq Sûs	Root	Infusion	83	36	0.036	
Trigonella foenum-graecum L.	Helba	Seed	Cooked	100	54	0.054	
Vicia benghalensis L.	Jelbanet Lehnouch	Leaf	Decoction	100	01	0.001	
Vicia tenuifolia Roth	Bykya	Whole plant	Infusion	100	01	0.001	
Fagaceae							
Quercus rotundifolia Lam.	Kerrush, Tasaft	Bark	Infusion	100	06	0.006	0.038
Geraniaceae							
Pelargonium capitatum (L.) L’Hér	Laartercha	Leaf	Decoction	100	27	0.027	
Iridaceae							
Iris × germanica L.	Sawsan Almani	Leaf	Other	100	01	0.001	0.001
Juglandaceae							
Juglans regia L.	Guergaâ	Bark	Other	80	05	0.005	
Lamiaceae							
Ocimum basilicum L.	Lhbak	Leaf	Infusion	71	07	0.007	0.056
Origanum majorana L.	Mard’douch	Whole plant	Infusion	65	46	0.046	
Origanum vulgare L.	Zaat Elma	Leaf	Infusion	100	80	0.080	
Thymus satureioides Coss.	Z’îtra, Tazuknit	Leaf	Infusion	100	176	0.176	
Lauraceae							
Cinnamomum zeylanicum Blume	Qarfa	Bark	Infusion	100	11	0.011	0.035
Lythraceae							
Panica granatum L.	Remman	Bark	Decoction	100	53	0.053	0.103
Malvaceae							
Malva hispanica L.	Khobbeyza	Leaf	Decoction	100	04	0.004	0.004
Malva silvestris L.	Bakkula	Leaf	Cooked	100	06	0.006	
Myristicaceae							0.003
Myristica fragrans Houtt	Bsbibissa	Fruit	Cooked	67	03	0.003	
Myrtaceae							0.028
Eugenia caryophyllata Thunb.	Qronfel	Flower	Infusion	100	05	0.005	
Oleaceae							0.020
Olea europea L.	Zaytoun	Leaf	Decoction	100	51	0.051	
Olea europea var. sylvestris* (Mill.) Lehr	Zabbouj	Leaf	Decoction	100	03	0.003	
Piperaceae							0.005
Piper nigrum L.	Ibzar	Seed	Cooked	100	05	0.005	
Plantaginaceae							0.006
Plantago lanceolata L.	Lssan lhamel	Leaf	Cooked	100	06	0.006	
Poaceae							0.015
Cymbopogon citratus (DC.) Stapf	Aoshb Elhamed	Stem	Decoction	100	01	0.001	
Hordeum vulgare L.	Chaîr, Timzine	Seed	Cooked	100	05	0.005	
Phalaris canariensis L.	Hchicht Lkanari	Seed	Decoction	100	01	0.001	
Polygonaceae							0.005
Emex spinosa (L.) Campd.	Houmida	Whole plant	Cooked	100	01	0.001	
Rumex acetosa L.	Houmida	Leaf	Infusion	67	09	0.009	
Rhamnaceae							0.053
Ziziphus lotus (L.) Lam.	Nbeg, Tazart	Seed	Other	62	53	0.053	0.026
Rosaceae							0.001
Prunus armeniaca L.	Mechmach	Leaf	Infusion	100	01	0.001	
3.8 Plant Parts Used in the Study Area

In classical pharmacopeia, various parts of medicinal plants identified particularly the seeds, the leaves, the flowers, the fruits, the roots, or maybe the entire plant are exploited by the indigenous people of Rif. supported the plant structure value (PPV) index, the leaf has been reported because the dominant party within the preparation of the herbal remedy within the study area (PPV = 0.364), followed by seed (PPV = 0.226), whole plant (PPV = 0.097), flower (PPV = 0.073), fruit (PPV = 0.060), root (PPV = 0.051), bulb (PPV = 0.044), other combinations (PPV = 0.034), rhizome (PPV = 0.026), bark (PPV = 0.021), and stem (PPV = 0.006), respectively.

3.9 Method of Preparation and Administration of Plants

Indigenous people in the study area used many methods of preparation. The results showed that the majority of remedies were prepared from decoction (38.6%) and infusion (34%), followed by cataplasm (11.3%) cooked (7.6%) and raw (2.3%). The percentage of the other methods of preparation grouped (maceration, inhalation, fumigation) doesn’t exceed 6.2%. The main solvent with the plant was water, but milk, butter, tea, and honey, cereal oils were also widely used ingredients. The route of administration in this study varies with the type of disease treated and the actual sites of the ailments. The result revealed that herbal medicine was administered through different routes. Generally, the majority of informants prepared remedies were applied mostly by oral (82.4%) followed by massage (6.3%), swabbing (5.2%), other modes of administration (3.4%), and rinsing (2.7%).

4 Discussion

As part of this study, our investigations identified 280 species and subspecies used for medicinal purposes. These medicinal species belong to 204 genera and 70 botanical

Family and scientific name	Vernacular name	Used part	Method of preparation	FL %	FC	RFC	FIV
Prunus persica (L.) Batsch	Khokh	Leaf	Other	100	02	0.002	0.052
Rutaceae							
Ruta montana (L.) L.	Fijel, Iwermi	Root	Decoction	58	12	0.012	
Salicaceae							
Populus alba L.	Selsaf	Leaf	Decoction	100	13	0.013	
Populus nigra L.	Selsaf	Leaf	Decoction	100	01	0.001	
Schisandraceae							
Illicium verum Hook.f	Badiana	Fruit	Infusion	100	04	0.004	
Scrophulariaceae							
Verbascum sinuatum L.	Torah	Flower	Infusion	100	01	0.001	
Solanaceae							
Solanum lycopersicum L.	Maticha	Fruit	Cooked	71	14	0.014	
Solanum melongena L.	Denjal	Fruit	Cooked	60	05	0.005	
Solanum nigrum L.	Buqnîna	Leaf	Infusion	100	01	0.001	
Tamaricaceae							
Tamarix aphylla (L.) H.Karst	Adba	Flower	Infusion	100	02	0.002	
Tamarix gallica L.	Tamimayt	Leaf	Decoction	100	01	0.001	
Tamarix ramosissima Ledeb.	Athel	Other combination	Infusion	100	01	0.001	
Theaceae							
Camellia sinensis (L.) Kuntze	Atây	Leaf	Infusion	100	42	0.042	
Thymelaeaceae							
Thymelaea virginata (Desf.) Endl	Matnane	Whole plant	Infusion	100	32	0.032	
Verbenaceae							
Lantana camara L.	Nabat Oum Kaltoum	Leaf	Decoction	100	01	0.001	
Vitaceae							
Vitis vinifera L.	Aneb, Dalya	Leaf	Infusion	100	17	0.017	
Zingiberaceae							
Curcuma Longa L.	Kharqûm	Rhizome	Decoction	100	16	0.016	
Table 3 Inventory of plant species used to treat respiratory diseases by indigenous people of Rif

Family and scientific name	Vernacular name	Used part	Method of preparation	FL %	FC	RFC	FIV
Aizoaceae							
Mesembryanthemum acinaciforme L.	Bousbayeaa	Leaf	Other	100	01	0.001	0.001
Anacardiaceae							
Schinus molle L.	Foulfol kadib	Fruit	Decoction	100	01	0.001	0.048
Apiaceae							
Thapsia garganica L.	Deryas	Whole plant	Cataplasm	100	02	0.002	0.032
Araliaceae							
Hedera helix L.	Louwaya	Leaf	Cooked	100	02	0.002	0.002
Asteraceae							
Carthamus rhiphaeus Font Quer & Pau	EL Kertam	Whole plant	Decoction	100	05	0.005	0.038
Sonchus oleraceus (L.) L.	Tilfāf	Whole plant	Cooked	100	01	0.001	0.012
Brassicaceae							
Brassica fruticulosa Cirillo	Harchae	Seed	Decoction	100	01	0.001	0.043
Brassica nigra (L.) K.Koch	Khrdal, Bohamo	Leaf	Infusion	100	06	0.006	0.032
Brassica rapa L. *Brassicaceae*	Left Lbeldi	Root	Raw	100	06	0.006	0.001
Brassica rapa var. annua W.D.J.Koch	Left	Leaf	Raw	100	07	0.007	0.001
Lepidium sativum L.	Habb Rchad	Seed	Cooked	100	21	0.021	0.023
Sinapis alba L.	Karkaz	Seed	Cooked	100	01	0.001	0.025
Sinapis arvensis L.	Khardal	Leaf	Cooked	100	01	0.001	
Cupressaceae							0.056
Juniperus oxycedrus L.	Taqqa	Leaf	Infusion	100	12	0.012	0.035
Convolvulaceae							0.028
Cuscuta approximata Bab	Lhamoul	Whole plant	Infusion	100	01	0.001	0.056
Cyperaceae							0.02
Cyperus alternifolius L.	Saad	Whole plant	Infusion	100	01	0.001	0.012
Fabaceae							0.028
Medicago sativa L.	Fessa	Leaf	Decoction	100	05	0.005	0.02
Vicia faba L.	Elfūl, Ibaouèn	Seed	Cooked	100	51	0.051	0.02
Lamiaceae							0.056
Lavandula dentata L.	Lakhzama	Other combination	Infusion	75.5	53	0.053	0.035
Lavandula multifida L.	Kohhyla, Tiguizte	Leaf	Decoction	100	23	0.023	0.028
Lavandula pedunculata (Mill.) Cav	Lakhzama	Leaf	Decoction	100	03	0.003	0.02
Lavandula stoechas L.	Halhal	Leaf	Decoction	100	56	0.056	0.028
Mentha cervina L.	Menta, Nadgh	Whole plant	Infusion	100	11	0.011	0.028
Mentha x citrata Ehrh.	Nana Elmessa	Whole plant	Infusion	100	04	0.004	0.028
Mentha x rotundifolia (L.) Huds	Michichtrou	Leaf	Infusion	49.3	67	0.067	0.028
Mentha suaveolens Ehrh.	Marseta, Timersad	Leaf	Decoction	89	46	0.046	0.028
Lauraceae							0.035
Cinnamomum camphora (L.) J.Presl.	Kafour	Leaf	Infusion	100	02	0.002	0.035
Myrtaceae							0.056
Eucalyptus camaldulensis Dehn.	Kaliūtūs	Leaf	Decoction	60	05	0.005	0.028
Eucalyptus globulus Labill.	Kaliūtūs	Leaf	Cataplasm	93.8	65	0.065	0.028
Oleaceae							0.028
Fraxinus angustifolia Vahl.	Lsan Ettir	Other combination	Infusion	100	06	0.006	0.028
Platanaceae							0.001
Platanus orientalis L.	Delb Machríqi	Bark	Infusion	100	01	0.001	0.028
Poaceae							0.015
Avena sativa L.	Khortal	Seed	Decoction	100	02	0.002	0.015
families that have been used to treat different ailments in the study area. Among plant families, Asteraceae had the greatest number of species (29) followed by Lamiaceae (22 species), Fabaceae, and Poaceae (22 species each). The dominance of Asteraceae and Lamiaceae might reflect a wide variety of active ingredients in the species taxa belonging to these families and their availability, wider distribution, abundance, and richness in the study area. Besides, people of the area have a piece of high knowledge about plants from these families, i.e., they have been using these plants for many generations and hence the members of these plant families are well known to them. Families groups with high species richness most likely contain a great diversity of morphological and chemical properties [35] (flavonoids, alkaloids, saponins, terpenes, coumarins, organosulfur compounds, glycosides, steroids, tannin, mucus, lignans, anthraquinones, aromatic constituents, phenolic lipids, carotenoids, steroids, and), from which potential multiple uses can be derived. These results are in general agreement with previous ethnobotanical inventories which indicated that the most prominent families were Asteraceae, Lamiaceae, Fabaceae, Poaceae, Apiaceae, and Solanaceae [2, 11, 12, 36–40].

Our quantitative analysis showed that the highest RFC was calculated for Rosmarinus officinalis L. (RFC = 0.189), Thymus satureoides Coss. (RFC = 0.176), and Dittrichia viscosa (L.) Greuter. (RFC = 0.165). Several studies about Rosmarinus officinalis L., with biological, pharmacological, and phytochemical approaches have been conducted and indicate anti-proliferative, anti-inflammatory, anti-bacterial, and anti-oxidant healing properties [41–43]. As this plant species is widely distributed in almost all Moroccan regions, including the study area, and is easily spread, it is frequently used and a widely available raw material. According to these results, it is recommended that medicinal species having high RFC values should be further screened in pharmacological, toxicological, phytochemical, and biological activities for any novel molecules or chemicals for treating various ailments. Moreover, these species should also be prioritized for conservation as their preferred uses may place their populations under threat due to over-harvesting. Furthermore, the ethnopharmacological plants with greater values of RFC confirm the fact that these plant species were well accepted to the largest of the autochthonous people [44]. Among the 280 medicinal plants, 86 species were used for the treatment of digestive system diseases, whereas 41 species were used to treat respiratory system diseases, 30 species neurological diseases, 29 species cardiovascular diseases, 29 species metabolic diseases, 27 species genitourinary diseases, 22 species dermatological diseases, and 16 species were used to treat osteoarticular diseases.

The fidelity level (FL) of each species is also evaluated from the available information. It indicates the informant’s choice for each ailment and the potential of the species related to the diseases as well. FL values in this study varied from 45.5% to 100%. The study determined 240 species of plants with an FL of 100%, even without considering plants that were mentioned only once for better accuracy, whereas below FL values are obtained for plant species that are employed for several purposes. This result means that the indigenous people tended to rely on one specific medicinal plant for treating one certain disease than for several illnesses. Consequently, plant species not previously studied and have maximum FL should be recommended for further study related to clinical practice [45].

The diseases treated in the Rif region were classified into 8 ailment categories. The highest ICF values were recorded

Table 3 (continued)

Family and scientific name	Vernacular name	Used part	Method of preparation	FL %	FC	RFC	FIV
Cynodon dactylon (L.) Pers.	N’jem	Rhizome	Infusion	100	02	0.002	0.016
Pontederiaceae	Eichhornia crassipes (Mart.) Solms.	Sounbel	Whole plant	Cooked	100	16	0.016
Ranunculaceae	Nigella sativa L.	Sanûj	Seed	Infusion	100	78	0.078
Lamiaceae	Citrus sinensis (L.) Osbeck	Limoun	Fruit	Other	100	02	0.002
Solanaceae	Mandragora autumnalis Mill.	Bid Al Ghol, Taryâla	Leaf	Other	100	36	0.036
Rutaceae	Styrax officinalis L.	Jawi	Bark	Other	100	05	0.005
Zingiberaceae	Alpinia officinarum Hance	khodenjal	Rhizome	Decoction	100	02	0.002
Elettaria cardamomum (L.) Maton	Qaaqella	Seed	Decoction	100	01	0.001	
Zingiber officinale Roscoe	Skinbir	Rhizome	Infusion	89.6	106	0.106	
Table 4 Inventory of plant species used to treat cardiovascular diseases by indigenous people of Rif

Family and scientific name	Vernacular name	Used part	Method of preparation	FL %	FC	RFC	FIV
Amaranthaceae	*Spinacia oleracea* L	Sabanikh, Selq	Leaf	Raw	100	56	0.056
Amaryllidaceae	*Allium porrum* L	Borro	Bulb	Infusion	100	72	0.072
	Allium sativum L	Touma, Tishert	Bulb	Cooked	100	118	0.118
Apiaceae	*Daucus carota* L	Khizou	Leaf	Decoction	100	102	0.102
Arecaceae	*Phoenix dactylifera* L	Tmar, Tazdayet	Fruit	Other	78	46	0.046
Asteraceae	*Carduus getulus* Pomel	Lssan Maghribi	Leaf	Other	100	01	0.001
	Cynara scolymus L	Lqoq	Whole plant	Decoction	100	09	0.009
Cactaceae	*Opuntia ficus indica* (L.) Mill	Sbar, Zaâboul	Fruit	Infusion	100	01	0.001
Cannabaceae	*Cannabis sativa* L	Lkif	Seed	Cataplasm	100	11	0.011
Dryopteridaceae	*Dryopteris filix-mas* (L.) Schott	Sarkhs Dakar	Leaf	Decoction	100	01	0.001
Fabaceae	*Lens culinaris* Medik	Aaddes	Seed	Cooked	100	48	0.048
	Medicago polymorpha L	Fessa	Whole plant	Decoction	100	14	0.014
	Vicia sativa L	Guersana	Whole plant	Infusion	100	01	0.001
Geraniaceae	*Erodium cicutarium* (L.) L’Hér	Rakma Chokrania	Leaf	Cooked	100	03	0.003
Iridaceae	*Gladiolus italicus* Mill	Dalbout Itali	Leaf	Other	100	01	0.001
Lauraceae	*Laurus nobilis* L	Wrak Sidnamossa, Rend	Leaf	Decoction	89	91	0.091
	Persea gratissima C.F.Gaertn	Avocat	Fruit	Cataplasm	100	35	0.035
Malvaceae	*Hibiscus sabdariffa* L	Karkadé	Leaf	Decoction	100	01	0.001
Poaceae	*Avena barbata* Pott ex Link	Chofan Barri	Whole plant	Raw	100	01	0.001
	Glyceria fluitans (L.) R.Br	Aaima	Whole plant	Other	100	01	0.001
	Hordeum murinum L	Chaair El Firan	Leaf	Infusion	100	01	0.001
	Pennisetum setaceum (Forssk.) Chiov	Dyl Ethaalab	Seed	Decoction	100	01	0.001
	Phragmites communis Trin	Kseb	Root	Infusion	100	74	0.074
	Zea mays L	Dra	Fruit	Decoction	100	08	0.008
Ranunculaceae	*Ranunculus bulbatus* L	Wden Elhallouf	Root	Decoction	100	02	0.002
Rosaceae	*Rubus ulmifolius* Schott	Oualik, Tabgha	Leaf	Raw	100	49	0.049
Rubiaceae	*Galium aparine* L	Lsak	Leaf	Infusion	100	01	0.001
	Rubia peregrina L	Fûwa, Tarubya	Root	Infusion	100	123	0.123
Solanaceae	*Solanum sodomaeum* Dunal	Tfah Lfar	Fruit	Cataplasm	100	07	0.007
for osteoarticular diseases (ICF = 0.983), followed by dermatological diseases (ICF = 0.981), and neurological diseases (ICF = 0.974). The least (0.944) ICF was associated with Respiratory system diseases. Ethnopharmacological studies have shown that in some parts of the world, osteoarticular diseases are a first-use category [7, 46, 47]. Osteoarticular

Family and scientific name	Vernacular name	Used part	Method of preparation	FL %	FC	RFC	FIV
Asparagaceae							
Agave sisalana Perrine	Aloe Vera	Leaf	Cataplasm	100	01	0.001	0.013
Asteraceae							
Anacyclus radiatus Loisel	Far Dahabya	Whole plant	Infusion	100	01	0.001	0.038
Artemisia herba-alba Asso	Chih, Izri	Leaf	Decoction	97.9	95	0.095	
Artemisia mesatlantica Maire	Chih, Izri	Leaf	Decoction	100	01	0.001	
Chrysanthemum coronarium L	Lgahwân, Lgentus	Flower	Infusion	100	63	0.063	
Xanthium spinosum L	Lzik Chouki	Leaf	Decoction	100	01	0.001	
Cucurbitaceae							
Citrullus vulgaris Schrad	Dlah	Leaf	Decoction	100	09	0.009	0.013
Cucumis melo L	Btikh	Leaf	Infusion	100	13	0.013	
Ecballium elaterium (L.) A.Rich	Faggous El Hemar	Fruit	Other	100	02	0.002	
Lagenaria siceraria (Molina) Standl	El garâa-slâwiya	Fruit	Cataplasm	100	05	0.005	0.043
Cupressaceae							
Tetraclinis articulata (Vahl) Mast	El A'râr	Leaf	Infusion	100	81	0.081	0.023
Fabaceae							
Retama monosperma (L.) Boiss	Rtem	Stem	Decoction	100	32	0.032	0.056
Retama raetam (Forssk.) Webb	Rtem	Root	Decoction	75.61	41	0.041	
Lamiaceae							
Marrubium echinatum Ball	Mrywt, Ifzi	Other combination	Cataplasm	100	134	0.134	0.104
Mentha x piperita L	Na'na El-Aabdi	Leaf	Infusion	100	06	0.006	0.013
Mentha pulgium L	Fliyou	Whole plant	Infusion	100	67	0.067	0.001
Mentha spicata L	Na'a Na'a	Whole plant	Infusion	100	23	0.023	0.001
Vitex agnus-castus L	Kharwae	Seed	Infusion	100	15	0.015	0.048
Amaryllidaceae							
Allium cepa L	Bassla, Azalim	Bulb	Cataplasm	51.22	123	0.123	0.013
Asparagaceae							
Asphodelus microcarpus Salzm. & Viv	Lberwag, Inghri	Bulb	Decoction	100	36	0.036	0.001
Nyctaginaceae							
Mirabilis jalapa L	Chob Ellayl	Root	Decoction	100	01	0.001	0.014
Pinaceae							
Cedrus atlantica (Endl.)	Arz	Leaf	Other	100	96	0.096	0.063
Poaceae							
Dactyloctenium aegyptium (L.) Wild	Njem Rjel Djaja	Seed	Decoction	100	08	0.008	0.025
Rubiaceae							
Coffea arbica L	Qahwa	Seed	Decoction	100	65	0.065	0.001
Solanaceae							
Datura stramonium L	Chedak Jmal	Seed	Other	100	02	0.002	0.053
Lycium europaeum L	Haded Europa	Leaf	Cataplasm	100	01	0.001	
Nicotiana glauca Graham	Tembak Berri	Flower	Decoction	100	23	0.023	
Solanum tuberosum L	Batâta	Leaf	Cataplasm	100	78	0.078	
Typhaceae							
Typha angustifolia L	Bot, Kseb	Stem	Other	100	01	0.001	0.053
Verbenaceae							
Aloysia citrodora Palau	Lwiza	Leaf	Infusion	95.24	105	0.105	

for osteoarticular diseases (ICF = 0.983), followed by dermatological diseases (ICF = 0.981), and neurological diseases (ICF = 0.974). The least (0.944) ICF was associated with Respiratory system diseases. Ethnopharmacological studies have shown that in some parts of the world, osteoarticular diseases are a first-use category [7, 46, 47]. Osteoarticular
diseases were prevalent in the study area which can be attributed to the limited availability of hygienic food mineral salts (calcium, magnesium, phosphorus) and vitamins (Vitamin D). Higher rates meant that only a few medicinal plants are used by the interviewees to treat a particular disease. The plants frequently used to treat these disorders might contain active ingredients and thus were well known by locals. It expresses the best consensus between medicinal plants and treated osteoarticular diseases because informants interviewed used specific plant species commonly for

Family and scientific name	Vernacular name	Used part	Method of preparation	FL %	FC	RFC	FIV
Amaranthaceae							
Beta vulgaris L.	Lbarba	Seed	Infusion	100	06	0.006	0.024
Apioaceae							
Ferula communis L.	Lkalkha	Leaf	Decoction	100	04	0.004	0.032
Ridolfia segetum (L.) Moris	Sili	Leaf	Cooked	70.6	17	0.017	
Asteraceae							
Calendula arvensis M.Bieb	Jemra, Azwiwel	Flower	Infusion	100	96	0.096	0.038
Helianthus annuus L.	Abbad Shems	Seed	Infusion	100	21	0.021	
Lactuca sativa L.	Elkhas	Leaf	Infusion	100	22	0.022	
Sonchus asper (L.) Hill	Tifaf	Whole plant	Decoction	100	01	0.001	
Sonchus tenerrimus L.	Tifaf	Leaf	Decoction	48	25	0.025	
Tanacetum vulgare L.	Lbalssem	Leaf	Infusion	52.4	42	0.042	
Brassicaceae							
Anastatica hierochuntica L.	Kaff Mariam	Root	Decoction	80	25	0.025	0.012
Brassica oleracea L.	Karnabite	Leaf	Other	77.8	09	0.009	
Cucurbitaceae							
Citrullus colocynthis (L.) Schrad	Lhdej, Taferzizte	Seed	Infusion	100	09	0.009	0.013
Cucurbita pepo L.	Garaa Khedra	Fruit	Cooked	100	43	0.043	
Cupressaceae							
Juniperus phoenicea L.	Arar Finiqi	Leaf	Decoction	100	79	0.079	0.043
Euphorbiaceae							
Euphorbia peplus L.	Laaya, Haliba	Whole plant	Other	100	01	0.001	0.030
Fabaceae							
Acacia albida Delile	Chok Telh	Root	Decoction	100	02	0.002	0.023
Lupinus pilosus L.	Rjel Djaja	Seed	Infusion	100	07	0.007	
Phaseolus aureus Roxb	Soja	Seed	Decoction	100	02	0.002	
Phaseolus vulgaris L.	Loubya	Seed	Cooked	100	36	0.036	
Lamiaeaceae							
Marrubium vulgare L.	Merriwta Hara, Ifzi	Leaf	Infusion	100	01	0.001	0.056
Rosmarinus officinalis L.	Azir, Yazir	Leaf	Infusion	100	189	0.189	
Salvia officinalis L.	Salmiya	Leaf	Infusion	100	119	0.119	0.065
Linaceae							
Linum usitatissimum L.	Zeri’t El Kettan	Seed	Cooked	100	65	0.065	0.030
Moraceae							
Ficus carica L.	Karmous, Chiha	Leaf	Infusion	70	10	0.010	0.014
Ficus carica var. dottato	Karmous, Chiha	Fruit	Other	100	11	0.011	
Morus alba L.	Ettout	Leaf	Infusion	58.8	68	0.068	
Papaveraceae							
Fumaria officinalis L.	Hchicht Essibyan	Root	Decoction	100	01	0.001	0.005
Portulacaceae							
Portulaca oleracea L.	Rejla, Tasmanine	Leaf	Cooked	100	05	0.005	0.026
Rosaceae							
Malus domestica Borkh	Tûffah	Fruit	Other	100	76	0.076	
osteoarticular diseases. Hence, species with high ICF values show that the plants traditionally used to treat these illnesses are worth exploring for bioactive compounds [48], while low values are associated with many plant species with an almost equal or high use reports suggesting a lower level of

Family and scientific name	Vernacular name	Used part	Method of preparation	FL %	FC	RFC	FIV
Amaranthaceae							0.024
Atriplex halimus L.	Legtef	Leaf	Infusion	100	03	0.003	
Anacardiaceae							0.048
Pistacia lentiscus L.	Drou	Leaf	Infusion	83.5	97	0.097	
Apiaceae							0.032
Conium maculatum L.	Choukran	Leaf	Cataplasm	100	13	0.013	
Petroselinum sativum Hoffm	Maâdrous	Leaf	Decoction	100	109	0.109	
Pimpinella anisum L.	Habbat Hiawa	Seed	Other	100	35	0.035	
Apocynaceae				0.079			
Caralluma europaea (Guss.) N.E.Br	Daghmous	Leaf	Infusion	100	89	0.089	
Aristolochiaceae				0.043			
Aristolochia baetica L.	Berztem	Leaf	Cataplasm	100	43	0.043	
Asteraceae				0.038			
Silybum marianum (L.) Gaertn	Tawra	Seed	Decoction	100	76	0.076	
Boraginaceae				0.014			
Borago officinalis L.	El Hamhem	Flower	Infusion	100	02	0.002	
Caryophyllaceae				0.084			
Arenaria rubra L.	Herras Lehjar	Whole plant	Decoction	53	153	0.153	
Corrigiola telephifolia Pourr	Sarghina	Whole plant	Decoction	100	71	0.071	
Euphorbiaceae				0.030			
Mercurialis annua L.	Hrriyga Lmelsa	Whole plant	Decoction	100	05	0.005	
Fabaceae				0.023			
Cicer arietinum L.	Hommes	Seed	Decoction	83.3	18	0.018	
Lamiaceae				0.056			
Lavandula officinalis Chaix	Lkhzama	Flower	Infusion	45.5	112	0.112	
Marrubium heterocladum Emb. and Maire	Mriwta	Leaf	Decoction	100	01	0.001	
Myrtaceae				0.028			
Myrtus communis L.	Rayhan	Leaf	Decoction	76.8	56	0.056	
Pimenta dioica (L.) Merr	Nwiwira	Fruit	Infusion	100	08	0.008	
Pedaliaceae				0.007			
Sesamum indicum L.	Jenjlane	Seed	Infusion	100	07	0.007	
Poaceae				0.015			
Eleusine indica (L.) Gaertn	Njem	Whole plant	Decoction	100	01	0.001	
Festuca arundinacea Schreb	Aguzmir	Seed	Infusion	100	05	0.005	
Rosaceae				0.026			
Eriobotrya japonica (Thunb.) Lindl	Lemzah	Leaf	Infusion	100	02	0.002	
Rutaceae				0.052			
Citrus ×aurantium L.	Larnej	Flower	Cooked	100	25	0.025	
Citrus limetta Risso	Lhamed Beldi	Fruit	Cooked	100	06	0.006	
Citrus limon (L.) Osbeck	Lhamed	Fruit	Other	100	06	0.006	
Citrus reticulata Blanco	Lmandarine	Fruit	Cooked	100	01	0.001	
Urticaceae				0.028			
Urtica urens L.	Lhurriga	Leaf	Decoction	100	14	0.014	
Zygophyllaceae				0.002			
Tribulus terrestris L.	Ders Elajouz	Whole plant	Cooked	100	02	0.002	
agreement among the informants on the use of these plant species to treat a particular disease category [39].

The Rifain people used many various plant parts for preparing remedies. In our investigation, leaves were the most commonly utilized plant part with PPV = 0.364 application in traditional medicinal remedies, followed by seed (PPV = 0.2263), and whole plant (PPV = 0.097). Many studies conducted elsewhere in other countries also showed the dominance of leaves in the preparation of remedies [1, 2, 4, 37, 49–51]. The reason why leaves and aerial parts were mostly used could be that they are most easily accessible and their richness in secondary metabolites produced by photosynthesis. From the conservation point of view, the use of leaves is sustainable, since, if the withdrawal of aerial parts is not excessive, will not prevent the development and/or reproduction of the plant [52]. In this context, the use of leaves in herbal preparations implies a more sustainable practice but the harvesting of roots (which oftentimes requires uprooting) may result to plant death [53]. On the other hand, collecting leaves has a less detrimental impact on plants compared to the harvesting of roots and stem barks especially where there are no sustainable harvesting strategies in place [54]. Besides, a collection of leaves would be

Table 8 Inventario of plant species used to treat dermatological diseases by indigenous people of Rif

Family and scientific name	Vernacular name	Used part	Method of preparation	FL %	FC	RFC	FIV
Amaranthaceae							
Chenopodium ambrosioides L.	Mklinza	Leaf	Decoction	60.2	93	0.093	0.024
Anacardiaceae							
Rhus pentaphylla (Jacq.) Desf	Tizgha	Leaf	Decoction	60.5	76	0.076	0.048
Araceae							
Arisarum vulgare O.Targ.Tozz	Irni	Whole plant	Decoction	100	14	0.014	0.014
Asparagaceae							
Agave Americana L.	Sabra	Whole plant	Cataplasm	100	82	0.082	0.013
Asteraceae							
Atractylis gummifera Salzm. ex L.	Addad	Whole plant	Other	60	05	0.005	0.038
Dittrichia viscosa (L.) Greuter	Magraman, Terrahla	Leaf	Other	100	165	0.165	
Lactuca virosa Habl	Achehlaf Nssem	Leaf	Other	100	16	0.016	
Sonchus fragilis Ball	Tifaf	Leaf	Cataplasm	100	07	0.007	
Caryophyllaceae							
Silene ibisii Emb. and Maire	Tigheghecht	Whole plant	Decoction	100	105	0.105	0.084
Euphorbiaceae							
Euphorbia falcata L.	Hayat Nofos	Whole plant	Infusion	84.1	63	0.063	
Ricinus communis L.	Kheroua, Uwriwra Krank	Leaf	Infusion	90.2	51	0.051	
Fabaceae							
Acacia raddiana Savi	Talh	Leaf	Decoction	100	19	0.019	
Fagaceae							
Quercus suber L.	Dbagh, Fernan	Bark	Decoction	71.4	70	0.070	
Lythraceae							
Lawsonia inermis L.	Henna	Leaf	Cataplasm	100	154	0.154	
Papaveraceae							
Glaucoma flavum Crantz	Merzak Halabi	Flower	Decoction	100	06	0.006	
Papaver rhoeas L.	Bela’man	Flower	Infusion	100	34	0.034	
Pinaceae							
Pinus pinaster Aiton	Tayda	Bark	Decoction	100	04	0.004	
Pinus sylvestris L.	Sanouber	Bark	Decoction	100	45	0.045	
Poaceae							
Triticum aestivum L.	Lgamh, Farina	Leaf	Infusion	100	14	0.014	
Triticum turgidum L.	Zraa, Irden	Whole plant	Decoction	60	05	0.005	
Solanaceae							
Capsicum annuum L.	Tahmira	Fruit	Cataplasm	100	87	0.087	
Capsicum frutescens L.	Sudaniya, Filfel Har	Fruit	Decoction	100	05	0.005	
Table 9 Inventory of plant species used to treat osteoarticular diseases by indigenous people of Rif

Family and scientific name	Vernacular name	Used part	Method of preparation	FL %	FC	RFC	FIV
Apocynaceae							
Nerium oleander L.	Defla, Alili	Leaf	Decoction	95.2	146	0.146	
Asteraceae							
Anacyclus pyrethrum (L.) Lag	Tiguentest, Ginass	Root	Infusion	100	81	0.081	
Calendula eckerleini Ohle	Jemra	Flower	Cataplasm	100	67	0.067	
Carduus martinezii Pau	Chok Mchaar	Leaf	Decoction	100	91	0.091	
Boraginaceae							
Anchoya italica Retz	Lsan Etthawr	Flower	Infusion	100	26	0.026	
Capparaceae							
Capparos spinosa L.	Kebar, Taglulut	Seed	Infusion	100	73	0.073	
Convolvulaceae							
Convolvulus althaeoides L.	Lablab El hokol	Flower	Decoction	100	63	0.063	
Fabaceae							
Pisum sativum L.	Jelbana	Seed	Cataplasm	100	25	0.025	
Nitrariaceae							
Peganum harmala L.	El Harmel	Seed	Cataplasm	100	53	0.053	
Poaceae							
Agrostis reuteri Boiss	Ziwan Khachabi	Flower	Decoction	85.7	14	0.014	
Bromus squarrosus L.	Amlsikh, Chwira	Leaf	Decoction	75	16	0.016	
Oryza sativa L.	Rûz	Seed	Cooked	94	101	0.101	
Poa annua L.	Kabaa Howli	Leaf	Decoction	100	8	0.008	
Setaria verticillata (L.) P. Beauv	Dayl Eddib	Flower	Cooked	100	17	0.017	
Solanaceae							
Withania frutescens (L.) Pauquy	Ali Amlal, Tayrta	Leaf	Decoction	88.9	45	0.045	
Urticaceae							
Urtica dioica L.	Hriga	Leaf	Cataplasm	100	41	0.041	

Fig. 5 Cultivation of *vicia faba* L. in Izefzafen region

Fig. 6 *Salsola kali* L. in a wasteland of Tizi n Tchin
much easier and sustainable than that of roots or flowers [55].

Concerning the methods of preparation, decoction (38.6%), and infusion (34%), are the most common preparation methods that are used by indigenous people of Rif. The major solvent with the plant was water, but milk, butter, tea, and honey, oils were also extensively used as ingredients. Local people of Rif add honey, sugar, salt, orange peel, banana, or lemon to increase the palatability of a preparation. Moreover, honey is considered sacred to Muslims and occupies an important place in Islamic popular medicine [56, 57]. Indeed, honey is considered an instant energy source and is often used in all parts of the world to improve the acceptability of medicinal plants having a bitter taste unbearable. The decoction is a mostly used method for the preparation of indigenous herbal practices due to its easy preparation by mixing with water or tea [58]. However, the decoction provides assemble the greatest for the active constituents and attenuates or eliminates the toxic effect of some compounds. Decoction and infusion are very valued and often favored by popular healers in Morocco [4, 7, 15, 59, 60]. The predominance of decoction of the different plant species in the Rif is in total agreement with most of the carried out ethnobotanical studies [4, 50, 51, 61–64]. Generally, the main route of application for herbal therapies was oral (82.4%). Furthermore, the oral mode of administration is a preferred route all over the world [10, 14, 36, 38, 39, 65]. The predominance of oral treatment may be explained by a large incidence of internal illnesses in the Rif region. The administration of oral treatment may be defined by a high degree of internal illnesses in the region [66].

5 Conclusions

Our investigation revealed that the use of plant species is playing an essential purpose in satisfying the basic healthcare requirements of the indigenous people residing in the Rif, northern Morocco. In this study, an ethnopharmacological catalog constituted of 280 plant species, belonging to 204 genera in 70 families, has been developed, these results of the study showed that there is a great variety of medicinal plants. The number of medicinal plants recorded for the prevention and therapy of human ailments is a good indicator of the potential that exists locally so long as the scientific procedure is added to the indigenous knowledge in terms of traditional herbal medicine. In light of this, medicinal plants with the most important RFC and FL values were identified could be taken up for further phytochemical, pharmacological, and clinical studies that allow the development of new herbal preparations or formulation of novel drugs addressed to improve the quality of life for treating various human diseases.
Appendix A

Questionnaire sheets: Medicinal plants and herbal medicine

Date:	Region:	Commune:	Survey number:

Informant:

Profession: ...

Sex: Male □ Female □

Age: \(\leq 20 \) □ \{20 - 40\} □ \{40 - 60\} □ \{ \geq 60 \} □

Family situation: Single □ Divorced □ Widower □ Married □

Level of study: Illiterate □ Primary □ Secondary □ University □

Locality: Nomadic □ Town □ Village □ City □

Income / month (MAD): Unemployed □ \{250 - 1500\} □ \{1500 - 5000\} □ \{ \geq 5000\} □

Therapeutic practices:

When you feel sick, you address:

To traditional medicine, why?

- Effective □
- Cheapest □
- Acquisition □
- Ineffective medication □

To modern medicine, why?

- Effective □
- More precise □
- Toxicity of plants □

If it is two that it is the first:

- Traditional medicine □
- Modern medicine □

Vegetal material:

Vernacular name: ...

Scientific Name: ...

Plant Type: Spontaneous □ Cultivated □ Introduced □

Use of the plant: Therapeutic □ Cosmetic □ Other □

Harvesting technique: Manual □ Mechanical □

Harvest Time: Summer □ Fall □ Winter □ Spring □ Any year □

Drug preparation: Plant alone □ Possible association (of plants) □

If association of plants, quote the recipe: ...

Use of the plant: Fresh □ Desiccated □ After treatment □

If desiccated, drying method: Sun exposure □ In the Shade □
Declarations

Conflict of interest We declare that there is never a conflict of interest with any commercial business about the document.

Consent for publication Consent for publication was obtained from participants.

Ethical Approval and Consent to participate The study was authorized by the ethical committee of Ibn Tofail University. Before starting data collection, we obtained oral informed permission in each case on a site level and then individually before each interview. We also informed indigenous people that it was a student academic project and investigation was only for our research purposes, not for any financial or other benefits. Informants provided verbal informed consent to engage in this study; they were free to withdraw their information at any point in time. Those informants have accepted freely the idea and they have consented to have their names and personal data to be published.

Acknowledgments We wish to send our honest thankfulness to all the guides and inhabitants of the Rif region for their help. To all sellers of medicinal plants (Attar). We also extend our acknowledgments to all those who participated in the achievement of this product.

Author contributions NC carried out field research in the Rif, compiled the literature sources, data analysis, Realization manuscript and evaluation, interpretation, and wrote the manuscript, helped in data, and made a substantial contribution to data analysis. AD performed data analysis and drafted the manuscript. LZ designed the research and identification of plant species. All contributors see and confirm the final paper.

Funding This investigation did not receive any particular grant from funding businesses in the public, commercial, or not-for-profit areas.

Availability of supporting data All data collected and analyzed in this paper are included in the article and attached in the form of ‘Appendices’ as additional files. Plant specimens are collected and deposited in Ibn Tofail University, Kenitra, Morocco.
References

1. Dolatkhahi, M.; Dolatkhahi, A.; Nejad, J.B.: Ethnobotanical study of medicinal plants used in Arjan-Parishan protected area in Fars Province of Iran. Avicenna J. Phytomed. 4(6), 402 (2014)
2. Birjees, M.; Ahmad, M.; Zafar, M.; Nawaz, S.; Jehanzeb, S.; Ullah, F.; Zaman, W.: Traditional knowledge of wild medicinal plants used by the inhabitants of Garam Chashma valley, district Chitral. Pakistan Acta Ecol. Sin. (2021). https://doi.org/10.1016/j. chnaes.2020.12.006
3. World Health Organization: WHO traditional medicine strategy: 2014–2023. World Health Organization (2013)
4. Benkhnigue, O.; Zidane, L.; Fadli, M.; Elyacoubi, H.; Rochdi, A.; Douira, A.: Etude ethnobotanique des plantes médicinales dans la région de Meknès. Acta Bot. Barcinonensia 53, 191–216 (2010)
5. Fathia, B.A.; Ouafae, B.; Souad, S.; Jamila, D.; Allal, D.; Lahcen, Z.: Ethnobotany study of medicinal plants used in the treatment of respiratory diseases in the middle region of Oum Rbaï. Int. J. Environ. Agric. Biotechnol. 2(4), 238815 (2017)
6. El Azzouzi, F.; Zidane, L.: La flore médicinale traditionnelle de la région de Béni-Mellal (Maroc). J. Appl. Biosci. 91(1), 8493–8502 (2015)
7. Chaachouay, N.; Benkhnigue, O.; Fadli, M.; El Ayadi, R.; Zidane, L.: Ethnobotanical study of medicinal plants used to treat osteo-articular diseases in the Moroccan Rif, Morocco. J. Pharm. Pharmacogn. Res. 7(6), 454–470 (2019)
8. Saqib, A.A.: Gul, S: Traditional knowledge of medicinal herbs among indigenous communities in Maidan Valley, Lower Dir, Pakistan. Bull. Environ. Pharmacol. Life Sci. 7, 01–23 (2018)
9. Noman, A.; Hussain, I.; Ali, Q.; Ashraf, M.A.; Haider, M.Z.: Ethnobotanical studies of potential wild medicinal plants of Ormara, Gwadar, Pakistan. Emir. J. Food Agric. 2013, 751–759 (2013)
10. Islam, M.K.; Saha, S.; Mahmud, I.; Mohammad, K.; Awang, K.; Uddin, S.J.; Rahman, M.M.; Shilpi, J.A.: An ethnobotanical study of medicinal plants used by tribal and native people of Madhupur forest area, Bangladesh ». J. Ethnopharmacol. 151(2), 921–930 (2014)
11. Mussarat, S.; Amber, R.; Tariq, A.; Adnan, M.; Abdelsalam, N. M.; Ullah, R.; Bibi, R.: Ethnopharmacological assessment of medicinal plants used against livestock infections by the people living around Indus river. BioMed Res. Int. 2014, 1–14 (2014)
12. Ahmad, M.; Sultana, S.; Fazl-i-Hadi, S.; Ben Hadda, T.; Rashid, S.; Zafar, M.; Khan, M.A.; Khan, M.P.Z.; Yaseen, G.: An Ethnobotanical study of Medicinal Plants in high mountainous region of Chail valley (District Swat-Pakistan) ». J. Ethnobiol. Ethnomed. 10(1), 36 (2014)
13. Chaachouay, N.; Benkhnigue, O.; Douira, A.; Zidane, L.; Poisonous medicinal plants used in the popular pharmacopoeia of the Rif, northern Morocco. Toxicon 189, 24–32 (2021)
14. Chaachouay, N.; Benkhnigue, O.; Fadli, M.; El Ibouai, H.: Ethnobotanical and ethnomedical studies of medicinal and aromatic plants used in the treatment of metabolic diseases in the Moroccan Rif. Helinon 10, e02191 (2019)
15. Rhattas, M.; Douira, A.; Zidane, L.: Etude ethnobotanique des plantes médicinales dans le Parc National de Talassentame (Rif occidental du Maroc). J. Appl. Biosci. 97, 9187–9211 (2016)
16. Ouziki, M.; Taïqui, L.: Evaluation exhaustive de la diversité des plantes aromatiques et médicinales de la Péninsule Tingitane (Maroc). Eur. Sci. J. 12, 15 (2016)
17. HCP: Haut-commissariat au plan, Monographie de la région Tanger-Tétouan-Al Hoceima, Direction Régionale de Tanger-Tétouan-Al Hoceima (2018)
18. DMNM: Direction de la Météorologie Nationale, Ministère de l’Équipement, du Transport, de la Logistique et de l’Eau (2018). https://www.marocmeteo.ma
19. Cotton, C.M.; Willkie, P.: Ethnobotany: principles and applications. Wiley, Chichester (1996)
20. Martin, G.J.: Ethnobotany: a methods manual, Vol. 1. Springer, Berlin (2014)
21. Klotoë, J.R.; Dougnon, T.V.; Koudouvo, K.; Atégbo, J.M.; Loko, F.; Akoëgninou, A.; Aklilokou, K.; Dramane, K.; Gbeassor, M.: Ethnopharmacological survey on antihemorrhagic medicinal plants in South of Benin. Eur. J. Med. Plants 3(1), 40 (2013)
22. Kahouadjii, A.: Recherches floristiques sur le massif montagneux des Béni-Snassène (Maroc oriental). PhD Thesis, Montpellier 2 (1986)
23. Sijelsmasi, A.: Les plantes médicinales du Maroc, 3ème édition Fennec. Casablanca Moroc (1993)
24. Valdés, B.: Catalogue des plantes vasculaires du Nord du Maroc, incluant des clés d’identification, vol. 1. Editorial CSIC-CSIC Press (2002)
25. Fennane, M.; Ibn Tattoo, M.; El Oualidi, J.: Flore pratique du Maroc, Dictyotélédones (pp). Monocotélédones. Trav. L’Institut Sci. Rabat Sér. Bot. 40 (2014)
26. Fennane, M.; Tattoo, M. I.; Valdés, B.: Catalogue des plantes vasculaires rares, menacées ou endémiques du Maroc. Herbarium Mediterraneum Panormitanum (1998)
27. Fennane, M.; Tattoo, M. I.; Mathez, J.; Quézel, P.: Flore pratique du Maroc: Manuel de détermination des plantes vasculaires. Pteridophyta, Gymnospermae, Angiospermae (Laureaceae-Neuradaceae). Institut scientifique (1999)
28. Mori, S.A.; Boom, B.M.: de Carvalino, A.: M: Ecological importance of Myrtaceae in an eastern Brazilian wet forest. Biotropica 15(1), 68–70 (1983)
29. Tardío, J.; Pardo-de-Santayana, M.: Cultural importance indices: a comparative analysis based on the useful wild plants of Southern Cantabria (Northern Spain). Econ. Bot. 62(1), 24–39 (2008)
30. Chaachouay, N.; Benkhnigue, O.; Khamar, H.; Zidane, L.: Ethnobotanical study of medicinal and aromatic plants used in the treatment of genito-urinary diseases in the Moroccan Rif. J. Mater. Environ. Sci. 11, 15–29 (2020)
31. Friedman, J.; Yaniv, Z.; Dafni, A.; Palewitch, D.: A preliminary classification of the healing potential of medicinal plants, based on a rational analysis of an ethnopharmacological field survey among Bedouins in the Negev Desert, Israel. J. Ethnopharmacol. 162(2–3), 275–287 (1986)
32. Heinrich, M.; Ankli, A.; Frei, B.; Weimann, C.; Sticher, O.: Medicinal plants in Mexico: Healers’ consensus and cultural importance. Soc. Sci. Med. 47(11), 1859–1871 (1998)
33. Chaachouay, N.; Douira, A.; Zidane, L.: COVID-19, prevention and treatment with herbal medicine in the herbal markets of Salé Prefecture, North-Western Morocco. Eur. J. Integr. Med. 101285 (2021)
34. Salehi, B.; Sharifi-Rad, J.; Quispe, C.; Llaique, H.; Villalobos, M.; Smeriglio, A.; Trombetta, D.; Ezzat, S.M.; Salem, M.A.; Zayed, A.: Insights into Eucalyptus genus chemical constituents, biological activities and health-promoting effects. Trends Food Sci. Technol. 91, 609–624 (2019)
35. Waterman, P.; G: Costs and benefits of secondary metabolites to the Leguminosae. Adv. Legume Syst. 5, 129–149 (1994)
36. Chaachouay, N.; Benkhnigue, O.; Fadli, M.; El Ibouai, H.; El Ayadi, R.; Zidane, L.: Ethnobotanical and ethnopharmacological study of medicinal and aromatic plants used in the treatment of respiratory system disorders in the Moroccan Rif. Ethnobot. Res. Appl. 18, 1–16 (2019)
37. Chaachouay, N.; Zidane, L.: Ethno-medicinal studies on medicinal plants used by people of Rif, Morocco. In 5th International Electronic Conference on Medicinal Chemistry, MDPI (2019)

38. Umair, M.; Altaf, M.; Abbasi, A.M.: An ethnobotanical survey of indigenous medicinal plants in Hafizabad district, Punjab-Pak. PLoS One 12, 6 (2017)

39. Amjad, M.S.; Queem, M.F.; Ahmad, I.; Khan, S.U.; Chaudhari, S.K.; Zahid Malik, N.; Shaheen, H.; Khan, A.M.: Descriptive study of plant resources in the context of the ethn-medicinal relevance of indigenous flora: a case study from Toli Peer National Park, Azad Jammu and Kashmir, Pakistan. PLoS One 12(2), e0171896 (2017)

40. Majeed, M.; Bhatti, K.H.; Amjad, M.S.; Abbasi, A.M.; Bussmann, R.W.; Nawaz, F.; Rashid, A.; Mehmodood, A.; Mahmood, M.; Khan, W.M.: Ethno-veterinary uses of Poaceae in Punjab, Pakistan. PLoS One 15(11), e0241705 (2020)

41. Cheung, S.; Tai, J.: Anti-proliferative and antioxidant properties of rosemary Rosmarinus officinalis. Oncol. Rep. 17(6), 1525–1531 (2007)

42. Oluwatuyi, M.; Kaatz, G.W.; Gibbons, S.: Antibacterial and resistance modifying activity of Rosmarinus officinalis. Phytochemistry 65(24), 3249–3254 (2004)

43. Schwarz K.; Ternes, W: Antioxidative constituents of Rosmarinus officinalis and Salvia officinalis, Z. Für Lebensm.-Unters. Forsch. vol. 195, n° 2, p. 99–103, (1992)

44. Kayani, S.; Ahmad, M.; Zafar, M.; Sultan, S.; Khan, M.P.Z.; Ashraf, M.A.; Hussain, J.; Yaseen, G.: Ethnobotanical uses of medicinal plants for respiratory disorders among the inhabitants of Gallies-Abbottabad, Northern Pakistan. J. Ethnopharmacol. 156, 47–60 (2014)

45. Kadir, M.F.; Sayeed, M.S.; Shams, T.; Mia, M.M.K.: Ethnobotanical survey of medicinal plants used by Bangladeshi traditional health practitioners in the management of diabetes mellitus. J. Ethnopharmacol. 144(3), 605–611 (2012)

46. Idm’hand, E.; Msanda, F.; Cherifi, K.: Ethnobotanical study and biodiversity of medicinal plants used in the Tarfaya Province, Morocco. Acta Ecol. Sin. 40(2), 134–144 (2020)

47. Benitez, G.; González-Tejero, M.R.; Molero-Mesa, J.: Pharmaceutical ethnobotany in the western part of Granada province (southern Spain): ethnopharmacological synthesis. J. Ethnopharmacol. 129(1), 87–105 (2010)

48. Canales, M.; Hernández, T.; Caballero, J.; De Vivar, A.R.; Avila, G.; Duran, A.; Lira, R.: Informant consensus factor and antibacterial activity of the medicinal plants used by the people of San Rafael Coxtcátlan, Puebla, Mexico. J. Ethnopharmacol. 97(3), 429–439 (2005)

49. Chaachouay, N.; Benkhnigue, O.; El Ibraoui, H.; El Ayadi, R.; Zidane, L.: Medicinal plants used for diabetic problems in the Rif, Morocco. Ethnobot. Res. Appl. 18, 1–19 (2019)

50. Ramana, M.V.: Ethno-medicinal and Ethnoveterinary Plants from Boath, Adilabad district, Andhra Pradesh, India. Ethnobot. Leafl. 2008(1), 46 (2008)

51. Abdurhman, N.: Ethnobotanical study of medicinal plants used by local people in Ofa Werea, Southern Zone of Tigray Region Ethiopia. Addis Ababa Univ. MSc Thesis (2010)

52. Ramos, U.F.; Soledade, S.C.; Baptista, E.R.: Utilização de plantas medicinais pela comunidade atendida no programa saúde da família da Pirajá, Belém, PA. Infarma-Ciênc. Farm. 23(5/6), 10–18 (2013)

53. Ong, H.G.; Ling, S.M.; Win, T.T.M.; Kang, D.H.; Lee, J.H.; Kim, Y.D.: Ethno-medicinal plants and traditional knowledge among three Chin indigenous groups in Natma Taung National Park (Myanmar). J. Ethnopharmacol. 225, 136–158 (2018)

54. Asase, A.; Oteng-Yeboah, A.A.; Odamten, G.T.: Simmonds, M.S.: Ethnobotanical study of some Ghanaian anti-malarial plants. J. Ethnopharmacol. 99(2), 273–279 (2005)

55. Offiah, N.V.; Makama, S.; Elisha, I.L.; Makoshi, M.S.; Gotepe, J.G.; Dawurung, C.J.; Oladipe, O.O.; Lohlum, A.S.; Shamaki, D.: Ethnobotanical survey of medicinal plants used in the treatment of animal diarrhoea in Plateau State, Nigeria. BMC Vet. Res. 7(1), 36 (2011)

56. Al-Rawi, S.; Fetters, M.D.: Traditional Arabic and Islamic medicine: a conceptual model for clinicians and researchers. Glob. J. Health Sci. 4(3), 164 (2012)

57. Al-Rawi, S.N.; Khidir, A.; Elnashar, M.S.; Abdelrahim, H.A.; Kilawi, A.K.; Hammoud, M.M.; Fetters, M.D.: Traditional Arabic and Islamic medicine: validation and empirical assessment of a conceptual model in Qatar. BMC Complement. Altern. Med. 17(1), 1–10 (2017)

58. Khan, H.; Khan Abdullah, M.A.: Antibacterial, antioxidant and cytotoxic studies of total saponin, alkaloid and sterols contents of decoction of Joshanda: identification of components through thin layer chromatography. Toxicol. Ind. Health 31(3), 202–208 (2015)

59. Bamuni, J.; Douira, A.: Les plantes médicinales dans la forêt de l’achach (plateau central, Maroc) (2002)

60. Lahissene, H.; Kahouadji, A.; Hseini, S.: Catalogue des plantes médicinale utilisées dans la région de Zaër (Maroc Occidental). Lejeunia Rev. Bot. (2009)

61. Shinwari, S.; Ahmad, M.; Luo, Y.; Zaman, W.: Quantitative analyses of medicinal plants consumption among the inhabitants of Shangla-Kohistan areas in Northern-Pakistan. Pak. J. Bot. 49(2), 725–734 (2017)

62. Chaachouay, N.; Benkhnigue, O.; Zidane, L.: Ethnobotanical study aimed at investigating the use of medicinal plants to treat nervous system diseases in the Rif of Morocco. J. Chiropr. Med. 19(1), 70–81 (2020)

63. Asnake, S.; Teklehaymanot, T.; Hymete, A.; Erko, B.; Giday, M.: Survey of medicinal plants used to treat malaria by Sidama People of Boricha District, Sidama Zone, South Region of Ethiopia. Evid. Based Complement. Alternat. Med. 2016 (2016)

64. Kidane, E.; Gebremedhin, G.; Beyene, T.: Ethnobotanical study of medicinal plants in Ganta Afeshum District, Eastern Zone of Tigray, Northern Ethiopia. J. Ethnobiol. Ethnomed. 14(1), 1–19 (2018)

65. da Miguéis, G.S.; da Silva, R.H.; Damasceno Júnior, G.A.; Guimarães, Y.D.: Ethno-medicinal plants and traditional knowledge among three Chin indigenous groups in Natma Taung National Park (Myanmar). J. Ethnopharmacol. 225, 136–158 (2018)

66. Polat, R.; Satîl, F.: An ethnobotanical survey of medicinal plants in Edremit Gulf (Balıkesir–Turkey). J. Ethnopharmacol. 139(2), 626–641 (2012)