Identification of candidate medicinal herbs for skincare via data mining of the classic Donguibogam text on Korean medicine

Gayoung Cho a,b, Hyo-Min Park b, Won-Mo Jung c, Woong-Seok Cha a,b, Donghun Lee b,d,*, Younbyoung Chae b,c,*

a Department of Medical History, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
b Amore Pacific Research and Development Center, Yongin, Republic of Korea
c Acupuncture & Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
d Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, Seongnam, Republic of Korea

ABSTRACT

Background: Korean cosmetics are widely exported throughout Asia. Cosmetics exploiting traditional Korean medicine lead this trend; thus, the traditional medicinal literature has been invaluable in terms of cosmetic development. We sought candidate medicinal herbs for skincare.

Methods: We used data mining to investigate associations between medicinal herbs and skin-related keywords (SRKs) in a classical text. We selected 26 SRKs used in the Donguibogam text; these referred to 626 medicinal herbs. Using a term frequency-inverse document frequency approach, we extracted data on herbal characteristics by assessing the co-occurrence frequencies of 52 medicinal herbs and the 26 SRKs.

Results: We extracted the characteristics of the 52 herbs, each of which exhibited a distinct skin-related action profile. For example Ginseng Radix was associated at a high level with tonification and anti-aging, but Rehmanniae Radix exhibited a stronger association with anti-aging. Of the 52 herbs, 46 had been subjected to at least one modern study on skincare-related efficacy.

Conclusions: We made a comprehensive list of candidate medicinal herbs for skincare via data mining a classical medical text. This enhances our understanding of such herbs and will help with discovering new candidate herbs.

© 2020 Korea Institute of Oriental Medicine. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

It has been reported that 50% of British consumers prefer cosmetics made with natural ingredients.1 This trend is not limited to the United Kingdom rather, it reflects customer demands for sustainable cosmetics free of harmful chemicals. Natural resources (“folk medicinal herbs”) have long been used as cosmetic ingredients worldwide. Mexicans applied Matricaria chamomilla L. to wounds and skin eruptions, and chamomile was also a popular medicinal plant in England, France, and Belgium.2 In Italy, ointment made from the flowers of the pot marigold was used to treat reddened skin, and lavender macerated in cold water was used to tonify skin.3 Indians mix various herbs including neem (Azadirachta indica A.Juss.) into pastes for skin rejuvenation.4 In South Africa, the leaves of aloe vera (Aloe arborescens Mill.) have been topically applied to wounds and burns, and the roots and leaves of river pumpkin (Gunniera perpensa L.) have been employed to dress psoriasis.5 Many of these plants remain widely used as cosmetic ingredients.

Korean traditional medical books deal extensively with skin remedies and cosmetics; this has aided the Korean herbal cosmetics industry. Goji berries make the face appear youthful, and face-washing with peach blossoms is thought to be beautifying.6 The Korean medical classic, the Donguibogam, also contains a large amount of relevant information. Previous reviews extracted various skin-related prescriptions that were evaluated both in vitro and in vivo in terms of herbal and formulaic efficacies when used as cosmetics or ointments.7 Recently, computer-aided approaches have been used to study Korean traditional medicine.8 The analysis of Donguibogam terms led to the discovery of novel
candidate cognition-enhancing herbs,9,10 candidate anti-aging herbs,11 stroke treatments,12 and prescriptions for Parkinson-type rigidity.13 However, to the best of our knowledge, no study has yet used data mining to comprehensively analyze Donguibogam cosmetic prescriptions.

We found medicinal herbs that were effective for skincare, focusing on previously neglected herbs with novel skin benefits. From there, we assembled a comprehensive list of medicinal herbs with cosmetic potential. Our work both adds to the body of knowledge regarding traditional literature and aids cosmetic companies.

Methods

Skincare-related terms

All prescriptions featuring words associated with the skin were analyzed. Experts in Korean medicine, cosmetics, data science, and medical history decided (G.C., W.M.J, and W.C) on 26 representative skin-related keywords (SRKs) after discussion. The keywords referred to a bodily region (face, skin, scalp, and hair), efficacy (cleaning, moisturizing, whitening, and anti-aging), and usage (cleansers, facial oils, and ointments). We linked the SRKs to five major cosmetic functions (hydration, whitening, tonification, anti-aging, and anti-inflammation) (Table 1). Tonification can be translated as “energy-boosting” embracing the concepts of defense system-boosting and anti-fatigue activity. We considered tonification to be a functional skincare category.

Data collection and pre-processing

We extracted 3,912 compounded prescriptions in which 1,041 herbs appeared 28,183 times. The herb number fell to 1,029 after herbal name pre-processing. Of the 1,029 herbs, we identified 626 present in prescriptions that included at least one of the 26 SRKs. Of these, 322 appeared more than 10 times; we confined our attention to these (Fig. 1).

Data mining

We applied a term frequency-inverse document frequency (tf-idf) weighting scheme to the co-occurrence table.14 We first created a co-frequency table of SRKs and compounded prescriptions. We also prepared a co-frequency table of compounded prescriptions and herbs. The co-frequency table of SRKs and herbs was the dot product of the two co-frequency tables mentioned above. The co-frequencies between herbs and compounded prescriptions were divided by log (1 + the number of herbs in each prescription). Based on the co-frequency table, a tf-idf value for each herb was calculated by assigning the Document descriptor to herbs and the Term descriptor to the SRK categories. The tf-idf value of the category for each herb was L2-normalized.

Statistical analysis

The permutation test was used to reveal significant associations between medicinal herbs and the SRKs. The SRK list of the compounded prescriptions was randomly permuted. The resulting tf-idf values between the herbs and the SRKs were calculated, and the process was repeated 10,000 times to obtain a null distribution of the tf-idf values. P-values were calculated based on the locations of true observations within the simulated null distribution. As the SRK tf-idf values were tested separately for each herb, we corrected for multiple testing using the Benjamini-Hochberg false-discovery rate. The statistical relevance of each SRK was presented as a Z-score calculated using the null distribution from the permutation test.

Results

A total of 52 medicinal herbs were extracted from the Donguibogam

A total of 52 medicinal herbs were significantly linked to the 26 SRKs (tf-idf index p-values <0.05); a color-coded summary is shown in Fig. 2. The SRKs lie on the x-axis and the relevant herbs

No.	SRK	Details	Skincare Function Category
1	Dryness	17 terms describing skin dryness, roughness, cracking, and flaking	Hydration
2	Itchiness	13 terms describing itchiness	
3	Gloss	12 terms describing skin gloss, shine, luster, and sheen	
4	Enrichment	5 terms describing skin fullness, fatness, lusciousness, and substance	
5	Pigmentation	28 terms describing hyperpigmentation, freckles, and age spots	
6	Complexion	35 terms describing skin color and blemishes	
7	Dyspigmentation	6 terms describing dyspigmentation, vitiligo, and pelioma	
8	Rosacea	10 terms describing rosacea	
9	Tonification	22 terms describing an energetic appearance, vitality, a thin-faced impression, and a haggard appearance	
10	Rejuvenation	17 terms describing anti-aging, rejuvenation, and longevity	
11	Wrinkle	3 terms describing skin folds and wrinkles	
12	Scar	3 terms describing scars	
13	Wound adhesion	11 terms describing wound-healing and regeneration	Anti-aging
14	Injury treatment	16 terms describing treatments for various injuries	
15	Exfoliate	12 terms describing skin hyperplasia	
16	Deinsectization	12 terms describing bug bites	
17	Detoxification	toxins or bodily wastes in combination with other SRKs	
18	Purification	7 terms describing body and clothing decontamination	
19	Abscess and carbuncle	6 terms describing abscesses and carbuncles	
20	Miscellaneous	34 terms describing acne, hives, and dermatitis, but not abscesses and carbuncles	
21	Pus	6 terms describing pus formation	Anti-inflammatory
22	Soothing	3 terms describing heat in combination with other SRKs	
23	Pain on skin	pain in combination with other SRKs	
24	Edema	4 terms describing edema	
25	Circulation related to skin	13 terms describing circulation in combination with other SRKs	
26	Numbness	4 terms describing numbness in combination with other SRKs	
are indicated on the y-axis. Herbs exhibiting significant associations with the 26 SRKs are shown in different colors. For example, *Panax ginseng* C.A.Mey. (*Ginseng Radix*) was markedly associated with tonification and anti-aging, but *Rehmannia glutinosa* (Gaertn.) DC. (*Rehmanniae Radix*) was significantly associated with anti-aging only. The medicinal herbs and their associated SRKs are listed in Table 2.

Medicinal herbs related to hydration

Six medicinal herbs were associated with hydration: root of *Notopterygium incisum* K.C.Ting ex H.T.Chang (*Osterici Radix*) \(Z = 4.67\), seed of *Plantago asiatica* L. (*Plantaginis Semen*) \(Z = 3.99\), sclerotium of *Polyporus umbellatus* Fries (*Polyporus*) \(Z = 4.32\), rhizome of *Gastrodia elata* Blume (*Gastrodiae Rhizoma*) \(Z = 4.89\), and fruit of *Schisandra chinensis* (Turcz.) Baill. (*Schisandrae Fructus*) \(Z = 7.36\). Of the six, *Osterici Radix*, *Cinnamomum Ramulus*, *Plantaginis Semen*, *Polyporus*, and *Gastrodiae Rhizoma* were linked to “itchiness” and *Schisandrae Fructus* to “gloss.”

Medicinal herbs related to whitening

Eight medicinal herbs were associated with whitening: *Massa Medicata Fermentata* \(Z = 4.70\), germinated seed of *Hordeum vulgare* L. (*Hordei Sclerotium*), *Cistanches Herba*, *Glycyrrhiza inflata* Benth. (*Glycyrrhizae Radix*), *Atractylodis Rhizoma* \(Z = 4.54\), *Astragali Radix* \(Z = 3.92\), *Ginseng Radix* \(Z = 3.14\), *Rehmanniae Radix* \(Z = 6.87\), *Honeysuckle Berries* \(Z = 6.47\), and *Dioscorea opposita* Thunb. (*Dioscoreae Rhizoma*).
vulgare L. (Hordei Fructus Germinatus) (Z = 4.94), stewing and concentrating material from *Equisetum arvense* L. (Asini Corii Colla) (Z = 5.42), seed of *Dolichos lablab* L. (Dolichoris Semen) (Z = 5.69), rhizome of *Acorus gramineus* Aiton (Acori Graminei Rhizoma) (Z = 6.44), flower of *Chrysanthemum indicum* L. (Chrysanthemi Flos) (Z = 6.89), fruit of *Anomum tsao-ko* Crevois & Lemarié (Amomi Tsao-ko Fructus) (Z = 5.70), and flower of *Inula britannica* L. (Inulae Flos) (Z = 9.03). *Inulae Flos* was the only herb associated with “rosacea.” Both Acori Gramineri Rhizoma and Chrysanthemi Flos were associated with “dyspigmentation.” The other five herbs were associated with “complexion.”

Fig. 2. A color-coded map of the relationships between the 52 herbs and 26 SRKs. We used data mining to reveal the characteristics of 52 herbs mentioned in a classical medical text. Each herb is associated with a different skin-related function. For example, *Ginseng Radix* was highly associated with both tonification and anti-aging, but *Rehmanniae Radix* was associated with anti-aging only.

Medicinal herbs related to tonification

Fifteen medicinal herbs were associated with tonification: *Ginseng Radix* (Z = 3.98), rhizome of *Atractylodes macrocephala* Koidz. (Atractylodis Rhizoma Alba) (Z = 11.44), sclerotium of *Poria cocos* Wolf (Hoelen) (Z = 6.96), rhizome of *Zingiber officinale* Roscoe (Zingiberis Rhizoma) (Z = 8.90), Schisandraceae Fructus (Z = 5.84), processed lateral root of *Aconitum carmichaeli* Debeaux (Aconiti Lateralis Radix Preparata) (Z = 7.13), Massa Medicata Fermentata (Z = 5.17), rhizome of *Dioscorea japonica* Thunb. (Dioscoreae Rhizoma) (Z = 7.76), root of *Polygala tenuifolia* Willd. (Polygalae Radix) (Z = 6.16), root of *Achyranthes bidentata* Blume (Achyranthis Radix)
Medicinal herbs related to anti-aging

Ten medicinal herbs were associated with anti-aging: Ginseng Radix (Z = 4.26), Rehmanniae Radix (Z = 3.63), tuberous root of Ophiopogon japonicus (Thunb.) Ker Gawl. (Liriope Tuber) (Z = 7.05), tuberous root of Asparagus cochinchinensis (Lour.) Merr. (Asparagus Tuber) (Z = 6.64), root of Lycium barbarum L. (Lycii Radicis Cortex) (Z = 5.25), fruit of Lycium barbarum L. or Lycium chinense Mill. (Lycii Fructus) (Z = 4.92), seed of Cuscuta chinensis Lam. (Cuscutae Semen) (Z = 5.98), seed of Nelumbo nucifera Gaertn. (Nelumbinis Semen) (Z = 4.92), fruit of Prunus mume (Siebold & Zucc. (Mume Fructus) (Z = 8.74), and root of Euphorbia kansui S.L.Liou ex S.B.Ho (Euphorbiae Kansui Radix) (Z = 5.22). Mume Fructus was the only herb in the “wrinkle” subgroup; the other herbs belonged to the “rejuvenation” subgroup.

Medicinal herbs related to anti-inflammation

A total of 19 medicinal herbs were associated with anti-inflammatory: rhizome of Cyperus rotundus L. (Cyperi Rhizoma) (Z = 7.22), fruit of Piper longum L. (Piperis Longi Fructus) (Z = 7.35), root of Astragalus membranaceus (Fisch.) Bunge (Astragali Radix) (Z = 2.86), cortex of Magnolia officinalis Rehd & E.H.Wilson (Magnoliae Cortex) (Z = 2.58), cortex of Cinnamomum cassia (L.) Presl (Cinnamomi Cortex) (Z = 2.34), Succinum (Z = 2.08), seed of Alpinia katsumadai Hayata (Alpiniae Katsumadai Semen) (Z = 1.99), seed of Croton tiglium L. (Crotonis Semen) (Z = 2.01), leaf of Perilla frutescens (L.) Britton (Perillae Folium) (Z = 3.10), root of Scutellaria baicalensis Georgi (Scutellariae Radix) (Z = 4.73), Gypsum Fibrosum (Z = 4.05), seed of Prunus persica (L.) Batsch (Persicae Semen) (Z = 3.76), rhizome of Curcuma longa L. (Curcumae Longae Rhizoma) (Z = 4.14), seed of Raphanus sativus L. (Raphani Semen) (Z = 4.58), rhizome of Arisaema amurensis Max. (Arisaematis Rhizoma) (Z = 5.16), fruit of Ziziphus jujuba Mill. (Jujubae Fructus) (Z = 4.50), Atractylodis Rhizoma Alba (Z = 5.14), Aconiti Lateralis Radix Preparata (Z = 5.30), and Amomi Tsaoko Fructus (Z = 7.43).

Cyperi Rhizoma was associated with the term “exfoliate”; Piperis Longi Fructus with “deinsectization”; Atragradi Radix, Magnoliae Cortex, Cinnamomi Cortex, Succinum, Alpiniae Katsumadai Semen, and Crotonis Semen with “abcess”; Perillae Folium with “miscellaneous”; Scutellariae Radix and Gypsum Fibrosum with “soothing”; Persicae Semen and Curcumae Longae Rhizoma with “pain”; Raphani Semen with “edema”; Arisaematis Rhizoma and Jujubae Fructus with “circulation”; and Atractylodis Rhizoma Alba, Aconiti Lateralis Radix Preparata, and Amomi Tsaoko Fructus with “numbness.”

Medicinal herbs related to more than one skincare function

Of the 52 medicinal herbs, six were associated with two skincare functions: Schisandraceae Fructus with hydration and tonification, Massa Medicata Fermentata with whitening and tonification, Amomi Tsaoko Fructus with whitening and anti-inflammation, Atractylodis Rhizoma Alba and Aconiti Lateralis Radix Preparata with anti-inflammation and tonification, and Ginseng Radix with anti-aging and tonification.

Literature review of the efficacies of the 52 candidate herbs

To verify the efficacies of the 52 candidate herbs, we performed a brief literature review. We found at least one example each of reported skincare efficacy for 46 herbs (Table 3). The six exceptions were Aconiti Lateralis Radix Preparata, Aconiti Rhizoma, and the following herbs:

Table 3

The skincare-related functions associated with the 52 candidate medicinal herbs.

No.	Candidate herb	Expected skin-related function	Reported skincare-related efficacy
1	Achyranthis Radix	Tonification	Achyranthes bidentota polysaccharide (ABP) and Lycium barbarum polysaccharide (LB) inhibited nonenzymic glycation in a D-galactose-induced model of mouse aging; ABP was more effective than LB.
2	Aconiti Lateralis Radix Preparata	Tonification, Anti-inflammation	None.
3	Acori Graminei Rhizoma	Whitening	An Acorus gramineus extract inhibited tyrosinase activity and melanin synthesis.
4	Alpiniae Katsumadai Semen	Anti-inflammation	An Alpinia katsumadai Hayata methanol extract reduced house dust mite-induced atopic dermatitis in NC/Nga mice.
5	Alpiniae Officinari Rhizoma	Tonification	An 80% (v/v) aqueous acetone extract from rhizomes of Alpinia officinarum inhibited melanogenesis in mice with theophylline-stimulated murine B16 melanomas.
6	Amomi Tsaoko Fructus	Whitening	Catechins and catechol derivatives from the fruit of Amomum tsao-ko exhibited strong DPPH radical-scavenging and antioxidant activities.
7	Arisaematis Rhizoma	Anti-inflammation	None.
8	Asini Cori Colla	Whitening	* Not an appropriate cosmetic ingredient (safety concerns).
9	Asparagi Tuber	Anti-Aging	None.
10	Astragali Radix	Anti-inflammation	An aqueous extract of Aasparagus cochinchinensis (Lour.) Merr. shoots exhibited strong radical-scavenging capacities in vivo and in vitro.
11	Atractylodis Rhizoma Alba	Tonification, Anti-inflammation	A compound from rhizomes of A. macrocephala inhibited NO production in a dose-dependent manner.
12	Cervi Parvum Cornu	Tonification	A pharmacopuncture solution of Cervi Pantotrichum Cornu inhibited elastase activity and exhibited DPPH free radical-scavenging capacity.
13	Chrysanthemi Flos	Whitening	Methanol and water extracts of Chrysanthemum indicum dose-dependently inhibited mushroom tyrosinase activity; the effects of the methanol extract were similar to those of kojic acid, a well-known tyrosinase inhibitor.
14	Cinnamomi Cortex	Anti-inflammation	Cinnamomum cassia bark that had undergone solid-state fermentation by Phellinus baumii reduced IL-31 expression in DNF-treated C57BL/6 mice.
15	Cinnamomi Ramulus	Hydration	Cinnamomum cassia extract inhibited the development of atopic dermatitis-like skin lesions in NC/Nga mice by suppressing the T-helper 2 cell response.
Table 3 (Continued)

No.	Candidate herb	Expected skin-related function	Reported skincare-related efficacy
16	Cistanches Herba	Tonification	A phenylethanoid-rich extract from *Cistanche desertica* exhibited anti-fatigue activity.
17	Crotonis Semen	Anti-inflammation	Deep facial peeling using a mixture of low concentrations of phenol and croton oil improved wrinkles,
			eyelid tightening, and skin pigmentation.
18	Curcuma longae Rhizoma	Anti-inflammation	A hot-water extract of *Curcuma longa* significantly inhibited UVB-induced increases in tumor necrosis
			factor (TNF-α) and interleukin (IL-1β) at the mRNA and protein levels.
19	Cuscutae Semen	Anti-Aging	An ethanol extract of *Cuscuta chinensis* exhibited antioxidant activity.
20	Cyperi Rhizoma	Anti-inflammation	Valencene (VAL) from *Cyperus rotundus* inhibited TNF-α/IFN-γ-induced activation of NF-κB.
21	Dioscoreae Rhizoma	Tonification	An extract of aerial bulblets of *Dioscorea japonica* Thumb inhibited NF-κB and MAPK signaling in RAW
			264.7 cells.
22	Dolichoris Semen	Whitening	None.
23	Eucommiae Cortex	Tonification	Pretreatment with aucubin from *Eucommia ulmoides* suppressed UVB-induced oxidative stress in the
			HaCat cell line.
24	Euphorbiae kansui Radix	Anti-Aging	*Not an appropriate cosmetic ingredient (safety concerns).*
25	Gastrodiae Rhizoma	Hydration	4-hydroxybenzaldehyde accelerated acute wound-healing via activation of focal adhesion signaling in
			keratinocytes.
26	Ginseng Radix	Tonification	Panax ginseng C.A. Meyer root extract (PGRE) activated the human COL1A2 promoter in a concentration-
			dependent manner.
27	Gypsum Fibrosum	Anti-inflammation	Byakko-ka-ninjin-to (BN) (a prescription composed of the root of *anemarrhena, ginseng, licorice, and rice*)
			inhibited irishness in an NC mouse model of atopic dermatitis.
28	Hoelen	Whitening	Hoelen significantly inhibited melanin synthesis via the inhibition of TRP-2 expression.
29	Hordei Fructus Germinatus	Whitening	A compound isolated from young green barrel (*Hordeum vulgare* L.) inhibited melanin biosynthesis in B16
			melanoma cells.
30	Inulae Flos	Whitening	Sesquiterpenes from *Inula britannica* inhibited melanin synthesis by suppressing tyrosinase expression via ERK and Akt signaling.
31	Jujubae Fructus	Anti-inflammation	An essential oil from *Zizyphus jujuba* inhibited skin inflammation in an animal model.
32	Liriopis Tubi	Anti-inflammation	Application of 0.5% (w/v) retinol, bakuchiol, and *Ophiopogon japonica* root extract cream, and 30%
			(w/v) vitamin C improved skin firmness and reduced wrinkles and hyperpigmentation.
33	Lycii Fructus	Anti-Aging	Mice consuming goji berry (Lycium barbarum) juice were protected from UV radiation-induced skin
			damage via an antioxidant pathway.
34	Lycii Radics Cortex	Anti-Aging	*Lycium barbarum* polysaccharide protected human keratinocytes against UVB-induced photo-damage.
35	Magnoliae Cortex	Anti-Aging	Magnoliae Cortex exerted an anti-inflammatory effect on *Porphyromonas gingivalis*-stimulated RAW 264.7
			cells.
36	Massa Medicata Fermentata	Whitening	*Triticum aestivum* L exerted protective effects in an experimental animal model of chronic fatigue
			syndrome.
37	Morindae Radix	Tonification	*Triticum aestivum* sprout extract attenuated 2.4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions in mice and chemokine expression in human keratinocytes.
			A methanol extract of the roots of *Morinda officinalis* exhibited anti-fatigue effects in mice.
38	Mume Fructus	Anti-Aging	A *Prunus mume* extract exhibited a DPPH free radical-scavenging effect.
39	Nelumbinis Semen	Anti-Aging	Nelumbo nucifera roots protected against UVB-induced wrinkle formation and loss of subcutaneous fat by
			suppressing MCP3, IL-6, and IL-8 expression.
40	Osterici Radix	Hydration	An aqueous extract of Rhizoma notopterygii inhibited contact sensitivity by decreasing cytokine localisation at the inflammation site; the extract also downregulated matrix metalloproteinase (MMP) activity.
41	Perillae Folium	Anti-inflammation	Luteolin from perilla (*Perilla frutescens* L.) inhibited the secretion of inflammatory cytokines including IL-1β and TNF-α from human mast cells.
42	Persicae Semen	Anti-inflammation	Topical or oral administration of peach flower extract attenuated UV-induced epidermal thickening,
			MMP-13 expression, and pro-inflammatory cytokine production in the skin of hairless mice.
43	Piperis Longi Fructus	Anti-inflammation	*Piper longum* extract attenuated melanin production in melanoma B16 cells.
44	Plantagnis Semen	Hydration	Plantamajoside from *Plantago asiatica* inhibited UVB- and advanced glycation end-products-induced
			MMP-1 expression by suppressing the MAPK and NF-κB pathways in HaCat cells.
45	Polygalae Radix	Tonification	*Polygala tenuifolia* extract significantly inhibited HMC-1 cell degranulation and alleviated IMO
			stress-exacerbated atopic dermatitis symptoms by modulating the PKA/p38 MAPK signaling pathway.
46	Polyperus	Hydration	Polyperus exhibited anti-UV activity; this ranked second among 25 herbs evaluated.
47	Raphani Semen	Anti-inflammation	Compounds from *Raphanus sativus* seeds inhibited NO production in lipopolysaccharide-activated BV-2 cells.
48	Rehmanniae Radix	Anti-Aging	Topical application of *Rehmannia glutinosa* extract inhibited mite allergen-induced atopic dermatitis in NC/Nga mice.
49	Schisandrae Fructus	Hydration	Schisandrin from the fruit of *Schisandra chinensis* exhibited anti-inflammatory properties.
			Schisandrin and schisandrin B, the two major lignans of *Schisandra chinensis*, protected HaCat cells from UVB-induced cell death by antagonizing the UVB-mediated production of ROS and induction of DNA damage.
50	Scutellariae Radix	Anti-inflammation	A *Scutellaria baicalensis* 80% (v/v) ethanol extract exhibited anti-allergic effects on inflammationboth in vivo and in vitro.
51	Succinum	Anti-inflammation	None.
52	Zingiberis Rhizoma	Tonification	A clinical trial enrolling 80 postmenopausal women showed that capsules containing 40 mg of *Tribulus terrestris*, 12.27 mg of *Zingiber officinale*, 3 mg of a *Crocus sativus* extract, and 11 mg of *Cinnamomum zeylanicum* improved menopausal symptoms.
Asini Corii Colla, Dolichorh Semen, Euphorbiacee Kausi Radix, and Succinum.

Discussion

We compiled a comprehensive list of candidate medicinal herbs for skincare by analyzing terms employed in the Donguibogam and identified the characteristics of 52 such herbs using SRKs. Each herb exhibited a different skincare function. Our findings will guide the development of new skincare products via experimental and clinical studies.

The Donguibogam is the most important classical text on medicinal practices in East Asia. A systematic search using data mining was productive. Nineteen-seven candidate anti-aging herbs were identified through the data mining process, and 47 of those were selected for further analysis. Ten herbs listed in the Donguibogam have been used to treat Parkinson-like rigidity. Combinations of 13 herbs have been used to treat stroke. Additionally, 14 of 23 herbs that enhance cognition have been evaluated experimentally and clinically. In the current study, we found 52 skincare herbs and reviewed the modern literature for reports regarding these herbs. Recently, 46 herbs had been bio-medicinally evaluated in terms of skincare or related effects.

We prepared a list of herbs that had been subjected to efficacy testing. Some known efficacies were confirmed. For example, Ginseng Radix and Lycii Fructus were reported to exert anti-aging effects. Most reports studied skin cells in vitro or in vivo, and evidence of dermal efficacy was also evaluated. For example, Scutellariae Radix was associated with anti-inflammatory (a data-mining keyword) activity, and an 80% (v/v) ethanol extract of Scutellaria baicalensis exhibited anti-allergic effects both in vivo and in vitro. Nelumbinis Semen exerts an anti-aging effect, and Nelumbo nucifera leaf protects against UBV-induced wrinkle formation. Only six herbs have not been recently evaluated in terms of skin effects: Aconiti Lateralis Radix Preparata, Arisaematis Rhizoma, Asini Corii Colla, Dolichorh Semen, Euphorbiaceae Kausi Radix, and Succinum. Notably, four of these (Aconiti Lateralis Radix Preparata, Arisaematis Rhizoma, Crotonis Semen, and Euphorbiaceae Kausi Radix) are widely known to be toxic. Our approach affords a novel understanding of unknown medicinal characteristics of herbs used for skincare and will help in the identification of new skincare candidates.

Of the 52 candidate medicinal herbs, six were associated with two skincare functions. In Western medicine, one medicine is typically prescribed to treat a specific disease, whereas herbal mixtures are used in traditional East Asian medicine. Natural products exert their therapeutic effects by acting on multiple targets. A multi-component multi-target approach lies at the core of medicinal herb pharmacology. The different bodily perceptions of the East and West may render it difficult to integrate groups of skin-active herbs. In this sense, our first achievement was to define functional terms associated with skincare. We classified SRKs not by specific disease names, but rather on a holistic basis (in terms of affected bodily parts, functions, and applications). The candidate herbs and prescriptions were thus functionally defined, enhancing our understanding of the potential benefits of these herbs. Herbal functions and characteristics can then be quantitatively compared. We believe that our novel approach will aid the development of natural ingredients.

Natural products have been invaluable as a source of therapeutic agents. An herbal formula is not just addition of individual herbs, and it can produce greater effect than the sum of its individual constituents. Toxicity of toxic ingredients can be reduced and new active compounds can be more effective by combination formulas. Under the paradigm of network pharmacology, combinations of multiple compounds can exert their therapeutic effects by acting on multiple targets. The most frequently used medicinal herb combinations can constitute a candidate group for the development of a new prescription for universal application. The ancient practice of combining multiple drugs in prescription formulas can provide us a practical guide for the development of the cosmetic ingredient for skincare. Further studies are necessary to identify multiple target components of the medicinal herbs by applying network pharmacological analysis.

Our work had several limitations. First, we studied the Donguibogam only: this is an encyclopedic narrative, and we did not review all classical texts. Second, because skincare-related terms were established by expert consensus, some subjectivity is inevitable. However, the experts sought to make objective judgments by consulting various references. Third, the functions of prescriptions featuring several herbs became those of single herbs. The proportions of individual herbs in prescriptions were not considered.

In summary, we used data mining to identify the characteristics of 52 medicinal herbs, by applying SRKs when analyzing the content of a classical medical text. Further in-depth experimental studies are needed, though our work reduces the time required for future experimentation and product development. Our results enhance the understanding of the previously unknown characteristics of medicinal herbs used for skincare and facilitate the discovering additional novel herbs.

Author contributions

Gayoung Cho: Conceptualization, Validation, Formal analysis, Writing - original draft. Hyo-Min Park: Methodology, Writing - original draft. Won-Mo Jung: Methodology, Software, Formal analysis, Visualization. Woong-Seok Cha: Methodology, Data curation. Donghun Lee: Validation, Investigation, Data curation, Writing - review & editing. Younbyoung Chae: Conceptualization, Investigation, Resources, Writing - review & editing, Supervision, Project administration, Funding acquisition.

Conflict of interest

The authors declare no conflict of interest.

Funding

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2018R1D1A1B07042313)

Ethical statement

This research did not involve any human or animal experiment.

Data availability

The data will be made available upon reasonable request.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.imr.2020.100436.

References

1. Lin Y, Yang S, Hanifah H, Iqbal Q. An exploratory study of consumer attitudes toward green cosmetics in the UK market. Adm Sci 2018;8:1–14.
Phytother by Environ 2018;24(7):733–40.

Lee, YJ, Choi, SJ, Park, SJ, Lee, YS, et al. Advanced chemical peels: Fenil-crotonolitum oel. J Acad Dermatol 2019;81(1):327–36.

Adasada R, Ohara T, Muroya K, Yamamoto Y, Muroskis S. Effects of hot water extract of Scutellaria longa on human epidermal keratinocytes in vitro and in situ conditions in healthy participants: A randomized, double-blind, placebo controlled trial. J Cosmet Dermatol 2019;18(6):1666–74.

Yen FL, Wu TH, Lin LT, Cham TM, Lin CC. Concentration between antioxidant activities and flavonol contents in different extracts and fractions of Cuscuta chinensia. Chem Food 2008;108(2):455–62.

Choi CJ, Lee JH, Jung YS. (+)-Nootkatein inhibits tumor necrosis factor alpha/interferon gamma-induced production of chemokines in HaCaT cells. Int Immunopharmacol 2016;42:254–61.

Park JE, Cho HM, Yoon YH, Choi YJ, Shin HK, Baek JU. Cognitive-enhancing herbal formula in korean medicine: Identification of candidates by text mining and literature review. J Altern Complement Med 2016;22(5):413–8.

Patel M, Kim YR, Kim HN, et al. Studies on medicinal herbs for cognitive enhancement based on the text mining of Dongeupogon and preliminary evaluation of its effects. J Ethnopharmacol 2016;179:383–90.

Choi MJ, Choi BT, Shin HK, Shin BC, Han YK, Baek JU. Establishment of a comprehensive list of candidate antiaging medicinal herbs used in korean medicine by the screening of classical korean medicine literature: dongeupogon and preliminary evaluation of the antiaging effects of these herbs. Evid Based Complement Alternat Med 2015:2015:873185.

Yun BC, Pae SB, Han YK, et al. An analysis of the combination frequencies of constituent medicinal herbs in prescriptions for the treatment of stroke in korean medicine: Determination of a group of candidate prescriptions for universal use. Evid Based Complement Alternat Med 2016;2016:2674014.

Park JY, Hwang YJ, Park SH, Shin HK, Baek JU, Choi BT. Herbal prescriptions and medicinal herbs for parkinson-related rigidity in korean medicine: Identification of candidates using text mining. J Altern Complement Med 2018;24(7):733–40.

Kurokawa A. An information-theoretic perspective of tf-idf measures. Inf Process Manag 2003;39(1):45–65.

Lee J, Jung E, Lee J, et al. Panax ginseng induces human type I collagen synthesis through activation of Smad signaling. J Ethnopharmacol 2007;109(1):29–34.

Reeves C, Alixan Y, Ebslow J, et al. Double-blind, placebo-controlled study examining drinking goji berry juice (Lycurbarium barbarum) are protected from UV radiation-induced skin damage via antioxidant pathways. Photochem Photobiol Sci 2010;9(4):601–7.

Jung HS, Kim MH, Kang HK, Baek JU, Choi BT. Herbal prescriptions and medicinal herbs for parkinson-related rigidity in korean medicine: Identification of candidates using text mining. J Altern Complement Med 2012;14(1):345–9.

Park KM, Yoo JY, Ryu S, Lee SH. Nelumbo Nucifera leaf protects against UVB-induced wrinkled formation and loss of subcutaneous fat through suppression of MCP-1, IL-6 and IL-8 expression. J Photochem Photobiol B 2016;161:211–6.

Lee WY, Lee CY, Kim YS, Kim CE. The methodological trends of traditional herbal medicine employing network pharmacology. Biomolecules 2019;9(8).

Lee TY, Hwang Y, Kwon H, Kim K, Park K. Identification of combination and modular characteristics of herbs for aloe vera treatment in traditional Chinese medicine: An association rule mining and network analysis study. BMC Complement Altern Med 2016;16(1):224.

Jia W, Gao WY, Yan YQ, et al. The rediscovery of ancient Chinese herbal formulas. Phytother Res 2004;18(8):681–6.

Sucher NJ. The application of Chinese medicine to novel drug discovery. Expert Opin Drug Discov 2013;8(1):21–34.

Deng HB, Cui DP, Jiang JM, Feng YC, Cai NS, Li DD. Inhibiting effects of Achyranthes bidentata polysaccharide and Lycium barbarum polysaccharide on nonenzymatic glycation in D-galactose induced mouse aging model. Biomed Environ Sci 2003;16(1):267–75.

Hwang JH, Lee BM. Inhibitory effects of plant extracts on tyrosinase, L-DOPA oxidation, and melanin synthesis. J Toxicol Environ Health A 2004;67(10):839–54.

Lim HS, Seo CS, Ha H, et al. Effect of Alpinia katsumadai Hayata on house dust mite-induced atopic dermatitis in NC/Nga mice. Evid Based Complement Alternat Med 2012;2012:705167.

Matsumoto H, Nakamura S, Oda Y, Nakamura S, Yoshikawa M. Melanogenesis inhibitors from the rhizomes of Alpinia officinarum in B16 melanoma cells. Bioorg Med Chem 2009;17(16):6048–53.

Lei L, Ou L, Yu X. The antioxidant effect of Asparagus cochinchinensis (Lour.) Merr. shoot in 2,4-dinitrochlorobenzene induced mice aged model in vitro. J Chin Med Assoc 2016;79(4):205–11.

Kim BH, Oh I, Kim JH, et al. Anti-inflammatory activity of compounds isolated from Polygonum multiflorum L. in cytokine-induced keratinocytes and skin. Exp Mol Med 2014;46:e87.

Yao CM, Yang XW. Bioactivity-guided isolation of polycytelines with inhibitory activity against NO production in LPS-activated RAW264.7 macrophages from the rhizomes of Atractylodes macrocephala. J Ethnopharmacol 2014;151(2):791–9.

Lee JH, Lee KM, Kim JS, Jung TY, Lim SC. Anti-wrinkle effects of Cervi Pantotrichum Cornucomorphacuneptex extract. J Acupunct Res 2010;27:1–8.

Choi KT, Kim JH, Cho HT, Lim SS, Kwak SS, Kim YJ. Dermatological evaluation of cosmetic formulations containing Chrysanthemum indicum extract. J Cosmet Dermatol 2015;16(2):182–6.

Shin YK, Son HU, Kim JM, Heo JC, Lee SH, Kim JMG. Cinnamonum cassia bark produced by solid-state fermentation with Phellinus baumii has the potential to alleviate atopic dermatitis-related symptoms. Int J Mol Med 2015;35(1):187–94.

Sung YY, Yoon T, Jang JY, Park SJ, Jeong GH, Kim HK. Inhibitory Effects of Cinnamomum cassia bark extract on atopic dermatitis-like skin lesions induced by mitogen activated protein kinase signaling pathway in RAW264.7 cells. Arch Pharm Res 2015;38(2):261–8.

Cai RL, Yang MH, Yi SH, Chen JY, Li YC. Qi Y. Antifatigue activity of phenylethanoid rich extract from Cistanche deserticola. Phytother Res 2010;24(2):313–5.

Wambua V, Ng C, Lee KC, Soon SL. Advanced chemical peels: Fenil-crotonolitum oel. J Acad Dermatol 2019;81(1):327–36.

Asada K, Kohara T, Muroya K, Yamamoto Y, Muroskis S. Effects of hot water extract of Curcuma longa on human epidermal keratinocytes in vitro and in situ conditions in healthy participants: A randomized, double-blind, placebo controlled trial. J Cosmet Dermatol 2019;18(6):1666–74.

Yen FL, Wu TH, Lin LT, Cham TM, Lin CC. Concentration between antioxidant activities and flavonol contents in different extracts and fractions of Cuscuta chinensia. Chem Food 2008;108(2):455–62.
59. Kim KS, Kim JA, Eom SY, Lee SH, Min KR, Kim Y. Inhibitory effect of piperlonguminine on melanin production in melanoma B16 cell line by downregulation of tyrosinase expression. Pigment Cell Res 2006;19(1):90–8.

60. Han Ar, Nam Mh, Lee Kw. Plantamajoside inhibits UVB and advanced glycation end products-induced MMP-1 expression by suppressing the MAPK and NF-kappaB pathways in HaCaT cells. Photochem Photobiol 2016;92(5):708–19.

61. Sur B, Lee B, Yoon YS, et al. Extract of Polygala tenuifolia alleviates stress-exacerbated atopy-like skin dermatitis through the modulation of protein kinase a and p38 mitogen-activated protein kinase signaling pathway. Int J Mol Sci 2017;18(1).

62. Kato T, Hino S, Horie N, et al. Anti-UV activity of Kampo medicines and constituent plant extracts: Re-evaluation with skin keratinocyte system. In Vivo (Brooklyn) 2014;28(4):571–8.

63. Kim KH, Kim CS, Park YJ, et al. Anti-inflammatory and antitumor phenylpropanoid sucrosides from the seeds of Raphanus sativus. Bioorg Med Chem Lett 2015;25(1):96–9.

64. Sung YY, Yoon T, Jang JY, Park SJ, Kim HK. Topical application of Rehmannia glutinosa extract inhibits mite allergen-induced atopic dermatitis in NC/Nga mice. J Ethnopharmacol 2011;134(1):37–44.

65. Guo LY, Hung TM, Bae KH, et al. Anti-inflammatory effects of schisandrin isolated from the fruit of Schisandra chinensis Baill. Eur J Pharmacol 2008;591(1-3):293–9.

66. Hou W, Gao W, Wang D, Liu Q, Zheng S, Wang Y. The protecting effect of Deoxyschisandrin and schisandrin B on HaCaT cells against UVB-Induced damage. PLoS One 2015;10(5):e0127177.

67. Taavoni S, Ekbatani NN, Haghani H. Effect of Tribulus terrestris, ginger, saffron, and Cinnamomum on menopausal symptoms: A randomised, placebo-controlled clinical trial. Prz Menopauzalny 2017;16(1):19–22.