The Association Between Maternal Subclinical Hypothyroidism and Growth, Development, and Childhood Intelligence: A Meta-analysis

Yahong Liu1, Hui Chen2, Chen Jing3, FuPin Li4

1The Second Hospital of Lanzhou University, Department of Pediatrics, Lanzhou, Gansu, China
2The Second Hospital of Lanzhou University, Department of Endocrinology, Lanzhou, Gansu, China
3Nanfang College of Sun Yat-sen University Faculty of Health and Nursing, Guangzhou, Guangdong, China
4Gansu Provincial Maternity and Childcare Hospital, Lanzhou, Gansu, China

What is already known on this topic?
Thyroid hormone plays an important role in the differentiation, development and maturation of tissues. Insufficiency or lack of thyroid hormones during pregnancy have a negative effect on fetal neurological and intellectual development. Many studies suggest that hypothyroidism in pregnancy can increase the risk of adverse outcomes of pregnancy. To this date, there is no established consensus on routine screening for subclinical hypothyroidism in pregnant women due to lack of credible evidence.

What this study adds?
Our meta-analysis showed that maternal subclinical hypothyroidism in pregnancy is associated with an increased risk of several adverse neonatal outcomes. Thus, it is necessary to assess thyroid function in pregnant women and intervene when necessary. Because of the high methodological quality of the included trials, our data provide supportive evidence for initiating further investigations.

Abstract

Objective: To explore the association between maternal subclinical hypothyroidism (SCH) in pregnancy and the somatic and intellectual development of their offspring.

Methods: Using RevMan 5.3 software, a meta-analysis of cohort studies published from inception to May 2017, focusing on the association between maternal SCH in pregnancy and childhood growth, development and intelligence, was performed. Sources included the Cochrane Library, Pub-Med, Web of Science, China National Knowledge Infrastructure and Wan Fang Data.

Results: Analysis of a total of 15 cohort studies involving 1,896 pregnant women with SCH revealed that SCH in pregnancy was significantly associated with the intelligence (p = 0.0007) and motor development (p < 0.00001) of the offspring. SCH was also significantly associated with the child’s weight in four studies involving 222 women (p = 0.02). Maternal SCH in pregnancy was identified as a risk factor for fetal growth restriction with a combined relative risk (RR) value of 2.4 [95% confidence interval (CI): 1.56, 3.7]. Meta-analysis of 10 studies that provided numbers of preterm infants revealed a significant association between maternal SCH in pregnancy and premature delivery, with a combined RR of 1.96 (95% CI: 1.34, 2.88). There was a significant effect of maternal SCH in pregnancy on fetal distress in utero (p = 0.003).

Conclusion: Maternal SCH in pregnancy is associated with increased risk of adverse neonatal outcomes, including delayed intellectual and motor development, low birth weight, premature delivery, fetal distress and fetal growth restriction.

Keywords: Gestation, subclinical hypothyroidism, child development, meta-analysis
Introduction

Thyroid hormone (TH) promotes growth via its effect on protein synthesis. It also plays an important role in differentiation, development and tissue maturation (1). TH is essential for brain cell proliferation. Prior to gestational week 20, TH-dependent brain development fully or partly depends on maternal TH (2,3). Many studies provide evidence that hypothyroidism in pregnancy may increase the risk of adverse outcomes, including premature delivery, low birth weight (LBW), fetal demise and disrupted neurological/intellectual development of the fetus (4,5,6). Subclinical hypothyroidism (SCH) is defined as an elevated serum thyroid stimulating hormone (TSH) level in the context of normal triiodothyronine (T3) and tetraiodothyronine (T4) levels (7,8,9). Presence of SCH in pregnancy can be expected to have adverse effects on the growth and development of the fetus. In one survey, there was a higher incidence of maternal SCH in pregnancy (11.3%) compared with clinical hypothyroidism in pregnancy (2.4%) (10). Intelligence quotient scores in the offspring of women with untreated SCH were lower than those of the children of normal pregnant women (11). Currently, there is no consensus regarding routine SCH screening in pregnant women, owing to lack of credible evidence. Although many studies have investigated the effects of maternal SCH on childhood growth, development and intelligence level, the results have not been uniform. We therefore thought it would be worthwhile to conduct this meta-analysis of published studies to provide evidence-based research on the effects of maternal SCH on the growth, development and intelligence of the offspring.

Methods

This meta-analysis was based on the reports of domestic and international cohort studies that evaluated the effects of maternal SCH in pregnancy on childhood growth, development and intelligence. Only peer-reviewed articles published in English and Chinese were included in the analysis. The analysis only included studies on women with SCH in pregnancy with singleton fetuses. All subjects, apart from having SCH, were otherwise healthy. Maternal SCH was defined as having a serum TSH level higher than the upper limit of pregnancy-specified reference value (the 97.5th percentile of normal) and a serum free thyroxine (FT4) level within normal range (between 2.5th to 97.5th percentiles of normal value) (12) or a TSH level between 2.5 and 10 mIU/L and a normal FT4 level according to the definition established by the American Thyroid Association (13). All analyses were based on previous published studies, thus no ethical approval and patient consent are required.

We evaluated the following outcomes: growth; development and intelligence levels of the child (including growth, cognition and intelligence) measured by intelligence tests such as the Bayley Scales or the Gesell Scales. The Bayley Scales of Infant Development is one of the most psychometrically valid measurements for examining mental and psychomotor development in 1 to 30 months-olds. This test consists of a mental scale (163 items) and a psychomotor scale (81 items) used to assess cognitive development, including visual performance function, memory, first verbal outcomes and fine and gross motor development. Age at assessment-adjusted raw scores were centered to a mean of 100 with a standard deviation of 15 to calculate index scores (mental and psychomotor scores). Gesell Scales can reflect the development level of children from five aspects: gross motor quotient; fine motor quotient; adaptive behavior quotient; individual social behavior quotient; and language quotient. Birth weight (BW); LBW (≤2500 g); premature birth (<37 weeks gestation); intrauterine distress (variably defined); and fetal growth restriction (IUGR, variously defined) were also considered in the analysis.

The following studies were excluded: studies which included pregnant women treated with thyroxine; studies that did not include pregnant women with normal thyroid function as controls; non-cohort studies; publications containing duplicate data from the same study; studies for which the full text was not available; studies published only as abstracts; studies that did not provide initial data and did not respond to our requests for more information; and studies with inconsistent data.

Cochrane Library, Pub-Med, Web of Science, China National Knowledge Infrastructure and Wan Fang Data were searched from the inception of each database to May 2017 for relevant studies. Search words in Chinese included: pregnancy, gestation, SCH, growth and development, intelligence; search words in English included pregnancy, pregnancies, gestation, SCH, cognition, growth, intelligence, premature birth, premature delivery, premature labor, preterm delivery, preterm birth, preterm labor, fetal distress, intrauterine distress, fetal growth restriction. As an example, the specific search strategy for Pub-Med is shown in Table 1.

Two investigators worked independently to screen articles according to the inclusion and exclusion criteria. Disagreements were resolved by discussion with a third reviewer, also an expert in the field. Extracted data included authors, year of publication, sample size, gestational age...
at screening, intelligence score, BW, preterm delivery, intrauterine distress and fetal growth restriction.

The quality of selected studies was assessed independently by two investigators, using the Newcastle-Ottawa Scale (NOS) for cohort studies. The highest NOS score was 9 points, and consisted of the following three aspects: the definition and selection of subjects in the case and control groups (0-4 points); the comparability between study groups (0-2 points); and determination of exposure factors (0-3 points). A paper that scored ≥7 points or more was considered “high-quality”.

Statistical Analysis

Meta-analysis was performed with Rev Man software (edition 5.3). Qualitative and quantitative analyses were performed, and 95% confidence intervals (CI) (95% CI) were calculated. Heterogeneity analysis was performed with the I² test. Meta-analysis was performed with a fixed effect model for studies without heterogeneity (I² < 50%), and a random effect model for studies with heterogeneity (I² ≥50%) after data combination (14). Descriptive analysis only was conducted for clinical trials with data not suitable for meta-analysis. Effect size was represented as relative risk (RR) for categorical variables and as standard mean difference for continuous variables, with 95% CI.

Results

A total of 1,176 articles were identified with the prespecified search strategy. Ultimately, 15 articles were included in the analysis after step-by-step screening (5,10,15,16,17,18,19,20,21,22,23,24,25,26,27). The screening flow chart is shown in Figure 1.

Basic characteristics and quality evaluation of included studies:

Of the 15 studies included, nine (5,10,15,16,17,18,19,20,21) were published in English and the remaining six were published in Chinese. A total of 1,896 patients met the inclusion criteria and were included in the study, with 37,968 controls. Fetal intrauterine distress was reported in five studies (17,19,20,22,27). The number of premature infants in various groups was reported in 10 studies (5,10,15,16,19,22,26,27). Neonatal BW was reported in four studies (10,19,24,26). The number of LBW neonates was reported in seven studies (5,15,17,20,21,22,27). Childhood intelligence was measured at age 12 to 30 months in three studies (18,24,25). In this meta-analysis, we chose cohort studies with high methodological quality. The principal characteristics and NOS scores are displayed in Table 2 and 3.

Maternal SCH in pregnancy and child intellectual and motor development:

Because child intelligence and motor ability develop as children mature, studies with children of similar age were included in this meta-analysis (Table 4). In these three studies, the age range was 12 to 30 months. Intellectual and motor development were measured by Bayley Scales. The intellectual and motor development level of the children were compared between the SCH group and the control group. A fixed effect model was used because of the heterogeneity among studies (p=0.17, I²=47%). There was a significant association between maternal SCH in pregnancy and child intellectual development (MD = -6.08, 95% CI: -9.57 to -2.58, p=0.0007) and child motor development (MD = -7.29, 95% CI: -10.50 to -4.28, p < 0.00001).

The association between maternal SCH and BW:

Data on BW were provided in four studies. The meta-analysis of these four studies revealed moderate heterogeneity (p = 0.11, I²=50%). Thus, a fixed effect model was used. We found a significant effect of maternal SCH in pregnancy on BW (MD = -0.27, 95% CI: -0.44 to -0.11, p = 0.001) (Figure 2).

The association between maternal SCH and LBW:

Data on LBW were provided in seven studies. We found moderate heterogeneity among them (I²=58%). Thus, a random-effect model was used. Maternal SCH was a risk factor for LBW.

Table 1. PubMed search strategy

search strategy
#1 Pregnancy OR pregnancies OR gestation
#2 Subclinical hypothyroidism
#3 #1 AND #2
#4 Cognition OR growth OR intelligence
#5 Premature birth OR premature delivery OR premature labor
#6 Preterm delivery OR preterm birth OR preterm labor
(combined RR: 1.78, 95% CI: 1.04-3.07, p = 0.04). Figure 3A shows the association between maternal SCH and LBW. We also made a funnel plot as shown in Figure 3B. The funnel plot of this study is asymmetrical, indicating that there may be a publication bias.

The association between maternal SCH and fetal growth restriction: Data on fetal growth restriction was provided in three studies. The meta-analysis of these studies demonstrated a significant correlation between maternal SCH and fetal growth restriction, with no heterogeneity among results ($I^2=0\%$). Thus, a fixed-effect model was used and determined a combined RR of 2.4 (95% CI (1.56, 3.7), p<0.0001), as shown in Figure 4.

The association between maternal SCH and fetal intrauterine distress: Data on fetal distress were provided

Author	Year	Country	SCH definition	SCH/normal (N)	GW	Outcomes
Ajmani et al (15)	2014	India	TSH > 2.5 mIU/mL, FT$_4$ normal	36/347	13-26	C D F
Casey et al (16)	2005	USA	TSH > 97.5th percentile, FT$_4$ $<$ 0.680 ng/dL	404/16894	<20	D
Chen et al (18)	2015	China	TSH > 97.5th percentile, FT$_4$ normal	106/106	12-24	A
Chen et al (17)	2014	China	TSH > 97.5th percentile, FT$_4$ normal	371/7641	10-17	C E F
Cleary-Goldman et al (5)	2008	USA	TSH > 97.5th percentile, FT$_4$ 2.5th-97.5th	240/10021	10-13	C D
Sahu et al (19)	2010	India	TSH > 5.5 mIU/mL, FT$_4$ normal	41/552	13-26	B D E
Saki et al (10)	2014	Iran	TSH > 97.5th percentile, FT$_4$ normal	66/497	15-28	B D F
Su et al (20)	2011	China	TSH > 95th percentile, FT$_4$ normal	41/845	\leq20	C D E
Wang et al (21)	2012	China	TSH > 2.5 mIU/mL, FT$_4$ normal	168/542	\leq12	C D
Xia et al (24)	2015	China	TSH > 3.5 mIU/mL, FT$_4$ normal	65/56	\leq12	A B
Li et al (23)	2015	China	TSH > 5.12 mIU/mL, FT$_4$ normal	50/51	\leq12	A
Li (27)	2016	China	TSH > 2.5 mIU/mL, FT$_4$ normal	200/150	38-41	C D E
Chen and Gao (22)	2013	China	TSH > 2.5 mIU/mL, FT$_4$ normal	40/60	unknown	C D E
Li et al (25)	2008	China	TSH > 4.2 mIU/mL, FT$_4$ normal	18/176	16-20	A
Wan and Chen (26)	2013	China	TSH > 2.5-10 mIU/mL, FT$_4$ normal	50/50	5-20	B D

SCH: subclinical hypothyroidism, GW: gestational weeks, TSH: thyroid stimulating hormone, FT$_4$: tetraiodothyronine

Outcomes: A: intelligence and growth; B: birth weight; C: low birth weight; D: preterm labor; E: intrauterine distress; F: fetal growth restriction

Figure 2. The forest plot of relative risk and 95% confidence interval of pooled studies comparing pregnant women with subclinical hypothyroidism to euthyroid pregnant women for risk of birth weight

SD: standard deviation, CI: confidence interval

Figure 3A. The forest plot of relative risk and 95% confidence interval of pooled studies comparing pregnant women with subclinical hypothyroidism to euthyroid pregnant women for risk of low birth weight

CI: confidence interval

Figure 3B. The funnel plot of pooled studies comparing pregnant women with subclinical hypothyroidism to euthyroid pregnant women for risk of low birth weight

RR: relative risk
Author	Representativeness of exposed cohort	Selection of the non-exposed cohort	Ascertainment of exposure	Demonstration that outcome of interest was not present at start of study	Comparability of cohorts on the basis of the design or analysis	Assessment of outcome	Was follow-up long enough for outcomes to occur	Adequacy of follow up of cohorts
Ajmani et al, 2014 (15)	Somewhat representative	Same community	Secure record	Yes	Study controls for maternal age and BMI study does not control for additional factors	Record linkage	Yes	Complete follow-up
Casey et al, 2005 (16)	Somewhat representative	Same community	Secure record	Yes	Study controls for maternal age	Record linkage	Yes	Complete follow-up
Chen et al, 2015 (18)	Somewhat representative	Same community	Secure record	Yes	Study controls for maternal age	Record linkage	Yes	Complete follow-up
Chen et al, 2014 (17)	Somewhat representative	Same community	Secure record	Yes	Study controls for maternal age	Record linkage	Yes	Complete follow-up
Cleary-Goldman et al, 2008 (15)	Somewhat representative	Same community	Secure record	Yes	Study controls for maternal age	Record linkage	Yes	Lost to follow-up unlikely to introduce bias
Sahu et al, 2010 (19)	Somewhat representative	Same community	Secure record	Yes	Study control for weight and age	Record linkage	Yes	Lost to follow-up rate > 20%, and no description of those lost
Saki et al, 2014 (10)	Somewhat representative	Same community	Secure record	Yes	Study does not control for additional factors	Record linkage	Yes	Complete follow-up
Su et al, 2011 (20)	Somewhat representative	Same community	Secure record	Yes	Study control for age	Record linkage	Yes	Complete follow-up
Wang et al, 2012 (21)	Truly representative	Same community	Secure record	Yes	Study does not control for additional factors	Record linkage	Yes	Lost to follow-up unlikely to introduce bias
Xia et al, 2015 (24)	Somewhat representative	Same community	Secure record	Yes	Study control for age	Record linkage	Yes	Complete follow-up
Li et al, 2015 (23)	Somewhat representative	Same community	Secure record	Yes	Study control for age	Record linkage	Yes	Complete follow-up
Li, 2016 (27)	Somewhat representative	Same community	Secure record	Yes	Study control for age	Record linkage	Yes	Complete follow-up
Chen and Gao, 2013 (22)	Somewhat representative	Same community	Secure record	Yes	Study control for age	Record linkage	Yes	Complete follow-up
Li et al, 2008 (25)	Somewhat representative	Same community	Secure record	Yes	Study control for age	Record linkage	Yes	Complete follow-up
Wan and Chen, 2013 (26)	Somewhat representative	Same community	Secure record	Yes	Study control for age	Record linkage	Yes	Complete follow-up

BMI: body mass index
Meta-analysis of Maternal Subclinical Hypothyroidism and Child Development

Liu Y et al.

J Clin Res Pediatr Endocrinol
2018;10(2):153-161

Table 4. Pooled relative risk with 95% confidence interval comparing pregnant women with subclinical hypothyroidism to pregnant euthyroid women

Outcomes	I^2	p	Pooled RR [95%CI]	Studies
MDI	47%	0.0007	-6.08 [-9.57~-2.58]	(18,24,25)
PDI	47%	<0.00001	-7.29 [-10.30~-4.28]	(18,24,25)
BW	50%	0.001	-0.27 [-0.44~-0.11]	(10,19,24,26)
LBW	58%	0.04	1.78 [1.04-3.07]	(5,15,17,20,21,22,27)
Preterm labor	61%	0.0006	1.96 [1.34-2.88]	(5,10,15,16,19,20,21,22,26,27)
IUGR	0%	<0.0001	2.4 [1.56-3.7]	(10,15,17)
Fetal distress	20%	0.003	1.66 [1.19-2.31]	(17,19,20,22,27)

RR: relative risk, MDI: Mental Developmental Index, PDI: Psychomotor Developmental Index, BW: birth weight, LBW: low birth weight, IUGR: intrauterine growth restriction, CI: confidence interval

The association between maternal SCH and premature delivery: Data on the number of preterm and term infants were provided in ten studies. Meta-analysis of these studies revealed moderate heterogeneity ($I^2 = 61\%$). Thus, a random-effect model was used and demonstrated a combined RR of 1.96 [95% CI (1.34, 2.88), $p = 0.0006$].

Discussion

TH is an important hormone in human metabolism throughout the whole lifespan. It is a particularly important
factor for brain development and corporal growth in the fetus. The first stage of the fetal brain growth-spurt occurs during the first and second trimesters of pregnancy. At this time TH is provided to the fetus mainly from transplacental delivery of THs (mainly T₄), because fetal thyroid follicular epithelial cells are immature and cannot yet synthesize TH during the first 12 weeks of pregnancy (3). An insufficient supply of maternal THs during this period can cause significant and irreversible neurodevelopmental defects. Vulsma et al (28) showed that the umbilical cord level of T₄ in fetuses with congenital hypothyroidism due to a total organification defect or thyroid agenesis was 50% to 60% that of normal fetuses, suggesting that maternal input of T₄ continues until birth. Therefore, brain development during late pregnancy is driven by both fetal and maternal THs. Deficient maternal THs in late pregnancy can cause neurodevelopmental defects, although the effect may not be as serious as the impact of maternal thyroid deficiency during the first trimester of pregnancy. Children of pregnant women with overt hypothyroidism were found to have a lower level of physical and intellectual development, as well as a lower level of responsiveness to external stimuli compared with children of pregnant women with normal thyroid function (4,5,6). It is unclear whether the same effect is true for children of women with SCH. Some investigators speculate that although women with SCH may have normal FT₄ levels, the increased TSH suggests these women need higher TH levels to ensure fetal development (29). Currently, overt hypothyroidism in pregnancy is an indication for TH replacement therapy. For women with SCH, however, it remains unclear whether TH supplementation would improve the developmental status of the child. Some investigators believe that thyroxine treatment would ameliorate adverse pregnancy outcomes, and other investigators believe the contrary (30,31). Our meta-analysis suggests that SCH is associated with delayed child intellectual and motor development, but the follow-up time of studies included in this meta-analysis was only up to two years of age, thus the impact of maternal SCH in the long-term was not investigated.

T₃ and T₄ promote the growth of long bones and teeth by stimulating the development of ossification centers. In addition, THs enhance glycogenolysis and inhibit glycogen synthesis by enhancing intestinal glucose absorption as well as by increasing glucose use by peripheral tissues. Thus, TH deficiency is a risk factor for fetal growth restriction and for LBW, both of which are risk factors for unsatisfactory neurological, motor, and intellectual development (2,32,33). Ohashi et al (34) reported a probability of 25% for fetal growth restriction in pregnant women with abnormal thyroid function and a probability of 16.25% for fetal growth restriction in pregnant women with SCH. Our study showed a 2.4-fold risk increase for fetal growth restriction in pregnant women with SCH as compared to pregnant women with normal thyroid function and a 1.78-fold risk for LBW. These results are consistent with those reported by Leung et al (35).

Zhang (36) reported a 6.62 - 7.86% incidence of abnormal thyroid function, SCH being the most common abnormality, prior to gestational week 20 in women without a previous history or family history of thyroid disease. SCH in pregnancy may be asymptomatic but, nevertheless, can negatively affect fetal neurodevelopment. Therefore, screening for thyroid abnormalities should be performed in the first trimester of pregnancy and if the TSH shows an abnormal level, more attention should be paid to the growth and development of the fetus. Some authors suggest that screening for SCH in pregnancy may be a cost-effective strategy in a wide range of circumstances (37). The effect of the intervention depends on the timing during gestation. Therefore, we suggest that there is an urgent need for large-scale, randomized trials to measure the intelligence of children whose mothers with SCH who were treated with thyroxine during pregnancy versus normal children in theory, it should also be compared with non-intervention group, but this does not sound ethical to us, we may only be able to verify it in animal experiments.

Some studies suggest that SCH or elevated TSH in pregnancy result in premature delivery (15,38,59) while other studies reached contrary conclusions (10,19). Our meta-analysis showed that maternal SCH is associated with premature delivery. Maraka et al (14) also published a meta-analysis, showing that SCH during pregnancy is associated with multiple adverse maternal and neonatal outcomes. The effect of levothyroxine therapy in preventing these adverse outcomes remains uncertain. It is therefore necessary to do a large-scale trial to assess the value of levothyroxine therapy. In this study different TSH strata should be explored to identify the optimal treatment threshold, where the benefits of levothyroxine use outweigh the risks (40).

Study Limitations

The selection bias was small in this study due to a review of a vast literature and strict adherence to pre-specified inclusion and exclusion criteria. However, every meta-analysis has limitations. In our study, we did not take into account the effects of anti-thyroid antibodies, including antithyroglobulin antibodies and anti-thyroid peroxidase antibodies. As a result, we might have underestimated the effect of maternal SCH on growth and development or...
intelligence level. In addition, the studies included in our analysis did not provide data on family economic status, parental education level, or the environment. All of these may be confounding factors affecting child development. Also, measurement methods and measuring instruments varied across the studies included in our analysis. This, too, might have affected the results.

Our meta-analysis suggests that maternal SCH is associated with fetal growth restriction, impaired intellectual and motor development, LBW, premature delivery and fetal distress. Therefore, more extensive screening for thyroid function during or even prior to pregnancy may be especially important for improved outcomes. We speculate that TH supplementation may promote normal fetal development and may prevent adverse pregnancy outcomes. As this is only speculation, large-scale randomized trials are needed.

Conclusion

Our meta-analysis showed that maternal SCH in pregnancy is associated with an increased risk of several adverse neonatal outcomes. Thus, it is necessary to assess thyroid function in pregnant women and intervene when necessary. Because of the high methodological quality of the included trials, our data provide supportive evidence for initiating further investigation. Additional cohort studies including large numbers of participants are needed to guide future investigation.

Acknowledgments

This work was supported by grants from the Gansu Province Health Department (grant number: GWGL201332). We gratefully acknowledge the help of our colleagues in The Second Hospital of Lanzhou University.

Ethics

Ethics Committee Approval: All analyses were based on previous published studies, thus no ethical approval is required.

Informed Consent: All analyses were based on previous published studies, thus no patient consent are required.

Peer-review: Externally peer-reviewed.

Authorship Contributions

Concept: Hui Chen, Design: Hui Chen, Data Collection or Processing: Yahong Liu, Fupin Li, Analysis or Interpretation: Yahong Liu, Chen Jing, Literature Search: Yahong Liu, Chen Jing, Writing: Yahong Liu.

Financial Disclosure: This work was supported by grants from the Gansu Province Health Department (grant number: GWGL201332).

References

1. Ross-Flanigan N. Thyroid hormones. Encyclopedia of Medicine, 2001.
2. Lipper E, Lee K, Gartner LM, Grellong B. Determinants of neurobehavioral outcome in low-birth-weights infants. Pediatrics 1981;67:502-505.
3. Calvo RM, Jauniaux E, Gubisa B, Asuncion M, Contempe B, Morreale de Escobar G. Fetal tissues are exposed to biologically relevant free thyroxine concentrations during early phase of development. J Clin Endocrinol Metab 2002;87:1768-1777.
4. Pop VJ, Brouwers EP, Vader HL, Vulsma T, van Baar AL, de Vijlder JJ. Maternal hypothyroxinaemia during early pregnancy and subsequent child development: a 3-year follow-up study. Clin Endocrinol (Oxf) 2003;59:282-288.
5. Clearly-Goldman J, Malone FD, Lambert-Messerlian G, Sullivan L, Canick J, Porter TF, Luthy D, Gross S, Bianchi DW, D’Alton ME. Maternal thyroid hypofunction and pregnancy outcome. Obstet Gynecol 2008;112:85-92.
6. Zhong XM, Wu JL. Clinical analysis on maternal hypothyroidism during pregnancy. Med J West China 2008;20:604-605.
7. Zhang Y, Fan Y, Yu X, Wang X, Bao S, Li J, Fan C, Shan Z, Teng W. Maternal subclinical hypothyroidism impairs neurodevelopment in rat offspring by inhibiting the CREB signaling pathway. Mol Neurobiol 2015;52:432-441. Epub 2014 Sep 6
8. Wang S, Teng W, Gao Y, Fan C, Zhang H, Shan Z. Early levothyroxine treatment on maternal subclinical hypothyroidism improves spatial learning of offspring in rats. J Neuroendocrinol 2012;24:841-848.
9. Liu D, Teng W, Shan Z, Yu X, Gao Y, Wang S, Fan C, Wang H, Zhang H. The effect of maternal subclinical hypothyroidism during pregnancy on brain development in rat offspring. Thyroid 2010;20:909-915.
10. Saki F, Dabbaghmanesh MH, Ghaemi SZ, Forouhari S, Ranobar Omrani G, Bakhsheyeshkaram M. Thyroid function in pregnancy and its influences on maternal and fetal outcomes. Int J Endocrinol Metab 2014;12:e19378.
11. Haddow JE, Palomaki GE, Allan WC, Williams JR, Knight GJ, Gagnon J, O’Heir CE, Mitchell ML, Hermos RJ, Waisbren SE, Faix JD, Klein RZ. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. New Engl J Med 1999;341:549-555.
12. Lu XM, Chen LM, Yang H, Du WJ,Lin H,Ye EL,Zhan AX,Feng WL. Trimester specific reference data and variation of thyroid hormones for normal pregnancy. J Med Res 2012;41:70-73.
13. Stagnaro-Green A, Abalovich M, Alexander E, Azizi F, Mestman J, Negro R, Nixon A, Pearce EN, Soldin OP, Sullivan S, Wiersinga W; American Thyroid Association Taskforce on Thyroid Disease During Pregnancy and Postpartum. Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and postpartum. Thyroid 2011;21:1081-1125. Epub 2011 Jul 25
14. Maraka S, Ospina NM, O’Keeffe DT, Espinosa De Ycaza AE, Gionfriddo MR, Erwin PJ, Coddington CC 3rd, Stan MN, Murad MH, Montori VM. Subclinical Hypothyroidism in Pregnancy: A Systematic Review and Meta-Analysis. Thyroid 2016;26:580-590. Epub 2016 Mar 3
15. Ajmani SN, Aggarwal D, Bhatia P, Sharma M, Sarabhai V, Paul M. Prevalence of overt and subclinical thyroid dysfunction among pregnant women and its effect on maternal and fetal outcome. J Obstet Gynaecol India 2014;64:105-110. Epub 2013 Dec 1
16. Casey BM, Dashe JS, Wells CE, McIntire DD, Byrd W, Leveno KJ, Cunningham FG. Subclinical hypothyroidism and pregnancy outcomes. Obstet Gynecol 2005;105:239-245.
17. Chen LM, Du WJ, Dai J, Zhang Q, Si GX, Yang H, Ye EL, Chen QS, Yu LC, Zhang C, Lu XM. Effects of subclinical hypothyroidism on maternal...
and perinatal outcomes during pregnancy: a single-center cohort study of a Chinese population. Plos One 2014;9:e109364.
18. Chen LM, Chen QS, Jin GX, Si GX, Zhang Q, Ye EL, Yang H, Cai LQ, Peng MM, Lin ZZ, Yu LC, Zhang C, Lu XM. Effect of gestational subclinical hypothyroidism on early neurodevelopment of offspring. J Perinatol 2015;35:678-682. Epub 2015 Jun 18
19. Sahu MT, Das V, Mitral S, Agarwal A, Sahu M. Overt and subclinical thyroid dysfunction among Indian pregnant women and its effect on maternal and fetal outcome. Arch Gynecol Obstet 2010;281:215-220. Epub 2009 May 13
20. Su PY, Huang K, Hao JH, Xu YQ, Yan SQ, Li T, Xu YH, Tao FB. Maternal thyroid function in the first 28 weeks of pregnancy and subsequent fetal and infant development: a prospective population-based cohort study in China. J Clin Endocrinol Metab 2011;96:3234-3241. Epub 2011 Aug 10
21. Wang S, Teng WP, Li JX, Wang WW, Shan ZY. Effects of maternal subclinical hypothyroidism on obstetrical outcomes during early pregnancy. J Endocrinol Invest 2012;35:322-325. Epub 2011 May 31
22. Chen G, Gao YY. The effect of subclinical hypothyroidism on fetal growth and pregnancy outcomes. Chinese Journal of Woman and Child Health Research 2013;24:698-700.
23. Li JN, Zhao YC, He L, Gao XL, Wang XR, Xie Y. Influence of subclinical hypothyroidism in pregnancy on the intellectual development of their offspring and analysis of Levothyroxine intervention. Journal of China Medical University 2015;44:64-67.
24. Xia Y, Zhou YH, Zong DT, Han L, Li X, Chen FH. Impact of mental thyroid dysfunction in offspring by maternal thyroid autoimmunity and subclinical hypothyroidism in pregnancy. Journal of Clinical and Experimental Medicine 2015;14:670-672.
25. Li YB, Teng WP, Shan ZY, Zhang L, Zhao YR, Yu XH, Li YS, Wang WW, Zhao YJ, Hua TY, Yang L, Fan CL, Wang H, Guo R. Effect of maternal subclinical thyroid abnormalities on offspring’s intellectual development. Chinese Journal of Endocrinology and Metabolism 2008;24:601-604.
26. Wan Y, Chen Z M. Effect of subclinical hypothyroidism on pregnancy and its outcome. Modern Medicine Journal of China 2013;15:67-68.
27. Li JM. Analysis of pregnancy outcome of pregnant women with subclinical hypothyroidism during pregnancy. Jilin Medical Journal 2016;37:1304-1306.
28. Vulsma T, Gons MH, de Vijlder JJ. Maternal fetal transfer of thyroid in congenital hypothyroidism due to a total organification defect or thyroid agenesis. N Engl J Med 1989;321:13-16.
29. Poppe K, Glinoer D. Thyroid autoimmunity and hypothyroidism before and during pregnancy. Hum Reprod Update 2003;9:149-161.
30. Lazarus JH, Bestwick JP, Shannon S, Paradies R, Maina A, Rees R, Chiusano E, John R, Gualaldo V, George LM, Perona M, Dall’Armo D, Parkes AB, Joomun M, Wald NJ. Antenatal thyroid screening and childhood cognitive function. N Engl J Med 2012;366:493-501.
31. Casey BM, Thom EA, Peaceman AM, Varner MW, Sorokin Y, Hirtz DG, Reddy UM, Wapner RJ, Thorp JM Jr, Saade G, Tita AT, Rouse DJ, Sibai B, Iams JD, Mercer BM, Tolosa J, Caritis SN, VanDorsten JP; Eunice Kennedy Shriver National Institute of Child Health and Human Development Maternal–Fetal Medicine Units Network. Treatment of subclinical hypothyroidism or hypothyroxinemia in pregnancy. N Engl J Med 2017;376:815-825.
32. Leitner Y, Fattal-Valevski A, Geva R, Esbel R, Toledano-Alhadef H, Rotstein M, Bassan H, Radianu B, Bitchonsky O, Jaffa AJ, Harel S. Neurodevelopmental outcome of children with intrauterine growth retardation: a longitudinal, 10-year prospective study. J Child Neurol 2007;22:580-587.
33. Fattal-Valevski A, Leitner Y, Kuita M, Tal-Posener E, Tomer A, Lieberman D, Jaffa A, Many A, Harel S. Neurodevelopmental outcome in children with intrauterine growth retardation: a 3-year follow-up. J Child Neurol 1999;14:724-727.
34. Ohashi M, Furukawa S, Michikata K, Kai K, Sameshima H, Ikeneou T. Risk Based Screening for Thyroid Dysfunction during Pregnancy. J Pregnancy 2013;619718. Epub 2013 Mar 27
35. Leung AS, Millar LK, Koonings PP, Montoro M, Mestman JH. Perinatal outcome in hypothyroid pregnancies. Obstet Gynecol 1995;81:349-353.
36. Zhang XL. Clinical Epidemiology Research of Thyroid Disease during Pregnancy. The academic dissertation of Capital Medical University 2013.
37. Thung SF, Funai EF, Grobman WA. The cost-effectiveness of universal screening in pregnancy for subclinical hypothyroidism. Am J Obstet Gynecol 2009;200:267. Epub 2008 Dec 27
38. Stagnaro-Green A, Chen X, Bogden JD, Davies TF, Scholl TO. The thyroid and pregnancy: a novel risk factor for very preterm delivery. Thyroid 2005;15:351-357.
39. Korevaar TI, Schalekamp-Timmermans S, de Rijke YB, Visser WE, Visser DJ, Meulen Keizer-Schrama SM, Hofman A, Ross HA, Jaddoe VW, Tiemeier H, Bongers-Schokking JJ, Hofman A, Ross HA, Hooijkaas H, Hofman A, Ross HA, Hoo