Abstract

CPU scheduling has valiant effect on resource utilization as well as overall quality of the system. Round Robin algorithm performs optimally in timeshared systems, but it performs more number of context switches, larger waiting time and larger response time. The devised tool "OMDRRS" was utilized to simulate the four algorithms (FCFS, SJF, ROUND ROBIN & Proposed Dynamic Round Robin Algorithm) utilizing either manual entered process with burst time as well as system generated processes with randomly generated burst time. In order to simulate the behavior of various CPU scheduling algorithms and to improve Round Robin scheduling algorithm using dynamic time slice concept, in this paper we produce the implementation of new CPU scheduling algorithm called An Optimum Multilevel Dynamic Round Robin Scheduling (OMDRRS), which calculates intelligent time slice and warps after every round of execution. The results display the robustness of this software, especially for academic, research and experimental use, as well as proving the desirability and efficiency of the probabilistic algorithm over the other existing techniques and it is observed that this OMDRRS projects good performance as compared to the other existing CPU scheduling algorithms.

References
Simulation of an Optimum Multilevel Dynamic Round Robin Scheduling Algorithm

- Silberschatz, Abraham and Galvin, P. and Gagne G., Operating System Concepts (8th edition, India: Wiley, 2012), 12-13
- F. Sabrina et al., "Processing resource scheduling in programmable networks," Computer communication (2005):676-687
- Rakesh Kumar Yadav et. al., "An Improved Round Robin Scheduling Algorithm for CPU scheduling," International Journal on Computer Science and Engineering (2010): 1064-1066
- S. Suranauwarat, "A CPU Scheduling Algorithm Simulator," Proceedings of the 37th ASEE/IEEE Frontiers in Education Conference, Milwaukee, Wisconsin, USA (2007): 19-24
- http://vip.cs.utsa.edu/classes/cs3733s2004/notes/ps/runps.html
- http://www.codeplex.com/cpuss
- F. Padberg, "A Software Process Scheduling Simulator," Proceedings of the 25th IEEE International Conference on Software Engineering (ICSE'03)
- http://www.ontko.com/moss
- D. A. Cardella, "A Simulator of Operating system Job Scheduling," Visual Basic 6. Available for download http://www.freevbcode.com/ShowCode.asp?ID=4079,2002
- S. H. Nazleeni et. al., "Time comparative simulator for distributed process scheduling algorithms," World Academy of Science, Engineering and Technology (2006): 84-89
- Anifowose F. A., "MySIM: A Light-Weight Tool for the simulation of Probabilistic CPU Process Scheduling Algorithm," International Journal of Computer and Electrical Engineering (2012)
- Abur Maria Mngohol et. al., "A Critical Simulation of CPU Scheduling Algorithm using Exponential Distribution," IJCSI PUBLICATION (2011): 201-206
- Sun Huajin et. al., "Design fast Round Robin Scheduler in FPGA," International Conference on Communications, Circuits and Systems and West Sino Expositions, IEEE (2002)
- Md. Mamunur Rashid and Md. Nasim Adhtar, "A New Multilevel CPU Scheduling Algorithm," Journals of Applied Sciences (2009)
- Goel N., Garg R. B., "A Comparative Study of CPU Scheduling Algorithms," International Journal of Graphics Image Processing (2012)

Index Terms

Computer Science

Algorithms
Keywords

Operating System FCFS SJF Dynamic Time Slice Context Switch Waiting time Turnaround time