Working Hypothesis for Glucose Metabolism and SARS-CoV-2 Replication: Interplay Between the Hexosamine Pathway and Interferon RF5 Triggering Hyperinflammation. Role of BCG Vaccine?

Hugo A. Laviada-Molina¹, Irene Leal-Berumen², Ernesto Rodriguez-Ayala³ and Raul A. Bastarrachea⁴*

¹ Escuela de Ciencias de la Salud, Universidad Marista de Mérida, Mérida, México, ² Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Chihuahua, México, ³ Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac Norte, Naucalpan de Juárez, México, ⁴ Population Health Program, Texas Biomedical Research Institute and Southwest National Primate Research Center (SNPRC), San Antonio, TX, United States

Keywords: HB pathway, IRF5, SARS-CoV-2, BCG, cytokine storm

INTRODUCTION

Respiratory epithelial cells, dendritic cells (DCs) and macrophages (1) secrete low levels of the antiviral factor interferons (IFNs) (2) and high levels of proinflammatory cytokines such as tumor necrosis factor alpha (TNFα), IL-6, and IL-1β, IP-10, MCP-3, characterizing the pathophysiologic features of severe acute respiratory syndrome (ARDS) induced by SARS-CoV-2 infection (3). Researchers hypothesized that after COVID-19 infects human cells, the virus utilizes an excess of glucose for a fast viral replication from the hexosamine biosynthetic pathway (HBP) hijacking substrates from the metabolic environment. This process induces overexpression of interferon IRF5, leading to a massive inflammatory gene overexpression, endoplasmic reticulum (ER) stress, and cytokine dysregulation profile. This deleterious cytokine overproduction is referred to as the cytokine storm (Figure 1). It leads to an increased risk of vascular hyperpermeability, multiorgan failure, and hyperinflammation (4, 5). Little is known about the molecular immunometabolic mechanism that triggers the uncontrolled surge in cytokine secretion and the cellular regulation of the hyperinflammatory cascade intertwined with the COVID-19 viral replication.

CHRONIC LOW-GRADE SUBCLINICAL INFLAMMATION: UNDERLYING MECHANISM ENHANCING THE COVID-19 CYTOKINE STORM IN THE PRESENCE OF DYSGLYCEMIA

Older people, immunocompromised, diabetics and/or hypertensives are more likely to develop the cytokine storm. Dysglycemia is characterized by glucose intolerance and insulin resistance (6, 7). Additionally, aberrant expression of proinflammatory cytokines adds to the toxic milieu
of dysglycemia (8). These immunometabolic disturbances also include hyperglycemic postprandial peaks perhaps exacerbating the excess of proinflammatory cytokines in COVID-19 (9). However, a subgroup of symptom-free non-diabetic, overweight individuals with mild body fat accumulation and insulin resistance (IR) and/or prediabetes (10), and a second subgroup of symptom-free normal weight metabolically unhealthy subjects have a 3-fold higher risk of all-cause mortality and/or cardiovascular events (11). These two subgroups are also at high-risk to develop the cytokine storm. They have in common a chronic systemic low-grade subclinical proinflammatory (CLGSPI) state (12) characterized by adipose tissue dysfunction (ATdys) (13) and macrophage polarization in adipose tissue, low adiponectin levels, cytokines and circulating inflammatory C-reactive protein (CRP) that perpetuates this deleterious CLGSPI and promotes insulin resistance (14). These subgroups of individuals with underlying but undetected postprandial dysglycemia, CLGSPI and ATdys present a proinflammatory pathology that is highly underestimated and rarely diagnosed among symptom-free individuals in the practice setting. This undetected deleterious chronic low-grade proinflammatory scenario perhaps together with postprandial glucose excursions is proposed here as the underlying mechanism enhancing the hyperinflammatory state in these infected symptom-free subjects with COVID-19 triggering multi-organ failure.

GLUCOSE METABOLISM, THE HEXOSAMINE PATHWAY, IRFs, SARS-CoV-2 REPLICATION AND CYTOKINE STORM

After glucose uptake, in addition to glycolysis, glucose metabolism generates UDP-GlcNAc (uridinediphosphate-β-D-N-acetylglucosamine) via the HBP pathway. The HBP links cellular signaling and gene expression to glucose, amino acid, fatty acid and nucleotide metabolism (15, 16). It is regulated by the enzymes OGT (O-GlcNAc transferase) and OGA (O-GlcNCase), that catalyze the addition and removal of GlcNAc on proteins (17). UDP-GlcNAc is a substrate for N-glycosylation, a process important for protein folding within the ER (18, 19) (Figure 1). The HBP- O-GlcNAc pathway has also been characterized as a major contributor to the deleterious effects of dysglycemic states, also influencing cellular proliferation. These dysglycemic states, mainly overt hyperglycemia, have a significant contribution in oncogenesis, tumor progression and fatal outcomes, indicating that there is a link between glucose metabolic disorders and tumor growth of cancer cells (20, 21). Similar biological characteristics are found in viruses. They rearrange the metabolic environment in the infected cells to facilitate virus replication. Indeed, virus-infected cells increase glycolytic metabolism to secure precursors for an increased biosynthesis (lipids, nucleotides) to optimize virus production and replication (22, 23).

Nuclear factor-kB (NF-kB) and IKK are associated with metabolic disorders (24), also playing important roles in inflammatory and immune responses (25). O-GlcNAcylation regulates direct modification of transcription factors such as NF-kB (26, 27). Cells use the HBP and OGT to potentiate gene expression through NF-kB as a glucose-responsive transcription factor in response to TNFα (28) (Figure 1). The interferon-regulatory factor (IRF) family plays a critical role in regulating the immune system, the innate immune response and the development of immune cells. IRFs are primarily implicated in antiviral responses and interferon production. IRFs also have key functions in the regulation of metabolism (29). Among the IRF family members, Interferon Regulatory Factor 5 (IRF5) is a key player in inflammation (30). IRF5 mediates induction of proinflammatory cytokines such as interleukin-6 (IL-6), IL-12, IL-23 and TNFα, is involved in the recruitment of inflammatory genes with NF-kB, and in determining the inflammatory macrophage phenotype (31). Host protection by IRF5 is achieved through its role in the nucleus triggering transcriptional activation of proinflammatory type I interferon (IFN), promotion of apoptosis-related genes and regulation of cytokines involved in cell survival, growth, proliferation, and differentiation (32). ER stress can result in the accumulation of unfolded proteins, triggering the unfolded protein response (UPR), an adaptive reaction that reduces unfolded protein load to maintain cell viability and function, capable of sensing dangerous aggressions and reverse them by influencing the immune response through interferon production (33).

Cells infected with viruses induce ER stress and stimulate strong interferon responses (34). Viral replication is inhibited by an interferon-regulated gene product, the double-stranded RNA-dependent protein kinase (PKR). Interferon employs its antiviral properties by activating PKR, thereby inhibiting viral replication. ER stress is a critical component in the response against viral infections. A prolonged ER stress triggers apoptosis. Therefore, the task of a virus is to overcome the interferon response involving PKR and manipulate the unfolded protein response (UPR) to facilitate viral replication and cause disease (34). A recent study demonstrated that influenza A virus (IAV) was able to induce a cytokine storm via interferon (IFN) regulatory factor—5 (IRF5) through glucose metabolism utilization and an increase in O-GlcNAc signaling, demonstrating that the HBP- O-GlcNAc signaling pathway in influenza A virus (IAV) promoted a massive inflammatory cytokine overexpression (35). SARS-CoV-2 infects human cells also leading perhaps to an excess of glucose utilization (16). Indeed, the HBP pathway activated in IAV infections generates UDP-N-Acetylgulosamine (UDP-GlcNAc), substrate for the key enzyme for protein O-GlcNAcylation O-GlcNAc transferase (OGT) (15). This enzyme has a strong binding affinity to signaling protein interferon regulatory factor 5 (IRF5) (35). Viral infections such as IAV and SARS-CoV-2 may create an excess in IRF5, leading to ER stress and rapid ubiquitination, triggering an excess of cytokine overproduction, hyperinflammation and multiorgan failure (36) (Figure 1). Another study identified a molecular mechanism by which HBP-mediated O-GlcNAcylation regulates mitochondrial antiviral signaling protein (MAVS) function (37) and highlighted
the importance of glucose metabolism in antiviral innate immunity (38).

COULD BCG AVOID THE HIJACKING OF THE HBP-O-GlcNAc-OGT COMPLEX BY SARS-CoV-2 TO RESTORE IMMUNITY AND BALANCE CELLULAR METABOLISM?

BCG-treated type 1 diabetes (T1D) individuals showed a durable lowering of HbA1c and glucose (39). BCG appears to switch the immune system of T1Ds from high oxidative phosphorylation to augmented glycolysis, a systemic metabolic shift that allows cells to consume large amounts of glucose to safely lower hyperglycemia (39, 40). The authors were able to reset the immune system to a state of increased glycolysis at the cellular level through turning on T regulatory (Treg) cells. The BCG effect on immune metabolism apparently accelerated glucose utilization through increased glycolysis, a high-glucose-transport process through the pentose phosphate shunt, instead of using the Krebs cycle for oxidative phosphorylation (40). The immune effects of BCG in T1D relates to the autoimmune environment comprising too few suppressive T regulatory (Treg) cells and too many cytotoxic T lymphocytes (CTLs). With BCG treatment, Treg cell expansion and augmented function occurred, and CTLs died thus restoring the immune balance toward normal at the autoimmune site (41). Figure 1 shows multiple potential molecular targets for BCG activity in COVID-19 infected individuals.

Based on the immunomodulatory roles of mycobacteria, an effect from BCG vaccination on the spread and severity of COVID-19 dissemination in different countries could have occurred (42). Researchers classified countries into 2 groups according to presence or absence of BCG vaccination in their routine vaccine schedules and obtained confirmed numbers of COVID-19 cases and deaths from the World Health Organization (WHO). They found that the mean
of cases per population ratio was statistically significantly lower in BCG vaccinated countries when compared to BCG-non-vaccinated countries, also finding that both the mean deaths per population and the deaths per cases ratio were significantly lower in BCG-vaccinated countries. They concluded that the cessation of BCG vaccination in several countries within the last few decades should be reanalyzed given its impact regarding the immune response to hypothetical viral pandemics we might face in the future on BCG-non-vaccinated young individuals (42–44). Vaccination with BCG triggers a memory-like response in innate immune cells known as “trained immunity” associated to an epigenetic reprogramming mechanism in both humans and mice (45). However, some authors advice caution when interpreting data on Covid-19 incidence and BCG vaccination. Further research is definitively needed to prove that the BCG vaccine confers protection against COVID-19. Indeed, the current state of knowledge does not provide sufficient evidence (46). A trial for BCG vaccination to reduce the impact of COVID-19 in Australian healthcare workers (BRACE) has been set to investigate whether BCG vaccination protects against COVID-19 (mcri.edu.au/BRACE).

DISCUSSION

As depicted in Figure 1, we speculate as a work in progress hypothesis that after SARS-CoV-2 have entered human cells through the ACE 2 receptor, its first priority, similar to IAV, would be to enhance the HBP pathway to secure excessive glucose consumption and substrates for rapid replication. This abnormal HBP hyperactivity would lead to an excess of the OGT enzyme that would consequently trigger large amounts of IRF5 interferon. IRF5 and OGT will then coordinate efforts to exacerbate the IKK-NF-kB proinflammatory pathway triggering in the nucleus a massive inflammatory cytokine gene overexpression profile and a deleterious ER stress that ultimately result in hyperinflammation, a cytokine storm and multiorgan failure.

REFERENCES

1. Satpathy AT, Wu X, Albrinfg JC, Murphy KM. Re(de)fining the dendritic cell lineage. *Nat Immunol.* (2012) 13:1145–54. doi: 10.1038/ni.2467
2. Garcia-Sastre A. Ten strategies of interferon evasion by viruses. *Cell Host Microbe.* (2017) 22:176–84. doi: 10.1016/j.chom.2017.07.012
3. Shi Y, Wang Y, Shao C, Huang J, Gan J, Huang X, et al. COVID-19 infection: the perspectives on immune responses. *Cell Death Differ.* (2020) 27:1451–4. doi: 10.1038/s41418-020-0530-3
4. Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. *Semin Immunopathol.* (2017) 39:517–28. doi: 10.1007/s00281-017-0639-8
5. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. *Lancet.* (2020) 395:1033–4. doi: 10.1016/S0140-6736(20)30628-0
6. Mechanick JI, Garber AJ, Grunberger G, Handelsman Y, Garvey WT. **DYSGLYCEMIA-BASED CHRONIC DISEASE: AN AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS POSITION STATEMENT.** *Endocr Pract.* (2018) 24:995–1011. doi: 10.4158/PS-2018-0139
7. Goldberg RB, Bray GA, Marcovina SM, Mather KL, Orchard TJ, Perreault L, et al. Non-traditional biomarkers and incident diabetes in the Diabetes Prevention Program: comparative effects of lifestyle and metformin interventions. *Diabetologia.* (2019) 62:58–69. doi: 10.1007/s00125-018-4748-2
8. Hanna-Moussa A, Gardner MJ, Kurukulasuriya LR, Sowers JR. Dysglycemia/prediabetes and cardiovascular risk factors. *Rev Cardiovasc Med.* (2009) 10:202–8. doi: 10.3909/ricm0474
9. Ceriello A, Genovese S. Atherogenicity of postprandial hyperglycemia and lipotoxicity. *Rev Endocr Metab Disord.* (2016) 17:111–6. doi: 10.1007/s11154-016-9341-8
10. Iacobini C, Pugliese G, Blasetti Fantauzzi C, Federici M, Menini S. Metabolically healthy versus metabolically unhealthy obesity. *Metabolism.* (2019) 92:51–60. doi: 10.1016/j.metabol.2018.11.009
11. Stefan N, Haring HU, Hu FB, Schulze MB. Metabolically healthy obesity: epidemiology, mechanisms, and clinical implications. *Lancet Diabetes Endocrinol.* (2013) 1:152–62. doi: 10.1016/S2213-8587(13)70062-7
12. Pietzner M, Kaul A, Henning AK, Kastenmüller G, Artati A, Lerch MM, et al. Comprehensive metabolic profiling of chronic low-grade
inflammation among generally healthy individuals. BMC Med. (2017) 15:210. doi: 10.1186/s12916-017-0974-6
13. Rodriguez-Ayala E, Gállegos-Cabral E, Gonzalez-Lopez L, Lavida-Molina HA, Salinas-Osornio RA, Nava-González EJ, et al. Towards precision medicine: defining and characterizing adipose tissue dysfunction to identify early immunometabolic risk in symptom-free adults from the GEMM family study. Adipocyte. (2020) 9:153–69. doi: 10.1080/21623945.2020.1743116
14. Thomas D, Apovian C. Macrophage functions in lean and obese adipose tissue. Metabolism. (2017) 72:120–43. doi: 10.1016/j.metabol.2017.04.005
15. Akella NM, Ciraku L, Reginato MJ. Fueling the fire: emerging role of the hexosamine biosynthetic pathway in cancer. BMC Biol. (2019) 17:52. doi: 10.1186/s12915-019-0967-3
16. Thaker SK, Ch'ng J, Christofk HR. Viral hijacking of cellular metabolism. Cell Metab. (2017) 17:59. doi: 10.1016/j.cmet.2017.02.001
17. Yang X, Qian K. Protein O-GlcNAcylation: emerging mechanisms and functions. Nat Rev Mol Cell Biol. (2018) 19:452–65. doi: 10.1038/nrm.2017.22
18. Wang ZV, Deng Y, Gao N, Pedrozo Z, Li DL, Morales CR, et al. Spliced X-box binding protein 1 couples the unfolded protein response to hexosamine biosynthetic pathway. Cell. (2014) 156:1179–92. doi: 10.1016/j.cell.2014.01.014
19. Glembotski CC. Finding the missing link between the unfolded protein response and O-GlcNAcylation in the heart. Circ Res. (2014) 115:346–8. doi: 10.1161/CIRCRESAHA.114.304855
20. Gerstein HC. More insights on the dysglycaemia-cardiovascular connection. Lancet. (2010) 375:2195–6. doi: 10.1016/S0140-6736(10)60973-7
21. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. (2009) 324:1029–33. doi: 10.1126/science.1160809
22. Thai M, Graham NA, Braas D, Nehil M, Komisopoulou E, Kurdistani SK, et al. Adenovirus E4ORF1-induced MYC activation promotes host cell proliferation: a metabolic challenge mediated by protein O-GlcNAc modification. Cells. (2019) 8:999. doi: 10.3390/cells8090999
23. Smith JA. Regulation of cytokine production by the unfolded protein response; implications for infection and autoimmunity. Front Immunol. (2018) 9:422. doi: 10.3389/fimmu.2018.00422
24. Lindholm D, Korhonen L, Eriksson O, Koks S. Recent insights into the role of unfolded protein response in ER stress in health and disease. Front Cell Dev Biol. (2017) 5:48. doi: 10.3389/fcell.2017.00048
25. He B. Viruses, endoplasmic reticulum stress, and interferon responses. Cell Death Differ. (2006) 13:393–403. doi: 10.1038/sj.cdd.4401833
26. Chen X, Zhou L, Peng N, Yu H, Li M, Cao Z, et al. MicroRNA-302a suppresses influenza A virus-stimulated interferon regulatory factor-5 expression and cytokine storm induction. J Biol Chem. (2017) 292:21921–303. doi: 10.1074/jbc.M117.805937
27. Qiming Wang PF, Rui He, Mengqi Li, Haisheng Yu, Li Zhou, Yu Yi, et al. O-GlcNac transferase promotes influenza A virus–induced cytokine storm by targeting interferon regulatory factor–5. Sci Adv. (2020) efacaa2786. doi: 10.1126/sciadv.aa2786
28. Seth RB, Sun L, Ea CK, Chen ZJ. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF 3. Cell. (2005) 122:669–82. doi: 10.1016/j.cell.2005.08.012
29. Li T, Li X, Attrl KS, Liu C, Li L, Herring LE, et al. O-GlcNac transferase links glucose metabolism to MAVS-mediated antiviral innate immunity. Cell Host Microbe. (2018) 24:791–803 ed. doi: 10.1016/j.chom.2018.11.001
30. Kuhntreiber WM, Tran L, Kim T, Dybala M, Nguyen B, Plager S, et al. Long-term reduction in hyperglycemia in advanced type 1 diabetes: the value of induced aerobic glycolysis with BCG vaccinations. NPJ Vaccines. (2018) 3:23. doi: 10.1038/s41541-018-0062-8
31. Kuhntreiber WM, Faustman DL. BCG therapy for type 1 diabetes: restoration of balanced immunity and metabolism. Trends Endocrinol Metab. (2019) 30:80–92. doi: 10.1016/j.tem.2018.11.006
32. Lagranderie M, Guyonvarc'h PM. The interplay between bacillus Calmette-Guérin and treg cells and its role to prevent or cure inflammatory diseases. Expert Rev Clin Immunol. (2014) 10:741–5. doi: 10.1586/174466X.2014.909286
33. Ozdemir C, Kucukceker UC, Tamay ZU. IS BCG vaccination effecting the spread and severity of COVID-19? Allergy. (2020). doi: 10.1111/all.14344. [Epub ahead of print].
34. Curtis N, Sparrow A, Ghebreyesus TA, Netea MG. Considering BCG vaccination to reduce the impact of COVID-19. Lancet. (2020) 395:1545–6. doi: 10.1016/S0140-6736(20)31025-4
35. Miller A, Reandelar MJ, Fasciglione K, Roumenova V, Li Y, Otazu GH. Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: an epidemiological study. medRxiv [Preprint]. (2020). doi: 10.1101/2020.03.24.20042937
36. Coviani C, Fernández-Fierro A, Retalmar-Díaz A, Díaz FE, Vasquez AE, Lay MK, et al. BCG-induced cross-protection and development of trained immunity: implication for vaccine design. Front Immunol. (2019) 10:2806. doi: 10.3389/fimmu.2019.02806
37. Riccò M, Gualerzi G, Ranziere S, Bragazzi NL. Stop playing with data: there is no sound evidence that Bacille Calmette-Guérin may avoid SARS-CoV-2 infection (for now). Acta Biomol. (2020) 9:207–13. doi: 10.23750/abm.v9i12.9700
38. Bansal N. Prediabetes diagnosis and treatment: a review. World J Diabetes. (2015) 6:296–303. doi: 10.4239/wjd.v6.i2.296
39. Solomon TPJ, Eves FF, Laye MJ. Targeting postprandial hyperglycemia with physical activity may reduce cardiovascular disease risk. But what should we do, and when is the right time to move? Front Cardiovasc Med. (2018) 5:99. doi: 10.3389/fcvm.2018.00099
40. Drucker DJ. Coronavirus infections and type 2 diabetes-shared pathways with therapeutic implications. Endocr Rev. (2020) 41:bnaa1011. doi: 10.1210/endcr/bnaa1011
41. Guo H, Fang C, Huang Y, Pei Y, Chen L, Hu J. The efficacy and safety of DPP4 inhibitors in patients with type 1 diabetes: a systematic
review and meta-analysis. *Diabetes Res Clin Pract.* (2016) 121:184–91. doi: 10.1016/j.diabres.2016.08.022

51. Gonzalez-Rodriguez M, Pazos-Couselo M, Garcia-Lopez JM, Rodriguez-Segade S, Rodriguez-Garcia J, Tunez-Bastida C, et al. Postprandial glycemic response in a non-diabetic adult population: the effect of nutrients is different between men and women. *Nutr Metab (Lond).* (2019) 16:46. doi: 10.1186/s12986-019-0368-1

52. Clar C, Al-Khudairy L, Loveman E, Kelly SA, Hartley L, Flowers N, et al. Low glycaemic index diets for the prevention of cardiovascular disease. *Cochrane Database Syst Rev.* (2017) 7:CD004467. doi: 10.1002/14651858.CD004467.pub3

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Laviada-Molina, Leal-Berumen, Rodriguez-Ayala and Bastarrachea. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.