Absorção de ondas escalares planas não massivas por buracos negros de Kerr

Luiz Carlos dos Santos Leite

Orientador: Prof. Dr. Luís Carlos Bassalo Crispino

Belém - Pará
Março de 2014
Absorção de ondas escalares planas não massivas por buracos negros de Kerr

Luiz Carlos dos Santos Leite

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Física da Universidade Federal do Pará (PPGF-UFPa), como parte dos requisitos necessários para a obtenção do título de Mestre em Física.

Orientador: Prof. Dr. Luís Carlos Bassalo Crispino

Avaliada por:

Prof. Dr. Luís Carlos Bassalo Crispino - UFPA (Orientador)

Prof. Dr. Luís Raul Weber Abramo - USP (Membro Externo)

Prof. Dr. Danilo Teixeira Alves - UFPA (Membro Interno)

Prof. Dr. João Vital da Cunha Júnior - UFPA (Suplente)

Belém - Pará
Março de 2014
Resumo

Absorção de ondas escalares planas não massivas por buracos negros de Kerr

Luiz Carlos dos Santos Leite

Orientador: Prof. Dr. Luís Carlos Bassalo Crispino

Nesta dissertação, consideramos ondas escalares planas não massivas incidindo sobre um buraco negro de Kerr e calculamos a seção de choque de absorção. Investigamos o caso geral, no qual o ângulo entre a onda incidente e o eixo de rotação do buraco negro é arbitrário. Calculamos numericamente, usando o método de ondas parciais, a seção de choque de absorção para analisar os casos de incidência ao longo do eixo de rotação do buraco negro e o caso fora do eixo de rotação, e mostramos que os casos de incidência fora do eixo possuem um comportamento bastante diferente do caso de incidência ao longo do eixo de rotação. Dividimos a seção de choque de absorção total em suas contribuições co- e contragrantes mostrando que a absorção é maior para ondas contragrantes. Os resultados numéricos foram obtidos para valores arbitrários de frequência, e apresentam ampla concordância com os resultados analíticos em altas e baixas frequências.

Palavras-chave: buraco negro de Kerr, campo escalar, absorção

Belém - Pará
Março de 2014
Abstract

Absorption of planar massless scalar waves by Kerr black holes

Luiz Carlos dos Santos Leite

Supervisor: Prof. Dr. Luís Carlos dos Santos Leite

We consider planar massless scalar waves incident upon a Kerr black hole and compute its absorption cross section. We investigate the general case in which the angle between the incident wave and the black hole rotation axis is arbitrary. We calculate numerically, using the standard partial wave approach, the total absorption cross section for the on-axis (incidence along the black hole rotating axis) and the off-axis cases, showing that the off-axis cases behave quite differently from the on-axis one. We separate the absorption cross section into corotating and counterrotating contributions, showing that the absorption is bigger for counterrotating waves. The results are obtained for arbitrary values of the frequency, and are shown to agree with the low- and high-frequency approximations.

Keywords: Kerr black hole, scalar field, absorption
Agradecimentos

À minha mãe pelo incentivo contínuo, por toda minha vida, aos meus estudos e pela grande amizade que possuímos.

Ao Prof. Dr. Luís Carlos Bassalo Crispino, pela excelente orientação.

À Ivana Cunha, por ser uma excelente companheira e pela paciência.

A todos os amigos que possuo, dentro e fora do ambiente acadêmico, por suas valiosas contribuições à minha vida.

Ao PPGF-UFPA pela estrutura oferecida durante a realização do mestrado.

Ao GTQCEC, por proporcionar um ambiente de aprendizado muito grande durante minha formação acadêmica.

A Caio Macedo, Edniton Oliveira, Luís Crispino e Sam Dolan, por suas decisivas contribuições que resultaram na publicação de um artigo acadêmico em um periódico internacional e na construção desta dissertação.

Aos Professores Elinei Pinto e Fabrício Potiguar pelos excelentes cursos ministrados durante o mestrado.

A todos que não foram citados aqui, mas que contribuíram de forma direta ou indireta, para este trabalho.

A CAPES e ao CNPq pelo suporte financeiro durante a realização do meu mestrado.
De dico a Raimunda Costa (in memoriam) e a Maria Assunção.
"Not only is the Universe stranger than we think,

it is stranger than we can think."

Werner Heisenberg
Sumário	
Considerações Iniciais	10
1 O espaço-tempo de Kerr	12
1.1 A métrica do espaço-tempo de Kerr	12
1.2 Limites da solução de Kerr	13
1.3 Horizontes e singularidades	14
1.4 A unicidade da métrica de Kerr	16
1.5 Superfície estática limite	17
2 O campo escalar não massivo no espaço-tempo de Kerr	19
2.1 Equação de Klein-Gordon no espaço-tempo de Kerr	19
2.2 Soluções assintóticas	21
**3 Seção de choque de absorção de ondas escalares não massivas por bura-	23
cos negros de Kerr	
3.1 Expansão assintótica de ondas planas no espaço-tempo de Kerr	24
3.2 Análise de ondas parciais	26
3.3 A seção de choque de absorção	27
3.3.1 Regime de baixas frequências	30
3.3.2 Regime de altas frequências	30
3.4 Seção de choque de captura de um buraco negro de Kerr	31
3.5 Método numérico para o cálculo da seção de choque em frequências arbitrárias	35
3.6 Resultados numéricos	36
3.6.1 Fatores de Reflexão e Transmissão	37
3.6.2 Incidência axial ($\gamma = 0$) ... 42
3.6.3 Incidência arbitrária ($\gamma \neq 0$) ... 43

Considerações Finais ... 49

Referências Bibliográficas ... 51
Considerações Iniciais

A Teoria da Relatividade Geral possui como uma de suas mais intrigantes previsões a existência de buracos negros [1]. No eletro-vácuo, buracos negros são descritos pela família de soluções de Kerr-Newman, que são governadas por três parâmetros: massa, carga elétrica e momento angular. O teorema no-hair [2] implica que buracos negros não possuem outros graus de liberdade (além de massa, carga elétrica e momento angular), sugerindo que buracos negros são, em essência, objetos simples.

Atualmente, acredita-se que buracos negros estejam presentes em abundância nas galáxias [3]. Evidências acumuladas que buracos negros supermassivos com rotação residem no centro de núcleos galácticos têm gerado um grande impacto na comunidade científica [4]. Acredita-se que alguns desses buracos negros estejam girando muito próximo de seus limites superiores de rotação [5, 6, 7]. Sendo assim, a investigação da fenomenologia ao redor de buracos negros com rotação é de grande importância em Astrofísica. Isso motiva um estudo cuidadoso da natureza e consequências observacionais da métrica de Kerr [8], que descreve um buraco negro (sem carga elétrica) girante no contexto da Relatividade Geral.

Alguns aspectos da fenomenologia de buracos negros podem ser estudados pelos processos de espalhamento e absorção de partículas por esses objetos. Além disso, partículas podem ser descritas por teorias de campos e, naturalmente, pode-se esperar que processos de absorção e espalhamento de partículas estejam diretamente relacionados com a absorção e o espalhamento de campos, que podem possuir massa, carga elétrica e spin. Campos sem spin (campos escalares) são de fundamental importância, pois surgem como um modelo de partículas (e.g., mésons) e como modelo simplificado para campos bosóni-
cos com spin não nulo (e.g., campo eletromagnético). Além disso, a descoberta de uma partícula tipo Higgs pelas contribuições ATLAS e CMS trazem uma motivação a mais ao estudo de campos escalares [9].

As seções de choque de absorção e espalhamento de ondas planas por buracos negros têm sido bastante estudadas na literatura. No ano de 2009, um panorama unificado do espalhamento de ondas planas por buracos negros de Schwarzschild foi apresentado [10], baseado no trabalho de muitos autores que investigaram a seção de choque de absorção de ondas planas por buracos negros de Schwarzschild [11, 12, 13, 14, 15]. Além disso, vários trabalhos também vêm sendo realizados considerando buracos negros carregados como centros espalhadores [16, 17, 18, 19, 20]. Embora tenham grande relevância física, buracos negros com rotação têm recebido menos atenção na literatura, com algumas notáveis exceções [21, 22, 23, 24]. As seções de choque de absorção e espalhamento por análogos acústicos de buracos negros também vêm, recentemente, sendo investigadas [25, 26, 27, 28].

Nesta dissertação, investigamos a seção de choque de absorção do campo escalar não massivo incidindo sobre um buraco negro de Kerr [24], enfatizando o caso geral de incidência, no qual a direção de propagação do campo não está alinhada com o eixo de rotação do buraco negro. No Capítulo 1 revisitamos o espaço-tempo de Kerr, ressaltando algumas de suas características geométricas, assim como algumas peculiaridades deste espaço-tempo. Posteriormente, no Capítulo 2 analisamos o campo escalar não massivo no espaço-tempo de Kerr em coordenadas de Boyer-Lindquist e apresentamos algumas soluções assintóticas compatíveis com as condições de contorno físicas para ondas planas absorvidas e espalhadas. Prosseguimos com o cálculo da seção de choque de absorção para o campo escalar não massivo no espaço-tempo de Kerr (Capítulo 3) e exibimos uma seção de resultados numéricos. Concluímos essa dissertação fazendo algumas considerações finais. Ao longo desta dissertação, convençomos a assinatura da métrica como (+ − − −) e utilizamos unidades naturais (c = G = ħ = 1).
Capítulo 1

O espaço-tempo de Kerr

A solução de Schwarzschild descreve o espaço-tempo exterior a um objeto massivo esfericamente simétrico, que é caracterizado apenas por sua massa \(M \). No entanto, objetos astrofísicos reais possuem rotação. Nesses casos, não podemos aplicar uma solução esfericamente simétrica devido ao eixo de rotação do objeto definir uma direção especial, que quebra a isotropia do espaço-tempo.

Para descrever um objeto girante é razoável supor que devemos considerar o seu momento angular \(J \), que caracteriza a rotação deste objeto. Nesse Capítulo, abordaremos o espaço-tempo exterior a um buraco negro (sem carga elétrica) girante que é conhecido como espaço-tempo de Kerr.

1.1 A métrica do espaço-tempo de Kerr

O elemento de linha correspondente à métrica do espaço-tempo de Kerr, em coordenadas padrão de Boyer-Lindquist (BL) \((t, r, \theta, \varphi)\), pode ser escrito da seguinte forma:

\[
\text{ds}^2 = \left(1 - \frac{2Mr}{\rho^2}\right)dt^2 + \frac{4Mra}{\rho^2}\text{sen}^2 \theta d\varphi dt - \frac{\rho^2}{\Delta}dr^2 - \rho^2d\theta^2 - \left(r^2 + a^2 + \frac{2Mra}{\rho^2}\text{sen}^2 \theta\right)\text{sen}^2 \theta d\varphi^2, \tag{1.1}
\]

Assumiremos que o elemento de linha possui a seguinte forma geral: \(\text{ds}^2 = g_{\mu\nu}dx^\mu dx^\nu\), com \(x^\mu = (x^0, x^1, x^2, x^3) = (t, r, \theta, \varphi)\).
com as seguintes definições: \(a \equiv J/M, \rho^2 \equiv r^2 + a^2 \cos^2 \theta \) e \(\Delta \equiv a^2 - 2Mr + r^2 \).

Ao longo desta dissertação, utilizaremos o elemento de linha de BL para explorar melhor as propriedades do espaço-tempo de Kerr. Podemos notar que a solução de Kerr depende de dois parâmetros \(M \) e \(a \), e as componentes da métrica independem de \(t \) e \(\varphi \). Portanto, a solução de Kerr é estacionária e tem simetria axial.

1.2 Limites da solução de Kerr

Como foi dito anteriormente, a solução de Kerr depende de dois parâmetros \(M \) e \(a \). Além disso, no limite que \(a \to 0 \), a solução tende para a solução de Schwarzschild. Isso sugere que \(M \) pode ser interpretado como a massa da fonte girante. Além disso, comparando o comportamento assintótico da solução de Kerr com a solução aproximada de uma estrela com rotação, obtida por Lense e Thirring \[30\], \(a \) pode ser interpretado como o momento angular por unidade de massa do buraco negro, \(J = aM \). Outra forma de identificar os parâmetros \(M \) e \(a \), como a massa da fonte girante e o momento angular por unidade de massa, respectivamente, é através das integrais de Komar. No entanto, não iremos desenvolver esse procedimento nesta dissertação, e para o leitor interessado indicamos a referência \[31\]. Tomando o limite para \(M \to 0 \) em (1.1), ou seja, na ausência de uma fonte gravitante\[3\] encontramos:

\[
\frac{ds^2}{dt^2} = dt^2 - \rho^2 r^2 + a^2 - \rho^2 d\theta^2 - (r^2 + a^2) \sin^2 \theta d\phi^2.
\]

(1.2)

O elemento de linha (1.2), de fato, representa o espaço-tempo de Minkowski, mas escrito em coordenadas esferoidais oblatas. Para mais informações sobre esse tipo de coordenadas o leitor pode consultar a referência \[32\].

\[2\] Nesta dissertação, consideramos \(M > 0 \) e \(a \geq 0 \).

\[3\] Nesse caso, o espaço-tempo deve ser plano (Minkowski).
1.3 Horizontes e singularidades

Agora iremos analisar as singularidades (de coordenada e de espaço-tempo) associadas à métrica de Kerr escrita em coordenadas de BL. Iremos nos restringir apenas em identificar as singularidades. Para uma melhor compreensão do que é uma singularidade, bem como os critérios utilizados para classificar uma singularidade, o leitor é indicado a consultar as referências [33, 34, 35, 36]. A solução de Kerr na forma de BL apresenta duas singularidades: \(\rho^2 = 0 \) e \(\Delta = 0 \). A singularidade \(\Delta = 0 \) gera duas raízes

\[
\Delta = r^2 - 2Mr + a^2 = 0 \rightarrow r_{\pm} = M \pm \sqrt{M^2 - a^2}.
\]

(1.3)

Uma das formas de analisar uma singularidade é através do cálculo de invariantes de curvatura. Ao calcular o invariante de curvatura \(R_{\alpha\beta\mu\nu}R^{\alpha\beta\mu\nu} \) (escalar de Kretschmann), obtemos:

\[
R_{\alpha\beta\mu\nu}R^{\alpha\beta\mu\nu} = \frac{48M^2(r^2 - a^2 \cos^2 \theta)(\rho^4 - 16a^2r^2 \cos^2 \theta)}{\rho_{12}^2}.
\]

(1.4)

Da Eq. (1.4) concluímos que a singularidade intrínseca da geometria é \(\rho^2 = 0 \), pois o invariante de curvatura divergirá para essa condição, que será satisfeita para \(r = 0 \), se, e somente se, \(\theta = \pi/2 \), pois \(\rho^2 = r^2 + \cos^2 \theta \). Para elucidarmos a natureza desta singularidade utilizamos as relações entre o sistema de coordenadas de BL e o de Kerr-Schild [37], a saber:

\[
x = (r \cos \varphi + a \sin \varphi) \sin \theta,
\]

(1.5)

\[
y = (r \sin \varphi - a \cos \varphi) \sin \theta,
\]

(1.6)

\[
z = r \cos \theta,
\]

(1.7)

das quais obtemos

\[
x^2 + y^2 = (r^2 + a^2) \sin^2 \theta.
\]

(1.8)

Portanto, a singularidade possui um formato anelar \(x^2 + y^2 = a^2 \), e está situada no plano equatorial \(z = 0 \).
As singularidades r_{\pm} são clasificadas como singularidades de coordenada, pois através de uma transação de coordenada adequada, r_{\pm} não serão mais singularidades da métrica. Para melhor entender as características de r_{\pm}, analisaremos a presença de horizontes no espaço-tempo de Kerr.

Um horizonte é uma hipersuperfície nula, tal que o vetor normal associado a essa hipersuperfície possui norma nula \[^{37}\]. Consideremos superfícies tais que: $\Xi \equiv r - \text{constante} = 0$, cujo vetor normal é:

$$ n_{\mu} = \Xi_{\mu} = (0, 1, 0, 0). \tag{1.9} $$

Usando \[(1.9)\], obtemos

$$ n_{\mu} n_{\nu} g^{\mu\nu} = g^{rr} = -\frac{\Delta}{\rho^2}, \tag{1.10} $$

onde $g^{rr} = -\frac{\Delta}{\rho^2}$ (ver \[^{37}\]). Portanto, nas superfícies $r = r_+$ e $r = r_-$, onde $\Delta = 0$, $n_{\mu} n^{\mu} = 0$, estão localizados os horizontes. A superfície definida por $r = r_+$ é um horizonte de eventos e a superfície definida por $r = r_-$ é um horizonte de Cauchy \[^{36}\].

A solução de Kerr não foi a primeira solução obtida, a partir das equações de Einstein, a apresentar dois horizontes. A solução para buracos negros estáticos e carregados também apresenta dois horizontes distintos para $M^2 > Q^2$ (ver \[^{37}\]), sendo Q a carga do buraco negro.

Para o caso no qual $a^2 < M^2$, podemos dividir o espaço-tempo de Kerr em três regiões:

$$ I : r < r_-; \quad II : r_- < r < r_+ \quad \text{e} \quad III : r > r_+ . \tag{1.11} $$

Em geral, as discussões acerca do espaço-tempo de Kerr se restringem à região III. Em decorrência de $r = r_+$ ser um horizonte de eventos, toda partícula que atingir a região II ficará impossibilitada de voltar para a região III. Vale ressaltar que a estrutura apresentada logo acima, com a presença de dois horizontes, é válida apenas para $a^2 < M^2$. Para o caso no qual $a^2 = M^2$, temos o chamado buraco negro de Kerr extremo, e nesse caso os horizontes, $r = r_+$ e $r = r_-$, degeneram em $r = M$. Nesta dissertação, nos restringiremos a explorar o caso $a^2 < M^2$.

Em decorrência dos horizontes serem especificados apenas pela condição $r = r_\pm$, podemos ser induzidos a considerar que os horizontes sejam esféricos. Podemos calcular a área de uma superfície bidimensional, com $t = \text{constante}$ e $r = r_0 = \text{constante}$, da seguinte forma (para mais detalhes do cálculo de áreas e volumes, ver [38]):

$$A_0 = \int_0^\pi \int_0^{2\pi} \sqrt{g_{\theta\theta}g_{\varphi\varphi}}|_{r=r_0} \ d\theta d\varphi. \quad (1.12)$$

Para $r = r_\pm$:

$$A_\pm = \int_0^\pi \int_0^{2\pi} \sqrt{g_{\theta\theta}g_{\varphi\varphi}}|_{r=r_\pm} \ d\theta d\varphi$$
$$= \int_0^\pi \int_0^{2\pi} (r_\pm^2 + a^2) \ d\theta d\varphi$$
$$= 4\pi(r_\pm^2 + a^2), \quad (1.13)$$

que, geometricamente, não é a área de uma superfície esférica de raio r_\pm. Usando a relação $r_\pm^2 + a^2 = 2Mr_\pm$, obtemos:

$$A_\pm = 8\pi Mr_\pm, \quad (1.14)$$

e a área do horizonte de eventos é dada por:

$$A_+ = 8\pi M(M + \sqrt{M^2 - a^2}). \quad (1.15)$$

1.4 A unicidade da métrica de Kerr

A unicidade da métrica de Kerr para a descrição da natureza de buracos negros descarregados é dada pelo Teorema de Robinson, o qual afirma que [39]: soluções das equações de Einstein para o vácuo, estacionárias, axissimétricas e descarregadas, que têm um horizonte de eventos convexo suave, são assintoticamente planas, e não singulares fora do horizonte, são unicamente especificadas por dois parâmetros, a massa e o momento angular, e apenas por esses dois parâmetros.

\footnote{Para uma ampla discussão sobre teoremas de unicidade de buracos negros ver [34].}
1.5 Superfície estática limite

Uma vez que a solução de Kerr satisfaz as condições de contorno do Teorema de Robinson e caracteriza uma solução dados \(M \) e \(J \) \((< M)\), isso significa que a solução de Kerr é a única solução dados \(M \) e \(J \). Escrito de outra forma, a solução de Kerr proporciona a prova da existência de uma solução que satisfaça os requisitos do Teorema de Robinson. Nessa dissertação não deduziremos o Teorema de Robinson (para uma dedução deste teorema ver \([39]\)).

1.5 Superfície estática limite

Exploraremos agora outra característica do espaço-tempo de Kerr que é a existência de uma superfície estática limite, mostrando que, para determinada região do espaço-tempo de Kerr, é impossível para um observador permanecer estático.

Para um observador estático\(^5\) temos que:

\[
u_{(obs)}^\mu = (u_0^{(obs)}, 0, 0, 0) = \left(\frac{dt}{d\tau}, 0, 0, 0 \right).
\]

(1.16)

Relembrando a expressão da normalização da quadriveloidade:

\[
u_{(obs)}^\mu \cdot u_{(obs)}^\mu = g_{00}(u_0^{(obs)})^2 = 1.
\]

(1.17)

No espaço-tempo de Kerr,

\[
g_{00}(r, \theta) = \left(1 - \frac{2Mr}{\rho^2} \right) = \left(\frac{r^2 - 2Mr + a^2 \cos^2 \theta}{r^2 + a^2 \cos^2 \theta} \right),
\]

(1.18)

e \(g_{00}(r, \theta) \) será nulo para:

\[
r^2 - 2Mr + a^2 \cos^2 \theta = 0.
\]

(1.19)

Sendo assim, da Eq. (1.19), concluímos que \(g_{00}(r, \theta) = 0 \) na superfície definida por:

\[
r_S(\theta) = M + \sqrt{M^2 - a^2 \cos^2 \theta}.
\]

(1.20)

\(^5\) Um observador estático é um observador cujas coordenadas \(r, \theta \) e \(\varphi \) são constantes ao longo de sua linha de mundo.
Além disso, \(g_{00}(r, \theta) > 0 \) para \(r > r_S(\theta) \) e \(g_{00}(r, \theta) < 0 \) para \(r < r_S(\theta) \). Portanto, uma vez que \((u_{\text{obs}}^0)^2 > 0\), a condição (1.17) não será satisfeita para qualquer observador localizado em \(r \leq r_S(\theta) \).

A região finita delimitada pelo horizonte de eventos \(r_+ \) e pela superfície estática limite \(r_S \) é denominada ergo-região. A Figura 1.1 ilustra a estrutura do espaço-tempo de Kerr corroborando com as discussões que foram realizadas ao longo deste Capítulo.

Figura 1.1: Representação do espaço-tempo de Kerr. (Figura do autor.)
Capítulo 2

O campo escalar não massivo no espaço-tempo de Kerr

Em Teoria Quântica de Campos, o campo escalar corresponde a partículas de spin 0 \([40]\). O campo escalar serve de modelo para estudar campos bosônicos mais complexos, por exemplo, o campo eletromagnético. Neste Capítulo revisitaremos a abordagem do campo escalar não massivo ao redor de um buraco negro de Kerr.

2.1 Equação de Klein-Gordon no espaço-tempo de Kerr

A densidade de lagrangeana para o campo escalar não massivo \(\Phi(x^\mu)\) livre, em um espaço-tempo genérico pode ser escrita da seguinte forma:

\[
\mathcal{L} = \frac{\sqrt{-g}}{2} \nabla^\mu \Phi \nabla_\mu \Phi,
\]

(2.1)

tal que \(g\) é o determinante da métrica do espaço-tempo estudado.

Das equações de Euler-Lagrange:

\[
\nabla^\mu \frac{\partial \mathcal{L}}{\partial (\nabla_\mu \Phi)} - \frac{\partial \mathcal{L}}{\partial \Phi} = 0,
\]

(2.2)

obtemos que a equação que rege o comportamento do campo escalar não massivo em um
2.1 Equação de Klein-Gordon no espaço-tempo de Kerr

Espaço-tempo curvo é dada por:

\[\nabla_\mu \nabla^\mu \Phi = 0. \tag{2.3} \]

Essa equação é conhecida como equação de Klein-Gordon para o campo escalar não massivo e é possível mostrar através de propriedades tensoriais que \[41\]:

\[\nabla_\mu \nabla^\mu \Phi = \frac{1}{\sqrt{-g}} \partial_\mu (\sqrt{-g} g^{\mu\nu} \partial_\nu \Phi) = 0, \tag{2.4} \]

sendo \(g^{\mu\nu}\) as componentes contravariantes da métrica.

Usando o método de separação de variáveis em \((2.4)\), podemos obter soluções do tipo onda monocromática, a saber \[42, 43\]:

\[\Phi_{\omega lm}(t, r, \theta, \varphi) = R_{\omega lm}(r) S_{\omega lm}(\theta) e^{im\varphi-i\omega t}. \tag{2.5} \]

As funções \(S_{\omega lm}(\theta)\) são os harmônicos esferoidais oblatos\[44\], e obedecem a seguinte equação de autovalores:

\[\frac{1}{\sin \theta} \frac{d}{d\theta} \left[\sin \theta \frac{d S_{\omega lm}(\theta)}{d\theta} \right] + \left[\lambda_{lm} + a^2 \omega^2 \cos^2 \theta - \frac{m^2}{\sin^2 \theta} \right] S_{\omega lm}(\theta) = 0, \tag{2.6} \]

sendo \(\lambda_{lm}\) os autovalores dos harmônicos esferoidais oblatos (ver \[46\]). A função \(S_{\omega lm}(\theta)\) é regular no intervalo \(0 < \theta < \pi\). Em decorrência de a solução \((2.5)\) ser periódica na coordenada \(\varphi\), \(m\) deve ser um número inteiro. No limite sem rotação \((a = 0)\) os harmônicos esferoidais se reduzem aos polinômios de Legendre associados \((S_{\omega lm} \rightarrow P_{lm})\) com autovalores \(\lambda_{lm} = l(l+1)\), onde \(l\) também é um número inteiro \((-l < m < l)\).

Normalizaremos as funções \(S_{\omega lm}(\theta)\), de tal modo que \[21\]:

\[2\pi \int d\theta \sin \theta |S_{\omega lm}(\theta)|^2 = 1. \tag{2.7} \]

Utilizaremos a coordenada de Regge-Wheeler \(x\) do espaço-tempo de Kerr em coord-
2.2 Soluções assintóticas

nadas de BL, definida como:

\[\frac{dx}{dr} \equiv \frac{r^2 + a^2}{\Delta}. \quad (2.8) \]

Vamos agora reescrever a função radial, da solução (2.5), como:

\[R_{\omega lm}(r) = \frac{U_{\omega lm}(r)}{\sqrt{r^2 + a^2}}. \quad (2.9) \]

De (2.4)-(2.9) podemos reescrever a equação para a função radial, na forma de uma equação de Schrödinger unidimensional, a saber:

\[\left(\frac{d^2}{dx^2} + V_{\omega lm}(x) \right) U_{\omega lm}(x) = 0, \quad (2.10) \]

com um potencial efetivo dado por

\[V_{\omega lm}(x) \equiv \left(\omega - \frac{ma}{r^2 + a^2} \right)^2 - (\lambda_{lm} + \omega^2 a^2 - 2a \omega m) \frac{\Delta}{(r^2 + a^2)^2} - \Delta \frac{2(r^2 - Mr)}{(r^2 + a^2)^3} + \frac{3r^2 \Delta^2}{(r^2 + a^2)^3}. \quad (2.11) \]

2.2 Soluções assintóticas

Em virtude da complexidade de (2.10)-(2.11), usualmente as funções radiais \(U_{\omega lm}(r) \) são analisadas numericamente. Contudo, é possível realizar uma abordagem analítica para \(U_{\omega lm}(r) \) em determinados limites.

Nas regiões assintóticas, \(r \to r_+ (x \to -\infty) \) e \(r \to +\infty (x \to +\infty) \), o potencial (2.11) se reduz a

\[V_{\omega lm}(x) \sim \begin{cases}
(\omega - m \Omega_+)^2, & \text{para } x \to -\infty, \\
\omega^2, & \text{para } x \to +\infty,
\end{cases} \quad (2.12) \]

onde \(\Omega_+ \equiv a/(2Mr_+) \).

Como soluções independentes de (2.10) podemos escolher funções usualmente denotadas como \(\text{in} \) e \(\text{up} \) [47]. A solução \(\text{in} \) descreve uma onda advinda do infinito passado nulo \(J^- \) que interage com o potencial \(V_{\omega lm}(x) \), sendo parte transmitida para o horizonte
de eventos futuro \(\mathcal{H}^+ \) e parte refletida para o infinito futuro nulo \(\mathcal{J}^+ \). A solução \(\psi \) corresponde a uma onda proveniente do horizonte de eventos passado \(\mathcal{H}^- \) que interage com o potencial \(V_{\omega lm}(x) \), sendo parte transmitida para o infinito futuro nulo \(\mathcal{J}^+ \) e parte refletida para o horizonte de eventos futuro \(\mathcal{H}^+ \).

Neste trabalho, estaremos somente interessados nos modos \(in^2 \) pois os mesmos caracterizam as ondas relevantes para a absorção e o espalhamento, que são puramente advindas do infinito passado nulo. Assim, as soluções assintóticas para \(U_{\omega lm}(r) \) serão dadas por:

\[
U_{\omega lm}(x) \sim \begin{cases}
 A_{\omega lm} e^{-i\omega x} + R_{\omega lm} e^{i\omega x}, & \text{para } x \to +\infty, \\
 T_{\omega lm} e^{-i\tilde{\omega} x}, & \text{para } x \to -\infty,
\end{cases}
\]

com

\[
\tilde{\omega} \equiv \omega - m\Omega_+.
\]

Os coeficientes \(R_{\omega lm} \) e \(T_{\omega lm} \) estão diretamente relacionados aos coeficientes de reflexão e transmissão, respectivamente, e obedecem a seguinte relação:

\[
\left| \frac{R_{\omega lm}}{A_{\omega lm}} \right|^2 = 1 - \frac{\tilde{\omega}}{\omega} \left| \frac{T_{\omega lm}}{A_{\omega lm}} \right|^2.
\]

Para os modos nos quais \(\omega \tilde{\omega} < 0 \), temos que \(|R_{\omega lm}|^2 > |A_{\omega lm}|^2 \). Isso é decorrente de um fenômeno conhecido como superradiância, que ocorre quando uma onda espalhada por um buraco negro é amplificada \[48\]. De (2.14) (e da condição \(\omega \tilde{\omega} < 0 \)) podemos concluir que a superradiância não ocorre para \(m \leq 0 \). Além disso, a superradiância é um fenômeno que ocorre a baixas frequências e é mais intensa para \(m = 1 \) (cf. Seção (3.6)). A superradiância também está presente em análogos de buracos negros em fluidos, em uma configuração conhecida como draining bathtub \[49\].

Podemos agora prosseguir à análise da seção de choque de absorção por buracos negros de Kerr para o campo escalar não massivo, o que será feito no Capítulo seguinte.

\[\text{\footnote{2Sendo assim, omitiremos o índice } in \text{ nas soluções apresentadas.}}\]
Capítulo 3

Seção de choque de absorção de ondas escalares não massivas por buracos negros de Kerr

Neste Capítulo, investigaremos a seção de choque de absorção para o campo escalar não massivo de buracos negros de Kerr. Para verificar a consistência de nossos cálculos numéricos utilizaremos os resultados obtidos analiticamente, em altas e baixas frequências, comparando-os com nossos resultados obtidos numericamente para frequências arbitrárias.

Consideraremos uma onda escalar plana não massiva se propagando na direção \(\hat{n} = (0, \text{sen} \gamma, \text{cos} \gamma) \), tal que \(0 < \gamma < \pi \), sendo \(\gamma \) o ângulo formado pela onda plana incidente com o eixo de rotação do buraco negro, conforme representada na Figura 3.1.
3.1 Expansão assintótica de ondas planas no espaço-tempo de Kerr

Nessa Seção, obteremos uma forma assintótica para ondas planas no espaço-tempo de Kerr. Para tal, seguiremos os mesmos procedimentos apresentados na referência [21].

Considerando uma onda escalar plana não massiva, conforme ilustrado na Figura 3.1, teremos

\[\phi_{plana}(t, r, \theta, \varphi) = e^{i\omega x(\cos \gamma \cos \theta + \sin \gamma \sin \theta \sin \varphi)} e^{-i\omega t}, \quad (3.1) \]

onde \(x \) é a coordenada de Regge-Wheeler do espaço-tempo de Kerr em coordenadas de BL (cf. Eq. (2.8)). Assumimos que uma onda plana também possa ser escrita da seguinte forma

\[\phi_{plana} = \frac{1}{\omega r} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} c_{lm} u_{lm}^{(0)}(r) S_{\omega lm}(\theta)e^{im\varphi-i\omega t}, \quad (3.2) \]

onde \(u_{lm}^{(0)}(r) \) são funções radiais.

Para determinar \(c_{lm} u_{lm}^{(0)}(r) \), utilizamos a propriedade de ortogonalidade dos harmônicos
esferoidais, a saber

\[\int_0^\pi S_{\omega lm}(\theta)S_{\omega l'm}(\theta) \sin \theta d\theta = \frac{\delta_{ll'}}{2\pi}, \quad (3.3) \]

assim como

\[\int_0^{2\pi} e^{i(m-m')\varphi} d\varphi = 2\pi \delta_{mm'}. \quad (3.4) \]

Usando as Eqs. (3.1)-(3.4) é possível mostrar, após algumas manipulações algébricas, que

\[c_{lm}u_{lm}^{(0)}(r) = \omega r \int_0^\pi e^{i\omega x (\cos \gamma \cos \theta)} S_{\omega lm}(\theta) \sin \theta d\theta \int_0^{2\pi} d\varphi e^{i\omega x (\sin \gamma \sin \theta \sin \varphi)} e^{-i m \varphi}. \quad (3.5) \]

A função de Bessel de \(n \)-ésima ordem é definida da seguinte forma:

\[\int_0^{2\pi} d\varphi e^{i \mathcal{P} \sin \varphi} e^{-i m \varphi} = 2\pi J_n(\mathcal{P}). \quad (3.6) \]

Logo,

\[\int_0^{2\pi} d\varphi e^{i\omega x (\sin \gamma \sin \theta \sin \varphi)} e^{-i m \varphi} = 2\pi J_m(\omega x \sin \gamma \sin \theta). \quad (3.7) \]

Como estamos interessados em estudar ondas planas no limite \(r \to \infty \), podemos utilizar a aproximação assintótica para a função de Bessel, a saber:

\[\lim_{z \to \infty} J_m(z) \sim \frac{1}{\sqrt{2\pi z}} [(-i)^{m+1/2}e^{iz} + (i)^{m+1/2}e^{-iz}]. \quad (3.8) \]

Com isso, temos que

\[\lim_{r \to \infty} c_{lm}u_{lm}^{(0)}(r) \sim \sqrt{\frac{2\pi \omega}{\sin \gamma}} [(-i)^{m+1/2} \mathcal{I}_- + (i)^{m+1/2} \mathcal{I}_+], \quad (3.9) \]

com

\[\mathcal{I}_\pm = \int_0^\pi e^{i\omega x \cos(\theta \mp \gamma)} S_{\omega lm}(\theta) \sqrt{\sin \theta} d\theta. \quad (3.10) \]

Considerando que \(\omega x \) assume um valor muito grande, no limite \(r \to +\infty \) (o que corresponde a \(x \to +\infty \)), as integrais \(\mathcal{I}_\pm \) podem ser calculadas utilizando a aproximação de fase
3.2 Análise de ondas parciais

A aproximação de fase estacionária assume que as únicas contribuições não ignoráveis para a integral ocorrem em pontos estacionários y_s da função de fase $\phi(y)$. Ou seja,

$$
\int e^{i\phi(y)} f(y) dy \approx e^{i\phi(y_s)} f(y_s) e^{i\phi''(y_s)\pi/4} \sqrt{2\pi/|\phi''(y_s)|},
$$

(3.11)

onde $\phi'(y)|_{y=y_s} = 0$, e $'$ representa a derivada em relação à coordenada y. Aplicando esse resultado em \mathcal{I}_\pm, obtemos:

$$
\mathcal{I}_- \approx e^{i\omega x} S_{\omega l m}(\gamma) \sqrt{-2i\pi \sin \gamma/\omega r} \quad e \quad \mathcal{I}_+ \approx e^{-i\omega x} S_{\omega l m}(\pi - \gamma) \sqrt{2i\pi \sin \gamma/\omega r}.
$$

(3.12)

Finalmente, usando que $S_{\omega l m}(\pi - \gamma) = (-1)^{l+m} S_{\omega l m}(\gamma)$, concluimos que

$$
\lim_{r \to \infty} c_{lm} u_{lm}^{(0)}(r) \sim 2\pi S_{\omega l m}(\gamma) (-i)^{m+1} [e^{i\omega x} + (-1)^l e^{-i\omega x}].
$$

(3.13)

Portanto, a forma assintótica de uma onda plana não massiva se propagando na direção $\hat{n} = (0, \sin \gamma, \cos \gamma)$ é:

$$
\lim_{r \to \infty} \phi_{\text{plana}} \approx \frac{2\pi}{i\omega r} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} S_{\omega l m}(\gamma) (-i)^m [e^{i\omega x} + (-1)^l e^{-i\omega x}] S_{\omega l m}(\theta) e^{im\phi - i\omega t}.
$$

(3.14)

3.2 Análise de ondas parciais

Nesta Seção, iremos obter a seção de choque de absorção de buracos negros de Kerr utilizando o método de ondas parciais, um método amplamente empregado em problemas de espalhamento na Física, como por exemplo, em buracos negros [51], no eletromagnetismo [52], e na mecânica quântica [53].

No infinito desejamos que o campo seja a soma de uma onda plana mais uma onda espalhada, a saber:

$$
\phi(t, r, \theta, \varphi) \sim \phi_{\text{plana}}(t, r, \theta, \varphi) + \frac{1}{r} f(\theta, \varphi) e^{i\omega x} e^{-i\omega t}, \quad \text{para} \ r \to +\infty,
$$

(3.15)
onde reiteramos que x é a coordenada de Regge-Wheeler do espaço-tempo de Kerr em coordenadas de BL (cf. Eq. (2.8)). A função $f(\theta, \varphi)$ é a amplitude de espalhamento e carrega todas as informações acerca do processo de espalhamento.

A solução geral do campo no infinito deve possuir a seguinte forma:

$$
\lim_{r \to \infty} \phi(t, r, \theta, \varphi) \sim \frac{1}{r} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} c_{lm}(A_{\omega lm} e^{-i\omega x} + R_{\omega lm} e^{i\omega x}) S_{\omega lm}(\theta) e^{im\varphi - i\omega t}.
$$

(3.16)

Usando a Eq. (3.14), podemos concluir que a condição de contorno (3.15) será respeitada escolhendo:

$$
c_{lm} A_{\omega lm} = \frac{2\pi}{i\omega} S_{\omega lm}(\gamma)(-i)^m (-1)^{l+1}.
$$

(3.17)

Portanto, teremos:

$$
\lim_{r \to \infty} \phi(t, r, \theta, \varphi) = \frac{2\pi}{i\omega r} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} S_{\omega lm}(\gamma)(-i)^m (-1)^{l+1} e^{-i\omega x}
$$

$$
+ e^{2i\delta_{\omega lm}} e^{i\omega x} S_{\omega lm}(\theta) e^{im\varphi - i\omega t},
$$

(3.18)

onde, assim como no caso esfericamente simétrico, definimos:

$$
e^{2i\delta_{\omega lm}} \equiv (-1)^{l+1} \frac{R_{\omega lm}}{A_{\omega lm}},
$$

(3.19)

sendo $\delta_{\omega lm}$ a defasagem de cada onda parcial. Com base nesta abordagem, na Seção seguinte, investigaremos a seção de choque de absorção.

3.3 A seção de choque de absorção

Obteremos nessa Seção a forma da seção de choque de absorção para o campo escalar não massivo para buracos negros de Kerr. A seção de choque de absorção é definida como:

$$
\sigma \equiv -\frac{F}{J_f},
$$

(3.20)

\footnote{Note-se que por caso esfericamente simétrico, estaremos nos referindo à solução de Schwarzschild, que descreve buracos negros estáticos e esféricos na Teoria da Relatividade Geral.}
onde \(F \) é fluxo total no infinito e \(J \) é a densidade de corrente da onda incidente.

Para o campo escalar não massivo a corrente é definida como:

\[
J_\mu \equiv \frac{1}{2i}(\Phi^* \partial_\mu \Phi - \Phi \partial_\mu \Phi^*). \tag{3.21}
\]

Para obtermos o fluxo da onda absorvida, consideramos uma superfície esférica de raio infinito, tal que possamos utilizar a expressão (3.18). Portanto, o fluxo pode ser escrito como

\[
F = \lim_{r \to \infty} \int J \cdot r^2 d\Omega, \tag{3.22}
\]

sendo \(d\Omega \) o elemento de ângulo sólido.

Inserindo (3.18) na definição da corrente (3.21) e depois usando (3.22), obtemos o seguinte resultado para o fluxo:

\[
F = -\frac{4\pi^2}{\omega} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} |S_{\omega lm}(\gamma)|^2 \left(1 - \left| \frac{R_{\omega lm}}{A_{\omega lm}} \right|^2 \right). \tag{3.23}
\]

Considerando uma onda plana não normalizada se propagando no eixo \(z \), \(e^{i\omega z} \), obtemos, usando a expressão (3.21), que a densidade de corrente incidente é igual a \(\omega \). Além disso, substituindo (3.23) em (3.20), temos que a seção de choque de absorção total é escrita da seguinte forma:

\[
\sigma = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \sigma_{lm}, \tag{3.24}
\]

com as seções de choque de absorção parciais\(^2 \) \(\sigma_{lm} \), dadas por

\[
\sigma_{lm} = \frac{4\pi^2}{\omega^2} |S_{\omega lm}(\gamma)|^2 \left(1 - \left| \frac{R_{\omega lm}}{A_{\omega lm}} \right|^2 \right). \tag{3.25}
\]

A seção de choque de absorção é invariante sob a mudança \(\gamma \to \pi - \gamma \), pois \(S_{\omega lm}(\pi - \gamma) = (-1)^{l+m} S_{\omega lm}(\gamma) \) \cite{21}, e, portanto, \(|S_{\omega lm}(\pi - \gamma)|^2 = |S_{\omega lm}(\gamma)|^2 \). Além disso, observamos que toda informação sobre a parte angular é conduzida pelo harmônico esfereidal.

\(^2\) A seção de choque de absorção parcial é a seção de choque para valores fixos de \(l \) e \(m \).
oblato, e os fatores de reflexão

\[|R_{\omega lm}|^2 = \left| \frac{R_{\omega lm}}{A_{\omega lm}} \right|^2, \quad (3.26) \]

e transmissão

\[|T_{\omega lm}|^2 = \frac{\tilde{\omega}}{\omega} \left| \frac{T_{\omega lm}}{A_{\omega lm}} \right|^2, \quad (3.27) \]
dependem apenas da frequência \(\omega \) e dos números quânticos \(l \) e \(m \) (cf. Seção (3.6)).

Para uma onda incidindo em uma direção paralela ao eixo de rotação do buraco negro \((\gamma = 0) \), temos que \(\sigma_{lm} = 0 \) para \(m \neq 0 \). Para mostrarmos isso, consideremos a equação diferencial que define \(S_{\omega lm} \), a qual pode ser reescrita como

\[\frac{d}{d\eta} \left[(1 - \eta^2) \frac{dS_{\omega lm}(\eta)}{d\eta} \right] + \left(\lambda_{lm} + a^2 \omega^2 \eta^2 - \frac{m^2}{1 - \eta^2} \right) S_{\omega lm}(\eta) = 0, \quad (3.28) \]
sendo \(\eta \equiv \cos \gamma \). Essa equação aparenta apresentar uma divergência para \(\eta \to 1 \) ou \(\gamma = 0 \) (incidência axial). Contudo, é possível mostrar que a função \(S_{\omega lm}(\eta) \) pode ser desenvolvida em séries de potência de \((1 - \eta^2) \), da seguinte forma [54]:

\[S_{\omega lm}(\eta) = e^{a\omega \eta}(1 - \eta^2)^{|m|/2} \sum_{n=0}^{\infty} c_n (1 + \eta)^n. \quad (3.29) \]

Considerando a expressão acima podemos inferir que o harmônico esférico será nulo quando \(\eta = 1 \), a menos que \(m = 0 \).

A seção de choque de absorção total pode ser escrita do seguinte modo:

\[\sigma = \sigma^+ + \sigma^-, \quad (3.30) \]

com

\[\sigma^\pm = \frac{1}{2} \sum_{l=0}^{\infty} \sigma_{l0} + \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \sigma_{l,\pm m}. \quad (3.31) \]

Com isso, dividimos a seção de choque de absorção total em suas contribuições cogi-rantes \((\sigma^+) \) e contragirantes \((\sigma^-) \). Essa separação se mostrará útil quando formos analisar o comportamento da seção de choque de absorção total (cf. Figura 3.13 na Subseção 3.6.3).
3.3 A seção de choque de absorção

3.3.1 Regime de baixas frequências

No regime de baixas frequências, foi mostrado na literatura que a seção de choque de absorção para buracos negros estacionários é igual à área do horizonte de eventos do buraco negro \([55, 56]\). Esse resultado é muito geral e independe da direção da onda incidente. Averiguamos nossos resultados numéricos nesse limite, calculando numericamente a seção de choque de absorção para valores pequenos da frequência \(\omega\). Na Tabela 3.1 exibimos os valores da área do horizonte de eventos (cf. Eq. (1.15)) para algumas escolhas do parâmetro de rotação do buraco negro.

3.3.2 Regime de altas frequências

No regime de altas frequências, utilizando a aproximação eikonial \([51, 52, 53]\), as ondas seguem geodésicas nulas que se propagam ortogonalmente à frente de onda inicial. Portanto, a análise da seção de choque de absorção pode ser feita calculando a seção de choque de captura de geodésicas nulas incidindo do infinito sobre um buraco negro de Kerr, cujo tratamento detalhado é apresentado na Seção seguinte. O cálculo da seção de choque de captura pode ser encontrado nas referências \([39, 57]\). Na Tabela 3.1 são apresentados valores para a seção de choque de captura para algumas escolhas do parâmetro de rotação do buraco negro.

\(a[M]\)	0.00	0.30	0.60	0.90	0.99
\(\sigma(\omega \approx 0)\pi M^2\)	16.000	15.631	14.400	11.487	9.128
\(\sigma(\omega \gg M)\pi M^2\)	27.000	26.726	25.855	24.168	23.409

Tabela 3.1: Limites de altas e baixas frequências da seção de choque de absorção para diferentes valores de \(a\) exibidos na Seção 3.6. Os resultados apresentados para o regime de altas frequências foram obtidos para incidência ao longo do eixo de rotação do buraco negro.
3.4 Seção de choque de captura de um buraco negro de Kerr

Nesta Seção, desenvolveremos uma aproximação complementar à apresentada em [39, 57] para o cálculo da seção de choque de captura geodésica \(\sigma_{geo} \) de um buraco negro de Kerr, buscando enfatizar os aspectos geométricos dos cálculos.

A situação abordada é ilustrada na Figura 3.2: uma frente de onda plana é lançada sobre um buraco negro de Kerr com um ângulo de incidência \(\gamma \), medido em relação ao eixo de rotação do buraco negro. A seção de choque de captura geodésica \(\sigma_{geo} \) é dada pela área da “superfície de absorção” que é traçada na superfície da frente de onda incidente.

Figura 3.2: Ilustração de uma onda plana incidindo sobre um buraco negro de Kerr. A figura à esquerda ilustra uma frente de onda plana indo em direção a um buraco negro com ângulo de incidência \(\gamma \) (sendo \(\gamma \) o ângulo entre o eixo de rotação do buraco negro e a direção de incidência da onda). A figura à direita mostra a superfície de absorção, correspondente à parte da frente de onda que é absorvida no limite da ótica geométrica. A superfície é descrita por \(b_c(\chi) \), sendo \(\chi \) o ângulo entre um ponto na superfície e a projeção do eixo de rotação do buraco negro, e \(b_c \) é o parâmetro de impacto crítico. (Cortesia de Sam R. Dolan.)

Podemos escrever a seção de choque de captura geodésica, da seguinte forma

\[
\sigma_{geo} = \int_{-\pi}^{\pi} \frac{1}{2} b_c^2(\chi, \gamma) d\chi, \tag{3.32}
\]
sendo \(\chi \) um ângulo definido na superfície da frente de onda plana, medido a partir da projeção do eixo de rotação do buraco negro no sentido co-rotante, e \(b_c(\chi, \gamma) \) é o parâmetro de impacto “crítico”, que é o valor limite do parâmetro de impacto assumido por uma geodésica nula que se aproxima assimptoticamente de uma órbita fotônica de raio constante.

Para obter \(b_c(\chi, \gamma) \) resolvemos as equações de geodésicas nulas que são obtidas a partir do método de Hamilton-Jacobi. No espaço-tempo de Kerr as geodésicas são governadas por quatro equações diferenciais de primeira ordem, escritas em termos de três constantes de movimento: \(E \) (energia), \(L_z \) (componente do momento angular ao longo do eixo-\(z \)) e a constante de Carter \(Q \), a saber:

\[
\rho^4 r^2 = R(r), \tag{3.33}
\]
\[
\rho^4 \dot{\theta}^2 = \Theta(\theta), \tag{3.34}
\]
\[
\rho^2 \dot{i} = \frac{[\Sigma^2 E - 2MarL_z]}{\Delta}, \tag{3.35}
\]
\[
\rho^2 \dot{\phi} = \frac{[2MarE + (\rho^2 - 2Mr)\frac{L_z}{\sin \theta}]}{\Delta}, \tag{3.36}
\]

com \(\Sigma^2 \equiv (r^2 + a^2)^2 - \Delta a^2 \sin^2 \theta \), e as funções \(R(r) \) e \(\Theta(\theta) \) definidas da seguinte maneira:

\[
R(r) \equiv [(r^2 + a^2)E - aL_z]^2 - \Delta [Q + (L_z - aE)^2], \tag{3.37}
\]
\[
\Theta(\theta) \equiv Q - (L_z^2 \cos^2 \theta - a^2 E^2) \cos^2 \theta. \tag{3.38}
\]

Torna-se conveniente diminuir o número de parâmetros, definindo:

\[
\mathcal{V} \equiv L_z/E \tag{3.39}
\]

e

\[
Q \equiv Q/E^2. \tag{3.40}
\]

Para obter a seção de choque de captura, devemos estabelecer uma relação entre as constantes de movimento e os valores de \(b \) e \(\chi \), para uma geodésica nula passando ortogonalmente à frente de onda. Podemos então introduzir um “vetor de impacto”
3.4 Seção de choque de captura de um buraco negro de Kerr

b = (b *cos* θ *cos* φ, b *sen* θ, −b *sen* θ *sen* φ). Isso corresponde a um raio luminoso com as seguintes constantes de movimento:

V = b *sen* θ *sen* φ,

\hspace{1cm} \text{(3.41)}

e

Q = b^2 *cos^2* φ + (b^2 *sen^2* φ − a^2) *cos^2* γ.

\hspace{1cm} \text{(3.42)}

Definimos então a função:

\[R(r) \equiv \frac{R(r)}{E^2} = r^4 + r^2(a^2 − Q − V^2) + 2M[Q + (V − a)^2]r − a^2Q, \]

\hspace{1cm} \text{(3.43)}

que descreve o movimento de uma geodésica nula em *r*.

Os dois parâmetros constantes V e Q substituem o papel do parâmetro de impacto, b, pelo qual distinguiamos geodésicas nulas, como absorvidas ou espalhadas. No caso do movimento geral de uma geodésica nula, faremos distinção se os valores das constantes de movimento, V e Q, são maiores (geodésicas espalhadas) ou são menores (geodésicas absorvidas) que aqueles correspondentes à superfície de absorção crítica (Vc, Qc). A superfície de absorção crítica representa pontos da trajetória que se aproximam assimptoticamente das órbitas instáveis com valores de *r* = constante.

As equações que determinam órbitas instáveis de raio constante são [39]:

\[R|_{r=r_c} = r_c^4 + r_c^2(a^2 − Q_c − V_c^2) + 2M[Q_c + (V_c − a)^2]r_c − a^2Q_c = 0, \]

\hspace{1cm} \text{(3.44)}

e

\[\frac{\partial R}{\partial r} \bigg|_{r=r_c} = 4r_c^3 + 2r_c(a^2 − Q_c − V_c^2) + 2M[Q_c + (V_c − a)^2] = 0. \]

\hspace{1cm} \text{(3.45)}

Usando (3.44) e (3.45) é possível determinar que:

\[V_c = \frac{1}{a(r_c − M)}[M(r_c^2 − a^2) − r_c\Delta_c] \]

\hspace{1cm} \text{(3.46)}
3.4 Seção de choque de captura de um buraco negro de Kerr

$$Q_c = \frac{r_c^3}{a^2(r_c - M)^2}[4M\Delta_c - r_c(r_c - M)^2].$$ \hspace{1cm} (3.47)

As Eqs. (3.46) e (3.47) determinam, parametricamente, a superfície de absorção crítica \((V_c, Q_c)\). Uma vez conhecendo os valores \((V_c, Q_c)\) podemos obter um par de valores \((r_c(\chi, \gamma), b_c(\chi, \gamma))\).

Usando (3.46)-(3.47) e (3.41)-(3.42), obtemos:

$$b_c^2(\chi, \gamma) = \frac{1}{a^2(r_c - M)^2} \left\{ r_c^3[4M\Delta_c - r_c(r_c - M)^2] + [M(r_c^2 - a^2) - r_c\Delta_c]^2 \right\} + a^2\cos^2\gamma.$$ \hspace{1cm} (3.48)

A seção de choque de captura é obtida substituindo a Eq. (3.48) em (3.32). Na Figura 3.3 plotamos a seção de choque de captura geodésica \(\sigma_{geo}\) em função do ângulo de incidência \(\gamma\) para alguns valores do parâmetro de rotação \(a\). Podemos ver que, conforme varíamos o ângulo de incidência, do eixo de rotação \((\gamma = 0)\) até o plano equatorial \((\gamma = 90)\), os valores da seção de captura geodésica aumentam (para \(a \neq 0\)), e isso é decorrente do efeito de arrasto de referenciais que será mais intenso no plano equatorial.

Figura 3.3: Seção de choque de captura geodésica \(\sigma_{geo}\) como função do ângulo de incidência \(\gamma\), sendo que \(\gamma = 0\) significa incidência ao longo do eixo de rotação do buraco negro \((\sigma_{geo} \text{ é simétrica sob a mudança } \gamma \rightarrow \pi - \gamma)\). A seção de choque de captura geodésica é o limite em altas frequências da seção de choque de absorção de ondas planas.
3.5 Método numérico para o cálculo da seção de choque em frequências arbitrárias

O procedimento empregado para obter a seção de choque de absorção em frequências arbitrárias consiste basicamente em evoluir numericamente a Eq. (2.10) no intervalo de \(r \approx r_+ \) até \(r \to \infty \), sendo \(r_+ \) o raio do horizonte de eventos do buraco negro (um procedimento numérico análogo ao adotado aqui pode ser visto em [58]).

Inicialmente introduzimos uma função auxiliar \(\Psi_{\omega lm}(x) \) que é solução da Eq. (2.10). A função \(\Psi_{\omega lm}(x) \) possui o seguinte comportamento assintótico:

\[
\Psi_{\omega lm}(x_1) = R_I,
\]

onde

\[
R_I \equiv e^{-i\omega x_1} \sum_{j=0}^{N} (r(x_1) - r_+)^j A_{r_+}^j,
\]

com \(x_1/r_+ \ll -1 \). Note-se que na Eq. (3.50) utilizamos a definição (2.14). Esse comportamento assintótico servirá como condição de contorno para \(\Psi_{\omega lm}(x) \).

Para \(x = x_2 \), com \(x_2/r_+ \gg 1 \), teremos:

\[
\Psi_{\omega lm}(x_2) = E_{\omega lm}R_{II} + F_{\omega lm}R_{II}^*,
\]

onde

\[
R_{II} \equiv e^{-i\omega x_2} \sum_{j=0}^{N} \frac{A_{\infty}^j}{r^j(x_2)}.
\]

Os coeficientes \(A_{r_+}^j \) e \(A_{\infty}^j \) são obtidos exigindo que as funções \(R_I \) e \(R_{II} \) sejam soluções da Eq. (2.10), muito próximo e muito distante do horizonte de eventos do buraco negro, respectivamente.

A presença dos somatórios nas expressões (3.50) e (3.52) torna os cálculos computacionais mais eficientes, pois, dessa forma, não precisamos tomar valores muito próximos e nem muito distantes de \(r_+ \), respectivamente, para a coordenada radial \(r \) a fim de obtermos resultados convergentes. Nestes somatórios foi suficiente considerarmos \(N = 3 \) para
3.6 Resultados numéricos

a obtenção de resultados convergentes.

Para obtermos expressões mais facilmente identificáveis com as da Seção 2.2, podemos escrever \(U_{\omega lm}(x) = N_{\omega lm} \Psi_{\omega lm}(x) \). Desta forma, teremos:

\[
U_{\omega lm}(x) = \begin{cases}
N_{\omega lm}(E_{\omega lm}R_{II} + F_{\omega lm}R_{II}^*), & \text{para } x = x_2, \\
N_{\omega lm}R_I, & \text{para } x = x_1,
\end{cases} \tag{3.53}
\]

sendo \(N_{\omega lm} \) uma constante. Reescrevendo as soluções assintóticas de \(U_{\omega lm}(x) \) como:

\[
U_{\omega lm}(x) = \begin{cases}
A_{\omega lm}R_{II} + R_{\omega lm}R_{II}^*, & \text{para } x \to +\infty, \\
T_{\omega lm}R_I, & \text{para } x \to -\infty,
\end{cases} \tag{3.54}
\]

e comparando (3.54) com (3.53), concluímos que:

\[
N_{\omega lm} = T_{\omega lm}, \quad \frac{T_{\omega lm}}{A_{\omega lm}} = \frac{1}{E_{\omega lm}} \quad \text{e} \quad \frac{F_{\omega lm}}{E_{\omega lm}} = \frac{R_{\omega lm}}{A_{\omega lm}} \tag{3.55}
\]

Da condição de contorno (3.51) e de sua primeira derivada, podemos obter:

\[
\frac{T_{\omega lm}}{A_{\omega lm}} = \frac{1}{E_{\omega lm}} = \left[\frac{R_{II} \frac{dR_{II}}{dx} - R_{II}^* \frac{dR_{II}}{dx}}{\Psi_{\omega lm}(x) \frac{d\Psi_{\omega lm}(x)}{dx}} \right]_{x = x_2} \tag{3.56}
\]

Desta forma, o fator de transmissão fica completamente determinado quando desenvolvemos numericamente a solução \(\Psi_{\omega lm}(x) \) do ponto \(x = x_1 \), com a condição de contorno (3.49), até o ponto \(x = x_2 \), onde calculamos \(\Psi_{\omega lm}(x_2) \) (cf. Eq. (3.51)) e sua primeira derivada, e substituímos ambas na Eq. (3.56). Posteriormente, tomando o módulo quadrático de (3.56) e usando a Eq. (3.25) podemos obter as seções de choque de absorção parciais.

3.6 Resultados numéricos

Nessa Seção, apresentaremos nossos resultados numéricos para a seção de choque de absorção para o campo escalar não massivo por buracos negros de Kerr. Destacaremos
3.6 Resultados numéricos

Os resultados para a seção de choque para incidências arbitrárias ($\gamma \neq 0$) que exibem características muito distintas, se comparadas ao caso esféricamente simétrico.

3.6.1 Fatores de Reflexão e Transmissão

Nesta Subseção, mostraremos nossos resultados numéricos para os fatores de reflexão e transmissão. Ressaltamos que os fatores de reflexão e transmissão não dependem do ângulo de incidência γ da onda plana.

Na Figura 3.4 exibimos o fator de reflexão Eq. (3.26), com o parâmetro de rotação $a/M = 0.90$, $m = 0$ e l variando de $l = 0$ até $l = 4$. O comportamento do fator de reflexão para $m = 0$ é similar ao apresentado no caso esféricamente simétrico.

![Figura 3.4: Fator de reflexão, com $a/M = 0.90$, $m = 0$ e $0 \leq l \leq 4$.](image)

O fator de transmissão Eq. (3.27), para $a/M = 0.90$, $m = 0$ e $0 \leq l \leq 4$, é exibido na Figura 3.5. Assim como o fator de reflexão, o fator de transmissão para $m = 0$ apresenta um comportamento semelhante ao caso esféricamente simétrico. Devemos enfatizar que não há superadiância para modos com $m = 0$ (cf. Subseção 2.2).
Figura 3.5: Fator de transmissão, com $a/M = 0.90$, $m = 0$ e $0 \leq l \leq 4$.

Passemos aos resultados para o fator de reflexão considerando valores fixos de l, e variando os valores de m ($-l \leq m \leq +l$), com $a/M = 0.90$, que podem ser observados na Figura 3.6.
3.6 Resultados numéricos

Figura 3.6: Fator de reflexão com o parâmetro de rotação \(a/M = 0.90 \). Exibimos as contribuições dos modos para \(l \) variando de \(l = 1 \) até \(l = 3 \) e \(-l \leq m \leq l \).

Plotamos alguns fatores de transmissão, para alguns valores fixos de \(l \) e para \(-l \leq m \leq l \), com \(a/M = 0.90 \), os quais estão exibidos na Figura 3.7.
3.6 Resultados numéricos

Figura 3.7: Fator de transmissão, para valores fixos de l e $|m| \leq l$, com o parâmetro de rotação $a/M = 0.90$.

Para $m \neq 0$ o fator de reflexão pode assumir valores maiores que o valor unitário, conforme pode ser verificado na Figura 3.8, para alguns valores de $\omega (\omega < m\Omega_+)$, devido à *superradiância*. Para esses valores o fator de transmissão e a seção de choque de absorção parcial correspondente assumem valores negativos. Contudo, a seção de choque de absorção total permanece sempre positiva.
3.6 Resultados numéricos

Figura 3.8: Fator de reflexão para o modo $l = m = 1$ e parâmetro de rotação $a/M = 0.99$. Com a ampliação é possível observar que o fator de reflexão assume valores maiores que o valor unitário, para um determinado intervalo de frequência $\omega (\omega < m\Omega_+)$.

Podemos perceber na Figura 3.9 que, para um determinado intervalo de frequência $\omega (\omega < m\Omega_+)$, o fator de transmissão, para $l = m = 1$ e $a/M = 0.99$, assume valores negativos.

Figura 3.9: Fator de transmissão, incluindo ampliação nos seus valores negativos, do modo $l = m = 1$, para o parâmetro de rotação $a/M = 0.99$. A superradiância se torna mais evidente para este modo ($l = m = 1$).
3.6 Resultados numéricos

3.6.2 Incidência axial \((\gamma = 0)\)

Consideraremos inicialmente os resultados da seção de choque para incidência ao longo do eixo de rotação do buraco negro. Limitaremos-nos a uma breve exposição dos resultados obtidos, pois os mesmos não diferem significativamente do caso esféricamente simétrico.

Na Figura 3.10 plotamos a seção de choque de absorção parcial \(\sigma_{l0}\) de buracos negros de Kerr para o campo escalar não massivo com os seguintes valores do parâmetro de rotação: \(a/M = 0.00\) (Schwarzschild), 0.30, 0.60 e 0.99; para o caso de ondas incidentes ao longo do eixo de rotação. Podemos ver na Figura 3.10 que estas seções de choque partem de um valor finito (nulo para \(l > 0\)) atingem um máximo e caem para zero. Notemos ainda que para um valor fixo da razão \(a/M\), à medida que o valor de \(l\) aumenta, o valor máximo da seção de choque de absorção parcial diminui, enquanto que o valor de frequência relacionado a esse máximo aumenta.

Figura 3.10: Seções de choque de absorção parciais (com \(m = 0\)) para valores de \(l\) variando de 0 até 6. Podemos notar que o valor de máximo da seção de choque de absorção parcial diminui à medida que o valor de \(l\) aumenta, e para \(\omega = 0\) a única contribuição não nula é dada pelo modo \(l = 0\).
Na Figura 3.11 mostramos a seção de choque de absorção total para diferentes valores do parâmetro de rotação: \(a/M = 0.00\) (Schwarzschild), 0.30, 0.60 e 0.99. Podemos verificar que, conforme o valor da frequência aumenta a partir de \(\omega = 0\), o valor da seção de choque de absorção inicialmente aumenta, tendo como valor inicial a área do horizonte de eventos, e posteriormente oscila regularmente em torno do limite de altas frequências (seção de choque de captura geodésica), que é representado por linhas horizontais na Figura 3.11.

Figura 3.11: Seção de choque de absorção total de buracos negros de Kerr para o campo escalar não massivo. Cada valor de máximo local corresponde a um valor máximo das seções de choque de absorção parciais.

Devemos enfatizar que para uma incidência axial \((\gamma = 0)\), uma vez que \(S_{\omega lm}(\gamma = 0) = 0\) se \(m \neq 0\), segue de (3.25), que \(\sigma_{lm} = 0\), neste caso. Desta forma, as únicas contribuições não nulas para a seção de choque de absorção total, no caso de uma incidência axial, provêm de \(\sigma_{l0}\). Isto explica o comportamento oscilatório regular da seção de choque de absorção total para incidência axial.

3.6.3 Incidência arbitrária \((\gamma \neq 0)\)

Passaremos agora à discussão para o caso de uma onda plana incidindo de forma arbitrária. Como poderemos ver, o comportamento da seção de choque de absorção nesse caso pode diferir significativamente da seção de choque para incidência axial.
Na Figura 3.12 mostramos a seção de choque de absorção total para alguns valores do parâmetro de rotação \(a/M = 0.30, 0.60, 0.90, \) e \(0.99 \) e ângulos de incidência \(\gamma = 0, 30, 60, \) e \(90 \) graus). Podemos observar, que conforme nos distanciamos do caso de incidência axial \(\gamma = 0 \), aumentando o ângulo de incidência \(\gamma \) e o parâmetro de rotação \(a/M \), o comportamento da seção de choque de absorção difere bastante do comportamento regular exibido na Figura 3.11. No regime de altas frequências a seção de choque de absorção total \(\sigma \) oscila de forma irregular em torno da seção de choque de captura. Esse comportamento oscilatório irregular surge como consequência da degenerescência do número quântico azimutal \(l \), uma vez que o coeficiente de transmissão passa a ter uma forte dependência em \(m \) [24]. De outra forma, pode-se dizer que existe um acoplamento entre a rotação do buraco negro e o número quântico \(m \), que pode ser interpretado como resultado do arrasto de referências [21].

Figura 3.12: Seção de choque de absorção total de ondas planas com incidências arbitrárias e com diferentes valores do parâmetro de rotação, \(a/M = 0.30, 0.60, 0.90, 0.99 \). Para comparação, exibimos o caso de incidência axial e seus limites em altas frequências (linhas horizontais). Verificamos que o padrão oscilatório exibido no caso \(\gamma \neq 0 \) difere consideravelmente do padrão regular exibido no caso \(\gamma = 0 \).
3.6 Resultados numéricos

O número quântico \(m \) pode ser positivo \((m > 0) \), correspondendo aos modos cogirantes com o buraco negro, ou negativo \((m < 0) \), correspondendo aos modos contragirantes. Na Figura 3.13 exibimos separadamente os resultados da seção de choque de absorção para os modos cogirantes e contragirantes para \(\gamma = 90 \) graus. Calculamos as seções de choque \(\sigma^\pm \) de acordo com a Eq. (3.31). Notamos que dividindo a seção de choque de absorção total em contribuições cogirantes \((\sigma^+) \) e contragirantes \((\sigma^-) \), o padrão oscilatório torna-se mais regular. Além disso, observamos que as contribuições dos modos contragirantes para a seção de choque de absorção total são maiores que dos cogirantes. Isso está de acordo com o resultado da análise de geodésicas nulas, pois o raio crítico para órbitas contragirantes é maior que o de órbitas cogirantes [39]. Podemos ver da Figura 3.13 que conforme aumentamos o valor do parâmetro de rotação, o distanciamento entre \(\sigma^+ \) e \(\sigma^- \) torna-se maior. Essa diferença entre as seções de choque co- e contragirantes é mais evidente para \(\gamma = 90 \) graus (plano equatorial), como consequência da maior importância do arrasto de referenciais no plano equatorial.
Figura 3.13: Seções de choque de absorção cogirantes \((\sigma^+) \), contragirantes \((\sigma^-) \) e total \((\sigma = \sigma^+ + \sigma^-) \). Plotamos os gráficos para o ângulo de incidência de \(\gamma = 90 \) graus e diferentes valores do parâmetro de rotação \(a/M = 0.3, 0.6, 0.9 e 0.99 \). Notamos que as seções de choque de absorção contragirantes são maiores que suas correspondentes cogirantes e a separação entre elas torna-se maior à medida que o valor de \(a \) aumenta.

Na Figura 3.14 mostramos as seções de choque de absorção parciais com menores valores de \(l \) para valores fixos de \(|m| \), variando os valores de \(l \). Verificamos que as contribuições dos modos cogirantes \((m > 0) \) e contragirantes \((m < 0) \) para a seção de choque de absorção parcial com o mesmo valor de \(|m| \) tornam-se iguais a partir de um determinado valor de frequência. Isso ocorre quando ambas as ondas parciais com o mesmo valor de \(|m| \) são absorvidas, ou seja, \(|R_{\omega lm}/A_{\omega lm}|^2 = 0 \), e o sinal de \(m \) em (3.25) torna-se irrelevante.
Figura 3.14: Seções de choque de absorção parciais para $a/M = 0.9$ e $\gamma = 60$ graus. Plotamos as contribuições para valores fixos de l e m, para os modos cogirantes (curvas com picos menores) e contratirantes (curvas com picos maiores).

Na Figura 3.15 podemos notar que para um certo intervalo de frequência ω ($\omega < m\Omega_+$) a seção de choque de absorção parcial, para $l = m = 1$ e $a/M = 0.99$, é negativa. Para esse modo ($l = m = 1$) a superradiância é mais evidente, e notamos que o efeito é mais intenso no plano equatorial, no qual o arrasto de referência é mais severo.
Figura 3.15: Seção de choque de absorção (incluindo ampliação nos seus valores negativos) do modo \(l = m = 1 \) para \(\gamma = 30, 60 \) e 90 graus e parâmetro de rotação \(a/M = 0.99 \). Para esse modo \((l = m = 1) \) a superradiância é mais evidente, embora, mesmo nesse caso, seja muito pequena.
Considerações Finais

Nesta dissertação, calculamos numericamente a seção de choque de absorção de ondas planas escalares não massivas incidindo sobre um buraco negro de Kerr, no intuito de revelar quais os efeitos provocados pela rotação do buraco negro no comportamento da mesma. Sendo assim, consideramos separadamente incidências alinhadas e não alinhadas ao eixo de rotação do buraco negro.

Para o caso de incidência ao longo do eixo de rotação do buraco negro, notamos que a seção de choque de absorção apresenta um comportamento oscilatório muito similar ao caso esféricamente simétrico (buraco negro de Schwarzschild), isso é decorrente de não podermos distinguir entre modos co-e contragirantes, do campo escalar não massivo, com o buraco negro. Contudo, para incidências fora do eixo de rotação verificamos que a seção de choque de absorção exibe um padrão oscilatório irregular decorrente do acoplamento entre o momento angular azimutal do campo e o momento angular do buraco negro. Para melhor explorar esse acoplamento comparamos as contribuições cogirantes \((m > 0)\) e contragirantes \((m < 0)\) com o buraco negro para a seção de choque de absorção total e verificamos que as contribuições dos modos contragirantes são maiores que as dos modos cogirantes. Mostramos também que, devido à superradiância no espaço-tempo de Kerr, a seção de choque de absorção parcial, assim como o fator de transmissão podem assumir valores negativos para algumas combinações de \(\omega\) \(m\) e o fator de reflexão pode assumir valores maiores que o unitário.

Algumas das características observadas na absorção do campo escalar não massivo por buracos negros de Kerr também têm sido observadas na absorção de ondas sonoras em uma configuração denominada draining bathtub: um análogo (não exato) de buracos
3.6 Resultados numéricos

Uma possível extensão dos estudos apresentados nesta dissertação consiste na investigação de processos de absorção e espalhamento por buracos negros de Kerr, dos campos espinorial e eletromagnético, que apresentarão também um acoplamento entre o spin do campo e a rotação do buraco negro.

As investigações das seções de choque de absorção e espalhamento, dos campos escalar, espinorial, eletromagnético e gravitacional, por buracos negros com carga e rotação (buracos negros de Kerr-Newman) também compõem extensões possíveis dos estudos apresentados nesta dissertação.
Referências Bibliográficas

[1] D. Raine e E. Thomas, *Black holes: An introduction* (Imperial College Press, London, 2009).

[2] P. T. Chrusciel, J. L. Costa e M. Heusler, Living Rev. Relativity 15, 7 (2012).

[3] R. Narayan, New J. Phys. 7, 199 (2005).

[4] L. Ferrarese e H. Ford, Space Sci. Rev. 116, 523 (2005).

[5] E. Berti, V. Cardoso e O. Starinets, Classical Quantum Gravity 26, 163001 (2009).

[6] G. Risaliti, F. A. Harrison, K. K. Madsen, D. J. Walton, S. E. Boggs, F. E. Christensen, W. W. Craig, B. W. Grefenstette, C. J. Hailey, E. Nardini, D. Stern e W. W. Zhang, Nature (London) 494, 449 (2013).

[7] D. J. Walton, E. Nardini, A. C. Fabian, L. C. Gallo e R. C. Reis, Mon. Not. R. Astron. Soc. 428, 2901 (2013).

[8] R. P. Kerr, Phys. Rev. Lett. 11, 237 (1963).

[9] G. Aad *et al.* (ATLAS Collaboration), Phys. Lett. B 716, 1 (2012).

[10] L. C. Crispino, S. R. Dolan e E. S. Oliveira, Phys. Rev. Lett. 102, 231103 (2009).

[11] R. Fabbri, Phys. Rev. D 12, 933 (1975).

[12] N. G. Sanchez, Phys. Rev. D 18, 1030 (1978).

[13] S. S. Gubser, Phys. Rev. D 56, 7854 (1997).
[14] C. J. L. Doran, A. N. Lasenby, S. R. Dolan e I. Hinder, Phys. Rev. D 71, 124020 (2005).

[15] L. C. Crispino, E. S. Oliveira, A. Higuchi e G. E. Matsas, Phys. Rev. D 75, 104012 (2007).

[16] E. Jung e D. Park, Nucl. Phys. B 717, 272 (2005).

[17] L. C. Crispino e E. S. Oliveira, Phys. Rev. D 78, 024011 (2008).

[18] L. C. Crispino, S. R. Dolan e E. Oliveira, Phys. Rev. D 79, 064022 (2009).

[19] E. S. Oliveira, L. C. Crispino e A. Higuchi, Phys. Rev. D 84, 084048 (2011).

[20] Carolina L. Benone, Ednilton S. Oliveira, Sam R. Dolan e Luís C. B. Crispino, arXiv:1404.0687 (2014).

[21] K. Glampedakis e N. Andersson, Classical Quantum Gravity 18, 1939 (2001).

[22] S. R. Dolan, Ph.D. Thesis, University of Cambridge, 2006.

[23] S. R. Dolan, Classical and Quantum Gravity 25, 235002 (2008).

[24] C. F. B. Macedo, L. C. S. Leite, E. S. Oliveira, S. R. Dolan e L. C. B. Crispino, Phys. Rev. D 88, 064033 (2013).

[25] L. C. Crispino, E. S. Oliveira e G. E. Matsas, Phys. Rev. D 76, 107502 (2007).

[26] S. R. Dolan, E. S. Oliveira e L. C. Crispino, Phys. Rev. D 79, 064014 (2009).

[27] E. S. Oliveira, S. R. Dolan e L. C. Crispino, Phys. Rev. D 81, 124013 (2010).

[28] S. R. Dolan, L. A. Oliveira e L. C. Crispino, Phys. Rev. D 85, 044031 (2012).

[29] R. Boyer e R. Lindquist, J. Math. Phys. 8, 265 (1967).

[30] B. Mashhoon, F. W. Hehl e D. S. Theiss, General Relativity and Gravitation 16, 711 (1984).
[31] S. Carrol, *Spacetime and Geometry: An Introduction to General Relativity* (Addison Wesley, San Francisco, 2004).

[32] M. Abramowitz e I. Stegun, *Handbook of Mathematical Physics* (Dover Publications, New York, 1972).

[33] R. Wald, *General Relativity* (University of Chicago Press, Chicago, 1984).

[34] M. Heusler, *Black Hole Uniqueness Theorems* (Cambridge University Press, Cambridge, 1996).

[35] S. Hawking e G. Ellis, *The large scale structure of space-time* (Cambridge University Press, Cambridge, 1973).

[36] Y. Choquet-Bruhat, *General Relativity and Einstein’s Equations* (Oxford University Press, New York, 2009).

[37] M. Hobson, G. Efstathiou e A. Lasenby, *General Relativity: An Introduction for Physicists* (Cambridge University Press, Cambridge, 2008).

[38] R. d’Inverno, *Introducing to Einstein’s Relativity* (Clarendon Press, Oxford, 1992).

[39] S. Chandrasekhar, *Mathematical Theory of Black Holes* (Oxford University Press, Oxford, 1983).

[40] Ashok Das, *Lectures on Quantum Field Theory* (World Scientific, Singapore, 2008).

[41] L. Landau e E. Lifschitz, *Teoria do Campo* (Editora Mir, 1980).

[42] B. Carter, Commun. Math. Phys. 10, 280 (1968).

[43] D. Brill, P. Chrzanowski, C. Martín Pereira, E. Fackerell, e J. Ipser, Phys. Rev. D 5, 1913 (1972).

[44] C. Flammer, *Spheroidal Wave Functions* (Stanford University Press, Stanford, 1957).

[45] Le-Wei Li, Xiao-Kang Kang e Mook-Seng Leong, *Spheroidal Wave Functions in Electromagnetic Theory* (John Wiley & Sons, Inc., New York, 2002).
Referências Bibliográficas

[46] C. F. Macedo, L. C. Crispino e V. Cardoso, Phys. Rev. D 86, 024002 (2012).

[47] A. C. Ottewill e E. Winstanley, Phys. Rev. D 62, 084018 (2000).

[48] W. H. Press e S. A. Teukolsky, Nature (London) 238, 211 (1972).

[49] S. Basak e P. Majumdar, Class. Quantum Grav. 20, 2929 (2003).

[50] R. Wong, *Asymptotic Approximations of Integrals* (SIAM, Philadelphia, 2001).

[51] J. Futterman, F. Handler e R. Matzner, *Scattering from Black Holes* (Cambridge University Press, Cambridge, 1988).

[52] John David Jackson, *Classical Electrodynamics* (John Wiley & Sons, Inc., New York, 1999).

[53] J. J. Sakurai, *Modern Quantum Mechanics* (Addison-Wesley, New York, 1994).

[54] E. W. Leaver, Proc. R. Soc. Lond. A. 402, 285 (1985).

[55] A. Higuchi, Classical Quantum Gravity 18, L139 (2001);

[56] A. Higuchi, Classical Quantum Gravity 19, 599 (2002).

[57] A. Zakharov, A. Nucita, F. DePaolis e G. Ingrosso, [arXiv:gr-qc/0507118](https://arxiv.org/abs/gr-qc/0507118).

[58] L. C. B. Crispino, Tese de Doutorado, Universidade Estadual Paulista, 2001.