Phylogenetic significance of the characteristics of simple sequence repeats at the genus level based on the complete chloroplast genome sequences of Cyatheaceae

Ming Zhu¹, Peipei Feng², Jingyao Ping², Jinye Li², Ying-juan Su³, and Ting Wang²

¹South China Agricultural University College of Life Sciences
²South China Agricultural University
³Sun Yat-Sen University

March 16, 2021

Abstract

Recent taxonomic and molecular phylogenetic studies have shown that Gymnosphaera should be recognized as an independent taxonomic unit at the genus level under the family Cyatheaceae. In this study, the complete chloroplast genomes of the eight species of Cyatheaceae were sequenced, and their phylogenetic relationships were reconstructed using the maximum likelihood, Bayesian inference, maximum parsimony, and neighbor-joining methods, and the characteristics of their simple sequence repeats (SSRs) were compared and analyzed for the first time. The results showed that when Cyatheaceae was divided into three genera, the number, relative abundance, relative density, and GC content of all SSRs and of SSRs of certain unit lengths in the chloroplast genomes of the eight species of Cyatheaceae were genus specific in the whole chloroplast genomes and in their different regions (large single-copy, small single-copy, inverted repeat, intergenic spacer, intron, rRNA gene, and coding sequence regions). The SSRs overall and the single-nucleotide SSRs had significant differences in number, relative abundance, relative density, and GC content between the chloroplast genomes, their intergenic regions, and large single-copy regions. When Cyatheaceae was divided into two genera, only the difference in GC content was significant. Therefore, our results support the restoration of the hierarchical status of Gymnosphaera. This study provides an important basis for the identification of the phylogenetic relationship of Cyatheaceae plants.
study, the complete chloroplast genomes of the eight species of Cyatheaceae were sequenced, and their phylogenetic relationships were reconstructed using the maximum likelihood, Bayesian inference, maximum parsimony, and neighbor-joining methods, and the characteristics of their simple sequence repeats (SSRs) were compared and analyzed for the first time. The results showed that when Cyatheaceae was divided into three genera, the number, relative abundance, relative density, and GC content of all SSRs and of SSRs of certain unit lengths in the chloroplast genomes of the eight species of Cyatheaceae were genus specific in the whole chloroplast genomes and in their different regions (large single-copy, small single-copy, inverted repeat, intergenic spacer, intron, rRNA gene, and coding sequence regions). The SSRs overall and the single-nucleotide SSRs had significant differences in number, relative abundance, relative density, and GC content between the chloroplast genomes, their intergenic regions, and large single-copy regions. When Cyatheaceae was divided into two genera, only the difference in GC content was significant. Therefore, our results support the restoration of the hierarchical status of Gymnosphaera. This study provides an important basis for the identification of the phylogenetic relationship of Cyatheaceae plants.

Keywords Cyatheaceae, Phylogeny, SSR, Gymnosphaera

Also known as microsatellites, simple sequence repeats (SSRs) are short tandem repeat sequences with a motif length of 1-6 bp that are characterized by high variability, high repeatability, codominant inheritance, and interspecies generality. SSRs have been widely used in species identification, genetic diversity, and phylogenetic relationships (Chmielewski et al., 2015; Dashnow et al., 2015). SSRs are caused by slipped strand mispairing and subsequent errors during DNA replication, repair, and recombination (Levinson & Gutman, 1987). They are widespread in the genomes of prokaryotes, eukaryotes, and some viruses (Mrazek et al., 2007; Toth et al., 2000; Zhao et al., 2011). SSRs are mainly found in intergenic and noncoding regions, with a few in introns (Toth et al., 2000; Li et al., 2004). Under selection, the number of genomic SSRs is significantly higher than that under random accumulation (Ellegren, 2004). The characteristics of genomic SSRs in different taxa (such as their distribution pattern) accurately reflect their phylogenetic relationships (Srivalastava et al., 2019). SSRs are highly mutagenic and are an important source of genetic evolution, and they can play an important role in genome evolution by generating and maintaining quantitative genetic variation (Chao et al., 2012; Gemayel et al., 2010; Kashi & King, 2006). Therefore, the identification and characterization of SSRs can contribute to the study of population variation, germline identification, and genetic diversity.

Cyatheaceae belong to the phylum Pteridophyta, the class Polypodiopsida, and the order Cyatheales, with more than 600 species present today. Cyatheaceae account for the vast majority of known tree ferns and are mainly distributed in warm and humid tropical and subtropical regions (Kramer, 1990; Korall et al., 2006; Smith et al., 2006; PPG I, 2016). The classification of the genera in Cyatheaceae has always been a difficult problem. In the early classification system, Christensen (1906) classified Cyatheaceae into Cyathea Sm. (with a complete cup-shaped indusium), Hemitelia R. Br. (with a partial indusium), and Alsophila R. Br. (without an indusium) based on the characteristics of indusium. Holttum (1963) treated Cyatheaceae plants as a genus (Cyathea) and divided it into two subgenera, Cyathea subg. Cyathea (marginate scales) and Cyathea subg. Sphaeropteris (Bernh.) Holttum (conform scales), based on the structural characteristics of the scales at the base of the petiole. Based on the study of the American Cyatheaceae plants, Tryon (1970) delineated three evolutionary paths and six genera, namely, (1) Sphaeropteris Bernh. (with conform scales); (2) Alsophila and Nephelea R. M. Tryon (with marginate scales and apical setae); and (3) Trichipteris C. Presl, Cyathea and Cnemidaria C. Presl (with marginate scales but without apical setae). Chang (1978) classified the Cyatheaceae plants that grow in China into three genera: Sphaeropteris, Gymnosphaera, and Alsophila. On this basis, Xia (1989) reduced the genera Alsophila and Alsophila to subgenera, respectively, and combined them into Alsophila.

Recent molecular phylogenetic studies have shown that Cyatheaceae includes four monophyletic groups, namely, Alsophila, Cyathea, Gymnosphaera, and Sphaeropteris (Dong & Zuo, 2018; Janssen & Rakotondrainibe, 2008; Korall et al., 2007; Korall & Pryer, 2014). The morphological characteristics of Gymnosphaera, such as marginate scales, a slightly black rachis, and the lack of an indusium, and molecu-
lar evidence suggest that it is different from other Cyatheaceae plants, and particularly obvious is its different sporogenesis from Alsophila (Gymnosphaeraproduces 64 spores per sac, Alsophila produces 16 spores per sac) (Dong & Zuo, 2018). Still, some scholars classify Gymnosphaerainto the genus Alsophila (Xia 1989; Zhang and Nishida, 2013; PPG I, 2016).

In this study, the chloroplast genomes of eight species of Cyatheaceae were sequenced, and the chloroplast genome, the SSRs of different unit lengths in the chloroplast genome, and the number, relative abundance, relative density, and GC content of all SSRs and SSRs of specific unit lengths in the intergenic spacer regions (IGS), intron regions, and protein-coding sequence regions (CDS) of the chloroplast genome were compared and analyzed to reveal the phylogenetic significance of the SSR characteristics of the chloroplast genome of Cyatheaceae plants.

1 Materials and methods

1.1 Sampling

The leaves of Alsophila denticulata Baker and Alsophila metteniana Hance were collected from Nankunshan in Huizhou and the botanical garden of South China Agricultural University in Guangzhou, respectively. The leaves of Alsophila podophylla Hook and Alsophila gigantean Wall. ex Hook were collected from the South China Botanical Garden of the Chinese Academy of Sciences in Guangzhou (Liu et al., 2018; Wang et al., 2019b). The leaves of Alsophila costularis Baker, Sphaeropteris brunoniana (Hook.) R. M. Tryon, and Sphaeropteris leptifera (Hook.) R. M. Tryon were collected from the Fairy Lake Botanical Garden of the Chinese Academy of Sciences in Shenzhen(Wang et al., 2019a; Liu et al., 2020; Zhu et al., 2020). The leaves of Alsophila spinulosa (Wall. ex Hook.) R. M. Tryon were collected from the Wuhan Botanical Garden of the Chinese Academy of Sciences in Wuhan (Gao et al., 2009). Fresh young leaves from well-grown plants were collected, wrapped in tin paper, flash-frozen in liquid nitrogen, and then stored at -80 °C before use.

1.2 DNA extraction and sequencing

The plant genomic DNA extraction kit (TIANGEN) was used to extract the total DNA of the samples. After the quality of the total DNA samples was confirmed by Shanghai Hanyu Biotechnology Co., Ltd., the samples were subjected to bidirectional sequencing using an Illumina HiSeq 2500, and the raw data obtained were converted into raw reads by CASAVA base-calling analysis. The clean data obtained after removing the adaptor-containing, low-quality sequences were taken for subsequent analysis. Data processing was performed by Trimomatic v0.32 (Bolger et al., 2014) with the following steps: (1) removal of sequences containing N bases; (2) removal of adaptor sequences in the reads; (3) removal of low-quality bases (Q value < 20) from the reads in the 3’ to 5’ direction; (4) removal of low-quality bases (Q value < 20) from the reads in the 5’ to 3’ direction; (5) removal of four bases with an average base quality of less than 20; and (6) removal of the reads and their pairs with a length less than 50 nt. Velvet v1.2.03 (Zerbino & Birney, 2008) was used to assemble the clean data.

1.3 Characterization of chloroplast genome

The chloroplast genome of Alsophila was used as the reference genome, and Dual Organellar GenoMe Annotator (DOGMA) (Milne et al., 2010) was used to predict the protein-coding genes, rRNA genes, and tRNA genes in other genomes. Geneious Prime (Kearse et al., 2012) was used for manual correction according to the reference genome. The Shuffle-Lagan mode in the online software mVISTA (Frazer et al., 2004) was used for genome-wide comparison. Organellar Genome DRAW (OGDRAW) (Lohse et al., 2007) was used to draw the physical chloroplast genome map, and Sequin software was used for the submission of the chloroplast genome of Alsophila denticulata . Microsatellite repeats were predicted using the software MISA (Beier et al., 2017). The threshold repeat number of single-nucleotide units was set to 10, the threshold repeat number of dinucleotide units was set to six, and the threshold repeat number of trinucleotides, tetranucleotides, pentanucleotides, and hexanucleotides was set to three. The minimum distance between two SSRs was set to 0 bp, that is, there was no statistical compound SSR. The distribution characteristics of SSRs of different species in the whole genome and its different regions were compared and analyzed. Among these character-
1.4 Phylogenetic analysis

The maximum likelihood (ML), Bayesian inference (BI), maximum parsimony (MP) and neighbor-joining (NJ) methods were used for phylogenetic analysis. MAFFT software (Katoh & Standley, 2013) was used to align the complete chloroplast genome sequences of eight species of Cyatheaceae and one species of *Cibotium*, *Cibotium barometz* (Linn.) J. Sm. A phylogenetic tree was constructed using *Cibotium barometz* (Linn.) J. Sm. as an outgroup. When the ML, MP, and BI trees had been constructed, the whole chloroplast genome was screened in MrModelTest software to obtain the optimal nucleotide substitution model (GTR+I+G) selected based on the Akaike information criterion, and the relevant parameters were estimated. The ML tree was constructed by the software RAxML8.0.20 (Stamatakis, 2014), GTRGAMMAI was selected as the nucleotide substitution model, and the confidence of the branch was completed using the bootstrap analysis in autoMR. The BI tree was constructed by MrBayes v3.2.0 software (Ronquist et al., 2012) and was estimated by running 2,000,000 generations (Nst = 6, rates = invgamma). The MP tree was constructed in PAUP 4.0 software (Swofford, 2002) with the bootstrap value set to 1000. The NJ tree was constructed in MEGA7.0 software (Kumar et al., 2016), and the maximum composite likelihood algorithm was selected with the bootstrap value set to 1000 times. The resulting phylogenetic tree was viewed and edited in Figtree v 1.4.3 software.

1.5 Statistical analysis

When *Gymnosphaera* is considered as an independent taxonomic unit at the genus level, the eight species of Cyatheaceae are divided into three genera. That is, *Alsophila denticulata*, *Alsophilapodophylla*, *Alsophila metteniana*, and *Alsophila gigantea* belong to the genus *Gymnosphaera*; *Alsophila spinulosa* and *Alsophila costularis* belong to the genus *Alsophila*; and *Sphaeropteris brunoniana* and *Sphaeropterislepifera* belong to the genus *Sphaeropteris*. When *Gymnosphaera* is classified into the genus *Alsophila*, Cyatheaceae is divided into two genera. The Kruskal-Wallis H test and Mann-Whitney U test in IBM SPSS v22.0 software (Allen et al., 2014) were used to analyze the significance of the differences between taxa when three genera and two genera were assumed, respectively. The statistical results covered the whole chloroplast genome, the SSRs of different unit lengths in the chloroplast genome, and the number, relative abundance, relative density, and GC content of SSRs and SSRs of different unit lengths in the IGS, LSC, intronic, and CDS regions of the chloroplast genome of the eight species of Cyatheaceae. Photovoltaic (PV) cluster analysis using the ward linkage method in R v3.5.1 (R Core Team, 2013) was performed on the SSRs of the chloroplast genome and its IGS regions, LSC regions and on the number, relative abundance, relative density, and GC content of single-nucleotide SSRs of the chloroplast genome with Euclidean distance as the measurement. The number of repetitions is 10,000.

2 Results and analysis

2.1 Genome structures and characteristics

The chloroplast genomes of all eight species of Cyatheaceae are double-stranded, closed, circular molecules with a typical tetrad structure (with *Alsophila denticulata* as an example, as shown in Figure 1). The genome length ranges from 154,046 bp (*Alsophila denticulata*) to 166,151 bp (*Alsophila gigantea*). The structure includes a large single-copy region (LSC) (bp 85975–92315), a small single-copy region (SSC) (bp 23245–28874), and an inverted repeat region (IR) (bp 23245–28874), of which IRA and IRB are two inverted repeat regions. The GC content of each region of the chloroplast genome of different species varied little, the total GC content ranging from 40.3% to 41.9% (Table 1). Only LSC, SSC, and one IR were analyzed. The chloroplast genome of each species of Cyatheaceae contained 117 genes, which encoded 85 proteins, four rRNAs, and 28 tRNAs. Pseudogenes (ycf66, trnT-UGU) were also present in these genomes. Among these genes are 13 genes located in the IR region. The *ndhB* gene spans the LSC and IRA regions, and there is a duplicated exon 2 sequence of the *ndhB* gene near the boundary of the IRB. Twelve genes have one intron, and three genes (ycf3, clpP, and rps12) have two introns.
Figure 1 Gene map of the chloroplast genome of Alsophila denticulata. Genes located in outside of the outer circle are transcribed in the counterclockwise direction, whereas those inside are transcribed in the clockwise direction. Color codes represent different functional gene groups. In the middle circle, the GC and AT content variations are indicated by darker gray and lighter gray, respectively.

Table 1 List of eight Cyatheaceae species, GenBank accession numbers, and structural features of chloroplast genomes

Species	GenBank No.	LSC Length (bp)	LSC GC%	LSC Length (%)	IR Length (bp)	IR GC%	IR Length (%)	SSC Length (bp)	GC%	S
A. denticulata	MN795320	85975	40.0	55.8	23245	40.8	15.1	21581	40.6	
A. podophylla	MG282389	86762	40.0	52.2	28874	46.2	17.4	21641	41.9	
A. gigantea	MH603068	92315	41.1	57.1	23831	43.3	14.7	21702	41.8	
A. metteniana	MT726940	92292	41.1	57.1	23822	43.3	14.7	21666	41.8	
A. costularis	MH684489	86338	39.6	55.1	24356	43.0	15.5	21625	41.8	
A. spinulosa	NC012818	86308	39.6	55.1	24365	43.0	15.6	21623	41.8	
S. brunoniana	MT543220	86196	39.2	55.0	24011	43.2	15.3	22441	42.3	
S. lepifera	MN623357	86349	39.3	53.3	24067	43.2	14.8	27733	42.3	

LSC: Large Single Copy-Region; IR: Inverted Repeat Region; SSC: Small Single Copy-Region

2.2 Analysis of the characteristics of SSRs
The number, relative abundance, relative density, and GC content of SSRs in the chloroplast genomes of all eight species of Cyatheaceae were systematically compared (Table 2). The number (121–122), relative abundance (0.77–0.78/bp), relative density (9.81–9.82 bp/kb), and GC content (0.18–0.20) of SSRs in the chloroplast genomes of *Alsophila spinulosa* and *Alsophila costularis*; the number (102), relative abundance (0.63–0.65/bp), relative density (6.70–8.18 bp/kb), and GC content (0.08–0.10) of SSRs in the chloroplast genomes of *Sphaeropteris brunoniana* and *Sphaeropteris lepifera*; and the number (61–67), relative abundance (4.11–5.06/bp), and GC content (0.22–0.29) of SSRs of *Alsophila denticulata*, *Alsophila podophylla*, *Alsophila metteniana*, and *Alsophila gigantea* had similar values, which were not proportional to the size of the genome. The proportions of GC bases in the chloroplast genomes of the eight species of Cyatheaceae were much lower than the proportions of AT. SSRs accounted for 75.5–86.2%, 13.7–20.6%, 2.0–3.9%, and 2.0% of the IGS, Intron, CDS, and rRNA gene regions (pseudogenes were treated as IGS). Among them, SSR was only detected in the CDS of the chloroplast genomes of *Sphaeropteris brunoniana*, *Sphaeropteris lepifera*, *Alsophila spinulosa*, and *Alsophila costularis*, and SSRs were detected in the rRNA genes of the chloroplast genomes of *Sphaeropteris brunoniana* and *Sphaeropteris lepifera*. When *Gymnosphaera* was considered as an independent classification unit at the genus level, the eight species of Cyatheaceae were divided into three genera. That is, *Alsophila denticulata*, *Alsophila podophylla*, *Alsophila metteniana*, and *Alsophila gigantea* belonged to the genus *Gymnosphaera*; *Alsophila spinulosa* and *Alsophila costularis* belonged to the genus *Alsophila*; and *Sphaeropteris brunoniana* and *Sphaeropteris lepifera* belonged to the genus *Sphaeropteris*. The number, relative abundance, relative density, and GC content of SSRs in the chloroplast genomes of the three genera of Cyatheaceae also had similar values in different regions of the genome (LSC, SSC, and IR: IGS, Intron, CDS, and rRNA gene regions), indicating that in the phylogenetic background of the three genera, the characteristics of SSRs are genus specific at the level of the genome and its different regions (Figure 3, Tables 2 and 3, and Supplementary Tables 9 and 10). The distribution of SSRs of different motif types in the three Cyatheaceae genera also had genus specificity (Figure 2). These results showed that on the phylogenetic background of dividing the eight species of Cyatheaceae into three genera, different taxa had different patterns of SSR characteristics in the chloroplast genome, namely, the SSR characteristics of the chloroplast genomes of the eight species of Cyatheaceae were consistent with their phylogenetic relationship.

Table 2 Overview of the eight Cyatheaceae chloroplast genomes and characteristics of their SSRs

Genus	A. denticulata	A. podophylla	A. gigantea	A. metteniana	A. costularis	A. spinulosa
Sequence analyzed (kb)	154.05	166.15	161.68	161.60	156.68	156.66
No. of SSRs	61	67	64	65	121	122
Relative abundance (No./bp)	0.40	0.40	0.40	0.40	0.40	0.77
Total length of SSRs (bp)	634	802	818	801	1539	1538
Relative density (bp/kb)	4.11	4.82	5.06	4.96	9.82	9.81
GC content	0.24	0.25	0.29	0.22	0.20	0.18
Genome content	0.004	0.005	0.005	0.005	0.010	0.010
Figure 2 ML, BI, MP, and NJ phylogenetic trees based on eight complete chloroplast genome sequences in Cyatheaceae and the distribution of different types of SSR motifs. The outgroup is *Cibotium barometz*.

Figure 3 Comparison of microsatellite repeats among the eight Cyatheaceae chloroplast genomes.
(A) The inner circle is the distribution ratio of the four regions (LSC, SSC, and IRs) in the genome, and the outer circle is the distribution ratio of SSRs between the four regions. (B) Distribution ratio of SSRs in different regions (LSC, SSC, and IRs) of chloroplast the genome. (C) Ratio of mono- to pentanucleotide SSRs in different regions (IGS, intron, CDS, and rRNA gene) of the chloroplast genome. Numbers represent the distribution ratio of SSR numbers. LSC: large single-copy region; SSC: small single-copy region; IR: inverted repeat region; IGS: intergenic spacer region; CDS: coding sequence region.

2.3 Analysis of the types and characteristics of SSRs of different nucleotide numbers

The proportions of single-nucleotide, dinucleotide, trinucleotide, tetranucleotide, and pentanucleotide SSRs...
in each species were 62.5-78.0%, 10.6-15.6%, 0-3.3%, 9.0-18.5%, and 0-1.5%, respectively. No hexanucleotide SSR was detected. Among single-nucleotide repeats, there were more A/T motifs, and the dinucleotide repeats were dominated by AT/TA motifs. The single-nucleotide, dinucleotide, trinucleotide, tetranucleotide, and pentanucleotide SSRs of the chloroplast genomes of the three genera were similar in number, relative abundance, relative density, and GC content at the level of the genome and in the specific regions of the genome (LSC, SSC, and IRs; IGS, intron, CDS, and rRNA gene regions). This was especially true for single-nucleotide and dinucleotide SSRs (Table 3, Supplementary Tables 10 and 11). The number, relative abundance, relative density, and GC content of SSRs of different unit lengths and SSRs in different regions of the genome had genus specificity in the phylogenetic context of dividing the eight species of Cyatheaceae into three genera. In addition, the number, relative abundance, and relative density of SSRs of different base types in the chloroplast genomes of the three genera of plants also had genus specificity. This was especially true for single- and dinucleotide SSRs (Figure 4, Supplementary Table 9).

Table 3 The number, relative abundance, relative density, and GC content of mono- to pentanucleotide SSRs in the eight chloroplast genomes of Cyatheaceae

Repeat type	Characteristics of SSR	A. denticulata	A. podophylla	A. gigantea	A. metteniana	A. costularis
Mononucleotide	No. of SSRs	40	47	41	40	95
	Abundance (No./kb)	0.26	0.28	0.25	0.25	0.61
	Density (bp/kb)	2.93	3.16	3.13	2.88	7.67
	GC	0.36	0.35	0.40	0.3	0.22
Dinucleotide	No. of SSRs	8	9	10	10	14
	Abundance (No./kb)	0.05	0.05	0.06	0.06	0.09
	Density (bp/kb)	0.69	0.83	0.94	0.92	1.35
	GC	0.06	0	0.08	0.05	0
Trinucleotide	No. of SSRs	2	1	2	2	1
	Abundance (No./kb)	0.01	0.01	0.01	0.01	0.01
	Density (bp/kb)	0.16	0.07	0.15	0.15	0.08
	GC	0	0	0	0	0.33
Tetranucleotide	No. of SSRs	10	9	11	12	11
	Abundance (No./kb)	0.80	0.05	0.07	0.07	0.07
	Density (bp/kb)	0.14	0.67	0.84	0.92	0.87
	GC	0.18	0.14	0.18	0.16	0.29
Pentanucleotide	No. of SSRs	1	1	0	1	0
	Abundance (No./kb)	0.01	0.01	0	0.01	0
	Density (bp/kb)	0.10	0.09	0	0.09	0
	GC	0	0.4	0	0.4	0
Figure 4 Relative abundance and relative density of single- and dinucleotide SSRs in the eight chloroplast genomes of Cyatheaceae.

2.4 Phylogenetic analysis

The chloroplast genomes of the eight species of Chinese Cyatheaceae were compared globally, and the phylogenetic trees were constructed with four methods (ML, BI, MP, and NJ) using Cibotium barometz (Linn.) J. Sm. as an outgroup, as shown in Figure 2. The topologies of the four trees were consistent, except that the support rate of the branches of the Alsophila denticulata and Alsophila gigantea was lower (the bootstrap values of ML, MP, and NJ were 55%, 59.2%, 99%, respectively, and the posterior probability of BI was 0.935). The support rate of the other branches was higher (the bootstrap values of ML, MP, and NJ were all 100%, and the posterior probability of BI was 1.00). Closely related Sphaeropteris brunoniana and Sphaeropteris
lepisfera were clustered into one branch, which was located at the base of the phylogenetic tree. That means they were an earlier-diverged group in this family. Alsophila denticulata, Alsophila podophylla, Alsophila gigantea, and Alsophila metteniana were clustered into one branch, which was located inside the branch of Sphaeropteris brunoniana and Sphaeropteris lepisfera and was a sister group of the branch formed by Alsophila spinulosa and Alsophila costularis.

2.5 Statistical analysis of the results

The Kruskal-Wallis H-test and Mann-Whitney U-test values are shown in Supplementary Table 11. In this study, only SSRs in the chloroplast genome in its IGS and LSC regions, as well as single-nucleotide SSRs in the whole chloroplast genome, were considered. There were significant differences in the number, relative abundance, relative density, and GC content of SSRs when the eight species of Cyatheaceae were divided into three genera (Kruskal-Wallis H, \(P < 0.05 \)). When Gymnosphaera was included in the genus Alsophila, they were divided into two genera, and only the difference in the GC content was significant (Table 4). The number of SSRs in other regions of the chloroplast genome and the number of SSRs of other unit lengths were small, so they are not discussed in this study. The clustering results of the number, relative abundance, relative density, and GC content of the SSRs in the chloroplast genomes and their IGS regions and the single-nucleotide SSRs of the whole chloroplast genome of the eight species of Cyatheaceae (Figure 5) showed that the eight species were divided into two groups. That is, Sphaeropteris brunoniana, Sphaeropteris lepisfera, Alsophila spinulosa, and Alsophila costularis were in a group, and Alsophila denticulata, Alsophila podophylla, Alsophila metteniana, and Alsophila gigantea were in a group.

Table 4 Significance test of the number, relative abundance, relative density, and GC content of SSRs in the whole chloroplast genome, IGS, and LSC and mononucleotide SSRs in the whole chloroplast genome of the eight Cyatheaceae species

Classification treatment	Genus	Species	Characteristics of SSR	\(P \)	\(P \)	\(P \)	\(P \)
Three genera	Gymnosphaera	Alsophila denticulata A. podophylla	No. of SSRs	0.048*	0.048*	0.048*	0.048*
		Alsophila metteniana	Relative abundance (No./kb)	0.033*	0.050 *	0.050 *	0.050 *
	Alsophila	Alsophila costularis A. spinulosa	Relative density (bp/kb)	0.050 *	0.050 *	0.050 *	0.050 *
	Sphaeropteris	Sphaeropteris brunoniana S. lepisfera	GC content	0.050 *	0.050 *	0.050 *	0.050 *

Literature cited

Smith et al., 2006; Korall et al., 2007; Janssen et al., 2008; Korall and Pryer, 2014; Ching, 1978; Dong, 2019.
Classification treatment	Genus	Species	Characteristics of SSR	P	P	P	P	Literature cited
Two genera	Alsophila	A. denticulata	No. of SSRs	0.502	0.502	0.502	0.502	PPG I, 2016; Xia, 1989; Zhang and Nishida, 2013.
		A. podophylla						
		A. gigantea	Relative abundance (No./kb)	0.478	0.505	0.505	0.505	
		A. metteniana						
		A. costularis	Relative density (bp/kb)	0.505	0.505	0.505	0.505	
		A. spinulosa						
	Sphaeropteris	S. brunoniana	GC content	0.046*	0.046*	0.046*	0.046*	
		S. lepifera						

When Cyatheaceae plants are treated as three genera, the Kruskal-Wallis H test is used; when treated as two genera, the Mann-Whitney U test is used; *: $P \geq 0.05$; IGS: intergenic spacer; LSC: large single-copy region.
Figure 5 Clustering analysis of 8 Cyatheaceae species based on the number, relative abundance, relative density, and GC content of SSRs across the whole chloroplast genome (A), LSC (B), IGS (C) and mononucleotide (D) SSRs in the chloroplast genome.

3 Discussion

3.1 Characteristics of SSRs of chloroplast genomes of eight species of Cyatheaceae

The chloroplast genomes of all eight species of Cyatheaceae are similar in structure and gene content, and the types and order of genes are the same. On the phylogenetic background of dividing the eight species of Cyatheaceae into three genera, the characteristics of the chloroplast genome SSRs have genus specificity. The distribution of SSRs is not random, which has an effect on gene regulation, DNA recombination, DNA
replication, the cell cycle, and DNA mismatch repair, and the presence of repeat motifs and their repeat number can affect DNA recombination (Li et al., 2002). SSR copy number is an important source of genetic variation and can produce large phenotypic variation (Gemayel et al., 2010; Kashi & King, 2006). Single-nucleotide SSRs are the most abundant, which is a characteristic of eukaryotic genomes (Sharma et al., 2007), and A/T motifs are the most common. The number, relative abundance, relative density, and GC content of SSRs of different unit length are also genus specific. This is especially true for single-nucleotide and dinucleotide SSRs, which may be related to the lower content of SSRs of other unit lengths. The distribution of different repeat types (from single-nucleotide to hexanucleotide) of motifs in coding and noncoding regions, introns, and intergenic regions displays a high degree of taxon specificity, which can be partially explained by the interaction of mutation mechanisms and differential selection (Toth et al., 2000). The SSRs in eukaryotic genomes are mainly located in intergenic and noncoding regions, with a few in exons (Toth et al., 2000; Li et al., 2004), and the results of this study are consistent with this. This phenomenon is related to the higher variability (Nie et al., 2012; Wu et al., 2010) and faster evolutionary rates of the intergenic and noncoding regions of the chloroplast genome, so their sequences can be used to effectively classify low taxonomic and closely related groups and subspecies variant plants. The proportion of SSRs in the IR region was 2-3.3 times the proportion of IR sequences out of the whole genome sequence (Figure 3), indicating that there are fewer SSRs in the IR region. Mismatch repair is the key to the stability of SSRs. SSRs have a high mutation rate, which facilitates the study of the effect of environmental factors on the mutation rate of the genome. The lower distribution of SSRs in the IR region may be related to the lower mutation rate in the IR region (Ellegren, 2004; Li et al., 2016). The lower GC content may be associated with the fact that GC-rich regions are prone to mutations toward AT (Ren et al., 2007). The high GC content is significantly associated with the high recombination rate in meiosis (Tortereau et al., 2012), while AT-rich SSRs may be more conducive to maintaining the stability of the genome structure. The number, relative abundance, relative density, and GC content of SSRs are not proportional to the size of genome, indicating that the abundance of SSRs is related to the genetic characteristics of the species (Li et al., 2014).

3.2 Phylogenetic significance of SSR characteristics of chloroplast genomes of the eight species of Cyatheaceae

The focus of the debate between the Holttum and Edwards (1963) system and the Tryon (1970) system, which classify Cyatheaceae based on morphological characteristics, is the theoretical explanation of the morphological evolution of indusium in this family. In this study, we show that the genus Sphaeropteris, lacking the indusium, is a basal group, supporting Tryon’s hypothesis that the indusium is derived from the tissues or scales on the abaxial side of the leaf, away from the leaf margin, and that the indusium is a derived trait, which is consistent with a phylogenetic analysis based on the chloroplast trnL intron sequence and the trnL-F intergenic region sequence (Wang et al., 2003). Dong (2018) pointed out that Gymnosphaera and Alsophila were significantly differentiated in morphological traits such as petiole color, the presence or absence of degenerated pinnae at the base, and the presence or absence of indusium and sporogenesis, and advocated the restoration of the hierarchical status of the genus Gymnosphaera to reflect the divergence mechanisms of this group of plants in molecular phylogeny, morphology, and sporogenesis. In this study, eight species of Cyatheaceae were divided into three genera or two genera, in which case SSRs were compared by the Kruskal-Wallis H test or the Mann-Whitney U test, respectively, and the results showed that Gymnosphaera was an independent genus-level taxon under the Cyatheaceae family. The results of the PV clustering analysis of SSRs also indicated that Gymnosphaera should be independent from the genus Alsophila. Phylogenetic trees were constructed using the chloroplast genomes of eight species of Cyatheaceae, and the topology of the phylogenetic trees obtained by the four methods was consistent. Except for the lower support rate of the branches of the Alsophila denticulata and Alsophila gigantea, the support rate for the branches was 100%. This result supports the monophyletic nature of Gymnosphaera, and its sister group is the genus Alsophila. Gymnosphaera, Alsophila, and Cyatheae constitute a monophyletic group with a high support rate, while Sphaeropteris is resolved as the basal group of the Cyatheaceae family. In this phylogenetic context, the SSR characteristics have genus specificity.

SSRs play a role in genome-wide regulation. Some definite distribution patterns exist in the genomes of
organisms, and the characteristic distribution of SSRs in the genomes of different taxonomic units has a significantly similar pattern (Qi et al., 2015; Wang et al., 2015; Liu et al., 2017; Manee et al., 2019; Srivastava et al., 2019). The SSRs of different groups of genomes have specific distribution patterns, which are related to their common ancestors. Evolutionary trends have been linked to the inclusion of SSRs, which may have been preserved because of their ability to adapt to novel regulatory mechanisms (Srivastava et al., 2019). Unique DNA replication, repair, and recombination mechanisms may play an important role in the evolution of SSRs (Katti et al., 2001). The molecular mechanism of the origin of SSRs is not yet fully understood. The most common mutation mechanism affecting SSRs is slipped replication. Other mechanisms, such as unequal crossing-over, nucleotide substitution, and duplication events, are also responsible for SSR variation (Schlotterer & Tautz, 1992; Hancock, 1999). Codon preference, DNA replication, and mismatch repair systems, as well as the unique structure and function of the genome, may be responsible for the unique SSR distribution pattern in plant genomes. In addition, the length, motif structure, and GC content of genomic SSRs are also factors that influence the evolution of the SSRs (Chakraborty et al., 1997; Anderson et al., 2000; Whittaker et al., 2003). The plants in the three genera of Cyatheaceae have similar phenotypes and specific characteristics, which may be the result of interactions of their common ancestors with similar habitats. The analysis of the characteristics of SSRs provides useful clues for the phylogenetic study of Cyatheaceae and helps to understand the evolution of SSRs in plant genomes.

The chloroplast genome has a simple structure, low molecular weight, and high copy number, and its genes are maternally inherited in ferns with few gene rearrangements, thus facilitating the study of plant phylogeny (Tonti-Filippini et al., 2017). Based on high-throughput sequencing technology, the highly conserved chloroplast genome sequence will make primer design easier. SSR markers in chloroplast genomes can be used for the analysis of multiple chloroplast regions, thereby improving the resolution of phylogenetic studies of target species (Melotto-Passarin et al., 2011). Since the software programs that identify SSRs are limited by their efficiency and parameter settings and may also be affected by the quality of the SSR dataset generated, their accuracy needs to be improved (Ellegren, 2004; Lim et al., 2013). In addition, chloroplast genomes play an important role in dissecting the higher hierarchical phylogenetic relationships of ferns. However, in the process of evolution, plants experience events such as hybridization, polyploidization, introgression, and incomplete lineage sorting, so the evolutionary relationship of plants is essentially reticular. Such reticular relationships are often manifested in the form of gene tree conflicts (Guo & Ge, 2005).

In this study, the chloroplast genomes of eight species of Cyatheaceae were used to construct phylogenetic trees. This analytical method has some limitations. There are still relatively few studies on phylogenetic relationships in ferns that have analyzed the SSRs of the chloroplast genome. This study provides a new basis for the classification of Cyatheaceae at the levels of species and genus, thus advancing the phylogenetic study of Cyatheaceae. In the future, more genomic and transcriptomic data are needed to validate these results.

Acknowledgments

We would like to thank the Wuhan Botanical Garden, South China Botanical Garden and Fairy Lake Botanical Garden of the Chinese Academy of Sciences for providing samples of Cyatheaceae plants.

Conflict of interest

The authors declare no competing interests.

helpful comments.

Author contributions

MZ conducted the statistics and analysis of the data, and wrote the manuscript. PPF, JYP and JYL analyzed part of the data and provided Suggestions. YJS and TW designed the study and wrote the manuscript.
Data availability statement

The chloroplast genomes of *Alsophila denticulata* Baker and *Alsophila metteniana* Hance have been submitted to the National Center for Biotechnology Information (NCBI) and have not yet been published. The other 6 chloroplast genomes of Cyatheaceae species can be downloaded from NCBI.

Funding

This work was funded by the National Natural Science Foundation of China (31670200, 31872670).

ORCID

Ming Zhu http://orcid.org/0000-0003-0107-2893

Reference

Allen P, Bennett K, Heritage B (2014). SPSS version 22: A practical guide. Melbourne, VIC: Cengage Learning.

Anderson, T. J. C., Su, X. h., Roddam, A., & Day, K. P. J. M. E. (2010). Complex mutations in a high proportion of microsatellite loci from the protozoan parasite Plasmodium falciparum. 9 (10), 1599-1608. doi: 10.1046/j.1365-294x.2000.01057.x

Beier, S., Thiel, T., Muench, T., Scholz, U., & Mascher, M. (2017). MISA-web: a web server for microsatellite prediction. *Bioinformatics, 33* (16), 2583-2585. doi:10.1093/bioinformatics/btx198

Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics, 30* (15), 2114-2120. doi:10.1093/bioinformatics/btu170

Chakraborty, R., Kimmel, M., Stivers, D. N., Davison, L. J., & Deka, R. (1997). Relative mutation rates at di, tri-, and tetranucleotide microsatellite loci. *Proceedings of the National Academy of Sciences of the United States of America, 94* (3), 1041-1046. doi:10.1073/pnas.94.3.1041

Chaoui, L., Gagnaire, P.-A., Guinand, B., Quignard, J.-P., Tsigenopoulos, C., Kara, M. H., & Bonhomme, F. (2012). Microsatellite length variation in candidate genes correlates with habitat in the gilthead sea bream Sparus aurata. *Molecular Ecology, 21* (22), 5497-5511. doi:10.1111/mec.12062

Chmielewski, M., Meyza, K., Chybicki, I. J., Dzialuk, A., Litkowiec, M., & Burczyk, J. (2015). Chloroplast microsatellites as a tool for phylogeographic studies: the case of white oaks in Poland. *Iforest-Biogeosciences and Forestry, 8*, 765-771. doi:10.3832/ifor1597-008

Ching, R. C. . (1978). The chinese fern families and genera: systematic arrangement and historical origin. *Acta Phytotaxonomica Sinica, 16* (4), 16-37.

Christensen C (1906). Index Filicum. H. Hagerup, Copenhagen.

Dashnow, H., Tan, S., Das, D., Eastal, S., & Oshlack, A. (2015). Genotyping microsatellites in next-generation sequencing data. *Bmc Bioinformatics, 16*. doi:10.1186/1471-2105-16-s2-a5

Dong, S.Y., & Zuo, Z.Y. (2018). ON THE RECOGNITION OF GYMNOSSPHAERA AS A DISTINCT GENUS IN CYATHEACEAE. *Annals of the Missouri Botanical Garden, 105* (1), 1-23. doi:10.3417/2017049

Ellegren, H. (2004). Microsatellites: Simple sequences with complex evolution. *Nature Reviews Genetics, 5* (6), 435-445. doi:10.1038/nrg1348

Frazer, K. A., Pachter, L., Poliakov, A., Rubin, E. M., & Dubchak, I. (2004). VISTA: computational tools for comparative genomics. *Nucleic Acids Research, 32*, W273-W279. doi:10.1093/nar/gkh458

Gao, L., Yi, X., Yang, Y.X., Su, Y.J., & Wang, T. (2009). Complete chloroplast genome sequence of a tree fern Alsophila spinulosa: insights into evolutionary changes in fern chloroplast genomes. *Bmc Evolutionary Biology, 9*. doi:10.1186/1471-2148-9-130
Gemayel, R., Viñes, M. D., Legendre, M., & Verstrepen, K. J. (2010). Variable Tandem Repeats Accelerate Evolution of Coding and Regulatory Sequences. In A. Campbell, M. Lichten, & G. Schupbach (Eds.), *Annual Review of Genetics, Vol 44* (Vol. 44, pp. 445-477).

Guo, Y. L., & Ge, S. (2005). Molecular phylogeny of Oryzeae (Poaceae) based on DNA sequences from chloroplast, mitochondrial, and nuclear genomes. *American Journal of Botany, 92* (9), 1548-1558. doi:10.3732/ajb.92.9.1548

Hancock JM (1999). Microsatellites and other simple sequences: genomic context and mutational mechanisms. In: Goldstein D, Schlötterer C, eds. Microsatellites: Evolution and applications. New York: Oxford University Press. pp. 1-9.

Holttum RE (1963). Cyatheaceae in Steenis VC, Holttum RE, eds. Flora Malesiana, Ser.2, Vol. 1. Groningen: Wolters-Noordhoff Publishing. pp. 65–176.

Janssen, T., & Rakotondrainibe, F. (2008). A revision of the indusiate scaly tree ferns (Cyatheaceae, Cyathea subgen. Alsophila sect. Alsophila) in Madagascar, the Comoros and the Seychelles. *Adansonia, 30* (2), 221-374.

Kashi, Y., & King, D. G. (2006). Simple sequence repeats as advantageous mutators in evolution. *Trends in Genetics, 22* (5), 253-259. doi:10.1016/j.tig.2006.03.005

Katoh, K., & Standley, D. M. (2013). MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. *Molecular biology and evolution, 30* (4), 772-780. doi:10.1093/molbev/msm010

Katti, M. V., Ranjekar, P. K., & Gupta, V. S. (2001). Differential distribution of simple sequence repeats in eukaryotic genome sequences. *Molecular biology and evolution, 18* (7), 1161-1167. doi:10.1093/oxfordjournals.molbev.a003903

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., . . . Drummond, A. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics, 28* (12), 1647-1649. doi:10.1093/bioinformatics/bts199

Korall, P., Conant, D. S., Metzgar, J. S., Schneider, H., & Pryer, K. M. (2007). A molecular phylogeny of scaly tree ferns (Cyatheaceae). *American Journal of Botany, 94* (5), 873-886. doi:10.3732/ajb.94.5.873

Korall, P., Pryer, K. A., Metzgar, J. S., Schneider, H., & Conant, D. S. (2006). Tree ferns: Monophyletic groups and their relationships as revealed by four protein-coding plastid loci. *Molecular Phylogenetics and Evolution, 39* (3), 830-845. doi:10.1016/j.ympev.2006.01.001

Korall, P., & Pryer, K. M. (2014). Global biogeography of scaly tree ferns (Cyatheaceae): evidence for Gondwanan vicariance and limited transoceanic dispersal. *Journal of Biogeography, 41* (2), 402-413. doi:10.1111/jbi.12222

Kramer KU (1990). Cyatheaceae. In Kubitzki K, Green PS, eds. The Families and Genera of Vascular Plants, Vol. 1: Pteridophytes and Gymnosperms. Berlin: Springer-Verlag pp. 69–74.

Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. *Molecular biology and evolution, 33* (7), 1870-1874. doi:10.1093/molbev/msw054

Levinson, G., & Gutman, G. A. (1987). Slipped-strand mispairing: a major mechanism for DNA sequence evolution. *Molecular biology and evolution, 4* (3), 203-221. doi: 10.1093/oxfordjournals.molbev.a040442

Li, F.W., Kuo, L.Y., Pryer, K. M., & Rothfels, C. J. (2016). Genes Translocated into the Plastid Inverted Repeat Show Decelerated Substitution Rates and Elevated GC Content. *Genome Biology and Evolution, 8* (8), 2452-2458. doi:10.1093/gbe/evw167
Li, Y. C., Korol, A. B., Fahima, T., Belles, A., & Nevo, E. (2002). Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. *Molecular Ecology, 11* (12), 2453-2465. doi:10.1046/j.1365-294X.2002.01643.x

Li, Y. C., Korol, A. B., Fahima, T., & Nevo, E. (2004). Microsatellites within genes: Structure, function, and evolution. *Molecular biology and evolution, 21* (6), 991-1007. doi:10.1093/molbev/msh073

Li, Y.L., Yang, X.X., Zhang, J.Y., Huang, S.W., Xiong, X.Y. (2014). Studies on SSR molecular markers based on transcriptome of *Taxus chinensis* var. *mairei*. *Acta Horticulturae Sinica* 4, 735-745.

Lim, K. G., Kwoh, C. K., Hsu, L. Y., & Wirawan, A. (2013). Review of tandem repeat search tools: a systematic approach to evaluating algorithmic performance. *Briefings in Bioinformatics, 14* (1), 67-81. doi:10.1093/bib/bbs023

Liu, S.S., Ping, J.Y., Wang, Z., Wang, T., & Su, Y.J. (2018). Complete chloroplast genome of the tree fern Alsophila podophylla (Cyatheaaceae). *Mitochondrial DNA Part B-Resources, 3* (1), 48-49. doi:10.1080/23802359.2017.1419095

Liu, S.S., Wang, Z., Wang, H., Su, Y.J., & Wang, T. (2020). Patterns and Rates of Plastid rps12 Gene Evolution Inferred in a Phylogenetic Context using Plastid Data of Ferns. *Scientific Reports, 10* (1). doi:10.1038/s41598-020-66219-y

Liu, S.X., Hou, W., Sun, T.L., Xu, Y.T., Li, P., Yue, B.S., . . . Li, J. (2017). Genome-wide mining and comparative analysis of microsatellites in three macaque species. *Molecular Genetics and Genomics, 292* (3), 537-550. doi:10.1007/s00438-017-1289-1

Lohse, M., Drechsel, O., & Bock, R. (2007). OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. *Current Genetics, 52* (5-6), 267-274. doi:10.1007/s00294-007-0161-y

Manee, M. M., Algarni, A. T., Alharbi, S. N., Al-Shomrani, B. M., Ibrahim, M. A., Binghadir, S. A., & Al-Fageeh, M. B. (2020). Genome-wide characterization and analysis of microsatellite sequences in camelid species. *Mammal Research, 65* (2), 359-373. doi:10.1007/s13364-019-00458-x

Melotto-Passarin, D. M., Tambarussi, E. V., Dressano, K., De Martin, V. F., & Carrer, H. (2011). Characterization of chloroplast DNA microsatellites from Saccharum spp and related species. *Genetics and Molecular Research, 10* (3), 2024-2033. doi:10.4238/vol10-3gmr1019

Milne, I., Bayer, M., Cardle, L., Shaw, P., Stephen, G., Wright, F., & Marshall, D. (2010). Tablet-next generation sequence assembly visualization. *Bioinformatics, 26* (3), 401-402. doi:10.1093/bioinformatics/btp666

Mrazek, J., Guo, X., & Shah, A. (2007). Simple sequence repeats in prokaryotic genomes. *Proceedings of the National Academy of Sciences of the United States of America, 104* (20), 8472-8477. doi:10.1073/pnas.0702412104

Nie, X., Lv, S., Zhang, Y., Du, X., Wang, L., Biradar, S. S., . . . Song, W. (2012). Complete Chloroplast Genome Sequence of a Major Invasive Species, Crofton Weed (Ageratina adenophora). *PLoS ONE, 7* (5). doi:10.1371/journal.pone.0036869

PPG I(2016). A community-derived classification for extant lycophytes and ferns. *Journal of Systematics and Evolution* 54, 563-603.

Qi, W.H., Jiang, X.M., Du, L.M., Xiao, G.S., Hu, T.Z., Yue, B.S., & Quan, Q.M. (2015). Genome-Wide Survey and Analysis of Microsatellite Sequences in Bovid Species. *PLoS ONE, 10* (7). doi:10.1371/journal.pone.0133667

R Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, pp. 2013.
Ren, L., Gao, G., Zhao, D., Ding, M., Luo, J., & Deng, H. (2007). Developmental stage related patterns of codon usage and genomic GC content: searching for evolutionary fingerprints with models of stem cell differentiation. Genome Biology, 8 (3). doi:10.1186/gb-2007-8-3-r35

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S., . . . Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Systematic Biology, 61 (3), 539-542. doi:10.1093/sysbio/sys029

Schlotterer, C., & Tautz, D. (1992). Slippage synthesis of simple sequence DNA. Nucleic Acids Research, 20 (2), 211-215. doi:10.1093/nar/20.2.211

Sharma, P. C., Grover, A., & Kahl, G. (2007). Mining microsatellites in eukaryotic genomes. Trends in Biotechnology, 25 (11), 490-498. doi:10.1016/j.tibtech.2007.07.013

Smith, A. R., Pryer, K. M., Schuettpelz, E., Korall, P., Schneider, H., & Wolf, P. G. (2006). A classification for extant ferns. Taxon, 55 (3), 705-731. doi:10.2307/25065646

Srivastava, S., Avvaru, A. K., Sowpati, D. T., & Mishra, R. K. (2019). Patterns of microsatellite distribution across eukaryotic genomes. BMC Genomics, 20 . doi:10.1186/s12864-019-5516-5

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30 (9), 1312-1313. doi:10.1093/bioinformatics/btu033

Swofford, D. (2002). PAUP4: Phylogenetic analysis using parsimony (and other methods), version 4.0. Sunderland, MA: Sinauer.

Tonti-Filippini, J., Nevill, P. G., Dixon, K., & Small, I. (2017). What can we do with 1000 plastid genomes? In: Wiley Online Library.

Tortereau, F., Servin, B., Frantz, L., Megens, H.-J., Milan, D., Rohrer, G., . . . Groenen, M. A. M. (2012). A high density recombination map of the pig reveals a correlation between sex-specific recombination and GC content. BMC Genomics, 13 . doi:10.1186/1471-2164-13-586

Toth, G., Gaspari, Z., & Jurka, J. (2000). Microsatellites in different eukaryotic genomes: Survey and analysis. Genome Research, 10 (7), 967-981. doi:10.1101/gr.10.7.967

Tryon, R.M.(1970). The classification of Cyatheaceae. Contributions from the Gray Herbarium. 200, 1–53.

Wang, Q., Fang, L., Chen, J., Hu, Y., Si, Z., Wang, S., . . . Zhang, T. (2015). Genome-Wide Mining, Characterization, and Development of Microsatellite Markers in Gossypium Species. Scientific Reports, 5 . doi:10.1038/srep10638

Wang, T., He, Z., Wang, Z., Sun, X., & Su, Y. (2019). The first complete chloroplast genome of Alsophila costularis (Cyatheaceae), a least concerned relict tree fern. Mitochondrial DNA Part B-Resources, 4 (1), 1897-1898. doi:10.1080/23802359.2019.1614888

Wang, T., Hong, Y., Wang, Z., & Su, Y. (2019). Characterization of the complete chloroplast genome of Alsophila gigantea (Cyatheaceae), an ornamental and CITES giant tree fern. Mitochondrial DNA Part B-Resources, 4 (1), 967-968. doi:10.1080/23802359.2019.1580162

Wang, T., Su, Y.J., Zheng, B., Li, X.Y., Chen, G.P., & Zeng, Q.l. (2003). Phylogenetic analysis of the chloroplast trnL intron and trnL-trnF intergenic spacer sequences of the Cyatheaceae plants from China. Journal of Tropical and Subtropical Botany, 11 (2), 137-142.

Whittaker, J. C., Harbord, R. M., Boxall, N., Mackay, I., Dawson, G., & Sibly, R. M. (2003). Likelihood-based estimation of microsatellite mutation rates. Genetics, 164 (2), 781-787.

Wu, F.H., Chan, M.T., Liao, D.C., Hsu, C.T., Lee, Y.W., Daniell, H., . . . Lin, C.S. (2010). Complete chloroplast genome of Oncidium Gower Ramsey and evaluation of molecular markers for identification and breeding in Oncidiinae. BMC Plant Biology, 10 . doi:10.1186/1471-2229-10-68
Zerbino, D. R., & Birney, E. (2008). Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Research, 18 (5), 821-829. doi:10.1101/gr.074492.107

Zhang, X.C., Nishida, H. (2013). Cyatheaceae, Flora of China, Vol.2–3. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press. pp. 134–138

Zhao, X., Tan, Z., Feng, H., Yang, R., Li, M., Jiang, J., . . . Yu, R. (2011). Microsatellites in different Potyvirus genomes: Survey and analysis. Gene, 488 (1-2), 52-56. doi:10.1016/j.gene.2011.08.016

Zhu, M., Zhao, G., Ping, J., Liang, Y., Feng, P., Su, Y., & Wang, T. (2020). Complete chloroplast genome of Sphaeropteris brunoniana (Cyatheaceae). Mitochondrial DNA. Part B, Resources, 5 (3), 2938-2939. doi:10.1080/23802359.2020.1787893

Appendix table 1-8 List of simple sequence repeats (SSRs) in the chloroplast genomes of 8 species in Cyatheaceae.

Appendix table 9 The number, relative abundance, and relative density of SSR motifs in the chloroplast genomes of 8 species in Cyatheaceae.

Appendix table 10 The number, relative abundance, relative density and GC content of different types of motif SSRs in different regions in the chloroplast genomes of 8 species in Cyatheaceae.

Appendix table 11 Significant differences in the number, relative abundance, relative density, and GC content of the chloroplast genomes, Mono- to Pentanucleotide SSRs, IGS, LSC, intron and CDS regions SSRs of chloroplast genomes, and the mono- to pentanucleotide SSRs in the chloroplast genomes of 8 Cyatheaceae species.

Appendix table 1 List of simple sequence repeats (SSRs) in the chloroplast genomes of Alsophila denticulata

SSR nr.	SSR type	Locus	Region	SSR motif	size	star	end	Location
1	p5	spacer	LSC	ATTTT	15	5331	5345	rps16-chlB
2	p1	spacer	LSC	G	14	7040	7053	chlB-trnQ(UGG)
3	p1	spacer	LSC	C	11	8373	8383	trnS(GCU)-psaM
4	p1	intron	LSC	A	12	9401	9412	trnG(UCC)
5	p4	intron	LSC	AATT	12	9648	9659	trnG(UCC)
6	p1	spacer	LSC	G	16	13299	13314	atpF-atpH
7	p1	spacer	LSC	C	12	14280	14291	atpH-atpI
8	p1	spacer	LSC	C	12	15231	15242	atpI-rps2
9	p1	intron	LSC	C	10	22475	22484	rpoC1
10	p1	spacer	LSC	A	11	23468	23478	rpoC1-rpoB
11	p1	spacer	LSC	C	10	26793	26802	rpoB-trnD(GUC)
12	p4	spacer	LSC	ATAG	12	27725	27736	rpoB-trnD(GUC)
13	p1	spacer	LSC	T	13	28419	28431	trnE(UUC)-psbM
14	p4	spacer	LSC	TGAT	12	28511	28522	trnE(UUC)-psbM
15	p1	spacer	LSC	A	10	29560	29569	ycf66
16	p1	spacer	LSC	G	14	29640	29653	ycf66
17	p1	spacer	LSC	G	10	31641	31650	trnC(GCA)-trnG(GCC)
18	p1	spacer	LSC	A	10	31715	31724	trnC(GCA)-trnG(GCC)
19	p1	spacer	LSC	C	10	32102	32111	trnG(GCC)-psbZ
20	p4	spacer	LSC	TGAT	16	33543	33558	trnS(UGA)-psbC
21	p4	spacer	LSC	ATAG	12	33562	33573	trnS(UGA)-psbC
22	p1	spacer	LSC	A	10	37593	37602	psbD-trnT(GGU)
23	p1	intron	LSC	A	11	44104	44114	ycf3
SSR nr.	SSR type	Locus	Region	SSR motif	size	start	end	Location
---------	----------	-------	--------	-----------	------	-------	-----	----------
24	p1	intron	LSC	T	13	44123	44135	ycf3
25	p1	intron	LSC	C	11	45216	45226	ycf3
26	p1	spacer	LSC	T	10	45601	45610	ycf3-trnS(GGA)
27	p1	spacer	LSC	G	10	47798	47807	rps4-trnL(CAA)
28	p1	spacer	LSC	A	10	51902	51911	trnV(UAC)-trnM(CAU)
29	p1	spacer	LSC	T	11	56710	56720	trnR(UCC)-accD
30	p4	spacer	LSC	TATT	12	57765	57776	accD-psiA
31	p2	spacer	LSC	AT	18	58231	58248	accD-psiA
32	p2	spacer	LSC	TA	12	62570	62581	petA-psiB
33	p1	spacer	LSC	A	10	68052	68061	rpl20-rps12
34	p1	spacer	LSC	T	11	68120	68130	rpl20-rps12
35	p4	spacer	LSC	GATA	12	69048	69059	rps12-clpP
36	p1	intron	LSC	C	11	69574	69584	chlP
37	p1	intron	LSC	T	11	69615	69625	chlP
38	p1	intron	LSC	T	11	70413	70423	chlP
39	p2	intron	LSC	CT	12	70704	70715	chlP
40	p2	spacer	LSC	AT	12	79990	80001	rps8-rpl14
41	p1	intron	LSC	T	12	81564	81575	rpl16
42	p1	spacer	LSC	T	10	85769	85778	rpl25-trnI(CAU)
43	p2	spacer	IRA	AT	12	87653	87664	trnT(UGU)
44	p4	spacer	IRA	TCTT	12	96474	96485	trn16-rps12
45	p1	spacer	IRA	A	12	97573	97584	trn16-rps12
46	p1	spacer	SSC	A	10	111684	111693	ndhF-rpl21
47	p3	spacer	SSC	AAT	12	112846	112857	rps32-trnP(GGG)
48	p2	spacer	SSC	TA	12	112860	112871	rps32-trnP(GGG)
49	p3	spacer	SSC	TAT	12	112873	112884	rps32-trnP(GGG)
50	p1	spacer	SSC	A	10	113225	113234	trnP(GGG)-trnL(UAG)
51	p1	spacer	SSC	T	11	113467	113477	trnL(UAG)-cssA
52	p1	spacer	SSC	A	10	116602	116611	ndhD-psiA
53	p4	spacer	SSC	AATT	12	116610	116621	ndhD-psiA
54	p1	spacer	SSC	G	11	117154	117164	psaC-ndhE
55	p1	spacer	SSC	T	11	118927	118937	ndh1-ndhA
56	p2	spacer	SSC	AT	16	118966	118981	ndh1-ndhA
57	p1	intron	SSC	T	17	120503	120519	ndhA
58	p1	spacer	SSC	A	10	122795	122804	rps15-ycf1
59	p1	spacer	IRB	T	12	142438	142449	rps12-trn16
60	p4	spacer	IRB	AAAG	12	143536	143547	rps12-trn16
61	p2	spacer	IRB	AT	12	152358	152369	trnT(UGU)

Appendix table 2 List of simple sequence repeats (SSRs) in the chloroplast genomes of *Alsophila podophylla*
SSR nr.	SSR type	Locus	Region	SSR motif	size	start	end	Location
8	p1	spacer	LSC	C	11	15898	15908	trnE(UUC)-psbM
9	p1	spacer	LSC	C	11	27484	27494	rpoB-trnD(GUC)
10	p4	spacer	LSC	ATAG	12	28409	28420	rpoB-trnD(GUC)
11	p1	spacer	LSC	T	12	29103	29114	trnE(UUC)-psbM
12	p4	spacer	LSC	TGAT	12	29197	29208	trnE(UUC)-psbM
13	p1	spacer	LSC	G	13	30325	30337	ycf66
14	p1	spacer	LSC	A	10	32400	32409	trnC(GCA)-trnG(GCC)
15	p1	spacer	LSC	C	12	32787	32798	trnG(GCC)-psbZ
16	p4	spacer	LSC	TATC	16	34224	34238	trnS(UGA)-psbC
17	p4	spacer	LSC	ATAG	12	34242	34253	trnS(UGA)-psbC
18	p1	spacer	LSC	T	12	37895	37904	psbD-trnT(GGU)
19	p5	intron	LSC	TTCTC	15	39317	39331	rps14
20	p3	intron	LSC	AAT	12	44793	44819	ycf3
21	p1	intron	LSC	T	10	44810	44819	ycf3
22	p1	intron	LSC	C	11	45899	45909	ycf3
23	p1	spacer	LSC	T	10	46284	46293	ycf3-trnS(GGA)
24	p1	spacer	LSC	T	10	46867	46876	trnS(GGA)-rps4
25	p1	spacer	LSC	G	12	48604	48615	rps4-trnL(CAA)
26	p1	spacer	LSC	T	10	57501	57510	trnR(UGC)-accD
27	p4	spacer	LSC	TATT	12	58555	58566	accD-psiA
28	p1	spacer	LSC	A	10	58615	58624	accD-psiA
29	p2	spacer	LSC	AT	18	59022	59039	accD-psiA
30	p2	spacer	LSC	TA	14	63376	63389	petA-psiB
31	p1	spacer	LSC	T	10	66579	66588	trnW(CCA)-trnP(UGG)
32	p1	spacer	LSC	C	12	67291	67302	psaJ-rpl32
33	p1	spacer	LSC	A	10	68892	68901	rpl20-rpl12
34	p1	spacer	LSC	T	11	68606	68970	rpl20-rpl12
35	p4	spacer	LSC	GATA	12	69890	69901	rps12-clpP
36	p1	intron	LSC	T	10	70443	70452	clpP
37	p1	intron	LSC	T	11	71239	71249	clpP
38	p1	intron	LSC	T	11	75002	75012	petB
39	p1	spacer	LSC	T	10	77981	77990	petD-rpoA
40	p1	spacer	LSC	A	10	79921	79930	rpl36-infA
41	p1	spacer	LSC	T	11	80751	80761	rps8-rpl14
42	p1	spacer	LSC	A	10	80792	80801	rps8-rpl14
43	p2	spacer	LSC	AT	16	80801	80816	rps8-rpl14
44	p1	intron	LSC	T	13	82378	82390	rpl16
45	p1	intron	LSC	T	10	82733	82742	rpl16
46	p2	spacer	IRB	AT	12	87789	87800	trnT(UGU)
47	p1	spacer	IRB	A	10	94889	94898	trnI(GAU)-rnn16
48	p1	spacer	IRB	A	12	104005	104016	rnn16-rps12
49	p1	spacer	IRB	A	10	107991	108000	trnH(GUG)-ycf2
50	p1	spacer	IRB	C	10	115418	115427	trnN(GUU)-ndhF
51	p1	spacer	SSC	A	10	117925	117934	ndhF-rpl21
52	p2	spacer	SSC	TA	22	119288	119309	rpl32-trnP(GGG)
53	p4	spacer	SSC	AAAT	12	119665	119676	trnP(GGG)-trnL(UAG)
54	p1	spacer	SSC	T	13	119901	119913	trnL(UAG)-ccsA
55	p1	spacer	SSC	A	10	123033	123042	ndhD-psiA
56	p4	spacer	SSC	AATT	12	123041	123052	ndhD-psiA
57	p1	spacer	SSC	G	15	123587	123601	psaC-ndhE
Appendix table 3 List of simple sequence repeats (SSRs) in the chloroplast genomes of *Alsophila gigantea*

SSR nr.	SSR type	Locus	Region	SSR motif	size	start	end	Location
58	p1	spacer	SSC	T	10	125374	125383	*ndhI-ndhA*
59	p2	spacer	SSC	AT	14	125418	125431	*ndhI-ndhA*
60	p2	intron	SSC	TA	16	126454	126469	*ndhA*
61	p1	intron	SSC	T	17	126960	126976	*ndhA*
62	p1	spacer	SSC	C	11	134606	134616	*yef1-chlN*
63	p1	spacer	IRA	G	10	137487	137496	*chlL-trnN(GUU)*
64	p1	spacer	IRA	T	12	144914	144923	*yef2-trnH(GUG)*
65	p1	spacer	IRA	T	10	148898	148909	*rps12-trnI16*
66	p1	spacer	IRA	T	10	158016	158025	*rrn16-trnI(GAU)*
67	p2	spacer	IRA	AT	12	165114	165125	*trnT(UGU)*

SSR nr.	SSR type	Locus	Region	SSR motif	size	start	end	Location
1	p1	spacer	LSC	G	10	3677	3686	*matK-rps16*
2	p1	spacer	LSC	G	11	7015	7025	*chlB-trnQ(UUG)*
3	p2	spacer	LSC	AT	14	8451	8464	*trnS(GUC)-psaM*
4	p4	intron	LSC	AATT	12	9622	9633	*trnG(UCC)*
5	p1	spacer	LSC	C	10	14251	14260	*atpH-atpI*
6	p1	spacer	LSC	C	10	15197	15206	*atpI-rps2*
7	p1	intron	LSC	C	10	22460	22469	*rpoC1*
8	p1	spacer	LSC	T	10	27192	27201	*rpoB-trnD(GUC)*
9	p4	spacer	LSC	ATAG	12	27704	27715	*rpoB-trnD(GUC)*
10	p4	spacer	LSC	TGAT	12	28490	28501	*trnE(UUC)-psbM*
11	p1	spacer	LSC	G	17	29622	29638	*yef66*
12	p1	spacer	LSC	G	11	31628	31638	*trnC(GCA)-trnG(GCC)*
13	p1	spacer	LSC	C	10	32088	32097	*trnG(GCC)-psbZ*
14	p4	spacer	LSC	TATC	12	33522	33533	*trnS(UGA)-psbC*
15	p4	spacer	LSC	ATAG	12	33537	33548	*trnS(UGA)-psbC*
16	p1	spacer	LSC	T	10	36642	36651	*psbD-trnT(GGU)*
17	p2	spacer	LSC	AG	24	36747	36770	*psbD-trnT(GGU)*
18	p1	intron	LSC	A	10	44100	44109	*yef3*
19	p1	intron	LSC	T	12	44122	44133	*yef3*
20	p1	spacer	LSC	T	10	45598	45607	*yef3-trnS(GGA)*
21	p1	spacer	LSC	G	10	47441	47450	*rps4-trnL(CAA)*
22	p1	spacer	LSC	G	10	47936	47945	*rps4-trnL(CAA)*
23	p1	spacer	LSC	A	14	48913	48926	*trnL(CAA)-trnF(GAA)*
24	p1	spacer	LSC	T	10	49833	49842	*ndhJ-ndhK*
25	p1	spacer	LSC	A	11	52073	52083	*trnV(UAC)-trnM(CAU)*
26	p1	spacer	LSC	T	11	54541	54551	*atpB-rbcL*
27	p1	spacer	LSC	T	10	56891	56900	*trnR(UGC)-accD*
28	p4	spacer	LSC	TATT	12	57947	57958	*accD-psaL*
29	p2	spacer	LSC	AT	14	58413	58426	*accD-psaI*
30	p2	spacer	LSC	TA	16	62759	62774	*petA-psbJ*
31	p1	spacer	LSC	C	11	72815	72825	*psaJ-rpl33*
32	p1	spacer	LSC	A	11	74414	74424	*rpl20-rps12*
33	p1	spacer	LSC	T	10	74483	74492	*rpl20-rps12*
34	p4	spacer	LSC	GATA	12	75418	75429	*rps12-clpP*
35	p1	intron	LSC	C	11	75940	75950	*clpP*
SSR nr.	SSR type	Locus	Region	SSR motif	size	star	end	Location
---------	----------	-------	--------	-----------	------	------	-------	------------------
36	p1	intron	LSC	T	10	75981	75990	clpP
37	p1	intron	LSC	T	11	81166	81176	petB
38	p1	spacer	LSC	A	11	86310	86320	rps8-rpl14
39	p2	spacer	LSC	AT	16	86320	86335	rps8-rpl14
40	p1	spacer	LSC	T	11	86335	86345	rps8-rpl14
41	p1	intron	LSC	T	12	88251	88262	rpl16
42	p1	intron	LSC	C	10	91441	91450	rpl2
43	p2	spacer	IRB	AT	12	93990	94001	trnT(UGU)
44	p1	spacer	IRB	A	12	101110	101121	trnI(GAU)-rrn16
45	p4	spacer	IRB	TCTT	12	103414	103425	rrr16-rps12
46	p1	spacer	IRB	A	12	105429	105440	rrr16-rps12
47	p3	spacer	SSC	AAT	12	119784	119785	rpl32-trnP(GGG)
48	p2	spacer	SSC	TA	18	119798	119815	rpl32-trnP(GGG)
49	p3	spacer	SSC	TAT	12	119817	119828	rpl32-trnP(GGG)
50	p4	spacer	SSC	GAAA	12	120167	120178	trnP(GGG)-trnL(UAG)
51	p1	spacer	SSC	T	13	120409	120420	trnL(UAG)-ccsA
52	p1	spacer	SSC	A	11	121680	121690	ccsA-ndhD
53	p1	spacer	SSC	A	13	123545	123557	ndhD-psaC
54	p1	spacer	SSC	T	10	123566	123575	ndhD-psaC
55	p1	spacer	SSC	G	31	124104	124134	psaC-ndhE
56	p1	spacer	SSC	A	24	125949	125961	ndhI-ndhA
57	p2	spacer	SSC	AT	12	125961	125972	ndhI-ndhA
58	p2	spacer	SSC	TA	14	126999	127012	ndhA
59	p1	spacer	SSC	C	31	135145	135175	ycf1-chlN
60	p4	spacer	SSC	AAAT	16	135345	135409	ycf1-chlN
61	p1	spacer	IRA	T	12	149455	149466	rps12-rrn16
62	p4	spacer	IRA	AAAG	12	150569	150580	rps12-rrn16
63	p1	spacer	IRA	T	12	152874	152885	rrr16-trnI(GAU)
64	p2	spacer	IRA	AT	12	159994	160005	trnT(UGU)

Appendix table 4 List of simple sequence repeats (SSRs) in the chloroplast genomes of Alsophila gigantea

SSR nr.	SSR type	Locus	Region	SSR motif	size	star	end	Location
1	p1	spacer	LSC	G	12	7094	7105	chiB-trnQ(UUG)
2	p1	spacer	LSC	T	10	8416	8425	trnS(GUC)-psaM
3	p2	spacer	LSC	AT	14	8532	8545	trnS(GUC)-psaM
4	p4	intron	LSC	AATT	12	9703	9714	trnG(UCC)
5	p1	intron	LSC	C	10	22538	22547	trnG(UCC)
6	p1	spacer	LSC	T	10	27270	27279	rpoB-trnD(GUC)
7	p4	spacer	LSC	ATAG	12	27782	27793	rpoB-trnD(GUC)
8	p4	spacer	LSC	TGAT	12	28568	28579	trnE(UUC)-psbM
9	p1	spacer	LSC	G	14	29700	29713	ycf66
10	p1	spacer	LSC	G	11	31714	31724	trnC(GCA)-trnG(GCC)
11	p1	spacer	LSC	C	12	32174	32185	trnG(GCC)-psbZ
12	p4	spacer	LSC	TATC	12	33610	33621	trnS(UGA)-psbC
13	p4	spacer	LSC	ATAG	12	33625	33636	trnS(UGA)-psbC
14	p1	spacer	LSC	T	10	36730	36739	psbD-trnT(GGU)
15	p2	spacer	LSC	AG	16	36835	36850	psbD-trnT(GGU)
16	p1	intron	LSC	T	13	44201	44213	ycf3
SSR nr.	SSR type	Locus	Region	SSR motif	size	star	end	Location
--------	----------	-------	--------	-----------	------	------	-----	---------
17	p1	spacer	LSC	T	10	45678	45687	ycf3-trnS(GGA)
18	p1	spacer	LSC	G	10	47521	47530	rps4-trnL(CAA)
19	p1	spacer	LSC	G	10	48027	48036	rps4-trnL(CAA)
20	p1	spacer	LSC	A	13	48988	49000	trnL(CAA)-trnF(GAA)
21	p1	spacer	LSC	T	10	49907	49916	ndhJ-ndhK
22	p1	spacer	LSC	A	10	52147	52156	trnV(UAC)-trnM(CAU)
23	p1	spacer	LSC	T	11	54614	54624	atpB-rbcL
24	p1	spacer	LSC	T	10	56964	56973	trnR(UCG)-accD
25	p4	spacer	LSC	TATT	12	58020	58031	accD-psyA
26	p2	spacer	LSC	AT	14	58486	58499	accD-psyA
27	p2	spacer	LSC	TA	16	62833	62848	petA-psyB
28	p5	spacer	LSC	CTTTC	15	71752	71766	petG-trnW(CCA)
29	p1	spacer	LSC	C	10	72879	72890	psaJ-ryl33
30	p1	spacer	LSC	A	10	74479	74488	rpl20-rps12
31	p1	spacer	LSC	T	10	74547	74556	rpl20-rps12
32	p4	spacer	LSC	GATA	12	75482	75493	rps12-clpP
33	p1	intron	LSC	C	10	76004	76013	clpP
34	p1	intron	LSC	T	14	76044	76057	clpP
35	p1	intron	LSC	T	10	81233	81242	petB
36	p2	spacer	LSC	AT	18	86384	86401	rps8-rpl14
37	p1	intron	LSC	T	11	88315	88325	rpl16
38	p1	intron	LSC	C	10	91506	91515	rpl2
39	p2	spacer	IRB	AT	12	94055	94066	trnT(UGU)
40	p1	spacer	IRB	A	12	101175	101186	trnI(GAU)-ryl16
41	p4	spacer	IRB	TCTT	12	103479	103490	rnu16-rps12
42	p1	spacer	IRB	A	14	104578	104591	rnu16-rps12
43	p1	spacer	IRB	T	10	106780	106789	rps7-psyA
44	p3	spacer	SSC	AAT	12	119836	119847	rpl32-trnP(GGG)
45	p2	spacer	SSC	TA	18	119850	119867	rpl32-trnP(GGG)
46	p3	spacer	SSC	TAT	12	119869	119880	rpl32-trnP(GGG)
47	p4	spacer	SSC	GAAA	12	120219	120230	trnP(GGG)-trnL(UAG)
48	p1	spacer	SSC	T	12	120461	120472	trnL(UAG)-ccsA
49	p1	spacer	SSC	A	11	121731	121741	ccsA-ndhD
50	p1	spacer	SSC	A	11	123596	123606	ndhD-psyA
51	p4	spacer	SSC	AATT	12	123605	123616	ndhD-psyA
52	p1	spacer	SSC	T	10	123615	123624	ndhD-psyA
53	p1	spacer	SSC	G	15	124153	124167	psaC-ndhE
54	p1	spacer	SSC	A	24	125982	125992	ndhJ-ndhA
55	p2	spacer	SSC	AT	14	125992	126005	ndhJ-ndhA
56	p1	spacer	SSC	A	13	126041	126053	ndhJ-ndhA
57	p2	intron	SSC	TA	14	127030	127043	ndhA
58	p1	spacer	SSC	A	11	129846	129856	rps15-ycf1
59	p1	spacer	SSC	C	14	135178	135191	ycf1-chN
60	p4	spacer	SSC	AAAT	16	135410	135425	ycf1-chN
61	p1	spacer	IRA	A	10	147274	147283	psyA-rps7
62	p1	spacer	IRA	T	14	149472	149485	rps12-ryl16
63	p4	spacer	IRA	AAAG	12	150572	150583	rps12-ryl16
64	p1	spacer	IRA	T	12	152877	152888	rnu16-ryl16
65	p2	spacer	IRA	AT	12	159997	160008	trnT(UGU)
Appendix table 5 List of simple sequence repeats (SSRs) in the chloroplast genomes of *Alsophila costularis*

SSR nr.	SSR type	Locus	Region	SSR motif	size	star	end	Location
1	p1	intron	LSC	T	11	367	374	ndhB
2	p1	spacer	LSC	A	12	3443	3454	matK-rps16
3	p1	spacer	LSC	T	10	3538	3547	matK-rps16
4	p1	intron	LSC	T	11	4288	4298	rps16
5	p1	spacer	LSC	G	15	6798	6812	chlB-trnQ(UUG)
6	p1	spacer	LSC	A	11	7517	7527	psbK-trnI
7	p2	spacer	LSC	TA	12	7529	7540	psbK-trnI
8	p1	spacer	LSC	C	13	8126	8138	trnS-psbM
9	p2	spacer	LSC	AT	16	8229	8244	trnT(trnS-GCA)-psbM
10	p1	spacer	LSC	T	10	8244	8253	trnT(trnS-GCA)-psbM
11	p1	spacer	LSC	G	11	8797	8807	ycf12-trnC(UCC)
12	p1	intron	LSC	C	14	9681	9694	trnG(UCC)
13	p1	spacer	LSC	C	19	14047	14065	atpH-atpI
14	p1	spacer	LSC	A	11	14078	14088	atpH-atpI
15	p1	spacer	LSC	T	13	15006	15018	atpI-rps2
16	p1	intron	LSC	T	13	22288	22300	rpoC1
17	p3	intron	LSC	AAG	12	22479	22490	rpoC1
18	p1	spacer	LSC	A	11	23235	23245	rpoC1-rpoB
19	p1	spacer	LSC	T	10	27599	27608	rpoB-trnD(GUC)
20	p1	spacer	LSC	A	12	28205	28216	trnE(UUC)-psbM
21	p1	spacer	LSC	A	12	29369	29380	ycf66
22	p2	spacer	LSC	AT	18	30361	30378	petN-trnC(GCA)
23	p1	spacer	LSC	G	12	31701	31712	trnC(GCA)-trnG(GCC)
24	p1	spacer	LSC	A	13	31782	31794	trnC(GCA)-trnG(GCC)
25	p1	spacer	LSC	A	12	32996	33007	trnS(UAG)-psbC
26	p1	spacer	LSC	T	13	33067	33079	trnS(UAG)-psbC
27	p4	spacer	LSC	ATCT	16	33600	33615	trnS(UAG)-psbC
28	p4	spacer	LSC	ATAG	12	33618	33629	trnS(UAG)-psbC
29	p1	spacer	LSC	T	12	36726	36736	psbD-trnT(GGU)
30	p1	spacer	LSC	A	10	36854	36863	psbD-trnT(GGU)
31	p1	spacer	LSC	T	19	37272	37290	psbD-trnT(GGU)
32	p1	spacer	LSC	A	12	37670	37681	psbD-trnT(GGU)
33	p1	intron	LSC	T	11	44231	44241	ycf3
34	p1	intron	LSC	C	11	45328	45338	ycf3
35	p1	spacer	LSC	T	15	45725	45739	ycf3-trnS(GGA)
36	p1	spacer	LSC	A	10	45781	45790	ycf3-trnS(GGA)
37	p1	spacer	LSC	T	12	45851	45862	ycf3-trnS(GGA)
38	p1	spacer	LSC	T	11	46321	46331	trnS(GGA)-rps4
39	p1	spacer	LSC	G	10	48024	48033	rps4-trnL(CAA)
40	p1	intron	LSC	A	14	48342	48355	trnL(CAA)
41	p1	spacer	LSC	T	14	48944	48957	trnL(CAA)-trnF(GAA)
42	p1	spacer	LSC	T	10	51286	51295	ndhC-trnV(UAC)
43	p1	spacer	LSC	A	11	51302	51312	ndhC-trnV(UAC)
44	p1	spacer	LSC	A	10	52147	52156	trnV(UAC)-trnM(CAU)
45	p2	spacer	LSC	AT	14	52242	52255	trnV(UAC)-trnM(CAU)
46	p1	spacer	LSC	T	13	54712	54724	atpB-rbcL
47	p1	spacer	LSC	T	12	56557	56568	rbcL-trnR(UCG)
48	p1	spacer	LSC	T	19	56978	56996	trnR(UCG)-accD
SSR nr.	SSR type	Locus	Region	SSR motif	size	star	end	Location
--------	----------	-------	--------	-----------	------	------	-----	----------
49	p4	spacer	LSC	TATT	12	58025	58036	accD-psaI
50	p1	spacer	LSC	A	10	58085	58094	accD-psaI
51	p1	spacer	LSC	T	10	58508	58517	accD-psaI
52	p1	spacer	LSC	C	11	62532	62542	petA-psbJ
53	p1	spacer	LSC	T	13	63161	63173	petA-psbJ
54	p1	spacer	LSC	T	11	64725	64735	pshE-petL
55	p1	spacer	LSC	T	10	65541	65550	petG-trnW(CCA)
56	p1	spacer	LSC	T	10	65940	65949	trnW(CCA)-trnP(UGG)
57	p1	spacer	LSC	T	18	67335	67352	rps18-rpl20
58	p1	spacer	LSC	T	12	68310	68321	rpl20-rps12
59	p1	spacer	LSC	T	11	68513	68523	rpl20-rps12
60	p1	spacer	LSC	T	11	68770	68780	rpl20-rps12
61	p4	spacer	LSC	TATC	12	69226	69237	rps12-clpP
62	p4	spacer	LSC	GATA	12	69244	69255	rps12-clpP
63	p1	intron	LSC	C	42	69761	69802	clpP
64	p1	intron	LSC	C	10	70520	70529	clpP
65	p2	intron	LSC	AT	24	70655	70678	clpP
66	p1	spacer	LSC	A	11	71659	71669	clpP-psbB
67	p1	intron	LSC	T	16	74446	74461	petB
68	p1	intron	LSC	T	10	76585	76594	petD
69	p1	spacer	LSC	T	13	80192	80204	rps8-rpl14
70	p2	spacer	LSC	AT	18	80224	80241	rps8-rpl14
71	p1	spacer	LSC	A	14	80308	80321	rps8-rpl14
72	p2	spacer	LSC	TA	12	80322	80333	rps8-rpl14
73	p1	spacer	LSC	T	12	80342	80353	rps8-rpl14
74	p1	intron	LSC	T	12	81928	81939	rpl16
75	p4	intron	LSC	CCTC	12	82094	82105	rpl16
76	p1	intron	LSC	T	13	82267	82279	rpl16
77	p1	spacer	LSC	T	10	82493	82502	rpl16-rps3
78	p1	intron	LSC	A	14	84696	84709	rpl2
79	p1	spacer	LSC	A	12	85684	85695	rpl2-rpl23
80	p1	spacer	LSC	T	13	85997	86009	rpl23-trnI(CAU)
81	p1	spacer	LSC	T	11	86139	86149	rpl23-trnI(CAU)
82	p2	spacer	IRB	AT	12	88021	88032	trnT(UGU)
83	p2	spacer	IRB	AT	12	88476	88487	trnT(UGU)-trnR(ACG)
84	p1	spacer	IRB	T	13	89923	89935	trnR(ACG)-rrn5
85	p1	spacer	IRB	C	13	97451	97463	rrn16-rps12
86	p4	spacer	IRB	TCTT	12	97984	97995	rrn16-rps12
87	p1	spacer	IRB	T	11	99097	99107	rrn16-rps12
88	p1	spacer	IRB	A	12	103055	103066	trnH(GUG)-ycf2
89	p4	CDS	IRB	AGAA	12	108231	108242	ycf2
90	p1	spacer	IRB	A	17	109641	109657	ycf2-trnN(GUU)
91	p1	spacer	IRB	G	17	110427	110443	trnN(GUU)-ndhF
92	p1	spacer	SSC	T	10	113600	113609	rpl21-rpl32
93	p1	spacer	SSC	A	13	113713	113725	rpl21-rpl32
94	p2	spacer	SSC	AT	16	113725	113740	rpl21-rpl32
95	p1	spacer	SSC	A	12	114078	114089	rpl32-trnP(GGG)
96	p1	spacer	SSC	G	10	114333	114342	rpl32-trnP(GGG)
97	p1	spacer	SSC	T	14	114400	114413	rpl32-trnP(GGG)
98	p1	spacer	SSC	A	13	114740	114752	trnP(GGG)-trnL(UAG)
SSR nr.	SSR type	Locus	Region	SSR motif	size	star	end	Location
---------	----------	-------	--------	-----------	------	------	-----	-------------------------------
99	p1	spacer	SSC	A	11	114900	114910	trnL(UAG)-ccsA
100	p1	spacer	SSC	T	12	114979	114990	trnL(UAG)-ccsA
101	p1	spacer	SSC	A	11	118132	118142	ndhD- psaC
102	p1	spacer	SSC	T	12	118147	118158	ndhD- psaC
103	p1	spacer	SSC	G	13	118694	118706	psaC- ndhE
104	p2	spacer	SSC	TA	14	120509	120522	ndhI- ndhA
105	p1	spacer	SSC	A	13	120526	120538	ndhI- ndhA
106	p2	spacer	SSC	AT	20	120538	120557	ndhI- ndhA
107	p1	spacer	SSC	A	10	120602	120611	ndhI- ndhA
108	p1	intron	SSC	T	10	121522	121531	ndhA
109	p1	spacer	SSC	A	14	124314	124327	rps15-ycf1
110	p4	CDS	ACCA		12	129098	129109	ycf1
111	p1	spacer	SSC	C	13	129639	129651	ycf1-chlN
112	p1	spacer	IRA	C	17	132571	132587	chlL-trnN(GUU)
113	p1	spacer	IRA	T	17	133357	133373	trnN(GUU)-ycf2
114	p4	CDS	TTTC		12	134771	134782	ycf2
115	p1	spacer	IRA	T	12	139948	139959	ycf2-trnH(GUG)
116	p1	spacer	IRA	A	11	143907	143917	rps12-rrn16
117	p4	spacer	IRA	AAAG	12	145018	145029	rps12-rrn16
118	p1	spacer	IRA	G	13	145551	145563	rps12-rrn16
119	p1	spacer	IRA	A	13	153079	153091	rrn5-rrnR(ACG)
120	p2	spacer	IRA	AT	12	154527	154538	trnR(ACG)-trnT(UGU)
121	p2	spacer	IRA	AT	12	154982	154993	trnT(UGU)

Appendix table 6 List of simple sequence repeats (SSRs) in the chloroplast genomes of *Alsophila spinulosa*
SSR nr.	SSR type	Locus	Region	SSR motif	size	star	end	Location
23	p1	spacer	LSC	G	12	31694	31705	trnC(GCA)-trnG(GCC)
24	p1	spacer	LSC	A	13	31775	31787	trnC(GCA)-trnG(GCC)
25	p1	spacer	LSC	A	12	32989	33000	trnS(UGA)-psbC
26	p1	spacer	LSC	T	13	33060	33072	trnS(UGA)-psbC
27	p4	spacer	LSC	ATCT	16	33593	33608	trnS(UGA)-psbC
28	p4	spacer	LSC	ATAG	12	33611	33622	trnS(UGA)-psbC
29	p1	spacer	LSC	T	11	36719	36729	psbD-trnT(GGU)
30	p1	spacer	LSC	A	10	36847	36856	psbD-trnT(GGU)
31	p1	spacer	LSC	T	19	37265	37283	psbD-trnT(GGU)
32	p1	spacer	LSC	A	11	37663	37673	psbD-trnT(GGU)
33	p1	intron	LSC	T	12	44223	44234	ycf3
34	p1	intron	LSC	C	11	45321	45331	ycf3
35	p1	spacer	LSC	T	15	45718	45732	ycf3-trnS(GGA)
36	p1	spacer	LSC	A	10	45774	45783	ycf3-trnS(GGA)
37	p1	spacer	LSC	T	12	45844	45855	ycf3-trnS(GGA)
38	p1	spacer	LSC	T	11	46314	46324	trnS(GGA)-rps4
39	p1	spacer	LSC	G	10	48017	48026	rps4-trnL(CAA)
40	p1	intron	LSC	A	14	48335	48348	trnL(CAA)
41	p1	spacer	LSC	T	13	48937	48949	trnL(CAA)-trnF(GAA)
42	p1	spacer	LSC	T	10	51278	51287	ndhC-trnV(UAC)
43	p1	spacer	LSC	A	11	51294	51304	ndhC-trnV(UAC)
44	p1	spacer	LSC	A	10	52139	52148	trnV(UAC)-trnM(CAU)
45	p2	spacer	LSC	AT	14	52234	52247	trnV(UAC)-trnM(CAU)
46	p1	spacer	LSC	T	13	54704	54716	atpB-rbcL
47	p1	spacer	LSC	T	12	56549	56560	rbcL-trnR(UCG)
48	p1	spacer	LSC	T	19	56970	56988	trnR(UCG)-accD
49	p4	spacer	LSC	TATT	12	58017	58028	accD-psiA
50	p1	spacer	LSC	A	10	58077	58086	accD-psiA
51	p1	spacer	LSC	T	11	58500	58510	accD-psiA
52	p1	spacer	LSC	C	11	62525	62535	petA-psiB
53	p1	spacer	LSC	T	13	63154	63166	petA-psiB
54	p1	spacer	LSC	T	11	64718	64728	psiE-petL
55	p1	spacer	LSC	T	10	65534	65543	petG-trnW(CCA)
56	p1	spacer	LSC	T	10	65933	65942	trnW(CCA)-trnP(UGG)
57	p1	spacer	LSC	C	10	66640	66649	psaJ-rpl33
58	p1	spacer	LSC	T	17	67329	67345	rps18-rpl20
59	p1	spacer	LSC	T	12	68303	68314	rpl20-rps12
60	p1	spacer	LSC	T	11	68506	68516	rpl20-rps12
61	p1	spacer	LSC	T	11	68763	68773	rpl20-rps12
62	p4	spacer	LSC	TATC	12	69219	69230	rps12-clpP
63	p4	spacer	LSC	GATA	12	69237	69248	rps12-clpP
64	p1	intron	LSC	C	17	69754	69770	clpP
65	p1	intron	LSC	C	11	70488	70498	clpP
66	p2	spacer	LSC	AT	24	70624	70647	clpP
67	p1	spacer	LSC	A	11	71628	71638	clpP-psiB
68	p1	intron	LSC	T	16	74415	74430	petB
69	p1	intron	LSC	T	10	76554	76563	petD
70	p1	spacer	LSC	T	13	80161	80173	rps8-rpl14
71	p2	spacer	LSC	AT	18	80193	80210	rps8-rpl14
72	p1	spacer	LSC	A	14	80277	80290	rps8-rpl14
SSR nr.	SSR type	Locus	Region	SSR motif	size	star	end	Location
--------	----------	-------	--------	-----------	------	------	-----	----------
73	p2	spacer	LSC	TA	12	80291	80302	rps8-rpl14
74	p1	spacer	LSC	T	12	80311	80322	rps8-rpl14
75	p1	intron	LSC	T	12	81897	81908	rpl16
76	p4	intron	LSC	CCTC	12	82063	82074	rpl16
77	p1	intron	LSC	T	13	82236	82248	rpl16
78	p1	spacer	LSC	T	10	82462	82471	rpl16-rps3
79	p1	intron	LSC	A	15	84665	84679	rpl2
80	p1	spacer	LSC	A	12	85654	85665	rpl2-rpl23
81	p1	spacer	LSC	T	13	85967	85979	rpl23-trnI(CAU)
82	p1	spacer	LSC	T	11	86109	86119	rpl23-trnI(CAU)
83	p2	spacer	IRB	AT	12	87991	88002	trnT(UGU)
84	p2	spacer	IRB	AT	12	88446	88457	trnT(UGU)-trnR(ACG)
85	p1	spacer	IRB	T	13	89893	89905	trnR(ACG)-rrn5
86	p1	spacer	IRB	C	11	97421	97431	rrn16-rps12
87	p4	spacer	IRB	TCTT	12	97952	97963	rrn16-rps12
88	p1	spacer	IRB	T	11	99065	99075	rrn16-rps12
89	p1	spacer	IRB	A	12	103023	103034	trnH(GUG)-ycf2
90	p4	CDS	IRB	AGAA	12	108199	108210	ycf2
91	p1	spacer	IRB	A	23	109060	109061	ycf2-trnN(GU)
92	p1	spacer	IRB	G	15	110408	110422	trnN(GU)-ndhF
93	p1	spacer	SSC	T	10	113579	113588	rpl21-rrn32
94	p1	spacer	SSC	A	13	113692	113704	rpl21-rrn32
95	p2	spacer	SSC	AT	16	113704	113719	rpl21-rrn32
96	p1	spacer	SSC	A	11	114057	114067	rpl32-trnP(GGG)
97	p1	spacer	SSC	G	10	114311	114320	rpl32-trnP(GGG)
98	p1	spacer	SSC	T	13	114378	114390	rpl32-trnP(GGG)
99	p1	spacer	SSC	A	13	114717	114729	trnP(GGG)-trnL(UAG)
100	p1	spacer	SSC	A	11	114877	114887	trnL(UAG)-ccsA
101	p1	spacer	SSC	T	12	114956	114967	trnL(UAG)-ccsA
102	p1	spacer	SSC	A	11	118109	118119	ndhD-rrn32
103	p1	spacer	SSC	T	12	118124	118135	ndhD-rrn32
104	p1	spacer	SSC	G	13	118671	118683	pscC-ndhE
105	p2	spacer	SSC	TA	14	120486	120499	ndhI-ndhA
106	p1	spacer	SSC	A	13	120503	120515	ndhI-ndhA
107	p2	spacer	SSC	AT	20	120515	120534	ndhI-ndhA
108	p1	spacer	SSC	A	10	120579	120588	ndhI-ndhA
109	p1	intron	SSC	T	10	121499	121508	ndhA
110	p1	spacer	SSC	A	14	124291	124304	rps15-ycf1
111	p4	CDS	SSC	ACCA	12	129075	129086	ycf1
112	p1	spacer	SSC	C	13	129616	129628	ycf1-chlN
113	p1	spacer	IRA	C	15	132548	132562	chlL-trnN(GUU)
114	p1	spacer	IRA	T	23	133339	133361	trnN(GUU)-ycf2
115	p4	CDS	IRA	TTTC	12	134759	134770	ycf2
116	p1	spacer	IRA	T	12	139936	139947	ycf2-trnH(GUG)
117	p1	spacer	IRA	A	11	143895	143905	rps12-rrn16
118	p4	spacer	IRA	AAAG	12	145006	145017	rps12-rrn16
119	p1	spacer	IRA	G	11	145539	145549	rps12-rrn16
120	p1	spacer	IRA	A	13	153065	153077	rrn5-trnR(ACG)
121	p2	spacer	IRA	AT	12	154513	154524	trnR(ACG)-trnT(UGU)
Appendix table 7 List of simple sequence repeats (SSRs) in the chloroplast genomes of *Sphaeropteris brunoniana*

SSR nr.	SSR type	Locus	Region	SSR motif	size	star	end	Location
1	p1	spacer	LSC	A	15	3517	3531	matK-rps16
2	p1	spacer	LSC	T	10	3614	3623	matK-rps16
3	p1	intron	LSC	T	10	4364	4373	rps16
4	p1	intron	LSC	A	11	4861	4871	rps16
5	p1	spacer	LSC	G	10	6893	6902	chlB-trnQ(UUG)
6	p1	spacer	LSC	A	12	7068	7169	psbK-psbI
7	p2	spacer	LSC	TA	12	7621	7632	psbK-psbI
8	p1	spacer	LSC	C	17	8230	8246	trnS(GCU)-psaM
9	p1	spacer	LSC	A	11	8332	8342	trnS(GCU)-psaM
10	p1	spacer	LSC	T	12	8359	8370	trnS(GCU)-psaM
11	p1	intron	LSC	T	12	9637	9648	trnG(UCC)
12	p2	intron	LSC	TC	14	12639	12652	atpF
13	p1	spacer	LSC	C	16	13302	13317	atpF-atpH
14	p1	spacer	LSC	T	13	15171	15183	atpI-rps2
15	p1	spacer	LSC	A	10	23386	23395	rpoC1-rpoB
16	p1	spacer	LSC	T	12	27644	27655	rpoB-trnD(GUC)
17	p1	spacer	LSC	A	11	28256	28266	trnE(UUC)-psbM
18	p1	spacer	LSC	T	22	28291	28312	trnE(UUC)-psbM
19	p1	spacer	LSC	A	14	29431	29444	ycf66
20	p1	spacer	LSC	G	14	29522	29535	ycf66
21	p1	spacer	LSC	T	13	30206	30218	petN-trnC(GCA)
22	p1	spacer	LSC	T	11	30804	30814	trnC(GCA)-trnG(GCC)
23	p4	spacer	LSC	TATC	16	33672	33687	trnS(UGA)-psbC
24	p4	spacer	LSC	ATAG	16	33691	33706	trnS(UGA)-psbC
25	p1	spacer	LSC	T	11	36882	36892	psbD-trnT(GGU)
26	p1	spacer	LSC	A	10	36920	36929	psbD-trnT(GGU)
27	p1	spacer	LSC	T	19	37334	37352	psbD-trnT(GGU)
28	p1	spacer	LSC	T	21	37588	37608	psbD-trnT(GGU)
29	p4	spacer	LSC	ATAG	12	38356	38367	trnM(CAU)-rps14
30	p1	spacer	LSC	T	10	38371	38380	trnM(CAU)-rps14
31	p1	intron	LSC	T	21	44159	44179	ycf3
32	p1	spacer	LSC	T	23	45660	45682	ycf3-trnS(GGA)
33	p1	spacer	LSC	T	18	45968	45985	ycf3-trnS(GGA)
34	p1	spacer	LSC	T	13	46269	46281	trnS(GGA)-rps4
35	p1	intron	LSC	A	11	48282	48292	trnL(CAA)
36	p2	spacer	LSC	TA	12	48647	48658	trnL(CAA)-trnF(GAA)
37	p2	spacer	LSC	TA	24	48661	48684	trnL(CAA)-trnF(GAA)
38	p1	spacer	LSC	T	12	51179	51190	ndhC-trnV(UAC)
39	p1	intron	LSC	T	10	51514	51523	trnV(UAC)
40	p1	spacer	LSC	A	16	52031	52046	trnV(UAC)-trnM(CAU)
41	p1	spacer	LSC	T	10	54498	54507	atpB-rbcL
42	p1	spacer	LSC	T	12	56441	56452	rbcL-trnR(UCG)
43	p1	spacer	LSC	T	14	56859	56872	trnR(UCG)-accD
SSR nr.	SSR type	Locus	Region	SSR motif	size	star	end	Location
--------	----------	-------	--------	-----------	------	------	-----	------------------
44	p1	spacer	LSC	T	10	58385	58395	accD-psaI
45	p2	spacer	LSC	AT	16	62683	62698	petA-psbB
46	p1	spacer	LSC	T	13	63021	63033	petA-psbJ
47	p1	spacer	LSC	T	16	64669	64684	psbE-petL
48	p1	spacer	LSC	A	12	65041	65052	petL-petG
49	p1	spacer	LSC	C	10	66553	66562	psaJ-rpl33
50	p1	spacer	LSC	A	13	67731	67743	rpl20-rps12
51	p1	spacer	LSC	T	13	67974	67986	rpl20-rps12
52	p1	spacer	LSC	A	15	68134	68148	rpl20-rps12
53	p1	spacer	LSC	T	11	68406	68416	rpl20-rps12
54	p4	spacer	LSC	TATC	12	69106	69117	rps12-clpP
55	p2	intron	LSC	TA	12	70495	70506	clpP
56	p1	intron	LSC	C	14	70536	70549	clpP
57	p1	spacer	LSC	A	12	71504	71515	clpP-psbB
58	p1	spacer	LSC	T	11	71597	71607	clpP-psbB
59	p1	spacer	LSC	A	18	73387	73404	psbB-psbT
60	p1	intron	LSC	T	10	74735	74744	petB
61	p1	spacer	LSC	T	10	77271	77280	petD-ropA
62	p1	spacer	LSC	T	11	77328	77338	petD-ropA
63	p1	spacer	LSC	T	14	80050	80063	rps8-rpl14
64	p2	spacer	LSC	AT	14	80083	80096	rps8-rpl14
65	p2	spacer	LSC	AT	18	80177	80194	rps8-rpl14
66	p1	spacer	LSC	A	13	81030	81042	rpl14-rpl16
67	p1	intron	LSC	T	11	81765	81775	rpl16
68	p1	intron	LSC	T	11	82107	82117	rpl16
69	p2	spacer	LSC	AT	14	82324	82337	rpl16-rps3
70	p1	intron	LSC	A	10	84458	84467	rpl2
71	p1	intron	LSC	A	10	84570	84549	rpl2
72	p2	intron	LSC	AT	12	84561	84572	rpl2
73	p1	intron	LSC	T	14	84852	84865	rpl2
74	p1	spacer	LSC	T	13	85845	85857	rpl23-trnI(CAU)
75	p1	spacer	LSC	T	13	85991	86003	rpl23-trnI(CAU)
76	p4	gene	IRA	CTAC	12	91186	91197	rnr23
77	p2	intron	IRA	AG	12	94186	94197	trnI(CAU)
78	p4	spacer	IRA	TCTT	12	97474	97485	rnr16-rps12
79	p1	spacer	IRA	T	14	98567	98580	rnr16-rps12
80	p1	spacer	IRA	A	12	102544	102555	trnH(GUG)-ycf2
81	p4	CDS	IRA	AGAA	12	107744	107755	ycf2
82	p1	spacer	IRA	A	15	109158	109172	ycf2-trnN(GUU)
83	p1	spacer	SSC	T	11	110207	110217	trnN(GUU)-ndhF
84	p1	spacer	SSC	A	14	113545	113558	rpl32-trnP(GGG)
85	p1	spacer	SSC	A	11	113825	113835	rpl32-trnP(GGG)
86	p1	spacer	SSC	T	15	113869	113883	rpl32-trnP(GGG)
87	p1	spacer	SSC	A	13	114374	114386	trnL(UAG)-ccsA
88	p2	spacer	SSC	AT	20	114464	114483	trnL(UAG)-ccsA
89	p1	spacer	SSC	A	13	115715	115727	ccsA-ndhD
90	p1	spacer	SSC	A	14	115972	115985	ccsA-ndhD
91	p1	spacer	SSC	A	14	117633	117646	ndhD-psaC
92	p2	spacer	SSC	CT	12	119317	119328	ndhG-ndhI
93	p2	intron	SSC	AT	16	121036	121051	ndhA
SSR nr.	SSR type	Locus	Region	SSR motif	size	star	end	Location
---------	----------	-------	--------	-----------	------	------	-----	---------------
94	p1	intron	SSC	T	11	121544	121554	ndhA
95	p1	intron	SSC	A	11	123840	123850	rps15-ycf1
96	p1	spacer	IRB	T	15	133684	133698	trnN(UUU)-ycf2
97	p4	CDS	IRB	TTTC	12	135100	135111	ycf2
98	p1	spacer	IRB	T	12	140301	140312	ycf2-trnH(GUG)
99	p1	spacer	IRB	A	14	144276	144289	rps12-trn16
100	p4	spacer	IRB	AAAG	12	145370	145381	rps12-trnt16
101	p2	intron	IRB	TC	12	148658	148669	trnI(GUA)
102	p4	gene	IRB	AGGT	12	151657	151668	trnL(CAA)

Appendix table 8 List of simple sequence repeats (SSRs) in the chloroplast genomes of *Sphaeropteris lepifera*

```
| SSR nr. | SSR type | Locus | Region | SSR motif | size | star | end | Location       |
|---------|----------|-------|--------|-----------|------|------|-----|---------------|
| 1       | p1       | spacer| LSC    | A         | 13   | 3514 | 3526| matK-rps16    |
| 2       | p1       | spacer| LSC    | T         | 10   | 3613 | 3622| matK-rps16    |
| 3       | p2       | spacer| LSC    | TA        | 16   | 7615 | 7630| pshK-psbI     |
| 4       | p1       | spacer| LSC    | C         | 14   | 8229 | 8242| trnS(GCU)-psaM|
| 5       | p1       | spacer| LSC    | A         | 22   | 8332 | 8353| trnS(GCU)-psaM|
| 6       | p1       | spacer| LSC    | T         | 11   | 8370 | 8380| trnS(GCU)-psaM|
| 7       | p1       | intron| LSC    | A         | 10   | 9507 | 9516| ycf12         |
| 8       | p1       | intron| LSC    | T         | 12   | 9648 | 9659| ycf12         |
| 9       | p1       | spacer| LSC    | C         | 38   | 13308| 13345| ATPF-atpH     |
| 10      | p1       | spacer| LSC    | T         | 12   | 15193| 15204| atpI-rps2     |
| 11      | p1       | intron| LSC    | C         | 10   | 22421| 22430| rpoC1         |
| 12      | p1       | spacer| LSC    | A         | 12   | 23409| 23420| rpoC1-rpoB    |
| 13      | p1       | spacer| LSC    | T         | 14   | 27774| 27787| rpoB-trnD(GUC)|
| 14      | p1       | spacer| LSC    | A         | 14   | 28387| 28400| trnE(UUC)-psbM|
| 15      | p1       | spacer| LSC    | T         | 21   | 28425| 28445| trnE(UUC)-psbM|
| 16      | p1       | spacer| LSC    | A         | 12   | 29887| 29898| ycf66         |
| 17      | p1       | spacer| LSC    | T         | 10   | 30334| 30343| petN-trnC(GCA)|
| 18      | p1       | spacer| LSC    | A         | 15   | 30525| 30539| petN-trnC(GCA)|
| 19      | p1       | spacer| LSC    | T         | 10   | 30938| 30947| trnC(GCA)-trnG(GCC)|
| 20      | p1       | spacer| LSC    | T         | 12   | 32361| 32372| trnG(GCC)-psbZ|
| 21      | p1       | spacer| LSC    | T         | 10   | 33284| 33293| trnS(UAG)-psbC|
| 22      | p4       | spacer| LSC    | TATC      | 16   | 33813| 33828| trnS(UAG)-psbC|
| 23      | p4       | spacer| LSC    | ATAG      | 12   | 33832| 33843| trnS(UAG)-psbC|
| 24      | p1       | spacer| LSC    | T         | 16   | 37027| 37042| psbD-trnT(GGU)|
| 25      | p1       | spacer| LSC    | A         | 13   | 37070| 37082| psbD-trnT(GGU)|
| 26      | p1       | spacer| LSC    | T         | 19   | 37491| 37509| psbD-trnT(GGU)|
| 27      | p1       | spacer| LSC    | T         | 12   | 37753| 37764| psbD-trnT(GGU)|
| 28      | p2       | spacer| LSC    | TA        | 16   | 38517| 38532| trnF-M-rps14  |
| 29      | p1       | spacer| LSC    | T         | 10   | 38541| 38550| trnF-M-rps14  |
| 30      | p1       | intron| LSC    | C         | 10   | 44335| 44347| ycf3          |
| 31      | p1       | intron| LSC    | C         | 10   | 45444| 45453| ycf3          |
| 32      | p1       | spacer| LSC    | T         | 12   | 45838| 45849| ycf3-trnS(GGA)|
| 33      | p1       | spacer| LSC    | T         | 12   | 46134| 46145| ycf3-trnS(GGA)|
| 34      | p1       | spacer| LSC    | T         | 11   | 46434| 46444| trnS(GGA)-rps4|
| 35      | p1       | intron| LSC    | A         | 10   | 48446| 48455| trnL(CAA)     |
| 36      | p2       | spacer| LSC    | TA        | 14   | 48820| 48833| trnL(CAA)-trnF(GAA) |
```
SSR nr.	SSR type	Locus	Region	SSR motif	size	star	end	Location
37	p1	spacer	LSC	T	10	51310	51319	ndhC-trnV(UAC)
38	p1	spacer	LSC	A	14	52158	52171	trnV(UAC)-trnM(CAU)
39	p1	spacer	LSC	T	11	54626	54636	atpB-rbcL
40	p1	spacer	LSC	T	13	56570	56582	rbcL-trnR(UCG)
41	p1	spacer	LSC	T	13	56989	57001	trnR(UCG)-accD
42	p1	spacer	LSC	A	10	58098	58107	accD-psaI
43	p1	spacer	LSC	T	12	58522	58533	accD-psaI
44	p1	spacer	LSC	A	11	59707	59717	ycf4-ccmA
45	p1	spacer	LSC	A	10	62694	62703	petA-psbJ
46	p1	spacer	LSC	T	14	63180	63193	petA-psbJ
47	p1	spacer	LSC	T	10	64840	64849	psbE-petL
48	p1	spacer	LSC	A	10	65211	65220	petL-petG
49	p1	spacer	LSC	C	12	66700	66711	psaJ-rpl33
50	p1	spacer	LSC	A	12	67888	67897	rpl20-rps12
51	p1	spacer	LSC	T	13	68130	68142	rpl20-rps12
52	p1	spacer	LSC	A	10	68290	68299	rpl20-rps12
53	p1	spacer	LSC	T	11	68557	68567	rpl20-rps12
54	p4	spacer	LSC	TTAT	12	69379	69390	rps12-clpP
55	p1	intron	LSC	C	10	70697	70706	clpP
56	p1	spacer	LSC	A	13	71660	71672	clpP-psbB
57	p1	spacer	LSC	T	13	71754	71763	clpP-psbB
58	p1	spacer	LSC	A	13	73543	73555	psbB-psbT
59	p1	spacer	LSC	A	10	74268	74277	psbH-petB
60	p1	spacer	LSC	T	13	77480	77492	petD-rpoA
61	p2	spacer	LSC	AT	20	80238	80257	rps8-rpl14
62	p2	spacer	LSC	AT	16	80338	80353	rps8-rpl14
63	p1	spacer	LSC	A	13	81186	81198	rpl14-rpl16
64	p1	intron	LSC	T	12	81919	81930	rpl16
65	p1	intron	LSC	T	12	82262	82273	rpl16
66	p1	spacer	LSC	T	11	82483	82493	rpl16-rps3
67	p1	intron	LSC	T	15	84995	85009	rpl2
68	p1	spacer	LSC	A	11	85683	85693	rpl2-rpl23
69	p1	spacer	LSC	T	12	85991	86002	rpl2-trnI(CAU)
70	p1	spacer	LSC	T	16	86136	86151	rpl2-trnI(CAU)
71	p4	gene	IRB	CTAC	16	91392	91403	rrn23
72	p2	intron	IRB	AG	14	94391	94404	trnI(GAU)
73	p4	spacer	IRB	TCTT	12	97681	97692	rrn16-rps12
74	p1	spacer	IRB	T	13	98774	98786	rrn16-rps12
75	p1	spacer	IRB	A	12	102750	102761	trnH(GUG)-ycf2
76	p4	CDS	IRB	TTTA	12	104706	104717	ycf2
77	p4	CDS	IRB	AGAA	12	107950	107961	ycf2
78	p1	spacer	IRB	A	15	109364	109378	ycf2-trnN(GUU)
79	p1	spacer	SSC	T	13	110416	110428	ycf2-trnN(GUU)
80	p1	spacer	SSC	A	11	112695	112705	ndhF-rpl21
81	p2	spacer	SSC	AT	18	113419	113436	rpl21-rpl32
82	p1	spacer	SSC	A	11	113761	113771	rpl32-trnP(GGG)
83	p1	spacer	SSC	T	13	114080	114092	rpl32-trnP(GGG)
84	p1	spacer	SSC	T	12	119615	119626	trnP(GGG)-trnL(UAG)
85	p1	spacer	SSC	A	10	119831	119840	trnL(UAG)-ccsA
86	p2	spacer	SSC	AT	16	119920	119935	trnL(UAG)-ccsA
SSR nr. | SSR type | Locus | Region | SSR motif | size | star | end | Location
--- | --- | --- | --- | --- | --- | --- | --- | ---
87 | p1 | spacer | SSC | A | 11 | 121168 | 121178 | cesA-ndhD
88 | p1 | spacer | SSC | A | 14 | 121427 | 121440 | cesA-ndhD
89 | p1 | spacer | SSC | A | 28 | 123088 | 123115 | ndhD-psaC
90 | p2 | spacer | SSC | CT | 12 | 124783 | 124794 | ndhG-ndhI
91 | p2 | intron | SSC | TA | 12 | 126492 | 126503 | ndhA
92 | p1 | intron | SSC | T | 13 | 127011 | 127023 | ndhA
93 | p1 | spacer | SSC | A | 10 | 129309 | 129318 | rps15-ycf1
94 | p1 | spacer | SSC | A | 10 | 129333 | 129342 | rps15-ycf1
95 | p1 | spacer | IRA | T | 15 | 139188 | 139202 | trnN(GUU)-ycf2
96 | p4 | CDS | IRA | TTTC | 12 | 140604 | 140615 | ycf2
97 | p4 | CDS | IRA | TAAA | 12 | 143849 | 143860 | ycf2
98 | p1 | spacer | IRA | T | 12 | 145805 | 145816 | ycf2-trnH(GUG)
99 | p1 | spacer | IRA | A | 13 | 149780 | 149792 | rps12-rrn16
100 | p4 | spacer | IRA | AAAG | 12 | 150873 | 150884 | rps12-rrn16
101 | p2 | intron | IRA | TC | 14 | 151461 | 151474 | trnI(GAU)
102 | p4 | gene | IRA | AGGT | 12 | 157161 | 157172 | rrn23

Appendix table 9

The number, relative abundance, relative density, GC content of SSR motifs in the chloroplast genomes of 8 Cyatheaceae species.

motif type	Characteristics of SSR	A. denticulata	A. podophylla	A. gigantea	A. metteniana	A. costularis
A	No. of SSRs	13	10	10	11	31
 &n						
motif type	Characteristics of SSR	A. denticulata	A. podophylla	A. gigantea	A. metteniana	A. costularis
------------	------------------------	----------------	---------------	-------------	--------------	--------------
	Relative abundance (No./Kb)	0	0	0	0	0.006
	Relative density (bp/Kb)	0	0	0	0	0.077
AAT	No. of SSRs	1	1	1	1	0
	Relative abundance (No./Kb)	0.006	0.006	0.006	0.006	0
	Relative density (bp/Kb)	0.078	0.072	0.074	0.074	0
TAT	No. of SSRs	1	0	1	1	0
	Relative abundance (No./Kb)	0.006	0	0.006	0.006	0
	Relative density (bp/Kb)	0.078	0	0.074	0.074	0
AAAG	No. of SSRs	1	0	1	1	1
	Relative abundance (No./Kb)	0.006	0	0.006	0.006	0
	Relative density (bp/Kb)	0.078	0	0.074	0.074	0
AAAT	No. of SSRs	0	1	0	1	0
	Relative abundance (No./Kb)	0.000	0	0.006	0.006	0
	Relative density (bp/Kb)	0.078	0	0.074	0.074	0
AATT	No. of SSRs	2	2	1	2	0
	Relative abundance (No./Kb)	0.013	0.012	0.006	0.012	0
	Relative density (bp/Kb)	0.156	0.144	0.074	0.149	0
ACCA	No. of SSRs	0	0	0	0	1
	Relative abundance (No./Kb)	0	0	0	0	0.006
	Relative density (bp/Kb)	0	0	0	0	0.077
AGAA	No. of SSRs	0	0	0	0	1
	Relative abundance (No./Kb)	0	0	0	0	0.006
	Relative density (bp/Kb)	0	0	0	0	0.077
AGGT	No. of SSRs	0	0	0	0	0
	Relative abundance (No./Kb)	0	0	0	0	0
	Relative density (bp/Kb)	0	0	0	0	0
ATAG	No. of SSRs	2	2	2	2	1
	Relative abundance (No./Kb)	0.013	0.012	0.012	0.012	0.006
	Relative density (bp/Kb)	0.156	0.144	0.148	0.149	0.077
ATCT	No. of SSRs	0	0	0	0	1
	Relative abundance (No./Kb)	0	0	0	0	0.006
	Relative density (bp/Kb)	0	0	0	0	0.102
CCTC	No. of SSRs	0	0	0	0	1
	Relative abundance (No./Kb)	0	0	0	0	0.006
	Relative density (bp/Kb)	0	0	0	0	0.077
CTAC	No. of SSRs	0	0	0	0	0
	Relative abundance (No./Kb)	0	0	0	0	0
	Relative density (bp/Kb)	0	0	0	0	0
GAAA	No. of SSRs	0	0	1	1	0
	Relative abundance (No./Kb)	0	0	0.006	0.006	0
	Relative density (bp/Kb)	0	0	0.074	0.074	0
GATA	No. of SSRs	1	1	1	1	1
	Relative abundance (No./Kb)	0.006	0.006	0.006	0.006	0.006
	Relative density (bp/Kb)	0.078	0.072	0.074	0.074	0.077
TAAA	No. of SSRs	0	0	0	0	0
	Relative abundance (No./Kb)	0	0	0	0	0
	Relative density (bp/Kb)	0	0	0	0	0
TATC	No. of SSRs	1	1	1	1	1
	Relative abundance (No./Kb)	0.006	0.006	0.006	0.006	0.006
	Relative density (bp/Kb)	0.104	0.096	0.074	0.074	0.077
motif type	Characteristics of SSR	A. denticulata	A. podophylla	A. gigantea	A. metteniana	A. costularis
------------	------------------------	----------------	---------------	-------------	---------------	--------------
TATT	No. of SSRs	1	1	1	1	1
	Relative abundance (No./Kb)	0.006	0.006	0.006	0.006	0.006
	Relative density (bp/Kb)	0.072	0.074	0.074	0.074	0.077
TCTT	No. of SSRs	1	0	1	1	0
	Relative abundance (No./Kb)	0.006	0	0.006	0.006	0.006
	Relative density (bp/Kb)	0.078	0	0.074	0.074	0.077
TGAT	No. of SSRs	1	1	1	1	0
	Relative abundance (No./Kb)	0.006	0.006	0.006	0.006	0.006
	Relative density (bp/Kb)	0.078	0	0.074	0.074	0.077
TTAA	No. of SSRs	0	0	0	0	0
	Relative abundance (No./Kb)	0	0	0	0	0
	Relative density (bp/Kb)	0.078	0	0	0	0
TTAT	No. of SSRs	0	0	0	0	0
	Relative abundance (No./Kb)	0	0	0	0	0
	Relative density (bp/Kb)	0.078	0	0	0	0
TTTA	No. of SSRs	0	0	0	0	0
	Relative abundance (No./Kb)	0	0	0	0	0
	Relative density (bp/Kb)	0.078	0	0	0	0
TTTC	No. of SSRs	0	0	0	0	1
	Relative abundance (No./Kb)	0	0	0	0.006	0.006
	Relative density (bp/Kb)	0.078	0	0	0.077	0.077
ATTTT	No. of SSRs	1	0	0	0	0
	Relative abundance (No./Kb)	0.006	0	0	0	0
	Relative density (bp/Kb)	0.097	0	0	0	0
CTTTC	No. of SSRs	0	0	0	1	0
	Relative abundance (No./Kb)	0	0	0	0.006	0.006
	Relative density (bp/Kb)	0.078	0	0.093	0	0
TTCTC	No. of SSRs	0	1	0	0	0
	Relative abundance (No./Kb)	0	0.006	0	0	0
	Relative density (bp/Kb)	0.090	0	0	0	0

Appendix table 10 The number, relative abundance, relative density and GC content of different types of motif SSRs among different regions in the chloroplast genomes of 8 Cyatheaceae species

Species	motif type	Characteristics of SSR	IGS	intron	CDS	gene	LSC	SSC	IRA	IRB
A. denticulata	mononucleotide	No.of SSRs	30	10	0	0	30	8	1	1
		Relative abundance (No./Kb)	0.63	0.66	0	0	0.35	0.37	0.04	0.04
		Relative density (bp/Kb)	6.81	7.82	0	0	3.92	4.17	0.52	0.52
		GC content	0.40	0.27	0	0	0.45	0.12	0	0
	Dinucleotide	No.of SSRs	7	1	0	0	4	2	1	1
		Relative abundance (No./Kb)	0.15	0.07	0	0	0.05	0.09	0.04	0.04
		Relative density (bp/Kb)	1.35	0.79	0	0	0.63	1.30	0.52	0.52
		GC content	0	0.50	0	0	0.11	0	0	0
	Trinucleotide	No.of SSRs	2	0	0	0	2	0	0	0
		Relative abundance (No./Kb)	0.04	0	0	0	0.09	0	0	0
		Relative density (bp/Kb)	0.51	0	0	0	1.11	0	0	0
		GC content	0	0	0	0	0	0	0	0
	Tetranucleotide	No.of SSRs	9	1	0	0	7	1	1	1
		Relative abundance (No./Kb)	0.19	0.07	0	0	0.08	0.05	0.04	0.04
Species	motif type	Characteristics of SSR	IGS	intron	CDS	gene	LSC	SSC	IRA	IRB
--------------	------------	------------------------	------	--------	------	------	-----	-----	-----	-----
			bp/Kb							
		Relative density	2.37	0.79	0	0	1.02	0.56	0.52	0.55
Pentanucleotide		GC content	0.20	0	0	0	0.18	0	0.25	0.28
		No. of SSRs	1	0	0	0	1	0	0	0
		Relative abundance	0.02	0	0	0	0.01	0	0	0
		Relative density	0.32	0	0	0	0.17	0	0	0
		GC content	0	0	0	0	0	0	0	0
A. podophylla	mononucleotide	No. of SSRs	38	9	0	0	32	7	4	4
		Relative abundance	0.66	0.59	0	0	0.37	0.32	0.14	0.14
		Relative density	7.33	6.78	0	0	4.09	3.97	1.45	1.45
		GC content	0.41	0.11	0	0	0.38	0.30	0.24	0.24
		Relative abundance	0.14	0.07	0	0	0.05	0.14	0.03	0.03
		Relative density	2.12	1.05	0	0	0.71	2.40	0.42	0.42
		GC content	0	0	0	0	0	0	0	0
		No. of SSRs	8	1	0	0	4	3	1	1
		Relative abundance	0.14	0.07	0	0	0.08	0.09	0	0
		Relative density	2.12	1.05	0	0	0.71	2.40	0.42	0.42
		GC content	0	0	0	0	0	0	0	0
		Relative abundance	0.07	0	0	0	0.01	0	0	0
		Relative density	0.79	0	0	0	0.14	0	0	0
		GC content	0	0	0	0	0	0	0	0
		No. of SSRs	0	1	0	0	1	0	0	0
		Relative abundance	0	0.07	0	0	0.01	0	0	0
		Relative density	0.79	0	0	0	0.14	0	0	0
		GC content	0	0	0	0	0	0	0	0
		No. of SSRs	10	1	0	0	7	2	1	1
		Relative abundance	0.17	0.07	0	0	0.05	0.14	0.04	0.04
		Relative density	2.59	0.92	0	0	0.91	2.03	0.50	0.50
		GC content	0	0	0	0	0.14	0	0	0
		No. of SSRs	2	0	0	0	0	2	0	0
		Relative abundance	0.04	0	0	0	0	0.09	0	0
		Relative density	0.45	0	0	0	0.11	0	0	0
		GC content	0	0	0	0	0	0	0	0
		No. of SSRs	10	1	0	0	7	2	1	1
		Relative abundance	0.19	0.07	0	0	0.08	0.09	0.04	0.04
		Relative density	2.33	0.79	0	0	0.91	1.29	0.50	0.50
		GC content	0.19	0	0	0	0.18	0.11	0.25	0.25
		No. of SSRs	0	0	0	0	0	0	0	0
		Relative abundance	0	0	0	0	0	0	0	0
		Relative density	0	0	0	0	0	0	0	0
		GC content	0	0	0	0	0	0	0	0
		No. of SSRs	33	7	0	0	25	9	3	3
		Relative abundance	0.62	0.46	0	0	0.27	0.42	0.13	0.13
		Relative density	7.29	5.14	0	0	2.96	5.58	1.51	1.51
		GC content	0.28	0.38	0	0	0.41	0.24	0.0	0
Species	motif type	Characteristics of SSR	IGS	intron	CDS	gene	LSC	SSC	IRA	IRB
------------------	------------	------------------------	-----	--------	-----	------	-----	-----	-----	-----
	No.of SSRs	Relative abundance								
		(No./Kb)								
	Relative density (bp/Kb)									
	GC content									
A. costularis	mononucleotide	No.of SSRs	80	15	0	0	67	16	6	6
		Relative abundance								
		(No./Kb)								
	Relative density (bp/Kb)									
	GC content									
A. spinulosa	mononucleotide	No.of SSRs	81	15	0	0	68	16	6	6
		Relative abundance								
		(No./Kb)								
	Relative density (bp/Kb)									
	GC content									
Species	motif type	Characteristics of SSR	IGS	intron	CDS	gene	LSC	SSC	IRA	IRB
------------------	------------	------------------------	-------	--------	------	------	------	------	-----	-----
		Relative density (bp/Kb)	1.57	0.79	0.45	0	0.74	0.55	0.99	0.99
		GC content	0.25	0.75	0.33	0	0.34	0.50	0.25	0.25
	Pentanucleotide	No.of SSRs	0	0	0	0	0	0	0	0
		Relative abundance (No./Kb)	0	0	0	0	0	0	0	0
		Relative density (bp/Kb)	0	0	0	0	0	0	0	0
		GC content	0	0	0	0	0	0	0	0
S. brunoniana	mononucleotide	No.of SSRs	62	15	0	0	61	10	3	3
		Relative abundance (No./Kb)	1.29	0.04	0	0	0.71	0.45	0.12	0.12
		Relative density (bp/Kb)	17.20	12.25	0	0	9.22	5.66	1.71	1.71
		GC content	0.08	0.08	0	0	0.10	0	0	0
	Dinucleotide	No.of SSRs	9	6	0	0	10	3	1	1
		Relative abundance (No./Kb)	0.19	0.42	0	0	0.12	0.13	0.04	0.04
		Relative density (bp/Kb)	2.95	5.40	0	0	1.72	2.14	0.50	0.50
		GC content	0.04	0.24	0	0	0.05	0.13	0.50	0.50
	Trinucleotide	No.of SSRs	0	0	0	0	0	0	0	0
		Relative abundance (No./Kb)	0	0	0	0	0	0	0	0
		Relative density (bp/Kb)	0	0	0	0	0	0	0	0
		GC content	0	0	0	0	0	0	0	0
	Tetranucleotide	No.of SSRs	6	2	2	4	0	3	3	3
		Relative abundance (No./Kb)	0.12	0	0.02	0.22	0.05	0	0.12	0.12
		Relative density (bp/Kb)	1.66	0.30	2.64	0.65	1.50	1.56	0	0
		GC content	0.25	0.25	0	0.5	0.25	0	0.33	0.33
	Pentanucleotide	No.of SSRs	0	0	0	0	0	0	0	0
		Relative abundance (No./Kb)	0	0	0	0	0	0	0	0
		Relative density (bp/Kb)	0	0	0	0	0	0	0	0
		GC content	0	0	0	0	0	0	0	0
S. lepifera	mononucleotide	No.of SSRs	69	11	0	0	62	12	3	3
		Relative abundance (No./Kb)	1.29	0.75	0	0	0.72	0.43	0.12	0.12
		Relative density (bp/Kb)	16.69	8.63	0	0	9.11	5.63	1.66	1.66
		GC content	0.07	0.24	0	0	0.12	0	0	0
	Dinucleotide	No.of SSRs	8	3	0	0	5	4	1	1
		Relative abundance (No./Kb)	0.15	0.20	0	0	0.06	0.14	0.04	0.04
		Relative density (bp/Kb)	2.38	2.72	0	0	0.95	2.09	0.58	0.58
		GC content	0.05	0.35	0	0	0.10	0	0.50	0.50
	Trinucleotide	No.of SSRs	0	0	0	0	0	0	0	0
		Relative abundance (No./Kb)	0	0	0	0	0	0	0	0
		Relative density (bp/Kb)	0	0	0	0	0	0	0	0
		GC content	0	0	0	0	0	0	0	0
	Tetranucleotide	No.of SSRs	5	0	4	2	3	4	4	4
		Relative abundance (No./Kb)	0.09	0	0.05	0.22	0.03	0	0.17	0.17
		Relative density (bp/Kb)	1.19	0.60	2.64	0.46	1.99	1.99	0	0
		GC content	0.20	0.13	0.50	0.18	0.25	0.25	0	0
	Pentanucleotide	No.of SSRs	0	0	0	0	0	0	0	0
		Relative abundance (No./Kb)	0	0	0	0	0	0	0	0
		Relative density (bp/Kb)	0	0	0	0	0	0	0	0
		GC content	0	0	0	0	0	0	0	0

Appendix table 11 Significant differences in the number, relative abundance, relative density, and GC content of the chloroplast genomes, Mono- to Pentanucleotide SSRs, IGS, LSC, intron and CDS regions

39
chloroplast genomes, and the mono- to pentanucleotide SSRs in the chloroplast genomes of 8 Cyatheaceae species

Classification treatment	Characteristics of SSR	Genome	Mono-	Di-	Tri-	Tet-																														
		Genomes	No.of SSRs	Relative abundance (No./Kb)	Relative density	GC content	IGS intron	CDS	rRNA gene	LSC	SSC	IRA	IRB																							
3 genera			0.048*	0.048*	0.033*	0.050*	0.050*	0.050*	0.050*	0.032*	0.050*	0.050*	0.050*	0.050*	0.050*	0.050*	0.050*	0.050*	0.050*	0.050*	0.050*	0.050*	0.050*	0.050*	0.050*	0.050*	0.050*	0.050*	0.050*	0.050*	0.050*	0.050*	0.050*	0.050*	0.050*	
2 genera			0.502	0.502	0.478	0.505	0.505	0.505	0.505	0.505	0.505	0.505	0.505	0.505	0.505	0.505	0.505	0.505	0.505	0.505	0.505	0.505	0.505	0.505	0.505	0.505	0.505	0.505	0.505	0.505	0.505	0.505	0.505	0.505	0.505	0.505

When 8 Cyatheaceae plants are treated as three genera, Kruskal-Wallis H test is used; when treated as two genera, Mann-Whitney U test is used; *:P ≤0.05; IGS: Intergenic Spacer-Region; LSC: Large Single Copy-Region; CDS: Coding Sequence-Region