Saudi Arabia: The New Arabia

Saudi Arabia (officially, Kingdom of Saudi Arabia) was established as a sovereign country in 1932, by its founder King Abdulaziz Al-Saud who led a successful campaign that lasted 30 years following the conquest of Riyadh (official capital) to unite large swathes of the Arabian Peninsula. With an area of 2,150,000 km², Saudi Arabia occupies 80% of historical Arabia and is the 13th largest country in the world (Fig. 1). The King in Saudi Arabia also presides over the Council of Ministers, which represents the executive branch of Government although it also has the power to approve and veto legislations proposed by the Shura Council (Parliament), which has a largely advisory role.

The presence of the Islamic holiest sites in Mecca and Medina has endowed Saudi Arabia with a special status to the world’s one billion Muslims since its establishment (the King of Saudi Arabia carries the official title of The Custodian of The Two Holy Mosques). With the discovery of massive oil reserves and other natural resources shortly after it was founded, Saudi Arabia has enjoyed vast revenues that made it possible to implement a very ambitious social and economic modernization strategy that transformed a mostly illiterate population to one with a literacy rate of 94.4% (98.1% for those <50 years of age who represent 75% of the population), and to become a member of G20, a forum of the world’s 20 major economies.

Population Structure

The population size in Saudi Arabia as of 2012, is 29.2 million, mostly Saudi nationals but with a significant minority (~30%) of expatriates who come from many countries around the world, for example, there are >2.8 million Indians and around 1 million Pilipino. In addition to the ethnic Arabs who represent the overwhelming majority, there is a significant minority of Saudi nationals who largely descended from waves of immigrants who opted to stay in close proximity to the Holy Mosques in Mecca and Medina and were assimilated after the founding of modern Saudi Arabia. This minority represents a remarkably diverse group of ethnicities mostly from Asia and Africa. Virtually all Saudi nationals proclaim Islam as their religious affiliation. This has important implications when I discuss the ethical aspects surrounding genetics and genomic medicine in the country.

The relatively large size of Saudi families (average 6) has its roots in ancient Arabia when the large number of children was a source of pride. Large family size was further encouraged by Islam, the faith that was quickly embraced by nearly all inhabitants of Arabia shortly after its introduction >1400 years ago. Consanguinity is also an ancient practice that continues to be observed in more than half of the contemporary marriages in Saudi Arabia. Islam regulated this practice by proscribing a strict code that absolutely prohibits marriage between first and second degree relatives, but permits marriage between cousins. This permission is not equivalent to encouragement as some erroneously infer; Prophet Mohammed himself did marry women who were unrelated to him including one from a Jewish tribe. In addition to the commonly cited factor of “wealth preservation”, a powerful and yet less known mechanism that perpetuates the practice of consanguinity is the traditional view that marriage is the natural course of women such that families should arrange within themselves to leave no woman unmarried. Although there are no more recent published data, the rates from 2008 suggest

© 2014 The Author. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
no decline compared to the rates published two or more decades earlier, indicating the resistance of this social practice to the wave of modernization that has swept the country over that period of time (El-Mouzan et al. 2007; Warsy et al. 2014). It remains to be seen if the recently published declining rates of consanguinity in neighboring countries with very similar cultural norms will replicate in Saudi Arabia. What is obvious, however, is that consanguinity will remain a powerful factor in shaping the landscape of genetic disorders in Saudi Arabia for the foreseeable future.

Health Services in Saudi Arabia

Saudis in general favor a strong contribution of Government to their life in return for its control over the country’s vast natural resources. Just like education, which is offered freely from K12 to doctorate and postdoctorate degrees, health is also provided freely for all citizens. Expatriates are entitled to health insurance provided by their employers as mandated by law and receive their health care through an extensive network of private-run healthcare systems. The public healthcare system is mostly under the governance of the Ministry of Health (MOH) and consists of 2259 primary care centers, and 259 hospitals. The doctor/population ratio and hospital/population ratios at 24.4/10,000 and 20.7/10,000, respectively, are below that of many developed countries but newer plans have been revealed to improve this ratio. Law-enforcement personnel are entitled, in addition to MOH-run health care, to a large network of primary care centers and hospitals that are run by the Ministry of Interior. Similarly, military and National Guard personnel and their families enjoy the additional medical services that are administered by the respective agencies. The author’s own institution (KFSHRC) is a general organization that is funded by the Government and offers highly specialized health care independent of MOH. The private sector consists of a vast network of private practices, usually in the form of polyclinics that fall under one administration, as well as secondary and tertiary hospitals. Although this sector represents the sole healthcare provider for noncitizens, many citizens also receive their healthcare in the private sector by choice, for example, to avoid a long wait-time in the public sector. This fragmentation of healthcare delivery has created a number of challenges towards the adoption of a national healthcare strategy equivalent to other countries with socialized medicine, for example, NHS in the UK. Mortality rate statistics are well below the global average but not yet on par with those of more developed countries. For example, mortality rate of children less than 5 is 12/1000 and maternal mortality is 7/100,000 births (global average is 44/1000 and 209.1/100,000, and Western Europe has an average of 3.9/1000 and 6.3/100,000, respectively) (Kassebaum et al. 2014; Wang et al. 2014). Life expectancy has also increased to
73.8 (compare to 80.3 years in Western Europe). This improvement in healthcare delivery has resulted in reduction in communicable diseases and brought noncommunicable diseases including genetic disorders to the forefront of national healthcare agenda.

Genetic Services in Saudi Arabia

There is more than 30 board certified clinical geneticists in Saudi Arabia, the overwhelming majority of whom practice in State-funded tertiary centers. Most of these physicians have received their specialization in clinical genetics abroad but an accredited local fellowship program in medical genetics has been graduating practicing medical geneticists since its establishment a few years ago. These physicians cover the major disciplines of clinical genetics: dysmorphology, inborn errors of metabolism, prenatal and cancer genetics, and are supported by a limited number of certified genetic counselors. The overwhelming number of patients with neurocognitive phenotypes compels neurologists, especially pediatric neurologists, to frequently assume the role of a clinical geneticist since the average wait-time for clinical geneticists is often >8 months. Similarly, because thalassemias and hemoglobinopathies are the most frequent Mendelian diseases in Saudi Arabia (see below), hematologists usually take care of counseling these families and only refer the most atypical cases to clinical genetics for workup or counseling.

Cytogenetic testing is widely available, usually in the form of traditional karyotyping and FISH analysis. Molecular karyotyping is only available in a few centers. The major molecular diagnostic laboratory is at KFSHRC (Saudi Diagnostic Laboratory or SDL), which tests for 66 single gene disorders. We are currently validating the “Mendeliome” assay, which uses new multiplexing methods to amplify ~3000 Mendelian genes known to cause human diseases followed by next-generation sequencing, on 3500 patients. Once validated, this test will be available for all patients with suspected genetic diseases as an intermediary test before considering whole-exome or whole-genome sequencing (details will be published elsewhere). Whole-exome and whole-genome sequencing are only available on research basis locally but SDL plans to launch these on clinical basis in the very near future.

The first Saudi national newborn screening program was for congenital hypothyroidism and was established in November 1989 (Al-Jurayyan et al. 1996). The pioneering work of the Tandem Spectrometry Lab at KFSHRC on the use of electrospray in the implementation of tandem spectrometry in the analysis of various metabolites in body fluids is noteworthy. It has set the stage for the first implementation of computer-assisted algorithm in the simultaneous estimation of many metabolites and flagging of abnormal results, the basis of today’s newborn screening around the world (Rashed et al. 1994, 1995, 1997, 1999). Owing to this history, KFSHRC has a long tradition in performing newborn screening for 16 different inborn errors of metabolism, which evolved into a pilot program starting in 2004 to screen newborns from participating hospitals around the country. More recently, the MOH has assumed full responsibility of newborn screening, which is now performed as a national program. There are no national guidelines on newborn screening for deafness, which is left to the discretion of the individual hospitals.

While the newborn screening program was widely accepted, the premarital screening program was more controversial. After considerable deliberation, a law was passed in 2002 that mandates screening for hemoglobinopathies, thalassemias, and G6PDH deficiency prior to issuing a marriage contract. Aside from the controversy surrounding the issue of autonomy, the program delivered sobering results after its establishment with nearly 90% of “incompatible” couples moving ahead with their marriage plans (the law explicitly allows couples to exercise freedom of choice upon learning their results) (AlHamdan et al. 2007). This was clearly the result of inadequate pre- and posttest counseling. Indeed, major developments in the program to address these deficiencies have significantly reduced the percentage of “incompatible” marriages to a national average of 40%, with marked regional variations (large cities such as Riyadh are nearing 20% whereas rural areas with strong tribal traditions continue to see a majority of “incompatible” couples moving ahead with marriage) (Memish and Saeedi 2011) (Ayman Alsulaimani, pers. comm.). There is strong interest in expanding the premarital screening program to include all Mendelian disorders by utilizing the newly available and affordable next-generation sequencing tools, and local research is ongoing in order to provide empirical data on the practicality of this approach.

Prenatal genetics is largely practiced by maternal-fetal medicine specialists due to severe deficiency in the number of qualified clinical geneticists. Recent years have witnessed a tremendous growth in the demand for chorionic villous sampling and amniocentesis for the diagnosis of single gene disorders. At KFSHRC alone, the number of prenatal samples that are tested for single gene disorders has increased from 5 in 2004 to 250 in 2013. Therapeutic abortion is permitted by law if performed within 120 days from the time of fertilization in order to comply with the Islamic view of the timing of ensoulment (Alkuraya and Kilani 2001). However, the approved indication for the procedure, which is “severe malformation”, must be authorized by three attending-level physicians. The definition of “severe” is left to the discretion of the medical team after consulting with the family. For example, intellectual...
disability is a common indication for many therapeutic abortion procedures. Contrary to commonly held views, we have shown that early prenatal diagnosis is the method of choice for couples who had one or more children with single gene disorders, as long as they are provided with a culturally sensitive genetic counseling that addresses their religious and cultural concerns (Alkuraya and Kilani 2001). Nearly 45% of these couples opt for early prenatal diagnosis compared to 35% who choose preimplantation genetic diagnosis (PGD) (Alkuraya 2013a). PGD is available freely at KFSHRC but is also provided by the private sector. Noninvasive prenatal screening using cell-free fetal DNA in maternal blood is quickly becoming integrated in prenatal care. KFSHRC offers this test routinely to all pregnant women regardless of their perceived risk and the MOH is considering making this test available throughout its vast network of hospitals and medical centers.

Genetic Disorders in Saudi Arabia

Not surprisingly, the high rate of consanguinity has greatly impacted the landscape of genetic disorders in Saudi Arabia and a quick search for published genetic diagnoses from Saudi Arabia readily reveals the clear bias toward autosomal recessive disorders. There are important practical implications of the role consanguinity plays in shaping the genetics of Mendelian diseases in Saudi Arabia. For recessive disorders, consanguinity favors homozygosity over compound heterozygosity, especially for less common conditions, and this is reflected in the finding that the overwhelming majority of recessive mutations identified in Saudi diagnostic laboratories are homozygous, a pattern that is echoed by published studies from Saudi Arabia (Alkuraya 2010a). This phenomenon can easily be leveraged in the aged in the area of diagnostics such that an inexpensive genome-wide homozygosity scan can greatly aid in the diagnostic work up as shown in detail elsewhere (Alkuraya 2010b). For example, examining the genes within the homozygous intervals can easily help the clinician to either confirm or reconsider an uncertain clinical diagnosis. This can also help guide the sequencing effort when a disorder is genetically heterogeneous, especially when the mutation is not readily detectable, for example, deep intronic, where prioritizing a particular gene can make more involved tests, for example, RTPCR, more justifiable. One could argue that this is less relevant now with the availability of whole-exome sequencing. However, a homozygosity scan can greatly reduce the number of candidate variants as we have shown in many instances (Alkuraya 2013b). That consanguinity can render homozygous DNA variants that arose as recently as two generations ago (in the case of first cousin union) makes it possible for private mutations to be overrepresented and for allelic heterogeneity to be common as we have shown previously (Aldahmesh et al. 2009). This has important implications, in that screening approaches that rely on common mutations are unlikely to be effective in Saudi Arabia, hence the push for sequencing-based approaches (Kaya et al. 2011). Interestingly, this level of homozygosity has the potential to reveal unusual patterns of inheritance. In addition to pseudodominance inheritance, which is seen not infrequently, classical dominant disorders may assume a recessive pattern of inheritance, for example, we have a case of Treacher-Collins syndrome caused by a homozygous truncating mutation in TCOFI while the heterozygous parents were completely unaffected (unpublished). Alternatively, the same gene that is known to cause a particular phenotype in the homozygous state may result in a novel phenotype in the homozygous state as we have shown for ELOVL4 (Aldahmesh et al. 2011a).

Similar to the practice of clinical genetics elsewhere, syndromic and nonsyndromic forms of intellectual disability and developmental delay account for the majority of referrals to pediatric genetic services in Saudi Arabia. Our unpublished data clearly show that the majority of these cases have an underlying recessive cause of their disability, which is in clear contrast to outbred populations where recent studies on the utility of whole-exome sequencing revealed little or no contribution of recessive mutations (de Ligt et al. 2012; Rauch et al. 2012).

Many disorders have been first described/mapped in Saudi patients (Table 1). Other disorders are known to exist elsewhere but are particularly common in Saudi Arabia (Table 2). For some, this can easily be explained by the disease’s high degree of genetic heterogeneity such that consanguinity can be an important catalyst in unmasking the recessiveness of numerous potential mutations across many loci, for example, ciliopathies, retinal dystrophies, and deafness. For others, a strong founder effect can be invoked as in many inborn errors of metabolism (1.5 in 1000 newborns are diagnosed with a metabolic disease in the Saudi newborn program) and congenital glaucoma. Geographic variation in the incidence of diseases has been suggested by some but the mobility of the population lessens the practical utility of this map especially when one considers that the geographic variation falls largely along tribal lines, which suggests that knowledge about the tribal origin can be more helpful clinically (Al-Owain et al. 2012).

Opportunities in Genomic Medicine in Saudi Arabia

The high rate of consanguinity in Saudi Arabia has long been exploited to accelerate the annotation of recessive Mendelian genes and the recent years have witnessed a
Condition	Gene	Reference
Arthrogryposis, Perthes disease, and upward gaze palsy	?	
Retinal dystrophy with severe white matter changes	ACBD5	Abu-Safieh et al. (2013)
Well–Marchesani-like syndrome	ADAMTS17	Morales et al. (2009)
Microcornea, myopic chorioretinal atrophy, and telecanthus (MMCAT)	ADAMTS18	Aldahmesh et al. (2013b)
Intellectual disability-strabismus syndrome	ADAT3	Alazami et al. (2013)
AGK-related cataract	AGK	Aldahmesh et al. (2012a)
Hypopituitarism, microcephaly, and visual and renal anomalies	ARNT2	Webb et al. (2013)
BRCA2-related primordial dwarfism	BRCA2	Shaheen et al. (2014a)
Microphthalmia-dysgenesis of corpus callosum-epilepsy	C12orf57	Zahraei et al. (2013)
C21orf2-related retinal dystrophy	C21orf2	Abu-Safieh et al. (2013)
Woodhouse–Sakati syndrome	C2orf37	Alazami et al. (2008)
Cognitive impairment, dysmorphic facies and skeletal abnormalities syndrome	CACNA1G	Al-Owain et al. (2011)
CENP4-related Seckel syndrome	CENP4	Al-Dosari et al. (2010)
Intellectual disability-hypohidrosis syndrome	COG6	Shaheen et al. (2013a)
COLEC11-related Malpuech syndrome	COLEC11	Rooyck et al. (2011)
CRIP1-related primordial dwarfish syndrome	CRIP1	Shaheen et al. (2014a)
CSPP1-related Meckel–Gruber syndrome	CSPP1	Shaheen et al. (2014b)
Lethal familial hypereplexia-brain malformation syndrome	CTSD	Seidahmed et al. (2012)
Myopia with dysmorphism	CTSH	Aldahmesh et al. (2013a)
CYP51A1-related cataract	CYP51A1	Aldahmesh et al. (2012b)
DDX59-related oral-facial-digital syndrome	DDX59	Shamseldin et al. (2013)
DNA2-related Seckel syndrome	DNA2	Shaheen et al. (2014a)
DNA5E1L3-related SLE	DNA5E1L3	Al-Mayouf et al. (2011)
DOCK6-related Adams–Oliver syndrome	DOCK6	Shaheen et al. (2011a)
Retinal dystrophy with myopathy	DTHD1	Abu-Safieh et al. (2013)
Ichthyosis, spastic quadriplegia, and mental retardation	ELOVL4	Aldahmesh et al. (2011a)
EMC1-related retinal dystrophy	EMC1	Abu-Safieh et al. (2013)

(Continued)
Table 1. Continued.

Condition	Gene	Reference
PHC1-related microcephaly	PHC1	Awad et al. (2013)
PHGDH-related Neu-Laxova syndrome	PHGDH	Shaheen et al. (2014c)
PTX3-related microphthalmia	PTX3	Aldahmesh et al. (2011b)
POC1A-related primordial dwarfism	POC1A	Shaheen et al. (2012b)
RAB33B-related Smith-McCort dysplasia	RAB33B	Alshammari et al. (2012)
CMT-microcephaly-syndactyly-intellectual disability	SFB1	Alazami et al. (2014b)
SCLT1-related oral-facial-digital syndrome	SCLT1	Adly et al. (2014)
SEC8-related Meckel–Gruber syndrome	SEC8	Shaheen et al. (2012a)
SIX6-related autosomal recessive microphthalmia	SIX6	Aldahmesh et al. (2013c)
TBC1D32-related oral-facial-digital syndrome	TBC1D32	Adly et al. (2014)
Congenital hypoparathyroidism, severe growth failure, and dysmorphic facies	TBC1E	Sanjad et al. (1991)
TCTN2-related Meckel–Gruber syndrome	TCTN2	Shaheen et al. (2011b)
TMEM231-related Meckel–Gruber syndrome	TMEM231	Shaheen et al. (2013c)
TMEM38-related osteogenesis imperfecta	TMEM38B	Shaheen et al. (2012c)
Osteogenesis imperfecta with profound neurological impairment	WNT1	Faqeih et al. (2013)
XRCC2-related Fanconi anemia	XRCC2	Shamseldin et al. (2012b)
XRCC4-related primordial dwarfism	XRCC4	Shaheen et al. (2014a)

Table 2. Frequently encountered Mendelian conditions in Saudi Arabia.

Condition
Sickle-cell anemia
Thalassemia
Intellectual disability
Congenital glaucoma
Bardet-Biedl syndrome
Meckel–Gruber syndrome
Organic acidemias
Lysosomal storage disorders
Retinal dystrophies
Hearing loss
Primary microcephaly

marked shift towards building infrastructure that permits this line of research to be performed locally. This trend has made a positive impact on the attitude of young Saudis to pursue careers in human genetics. But the study of rare recessive Mendelian disorders is only one of many opportunities that genomic research in Saudi Arabia has to offer. For example, identification of Mendelian forms of common diseases can provide novel insights into pathogenic mechanisms that could prove relevant to the common forms of these diseases (Al-Mayouf et al. 2011; Alangari et al. 2012; Aldahmesh et al. 2013a). Beyond Mendelian disorders, genomic analysis of Saudis has proved to be a valuable resource to track nullizygous DNA segments and biallelically inactivated genes in non-diseased individuals (Khalak et al. 2012). Not only does this line of research have the potential to improve the annotation of the human genome in terms of its clinical relevance, but it can also identify novel druggable targets by identifying genes whose loss of function brings about desirable phenotypic traits as recently shown with PCSK9 and CCR5 (Lederman et al. 2006; Rader and Daugherty 2008). In addition, the lack of representation of Saudi genomes in international GWAS consortia presents an opportunity to identify potentially novel risk alleles for common diseases as shown recently with the identification of a novel risk allele for complications of HBV infection (Al-Qahtani et al. 2013). A very recent study has shown the potential of genetically isolated societies to reveal novel risk alleles using a fraction of the usual study cohort size for a typical GWAS (Moltke et al. 2014), and this should provide an additional impetus to explore the genetics of common diseases among Saudis.

In recognition of these opportunities, the Saudi Government has recently announced its plan to fund the sequencing of 100,000 Saudis as part of the newly launched Saudi Human Genome Project. The above lines of research and others will form the basis of selecting the 100,000 Saudis to be sequenced. For example, 10,000 healthy Saudis will have their genomes sequenced specifically in search of biallelically inactivated genes (Kaiser 2014). It is clear that Saudi Arabia has been and will continue to be an important resource in the study of Mendelian genes, and recent technological advances are diversifying the relevance of this resource to the various fields of genomic medicine. The time has never been more opportune for conducting genomic research in Saudi Arabia to empower Saudis to reap its promise of better health.

Acknowledgments

I thank my research team and the wonderful network of collaborators for their support. This work is funded in part by KACST Grant #13-BIO1113-20.
Conflict of Interest

None declared.

References

Alazami, A. M., M. Al-Owain, F. Alzahrani, T. Shuaib, H. Alazami, A. M., N. Adly, H. Al Dhalaan, and F. S. Alkuraya. 2014. The Author. Published by Wiley Periodicals, Inc.

Alazami, A. M., H. Hijazi, M. S. Al-Dosari, R. Shaheen, A. Alhashem, A. Ammari, and F. S. Alkuraya. 2014. A novel homozygous mutation in G6PC3 causes microphthalmia in humans. Genet. Med. 16:962–963.

Al-Hassman, R. Shaheen, M. Rajab, et al. 2009. Allelic heterogeneity in inbred populations: the Saudi experience with Alström syndrome as an illustrative example. Am. J. Med. Genet. 149:662–665.

Al-kuraya. 2012c. Homozygous truncation of SIX6 causes complex microphthalmia in humans. Clin. Genet. 84:198–199.

Al-dosari, M. S., R. Shahseen, D. Colak, and F. S. Alkuraya. 2010. Novel CENPJ mutation causes seckel syndrome. J. Med. Genet. 47:411–414.

Albqumi, M., F. A. Alhabib, H. E. Shamseldin, F. Mohammed, and F. S. Alkuraya. 2014. A syndrome of congenital hyperinsulinism and rhabdomyolysis is caused by KCNJ11 mutation. J. Med. Genet. 51:271–274.

Al-Dosari, M. S., R. Shaheen, M. Rajab, et al. 2009. Allelic heterogeneity in inbred populations: the Saudi experience with Alström syndrome as an illustrative example. Am. J. Med. Genet. 149:662–665.

Alkhawajah, A. Al-Saleh, et al. 2013a. Mutations in LRPPRC presenting as cyclic neutropenia and severe congenital neutropenia in the same family. J. Clin. Immunol. 33:1403–1406.

Al-Aqeel, A. I. 2005. Al-Aqeel Sewairi syndrome, a new autosomal recessive disorder with multicentric osteolysis, nodulosis and arthropathy. The first genetic defect of matrix metalloproteinase 2 gene. Saudi Med. J. 26:24–30.

Alazami, A. M., M. Al-Owain, F. Alzahrani, T. Shuaib, H. Alazami, A. M., N. Adly, H. Al Dhalaan, and F. S. Alkuraya. 2014. The Author. published by Wiley Periodicals, Inc.

Al-Mabrouk, M., A. Alswaid, et al. 2012b. Genomic analysis of ciliary genes TBC1D32/C6orf170 and SCLT1 are mutated in patients with OFD type IX. Hum. Mutat. 35:36–40.

Al-Dosari, M. S., R. Shaheen, D. Colak, and F. S. Alkuraya. 2010. Novel recessive BFSP2 and PITX3 mutations in Alström syndrome of facial dysmorphism, intellectual disability, and spastic quadriplegia. Am. J. Hum. Genet. 89:745–750.

Al-Dosari, M. S., R. Shaheen, M. Rajab, et al. 2009. Allelic heterogeneity in inbred populations: the Saudi experience with Alström syndrome as an illustrative example. Am. J. Med. Genet. 149:662–665.
Al-Dosari, M. S., M. Al-Owain, M. Tulbah, W. Kurdi, N. Adly, A. Al-Hemidan, et al. 2013. Mutation in MPDZ causes severe congenital hydrocephalus. J. Med. Genet. 50:54–58.
AlHamdan, N. A., Y. Y. AlMazrou, F. M. AlSwaidi, and A. J. Choudhry. 2007. Premature screening for thalassemia and sickle cell disease in Saudi Arabia. Genet. Med. 9:372–377.
Al-Jurayyan, N. A., A. A. Al-Nuaim, M. I. El-Desouki, A. S. A. Herbish, A. M. A. Bakr, A. A. Swailem, et al. 1996. Neonatal screening for congenital hypothyroidism in Saudi Arabia: results of screening the first 1 million newborns. Screening 4:213–220.
Alkuraya, F. S. 2010a. Autozygome decoded. Genet. Med. 12:765–771.
Alkuraya, F. S. 2010b. Homozygosity mapping: one more tool in the clinical geneticist’s toolbox. Genet. Med. 12:236–239.
Alkuraya, F. S. 2013a. Impact of new genomic tools on the practice of clinical genetics in consanguineous populations: the Saudi experience. Clin. Genet. 84:203–208.
Alkuraya, F. S. 2013b. The application of next-generation sequencing in the autozygosity mapping of human recessive diseases. Hum. Genet. 132:1197–1211.
Alkuraya, F. S., and R. A. Kilani. 2001. Attitude of Saudi families affected with hemoglobinopathies towards prenatal screening and abortion and the influence of religious ruling (Fatwa). Prenat. Diagn. 21:448–451.
Almaghlouth, I., J. Mohamed, M. Al-Amoudi, L. Al-Ahaidib, A. Al-Odaib, and F. Alkuraya. 2012. 5-Oxoprolinase deficiency: report of the first human OPLAH mutation. Clin. Genet. 82:193–196.
Al-Mayouf, S. M., A. Sunker, R. Abdwani, S. Al Abrawi, F. Almurshed, N. Alhashmi, et al. 2011. Loss-of-function variant in DNASE1L3 causes a familial form of systemic lupus erythematosus. Nat. Genet. 43:1186–1188.
Al-Owain, M., A. Alazami, and F. Alkuraya. 2011. An autosomal recessive syndrome of severe cognitive impairment, dysmorphic facies and skeletal abnormalities maps to the long arm of chromosome 17. Clin. Genet. 80:489–492.
Al-Owain, M., H. Al-Zaidan, and Z. Al-Hassnan. 2012. Map of autosomal recessive genetic disorders in Saudi Arabia: concepts and future directions. Am. J. Med. Genet. 158A:2629–2640.
Al-Qahtani, A., H. G. Khalak, F. S. Alkuraya, W. Al-hamoudy, K. Alsawat, M. A. Al Balwi, et al. 2013. Genome-wide association study of chronic hepatitis B virus infection reveals a novel candidate risk allele on 11q22. 3. J. Med. Genet. 50:725–732.
Alshammari, M. J., L. Al-Otaibi, and F. S. Alkuraya. 2012. Mutation in RAB33B, which encodes a regulator of retrograde Golgi transport, defines a second Dyggve–MELCHIORS–CLAUSEN locus. J. Med. Genet. 49:455–461.
Alsultan, A., H. E. Shamseldin, M. E. Osman, M. Aljabri, and F. S. Alkuraya. 2013. MYSM1 is mutated in a family with transient transfusion-dependent anemia, mild thrombocytopenia, and low NK-and B-cell counts. Blood 122:3844–3845.
Awad, S., M. S. Al-Dosari, N. AlYacoub, D. Colak, M. A. Salih, F. S. Alkuraya, et al. 2013. Mutation in PHCI implicates chromatin remodeling in primary microcephaly pathogenesis. Hum. Mol. Genet. 22:2200–2213.
El-Mouzan, M. I., A. A. Al-Salloun, A. S. Al-Herbish, M. M. Qurachi, and A. A. Al-Omar. 2007. Regional variations in the prevalence of consanguinity in Saudi Arabia. Saudi Med. J. 28:1881–1884.
Faqeih, E., R. Shaheen, and F. S. Alkuraya. 2013. WNT1 mutation with recessive osteogenesis imperfecta and profound neurological phenotype. J. Med. Genet. 50:491–492.
Gai, X., D. Ghezzi, M. A. Johnson, C. A. Biagosch, H. E. Shamseldin, T. B. Haack, et al. 2013. Mutations in FBXL4 encoding a mitochondrial protein, cause early-onset mitochondrial encephalomyopathy. Am. J. Hum. Genet. 93:482–495.
Gupta, V. A., G. Ravenscroft, R. Shaheen, E. J. Todd, L. C. Swanson, M. Shiina, et al. 2013. Identification of KLHL41 mutations implicates BTB-Kelch-Mediated ubiquitination as an alternate pathway to myofibrillar disruption in nemaline myopathy. Am. J. Hum. Genet. 93:1108–1117.
Hijazi, H., M. A. Salih, M. H. Hamad, H. H. Hassan, S. B. Salih, K. A. Mohamed, et al. 2013. Pallagra-like condition is xeroderma pigmentosum/Cockayne syndrome complex and niacin confers clinical benefit. Clin. Genet. in press.
Kaiser, J. 2014. The hunt for missing genes. Science 344:687–689.
Kassebaum, N. J., A. Bertozi-Villa, M. S. Coggeshall, K. A. Shackelford, C. Steiner, K. R. Heuton, et al. 2014. Global, regional, and national levels and causes of maternal mortality during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet in press.
Kaya, N., M. A. Owain, N. AbuDheim, J. A. Zahrani, D. Colak, M. A. Sayed, et al. 2011. GM2 gangliosidosis in Saudi Arabia: multiple mutations and considerations for future carrier screening. Am. J. Med. Genet. A 155:1281–1284.
Khalak, H. G., S. M. Wakil, F. Imtiaz, K. Ramzan, B. Baz, A. Almostafa, et al. 2012. Autozygome maps dispensable DNA and reveals potential selective bias against nullizygosity. Genet. Med. 14:515–519.
Lederman, M. M., A. Penn-Nicholson, M. Cho, and D. Mosier. 2006. Biology of CCR5 and its role in HIV infection and treatment. JAMA 296:815–826.
de Ligt, J., M. H. Willemsen, B. W. van Bon, T. Kleeftstra, H. G. Yntema, T. Kroeze, et al. 2012. Diagnostic exome sequencing in persons with severe intellectual disability. N. Engl. J. Med. 367:1921–1929.
Memish, Z. A., and M. Y. Saeedi. 2011. Six-year outcome of the national premartial screening and genetic counseling program for sickle cell disease and β-thalassemia in Saudi Arabia. Ann. Saudi Med. 31:229.
Mohamed, J. Y., E. Faqeih, A. Alsiddiky, M. J. Alshammari, N. A. Ibrahim, and F. S. Alkuraya. 2013. Mutations in MEOXI encoding mesenchyme homeobox 1, cause klippel-feil anomaly. Am. J. Hum. Genet. 92:157–161.

Møltke, I., N. Grarup, M. E. Jørgensen, P. Bjerregaard, J. T. Treebak, M. Fumagalli, et al. 2014. A common Greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 diabetes. Nature in press.

Morales, J., L. Al-Sharif, D. S. Khalil, J. Shinwari, P. Bavi, R. A. Al-Mahrouqi, et al. 2009. Homozygous mutations in ADAMTS10 and ADAMTS17 cause lenticular myopia, ectopia lentis, glaucoma, spherophakia, and short stature. Am. J. Hum. Genet. 85:558–568.

Rader, D. J., and A. Daugherty. 2008. Translating molecular discoveries into new therapies for atherosclerosis. Nature 451:904–913.

Rashed, M. S., M. P. Bucknall, D. Little, A. Awad, M. Jacob, M. Alamoudi, et al. 1997. Screening blood spots for inborn errors of metabolism by electrospray tandem mass spectrometry with a microplate batch process and a computer algorithm for automated flagging of abnormal profiles. Clin. Chem. 43:1129–1141.

Rashed, M. S., Z. Rahbeeni, and P. T. Ozand. 1999. In Seminars in perinatology. Elsevier 23:183–193.

Rauch, A., D. Wieczorek, E. Graf, T. Wieland, S. Endele, T. Schwarzmayr, et al. 2012. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet 380:1674–1682.

Reiff, R. E., B. R. Ali, B. Baron, W. Y. Timothy, S. Ben-Salem, M. E. Coulter, et al. 2014. METTL23, a transcriptional partner of GABPA, is essential for human cognition. Hum. Mol. Genet. 23:4566–4566.

Rooryck, C., A. Diaz-Font, D. P. Osborn, E. Chabchoub, V. Hernandez-Hernandez, H. Shamseldin, et al. 2011. Mutations in lectin complement pathway genes COLEC11 and MASP1 cause 3MC syndrome. Nat. Genet. 43:197–203.

Sanjad, S., N. Sakati, Y. Abu-Osba, R. Kaddoura, and R. Milner. 1991. A new syndrome of congenital hypoparathyroidism, severe growth failure, and dysmorphic features. Arch. Dis. Child. 66:193–196.

Seidahmed, M. Z., M. A. Salih, O. B. Abdulbasit, M. Shaheed, K. Al Hussein, A. M. Miqlad, et al. 2012. A novel syndrome of lethal familial hyperkplexia associated with brain malformation. BMC Neurol. 12:125.

Shaheen, R., M. Al-Owain, N. Sakati, Z. S. Alzyayed, and F. S. Alkuraya. 2010. FKBP10 and Bruck syndrome: phenotypic heterogeneity or call for reclassification? Am. J. Hum. Genet. 87:306.

Shaheen, R., E. Faqeih, A. Sunker, H. Morsy, T. Al-Sheddi, H. E. Shamseldin, et al. 2011a. Recessive mutations in DOCK6 encoding the guanidine nucleotide exchange factor DOCK6, lead to abnormal actin cytoskeleton organization and adams-oliver syndrome. Am. J. Hum. Genet. 89:328–333.

Shaheen, R., E. Faqeih, M. Z. Seidahmed, A. Sunker, F. E. Alali, A. Khadijah, et al. 2011b. A TCTN2 mutation defines a novel Meckel Gruber syndrome locus. Hum. Mutat. 32:573–578.

Shaheen, R., E. Faqeih, M. J. Alshammari, A. Swaid, L. Al-Gazali, E. Mardawi, et al. 2012a. Genomic analysis of Meckel-Gruber syndrome in Arabs reveals marked genetic heterogeneity and novel candidate genes. Eur. J. Hum. Genet. 21:762–768.

Shaheen, R., E. Faqeih, H. E. Shamseldin, R. N. Noche, A. Sunker, M. J. Alshammari, et al. 2012b. POC1A truncation mutation causes a ciliopathy in humans characterized by primordial dwarfism. Am. J. Hum. Genet. 91:330–336.

Shaheen, R., A. M. Alazami, M. J. Alshammari, E. Faqeih, N. Alhashmi, N. Mousa, et al. 2012c. Study of autosomal recessive osteogenesis imperfecta in Arabs reveals a novel locus defined by TMEM38B mutation. J. Med. Genet. 49:630–635.

Shaheen, R., S. Ansari, M. J. Alshammari, H. Alkhaldi, H. Alrukban, W. Eyaid, et al. 2013a. A novel syndrome of hypohidrosis and intellectual disability is linked to COG6 deficiency. J. Med. Genet. 50:431–436.

Shaheen, R., M. Aglan, K. Kepper-Noreuil, E. Faqeih, S. Ansari, K. Horton, et al. 2013b. Mutations in EOGT confirm the genetic heterogeneity of autosomal-recessive adams-oliver syndrome. Am. J. Hum. Genet. 92:598–604.

Shaheen, R., S. Ansari, E. A. Mardawi, M. J. Alshammari, and F. S. Alkuraya. 2013c. Mutations in TMEM231 cause Meckel–Gruber syndrome. J. Med. Genet. 50:160–162.

Shaheen, R., E. Faqeih, S. Ansari, G. Abdel-Salam, Z. N. Al-Hassnan, T. Al-Shidi, et al. 2014a. Genomic analysis of primordial dwarfism reveals novel disease genes. Genome Res. 24:291–299.

Shaheen, R., H. E. Shamseldin, C. M. Loucks, M. Z. Seidahmed, S. Ansari, M. Ibrahim Khalil, et al. 2014b. Mutations in CSPP1 encoding a core centrosomal protein, cause a range of ciliopathy phenotypes in humans. Am. J. Hum. Genet. 94:73–79.

Shaheen, R., Z. Rahbeeni, A. Alhashem, E. Faqeih, Q. Zhao, Y. Xiaojing, et al. 2014c. Neu-Laxova Syndrome, an Inborn Error of Serine Metabolism, Is Caused by Mutations in PHGDH. The American Journal of Human Genetics 94:898–904.

Shamseldin, H. E., M. Alshammari, T. Al-Sheddi, M. A. Salih, H. Alkhaldi, A. Kentab, et al. 2012a. Genomic analysis of mitochondrial diseases in a consanguineous population.
reveals novel candidate disease genes. J. Med. Genet. 49:234–241.
Shamseldin, H. E., M. Elfaki, and F. S. Alkuraya. 2012b. Exome sequencing reveals a novel Fanconi group defined by XRCC2 mutation. J. Med. Genet. 49:184–186.
Shamseldin, H. E., A. Rajab, A. Alhashem, R. Shaheen, T. Al-Shidi, R. Alamro, et al. 2013. Mutations in DDX59 Implicate RNA Helicase in the Pathogenesis of Orofaciodigital Syndrome. Am. J. Hum. Genet. 93:555–560.
Sunker, A., and F. S. Alkuraya. 2013. Identification of MRRI encoding translation initiation factor eIF-2B subunit alpha/beta/delta-like protein, as a candidate locus for infantile epilepsy with severe cystic degeneration of the brain. Gene 512:450–452.
Wang, H., C. A. Liddell, M. M. Coates, M. D. Mooney, C. E. Levitz, A. E. Schumacher, et al. 2014. Global, regional, and national levels of neonatal, infant, and under-5 mortality during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet in press.
Warsy, A., M. Al-Jaser, A. Albdass, S. Al-Daihan, and M. Alanazi. 2014. Is consanguinity prevalence decreasing in Saudis? A study in two generations. Afr. Health Sci. 14:314–321.
Webb, E. A., A. AlMutair, D. Kelberman, C. Bacchelli, E. Chanudet, F. Lescai, et al. 2013. ARNT2 mutation causes hypopituitarism, post-natal microcephaly, visual and renal anomalies. Brain 136:3096–3105.
Zahrani, F., M. A. Aldahmesh, M. J. Alshammari, S. A. Al-Hazzaa, and F. S. Alkuraya. 2013. Mutations in C12orf57 cause a syndromic form of colobomatous microphthalmia. Am. J. Hum. Genet. 92:387–391.