Oscillations in a white blood cell production model with multiple differentiation stages

Franziska Knauer1 · Thomas Stiehl2 · Anna Marciniak-Czochra2

Received: 3 February 2019 / Revised: 2 July 2019 / Published online: 26 September 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
In this work we prove occurrence of a super-critical Hopf bifurcation in a model of white blood cell formation structured by three maturation stages. We provide an explicit analytical expression for the bifurcation point depending on model parameters. The Hopf bifurcation is a unique feature of the multi-compartment structure as it does not exist in the corresponding two-compartment model. It appears for a parameter set different from the parameters identified for healthy hematopoiesis and requires changes in at least two cell properties. Model analysis allows identifying a range of biologically plausible parameter sets that can explain persistent oscillations of white blood cell counts observed in some hematopoietic diseases. Relating the identified parameter sets to recent experimental and clinical findings provides insights into the pathological mechanisms leading to oscillating blood cell counts.

Keywords Hopf bifurcation · Hematopoiesis · Oscillating blood cell counts · Mathematical model · Stem cells

Mathematics Subject Classification 34C23 · 34D20 · 92B05 · 97M10 · 37N25

1 Introduction
This work is devoted to the study of Hopf bifurcations and emergence of oscillatory dynamics in a multi-compartmental model of healthy blood cell production
(hematopoiesis). The model describes a multi-stage blood cell production process based on self-renewal and differentiation of stem and progenitor cells, which is needed for regeneration of mature white blood cells. Each maturation stage is treated as a homogeneous compartment and its time evolution is described by an ordinary differential equation with coefficients controlled by a nonlinear feedback signal that depends on the count of mature cells. The model was introduced by Marciniak-Czochra et al. (2009) and then has been applied to study blood cell recovery after bone marrow transplantation (Stiehl et al. 2014b, c) and extended to model evolution and response to therapy of hematological diseases such as acute leukemias (Stiehl et al. 2018; Stiehl and Marciniak-Czochra 2012; Stiehl et al. 2014a, 2015) and myelodysplastic syndromes (Walenda et al. 2014). Although mathematical understanding of the underlying equations proved to be useful for model applications and interpretation in context of the patients’ data (Busse et al. 2016; Stiehl et al. 2014a), rigorous analysis of the underlying equations has been established only in the case of a two-compartment maturation structure by Getto et al. (2013). In this work, we close the gap and provide analysis of a system involving an intermediate differentiation stage given by a three-compartment structure. While in case of the two-compartment model, the positive equilibrium is globally stable whenever it exists (Getto et al. 2013), our analysis shows that increasing the number of compartments may lead to the loss of stability of the positive equilibrium due to a super-critical Hopf bifurcation. This finding is of biological relevance, since it shows that the number of maturation stages may impact the system dynamics.

Periodic oscillations in a model with non-linear feedback mechanisms but without explicit delays have not been studied in the context of the hematopoietic system so far. Our model shows that we can have cycling hematopoiesis as inherent property of the multistep maturation process, however, arising far away from the parameter regime corresponding to the healthy system. Periodic oscillations of blood cell counts are a rare but intriguing phenomenon that can be observed in humans and animals (Guerry et al. 1973; Dale et al. 1972, 2002). Cyclic neutropenia is the most frequent disease with oscillating blood cell counts. In cyclic neutropenia patients’ neutrophil counts show periodic oscillations with maxima that are significantly below the neutrophil counts of healthy individuals. Since neutrophils are responsible for immune defence, patients repeatedly suffer from infections (Dale and Hammond 1988). The disease can be cured by transplantation of healthy bone marrow (Okolo et al. 2017; Dale and Graw RG 1974). Similarly, accidental transplantation of bone marrow from a patient with cyclic neutropenia transfers the disorder to a previously unaffected host as has been shown by Krance et al. (1982). A mechanistic understanding of the disease, therefore, requires quantitative insights into blood cell formation and its regulations.

Cyclic neutropenia has been extensively studied using mathematical models. One hypothesis derived from mathematical models is that oscillations are caused by increased apoptosis/reduced proliferation of neutrophil precursors (Bernard et al. 2003; Lei and Mackey 2011) combined with a reduced entry of stem cells into the proliferative phase (Colijn and Mackey 2005). An alternative mechanism could be an increase of the death rates of stem cells (Lei and Mackey 2011; Mackey 1978). Other model-derived hypotheses for the origin of cyclic neutropenia include reduced maturation speed (Wheldon 1975) or dysfunction of feedback mechanisms (von Schulthess...
and Mazer 1982). Experimental studies suggest abnormal responsiveness of cells to growth factors (Hammond et al. 1992; Wright et al. 1989) or increased apoptosis of progenitor cells (Grenda et al. 2007) as possible reasons for the origin of periodic oscillations. One common feature of most models of cyclic neutropenia is that they include constant or distributed delays. Intuitively, a system with feedbacks the effects of which occur with a delay, can be supposed to oscillate if the feedback loop gain is large enough. However, whether oscillations indeed appear, depends on configuration of feedbacks. By Dingli et al. (2009) it has been shown that a reduction of progenitor cell’s self-renewal is sufficient to explain oscillatory dynamics in a model with linear feedback regulation and without delays. However, a system of linear compartments effectively constitutes a delay distributed according to a convolution of negative exponential functions, i.e. non-central gamma type, Johnson et al. (1994) (Section 17.8.7). Other mathematical modeling works studying cyclic neutropenia include publications by King-Smith and Morley (1970), Kazarinoff and van den Driessche (1979), Haurie et al. (2000) and Gopalsamy et al. (1990). Different modeling approaches are reviewed by Haurie et al. (1998) and Colijn et al. (2006).

The paper is organized as follows. In Sect. 2 we present a derivation of the considered model and its biological justification. In Sect. 3 we provide analytical results, including uniform boundedness of solutions and linear stability analysis. We provide criteria for the occurrence of a Hopf bifurcation and illustrate them by model simulations. In Sect. 4 we study systematically for which subsets of the biologically relevant parameter space Hopf bifurcations occur and we relate our findings to experimental results. Section 5 concludes with a short summary and a discussion of the obtained results.

2 Model motivation and formulation

Blood cells are continuously produced during the life of higher metazoans. This task is fulfilled by the hematopoietic (blood forming) system which is located in the bone marrow (Reya et al. 2001). Hematopoietic stem cells (HSC) give rise to progenitor cells which subsequently produce mature cells (Reya et al. 2001). Due to its vital importance hematopoiesis is a tightly regulated process. Complex nonlinear feedback mechanisms allow the organisms to adapt to environmental conditions and to efficiently respond to perturbations such as blood loss or infection (Metcalf 2008). Key processes during hematopoiesis are cell proliferation, self-renewal and differentiation. Proliferation denotes the division of one parent cell into two progeny. If progeny are of the same cell type as the parent, e.g., a progeny of a stem cell is again a stem cell, this process is referred to as self-renewal. The alternative scenario, where progeny are of a more mature cell type compared to their parent cell is referred to as differentiation (Stiehl and Marciniak-Czochra 2017, 2019).

In this work, we study for which configurations of proliferation and self-renewal parameters periodic oscillations of blood cell counts can occur. We focus on a three-compartment version of the model describing dynamics of stem cells, progenitor cells and mature cells. Dynamics of each cell population is described by an ordinary differential equation. Denoting the number of cells per kg of body weight at time t as $u_i(t)$,
where \(i = 1 \) corresponds to stem cells, \(i = 2 \) to progenitor cells and \(i = 3 \) to mature white cells, each cell type is characterized by the following parameters:

- Proliferation rate \(p_i \), describing the frequency of cell divisions per unit of time. In accordance with biology we assume that mature cells do not divide (Jandl 1996).
- Fraction of self-renewal \(a_i \), describing the fraction of progeny cells originating from division and returning to the compartment of their parent cell.
- Death rate \(d_i \), describing the fraction of cells dying per unit of time. For simplicity, we assume that immature cells \((i = 1, 2)\) do not die and that mature cells die at constant rates. This is a good approximation of reality (Stiehl et al. 2014c; Jandl 1996).

White blood cell production is regulated by negative feedback signals, such as G-CSF (Metcalf 2008; Layton et al. 1989). Since signal dynamics take place on a faster time scale compared to cell divisions, a quasi-steady state approximation can be used to describe the signal concentration as a function of white blood cell counts (Marciniak-Czochra et al. 2009; Stiehl and Marciniak-Czochra 2011; Marciniak-Czochra et al. 2018),

\[
s(t) = \frac{1}{1 + ku_3(t)},
\]

where \(k > 0 \), see Marciniak-Czochra et al. (2009) for details. Rigorous proof of the corresponding quasi-steady state model reduction is presented by Marciniak-Czochra et al. (2018).

Following the previous work (Marciniak-Czochra et al. 2009; Stiehl et al. 2014b, c), we assume feedback inhibition of the fraction of self-renewal by mature cells, i.e. \(a_i(t) = a_i s(t) \).

The flux to division of healthy cells in compartment \(i \) at time \(t \) equals \(p_i u_i(t) \). During division, a parent cell is replaced by two progeny cells. The outflux from mitosis at time \(t \), therefore, equals \(2 p_i u_i(t) \), of which the fraction \(2a_i(t)p_i u_i(t) \) stays in compartment \(i \) (referred to as self-renewal). The fraction \(2(1 - a_i(t))p_i u_i(t) \) proceeds to maturation stage \(i + 1 \) (process referred to as differentiation). Taking into account that mature cells do not divide and that the parent cell disappears as it gives rise to its progeny, we obtain the following system of differential equations

\[
\frac{du_1}{dt} = \left(2 - \frac{a_1}{1 + ku_3} - 1 \right) p_1 u_1 \tag{M1}
\]

\[
\frac{du_2}{dt} = \left(2 - \frac{a_2}{1 + ku_3} - 1 \right) p_2 u_2 + 2 \left(1 - \frac{a_1}{1 + ku_3} \right) p_1 u_1 \tag{M2}
\]

\[
\frac{du_3}{dt} = 2 \left(1 - \frac{a_2}{1 + ku_3} \right) p_2 u_2 - d_3 u_3. \tag{M3}
\]
Fig. 1 Scheme of the model. \(p_{1,2} \) denote the proliferation rates, \(a_{1,2} \) the fractions of self-renewal, \(d_3 \) the death rate, and \(s \) the feedback-signal

where \(p_1, p_2 > 0, d_3 > 0 \) and \(k > 0 \). The initial conditions fulfill \(u_1(0) > 0, u_2(0) \geq 0, u_3(0) \geq 0 \). A schematic of the model is depicted in Fig. 1.

In order to simplify our calculations, we finally rewrite the model equations in dimensionless terms using the reparametrizations \(\tilde{t} := \frac{p_1 t}{\tilde{p}_1}, \tilde{p}_2 := \frac{p_2}{p_1}, \tilde{d}_3 := \frac{d_3}{p_1} \), and \(\tilde{u}_i(\tilde{t}) := u_i \left(\frac{\tilde{t}}{p_1} \right) \) for \(i = 1, 2, 3 \):

\[
\frac{d \tilde{u}_1}{dt} = \left(2 \frac{a_1}{1 + k \tilde{u}_3} - 1 \right) \tilde{u}_1 \quad (M1*)
\]
\[
\frac{d \tilde{u}_2}{dt} = \left(2 \frac{a_2}{1 + k \tilde{u}_3} - 1 \right) \tilde{p}_2 \tilde{u}_2 + 2 \left(1 - \frac{a_1}{1 + k \tilde{u}_3} \right) \tilde{u}_1 \quad (M2*)
\]
\[
\frac{d \tilde{u}_3}{dt} = 2 \left(1 - \frac{a_2}{1 + k \tilde{u}_3} \right) \tilde{p}_2 \tilde{u}_2 - \tilde{d}_3 \tilde{u}_3 \quad (M3*)
\]

The parameter ranges and initial conditions remain unchanged. For convenience, we drop the \(\tilde{\cdot} \)-symbol in the remainder of this paper.

3 Model analysis

In this section we show uniform boundedness of solutions (Sect. 3.1), provide conditions for existence of non-negative steady states (Sect. 3.2) and linearized stability analysis (Sect. 3.3), and prove occurrence of Hopf bifurcation (Sect. 3.4).

3.1 Uniform boundedness of solutions

Theorem 1 Solutions of (M1)–(M3) with positive initial values remain in the first octant and for sufficiently large times \(t \) even in a compact subset \(C \) which does not depend on the initial values.
The proof follows the lines of the proof by Busse et al. (2016), adjusted to the three-compartment structure of the model. We consider the rescaled system \((M1^*)\)–\((M3^*)\) and define \(C\) as the cuboid bounded by the planes \(\{(u_1, u_2, u_3) \in \mathbb{R}^3 \mid u_i = 0\}\) and \(\{(u_1, u_2, u_3) \in \mathbb{R}^3 \mid u_i = C_i\}\) for \(i = 1, 2, 3\). Obviously, the orbits of solutions with nonnegative initial values remain in the first octant. To show uniform boundedness from above, we compute equations for the fractions \(v_1 := \frac{u_1}{u_2}\) and \(v_2 := \frac{u_2}{u_3}\) that lead to the following estimates:

\[
\frac{dv_1}{dt} < [1 + p_2 - 2(1 - a_1)] v_1 < 0 \quad \text{for } v_1 \geq \frac{1 + p_2}{2(1 - a_1)} =: B_1
\]

\[
\frac{dv_2}{dt} < [p_2 + d_3 + 2B_1 - 2(1 - a_2)] v_2 < 0 \quad \text{for } v_2 \geq \frac{p_2 + d_3 + 2B_1}{2(1 - a_2)} =: B_2,
\]

for all \(u_3 \geq 0\). Taking \(M_i := \max\{B_i, v_i(0)\}\), we conclude \(u_2 \geq \frac{1}{M_1} u_1\) and \(u_3 \geq \frac{1}{M_2 u_2} \geq \frac{1}{M_2 M_1} u_1\). With these relations we obtain

\[
\frac{du_1}{dt} \leq \left(2 - \frac{a_1}{k} \frac{u_1}{M_2 M_1} - 1\right) u_1 < 0, \quad \text{for } u_1 > \frac{M_2 M_1}{k} (2a_1 - 1) =: K_1
\]

and

\[
\frac{du_2}{dt} \leq \left(2 - \frac{a_2}{k} \frac{u_2}{M_2} - 1\right) p_2 u_2 + 2K_1 < 0
\]

for \(u_2 > \max\left\{\frac{4a_2 - 1}{k} M_2, \frac{4}{p_2} K_1\right\} =: K_2\)

as well as

\[
\frac{du_3}{dt} \leq 2p_2 K_2 - d_3 u_3 < 0
\]

for \(u_3 > \frac{2p_2 K_2}{d_3} =: K_3\).

Taking \(C_i = \max\{K_i, u_i(0)\}\), we conclude about invariance of the set \(C\).

\[\square\]

3.2 Existence of steady states

Existence and uniqueness of steady states has been systematically studied by Stiehl and Marciniak-Czochra (2011). The following proposition summarizes the results.

Proposition 1

1. *The trivial steady state* \(E_0 = (\bar{u}_1^0, \bar{u}_2^0, \bar{u}_3^0)^T = (0, 0, 0)^T\) of \((M1)\)–\((M3)\) *exists for all parameter values.*

2. *There exists a semi-trivial steady state* \(E_1 = (0, \bar{u}_2^1, \bar{u}_3^1)^T\) of \((M1)\)–\((M3)\) *with positive components* \(\bar{u}_2^1, \bar{u}_3^1\) *given by*
\[E_1 = \left(0, \frac{d_3}{p_2} \bar{u}_3, \frac{2a_2 - 1}{k}\right)^T \]

if and only if

\[a_2 > \frac{1}{2}. \]

3. There exists a strictly positive steady state \(E_2 = (\bar{u}_1^2, \bar{u}_2^2, \bar{u}_3^2)^T \) of (M1)–(M3) given by

\[E_2 = \left(\left(1 - \frac{a_2}{a_1}\right) \frac{p_2}{p_1} \bar{u}_2^2, \frac{d_3}{p_2} \left(2 - \frac{a_2}{a_1}\right) \bar{u}_3^2, \frac{2a_1 - 1}{k}\right)^T \]

if and only if

\[a_1 > \frac{1}{2} \text{ and } a_2 < a_1. \]

Let us remark that for appropriate values of \(d_3, p_2, \) and \(k \) the steady state \(E_2 \) can be any point in \(\mathbb{R}^3_+ \). We have \(E_2 = (\bar{u}_1, \bar{u}_2, \bar{u}_3) \) if

\[k = \frac{2a_1 - 1}{\bar{u}_3}, \quad d_3 = \frac{2 - \frac{a_2}{a_1}}{1 - \frac{a_2}{a_1}} \bar{u}_1 p_1, \quad p_2 = \frac{d_3}{2 - \frac{a_2}{a_1}} \bar{u}_2. \]

3.3 Linear asymptotic stability

In Proposition 2 we summarize the linear asymptotic stability of the steady states \(E_0 \) and \(E_1 \). In Theorem 2 we study the linear asymptotic stability of \(E_2 \) using the Routh–Hurwitz Criterion.

Proposition 2

(i) The steady state \(E_0 = (0, 0, 0)^T \) is locally asymptotically stable if \(\max\{a_1, a_2\} < \frac{1}{2} \) and unstable if \(\max\{a_1, a_2\} > \frac{1}{2} \).

(ii) The steady state \(E_1 = \left(0, \frac{d_3}{p_2} \frac{2a_2 - 1}{k}, \frac{2a_2 - 1}{k}\right)^T \) is locally asymptotically stable if \(a_1 < a_2 \) and unstable if \(a_1 > a_2 \).

Proof

The Jacobian of system (M1*)–(M3*) at the steady state \((\bar{u}_1^i, \bar{u}_2^i, \bar{u}_3^i) \) is given by

\[
J(\bar{u}_1^i, \bar{u}_2^i, \bar{u}_3^i) = \begin{pmatrix}
2 \left(1 - \frac{a_1}{1+k \bar{u}_3^i}\right) & -2a_1 k \frac{1}{(1+k \bar{u}_3^i)} & \bar{u}_1^i \\
2 \left(1 - \frac{a_1}{1+k \bar{u}_3^i}\right) & 0 & 2a_2 k \frac{1}{(1+k \bar{u}_3^i)} + a_1 k \frac{1}{(1+k \bar{u}_3^i)} \bar{u}_2^i \\
0 & 2 \left(1 - \frac{a_2}{1+k \bar{u}_3^i}\right) & \frac{2}{2 - a_2} \bar{u}_2^i - d_3
\end{pmatrix}.
\]
(i) Consider the Jacobian matrix at E_0

$$J (0, 0, 0) = \begin{pmatrix} 2a_1 - 1 & 0 & 0 \\ 2 - (1 - a_1) & (2a_2 - 1) p_2 & 0 \\ 0 & 2 - (1 - a_2) p_2 & -d_3 \end{pmatrix}.$$

As $J (0, 0, 0)$ is a lower triangular matrix, we obtain the eigenvalues

$$\lambda_1^0 = 2a_1 - 1$$
$$\lambda_2^0 = (2a_2 - 1) p_2$$
$$\lambda_3^0 = -d_3,$$

which implies (i).

(ii) Consider the Jacobian matrix at E_1

$$J (\tilde{u}_1^1, \tilde{u}_2^1, \tilde{u}_3^1) = \begin{pmatrix} \frac{a_1}{a_2} - 1 & 0 & 0 \\ 2 - \frac{a_1}{a_2} & 0 & -\left(1 - \frac{1}{2a_2}\right) d_3 \\ 0 & p_2 & -\frac{1}{2a_2} d_3 \end{pmatrix}.$$

We recall that for existence of E_1 it has to hold $a_2 > 1/2$. We obtain the characteristic equation

$$\left(\lambda - \frac{a_1}{a_2} + 1\right) \left[\lambda \left(\lambda + \frac{1}{2a_2} d_3\right) + \left(1 - \frac{1}{2a_2}\right) d_3 p_2\right] = 0$$

and thus the eigenvalues

$$\lambda_1^1 = \frac{a_1}{a_2} - 1$$
$$\lambda_2^1 = -\frac{1}{4a_2} d_3 + \sqrt{\left(\frac{1}{4a_2} d_3\right)^2 - \left(1 - \frac{1}{2a_2}\right) d_3 p_2}$$
$$\lambda_3^1 = -\frac{1}{4a_2} d_3 - \sqrt{\left(\frac{1}{4a_2} d_3\right)^2 - \left(1 - \frac{1}{2a_2}\right) d_3 p_2} < \frac{1}{4a_2} d_3 \text{ or imaginary, since } a_2 > 0.5$$

As λ_2^1 and λ_3^1 have always negative real parts, the only condition that needs to hold for E_1 to be locally asymptotically stable is $a_1 < a_2$. If $a_1 > a_2$, E_1 is unstable. \hfill \Box

For E_2, we will show local asymptotic stability using the Routh-Hurwitz-Criterion. Using the expression for E_2 from Proposition 1 we can prove the following
Theorem 2 The positive steady state \(E_2 \) of system (M1)–(M3) is locally asymptotically stable if

\[
p_2 > \frac{1}{\frac{a_2}{a_1}} \left[\frac{1}{\gamma(a_1, a_2)} - \beta(a_1, a_2) \right] \frac{d_3}{p_1} p_1. \tag{1}
\]

\(E_2 \) unstable if

\[
p_2 < \frac{1}{\frac{a_2}{a_1}} \left[\frac{1}{\gamma(a_1, a_2)} - \beta(a_1, a_2) \right] \frac{d_3}{p_1} p_1, \tag{2}
\]

where

\[
\beta(a_1, a_2) = 1 - \frac{a_2}{a_1} \left(1 - \frac{1}{2} \right) \frac{1}{2 - \frac{a_2}{a_1}},
\]

\[
\gamma(a_1, a_2) = \frac{1}{2a_1} \frac{1}{1 - \frac{1}{2a_1}} + \frac{a_2}{a_1} \left(1 - \frac{a_2}{a_1} \right) \frac{1}{2 - \frac{a_2}{a_1}} \left(1 - \frac{a_2}{a_1} \right).\]

Proof We perform calculations for the transformed system \((M1^*)\)–\((M3^*)\). Consider the Jacobian matrix at \(E_2 \), i.e.

\[
J(\bar{u}_1^2, \bar{u}_2^2, \bar{u}_3^3) = \begin{pmatrix}
0 & 0 & -\left(1 - \frac{1}{2a_1} \right) \left(1 - \frac{a_2}{a_1} \right) \frac{1}{2 - \frac{a_2}{a_1}} d_3 \\
1 - \left(1 - \frac{a_2}{a_1} \right) p_2 & \left(1 - \frac{1}{2a_1} \right) \left(1 - \frac{a_2}{a_1} \right) \frac{1}{2 - \frac{a_2}{a_1}} d_3 \\
0 & \left(2 - \frac{a_2}{a_1} \right) p_2 & \left(\frac{a_2}{a_1} \right) \left(1 - \frac{1}{2a_1} \right) \frac{1}{2 - \frac{a_2}{a_1}} - 1 \right) d_3
\end{pmatrix}.
\]

We obtain the characteristic equation

\[
0 = \lambda^3 + \left[\left(1 - \frac{a_2}{a_1} \right) p_2 + \left(1 - \frac{a_2}{a_1} \right) \left(1 - \frac{1}{2a_1} \right) \frac{1}{2 - \frac{a_2}{a_1}} \frac{d_3}{p_1} \right] \lambda^2
\]

\[
+ \left[\left(1 - \frac{a_2}{a_1} \right) \left(1 - \frac{a_2}{a_1} \right) \left(1 - \frac{1}{2a_1} \right) \frac{1}{2 - \frac{a_2}{a_1}} - \left(1 - \frac{1}{2a_1} \right) \left(1 - \frac{a_2}{a_1} \right) \right] \frac{d_3}{p_1} p_2 \lambda
\]

\[
+ \left(1 - \frac{1}{2a_1} \right) \left(1 - \frac{a_2}{a_1} \right) \frac{d_3}{p_1} p_2.
\]

We observe that under positivity conditions for \(E_2 \) \((a_1 > a_2 \text{ and } a_1 > \frac{1}{2})\) the relations \(b_1 > 0 \) and \(b_3 > 0 \) hold true: \(b_3 \) is a product with positive factors only.
and therefore positive itself. The expression b_1 can be written as:

$$b_1 = (1 - \frac{a_2}{a_1}) p_2 + (1 - P) d_3$$

where P is a product consisting of factors that are in $(0, 1)$ under positivity conditions. Thus, $1 - P$ is positive and, therefore, b_1 is, as a sum of two positive summands, positive as well.

We distinguish between the following parameter configurations. Details can be found in the book by Gantmacher (1964).

- $b_1 b_2 - b_3 > 0 \iff \lambda_1, \lambda_2, \lambda_3$ have negative real parts.
- $b_1 b_2 - b_3 = 0 \iff$ There is one eigenvalue with negative real part and a couple of complex conjugated eigenvalues with zero real parts.
- $b_1 b_2 - b_3 < 0 \iff$ There is one eigenvalue with negative and two with positive real parts.

It remains to determine conditions so that the relations $b_1 b_2 - b_3 > 0$ and $b_1 b_2 - b_3 < 0$ respectively are satisfied, to complete the proof. Using $\beta(a_1, a_2)$ and $\gamma(a_1, a_2)$ as defined in the theorem, we can rearrange $b_1 b_2 - b_3$ as follows. Further details on how to proceed can be found in the “Appendix A”.

$$b_1 b_2 - b_3 = \left(1 - \frac{1}{2a_1}\right) \left(1 - \frac{a_2}{a_1}\right) \left[\left(1 - \frac{a_2}{a_1}\right) p_2 + \beta(a_1, a_2) d_3\right] \cdot \gamma(a_1, a_2) - 1 \right) d_3 p_2.
(3)$$

As the factors $\left(1 - \frac{1}{2a_1}\right)$ and $\left(1 - \frac{a_2}{a_1}\right)$ are positive under positivity conditions for E_2 and d_3 and p_2 are positive anyway, it suffices to find conditions which ensure that the remaining factor is of positive sign. We find

$$0 < \left[\left(1 - \frac{a_2}{a_1}\right) p_2 + \beta(a_1, a_2) d_3\right] \cdot \gamma(a_1, a_2) - 1 \right)$$

$$\iff p_2 > \frac{1}{1 - \frac{a_2}{a_1}} \left[\frac{1}{\gamma(a_1, a_2)} - \beta(a_1, a_2) d_3\right]$$

(4)

Thus, the eigenvalues of the Jacobian matrix at E_2 have negative real parts if and only if relation (4) holds. This implies local asymptotic stability. In analogy there exist eigenvalues with positive real parts if and only if $b_1 b_2 - b_3 < 0$. Transforming back to the parameters of system (M1)–(M3) completes the proof of this theorem.

Finally, we will see that the parameter range where E_2 exists and is unstable is bounded:

Proposition 3 For $p_1 = 1$ the set

$$A = \left\{(a_1, a_2, d_3, p_2) \in (0, 1)^2 \times \mathbb{R}_+^2 \mid a_1 > \frac{1}{2}, a_1 > a_2, E_2 \text{ is unstable}\right\}.$$
i.e. the parameter range where E_2 exists, is positive and is unstable, is a bounded subset of the parameter space.

Proof First, we note that for all $(a_1, a_2, d_3, p_2) \in A$ it holds that

$$p_2 \leq \frac{1}{1 - \frac{a_2}{a_1}} \left[\frac{1}{\gamma(a_1, a_2)} - \beta(a_1, a_2) d_3 \right]$$

and thus

$$A \subseteq \bigcup_{a_1 \in (\frac{1}{2}, 1), a_2 \in (0, a_1)} \{a_1\} \times \{a_2\} \times A_{a_1,a_2},$$

where

$$A_{a_1,a_2} = \left\{(d_3, p_2) \in \mathbb{R}_+^2 \mid p_2 \leq \frac{1}{1 - \frac{a_2}{a_1}} \left[\frac{1}{\gamma(a_1, a_2)} - \beta(a_1, a_2) d_3 \right] \right\}.$$

As the range of a_1 and a_2 is bounded anyway, it suffices to show that the sets A_{a_1,a_2} are uniformly bounded. To this end, we observe that for fixed a_1 and a_2 the boundary of each A_{a_1,a_2} consists of the part of the graph of the linear equation

$$p_2 = \frac{1}{1 - \frac{a_2}{a_1}} \left[\frac{1}{\gamma(a_1, a_2)} - \beta(a_1, a_2) d_3 \right]$$

lying in the first quadrant and its axis intercepts (see Fig. 2).

We will show that the intercepts of the d_3- and the p_2-axis $\frac{1}{\beta(a_1,a_2) \gamma(a_1,a_2)}$ and $\frac{1}{(1-\frac{a_2}{a_1}) \gamma(a_1,a_2)}$ respectively are uniformly bounded. For $p_2 \in A_{a_1,a_2}$ for all $a_1, a_2 \in (0, 1)$ it holds:

![Fig. 2 The set A_{a_1,a_2} for $a_1 = 0.75$ and $a_2 = 0.55$. $\alpha = 1 - \frac{a_2}{a_1}$](image-url)
\[\frac{1}{p_2} \geq \gamma \left(a_1, a_2 \right) \left(1 - \frac{a_2}{a_1} \right) > \frac{1}{2} \left[\frac{1 - \frac{a_2}{a_1}}{1 - \frac{1}{2a_1}} + \frac{a_2}{a_1} \right] = \frac{1}{2} \left[1 + \frac{1}{2a_1} \frac{1 - \frac{a_2}{a_1}}{1 - \frac{1}{2a_1}} \right] > \frac{1}{2}. \]

This is equivalent to \(p_2 < 2 \) for all \(a_1, a_2 \in (0, 1) \). Furthermore, we note that

\[\gamma \left(a_1, a_2 \right) \beta \left(a_1, a_2 \right) > \gamma \left(a_1, a_2 \right) \left(1 - \frac{a_2}{a_1} \right) > \frac{1}{2} \]

and thus, we also have for all \(d_3 \in A_{a_1, a_2} \)

\[d_3 \leq \frac{1}{\beta \left(a_1, a_2 \right) \gamma \left(a_1, a_2 \right)} < 2 \forall a_1, a_2 \in (0, 1). \]

This means that the set \(A_{a_1, a_2} \) are uniformly bounded and therefore, the set \(A \) consisting of all parameters for which \(E_2 \) is unstable is bounded.

\[\square \]

Table 1 summarizes existence and local asymptotic stability of the equilibria \(E_0 \) to \(E_2 \).

Corollary 1 The steady state \(E_2 \) exists and is locally asymptotically stable if and only if

\[a_1 > \frac{1}{2} \]
\[a_1 > a_2 \]
\[p_2 > \frac{1}{1 - \frac{a_2}{a_1}} \left[\frac{1}{\gamma \left(a_1, a_2 \right)} - \beta \left(a_1, a_2 \right) \frac{d_3}{p_1} \right] \]

In this case all other non-negative steady states are unstable.

Table 1	Summary of existence and stability conditions for the steady states depending on the parameter values of \(a_1 \) and \(a_2 \)	\(a_1 > a_2 \)	\(a_1 < a_2 \)
\(a_1 < \frac{1}{2}, a_2 < \frac{1}{2} \)	\(E_0: \text{stable} \)	\(E_0: \text{stable} \)	
	\(E_1: \emptyset \)	\(E_1: \emptyset \)	
	\(E_2: \emptyset \)	\(E_2: \emptyset \)	
\(a_1 < \frac{1}{2}, a_2 > \frac{1}{2} \)	\(E_0: \text{unstable} \)	\(E_0: \text{unstable} \)	
	\(E_1: \text{stable} \)	\(E_1: \text{stable} \)	
	\(E_2: \text{exists} \)	\(E_2: \text{exists} \)	
\(a_1 > \frac{1}{2}, a_2 < \frac{1}{2} \)	\(E_0: \text{unstable} \)	\(E_0: \text{unstable} \)	
	\(E_1: \emptyset \)	\(E_1: \text{stable} \)	
	\(E_2: \text{exists} \)	\(E_2: \emptyset \)	
\(a_1 > \frac{1}{2}, a_2 > \frac{1}{2} \)	\(E_0: \text{unstable} \)	\(E_0: \text{unstable} \)	
	\(E_1: \text{unstable} \)	\(E_1: \text{stable} \)	
	\(E_2: \text{exists} \)	\(E_2: \emptyset \)	

“Stable” refers to local asymptotic stability.
3.4 Hopf bifurcation

In this section, we will further investigate the change of the dynamical behavior when \(p_2 \) passes through
\[
\frac{1}{1 - \frac{a_2}{a_1}} \left[\frac{1}{\gamma (a_1, a_2)} - \beta (a_1, a_2) \frac{d_3}{p_1} \right] p_1.
\]
We note that this is only possible if
\[
\frac{1}{1 - \frac{a_2}{a_1}} \left[\frac{1}{\gamma (a_1, a_2)} - \beta (a_1, a_2) \frac{d_3}{p_1} \right] p_1 > 0 \text{ holds, i.e. for } d_3 < d_3^{max} := \frac{\beta (a_1, a_2) \gamma (a_1, a_2)}{p_1}.
\]

Theorem 3 Let \(d_3^{max} := \frac{p_1 \beta (a_1, a_2) \gamma (a_1, a_2)}{\beta (a_1, a_2) \gamma (a_1, a_2)} \) and \(d_3 < d_3^{max} \). Then the steady state \(E_2 \) undergoes a Hopf bifurcation with bifurcation point \(p_2 = p_2^* := \frac{1}{1 - \frac{a_2}{a_1}} \left[\frac{1}{\gamma (a_1, a_2)} - \beta (a_1, a_2) \frac{d_3}{p_1} \right] p_1 \), i.e. the Jacobian matrix \(J \) at the positive steady state \(E_2 \) has two eigenvalues \(\lambda_1, \lambda_2 \) for which the following relations hold
\[
\lambda_{1,2}(p_2) = \mu(p_2) \pm \omega(p_2), \quad \omega(p_2^*) \neq 0, \quad \mu(p_2^*) = 0, \quad \frac{d}{dp_2} \mu(p_2^*) \neq 0.
\]

Proof We consider the system \((M1^*)\)–\((M3^*)\). We recall that existence of \(E_2 \) requires \(a_1 > 0.5 \) and \(a_2 < a_1 \). Let \(P(x) = x^3 + b_1 x^2 + b_2 x + b_3 \) be the characteristic polynomial of \(J \). From the proof of Theorem 2 we know that \(J \) has two purely imaginary eigenvalues unequal to zero if and only if \(b_1 b_2 - b_3 = 0 \), i.e., \(p_2 = p_2^* \). Thus, for \(\lambda_{1,2}(p_2) := \mu(p_2) \pm \omega(p_2) \) it holds \(\mu(p_2^*) = 0, \omega(p_2^*) \neq 0 \). It remains to show that \(\mu'(p_2^*) \neq 0 \).

Let us rewrite the characteristic polynomial \(P(x) \) as \(P(x) = (x - \lambda_1) (x - \lambda_2) (x - \lambda_3) \), where \(\lambda_3 \) denotes the third eigenvalue. We can verify easily that the relation \(b_1 b_2 - b_3 = -P(\lambda_1 + \lambda_2 + \lambda_3) \) holds. We will obtain an expression for \(\mu'(p_2^*) \) by computing the derivatives of both sides of this equation with respect to \(p_2 \).

\[
\frac{d}{dp_2} P(\lambda_1(p_2) + \lambda_2(p_2) + \lambda_3(p_2)) \bigg|_{p_2=p_2^*} = \frac{d}{dp_2} [(\mu(p_2) - i \omega(p_2) + \lambda_3(p_2)) (\mu(p_2) + i \omega(p_2) + \lambda_3(p_2)) \cdot 2 \mu(p_2)] \bigg|_{p_2=p_2^*} = 2 \mu'(p_2^*) (\lambda_3^2(p_2^*) + \omega^2(p_2^*)).
\]

Now we calculate the derivative with respect to \(b_1 b_2 - b_3 \):
\[
\frac{d}{dp_2} [-b_1 b_2 + b_3] \bigg|_{p_2=p_2^*} = - \left(1 - \frac{1}{2a_1} \right) \left(1 - \frac{a_2}{a_1} \right)^2 d_3 \gamma (a_1, a_2) d_3 p_2^*.
\]
By equating both expressions for the derivative we obtain:

\[
\mu' (p^*_2) = -\frac{1}{2} \frac{1 - a_2}{a_1} \frac{d_3} 2 \frac{\gamma (a_1, a_2)}{(p^*_2) + \omega^2 (p^*_2)} < 0
\]

for \(p^*_2 > 0 \), since \(a_1 > a_2 \) implies \(\gamma (a_1, a_2) > 0 \). We note that \(d_3 < d_3^{\text{max}} \) implies \(p^*_2 > 0 \), since \(d_3 < d_3^{\text{max}} \). This completes the proof. \(\square \)

Remark 1 We note that the bifurcation point does not depend on \(k \).

Remark 2 It holds \(b_1 (p_2) = -\frac{\lambda_1 (p_2) + \lambda_2 (p_2) + \lambda_3 (p_2)}{\gamma (a_1, a_2)} \) which equals \(-\lambda_3 (p^*_2) \) if \(p_2 = p^*_2 \). As we noted in the preceding proof, we have \(b_1 = -\lambda_3 (p^*_2) \) and therefore, we can explicitly compute the eigenvalues of the Jacobian matrix for the case \(p_2 = p^*_2 \).

\[
\lambda_3 (p^*_2) = -\frac{1}{\gamma (a_1, a_2)}.
\]

Similarly, \(b_3 (p_2) = -\lambda_1 (p_2) \lambda_2 (p_2) \lambda_3 (p_2) \) and \(b_3 (p^*_2) = -\lambda_3 (p^*_2) \omega^2 (p^*_2) \), which implies

\[
\omega (p^*_2) = \sqrt{b_3 (p^*_2) \gamma (a_1, a_2)} = \sqrt{\frac{1}{\gamma (a_1, a_2)} \beta (a_1, a_2) d_3} \gamma (a_1, a_2) \left(1 - \frac{1}{2} a_1 \right) d_3
\]

We note that the third eigenvalue \(\lambda_3 \) has a negative real part, since \(\gamma (a_1, a_2) > 0 \). Consequently, for \(p_2 = p^*_2 \) the orbits of the system exponentially approach a center manifold. On the center manifold, the orbits look essentially like the ones of the Hopf normal form as shown in the book by Kuznecov (2004).

Figure 3 provides a numerical example for the super-critical Hopf bifurcation.

4 Biological implications

In this section we apply the mathematical results to gain insights into the origin of oscillating blood cell counts. We use our model to systematically study which parameters have to deviate from their physiological values to obtain persistent oscillations.

4.1 Numerical studies

Parameters of model (M1)–(M3) have been obtained using a combination of data from literature and patient data. It has been shown that the calibrated model can reproduce blood cell dynamics after bone marrow transplantation and during acute leukemia (Stiehl et al. 2015, 2014a, b, c, 2018). The parameters have been estimated as follows (Stiehl et al. 2015):
Fig. 3

a Phase portrait for $p_2 > p_2^*$. The solution converges to the positive equilibrium. Initial condition:

$u_1(0) = 0.1766 \times 10^7,$
$u_2(0) = 1.3082 \times 10^7,$
$u_3(0) = 5.9429 \times 10^7.$

b Phase portrait for $p_2 < p_2^*$. Existence of a stable limit cycle. Initial conditions:

$u_1(0) = 0.2717 \times 10^7,$
$u_2(0) = 2.6836 \times 10^7,$
$u_3(0) = 9.1429 \times 10^7$ and
$u_1(0) = 0.1766 \times 10^7,$
$u_2(0) = 1.7443 \times 10^7,$
$u_3(0) = 5.9429 \times 10^7.$

Initial conditions are marked by crosses, the positive equilibrium is marked by “*”. Parameters: $a_1 = 0.7, a_2 = 0.5, p_1 = 1,$ $d_3 = 0.1337, k_3 = 8.75 \times 10^{-9}.$ The Hopf bifurcation occurs at $p_2^* = 0.3937$

$a_1 = 0.850, p_1 = 0.1/\text{day}, a_2 = 0.841, p_2 = 0.4/\text{day}, d_1 = 0.0, d_2 = 0.0,$
$d_3 = 2.7/\text{day}, k = 1.75 \times 10^{-9}.$

In the following we refer to these parameters as reference values. To systematically check whether variation of one of these parameters can lead to a Hopf bifurcation, we search, where in the parameter space p_2 passes through the bifurcation point p_2^*. Biologically plausible intervals for the respective parameters are:

\[
\begin{align*}
a_1 & \in (0.5, 1) \\
p_1 & \in (0/\text{day}, 1/\text{day}) \\
a_2 & \in (0, 1) \\
p_2 & \in (0/\text{day}, 1/\text{day}) \\
d_1 & \in (0/\text{day}, 3/\text{day}) \\
d_2 & \in (0/\text{day}, 3/\text{day}) \\
d_3 & \in (0.1/\text{day}, 3/\text{day})
\end{align*}
\]
These ranges are motivated as follows. The self-renewal fractions a_1 and a_2 correspond to the probabilities that a progeny cell belongs to the same maturation stage as its parent cell, therefore they assume values between zero and one. If $a_1 \leq 0.5$, the stem cell population declines over time (Stiehl and Marciniak-Czochra 2011), which contradicts biological observations (Stiehl and Marciniak-Czochra 2011, 2017). For this reason we assume $a_1 > 0.5$. A proliferation rate of 1/day corresponds to more than one cell division per day, which is the biological upper limit required for genome duplication (Morgan et al. 2007). The value of d_3 corresponds to a neutrophils half life between 5h and 7 days what is in agreement with measurements in humans (Cartwright et al. 1964; Pillay et al. 2010). Of note biological studies suggest, that in cyclic neutropenia neutrophils half life does not significantly differ from reference values (Guerry et al. 1973). As neutrophils are considered as one of the cell types with shortest half life, we assume that 5h is a reasonable lower bound also for the half life of immature cells (Jandl 1996). For our numerical studies we subdivide the given intervals in 100 equidistant points.

There is biological evidence that oscillating blood cell counts may be related to death of immature cells (Grenda et al. 2007). For this reason we extend our numerical analysis to the case where stem and progenitor cell death rates, denoted as d_1 and d_2, can be positive. In this case we obtain the following expressions for b_1, b_2 and b_3.

\[
b_1 = d_2 - \left(\frac{a_2}{a_1} \frac{d_1 + p_1}{p_1} - 1\right) p_2 + d_3 \left(1 + \frac{\left(\frac{1}{2a_1} \frac{d_1}{p_1} - \frac{d_1}{2a_1} \frac{a_2}{a_1} \frac{d_1 + p_1}{p_1}\right)}{\left(\frac{a_2}{a_1} \frac{d_1 + p_1}{p_1} - 2\right) p_1}\right)
\]

\[
b_2 = + d_3 \left(\left(1 - \frac{1}{2a_1}\right) p_1 - \frac{d_1}{2a_1} \frac{d_1 + p_1}{p_1} \left(\frac{a_2}{a_1} \frac{d_1 + p_1}{p_1} - 1\right) - d_2\right) d_3 \left(1 + \frac{\left(\frac{1}{2a_1} \frac{d_1}{p_1} - \frac{d_1}{2a_1} \frac{a_2}{a_1} \frac{d_1 + p_1}{p_1}\right)}{\left(\frac{a_2}{a_1} \frac{d_1 + p_1}{p_1} - 2\right) p_1}\right)
\]

\[
b_3 = - \left(p_2 \left(\frac{a_2}{a_1} \frac{d_1 + p_1}{p_1} - 1\right) - d_2\right) \left(1 - \frac{1}{2a_1}\right) p_1 - \frac{d_1}{2a_1} \frac{d_1 + p_1}{p_1} d_3
\]

We numerically check at which locations of the parameter space $b_1 b_2 - b_3$ changes its sign from positive to negative. In the considered parameter space b_1 and b_3 are positive.

Remark 3 Global boundedness of solutions also holds for the extended model with positive d_1 and d_2. The proof works analogously to the proof of Theorem 1 with $B_1 := \frac{1+p_2-a_2}{2(1-a_1)}$ and $B_2 := \frac{2B_1+2p_1}{2(1-a_2)}$. The expression for the unique strictly positive steady state together with necessary and sufficient criteria for its existence are provided in the work by Stiehl and Marciniak-Czochra (2011). The same applies to the semi-trivial equilibria.
Table 2 Parameter configurations leading to a Hopf bifurcation

Constellation	a_1	p_1	d_1	a_2	p_2	d_2	d_3
1	↑	↓					
2	↑	↑					
3	↑	↑	↑				
4	↑	↓	↑				
5	↑		↑	↑			
6		↑	↓	↑			
7			↓	↑	↑		
8	↑	↑	↑				
9	↑	↑	↑				

4.2 Results

Numerical simulations show that if only one parameter differs from its reference value, no Hopf-bifurcation is observed. The same holds if two parameters differ from their reference values. The minimal requirement for a Hopf-bifurcation to occur is that three parameters deviate from their respective reference values. All scenarios where Hopf bifurcation can occur are summarized in Table 2, more details are provided in “Appendix B” and Fig. 5. For some parameters significant deviations from the reference values are required to observe Hopf bifurcation. One example for this is the neutrophil apoptosis rate, where a reduction to less than 25% of its original value is required. Taking into account the large variations of the respective cell parameters observed in healthy individuals under immune stimulation (5–10 fold), parameter changes of this order of magnitude can be considered biologically realistic (Lord et al. 1992).

Our findings are in line with the following results from literature:

1. The fact that Hopf bifurcations only occur if multiple parameters deviate from their reference values may explain why oscillating blood cell counts are rarely observed.
2. The death rates of immature cells are increased in most parameter configurations. This is in line with experimental findings by Grenda et al. (2007). However, increase of immature cell death is not necessary to obtain a Hopf bifurcation (see Constellations 1 and 2 in Table 2).
3. The model can reproduce neutrophil dynamics in cyclical neutropenia, see Fig. 4, if the feedback parameter k deviates from its reference value.
4. For certain parameter values the model shows oscillations with a period of several months. Such oscillations have been observed in case of chronic myeloid leukemia (Hirayama et al. 2003; Rodriguez and Lutcher 1976; Gatti et al. 1973).
5. Many parameter configurations show increased death rates of stem and/or progenitor cells. This finding can explain why in some patients oscillations are induced by chemotherapeutic agents and other drugs inducing cell death (Baird et al. 2015; Kennedy 1970; Morley and Stohlman 1970).
Fig. 4 Overlay of patient data and example simulations: Model simulations qualitatively reproduce neutrophil dynamics in cyclic neutropenia. Patient data taken from the work by Dale et al. (2002), Fig. 2a. Parameters: a $a_1 = 0.85$, $p_1 = 1$, $a_2 = 0.841$/day, $p_2 = 0.4$/day, $d_1 = 0$, $d_2 = 0.5592$/day, $d_3 = 0.36765$/day, $k = 3.5 \times 10^{-8}$. b $a_1 = 0.85$, $p_1 = 0.9293$, $a_2 = 0.841$/day, $p_2 = 0.0150$/day, $d_1 = 0$, $d_2 = 0.2541$/day, $d_3 = 2.3$/day, $k = 3.2 \times 10^{-8}$.

The numerical studies provide the following insights into diseases with oscillating blood cell counts.

1. In some parameter configurations a_1 or p_1 or both are increased. Several studies show that increased stem cell self-renewal and proliferation are linked to malignancy (Stiehl et al. 2014a, 2015; Kelly and Gilliland 2002; Kikushige et al. 2015; Wang et al. 2010). This may explain why oscillating blood cell counts can be interpreted as a premalignant state (Lensink et al. 1986; Dale and Hammond 1988). However, increased stem cell self-renewal and proliferation are not necessary for a Hopf-bifurcation to occur. This may explain why several studies do not see a relation between oscillating blood cell counts and malignancies (Dale et al. 2002).

2. According to the considered model Hopf bifurcations can occur for decreased mature cell clearance d_3 but not for increased d_3. This is surprising, since for a long time increased mature cell death has been suspected as the origin of oscillating blood cell counts. Experiments, however, have shown that mature cell clearance is not increased in cyclic neutropenia (Guerry et al. 1973). In some patients with cyclic neutropenia a slight decrease of neutrophil clearance has been reported by Guerry et al. (1973).

3. Periodic auto-inflammatory syndromes, such as the PFAPA syndrome are associated with reduced neutrophil apoptosis (Kraszewska-Gaomba et al. 2015; Sundqvist et al. 2013). These syndromes are characterized by periodic inflammations with increased white blood cell counts (Brown et al. 2010). Our results support the idea that decreased neutrophil apoptosis may contribute to the periodicity of the symptoms.

4. All detected parameter configurations involve changes in progenitor or mature cell parameters compared to healthy controls. It is controversial whether oscillating blood cell counts require functional deficits on the level of stem cells or whether alterations in the progenitor cell compartment are sufficient. Our model suggests
that both scenarios can exist. In some cases stem cell properties \((a_1, p_1, d_1)\) differ from their physiologic reference values (Constellations 1-5 and 8, 9), whereas in other cases they do not (Constellations 6 and 7).

5. Whenever a Hopf bifurcation occurs, the counts of stem, progenitor and mature cells oscillate. This is in line with bone marrow examinations showing oscillations of immature cells (Guerry et al. 1973). Furthermore it fits to the clinical observation that in many patients not only white but also other blood cell counts oscillate (Langlois et al. 2018; Guerry et al. 1973). Of note the observation of oscillating stem cell counts does not imply that stem cell parameters have to deviate from their reference values. Alterations of progenitor cell parameters can be sufficient (Constellations 6 and 7).

6. For many parameter configurations blood cell counts oscillate within physiological bounds. This may suggest that oscillating blood cell counts not necessarily lead to clinical symptoms. The occurrence of oscillating blood cell counts in healthy patients is so far controversial (Morley 1966; Dale et al. 1973, 2002).
7. If the value of k remains unchanged, all considered parameter configurations lead to neutrophil counts that are too high to be compatible with those observed in cyclic neutropenia (Dale et al. 2002). However, changes in the parameter k lead to the clinically observed low neutrophil counts. Examples are depicted in Fig. 4. This observation is in line with the experimental finding that response of immature cells to feedback signals is altered in patients with cyclic neutropenia (Hammond et al. 1992). To observe low neutrophil counts k has to be higher than its reference value. This means that the effect of cytokines is reduced in patients with cyclic neutropenia, as it has been observed experimentally by Hammond et al. (1992).

8. The bifurcation point is independent of the value of the feedback parameter k. This means that changes in the feedback signal that affect all cells simultaneously cannot produce oscillations. Consequently, substitution of feedback signals (such as G-CSF) cannot prevent oscillations. This is in line with clinical observations by Hammond et al. (1989). This finding supports the idea that alterations in the feedback mechanism may be responsible for the low neutrophil counts in cyclic neutropenia but not for the oscillations.

5 Discussion

In this work we prove the occurrence of Hopf bifurcation in a mathematical model of white blood cell formation. The model describes time evolution of a cell population structured by three maturation stages (stem, progenitor and mature cells) that are regulated by a nonlinear feedback mechanism. We show that for appropriate parameter choices a super-critical Hopf bifurcation occurs and a stable limit cycle emerges. This constitutes a major difference to the two-compartment version of the model that distinguishes only between mature and immature cells and has a globally stable steady state (Getto et al. 2013). This finding demonstrates that the number of maturation stages can impact dynamical features of the system.

The considered model has been applied to clinical data and shows a good agreement with reality (Marciniak-Czochra et al. 2009; Stiehl et al. 2014a, b, c, 2015, 2018). It predicts that a Hopf bifurcation can occur for biologically plausible parameters and thus provides possible explanations for disease mechanisms that lead to oscillating blood cell counts. Our systematic numerical study suggests that sustained oscillations only occur if multiple parameters deviate from their physiological reference values. This finding is in line with the observation that oscillating blood cell counts are rarely observed.

Biological data and theoretical results have linked the occurrence of oscillating blood cell counts to increased death rates of immature cells. This finding is supported by our model, however, our results suggest that increased immature cell death is not necessary to obtain a stable limit cycle. Alterations of mature cell death rates together with stem or progenitor cell self-renewal and proliferation are also sufficient. The impact of perturbed self-renewal on oscillating blood cell counts has been discussed in the context of a linear model by Dingli et al. (2009).

One of the most common diseases exhibiting periodic oscillations of white blood cells is cyclic neutropenia. Our model suggests that the low cell numbers detected in
these patients can only be reproduced if the response of immature cells to feedback signals is reduced. This result is in line with in vitro experimental findings. Interestingly, the occurrence of Hopf-bifurcation is independent of the parameters that describe the feedback signal. This suggests that alterations in the feedback that simultaneously affect all cell types cannot lead to oscillating cell counts. However, in presence of parameter configurations that lead to oscillations, an additional alteration of the feedback signal can impact their amplitude. This result leads to the hypothesis that the experimentally detected reduced response of immature cells to cytokines in patients with cyclic neutropenia is the pathogenic mechanism leading to low cell counts; however it does not contribute to the occurrence of oscillations. This hypothesis is further supported by clinical data showing that administration of growth factors such as G-CSF increases white blood cell counts but does not lead to cessation of the periodic oscillations (Migliaccio et al. 1990; Hammond et al. 1989).

The finding that multiple different parameter configurations can result in oscillating blood cell counts may explain parts of the heterogeneity among cyclic neutropenia patients. It furthermore suggests that different detected mutations (Makaryan et al. 2015; Germeshausen et al. 2013; Alangari et al. 2013; Boo et al. 2015; Whited et al. 2013; Cipe et al. 2018) may lead to different pathogenic mechanisms that result in similar symptoms.

In summary, we have proven the occurrence of a Hopf bifurcation in a non-linear three-compartment model of white blood cell formation. The Hopf bifurcation is a unique feature of the three-compartment setting and does not occur in the 2-compartment version of the model. We identify biologically plausible parameter sets that lead to a stable limit cycle and relate them to clinical and experimental findings. This quantitative approach can help to understand the pathogenic mechanisms and the clinical heterogeneity of different diseases that lead to oscillating blood cell counts.

Acknowledgements This work was supported by research funding from the German Research Foundation DFG (Collaborative Research Center SFB 873, Maintenance and Differentiation of Stem Cells in Development and Disease, subproject B08).

A Supplementary calculations to the proof of Theorem 2

In the following we provide the calculations leading to Eq. (3).

\[b_1 b_2 - b_3 \]

\[
= \left[\left(1 - \frac{a_2}{a_1} \right) p_2 + \left(1 - \frac{a_2}{a_1} \left(1 - \frac{1}{2 a_1} \right) \frac{1}{2 - \frac{a_2}{a_1}} \right) d_3 \right] \\
\cdot \left[\left(1 - \frac{a_2}{a_1} \left(1 - \frac{1}{2 a_1} \right) \frac{1}{2 - \frac{a_2}{a_1}} \right) - \left(1 - \frac{1}{2 a_1} \right) \left(1 - 2 \frac{a_2}{a_1} \right) \right] d_3 p_2 \\
- \left(1 - \frac{1}{2 a_1} \right) \left(1 - \frac{a_2}{a_1} \right) d_3 p_2 \\
= \left[\left(1 - \frac{a_2}{a_1} \right) p_2 + \left(1 - \frac{a_2}{a_1} \left(1 - \frac{1}{2 a_1} \right) \frac{1}{2 - \frac{a_2}{a_1}} \right) d_3 \right]
\]
\[
\cdot \left(1 - \frac{1}{2a_1}\right) \left(1 - \frac{a_2}{a_1}\right) \left[\frac{1}{1 - \frac{1}{2a_1}} - \frac{a_2}{a_1} \frac{1}{2 - \frac{a_2}{a_1}} - \frac{1 - 2 \frac{a_2}{a_1}}{1 - \frac{a_2}{a_1}}\right] d_3 p_2
- \left(1 - \frac{1}{2a_1}\right) \left(1 - \frac{a_2}{a_1}\right) d_3 p_2
= \left(1 - \frac{1}{2a_1}\right) \left(1 - \frac{a_2}{a_1}\right) \left[\left(1 - \frac{a_2}{a_1}\right) p_2 + \left(1 - \frac{a_2}{a_1} \left(1 - \frac{1}{2a_1}\right) \frac{1}{2 - \frac{a_2}{a_1}}\right) d_3\right]
\cdot \left[\frac{1}{2a_1} \frac{1 - \frac{1}{a_1}}{1 - \frac{a_2}{a_1}} + \frac{a_2}{a_1} \frac{1}{2 - \frac{a_2}{a_1}} \left(1 - \frac{a_2}{a_1}\right) \right] - 1\right] d_3 p_2
= \left(1 - \frac{1}{2a_1}\right) \left(1 - \frac{a_2}{a_1}\right) \left[\left(1 - \frac{a_2}{a_1}\right) p_2 + \beta (a_1, a_2) d_3\right] \cdot \gamma (a_1, a_2) - 1\right] d_3 p_2.
\]

B Parameter configurations leading to Hopf bifurcation

Biologically plausible parameter regions where the Hopf-bifurcation exists are visualized in Fig. 5. The reported values for \(a_1\) and \(a_2\) correspond to the self-renewal fraction in presence of maximal stimulation. The self-renewal fraction at time \(t\) is given by \(a_1 s(t)\) and \(a_2 s(t)\) with \(s(t) < 1\).

Constellation 1:	Constellation 2:
\(p_1\) increased	\(p_1\) increased
\(a_2\) decreased	\(a_1\) increased
\(d_3\) decreased (\(< 0.5/\text{day}\))	\(d_3\) decreased (close to 0.1/\text{day})
Example:	Example:
\(p_1 = 0.7171/\text{day}\)	\(p_1 = 0.9697/\text{day}\)
\(a_2 = 0.32\)	\(a_1 = 0.99\)
\(d_3 = 0.132/\text{day}\)	\(d_3 = 0.132/\text{day}\)

Constellation 3:	Constellation 4:
\(p_1\) increased	\(p_1\) increased
\(a_2\) increased (close to 1)	\(p_2\) decreased
\(d_3\) increased	\(d_2\) increased
Example:	Example:
\(p_1 = 0.7778/\text{day}\)	\(p_1 = 0.8687/\text{day}\)
\(a_2 = 0.99\)	\(p_2 = 0.0201/\text{day}\)
\(d_3 = 2.6644/\text{day}\)	\(d_2 = 0.2541/\text{day}\)

Constellation 5:	Constellation 6:
\(p_1\) increased	\(p_2\) decreased (close to 0.01)
\(d_2\) increased	\(a_2\) increased (close to 1)
\(d_3\) decreased	\(d_2\) increased
Example:	Example:
\(p_1 = 0.707/\text{day}\)	\(p_2 = 0.01/\text{day}\)
\(d_2 = 0.2541/\text{day}\)	\(a_2 = 0.99\)
\(d_3 = 0.132/\text{day}\)	\(d_2 = 0.5287/\text{day}\)
Oscillations in a white blood cell production model with… 597

Constellation 7:

\[p_2 \] decreased
\[d_2 \]
increased
\[d_3 \]
decreased

Example:

\[p_2 = 0.01/\text{day} \]
\[d_2 = 0.0405/\text{day} \]
\[d_3 = 0.132/\text{day} \]

Constellation 8:

\[a_1 \]
increased
\[d_1 \]
slightly increased (\(< 0.1/\text{day}\))
\[d_2 \]
increased

Example:

\[a_1 = 0.95 \]
\[d_1 = 0.0405/\text{day} \]
\[d_2 = 2.7559/\text{day} \]

Constellation 9:

\[a_2 \]
increased
\[d_1 \]
slightly increased (\(< 0.05/\text{day}\))
\[d_2 \]
increased

Example:

\[a_2 = 0.95 \]
\[d_1 = 0.0405/\text{day} \]
\[d_2 = 2.5423/\text{day} \]

References

Alangari A, Alsultan A, Osman M, Anazi S, Alkuraya F (2013) A novel homozygous mutation in G6PC3 presenting as cyclic neutropenia and severe congenital neutropenia in the same family. J Clin Immunol 33(8):1403–1406

Baird J, Minniti C, Lee J, Tian X, Wu C, Jackson M, Alam S, Taylor JG, Kato G (2015) Oscillatory haematopoiesis in adults with sickle cell disease treated with hydroxycarbamide. Br J Haematol 168(5):737–746

Bernard S, Belair J, Mackey M (2003) Oscillations in cyclical neutropenia: new evidence based on mathematical modeling. J Theor Biol 223(3):283–298

Boo Y, Nam M, Lee E, Lee K (2015) Cyclic neutropenia with a novel gene mutation presenting with a necrotizing soft tissue infection and severe sepsis: case report. BMC Pediatr 15:34

Brown K, Wekell P, Osla V, Sundqvist M, Sävman K, Fasth A, Karlsson A, Berg S (2010) Profile of blood cells and inflammatory mediators in periodic fever, aphthous stomatitis, pharyngitis and adenitis (PFAPA) syndrome. BMC Pediatr 10:65

Busse J, Gwiazda P, Marciniak-Czochra A (2016) Mass concentration in a nonlocal model of clonal selection. J Math Biol 73(4):1001–1033

Cartwright GE, Athens JW, Wintrobe MM (1964) The kinetics of granulopoiesis in normal man. Blood 24:780–803

Cipe F, Celiksoy M, Erturk B, Aydogmus C (2018) Cyclic manner of neutropenia in a patient with HAX-1 mutation. Pediatr Hematol Oncol 22:1–5

Colijn C, Mackey M (2005) A mathematical model of hematopoiesis: II. cyclical neutropenia. J Theor Biol 237(2):133–146

Colijn C, Dale D, Foley C, Mackey M (2006) Observations on the pathophysiology and mechanisms for cyclic neutropenia. Math Model Nat Phenom 1:45–69

Dale D, Graw RG (1974) Transplantation of allogenic bone marrow in canine cyclic neutropenia. Science 183(4120):83–84

Dale D, Hammond W (1988) Cyclic neutropenia: a clinical review. Blood Rev 2(3):178–185

Dale D, Alling D, Wolff S (1972) Cyclic hematopoiesis: the mechanism of cyclic neutropenia in grey collie dogs. J Clin Invest 51(8):2197–2204
Dale D, Alling D, Wolff S (1973) Application of time series analysis to serial blood neutrophil counts in normal individuals and patients receiving cyclophosphamide. Br J Haematol 24(1):57–64

Dale D, Bolyard A, Aprikyan A (2002) Cyclic neutropenia. Semin Hematol 39(2):89–94

Dingli D, Antal T, Traulsen A, Pacheco J (2009) Progenitor cell self-renewal and cyclic neutropenia. Cell Prolif 42(3):330–338

Gantmacher F (1964) The theory of matrices 2. Chelsea Publishing, Chelsea

Gatti R, Robinson W, Deinard A, Nesbit M, McCullough J, Ballow M, Good R (1973) Cyclic leukocytosis in chronic myelogenous leukaemia: new perspectives on pathogenesis and therapy. Blood 41(6):771–782

Germeshausen M, Deerrberg S, Peter Y, Reimer C, Kratz C, Ballmaier M (2013) The spectrum of elane mutations and their implications in severe congenital and cyclic neutropenia. Hum Mutat 34(6):905–914

Getto P, Marciniak-Czochra A, Nakata Y, Vivanco M (2013) Global dynamics of two-compartment models for cell production systems with regulatory mechanisms. Math Biosci 245:258–268

Gopalsamy K, Kulenovic M, Ladas G (1990) Oscillations and global attractivity in models of hematopoiesis. J Dyn Differ Equ 2:117–132

Grenda D, Murakami M, Ghatak J, Xia J, Boxer L, Dale D, Dinauer M, Link D (2007) Mutations of the ELA2 gene found in patients with severe congenital neutropenia induce the unfolded protein response and cellular apoptosis. Blood 110(13):4179–4187

Guerry D, Dale D, Omine M, Perry S, Wolff S (1973) Periodic hematopoiesis in human cyclic neutropenia. J Clin Invest 52(12):3220–3230

Hammond W, Price T, Souza L, Dale D (1989) Treatment of cyclic neutropenia with granulocyte colony-stimulating factor. N Engl J Med 320(20):1306–1311

Hammond W, Chatta G, Andrews R, Dale D (1992) Abnormal responsiveness of granulocyte-committed progenitor cells in cyclic neutropenia. Blood 79(10):2536–2539

Haurie C, Dale D, Mackey M (1998) Cyclic neutropenia and other periodic hematological disorders: a review of mechanisms and mathematical models. Blood 92(8):2629–2640

Haurie C, Dale D, Rudnicki R, Mackey M (2000) Modeling complex neutrophil dynamics in the grey collie. J Theor Biol 204(4):505–519

Hirayama Y, Sakamaki S, Tsuji Y, Matsunaga T, Niitsu Y (2003) Cyclic platelet and leukocyte count oscillation in chronic myelocytic leukemia regulated by the negative feedback of transforming growth factor beta. Int J Hematol 77(1):71–74

Jandl JH (1996) Blood cell formation. In: Jandl JH (ed) Textbook of hematology. Little, Brown and Company, Boston, pp 1–69

Johnson N, Kotz S, Balakrishnan N (1994) Continuous univariate distributions, vol 1, 2nd edn. Wiley, Hoboken

Kazarinoff N, van den Driessche P (1979) Control of oscillations in hematopoiesis. Science 203(4387):1348–1349

Kelly L, Gilliland D (2002) Genetics of myeloid leukemias. Annu Rev Genom Hum Genet 3:179–198

Kennedy B (1970) Cyclic leukocyte oscillations in chronic myelogenous leukemia during hydroxyurea therapy. Blood 35(6):751–760

Kikushige Y, Miyamoto T, Yuda J, Jabbarzadeh-Tabrizi S, Shima T, Takayanagi S, Niiero H, Yurino A, Miyawaki K, Takenaka K, Iwasaki H, Akashi K (2015) A TIM-3/GAL-9 autocrine stimulatory loop drives self-renewal of human myeloid leukemia stem cells and leukemic progression. Cell Stem Cell 17(3):341–352

King-Smith E, Morley A (1970) Computer simulation of granulopoiesis: normal and impaired granulopoiesis. Blood 36(2):254–262

Krance R, Spruce W, Forman S, Rosen R, Hecht T, Hammond W, Blume K (1982) Human cyclic neutropenia transferred by allogeneic bone marrow grafting. Blood 60(6):1263–1266

Kraszewski-Gomba B, Matkowska-Kocjan A, Szenborn L (2015) The pathogenesis of periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis syndrome: a review of current research. Mediat Inflamm 2015:563876

Kuznetsov JA (2004) Elements of applied bifurcation theory, vol 112, 3rd edn. Springer, New York. ISBN 0-387-21906-4; 978-0-387-21906-6

Langlois G, Arnold D, Potts J, Leber B, Dale D, Mackey M (2018) Cyclic thrombocytopenia with statistically significant neutrophil oscillations. Clin Case Rep 6(7):1347–1352

Layton J, Hockman H, Sheridan W, Morstyn G (1989) Evidence for a novel in vivo control mechanism of granulopoiesis: mature cell-related control of a regulatory growth factor. Blood 74:1303–1307
Lei J, Mackey M (2011) Multistability in an age-structured model of hematopoiesis: cyclical neutropenia. J Theor Biol 270(1):143–153

Lensink D, Barton A, Appelbaum F, Hammond WP (1986) Cyclic neutropenia as a pre-malignant manifestation of acute lymphoblastic leukemia. Am J Hematol 22(1):9–16

Lord B, Gurney H, Chang J, Thatcher N, Crowther D, Dexter T (1992) Haemopoietic cell kinetics in humans treated with rGM-CSF. Int J Cancer 50:26–31

Mackey M (1978) Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis. Blood 51(5):941–956

Makaryan V, Zeidler C, Bolyard A, Skokowa J, Rodger E, Kelley M, Boxer L, Bonilla M, Newburger P, Shimamura A, Zhu B, Rosenberg P, Link D, Welte K, Dale D (2015) The diversity of mutations and clinical outcomes for elane-associated neutropenia. Curr Opin Hematol 22(1):3–11

Marciniak-Czochra A, Stiehl T, Jäger W, Ho AD, Wagner W (2009) Modeling of asymmetric cell division in hematopoietic stem cells—regulation of self-renewal is essential for efficient repopulation. Stem Cells Dev 18:377–385

Marciniak-Czochra A, Mikelic A, Stiehl T (2018) Renormalization group second-order approximation for singularly perturbed nonlinear ordinary differential equations. Math Methods Appl Sci 41:5691–5710

Metcalf D (2008) Hematopoietic cytokines. Blood 111:485–491

Migliaccio A, Migliaccio G, Dale D, Hammond W (1990) Hematopoietic progenitors in cyclic neutropenia: effect of granulocyte colony-stimulating factor in vivo. Blood 75(10):1951–1959

Morgan D, Desai A, Edgar B, Glotzer M, Heald R, Karsenti E, Nasmuth K, Pines J, Sherr C (2007) The cell cycle. In: Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter R (eds) Molecular biology of the cell, 5th edn. Garland Science, New York City

Morley A (1966) A neutrophil cycle in healthy individuals. Lancet 2(7475):1220–1222

Morley A, Stohlman F Jr (1970) Cyclophosphamide-induced cyclical neutropenia: an animal model of a human periodic disease. N Engl J Med 282(12):643–646

Okolo O, Katsanis E, Yun S, Reveles C, Anwer F (2017) Allogeneic transplant in elane and mefv mutation positive severe cyclic neutropenia: review of prognostic factors for secondary severe events. Case Rep Hematol 2017:537593

Pillay J, den Braber I, Vrisekoop N, Kwast L, de Boer R, Borghans J, TESSelaar K, Koenderman L (2010) In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood 116(4):625–627

Reya T, Morrison S, Clarke M, Weissman I (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111

Rodriguez A, Lutcher C (1976) Marked cyclic leukocytosis-leukopenia in chronic myelogenous leukemia. Am J Med 60(7):1041–1047

Stiehl T, Marciniak-Czochra A (2011) Characterization of stem cells using mathematical models of multi-stage cell lineages. Math Comput Model 53:1505–1517

Stiehl T, Marciniak-Czochra A (2012) Mathematical modelling of leukemogenesis and cancer stem cell dynamics. Math Model Nat Phenom 7:166–202

Stiehl T, Marciniak-Czochra A (2017) Stem cell self-renewal in regeneration and cancer: insights from mathematical modeling. Curr Opin Syst Biol 5:112–120

Stiehl T, Marciniak-Czochra A (2019) How to characterize stem cells? Contributions from mathematical modeling. Current stem cell reports. https://doi.org/10.1007/s40778-019-00155-0

Stiehl T, Baran N, Ho A, Marciniak-Czochra A (2014a) Clonal selection and therapy resistance in acute leukaemias: mathematical modelling explains different proliferation patterns at diagnosis and relapse. J R Soc Interface 11:20140079

Stiehl T, Ho A, Marciniak-Czochra A (2014b) Assessing hematopoietic (stem-) cell behavior during regenerative pressure. Adv Exp Med Biol 844:347–367

Stiehl T, Ho A, Marciniak-Czochra A (2014c) The impact of CD34+ cell dose on engraftment after SCTs: personalized estimates based on mathematical modeling. Bone Marrow Transplant 49:30–37

Stiehl T, Baran N, Ho A, Marciniak-Czochra A (2015) Cell division patterns in acute myeloid leukemia stem-like cells determine clinical course: a model to predict patient survival. Cancer Res 75:940–949

Stiehl T, Ho A, Marciniak-Czochra A (2018) Mathematical modeling of the impact of cytokine response of acute myeloid leukemia cells on patient prognosis. Sci Rep 8(1):2809

Sundqvist M, Wekell P, Osla V, Bylund J, Christenson K, Savman K, Foell D, Cabral D, Fasih A, Berg S, Brown K, Karlsson A (2013) Increased intracellular oxygen radical production in neutrophils during febrile episodes of periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis syndrome. Arthritis Rheum 65:2971–2983
von Schulthess G, Mazer N (1982) Cyclic neutropenia (cn): a clue to the control of granulopoiesis. Blood 59(1):27–37
Walenda T, Stiehl T, Braun H, Froebel J, Ho A, Schroeder T, Goecke T, Rath B, Gerning U, Marciniak-Czochra A, Wagner W (2014) Feedback signals in myelodysplastic syndromes: increased self-renewal of the malignant clone suppresses normal hematopoiesis. PLoS Comput Biol 10:e1003599
Wang Y, Krivtsov A, Sinha A, North T, Goessling W, Feng Z, Zon L, Armstrong S (2010) The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science 327(5973):1650–1653
Wheldon T (1975) Mathematical models of oscillatory blood cell production. Math Biosci 24:289–305
Whited K, Baile M, Currier P, Claypool S (2013) Seven functional classes of barth syndrome mutation. Hum Mol Genet 22(3):483–492
Wright D, LaRussa V, Salvado A, Knight R (1989) Abnormal responses of myeloid progenitor cells to granulocyte-macrophage colony-stimulating factor in human cyclic neutropenia. J Clin Invest 83(4):1414–1418

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.