Mahotas: Open source software for scriptable computer vision

Luis Pedro Coelho
Lane Center for Computational Biology, Carnegie Mellon University
Instituto de Medicina Molecular
January 2013

Abstract
Mahotas is a computer vision library for Python. It contains traditional image processing functionality such as filtering and morphological operations as well as more modern computer vision functions for feature computation, including interest point detection and local descriptors.

The interface is in Python, a dynamic programming language, which is very appropriate for fast development, but the algorithms are implemented in C++ and are tuned for speed. The library is designed to fit in with the scientific software ecosystem in this language and can leverage the existing infrastructure developed in that language. Mahotas is released under a liberal open source license (MIT License) and is available from http://github.com/luispedro/mahotas and from the Python Package Index (http://pypi.python.org/pypi/mahotas).

Keywords: computer vision, image processing.

1 Introduction
Mahotas is a computer vision library for the Python Programming Language (versions 2.5 and up, including version 3 and up). It operates on numpy arrays (van der Walt et al., 2011). Therefore, it uses all the infrastructure built by that project for storing information and performing basic manipulations and computations. In particular, unlike libraries written in the C Language or in Java (Marcel and Rodriguez, 2010), Mahotas does not need to define a new image data structure, but uses the numpy array structure. Many basic manipulation functionality that would otherwise be part of a computer vision library are handled by numpy. For example, computing averages and other simple statistics, handling multi-channel images, converting between types (integer and floating point images are supported by mahotas) can all be performed with numpy builtin
functionality. For the user, this has the additional advantage that they do not need to learn yet another set of functions.

It contains over 100 functions with functionality ranging from traditional image filtering and morphological operations to more modern wavelet decompositions and local feature computations. Additionally, by integrating into the Python numeric ecosystem, users can use other packages in a seamless way. In particular, mahotas does not implement any machine learning functionality, but rather advises the user to use another, specialised package, such as scikits-learn or milk.

Python is a natural “glue” language: it is easy to use state-of-the-art libraries written in multiple languages (Oliphant, 2007). Mahotas itself is a mix of high-level Python and low-level C++. This achieves a good balance between speed and ease of implementation.

Version 1.0 of mahotas has been released recently and this is now a mature, well-tested package (the first versions were made available over 4 years ago, although the package was not named mahotas then). 1 Mahotas runs and is used on different versions of Unix (including Linux, SunOS, and FreeBSD), Mac OS X, and Windows.

2 Implementation and Architecture

2.1 Interface

The interface is a procedural interface, with no global state. All functions work independently of each other (there is code sharing at the implementation level, but this is hidden from the user).

The main functionality is grouped into the following categories:

Surf Speeded-up Robust Features (Bay et al., 2008). This includes both keypoint detection and descriptor computation.

Features Global feature descriptors. In particular, Haralick texture features, Zernike moments, local binary patterns, and threshold adjacency statistics (both the original (Hamilton et al., 2007) and the parameter-free versions (Coelho et al., 2010b)).

Wavelet Haar and Daubechies wavelets. Forward and inverse transforms are supported.

Morphological functions Erosion and dilation, as well as some more complex operations built on these. There are both binary and grayscale implementations of these operators.

Watershed seeded watershed and distance map transforms (Felzenszwalb and Huttenlocher, 2004).

Filtering Gaussian filtering, edge finding, and general convolutions.

1Note for reviewers: the version currently available (0.9.6) implements all functionality described in this manuscript. I will release it as version 1.0 when this manuscript is accepted to coincide with publication. Naturally, any bugs that are found and reported in the meanwhile will be addressed.
Polygon operations: convex hull, polygon drawing.

Numpy arrays contain data of a specific type, such as unsigned 8 bit integer or floating point numbers. While natural colour images are typically 8 bits, scientific data is often larger and processing can result in floating point images. Mahotas works on all datatypes. This is performed without any extra memory copies. Mahotas is heavily optimised for both speed and memory usage (it can be used with very large arrays).

There are a few interface conventions which apply to many functions. When meaningful, a structuring element is used to define neighbourhoods or adjacency relationships (morphological functions, in particular, use this convention). Generally, the default is to use a 3×3 cross as the default if no structuring filter is given.

When a new image is to be returned, functions take an argument named `out` where the output will be stored. This argument is often much more restricted in type. In particular, it must be a contiguous array. Since this is a performance feature (its purpose is to avoid extra memory allocation), it is natural that the interface is less flexible (accessing a contiguous array is much more efficient than a non-contiguous one).

2.2 Example of Use

Code for this and other examples is present in the mahotas source distribution under the `demos/` directory. In this example, we load an image, find SURF interest points, and compute descriptors.

We start by importing the necessary packages, including numpy and mahotas. We also use milk, to demonstrate how the mahotas output can integrate with a machine learning package.

```python
import numpy as np
import mahotas
from mahotas.features import surf
import milk
```

The first step is to load the image and convert to 8 bit numbers. In this case, the conversion is done using standard numpy methods, namely `astype`:

```python
f = mahotas.imread('luispedro.jpg', as_grey=True)
f = f.astype(np.uint8)
```

We can now compute SURF interest points and descriptors.

```python
spoints = surf.surf(f, 4, 6, 2)
descrs = spoints[:,6:]
```

3Numpy supports non-contiguous arrays, which are most often slices into other, larger, contiguous arrays (e.g., given a 128×128 contiguous array, one can build a 64×128 non-contiguous array by taking every other row).
Using milk, we cluster the descriptors into five groups:

```python
values, _ = milk.kmeans(descrs, 5)
```

Finally, we can show the points in different colours.

```python
colors = np.array([ [ 255, 25, 1],
                    [ 203, 77, 37],
                    [ 151, 129, 56],
                    [ 99, 181, 52],
                    [ 47, 233, 5]])
f2 = surf.show_surf(f, spoints[:64], values, colors)
```

The `surf.show_surf` only builds the image as a multi-channel (one for each colour) image. Using matplotlib (Hunter, 2007), we finally display the image as Figure 1.

```python
from matplotlib import pyplot as plt
plt.subplot(1,2,1)
plt.imshow(f)
plt.subplot(1,2,2)
plt.imshow(f2)
```

The easy interaction with matplotlib is another way in which we benefit from the numpy-based ecosystem as mahotas does not need to support interacting with a graphical system to display images.

2.3 Implementation

Mahotas is mostly written in C++, but this is completely hidden from the user as there are hand-written Python wrappers for all functions. Automatically generated wrappers inevitably lead to worse error messages and are less flexible.

The main reason that mahotas is implemented in C++ (and not in C, which is the language of the Python interpreter) is to use templates. Almost C++ functionality is split across 2 functions:

1. A `py.function` which uses the Python C API to get arguments and check them.
2. A template `function<dtype>` which works for the type `dtype` performing the actual operation.

So, for example, this is how erode is implemented.³ `py.erode` consists mostly of boiler-plate code:

```c
PyObject* py_erode(PyObject* self, PyObject* args) {
    PyArrayObject* array;
    PyArrayObject* Bc;
    PyArrayObject* output;
```

³This is the generic version of the code. Erode, like a few other functions, has two versions, a fast version, limited to two-dimensional, contiguous, images and a generic one presented here. The selection between the two implementations is done automatically for the user.
Figure 1: Example of Usage. On the left, the original image is shown, while on the right SURF detections are represented as rectangles of different colours.
if (!PyArg_ParseTuple(args, "OOO", &array, &Bc, &output) ||
!numpy::are_arrays(array, Bc, output) ||
!numpy::same_shape(array, output) ||
!numpy::equiv_typenums(array, Bc, output) ||
PyArray_NDIM(array) != PyArray_NDIM(Bc)) {
 PyErr_SetString(PyExc_RuntimeError, TypeErrorMsg);
 return NULL;
}

holdref r_o(output);

#define HANDLE(type) \
 erode<type>(numpy::aligned_array<type>(output), \
 numpy::aligned_array<type>(array), \
 numpy::aligned_array<type>(Bc));

SAFE_SWITCH_ON_INTEGER_TYPES_OF(array);

#undef HANDLE

This functions retrieves the arguments, performs some sanity checks, performs a bit
of initialisation, and finally, switches in the input type with the help of the SAFE-
SWITCH_ON_INTEGER_TYPES macro, which call the right specialisation of the template
that does the actual work. In this example erode implements erosion:

template<
typename T>
void erode(numpy::aligned_array<T> res,
 numpy::aligned_array<T> array,
 numpy::aligned_array<T> Bc) {
 gil_release nogil;
 const int N = res.size();
 typename numpy::aligned_array<T>::iterator iter = array.begin();
 filter_iterator<T> filter(array.raw_array(), Bc.raw_array(),
 ExtendNearest, is_bool(T()));
 const int N2 = filter.size();
 T* rpos = res.data();

 for (int i = 0;
 i != N;
 ++i, ++rpos, filter.iterate_both(iter)) {
 T value = std::numeric_limits<T>::max();
 for (int j = 0; j != N2; ++j) {
 T arr_val = T();
 filter.retrieve(iter, j, arr_val);
 value = std::min<T>(value, erode_sub(arr_val, filter[j]));
 }
 *rpos = value;
 }
}

The template machinery makes the functions that use it very simple and easy to
read. The only downside is that there is some expansion of code size when the compiler instantiates the function for the several integer and floating point types. Given the small size of these functions, the total size of the compiled library is reasonable (circa 6MiB on an Intel-based 64 bit system for the whole library).

In the snippet above, you can see some other C++ machinery:

gil_release This is a “resource-acquisition is object initialisation” (raii) superscript 4 object that releases the Python global interpreter lock (gil) superscript 5 in its constructor and gets it back in its destructor. Normally, the template function will release the gil after the Python-specific code is done. This allows several mahotas functions to run concurrently.

array This is a thin wrapper around PyArrayObject, the raw numpy data type, which has iterators which resemble the C++ standard library. It also handles type-casting internally, making the code type-safer. This is also a raii object in terms of managing Python reference counts. In mahotas debug builds, this object additionally adds several checks to all the memory accesses.

filter_iterator This was adapted from code in the scipy.ndimage packages and it is useful to iterate over an image and use a centered filter around each pixel (it keeps track of all of the boundary conditions).

The inner loop is as direct an implementation of erosion as one would wish for: for each pixel in the image, look at its neighbours, subtract the filter value, and compute the minimum of this operation.

2.4 Efficiency

Table 1 shows timings for different operations. These were normalized to multiples of the time it takes to go over the image and find its maximum pixel value (this was done using numpy.max(image)). The measurements shown were obtained on an Intel 64 bit system, running Ubuntu Linux. However, due to the normalization, measurements obtained on another system (Intel 32 bits running Mac OS) were qualitatively similar.

The comparison is against Pymorph (Dougherty and Lotufo, 2003), which is a pure Python implementation of some of the same functions; scikits-image, which is a similar project to mahotas, but with a heavier emphasis on the use of Cython (Behnel et al., 2011); and OpenCV, which is a C++ library with automatically generated Python wrappers.

OpenCV is the fastest library, but this comes at the cost of some flexibility. Arguments to its functions must be of the exact expected type and it is possible to crash the

4Raii is a design pattern in C++, or other languages with scope linked deterministic object destruction, such as D, where a resource is represented by an object, whose constructor acquires it and whose destructor releases it. This guarantees that the object is correctly released even if the scope is left through an exception (Stroustrup, 1994).

5In the CPython interpreter, the most commonly used implementation of Python, there is a global lock for many Python related functionality, which limits parallelism.
Table 1: Efficiency Results for mahotas, pymorph, scikits-image, and openCV (through Python wrappers).

Operation	mahotas	pymorph	scikits-image	OpenCV
erode	1.6	15.1	7.4	0.4
dilate	1.5	9.1	7.3	0.4
open	3.2	24.3	14.8	NA
median filter (2)	226.9	NA	2034.0	NA
median filter (10)	2810.9	NA	1877.1	NA
center mass	5.0	NA	3611.2	NA
sobel	34.1	NA	62.5	6.2
cwatershed	174.8	58440.3	287.3	44.9
daubechies	18.8	NA	NA	NA
haralick	233.1	NA	7760.7	NA

Shown are values as multiples of the time that `numpy.max(image)` takes to compute the maximum pixel value in the image (all operations are over the same image). For scikits-image, features on the grey-scale cooccurrence matrix were used instead of Haralick features, which it does not support. In the case of median filter, the radius of the structuring element is shown in parentheses. NA stands for “Not Available.”

Among the other libraries, mahotas is the fastest. Pymorph, even though it is implemented in Python only, intelligently uses arithmetic operations for morphological operation and can be very fast. However, for more complex methods, such as watershed; its pure Python approach is very inefficient. The one exception is that median filtering with a large structuring element is faster in scikit-image. In fact, that library uses an algorithm with better asymptotic behavior for this operation.

2.5 Distribution and Installation

In keeping with the philosophy of blending in with the ecosystem, Mahotas uses the standard Python build machinery and distribution channels. Building and installing from source code is done using

```
python setup.py install
```

Alternatively, Python based package managers (such as `easy_install` or `pip`) can be used (mahotas works well with these systems).
2.6 Quality Control

Mahotas includes a complete automated suite of unit tests, which tests all functionality and include several regression tests. There are no known bugs in version 1.0. In fact, no releases have ever been performed with known bugs. Naturally, bugs were, occasionally, discovered in released versions, but corrected before the next release.

The development is completely open-source and development versions are available. Many users have submitted bug reports and fixes.

3 Availability

Operating system
Mahotas runs and is used on different versions of Unix (including Linux, SunOS, and FreeBSD), Mac OS X, and Windows.\(^6\)

Programming language
Mahotas works in Python (minimal version is 2.5, but mahotas works with all more recent versions, including version in the Python 3 series).

Additional system requirements
None at runtime. Compilation from source requires a C++ compiler.

Dependencies
It requires numpy to be present and installed.

List of contributors
Luis Pedro Coelho (Carnegie Mellon University and Instituto de Medicina Molecular), Zachary Pincus (Stanford University), Peter J. Verveer (European Molecular Biology Laboratory), Davis King (Northrop Grumman ES), Robert Webb (Carnegie Mellon University), Matthew Goodman (University of Texas at Austin), K.-Michael Aye (University of Bern), Rita Simões (University of Twente), Joe Kington (University of Wisconsin), Christoph Gohlke (University of California, Irvine), Lukas Bossard (ETH Zurich), and Sandro Knauss (University of Bremen).

3.0.1 Software location

Code repository
Name: Github
Identifier: https://github.com/luispedro/mahotas
Licence: MIT
Date published: Since 2010 as mahotas. Some of the code had been previously made available under other names.

\(^6\)Christoph Gohlke has been instrumental in providing Windows packages as well as several fixes for that platform.
4 Reuse Potential

Originally, this code was developed in the context of cellular image analysis. However, none of the functionality is specific to this context and many computer vision pipelines can make use of it.

This package (and earlier versions of it) have been used by myself (Coelho et al., 2009, 2010a) and close collaborators in several publications (Cho et al., 2012). Other groups have used it in published work, both in cell image analysis (Mashburn et al., 2012) and in other areas (Machlek and Oleviov, 2013).

5 Discussion

Python is an excellent language for scientific programming because of the inherent properties of the language and because of the infrastructure that has been built around the numpy project. Mahotas works in this environment to provide the user with image analysis and computer vision functionality.

Mahotas does not include machine learning related functionality, such as k-means clustering or classification methods. This is the result of an explicit design decision. Specialised machine learning packages for Python already exist (Pedregosa et al., 2011; Demar et al., 2004; Schaul et al., 2010; Sonnenburg et al., 2010). A good classification system can benefit both computer vision users and others. As these projects all use Numpy arrays as their data types, it is easy to use functionality from the different projects seamlessly (no copying of data is necessary).

Mahotas is implemented in C++, as the standard Python interpreter is too slow for a direct Python implementation. However, all of the Python interface code is handwritten, as opposed to using automatic interface generators like Swig (Beazley, 2003). This is more work initially, but the end result is of much higher quality, especially when it comes to giving useful error messages (e.g., when a type mismatch occurs, an automatic system will often be forced to resort to a generic message as it does not have any knowledge of what the arguments mean besides their automatically inferred types).

Mahotas has been available in the Python Package Index since April 2010 and has been downloaded over 40,000 times. This does not include any downloads from other sources. Mahotas includes a full test suite. There are no known bugs.

Acknowledgements

Mahotas includes code ported and incorporated from other projects. Initially, it was used in reproducing the functionality in the Subcellular Location Image Classifier (SLIC) tool from Robert F. Murphy’s Lab (Zhao and Murphy, 2006) and the initial versions of mahotas were designed explicitly to support that functionality. The surf implementation is a port from the code from dlib, a very good C++ library by Davis King. I also gleaned some insight into the implementation of these features from Christopher Evan’s

7Dlib’s webpage is at http://dlib.net.
OpenSURF library and its documentation (Evans, 2009). The code which interfaces with the FreeImage library, was written by Zachary Pincus and some of the support code was written by Peter J. Verveer for the scipy.ndimage project. All of these contributions were integrated while respecting the software licenses under which the original code had been released. Robert Webb, a summer student at Carnegie Mellon University, worked with me on the initial local binary patterns implementation. Finally, I thank the several users who have reported bugs, submitted fixes, and participated on the project mailing list.

Stéfan van der Walt and Andreas Müller offered helpful comments on a draft version of this manuscript.

Funding: I was supported in my work by the Fundação para a Ciência e Tecnologia (grants SFRH/BD/37535/2007 and PTDC/SAU-GMG/115652/2008), by NIH grant GM078622 (to Robert F. Murphy), by a grant from the Scaife Foundation, by the HHMI Interfaces Initiative, and by a grant from the Siebel Scholars Foundation.

References

Bay, H., Ess, A., Tuytelaars, T., and van Gool, L. (2008). Speeded-up robust features (surf). Computer Vision and Image Understanding (CVIU), 110(3), 346–359.

Beazley, D. (2003). Automated scientific software scripting with swig. Future Generation Computer Systems, 19(5), 599 – 609. Tools for Program Development and Analysis. Best papers from two Technical Sessions, at ICCS2001, San Francisco, CA, USA, and ICCS2002, Amsterdam, The Netherlands.

Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D., and Smith, K. (2011). Cython: The best of both worlds. Computing in Science Engineering, 13(2), 31 –39.

Cho, B. H., Cao-Berg, I., Bakal, J. A., and Murphy, R. F. (2012). Omero.searcher: content-based image search for microscope images. Nature Methods, pages 633–634.

Coelho, L. P., Shariff, A., and Murphy, R. F. (2009). Nuclear segmentation in microscope cell images: A hand-segmented dataset and comparison of algorithms. In 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pages 518–521. IEEE.

Coelho, L. P., Peng, T., and Murphy, R. F. (2010a). Quantifying the distribution of probes between subcellular locations using unsupervised pattern unmixing. Bioinformatics, 26(12), i7–i12.

Coelho, L. P., Ahmed, A., Arnold, A., Kangas, J., Sheikh, A.-S., Xing, E. P., Cohen, W. W., and Murphy, R. F. (2010b). Structured Literature Image Finder: Extracting Information from Text and Images in Biomedical Literature. Lecture notes in computer science, 6004, 23–32.

8OpenSURF is available at http://www.chrisevansdev.com/computer-vision-opensurf.html, where several documents describe details of the implementation.
Demar, J., Zupan, B., Leban, G., and Curk, T. (2004). Orange: From experimental machine learning to interactive data mining. In J.-F. Boulicaut, F. Esposito, F. Giannotti, and D. Pedreschi, editors, Knowledge Discovery in Databases: PKDD 2004, volume 3202 of Lecture Notes in Computer Science, pages 537–539. Springer Berlin / Heidelberg.

Dougherty, E. R. and Lotufo, R. A. (2003). Hands-on Morphological Image Processing. SPIE Press, Bellingham, WA.

Evans, C. (2009). Notes on the OpenSURF Library SURF: Speeded Up Robust Features. (1).

Felzenszwalb, P. and Huttenlocher, D. (2004). Distance transforms of sampled functions. Technical report, Cornell University.

Hamilton, N. A., Pantelic, R. S., Hanson, K., and Teasdale, R. D. (2007). Fast automated cell phenotype image classification. BMC bioinformatics, 8, 110.

Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in Science and Engineering, 9, 90–95.

Machlek, T. and Oleviov, K. (2013). Decentralized multi-agent algorithm for translational 2d image alignment. In A. Zgrzywa, K. Choro, and A. Siemiski, editors, Multimedia and Internet Systems: Theory and Practice, volume 183 of Advances in Intelligent Systems and Computing, pages 15–24. Springer Berlin Heidelberg.

Marcel, S. and Rodriguez, Y. (2010). Torchvision the machine-vision package of torch. In Proceedings of the international conference on Multimedia, MM ’10, pages 1485–1488, New York, NY, USA. ACM.

Mashburn, D. N., Lynch, H. E., Ma, X., and Hutson, M. S. (2012). Enabling user-guided segmentation and tracking of surface-labeled cells in time-lapse image sets of living tissues. Cytometry Part A, 81A(5), 409–418.

Oliphant, T. E. (2007). Python for scientific computing. Computing in Science and Engineering, 9, 10–20.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in python. J. Mach. Learn. Res., 999888, 2825–2830.

Schaul, T., Bayer, J., Wierstra, D., Sun, Y., Felder, M., Sehnke, F., Rückstieß, T., and Schmidhuber, J. (2010). Pybrain. J. Mach. Learn. Res., 11, 743–746.

Sonnenburg, S., Rätsch, G., Henschel, S., Widmer, C., Behr, J., Zien, A., Bona, F. d., Binder, A., Gehl, C., and Franc, V. (2010). The shogun machine learning toolbox. J. Mach. Learn. Res., 11, 1799–1802.
Stroustrup, B. (1994). The design and evolution of C++. Addison-Wesley Professional.

van der Walt, S., Colbert, S., and Varoquaux, G. (2011). The numpy array: A structure for efficient numerical computation. Computing in Science Engineering, 13(2), 22–30.

Zhao, T. and Murphy, R. F. (2006). Automated interpretation of subcellular location patterns from three-dimensional confocal microscopy. In J. B. Pawley, editor, Handbook Of Biological Confocal Microscopy, pages 818–828. Springer US.