Review Article

Phytochemical analysis of Panax species: a review

Yuangui Yang 1, Zhengcai Ju 1, Yingbo Yang 1, Yanhai Zhang 1, Li Yang 1,2,**, Zhengtao Wang 1,2,**

1 The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, China
2 Shanghai R&D Center for Standardization of Chinese Medicines, China

A R T I C L E I N F O

Article history:
Received 3 September 2019
Received in Revised form 29 December 2019
Accepted 31 December 2019
Available online 14 January 2020

Keywords:
Analytical methods
Application
Content
Panax species
Sample preparations

A B S T R A C T

Panax species have gained numerous attentions because of their various biological effects on cardiovascular, kidney, reproductive diseases known for a long time. Recently, advanced analytical methods including thin layer chromatography, high-performance thin layer chromatography, gas chromatography, high-performance liquid chromatography, ultra-high performance liquid chromatography with tandem ultraviolet, diode array detector, evaporative light scattering detector, and mass detector, two-dimensional high-performance liquid chromatography, high speed counter-current chromatography, high speed centrifugal partition chromatography, micellar electrokinetic chromatography, high-performance anion-exchange chromatography, ambient ionization mass spectrometry, molecularly imprinted polymer, enzyme immunoassay, 1H-NMR, and infrared spectroscopy have been used to identify and evaluate chemical constituents in Panax species. Moreover, Soxhlet extraction, heat reflux extraction, ultrasonic extraction, solid phase extraction, microwave-assisted extraction, pressurized liquid extraction, enzyme-assisted extraction, acceleration solvent extraction, matrix solid phase dispersion extraction, and pulsed electric field are discussed. In this review, a total of 219 articles published from 1980 to 2018 are investigated. Panax species including P. notoginseng, P. quinquefolius, sand P. ginseng in the raw and processed forms from different parts, geographical origins, and growing times are studied. Furthermore, the potential biomarkers are screened through the previous articles. It is expected that the review can provide a fundamental for further studies.

© 2020 The Korean Society of Ginseng. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Genus Panax belonging to Family Araliaceae contains eleven species (three varieties) namely P. trifolius, P. notoginseng, P. quinquefolius, P. ginseng, P. pseudoginseng, P. zingiberensis, P. stipuleanatus, P. japonicus, P. japonicus var. angustifolius, P. japonicus var. major, and P. japonicus var. bipinnatifidus, which are mainly distributed in the Eastern Asia and Northern America [1]. Among them, most of the investigations have been conducted on P. notoginseng, P. quinquefolius, and P. ginseng for their pharmacological activity. Their use to treat cardiovascular, kidney, and reproductive diseases has a long history [2]. Various bioactive constituents including ginsenosides, polysaccharides, alkaloids, glucosides, and phenolic acids have been identified in P. ginseng in a previous study [3]. The main ginsenosides isolated from Panax species are shown in Fig. 1. They contain protopanaxadiol, protopanaxatriol, ocatillo, oleanolic acid, and C-17 side chain type [4,5]. Protopanaxadiol has a glucose moiety attached to C-20 and C-3, and protopanaxatriol has glycosylation sites at C-20, C-3, and C-6. The cleavage of glucose bond at C-20 is hydrolyzed before bond at C-3 and C-6 in processed condition [6]. The amount of isomer pairs is detected, and 20(5)-ginsenosides are always eluted more easily than 20(R)-ginsenosides [6]. Moreover, Δ20(21) ginsenosides are eluted before their Δ20(22) derivatives. Ocatillo-type and oleanane-type have a side chain at C-20. Yao et al have identified 945 ginsenosides from P. notoginseng leaves and 662 potentially novel ginsenosides [7]. Various species, parts, processings, regions, and growing times have a great influence on the chemical compounds of herbal medicines.

* Corresponding author. Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai 201203, China.
** Corresponding author. Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai 201203, China.
E-mail addresses: yl7@shutcm.edu.cn (L. Yang), ztwang@shutcm.edu.cn (Z. Wang).

https://doi.org/10.1016/j.jgr.2019.12.009
p1226-8453 e2093-4947/3 — see front matter © 2020 The Korean Society of Ginseng. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Fig. 1. The main ginsenosides of *Panax* species (protopanaxadiol, protopanaxatriol, ootitollol, oleanane, and C-17 side chain type).
In the previous review, chemical and pharmacological diversity of ginsenosides of genus *Panax* L. was summarized [4,8,9]. Wang et al (2015) reviewed analytical techniques that were used in the evaluation of *P. quinquefolius*, while some advanced methods such as 2D-HPLC, micellar electrokinetic chromatography, and high-performance anion-exchange chromatography (HPAEC) were not investigated. In addition, *P. ginseng* and *P. notoginseng* with phenolic acids, dencichines, trilinoleins, flavonoids, and vitamins were not described [10]. Qi et al (2011) reviewed preparation, analytical advance, and applications of ginseng from January 2000 to September 2010 [11]. However, there are only few investigations in which analytical methods were applied to evaluate *Panax* species. Some advanced techniques such as ambient ionization mass spectrometry are hardly described in previous studies. In this review, we analyzed the published phytochemical analysis of *Panax* based on the keywords “Panax, ginseng” from Pubmed and Google Scholar. A total of 219 articles from 1980 to 2019 in the analytical methods of *Panax* species were investigated. As shown in Fig. 2, it is found that few researches are conducted during 1980 and 2000. The number of papers gradually grows with the time. It increased rapidly after 2011. Different sample preparations have significant influence on analysis of the bioactive compounds. The different analytical methods have different performances on the analysis of constituents of *Panax* species. Analytical methods including thin layer chromatography (TLC), high-performance thin layer chromatography (HPTLC), gas chromatography (GC), high-performance liquid chromatography (HPLC), ultra-high performance liquid chromatography (UHPLC) with tandem ultraviolet (UV) detector, diode array detector (DAD), evaporative light scattering detector (ELSD), and mass detector, two-dimensional high-performance liquid chromatography (2D-HPLC), ambient ionization mass spectrometry, high speed counter-current chromatography (HSCCC), and high speed centrifugal partition chromatography (HPCPC) are investigated. Furthermore, the methods have been applied to raw and processed ginseng of different species, from different parts, regions, growing ages, and biochemical analysis. The application in various fields is to screen the potential biomarkers for evaluating and quality control of *Panax* species. It is expected that the current review would have a solid fundamental for the future investigation.

2. Sample preparations

During isolation and purification of bioactive components from natural products, extraction is the first and essential step [12]. A method with short extraction time, less extraction solvent, simple operation, low cost, and high extraction efficiency could be accepted. Sometimes many of factors are not satisfied because of the chemical profile of medicinal plants. In this review, the factors of sample preparations for *Panax* species are discussed (Table 1). As a traditional method, heat reflux extraction is used to extract ginsenosides, while it has the disadvantages of chemical transformation, wasting extraction solvent, and complicate operation [13]. Owing to convenient, simple, and high-efficient extraction, various extraction solvents (different concentrations of ethanol and methanol) and times have been used to extract ginsenosides, polyacetylenes, phenolic acids, flavonoids, and so on [14–16]. The operation time of microwave-assisted extraction is 60 times more efficient than that of Soxhlet extraction and 20 times more efficient than that of ultrasonic extraction [17]. Moreover, malonylginsenosides Rb1, Rc, Rb2, and Rd can transform into corresponding neutral ginsenosides Rb1, Rc, Rb2, and Rd under high pressure microwave-assisted extraction at 400 kPa in 70% ethanol—water and at 600 kPa in methanol [18]. Compared with Soxhlet extraction, heat reflux extraction, ultrasonic extraction, and microwave-assisted extraction, pressurized liquid extraction has the highest extraction efficiency in the shortest time for *P. quinquefolius*, *P. notoginseng*, and red ginseng [12,19,20]. The amount of total ginsenosides (Rb1, Rb2, Rc, Rd, Re, and Rg1) increased with ultra-high-pressure extraction, whereas pressuring level and time have no influence on the content of ginsenosides [21]. The extraction time of pulsed electric field is less than 1 s, which is much less than that of heat extraction method (6 h) [22]. In addition, matrix solid phase dispersion extraction has the advantages of short extraction time and less solvent usage, when compared with reflux extraction [23].

3. Analytical methods

In the previous study, chromatographic methods including TLC/ HPTLC, GC, HPLC, UHPLC (UV detector, DAD, ELSD, and MS

Table 1

Technology	Extraction Time	Extraction Solvent	Extraction Efficiency	Operation	Cost	Reference
Soxhlet extraction	Long	More	High	Moderate	Low	[13]
Heat reflux extraction	Long	More	High	Moderate	Low	[125]
Ultrasonic extraction	Moderate	Moderate	High	Simple	Moderate	[126]
Solid phase extraction	Long	Moderate	Moderate	Simple	Moderate	[127]
Microwave-assisted extraction	Short	Less	High	Simple	High	[17]
Pressurized liquid extraction	Short	Less	High	Simple	High	[128]
Enzyme-assisted extraction	Long	Less	Low	Complex	Low	[113]
Accelerated solvent extraction	Short	Less	High	Simple	High	[129]
Matrix solid phase dispersion extraction	Short	Less	High	Simple	Moderate	[23]
Pulsed electric field	Short	More	High	Simple	Moderate	[22]

Fig. 2. The number of papers published during 1980 and 2019.
detector), 2D-HPLC, HSCCC/HPCPC, and spectroscopic analysis, e.g., near infrared (NIR) spectroscopy and NMR, have been used to evaluate Panax species. Moreover, some advanced techniques such as ambient ionization mass spectrometry are applied to Panax. It is obvious that different techniques show different advantages and shortcomings. Detailed comparisons are provided in Table 2.

3.1. TLC/HPTLC

As a rapid qualitative and quantitative analysis technology, TLC is recorded by Chinese Pharmacopoeia. Some scholars have applied TLC to evaluate Panax species (Table 3). In P. ginseng, ginsenosides Rb1, Rb2, Rc, Rd, Re, and Rg1 are determined simultaneously by HPTLC at an absorption of 275 nm. The method consists of a quaternary-solvents system (1,2-dichloroethane–100% ethanol–methanol–water, 56.8:19.2:19.2:4.8) to have an efficient saponins recovery and selective separation [24]. Different species with free mono- and oligo-saccharides are identified by HPTLC [25].

Moreover, to determine ginsenosides in P. trifolius, 2D-TLC with eluent A (chloroform–methanol–ethyl acetate–butanol–water, 4:4:8:1:2), eluent B (chloroform–butanol–methanol–water, 4:8:3:4), and eluent C (chloroform–methanol–water, 13:7:2) were used [26].

Table 2
The advantages and shortcomings of technique analysis for Panax species

Technique	Advantages	Shortcomings	Reference
TLC/HPTLC	Rapid analysis	Bad efficiency in separation	[24–26]
	Convenient operation	Bad stability	
	High sensitivity and specificity	Need volatile organic solvents	
	Low cost	Low accuracy in quantification	
GC	Rapid analysis	Limited to volatile compounds	[76,130]
	Less solvent consuming	Operation with the derivatization	
	High sensitivity	High cost	
	Less time analysis		
HPLC/UHPLC	Convenient operation	Long analysis time	[131–133]
UV/DAD	High specificity	Large solvent consuming	
	High repeatability	Analytes with ultraviolet absorption	
	Low cost	Low sensitivity	
ELSD	High specificity		
	Low cost		
MS	Convenient operation	High cost	[93,134,135]
	High sensitivity		
	Less solvent consuming		
	High resolution	Bad stability	
2D-LC	Wide coverage	Complicated operation	[55,56]
	Good orthogonality		
	High efficiency in separation	Large solvent consuming	
Ambient ionization mass spectrometry	Rapid analysis	Bad stability	[58]
	Convenient operation	High cost	
	Less solvent consuming	Low sensitivity	
	High resolution		
HSCCC/HPCCC	High efficiency in separation	More solvent consuming	[62,136]
1H NMR	Fast analysis	High cost	[65,66]
	Less solvent consuming	Low accuracy in quantification	
	Easy operation		
Near infrared	Fast analysis	Low accuracy in quantification	[137,138]
	No solvent consuming		
	No sample preparation		
	Low cost		

Table 3
Chemical analysis of Panax species by TLC/HPTLC

Method	Species	Part	Analytes	Reference
HPTLC	P. ginseng	Root	Ginsenosides Rb1, Rb2, Rc, Rd, Re, Rg1	[24]
HPTLC	P. ginseng, P. quinquefolius, P. notoginseng	Root	Glycome	[25]
2D-TLC	P. trifolius	Root	Ginsenosides Ro, Rb1, Rb2, Rc, Rd, Re, Rg1, Rg2	[26]

Table 4
Chemical analysis of Panax species by GC–MS

Method	Species	Part	Analytes	Reference
GC–MS	P. ginseng	Root	Ginsenosides Rg1, Re, Rd, Rc, Rb1, F1	[30]
GC–MS	Panax genus	Root	Panaxynol and panaxydol	[139]
GC–MS	P. ginseng	Root	Phenolic acids	[31]
GC–MS	P. notoginseng	Root	Dencichine	[32]
GC–MS	P. ginseng	Root	Volatile organic compounds	[76]
GC–MS	P. notoginseng	Root	Volatile organic compounds	[130]
GC–MS	P. ginseng, P. notoginseng, P. quinquefolius	Root	Volatile organic compositions	[29]
GC–MS	P. ginseng, P. quinquefolius, P. notoginseng	Root	Volatile organic compounds	[140]
Method	Species	Part	Analytes	Reference
-----------	--------------------------	-----------------------------	--	-----------
HPLC-UV	*P. ginseng*	Root	Ginsenosides Rb1, Rb2, Rc, Rd, Rg1, Re, Rf	[141]
HPLC-UV	*P. ginseng*	Different parts and ages	Ginsenosides Rg5, Re, Rb1, Rc, Rb2, Rb3, Rd	[102]
HPLC-UV	*P. ginseng*	Root	Ginsenosides Rg5, Re, Rb1, Rc, Rb2, Rd	[22]
HPLC-UV	*P. ginseng*	Leaf	Ginsenosides F1, F2, F3, Re, Rg1, Rd, Rc, Rb2	[23]
HPLC-UV	*P. ginseng*	Root	Ginsenosides Rg2, Rg3, Rg5, Rg6, Rh1, Rha, Rk1, Rk2, Rk3, F1, F4	[73]
HPLC-UV	*P. ginseng*	Root	Ginsenosides Rg5, Re, Rb1, Rd	[142]
HPLC-UV	*P. ginseng*	Root	Ginsenosides Rb1, Rb2, Rc, Rd, Rf, Rg1, Rg2, Rg5, Rg6, Rh1, Rha, Rk1, F1, F4	[131]
HPLC-UV	*P. ginseng*	Root	Ginsenosides Rg5, Re, Rb2, Rc, Rd, Rf, Rg1, Rg2, Rg5, Rg6, Rh1, Rha, Rk1, F1, F4	[143]
HPLC-UV	*P. ginseng*	Root	Malonyl ginsenosides	[144]
HPLC-UV	*P. ginseng*	Root	Ginsenosides and phenolic	[145]
HPLC-UV	*P. quinquefolius*	Root	Ginsenosides Rg5, Re, Rb1, Rc, Rb2, Rd	[132]
HPLC-UV	*P. quinquefolius*	Leaf, stem, root	Ginsenosides Rg5, Re, Rf, Rb1, Rc, Rb2, Rd	[125]
HPLC-UV	*P. quinquefolius*	Root	Ginsenosides Rb1, Rb2, Rc, Rd, Re, Rg1, and F2, gypenoside XVII	[43]
HPLC-UV	*P. quinquefolius*	Root	Ginsenosides Rg5, Re, Rb1, Rd	[17]
HPLC-UV	*P. quinquefolius*	Root	Ginsenosides Rg5, Re, Rb1, Rc, Rd, Re, Rf, Rg1	[146]
HPLC-UV	*P. quinquefolius*	Root	Ginsenosides Rg5, Re, Rb1, Rc, Rd	[147]
HPLC-UV	*P. quinquefolius*	Root	Ginsenosides Rb1, Rb2, Rc, Rb2, Rd, Rg1	[113]
HPLC-UV	*P. quinquefolius*	Different parts and ages	Ginsenosides Rg5, Re, Rb1, Rc, Rb2, Rd	[42]
HPLC-UV	*P. quinquefolius*	Root	Rare ginsenosides 20(S/R)-Rh1, Rg2, F4, 20(S/R)-Rg6, Rk1, Rg4	[148]
HPLC-UV	*P. notoginseng*	Root	Notoginsenoside R1, ginsenosides Rg5, Rb1, Rd	[133]
HPLC-UV	*P. notoginseng*	Root	Notoginsenoside R1, ginsenosides Rg5, Rb1, Rd	[127]
HPLC-UV	*P. notoginseng*	Root	Notoginsenoside R1, ginsenosides Rg5, Rb1, Rd	[119]
HPLC-UV	*P. notoginseng*	Rat tissue	Ginsenosides Rg5, Re, Rb1, Rd	[149]
HPLC-UV	*P. notoginseng*	Flower bud	Notoginsenoside R1, ginsenosides Rg5, Re, Rb1, Rb2, Rd, F2	[150]
HPLC-UV	*P. notoginseng*	Different parts	Notoginsenoside R1, ginsenosides Rb1, Rb2, Rd, Re, Rg1, Rb2, Rg2, Rg3, Rh1	[110]
HPLC-UV	*P. notoginseng*	Root	Notoginsenoside R1, ginsenosides Rg5, Rb1, Rd	[151]
HPLC-UV	*P. notoginseng*	Root	Ginsenosides Rg5, Re, Rb1, Rd, notoginsenoside R1	[152]
HPLC-UV	*P. notoginseng*	Root, leaf, stem	Ginsenosides Rg5, Re, Rb1, Rd, notoginsenoside R1	[153]
HPLC-UV	*P. notoginseng*	Root	Notoginsenoside R1, ginsenosides Rg5, Re, Rb1, Rd	[154]
HPLC-UV	*P. notoginseng*	Root, rhizome	Notoginsenoside R1, ginsenosides Rg5, Rb1, Rd, Re, quercetin	[133, 156]
HPLC-UV	*P. ginseng, P. quinquefolius, and ginseng drug preparations*	Different parts	Ginsenosides Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg2, Rg5, Rg6, Rh1, Rha, Rk1, F1, F4	[41]
HPLC-UV	*P. sokpayensis, P. bipinnatifidus*	Rhizomes	Ginsenosides Rg5, Rg6, Re, Rf, Re, Rd, Rc, Rb1, Rb2	[95]
The TLC technology has some advantages of rapid, convenient, and sensitive characteristics to target compounds, whereas it always needs standards and there is a lack of uniqueness for bioactive compounds. In recent years, HPTLC-MS with rapid and accurate profile will hope for evaluating Panax species [27]. Two-dimensional HPTLC showed an efficient performance and good isolation profiles for Panax species in another study [28].

3.2. Gas chromatography

Gas chromatography is employed to determine volatile organics, ginsenosides, and phenolic acids from Panax species (Table 4). Different derivatizations for chemical components were selected. For volatile organics, the GC–MS method can determine bioactive compounds of headspace without sample preparation for discriminating Panax species [29]. When determining ginsenosides in *P. ginseng*, it is applied to high-molecular-weight saponins after derivatization with trimethylsilylation [30]. Sample is subjected to trimethylsilylare derivatization for evaluating phenolic acids in white and red ginsengs [31]. After derivatization with ethyl chloroformate, dencichine or other amino acids of *P. notoginseng* are determined [32]. GC–MS for volatile components can take some advantage with simple, fast, and effective characters, whereas for some non-volatile components, a complex operation is required. 2D-GC with high peak capacity, orthometric characteristic can be used to evaluate volatile components of samples, which is necessary to be discussed for the further study.

3.3. HPLC/UHPLC

HPLC/UHPLC is the most frequently used method for Panax species in the qualitative and quantitative analysis. In this review, it is found that stationary phases including C18 column (250 × 4.6 mm, 5 μm) with different brands are used for ginsenosides, OV-170 (500 × 0.25 mm), LiChrosorb for polyacetylenes, polymer C18 column (250 × 4 mm, 10 μm) for trilinoleins, Waters Atlantis HILIC (hydrophilic interaction liquid chromatography) silica (50 × 2.1 mm, 3 μm) [33] for dencichine, and Zorbax SB-Aq column (150 × 4.6 mm, 5 μm) for nucleobases and nucleosides. Moreover, the small particle size ACQUITY UHPLC BEH C18 (2.1 × 100 mm, 1.7 μm) is used in UHPLC. Two-phase solvent systems contain water or buffer solution in water (formic acid, acetic acid, phosphoric acid, ammonium formate, or ammonium acetate) and acetonitrile or methanol. Formic acid in water improves resolution and eliminates peak tailing [34–36]. The solvent range of 1% to 100% is changed to obtain the appropriate gradient elution program. Ginsenosides could be eluted by the solvent range of 30–50% as observed in the literature. UHPLC with less analytical time has the better performance than HPLC.

3.3.1. UV/DAD and ELSD detector

UV detector is the traditional detector for the qualitative and quantitative analysis of chemical compounds in the Panax species (Tables 5 and 6). The detector with its low cost and simple operation has become the most commonly used analytical method in the laboratory. Therefore, it has been widely employed to determine the ginsenosides (malonyl ginsenoside, protopanaxatriol, protopanaxatriol, ocottilol, and oleanane), trilinoleins, polyacetylenes [37], phenolics [38], phytosterols [39], flavonoids, and vitamins [40]. The detection wavelengths for different types of biochemical compounds are various. It is reported that ginsenosides Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rh2, Fs, gypenoside XVII, and notoginsenoside Rf could be detected in the wavelength of 203 and 198 nm [41–44]. The detection wavelength is set at 205 nm for trilinoleins [45], 254 nm for polyacetylenes [37], 260 nm for nucleobases and nucleosides [46], and 280 nm for phenolic compounds [38]. However, oleane ginsenosides (ginsenoside Ro) are poor chromatophores with weak UV absorption and are disturbed by solvents (the cut-off wavelength of methanol is 205 nm) that have low sensitivity with UV detection. DAD has the better recognition than conventional UV detection (Table 7). It is widely used to determine polar and non-polar [47], neutral and malonyl ginsenosides [48] in *P. ginseng*, *P. quinquefolius*, and *P. notoginseng*. As a mass detection, ELSD is mainly used for analysis of biological compounds that lack appropriate chromophores (Table 8). It can be used to identify and quantify neutral and acidic ginsenosides Rg1, Rg2, Ro, Rb1, Rb2, Rc, and Rd in *P. ginseng*, while the sensitivity of ELSD is five times lower than that with UV detection [49].

3.3.2. MS detector

Modern analytical techniques based on MS with chromatographic separation have the sensitivity and specificity characteristic when compared with traditional detection analysis of Panax species (Table 9) [10]. Ion sources including atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) are used. The APCI can be applied to low molecule and polar compounds, such as 24(R)-pseudoginsenoside F15, ginsenoside Rf, and polyacetylenes [16,50,51]. The most of bioactive constituents of Panax species in the ESI mode has the better performance than that in the APCI mode, especially for the large and moderate polar compounds. Ginsenosides Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, and notoginsenoside Rf have been analyzed with ESI mode in previous studies [52,53]. Dencichine, triterpenoid saponins, nucleobases, nucleosides, and polyacetylenes could be conducted by HPLC-MS as well (Table 10). In addition, MS hyphenations with Q-TOF, IT-TOF, Q-Trap, and Q-Orbitrap have been used to determine ginsenosides accurately and sensitively (Table 11). A total of 234 ginsenosides including 67 potential new ones were isolated tentatively by HPLC–QTOF-MS [54]. It is found that 646 ginsenosides were identified from stems and leaves of *P. ginseng* using linear ion-trap/Orbitrap mass spectrometry [55]. In the qualitative analysis, full
Method	Species	Part	Analytes	Reference
HPLC-DAD	Panax ginseng	Root	Ginsenosides Rg1, Re, Rf, Rb1, Rc, Rb2, Rd, Re, Rh1, Rf, Rh2, Rg1	[68]
		Root	Ginsenosides Rb1, Re, Rg1	[69]
	Panax quinquefolius	Root	Ginsenosides Rg1, Re, Rb1, Rc, Rb2, Rd	[70]
		Fresh root	Ginsenosides and polyacetylenes	[71]
	Panax notoginseng	Root	Notoginsenoside R1, ginsenosides Rg1, Re, Rb1, Rd	[72]
		Root	Ginsenosides Rb1, Rc, Rd, Re, Rh1, Rf, Rh2, Rg1, Rg5	[73]
		Root	Ginsenosides Rb1, Rc, Rd, Re, Rh1, Rf, Rh2, Rg1, Rg5, Rg6	[74]
HSCCC/HPCPC	Panax ginseng	Root	Ginsenosides Rb1, Re, Rf, Rb1, Rc, Rb2, Rd, Re, Rh1, Rf, Rh2, Rg1	[75]
		Main root, rhizome, fibrous root	Ginsenosides Rb1, Re, Rf, Rb1, Rc, Rb2, Rd, Re, Rh1, Rf, Rh2, Rg1	[76]
		Different parts	Ginsenosides Rb1, Re, Rf, Rb1, Rc, Rb2, Rd, Re, Rh1, Rf, Rh2, Rg1	[77]
		Flower	Ginsenosides Rb1, Re, Rf, Rb1, Rc, Rb2, Rd, Re, Rh1, Rf, Rh2, Rg1	[78]
		Root	Ginsenosides Rb1, Re, Rf, Rb1, Rc, Rb2, Rd, Re, Rh1, Rf, Rh2, Rg1	[79]
Micellar electrokinetic chromatography	Panax ginseng	Root	Ginsenosides Rb1, Re, Rf, Rb1, Rc, Rb2, Rd, Re, Rh1, Rf, Rh2, Rg1	[80]

Table 7: Chemical analysis of Panax species by HPLC-DAD

3.3. Ambient ionization mass spectrometry

Recently, the developed ambient ionization mass spectrometry such as DART-MS and MALDI TOF-MSI are used to evaluate Panax (Table 13) [40,58]. For these methods, direct sampling and ionization are conducted in the open air with no or minimal sample preparation [59]. The most of ginsenosides need derivatization, whereas pseudoginsenoside F11, compound K, protopanaxatriol, and protopanaxadiol are detected without derivatization [59]. In addition, notoginsenoside R1, ginsenosides Rb1, Rg1, and Re from P. ginseng, and P. notoginseng are simultaneously determined by DART-MS [58,60].

3.5. HSCCC/HPCPC

As shown in Table 14, the similar techniques including HSCCC and HPCPC are liquid—liquid partition chromatography. The appropriate solvent systems composed of n-hexane, n-butanol, methylene chloride, methanol, isopropanol, ethyl acetate, and water are employed to isolate the bioactive compounds. In addition, ammonium acetate could reduce the separation time and eliminate emulsification [61]. Ginsenosides Rb1, Re, Rg1, Rd, Re, Rh1, and notoginsenoside R1 could be isolated by HSCCC, and the purity of ginsenosides are more than 95% [62].

3.6. Others

Micellar electrokinetic chromatography could measure the ginsenosides Rg1, Re, Rf, Rb1, Rc, Rb2, Rd, Re, Rh1, Rf, and notoginsenoside R1 in high separation efficiency without any organic solvent and with shorter run time when compared to chromatographic analysis (Table 15) [63]. It can extract dencichine from P. notoginseng with a purity of 98.5% [64]. Moreover, NMR technique in the qualitative analysis is used to discriminate geographical origins of P. ginseng and to obtain the potential markers [65]. It also quantifies malonyl-ginsenosides Re, Rb1, Rb2, Rc, and Rd [66]. HPAE-PAD could analyze amadori compounds in processed ginseng within 15 min of single chromatographic run and eliminate the complex derivatization [67]. Enzyme immunoassay by anti-RF antiserum quantifies ginsenosides Rg2, and RF in P. ginseng [68]. Dencichine is measured by HPAEC for discrimination of P. notoginseng, P. ginseng, and P. quinquefolius [69]. In addition,
Other chemical constituents of Panax species using HPLC-MS

Table 8

Method	Species	Part	Analytes	Reference
HPLC-ELSD	P. ginseng	Root	Ginsenosides Rg1, Re, Rb1, Rc, Rb2, Rd	[49]
HPLC-ELSD	Red ginseng	Root	Ginsenosides Rg1, Re, Rf, Rg1, Rb1, Rc, Rb2, Rb3, Rd, Rg3, Rk1, Rg2, Rh2	[77]
HPLC-ELSD	Black ginseng	Root	Less polar ginsenosides	[78]
HPLC-ELSD	P. ginseng	Root	Ginsenosides Rh1, Rg2, Rg3, Rf, Re, Rd, Rb2, Rc	[169]
HPLC-ELSD	P. quinquefolius	Different parts	Ginsenosides Rg1, Re, Rf, Rh1, Rb1, Rc, Rb2, Rb3, Rd, Rh1	[104]
HPLC-ELSD	P. quinquefolius	Different parts	20(S)-dammarane-3β,12β,20,25-pentol, 25(S)-oocitobol, 20(S)-protopanaxatriol, 20(S)-panaxatriol and 20(R)-dammarane-3β,12β,20,25-tetrol	[105]
HPLC-ELSD	P. ginseng, P. quinquefolius	Root	Ginsenoside Rf, 24(R)-pseudoginsenoside F11	[90]
HPLC-ELSD	P. notoginseng	Root	Ginsenosides Rg1, Re, Rb1, Rc, Rb2, Rd	[170]
HPLC-ELSD	P. notoginseng	Different parts	Ginsenosides Rg1, Re, Rf, Rh1, Rb1, Rc, Rb2, Rd	[104]
HPLC-ELSD	P. notoginseng	Root	Ginsenosides Re, Rg1, Rb1, Rb2, Rc, Retoginsenoside R1	[52]
HPLC-ELSD	P. notoginseng, P. ginseng	Root	Notoginsenoside R1, ginsenosides Rg1, Re, Rf, Rg2, Rc, Rb2, Rd, Rg3	[94,128]

Table 9

Method	Species	Part	Analytes	Reference
HPLC-MS	P. ginseng	Root	Ginsenosides Rb2, Rb1, Rc, Rd, Re, Rf, Rg1, Rg2	[118]
HPLC-ESI-MS	P. ginseng	Root	Ginsenosides Rg1, Re, Rb1, Rg1, Rb2, Rd	[18]
HPLC-FD-MS	P. ginseng	Ginseng extract	Ginsenosides Rb2, Rb1, Rc, Rd, Re, Rf, Rg1, and Rg2	[134]
HPLC-ESI-MS/MS	P. ginseng	Root	Ginsenosides Rg1, 20(S)-Rg2, Rb1, Rc, Rb2, malonyl-ginsenoside Rb2 and Rc	[75]
UHPLC-MS	P. ginseng	Root	Low-polar ginsenosides	[80]
UHPLC-MS	P. ginseng	Root	Ginsenosides Rb2, Rb1, Rg1, Rg2, Rg3, Re, Rd, Re, Rf	[171]
HPLC-MS	P. ginseng	Root	Ginsenosides Rg1, Re, Rf, Rb1, Rc, Rb2, Rd, Rg1, Rb2, F1, F2, Fg4, PPT	[122]
HPLC-MS	P. ginseng	Fresh root	Ginsenosides Rg1, Re, Rf, Rb1, Rb2, Rd, 20(S)-Rg2, Rc, 20(S)-Rh1, F1, F2, 20(S)-Rg2, 20(S)-protopanaxatriol, compound K, 20(S)-Rh2	[172]
HPLC-Qtrap-MS	P. ginseng	Root	Ginsenosides	[173]
HPLC-LS	P. ginseng	Root	Notoginsenoside R1, ginsenosides Rb2, Re, Rb1, Rc, Rg1, Rb2, Rd, Rb2, Fg4, Rb2, compound K	[174]
LC/MS/MS	P. ginseng	Root	15 ginsenosides	[175]
UHPLC-HRMS	P. quinquefolius	Root	Ginsenosides Rb2, Rb1, Rg1, Rc, Rd, Re, Rf, Rg1, Rg2, Rg3, Rb1, Rb2, Ro, F1, F2, Fg4, pseudo ginsenoside F11, notoginsenosides R1, Rg2	[93]
HPLC-APCI-MS	P. quinquefolius	Root	24(R)-pseudoginsenoside F11	[50]
UPLC-MS/MS	P. ginseng, P. quinquefolius	Different parts	22 ginsenosides	[176]
HPLC-MS	P. ginseng, P. quinquefolius	Root	Ginsenosides Rb2, Rb1, Rc, Ro, Rd, Re, Rf, Rg5, pseudoginsenoside F11	[88]
UHPLC-ESI-MS	P. notoginseng	Root	Ginsenosides Rf, 24(R)-pseudoginsenoside F11	[89]
HPLC-MS	P. notoginseng	Different parts	Metabolite profiling	[112]
HPLC-MS	P. notoginseng	extraction	Ginsenosides Rg3, Rh1, notoginsenoside R1	[177,178]
UHPLC-MS/MS	P. notoginseng	Extract	Notoginsenoside R1, ginsenosides Rg3, Rb1, Re, Rd	[120]
UPLC-MS	P. notoginseng	Compounds	Notoginsenoside R1, ginsenosides Rg3, Rd, Rb1, Rf, Rh1, Rb2, Re	[179]
HPLC-MS	P. notoginseng	Root	Notoginsenoside R1, ginsenosides Rg1, Rb1, Rd, F2, Re	[180]
LC-Q-Trap-MS	P. notoginseng	Extraction	Notoginseng total saponins	[181]
LC-MS/MS	Steamed notoginseng	Rat plasma	23 triterpenoids	[182]
UHPLC-MS	P. japonicus	Leaf	Chikusetsusaponins V, IV, IVa, IV ethyl ester	[183]
HPLC-MS	P. japonicus	Root	Notoginsenosides Rg3, Rb1, Rb2, Rb3, Rc, Rd, Re, Rg1, Rg2, 20(S)-Rg2, Rf,	[91]
HPLC-APCI-MS	P. quinquefolius	Root	Notoginsenosides R1, Rg, Rr and 24(R)-pseudoginsenoside F11	[51]

Table 10

Other chemical constituents of Panax species using HPLC-MS

Method	Species	Part	Analytes	Reference
HPLC-MS	Panax	Root	Dencichine	[33]
HPLC-ESI-MS	P. notoginseng	Root	Triterpenoid saponins	[184]
HPLC-MS	P. notoginseng	Root	Nucleohases, nucleosides, and saponins	[46]
NanoESI-MS	P. ginseng	Root	Polyoctetylenes	[185]
UPLC-MS/MS	P. quinquefolius	Root	Lipidomics	[185]
LC-Q-TOF-MS	P. ginseng	Root	Malonyl ginsenoside, amino acids, polysaccharides	[187]

4. Analytical methods applied to Panax species

As we all know, the different processing methods, species, parts, regions, and ages have different chemical information. To display the chemical markers of different conditions, we have reviewed the advanced techniques evaluating samples of Panax. In addition, the
Method	Species	Part	Analytes	Reference
HPLC-ESI-MS/MS	*P. ginseng*	Root	Multicomponent quantification fingerprint	[188]
UHPLC-QTOF-MS	*P. ginseng*	Different parts	Qualitative analysis	[189]
LC-QTOF/MS	*P. ginseng*	Root	Fingerprint analysis	[190]
LC-QTOF/MS/MS	*P. ginseng*	Root	Ginsenosides Rc, Rb2, Rb3, malonyl-ginsenosides	[191]
UHPLC-QTOF-MS	*P. ginseng*	Root	Metabolomics analysis	[116]
UHPLC-QTOF-MS	*P. ginseng*	Hairy root	Metabolomics analysis	[35]
LC-QTOF/MS	*P. ginseng*	Root	Metabolite profiling	[121]
UPLC-QTOF/MS	*P. ginseng*	Ginseng extract	22 ginsenosides	[6]
UHPLC-Q-TOF MS	*P. ginseng*	Root	Metabolomics analysis	[194]
UPLC-QTOF/MS	*P. ginseng*	Root	Metabolite profiling	[195]
UPLC-QTOF-MS	*P. ginseng*	Different parts	58 ginsenosides	[201]
UHPLC-QTOF-MS	*P. ginseng*	Root	Cell-based neuroactivity screening	[202]
UHPLC-QTOF-MS	*P. ginseng*	Root	Transformation of ginsenosides	[203]
UHPLC-QTOF-MS	*P. ginseng* (different processed)	Root	Metabolite profiling	[204]
UHPLC-QTOF-MS	*P. ginseng* (different age)	Root	Metabolite profiling	[205]
UHPLC-QTOF-MS	*P. quinquefolius*	Root	Fingerprint analysis	[206]
LC-TOF-MS	*P. quinquefolius*	Root	Metabolomics analysis	[207]
UPLC-QTOF/MS	*P. quinquefolius*	Root	Metabolomics analysis	[209]
LC-MS	*P. quinquefolius*	Root	Fingerprint analysis	[210]
HPLC-ESI-MS	*P. quinquefolius*	Root	Metabolomics analysis	[211]
HPLC-MS*	*P. quinquefolius*	Root	59 ginsenosides of protopanaxadiol, protopanaxatriol, oleane and ocottillo types	[81]
UHPLC-QTOF-MS/MS	*P. notoginseng*	Root	Metabolite profiling	[74]
UHPLC-QTOF-MS	*P. ginseng, *P. quinquefolius*	Leaf	Metabolomics analysis	[36]
HPLC-ESI-MS	*P. ginseng*	Root	Metabolite profiling	[99]
HPLC-ESI-MS	*P. notoginseng*	Different parts	Metabolomics analysis	[113]
LC-MS	*P. notoginseng*	Root	Metabolite profiling	[15]
UHPLC-QTOF-MS	*P. notoginseng*	Root	Metabolite profiling	[53]
UHPLC-QTOF-MS	*P. notoginseng*	Root	Metabolite profiling	[72]
LC-QTOF/MS	*P. notoginseng*	Extract	Metabolomics analysis	[212]
LC-QTOF/MS	*P. notoginseng*	Leaf	Metabolite profiling	[34]
UHPLC-ESI-MS and UHPLC-QTOF-MS	*P. notoginseng*	Flower bud	Metabolite profiling	[70]
UHPLC-ESI-MS	*P. notoginseng*	Root	Fingerprint analysis	[213]
HPLC-QTOF-MS	*P. notoginseng*	Root	Metabolite profiling	[54]
LC-triple-TOF/MS	*P. notoginseng*	Extraction	Ginsenosides Rb2, Rb3, Re, Rf, Rg1, and notoginsenoside R1	[214]
UPLC/Q-TOF/MS	*P. notoginseng*	Leaf	Ginsenosides Rb2, Rb3, notoginsenosides Fe, Fe2	[215]
HPLC-QTOF/MS	*P. ginseng, *P. notoginseng, *P. japonicus, *P. quinquefolius*	Root	Metabolite profiling	[88]
LC-MS-IT-QTOF	*P. ginseng, *P. quinquefolius, *P. notoginseng*	Root	Qualitative analysis	[87]
UHPLC-IMC-NLF	*P. ginseng, *P. quinquefolius, *P. notoginseng*	Root	Malonyl-ginsenosides	[216]
UPLC-LTQ-Qbittrap-MS	*P. ginseng, *P. quinquefolius, *P. notoginseng*	Different parts	Malonyl-ginsenosides	[217]
UHPLC-QE-HRMS	*P. ginseng, *P. quinquefolius, *P. notoginseng*	Root	101 compounds	[135]
mechanisms of chemical compounds changing for Panax are illustrated.

4.1. Raw and processed ginseng

Processing Panax species leads to various bioactive characteristics, which have been used in the treatment of different diseases when compared to raw ginseng. In the Chinese medicine, “Sheng Da Shu Bu” and “Sheng Leng Shu Wen” with regard to raw P. notoginseng are used for hemostasis and cardiovascular diseases, whereas the steamed form is used to “nourish” blood [10]. Those theories suggested that raw and processing have the opposite effect on some illness. Different chemical profiles in the processing have been investigated in the previous study. As a formal method, from

Method	Species	Part	Analytes	Reference
2D LC/LTQ-Orbitrap-MS/NMR	P. ginseng	Stems and leaves	A total of 646 ginsenosides were characterized, and 427 have not been isolated from the genus of Panax L.	[55]
2D LC-ESI	P. ginseng	Extraction	Triterpenoid saponins	[218]
2DLC-MS	P. ginseng	Extraction	Ginsenosides Rd, Re, Rb1, Rb2, Rd	[219]
2D chromatographic method	P. notoginseng	Root	Ginsenosides Rb2, Rg1, Rg2, Rh1, Rh2, Rd, 20(S)-Rg3, notoginsenosides R1, Ts	[57]
HILIC × RPLC	P. notoginseng	Root	Metabolomics analysis	[56]
2D LC-QTOF-MS	P. notoginseng	Extraction	Total saponins	[220]

Method	Species	Part	Analytes	Reference
2D LCQ-TOF-MS	P. ginseng	Stems and leaves	A total of 646 ginsenosides were characterized, and 427 have not been isolated from the genus of Panax L.	[55]
2D LC-ESI	P. ginseng	Extraction	Triterpenoid saponins	[218]
2DLC-MS	P. ginseng	Extraction	Ginsenosides Rd, Re, Rb1, Rb2, Rd	[219]
2D chromatographic method	P. notoginseng	Root	Ginsenosides Rb2, Rg1, Rg2, Rh1, Rh2, Rd, 20(S)-Rg3, notoginsenosides R1, Ts	[57]
HILIC × RPLC	P. notoginseng	Root	Metabolomics analysis	[56]
2D LC-QTOF-MS	P. notoginseng	Extraction	Total saponins	[220]
Method	Species	Part	Analytes	Reference
-------------------------	---------------	----------------	--	-----------
HPLC-UV, UHPLC-PDA, CE-UV, IR	*P. notoginseng*	Main root, rhizome	Fingerprint analysis	[71]
HPLC-UV, GC-MS	*P. ginseng*	Root	Ginsenosides Rg1, Re, Rf, Rb1, Rg2, Rb1, Rb2, Rg3, F2, compound K, Rk1, Rg5, Rh2	[20]
HPLC-UV, HPLC-MS	*P. notoginseng*	Extract	Fingerprinting and quantitative analysis	[234]
HPLC-DAD, LC-ESI-MSn	*P. notoginseng*	Leaf	Ginsenosides Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg2	[235]
GC–MS, LC–MS	*P. ginseng*, *P. quinquefolius*	Different parts	Chemical profiles and anticancer	[236]
LC-ELSD, LC-Q-TOF-MS	*P. vietnamensis*	Radix and rhizome	Ginsenosides Rg1, Re, Rb1, Rc, Rb2, Rg1, majonoside R1, R2 and vina-ginsenoside R2	[96]

Scheme 1. The potential transformation pathway of protopanaxadiol ginsenosides after processing.
raw to processed material steaming with different temperatures and times has been used. *P. ginseng* is steamed at 98°C and 120°C at 2 h, 6 h, and 9 h, which shows the various bioactive constituents. Time-dependent profiling of raw and steamed *Panax* species is studied [72–74]. “Red ginseng” is formed at two- or three-time steaming and “black ginseng” is formed with cyclic nine-time steaming at 98°C for 3 h. Therefore, phytochemical components including saponins and volatile oils are reviewed in this
investigation. It is found that chemical constituents with polar ginsenosides can be transformed to low polar ginsenosides by hydrolisi, isomerization, and dehydration [75]. The concentration of polar ginsenosides, notoginsenoside R1, ginsenosides Rg1, Re, Rb1, Rc, Rb2, Rb3, and Rd, decreased by steaming, whereas that of low polar ginsenosides, Rh1, Rg2, Rg3, Rh2, Rg5, and Rs4, increased, and ginsenosides Rg3, Rg5, and Rk1 are the unique compounds from steamed ginseng [44, 76–80].

Usually, the types of saponins in the *Panax* species are mainly protopanaxadiol, protopanaxatriol, ocatillol, and oleanane. As shown in Scheme 1, protopanaxadiol including ginsenosides Rb1, Rb2, Rb3, and Rc converted to Rd by hydrolysis of a glycosylation moiety at C-20. Then, the loss of glycosylation moiety at C-20 and C-3 of Rd through hydrolysis generated ginsenosides 20(R/S)-Rg3 and 20(R/S)-Rh2, Rk1, and Rg5 under the reaction conditions gradually increased [44, 74, 75, 77–81]. Interestingly, ginsenosides Rk2 and Rg3 were deduced to 20(R/S)-Rg3 by Δ20(21) and Δ20(22) dehydration at C-20. Ginsenosides Rk1 and Rg5 are hydrolyzed to generate Rk2 and Rh3 by loss of a glycosylation moiety at C-20 [74, 75, 80, 81]. Protopanaxatriol including ginsenosides Re and Rg1 produced 20(R/S)-Rg2, F1, Rg6, 20(R/S)-Rh1, and Rg4 through hydrolysis of a glycosylation moiety at C-20 and C-6 when the creaming with high-temperature and long-time shown in Scheme 2 [74, 75, 77, 80, 81]. Specifically, ginsenosides 20(R/S)-Rf2 was deduced by C-24 and C-25 hydration of Rg5 [81]. In addition, malonyl and acetyl ginsenosides could convert to the corresponding neutral ginsenosides through demalonylation and deacetylation reaction shown in Scheme 3 [74, 75]. Such as acetyl-ginsenosides 20(R/S)-Rs3, Rs4, and Rs5 were deduced to be generated from malonyl-ginsenosides Rb1, Rb2, and Rc through hydrolysis, decarboxylation, and dehydration [74, 75]. For oleanane type, the chemical transformations have not been studied up to now. The possible transformation pathways deduced are shown in Scheme 4 [81].

4.2. Different species

Different species of *Panax* have different effects on diseases. *P. ginseng* is used for its anticancer effect [82]. While *P. quinquefolius* has a good performance on antidiabetic, anti-inflammatory, and neuroprotective effects [83–85]. *P. notoginseng* always have effects on the cardiovascular system, hemostatic, and antioxidant activities [86]. *P. japonicus*, *P. vietnamensis*, *P. stipuleanatus*, *P. sokpayensis*, and *P. bipinnatifidus* are also used to protect and treat diseases all over the world. Usually, ginsenosides are the main bioactive components for the *Panax* species. Yao et al have reported that 623 ginsenosides in the ethanol extract of *P. ginseng*, *P. quinquefolius*, and *P. notoginseng* are discovered, and among those, 437 are potentially novel ginsenosides [87]. Polysaccharides, essential oils, phenolic acids, alkaloids, and others were also investigated in a previous study [3]. The similar morphological characteristics especially medicinal power and its extraction are hard to evaluate them in the markets. The fake and inferior goods may arise owing to price difference for *Panax* species largely. It is therefore necessary to select some quality markers for distinguishing *Panax*.

For saponins, ginsenoside Rf is only detected in *P. ginseng*, whereas 24(R)-pseudoginsenoside F11 is mainly detected in *P. quinquefolius* [88–90]. Ginsenoside Rs1 is used to differentiate *P. ginseng* and *P. quinquefolius* also [91]. Furthermore, the higher amount of Rg1 group (Rf, Rg1) is in *P. ginseng* and that of the Rb group is in the *P. quinquefolius* [92]. A higher protopanaxadiol/protopanaxatriol ratio for *P. quinquefolius* is about 3, while the value is between 1 and 3 for *P. ginseng* [93]. When *P. notoginseng* and *P. quinquefolius* are compared, the former has the highest
ginsenoside content (9.176%), and the latter has the highest poly-acetylene content (0.08%) [37]. Notoginsenoside R1 is detected in both P. notoginseng and P. ginseng [51], whereas ginsenoside Rg3 is observed in the red ginseng [94]. Ginsenoside Rc was not detected in P. sokpayensis, and ginsenosides Rf, Rc, and Rb2 are not detected in P. bipinnatifidus [95]. P. vietnamensis mainly has ooctillol type of ginsenosides [96]. To describe the more chemical information, metabolic components combined with multivariate statistical analysis, hierarchical clustering analysis, principal component analysis, and partial least squares discriminant analysis have been applied to evaluate different species and to select the appropriate chemomarkers [97]. The results indicated that ginsenoside Rf, 20(S)-pseudoginsenoside F11, malonyl-ginsenoside Rb1, and ginsenoside Rb2 could be used to differentiate P. ginseng, P. notoginseng, P. japonicus, and P. quinquefolius [98]. 24(R)-Pseudoginsenoside F11, ginsenoside Rf, Ra1, F2, and 20-glucoginsenoside Rf can differentiate processed P. ginseng and P. quinquefolius [99]. The metabolic constituents of leaves to avoid damaging the roots can separate Panax species [100]. Pseudoginsenoside F11, Rb3, malonyl-notoginsenoside Fd, malonyl-ginsenosides F3, Rb3, Re, F3, R2, and F1 are selected as the chemical markers for leaves of P. ginseng and P. quinquefolius [36]. For essential oil, hexanal, 2-pyrrolidnone, (E)-2-heptenal, (E)-2-octenal, heptanal, isospathulenol, (E, E)-2,4-decadienal, 3-ocoten-2-one, benzaldehyde, 2-pentylfuran, and (E)-2-nonenal can discriminate P. ginseng and P. notoginseng [29]. Mono- and oligo-saccharide are similar in the different regions and Panax species [25]. However, dencichine varied in Panax species, the highest (0.36 ± 0.02%) is in P. notoginseng, then P. ginseng (0.31 ± 0.06%) and P. quinquefolium (0.1 ± 0.01%), and the lowest (0.03 ± 0.07%) was in steamed P. ginseng. The contents of panaxfuraynes A and B are less than 3 and 2 ng/g in the roots of P. quinquefolius, P. japonicum, P. notoginseng, and P. ginseng, whereas they were not found in P. japonicum [101].

4.3. Different parts

Different parts include aerial parts (flower, leaf, and stem) and underground parts (rhizome, main root, lateral root, and root hair) in Panax species, which have been used for medicinal purposes. As a medicinal tea, flower and leaf are used to prevent disease for the human in the eastern world, especially in China. An official herbal medicine, leaf of P. ginseng is recorded in Chinese Pharmacopoeia. Different parts of Panax species have long been used. For instance, rhizomes of P. notoginseng and P. ginseng are called as “Jinkou” and “Lutou” in the traditional medicine, respectively. Different parts have various pharmacological activities [86]. The chemical profile for different parts of Panax species is significant.

In P. ginseng, the content of ginsenosides is higher in the leaf and root hair and lower in stem and other parts. The content of ginsenosides in the root and root hair increases with age from one to five years [102]. More kinds of ginsenosides are found in cork than those in cortex, phloem, xylem, and resin canals; the content of ginsenosides of phloem, xylem, and resin canals from branch root is high than that from main root [103]. The content of total phenols in fruit and leaf is higher than in roots, including major phenolic compounds chlorogenic acid, gentisic acid, p- and m-coumaric acid, and rutin

Scheme 4. The potential transformation pathway of oleanane ginsenosides after processing.
Moreover, the order for triacylglycerol content is rhizome > main root > root hair. Ginsenosides in *P. quinquefolius* follow this order leaf > root hair > rhizome > stem [104]. Sapogenins are found more in stem and leaves than other parts of *P. quinquefolius* [105]. Both *P. ginseng* and *P. quinquefolius* mainly have ginsenosides Rg1, Re, and Rb2 for leaves, and ginsenosides Re, Rb1, and Rc for root hair [41]. The reason for ginsenosides accumulation in *P. ginseng* main root and *P. quinquefolius* lateral roots may be higher rates of C assimilation to C accumulation [106]. In *P. notoginseng*, different parts can be identified based on saponin content difference [107]. The type of 20(S)-protopanaxatriol is mainly distributed in the underground parts, whereas 20(S)-protopanaxadiol is mainly distributed in the aerial parts [108,109]. Different parts could be identified by metabolomic combined with principal component analysis [71,110,111]. Notoginsenosides R2, Fa, Q, S, Fc, R1, H, A, B, ginsenosides Rb1, Rb2, Rb3, Rc, Rd, F2, Rb2, Rg1, Re, Rf, Rg2, malonyl-ginsenoside-Rb1, and 20-O-glucoginsenoside-RF contribute to up-or down-regulation of different parts of *P. notoginseng* [112]. The main roots have 31% higher ginsenosides content than rhizome [96].

4.4. Different region and age

P. ginseng is mainly distributed in Korea, North Korea, and Northeastern China, *P. quinquefolius* in America and Canada, and *P. notoginseng* in Southwestern China. Geographical origin is a major influential factor for quality control [35]. Metabolomics combined with OPLS-DA could be used to discriminate *P. ginseng* of different regions [65]. The contents of 1,2-dilinoleoyl-3-oleoyl-glycerol of *P. ginseng* from Korea, Japan, and China are 0.41 ± 0.009 mg/g, 0.45 ± 0.01 mg/g, and 0.22 ± 0.008 mg/g, and those of trilinolein are 0.37 ± 0.009 mg/g, 0.39 ± 0.016 mg/g, and 0.27 ± 0.009 mg/g. Furthermore, *P. quinquefolius* roots cultivated in Jilin Province are similar to those cultivated in China in the compositions [113], whereas those grown in China and North America showed no major difference [93]. Ginsenosides Rb1, Rc, Rb2, Rg1, and Rd are influenced by location [114]. The highest polyacetylene content is distributed in Nagano, Japan [37]. Chemical constituents of rhizome and main roots of *P. notoginseng* from Wenshan, Honghe, and Kunming have no significant difference [115]. Different growing years may lead to different chemical profiles. For *P. ginseng*, seven ginsenosides show age-dependent variations [116]. Metabolites combining with multivariate statistical methods could classify different ages, especially for 4, 5, and 6 years [117]. The total contents of ginsenosides for main root and fibrous root in four years are highest [118]. The highest concentrations of stigmastanol and β-sitosterol are found in 6-year-old *P. ginseng* cultivated in Jinan, Korea [39]. For notoginseng, different growth years can be identified by the saponin content, the content of most and total saponins in the order is 3 > 2 > 1-year-old in the main root samples [107]. The best season for harvesting is September to October [13].

4.5. Biochemical analysis

Metabolism of *Panax* species in the different tissues could obtain a better understanding of biological effects. Ginsenosides Rg1, Rb1, and Rd of *P. notoginseng* in rat tissues (kidney, liver, heart, spleen, and lung) are determined. The highest concentrations of three saponins were at 90 min except for spleen after oral dose, whereas after intravenous administration, they could not detect in all tissues after 8 h [119]. After nasal administration, notoginsenoside Rb1, ginsenosides Rg1, Rb1, Rd, and Re from *P. notoginseng* have been determined in brain [120]. The metabolites in the urine after being administered orally ginseng decoction were used to distinguish normal control group, deficiency of vital energy model group, and ginseng treatment group and to find potential biomarkers [121].

Biotransformation of *P. ginseng* in the rat intestinal microflora indicated that protopanaxadiol-type ginsenosides were more easily metabolized than protopanaxatriol-type ginsenosides [122].

5. Conclusion

In this review, different sample preparations including Soxhlet extraction, heat reflux extraction, ultrasonic extraction, solid phase extraction, microwave-assisted extraction, pressurized liquid extraction, enzyme-assisted extraction, accelerated solvent extraction, matrix solid phase dispersion extraction, and pulsed electric field were compared. The TLC technique has been used to quantify and identify *Panax* species quickly, although it always needs standards and lacks uniqueness for bioactive compounds. GC–MS could be used to determine ginsenosides, phenolic acids, dencichine, pesticide residues, and volatile components, although for some non-volatile components complex operation is required. UHPLC with less analytical time has the better performance than HPLC, and DAD has the better recognition than conventional UV detection. HPLC tandem MS has the sensitivity and specificity characteristic when compared with traditional detection. In the liquid–liquid partition chromatography (HSCCC and HPCPC), ammonium acetate could reduce the separation time and eliminate emulsification. After processing ginseng, chemical constituents with polar ginsenosides can be transformed to low polar ginsenosides by hydrolysis, isomerization, and dehydration. Ginsenoside RF is only detected in *P. ginseng*, whereas 24(R)-pseudo-ginsenoside F13 is mainly detected in *P. quinquefolius*. When *P. notoginseng* and *P. quinquefolius* are compared, the former has the highest ginsenoside content (9.176%) and the latter has the highest polyacetylene content (0.08%). The content of ginsenosides in the leaf and root hair is higher, and it is lower in stem and other parts of *P. ginseng*. In addition, the content of total phenols in fruit and leaf is higher than in roots. For *P. notoginseng*, the type of 20(S)-protopanaxatriol is mainly distributed in the underground parts, whereas 20(S)-protopanaxadiol is mainly distributed in the aerial parts. *P. ginseng* is mainly distributed in Korea, North Korea, and Northeastern China, *P. quinquefolius* in America and Canada, and *P. notoginseng* in Southwestern China. Protopanaxadiol-type ginsenosides were more easily metabolized than protopanaxatriol-type ginsenosides in the rat intestinal microflora.

From the current review, the present analysis of *Panax* species is not sufficient. The following aspects need to be investigated.

1. According to previous studies, the different sample preparations and analytical methods have been used to evaluate ginsenosides of *Panax* species. It is necessary that the harmonious and practical standard criteria method is established for determining ginsenosides of different species, parts, and ages quickly and accurately.

2. As we all know, ginseng has been widely used for prevention and treatment of diseases all over the world. Meanwhile, the criteria of Chinese Pharmacopoeia, United States Pharmacopeia, Japanese Pharmacopoeia, and South Korean Pharmacopoeia for *P. ginseng* have been developed. Different countries have different criteria. It is expected that the uniform criteria for ginseng should be established for development of the ginseng industry.

3. As an oleanane type, ginsenoside Ro was only detected in the *P. ginseng* and *P. quinquefolius*, which could be used to inhibit testosterone 5α-reductase and for testosterone-treated disease [123]. Both Ro and its transformation products in red ginseng are the bioactive constituents [124]. The chemical transformation pathway and the metabolism in vitro and in vivo are the key research in the further investigation. Furthermore, in
Conflicts of interest

All authors declare that they have no conflict of interest.

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (81920108033, 81903804, 81703682, 81530096, and 81573581).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jgr.2019.12.009.

References

[1] Lu Q. A review on studies of Panax plant taxonomy. J Jilin Agr Univ 1992:14: 107—11.
[2] The State Pharmacopoeia Commission. Chinese Pharmacopoeia. Beijing. 2015.
[3] Ru W, Wang D, Xu Y, He X, Sun YE, Qian L, Zhou X, Qin Y. Chemical constituents and bioactivities of Panax ginseng (C. A. Mey.). Drug Discov Ther 2015;9:23—32.
[4] Kim DH. Chemical diversity of Panax ginseng, Panax quinquefolium, and Panax notoginseng. J Ginseng Res 2012:36:1—15.
[5] Yang WZ, Hu Y, Wu WY, Ye M, Guo DA. Saponins in the genus Panax L. (Araliaceae): a systematic review of their chemical diversity. Phytochemistry 2014;106:7—24.
[6] Yang H, Lee DY, Kang KB, Kim JY, Kim SO, Yoo YH, Sung SH. Identification of saponins markers from dry purified extract of Panax ginseng by a der- eplication approach and UPLC-QTOF/MS analysis. J Pharm Biomed Anal 2015;109:91—104.
[7] Yao CL, Pan HQ, Wang H, Yao S, Yang WZ, Hou JJ, Jin QH, Wu WY, Guo DA. Global profiling combined with predicted metabolites screening for discovery of natural compounds: characterization of ginsenosides in the leaves of Panax notoginseng as a case study. J Chromatogr A 2018;1538: 34—44.
[8] Shin BK, Kwon SW, Park JH. Chemical diversity of ginseng saponins from Panax ginseng. J Ginseng Res 2015;39:287—98.
[9] Qiu LW, Wang CZ, Yuan CS. Ginsenosides from American ginseng: chemical and pharmacological diversity. Phytochemistry 2011;72:689—99.
[10] Wang Y, Choi HK, Brinckmann JA, Jiang X, Huang L. Chemical analysis of Panax quinquefolius (North American ginseng): a review. J Chromatogr A 2011;1218:426:1—15.
[11] Qi LW, Wang CZ, Yuan CS. Isolation and analysis of ginseng: advances and challenges. Nat Prod Rep 2011:28:467—95.
[12] Zhang S, Chen R, Wu H, Wang C. Ginsenoside extraction from Panax quin- quefolium L. (American ginseng) root by ultra high pressure. J Pharm Biomed Anal 2006:41:57—63.
[13] Dong TT, Cui XM, Song ZH, Zhao KJ, Ji ZN, Lo CK. Tsim KW. Chemical assessment of roots of Panax notoginseng in China: regional and seasonal variations in its active constituents. J Agric Food Chem 2003;51:4617—23.
[14] Kim JS. Investigation of phenolic, flavonoid, and vitamin contents in different parts of Korean Ginseng (Panax ginseng CA. Meyer). Prev Nutr Food Sci 2016;21:263—70.
[15] Wang JR, Yao LF, Gao WN, Liu Y, YiC PW, Liu L, Jiang ZH. Quantitative comparison and metabolite profiling of saponins in different parts of the root of Panax notoginseng. J Agric Food Chem 2014;62:9024—34.
[16] Yeo CR, Yong JJ, Popovich DG. Isolation and characterization of bioactive polyacetylenes Panax ginseng Meyer roots. J Pharm Biomed Anal 2017;139: 148—55.
[17] Yang Y, Chen L, Zhang XX, Guo Z. Microwave assisted extraction of major active ingredients in Panax quinquefolium L. J Liq Chromatogr R T 2009:27: 3203—11.
[18] Wang Y, You J, Yu Y, Q C, Zhang H, Ding L, Zhang H, Li X. Analysis of ginsenosides in Panax ginseng in high pressure microwave-assisted extraction. Food Chem 2008;110:161—7.
[19] Wan JB, Lai CM, Li SP, Lee MY, Kong LY, Wang YT. Simultaneous determini- nation of nine saponins from Panax notoginseng using HPLC and pressurized liquid extraction. J Pharm Biomed Anal 2006;41:274—9.
[20] Lee HS, Lee HI, Yu HJ, Su NK, Li YX, Kim CT, Kim CJ, Cho YJ, Kim N, Choi SY, et al. A comparison between high hydrostatic pressure extraction and heat extraction of ginsenosides from ginseng (Panax ginseng CA Meyer). J Sci Food Agric 2011;91:1466—73.
[21] Shin JH, Anh SC, Choi SW, Lee DU, Kim BY, Baik MY. Ultra high pressure extraction (UHPE) of saponins from Korean Panax ginseng powder. Food Sci Biotechnol 2010;19:743—8.
[22] Hou J, He S, Ling M, Li W, Dong R, Pan Y, Zheng Y. A method of extracting ginsenosides from Panax ginseng by pulsed electric field. J Sep Sci 2010:33: 2707—13.
[23] Shi X, Jin Y, Liu J, Zhou H, Wei W, Zhang H, Li X. Matrix solid phase dispersion extraction of ginsenosides in the leaves of Panax ginseng C. M. Mey. Food Chem 2011;129:1253—7.
[24] Vanhaelen-Fastre RJ, Faes ML, Vanhaelen MH. High-performance thin-layer chromatographic determination of six major ginsenosides in Panax ginseng. J Chromatogr A 2000;868:269—76.
[25] Cheong KL, Wu DT, Hu DJ, Zhao J, Cao KY, Qiao CF, Han BX, Li SP. Comparison and characterization of the glycome of Panx ginseng species by high-performance thin-layer chromatography. J Planar Chromatogr 2014;27:449—53.
[26] Lee TM, Der Marderosian A. Two-dimensional TLC analysis of ginsenosides from root of dwarf ginseng (Panax trifoliu L.) Aralaceae. J Pharm Sci 1981;70:89—91.
[27] Kasote D, Ahmad A, Chen W, Combrinck S, Viljoen A. HPTLC-MS as an effi- cient hyphenated technique for the rapid identification of antimicrobial compounds from propolis. Lett 2004;32:2703—11.
[28] Tuzimski T. Two-dimensional TLC with adsorbent gradients of the type silica-octadecyl silica and silica-cyanopropyl for separation of mixtures of pesticides. J Planar Chromatogr 2005;18:349—57.
[29] Cho BH, Lee HJ, Kim YS. Differences in the volatile compositions of ginseng species (Panax sp.). J Agric Food Chem 2012;60:7616—22.
[30] Bombardelli EBA, Gabetta B, Martinelli EM. Gas-liquid chromatographic method for determination of ginsenosides in Panax ginseng. J Chromatogr A 1980;196:121—32.
[31] Jung MY, Jeon BS, Bock JY. Free, esteri- fi ed and insoluble-bound phenolic acids in white and red Korean ginsengs (Panax ginseng CA. Meyer). Food Chem 2002;79:105—11.
[32] Xie GX, Qiu YP, Qiu MF, Gao CX, Liu YM, Jia W. Analysis of dencichine (beta-N-oxalyl-L-alpha,beta-diaminopropionic acid) in Panax medic- ical plant species. Rapid Commun Mass Spectrom 2005;19:1237—44.
[33] Mao Q, Yang J, Cui XM, Li JJ, Qiu YT, Zhang PH, Wang Q. Target separation of a new anti-tumor saponin and metabolic profiling of leaves of Panax noto- ginseng by liquid chromatography with electrospray ionization quadrupole time-of-flight mass spectrometry. J Pharm Biomed Anal 2012;59:67—77.
[34] Lee DY, Kim JK, Shrestha S, Lee SS, Lee SH, Yu H, Kim GS, Kim YB, Kim SY, Baek N. Quality evaluation of Panax ginseng roots using a rapid resolution LC-QTOF/MS-based metabolomics approach. Molecules 2013;18:1489—61.
[35] Mao Q, Bai M, Xu JD, Kong M, Zhu LY, Wang H, Qi SL. Discrimination of leaves of Panax ginseng and P. quinquefolius by ultra high performance liquid chromatography quadrupole/time-of-flight mass spectrometry based metabolomics approach. J Pharm Biomed Anal 2014;97:129—40.
Lee SI, Kwon HJ, Lee YM, Lee JH, Hong SP. Simultaneous analysis method for Qian ZM, Wan JB, Zhang QW, Li SP. Simultaneous determination of nucleo- Lelu JK, Liu Q, Alolga RN, Fan Y, Xiao WL, Qi LW, Li P. A new two-dimensional Lai CQ, Tan T, Zeng SL, Qi LW, Xiu G, Dong X, Li PI, Liu EH. An integrated high resolution mass spectrometric data acquisition method for rapid screening of saponins in Panax notoginseng (Sajong). J Pharm Biomed Anal 2015;109:184–91.

Qu Qu, Yang WZ, Shi XJ, Yao CL, Yang M, Liu X, Jiang BH, Wu WY, Guo DA. A green protocol for efficient discovery of novel natural compounds: characterization of new ginsenosides from the stems and leaves of Panax ginseng as a case study. Anal Chim Acta 2015;893:65–76.

Xing Q, Liang T, Chen G, Wang X, Jin Y, Liang X. Comprehensive HILIC x RPLC with mass spectrometry detection for the analysis of saponins in Panax ginseng. Anal Chim Acta 2017;971:232–9.

Lelu JK, Liu Q, Alolga RN, Fan Y, Xiao WL, Qi LW, Li P. A new two-dimensional chromatographic method for separation of saponins from steamed Panax notoginseng. J Pharm Biomed Anal 2016;125:355–9.

Wang WY, Ye Y, Liu L, Liu S. Fast quantitative analysis of ginsenosides in Asian ginseng (Panax ginseng C. A. Meyer) by using solid-phase methylation coupled to direct analysis in real time in direct mass spectrometry. Rapid Commun Mass Spectrom 2016;30:Suppl 1:111–5.

Wang WY, Ye Y, Liu L, Liu S. Rapid identification of traditional Chinese herbal medicine by direct analysis in real time (DART) mass spectrometry. Anal Chim Acta 2014;845:70–6.

Zeng S, Wang L, Chen T, Qu H. On-line coupling of macroscopic resin column chromatography with direct analysis in real time mass spectrometry utilizing a surface flowing mode sample holder. Anal Chim Acta 2014;811:43–50.

Qi X, Ignatova S, Luo G, Liang Q, Jun FW, Wang Y, Sutherland I. Preparative isolation and purification of ginsenosides RF, RE, Rb1 and Rb2 from the roots of Panax ginseng with a salt-containing solvent system and flow step-gradient by high performance counter-current chromatography coupled with an evaporative light scattering detector. J Chromatogr A 2010;1217:1995–2001.

Ha YW, Lim SS, Ha JJ, Na YC, Seo JJ, Shin H, Sun SH, Kim Y. Preparative isolation of four ginsenosides from Korean red ginseng (steam-treated Panax ginseng C. A. Meyer), by high-speed counter-current chromatography coupled with evaporative light scattering detection. J Chromatogr A 2007;1151:37–44.

Glockl I, Veit M, Blaschke G. Determination of ginsenosides from Panax ginseng using micellar electrokinetic chromatography. Planta Medica 2008;74:158–61.

Ji W, Xie Z, Zhou J, Wang X, Ma X, Huang L. Water-compatible molecularly imprinted polymers for selective solid phase extraction of dencichine from the aqueous extract of Panax notoginseng. J Chromatogr B Analyt Technol Biomed Life Sci 2011;879:1245–53.

Nguyen HT, Lee DK, Choi YG, Min JE, Yoon SJ, Yu YH, Lim J, Lee J, Kwon SW, Park JH. A H NMR-based metabolomics approach to evaluate the geographical authenticity of herbal medicine and its application in building a model effectively assessing the mixing proportion of intentional admixtures: a case study of Panax ginseng: metabolomics for the authenticity of herbal medicine. J Pharm Biomed Anal 2016;124:120–8.

Wang YS, Jin YF, Gao W, Xiao SY, Zhang YW, Zheng PH, Wang J, Liu JX, Sun CH, Wang YP. Complete 1H-NMR and 13C-NMR spectral assignment of five malonyl ginsenosides from the fresh flower buds of Panax ginseng. J Ginseng Res 2016;40:45–50.

Joo KM, Park CW, Jeong HJ, Lee SJ, Chang IS. Simultaneous determination of two panaxadiol compounds from Korean red ginseng (Panax ginseng) extracts and rat plasma by high-performance anion-exchange chromatography with pulsed amperometric detection. J Chromatogr B Analyt Technol Biomed Life Sci 2011;879:681–6.

Yoon SR, Nah JI, Kim SK, Kim SC, Nam KY, Jung DW, Nah SY. Determination of ginsenoside Rf and Rg2 from Panax ginseng using enzyme immunoassay. Chem Pharm Bull 1997;45:1144–7.

Qiao CF, Liu XM, Cui XM, Hu DJ, Chen YW, Zhao J, Li SP. High-performance anion-exchange chromatography coupled with diode array detection for the determination of dencichine in Panax notoginseng and related species. J Sep Sci 2013;36:2401–6.

Yang WZ, Bo T, Ji S, Qiao X, Guo DA, Ye M. Rapid chemical profiling of saponins in the flower buds of Panax notoginseng by integrating MCI gel column chromatography and liquid chromatography/mass spectrometry analysis. Food Chem 2013;139:762–9.

Chen J, Fan X, Cheng Y, Yang XH, Moore CM, Chen ST, Tong W. Chromatographic analysis for identification of botanical raw materials for pharmaceutical use: a case study using Panax notoginseng. PLoS One 2014;9:e87462.

Toh DF, New LS, Koh HL, Chan EC. Ultra-high performance liquid chromatography/time-of-flight mass spectrometry (UHPLC/TOFMS) for time-dependent profiling of raw and steamed Panax ginseng. J Pharm Biomed Anal 2010;52:43–50.

Lee SA, Jo HK, Im BO, Kim S, Whang WK, Ko SK. Changes in the contents of proapoptigenin in the red ginseng (Panax ginseng) depending on steaming batches. J Ginseng Res 2012;36:102–6.

Sun BS, Xu MY, Li Z, Wang YB, Sung CK. UPLC-Q-TOF-MS/MS analysis for steaming time-dependent profiling of steamed Panax quinquefolius and its ginsenosides transformations induced by repetitious steaming. J Ginseng Res 2012;36:277–90.

Sun BS, Pan FY, Sung CK. Repetitious steaming-induced chemical transformations and global quality of black ginseng derived from Panax ginseng by HPLC-ESI-MS/MS as chemical profiling approach. Biotechnol Bioproc E 2011;16:956–65.

Ab El-Aty AM, Kim IK, Kim MK, Lee C, Shim JH. Determination of volatile organic compounds generated from fresh, white and red Panax ginseng (C. A. Meyer) using a direct sample injection technique. Biomed Chromatogr 2008;22:556–62.

Kim SN, Ha YW, Shin H, Son SH, Wu SJ, Kim YS. Simultaneous quantification of 15 ginsenosides in Panax ginseng C. A. Meyer (Korean red ginseng) by HPLC-ELSD and its application to quality control. J Pharm Biomed Anal 2007:45:164–70.

Sun BS, Gu LJ, Fang ZM, Wang CY, Wang Z, Lee MR, Li J, Jung SK. Simultaneous quantification of 19 ginsenosides in black ginseng developed from Panax ginseng by HPLC-ELSD. J Pharm Biomed Anal 2009:50:15–22.

Sun S, Wang CZ, Tong R, Li XL, Fishbein A, Wang Q, He TC, Du W, Yuan CS. Effects of steaming the root of Panax ginseng on chemical composition and anticancer activities. Food Chem 2010;118:307–14.

Zhang YC, Pi ZF, Liu CM, Song FR, Liu QZ, Liu SY. Analysis of low-polar ginsenosides in steamed Panax ginseng at high-temperature by HPLC-ESI-MS/MS. Chem Res Chinese U 2012:28:31–6.

Huang X, Liu Z, Yue Y, Yu H, Chen CB, Liu SY. Multicomponent analysis and ginsenoside conversions of Panax quinquefolium L. roots before and after steaming by HPLC-MS(n). J Ginseng Res 2019;43:27–37.

Castro-Aceituno V, Ahn S, Simu SY, Singh P, Mathiyalagan R, Lee HA, Yang MC. Activity of silver nanoparticles from Panax ginseng leaves in human cancer cells. Biomed Pharmacother 2016;84:158–65.

Park KS, Ko SK, Chung SH. Comparisons of antidiabetic effect between ginseng radix adha, ginseng radix rubra and Panax quinquefolium radix in MLD STZ-induced diabetic rats. J Ginseng Res 2003;27:56–61.
Qu C, Bai Y, Jin X, Wang Y, Zhang K, You J, Zhang H. Neuroprotective effect of ginsenoside Rb1 on glutamate-induced neurotoxicity: with emphasis on autophagy. Neurosci Lett 2010;482:264–8.

Ng TB. Pharmacological activity of sanchi ginseng (Panax notoginseng). Pharm Pharmacol Sci 2008;11:97–100.

Yang WZ, Ye M, Qiao X, Liu CF, Miao WJ, Bo T, Tao HY, Guo DA. A strategy for efficient discovery of new natural compounds by integrating orthogonal column chromatography and liquid chromatography/mass spectrometry analysis: its application to Panax ginseng quinquefolium and Panax notoginseng to characterize 437 potential new ginsenosides. Anal Chim Acta 2012;739:56–66.

Chan TWD, But PPH, Cheng SW, Kwok IMY. Lou FW, Xu HK. Differentiation and authentication of Panax ginseng, Panax quinquefolius, and ginseng products by using HPLC/MS. Anal Chem 2000;72:1281–7.

Li W, Gu C, Zhang H, Awang DVC, Fitzloff JF, Fong HHS, Breemten RBV. Use of high-performance liquid chromatography-tandem mass spectrometry to distinguish Panax ginseng. Anal Chem 2000;72:5417–22.

Li W, Fitzloff JF. HPLC with evaporative light scattering detection as a tool to distinguish Asian ginseng (Panax ginseng) and North American ginseng (Panax quinquefolius). J Liq Chromatogr R 2006;29:17–27.

Wang Y, Qiao X, Li K, Fan J, Bo T, Guo DA. Ye M. Identification and differentiation of Panax ginseng, Panax quinquefolium, and Panax notoginseng by monitoring multiple diagnostic chemical markers. Acta Pharm Sin B 2016;6:56–76.

Wang T, Guo R, Zhou G, Zhou X, Kou Z, Sui F, Li C, Tang L, Wang Z. Traditional uses, botany, phytochemistry, pharmacology and toxicology of Panax noto-ginseng (Burk.). F.H. Chen: a review. J Ethnopharmacol 2016;188:234–58.

Xia P, Bai Z, Liang T, Yang D, Liang Z, Yan X, Liu Y. High-performance liquid chromatography based chemical fingerprint analysis and chemometric approaches for the identification and distinction of three endangered Panax plants in Southeast Asia. J Sep Sci 2007;30:825–32.

Gurung B, Bhadrwav PK, Rai AK, Sahoo D. Major ginsenoside contents in rhizomes of Panax sokayensis and Panax bipinnatifolius. Nat Prod Res 2015;29:2348–60.

Yunusova N, Kim JY, Lee GJ, Hong YJ, Shin BK, Cai SQ, Piao XL, Park JH, Kwon SW. Comparison of ginsenosides in radix and rhizome of wild Panax species by LC-ELSD and LC-Q-TOF-MS. Int J Food Sci Tech 2015;50:71–81.

Xie G, Plumb R, Su M, Xu Z, Zhao A, Qiu M, Long X, Liu Z, Jia W. Ultra-performance LC/QTOF MS analysis of medicinal Panax herbs for metabolomic research. J Sep Sci 2008;31:1015–26.

Park HW, In G, Kim JH, Cho BC, Han GH, Chang JM. Metabolomic approach for discrimination of processed ginseng genius (Panax ginseng and Panax quinquefolium) using UPLC-QTOF MS. J Ginseng Res 2014;38:59–65.

Yang SG, Lee SW, Kim YO, Sohn SH, Kim YC, Hyun DY, Hong YP, Shin YH. GC-based metabolite profiling and multivariate control of leaves of different Panax species. J Ginseng Res 2013;37:248–53.

Lee SM, Lee HB, Lee GG. A convenience UPLC/PDA method for the quantitative analysis of panaxasturanes A and B from Panax ginseng. Food Chem 2016;232:3–55.

Shi W, Wang Y, Li J, Zhang H, Ding L. Investigation of ginsenosides in different parts and ages of Panax ginseng. Food Chem 2007;102:664–8.

Zhang Z, Chen Y, Xu L, Qin M, Y, Chen H, Zhang J. Localization of ginsenosides in the rhizome and root of Panax ginseng by laser microdissection and liquid chromatography-quadrupole/time of flight mass spectrometry. J Pharm Biomed Anal 2015;105:121–33.

Qu C, Bai Y, Jin X, Wang Y, Zhang K, You J, Zhang H. Study on ginsenosides in different parts and ages of Panax quinquefolium L. Food Chem 2009;115:340–6.

Zhang X, Ma X, Si B, Zhao Y. Simultaneous determination of five active hydrolysates ingredients from Panax quinquefolium L. by HPLC-HPLS. Biomed Chromatogr 2011;25:464–51.

Liu J, Liu Y, Wang Y, Abozeid A, Yu ZG, Tang ZH. The integration of GC-MS and LC-MS to assay the metabolomics profiling in Panax ginseng and Panax quinquefolius reveals a tissue- and species-specific connectivity of primary metabolites and ginsenosides accumulation. J Pharm Biomed Anal 2017;135:176–85.

Jia WH, Kang J, Liu J, Liu XW, Wang X, Shang MY, Cai SQ, Zhou S, Komatsu K. Comparative studies of saponins in 1-3-year-old main roots, fibrous rhizomes and rhizomes of Panax notoginseng, and identification of different parts and growth-year samples. J Nat Med 2013;67:339–49.

Wan JB, Yang FQ, Li SP, Wang YT, Cui XM. Chemical characteristics for different parts of Panax notoginseng using high-performance liquid extraction and HPLC-EELSD. J Pharm Biomed Anal 2006;41:1596–601.

Wang Z, Chen YY, Pan HJ, Wei L, Wang YH, Zeng CH. Saponin accumulation in flower buds of Panax notoginseng. Chinese Herbal Medicines 2015;7:179–84.
mass spectrometry, multiple internal reflection infrared spectrometry and thin-layer chromatography. J Chromatogr A 1981;212:37–49.

[135] Bu D, Li J, Zhang H, Li L. An HPLC-based strategy for the quality assessment and discrimination of three Panax species. Molecules 2018;23.

[136] Zhang Y, Liu C, Qi Y, Li S, Wang J. Application of accelerated solvent extraction coupled with reversed-phase high-performance liquid chromatography to extraction and online isolation of saponins with a broad range of polarity from Panax notoginseng. Sep Purif Technol 2013;106:82–9.

[137] Haibo B, Luxing N, Dan W, Shaoying X, Shan L, Zhuyong G, Xiaojia Q, Guang W, Xianguan L. Rapid determination of Panax ginseng by near-infrared spectroscopy. Anal Methods 2013;5.

[138] Jiang C, Qu H. A comparative study of using in-line near-infrared, ultraviolet spectra and fused spectra to monitor Panax notoginseng adsorption process. J Chromatogr A 2017;1572:141–9.

[139] Liu JH, Lee CS, Leung KM, Yan ZK, Shen BH, Zhao ZZ, Jiang ZH. Quantification of two polypeptides in radix ginseng and roots of related Panax species using a gas chromatography-mass spectrometric method. J Agr Food Chem 2007;55:8830–5.

[140] Chen XJ, Qiu JF, Wang YT, Wan JB. Discrimination of three Panax species based on differences in volatile organic compounds using a static headspace GC-MS-based metabolomics approach. Am J Chin Med 2016;44:663–76.

[141] Bondolf M, Casali I, Palazon J, Mallo A, Morales C. Improved high performance liquid chromatographic determination of ginsenosides in Panax ginseng-based pharmaceuticals using a diol column. Biomed Chromatogr 2002;16:68–72.

[142] Song C, Lai DT, Dong TT, Zhang J, Choi RC, Wu HQ, Wang LY, Hong RS, Li SH, Suen KY, et al. High-performance liquid chromatographic evaluation of characteristic changes in Panax ginseng A. M. M. A. stored in different conditions. J Agr Food Chem 2013;61:6568–73.

[143] Liu Z, Wang CZ, Zhu XY, Wan JY, Zhang J, Li W, Ruan CC, Yuan CS. Dynamic changes in neutral and acidic ginsenosides with different cultivation ages and harvest seasons: identification of chemical characteristics for Panax ginseng quality control. Molecules 2017;22.

[144] Liu Z, Li Y, Li RX, Ruan CC, Wang LJ, Sun GZ. The effects of dynamic changes of malonyl ginsenosides on evaluation and quality control of Panax ginseng C. A. Meyer. J Pharm Biomed Anal 2012;64:56–61.

[145] Chung JM, Kim JW, Jeung P, Yun JM, Kim SH. Ginsenosides and phenolics in fresh and processed Korean ginseng (Panax ginseng C. A. Meyer): effects of cultivation location, year, and storage period. Food Chem 2012;130:73–8.

[146] Wang AB, Wang CZ, Wu JA, Oinsiki J, Yuan CS. Determination of major ginsenosides in Panax quinquefolius (American ginseng) using high-performance liquid chromatography. Phytochem Anal 2005;16:272–7.

[147] Song C, Lai DT, Dong TT, Mcintosh MS. Ginsenoside extraction and variation among and within American ginseng (Panax quinquefolius L.) populations. Phytochemistry 2006;67:1510–9.

[148] Yao H, Li X, Liu Y, Wu Q, Jin Y. An optimized microwave-assisted extraction method for increasing yields of rare ginsenosides from Panax quinquefolius L. J Ginseng Res 2016;40:415–22.

[149] Li L, Sheng YX, Zhang JL, Wang SS, Guo DA. High-performance liquid chromatographic assay for the active saponins from Panax notoginseng in rat tissues. Biomed Chromatogr 2006;20:327–35.

[150] Gao X, Dan M, Zhao A, Xie G, Dan M, Zhao A, Xie G, Jia W. Simultaneous determination of saponins by high performance liquid chromatography. J Liq Chromatogr R T 2019;42:4996–5012.

[151] Christensen LP, Jensen M, Kidmose U. Simultaneous determination of ginsenosides and polyacetylenes in American ginseng root (Panax quinquefolium L.) by high-performance liquid chromatography. J Agric Food Chem 2006;54:8995–9003.

[152] Lau AJ, Seo BH, Woo SO, Koh HL. High-performance liquid chromatographic method with quantitative comparisons of whole chromatograms of raw and steamed Panax ginseng. J Chromatogr A 2007;1177:184–93.

[153] Chen T, Gong X, Chen H, Qu H. Process development for the decolorization of Panax notoginseng extracts: a design space approach. J Sep Sci 2015;38:346–55.

[154] Zhang HZ, Liu DH, Zhang DK, Wang YH, Li G, Yan GL, Cao LJ, Xiao XL, Huang LQ, Wang JB. Quality assessment of Panax notoginseng from different regions through the analysis of marker chemicals, biological potency and ecological factors. PLoS One 2016;11:e0164384.

[155] Guo J, Bai L, Li CM, Li X. Application of the univaraite determination of 11 saponins in Panax notoginseng using ultra performance liquid chromatography. J Pharm Biomed Anal 2007;44:996–1000.

[156] Chen T, Gong X, Chen H, Zhang Y, Qu H. Chromatographic elution process design space development for the purification of saponins in Panax notoginseng using ultraperformance liquid chromatography extract using a probability-based approach. J Sep Sci 2016;39:306–15.

[157] Xie RF, Yang BR, Cheng PP, Wu S, Li ZC, Tang JY, Li S, Tang N, Lee SMY, Wang YH, et al. Study on the HPLC chromatograms and pro-angiogenesis activities of the flowers of Panax notoginseng. J Liq Chromatogr R T 2015;38:1286–95.

[158] Kim D, Kim M, Rana GS, Han J. Seasonal variation and possible biosynthetic pathway of ginsenosides in Korean Ginseng Panax ginseng Meyer. Molecules 2018;23.

[159] Lee DY, Cho JC, Lee MK, Lee JW, Lee HY, Yang DC, Baek NI. Discrimination of Panax ginseng roots different in Korea using HPLC-ELSD and principal component analysis. J Ginseng Res 2011;35:31–8.

[160] Li WK, Fitzloff JF. A validated method for quantitative determination of saponins in Panax notoginseng (Panax notoginseng) using high-performance liquid chromatography with evaporative light-scattering detection. J Pharm Bioanal 2001;35:1367–43.

[161] Koh E, Jang OH, Hwang KH. AN, Moon B. Effects of steaming and air-drying on ginsenoside composition of Korean ginseng (Panax ginseng C.A. Meyer). J Food Process Pres 2015;39:2077–13.

[162] Dong WW, Han XZ, Zhao J, Zhong FL, Ma R, Wu S, Li D, Quan LH, Jiang J. Metabolite profiling of ginsenosides in rat plasma, urine and feces by LC-MS/MS and its application to a pharmacokinetic study after oral administration of a single dose of Panax ginseng C. A. Meyer. J Mass Spectrom 2014;49:804–13.

[163] Song Y, Zhang N, Shi S, Li J, Zhao Y, Zhang Q, Jiang Y, Yu P. Homolog-focused profiling of ginsenosides based on the integration of step-wise formal anion-to-deprotonated ion transition screening and scheduled multiple reaction monitoring. J Chromatogr A 2015;1406:36–46.

[164] Stavriani A, Stokelshikova E, Porotova A, Rodin I, Shpigun O. Combination of HPLC-MS and QAMS as a new analytical approach for determination of saponins in ginseng containing products. J Pharm Biomed Anal 2017;132:87–92.

[165] Ye J, Gao Y, Tian S, Li J, Zhang W. A novel and effective mode-switching triple quadrupole mass spectrometric approach for simultaneous quantification of fifteen ginsenosides in Panax ginseng. Phytomedicine 2018;44:29–40.

[166] Xia YG, Song Y, Liang J, Guo XD, Yang BY, Huang KH. Quality analysis of American ginseng cultivated in Heilongjiang using UPLC-ESI--MRM-MS with chromatometric methods. Molecules 2018;23.

[167] Chen W, Deng Y, Zou Q, Yang Y. Comparative determination of three major bioactive saponins of Panax notoginseng using liquid chromatography-tandem mass spectrometry and a pharmacokinetic study. Chin Med-Un 2015;3:12.

[168] Feng H, Shen W, Zhu C. Pharmacokinetics study of bio-adhesive tablet of Panax notoginseng saponins. Int Arch Med 2011:4:18.

[169] Zhou L, Xing R, Xie L, Rao T, Wang Q, Ye W, Hu H, Xiao J, Kang Y, Deng D, et al. Development and validation of an UFLC-MS/MS assay for the absolute quantification of nine ginsenosides in rat plasma: application to the pharmacokinetic study of Panax notoginseng Extract. J Chromatogr B Analyt Technol Biomed Sci 2015;995:46–53.

[170] Luo C, Tan T, Zeng SL, Dong X, Liu EH, P. Relative quantification of multiple components in Panax ginseng (Panax ginseng C. A. Meyer). J Chromatogr A 2000;884:29–38.

[171] Deng Y, Zhu Q, Li H, Li S, Dong Z, Li T, Zhang W. Pharmacokinetic characteristics of steamed notoginseng by an efficient LC-MS/MS method for simultaneously quantifying twenty-three triterpenoids. J Agr Food Chem 2018;66:987–98.

[172] Liu S, Liu C, Liu C, Zhang Y. Extraction and in vitro screening of potential acetylcholinesterase inhibitors from the leaves of Panax johonis. J Chromatogr B Analyt Technol Biomed Sci 2017;1061:1062–139.45.

[173] Liu Y, Li J, He J, Abizh Z, Qiu J, Yu S, Ma S, Liu J, Du D. Identification of new trace triterpenoid saponins from the roots of Panax notoginseng by high-
performance liquid chromatography coupled with electrospay ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 2009;23:667–72.

[185] Kim SH, Shin YS, Choi HK. Nano ESI-MS-based lipidomics to discriminate between cultivars, cultivation ages, and parts of Panax ginseng. Anal Bioanal Chem 2016;408:2109–21.

[186] Pakshak AY, Chang LC, He SF. A rapid miniaturized residue analytical method for the determination of xanthine and its two acid metabolites in ginseng roots using UPLC-MS/MS. J Agr Food Chem 2014;62:3702–9.

[187] Yan JF, Fan Y, Yu QT, Ge YZ, Yan CP, Afolabi RN, Li P, Ma ZH, Qi LW. Integrated evaluation of malonyl ginsenosides, amino acids and polysaccharides in fresh and processed ginseng. J Pharm Biomed Anal 2015;107:89–97.

[188] Xie YY, Luo D, Cheng YJ, Ma JF, Wang YM, Liang QL, Luo GA. Steaming-induced chemical transformations and holistic quality assessment of red ginseng derived from Panax ginseng by means of HPLC-ESI-MS/MS-based multicomponent quantification fingerprint. J Agr Food Chem 2012;60:8213–24.

[189] Qiu S, Yang WZ, Yao CL, Qiu ZD, Shi XJ, Zhang JX, Hou JJ, Wang QR, Wu WY, Guo DA. Nontargeted metabolomics and “commercial-homophyletic” comparison-induced biomarkers verification for the systematic chemical differentiation of five different parts of Panax ginseng. J Chromatogr A 2016;1453:78–87.

[190] Lee DY, Cho JC, Bang MH, Han MW, Lee HY, Yang DC, Baek NL. Discrimination of Korean ginseng (Panax ginseng) roots using rapid resolution LC-QTOF/MS combined by multivariate statistical analysis. Food Sci Biotechnol 2015;24:309–19.

[191] Sun M, Ji J, Qin Q, Yu Q, Wu W, Liu S. Identification of ginsenosides Rb2, Rb1, and related malonyl-ginsenosides in Panax ginseng extracts by using RRLC-Q-TOF-MS/MS. International Conference on Human Health and Biological Engineering 2013;1114:1–5.

[192] Wu W, Sun L, Zhang Z, Guo Y, Liu S. Profiling and multivariate statistical analysis of Panax ginseng based on ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. J Pharm Biomed Anal 2015;107:141–50.

[193] Wang HP, Zhang YB, Yang XW, Zhao DQ, Wang YP. Rapid characterization of ginsenosides in the roots and rhizomes of Panax ginseng by UPLC-DAD-QTOF-MS and simultaneous determination of 19 ginsenosides by HPLC-ESI-MS. J Ginseng Res 2016;40:382–94.

[194] Wang HP, Liu Y, Chen C, Xiao HB. Screening specific biomarkers of herbs using a metabolomics approach: a case study of Panax ginseng. Sci Rep 2017;7:4609.

[195] Zhang HM, Li SL, Zhang H, Wang Y, Zhao ZL, Chen SL, Xu HK. Holistic quality evaluation of commercial white and red ginseng using a UPLC-Q-TOF-MS/MSS-based metabolomics approach. J Pharm Biomed Anal 2012;62:258–73.

[196] Chang X, Zhang J, Li D, Zhou D, Zhang Y, Wang J, Hu B, Ju Y, Ye Z. Nontargeted metabolomics approach for the differentiation of cultivation ages of mountain and garden-cultivated ginseng of different ages in Northeast China. Molecules 2018;24.

[197] Qi LW, Wang HY, Zhang H, Wang CZ, Li P, Yuan CS. Diagnostic ion filtering to characterize ginseng saponins by rapid liquid chromatography with time-of-flight mass spectrometry. J Chromatogr A 2012;1230:93–9.

[198] Lin H, Zhu H, Tan J, Wang H, Dong Q, Wu F, Liu L, Li P, Liu J. Non-targeted metabolomics analysis of wild-sampled and field-grown American ginseng, Molecules 2019;24.

[199] Sun J, Chen P. Differentiation of Panax quinquefolius grown in the USA and China using LC/MS-based chromatographic fingerprinting and chemometric approaches. Molecules 2011;16:3991–77.

[200] Sun X, Chen P, Cook SL, Jackson GP, Harnly JM, Harrington PB. Classification of cultivation locations of Panax quinquefolius L. samples using high performance liquid chromatography-electrospray ionization mass spectrometry. J Pharm Biomed Anal 2012;84:3628–34.

[201] Wen XD, Yang J, Ma RH, Gao W, Qi LW, Li P, Baur BA, Du GJ, Zhang Z, Somogyi J, et al. Analysis of Panax notoginseng metabolites in rat bile by liquid chromatography-quadrupole time-of-flight mass spectrometry with microfluidic sampling. J Chromatogr B Analyt Technol Biomed Sci Life Sci 2012;895–896:162–8.

[202] Liu P, Yu HS, Zhang LJ, Song X, Kong LP, Liu JY, Zhang J, Cao M, Yu K, Tang GC, et al. A rapid method for chemical fingerprint analysis of Panax notoginseng powders by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Chin J Nat Med 2015;13:471–80.

[203] Xiao J, Shen H, Deng K, Shao Y, Shen B, Li Y, Xiong Z, Zhu L, Li H, Rao T, et al. Qualitatively and quantitatively investigating the regulation of intestinal microbiota on the metabolism of Panax notoginseng saponins. J Ethnopharmacol 2016;194:324–36.

[204] Liu F, Ma N, He H, Hu D, Li P, Su H, Wang JB. Qualitative and quantitative analysis of the saponins in Panax notoginseng leaves using ultra-performance liquid chromatography coupled with time-of-flight tandem mass spectrometry and high performance liquid chromatography coupled with UV detector. J Ginseng Res 2018;42:149–57.

[205] Shi XJ, Yang WZ, Qiu S, Yao CL, Shen Y, Pan HQ, Bi QR, Yang M, Wu WY, Guo DA. An in-source multiple collision-neutral loss filtering based nontargeted metabolomics approach for the comprehensive analysis of malonyl-ginsenosides from Panax ginseng, P. quinquelorua, and P. notoginseng. Anal Chem Acta 2017;952:59–70.

[206] Shi X, Yang W, Huang Y, Hou J, Qiu S, Yao C, Feng Z, Wei W, Wu G, Guo D. Direct screening of malonylginsenosides from nine Ginseng extracts by an untargeted profiling strategy incorporating in-source collision-induced dissociation, mass tag, and neutral loss scan on a hybrid linear ion-trap Orbitrap mass spectrometer coupled to ultra-high performance liquid chromatography. J Chromatogr A 2018;1571:213–22.

[207] Wang S, Gao L, Shi X, Hu C, Kong H, Xu G. On-line stop-flow two-dimensional liquid chromatography-mass spectrometry method for the separation and identification of triterpenoid saponins from ginseng extract. Anal Bioanal Chem 2015;407:331–41.

[208] Wu Y, Liu H, Li S, Lin L, Chen Y, Ma M, Chen B. Orthogonal strategy development and application of of high-speed counter-current chromatography and coupled with evaporative light scattering detection. J Sep Sci 2011;34:1116–22.

[209] Cheng Y, Zhang M, Liang Q, Hu P, Wang Y, Jun FW, Luo G. Two-step preparation of ginsenoside- Re, Rb1, and Rb2 from the root of Panax ginseng by high-speed performance counter-current chromatography. Sep Purif Technol 2011;77:347–54.

[210] Chen F, Luo J, Kong L. Fast isolation of ginsenosides Re and Rg1 from the roots of Panax ginseng by HSCCC-ELSD combined with MCI gel CC guided by HPLC-MS. J Liq Chromatogr R T 2012;35:912–23.

[211] Wang J, Liu CM, Li L, Bai HL. Isolation of four high-purity dammarane sapo- nins from extract of Panax notoginseng by centrifugal partition chromatography coupled with evaporative light scattering detection in one operation. Phytochem Anal 2011;22:263–7.

[212] Shehzad O, Ha IJ, Park Y, Ha YM. KiMS. Development of a rapid and convenient method to separate eight ginsenosides from Panax ginseng by high-speed counter-current chromatography coupled with evaporative light scattering detection. Sep Sci Technol 2011;34:1116–22.

[213] Cheng Y, Zhang M, Liang Q, Hu P, Wang Y, Jun FW, Luo G. Two-step preparation of ginsenoside-Re, Rb1, and Rb2 from the root of Panax ginseng by high-speed performance counter-current chromatography. Sep Purif Technol 2011;77:347–54.

[214] Chen F, Luo J, Kong L. Fast isolation of ginsenosides Re and Rg1 from the roots of Panax ginseng by HSCCC-ELSD combined with MCI gel CC guided by HPLC-MS. J Liq Chromatogr R T 2012;35:912–23.

[215] Wang J, Liu CM, Li L, Bai HL. Isolation of four high-purity dammarane sapo- nins from extract of Panax notoginseng by centrifugal partition chromatography coupled with evaporative light scattering detection in one operation. Phytochem Anal 2011;22:263–7.
[228] Zhao H, Xu J, Chebeeradik H, Hylands PJ. Metabolomic quality control of commercial Asian ginseng, and cultivated and wild American ginseng using 1H NMR and multi-step PCA. J Pharm Biomed Anal 2015;114:113–20.

[229] Huang Y, Zhang T, Zhao Y, Zhou H, Tang G, Fillet M, Crommen J, Jiang Z. Simultaneous analysis of nucleobases, nucleosides and ginsenosides in ginseng extracts using supercritical fluid chromatography coupled with single quadrupole mass spectrometry. J Pharm Biomed Anal 2017;144:213–9.

[230] Shi X, Yang W, Qiu S, Hou J, Wu W, Guo D. Systematic profiling and comparison of the lipidomes from Panax ginseng, P. quinquefolius, and P. notoginseng by ultrahigh performance supercritical fluid chromatography/high-resolution mass spectrometry and ion mobility-derived collision cross section measurement. J Chromatogr A 2018;1548:64–75.

[231] Liu Y, Xie MX, Kang J, Zheng D. Studies on the interaction of total saponins of Panax notoginseng and human serum albumin by Fourier transform infrared spectroscopy. Spectrochim Acta Part A 2003;59:2747–58.

[232] Chen H, Lin Z, Tan C. Fast discrimination of the geographical origins of notoginseng by near-infrared spectroscopy and chemometrics. J Pharm Biomed Anal 2018;161:239–45.

[233] Lee BJ, Kim HY, Lim SR, Huang L, Choi HK. Discrimination and prediction of cultivation age and parts of Panax ginseng by Fourier-transform infrared spectroscopy combined with multivariate statistical analysis. PLoS One 2017;12:e0186664.

[234] Yao H, Shi PY, Shao Q, Fan XH. Chemical fingerprinting and quantitative analysis of a Panax notoginseng preparation using HPLC-UV and HPLC-MS. Chin Med-Uk 2011;6.

[235] MacCraith WB, White CM. Simplified ultrasonically- and microwave-assisted solvent extractions for the determination of ginsenosides in powdered Panax ginseng rhizomes using liquid chromatography with UV absorbance or electrospray mass spectrometric detection. Anal Bioanal Chem 2013;405:4511–22.

[236] Mao Q, Li Y, Li SL, Yang J, Zhang PH, Wang Q. Chemical profiles and anticancer effects of saponin fractions of different polarity from the leaves of Panax notoginseng. Chin J Nat Med 2014;12:30–7.