Cerebellar engagement in the attachment behavioral system

Eleonora Picerni1,2,*, D. Laricchiuta1, F. Piras1, L. Petrosini1, G. Spalletta1,3,4 & D. Cutuli1,2,4

Brain structural bases of individual differences in attachment are not yet fully clarified. Given the evidence of relevant cerebellar contribution to cognitive, affective, and social functions, the present research was aimed at investigating potential associations between attachment dimensions (through the Attachment Style Questionnaire, ASQ) and cerebellar macro- and micro-structural measures (Volumetric and Diffusion Tensor Imaging data). In a sample of 79 healthy subjects, cerebellar and neocortical volumetric data were correlated with ASQ scores at the voxel level within specific Regions Of Interest. Also, correlations between ASQ scores and age, years of education, anxiety and depression levels were performed to control for the effects of sociodemographic and psychological variables on neuroimaging results. Positive associations between scores of the Preoccupation with Relationships (ASQ subscale associated to insecure/anxious attachment) and cortical volume were found in the cerebellum (right lobule VI and left Crus 2) and neocortex (right medial OrbitoFrontal Cortex, OFC) regions. Cerebellar contribution to the attachment behavioral system reflects the more general cerebellar engagement in the regulation of emotional and social behaviors. Cerebellar properties of timing, prediction, and learning well integrate with OFC processing, supporting the regulation of attachment experiences. Cerebellar areas might be rightfully included in the attachment behavioral system.

Being the human nature inherently rooted in its social interactions, intersubjective relationships play a crucial role in survival and reproduction processes and support the development and preservation of physical and mental health1. As infants, humans strongly rely on others and have fundamental psychological needs for safety and acceptance2. The attachment theory2–4 posits that humans are endowed with an innate behavioral attachment system which may elicit the attention of, and support from, other significant persons, the attachment figures. Thus, the attachment to others is considered a motivational system associated with resistance to separation, and grief and disruption when loss of a close relationship occurs3. The attachment drive is triggered by psychological or physiological threats and leads to seek proximity to the attachment figure to get protection and restore emotional balance5.

According to attachment theory, from early social interactions with significant primary figures the child develops distinct mental representations of the self and others that become part of general interpersonal schemata of the individual (“internal working models”5), support social development, and influence thoughts, feelings, and behaviors throughout the lifespan. Namely, infant attachment orientations are retained to influence adults’ social, emotional, and affective relationships6–10 with romantic partners or close friends, or even unfamiliar persons1. Therefore, the individual’s attachment history is associated with individual differences in emotional and cognitive mechanisms6. Traditionally, attachment has been categorized into three main styles—secure, anxious, and avoidant attachment1, to which a fourth one—disorganized attachment—has been then added4.

Children with secure attachment are confident of caregivers’ support and use adult attachment figures as a secure base for exploration; when adults, securely attached individuals may enjoy intimate relationships, seek out social support, share feelings with other people, and be not worried about abandonment. Children with anxious/ambivalent attachment are exaggeratedly distressed by separation; when adults, anxiously attached individuals may exhibit high levels of worry and impulsiveness in their relationships and have generalized feelings of abandonment and rejection. Children with avoidant attachment seem undisturbed by the separation from the caregivers; as adults, avoidantly attached individuals may view themselves as self-sufficient, seek less intimacy

1IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy. 2Sapienza University, Via dei Marsi 78, 00185 Rome, Italy. 3Division of Neuropsychiatry, Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, USA. 4These authors contributed equally: G. Spalletta and D. Cutuli. 5email: eleonora.picerni@gmail.com
insecure attachment.

Evidence for continuity of attachment from mother to infant is more robust for secure attachment than for disorganized attachment.

One's attachment strategies could affect one's attachment relationships with partners, do not care about close relationships, and tend to suppress their emotions. Finally, children and adults with disorganized attachment do not express consistent attachment behavior, lack a coherent approach towards relationships, and may show mixed responses of anxiety and avoidance. In conclusion, the attachment theory provides a theoretical framework for the development of fundamental individual schemata that in adults may influence the quality and quantity of close interpersonal relationships.

Despite its heuristic value, attachment theory has been criticized for the failure to incorporate temperamental factors as well as social and cultural variability. Empirical data on stability of individual attachment across the lifespan are conflicting and correlations between infancy and adulthood attachment measures are reported to be small to moderate. Notably, major transforming life events occurring after infancy, such as childbirth, could affect one's attachment strategies. As for intergenerational transmission of attachment relationships, evidence for continuity of attachment from mother to infant is more robust for secure attachment than for insecure attachment.

Moreover, despite attachment theory has generated extensive research in social and clinical psychology, the brain structural bases of the individual differences in attachment style are not yet fully clarified.

To date, a number of studies indicated the association of attachment-related emotional states with neurobiological and genetic substrates. Furthermore, attachment styles appear to covary with brain morphometry measures, as cortical thickness and gray matter volume of specific cerebral regions (orbito-frontal cortex, anterior temporal pole, hippocampus, fusiform gyrus, cingulate cortex, insula, amygdala, striatum). Consistently, functional imaging studies reported attachment-modulated activations in fronto-striatal-limbic circuits during social and affective processing and regulation tasks (involving emotional and cognitive mentalization). However, few studies have investigated whether differences in attachment styles are associated even with cerebellar gray matter modifications, despite the growing evidence of the relevant cerebellar contribution (modulatory rather than generative) to cognitive, affective, and social functions.

On this basis, the present research was aimed at investigating the potential associations between attachment styles (assessed by the Attachment Style Questionnaire, ASQ) and cerebellar macro- and micro-structural measures. In a clinically healthy sample of 79 subjects of both sexes, at macro-structural level the volumetric variations were analyzed through Region Of Interest (ROI)-based analyses, and at micro-structural level, through a Diffusion Tensor Imaging (DTI) protocol.

We found a significant positive association between an ASQ subscale (Preoccupation with Relationships) and volumes of the cerebellar right Lobule VI and left Crus 2. We next extended our analyses to the associations between attachment styles and volumes of the main cortical sites which the attachment-associated cerebellar areas project to. In fact, the cortico-cerebello-cortical system comprises a series of closed modular 'loops', each of which shares a specific isomorphic organization in which cortical areas project to specific areas of the cerebellar cortex via the pontine nuclei, and in turn receive projections from these areas via cerebellar dentate nucleus and thalamus. Anticipating the results, we found that the right medial Orbito-Frontal Cortex (mOFC, BA11), a prefrontal region receiving projections from Crus 2, was significantly associated with the ASQ subscale previously quoted.

Results

Sociodemographic and psychological variables.

ASQ subscale	All participants	Males	Females
Confidence	34.35 ± 4.73	34.03 ± 4.31	34.63 ± 5.09
Discomfort with Closeness	34.15 ± 6.65	33.42 ± 6.20	34.77 ± 7.01
Relationships as Secondary	14.09 ± 5.18	15.47 ± 4.18	14.09 ± 5.18
Need for Approval	18.73 ± 5.75	18.06 ± 5.66	19.30 ± 5.83
Preoccupation with Relationships	25.24 ± 6.42	25.5 ± 7.36	25.02 ± 5.59
HAM-A	4.96 ± 3.86	4.16 ± 3.79	5.26 ± 3.82
HAM-D	3.00 ± 2.81	2.41 ± 2.83	3.48 ± 2.74

Table 1. Scores on psychological instruments (ASQ subscales, HAM-A and HAM-D) for all subjects, males and females (mean ± standard deviation).

ROI-based VBM.

Analyses on the cerebellar areas revealed significant positive associations between the Preoccupation with Relationships ASQ subscale and extended clusters in right lobule VI (390 voxels) ($p_{FWEcorr} = 0.044$) and in left Crus 2 (84 voxels) ($p_{FWEcorr} = 0.037$) (Fig. 1; Table 4).
with Preoccupation with Relationships ASQ subscale. These unremitting inputs could provoke a compensatory increase,
studies39,40 emphasize the relationship between anxiety related personality characteristic in healthy subjects and
increased cerebellar and cortical volumes were not accompanied by modifications in DTI values. Although some
the scores of the Preoccupation with Relationships, an ASQ subscale associated to insecure/anxious attachment,
attachment styles have only occasionally reported the involvement of cerebellar circuits26–28,36–38, and often have
Discussion
Furthermore, the Preoccupation with Relationships ASQ subscale was positively correlated with a cluster
(113 voxels) in right mOFC (BA11) (\(\text{PwR \text{corr}} = 0.048\)) (Fig. 1; Table 4). Then, mean values from significant
calculated effect sizes of the results. Effect sizes values (basing on Cohen34 and Hattie35) are reported in Table 4.
DTI analyses. MD and FA values of cerebellar and cortical areas failed to reveal any significant association
with Preoccupation with Relationships ASQ subscale.
Table 2. ASQ subscales and sociodemographic variables. Significant results (\(p < 0.05\)) are in Bold.
Table 3. Correlations between ASQ subscales. Abbreviations: C: Confidence; DwC: Discomfort with
Closeness; RaS: Relationships as Secondary; NfA: Need for Approval; PwR: Preoccupation with Relationships.
Significance for results \(p < 0.05\). Correlation between PwR and DwC was not significant.

ASQ subscales	Age	Years of education	Gender	HAM-A	HAM-D							
	\(r\)	\(p\)	\(r\)	\(p\)	\(r\)	\(p\)	\(r\)	\(p\)	\(r\)	\(p\)	\(r\)	\(p\)
Confidence	0.01	0.90	−0.02	0.87	−0.56	0.58	−0.15	0.18	−0.22	0.05		
Discomfort with Closeness	0.09	0.43	−0.07	0.51	−0.90	0.37	0.02	0.81	0.13	0.22		
Relationships as Secondary	0.17	0.14	−0.06	0.59	1.28	0.20	0.25	0.02	0.21	0.06		
Need for Approval	0.02	0.87	0.11	0.33	−0.96	0.34	0.39	<0.0001	0.31	<0.01		
Preoccupation with Relationships	0.01	0.90	0.09	0.43	−0.33	0.74	0.21	0.06	0.11	0.30		

C	DwC	RaS	NfA	PwR		
C	−0.54	−0.53	−0.47	−0.29	−0.32	0.01
DwC	\(p < 0.0001\)					
RaS	0.31	0.33	0.50	0.66	\(p < 0.0001\)	\(p < 0.0001\)
NfA	\(p < 0.0001\)					
PwR	0.20	0.33	0.66	\(p < 0.0001\)	\(p < 0.0001\)	\(p < 0.0001\)

Surely working with larger sample might help detecting more subtle individual differences, to date it is possible
to advance that only macro-structural integrity of certain structures contributes to explain the biological
variance which leads to personality phenotypes, such as the attachment system.

The positive associations between Preoccupation with Relationships scores and the highlighted brain volumes
are consistent with both the emotional and social processing, because of the increased efforts at processing the
emotional stimulus and the hypervigilant nature of individuals with anxious/preoccupied attachment. In fact,
each attachment style is characterized by a specific emotional and cognitive pattern. In particular, anxious/preoc-
cupied people are characterized by intense emotional responses and sustained search for security/predictability
in the relationships. Despite their strong desire to achieve intimacy and approval in relationships, their cognitive
order is characterized of low opinion of themselves as deserving of salient relationship, and they are mistrust-
ful of others and their availability, and anxiously expect rejection or abandonment by relationship partners41,42.

Considering the property of cerebellar networks in building internal models of internal or external environ-
ments through signal error processing46, anxiously attached subjects could display continuous error signals to
the cerebellum that thus does not habituate47. These unremitting inputs could provoke a compensatory increase,
leading to an enlargement in cerebellar volumes.
Although healthy, all participants were also evaluated by HAM-D and HAM-A scales49,50. Positive correlations were found between scores of Need for Approval ASQ subscale and both HAM scales, and between scores of Relationships as Secondary ASQ subscale and HAM-A scale. Thus, the more anxious and depressive tendencies were evident, the more insecure attachment patterns were present, once more indicating that emotional reactions are modulated by individual differences in the social bonding5.

Our present findings fit with previous structural data describing that anxious attachment is associated with increased volumes in cerebellar areas26,28 and lateral orbital gyrus26,51. Also, they fit with functional data describing that anxiously attached adults display enhanced activation to positive approach-related facial expression in the cerebellar and prefrontal areas involved in perception of facial emotion, assessment of affective value

Figure 1. Positive associations between a priori Regions Of Interest (ROIs) and Preoccupation with Relationships ASQ subscale. Coordinates are in Montreal Neurological Institute (MNI) space. Z above colorbar indicates normalized t-values. In figure left is left.

Table 4. Regional gray matter volumes (ROI-based analyses) and Preoccupation with Relationships ASQ subscale. Abbreviations: p = significance at the peak level. L = left. R = right. Coordinates are in Montreal Neurological Institute (MNI) space. Significant values (FWE corrected) are in bold.

Label for peak direction	Side	Extent (n voxels)	t	p	equivZ	x,y,z (mm)	Effect size (d)
Preoccupation with relationships							
Cerebellum Crus 2 ↑	L	84	3.97	0.037	3.77	45, −52, −45	0.73
Cerebellum Lobule VI ↑	R	390	3.91	0.044	3.72	32, −61, −20	0.70
Middle Orbitofrontal Cortex ↑	R	113	3.78	0.048	3.60	16, 54, −24	0.45
and social distance27,28. Interestingly, enhanced cerebellar activation was observed in adolescents with a high negativity of the self-model, typical for the anxious attachment dimension37. Furthermore, increased cerebellar activation has been described in a study investigating grief through the exposure of bereaved women to pictures of their deceased loved one52. Bowlby4 viewed grief related to affective loss as a natural expression of the attachment behavioral system evoked to discourage prolonged separation from a primary attachment figure. Such a kind of grief implies the coordination of multiple functions, as affect processing, mentalizing, episodic memory retrieval, processing of familiar faces, visual and motor imagery, autonomic regulation, automatic motor responses. Notably, most of these functions are mediated by a distributed neuronal network of which the cerebellum (especially, its posterior regions) is part53. Cerebellar areas then might be rightfully inserted in the attachment behavioral system described by Bowlby4. The cerebellar contribution to the attachment system may be interpreted as concomitant to a “feeling of being drawn toward” the affective stimulus, and reflects the more general cerebellar engagement in regulation of emotional and social behaviors59–57. Given the neuronal circuits putatively responsible for social processes are closely associated with, and virtually inextricable from, those devoted to emotional regulation59, it is not surprising that the same regions of the posterior cerebellum and prefrontal cortex are involved in both emotional regulation and social interaction.

According to psychological models of adult attachment4, the complex interactions of thoughts and behaviors required for sensitive parenting of offspring enable formation of individual's first social bonds, critically shape infants' behavior, and deeply influence the adult social behavior. Such an assumption is strongly supported by animal and human studies indicating that early attachment experiences influence brain development and may result in permanent structural and functional brain changes and in individual differences in cognitive performance and social behavior53–57. In fact, in rodents, maternal experiences exert a marked transgenerational impact and influence offspring's phenotype at behavioral (learning and memory abilities, attentional performance, coping response to stress, social behavior, anxiety levels) and neurobiological (synaptic plasticity, methylation in frontal and hippocampal areas, hippocampal neurogenesis, striatal and cerebellar neurotrophins) levels62,63. Noteworthy, the first mother-infant relationships influence not only infant's developmental processes, but also mother's neurobiological and behavioral processes. A recent study64 on the maternal brain functional connectivity in the early postpartum phases reports changes in cerebello-cortical connectivity associated with changes in maternal anxiety toward her child, providing insight into the mother-infant bond in the specific context of anxiety. Analogously, fMRI studies on maternal brain during processing of infant affective cues have repeatedly implicated the cerebellum65–67, suggesting that enhanced cerebello-cortical connectivity may increase prioritization of processing infant cues in the maternal brain. Very recently, in child-rearing mothers it has been described a significant association of increased resting-state functional activity in lobule VI with increased maternal trait anxiety and poorly adaptive sensory processing68. Such a finding has been interpreted as an indicator of maternal trait anxiety and risk of parenting stress. The positive association between volumes of lobule VI-Crus 2 and Preoccupation with Relationships scores reported in the present research is consistent with neuroimaging findings69 describing the activation of cerebellar and neocortical areas belonging to the default mode network that regulates the switch from an internal reference state to external target-oriented behaviors, once more emphasizing the cerebellar role of interface between internal and external environments. Since lobule VI-Crus 2 activation is associated with negative emotions70, it is not surprising that just these cerebellar areas exhibit enhanced volume in individuals with anxious attachment.

In addition to increased volumes in lobule VI and Crus 2, Preoccupation with Relationships scores were associated with increased volumes of right mOFC, a prefrontal area critically involved in operational control of emotional and social stimuli71,72. More specifically, OFC role in emotion is to decode the reward/punishment goals for action, by representing reward value and transmitting the resulting representations to other brain regions which implement the learning of actions to obtain the reward outcomes signaled by the OFC. Patients with OFC lesions are less sensitive to reward, and are unable to “think through” the consequences of their actions, relying conversely on ingrained habits or immediate information to guide their actions73,74. Cerebellar properties of timing, prediction, and learning well integrate with OFC processing to control social and emotional functions75–77.

Neuroimaging findings indicate that cerebellum and OFC are both involved in the pathophysiology of psychiatric disorders associated with dysregulation of affect, such as schizophrenia, mood disorders (major depression and bipolar disorder), anxiety disorders (such as phobias), and obsessive–compulsive disorder, post-traumatic stress disorder and attention deficit hyperactivity disorder11,78,79. Moreover, while secure attachment is the foundation for psychological well-being2, insecure patterns leading to self-doubts, anxiety and distress may represent a risk factor for psychopathology with the specific symptomatology depending on genetic, developmental, and environmental factors80,81. Consistently, in adults and adolescents, preoccupied and fearful attachment styles are associated with heightened chronic pain, depression, pain catastrophizing and anxiety91–93. The significant relationship between anxious attachment and borderline personality disorder features has been reported in both nonclinical and clinical samples84.

In conclusion, we propose that in addition to OFC even the specific cerebellar areas previously demonstrated to be involved in emotional regulation have to be included in the current neurobiological models of human attachment85. The present research may represent a step forward in mapping out the attachment process and improving our understanding of the pathophysiology of the attachment-related disorders.

The main strength of the present study is that it is the first macro- and micro-structural (VBM and DTI) study specifically aimed at analyzing the engagement of cerebellar structures in the attachment behavioral system. Another strength is represented by the rather large sample of non-clinical subjects of both sexes (although exclusively whites) with a wide range of educational level.

However, the current study has some limitations leaving opportunities for future research. The main limitation of the present research is the application of only a self-report measure of attachment, which may be subject to respondent bias and may potentially over-emphasize attachment as a conscious and
detectable process. Although some research suggests self-report measures are reliable and valid sources of participant information, self-reported engagement in attachment-related processes may be of questionable accuracy. Conversely, the usage of informant measures of attachment, such as the Adult Attachment Interview (AAI), would have allowed evaluating conscious and unconscious memories related to childhood relationships with caregivers as well as assessing the perceived effects of these occurrences on adult personality.

An additional limitation could be that the usage of a VBM correlational approach does not permit to infer causal relationships between brain structural variations and psychological measures, as the ASQ. Furthermore, VBM findings do not allow clarifying the relationships among brain areas potentially involved in the same functions. Finally, the image transformations required for VBM might introduce artificial volumetric differences, such as a partial volume error. In spite of these limitations, VBM represents a useful approach since it is a user-independent, unbiased exploration of the whole brain.

On such a basis, future studies may benefit from using multi-method approaches to explore the processes underlying the relationship between temperament, attachment and affective stories by using informant measures, interview techniques, and functional neuroimaging methods to capture these complex processes.

Methods

Ethical statement. The investigation was carried out in accordance with the latest version of the Declaration of Helsinki. The study design was reviewed by the local ethical committee of the Santa Lucia Foundation IRCCS and the informed consent of all participants was obtained after the nature of the procedures had been fully explained.

Participants. A sample of 79 healthy subjects (36 males; mean age ± SD: 40.06 ± 12.57 years; range: 19–59; Males: 38.13 ± 12.24; Females: 41.67 ± 12.76) belonging to a larger group of healthy volunteers (N = 125), submitted to MRI scan protocol for other studies, were enrolled in the present research. Only those who accepted to come again to Santa Lucia Foundation to be tested on ASQ and the other psychological scales were included in this study. Educational level ranged from an eighth grade to a post-graduate degree (mean education years ± SD: 15.83 ± 2.86; range: 8–25). All participants were right-handed as assessed with the Edinburgh Handedness Inventory. Inclusion and exclusion criteria are described in details in Supplementary Materials section.

Psychological instruments. Attachment style assessment. The Italian version of the Attachment Style Questionnaire (ASQ), a widely used, well-validated, psychometric instrument for a dimensional definition of adult attachment style in normative and clinical populations, was used. The ASQ is based on a self-report questionnaire comprising 40 items answered on a 6-point Likert scale ranging from 1 (“Does not describe me well”) to 6 (“Describes me very well”). ASQ has 5 subscales, the first one reflects the secure attachment style, and the remaining 4 ones investigate particular aspects of the insecure attachment style. In more detail, the five subscales are: Confidence (8 items) which is associated to secure attachment (Sample item: I find it relatively easy to get close to other people); Discomfort with Closeness (10 items) (Sample item: I worry about people getting too close) and Relationship as Secondary (7 items) (Sample item: I find it hard to trust other people) which are associated to insecure/avoidant attachment; Need for Approval (7 items) (Sample item: It is important to me that others like me) and Preoccupation with Relationships (8 items) (Sample item: I wonder how I would cope without someone to love me) which are associated to insecure/anxious attachment. The attachment styles were characterized according to the theoretical models developed by Hazan and Shaver and by Bartholomew and Horowitz. Internal consistency, test–retest reliability, and factor validity were previously published. In the present study, Cronbach’s α values for the ASQ subscales ranges from 0.66 to 0.79.

Depression and anxiety assessment. Presence and severity of depressive symptoms were evaluated by using HAM-D. Scores < 8 indicated no depression, scores from 8 to 17 corresponded to mild depression, scores from 18 to 24 corresponded to moderate depression, and scores > 24 severe depression. Presence and severity of anxiety symptoms were evaluated by using HAM-A, which consists of 14 questions. Scores < 5 indicated no anxiety, scores between 6 and 14 indicated mild anxiety, and score > 14 indicated moderate to severe anxiety. All questionnaires were administered prior to scanning (in general at least one day before).

Image acquisition. All participants underwent the imaging protocol originally described elsewhere. The protocol included standard clinical sequences (FLAIR, DP-T2-weighted), a volumetric whole-brain 3D high-resolution T1-weighted sequence, and a DTI scan protocol, performed with a 3-T Achieva MR imager (Siemens, Erlangen, Germany). Volumetric whole-brain T1-weighted images were obtained in the sagittal plane using a modified driven equilibrium Fourier transform (MDEFT) sequence (Echo Time/Repetition Time—TE/TR = 2.4/7.92 ms, flip angle 15°, voxel size 1 × 1 × 1 mm³). Diffusion volumes were acquired by using echo-planar imaging (TE/TR = 89/8500 ms, bandwidth = 2126 Hz/vx; matrix size 128 × 128; 80 axial slices, voxel size 1.8 × 1.8 × 1.8 mm³) with 30 isotropically distributed orientations for the diffusion-sensitizing gradients at one b value of 1000 s mm⁻² and two b = 0 images. Scanning was repeated three times to increase the signal-to-noise ratio. All planar sequence acquisitions were obtained in the plane of the anterior–posterior commissure line. Since the posterior cranial fossa usually falls at the lower limit of the field of view, particular care was taken to center subjects’ head in the head coil, in order to avoid possible magnetic field dishomogeneities or artifacts at the level of the cerebellum.
Image processing. T1-weighted and DTI images were submitted to several processing steps, described in previous works\(^91\). In brief, T1-weighted images were segmented in order to extract grey matter (GM) maps. Such maps were subsequently normalized, modulated, and finally smoothed, before being used for statistical analyses. DTI data were corrected for motion and eddy currents\(^96\) and normalized before generating Fractional Anisotropy (FA) and Mean Diffusivity (MD) maps. Among DTI indices, MD and FA were used as probes for GM and white matter (WM) micro-structural integrity, respectively\(^90\).

In detail, to explore the relationship between regional volumes and empathy on a voxel-by-voxel basis, T1-weighted images were processed and examined using the SPM8 software (Wellcome Department of Imaging Neuroscience Group, London, UK; http://www.fil.ion.ucl.ac.uk/spm), specifically the VBM8 toolbox (http://dbm.neuro.uni-jena.de/vbm.html) running in MATLAB 2007b (MathWorks, Natick, MA, USA). The toolbox extends the unified segmentation model\(^96\) consisting of MRI field intensity inhomogeneity correction, spatial normalization, and tissue segmentation at several pre-processing steps to further improve data quality. Initially, to increase the signal-to-noise ratio, an optimized block-wise nonlocal-means filter was applied to the MRI scans using the Rician noise adaption\(^97\). Then, an adaptive maximum a posteriori segmentation approach extended by partial Rician noise adaption. The segmentation step was finished by applying a spatial constraint to the segmented tissue probability maps based on a hidden Markov Random Field model to remove isolated voxels, which unlikely were members of a certain tissue class, and to close holes in clusters of connected voxels of a certain class, resulting in a higher signal-to-noise ratio of the final tissue probability maps. Then, the iterative high-dimensional normalization approach provided by the Diffeomorphic Anatomical Registration through Exponentiated Lie Algebra (DARTEL)\(^98\) toolbox was applied to the segmented tissue maps to register them to the stereotaxic space of the Montreal Neurological Institute (MNI). The tissue deformations were used to modulate participants’ GM and WM maps to be entered in the analyses. Voxel values of the resulting normalized and modulated GM and WM segments indicated the probability (between 0 and 1) that a specific voxel belonged to the relative tissue. Finally, the modulated and normalized GM and WM segments were written with an isotropic voxel resolution of 1.5 mm\(^3\) and smoothed with a 6-mm Full-Width Half Maximum (FWHM) Gaussian kernel.

DTI model. DTI data were pre-processed and analyzed in Explore DTI v4.8.6\(^94\). Data were corrected for motion and eddy currents. Motion artifacts and eddy current distortions were corrected with B-matrix rotation using the approach of Leemans and Jones\(^94\). During this processing procedure, all brain scans were rigidly normalized to MNI space during the motion-distortion correction step. A diffusion tensor model was fit at each voxel and maps of FA and MD were generated. All diffusional indexes were finally written in a resolution of 2 × 2 × 2 mm. MD and FA maps were subsequently smoothed by using a Gaussian kernel with a 6-mm FWHM.

MD measures the averaged diffusion of water molecules through tissues providing information on restrictions (e.g., high density of cells) that water molecules encounter. If these obstacles have coherent alignment, on average the water tends to diffuse more along a certain axis. MD reflects cellular and cytoarchitectonic changes, which result in higher density of synapses, spines, and capillaries, modifications in the properties of myelin and membranes, alterations in shape of glial cells and neurons. Ultimately, decreased MD reflects increased functional adaptation, and increased MD has been linked to poor cognitive performance or psychiatric symptoms\(^99\) and to states characterized by reduced efficacy of synaptic and extra-synaptic transmission\(^100\). FA measures the anisotropy of water diffusion processes and it is positively linked to fiber density, axonal diameter and myelination in WM\(^101\). Low FA values stand for isotropic diffusion (i.e., unrestricted in all directions), while high FA values indicate diffusion fully restricted along one axis.

Statistical analyses. Sociodemographic and psychological variables. Parametric associations between ASQ scores and age, years of formal education, and HAM-D and HAM-A scores, were analyzed by Pearson’s product moment correlations (Fisher’s r to z). Gender differences in ASQ were assessed by unpaired t test. Results of the demographic characteristics were considered significant at the p < 0.05 level.

Volumetric analyses. ROI-based VBM. As main aim of the present study we focused the ROI-based VBM on the cerebellum. In the VBM analyses the whole cerebellum has been used as a binary inclusive mask (ROI). Then, on the basis of the cerebellar results and to constrain anatomical hypotheses, we selected several cortical ROIs emerging from previous functional and structural neuroimaging studies. We bilaterally analyzed the orbito-frontal cortex (BA11, BA47)\(^31\),\(^32\),\(^36\),\(^51\), middle frontal area (BA 9, BA10)\(^7\),\(^26\),\(^57\),\(^26\),\(^36\), insula\(^9\),\(^36\),\(^9\), and cingulate cortex\(^31\).

The MNI-oriented atlas of the human brain (Automated Anatomical Labeling Atlas, AAL)\(^102\) was used to extract GM masks of the ROIs singularly achieved by meaning all GM probability maps, obtained in the VBM8 processing steps, thresholding the relative image to a value of 0.3 (i.e. removing all voxels having a probability to belong to GM lower or equal to 29%), and manually removing all the other structures (e.g. for the cerebellum by manually removing all the non-cerebellar structures) using the AAL template, as reference. The resulting data were then fed into VBM analyses to evaluate morphological changes associated with ROIs and attachment subscales. We evaluated at the voxel-level the associations between cerebellar or neocortical structural measures and ASQ scores, by using SPM8 within the framework of the General Linear Model. Multiple-regression analyses were computed by singularly using the measures of ROIs GM volumes as dependent variables, the scores of ASQ subscales as regressors. Moreover, when significantly associated to attachment ASQ subscales, also age, gender, education years, depression or anxiety levels were used as covariates. Gender was always considered a “dummy variable” given its dichotomic nature. We considered significant the relationships whose voxels were part...
of a spatially contiguous cluster size of a minimum of 50 voxels, and that survived ($p < 0.05$) at the Family Wise Error (FWE) correction.

To obtain the precise anatomical localization of VBM results, we superimposed statistical maps onto Diedrichsen's probabilistic atlas of the human cerebellum, which subdivides the cerebellum into ten different regions. For the cerebellar cortical ROIs the AAL template was used. Since the existing maps of the OFC differ with respect to number of areas identified, relative size, extent and spatial relationship to each other, we referred to both MNI coordinates and BAs to avoid confusing classifications.

DTI analyses. The areas significantly associated (FWE_{corr}) with ASQ subscales at macro-structural analyses (cerebellar lobules VI and Crus 2 and mOFC) were used as masks and applied to MD and FA maps, to extract mean micro-structural values for each measure. Parametric associations between attachment scores and mean MD or FA values were analyzed by Pearson's product moment correlations (Fisher's r to z) to assess potential significant associations also with micro-structural measures. Analyses were also controlled for significantly associated socio-demographic variables.

Received: 22 December 2021; Accepted: 29 July 2022
Published online: 09 August 2022

References
1. Cacioppo, S., Capitanio, J. P. & Cacioppo, J. T. Toward a neurology of loneliness. Psychol. Bull. 140, 1464–1504 (2014).
2. Bowlby, J. Attachment and Loss Vol. 1 Vol. 1. (Hogarth Press and Institute of Psycho-Analysis, 1969).
3. Patterns of Attachment: A Psychological Study of the Strange Situation. (Routledge, 2015).
4. Bowlby, J. Attachment and Loss. (Basic Books, 1980).
5. Mikulincer, M. & Shaver, P. R. Attachment, group-related processes, and psychotherapy. Int. J. Group Psychother. 57, 233–245 (2007).
6. Rubenstein, C. In Search of Intimacy: Surprising Conclusions from a Nationwide Survey on Loneliness and What ... (Delacorte Press, 1982).
7. Fraley, R. C., Reisman, G. I., Booth-LaForce, C., Owen, M. T. & Holland, A. S. Interpersonal and genetic origins of adult attachment styles: A longitudinal study from infancy to early adulthood. J. Pers. Soc. Psychol. 104, 817–838 (2013).
8. Long, M., Verbeke, W., Ein-Dor, T. & Vrtička, P. A functional neuro-anatomical model of human attachment (NAMA): Insights from first- and second-person social neuroscience. Cortex 126, 281–321 (2020).
9. Maim, M. & Solomon, J. Discovery of an insecure-disorganized/disoriented attachment pattern. in Affective Development in Infancy, 95–124 (Ables Publishing, 1986).
10. Keller, H. University claim of attachment theory: Children's socioemotional development across cultures. Proc. Natl. Acad. Sci. U. S. A. 115, 11414–11419 (2018).
11. Chris Fraley, R. Attachment stability from infancy to adulthood: Meta-analysis and dynamic modeling of developmental mechanisms. Personal. Soc. Psychol. Rev. 6, 123–151 (2002).
12. Pinquart, M., Feußner, C. & Ahnert, L. Meta-analytic evidence for stability in attachments from infancy to early adulthood. Attach. Hum. Dev. 15, 189–218 (2013).
13. The Organization of Attachment Relationships: Maturation, Culture, and Context. (Cambridge University Press, 2000).
14. Simpson, J. A., Steven Rhodes, W., Campbell, L. & Wilson, C. L. Changes in attachment orientations across the transition to parenthood. J. Exp. Soc. Psychol. 39, 317–331 (2003).
15. Thompson, R. A. & Raikes, H. A. Toward the next quarter-century: Conceptual and methodological challenges for attachment theory. Dev. Psychopathol. 15, 691–718 (2003).
16. Shah, P. E., Fonagy, P. & Strathern, L. Is attachment transmitted across generations? The plot thickens. Clin. Child Psychol. Psychiatry 15, 329–345 (2010).
17. Gillath, O., Shaver, P. R., Baek, J.-M. & Chun, D. S. Genetic correlates of adult attachment style. Pers. Soc. Psychol. Bull. 34, 1396–1405 (2008).
18. Bushehri, A. et al. Oxytocin enhances the experience of attachment security. Psychoneuroendocrinology 34, 1417–1422 (2009).
19. Schore, A. N. Dysregulation of the right brain: A fundamental mechanism of traumatic attachment and the psychopathogenesis of posttraumatic stress disorder. Austr. N. Z. J. Psychiatry 36, 9–30 (2002).
20. Turtonen, O. et al. Adult attachment system links with brain mu opioid receptor availability in vivo. Biol. Psychiatry Cogn. Neuroimaging 6, 360–369 (2021).
21. Deng, M., Zhang, X., Bi, X. & Gao, C. Neural basis underlying the trait of attachment anxiety and avoidance revealed by the amplitude of low-frequency fluctuations and resting-state functional connectivity. BMC Neurosci. 22, 11 (2021).
22. Gillath, O., Bunge, S. A., Shaver, P. R., Wendelken, C. & Mikulincer, M. Attachment-style differences in the ability to suppress negative thoughts: Exploring the neural correlates. Neuroimage 28, 835–847 (2005).
23. Krause, A. L. et al. Dismissing attachment characteristics dynamically modulate brain networks subserving social aversion. Front. Hum. Neurosci. 10, 77 (2016).
24. Vrtička, P., Andersson, F., Grandjean, D., Sander, D. & Vuilleumier, P. Individual attachment style modulates human amygdala and striatum activation during social appraisal. PLoS ONE 3, e2868 (2008).
25. Vrtička, P. & Vuilleumier, P. Neuroscience of human social interactions and adult attachment style. Front. Hum. Neurosci. 6, 2012.
26. Benetti, S. et al. Attachment style, affective loss and gray matter volume: A voxel-based morphometry study. Hum. Brain Mapp. 31, 1482–1489 (2010).
27. Canterberry, M. & Gillath, O. Neural evidence for a multifaceted model of attachment security. Int. J. Psychophysiol. 88, 232–240 (2013).
28. Donges, U. S. et al. Adult attachment anxiety is associated with enhanced automatic neural response to positive facial expression. Neuroscience 220, 149–157 (2012).
29. Van Overwalle, F. et al. Consensus paper: Cerebellum and social cognition. Cerebellum 19, 833–868 (2020).
30. Feeny, J. A., Noller, P. & Hannaham, M. Attachment Style Questionnaire. https://doi.org/10.1037/t29439-000 (2014).
31. Kelly, R. M. & Strick, P. L. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J. Neurosci. 23, 8432–8444 (2003).
32. Middleton, F. A. & Strick, P. L. Cerebellar Projections to the Prefrontal Cortex of the Primate. J. Neurosci. 21, 700–712 (2001).
33. Schmahmann, J. D. & Pandya, D. N. Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. J. Neurosci. 17, 438–458 (1997).
34. Cohen, J.
35. Hattie, J.
36. Acosta, H., Jansen, A., Nuscheler, B. & Kircher, T. A voxel-based morphometry study on adult attachment style and affective loss. Neuroscience 392, 219–229 (2018).
37. Debbané, M. et al. Brain activity underlying negative self- and other-perception in adolescents: The role of attachment-derived self-representations. Cogn. Affect. Behav. Neurosci. 17, 554–576 (2017).
38. Quinijn, M., Gillath, O., Pruessner, J. C. & Eggert, L. D. Adult attachment insecurity and hippocampal cell density. Soc. Cogn. Affect. Neurosci. 5, 39–47 (2010).
39. Westlye, L. T., Bjørnebekk, A., Grydeland, H., Fjell, A. M. & Walhovd, K. B. Linking an anxiety-related personality trait to brain white matter microstructure: Diffusion tensor imaging and harm avoidance. Arch. Gen. Psychiatry 68, 369 (2011).
40. Lariciuhi, D. et al. Linking novelty seeking and harm avoidance personality traits to basal ganglia: Volumetry and mean diffusivity. Brain Struct. Funct. 219, 793–803 (2014).
41. Albin, R. L. & Mink, J. W. Recent advances in Tourette syndrome research. Trends Neurosci. 29, 175–182 (2006).
42. Langen, M. et al. Changes in the developmental trajectories of striatum in autism. Biol. Psychiatry 66, 327–333 (2009).
43. den Heuvel, O. A. et al. Frontal–striatal abnormalities underlying behaviours in the compulsive–impulsive spectrum. J. Neurol. Sci. 289, 55–59 (2010).
44. Makita, K. et al. White matter changes in children and adolescents with reactive attachment disorder: A diffusion tensor imaging study. Psychiatry Res. Neuroimaging 303, 111129 (2020).
45. Riem, M. M. E. et al. General psychopathology factor and unresolved-disorganized attachment uniquely correlated to white matter integrity using diffusion tensor imaging. Behav. Brain Res. 359, 1–8 (2019).
46. Hazan, C. & Shaver, P. Romantic love conceptualized as an attachment process. J. Pers. Soc. Psychol. 52, 511–524 (1987).
47. Ito, M. Control of mental activities by internal models in the cerebellum. Nat. Rev. Neurosci. 9, 304–313 (2008).
48. D’Angelo, E. & Casali, S. Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Front. Neural Circuits 6, (2013).
49. Hamilton, M. A. RATING SCALE FOR DEPRESSION. J. Neurol. Neurosurg. Psychiatry 23, 56–62 (1960).
50. Hamilton, M. The assessment of anxiety states by rating. Br. J. Med. Psychol. 32, 50–55 (1959).
51. Poore, J. C. et al. Prediction-error in the context of real social relationships modulates reward system activity. Front. Hum. Neurosci. 6, (2012).
52. Gündel, H., O’Connor, M.-F., Littrell, L., Fort, C. & Lane, R. D. Functional neuroanatomy of grief: An fMRI study. Neuroimage 41, 1946–1953 (2008).
53. Harrison, O. K., Guell, X., Klein-Flügge, M. C. & Barry, R. L. Structural and resting state functional connectivity beyond the cortex. Neuroimage 240, 118379 (2021).
54. Emotional Cerebellum. (Springer, 2022).
55. Picerney, E. et al. Macro- and micro-structural cerebellar and cortical characteristics of cognitive empathy towards fictional characters in healthy individuals. Sci. Rep. 11, 8804 (2021).
56. Sokolov, A. A., Miall, R. C. & Ivry, R. B. The cerebellum: Adaptive prediction for movement and cognition. Trends Cogn. Sci. 21, 313–332 (2017).
57. Adamaszek, M., Manto, M., & Schutter, D. J. L., G. Emotional Cerebellum. (Springer, 2022).
58. Coan, J. A. Adult attachment and the brain. Neurosci. Biobehav. Rev. 30, 498–504 (2006).
59. Moriceau, S. & Sullivan, R. M. Neurobiology of infant attachment. Brain and Cognition 36, 230–242 (2000).
60. Schore, A. N. Back to basics: Attachment, affect regulation, and the developing right brain: Linking developmental neurocognition to pediatrics. Pediatr. Rev. 26, 204–215 (2005).
61. Schore, A. N. Attachment and the regulation of the right brain. Attach. Hum. Dev. 2, 23–47 (2000).
62. Cutuli, D. et al. Pre-reproductive parental enriching experiences influence progeny’s developmental trajectories. Front. Behav. Neurosci. 12, 254 (2018).
63. Berretta, E., Guida, E., Forni, D. & Provenzi, L. Glucocorticoid receptor gene (NR3C1) methylation during the first thousand trait anxiety. Neurosci. Biobehav. Rev. 36, 23–47 (2000).
64. Berretta, E., Guida, E., Forni, D. et al. Prominent changes in cerebro-cerebellar functional connectivity during continuous cognitive processing. J. Neurosci. 40, 619 (2020).
65. Rutherford, H. J. V., Potenza, M. N., Mayes, L. C. & Scheinost, D. The Application of connectome-based predictive modeling to the maternal brain: implications for mother–infant bonding. Cereb. Cortex 30, 1358–1357 (2020).
66. Laurent, H. K. & Ablove, J. C. A cry in the dark: Depressed mothers show reduced neural activation to their own infant’s cry. Dev. Psychobiol. 47, 230–242 (2005).
67. Strathearn, L., Li, J., Fonagy, P. & Montague, P. R. What’s in a smile? Maternal brain responses to infant facial cues. Pediatrics 122, 40–51 (2008).
68. Swain, J. E. et al. Maternal brain response to own baby-cry is affected by cesarean section delivery. J. Child Psychol. Psychiatry 49, 1042–1052 (2008).
69. Sokolov, A. A., Miall, R. C. et al. Increased resting-state activity in the cerebellum with mothers having less adaptive sensory processing and trait anxiety. Hum. Brain Mapp. 42, 1945. https://doi.org/10.1002/hbm.25594 (2021).
70. Castellazzi, G. et al. Prominent changes in cerebro-cerebellar functional connectivity during continuous cognitive processing. Front. Cell. Neurosci. 12, 331 (2018).
71. Baumann, O. & Mattingley, J. B. Functional topography of primary emotion processing in the human cerebellum. Neuroimage 61, 805–811 (2012).
72. Rollis, E. T., Cheng, W. & Feng, J. The orbitofrontal cortex: reward, emotion and depression. Brain Commun. 2, fcaa196 (2020).
73. Xie, C. et al. Reward versus nonreward sensitivity of the medial versus lateral orbitofrontal cortex relates to the severity of depressive symptoms. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 6, 259–269 (2021).
74. Bradley, L. A., Dezfouli, A., van Holstein, M., Chiang, B. & Balleine, B. W. Medial orbitofrontal cortex mediates outcome retrieval in partially observable task situations. Neuron 88, 1268–1280 (2015).
75. Schneider, A. Orbitofrontal reality filtering. Front. Behav. Neurosci. 7, 67 (2013).
76. Andersen, L. M. & Dalal, S. S. The cerebellar clock: Predicting and timing somatosensory touch. Neuroimage 238, 118201 (2020).
77. Hull, C. Prediction signals in the cerebellum: beyond supervised motor learning. eLife 9, e54073 (2020).
78. Narain, D., Remington, E. D., Zeeuw, C. I. D. & Jazayeri, M. A cerebellar mechanism for learning prior distributions of time intervals. Nat. Commun. 9, 469 (2018).
79. Baldacca, L. et al. Reduced cerebellar left hemisphere and vermal volume in adults with PTSD from a community sample. J. Psychiatr. Res. 45, 1627–1633 (2011).
80. Beucke, J. C. et al. Abnormally high degree connectivity of the orbitofrontal cortex in obsessive-compulsive disorder. JAMA Psychiat. 70, 619 (2013).
81. Mikhailczuk, M. & Shaver, P. R. An attachment perspective on psychopathology. World Psychiatry Off. J. World Psychiatr. Assoc. WPA 11, 11–15 (2012).
82. Nolte, T., Guiney, J., Fonagy, P., Mayes, L. C. & Layten, P. Interpersonal stress regulation and the development of anxiety disorders: An attachment-based developmental framework. Front. Behav. Neurosci. 5, (2011).
82. Strodl, E. & Noller, P. The relationship of adult attachment dimensions to depression and agoraphobia. Pers. Relatsh. 10, 171–186 (2003).

83. Tremblay, I. & Sullivan, M. J. L. Attachment and pain outcomes in adolescents: The mediating role of pain catastrophizing and anxiety. J. Pain 11, 160–171 (2010).

84. Scott, L. N., Levy, K. N. & Pincus, A. L. Adult attachment, personality traits, and borderline personality disorder features in young adults. J. Personal. Disord. 23, 258–280 (2009).

85. Perlino, C. et al. Disentangle the neural correlates of attachment style in healthy individuals. Epidemiol. Psychiacte. Sci. 28, 371–375 (2019).

86. Widiger, T. A. & Boyd, S. E. Personality Disorders Assessment Instruments. (Oxford University Press, 2009). https://doi.org/10.1093/oxfordhb/9780195366877.013.0018.

87. George, N. Kaplan, M. Main Adult attachment interview. http://www.cmap.polytechnique.fr/~jingrebecca/research/mlp_files/AAI_Scoring.pdf (Unpublished manuscript University of California, Berkeley, 1996). (Accessed 29 May 2022).

88. Oldfield, R. C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 9, 97–113 (1971).

89. Fossati, A. et al. On the dimensionality of the attachment style questionnaire in Italian Clinical and Nonclinical Participants. J. Soc. Pers. Relatsh. 20, 55–79 (2003).

90. Bartholomew, K. & Horowitz, L. M. Attachment styles among young adults: A test of a four-category model. J. Pers. Soc. Psychol. 61, 226–244 (1991).

91. Fossati, A., Feeney, J., Maffei, C. & Borroni, S. Thinking about feelings: Affective state mentalization, attachment styles, and borderline personality disorder features among Italian nonclinical adolescents. Psychoanal. Psychol. 31, 41–67 (2014).

92. Larischuitta, D. et al. The embodied emotion in cerebellum: a neuroimaging study of alexithymia. Brain Struct. Funct. 220, 2275–2287 (2015).

93. Picerni, E. et al. Cerebellar structural variations in subjects with different hypnotizability. Cerebellum 18, 109–118 (2019).

94. Picerni, E. et al. New evidence for the cerebellar involvement in personality traits. Front. Behav. Neurosci. 7, (2013).

95. Leemans, A. & Jones, D. K. The B -matrix must be rotated when correcting for subject motion in DTI data. Magn. Reson. Med. 61, 1336–1349 (2009).

96. Ashburner, J. & Friston, K. J. Unified segmentation. Neuroimage 26, 839–851 (2005).

97. Wiest-Daesslé, N., Prima, S., Coupé, P., Morissay, S. P. & Barillot, C. Rician Noise Removal by Non-Local Means Filtering for Low Signal-to-Noise Ratio MRI: Applications to DT-MRI in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2008 (eds. Metaxas, D., Axel, L., Fichtinger, G. & Székely, G.) vol. 5242 171–179 (Springer Berlin Heidelberg, 2008).

98. Ashburner, J. A fast diffeomorphic image registration algorithm. Neuroimage 38, 95–113 (2007).

99. Kantarci, K. et al. Diffusion tensor imaging and cognitive function in older adults with no dementia. Neurology 77, 26–34 (2011).

100. Syková, E. & Nicholson, C. Diffusion in brain extracellular space. Physiol. Rev. 88, 1277–1340 (2008).

101. Basser, P. J. & Pierpaoli, C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson. B 111, 209–219 (1996).

102. Tzourio-Mazoyer, N. et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289 (2002).

103. Diedrichsen, J., Balsters, J. H., Flavell, J., Cussans, E. & Ramnani, N. A probabilistic MR atlas of the human cerebellum. Neuroimage 46, 39–46 (2009).

104. Henssen, A. et al. Cytoarchitecture and probability maps of the human medial orbitofrontal cortex. Cortex 75, 87–112. https://doi.org/10.1016/j.cortex.2015.11.006 (2016).

Acknowledgements

All authors declare no potential conflicts of interest, including any financial, personal, or other relationships with other people or organizations relevant to the subject of their manuscript. This work was partially supported by the Italian Ministry of Health, Ricerca Corrente (to LP and GS).

Author contributions

All authors conceived and designed the study; E.P. and F.P. gathered and analyzed neuroimaging data; E.P., D.L., D.C. gathered and analyzed behavioral data; all authors contributed to the interpretation of data and were involved in drafting the manuscript and revising it critically; all authors gave their approval of the manuscript version to be published.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-17722-x.

Correspondence and requests for materials should be addressed to E.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.