On a mixed interpolation with integral conditions at arbitrary nodes

Srinivasarao Thota* and Shiv Datt Kumar

Abstract: In this paper, we present a symbolic algorithm for a mixed interpolation of the form

\[a \cos kx + b \sin kx + \sum_{i=0}^{s-2} c_i x^i, \quad s \geq 2, \]

where \(k > 0 \) is a given parameter and the coefficients \(a, b, c_0, \ldots, c_{s-2} \) are determined by a given set of independent integral conditions at arbitrary nodes. Implementation of the proposed algorithm in Maple is described and sample computations are provided. This algorithm will help to implement the manual calculations in commercial packages such as Mathematica, Matlab, Singular, Scilab, etc.

1. Introduction

The interpolation problem naturally arises in many applications, for example, the orbit problems, quantum mechanical problems, etc. The general form of a mixed interpolation problem is as follows (Coleman, 1998; Lorentz, 2000; Sauer, 1997): suppose we have a normed linear space \(\mathbb{S} \), a finite linearly independent set \(\Phi \subset \mathbb{S} \) of bounded functionals and an associated values \(\Sigma = \{ \alpha_\theta \mid \theta \in \Phi \} \subset \mathbb{R} \). Then the mixed interpolation problem is to find an approximation \(\tilde{f}_s(x) \in \mathbb{S} \) of the form

\[\tilde{f}_s(x) = a \cos kx + b \sin kx + \sum_{i=0}^{s-2} c_i x^i, \quad s \geq 2, \]

such that

\[\Theta(\tilde{f}_s) = \Sigma, \quad i.e. \quad \partial^r \tilde{f}_s = \alpha_\theta, \quad \theta \in \Phi. \]

About the Author

Srinivasarao Thota completed his MSc in Mathematics from Indian Institute of Technology Madras, India. Now he is pursuing his PhD in Mathematics from Motilal Nehru National Institute of Technology Allahabad, India. Srinivasarao Thota’s area of research interest is Computer Algebra, precisely symbolic methods for ordinary differential equations. He attended and presented research papers in several national and international conferences.

Public Interest Statement

We often come across a number of data points (obtained by sampling or experimentation) which represent the values of a function for a limited number of values of the independent variable, and the need to estimate the value of the function at other point of the independent variable. This may be achieved by interpolation. The interpolation problem naturally arises in many applications of science and engineering, for example, the orbit problems, solving differential and integral equations, quantum mechanical problems, etc. where we consider the mixed interpolation instead of the polynomial interpolation.
Here s is called the order of the interpolating function $\hat{f}_s(x)$. One can observe that, the interpolation problem given in Equations (1), (2) may have many solutions if there is no restriction on the dimension of the space. But our interest is to find the single interpolating function that must match with a finite number of conditions. Hence for a unique solution of the problem, one must have finite dimensional subspace Θ of S having dimension equal to the number of functionals.

The mixed interpolation problem, its formulation, and error estimation have been studied by several engineers and scientists with general nodes at uniformly spaced and arbitrary points on a chosen interval (see e.g. de Meyer, Vanthournout, & Vanden Berghe, 1990; de Meyer, Vanthournout, Vanden Berghe, & Vanderbauwhede, 1990; Chakrabarti & Hamsapriye, 1996; Coleman, 1998). In literature survey, we observe that there is no mixed interpolation algorithm available with integral conditions at arbitrary points on a chosen interval. Therefore, in this paper, we present a symbolic algorithm for mixed interpolation with integral conditions using the algorithm presented by the authors in Thota and Kumar (2015). Indeed, we discuss a symbolic algorithm for mixed interpolation with a linearly independent set of the integral functionals/conditions at arbitrary nodes on a chosen interval. This is the first symbolic algorithm which deals with integral conditions. The rest of paper is organized as follows: Section 1.1 gives some definitions and basic concepts of the mixed interpolation, which are required to justify our proposed algorithm. Section 2, the symbolic algorithm for the mixed interpolation with integral conditions using the algorithm presented by the authors in Thota and Kumar (2015). Indeed, we discuss a symbolic algorithm for mixed interpolation with a finite linearly independent set of integral functionals/conditions at arbitrary nodes on a chosen interval. Therefore, in this paper, we present a symbolic algorithm for mixed interpolation with integral conditions at arbitrary points on a chosen interval (see e.g. de Meyer, Vanthournout, & Vanden Berghe, 1990; de Meyer, Vanthournout, Vanden Berghe, & Vanderbauwhede, 1990; Chakrabarti & Hamsapriye, 1996; Coleman, 1998). In literature survey, we observe that there is no mixed interpolation algorithm available with integral conditions at arbitrary points on a chosen interval. Therefore, in this paper, we present a symbolic algorithm for mixed interpolation with integral conditions at arbitrary points on a chosen interval. Therefore, in this paper, we present a symbolic algorithm for mixed interpolation with integral conditions at arbitrary points on a chosen interval. In this section, we present some definitions and basic concepts of the mixed interpolation, which are required to justify our proposed algorithm.

Definition 1 A mixed interpolation problem is called *regular* for subspace \mathcal{M} of linear space S with respect to Θ if the interpolation problem has a unique solution for each choice of values of $\Sigma \subseteq \mathbb{R}$ such that $\Theta \hat{f}_s = \Sigma$. Otherwise, the interpolation problem is called *singular*.

Definition 2 We call the triplet $(\mathcal{M}, \Theta, \Sigma)$ an *interpolation problem*, where $\mathcal{M} = \{\cos kx, \sin kx, 1, x, \ldots, x^{s-2}\} \subset \mathcal{M}$ a basis for a finite dimensional space S, and $\Theta \subseteq S^*$ a finite linearly independent set of functionals/conditions with associated values $\Sigma \subseteq \mathbb{R}$.

If $\Sigma = \Theta \psi$, for $\psi \in S$, then the interpolation problem $(\mathcal{M}, \Theta, \Sigma)$ can be stated in a different way equivalently: Let $\Omega = \text{span}(\Theta \psi \in \Theta)$. Then $\Omega \subseteq S^*$ and the interpolation problem is to find a $\hat{f}_s(x)$ such that $\hat{f}_s \in \Omega \psi$ for given $\psi \in S$. There is a connection between the regularity in terms of algebraic geometry and linear algebra as given in the following proposition.

Proposition 1 Let $M = \{m_0, \ldots, m_t\}$ be a basis for \mathcal{M}, a finite dimensional subspace of S, and $\Theta = \{\theta_0, \ldots, \theta_s\}$ be a finite linearly independent subset of S^*. Then the following statements are equivalent:

(i) The mixed interpolation problem is regular for \mathcal{M} with respect to Θ.

(ii) $t = s$, and the matrix, so-called evaluation matrix,

$$
\Theta M = \begin{pmatrix}
\theta_0 m_0 & \cdots & \theta_s m_t \\
\vdots & \ddots & \vdots \\
\theta_t m_0 & \cdots & \theta_t m_t
\end{pmatrix} \in \mathbb{R}^{(s+1) \times (s+1)}
$$

is regular. Denote the evaluation matrix ΘM by ε for simplicity.

(iii) $S = M \oplus \Theta^\ast$.

Page 2 of 10
If we denote the integral condition by a symbol/operator A_x defined by $A_x \cdot = \int_p f^d x$, i.e. $A_x f^d x = \int_p f (x) dx$, for a fixed $p \in \mathbb{R}$, then the set of integral conditions is

$$\Theta = \{ A_{x_i}, \ldots, A_{x_j} \},$$

(4)

where x_0, \ldots, x_s are arbitrary nodes. Now, the symbolic representation of the mixed interpolation problem (1), (2) is to find a function of the form (1) such that

$$A_x \tilde{f} = \alpha_x, \quad \text{where } A_x \in \Theta.$$

(5)

2. Symbolic algorithm for mixed interpolation

Consider the mixed interpolation problem defined in Section 1 for (M, Θ, Σ), where $M \subseteq M \subseteq \mathbb{R}$, and $\Theta = \{ \theta_0, \ldots, \theta_s \}$ a finite set of integral conditions of the form (4). From Proposition (3), the mixed interpolation problem is regular with respect to linearly independent set Θ if and only if there exists a finite linearly independent set M of \mathbb{R} such that the evaluation matrix \mathcal{E} in (3) is regular.

2.1. Proposed symbolic algorithm

The mixed interpolation problem (M, Θ, Σ), i.e. $\tilde{f}_x (x) = a \cos k x + b \sin k x + \sum_{i=0}^{s-2} c_i x^i$ such that it satisfy $\Theta \tilde{f}_x = \Sigma$, can be expressed as a linear system

$$\mathcal{E} u = \sigma,$$

(6)

where $u = (a, b, c_0, \ldots, c_{s-2})^T$, $\sigma = (a_0, \ldots, a_n)^T$ and \mathcal{E} is the evaluation matrix of Θ and M given by

$$\mathcal{E} = \left(\begin{array}{cccc} \sin k x_0 & - \cos k x_0 & \cdots & x_0^{s-1} \\
\sin k x_1 & - \cos k x_1 & \cdots & x_1^{s-1} \\
\vdots & \vdots & \ddots & \vdots \\
\sin k x_s & - \cos k x_s & \cdots & x_s^{s-1} \end{array} \right) \left(\begin{array}{cccc} \sin k p & - \cos k p & \cdots & p^{s-1} \\
\sin k p & - \cos k p & \cdots & p^{s-1} \\
\vdots & \vdots & \ddots & \vdots \\
\sin k p & - \cos k p & \cdots & p^{s-1} \end{array} \right)$$

(7)

Remark If $p = 0$, then \mathcal{E} in Equation (7) is given by

$$\mathcal{E} = \left(\begin{array}{cccc} \sin k x_0 & 1- \cos k x_0 & \cdots & x_0^{s-1} \\
\sin k x_1 & 1- \cos k x_1 & \cdots & x_1^{s-1} \\
\vdots & \vdots & \ddots & \vdots \\
\sin k x_s & 1- \cos k x_s & \cdots & x_s^{s-1} \end{array} \right) \left(\begin{array}{cccc} \sin k x_0 & - \cos k x_0 & \cdots & x_0^{s-1} \\
\sin k x_1 & - \cos k x_1 & \cdots & x_1^{s-1} \\
\vdots & \vdots & \ddots & \vdots \\
\sin k x_s & - \cos k x_s & \cdots & x_s^{s-1} \end{array} \right)$$

Uniqueness of the solution is possible if and only if the evaluation matrix (7) is regular (non-singular). The simple form of the determinant of \mathcal{E} is given by

$$\det \mathcal{E} = \prod_{j=0}^{s-1} \left(\sum_{k=0}^{s-1} \frac{x_k^{s-j}}{\prod_{i=0}^{s-j-1} (x_j - x_i)} \right) \left(\sum_{k=0}^{s-1} \frac{x_k^{s-j}}{\prod_{i=0}^{s-j-1} (x_j - x_i)} \right).$$

(8)

This simple form is obtained by performing the following steps:

1. Dividing i-th row by x_i in the determinant of \mathcal{E} in Equation (7), we get
\[
\det \mathcal{E} = \frac{\prod_{j=0}^{s} x_j}{k^2(s-1)!} \begin{vmatrix}
\cos kx_0 & \sin kx_0 & 1 & x_0 & \cdots & x_0^{i-2} \\
\frac{\cos kx_1}{x_1} & \frac{\sin kx_1}{x_1} & \frac{1}{x_1} & x_1 & \cdots & x_1^{i-2} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\cos kx_s & \sin kx_s & \frac{1}{x_s} & x_s & \cdots & x_s^{i-2}
\end{vmatrix}.
\]

II. Subtract first row from the other \((i+1)\)-th row, for \(i = 1, 2, \ldots, s\), and divide \((i+1)\)-th row by \(x_j - x_0\) for \(i = 1, 2, \ldots, s\), we get

\[
\det \mathcal{E} = \frac{\prod_{j=0}^{s} x_j}{k^2(s-1)!} \prod_{i=1}^{s} (x_j - x_0) \begin{vmatrix}
\cos kx_0 & \sin kx_0 & 1 & x_0 & \cdots & x_0^{i-2} \\
\frac{\cos kx_1}{x_1} & \frac{\sin kx_1}{x_1} & \frac{1}{x_1} & x_1 & \cdots & x_1^{i-2} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{\cos kx_s}{x_s} & \frac{\sin kx_s}{x_s} & \frac{1}{x_s} & x_s & \cdots & x_s^{i-2}
\end{vmatrix}.
\]

This reduces to a determinant of a matrix of order \(s\) similar to (9).

III. Repeating the step II finite number of times, we arrive at the simple form of \(\det \mathcal{E}\) as in (8).

From the procedure given for simplification of the determinant of \(\mathcal{E}\), we can construct the interpolating function \(\tilde{f}_s(x)\) for \((M, \Theta, \Sigma)\) in terms of evaluation matrix. The following theorem presents an algorithm to construct \(\tilde{f}_s(x)\). Denote \(D = \det(\mathcal{E})\) for simplicity.

Theorem 1 Let \(\Theta\) be a finite set of integral conditions of the form \(\Theta = \{\lambda_n, \ldots, \lambda_s\}\) with associated values \(\Sigma\) and \(M = \{\cos kx, \sin kx, 1, \ldots, x^{i-2}\} \subset S\) be the finite linearly independent set such that the evaluation matrix \(\mathcal{E}\) is regular. Then there exists unique interpolating function \(\tilde{f}_s(x)\) of the form (1), such that \(\Theta \tilde{f}_s = \Sigma\) as

\[
\tilde{f}_s(x) = \sum_{k=1}^{s+1} D^{-1} D_k^1 a_{h_{k-1}} \cos kx + \sum_{k=1}^{s+1} D^{-1} D_k^2 a_{h_{k-1}} \sin kx + \sum_{i=0}^{s-2} \sum_{k=1}^{s+1} D^{-1} D_k^3 a_{h_{k-1}} x^l,
\]

where \(D^l_j\) is the determinant of \(\mathcal{E}\), obtained from \(\mathcal{E}\) by replacing \(j\)-th column by \(i\)-th unit vector.

Proof It is given that the evaluation matrix associated with \(\Theta\) and \(M\) is regular, therefore there exists unique mixed interpolation. Suppose \(D_0^l, D_1^l\) and \(D_2^l\) denote the determinants of the resultant matrix \(\mathcal{E}\) after replacing \(1^{st}\), \(2^{nd}\), and \(l^{th}\) columns by \(k\)-unit vector, respectively, for \(l = 0, 1, \ldots, s - 2\), then the coefficients \(a, b, c_0, \ldots, c_{s-2}\) are determined uniquely using the Cramer’s rule, as follows

\[
a = \sum_{k=1}^{s+1} D^{-1} D_k^1 a_{h_{k-1}},
\]

\[
b = \sum_{k=1}^{s+1} D^{-1} D_k^2 a_{h_{k-1}},
\]

\[
c_l = \sum_{k=1}^{s+1} D^{-1} D_k^3 a_{h_{k-1}}, \quad l = 0, 1, \ldots, s - 2.
\]

Now, the required interpolating function \(\tilde{f}_s(x)\) is the linear combination of elements of \(M\) with the coefficients \(a, b, c_0, \ldots, c_{s-2}\). Hence, we have

\[
\tilde{f}_s(x) = \sum_{k=1}^{s+1} D^{-1} D_k^1 a_{h_{k-1}} \cos kx + \sum_{k=1}^{s+1} D^{-1} D_k^2 a_{h_{k-1}} \sin kx + \sum_{i=0}^{s-2} \sum_{k=1}^{s+1} D^{-1} D_k^3 a_{h_{k-1}} x^l,
\]

as stated. □
In general, it is very difficult to solve explicitly the linear system (6) for the coefficients \(a, b, c_0, \ldots, c_5\) in terms of \(\Sigma\) at the interpolation points. However, we can express the coefficients of \(f_{\Sigma}(x)\) in terms of evaluation matrix as given Theorem 4.

2.2. Examples

Now to verify the proposed algorithm in Theorem 4, we present some examples. We use Maple, the computer algebra software, for numerical computations in the following examples.

Example 2.1 Consider the integral conditions

\[
\begin{align*}
\int_0^{0.5} f(x)dx &= k_1, \\
\int_0^{0.8} f(x)dx &= k_2, \\
\int_0^{1.0} f(x)dx &= k_3, \\
\int_0^{1.3} f(x)dx &= k_4, \\
\int_0^{1.6} f(x)dx &= k_5,
\end{align*}
\]

Then, using the proposed algorithm in Theorem 4, we have the evaluation matrix

\[
E = \begin{pmatrix}
0.099833 & 0.004996 & 0.1 & 0.005 & 0.000333 \\
0.295520 & 0.044664 & 0.3 & 0.045 & 0.009000 \\
0.479426 & 0.122417 & 0.5 & 0.125 & 0.041667 \\
0.717356 & 0.303293 & 0.8 & 0.320 & 0.170667 \\
0.841471 & 0.459698 & 1.0 & 0.500 & 0.333333
\end{pmatrix},
\]

\[
D = \det E = 7.19735 \times 10^{-14}, \quad D^{-1} = 1.3894 \times 10^{10},
\]

\[
D_1^1 = \det \begin{pmatrix}
1 & 0.004996 & 0.1 & 0.005 & 0.000333 \\
0 & 0.044664 & 0.3 & 0.045 & 0.009000 \\
0 & 0.122417 & 0.5 & 0.125 & 0.041667 \\
0 & 0.303293 & 0.8 & 0.320 & 0.170667 \\
0 & 0.459698 & 1.0 & 0.500 & 0.333333
\end{pmatrix} = 0.15028 \times 10^{-5}
\]

\[
D_2^1 = \det \begin{pmatrix}
0.099833 & 0 & 0.1 & 0.005 & 0.000333 \\
0.295520 & 1 & 0.3 & 0.045 & 0.009000 \\
0.479426 & 0 & 0.5 & 0.125 & 0.041667 \\
0.717356 & 0 & 0.8 & 0.320 & 0.170667 \\
0.841471 & 0 & 1.0 & 0.500 & 0.333333
\end{pmatrix} = -0.18396 \times 10^{-5}
\]

\[
D_3^1 = \det \begin{pmatrix}
0.099833 & 0.004996 & 0 & 0.005 & 0.000333 \\
0.295520 & 0.044664 & 0 & 0.045 & 0.009000 \\
0.479426 & 0.122417 & 1 & 0.125 & 0.041667 \\
0.717356 & 0.303293 & 0 & 0.320 & 0.170667 \\
0.841471 & 0.459698 & 0 & 0.500 & 0.333333
\end{pmatrix} = 0.13131 \times 10^{-5}
\]

\[
D_4^1 = \det \begin{pmatrix}
0.099833 & 0.004996 & 0.1 & 0 & 0.000333 \\
0.295520 & 0.044664 & 0.3 & 0 & 0.009000 \\
0.479426 & 0.122417 & 0.5 & 0 & 0.041667 \\
0.717356 & 0.303293 & 0.8 & 1 & 0.170667 \\
0.841471 & 0.459698 & 1.0 & 0 & 0.333333
\end{pmatrix} = -4.82523 \times 10^{-7}
\]

\[
D_5^1 = \det \begin{pmatrix}
0.099833 & 0.004996 & 0.1 & 0.005 & 0 \\
0.295520 & 0.044664 & 0.3 & 0.045 & 0 \\
0.479426 & 0.122417 & 0.5 & 0.125 & 0 \\
0.717356 & 0.303293 & 0.8 & 0.320 & 0 \\
0.841471 & 0.459698 & 1.0 & 0.500 & 1
\end{pmatrix} = 1.31086 \times 10^{-7}
\]
hence,

\[\sum_{k=1}^{5} D^1_k a_k = 0.15028 \times 10^{-5} k_1 - 0.18396 \times 10^{-5} k_2 + 0.13131 \times 10^{-5} k_3 - 4.82523 \times 10^{-7} k_4 + 1.31086 \times 10^{-7} k_5, \]

similarly,

\[\sum_{k=1}^{5} D^2_k a_k = 8.60525 \times 10^{-7} k_1 - 9.57686 \times 10^{-7} k_2 + 6.17919 \times 10^{-7} k_3 - 1.92581 \times 10^{-7} k_4 + 4.63585 \times 10^{-8} k_5, \]

\[\sum_{k=1}^{5} D^3_k a_k = -0.15011 \times 10^{-5} k_1 + 0.18389 \times 10^{-5} k_2 - 0.13128 \times 10^{-5} k_3 + 4.82459 \times 10^{-7} k_4 - 1.31072 \times 10^{-7} k_5, \]

\[\sum_{k=1}^{5} D^4_k a_k = -8.63467 \times 10^{-6} k_1 + 9.77076 \times 10^{-7} k_2 - 6.26828 \times 10^{-7} k_3 + 1.94676 \times 10^{-7} k_4 - 4.68155 \times 10^{-8} k_5, \]

\[\sum_{k=1}^{5} D^5_k a_k = 8.52374 \times 10^{-7} k_1 - 0.10177 \times 10^{-5} k_2 + 7.11690 \times 10^{-7} k_3 - 2.55717 \times 10^{-7} k_4 + 6.88081 \times 10^{-8} k_5, \]

and the coefficients are given by

\[a = 20904.99k_1 - 25589.48k_2 + 18265.09k_3 - 6712.06k_4 + 1823.45k_5 \]
\[b = 11970.22k_1 - 13321.75k_2 + 8595.47k_3 - 2678.87k_4 + 644.86k_5 \]
\[c_0 = -20881.23k_1 + 25580.00k_2 - 18261.10k_3 + 6711.16k_4 - 1823.26k_5 \]
\[c_1 = -12329.34k_1 + 13591.47k_2 - 8719.40k_3 + 2708.02k_4 - 651.22k_5 \]
\[c_2 = 11856.84k_1 - 14156.85k_2 + 9899.85k_3 - 3557.12k_4 + 957.14k_5 \]

Now the solution of the mixed interpolation \((M, \Theta, \Sigma)\) is

\[\bar{f}_a(x) = (20904.99k_1 - 25589.48k_2 + 18265.09k_3 - 6712.06k_4 + 1823.45k_5) \cos x + (11970.22k_1 - 13321.75k_2 + 8595.47k_3 - 2678.87k_4 + 644.86k_5) \sin x - 20881.23k_1 + 25580.00k_2 - 18261.10k_3 + 6711.16k_4 - 1823.26k_5 + (-12329.34k_1 + 13591.47k_2 - 8719.40k_3 + 2708.02k_4 - 651.22k_5)x + (11856.84k_1 - 14156.85k_2 + 9899.85k_3 - 3557.12k_4 + 957.14k_5)x^2 \]

In particular, if we choose \(k_i = i\), for \(i = 1, 2, 3, 4, 5\), then

\[a = 6790.30, \quad b = 3621.97, \quad c_0 = -6776.17, \quad c_1 = -3728.64, \quad c_2 = 3799.92 \]

and the solution of the interpolation \((M, \Theta, \Sigma)\) is

\[\bar{f}_a(x) = 6790.30 \cos x + 3621.97 \sin x - 6776.17 - 3728.64x + 3799.92x^2. \]

One can easily check in both the cases that \(\Theta(\bar{f}_a) = \Sigma\).

Example 2.2 Suppose we have integral conditions \(0.1 \int f(x)dx = 1, \quad 0.2 \int f(x)dx = 3, \quad 0.3 \int f(x)dx = 4, \quad 0.4 \int f(x)dx = 5, \quad 0.5 \int f(x)dx = 6, \quad 0.6 \int f(x)dx = 7, \quad 0.7 \int f(x)dx = 9, \quad 0.8 \int f(x)dx = 13, \quad 0.9 \int f(x)dx = 15 \) and \(0 \int f(x)dx = 16\). Now we construct \(\bar{f}_b(x) = a \cos kx + b \sin kx + c_0 + c_1x + c_2x^2 + \cdots + c_7x^7\) such
that \(f_9(x) \) satisfies the given conditions. For simplicity, take \(k = 0.5 \). In symbolic notations, we have \(\Theta = \{A_{0.1}, A_{0.2}, A_{0.3}, A_{0.4}, A_{0.5}, A_{0.6}, A_{0.7}, A_{0.8}, A_{0.9}, A_{1.0}\} \), \(M = \{\cos(0.5x), \sin(0.5x), 1, x, \ldots, x^7\} \) and \(\Sigma = \{1, 3, 4, 5, 6, 7, 9, 13, 15, 16\} \). From Theorem 4, the coefficients are computed similar to Example 2.1 as follows

\[
\begin{align*}
\alpha &= -1.496313140 \times 10^9, \\
\beta &= 3.349193220 \times 10^{10}, \\
\gamma_0 &= 1.496313072 \times 10^9, \\
\gamma_1 &= -1.674596380 \times 10^{10}, \\
\gamma_2 &= -1.87067734 \times 10^9, \\
\gamma_3 &= 6.978924923 \times 10^8, \\
\gamma_4 &= 3.516587822 \times 10^9, \\
\gamma_5 &= -8.177983600 \times 10^8, \\
\gamma_6 &= -4.298813138 \times 10^5, \\
\gamma_7 &= 1.677402086 \times 10^5.
\end{align*}
\]

Now, the interpolating function \(f_9(x) \) is given by

\[
\begin{align*}
f_9(x) &= -1.496313140 \times 10^9 \cos(0.5x) + 3.349193220 \times 10^{10} \sin(0.5x) \\
&+ 1.496313072 \times 10^9 - 1.674596380 \times 10^{10}x - 1.87067734 \times 10^9x^2 \\
&+ 6.978924923 \times 10^8 + 3.516587822 \times 10^9x^3 - 8.177983600 \times 10^8x^4 \\
&- 4.298813138 \times 10^5x^5 + 1.677402086 \times 10^5x^6.
\end{align*}
\]

If we choose \(k = 2 \), then

\[
\begin{align*}
f_9(x) &= -3.85899899 \times 10^8 \cos(2x) + 2.91356330 \times 10^9 \sin(2x) \\
&+ 3.858998408 \times 10^8 - 5.82709230 \times 10^8x - 7.71845620 \times 10^8x^2 \\
&+ 3.88781409 \times 10^8x^3 + 2.560552184 \times 10^8x^4 - 7.4670907 \times 10^7x^5 \\
&- 3.9114135 \times 10^7x^6 + 1.208298237 \times 10^7x^7.
\end{align*}
\]

One can easily verify in both cases that \(\Theta(f_9) = \Sigma \).

The following section presents the implementation of the proposed algorithm in Maple.

3. Maple implementation

Maple implementation of the proposed algorithm is presented by creating different data types using the Maple package IntDiffOp implemented by Korporal, Regensburger, and Rosenkranz (2010). For displaying the operators, we have A for integral operator and E for evaluation operator as defined in IntDiffOp package, i.e. \(A_x = E[x].A \).

The data type IntegralCondition(np) is created to represent the integral condition, where np is the node point.

\[
\text{with(IntDiffOp)}:
\]

\[
\text{IntegralCondition} := \text{proc(np)} \\
\text{return BOUNDOP(EVOP(np), EVDIFFOP(0), EVINTOP(EVINTTERM(1, 1)))} \\
\text{end proc:}
\]

The following producer EvaluationMatrix(IC) gives the evaluation matrix of the given \(M \) and \(\Theta \), where IC is the column matrix of the integral conditions.

\[
\text{EvaluationMatrix} := \text{proc (IC::Matrix)} \\
\text{local r,c,elts,fs;}
\]

\[
r,c:=\text{LinearAlgebra[Dimension]}(\text{IC});
\]

\[
\text{fs:=Matrix}(1,r,[\cos(k*x), \sin(k*x), \text{seq}(x^i, i=1..r-2)]);
\]

\[
\text{elts:=seq(seq(ApplyOperator(\text{IC}[t,1], fs[1,j]),j=1..r), t=1..r)};
\]

...
return Matrix(r, r, [elts]);
end proc:

The procedure MixedInterpolation(IC, CM) is created to find the mixed interpolating function for
\((M, \Theta, \Sigma)\), where CM is column matrix of the associated values of \(\Sigma\).

```
MixedInterpolation := proc (IC::Matrix, CM::Matrix)
local r, c, fs, evm, invevm, approx;
r, c := LinearAlgebra[Dimension](IC);
fs := Matrix(1, r, [cos(k*x), sin(k*x), seq(x^(i-1), i=1..r-2)]);
evm := EvaluationMat(IC);
invevm := 1/evm; approx := fs * invevm * CM;
return simplify(approx[1, 1]);
end proc:
```

Example 3.1 Recall Example 2.1 for sample computations using Maple implementation.

```
> with(IntDiffOp):
> C1 := IntegralCondition(0.1); c1 := 1;
> C2 := IntegralCondition(0.3); c2 := 2;
> C3 := IntegralCondition(0.5); c3 := 3;
> C4 := IntegralCondition(0.8); c4 := 4;
> C5 := IntegralCondition(1.0); c5 := 5;

C1 := E[1].A
C1 := 1
C2 := E[3].A
C2 := 2
C3 := E[5].A
C3 := 3
C4 := E[8].A
C4 := 4
C5 := E[10].A
C5 := 5
> k := 1;
1

> C := Matrix([[C1], [C2], [C3], [C4], [C5]]);

\[
\begin{bmatrix}
E[1].A \\
E[3].A \\
E[5].A \\
E[8].A \\
E[10].A \\
\end{bmatrix}
\]
```
\[CM := \text{Matrix}([[c1],[c2],[c3],[c4],[c5]]); \]

\[
\begin{bmatrix}
1 \\
2 \\
3 \\
4 \\
5 \\
\end{bmatrix}
\]

\[\text{EvaluationMat}(C); \]

\[
\begin{bmatrix}
0.09983341665 & 0.004995834722 & 0.1 & 0.005 & 0.0003333 \\
0.2955202067 & 0.04466351087 & 0.3 & 0.045 & 0.009000 \\
0.4794255386 & 0.1224174381 & 0.5 & 0.125 & 0.041667 \\
0.7173560909 & 0.3032932907 & 0.8 & 0.320 & 0.170667 \\
0.8414709848 & 0.4596976941 & 1.0 & 0.500 & 0.333333 \\
\end{bmatrix}
\]

\[> \text{MixedInterpolation}(C, CM); \]

\[-6776.165565 - 3728.640530 \times x + 6790.295165 \times \cos(x) + 3621.967910 \times \sin(x) + 3799.917488 \times x^2 \]

Acknowledgements
Authors thank the referees for useful suggestions in improving the presentation of the paper.

Funding
The authors received no direct funding for this research.

Author details
Srinivasarao Thota\(^1\)
E-mail: srinithota@ymail.com
Shiv Datt Kumar\(^1\)
E-mail: sdt@mnnit.ac.in
\(^1\) Department of Mathematics, Motilal Nehru National Institute of Technology, Allahabad, 211004, India.

Citation information
Cite this article as: On a mixed interpolation with integral conditions at arbitrary nodes, Srinivasarao Thota & Shiv Datt Kumar, Cogent Mathematics (2016), 3: 1151613.

References
Chakrabarti, A. (1996). Hamsapriye: Derivation of a general mixed interpolation formula. Journal of Computational and Applied Mathematics, 70, 161–172.

Coleman, J. P. (1998). Mixed interpolation methods with arbitrary nodes. Journal of Computational and Applied Mathematics, 92, 69–83.

deamer, H., Vanthournout, J., & Vanden, G. (1990). Berghe: On a new type of mixed interpolation. Journal of Computational and Applied Mathematics, 30, 55–69.

deamer, H., Vanthournout, J., Vanden Berghe, G., & Vanderbauwhede, A. (1990). On the error estimation for a mixed type of interpolation. Journal of Computational and Applied Mathematics, 32, 407–415.

Korporal, A., Regensburger, G., & Rosenkranz, M. (2010). A Maple package for integro-differential operators and boundary problems. ACM Communications in Computer Algebra, 44, 120–122.

Lorentz, R. A. (2000). Multivariate Hermite interpolation by algebraic polynomials: A survey. Journal of Computational and Applied Mathematics, 122, 167–201.

Sauer, T. (1997). Polynomial interpolation, ideals and approximation order of refinable functions. Proceedings American Mathematical Society, 130, 3335–3347.

Thota, S., & Kumar, S. D. (2015). Symbolic method for polynomial interpolation with stieltjes conditions. Proceedings of International Conference on Frontiers in Mathematics, 1, 225–228.
