Self-accelerating cosmologies and hairy black holes in ghost-free bigravity and massive gravity

Mikhail S Volkov

Laboratoire de Mathématiques et Physique Théorique CNRS-UMR 7350, Université de Tours, Parc de Grandmont, F-37200 Tours, France
Institut des Hautes Études Scientifiques (IHES), F-91440 Bures-sur-Yvette, France
E-mail: volkov@lmpt.univ-tours.fr

Received 3 April 2013, in final form 23 April 2013
Published 6 September 2013
Online at stacks.iop.org/CQG/30/184009

Abstract
We present a survey of the known cosmological and black hole solutions in ghost-free bigravity and massive gravity theories. These can be divided into three classes. First, there are solutions with proportional metrics, which are the same as in General Relativity with a cosmological term, which can be positive, negative or zero. Secondly, for spherically symmetric systems, there are solutions with non-bidiagonal metrics. The g-metric fulfills Einstein equations with a positive cosmological term and a matter source, while the f-metric is anti-de Sitter. The third class contains solutions with bidiagonal metrics, and these can be quite complex. The time-dependent solutions describe homogeneous (isotropic or anisotropic) cosmologies which show a late-time self-acceleration or other types of behavior. The static solutions describe black holes with a massive graviton hair, and also globally regular lumps of energy. None of these are asymptotically flat. Including a matter source gives rise to asymptotically flat solutions which exhibit the Vainshtein mechanism of recovery of General Relativity in a finite region.

PACS numbers: 04.50.Kd, 04.70.Bw, 98.80.−k

(Some figures may appear in colour only in the online journal)

1. Introduction

The recent discovery of a multiparameter class of ghost-free massive gravity theories by de Rham, Gabadadze and Tolley (dRGT) [1], and of its bigravity generalization by Hassan and Rosen (HR) [2], has revived the old idea that gravitons can have a small mass m [3] (see [4] for a recent review). Theories with massive gravitons were, for a long time, considered as pathological, mainly because they exhibit the Boulware–Deser (BD) ghost—an unphysical negative norm state in the spectrum [5]. However, there are serious reasons to believe that the theories of [1, 2] are free of this pathology, since the unphysical mode is eliminated by an additional constraint, whose existence is revealed by the canonical analysis [6–10], or in
the covariant approach [11] based on the tetrad formulation [12]. This does not mean that all solutions are stable in these theories, since there could be other instabilities, which should be checked in each particular case. However, since the most dangerous BD ghost instability is absent, the theories in [1, 2] can be considered as healthy physical models for interpreting the observational data.

Theories with massive gravitons have been used in order to explain the observed acceleration of our universe [13, 14]. This acceleration could be accounted for by introducing a cosmological term in Einstein equations; however, this would pose the problem of explaining the origin and value of this term. An alternative possibility is to consider the modifications of General Relativity (GR), and theories with massive gravitons are natural candidates for this, since the graviton mass can effectively manifest itself as a small cosmological term [15]. This motivates studying cosmological and other solutions with massive gravitons.

Theories with massive gravitons are described by two metrics, $g_{\mu\nu}$ and $f_{\mu\nu}$. In massive gravity theories, the f-metric is non-dynamical and is usually chosen to be flat, although other choices are also possible, while the dynamical g-metric describes massive gravitons. In bigravity theories, both metrics are dynamical and describe together two gravitons, one of which is massive and the other one is massless. The theory contains two gravitational couplings, κ_g and κ_f, and in the limit where κ_f vanishes, the f-equations decouple from g, so that the f-metric is determined by its own dynamics. The g-equations contain f, and the g-theory then can be viewed as massive gravity with a fixed background metric f. Therefore, massive gravity theory is a special case of bigravity, and so when one studies bigravity solutions one finds, in particular, all massive gravity ones. One should emphasize, however, that in the $\kappa_f \to 0$ limit, the f-metric does not necessarily become flat and the bigravity solutions do not always reduce in this limit to solutions of the standard dRGT massive gravity with flat f.

The known bigravity solutions can be divided into three types. First, there are solutions for which the two metrics are proportional in the same coordinate system: $f_{\mu\nu} = C^2 g_{\mu\nu}$. This is only possible if C fulfils an algebraic equation with constant coefficients, and if the matter sources in the two sectors are fine-tuned to be proportional to each other. The g-equations then reduce to the standard Einstein equations with a matter source and a cosmological term $\Lambda_g \sim m^2$, which can be positive, negative or zero. Therefore, one obtains in this way all GR solutions, in particular, for $C = 1$, those of vacuum GR. For $\Lambda_g > 0$, there are cosmological solutions which approach the de Sitter space at late times and describe the cosmic self-acceleration. On the other hand, none of the proportional solutions, apart from the trivial one with $f_{\mu\nu} = g_{\mu\nu} = \eta_{\mu\nu}$, fulfill equations of the massive gravity theory with flat f.

Secondly, imposing spherical symmetry, there are solutions described by two metrics which are not bidiagonal, although they can be made separately diagonal when expressed in two different frames. There is a nontrivial consistency condition relating these two frames, and as soon as it is fulfilled, the two metrics formally decouple one from the other and each of them fulfills its own set of Einstein equations with its own cosmological and matter terms. In some cases, the f-metric can be chosen to be anti-de Sitter, with $\Lambda_f \sim \kappa_f^2$; hence, it becomes flat when $\kappa_f \to 0$, and so the dRGT massive gravity is naturally recovered.

These solutions exist both in the dRGT massive gravity and in the HR bigravity theories. They describe all known massive gravity black holes, in which case the g-metric is Schwarzschild–de Sitter (SdS). They also describe all known massive gravity cosmologies, for which the g-metric is of any (open, closed and flat) standard Friedmann–Lemâtre–Robertson–Walker (FLRW) type. For these solutions the ordinary matter dominates at early times, when the universe is small, while later the effective cosmological term $\Lambda_g \sim m^2$ becomes dominant, leading to a self-acceleration. Such solutions had been first obtained without matter, in which case they describe the pure de Sitter space [16, 17]. Later the matter term was included, [18–21],
first only for special values of the theory parameters, and then in the general case [22, 23]. If the massive gravity theory were indeed the correct theory of gravity, these solutions could describe our universe. However, perturbations around these FLRW backgrounds are expected to be inhomogeneous—due to the non-diagonal metric components, although this effect should be suppressed by the smallness of m [19]. For this reason, solutions of this type are sometimes called in the literature ‘inhomogeneous’, or solutions with ‘inhomogeneous Stückelberg fields’.

For solutions of the two types discussed above, the metrics are the same as in GR and the graviton mass manifests itself only as an effective cosmological term. By contrast, the third type of the known bigravity solutions, where the two metrics are bidiagonal in the same frame but not proportional, leads to more complex equations of motion which usually require a numerical analysis. The FLRW solutions can be self-accelerating, but can also show more complex behaviors [24–27]. There are also anisotropic cosmological solutions, and these show that the generic state to which the universe approaches at late times is anisotropic, and the anisotropy energy behaves similar to the energy of a non-relativistic matter [28]. The static vacuum solutions with bidiagonal metrics can be rather complex and describe black holes with a massive graviton hair and also gravitating lumps of energy [30]. None of these solutions are asymptotically flat. The asymptotic flatness is achieved by including a regular matter source, which gives rise to solutions which exhibit the Vainshtein mechanism of recovery of GR in a finite region of space [31].

Below, a more detailed description of the currently known bigravity and massive gravity solutions is given.

2. Ghost-free bigravity theory

The theory of the ghost-free bigravity [2] is defined on a four-dimensional spacetime manifold equipped with two metrics, $g_{\mu\nu}$ and $f_{\mu\nu}$, which describe two interacting gravitons, one of which is massive and the other one is massless. The kinetic term of each metric is chosen to be of the standard Einstein–Hilbert form, while the interaction between them is described by a local potential term $U[g, f]$ which does not contain derivatives and which is expressed by a scalar function of the tensor
\[\gamma_{\mu\nu} = \sqrt{g^{\mu\alpha}f_{\alpha\nu}}. \]
(2.1)

Here, $g^{\mu\nu}$ is the inverse of $g_{\mu\nu}$ and the square root is understood in the matrix sense, i.e.
\[(\gamma^2)_{\mu\nu} \equiv \gamma_{\mu\alpha}\gamma_{\alpha\nu} = g^{\mu\alpha}f_{\alpha\nu}. \]
(2.2)

Note that the matrix square root $\gamma_{\mu\nu}$ is well defined when $g_{\mu\nu}$ and $f_{\mu\nu}$ are close to each other so that $g^{\mu\alpha}f_{\alpha\nu}$ is close to the unit matrix, in which case $\gamma_{\mu\nu}$ is also close to the unit matrix. However, $\gamma_{\mu\nu}$ might cease to be well defined (and/or real) for generic g and f.

Assuming a g-matter and an f-matter interacting, respectively, only with $g_{\mu\nu}$ and with $f_{\mu\nu}$, the action is (with the metric signature $-+++$)
\[S[g, f, \text{matter}] = \frac{1}{2\kappa_g^2} \int d^4x \sqrt{-g} R(g) + \frac{1}{2\kappa_f^2} \int d^4x \sqrt{-f} R(f) \]
\[-\frac{m^2}{\kappa^2} \int d^4x \sqrt{-g} U[g, f] + S_{g}^{[\text{m}]}[g, g\text{-matter}] + S_{f}^{[\text{m}]}[f, f\text{-matter}], \]
(2.3)

where R and \mathcal{R} are the Ricci scalars for $g_{\mu\nu}$ and $f_{\mu\nu}$, respectively, $\kappa_g^2 = 8\pi G$ and $\kappa_f^2 = 8\pi G$ are the corresponding gravitational couplings, while $\kappa^2 = \kappa_g^2 + \kappa_f^2$ and m is the graviton mass. The interaction between the two metrics is given by
\[\mathcal{U} = \sum_{n=0}^{4} b_n U_n(\gamma), \]
(2.4)
where b_k are parameters, while $\mathcal{U}_k(\gamma^a)$ are defined by the relations
\[
\begin{align*}
\mathcal{U}_0(\gamma) &= 1, \\
\mathcal{U}_1(\gamma) &= \sum_A \lambda_A = [\gamma], \\
\mathcal{U}_2(\gamma) &= \sum_{A<B} \lambda_A \lambda_B = \frac{1}{2!}([\gamma]^2 - [\gamma^2]), \\
\mathcal{U}_3(\gamma) &= \sum_{A<B<C} \lambda_A \lambda_B \lambda_C = \frac{1}{3!}([\gamma]^3 - 3[\gamma][\gamma^2] + 2[\gamma^3]), \\
\mathcal{U}_4(\gamma) &= \lambda_3 \lambda_2 \lambda_1 = \frac{1}{4!}([\gamma]^4 - 6[\gamma]^2[\gamma^2] + 8[\gamma][\gamma^3] + 3[\gamma^2]^2 - 6[\gamma^4]).
\end{align*}
\]
(2.5)

Here, λ_A ($A = 0, 1, 2, 3$) are the eigenvalues of $\gamma^a\mu$, and, using the hat to denote matrices, one has defined $[\gamma] = \text{tr}(\hat{\gamma}) \equiv \gamma^{\mu}_a \mu$, $[\gamma^a] = \text{tr}(\hat{\gamma}^a) \equiv (\gamma^a)^\mu_\mu$. The (real) parameters b_k could be arbitrary; however, if one requires flat space to be a solution of the theory, and m to be the Fierz–Pauli mass of the graviton [3], then the five b_ks are expressed in terms of two free parameters c_3 and c_4 as follows:
\[
\begin{align*}
b_0 &= 4c_3 + c_4 - 6, & b_1 &= 3 - 3c_3 - c_4, & b_2 &= 2c_3 + c_4 - 1, \\
b_3 &= -(c_3 + c_4), & b_4 &= c_4.
\end{align*}
\]
(2.6)

The theory (2.3) propagates 7 + 2 degrees of freedom corresponding to the polarizations of two gravitons, one massive and one massless. Before this theory was discovered [2], other bigravity models, sometimes called $f-G$ theories, had been considered [32]. Such theories propagate 7 + 1 degrees of freedom, the additional one being the BD ghost [5].

2.1. Field equations

Let us introduce the mixing angle η such that $\kappa_\xi = \kappa \cos \eta$, $\kappa_f = \kappa \sin \eta$. Varying the action (2.3) gives the field equations
\[
G^\mu_\nu = m^2 \cos^2 \eta T^\mu_\nu + T^{[m]\mu}_\nu, \\
\hat{G}^\mu_\nu = m^2 \sin^2 \eta T^\mu_\nu + T^{[m]\mu}_\nu.
\]
(2.7)
(2.8)

where G^μ_ν and \hat{G}^μ_ν are the Einstein tensors for g^μ_ν and f^μ_ν, and the two gravitational couplings are included into the definition of the matter sources $T^{[m]\mu}_\nu$ and $T^{[m]\mu}_\nu$. The ‘graviton’ energy–momentum tensors obtained by varying the interaction \mathcal{U} are
\[
T^\mu_\nu = \tau^\mu_\nu - \mathcal{U}_k^\nu v - U_k^{\nu} v, \\
T^\mu_\nu = -\frac{\sqrt{-g}}{\sqrt{-j}} \tau^\mu_\nu,
\]
(2.9)

where
\[
\tau^\mu_\nu = \{b_1 U_0 + b_2 U_1 + b_3 U_2 + b_4 U_3\} \gamma^\mu_\nu - \{b_5 U_0 + b_6 U_1 + b_7 U_2 + b_8 U_3\} (\gamma^a)^\mu_\nu + \{b_9 U_0 + b_10 U_1\} (\gamma^2)^\mu_\nu - b_3 U_0 (\gamma^4)^\mu_\nu
\]
(2.10)

with $\mathcal{U}_k \equiv \mathcal{U}_k(\gamma)$. In deriving these expressions, one uses the relations
\[
\frac{\delta [\gamma^a]}{\delta g^\mu_\nu} = \frac{n}{2} g_{\alpha\beta} (\gamma^a)^\alpha_\beta, \\
\frac{\delta [\gamma^a]}{\delta f^\mu_\nu} = -\frac{n}{2} f_{\alpha\beta} (\gamma^a)^\alpha_\beta,
\]
(2.11)
which can be obtained by varying the definition of $\gamma^{\mu \nu}$ and using the properties of the trace. The matter sources are conserved due to the diffeomorphism invariance of the matter terms in the action, $(\nabla_\mu T^{[m]\mu \nu}) = 0$, $(\nabla_\mu T^{[m]\nu \mu}) = 0$, where ∇ and ∇ are covariant derivatives with respect to $g_{\mu \nu}$ and $f_{\mu \nu}$. The Bianchi identities for (2.7) imply that the graviton energy–momentum tensor is also conserved, $(\nabla_\mu T^\mu \nu) = 0$. Similarly, the Bianchi identities imply that $(\nabla_\mu T^\nu \mu) = 0$, but in fact this condition is not independent and follows from $(\nabla_\mu T^\mu \nu) = 0$ in view of the diffeomorphism invariance of the interaction term in the action.

If $\eta \to 0$ and $\sin^2 \eta T^\mu \nu \to 0$, then equations (2.8) for the f-metric decouple and their solution enters the g-equations (2.7) as the fixed reference metric. The g-equations describe in this case a massive gravity theory. For example, if f becomes flat for $\eta \to 0$, then one recovers the dRGT theory [1]. Therefore, theories of massive gravity are contained in the bigravity. However, one has to emphasize that the existence of the massive gravity limit is not guaranteed [33], since $\sin^2 \eta T^\mu \nu$ does not necessarily vanish when $\eta \to 0$, and even if it does, the f-metric does not necessarily reduce to something fixed. For example, in the absence of the f-matter, the f-metric becomes Ricci flat in the limit, but this does not guarantee that it is flat. Therefore, although the massive gravity can be embedded into bigravity, it is not a limit of the latter but a different theory with different properties. As a result, the recent observation that the massive gravity theory could be acausal [34] does not necessarily apply to the bigravity theory [35].

3. Proportional backgrounds

The simplest solutions of the bigravity equations are obtained by assuming the two metrics to be proportional,

$$ f_{\mu \nu} = C^2 g_{\mu \nu}. $$

One obtains in this case $\gamma^{\mu \nu} = C \delta^{\mu \nu}$, and so

$$ T^\mu \nu \equiv (b_1 + 3b_2 C + 3b_3 C^2 + b_4 C^3)C \delta^{\mu \nu}, $$

which gives the energy–momentum tensors

$$ T^\mu \nu = -\Lambda_g(C) \delta^{\mu \nu}, \quad T^\mu \nu = -\Lambda_f(C) \delta^{\mu \nu}, $$

with

$$ \Lambda_g(C) = m^2 \cos^2 \eta (b_0 + 3b_1 C + 3b_2 C^2 + b_3 C^3), $$

$$ \Lambda_f(C) = m^2 \sin^2 \eta \frac{\sin^2 \eta}{C^3} (b_1 + 3b_2 C + 3b_3 C^2 + b_4 C^3). $$

Since the energy–momentum tensors should be conserved, it follows that C is a constant. As a result, one finds two sets of Einstein equations,

$$ G^\mu \nu + \Lambda_g(C) \delta^\mu \nu = T^\mu \nu, \quad \tilde{G}^\mu \nu + \Lambda_f(C) \delta^\mu \nu = T^\mu \nu. $$

Since one has $\tilde{G}^\mu \nu = G^\mu \nu / C^2$, it follows that $\Lambda_f = \Lambda_g / C^2$, which gives an algebraic equation for C, with $\chi = \tan^2 \eta$,

$$ (b_0 + 3b_1 C + 3b_2 C^2 + b_3 C^3) = \frac{\chi^2}{C} (b_1 + 3b_2 C + 3b_3 C^2 + b_4 C^3). $$

It follows also that the matter sources should be fine-tuned such that $T^{[m] \mu \nu} = T^{[m] \mu \nu} / C^2$. Therefore, the independent equations are the same as in GR,

$$ G^\mu \nu + \Lambda_g(C) \delta^\mu \nu = T^\mu \nu. $$

(3.7)
If the parameters h_k are chosen according to equation (2.6), then equation (3.6) factorizes,

$$0 = (C-1)\left[(c_3 + c_4)C^3 + (3 - 5c_3 + (\chi - 2)c_4)C^2 + \left((4 - 3\chi)c_3 + (1 - 2\chi)c_4 - 6\right)C + (3c_3 + c_4 - 1)\chi\right].$$

(3.8)

while

$$\frac{\Lambda_g}{m^2 \cos^2 \eta} = (1 - C)((c_3 + C_4)C^2 + (3 - 5c_3 - 2c_4)C + 4c_3 + c_4 - 6).$$

Depending on values of c_3, c_4 and η, equation (3.8) can have up to four real roots. For example, for $c_3 = 1$, $c_4 = 0.3$ and $\eta = 1$, the roots are

$$C = \{-2.24; 1; 0.06; 3.61\}, \quad \frac{\Lambda_g(C)}{m^2} = \{10.12; 0; -0.50; -4.50\}.$$

(3.9)

As a result, there can be solutions with four different values of the cosmological constant, which can be positive, negative, or zero. If $C = 1$, then $\Lambda_g = \Lambda_f = 0$ and the two metrics and the matter sources are identical, $g_{\mu\nu} = f_{\mu\nu}$, $T^{(m)\mu\nu} = T^{(m)\mu\nu}$. Setting $T^{(m)\mu\nu} = 0$, the vacuum GR is recovered, and, in particular, flat space, $g_{\mu\nu} = f_{\mu\nu} = \eta_{\mu\nu}$.

Let us consider small fluctuations around flat space, $g_{\mu\nu} = \eta_{\mu\nu} + \delta g_{\mu\nu}, f_{\mu\nu} = \eta_{\mu\nu} + \delta f_{\mu\nu}$. Inserting into the general equations (2.7) and (2.8) and linearizing with respect to these fluctuations, one finds that the linear combinations

$$h_{(m)}^{(\mu)} = \cos \eta \delta f_{\mu\nu} + \sin \eta \delta g_{\mu\nu}, \quad h_{(0)}^{(\mu)} = \cos \eta \delta f_{\mu\nu} - \sin \eta \delta g_{\mu\nu}$$

fulfil the Fierz–Pauli equations,

$$\Box h_{(m)}^{(\mu)} + \cdots = m^2 (h_{(m)}^{(\mu)} - h_{(m)}^{(\mu)} \eta_{\mu\nu}), \quad \Box h_{(0)}^{(\mu)} + \cdots = 0.$$

(3.11)

Therefore, one can identify $h_{(m)}^{(\mu)}$ and $h_{(0)}^{(\mu)}$ with the massive and massless graviton fields, respectively. It seems that one can explicitly identify in this way the massive and massless degrees of freedom only for fluctuations around proportional backgrounds [36]. Moreover, only for proportional backgrounds the null energy condition is fulfilled both in the g and f sectors [37]. Apart from flat space, other solutions with proportional metrics do not admit the massive gravity limit with the flat f-metric.

4. FLRW cosmologies with non-bidirectional metrics

Let us now make a symmetry assumption and choose both metrics to be invariant under spatial SO(3) rotations. Since the theory is invariant under diffeomorphisms, one can choose the spacetime coordinates such that the g-metric is diagonal. However, the f-metric will in general contain an off-diagonal term, so that

$$d\xi^2 = -Q^2 \, dt^2 + N^2 \, dr^2 + R^2 \, d\Omega^2, \quad d\zeta^2 = -\left(aQ \, dt + cN \, dr\right)^2 + \left(cQ \, dt - bN \, dr\right)^2 + u^2 R^2 \, d\Omega^2.$$

(4.1)

Here Q, N, R, a, b, c and u depend on t, r and $d\Omega^2 = d\theta^2 + \sin^2 \theta \, d\phi^2$. One can take

$$\gamma^{\mu\nu} = \sqrt{g^{\mu\nu}} g_{\mu\nu} = \begin{pmatrix} a & cN/Q & 0 & 0 \\ -cQ/N & b & 0 & 0 \\ 0 & 0 & u & 0 \\ 0 & 0 & 0 & u \end{pmatrix},$$

(4.2)

whose eigenvalues are

$$\lambda_{0,1} = \frac{1}{2}(a + b \pm \sqrt{(a - b)^2 - 4c^2}), \quad \lambda_2 = \lambda_3 = u.$$

(4.3)
Inserting this to (2.5) gives

\[U_1 = a + b + 2u, \quad U_2 = u(a + 2a + 2b) + ab + c^2, \]
\[U_3 = u^2(ab + c^2). \quad (4.4) \]

Note that, although the eigenvalues (4.3) can be complex-valued, the \(U_k \)s are always real. It is now straightforward to compute the energy–momentum tensors \(T^\mu_\nu \) and \(T^\nu_\mu \) defined by (2.9) and (2.10). In particular, one finds

\[T^0_\nu = \frac{cN}{Q}[b_1 + 2b_2u + b_3u^2]. \quad (4.5) \]

It will be assumed in what follows that the \(g \)-metric is either static or of the FLRW type, in which cases there is no radial energy flux and \(T^0_\nu \), should be zero. Therefore, either \(c \) should vanish or the expression in brackets in (4.5) vanishes. The former option will be considered in the following section, while presently let us assume that \(c \neq 0 \) and

\[b_1 + 2b_2u + b_3u^2 = 0. \quad (4.6) \]

This yields

\[u = \frac{1}{b_3}(-b_2 \pm \sqrt{b_2^2 - b_1b_3}). \quad (4.7) \]

Note that \(u \) was \textit{a priori} a function of \(t \) and \(r \), but now it is restricted to be a constant. Using this, one finds that \(T^0_0 = T^r_r = -\lambda_\chi \) and \(T^\nu_0 = T^\nu_r = -\lambda_f \), where

\[\lambda_\chi = \frac{b_2 + 2b_1u + b_3u^2}{u^2} \quad (4.8) \]

and since this has to vanish, either the first or the second factor on the right should be zero. The former case was considered in [18, 24] (see also [20]). However, requiring \(b_2 + b_3u = 0 \) constrains the possible values of the theory parameters \(b_k \); hence, solutions obtained in this way are not general. Let us therefore require that [22, 23]

\[(u - a)(u - b) + c^2 = 0. \quad (4.10) \]

Note that in this constraint \(u \) is a constant, but \(a, b \) and \(c \) are still (unknown) functions of \(t, r \). In view of this, one has \(T^0_0 = T^\rho_\rho \) and \(T^\rho_0 = T^\rho_r \); hence, both energy–momentum tensors are proportional to the unit tensor, \(T^\rho_\nu = -\lambda_\chi \delta^\rho_\nu \) and \(T^\nu_\mu = -\lambda_f \delta^\nu_\mu \). The field equations (2.7) then reduce to

\[G^\rho_\chi + \Lambda_\chi \delta^\rho_\chi = T^{(m)}_\chi, \]
\[G^\rho_\chi + \Lambda_f \delta^\rho_\chi = T^{(m)}_\chi. \quad (4.11) \]

with \(\Lambda_\chi = m^2 \cos^2 \eta \chi \) and \(\Lambda_f = m^2 \sin^2 \eta \lambda_f \). As a result, the two metrics seemingly decouple one from the other, and the graviton mass gives rise to two cosmological terms. Unlike in the case of proportional metrics, no fine tuning between the two matter sources is needed. However, one has to remember that solutions of (4.11) should fulfil the consistency condition (4.10). If the parameters \(b_k \) are chosen according to (2.6), then \(\lambda_\chi + u^2 \lambda_f = -(u - 1)^2 \); therefore, if \(\Lambda_\chi > 0 \) then \(\Lambda_f < 0 \).
Let us consider time-dependent solutions of the FLRW type and assume the g-matter to be a perfect fluid, \(T^{(m)\rho}_{\chi} = \text{diag}[\rho(t), P(t), P(t), P(t)] \), while the f-sector can be chosen to be empty, \(T^{(m)\rho}_{\chi} = 0 \). Then, the solution of (4.11) is chosen to be

\[
\begin{align*}
\text{d}s^2_f &= -dr^2 + a^2(t) \left(\frac{dr^2}{1 - k r^2} + r^2 \, d\Omega^2 \right), \quad k = 0, \pm 1, \\
\text{d}s^2_r &= -\Delta(U) \, dT^2 + \frac{dU^2}{\Delta(U)} + U^2 \, d\Omega^2, \quad \Delta = 1 - \frac{\Lambda_f}{3} U^2,
\end{align*}
\]

(4.12)

where \(a \) fulfills the Friedmann equation,

\[
3 \frac{\dot{a}^2 + k}{a^2} = \Lambda_g + \rho. \tag{4.13}
\]

The g-metric describes an expanding FLRW universe containing the matter \(\rho \) and the positive cosmological term \(\Lambda_g \). It can be of any spatial type—open, closed or flat. At early times, when \(a \) is small, the matter term \(\rho \) is dominant, while later \(\Lambda_g \) dominates and the universe enters the acceleration phase. The \(f \)-metric is the anti-de Sitter one expressed in static coordinates. One has \(\Lambda_f \sim \sin^2 \eta \rightarrow 0 \) when \(\eta \rightarrow 0 \); hence, the \(f \)-metric becomes flat in this limit. Therefore, the solutions apply both in the bigravity theory and in dRGT massive gravity.

4.1. Imposing the consistency condition

The above-described effective decoupling of the two metrics has been observed by several authors, in the massive gravity theory [16, 18, 19, 21] and also in the bigravity [24]. However, such a decoupling is only possible if the consistency condition (4.10) is fulfilled, which requires solving a complicated PDE (see equation (4.14) below), and this has not always been done. In [16], the solution was obtained for \(\rho_0 = 0 \) when the g-metric is the de Sitter one expressed in static coordinates, in which case the PDE becomes an ODE. A solution for a more general FLRW g-metric for \(k = 0 \) and special values of \(b_k \) was found in [19], while the general case was considered in [22, 23].

Let us note that the two metrics in (4.12) are expressed in two different coordinate systems, \(t, r \) and \(T, U \), whose relation to each other is not yet known. One has \(T = T(t, r) \) and \(U = U(t, r) \), so that \(dT = T \, dt + T' \, dr \) and \(dU = U \, dt + U' \, dr \). Inserting this into the \(f \)-metric in (4.12) and comparing with the \(f \)-metric from (4.1), one finds the metric coefficients \(a, b \) and \(c \) in (4.11) expressed in terms of the partial derivatives of \(T \) and \(U \). One also finds that \(U = uR = u \, a \, r \). Inserting the result into (4.10) gives a nonlinear PDE,

\[
\Delta [a \sqrt{1 - kr^2} (UT' - T'^{\prime})] - u^2 a^2 \Lambda_g A_{-} = 0, \tag{4.14}
\]

with \(A_{\pm} = a (\Delta T \pm U') \). Since \(u, a, U \) and \(\Delta(U) \) are already known, this equation determines \(T(t, r) \).

Let us consider the \(\eta \rightarrow 0 \) limit, when \(\Lambda_f = 0 \) and \(\Delta = 1 \). Then, one can find exact solutions of (4.14). If \(k = 0 \), then

\[
T(t, r) = q \int \frac{dr}{a} + \left(\frac{u^2}{4q} + qr^2 \right) a, \tag{4.15}
\]

where \(q \) is an integration constant. This solution agrees with the one obtained in [19] for \(c_3 = c_4 = 0 \) and \(u = 3/2 \). For \(k = \pm 1 \), one has

\[
T(t, r) = \sqrt{q^2 + ku^2} \int \frac{dr}{a} \sqrt{\frac{1}{a^2} + k} \, dr + qa \sqrt{1 - kr^2}. \tag{4.16}
\]

If \(\Lambda_f \neq 0 \) and \(\Delta \neq 1 \), then exact solutions of (4.14) are unknown; however, at least when \(\Lambda_f \) is small, solutions can be constructed perturbatively as \(T = T_0 + \sum_{n \geq 1} (-\Lambda_f/3)^n T_n \).
Here, T_0 corresponds to zero-order expressions (4.15) and (4.16), while the corrections T_n can be obtained by separating the variables with the ansatz $T_n = \sum_{m=0}^{n+1} f_m(t) (1 - k r^2)^m$.

This completes the construction, since all field equations and the consistency condition are fulfilled. Summarizing, one obtains self-accelerating FLRW solutions of all spatial types, equally valid in the bigravity and massive gravity theories. In the latter case, this exhausts all possible homogeneous and isotropic cosmologies. Somewhat confusingly, these solutions are sometimes called in the literature inhomogeneous, because the two metrics are non-bidiagonal and T, U, which play the role of St"uckelberg scalars in the massive gravity limit, are inhomogeneous, as they both depend on r. It is then expected that fluctuations around the FLRW backgrounds should show an inhomogeneous spectrum, although this effect will be proportional to m^2 and so will be small [19].

In the spatially open case, $k = -1$, choosing in (4.16) $q = u$, yields $T = u a \sqrt{1 + r^2}$. Inserting this to (4.12), together with $U = u a r$, gives the flat f-metric which turns out to be diagonal both in the T, U and t, r coordinates,

$$ds^2 = -dr^2 + dU^2 + U^2 d\Omega^2 = u^2 a^2 \left(-\frac{\dot{a}^2}{a^2} dr^2 + \frac{dr^2}{1 + r^2} + r^2 d\Omega^2 \right).$$

so that the g and f metrics happen to be bidiagonal in this case. This particular solution was found in [38]. It is unclear if it should be physically distinguished when compared to the other solutions in (4.15) and (4.16) for generic k and q. The analysis of [39] shows that this solution is unstable at the nonlinear level, while the case of generic k and q has not yet been studied.

5. FLRW cosmologies with bidiagonal metrics

All solutions considered above are described by the same metrics as in GR, and the graviton mass manifests itself only as the effective cosmological term(s). More general solutions are obtained assuming that both metrics are simultaneously diagonal [24–26, 40, 27],

$$\begin{align*}
\text{ds}_g^2 &= -dt^2 + a(t)^2 \left(\frac{dr^2}{1 - kr^2} + r^2 d\Omega^2 \right), \\
\text{ds}_f^2 &= -A(t)^2 dr^2 + b(t)^2 \left(\frac{dr^2}{1 - kr^2} + r^2 d\Omega^2 \right).
\end{align*}$$

(5.1)

The G_0^q and G_0^q equations (2.7) and (2.8) then read

$$\frac{\dot{a}^2}{a^2} = \frac{\Lambda_g(\xi) + \rho_k}{3} - \frac{k}{a^2}, \quad \frac{1}{A^2} \frac{\dot{b}^2}{b^2} = \frac{\Lambda_f(\xi) + \rho_f}{3} - \frac{k}{b^2},$$

(5.2)

where $\xi = b/a$ and Λ_g, Λ_f are defined in (3.4). The $^{(q)}_{\mu \nu} T^{\mu \nu} = 0$ conditions reduce to

$$[\dot{b} - A \dot{a}](b_1 + 2b_2 \xi + b_3 \xi^2) = 0.$$

(5.3)

5.1. Generic solutions

Let us assume that the first factor in (5.3) vanishes, $\dot{b} - A \dot{a} = 0$. Comparing this to (5.2) gives the algebraic relation $\Lambda_g(\xi) + \rho_k = \xi^2 (\Lambda_f(\xi) + \rho_f)$, or, setting for simplicity $\rho_f = 0$,

$$\frac{b_3}{3} \xi^4 + \left(b_2 - \frac{\Lambda_f}{3} b_3 \right) \xi^3 + \left(b_1 - \xi b_2 \right) \xi^2 + \left(b_0 - \chi b_2 + \frac{\rho_k}{3 \cos^2 \eta} \right) \xi = \frac{\xi b_1}{3},$$

(5.4)
The two solutions ξ_1 and ξ_2 of (5.4) and the corresponding effective potentials $V(a)$ for the same parameter values as in (3.9). One has $V_1 < -1$; hence, for any $k = 0, \pm 1$ solutions of (5.5) travel over the V_1 potential barrier and enter the accelerated phase for large a. Since $\Lambda_1(\xi_2) < 0$, $V_2 \to +\infty$ for large a and solutions of (5.5) bounce from the potential barrier and recollapse.

5.2. Special solutions

Let us now assume that the second factor in (5.3) vanishes, $b_1 + 2b_2\xi + b_3\xi^2 = 0$. Note that this is the same equation as in (4.6). It follows that $\xi = b/a$ is constant; therefore $\dot{a}/a = b/b$. Equations then again reduce to (5.5), where Λ_1 is now constant. Combining the two equations (5.2) gives

$$A^2 = \frac{\xi^2 a^2}{\xi^2 a^2 (\Lambda_f + \rho_f)/3 - k},$$

and this expression can be positive only in special cases. In the massive gravity limit, where $\rho_f = \eta = \Lambda_f = 0$, A^2 is positive only for $k = -1$, which reproduces the solution (4.17), and
\(\mathcal{A} \) does not exist for \(k = 0, 1 \); hence, there are no FLRW cosmologies with bidiagonal metrics in these cases [19].

6. Anisotropic cosmologies

Solutions considered in the previous section can be generalized to the anisotropic case by choosing the two metrics to be bidiagonal and of the same Bianchi type [28],

\[
\mathrm{d}s_g^2 = -a^2 \, \mathrm{d}t^2 + h_{ab} \, \omega^a \otimes \omega^b, \quad \mathrm{d}s_f^2 = -A^2 \, \mathrm{d}t^2 + \mathcal{H}_{ab} \, \omega^a \otimes \omega^b. \tag{6.1}
\]

Here, \(h_{ab}, A \) and \(\mathcal{H}_{ab} \) depend on \(t \), and the vectors \(e_a \) dual to the 1-forms \(\omega^a \) generate a three-parameter translation group acting on the 3-space, \([e_a, e_b] = C^c_{ab} e_c \). The structure coefficients are \(C^c_{ab} = n^d c_{dab} \) with \(n^d = \text{diag}[n^{(1)}, n^{(2)}, n^{(3)}] \), where \(n^{(a)} \) assume the values shown in table 1.

This choice of the structure coefficients corresponds to the Bianchi types of class A, in which case one can choose \(h_{ab} = \text{diag}[\alpha_1^2, \alpha_2^2, \alpha_3^2] \) and \(\mathcal{H}_{ab} = \text{diag}[A_1^2, A_2^2, A_3^2] \), and this guarantees that \(C^a_{\alpha\beta} = C^a_{\beta\alpha} = 0 \), so that radial energy fluxes are absent. Choosing

\[
[A_1, A_2, A_3] = \omega^\gamma [e^{B_1}+\sqrt{3}B_2, e^{B_1}-\sqrt{3}B_2, e^{-2B_1}],
\]

\[
[\alpha_1, \alpha_2, \alpha_3] = e^{\Omega}[e^{6\beta_1}, e^{6\beta_1+\sqrt{3}\beta_2}, e^{6\beta_1-\sqrt{3}\beta_2}, e^{-2\beta_1}],
\]

the spatial 3-curvature of the g-metric is

\[
R_{\alpha\beta\gamma\delta}^{(3)} = 2 \frac{n^{(1)} n^{(2)}}{\alpha_3^2} - \frac{1}{2\alpha_1^2 \alpha_2^2 \alpha_3^2} \left(n^{(1)} \alpha_1^2 + n^{(2)} \alpha_2^2 - n^{(3)} \alpha_3^2 \right)^2.
\]

Table 1. Values of \(n^{(a)} \) for the Bianchi class A types.

	I	II	VIa	VIIa	VIII	IX
\(n^{(1)} \)	0	1	1	1	1	1
\(n^{(2)} \)	0	0	-1	1	1	1
\(n^{(3)} \)	0	0	0	0	-1	1

while the 3-curvature and \(\mathcal{R} \) of the f-metric is obtained from this by replacing \(\alpha_a \to A_a \) and \(\Omega \to \mathcal{V} \).

The potential (2.4) is \(U \sqrt{-g} = \alpha U_g + \mathcal{A} U_f \), where

\[
U_g = b_0 e^{\Omega} + b_1 e^{\mathcal{V}} + b_2 e^{2\mathcal{V} + \Omega} (e^{-2(B_+ - P_+)} + 2 e^{B_+} \cos[\sqrt{3}(B_+ - \beta_+)]) + b_3 e^{3\mathcal{V} + \Omega} (e^{2(B_+ - P_+)} + 2 e^{-B_+} \cos[\sqrt{3}(B_+ - \beta_+)]),
\]

(6.4)

while \(U_f \) is obtained from this by replacing \(b_0 \to b_0 + 1 \). The equations for the g-metric read

\[
\left(\frac{\dot{\Omega}}{\alpha} \right)^2 = \left(\frac{\dot{\beta}_+}{\alpha} \right)^2 + \left(\frac{\dot{\beta}_-}{\alpha} \right)^2 + \frac{1}{6} \left[2 \cos^2 \eta e^{-3\mathcal{V}} U_g - R + 2 \rho_g \right],
\]

\[
\left(\frac{e^{3\Omega} \dot{\Omega}}{\alpha} \right)^2 = \frac{1}{6} \left[\cos^2 \eta \left(\frac{\partial U}{\partial \Omega} + 3 \alpha U_g \right) - 2 \alpha e^{4\Omega} R + 3 \alpha e^{4\Omega} (\rho_g - P_g) \right],
\]

\[
\left(\frac{e^{3\mathcal{V}} \dot{\beta}_\pm}{\alpha} \right)^2 = - \frac{1}{12} \left(2 \cos^2 \eta U - \alpha e^{4\mathcal{V}} R \right),
\]

(6.5)

while the equations for the f-metric are obtained from these by replacing \(\Omega \to \mathcal{V}, \beta_\pm \to \mathcal{V}_\pm, \)

\(R \to \mathcal{R}, U_g \to U_f \) and \(\cos \eta \to \sin \eta \). The conditions \(\nabla\mu T^\mu_\nu = 0 \) reduce to

\[
\alpha \left(\frac{\partial W}{\partial \mathcal{V}} + \mathcal{B}_+ \frac{\partial}{\partial \mathcal{B}_+} + \mathcal{B}_- \frac{\partial}{\partial \mathcal{B}_-} \right) U_g = \mathcal{A} \left(\frac{\partial \mathcal{V}}{\partial \Omega} + \mathcal{B}_+ \frac{\partial}{\partial \mathcal{B}_+} + \mathcal{B}_- \frac{\partial}{\partial \mathcal{B}_-} \right) U_f.
\]
All quantities in these equations are dimensionless, assuming $1/m$ to be the length scale, while the energy density is measured in units of $m^2 M_{pl}^2$.

For the Bianchi types I or IX, one can set anisotropies to zero, $\beta_\pm = B_\pm = 0$, and then, with $a = 2 e^2$ and $b = 2 e^{\Omega t}$, the above equations reduce to the FLRW equations (5.2) and (5.3) for $k = 0, 1$ (the spatially open $k = -1$ FLRW case is contained in the Bianchi V type, which does not belong to the class A).

In the Bianchi I case, it is consistent to set $\beta_\pm = B_\pm$ and then the two metrics are proportional as described in section 3, $f_{\mu\nu} = C^2 g_{\mu\nu}$, if only the matter sources are fine-tuned such that $\rho_f = \rho_\gamma C^2$. One has

$$\dot{x}_k^2 = -\dot{x}_1^2 + e^{2\Omega} (e^{2\beta_+ + \sqrt{3}\beta_-} \dot{x}_1^2 + e^{2\beta_+ - \sqrt{3}\beta_-} \dot{x}_2^2 + e^{-2\beta_+} \dot{x}_3^2),$$

(6.6)

where Ω and β_\pm fulfill (assuming that $\alpha = 1$)

$$\Omega^2 = (\sigma_+^2 + \sigma_-^2) e^{-6\Omega} + \frac{1}{2} (\Lambda_\gamma(C) + \rho_\gamma),$$

$$\beta_\pm = \sigma_\pm e^{-3\Omega},$$

(6.7)

with constant σ_\pm. Here, $C, \Lambda_\gamma(C) \equiv 3H^2$ are defined by (3.4) and (3.6). At late times, solutions of equations (6.7) approach configurations with constant anisotropies, $\Omega = Ht + O(e^{-3Ht})$, $\beta_\pm = \beta_\pm (\infty) + O(e^{-3Ht})$.

It turns out that solutions for all other Bianchi types and non fine-tuned sources also evolve into configurations with equal and nonvanishing anisotropies, $\beta_\pm = B_\pm$. This can be seen by applying a numerical procedure [28], whose input configuration at the initial time moment $t = 0$ is an anisotropic deformation of a finite size FLRW universe. The initial value of Ω is zero; hence, the initial universe size $e^\Omega \sim 1$ (in $1/m$ units), while the initial anisotropies are $\beta_\pm, B_\pm, \dot{B}_\pm, \ddot{B}_\pm \sim 10^{-7}$. The initial values of Ω, ν and ν are determined by resolving the first-order constraints contained in the field equations. It is assumed that the f-sector is empty, $\rho_f = 0$, whereas the g-sector contains a radiation and a non-relativistic matter, $\rho_\gamma = 0.25 \times e^{-3\Omega} + 0.25 \times e^{-3\Omega}$, so that the dimensionful energy $m^2 M_{pl}^2 \rho_\gamma \sim 10^{-10} (\text{eV})^4$, assuming that $m \sim 10^{-33} \text{eV}$.

The numerical extension to $t > 0$ of the $t = 0$ initial data reveals that, for all Bianchi types, the universe approaches the state with proportional metrics in which the expansion rate Ω is constant, H, and the anisotropies $\beta_\pm = B_\pm$ are also constant. For the Bianchi I solutions, the constant anisotropies can be absorbed by redefining the spatial coordinates, but not for other Bianchi types. This means that the universe generically runs into anisotropic states at late times. These properties of the solutions are illustrated in figure 2. The relative shear contribution to the total energy density $\Sigma = \sqrt{\dot{\beta}_+^2 + \dot{\beta}_-^2} / \Omega$ tends to zero at late times; however, if only just one or two Hubble times have elapsed since the beginning of the current phase of the universe acceleration, Σ should not necessarily be small. It turns out that at late times the anisotropies oscillate around their asymptotic values. Linearizing the field equations with respect to small deviations form the proportional background $f_{\mu\nu} = C^2 g_{\mu\nu}$, to which the solutions approach, one finds that

$$\dot{\beta}_\pm \sim \dot{B}_\pm \sim e^{-3Ht/2} \cos(\omega t),$$

(6.8)

where ω can be expressed in terms of C, b_\pm and η [28]. It follows that the shear energy is $\dot{\beta}_+^2 + \dot{\beta}_-^2 \sim e^{-3\Omega} \sim 1/a^k$, while in GR it decreases as $\sim 1/a^6$. The fact that the shear energy in the bigravity theory shows the same fall-off rate as a cold dark matter suggests that the latter could in fact be an anisotropy effect, although it is unclear if this interpretation can also explain the dark matter clustering. It is interesting that the interpretation of the cold dark matter as an effect of the graviton mass has already been discussed, although within a different theory with massive gravitons [29].
Figure 2. The Hubble parameter $\dot{\Omega}$ for all Bianchi types of class A (left) and the anisotropy amplitude for the Bianchi IX solution (right).

Figure 3. Near singularity behavior for the Bianchi I (left) and Bianchi IX (right) solutions.

When continued to the past, the solutions hit a singularity where both e^{Ω} and $e^{\Omega I}$ vanish (see figure 3). The Bianchi IX solutions, when approaching singularity, show the typical billiard behavior characterized by a sequence of Kasner-type periods [46]. During each period one has $\alpha_p \propto t^{p_1}$, where $p_1 + p_2 + p_3 = p_1^2 + p_2^2 + p_3^2 = 1$, such that two of the three α_a grow in time whereas the third one decreases, until the next period starts when one of the growing amplitudes becomes decreasing (see figure 3).

7. Black holes, lumps, stars and the Vainshtein mechanism

Historically, the first bigravity black holes were obtained in the generic f-g bigravity theory [32] for non-bidiagonal metrics [47]. Their counterparts in the ghost-free bigravity under consideration are described by the ansatz (4.1). The field equations then reduce to (4.11) (without matter terms), and the solution is the SdS metric,

$$ds^2 = -D dt^2 + \frac{dr^2}{D} + r^2 d\Omega^2, \quad D = 1 - \frac{2M}{r} - \frac{\Lambda r^2}{3},$$

(7.1)

with Λ_f defined after equation (4.11). The f-metric is still expressed in terms of T and U by (4.12), and to fulfill the consistency condition (4.10) the procedure is the same as in section 4, which gives $U = ur$ and $T = ut - u \int \frac{\partial}{\partial \Lambda} dr$ with u from (4.7) [30]. Since the f-metric becomes flat for $\eta \to 0$, this solution describes black holes also in the dRGT massive gravity [16, 17] (see also [50]).
These solutions and their generalizations for a nonzero electric charge \[48\] exhaust all known black holes in the massive gravity theory. In particular, there are no asymptotically flat black holes in this case (see \[49\] for a recent discussion). However, in the bigravity one finds more solutions when the metrics are bidiagonal \[30\],

\[
ds^2 = Q^2 \, dt^2 - \frac{dr^2}{r^2} \left(N^2 - r^2 \right),
\]

(7.2)

Here \(Q, N, Y, U\) and \(a\) are five functions of \(r\) which fulfil the equations

\[
G_{\mu\nu} = m^2 \cos^2 \eta T_{\mu\nu}^0, \quad G_{\mu\nu}' = m^2 \cos^2 \eta T_{\mu\nu}'^0, \\
G_{\rho\sigma} = m^2 \sin^2 \eta T_{\rho\sigma}^0, \quad G_{\rho\sigma}' = m^2 \sin^2 \eta T_{\rho\sigma}'^0, \\
T_{\rho\sigma}'' + \frac{Q}{U} (T_{\rho\sigma}' - T_{\rho\sigma}^0) + \frac{2}{r} (T_{\rho\sigma}' - T_{\rho\sigma}^0)' = 0.
\]

(7.3)

The simplest solutions are again obtained for the proportional metrics, \(f_{\mu\nu} = C^2 g_{\mu\nu}\), with \(g_{\mu\nu}\) given by (7.1), where \(\Lambda_\epsilon = \Lambda_\epsilon(C)\) is defined by (3.4) and (3.6). Since \(\Lambda_\epsilon\) can be positive, negative or zero, there are the Schwarzschild (S), SdS, and Schwarzschild–anti-de Sitter (SAdS) black holes. Let us call them background black holes. More general solutions are obtained by numerically integrating equations (7.3).

In doing this, it is assumed that the \(g\)-metric has a regular event horizon at \(r = r_h\), where \(T_{\rho\sigma}'\) and the curvature are finite. A detailed analysis shows [30] that the horizon should be common for both metrics; therefore, amplitudes \(Q^2, N^2, A^2\) and \(Y^2\) should have a simple zero, while \(U\) and \(U'\) should be non-zero at \(r = r_h\). Next, one finds that the boundary conditions at the horizon comprise a one-parameter family labeled by \(u = U(r_h)/r_h\), the ratio of the event horizon radius measured by the \(f\)-metric to that measured by the \(g\)-metric. Finally, it turns out that the horizon surface gravities and temperatures determined with respect to both metrics are the same [51].

Choosing a value of \(u\) and integrating numerically the equations from \(r = r_h\) toward large \(r\), the result is as follows [30]. If \(u = C\) where \(C\) fulfills equation (3.6), then the solution is one of the background black holes described above. If \(u = C + \delta u\) with a small \(\delta u\), then one can expect the solution to be the background black hole slightly deformed by a massive graviton ‘hair’ localized in the horizon vicinity. This is confirmed for the SAdS solutions \(\Lambda_\epsilon < 0\), which indeed support a short massive hair and show deviations from the pure SAdS in the horizon vicinity, but far away from the horizon the deviations tend to zero (see figure 4).

However, the argument does not work for \(\Lambda_\epsilon \geq 0\). When one deforms the S background by setting \(u = r_h + \delta u\) for however small \(\delta u\), the solutions first stay very close to Schwarzschild
Class. Quantum Grav. 30 (2013) 184009

M S Volkov

Theory and in the dRGT massive gravity. In the latter case, there are also SdS black holes, not for vacuum black holes or lumps. It is worth noting that the mechanism works only in the presence of a regular matter source, and hence, the only asymptotically de Sitter black hole is the pure SdS. The background produces a curvature singularity at a finite proper distance away from the black hole horizon; hence, the only asymptotically flat black hole in the bigravity theory is pure Schwarzschild, and deforming it results in losing the asymptotic flatness. Similarly, trying to deform the SdS metric giving a finite value for the volume of the 3-space [30]. Therefore, the only asymptotically flat black hole in the bigravity theory is pure Schwarzschild, and deforming it results in losing the asymptotic flatness. Similarly, trying to deform the SdS background produces a curvature singularity at a finite proper distance away from the black hole horizon; hence, the only asymptotically de Sitter black hole is the pure SdS.

In the shrinking horizon limit, \(r_h \to 0 \), the black hole ‘hair’ does not disappear but becomes a static ‘lump’ made of massive field modes. Such lumps are described by globally regular solutions for which the event horizon is replaced by the regular center at \(r = 0 \), while at infinity the asymptotic behavior is the same as for the black holes [30]. None of the lumps are asymptotically flat (apart from the flat space).

Asymptotically flat solutions can be obtained by adding matter. Suppose that the \(f \)-sector is empty, while the \(g \)-sector contains \(T^{[m]}_{\mu\nu} = \text{diag}[-\rho(r), P(r), P(r), P(r)] \) with \(\rho = \rho_s \theta(r_s - r) \), corresponding to a ‘star’ with a constant density \(\rho_s \) and a radius \(r_s \). Adding this source to the field equations (7.3), assuming the regular center at \(r = 0 \) and integrating toward large \(r \), one finds a solution for which both metrics approach Minkowski metric at infinity. Introducing the mass functions \(M_g \) and \(M_f \) via \(g^{rr} = N^2 = 1 - 2M_g(r)/r \) and \(f^{rr} = Y^2/U^2 = 1 - 2M_f(r)/r \), one finds that \(M_g \) and \(M_f \) rapidly increase inside the star, while outside they approach the same asymptotic value \(M_g(\infty) = M_f(\infty) \sim \sin^2 \eta \) (see figure 5). For \(\eta = \pi/2 \), the \(g \)-metric is coupled only to the matter and is described by the Schwarzschild solution, \(M_g(r) = \rho_s r^3/6 \) for \(r < r_s \) and \(M_g(r) = \rho_s r_s^3/6 = M_{\text{ADM}} \) for \(r > r_s \). For \(\eta < \pi/2 \), the star mass \(M_{\text{ADM}} \) is partially screened by the negative graviton energy. For \(\eta = 0 \), the \(f \)-metric becomes flat, so that \(M_f = 0 \), while \(M_g \) asymptotically approaches zero and the star mass is totally screened, because the massless graviton decouples and there could be no \(1/r \) terms in the metric.

If the graviton mass is very small, then the \(m^2 T^{[m]}_{\mu\nu} \) contribution to the equations is small as compared to \(T^{[m]}_{\mu\nu} \), and for this reason \(M_g \) rests approximately constant for \(r_s < r < r_G \sim (M_{\text{ADM}}/m^2)^{1/3} \). This illustrates the Vainshtein mechanism of the recovery of GR in a finite region [31]. This mechanism has also been independently confirmed within the generic massive gravity theory with the BD ghost [52, 53], and in the dRGT theory [54]. It is worth noting that the mechanism works only in the presence of a regular matter source, and not for vacuum black holes or lumps.

To recapitulate, globally regular and asymptotically flat stars exist both in the bigravity theory and in the dRGT massive gravity. In the latter case, there are also SdS black holes,
but there are no asymptotically flat black holes. There are hairy black holes in the bigravity theory, but the only one which is asymptotically flat is the standard ‘hairless’ Schwarzschild black hole.

8. Concluding remarks

Summarizing what was said above, all known cosmologies and black holes in the dRGT massive gravity theory are obtained within the inhomogeneous Stückelberg field approach, assuming non-bidiagonal metrics [38]. Perturbations of the cosmological solutions were studied in [55–58]. One could perhaps also mention a peculiar FLRW solution [18] with a degenerate f-metric, although its g-metric is regular and is sourced by the effective $T_{00}^0 = \sum_{n=0}^{3} a_n a^{-n}$ with constant a_n (see also [59, 60]).

Although massive gravity solutions with bidiagonal metrics similar to (4.17) are very special and hence are unlikely to be physically important, they are popular due to their simplicity. They have been studied also in the modified versions of the theory, as for example in the extended massive gravity [61–63], where the graviton mass m is promoted to a dynamical field [19, 64], or in the massive gravity theory with a (quasi) dilaton field [65, 66]. Choosing the fixed f-metric to be non-flat, as for example de Sitter or FLRW, also leads to new cosmological [67–72] and black holes solutions [73], and allows one to study [74–76] the Higuchi bound [77], that is, the limit where the scalar polarization of the massive graviton decouples. In addition, O(4)-symmetric instanton solutions in the Euclidean version of the massive gravity theories have been considered as well [78, 79].

Changing the reference metric from case to case does not seem to be natural. If one wants to consider different possibilities for f, then it is logical to make it dynamical, which leads to the bigravity. The massive gravities with a fixed f then can be recovered by choosing a source for f, for example, a constant $\rho_f = P_f > 0$, and taking the limit $\eta \to 0$. For $\eta \neq 0$, both metrics are dynamical, which gives rise to a much richer solution structure than in the massive gravity theories.

Acknowledgments

It is a pleasure to acknowledge discussions with Thibault Damour and thank him for a careful reading of the manuscript and valuable remarks. I would like also to thank the IHES for hospitality during my visit in March 2013 when this paper was written, and I thank Shinji Mukohyama for inviting me to write it for Classical and Quantum Gravity.

References

[1] de Rham C, Gabadadze G and Tolley A G 2011 Phys. Rev. Lett. 106 231101
[2] Hassan S F and Rosen R A 2012 J. High Energy Phys. JHEP02(2012)126
[3] Fierz M and Pauli W 1939 Proc. R. Soc. Lond. A 173 211
[4] Hinterbichler K 2012 Rev. Mod. Phys. 84 671
[5] Boulware D G and Deser S 1972 Phys. Rev. D 6 3368
[6] Hassan S F and Rosen R A 2012 Phys. Rev. Lett. 108 041101
[7] Golovnev A 2012 Phys. Lett. B 707 404
[8] Kluson J 2012 Phys. Rev. D 86 044024
[9] Hassan S F, Schmidt-May A and von Strauss M 2012 Phys. Lett. B 715 335
[10] Hassan S F and Rosen R A 2012 J. High Energy Phys. JHEP04(2012)123
[11] Defayet C, Mourad J and Zahariade G 2013 J. Cosmol. Astropart. Phys. JCAP01(2013)032
[12] Chamseddine A H and Mukhanov V 2011 J. High Energy Phys. JHEP08(2011)091
[71] De Felice A, Gumrukcuoglu A E, Lin C and Mukohyama S 2013 arXiv:1303.4154
[72] Sakakihara Y, Soda J and Takahashi T 2013 Prog. Theor. Exp. Phys. 2013 033E02
[73] Gabadadze G, Giriibet G and Iglesias A 2012 arXiv:1212.6279
[74] de Rham C and Renaux-Petel S 2013 J. Cosmol. Astropart. Phys. JCAP01(2013)035
[75] Fasiello M and Tolley A J 2012 J. Cosmol. Astropart. Phys. JCAP11(2012)035
[76] de Rham C, Hinterbichler K, Rosen R A and Tolley A J 2013 arXiv:1302.0025
[77] Higuchi A 1987 Nucl. Phys. B 282 397
[78] Zhang Y, Saito R and Sasaki M 2013 J. Cosmol. Astropart. Phys. JCAP02(2013)029
[79] Park M and Sorbo L 2013 Phys. Rev. D 87 024041