Data availability statement

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

Issei Sumiyoshi,1 Shin-ichiro Iwakami,2 Munechika Hara,2 Hironari Matsuda2 and Kazuhiro Takahashi1

1Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
2Department of Respiratory Medicine, Juntendo University Shizuoka Hospital, Izunokuni, Japan

References

1 Schaller MA, Wicke F, Foerch C, Weidauer S. Central nervous system tuberculosis: etiology, clinical manifestations and neuroradiological features. Clin Neuroradiol 2019; 29: 3–18.
2 Gupta RK, Kumar S. Central nervous system tuberculosis. Neuroimaging Clin N Am 2011; 21: 795–814.
3 Wasay M, Moolani MK, Zaheer J et al. Prognostic indicators in patients with intracranial tuberculoma: a review of 102 cases. J Pak Med Assoc 2004; 54: 83–87.
4 Sumer S, Koltekir E, Demir NA, Akdemir G. Intracranial giant tuberculoma mimicking brain tumor: a case report. Turk Neurosurg 2015; 25: 337–339.
5 Bustamante-Rengifo JA, Sua LF, Astudillo M, Bravo LE. Solitary intracranial tuberculoma mimicking a malignant tumor in a patient without tubercular lesions or a history of disease: a case report. Br J Basic Med Sci 2013; 13: 129–133.
6 Bayindir C, Mete O, Bilge B. Retrospective study of 23 pathologically proven cases of central nervous system tuberculomas. Clin Neurol Neurosurg 2006; 108: 353–357.
7 Gao W, Zeng Y, Chen W. Multiple subcutaneous tuberculous abscesses in a dermatomyositis patient without pulmonary tuberculosis: a case report and literature review. BMC Infect Dis 2020; 20: 409.
8 Wang MH, Liu X, Shen B. Disseminated tuberculosis in a patient taking anti-TNF therapy for Crohn’s disease. ACG Case Rep J 2015; 3: 45–48.
9 Zahrou F, Elallouchi Y, Ghannane H, Benali SA, Aniba K. Diagnosis and management of intracranial tuberculomas: about 2 cases and a review of the literature. Pan Afr Med J 2019; 34: 23.

How to cite this article: Sumiyoshi I, Iwakami S, Hara M, Matsuda H, Takahashi K. Solitary brain tuberculoma without active pulmonary lesions in an elderly patient: A case report. Geriatr. Gerontol. Int. 2022;22:490–491. https://doi.org/10.1111/ggi.14386

COMMENT

Comment on glycated hemoglobin level after emergency COVID-19

Dear Editor, we would like to share our ideas on the publication “Unexpected decline in glycated hemoglobin level after emergency COVID-19 measures in three robust older Japanese women with prediabetes/mild type-2 diabetes.” It is possible that COVID-19 might affect metabolism in the elderly. The alteration of hemoglobin A1C in COVID-19 has been reported since the first outbreak.
of the disease in Southeast Asia. The monitoring of glycated hemoglobin in the current study is interesting. It is necessary to recheck for laboratory quality control and the same set of analyzers should be used in the serial analysis. According to a recent report, the total error ranged from 2.87% to 4.75% using fingerstick samples and from 2.93% to 3.80% using venous samples. Therefore, changes in hemoglobin A1C levels might be associated with imprecision of the test. Another concern is about laboratory interference. During the disease process of COVID-19, the inflammatory/immune response results in a high blood viscosity and there might be an increased concentration of blood parameters. However, after COVID-19 recovery, the postinfection laboratory parameters might return to normal after blood viscosity returns to a normal level.

Disclosure statement

The authors declare no conflict of interest.

Rujittika Mungmunpuntipantip and Viroj Wiwanitkit

References

1 Okuno T, Iritani O, Kodera K et al. Unexpected decline in glycated hemoglobin level after emergency COVID-19 measures in three robust older Japanese women with prediabetes/mild type-2 diabetes. *Geriatr Gerontol Int* 2022. https://doi.org/10.1111/ggi.14377 Online ahead of print.
2 Sookaromdee P, Wiwanitkit V. Estimated blood glucose and hemoglobin A1C in COVID-19: a preliminary summarization. *Clin Lab* 2020; 66 (9). https://doi.org/10.7754/Clin.Lab.2020.200421.
3 Arnold WD, Kapfer K, Hvrdsten Swensen M et al. Fingerstick precision and Total error of a point-of-care HbA1c test. *J Diabetes Sci Technol* 2020; 14: 890–895.
4 Joob B, Wiwanitkit V. Blood viscosity of COVID-19 patient: a preliminary report. *Am J Blood Res* 2021; 11 (1): 93–95.

How to cite this article: Mungmunpuntipantip R, Wiwanitkit V. Comment on glycated hemoglobin level after emergency COVID-19. *Geriatr. Gerontol. Int.* 2022;22:491–492. https://doi.org/10.1111/ggi.14388

1Private Academic Consultant, Bangkok, Thailand
2Honorary professor, Dr DY Patil University, Pune, India