Bioefficacy of Biorational Insecticides against Larval Population of *Leucinodes orbonalis* (Guen.) in Brinjal

R.S. Choudhary*, B.S. Rana, M.K. Mahla and A.K. Meena

Corresponding author

Abstract

The investigation was conducted at the Horticulture Farm, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan during Kharif 2014-15 and 2015-16 for bio-efficacy of bio-rational insecticides against larval population of *Leucinodes orbonalis* (Guen.) in brinjal. The data reveal that maximum reduction in larval population of *L. orbonalis* was recorded in the treatment schedule T$_2$ (three sprays of Chlorantraniliprole 18.5 SC @ 150 ml/ha) with cumulative mean reduction of 70.24, 75.24, 64.74 and 70.59, 76.95 and 64.90 per cent; while, minimum larval population reduction of 34.86, 39.44, 32.18 and 34.88, 39.21 and 30.41 per cent was recorded in treatment schedule T$_3$ (three sprays of NSKE 5% /ha) at 3, 7, and 10 days after sprays, respectively during 2014-15 and 2015-16.

Keywords

Bio-efficacy, Biorational insecticides, Larval population, *Leucinodes orbonalis*, Brinjal

Introduction

Brinjal, *solanum melongena* L. also known as egg plant, belongs to family solanaceae, is an important vegetable crop grown throughout the world, especially in south Asia and is known to be native of India. In production and productivity, India stands second in the world after China. It is grown in the states of west Bengal, Orissa, Bihar, Gujarat, Maharashtra, Andhra Pradesh, Rajasthan and Karnataka in India. The total area under brinjal cultivation is 0.71 million hectares with an annual production of 13.57 million tons (NHB 2014-15). In the state of Rajasthan it is mainly grown in Alwar, Jaipur, Ajmer, Bharatpur, Bundi, Baran and Kota districts during summer and rainy seasons in an area of 0.055 lac hectares with an annual production of 0.28 lac tons (anonymous, 2014-15). Brinjal is a rich source of minerals (calcium, magnesium, phosphorus, sodium, potassium, chlorine, iron etc.), vitamins and also has some medicinal importance (Choudhary, 1967).

Brinjal is susceptible to attack of various insects from seedling to senescence. Among these insect pests brinjal shoot and fruit borer, *Leucinodes orbonalis* Guen. (Lepidoptera: Pyralidae) is the most destructive pest and is
considered to be the limiting factor in quantitative as well as qualitative harvest of brinjal fruits (Latif et al., 2010; Chakraborty and Sarkar, 2011; Dutta et al., 2011; Saimandir and Gopal, 2012). The pest is very active during the rainy and summer season and may cause 85 to 90 % damage (Misra, 2008; Jagginavar et al., 2009; Thapa, 2010). The infested fruits become unfit for consumption due to loss of quality and hence, lose their market value. It is also reported that there will be reduction in vitamin C content to an extent of 68 per cent in the infested fruits (Hemi, 1955).

Although insecticidal control is one of the common means against the fruit borer, many of the insecticides applied are not effective in the satisfactory control of this pest. Brinjal being a vegetable crop, use of chemical insecticides will leave considerable toxic residues on the fruits. Beside this, sole dependence on insecticides for the control of this pest has led to insecticidal resistance by the pest (Natekar et al., 1987; Harish et al., 2011). Hence, there is an impetus for research and development of cost effective eco-friendly alternative for the management of major pests of brinjal. Strategies employing different entomopathogenic microbial preparations, neem based and biorational insecticides are the possible alternative measures for the sustainable management of major pests of brinjal, especially in the present era of organic agriculture.

Materials and Methods

The seeds of brinjal variety- Pusa purple long were sown in well prepared nursery bed during third week of June, 2014-15 and 2015-16 in the shed net house of Horticulture Farm, Rajasthan College of Agriculture, MPUAT, Udaipur. The seedlings were raised by following recommended horticultural operations. The seedlings were finally ready for transplanting in the experimental field after they attained a height of about 15 cm with 3-4 leaves.

The field experiment on the bio-efficacy of bio-rational insecticides was laid out in randomized block design in uniform size plots each measuring 3.0 × 4.5 m and replicated thrice with row to row and plant to plant spacing of 60 × 50 cm, respectively. There were ten treatments including control with three replications. The I spray was done at flowering stage and subsequent II and III sprays were done at 15 days intervals after the first spray.

Treatment schedules	Sprays	Doses / ha
T1 - Spinosad 45 SC	3	200 ml
T2 - Chlorantraniliprole 18.5 SC	3	150 ml
T3 - NSKE 5%	3	5%
T4 - Spinosad 45 SC followed by Chlorantraniliprole 18.5 SC	1-1-1	200 ml – 150 ml – 150ml
T5 - Spinosad 45 SC followed by NSKE 5% - NSKE 5%	1-1-1	200 ml –5% - 5%
T6 - Chlorantraniliprole 18.5 SC followed by Spinosad 45 SC – Spinosad 45 SC	1-1-1	150 ml – 200 ml – 200ml
T7 - Chlorantraniliprole 18.5 SC followed by NSKE 5% – NSKE 5%	1-1-1	150 ml – 5% - 5%
T8 - NSKE 5% followed by Spinosad 45 SC – Spinosad 45 SC	1-1-1	5% - 200 ml – 200 ml
T9 - NSKE 5% followed by Chlorantraniliprole 18.5 SC – Chlorantraniliprole 18.5 SC	1-1—1	5% - 150 ml – 150 ml
T10 –Control	-	-
Observations

Five plants were selected and tagged randomly and the population of larvae was recorded one day before and 3, 7 and 10 days after each spray and mean reduction were worked out.

Statistical analysis

Efficacy of different treatments against L. orbonalis was analyzed by analysis of variance. The population data was corrected by the correction factor given by Henderson and Tilton (1955) as under:

\[
\text{Per cent reduction in population} = 100 \times \left[1 - \frac{T_a \times C_b}{T_b \times C_a} \right]
\]

Where,
- \(T_a\) = Number of insects after treatment
- \(T_b\) = Number of insects before treatment
- \(C_a\) = Number of insect in untreated check after treatment
- \(C_b\) = Number of insects in untreated check before treatment

The reduction percentage figures were transformed into arc sine values and subjected to analysis of variance.

Results and Discussion

The data presented in Table 1 revealed that all biorational insecticides reduce the population of shoot and fruit borer as compared to control. Maximum reduction in larval population of L. orbonalis, 69.44, 76.38 and 65.21 per cent was recorded in the treatment schedule \(T_7\) (Chlorantraniliprole 18.5 SC @ 150 ml/ha – NSKE 5% - NSKE 5%) followed by three spray of treatment schedule \(T_2\) (Chlorantraniliprole 18.5 SC @ 150 ml/ha) and minimum larval population reduction of 34.31, 39.54 and 32.78 per cent was recorded in treatment schedule \(T_3\) (NSKE 5% /ha) at 3, 7, and 10 days after 2nd spray respectively (Table 2).

All the treatments were found to be superior over control. Maximum reduction in larval population of L. orbonalis of 69.44, 75.43 and 64.30 per cent was recorded in the treatment schedule \(T_2\) (Chlorantraniliprole 18.5 SC @ 150 ml/ha) followed by treatment schedule \(T_4\) (Spinosad 45 SC @ 200 ml/ha-Chlorantraniliprole 18.5 SC @ 150 ml/ha-Chlorantraniliprole 18.5 SC @ 150 ml/ha) and minimum larval population reduction of 33.38, 37.06 and 29.52 per cent was recorded in treatment schedule \(T_3\) (NSKE 5% /ha) at 3, 7, and 10 days after 2nd spray respectively.

followed by treatment schedule \(T_8\) (NSKE 5%- Spinosad 45 SC @ 200 ml/ha- Spinosad 45 SC @ 200 ml/ha) at 3, 7 and 10 days after 1st spray, respectively during Kharif 2014-15. During kharif 2015-16, data revealed that the maximum reduction in larval population of shoot and fruit borer, L. orbonalis of 70.39, 77.18 and 63.81 per cent was recorded in the treatment schedule \(T_7\) (Chlorantraniliprole 18.5 SC @ 150 ml/ ha – NSKE 5% - NSKE 5%) followed by three spray of treatment schedule \(T_2\) (Chlorantraniliprole 18.5 SC @ 150 ml/ ha) and minimum reduction of 29.88, 34.52 and 26.71 per cent was recorded in treatment \(T_9\) (NSKE 5% - Chlorantraniliprole 18.5 SC @ 150 ml/ ha – Chlorantraniliprole 18.5 SC @ 150 ml/ ha) at 3, 7, and 10 days after 1st spray, respectively.
Table 1 Bio-efficacy of bio-rational insecticides against larval population of *Leucinodes orbonalis* (Guen.) in brinjal after 1st spray during *kharif* 2014-15

S. No	Treatment schedules	Dose ml/ha	PTP	Mean reduction (%)	Days after 1st spray			
					3	7	10	Mean
T 1	Spinosad 45 SC	200 ml	0.60		53.59 (64.72)	56.64 (69.72)	46.55 (52.70)	52.18 (62.38)
T 2	Chlorantraniliprole 18.5 SC	150 ml	0.67		54.92 (66.94)	58.90 (73.28)	51.87 (61.86)	55.18 (67.36)
T 3	NSKE 5%	5%	0.93		34.56 (32.19)	35.98 (34.53)	31.50 (27.34)	34.05 (31.35)
T 4	Spinosad 45 SC followed by Chlorantraniliprole 18.5 SC	200 ml – 150 ml – 150 ml	0.53		52.29 (62.55)	55.95 (68.61)	47.83 (54.92)	51.98 (62.03)
T 5	Spinosad 45 SC followed by NSKE 5% - NSKE 5%	200 ml – 5% - 5%	0.87		55.32 (67.61)	57.68 (71.39)	48.29 (55.72)	53.69 (64.91)
T 6	Chlorantraniliprole 18.5 SC followed by Spinosad 45 SC – Spinosad 45 SC	150 ml – 200 ml – 200 ml	0.67		56.37 (69.28)	60.24 (75.31)	52.73 (63.30)	56.38 (69.29)
T 7	Chlorantraniliprole 18.5 SC followed by NSKE 5% – NSKE 5%	150 ml – 5% - 5%	0.60		56.76 (69.94)	61.29 (76.86)	53.82 (65.14)	57.22 (70.65)
T 8	NSKE 5% followed by Spinosad 45 SC – Spinosad 45 SC	5% - 200 ml – 200 ml	0.80		33.13 (29.92)	37.34 (36.80)	30.98 (26.51)	33.86 (31.07)
T 9	NSKE 5% followed by Chlorantraniliprole 18.5 SC – Chlorantraniliprole +18.5 SC	5% - 150 ml – 150 ml	0.67		32.49 (28.89)	35.41 (33.58)	29.64 (24.47)	32.56 (28.98)
T 10	Control	-	0.80		-	-	-	-
S.Em.*		-			1.22	1.18	1.12	1.17
C.D (p = 0.05)		-			3.64	3.53	3.35	3.49

Figures in parentheses are retransformed per cent values, *PTP* - Pre treatment population
Table 2 Bio-efficacy of bio-rational insecticides against larval population of *Leucinodes orbonalis* (Guen.) in brinjal after 1st spray during *kharif* 2015-16

S. No	Treatment schedules	Dose ml/ha	PTP	Mean reduction (%)	Days after 1st spray	Mean		
					3	7	10	
T 1	Spinosad 45 SC	200 ml	0.67	52.74	(63.30)	55.26	46.87	51.57
T 2	Chlorantraniliprole 18.5 SC	150 ml	0.93	55.05	(67.15)	59.91	51.97	55.57
T 3	NSKE 5%	5%	0.60	36.16	(34.81)	37.56	31.21	35.03
T 4	Spinosad 45 SC followed by Chlorantraniliprole 18.5 SC	200 ml – 150 ml – 150ml	0.67	53.82	(65.12)	56.63	45.83	52.01
T 5	Spinosead 45 SC followed by NSKE 5% - NSKE 5%	200 ml – 5% - 5%	0.80	53.09	(63.92)	54.90	47.60	51.82
T 6	Chlorantraniliprole 18.5 SC followed by Spinosad 45 SC – Spinosad 45 SC	150 ml – 200 ml – 200ml	0.60	54.53	(66.26)	59.12	51.33	54.92
T 7	Chlorantraniliprole 18.5 SC followed by NSKE 5% – NSKE 5%	150 ml – 5% - 5%	0.73	57.06	(70.39)	61.51	53.02	57.10
T 8	NSKE 5% followed by Spinosad 45 SC – Spinosad 45 SC	5% - 200 ml – 200 ml	0.87	33.96	(31.22)	36.42	32.03	34.14
T 9	NSKE 5% followed by Chlorantraniliprole 18.5 SC – Chlorantraniliprole 18.5 SC	5% - 150 ml – 150 ml	0.87	33.13	(29.88)	35.98	31.11	33.44
T 10	Control	-	0.73	-	-	-	-	-

S.Em.± 1.20 1.17 1.11 1.14
C.D (p=0.05) 3.61 3.51 3.32 3.42

Figures in parentheses are retransformed per cent values, *PTP*- Pre treatment population
Table 3 Bio-efficacy of bio-rational insecticides against larval population of *Leucinodes orbonalis* (Guen.) in brinjal after 2nd spray during *kharif* 2014-15

S. No	Treatment schedules	Dose ml/ha	PTP	Mean reduction (%)			
				Days after 2nd spray			
				3	7	10	Mean
T_1	Spinosad 45 SC	200 ml	1.13	51.24 (60.80)	55.69 (68.19)	49.25 (57.38)	52.03 (62.12)
T_2	Chlorantraniliprole 18.5 SC	150 ml	1.20	56.46 (69.44)	59.62 (74.38)	53.87 (65.21)	56.61 (69.68)
T_3	NSKE 5%	5%	1.47	35.83 (34.31)	38.95 (39.54)	34.91 (32.78)	36.59 (35.54)
T_4	Spinosad 45 SC followed by Chlorantraniliprole 18.5 SC	200 ml – 150 ml – 150 ml	1.27	55.09 (67.23)	58.98 (73.39)	52.04 (62.15)	55.32 (67.59)
T_5	Spinosad 45 SC followed by NSKE 5% - NSKE 5%	200 ml – 5% - 5%	1.40	41.92 (44.65)	40.07 (41.44)	36.51 (35.41)	39.51 (40.50)
T_6	Chlorantraniliprole 18.5 SC followed by Spinosad 45 SC	150 ml – 200 ml – 200 ml	1.33	53.94 (65.33)	57.72 (71.45)	50.49 (59.50)	54.01 (65.43)
T_7	Chlorantraniliprole 18.5 SC followed by NSKE 5% - NSKE 5%	150 ml – 5% - 5%	1.47	43.94 (48.16)	41.97 (44.73)	37.66 (37.35)	41.20 (43.41)
T_8	NSKE 5% followed by Spinosad 45 SC – Spinosad 45 SC	5% - 200 ml – 200 ml	1.60	48.21 (55.57)	50.92 (60.25)	45.32 (50.56)	48.14 (55.46)
T_9	NSKE 5% followed by Chlorantraniliprole 18.5 SC – Chlorantraniliprole 18.5 SC	5% - 150 ml – 150 ml	1.67	47.45 (54.26)	51.86 (61.84)	46.34 (52.33)	48.53 (56.14)
T_10	Control	-	2.00	-	-	-	-
S.Em.±				1.22	1.19	1.17	1.18
C.D (p=0.05)				3.67	3.57	3.50	3.53

Figures in parentheses are retransformed per cent values, *PTP- Pre treatment population*
Table 4
Bio-efficacy of bio-rational insecticides against larval population of *Leucinodes orbonalis* (Guen.) in brinjal after 2nd spray during *kharif* 2015-16

S. No	Treatment schedules	Dose ml/ha	PTP	Days after 2nd spray	Mean reduction (%)		
				3	7	10	Mean
T 1	Spinosad 45 SC	200 ml	1.33	52.51 (62.92)	56.47 (69.45)	48.01 (55.24)	52.28 (62.54)
T 2	Chlorantraniliprole 18.5 SC	150 ml	1.13	57.09 (70.44)	60.31 (75.43)	53.33 (64.30)	56.85 (70.06)
T 3	NSKE 5%	5%	1.67	35.29 (33.38)	37.49 (37.06)	32.89 (29.52)	35.25 (33.32)
T 4	Spinosad 45 SC followed by Chlorantraniliprole 18.5 SC	200 ml – 150 ml – 150 ml	1.60	56.09 (68.83)	58.16 (72.14)	51.86 (61.84)	55.33 (67.60)
T 5	Spinosad 45 SC followed by NSKE 5% - NSKE 5%	200 ml – 5% - 5%	1.53	41.55 (44.00)	40.73 (42.58)	35.52 (33.78)	39.29 (40.12)
T 6	Chlorantraniliprole 18.5 SC followed by Spinosad 45 SC	150 ml – 200 ml – 200 ml	1.47	53.25 (64.15)	55.71 (68.22)	47.56 (54.45)	52.11 (62.27)
T 7	Chlorantraniliprole 18.5 SC followed by NSKE 5% – NSKE 5%	150 ml – 5% - 5%	1.27	44.43 (49.00)	43.17 (46.81)	36.37 (35.18)	41.35 (43.66)
T 8	NSKE 5% followed by Spinosad 45 SC – Spinosad 45 SC	5% - 200 ml – 200 ml	1.67	47.74 (54.78)	50.16 (58.94)	43.44 (47.28)	47.10 (53.67)
T 9	NSKE 5% followed by Chlorantraniliprole 18.5 SC – Chlorantraniliprole 18.5 SC	5% - 150 ml – 150 ml	1.73	50.58 (59.66)	52.16 (62.36)	44.79 (49.64)	49.15 (57.22)
T 10	Control	-	2.20	-	-	-	-
	S.Em.±			1.21	1.12	1.11	1.13
	C.D (p=0.05)			3.64	3.37	3.33	3.39

Figures in parentheses are retransformed per cent values, *PTP- Pre treatment population*
Table 5 Bio-efficacy of bio-rational insecticides against larval population of *Leucinodes orbonalis* (Guen.) in brinjal after 3rd spray during *kharif* 2014-15

S. No	Treatment schedules	Dose ml/ha	PTP	Mean reduction (%)				
				Days after 3rd spray	3	7	10	Mean
T1	Spinosad 45 SC	200 ml	1.20	55.28 (67.50)	58.39 (72.48)	51.09 (60.54)	54.86 (66.84)	
T2	Chlorantraniliprole 18.5 SC	150 ml	1.27	59.61 (74.34)	62.11 (78.06)	55.05 (67.15)	58.84 (73.19)	
T3	NSKE 5%	5%	1.53	38.09 (38.06)	41.70 (44.27)	37.10 (36.41)	38.98 (39.58)	
T4	Spinosad 45 SC followed by Chlorantraniliprole 18.5 SC - Chlorantraniliprole 18.5 SC	200 ml - 150 ml - 150 ml	1.47	56.87 (70.11)	60.82 (76.16)	53.33 (64.33)	56.94 (70.20)	
T5	Spinosad 45 SC followed by NSKE 5% - NSKE 5%	200 ml - 5% - 5%	1.60	40.71 (42.54)	44.29 (48.76)	39.38 (40.26)	41.46 (43.85)	
T6	Chlorantraniliprole 18.5 SC followed by Spinosad 45 SC - Spinosad 45 SC	150 ml - 200 ml - 200 ml	1.40	55.99 (68.68)	58.87 (73.23)	52.03 (62.12)	55.57 (68.01)	
T7	Chlorantraniliprole 18.5 SC followed by NSKE 5% - NSKE 5%	150 ml - 5% - 5%	1.73	41.70 (44.27)	44.73 (49.54)	40.57 (42.31)	42.34 (45.37)	
T8	NSKE 5% followed by Spinosad 45 SC - Spinosad 45 SC	5% - 200 ml - 200 ml	1.67	52.00 (62.08)	55.46 (67.83)	49.45 (57.72)	52.26 (62.54)	
T9	NSKE 5% followed by Chlorantraniliprole 18.5 SC - Chlorantraniliprole 18.5 SC	5% - 150 ml - 150 ml	1.47	54.09 (65.58)	59.13 (73.66)	50.40 (59.35)	54.47 (66.20)	
T10	Control	-	2.53	-	-	-	-	-

S.Em.± C.D (p=0.05) 1.20 1.23 1.11 1.15 3.60 3.68 3.33 3.45

Figures in parentheses are retransformed per cent values, *PTP*- Pre treatment population
Table 6

Bio-efficacy of bio-rational insecticides against larval population of *Leucinodes orbonalis* (Guen.) in brinjal after 3rd spray during *kharif* 2015-16

S. No	Treatment schedules	Dose ml/ha	PTP	Mean reduction (%)	Days after 3rd spray			
					3	7	10	Mean
T1	Spinosad 45 SC	200 ml	1.33		54.09	58.80	52.08	54.94
					(65.57)	(73.13)	(62.22)	(66.97)
T2	Chlorantraniliprole 18.5 SC	150 ml	1.13		59.51	63.91	55.81	59.62
					(74.19)	(80.58)	(68.38)	(74.39)
T3	NSKE 5%	5%	2.20		37.13	41.20	36.16	38.19
					(36.44)	(43.40)	(34.84)	(38.23)
T4	Spinosad 45 SC followed by Chlorantraniliprole 18.5 SC – Chlorantraniliprole 18.5 SC	200 ml – 150 ml – 150 ml	1.33		57.68	62.66	55.06	58.36
					(71.35)	(78.84)	(67.16)	(72.45)
T5	Spinosad 45 SC followed by NSKE 5% - NSKE 5%	200 ml – 5% - 5%	2.07		42.55	44.03	39.09	41.90
					(45.74)	(48.32)	(39.78)	(44.61)
T6	Chlorantraniliprole 18.5 SC followed by Spinosad 45 SC – Spinosad 45 SC	150 ml – 200 ml – 200 ml	1.53		55.02	57.86	51.54	54.75
					(67.09)	(71.64)	(61.30)	(66.67)
T7	Chlorantraniliprole 18.5 SC followed by NSKE 5% – NSKE 5%	150 ml – 5% - 5%	2.00		43.05	45.42	41.28	43.25
					(46.61)	(50.73)	(43.53)	(46.96)
T8	NSKE 5% followed by Spinosad 45 SC – Spinosad 45 SC	5% - 200 ml – 200 ml	1.60		51.17	56.50	47.46	51.65
					(60.67)	(69.52)	(54.28)	(61.49)
T9	NSKE 5% followed by Chlorantraniliprole 18.5 SC – Chlorantraniliprole 18.5 SC	5% - 150 ml – 150 ml	1.40		54.63	59.76	50.00	54.70
					(66.48)	(74.61)	(58.67)	(66.59)
T10	Control	-	2.67		-	-	-	-
	S.Em.±				1.22	1.28	1.12	1.16
	C.D (p=0.05)				3.65	3.85	3.36	3.48

Figures in parentheses are retransformed per cent values, *PTP- Pre treatment population*
Table 7 Cumulative bioefficacy of biorational insecticide against larval population of *L. orbonalis* in brinjal during *kharif* 2014-15

Treatment schedules	Dose ml/ha	Mean reduction of *L. orbonalis* population (%) after sprays		
		3	7	10
T₁ Spinosad 45 SC	200 ml	53.34 (64.34)	56.89 (70.13)	48.96 (56.87)
T₂ Chlorantraniliprole 18.5 SC	150 ml	56.96 (70.24)	60.19 (75.24)	53.59 (64.74)
T₃ NSKE 5%	5%	36.18 (34.86)	38.90 (39.44)	34.54 (32.18)
T₄ Spinosad 45 SC followed by Chlorantraniliprole 18.5 SC – Chlorantraniliprole 18.5 SC	200 ml – 150 ml – 150 ml	54.73 (66.63)	58.55 (72.72)	51.05 (60.47)
T₅ Spinosad 45 SC followed by NSKE 5% - NSKE 5%	200 ml – 5% - 5%	45.92 (51.60)	47.22 (53.86)	41.44 (43.80)
T₆ Chlorantraniliprole 18.5 SC followed by Spinosad 45 SC – Spinosad 45 SC	150 ml – 200 ml – 200 ml	55.42 (67.76)	58.93 (73.33)	51.75 (61.64)
T₇ Chlorantraniliprole 18.5 SC followed by NSKE 5% – NSKE 5%	150 ml – 5% - 5%	47.37 (54.12)	49.06 (57.04)	44.00 (48.27)
T₈ NSKE 5% followed by Spinosad 45 SC – Spinosad 45 SC	5% - 200 ml – 200 ml	44.54 (49.19)	47.85 (54.96)	42.09 (44.93)
T₉ NSKE 5% followed by Chlorantraniliprole 18.5 SC – Chlorantraniliprole 18.5 SC	5% - 150 ml – 150 ml	44.76 (49.57)	48.66 (56.36)	42.35 (45.39)
T₁₀ Control	-	-	-	-

S.Em.± 0.83 1.15 1.10

C.D (p=0.05) 2.40 3.35 3.21

Figures in parentheses are retransformed per cent values
Table 8 Cumulative bioefficacy of biorational insecticidal against larval population, *L. orbonalis* in brinjal during kharif 2015-16

Treatment schedules	Dose ml/ha	Mean reduction of *L. orbonalis* population (%) days after sprays		
		3	7	10
T₁- Spinosad 45 SC	200 ml	53.11 (63.93)	56.83 (70.03)	48.97 (56.90)
T₂- Chlorantranilprole 18.5 SC	150 ml	57.19 (70.59)	61.34 (76.95)	53.69 (64.90)
T₃- NSKE 5%	5%	36.20 (34.88)	38.76 (39.21)	33.45 (30.41)
T₄- Spinosad 45 SC followed by Chlorantranilprole 18.5 SC	200 ml – 150 ml – 150 ml	55.85 (68.43)	59.08 (73.57)	50.86 (60.15)
T₅- Spinosad 45 SC followed by NSKE 5% - NSKE 5%	200 ml – 5% - 5%	45.70 (51.22)	46.50 (52.61)	40.79 (42.69)
T₆- Chlorantranilprole 18.5 SC followed by Spinosad 45 SC	150 ml – 200 ml – 200 ml	54.26 (65.83)	57.55 (71.15)	50.13 (58.90)
T₇- Chlorantranilprole 18.5 SC followed by NSKE 5% - NSKE 5%	150 ml – 5% - 5%	48.06 (55.33)	49.75 (58.24)	43.57 (47.51)
T₈- NSKE 5% followed by Spinosad 45 SC – Spinosad 45 SC	5% - 200 ml – 200 ml	44.36 (48.89)	47.63 (54.57)	41.11 (43.24)
T₉- NSKE 5% followed by Chlorantranilprole 18.5 SC –	5% - 150 ml – 150 ml	46.41 (52.00)	49.12 (57.17)	42.13 (45.01)
Chlorantranilprole 18.5 SC				
T₁₀- Control	-	-	-	-

S.E.m.±: 1.15, 1.17, 1.09

C.D (p=0.05): 3.34, 3.39, 3.17

Figures in parentheses are retransformed per cent value
The data presented in Table 5 revealed that maximum reduction in larval population of *L. orbonalis* of 74.34, 78.06 and 67.15 per cent was recorded in the treatment schedule T₂ (Chlorantraniliprole 18.5 SC @ 150 ml/ha) followed by treatment schedule T₄ (Spinosad 45 SC @ 200 ml/ha- Chlorantraniliprole 18.5 SC @ 150 ml/ha- Chlorantraniliprole 18.5 SC @ 150 ml/ha) and minimum larval population reduction of 38.06, 44.27 and 36.41 per cent was recorded in treatment T₃ (NSKE 5% /ha) at 3, 7 and 10 day after 3rd spray, respectively during 2014-15. Data in Table 6 revealed that maximum reduction in larval population of shoot and fruit borer of 74.19, 80.58 and 68.38 per cent was recorded in the treatment schedule T₂ (Chlorantraniliprole 18.5 SC @ 150 ml/ha) followed by treatment schedule T₄ (Spinosad 45 SC @ 200 ml/ha- Chlorantraniliprole 18.5 SC @ 150 ml/ha- Chlorantraniliprole 18.5 SC @ 150 ml/ha); whereas, minimum larval population reduction of 36.44, 43.40 and 34.84 per cent was recorded in treatment schedule T₃ (NSKE 5% /ha) at 3, 7, and 10 days after 3rd spray, respectively during 2015-16.

Cumulative efficacy of bio-rational insecticides

The data presented in Table 7 revealed that the treatment schedule comprising three spray of Chlorantraniliprole 18.5 SC at 150 ml/ha (T₂) at 15 days interval was found effective which caused 70.24, 75.24 and 64.74 per cent followed by treatment schedule T₆ (Chlorantraniliprole 18.5 SC at 150 ml/ha- Spinosad 45 SC @ 200 ml/ha- Spinosad 45 SC @ 200 ml/ha) with 67.76, 73.33 and 61.64 per cent reduction in larval population at 3, 7, and 10 days after three spray respectively. The data on cumulative bio-efficacy of biorational insecticides further revealed that minimum reduction in larval population of 34.86, 39.44 and 32.18 per cent was recorded in treatment schedule (T₃) NSKE at 5%/ha during *kharif* 2014-15. The data presented in Table 8 showed that three spray of Chlorantraniliprole 18.5 SC at 150 ml/ha (T₂) at 15 days interval was found effective, which caused 70.59, 76.95 and 64.90 per cent reduction in larval population at 3, 7, and 10 days after three spray respectively. It was followed by treatment schedule T₄ (Spinosad 45 SC @ 200 ml/ha- Chlorantraniliprole 18.5 SC @ 150 ml/ha - Chlorantraniliprole 18.5 SC @ 150 ml/ha) which caused 68.43, 73.57 and 60.15 per cent reduction at 3, 7, and 10 days after sprays, respectively. Three spray of NSKE at 5% (T₃) was least effective among all the treatment which caused 34.88, 39.21 and 30.41 per cent larval reduction during *kharif* 2015-16.

From the available literature, it becomes clear that the newer molecule, chlorantraniliprole was effective in reducing the population of the shoot and fruit borer. The earlier reports by many authors who have evaluated similar biorational insecticides for their efficacy against shoot and fruit borer confirm to our findings like, According to Kalawate and Dethe (2012) spinosad (56.25, 72 and 90 g a.i./ha) was most effective against brinjal shoot and fruit borer and also it afforded moderate control of jassid, whitefly and aphid. Misra (2011) found that chlorantraniliprole @ 40 and 50 gm a.i./ha were significantly superior and statistically on par with each other with regard to its efficacy, resulting in 95-97 per cent reduction in shoot damage; 87-90 per cent reduction in fruit damage on number basis and 88-90 per cent reduction in fruit damage on weight basis. Anil and Sharma (2010) wherein, they found that spinosad and emamectin benzoate were effective in suppressing the fruit infestation by BSFB. Adiroubane and Raghuraman (2008) reported that oxymatrine 1.2 EC (0.2 per cent) and spinosad 45 SC (225 gm/ha), were found to be effective against brinjal
shoot and fruit borer, *L. orbonalis*. Oxymatrine was effective at early vegetative stage. The highest percentage reduction of shoot damage was observed in oxymatrine and it was on par with spinosad. Spinosad was effective at fruiting stage. The maximum percent reduction of fruit damage was recorded in spinosad which is on par with oxymatrine.

Acknowledgement

The senior author is thankful to the Dean, Rajasthan College of Agriculture, MPUAT, Udaipur for providing necessary facilities for the present investigation.

References

Adiroubane, D. and Raghuraman, K. 2008. Plant products and microbial formulation in the management of brinjal shoot and fruit borer, *Leucinodes orbonalis* (Guenee.). *J. Biopesticides*, 1: 124-129.

Anil. and Sharma, P.C. 2010. Bioefficacy of insecticides against *Leucinodes orbonalis* on brinjal. *J. Environ. Biol.*, 31: 399-402.

Anonymous, 2014-15. *Indian Horticulture Database*. National Horticulture Board. Ministry of Agriculture, Krishi Bhawan, Government of India, New Delhi.

Chakraborty, S. and Sarkar, P. K. 2011. Management of *Leucinodes orbonalis* Guenee on eggplant during the rainy season in India. *Journal of Plant Protection Research*, 51: 325–328.

Choudhary, B. 1967. Brinjal vegetables. National book Trust, India, New Delhi, pp. 50-58.

Dutta, P., Singha, A. K., Das, P. and Kalita, S. 2011. Management of brinjal fruit and shoot borer, *Leucinodes orbonalis* in agroecological conditions of west tripura. *Journal Agriculture Science*, 1: 16–19.

Harish D. K., Agasimani, A. K., Imamsaheb S. J. and Patil Satish S. 2011. Growth and yield parameters in brinjal as influenced by organic nutrient management and plant protection conditions. *Research Journal of Agricultural Sciences*, 2: 221-225.

Hemi, M. A. 1955. Effect of borer attack on the vitamin ‘C’ content of brinjal. *Pakistan Journal of Health*, 4: 223-224.

Henderson, C.F. and Tiltion, E.W.1955. Pests with acaricides against brown wheat mite. *Journal of Economic Entomology*, 48: 157-161.

Jagginavar, S.B., Sunitha, N.D. and Biradon, A.P. 2009. Bioefficacy of flubendiamide 480 SC against brinjal fruit and shoot borer, *Leucinodes orbonalis* Guen. *Karnt. J. Agric. Sci.*, 22: 712-713.

Kalawate, A. and Dethe M.D. 2012 Bioefficacy study of biorational insecticide on brinjal. *Journal of Biopesticides*, 5: 75-80.

Latif, M.A., Rahman, M.M. and Alam, M.Z. 2010. Efficacy of nine insecticides against shoot and fruit borer, *Leucinodes orbonalis* Guenee (Lepidoptera: Pyralidae) in eggplant. *J. Pest Sci.*, 83: 391-397.

Misra, H.P. 2008. New promising insecticides for the management of brinjal shoot and fruit borer, *Leucinodes orbonalis* (Guen.). *Pest Management in Horticultural Ecosystems*, 14: 140-147.

Misra, H.P. 2011. Bio-efficacy of chlorantraniliprole against shoot and fruit borer of brinjal, *Leucinodes orbonalis* Guenee. *J. Insect Sci.*, 24: 60-64.

Natekar, M.G., Samarjit Rai and Agnihotri, N.P. 1987, Bioefficacy of synthetic pyrethroids and their residues in
brinjal fruit. *Pestology*, 11:18-22.

Saimandir, J. and Gopal, M. 2012. Evaluation of synthetic and natural insecticides for the management of insect pest control of eggplant (*Solanum melongena* L.) and pesticide residue dissipation pattern. *American Journal of Plant Sciences*, 3: 214–227.

Thapa, R.B. 2010. Integrated management of brinjal fruit and shoot borer, *Leucinodes orbonalis* Guen: An overview. *Journal of Agriculture and Animal Science*, 30: 1–16.

How to cite this article:

Choudhary, R.S., B.S. Rana, M.K. Mahla and Meena, A.K. 2018. Bioefficacy of Biorational Insecticides against Larval Population of *Leucinodes orbonalis* (Guen.) in Brinjal. *Int.J.Curr.Microbiol.App.Sci.* 7(07): 47-60. doi: https://doi.org/10.20546/ijcmas.2018.707.006