Distribution of espM and espT among enteropathogenic and enterohaemorrhagic Escherichia coli

Ana Arbeloa,1† Miguel Blanco,2† Fabiana C. Moreira,3 Richard Bulgin,1 Cecilia López,2 Ghizlane Dahbi,2 Jesús E. Blanco,2 Azucena Mora,2 María Pilar Alonso,4 Rosalia Ceferina Mamaní,2 Tânia A. T. Gomes,3 Jorge Blanco2 and Gad Frankel1

1Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, UK
2Laboratorio de Referencia de E. coli, Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
3Departamento de Microbiología, Imunología e Parasitología, Universidade Federal de São Paulo, São Paulo, Brazil
4Unidade de Microbiologia Clínica, Complexo Hospitalario Xeral-Calde, Lugo, Spain

Enterohaemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) translocate dozens of type III secretion system effectors, including the WxxxE effectors Map, EspM and EspT that activate Rho GTPases. While map, which is carried on the LEE pathogenicity island, is absolutely conserved among EPEC and EHEC strains, the prevalence of espM and espT is not known. Here we report the results of a large screen aimed at determining the prevalence of espM and espT among clinical EPEC and EHEC isolates. The results suggest that espM, detected in 51% of the tested strains, is more commonly found in EPEC and EHEC serogroups that are linked to severe human infections. In contrast, espT was absent from all the EHEC isolates and was found in only 1.8% of the tested EPEC strains. Further characterization of the virulence gene repertoire of the espT-positive strains led to the identification of a new f2 intimin variant. All the espT-positive strains but two contained the tccP gene. espT was first found in Citrobacter rodentium and later in silico in EPEC E110019, which is of particular interest as this strain was responsible for a particularly severe diarrhoeal outbreak in Finland in 1987 that affected 650 individuals in a school complex and an additional 137 associated household members. Comparing the protein sequences of EspT to that of E110019 showed a high level of conservation, with only three strains encoding EspT that differed in 6 amino acids. At present, it is not clear why espT is so rare, and what impact EspM and EspT have on EPEC and EHEC infection.

INTRODUCTION

Enterohaemorrhagic Escherichia coli (EHEC) comprise a subgroup of Shiga-toxin producing E. coli that can cause bloody diarrhoea, haemorrhagic colitis and haemolytic-uraemic syndrome (reviewed by Tarr, 1995). EHEC O157:H7 is the most common and virulent serotype that is implicated worldwide in human disease, although non-O157 EHEC serotypes, particularly O26, O103, O111, O118 and O145, are also prevalent (reviewed by Nataro & Kaper, 1998). Enteropathogenic E. coli (EPEC) is the leading cause of mortality due to infantile diarrhoea in the developing world (reviewed by Chen & Frankel, 2005). EPEC strains comprise a diverse group of serotypes that may be divided into typical EPEC (tEPEC) and atypical EPEC (aEPEC) based on the presence or absence of a large virulence plasmid (EAF), respectively (Kaper, 1996).

EPEC and EHEC, as well as the mouse pathogen Citrobacter rodentium (reviewed by Mundy et al., 2005), colonize the gut mucosa via attaching and effacing (A/E)
lesions, which are characterized by the close association of the bacteria with the enterocyte plasma membrane and localized breakdown of the brush border microvilli (Knutton et al., 1987; reviewed by Frankel & Phillips, 2008). The ability to induce A/E lesions is associated with the LEE pathogenicity island, which encodes gene regulators, intimin (Jerse et al., 1990), a type III secretion system (Jarvis et al., 1995), chaperones, translocator and effector proteins (reviewed by Garmendia et al., 2005a). The principal effector protein needed for A/E lesion formation is Tir, which, once translocated, is integrated into the mammalian cell plasma membrane where it serves as a receptor for intimin (Kenny et al., 1997). Recent studies have shown that different EPEC and EHEC strains encode distinct intimin and Tir types; currently there have been 27 intimin and 8 Tir types reported (Blanco et al., 2006a, b; Garrido et al., 2006; J. Blanco, unpublished data).

EPEC E2348/69, which is the prototype strain used worldwide to study EPEC infection, encodes 21 LEE and non-LEE effectors (Iguchi et al., 2009). Other EPEC strains encode a greater number of T3SS effectors: 28 in EPEC B171 (Ogura et al., 2008), 40 in EPEC E22 and 24 in EPEC E110019 (Iguchi et al., 2009). EHEC O157 Sakai encodes 50 effectors, representing the most complex repertoire among A/E pathogens (Tobe et al., 2006). This shows that the A/E pathogen class is much more heterogeneous than was previously thought, comprising strains expressing unique complements of T3SS effector proteins and as a result employing diverse infection strategies.

A novel family of T3SS effectors, known as the WxxxE proteins, was recently described (Alto et al., 2006), which include IpgB1 and IpgB2 from Shigella, SifA and SifB from Salmonella, and Map (Kenny & Jepson, 2000), EspM (Arbeloa et al., 2008) and EspT (Bulgin et al., 2008) from EPEC and EHEC. Members of the WxxxE family are important virulence factors. For example, SifA is essential for intracellular Salmonella survival (Beuzon et al., 2000) and IpgB1 is essential for Shigella cell invasion (Ohya et al., 2005). Map, which is encoded on the LEE pathogenicity island and is absolutely conserved among EPEC and EHEC strains, plays a role in colonization in vivo (Mundy et al., 2004) and triggers transient filopodia by activating the Rho GTPase Cdc42 (Kenny et al., 2002; Berger et al., 2009). The different EspM variants induce formation of stress fibres by activating RhoA (Arbeloa et al., 2008), while EspT from the C. rodentium induces formation of extensive lamellipodia by activation of Rac-1 and Cdc42 (Bulgin et al., 2009). By sequence homology searches we recently identified homologues of espM and espT in EPEC strain E110019 (Bulgin et al., 2009), a clinical isolate from a diarrhoeal outbreak in

Table 1. Distribution of espM and espT among 151 non-O157 clinical EHEC strains (Spain)

Serotype (no. of strains)	VT type	espM	espT	
O	H	espM	espT	
ONT (14)	HND (7), H- (6), H11 (1)	1, 2	4	0
O5	HND (3)	1, 2	3	0
O14	H- (1)	1	1	0
O26 (37)	HND (17), H- (2), H8 (1), H11 (17)	1	36	0
O32	H6 (1)	1	1	0
O69	H21 (1)	1	1	0
O80	HND (1)	1, 2	1	0
O98	H21 (1)	1	1	0
O103 (6)	HND (1), H2 (5)	1, 2	6	0
O111 (10)	HND (5), H- (3), H8 (1)*, H10 (1)	1, 2	9	0
O118 (6)	HND (3), H- (1), H16 (2)	1	6	0
O121 (2)	H19 (1), H40 (1)	2	2	0
O145 (3)	HND (1), H- (2)	1, 2	3	0
O146	HND (10)	1, 2	1	0
O156	H25 (2)	1	2	0
O139, O141	HND (1)	1, 2	1	0

*Strain FV10110 O111: H8 was isolated in Germany.
EspM$_{E110019}$ is 100% identical to the EspM of EHEC O157 Sakai, while EspT$_{E110019}$ shares 79% sequence homology with the C. rodentium EspT, including the WxxxE motif. The aim of this study was to determine the prevalence of espM and espT among clinical EPEC and EHEC isolates.

METHODS

Bacterial strains. The bacterial strains used in this study included EPEC strains E2348/69 (Levine et al., 1978) and E110019 (Viljanen et al., 1990), EHEC O157:H7 strain Sakai (Hayashi et al., 2001), C. rodentium strain ICC169 (Barthold et al., 1976; Wiles et al., 2004), and 932 clinical EHEC and EPEC isolates.

Serotyping. The determination of O and H antigens was carried out using the method described by Guinée et al. (1981) employing all available O (O1–O185) and H (H1–H25) antisera. All antisera were obtained and absorbed with the corresponding cross-reacting antigens to remove the non-specific agglutinins. The O antisera were obtained and the H antisera were obtained from the Statens Serum Institut, Copenhagen, Denmark.

Prevalence of espT and espM among clinical EPEC and EHEC strains. In order to screen for espM or espT by PCR we used the eight espM sequences identified in EHEC O157 strain Sakai, EPEC strains B171 and E22, and C. rodentium to design common internal espM-1 (5'-TGATGAGGTCTGAAATGTCTCA-3') and espM-2 (5'-ATGATTCCGAGTTAATTATTGGTAT-3') forward and reverse primers (30 cycles of 94°C for 45 s, 50°C for 1 min and 72°C for 1 min). We used the espT sequences from C. rodentium and E110019 to design internal espT-1 (5'-AACATCATCCTGCTTAC-3') and espT-2 (5'-TCAATGATGATGAGCAGG-3') primers for PCR (30 cycles of 94°C for 45 s, 55°C for 1 min and 72°C for 1 min).

A further three rounds of PCR were employed to screen representative espT-1 and espT-2 PCR-negative strains using additional common internal primers espT-3 (5'-ATGATTCCGAGTTAATTATTGGTAT-3') and espT-4 (5'-CATCCAAAGGAAACCGGAGAAT-3'), and primers espT-5 (5'-CCGAGTTAATTATTGGTAT-3') and espT-6 (5'-GGGAACTTTTGGTCTGAGCC-3') and espT-7 (5'-TTGAATTTGAGAGTTGCAGG-3') and espT-8 (5'-CCGACGTGAGTTAATTATTGGTAT-3') which correspond to the 5' and 3' ends of the C. rodentium and E110019 espT homologue, respectively (30 cycles of 94°C for 45 s, 52°C for 1 min and 72°C for 1 min).

EHEC O157:H7 Sakai, C. rodentium and EPEC E2348/69 were used as positive and negative controls.

Intimin, Tir and TccP typing of the espT-positive strains. Intimin and Tir typing was performed by PCR and sequencing as previously described (Blanco et al., 2006; Garrido et al., 2006). The nucleotide sequence of the amplification products purified using a QIAquick DNA purification kit (Qiagen) was determined by the dideoxynucleotide triphosphate chain-termination method of Sanger, with a BigDye terminator v3.1 cycle sequencing kit and an ABI 3100 genetic analyzer (Applied Biosystems). The new eae sequences of the strains analysed were deposited in the European Bioinformatics Institute EMBL nucleotide sequence database. The presence of tccP2 was determined by PCR as described by Whale et al. (2007).

Table 2. Distribution of espM and espT among 132 tEPEC strains

Serotype (no. of strains)	O	H	Origin	espM	espT
ONT (2)	H6 (1)	H10 (1)	Bolivia	2	0
O23 (2)	HND (1)	H8 (1)	Spain	2	0
O49	H10 (5)		Spain, Bolivia	5	0
O55 (22)	H- (8), H6 (6), H51 (8)	Uruguay, Bolivia, Brazil, UK	19	0	
O86 (6)	H- (2), H34 (4)	Bolivia	6	0	
O88 (17)	H- (1), H6 (1), H25 (15)	Spain, Bolivia	3	0	
O103 (3)	H- (1), H7 (2)	Bolivia	3	0	
O109	H- (2)		Spain, Chile	1	0
O111 (20)	H- (12), H2 (7), H25 (1)	Spain, Bolivia, Brazil, Uruguay	19	1	
O118 (4)	HND (1), H- (1), H5 (2)	Spain, Germany	4	0	
O119 (17)	H- (2), H6 (15)	Bolivia, Brazil, Uruguay	16	0	
O125	H- (1)		Burundi	1	0
O127	H6 (3)		Bolivia, Brazil	1	0
O132	H8 (1)		Bolivia	1	0
O142 (6)	H6 (2), H34 (4)	Brazil, Spain	4	0	
O145	H45 (3)		Brazil	3	0
O153	H11 (1)		Spain	1	0
Table 3. Distribution of \textit{espM} and \textit{espT} among 602 aEPEC strains

\begin{center}
\begin{tabular}{lcc}
\hline
\textbf{Serotype (no. of strains)} & \textbf{O} & \textbf{H} \\
\hline
ONT (92) & HND (38), HNT (4), H- (24), H4 (3), H7 (4), H8 (3), H11 (4), H23 (1), & Spain, Brazil, Bolivia, \\
& H33 (2), H40 (6), H45 (3) & Chile \\
O1 (3) & H7 (1), H40 (1), H45 (1) & Brazil, Spain \\
O2 (11) & ND (3), H40 (8) & Spain \\
O4 (4) & ND (2), H- (1), H1 (1) & Spain, Brazil \\
O5 & ND (7) & Spain \\
O6 (2) & ND (1), H19 (1) & Spain \\
O8 (5) & HND (3), H11 (1), H19 (1) & Spain \\
O10 (5) & HN (3), H- (2) & Spain \\
O11 & HND (4) & Spain \\
O14 & H5 (1) & Brazil \\
O15 (17) & HND (9), H2 (8) & Spain \\
O18 & HND (2) & Spain \\
O20 & HND (2) & Spain \\
O22 & HND (2) & Spain \\
O25 & H2 (1) & Spain \\
O26 (30) & ND (20), H- (6), H11 (4) & Spain, Brazil \\
O28 & H28 (1) & Bolivia \\
O33 & HND (3) & Spain \\
O49 (12) & HND (6), H- (3), H2 (1), H10 (2) & Spain, Brazil \\
O51 (16) & HND (5), H- (2), H1 (1), H40 (6), H49 (2) & Spain, Brazil \\
O52 & H10 (1) & Spain \\
O57 & H7 (3) & Spain \\
O55 (16) & HND (4), H- (1), H6 (1), H7 (9), H51 (1) & Spain, Brazil, Bolivia \\
O56 & H- (1) & Spain \\
O63 (6) & H6 (5), H33 (1) & Spain, Brazil \\
O64 & H25 (2) & Spain \\
O70 & H2 (1) & Brazil \\
O76 & HND (3) & Spain \\
O80 (9) & ND (5), H2 (4) & Spain \\
O82 (2) & HND (1), H10 (1) & Spain \\
O85 (13) & HND (5), H- (2), H31 (5), H43 (1) & Spain \\
O101 (7) & HND (2), H- (5) & Spain, Brazil \\
O103 (12) & HND (11), H2 (1) & Spain \\
O104 (4) & HND (1), H2 (2), H12 (1) & Spain, Brazil \\
O109 & H9 (1) & Brazil \\
O111 (2) & HND (1), H- (1) & Spain \\
O113 & H6 (4) & Spain \\
O115 (4) & HND (1), H8 (3) & Spain \\
O117 & HND (4) & Spain \\
\hline
\end{tabular}
\end{center}

\textit{espM-espT} negative strains were: ONT : H2 (2), ONT : H6 (4), ONT : H9 (1), ONT : H10 (2), ONT : H11 (21, 34 (1), ONT : H19 (2), ONT : H21, 39 (1), ONT : H34 (1), ONT : H40, 43 (2), ONT : H51 (1), O1 : H2 (1), O1 : H11 (1), O1 : H46 (1), O1 : H49 (1), O2ab : H45 (1), O2 : NT (1), O2 : H6 (1), O2 : H16 (1), O2 : H45 (1), O2 : H49 (2), O3 : H4 (1), O5 : H6 (1), O5 : H40 (1), O5 : H49 (1), O6 : H4 (1), O6 : H16 (1), O9 : HND (2), O11 : H16 (2), O12 : HND (1), O13 : H11 (1), O15 : H- (2), O15 : H7 (1), O16 : H- (1), O18 : H7 (1), O18 : H16 (1), O20 : H6 (1), O21 : HND (2), O21 : H15 (1), O23 : HND (1), O24 : H2 (1), O25 : HND (2), O25 : H1 (1), O26 : H2 (1), O28 : HND (1), O33 : HNT (1), O33 : H6 (1), O33 : H34 (1), O34 : H- (1), O41 : H- (1), O49 : H40 (1), O51 : H41 (1), O55 : H40 (1), O56 : H6 (1), O63 : HND (1), O64 : H40 (1), O71 : H1, H12 (2), O76 : H19 (1), O84 : HND (1), O84 : H- (2), O85 : H8 (1), O85 : H49 (1), O86 : HNT (1), O88, O168 : HND (1), O98 : H- (1), O98 : H8 (1), O101 : H33 (2), O103 : H- (3), O103 : H4 (1), O103 : H19 (1), O103 : H40 (1), O104 : H- (2), O105 : HND (1), O105 : H4 (2), O108 : HND (3), O110 : HND (5), O111 : H9 (1), O111 : H38 (1), O112 : H15 (1), O113 : HND (4), O113 : H- (1), O114 : HND (1), O117 : H11 (1), O117 : H40 (2), O121 : HND (1), O123 : HND (1), O123 : H19 (1), O123 : H45 (1), O125 : H6 (3), O127 : HND (1), O127 : H6 (1), O128 : H40 (1), O129 : HND (1), O129 : H- (1), O132 : HND (3), O132 : H5 (3), O137 : HND (3), O137 : H6 (2), O139 : HND (4), O139 : H2 (1), O141 : HND (10), O145 : H2 (1), O146 : H28 (1), O148 : H8 (1), O153 : H11 (1), O153 : H31 (1), O153 : H40 (1), O156 : H4 (1), O156 : H8 (3), O156 : H33 (1), O157 : H16 (2), O159 : HND (1), O164 : H- (1), O167 : H28 (1), O171 : H19 (1), O173 : H- (1), O178 : H6 (1), O180 : HND (1), O180 : H2 (1), R : H28 (1).

\url{http://jmm.sgmjournals.org}
RESULTS AND DISCUSSION

Screening O157 and non-O157 EHEC strains for the presence of espM and espT

We determined the prevalence of espM and espT among 45 non-sorbitol fermenting (non-SF) EHEC O157: H7 (expressing VT1 and VT2), isolated in Spain, Canada and Bolivia, and two SF EHEC O157:H- (expressing VT2), isolated in Germany. espM was found in 43 of the non-SF O157 isolates (96 %) and in the 2 SF isolates. We then screened 151 non-O157 EHEC strains. espM was found in 60 of the 62 (97 %) non-O157 EHEC strains belonging to

Table 3. cont.

Serotype (no. of strains)	Origin	espM	espT
O119 HND (2)	Spain	2	0
O120 HND (2)	Spain	1	0
O123 H- (2)	Brazil	2	2
O125 H28 (1)	Spain	1	0
O127 H40 (5)	Spain, Bolivia	1	0
O128 (4) HND (1), H- (1), H2 (1), H27 (1)	Spain	4	0
O132 H34 (3)	Spain	3	0
O139 H19 (1)	Spain	1	0
O145 (33) HND (1)	Spain, Germany	25	0
O146 HND (1)	Spain	1	0
O153 HND (15)	Spain	2	0
O154 H9 (1)	Brazil	1	1
O156 (8) HND (6), H- (2)	Spain	4	0
O157 (5) ND (2), H7 (3)	Spain	4	0
O162 (4) H- (2), H21 (1), H33 (1)	Spain, Brazil	3	0
O166 HND (1)	Spain	1	0
O167 (4) ND (2), H9 (1), H11 (1)	Spain	3	0
O177 H11 (1)	Spain	1	0
O178 H7 (1)	Spain	1	0
O179 H31 (1)	Spain	1	0
O115, O152 (15) HND (13), H8 (1), H10 (1)	Spain	10	0
R (2) H11, 21 (1), H28 (1)	Brazil	1	0

Table 4. Characterization of the espT-positive strains

Serotype (no. of strains)	Origin	Pathotype	espM	Intimin	Tir	Tccp2	GenBank accession no.
Group 1							
O111: H9 (1)	Finland	aEPEC	+	ξ_2	α_1	+	FM992854
ONT: H- (1)	Brazil	aEPEC	+	ξ_2	α_1	+	FM992855
O49: H- (1)	Brazil	aEPEC	+	ξ_2	α_1	+	FM992857
O109: H9 (1)	Brazil	aEPEC	+	ξ_2	α_1	+	FM992858
O111: H- (1)	Spain	tEPEC	+	ξ_2	α_1	+	FM992859
O123: H- (2)	Brazil	aEPEC	+	ξ_2	α_1	+	FM992860
O154: H9 (1)	Brazil	aEPEC	+	ξ_2	α_1	+	FM992861
Group 2							
O2: H49 (1)	Spain	aEPEC	$-$	θ_1	θ_1	+	FM992862
O2: H49 (1)	Spain	aEPEC	$-$	θ_1	α_1	$-$	FM992861
Group 3							
ONT: H7 (1)	Brazil	aEPEC	+	β_1	β_1	$-$	FM992863
O104: H2 (1)	Spain	aEPEC	$-$	β_1	β_1	+	FM992864
O104: H2 (1)	Brazil	aEPEC	$-$	β_1	β_1	+	FM992865
serogroups O26, O103, O111, O118 and O145 (Table 1). In contrast espM was found in only 17 of 89 (19%) strains belonging to the other non-O157 serogroups (Table 1). All the O157 and non-O157 strains were espT gene negative.

In order to confirm the absence of espM and espT from the PCR gene-negative strains, we screened 50 O157 and non-O157 EHEC strains with a second set of conserved espM primers (espM-3 and espM-4) and three sets of espT primers (espT-3 and espT-4, espT-5 and espT-6, and espT-7 and espT-8). All the isolates remained espM and espT gene negative in these tests.

Screening tEPEC and aEPEC isolates for the presence of espM and espT

We screened a total of 132 tEPEC strains, isolated in Brazil, Bolivia, Burundi, Spain, Chile, Germany, the UK and Uruguay, and 602 aEPEC strains, isolated in Brazil, Bolivia, Chile and Spain, for the presence of espM and espT. espM was found in 91 tEPEC isolates (69%) belonging to 16 different serogroups (the O serogroup of 6 strains was non-typable – ONT) and of 2 isolates was O (Table 2). espM was found in 258 aEPEC isolates (43%) belonging to 59 different serogroups [the O serogroup of 109 strains was ONT and of 2 isolates was O rough (R)]. Of the 109 ONT aEPEC, espM was found in 45 isolates (41%). Among the aEPEC that shared a serogroup with the major EHEC strains, espM was found in 23 of 31 (74%) O26, 4 of 12 (33%) O103, 2 of 4 (50%) O111, 25 of 33 (76%) O145 and 4 of 7 (57%) O157 isolates; in total 58 of 87 (67%). Interestingly, espM was found in 94% (15 of 16) of the O55 strains, regardless of serotype. espT was found in only 1 (0.8%) tEPEC strain (O111: H-) isolated in Spain and in 12 aEPEC strains (2%) (Table 3).

In order to confirm the absence of espM and espT from the PCR gene-negative EPEC strains, we screened 50 tEPEC and 100 aEPEC strains with espM primers 3 and 4, and espT primers 3 and 4, 5 and 6, and 7 and 8. All the isolates remained espM and espT gene negative in these tests.

Further characterization of the espT-positive strains

Considering that espT was found in only 13 of the total 932 isolates tested, we sequenced their amplicons, and characterized their virulence genes implicated in colonization (e.g. intimin type) and pedestal formation (e.g. Tir type and TccP2) as described previously (Garmendia et al., 2005b); strain E110019 was used as a reference strain. Sequencing of espT revealed a high level of sequence conservation (Table 4). In the eight strains EspT was identical to that of E110019, defined as group 1 EspT. In two strains we detected a single amino acid difference (group 2) and in three other strains we found 6 amino acids that differed from the EspT of E110019 (group 3) (Fig. 1). All the espT-positive strains encoded a Tir that can undergo tyrosine phosphorylation and thus trigger strong actin polymerization in vitro via the Nck-N-WASP pathway (Kenny, 1999; Gruenheid et al., 2001). All the strains but two encoded TccP2, which can also activate the N-WASP actin-signalling pathway (Whale et al., 2007). Eight of the espT-positive strains (as well as E110019) also encoded EspM.

Intimin typing was performed by sequencing the variable 3’ end of the eae gene from the 14 espT-positive strains (including E110019) (Table 4) (Blanco et al., 2006b). This revealed known intimin types in 10 strains: β1 (3 strains), ε2 (4 strains), δ1 (1 strain) and μ1 (2 strains). Importantly, we identified a new intimin variant, ε2, in 4 of the espT gene-positive strains (Table 4). We determined the complete nucleotide sequence of two of the new eae-ε2 variant genes (accession numbers FM872419 and FM872420 for E110019 and T2381-8, respectively). Using CLUSTAL W software for optimal sequence alignment with the known 27 eae alleles, we found 98, 92 and 91% sequence identity with the eae-ε1 (AJ271407), eae-ε2 (M58154) and eae-ε2 (AF530555) genes, respectively.

Conclusions

Our results show that espM is found in approximately 96% of the strains belonging to the major EHEC serogroups: O26, O103, O111, O118, O145 and O157, and in a

espM	espT
1/E110019	
2	3
4	5
6	7
8	9
10	11
12	13
14	15

Further characterization of the espT-positive strains

Considering that espT was found in only 13 of the total 932 isolates tested, we sequenced their amplicons, and characterized their virulence genes implicated in colonization (e.g. intimin type) and pedestal formation (e.g. Tir type and TccP2) as described previously (Garmendia et al., 2005b); strain E110019 was used as a reference strain. Sequencing of espT revealed a high level of sequence conservation (Table 4). In the eight strains EspT was identical to that of E110019, defined as group 1 EspT. In two strains we detected a single amino acid difference (group 2) and in three other strains we found 6 amino acids that differed from the EspT of E110019 (group 3) (Fig. 1). All the espT-positive strains encoded a Tir that can undergo tyrosine phosphorylation and thus trigger strong actin polymerization in vitro via the Nck-N-WASP pathway (Kenny, 1999; Gruenheid et al., 2001). All the strains but two encoded TccP2, which can also activate the N-WASP actin-signalling pathway (Whale et al., 2007). Eight of the espT-positive strains (as well as E110019) also encoded EspM.

Intimin typing was performed by sequencing the variable 3’ end of the eae gene from the 14 espT-positive strains (including E110019) (Table 4) (Blanco et al., 2006b). This revealed known intimin types in 10 strains: β1 (3 strains), ε2 (4 strains), δ1 (1 strain) and μ1 (2 strains). Importantly, we identified a new intimin variant, ε2, in 4 of the espT gene-positive strains (Table 4). We determined the complete nucleotide sequence of two of the new eae-ε2 variant genes (accession numbers FM872419 and FM872420 for E110019 and T2381-8, respectively). Using CLUSTAL W software for optimal sequence alignment with the known 27 eae alleles, we found 98, 92 and 91% sequence identity with the eae-ε1 (AJ271407), eae-ε2 (M58154) and eae-ε2 (AF530555) genes, respectively.

Conclusions

Our results show that espM is found in approximately 96% of the strains belonging to the major EHEC serogroups: O26, O103, O111, O118, O145 and O157, and in a
significantly higher proportion than in other non-O157 EHEC strains \((P<0.05) \). Similarly, espM was also more commonly found in EPEC serogroups O26, O55, O145 and O157 than in other aEPEC. Among the tEPEC strains espM was detected in approximately 69% of the tested isolates. These results suggest that espM is more commonly found in EPEC and EHEC serogroups that are linked to severe human infections. In contrast, espT was found only infrequently and only among EPEC strains (1 tEPEC and 12 aEPEC isolates). espT was first found in *C. rodentium* and later in *silo* in EPEC E110019, which is of particular interest as it was responsible for a particularly severe diarrhoeal outbreak in Finland in 1987 that affected 650 individuals, including adults, in a school complex and an additional 137 associated household members (Viljanen *et al.*, 1990). Comparing the protein sequences of EspT to that of E110019 showed a high level of conservation, with only three strains encoding EspT that differed in 6 amino acids from the EspT of E110019. At present, it is not clear why espT is so rare and what impact EspM and EspT have on EPEC and EHEC infection.

ACKNOWLEDGEMENTS

We thank Jim Kaper for the E11001119 strain. A. Mora acknowledges the Ramón y Cajal programme from the Spanish Ministry of Education and Science. Work in the laboratory of Jorge Blanco was supported by grants from the Spanish Ministry of Health and Consumer Affairs [Fondo de Investigación Sanitaria, Spanish Network for the Research in Infectious Diseases (REIPI) RD06/0008-1018], Spanish Ministry of Education and Science (AGL-2008-02129) and the Autonomous Government of Galicia (Xunta de Galicia, PGIDIT06IT126101P, 07MBU036261P). Work in the laboratory of T.A.T.G. was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) grant 08/53812-4 and Programa de Apoio a Núcleos de Excelência – PRONEX MCT/CNPq/FAPERJ. F.C.M. received a fellowship from FAPESP. Work in the laboratory of Gad Frankel was supported by the MRC and the Wellcome Trust.

REFERENCES

Alto, N. M., Shao, F., Lazar, C. S., Bros, R. L., Chua, G., Mattow, S., McMahon, S. A., Ghosh, P., Hughes, T. R. & other authors (2006). Identification of a bacterial type III effector family with G protein mimicry functions. *Cell* 124, 133–145.

Arbeloa, R., Bulgin, R. R., Mackenzie, G., Shaw, R. K., Pallen, M. J., Crepin, V. F., Berger, C. N. & Frankel, G. (2008). Subversion of actin dynamics by EspM effectors of attaching and effacing bacterial pathogens. *Cell Microbiol* 10, 1429–1441.

Barthold, S. W., Coleman, G. L., Bhatt, P. N., Olsboldstein, G. W. & Jonas, A. M. (1976). The etiology of transmissible murine colonic hyperplasia. *Lab Anim Sci* 26, 889–894.

Berger, C. N., Crepin, V. F., Jepson, M. A., Arbeloa, A. & Frankel, G. (2009). The mechanisms used by enteropathogenic *Escherichia coli* to control filopodia dynamics. *Cell Microbiol* 11, 309–322.

Beuzon, C. R., Meresse, S., Unsworth, K. E., Ruiz-Albert, J., Garvis, S., Waterman, S. R., Ryder, T. A., Boucrot, E. & Holden, D. W. (2000). *Salmonella* maintains the integrity of its intracellular vacuole through the action of SIV. *EMBO* J 19, 3235–3249.

Blanco, M., Blanco, J. E., Dahbi, G., Alonso, M. P., Mora, A., Coira, M. A., Madrid, C., Juarez, A., Bernardez, M. I. & other authors (2006a). Identification of two new intimin types in atypical enteropathogenic *Escherichia coli*. *Int Microbiol* 9, 103–110.

Blanco, M., Blanco, J. E., Dahbi, G., Mora, A., Alonso, M. P., Varela, G., Gadea, M. P., Schelotto, F., Gonzalez, E. A. & Blanco, J. (2006b). Typing of intimin (eae) genes from enteropathogenic *Escherichia coli* (EPEC) isolated from children with diarrhoea in Montevideo, Uruguay: identification of two novel intimin variants (muB and xiR/beta2B). *J Med Microbiol* 55, 1165–1174.

Bulgur, R. R., Arbeloa, A., Chung, J. C. & Frankel, G. (2009). EspT triggers formation of lamellipodia and membrane ruffles through activation of Rac-1 and Cdc42. *Cell Microbiol* 11, 217–229.

Chen, H. D. & Frankel, G. (2005). Enteropathogenic *Escherichia coli*: unravelling pathogenesis. *FEMS Microbiol Rev* 29, 83–98.

Frankel, G. & Phillips, A. D. (2008). Attaching effacing *Escherichia coli* and paradigms of Tir-triggered actin polymerization: getting off the pedal. *Cell Microbiol* 10, 549–556.

Garmendia, J., Frankel, G. & Crepin, V. F. (2005a). Enteropathogenic and enterohemorrhagic *Escherichia coli* infections: translocation, translocation, translocation. *Infect Immun* 73, 2573–2585.

Garmendia, J., Ren, Z., Tannent, S., Midioli Viera, M. A., Chong, Y., Whale, A., Azzopardi, K., Dahan, S., Sircili, M. P. & other authors (2005b). Distribution of tcpp in clinical enterohemorrhagic and enteropathogenic *Escherichia coli* isolates. *J Clin Microbiol* 43, 5715–5720.

Garrido, P., Blanco, M., Moreno-Paz, M., Briones, C., Dahbi, G., Blanco, J. & Parro, V. (2006). STEC-EPEC oligonucleotide microarray: a new tool for typing genetic variants of the LEE pathogenicity island of human and animal Shiga toxin-producing *Escherichia coli* (STEC) and enteropathogenic *E. coli* (EPEC) strains. *Clin Chem* 52, 192–201.

Gruenheid, S., Devlinney, R., Bladt, F., Goosney, D., Gelkop, S., Gish, G. D., Pawson, T. & Finlay, B. B. (2001). Enteropathogenic *E. coli* Tir binds Nck to initiate actin pedestal formation in host cells. *Nat Cell Biol* 3, 856–859.

Guinée, P. A. M., Jansen, W. H., Wadström, T. & Sellwood, R. (1981). *Escherichia coli* associated with neonatal diarrhoea in piglets and calves. *Carr Tvp Vet Anim Sci* 13, 126–162.

Hayashi, T., Makino, K., Ohnishi, M., Kurokawa, K., Ishii, K., Yokoyama, K., Han, C. G., Ohtsubo, E., Nakayama, K. & other authors (2001). Complete genome sequence of enterohemorrhagic *Escherichia coli* O157:H7 and genomic comparison with a laboratory strain K-12. *DNA Res* 8, 11–22.

Iguchi, A., Thomson, N. R., Ogura, Y., Saunders, D., Ooka, T., Henderson, I. R., Harris, D., Asadulghani, M., Kurokawa, K. & other authors (2009). Complete genome sequence and comparative genome analysis of enteropathogenic *Escherichia coli* O127:H6 strain E2348/69. *J Bacteriol* 191, 347–354.

Jarvis, K. G., Girón, J. A., Jerse, A. E., McDaniel, T. K., Donnenberg, M. S. & Kaper, J. B. (1995). Enteropathogenic *Escherichia coli* contains a putative type III secretion system necessary for the export of proteins involved in attaching-effacing lesions formation. *Proc Natl Acad Sci U S A* 92, 7996–8000.

Jarvis, K. G., Girón, J. A., Jerse, A. E., McDaniel, T. K., Donnenberg, M. S. & Kaper, J. B. (1999). A genetic locus of enteropathogenic *Escherichia coli* necessary for the production of attaching and effacing lesions on tissue culture cells. *Proc Natl Acad Sci U S A* 87, 7839–7843.

Kaper, J. B. (1996). Defining EPEC. *Rev Microbiol Sao Paulo* 27, 130–133.

Kenny, B. (1999). Phosphorylation of tyrosine 474 of the enteropathogenic *Escherichia coli* (EPEC) Tir receptor molecule is essential...
for actin nucleating activity and is preceded by additional host modifications. Mol Microbiol 31, 1229–1241.

Kenny, B. & Jepson, M. (2000). Targeting of an enteropathogenic Escherichia coli (EPEC) effector protein to host mitochondria. Cell Microbiol 2, 579–590.

Kenny, B., Devinney, R., Stein, M., Reinscheid, D. J., Frey, E. A. & Finlay, B. B. (1997). Enteropathogenic Escherichia coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91, 511–520.

Kenny, B., Ellis, S., Leard, A. D., Warawa, J., Mellor, H. & Jepson, M. A. (2002). Co-ordinate regulation of distinct host cell signalling pathways by multifunctional enteropathogenic Escherichia coli effector molecules. Mol Microbiol 44, 1095–1107.

Knutton, S., Lloyd, D. R. & McLeish, A. S. (1987). Adhesion of enteropathogenic Escherichia coli to human intestinal enterocytes and cultured human intestinal mucosa. Infect Immun 55, 69–77.

Levine, M. M., Bergquist, E. J., Nalin, D. R., Waterman, D. H., Hornick, R. B., Young, C. R. & Sotman, S. (1978). Escherichia coli strains that cause diarrhoea but do not produce heat-labile or heat-stable enterotoxins and are non-invasive. Lancet 1, 1119–1122.

Mundy, R., Petrovska, L., Smollett, K., Simpson, N., Wilson, R. K., Yu, J., Tu, X., Rosenshine, I., Clare, S. & other authors (2004). Identification of a novel Citrobacter rodentium type III secreted protein, EspI, and roles of this and other secreted proteins in infection. Infect Immun 72, 2288–2302.

Mundy, R., MacDonald, T. T., Dougan, G., Frankel, G. & Wiles, S. (2005). Citrobacter rodentium of mice and man. Cell Microbiol 7, 1697–1706.

Nataro, J. P. & Kaper, J. B. (1998). Diarrheagenic Escherichia coli. Clin Microbiol Rev 11, 142–201.

Ogura, Y., Abe, H., Katsura, K., Kurokawa, K., Asadulghani, M., Iguchi, A., Ooka, T., Nakayama, K., Yamashita, A. & other authors (2008). Systematic identification and sequence analysis of the genomic islands of the enteropathogenic Escherichia coli strain B171–8 by the combined use of whole-genome PCR scanning and fosmid mapping. J Bacteriol 190, 6948–6960.

Ohya, K., Handa, Y., Ogawa, M., Suzuki, M. & Sasakawa, C. (2005). LpgB1 is a novel Shigella effector protein involved in bacterial invasion of host cells. Its activity to promote membrane ruffling via Rac1 and Cdc42 activation. J Biol Chem 280, 24022–24034.

Tarr, P. I. (1995). Escherichia coli O157 : H7: clinical, diagnostic, and epidemiological aspects of human infection. Clin Infect Dis 20, 1–8.

Tobe, T., Beatson, S. A., Taniguchi, H., Abe, H., Bailey, C. M., Fivian, A., Younis, R., Matthews, S., Marches, O. & other authors (2006). An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc Natl Acad Sci U S A 103, 14941–14946.

Viljanen, M. K., Peltola, T., Junnila, S. Y., Olkkonen, L., Jarvinen, H., Kuistila, M. & Huovinen, P. (1990). Outbreak of diarrhoea due to Escherichia coli O111: B4 in schoolchildren and adults: association of Vi antigen-like reactivity. Lancet 336, 831–834.

Whale, A. D., Hernandez, R. T., Ooka, T., Beutin, L., Schuller, S., Garmendia, J., Crowther, L., Vieira, M. A., Ogura, Y. & other authors (2007). TccP2-mediated subversion of actin dynamics by EPEC 2 – a distinct evolutionary lineage of enteropathogenic Escherichia coli. Microbiology 153, 1743–1755.

Wiles, S., Clare, S., Harker, J., Huett, A., Young, D., Dougan, G. & Frankel, G. (2004). Organ specificity, colonization and clearance dynamics in vivo following oral challenges with the murine pathogen Citrobacter rodentium. Cell Microbiol 6, 963–972.