Heart failure patients may have impaired cerebral autoregulation and regional cerebral blood flow abnormalities. Pre-disposition to thromboembolic complications occur because of dilated chambers and abnormal blood flow, abnormal vessel/chamber lining and abnormal blood particles in heart failure patients. Epidemiological and clinical studies document an increased rate of thromboembolic complications in heart failure. Well known/accepted indications of oral anticoagulation therapy to prevent thromboembolic events are co-existence of atrial fibrillation/flutter, intracardiac thrombi and a history of a thromboembolic event. Other than a co-existence of coronary artery disease and heart failure, antiplatelet agents should not be used in heart failure patients to prevent ischemic stroke. How and who to treat/prevent a thromboembolic event in patients with heart failure and sinus rhythm is a hot topic. Up to date, clinical studies of treatment with oral anticoagulant agents—mainly warfarin and recently rivaroxaban vs antiplatelet agents or placebo could not meet their primary outcome related with morbidity/mortality. In some of these studies, decreased rate of ischemic strokes were offset by increased major hemorrhage.

Keywords: heart failure, cerebral ischemia, stroke

Cerebral blood flow, autoregulation mechanisms, heart failure

Weight of the brain is only approximately 2% percent of our body while its metabolic rate accounts close to 20% of the whole body (1). Despite such a high metabolic rate the amount of intracellular glycogen in the brain is low therefore a stable supply of cerebral blood flow (CBF) is critical to maintain normal brain functions. CBF is regulated by both local and systemic mechanisms (2). The brain is far less tolerant to fluctuations in blood flow because of its dependence on aerobic metabolism and constraints imposed by bipedal posture on blood supply (3). Studies have shown that brain perfusion is maintained and regulated by the help of three mechanisms: neurovascular coupling, cerebral vasoreactivity and cerebral autoregulation.

Neurovascular Coupling

Regional flow differences, for differing functional activity of brain regions so as to compensate the increased metabolic demand of the specific region is called neurovascular coupling. Alterations in this mechanism can impair the brain vasculature to divert sufficient blood flow to active regions causing neural dysfunction (3, 4). Astrocytes are in direct contact with endothelial cells on the vascular smooth muscle and they can release vasodilatory substances as needed (5).

Cerebral Vasoreactivity

Cerebral vasoreactivity, another component of cerebrovascular control is the high sensitivity of cerebral vasculature to changes in arterial CO2 and oxygen (O2) levels. Hypercapnia causes vasodilation and an increase in flow while hypocapnia leads to vasoconstriction. So, vasodilatation in response to hypercapnia clears CO2 off the brain circulation and conversely, vasoconstriction induced by hypocapnia attenuates the fall in brain pH (3).

Cerebral Autoregulation

Third mechanism, cerebral autoregulation helps to counteract fluctuations in systemic arterial pressure that can occur in daily activities. For instance, without effective cerebral autoregulation, sudden upright pos-
Heart failure as a risk factor for stroke: epidemiology

Heart failure (HF) is the second strongest independent risk factor for stroke after atrial fibrillation (AF) (8). Interestingly, a complex relation exists between HF and AF, for both, causing a tendency to other’s occurrence and a poorer clinical scenario, with an increased ischemic stroke risk when added to each other. An increased risk of venous thromboembolism, cardio-embolic stroke and sudden death occurs in approximately 30% of HF patients (9). Interestingly, in many studies reduced or preserved heart failure discrimination hasn’t been reported but it seems likely that more severely depressed reduced ejection fraction possesses further risk just like accompanying pulmonary hypertension and right heart failure (9). In a population based 30-year cohort study from Denmark incident HF patients were compared with age-sex-comorbidity matched general population controls. In this study, HF was associated with increased short and long term risk of all stroke subtypes suggesting that HF is a potent and persistent risk factor for stroke. During 31 days and 30 years risk of stroke were 1.5 to 2.1 fold for ischemic stroke, 1.4 to 1.8 fold for intracranial hemorrhage and 1.1 to 1.7 fold for subarachnoid hemorrhage (10). Importantly, in this study, authors take AF into consideration during follow-up and their analysis which makes the study more robust and valuable.

Among patients presenting with stroke or peripheral thromboembolism the prevalence of HF, especially HF with reduced ejection fraction (HFrEF) or left ventricular systolic dysfunction (LVSD) is quite frequent. About 14% of patients with stroke have HF and approximately 20% of the stroke patients have some evidence LVSD (ejection fraction-EF < 50%) (11,12). Data on thromboembolic risk in HF from large epidemiological studies is somewhat problematic in terms of reporting/discriminating about HFrEF and HF with preserved ejection fraction. Another confounding point is reporting about concomitant AF, not all studies deal with this important issue (9).

In the Rotterdam Study, among 7546 patients aged >55 years who were followed for 10 years, risk of ischemic stroke was increased more than fivefold in the first month of diagnosis of HF but this risk of ischemic stroke attenuated over time and returned to normal after six months (13). This finding contrasts with the Danish study reporting consistent and persistent risk throughout 30 years of follow up (10). Patients with HF also have a high rate of stroke recurrence and mortality after stroke (14, 15).

A well-known association exists between HF and venous thromboembolism (VTE), a two fold increase of VTE occurs with important outcomes for prognosis and death (16). Annual stroke rates of 1.1%–4.6% have been reported in HF trials, however many of these analysis included some patients with AF (9). The Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS) reported the highest annual cerebrovascular event rate of % 4.6 among HF trials, but this trial included patients with severe LVSD and a high prevalence of concomitant AF (17). An analysis of Vasodilator Heart Failure Trials I-II (V-HeFT I and II) reported an incidence 2.7% and 2.1% of thromboembolic events per year in patients who were not using oral anticoagulation (18).

An analysis from the SCD-HeFT trial (Sudden Cardiac Death in Heart Failure Trial) of patients with NYHA class II and III without AF reported a 4 year incidence of thromboembolism (mostly strokes) 4%. Rate of subgroups were 2.6% for patients randomised to amiodarone, 3.2 5 for patients randomized to an internal cardioverter defibrillator (ICD), and 6% for patients randomized to placebo (19). Of note, decreasing left ventricular ejection fraction (LVEF) was a significant predictor of thromboembolism (HR: 0.82; 95% CI: 0.69–0.97 per 5% increase in EF).

In an analysis of data on warfarin use in SOLVD study (Studies of Left Ventricular Dysfunction), the authors found that warfarin use was independently associated with significant reduction in all-cause mortality (adjusted HR: 0.76, 95% CI: 0.65–0.89; p=0.0006) and in the risk of death or hospital admission for HF (HR: 0.82, 95% CI: 0.72–0.93, p=0.0002). Reduction in risk was not significantly influenced age, NYHA functional class or etiology of HF, EF, AF (20).

There are limited data on the rate of stroke in patients with HFpEF. Some data from post-hoc analysis of large clinical HFpEF studies document similar rates. For instance, the I-PRESERVE study (Irbesartan in Patients with Heart Failure and Preserved Ejection Fraction) reported an annual rate of stroke as 0.8-0.9%, additionally 9% of all deaths were because of stroke (21). In the CHARM-Preserved study (Candesartan in Heart Failure Assessment of Reduction in Mortality and Morbidity) rate of fatal and non-fatal stroke was unrelated to EF (EF <22% 1.2%, EE 23-32% 1.4%, EF 33-42 1.4%, EF 43-52 1.3%, and EF >52% 1.5%).

Pathophysiology

Increased rates of thrombotic complications in patients with HF has well known pathophysiological basis. Pre-
cation to thrombogenesis is related with a combina-
tion of abnormal blood flow, abnormalities in the vessel
wall and abnormalities in the blood constituents itself.
The Virchow’s triad (22).
Especially, in the setting of reduced LVEF, dilated cham-
bers and a marked decrease in systolic function and a
tendency for stasis of blood and thrombosis occurs in
heart chambers. Blood flow abnormalities is common
in dilated aneurysmatic heart chambers. In patients
with large anterior myocardial infarctions- developing
an apical aneurysm it is widely accepted to use antico-
agulant therapy for 3 months post myocardial infarction
(MI) (9).
Another component of the Virchow triad is vessel wall.
Around half to two thirds of patients with HFrEF have
athero-thrombotic disease, underlying endothelial
damage/dysfunction might precipitate thromboembolic
complications. In patients with HF impaired synthesis
of endothelium derived nitric oxide may promote mono-
cyte and platelet adhesion to endothelium (23). Biologi-
cal markers of endothelial dysfunction and rheologic
markers of thrombogenicity-, a hypercoagulable state
indicators such as von Willebrand factor, thrombomod-
ulin, soluble e-selectin are found to be consistently ele-
vated in patients with HF (24–26).
A high prevalence of anemia and iron deficiency is re-
ported in patients with HF that may additionally predis-
pose to thrombosis (27). Elevated levels of erythropoi-
etin which is commonly found in anemic – iron deficient
patients, iron deficiency related reactive thromboem-
tosis, increased platelet aggregation as a result of
oxidative stress are the proposed components of iron
deficient anemic patients’ predisposition to thromboem-
bolic events (9, 28).

Heart failure and stroke: clinical evaluation

It is quite common for the clinical cardiologist to be
consulted by a neurologist for a stroke or transient is-
chemic attack (TIA) patient to evaluate the heart as a
source of embolic phenomenon. In such a patient with
non-valvular AF, the case is relatively easy- an appa-
rent cause of cardiac embolism. If the patient has no
sign and symptoms of heart disease, no hypertension,
and no diabetes mellitus and if ECG and chest x-ray are
normal, possibility of a cardiac embolic event is very
low. Especially, for a cryptogenic stroke case in a young
to middle aged patient, performing an echocardiogra-
phy to evaluate for a patent foramen oval should be un-
taken as well as a Holter rhythm study to exclude
paroxysmal atrial fibrillation or flutter. For an undeter-
minded etiology of stroke, it may be necessary to check
for intrinsic hypercoagulability test.
In a systematic review of embolic stroke of undeter-
mined source, the authors concluded that so as to de-
fine an embolic stroke as “undetermined source”, there
should be no major risk of cardioembolic source. In this
review, major sources for cardioembolism are defined
as follows; permanent or paroxysmal atrial fibrillation,
sustained atrial flutter, intracardiac thrombus, prosthet-
ic cardiac valve, atrial myxoma or other cardiac tumors,
mitral stenosis, recent myocardial infarction (<4 weeks),
LVEF <30%, valvular vegetations or infective endocar-
ditis (29).
Especially, for cryptogenic embolism a high index of
suspicion for PAF is prudent. Although we lack direct
studies from HF populations, one systematic review
demonstrated that PAF may be documented in 5% of
ischemic stroke patients using prolonged ECG record-
ings (9, 30).

Imaging

In an transthoracic echocardiographic (TTE) study,
intracardiac thrombi would seem as echogenic, dense,
heterogenous convex masses with clear margins. It
can appear as sessile or pedunculated, locates close
to thin dyskinetic ventricular segments or in the atrial
appendage. Devices, tumors, vegetations, artefacts may
resemble thrombi and a differential diagnosis should
be made as needed. Intravenous agitated saline or
transpulmonary contrast agents can help for diagnostic
differentiation (31). So as to reduce cardioembolic risk
anticoagulation is essential but age of the thrombus,
echocardiographic appearance of an endothelized or
mobility would affect treatment decisions and respon-
sible clinician should proceed accordingly.
In some certain circumstances, a transesophageal
echo (TEE) study may help to have additional diagno-
sic insights to TTE. TTE may be limited by suboptimal
images (particularly in obese patients), restricted field
for imaging cardiac apex and left atrial appendage. In
a series of ischemic stroke patients the authors have
performed TEE and the have explored thrombus in 25%
of patients (32).
Other than a visible thrombus, well known potential car-
dioembolic sources are; catheter leads, central lines,
prosthetic valves, patent foramen ovale, spontaneous
echocontrast, thin mobile mitral strands, mitral steno-
sis, LV systolic and diastolic dysfunction and perhaps
pulmonary vein ablation-isolation (33). In a study of is-
chemic stroke patients, patients with coronary artery
disease (CAD), ECG evidence of ischemia or LVSD,
large strokes, AF were more likely to have intracardiac
thrombus on TOE (32). Thus, it is conceivable that clini-
cal clues of heart disease and LV dysfunction on TTE
may help the clinician to proceed with a TOE depending
on the individual circumstances.
In some patients, especially for morbid obese and
those with poor echo image quality ultrafast computed
tomography or magnetic resonance (MR) imaging may
be helpful to detect intracardiac thrombus since they
are less operator dependent and have high spatial and
temporal resolution with better tissue characterization.
In one MR series, using gadolinium enhanced cardiac MR authors reported ventricular thrombi in 21% of patients with ischemic cardiomyopathy or prior MI. Of note, in less than half of patients with cardiac thrombus TTE was negative and in 5% of patients TTE gave false positive images (34). The difficulty with MR is that it’s not widely available and expertise and experience is important.

Heart failure – cerebral ischemia, prevention/treatment

In HF, a clinical condition that is a predisposing factor for thromboembolic events, antithrombotic treatment could be expected to prevent thromboembolic events. However, in order to have a net risk/benefit ratio of prevention of thromboembolism vs major bleeding-intracranial hemorrhage we need relevant reliable data. Interestingly, many of the HFrEF patients due to CAD would already be receiving an antiplatelet agent, mainly acetylsalicylic acid for prevention of atherothrombotic complications of CAD, which might also help to prevent stroke. Making issues even more complex, for instance, for registry studies is acute coronary syndromes and or implantation of drug eluting stents which would require dual antiplatelet therapy that might also help prevention of ischemic strokes. As reviewed above, unnoticed PAF may be the cause of ischemic stroke, a possibly confounding variable for clinical studies. We don’t have large, double blind, placebo controlled, prospective studies of HF patients in sinus rhythm to search for efficacy of antiplatelet agents in reducing ischemic stroke risk (9).

Comment of European Society of Cardiology (ESC) HF guidelines published in 2016 on oral anticoagulant and antiplatelet agents is as follows; no antiplatelet therapy other than patients with accompanying CAD whereas there is a substantial risk of gastrointestinal bleeding particularly in elderly patients, in patients with AF and venous thromboembolism oral anticoagulant agents should be used (35). Anticoagulant agents may potentially be considered for intracardiac thrombus, prolonged immobilization/bed rest and for patients accompanying right heart failure and pulmonary hypertension (9).

An important question that has been tried to be addressed by the medical community in the field is the issue “preventing stroke in heart failure patients with sinus rhythm”. Recently, a systematic review and me-

Table 1. Baseline characteristics of patients with HF in sinus rhythm randomised to anticoagulation therapy or control

Characteristics	WASH (37)	HELAS (38)	WATCH (39)	WARCEF (40)	COMMANDER-HF (41)
Publication year	2004	2006	2009	2012	2018
Study design	Open label, controlled	Double blind randomised placebo controlled	Double blind, randomised, double dummy controlled for antiplatelet or open label warfarin	Double blind, randomised, double dummy controlled trial	Double blind, randomised, placebo controlled trial
Main inclusion criteria	HF requiring diuretic	HF NYHA II-IV	Symptomatic HF, diuretic + ACEI > 60 days	HF NYHA I-IV	HF ≤ 3 months duration, CAD, recent WHF, elevated natriuretic peptides
LVFE inclusion criteria	≤35%	< 35%	≤35%	≤35%	≤40%
Randomised (n)	279	197	1587	2305	5022
Therapies evaluated	Warfarin vs. aspirin vs. no antiplatelet	Warfarin vs. placebo vs. aspirin	Warfarin vs. aspirin vs. clopidogrel	Warfarin vs. aspirin	Rivaroxaban vs. placebo
Target INR	2-3	2-3	2.5-3	2.3-5	NA
Aspirin dose (mg/day)	300	325	162	325	NA
Location	USA and UK	Greece, Cyprus, Yugoslavia, Romania, Bulgaria, Poland and Georgia	USA, UK and Canada	North America, Europe, Argentina	Europe, North America, Latin America, Asia-Pacific, South Africa
Primary end point	Composite outcome of death, non-fatal MI, non-fatal stroke	Composite of non-fatal stroke, peripheral or pulmonary embolism, MI, rehospitalization, WHF, ACM	Composite of ACM**, non-fatal MI, non-fatal stroke	Time to first event in a composite end point of ischemic stroke, ICH, ACM	Composite of ACM, non-fatal MI and non-fatal stroke

ACM: All-cause mortality, WHF: Worsening HF, NA: Not applicable
ta-analysis of randomized controlled trials on oral anticoagulation versus antiplatelet or placebo for stroke prevention in patients with HF and sinus rhythm was published (36). The authors focused on five studies, summarized in Table 1. They concluded that oral anticoagulation is associated with a considerable reduction of stroke risk, which is offset by a significant risk in major bleeding. The authors calculated that for every 1000 patients treated with oral anticoagulation rather than antiplatelet or no antithrombotic treatment for 2.21 years, 13 strokes are prevented but 20 additional major hemorrhages occurred without significant decrease in death rates (36) (Table 1).

Beggs et al (42) recently performed a similar review and meta-analysis of anticoagulation therapy in heart failure and sinus rhythm. They also pointed out the same five clinical randomised trials to address the issue. These trials were the Warfarin/Aspirin Study in Heart Failure (WASH) trial (37), the HEart failure Long term Antithrombotic Study (HELAS) (38), the Warfarin and Antiplatelet Therapy in Chronic Heart Failure (WATCH) (39), Warfarin versus Aspirin in Reduced Cardiac Ejection Fraction (WARCEF) (40), Study to Assess the Effectiveness and Safety of Rivaroxaban in Reducing the Risk of Death, MI, or Stroke in patients with HF and CAD Following an Episode of Decompensated HF (COMMANDER HF) (41). In this metaanalysis they found no effect on all-cause mortality, no effect on nonfatal MI. There was no effect of anticoagulation therapy on (re)hospitalisation for HF. There was a significant decrease in non-fatal stroke which was offset by major hemorrhage.

COMMANDER HF (41) was the largest study in the meta-analysis performed by Beggs et al. Also, it was the only randomised trial with a non-vitamin K antag-
nist oral anticoagulant (NOAC) in the given context of HF-sinusual rhythm patients. CAD-HF patients received rivaroxaban 2.5 mg bid or placebo in addition to their antiplatelet therapy. The primary outcome, a composite of first occurrence of death, stroke, or MI was negative.

Heart Failure – Sinus Rhythm – Risk of Stroke: Need for Identifying a Higher Stroke Risk Subgroup?

Current data, in preventing stroke, using oral anticoagulants, in HF with sinus rhythm without well-known compelling indications (previous thromboembolism, intracardiac thrombus etc.) is negative. Some authors advocate using some kind of risk models to identify higher risk patients so that use of oral anticoagulans would be justified (9). A nationwide prospective cohort study tried to address this issue (43). The authors used well-known CHA2DS2VASc stroke risk prediction model of AF to predict ischemic stroke, thromboembolism, and death in patients with heart failure with or without atrial fibrillation. They concluded that among patients with incident HF with or without AF, the CHA2DS2VASc score was associated with risk of ischemic stroke, thromboem-

Conclusion

Cerebral blood flow abnormalities occur in HF. HF is a major risk factor for thromboembolic events. Use of oral anticoagulants in HF are justified in their well-known indications namely AF, history of a thromboembolic event and intracardiac thrombi.

REFERENCES

1. Elia M. Organ and tissue contribution to metabolic rate. New York: Raven Press, Ltd; 1992.
2. Tarumi T, Zhang R. Cerebral blood flow in normal aging adults: Cardiovascular determinants, clinical implications and aerobic fitness. J Neurochem 2018; 144(5): 595–608. https://doi.org/10.1111/jnc.14234
3. Oztruk ED, Tan CA. Human cerebrovascular function in health and disease: insights from integrative approaches. Journal of Physiological Anthropology 2018; 37: 4–11.
4. Giraud H, Iadecola C. Neurovascular coupling in the normal brain and in hypertension, stroke and Alzheimer disease. J Appl Physiol 2008; 100(1): 328–35. https://doi.org/10.1152/japphysiol.00966.2005
5. Jakovcevic D, Harder DR. Role of astrocytes in matching blood flow to neuronal activity. Curr Top Dev Biol 2007; 79: 75–97. https://doi.org/10.1016/S0070-2153(06)79004-4
6. Erkelenz CD, Haye van der Wal, Bauke M. De Jong et al. Dynamics of cerebral blood flow in patients with mild non ischaemic heart failure. European Journal of Heart Failure 2017; 19: 261–268. https://doi.org/10.1002/ejhf.660
7. Calsda JR, Panerai RB, Haunton VJ, et al. Cerebral blood flow autoregulation in heart failure. Am J Physiol Regul Integr Comp Physiol 2017; 312: R108–R113. https://doi.org/10.1152/ajpregu.00361.2016
8. Appelros P, Nydevik I, Seiger A, et al. Predictors of severe stroke: influence of preexisting dementia and cardiac disorders. Stroke 2002; 33: 2357–62. https://doi.org/10.1161/01.STR.0000030318.99727fa
9. Lip GYH, Ponikowski p, Andreotti F, et al. Thromboembolism and antithrombotic therapy for heart failure in sinus rhythm. A joint consensus document from the ESC heart failure association and the ESC working group on thrombosis. European Journal of Heart Failure 2012; 14: 681–95. https://doi.org/10.1093/eurjhf/hfs073.
10. Adelborg K, Szepligeti S, Sundboll J, et al. Risk of stroke in patients with heart failure. A population based 30 year cohort study. Stroke 2017; 48: 1161–68. https://doi.org/10.1161/strokeaha.116.016022
11. Appelros P, Nydevik I, Vitanen M. Poor outcome after first ever stroke–predictors for death, dependency and recurrent stroke within the first year. Stroke; 2003; 34: 122–26. https://doi.org/10.1161/01.STR.0000047852.05842.3c
12. Hays AG, Sacco RL, Rundek T, et al. Left ventricular systolic dysfunction and the risk of ischemic stroke in a multiethnic population. Stroke 2006; 37: 1715–19. https://doi.org/10.1161/01.STR.0000227121.34717.40
13. Alberts VP, BosMJ, Koudstaal PJ, et al. Heart failure and the risk of stroke: the Rotterdam study. Eur J Epidemiol 2010; 25: 807–12. https://doi.org/10.1007/s10654-010-9520-y
14. Petty GW, Brown RD Jr, Whisnant JP, et al. Survival and recurrence after first cerebral infarction: a population based in Rochester, Minnesota, 1975 through 1989. Neurology 1998; 50: 208–16. https://doi.org/10.1212/wnl.50.1.208

15. Socco RL, Shi T, Zamanilo M, et al. Predictors of mortality and recurrence after hospitalized cerebral infarction in an urban community: the Northern Manhattan Stroke study. Neurology 1994; 44: 626–34. https://doi.org/10.1212/wnl.44.4.626

16. Beemath A, Stein PD, Skaf E, et al. Risk of venous thromboembolism in patients hospitalized with heart failure. Am J Cardiol 2006; 98: 793–95. https://doi.org/10.1016/j.amjcard.2006.03.064

17. The CONSENSUS trial study Group. Effect of enalapril on mortality in severe heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med 1987; 316: 1429–35. https://doi.org/10.1056/NEJM198706043162301

18. Dunkman WB, Johnson GR, Carson PE, et al. Incidence of thromboembolic events in congestive heart failure trial. The V–HeFT VA Cooperative Studies Group. Circulation 1993; 87(Suppl): V94–V101.

19. Freudenberger RS, Hellkamp A, Halperin JL, et al. Risk of thromboembolism in heart failure: an analysis from the Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT). Circulation 2007; 115: 2637–41. https://doi.org/10.1161/CIRCULATIONAHA.106.661397

20. Al-khodra AS, salem DN, Rand WM, et al. Warfarin anticoagulation and survival: a cohort analysis from the Studies of Left Ventricular Dysfunction. J Am Coll Cardiol 1998; 31: 749–53. https://doi.org/10.1016/s0735-1097(98)00006-0

21. Massie BM, Carson P, McMurray JJ, et al. I-PRESERVE investigators. Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med 2008; 359: 2456–67. https://doi.org/10.1056/NEJMoa0805450

22. Virchow R. GesammelteAbhandlungenzur Wissenscaftlichen-Medizin. Frankfurt Meidinger Sohn & Co; 1856. pp. 219–732.

23. Fisher D, Rossa S, Landmesser U, et al. Endothelial dysfunction in patients with chronic is independently associated with increased incidence of hospitalization, cardiac transplantation or death. Eur Heart J 2006; 26: 65–69. https://doi.org/10.1093/eurheartj/ehi001

24. Gibbs CR, Blann AD, Watson RD, et al. Abnormalities of hemorheological, endothelial, and platelet function in patients with chronic heart failure in sinus rhythm: effects of angiotensin-converting enzyme inhibitor and beta blocker therapy. Circulation 2001; 103: 1746–51. https://doi.org/10.1161/01.ctr.103.17.1746

25. Chong AY, Freestone B, Patel Lim H, et al. Endothelial activation, dysfunction and damage in chronic heart failure and the relation to brain natriuretic peptide and outcomes. Am J Cardiol 2006; 97: 671–75. https://doi.org/10.1016/j.amjcard.2005.09.113

26. Alehagen U, Dahlstrom U, Linhahl TL, et al. Elevated D dimer levels is an independent risk factorforcardiac death in outpatients with symptoms compatible with heart failure. Thromb He most 2004; 92: 1250–58.

27. Jankowska EA, Rozentyrt P, Witkowska A, et al. Iron deficiency: an ominous sign in patients with systolic chronic heart failure. Eur Heart J 2010; 31: 1872–78. https://doi.org/10.1093/eurheartj/ehq158

28. Besarab A, Höf WH, Silverberg D. Iron metabolism, iron deficiency, thrombocytosis and the cardiorenal anemia syndrome. Oncologist 2009; 14(Suppl 1): 22–33. https://doi.org/10.1634/theoncologist.2009-51-22

29. Hart RG, Catanese L, Kanjana SP, et al. Embolic stroke of undetermined source. A systematic review and clinical update. Stroke 2017; 48: 867–72. https://doi.org/10.1161/STROKEAHA.116.016414

30. Liao J, Khalid Z, Scallan C, et al. Non invasive cardiac monitoring for detecting paroxysmal atrial fibrillation or flutter after acute ischemic stroke: a systematic review. Stroke 2007; 38: 2935–40. https://doi.org/10.1161/STROKEAHA.106.478685

31. Mansencal N, Revault-d’Allonnes L, Pelage JP, et al. Usefulness of contrast echocardiography for assessment of intracardiac masses. Arc Cardiosvas Dis 2009; 102: 177–83. https://doi.org/10.1016/j.acvd.2008.12.007

32. Sen S, Laowatana S, Lima J, et al. Risk factors for intracardiac thrombus in patients with recent ischemic cerebrovascular events. J Neurol Neurosurg Psychiatry 2004; 75: 1421–25. https://doi.org/10.1136/jnp.2004.038687

33. Lee RJ, Bartzokis T, Yeeh TK, et al. Enhanced detection of intracardiac of cerebral emboli by transesophageal echocardiography. Stroke 1999; 22: 734–39. https://doi.org/10.1161/01.str.22.6.734

34. Mollet NR, Dymarkowski S, Volders W, et al. Visualization of ventricular thrombi with contrast-enhanced magnetic imaging in patients with ischemic heart disease. Circulation 2002; 106: 2873–76. https://doi.org/10.1161/cir.0000000000000161

35. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2016; 37(27): 2129–2200. https://doi.org/10.1093/eurheartj/ehw128.

36. Nttacos G, Vennmos K, Lip GYH. Oral anticoagulation versus antiplatelet or placebo for stroke prevention in patients with heart failure and sinus rhythm: systematic review and metaanalysis of randomised controlled trials. International Journal of Stroke 2019; 14(9): 856–61. https://doi.org/10.1111/17474930.10877296.

37. Cleland JG, Findlay I, Jafri S, et al. The Warfarin/Aspirin study in heart failure (WASH): a randomised trial comparing antithrombotic strategies for patients with heart failure. Am Heart J 2004; 148: 157–64. https://doi.org/10.1016/j.ahj.2004.03.010.

38. Kokkinos DV, Haralabopoulos GC, Kostis JB, et al. Efficacy of antithrombotic therapy in chronic heart failure: the HELAS study. Eur J Heart Fail 2006; 8: 428–32.

39. Massie BM, Collins JF, Ammon SE, et al. Randomised trial of warfarin, aspirin and clopidogrel in patients with chronic heart failure: the Warfarin and Antiplatelet Therapy in Chronic Heart Failure (WATCH) trial. Circulation 2009; 119: 1616–24. https://doi.org/10.1161/CIRCULATIONAHA.108.801753

40. Homma S, Thompson JL, Pucillo CM, et al. Warfarin and aspirin in patients with heart failure and sinus rhythm. N Engl J Med 2012; 366: 1859–69. https://doi.org/10.1056/NEJMoa1202299

41. Zannad F, Anker SD, Byra WM, et al. Rivaroxaban in patients with heart failure, sinus rhythm and coronary disease. N Engl J Med 2018; 379: 1332–42. https://doi.org/10.1056/NEJMoa1808848

42. Beggs SA, Rorth R, Gardner RS, et al. Anticoagulation therapy in heart failure and sinus rhythm: a systematic review and metaanalysis. Heart 2019; 105: 1325–34. https://doi.org/10.1136/heartjnl-2018-314381

43. Melgaard L, Gorst-Rasmussen A, Lane DA et al. Assessment of the CHA2DS2-VASc score in predicting ischemic stroke, thromboembolism, and death in patients with heart failure with and without atrial fibrillation. JAMA 2015; 314(10): 1030–38. https://doi.org/10.1001/jama.2015.10725