Effects of Exercise Intervention on Peripheral Skeletal Muscle in Stable Patients With COPD: A Systematic Review and Meta-Analysis

Peijun Li¹, Jian Li¹, Yingqi Wang¹, Jun Xia* and Xiaodan Liu²,3*

¹ Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China, ² School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China, ³ Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China

Objectives: Peripheral skeletal muscle dysfunction is an important extrapulmonary manifestation of chronic obstructive pulmonary disease (COPD) that can be counteracted by exercise training. This study aimed to review the effect of three major exercise training modalities, which are used in pulmonary rehabilitation to improve on skeletal muscle mass, function, and exercise capacity in COPD.

Methods: PubMed, Embase, EBSCO, Web of Science, and the PEDro database were searched on April 25, 2020. Only randomized controlled studies published in English evaluating the effects of exercise interventions on peripheral skeletal muscle mass, strength, and exercise capacity in stable COPD patients were included. The quality of included studies was evaluated using the PEDro scale. The mean difference (MD) or the standardized mean difference (SMD) with 95% CI was calculated to summarize the results. Subgroup meta-analysis was used to investigate the effects of different exercise training modalities and different outcome measures. The Grading of Recommendations Assessment, Development, and Evaluation guidelines were used to rate evidence quality.

Results: A total of 30 randomized controlled trials involving 1,317 participants were included. Data from trials investigating endurance exercise (EE), resistance exercise (RE), and combined aerobic and resistance exercise (CE) were pooled into a meta-analysis, and the differences compared with the non-exercising COPD control were improvement in the muscle strength and exercise capacity in stable COPD patients. Subgroup meta-analysis for different exercise training modalities showed that RE significantly improved muscle strength (SMD = 0.6, 95% CI 0.35–0.84, I² = 61%), EE and CE significantly increased VO₂peak (EE: MD = 3.5, 95% CI 1.1–5.91, I² = 92%; CE: MD = 1.66, 95% CI 0.22–3.1, I² = 1%). Subgroup meta-analysis for different outcome measures showed that only isotonic strength was improved after exercise interventions (SMD = 0.89, 95% CI 0.51–1.26, I² = 71%).

Conclusion: Moderate evidence supports that exercise training in stable COPD patients has meaningful and beneficial effects on peripheral skeletal muscle strength and exercise capacity. Peripheral skeletal muscle shows a higher response to RE, and the isotonic test
INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is a common disease characterized by persistent respiratory symptoms and expiratory flow limitation (1). Furthermore, many patients with COPD experience systemic symptoms, including impaired cardiopulmonary and skeletal muscle function (2, 3). Skeletal muscle dysfunction is one of the significant systemic manifestations of COPD, characterized by the loss of muscle mass, a transition of the fiber type proportion, a decrease in the capillary to fiber ratio, and muscle strength and endurance (4, 5). In most patients with COPD, the observed decrease in muscle strength is proportional to muscle mass loss, suggesting that the onset of skeletal muscle dysfunction is caused by paralleled chronic inactivity and muscle deconditioning rather than myopathy (6). The existence of dyspnea in COPD decreases physical activity, and the decrease in physical activity induces and accelerates cardiopulmonary and skeletal muscle dysfunction, worsening the dyspnea in patients, forming a vicious cycle that causes further deconditioning on COPD (7). Recently, lower limb muscle function has been associated with exercise capacity in COPD (8). Previous studies have confirmed that skeletal muscle dysfunction is an additional important contributor to COPD exercise restriction and function impairments (9, 10), and it is closely related to the quality of life, readmission rate, and mortality (11, 12).

Pulmonary rehabilitation is a comprehensive management program designed for COPD and has significant clinical effects in improving dyspnea, quality of life, and exercise capacity (1). As the cornerstone of pulmonary rehabilitation, exercise training can effectively reverse or at least stabilize the loss of skeletal muscle mass and strength in patients with COPD, and it is considered currently the most effective non-pharmaceutical intervention for COPD skeletal muscle dysfunction (13). The American Thoracic Society/European Respiratory Society (ATS/ERS) statement provided a short overview of the effects of exercise interventions on the muscle function and mass in COPD, showing that exercise interventions can improve the morphology and function of COPD skeletal muscle (12), but the included literatures are extensive and heterogeneous. Another international guideline described and analyzed the effects of different exercise modalities in COPD skeletal muscle dysfunction and provided a GRADE scale for evidence quality (4). In 2018, a review included 70 English language literature to be analyzed and concluded that exercise intervention could improve COPD skeletal muscle strength, endurance, and mass, despite the fact that intervention programs and outcome measures were heterogeneous (14). Therefore, although previous international guidelines and recent reviews have consistently concluded that exercise training improves COPD skeletal muscle dysfunction, it is still difficult to clarify the degree of real benefit due to the diversity and heterogeneity of exercise intervention programs and outcome measures. Previous meta-analysis of exercise in COPD explored the effects of exercise capacity (15), endurance exercise (EE) vs. RE (16), and combined aerobic and resistance exercise (CE) vs. EE on lower limb muscle strength and exercise capacity (17). However, these studies focused on the effects of single exercise modality or the compared effects of two exercise modalities. There is still a lack of comprehensive quantitative effect of exercise on peripheral skeletal muscle mass, strength, and exercise capacity in COPD.

In this systematic review and meta-analysis, the effects of exercise interventions on peripheral skeletal muscle mass, strength, and exercise capacity in COPD were determined. The characteristics of different exercise modalities were further discussed to provide a theoretical reference for developing a targeted COPD exercise rehabilitation program.

METHODS

Search Strategy and Selection Criteria

This systematic review and meta-analysis was registered (PROSPERO registration number: CRD42020164868) and conducted according to the preferred reporting items for systematic reviews and meta-analysis (PRISMA) recommendations (18). According to the principle of population intervention comparison outcomes, the inclusion criteria were as follows: (a) participants diagnosed with stable COPD, and without gender and age restrictions; (b) EE and or RE was used for intervention; (c) a comparable control group applied with other treatments, including health education and sham training;
(d) outcomes including skeletal muscle mass related parameters (body mass index, BMI; fat-free mass index, FFM; and cross-sectional area, CSA), strength-related parameters (isometric, isotonic, and isokinetic strength), endurance exercise capacity (6-min walking distance, 6MWD), and peak exercise capacity (peak oxygen consumption, VO_{2peak}); and (e) randomized controlled study published in English. The exclusion criteria were as follows: (a) the immediate response to a single exercise test or exercise session was studied; (b) the follow-up effects of previous exercise program were studied; (c) traditional Chinese exercise and yoga were used for interventions; (d) animal trials, observational trials, expert opinions, literature reviews, comments, and letters were involved; (e) regular exercise programs were utilized in control groups (e.g., breath training, ≥ twice a week); and (f) data could not be extracted.

Electronic searches of PubMed, Embase, EBSCO, Web of Science, and PEDro database were conducted from inception to April 25, 2020 using Medical Subject Headings (MeSH) terms and free-text keywords. In addition to the PEDro database, the following search terms were used: (COPD OR chronic obstructive pulmonary disease OR chronic obstructive lung disease OR chronic obstructive airway disease) AND (exercise OR exercise training OR rehabilitation OR pulmonary rehabilitation OR aerobic exercise OR endurance exercise OR resistance exercise OR strength training OR combined exercise) AND (muscle OR skeletal muscle). Search filters were applied, including article type (randomized controlled trials), species (humans), and language (English). In the PEDro database, the search terms were as follows: topic (chronic respiratory disease), method (clinical trial), therapy (fitness training), and abstract and title (COPD). Searches were supplemented by reviewing the reference lists of the included studies, previous review, meta-analysis, and guidelines.

To determine the eligibility of identified studies, two investigators independently conducted the process of study selection. Cohen’s kappa was used to quantify the interrater agreement. Discrepancies of opinion between authors about study eligibility were resolved through discussions with a third investigator.

Data Analysis
Two investigators independently extracted data on study design, sample characteristics, intervention programs, and effects of exercise from included studies. Discrepancies were resolved through discussions with a third investigator. The studies were described in terms of study design (sample size, and PEDro score), sample characteristics (age, sex, FEV1%pred for forced expiratory volume in 1 s, and BMI), intervention programs (site, exercise modality, intensity, frequency, and duration), effects of exercise (outcome measures and change data), and adherence to the program. For trials with more than one exercise intervention group, the effects of each exercise intervention were evaluated. For trials with more than one outcome measures, the data of each outcome measures was included and analyzed. For trials with multiple time points, only the pre-intervention and post-intervention outcomes were extracted.

Predetermined primary outcomes included skeletal muscle mass (BMI, FFM, and CSA), strength (isometric, isotonic, and isokinetic strength), endurance exercise capacity (6MWD), and peak exercise capacity (VO_{2peak}). Secondary outcomes were attrition rate and severe adverse events. The change in mean and SD were calculated for each outcome and used to estimate the effects of the exercise. Summary measures for continuous outcomes were mean difference (MD) or standard mean difference (SMD) with 95% CI, and odds ratio (OR) with 95% CI for the attrition rate.

Review Manager (version 5.3) provided by Cochrane was used for meta-analysis. Random-effects model was used for analyzing. The I^2 statistic, representing the percentage of variation across studies due to heterogeneity, was used to assess heterogeneity between studies. Planned subgroup analyses were conducted in terms of exercise modalities (EE, RE, and CE) and outcome measures (isometric, isotonic, and isokinetic strength test). Sensitivity analyses were performed to check the heterogeneity source based on the intervention program and characteristics of the participants when subgroup analysis could not determine the source of substantial heterogeneity. Visual inspection of funnel plots and Egger’s test were undertaken in Stata (version 15) to assess publication bias. Trim and fill method was used when there was a publication bias. The methodological quality of randomized controlled trial (RCTs) was assessed using the physiotherapy evidence database (PEDro) scale. When available, the PEDro rating and score were obtained from the PEDro database. Otherwise, two investigators independently rated and scored the publications; discrepancies were resolved through discussions with a third investigator. The PEDro scale includes 11 items with 10 scores, and a higher score means better quality (19). It should be noted that the eligibility criteria item does not contribute to the total score. PEDro scale 9–10 was considered high quality, 6–8 was generally high quality, 4–5 was moderate quality, and <4 was low quality. The quality of evidence was assessed according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) recommendations (limitation of study design, inconsistency, indirectness, imprecision, and publication bias) (20).

RESULTS
A total of 2,665 records were identified, and 30 RCTs were included in the quantitative analysis (Figure 1). A strong agreement was observed with respect to the interrater reliability of study selection (kappa = 0.89, P < 0.001). The PEDro scale of all included studies is 5.7 ± 1.4 (Supplementary Table S1), and the characteristics of participants of each included study are reported in Table 1. A total of 1,317 participants with stable COPD (age range from 46 to 79.8 years) were included, and 675 (51%) participants accepted exercise intervention. According to the criteria of Global strategy for the diagnosis, management, and prevention of COPD (GOLD), majority of the participants showed moderate to severe airflow restriction (30% ≤ FEV1%pred ≤ 80%), and four studies did not provide the
baseline data of FEV1%pred (27, 30, 38, 41). Most participants were normal to overweight (BMI: 18.5–29.9 kg/cm²), while five studies did not provide this data (27, 38, 42, 49). In addition, exercise intervention programs of all the included studies are presented in Table 2. Most trials were conducted in a hospital, at home, or at both the places, while six studies did not report a place (31, 35, 38, 40, 45, 50). Most studies applied exercise program duration ranges from 6 to 12 weeks, while some studies applied 14 weeks (22), 16 weeks (47), and 24 weeks (38). EE was mainly performed in the form of treadmill, cycling, or walking with a moderate to vigorous exercise intensity (Borg 4–6, even exhaustion, despite indexes used to assess were various) for two to three sessions per week. RE was mainly performed on weight machines, free weights, and elastic bands through the movements of the upper and lower limbs. One study performed RE only through the upper limbs (35) and three studies conducted RE only through the lower limbs (31, 33, 34). Exercise intensity of RE ranged from 50 to 85% 1-repetition maximum (1RM) or Borg 4–6, and exercise frequency was two to three sessions per week. The performance of CE was consistent with EE and RE. The exercise intensity of EE was Borg 4–6, while the exercise intensity of RE was often unclear. The characteristics of muscle strength testing relative to the variety of muscle strength testing methods and programs are summarized in Table 3.

Five studies (21, 31, 32, 34, 47) provided data on skeletal muscle mass, assessed by mid-thigh CSA, BMI, FFMI, and total lean mass. In the meta-analysis, the estimated results showed that exercise intervention did not have a significant effect on changes in BMI (MD = −0.11, 95% CI: 1.13–0.91, I² = 84%, Figure 2). Considering the high heterogeneity detected, we excluded studies with PEDro < 6, and found a significant improvement in BMI (MD = 0.26, 95% CI 0.23–0.29, I² = 0%). In addition, a CE
 TABLE 1 | Characteristics of included studies.

Author, Country	I/C sample size/Male%	Age	FEV1%pred	BMI	Outcome	Attrition number*	PEDro			
Endurance exercise										
Alcazar et al. (21), Spain	14(79%)/15(87%)	77.7 ± 7.9/79.6 ± 6.4	47.4 ± 18.1/58.7 ± 15.2	28.8 ± 3/32.5 ± 5.9	Mid-thigh CSA	6MWD	5/1* 4			
Barakat et al. (22), France	40(85%)/40(83%)	63.7 ± 11.9/65.9 ± 10.3	41.9 ± 2.6/43.3 ± 3.6	24.2 ± 6.4/25.6 ± 4.3	/	/	6MWD	5/4* 6		
Borghi-silva et al. (23), USA	20(65%)/14(86%)	67 ± 10/67 ± 10	33 ± 9/35 ± 11	25 ± 4/24 ± 5	/	/	6MWD	0/6 5		
Borghi-silva et al. (24), Brazil	10(70%)/10(50%)	67 ± 7/66 ± 10	32 ± 11/35 ± 12	23.4 ± 4.4/27.2 ± 4.7	/	/	6MWD	7/5 5		
de Souto Araujo et al. (25), Brazil	13(62%)/11(73%)	56.9 ± 7.9/71.1 ± 10.1	39.2 ± 11.4/45.1 ± 12.6	30 ± 10.1/24.4 ± 6.7	/	/	6MWD	1/3 4		
Gallo-Silva et al. (26), Brazil	10/9	66.3 ± 6.5/65.5 ± 9.5	47.9 ± 20.5/47.8 ± 26.2	23.2 ± 2.6/25.7 ± 6.1	/	/	6MWD	2/3 6		
Mehri et al. (27), Iran	20(55%)/18(39%)	52.1 ± 10.7/52.17 ± 11.6	/	/	/	/	6MWD	0/0 5		
Petersen et al. (28), Denmark	9(22%)/10(40%)	67 ± 3/66 ± 3	33 ± 5/30 ± 4	23 ± 2/26 ± 2	/	/	VO2 max	0/4 5		
Pradella et al. (29), Brazil	29(79%)/15(87%)	62.4 ± 10.7/65.3 ± 8	43.9 ± 16.2/54 ± 22.2	25.2 ± 5/26.7 ± 5.3	/	/	6MWD	3/5 3		
Wyono et al. (30), Indonesia	27(93%)/29(96%)	64.3 ± 6.3/67.2 ± 4.5	/	/	/	/	6MWD	3/1 5		
Resistance exercise										
Casaburi et al. (31), USA	12(100%)/12(100%)	68.9 ± 9.8/68.7 ± 8.7	35.9 ± 9.2/38.6 ± 12.1	27.57/26.31	Total lean mass	Leg press	VO2 max	1/1 5		
Clark et al. (32), Scotland	26(58%)/17(59%)	51 ± 10/46 ± 11	76 ± 23/79 ± 23	26 ± 4/26 ± 4	BMI	Quadriceps	VO2 max	5		
Chen et al. (33), China	25(88%)/22(68%)	69.04 ± 8.07/64.95 ± 11.59	54.49 ± 23.62/54.93 ± 25.58	23.86 ± 3.9/24.15 ± 3.93	/	Quadriceps	6MWD	4/4 6		
Hoff et al. (34), USA	6(67%)/6(67%)	62.8 ± 1.4/60.6 ± 3	32.9 ± 3.3/39.5 ± 6.4	26.27/26.65	BMI	Leg press	VO2 max	0/0 6		
Janaudis-Ferreira et al. (35), Canada	17(53%)/19(37%)	67 ± 11/67 ± 11	37.8 ± 16.2/32.5 ± 14.1	27.9 ± 7.9/25.7 ± 8.2	/	Biceps	Triceps	/	4/1* 9	
Nyberg et al. (36), Sweden	22(55%)/22(50%)	69 ± 5/68 ± 6	59 ± 11/55 ± 15	26 ± 4/25 ± 5	/	Shoulder flexion	Knee extension	6MWD	2/2* 8	
O’shea et al. (37), Australia	27/27	66.9 ± 7/68.4 ± 9.9	49 ± 25/52 ± 22	25.5 ± 5.1/27.8 ± 7.9	/	Knee extension	Hip abduction	6MWD	7/3* 7	
Thabitha et al. (38), India	30	/ / / / / / /	/	/	/	/	6MWD	VO2 max	/	4
Simpson et al. (39), Canada	14(35%)/14(71%)	73 ± 4.8/70 ± 5.7	39.5 ± 18.96/39.2 ± 21.39	/	/	Elbow flexion	Quadriceps	6MWD	3/3 6	
Zamborn-Ferrarei et al. (40), Spain	14(100%)/8(100%)	68 ± 7/69 ± 5	48 ± 12/39.7 ± 5	28.5 ± 3.9/25.7 ± 4.6	/	Leg press	Chest press	6MWD	1/1 7	
Combined exercise										
Cameron-Tucker et al. (41), Australia	43(53%)/41(54%)	64.5 ± 9.3/67.1 ± 9.41	/	/	28.4 ± 7.63/29.7 ± 6.5	6MWD	5/10* 6			
Emery et al. (42), USA	30(50%)/24(42%)	65.4 ± 6.4/67.4 ± 5.9	43 ± 18/43 ± 18	/	/	VO2 max	4/2* 6			

(Continued)
program significantly improved FFMI ($P = 0.01$) (47), an EE program significantly improved the mid-thigh CSA (+4.5%, $P < 0.05$) of elderly patients with COPD (age: 77.7 ± 7.9 years old) (21), an RE program only found an increasing trend in the total lean mass (31). A total of 13 studies (21, 31–37, 39, 40, 45, 47, 48) with 27 data on skeletal muscle strength were provided, demonstrating a significant improvement after exercise intervention (SMD = 0.58, 95% CI 0.21–0.95, $I^2 = 89\%$). Considering the high heterogeneity detected, we first excluded studies with PEDro < 6, and found a consistent result with high heterogeneity (SMD = 0.62, 95% CI 0.19–1.05, $I^2 = 91\%$). Then, we only pooled data in kilograms unit, and found a consistent result (MD = 0.78, 95% CI 0.64–0.92, $I^2 = 0\%$) besides the isometric strength test. Finally, subgroup analysis for different exercise modalities (Figure 3), muscle strength measures (Figure 4), and upper or lower limbs muscle strength found that RE provided significant benefits (SMD = 0.6, 95% CI 0.35–0.84, $I^2 = 61\%$), isometric strength significantly improved (SMD = 0.89, 95% CI 0.51–1.26, $I^2 = 71\%$), and both upper and lower limbs muscle strength significantly improved (SMD = 0.78, 95% CI 0.4–1.17, $I^2 = 79\%$; SMD = 0.67, 95% CI 0.12–1.22, $I^2 = 91\%$).

A total of 22 studies (21–26, 29, 30, 33, 36–41, 43–48, 50) provided data on endurance exercise capacity, demonstrating a significant improvement in 6MWD after exercise intervention (MD = 26.64, 95% CI 15.38–37.91, $I^2 = 77\%$). Subgroup analysis for different exercise modalities showed a consistent result, namely that all EE, RE, and CE can improve 6MWD significantly (EE: MD = 40.99, 95% CI 34.65–47.32, $I^2 = 0\%$; RE: MD = 22.32, 95% CI 6.76–37.89, $I^2 = 0\%$; CE: MD = 11.89, 95% CI 10.81–12.97, $I^2 = 0\%$, Figure 5). A total of 13 studies (21, 23, 27, 28, 30, 32, 34, 36, 38, 40, 42, 45, 49) provided data on the peak exercise capacity, demonstrating a significant improvement in VO$_{2\text{peak}}$ after exercise intervention (MD = 1.82, 95% CI 0.62–3.02, $I^2 = 77\%$). Subgroup analysis for different exercise modalities showed that EE and CE can improve VO$_{2\text{peak}}$ significantly (EE: MD = 3.5, 95% CI 1.1–5.91, $I^2 = 92\%$; CE: MD = 1.66, 95% CI 0.22–3.1, $I^2 = 1\%$, Figure 5). Considering that the methodological quality of included studies in EE was relatively low (PEDro < 6), the results need to be carefully considered.

There was no difference of attrition number between exercise and control group (OR = 1.12, 95% CI 0.75–1.67, $I^2 = 15\%$, Supplementary Figure S1). The reasons for attrition in the exercise and control groups were similar (Supplementary Table S2). Funnel plots are presented in Supplementary Figure S2. The results of Egger's test showed a significant publication bias in the results of skeletal muscle strength and 6MWD ($P = 0.031$ and $P = 0.018$, respectively). Then, the trim and fill method was used to adjust the impact of publication bias, and the results showed 0 missing studies for skeletal muscle strength results, and five missing studies for 6MWD results were merged to diminish the publication bias (Supplementary Figure S3). The certainty of the evidence for endurance and peak exercise capacity was deemed moderate, for skeletal muscle strength was deemed low, and for BMI was deemed very low (Table 4).

DISCUSSION

This systematic review and meta-analysis confirmed that regular exercise intervention for more than 6 weeks can effectively
Characteristics of intervention protocols.

Author, Country	Setting	Intervention contents	Intervention intensity	Intervention duration/frequency	Control group
Endurance exercise					
Alcazar et al. (21), Spain	Outpatient	First 3 weeks: HIIT (5 sets of 90 s at light intensity plus 30 s at heavy intensity) + power training (2–3 sets of 8–12 reps) Week 4–12: HIIT (10stes) + 3sets of 8reps with the optimal load	First 3 weeks: HIIT (heavy-80%\(W_{\text{peak}}\), light-40% \(W_{\text{peak}}\) + power training (50–60% 1RM) Week 4–12: HIIT (augmented) + power training (optimal load)	2 sessions/week, 12 weeks	Usual care
Barakat et al. (22), France	Outpatient	30 min cycling + 30 min aerobic activity (5 min warm-up, 10 min aerobic activity, 15 min cool-down)	Cycle: 80%\(VO_{2}\) max	3 sessions/week, 14 weeks	Routine outpatient attendance
Borghi-Silva et al. (23), USA	Outpatient	30 min stretching + treadmill ambulation	70% of the maximal speed	3 sessions/week, 6 weeks	Usual care
Borghi-Silva et al. (24), USA	Outpatient	5 min warm-up + 30 min treadmill	70% of the peak speed/Borg 4	3 sessions/week, 12 weeks	Respiratory therapy, 1session/week
de Sauto Araujo et al. (25), Brazil	Outpatient	15 min callisthenic activities + 30 min unsupported upper limb exercise using weights + 30 min bicycle + 15 min cool-down	Upper: 50% of the maximum load; Lower: Borg 5	3 sessions/week, 8 weeks	No exercise
Gallo-Silva et al. (26), Brazil	Laboratory	60 min water aerobic interval exercise (10 min warm-up, 20–40 min aerobic exercise, 10 min cool-down)	Borg 4–6	3 sessions/week, 8 weeks	Usual care
Mehri et al. (27), Iran	Outpatient	Treadmill exercise training with gradually increased speed	Exhaustion	2 sessions/week, 8 weeks	No exercise
Petersen et al. (28), Denmark	Outpatient	Walking with 85% maximal speed + progressive ergometer cycling	Exhaustion	2 sessions/week, 7 weeks	Usual daily activities
Pradella et al. (29), Brazil	Home	40 min walking + 15 min stair exercise + arm exercise with 1 kg load (3 sets of 30 movements)	Walking: 60–70% \(HR_{\text{max}}\)	3 sessions/week, 8 weeks	No exercise
Wiyono et al. (30), Indonesia	Outpatient	5 min cycling, and gradually increased for 5 min/week	/	3 sessions/week, 6 weeks	Routine outpatient attendance
Resistance exercise					
Casaburi et al. (31), USA	/	First 4 weeks: 3 sets of 12 reps; Week 5–10: 4 sets of 8–10 reps (seated leg press, seated leg curl, seated leg extension, standing calf raise, seated ankle dorsiflexion)	First 4 weeks: 60% 1RM Week 5–10: 80% 1RM	3 sessions/week, 10 weeks	No exercise
Clark et al. (32), Scotland	Outpatient	3 sets of 10 reps weight exercises (bench press/triceps, body squat/quadriceps, squat calf/medial and lateral gastrocnemius soleus, latissimus/tatissimus dorsi/arm curls/biceps, leg press/quadriceps hamstrings gluteals, knee flexion/quadriceps, hamstrings)	70% maximal load	2 sessions/week, 12 weeks	Usual daily activities
Chen et al. (33), China	Home	20–30 min, 8–12 reps Thera-band exercise (straight-leg lifting, prone hip extension, thigh abduction, posterior muscle group exercises, anterior muscle group exercises, and standing calf raise)	Borg 5	3 sessions/week, 12 weeks	No exercise
Hoff et al. (34), USA	Laboratory	4 sets of 5 reps concentric contraction of quadriceps	85–90% 1RM	3 sessions/week, 8 weeks	Normal daily living
Janaudis-Ferreira et al. (35), Canada	/	10–12RM using free weights and a multistation gym (biceps brachii, triceps brachii, pectoralis major and minor, latissimus dorsi, deltoids, rhombooids)	10–12RM	3 sessions/week, 6 weeks	Upper limb flexibility and stretching exercises
Nyberg et al. (36), Sweden	Outpatient	40 min, 2 sets of 25 reps Thera-band exercise (Latissimus row/chest press/leg extension/shoulder flexion/leg curl/elbow flexion/heel-raise/step up)	Borg 4	3 sessions/week, 8 weeks	No exercise

(Continued)
TABLE 2 | Continued

Author, Country	Setting	Intervention contents	Intervention intensity	Intervention duration/ frequency	Control group
O’shea et al. (37), Australia	1 hospital + 2 home	3 sets of 8–12 reps Thera-band exercise (hip abduction in standing, simulated lifting, SST, seated row, lunges, chest press)	12RM and gradually increased	3 sessions/week, 12 weeks	No exercise
Thabitha et al. (38), India		15–30min, 1–3 sets of 10 reps using multi exerciser (chest pull-lattismus dorsi, butterfly-pectoralis major muscle, neck press-triceps brachii and deltoid, leg flexion-biceps femoris and gastronomous, leg extension)	10RM and increased by 10%	2 sessions/day, 3 days/week, 24 weeks	No exercise
Simpson et al. (39), Canada	Outpatient	3 sets of 10 reps single limb weight lifting exercise (arm curl/leg extension/leg press)	50–85% 1RM	3 sessions/week, 8 weeks	No exercise
Zambom-Ferraresi et al. (40), Spain	/	90 min, 3–4 sets of 6–12 reps (chest press, seated row, shoulder press, leg press, knee extension and flexion)	50–70% 1RM	2 sessions/week, 12 weeks	Habitual physical activity

Combined exercise

Author, Country	Setting	Intervention contents	Intervention intensity	Intervention duration/ frequency	Control group
Cameron-Tucker et al. (41), Australia	Outpatient	1 h combine exercises, individualized for each participant	RPE 3–5	1 sessions/week, 6 weeks	No exercise
Emery et al. (42), USA	Outpatient	First 5 weeks: 45 min combine exercises on Nautilus equipment; Week 6–10: 60–90 min	/	First 5 weeks: every-day; Week 6–10: 3 sessions/week	No exercise
Lahham et al. (43), Australia	Home	Aerobic: 80% of walking speed from 6MWD + 30 min whole-body exercise; Resistance: using equipment available at home (stairs and sealed water bottles)	/	5 sessions/week, 8 weeks	No exercise
Mendes et al. (44), Brazil	Outpatient	Aerobic: 30 min treadmill walking; Resistance: 10 reps (hand weight, elbow flexion, elbow abduction, shoulder abduction, shoulder flexion, hip flexion, knee extension)	Aerobic: 60–80% Hʀmax Resistance: 50% 1RM with an increase of 0.5 kg every 2 weeks	3 sessions/week, 12 weeks	No exercise
Nakamura et al. (45), Japan	/	20 min walking; Resistance: 30 min, 3 sets of 10 reps using self-weight or elastic bands (push-ups, leg squats, sit-ups, back extension)	Aerobic: Borg 3–5	12 weeks	No exercise
Tsai et al. (46), Australia	Home	Aerobic: 15–20 min cycling + 15–20 min walking Resistance: 3 sets of 10 reps SST and squats exercise	Cycle: 60–80% W_{peak} Walk: 80% of best 6MWD or Aerobic: Borg 3–4	3 sessions/week, 8 weeks	Usual care
van Wetering et al. (47), Netherlands	Community	Aerobic: 30 min cycling/walking Resistance: 4 specific exercises for upper and lower limbs	/	2 sessions/week, 16 weeks	Usual care
Wadell et al. (48), Canada	Outpatient	2.5 h combine exercise	Moderate intensity	3 sessions/week, 8 weeks	Usual care
Wadell et al. (49), Sweden	Outpatient	45 min, (4 min aerobic, 3 min leg resistance, 4 min aerobic, 3 min arm resistance, 4 min aerobic, 3 min torso resistance)	80–100%HR peak or Borg 5 or RPE 15	3 sessions/week, 12 weeks	No exercise
Weiner et al. (50), Israel	/	30 min cycling; Resistance: 15 min rowing with low resistance + 15 min resistance exercises for limbs and abdominal muscles	Aerobic: 50% W_{max}	3 sessions/week, 6 weeks	Sham training
Zambom-Ferraresi et al. (40), Spain	/	20–35 min cycle Resistance: 90 min, 3–4 sets of 6–12 reps (chest press, seated row, shoulder press, leg press, knee extension and flexion)	Aerobic: 40–85% W_{max} Resistance: 50–70% 1RM	2 sessions/week for each exercise types, 12 weeks	Habitual physical activity

6MWD, 6-min walking distance; HIIT, high intensity interval training; HGF, Handgrip force; HR, Heart rate; reps, repetitions; RM, Repetition maximum; SST, sit to stand; W_{peak}, Maximal work rate; VO₂, Oxygen uptake.
/Not accessible.

Improve peripheral skeletal muscle strength and exercise capacity of patients with stable COPD. Furthermore, the greatest improvement in peripheral skeletal muscle strength appears in

RE, the greatest improvement in endurance exercise capacity (6MWD: 40.99 m) appears in EE, and both EE and CE can significantly improve the peak exercise capacity.
TABLE 3 | Characteristics of skeletal muscle strength tests.

Type	Author, Country	Outcomes	Methods	Apparatus	Site
Isometric test	Alcazar et al. (21), Spain	Leg press (N)	Evaluate two legs performance, test for at least 4s	Force plate	Lower limb
	Chen et al. (33), China	Quadriceps (Nm)	Evaluate the maximal strength of dominant leg	Computerized dynamometer	Lower limb
	Janaudis-Ferreira et al. (35), Canada	Biceps (kg)	Evaluate the dominant side	Hand-held dynamometer	Upper limb
		Triceps (kg)	Micro FET2, the average of the highest 3 measures were used for analysis		
	Nakamura et al. (45), Japan	HGF (kg)	Evaluate the dominant side	Hand-grip dynamometer	Upper limb
	Wadell et al. (48), Canada	Knee extension (kg)	Fixed dynamometer	Lower limb	
	van Wetering et al. (47), Netherlands	HGF (kg)	Unknown device	Upper limb	
	Casaburi et al. (31), USA	Leg press (kg)	Evaluate two legs performance by 1RM test	Pneumatic device	Lower limb
	Clark et al. (32), Scotland	Quadriceps (kg)	1RM test	Multigym	
	Hoff et al. (34), USA	Leg press (kg)	1RM test	Force platform	
	O’Shea et al. (37), Australia	Knee extension (kg)	Averaged across right and left limbs were used for analysis	Hand-held dynamometry	Lower limb
	Simpson et al. (39), Canada	Elbow flexion (kg)	Unilateral 1RM test	Unknown device	Upper limb
	Zambom-Ferraresi et al. (40), Spain	Leg press (kg)	1RM test	Force plate	
	Chen et al. (33), China	Quadriceps (Nm)	Evaluate the maximal strength of dominant leg	Computerized dynamometer	Lower limb
	Nyberg et al. (36), Sweden	Shoulder flexion (Nm)	The highest of 5 maximal contractions was used for analysis	Computerized dynamometer	Upper limb

Kg, Kilogram; HGF, Handgrip force; N, Newton; RM, Repetition maximum.

FIGURE 2 | Pooled effect of exercise on BMI in patients with COPD. BMI, body mass index (kg/m²); CI, confidence interval; COPD, chronic obstructive pulmonary disease; SD, standard deviation.

In a previous study, skeletal muscle wasting could occur in the early COPD stages (51), and different exercise modalities could effectively improve lower limb muscle mass in COPD (14). However, in this study, exercise significantly improved the BMI of patients with COPD after excluding studies with PEDro < 6. Through the analysis of literature characteristics, we proposed that exercise improved the BMI of patients with COPD unrelated to exercise modalities, but it was more affected by age and FEV1%pred. That is, the younger the age and better FEV1%pred, the lower the potential for improvement by exercise intervention. A recent meta-analysis of clinical trials has found a negative correlation between the BMI and decline of FEV1 in patients with COPD (52). Age, severity of COPD, and dyspnea degree are closely and clinically related to the loss of skeletal muscle mass and the decline of muscle function in patients with COPD (51). The results from the above-mentioned cross-sectional trials...
FIGURE 3 | Effects of three types of exercise on skeletal muscle strength in patients with COPD. CI, confidence interval; COPD, chronic obstructive pulmonary disease; SD, standard deviation.

Exercise	Study or Subgroup	Mean (SD) Control	Mean (SD) Total	Total Weight	Std. Mean Difference IV, Random, 95% CI
5.1.1 Endurance exercise versus control					
Alcazar 2019		118 (607.43)	-110.9 (609.9)	15	0.53 [-0.21, 1.28]
Subtotal (95% CI)		14			
Heterogeneity: Not applicable					
Test for overall effect Z = 1.41 (P = 0.16)					
5.1.2 Resistance exercise versus control					
Casaburi 2004		48 (97.1)	6 (64.9)	12	0.49 [-0.32, 1.31]
Chen 2018		17.1 (27.44)	25 (11.77)	22	0.15 [-0.42, 0.72]
Chen 2018		14.31 (22.22)	25 (4.6)	22	0.34 [-0.24, 0.92]
Clark 2000		7.6 (7.2)	26 (0.4)	17	1.11 [0.45, 1.77]
Hoff 2007		32 (19.31)	6 (-4.23.51)	8	1.54 [0.18, 2.90]
Janaudis-Ferreira 2011		2.2 (5.1)	17 (0.6)	19	0.35 [-0.31, 1.01]
Janaudis-Ferreira 2011		2 (5.3)	17 (0.5)	19	0.36 [-0.30, 1.02]
Janaudis-Ferreira 2011		2.3 (5.85)	17 (-0.2)	19	0.45 [-0.21, 1.12]
Janaudis-Ferreira 2011		2.1 (4.7)	17 (0.5)	19	0.34 [-0.32, 1.00]
Nyberg 2015		5.14 (13.5)	22 (1)	22	0.27 [-0.32, 0.87]
Nyberg 2015		8 (33.75)	22 (-2.33.23)	22	0.30 [-0.30, 0.90]
Oshea 2007		3.3 (10.76)	27 (2.3)	27	0.11 [-0.43, 0.64]
Oshea 2007		5.6 (13.84)	27 (3.8)	27	0.13 [-0.40, 0.67]
Oshea 2007		1.9 (9.26)	27 (1.6)	27	0.03 [-0.50, 0.57]
Oshea 2007		5.3 (13)	27 (0.3)	27	0.37 [-0.17, 0.91]
Simpson 1992		17.2 (8.04)	14 (-3.2)	14	2.22 [1.25, 3.19]
Simpson 1997		3.8 (1.36)	14 (0.3)	14	2.45 [1.44, 3.47]
Simpson 1997		7.6 (3.38)	14 (2.3)	14	1.47 [0.62, 2.32]
Zambom-Ferreiras 2015		62.1 (77.20)	14 (-2.86)	8	0.91 [-0.01, 1.82]
Zambom-Ferreiras 2015		14.29 (16.99)	14 (-1.43)	8	0.92 [-0.00, 1.83]
Subtotal (95% CI)		384	385	73.7%	0.60 [0.35, 0.84]
Heterogeneity: Tau² = 0.18, Chi² = 48.73, df = 19 (P = 0.0002); P = 61%					
Test for overall effect Z = 4.77 (P < 0.00001)					
5.1.3 Combined exercise versus control					
Nakamura 2008		4.9 (5.95)	10 (-0.6)	10	0.15 [-1.03, 0.73]
van Weering 2010		-1 (2.2)	102 (2.4)	97	-1.51 [-1.82, -1.19]
van Weering 2010		1.31 (0.49)	102 (0.64)	97	1.49 [0.17, 1.80]
Wadell 2013		3 (14)	20 (1.26.51)	28	0.36 [-1.03, 0.72]
Zambom-Ferreiras 2015		49.82 (60.11)	14 (-2.65)	8	0.91 [-0.01, 1.83]
Zambom-Ferreiras 2015		16.08 (15.72)	14 (-1.43)	8	1.07 [0.14, 2.01]
Subtotal (95% CI)		262	248	22.6%	0.32 [0.07, 0.57]
Heterogeneity: Tau² = 2.46, Chi² = 161.79, df = 5 (P < 0.00001); P = 97%					
Test for overall effect Z = 0.46 (P = 0.63)					
Total (95% CI)		660	662	100%	0.58 [0.21, 0.95]
Heterogeneity: Tau² = 0.81, Chi² = 240.76, df = 26 (P < 0.00001); P = 89%					
Test for overall effect Z = 3.10 (P = 0.002)					
Test for subarous differences: Chi² = 19.19, df = 2 (P = 0.091), P = 0%					

supported the speculation, but the factors that modulated the effects of exercise in COPD skeletal muscle mass still need to be explored due to the small data size in this study. Furthermore, BMI is affected by adipose and connective tissues in the body and may inadequately reflect muscle mass changes. Previous studies have found that RE can significantly improve lower limb lean muscle mass, increase the CSA of the rectus femoris and quadriceps, and decrease the density of muscle fiber (which indicate increased muscle mass per unit area) in COPD (53, 54), but have no effects on the proportion of muscle fiber type and the CSA of different muscle fiber types (an increasing trend only be found in type IIX fibers) (54). Another trial compared the effects of EE and RE on quadriceps muscle morphology and found no significant change in proportion and CSA of type I fibers, intermediate fibers, type IIX fibers, and capillarization (expressed as capillary-to-fiber ratio capillary density) after both exercise modalities, while the proportion of type IIA fibers significantly decreases after EE (55). Consistent with the present study results, both EE and RE have a beneficial effect on the peripheral skeletal muscle mass of patients with COPD, and EE seems to bring more changes in the aerobic metabolism phenotype. The exercise intervention mechanism to improve COPD skeletal muscle mass may be related to inhibiting the level of systemic inflammation, promoting skeletal muscle protein synthesis, muscle hypertrophy and regeneration, and improving the skeletal muscle metabolic enzyme activity (56).

Although there was a high heterogeneity in the methods and programs used to assess muscle strength, the results of this
study still confirmed the significant positive effect of exercise on improving peripheral skeletal muscle strength in stable COPD. Subgroup analysis for different exercise modalities found that RE showed significant effects. We speculated that RE was designed for specific muscle groups that have less pressure on ventilation load and can effectively improve neuromuscular adaptation (57). Previous studies hypothesized that high-intensity whole/local body EE is sufficient to induce changes in the morphology and function of peripheral skeletal muscles in COPD (14). In the present study, only Alcazar et al. applied a 12-week high-intensity interval training program (high intensity: 80–90% W_{peak} and low intensity: 40–50% W_{peak}) in stable COPD patients and found that the maximum isometric contraction strength and the force development rate of leg press significantly improved (21). Hence, the dose-response relationship between EE intensity and effect still needs to be determined. Also, there was a high heterogeneity in the pooled estimates of CE, and the heterogeneity decreased after a sensitivity analysis excluding the results from van Wetering et al., but still without reaching statistical significance. In the analysis of the literature characteristics, we found that the quadriceps muscle strength of the participants was 92–95% of the normal predicted value (47), which may lead to a small potential for improvement. However, the results are still inconsistent with speculations and previous research results, that is, CE has similar or even greater effects than EE and RE alone (16, 17, 40), which may be attributed to a variety of CE programs included in this meta-analysis. First, the proportion of EE and RE in CE programs. Most programs scheduled EE and RE in one session.
FIGURE 5 | Pooled effect of exercise on exercise capacity in people with COPD. (A) 6MWD, (B) VO$_{2peak}$. 6MWD, 6-min walking distance (m); CI, confidence interval; COPD, chronic obstructive pulmonary disease; SD, standard deviation; VO$_{2peak}$, peak oxygen consumption (ml/kg/min).
TABLE 4 | Grading of recommendations assessment, development, and evaluation summary of findings.

Effect	No. of Patients	Certainty Assessment	Risk of bias	Indirectness	Inconsistency	Imprecision	Other considerations
BMI	3 Randomized trials	134 120	None	Not serious	Not serious	Not serious	None
Skeletalmuscle strength	22 Randomized trials	557 514	None	Not serious	Not serious	Not serious	None
6MWD	2 Randomized trials	242 209	None	Not serious	Not serious	Not serious	None
VO_{2peak}	13 Randomized trials	61	None	Not serious	Not serious	Not serious	None

Most of the studies are without allocation concealment, subject blinded and intention-to-treatment analysis.

There was a substantial heterogeneity among the three studies according to the heterogeneity test.

There was no serious risk of bias associated with the studies included in the analysis.

The results of the different proportions and intensities of EE and RE might be the source of heterogeneity, and the sample size was relatively low.

Subgroup analysis for different muscle strength testing methods found that exercise can only significantly improve isometric muscle strength. We speculated that the isometric muscle strength test is more familiar to the participants and has a higher correlation with daily life than other tests (58). Considering that different strength units may be the source of heterogeneity, we pooled data units in kilograms and found that exercise significantly improved isometric muscle strength. Although the data of isokinetic muscle strength showed an increasing trend after exercise (33, 36), many studies are still needed to determine the degree of response. We also conducted subgroup analysis to determine the effects of exercise on upper limbs and lower limbs muscle strength and found that exercise can improve the muscle strength of both upper and lower limbs. Although subgroup analysis was performed, high heterogeneity still existed, and the source of heterogeneity was unclear. A standard and clinically feasible measurement program is needed to quantitatively evaluate the damage of peripheral skeletal muscle strength and the response to exercise in COPD.

Consistent with previous meta-analysis (15, 59), this study found that exercise can significantly improve 6MWD (26.64 m) in patients with COPD. However, only the EE improvement reached the minimal clinical important difference of 30 m (60), which may be attributed to EE bringing more aerobic metabolism changes and greater improvements in ventilation capacity; the relatively low proportion of EE in the CE program cannot bring significant improvement. The peak exercise capacity is often evaluated using a cardiopulmonary exercise test (CPET), which is considered the gold standard to assess the exercise capacity and closely related to COPD’s prognosis (61, 62). A progressive incremental exercise protocol in a treadmill or cycle ergometer is often used for CPET, and the results can provide abundant physiological information related to exercise restriction, including the heart (e.g., heart rate, VO_{2peak} and oxygen pulse), lung (e.g., inspiratory capacity, gas exchange, and dynamic inflation), muscle (e.g., power and lactic acid), dyspnea (Borg), and exercise initiative (62). A Cochrane review conducted in 2015 showed that pulmonary rehabilitation (at least 4 weeks of exercise training) is beneficial in improving maximal exercise capacity (measured by W_{peak}) in patients with COPD, and the effect size exceeds the minimal clinically important difference (4 W) (63). Although a different outcome was used in this present study, the effect of exercise is confirmed. The comparison results of the effects of different modalities exercise showed no significant differences between RE vs. the control group (15, 64), RE vs. EE (16), and CE vs. EE (64) in improving the peak exercise capacity (VO_{2peak}, W_{peak}) of patients with COPD. It seems that a contradictory deduction...
might be concluded that exercise does not have a significant positive effect on peak exercise capacity of patients with COPD. Based on the primary pathophysiological mechanisms of exercise limitation in patients with COPD undergoing CPET, including ventilatory abnormalities, pulmonary gas exchange abnormalities, and skeletal muscle dysfunction (61), exercise with different modalities seems beneficial in improving peak exercise capacity in patients with COPD. Consistent with the hypothesis, this meta-analysis showed that exercise could significantly improve COPD's peak exercise capacity (1.82 ml/kg/min), and both EE and CE have positive effects.

This systematic review and meta-analysis had some limitations. First, there were flaws in methodological quality of the original studies, namely the lack of subject blinding and evaluator blinding in exercise intervention trials. Second, one of the included literatures had an apparently large sample size, which may have had an impact on the research results. Sensitivity analysis was performed to reduce the impact when high heterogeneity was found. Third, we only analyzed the effects of exercise on skeletal muscle strength and still needed to explore the effects of exercise on skeletal muscle endurance and power. Fourth, the outcomes of skeletal muscle function were not assessed comprehensively in most of the included studies, which may cause a limitation. Fifth, trial designs were heterogeneous. For high heterogeneity, we used a random-effects model and subgroup analysis to analyse the source of heterogeneity, and the results were consistent.

CONCLUSIONS

Exercise with different modalities seems effective in improving peripheral skeletal muscle strength and exercise capacity in patients with stable COPD. Specifically, EE shows a greater improvement in endurance and peak exercise capacity, and RE shows a greater improvement in peripheral skeletal muscle strength, and the isotonic test is relatively sensitive in reflecting muscle strength changes. Therefore, for patients with COPD whose exercise limitation is caused by a decreased cardiorespiratory capacity, EE might be a suitable choice. EE can be conducted in cycling, running, and walking, with an intensity of 50–85% VO\textsubscript{2peak}, 2–3 times/week, for at least 8 weeks. For patients with COPD whose exercise limitation is caused by an impaired peripheral skeletal muscle function, RE might be a preferable intervention. RE can be conducted in weight machines, free weights, and elastic bands, with an intensity of 50–90% 1RM, 2–3 times/week, for at least 8 weeks. The proportion
of EE and RE in CE programs still needs to be explored and analyzed (Figure 6). High methodological quality RCTs with a large sample size are still needed to verify the present study results because of the relatively small inclusion of literature on the peripheral skeletal muscle structure and function in patients with COPD. It is also necessary to explore the effect of exercise intervention on peripheral skeletal muscle in AECOPD or patients with COPD with different severity.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

XL and JX conceived of the idea for this review. JL and YW did the literature search. PL and YW collected the data. PL and JL did the quality assessment. PL did the statistical analyses and wrote the first draft of the manuscript. All authors analyzed and interpreted the data and revised and approved the final manuscript for submission.

REFERENCES

1. Global Initiative for Chronic Obstructive Lung Disease-GOLD. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease (2019 report). Available online at: https://goldcopd.org/2019 (accessed December 5, 2018).

2. Decramer M, Janssens W, Miravitlles M. Chronic obstructive pulmonary disease. *Lancet.* (2012) 379:1341–51. doi: 10.1016/S0140-6736(11)60966-8

3. Rabe KR, Watz H. Chronic obstructive pulmonary disease. *Lancet.* (2017) 389:1931–40. doi: 10.1016/S0140-6736(17)32122-9

4. Barreiro E, Bustamante V, Cejudo P, Galdiz JB, Gea J, de Lucas P, et al. Guidelines for the evaluation and treatment of muscle dysfunction in patients with chronic obstructive pulmonary disease. *Arch Bronconeumol.* (2015) 51:384–95. doi: 10.1016/j.arbres.2015.04.011

5. Rabinovich R, Vilaro J. Structural and functional changes of peripheral muscles in chronic obstructive pulmonary disease patients. *Curr Opin Pulm Med.* (2010) 16:123–33. doi: 10.1097/MCP.0b013e3283643848

6. Bernard S, LeBlanc P, Whittom F, Carrier G, Jobin J, Beaulieu R, et al. Peripheral muscle weakness in patients with chronic obstructive pulmonary disease. *Am J Respir Crit Care Med.* (1998) 158:629–34. doi: 10.1164/ajrccm.158.2.9711023

7. Corhay JL, Dang DN, Van Cauwenberge H, Louis R. Pulmonary rehabilitation and COPD: providing patients a good environment for optimizing therapy. *Int J Chron Obstruct Pulmon Dis.* (2014) 9:27–39. doi: 10.2147/COPD.S552012

8. Li P, Wang Z, Lu Y, Li N, Xiao L, Su J, et al. Assessment of knee extensor and flexor function using isokinetic test in COPD: impact on exercise capacity. *Int J Tuberc Lung Dis.* (2020) 24:776–81. doi: 10.5588/ijtld.19.0588

9. Saey D, Debigerre R, LeBlanc P, Mador MJ, Cote CH, Jobin J, et al. Contractile leg fatigue after exercise: a factor limiting exercise in patients with chronic obstructive pulmonary disease. *Am J Respir Crit Care Med.* (2003) 168:425–30. doi: 10.1164/ajrccm.200208-856OC

10. Gagnon P, Saey D, Vivodtzev I, Laviolette L, Mainguy V, Milot J, et al. Impact of preinduced quadriceps fatigue on exercise response in chronic obstructive pulmonary disease and healthy subjects. *J Appl Physiol.* (2009) 107:832–40. doi: 10.1152/japplphysiol.91546.2008

11. Nyberg A, Carvalho J, Bui KL, Saey D, Maltais F. Adaptations in limb muscle function following pulmonary rehabilitation in patients with COPD—a review. *Rev Port Pneumol.* (2006). (2016) 22:342–50. doi: 10.1016/j.rppnem.2016.06.007

12. Maltais F, Decramer M, Casaburi R, Barreiro E, Burelle Y, Debigerre R, et al. An official American Thoracic Society/European Respiratory Society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease. *Am J Respir Crit Care Med.* (2014) 189:e15–62. doi: 10.1164/rccm.201402-0373ST

13. Jaitovich A, Barreiro E. Skeletal muscle dysfunction in chronic obstructive pulmonary disease (COPD): what we know and can do for our patients. *Am J Respir Crit Care Med.* (2018) 198:175–86. doi: 10.1164/rccm.201710-2140CI

14. De Brandt J, Spruit MA, Hansen D, Franssen FM, Derave W, Sillen MI, et al. Changes in lower limb muscle function and muscle mass following exercise-based interventions in patients with chronic obstructive pulmonary disease: a review of the English-language literature. *Chron Respir Dis.* (2018) 15:182–219. doi: 10.1177/1479972317799642

15. Li N, Li P, Lu Y, Wang Z, Li J, Liu X, et al. Effects of resistance training on exercise capacity in elderly patients with chronic obstructive pulmonary disease: a meta-analysis and systematic review. *Aging Clin Exp Res.* (2019) 32:1911–22. doi: 10.1007/s40520-019-01339-8

16. Iepsen UW, Jorgensen KI, Ringbaek T, Hansen H, Skrubbeltrang C, Lange P, et al. Systematic review of resistance training vs. endurance training in COPD. *J Cardiopulm Rehabil Prev.* (2015) 35:163–72. doi: 10.1097/HCR.0000000000000105

17. Iepsen UW, Jorgensen KI, Ringbaek T, Hansen H, Skrubbeltrang C, Lange P, et al. Combination of resistance and endurance training increases leg muscle strength in COPD: an evidence-based recommendation based on systematic review with meta-analyses. *Chron Respir Dis.* (2012) 12:132–45. doi: 10.1177/1479972312455318

18. Moher D, Liberati A, Tetzlaff J, Altman D, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med.* (2009) 6:e1000097. doi: 10.1371/journal.pmed.1000097

19. Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. *Phys Ther.* (2003) 83:713–21. doi: 10.1093/ptj/83.8.713

20. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. *BMJ.* (2008) 336:924–6. doi: 10.1136/bmj.39489.470347.AD

21. Akazar J, Losa-Reyna J, Rodriguez-Lopez C, Navarro-Cruz R, Alfaro-Acha A, Ara I, et al. Effects of concurrent exercise training on muscle dysfunction and systemic oxidative stress in older people with COPD. *Scand J Med Sci Sports.* (2019) 29:1591–603. doi: 10.1111/smss.13494

22. Barakat S, Michele G, George P, Nicole V, Guy A. Outpatient pulmonary rehabilitation in patients with chronic obstructive pulmonary disease. *Int J Chron Obstruct Pulm Dis.* (2008) 3:155–62. doi: 10.2147/COPD.S2126

FUNDING

This study was funded by the National Natural Science Foundation of China, grant numbers 81902307 and 82072551. The funder of the study played no role in the study design, data collection, data analysis, data interpretation, or writing of the report.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmed.2021.766841/full#supplementary-material
23. Orbihi-Silva A, Arena R, Castello V, Simões RP, Martins LE, Catai AM, et al. Aerobic exercise training improves autonomic nervous control in patients with COPD. *Respir Med.* (2009) 103:1503–10. doi: 10.1016/j.rmed.2009.04.015

24. Orbihi-Silva A, Mendes RG, Trimmer O, Vieira CRF, Fregonezi GA, Barqueti VR, et al. Potential effect of 6 vs. 12-weeks of physical training on cardiac autonomic function and exercise capacity in chronic obstructive pulmonary disease. *Eur J Phys Rehabil Med.* (2015) 51:211–21. Available online at: https://pubmed.ncbi.nlm.nih.gov/24594853/

25. de Souto Araujo ZT, de Miranda Silva Nogueira PA, Cabral EE, de Paula dos Santos L, da Silva IS, Ferreira GM. Effectiveness of low-intensity aquatic exercise on COPD: a randomized clinical trial. *Respir Med.* (2012) 106:1353–45. doi: 10.1016/j.rmed.2012.06.022

26. Gallo Silva B, Cerezo-Silva V, Ferreira DG, Sakabe DI, Kel-Souza LD, Bethelho VC, et al. Effects of water-based aerobic interval training in patients with COPD: a randomized controlled trial. *J Cardiopulm Rehabil Prev.* (2019) 39:105–11. doi: 10.1097/HCR.0000000000000352

27. Mehrj SN, Khoshnevis MA, Zarrabehin F, Hafezi S, Ghasemi A, Ebadia A. Effects of treadmill exercise training on VO2 peak in chronic obstructive pulmonary disease. *Respirat Nat Inst Tuberc Lung Dis.* (2007) 6:18–24. Available online at: https://scholar.google.com/scholar?hl=en&as_sdt=0&as_vis=1&q=Mehri+SN%2C+Khoshnevis+MA%2C+Zarrabehin+F%2C+Hafezi+S%2C+Ghasemi+A%2C+Ebadia+A+Effects+of+treadmill+exercise+training+on+VO2+peak+in+chronic+obstructive+pulmonary+disease+&scisig=AGAVjBq-LQtnnjd9kXcE-AQ&scisig=AGAVjBq-LQtnnjd9kXcE-AQ&hl=en

28. Petersen AM, Mittendorfer B, Magkos F, Iversen M, Pedersen BK. Physical activity counters increased whole-body protein breakdown in chronic obstructive pulmonary disease patients. *Scand J Med Sci Sports.* (2008) 18:557–64. doi: 10.1111/j.1600-0838.2007.00727.x

29. Pradella CO, Belmonte GM, Maia MN, Delgado CS, Luise AP, Nascimento FL, et al. Effects of testosterone and resistance training in men with chronic obstructive pulmonary disease. *Frontiers in Medicine.* (2020) 5:16. doi: 10.3389/fmed.2020.00016

30. Wiyono WH, Riyadi J, Yunus F, Ratnawati A, Prasetyo S. The benefit of endurance vs. resistance training on quadriceps muscle strength, exercise capacity, and quality of life in patients with COPD. *J Cardiopulm Rehabil Prev.* (2019) 39:105–11. doi: 10.1097/HCR.0000000000000352

31. Casaburi R, Bhasin S, Cosentino L, Porszasz J, Somfay A, Lewis MI, et al. Effects of testosterone and resistance training in men with chronic obstructive pulmonary disease. *Am J Respir Crit Care Med.* (2006) 173:695–704. doi: 10.1164/rccm.200305-617OC

32. Pradella CO, Belmonte GM, Maia MN, Delgado CS, Luise AP, Nascimento FL, et al. Home-based pulmonary rehabilitation for subjects with COPD: a randomized study. *Respir Care.* (2015) 60:526–32. doi: 10.4187/respcare.02994

33. Wiyono WH, Riyadi J, Yunus F, Ratnawati A, Prasetyo S. The benefit of pulmonary rehabilitation against quality of life alteration and functional capacity of chronic obstructive pulmonary disease (COPD) patient assessed using St. George's respiratory questionnaire (SGRQ) and 6 minutes walking distance test (6MWTD). *Med J Indones.* (2006) 15:65–72. doi: 10.13818/mjii.v15i3.232

34. Dos Santos L, da Silva IS, Ferreira GM. Effectiveness of low-intensity aquatic exercise on COPD: a randomized clinical trial. *Int J Chron Obstruct Pulmon Dis.* (2015) 11:2659–69. doi: 10.2147/COPD.S114351

35. Tsai LL, McNamara RJ, Moddel C, Alison JA, McKenzie DK, McKeough ZI. Home-based telerehabilitation via real-time videoconferencing improves endurance exercise capacity in patients with COPD: The randomized controlled trial. *Respirology.* (2017) 22:699–707. doi: 10.1111/resp.12966

36. van Wetering CR, Hoogendoorn M, Mol SJM, Rutten-van Molken MPMH, Schols AM. Short- and long-term efficacy of a community-based COPD management programme in less advanced COPD: a randomised controlled trial. *Thorax.* (2010) 65:17–23. doi: 10.1136/thx.2009.118620

37. Wadell K, Webb KA, Preston ME, Amornputsathaporn N, Samis L, Patelli J, et al. Impact of pulmonary rehabilitation on the major dimensions of dyspnea in COPD. *COPD.* (2013) 10:425–35. doi: 10.3109/15412555.2012.758696

38. Wadell K, Sundelin G, Henriksson-Larsen K, Lundgren R. High intensity physical group training in water—an effective training modality for patients with COPD. *Respir Med.* (2004) 98:428–38. doi: 10.1016/j.rmed.2003.11.010

39. Weitner W, Magadle R, Berg-Yanay N, Davidovich A, Weinher M. The cumulative effect of long-acting bronchodilators, exercise, and inspiratory muscle training on the perception of dyspnea in patients with advanced COPD. *Chest.* (2000) 118:672–8. doi: 10.1378/chest.118.3.672

40. Benz E, Trajanoska K, Lahousse L, Schoufour JD, Terzikhan N, De Roos E, et al. Aerobic exercise training improves autonomic nervous control in patients with chronic obstructive pulmonary disease. *Eur J Phys Rehabil Med.* (2019) 55:130–7. doi: 10.1016/j.ejphar.2019.04.012

41. Emery CF, Schein RL, Hauck ER, MacIntyre NR. Psychological and cognitive outcomes of a randomized trial of exercise among patients with chronic obstructive pulmonary disease. *Health Psychol.* (1998) 17:232–40. doi: 10.1037/0278-6133.17.3.232

42. Lewis MI, Fournier M, Storer TW, Bhasin S, Porszasz J, Ren SG, et al. Skeletal muscle adaptations to testosterone and resistance training in men with COPD. *J Appl Physiol.* (2007) 103:1299–310. doi: 10.1152/japplphysiol.00150.2007

43. Impens UW, Munch GD, Bugberg M, Rinnov AR, Zacho M, Mortensen SP, et al. Effect of endurance vs. resistance training on quadriceps muscle dysfunction in COPD: a pilot study. *Int J Chron Obstruct Pulmon Dis.* (2016) 11:2659–69. doi: 10.2147/COPD.S14351

44. Nasis I, Kortianou EA, Clini E, Koulouri NG, Vogiatzis I. Effect of rehabilitative exercise training on peripheral muscle remodelling in patients with COPD. *Respir Care.* (2015) 60:526–32. doi: 10.4187/respcare.02994

45. Negrinho de Oliveira AC, Hirata RP, Costa D, et al. Outpatient vs home-based pulmonary rehabilitation in COPD: a randomized controlled trial. *Multidiscip Respir Med.* (2010) 5:401–8. doi: 10.1186/2049-6958-5-401

46. Zambom-Ferraresi F, Cebollero P, Gorostiaga EM, Hernandez M, Hueto J, et al. Effects of water-based aerobic interval training in patients with COPD: a randomized controlled trial. *Clin Respir J.* (2014) 9:513–23. doi: 10.2147/COPD.S58478

47. Zambom-Ferraresi F, Cebollero P, Gorostiaga EM, Hernandez M, Hueto J, et al. Effects of water-based aerobic interval training in patients with COPD: a randomized controlled trial. *Respirology.* (2012) 17:232–40. doi: 10.1111/j.1600-0838.2011.00727.x

48. Zambom-Ferraresi F, Cebollero P, Gorostiaga EM, Hernandez M, Hueto J, et al. Effects of treadmill exercise training on VO2 peak in chronic obstructive pulmonary disease. *Nat Resp Inst Tuberc Lung Dis.* (2007) 6:18–24. Available online at: https://scholar.google.com/scholar?hl=en&as_sdt=0&as_vis=1&q=Mehri+SN%2C+Khoshnevis+MA%2C+Zarrabehin+F%2C+Hafezi+S%2C+Ghasemi+A%2C+Ebadia+A+Effects+of+treadmill+exercise+training+on+VO2+peak+in+chronic+obstructive+pulmonary+disease+&scisig=AGAVjBq-LQtnnjd9kXcE-AQ&scisig=AGAVjBq-LQtnnjd9kXcE-AQ&hl=en
with COPD: targeting beyond the lungs. *Carr Drug Targets.* (2013) 14:262–73. doi: 10.2174/1389450111314020011

57. Spruit MA, Singh SJ, Garvey C, ZuWallack R, Nici L, Rochester C, et al. An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation. *Am J Respir Crit Care Med.* (2013) 188:e13–64. doi: 10.1164/rccm.201309-1634ST

58. Marklund S, Bui KL, Nyberg A. Measuring and monitoring skeletal muscle function in COPD: current perspectives. *Int J Chron Obstruct Pulmon Dis.* (2019) 14:1825–38. doi: 10.2147/COPD.S178948

59. Paneroni M, Simonelli C, Vitacca M, Ambrosino N. Aerobic exercise training in very severe chronic obstructive pulmonary disease: a systematic review and meta-analysis. *Am J Phys Med Rehabil.* (2017) 96:541–8. doi: 10.1097/PHM.0000000000000667

60. Holland AE, Spruit MA, Troosters T, Puhan MA, Pepin V, Saey D, et al. An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. *Eur Respir J.* (2014) 44:1428–46. doi: 10.1183/09031936.00150314

61. Ferrazza AM, Martolini D, Valli G, Palange P. Cardiopulmonary exercise testing in the functional and prognostic evaluation of patients with pulmonary diseases. *Respiration.* (2009) 77:3–17. doi: 10.1159/000186694

62. Stringer W, Marcinuk D. The role of cardiopulmonary exercise testing (CPET) in pulmonary rehabilitation (PR) of chronic obstructive pulmonary disease (COPD) patients. *COPD.* (2018) 15:621–31. doi: 10.1080/15412255.2018.1550476

63. McCarthy B, Casey D, Devane D, Murphy K, Murphy E, Lacasse Y. Pulmonary rehabilitation for chronic obstructive pulmonary disease. *Cochrane Database Syst Rev.* (2015) CD003793:1–188. doi: 10.1002/14651858.CD003793.pub3

64. Liao WH, Chen JW, Chen X, Lin L, Yan HY, Zhou YQ, et al. Impact of resistance training in subjects with COPD: a systematic review and meta-analysis. *Respir Care.* (2015) 60:1130–45. doi: 10.4187/respcare.03598

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Li, Li, Wang, Xia and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.