Insect galls of the Brazilian Cerrado: associated fauna

Valéria Cid Maia1* & Bruno Gomes da Silva1

1Universidade Federal do Rio de Janeiro, Museu Nacional, Departamento de Entomologia, Quinta da Boa Vista, São Cristóvão, 20.940-040, Rio de Janeiro, RJ, Brasil.
*Corresponding author: maiavcid@acd.ufrj.br

MAIA, V.C., SILVA, B.G. Insect galls of the Brazilian Cerrado: associated fauna. Biota Neotropica 21(3): e20211202. https://doi.org/10.1590/1676-0611-BN-2021-1202.

Abstract: Insect galls host a rich and diverse fauna of secondary dwellers, which compose the associated fauna. In Brazil, many inventories of insect galls in Cerrado areas have recorded secondary dwellers. These records were scattered in several papers. This study gathered literature data to provide an overview of the arthropod fauna associated with insect galls in the Brazilian Cerrado. We searched for scientific publications in online academic databases and retrieved 16 papers with data on the secondary dwellers. We limited our search to the period from 1988 to 2020. We updated the name of plant species and verified endemism and geographic distribution in Flora do Brasil 2020. We provided plant species uses based on the Tropical Useful Plants 2014. We found 163 gall morphotypes with secondary dwellers (16.8% of the total of gall morphotypes of the Brazilian Cerrado) on 94 plant species in 37 families. Asteraceae, Fabaceae, Myrtaceae, and Malpighiaceae exhibited the greatest number of records. These are the richest families in insect galls in the Brazilian Cerrado. Most arthropod fauna were recorded in galls of Cecidomyiidae (Diptera). Most records were in leaf galls, the predominant galled organ. Parasitoids were more frequent than successors, inquilines, and predators. Eulophidae and Eurytomidae were the most frequent parasitoid families. Inquilines were represented by Coleoptera, Diplopoda, Diptera, Hemiptera, Hymenoptera, Lepidoptera, Psocoptera, and Thysanoptera; successors by Acari, Araneae, Cecidomyiidae (Diptera), Coleoptera, Collembola, and Formicidae (Hymenoptera), whereas predators by Pseudoscorpiones and Diptera. Most records were presented in suprageneric categories, showing that the taxonomic knowledge is very deficient. 29 plant species are endemic to Brazil and totaled 45 gall morphotypes with secondary dwellers; 46 plant species are useful and host secondary dwellers in 62 gall morphotypes. These data add ecological and economic importance to these arthropods.

Keywords: Parasitoids; inquilines; predators; successors; galling-insects.

Galhas de insetos do Cerrado Brasileiro: fauna associada

Resumo: As galhas de insetos abrigam uma fauna rica e diversificada de habitantes secundários que compõem a fauna associada. No Brasil, muitos inventários de galhas de insetos em áreas de Cerrado registram habitantes secundários. Estes registros, dispersos em vários artigos, foram reunidos para fornecer uma visão ampla da fauna de artrópodes associados às galhas de insetos no Cerrado brasileiro. Buscamos publicações científicas nas bases de dados acadêmicas virtuais e encontramos 16 artigos com informações de habitantes secundários. Limitamos nossa busca ao período de 1988 a 2020. Atualizamos o nome das espécies botânicas e verificamos sua distribuição geográfica e endemismo no site Flora do Brasil 2020. Fornecemos os usos das espécies vegetais com base no site Tropical Useful Plants 2014. Encontramos 163 morfotipos de galhas com habitantes secundários (16,8% do total de morfotipos de galhas do Cerrado brasileiro) em 94 espécies de plantas de 37 famílias. Asteraceae, Fabaceae, Myrtaceae e Malpighiaceae exibiram o maior número de registros. Estas são as famílias mais ricas em galhas de insetos no Cerrado brasileiro. A maioria da fauna de artrópodes foi assinalada em galhas de Cecidomyiidae (Diptera). A maioria dos registros foi em galhas foliares, órgão vegetal com maior riqueza de galhas. Os parasitoides foram mais frequentes que os sucessores, inquilinos e predadores. Eulophidae e Eurytomidae foram as famílias de parasitoides mais frequentes. Os inquilinos foram representados por Coleoptera, Diplopoda, Diptera, Hemiptera, Hymenoptera, Lepidoptera, Psocoptera, e Thysanoptera; os sucessores por Acari, Araneae, Cecidomyiidae (Diptera), Coleoptera, Collembola e Formicidae (Hymenoptera); enquanto os predadores por Pseudoscorpiones e Diptera. Most records were presented in suprageneric categories, showing that the taxonomic knowledge is very deficient. 29 plant species are endemic to Brazil and totaled 45 gall morphotypes with secondary dwellers; 46 plant species are useful and host secondary dwellers in 62 gall morphotypes. These data add ecological and economic importance to these arthropods.

Palavras-chave: Parasitoides; inquilinos; predadores; sucessores; insetos galhadores.
Introduction

Galls are a classic example of niche construction (Gilbert 2009). They represent discrete microhabitats that support relatively closed communities of specialist inhabitants (Shorthouse & Rohfritsch 1992, Williams 1994, Crespi et al. 1997). Galls are abnormal plant growths induced by various parasitic organisms, mainly insects. Insect galls provide the inducers with food and shelter at the expense of the host plant (Tooker et al. 2008). Galls serve as “incubators” for the developing insects in which they gain nutrition and protection from both abiotic factors (e.g., sun irradiation, wind, rain and snow) and natural enemies such as pathogens, predators and parasitoids (Price et al. 1987, Stone & Schonrogge 2003). Galls act as a “nutrient sink” into which the plant translocates concentrated soluble nutrients for the growth of those cells. These nutrients, which are especially rich in amino acids, are then used by the gall-inducer for its own growth (White 2010).

Gall tissues are attractive for non-galling herbivores as food sources (Sugiura & Yamazaki 2009, Yamazaki & Sugiura 2016). There is a rich and diverse fauna of secondary dwellers of galls. They compose the associated fauna and include parasitoids, predators, cecidophages, successors, inquilines, kleptoparasites and symbionts (Luiz & Mendonça-Júnior 2019).

In Brazil, there are several inventories of insect galls in Cerrado areas, mainly in the states of Minas Gerais and Goiás (Araújo et al. 2014). The Cerrado is the second largest phytogeographical domain of Brazil, occupying an area of ca. 2 million km² (23% of the national territory) (Oliveira & Ratter 2014). The Cerrado is the second largest phytogeographical domain of Brazil, occupying mainly in the states of Minas Gerais and Goiás (Araújo et al. 2014). The associated fauna and include parasitoids, predators, cecidophages, successors, inquilines, kleptoparasites and symbionts (Luiz & Mendonça-Júnior 2019).

Material and Methods

We searched for papers in online academic databases: ISI Web of Knowledge, Google Scholar, Scopus and JSTor, using the terms “insect gall”, “galhas de insetos”, “inventories”, “inventários”, and “Brazilian Savanah” “Cerrado. We found 32 papers, 16 of them with data on the associated fauna. We used the Flora do Brasil 2020 website to verify botanical names and plant endemisms. We also looked for data on plant uses in the site Useful Tropical Plants 2014.

We organized tables, according to the level of plant identification: species – Table 1, genus – Table 2, and family – Table 3. These tables include the following data: host plant, galled organ, gall-inducer, associated fauna, food habit, locality and reference. Whenever the name of host plant species was updated, we presented the original name in brackets after the reference.

We counted the number of gall morphotypes only for host plant species. We compared morphotypes in the same plant species when recorded by different authors to avoid repeated counting. We adopted this procedure only when gall illustrations were available.

Concerning the guilds of the associated fauna, we kept the term “inquiline” as used in the original publications, although we recognize problems in its use, since it includes cecidophages, kleptoparasites, and inquilines. However, original data are insufficient to allow re-categorization.

Results

We found records of the associated fauna in 163 gall morphotypes, 94 plant species and 37 plant families. Fabaceae (N=52) (31.9%), Asteraceae (N=15) (9.2%), Myrtaceae, and Malpighiaceae (N=10 each) (6.1%) had the greatest number of gall morphotypes with records of the associated fauna (Table 4).

Most records (N=105) (64.4%) were in galls of Diptera, mainly Cecidomyiidae (N=102) (62.6%), but galls of Hemiptera, Lepidoptera, Hymenoptera, Coleoptera, and Thysanoptera also hosted secondary dwellers (Table 5). Hemiptera were the second most common gall-inducers, but with very low percentage (4.3% only). Leaf galls had the most records (N=117) (71.8%), followed by stem galls (N=43) (26.4%). Galls on buds, spines and reproductive structures also hosted secondary dwellers. Some galls were induced in two plant organs or more (Table 6).

Parasitoids were the most frequent guild, being reported in 147 gall morphotypes (90.2%). They were followed by successors, inquilines, and predators, reported in 13 (8.0%), 12 (7.4%) and three (1.8%) gall morphotypes, respectively, showing that these guilds were infrequent (Table 7).

Parasitoids were represented by 12 Hymenopteran families. Among them, Eulophidae, Eurytomidae, Torymidae, and Encyrtidae were the most frequent, with records in 41 gall morphotypes (29.7% of the parasitized morphotypes), 20 (13.6%), 14 (9.5%) and 12 (8.2%), respectively.

Successors included insects of three orders (Coleoptera, Diptera and Hymenoptera), as well as other arthropods (Acari, Araneae, and Collembola); inquilines included insects of seven orders (Coleoptera, Diptera, Hemiptera, Hymenoptera, Lepidoptera, Psocoptera, and Thysanoptera), and Diplodopa, whereas predators were the least diverse, being represented by Pseudoscorpiones and Diptera; all of these taxa were recorded in few gall morphotypes (from 5 to 1) (Table 8).

Concluding the taxonomic knowledge, only four species, Anthonomus vis Clark, 1992 (Coleoptera), Meunieriella spinosa Urso-Guimarães, 2019 (Diptera), Salina celebensis (Schäffer, 1898), and...
Table 1. Data on arthropods associated with insect galls in the Brazilian Cerrado: host plant species, gall-inducer, host organ, secondary dweller, ecological guild, locality, and reference. Plant origin: (1) native to Brazil, (2) endemic to Brazil, (3) naturalized. Ecological guild: (Inq) inquiline, (Par) parasitoid, (Pre) predator, (Suc) successor, (Und) undetermined.

Host plant	Gall-inducer	Host organ	Secondary dweller	Locality	Reference
ANNONACEAE					
Annona coriacea Mart. (1)	Cecidomyiidae (Diptera)	Leaf	Eulophidae (Par)	Serra dos Pireneus (GO)	Araújo et al. 2011
Annona crassiflora Mart. (1)	Sternorrhyncha (Hemiptera)	Leaf	Braconidae (Par)	Tiradentes (MG)	Maia & Fernandes 2004
Duguetia furfuracea (A. St-Hil.) Saff. (1)	Undetermined	Leaf	Hymenoptera (Par)	Caetité (BA)	Nogueira et al. 2016
APOCYNACEAE					
Aspidosperma australis Müll.-Arg. (1)	Cecidomyiidae	Flower bud	Eurytomidae (Par)	Belo Horizonte (MG)	Fernandes et al. 1988
Duguetia furfuracea (A. St-Hil.) Saff. (1)	Undetermined	Leaf	Hymenoptera (Par)	Belo Horizonte (MG)	Fernandes et al. 1988
ARALIACEAE					
Didymopanax morototoni (Aubl.) Decne. & Planch. (1)	Undetermined	Leaf	Eulophidae (Par)	Goiânia (GO)	Santos et al. 2010 (as Schefflera morototoni Aubl)
ASTERACEAE					
Baccharis microcephala (Less.) DC (1)	Cecidomyiidae	Leaf	Eulophidae 1 (Par)	Tiradentes (MG)	Maia & Fernandes 2004
Baccharis reticularia DC. (2)	Cecidomyiidae	Bud	Eulophidae 2 (Par)	Tiradentes (MG)	Maia & Fernandes 2004
Baccharis serrulata (Lam.) (2)	Cecidomyiidae	Leaf	Hymenoptera (Par)	Tiradentes (MG)	Maia & Fernandes 2004
Eremanthus capitatus (Spreng.) MacLeish (2)	Coleoptera	Stem	Formicidae (Suc)	Caetité (BA)	Nogueira et al. 2016
Eremanthus erythropappus (DC.) MacLeish (2)	*Asphondylia serrata* Maia, 2004 (as Cecidomyiidae)	Leaf	Hymenoptera (Par)	Tiradentes (MG)	Maia 2004, Maia & Fernandes 2004 (as Vannilosmopsis erythropappus Schult)
Moquiniastrum barrosoae (Cabrera) G. Sancho (1)	Undetermined	Stem	Sciariidae (Diptera)	Silvânia (GO)	Bergamini et al. 2017 (as Gochnatia barrosi Cabrera)
Mikania lindbergii Baker (2)	Neolasioptera sp. (Cecidomyiidae)	Stem	Hymenoptera (Par)	Tiradentes (MG)	Maia & Fernandes 2004
Moquiniastrum paniculatum (Less.) G. Sancho (2)	Cecidomyiidae	Leaf	Eulophidae (Par)	Belo Horizonte (MG)	Fernandes et al. 1988 (as Moquinia paniculata (Less) D.C.)
Moquiniastrum pulchrum (Cabrera) G. Sancho (1)	Cecidomyiidae	bud	Eulophidae (Par)	Altinópolis (SP)	Ribeiro et al. 2019
Porophyllum ruderale (Jacq.) Cass. (1)	Cecidomyiidae	Stem	Hymenoptera (Par)	Belo Horizonte (MG)	Fernandes et al. 1988
Verbesina macrophylla (Cass.) S.F.Blake (1)	Cecidomyiidae	Bud	Araneae (Suc)	Caetité (BA)	Silva et al. 2018a

CONTINUE...
Family	Genus	Species	Stage	Taxa	Location	Reference
Bignoniaceae	Vernonanthura	polyanthes (Spreng.) Vega & Dematteis (1)	Stem/Bud	Braconidae (Par) Eulophidae (Par) Hymenoptera (Par)	Belo Horizonte	Fernandes et al. 1988 Maia & Fernandes Urso-Guimarães et al. 2003 (as Vernonia polyanthes Less.)
	Asphondylia sp.	(Cecidomyiidae)	Leaf/ Stem	Chalcididae (Par) Torymidae (Par)	Belo Horizonte	Fernandes et al. 1988
Bignoniaceae	Handroanthus	ochraceus (Cham.) Mattos (1)	Leaf	Helconiae (Braconidae) (Par) Hemiptera (Inq)	Delfinópolis (MG)	Urso-Guimarães et al. 2003 (as Tabebuia ochracea (Cham.) Standl.)
Boraginaceae	Cordia sellowiana	Cham. (2)	Leaf	Braconidae (Par) Eulophidae (Par)	Belo Horizonte (MG)	Fernandes et al. 1988
			Leaf	Hymenoptera (Par)	Belo Horizonte (MG)	Fernandes et al. 1988
			Leaf	Hymenoptera (Par)	Belo Horizonte (MG)	Fernandes et al. 1988
Burseraceae	Protium heptaphyllum	(Aubl.) March. (1)	Leaf/ Stem	Torymidae (Par)	Silvânia (GO)	Bergamini et al. 2017
Calophyllaceae	Calophyllum	brasiliense (1)	Leaf	Eulophidae (Par) Eurytomidae (Par) Pteromalidae (Par)	Tiradentes (MG)	Madeira et al. 2002, Maia & Fernandes 2004 (as Calophyllum sp.)
			Leaf	Hymenoptera (Par)	Tiradentes (MG)	Madeira et al. 2002, Maia & Fernandes 2004 (as Calophyllum sp.)
Cannabaceae	Celtis iguanea	(Jacq.) Sarg. (1)	Undetermined	Encyrtidae (Par)	Goiânia (GO)	Santos et al. 2010
Caryocaceae	Caryocar brasiensis	Cambess. (1)	Leaf	Eulophidae (Par) Eurytomidae (Par) Pteromalidae (Par)	Hidrolândia (GO)	Silva et al. 2018b
			Leaf	Hymenoptera (Par)	Hidrolândia (GO)	Ribeiro et al. 2019
Celastraceae	Plenckia populnea	Reissek (1)	Leaf	Encyrtidae (Par)	Goiânia (GO)	Santos et al. 2010
Combretaceae	Combretum leprosum	Mart. (1)	Leaf	Hymenoptera (Par) Lepidoptera (Inq)	Caetité (BA)	Nogueira et al. 2016 Silva et al. 2018a Vieira et al. 2018
Connaraceae	Connarus suberosus	Planch. (1)	Leaf	Hymenoptera (Par)	Silvânia (GO)	Bergamini et al. 2017
Dilleniaceae			Leaf	Hymenoptera (Par)		

CONTINUATION...
Insect galls of the Brazilian Cerrado

Biota Neotropica 21(3): e20211202, 2021

Insect galls of the Brazilian Cerrado

Davilla brasiliana DC. (1)
Cecidomyiidae Leaf
Clinodiplosis sp.
Asphondylia sp. (Cecidomyiidae)
Tiradentes (MG)
Maia & Fernandes 2004

Davilla elliptica A. St-Hil. (1)
Cecidomyiidae Leaf
Eulophidae (Par)
Serra dos Pireneus (GO)/Serrânia (GO)
Araújo et al. 2011

EBENACEAE

Diospyros burchellii DC. (1)
Lepidoptera
Eulophidae (Par)
Serra dos Pireneus (GO)
Araújo et al. 2011

ERYTHROXYLACEAE

Erythroxylum frangulifolium A. St-Hil.
(Eurytomidae) Bud/Stem
Eulophidae (Hymenoptera)
Belo Horizonte (MG)
Fernandes et al. 1988

Erythroxylum suberosum A. St-Hil. (1)
Undetermined Stem
Eurytomidae (Par)
Serrânia (GO)
Bergamini et al. 2017

EUPHORBIACEAE

Croton floribundu Spreng. (1)
Cecidomyiidae Leaf
Clinodiplosis sp. (Cecidomyiidae)
Tiradentes (MG)
Maia & Fernandes 2004

Sapium glandulosum (L.) Morong (1)
Neolithus *fasciatus* Scott, 1882 (Triozidae, Hemiptera)
Fruit/Inflorescence/Leaf/Stem
Encyrtidae (Par)
Pteromalidae (Par)
Belo Horizonte (MG)
Fernandes et al. 1988

FABACEAE

Anadenanthera peregrina (L.) Spreng. (1)
Undetermined Leaf
Hymenoptera (Par)
Goiânia (GO)
Santos et al. 2010

Andira cuyabensis Benth. (2)
Undetermined Leaf
Acari (Suc)
Barreiras (BA)
Lima & Calado 2018

Andira fraxinifolia Benth. (2)
Undetermined Leaf/Stem
Hymenoptera (Par)
Belo Horizonte (MG)
Fernandes et al. 1988 (as *Andira parvifolia* Mart. ex Benth.)

Andira fraxinifolia Benth. (2)
Cecidomyiidae Leaf/Stem
Hymenoptera (Par)
Belo Horizonte (MG)
Fernandes et al. 1988

Andira fraxinifolia Benth. (2)
Cecidomyiidae Leaf/Stem
Hymenoptera (Par)
Belo Horizonte (MG)
Fernandes et al. 1988 (as *Andira parvifolia* Mart. ex Benth.)

Bauhinia brevipes Vogel (1)
Undetermined Leaf
Acari (Suc)
Barreiras (BA)
Lima & Calado 2018

CONTINUE...
Species	Life Stage	Taxon Name	Location
Schizomyia macropillata	Leaf	*Eulophidae (Par)*	Barreiras (BA)
Maia, 2005 (Cecidomyiidae)		*Collembola: Seira mendonacae*	
		(Suc)	
		Salina celebensis (Suc)	
			Maia & Fernandes 2005
			Lima & Calado 2018
	Stem	*Acari (Suc)*	Barreiras (BA)
		Encyrtidae (Par)	
	Stem	*Braconidae (Par)*	Hidrolândia (GO)
		Eulophidae (Par)	
Bauhinia cupulata Benth. (1)	Leaf		Barreiras (BA)
		Salina celebensis	
			Lima & Calado 2018
	Leaf	*Rileynae*	Altinópolis (SP)
Bauhinia holophylla (Bong.) Steud. (2)	Leaf	(Eurytomidae) (Par)	
Urso-Guimarães & Amorim, 2002			Urso-Guimarães & Amorim 2002
			Ribeiro et al. 2019
Bauhinia rufa (Bong.) Steud. (1)	Leaf	*Eupelmidae (Par)*	Silvânia (GO)
		Torymidae (Par)	
	Leaf	*Eulophidae (Par)*	Silvânia (GO)
		Torymidae (Par)	
	Stem	*Eupelmidae (Par)*	Silvânia (GO)
		Tetracampidae (Par)	
Bauhinia ungulata L. (1)	Leaf	*Eulophidae (Par)*	Goiânia (GO)
		Hymenoptera	
Calliandra macrocalyx Harms (2)	Leaf		Santos et al. 2010
		Hymenoptera	Silva et al. 2018a
Copaifera depilis Dwyer (2)	Undetermined Bud	*Hymenoptera* (Par)	Barreiras (BA)
		Caetité (BA)	
	Undetermined Stem	*Hymenoptera* (Par)	Barreiras (BA)
		Hymenoptera (Par)	
Copaifera langsdorffii Desf. (1)	Bud/ Leaf/ Stem	*Encyrtidae (Par)*	Belo Horizonte (MG)
	Hymenoptera	*Eurytomidae (Par)*	
		Pteromalidae (Par)	
	Cecidomyiidae Leaf/ Stem	*Hymenoptera* (Par)	Belo Horizonte (MG)
	Cecidomyiidae Leaf	*Hymenoptera* (Par)	Belo Horizonte (MG)
	Contarinia sp. (Cecidomyiidae)	*Platygastridera* (Par)	Belo Horizonte (MG)
	Cecidomyiidae Leaf	*Hymenoptera* (Par)	Tiradentes (MG)
	Cecidomyiidae Stem	*Hymenoptera* (Par)	Caetité (BA)
			Nogueira et al. 2016
	Cecidomyiidae Stem	*Hymenoptera* (Par)	Caetité (BA)
			Nogueira et al. 2016
	Undetermined Leaf	*Hymenoptera* (Par)	Caetité (BA)
			Nogueira et al. 2016
Copaifera luetzelburgii Harms (2)	Undetermined Leaf	*Hymenoptera* (Par)	Barreiras (BA)
			Santos et al. 2018
	Undetermined Leaf	*Hymenoptera* (Par)	Barreiras (BA)
			Santos et al. 2018
	Undetermined Leaf	*Hymenoptera* (Par)	Barreiras (BA)
			Santos et al. 2018
Copaifera sabulicola J. Costa & L.P. Queiroz (2)	Undetermined Stem	*Hymenoptera* (Par)	Barreiras (BA)
		Acarai (Suc)	Santos et al. 2018
	Undetermined Stem	*Formicicidae (Suc)	Barreiras (BA)
			Santos et al. 2018
	Undetermined Leaf	*Coleoptera (Suc)*	Barreiras (BA)
			Santos et al. 2018

CONTINUE...
Taxon	Family	Type	Genus	Order	Host	Location	Authors
Hymenaea courbaril L. (1)	Cecidomyiidae	Leaf	Eurytomidae (Par)	Barreiras (BA)	Lima & Calado 2018		
Inga bahiensis Benth. (1)	Undetermined	Leaf	Eurytomidae (Par)	Barreiras (BA)	Silva et al. 2018a		
Inga cylindrica (Vell.) Mart. (1)	Cecidomyiidae	Leaf	Eurytomidae (Par)	Goiânia (GO)	Santos et al. 2010		
Inga ingoides (Rich.) Willd. (1)	Cecidomyiidae	Leaf/ Stem	Eurytomidae (Par)	Belo Horizonte (MG)	Santos et al. 1988		
Inga edulis Mart. (1)	Neolasioptera sp. (Cecidomyiidae)	Leaf	Hymenoptera (Par)	Belo Horizonte (MG)	Urso-Guimarães et al., 2003		
Lonchocarpus cultratus (Vell.) A.M.G. Azevedo & H.C. Lima (1)	Euphaleurus sp. (Psyllidae, Hemiptera)	Leaf	Hymenoptera (Par)	Belo Horizonte (MG)	Urso-Guimarães et al., 2003		
Machaerium aculeatum Raddi (2)	Anadiplossis sp. (Cecidomyiidae)	Leaf	Eurytomidae (Par)	Belo Horizonte (MG)	Fernandes et al. 1988		
Mimosa gemmulata Barneby (1)	Undetermined	Stem	Hymenoptera (Par)	Caetité (BA)	Nogueira et al. 2016		Silva et al. 2018a
LAMIACEAE							
Leonotis nepetifolia (3)	Asphondyliaceae canasta Urso-Guimarães & Amorim, 2002 (Cecidomyiidae)	Inflorescence	Toryminae (Torymidae) (Par)	Delfinópolis (MG)	Urso-Guimarães & Amorim 2002		
LAURACEAE							
Nectandra cuspidata Nees (1)	Cecidomyiidae	Leaf	Eurytomidae (Par)	Hidrolândia (GO)	Silva et al. 2018b		
Byrsonima verbascifolia (L.) DC. (1)	Cecidomyiidae	Leaf	Eurytomidae (Par)	Silvânia (GO)/ Tiradentes (MG)	Bergamini et al. 2017		
Byrsonima variabilis A. Juss. (2)	Undetermined	Stem	Eurytomidae (Par)	Tiradentes (MG)	Maia & Fernandes 2004		

CONTINUE...
Plant Species	Order/Insect Family	Host Part	Family/Insect Family	Host Part
Diplopterys pubipetala	*Cecidomyiidae*	Leaf	Eulophidae (Par)	Altinópolis SP
Clinodiplosis bellum			*Entedoninae* (Par)	
Urso-Guimarães & Garcia-Neto, 2015			*Torymidae* (Par)	
Dasineura sp.		Leaf	*Eulophidae* (Par)	Hidrolândia (GO)
Urso-Guimarães & Garcia-Neto, 2015			*Altinópolis* (SP)	
Phlaeothripidae		Leaf	Hidrolândia	
Peixotoa goiana	Undetermined	Leaf	*Hymenoptera* (Par)	Silvânia (GO)
Cecidomyiidae		Leaf	*Torymidae* (Par)	Silvânia (GO)
Phlaeothripidae		Leaf	*Hymenoptera* (Par)	
Altinópolis (SP)			*Silvânia* (GO)	
Ribeiro et al. 2019				
Dasineura sp.		Leaf	*Eulophidae* (Par)	Hidrolândia
Silva et al. 2018b		Leaf	*Hymenoptera* (Par)	
Phlaeothripidae		Leaf	*Hymenoptera* (Par)	
Altinópolis (SP)			*Silvânia* (GO)	
Ribeiro et al. 2019				
Dasineura sp.		Leaf	*Eulophidae* (Par)	Hidrolândia
Urso-Guimarães & Garcia-Neto, 2015			*Altinópolis* (SP)	
Phlaeothripidae		Leaf	Hidrolândia	
Ribeiro et al. 2019		Leaf	*Hymenoptera* (Par)	
Silva et al. 2018b		Leaf	*Hymenoptera* (Par)	
Phlaeothripidae		Leaf	*Hymenoptera* (Par)	
Altinópolis (SP)			*Silvânia* (GO)	
Ribeiro et al. 2019				
Dasineura sp.		Leaf	*Eulophidae* (Par)	Hidrolândia
Urso-Guimarães & Garcia-Neto, 2015			*Altinópolis* (SP)	
Phlaeothripidae		Leaf	Hidrolândia	
Ribeiro et al. 2019		Leaf	*Hymenoptera* (Par)	
Silva et al. 2018b		Leaf	*Hymenoptera* (Par)	
Phlaeothripidae		Leaf	*Hymenoptera* (Par)	
Altinópolis (SP)			*Silvânia* (GO)	
Ribeiro et al. 2019				

MALVACEAE

Plant Species	Order/Insect Family	Host Part	Family/Insect Family	Host Part
Luehea divaricata Mart. (1)	Coleoptera	Leaf	*Hymenoptera* (Par)	Belo Horizonte (MG)
Luehea cf. divaricata Mart.	Cecidomyiidae	Leaf/Stem	*Hymenoptera* (Par)	*Tiradentes* (MG)
Siderolobes longiflorum (Mart. & Zucc.) A. Robyns (1)	Lepidoptera	Leaf	*Hymenoptera* (Par)	*Serra dos Pireneus* (GO)
Sida micrantha A.St.-Hil. (1)	Cecidomyiidae	Leaf/Stem	*Hymenoptera* (Par)	*Serra dos Pireneus* (GO)
MELASTOMATACEAE				
Leandra aurea (Cham.) Cogn. (1)	Lepidoptera	Bud	*Anthonomus vis Clark, 1992* (Curculionidae) (Inq)	*Tiradentes* (MG)
			Fiebrigella sp. (Chloropidae) (Pre)	
			Lestodiplosis sp. (Cecidomyiidae) (Pre)	
			Eulophidae (Par)	
			Phlaeothripidae (Thysanoptera)	
Miconia theaezans (Bonpl.) Cogn. (1)	Cecidomyiidae	Bud	*Hymenoptera* (Par)	*Tiradentes* (MG)
Pleroma candolleanum (Mart. ex DC.) Triana (2)	Cecidomyiidae	Leaf	*Hymenoptera* (Par)	*Tiradentes* (MG)
MELASTOMATACEAE				
Macairea radula (Bonpl.) DC. (1)	Gelechiidae (Lepidoptera)	Leaf	*Chalcididae* (Par)	*Serra dos Pireneus* (GO)
	Undetermined	Leaf	*Microgastrinae* (Braconidae) (Par)	*Delfinópolis* (MG)
Miconia theaezans (Bonpl.) Cogn. (1)	Cecidomyiidae	Bud	*Hymenoptera* (Par)	*Tiradentes* (MG)
MYRTACEAE				
Eugenia punicifolia (Kunth) DC. (2)	Undetermined	Leaf	*Hymenoptera* (Par)	*Serra dos Pireneus* (GO)
CONTINUATION...

Family	Species	Location	Host Plant	Remarks
Stephomyia sp.	(Cecidomyiidae)	Leaf	Hymenoptera (Par)	Maia & Fernandes 2004 (as Eugenia cfr. ovalifolia)
Undetermined	Stem	Hymenoptera (Par)	Caetité (BA)	Vieira et al. 2018a
Dasineura sp.	(Cecidomyiidae)	Leaf	Eulophidae (Par)	Fernandes et al. 1988 (as Myrcia itambensis O. Berg.)
Triozoida sp.	(Psyllidae, Hemiptera)	Leaf	Encyrtidae (Par)	Fernandes et al. 1988
Cecidomyiidae				
Myrciaria tenella	(DC.) O. Berg. (1)	Leaf	Hymenoptera (Par)	Maia & Fernandes 2004
Psidium brownianum	Mart. ex DC. (2)	Undetermined Leaf	Pseudoscorpiones (Pre)	Silva et al. 2018a
Psidium salutare var. pohlianum	(O. Berg.) Laundrum (2)	Psyllidae (Hemiptera)	Eulophidae (Par)	Araújo et al. 2011
Nyctaginaceae				
Guapira opposita	(Vell.) Reitz (1)	Cecidomyiidae	Hymenoptera (Par)	Vieira et al. 2018
Neea theifera	Oerst. (1)	Cecidomyiidae	Hymenoptera (Par)	Santos et al. 2012
Ochnaceae				
Ouratea floribunda	(A. St-Hil.) Engl. (2)	Cecidomyiidae	Hymenoptera (Par)	Fernandes et al. 1988
Piperaceae				
Piper arboreum	Aubl. (1)	Undetermined Leaf	Eulophidae (Par)	Araújo et al. 2011
Proteaceae				
Roupala montana	Aubl. (1)	Cecidomyiidae	Eulophidae (Par)	Silva et al. 2018b
Rubiaceae				
Borreria cfr. brachystemonoides	Cham. & Schltdl. (1)	Cecidomyiidae	Encyrtidae (Par)	Maia & Fernandes 2004
Chomelia pohliana	Müll.Arg (2)	Undetermined Spine base	Lygaeidae (Hemiptera) (Inq)	Urso-Guimarães et al. 2003
Salicaceae				
Casearia sylvestris	Sw. (1)	Undetermined Stem	Hymenoptera (Par)	Bergamini et al. 2017
Sapindaceae				
Serjania obtusidentata	Radlk. (2)	Cecidomyiidae	Eulophidae (Par)	Santos et al. 2010
Siparuna guianensis	Aubl. (1)	Undetermined Stem	Torymidae (Par)	Bergamini et al. 2017
Cecidomyiidae				Silva et al. 2018b
Cecidomyiidae				Bergamini et al. 2017
Undetermined	Stem	Torymidae (Par)	Silvânia (GO)	Silva et al. 2018b
Smilacaceae				
CONTINUE...				
Plant Species	Family	Morphological Stage	Parasitoid Taxa	Location
-------------------------------	-----------------	---------------------	--------------------------------	------------------
Smilax oblongifolia Pohl ex Griseb. (2)	Cecidomyiidae	Leaf	Hymenoptera (Par): Polyxenus (Diptera) (Inq): Eulophidae (Par): Camptoneuromyia sp. (Cecidomyiidae) (Inq)	Delfinópolis (MG): Altinópolis (SP)
STYRACACEAE				
Styrax pohlii A.DC. (1)	Cecidomyiidae	Leaf	Eulophidae (Par): Goiânia (GO)	Santos et al. 2010
TRIGONIACEAE				
Trigonia nivea Cambess.	Lantana fucata Lindl. (1)	Neolasioptera sp	Hymenoptera (Par): Tiradentes (MG)	Maia & Fernandes 2004 (as Lantana lilicina Desf.)
VERBENACEAE				
Lippia alba (Mill.) N. E. Br. ex Britton & P. Wilson (1)	Lippia alba (Mill.) N. E. Br. ex Britton & P. Wilson (1)	Neolasioptera sp	Hymenoptera (Par): Tiradentes (MG)	Maia & Fernandes 2004 (as Lantana lilicina Desf.)
Vochysiaceae	Qualea grandiflora Mart. (1)	Undetermined	Hymenoptera (Par): Collembola (Suc): Barreiras (BA)	Araújo et al. 2011
	Qualea multiflora Mart. (1)	Undetermined	Hymenoptera (Par): Caldas Novas (GO)	Santos et al. 2012
	Qualea parviflora Mart. (1)	Undetermined	Hymenoptera (Par): Serra dos Pireneus (GO)	Araújo et al. 2011

Seira mendoncae Bellini & Zeppelini, 2008 (Collembola); and five genera, Camptoneuromyia Felt, 1908, Clinodiplosis Kieffer, 1895, Lestodiplosis Kieffer, 1894 (Cecidomyiidae), and Fiebrigella Duda, 1921 (Chloropidae), and Polyxenus Latreille, 1802 were identified. All other records were at suprageneric levels.

We found 36 host plant genera with records of the associated fauna on undetermined species. They included 24 plant families and totaled at most 55 gall morphotypes (Table 2). Among plant families, five were represented only by undetermined species, namely: Chrysobalanaceae, Loranthaceae, Lythraceae, Meliaceae, and Metteniusiaceae. Therefore, they were not included in the Table 1. Adding them, the number of host plant families with records of associated fauna rises to 42. Concerning genera data, Arrabidaeae DC. (Bignoniaceae), Hirtella L. (Chrysobalanaceae), Doliocarpus Rol. (Dilleniaceae), Manihot Mill. and Sebastiania Spreng. (Euphorbiaceae), Emmotum Dsv. ex Ham. (Metteniusiaceae), Struthanthus Mart. (Loranthaceae), Diplosodon Pohl. (Lythraceae), Heteropterys Kuth. and Thyrralis L. (Malpighiaceae), Tibouchina Aubl. (Melastomataceae), Guarea F. Allam ex L. and Trichilia P. Browne (Meliaceae), Campanonasus Ruiz et Pav. (Myrtaceae), and Paullinia L. (Sapindaceae) are added, increasing the number of host genera to 108. The following arthropod taxa were recorded as secondary dwellers: Hymenoptera: Braconidae, Chalcididae, Elasmidae, Encyrtidae, Eulophidae, Eurytomidae, Formicidae, Pseudoscorpiones, Collembola: Salina celebensis, Salina sp. and Seria mendonca, Araneae; and Pseudoscorpiones. Among them, Elasmidae, Perilampidae, Tanaostigmatidae, Tomyridae, and Trichogrammatidae; Diptera: Sciariidae and Brachycera; Thysanoptera; Collembola: Salina celebensis, Salina sp. and Seria mendonca; Acari; Araneae; and Pseudoscorpiones. Among them, Elasmidae, Perilampidae, Tanaostigmatidae, Trichogrammatidae, and Brachycera are added, increasing the richness of parasitoid families from 12 to 16, and including Brachycera in the “inquilines” guild. Records at family level (Table 3) added Acanthaceae, Solanaceae, Tiliaceae and Turneraceae, increasing from 42 to 46 the number of host families with associated fauna.

Multiparasitism was recorded in 23 gall morphotypes (15.6% of the total of parasitized gall morphotypes). The number of parasitoid taxa in the same gall morphotype varied from two to five. The highest numbers were recorded in galls on Byrsonima variabilis (Malpighiaceae),
Table 2. Data on arthropods associated with insect galls in the Brazilian Cerrado: host plant (identification at genus level), gall-inducer, host organ, secondary dweller, ecological guild, locality, and reference. Ecological guild: (Inq) inquiline, (Par) parasitoid, (Suc) successor.

Host plant	Gall-inducer	Host organ	Secondary dwellers	Locality	Reference
Apocynaceae					
Aspidosperma sp.	Cecidomyiidae	Leaf	Pteromalidae (Par)	Hidrolândia (GO)	Silva et al. 2018
Asteraceae					
Moquiniastrum sp.	Cecidomyiidae	Leaf	Hymenoptera (Par)	Caetité (BA)	Silva et al. 2018
Bignoniaceae					
Arrabidaea sp.	Cecidomyiidae	Leaf	Torymidae (Par)	Goiânia (GO)	Santos et al. 2010
Boraginaceae					
Cordia sp.	Hymenoptera	Leaf	Acari (Suc)	Barreiras (BA)	Lima & Calado 2018
Chrysobalanaceae					
Hirtella sp.	Cecidomyiidae	Leaf	Torymidae (Par)	Silvânia (GO)	Bergamini et al. 2017
Combretaceae					
Connaraceae					
Connarus sp.	Undetermined	Stem	Eulophidae (Par)	Hidrolândia (GO)	Silva et al. 2018
Dilleniaceae					
Doliocarpus sp.	Cecidomyiidae	Stem	Eulophidae (Par)	Silvânia (GO)	Bergamini et al. 2017
Erythroxylaceae					
Erythroxylum sp.	Cecidomyiidae	Leaf	Eulophidae (Par)	Hidrolândia (GO)	Silva et al. 2018
Euphorbiaceae					
Croton sp.	Undetermined	Leaf	Hymenoptera (Par)	Caetité (BA)	Vieira et al. 2018
Manihot sp.	Undetermined	Leaf	Eulophidae (Par)	Serra dos Pireneus (GO)	Araújo et al. 2011
Fabaceae					
Sebastiana sp.	Cecidomyiidae	Leaf	Eulophidae (Par)	Hidrolândia (GO)	Silva et al. 2018
Fagaceae					
Andira sp.	Cecidomyiidae	Stem	Eulophidae (Par)	Tiradentes (MG)	Maia & Fernandes 2004
Bauhinia sp.	Cecidomyiidae	Leaf	Eulophidae (Par)	Serra dos Pireneus (GO)	Araújo et al. 2011
Guttiferae					
Inga sp.	Cecidomyiidae	Leaf	Hymenoptera (Par)	Tiradentes (MG)	Maia & Fernandes 2004
Loranthaceae					
Struthanthus sp.	Undetermined	Leaf	Hymenoptera (Par)	Serra dos Pireneus (GO)	Araújo et al. 2011
Lythraceae					
Diploxodon sp.	Undetermined	Stem	Brachycera (Diptera) (Inq)	Silvânia (GO)	Bergamini et al. 2017

https://doi.org/10.1590/1676-0611-BN-2021-1202.

http://www.scielo.br/bn
Genus	Family	Organ	Genus	Order	Location	Reference
Byronima	Cecidomyiidae	Leaf	*Trichogrammatidae*	(Par)	Serra dos Pireneus (GO)	Araújo et al. 2011
Heteropterys	Undetermined	Leaf	*Eulophidae* (Par)		Hidrolândia (GO)	Silva et al. 2018
Peixotoa	Cecidomyiidae	Leaf	*Eulophidae* (Par)		Hidrolândia (GO)	Silva et al. 2018
Thryallis	Undetermined	Leaf	*Hymenoptera* (Par)		Caetité (BA)	Nogueira et al. 2016
Malvaceae						
Luehea	Cecidomyiidae	Leaf	*Salina celebensis* (Suc)	*Salina* sp. (Suc)	Barreiras (BA)	Lima & Calado 2018
Melastomataceae						
Miconia	Cecidomyiidae	Leaf	*Hymenoptera* (Par)		Tiradentes (MG)	Maia & Fernandes 2004
Miconia	Undetermined	Stem	*Hymenoptera* (Par)		Goiânia (GO)	Silva et al. 2015
Tibouchina	Cecidomyiidae	Leaf	*Perilampidae* (Par)		Altinópolis (SP)	Ribeiro et al. 2019
Meliaceae						
Guarea	Cecidomyiidae	Leaf	*Thysanoptera* (Inq)		Caetité (BA)	Silva et al. 2018
Trichilia	Undetermined	Stem	*Eulophidae* (Par)		Tiradentes (MG)	Maia & Fernandes 2004
Metteniusaceae					Hidrolândia (GO)	Silva et al. 2018
Emmetum	Undetermined	Stem	*Hymenoptera* (Par)		Caetité (BA)	Nogueira et al. 2016
Myrtaceae						
Campomanesia	Undetermined	Leaf	*Hymenoptera* (Par)		Caetité (BA)	Vieira et al. 2018
Eugenia	Undetermined	Leaf	*Hymenoptera* (Par)		Caetité (BA)	Vieira et al. 2018
Myrcia	Cecidomyiidae	Bud	*Hymenoptera* (Par)		Serra dos Pireneus (GO)	Araújo et al. 2011
Nyctaginaceae						
Lopesia	*Guapira*	Leaf	*Hymenoptera* (Par)		Tiradentes (MG)	Maia 2004
Myrtaceae	*Eugenia*	Leaf	*Hymenoptera* (Par)		Caetité (BA)	Vieira et al. 2018
Myrcia	*Asphondyliini* (Cecidomyiidae)	Stem	*Hymenoptera* (Par)		Tiradentes (MG)	Maia & Fernandes 2004
Nyctaginaceae						
Guapira	R. Lopesia bilobata	Leaf	*Hymenoptera* (Par)		Tiradentes (MG)	Maia 2004
Piper	*Parametaspachyphylla*	Leaf/ stem	*Hymenoptera* (Par)		Tiradentes (MG)	Maia & Fernandes 2004
Piper	Maia & Santos, 2007					Maia & Santos 2007
Sapindaceae	*Pauhlinia*	Stem	*Hymenoptera* (Par)		Tiradentes (MG)	Maia & Fernandes 2004
Serjania	Cecidomyiidae	Leaf	*Eulophidae* (Par)		Tiradentes (MG)	Maia & Fernandes 2004
Smilax	Undetermined	Leaf	*Eulophidae* (Par)		Hidrolândia (GO)	Silva et al. 2018
Styrax	Undetermined	Leaf	*Eupelmidae* (Par)		Serra dos Pireneus (GO)	Araújo et al. 2011

Five (Eulophidae, Eupelmidae, Eurytomidae, Ichneumonidae, and Platygasteridae) in stem galls and four (Eulophidae, Eurytomidae, Torymidae, and Signiphoridae) in leaf galls. Four taxa of parasitoids (Elasmidae, Eurytomidae, Eulophidae, and Torymidae) were also reported in galls on Doliocarpus sp. (Dilleniaceae). Different inquilines – Clinidiplosis sp. (Cecidomyiiidae) and Lepidoptera were found in a bud gall on Davilla brasiliana DC. (Dilleniaceae), as well as Polyxenus sp. (Diplopoda) and Psocoptera in a leaf gall on Smilax oblongifolia Pohl ex Griseb (Smilacaceae). Two successors – Seria mendonca and Salina celebensis (Collembola).
Table 3. Data on arthropods associated with insect galls in the Brazilian Cerrado: host plant (identification at family level), gall-inducer, host organ, secondary dweller, ecological guild, locality, and reference. Ecological guild: (Inq) inquiline, (Par) parasitoid, (Suc) successor.

Host plant	Gall-inducer	Host organ	Secondary dweller	Locality	Reference
Acanthaceae	Undetermined	Leaf midvein	Chalcididae (Par)	Silvânia (GO)	Bergamini et al. 2017
Anacardiaceae	Undetermined	Leaf	Eurytomidae (Par)	Silvânia (GO)	Bergamini et al. 2017
Asteraceae	Cecidomyiidae	Leaf	Encyrtidae (Par)	Serra dos Pireneus (GO)	Araújo et al. 2011
	Undetermined	Leaf	Eulophidae (Par)	Silvânia (GO)	Bergamini et al. 2017
	Undetermined	Stem	Torymidae (Par)	Silvânia (GO)	Bergamini et al. 2017
	Undetermined	Stem	Sciaridae (Diptera) (Inq)	Silvânia (GO)	Bergamini et al. 2017
Celastraceae	Undetermined	Leaf	Eulophidae (Par)	Silvânia (GO)	Bergamini et al. 2017
Connaraceae	Cecidomyiidae	Inflorescence	Eurytomidae (Par)	Hidrolândia (GO)	Silva et al. 2018
Erythroxylaceae	Undetermined	Leaf	Araneae (Suc) Hemiptera (Inq)	Caetité (BA)	Silva et al. 2018
Euphorbiaceae	Undetermined	Leaf/ Stem	Eulophidae (Par)	Hidrolândia (GO)	Silva et al. 2018
Fabaceae	Cecidomyiidae	Bud	Hymenoptera (Par)	Tíradentes (MG)	Maia & Fernandes 2004
Meliaceae	Undetermined	Leaf	Eulophidae (Par)	Serra dos Pireneus (GO)	Araújo et al. 2011
Malpighiaceae	Cecidomyiidae	Leaf	Eulophidae (Par)	Caetité (BA)	Nogueira et al. 2016
	Undetermined	Stem	Pseudoscorpiones (Pre)	Caetité (BA)	Nogueira et al. 2016
Phlaeothripidae (Thysanoptera)	Leaf	Eulophidae (Par)	Hidrolândia (GO)	Silva et al. 2018	
	Undetermined	Stem	Hymenoptera (Par)	Caetité (BA)	Vieira et al. 2018
	Cecidomyiidae	Leaf	Hymenoptera (Par)	Caetité (BA)	Vieira et al. 2018
	Undetermined	Leaf	Eurytomidae (Par)	Sílvânia (GO)	Bergamini et al. 2017
Malvaceae	Undetermined	Leaf	Hymenoptera (Par)	Serra dos Pireneus (GO)	Araújo et al. 2011
Melastomataceae	Undetermined	Leaf	Hymenoptera (Par)	Sílvânia (GO)	Bergamini et al. 2017
	Undetermined	Stem	Sciaridae (Inq)	Sílvânia (GO)	Bergamini et al. 2017
	Undetermined	Stem	Torymidae (Par)	Sílvânia (GO)	Silva et al. 2018
Meliaceae	Undetermined	Leaf	Eulophidae (Par)	Sílvânia (GO)	Bergamini et al. 2017
Moraceae	Undetermined	Stem	Araneae (Suc)	Caetité (BA)	Silva et al. 2018
Myrtaceae	Undetermined	Leaf	Eulophidae (Par)	Sílvânia (GO)	Bergamini et al. 2017
Cecidomyiidae	Undetermined	Leaf	Hymenoptera (Par)	Sílvânia (GO)	Bergamini et al. 2017
	Undetermined	Leaf	Eurytomidae (Par)	Sílvânia (GO)	Bergamini et al. 2017
Phlaeothripidae (Thysanoptera)	Leaf	Collembola (Suc)	Barreiras (BA)	Lima & Calado 2018	
were recorded in a leaf gall on Bauhinia brevipes Vogel (Fabaceae); and two predators in a bud gall on Leandra aurea (Cham.) Cogn. (Melastomataceae). Furthermore, 17 gall morphotypes hosted more than one ecological guild: successors + inquilines (N=2), parasitoids + inquilines (N=7), parasitoids + successors (N=5), predators + parasitoids (N=2) and parasitoids + predictors + inquilines (N=1).

Almost all recorded plant species are native to Brazil, except Leonotis nepetifolia (L.) R.Br which is naturalized. Among the native species, 29 are endemic to Brazil (30.8%) (Table 1). The endemic plants host secondary dwellers in 50 gall morphotypes. Nine hosts are restricted to the Cerrado: Bauhinia holophylla (Bong.) Steud., Copaifera depilis Dwyer, C. luetzelburgii Harms, C. sabulicola J. Costa & L.P. Queiroz (Fabaceae), Ouratea var. pohlianum (O. Berg.) Laundrum (Myrtaceae) and Byrsonima crassifolia (A. St-Hil.) Engl. (Ochnaceae), whereas Calliandra macrocalyx Harms (Fabaceae) is restricted to the Caatinga. Nevertheless, this plant species is cited in the present paper, because it was recorded in a transition area between the Cerrado and the Caatinga. The endemic plants host four different ecological guilds: 1) parasitoids of seven Hymenopteran families (Braconidae, Encyrtidae, Eulophidae, Eupelmidae, Eurytomidae, Ichneumonidae, and Platygasteridae), 2) predators (Formicidae, Acari, and Coleoptera), 3) parasitoids (Pseudoscorpiones), and 4) inquilines (Lygaeidae: Hemiptera, and Camptoneuromyia sp.: Cecidomyiidae).

Forty-six host plant species are useful and host secondary dwellers in 62 gall morphotypes. Several species have multiple uses, but most (33) (71.7%) are used in carpentry and/or cabinet making, 27 (58.7%) are medicinal and 15 (32.6%) are edible (Table 9). The useful plants host parasitoids of eight families (Braconidae, Encyrtidae, Eulophidae, Eurytomidae, Ichneumonidae, Platygasteridae, Pteromalidae, Signiphoridae, and Torymidae), inquilinous Lepidoptera, Hemiptera, and Camptoneuromyia sp. (Cecidomyiidae); and successors (Acari and Collembola).

Data on the associated fauna are distributed in 12 localities of four Brazilian states: Minas Gerais – Tiradentes (Serra de São José – 21°04'08"W) with records in 33 gall morphotypes, Belo Horizonte (Campus Pampulha – 19°48'0"S and 43°57'W) with 26, Delfinópolis – 20°15'0"S and 46°45'W with seven, and Serra do Cipó – 19°12'34"S and 43°27'38"W) with one; Goiás – Silvânia (16°38'0"S and 48°39'W) with 18, Serra dos Pireneus (15°48'0"S and 48°52'0"W) with 14, Goiânia (16°36'0"S and 49°16'0"W) with 13, Hidrolândia (17°00'0"S and 49°12'0"W) with 13, and Caldas Novas (17°42'0"S and 48°38'0"W) with 4; Bahia – Barreiras (11°37'0"S and 44°34'0"W) with 19 and Caetité (14°05'0"S and 42°29'0"W) with 19; and São Paulo (Altinópolis – 21°00'0"S and 47°23'0"W) with 16.

Discussion

Cintra et al. (2020) recorded a total 968 gall morphotypes in the Brazilian Cerrado. In the present paper, we reported the associated fauna in 163 gall morphotypes, which corresponds to only 16.8% of the total. This low value appears to suggest that the presence of secondary dwellers is not frequent, but we have to consider that from 32 papers, only 50% addressed the associated fauna. The plant families with the greatest richness of secondary dwellers were the same ones pointed out by Cintra et al. (2020) as those with the highest gall richness.

The associated fauna was reported in all known orders of gall-inducing insects: Diptera Hemiptera, Lepidoptera, Hymenoptera, Coleoptera, and Thysanoptera. The majority was found in galls of Cecidomyiidae, the most frequent inducers in the Brazilian Cerrado. Leaf and stem galls supported most records as they are the most galled plant organs. Some galls hosted more than one ecological guild, which emphasizes the importance of gall-inducers as ecosystem engineers.

Parasitoids were the most frequent secondary dwellers, being represented by 12 Hymenopteran families. Among them, Eulophidae, Eurytomidae, Torrymidae, and Encyrtidae predominated. In restinga areas of the Atlantic Forest, Maia & Azevedo (2009) recorded 15 families, almost all represented in the Brazilian Cerrado, except Aphelinidae, Bethylidae, Mymaridae and Scelionidae. On the other hand, Ichneumonidae and Tetracampidae were not recorded by Maia.
Table 4. Richness of host plant species and gall morphotypes with records of the associated fauna per plant family in the Brazilian Cerrado. Families with the greatest number of gall morphotypes are highlighted in bold.

Host plant-family	Number of host species	Number of gall morphotypes
Annonaceae	3	3
Apocynaceae	1	2
Araliaceae	1	1
Asteraceae	**12**	**15**
Bignoniaceae	1	1
Boraginaceae	1	3
Burseraceae	1	2
Calophyllaceae	1	3
Cannabaceae	1	1
Caryocaraceae	1	2
Celastraceae	1	1
Combretaceae	1	1
Connaraceae	1	1
Dilleniaceae	2	3
Ebenaceae	1	1
Erythroxylaceae	2	3
Euphorbiaceae	2	5
Fabaceae	**23**	**52**
Lamiaceae	1	1
Lauraceae	1	3
Malpighiaceae	6	10
Malvaceae	3	4
Melastomataceae	4	6
Myrtaceae	**5**	**10**
Nyctaginaceae	2	2
Ochnaceae	1	1
Piperaceae	1	2
Proteaceae	1	1
Rubiaceae	2	2
Salicaceae	1	1
Sapindaceae	1	1
Siparunaceae	1	3
Smilacaceae	1	1
Styracaceae	1	3
Trigoniacae	1	1
Verbenaceae	2	3
Vochysiaceae	3	8
Total	35	163

Table 5. Richness of gall morphotypes with records of the associated fauna per gall-inducing insect in the Brazilian Cerrado.

Gall-inducing insect	Number of gall morphotypes
Diptera (Cecidomyiidae: 103)	105
Hemiptera	7
Lepidoptera	6
Hymenoptera	3
Coleoptera	2
Thysanoptera	2
Undetermined	38
Total	163

Table 6. Richness of gall morphotypes with records of the associated fauna per host plant organ in the Brazilian Cerrado.

Host plant organ	Number of gall morphotypes
Leaves	109
Stems	32
Bud	8
Flower bud/inflorescence	2
Spine	1
Stem and bud	2
Leaf and stem	7
Bud, leaf and stem	1
Fruit, inflorescence, leaf and stem	1

Table 7. Richness of gall morphotypes with records of the associated fauna per ecological guild in the Brazilian Cerrado.

Guild	Number of gall morphotypes
Parasitoids	147 (90.2%)
Successors	13 (8.0%)
Inquilines	12 (7.4%)
Predators	3 (1.8%)
Undetermined	1 (0.6%)

&Azevedo (2009). Parasitoids were also reported in other biomes, as in Pantanal (Urso-Guimarães et al. 2016, Ascendino & Maia 2018), Amazon (Carvalho & Mota 2018), and Caatinga (Costa et al. 2014, Brito et al. 2018), however as a not so diverse guild.

The frequency of successors was similar to that of inquilines, differing from some inventories in Atlantic Forest areas, where inquilines were more frequent than successors (e.g. Maia et al. 2008, Maia & Mascarenhas 2017, Maia & Siqueira 2020). However, other inventories showed similar frequencies between both guilds as in Maia & Carvalho-Fernandes 2016, Flor et al. 2018. The taxa of inquilines ubiquitous were the same as that reported in the Atlantic Forest (Maia et al. 2008, Maia & Mascarenhas 2017, Maia & Siqueira 2020), except Diplopoda, observed until this moment only in galls from Cerrado areas. Coleoptera, Diptera, and Thysanoptera have been recorded in galls from the Amazon Forest (Maia 2011), whereas Trotteria and Camptoneuromyia (Cecidomyiidae), Phoridae, Lepidoptera, Coleoptera, Hemiptera, and Hymenoptera in galls from Pantanal (Urso-Guimarães et al. 2016, Ascendino & Maia 2018). Nevertheless, we emphasize that inquilines guild has been
Table 8. Richness of gall morphotypes with records of the associated fauna per ecological guild and arthropod taxon in the Brazilian Cerrado.

Ecological guild	Taxon	Number of gall morphotypes
Inquiline	Sciaridae (Diptera)	1
	Phlaeothripidae (Thysanoptera)	1
	Coleoptera	1
	Lepidoptera	4
	Hemiptera	1
	Lygaeidae (Hemiptera)	1
	Psocoptera	1
	Polyxenus sp. (Diplodopa)	1
	Anthonomus vis (Coleoptera)	1
	Camptoneuromyia sp. (Diptera)	1
	Clinodiplosis sp. (Diptera)	1
	Hymenoptera	1
Parasitoid	Braconidae	9
	Chalcididae	2
	Eulophidae	41
	Encyrtidae	12
	Eupelmidae	4
	Eurytomidae	20
	Hymenoptera	70
	Ichneumonidae	1
	Platygastridae	4
	Pteromalidae	6
	Signiphoridae	1
	Tetracampidae	1
	Torymidae	14
Predator	Lestodiplosis sp. (Cecidomyiidae)	2
	Fiebrigella sp. (Chloropidae)	1
	Pseudoscorpionida	1
Successor	Acari	5
	Coleoptera	1
	Formicidae (Hymenoptera)	2
	Collembola	1
	Araneae	1
	Salina celebensis (Collembola)	2
	Seria mendoncae (Collembola)	1
	Meunieriella spinoa (Cecidomyiidae)	1
	Heteroptera (Hemiptera)	1
Undetermined		1

misunderstood as it includes cecidophages, kleptoparasites and true inquilines (Luz & Mendonça-Júnior 2019). Biological data are needed to relocate them in the correct guild. Successors have been reported in galls from other biomes, as Psocoptera in galls from Amazon Forest (Maia 2011) and Caatinga (Brito et al. 2018) and Araneae from the Caatinga (Brito et al. 2018). Predators showed the lowest frequency as in other inventories in Brazil (Maia 2001, Maia et al. 2008, Bregonci et al. 2010, Maia 2013, Maia & Souza 2013, Rodrigues et al. 2014, Maia & Carvalho-Fernandes 2016). Pseudoscorpiones and Diptera (Cecidomyiidae and Chloropidae) were the recorded taxa. In the Atlantic Forest, Pseudoscorpiones and Cecidomyiidae have been reported, as well as Formicidae (Maia 2001, Maia et al. 2008, Bregonci et al. 2010). The record of Chloropidae is known only in the Cerrado until this moment. Cecidomyiidae have been recorded in galls from the Amazon Forest (Maia 2011) and Pantanal (Ascendino & Maia 2018) too, Formicidae and Pseudoscorpiones from Pantanal (Ascendino & Maia 2018).

Taxonomic knowledge of the secondary dwellers is deficient, as only four species have been identified. Besides, there are five records at the genus level, four represented by Diptera: *Camptoneuromyia, Clinodiplosis, Lestodiplosis* and *Fiebrigella*, and one by Diplodopa. *Camptoneuromyia* comprises only gall inquilines, *Clinodiplosis* includes inquilinous, predaceous as well as gall-inducing species, *Lestodiplosis* is exclusively predator, whereas *Fiebrigella* includes predaceous and parasite species (Gagné & Jaschhof 2017, Smith et al. 2008).

Records of secondary dwellers in insect galls on undetermined plants did not allow us to establish the number of gall morphotypes, since we cannot know whether these morphotypes corresponded to others already recorded in identified species. However, we considered these records as they increased the number of host plant families and genera, as well as the richness of parasitoid and inquilines.

Multiparasitism was observed in 23 gall morphotypes. The fact that two or more parasitoid species attack the same host suggests that they can act together to control the gall-inducer population. Furthermore, multiparasitism can be associated with hyperparasitism, as showed by Maia & Monteiro, 1999. However, hyperparasitism has not yet been recorded in the Cerrado. The presence of two or more guilds in the same gall morphotype exemplifies how the associated fauna can compose complex food webs.

Endemic and useful plants host a diverse fauna of secondary dwellers. Such interactions add ecological importance to these arthropods as they can favor the host plants, acting in the control of the population of the gall-inducers (e.g. parasitoids and predators) or can damage the plants even more in the case of phytophagous dwellers.

Although the Cerrado partially or totally covers 15 states in Brazil (Ribeiro & Walter 2008), records of the associated fauna are restricted to four states: Minas Gerais, Goiás, Bahia, and São Paulo, showing that the current information is punctual and limited to a small fraction of the Cerrado’s territorial extension. The surveyed states correspond to those with research groups in cecidology.

Conclusion

A low percentage of the gall morphotypes from the Brazilian Cerrado hosted secondary dwellers. These galls were found on 94 plant species of 37 families. Other records on undetermined plant species increased the number of plant families to 46. The host families with
Table 9. Uses of host plant species with secondary dwellers in the Brazilian Cerrado.

Host plant	Edible	Medicinal	Carpentry and/or cabinet making	Fuel and/or charcoal	Reforestation	Others
Annona coriacea	x	x	x			
A.crasiflora	x	x	x			Cork production
Duguetia furfuracea	x	x				
Aspidosperma australe	x			x		
Didymopanax morototoni	x	x	x			Paper industry
Eremanthus erythropappus			x			Living fence
Porophyllum ruderale	x	x				Fungicide
Handroanthus ochraceous	x			x		
Cordia sellowiana						
Protium heptaphyllum	x	x	x			Incense
Caryocar brasiliense	x	x	x	x		Varnishes
Plenckia populnea						
Combretum leprosum	x	x	x	x		
Connarus suberosus	x	x	x			Cork production
Erythroxylum suberosum	x	x	x			Dye
Croton floribundas	x	x				
Sapium glandulosum			x	x	x	Latex
Andira cayabensis	x	x	x			
Andira fraxinifolia	x	x	x			
Bauhinia ungulata	x	x	x	x		
Copaifera langsdorfii	x	x	x	x		Cosmetic industry
Hymenaea courbaril	x (tea)	x	x	x		Varnishes
Inga cylindrica	x	x	x	x		Illuminant
Inga ingoides	x	x	x	x		
Lonchocarpus cultratus	x	x				Soil fertility
Macheirium aculeatum						
Leonotis nepetilfolia	x	x				
Nectandra cuspidata						
Byrsonima verbascifolia	x	x	x	x		Dye
Luehea divaricata	x	x	x			Shoe soles
Pseudobombax longiflorum	x	x		x		Stuffing
Myrtaria tenella	x	x	x			
Psidium salutare var. pohlianum	x	x	x			
Guapira opposita	x					
Neea theifera	x (tea)	x				Dye
Piper arboreum	x	x				
Roupala montana	x	x				
Chomelia pohlana	x	x	x			
Casearia sylvestris	x	x	x			
Siparuna guianensis	x					
Smilax oblongifolia	x					
Styrax pohlil	x	x	x	x		Source of tannins
Lippia alba	x	x				
Qualea grandiflora	x	x	x			
Qualea multiflora	x	x				
Qualea parviflora	x	x				

https://doi.org/10.1590/1676-0611-BN-2021-1202. http://www.scielo.br/bn
the greatest number of records were the same with the highest richness of insect galls.

Most arthropod fauna were recorded in galls of Cecidomyiidae (Diptera), and on leaves, the predominant gall-forming insect and the most frequent galled organ. Parasitoids were the most frequent dwellers; among them, Eulophidae and Eurytomidae predominated as in other Brazilian biomes. All arthropod orders reported in the present study were also reported as part of the associated fauna in other Brazilian biomes, except Diplopoda. The taxonomic knowledge of these dwellers is very deficient as in the rest of our country.

Records of secondary dwellers of galls in endemic and useful plants add ecological and economic importance to the associated arthropods as they can favor or damage the host.

Data are restricted to MG, GO, BA and SP, the same states where there are cecidologists. This is the first overview of the fauna associated with insect galls in a Brazilian biome. Studies in other biomes are necessary to consolidate the current knowledge in our country.

Acknowledgments

To Conselho Nacional de Desenvolvimento Científico e Tecnológico by financial support (VCM – Proc. 301481/2017-2, BGS –Proc. 154199/2020-6).

Author Contributions

Valéria Cid Maia: Substantial contribution in the concept and design of the study, contribution to data analysis and interpretation, manuscript preparation and critical revision, and adding intellectual content.

Bruno Gomes Silva: Contribution to data collection and analysis, manuscript preparation and critical revision.

Conflicts of Interest

The authors declare that they have no conflict of interest related to the publication of this manuscript.

References

ARAÚJO, W.S., SANTOS, B.B. & GOMES-KLEIN V.L. 2011. Insect galls from Serra dos Pirenéus, GO, Brazil. Biota Neotrop 11:357-365. https://doi.org/10.1590/S1676-06032011005000034

ARAÚJO, W.S., SANTOS, B.B., GUILHERME, F.A.G. & SCARELI-SANTOS, C. 2014. Gall-forming insects in the Brazilian Cerrado: ecological patterns and perspectives. In G.W. Fernandes & J. C. Santos (eds.). Neotropical Insect Galls. Springer, New York, U.S.A., p.257-272.

ASCENDINO, S. & MAIA, V. C. 2018. Insects galls of Pantanal areas in the State of Mato Grosso do Sul, Brazil: characterization and occurrence. An Acad Bras Ciênc 90):1543-1564

BENVÁ, D.C. & VANIN, S.A. 2011. Description of the immature stages of the weevil Anthonomus vis Clark (Coleoptera, Curculionidae), inquiline into the gall of Leandra aurea (Melastomataceae). Rev Bras Ent 57:367-373.

BERGAMINI, B.A.R., BERGAMINI, L.L., SANTOS, B.B. & ARAÚJO, W.S. 2017. Occurrence and characterization of insect galls in the Floresta Nacional de Silvânia, Brazil. Pap Avulsos Zool 57:413-431.

BREGONCI, J.M, POLYCARPO, P.V. & MAIA, V.C. 2010. Galhas de insetos do Parque Estadual Paulo César Vinha (Guarapari, ES, Brasil). Insect galls of the Parque Estadual Paulo César Vinha (Guarapari, ES, Brazil). Biota Neotrop. 10(1):265-274. http://www.biotaneotropica.org.br/v10n1/en/abstract?inventory+bn01410012010.

BRITO, G.P., COSTA, E.C., CARVALHO-FERNANDES, S.P. & SANTOS-SILVA, J. 2018. Riqueza de galhas de insetos em áreas de Caatinga com diferentes graus de antropização do estado da Bahia, Brasil. Iheringia Zool 108:2018003.

CARVALHO, A.N. & MOTA, J.S. 2018. Ocorrência e caracterização de galhas entomógenas em um fragmento florestal em estágio de sucessão ecológica na Amazônia. Entomobrasilis 11:118-123.

CINTRÁ, F.C.F., ARAÚJO, W.S., MAIA, V.C., URSO-GUIMARÃES, M.V., VENÂNCIO, H., ANDRADE, J.F., CARNEIRO, M.A.A., ALMEIDA, W.R. & SANTOS, J.C. 2020. Plant-galling insect interactions: a dataset of host plants and their gall-inducing insects for the Brazilian savannah. Ecology 101. https://doi.org/10.1002/ecy.3149

CORNELISSEN, T., CINTRÁ, F.C.F. & SANTOS, J.C. 2016. Shelter-building insects and their role as ecosystem engineers. Neotrop Entomol 45:1-12.

COSTA, E.C., CARVALHO-FERNANDES, S.P. & SANTOS-SILVA, J. 2014. Galhas entomógenas associadas à Leguminosas do entorno do rio Jatobá, Caetité, Bahia, Brasil. R. bras. Bioci. 12:115-120.

CRESPI, B.J., CARMEN, B.A. & CHAPMAN, T.W. 1997. Ecology and evolution of galling thrips and their allies. Annu Rev Entomol 42:51-71.

CUDDINGTON, K., BYERS, J., HASTINGS, A. & WILSON, W. 2007. Ecosystem engineers: plants to protists. Academic Press, Elsevier, New York.

FERNANDES, G.W.A., TAMEIARÓ-NETO, & MARTINS, R.P. 1988. Ocorrência e caracterização de galhas entomógenas na vegetação do campus Pampulha da Universidade Federal de Minas Gerais. Rev Bras Zool 5:11-29.

FLORA DO BRASIL 2020. http://floradobrazi1.jbrj.gov.br. (last access in 20/Dec/2020).

GAGNÉ, R.J. & JASCHHOFF, M. 2017. A Catalog of the Cecidomyiidae (Diptera) of the World,4 rd ed. Digital version.

GILBERT, S.F. 2009. The adequacy of model systems for evo-devo: modeling the formation of organisms/modeling the formation of society. In A. Barberousse M. Morange & T. Pradeu (eds.) Mapping the Future of Biology. Evolving Concepts and Theories, Boston Studies in the Philosophy of Science, Springer, U.S.A., p.57–68.

KLINK, C.A. & MACHADO, R.B. 2005. Conservation of the Brazilian Cerrado. Conserv Biol 19:707-713.

LIMA, V.P. & CALADO D. 2018. Morphological characterization of insect galls and new records of associated invertebrates in a Cerrado area in Bahia State, Brazil. Braz J Biol 78:636-643.

LUZ, F.A. & MENDONÇA-JÚNIOR, M.S. 2019. Guilds in insect galls: who is who. Fla Entomol 102: 207-210.

MADEIRA, J.A., MAIA, V.C. & MONTEIRO, R.F. 2002. Gall makers (Cecidomyiidae, Diptera) on Calophyllum brasiliense Camb. (Clusiaceae): descriptions and biology. Arq Mus Nac 61:31-48.

MAIA, V.C. 2001. The gall midges (Diptera, Cecidomyiidae) from three restings of Rio de Janeiro State, Brazil. Revta bras. Zool. 18(2):583-629.

MAIA, V.C. 2004. A new genus and six new species of gall midges (Diptera, Cecidomyiidae) from Serra de São José (Minas Gerais state, Brazil). Arq Mus Nac 62:69-82.

MAIA, V.C. 2011. Characterization of insect galls, gall makers, and associated fauna of Platô Bacaba (Porto de Trombetas, Pará, Brazil). Biota Neotrop. 11(4):37-53. http://www.biotaneotropica.org.br/v11n4/en/abstract?article+bn00511042011

MAIA, V.C. 2013. Insect galls of São Tomé das Letras (MG, Brazil). Biota Neotrop. 13(4):164-189. http://www.biotaneotropica.org.br/v13n4/pt/abstract?article+bn03213042013

MAIA, V.C. & AZEVEDO, M.A.P. 2009. Micro-himenópteros associados com galhas de Cecidomyiidae (Diptera) em Restingas do Estado do Rio de Janeiro (Brasil). Biota Neotrop. 9:154-1564

MAIA, V.C. & CARVALHO-FERNANDES, S.P. 2016. Insect galls of a protected remnant of the Atlantic Forest tableland from Rio do Janeiro State (Brazil), Rev. Bras. Entomol. 60:40-56.

Maia, V.C. et al.

http://www.scielo.br/bn

https://doi.org/10.1590/1676-0611-BN-2021-1202.
Insect galls of the Brazilian Cerrado

MAIA, V.C. & FERNANDES, G.W. 2005. Two new species of Asphondyliini (Diptera: Cecidomyiidae) associated with Bauhinia brevipes (Fabaceae) in Brazil. Zootaxa 1091:27-40.

MAIA, V.C. & FERNANDES, G.W. 2007. M. admirabilis, a species of gall midge (Diptera, Cecidomyiidae) associated with Erythroxylum suberosum (Erythroxylaceae). Zootaxa 1554:41-48.

MAIA, V.C, MAGENTA, M.A.G. & MARTINS, S.E. 2008. Ocorrência e caracterização de galhas de insetos em áreas de restinga de Bertioga (São Paulo, Brasil). Biota Neotrop 8:167-197. http://dx.doi.org/10.1590/S1676-06320080001000020

MAIA, V.C. & MASCARENHAS, B. 2017. Insect Galls of the Parque Nacional da Serra Geral, Goiás, Brazil. An Acad Bras Ciênc 89:505-575.

MAIA, V.C. & S MONTEIRO, R.F. 1999. Espécies cecidógenas (Diptera, Cecidomyiidae) e parasitóides (Hymenoptera) associados a Guapira opposita (Vell.) Reitz. (Nyctaginaceae) na restinga da Barra de Maricá, Rio de Janeiro. Revta bras Zool.16(2):483-487.

MAIA, V.C. & SIQUEIRA, E.S. 2020. Insect galls of the Reserva Biológica do Itatiaia (Southeast Region, Brazil). An Acad Bras Ciênc 92:e20190038. https://doi.org/10.1590/0103-1354-2019-0038

MAIA, V.C. & SOUZA, M.S. 2013. Insect galls of the xeric vegetation of Ilha do Cabo Frio (Arraial do Cabo, RJ, Brazil). Biota Neotrop 13(3):278-288. http://www.biotaneotropica.org.br/v13n3/en/abstract?inventory+bn02213032013

SANTOS, I.M., LIMA, V.P., SOARES, E.K.S., PAULA, M. & CALADO, D.C. 2018. Insect galls in three species of Copaifera L. (Leguminosae, Caesalpinioideae) occurring sympatrically in a Cerrado area (Bahia, Brazil). Biota Neotrop 18(1):e20170356. https://doi.org/10.1590/1676-0611-bn-2017-0356

SILVA, A.R.F., NOGUEIRA, R.M., COSTA, E.C., CARVALHO-FERNANDES, S.P. & SANTOS-SILVA, J. 2018a. Occurrence and characterization of entomogenic forms in an area of Cerrado sensu stricto and Gallery forest of the state of Bahia, Brazil. An Acad Bras Ciênc 90:2903-2919.

SILVA, T.M., ARAÚJO, W.S. & SANTOS, B.B. 2015. Ocorrência e caracterização de galhas de insetos em um fragmento de mata semidecidual no campus da Universidade Federal do Ceará, Brasil. Rev. Biol. Neotrop. 17:26-38.

SILVA, E.C., SANTOS, B.B. & ARAÚJO, W.S. 2018b. Insect gall occurrence in savanna and forest remnant sites of of Hidrolândia, GO, Brazil. Pap Avulsos Zool 58: e20185804.

SMITH, A.R., WICLIO, W.T. & O’DONNELL, S. 2008. Body Shape Sizes Caste Expression, and Cleptoparasitism Reduces Body Size in the Facultatively Eusocial Bees Megalopta (Hymenoptera: Halictidae). J Insect Behav. 21:394-406.

STONE, G.N. & SCHONROGGE, K. 2003. The adaptive significance of insect gall morphology. Trends Ecol Evol 18:512-522

SUGIURA, S. & YAMAZAKI, K. 2009. Gall-attackingbehaviorinphytophagousinsects, with emphasis on Coleoptera and Lepidoptera. Tett Arthrop Rev.2:41-61.

TOOKER, J.F., ROHR, J.R., ABRAhAMSON, W.G. & DE MORAES, C.M. 2008. Gall insects can evade and alter indirect plant defenses. New Phytol 178:657-671.

URSO-GUIMARÃES, M.V. & GARCIA-NETO, A.M. 2015. A new species of gall midge associated with Diplopterys pubipetala (A.Juss.) Anderson and Davis (Malpighiaceae) from Altinópolis, São Paulo, Brazil. Braz. J. Biol. 75:175-179.

URSO-GUIMARÃES, M.V. 2019. Two new species of the tribe Alycaulinini (Diptera: Cecidomyiidae) from Brazil. Fla Entomol 102:603-610.

URSO-GUIMARÃES, M.V. & AMORIM, D. S. 2002. New Brazilian species of Asphondyliini (Diptera, Cecidomyiidae). Rev Bras Br 46:561-570.

URSO-GUIMARÃES, M.V., CASTELLO, A.C.D., KATAOKA, E.Y. & KOCH, I. 2016. Characterization of entomogenic galls from Mato Grosso do Sul, Brazil. Rev Bras Ent 6:25-42.

USEFUL TROPICAL PLANTS 2014. Available on: http://tropical.thefarms.info. Accessed in: 20.December.2020.

VIEIRA, L.G., NOGUEIRA, R.M., COSTA, E.C., CARVALHO-FERNANDES, S.P. & SILVA, J.S. 2018. Insect galls in Rupedist field and Cerrado stricto sensu vegetation in Caetité, Bahia, Brazil. Biota Neotrop 18: e20170402. https://doi.org/10.1590/1676-0611-bn-2017-0402

WHITE, T.C.R. 2010. Why do many galls have conspicuous colours? An alternative hypothesis. Arthropod Plant Inte 4:149-150.

WILLIAMS, M.A.J. 1994. Plant Galls: Organisms, Interactions, Populations. Oxford University Press.

YAMAZAKI, K. & SUGIURA, S. 2016. Stem-galling moths provide cetoniine parasitoids with feeding sites via sap exudation of invasive alien plants. Entomol. Sci.19:142-146.

SHORTHOUSE, J.D. & ROHRFRITSCH, O. 1992. The biology of insect-induced galls. Oxford University Press, Oxford.