Morphological adaptations of the mouthparts to the ectoparasitic lifestyle of the biting midge *Forcipomyia paludis* (Diptera: Ceratopogonidae), specialized in Odonata

Sebastian Büsse¹ · Hansruedi Wildermuth² · Stanislav N. Gorb¹

Received: 13 May 2022 / Revised: 16 August 2022 / Accepted: 21 August 2022 / Published online: 13 September 2022
© The Author(s) 2022

Abstract
Damselflies and dragonflies are well-known hosts of the West Palaearctic biting midge *Forcipomyia paludis*. Females of this ectoparasitic dipteran mainly cling to the host’s wings, sucking hemolymph from the wing veins. The midges are firmly attached to the wing surface with specialized tarsi, thus not being flung away during the host’s flight maneuvers. As for another ceratopogonid—*F. odonatophila* from New Guinea—had been suggested, we assumed that in *F. paludis*, the attachment would be reinforced by the mouthparts during the suction action. In the present study, we used behavioral field observations, scanning electron microscopy (SEM) and high-resolution micro-computed tomography (µCT), to study the mouthparts of *F. paludis*. We focused on the mouthpart configuration post sucking and thus on the contact with the host’s wing as well as on the piercing process into the wing veins. We foster our understanding of *F. paludis* being a parasite of Odonata by showing proof of the piercing and therefore the sucking of hemolymph from the wings. Additionally, the mouthparts clearly show contamination with odonate wing wax after the sucking procedure. Furthermore, we discuss probable additional functions of the piercing process for the firm attachment to the flying host of *F. paludis*.

Keywords Midge · Parasitism · Anisoptera · Zygoptera · Attachment · Feeding · Mouthparts

Introduction
Biting midges (Diptera: Ceratopogonidae) are well-known ectoparasites with a wide spectrum of different hosts, such as mammals, birds and various arthropods including damselflies and dragonflies (Odonata) (Macfie 1932; Borkent and Dominiak 2020). One of the worldwide more than 6000 described species, females of the West Palaearctic *Forcipomyia* (*Pterobosca*) *paludis* (Macfie 1936), have exclusively specialized in odonates as hosts (e.g., Martens et al. 2007). This tiny fly is generally attached to the odonate’s wings, clinging firmly to the wing membrane with the tarsi and inserting the short proboscis into the veins or the membranes of the wing bases (Wildermuth and Martens 2007). Direct behavioral observations of active females revealed that these midges very likely suck hemolymph from the veins, as indicated by their rhythmical head nodding, regularly releasing air bubbles from the anus and their abdomen continuously swelling over time (Wildermuth and Martens 2007).

In biting midges in general, the saw-like movements from the serrated mandibles open the skin/cuticle of the host (Krenn and Aspöck 2012; Krenn 2019). The specialized labella is placed on the outside of the hosts’ opened body cavity and provides a guiding function for the piercing mouthpart structures, as well as sensing for an appropriate feeding site (Krenn 2019). Interestingly, biting midges (Ceratopogonidae) are among the smallest known hematophagous insects (Krenn 2019).

Field studies on infested males of the large dragonfly *Cordulegaster boltonii* (Donovan, 1807) have shown that the midges remain firmly attached to the host’s wings during various flight maneuvers, obviously due to highly specialized micromorphological attachment devices on the tarsi, especially on the empodium (Gorb et al. 2022). The position of the midges near the wing base and on the lower veins of the corrugated wing may further help to reduce
the drag during the host’s flight (Martens et al. 2007; Manger 2021). In addition, we suppose that, during suction feeding, the mouthparts would reinforce the attachment of the midge to its host.

In the present study, we used photographs of Odonata imagines that were infested with Forcipomyia paludis, taken in the field, as well as scanning electron microscopy (SEM) and micro-computed tomography (µCT) analysis to describe the position of the midges on the wing in regard to the corresponding wing vein and the piercing of the wing vein itself. Furthermore, we depict the mouthparts during and after contact with the host and discuss their structure in the context of parasitism. Thus, we present evidence for the piercing of the host’s wing veins by the midges’ mouthparts. Therefore, we could underline the observations on behavior indicating the parasitic lifestyle of F. paludis as an ectoparasite of Odonata, although simultaneous phoresis as suggested by Dell’Anna et al. (2019) is not in focus here. More interestingly, on SEM described in Macfie (1936) and Cordero-Rivera et al. (2019) is not in focus here. More interestingly, on SEM

Materials and methods

Field observations and in situ photography, focused on various odonate species infested with Forcipomyia paludis (Macfie 1936), were conducted in southern France (Saint-Martin-de-Crau), Switzerland (Uster, Hinwil) and Georgia (Sartichala), at localities where infested odonates had been known (Martens et al. 2007; Wildermuth 2012; Wildermuth et al. 2019). Samples of F. paludis specimens attached to wing fragments of Cordulegaster boltonii (Donovan, 1807) were air-dried. Specimens of F. paludis, detached from their hosts, originating from Switzerland and Georgia were preserved in ethanol.

For binocular photography, a Leica M205A (Leica, Wetzlar, Germany) with a motorized stage was used. Stacks of 10–20 individual images were taken at different focus levels and afterward processed into a focus-stack image using binocular specific Leica software. For scanning electron microscopy (SEM) and micro-computed tomography (µCT), we critically point dried the used ‘solo’ specimens using an automatic Leica EM CPD300 (Leica, Wetzlar, Germany). For SEM, the respective specimens were sputter-coated with a 20 nm layer of Au–Pd (Leica Bal-TEC SCD500). SEM images were taken with a Hitachi S-4800 (Hitachi High-Technologies Corp., Tokyo, Japan) at an acceleration voltage of 3 kV. For µCT, a SkyScan 1172 desktop µCT scanner (Bruker micro-CT, Kontich, Belgium) was used (40 kV, 250 µA; 360° rotation (step size: 0.25°)). The segmentation and visualization of the data were done in Amira 6.2 (Thermo Fisher Scientific, Waltham, USA).

Results

Based on photographs taken in the field in various regions of the western Palaeartic, both teneral (Fig. 1B) and adult odonates (Fig. 1C–E) are infested by Forcipomyia paludis. Judged from the wear of the host’s wings, even old dragonflies are parasitized (Fig. 1F). The midges are attached to the clefts of the corrugated wing membrane on the basal half of the wings, the body axis almost exclusively directed toward the host’s thorax (Fig. 1C). The same is found in dried midge individuals that are still attached to the wings of one of the host’s species, Cordulegaster boltonii (Fig. 2). They cling on both wing sides, dorsally and ventrally (Figs. 1D–F). Most midges were positioned above, rarely parallel to the wing veins (Figs. 1, 2, 3). During piercing, the midges’ head is often tilted downwards and sideways toward the lateral base of the wing vein when positioned above the vein (Figs. 1D, 3). The proboscis of the midge is inserted into the wing vein of its host laterally at the vein’s basis (Fig. 4).

The mandibles show saw-like protuberances on the ventral side (Figs. 5B, C). Remains of the wax crystals of the wing surface, mixed with some solidified fluid residuals (presumably dragonfly hemolymph or/and midge saliva), can be found rosette-shaped around the proboscis (Figs. 5A, B, E).

Discussion

On photographs taken under natural conditions most female individuals of Forcipomyia paludis are located and positioned on the dragonflies’ wings as described in earlier studies (e.g., Martens et al. 2007; Manger 2021). Obviously, the body posture and the slightly tilted head position allow an easier piercing of the vein at its lateral base (cf. Wildermuth and Martens 2007). Here, the wing vein shows a weak point: the cuticle seems to be thinner at the lateral base, especially on the convex side of the vein (cf. Appel et al. 2015). Furthermore, soft resilin pads might be present in some areas of the lateral base of the vein, especially at the intersections between the veins—the vein joints (Gorb 1999; Appel and Gorb 2014; Appel et al. 2015; Rajabi et al. 2018).

The SEM data show the saw-like teeth on the mandibles, typical for biting midges in general (cf. Krenn and Aspöck 2012) and also specifically in Forcipomyia paludis enabling piercing the cuticle of the wing. However, the general morphology of the mouthparts, as briefly described in Macfie (1936) and Cordero-Rivera et al. (2019) is not in focus here. More interestingly, on SEM
images (Fig. 5A, B, E), crystal-like remains of the wax coating of the wing cuticle, mixed together with some solidified fluid (presumably dragonfly hemolymph or/and midge saliva), can be found rosette-shaped around the proboscis. The wings of Odonata are covered with wax to, for example, decrease wettability, allow for coloration or maybe influence the wing mechanics (Gorb et al. 2000, 2009). This crystalline wax layer is removed from the wing during the retraction of the midges’ proboscis as a leftover after sucking hemolymph from the vein. The
µCT-data show the proboscis of *F. paludis* inserted into the wing vein to suck hemolymph (Fig. 4). The proboscis has presumably not only the function of sawing the odonate cuticle and sucking hemolymph, but additionally reinforces the attachment of the midge to the dragonfly’s wing. The parasites can stably stay on the wing during the dragonfly’s flight (Gorb et al. 2022), when not only strong turbulences may generate drag on the midge body, but also wing vibration may potentially cause a strong challenge to stay attached just by the action of the tarsal attachment devices. Especially, the attachment must be difficult on the nanostructured super-hydrophobic surface of the odonate wing (Kuitunen et al. 2014; Šigutová et al. 2020) as it was previously shown for representatives of other Diptera and Coleoptera (Niederegger et al. 2002; Peressadko and Gorb 2004; Voigt et al. 2008). Notably, already Mayer (1936), having studied the mouthparts of *F. odonatophila* (Macfie 1936) from New Guinea, supposed that dried hemolymph would cement the midges’ mouthparts to the odonate’s wing. In general, the attachment forces must be very high, since *F. paludis* can easily resist forces caused by the flapping wings of the flying dragonflies (Fig. 1C); even during turbulent intraspecific aerial fights (Gorb et al. 2022). If there is an interlocking-like effect of the mouthparts involved—because of the piercing itself—or if the attachment forces are generated by the foot morphology remains unclear.

It is not evident yet at what stages of the adult life the hosts are infested. Some photos with attached biting midges show teneral dragonflies (e.g., Fig. 1D; Vinko et al. 2017; Fig. 2; Cordero-Rivera et al. 2019; Fig. 2). On most of the photos, however, the dragonflies are mature. Even aged individuals are documented to be parasitized (Fig. 1F, Vinko et al. 2017: Fig. 2). As the midges generally detach from their host when they are saturated (Wildermuth and Martens 2007), it is supposed that also old dragonflies may be infested. In one case it was documented that a biting midge inserted its mouthparts into the still soft integument of a teneral *Cordulia aenea* (Linnaeus, 1758) (Wildermuth and Martens 2007, plate IV), and in another case an individual of *Onychogomphus uncatus* (Charpentier, 1840) was infested by several biting midges at emergence (Cordero-Rivera et al. 2019). The midges were seen to sting the abdomen and the eyes, but not the wings as these are not unfolded yet. However, after emergence, the wings would be ideal for hemolymph sucking, as at other body parts, such as head and abdomen, the midges would be more likely wiped off by the cleaning movements of the host’s legs. However, there are records that other *Forcipomyia* species are able to suck hemolymph from parts of the thorax or head of odonates (Trapero-Quintana et al. 2019).

Fig. 2 *Forcipomyia paludis*, dead dried individuals that remained attached in contact with the wings of *Cordulegaster boltonii* (images taken in binocular microscope at different illuminations). Scale bar: 1 mm.
Fig. 3 3D-Volume rendering of Forcipomyia paludis from X-ray microtomography data. A Dorso-lateral overview. B Lateral view with penetrated wing vein. C Frontal view with penetrated wing vein. abd abdomen, hc head capsule, is injection site, pb proboscis, pwv penetrated wing vein, th thorax, wv wing vein. Scale bar: 0.7 mm.
Fig. 4 2D–Cross section of *Forcipomyia paludis* that has penetrated the wing vein of the dragonfly *Cordulegaster boltonii* (X-ray tomography data). **A** Overview. **B** Detail with injection site. *hc* head capsule, *is* injection site, *pb* proboscis, *pwv* penetrated wing vein, *th* thorax, *wv* wing vein. Scale bar: 0.35 mm.
Acknowledgements We are thankful for the support by the members of the functional morphology and biomechanics group at Kiel University. Thanks to Hanns-Jürgen Roland and Hans Jörg Müller who provided the photos in Fig. 1A, C, respectively. Furthermore, we want to thank the two reviewers Andreas Martens and Adolfo Cordero for their effort and valued contribution. We are also grateful to Victoria Kastner for language polishing.

Author contributions SB, HW and SNG: designed the project and developed the concept of the study. SNG: did the SEM analysis and post-processing. SB: carried out the CT: analysis and post-processing. HW: did the field photography. SB: did the post-processing of the field studies photographs. SNG, HW and SB: wrote the original manuscript. All authors edited the manuscript as well as read and approved the final version.

Funding Open Access funding enabled and organized by Projekt DEAL. SNG was supported through the DFG grant GO995/46–1 in the framework of the Special Priority Program “Physics of Parasitism”. SB was directly supported through the DFG grants BU3169/1–2.

Data availability All data supporting our findings are presented in the paper and the supplementary material respectively. The raw data can be made available on reasonable request.

Fig. 5 Forcipomyia paludis, head with some details of the mouthparts (SEM images). A A general view, with wax from an odonate’s wing. B Details of the proboscis with wax ‘rosette’. C Proboscis without wax. C Details of the mandible E Details of the wax. an antenna, ce compound eye, hc head capsule, lb labium, md mandible, mp maxillary palp, pb proboscis, wx wax mixed together with some solidified fluid (from the odonate’s wing). Scale bars: A 100 µm; B, C 50 µm; D, E 5 µm

Declarations

Competing interests The authors declare no competing interests.

Conflict of interest We declare that we have no known competing interests.

Consent to participate and publication We all agree(ed).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
References

Appel E, Gorb SN (2014) Comparative functional morphology of vein joints in Odonata. Zoologica 159:1–104

Appel E, Heepe L, Lin C-P, Gorb SN (2015) Ultrastructure of wing joints of dragonfly veins: composite structure of fibrous material supplemented by resilin. J Anat 227:561–582

Borkent A, Dominiak P (2020) Catalog of the biting midges of the world (Diptera: Ceratopogonidae). Zootaxa 4787(1):1–377

Cordero-Rivera A, Barreiro AR, Otero MC (2019) *Forcipomyia paludis* (Diptera: Ceratopogonidae) in the Iberian Peninsula, with notes on its behaviour parasitizing odonates. Bol SEA 64:243–250

Dell’Anna L, Utzeri C, Sabatini A, Coluzzi M (1995) Staining of the wing mesothorax and its superhydrophobic properties of damselfly wings in young and old *Calopteryx splendens* (Lestidae). PLoS ONE 9:1–11

Gorb SN (1999) Serial elastic elements in the damselfly wing: mobile vein joints contain resilin. Naturwissenschaften 86:552–555

Gorb SN, Kesel A, Berger J (2000) Microsculpture of the wing surface in Odonata: evidence for cuticular wax covering. Arthropod Struct Dev 29:129–135

Gorb SN, Tynkkynen K, Kotiaho JS (2009) Crystalline wax coverage of the imaginal cuticle in *Calopteryx splendens* (Odonata: Calopterygidae). Int J Odonatol 12:205–221

Krenn HW, Aspöck H (2012) Form and function of insect mouthparts. Insect mouthparts: form, function, development and performance. Zoological Monographs, Cham: Springer Nature. 9

Kuitunen K, Kovalev A, Gorb SN (2014) Sex-related effects in the development of the imaginal cuticle in *Calopteryx splendens*. PLoS ONE 9:1–11

Macfie JWS (1932) Ceratopogonidae from wings of dragonflies. Tijdschr Entomol 75:265–283

Macfie JWS (1936) Two new species of Ceratopogonidae (Diptera) from the wings of dragonflies. Proc R Entomol Soc B 5:62–64

Manger R (2021) Odonata wing vein preferences in haemolymph sucking *Forcipomyia paludis* (Diptera: Ceratopogonidae). Libellula Suppl 16:189–200

Martens A, Ehmann H, G. Peitzner G, Peitzner P, Wildermuth H, (2007) European Odonata as hosts of *Forcipomyia paludis* (Diptera: Ceratopogonidae). Int J Odonatol 11:39–70

Mayer K (1936) Die Mundwerkzeuge von *Pterobosca odonatiphila* Macfie. Arb Morph Tax Entomol Berlin-Dahlem 3:1–3

Niederegger S, Gorb SN, Jiao Y (2002) Contact behaviour of tent setae in attachment pads of the blowfly *Calliphora vicina* (Diptera, Calliphoridae). J Comp Physiol A 187:961–970

Orr AG, Cranston PS (1997) Hitchhiker or parasite? A ceratopogonid midge and its odonate host. J Nat Hist 31:1849–1858

Peressadko A, Gorb SN (2004) Surface profile and friction force generated by insects. In: Bannasch R (ed) Boblan I. VDI Verlag. Fortschritt-Berichte VDI, Düsseldorf, Germany, pp 257–263

Rajabi H, Stamm K, Appel E, Gorb SN (2018) Micro-morphological adaptations of the wing nodus to flight behaviour in four dragonfly species from the family Libellulidae (Odonata: Anisoptera). Arthropod Struct Dev 47:442–448. https://doi.org/10.1016/j.asd.2018.01.003

Šigutová H, Šigut M, Kovalev A, Gorb SN (2020) Wing wettability gradient in a damselfly *Lestes sponsa* (Odonata: Lestidae) reflects the submergence behaviour during underwater oviposition. Roy Soc Open Sci 7:201258. https://doi.org/10.1098/rsos.201258

Trapero-Quintana A, Torres-Cambas Y, Rivas-Torres A, Ferreira S, Cordero-Rivera A (2019) The first record of parasitism by *Forcipomyia* (Diptera: Ceratopogonidae) in Cuban odonates. Novit Carib 14:105–110. https://doi.org/10.33800/nv.014.202

Vinko D, Kulijer D, Billqvist M, Martens A (2017) The biting midge *Forcipomyia paludis* (Macfie, 1936) (Diptera: Ceratopogonidae) in Slovenia, Bosnia and Herzegovina, Croatia and Sweden. Nat Slov 19:5–21

Voigt D, Schuppert JM, Dattinger S, Gorb SN (2008) Sexual dimorphism in the attachment ability of the Colorado potato beetle *Leptinotarsa decemlineata* (Coleoptera: Chrysomelidae) to rough substrates. J Insect Physiol 54:765–776

Wildermuth H (2012) Die Verbreitung der an Libellen (Odonata) parasitierenden Gnitze *Forcipomyia paludis* (Macfie, 1936) in der Schweiz (Diptera: Ceratopogonidae). Entomo Helv 5:71–83

Wildermuth H, Martens A (2007) The feeding action of *Forcipomyia paludis* (Diptera: Ceratopogonidae), a parasite of Odonata imagines. Int J Odonatol 10:249–255

Wildermuth H, Schröter A, Kohl S (2019) The West Palearctic biting midge *Forcipomyia paludis* (Diptera: Ceratopogonidae): first evidence as a parasite on Odonata wings from the Caucasus ecoregion. Notul Odonatol 9:158–163

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.