Abstract. We study a variational Ginzburg-Landau type model depending on a small parameter $\varepsilon > 0$ for (tangent) vector fields on a 2-dimensional Riemannian manifold S. As $\varepsilon \to 0$, these vector fields tend to have unit length so they generate singular points, called vortices, of a (non-zero) index if the genus g of S is different than 1. Our first main result concerns the characterization of canonical harmonic unit vector fields with prescribed singular points and indices. The novelty of this classification involves flux integrals constrained to a particular vortex-dependent lattice in the $2g$-dimensional space of harmonic 1-forms on S if $g \geq 1$. Our second main result determines the interaction energy (called renormalized energy) between vortex points as a Γ-limit (at the second order) as $\varepsilon \to 0$. The renormalized energy governing the optimal location of vortices depends on the Gauss curvature of S as well as on the quantized flux. The coupling between flux quantization constraints and vorticity, and its impact on the renormalized energy, are new phenomena in the theory of Ginzburg-Landau type models. We also extend this study to two other (extrinsic) models for embedded hypersurfaces $S \subset \mathbb{R}^3$, in particular, to a physical model for non-tangent maps to S coming from micromagnetics.

CONTENTS

1. Introduction
 1.1. Three models
 1.2. Vortices
 1.3. Aim
2. Main results
 2.1. Canonical harmonic vector fields of unit length
 2.2. Renormalized energy
 2.3. Γ-convergence
3. Motivation
 3.1. Micromagnetics
 3.2. Geometry and topology
4. Challenges
5. Notation and background
 5.1. Differential forms
 5.2. The connection 1-form
 5.3. Sobolev spaces
 5.4. A little homology
 5.5. Some useful calculations
6. The canonical harmonic vector field. Proof of Theorem 2.1
7. The intrinsic renormalized energy. Proof of Proposition 2.3
8. Compactness
9. Renormalized energy as a Γ-limit in the intrinsic case. Proof of Theorem 2.5
1. Introduction

We consider three related asymptotic variational problems similar to the Ginzburg-Landau model that are described by singularly perturbed functionals depending on a small parameter $\varepsilon > 0$. These functionals are defined for smooth vector fields on a 2-dimensional compact Riemannian manifold S (or otherwise, for embedded surfaces, we consider smooth maps whose non-tangential component is strongly penalized). As $\varepsilon \to 0$, we expect that these maps generate point singularities, called vortices, carrying a topological degree (or index). In every case, our goal is to characterize the limit of minimizers of these functionals as $\varepsilon \to 0$, or more generally, to prove a Γ-convergence result at second order that captures a “renormalized energy” between the vortex singularities and identifies a “canonical harmonic unit vector field” associated to these vortices.

We classify all harmonic unit vector fields with singularities at prescribed vortex points with prescribed indices (satisfying a certain constraint coming from the topology of S). The subtlety for surfaces of genus $g \geq 1$ is that a harmonic unit vector field depends not only on the prescribed vortex points with their topological degrees, but on some flux integrals constrained to belong to a particular vorticity-dependent lattice in the $2g$-dimensional space of harmonic 1-forms on S. The renormalized energy associated to a configuration of vortices depends on vortex interaction (mediated by the Green’s and Robin’s functions for the Laplacian on S), a term arising from the Gaussian curvature of S, and the flux integrals. The dependence on vortex position and degree of the flux constraints, and through them the renormalized energy, constitutes a new phenomenon in the theory of Ginzburg-Landau type models.

1.1. Three models. We will always assume that the potential $F : \mathbb{R}_+ \to \mathbb{R}_+$ is a continuous function such that there exists some $C > 0$ with

$$F(1) = 0, \quad F(s^2) \geq C(1 - s)^2, \text{ for all } s > 0.$$

Problem 1: Let (S, g) be a closed (i.e., compact, connected without boundary) oriented 2-dimensional Riemannian manifold of genus g. Consider (tangent) vector fields $u : S \to TS$, i.e., $u(x) \in T_x S$ for every $x \in S$.

1 In the sequel, a vector field on S is always tangent at S (the standard definition in differential geometry).
where \(TS = \cup_{x \in S} T_x S \) is the tangent bundle of \(S \), and minimize the intrinsic energy

\[
E_{\varepsilon}^\text{in}(u) = \int_S e_{\varepsilon}^{\text{in}}(u) \text{vol}_g, \quad e_{\varepsilon}^{\text{in}}(u) := \frac{1}{2} |D u|_g^2 + \frac{1}{4 \varepsilon^2} F(|u|_g^2).
\]

Here, \(\text{vol}_g \) is the volume 2-form on \(S \), \(|v|_g \) is the length of a vector field \(v \) with respect to the metric \(g \) and

\[|D u|_g^2(x) := |\partial_1 u|_g^2(x) + |\partial_2 u|_g^2(x) \]

where \(D_v u \) denotes covariant differentiation (with respect to the Levi-Civita connection) of \(u \) (in direction \(v \)) and \(\{\tau_1, \tau_2\} \) is any orthonormal basis for \(T_x S \).

Problem 2: Let \((S, g)\) be a closed oriented 2-dimensional Riemannian manifold isometrically embedded in \((\mathbb{R}^3, \bar{g})\). To simplify the notation, we will still denote by \(g \) the metric \(g \) on \(\mathbb{R}^3 \), which in applications is typically the Euclidean metric. Consider sections \(m \) of the tangent bundle \(TS \) (i.e., \(m(x) \in T_x S \) for a.e. \(x \in S \)), and minimize the extrinsic energy

\[
E_{\varepsilon}^\text{ex}(m) = \int_S e_{\varepsilon}^{\text{ex}}(m) \text{vol}_g, \quad e_{\varepsilon}^{\text{ex}}(m) := \frac{1}{2} |\partial m|_g^2 + \frac{1}{4 \varepsilon^2} F(|m|_g^2).
\]

That is, \(|\cdot|_g\) denotes the length in the metric \(g \) on \(\mathbb{R}^3 \) and

\[|\partial m|_g^2 := |\partial_1 m|_g^2 + |\partial_2 m|_g^2, \]

where \(\bar{m} \) is an extension of \(m \) to a neighborhood of \(S \), \(\{\tau_1(x), \tau_2(x)\} \) form a basis for \(T_x S \), and \(\partial_v \) denotes covariant derivative (with respect to the Levi-Civita connection) in \((\mathbb{R}^3, g)\) in the \(v \) direction. As is well known, \(|\partial m|_g^2\) is independent of the choice of extension \(\bar{m} \). The difference between \(|\partial m|_g^2\) in \(e_{\varepsilon}^{\text{ex}}(m) \) and \(|\partial m|_g^2\) in \(e_{\varepsilon}^{\text{in}}(m) \) consists in the normal component \(|\partial m \cdot N|_g^2\) of the full differential \(\partial m \) (the so-called shape operator, see \([23]\) and Lemma \([10, 2]\) below) where \(N \) is the Gauss map at \(S \).

Problem 3: Let \((S, g)\) be a closed oriented 2-dimensional Riemannian manifold isometrically embedded in \(\mathbb{R}^3 \) (that is endowed with the Euclidean metric). Consider maps \(M : S \rightarrow \mathbb{R}^3 \) with \(|M| = 1 \) a.e. (standing for the magnetization), and minimize the micromagnetic energy on \(S \):

\[
E_{\varepsilon}^{\text{mm}}(M) = \int_S e_{\varepsilon}^{\text{mm}}(M) \text{vol}_g, \quad e_{\varepsilon}^{\text{mm}}(M) := \frac{1}{2} |\partial M|_g^2 + \frac{1}{4 \varepsilon^2} F(1 - (M \cdot N)^2).
\]

Here \(|\partial M|_g^2 := |\tau_1 \cdot \partial M|_g^2 + |\tau_2 \cdot \partial M|_g^2\), where \(|\cdot|\) denotes the Euclidean length of a vector in \(\mathbb{R}^3 \), \(D \) is the differential operator in \(\mathbb{R}^3 \), \(M \) is an extension of \(M \) to a neighborhood of \(S \) and \(\{\tau_1(x), \tau_2(x)\} \) form an orthonormal basis for \(T_x S \) and \(N(x) \) is the Gauss map at \(S \). As usual, \(|\partial M|_g^2\) is independent of the choice of extension \(M \). Note that if \(M \) is decomposed as

\[M = m + (M \cdot N)N, \]

where \(m \) is the projection of \(M \) on the tangent plane \(TS \), then the energy \(E_{\varepsilon}^{\text{mm}}(M) \) can be seen as a nonlinear perturbation of \(E_{\varepsilon}^{\text{ex}}(m) \) in terms of the tangent component \(m \) with the potential \(F(|m|^2) \) since \(|m|^2 = 1 - (M \cdot N)^2\) (see Section \([1]\)). The above variational problem is a reduced model for thin ferromagnetic films for the potential \(F(s^2) = 1 - s^2 \) for \(s \in [0, 1] \) (satisfying \([\text{C}] \) with \(C = 1 \) (see Section \([8, 1]\)).
1.2. Vortices. Let \((S, g)\) be a closed oriented 2-dimensional Riemannian manifold of genus \(g\) (not necessarily embedded in \(\mathbb{R}^3\)). We will identify vortices of a vector field \(u\) with small geodesic balls centered at some points around which \(u\) has a (non-zero) index. To be more precise, we introduce the Sobolev space (for \(p \geq 1\))

\[
\mathcal{X}^{1,p}(S) := \{ \text{vector fields } u: S \to TS : |u|_g, |Du|_g \in L^p(S) \}.
\]

We will also write \(\mathcal{X}(S)\) to denote the space of smooth vector fields on \(S\). Given \(u \in \mathcal{X}^{1,p}(S) \cap L^q(S)\) such that \(\frac{1}{p} + \frac{1}{q} = 1\), \(p, q \in [1, \infty]\), we define the current \(j(u)\) as the following 1-form:

\[
j(u) = (Du, iu)_g,
\]

where \((\cdot, \cdot)_g\) is the scalar product on \(TS\) (more generally, the inner product associated to \(k\)-forms, \(k = 0, 1, 2\)) and \(i: TS \to TS\) is an isometry of \(T_xS\) to itself for every \(x \in S\) satisfying

\[
i^2w = -w, \quad (iw, v)_g = -(w, iv)_g = \text{vol}_g(w, v).
\]

In particular, \(j(u)\) is a well-defined 1-form in \(L^1(S)\) if \(u \in \mathcal{X}^{1,1}(S)\) with \(|u|_g = 1\) almost everywhere in \(S\). To introduce the notion of index, we assume that \(\partial O\) is an open subset of \(S\) of Lipschitz boundary and \(u \in \mathcal{X}^{1,2}(\partial O)\) is a vector field in a neighborhood \(\mathcal{N}\) of \(\partial O\) such that \(|u|_g \geq \frac{1}{4}\) a.e. in \(\mathcal{N}\); then the index (or topological degree) of \(u\) along \(\partial O\) is defined by

\[
\deg(u; \partial O) := \frac{1}{2\pi} \left(\int_{\partial O} j(u) + \int_{\partial O} \kappa \text{vol}_g \right),
\]

where \(\kappa\) is the Gauss curvature on \(S\) and the curve \(\partial O\) has the orientation inherited in the usual way from \(\partial O\) as oriented by the volume form, so that Stokes' Theorem holds with the standard sign conventions (see [12] Chapter 6.1). In particular, if \(u\) is smooth enough in \(O\) and has unit length on \(\partial O\), then one has

\[
\deg(u; \partial O) = \frac{1}{2\pi} \int_{O} \omega(u)
\]

where \(\omega(u)\) is the vorticity (as a 2-form) associated to the vector field \(u\):

\[
\omega(u) := dj(u) + \kappa \text{vol}_g,
\]

where \(dj(u)\) is the exterior derivative of \(j(u)\) (for more details, see Lemma 6.3 below). Sometimes we will identify the index of \(u\) at a point \(P \in S\) with the index of \(u\) along a sufficiently small curve around \(P\). Note that every smooth vector field \(u \in \mathcal{X}(O)\) (or more generally, \(u \in \mathcal{X}^{1,2}(O)\)) of unit length in \(O\) has \(\deg(u; \partial O) = 0\); moreover, a vortex with non-zero index will carry infinite energy in Problems 1, 2 and 3 as \(\varepsilon \to 0\).

1.3. Aim. We will prove a \(\Gamma\)-convergence result (at the second order) for the three energy functionals introduced above, as \(\varepsilon \to 0\). The genus \(g\) and the Euler characteristic

\[
\chi(S) = 2 - 2g
\]

of \(S\) will play an important role. In particular, at the level of minimizers \(u_\varepsilon\) of \(E_\varepsilon^m\), we show that as \(\varepsilon \to 0\), \(u_\varepsilon\) converges weakly in \(\mathcal{X}^{1,p}(S)\) for \(p < 2\), see Theorem 12.1 (for a subsequence) to a canonical harmonic vector field \(u^*\) of unit length that is smooth \(^2\) away

\(^2\)In the case of a surface \((S, g)\) with genus 1 (i.e., homeomorphic with the flat torus), then \(n = 0\) and \(u^*\) is smooth in \(S\).
from $n = |\chi(S)|$ distinct singular points a_1, \ldots, a_n, each singular point a_k carrying the same index $d_k = \text{sign} \chi(S)$ for $k = 1, \ldots, n$ so that

$$\sum_{k=1}^{n} d_k = \chi(S).$$

Moreover, the vorticity $\omega(u^*)$ detects the singular points $\{a_k\}_{k=1}^{n}$ of u^*:

$$\omega(u^*) = 2\pi \sum_{k=1}^{n} d_k \delta_{a_k} \quad \text{in } S,$$

where δ_{a_k} is the Dirac measure (as a 2-form) at a_k. The expansion of the minimal intrinsic energy E^{in}_ε at the second order is given by

$$E^{in}_\varepsilon(u_\varepsilon) = n\pi \log \frac{1}{\varepsilon} + \lim_{r \to 0} \left(\int_{S \setminus \bigcup_{k=1}^{n} B_r(a_k)} \frac{1}{2} |Du^*_g|^2 vol_g + n\pi \log r \right) + n\iota_F + o(1), \quad \text{as } \varepsilon \to 0,$$

where $\iota_F > 0$ is a constant depending only on the potential F and $B_r(a_k)$ is the geodesic ball centered at a_k of radius r, see again Theorem 12.1. The second term in the above right-hand side (RHS) is called the \textit{renormalized energy} between the vortices a_1, \ldots, a_n and governs the optimal location of these singular points; in the Euclidean case, this notion was introduced by Bethuel-Brezis-Hélein in their seminal book [3]. In particular, if S is the unit sphere in \mathbb{R}^3 endowed with the standard metric g, then $n = 2$ and a_1 and a_2 are two diametrically opposed points on S. Our results will give an explicit description of this renormalized energy, together with its counterparts for the extrinsic Problems 2 and 3, see Section 2.2.

2. Main results

2.1. Canonical harmonic vector fields of unit length. Let (S, g) be a closed oriented 2-dimensional Riemannian manifold of genus g (not necessarily embedded in \mathbb{R}^3). We will say that a canonical harmonic vector field of unit length having distinct singular points $a_1, \ldots, a_n \in S$ of index $d_1, \ldots, d_n \in \mathbb{Z}$ for some $n \geq 1$, is a vector field $u^* \in \mathcal{X}^{1,1}(S)$ such that $|u^*|_g = 1$ in S, [5] holds, i.e.,

$$dj(u^*) = -\kappa \text{vol}_g + 2\pi \sum_{k=1}^{n} d_k \delta_{a_k}$$

and

$$d^*j(u^*) = 0 \quad \text{in } S.$$

Here, d^* is the adjoint of the exterior derivative d, i.e., $d^*j(u^*)$ is the unique 0-form on S such that

$$\int_S (d^*j(u^*), \zeta)_g \text{vol}_g = \int_S (j(u^*), d\zeta)_g \text{vol}_g \quad \text{for every smooth 0-form } \zeta,$$

where $(\cdot, \cdot)_g$ is the inner product associated to k-forms, $k = 0, 1, 2$. If u^* satisfies [8], then [5] combined with Gauss-Bonnet theorem imply that necessarily [7] holds.

\[\text{In fact, } \text{deg}(u^*, \gamma) = d_k \text{ for every closed simple curve } \gamma \text{ around } a_k \text{ and lying near } a_k.\]
We will see that condition (7) is also sufficient. Indeed, if (7) holds, we will construct solutions of (8) and (9), as follows: if \(\psi = \psi(a; d) \) is the unique 2-form on \(S \) solving
\[
-\Delta \psi = -\kappa \operatorname{vol}_g + 2\pi \sum_{k=1}^{n} d_k \delta_{a_k} \quad \text{in } S, \quad \int_S \psi = 0,
\]
with the sign convention that \(-\Delta = dd^* + d^*d \), then the idea is to find \(u^* \) such that \(j(u^*) - d^*\psi \) belongs to the space of harmonic 1-forms, i.e.,
\[
Harm^1(S) = \{ \text{integrable 1-forms } \eta \text{ on } S : d\eta = d^*\eta = 0 \text{ as distributions} \}.
\]
The dimension of the space \(Harm^1(S) \) is twice the genus (i.e., \(2g \)) of \((S, g) \) and we fix an orthonormal basis \(\eta_1, \ldots, \eta_{2g} \) of \(Harm^1(S) \) such that
\[
\int_S (\eta_k, \eta_l)_g \operatorname{vol}_g = \delta_{kl} \quad \text{for } k, l = 1, \ldots, 2g.
\]
Therefore, our ansatz for \(j(u^*) \) may be written
\[
j(u^*) = d^*\psi + \sum_{k=1}^{2g} \Phi_k \eta_k \quad \text{in } S
\]
for some constant vector \(\Phi = (\Phi_1, \ldots, \Phi_{2g}) \in \mathbb{R}^{2g} \). We call these constants flux integrals as they can be recovered by
\[
\Phi_k = \int_S (j(u^*), \eta_k)_g \operatorname{vol}_g, \quad \text{for } k = 1, \ldots, 2g.
\]
These flux integrals play an essential role in our analysis. They depend nontrivially on \((a, d) \); this phenomenon is new, as far as we know, in the study of Ginzburg-Landau models, see Section 4 for more details. Note that (12) combined with (10) automatically yield (8) and (9). One important point is to characterize for which values of \(\Phi \) the RHS of (12) arises as \(j(u^*) \) for some vector field \(u^* \) of unit length in \(S \). For that condition, we need to recall the following theorem of Federer-Fleming [14]: there exist \(2g \) simple closed geodesics \(\gamma_\ell \) on \(S, \ell = 1, \ldots, 2g \), such that for any closed Lipschitz curve \(\gamma \) on \(S \), one can find integers \(c_1, \ldots, c_{2g} \) such that
\[
\gamma \text{ is homologous to } \sum_{\ell=1}^{2g} c_\ell \gamma_\ell
\]
i.e., there exists an integrable function \(f : S \to \mathbb{Z} \) such that
\[
\int_\gamma \zeta - \sum_{\ell=1}^{2g} c_\ell \int_{\gamma_\ell} \zeta = \int_S f \, d\zeta \quad \text{for all smooth 1-forms } \zeta
\]
(see more details in Section 5.4). We fix a choice of such geodesic curves \(\{ \gamma_\ell \}_{\ell=1}^{2g} \). With these chosen geodesics \(\{ \gamma_\ell \}_{\ell=1}^{2g} \) and the harmonic 1-forms \(\{ \eta_k \}_{k=1}^{2g} \), we denote by
\[
\alpha_{k\ell} := \int_{\gamma_\ell} \eta_k, \quad k, \ell = 1, \ldots, 2g.
\]
The matrix \(\alpha = (\alpha_{k\ell})_{1 \leq k, \ell \leq 2g} \) is invertible\(^4\) (see Lemma 5.2).

\(^4\)In fact, by changing the choice of geodesics and the basis in \(Harm^1(S) \), the matrix \(\alpha \) is multiplied by an invertible matrix (similar to the standard change of coordinates in vector spaces) due to the above definition of homologous curves where \(\int_\gamma \eta = \sum_{\ell=1}^{2g} c_\ell \int_{\gamma_\ell} \eta \) for every harmonic 1-form \(\eta \), see also Lemma 5.2.
Theorem 2.1. Let \(n \geq 1 \) and \(d = (d_1, \ldots, d_n) \in \mathbb{Z}^n \) satisfy (7). Then for every \(a = (a_1, \ldots, a_n) \in S^n \), there exists
\[
\zeta_\ell = \zeta_\ell(a; d) \in \mathbb{R}/2\pi\mathbb{Z}, \quad \ell = 1, \ldots, 2g
\]
such that if a vector field \(u^* \in \mathcal{X}^{1,1}(S) \) of unit length solves (8) and (9), then \(j(u^*) \) has the form (12) for constants \(\Phi_1, \ldots, \Phi_{2g} \) such that
\[
\sum_{k=1}^{2g} \alpha_k \Phi_k + \zeta_\ell(a; d) \in 2\pi\mathbb{Z}, \quad \ell = 1, \ldots, 2g,
\]
where \((\alpha_k) \) are defined in (13). Conversely, given any \(\Phi_1, \ldots, \Phi_{2g} \) satisfying (14), there exists a vector field \(u^* \in \mathcal{X}^{1,1}(S) \) of unit length solving (8) and (9) and such that \(j(u^*) \) satisfies (12). In addition, the following hold:

1) \(\zeta_\ell(\cdot; d) \) depends continuously on \(a \in S^n \) for every \(\ell = 1, \ldots, 2g \). More generally, if
\[
\mu_t := 2\pi \sum_{l=1}^{n} d_l l_\ell \delta_{a_l; t} \to \mu_0 := 2\pi \sum_{l=1}^{n} d_l l_0 \delta_{a_l; 0} \quad \text{in} \ W^{-1,1} \quad \text{as} \ t \downarrow 0,
\]

\(\{d_l\}_l \) are integers with (7) and \(\sum_l d_l |d_l| \) is uniformly bounded in \(t \), then \(\zeta_\ell(a_l; d_l) \to \zeta_\ell(a_0; d_0) \) as \(t \downarrow 0 \). (See Section 5.3 for the definition of \(W^{-1,1} \).)

2) any \(u^* \) solving (8) and (9) belongs to \(\mathcal{X}^{1,p}(S) \) for all \(1 \leq p < 2 \), and is smooth away from \(\{a_k\}_{k=1}^{2g} \).

3) If \(u^*, \tilde{u}^* \) both satisfy (12) for the same \((a; d) \) and the same \(\{\Phi_k\}_{k=1}^{2g} \), then \(\tilde{u}^* = e^{i\beta}u^* \) for some \(\beta \in \mathbb{R} \) where \(e^{i\beta} = \cos \beta + i \sin \beta \) for the isometry \(i \) defined in (4).

Remark 2.2. Throughout this paper, objects that we write as functions of \((a; d) \), such as \(\psi(a; d), \zeta_\ell(a; d) \), and so on, in fact depend only on the measure \(2\pi \sum_{l=1}^{n} d_l \delta_{a_l} \). As a result, one can always do the reduction of a set \((a; d) \) of points \(a = (a_1, \ldots, a_n) \in S^n \) (not necessarily distinct) and integers \(d = (d_1, \ldots, d_n) \) (that can be zero) satisfying (7) to a set \(\{a_k\}_k \) where the points \(a_k \) are distinct and \(d_k \neq 0 \); indeed, one can just put together all the identical \(a_k \), sum their degrees \(d_k \), re-label them and then cancel the \(a_k \) with zero degree \(d_k \) (of course, (7) is conserved). This is why we can always assume that the points \((a_k) \) are distinct and that every \(d_k \) is nonzero.

The constants \(\{\zeta_\ell(a; d)\}_{\ell=1}^{2g} \) are determined as follows. For every \(\ell = 1, \ldots, 2g \), we let \(\lambda_\ell \) be some smooth simple closed curve such that \(\lambda_\ell \) is homologous to \(\gamma_\ell \) (the geodesics fixed in (13)) and \(\{a_k\}_k \) is disjoint from \(\lambda_\ell \); for example, \(\lambda_\ell \) is either \(\gamma_\ell \) or, if \(\gamma_\ell \) intersects some \(a_k \), a small perturbation thereof. We now define \(\zeta_\ell(a; d) \) to be the element of \(\mathbb{R}/2\pi\mathbb{Z} \) such that
\[
\zeta_\ell(a; d) := \int_{\lambda_\ell} (d^*\psi + A) \mod 2\pi, \quad \ell = 1, \ldots, 2g,
\]
where \(\psi = \psi(a; d) \) is the 2-form given by (10) and \(A \) is the connection 1-form associated to any moving frame defined in a neighborhood of \(\lambda_\ell \) (see Section 5.2). The proof of Theorem 2.1 will show that \(\zeta_\ell(a; d) \) is well-defined as an element of \(\mathbb{R}/2\pi\mathbb{Z} \). In general, \(\zeta_\ell(a; d) \neq 0 \mod 2\pi \) for \(\ell = 1, \ldots, 2g \) as we will see in Example 6.7 in which it can be explicitly computed.

The lattice \(\mathcal{L}(a; d) \). Due to Theorem 2.1, we introduce the following set corresponding to \(n \) distinct points \(a = (a_1, \ldots, a_n) \in S^n \) and nonzero integers \(d = (d_1, \ldots, d_n) \in \mathbb{Z}^n \).
satisfying (7):
\[
\mathcal{L}(a;d) := \{ \Phi = (\Phi_1, \ldots, \Phi_{2g}) \in \mathbb{R}^{2g} : \sum_{k=1}^{2g} \alpha_{\ell k} \Phi_k + \zeta_{\ell}(a;d) \in 2\pi \mathbb{Z}, \ell = 1, \ldots, 2g \}.
\]

It is a lattice (up to a translation). Indeed, if \(\alpha = (\alpha_{\ell k})_{1 \leq \ell, k \leq 2g} \) is the matrix defined in (13) with the inverse \(\alpha^{-1} \), then
\[
\Phi \in \mathcal{L}(a;d) \iff \Phi \in 2\pi \alpha^{-1} \mathbb{Z}^{2g} - \alpha^{-1} \zeta,
\]
i.e., the lattice is determined by the columns of the matrix \(\alpha^{-1} \) and it is shifted by the vector \(\alpha^{-1} \zeta \) with \(\zeta(a;d) = (\zeta_1, \ldots, \zeta_{2g}) \) defined by (16). Due to the relation on \(\Phi \), the above discussed change of geodesics \(\{ \gamma_k \} \) and basis of harmonics \(\{ \eta_k \} \) would be equivalent to a change of coordinates in the lattice \(\mathcal{L}(a;d) \).

The continuity of \(\zeta \) stated at Theorem 2.1 point 1) can be quantified as follows:

Lemma 2.3. For every \(K \in \mathbb{Z}_+ \), there exists \(C_K > 0 \) such that for every two measures \(\mu = 2\pi \sum_{k=1}^{n} d_k \delta_{a_k} \) and \(\tilde{\mu} = 2\pi \sum_{k=1}^{n} d_k \delta_{\tilde{a}_k} \) with the distinct points \(a = (a_k)_{k=1}^{n}, \tilde{a} = (\tilde{a}_k)_{k=1}^{n} \subset S \) and the nonzero integers \(d = (d_k)_{k=1}^{n} \) and \(\tilde{d} = (\tilde{d}_k)_{k=1}^{n} \) satisfying (7) and \(\sum_{k=1}^{n} |d_k|, \sum_{k=1}^{n} |\tilde{d}_k| \leq K \), then
\[
\operatorname{dist}_{\mathbb{R}^{2g}}(\mathcal{L}(a;d), \mathcal{L}(\tilde{a};\tilde{d})) \leq C_K \| \mu - \tilde{\mu} \|_{W^{-1,1}(S)}.
\]

Here \(\operatorname{dist}_{\mathbb{R}^{2g}}(\mathcal{L}, \tilde{\mathcal{L}}) = \inf_{\Phi \in \mathcal{L}, \tilde{\Phi} \in \tilde{\mathcal{L}}} |\Phi - \tilde{\Phi}| \), which coincides with the Hausdorff distance, since \(\mathcal{L} \) and \(\tilde{\mathcal{L}} \) are both translations of a fixed lattice \(2\pi \alpha^{-1} \mathbb{Z}^{2g} \).

2.2. Renormalized energy.

The intrinsic Dirichlet energy. Let \((S,g)\) be a closed oriented 2-dimensional Riemannian manifold of genus \(g \) (not necessarily embedded in \(\mathbb{R}^3 \)). For any \(n \geq 1 \), we consider \(n \) distinct points \(a = (a_1, \ldots, a_n) \in S^n \). Let \(d = (d_1, \ldots, d_n) \in \mathbb{Z}^n \) satisfying (7), \(\{ \zeta(a;d) \}_{d \in \mathbb{Z}^{2g}} \) be given in Theorem 2.1 and \(\Phi \in \mathbb{R}^{2g} \) be a constant vector inside the lattice \(\mathcal{L}(a;d) \) defined in (17). We define the renormalized energy between the vortices \(a \) of indices \(d \) by
\[
W(a,d,\Phi) := \lim_{r \to 0} \left(\int_{S \cup \bigcup_{k=1}^{n} B_r(a_k)} \frac{1}{2} |Du^*|^2 g \, \text{vol}_g + \pi \log r \sum_{k=1}^{n} d_k^2 \right),
\]
where \(u^* = u^*(a,d,\Phi) \) is the unique (up to a multiplicative complex number) canonical harmonic vector field given in Theorem 2.1 and \(B_r(a_k) \) is the geodesic ball centered at \(a_k \) of radius \(r \). (Our arguments will show that the above limit indeed exists, see (18)). As in the Euclidean case (see the pioneering work of Bethuel, Brezis and Hélein [1]), we can compute the renormalized energy by using the Green’s function. For that, let \(G(x,y) \) be the unique function on \(S \times S \) such that
\[
-\Delta_x (G(\cdot,y) \, \text{vol}_g) = \delta_y - \frac{\text{vol}_g}{\text{vol}_g(S)} \text{ distributionally in } S, \int_S G(x,y) \, \text{vol}_g(x) = 0, \forall y \in S,
\]
with \(\text{Vol}_g(S) := \int_S \text{vol}_g \). Then \(G \) may be represented in the form (see Chapter 4.3) \(^2\)

\[
G(x, y) = G_0(x, y) + H(x, y), \quad \text{with } H \in C^1(S \times S),
\]

where \(G_0 \) is smooth away from the diagonal, with

\[
G_0(x, y) = -\frac{1}{2\pi} \log(\text{dist}_S(x, y))
\]

if the geodesic distance \(\text{dist}_S(x, y) < \frac{1}{2} \) (injectivity radius of \(S \)).

The 2-form \(\psi = \psi(a; d) \) defined in (10) can be written as:

\[
\psi = 2\pi \sum_{k=1}^n d_k G(\cdot, a_k) \text{vol}_g + \psi_0 \text{vol}_g \quad \text{in } S,
\]

where \(\psi_0 \in C^\infty(S) \) has zero average on \(S \) and solves

\[
-\Delta \psi_0 = -\kappa + \bar{\kappa}, \quad \text{for } \bar{\kappa} = \frac{1}{\text{Vol}(S)} \int_S \kappa \text{vol}_g = \frac{2\pi \chi(S)}{\text{Vol}(S)}.
\]

In other words, the 2-form \(x \mapsto \psi(x) + d_k \log \text{dist}_S(x, a_k) \text{vol}_g \) is \(C^1 \) in a neighborhood of \(a_k \) for every \(1 \leq k \leq n \). We have the following expression of the renormalized energy:

Proposition 2.4. Given \(n \geq 1 \) distinct points \(a_1, \ldots, a_n \in S \), integers \(d_1, \ldots, d_n \) with \(^7\) and \(\Phi \in \mathcal{L}(a; d) \), then

\[
W(a, d, \Phi) = 4\pi^2 \sum_{1 \leq l < k \leq n} d_l d_k G(a_l, a_k) + 2\pi \sum_{k=1}^n [\pi d_k^2 H(a_k) + d_k \psi_0(a_k)]
\]

\[+ \frac{1}{2} |\Phi|^2 + \int_S |d\psi_0|^2 \text{vol}_g, \]

where \(\psi_0 \) is defined in (21).

In the case of the unit sphere \(S \) in \(\mathbb{R}^3 \) endowed with the standard metric (in particular, \(\psi_0 \) vanishes in \(S \)), if \(n = 2 \) and \(d_1 = d_2 = 1 \), then the second term in the RHS of (22) is independent of \(d_k \) (as \(x \mapsto H(x, x) \) is constant, see \[^35\]); moreover, \(\Phi = 0 \) and so, minimizing \(W \) is equivalent by minimizing the Green’s function \(G(a_1, a_2) \) over the set of pairs \((a_1, a_2)\) in \(S \times S \), namely, the minimizing pairs are diametrically opposed.

More generally, if \(S = \mathbb{S}^2 \) is endowed with a non-standard metric \(g \), then Steiner \[^35\] proves that \(x \mapsto H(x, x) + \frac{1}{2\pi} \psi_0(x) \) is constant\(^6\). Therefore, an optimal pair \((a_1, a_2)\) of vortices of degree \(d_1 = d_2 = 1 \) minimizes the following energy

\[
(a_1, a_2) \in S \times S \mapsto 4\pi G(a_1, a_2) + \psi_0(a_1) + \psi_0(a_2).
\]

In general this is a complicated expression, but it should be possible to find minima in special cases. For example, if \(S \) is an ellipsoid, then we expect the vortices \(a_1 \) and \(a_2 \) will be placed at the two poles of the largest diameter as they have maximal Gauss curvature

\[^5\] More precisely, according to \[^2\] , page 109, eqn (17), one may define \(G_0 \) as above such that \(H := G - G_0 \) can be represented in the form

\[
H(x, y) = \int_S \Delta_x G_0(x, z) G_0(z, y) \text{vol}(z) + \text{smoother terms},
\]

wherehere \(\Delta_x \) denotes the pointwise Laplacian rather than the distributional Laplacian) and in addition \(\|\Delta_x G_0\|_{L^\infty(S)} \leq C \).

\[^6\] The function \(x \mapsto H(x, x) \) is called the Robin’s mass on \(S^2 \), see e.g. \[^35\].
The extrinsic Dirichlet energy. In the case of an embedded surface $S \subset \mathbb{R}^3$, when dealing with the extrinsic Dirichlet energy in Problems 2 and 3, a second interaction energy between vortices a of degree d is important next to $W(a, d, \Phi)$. For that, we denote by $S : TS \rightarrow TS$ the shape operator on S, that is,

$$S(v) = -D_vN, \quad \text{for every } v \in TS,$$

where N is the Gauss map on S. Let $u^* = u^*(a, d, \Phi)$ be the unique (up to a multiplicative complex number) canonical harmonic vector field given in Theorem 2.1. We consider

$$\bar{W}(a, d, \Phi) = \min_{\Theta : S \rightarrow \mathbb{R}} \frac{1}{2} \int_S |d\Theta|^2_g + |S(e^{i\Theta}u^*)|^2_g \operatorname{vol}_g.$$

(Existence of a minimizer is standard, as we discuss in more detail later.) We will prove in Theorems 10.1 and 11.1 in Sections 10 and 11 that the renormalized energy associated to (27)

$$\iota \bar{W}(a, d, \Phi) = \bar{W}(a, d, \Phi) + W(a, d, \Phi).$$

Note that for the unit sphere S in \mathbb{R}^3 endowed with the standard metric, the shape operator satisfies $|S(u)|_g = 1$ for any $x \in S$ and unit vector $u \in T_xS$, so that $\bar{W}(a, d, \Phi) = 2\pi$ for all (a, d, Φ). Therefore, the total renormalized energy $W + \bar{W}$ has the same minimizers as W.

2.3. Γ-convergence. Given the potential F in Section 11 we compute the intrinsic energy of the radial profile of a vortex of index 1 inside a ball of radius $R > 0$ with respect to the Euclidean structure on \mathbb{R}^2:

$$I_F^{in}(R, \varepsilon) := \min \left\{ \int_{B_R(0)} e_\varepsilon(v) \, dy : v : B_R(0) \rightarrow \mathbb{C}, v(y) = \frac{y}{R} \text{ for } |y| = R \right\}$$

with $e_\varepsilon(v) := \frac{1}{2} \|
abla v\|^2 + \frac{1}{4\varepsilon^2} F(|v|^2)$. The above minimum is indeed achieved\footnote{In fact, the minimizer is unique and symmetric [39, 24]. For other uniqueness results, see [18, 19].} and $I_F^{in}(R, \varepsilon) = I_F^{in}(\lambda R, \lambda \varepsilon) = I_F^{in}(1, \frac{\varepsilon}{R}) =: I_F^{in}(\varepsilon)$ for every $\lambda > 0$, and the following limit exists (see [3, Lemma III.1]):

$$\iota_F := \lim_{t \downarrow 0} I_F^{in}(t) + \pi \log t.$$

The extrinsic energy of the radial profile of a vortex of index 1 in Problem 2 will also correspond to the one above. However, for Problem 3, due to the constraint of unit-length on the magnetization M, the following expression comes out:

$$I_F^{mn}(R, \varepsilon) := \min \left\{ \int_{B_R(0)} \tilde{e}_\varepsilon(v) \, dy : v : B_R(0) \rightarrow S^2, v(y) = \frac{1}{R}(y, 0) \text{ for } |y| = R \right\}$$

with $\tilde{e}_\varepsilon(v) := \frac{1}{2} \|
abla v\|^2 + \frac{1}{4\varepsilon^2} F(1 - v_3^2)$ where $v = (v_1, v_2, v_3)$.

Again, the above minimum is indeed achieved for every fixed $R, \varepsilon > 0$ and writing $I_F^{mn}(R, \varepsilon) =: I_F^{mn}(\frac{\varepsilon}{R})$, we obtain the following quantity (see [12, 23])

$$\tilde{i}_F := \lim_{t \downarrow 0} I_F^{mn}(t) + \pi \log t.$$
We state our main result for Problem 1 in a closed oriented 2-dimensional Riemannian manifold of genus g:

Theorem 2.5. The following Γ-convergence result holds.

1) (Compactness) Let $(u_\varepsilon)_{\varepsilon>0}$ be a family of vector fields in $\mathcal{X}^{1,2}(S)$ satisfying $E_{\varepsilon}^{\text{int}}(u_\varepsilon) \leq T\pi|\log \varepsilon| + C$ for some integer $T \geq 0$ and a constant $C > 0$. We denote by

$$
\Phi(u_\varepsilon) := \left(\int_S (j(u_\varepsilon), \eta_1)_g \text{vol}_g, \ldots, \int_S (j(u_\varepsilon), \eta_2)_g \text{vol}_g \right) \in \mathbb{R}^{2g},
$$

where $\{\eta_k\}_{k=1}^{2g}$ are fixed in (22). Then there exists a sequence $\varepsilon \downarrow 0$ such that

$$
(29) \quad \omega(u_\varepsilon) \to 2\pi \sum_{k=1}^n d_k a_k \quad \text{in } W^{-1,1}, \quad \text{as } \varepsilon \to 0,
$$

where $\{a_k\}_{k=1}^n$ are distinct points in S and $\{d_k\}_{k=1}^n$ are nonzero integers satisfying (7) and $\sum_{k=1}^n |d_k| \leq T$. Moreover, if $\sum_{k=1}^n |d_k| = T$, then $n = T$ and $|d_k| = 1$ for every $k = 1, \ldots, n$; in this case, for a further subsequence, there exists $\Phi \in \mathcal{L}(a;d)$ such that $\Phi(u_\varepsilon) \to \Phi$.

2) (Γ-liminf inequality) Assume that the vector fields $u_\varepsilon \in \mathcal{X}^{1,2}(S)$ satisfy (29) for n distinct points $\{a_k\}_{k=1}^n \in S^n$ and $|d_k| = 1$, $k = 1, \ldots, n$ that satisfy (7) and $\Phi \in \mathcal{L}(a;d)$. Then

$$
\liminf_{\varepsilon \to 0} \left[E_{\varepsilon}^{\text{int}}(u_\varepsilon) - n\pi|\log \varepsilon| \right] \geq W(a, d, \Phi) + n\epsilon_F.
$$

3) (Γ-limsup inequality) For every n distinct points $a_1, \ldots, a_n \in S$ and $d_1, \ldots, d_n \in \{\pm 1\}$ satisfying (7) and every $\Phi \in \mathcal{L}(a;d)$ there exists a sequence of vector fields u_ε on S such that $|u_\varepsilon|_g \leq 1$ in S, (29) holds and

$$
E_{\varepsilon}^{\text{int}}(u_\varepsilon) - n\pi|\log \varepsilon| \to W(a, d, \Phi) + n\epsilon_F \quad \text{as } \varepsilon \to 0.
$$

In fact, in the case $|d_k| = 1$, we will prove a sharper lower bound than the one stated in point (2) above, see Proposition 9.1 below. In the general case of arbitrary degrees $d_k \in \mathbb{Z} \setminus \{0\}$ satisfying (7), we only prove a lower bound at the first order, implicit in the fact that $\sum_{k=1}^n |d_k| \leq T$; see also Corollary 8.3.

If $T = 0$, the theorem implies that $n = 0$. In this case, then, there are no limiting vortices, so necessarily $g = 1$ (i.e., S is diffeomorphic to the 1-torus). Also, $\mathcal{L}(a,d)$ is a fixed lattice \mathcal{L}. See also Remark 12.2 point 2) below. By (22), the renormalized energy in this case is exactly $\frac{1}{2}|\Phi|^2 + \frac{1}{2} \int_S |d\psi_0|^2 \text{vol}_g$. It is not clear whether $\Phi = 0$ belongs to the lattice \mathcal{L} if the torus is not flat.

The situation in points 2) and 3) above (i.e., all vortices have degree ± 1) is typical when the vector fields u_ε are minimizers of $E_{\varepsilon}^{\text{int}}$ (or energetically close to minimizing configurations). For more details, see Theorem 12.1.

For Problem 2 where the surface S is isometrically embedded in \mathbb{R}^3, one has the similar result by replacing the interaction energy between vortices with:

$$
W(a, d, \Phi) + \hat{W}(a, d, \Phi)
$$

see Theorem 10.1. While for Problem 3, the difference with respect to the result of Problem 2 consists in replacing ϵ_F by ϵ_F (see Theorem 11.1); so, up to this constant, there is no change of the vortex location when minimizing the interaction energy in Problem 3 w.r.t. Problem 2.
This theorem is the generalization of the \(\Gamma \)-convergence result for \(E^{in} \) in the Euclidean case (see [11, 22, 33, 1]) and it is based on topological methods for energy concentration (vortex ball construction, vorticity estimates etc.) as introduced in [21, 32]. A part of our results were announced in [17].

Outline of the article. In Section 3, we give a motivation for our models coming from micromagnetics and geometry, while in Section 4 we present some challenges and novel-\(\)ties of our results with respect to other Ginzburg-Landau type models. Before giving the proofs of our results, we present in Section 5 some notation and background on differential forms, Sobolev spaces on manifolds and some useful computations involving the current. In Section 6, we prove the characterization of canonical harmonic vector fields in Theorem 2.1 as well as the stability estimate for the lattice \(\mathcal{L}(a; d) \) in Lemma 2.3; we also give Example 6.7 for the non-triviality of the lattice \(\mathcal{L}(a; d) \) in the case of the flat torus \(\mathbb{R}^2 / \mathbb{Z}^2 \). In Section 7 we prove the formula of the renormalized energy in Proposition 2.4. In Section 8 we prove the compactness result for the vorticity measure in Theorem 2.5 point 1); as a consequence, we deduce the \(\Gamma \)-limit at the first order of the intrinsic energy \(E^{in} \). The lower / upper bound in Theorem 2.5 are proved in Section 9; in particular, we show an improved lower bound of the intrinsic energy \(E^{in} \) in Proposition 9.1. In Sections 10 and 11 we prove the \(\Gamma \)-convergence result at the second order for the extrinsic energy \(E^{ex} \) and micromagnetic energy \(E^{mm} \) (see Theorems 10.1 and 11.1). Finally, in Section 12 we characterize the asymptotic behavior of minimizers of our three energy functionals. In Appendix, we give the so-called “ball construction” adapted to a surface \(S \) which is a key tool in proving the lower bound of our functionals.

3. Motivation

3.1. Micromagnetics. One of the motivation of our study comes from micromagnetics. Micromagnetics is a variational principle describing the behavior of small ferromagnetic bodies considered here of cylindrical shape \(\Omega = \Omega' \times (0, t) \) where \(\Omega' \) is the cross section of the sample of diameter \(\ell \) and \(t \) is the thickness of the cylinder (see Figure 1). A ferromagnetic material is described by a \(S^2 \)-valued map

\[
m : \Omega \to S^2,
\]
called magnetization, corresponding to the stable states of the energy functional (written here in the absence of anisotropy and external magnetic field):

\[
E^{3D}(m) = \eta^2 \int_{\Omega} |\nabla m|^2 \, dx + \int_{\mathbb{R}^3} |\nabla U|^2 \, dx.
\]

The first term, called exchange energy, penalizes the variations of \(m \) according to the material constant \(\eta > 0 \) (the exchange length) that is of the order of nanometers. The

![Figure 1. A ferromagnetic sample.](image-url)
second term of E^{3D} is the stray field energy that favors flux closure; more precisely, the stray field potential $U : \mathbb{R}^3 \to \mathbb{R}$ is determined by the static Maxwell equation

\[\Delta U = \nabla \cdot (m 1_\Omega) \quad \text{in} \quad \mathbb{R}^3, \]

i.e.,

\[\int_{\mathbb{R}^3} \nabla U \cdot \nabla \zeta \, dx = \int_{\Omega} m \cdot \nabla \zeta \, dx, \quad \forall \zeta \in C_{c}^{\infty}(\mathbb{R}^3). \]

In other words, the stray field ∇U is the Helmholtz projection of $m1_\Omega$ onto the L^2-gradient fields and

\[\int_{\mathbb{R}^3} |\nabla U|^2 \, dx = \| \nabla \cdot (m 1_\Omega) \|_{W^{-1,2}(\mathbb{R}^3)}^2. \]

Thin film regime of very small ferromagnets. Assume the following asymptotic regime:\(^8\)

\[h := \frac{t}{\ell} \to 0 \quad \text{and} \quad \varepsilon := \frac{\eta}{\ell} = \text{constant} \]

for some fixed parameter $\varepsilon > 0$. Set $x = (x', x_3)$, $x' = (x_1, x_2)$ where $'$ stands only in this section for an in-plane quantity. In order to study the asymptotic behavior as $h \to 0$, we rescale the variables: $y' := x'/\ell$ (so, $\omega' := \Omega'/\ell$ is of diameter 1), $y_3 := x_3/\ell$, $m_h(y) := m(x)$ and

\[E_h(m_h) := \frac{1}{\eta^2 \ell} E^{3D}(m), \quad m_h : \omega = \omega' \times (0, 1) \to S^2, \]

where the diameter of ω' equals 1. In this context, Gioia-James [15] proved the following Γ-convergence result in strong L^2-topology:

\[E_h \Gamma \to E_0 \]

where the Γ-limit functional E_0 is given by

\[E_0(M) = \int_\omega \left\{ |\nabla M|^2 + \frac{1}{\varepsilon^2} M_3^2 \right\} \, dy = \int_{\omega'} \left\{ |\nabla' M|^2 + \frac{1}{\varepsilon^2} M_3^2 \right\} \, dy' \]

for a limit magnetization $M = (M', M_3) : \omega \to S^2$ that is invariant in y_3-direction, i.e., $\partial_{y_3} M = 0$ in ω, $\nabla' = (\partial_1, \partial_2)$, so that one can write

\[M = M(y') \in W^{1,2}(\omega', S^2), \quad y' = (y_1, y_2) \in \omega'. \]

The hint is the following: since the exchange energy term in $E_h(m_h)$ of m_h is given by

\[m_h \mapsto \int_\omega \left(|\nabla' m_h|^2 + \frac{1}{\ell^2} |\partial_{y_3} m_h|^2 \right) \, dy, \]

it is clear that configurations m_h of uniformly bounded energy (i.e., $E_h(m_h) \leq C$) tend to converge strongly in L^2 to a limit M depending only on y'-variables. The more delicate issue consists in understanding the scaling of the stray field energy term. For that, we assume for simplicity that m_h is invariant in y_3-direction (i.e., $m(x') = m_h(x'/\ell)$ for $x' \in \Omega'$). Then the Maxwell equation \((31)\) turns into:

\[\Delta U = \nabla' \cdot m' \mathcal{H}^3 \Omega + m \cdot \nu \mathcal{H}^2 \Omega \partial \Omega \quad \text{in} \quad \mathbb{R}^3, \]

where ν is the unit outer normal vector on $\partial \Omega$ and \mathcal{H}^k is the Hausdorff measure of dimension k. This equation is a transmission problem that can be solved explicitly using the

\[^8\text{A thin film regime is characterized by a small aspect ratio h; the ferromagnetic samples considered here are very small because ℓ has the order of nanometers as η.}\]
Fourier transform $\mathcal{F}(\cdot)$ in the in-plane variables x' and the computation yields (see e.g. [16]):

$$
\int_{\mathbb{R}^3} |\nabla U|^2 \, dx = t \int_{\mathbb{R}^2} \tilde{f}(\frac{t}{2} |\xi'|) |\mathcal{F}(m_3 1_{\Omega'})|^2 \, d\xi' + t \int_{\mathbb{R}^2} f\left(\frac{t}{2} |\xi'|\right) \frac{\xi'}{|\xi'|} \cdot \mathcal{F}(m' 1_{\Omega'})^2 \, d\xi',
$$

where

$$
\tilde{f}(s) = \frac{1 - e^{-2s}}{2s} \quad \text{and} \quad f(s) = 1 - \tilde{f}(s) \quad \text{if} \quad s \geq 0.
$$

To conclude, one formally approximates $\tilde{f}(s) \approx 1$ and $f(s) \approx s$ if $s = o(1)$ so that

$$
\frac{1}{\eta^2} t \int_{\mathbb{R}^3} |\nabla U|^2 \, dx \approx \frac{1}{\eta^2} \int_{\Omega'} m_3^2 \, dx' + O\left(\frac{h}{\varepsilon^2}\right) \approx \frac{1}{\varepsilon^2} \int_{\omega'} m_{h,\varepsilon}^2 \, dy',
$$

as $h \to 0$.

Very small magnetic shells. The situation of curved ferromagnetic samples was considered by Carbou [10]. The context is the following: let $S \subset \mathbb{R}^3$ be a surface isometrically embedded in \mathbb{R}^3 of diameter $\ell = 1$ and N be the Gauss map at S. A curved magnetic shell is considered occupying the domain

$$
\Omega := \left\{ x' + s N(x') : s \in (0, t), \; x' \in S \right\}.
$$

Then Carbou [10] proved the corresponding Γ-convergence result as in Gioia-James [15] where the Γ-limit is given by

$$
M \in H^1(S; \mathbb{S}^2) \mapsto \int_S |\hat{D}M|^2 + \frac{1}{\varepsilon^2} (M \cdot N)^2 \, d\mathcal{H}^2
$$

where $\hat{D}M$ is the extrinsic differential of M and $M \cdot N$ is the normal component of M on the surface S. In the context of energy $E_{\varepsilon \eta}^{mm}$, denoting $|m|^2 = 1 - (M \cdot N)^2$ we have $F(|m|^2) = 1 - |m|^2 = (M \cdot N)^2 \geq (1 - |m|)^2$, so (1) is satisfied for $C = 1$.

3.2. Geometry and topology.

One of the first theorems one encounters in topology states that there does not exist any continuous nonvanishing vector field on any closed oriented surface S of genus $g \neq 1$. A unit vector field on such a surface must therefore have singularities. If the surface has a Riemannian metric, one might hope to use the metric structure to seek an energetically optimal unit vector field, which presumably should have an energetically optimal placement of singularities. This line of thought leads to the problem of minimizing the covariant Dirichlet energy

$$
\int_S \frac{1}{2} |Du|^2 \, \text{vol}_g
$$

among all unit vector fields on S. However, it follows from results in [34] (an extension to the Sobolev space $W^{1,2}$ of the “Hairy Ball Theorem”, see also related results in [39]) that when $g \neq 1$, there does not exist any unit vector field on S of finite energy. It is then reasonable (by analogy with standard considerations in the analysis of the Ginzburg-Landau functional) to seek energetically optimal vector fields by relaxing the constraint $|u|_g = 1$ and replacing it with a term that penalizes deviations of u from unit length, then considering a suitable limit. This leads to Problem 1, or to Problem 2 if one is interested in the extrinsic Dirichlet energy on an embedded surface. One may thus interpret our results about these problems as describing an optimal placement of singularities, as sought above.

9A different regime is studied in [20].
In the case of genus 1, a number of results about minimization of the extrinsic Dirichlet energy, in the space of unit tangent vector fields, are proved in [34], motivated by models of liquid crystals [27, 28].

4. Challenges

One first main result, Theorem 2.1, contains a classification of all harmonic unit vector fields in $X_{1,1}(S)$ with singularities at prescribed points. This classification is surprisingly subtle on manifolds of genus ≥ 1. Indeed, Theorem 2.1 shows that a harmonic vector field u^* with singularities of degree d_k at points $a_k \in S$ for $k = 1, \ldots, n$ exists if and only if the harmonic part of the associated current $j(u^*)$ — that is, the projection of $j(u^*)$ onto the space of harmonic 1-forms — belongs to a particular lattice $L(a; d)$ in the $2g$-dimensional space of harmonic 1-forms. (The degrees must also satisfy the natural topological constraint $\sum_{k=1}^{n} d_k = \chi(S)$; this is clear and unsurprising.) We show that $L(a; d)$ depends nontrivially on $(a; d)$ in a concrete example, and we believe this to be the case in general. Although flux quantization constraints appear in more or less all Ginzburg-Landau models on non-simply connected domains, the dependence (encoded in $L(a; d)$) of the constraints on the vortex locations and the geometry of S seems to be a new phenomenon.

The lattice $L(a; d)$ reappears and gives rise to novel issues in the proof of our main results. There we must control energy coming from the harmonic part of the current $j(u_\varepsilon)$ for a sequence u_ε of vector fields; this requires a detailed understanding of the way in which the distribution of vorticity in (approximately) unit vector fields imposes vorticity-dependent (approximate) constraints on the harmonic part of the associated currents.

These points do not appear in earlier work on related problems. This includes papers of Orlandi [29] and Qing [31] that describe the asymptotic behaviour of minimizers of a Ginzburg-Landau energy for a section of a complex line bundle over a Riemannian manifold. This minimization problem involves finding not only an optimal unit-length section u of the bundle (corresponding in our setting to a tangent unit vector field), but also an optimal connection on the bundle. By contrast, we insist on working with the Levi-Civita connection, natural in our setting. A consequence of the freedom to choose an optimal connection is that the vorticity-dependent constraints described by the lattice $L(a; d)$ do not arise in [29, 31], either in the description of optimal maps or the characterization of energy asymptotics.

A distinct and important technical issue arises from the need to isolate the energetic contribution of the vortex cores, reflected in the constants i_F and \tilde{i}_F arising in Theorems 2.5, 10.1 and 11.1. As usual, these terms are captured by sharp energy estimates carried out near the vortex cores. The new feature is that, in order to approximate the metric g well by the Euclidean metric — this is necessary to correctly resolve i_F and \tilde{i}_F — we must carry out these estimates on geodesic balls that contain the vortices and whose radii vanish as ε tends to 0. This requirement forces us to rely on refined quantitative control of the vorticity throughout our analysis.

Very closely related is the recent work of Canevari and Segatti [8], characterizing the asymptotics of a spatially-discretized covariant Dirichlet energy (32) on a surface, in the limit as the discretization scale tends to zero. These authors prove results quite parallel to ours, but their main focus is on the discrete-to-continuum limit, and the renormalized energy that they find (see [8], equations (18), (20)) is described in a way that leaves the its dependence on $(a; d)$ very implicit and does not resolve the issues appearing in our Theorem 2.1 and elsewhere in this paper.
5. Notation and background

Let \((S, g)\) be a closed oriented 2-dimensional Riemannian manifold of genus \(g\), not necessarily embedded in \(\mathbb{R}^3\). We will write \(\chi(S)\) and \(g\) to denote the Euler characteristic and the genus of \(S\) that are related by \(\chi(S) = 2 - 2g\). We write \(D\) to denote the Levi-Civita connection on \((S, g)\). We will write \(\text{dist}_S(p, q)\) to denote the geodesic distance between \(p \in S\) and \(q \in S\):

\[
\text{dist}_S(p, q) := \inf \left\{ \int_0^1 |\gamma'(s)|_g ds : \gamma : [0, 1] \to S \text{ Lipschitz, } \gamma(0) = p, \gamma(1) = q \right\}.
\]

We will write \(B_r(x)\) (or \(B(x, r)\)) to denote the open geodesic ball

\[
B_r(p) := \{ q \in S : \text{dist}_S(p, q) < r \}
\]

and \(\bar{B}_r(x)\) is the closure of this ball. Given points \(a_1, \ldots, a_n \in S\) and \(\sigma > 0\), we also write \(a = (a_1, \ldots, a_n)\) and

\[
S_\sigma(a) := S \setminus \bigcup_{k=1}^r \bar{B}_\sigma(a_k)
\]

and

\[
\rho_a := \min_{k \neq l} \text{dist}_S(a_k, a_l).
\]

We will also write simply \(S_\sigma\), when it is clear which points \((a_1, \ldots, a_n)\) we have in mind. We write \(1_{S_\sigma}\) for the characteristic function of \(S_\sigma\).

5.1. Differential forms. If \(\eta, \zeta\) are \(k\)-forms, \(k = 0, 1, 2\), we will write \((\eta, \zeta)_g\) to denote the inner product induced by the metric \(g\), and the length \(|\eta|_g := (\eta, \eta)_g^{1/2}\). We will always fix a global volume 2-form, denoted vol\(_g\), associated to the metric for which we define the isometry

\[
i : TS \to TS
\]

by \([4]\). The Hodge-star operator, mapping \(k\)-forms to \(2-k\) forms, is defined by requiring that

\[
\eta \wedge \star \zeta = (\eta, \zeta)_g \text{vol}_g \quad \text{for all } k\text{-forms } \eta, \zeta.
\]

It is well-known, and straightforward to check, that \(\star \star = (-1)^{k(2-k)}\) for a two-dimensional surface \(S\). Also, for dimension 2, we define the adjoint of the exterior derivative \(d\) by

\[
d^* := -\star d\star\text{ on } S.
\]

Then it follows that

\[
\int_S (d\eta, \zeta)_g \text{vol}_g = \int_S (\eta, d^* \zeta)_g \text{vol}_g \quad \text{for a } k\text{-form } \zeta \text{ and a } k-1\text{-form } \eta, k = 1, 2.
\]

If we instead integrate over a subset of \(S\) of the form \(S \setminus \mathcal{O}\), then this identity becomes

\[
(33) \quad \int_{S \setminus \mathcal{O}} (d\eta, \zeta)_g \text{vol}_g - \int_{S \setminus \mathcal{O}} (\eta, d^* \zeta)_g \text{vol}_g = -\int_{\partial \mathcal{O}} \eta \wedge \star \zeta
\]

where we consider \(\partial \mathcal{O}\) to have the orientation inherited from \(\mathcal{O}\) (rather than \(S \setminus \mathcal{O}\), hence the minus sign on the right-hand side). If \(\eta\) is a 0-form then we will omit the wedge on the right-hand side of (33).

For \(p \in S\), we will write \(\delta_p\) to denote the (measure-valued) 2-form such that

\[
\int_S f \delta_p = f(p) \quad \text{for every continuous } f : S \to \mathbb{R}
\]

If \(A\) is a 1-form on \(S\) and \(v \in T_x S\), then \(A(v)\) denotes the number obtained via the action of the 1-covector \(A_x \in T^*_x S\) on \(v \in T_x S\). If \(v\) is a vector field, then \(A(v)\) denotes the function whose value at \(x\) is \(A(v(x))\).
5.2. The connection 1-form. A moving frame on an open subset \(O \subset S \) will mean a pair of smooth, properly oriented, orthonormal vector fields \(\tau_k \in \mathcal{X}(O) \) for \(k = 1, 2 \), i.e.,

\[
(\tau_k, \tau_\ell)_g = \delta_{k\ell} \quad \text{vol}_g(\tau_1, \tau_2) = 1
\]
everywhere in \(O \). Note that if \(\tau \) is any smooth unit vector field on \(O \), then \(\{\tau, i\tau\} \) provides a moving frame, and if \(\{\tau_1, \tau_2\} \) is any moving frame, then \(\tau_2 = i\tau_1 \). In general a moving frame exists only locally on \(S \).

On an open subset \(O \subset S \), we will define the connection 1-form \(A \) associated to a moving frame \(\{\tau_1, \tau_2\} \) by

\[
A(v) = (D_v\tau_2, \tau_1)_g = -(D_v\tau_1, \tau_2)_g, \quad v \in \mathcal{X}(O).
\]

Since \(0 = v(\tau_1, \tau_2)_g = 2(D_v\tau_1, \tau_2)_g \) for \(k = 1, 2 \), it follows that \(D_v\tau_1 = -A(v)\tau_2 \) and \(D_v\tau_2 = A(v)\tau_1 \). Note that if \(\{\tau_1, \tau_2\} \) is a moving frame on \(O \subset S \), then \(A = -j(\tau_1) \) on \(O \) where \(j(\tau_1) \) is the 1-form defined in (34). In complex notation, this fact and the Leibniz rule imply that for any smooth complex-valued function \(\phi \) on \(O \),

\[
D_v(\phi \tau_1) = (d\phi(v) - iA(v)\phi)\tau_1.
\]

The definition of \(A \) is clearly independent of any coordinate system on \(O \) (since our definition does not refer to any coordinates) but depends on the choice of a frame. However, it is a standard fact that \(dA \) is independent of the frame. In particular, we have the identity

\[
dA = \kappa \, \text{vol}_g
\]

where \(\kappa \) is the Gaussian curvature of \(S \). (See do Carmo [12], Proposition 2 on page 92; our 1-form \(A \) is written as \(-\omega_{12} \) in do Carmo’s notation, see [12] p. 94.) In fact, this may be taken as the definition of Gaussian curvature. We recall several attributes of the Gaussian curvature. First, the Gauss-Bonnet Theorem states that

\[
\int_S \kappa \, \text{vol}_g = 2\pi \chi(S)
\]

where \(\chi(S) \) is the Euler characteristic. (For a proof, with the definition of the Euler characteristic, consult for example [12], section 6.1.) Another classical fact that we will use is the Bertrand-Diguet-Puiseux Theorem, which says that

\[
\kappa(P) = \lim_{r \searrow 0} \frac{3 \frac{2\pi r}{\pi r^3} - \mathcal{H}^1(\partial B_r(P))}{\pi r^3} = \lim_{r \searrow 0} \frac{12 \frac{\pi r^2}{\pi r^4} - \text{Vol}_g(B_r(P))}{\pi r^4}.
\]

5.3. Sobolev spaces. For \(q \in [1, \infty] \), we define \(L^q(S; \mathbb{R}) \) the space of \(q \)-integrable functions w.r.t. the volume form \(\text{vol}_g \) and the Sobolev spaces

\[
W^{1,q}(S; \mathbb{R}) = \{ f \in L^q(S; \mathbb{R}) : \| f \|_{W^{1,q}} := \max\{ \| f \|_{L^q}, \| df \|_{L^q} \} < \infty \}.
\]

If \(\mu \) is a 2-form (possibly measure-valued) then we write for \(p, q \in [1, \infty] \) with \(\frac{1}{p} + \frac{1}{q} = 1 \) that \(W^{-1,p} \) is the dual of the Sobolev space \(W^{1,q} \), i.e.,

\[
\| \mu \|_{W^{-1,p}} := \sup \left\{ \int_S f \mu : f \in W^{1,q}(S; \mathbb{R}), \| f \|_{W^{1,q}} \leq 1 \right\}.
\]

We also recall the Hodge decomposition. The following version will suffice for us: if \(\zeta \) is any square-integrable 1-form on \(S \), then there exist a 0-form \(\xi \), 2-form \(\beta \), and \(\eta \in \text{Harm}^1(S) \) (see (11)) such that

\[
\zeta = d\xi + d^*\beta + \eta.
\]
Moreover, this decomposition is unique. By integrating by parts one easily sees that for any 0-form \(\xi \), 2-form \(\beta \), and \(\eta \in \text{Harm}^1(S) \), one has
\[
\int_S (d\xi, d^* \beta)_g \, \text{vol}_g = \int_S (d\xi, \eta)_g \, \text{vol}_g = \int_S (d^* \beta, \eta)_g \, \text{vol}_g = 0.
\]
and it follows that if \(36 \) holds, then
\[
\left\| d\xi \right\|_{L^2} + \left\| d^* \beta \right\|_{L^2} + \left\| \eta \right\|_{L^2}^2 = \left\| \zeta \right\|_{L^2}^2.
\]
We have the following density result in \(X^{1,p}(S) \) (which is standard, see e.g. \([25]\)):

Lemma 5.1. For any open \(O \subset S \), if \(u \in X^{1,p}(O) \), then for any open \(O' \subset O \) compactly supported in \(O \), there exists a family of smooth vector fields \((u_\varepsilon)_{\varepsilon \in (0,\varepsilon_0)} \subset X(O') \) that converges to \(u \) in \(X^{1,p}(O') \). If \(|u_\varepsilon|_g \leq 1 \) in \(O \), then one can arrange that \(|u_\varepsilon|_g \leq 1 \) in \(O' \) for \(\varepsilon < \varepsilon_0 \). Moreover, if \(p \geq 2 \) and \(|u_\varepsilon|_g = 1 \) in \(O \), then one can arrange that \(|u_\varepsilon|_g = 1 \) everywhere in \(O' \).

Proof. Let \(u \in X^{1,p}(O) \). One considers a standard radial mollifier \(\rho \in C^\infty(\mathbb{R}^2) \) such that \(0 \leq \rho \leq 1 \), \(\rho \) has support in the unit ball and \(\int_{\mathbb{R}^2} \rho(z) \, dz = 1 \). For \(x \in S \), we consider the exponential map \(\exp_x : T_x S \to S \) and for \(\varepsilon \in (0,\varepsilon_0) \) (with \(\varepsilon_0 \) be the injectivity radius of \(S \)), let
\[
\rho_{\varepsilon,x}(y) = \frac{1}{\varepsilon^2} \rho\left(\frac{\exp_\varepsilon^{-1}(y)}{\varepsilon} \right) \quad \text{in a neighborhood of } x
\]
where we identified \(T_x S \) with \(\mathbb{R}^2 \); we also consider the renormalized mollifiers
\[
\tilde{\rho}_{\varepsilon,x}(y) = \frac{\rho_{\varepsilon,x}(y)}{\int_{T_x S} \rho_{\varepsilon,x} \, \text{vol}_g}.
\]
Now for \(x \in O \) such that \(\text{dist}_S(x, \partial O) > \varepsilon \), we define
\[
u_\varepsilon(x) = \int_O \tilde{\rho}_{\varepsilon,x}(y) \tau_{y,x} u(y) \, \text{vol}_g(y) \in T_x S,
\]
where \(\tau_{y,x} : T_y S \to T_x S \) is the parallel transport along the shortest geodesic from \(y \) to \(x \). Then for any \(O' \subset O \), there exists \(\varepsilon_0 \) such that \(u_\varepsilon \in X(O') \) for \(0 < \varepsilon < \varepsilon_0 \), and \(u_\varepsilon \to u \) in \(X^{1,p}(O') \) (see \([25]\) for more details). Moreover, the following Poincaré-Wirtinger inequality holds:
\[
\int_{B_\varepsilon(x)} |u_\varepsilon(x) - \tau_{y,x} u(y)|_g \, \text{vol}_g(y) \leq c\varepsilon \int_{B_\varepsilon(x)} |Du|_g \, \text{vol}_g,
\]
for some universal constant \(c > 0 \). Also, note that \(|u|_g \leq 1 \) in \(S \) implies that \(|u_\varepsilon|_g \leq 1 \) in \(O' \).

Assume now that \(|u|_g = 1 \) in \(O \) and that \(p \geq 2 \). As \(|\tau_{y,x} u(y)|_g = |u(y)|_g = 1 \) a.e. in \(O \), we deduce:
\[
\sup_{x \in O'} |1 - |u_\varepsilon(x)|_g| \leq C \sup_{x \in O'} |\varepsilon^2 \int_{B_\varepsilon(x)} |u_\varepsilon(x) - \tau_{y,x} u(y)|_g \, \text{vol}_g(y) = C \sup_{x \in O'} |\varepsilon \int_{B_\varepsilon(x)} |Du|_g \, \text{vol}_g| \leq C \sup_{x \in O'} |Du|_{L^2(B_\varepsilon(x))} \to 0 \text{ as } \varepsilon \to 0,
\]
where we used the equiintegrability of \(|Du|_g^2 \) on \(O \). Therefore, \(|u_\varepsilon|_g \to 1 \) uniformly in \(O' \) as \(\varepsilon \to 0 \) so that the smooth vector fields \(\tilde{u}_\varepsilon = u_\varepsilon/|u_\varepsilon|_g \) are of unit length and converge to \(u \) in \(X^{1,p}(O') \).
5.4. **A little homology.** Suppose that \(\lambda_1, \ldots, \lambda_\ell \) are closed Lipschitz curves on \(S \), by which we mean that \(\lambda_k \) is a Lipschitz continuous function \([0, 1] \to S\) such that \(\lambda_k(0) = \lambda_k(1) \) for every \(k \). Given integers \(c_1, \ldots, c_\ell \), we say that
\[
\sum_{k=1}^{\ell} c_k \lambda_k \text{ is homologous to } 0
\]
if there exists an integrable function \(f : S \to \mathbb{Z} \) such that
\[
\sum_{k} c_k \int_{\lambda_k} \phi = \int_S f \, d\phi \quad \text{for all smooth 1-forms } \phi.
\]
Here and below we use the notation
\[
\int_{\lambda} \phi := \int_0^1 (\lambda)^* \phi = \int_0^1 \phi_\ell(\lambda(s)) \lambda'(s) \, ds \quad \text{in local coordinates}
\]
We also say that \(\lambda \) is homologous to \(\sum c_k \lambda_k \) if \(\lambda - \sum c_k \lambda_k \) is homologous to \(0 \).

We will need a standard fact, which can be stated as follows:

Lemma 5.2. If \(S \) is a compact Riemannian manifold of genus \(g \), then there exist simple closed geodesics \(\gamma_k \), for \(k = 1, \ldots, 2g \), such that if \(\gamma \) is any closed Lipschitz curve, then there exist integers \(c_1, \ldots, c_{2g} \) such that
\[
\gamma \text{ is homologous to } \sum_{k=1}^{2g} c_k \gamma_k.
\]
Moreover, these curves \(\{\gamma_k\}_{k=1}^{2g} \) have the property that for \(\eta \in \text{Harm}^1(S) \) defined in (11), the following equivalences take place:
\[
\eta = 0 \iff \int_{\gamma} \eta = 0 \quad \text{for every closed Lipschitz curve } \gamma
\]
\[
\iff \int_{\gamma_k} \eta = 0 \quad \text{for } k = 1, \ldots, 2g.
\]

In particular, the matrix \(\alpha = (\alpha_{jk}) \) defined in (13) is invertible.

Proof. We sketch the proof for the reader’s convenience. First, it is a classical fact that the first singular homology group \(H_1(S; \mathbb{Z}) \) of \(S \) with integer coefficients is isomorphic to \(\mathbb{Z}^{2g} \). (In other words, the first Betti number of a surface of genus \(g \) is \(2g \).) Second, the singular homology group \(H_1(S; \mathbb{Z}) \) is isomorphic to the homology group \(H_{1FF}(S; \mathbb{Z}) \) in the sense of Federer and Fleming (to whom this statement is due, see [14] Theorem 5.11), consisting of integral 1-cycles, modulo boundaries of integral 2-currents. Thus \(H_{1FF}(S; \mathbb{Z}) \) is also isomorphic to \(\mathbb{Z}^{2g} \). Moreover, Federer and Fleming (see Corollary 9.6 in [14]) also show that every homology class contains a mass-minimizing element. Combining these facts, we may find mass-minimizing currents \(\Gamma_1, \ldots, \Gamma_{2g} \) in a collection of homology classes that generate \(H_{1FF}(S; \mathbb{Z}) \). Each \(\Gamma_j \) need not correspond to a simple closed geodesic, but it follows from [13] 4.2.25 that each \(\Gamma_j \) can be written as a sum of “indecomposable” currents, say \(\gamma_{j,k} \) for \(k = 1, \ldots, \gamma_{j,j}(j) \), which in the present context (due to the minimality of \(\Gamma_j \)) correspond to simple closed geodesics. Now the collection of homology classes corresponding to all \(\{\gamma_{j,k}\} \) generate \(H_{1FF}(S; \mathbb{Z}) \), so there must exist a subset containing exactly \(2g \) elements that also generates \(H_{1FF}(S; \mathbb{Z}) \). If we relabel the elements of this subset as \(\gamma_1, \ldots, \gamma_{2g} \), this says that any integral 1-cycle — in particular, any closed Lipschitz curve — is homologous to

\[^{10}\text{That is, non self-intersecting.}\]
an integer linear combination \(\sum_{k=1}^{2g} c_k \gamma_k \), where “homologous” is understood in the sense of [14], which is our definition above.

Having found \(\{ \gamma_k \}_{k=1}^{2g} \), it is immediate that

\[
\eta = 0 \quad \Rightarrow \quad \int_\gamma \eta = 0 \text{ for all closed Lipschitz } \gamma \quad \Rightarrow \quad \int_{\gamma_k} \eta = 0 \text{ for } k = 1, \ldots, 2g.
\]

So to establish the equivalences, we must only show that if \(\eta \in \text{Harm}^1(S) \) and \(\int_{\gamma_k} \eta = 0 \) for all \(k \), then \(\eta = 0 \). To see this, note that for each \(k = 1, \ldots, 2g \), we can identify \(\gamma_k \) with the linear map \(\eta \mapsto \int_{\gamma_k} \eta \) on \(\text{Harm}^1(S) \). These maps are linearly independent, since they generate the \(2g \)-dimensional space \(H^1_F(S; \mathbb{Z}) \). Then the desired statement follows from the fact that \(\text{Harm}^1(S) \) is \(2g \)-dimensional (noted in Section 2.4), since any \(\eta \in \text{Harm}^1(S) \) that is in the kernel of \(2g \) independent linear maps \(S \to \mathbb{R} \) must therefore equal zero.

Finally we prove that \(\alpha \) is invertible. Assume by contradiction that there exists a vector \(b \in \mathbb{R}^{2g} \setminus \{0\} \) such that \(\alpha b = 0 \). By (13), it means that \(\int_{\gamma} \sum_{k=1}^{2g} b_k \eta_k = 0 \) for every \(\ell = 1, \ldots, 2g \). The above equivalences yields \(\sum_{k=1}^{2g} b_k \eta_k = 0 \); as \(\{ \eta_k \}_k \) is a basis of \(\text{Harm}^1(S) \), one has \(b = 0 \) which is a contradiction.

\[\square \]

5.5. Some useful calculations. In this section we record some straightforward facts that we will use repeatedly. Let \(u \) be a smooth vector field in an open set \(\mathcal{O} \subset S \). First, note that wherever \(u \neq 0 \), for every smooth unit vector field \(v \) we have

\[
D_v u = (D_v u, \frac{iu}{|u|_g}, \frac{iu}{|u|_g})_g + (D_v u, \frac{u}{|u|_g})_g \frac{u}{|u|_g} = \frac{j(u)(v)}{|u|_g} \frac{iu}{|u|_g} + v(|u|_g) \frac{u}{|u|_g}.
\]

It follows that

\[
|D u|_g^2 = \left| \frac{j(u)}{|u|_g} \right|_g^2 + |d|u|_g|^2.
\]

In particular, if \(u \) is of unit length (i.e., \(|u|_g = 1 \)) and \(\rho \) is a smooth scalar function, then

\[
|D u|_g^2 = |j(u)|_g^2, \quad j(\rho u) = \rho^2 j(u),
\]

and thus

\[
|D (\rho u)|_g^2 = \rho^2 |j(u)|_g^2 + |d\rho|_g^2 = \rho^2 |D u|_g^2 + |d\rho|_g^2.
\]

Writing in complex variable \(e^{i\Theta} = \cos \Theta + i \sin \Theta \) for a smooth scalar function \(\Theta \) where \(i \) is the isometry [4], then

\[
j(e^{i\Theta} u) = j(u) + |u|_g^2 d\Theta.
\]

The above properties generalize to suitable Sobolev spaces by a standard density argument (see Lemma 5.1).

Lemma 5.3. Let \(\mathcal{O} \) be an open set in \(S \). Then \(j : \mathcal{X}_1^1(\mathcal{O}) \to L^p(\mathcal{O}) \) is a continuous map for every \(p \in [1,2] \) and \(|dj(u)|_g \leq |Du|_g^2 \) a.e. in \(\mathcal{O} \) for every \(u \in \mathcal{X}_1^1(\mathcal{O}) \). As a consequence, the map \(u \in \mathcal{X}_1^1(\mathcal{O}) \mapsto dj(u) \) is continuous as a map with values into the set of 2-forms endowed with the \(W^{1,p} \)-norm for every \(p \in [1,2] \). Moreover, if \(u \in \mathcal{X}_1^1(\mathcal{O}) \), then \(\frac{j(u)}{|u|_g} = (Du, \frac{iu}{|u|_g})_g \) is well defined and belongs to \(L^2 \).
Proof. If \(u, v \in X^{1,2}(\mathcal{O}) \) and \(p \in [1, 2) \), then the Hölder inequality implies
\[
\int_{\mathcal{O}} |j(u) - j(v)|_g^p \, \text{vol}_g \leq C \left(\int_{\mathcal{O}} |(D(u - v), iu)|_g^p \, \text{vol}_g + \int_{\mathcal{O}} |(Dv, i(u - v))|_g^p \, \text{vol}_g \right)
\leq C \left(\|D(u - v)\|_{L^2}^p \|u\|_{L^q}^p + \|Dv\|_{L^2}^p \|u - v\|_{L^q}^p \right)
\leq C \|D(u - v)\|_{L^p}^p (\|Du\|_{L^2}^p + \|Dv\|_{L^2}^p),
\]
where \(q = p/(2 - p) \) and we used the Sobolev embedding \(X^{1,2} \subset L^q \). Therefore, \(j : X^{1,2}(\mathcal{O}) \to L^p(\mathcal{O}) \) is a continuous map. As \(d : L^p \to W^{-1,p} \) is continuous, we deduce that \(u \mapsto dj(u) \) is continuous as map with values into the set of 2-forms endowed with the \(W^{-1,p} \)-norm for every \(p \in [1, 2) \).

We now prove that \(|dj(u)|_g \leq |Du|_g^2 \) a.e. in \(\mathcal{O} \). Assume for the moment that \(u \) is smooth in \(\mathcal{O} \). Fix some \(x \in \mathcal{O} \), and choose (properly oriented) coordinates near \(x \) such that the coordinate vector fields \(\partial_{x_1}, \partial_{x_2} \) are orthonormal at \(x \). In these coordinates, \(j(u) = \sum_{k=1,2} (D_k u, iu)_g dx^k \) and thus, by the Schwartz lemma,
\[
(38) \quad dj(u) = \sum_{k,\ell=1,2} (D_k u, iD_{\ell} u)_g dx^\ell \land dx^k = 2(iD_1 u, D_2 u)_g dx^1 \land dx^2.
\]
Thus at \(x \),
\[
|dj(u)|_g = 2|D_1 u, D_2 u|_g \leq |D_1 u|_g^2 + |D_2 u|_g^2 = |Du|_g^2,
\]
where we have used several times the choice of coordinates, which implies that \(dx^1, dx^2 \), are orthonormal at \(x \), in particular that \(dx^1 \land dx^2 = \text{vol}_g \). In the general case, by a standard density argument (via Lemma 5.1), one deduces that the above inequality holds a.e. in \(\mathcal{O} \) for every \(u \in X^{1,2}(\mathcal{O}) \). The last part of the statement follows from (37). \(\square \)

As a consequence, we have the following:

Lemma 5.4. Assume that \(\mathcal{O} \) is an open subset of \(S \) and that \(u \in X^{1,2}(\mathcal{O}) \) satisfies \(|u|_g = 1 \). Then
\[
dj(u) = -\kappa \text{vol}_g \quad \text{in} \ \mathcal{O}.
\]
In particular, we have \(\omega(u) = 0 \) in \(\mathcal{O} \).

Proof. If \(u \) is smooth in \(\mathcal{O} \), then we define \(\tau_1 = u \) and \(\tau_2 = i\tau_1 \) in \(\mathcal{O} \), and the definitions imply that the connection 1-form associated to this choice of orthonormal frame is exactly \(A = -j(u) \). So the conclusion follows immediately as \(dA = \kappa \text{vol}_g \). For general \(u \in X^{1,2}(\mathcal{O}) \) of unit length, one argues by density (see Lemma 5.1) and the continuity properties of \(j(\cdot) \) in Lemma 5.3 \(\square \)

6. The canonical harmonic vector field. Proof of Theorem 2.1

In this section we consider \((S, g)\) to be a 2-dimensional closed oriented Riemannian manifold (not assumed to be embedded in any Euclidean space). We will need the following

Lemma 6.1. If \(B \) is any nonempty open subset of \(S \), then there exists a moving frame \(\{\tau_1, \tau_2\} \) on \(S \setminus B \).

Proof. A standard construction (see for example [12] pages 103-4) yields a smooth vector field that does not vanish outside some finite set (the vertices of a triangulation of \(S \)). After pushing forward via a diffeomorphism of \(S \) that maps every point of this finite set into \(B \), we get a vector field \(v \) such that \(|v|_g > 0 \) outside \(B \). Then we obtain a moving frame on \(S \setminus B \) by setting \(\tau = v/|v|_g \) and \(\{\tau_1, \tau_2\} = \{\tau, i\tau\} \). \(\square \)
Lemma 6.2. Let γ be any closed Lipschitz curve on S. If $\{\tau_1, \tau_2\}$ and $\{\tau_1, \tau_2\}$ are moving frames defined in a neighborhood of γ, and A and \tilde{A} are the associated connection 1-forms, then
\[
\int_\gamma A = \int_\gamma \tilde{A} \mod 2\pi.
\]

Proof. In the domain where they are both defined, there exists a smooth C-valued function ϕ such that $\tau_1 = \phi \tau_1$, since $\{\tau_1(x), \tau_2(x)\} = \{\tau_1(x), i\tau_1(x)\}$ form a basis for $T_x S$. It then follows that $|\phi| = 1$ everywhere and that $\tau_2 = \phi \tau_2$ as well. If we write $\phi = \phi_1 + i \phi_2$, the definition of the connection 1-form together with Section 5.5 imply that $A - \tilde{A} = \phi_1 d\phi_2 - \phi_2 d\phi_1 = (d\phi, i\phi)$.

Next, it is convenient to abuse notation and write γ to denote both the curve in S and a Lipschitz function $\gamma : [0, 1] \to S$, with $\gamma(0) = \gamma(1)$, that parametrizes the given curve, with the correct orientation. We will also write $\varphi = \phi \circ \gamma : [0, 1] \to S \subset \mathbb{C}$. Clearly φ is Lipschitz, so we can find a Lipschitz function $f : [0, 1] \to \mathbb{R}$ such that $\varphi(s) = e^{if(s)}$ for $s \in [0, 1]$. Then one readily checks that
\[
\int_\gamma (A - \tilde{A}) = \int_0^1 (d\phi, i\phi) = \int_0^1 (\varphi'(s), i\varphi(s)) ds = \int_0^1 f'(s) ds = f(1) - f(0) \in 2\pi \mathbb{Z}
\]
since $\varphi(0) = \varphi(1)$. \Box

As a consequence, we deduce that the index (or topological degree) defined in (5) is an integer number:

Lemma 6.3. Let \mathcal{O} be a simply connected open subset of S of nonempty Lipschitz boundary and $u \in X^{1,2}(\mathcal{N})$ is a vector field in a neighborhood \mathcal{N} of $\partial \mathcal{O}$ such that $|u|_g \geq \frac{1}{2}$ a.e. in \mathcal{N}; then the index of u along $\partial \mathcal{O}$ defined in (5) is well defined and it is an integer.

Proof. We start by explaining why the definition (5) makes sense for $u \in X^{1,2}(\mathcal{N})$. In fact, if $\{s, is\}$ is a moving frame in $\mathcal{N} \cup \mathcal{O}$ (which exists due to Lemma 6.1 as by our assumption $S \setminus \mathcal{O}$ has nonempty interior) and $\tilde{u} = u/|u|_g$, then $\tilde{u} = \phi \tau$ for some $\phi \in H^{1}(\mathcal{N}, S^1)$. Denoting by A the connection 1-form associated to the frame, by (31), we have that $D\tilde{u} = (d\phi - iA\phi)\tau$ so that $j(u)/|u|_g^2 = j(\tilde{u}) = (d\phi, i\phi) - A$ where $(d\phi, i\phi) = \phi_1 d\phi_2 - \phi_2 d\phi_1$ is the current associated to the unit-length complex function ϕ belonging to $H^{1/2}(\partial \mathcal{O}, S^1)$ by the trace theorem. Therefore, since $dA = \kappa \text{vol}_g$, the Stokes theorem implies that (5) writes
\[
2\pi \deg(u; \partial \mathcal{O}) = \int_{\partial \mathcal{O}} (d\phi, i\phi) - \int_{\partial \mathcal{O}} A + \int_{\mathcal{O}} \kappa \text{vol}_g = \int_{\partial \mathcal{O}} (d\phi, i\phi)
\]
where the meaning of the last term is given by the duality $(H^{-1/2}(\partial \mathcal{O}), H^{1/2}(\partial \mathcal{O}))$. Moreover, it is known (see (5) (7)) that this number is a multiple of 2π as long as $\phi \in H^{1/2}(\partial \mathcal{O}, S^1)$. \Box

The following lemma is a main point in the proof of Theorem 2.1.

Lemma 6.4. Let u be a smooth unit vector field defined on an open set $\mathcal{O} \subset S$. If γ is any smooth closed curve in \mathcal{O}, and if A is the connection 1-form associated to any moving frame defined in a neighborhood of γ, then
\[
(39) \quad \int_\gamma (j(u) + A) \in 2\pi \mathbb{Z}.
\]

Conversely, if j is a smooth 1-form in an open set $\mathcal{O} \subset S$ such that
\[
(40) \quad \int_\gamma (j + A) \in 2\pi \mathbb{Z}
\]
for any curve \(γ \) and connection 1-form \(A \) as above, then there exists a smooth unit vector field \(u \) in the open set \(O \), such that \(j(u) = j \).

Proof. The first part is a direct consequence of Lemma 6.2 as \(\{u, iu\} \) is a moving frame around \(γ \) to which the connection 1-form \(A \) is associated so that \(j(u) = -A \). However, we give in the following a different proof that is needed for the last part of the statement. Let \(u \) be a smooth unit vector field on \(O \subset S \). For simplicity we write \(j_u := j(u) \).

Step 1. An ODE argument. Fix some smooth curve \(γ : [0, 1] \to O \) with \(γ(0) = γ(1) \) and for \(s \in [0, 1] \), let \(U(s) := u(γ(s)) ∈ T_{γ(s)}S \). Then for \(s \in [0, 1] \), we have

\[
D_{γ′(s)}U(s) = (D_{γ′(s)}U(s), U(s))U(s) + (D_{γ′(s)}U(s), iU(s))U(s)
\]

(41)

\[
= j_u(γ′(s)) iU(s),
\]

since \(0 = \frac{d}{ds} |U(s)| = 2(D_{γ′(s)}U(s), U(s)) \). (We remind the reader of our convention that if \(j_u \) is a 1-form and \(v ∈ T_xS \), then \(j_u(v) \) denotes \(j_u|_x(v) \).) Now let \(\{τ_1, τ_2\} = \{τ, iτ\} \) be any moving frame defined in a neighborhood of \(γ \), and let \(A \) be the connection 1-form associated to it. Writing \(U(s) \) in terms of the frame, we have

\[
U(s) = φ(s)τ(s) = (φ_1(s) + iφ_2(s)) τ(s)
\]

where \(τ(s) := τ(γ(s)) \) and \(φ_j(s) = (U(s), τ_j(s))_g \), \(j = 1, 2 \). Using (34) to rewrite the ODE (41) in terms of \(φ \), we obtain

\[
φ′(s) = (j_u + A)(γ′(s)) iφ(s).
\]

We solve to find that

\[
U(s) = φ(s)τ(s) = φ(0) exp \left(i \int_0^s (j_u + A)(γ′(t)) dt \right) τ(s), \quad 0 < s ≤ 1.
\]

for \(0 < s ≤ 1 \). Since \(γ(0) = γ(1) \), however, it must be the case that \(U(0) = U(1) \), and thus

\[
\int_0^1 (j_u + A)(γ′(t)) dt = \int_γ (j_u + A) = 0 \mod 2π.
\]

This proves (39).

Step 2. Strategy. To establish the converse, we now assume that \(j \) satisfies (40) on an open set \(O \). We may assume that \(O \) is connected, as otherwise we may follow the procedure described below on every connected component. Now fix some \(x ∈ O \) and \(v ∈ T_xS \) such that \(|v|_g = 1 \). Given any other \(y ∈ O \), we define \(u(y) \) by the following procedure: Fix a smooth curve \(γ : [0, 1] \to O \) such that \(γ(0) = x, γ(1) = y \). If \(u \) exists, then \(u(γ(s)) \) must satisfy the ODE (41) found above. Motivated by this, we let \(U(s) ∈ T_{γ(s)}S \) be the solution of (41) with initial data as below:

\[
D_{γ′(s)}U(s) = j(γ′(s)) iU(s), \quad U(0) = v.
\]

We hope to define

\[
u(y) := U(1).
\]

Step 3. Independence of the connecting path. We must verify that the above definition makes sense (in particular, is independent of the choice of path connecting \(x \) to \(y \)). For this, it suffices to show that for any piecewise smooth curve \(γ : [0, 1] \to O \) such that \(γ(0) = γ(1) \),

if \(U \) solves (43) along \(γ \), then \(U(0) = U(1) \).
Indeed, if \(\gamma_1 \) and \(\gamma_2 \) are two such curves joining \(x \) to \(y \), then

\[
\gamma(s) := \begin{cases}
\gamma_1(1 - 2s) & \text{if } 0 \leq s \leq \frac{1}{2} \\
\gamma_2(2s - 1) & \text{if } \frac{1}{2} \leq s \leq 1
\end{cases}
\]

is a piecewise smooth curve beginning and ending at \(y \) and passing through \(x \) when \(s = 1/2 \). If we consider the solution of \((43) \) such that \(U(\frac{1}{2}) = v \in T_xS \), then \(U(0) - U(1) \) characterizes the difference between the vectors obtained by transporting \(v \) from \(x \) to \(y \), using the ODE \((43) \), along \(\gamma_1 \) and \(\gamma_2 \).

Now, exactly as above, by writing \((43) \) in terms of a moving frame \(\{\tau_1, \tau_2\} = \{\tau, i\tau\} \) and solving the resulting equation, we find that \((42) \) holds, and thus that \(U(0) = U(1) \) if and only if \((40) \) is satisfied. Thus the above procedure gives a well-defined vector field \(u \) on \(O \), which is clearly a unit vector field in view of \((42) \).

Step 4. Smoothness of \(u \) and \(j_u = j. \)

As \(j \) is smooth and generating \(u \) via \((43) \), by regularity of ODEs w.r.t. change of parameters and initial data, we deduce that \(u \) is smooth in \(O \). It remains to check that \(j(u) = j \). Again we will write \(j_u \) instead of \(j(u) \). Given any \(y \in O \) and \(v \in T_yS \), fix a smooth curve \(\gamma : [0, 1] \to O \) such that

\[
\gamma(0) = x, \quad \gamma(1) = y, \quad \gamma'(1) = v.
\]

Let \(U(s) \in T_{\gamma(s)}S \) solve the ODE \((43) \). By construction, \(U(s) = u(\gamma(s)) \) for all \(s \). Then at the point \(y \) (corresponding to \(s = 1 \)) we have

\[
j_u(v) \equiv (D_uu, iu)_g = (D_{\gamma'}U, iU)_g \equiv j(\gamma) = j(v).
\]

Since \(v \) was arbitrary, it follows that \(j(u) = j_u = j \), completing the proof. \(\square \)

Before proving Theorem 2.1, we need the following result:

Lemma 6.5. Assume \(a_1, \ldots, a_n \) be \(n \) distinct points in \(S \), \(d_1, \ldots, d_n \in \mathbb{Z} \) such that \((7) \) is satisfied and let \(\psi \) be the zero average 2-form solving \((10) \). Let \(\lambda_\ell, \ell = 1, \ldots, J \) be closed Lipschitz curves in \(S \), all disjoint from the set \(\cup_{k=1}^n \{a_k\} \) appearing in \((10) \), and such that \(\sum_{j=1}^J \tilde{d}_j \lambda_j \) is homologous to 0, for some integers \(\tilde{d}_1, \ldots, \tilde{d}_J \). Finally, let \(\{\tau_1, \tau_2\} \) be a moving frame defined in a neighborhood of \(\cup_{\ell=1}^J \lambda_\ell \), and let \(A \) be the connection 1-form associated to it. Then

\[
(44) \quad \sum_{\ell=1}^J \tilde{d}_\ell \int_{\lambda_\ell} (d^* \psi + A) = 0 \mod 2\pi.
\]

Remark 6.6. The proof shows that the conclusion of the Lemma still holds if

\[
-\Delta \psi + \kappa \text{vol}_g = \omega
\]

where \(\omega \) is a 2-form supported in a union \(\cup_{k=1}^n B_k \) of disjoint balls such that \(\int_{B_k} \omega = 2\pi d_k \) for every \(1 \leq k \leq n \), \((7) \) holds and the curves \(\{\lambda_\ell\}_{1 \leq \ell \leq J} \) are disjoint from \(\cup_{k=1}^n B_k \).

Proof. The assumption that \(\sum_{\ell=1}^J \tilde{d}_\ell \lambda_\ell \) is homologous to 0 means that there exists an integrable function \(f : S \to \mathbb{Z} \) such that

\[
(45) \quad \sum_{k=1}^J \tilde{d}_k \int_{\lambda_k} \phi = \int_S f \, d\phi \quad \text{for every smooth 1-form } \phi.
\]

Since we can add a constant to \(f \) without changing the integral in \((45) \), we may also assume that \(f = 0 \) on an open set \(B \). After shrinking \(B \) if necessary, we may assume that
its closure does not intersect $\bigcup_{\ell=1}^J \lambda_\ell$. Then, according to Lemma 6.1, there exists a moving frame $\{ \gamma_1, \gamma_2 \}$ defined on a neighborhood of the support of σ. Let A denote the associated connection 1-form. In view of Lemma 6.2, it suffices to prove (14) for this choice of A. We wish to substitute $\phi = d^* \psi + A$ in (15) (but ψ is not smooth on S) to find that
\[
\sum_{\ell=1}^J \hat{d}_\ell \int_{\lambda_\ell} (d^* \psi + A) = \int_S f (d^* \psi + A) \in 2\pi \mathbb{Z},
\]
since f is integer-valued and $d (d^* \psi + A) = -\Delta \psi + \kappa \text{vol}_g = 2\pi \sum_{k=1}^n d_k \delta_{a_k}$, according to (10). To justify this, we approximate ψ by smooth functions proceeding as follows. First, it is a standard fact that if $\int f \phi = 0$ for all smooth 1-forms with support in an open set U, then f is constant in U. It thus follows from (15) that f is locally constant away from $\cup \lambda_\ell$, and in particular in a neighborhood of each a_k. For $0 < \sigma < \frac{1}{4} \min_{j \neq k} \text{dist}_S(a_j, a_k)$, let Q_σ be a smooth function supported in $\bigcup_{k=1}^n B(a_k, \sigma)$, with $d_k Q_\sigma \geq 0$ inside $B(a_k, \sigma)$, and such that $\int_{B(a_k, \sigma)} Q_\sigma \text{vol}_g = d_k$ for every k and σ, and let ψ_σ solve
\[
-\Delta \psi_\sigma = -\kappa \text{vol}_g + 2\pi Q_\sigma \text{vol}_g.
\]
Then (15) implies that for every $\sigma > 0$,
\[
\sum_{\ell=1}^J \hat{d}_\ell \int_{\lambda_\ell} (d^* \psi_\sigma + A) = 2\pi \int_S f Q_\sigma \text{vol}_g.
\]
The last integral belongs to $2\pi \mathbb{Z}$ for every $\sigma < \min_k \text{dist}_S(a_k, \cup \lambda_\ell)$, and standard theory (for example, properties of the Green’s function recalled in Section 2.2) implies that $d^* \psi_\sigma \to d^* \psi$ as $\sigma \searrow 0$, locally uniformly away from $\{a_k\}$. Thus we deduce (14) by taking the limit $\sigma \searrow 0$.

We can now give the main result of this section:

Proof of Theorem 2.1. Let $\psi = \psi(a; d)$ solve (10), for fixed $d_1, \ldots, d_n \in \mathbb{Z}$ and distinct $a_1, \ldots, a_n \in S$ such that (7) holds. Let $j^* = j^*(a, d, \Phi)$ be defined by (12), that is, $j^* = d^* \psi + \sum_{k=1}^{2g} \Phi_k \eta_k$.

Step 1. Definition of $\zeta_k(a; d)$ and its consequences. We recall the definition of $\zeta_k(a; d)$. For every $k = 1, \ldots, 2g$, we let λ_k be a smooth curve that is homologous to γ_k (the geodesics found in Lemma 5.2) and disjoint from $\{a_i\}_{i=1}^n$. We now define $\zeta_k(a; d) \in \mathbb{R}/2\pi \mathbb{Z}$ by (16), i.e.,
\[
\zeta_k(a; d) := \int_{\lambda_k} (d^* \psi + A) \mod 2\pi, \quad k = 1, \ldots, 2g,
\]
where A is the connection 1-form associated to any moving frame defined in a neighborhood of λ_k. It follows from Lemmas 6.2 and 6.5 that the above integral is independent, modulo $2\pi \mathbb{Z}$, of the choice of moving frame and of the curve λ_k homologous to γ_k, and hence that ζ_k is well-defined as an element of $\mathbb{R}/2\pi \mathbb{Z}$.

With this choice of ζ_k, we deduce from (12) that
\[
\int_{\lambda_k} (j^* + A) = \int_{\lambda_k} (d^* \psi + A + \sum_{\ell} \Phi_\ell \eta_\ell) = \zeta_k + \sum_{\ell} \alpha_{k\ell} \Phi_\ell.
\]

\footnote{Modifying f on a null set, if necessary, we assume that $f(x) = \lim_{r \to 0}^{+} \frac{1}{2\pi r^2} \int_{B(r, x)} f(y) \text{vol}_g$ wherever this limit exists.}
where \(\{\alpha_{k}\} \) were defined in (13). Also, it follows from Lemma 5.2 that any \(\gamma \) is homologous to a linear combination of \(\gamma_{1}, \ldots, \gamma_{2g} \), and hence to a linear combination of \(\lambda_{1}, \ldots, \lambda_{2g} \), say \(\sum_{k=1}^{2g} d_{k}\lambda_{k} \). Then Lemma 5.5 implies that

\[
\int_{\gamma} (j^{*} + A) = \sum_{k=1}^{2g} d_{k} \int_{\lambda_{k}} (j^{*} + A) = \sum_{k=1}^{2g} d_{k} \left(\zeta_{k} + \sum_{\ell} \alpha_{k\ell} \Phi_{\ell} \right).
\]

It follows that for \(\zeta_{k}(a; d) \) as defined above, \(j^{*}(a, d, \Phi) \) satisfies

\[
\int_{\gamma} (j^{*} + A) = 0 \mod 2\pi \quad \text{for every Lipschitz path} \ \gamma \ \text{in} \ S \ \setminus \bigcup_{l=1}^{p} \{a_l\}
\]

(46)

\[
\iff \quad \sum_{\ell=1}^{2g} \alpha_{k\ell} \Phi_{\ell} + \zeta_{k} = 0 \mod 2\pi \quad \text{for all} \ 1 \leq k \leq 2g.
\]

Step 2. First implication. Assume that \(u^{*} \) is a unit vector field satisfying (8) and (9). These conditions and the equation (10) for \(\psi \) imply that \(j(u^{*}) - d^{*} \psi \) is a harmonic 1-form, and it follows that \(j(u^{*}) = j^{*}(a, d, \Phi) \) for certain constants \(\Phi_{k} \). Then by combining (39) and (40), we conclude that \(\sum_{\ell} \alpha_{k\ell} \Phi_{\ell} + \zeta_{k} = 0 \mod 2\pi \) for every \(k \), which is (12).

Step 3. Converse implication. Fix constants \((\Phi_{k}) \) satisfying (14). By combining (40) and the sufficiency assertion from Lemma 6.4, we conclude that there exists a smooth unit vector field \(u^{*} \) in \(O := S \ \setminus \bigcup_{l=1}^{p} \{a_l\} \) satisfying \(j(u^{*}) = j^{*} \) so that (12) is fulfilled.

Step 4. Continuity of \(\zeta_{k} \), \(k = 1, \ldots, 2g \). To prove the continuity of \(\zeta_{k} \), consider a sequence \(\mu_{t} \) as in (15), and let \(\nu_{t} := \mu_{t} - \mu_{0} \) with \(t > 0 \) small. Then (15) and basic properties of the \(W^{-1,1} \) norm imply that \(\nu_{t} \) can be written in the form

\[
\nu_{t} = \sum_{l=1}^{K_{t}} 2\pi (\delta_{p_{l,t}} - \delta_{q_{l,t}}), \quad \text{with} \quad \sum_{l} \text{dist}_{S}(p_{l,t}, q_{l,t}) \to 0 \quad \text{as} \ t \to 0
\]

and \(\{K_{t}\}_{t \to 0} \) is uniformly bounded. For sufficiently small \(r > 0 \), whenever \(t > 0 \) is small enough, we can find Lipschitz paths \(\lambda_{k,t} \), for \(k = 1, \ldots, 2g \), such that

\[
\text{dist}_{S}(\lambda_{k,t}, \{p_{l,t}, q_{l,t}\}) \geq r, \quad \text{and} \ \text{H}^{1}(\lambda_{k,t}) \leq C
\]

for all \(k \) (where \(\gamma_{k} \) are the geodesics fixed at Lemma 5.2). In fact, the curves \(\lambda_{k,t} \) can be considered to be the geodesics \(\gamma_{k} \), and whenever they pass through \(B(p_{l,t}, 2r) \) or \(B(q_{l,t}, 2r) \), replace that portion of the path with an arc of the circle \(\partial B(p_{l,t}, 2r) \) or \(\partial B(q_{l,t}, 2r) \). By (20), we write for \(t > 0 \) small:

\[
\psi_{t} = 2\pi \sum_{l=1}^{K_{t}} \left[(G(\cdot, p_{l,t}) - G(\cdot, q_{l,t})) \right] \text{vol}_{g},
\]

so that for every \(k = 1, \ldots, 2g \), the definition (16) of \(\zeta_{k} \) implies that

\[
2\pi \sum_{l=1}^{K_{t}} \int_{\lambda_{k,t}} d^{*} \left[(G(\cdot, p_{l,t}) - G(\cdot, q_{l,t})) \right] \text{vol}_{g} = \zeta_{k}(a_{t}, d_{t}) - \zeta_{k}(a_{0}, d_{0}) \mod 2\pi.
\]

But facts about the Green’s function summarized in Section 2.2 imply that \(d^{*} \left[(G(\cdot, p) - G(\cdot, q)) \right] \text{vol}_{g} \to 0 \) as \(\text{dist}_{S}(p, q) \to 0 \), uniformly in the set \(\{ (x, p, q) : \text{dist}_{S}(x, \{p, q\}) \geq r \} \).

Hence the sum of integrals on the left-hand side above tends to 0 as \(t \to 0 \), which is what we needed to prove.
Step 5. Uniqueness (modulo a global rotation) of \(u^* \). Assume that \(u^* \) and \(\tilde{u}^* \) are two solutions of \((3) \) and \((9) \) such that \(j(u^*) = j(\tilde{u}^*) \). Fixing \(x \) and \(v = u^*(x) \) as at the start of the construction of \(u^* \) (in \((13) \)). Since both \(v \) and \(\tilde{v} := \tilde{u}^*(x) \) are unit vectors, there exists some \(\alpha \) such that \(\tilde{v} = \varepsilon^{\alpha}v \). Then by inspection we see that if \(\gamma \) is any Lipschitz curve avoiding the points \(\cup_{k=1}^{n} \{a_k\} \), then \(\tilde{U}(\gamma) = \varepsilon^{\alpha}U(\gamma) \) solves \((13) \) with initial data \(\tilde{U}(0) = \tilde{v} \). It follows that \(\tilde{u}^*(y) = \varepsilon^{\alpha}u(y) \) for every \(y \notin \cup_{k=1}^{n} \{a_k\} \). Thus \(\tilde{u}^* = \varepsilon^{\alpha}u^* \) a.e. in \(S \).

Step 6. Regularity. Standard estimates, such as those recalled in Section 2.2 for example, imply that Green functions belong to \(W^{1,p} \) for all \(p < 2 \) and smooth away from \(\cup_k \{a_k\} \) which by \((20) \) leads to \(\psi \) being in the same Sobolev space and smooth away from \(\cup_k \{a_k\} \).

We also prove the estimate \((18) \):

Proof of Lemma 2.3 First note from \((17) \) that there exists some \(C = C(\alpha) \) such that

\[
\text{dist}_{\mathbb{R}^2} (L(a;\bar{d}), L(\bar{a}; \bar{d})) \leq C \quad \text{for all } (a;\bar{d}, (\bar{a}, \bar{d}).
\]

It therefore suffices to prove \((18) \) under the assumption that \(\| \mu - \tilde{\mu} \|_{W^{-1,1}} \leq 1 \). As in Step 4 in the proof of Theorem 2.1 we can rewrite \(\mu - \tilde{\mu} = 2\pi \sum_{l=1}^{n} (\delta_{p_l} - \delta_{q_l}) \) for the dipoles \(\{p_l,q_l\}_{l=1}^{\hat{n}} \subset a \cup \tilde{a} \) with \(\hat{n} \leq 2K \). It follows from our specific choice of the \(W^{-1,1} \) norm (see Section 5.3) and the fact that \(\| \mu - \tilde{\mu} \|_{W^{-1,1}} \leq 1 \) (see \((6) \)) that the \(W^{-1,1} \) norm of \(\mu - \tilde{\mu} \) represents the minimal connection

\[
\| \mu - \tilde{\mu} \|_{W^{-1,1}} = 2\pi \min_{\sigma \in \mathcal{E}_{\hat{n}}} \sum_{l=1}^{\hat{n}} \text{dist}_{S}(p_l, q_{\sigma(l)}),
\]

where \(\mathcal{E}_{\hat{n}} \) is the set of permutations of \(\hat{n} \) elements. After relabelling, we can assume that an optimal permutation \(\sigma \) is the identity. For sufficiently small \(r > 0 \), we can find Lipschitz paths \(\lambda_k \) homologous to \(\gamma_k \) (where \(\gamma_k \) are the geodesics fixed at Lemma 5.2) and of uniformly bounded length, for \(k = 1, \ldots, 2g \), such that \(\text{dist}_{S}(\lambda_k, \{p_l, q_l\}_l) \geq r \) for all \(k \).

If we denote by \(\psi(a;\bar{d}) \) and \(\tilde{\psi}(\bar{a}, \bar{d}) \) the solutions defined in \((11) \) associated to \(\mu \) and \(\tilde{\mu} \), we have by \((20) \):

\[
\tilde{\psi} := \psi - \tilde{\psi} = 2\pi \sum_{l=1}^{\hat{n}} \left[(G(\cdot, p_l) - G(\cdot, q_l)) \right] \text{vol}_g.
\]

As \(|d^* \left[(G(x, p) - G(x, q)) \right] \text{vol}_g| \leq C_r \text{dist}_{S}(p, q) \) for \(\text{dist}_{S}(x, \{p, q\}) \geq r \), we deduce by \((16) \) that

\[
|\zeta_k(a;\bar{d}) - \zeta_k(\bar{a}, \bar{d})| \leq \int_{\gamma_k} |d^* \tilde{\psi}| \geq 2\pi \sum_{l=1}^{\hat{n}} \int_{\gamma_k} |d^* \left[(G(x, p_l) - G(x, q_l)) \right] \text{vol}_g| \leq C_r \| \mu - \tilde{\mu} \|_{W^{-1,1}}.
\]

The conclusion is now straightforward.

Example 6.7 Let \(S \) be the flat torus \(\mathbb{R}^2/\mathbb{Z}^2 \) with the standard \((x, y) \) coordinates and the standard metric \(ds^2 = dx^2 + dy^2 \). We will often identify \(S \) with the unit square with periodic boundary conditions. Here the genus \(g = 1 \), and the 1-forms \(\eta_k \) (fixed as an orthonormal basis in \((11) \)) may be taken to be

\[
\eta_1 = dx, \quad \eta_2 = dy.
\]
In addition, we may take the geodesics from Section 5.4 to be
\[\gamma_1(s) = (s, 0), \quad \gamma_2(s) = (0, s), \quad \text{for } 0 \leq s \leq 1. \]

We let \(\{\tau_1, \tau_2\} \) denote the standard coordinate vector fields, yielding a global moving frame for which the connection 1-form \(A \) is identically 0 and \(\kappa = 0 \).

Fix some \((a; d) \in S^n \times \mathbb{Z}^n \) such that \((7) \) holds and let \(\psi \) solve \((10) \), i.e., \(-\Delta \psi = 2\pi \sum_{k=1}^n d_k \delta_{a_k} \) in \(S \). We will identify each \(a_k \) with the point \(a_k := (a_k^x, a_k^y) \in [0, 1)^2 \) and we write
\[
I(y) := \int_{\lambda^y} d^* \psi, \quad \text{for } \lambda^y_1(s) = (s, y), \ 0 \leq s \leq 1.
\]

For every \(y \in [0, 1) \), note that \(\lambda^y_1 \) is homologous to the geodesic \(\gamma_1 \). According to the definition \((15) \), if \(y \not\in \{a^y_k\}_{k=1}^n \), then \(\zeta_1(a; d) \) is the equivalence class in \(\mathbb{R}/2\pi\mathbb{Z} \) containing \(I(y) \). We may assume by a translation that \(0 \in \{a^y_k\}_{k=1}^n \). Then by Stokes Theorem and the equation \((10) \) for \(\psi \):
\[
(47) \quad I(y) - I(0) = \int_{[0,1] \times (0,y)} dd^* \psi = 2\pi \int_{[0,1] \times (0,y)} \sum_{k=1}^n d_k \delta_{a_k}
\]
for a.e. \(y \in (0, 1) \). On the other hand, the 2-form \(\psi \) may be written \(\psi = \tilde{\psi}(x,y) dx \wedge dy \) for some function \(\tilde{\psi} : S \to \mathbb{R} \), which we may identify with a \(\mathbb{Z}^2 \) periodic function on \(\mathbb{R}^2 \). Then \(d^* \psi = -\partial_x \tilde{\psi} dy + \partial_y \tilde{\psi} dx \), so that
\[
\int_0^1 I(y) dy = \int_0^1 \left(\int_0^1 \partial_y \tilde{\psi}(s,y) ds \right) dy = 0
\]
by the periodicity of \(\tilde{\psi} \). We can thus integrate \((47) \) and simplify (using the fact that \(\sum d_i = 0 \)) to find that
\[
I(0) = \int_0^1 I(0) dy = -2\pi \sum_{k=1}^n d_k (1 - a_k^y) = 2\pi \sum_{k=1}^n d_k a_k^y.
\]

This determines \(\zeta_1(a; d) \). An identical computation shows that \(\zeta_2(a; d) \) is the equivalence class in \(\mathbb{R}/2\pi\mathbb{Z} \) containing \(2\pi \sum_{k=1}^n d_k a_k^y \).

7. The intrinsic renormalized energy. Proof of Proposition 2.4

In this section, we prove the characterization of the intrinsic renormalized energy in Proposition 2.4.

Proof of Proposition 2.4 Let \(r > 0 \) be small satisfying
\[
\sqrt{r} \leq \rho_a := \min_{k \neq l} \text{dist}_S(a_k, a_l)
\]
and recall the notation \(S_r := S \setminus \bigcup_{k=1}^n B_r(a_k) \). The fact that \(u^* \) is a unit vector field implies that \(|Du^*|^2_g = |j(u^*)|^2_g \). Then the form \((12) \) of \(j(u^*) \) implies that
\[
\frac{1}{2} \int_{S_r} |j(u^*)|^2_g \text{vol}_g = \frac{1}{2} \int_{S_r} \left(d^* \psi|^2_g + 2 \sum_{k=1}^{2g} \Phi_k(d^* \psi, \eta_k)_g + \sum_{l,k=1}^{2g} \Phi_l \Phi_k(\eta_l, \eta_k)_g \right) \text{vol}_g.
\]
Step 1. Computing the integrals depending on Φ. As $\{\eta_k\}_{k=1}^{2\theta}$ are smooth forming an orthonormal basis of H^1, we compute

$$\int_{S_r} \sum_{i,k} \Phi_i \Phi_k(\eta_i, \eta_k)_g \, \text{vol}_g = \int_S \sum_{i,k} \Phi_i \Phi_k(\eta_i, \eta_k)_g \, \text{vol}_g + O(|\Phi|^2 r^2) = |\Phi|^2 + O(|\Phi|^2 r^2).$$

Similarly, integrating by parts,

$$\int_{S_r} \sum_{i} \Phi_i(d^* \psi, \eta_i)_g \, \text{vol}_g = \int_S \sum_{i} \Phi_i(\psi, d\eta_i)_g \, \text{vol}_g + O(|\Phi| r)$$

$$= O(|\Phi|^2 r^{3/2} + r^{1/2})$$

where we used (20) and the properties on Green’s function, which imply that

$$\int_{B_r} |d^* \psi| \, d\text{vol} \sim \int_0^r \frac{1}{s} |d\psi_1| \, ds = O(r).$$

Step 2. Computing $\int_{S_r} |d^* \psi|^2_g \, \text{vol}_g$. We rewrite (20) as follows:

$$\psi = (\psi_0 + \psi_1) \, \text{vol}_g, \quad \psi_1 := \sum_{k=1}^n 2\pi d_k G(\cdot, a_k).$$

(Observe that we have taken ψ_0, ψ_1 to be functions, whereas ψ is a 2-form.) Then $|d^* \psi|^2_g = |d^* d \psi|^2_g = |d \psi_0 + d \psi_1|^2_g$. Since ψ_0 is smooth and $\psi_1 \in W^{1,p}$ for $p < 2$, it follows that

$$\int_{S_r} |d^* \psi|^2_g \, \text{vol}_g = \int_{S_r} |d\psi_1|^2_g \, \text{vol}_g + \int_{S_r} \left(2(d\psi_1, d\psi_0)_g + |d\psi_0|^2_g\right) \, \text{vol}_g.$$

Step 2a. Computing $\int_{S_r} |d\psi_1|^2_g \, \text{vol}_g$. We use Stokes Theorem (see (33)) to write

$$\int_{S_r} |d\psi_1|^2_g \, \text{vol}_g = \int_{S_r} (d^* d\psi_1, \psi_1)_g \, \text{vol}_g - \sum_{k=1}^n \int_{\partial B(a_k, r)} \psi_1 \ast d\psi_1.$$

Since ψ_1 has mean 0 and $d^* d\psi_1$ is constant, equal with $-\bar{\kappa}$ (see (21)) away from $\{a_k\}$, it follows.

$$\int_{S_r} (d^* d\psi_1, \psi_1)_g \, \text{vol}_g = -\bar{\kappa} \int_{S_r} \psi_1 \, \text{vol}_g = \bar{\kappa} \int_{\bigcup_{k \neq l} B(a_k, r)} \psi_1 \, \text{vol}_g = O(r^2(\log r + 1))$$

where we used the Green functions properties recalled in Section 2.2 and the fact that the distance between the points a_k is larger than \sqrt{r}, i.e.,

$$\int_{B_r(a_k)} G(\cdot, a_k) \, \text{vol}_g \leq C \int_0^r |\log s| \, ds = O(r^2(\log r + 1)),

\int_{B_r(a_k)} G(\cdot, a_l) \, \text{vol}_g \leq C |\log \text{dist}(a_k, a_l)| \text{Vol}(B_r(a_k)).$$

We now fix $k \in \{1, \ldots, n\}$, and we write

$$R_k(x) := \psi_1(x) + d_k \log \text{dist}(x, a_k) = 2\pi d_k H(x, a_k) + \sum_{l \neq k} 2\pi d_l G(x, a_l)$$

\footnote{Recall that $\Delta(\psi_1 \, \text{vol}_g) = (\Delta \psi_1) \, \text{vol}_g$.}
to denote the regular part of \(\psi \) near \(a_k \). Since \(H \in C^1(S \times S) \) and \(\text{dist}_S(a_l, a_k) \geq \sqrt{r} \) for every \(l \neq k \), it is clear that \(R_k \) is Lipschitz in \(B_r(a_k) \), with Lipschitz constant bounded by \(Cr^{-1/2} \). In addition, \(|d\psi_1|_g \leq C/r \) on \(\partial B(a_k, r) \), so

\[
\int_{\partial B(a_k, r)} \psi_1(*d\psi_1) = \int_{\partial B(a_k, r)} (R_k - d_k \log r)(*d\psi_1) \\
= (R_k(a_k) - d_k \log r + O(\sqrt{r})) \int_{\partial B(a_k, r)} *d\psi_1
\]
and (recalling that \(\eta = *\eta \) vol \(g \) for any 2-form \(\eta \))

\[
\int_{\partial B(a_k, r)} *d\psi_1 = \int_{B(a_k, r)} d* \psi_1 = \int_{B(a_k, r)} \Delta \psi_1 \text{ vol}_g = \int_{B(a_k, r)} \Delta \psi_1 \text{ vol}_g \\
= -2\pi d_k + \kappa \text{Vol}(B(a_k, r)) = -2\pi d_k - O(r^2).
\]

Combining the above, we find that

\[
\int_{S_r} |d\psi_1|^2 \text{ vol}_g = -2\pi d_k^2 \log r + \sum_{k} 4\pi^2 d_k^2 H(a_k, a_k) + 8\pi^2 \sum_{1 \leq l < k \leq n} d_k d_l G(a_k, a_l) + O(\sqrt{r}).
\]

Step 2b. Computing \(\int_{S_r} (d\psi_1, d\psi_0)_g \text{ vol}_g \). Since \(\psi_0 \) is smooth in \(S \) and \(\psi_1 \in W^{1,p}(S) \) for \(p < 2 \), Hölder’s inequality leads to

\[
\int_{S_r} (d\psi_1, d\psi_0)_g \text{ vol}_g = \int_{S} (d\psi_1, d\psi_0)_g \text{ vol}_g + \|d\psi_1\|_{L^{4/3}} O(r^{1/2}) = \int_{S} (d\psi_1, d\psi_0)_g \text{ vol}_g + O(\sqrt{r}).
\]

As \(\psi_0 \) has mean 0, Stokes theorem and the equation satisfied by \(\psi_1 \) imply that

\[
\int_{S} (d\psi_0, d\psi_1)_g \text{ vol}_g = \int_{S} (\psi_0, d^* d\psi_1)_g \text{ vol}_g = \int_{S} (\psi_0, -\Delta \psi_1)_g \text{ vol}_g = \sum_{k} 2\pi d_k \psi_0(a_k).
\]

Step 3. Conclusion. As a consequence of the above computation, we obtain the following: there exists \(r_0(S) > 0 \) such that if \(r \in (0, r_0) \) satisfies

\[
\sqrt{r} \leq \min_{k \neq l} \text{dist}_S(a_k, a_l)
\]
then any 1-form \(j^* = j^*(a, d, \Phi) \) satisfying (12) (with \(\psi = \psi(a; d) \) given by (10) and \(\{\Phi\}_{k=1}^{2g} \) not necessarily in \(\mathcal{L}(a; d) \)) we have that

\[
\frac{1}{2} \int_{S_r} |j^*(a, d, \Phi)|^2 \text{ vol}_g = -\pi \log r \sum_{k=1}^{n} d_k^2 + 4\pi^2 \sum_{1 \leq l < k \leq n} d_l d_k G(a_l, a_k) \\
+ 2\pi \sum_{k=1}^{n} \left[\pi d_k^2 H(a_k, a_k) + d_k \psi_0(a_k) \right] \frac{1}{2} |\Phi|^2 + \int_{S} \frac{|d\psi_0|^2}{2} \text{ vol}_g + O(\sqrt{r}) + O(|\Phi|^4 r^{3/2}).
\]

Moreover, the constants above depend only on \(S \) and \(\sum_{k=1}^{n} |d_k| \). We conclude that the limit in the definition (19) of \(W(a, d, \Phi) \) exists and the desired formula (22) holds true.
8. Compactness

The result of this section will be crucial in proving point 1 of our main result in Theorem \[\text{Proposition 8.1.}\] It is stated as precise estimates for the vorticity and the flux integrals in terms of the intrinsic energy, but immediately implies parallel results for the other energies (in view of \[\text{Proposition 8.2.}\] and \[\text{Proposition 8.3.}\], see below).

Proposition 8.1. For every \(p \in [1, 2] \) and \(T, C > 0 \), every integer \(n > T - 1 \) and every \(0 < q < 1 - \frac{T}{n+1} \), then there exist \(\varepsilon_0 \in (0, \frac{1}{2}) \), \(C_p > 0 \) such that the following holds true: if \(0 < \varepsilon < \varepsilon_0 \) and \(u \in \mathcal{X}^{1,2}(S) \) with

\[
\frac{1}{2} \int_S |Du|^2_g + \frac{1}{2\varepsilon^2} F(|u|^2_g) \ vol_g \leq T \pi |\log \varepsilon| + C,
\]

then there exist \(K \) distinct points \(a_1, \ldots, a_K \in S \) and nonzero integers \(d_1, \ldots, d_K \in \mathbb{Z} \) such that \(\text{(7)} \) holds, \(\sum_{k=1}^K |d_k| \leq n \) (so, \(K \leq n \)) and

\[
\|\omega(u) - 2\pi \sum_{k=1}^K d_k \delta_{a_k}\|_{W^{-1,p}} \leq C_p (n + 1) T |\log \varepsilon| |\varepsilon|^q \frac{1}{p-1}.
\]

Moreover, if we define

\[
\Phi(u) = (\Phi_1(u), \ldots, \Phi_{2g}(u)) := \left(\int_S (j(u), \eta_1)_g \ vol_g, \ldots, \int_S (j(u), \eta_{2g})_g \ vol_g \right),
\]

for the orthonormal basis \(\{\eta_k\}_{k=1}^{2g} \) fixed in \(\text{(11)} \), then

\[
\text{dist}_{2g \mathbb{R}}(\Phi(u), \mathcal{L}(a;d)) \leq C_q \varepsilon^q,
\]

where \(\mathcal{L}(a;d) \) is the set defined in Section \[\text{2.3} \] for \(a = (a_1, \ldots, a_K) \) and \(d = (d_1, \ldots, d_K) \).

In the above Proposition, \(n \) can be 0 (if \(T \in (0, 1) \)), in which case, \(K = 0 \). Our proof will rely on the following result:

Proposition 8.2. For every \(T, C > 0 \), every integer \(n > T - 1 \) and every \(0 < q < 1 - \frac{T}{n+1} \), then there exist \(\varepsilon_0, r_0, c > 0 \) such that the following holds true: if \(\varepsilon \in (0, \varepsilon_0) \), \(\sigma \in [\varepsilon^q, r_0] \) and \(u \in \mathcal{X}(S) \) be a smooth vector field with \(\text{(49)} \), then there exists a collection of pairwise disjoint balls \(\mathcal{B} = \{B_{l,\sigma}\}_{l=1}^{K_\sigma} \) of centers \(a_{l,\sigma} \in S \) and radius \(r_{l,\sigma} > 0 \) such that

\[
\{x \in S : |u(x)|_g \leq \frac{1}{2}\} \subset \bigcup_{l=1}^{K_\sigma} B_{l,\sigma},
\]

\[
\sum_{l=1}^{K_\sigma} |d_{l,\sigma}| \leq n,
\]

where \(d_{l,\sigma} := \text{deg}(u; \partial B_{l,\sigma}) \).

\[
\sum_{l=1}^{K_\sigma} r_{l,\sigma} \leq (n + 1) \sigma,
\]

\[
\int_{B_{l,\sigma}} e^{ln}(u) \ vol_g \geq |d_{l,\sigma}| (\pi \log \frac{\sigma}{\varepsilon} - c), \quad l = 1, \ldots, K_\sigma.
\]

If \(n = 0 \) above, then \(K_\sigma \) is not necessarily 0 (as balls of degree zero may appear). Proposition \[\text{8.2} \] is proved by a rather standard vortex balls argument, as introduced in \[\text{21, 32} \] for the Ginzburg-Landau energy in flat 2-dimensional domains. We present some details in Appendix \[\text{A} \]. With Proposition \[\text{8.2} \] available, the proof of the basic compactness assertion \(\text{(50)} \) follows classical arguments, which we recall for the convenience of the reader. The main new point is the estimate \(\text{(52)} \) of the flux integrals.
Proof of Proposition 8.1 In what follows, $c > 0$ is a constant that can change from line to line and that can depend on all parameters appearing the hypotheses of the proposition.

Step 1. Reduction to smooth bounded vector fields. We consider $h : \mathbb{R}^+ \to \mathbb{R}^+$ to be the Lipschitz cut-off function $h(s) = 1$ if $s \leq 1$ and $h(s) = 1/s$ if $s > 1$ and

$$
\hat{u} := h(|u|_g) u.
$$

First, we want to show that we can replace u by \hat{u} in the statement of Proposition 8.1. Indeed, $\hat{u} \in X^{1,2}(S)$ and since $|D\hat{u}|_g \leq |Du|_g$ (see Section 5.5) and $F(|\hat{u}|_g) \leq F(|u|_g)$ (because $F(1) = 0$), we get that

$$
\int_\mathcal{O} e^\epsilon_k(\hat{u}) \text{vol}_g \leq \int_\mathcal{O} e^\epsilon_k(u) \text{vol}_g, \text{ for every } \mathcal{O} \subset S,
$$

so the bound (49) is conserved for \hat{u}. Moreover, by Section 5.5,

$$
|j(\hat{u}) - j(u)|_g = |h^2(|u|_g) - 1| |j(u)|_g \leq |u|_g |h^2(|u|_g) - 1| |Du|_g.
$$

Moreover, the definition of h and (11) imply that

$$
|u|_g |h^2(|u|_g) - 1| \leq 2 |1 - |u|_g| \leq c \sqrt{F(|u|_g^2}).
$$

It follows that

$$
\|j(\hat{u}) - j(u)\|_{L^1(S)} \leq c \epsilon E^\epsilon_k(u).
$$

In particular, by (51), we have for any $k \in \{1, \ldots, 2g\}$ that

$$
\Phi_k(u) = \int_S (j(\hat{u}), \eta_k)_g \text{vol}_g + O(\epsilon E^\epsilon_k(u)) = \Phi_k(\hat{u}) + O(\epsilon |\log \epsilon|)
$$

Moreover, for any $\varphi \in W^{1,\infty}(S)$, we have

$$
\left| \int_S \varphi [\omega(u) - \omega(\hat{u})] \right| = \left| \int_S \varphi \, d [j(u) - j(\hat{u})] \right| \leq c \|d \varphi\|_{L^\infty} \epsilon E^\epsilon_k(u);
$$

this yields $\|\omega(\hat{u}) - \omega(u)\|_{W^{1,1}(S)} \leq c \epsilon |\log \epsilon|$. To estimate $\|\omega(\hat{u}) - \omega(u)\|_{W^{1,p}(S)}$ for $1 < p < 2$, we use Lemma 5.3

$$
\|\omega(u) - \omega(\hat{u})\|_{L^1} \leq \int_S |dj(u)|_g + |dj(\hat{u})|_g \text{vol}_g \leq \int_S |Du|_g^2 + |D\hat{u}|_g^2 \text{vol}_g \leq c |\log \epsilon|
$$

and then the interpolation inequality:

$$
\|\omega(\hat{u}) - \omega(u)\|_{W^{1,p}} \leq C \|\omega(\hat{u}) - \omega(u)\|_{W^{2-p,1}}^{\frac{p}{2}} \|\omega(\hat{u}) - \omega(u)\|_{L^1}^{\frac{2-p}{2}} = O(\epsilon^{\frac{2}{p}-1} |\log \epsilon|).
$$

Therefore, it is enough to prove the statement for \hat{u} instead of u. Furthermore, due to the density result in Lemma 5.1 and the continuity results in Theorem 2.1 point 1) and Lemma 5.3 **we can assume that u is a smooth vector field in S with $|\hat{u}|_g \leq 1$.** (The cutting-off procedure $|\hat{u}|_g \leq 1$ is needed in order that the potential term in the energy E^ϵ_k passes to the limit, as F could increase very fast at infinity.)

Step 2. An approximation \tilde{u} of u. Let $\tilde{h} : \mathbb{R}^+ \to \mathbb{R}^+$ be a smooth function such that

$$
\tilde{h}(s) = 1 \text{ for } 0 \leq s \leq \frac{1}{4}, \quad \tilde{h}(s) = 1/s \text{ for } s \geq \frac{1}{2},
$$

and define the smooth vector field

$$
\tilde{u} = \tilde{h}(|u|_g) u.
$$
The advantage of working with \(\tilde{u} \) is that \(|\tilde{u}|_g = 1 \) if \(|u|_g \geq \frac{1}{2} \). Then Section 5.3 implies \(j(\tilde{u}) = \tilde{h}^2(|u|_g)j(u) \) and \(|D\tilde{u}|_g \leq c|Du|_g \) in \(S \) since by (37), we have

\[
|D\tilde{u}|_g^2 \leq [\tilde{h}^2(|u|_g) + \left(\frac{d}{ds}(s\tilde{h}(s)) \right)^2]_{s = |u|_g} |Du|_g^2.
\]

By the computations in Step 1, we deduce

\[
\|j(\tilde{u}) - j(u)\|_{L^1(S)} \leq c\varepsilon E_{\varepsilon}^{in}(u).
\]

Step 3. Proof of (50). For any \(\varphi \in W^{1,\infty}(S) \), it follows from Step 2 that

\[
\left| \int_S \varphi [\omega(u) - \omega(\tilde{u})] \right| = \left| \int_S \varphi d[j(u) - j(\tilde{u})] \right| \leq c\|d\varphi\|_{L^\infty}\varepsilon E_{\varepsilon}^{in}(u).
\]

With the notations of Proposition 8.2 applied for the smooth vector field \(u \), we claim that for \(\varphi \) as above and \(\varepsilon^p \leq \sigma \leq r_0 \),

\[
\left| \int_S \varphi [\omega(\tilde{u}) - 2\pi \sum_{l=1}^{K_\sigma} d_{l,\sigma} \delta_{a_{l,\sigma}}] \right| \leq c\|d\varphi\|_{L^\infty} \left(\sum_{l=1}^{K_\sigma} r_{l,\sigma} \right) E_{\varepsilon}^{in}(u).
\]

Indeed, it follows from Proposition 8.2 (see (53)) and (57) that \(|\tilde{u}|_g = 1 \) outside the balls \(\cup_{l=1}^{K_\sigma} B_{l,\sigma} \) so that Lemma 5.4 implies \(\omega(\tilde{u}) = 0 \) outside \(\cup_{l=1}^{K_\sigma} B_{l,\sigma} \). So

\[
\int_S \varphi \omega(\tilde{u}) = \sum_{l=1}^{K_\sigma} \int_{B_{l,\sigma}} \varphi \omega(\tilde{u}).
\]

For each \(1 \leq l \leq K_\sigma \), we have that

\[
\int_{B_{l,\sigma}} \varphi \omega(\tilde{u}) = \varphi(a_{l,\sigma}) \int_{B_{l,\sigma}} \omega(\tilde{u}) + \int_{B_{l,\sigma}} (\varphi(x) - \varphi(a_{l,\sigma})) \omega(\tilde{u})
\]

\[
= \varphi(a_{l,\sigma}) \left(\int_{\partial B_{l,\sigma}} j(\tilde{u}) + \int_{B_{l,\sigma}} \kappa \text{vol}_g \right) + \int_{B_{l,\sigma}} (\varphi(x) - \varphi(a_{l,\sigma})) \omega(\tilde{u}),
\]

where we used (5), (6) and the fact that \(|\tilde{u}|_g = 1 \) on \(\partial B_{l,\sigma} \) by (53). In particular, for \(\varphi = 1 \) in \(S \), one has that

\[
2\pi \sum_{l=1}^{K_\sigma} d_{l,\sigma} = \int_S \omega(\tilde{u}) = \int_S \kappa \text{vol}_g = 2\pi \chi(S),
\]

i.e., (7) holds for the integers \(\{d_{l,\sigma}\} \). To estimate the last term in the above RHS, note that clearly

\[
|\varphi(x) - \varphi(a_{l,\sigma})| \leq \|d\varphi\|_{L^\infty} r_{l,\sigma} \quad \text{for } x \in B_{l,\sigma}.
\]

Moreover, Lemma 5.3 and the definition of \(\omega \) imply that \(|\omega(\tilde{u})|_g \leq |D\tilde{u}|_g^2 + |\kappa| \) in \(S \), and as a consequence,

\[
\int_{B_{l,\sigma}} |\omega(\tilde{u})|_g \text{vol}_g \leq \int_S |D\tilde{u}|_g^2 \text{vol}_g + c \leq c \int_S |Du|_g^2 \text{vol}_g + c \leq c E_{\varepsilon}^{in}(u) + 1.
\]

We may assume that \(\varepsilon_0 < \frac{1}{7} \), and then we can absorb the additive constant in the multiplicative constant. By combining these estimates with (53), we see that for any smooth \(\varphi \),

\[
\left| \int_S \varphi \left[\omega(u) - 2\pi \sum_{l=1}^{K_\sigma} d_{l,\sigma} \delta_{a_{l,\sigma}} \right] \right| \leq c(n + 1)T |\log \varepsilon| \|d\varphi\|_{L^\infty}.
\]
Setting $\sigma = \varepsilon^q$, this is the case $p = 1$ of (50), noting that all the points $\{a_{l,\sigma}\}_{l=1}^{K_\sigma}$ are disjoint (as they belong to pairwise disjoint balls), (7) holds and $\sum_{l=1}^{K_\sigma} |d_{l,\sigma}| \leq n$ by (51). For $1 < p < 2$, we complete the proof of (50) using (again) the interpolation inequality $\|\mu\|_{W^{-1,p}} \leq C \|\mu\|^{\frac{2-1}{p}}_{W^{-1,1}} \|\mu\|^{\frac{2-p}{p}}_{L^1}$, where L^1 norm is understood to mean the total variation if μ is a measure, together with the fact that

$$\|\omega(u) - 2\pi \sum_{l=1}^{K_\sigma} d_{l,\sigma} \delta_{a_{l,\sigma}}\|_{L^1} \leq \int_S (|Du|^2 + |\kappa|) \log \varepsilon,$$

provided that $\varepsilon < 1/2$. This follows easily from (6), (54) and Lemma 5.3. Also, (50) holds for $\omega(\tilde{u})$ (as the interpolation argument works for $\omega(\tilde{u})$ exactly as for $\omega(u)$). Discarding the points $a_{l,\sigma}$ with zero degree $d_{l,\sigma} = 0$, one may assume that in (50) all the integers d_k are nonzero.

Step 4. Proof of (52). For any $k \in \{1, \ldots, 2g\}$, it follows from Step 2 that

$$(58) \quad \Phi_k(u) = \int_S (j(\tilde{u}), \eta_k)_g \log g + O(\varepsilon E^g(u)) = \Phi_k(\tilde{u}) + O(\varepsilon E^g(u)).$$

Since $h^2(\|u\|_g) |j|_g \geq c$, we have $|j(\tilde{u})|_g = c |Du|_g \in L^2$. As \tilde{u} is smooth in S, the Hodge decomposition (30) implies

$$(59) \quad j(\tilde{u}) = d\xi + d^*\tilde{\psi} + \sum_{k=1}^{2g} \tilde{\Phi}_k \eta_k,$$

for some smooth function ξ and 2-form $\tilde{\psi}$. Taking the exterior derivative of this, we find that

$$-\Delta \tilde{\psi} + \kappa \log g = \omega(\tilde{u}) \quad \text{in} \quad S,$$

and the RHS is supported in $\cup_{l=1}^{K_\sigma} B_{l,\sigma}$ (see Step 2). As in Step 4 of the proof of Theorem 2.1, for some $r > 0$ (small but fixed, independent of ε) and every small enough $\varepsilon > 0$ (and hence also $\sigma = \varepsilon^q$), we fix Lipschitz paths λ_k, for $k = 1, \ldots, 2g$ such that

$$\lambda_k \cap (\cup_{l=1}^{K_\sigma} B_{l,\sigma}) = \emptyset, \quad \text{dist}_S(\lambda_k, \cup_{l=1}^{K_\sigma} B_{l,\sigma}) \geq r \text{ if } d_{l,\sigma} \neq 0,$$

and

$$\lambda_k \text{ is homologous to } \gamma_k, \quad \text{and} \quad \mathcal{H}^1(\lambda_k) \leq c$$

for all $k \in \{1, \ldots, 2g\}$ (recall that $\{\gamma_k\}$ are the curves fixed in Lemma 5.2). The point is that, as in Theorem 2.1 we obtain λ_k by starting with γ_k and modifying it as necessary, first to make it disjoint from all $B_{l,\sigma}$, increasing the arclength by at most $2\pi(n+1)\sigma$ due to (53); and next to arrange that it is always a distance at least r from every ball with nonzero degree $d_{l,\sigma}$. Since the number of such balls is at most n, due to (54) this can be done in such a way that the arclength increases by a controlled amount, for example $2\pi n r$. If r and σ are small enough, these modifications preserve the homology class. We next define

$$\tilde{\zeta}_k := \int_{\lambda_k} (d^*\tilde{\psi} + A) \in \mathbb{R}/2\pi \mathbb{Z}$$

where A is the connection 1-form associated to any moving frame defined in a neighborhood of λ_k. It follows from (50) and Lemma 5.4 (as $|\tilde{u}|_g = 1$ outside $\cup_{l=1}^{K_\sigma} B_{l,\sigma}$) that for $k =$
For any $\tilde{\xi}, \ldots, 2g$

$$\tilde{\zeta}_k + \sum_{\ell=1}^{2g} \alpha_k \tilde{\Phi}_\ell = \int_{\lambda_k} (d^* \psi + A + \sum_{\ell=1}^{2g} \Phi_{\ell \eta(k)}) = \int_{\lambda_k} \tilde{\eta}(\tilde{u}) + A - \int_{\lambda_k} d\xi = 0 \mod 2\pi,$$

where (α_k) were defined in (13). Let us write (α^k) to denote the inverse of (α_k). Denoting $d^* = (d_{1,\sigma}, \ldots, d_{K_\sigma, \sigma})$, as $d^* = \{d_{l,\sigma}\}_{l=1}^{K_\sigma}$ satisfy (7), we may consider the unique solution $\psi = \psi(a^\sigma; d^\sigma)$ of (10) of zero mean on S, i.e.,

$$-\Delta \psi = -\kappa \text{vol}_g + 2\pi \sum_{l=1}^{K_\sigma} d_{l,\sigma} \delta_{a,\sigma} \text{ in } S.$$ Considering $\zeta_k(a; d)$ given by (16) with $a = (a_{1,\sigma}, \ldots, a_{K_\sigma, \sigma})$ and $d = (d_{1,\sigma}, \ldots, d_{K_\sigma, \sigma})$, we deduce that

$$\zeta_k(a; d) + \sum_{k=1}^{2g} \alpha_k \Phi_k + \sum_{m=1}^{2g} \alpha^km (\zeta_k - \zeta_k(a; d)) = 0 \mod 2\pi \text{ for } \ell = 1, \ldots, 2g,$$

which implies that the vector in square brackets $\{\Phi_k\}_{k=1}^{2g}$ belongs to $L(a; d)$. Hence, in view of (58), we have that

$$(60) \quad \text{dist}_{\text{reg}}(\Phi(u), L(a; d)) \leq \varepsilon \text{E}^\in(u) + c \sup_{\ell} |\zeta_k - \zeta_k(a; d)|.$$ To estimate $\zeta_k - \zeta_k(a; d)$, we investigate the equation

$$-\Delta (\tilde{\psi} - \psi) = \omega(\tilde{u}) - 2\pi \sum_{l=1}^{K_\sigma} d_{l,\sigma} \delta_{a,\sigma}.$$ Thus, for any $p \in (1, 2)$, we see from Step 2 and elliptic regularity that

$$\|\tilde{\psi} - \psi\|_{W^{1,p}} \leq C_p(n + 1)T| \log \varepsilon| \varepsilon^{q(\frac{2}{p}-1)}.$$ Also, $\tilde{\psi} - \psi$ is harmonic away from $\bigcup_{k=1}^{K_\sigma} B_{K_\sigma, \sigma}$, so we further deduce from standard elliptic theory that for $r > 0$ fixed above,

$$\|\tilde{\psi} - \psi\|_{C^1((x \in S: \text{dist}(x, \bigcup B_{K_\sigma, \sigma}) > r))} \leq C_{p,r}(n + 1)T| \log \varepsilon| \varepsilon^{q(\frac{2}{p}-1)}.$$ In particular this estimate holds on λ_k for every $\ell = 1, \ldots, 2g$. Thus, as a direct consequence of the definitions of $\tilde{\zeta}_k$ and $\zeta_k(a; d)$, we obtain for a fixed small $r > 0$:

$$|\tilde{\zeta}_k - \zeta_k(a; d)| = \left|\int_{\lambda_k} d^* (\tilde{\psi} - \psi)\right| \leq C_p(n + 1)T| \log \varepsilon| \varepsilon^{q(\frac{2}{p}-1)}.$$ For any $\tilde{q} \in (0, 1 - \frac{T}{n+1})$, one chooses some $q \in (\tilde{q}, 1 - \frac{T}{n+1})$ and $p \in (1, 2)$ close to 1 so that $(n + 1)T| \log \varepsilon| \varepsilon^{q(\tilde{q}-1)} \leq \varepsilon^{\tilde{q}}$ for some $\varepsilon \leq \varepsilon_{\tilde{q}}$ and the above inequality and (60) together yield (52) for \tilde{q}. \hfill \Box

As a direct consequence, we have partially the point 1 in Theorem 2.5, together with a lower bound (at the first order) of the intrinsic energy:
Corollary 8.3. Let \((u_\varepsilon)_{\varepsilon\downarrow 0}\) be a sequence of vector fields in \(\Lambda^{1,2}(S)\) satisfying (49) for some fixed \(T, C > 0\). Then there exists a subsequence for which the vorticities \(\omega(u_\varepsilon)\) converge in \(W^{-1,p}(S)\), for all \(1 \leq p < 2\), to a limit of the form \(2\pi \sum_{k=1}^{K} d_k \delta_{a_k}\) for \(K\) distinct points \(a_1, \ldots, a_K \in S\) and nonzero \(d_1, \ldots, d_K \in \mathbb{Z}\) with (7) and \(\sum_{k=1}^{K} |d_k| \leq T\) (so, \(K \leq T\)). Moreover,

\[
\liminf_{\varepsilon \to 0} \frac{1}{\pi |\log \varepsilon|} E^{\text{en}}_\varepsilon(u_\varepsilon) \geq \sum_{k=1}^{K} |d_k|.
\]

Proof. Fix the integer \(n\) satisfying \(n + 1 > T \geq n\) and \(q \in (0, 1 - \frac{T}{n+1})\). By Step 1 in the proof of Proposition 5.1 we may assume that \(u_\varepsilon\) are smooth vector fields with \(|u_\varepsilon|_g \leq 1\) in \(S\). Furthermore, for each \(\varepsilon > 0\), as in the proof of Proposition 8.1, we consider \(\sigma = \varepsilon^q\) and the set of pairwise disjoint balls \(\bigcup_{l=1}^{K} \partial B_{l, \varepsilon}\) of center \(\{a_{l, \varepsilon}\}\) associated to \(u_\varepsilon\) such that \(d_{l, \varepsilon}\) is the degree of \(u_\varepsilon\) on \(\partial B_{l, \varepsilon}\) satisfying (7). Moreover, \(\sum_{l=1}^{K} |d_{l, \varepsilon}| \leq n\) which entails that for a subsequence \(\varepsilon \downarrow 0\), there exist points \(a_1, \ldots, a_K \in S\) (not necessarily distinct) and \(d_1, \ldots, d_K \in \mathbb{Z}\) such that the measures \(\mu_\varepsilon := 2\pi \sum_{k=1}^{K} d_{l, \varepsilon} \delta_{a_{l, \varepsilon}}\) converge to

\[
\mu := 2\pi \sum_{l=1}^{K} d_l \delta_{a_l}
\]

as measures, and thus, in \(W^{-1,p}\) for any \(p \in [1, 2)\) (as \(W^{1, \tilde{p}}(S)\) embeds in the space of continuous functions, for the conjugate real \(\tilde{p} = \frac{p}{p-1} > 2\)). Relabeling the indices, we may assume that \(a = (a_1, \ldots, a_K)\) are distinct and that \(d_k \neq 0\) for \(k = 1, \ldots, K\). Obviously, (7) holds (as \(\mu_\varepsilon(S)\) is preserved by the convergence, i.e, equal to \(2\pi \chi(S)\)), as well as the upper bound of the total variation of those measures is conserved leading to

\[
\sum_{l=1}^{K} |d_l| = \frac{|\mu|(S)}{2\pi} \leq \liminf_{\varepsilon \to 0} \frac{|\mu_\varepsilon|(S)}{2\pi} = \liminf_{\varepsilon \to 0} \sum_{l=1}^{K} |d_{l, \varepsilon}| \leq n \leq T.
\]

By (50), we conclude that \(\omega(u_\varepsilon) \to \mu\) in any \(W^{-1,p}\) for \(p \in [1, 2)\) as \(\varepsilon \to 0\). Finally, the lower bound of the energy is obtain by (50) for \(\sigma = \varepsilon^q\):

\[
\liminf_{\varepsilon \to 0} \frac{1}{\pi |\log \varepsilon|} E^{\text{en}}_\varepsilon(u_\varepsilon) \geq \liminf_{\varepsilon \to 0} \frac{1}{\pi |\log \varepsilon|} \sum_{k=1}^{K} \int_{B_{l, \varepsilon}} e^{\text{en}}_\varepsilon(u_\varepsilon) \text{vol}_g
\]

\[
\geq \liminf_{\varepsilon \to 0} \sum_{1 \leq l \leq K, d_{l, \varepsilon} \neq 0} (1 - q)|d_{l, \varepsilon}| \geq (1 - q) \sum_{l=1}^{K} |d_l| = (1 - q) \frac{|\mu|(S)}{2\pi},
\]

where we used (61). As \(\mu\) is the limit of \(\omega(u_\varepsilon)\) (so independent of \(q\), passing to the limit \(q \to 0\), the conclusion is straightforward. □

Remark 8.4. At this stage, we cannot conclude that the sequence \(\{\Phi(u_\varepsilon)\}_{\varepsilon\downarrow 0}\) is bounded as large oscillations might arise a-priori in the current \(j(u_\varepsilon)\). To handle this difficulty, we need to insure that the excess of energy away from vortices is of order \(O(1)\) (see Proposition 9.1).
9. Renormalized energy as a Γ-limit in the intrinsic case. Proof of Theorem 2.5

In this section, we focus on the situation where all vortices have degree ± 1 and the excess of energy away from vortices is of order $O(1)$. We will prove that the flux integrals converge and that we have a stronger lower bound (than the one stated in Theorem 2.5, point 2). This is typically the situation when the vector fields u_{ε} are minimizers of E_{ε}^{in} (or energetically close to minimizing configurations). The following Proposition together with Corollary 8.3 lead to the final conclusion of Theorem 2.5.

Proposition 9.1. 1) Let $(u_{\varepsilon})_{\varepsilon \in (0,1)}$ be a family of vector fields in $\mathcal{X}^{1,2}(S)$ satisfying
\begin{equation}
E_{\varepsilon}^{in}(u_{\varepsilon}) \leq n\pi|\log \varepsilon| + C \quad \text{for every } \varepsilon
\end{equation}
for some integer $n > 0$, and assume that there exist $n_0(\leq n)$ distinct points $a_1, \ldots, a_{n_0} \in S$, and nonzero integers d_1, \ldots, d_{n_0} satisfying (1) such that
\begin{equation}
\omega(u_{\varepsilon}) \xrightarrow{W^{-1,1}} 2\pi \sum_{k=1}^{n_0} d_k \delta_{a_k} \quad \text{with } \sum_{k=1}^{n_0} |d_k| = n.
\end{equation}
Then $n_0 = n$ and $|d_k| = 1$ for every k, and there exists $\Phi \in \mathcal{L}(a; d)$ such that, after passing to a further subsequence if necessary,
\begin{equation}
\Phi(u_{\varepsilon}) \rightarrow \Phi, \quad \Phi(u_{\varepsilon}) \text{ defined in (51)}.
\end{equation}
Moreover, for every $\sigma > 0$,
\begin{equation}
\liminf_{\varepsilon \to 0} \left[E_{\varepsilon}^{in}(u_{\varepsilon}) - n(\pi|\log \varepsilon| + \iota_F) \right] \geq W(a, d, \Phi)
\end{equation}
\begin{equation*}
+ \liminf_{\varepsilon \to 0} \int_{S \setminus \bigcup_{k=1}^{n_0} B_{\sigma}(a_k)} \left[\frac{1}{2} \frac{j(u_{\varepsilon})}{|u_{\varepsilon}|_g} - j(u^*)^2 + \varepsilon_{\varepsilon}^{in}(|u_{\varepsilon}|_g) \right] \text{vol}_g
\end{equation*}
for $u^* = u^*(a, d, \Phi)$, $a = (a_1, \ldots, a_n)$ and $d = (d_1, \ldots, d_n)$.
2) Conversely, for every distinct a_1, \ldots, a_n and $d_1, \ldots, d_n \in \{\pm 1\}$ satisfying (1), and every $\Phi \in \mathcal{L}(a; d)$ there exist sequences of smooth vector fields u_{ε} such that $|u_{\varepsilon}|_g \leq 1$ in S, (63) and (64) hold and
\begin{equation}
E_{\varepsilon}^{in}(u_{\varepsilon}) - n(\pi|\log \varepsilon| + \iota_F) \rightarrow W(a, d, \Phi) \quad \text{as } \varepsilon \to 0.
\end{equation}

9.1. Useful coordinates. It will be useful to carry out certain computations in exponential normal coordinates near certain points (typically, one of the points $P \in S$ about which $\omega(u_{\varepsilon})$ concentrates). These are defined by the map $y \in \mathbb{R}^2 \mapsto \exp_P(y_1\tau_1, y_2\tau_2, P) =: \Psi(y)$, where $\{\tau_1, \tau_2\}$ is an orthonormal basis for $T_P S$. This map is a diffeomorphism when restricted to a suitable neighborhood of the origin in \mathbb{R}^2. In this neighborhood,
\begin{equation}
x = \Psi(y) \Rightarrow \text{dist}_S(P, x) = |y|, \quad \text{so } B_r(P) \equiv \{y \in \mathbb{R}^2 : |y| < r\}.
\end{equation}
Here $|y|$ denotes the Euclidean norm of $y \in \mathbb{R}^2$. We will write $g_{ik}(y) := (\partial_i \Psi(y), \partial_k \Psi(y))_g$ to denote the components of the metric tensor in this coordinate system (where we identify $\partial_i \Psi(y)$ with an element of $T_{\Psi(y)} S$ in the natural way). It is then a standard fact that
\begin{equation}
g_{ik}(y) := \delta_{ik} + O(|y|^2), \quad \text{and hence } g(y) := \det(g_{ik}(y)) = 1 + O(|y|^2).
\end{equation}
Furthermore, we can also find a moving frame $\{\tau_1, \tau_2\}$ near P such that the connection 1-form A satisfies
\begin{equation}
|A(\Psi(y))|_g = O(|y|).
\end{equation}
Indeed, (65) can be achieved by starting with an arbitrary moving frame \(\{ \tau_1, \tau_2 \} \) near \(P \), and replacing it by \(\{ e^{i\phi} \tau_1, e^{i\psi} \tau_2 \} \) for a suitable function \(\phi, \psi \).

For any point \(P \in S \) there is a \(\sigma > 0 \) such that both normal coordinates and the above moving frame are defined in \(B_{\sigma}(P) \subset S \). Thus, given a vector field \(u \), in this neighborhood we can define \(v = v_1 + iv_2 : B_{\sigma}(0) \subset \mathbb{R}^2 \to \mathbb{C} \) by requiring that

\[
(69) \quad u(\Psi(y)) = v(y) \tau_1(y) = v_1(y) \tau_1(y) + v_2(y) \tau_2(y), \quad \tau_k(y) = \tau_k(\Psi(y)), \quad k = 1, 2.
\]

We will write \(|v| = (v, v)^{1/2} = (v_1^2 + v_2^2)^{1/2} \), so that \(|v(y)| = |u(\Psi(y))|_g \). We will also write the energy density \(e(\varepsilon) \) and the current \(j(\varepsilon) \) to denote the Euclidean quantities

\[
e(\varepsilon)(v) := \frac{1}{2} |\nabla v|^2 + \frac{1}{4\varepsilon^2} F(|v|^2), \quad j(\varepsilon) := \sum_{k=1}^2 (iv, \partial y_k v) dy_k,
\]

where here all norms and inner products \((\cdot, \cdot) \) are understood with respect to the Euclidean structure on \(\mathbb{R}^2 \), with respect to which the 1-forms \(\{ dy_1, dy_2 \} \) are orthonormal. It is then routine to check that

\[
e^{in}(u)(\Psi(y)) = [1 + O(|y|^2)] e(\varepsilon)(v)(y) + O(|v|^2(y))
\]

(70)

\[
\Psi^* j(u) = j(\varepsilon) + O(|\varepsilon| |v|^2
\]

\[
\Psi^* \text{vol}_g = [1 + O(|\varepsilon|^2)] \text{dy}
\]

where \(dy = dy_1 \wedge dy_2 \) denotes the Euclidean area element. Thus for example

\[
\int_{B_{\sigma}(P)} e^{in}(u) \text{vol}_g = (1 + O(\sigma^2)) \int_{\{y \in \mathbb{R}^2 : |y| < \sigma\}} e(\varepsilon) + O(|v|^2) \text{ dy}.
\]

9.2. **Upper bound.** Given \(F \) satisfying (11), we recall the notations (25) for the intrinsic energy of the radial vortex profile \(I^*_F(R, \varepsilon) \) as well as the limit \(i_F \) defined in (20). The coordinate system described above will allow us to reduce energy estimates on small balls to classical facts about the Ginzburg-Landau energy in the Euclidean setting. We first use this reduction to prove the upper bound part of Proposition 9.1.

Proof of Proposition 9.1 point 2). Recall that we constructed a canonical harmonic unit vector field \(u^* = u^*(x; a, d, \Phi) \) in Theorem 2.1. We will construct an appropriate vector field \(v^* = v^*(a, d, \Phi) \) for the upper bound in Proposition 9.1 point 2) as follows: first, we choose

\[
v^* := u^* \text{ in } S_{\sqrt{\varepsilon}} := S \setminus \bigcup_{k=1}^{n^*} B(a_k, \sqrt{\varepsilon}).
\]

In order to define \(v^* \) inside the balls \(B(a_k, \sqrt{\varepsilon}) \), we need to prove that \(u^* \) has the appropriate behavior at the boundary \(\partial B(a_k, \sqrt{\varepsilon}) \) which is done in the next step.

Step 1. Estimating \(u^* \) on \(\partial B(a_k, \sqrt{\varepsilon}) \). Writing \(j^* := j(u^*) \), by (12), (20), and properties of the Green’s function \(G \) (see Section 22), we have in a neighborhood of the vortices \(a_k \):

\[
j^*(x) = d^* [2\pi d_k G(x, a_k) \text{vol}_g + \text{smooth terms}]
\]

\[
= d^* [-d_k \log(\text{dist}_S(x, a_k)) \text{vol}_g + C^1 \text{ terms}]
\]

\[
= \ast d[\log(\text{dist}_S(x, a_k))] + C^0 \text{ terms}.
\]

Let \(v^* : B(0, \sqrt{\varepsilon}) \to S^1 \) be the representation of \(u^* \) in exponential normal coordinates near \(a_k \) given by (59). Since within these coordinates \(\Psi^* j(u^*) = j(v^*) - \Psi^* A \), near \(a_k \), we deduce that

\[
j(v^*) = d_k d\theta + C^0 \text{ terms in } B(0, \sqrt{\varepsilon}),
\]
where \(d\theta\) is the angular 1-form \(d\theta := \frac{1}{|y|^2}(y_1 dy_2 - y_2 dy_1)\). In particular, we have that

\[
\int \sqrt{\epsilon} (\epsilon_1(\epsilon) + \eta)\ dx = \int \sqrt{\epsilon} \left| \nabla \epsilon \right|^2 dy = \frac{\pi}{2} \log \frac{\sqrt{\epsilon}}{2\epsilon} + \epsilon_F + o(1).
\]

Second, inside the annulus \(B(0, \sqrt{\epsilon}) \setminus B(0, \sqrt{\epsilon}/2)\), since \(|d_k| = 1\), we have

\[
\int_{\sqrt{\epsilon}/2}^{\sqrt{\epsilon}} \frac{1}{2} |\nabla \epsilon|^2 dy = \int_0^{2\pi} \frac{1}{2r} |d_k + 2(\frac{r}{\sqrt{\epsilon}} - \frac{1}{2})\partial_\epsilon \eta|^2 + \frac{2r}{\epsilon} |\eta - \bar{\eta}|^2 d\theta dr
\]

\[
\leq \frac{\pi}{2} \int_0^{2\pi} \frac{1}{r} (1 + O(\sqrt{\epsilon})) dr + \int_0^{2\pi} |\partial_\epsilon \eta|^2 d\theta = \pi \log 2 + o(1)
\]

where we used the Poincaré inequality and \(|\partial_\epsilon \eta| \leq C\sqrt{\epsilon}\). Finally, by (67) and (70), we compute

\[
\int_{B(a_k, \sqrt{\epsilon})} e^{i\epsilon_\Omega(U_{\epsilon})} \ vol g = \int_{\{y \in \mathbb{R}^2 : |y| < \sqrt{\epsilon}\}} [(1 + O(\epsilon))e_{\epsilon}(\epsilon_{\epsilon}) + O(1)] \sqrt{g(y)} \ dy
\]

\[
\leq \pi \log \frac{\sqrt{\epsilon}}{\epsilon} + \epsilon_F + o(1) \quad \text{as} \quad \epsilon \to 0.
\]

To estimate the current \(j(U_{\epsilon})\), note that since \(|\epsilon_{\epsilon}| \leq 1\) everywhere,

\[
|j_{\epsilon}(\epsilon_{\epsilon})|^2 \leq |\epsilon_{\epsilon}|^2 |\nabla \epsilon_{\epsilon}|^2 \leq |\nabla \epsilon_{\epsilon}|^2 \leq 2e_{\epsilon}(\epsilon_{\epsilon}).
\]

Thus for every \(p \in [1, 2]\), we have by Hölder’s inequality

\[
\int_{B(0, \sqrt{\epsilon})} |j_{\epsilon}(\epsilon_{\epsilon})|^p \ dy \leq \int_{B(0, \sqrt{\epsilon})} 2^{p/2} e_{\epsilon}(\epsilon_{\epsilon})^{p/2} dy \leq |B(0, \sqrt{\epsilon})|^{1 - \frac{p}{2}} \left(\int_{B(0, \sqrt{\epsilon})} 2 e_{\epsilon}(\epsilon_{\epsilon}) dy \right)^{p/2} \to 0.
\]

Combined with the equality \(\Psi^* j(U_{\epsilon}) = j_{\epsilon}(\epsilon_{\epsilon}) - |\epsilon_{\epsilon}|^2 \Psi^* A\) near \(a_k\), as \(|\epsilon_{\epsilon}| \leq 1\) everywhere, we conclude that \(\int_{B(a_k, \sqrt{\epsilon})} |j(U_{\epsilon})|^p \to 0\) for every \(p \in [1, 2]\) as \(\epsilon \to 0\).
Step 4. Conclusion. Using the definition of $W(a,d,\Phi)$ in Section 2.2 and Step 3, we compute

$$E_{\varepsilon}^{\text{in}}(U_{\varepsilon}) = \int_{S_{\sqrt{\varepsilon}}} \frac{1}{2} |Du|^2_g \, \text{vol}_g + \sum_{k=1}^n \int_{B(a_k,\sqrt{\varepsilon})} e_{\varepsilon}^{\text{in}}(U_{\varepsilon}) \, \text{vol}_g$$

$$= W(a,d,\Phi) + n\pi \log \frac{1}{\sqrt{\varepsilon}} + o(1) + \pi n \log \frac{\sqrt{\varepsilon}}{\varepsilon} + n\mu_F + o(1)$$

$$= W(a,d,\Phi) + n(\pi \log \frac{1}{\varepsilon} + \mu_F) + o(1) \quad \text{as } \varepsilon \to 0.$$

As $U_{\varepsilon} := u^* \in S_{\sqrt{\varepsilon}}$, by Steps 1 and 3, we deduce that

$$j(U_{\varepsilon}) - j(u^*) \to 0 \quad \text{strongly in } L^p(S)$$

for $p \in [1, 2)$ which entails $dj(U_{\varepsilon}) \to dj(u^*)$ strongly in $W^{-1,p}(S)$ for $p \in [1, 2)$, in particular (63) and (64) hold where $\Phi \in \mathcal{L}(a;d)$ was given in the hypothesis as the flux integrals associated to u^* by (71). As U_{ε} is not smooth, using the smoothness argument in Step 1 of the proof of Proposition 8.1, U_{ε} can be replaced by a smooth vector field u_{ε} with the desired properties.

9.3. Lower bound. Throughout most of this section, we assume that $(u_{\varepsilon})_{\varepsilon \in (0,1)}$ is a sequence of smooth vector fields with $|u_{\varepsilon}|_g \leq 1$ in S satisfying the hypotheses (62) and (63) of Proposition 9.1 point 1) (the smoothness assumption follows by the argument in Step 1 of the proof of Proposition 8.1). We will drop the assumed bound on $|u_{\varepsilon}|_g$ only in Step 6 in the proof of Proposition 9.1 point 1), where we explain how to get the lower bound in the general case. All constants appearing in our estimates may depend on S,n, and the constant C in (72). Our first lemma allows us to approximate the vorticity $\omega(u_{\varepsilon})$ by a sum of point masses that are well-separated, relative to the scale of the approximation.

Lemma 9.2. There exists $\varepsilon_0 > 0$ such that for $\varepsilon \in (0,\varepsilon_0)$, we can find $r_{\varepsilon} \in (\varepsilon^{2/(n+1)},\varepsilon^\beta)$ for some $\beta = \beta(n) > 0$ and $K = K(\varepsilon) \in \mathbb{Z}^+$ distinct points $a_{\varepsilon} = (a_{1,\varepsilon}, \ldots, a_{K,\varepsilon})$ in S and nonzero integers $d_{\varepsilon} = (d_{1,\varepsilon}, \ldots, d_{K,\varepsilon})$ with (7) such that $\sum_{k=1}^{K} |d_{k,\varepsilon}| \leq n$ (so, $K \leq n$) and

$$\|\omega(u_{\varepsilon}) - 2\pi \sum_{k=1}^{K} d_{k,\varepsilon} \delta_{a_{k,\varepsilon}}\|_{W^{-1,1}} \leq r_{\varepsilon}^2, \quad \text{dist}_S(a_{k,\varepsilon}, a_{l,\varepsilon}) \geq \sqrt{r_{\varepsilon}} \quad \text{for all } 1 \leq k < l \leq K.$$

In addition, there exists $\Phi_{\varepsilon} \in \mathcal{L}(a_{\varepsilon}, d_{\varepsilon})$ such that $|\Phi(u_{\varepsilon}) - \Phi_{\varepsilon}| \leq C \sqrt{r_{\varepsilon}}$.

Proof. Let $0 < q < \frac{1}{n+1}$ and $\sigma_1 = \varepsilon^{q/2}$. Apply now Proposition 8.1 for $T = n$, $p = 1$ and q, and consider the $K(\leq n)$ distinct points $a_{k,\varepsilon}$ and nonzero integers $d_{k,\varepsilon}$ provided by it (1 $\leq k \leq K$). We know by (62) that $\text{dist}_S^2(\Phi(u_{\varepsilon}), \mathcal{L}(a_{\varepsilon}, d_{\varepsilon})) \leq \sigma_1^2$. Set the associated measure $\mu_1(a_{\varepsilon}, d_{\varepsilon}) = 2\pi \sum_k d_{k,\varepsilon} \delta_{a_{k,\varepsilon}}$. If $\text{dist}_S(a_{k,\varepsilon}, a_{\ell,\varepsilon}) \geq \sqrt{\sigma_1}$ for all $k \neq \ell$, then this collection satisfies (76) with $r_{\varepsilon} = \sigma_1$, for small enough ε. If not, define a new collection of points as follows: consider some pair $a_{k,\varepsilon} \neq a_{\ell,\varepsilon}$ such that $\text{dist}_S(a_{k,\varepsilon}, a_{\ell,\varepsilon}) < \sqrt{\sigma_1}$. Remove this pair from $\{a_{k,\varepsilon}\}$ and replace them by a point P with the associated degree $d = d_{k,\varepsilon} + d_{\ell,\varepsilon}^2$ such that $\text{dist}_S(P, a_{k,\varepsilon}) < \frac{1}{2} \sqrt{\sigma_1}$ and $\text{dist}_S(P, a_{\ell,\varepsilon}) < \frac{1}{2} \sqrt{\sigma_1}$. The total sum of absolute values of the new degrees could decrease, so it stays $\leq n$. Note that

$$\|d_{k,\varepsilon} \delta_{a_{k,\varepsilon}} + d_{\ell,\varepsilon} \delta_{a_{\ell,\varepsilon}} - (d_{k,\varepsilon} + d_{\ell,\varepsilon}) \delta_P\|_{W^{-1,1}} \leq \left(\|d_{k,\varepsilon}\| + \|d_{\ell,\varepsilon}\|\right) \frac{\sqrt{\sigma_1}}{2} \leq n \frac{\sqrt{\sigma_1}}{2}.$$
Continue in this fashion until a new collection is reached (still denoted \(\{a_k, \varepsilon\} \) and where the points of zero degree are suppressed) such that \(\text{dist}_S(a_t, a_{t, \varepsilon}) \geq \sqrt{\sigma_1} \) for all distinct \(a_t, a_{t, \varepsilon} \). This takes at most \(K - 1 \leq n - 1 \) of the above steps because at each step the number of points decreases. It follows from (77) that

\[
\|\omega(u_\varepsilon) - 2\pi \sum_{k=1}^K d_{k, \varepsilon} \delta_{a_{k, \varepsilon}}\|_{W^{-1.1}} \leq \sigma_1^2 + n(n-1)\sqrt{\sigma_1} \leq n^2 \sqrt{\sigma_1} =: \sigma_2^2.
\]

Denoting \(\mu_2 \) the measure associated to this new collection of points \(a_{k, \varepsilon} \) and degrees \(d_{k, \varepsilon} \), we note that \(\|\mu_1 - \mu_2\|_{W^{-1.1}} \leq \|\mu_1 - \omega(u_\varepsilon)\|_{W^{-1.1}} + \|\omega(u_\varepsilon) - \mu_2\|_{W^{-1.1}} \leq (n^2 + 1)\sqrt{\sigma_1} \). If, for this collection, \(\text{dist}_S(a_{t, \varepsilon}, a_{t, \varepsilon}) \geq \sqrt{\sigma_2} \) for all \(k \neq \ell \), then again we are finished. If not, we continue in the same fashion. Within (at most) \(n - 1 \) iterations of this procedure, we obtain a collection of points satisfying (76) for some \(r_\varepsilon \leq C(n)\varepsilon \) for some (large) \(C(n) \) and (small) positive \(\beta \). By decreasing \(\beta > 0 \) we may suppose that \(C(n) = 1 \). Moreover, if \(\tilde{\alpha}_\varepsilon \) is the final collection of points with the nonzero degrees \(\tilde{d}_\varepsilon \), denoting \(\tilde{\mu}(\tilde{\alpha}_\varepsilon, \tilde{d}_\varepsilon) \) the associated measure, we have that \(\|\mu_1 - \tilde{\mu}\|_{W^{-1.1}} \leq C\sqrt{r_\varepsilon} \). Now we use (18) and (52) to conclude that

\[
\text{dist}_{\mathbb{R}^2_\varepsilon}(\Phi(u_\varepsilon), \mathcal{L}(\tilde{\alpha}_\varepsilon, \tilde{d}_\varepsilon)) \leq \text{dist}_{\mathbb{R}^2_\varepsilon}(\Phi(u_\varepsilon), \mathcal{L}(\alpha_\varepsilon, d_\varepsilon)) + \text{dist}_{\mathbb{R}^2_\varepsilon}(\mathcal{L}(\alpha_\varepsilon, d_\varepsilon), \mathcal{L}(\tilde{\alpha}_\varepsilon, d_\varepsilon)) \leq C\sqrt{r_\varepsilon}.
\]

Our next lemma provides a good lower energy bound away from the vortices. This will be used several times in the proof of the compactness and lower bound assertions of Proposition 9.1.

Lemma 9.3. Using the notations in Lemma 7.2, let \(\alpha_\varepsilon = (a_1, \varepsilon, \ldots, a_K, \varepsilon) \), \(\alpha_\varepsilon = (d_1, \varepsilon, \ldots, d_K, \varepsilon) \) satisfy (76) for some \(r_\varepsilon \in (\varepsilon^{1/(n+1)}, \varepsilon^\beta) \) for some \(\beta = \beta(n) > 0 \) and \(\Phi_\varepsilon = \left(\Phi_k^2\right)_{k=1}^\infty \in \mathcal{L}(\alpha_\varepsilon, d_\varepsilon) \) such that \(\|\Phi(u_\varepsilon) - \Phi_\varepsilon\| \leq C\sqrt{r_\varepsilon} \). Let \(u^*(\alpha_\varepsilon, d_\varepsilon, \Phi_\varepsilon) \) be a canonical harmonic vector field given in Theorem 7.2 with the associated current \(j^*_{\varepsilon} := j(u^*(\alpha_\varepsilon, d_\varepsilon, \Phi_\varepsilon)) \). Then for all sufficiently small \(\varepsilon > 0 \),

\[
\int_{S_{r_\varepsilon}} e^{i\varepsilon}(u_\varepsilon) \text{vol}_g \geq \pi(\sum_{k=1}^K d_{k, \varepsilon}^2) \log \frac{1}{r_\varepsilon} + W(\alpha_\varepsilon, d_\varepsilon, \Phi_\varepsilon)
\]

\[
\quad + \int_{S_{r_\varepsilon}} \left(\frac{1}{2} \left| j(u_\varepsilon) - j_{\varepsilon} \right|_g + e_i^i(|u_\varepsilon|_g) \right) \text{vol}_g - O(r_\varepsilon^{1/3}) - O(r_\varepsilon^{1/2}|\Phi_\varepsilon|^2)
\]

for \(S_{r_\varepsilon} := S \setminus \cup_{k=1}^K B_{r_\varepsilon}(a_{k, \varepsilon}) \).

Proof. The proof uses some arguments from [21], Theorem 2. First, we use Section 5.5 and elementary algebra to find that

\[
e^{i\varepsilon}(u_\varepsilon) = \frac{1}{2} \left| j_{\varepsilon} \right|_g^2 + \frac{1}{2} \left| \frac{j(u_\varepsilon)}{|u_\varepsilon|_g} - j_{\varepsilon} \right|_g^2 + \left(j_{\varepsilon} \cdot \frac{j(u_\varepsilon)}{|u_\varepsilon|_g} - j_{\varepsilon} \right)_g + e_i^i(|u_\varepsilon|_g) \text{ in } S_{r_\varepsilon}.
\]

In addition, by (18), we have that

\[
\frac{1}{2} \int_{S_{r_\varepsilon}} \left| j_{\varepsilon} \right|_g^2 \text{vol}_g = \pi(\sum_k d_{k, \varepsilon}^2) \log \frac{1}{r_\varepsilon} + W(\alpha_\varepsilon, d_\varepsilon, \Phi_\varepsilon) + O(\sqrt{r_\varepsilon}) + O(r_\varepsilon^{3/2}|\Phi^2_\varepsilon|) \quad \text{as } \varepsilon \to 0.
\]

After combining these, we find that to prove (78), it suffices to prove that

\[
\int_{S_{r_\varepsilon}} \left(j_{\varepsilon} \cdot \frac{j(u_\varepsilon)}{|u_\varepsilon|_g} - j_{\varepsilon} \right)_g \text{vol}_g = O(r_\varepsilon^{1/3}) + O(r_\varepsilon^{1/2}|\Phi_\varepsilon|^2) \quad \text{as } \varepsilon \to 0.
\]
Toward this end, we let $\psi_\varepsilon := \psi(a^\varepsilon, d^\varepsilon)$ be the solution of (10) and we start by using (12) to write
\[
\int_{S_{\varepsilon}} (j^*_{\varepsilon}, \frac{j(u_{\varepsilon})}{|u_{\varepsilon}|})_g \, \text{vol}_g = \int_{S_{\varepsilon}} (d^*\psi_\varepsilon, \frac{j(u_{\varepsilon})}{|u_{\varepsilon}|})_g \, \text{vol}_g + \sum_{k=1}^{2g} \Phi_{k,\varepsilon} \int_{S_{\varepsilon}} (\eta_k, \frac{j(u_{\varepsilon})}{|u_{\varepsilon}|})_g \, \text{vol}_g
\]
\[
=: L_0 + \sum_{k=1}^{2g} \Phi_{k,\varepsilon} L_k.
\]

Step 1. Estimate of L_k for $k = 1, \ldots, 2g$. We decompose
\[
L_k = \int_S (\eta_k, j(u_{\varepsilon}) - j^*_{\varepsilon})_g \, \text{vol}_g + \int_S (\eta_k, \frac{j(u_{\varepsilon})}{|u_{\varepsilon}|})_g (1 - |u_{\varepsilon}|_g) \, \text{vol}_g - \int_{S \setminus S_{\varepsilon}} (\eta_k, \frac{j(u_{\varepsilon})}{|u_{\varepsilon}|})_g \, \text{vol}_g.
\]
We estimate the terms on the right-hand side. First, as Φ^ε are the flux integrals associated to $u^*(a^\varepsilon, d^\varepsilon, \Phi^\varepsilon)$, we deduce
\[
\left| \int_S (\eta_k, j(u_{\varepsilon}) - j^*_{\varepsilon})_g \, \text{vol}_g \right| = |\Phi_{k,\varepsilon}(u_{\varepsilon}) - \Phi_{k,\varepsilon}| = O(\sqrt{r_{\varepsilon}}).
\]
Next, since by (37),
\[
\left| \frac{j(u_{\varepsilon})}{|u_{\varepsilon}|} \right| (1 - |u_{\varepsilon}|_g) \leq |1 - |u_{\varepsilon}|_g| |Du_{\varepsilon}|_g \leq C\varepsilon e^{\text{in}}(u_{\varepsilon}),
\]
it is clear that
\[
\left| \int_S (\eta_k, \frac{j(u_{\varepsilon})}{|u_{\varepsilon}|})_g (1 - |u_{\varepsilon}|_g) \, \text{vol}_g \right| \leq C\|\eta_k\|_{L^\infty} |\log \varepsilon|.
\]
We split the remaining term into two pieces. By Cauchy-Schwarz,
\[
\left| \int_{\cup_{k=1}^{K_{\varepsilon}} B_{r_{\varepsilon}}(a_{\ell,\varepsilon})} (\eta_k, \frac{j(u_{\varepsilon})}{|u_{\varepsilon}|})_g \, \text{vol}_g \right| \leq \left(\int_{\cup_{k=1}^{K_{\varepsilon}} B_{r_{\varepsilon}}(a_{\ell,\varepsilon})} |\eta_k|_g^2 \, \text{vol}_g \int_{\cup_{k=1}^{K_{\varepsilon}} B_{r_{\varepsilon}}(a_{\ell,\varepsilon})} |Du_{\varepsilon}|_g^2 \, \text{vol}_g \right)^{1/2}
\]
\[
= O(r_{\varepsilon} |\log \varepsilon|^{1/2}) = O(r_{\varepsilon}^{1/2}).
\]
Next, from (12), (20) and properties of the Green’s function in Section 2.2 (in particular that $\|d^*G(\cdot, a_{k,\varepsilon})\|_{L^1(B_{r_{\varepsilon}}(a_{\ell,\varepsilon}))} = O(r_{\varepsilon})$ for every k and ℓ), one readily checks that
\[
\left| \int_{\cup_{k=1}^{K_{\varepsilon}} B_{r_{\varepsilon}}(a_{\ell,\varepsilon})} (\eta_k, j^*_{\varepsilon})_g \, \text{vol}_g \right| \leq C\|\eta_k\|_{L^\infty} (r_{\varepsilon} + |\Phi^\varepsilon|_g^2 \|\eta_k\|_{L^\infty}).
\]
By combining the above, we conclude that
\[
|\Phi_{k,\varepsilon} L_k| = O \left((\sqrt{r_{\varepsilon}} + |\Phi^\varepsilon|_g^2 \|\Phi^\varepsilon\|_{L^\infty}) \right) = O(\sqrt{r_{\varepsilon}}) + O(\sqrt{r_{\varepsilon}} |\Phi^\varepsilon|^2)
\]
for every $k = 1, \ldots, 2g$.

Step 2. Estimate of L_0. Next, with $\tilde{\psi}_{\varepsilon} := \psi(a^\varepsilon, d^\varepsilon)$ the 2-form solving (10), we define
\[
\tilde{\psi}_{\varepsilon}(x) := \begin{cases}
\psi_\varepsilon(x) & \text{in } S_{\varepsilon} \\
\psi_\varepsilon(x) + d_k(\text{log dist}_S(x, a_{\ell,\varepsilon}) - \log r_{\varepsilon}) \, \text{vol}_g & \text{in } B_{r_{\varepsilon}}(a_{\ell,\varepsilon}), \, \ell = 1, \ldots, K_{\varepsilon}.
\end{cases}
\]
Since dist$_S(a_{\ell,\varepsilon}, a_{\ell,\varepsilon}) \geq \sqrt{r_{\varepsilon}}$, it follows from (20) and properties of the Green’s function from Section 2.2 that $\tilde{\psi}_{\varepsilon}$ is Lipschitz continuous in S and C^1 in $\cup_{k=1}^{K_{\varepsilon}} B_{r_{\varepsilon}}(a_{\ell,\varepsilon})$, with Lipschitz constant bounded by $C/\sqrt{r_{\varepsilon}}$ in S. Thus we can write
\[
d^*\tilde{\psi}_{\varepsilon} = 1_{S_{\varepsilon}} d^*\psi_{\varepsilon} + \xi_{\varepsilon}, \quad \text{with} \quad \|d^*\tilde{\psi}_{\varepsilon}\|_{L^\infty(S)} \|\xi_{\varepsilon}\|_{L^\infty(S)} \leq C/\sqrt{r_{\varepsilon}}
\]
where ξ_{ε} is a 1-form supported in $\cup_{k=1}^{K_{\varepsilon}} B_{r_{\varepsilon}}(a_{\ell,\varepsilon})$. With this notation we have
\[
L_0 = \int_S (d^*\tilde{\psi}_{\varepsilon}, j(u_{\varepsilon}) - j^*_{\varepsilon})_g \, \text{vol}_g + \int_S (d^*\tilde{\psi}_{\varepsilon}, \frac{j(u_{\varepsilon})}{|u_{\varepsilon}|})_g (1 - |u_{\varepsilon}|_g) \, \text{vol}_g - \int_{S \setminus S_{\varepsilon}} (\xi_{\varepsilon}, \frac{j(u_{\varepsilon})}{|u_{\varepsilon}|})_g \, \text{vol}_g.
\]
We consider the terms on the right-hand side. First, writing \(u^*_\varepsilon := u^*(a^\varepsilon, d^\varepsilon, \Phi^\varepsilon) \), by the Stokes theorem and the definition of the Hodge star operator, we have
\[
\int_S (d^\ast \tilde{\psi}_\varepsilon \cdot j(\varepsilon)) \, \text{vol}_g = \int_S * \tilde{\psi}_\varepsilon (\omega(\varepsilon)) - \omega(u^*_\varepsilon) = \int_S * \tilde{\psi}_\varepsilon (\omega(\varepsilon)) - 2\pi \sum_{\ell=1}^{K_\varepsilon} d_{\ell,\varepsilon} \delta_{a_{\ell,\varepsilon}}
\]
and from this, together with \((76)\), we conclude that
\[
\left| \int_S (d^\ast \tilde{\psi}_\varepsilon \cdot j(\varepsilon)) \, \text{vol}_g \right| \leq \| \tilde{\psi}_\varepsilon \|_{W^{1,\infty}} \| \omega(\varepsilon) - 2\pi \sum_{\ell=1}^{K_\varepsilon} d_{\ell,\varepsilon} \delta_{a_{\ell,\varepsilon}} \|_{W^{-1,1}} \leq C r_\varepsilon^{3/2}.
\]
The other terms in the decomposition of \(L_0 \) are estimated exactly like their counterparts in Step 1 above, using the estimates \(\| d^\ast \tilde{\psi}_\varepsilon \|_{\infty}, \| \xi_\varepsilon \|_{\infty} \leq C r_\varepsilon^{-1/2} \). This leads to
\[
|L_0| \leq C (r_\varepsilon^{3/2} + \varepsilon \log \varepsilon + r_\varepsilon^{1/2} \log \varepsilon)^{1/2} + r_\varepsilon^{1/2} + r_\varepsilon^{3/2} |\Phi^\varepsilon| = O(r_\varepsilon^{1/3} + r_\varepsilon^{2} |\Phi^\varepsilon|^2)
\]
as \(\varepsilon \to 0 \). \(\square \)

Our next lemma provides a rather crude estimate of the energy near the “vortex cores”.

Lemma 9.4. Using the notations in Lemma 7.3, let \(a^\varepsilon = (a_1, \ldots, a_{K_\varepsilon}) \), \(d^\varepsilon = (d_1, \ldots, d_{K_\varepsilon}) \) satisfy \((70)\) for some \(r_\varepsilon \in (\varepsilon^{2/(n+1)}, \varepsilon^\beta) \) for some \(\beta = \beta(n) > 0 \). Then for all sufficiently small \(\varepsilon > 0 \),
\[
\int_{B_{r_\varepsilon}(a_{k,\varepsilon})} e^{\mu^\varepsilon} (u_\varepsilon) \, \text{vol}_g \geq |d_{k,\varepsilon}| (\pi \log \frac{r_\varepsilon}{\varepsilon} - C), \quad k = 1, \ldots, K.
\]

Proof. Consider the collection of balls \(\{ B_{\ell,\varepsilon} \}_\ell \) provided by applying Proposition 8.2 to \(u_\varepsilon \), with \(T = n \) and \(\sigma = \frac{1}{2n+1} r_\varepsilon \). In view of \((56)\), it suffices to show that for every \(1 \leq k \leq K \),
\[
\sum_{\ell: B_{\ell,\varepsilon} \subset B_{r_\varepsilon}(a_{k,\varepsilon})} \left| d_{\ell,\varepsilon} \right| \geq |d_{k,\varepsilon}|.
\]
To do this, we fix some \(k \in \{1, \ldots, K\} \), and we define the set
\[
T_k := \{ r \in (0, r_\varepsilon) : \partial B_r(a_{k,\varepsilon}) \cap (\cup_{\ell \neq k} B_{\ell,\varepsilon}) = \emptyset \}.
\]
It follows from \((55)\) that \(|T_k| \geq \frac{1}{2} r_\varepsilon \). Now define a Lipschitz function \(\varphi : S \to \mathbb{R} \) by
\[
\varphi(x) := f(R_k(x)), \quad \text{for } f(r) := |T_k| - \int_0^r 1_{T_k}(s)ds, \quad R_k(x) := \text{dist}_S(x, a_{k,\varepsilon}).
\]
It is clear that \(\varphi(a_{k,\varepsilon}) = |T_k|, \| \varphi \|_{W^{1,\infty}} \leq 2 \) and the support of \(\varphi \) is inside \(B_{r_\varepsilon}(a_{k,\varepsilon}) \), so
\[
\left| \int \varphi \omega(u_\varepsilon) - 2\pi d_{k,\varepsilon} \varphi(a_{k,\varepsilon}) \right| \leq \| \varphi \|_{W^{1,\infty}} \| \omega(u_\varepsilon) - 2\pi \sum_{\ell=1}^{K_\varepsilon} d_{\ell,\varepsilon} \delta_{a_{\ell,\varepsilon}} \|_{W^{-1,1}} \leq 2r_\varepsilon^2,
\]
because by \((76)\), \(a_{i,\varepsilon} \notin B_{r_\varepsilon}(a_{k,\varepsilon}) \) if \(i \neq k \). Next, we define \(\tilde{u}_\varepsilon \) as in \((57)\), so that by Step 3 in the proof of Proposition 8.1,
\[
\int \varphi \omega(u_\varepsilon) = \int \varphi \omega(\tilde{u}_\varepsilon) + O(\varepsilon \| \log \varepsilon \|).
\]
We fix a moving frame \(\{ \tau_1, \tau_2 \} \) defined in \(B_{r_\varepsilon}(a_{k,\varepsilon}) \) and let \(A \) be the connection 1-form associated to it. Then by \((35)\) we may write \(\omega(\tilde{u}_\varepsilon) = d(j(\tilde{u}_\varepsilon) + A) \) in \(B_{r_\varepsilon}(a_{k,\varepsilon}) \). It follows
\[
\int \varphi \omega(\tilde{u}_\varepsilon) = \int_{\tau_0} d \left(\varphi(j(\tilde{u}_\varepsilon) + A) \right) - \int d\varphi \wedge (j(\tilde{u}_\varepsilon) + A) = - \int f'(R_k)dR_k \wedge (j(\tilde{u}_\varepsilon) + A).
\]
But the coarea formula and the definition of \(f \) imply that
\[
- \int_{\partial B_r(a_{k,\varepsilon})} f'(R_k) dR_k \wedge (j(\tilde{u}_\varepsilon) + A) = \int_{r \in T_k} \int_{\partial B_r(a_{k,\varepsilon})} (j(\tilde{u}_\varepsilon) + A) dr
\]
\[
= 2\pi \int_{r \in T_k} \deg(\tilde{u}_\varepsilon, \partial B_r(a_{k,\varepsilon})) dr,
\]
where we used (5) and \(|\tilde{u}_\varepsilon| = 1\) on \(\partial B_r(a_{k,\varepsilon}) \) for every \(r \in T_k \). Combining these, we find that
\[
|2\pi d_{k,\varepsilon}| |T_k| - 2\pi \int_{r \in T_k} \deg(\tilde{u}_\varepsilon, \partial B_r(a_{k,\varepsilon})) dr \leq Cr_\varepsilon^2
\]
for small \(\varepsilon > 0 \). As \(|T_k| \geq \frac{\varepsilon}{4}\), it follows that if \(\varepsilon \) is small enough, then \(|\deg(\tilde{u}_\varepsilon, \partial B_r(a_{k,\varepsilon}))| \geq |d_{k,\varepsilon}| \) for a large set of \(r \in T_k \). Choose one of these \(r \in T_k \). Since
\[
\deg(\tilde{u}_\varepsilon, \partial B_r(a_{k,\varepsilon})) = \sum_{\ell : B_\ell \subset B_r(a_{k,\varepsilon})} d_{\ell,\sigma},
\]
this implies (82). \(\square \)

We now present the proof of Proposition 9.1. The bulk of the proof is devoted to a sharp lower bound near the vortices, which uses preliminary estimates provided by Lemmas 9.3 and 9.4 to refine the conclusion of Lemma 9.4.

Proof of Proposition 9.1 point 1). By Step 1 in the proof of Proposition 8.1, we may assume that \(u_\varepsilon \) are smooth vector fields on \(S \) with \(|u_\varepsilon| \leq 1\) everywhere (as the cutting \(u_\varepsilon \) by \(\tilde{u}_\varepsilon \) and then regularizing as in Lemma 5.1 the new vector field satisfies the hypotheses of the Proposition but has less energy). We will explain in Step 6 below how to get the result for general vector fields without the constraint on the length of \(u_\varepsilon \). Next to the distinct points \(a = (a_1, \ldots, a_n) \in S \) and nonzero integers \(d = (d_1, \ldots, d_n) \) (given in the hypothesis of Proposition 9.1), using Lemma 9.2, we find \(K = K_\varepsilon \) distinct points \(a^\varepsilon = (a_1^\varepsilon, \ldots, a_K^\varepsilon) \) and nonzero integers \(d^\varepsilon = (d_1^\varepsilon, \ldots, d_K^\varepsilon) \) satisfying (76) for some \(r_\varepsilon \in (\frac{2n-1}{4}, \varepsilon^2) \) and for some \(\beta = \beta(n) > 0 \), \(\sum_k |d_{k,\varepsilon}| \leq n \) and \(\Phi^\varepsilon = (\Phi_{k,\varepsilon})_{k=1}^{2n} \in L(a^\varepsilon, d^\varepsilon) \) such that \(|\Phi(u_\varepsilon) - \Phi^\varepsilon| \leq C \sqrt{r_\varepsilon} \). Let \(j_\varepsilon^* = j(u^*(a^\varepsilon, d^\varepsilon, \Phi^\varepsilon)) \) as defined in (12).

Step 1. We prove that \(\sum_{k=1}^K |d_{k,\varepsilon}| = n \), and we control \(d_{k,\varepsilon}(a_{k,\varepsilon}, a_\ell) \) and the signs of \(d_{k,\varepsilon} \) for small \(\varepsilon > 0 \), i.e., every \(a_{k,\varepsilon} \) is close to some \(a_\ell \) with \(\text{sign} d_{k,\varepsilon} = \text{sign} d_\ell \). Moreover, \(W(a^\varepsilon, d^\varepsilon, \cdot) \) is coercive in \(\Phi^\varepsilon \) and \(W(a^\varepsilon, d^\varepsilon, \Phi^\varepsilon) \to \infty \) if a limit degree satisfies \(|d_\ell| > 1\).

First, Lemma 9.2 and (83) imply that
\[
\| \sum_{k=1}^K d_{k,\varepsilon} \delta_{a_{k,\varepsilon}} - \sum_{\ell=1}^{n_0} d_\ell \delta_{a_\ell} \|_{W^{-1,1}} := s_\varepsilon \to 0 \quad \text{as } \varepsilon \to 0.
\]

For small \(\varepsilon \) and for \(\ell = 1, \ldots, n_0 \), we consider the Lipschitz function
\[
f_{\varepsilon,\ell}(x) := \text{sign}(d_\ell)[2s_\varepsilon - \text{dist}_S(x, a_\ell)]^+, \quad x \in S,
\]
where \([\ldots]^+ = \max\{[\ldots], 0\}\). We also define, for \(\ell = 1, \ldots, n_0 \),
\[
I_\varepsilon^\ell := \{k \in \{1, \ldots, K\} : \text{dist}_S(a_{k,\varepsilon}, a_\ell) \leq 2s_\varepsilon\},
\]
\[
I_\varepsilon^\ell^+ := \{k \in I_\varepsilon^\ell : \text{sign}(d_{k,\varepsilon}) = \text{sign}(d_\ell)\}.
\]

We henceforth assume that \(\varepsilon \) is small enough that \(s_\varepsilon < 1 \) and the closed balls \(\{\bar{B}_{2s_\varepsilon}(a_\ell)\} \) are disjoint, and hence \(\{I_\varepsilon^\ell\}_\ell \) are pairwise disjoint. It follows from our convention for
defining Sobolev norms (see Section 5.3) that \(\| f_{\varepsilon, \ell} \|_{W^{1, \infty}} = 1 \). Thus
\[
\int f_{\varepsilon, \ell} \left(\sum_{l=1}^{n_0} d_l \delta_{a_l} - \sum_{k=1}^{K_{\varepsilon}} d_{k, \varepsilon} \delta_{a_{k, \varepsilon}} \right) \leq \| f_{\varepsilon, \ell} \|_{W^{1, \infty}} \left(\sum_{k=1}^{K_{\varepsilon}} d_{k, \varepsilon} \delta_{a_{k, \varepsilon}} - \sum_{l=1}^{n_0} d_l \delta_{a_l} \right) = s_{\varepsilon}.
\]
However, the definition and the smallness condition on \(s_{\varepsilon} \) imply that
\[
\int f_{\varepsilon, \ell} \left(\sum_{l=1}^{n_0} d_l \delta_{a_l} - \sum_{k=1}^{K_{\varepsilon}} d_{k, \varepsilon} \delta_{a_{k, \varepsilon}} \right) = 2s_{\varepsilon} |d_\ell| - \text{sign}(d_\ell) \sum_{k \in I^\varepsilon_{\ell}} d_{k, \varepsilon} (2s_{\varepsilon} - \text{dist}_S(a_{k, \varepsilon}, a_\ell)) \geq 2s_{\varepsilon} |d_\ell| - 2s_{\varepsilon} \sum_{k \in I^\varepsilon_{\ell}} |d_{k, \varepsilon}|.
\]
We combine these facts and divide by \(2s_{\varepsilon} \) to find that \(|d_\ell| - \sum_{k \in I^\varepsilon_{\ell}} |d_{k, \varepsilon}| \leq \frac{1}{2} \). Since both terms on the left are integers, it follows that
\[
|d_\ell| \leq \sum_{k \in I^\varepsilon_{\ell}} |d_{k, \varepsilon}| \quad \text{for } \ell = 1, \ldots, n_0.
\]
Summing over \(\ell \) and using the disjointness of \(\{ I^\varepsilon_{\ell} \} \), we obtain
\[
n = \sum_{\ell=1}^{n_0} |d_\ell| \leq \sum_{\ell} \sum_{k \in I^\varepsilon_{\ell}} |d_{k, \varepsilon}| \leq \sum_{\ell} \sum_{k \in I^\varepsilon_{\ell}} |d_{k, \varepsilon}| \leq \sum_{k=1}^{K_{\varepsilon}} |d_{k, \varepsilon}| \leq n.
\]
It follows that in fact for small \(\varepsilon \),
\[
\sum_{k=1}^{K_{\varepsilon}} |d_{k, \varepsilon}| = n, \quad \text{sign} d_{k, \varepsilon} = \text{sign} d_\ell \quad \text{for all } k \in I^\varepsilon_{\ell}, \quad \sum_{k \in I^\varepsilon_{\ell}} d_{k, \varepsilon} = d_\ell
\]
where the last equality holds due to (84) and the first two equalities in (85). In particular, one has that \(a_{k, \varepsilon} \to a_{\ell} \) for every \(k \in I^\varepsilon_{\ell} \); as for all \(1 \leq \ell \leq n_0 \) the indices \(\{ d_{k, \varepsilon} : k \in I^\varepsilon_{\ell} \} \) have the same sign, the explicit formula (22) for \(W \) implies that \(W(a^\varepsilon, d^\varepsilon, \cdot) \) is coercive in \(\Phi : \)
\[
W(a^\varepsilon, d^\varepsilon, \Phi^\varepsilon) = -C(a, d) + |\Phi|_2^2 \quad \text{for all } \varepsilon \in (0, \varepsilon_0),
\]
\[
W(a^\varepsilon, d^\varepsilon, \Phi^\varepsilon) \to +\infty \quad \text{as } \varepsilon \to 0, \text{ if } |d_\ell| > 1 \text{ for any } \ell.
\]
The point is that in the sum \(\sum_{1 \leq k \leq n} d_{k, \varepsilon} G(a_{k, \varepsilon}, a_{\ell}) \) in formula (22) for \(W \), Step 1 implies that \(\text{dist}_S(a_{k, \varepsilon}, a_{\ell}) \) is bounded away from 0, for small \(\varepsilon \), for all pairs \(k, \ell \) such that \(d_{k, \varepsilon} d_{\ell} \varepsilon < 0 \). Thus contributions from this sum are bounded below, and all other terms are manifestly also bounded from below as \(\text{dist}_S(a_{k, \varepsilon}, a_{\ell}) \) is bounded. Moreover, if \(|d_\ell| > 1 \) for any \(\ell \), then multiple points \(a_{k, \varepsilon} \) with the same sign \(d_{k, \varepsilon} \) must converge to the same \(a_{\ell} \), causing the sum \(\sum_{1 \leq k \leq n} d_{k, \varepsilon} G(a_{k, \varepsilon}, a_{\ell}) \) to diverge.

Step 2. We prove that \(|d_\ell| = |d_{k, \varepsilon}| = 1 \) for all \(1 \leq k \leq K \) and \(1 \leq \ell \leq n_0 \) (so, \(K = n = n_0 \)), \(\text{dist}_S(a_{k, \varepsilon}, a_{\ell}) \geq C > 0 \) for every \(k \neq \ell \) and \(\{ \Phi^\varepsilon \} \) converge (for a subsequence) as \(\varepsilon \to 0 \).

Indeed, by the energy estimates away from the vortex cores and inside the vortex cores as shown in Lemmas 9.3 and 9.4, we find for all sufficiently small \(\varepsilon > 0 \):
\[
\int_S e^{in}(u_{\varepsilon}) \text{vol}_g \geq \pi \sum_{k=1}^{K_{\varepsilon}} |d_{k, \varepsilon}| \log \frac{1}{\varepsilon} + \pi \sum_{k=1}^{K_{\varepsilon}} (d_{k, \varepsilon}^2 - |d_{k, \varepsilon}|) \log \frac{1}{\varepsilon} + W(a^\varepsilon, d^\varepsilon, \Phi^\varepsilon)
\]
\[
\quad + \int_{S_{\varepsilon}} \frac{1}{2} \left| \frac{j(u_{\varepsilon})}{|u_{\varepsilon}|^2} - j^\varepsilon \right|^2 + e^{in}(|u_{\varepsilon}|_g) \text{vol}_g - C,
\]
where $S_{r_\varepsilon} = S \setminus \bigcup_{k=1}^K B_{r_\varepsilon}(a_{k,\varepsilon})$. Then the upper bound (62) and (85) imply that
\[
\pi \sum_{k=1}^K (d_{k,\varepsilon}^2 - |d_{k,\varepsilon}|) \log \frac{1}{r_\varepsilon} + W(a^\varepsilon, d^\varepsilon, \Phi^\varepsilon) \leq C.
\]
Combined with the coercivity of W proved in Step 1, it follows that
\[
|d_{k,\varepsilon}| = 1 \quad \text{for all } k, \quad (so, K = n),
\]
\[
|d_\ell| = 1 \quad \text{for all } \ell, \quad |\Phi^\varepsilon| \leq C
\]
for all sufficiently small ε. Also, Step 1 implies $I_{\ell}^{\varepsilon,+} = I_{\ell}^\varepsilon$ containing only one point $a_{k,\varepsilon}$ that converges to a_{k} as $\varepsilon \to 0$, thus, yielding $\text{dist}(a_{k,\varepsilon}, a_{k}) \geq C > 0$ for every $k \neq \ell$ for small $\varepsilon > 0$. In particular, (64) holds (that is, Φ^ε converges) after possibly passing to a subsequence, and (86) implies that
\[
\int_{S_{r_\varepsilon}} \frac{1}{2} |\frac{j(u_\varepsilon)}{|u_\varepsilon|_g} - j^*_\varepsilon|_g^2 + e^{in}_\varepsilon(|u_\varepsilon|_g) \text{ vol}_g \leq C.
\]
It follows from the coarea formula that
\[
\int_{r_\varepsilon}^{\sqrt{r_\varepsilon}} \sum_{k=1}^n \int_{\partial B_t(a_{k,\varepsilon})} \left(\frac{1}{2} \left| \frac{j(u_\varepsilon)}{|u_\varepsilon|_g} - j^*_\varepsilon \right|_g^2 + e^{in}_\varepsilon(|u_\varepsilon|_g) \right) dH^1 dt \leq C
\]
and hence, since $r_\varepsilon \leq \varepsilon^\beta$ for some positive β, that there exists $t_\varepsilon \in (r_\varepsilon, \sqrt{r_\varepsilon})$ such that
\[
\sum_{k=1}^n t_\varepsilon \int_{\partial B_t(a_{k,\varepsilon})} \left(\frac{1}{2} \left| \frac{j(u_\varepsilon)}{|u_\varepsilon|_g} - j^*_\varepsilon \right|_g^2 + e^{in}_\varepsilon(|u_\varepsilon|_g) \right) dH^1 \leq C|\log \varepsilon|^{-1}.
\]

\textbf{Step 3. Passage in normal coordinates.} We now fix some $k \in \{1, \ldots, n\}$. We assume for concreteness, and to simplify the notation, that $d_{k,\varepsilon} = +1$. We aim to rewrite the integral around $\partial B_t(a_{k,\varepsilon})$ in exponential normal coordinates near $a_{k,\varepsilon}$, using a moving frame such that (68) holds (see (69) and the discussion in Section 9.1 for notation). Since we have arranged that $|u_\varepsilon|_g \leq 1$ everywhere, it follows from (67), (70) and (72) that on $\partial B_t(a_{k,\varepsilon})$.
\[
\left| \frac{j(u_\varepsilon)}{|u_\varepsilon|_g} - j^*_\varepsilon \right|_g^2 \left(\Psi(y) \right) = \left[1 + O(t_\varepsilon^{2}) \right] \left| \frac{j(v_\varepsilon)}{|v_\varepsilon|_g} - j^*_\varepsilon \right|_g^2 \left(\Psi(y) \right) - d\theta + O(1)
\]
\[
= \left[1 + O(t_\varepsilon^{-1/2}) \right] \left| \frac{j(v_\varepsilon)}{|v_\varepsilon|_g} - j^*_\varepsilon \right|_g^2 \left(\Psi(y) \right) - d\theta + O(t_\varepsilon^{-1/2}).
\]

where $d\theta := \frac{1}{|y_1|} (y_1 dy_2 - y_2 dy_1)$ and we used the Young inequality $|z_1 + z_2|^2 \leq (1 + t_\varepsilon^{-1/2})|z_1|^2 + (1 + t_\varepsilon^{-1/2})|z_2|^2$. Combining this with (87) and again using (70), we obtain
\[
t_\varepsilon \int_{\{y \in \mathbb{R}^2 : |y| = t_\varepsilon \}} \frac{1}{2} \left| \frac{j(v_\varepsilon)}{|v_\varepsilon|_g} - j^*_\varepsilon \right|_g^2 \left(\Psi(y) \right) - d\theta + e_\varepsilon(|v_\varepsilon|)(y) dH^1(y) \leq C|\log \varepsilon|^{-1}.
\]

\textbf{Step 4. We will show that}
\[
\int_{\{y \in \mathbb{R}^2 : |y| < t_\varepsilon \}} e_\varepsilon(v_\varepsilon) \ dy \geq \pi \log \frac{t_\varepsilon}{\varepsilon} + t_F + o(1) \quad \text{as } \varepsilon \to 0.
\]
To do this, it is convenient to define
\[
\beta_\varepsilon(v; r) := r \int_{\partial B_r} \left(\left| \frac{j(v)}{|v|} - d\theta \right| + e_\varepsilon(|v|) \right) dH^1(y),
\]
As an extension to a function \tilde{v}, this follows from the fact that if $v \in H^1(O; \mathbb{C})$, where O is a neighborhood of the origin in \mathbb{R}^2, containing the disk $B_r = \{ y \in \mathbb{R}^2 : |y| < r \}$. We further define for small $\delta > 0$:

$$I^\delta(\varepsilon, r) := \inf \left\{ \int_{B_r} e^\varepsilon(v) : v \in H^1(B_r; \mathbb{C}), \beta_\delta(v, r) \leq \delta \right\}.$$

By a change of variables one finds that for $v^*(x) := v(rx)$,

$$\beta_\delta(v, r) = \beta_{\delta/r}(v^*, 1),$$

and thus $I^\delta(\varepsilon, r) = I^\delta(\varepsilon/r, 1)$.

Note that $\beta_\delta(v, 1) = 0$ implies that $|v| = 1$ and $j(v) = d\theta$ on ∂B_1 (i.e., $v = e^{i(\theta + \bar{\eta})}$ for some constant $\bar{\eta}$) so that by (26):

$$\lim_{\varepsilon \to 0} \left(I^0(\varepsilon, 1) - \pi \log \frac{1}{\varepsilon} \right) = \iota_F$$

(see [3, Lemma III.1]). We also claim that for small $\delta > 0$:

$$I^\delta(\varepsilon, 1) \geq \pi \log \frac{1}{\varepsilon} + \iota_F - C\delta + o(1) \quad \text{as } \varepsilon \to 0.$$

This follows from the fact that if $v \in H^1(B_1; \mathbb{C})$ and $\beta_\delta(v; 1) \leq \delta$, then v admits an extension to a function $\tilde{v} \in H^1(B_2; \mathbb{C})$ such that $\beta_\delta(\tilde{v}, 2) = 0$ and

$$\int_{B_2 \setminus B_1} e^\varepsilon(\tilde{v}) \leq \pi \log 2 + C\delta.$$

Indeed, this may be done by writing $v(y) = \rho(y) e^{i(\theta + \eta(y))}$ for $|y| = 1$ with $\rho, \eta \in H^1(\partial B_1)$ with $|1 - \rho| = O(\varepsilon)$ pointwise on ∂B_1 and $||\partial_r \eta||_{L^2(\partial B_1)} = O(\delta)$ (due to the assumption $\beta_\delta(v, 1) \leq \delta$). Then for $1 \leq r \leq 2$, we set $\tilde{v}(ry) := [1 + (2 - r)(\rho(y) - 1)] \exp i(\theta + \bar{\eta} + (2 - r)(\eta(y) - \bar{\eta}))$, where $\bar{\eta}$ is the mean of η over ∂B_1. Thus for small $\varepsilon > 0$:

$$I^0(\varepsilon, 2) \leq \int_{B_2 \setminus B_1} e^\varepsilon(\tilde{v}) \, dy \leq \int_{B_1} e^\varepsilon(v) \, dy + \pi \log 2 + C\delta.$$

It follows that $I^\delta(\varepsilon, 1) \geq I^0(\varepsilon, 2) - \pi \log 2 - C\delta$, which implies (91). Then by combining (91) and (89), we conclude Step 4.

Step 5. Lower bound (65). By Step 4 combined with (71), we deduce that

$$\int e^\varepsilon(u_\varepsilon) \, vol_g \geq \pi \log \frac{1}{\varepsilon} + \iota_F + o(1) \quad \text{as } \varepsilon \to 0, \quad \text{for every } 1 \leq k \leq n.$$

As $t_\varepsilon \in (r_\varepsilon, \sqrt{r_\varepsilon})$ and $\text{dist}_S(a_{k, \varepsilon}, a_{\ell, \varepsilon}) = O(1) \geq t_\varepsilon$ for $k \neq \ell$, we see that (76) holds true for t_ε so that we can apply Lemma 9.3 for t_ε yielding:

$$\int e^\varepsilon(u_\varepsilon) \, vol_g \geq n\pi \log \frac{1}{t_\varepsilon} + W(a^\varepsilon, d^\varepsilon, \Phi^\varepsilon) + \int e^\varepsilon(|u_\varepsilon|_g) \, vol_g - o(1)$$

as $\varepsilon \to 0$. By adding these inequalities and noting that for every fixed $\sigma > 0$, $j^*_\varepsilon \to j^* = j(u^*(a, d, \Phi))$ uniformly on $S \setminus \cup_{k=1}^n B_\sigma(a_k)$ and $W(a^\varepsilon, d^\varepsilon, \Phi^\varepsilon) \to W(a, d, \Phi)$ as $\varepsilon \to 0$, we complete the proof of (65).
Proof of Theorem 2.5.\footnote{Step 6. Conclusion. We finally consider the general case, without the assumption $|u_\varepsilon|_g \leq 1$. Due to the cutting u_ε by $\hat u_\varepsilon$ (see Step 1 of the proof of Proposition \ref{prop-0}), as $e^\varepsilon\in(\hat u_\varepsilon|_g) = 0$ a.e. in $\{|u_\varepsilon|_g \geq 1\}$, it remains to check for a fixed $\sigma > 0$:

\begin{align}
E^\varepsilon(u_\varepsilon) - E^\varepsilon(\hat u_\varepsilon) \\
\geq \int_{\{x \in S_\varepsilon : |u_\varepsilon|_g(x) > 1\}} \frac{1}{2} \left| \frac{j(u_\varepsilon)}{|u_\varepsilon|_g} - j^{\ast}\right|^2 + e^\varepsilon(|u_\varepsilon|_g) - \frac{1}{2} \left| j(\hat u_\varepsilon) - j^{\ast}\right|^2 \ vol_g + o(1), \quad \text{as } \varepsilon \to 0,
\end{align}

where we denoted by $S_\varepsilon = S \setminus \bigcup_{k=1}^n B_\sigma(a_k)$ and $j^{\ast} = j(u^{\ast}(a,d,\Phi))$. Using \ref{eq:9} and $j(u_\varepsilon) = |u_\varepsilon|^2_g j(\hat u_\varepsilon)$ in $\{|u_\varepsilon|_g > 1\}$, the above inequality will follow from

\begin{align}
\int_{\{x \in S_\varepsilon : |u_\varepsilon|_g(x) > 1\}} (|u_\varepsilon|_g - 1) (j(\hat u_\varepsilon), j^{\ast})_g vol_g = o(1) \quad \text{as } \varepsilon \to 0.
\end{align}

To prove this, we use $|j(\hat u_\varepsilon)|_g = |D\hat u_\varepsilon|_g \leq |Du|_g$ in $\{|u_\varepsilon|_g > 1\}$ so that we obtain by \ref{eq:1} and the Cauchy-Schwarz inequality:

\begin{align}
&\left| \int_{\{x \in S_\varepsilon : |u_\varepsilon|_g(x) > 1\}} (|u_\varepsilon|_g - 1) (j(\hat u_\varepsilon), j^{\ast})_g vol_g \right| \\
&\leq \|j^{\ast}\|_{L^\infty(S_\varepsilon)} \left(\int_{S} F(|u_\varepsilon|^2_g) vol_g \right)^{1/2} \left(\int_{S} |Du|_g^2 vol_g \right)^{1/2} = O(\frac{\varepsilon|\log \varepsilon|}{\sigma}) = o(1).
\end{align}

\begin{proof}
Proof of Theorem 2.5. It is a direct consequence of Corollary \ref{cor-0} and Proposition \ref{prop-0}.\end{proof}

10. Γ-limit in the extrinsic case

In this section we prove the counterpart of Proposition \ref{prop-0} for the extrinsic energy E^ε in Problem 2. Here, the surface S is isometrically embedded in \mathbb{R}^3.

Theorem 10.1. The following Γ-convergence result holds.

1) (Compactness) Let $(m_\varepsilon)_{\varepsilon \downarrow 0}$ be a family of sections of $\mathcal{X}^{1,2}(S)$ satisfying $E^\varepsilon(m_\varepsilon) \leq T\pi|\log \varepsilon| + C$ for some integer $T > 0$ and a constant $C > 0$. Then there exists a sequence $\varepsilon \downarrow 0$ such that for every $p \in [1,2)$,

\begin{align}
\omega(m_\varepsilon) \longrightarrow 2\pi \sum_{k=1}^n d_k \delta_{a_k} \quad \text{in } W^{-1,p}, \quad \text{as } \varepsilon \to 0,
\end{align}

where $\{a_k\}_{k=1}^n$ are distinct points in S and $\{d_k\}_{k=1}^n$ are nonzero integers satisfying \ref{eq:7} and $\sum_{k=1}^n |d_k| \leq T$. Moreover, if $\sum_{k=1}^n |d_k| = T$, then $n = T$ and $|d_k| = 1$ for every $k = 1, \ldots, n$; in this case, for a further subsequence, there exists $\Phi \in \mathcal{L}(a,d)$ such that $\Phi(m_\varepsilon)$ defined in \ref{eq:51} converges to Φ as $\varepsilon \to 0$.

2) (Γ-liminf inequality) Assume that the sections $m_\varepsilon \in \mathcal{X}^{1,2}(S)$ satisfy \ref{eq:92} for n distinct points $\{a_k\}_{k=1}^n \in S^n$ and $|d_k| = 1$, $k = 1, \ldots, n$ that satisfy \ref{eq:7} and $\Phi(m_\varepsilon) \to \Phi \in \mathcal{L}(a,d)$. Then

\begin{align}
\liminf_{\varepsilon \to 0} [E^\varepsilon(m_\varepsilon) - n(\pi|\log \varepsilon| + \epsilon_F)] \geq W(a,d,\Phi) + \tilde W(a,d,\Phi)
\end{align}

for $u^\ast = u^\ast(a,d,\Phi)$, $a = (a_1, \ldots, a_n)$, $d = (d_1, \ldots, d_n)$ and $\tilde W(a,d,\Phi)$ defined in \ref{eq:24}.
3) \((\varepsilon, \limsup \text{ inequality}) \) For every \(n \) distinct points \(a_1, \ldots, a_n \in S \) and \(d_1, \ldots, d_n \in \{\pm 1\} \) satisfying \([1] \) and every \(\Phi \in \mathcal{L}(a; d) \) there exists a sequence of smooth sections \(m_\varepsilon : S \to TS \) such that \(|m_\varepsilon|_g \leq 1 \) in \(S \), \([92] \) holds, \(\Phi(m_\varepsilon) \to \Phi \) and
\[
E_\varepsilon^e(m_\varepsilon) - n\pi |\log \varepsilon| \to W(a, d, \Phi) + \tilde{W}(a, d, \Phi) + n \mu_F \quad \text{as} \quad \varepsilon \to 0.
\]

10.1. **Compactness.** Let us start by computing the extrinsic Dirichlet energy of a section \(m \):

Lemma 10.2. If \(m : S \to TS \) is a section of \(\mathcal{A}^{1,2} \) then
\[
|\bar{D}m|_g^2 = |Dm|_g^2 + |S(m)|_g^2 \quad \text{a.e. in} \ S,
\]
where \(S : TS \to TS \) is the shape operator defined in \([23] \).

Proof. Let \(\{\tau_1, \tau_2 = i\tau_1\} \) be a local moving frame on \(S \), i.e.,
\[
\tau_\ell \cdot \tau_k := (\tau_\ell, \tau_k)_g = \delta_{\ell k}, \quad \ell, k = 1, 2.
\]
We write
\[
m = \sum_{k=1}^{2} m^k \tau_k, \quad D_\ell m := D_{\tau_\ell} m, \quad \bar{D}_\ell m := \tau_\ell \cdot Dm, \ \ell = 1, 2.
\]
Denoting \(N \) the Gauss map at \(S \), we decompose the extrinsic differential as follows:
\[
\bar{D}m = Dm + (\bar{D}m \cdot N) \otimes N, \quad \text{i.e.,} \quad \bar{D}_\ell m = D_\ell m + (\bar{D}_\ell m \cdot N) N, \quad \ell = 1, 2.
\]
Therefore,
\[
|\bar{D}m|_g^2 = \sum_{\ell=1}^{2} |\bar{D}_\ell m|_g^2 = \sum_{\ell=1}^{2} \left(|D_\ell m|_g^2 + (\bar{D}_\ell m \cdot N)^2 \right).
\]
Recall the definition of the shape operator \([23] \) (in particular, \(S(\tau_\ell) = -\bar{D}_\ell N \) for \(\ell = 1, 2 \)). It is a standard fact that \(S \) is a symmetric operator corresponding to the second fundamental form \(H \) of \(S \); in other words, we have in the frame \(\{\tau_1, \tau_2\} \) that \([13] \)
\[
H_{\ell k} = \tau_k \cdot S(\tau_\ell) = \tau_\ell \cdot S(\tau_k) = H_{k\ell}.
\]
Therefore, as \(m \cdot N = 0 \) on \(S \), we compute for every \(\ell = 1, 2 \):
\[
\bar{D}_\ell m \cdot N = -m \cdot \bar{D}_\ell N = \sum_{k=1}^{2} m^k \tau_k \cdot S(\tau_\ell) = \sum_{k=1}^{2} m^k \tau_\ell \cdot S(\tau_k) = \tau_\ell \cdot S(m)
\]
so that
\[
\sum_{\ell=1}^{2} (\bar{D}_\ell m \cdot N)^2 = |S(m)|_g^2 = \sum_{1 \leq \ell, k \leq 2} m^\ell m^k H_{\ell k}^2, \quad \text{where} \ H_{\ell k}^2 = \sum_{\ell=1}^{2} H_{\ell \ell} H_{\ell k}.
\]

Proof of Theorem 10.1 point 1. By Lemma 10.2, we see that \(E^{in}_\varepsilon(m_\varepsilon) \leq E^{ex}_\varepsilon(m_\varepsilon) \), so that we can apply Corollary 8.3 and Theorem 2.14 point 1) to reach the conclusion. Note that the lower bound of \(E^{ex}_\varepsilon(m_\varepsilon) \) in Corollary 8.3 holds also true for \(E^{in}_\varepsilon(m_\varepsilon) \).
10.2. Upper bound. In the following, we adapt the construction from the proof of Proposition 9.1 point 2) to the case of Problem 2.

Proof of Theorem 10.1 point 3). Let \(u^* = u^*(a, d, \Phi) \) be a canonical harmonic map and \(\Theta \) be a minimizer in (24) (such a minimizer exists by the direct method in calculus of variations). Let \(\Theta \) satisfies the associated Euler-Lagrange equation to (24):

\[
- \Delta \Theta + \frac{1}{2} (\cos(2\Theta)(s(u^*), s(iu^*))_g + \sin(2\Theta)(|s(iu^*)|^2_g - |s(u^*)|^2_g)) = 0 \quad \text{in } S.
\]

Therefore, \(\Delta \Theta \in L^\infty \) so \(\Theta \in C^1(S) \). Let \(U_\varepsilon := U_\varepsilon(a, d, \Phi) \) be the vector field constructed for the upper bound in Proposition 9.1. We set

\[
m_\varepsilon := e^{i\Theta}U_\varepsilon \quad \text{in } S.
\]

By Lemma 10.2 we have that \(|Dm_\varepsilon|^2_g = |Dm_\varepsilon|^2_g + |S(m_\varepsilon)|^2_g \). We compute the intrinsic part as follows:

\[
D_\ell m_\varepsilon = e^{i\Theta}D_\ell U_\varepsilon + ie^{i\Theta}\partial_\ell \Theta U_\varepsilon
\]

yielding

\[
|Dm_\varepsilon|^2_g = |DU_\varepsilon|^2_g + |U_\varepsilon|^2_g|d\Theta|^2_g + 2\sum_\ell \partial_\ell \Theta(D_\ell U_\varepsilon, iU_\varepsilon)_g
\]

so that

\[
|\bar{D}m_\varepsilon|^2_g = |DU_\varepsilon|^2_g + |U_\varepsilon|^2_g|d\Theta|^2_g + |S(m_\varepsilon)|^2_g + 2(j(U_\varepsilon), d\Theta)_g.
\]

Recall that \(|U_\varepsilon|_g \leq 1 \) in \(S \) and \(U_\varepsilon = u^* \) in \(S \setminus \mathcal{E} = S \setminus \cup_k B_{\sqrt{\varepsilon}}(a_k) \). Since \(|m_\varepsilon|_g = |U_\varepsilon|_g \), we deduce by (24):

\[
E^{\text{ex}}_\varepsilon(m_\varepsilon) \leq \int_S e^{i\varepsilon \pi(U_\varepsilon)} \text{vol}_g + \bar{W}(a, d, \Phi) + \int_S (j(U_\varepsilon), d\Theta)_g \text{vol}_g + \frac{1}{2} \int_{S \setminus S_{\sqrt{\varepsilon}}} |S(m_\varepsilon)|^2_g \text{vol}_g.
\]

The desired upper bound follows by the upper bound of \(E^{\text{ex}}_\varepsilon(U_\varepsilon) \) in Proposition 9.1 point 2), by noting that as \(\varepsilon \to 0 \):

\[
\int_{S \setminus S_{\sqrt{\varepsilon}}} |S(m_\varepsilon)|^2_g \text{vol}_g = o(1)
\]

(as \(|m_\varepsilon|_g \leq 1 \)) and

\[
\left| \int_S (j(U_\varepsilon), d\Theta)_g \text{vol}_g \right| \leq \left| \int_S (j(u^*), d\Theta)_g \text{vol}_g \right| \left| \int_{S \setminus S_{\sqrt{\varepsilon}}} (j(U_\varepsilon) - j(u^*), d\Theta)_g \text{vol}_g \right|
\]

\leq \left| \int_S (d^*j(u^*), \Theta)_g \text{vol}_g \right| + \|d\Theta\|_{L^\infty} \int_{S \setminus S_{\sqrt{\varepsilon}}} |j(U_\varepsilon) - j(u^*)|_g \text{vol}_g
\]

\[= o(1)
\]

because \(j(U_\varepsilon) - j(u^*) \to 0 \) strongly in \(L^p(S) \) for every \(p \in [1, 2] \) (see (73)). It remains to prove the convergence of the vorticity \(\omega(m_\varepsilon) \) and of the flux integrals \(\Phi(m_\varepsilon) \) as \(\varepsilon \to 0 \). For that, we use \(\bar{j}(m_\varepsilon) = d\Theta|U_\varepsilon|^2_g + j(U_\varepsilon) \); since \(d\Theta(1 - |U_\varepsilon|^2_g) \to 0 \) in \(L^p(S) \) for every \(p \in [1, 2] \) (as \(d\Theta \in L^\infty \) and \(|U_\varepsilon|_g = 1 \) in \(S_{\sqrt{\varepsilon}} \)), we deduce by (73):

\[
dj(m_\varepsilon) = d \left(j(U_\varepsilon) + d\Theta - d\Theta(1 - |U_\varepsilon|^2_g) \right) \to dj(u^*)
\]
Lemma 10.3. For a constant \(C \), there exist \(C \) for all \(\eta \), integration by parts and \((75) \) yield

\[
\int_S (j(m_\varepsilon), \eta)_g \text{vol}_g = \int_S (j(U_\varepsilon), \eta)_g + (d\Theta, \eta)_g \text{vol}_g - \int_{S \setminus S^\varepsilon} (1 - |U_\varepsilon|^2)(d\Theta, \eta)_g \text{vol}_g
\]

\[
= \int_S (j(u^*), \eta)_g \text{vol}_g + o(1)
\]

because \(d\Theta \in L^\infty \); in particular, \(\Phi(m_\varepsilon) \to \Phi(u^*) \) for \(\varepsilon \to 0 \). The smoothing argument follows as in Step 1 in the proof of Proposition 8.1.

10.3. Lower bound.

Following the proof in the intrinsic case in Proposition 9.1, we start with a sharp lower bound away from the vortices, parallel to Lemma 9.3 above. Let \(u_\varepsilon \) satisfy the assumption in Theorem 10.1 point 2). As \(E_{ex}^\varepsilon(m_\varepsilon) \geq E_{in}^\varepsilon(m_\varepsilon) \), by the proof of Proposition 9.1 point 1), there exist \(\beta = \beta(n) > 0 \) and

- \(n \) distinct points \(a^\varepsilon = (a_{1,\varepsilon}, \ldots, a_{n,\varepsilon}) \) and integers \(d^\varepsilon = (d_{1,\varepsilon}, \ldots, d_{n,\varepsilon}) \) such that \((76) \) is satisfied for the vorticity \(\omega(m_\varepsilon) \) for some \(r_\varepsilon \in (\frac{1}{\pi(n+1)}, \varepsilon^2) \), and with \(|d_{k,\varepsilon}| = 1 \) for all \(k \);
- \(\Phi^\varepsilon = (\Phi_{k,\varepsilon})_{k=1}^{2\varepsilon} \in L(a^\varepsilon, d^\varepsilon) \) such that \(|\Phi(m_\varepsilon) - \Phi^\varepsilon| \leq C \sqrt{\varepsilon} \).

Moreover, \(\text{dist}(a_{k,\varepsilon}, a_{\ell,\varepsilon}) \geq C > 0 \) for every \(k \neq \ell, a_{k,\varepsilon} \to a_k \) as \(\varepsilon \to 0 \) and \(|\Phi^\varepsilon| \leq C \) (because \(\Phi(m_\varepsilon) \to \Phi \) by hypothesis). In addition, \(d_{k,\varepsilon} \to d_k \) as \(\varepsilon \to 0 \), and thus in fact \(d_{k,\varepsilon} = d_k \) for all \(k \), when \(\varepsilon \) is small enough. Finally, from Lemma 9.3 we have

\[
(97) \quad \int_{B_{r_\varepsilon}(a_{k,\varepsilon})} e_{ex}^\varepsilon(m_\varepsilon) \text{vol}_g \geq \int_{B_{r_\varepsilon}(a_{k,\varepsilon})} e_{in}^\varepsilon(m_\varepsilon) \text{vol}_g \geq (\pi \log \frac{r_\varepsilon}{\varepsilon} - C), \quad k = 1, \ldots, n.
\]

Also, we may assume that

\[
(98) \quad E_{ex}^\varepsilon(m_\varepsilon) \leq n(\pi \log \varepsilon + C)
\]

for a constant \(C = C(a, d, \Phi) > 0 \), since otherwise \((93) \) is obvious.

Lemma 10.3. Under the above hypotheses,

\[
(99) \quad \int_{S_{r_\varepsilon}} e_{ex}^\varepsilon(m_\varepsilon) \text{vol}_g \geq \pi n \log \frac{1}{r_\varepsilon} + (W + \tilde{W})(a^\varepsilon, d^\varepsilon, \Phi^\varepsilon) - o(1) \quad \text{as} \quad \varepsilon \to 0,
\]

for \(S_{r_\varepsilon} := S \setminus \cup_k B_{r_\varepsilon}(a_{k,\varepsilon}) \).

Proof. For the proof it is useful to define a functional \(I_\varepsilon[w; a, d, \Phi] \) on \(H^1(S; \mathbb{C}) \):

\[
(100) \quad I_\varepsilon[w; a, d, \Phi] = \int_S \frac{1}{2} |dw|_g^2 + \frac{1}{2} |\text{Vol}(wu^*(a, d, \Phi))|_g^2 + \frac{1}{4\varepsilon^2} F(|w|_g^2) \text{vol}_g.
\]

We will also write \(u^*_\varepsilon := u^*(a^\varepsilon, d^\varepsilon, \Phi^\varepsilon) \) and \(j^*_\varepsilon = j(u^*_\varepsilon) \).

Step 1. It follows from \((79) \) and \((80) \) that

\[
(101) \quad \int_{S_{r_\varepsilon}} e_{in}^\varepsilon(m_\varepsilon) \text{vol}_g = \int_{S_{r_\varepsilon}} \frac{1}{2} j^*_\varepsilon |j^*_\varepsilon|_g^2 - \frac{1}{2} \left| j^*_\varepsilon \right|_g^2 + e_{in}^\varepsilon(|m_\varepsilon|_g) \text{vol}_g + o(1).
\]

\[\text{Recall from Theorem 2.1 that } u^*(a, d, \Phi) \text{ is unique only up to a rotation. For purposes of this definition, we assume that a representative } u^* \text{ has been (arbitrarily) fixed. In the end we are only interested in } \inf I_\varepsilon, \text{ and this is independent of the chosen rotation. We will therefore feel free to adjust the rotations as needed.}\]
For every $x \in S \setminus \{a^e\}$, since $\{u^e_\varepsilon(x), iu^e_\varepsilon(x)\}$ is a basis for $T_x S$, there is a $w_\varepsilon(x) \in \mathbb{C}$ such that

$$m_\varepsilon = w_\varepsilon u^e_\varepsilon.$$

If $m_\varepsilon \in \mathcal{X}^{1,2}(S)$, then it is clear that the function $w_\varepsilon : S \to \mathbb{C}$ defined in this way belongs to H^1_{loc} away from $\{a^e\}$, and Section 5.3 shows that

$$d|w_\varepsilon| = d|m_\varepsilon| g, \quad \frac{(iw_\varepsilon, dw_\varepsilon)}{|w_\varepsilon|} = \frac{j(m_\varepsilon)}{|m_\varepsilon|} - |m_\varepsilon| g j^*_\varepsilon,$$

$$|dw_\varepsilon|^2 = |d|w_\varepsilon| |g|, \quad \frac{1}{2} |iw_\varepsilon, dw_\varepsilon|_g^2 = \frac{1}{2} |j(m_\varepsilon)|^2 - |m_\varepsilon| |g j^*_\varepsilon|^2,$$

where here (\cdot, \cdot) denotes the real inner product on \mathbb{C}, defined by $(v, w) := \frac{1}{2}(v \bar{w} + w \bar{v})$. From Lemma 10.2 we also know that $e^{ex}_\varepsilon (m_\varepsilon) = e^{in}_\varepsilon (m_\varepsilon) + \frac{1}{2} |S(m_\varepsilon)|^2$. It follows that

$$\int_{S_\varepsilon} e^{ex}_\varepsilon (m_\varepsilon) \text{ vol}_g = \int_{S_\varepsilon} \frac{1}{2} |j^*_\varepsilon|_g^2 \text{ vol}_g + \int_{S_\varepsilon} \frac{1}{2} |dw_\varepsilon|_g^2 + \frac{1}{2} |S(w_\varepsilon u^*_\varepsilon)|^2_g + \frac{1}{4 \varepsilon^2} |F(|w_\varepsilon|^2)| \text{ vol}_g$$

$$+ \frac{1}{2} \int_{S_\varepsilon} \left| \frac{j(m_\varepsilon)}{|m_\varepsilon|} - j^*_\varepsilon \right|^2 - \frac{1}{2} \left| \frac{j(m_\varepsilon)}{|m_\varepsilon|} - |m_\varepsilon| g j^*_\varepsilon \right|^2 \text{ vol}_g + o(1).$$

Clearly

$$\left| \frac{j(m_\varepsilon)}{|m_\varepsilon|} - j^*_\varepsilon \right|^2 - \frac{1}{2} \left| \frac{j(m_\varepsilon)}{|m_\varepsilon|} - |m_\varepsilon| g j^*_\varepsilon \right|^2 = 2 \frac{j(m_\varepsilon)}{|m_\varepsilon|} \cdot j^*_\varepsilon (|m_\varepsilon| g - 1) + |j^*_\varepsilon|^2 (1 - |m_\varepsilon|^2).$$

Since j^*_ε is smooth away from $\{a^e\}$ and blows up like $\text{dist}_S(\cdot, a_k, e)^{-1}$ near each a_k, e, see (72), it is clear that $|j^*_\varepsilon|_g \leq C \varepsilon^{-1} \leq C e^{-\frac{1}{\pi \varepsilon}}$ on S_ε. Recalling that $|\frac{j(m_\varepsilon)}{|m_\varepsilon|}| \leq |D m_\varepsilon|_g$, straightforward estimates then show that

$$\left| \int_{S_\varepsilon} \left| \frac{j(m_\varepsilon)}{|m_\varepsilon|} - j^*_\varepsilon \right|^2 - \frac{1}{2} \left| \frac{j(m_\varepsilon)}{|m_\varepsilon|} - |m_\varepsilon| g j^*_\varepsilon \right|^2 \text{ vol}_g \right| \leq C \varepsilon^{-1} E^{in}_\varepsilon (m_\varepsilon) + C \varepsilon^{-2} \sqrt{E^{in}_\varepsilon (m_\varepsilon)} = o(1)$$

as $\varepsilon \to 0$. We infer that

$$\int_{S_\varepsilon} e^{ex}_\varepsilon (m_\varepsilon) \text{ vol}_g = \int_{S_\varepsilon} \frac{1}{2} |j^*_\varepsilon|_g^2 \text{ vol}_g + \int_{S_\varepsilon} \frac{1}{2} |dw_\varepsilon|_g^2 + \frac{1}{2} |S(w_\varepsilon u^*_\varepsilon)|^2_g + \frac{1}{4 \varepsilon^2} |F(|w_\varepsilon|^2)| \text{ vol}_g + o(1).$$

Step 2. It follows from (97) and (101) that

$$\int_{S_\varepsilon} \frac{1}{2} |dw_\varepsilon|_g^2 + \frac{1}{2} |S(w_\varepsilon u^*_\varepsilon)|^2_g + \frac{1}{4 \varepsilon^2} |F(|w_\varepsilon|^2)| \text{ vol}_g$$

$$\leq E^{ex}_\varepsilon (m_\varepsilon) - \int_{S_\varepsilon} \frac{1}{2} |j^*_\varepsilon|_g^2 \text{ vol}_g - n \pi \log \frac{r_\varepsilon}{\varepsilon} + C.$$

We recall also that, in view of (87), the fact that u^*_ε is a unit vector field implies that $|j^*_\varepsilon|_g = |Du^*_\varepsilon|$, and hence (from the definition of the intrinsic renormalized energy) that

$$\int_{S_\varepsilon} \frac{1}{2} |j^*_\varepsilon|_g^2 \text{ vol}_g = W(a^e, d^e, \Phi^e) + n \pi \log \frac{1}{r_\varepsilon} + o(1).$$

Combining the above estimates with (98), we deduce that

$$\int_{S_\varepsilon} \frac{1}{2} |dw_\varepsilon|_g^2 + \frac{1}{2} |S(w_\varepsilon u^*_\varepsilon)|^2_g + \frac{1}{4 \varepsilon^2} |F(|w_\varepsilon|^2)| \text{ vol}_g \leq C$$

for some constant independent of ε.

Step 3. We next claim that exists \(\tilde{w}_\varepsilon \in H^1(S; \mathbb{C}) \) such that \(\tilde{w}_\varepsilon = w_\varepsilon \) on \(S_{\sqrt{r_\varepsilon}} \) and

\[
\mathcal{I}_\varepsilon[\tilde{w}_\varepsilon; a^\varepsilon, d^\varepsilon, \Phi^\varepsilon] \leq \int_{S_{\sqrt{r_\varepsilon}}} \frac{1}{2} |dw_\varepsilon|^2_g + \frac{1}{2} |S(w_\varepsilon u_\varepsilon^*)|^2_g + \frac{1}{4\varepsilon^2} F(|w_\varepsilon|^2) \operatorname{vol}_g + o(1)
\]

as \(\varepsilon \to 0 \), where \(\mathcal{I}_\varepsilon \) was defined at (100).

First, fix some \(k \in \{1, \ldots, n\} \) and consider exponential normal coordinates \(\Psi \) at \(a_{k,\varepsilon} \), mapping a Euclidean ball \(\{y \in \mathbb{R}^2 : |y| < \tau_\varepsilon\} \) onto the geodesic ball \(B_{r_\varepsilon}(a_{k,\varepsilon}) \) in \(S \), see Section 9.1. For \(y \in \mathbb{R}^2 \) such that \(r_\varepsilon \leq |y| \leq \sqrt{r_\varepsilon} \), let \(v_\varepsilon(y) := w_\varepsilon(\Psi(y)) \). We may then rewrite the energy of \(w_\varepsilon \) in this annulus in terms of \(v_\varepsilon \). Using (67) to approximate the metric \(g \) by the Euclidean metric, we find that

\[
\int_{B_{\sqrt{r_\varepsilon}}(a_{k,\varepsilon}) \setminus B_{r_\varepsilon}(a_{k,\varepsilon})} \frac{1}{2} |dw_\varepsilon|^2_g + \frac{1}{4\varepsilon^2} F(|w_\varepsilon|^2) \operatorname{vol}_g = (1 + O(r_\varepsilon)) \int_{\{y \in \mathbb{R}^2 : |y| < \sqrt{r_\varepsilon}\}} e_\varepsilon(v_\varepsilon)(y)dy
\]

where \(e_\varepsilon(v_\varepsilon) \) denotes the Euclidean Ginzburg-Landau energy and \(dy \) is the Euclidean area element. By arguing as in Step 3 of the proof of Proposition 9.1, see (87), we may find some \(\tilde{t}_\varepsilon \in (r_\varepsilon, \sqrt{r_\varepsilon}) \) such that

\[
\tilde{t}_\varepsilon \int_{\{y \in \mathbb{R}^2 : |y| = \tilde{t}_\varepsilon\}} e_\varepsilon(v_\varepsilon)(y) \varepsilon \omega(\varepsilon)^{-1}.
\]

In particular, writing \(\partial_y \) for the tangential derivative, it follows from Cauchy-Schwarz that

\[
\int_{\{y \in \mathbb{R}^2 : |y| = \tilde{t}_\varepsilon\}} |\partial_y v_\varepsilon| \omega(\varepsilon)^{-1/2} \leq C \omega(\varepsilon)^{-1/2}.
\]

Hence the total variation of \(v_\varepsilon \) on \(\{y \in \mathbb{R}^2 : |y| = \tilde{t}_\varepsilon\} \) is bounded by \(C \omega(\varepsilon)^{-1/2} \). Since \(\tilde{t}_\varepsilon \geq \varepsilon^{1/(n+1)} \) and \(\tilde{t}_\varepsilon \int_{\{y \in \mathbb{R}^2 : |y| = \tilde{t}_\varepsilon\}} F(|v_\varepsilon|^2) \omega \varepsilon \omega(\varepsilon)^{-1} \leq C \varepsilon^2 \omega(\varepsilon)^{-1} \), it follows that there is some constant \(v_0 \) of unit modulus such that \(|v_\varepsilon(y) - v_0| \leq C \omega(\varepsilon)^{-1/2} \) whenever \(|y| = \tilde{t}_\varepsilon \). We may thus write

\[
v_\varepsilon(y) = \rho(y) e^{i\eta(y)} \quad \text{for } |y| = \tilde{t}_\varepsilon,
\]

where \(\eta \) is \(H^1 \) and real-valued. In particular, \(\rho \leq 2 \) on \(\{y \in \mathbb{R}^2 : |y| = \tilde{t}_\varepsilon\} \). Let \(\bar{\eta} \) denote the mean of \(\eta \) on \(\{y \in \mathbb{R}^2 : |y| = \tilde{t}_\varepsilon\} \), and define a complex-valued function \(\tilde{v}_\varepsilon \) on \(\{y \in \mathbb{R}^2 : |y| < \tilde{t}_\varepsilon\} \) by

\[
\tilde{v}_\varepsilon(sy) := [1 + s(\rho(y) - 1)] \exp[i(\bar{\eta} + s(\eta(y) - \bar{\eta}))]
\]

for \(|y| = \tilde{t}_\varepsilon, 0 \leq s \leq 1 \).

Then one can check from (107) that

\[
\int_{\{y \in \mathbb{R}^2 : |y| < \tilde{t}_\varepsilon\}} e_\varepsilon(\tilde{v}_\varepsilon)(y)dy \leq C \omega(\varepsilon)^{-1}.
\]

We next define \(\tilde{w}_\varepsilon(x) = \tilde{v}_\varepsilon(\Psi^{-1}(x)) \) in \(B_{\tilde{t}_\varepsilon}(a_{k,\varepsilon}) \subset S \). We remark that since the area of \(B_{\tilde{t}_\varepsilon}(a_{k,\varepsilon}) \) is bounded by \(C \tilde{t}_\varepsilon^2 \) and \(|\tilde{w}_\varepsilon| \leq 2 \) in \(B_{\tilde{t}_\varepsilon}(a_{k,\varepsilon}) \), it is clear that

\[
\int_{B_{\tilde{t}_\varepsilon}(a_{k,\varepsilon})} |S(\tilde{w}_\varepsilon u_\varepsilon^*)|^2_g \operatorname{vol}_g \leq C \int_{B_{\tilde{t}_\varepsilon}(a_{k,\varepsilon})} |\tilde{w}_\varepsilon| \operatorname{vol}_g = o(1)
\]
as \(\varepsilon \to 0 \).

Now we proceed in the same fashion for every \(k \in \{1, \ldots, n\} \), and we set \(\tilde{w}_\varepsilon = w_\varepsilon \) on \(S_{\tilde{t}_\varepsilon} \) (in particular, \(\tilde{w}_\varepsilon = w_\varepsilon \) on \(S_{\sqrt{r_\varepsilon}} \)). This yields a function \(\tilde{w}_\varepsilon \in H^1(S; \mathbb{C}) \). Again using (107), which implies that the difference between the metric \(g \) (appearing in \(e_\varepsilon^{ex} \)) and the Euclidean metric (appearing in \(e_\varepsilon \)) is negligible in small balls (in particular, inside \(B_{\tilde{t}_\varepsilon}(a_{k,\varepsilon}) \)) for our choice of coordinates, we readily verify that \(\tilde{w}_\varepsilon \) satisfies (106), proving the claim.
Step 4. We introduce the functional $\mathcal{I}_0[\cdot; a, d, \Phi]$ for $v \in H^1(S; \mathbb{S}^1)$:

$$\mathcal{I}_0[v; a, d, \Phi] = \int_S 2 \left| \frac{1}{2} |dv|^2 + \frac{1}{2} |S(v^*(a, d, \Phi))|^2 \right| \text{vol}_g.$$

The definition then implies that $\tilde{W}(a, d, \Phi) = \inf_{\Theta \in H^1(S; \mathbb{R})} \mathcal{I}_0[e^{i\Theta}; a, d, \Phi]$. In view of (103), (104), and (106), to conclude to our desired estimate (99), it suffices to prove that

$$\liminf_{\varepsilon \to 0} \mathcal{I}_\varepsilon[\tilde{w}_\varepsilon; a^\varepsilon, d^\varepsilon, \Phi^\varepsilon] \geq \tilde{W}(a, d, \Phi)$$

and

$$\limsup_{\varepsilon \to 0} \tilde{W}(a^\varepsilon, d^\varepsilon, \Phi^\varepsilon) \leq \tilde{W}(a, d, \Phi).$$

Step 4'. We prove the second assertion (110). Toward this goal, we claim that after possible ε-dependent rotations of u^ε_*, we have

$$u^\varepsilon_* \to u^* \quad \text{a.e. in } S.$$

First note that it is clear from the definition (110) of $\psi(a; d)$ and (20) that

$$j^\varepsilon_* := d^\varepsilon \psi(a_\varepsilon, d_\varepsilon) + \sum_{k=1}^{2g} \Phi_{k, \varepsilon} \eta_k \to d^* \psi(a, d) + \sum_{k=1}^{2g} \Phi_k \eta_k = j^*$$

in C^1_{loc} away from a_1, \ldots, a_n and globally in $L^q(S)$ for every $q \in [1, 2)$. Next, fix $x \in S \setminus \{a_k\}_k$ and a unit vector $v \in T_x S$. We may assume that $u^\varepsilon_*(x) = v$ for every ε. Now consider $y \in S \setminus \{a_k\}_k$ and a smooth curve $\gamma : [0, 1] \to S \setminus \{a_k\}_k$ such that $\gamma(0) = x, \gamma(1) = y$. For ε sufficiently small, the image of γ is bounded away from $\{a_k\}_k$. When this holds, we define $U_\varepsilon(s) := u^\varepsilon_*(\gamma(s))$, and similarly $U(s) = u^*(\gamma(s))$. In (12), we have derived an explicit formula that gives $U_\varepsilon(s)$ in terms of $v \in T_x S$ and j^ε_* (or $U(s)$ in terms of v and j^*), and with the convergence of j^ε_* to j^*, this formula immediately implies that

$$u^\varepsilon_*(y) = U_\varepsilon(1) \to U(1) = u^*(y) \quad \text{as } \varepsilon \to 0.$$

Since y was an arbitrary point in $S \setminus \{a_k\}_k$, this proves the claim (111).

Now the direct method leads to the existence of $\Theta_0 \in H^1(S; \mathbb{R})$ minimizing $\mathcal{I}_0[e^{i\Theta_0}; a, d, \Phi]$. The continuity of the shape operator and the convergence $u^\varepsilon_* \to u^*$ a.e. imply that $|S(e^{i\Theta_0}u^\varepsilon_*)|_g^2 \to |S(e^{i\Theta_0}u^*)|_g^2$ almost everywhere and hence in L^p for every $p < \infty$. It follows that

$$\limsup_{\varepsilon \to 0} \tilde{W}(a^\varepsilon, d^\varepsilon, \Phi^\varepsilon) \leq \lim_{\varepsilon \to 0} \mathcal{I}_0[e^{i\Theta_0}; a^\varepsilon, d^\varepsilon, \Phi^\varepsilon] = \mathcal{I}_0[e^{i\Theta_0}; a, d, \Phi] = \tilde{W}(a, d, \Phi),$$

proving (110).

Step 4''. We prove (109). First note from (106), (105) that $\|\tilde{w}_\varepsilon\|_{L^1} \leq 2L \|\tilde{w}_\varepsilon; a^\varepsilon, d^\varepsilon, \Phi^\varepsilon\| \leq C$. We may thus assume, after passing to a subsequence, that $\tilde{w}_\varepsilon \to w_0$ weakly in $H^1(S; \mathbb{C})$ and thus a.e. in S and strongly in L^p for every $p < \infty$. By Fatou’s lemma,

$$\int_S F(|w_0|^2) \text{vol}_g \leq \liminf_{\varepsilon \to 0} \int_S F(|\tilde{w}_\varepsilon|^2) \text{vol}_g \leq \liminf_{\varepsilon \to 0} 4\varepsilon^2 \mathcal{I}_\varepsilon[\tilde{w}_\varepsilon; a^\varepsilon, d^\varepsilon, \Phi^\varepsilon] = 0.$$
so we deduce that $|w_0| = 1$ a.e. Standard weak lower semicontinuity arguments together with (1.1) and the continuity of the shape operator imply that
\[
\mathcal{L}_0[w_0; a, d, \Phi] \leq \liminf_{\varepsilon \to 0} \mathcal{L}_\varepsilon[\tilde{w}_\varepsilon; a^\varepsilon, d^\varepsilon, \Phi^\varepsilon].
\]

To complete the proof of (1.9), it thus suffices to show that w_0 admits a lifting, that is, that there exists some $\Theta_0 \in H^1(S; \mathbb{R})$ such that $w_0 = e^{i\Theta_0}$. Note that this is a delicate issue as S is not simply connected while standard results (see e.g., [4]) requires this topological constraint on S. We will show in Lemma 10.4 below that w_0 has indeed an H^1 lifting provided that w_0 satisfies the constraint $\Phi(w_0 u^*) = \Phi(u^*) = \Phi$. Toward this end, as in Step 1, we note that $j(w_0 u^*) = (iw_0, dchw_0) + j^*$. Thus for $k \in \{1, \ldots, 2g\}$, we have
\[
\Phi_k(w_0 u^*) = \int_S ((iw_0, dchw_0) + j^*, \eta_k)_g \text{vol}_g = \int_S ((iw_0, dchw_0), \eta_k)_g \text{vol}_g + \Phi_k.
\]
Similarly,
\[
\Phi_k(\tilde{w}_\varepsilon u^*_\varepsilon) = \int_S ((\tilde{iw}_\varepsilon, d\tilde{w}_\varepsilon), \eta_k)_g \text{vol}_g + \int_S (|\tilde{w}_\varepsilon|^2 - 1)j^*, \eta_k)_g \text{vol}_g + \Phi_{k, \varepsilon}.
\]
From these and the convergence $\tilde{w}_\varepsilon \to w_0$ weakly in $H^1(S; \mathbb{C})$, $\tilde{w}_\varepsilon \to w_0$ strongly in $L^2(S)$ and $L^6(S)$ (in particular, $|\tilde{w}_\varepsilon|^2 \to 1$ in $L^3(S)$), $j^*_\varepsilon \to j^*$ in $L^q(S)$ for $q = \frac{3}{2} < 2$, and recalling that $\Phi^\varepsilon \to \Phi$, one can verify that $\Phi(\tilde{w}_\varepsilon u^*_\varepsilon) = \lim_{\varepsilon \to 0} \Phi(\tilde{w}_\varepsilon u^*_\varepsilon)$.

Next, recall that by construction in Step 3, $\tilde{w}_\varepsilon u^*_\varepsilon = w_\varepsilon u^*_\varepsilon = m_\varepsilon$ in S_t^ε and $|\tilde{w}_\varepsilon| \leq 2$ in $\mathcal{O} := \bigcup_{k \in \mathbb{N}} B_{\varepsilon}(a_{k, \varepsilon})$. Therefore, $|j(\tilde{w}_\varepsilon u^*_\varepsilon)|_g \leq 4|j^*_\varepsilon|_g + 2|d\tilde{w}_\varepsilon|_g$ in \mathcal{O}. Thus
\[
|\Phi_k(\tilde{w}_\varepsilon u^*_\varepsilon) - \Phi_k(m_\varepsilon)| \leq C \int_{\mathcal{O}} |j(\tilde{w}_\varepsilon u^*_\varepsilon)|_g + |j(m_\varepsilon)|_g \text{vol}_g \leq C \left(\int_{\mathcal{O}} |j^*_\varepsilon|_g + |d\tilde{w}_\varepsilon|_g \text{vol}_g + \int_{\mathcal{O} \cap \{|m_\varepsilon|_g \leq 2\}} |Dm_\varepsilon|_g \text{vol}_g + \int_{\mathcal{O} \cap \{|m_\varepsilon|_g \geq 2\}} (|m_\varepsilon|_g - 1)|Dm_\varepsilon|_g \text{vol}_g \right) \leq C \left(\tilde{t}^{1-1/q} \|j^*_\varepsilon\|_{L^q(S)} + \tilde{t}^{1/2} \|d\tilde{w}_\varepsilon\|_{L^2(\mathcal{O})} + \tilde{t}^{1/2} E^\infty(\tilde{w}_\varepsilon)^{1/2} + \varepsilon E^\infty(m_\varepsilon) \right) \to 0,
\]
as $\varepsilon \to 0$, where we used Hölder’s inequality, that (j^*_ε) is uniformly bounded in $L^q(S)$ for $q = 3/2$, (1.8), (9.8) and (1). Since $\Phi(m_\varepsilon) \to \Phi$ by assumption, we deduce that $\Phi(\tilde{w}_\varepsilon u^*_\varepsilon) = \Phi(u^*)$ as claimed.

Now Lemma 10.3 below implies that w admits a lifting, completing the proof of (1.9) and hence of Lemma 10.3.

Lemma 10.4. Assume that $w \in H^1(S; \mathbb{S}^1)$ and that $\Phi(w^*) = \Phi(u^*)$ for some canonical harmonic unit vector field $u^*(a, d, \Phi)$. Then there exists $\Theta \in H^1(S; \mathbb{R})$ such that $w = e^{i\Theta}$.

Proof. It follows from [4] that any $w \in H^1(S; \mathbb{S}^1)$ can locally be written in the form $w = e^{i\Theta}$. It follows that, again locally, $j(w)$ has the form $j(w) = d\Theta$. Thus $dj(w) = 0$. As a result, $\int_S (j(w), d^*\beta)_g \text{vol}_g = 0$ for all 2-forms β in $H^1(S)$. This implies that the Hodge decomposition (3.3) for $j(w)$ takes the form
\[
j(w) = (iw, dw) = d\Theta + \eta \quad \text{where } \Theta \in H^1(S; \mathbb{R}) \text{ and } \eta \text{ is a harmonic 1-form}.
\]
Next, by hypothesis, we have
\[
\Phi_k(u^*) = \Phi_k(w^*) = \int_S (j(w^*), \eta_k)_g \text{vol}_g = \int_S (j(w) + j^*, \eta_k)_g \text{vol}_g = \int_S (j(w), \eta_k)_g \text{vol}_g + \Phi_k(u^*).
\]
yielding \(\int_S (j(w), \eta_k)_g \text{vol}_g = 0 \) for every \(k = 1, \ldots, 2g \). Thus the harmonic part of \(j(w) \) in the decomposition (36) vanishes, and \(j(w) = d\Theta \) for some \(\Theta \in H^1(S; \mathbb{R}) \), or equivalently, \(j(we^{-i\Theta}) = 0 \). Writing \(v = we^{-i\Theta} \in H^1(S; \mathbb{S}^1) \), we deduce that

\[
dv = (dv, \frac{iv}{|v|}) + (dv, \frac{v}{|v|}) = j(v) + d|v| v = 0.
\]

It follows that \(v \) is constant, from which we conclude that \(w = e^{i(\Theta + \alpha)} \) for some \(\alpha \in \mathbb{R} \). □

Remark 10.5. Note that

\[
\hat{W}(a^\varepsilon, d^\varepsilon, \Phi^\varepsilon) \rightarrow \hat{W}(a, d, \Phi) \quad \text{if } a^\varepsilon \rightarrow a, d^\varepsilon \rightarrow d \quad \text{and } \Phi^\varepsilon \in \mathcal{L}(a^\varepsilon, d^\varepsilon) \rightarrow \Phi \in \mathcal{L}(a, d).
\]

In fact it is a consequence of (110) and \(\liminf_{\varepsilon \to 0} \hat{W}(a^\varepsilon, d^\varepsilon, \Phi^\varepsilon) \geq \hat{W}(a, d, \Phi) \) which is follows the argument in Step 4 above. Indeed, if we denote by \(\Theta \) a minimizer of \(\hat{W}(a^\varepsilon, d^\varepsilon, \Phi^\varepsilon) \) (such a minimizer exists as a consequence of the direct method in calculus of variations), we have that \(\|d\Theta\|_{L^2(S)} \leq 2W(a^\varepsilon, d^\varepsilon, \Phi^\varepsilon) \leq \int_S |S(e^{i\varepsilon}u^*(a^\varepsilon, d^\varepsilon, \Phi^\varepsilon)| \text{vol}_g \leq C \) (because \(S \) is bounded over the set of unit vector fields). Therefore, up to an additive constant, the Poincaré-Wirtinger inequality implies that \((\Theta, \varepsilon) \) is uniformly bounded in \(H^1(S) \). Therefore, for a subsequence, there exists a limit \(\Theta \in H^1(S) \) such that \(\Theta \varepsilon \rightarrow \Theta \) weakly in \(H^1(S) \) and a.e. in \(S \). As \(u^*(a^\varepsilon, d^\varepsilon, \Phi^\varepsilon) \rightarrow u^*(a, d, \Phi) \) a.e. in \(S \) (by Remark 10.5 recall that \(d^\varepsilon = d \) for small \(\varepsilon \)), standard weak lower semicontinuity arguments, the continuity of the shape operator and Fatou’s lemma imply

\[
\liminf_{\varepsilon \to 0} \hat{W}(a^\varepsilon, d^\varepsilon, \Phi^\varepsilon) \geq \frac{1}{2} \int_S |d\Theta|^2_g + |S(e^{i\varTheta}u^*(a, d, \Phi))|^2_g \text{vol}_g \geq \hat{W}(a, d, \Phi).
\]

Proof of Theorem 10.1 point 2. We may assume the hypothesis on \((a^\varepsilon, d^\varepsilon, \Phi^\varepsilon) \) made at the beginning of Section 10.3. Then we argue as in the proof of Proposition 9.1 point 1). As \(e^{t\varepsilon}(m_\varepsilon) \geq e^{t_\varepsilon^0}(m_\varepsilon) \) in \(S \) (by Lemma 10.2, by Step 3 in the proof of Proposition 9.1 point 1)) , there exists \(t_\varepsilon \in (r_\varepsilon, \sqrt{\tau_\varepsilon}) \) such that

\[
\int_{B_{t_\varepsilon}(a_{k,\varepsilon})} e^{t_\varepsilon}(m_\varepsilon) \text{vol}_g \geq \int_{B_{t_\varepsilon}(a_{k,\varepsilon})} e^{t_\varepsilon^0}(m_\varepsilon) \text{vol}_g \geq \pi \log \frac{t_\varepsilon}{\varepsilon} + \rho F + o(1)
\]

as \(\varepsilon \to 0 \), for every \(1 \leq k \leq n \). As \(t_\varepsilon \in (r_\varepsilon, \sqrt{\tau_\varepsilon}) \) and \(\text{dist}_S(a_{k,\varepsilon}, a_{k,\ell}) = O(1) \geq t_\varepsilon \) for \(k \neq \ell \), then (76) holds true for \(t_\varepsilon \) so that we can apply Lemma 10.3 for \(t_\varepsilon \) yielding:

\[
\int_{S_{t_\varepsilon}} e^{t_\varepsilon}(m_\varepsilon) \text{vol}_g \geq n \pi \log \frac{1}{t_\varepsilon} + (W + \hat{W})(a^\varepsilon, d^\varepsilon, \Phi^\varepsilon) - o(1)
\]

as \(\varepsilon \to 0 \). As \(W(a^\varepsilon, d^\varepsilon, \Phi^\varepsilon) \rightarrow W(a, d, \Phi) \) (by Proposition 2.4) as \(\Phi^\varepsilon \rightarrow \Phi \) and \(d_\varepsilon = d \) for all small \(\varepsilon \) and \(\hat{W}(a^\varepsilon, d^\varepsilon, \Phi^\varepsilon) \rightarrow \hat{W}(a, d, \Phi) \) (by Remark 10.5 in the limit \(\varepsilon \to 0 \), we reach the desired lower bound for \(E^{t_\varepsilon}(m_\varepsilon) \)). □

11. \(\Gamma \)-limit for the micromagnetic energy

Before stating the main result for Problem 3, let us show that the quantity \(iF \) in (28) is well defined, i.e., the limit in (28) exists. For that, it is enough to prove the nondecreasing behaviour of \(t \mapsto \Pi^{mm}_F(t) + \pi \log t \) that follows as for \(tF \) (see \(\Gamma \)-Lemma III.1)): for \(0 < t_1 \leq t_2 \leq 1 \), we want \(\Pi^{mm}_F(t_1) \leq \pi \log \frac{t_1}{t_2} + \Pi^{mm}_F(t_2) \). Indeed, if \(v_2 \) is the
the projection Π of N, we have
\begin{equation}
I_{F}^{mm}(t_{1}) = I_{F}^{mm}(\frac{1}{t_{1}}, 1) \leq \int_{B_{1/\varepsilon}(0)} \varepsilon_{1}(v_{1}) \, dy = I_{F}^{mm}(\frac{1}{t_{2}}, 1) + \pi \log t_{2} t_{1} = I_{F}^{mm}(t_{2}) + \pi \log t_{2} t_{1}.
\end{equation}

In this section we prove the counterpart of Theorem 10.1 for the micromagnetic energy E_{ε}^{mm} in Problem 3 where the surface S is isometrically embedded in \mathbb{R}^{3} endowed with the Euclidean metric g. For $M : S \to \mathbb{S}^{2}$, we always use the decomposition
\begin{equation}
M = m + M_{\perp} N, \quad m = \Pi(M)
\end{equation}
where N is the Gauss map on S, $M_{\perp} = M \cdot N$ is the normal component of M and m is the projection Π of M on the tangent plane T_{S}.

Theorem 11.1. The following Γ-convergence result holds.

1) (Compactness) Let $(M_{\varepsilon})_{\varepsilon \downarrow 0}$ be a family in $H^{1}(S; \mathbb{S}^{2})$ satisfying
\[E_{\varepsilon}^{mm}(M_{\varepsilon}) \leq T \pi |\log \varepsilon| + C \]
for some integer $T > 0$ and a constant $C > 0$. Then there exists a sequence $\varepsilon \downarrow 0$ such that for every $p \in [1, 2]$, the vorticity $\omega(m_{\varepsilon})$ of the projection $m_{\varepsilon} = \Pi(M_{\varepsilon})$ satisfies (92) for n distinct points $\{a_{k}\}_{k=1}^{n}$ and nonzero integers $\{d_{k}\}_{k=1}^{n}$ satisfying (7) and $\sum_{k=1}^{n} |d_{k}| \leq T$. Moreover, if $\sum_{k=1}^{n} |d_{k}| = T$, then $n = T$ and $|d_{k}| = 1$ for every $k = 1, \ldots, n$; in this case, for a further subsequence, there exists $\Phi \in \mathcal{L}(a; d)$ such that $\Phi(m_{\varepsilon})$ defined in (51) converges to Φ as $\varepsilon \to 0$.

2) (Γ-liminf inequality) Assume that the projections $m_{\varepsilon} = \Pi(M_{\varepsilon}) \in \mathcal{X}^{1,2}(S)$ of some family $M_{\varepsilon} : S \to \mathbb{S}^{2}$ satisfy (92) for n distinct points $\{a_{k}\}_{k=1}^{n} \in S^{n}$ and $|d_{k}| = 1$, $k = 1, \ldots, n$ that satisfy (7) and $\Phi(m_{\varepsilon}) \to \Phi \in \mathcal{L}(a; d)$. Then for every $\sigma > 0$,
\[\liminf_{\varepsilon \to 0} \left[E_{\varepsilon}^{mm}(M_{\varepsilon}) - n \pi |\log \varepsilon| \right] \geq W(a, d, \Phi) + \tilde{W}(a, d, \Phi) + n \tilde{t}_{F} \]
\[+ \liminf_{\varepsilon \to 0} \int_{S \setminus \bigcup_{k=1}^{n} B_{\sigma}(a_{k})} |dM_{\perp, \varepsilon}|^{2}_{g} \, vol_{g} \]
for $u^{*} = u^{*}(a, d, \Phi)$, $a = (a_{1}, \ldots, a_{n})$, $d = (d_{1}, \ldots, d_{n})$, $\tilde{W}(a, d, \Phi)$ defined in (24), \tilde{t}_{F} is defined in (25) and $M_{\perp, \varepsilon}$ is the normal component of M_{ε}.

3) (Γ-limsup inequality) For every n distinct points $a_{1}, \ldots, a_{n} \in S$ and $d_{1}, \ldots, d_{n} \in \{\pm 1\}$ satisfying (7) and every $\Phi \in \mathcal{L}(a; d)$ there exists a sequence of smooth maps $M_{\varepsilon} : S \to \mathbb{S}^{2}$ such that (92) holds for the projections $m_{\varepsilon} = \Pi(M_{\varepsilon})$ (see (113)), $M_{\perp, \varepsilon} \to 0$ in $H^{1}_{loc}(S \setminus \{a_{k}\}_{k=1}^{n})$, $\Phi(m_{\varepsilon}) \to \Phi$ and
\[E_{\varepsilon}^{mm}(M_{\varepsilon}) \to n \pi |\log \varepsilon| \to W(a, d, \Phi) + \tilde{W}(a, d, \Phi) + n \tilde{t}_{F} \quad \text{as} \ \varepsilon \to 0. \]

Remark 11.2. The term $\liminf_{\varepsilon \to 0} \int_{S \setminus \bigcup_{k=1}^{n} B_{\sigma}(a_{k})} |dM_{\perp, \varepsilon}|^{2}_{g} \, vol_{g}$ in the above Γ-liminf inequality will be used to show that if M_{ε} minimizes E_{ε}^{mm}, then $M_{\perp, \varepsilon} \to 0$ in $H^{1}_{loc}(S \setminus \{a_{k}\}_{k=1}^{n})$, where $\{a_{k}\}_{k}$ are limiting vortex locations.

Proof. We divide the proof in several steps.
Step 1. A basic computation. Let $M : S \rightarrow S^2$ such that $E^{mm}_\varepsilon(M) \leq C|\log \varepsilon|$. By \[113\], we start by computing the extrinsic differential of M:

$$\mathcal{D}M = \mathcal{D}m + \mathcal{D}(M_L N)$$
$$= Dm + (\mathcal{D}m \cdot N) \otimes N + M_L \mathcal{D}N + dM_L \otimes N$$
$$= [Dm + M_L \mathcal{D}N] + [(\mathcal{D}m \cdot N) + dM_L] \otimes N.$$

In other words, in terms of partial derivatives, we have for $\ell = 1, 2$:

$$\mathcal{D}_\ell M = [D_{\ell m} + M_L \mathcal{D}_{\ell} N] + [(D_{\ell m} \cdot N) + \partial_\ell M_L] N.$$

This entails the following extrinsic Dirichlet energy density:

$$|\mathcal{D}M|_g^2 = |Dm + M_L \mathcal{D}N|_g^2 + |(\mathcal{D}m \cdot N) + dM_L|_g^2.$$

Writing

$$E^{mm}_\varepsilon(M) = \int_S \frac{1}{2}(I + II) + \frac{1}{4\varepsilon^2} F(|m|_g^2) \ vol g \leq C|\log \varepsilon|,$$

we deduce by Young’s inequality that

$$2C|\log \varepsilon| \geq \int_S I \ vol g = \int_S |Dm|_g^2 + M_L^2 |\mathcal{D}N|_g^2 + 2M_L(Dm, \mathcal{D}N)_g \ vol g$$
$$\geq \int_S \frac{1}{2}|Dm|_g^2 - 3\|\mathcal{D}N\|_{L^\infty}^2 M_L^2 \ vol g$$
$$\geq \int_S \frac{1}{2}|Dm|_g^2 \ vol g - O(\varepsilon^2 |\log \varepsilon|).$$

Therefore,

$$\int_S I \ vol g = \int_S |Dm|_g^2 + M_L^2 |\mathcal{D}N|_g^2 + 2M_L(Dm, \mathcal{D}N)_g \ vol g = \int_S |Dm|_g^2 \ vol g + O(\varepsilon |\log \varepsilon|).$$

The second term II is treated as follows:

$$\int_S II \ vol g = \int_S |\mathcal{D}m \cdot N|_g^2 + |dM_L|_g^2 + 2(\mathcal{D}m \cdot N, dM_L)_g \ vol g$$
$$= \int_S |S(m)|_g^2 + |dM_L|_g^2 \ vol g + O(\varepsilon |\log \varepsilon|)$$

because $\mathcal{D}m \cdot N = -m \cdot \mathcal{D}N$ so $|\mathcal{D}m \cdot N|_g^2 = |S(m)|_g^2$ and integration by parts yields

$$\int_S (\mathcal{D}m \cdot N, dM_L)_g \ vol g = - \int_S (d^* (m \cdot \mathcal{D}N), M_L)_g \ vol g = O(\varepsilon |\log \varepsilon|).$$

Therefore, we obtain:

\[114\]

$$\int_S |Dm|_g^2 \ vol g = \int_S |Dm|_g^2 + |dM_L|_g^2 \ vol g + O(\varepsilon |\log \varepsilon|) \geq \int_S |Dm|_g^2 \ vol g + O(\varepsilon |\log \varepsilon|).$$

Step 2. Compactness. Let M_ε satisfy the assumptions at Theorem $[11.1]$ point 1). By Step 1, we deduce that $E^{mm}_\varepsilon(m_\varepsilon) \leq T\pi|\log \varepsilon| + C$ where $m_\varepsilon = \Pi(M_\varepsilon)$ is the projection of M_ε on TS (recall that the potential F in E^{mm}_ε satisfies $[11]$), i.e., $[11]$ holds true. Therefore, Theorem $[2.5]$ point 1) leads to the desired conclusion.
Step 3. Upper bound. The difference with respect Problem 2 is the following: within the notation in Step 1, as $|M| = 1$, one has that $|M| = \sqrt{1 - |m|^2}$. By (114), the only term that changes in the renormalized energy for Problem 2 comes from $|dM_g|^2 = |d\sqrt{1 - |m|^2}|^2_g$ that influences the energy of the radial profile of a vortex by a constant (therefore, $i \xi$ in Problem 2 will be replaced by $i \xi$). Let $u^* = u^*(a, d, \Phi)$ be a canonical harmonic map and Θ be a minimizer in (24). As Θ satisfies the associated Euler-Lagrange equation (95), $d\xi_m$ is denoted in exponential normal coordinates by V_ε around every vortex a_k of degree $d_k \in \{\pm 1\}$ and we have that $V_\varepsilon = e^{id_k \theta}$ on $\partial B_{\varepsilon}(0)$ (up to a rotation). We define $\tilde{V}_\varepsilon : B(0, \kappa_\varepsilon) \to S^2$ as being a minimizer of \int_{ε}^m if $d_k = 1$ (or its complex conjugate if $d_k = -1$) up to a rotation. We set $\tilde{V}_\varepsilon = V_\varepsilon$ outside these balls of radius κ_ε. Denoting by \tilde{U}_ε the tangential component of the corresponding map to \tilde{V}_ε on S, we set $m_\varepsilon = e^{i\Theta} \tilde{U}_\varepsilon$ and $M_\varepsilon = m_\varepsilon + M_{\varepsilon}N$ where $M_{\varepsilon} = 0$ outside the balls $B_{\varepsilon}(a_k)$ and M_{ε} is the vertical component of \tilde{V}_ε inside $B_{\varepsilon}(a_k)$. By the proof of Proposition 9.1 point 2) and the above choice of M_ε inside the balls $B_{\varepsilon}(a_k)$, we deduce that

$$\int_S |Dm_\varepsilon|^2_g \text{vol}_g \leq C \log \varepsilon$$

so that (114) implies

$$\int_S |DM_\varepsilon|^2_g \text{vol}_g = \int_S (|Dm_\varepsilon|^2_g + |dM_{\varepsilon}||^2_g) \text{vol}_g + O(\varepsilon \log \varepsilon)$$

$$= \int_S (|D\tilde{U}_\varepsilon|^2_g + |\tilde{U}_\varepsilon|^2_g |d\Theta|^2_g + |S(m_\varepsilon)|^2_g + 2(j(\tilde{U}_\varepsilon), d\Theta)_g + |dM_{\varepsilon}||^2_g) \text{vol}_g + O(\varepsilon \log \varepsilon).$$

Estimating III. Recall that $|\tilde{U}_\varepsilon|^2_g \leq 1$ in S and $\tilde{U}_\varepsilon = u^*$ in $\varepsilon_{\varepsilon}$ so that

$$\int_S ||\tilde{U}_\varepsilon||^2_g \text{vol}_g = \int_S |\tilde{U}_\varepsilon||d\Theta|^2_g + |S(m_\varepsilon)|^2_g + 2(j(\tilde{U}_\varepsilon), d\Theta)_g \text{vol}_g$$

$$\leq \int_S |d\Theta|^2_g + |S(e^{i\Theta} u^*)|^2_g + 2(j(\tilde{U}_\varepsilon), d\Theta)_g \text{vol}_g + \int_{S \setminus S_{\varepsilon}} |S(m_\varepsilon)|^2_g \text{vol}_g$$

$$\leq 2\tilde{W}(a, d, \Phi) + o(1)$$

because

$$\int_{S \setminus S_{\varepsilon}} |S(m_\varepsilon)|^2_g \text{vol}_g = o(1)$$

(as $|m_\varepsilon|^2 \leq 1$) and

$$\left| \int_S (j(\tilde{U}_\varepsilon), d\Theta)_g \text{vol}_g \right| \leq \int_S |(j(u^*), d\Theta)_g | \text{vol}_g + \left| \int_{S \setminus S_{\varepsilon}} (j(\tilde{U}_\varepsilon) - j(u^*), d\Theta)_g \text{vol}_g \right|$$

$$\leq \int_S \left| \frac{d^*(j(u^*), \Theta)_g | \text{vol}_g + \|d\Theta\|_{L_\infty} \int_{S \setminus S_{\varepsilon}} |j(\tilde{U}_\varepsilon) - j(u^*)|_g \text{vol}_g \right|$$

$$= o(1)$$
because \(\|j(\tilde{u}_\varepsilon) - j(u^*)\|_{L^1(S,\mathcal{S},\tau)} \leq \|j(\tilde{u}_\varepsilon)\|_{L^1(S,\mathcal{S},\tau)} + \|j(u^*)\|_{L^1(S,\mathcal{S},\tau)} \rightarrow 0 \) (from Hölder’s inequality in the small balls of radius \(\sqrt{\varepsilon} \), using control over \(|D\tilde{u}_\varepsilon|^2 \) coming from the energy, and estimating \(\|Du^*\|_{L^p} \) for \(p < 2 \), as in Steps 1 and 3 of the proof of Proposition 9.1).

Estimating the integral of \(\frac{1}{2}(|D\tilde{u}_\varepsilon|^2 + |dM_{\perp,\varepsilon}|^2) + \frac{1}{4\varepsilon^2} F(|m_{\varepsilon}|^2) \)** on \(S \). First, by definition of \(\tilde{V}_\varepsilon \) inside the ball \(B(0, \frac{\sqrt{\varepsilon}}{2}) \) and \(\tilde{V}_\varepsilon \), we obtain by (27)

\[
\int_{B(0, \frac{\sqrt{\varepsilon}}{2})} \tilde{c}_\varepsilon(\tilde{V}_\varepsilon) \ dy = \pi \log \frac{\sqrt{\varepsilon}}{2\varepsilon} + \tilde{c}_F + o(1).
\]

Recall that inside the annulus \(B(0, \sqrt{\varepsilon}) \setminus B(0, \frac{\sqrt{\varepsilon}}{2}) \), we have by (74)

\[
\int_{B(0, \sqrt{\varepsilon}) \setminus B(0, \frac{\sqrt{\varepsilon}}{2})} \frac{1}{2} |\nabla \tilde{V}_\varepsilon|^2 \ dy = \pi \log 2 + o(1)
\]

Thus, by (67) and (70) as \(M_{\perp,\varepsilon} = 0 \) outside \(B(a_k, \sqrt{\varepsilon}/2) \):

\[
\int_{B(a_k, \sqrt{\varepsilon})} \frac{1}{2}(|D\tilde{u}_\varepsilon|^2 + |dM_{\perp,\varepsilon}|^2) + \frac{1}{4\varepsilon^2} F(|m_{\varepsilon}|^2) \ \text{vol}_g \\
= \int_{\{y \in \mathbb{R}^2 : |y| < \sqrt{\varepsilon}\}} \left[(1 + O(\varepsilon)) \tilde{c}_\varepsilon(\tilde{V}_\varepsilon) + O(1)\right] \sqrt{g(y)} \ dy \\
= \pi \log \frac{\sqrt{\varepsilon}}{\varepsilon} + \tilde{c}_F + o(1) \quad \text{as} \ \varepsilon \rightarrow 0.
\]

Finally, by definition of \(W(a, d, \Phi) \), we have

\[
\int_{S,\tau} \frac{1}{2} |D\tilde{u}_\varepsilon|^2 \ \text{vol}_g = \int_{S,\tau} \frac{1}{2} |Du^*|^2 \ \text{vol}_g = W(a, d, \Phi) + n \pi \log \frac{1}{\sqrt{\varepsilon}} + o(1).
\]

Summing up, the desired upper bound follows.

The convergence \(j(m_{\varepsilon}) \rightarrow j(u^*) \) in \(L^p(S) \) for every \(p \in [1, 2) \) follows as in the proof of Theorem 10.1 (point 3) because the change made above for \(\tilde{U}_\varepsilon \) (instead of \(U_\varepsilon \)) in the small balls \(B(a_k, \sqrt{\varepsilon}) \) does not affect the convergence of the current due to \(\|j(m_{\varepsilon})\|_{L^p(B(a_k, \sqrt{\varepsilon}))} \rightarrow 0 \) for every \(p \in [1, 2) \) (coming from the blow up of \(\|j(m_{\varepsilon})\|_{L^2(B(a_k, \sqrt{\varepsilon}))} \) as \(|\log \varepsilon| \) and the Hölder inequality in the ball \(B(a_k, \sqrt{\varepsilon}) \)). This entails also the convergence of the vorticities \(\omega(m_{\varepsilon}) \) in (92), as well as \(\Phi(m_{\varepsilon}) \rightarrow \Phi = \Phi(u^*) \).

Step 4. Lower bound. Let \(m_{\varepsilon} \) satisfy the assumptions at Theorem 11.1 (point 2). Furthermore, we may assume that \(E_{\varepsilon}^{mm}(m_{\varepsilon}) \leq n\pi |\log \varepsilon| + c \) for some \(c > 0 \) (otherwise the lower bound is trivial). By (114), we deduce that

\[
E_{\varepsilon}^{mm}(m_{\varepsilon}) = E_{\varepsilon}^{ex}(m_{\varepsilon}) + \int_S |dM_{\perp,\varepsilon}|^2 \ \text{vol}_g + O(\varepsilon |\log \varepsilon|)
\]

where \(m_{\varepsilon} = \Pi(m_{\varepsilon}) \) is the projection of \(M_{\varepsilon} \) on \(TS \) and \(F \) satisfies (11). The rest of the proof follows the argument in the proof of Theorem 10.1 (point 2). With the same notation, the only change here concerns the estimate inside the small balls \(B_{\varepsilon}(a_k) \). As in Step 4 in the proof of Proposition 9.1 (point 1), one uses the entire micromagnetic energy density.
where for every $1 \leq k \leq n$ where $v_{\varepsilon} : B(0, t_{\varepsilon}) \to S^2$ is the representation in normal coordinates of M_{ε}, with its in-plane component corresponding to m_{ε} and its vertical component to $M_{\perp, \varepsilon}$ (see (113)). Also note the extra term in $|dM_{\perp, \varepsilon}|^2$ in (115) that is used only inside the small balls, therefore, it leads to the extra term in the desired lower bound outside the fixed balls $B_{\sigma}(a_k)$ around the limit vortices.

12. Minimizers of the considered functionals

In this section, we study the asymptotic behaviour of minimizers of our three functionals as $\varepsilon \to 0$.

The intrinsic case.

Theorem 12.1. For $\varepsilon > 0$, let u_{ε} be a minimizer of E_{ε}^{in} over the set $\mathcal{X}^{1,2}(S)$. Then there exists a sequence $\varepsilon \downarrow 0$ such that for every $p \in [1, 2)$,

\[
\begin{align*}
\omega(u_{\varepsilon}) &\longrightarrow 2\pi \sum_{k=1}^{n} d_{k}^* \delta_{a_k^*} \quad \text{in } W^{-1,p}(S), \\
u_{\varepsilon} &\rightharpoonup u^* \quad \text{weakly in } W^{1,p}(S), \\
\Phi(u_{\varepsilon}) &\rightharpoonup \Phi^*
\end{align*}
\]

where $n = |\chi(S)|$, $\{a_{k}^*\}_{k=1}^{n}$ are distinct points in S, $d_{k}^* = \text{sign}(\chi(S))$, $\Phi^* \in \mathcal{L}(a^*, d^*)$ such that (a^*, d^*, ϕ^*) is a minimizer of the renormalized energy (for the above d^*)

\[
\{W(a, d^*, \Phi) : a = (a_1, \ldots, a_n) \in S^n \text{ distinct points, } \Phi \in \mathcal{L}(a, d^*)\}
\]

and u^* is a canonical harmonic vector field associated to (a^*, d^*, ϕ^*). Moreover, we have the following second order energy expansion:

\[
E_{\varepsilon}^{in}(u_{\varepsilon}) = n\pi \log \frac{1}{\varepsilon} + W(a^*, d^*, \Phi^*) + n\mu_F + o(1), \quad \text{as } \varepsilon \to 0.
\]

Remark 12.2. 1) We will also prove that $j(u_{\varepsilon}) \to j(u^*)$ in $L^p(S)$ for every $p < 2$, and that

\[
\int_{S_{\sigma}} e_{\varepsilon}^{in}(u_{\varepsilon}) \, \text{vol}_g \leq C_{\sigma}, \quad \int_{S_{\sigma}} \left[\frac{1}{2} \frac{j(u_{\varepsilon})}{|u_{\varepsilon}|} - j(u^*) |u_{\varepsilon}|^2 + e_{\varepsilon}^{in}(|u_{\varepsilon}|) \right] \, \text{vol}_g \to 0,
\]

for every $\sigma > 0$, where $S_{\sigma} := S \setminus \bigcup_{k=1}^{n} B_{\sigma}(a_{k}^*)$. It follows that $|u_{\varepsilon}| \to 1$ in $H^1(S_{\sigma})$ and $u_{\varepsilon} \rightharpoonup u^*$ weakly in $W^{1,2}(S_{\sigma})$.

2) In the case $\chi(S) = 0$, as smooth unit length vector fields do exist over S, the minimal energy E_{ε}^{in} is uniformly bounded as $\varepsilon \to 0$. Therefore, any sequence of minimizers u_{ε} of E_{ε}^{in} has a subsequence strongly convergent in $\mathcal{X}^{1,2}(S)$ to a smooth canonical harmonic vector field $u^* \in \mathcal{X}(S)$. As $|u_{\varepsilon}| \leq 1$ in S (by the standard cutting off argument at 1 for a minimizer u_{ε}), it entails $j(u_{\varepsilon}) \to j(u^*)$ in L^2 and therefore, $\omega(u_{\varepsilon}) \to 0$ in $H^{-1} \cap L^1(S)$ (by (38)). This case was treated in (34).

3) When $g = 0$ (that is, when S is a topological sphere) then Φ is not present, and the renormalized energy and vector field u^* both simplify significantly.
Proof of Theorem 12.1. Let $n = |\chi(S)|$. We assume $n > 0$ (the case $n = 0$ is treated in Remark 12.2 point 1). Fix $d_k = \text{sign}(\chi(S))$ for $1 \leq k \leq n$. Denoting $d = (d_1, \ldots, d_n)$, by Proposition 2.4, the direct method in the calculus of variation implies the existence of a minimizer of

$$\{W(a, d, \Phi) : a = (a_1, \ldots, a_n) \in S^n \text{ distinct points}, \Phi \in \mathcal{L}(a, d)\}.$$

Fix (a, d, Φ) such a minimizer. First, by the upper bound in Theorem 2.5 point 3) applied to the triple (a, d, Φ), we deduce that every minimizer u_ε of E_{ε}^{in} has to satisfy

$$(117) \quad E_{\varepsilon}^{in}(u_\varepsilon) \leq \pi n |\log \varepsilon| + W(a, d, \Phi) + n \kappa_F + o(1).$$

By the compactness result in Theorem 2.5 point 1), we have for a subsequence that $\omega(u_\varepsilon) \rightarrow 2\pi \sum_{k=1}^{K} d_k \delta_{a_k}^\varepsilon$ in $W^{-1,p}(S)$ for some distinct points a_k^ε and nonzero integers d_k satisfying $\sum_k d_k = |\chi(S)|$ and $\sum_k |d_k| \leq n = |\chi(S)|$. It entails that $K = n$ and $d_k = d_k = \text{sign}(|\chi(S)|)$. In this case, Theorem 2.5 point 1) gives us the existence of $\Phi^* \in \mathcal{L}(a^*, d^*)$ such that for a subsequence $\Phi(u_\varepsilon) \rightarrow \Phi^*$. Applying Theorem 2.5 point 2), we deduce that $E_{\varepsilon}^{in}(u_\varepsilon) \geq \pi n |\log \varepsilon| + W(a^*, d^*, \Phi^*) + n \kappa_F + o(1)$. Then (117) leads as $\varepsilon \rightarrow 0$ to $W(a^*, d^*, \Phi^*) \leq W(a, d, \Phi)$. In other words, (a^*, d^*, Φ^*) is a minimizer of the intrinsic renormalized energy $W(\cdot, d^*, \cdot)$. Moreover, using the stronger lower bound in [17], we obtain the second estimate in (116).

It remains to prove the convergence of u_ε to a canonical harmonic vector field\footnote{which we recall is unique only up to a global rotation; in fact, $j(u^*) = j^*(a^*, d^*, \Phi^*)$ is genuinely unique as defined in [10], [12].} associated to (a^*, d^*, Φ^*). Let u^* denote one such vector field. By Lemma 9.2 and Step 2 in the proof of Proposition 9.1, there exist n distinct points $a_{k,\varepsilon} = (a_k, \varepsilon)_{1 \leq k \leq n}$ such that $\text{dist}(a_{k,\varepsilon}, a_{\ell,\varepsilon}) \geq C_0 > 0$ for every $k \neq \ell$, $a_{k,\varepsilon} \rightarrow a_k^\varepsilon$ and

$$||\omega(u_\varepsilon) - 2\pi \text{sign}(\chi(S)) \sum_{k=1}^{n} \delta_{a_{k,\varepsilon}}||_{W^{-1,1}} = o(1) \text{ as } \varepsilon \rightarrow 0.$$

Then, by Proposition 8.2 and Lemma 9.4 we deduce that for every small $\varepsilon > 0$ and for every $r \in (\varepsilon^2, r_0(C_0))$ (with $\beta = \beta(n) > 0$),

$$(118) \quad \int_{B_r(a_k,\varepsilon)} e_{\varepsilon}^{in}(u_\varepsilon) \text{ vol}_{g} \geq \pi \log \frac{r}{\varepsilon} - C, \quad k = 1, \ldots, n.$$

By the upper bound (117), it yields

$$\int_{S \setminus \bigcup B_r(a_k,\varepsilon)} e_{\varepsilon}^{in}(u_\varepsilon) \text{ vol}_{g} \leq n \pi |\log r| + C$$

for every small $\varepsilon > 0$ and for every $r \in (\varepsilon^2, r_0(C_0))$. It follows by Lemma 12.2 below that $(u_\varepsilon)_{\varepsilon \rightarrow 0}$ is bounded in $X^{1,p}(S)$, therefore, for a subsequence, $u_\varepsilon \rightarrow u_*$ in $X^{1,p}(S)$ for every $p \in [1, 2]$ for a unit length vector field u_*. As $a_{k,\varepsilon} \rightarrow a_k^\varepsilon$, by (118), we also deduce the first estimate in (116).

Now we aim to prove that u_* is a canonical harmonic unit vector field, i.e. that $|u_*| = 1$ (which is obvious) and $j(u_*) = j(u^*)$. By the Sobolev embedding, we have that $u_\varepsilon \rightarrow u_*$ strongly in $L^q(S)$ for every $q < \infty$, and we know that $Du_\varepsilon \rightarrow Du_*$ in L^p for every $p \in [1, 2)$. Together these imply that $j(u_\varepsilon) \rightarrow j(u_*)$ in $L^p(S)$ for every $p \in [1, 2)$. On the other hand, we claim that $j(u_\varepsilon) \rightarrow j(u_*)$ in $L^p(S)$ for every $p \in [1, 2)$. To prove this, fix $p \in [1, 2)$ and
note that
\[\| \frac{j(u_{\varepsilon})}{u_{\varepsilon}|g} - j(u_{\varepsilon}) \|_{L^p(S)} \leq \| Du_{\varepsilon}|g(1 - |u_{\varepsilon}|g) \|_{L^p(S)} \]
\[\leq \| Du_{\varepsilon}\|_{L^2(S)} \| 1 - |u_{\varepsilon}|g \|_{L^{\frac{2}{p}}(S)} \| D(1 - |u_{\varepsilon}|g) \|_{L^2(\frac{2-2}{p})} \]
by Hölder and a Gagliardo-Nirenberg inequality. Since \((1 - |u_{\varepsilon}|g)^2 \leq \frac{1}{C} F(|u_{\varepsilon}|^2_g)\) (by (1)) and \(|D(1 - |u_{\varepsilon}|g)| \leq |Du_{\varepsilon}|g|\), all terms on the right-hand side can be controlled by \(E_{\varepsilon}^{\beta}(u_{\varepsilon})\), leading to
\[\| \frac{j(u_{\varepsilon})}{u_{\varepsilon}|g} - j(u_{\varepsilon}) \|_{L^p(S)} \leq C |\log \varepsilon| \varepsilon^{\frac{2-p}{p}}. \]
Also, \((116)\) and Hölder’s inequality readily imply that \(\| j(u_{\varepsilon}) - j(u^*) \|_{L^p(S_\sigma)} \to 0\) for every \(\sigma > 0\), and hence that \(\| j(u_{\varepsilon}) - j(u^*) \|_{L^q(S_\sigma)} \to 0\). Finally, for \(q \in (p, 2)\), since \(j(u^*) \in L^q(S)\) and \(\{ j(u_{\varepsilon}) \}\) is uniformly bounded in \(L^q(S)\), Hölder’s inequality implies that
\[\| j(u_{\varepsilon}) - j(u^*) \|_{L^q(S \setminus S_\sigma)} \leq \| 1 \|_{L^{\frac{qp}{q-p}}(S \setminus S_\sigma)} \| j(u_{\varepsilon}) - j(u^*) \|_{L^q(S \setminus S_\sigma)} \leq C \varepsilon^{\frac{2(q-p)}{pq}}. \]
As \(\sigma\) can be chosen arbitrarily small, summing up, we obtain that \(j(u_{\varepsilon}) \to j(u^*)\) in \(L^p(S)\) as claimed. (This completes the proof of Remark 12.2). Since \(j(u_*)\) and \(j(u^*)\) are both limits of \(j(u_{\varepsilon})\), we conclude that \(j(u_*) = j(u^*)\) and hence that \(u_*\) is a canonical harmonic unit vector field.

We use the following estimate reminiscent from the work of Struwe [36] in a ball \(B_r \subset S\) of radius \(r \in (0, r_0)\) (thus, \(r_0\) is at most the injectivity radius of \(S\)) and we have
\[(119) \quad |\text{Vol}_g(B_r) - \pi r^2| \leq c_1 r^4, \quad |\mathcal{H}^1(\partial B_r) - 2\pi r| \leq c_1 r^3 \]
which is a consequence of Bertrand-Diguet-Puiseux Theorem (see Section 5.2) and the compactness of \(S\).

Lemma 12.3. Let \(r_0\) be the injectivity radius of \(S\), \(\beta, c > 0\) and \(\rho_0, R \in (0, r_0)\) with \(\rho_0 < R\). For every \(\varepsilon \in (0, \frac{1}{2})\), let \(f_\varepsilon : B_R \to \mathbb{R}\) be a function on a ball \(B_R \subset S\) such that
\[\| f_\varepsilon \|_{L^2(B_R)}^2 \leq c(1 + |\log \varepsilon|) \]
and for every \(\varepsilon^\beta \leq \rho \leq \varepsilon_0\),
\[\| f_\varepsilon \|_{L^2(B_R \setminus B_\rho)}^2 \leq c(1 + |\log \rho|). \]
Then for \(1 \leq p < 2\) we have
\[\| f_\varepsilon \|_{L^p(B_R)} \leq C, \]
where \(C > 0\) is independent of \(\varepsilon\).
Proof. Let $1 \leq p < 2$ and $\rho_j = 2^{-j} \rho_0$ for $0 \leq j \leq j_\beta$ with $j_\beta = \lfloor \log_2 \frac{\rho_0}{\epsilon} \rfloor$ where $[s]$ is the integer part of a real s. Using Hölder’s inequality, we have

$$
\int_{B_{\rho_0} \setminus B_{\rho_j}} |f_\epsilon|^p \operatorname{vol}_g = \sum_{j = 0}^{j_\beta - 1} \int_{B_{\rho_j} \setminus B_{\rho_{j+1}}} (|f_\epsilon|^2)^{\frac{p}{2}} \operatorname{vol}_g
\leq \sum_{j = 0}^{j_\beta - 1} \left(\int_{B_{\rho_j} \setminus B_{\rho_{j+1}}} |f_\epsilon|^2 \operatorname{vol}_g \right)^{\frac{p}{2}} \operatorname{Vol}_g(B_{\rho_j} \setminus B_{\rho_{j+1}})^{1 - \frac{p}{2}}
\leq C(p, S) \sum_{j = 0}^{\infty} \left(\int_{B_{\rho_j} \setminus B_{\rho_{j+1}}} |f_\epsilon|^2 \operatorname{vol}_g \right)^{\frac{p}{2}} (2^{-j} \rho_0)^{2-p}
\leq C(p, S, \rho_0) \sum_{j = 0}^{\infty} (1 + j \log 2 - \log \rho_0)^{\frac{p}{2}} 2^{-(2-p)j}.
$$

Since

$$
\lim_{j \to \infty} \frac{(1 + (j + 1) \log 2 - \log \rho_0)^{\frac{p}{2}} 2^{-(2-p)(j+1)}}{(1 + j \log 2 - \log \rho_0)^{\frac{p}{2}} 2^{-(2-p)j}} = 2^{-(2-p)} < 1,
$$

the above sum converges so $\|f_\epsilon\|_{L^p(B_{\rho_0} \setminus B_{\rho_j})} \leq C$. Also, the hypothesis combined with Hölder’s inequality yield $\|f_\epsilon\|_{L^p(B_R \setminus B_{\rho_0})} \leq C$ as well as

$$
\|f_\epsilon\|_{L^p(B_{\rho_j})} \leq \|f_\epsilon\|_{L^2(B_R)} \operatorname{Vol}_g(B_{\rho_j})^{\frac{1}{p} - \frac{1}{2}} = O(|\log \epsilon| e^{\beta(\frac{2}{p} - 1)}) = o(1).
$$

□

The extrinsic case.

If S is a surface isometrically embedded in \mathbb{R}^3, then Theorem 12.1 holds true also in the extrinsic case for minimizing sections m_ϵ of E_ϵ^{ex} with the natural change of having the limit triplet (a^*, d^*, ϕ^*) to be a minimizer of the extrinsic (instead of the intrinsic) renormalized energy

$$
\{(W + \tilde{W})(a, d^*, \Phi) : a = (a_1, \ldots, a_n) \in S^n \text{ distinct points, } \Phi \in \mathcal{L}(a, d^*)\}.
$$

Moreover, we have the following formula for the minimal extrinsic energy:

$$(120) \quad E_\epsilon^{ex}(m_\epsilon) = n \pi \log \frac{1}{\epsilon} + (W + \tilde{W})(a^*, d^*, \Phi^*) + m_{\epsilon F} + o(1),$$

as $\epsilon \to 0$. Finally, after passing to a subsequence if necessary,

$$
m_\epsilon \to e^{i\Theta^*} u^* \text{ in } \mathcal{X}^{1,p}(S),
$$

where u^* is some fixed canonical harmonic map $u^*(a^*, d^*, \phi^*)$ and Θ^* is a minimizer of

$$
\Theta \mapsto \frac{1}{2} \int_S |d\Theta|_g^2 + |S(e^{i\Theta} u^*)|_g^2 \operatorname{vol}_g.
$$

We sketch the proof of the above claim. The energy expansion (120) and the convergence

$$
\omega(m_\epsilon) \to 2\pi \sum_{k=1}^n d_k^* \delta_{u_k^*}, \quad \Phi(m_\epsilon) \to \Phi^*
$$

are proved exactly as in the intrinsic case, using Theorem 10.1 in place of Theorem 2.5. Similarly, exactly the same arguments as for the intrinsic case prove that there exists some $m_* \in \mathcal{X}^{1,p}(S)$ for $m_\epsilon \to m_*$ in $\mathcal{X}^{1,p}(S)$, for all $p \in [1, 2]$.

It remains to prove that $m_* = e^{i\Theta^*} u^*(a^*, d^*, \Phi^*)$. We will deduce this conclusion from estimates carried out during the proof of Theorem 10.1. We start by recalling from the
proof of point 2) Theorem 10.1 that for every sufficiently small $\varepsilon > 0$, there exists $t_\varepsilon \in (\varepsilon^{1/n+1}, \varepsilon^{3/2})$, n distinct points $a^\varepsilon = (a_{k, \varepsilon})_{1 \leq k \leq n} \in S^n$, $d^\varepsilon \in \{\pm 1\}^n$, and $\{\Phi_{k, \varepsilon}\}_{k=1}^2 \in L(a^\varepsilon, d^\varepsilon)$ such that

$$a^\varepsilon \to a^*, \quad d^\varepsilon \to d^* \quad (\text{so } d^\varepsilon = d^* \text{ for all } \varepsilon), \quad \Phi^\varepsilon \to \Phi^*$$

and

$$\int_{B_{t_\varepsilon}(a_{k, \varepsilon})} e^\varepsilon_x(m^\varepsilon) \log g \geq \pi \log \frac{t_\varepsilon}{\varepsilon} + \nu + o(1) \quad \text{for every } 1 \leq k \leq n,$$

$$\int_{S_{t_\varepsilon}} e^\varepsilon_x(m^\varepsilon) \log g \geq n \pi \log \frac{1}{t_\varepsilon} + (W + \tilde{W})(a^\varepsilon, d^\varepsilon, \Phi^\varepsilon) - o(1)$$

as $\varepsilon \to 0$. Let u^*_ε be a canonical harmonic map $u^*(a^\varepsilon, d^\varepsilon, \Phi^\varepsilon)$ so that u^*_ε (up to a rotation as in (111)) satisfies $u^*_\varepsilon \to u^*$ in $L^p(S)$, $p < \infty$, as $\varepsilon \to 0$. We may then define $w_\varepsilon : S_{t_\varepsilon} \to \mathbb{C}$ by requiring that

$$m_\varepsilon = w_\varepsilon u^*_\varepsilon \quad \text{in } S_{t_\varepsilon}.$$

Then (103), established during the proof of Lemma 10.3, can be applied in S_{t_ε} (instead of S_{t_ε}) implies that

$$\int_{S_{t_\varepsilon}} e^\varepsilon_x(m^\varepsilon) \log g = W(a^\varepsilon, d^\varepsilon, \Phi^\varepsilon) + n \pi \log \frac{1}{t_\varepsilon} + \int_{S_{t_\varepsilon}} \frac{1}{2} |dw_\varepsilon|^2 + \frac{1}{2} |S(w_\varepsilon u^*_\varepsilon)|_g^2 + \frac{1}{4\varepsilon^2} F(|w_\varepsilon|^2) \log g + o(1).$$

Combining these and (120) and recalling that $W(a^\varepsilon, d^\varepsilon, \Phi^\varepsilon) \to W(a^*, d^*, \Phi^*)$ (by Proposition 2.4) and that $\tilde{W}(a^\varepsilon, d^\varepsilon, \Phi^\varepsilon) \to \tilde{W}(a^*, d^*, \Phi^*)$ (by Remark 10.5), we obtain

$$\int_{S_{t_\varepsilon}} \frac{1}{2} |dw_\varepsilon|^2 + \frac{1}{2} |S(w_\varepsilon u^*_\varepsilon)|_g^2 + \frac{1}{4\varepsilon^2} F(|w_\varepsilon|^2) \log g \to \tilde{W}(a^*, d^*, \Phi^*)$$

as $\varepsilon \to 0$. Next, following the arguments in Step 3 of the proof of Lemma 10.3 we may construct a function $\tilde{w}_\varepsilon : S \to \mathbb{C}$ such that $\tilde{w}_\varepsilon = w_\varepsilon$ in $S_{\sqrt{\varepsilon}}$ and

$$\limsup \int_S \frac{1}{2} |d\tilde{w}_\varepsilon|^2 + \frac{1}{2} |S(\tilde{w}_\varepsilon u^*_\varepsilon)|_g^2 + \frac{1}{4\varepsilon^2} F(|\tilde{w}_\varepsilon|^2) \log g \leq \tilde{W}(a^*, d^*, \Phi^*).$$

In particular $\{\tilde{w}_\varepsilon\}$ is uniformly bounded in $H^1(S)$. We pass to a subsequence that converges weakly in H^1, and hence strongly in L^p for every $p < \infty$, to a limit w_*. As in Step 4 of the proof of Lemma 10.3 one checks that $w_* \in H^1(S; S^1)$ satisfying the compatibility condition $\Phi(w_* u^*) = \Phi(u^*)$ so that Lemma 10.3 yields $w_\varepsilon = e^{i\Theta_*}$. Standard lower semicontinuity arguments imply

$$\tilde{W}(a^*, d^*, \Phi^*) \leq \int_S \frac{1}{2} |d\Theta_*|^2 + \frac{1}{2} |S(e^{i\Theta_*} u^*)|^2_2 \log g$$

$$= \int_S \frac{1}{2} |dw_*|^2 + \frac{1}{2} |S(w_* u^*)|^2_2 \log g$$

$$\leq \liminf_{\varepsilon \to 0} \int_S \frac{1}{2} |d\tilde{w}_\varepsilon|^2 + \frac{1}{2} |S(\tilde{w}_\varepsilon u^*_\varepsilon)|_g^2 + \frac{1}{4\varepsilon^2} F(|\tilde{w}_\varepsilon|^2) \log g$$

$$\leq \tilde{W}(a^*, d^*, \Phi^*).$$

That is, Θ_* attains the minimum in the definition of \tilde{W}. Finally, the construction implies that for a.e. $x \in S$, $m_* = \lim_\varepsilon m_\varepsilon = \lim_\varepsilon \tilde{w}_\varepsilon u^*_\varepsilon = e^{i\Theta_*} u^*$, completing the proof.

The micromagnetic case.

Let S be a surface isometrically embedded in \mathbb{R}^3 endowed with the Euclidian metric. If $M_\varepsilon : S \to S^2$ is a minimizer of E^{mm}_ε, then the projections $m_\varepsilon = \Pi(M_\varepsilon)$ on TS satisfy (for a
subsequence) the convergences in Theorem 12.1 as \(\varepsilon \to 0 \) where the limit triplet \((a^*, d^*, \phi^*)\) is a minimizer of the extrinsic renormalized energy \(W + \tilde{W} \). The second order expansion of the minimal micromagnetic energy has the form (120) with the natural change of \(\tau_F \) by \(\tilde{\tau}_F \). Moreover, the normal components \(M_{\perp, \varepsilon} \) of \(M_\varepsilon \) satisfy \(M_{\perp, \varepsilon} \to 0 \) in \(H^1(S \setminus \cup_k B_\sigma(a_k)) \) as \(\varepsilon \to 0 \).

Appendix A. Ball construction. Proof of Proposition 8.2

In this section we present the vortex ball construction leading to Proposition 8.2. We start with several lemmas in which we verify, largely by adapting classical proofs to our setting, that basic ingredients needed for the vortex ball argument on the Euclidean plane remain available in the present setting. Once these ingredients are available, we follow classical arguments. Since the arguments are rather standard, our exposition is terse in places.

We first fix positive constants \(c_1(S), r_0(S) \) such that \(\partial B_r(x) \) is a homeomorphic to a circle for every \(x \in S \), and \(0 < r < r_0 \) (thus, \(r_0 \) is at most the injectivity radius of \(S \)) and we recall (119). In several places later in our argument, we will impose additional smallness conditions on \(r_0 \).

In view of Lemma 5.1 in proving lower energy bounds we may restrict our attention to smooth vector fields.

Lemma A.1. Given \(u \in \mathcal{X}(S) \), let \(\rho := |u|_g \). Assume that \(\varepsilon < r < r_0(S) \). Then there exist positive constants \(c_2, c_3, c_4 \) such that the following hold. First,

\[
(121) \quad \frac{1}{2} \int_{\partial B_r(x)} |d\rho|^2_g + \frac{1}{2\varepsilon^2} F'(\rho^2) \, d\mathcal{H}^1 \geq \frac{c_2}{\varepsilon} ||1 - \rho||_{L^\infty}^2
\]

where \(|d\rho|^2_g := (d\rho(\tau_1))^2 + (d\rho(\tau_2))^2 \) for any orthonormal basis \(\{\tau_1, \tau_2\} \) of \(T_x S \). Second,

\[
(122) \quad \int_{\partial B_r(x)} e_{\varepsilon}^{in}(u) \, d\mathcal{H}^1 \geq \lambda_\varepsilon \left(\frac{r}{|d|} \right) \text{ for } d = \begin{cases} \deg(u; \partial B_r(x)) & \text{if } \rho \geq \frac{1}{2} \text{ on } \partial B_r(x) \\ \text{any positive integer} & \text{if not} \end{cases}
\]

where

\[
(123) \quad \lambda_\varepsilon(r) := \min_{0 < s \leq 1} \left[\frac{c_2}{4\varepsilon} (1 - s)^2 + \frac{s^2 \pi}{r} (1 - c_3 r^2) \right] \geq \frac{\pi(1 - c_3 r^2)}{r + c_4 \varepsilon}
\]

is a nonincreasing function, and we use the convention that for \(r > 0 \), \(\lambda_\varepsilon(r/0) = \lambda_\varepsilon(+\infty) = 0 \).

Proof. At \(y \in \partial B_r(x) \), let \(\tau \in T_y S \) denote the unit tangent to \(\partial B_r(x) \), oriented in the standard way, and let \(\partial \) denote differentiation with respect to \(\tau \). Further define \(\zeta := (1 - \rho)^2 \).

Then by \((11) \)

\[
|\zeta'| + \frac{1}{\varepsilon^2} |\zeta| = |\rho - 1| |\rho'| + \frac{1}{\varepsilon^2} |\zeta| \leq \varepsilon |\rho'|^2 + \frac{2}{\varepsilon} (1 - \rho)^2 \leq C \varepsilon \left(|d\rho|^2_g + \frac{1}{2\varepsilon^2} F'(\rho^2) \right).
\]

Then (121) follows from a (suitably scaled) Sobolev embedding \(W^{1,1} \hookrightarrow L^\infty \) on \(\partial B_r(x) \), taking into account the fact that \(\mathcal{H}^1(\partial B_r(x)) \geq \varepsilon \).
Next, if \(\rho \geq \frac{1}{2} \) on \(\partial B_r(x) \), then we can define \(v = u/\rho \) and \(d := \text{deg}(u; \partial B_r(x)) \). Since \(|v|_g = 1 \), we have \(|Dv|_g = |j(v)|_g \), and thus

\[
\int_{\partial B_r(x)} |Dv|_g^2 d\mathcal{H}^1 = \int_{\partial B_r(x)} |j(v)|_g^2 d\mathcal{H}^1 \geq \frac{1}{\mathcal{H}^1(\partial B_r(x))} \int_{\partial B_r(x)} j(v)^2 d\mathcal{H}^1 = \frac{1}{\mathcal{H}^1(\partial B_r(x))} \left(2\pi d - \int_{B_r(x)} \kappa \text{vol}_g \right)^2.
\]

Since \(S \) is compact and smooth, it follows from this and (119) that

\[
(124) \quad \int_{\partial B_r(x)} \frac{1}{2} |Dv|_g^2 d\mathcal{H}^1 \geq \frac{\pi d^2}{r} (1 - c_3 r^2).
\]

Finally, if we write \(s := \min_{\partial B_r(x)} (\rho \wedge 1) > 0 \), then \(|Du|_g^2 = |d\rho|_g^2 + \rho^2 |Dv|_g^2 \geq |d\rho|_g^2 + s^2 |Dv|_g^2 \). Then one may deduce (122) from (121) and (124), after first taking \(r_0 \) small enough so that \(c_3 r_0^2 \leq 1/2 \), which yields \(|d|(1 - c_3 r^2) \geq 1 - c_3 r^2 \) for every \(|d| \geq 1 \). Then (122) follows directly in the case \(\rho \geq \frac{1}{2} \) on \(\partial B_r(x) \), if \(d \neq 0 \), whereas if \(d = 0 \) it is immediate. If \(\min_{\partial B_r(x)} \rho < \frac{1}{2} \), then \(||1 - \rho||_{L^\infty} > \frac{1}{2} \), and thus

\[
\int_{\partial B_r(x)} \varepsilon^{-1} u d\mathcal{H}^1 \geq \frac{1}{2} \int_{\partial B_r(x)} |d\rho|_g^2 + \frac{1}{2\varepsilon^2} F(\rho^2) d\mathcal{H}^1 \geq \frac{c_2}{4\varepsilon}
\]

\[
\geq \min_{0 < s \leq 1} \left[\frac{c_2}{4\varepsilon} (1 - s)^2 + s^2 \frac{\pi}{r} (1 - c_3 r^2) \right] = \lambda_\varepsilon(r) \geq \lambda_\varepsilon \left(\frac{r}{|d|} \right)
\]

for any \(d \). (If \(\rho = 0 \) somewhere on \(\partial B_r(x) \), then the definition \(v = u/\rho \) may not make sense, but the proof of (122) relies only on (121) and makes no mention of \(v \).) \(\square \)

We also need:

Lemma A.2. Assume that \(u \) is a smooth vector field on \(S \) and that for some \(0 < r < r_0(S) \) and \(x \in S \),

\(\rho := |u|_g \geq \frac{1}{2} \) on \(\partial B_r(x) \), \(\text{deg}(u; \partial B_r(x)) = d \neq 0 \).

Then if \(r_0 \) is sufficiently small,

\[
\int_{B_r(x)} |Du|_g^2 \text{vol}_g \geq \frac{\pi}{4} |d|.
\]

Proof. First, let \(O := \{ y \in B_r(x) : \rho(y) < t \} \), where \(t \) is a regular value of \(\rho(\cdot) \) such that \(\frac{1}{8} < t < \frac{1}{4} \). Then \(O \) is an open set with smooth boundary, compactly contained in \(B_r(x) \), and

\[
d = \text{deg}(u; \partial B_r(x)) = \frac{1}{2\pi} \left(\int_{\partial B_r(x)} j\left(\frac{u}{|u|_g} \right) + \int_{B_r(x)} \kappa \text{vol}_g \right) = \frac{1}{2\pi} \left(\int_{\partial O} j(u) - t^2 + \int_{O} \kappa \text{vol}_g \right)
\]

where the final equality follows from Lemma 5.4 and Stokes’ Theorem, as well as the fact that \(|u|_g = t \) on \(\partial O \). Thus if \(r_0 \) is sufficiently small (depending on \(||\kappa||_{L^\infty} \)) then

\[
2\pi t^2 \left(\frac{|d|}{2} - \frac{1}{2} \right) \leq \left| \int_{\partial O} j(u) \right|_g = \left| \int_{O} dj(u) \right|_g \leq \int_{O} |dj(u)|_g \leq \int_{O} |Du|_g^2,
\]

where the last inequality follows from Lemma 5.3. \(\square \) see (58).

Finally we recall
Lemma A.3. Assume that \(u_\varepsilon \) is a smooth vector field satisfying \([59]\). Then there exists \(\varepsilon_0 > 0 \) such that whenever \(0 < \varepsilon < \varepsilon_0 \), there exists a collection \(\tilde{B}^0 = \{ \tilde{B}_j^0 \} \) of closed pairwise disjoint balls that cover the set where \(|u_\varepsilon|_g \leq \frac{1}{2} \), and such that
\[
\sum_j \tilde{r}_j^0 \leq C\varepsilon \int_S e^{\varepsilon_0}(|u_\varepsilon|_g) \vol_g, \quad \text{where } \tilde{r}_j^0 \text{ denotes the radius of } \tilde{B}_j^0.
\]

Proof. Let \(\rho := |u_\varepsilon|_g \). Then \(\frac{1}{2}(d\rho/|\rho|_g^2 + \frac{1}{\varepsilon_0}F(\rho^2) \geq \frac{1}{\sqrt{2\varepsilon}}|d\rho|_g \sqrt{F(\rho^2)} \geq \frac{\sqrt{\varepsilon}}{2}|1 - \rho| |d\rho|_g \), by \([11]\). Thus the coarea formula, which remains valid on a smooth manifold, implies that
\[
\varepsilon \int_S e^{\varepsilon_0}(\rho) \vol_g \geq c \int_0^\infty |1 - s|\mathcal{H}^1(\rho^{-1}(s)) \, ds \geq c \int_{1/2}^{3/4} \mathcal{H}^1(\rho^{-1}(s)) \, ds.
\]
In particular we may find some \(\alpha \in \left[\frac{1}{2}, \frac{3}{4}\right] \), a regular value of \(\rho \), such that \(\mathcal{H}^1(\rho^{-1}(\alpha)) \leq C\varepsilon \int_S e^{\varepsilon_0}(\rho) \vol_g \). Following standard arguments, we may start with an efficient finite cover of \(\rho^{-1}(\alpha) \) and then merge balls to find a collection of closed pairwise disjoint balls that cover \(\rho^{-1}(\alpha) \) and whose radii sum to at most \(2\mathcal{H}^1(\rho^{-1}(\alpha)) \). This is \(\tilde{B}^0 \). The complement of the union of these balls is connected as long as \(\varepsilon \) is small enough, so on the complement, either \(\rho > \alpha \) or \(\rho < \alpha \) everywhere. The latter case is impossible by \([49]\) and \([121]\), if \(\varepsilon \) is small enough, and this proves the lemma. \(\square \)

A few more definitions are needed before we prove Proposition 8.2. W.l.o.g., we may assume that \(\frac{1}{2} \) is a regular value of \(\rho = |u|_g \). First, we set
\[
Z := \{ x \in S : |u(x)|_g \leq \frac{1}{2} \},
\]
\[Z_E := \cup\{ \text{connected components } Z_i \text{ of } Z : \deg(u; \partial Z_i) \neq 0 \}.
\]

Next, for any set \(V \subset S \) such that \(\partial V \cap Z_E = \emptyset \) we define the generalized degree
\[\deg(u; \partial V) := \left\{ \deg(u; \partial Z_i) : \text{components } Z_i \text{ of } Z_E \text{ such that } Z_i \subset \subset V \right\}.
\]
Note that \(\deg(u; \partial V) = \deg(u, \partial V) \) if \(\partial V \) is \(C^1 \), say, and \(|u|_g > \frac{1}{2} \) on \(\partial V \). Finally we define
\[
\Lambda_\varepsilon(\sigma) := \int_0^\sigma \lambda_\varepsilon(r) \, dr.
\]
It is straightforward to check that
\[
\Lambda_\varepsilon(\sigma) \geq \pi \log(1 + \frac{\sigma}{c_4\varepsilon}) - C\varepsilon^2 \geq \pi(\log \frac{\sigma}{\varepsilon} - C) \quad \text{for } 0 \leq \sigma \leq r_0(S).
\]
We record several other properties. First, since \(\Lambda_\varepsilon(\cdot) \) is the integral over \([0, \sigma]\) of a positive nonincreasing function, it is easy to see that
\[
\Lambda_\varepsilon(\sigma_1 + \sigma_2) \leq \Lambda_\varepsilon(\sigma_1) + \Lambda_\varepsilon(\sigma_2), \quad \sigma \mapsto \frac{1}{\sigma} \Lambda_\varepsilon(\sigma) \text{ is nonincreasing.}
\]
Finally, consider two radii \(r_1 < r_2 \) such that \(\varepsilon \leq r_j \leq r_0 \) for \(j = 1, 2 \), and assume that \(x \in S \) is a point such that \(Z_E \) does not intersect the annulus \(B_{r_2} \setminus B_{r_1}(x) \). Then \(\deg(u; \partial B_r(x)) = \deg(u; \partial B_{r_1}(x)) \) for all \(r \in (r_1, r_2) \), so one may use the coarea formula and integrate \([122]\) from \(r_1 \) to \(r_2 \) to find that
\[
\int_{B_{r_2} \setminus B_{r_1}(x)} e^{\varepsilon_0}(u) \, \vol_g \geq |d| \left[\Lambda_\varepsilon(\frac{r_2}{|d|}) - \Lambda_\varepsilon(\frac{r_1}{|d|}) \right], \quad d := \deg(u; \partial B_{r_1}(x)).
\]
Proof of Proposition 8.2. We divide the proof in several steps:

Step 1. An initial covering of Z_E. We claim first that there exists a collection $\mathcal{B}^0 = \{B_{l,0}\}_{k=1}^{K}$ of closed, pairwise disjoint balls with centers $a_{l,0}$ and radii $r_{l,0} \geq \varepsilon$ for all l, such that $Z_E \subset \bigcup B_{l,0}^0$ and (after possibly decreasing the constant c_2 in the definition (123) of λ_ε, in a way that depends only on the geometry of S)

\begin{equation}
\int_{B_{l,0}} e_\varepsilon^l(u) \, \text{vol}_g \geq \frac{c_2}{4\varepsilon} r_{l,0} \geq \Lambda_\varepsilon(r_{l,0}) \quad \text{for every } l.
\end{equation}

We first cover Z_E with balls that satisfy (127). Indeed, for every $x \in Z_E$, this estimate holds for $B_r(x)$, for the smallest $r \geq \varepsilon$ such that $\min_{\partial B_r(x)} \rho \geq 1/2$. This is a result of Lemma 12.2 if its $r \leq 2\varepsilon$, and otherwise it follows from (121) and the coarea formula. One can then choose a finite subcover. The balls obtained in this fashion may overlap. If so, they may be combined into pairwise disjoint balls that still satisfy (127), by exactly the arguments in [21], proof of Proposition 3.3, where the same result is proved in the Euclidean setting. This argument involves a slightly more careful choice of balls (so that no center is contained in any other ball) and use of the Besicovitch covering lemma. For our present purposes, we may appeal to Federer [13], sections 2.8.9 - 2.8.14, for a difficult but doubtless correct version of the covering lemma that is valid on a smooth compact Riemannian manifold, and indeed in much greater generality. Adjustments to the constant c_2 depend on constants appearing in this covering lemma, which are explicitly described in the above reference.

Step 2. Growing and merging balls. Now let $d_{l,0} := d_g(u; \partial B_{l,0})$. We will assume for this discussion that $d_{l,0} \neq 0$ for some l, as the other case is both easier and less relevant for our main results. Using Lemma 12.1 and associated properties of Λ_ε, such as those in (127), we may now follow the algorithm from [21], proof of Proposition 4.1, to which one may refer for the details omitted here. We describe it briefly. First, define

$$\sigma_0 := \min_{\mathcal{B}^0} r_{l,0}/|d_{l,0}| \leq C \varepsilon \log \varepsilon .$$

We claim that for $\sigma \in (\sigma_0, r_0(S))$, there exists a finite collection of pairwise disjoint closed balls $\mathcal{B}^\sigma = \{B_{l,\sigma}\}_{l=1}^{K}$ with centers $a_{l,\sigma}$ and radii $r_{l,\sigma}$, such that

\begin{equation}
Z_E \subset \bigcup B_{l,\sigma}, \quad \int_{B_{l,\sigma}} e_\varepsilon^l(u) \, \text{vol}_g \geq \frac{r_{l,\sigma}}{\sigma} \Lambda_\varepsilon(\sigma), \quad \text{and } r_{l,\sigma} \geq \sigma |d_{l,\sigma}| \quad \text{for all } l,
\end{equation}

where $d_{l,\sigma} = d_g(u; B_{l,\sigma})$. We take \mathcal{B}^{σ_0} to be the collection found in Step 1 above. Given any $\sigma_1 \geq \sigma_0$ for which such a collection exists, we say that the minimizing balls are those for which $r_{l,\sigma_1} = \sigma_1 |d_{l,\sigma_1}|$. Since the balls are closed and pairwise disjoint, there is some $\delta > 0$ such that for $\sigma_1 \leq \sigma \leq \sigma_1 + \delta$, we can expand the minimizing balls, while leaving the centers fixed, by enclosing them in pairwise disjoint annuli chosen so that, for every σ, the equality $r_{l,\sigma} = \sigma |d_{l,\sigma}|$ holds for all minimizing balls. We add balls to the collection of minimizing balls as σ increases, when necessary. This preserves (128) due to properties of Λ_ε summarized above, such as (126). At certain values of σ, for example $\sigma = \sigma_1 + \delta$, the expansion process will lead to two or more balls colliding. When this occurs, one can regroup them into larger, pairwise disjoint balls in a way that preserves the properties (128). (Details of all these assertions can be found in [21].) This process can be continued as long as every minimizing ball has radius at most $r_0(S)$, which happens as long as $\sigma < r_0(S)$.

Step 3. Stopping the process, and covering all of Z. Recalling that $n > T - 1$ by hypothesis, we fix $q \in (0, 1 - \frac{T}{n+1})$, which implies that $\frac{T}{1-q} < n + 1$. It then follows from (128), (125), and (49) that if $\varepsilon^q \leq \sigma < r_0(S)$, then
\begin{equation}
\sigma \sum |d_{l,\sigma}| \leq \sum r_{l,\sigma} \leq \sigma \frac{T \pi}{\log(\sigma/\varepsilon)} + C \left(\frac{T}{1-q} + \frac{C}{\log \varepsilon} \right).
\end{equation}
Thus there exists $\varepsilon_0 > 0$ (depending on S, q, and the constant in (49)) such that if $0 < \varepsilon < \varepsilon_0$, then $\sum |d_{l,\sigma}| < n + 1$, and thus $\sum |d_{l,\sigma}| \leq n$.

These balls have all the desired properties (the bound (55) on the sum of the radii follows from (129)) except that they cover Z_E rather than all of Z. To rectify this, recall from Lemma A.3 that $Z \setminus Z_E$ can be covered by a finite collection of balls whose radii sum to at most $C \varepsilon |\log \varepsilon|$. We can add these balls to B^σ, merging as necessary to obtain a pairwise disjoint collection (still denoted B^σ) that covers all of Z, and with the sum of the radii increased by at most $C \varepsilon |\log \varepsilon|$. Since $\frac{T}{1-q} < n + 1$, it follows from (129) that these still satisfy $\sum r_{l,\sigma} < \sigma (n + 1)$ for $0 < \varepsilon < \varepsilon_0$. The bound on the total degrees (54) and the energy lower bound (56) for this modified collection of balls are directly inherited from the previous collection.

Acknowledgment. R.I. acknowledges partial support by the ANR project ANR-14-CE25-0009-01. The work of R.J. was partially supported by the Natural Sciences and Engineering Research Council of Canada under operating Grant 261955.

References

[1] R. Alicandro, M. Ponsiglione, *Ginzburg-Landau functionals and renormalized energy: a revised Γ-convergence approach*, J. Funct. Anal. 266 (2014), 4890–4907.
[2] T. Aubin, *Some nonlinear problems in Riemannian geometry*, Springer-Verlag, Berlin, 1998.
[3] F. Bethuel, H. Brezis, F. Hélein, *Ginzburg-Landau vortices*, Birkhäuser, Boston, 1994.
[4] F. Bethuel, X.M. Zheng, *Density of smooth functions between two manifolds in Sobolev spaces*, J. Funct. Anal. 80 (1988), 60–75.
[5] A. Boutet de Monvel-Berthier, V. Georgescu, R. Purice, *A boundary value problem related to the Ginzburg-Landau model*, Comm. Math. Phys. 142 (1991), 1–23.
[6] H. Brezis, J.M. Coron, E.H. Lieb, *Harmonic maps with defects*, Comm. Math. Phys., 107 (1986) 649–705.
[7] H. Brezis, L. Nirenberg, *Degree theory and BMO. I. Compact manifolds without boundaries*, Selecta Math. (N.S.) 1 (1995), 197–263.
[8] G. Canevari, A. Segatti, *Defects in Nematic Shells: a Γ-convergence discrete-to-continuum approach*, Arch. Ration. Mech. Anal. 229 (2018) no. 1, 125-186.
[9] G. Canevari, A. Segatti, M. Veneroni, *Morse’s index formula in VMO for compact manifolds with boundary*, J. Funct. Anal. 269 (2015), no. 10, 3043-3082.
[10] G. Carbou, *Thin layers in micromagnetism*, Math. Models Methods Appl. Sci. 11 (2001), 1529-1546.
[11] J.E. Colliander, R.L. Jerrard, *Ginzburg-Landau vortices: weak stability and Schrödinger equation dynamics*, J. Anal. Math. 77 (1999), 129-205.
[12] M.P. do Carmo, Differential forms and applications, Springer-Verlag, Berlin, 1994.
[13] H. Federer, “Geometric Measure Theory” *Die Grundlehren der mathematischen Wissenschaften, Band 153*, Springer-Verlag, New York 1969.
[14] H. Federer, W.H. Fleming, *Normal and integral currents*, Ann. of Math. (2) 72 (1960), 458-520.
[15] G. Gioia, R. D. James, *Micromagnetics of very thin films*, Proc. Roy. Soc. London A 453 (1997), 213-223.
[16] R. Ignat, *A survey of some new results in ferromagnetic thin films*, Séminaire: Équations aux Dérivées Partielles. 2007–2008, Exp. No. VI, 21 pp., Sém. Équ. Dériv. Partielles, École Polytech., Palaiseau, 2009.
[17] R. Ignat, R.L. Jerrard, *Interaction energy between vortices of vector fields on Riemannian surfaces*, C. R. Math. Acad. Sci. Paris 355 (2017), 515-521.
[18] R. Ignat, L. Nguyen, V. Slastikov, A. Zarnescu, Uniqueness of degree-one Ginzburg-Landau vortex in the unit ball in dimensions $N \geq 7$, C. R. Math. Acad. Sci. Paris 356 (2018), 922-926.

[19] R. Ignat, L. Nguyen, V. Slastikov, A. Zarnescu, On the uniqueness of minimisers of Ginzburg-Landau functionals, [arXiv:1708.05040] accepted at Ann. Sci. Éc. Norm. Supér., 2018.

[20] R. Ignat, F. Otto, A compactness result for Landau state in thin-film micromagnetics, Ann. Inst. H. Poincaré, Anal. Non Linéaire 28 (2011), 247–282.

[21] R.L. Jerrard, Lower bounds for generalized Ginzburg-Landau functionals, SIAM J. Math. Anal. 30 (1999), 721-746.

[22] R.L. Jerrard, H.M. Soner, The Jacobian and the Ginzburg-Landau energy, Calc. Var. PDE 14 (2002), 151-191.

[23] R.L. Jerrard, D. Spirn, Refined Jacobian estimates for Ginzburg-Landau functionals, Indiana Univ. Math. Jour. 56 (2007), 135-186.

[24] R.L. Jerrard, D. Spirn, Refined Jacobian estimates and Gross-Pitaevsky vortex dynamics, Arch. Ration. Mech. Anal. 190 (2008), 425-475.

[25] H. Karcher, Riemannian center of mass and mollifier smoothing, Comm. Pure Appl. Math. 30 (1977), 509-541.

[26] P. Mironescu, Local minimizers for the Ginzburg-Landau equation are radially symmetric, C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), 593-598.

[27] G. Napoli, L. Vergori. Equilibrium of nematic vesicles. J. Phys. A: Math. Theor., 43 (2010) 445207.

[28] G. Napoli and L. Vergori. Extrinsic curvature effects on nematic shells. Phys. Rev. Lett., 108 (2012) 207803.

[29] G. Orlandi, Asymptotic behavior of the Ginzburg-Landau functional on complex line bundles over compact Riemann surfaces. Rev. Math. Phys. 8 (1996), no. 3, 457-486.

[30] F. Pacard, T. Rivière, Linear and nonlinear aspects of vortices. The Ginzburg-Landau model, Progress in Nonlinear Differential Equations and their Applications, 39. Birkhäuser Boston, Inc., Boston, MA, 2000.

[31] J. Qing, Renormalized energy for Ginzburg-Landau vortices on closed surfaces. Math. Z. 225 (1997), no. 1, 1-34.

[32] E. Sandier, Lower bounds for the energy of unit vector fields and applications J. Funct. Anal. 152 (1998), 379-403.

[33] E. Sandier, S. Serfaty, Vortices in the magnetic Ginzburg-Landau model, Birkhäuser, 2007.

[34] A. Segatti, M. Snarski, and M. Veneroni Analysis of a variational model for nematic shells. Math. Models Methods Appl. Sci. 26 (2016), no. 10, 1865-1918.

[35] J. Steiner, A geometrical mass and its extremal properties for metrics on S^2, Duke Math. J. 129 (2005), 63-86.

[36] M. Struwe, On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2 dimensions, Differential Integral Equations 7 (1994), 1613–1624.

Radu Ignat
Institut de Mathématiques de Toulouse & Institut Universitaire de France
UMR 5219, Université de Toulouse, CNRS, UPS, IMT
F-31062 Toulouse Cedex 9, France
radu.ignat@math.univ-toulouse.fr

Robert L. Jerrard
Department of Mathematics
University of Toronto
Toronto, Ontario, M5S 2E4
rjerrard@math.toronto.edu