Invariant Stein domains in Stein symmetric spaces
and a non-linear complex convexity theorem

Simon Gindikin∗ and Bernhard Krötz†

Abstract

We prove a complex version of Kostant’s non-linear convexity theorem. Applications to the construction of G-invariant Grauert tubes of Riemannian symmetric G/K spaces are given.

Introduction

Let $X = G/K$ be a semisimple non-compact Riemannian symmetric space. We may assume that G is semisimple with finite center and we write $G = NAK$ for an Iwasawa decomposition of G. By our assumption, G sits in its universal complexification G_C and so $X \subseteq X_C := G_C/K_C$. Note that X_C is a Stein symmetric space. Observe that the group G does not act properly (i.e. with compact isotropy subgroups) on G_C/K_C since K_C is not compact. Write U for the compact real form of G_C. The maximal connected subdomain of $GU_K/K_C \subseteq X_C$ on which G acts properly and which contains X was introduced in [AkGi90]. It is given by

$$\Xi := G \exp(i\Omega) K_C/K_C$$

where Ω is a polyhedral convex domain in $\mathfrak{a} = \text{Lie}(A)$ defined by

$$\Omega := \{ X \in \mathfrak{a} : (\forall \alpha \in \Sigma) \ |\alpha(X)| < \frac{\pi}{2} \}.$$

Here Σ denotes the restricted root system with respect to \mathfrak{a}.

One of our principal aims is to construct a broad class of G-invariant Stein subdomains in Ξ. Let us remind the reader that it is a notoriously difficult problem to verify that certain unions of orbits of non-compact groups are Stein. For example the problem posed in [AkGi90] whether Ξ is Stein was unsolved until the last year.

The Iwasawa decomposition on G cannot be holomorphically extended to the whole group G_C; we have that $N_C A_C K_C \not\subseteq G_C$ is an open Zariski dense subset. The Iwasawa domain Ξ_I

∗ Supported in part by the NSF-grant DMS-0070816 and the MSRI
† Supported in part by the NSF-grant DMS-0097314 and the MSRI
is defined as the maximal connected G-invariant subdomain in $X_{\mathbb{C}}$ which contains X and is contained in $N_{\mathbb{C}}A_{\mathbb{C}}K_{\mathbb{C}}/K_{\mathbb{C}}$:

$$\Xi_I := (\bigcap_{g \in G} g(N_{\mathbb{C}}A_{\mathbb{C}}K_{\mathbb{C}}/K_{\mathbb{C}}))_0,$$

where $(\cdot)_0$ refers to the connected component containing X. Since Ξ_I is the connected component of an open intersection of Stein domains, it is easy to see that Ξ_I is Stein (cf. proof of Theorem 3.4).

The domains Ξ and Ξ_I again became of recent interest. One has $\Xi = \Xi_I$. Here are the results in chronological order:

- $\Xi \subseteq \Xi_I$ for all classical groups G (cf. [KrSt01a]).
- $\Xi = \Xi_I$ for all classical groups G (cf. [GiMa01]).
- $\Xi_I \subseteq \Xi$ for all G (cf. [Ba01]).

In [KOS01] it will be shown that $\Xi \subseteq \Xi_I$ for the exceptional cases. Also it is announced in [Hu01] that $\Xi \subseteq \Xi_I$. This will then give us $\Xi = \Xi_I$ in the general case. In particular, Ξ is Stein. Also, in the preprint [BHH01] a complex-geometric proof of the Steinness of Ξ is given.

Geometrically, the domain Ξ is a rather complicated object. If G is a group of Hermitian type, then $\Xi = X \times X$ (cf. [BHH01], [GiMa01] or [KrSt01b]). If $X = G/K$ is classical, then there exists a group of Hermitian type $S \supseteq G$ with maximal compact subgroup $U \supseteq K$ such that G/K is a real form of the Hermitian symmetric space S/U. In [BHH01] and [KrSt01b] a G-equivariant subdomain $\Xi_0 \subseteq \Xi$ was exhibited which is biholomorphic to S/U. Further one has $\Xi = \Xi_0 = S/U$ if and only if Σ is of type C_n or BC_n. In particular, if $\Sigma \neq C_n, BC_n$, then $S/U \subsetneq \Xi$ and the explicit geometric structure of Ξ is very intricate. For many exceptional spaces G/K the geometric structure is even more complicated.

The domain Ξ (in [Gi98] it is called complex crown of X) is universal in the sense that many analytical and geometrical constructions on the Riemannian symmetric space X extend to Ξ. In [KrSt01a] it was shown that the inclusion $\Xi \subseteq \Xi_I$ implies that all eigenfunctions on X for the algebra of G-invariant differential operators $\mathbb{D}(X)$ extend holomorphically to Ξ. In [GiMa01] the problem $\Xi \subseteq \Xi_I$ is included in a broad class of geometrical problems connected with Matsuki duality. These geometrical problems include in particular the problem of the parametrization of compact complex cycles in flag domains (cf. [Wo92]).

Let us now come to the contents of this paper. Our first main result is a complex version of Kostant’s non-linear convexity theorem (cf. [Kos73]). Write $G \to A$, $g \mapsto a(g)$ for the middle projection in $G = NAK$.

Theorem. (Kostant) Let $X \in \mathfrak{a}$. Then

$$a(K \exp(X)) = \exp(\text{conv}(W X)),$$

where $W = N_K(\mathfrak{a})/Z_K(\mathfrak{a})$ denotes the Weyl group and $\text{conv}(\cdot)$ refers to the convex hull of \cdot.

One shows that the middle projection $a: G \to A$ holomorphically extends to

$$a: G \exp(i\Omega)K_{\mathbb{C}} \to A_{\mathbb{C}}.$$

Then our main result is:

Theorem A. (Complex Convexity Theorem) For all $X \in \Omega$ we have that

$$a(G \exp(iX)) \subseteq A \exp(i \text{conv}(W X)).$$
Our convexity theorem features interesting applications to the geometry of the domain Ξ and its generic subdomains which are defined as follows: Let $\omega \subseteq \Omega$ be a non-empty convex W-invariant open subset. Then we can form the domains

$$\Xi(\omega) = G \exp(i\omega)K_C/K_C.$$

Note that $\Xi = \Xi(\Omega)$ and that the Iwasawa projection (1) naturally factors to a holomorphic mapping $a: \Xi \to A_C$. Finally we define for every $g \in G$ the horospherical tube $T(g, \omega) \subseteq X_C$ by

$$T(g, \omega) = g(N_CA\exp(i\omega)K_C/K_C).$$

As an application of Theorem A we now obtain:

Theorem B. Let ω be an open convex Weyl group invariant subset of Ω. Then the following assertions hold:

(i) $a(\Xi(\omega)) = A\exp(i\omega)$.

(ii) $\Xi(\omega) = (\bigcap_{g \in G} T(g, \omega))_0$.

(iii) The domain $\Xi(\omega)$ is Stein.

Let us emphasize that in the case of $\Xi(\omega) = \Xi$, the inclusion $\Xi \subseteq \Xi_I$ means only the existence of an Iwasawa projection $a: \Xi \to A_C$; (i) in Theorem B gives a more precise information on the image of this projection. Further (ii) in the above theorem is a much stronger statement than (iii); in particular, (ii) implies (iii) since all horospherical tubes $T(g, \omega)$ are Stein.

Theorem B can be considered as an analogue of Lassalle’s results for compact symmetric spaces (cf. [La78]). We can interpret Theorem A and Theorem B as statements for G-orbits in X_C intersecting $A\exp(i\Omega)K_C/K_C$ which in the case of compact symmetric spaces G/K are true for arbitrary G-orbits (cf. [La78]).

It is our pleasure to thank the MSRI, Berkeley, for its hospitality during the Integral geometry program where this work was accomplished. We thank Dmitri Akhiezer for his careful screening of the manuscript and his worthy suggestions. Further we would like to thank Karl-Hermann Neeb for his kindness to proofread the paper and Laura Geatti for sharing her knowledge with us on the boundary of Ξ.

1. Notation

Let G be a connected semisimple Lie group sitting inside a complexification G_C. We denote by \mathfrak{g} and \mathfrak{g}_C the Lie algebras of G and G_C, respectively. Let $K < G$ be a maximal compact subgroup and \mathfrak{k} its Lie algebra. Denote by $\theta: G \to G$ a Cartan involution which has K as a fixed point set.

Let $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ the Cartan decomposition attached to \mathfrak{k}. Take $\mathfrak{a} \subseteq \mathfrak{p}$ a maximal Abelian subspace and let $\Sigma = \Sigma(\mathfrak{g}, \mathfrak{a}) \subseteq \mathfrak{a}^*$ be the corresponding root system. Related to this root system is the root space decomposition according to the simultaneous eigenvalues of $\text{ad}(H), H \in \mathfrak{a}$:

$$\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{m} \bigoplus_{\alpha \in \Sigma} \mathfrak{g}^\alpha,$$

here $\mathfrak{m} = \mathfrak{g}_\mathfrak{k}(\mathfrak{a})$ and $\mathfrak{g}^\alpha = \{X \in \mathfrak{g} : (\forall H \in \mathfrak{a}) [H, X] = \alpha(H)X\}$. For the choice of a positive system $\Sigma^+ \subseteq \Sigma$ one obtains the nilpotent Lie algebra $\mathfrak{n} = \bigoplus_{\alpha \in \Sigma^+} \mathfrak{g}^\alpha$. Then one has the Iwasawa decomposition on the Lie algebra level

$$\mathfrak{g} = \mathfrak{n} \oplus \mathfrak{a} \oplus \mathfrak{k}.$$
We write A, N for the analytic subgroups of G corresponding to a and n. For these choices one has for G the Iwasawa decomposition, namely, the multiplication map

$$N \times A \times K \to G, \quad (n, a, k) \mapsto n a k$$

In particular, every element $g \in G$ can be written uniquely as $g = n(g)a(g)\kappa(g)$ with each of the maps $\kappa(g) \in K$, $a(g) \in A$, $n(g) \in N$ depending analytically on $g \in G$. The last piece of structure theory we shall recall is the little Weyl group. We denote by $W = N_K(a)/Z_K(a)$ the Weyl group of $\Sigma(a, g)$.

Finally we define the domain

$$\Omega = \{X \in a: (\forall \alpha \in \Sigma) |\alpha(X)| < \frac{\pi}{2}\}.$$

Clearly Ω is convex and W-invariant.

2. The complex convexity theorem

Let us first give the relevant notation. Denote by K_C, A_C, N_C the complexifications of K, A and N. Then $N_C A_C K_C$ is a proper Zariski-open, hence dense subset of G_C. Throughout this paper we will assume that $\Xi \subseteq \Xi_I$ holds, i.e.,

$$G \exp(i\Omega) \subseteq N_C A_C K_C$$

(see the introduction for proofs of this statement). We now set $T_\Omega := A \exp(i\Omega) \subseteq A_C$. Then $G T_\Omega \subseteq N_C A_C K_C$.

One can show that one has a well defined holomorphic middle projection $N_C A_C K_C \to A_C/(A_C \cap K_C)$. Due to the simple connectedness of T_Ω, this projection restricted to $G T_\Omega$ lifts to A_C (cf. [KrSt01a, proof of Th. 1.8(iii)]) and we obtain an analytic mapping

$$G \times T_\Omega \to A_C, \quad (g, a) \mapsto a(ga)$$

holomorphic in the second variable such that

$$ga \in N_C a(ga) K_C$$

holds.

If V is a vector space and $E \subseteq V$ is a subset, then we denote by $\text{conv}(E)$ the convex hull of E in V.

Theorem 2.1. (Complex Convexity Theorem) Assume that G is classical. Then we have for all $X \in \Omega$ that

$$a(G \exp(iX)) \subseteq A \exp(i \text{conv}(WX)).$$

The proof of Theorem 2.1 will be given in several steps.

Fix $a \in T_\Omega$ and consider the function

$$f_a: K \to a_C, \quad k \mapsto \log a(ka).$$

Further we write $p_a: g_C \to a_C$ for the projection along $\xi_C + n_C$. For $x \in G T_\Omega K_C \subseteq N_C A_C K_C$ we write $b(x) = n(x) a(x)$ for the triangular part of $x.$
Lemma 2.2. For any $a \in T_\Omega$, $k \in K$ and $X \in \mathfrak{k}$ we have

$$\frac{d}{dt} \bigg|_{t=0} f_a(\exp(tX)k) = p_{a_{\mathbb{C}}}(\Ad(b(k)a))^{-1}X).$$

Proof. This result can be easily deduced from the known case for $a \in A$ by analytic continuation. However, for convenience for the reader, we briefly recall the proof. We have

$$\frac{d}{dt} \bigg|_{t=0} f_a(\exp(tX)k) = \frac{d}{dt} \bigg|_{t=0} \log a(\exp(tX)ka) = \frac{d}{dt} \bigg|_{t=0} \log a(\exp(tX)b(ka)) = \frac{d}{dt} \bigg|_{t=0} \log a(\exp(tX)b(ka)) + \log a(ka) = \frac{d}{dt} \bigg|_{t=0} \log a(\exp(t\Ad(b(ka)^{-1})X)) = p_{a_{\mathbb{C}}}(\Ad(b(ka))^{-1}X),$$

proving the lemma. \(\blacksquare\)

Write $g_\mathbb{C}$ for $g_\mathbb{C}$ considered as a real Lie algebra and $\kappa_\mathbb{R}$ for the Cartan-Killing form on $g_\mathbb{C}$. Let κ be the Cartan-Killing form on g and recall the following relation between κ and $\kappa_\mathbb{R}$:

$$(\forall X, X', Y, Y' \in g) \quad \kappa_\mathbb{R}(X + iyX', iyY') = 2(\kappa(X, X') - \kappa(Y, Y')).$$

For every $\lambda \in (g_\mathbb{C})^*$ we define $H_\lambda \in g_\mathbb{C}$ by $\lambda(X) = \kappa_\mathbb{R}(X, H_\lambda)$ for all $X \in g_\mathbb{C}$.

For every $\lambda \in (a_\mathbb{C})^*$ and $a \in T_\Omega$ we now define the function

$$f_{a, \lambda}: K \to \mathbb{R}, \quad k \mapsto \lambda(f_a(k)).$$

Lemma 2.3. Let $a \in T_\Omega$ and $k \in K$. Then the following assertions hold:

(i) For all $X \in \mathfrak{k}$ one has $\frac{d}{dt} \bigg|_{t=0} f_{a, \lambda}(\exp(tX)k) = \kappa_\mathbb{R}(X, \Ad(n(ka))H_\lambda)$.

(ii) We have $df_{a, \lambda}(k) = 0$ if and only if

$$\mathfrak{k} \perp_{\kappa_\mathbb{R}} \Ad(n(ka))H_\lambda.$$

Proof. (i) is immediate from Lemma 2.2 and the notations introduced from above. (ii) follows from (i). \(\blacksquare\)

Write $i\mathfrak{a}$ for the subspace of $(\mathfrak{a}_\mathbb{C})^*$ which vanishes on \mathfrak{a}. Our next goal is to determine the critical set of $f_{a, \lambda}$ for $\lambda \in i\mathfrak{a}_\mathbb{C}$.

We also denote by θ the holomorphic extension of the Cartan involution to $G_\mathbb{C}$. Further we write $G_\mathbb{C} \to G_\mathbb{C}$, $x \mapsto \overline{x}$ for the complex conjugation with respect to the real form G.

Lemma 2.4. Suppose that $X \in \Omega$ is regular. Set $a = \exp(iX)$ and let $k \in K$. Then the following implication holds

$$ka \in NA_\mathbb{C}K_\mathbb{C} \Rightarrow k \in N_K(a).$$

Proof. We write $ka = nbk'$ for $n \in N$, $b \in A_\mathbb{C}$ and $k' \in K_\mathbb{C}$. Then

$$ka^2k^{-1} = ka(\theta(ka)^{-1}) = nbk'(\theta(nbk'))^{-1} = nb^2\theta(n)^{-1}.$$

Set $x := ka^2k^{-1}$. Then

$$\overline{x} = ka^{-2}k^{-1} = x^{-1}.$$
Thus we obtain that
\[x = \theta(n)b^{-2}n^{-1}, \]

Therefore \(x = \theta(n)b^{-2}n^{-1} \) and so
\[x = \theta(n)b^{-2}n^{-1} \in A_C \theta(N_C). \]

Now let \(0 < t \leq 1 \) and write \(a_t := \exp(itX) \) and accordingly we define \(x_t \). Then we obtain that
\[\log x_t^2 = \log(k \exp(i4tX)k^{-1}) = Ad(k)(i4tX) \in a_C + \theta(N_C). \]

Thus the fact that \(H_\lambda \in i\mathfrak{a} \) is regular implies that \(Ad(n(ka))H_\lambda \in i\mathfrak{a} + (\mathfrak{n}_C \setminus \mathfrak{n}) \). But this contradicts \(Ad(n(ka))H_\lambda \in i\mathfrak{g} + \mathfrak{p} \), proving our proposition.

Proposition 2.5. Suppose that \(X \in \Omega \) and set \(a = \exp(iX) \). Let \(\lambda \in i\mathfrak{a}_R^* \) be such that \(H_\lambda \in i\mathfrak{a} \) is regular. Then we have
\[df_{a,\lambda}(k) = 0 \iff k \in N_K(a). \]

Proof. The implication \(\iff \) follows immediately from Lemma 2.3 (ii).

\(\Rightarrow \) Suppose that \(df_{a,\lambda}(k) = 0 \). Then Lemma 2.3 (ii) implies that \(t\mathfrak{n}_\mathfrak{a} Ad(n(ka))H_\lambda \), or equivalently \(Ad(n(ka))H_\lambda \in i\mathfrak{g} + \mathfrak{p} \). Assume that \(k \notin N_K(a) \). By Lemma 2.4 we have \(n(ka) = \exp(Y) \) for some \(Y \in \mathfrak{n}_C \setminus \mathfrak{n} \). Hence
\[Ad(n(ka))H_\lambda = H_\lambda + \sum_{\mathfrak{g} \in \mathfrak{g}} \left[Y, H_\lambda \right] + \cdots. \]

Thus the fact that \(H_\lambda \in i\mathfrak{a} \) is regular implies that \(Ad(n(ka))H_\lambda \in i\mathfrak{a} + (\mathfrak{n}_C \setminus \mathfrak{n}) \). But this contradicts \(Ad(n(ka))H_\lambda \in i\mathfrak{g} + \mathfrak{p} \), proving our proposition.

Proof of Theorem 2.1. First we observe that it is sufficient to prove
\[a(K \exp(iX)) \subseteq \exp(i \text{conv}(WX)) \]

for all \(X \in \Omega \). By a simple density/continuity argument we may further assume that \(X \) is regular. Suppose that there exists a \(k \in K \) such that \(a(k \exp(iX)) \notin \exp(i \text{conv}(WX)) \), or equivalently
\[\text{Im} \log a(k \exp(iX)) \notin \text{conv}(WX). \]

Then we find a regular element \(\lambda \in i\mathfrak{a}_R^* \) such that
\[f_{\exp(ix),\lambda}(k) > \max_{Y \in i \text{conv}(WX)} \lambda(Y). \]

But Proposition 2.5 implies that \(f_{\exp(ix),\lambda} \) takes its maximum at an element \(k \in N_K(a) \). Hence \(f_{\exp(ix),\lambda}(k) = \lambda(Ad(k)iX) \); a contradiction to our inequality from above.
3. Applications

Let now \(\omega \subseteq \Omega \) be an open Weyl group invariant convex set. Then we define the domain
\[
\Xi(\omega) = G \exp(i\omega)K_C/K_C.
\]
If \(\omega = \Omega \), then we set \(\Xi = \Xi(\Omega) \). Write \(\partial \Xi(\omega) \) for the topological boundary of \(\Xi(\omega) \) in \(G_C/K_C \).

Note the following properties of \(\Xi(\omega) \):

- \(\Xi(\omega) \) is open in \(G_C/K_C \) (cf. [AkGi90]).
- \(\Xi(\omega) \) is connected and \(G\)-invariant.
- \(G \) acts properly on \(\Xi \) (cf. [AkGi90]).
- One has \(G \exp(i\partial \omega)K_C/K_C \subseteq \partial \Xi(\omega) \). Moreover if \(\omega \subseteq \Omega \), then we have \(\partial \Xi(\omega) = G \exp(i\partial \omega)K_C/K_C \) (cf. [KrSt01b, Prop. 4.1]).

From our discussions in the previous section it is clear that we have a holomorphic projection
\[
a: \Xi_\omega \to A_C, \quad x \mapsto a(x)
\]
with \(x \in N_Ca(x)K_C/K_C \) for all \(x \in \Xi \). Finally we define the Abelian tube domain
\[
T_\omega := A \exp(i\omega) \subseteq A_C.
\]

An immediate consequence of our complex convexity theorem then is:

Lemma 3.1. We have
\[
a(\Xi(\omega)) = T_\omega.
\]

Remark 3.2. From Lemma 3.1 we obtain in particular that \(a(\Xi) \subseteq T_\Omega \). It is interesting to observe that this inclusion for \(G = \text{Sp}(n, \mathbb{R}) \) extends a result of Siegel.

Consider the vector space \(V := \text{Symm}(n, \mathbb{R}) \) of real symmetric matrices with its subcone of positive definite matrices \(V^+ \). Then we have the symmetric Siegel domain
\[
S^+ := V + iV^+ \subseteq V_C.
\]

Recall that \(S^+ \cong \text{Sp}(n, \mathbb{R})/U(n) \).

If we write \(\Delta_j \) for the \(j \)-th principal minor on \(V_C \), then Siegel’s Lemma says
\[
\Delta_j(z) \neq 0 \quad \text{for } z \in S^+
\]
and all \(1 \leq j \leq n \). Now consider the rational functions
\[
\chi_j(z) = \frac{\Delta_j(z)}{\Delta_{j-1}(z)}
\]
on \(V_C \). Then the inclusion \(a(\Xi) \subseteq T_\Omega \) for \(G = \text{Sp}(n, \mathbb{R}) \) implies
\[
\text{Im } \chi_j(z) > 0 \quad \text{for } z \in S^+
\]
and for all \(j \). Note that (3.2) implies (3.1). To see this one identifies \(S^+ \) with the symmetric space \(\text{Sp}(n, \mathbb{R})/U(n) \). Then with \(S^- := \overline{S^+} \) one has a biholomorphism \(\Xi \cong S^+ \times S^- \) (cf. [GiMa01] or [KrSt01b]). Realizing \(A \) as diagonal matrices in \(G \), one then easily shows that \(a(\Xi) \subseteq T_\Omega \) implies (3.2).

The example discussed above admits a natural generalization to all tube domains \(V + iV^+ \) associated to an Euclidean Jordan algebra \(V \) and cone \(V^+ \).
For every \(g \in G \) we define the horospherical tube associated to \(\omega \) by

\[
T(g, \omega) := g(N_C T_\omega K_C/K_C) \subseteq G_C/K_C.
\]

Note that \(T(1, \omega) \) is biholomorphic to \(N_C \times T_\omega \). In particular, all horospherical tubes \(T(g, \omega) \) are Stein.

Theorem 3.3. For any non-empty open convex \(W \)-invariant set \(\omega \subseteq \Omega \) the domain \(\Xi(\omega) \) is the connected component of the intersection of horospherical tubes:

\[
\Xi(\omega) = \left(\bigcap_{g \in G} T(g, \omega) \right)_0.
\]

Proof. From Lemma 3.1 we obtain that

\[
\Xi(\omega) \subseteq N_C T_\omega K_C/K_C = a^{-1}(T(1, \omega)).
\]

Thus the fact that \(\Xi(\omega) \) is \(G \)-invariant and connected implies that \(\Xi(\omega) \subseteq \left(\bigcap_{g \in G} T(g, \omega) \right)_0 \). On the other hand we obtain from \(\Xi = \Xi_I \) (cf. the discussion in the introduction) and Lemma 3.1 that \(\Xi = \left(\bigcap_{g \in G} T(g, \Omega) \right)_0 \). From this and Lemma 3.1 we hence get

\[
\left(\bigcap_{g \in G} T(g, \omega) \right)_0 \subseteq \Xi \cap T(1, \omega) = \Xi(\omega),
\]

completing the proof of the theorem.

An interesting application of Theorem 3.3 is the following:

Proposition 3.4. Let \(\omega \subseteq \Omega \) be an open convex \(W \)-invariant set. Then the intersection

\[
I(\omega) := \bigcap_{g \in G} T(g, \omega)
\]

is open. In particular, \(I(\omega) \) and every connected component of \(I(\omega) \) is Stein. In particular, \(\Xi(\omega) \) is Stein.

Proof. (following a suggestion of Dmitri Akhiezer) Since \(G = KAN \) and since \(AN \) leaves \(T(1, \omega) \) invariant, we obtain

\[
I(\omega) = \bigcap_{k \in K} T(k, \omega).
\]

Hence \(I(\omega) \) is an intersection of open sets over the “compact parameter space” \(K \). In particular \(I \) is open. Since all horospherical tubes \(T(k, \omega) \) are Stein, we obtain that \(I \) is Stein. With \(I(\omega) \) all its connected components are Stein, concluding the proof of the theorem.

As a final application of the complex convexity theorem we prove a result on the characterization of the boundary of \(\Xi \).

Proposition 3.5. Let \(\omega \subseteq \Omega \) be an open convex \(W \)-invariant set. Let \((z_n)_{n \in \mathbb{N}} \) be a sequence with \(z_n \to z_0 \in \partial \Xi(\omega) \). Then

\[
(\text{Im log } a(z_n))_{n \in \mathbb{N}}
\]

is a sequence in \(\omega \) and every accumulation point of this sequence lies in \(\partial \omega \).

Proof. Set \(X_n := \text{Im log } a(z_n) \). By Lemma 3.1 we have \(X_n \in \omega \). Since \(\overline{\omega} \) is compact in \(a \), we may assume that \(X_n \to X_0 \) with \(X_0 \in \mathfrak{Y} \).

If \(X_0 \not\in \partial \omega \), then we find a convex Weyl group invariant open set \(\omega_1 \) such that \(\overline{\omega_1} \subseteq \omega \) and \(X_n \in \omega_1 \). Then Theorem 3.3 implies that \(z_n \in \Xi(\omega_1) \) and so \(z_0 \in \Xi(\omega_1) \). Now \(\overline{\omega_1} \subseteq \Omega \) and so \(\partial \Xi(\omega_1) = G \exp(i\partial \omega_1)K_C/K_C \). Thus \(z_0 \in \Xi(\omega_1) \), contradicting the assumption \(z_0 \in \partial \Xi(\omega) \). This concludes the proof of the proposition.
References

[AkGi90] Akhiezer, D. N., and S. G. Gindikin, *On Stein extensions of real symmetric spaces*, Math. Ann. **286**, 1–12, 1990.

[Ba01] Barchini, L., *Stein Extensions of Real Symmetric Spaces and the Geometry of the Flag Manifold*, preprint.

[BHH01] Burns, D., S. Halverscheid, and R. Hind, *The Geometry of Grauert Tubes and Complexification of Symmetric Spaces*, preprint.

[Gi98] Gindikin, S., *Tube domains in Stein symmetric spaces*, Positivity in Lie theory: open problems, 81–97, de Gruyter Exp. Math., **26**, de Gruyter, Berlin, 1998.

[GiMa01] Gindikin, S., and T. Matsuki, *Stein Extensions of Riemann Symmetric Spaces and Dualities of Orbits on Flag Manifolds*, MSRI preprint 2001-028.

[Hu01] Huckleberry, A., *On certain domains in cycle spaces of flag manifolds*, preprint.

[Kos73] Kostant, B., *On Convexity, the Weyl Group and the Iwasawa Decomposition*, Ann. scient. Éc. Norm. Sup. 4e série, t. **6**, 413–455, 1973.

[KrSt01a] Krötz, B., and R. J. Stanton, *Holomorphic extensions of representations: (I) automorphic functions*, preprint.

[KrSt01b] —, *Holomorphic extensions of representations: (II) geometry and harmonic analysis*, preprint.

[KOS01] Krötz, B., M. Otto, and R. J. Stanton, *Complex crowns of Riemannian symmetric spaces – exercises for the exceptional cases*, in preparation.

[La78] Lassalle, M., *Séries de Laurent des fonctions holomorphes dans la complexification d’un espace symétrique compact*, Ann. Sci. École Norm. Sup. (4) **11** (1978), no. 2, 167–210.

[Wo92] Wolf, J. A., *The Stein condition for cycle spaces of open orbits on complex flag manifolds*, Ann. of Math. (2) **136** (1992), no. 3, 541–555.

Simon Gindikin
Department of Mathematics
Rutgers University
New Brunswick, NJ 08903
USA
gindikin@math.rutgers.edu

Bernhard Krötz
The Ohio State University
Department of Mathematics
231 West 18th Avenue
Columbus, OH 43210–1174
kroetz@math.ohio-state.edu