This study was conducted in the veterinary medicine college in basrah university animal house and aimed to investigate the effect of finasteride (prostacare) on malesome reproductive system in albino male rats (Rattus-Rattus). Thirty six mature male rats with body weight 200-210 g and age 8 weeks were randomly divided into three groups (12 animal each group). The first group was considered as control group and treated orally normal salin (0.9%N.S)during the experimental 30 days, the second group was treated finasteride(0.016mg/kg of body weight orally during the experimental(30)days, and the third group was administrated finasteride(0.032mglkg of body weight orally during the experimental 30 days. The results showed a significant decrease in the sperm count, sperm motility,live sperm and increase in dead sperm percentage as well as a significant decrease in the level of reproductive hormones (testosterone, LH and FSH) in treated group with finasteride compared with control group, from this study it was concluded that the finasteride has undesired physiological effects on fertility in albino male rats (Rattus-Rattus).

**Keywords:** Finasteride, Reproductive Parameters, Rats
**Introduction**

Finasteride is a white crystalline powder insoluble in water and freely soluble in chloroform and alcohol solvents. Prostacare is film- coated tablets that contain finasteride (5 mg) and inactive ingredients. Finasteride is a steroid inhibiter of 5α –reductase type 2 that prevents conversion of testosterone to dihydrotestosterone (1). However, treatment of this case revealed increase rates of sexual dysfunction (low libido and erectile dysfunction) (2). Is sexual side effects in spite of the discontinuation of the medication, including male infertility, poor seminal quality, erectile dysfunction, libido and ejaculation disorders (3). Molecular study revealed that finasteride cause damage to sperm and DNA (5). Treatment of adult male rats by usage Finasteride might cause a defective of spermatogenesis (6). Finasteride which influence on sex hormone ratio which involve problems with achieving erection and semen. In addition, the finasteride effects in fertilization, DNA damage, and alters sperm morphology (7). Finasteride is a well absorbed from gastrointestinal tract, metabolised in the liver, and eliminated by bile to faces (8). The study aimed to investigate the effects of a different doses of finasteride on reproductive efficiency through studies the physiological parameters in albino male rats.

**Materials and methods**

**Animal**

The current study carried out on 36 mature healthy adults albino male rats (8 week) were collected from the Veterinary Medicine College animal house University of Basra . Rats with weight ( 200-210 gm) were placed in plastic cages at the room temperature (22-25°c) under natural light and dark (12h). During the experimental period, animals were feed on standard rat pellets and provided fresh clean water (ad Libitum). Before the application of experimental protocols, animals were acclimatized under the laboratory conditions for 10 days

**Experimental design:**

After ten days of acclimation, male rats were divided into three groups (12 group each) as following: In Control group, rats were treated daily with normal saline (0.9%) orally about 0.5ml for 30 days. Second group, rats were treated daily with finasteride about (0.016 mg/kg orally for 30 days. Third group, rats were treated daily with finasteride about (0.032 mg/kg orally for 30 day (9).

At the end of experiment, the rats were sacrificed under chloroform anesthesia. The abdominal cavity was then opened. Blood was collected by using disposable syringe (5ml) via heart. blood samples were then centrifuged at 3000 rpm for 15 min to collect the serum. The serum was then transferred into several Eppendorf tubes and stored at -4C° to analyse of different parameters. Epididymal sperms were collected by the method of (10). The epididymis were cut into small pieces in 5ml of normal saline at 32c. The sperms obtained were used for determination of sperm viability, sperm motility, and sperm count. Sperm viability test was done by the method as described in the WHO laboratory manual (11). The proportion of live spermatozoa can be determined by using staining technique of 0.5% eosin solution. Epididymal sperm motility was evaluated by the method as described by (12). Epididymal sperm count were counted by method as described by (11), by using improved Neubauer hemocytometer.
Results and discussion

Sperm parameters:

In the present study, the animals treated with different doses of finasteride drug. The current study revealed that there was a significant decrease in the sperm concentration, motility of sperm, and live sperm. While, there was a significant increase in dead sperms compared with control group. In addition, there was a significant differences of all this parameters between treatments group (Table 1).

Hormones level:

The present study revealed that there was a significant decrease (p≤0.05) in the levels of testosterone, FSH and LH hormones of treated animals with finasteride compared with control group. In addition, there was a significant difference between the two groups treated with finasteride (Table 2).

From the results of this study can concussed when used or treated the laboratory animals with finasteride for 30 day which caused decline the concentration, motility, and viability of sperms and elveate in the dead sperm compared with control group. The decrease in the level of testosterone hormone has a negative effect in the number of testes germinal cells and spermatogenesis process (13). The spermatogenesis process is highly sensitive to both hormone and temperature. To spermatogenesis process, a large concentrations of testosterone is required to maintain the binding of androgen protein present in the seminiferous tubules with testosterone (14). The reduction size of the seminiferous tubules might cause low sperm production (15). It has been found that prostacare (5%) lead to reduction in the total sperm count to less than 10% from normal value(16). The decrease in sperm motility in traded rats with prostacare drug might be defect in structure of spermatozoa (17). On the other hand, seminal vesicle for sperm parameters fertility function might be altered in case of hypo function defect (18). The seminal vesicles and the accessory sex glands are supplied fructose to the spermatozoa for normal sperm motility (19).

Conclusion

In conclusion the finasteride has undesired effects on fertility (sperm parameters and reproductive hormones) in albino male rats (Rattus-Rattus).
Table (1): Effect of finasteride (prostacare) on sperm parameters in male rats.

| Treatment/G | Sperm count x $10^6$ | Sperm motility% | Live sperm% | Dead sperm% |
|-------------|----------------------|-----------------|-------------|-------------|
| Control group | 142.60±0.65 a | 85.16±1.01 a | 88.87±0.46 a | 11.14±0.77 c |
| Group 1 | 130.46±0.29 b | 71.40±1.61 b | 59.87±1.145 b | 39.23±0.61 b |
| Group 2 | 80.58±1.77 c | 55.77±0.88 c | 51.37±0.88 c | 47.47±2.91 a |
| LSD | 5.30 | 3.33 | 4.38 | 6.89 |

Different letters mean significant differences (p≤0.05).

Table (2): Effect of finasteride (prostacare) on the level of testosterone, FSH and LH hormones in male rats.

| Treatment/ group | Testosterone ng/ml | FSH ng/ml | LH ng/ml |
|------------------|--------------------|-----------|----------|
| Control G | 4.302±0.019 a | 3.881±0.193 a | 4.135±0.142 a |
| Group 1 | 3.101±0.037 b | 2.458±0.136 b | 2.987±0.172 b |
| Group 2 | 2.562±0.006 c | 1.363±0.030 c | 1.541±0.040 c |
| LSD | 1.09 | 0.37 | 0.63 |

Different letters mean significant differences (p≤0.05).

References

1. Irwig MS. Decreased alcohol consumption among former male users of finasteride with persistent sexual side effects: a preliminary report. Alcoholism: Clinical and Experimental Research. 2013 Nov;37(11):1823-6.
2. Traish AM, Hassani J, Guay AT, Zitzmann M, Hansen ML. Adverse side effects of 5α-reductase inhibitors therapy: Persistent diminished libido and erectile dysfunction and depression in a subset of patients. The journal of sexual medicine. 2011 Mar 1;8(3):872-84.
3. Irwig MS, Kolukula S. Persistent sexual side effects of finasteride for male pattern hair loss. The journal of sexual medicine. 2011 Jun 1;8(6):1747-53.
4. Jaffat HS, Obaid FN. Determination of Total Antioxidant Capacity, LH, FSH and Testosterone in Serum of Male Albino Rats which orally given by Finasteride (Prostacare). Journal of Pharmaceutical Sciences and Research. 2018;10(1):132-3.
5. Tu HY, Zini A. Finasteride-induced secondary infertility associated with
sperm DNA damage. Fertility and sterility. 2011 May 1;95(6):2125-e13.
6. Garica P V, Barbieri M F, Perobelli J E, Consonni S R Mesquita sde. Morphometric stereological and functional epididymal alakleration and a decreases in fertility in rat treated with finasteride and arter A30 day –post-treatment recovery period. Fertil Steril., 2012, (97):1444.
7. Kolasa-Wolosiuk A, Misiakiewicz-Has K, Baranowska-Bosiacka I, Gutowska I, Tarnowski M, Tkacz M, Wiszniewska B. Connexin 43 expression in the testes during postnatal development of finasteride-treated male rat offspring. Archives of medical science: AMS. 2018 Oct;14(6):1471.
8. UKPAP. Finasteride 5Mg Tablets (finasteride) Ukpar finasteride 5Mg Tablets (finasteride) Lay Summary. 2007, 1-23.
9. Amory JK, Anawalt BD, Matsumoto AM, Page ST, Bremner WJ, Wang C, Swerdloff RS, Clark RV. The effect of 5α-reductase inhibition with dutasteride and finasteride on bone mineral density, serum lipoproteins, hemoglobin, prostate specific antigen and sexual function in healthy young men. The Journal of urology. 2008 Jun 1;179(6):2333-8.
10. Amory JK, Anawalt BD, Matsumoto AM, Page ST, Bremner WJ, Wang C, Swerdloff RS, Clark RV. The effect of 5α-reductase inhibition with dutasteride and finasteride on bone mineral density, serum lipoproteins, hemoglobin, prostate specific antigen and sexual function in healthy young men. The Journal of urology. 2008 Jun 1;179(6):2333-8.
11. World Health Organisation. WHO laboratory manual for the examination of human semen and sperm-cervical mucus interaction. Cambridge university press; 1999 May 13.
12. Linder RE, Strader LF, McElroy WK. Measurement of epididymal sperm motility as a test variable in the rat. Bulletin of environmental contamination and toxicology. 1986 Dec 1;36(1):317-24.
13. Shariat M, Norrtafshan A, Mokhtari M, Askari HR. The effect of Trifolium on LH, FSH and T hormone level and testes histological changes in adult rat. Fertility and Sterility. VOL2NO1pp:23-28. Schavknow,P.N. and John,R.(ed.) 1st(ed.)Springer science;Newyork, pp:889-892, 2008.
14. Harrison RG and Weiner JS. Vascular patterns of the Mammalian Testies and Their Functional Significance ,Journal of Experimental Biology:304-16,plates 9and 10.PMID15407652. 1949.
15. Ratnasooriya WD, Wadsworth RM. Tamsulosin, a selective α1-adrenoceptor antagonist, inhibits fertility of male rats. Andrologia. 1994 Mar 4;26(2):107-10.
16. Wu C, Forbes E, Jarvi KA. Clomiphene citrate rescue of spermatogenesis in men with infertility while remaining on finasteride: A case report. Canadian Urological Association Journal. 2017 Mar;11(3-4):E122.
17. Al-Janabi AS, Al-Mehdawi FA, Al-Lami MQ. Relationship of seminal biochemical parameters and serum reproductive hormones with sperm function tests in asthenospermic patients. Jordan Medical Journal. 2012 Apr;171(785):1-22.
18. Gonzales GF. Function of seminal vesicles and their role on male fertility. Asian journal of Andrology. 2001 Dec 1;3(4):251-8.
19. Ahmed Z, Khan MS, Khan MA, ul Haq A, ur Rahman J. Seminal fructose in various classes of infertile patients. Pakistan Journal of Physiology. 2010 Jun 30;6(1):36-8.
20. Joshi M, Ambaya R. Effect of alkaloids from Vinica rosa on spermatogenesis in male ,indian journal of expermintal biology; 1968, pp:6:256-7.
21. Mokhtari M, Shariati M, Amiri J. Effects of Tamsulosin on Serum Testosterone and Gonadotropins Concentration in Adult Male Rats.

22. Akakura K, Furuya Y, Ito H. Steroidal and non steroidal :chemical structure, mechanisms of action and clinical applications. Nippon Rinsho; 1998, 56(8):2124-8.

23. Hibi H, Yamamoto M, Miyake K. Effects of alpha-blocker on sperm concentration, motility, intraluminal pressure and fluid movement in the rat cauda epididymis. The Journal of urology. 1995 Aug;154(2):606-10.

24. Abdulkareem TA, Khalil RI, Salman AH. Effect of adding Ferula hermonis Boiss roots and some antioxidants to Tris extender on post-cryopreserved sperm abnormalities percentage of Holstein bulls. Al-Anbar Journal of Veterinary Sciences. 2018;11(1):70-81.

25. Uygur MC, Arık AI, Altuğ U, Erol D. Effects of the 5α-reductase inhibitor finasteride on serum levels of gonadal, adrenal, and hypophyseal hormones and its clinical significance: a prospective clinical study. Steroids. 1998 Apr 1;63(4):208-13.