Asymmetric Quantum Concatenated and Tensor Product Codes With Large Z-Distances

Jihao Fan, Member, IEEE, Jun Li, Senior Member, IEEE, Jianxin Wang, Zhihui Wei, and Min-Hsiu Hsieh, Senior Member, IEEE

Abstract—In this paper, we present a new construction of asymmetric quantum codes (AQC) by combining classical concatenated codes (CC) with tensor product codes (TPC), called asymmetric quantum concatenated and tensor product codes (AQCTPC) which have the following three advantages. First, only the outer codes in AQCTPC need to satisfy the orthogonal constraint in quantum codes, and any classical linear code can be used for the inner, which makes AQCTPCs very easy to construct. Second, most AQCTPCs are highly degenerate, which means they can correct many more errors than their classical TPC counterparts. Consequently, we construct several families of AQCs with better parameters than known results in the literature. Third, AQCTPCs can be efficiently decoded although they are degenerate, provided that the inner and outer codes are efficiently decodable. In particular, we significantly reduce the inner decoding complexity of TPC from $\Omega(n^2a^{-1})$ to $O(n_2)$ by considering error degeneracy, where n_1 and n_2 are the block length of the inner code and the outer code, respectively. Furthermore, we generalize our concatenation scheme by using the generalized CCs and TPCs correspondingly.

Index Terms—Asymmetric quantum code, concatenated code, error degeneracy, tensor product code.

I. INTRODUCTION

Quantum noise due to decoherence widely exists in quantum communication channels, quantum gates and quantum measurement. It is one of the biggest challenges in realizing large-scale quantum communication systems and fully fault-tolerant quantum computation. For a quantum state, the two main mechanisms of decoherence are population relaxation and dephasing. The level of noise is usually characterized by the relaxation time T_1 and the dephasing time T_2. Further, dephasing usually generates a single phase flip error, while population relaxation generates a mixed bit-phase flip error. It is shown in almost all quantum systems that, the dephasing rate $1/T_2$ is much faster than the relaxation rate $1/T_1$, i.e., $T_1 \gg T_2$ [1], [2]. For example, in the trapped ions [1], [3], the ratio T_1/T_2 can be larger than 10^2 and, in quantum dots systems [4], it can be larger than 10^4. Such large asymmetry between population relaxation and dephasing indicates that phase flip errors (Z-errors) happen much more frequently than bit flip errors (X-errors).

Steane first saw that prior knowledge of this asymmetry in errors could be leveraged for performance gains and, hence, proposed asymmetric quantum codes (AQC) in [5]. In the years since, many AQC have been designed to have a biased error correction towards Z-errors [1], [6]–[8]. For example, AQC constructed from classical Bose-Chaudhuri-Hocquenghem (BCH) codes [9] and low-density parity-check (LDPC) codes [10]–[14] were proposed in [1]. The BCH codes are used to correct X-errors and the more powerful LDPC codes are used to correct Z-errors. Another approach, devised by Galindo et al. [15], is to introduce some preshared entanglement [16]–[21] to help construct AQC. More recently, asymmetric errors have been explored as a way to help improve the fault-tolerant thresholds [6], [8], particularly, in topological quantum codes [2], [22], [23]. In [8], a family of asymmetric Bacon-Shor (ABS) codes with parameters $[[m,n,1]]$, where m and n are positive integers, is used for fault-tolerant quantum computation against highly biased noise. For example, ABS codes with parameters $[[175,1,25/7]]$ and $[[315,1,35/9]]$ can achieve a very low logical error rate around 10^{-12} with much fewer physical two-qubit gates than symmetric quantum codes. In [22], surface codes defined on a $d \times d$ square lattice of qubits with $d = 12, 14, 16, 18$, and 20 have thresholds exceeding 5% when the asymmetry between Z-errors and X-errors is around 100. Even more, it is shown recently in [24] that thresholds for surface codes can exceed the zero-rate Shannon bound of Pauli channels when the asymmetry is properly large! These results reveal that the large asymmetry in quantum channels has a significant effect to quantum error correction and needs to be further exploited.

However, although there are many different constructions of AQC in the literature, only a few are made on binary AQC.
with a relatively large Z-distance d_Z. This is because the dual-containing constraint in CSS codes often makes constructing an AQC with a large minimum distance d_Z difficult. Aly [25] and Sarvepalli et al. [7] derived families of binary asymmetric quantum Bose-Chaudhuri-Hocquenghemmds (QBCH) codes with minimum distances d_X and d_Z, both upper bounded by the square root of the block length. Li et al. [26] were able to construct a few binary QBCH codes of length $n = 2^m - 1$ with a large minimum distance d_Z. Ezer et al. [27] constructed some binary CSS-like AQCs of length ≤ 40 with best-known parameters by exhaustively searching the database of MAGMA [28]. Additionally, several families of nonbinary AQCs with a large d_Z have been developed, but all have a large field size [29]–[31].

The key to construct an AQC is to find two classical linear codes that satisfy a certain dual-containing relationship. In classical codes, the two most useful combining methods for constructing linear codes from short constituent codes are: concatenated codes (CCs) [32] and tensor product codes (TPCs) [33], [34]. In general, CCs have a large minimum distance because the distances in the constituent codes are multiplied, while TPCs have a poor minimum distance but a better dimension as a trade-off. In [35], Maucher et al. show that generalized concatenated codes (GCCs) are equivalent to generalized tensor product codes (GTPCs). It is not difficult to apply the concatenation method to the quantum realm, i.e., to construct concatenated quantum codes (CQCs) [36], [37] and quantum tensor product codes (QTPCs) [38], [39], including asymmetric QTPCs [40] and entanglement-assisted QTPCs [41]. CQCs and QTPCs also exhibit some similar characteristics to their classical counterparts. For example, CQCs have a large minimum distance but a relatively small dimension, which is seeing them play an important role in fault-tolerant quantum computation. And, like TPCs, QTPCs have a large dimension but a small minimum distance. However, it is worth noting that CQCs are not constructed from classical CCs directly, but rather by serially concatenating two constituent quantum codes. This means both the inner and outer constituent codes need to satisfy the dual-containing relationship, which limits their construction. The same does not apply to QTPCs, giving them a distinct advantage. But QTPCs usually have a poor minimum distance. Moreover, some CQCs are known to be degenerate codes [37], which is a unique phenomenon in quantum coding theory. Degenerate codes have an advantage in that they can correct more errors than non-degenerate codes, but, in general, they are difficult to decode (see [42]) with the classical decoding algorithms often failing outright.

Hence, in this paper, we propose a novel concatenation scheme called asymmetric quantum concatenated and tensor product codes (AQCTPCs) that combines both CCs and TPCs, where CCs are used to correct Z-errors, and TPCs are used to correct X-errors. Compared to the current methods, this new concatenation scheme has several advantages.

1) In AQCTPCs, only the outer constituent codes over the extension field need to satisfy the dual-containing constraint. The inner constituent codes can be any classical linear codes. Then we have much freedom in the choice of the constituent codes.

2) It is shown that AQCTPCs can be decoded efficiently provided that the classical constituent codes can be decoded efficiently. In addition, AQCTPCs are highly degenerate for correcting X-errors and they can correct many more X-errors beyond the error correction ability of the corresponding TPCs. Further, we show that the total inner decoding complexity of TPCs is reduced significantly from $\Omega(n^{2m})/(a > 1)$ to $O(n^2)$ due to error degeneracy. To this end, we have developed a syndrome-based decoding algorithm specifically for AQCTPCs.

3) The AQCTPCs demonstrated in this paper are better than QBCH codes or asymmetric quantum algebraic geometry (QAG) codes as the block length goes to infinity. We construct a family of AQCTPCs with a very large Z-distance d_Z, of approximately half the block length. Meanwhile, the dimension and the X-distance d_X continue increasing as the block length goes to infinity. If $d_X = 2$, then the Z-distance d_Z is larger than half the block length.

We compare the parameters of AQCTPCs to previous results, and provide a generalized AQCTPC concatenation scheme that uses GCCs and GTPCs. We list AQCTPCs with better parameters than the binary extension of asymmetric quantum Reed-Solomon (QRS) codes. We derive families of AQCTPCs with the largest Z-distance d_Z compared to existed AQCS with comparable block length and X-distance d_X.

The rest of this paper is organized as follows. In Section II, we provide the basic notations and definitions needed for the construction of AQCTPCs. In Section III, we present the AQCTPC concatenation scheme and the decoding algorithms. Section IV provides detailed performance comparisons of AQCTPCs against previous constructions, and the discussions and conclusions follow in Section V.

II. PRELIMINARIES

In this section we first review some basic definitions and known results about stabilizer codes and AQCs, followed by the introduction of classical CCs and TPCs and their generalizations.

A. Stabilizer Codes and Asymmetric Quantum Codes

Denote by q a power of a prime p and denote by \mathbb{F}_p the prime field. Let \mathbb{F}_q be the finite field with q elements and let the field \mathbb{F}_{q^m} be a field extension of \mathbb{F}_q, where $m \geq 1$ is an integer. Let \mathbb{C} be the field of complex numbers. For a positive integer n, let $V_n = (\mathbb{C}^n)^{\otimes n} = \mathbb{C}^{n^2}$ be the nth tensor product of \mathbb{C}^n. Denote by u and v two vectors of \mathbb{F}_q^n. Define the error operators on V_n by $X(u)|\varphi\rangle = |u + \varphi\rangle$ and $Z(v)|\varphi\rangle = \zeta^{Tr(u|\varphi\rangle)}|\varphi\rangle$, where “$Tr$” stands for the trace operation from \mathbb{F}_q to \mathbb{F}_p, and $\zeta = \exp(2\pi i/p)$ is a primitive pth root of unity. Denote by

$$G_n = \{ \zeta^a X(u)Z(v) : u, v \in \mathbb{F}_q^n, a \in \mathbb{F}_q \}$$

the group generated by $E_n = \{ X(u)Z(v) : u, v \in \mathbb{F}_q^n \}$. For any $\varepsilon = \zeta^a X(u)Z(v) \in G_n$, where $u = (u_1, \ldots, u_n) \in \mathbb{F}_q^n$
and \(v = (v_1, \ldots, v_n) \in \mathbb{F}_q^n \), the weight of \(\varepsilon \) is defined by
\[
\text{wt}_Q(\varepsilon) = |\{ 1 \leq i \leq n : (u_i, v_i) \neq (0, 0) \}|.
\] (2)
The weight of \(X \)-errors and the weight of \(Z \)-errors in \(\varepsilon \) are defined by \(\text{wt}_H(u) \) and \(\text{wt}_H(v) \), respectively, where \(\text{wt}_H \) stands for the Hamming weight. The definition of quantum stabilizer codes is given below.

Definition 1: A \(q \)-ary quantum stabilizer code \(Q \) is a \(q^k \)-dimensional \((k > 0) \) subspace of \(V_n \) such that
\[
Q = \bigcap_{\varepsilon \in S} \{ |\varphi \rangle \in V_n : \varepsilon |\varphi \rangle = |\varphi \rangle \},
\] (3)
where \(S \) is a subgroup of \(G_n \) and is called the stabilizer group. \(Q \) has minimum distance \(d \) if it can detect all errors \(\varepsilon \in G_n \) of weight \(\text{wt}_Q(\varepsilon) \) up to \(d - 1 \). Then \(Q \) is denoted by \(Q = \{ |g, k, d| \}_q \). Further, \(Q \) is called non-degenerate if each stabilizer in \(S \) has quantum weight at least the minimum distance \(d \), otherwise it is degenerate.

The Calderbank-Shor-Steane (CSS) code in [5], [43] is a special family of quantum stabilizer codes and can be constructed from two classical linear codes which satisfy some dual-containing relationship. Let \(d_x \) and \(d_z \) be two positive integers. We define an AQC as a CSS code in \(V_n \) with parameters \(Q = \{ |n, k, d_x| \}_q \) if it can detect all \(\varepsilon \in G_n \) of weight \(\text{wt}_X(\varepsilon) \) up to \(d_x - 1 \) and weight \(\text{wt}_Z(\varepsilon) \) up to \(d_z - 1 \), simultaneously. The construction in [1], [7], [44] can be used to construct AQCs in which a pair of classical linear codes are used, one for correcting \(X \)-errors and the other for correcting \(Z \)-errors.

Lemma 1 (44, Theorem 2.4): Let \(C_1 \) and \(C_2 \) be two classical linear codes with parameters \([n_1, k_1, d_1]_q\) and \([n_2, k_2, d_2]_q\), respectively, and \(C_2^T \subseteq C_1 \). Then there exists an AQC with parameters \(Q = \{ |n, k, d_z/d_X| \}_q \), where
\[
d_z = \max\{\text{wt}_H(C_1 \setminus C_2^T), \text{wt}_H(C_2 \setminus C_1^T)\},
\] (4)
\[
d_X = \min\{\text{wt}_H(C_1 \setminus C_2^T), \text{wt}_H(C_2 \setminus C_1^T)\}.
\] (5)
If \(d_1 = \text{wt}_H(C_1 \setminus C_2^T) \) and \(d_2 = \text{wt}_H(C_2 \setminus C_1^T) \), then \(Q \) is non-degenerate, otherwise it is degenerate.

B. Classical Tensor Product Codes

Let \(C_1 = [n_1, k_1, d_1]_q \) be a classical linear code whose parity check matrix is given by \(H_{c_1} \), and let \(r_1 = n_1 - k_1 \) be the number of parity checks. Let \(C_2 = [n_2, k_2, d_2]_q \) be a linear code over the extension field \(\mathbb{F}_{q^2} \), whose parity check matrix is given by \(H_{c_2} \). Let \(r_2 = n_2 - k_2 \). Denote by
\[
C_T = C_2 \otimes_T C_1
\] (6)
the tensor product code of \(C_1 \) and \(C_2 \). The block length and dimension of \(C_T \) are given by \([n_1n_2, n_1n_2 - r_1r_2]_q \). In addition, \(C_1 \) and \(C_2 \) are known as the inner and outer constituent codes of \(C_T \), respectively. If we regard \(H_{c_2} \) as a \(1 \times n_1 \) matrix with elements over \(\mathbb{F}_{q^2} \), then the parity check matrix \(H_T \) of \(C_T \) is the Kronecker product of \(H_{c_1} \) and \(H_{c_2} \), i.e.,
\[
H_T = H_{c_2} \otimes H_{c_1}.
\] (7)
Then we can derive a parity check matrix of \(C_T \) with elements over \(\mathbb{F}_q \) by expanding all the elements of \(H_T \) from \(\mathbb{F}_{q^2} \) to \(\mathbb{F}_q \). The error detection/correction ability of \(C_T \) is restricted by the constituent codes and is given by:

Lemma 2 (33, Theorem 1): Partition the codeword of \(C_T = C_2 \otimes_T C_1 \) into \(n_2 \) sub-blocks, where each sub-block contains \(n_1 \) elements, and assume that the constituent code \(C_i \) can detect or correct an error pattern class \(\xi_i \) \((i = 1 \text{ or } 2)\), then the TPC \(C_T \) can detect or correct all error-patterns where the sub-blocks containing errors form a pattern belonging to class \(\xi_2 \) and the errors within each erroneous sub-block fall within the class \(\xi_1 \).

Here we give an illustrative example for the construction of TPCs.

Example 1: Let \(C_1 = [3, 1, 3]_2 \) be a binary repetition code with a parity check matrix given by
\[
H_{c_1} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \omega & \omega^2 \end{pmatrix},
\] (8)
where \(\omega \) is a primitive element of \(GF(2^2) \) such that \(\omega^2 + \omega + 1 = 0 \). Let \(C_2 \) be a \(2^2 \)-ary linear code over \(GF(2^2) \), such as we let \(C_2 = [5, 3, 2]_2 \) be a maximum-distance-separable (MDS) code with a parity check matrix
\[
H_{c_2} = \begin{pmatrix} 1 & 0 & 1 & \omega & \omega \\ 0 & 1 & \omega & \omega & 1 \end{pmatrix}.
\] (9)
Then we can derive a TPC \(C_T \) of length 15 whose parity check matrix \(H_T = H_{c_2} \otimes H_{c_1} \) is given in (10), as shown at the bottom of the next page. It is easy to verify, e.g., by using the MAGMA computational software [28], that the dimension and minimum distance of \(C_T \) with a parity check matrix \(H_T \) in (10) are exact 11 and 3, respectively.

Ref. [35] shows that the parity check matrix of TPCs can also be represented in a companion matrix form. Let \(g(x) = g_0 + g_1x + \cdots + g_{r_1-1}x^{r_1-1} + x^{r_1} \) be a primitive polynomial over \(\mathbb{F}_{q^2} \) and denote by \(\alpha \) a primitive element of \(\mathbb{F}_{q^2} \). The companion matrix of \(g(x) \) is defined to be the \(r_1 \times r_1 \) matrix
\[
M = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -g_0 & -g_1 & -g_2 & \cdots & -g_{r_1-1} \end{pmatrix}.
\] (11)
Then for any element \(\beta = \alpha^i \) of \(\mathbb{F}_{q^2} \), the companion matrix of \(\beta \), denoted by \([\beta] = M^i \), is an \(r_1 \times r_1 \) matrix with elements over \(\mathbb{F}_q \). Let the parity check matrix of the constituent code \(C_2 \) be \(H_{c_2} = (a_{ij})_{r_2 \times n_2} \) with elements over \(\mathbb{F}_{q^2} \), i.e., \(a_{ij} \in \mathbb{F}_{q^2} \) for \(1 \leq i \leq r_2 \) and \(1 \leq j \leq n_2 \). Following the notations used in [35], we denote by \([H_{c_2}] = (a_{ij})_{r_1 \times r_1 \times r_1 \times n_2} \), where \(a_{ij} \) is a companion matrix form. The parity check matrix of \(C_T \) can be written as
\[
H_T = [H_{c_2}^T] \otimes H_{c_1} = \begin{pmatrix} [a_{11}]_{H_{c_1}} & [a_{12}]_{H_{c_1}} & \cdots & [a_{1n_2}]_{H_{c_1}} \\ [a_{21}]_{H_{c_1}} & [a_{22}]_{H_{c_1}} & \cdots & [a_{2n_2}]_{H_{c_1}} \\ \vdots & \vdots & \ddots & \vdots \\ [a_{r_21}]_{H_{c_1}} & [a_{r_22}]_{H_{c_1}} & \cdots & [a_{r_2n_2}]_{H_{c_1}} \end{pmatrix},
\] (12)
in which the matrix \([H_{c_2}^T] \otimes H_{c_1}\) is obtained by transposing the constituent companion matrices of \([H_{c_2}]\), and \([a_{ij}]\) is the
transpose of \([a_{ij}]\). According to [35], [45], if we do not transpose the constituent companion matrices in (12), we can obtain another representation of the parity check matrix \(H_T\) as follows
\[
H_T = [H_{c_1}] \otimes H_{c_1}
\]
\[
= \begin{pmatrix}
[a_{11}]H_{c_1} & [a_{12}]H_{c_1} & \ldots & [a_{1n_2}]H_{c_1} \\
[a_{21}]H_{c_1} & [a_{22}]H_{c_1} & \ldots & [a_{2n_2}]H_{c_1} \\
\vdots & \vdots & \ddots & \vdots \\
[a_{r_1}]H_{c_1} & [a_{r_2}]H_{c_1} & \ldots & [a_{r_2n_2}]H_{c_1}
\end{pmatrix}.
\]
(13)

The two representations in (12) and (13) do not make any difference for the parameters and the error correction performance of TPCs. We will use them alternately in the following constructions. It should be noticed that the Kronecker product defined in equations (12) and (13) is a little different from the standard one. In the following, the Kronecker product of matrices follows the definition in (12) and (13).

The generalized tensor product codes are proposed in [35], [46] by combining a series of outer codes and inner codes. Let \(A_h = [A_n, k_h, d_{h,k}]_q\) and \(B_h = [N_B, K_h, D_h]_q\) be \(L\) pairs of inner and outer codes, respectively, where \(1 \leq h \leq L\) and \(r_h = n_A - k_h\). Let the parity check matrices of \(A_h\) and \(B_h\), respectively, be \(H_{A_h}^T\) and \(H_{B_h}^T\), \(1 \leq h \leq L\). Assume that all the rows in \(H_{A_h}^T\), \(1 \leq h \leq L\), are independent with each other. Then the parity check matrix of the GTPCs
\[
C_T = \bigoplus_{h=1}^{L} B_h \otimes_T A_h
\]
is defined by
\[
C_T = \begin{pmatrix}
[H_{A_1}^T] \otimes H_{1A} \\
[H_{A_2}^T] \otimes H_{2A} \\
\vdots \\
[H_{A_L}^T] \otimes H_{LA}
\end{pmatrix},
\]
(15)
where \([H_{A_h}^T]\) is obtained by transposing the component companion matrices of \([H_{A_h}^T]\) for each \(1 \leq h \leq L\). The block length and the dimension of GTPCs are given by \(C_T = [N_{Bn_A}, N_{Bn_A} - \sum_{h=1}^{L} R_h r_h]_q\), where \(R_h = N_B - K_h\) for \(1 \leq h \leq L\).

C. Classical Concatenated Codes

Concatenated codes can be seen as the dual counterpart of TPCs, which are obtained by concatenating an inner code \(C_1 = [n, k, d]_q\) with an outer code \(C_2 = [N, K, D]_q\). Denote the concatenation of \(C_1\) and \(C_2\) by
\[
C_C \equiv C_2 \otimes C_1,
\]
and \(C_C = [Nn, Kk, d_{CC}] \geq \geq Dd]_q\) (see [9], [32]). The generator matrix of \(C_C\) can also be given in a companion matrix form (see [35])
\[
G_C = [G_2] \otimes G_1.
\]
(17)

where \(G_1\) and \(G_2\) are the generator matrices of \(C_1\) and \(C_2\), respectively.

In [9], [35], the generalized concatenated codes are obtained by concatenating a serial of outer codes and inner codes. For simplicity, we only consider linear codes here. Let \(A_1 = [n_A, k_1, d_1]_q\) be a \(q\)-ary linear code with the generator matrix \(G_1\), which is partitioned to \(S\) submatrices \(G_1^1, \ldots, G_1^n\) such that \(k_1^r = \text{rank}(G_1^A)\) for \(1 \leq \ell \leq S\), and \(k_1 = \sum_{\ell=1}^{S} k_1^\ell\).

Denote by
\[
G_1^A = \begin{pmatrix}
G_1^A_1 \\
G_1^A_2 \\
\vdots \\
G_1^A_S
\end{pmatrix},
\]
(18)
and let \(G_1^A\) be the generator matrices of the linear codes \(A_\ell = [n_A, k_\ell, d_\ell]_q\), for \(2 \leq \ell \leq S\), respectively. Denote by \(B_\ell = [N_B, K_\ell, D_\ell]_q\) the outer codes with the generator matrices, respectively, \(G_\ell^A\), for \(1 \leq \ell \leq S\). Then the generator matrix of the GCCs
\[
C_C = \bigoplus_{\ell=1}^{S} B_\ell \otimes C_\ell
\]
is defined by
\[
C_C = \begin{pmatrix}
G_1^A \\
G_2^A \\
\vdots \\
G_s^A
\end{pmatrix},
\]
(20)
and the parameters of GCCs are given by
\[
C_C = [N_{Bn_A},
\sum_{\ell=1}^{S} K_\ell k_\ell^A, \text{d}_{CC}]_q,
\]
where \(d_{CC} \geq \min\{D_1 d_1, \ldots, D_S d_S\}\).

Compared to other types of classical linear codes in [9], [47], the parameters of CCs (GCCs) and TPCs (GTPCs) may not have any advantages. However the encoding and decoding algorithms of CCs (GCCs) and TPCs (GTPCs) usually have low complexity, and can be decoded efficiently in polynomial time. Therefore CCs are widely used in many digital communication systems, e.g., the NASA standard for deep space communications and wireless communications [10], [48], and GCCs show large potential applications, e.g.,

\[
H_T = \begin{pmatrix}
1 & \omega & \omega^2 & 0 & 0 & 0 & 0 & 1 & \omega & \omega^2 & \omega & \omega^2 & 1 & \omega & \omega^2 & 1 \\
0 & 0 & 0 & 1 & \omega & \omega^2 & \omega & \omega^2 & 1 & \omega & \omega^2 & 1 & 1 & \omega & \omega^2 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1
\end{pmatrix}.
\]
(10)
in data transmission systems [49] and Flash memory [50], [51]. TPCs and GTPCs exhibit large advantages in magnetic storage systems [52]–[55], Flash memory [56], [57] and in constructing locally repairable codes for distributed storage systems [58]–[60]. In [61], it is shown that Polar codes can be treated as GCCs for a fast encoding.

III. MAIN RESULTS

In this section, we present the AQCTPC concatenation framework, where CCs are used to correct Z-errors and TPCs are used to correct X-errors. In our construction, the dimension of the inner codes of CCs needs to be equal to the corresponding classical TPC.

From [35], [45], we know that the parity check matrix of \(C \) can easily satisfy the dual-containing constraint. For example, that certain families of linear codes over the extension field \(\mathbb{F}_q \) can be derived by measuring the ancilla, which is given by

\[
\Phi \equiv [H^T_{c_1}] \otimes G_{c_1} \cdot e^T \chi
\]

where \(H^T_{c_1} \) is in a \((q^m, 1) \) syndromes based decoder [9] of the outer code \(C_z \), which is successful, will result in the exact inner syndrome sequence \(\Phi_i (1 \leq i \leq n_2) \). The inner decoding follows using the dual of the inner code \(C_1 \). In general, for any \(\Phi_i \equiv G_{c_1} \cdot e_{c_1}^T (1 \leq i \leq n_2) \), we can always obtain a decoded error sequence \(\tilde{e}_{c_1} \) such that \(\Phi_i = G_{c_1} \cdot e_{c_1}^T \) by using some syndrome based decoder for \(C_1 \), such as a syndrome table-look-up decoder. However, we do not need to do that and just let \(\tilde{e}_{c_1} = (\Phi_i \cdot 0) \) by assuming that \(G_{c_1} \) is in a standard form, where “0” is a zero vector of length \(r_1 \). Let \(\tilde{e}_X = (\tilde{e}_{c_1}, \ldots, \tilde{e}_{c_2}) \) be the decoded error sequence. There must be \(G_{c_2} (e^T \chi + \tilde{e}_X) = 0 \), where

\[
G_{c_2} = [G^T_{c_1}] \otimes G_{c_1}
\]

is the generator matrix of \(C = C_3 \otimes C_1 \). There are two cases: (1) \(e_X = \tilde{e}_X \) which means that the decoded error \(\tilde{e}_X \) is exactly the true error. (2) \(e_X \neq \tilde{e}_X \) but they belong to the same coset of \(C_1 \), which means that they are degenerate. This phenomenon of degeneracy is quite different from the decoding of classical TPCs [33], [35], [52], where the decoding fails if the number of errors in one sub-block
the encoded quantum basis states of the AQCTPC Q by
\[|u + C^+_e| = \frac{1}{\sqrt{|C^+_e|}} \sum_{v \in C^+_e} |u + v|, \tag{27} \]
where $u \in C_T$. Suppose that a Z-error e_Z happens to the encoded state (27), then
\[|u + C^+_e| \rightarrow \frac{1}{\sqrt{|C^+|}} \sum_{w \in C^+_e} (-1)^{wT} |w + e_Z|. \tag{28} \]

First we take the syndrome measurement using the inner parity check matrix H_{c_1} to get the inner syndrome information
\[\Psi_{1,i} \equiv H_{c_1}(w_i + e_{Z,i})^T = H_{c_1}e_{Z,i}^T, 1 \leq i \leq n_2, \tag{29} \]
where $w = (w_1, \ldots, w_{n_2})$ and $e_Z = (e_{Z,1}, \ldots, e_{Z,n_2})$. The inner decodings are done first according to the inner syndrome information $\Psi_{1,i}$ ($1 \leq i \leq n_2$). They result in n_2 decoded error sequences $\tau_{Z,i}$ ($1 \leq i \leq n_2$), each of length n_1. Denote by $\tau_Z = (\tau_{Z,1}, \ldots, \tau_{Z,n_2})$. We add the decoded result τ_Z to (28), and then perform the measurement using the parity check matrix $[H_{c_3}] \otimes (I_{k_1}, 0)$ to get the outer syndrome information
\[\Psi_{0} \equiv [H_{c_3}] \otimes (I_{k_1}, 0)(w + e_Z + \tau_Z)^T = [H_{c_3}] \otimes (I_{k_1}, 0)(e_Z + \tau_Z)^T. \tag{30} \]

Discarding the zero part in Ψ_0 due to the 0 sub-block in $(I_{k_1}, 0)$, the punctured Ψ_0 is then mapped into a sequence Ψ_0^{\perp} over field \mathbb{F}_q.

The outer decoding is done with a syndrome-based decoding of C_3 according to the outer syndrome information Ψ_0^{\perp}. If the outer decoding is successful, we can obtain a decoded sequence $e'_Z = (e'_{Z,1}, \ldots, e'_{Z,n_2})$ with elements over \mathbb{F}_q. Then we map the sequence e'_Z back to the basis field \mathbb{F}_q, and derive a decoded error sequence $e''_Z = (e''_{Z,1}, \ldots, e''_{Z,n_2})$ with elements over \mathbb{F}_q, where e''_Z is the subsequence of length k_1. But notice that e''_Z is incomplete due to the 0 sub-block in $(I_{k_1}, 0)$. In order to derive the fully-decoded error sequence, we only need to do some operations according to the inner syndrome information in (29). Denote by $e_Z = (e_{Z,1}, \ldots, e_{Z,n_2})$ and $\bar{e}_{Z,i} = (e'_{Z,i}, F_{Z,i})(1 \leq i \leq n_2)$, where $f_{Z,i}$ denotes the unknown errors in $e_{Z,i}$, and is of length r_1. Suppose that $H_{c_1} = (P_1, P_2)$, where P_1 is of size $r_1 \times k_1$ and P_2 is an invertible $r_1 \times r_1$ matrix, then we have $\Psi_{1,i} = H_{c_1}e_{Z,i}^T = P_1e_{Z,i}^T + P_2f_{Z,i}$ and then $f_{Z,i} = [P_2^{-1}(\Psi_{1,i} - P_1e_{Z,i}^T)]^{T}$. where $1 \leq i \leq n_2$.

Similar to classical CCS, no matter how many Z-errors happen in each sub-block of length n_1, the outer decoding will not be affected provided that the total number of erroneous sub-blocks does not exceed the error correction ability of the outer code C_3. A summary of the full decoding process is provided in Algorithm 2. A complexity analysis of the whole decoding process follows.

In terms of decoding X-errors with the TPC, we first need to map the outer decoding sequence from $\mathbb{F}_q^{n_1}$ to \mathbb{F}_q whose running time complexity is $O(n_2)$ (see Algorithm 1, lines 11-15). And it is easy to see that the complexity of the inner syndrome decoding of $C_1^+ = [n_1, r_1]_1$ is $O(1)$ since we just need to do $\bar{e}_{X,i} = (\Psi_{1,i}, 0)$, for $1 \leq i \leq n_2$. Therefore, the inner decoding complexity (IDC) of the TPC is $O(n_2)$.

Algorithm 1 The Decoding Algorithm of AQCTPCs for Correcting X-Errors

Input: Φ, H_{c_2}, G_{c_1}

Output: The decoded X-error sequence \bar{e}_X.

1. **Initialization:** $\Phi = \emptyset$, $\bar{e}_X = \emptyset$.
2. **// Divide Φ into r_2 sub-blocks, each sub-block is of length k_1.**
3. $\Phi = (\Phi_1, \ldots, \Phi_{r_2}), |\Phi_i| = k_1$.
4. **// Map Φ to $\bar{\Phi}$ with elements over the extension field $\mathbb{F}_{q^{n_1}}$.**
5. **for** $i \in [1, r_2]$ **do**
6. $\bar{\Phi}_i$ into a symbol $\bar{\Phi}_i$ over the field $\mathbb{F}_{q^{n_1}}$.
7. $\bar{\Phi} = (\bar{\Phi}_1, \bar{\Phi}_i)$.
8. **end for**
9. **// Do the outer decoding according to the syndrome information H_{c_2}, $\bar{\Phi}_i^T = \bar{\Phi}$.**
10. **Denote by** $\bar{\Phi}_i = (\bar{\Phi}_{1,i}, \ldots, \bar{\Phi}_{n_1,i})$.
11. **for** $i \in [1, n_2]$ **do**
12. Map $\bar{\Phi}_i$ into a sequence over field \mathbb{F}_q, Φ_i;
13. $\bar{e}_{X,i} = (\Phi_{1,i}, 0)$;
14. $\bar{e}_X = (\bar{e}_X, \bar{e}_{X,i})$;
15. **end for**
16. **return** \bar{e}_X;

Fig. 1. Dividing the Pauli X-error e_X into n_2 sub-blocks where each sub-block $e_{X,i}$ ($1 \leq i \leq n_2$) is of length n_1.

On the other hand, like the serial decoding of classical CCS, the decoding of Z-errors in AQCTPCs can also be done serially, i.e., an inner decoding followed by an outer decoding. However, the decoding algorithm for classical CCs cannot be used to decode Z-errors directly. Instead, a modified version of syndrome-based decoding is needed, as explained next.

Before performing the decoding, the ancilla needs to be measured first to determine the syndrome information. Denote
Recall that the IDC of classical TPCs is \(\Omega(n_2a^{n_1})(a > 1) \) by using the maximum likelihood (ML) decoding in general, which is enormous if \(n_1 \) is large. Even though the inner codes can be efficiently decoded, see, e.g., [34], [52], the IDC of TPCs is still \(\Omega(n_2a^{n_1})(b > 0) \). Here, in quantum cases, we consider error degeneracy in the inner decoding and significantly reduce the IDC of TPCs to \(O(n_2) \) in general.

It is easy to see that the outer decoding complexity (ODC) of TPCs is completely determined by the outer constituent codes. Thus if the outer codes can be decoded efficiently, the whole decoding of TPCs is efficient. For example, we let the outer codes be the Reed-Solomon (RS) codes or the generalized Reed-Solomon (GRS) codes that satisfy the dual-containing relationship [63], [64]. They can be decoded efficiently in time polynomial to their block length, e.g., by using the Berlekamp-Massey (BM) algorithm, see [9], [10], [52]. Then the whole decoding of TPCs for correcting \(X \)-errors can be done efficiently in polynomial time.

Algorithm 2 The Decoding Algorithm of AQCTPCs for Correcting \(Z \)-Errors

Input: \(\Psi_i \) \(1 \leq i \leq n_2 \), \(\Psi_0 \), \(H_{e_1} = (P_1, P_2) \), \(H_C \);

Output: The decoded \(Z \)-error sequence \(e_Z \).

1: **// Initialization:** \(e_Z = \emptyset, \bar{e}_Z = \emptyset \);
2: for \(i \in [1, n_2] \) do
3: \(H_{e_i}^{T} \Psi_{Z} = \Psi_i, \Psi_{Z} = (\Psi_{Z}, \bar{e}_Z) \);
4: end for
5: Map \(e_Z \) into a sequence \(\Psi_0 \) with elements over field \(F_{q^h} \);
6: **// Do the outer decoding according to \(\Psi_0 \) and \(C_3 \),
7: \(e_Z = (e_Z^i, \ldots, e_{Z_2}^i) \);
8: for \(i \in [1, n_2] \) do
9: \(\bar{e}_Z = (\bar{e}_Z^i, \bar{e}_{Z_2}) \);
10: \(f_{Z_2} = [P_2^{T} (\Psi_i - P_1 e_{Z_2}^i)]T \);
11: \(\bar{e}_Z = (\bar{e}_Z, \bar{e}_{Z_2}) \);
12: end for
13: **return** \(e_Z \);

When correcting \(Z \)-errors by using the CC, it is easy to see that the decoding complexity is the sum of the complexities of the inner and outer decodings. Thus, the CC is efficiently decodable provided that the constituent codes \(C_1 \) and \(C_3 \) can be decoded efficiently, e.g., in time polynomial to the block length [9], [10]. Overall, we can conclude that the entire AQCTPC decoding process for correcting both \(X \)-errors and \(Z \)-errors is efficient provided that the inner and outer constituent codes are efficiently decodable.

Similar to the generalization of classical CCs and TPCs, we can generalize the concatenation scheme of AQCTPCs by combining GCCs with GTPCs. Let \(A_\ell = [n_1, k_\ell, d_\ell]_q (1 \leq \ell \leq L) \) be a \(q \)-ary linear code. Let \(B_\ell = [N_B, K_\ell, D_\ell]_q^{k_\ell} \) and \(C_\ell = [N_B, M_\ell, E_\ell]_q^{k_\ell} (1 \leq \ell \leq L) \) be \(q^{k_\ell} \)-ary linear codes, respectively. Denote \(A_\ell = [n_1, k_\ell, d_\ell]_q (1 \leq \ell \leq L) \) by linear codes obtained by partitioning the generator matrix of \(A_1 \) into \(L \) submatrices. Then we have the following result about the dual-containing relationship between GCCs and GTPCs.

Lemma 4: Let \(C_T = \) the GTPC of \(A_T^\ast \) and \(B_T = (1 \leq \ell \leq L) \), let \(C_T \) be the GCC of \(A_T \) and \(C_T = (1 \leq \ell \leq L) \). If \(B_T \subseteq \mathcal{C} \) \(\forall 1 \leq \ell \leq L \), then there is \(\mathcal{C} = \mathcal{C}_T \).

Proof: We use the notations for GTPCs and GCCs given in Preliminaries. Denote the collection of dual matrices (cdm) (see Ref. [35]) of \(G_1^A \) in (18) by

\[
\hat{H}^A = \text{cdm}(G_1^A) = \begin{pmatrix}
\hat{H}_1^A \\
\hat{H}_2^A \\
\vdots \\
\hat{H}_{L+1}^A
\end{pmatrix}
\]

with \(k_1^T = \text{rank}(\hat{H}_1^A) = \text{rank}(G_1^A) \), for \(1 \leq \ell \leq L \), and \(k_{L+1}^A = \text{rank}(\hat{H}_{L+1}^A) = n_A - k_1 \). Then the parity check matrix of the GCC \(C_T \) is given by

\[
H_C = \begin{pmatrix}
[H_1^C] \otimes \hat{H}_1^A \\
[H_2^C] \otimes \hat{H}_2^A \\
\vdots \\
[H_{L+1}^C] \otimes \hat{H}_{L+1}^A
\end{pmatrix}
\]

And the parity check matrix of the GTPC \(C_T \) is given by

\[
H_{C_T} = \begin{pmatrix}
[H_1^T] \otimes G_A^1 \\
[H_2^T] \otimes G_A^2 \\
\vdots \\
[H_{L+1}^T] \otimes G_A^L
\end{pmatrix}
\]

According to Ref. [35] and Ref. [45], we know the following two properties about the cdm of \(G_1^T \):

- \(\hat{H}_1^A G_1^T = 0 \), for all \(1 \leq \ell \leq L + 1, 1 \leq h \leq L \) and \(\ell \neq h \).
- \(\hat{H}_1^A G_1^T \) is of full rank, for all \(1 \leq \ell \leq L \).

Since \(H_1^T G_1^T \) is of full rank, we can always find an invertible matrix \(U_1 \) such that \(U_1 \hat{H}_1^A G_1^T = \) an identity matrix, for \(1 \leq \ell \leq L \). If \(B_\ell \subseteq \mathcal{C} \), which means that \([H_1^T] [H_\ell^T]^T = 0 \) for all \(1 \leq \ell \leq L \), then there is \(H_{C_T} H_{C_T} = 0 \) and we have \(\mathcal{C} = \mathcal{C}_T \).

Theorem 2: There exist generalized AQCTPCs with parameters

\[
Q = [[N_B n_A, \sum_{\ell=1}^L (K_\ell + M_\ell - N_B) k_\ell, d_Z/d_{X_q}]]_q,
\]

where \(d_Z \geq \min\{D_1 d_1, \ldots, D_L d_L\} \), \(d_X \geq \min\{E_1, \ldots, E_L\} \).

Proof: By combining Lemma 1 and Lemma 3, we can obtain the generalized AQCTPCs with parameters

\[
Q = [[N_B n_A, \sum_{\ell=1}^L (K_\ell + M_\ell - N_B) k_\ell, d_Z/d_{X_q}]]_q.
\]

We use the GCCs to correct \(Z \)-errors and thus the \(Z \)-distance \(d_Z \) of the generalized AQCTPC \(Q \) is given by \(d_Z \geq \min\{D_1 d_1, \ldots, D_L d_L\} \). Next we need to compute the \(X \)-distance \(d_X \) of \(Q \). Suppose that there is an \(X \)-error \(e_X \) of
length $N_B n_A$ in the encoded codeword. Denote

$$
\Phi_X = H e^T \Phi_X =
\begin{bmatrix}
[H_{B1}^T] \otimes G_A^1 \cdot e_X^T \\
[H_{B2}^T] \otimes G_A^2 \cdot e_X^T \\
\vdots \\
[H_{Bm}^T] \otimes G_A^L \cdot e_X^T
\end{bmatrix}
$$

(36)

by the syndrome information obtained by measuring the ancilla and let $\Phi_X = [H_{B1}^T] \otimes G_A^1 \cdot e_X^T$, $1 \leq \ell \leq L$. Suppose that for some $1 \leq i \leq L$, we have $E_i = \min \{ E_1, \ldots, E_L \}$. Similar to the proof of Theorem 1, if $\text{wt}(e_X) \leq E_i - 1$, then we must have $\Phi_X \neq 0$ and then the error can be detected or $\Phi_X = 0$ but the error is degenerate. Therefore we have $d_X \geq \min \{ E_1, \ldots, E_L \}$.

It should be noticed in the proof of Theorem 2 that, we only give a minimum limit of the distance d_X. In the practical error correction, e.g., in [50] for classical GCCs, we have L syndrome information $\Phi_X(1 \leq \ell \leq L)$ to be used for the decoding and then the generalized AQCTPCs can correct many more X-errors beyond the minimum distance limit in Theorem 2 in practice.

IV. FAMILIES OF AQCTPCs

In this section, we provide examples of AQCTPCs that outperform best-known AQCs in the literature. Since the inner constituent codes C_1 in AQCTPCs can be chosen arbitrarily, we can get varieties of AQCTPCs by using different types of the constituent codes. Although the construction of AQCTPCs is not restricted by the field size q, in this section, we mainly focus on binary codes which may be more practical in the future application. For simplicity, if $q = 2$, we omit the subscript in the parameters of quantum and classical codes.

Firstly we use classical single-parity-check codes [9] as the inner constituent codes and we have the following result.

Corollary 1: There exists a family of binary AQCTPCs with parameters

$$\mathcal{Q} = \{ [N_Q, K_Q, d_Z \geq 2d_3/d_X \geq d_2] \},$$

(37)

where $N_Q = (m_1 + 1)n_2$, $K_Q = m_1(n_2 - d_2 - d_3 + 2)$, $m_1 \geq 2$, $2 \leq n_2 \leq 2^{m_1} + 1$, and $2 \leq d_2 + d_3 \leq n_2 + 2$ are all integers. **Proof:** Let $C_1 = [m_1 + 1, m_1, 2]$ be a binary single-parity-check code with even codewords, and let $C_2 = [n_2, k_2, d_2]_{2^{m_1}}$, and $C_3 = [n_2, k_3, d_3]_{2^{m_1}}$ be two classical GRS codes. It is shown in [64] that if $2 \leq n_2 \leq 2^{m_1} + 1$ and $2 \leq d_2 + d_3 \leq n_2 + 2$, there exists $C_3 \subseteq C_2$.■

In Corollary 1, if we let $d_2 = 2d_3$, then we can also obtain a family of symmetric quantum codes with parameters

$$\mathcal{Q} = \{ [N_Q, K_Q, d_Z \geq d_2] \},$$

(38)

where $N_Q = (m_1 + 1)n_2$, $K_Q = m_1(n_2 - 3d_2/2 + 2)$, $2 \leq d_2 \leq 2(n_2 + 2)/3$. We first compare (38) with QBCH codes in [65]. It is known that the minimum distance of QBCH codes of length $\Theta(N_Q)$ is upper bounded by $c \sqrt{N_Q}$ ($c > 0$ is a constant). On the other hand, the minimum distance of our codes is upper bounded by $2(n_2 + 2)/3$ which is larger than $c \sqrt{N_Q}$ provided that $n_2 \geq 9c^2(m_1 + 1)/4 - 4$. For example, let $n_2 = 2^{m_1} + 1$, then the minimum distance of our codes can be as large as $2N_Q/(3 \log(N_Q))$, which is almost linear to the length N_Q, while the dimension is larger than $\log(N_Q)$. If we let $d_2 = O((N_Q)^{\alpha_1})$, where $1/2 < \alpha_1 < 1$ is any constant, then the rate of our codes

$$R_Q = \frac{K_Q}{N_Q} = \frac{m_1}{m_1 + 1}(1 - \frac{3d_2}{2n_2} + \frac{2}{n_2})$$

(39)

equal to 1 as $n_2 = 2^{m_1} + 1$ goes to infinity and $d_2 \geq d_2 = O((N_Q)^{\alpha_1})$. In [65], the rate of binary QBCH codes of CSS type is given by

$$R_{QBCH} = 1 - \frac{m(\delta - 1)}{N},$$

(40)

where N is the block length, $m = \text{ord}_N(2)$ is the multiplicative order of 2 modulo N, and $2 \leq \delta \leq N(2^{[m/2]} - 1)/(2^{m/2} - 1) = O(\sqrt{N})$. It is easy to see that R_{QBCH} is also asymptotic to 1 as N goes to infinity. However our codes have much better minimum distance upper bound than QBCH codes.

Then we compare AQCTPCs in Corollary 1 with the extension of asymmetric quantum MDS codes in [29]. For simplicity, we consider the extension of binary asymmetric QRS codes in [29] with parameters

$$[[\tilde{N}_Q, \tilde{K}_Q, \tilde{d}_Z \geq \tilde{d}_1/\tilde{d}_X \geq \tilde{d}_2]],$$

(41)

where $\tilde{N}_Q = m_1(2^{m_1} - 1)$, $\tilde{K}_Q = m_2(2^{m_1} - \tilde{d}_1 - \tilde{d}_2 + 1)

\leq \tilde{d}_1 + \tilde{d}_2 \leq 2^{m_1} + 1$. In order to make a fair comparison between them, we let $n_2 = [m_1(2^{m_1} - 1)/(m_1 + 1)]$ in Corollary 1 so that they have an equal or a similar block length. Let $\tilde{d}_1 = 2d_3$ and $\tilde{d}_2 = d_2$, then it is easy to see that if $d_3 \geq 2^{m_1} - 1)/(m_1 + 1)$, the dimension of AQCTPCs in (37) is larger than that of AQCs in (41). Further, AQCTPCs of length $N_Q = \Theta(m_1(2^{m_1} - 1))$ in Corollary 1 can be decoded efficiently in polynomial time and we have the following result.

Corollary 2: There exist AQCTPCs of length $N_Q = \Theta(m_1(2^{m_1} - 1))$ which can be decoded in $O(N_Q^2/\log N_Q)$ arithmetic operations.

Proof: First we consider the complexity of the decoding of X-errors. The IDC of TPCs is $O(2^{m_1})$ according to the proof of Theorem 1. It is known that GRS codes of length $n_2 = \Theta(2^{m_1})$ can be decoded in $O(n_2^2)$ field operations by using the BM algorithm [9], [67]. Therefore the total decoding of TPCs requires $O(n_2^2)$ arithmetic operations.

Then we consider the decoding of Z-errors by using the CC. If we use Algorithm 2 to do the decoding, we can only decode up to $[(2d_3 - 1)/4]$ numbers of Z-errors. In order to decode any Z-error of weight smaller than half the minimum distance $2d_3$, we use the inner code $C_1 = [m_1 + 1, m_1, 2]$ to do the error detection for each sub-block of the CC. Suppose we can detect t_1 erroneous sub-blocks and suppose that there exist t_2 erroneous sub-blocks which are undetectable. As a result, there are t_1 erroneous positions which are known in the error sequence e_Z that corresponds to the outer code and, t_2 erroneous positions that are unknown. It is easy to see that if the weight of the Z-error is smaller than d_3, we must have $0 \leq t_1 + 2t_2 \leq 2d_3 - 1$. Then we can decode the error sequence e_Z with t_1 errors in known locations and t_2 errors which are unknown by using the BM algorithm in $O(n_2^2)$
In quantum codes, an AQC with parameters $[n_0, d_2/d_X]$ of dimension 1 is a pure state which can correct all X-errors of weight up to $[(d_2 - 1)/2]$ and all Z-errors of weight up to $[(d_2 - 1)/2]$ [27], [66]. To facilitate notation, the numbers of Z- and X-distance of the AQCs are the lower bound.

TABLE I

m_1	AQCTPCs	Ref. [29]	m_1	AQCTPCs	Ref. [29]	m_1	AQCTPCs	Ref. [29]
6	[378, 6, 104/3]	–	7	[888, 7, 218/3]	–	8	[2034, 8, 448/3]	–
6	[378, 12, 102/3]	–	7	[888, 14, 216/3]	–	8	[2034, 16, 446/3]	–
6	[378, 132, 62/3]	[378, 0, 62/3]	7	[888, 329, 126/3]	[889, 0, 126/3]	8	[2034, 784, 254/3]	[2040, 0, 254/3]
6	[378, 138, 60/3]	[378, 12, 60/3]	7	[888, 336, 124/3]	[889, 14, 124/3]	8	[2034, 792, 252/3]	[2040, 16, 252/3]
…	…	…	…	…	…	…	…	…
6	[378, 258, 20/3]	[378, 252, 20/3]	7	[888, 651, 34/3]	[889, 644, 34/3]	8	[2034, 1560, 60/3]	[2040, 1552, 60/3]
6	[378, 6, 100/5]	–	7	[888, 7, 214/5]	–	8	[2034, 8, 444/5]	–
6	[378, 12, 98/5]	–	7	[888, 14, 222/5]	–	8	[2034, 16, 442/5]	–
6	[378, 132, 60/5]	[378, 0, 60/5]	7	[888, 322, 124/5]	[889, 0, 124/5]	8	[2034, 776, 252/5]	[2040, 0, 252/5]
6	[378, 138, 58/5]	[378, 12, 58/5]	7	[888, 329, 122/5]	[889, 14, 122/5]	8	[2034, 784, 250/5]	[2040, 16, 250/5]
…	…	…	…	…	…	…	…	…
6	[378, 246, 20/5]	[378, 240, 20/5]	7	[888, 637, 34/5]	[889, 630, 34/5]	8	[2034, 1544, 60/5]	[2040, 1536, 60/5]

Corollary 3: There exists a family of binary AQCTPCs with parameters

$$Q = \left[N_Q, Q, d_z \geq 2^{m_1-1}d_3/d_X \geq d_2 \right],$$

where $N_Q = (2^{m_1-1} - 1)n_2$, $Q = m_1(n_2 - d_2 - d_3 + 2)$, $m_1 \geq 2$, $2 \leq n_2 \leq 2^{m_1} + 1$, and $2 \leq d_2 + d_3 \leq n_2 + 2$.

Proof: The proof proceeds in the same way as in Corollary 1 except we use classical simplex codes $C_1 = [2^{m_1-1}, m_1, 2^{m_1-1}]$ as the inner constituent code.

In particular, if we take $n_2 = 2^{m_1} + 1$ and let $d_3 = Q(2^{m_1})$ and $d_3 = 2^{m_1} + 2 - d_2$, where $0 < c < 1$ is a constant, then we have

$$Q = \left[N_Q, m_1, d_z/d_X \right],$$

where $N_Q = 2^{2m_1} - 1$, $d_z \geq 2^{m_1-1}(2^{m_1} + 2 - d_2)$, and $d_2 \geq d_2$. It is easy to see that $d_2/N_Q \to 1/2$ as $m_1 \to \infty$ and Q can meet the quantum Gilbert-Varshamov (GV) bound for AQCs in [69]. Therefore we get a family of AQCTPCs with a very large Z-distance d_z which is of approximately half the block length, at the same time, the dimension and the X-distance d_X can continue increasing as the block length goes to infinity. In Table II, we list several AQCTPCs with a large Z-distance d_z which is of approximately half the block length. In particular, if $d_X = 2$, then the Z-distance d_z of AQCTPCs in Corollary 3 could be larger than half the block length.

In addition, if we use linear codes in [47] with best known parameters as the inner codes, we can get many new AQCTPCs with a relatively large Z-distance d_z and very flexible code parameters. We list some of them in Table III. The Z-distances of the last four codes in Table III are much larger than half the block length, respectively. All the AQCTPCs in Table II and Table III have the largest Z-distance d_z compared to existed AQCs with comparable block length and X-distance d_X.

TABLE II

m_1	d_2	AQCTPCs	m_1	d_2	AQCTPCs
2	2	[15, 2, 8/2]	6	4	[4095, 6, 1984/4]
2	3	[15, 2, 6/3]	6	5	[4095, 6, 1952/5]
2	4	[63, 3, 32/2]	6	6	[4095, 6, 1920/6]
2	4	[255, 4, 128/4]	6	7	[4095, 6, 1888/7]
5	2	[1023, 5, 512/2]	7	2	[16383, 7, 8192/2]
5	3	[1023, 5, 496/3]	7	3	[16383, 7, 8128/3]
5	4	[1023, 5, 480/4]	7	4	[16383, 7, 8064/4]
5	5	[1023, 5, 464/5]	7	5	[16383, 7, 8000/5]
6	2	[4095, 6, 2048/2]	7	6	[16383, 7, 7936/6]
6	3	[4095, 6, 2016/3]	7	7	[16383, 7, 7827/7]
Let C and Q be dual-containing MDS codes with optimal parameters in [64], respectively. To facilitate notation, the numbers of Z- and X-distance of the AQCTPCs in this table are the lower bound.

C_1 in Ref. [47]	$\{n_2, d_2, d_3\}$ in Theorem 3.1	AQCTPCs
$[4, 7, 3]$	$[9, 3, 7]$	$[63, 3, 28/3]$
$[4, 7, 3]$	$[9, 5, 5]$	$[63, 3, 20/5]$
$[4, 7, 4]$	$[17, 3, 15]$	$[136, 4, 60/3]$
$[4, 7, 4]$	$[17, 5, 13]$	$[136, 4, 52/5]$
$[4, 7, 4]$	$[17, 5, 13]$	$[204, 4, 90/3]$
$[4, 7, 4]$	$[17, 5, 13]$	$[204, 4, 78/5]$
$[4, 7, 4]$	$[17, 5, 13]$	$[255, 4, 120/3]$
$[4, 7, 4]$	$[17, 5, 13]$	$[255, 4, 104/5]$
$[4, 7, 4]$	$[17, 5, 13]$	$[528, 5, 248/3]$
$[4, 7, 4]$	$[17, 5, 29]$	$[528, 5, 232/5]$
$[4, 7, 4]$	$[17, 5, 29]$	$[693, 5, 310/3]$
$[4, 7, 4]$	$[17, 5, 29]$	$[693, 5, 290/5]$
$[4, 7, 4]$	$[17, 5, 63]$	$[1430, 6, 567/3]$
$[4, 7, 4]$	$[17, 5, 61]$	$[1430, 6, 549/5]$
$[4, 7, 4]$	$[17, 5, 125]$	$[3096, 7, 1270/3]$
$[4, 7, 4]$	$[17, 5, 125]$	$[3096, 7, 1250/5]$
$[4, 7, 4]$	$[17, 5, 8]$	$[567, 3, 288/2]$
$[4, 7, 4]$	$[17, 5, 28]$	$[1143, 3, 576/2]$
$[4, 7, 4]$	$[17, 5, 148]$	$[2295, 3, 1160/2]$
$[4, 7, 4]$	$[17, 5, 148]$	$[1335, 4, 2176/2]$

If we use asymptotically good linear codes that can attain the classical GV bound as the inner codes C_1, we can get the following asymptotic result about AQCTPCs.

Corollary 4: There exists a family of q-ary AQCTPCs with parameters

$$Q = \left[[N_{Q} = n_{1}n_{2}, K_{Q}, d_{Z}/d_{X}] \right]_q$$

such that

$$\frac{K_{Q}}{N_{Q}} \geq \left(1 - H_q \left(\frac{d_1}{n_1} \right) \right) \left(1 - \frac{d_2}{n_2} - \frac{d_3}{n_2} \right),$$

$$d_Z \geq d_1 d_3,$$

$$d_X \geq d_2,$$

where

$$H_q(x) = x \log_q (q-1) - x \log_q x - (1-x) \log_q (1-x)$$

is the q-ary entropy function, $2 \leq d_1 \leq n_1$, $2 \leq d_2 + d_3 \leq n_2$, and $n_1, n_2 \to \infty$.

Proof: We choose $C_1 = [n_1, k_1, d_1]_q$ to be asymptotically good linear codes meeting the GV bound, i.e.,

$$\frac{k_1}{n_1} \geq 1 - H_q \left(\frac{d_1}{n_1} \right).$$

Let $C_2 = [n_2, k_2, d_2]_{q^k_1}$ and $C_3 = [n_2, k_3, d_3]_{q^k_1}$ be two MDS codes such that $C_2^\perp \subseteq C_3$. Denote by $N_{Q} = n_{1}n_{2}$, $K_{Q} = k_1(k_2 + k_3 - n_2)$, $d_Z = d_1 d_3$ and $d_X = d_2$. According to Theorem 1, we can get the asymptotic result in (45) as $n_1, n_2 \to \infty$.

On the other hand, besides using MDS codes as the outer constituent codes, we can also use AG codes that satisfy the dual-containing constraint [44], [70]. We will adopt the notation of AG codes used in [44], [71].

Theorem 3 ([44]): Let X be an algebraic curve over \mathbb{F}_q of genus g with at least n rational points. For any $2g - 2 < s < n$, there exist two q-ary AG codes $C_1 = [n, k_1, d_1]_q$ and $C_2 = [n, k_2, d_2]_q$ with $k_1 = n - k_2 - s$ such that $C_2^\perp \subseteq C_1$, where $d_1 \geq 2g + 2$ and $d_2 \geq n - l$.

For $q = 2^m$ ($m \geq 2$), there is the following asymptotic result about asymmetric QAG codes in [44].

Theorem 4 ([44]): Let $q = 2^m$ and let $0 \leq \delta_x, \delta_z \leq 1$ such that $\delta_x + \delta_z \leq 1 - 2/(\sqrt{2^m} - 1)$, then there exists a family of asymptotically good asymmetric QAG codes Q satisfying

$$R_Q(\delta_x, \delta_z) \geq 1 - \delta_x - \delta_z - \frac{2}{\sqrt{2^m} - 1}. \quad (50)$$

By using similar code extension methods in [70] and the CSS construction of AQCs, one can obtain asymptotically good binary extensions of asymmetric QAG codes as follows.

Corollary 5: Let $q = 2^m$ and let $0 \leq \delta_x, \delta_z \leq 1$ such that $\delta_x + \delta_z \leq 1 - 2/(\sqrt{2^m} - 1)$, then there exists a family of asymptotically good binary asymmetric QAG codes Q satisfying

$$R_Q(\delta_x, \delta_z) \geq 1 - m\delta_x - m\delta_z - \frac{2}{\sqrt{2^m} - 1}. \quad (51)$$

Proof: The asymptotic bound in (51) can be obtained from Ref. [70] and Theorem 4.

Denote by $C_1 = [n_1, k_1, d_1]$ a binary linear code and let X be an algebraic curve over \mathbb{F}_{2^m} of genus g with at least n_2 rational points. Then we have the following result for constructing AQCTPCs by using AG codes as outer codes.

Proposition 1: There exists a family of binary AQCTPCs with parameters

$$Q = \left[[N_{Q}, K_{Q}, d_{Z} \geq d_{1}d_{3}/d_{X} \geq d_{2}] \right]_2$$

where $N_{Q} = n_{1}n_{2}$, $K_{Q} = k_1(l - s)$, $2g - 2 < s < n_2$, $d_2 \geq s - 2g + 2$ and $d_x \geq n_2 - l$. As n_2 goes to infinity, the following asymptotic bound of AQCTPCs holds

$$R_Q \geq \frac{k_1}{n_1} \left(1 - \frac{n_1}{d_1} \delta_z - \frac{n_1}{d_3} \delta_x - \frac{2}{\sqrt{2^m} - 1} \right). \quad (53)$$

where $R_Q = K_Q/N_Q$, δ_X and δ_Z are the relatively minimum distance of Q.

Proof: According to Theorem 3, we know that there exist two 2^{n_2}-ary AG codes $C_2 = [n_2, k_2, d_2]_{2^{k_1}}$ and $C_3 = [n_2, k_3, d_3]_{2^{k_1}}$ such that $C_2^\perp \subseteq C_3$, where $k_3 = n_2 - k_3 + l - s$ and $2g - 2 < s < n_2$. Then from Theorem 1, we can construct a family of binary AQCTPCs with parameters

$$Q = \left[[N_{Q} = n_{1}n_{2}, K_{Q} = k_1(l - s), d_Z \geq d_1d_3/d_X \geq d_2] \right]_2$$

where $d_2 \geq s - 2g + 2$ and $d_3 \geq n_2 - l$. Denote by δ_X and δ_Z the relatively minimum distance of Q, i.e., $\delta_X = d_X/N_Q$ and $\delta_Z = d_Z/N_Q$. The asymptotic result can be obtained by Theorem 4.

In Fig. 2, we compare the asymptotic bound of AQCTPCs in (53) with that of asymmetric QAG codes in (51). We also give the GV bound of CSS codes for comparisons. In order
to get as good as possible asymptotic curves for AQCTPCs, we use different inner constituent codes to generate several piecewise asymptotic curves and then joint them together. In Fig. 2(a), we can see that the asymptotic bound of AQCTPCs is better than that for asymmetric QAG codes when the relative minimum distance $0.02 < \delta_Z < 0.06$. As the the asymmetry $\theta = d_Z / d_X$ grows, it is shown in Fig. 2(b) and Fig. 2(c) that AQCTPCs perform much better than asymmetric QAG codes.

V. CONCLUSION AND DISCUSSIONS

In this paper, we proposed the construction of asymmetric quantum concatenated and tensor product codes that combine the classical CCs and TPCs. The CCs correct the Z-errors and the TPCs correct the X-errors. Compared to concatenation schemes like CQCs and QTPCs, the AQCTPC construction only requires that the outer constituent codes satisfy the dual-containing constraint; the inner constituent codes can be chosen freely. Further, AQCTPCs are highly degenerate codes and, as a result, they passively correct many X-errors. To avoid issues with decoding, we present efficient syndrome-based decoding algorithms and show that if the inner and outer constituent codes are efficiently decodable, then the AQCTPC is also efficiently decodable. Particularly, the inner decoding complexity of TPCs is significantly reduced to $O(n_2)$ in general. Further, we generalized the AQCTPC concatenation scheme by using GCCs and GTPCs.

To showcase the power of the method, we constructed many state-of-the-art AQC. Through these constructions, we demonstrate how AQCTPCs can be superior to QBCH codes or asymmetric QAG codes as the block length goes to infinity; how they can have better parameters than the binary extension of asymmetric QRS codes; and how varieties of state-of-the-art AQCs. Through these constructions, we demonstrate how AQCTPCs can be superior to QBCH codes or asymmetric QAG codes as the block length goes to infinity; how they can have better parameters than the binary extension of asymmetric QRS codes; and how varieties of AQCTPCs with a large Z-distance d_Z can be designed by using some best known linear codes in [47]. In particular, we constructed a family of AQCTPCs with a Z-distance d_Z of approximately half the block length, and meanwhile with dimension X-distance d_X that continue to increase as the block length goes to infinity. If $d_X = 2$, we obtain the first family of binary AQC with the Z-distance larger than half the block length.

Our codes are practical to quantum communication channels with a large asymmetry and may be used in fault-tolerant quantum computation to deal with highly biased noise. In the next work, we may consider the construction and decoding of AQCTPCs by using some other constituent codes, e.g., the Polar codes.

ACKNOWLEDGMENT

The authors would like to thank the Editor and the referees for their valuable comments that are helpful to improve the presentation of their article. J. Fan thanks Prof. Yonghui Li and Prof. Martin Bossert for some earlier communications about tensor product codes.

REFERENCES

[1] L. Ioffe and M. Mézard, “Asymmetric quantum error-correcting codes,” Phys. Rev. A, Gen. Phys., vol. 75, no. 3, Mar. 2007, Art. no. 032345.
[2] D. K. Tuckett, S. D. Bartlett, and S. T. Flammia, “Ultra high error threshold for surface codes with biased noise,” Phys. Rev. Lett., vol. 120, no. 5, Jan. 2018, Art. no. 050505.
[3] H. Haffner, C. F. Roos, and R. Blatt, “Quantum computing with trapped ions,” Phys. Rep., vol. 469, no. 4, pp. 155–203, 2008.
[4] H. O. H. Churchill et al., “Relaxation and dephasing in a two-electron 13C nanotube double quantum dot,” Phys. Rev. Lett., vol. 102, no. 16, 2009, Art. no. 166802.
[5] A. M. Steane, “Simple quantum error-correcting codes,” Phys. Rev. A, Gen. Phys., vol. 54, no. 6, p. 4741, 1996.
[6] P. Allieris and J. Preskill, “Fault-tolerant quantum computation against biased noise,” Phys. Rev. A, Gen. Phys., vol. 78, no. 5, Nov. 2008, Art. no. 052331.
[7] P. K. Sarvepalli, A. Klappenecker, and M. Rötteler, “Asymmetric quantum codes: Constructions, bounds and performance,” Proc. Roy. Soc. A, Math., Phys. Eng. Sci., vol. 465, no. 2105, pp. 1645–1672, May 2009.
[8] P. Brooks and J. Preskill, “Fault-tolerant quantum computation with asymmetric bacon-shor codes,” Phys. Rev. A, Gen. Phys., vol. 87, no. 3, Mar. 2013, Art. no. 032310.
[9] F. J. MacWilliams and N. J. A. Sloane, The Theory Error-Correcting Codes. Amsterdam, The Netherlands: North-Holland, 1981.
[10] S. Lin and D. J. Costello, Error Control Coding: Fundamentals and Applications, 2nd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 2004.
[11] M. Azmi, J. Li, J. Yuan, and R. Malaney, “LDPC codes for soft decode-and-forward in half-duplex relay channels,” IEEE J. Sel. Areas Commun., vol. 31, no. 8, pp. 1402–1413, Aug. 2013.
[12] J. Li, W. Chen, Z. Lin, and B. Vucetic, “Design of physical layer network coded LDPC code for a multiple-access relaying system,” IEEE Commun. Lett., vol. 17, no. 4, pp. 749–752, Apr. 2013.
[13] Y. Yu, W. Chen, J. Li, X. Ma, and B. Bai, “Generalized binary representation for the nonbinary LDPC code with decoder design,” IEEE Trans. Commun., vol. 62, no. 9, pp. 3070–3083, Sep. 2014.
[69] R. Matsumoto, “Two Gilbert–Varshamov-type existential bounds for asymmetric quantum error-correcting codes,” Quantum Inf. Process., vol. 16, no. 12, p. 285, Dec. 2017.

[70] A. Ashikhmin, S. Litsyn, and M. Tsfasman, “Asymptotically good quantum codes,” Phys. Rev. A, Gen. Phys., vol. 63, no. 3, Feb. 2001, Art. no. 032311.

[71] M. Tsfasman and S. Vlăduţ, Algebraic-Geometric Codes. Dordrecht, The Netherlands: Kluwer, 1991.

Jihao Fan (Member, IEEE) received the B.S. degree in mathematics and applied mathematics from Lanzhou University, Lanzhou, China, in 2009, and the Ph.D. degree in computer software and theory from Southeast University, Nanjing, China, in 2016. He is currently an Assistant Professor with the Nanjing University of Science and Technology, Nanjing. His research interests include classical and quantum coding theory, information theory, and machine learning.

Jun Li (Senior Member, IEEE) received the Ph.D. degree in electronic engineering from Shanghai Jiao Tong University, Shanghai, China, in 2009. From January 2009 to June 2009, he worked with the Department of Research and Innovation, Alcatel Lucent Shanghai Bell, as a Research Scientist. From June 2009 to April 2012, he was a Post-Doctoral Fellow with the School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney, NSW, Australia. From April 2012 to June 2015, he was a Research Fellow with the School of Electronic Engineering, The University of Sydney, Camperdown, NSW, Australia. Since June 2015, he has been a Professor with the School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China. He was a Visiting Professor with Princeton University from 2018 to 2019. His research interests include network information theory, game theory, distributed intelligence, multiple agent reinforcement learning, and their applications in ultra-dense wireless networks, mobile edge computing, network privacy and security, and industrial Internet of things. He has coauthored more than 200 papers in IEEE journals and conferences, and holds one U.S. patents and more than ten Chinese patents in these areas. He was serving as an Editor for IEEE Communications Letters and a TPC Member for several flagship IEEE conferences. He received Exemplary Reviewer of IEEE Transactions on Communications in 2018 and the Best Paper Award from IEEE International Conference on 5G for Future Wireless Networks in 2017.

Zhihui Wei was born in Jiangsu, China, in 1963. He received the B.Sc. and M.Sc. degrees in applied mathematics and the Ph.D. degree in communication and information system from Southeast University, Nanjing, China, in 1983, 1986, and 2003, respectively. He is currently a Professor and a Ph.D. Supervisor with the Nanjing University of Science and Technology, Nanjing. His research interests include classical and quantum coding theory, information theory, and machine learning.

Min-Hsiu Hsieh (Senior Member, IEEE) received the B.S. and M.S. degrees in electrical engineering from National Taiwan University in 1999 and 2001, respectively, and the Ph.D. degree in electrical engineering from the University of Southern California at Los Angeles, Los Angeles, CA, USA, in 2008. From 2008 to 2010, he was a Researcher with the ERATO-SORST Quantum Computation and Information Project, Japan Science and Technology Agency, Tokyo, Japan. From 2010 to 2012, he was a Post-Doctoral Researcher with the Statistical Laboratory, the Centre for Mathematical Sciences, The University of Cambridge, U.K. From 2012 to 2020, he was an Australian Research Council (ARC) Future Fellow and an Associate Professor with the Centre for Quantum Software and Information, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia. He is currently the Director of the Hon Hai (Foxconn) Quantum Computing Center. His scientific research interests include quantum information, quantum learning, and quantum computation.

Jianxin Wang received the M.Sc. and Ph.D. degrees in electronic and information engineering from the Nanjing University of Science and Technology, Nanjing, China, in 1987 and 1999, respectively. Since 1987, he has been with the School of Electronic and Optical Engineering, Nanjing University of Science and Technology, as a Teaching Assistant, a Lecturer, and an Associate Professor, and since 2001 as a Professor. He was a Visiting Researcher with the Institute of Telecommunications, University of Stuttgart, Germany, in 2000, in December 2012, and in January 2016, respectively. His main research interests include communications signal processing and software defined radio.