Floral associations of cyclocephaline scarab beetles

Matthew Robert Moorea* and Mary Liz Jamesonb

Wichita State University, Department of Biological Sciences, 1845 Fairmount, Wichita, KS, USA 67260-0026

Abstract

The scarab beetle tribe Cyclocephalini (Coleoptera: Scarabaeidae: Dynastinae) is the second largest tribe of rhinoceros beetles, with nearly 500 described species. This diverse group is most closely associated with early diverging angiosperm groups (the family Nymphaeaceae, magnoliid clade, and monocots), where they feed, mate, and receive the benefit of thermal rewards from the host plant. Cyclocephaline floral association data have never been synthesized, and a comprehensive review of this ecological interaction was necessary to promote research by updating nomenclature, identifying inconsistencies in the data, and reporting previously unpublished data. Based on the most specific data, at least 97 cyclocephaline beetle species have been reported from the flowers of 58 plant genera representing 17 families and 15 orders. Thirteen new cyclocephaline floral associations are reported herein. Six cyclocephaline and 25 plant synonyms were reported in the literature and on beetle voucher specimen labels, and these were updated to reflect current nomenclature. The valid names of three unavailable plant host names were identified. We review the cyclocephaline floral associations with respect to inferred relationships of angiosperm orders. Ten genera of cyclocephaline beetles have been recorded from flowers of early diverging angiosperm groups. In contrast, only one genus, *Cyclocephala*, has been recorded from dicot flowers. Cyclocephaline visitation of dicot flowers is limited to the New World, and it is unknown whether this is evolutionary meaningful or the result of sampling bias and incomplete data. The most important areas for future research include: 1) elucidating the factors that attract cyclocephalines to flowers including floral scent chemistry and thermogenesis, 2) determining whether cyclocephaline dicot visitation is truly limited to the New World, and 3) inferring evolutionary relationships within the Cyclocephalini to rigorously test vicariance hypotheses, host plant shifts, and mutualisms with angiosperms.
Introduction

The Cyclocephalini (Coleoptera: Scarabaeidae: Dynastinae) is the second largest rhinoceros beetle tribe, currently containing 15 genera and nearly 500 described beetle species (Jameson et al. 2002; Ratcliffe 2003; Smith 2006). Cyclocephalines have a pantropical distribution, though the majority of the group’s generic and species diversity is concentrated in the New World (Ratcliffe 2003; Ratcliffe and Cave 2006). Most genera are sexually dimorphic, with males having enlarged protarsal claws and females having expanded elytral epipleura (Moore 2012). Cyclocephalines are important economically and ecologically as root pests (larvae) and pollinators (adults) (Ratcliffe 2003; Ratcliffe and Paulsen 2008). Adult cyclocephaline beetles can be found within the inflorescences of early diverging angiosperm groups (the family Nymphaeaceae, magnoliid clade, and monocots; Figure 1) and have been shown to contribute to pollination in the Annonaceae, Araceae, Arecaceae, Cyclanthaceae, Magnoliaceae, and Nymphaeaceae (Cramer et al. 1975; Beach 1982; Beach 1984; Young 1986; Young 1988b; Gotsberger 1989; Dieringer et al. 1999; Hirthe and Porembski 2003; Maia et al. 2012). Studies of these interactions indicate that some early diverging angiosperm groups offer rewards to cyclocephalines in the form of mating sites, food, and metabolic boosts associated with floral thermogenicity in return for pollination services (Gotsberger 1986; Young 1986; Seymour et al. 2009). Cyclocephaline visitation of dicot flowers is poorly known and little studied.

Cyclocephaline floral associations have been reported in journals, books, and monographs since the late 18th century. However, the prevalence, geographic scope, and biological importance of these records are difficult to gauge because publications summarizing cyclocephaline floral visitation are somewhat dated and report floral visitation only for specific plant families, geographic areas, or vegetation types (Henderson 1986; Gibernau 2003; Gotsberger and Silberbauer-Gottsberger 2006; Gibernau 2011). The fragmentary nature of these data and the citation of unpublished observations have hampered the ability to identify floral association trends within cyclocephaline genera and species.

The phylogeny of the Cyclocephalini was investigated for the first time by Clark (2011), and the generic-level relationships within the tribe remain an area of active research by M. R. Moore. Tribal circumscription of the Cyclocephalini is subject to change based on ongoing phylogenetic analyses. This research will provide an evolutionary framework for interpreting patterns of floral visitation. Compilation and synthesis of a checklist of floral associations is needed in order to understand the ecology of the Cyclocephalini within a phylogenetic context.

This checklist synthesizes data (plant and beetle species, geographic locality, and original citation) for the floral associations of adult
cyclocephaline beetles. Invalid nomenclature in the surveyed literature is identified and corrected; conflicting data, sources of error, and uncertainty in the data are identified; and unpublished floral association data from examined voucher specimens are added. The aim of this work is to promote future research of these ecological interactions by providing a comprehensive data set of the taxonomic and geographic scope of floral visitation for cyclocephaline beetles.

Materials and Methods

Literature was surveyed from 1758 (Linnaeus) to 2012. Keyword searches for all cyclocephaline genera (*sensu* Ratcliffe and Cave 2006; Clark 2011) were conducted in the following databases: BioOne® (www.bioone.org), BIOSIS Previews® (http://apps.webofknowledge.com/), JSTOR (www.jstor.org), and Biodiversity Heritage Library (www.biodiversitylibrary.org). Every host plant reference from Pike et al. (1976) was checked for floral association data.

All reported cyclocephaline species names from the literature were verified by referencing the original species description and monographic treatments of the Dynastinae (Endrödi 1985; Ratcliffe 2003; Ratcliffe and Cave 2006). Synonyms or misspelled cyclocephaline species names in the literature were updated to reflect current nomenclature. All reported host plant names were verified using the peer-reviewed botanical taxonomic databases Tropicos (www.tropicos.org) and The Plant List (www.plantlist.org). Synonyms or misspelled plant names were updated to reflect current nomenclature based on The Plant List (2010). In some cases, scientific names in the literature could not be identified as valid or invalid (e.g., unavailable manuscript names or conflicting synonyms). Some unverified plant names were reported according to the original citation for the floral association, and the name was noted as unresolved. Occasionally, host plant and beetle species were not assigned an author in the reference for an association. This caused problems due to the prevalence of synonyms and homonyms in the plant and insect literature. Resulting ambiguities were rectified to the extent possible and explained in the remarks column (Appendix 1).

Borrowed specimens of cyclocephaline species allowed for direct evaluation of species-level identifications that were reported by several authors. Particularly, this included specimens of *Cyclocephala sexpunctata* Laporte (1840) and *C. brevis* Höhne (1847) collected by George Schatz, Helen Young (La Selva Biological Station, Costa Rica), Alberto Seres, and Nelson Ramirez (Henri Pittier National Park, Venezuela), with floral association data that were subsequently published or unpublished. Identifications of these specimens (or specimen vouchers) were critically examined (Moore 2011). Exemplar material borrowed from the University of Nebraska State Museum (authoritatively identified by B. C. Ratcliffe) and monographic treatments (Ratcliffe 2003; Ratcliffe and Cave 2006) served as the basis for evaluating species identifications as well as detailed images of some type specimens. The operating assumption was that the collectors and authors were consistent with their species-level determinations. Identifications deemed incorrect based on current taxonomy were updated and noted accordingly. Unpublished host plant data were also found with cyclocephaline specimens in collections. These specimens were collected by M. R. Moore and deposited at Wichita State University, Wichita, Kansas, USA, or loaned from the following institutions:
Concrete and anecdotal evidence of floral associations were also included in the checklist. The nature of the published association occasionally needed clarification or elaboration (e.g., cyclocephalines reported near flowers but not on them or museum specimens covered in resin and pollen). These clarifications were provided in the remarks column of Appendix 1. A large amount of unpublished and inaccessible data exists with regard to cyclocephaline floral visitation. These records provide ambiguous data for plant species, cyclocephaline species, locality, and associated voucher information. For example, Schatz (1990, Table 7.3) recorded known and predicted (without distinguishing the two) plant taxa pollinated by dynastines in the Neotropics. Schatz (1990, Table 7.4) recorded cyclocephaline plant visitation at La Selva Biological Station, but a large amount of data could not be extracted because of the non-specific nature of the record (i.e., the data were reported at the tribal-level rather than at the species-level). These inaccessible data are important because they report certain associations that are not recorded elsewhere in the literature. Repetitive data from these types of records were omitted from the checklist. Only unique generic or species-level plant associa-

Table 1. Previously unpublished cyclocephaline beetle floral association data.

Scarab Taxa	Plant Taxa	Locality	Collector	Depository
Cyclocephala atripes Bates, 1888	*Dieffenbachia tondii* Croat & Grayum	COSTA RICA: Heredia (La Selva Biol. Stat.)	M. Grayum	3 vouchers in INBC
Cyclocephala brevis Höhne, 1847 incertae sedis (Cyclocephala morphospecies 3 sensu Moore 2011)	*Dieffenbachia sequine* (Jacq.) Schott	VENEZUELA: Angua (Henri Pittier National Park)	A. Seres & N. Ramirez	1 voucher in USNM
Cyclocephala brevis Höhne, 1847 incertae sedis (Cyclocephala morphospecies 4 sensu Moore 2011)	*Philodendron ligulatum* Schott	COSTA RICA: Heredia (La Selva Biol. Stat.)	H. Young	1 voucher in INBC
Cyclocephala octopunctata Burmeister, 1847	*Philodendron sp.*	PANAMA: Colon (1 km E Rio Guanache Bridge)	B. Ratcliffe & M. Jameson	1 voucher in USNM
Cyclocephala ovalis Bates, 1888	*Annona dioica* A. St.-Hil.	BOLIVIA: Santa Cruz	uncredited	1 voucher in USNM
Cyclocephala rustica (Olivier, 1879)	Arecales	BRAZIL: Manaus (Reserva Ducke)	S. Vidal	2 vouchers in USNM
Cyclocephala santoritae Ratcliffe, 1992a	*Dieffenbachia sequine* (Jacq.) Schott	FRENCH GUIANA: Dept 973 (Nouragues)	H. Halsley & A. Henderson	5 vouchers in USNM
Cyclocephala sesquinica Lapeirre, 1840 incertae sedis (Cyclocephala morphospecies 2 sensu Moore 2011)	*Alocasia macracanthos* (L.) G. Don	COSTA RICA: San José (Parque del Este)	Uncredited (likely collected by C. Valerio, see Valerio 1984)	8 vouchers in UNSM
Cyclocephala undata (Olivier, 1879)	*Dugetizia asteroricha* (Diele) R. E. Fr.	BRAZIL: Manaus	G. Gottsberger	1 voucher in UNSM
Eriocletes proba Sharp, 1877	*Dieffenbachia sequine* (Jacq.) Schott	FRENCH GUIANA (Nouragues Field Station)	M. Gibernau	28 vouchers in UNSM
Memoena signatae (Höhne, 1923)	*Socratea sp.*	VENEZUELA (Henri Pittier National Park)	A. Seres & N. Ramirez	1 voucher in USNM
tions were reported for the beetle tribe from these data sets. These non-specific records are reported at the end the checklist with the intention that they be reevaluated with the addition of more data.

Results

Based on species-specific records from the literature and voucher label data, at least 97 cyclocephaline species from nine or 10 genera (depending on the identity of the cyclocephaline reported by Gibbs et al. (1977)) were recorded in association with the flowers of at least 161 species representing 58 genera, 17 families, and 15 orders (Appendix 1). Examined voucher specimens occasionally had unique, unpublished, floral association data. Thirteen new plant associations are provided in Table 1. Examined voucher specimens that did not have unique data are noted in Appendix 1. The most specific data are summarized at the generic-level for the plant association (plant classification according to the Angiosperm Phylogeny Group III (2009)) in Table 2 and are provided in full detail (lowest-level taxonomy, geographic data, and references) in Appendix 1. Cyclocephaline beetle genera and their associations with angiosperm plant lineages were mapped onto the APG III angiosperm phylogeny (Figure 1).

Five of the 15 cyclocephaline genera were not reported as floral visitors in any of the surveyed literature: *Acrobolbia* Ohaus (1912), *Ancognatha* Erichson (1847), *Harpocoselis* Burmeister (1847), *Stenocrates* Burmeister (1847), and *Surutu* Martínez (1955). Preliminary phylogenetic analysis of the Cyclocephalini indicated that the Neotropical genus *Parapucaya* Prell (1934) (Dynastinae: Pentodontini) and the Indonesian archipelago genus *Neohyphus* Heller (1896) (Dynastinae: Oryctoderini) fall within a potential newly
defined Cyclocephalini (Clark 2011). These genera were included in the systematic literature searches but yielded no floral association records. The results of Clark (2011) hypothesized that the genus Erioscelis Burmeister (1847) is sister to all remaining genera of the Cyclocephalini + Neohyphyus + Parapucaya. Erioscelis was included in this checklist because of its documented visitation of several genera in the Araceae (also visited by other cyclocephalines) and its historical inclusion in the Cyclocephalini.

Floral associations that are less specific or ambiguous (non-specific records) were also reported (Appendix 1). For example, Listabarth (1996) reported dynastine scarabs, with no further species identification, on three species of Bactris palms (Arecales). These data include records for Scarabaeeidae, Dynastinae, and beetles on flowers that fit the general pattern of cyclocephaline floral visitation (nocturnal visitation of bowl-shaped, thermogenic inflorescences). Non-specific records were included in the checklist with the hope that they may be reevaluated with additional data.

Gathering and interpreting floral association data were complicated by the prevalence of synonyms, invalid names, and unavailable names in the literature. Based on The International Code of Zoological Nomenclature (ICZN 1999), an unavailable name is a name that is excluded from use due to the requirements of the code. For example, the unavailable name Cyclocephala inpunctata was reported in the surveyed literature (Gottsberger 1986, 1988). C. inpunctata has never been described in the literature. This name is unavailable and was likely reported in error. Based on published locality data for the floral association, images of the beetle (Gottsberger 1988; Figure 4a, 5 a-d), and subsequently published records, we consider this species to be Cyclocephala quatuordecimpunctata Man-nerheim (1829) (personal communication with B. C. Ratcliffe, April 2011). Synonyms of six cyclocephaline genus or species names were
reported in the surveyed literature; these invalid names were updated based on current nomenclature (Appendix 2). Synonyms of 25 plant genus or species names were reported in the surveyed literature and on voucher specimen label data; these invalid names were updated based on current nomenclature (Appendix 3).

Seven unresolved or unavailable plant names were reported from label data and in the surveyed literature (Appendix 4). According to The Plant List (2010), unresolved names are those for which “it is not yet possible to assign a status of either ‘accepted’ or ‘synonym.’” Two of these names, Philodendron atlanticum and Dieffenbachia longivaginata, were unavailable manuscript names (place-holder names for species that were later described) of Thomas Croat and Michael Grayum (Missouri Botanical Garden, St. Louis, Missouri, USA). These species were identified as Philodendron ligulatum Schott and Dieffenbachia tonduzii Croat and Grayum, respectively (personal communication with T. Croat and M. Grayum, April 2011). Xanthosoma macrorrhizas is an unavailable name that was reported by Valerio (1984). This species may be the cultivated, naturalized, non-native species Alocasia macrorrhizos (L.) G. Don (personal communication with T. Croat, April 2011).

Certain cyclocephaline species were commonly reported as floral visitors. For example, Cyclocephala sexpunctata had over 20 floral visitation records in the surveyed literature (Appendix 1). C. sexpunctata is externally nearly identical to C. brevis (sensu Ratcliffe 2003; Ratcliffe and Cave 2006). Research on these two species showed that they represent four, or potentially five, morphospecies (Moore 2011). This conclusion was based on male genitalic characters, the form of the female epipleuron, and extensive range and spatial data (Moore 2011). The taxonomy of the species C. sexpunctata and C. brevis remains unresolved (a possible species complex), and their floral associations were reported in detail (Moore 2011). Some voucher specimens for reported floral associations of C. sexpunctata and C. brevis remain to be examined, and some data will require reinterpretation after the examination of type specimens.

Discussion

Examination of cyclocephaline floral associations with respect to inferred relationships of angiosperm orders revealed that 10 of the 15 genera of cyclocephaline beetles have been recorded from flowers of early diverging angiosperm groups (the family Nymphaeaceae, magnoliid clade, and monocots; Figure 1). In contrast, only one genus, Cyclocephala, has been recorded from dicot flowers (Figure 1). Experimental and observational studies have demonstrated that cyclocephalines can act as pollinators in Nymphaeales, Magnoliales, Araceae, Pandanales, and Alismatales (Figure 1; Table 2) (Cramer et al. 1975; Beach 1982; Beach 1984; Young 1986; Young 1988b; Gottsberger 1989; Dieringer et al. 1999; Hirthe and Porembski 2003; Maia et al. 2012). In these early diverging plant groups, a wide set of floral traits and floral pollination syndromes indicate a correlation with cyclocephaline beetles (large pollen grains with sticky exudates, sturdy and funnel-shaped inflorescences or large disc-shaped flowers, timing of anthesis, and thermogenesis) (Thien et al. 2009; Gibernau et al. 2010). These angiosperm orders offer rewards to cyclocephalines in the form of mating sites, food, and heat resources associated with floral thermogenicity (Young 1986; Seymour et al. 2009).
Some cyclocephaline/flower associations are mutualistic (Cramer et al. 1975; Beach 1982; Beach 1984; Young 1986; Young 1988b; Gottsberger 1989; Dieringer et al. 1999; Hirthe and Porembski 2003; Maia et al. 2012). Ervik and Knudsen (2003) provide a compelling argument that scarab pollination of the Nymphaeaceae (Nymphales) is a mutualistic relationship that dates to the early Cretaceous. Whether this represents an example of coevolution is unclear, and only one study has addressed this hypothesis (Schiestl and Dötterl 2012). Schiestl and Dötterl (2012) argued that volatile organic compound production/detection systems arose in the Scarabaeoidea during the Jurassic, whereas floral volatile organic compounds arose in the Cretaceous/Paleocene. This was taken as evidence that early diverging angiosperm plant/scarab associations evolved due to a preexisting sensory bias in scarabs rather than as a result of coevolution (Schiestl and Dötterl 2012). However, coevolution could not be ruled out for the mutualism between cyclocephaline scarabs and aroid flowers (Schiestl and Dötterl 2012).

Floral visitation of the core eudicot clade (Figure 1) by cyclocephalines is poorly described and, in certain cases, differs significantly from a pollination mutualism. Such cases involve feeding and mating within flowers in which cyclocephalines have no apparent pollinating function and may destroy the reproductive capability of the plant. For example, in the Brazilian dicot Opuntia monocantha Haw. (Caryophyllales), Cyclocephala have been observed mating within the flowers and feeding on stamens (Lenzi and Inácio Orth 2011). Observations made on Echinopsis ancistrophora Speg. subsp. ancistrophora (Caryophyllales) flowers indicate that Cyclocephala visitors display destructive feeding behavior and do not contribute to reproduction (Schlumpberger et al. 2009). Cyclocephala metrica Steinheil (1874) was observed feeding on seeds in flower heads of Verbesina encelioides (Cav.) Benth. and Hook. f. ex A. Gray (Asterales) in Argentina (Hayward 1946). Seed predation in phytophagous scarabs is rare, the only other known example being some members of the subtribe Anisopliina (Scarabaeidae: Rutelinae: Anomalini) that feed on grass seeds (Poaceae) (Jameson et al. 2007).

In contrast to apparent destructive associations with dicots, only one detailed account provides evidence of a cyclocephaline beetle pollinating a eudicot. Prance (1976) observed male and female Cyclocephala verticalis Burmeister (1847) occupying the inflorescences of Lecythis, Corythophora, and Eschweilera (Ericales) in Amazonas, Brazil. C. verticalis was strong enough to lift the closed androphore flap of Lecythidaceae (Ericales) inflorescences and displayed selective feeding of floral parts, eating only staminode tissue at the apex of the androphore and leaving fertile stamens untouched (Prance 1976). Based on these observations, C. verticalis was considered a likely pollinator of some Lecythidaceae genera, though this hypothesis was not tested (Prance 1976).

Gottsberger (1986) considered cyclocephaline floral visitation of the dicot families Apocynaceae (Gentianales), Calophyllaceae (Malpighiales), and Sapotaceae (Ericales) to be opportunistic. In the absence of early diverging angiosperm host flowers, Gottsberger (1986) hypothesized that cyclocephalines would visit strongly scented flowers of other groups. Cyclocephalines have been shown to aggregate based on floral scent compounds alone (Gottsberger et al. 2012). Cyclocephaline species (and populations) likely are biased towards a wide range of floral scent.
compounds. Eudicot species with geographically variable floral scent profiles may evolve scents that incidentally stimulate cyclocephaline aggregation by randomly sampling the sensory bias range of scarabs present in that area (e.g., Schlumberger and Raguso 2008; Schlumberger et al. 2009). This scenario, if accurate, would lend support to the hypothesis of Schiestl and Dötterl (2012) that preexisting sensory biases in cyclocephalines have an important role in determining the host flower profile of a given cyclocephaline species.

Based on the assembled data (Appendix 1), cyclocephaline visitation of eudicots is limited to the New World. It is unknown whether this shift represents an evolutionary event that occurred in New World cyclocephalines. Observations of cyclocephalines on dicot flowers (Figure 1) have largely been made by chance and have not been the subject of rigorous experimentation or sampling protocols. Thus, it is quite possible that Old World cyclocephalines (Ruteloryctes, Pettonotus, and potentially Neohyphus) visit both early diverging angiosperm groups and dicot groups, but dicot associations have not been recorded. However, it is certain that the known diversity of host flowers lineages is much higher for New World cyclocephalines (15 orders, 17 families, and 58 genera) compared to Old World cyclocephalines (two orders, two families, and three genera) (Appendix 1). This correlation may indicate that the radiation of the cyclocephalines in the New World was accompanied by a subsequent increase in the diversity of their floral associations.

Cyclocephaline species are generally oligophagous or polyphagous. For cyclocephaline species with multiple host records, only seven species have been recorded from a single host plant genus (monophagous), 23 species have been reported from multiple host plant genera within a family (oligophagous), and 27 species have been recorded from multiple host plant families (polyphagous) (Appendix 1). Single inflorescences often contain multiple cyclocephaline species, and an extreme example is Dieffenbachia nitidipetiolata Croat and Grayum (Alismatales), which was visited by at least nine Cyclocephala species at La Selva Biological Station, Costa Rica (Young 1990; see Croat 2004 for plant identification). These multi-species aggregations might be explained if floral scents are serving as sex pheromones for multiple cyclocephaline species (Schatz 1990). This hypothesis may be supported by the observations of Gottsberger et al. (2012) that Cyclocephala literata Burmeister will aggregate due to floral scent compounds alone.

The consequences of polyphagous and oligophagous cyclocephalines for pollination efficiency have been experimentally addressed, indicating that cyclocephaline floral visitors are differentially important as pollinators due to an interaction between their relative abundance and specific behavior (Young 1986, 1988a, b, 1990). It is less clear how cyclocephalines species, which often mate inside inflorescences, maintain sexual isolation in close proximity to multiple congeneric cases. A single inflorescence may host large crowds of beetles, often more than 30 individuals (Maia et al. 2012). Sexual isolation may be maintained due to interspecific mating morphology (Moore 2012). Sexually dimorphic cyclocephaline species have enlarged protarsal claws (males), and the elytral epipleuron variably expanded into a shelf or flange (females). Morphological differences among epipleural expansions are useful for species-level identification in the Cyclocephalini (Ratcliffe 2003). Females have sclerotized patches, sometimes with setae, on the ventral portion of epipleural expansions (Moore
It is hypothesized that the interaction between the male protarsal claw, the female epipleural expansions, and the ventral portion of the female elytra serves as a pre-copulatory sexual isolation mechanism. Further sexual isolation between species is accomplished by species-specific differences in male genitalic structure (Moore 2012). The male protarsal claw and the female epipleuron may also be involved in intraspecific mate competition. For example, male Cyclocephala gravis Bates were observed clinging tightly to the epipleural structures of a female (guarding behavior), thus limiting the mating access of other C. gravis males (Moore 2012). Cyclocephaline beetles exhibit some similarity to hopliine scarabs (Scarabaeidae: Rutelinae: Hopliini), which are generalist flower visitors in South Africa (Ahrens et al. 2011). Sexual dimorphism has evolved independently several times within the Hopliini (Ahrens et al. 2011). Evolution of sexual dimorphism in hopliines could be tied to the group’s biology, as they feed and compete for mates within inflorescences (Midgeley 1992; Ahrens et al. 2011). Sexual dimorphism in cyclocephalines and hopliines may be analogous, driven by selection pressures related to oligophagous and polyphagous flower feeding, mating behavior, and host visitation.

Cyclocephaline beetles and floral associations provide an ideal system for investigating ecology (pollination, competition) and evolution (sexual selection, mutualisms). A well-founded phylogenetic framework for the Cyclocephalini is needed to advance this work. While ecological associations between beetles and early diverging angiosperm groups is fairly well-established, additional research is necessary to understand the ecological and historical associations of cyclocephaline beetles and dicots. Specifically, research is needed to address the apparent cyclocephaline diversification on New World dicots. Research on cryptic species of host plants and beetles is fundamental to understanding this system. This includes the role of floral volatile compounds in attracting cyclocephaline beetles and patterns of pollination, herbivory, and interspecific competition within floral hosts.

Acknowledgements

We thank Brett Ratcliffe (University of Nebraska State Museum) and Ron Cave (University of Florida) for providing travel funding, specimens for this research, and valuable advice on preparing this manuscript. We are grateful to Michael Grayum, Thomas Croat (both Missouri Botanical Garden), and Boris Schlumpberger (University of Munich) for their botanical expertise. Curators and collections managers in the Methods section are gratefully acknowledged. This work was supported, in part by NSF DBI 0743783 to S. Scott, E. Moriyama, L.-K. Soh, and M. L. Jameson; NSF DEB 0716899 to B. C. Ratcliffe and R. D. Cave; and Wichita State University.

References

Aguirre A, Guevara R, Dirzo R. 2011. Effects of forest fragmentation on assemblages of pollinators and floral visitors to male- and female-phase inflorescences of Astrocaryum mexicanum (Arecaceae) in a Mexican rain forest. Journal of Tropical Ecology 27: 25–33.

Ahrens D, Scott M, Vogler A P. 2011. The phylogeny of monkey beetles based on mitochondrial and ribosomal RNA genes (Coleoptera: Scarabaeidae: Hopliini). Molecular Phylogenetics and Evolution 60: 408–415.
Anderson AB, Overal WL, Henderson A. 1988. Pollination ecology of a forest-dominant palm (Orbignya phalerata Mart.) in northern Brazil. Biotropica 20: 192–205.

Anderson RS, Gómez-Pignataro LD. 1997. Systenotelus, a remarkable new genus of weevil (Coleoptera: Curculionidae) associated with Carludovica (Cyclanthaceae) in Costa Rica and Panamá. Revista de Biología Tropical 45: 887–904.

Angiosperm Phylogeny Group III (APG III). 2009. An update of The Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161: 105–121.

Arrow GJ. 1902. Notes and descriptions of some Dynastidae from tropical America, chiefly supplementary to the ‘Biologia Centrali-Americana.’ Annals and Magazine of Natural History (series 7) 10: 137–147.

Arrow GJ. 1903. Description of a few new species of Coleoptera from Sapucay, Paraguay. Proceedings of the Zoological Society of London 2: 255–258.

Arrow GJ. 1910. On the lamellicorn beetles of the genus Peltonotus with descriptions of four new species. Annals and Magazine of Natural History (series 8) 5: 153–157.

Arrow GJ. 1911. Notes on the coleopterous subfamily Dynastinae, with descriptions of new genera and species. Annals and Magazine of Natural History (series 8) 8: 151–176.

Balslev H, Henderson A. 1987. A new Ammandra (Palmae) from Ecuador. Systematic Botany 12: 501–504.

Bates HW. 1888. Pectinicornia and Lamellicornia, Family Dynastidae. In: Godman FD, Salvin O, Editors. Biologia Centrali-Americana. Insecta, Coleoptera, volume 2, part 2. pp. 296–342.

Bates HW. 1891. Coleoptera. In: Whymper E, Editor. Supplementary Appendix to Travels Amongst the Great Andes of the Equator. pp. 7–39. John Murray.

Bawa KS, Bullock SH, Perry DR, Coville RE, Grayum MH. 1985b. Reproductive biology of tropical lowland rainforest trees. II. Pollination systems. American Journal of Botany 72: 346–356.

Bawa KS, Perry DR, Beach JH. 1985a. Reproductive biology of tropical lowland rainforest trees. I. Sexual systems and incompatibility mechanisms. American Journal of Botany 72: 331–345.

Beach JH. 1982. Beetle pollination of Cyclanthus bipartitus (Cyclanthaceae). American Journal of Botany 69: 1074–1081.

Beach JH. 1984. The reproductive biology of the peach or “pejibaye” palm (Bactris gasipaes) and a wild congener (B. porschiana) in the Atlantic lowlands of Costa Rica. Principes 28: 107–119.

Beath DN. 1998. Pollination Ecology of the Araceae. International Aroid Society, Inc. Available online: http://www.aroid.org/pollination/beath/index.php

Beath DN. 1999. Dynastine scarab beetle pollination in Dieffenbachia longispatha (Araceae) on Barro Colorado Island (Panama) compared with La Selva Biological Station (Costa Rica). Aroideana 22: 63–71.
Bernal R, Ervik F. 1996. Floral biology and pollination of the dioecious plam Phytelephas seemannii in Colombia: an adaptation to staphylinid beetles. Biotropica 28: 682–696.

Bogner J. 2008. The genus Bognera Mayo & Nicolson (Araceae). Aroideana 31: 3–14.

Bullock SH. 1981. Notes on the phenology of inflorescences and pollination of some rain forest palms in Costa Rica. Principes 25: 101–105.

Burmeister H. 1847. Handbuch der Entomologie, volume 5. T. C. F. Enslin.

Búrquez A, Sarukhán KJ, Pedroza AL. 1987. Floral biology of a primary rainforest palm, Astrocaryum mexicanum Liebm. Botanical Journal of the Linnean Society 94: 407–419.

Casey TL. 1915. A review of the American species of Rutelinae, Dynastinae and Cetoniinae. Memoirs on the Coleoptera 11: 1–347.

Cavalcante TRM. 2000. Polinização manual e natural da graviroleira (Annona muricata L.). M S dissertation. Universidad Federal de Viçosa, Viçosa, Brazil.

Cavalcante TRM, Naves RV, Franceschinelli EV, da Silva RP. 2009. Polinização de frutos em araticum. Bragantia, Campinas 68: 13–21.

Chen HY, Yeng WS, Boyce PC, Hung WM, Yok MCK. 2011. Studies of Homalomenae (Araceae) of Borneo VII: Homalomena debilicrista, a new species from Malaysian Borneo, and observations of its pollination mechanics. Plant Diversity and Evolution 129: 77–87.

Clark DR. 2011. Phylogenetic analysis of the scarab beetle tribe Cyclocephalini (Coleoptera: Scarabaeidae: Dynastinae) based on adult morphological characters. Masters Thesis, Wichita State University. Wichita, KS, USA.

Cockerell TDA. 1897. Biological notes on some Coleoptera from New Mexico. Journal of the New York Entomological Society 5: 149–150.

Cook OF. 1927. New genera and species of ivory palms from Colombia, Ecuador and Peru. Journal of the Washington Academy of Sciences 17: 218–230.

Cramer J M, M eese ADJ, Tuenissen PA. 1975. A note on the pollination of nocturnally flowering species of Nymphaea. Acta Botanica Neerlandica 24: 489–490.

Croat TB. 1981. A revision of Syngonium (Araceae). Annals of the Missouri Botanical Garden 68: 565–651.

Croat TB. 1997. A revision of Philodendron subgenus Philodendron (Araceae) for Mexico and Central America. Annals of the Missouri Botanical Garden 84: 311–704.

Croat TB. 2004. Revision of “Dieffenbachia” (Araceae) of Mexico, Central America, and the West Indies. Annals of the Missouri Botanical Garden 91: 668–772.

de Oliveira HN, Ávila CJ. 2011. Ocorrência de Cyclocephala forsteri em Acronomia aculeata. Pesquisa Agropecuária Tropical 41: 293–295.

Dechambre RP. 1979. Missions Entomologiques en Guyane et au Brésil
(Coleoptera, Dynastidae). Revue Française d’Entomologie 1: 160–168.

Dechambre R.P. 1980. Six nouvelles espèces de Cyclocephala. Revue Française d’Entomologie (Nouvelle-Série) 2: 42–49.

Dejean PFMA. 1821. Catalogue de la collection de Coléoptères de M. le Baron Dejean. Paris, France.

Dieringer G, Delgado L. 1994. Notes on the biology of Cyclocephala jalapensis (Coleoptera: Scarabaeidae): an endemic of eastern Mexico. The Southwestern Entomologist 19: 309–311.

Dieringer G, Espinosa JE. 1994. Reproductive Ecology of Magnolia schiedeana (Magnoliaceae), a threatened cloud forest tree species in Veracruz, Mexico. Bulletin of the Torrey Botanical Club 121: 154–159.

Dieringer G, Cabrera RL, Lara M, Loya L, Reyes-Castillo P. 1999. Beetles pollination and floral thermogenicity in Magnolia tamaulipana (Magnoliaceae). International Journal of Plant Sciences 160: 64–71.

Dieringer G, Reyes-Castillo P, Lara M, Cabrera RL, Loya L. 1998. Endothermy and floral utilization of Cyclocephala caelestis (Coleoptera: Scarabaeidae: Melolonthidae): a cloud forest endemic beetle. Acta Zoologica Mexicana 73: 145–153.

Endrödi S. 1966. Monographie der Dynastinae (Coleoptera, Lamellicornia). I. Teil. Entomologische Abhandlungen 33: 1–460.

Endrödi S. 1969. Einige neue Cyclocephalini und Pentodontini. Acta Zoologica Hungarica 15: 21–42.

Endrödi S. 1975. Cyclocephala hardyi sp. n. Folia Entomologica Hungarica (N.S.) 28: 281–284.

Endrödi S. 1980. Sechs neue Dynastinen-Arten aus Amerika und Borneo (Coleoptera: Dynastinae). Folia Entomologica Hungarica 41: 37–42.

Endrödi S. 1985. The Dynastinae of the World. Dr. W. Junk Publishers.

Erichson WF. 1847. Conspectus insectorum coleopterorum quae in Republica Peruana observata sunt. Archiv für Naturgeschichte 13: 67–185.

Ervik F. 1993. Notes on the phenology and pollination of the dioecious palms Mauritia flexuosa (Calamoideae) and Aphandra natalia (Phytelephantoideae) in Ecuador. In: Barthlott W, Naumann CM, Schmidt-Loeske K, Schuchmann KL, Editors. Animal-plant interactions in tropical environments: results of the annual meeting of the German Society for Tropical Ecology held at Bonn, Germany, February 13-16, 1992. pp. 7–12.

Ervik F, Knudsen JT. 2003. Water lilies and scarabs: faithful partners for 100 million years? Biological Journal of the Linnean Society 80: 539–543.

Ervik F, Tollsten L, Knudsen JT. 1999. Floral scent chemistry and pollination ecology in
phytelephantoid palms (Arecaceae). Plant Systematics and Evolution 217: 279–297.

Fabricius J.C. 1775. Systema Entomologiae. Leipzig, Germany.

Fabricius J.C. 1781. Species Insectorum, Volume 1. Kiel, Germany.

Fabricius J.C. 1798. Supplementum Entomologiae Systematicae. Proft et Storch, Hafniae.

García-Robledo C, Kattan G, Murcia C, Quintero-Marín P. 2004. Beetle pollination and fruit predation of Xanthosoma daguense (Araceae) in an Andean cloud forest in Colombia. Journal of Tropical Ecology 20: 459–469.

García-Robledo C, Quintero-Márín P, Mora-Kepfer F. 2005. Geographic variation and succession of arthropod communities in inflorescences and infructescences of Xanthosoma (Araceae). Biotropica 37: 650–656.

Gessner F. 1962. A abertura das flores de Victoria regia, em relação à luz. Boletim do Museu Paranense Emílio Goeldi 17: 1–13.

Gibernau M. 2003. Pollinators and visitors of aroid inflorescences. Aroideana 26: 66–83.

Gibernau M. 2011. Pollinators and visitors of aroid inflorescences: an addendum. Aroideana 34: 70–83.

Gibernau M, Barabé D. 2002. Pollination ecology of Philodendron squamiferum (Araceae). Canadian Journal of Botany 80: 316–320.

Gibernau M, Barabé D, Labat B. 2000. Flowering and pollination of Philodendron melinonii (Araceae) in French Guiana. Plant Biology 2: 331–334.

Gibernau M, Barabé D, Cerdan P, Dejean A. 1999. Beetle pollination of Philodendron solimoensense (Araceae) in French Guiana. International Journal of Plant Science 160: 1135–1143.

Gibernau M, Barabé D, Labat D, Cerdan P, Dejean A. 2003. Reproductive Biology of Montrichardia arborescens (Araceae) in French Guiana. Journal of Tropical Ecology 19: 103–107.

Gibernau M, Chartier M, Barabé D. 2010. Recent advances towards an evolutionary comprehension of Araceae pollination. In: Seberg O, Petersen G, Barfod AS, Davis JI, Editors. Diversity, phylogeny, and evolution in the Monocotyledons. pp. 101–114. Aarhus University Press.

Gibs PE, Semir J, da Cruz ND. 1977. Floral biology of Talauma ovata St. Hil. (Magnoliaceae). Ciência e Cultura 29: 1437–1441.

Goldwasser L. 1987. I. Branching patterns, generating rules, and astrogenetic trajectories in Bugula (Cheilostomata, Bryozoa). II. Mutualism and its ecological and evolutionary consequences. PhD Dissertation, University of California-Berkeley. Berkely, CA, USA.

Goldwasser L. 2000. Scarab beetles, elephant ear (Xanthosoma robustum), and their associates. In: Natkarni NM, Wheelwright NT, Editors. Monteverde. Ecology and Conservation of a Tropical Cloud Forest. pp. 268–271. Oxford University Press.
Gonçalves EG, Maia ACD. 2006. New evidence of pollination in Gearum brasiliense (Araceae: Spathicarpeae). Aroideana 29: 148-151.

Gottsberger G. 1986. Some pollination strategies in Neotropical Savannas and Forests. Plant Systematics and Evolution 152: 29–45.

Gottsberger G. 1988. The reproductive biology of primitive angiosperms. Taxon 37: 630–643.

Gottsberger G. 1989. Beetle pollination and flowering rhythm of Annona spp. (Annonaceae) in Brazil. Entwicklungsgeschichte und Systematik der Pflanzen 167: 165–187.

Gottsberger G. 1991. Pollination of some species of the Carludovicoidae, and remarks on the origin and evolution of Cyclanthaceae. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie 113: 221–235.

Gottsberger G. 1999. Pollination and evolution in neotropical Annonaceae. Plant Species Biology 14: 143–152.

Gottsberger G, Amaral A. 1984. Pollination strategies in Brazilian Philodendron species. Berichte der Deutschen Botanischen Gesellschaft 97: 391–410.

Gottsberger G, Webber A C, Hildenbrand M. 1998. Nutritious tissues in flowers of Annonaceae. Annonaceae Newsletter 12: 25–26.

Gottsberger G, Silberbauer-Gottsberger I. 1988. Pollination strategies of Annona species from the cerrado vegetation in Brazil. Lagascalia 15: 665–672.

Gottsberger G, Silberbauer-Gottsberger I. 1991. Olfactory and visual attraction of Erioscelis emarginata (Cyclocephalini, Dynastinae) to the inflorescences of Philodendron selloum (Araceae). Biotropica 23: 23–28.

Gottsberger G, Silberbauer-Gottsberger I. 2006. Life in the Cerrado: a South American Tropical Seasonal Ecosystem. Volume 2. Pollination and Seed Dispersal. Reta Verlag.

Gottsberger G, Silberbauer-Gottsberger I, Seymour RS, Dötterl S. 2012. Pollination ecology of Magnolia ovata may explain the overall large flower size of the genus. Flora-Morphology, Distribution, Functional Ecology of Plants 207: 107–118.

Grayum MH. 1984. Palynology and phylogeny of the Araceae. Botany PhD Dissertation, University of Massachusetts. Amherst, MA, USA.

Grayum MH. 1986. Correlations between pollination biology and pollen morphology in the Araceae, with some implications for angiosperm evolution. In: Blackmore S, Ferguson IK, Editors. Pollen and Spores: Form and Function. pp. 313–327. Linnean Society Symposium Series No. 12. Academic Press.

Grayum MH. 1990. Evolution and phylogeny of the Araceae. Annals of the Missouri Botanical Garden 77: 628–697.

Grayum MH. 1996. Revision of Philodendron subgenus Pteromischum (Araceae) for Pacific and Caribbean Tropical America. Systematic Botany Monographs 47: 1–233.
Grimm R. 2009. *Peltonotus nasutus* Arrow, 1910 und *Phaeochrous*-Arten als Bestäuber von *Amorphophallus paoniifolius* (Araceae) in Thailand (Coleoptera: Scarabaeidae). Entomologische Zeitschrift mit Insekten-Börse 119: 167–168.

Hardon JJ. 1969. Interspecific hybrids in the genus *Elaeis* II. Vegetative growth and yield of F₁ hybrids *E. guineensis* × *E. oleifera*. *Euphytica* 18: 380–388.

Hay A, Gottschalk M, Holguín A. 2012. Huanduj: *Brugmansia*. Kew Publishing.

Hayward KJ. 1946. Departamento de Entomología. Revista Industrial y Agrícola de Tucumán 36: 60–72.

Heller KM. 1896. Neue Käfer von Celebes. Abhandlungen der der Berichte des Königlichen Zoologischen und Anthropologisch-Ethnographischen Museums zu Dresden 3: 12–14.

Henderson A. 1984. Observations on pollination of *Cryosophila albida*. *Principes* 28: 120–126.

Henderson A. 1986. A review of pollination studies in the Palmae. *Botanical Review* 52: 221–259.

Henderson A, Pardini R, dos Santos JF, Rebello, Vanin S, A Imeida D. 2000. Pollination of *Bactris* (Palmae) in an Amazon Forest. *Brittonia* 52: 160–171.

Herbst JFW. 1790. Pauli J, Editor. Natursystem aller bekannten in- und ausländischen Insekten, als eine Fortsetzung der von Böffronschen Naturgeschichte. Nach dem System des Ritters von Linné und Fabricius zu bearbeitet angefangen von Carl Gustav Jablonsky. Der Käfer zweyter Theil. 3: 1–324.

Heyne A, Taschenberg O. 1907. Die Exotischen Käfer in Wort und Bild. G. Reusche.

Hirthe G, Porembski S. 2003. Pollination of *Nymphaea lotus* (Nymphaeaceae) by rhinoceros beetles and bees in the northeastern Ivory Coast. *Plant Biology* 5: 670–676.

Höhne W. 1923. Neue Cyclocephalen (Col. Dyn.). Deutsche Entomologische Zeitschrift 1923: 345–373.

International Commission on Zoological Nomenclature (ICZN). 1999. International Code of Zoological Nomenclature (ICZN). 4th edition. International Trust for Zoological Nomenclature.

Jameson ML, Micó E, Galante E. 2007. Evolution and phylogeny of the scarab subtribe A nisopiini (Coleoptera: Scarabaeidae: Rutelinae: A nomalini). *Systematic Entomology* 32: 429–449.

Jameson ML, Ratcliffe BC, Maly V. 2002. Review of the genus *Acrobolbia* with remarks on its classification, and a key to the world genera of Cyclocephalini (Coleoptera: Scarabaeidae: Dynastinae). *Folia Heyrovskyana* 10: 1–15.

Jameson ML, Wada K. 2004. Revision of the genus *Peltonotus* Burmeister (Coleoptera: Scarabaeidae: Dynastinae) from southeastern Asia. *Zootaxa* 502: 1–66.

Kirsch TFW. 1870 [1871]. Beiträge zur Käferfauna von Bogotá. Berliner
Entomologische Zeitschrift 14(1870): 337-378 (pages misnumbered, first one as 353).

Knuth PEOW, Appel O, Loew E. 1904. Handbuch der Blütenbiologie, unter Zugrundelegung von Herman Müllers Werk: “Die Befruchtung der Blumen durch Insekten.” Volume 3. W. Engelmann.

Krell F-T, Hirthe G, Seine R, Porembski S. 2003. Rhinoceros beetles pollinate water lilies in Africa (Coleoptera: Scarabaeidae: Dynastinae; Magnoliidae: Nymphaeaceae). Ecotropica 9: 103-106.

Kress WJ, Beach JH. 1994. Flowering plant reproductive systems. In: McDade L, Bawa KS, Hespenheide, HA, Hartshorn GS, Editors. La Selva: Ecology and Natural History of a Neotropical Rainforest. pp. 161–182. The University of Chicago Press.

Küchmeister HA, Webber C, Silberbauer-Gottsberger I, Gottsberger G. 1998. A Polinização e sua relação com a termogênese em espécies de Arecaceae e Annonaceae da Amazônia central. Acta Amazonica 28: 217-245.

Küchmeister H, Gottsberger G, Silberbauer-Gottsberger I. 1993. Pollination biology of Orbignya spectabilis, a ‘monoecious’ Amazonian palm. In: Barthlott W, Naumann CM, Schmidt-Loske K, Schuchmann KL, Editors. Animal-plant interactions in tropical environments: results of the annual meeting of the German Society for Tropical Ecology held at Bonn, Germany, February 13-16, 1992. pp. 67–76.

Lachance M-A, Starmer WT, Rosa CA, Bowles JM, Stuart J, Baker F, Janzen DH. 2001. Biogeography of the yeasts of ephemeral flowers and their insects. FEMS Yeast Research 1: 1–8.

Laporte FL. 1840. Histoire Naturelle des Insectes Coleoptérés. Avec une introduction Renferment l’Anatomie et la Physiologie des Animaux articulés, par M. Brullé, Volume 2. P. Duménil.

Lenzi M, Orth A. 2011. Visitantes florais de Opuntia monacantha (Cactaceae) em restingas de Florianópolis, SC, Brasil. Acta Biológica Paranaense 40: 19–32.

Linnaeus C. 1758. Systema Naturae, edito decima. Leipzig, Germany.

Linnaeus C. 1767. Systema Naturae, Volume 1, pars 2, edito duodecima reformata. Stockholm, Sweden.

Linsley EG. 1960. Observations on some matinal bees at flowers of Cucurbita, Ipomoea and Datura in desert areas of New Mexico and southeastern Arizona. Journal of the New York Entomological Society 68: 13–20.

Listabar, C. 1992. A survey of pollination strategies in the Bactrinidinae (Palmae). Bulletin de l’Institut Francais d’Études Andines 21: 699–714.

Listabar, C. 1996. Pollination of Bactris by Phyllotrox and Epurea. Implications of the palm breeding beetles on pollination at the community level. Biotropica 28: 69–81.

Luederwalt, H. 1926. Cyclocephala cribrata Burm. (Lamellicornidae, Dynastinae). Habitent legal das Bromeliaceas. Revista do Museu Paulista 14: 129–132.
Maas PJM, Westra LYT, Chatrou LW. 2003. Duguetia (Annonaceae). Flora Neotropica 88: 1–274.

Madison M. 1979. Protection of developing seeds in neotropical Araceae. Aroideana 2: 52–61.

Madison M. 1981. Notes on Caladium (Araceae) and its allies. Selbyana 5: 342–377.

Maia ACD, Schlindwein C. 2006. Caladium bicolor (Araceae) and Cyclocephala celata (Coleoptera, Dynastinae): A well-established pollination system in the northern Atlantic rainforest of Pernambuco, Brazil. Plant Biology 8: 529–534.

Maia ACD, Schlindwein C, Navarro DMAF, Gibernau M. 2010. Pollination of Philodendron acutatum (Araceae) in the Atlantic forest of northeastern Brazil: a single scarab beetle species guarantees high fruit set. International Journal of Plant Science 171: 740–748.

Maia ACD, Gibernau M, Carvalho AT, Gonçalves EG, Schlindwein C. 2012. The cowl does not make the monk: scarab beetle pollination of the Neotropical aroid Taccarum ulei (Araceae, Spathicarpeae). Biological Journal of the Linnean Society 108: 22–34. doi: 10.1111/j.1095-8312.2012.01985.x.

Mannerheim CV. 1829. Description de quarante nouvelles espèces de scarabéides du Brésil avec figures. Nouveaux Mémoires de la Société Impériale des Naturalistes de Moscou 1: 29–80.

Martínez A. 1955. Un nuevo género y especie de escarabajo dinástico (Col. Scarabaeidae, Dynastinae). Mitteilungen der Münchener Entomologischen Gesellschaft 45: 242–249.

Martínez A. 1968. Notas sobre Cyclocephalini Americanos con descripción de dos nuevas especies (Col. Scarab., Dynast.). Ciencia 26: 185–191.

Middleton J. 1992. Why do some hopliinid beetles have large hind-legs? Journal of the Entomological Society of Southern Africa 55: 157–159.

Momose K, Yumoto T, Nagamitsu T, Kato M, Nagamasu H, Sakai S, Harrison RD, Itioka T, Hamid AA, Inoue T. 1998. Pollination biology in a lowland dipterocarp forest in Sarawak, Malaysia. I. Characteristics of the plant-pollinator community in a lowland dipterocarp forest. American Journal of Botany 85: 1477–1501.

Moore I. 1937. A list of beetles of San Diego County, California. San Diego Society of Natural History-Occasional Papers 2: 1–109.

Moore MR. 2011. Disentangling the phenotypic variation and pollination biology of the Cyclocephala sexpunctata species complex (Coleoptera: Scarabaeidae: Dynastinae). Masters Thesis, Wichita State University. Wichita, KS, USA.

Moore MR. 2012. A new female elytron character for the tribe Cyclocephalini (Coleoptera: Scarabaeidae: Dynastinae) and an observation of its possible function. The Coleopterists Bulletin 66: 200–202.

Mora-Urpí J, Solís EM. 1980. Polinización en Bactris gasipaes H. B. K. (Palmae). Revista de Biología Tropical 28: 153–174.

Mora-Urpí J. 1982. Polinización en Bactris gasipaes H. B. K. (Palmae): Nota A dicional. Revista de Biología Tropical 30: 174–176.
Morón MA. 1977. Descripción del macho de Cyclocephala picta Burm. 1847 (Coleoptera: Melolonthidae, Dynastinae). Anales del Instituto de Biología de la Universidad Nacional Autónoma de México (serie Zoología) 48: 133–140.

Morón MA. 1997. Notas sobre Cyclocephala Latreille (Coleoptera: Melolonthidae, Dynastinae) asociadas con Xanthosoma Schott (Araceae) en Chiapas, México. Giornale Italiano di Entomologia 8: 399–407.

Murray NA. 1993. Revision of Cymbopetalum and Porcelia (Annonaceae). Systematic Botany Monographs 40: 1–3, 5–87, 89–121.

Núñez LA, Bernal R, Knudsen JT. 2005. Diurnal palm pollination by mystropine beetles: is it weather-related? Plant Systematics and Evolution 254: 149–171.

Núñez-Avellaneda LA, Rojas-Robles R. 2008. Biología reproductiva y ecología de la polinización de la palma milpesos Oenocarpus bataua en los Andes Colombianos. Caldasia 30: 101–125.

Núñez-Avellaneda LA, Neita JC. 2009. Rol de los escarabajos Cyclocephalini (Dynastinae: Scarabaeidae) en la polinización de palmas silvestres en Colombia. In: Hernández-Ortiz V, Deloya C, Castillo PR, Editors. Memorias VIII Reunión Latinoamericana de Escarabaeidología (Coleoptera: Scarabaeoidea). pp. 16–17. Jalapa, México.

Ohaus F. 1910. Neue südamerikanische Dynastiden (Col.). Deutsche Entomologische Zeitschrift 1910: 671–690.

Ohaus F. 1912. Beiträge zur Kenntnis der Ruteliden. X. Stettiner Entomologische Zeitung 1912: 273–319.

Olivier AG. 1789. Entomologie, ou Historie Naturelle des Insectes, avec leurs Caractères Génériques et Spécifiques, leur Description, leur Synonymie, et leur Figure Enluminée. Coleoptères, volume 1 (genera separately paged). Jean Francois Baudoin.

Pardo-Locarno LC, Arroyo JE, Quiñónez F. 2008. Observaciones de los escarabajos copronecrófagos y sapromelífagos de San Luis Robles, Nariño. Boletín Científico Centro de Museos: Museo de Historia Natural 8: 113–139.

Pellmyr O. 1985. Cyclocephala: visitor and probable pollinator of Caladium bicolor (Araceae). Acta Amazonica 15: 269–272.

Pike KS, Rivers RL, Ratcliffe BC, Oseto CY, Mayo ZB. 1976. A world bibliography of the genus Cyclocephala (Coleoptera: Scarabaeidae). Miscellaneous publication of the University of Nebraska Agricultural Experiment Station 32: 1–36.

Ponchel Y. 2006. The Dynastidae of the world. Biologie et collecte de quelques dynastides. A vailable online: http://dynastidae.voila.net/biologie.html

Ponchel Y. 2010. Note sur Cyclocephala virgo Dechambre, 1999 et mise point sur trios espèces de Dynastidae récemment décrites de Guyane (Coleoptera Dynastidae). L’Entomologiste 66: 171–172.

Prance GT. 1976. The pollination and androphore structure of some Amazonian Lecythidaceae. Biotropica 8: 235–241.
Prance GT, Anderson A.B. 1976. Studies of the floral biology of neotropical Nymphaeaceae 3. Acta Amazonica 6: 163-170.

Prance GT, Arias J.R. 1975. A study of the floral biology of Victoria amazonica (Poepp.) Sowerby (Nymphaeaceae). Acta Amazonica 5: 109-139.

Prance GT. 1980. A note on the pollination of Nymphaea amazonum Mar. and Zucc. (Nymphaeaceae). Brittonia 32: 505-507.

Prell H. 1934. Beiträge zur Kenntnis der Dynastinen (X II). Beschreibungen und Bemerkungen. Entomologische Zeitschrift 47: 162-164, 186-188, 194-195.

Raguso RA, Henzel C, Buchmann SL, Nabhan GP. 2003. Trumpet flowers of the Sonoran desert: floral biology of Peniocereus cacti and sacred Datura. International Journal of Plant Sciences 164: 877-892.

Ramírez N. 1989. Biologia de polinizacion en una comunidad arbustiva tropical de la alta Guayana Venezolana. Biotropica 21: 319-330.

Ramírez N. 1992. Especificidad de los sistemas de polinizacion en una comunidad arbustiva de la G uayana Venezuela. Ecotropicos 5: 1-19.

Ramírez N, Brito Y. 1992. Pollination biology in a palm swamp community in the Venezuelan central plains. Botanical Journal of the Linnean Society 110: 277-302.

Ratcliffe BC. 1977. Four new species of Neotropical Cyclocephalini (Coleoptera: Scarabaeidae). Acta Amazonica 7: 429-434.

Ratcliffe BC. 1992a. Nine new species and 11 country records of Cyclocephala (Coleoptera: Scarabaeidae: Dynastinae) from Panama and Costa Rica. The Coleopterists Bulletin 46: 216-235.

Ratcliffe BC. 1992b. New species and country records of Brazilian Cyclocephala (Coleoptera: Scarabaeidae: Dynastinae). Tidschrift voor Entomologie 136: 179-190.

Ratcliffe BC. 2003. The Dynastine scarab beetles of Costa Rica and Panama (Coleoptera: Scarabaeidae: Dynastinae). Bulletin of the University of Nebraska State Museum 16: 1-506.

Ratcliffe BC, Delgado L. 1990. New species and notes of Cyclocephala from Mexico (Coleoptera: Scarabaeidae: Dynastinae). Folia Entomologica Mexicana 80: 41-57.

Ratcliffe BC, Morón M.A. 1997. Dynastinae. In: Morón M A, Ratcliffe BC, Deloya C, Editors. Atlas de los Escarabajos de México. Coleoptera: Lamellicornia. Volume 1. Familia Melolonthidae. pp. 53–98. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO) and Sociedad Mexicana de Entomología.

Ratcliffe BC, Paulsen MJ. 2008. The scarabaeoid beetles of Nebraska. Bulletin of the University of Nebraska State Museum 22: 1-569.

Ratcliffe BC, Cave RD. 2002. New species of Cyclocephala from Honduras and El Salvador. The Coleopterists Bulletin 56: 152-157.

Ratcliffe BC, Cave RD. 2006. The Dynastine scarab beetles of Honduras, Nicaragua, and El Salvador (Coleoptera: Scarabaeidae:
Dyastinae). Bulletin of the University of Nebraska State Museum 21: 1–424.

Rickson FR, Cresti M, Beach JH. 1990. Plant cells which aid in pollen digestion within a beetle’s gut. Oecologia 82: 424–426.

Rosa CA, Morais PB, Santos SR, Peres Neto RR, Mendonça-Hagler LC, Hagler A N. 1995. Yeast communities associated with different plant resources in sandy coastal plains of southeastern Brazil. Mycological Research 99: 1047–1054.

Rosa CA, Lachance M -A, Starmer WT, Barker J SF, Bowles JM, Schlag-Edler B. 1999. Kodamaea nitidulidarum, Candida restingae and Kodamaea anthophila, three new related yeast species from ephemeral flowers. International Journal and Systematic Bacteriology 49: 309–318.

Saylor LW. 1945. Synoptic revision of the United States scarab beetles of the subfamily Dynastinae, No. 1: Tribe Cyclocephalini. Journal of the Washington Academy of Sciences 35: 378–386.

Scariot AO, Lieras E, Hay JD. 1991. Reproductive biology of the palm Acrocomia aculeata in central Brazil. Biotropica 23: 12–22.

Schatz GE. 1985. A new Cymbopetalum (Annonaceae) from Costa Rica and Panama with observations on natural hybridization. Annals of the Missouri Botanical Garden 72: 535–538.

Schatz GE. 1987. Systematic and ecological studies of Central American Annonaceae. PhD Thesis, University of Wisconsin-Madison. Madison, WI, USA.

Scheetzl FP, Dötterl S. 2012. The evolution of floral scent and olfactory preferences in pollinators: coevolution or pre-existing bias? Evolution 66(7): 2042–2055. doi:10.1111/j.1558-5646.2012.01593.x

Schrottky C. 1908. Blumen und Insekten in Paraguay. Zeitschrift für wissenschlaftliche Insektenbiologie 4: 22–26.

Schrottky C. 1910. Die Befruchtung von Philodendron und Caladium durch einen Käfer (Erioscelis emarginata). Zeitschrift für wissenschlaftliche Insektenbiologie 6: 67–68.

Schlumpberger BO, Cocucci AA, Moré M, Sérisic AN, Raguso RA. 2009. Extreme variation in floral characters and its consequences for pollinator attraction among populations of an Andean cactus. Annals of Botany 103: 1489–1500.

Schlumpberger BO, Raguso RA. 2008. Geographic variation in floral scent of Echinopsis anastrophorha (Cactaceae); evidence for constraints on hawkmoth attraction. Oikos 117: 801–814.

Seres A, Ramírez N. 1995. Biologia floral y polinizacion de algunas M onocotiledoneas de un Bosque N ublado V enezolano. Annals of the Missouri Botanical Garden 82: 61–81.

Seymour RS, Matthews PDG. 2006. The role of thermogenesis in the pollination biology of the Am azon waterlily Victoria amazonica. Annals of Botany 98: 1129–1135.
Seymour RS, White CR, Gibernau M. 2009. Endothermy of dynastine scarab beetles (Cyclocephala colasi) associated with pollination biology of a thermogenic arum lily (Philodendron solimoesense). The Journal of Experimental Biology 212: 2960–2968.

Sharp D. 1877. Description of some new species of beetles (Scarabaeidae) from Central America. Journal of the Linnean Society of London (Zoology) 13: 129–138.

Silberbauer-Gottsberger I. 1990. Pollination and evolution in palms. Phyton 30: 213–233.

Silberbauer-Gottsberger I, Gottsberger G, Webber AC. 2003. Morphological and functional flower characteristics of New and Old World Annonaceae with respect to their mode of pollination. Taxon 52: 701–718.

Silberbauer-Gottsberger I, Gottsberger RA, Gottsberger G. 1997. Flowering rhythm and pollination in a hybrid population of Annona in a small cerrado area in Mato Grosso, Brazil. Annonaceae Newsletter 11: 55–60.

Smith ABT. 2006. A review of the family-group names for the superfamily Scarabaeoidea (Coleoptera) with corrections to nomenclature and a current classification. The Coleopterists Bulletin 60: 144–204.

Stechauner-Rohringer R, Pardo-Locarno LC. 2010. Redescripción de inmaduros, ciclo de vida, distribución e importancia agrícola de Cyclocephala lunulata Burmeister (Coleóptera: Melolonthidae: Dynastinae) en Colombia. Boletín Científico Centro de Museos, Museo de Historia Natural 14: 203–220.

Steinheil E. 1874. Symbolae ad historiam Coleopterorum Argentiniae meridionales, ossia enumeration dei coleotteri raccolti dal Prof. P. Strobel nell’ Argentina meridionale, e descrizione dell specie nuove. Il Centuria. Atti della Societa Italiana de Scienze Naturali e del Museo Civico di Storia Naturale di Milano 15: 554–578.

The Plant List. 2010. Version 1. Available online: http://www.theplantlist.org

Thien LB, Bernhardt P, Devall MS, Chen Z-D, Luo Y-B, Fan J-H, Yuan L-C, Williams JH. 2009. Pollination biology of basal angiosperms (ANITA grade). American Journal of Botany 96(1): 1–17.

Tropicos. Missouri Botanical Garden. Available online: http://www.tropicos.org

Valla JJ, Cirino DR. 1972. Biologia floral del Irupé, Victoria cruziana D.’Orb (Nymphaeaceae). Darwiniana 17: 477–500.

Valerio CE. 1984. Insect visitors of the inflorescence of the aroid Dieffenbachia oerstedii (Araceae) in Costa Rica. Brenesia 22: 139–146.

Valerio CE. 1988. Notes on phenology and pollination of Xanthosoma wendlandii (Araceae) in Costa Rica. Revista de Biología Tropical 36: 55–61.

Villalta R. 1988. Estudio de la biologia floral e identificacion de agentes polinizadores de guanábana (Annona muricata L.) en la zona atlantica de Costa Rica. Thesis. Heredia, Costa Rica, Universidad Nacional.

Voeks RA. 2002. Reproductive ecology of the piassava palm (Attalea funifera) of Bahia,
Brazil. *Journal of Tropical Ecology* 18: 121–136.

von Bayern T. 1897. *Meine Reise in die Brasilianischen Tropen*. D. Remmer.

Webber AC. 1981. *Biologia floral de algumas Annonaceae na região de Manaus AM*. Masters Thesis, Instituto Nacional de Pesquisas da Amazonia, Manaus, AM, Brazil.

Webber AC, Gottsberger G. 1993. Floral biology and pollination of *Cymbopetalum euneurum* in Manaus, Amazonia. *Annonaceae Newsletter* 9: 25–28.

Warming E. 1883. Tropische Fragmente. I. Die Bestäubung von *Philodendron bipinnatifidum* Schott. *Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie* 4: 328–340.

Wiersema JH. 1987. A monograph of the *Nymphaea* subgenus *Hydrocallis* (Nymphaeaceae). *Systematic Botany Monographs* 16: 1–112.

Young HJ. 1986. Beetle pollination of *Dieffenbachia longispatha* (Araceae). *American Journal of Botany* 73: 931–944.

Young HJ. 1987. Aroid observations: *Philodendron rothschuhianum*. *Aroideana* 10: 22.

Young HJ. 1988a. Differential importance of beetle species pollinating *Dieffenbachia longispatha* (Araceae). *Ecology* 69: 832–844.

Young HJ. 1988b. Neighborhood size in a beetle pollinated tropical aroid: effects of low density and asynchronous flowering. *Oecologia* 76: 461–466.

Young HJ. 1990. Pollination and reproductive biology of an understory neotropical aroid. In: Bawa KS, Hadley M, Editors. *Reproductive Ecology of Tropical Forest Plants*. pp. 151–164. UNESCO and The Parthenon Publishing Group.
Figure 1. Cyclocephaline beetle genera and their associations with angiosperm plant lineages (plant phylogeny from APGIII 2009). Icons denote beetle genera that are associated with angiosperm plant lineages. Numbers in the icons indicate the number of species for each beetle genus. If the number of beetle species is unresolved due to conflict in the literature, this is indicated with ~ symbol (the number may be X ± 1 species). If the beetle genus has not been satisfactorily associated with the plant lineage, it is denoted with a ? symbol. For each angiosperm plant lineage, the number of families and genera that the beetles are associated with is denoted with #f (number of families) and #g (number of genera). See Appendix 1 for data. High quality figures are available online.
Appendix 1. Checklist of floral associations for the Cyclocephalini (Scarabaeidae: Dynastinae).

Beetle Taxon	Plant Taxon	Geographic Locality	References	Remarks
Arriguatia brevisima (Arron, 1911)	Anacaeae	FRENCH GUIANA	Ponchel 2006	–
Aspidolea fuliginea Burmeister, 1847	Oenocarpus bataua Mart.	BRAZIL: Pará	Martinez 1968	–
Aspidolea quadrata Endrödi, 1980	Montrichardia arborescens (L.) Schott	FRENCH GUIANA: Kourou, Sinnamary	Giberlau *et al.* 2003; Ponchel 2006	–
Augoderia nitidula Burmeister, 1847	Magnolia ovata (A. St.-Hil.) Spreng.	BRAZIL: Minas Gerais, São Paulo	Gibbs *et al.* 1977	Gibbs *et al.* (1977) stated that the scarab was *A. nitidula*, but the figure legend reported the scarab species as *Cyclocephala nr. emarginata* Endrödi, 1966. Gottsberger (1986) reported the scarab species as *C. litoria*.
Chalepides dilatatus (Mannerheim, 1829)	NO DATA	BRAZIL	Mannerheim 1829	–
Chalepides sp.	Victoria cruziana A. D. Orb.	ARGENTINA: Corrientes	Vallée and Girino 1972	–
Cyclocephala abrelata Ratcliffe and Cave, 2002	NO DATA	HONDURAS: Yoro (Parque Nacional Pico Bonito)	Ratcliffe and Cave 2002; Ratcliffe and Cave 2006	Ten specimens of *C. abrelata* were collected in the flowers of an unidentified arid or palm (Ratcliffe and Cave 2002).
Cyclocephala aequatorialis Spruce	Phytelephas aequatorialis	ECUADOR: Cánar, Cotopaxi, Esmeraldas, Manabí, Pichincha	Balslev and Henderson 1987; Ervik *et al.* 1999	–
Cyclocephala alazonia Ratcliffe, 2003	NO DATA	COSTA RICA: Alijuela (Reserva Biológica Monteverde, Estación Eladio, Peñas Blancas Reserve)	Ratcliffe 2003	The two known specimens of *C. alazonia* are covered with pollen, suggesting feeding inside of a flower (Ratcliffe 2003).
Annona maricata L.	Cyclocephala amazonea (Linnaeus, 1767)	COSTA RICA	Villalta 1988	–
Astrocaryum alatum Loomis	NO DATA	PANAMA	Ratcliffe 2003	–
Attalea butyracea (Mutis ex. L.) Wess. Boer	NO DATA	COLOMBIA	Núñez-Avellanedla and Neira 2009	–
Baculis coloradonis L. H. Bailey	COSTA RICA: Heredia (La Selva Biological Station)	COSTA RICA	Beach 1984; Ratcliffe 2003, citing pers. comm. from J. Beach and H. Young	–
Baculis gispaea Kunth	COSTA RICA: Heredia (La Selva Biological Station); Limon (Guápiles, Estacion Experimental de Los Diamantes)	Mora-Urri and Solis 1980; Mora-Urri 1982; Beach 1984; Gottsberger 1986; Rickson *et al.* 1990; Ratcliffe 2003, citing pers. comm. from J. Beach and H. Young	–	
Baculis hondurensis Standl.	COSTA RICA: Heredia (La Selva Biological Station)	COSTA RICA	Bullock 1981	–
Cryosophila williamsii P. H. Allen	COSTA RICA: Heredia (La Selva Biological Station)	COSTA RICA	Henderson 1984; Silberbauer-Gottsberger 1990	–
Cyclanthus bipartitus Poit. ex. A. Rich.	COSTA RICA: Heredia (La Selva Biological Station)	COSTA RICA	Beach 1982	Beach (1982) reported the scarab as *C. nr. amazonea*. Ratcliffe (2003) recorded *C. amazonea* from La Selva Biological Station, thus this is probably a correct identification.
Cymbeleptalum lanigiceps Schery	PANAMA: Colón	PANAMA: Colón	Murray 1993	–
Cymbeleptalum longipes Bentli. ex Diels	PERU: San Martin	PERU: San Martin	Murray 1993	–
Montrichardia arborescens (L.) Schott	FRENCH GUIANA	FRENCH GUIANA	Ponchel 2006	–
Phytelephas seemanii O. F. Cook	COLOMBIA: Chocó	COLOMBIA: Chocó	Bernal and Ervik 1996; Ervik *et al.* 1999	The scarab was reported as *Cyclocephala amazonea* (L.) (*C. amazonea* (L.)).
Phytelephas sp.	COLOMBIA: Nariño (Tumaco)	COLOMBIA: Nariño (Tumaco)	Pardo-Locarno *et al.* 2008	–
Appendix 1. Continued.

Species	Location	collector(s)	Year(s)	Note
Cyclocephala ambliposis Dates, 1888				
Dieffenbachia nitidipoetioluta Croat & Grayum	COSTA RICA: Heredia (La Selva Biological Station)	Young 1986; Young 1988a; Young 1988b; Young 1990; Beach 1999; Ratcliffe 2003	The plant was reported as *D. longispatha* (Croat 2004).	
Phileodendron anisotomum Schott	COSTA RICA: Heredia (La Selva Biological Station)	Croat 1997, citing pers. comm. from H. Young		
Phileodendron playtoetiolatum Madison	COSTA RICA: Heredia (La Selva Biological Station)	Beach 1998		
Philodendron pterotum K. Koch and Augustin	COSTA RICA: Heredia (La Selva Biological Station)	Croat 1997, citing pers. comm. from H. Young		
Philodendron radiatum Schott	COSTA RICA: Heredia (La Selva Biological Station)	Croat 1997, citing pers. comm. from H. Young		
Philodendron rothschuhianum Engl. Croat & Grayum	COSTA RICA: Heredia (La Selva Biological Station)	Croat 1997, citing pers. comm. from H. Young		
Philodendron tripartium (Jacq.) Schott	COSTA RICA: Heredia (La Selva Biological Station)	Croat 1997, citing pers. comm. from H. Young		
Syngonium sp.	COSTA RICA: (Northern low lands)	Valerio 1984		
Xanthosoma dagunense Engl.	COLOMBIA: Risaralda (Sanctuario de Fauna y Flora Otata-Quibayas)	Garcia-Robledo et al. 2004; Garcia-Robledo et al. 2005		
Xanthosoma robustum Schott	MEXICO: Chiaus (Sucumaco)	Morón 1997		
Xanthosoma sagittifolium (L.) Schott	MEXICO: Chiaus (Sucumaco)	Morón 1997		
Xanthosoma sp.	COLOMBIA: Narilla (Tumaco)	Pardo-Locarno et al. 2006		
Xanthosoma vandlandii (Schott) Standl. *	COSTA RICA: San José (Granadilla de Curridabat)	Valerio 1988; Morón 1997		
Dieffenbachia nitidipoetioluta Croat & Grayum	COSTA RICA: Heredia (La Selva Biological Station)	Young 1990	The plant was reported as *D. longispatha* (Croat 2004).	
Philodendron pterotum K. Koch and Augustin	COSTA RICA: Heredia (La Selva Biological Station)	Croat 1997, citing pers. comm. from H. Young		
Philodendron radiatum Schott	COSTA RICA: Heredia (La Selva Biological Station)	Croat 1997, citing pers. comm. from H. Young; Beach 1998; Beach 1999	The scarab was reported as *Cyclocephala ampliata* [sic] (Beach 1999).	
Philodendron sp.	COSTA RICA	Ratcliffe 2003, citing pers. comm. from H. Young	The plant could possibly be *P. pterotum* or *P. radiatum* as reported by Croat (1997).	
Cyclocephala ampliata Dates, 1888				
Dieffenbachia nitidipoetioluta Croat & Grayum	COSTA RICA: Heredia (La Selva Biological Station)	Young 1986; Young 1988a; Young 1990; Ratcliffe 2003	The plant was reported as *D. longispatha* (Croat 2004).	
Dieffenbachia nitidipoetioluta Croat & Grayum	PANAMA: Colón			
Dieffenbachia spp.	COSTA RICA: Heredia (La Selva Biological Station)	Beach 1982	Beach (1982) noted *C. atripes* on two *Dieffenbachia* spp. (possibly *D. nitidipoetioluta* as described by Young [1986; 1988a; 1988b]) or *D. tonduzii* herein.	
Dieffenbachia tonduzii Croat & Grayum	COSTA RICA: Heredia (La Selva Biological Station)	Label data of M. Grayum	Three vouchers examined from INRB	
Annona aurantiaca Barb. Rodri.	BRAZIL: Maranhão	Gottberger 1986; Gottberger 1989; Gottberger and Silberbauer-Gottsberger 2006		
Annona coriacea Mart.	BRAZIL: Maranhão; Minas Gerais (Indianópolis); São Paulo	Gottberger 1986; Gottberger and Silberbauer-Gottsberger 1988; Gottberger 1989; Gottberger 1999; Silberbauer-Gottsberger et al. 2003; Gottberger and Silberbauer-Gottsberger 2006		
Appendix 1. Continued.	Annona cornigolía A. St.-Hil.	BRAZIL: Minas Gerais (Indianópolis); São Paulo (Botucatu)	Gottsberger 1986; Gottsberger 1988; Gottsberger and Silberbauer-Gottsberger 1988; Gottsberger 1989; Gottsberger and Silberbauer-Gottsberger 2006	–
	Annona crassiflora Mart.	BRAZIL: Brasilia; Minas Gerais (Indianópolis); Goiás (Vila Propício); Minas Gerais (Indianópolis); São Paulo (Botucatu)	Gottsberger 1986, citing pers. obs. by Silberbauer-Gottsberger; Gottsberger 1988; Gottsberger 1989; Gottsberger 1999; Gottsberger and Silberbauer-Gottsberger 2006	–
	Annona dioica A. St.-Hil.	BRAZIL: Minas Gerais (Indianópolis); São Paulo (Botucatu)	Gottsberger 1986; Gottsberger 1989; Gottsberger and Silberbauer-Gottsberger 2006	–
	Annona monticola Mart.	BRAZIL: Brasilia; Minas Gerais (Indianópolis)	Gottsberger 1989; Gottsberger and Silberbauer-Gottsberger 2006	–
	Annona tomentosa R. E. Fr.	BRAZIL: Brasilia; Minas Gerais (Indianópolis)	Gottsberger 1989; Gottsberger and Silberbauer-Gottsberger 2006	–
	Annona warmigiana Mello-Silva & Pirani	BRAZIL: Brasilia	Gottsberger 1986; Gottsberger 1989; Gottsberger and Silberbauer-Gottsberger 2006	–
Caladium sp.	BRAZIL: Maranhão	Gottsberger 1986	–	
Colocasia esculenta (L.) Schott	BRAZIL: São Paulo	Gottsberger 1986	The scarab was reported from cultivated C. esculenta.	
Philodendron ptarianum Steyerm. var. ragonsum Bunt	VENEZUELA: Bolívar (Canaima National Park)	Ramírez 1992	–	
Philodendron mello-brasiliense Berle-Marx ex G. M. Barroso	BRAZIL: Minas Gerais (Indianópolis)	Gottsberger and Silberbauer-Gottsberger 2006	–	
Xanthosoma striatipes (Kuntz & C. D. Bouché) Madison	BRAZIL: São Paulo	Gottsberger 1986	–	
Cyclocephala bouardi Dechambre, 1979	Bactris hirta Martt	BRAZIL: Amazonas	Küchmeister et al. 1998	–
	Diefenbachia seguine (Jacq.) Schott	VENEZUELA: Aragua (Henri Pittier National Park)	Label data of A. Seres and N. Ramirez	A single voucher examined from USNM
	Philodendron ligatum Schott	COSTA RICA: Heredia (La Selva Biological Station)	Label data of H. Young	A single voucher examined from INBC
	Socrates sp.	VENEZUELA (Henri Pittier National Park)	Seres and Ramirez 1995	Based on other observed specimens collected by Seres and Ramirez from this locality this scarab was reported as C. saxipincta and is Cyclocephala morphospecies 3 sensu Moore 2011
	Xanthosoma sp.	VENEZUELA (Henri Pittier National Park, Rancho Grande)	Label data of A. Seres and N. Ramirez	A single voucher examined from USNM
	Xanthosoma undipes (K. Koch & C. D. Bouché) K. Koch	VENEZUELA (Henri Pittier National Park, Rancho Grande)	Seres and Ramirez 1995; Label data of A. Seres and N. Ramirez	The scarab was identified and reported as C. saxipincta (Seres and Ramirez 1995). A single voucher examined from USNM
Appendix 1. Continued.

Species	Location	Collector	Year	Remarks
Cyclocephala brevis Höhne, 1847 incertae sedis (Cyclocephala morphospecies 4 sensu Moore 2011)				
Cymbopteryx langiseta Schery	PANAMA: Colón (Btw. Gatan and Pina)	Label data of N. A. Murray; Ratcliffe 2003	A single voucher examined from UNSM	
Philodendron sp.	PANAMA: Colón (1 km E Rio Guanche Bridge)	Label data of B. Ratcliffe and M. Jameson	A single voucher examined from UNSM	
Dieffenbachia longispatha Engl. and K. Krause	PANAMA (Barro Colorado Island)	Beath 1999		The scarab was reported as *C. sexpunctata* which is not recorded from Barro Colorado Island (Ratcliffe 2003).
Dieffenbachia nitidipetiolata Croat and Grayum	COSTA RICA: Heredia (La Selva Biological Station)	Young 1990; Beath 1999		The scarab was reported as *C. sexpunctata* which is not recorded from La Selva (Ratcliffe 2003). The plant was reported as *D. longispatha*, which does not occur in La Selva (Croat 2004).
Dieffenbachia oerstedii Schott	COSTA RICA: San José (Granadilla de Curiñabat)	Valerio 1984		
Philodendron fragrantissimum (Hook.) G. Don	PANAMA (Barro Colorado Island)	Beath 1998		The scarab was reported as *C. sexpunctata* which is not recorded on Barro Colorado Island (Ratcliffe 2003).
Philodendron ptyropleotomum Madison	COSTA RICA: Heredia (La Selva Biological Station)	Beath 1998		The scarab was reported as *C. sexpunctata* which is not recorded on Barro Colorado Island (Ratcliffe 2003).
Philodendron pterotum K. Koch and Augustin	COSTA RICA: Heredia (La Selva Biological Station)	Croat 1997, citing pers. comm. with H. Young		The scarab was reported as *C. sexpunctata* which is not recorded in La Selva (Ratcliffe 2003).
Xanthosoma helleborifolium (Jacq.) Schott	PANAMA (Barro Colorado Island)	Beath 1998		The scarab was reported as *C. sexpunctata* which is not recorded at Barro Colorado Island (Ratcliffe 2003).
Xanthosoma mexicanum Liebm.	PANAMA (Barro Colorado Island)	Beath 1998		
Xanthosoma spermatophyllum (Schott) Standl.	ECUADOR	Ohaus 1910		
Annona mucicata L.	COSTA RICA: Limón	Villalta 1988; Ratcliffe 1992a		
Baccauris hondurensis Standl.	COSTA RICA: Heredia (La Selva Biological Station)	Bullock 1981; Ratcliffe 1992a		
Rhodospatha sp.	COSTA RICA: Limón	Ratcliffe 1992a		
Cyclocephala brittonii Endrődi, 1964				
Magnolia tamaulipana Vasquez	MEXICO: Tamaulipas (El Cielo Reserve)	Dieringer et al. 1998; Dieringer et al. 1999		
Cyclocephala cælestis Ratcliffe and Delgado, 1990				
Cyclocephala camachicolus Ohaus, 1910				
Xanthosoma sp.	ECUADOR (west side of Cordiller)	Ohaus 1910		
Philodendron wendlandii Schott	NO DATA	Ratcliffe 2003, citing pers. comm. from H. Young		
Dieffenbachia longispatha Engl. and K. Krause	PANAMA (Barro Colorado Island)	Beath 1999		
Xanthosoma helleborifolium (Jacq.) Schott	PANAMA (Barro Colorado Island)	Beath 1998		
Xanthosoma mexicanum Liebm.	PANAMA (Barro Colorado Island)	Beath 1998		
Cyclocephala carbonaria Arrow, 1911				
Nymphæa glandulifera Rodschied	SURINAME	Cramer et al. 1975		
Nymphæa rugosa G. Mey.	BRAZIL: Amazonas (Manaus)	SURINAME	Cramer et al. 1975; Prance and Anderson 1976	
Victoria amazonica (Poep.) J. C. Sowerby	BRAZIL: Amazonas	von Bayern 1897; Knuth et al. 1984; Geissner 1962		
Appendix 1. Continued.

Cyclotrichas celata	Caladium bicolor (Aiton) Vent.	BRAZIL: Pernambuco (Goiana)	Maia and Schlindwein 2006
	Gearum brasilense N. E. Jr.	BRAZIL: Tocantins (Arraia)	Gonçalves and Maia 2006
	Philodendron acutatum Schott	BRAZIL: Pernambuco (Goiana, Igarassu)	Maia et al. 2010
	Taccaurus ulei Engl. and K. Krause	BRAZIL: Pernambuco	Maia et al. 2010, citing unpublished data of A. C. D. Maia, C. Schlindwein and M. Gibernau; Maia et al. 2012

| Cyclotrichas cearensis | Taccaurus ulei Engl. and K. Krause | BRAZIL: Pernambuco | Maia et al. 2012 |

Cyclotrichas colasi	Araceae	FRENCH GUIANA	Ponchel 2006
	Montrichardia arborescens (L.) Schott	FRENCH GUIANA: Kourou, Sinnamary	Gibernau et al. 2003; Ponchel 2006
	Montrichardia linifera (Arruda) Schott	FRENCH GUIANA	Ponchel 2006
	Philodendron melinonii Brong. ex Regel	FRENCH GUIANA: Kourou	Gibernau et al. 2000; Ponchel 2006
	Philodendron solimoense A. C. Sm.	FRENCH GUIANA: (between Kourou and Sinnamary)	Gibernau et al. 1999; Ponchel 2006; Seymour et al. 2009

Cyclotrichas conspicua	Cyclanthus bipartitus Poit. ex A. Rich.	COSTA RICA: Herédia (La Selva Biological Station)	Beach 1982
	Dieffenbachia nitipetiolata Croat & Grayum	COSTA RICA: Herédia (La Selva Biological Station)	Beach 1982; Young 1988a; Young 1990

| Cyclotrichas consp. consp. | Dieffenbachia spp. | COSTA RICA: Herédia (La Selva Biological Station) | Beach 1982 |

| Cyclotrichas consp. consp. | Philodendron correae Croat | PANAMA: Bocas del Toro (near continental divide) | Croat 1997 |

Cyclotrichas cribrata	Astrocaryum aculeatus (Schott) Burret	BRAZIL: São Paulo	Luederwald 1926
	Philodendron bipinnatifidum Schott ex Endl.	BRAZIL: São Paulo (Botucatu)	Gottsberger and Amaral 1984; Gottsberger 1986
	Philodendron sp.	BRAZIL: São Paulo	Luederwald 1926

| Cyclotrichas discicolor | Bactris major Jacq. | COLOMBIA | Núñez-Avellaneda and Neita 2009 |

Cyclotrichas discolor	Aphrodrus natalis (Balslev & A. J. Henderson) Barfod	COLOMBIA: Chocó	Ervik et al. 1999
	Areaceae	PERU	Ponchel 2006
	Oenocarpus bataua Mart.	COLOMBIA: Antioquia, Chocó, Meta	Núñez-Avellaneda and Rojas-Robles 2008; Núñez-Avellaneda and Neita 2009

| Cyclotrichas distincta | Attalea funifera Mart. | BRAZIL: Bahia | Vöckes 2002 |

Cyclotrichas emarginata	Araceae	FRENCH GUIANA	Ponchel 2006
	Philodendron solimoense A. C. Sm.	FRENCH GUIANA	Gibernau et al. 1999

Cyclotrichas epistomalis	Asplenium sp.	MEXICO	Racilhfe and Morón 1997	
Bates, 1888	Astrocaryum mexicanum Liebm. ex Mart.	MEXICO: Veracruz (Los Tuxtlas)	Bárcuez et al. 1987; Aguirre et al. 2011	
	Astrocaryum sp.	MEXICO	Racilhfe and Morón 1997	
	Monstera sp.	MEXICO	Racilhfe and Morón 1997	The plant was reported as Astrocaryon [sic] sp.
Appendix 1. Continued.

Species	Common Name	Location	collectors	References	Notes
Cyclocephala forsteri	Endrödi, 1963	Acrocomia aculeata (Jacq.) Lodd. ex Mart.	BRAZIL: Distrito Federal (Plana-Ltina Area), Mato Grosso do Sul	Scarlato et al. 1991; Núnez-Avellaneda and Neia 2009; de Oliveira and Ávila 2011	
		COLOMBIA			
		Guatemala: Sololá (Las Tarrales Reserve)			
		HONDURAS: Francisco Morazán (El Zamorano)			
Dieffenbachia longispatha	Englund. and K. Krause	PANAMA (Barro Colorado Island)			
	Engl.				
		COSTA RICA: Heredia (La Selva Biological Station)		Young 1986; Young 1988a; Young 1988b; Young 1990; Beath 1999; Ratcliffe 2003	The plant was reported as D. longispatha (Croat 2004).
		PANAMA: Colón			
Montrichardia arborescens	(L.) Schott	VENEZUELA: Guárico State (near Calabozo)		Ramirez and Brito 1992	
Philodendron grandipes	K. Krause	COSTA RICA: Heredia (La Selva Biological Station)		Young 1986; Croat 1997; Croat 1997, citing pers. comm. with H. Young	
Xanthosoma helleborifolium	(Jacq.) Schott	PANAMA (Barro Colorado Island)		Beath 1998	
	Engl.				
Xanthosoma mexicanum	Liebm.				
Cyclocephala gregaria	Heyn. and Taschenberg, 1907	Xanthosoma daguense Engl.	COLOMBIA: Risaralda (Sanctuario de Fauna y Flora Otún-Quimbaya)	García-Robledo et al. 2004; García-Robledo et al. 2005	
Cyclocephala guianae	Endrödi, 1969	Oenocarpus bacaba Mart.	BRAZIL: Amazonas	Küchmeister et al. 1998	
Cyclocephala hardyi	Endrödi, 1975	Victoria amazonica (Poeppl.) J. C. Sowerby	BRAZIL: Amazonas	Endrödi 1975; Prance and Arias 1975; Seymour and Matthews 2006	
Cyclocephala iani	Ratcliffe, 1992b	Annona nitida Mart.	BRAZIL: Amazonas	Ratcliffe 1992b	
Cyclocephala inca	Endrödi, 1966	Attalea insignis (Mart.) Drude	COLOMBIA	Núñez-Avellaneda and Neia 2009	
Cyclocephala jalapensis	Casey, 1915	Magnolia schiedesona Schill.	MEXICO: Veracruz (Xalapa area)	Dieringer and Delgado 1994; Dieringer and Espinosa 1994	
Dieffenbachia nitidipetiolata	Croat & Grayum	COSTA RICA: Heredia (La Selva Biological Station)		Young 1986; Young 1988a; Young 1990	The plant was reported as D. longispatha (Croat 2004).
Philodendron radiatum	Schott	NO DATA		Croat 1997	
	(Engl.) Croat & Grayum				
		COSTA RICA: Heredia (La Selva Biological Station)		Young 1987	
Philodendron tripartitum	(Jacq.) Schott	COSTA RICA: Heredia (La Selva Biological Station)		Croat 1997, citing pers. comm. from H. Young	
Xanthosoma daguense	Engl.	COLombia: Risaralda (Sanctuario de Fauna y Flora Otún-Quimbaya)		García-Robledo et al. 2004; García-Robledo et al. 2005	
Cyclocephala laminata	Burmeister, 1847	Cereus pernambucensis Lerm.	BRAZIL: Rio de Janeiro	Rosa et al. 1995; Rosa et al. 1999; Lachance et al. 2001	
Cyclocephala lateritia	Höhne, 1923	Annona crassiflora Mart.	BRAZIL: Goiás (Vila Propício)	Cavalcante et al. 2009	
		Araceae	BRAZIL: Pará	Martínez 1968	The search was reported as Cyclocephala lateritia (sic).

For more information, visit http://www.insectscience.org
Appendix 1. Continued.
Dieffenbachia nitidipetiolata Croat & Grayum
Philodendron cretopsum Croat & Grayum
Philodendron jodavistanum G. S. Bunting
Philodendron pterocatum K. Koch and Augustin
Philodendron radiatum Schott
Philodendron rothschukianum (Engl.) Croat & Grayum
Cyclocephala lymyrima Bates, 1888
Cyclocephala laterata Burmeister, 1847
Cyclocephala hanulata Burmeister, 1847
Cyclocephala lutea Endrödi, 1966
Cyclocephala maxima Burmeister, 1847
Cyclocephala marginata Kirsch, 1870 [1871]
Cyclocephala mcycoforis Hönle, 1923
Cyclocephala melanae Bates, 1888
Appendix 1. Continued.

Species	Location	Author	Year	Notes
Annona coriacea Mart.	BRAZIL: São Paulo	Gottsberger 1986	—	
Brugmansia arbores (L.) Steud.	BRAZIL: São Paulo	Ohaus 1910; Gottsberger 1986	—	The plant was reported as *Datura arbores* without assigning authorship. The name *D. arbores* was used by three authors and is a synonym of the species listed to the left. The identity of the association with *Brugmansia* sp. is ambiguous.
Brugmansia x candida Pers.	ECUADOR	—	—	
Brugmansia suaveolens (Humb. & Bonpl. ex Willd.) Bercht. & J. Presl	COLOMBIA	Hay *et al.* 2012	—	
Cactaceae	FRENCH GUIANA	Ponech 2006	—	
Datura inoxia Mill.	USA: New Mexico	Cockerell 1897	—	
Datura sp.	USA: Arizona, California, New Mexico	Moore 1937; Saylor 1945; Linsley 1960	—	
Datura wrightii Regel	USA: Arizona	Raguso *et al.* 2003	—	
Kielmeyera variabilis Mart. & Zucc.	BRAZIL: São Paulo	Gottsberger 1986	—	
Magnolia ova (A. St.-Hil.) Spreng.	BRAZIL: São Paulo	Gottsberger 1986	—	
Mandevilla longiflora (Desf.) Pichon	BRAZIL: São Paulo	Gottsberger 1986	—	
Porcelia magnifica (Schery) R.E. Fr.	PANAMA: Veraguas	Murray 1993	—	
Cyclocephala metrica Steinheil, 1874	ARGENTINA: Salta	Hayward 1946	Reported to feed on the seeds of *V. enceioloides*.	
Cyclocephala munda Kirsch, 1870 [1871]	PERU: Loreto (Estación Biológica Madre Selva)	García-Robledo *et al.* 2005	—	
Monstere absonii Schott var. absonii	COSTA RICA: Puntarenas (Monteverde)	Ratcliffe 2003, citing pers. comm. from A. Smith	—	
Philodendron brennarti Croat	COSTA RICA: San José (vicinity of Vara Blanca)	Croat 1997	—	
Philodendron sp.	NO DATA	Valcro 1984	—	
Philodendron tysonii Croat	PANAMA: Chiriquí (near continental divide)	Croat 1997	—	
Xanthosoma undipes (K. Koch & C. D. Bouché) K. Koch	COSTA RICA: Guanacaste (Peñas Blancas), Puntarenas (Monteverde)	Goldwasser 1987; Goldwasser 2000; García-Robledo *et al.* 2005, citing pers. comm. with T. Croat	The plant was reported as *Xanthosoma robustum* Schott (García-Robledo *et al.* 2005, citing pers. comm. with T. Croat).	
Cyclocephala ohausiana Höhne, 1923	BRAZIL: Minas Gerais, São Paulo	Gottsberger 1986; Gottsberger 1988; Gottsberger and Silberbauer-Gottsberger 1988; Gottsberger 1989; Gottsberger and Silberbauer-Gottsberger 2006	—	
Xanthosoma sritatipes (Kunth & C. D. Bouché) Madison	—	—	—	
Cyclocephala ocypunctata Burmeister, 1847	BRAZIL: Goiás (Goiânia and Vila Propício)	Cavalcante *et al.* 2009	—	
Annona dioica A. St.-Hil.	BOLIVIA: Santa Cruz	Label data of uncredited collector	Single voucher examined from UNSM	
Cyclocephala ovulum Bates, 1888	ARGENTINA	Hayward 1946	—	
Helianthus sp. (girsasool)	—	—	—	
Inga sp.	ECUADOR: Napo (Yasuni Research Station)	Label data of Mary Liz Jameson	Plant voucher examined from WICH	
Cyclocephala paraguayensis Arrow, 1903	BRAZIL: São Paulo	Gottsberger 1989	—	
Kielmeyera variabilis Mart. & Zucc.	BRAZIL: São Paulo	Gottsberger 1986	—	
Appendix 1. Continued.

Species	Distribution	Sources	Notes
Annona montana Maefad.	BRAZIL: Amazonas (Manaus)	Webber 1981	The scarab was reported from cultivated *A. montana*.
Annona muricata L.	BRAZIL: Amazonas (Manaus)	Webber 1981	–
Annona nitida Mart.	BRAZIL: Amazonas (Manaus)	Webber 1981	–

Cyclocephala picata
Burmeister, 1847

Species	Distribution	Sources	Notes
Xanthosoma robustum Schott	MEXICO: Venecruz	Morón 1977	–

Cyclocephala prolongata
Arrow, 1902

Species	Distribution	Sources	Notes
Attalea anygdalina Kuntz	COLOMBIA: Nínez-Avellaned and Neta 2009	–	–

Cyclocephala as. putrida
Burmeister, 1847

Species	Distribution	Sources	Notes
Nymphaea lasiophylla Mart. & Zucc.	BRAZIL (northeastern)	Wiersma 1987	–

Cyclocephala quadripunctata
Höhne, 1923

Species	Distribution	Sources	Notes
Aphandra natalis (Batslelf & A. J. Henderson) Barford	COLOMBIA: Chocó	Ervik *et al.* 1999	–
Attalea insignis (Mart.) Drude	COLOMBIA: Nínez-Avellaned and Neta 2009	–	–
Phyletafre macrocarpa Ruiz & Pav.	COLOMBIA: Chocó	Ervik *et al.* 1999	–

Cyclocephala quatuordecimpunctata
Mannerheim, 1829

Species	Distribution	Sources	Notes
Annona aurantica Barb. Rodr.	BRAZIL: Mato Grosso	Silberbauer-Gottberger *et al.* 1997	Anecdotal, citing Gotsberger (1989) and Gotsberger and Silberbauer-Gottberger (1988). This association was not verifiable in cited literature.

Cyclocephala cornifolia
St.-Hil.

Species	Distribution	Sources	Notes
Annona cornifolia A. St.-Hil.	BRAZIL: Minas Gerais (Indianápolis); São Paulo (Botucatu)	Gotsberger 1986; Gotsberger 1988; Gotsberger 1999; Gotsberger and Silberbauer-Gottberger 2006	The scarab was reported as *C. inpunctata* (Gotsberger 1986)

Cyclocephala crassiflora
Mart.

Species	Distribution	Sources	Notes
Annona crassiflora Mart.	BRAZIL: Brasilia (Chapada dos Veadeiros, north of Brasilia); Goiás; Minas Gerais (Indianápolis); São Paulo (Botucatu)	Gotsberger 1986; Gotsberger and Silberbauer-Gottberger 2006	The scarab was reported as *C. inpunctata* (Gotsberger 1986)

Cyclocephala dioica
A. St.-Hil.

Species	Distribution	Sources	Notes
Annona dioica A. St.-Hil.	BRAZIL: Mato Grosso; Minas Gerais (Indianápolis); São Paulo (Botucatu)	Gotsberger 1986, citing pers. obs. by Silberbauer Gotsberger; Gotsberger 1988; Gotsberger 1999; Gotsberger and Silberbauer-Gottberger 2006	The scarab was reported as *C. inpunctata* (Gotsberger 1986)

Cyclocephala hybrid forms 1 & 3

Species	Distribution	Sources	Notes
Annona hybrid forms 1 & 3	BRAZIL: Mato Grosso	Silberbauer-Gottberger *et al.* 1997	–

Cyclocephala mainean *R. E. Fr.* x *Annona coriacea* Mart.

Species	Distribution	Sources	Notes
Annona mainean R. E. Fr. x *Annona coriacea* Mart.	BRAZIL: Mato Grosso	Gotsberger and Silberbauer-Gottberger 2006	–

Cyclocephala monticola
Mart.

Species	Distribution	Sources	Notes
Annona monticola Mart.	BRAZIL: Minas Gerais	Gotsberger and Silberbauer-Gottberger 2006	–

Cyclocephala tomentosa
R. E. Fr.

Species	Distribution	Sources	Notes
Annona tomentosa R. E. Fr.	BRAZIL: Brasilia; Minas Gerais (Indianápolis)	Gotsberger 1989; Gotsberger 1999; Gotsberger and Silberbauer-Gottberger 2006	–

NO DATA

Species	Distribution	Sources	Notes
NO DATA	BRAZIL	Mannerheim 1829	–

Cyclocephala queratinum
Burmeister, 1847

Species	Distribution	Sources	Notes
Montrichardia arboresens (L.) Schott	FRENCH GUIANA	Ponchel 2006	–
Nymphaceae	FRENCH GUIANA	Ponchel 2006	–

Cyclocephala rondoniana
Raccliff, 1992b

Species	Distribution	Sources	Notes
Attalea ataloides (Barb. Rodr.) Wess. Boer	BRAZIL: Amazonas	Küchmeister *et al.* 1998	–
Appendix 1. Continued.

Species and Taxonomy	Location	Description	Voucher Details	Notes
Cyclocephala rubescens Bates, 1891				C. rubescens is not recorded in Panama (Ratcliffe 2003).
Philodendron grayumii Croat	PANAMA; Cocle (near El Copé)			
Cyclocephala rubrovia Arrow, 1911				
Areaceae	FRENCH GUIANA	Ponchel 2006		
Areaceae	BRAZIL: Manaus (Reserva Duque)	Label data of J. Gottsberger; Ponchel 2006	A single voucher examined from UNSM	
Areaceae	FRENCH GUIANA			
Areaceae	BRAZIL: Manaus (Reserva Duque)	Label data of S. Vidal	Two vouchers examined from deposited UNSM	
Cyclocephala rustica (Olivier, 1789)				
Caladium bicolor (Alton) Vent.	SURINAME	Pellmyr 1985; Label data of M. Gibernau	Two vouchers examined from in UNSM	
Dieffenbachia seguine (Jacq.) Schott	FRENCH GUIANA (Nouragues)	Label data of M. Gibernau	Five voucher specimens examined from UNSM	
Philodendron calicosum K. Krause	NO DATA			
Philodendron pterianum Steyerm.	NO DATA			
Cyclocephala santartae Ratcliffe, 1992a				The plant voucher is listed as Ramirez 1163 by Croat (1997). In the Tropicos database Ramirez 1163 is a specimen of *Philodendron calicosum* K. Krause.
Attalea insignis (Mat.) Drude	COLOMBIA	Núñez-Avellaneda and Netta 2009		
Oenocarpus sp.	ECUADOR: Napo	Label data of H. Bailes and A. Henderson	Three voucher specimens examined from UNSM	
Cyclocephala sarpedon Ratcliffe, 1992b	Oenocarpus bacaba Mart.			
Areaceae	GUATEMALA: Sololá (Las Tarrales Reserve); Huehuetenango (Zapoté)	Label data of M. Moore; Label data of F. Capistran; Bates 1888	Two specimens deposited in WICH. A single voucher examined from UVGC (Capistran).	
Xanthosoma robustum Schott	MEXICO: Chiapas (Cacaahaotán); Guerrero (Mochitan, Achauiolita)	Morón 1997; Label data of L. Delgado	A single voucher examined from UVGC. Morón (1997) reported this beetle as *C. sexpunctata*.	
Xanthosoma sagittifolium (L.) Schott	MEXICO: Chiapas (Cacaahaotán)			
Xanthosoma sp.	GUATEMALA: Quetzaltenango (El Palmar near Finca El Faro)	Label data of E. Cano	A single voucher examined from UVGC.	
Xanthosoma wordlandii (Schott) Standl.	MEXICO: Chiapas (Cacaahaotán)	Morón 1997		
Cyclocephala sexpunctata Laporte, 1840 incertae sedis (*Cyclocephala* morphospecies 1 sensu Moore 2011)				
Alocasia macrorrhizos (L.) G. Don	COSTA RICA: San José (Parque del Este)	Label data of uncredited collector; Valero 1984	Eight voucher specimens examined from UNSM	
Areaceae	PANAMA: Chiriquí (La Fortuna, Quebrada Al Trail)	Label data of J. Ashe & A. Brooks	A single voucher examined from KSEM	
Philodendron tripartitum (Jacq.) Schott	COSTA RICA: San José (Parque del Este)	Label data of uncredited collector	Two vouchers examined from UNSM	
Xanthosoma sp.	COSTA RICA: Alajuela (San Ramon, Río S. Iverenciio)	Label data of A. Solis	A single voucher examined from INBC	
Appendix 1. Continued.

Species	Collection Details	Location	Year	Notes
Philodendron grandipes K. Krause	NO DATA	Croatia	1997	–
Philodendron grayumii Croat	PANAMA: Coclé (near El Coped)	PANAMA: Panamá	Croatia 1997	–
Philodendron sagittifolium Liebm.	PANAMA: Panamá	PANAMA: Panamá	Croatia 1997	–
Philodendron solimoensense A. C. Sm.	FRENCH GUIANA	Gibernau *et al.* 1999	–	
Xanthosoma poeppligii Schott	PERÚ: Loro (Estación Biológica Madre Selva)	Gibernau *et al.* 2005	–	
Xanthosoma undipes (K. Koch & C. D. Bouché) K. Koch	COSTA RICA: Cartago (San Ramón de la Unión), Guanacaste (Péinas Blancas), Puntarenas (Monteverde)	Gibernau *et al.* 1997; Seis *et al.* 1995; Goldwasser 1997; Gibernau *et al.* 2000; Gibernau *et al.* 2005	–	
Xanthosoma wendlandii (Schott) Standl.	COSTA RICA: Heredia (Santo Domingo); Alajuela (Alajuela)	Valero 1988	–	
Philodendron solimoensense A. C. Sm.	FRENCH GUIANA	Gibernau and Barba 2002	–	
Philodendron squamiferum Poir.	FRENCH GUIANA: Kourou	Gibernau and Barba 2002	–	
Annona purpurea Moc & Sessé ex Dunl	MEXICO: Michoacán	Murray 1993	–	
Cymbopetalum ballonianii R. E. Fr.	MEXICO: Veracruz	Murray 1993	–	
Cymbopetalum costaricense (Donn. Sm.) R. E. Fr.	MEXICO: Heredia (La Selva Biological Station)	Schatz 1985	–	
Cymbopetalum gracile R. E. Fr.	MEXICO: Guerrero	Murray 1993	–	
Cymbopetalum hintonii Lundell	MEXICO: Jalisco	Murray 1993	–	
Cymbopetalum torulosum G. E. Schatz	MEXICO: Veracruz	Schatz 1985	–	
Malmea aff. depressa (Baill.) R. E. Fr.	ESTACION BIOLÓGICA LOS TUXTLAS	Schatz 1987	–	
Appendix 1. Continued.

Species	Location/Collection Details	Reference(s)
Annona montana Macfad.	BRAZIL: Amazonas (Amazonia) Webber 1981	The scarab was reported from cultivated *A. montana*.
Annona muricata L.	BRAZIL: Amazonas (Manaus) Webber 1981	The scarab was reported from cultivated *A. muricata*.
Annona sp. ex aff. Annona paludosa Asch.	BRAZIL (Amazonia, near Paracutaba) Göttsberger 1989	
Annona Section Piaannona	NO DATA Schatz 1987	
Aphandra natolica (Balslev & A. J. Henderson) Barfor	ECUADOR: Morona-Santiago (20 km south of Sucia) Ervik 1993	
Attalea spectabilis Mart.	BRAZIL: Amazonas (Duque Forest Reserve) Küchmeister *et al.* 1993	
Bactris gasipaes Kunth	PERU: Huánuco (Pachitea) Listabarth 1992	
Bactris hirta var. pectinata (Mart.) Govaerts	BRAZIL: Manaus (Reserve 1501 of Biological Dynamics of Forest Fragments Project) Henderson *et al.* 2000	
Bactris sp.	PERU: Huánuco (Pachitea) Listabarth 1992	
Carluvicia drudei Mast.	COSTA RICA: Puntarenas Anderson and Gómez-P. 1997	
Carluvicia palmaia Ruiz & Pav.	COSTA RICA: Puntarenas Anderson and Gómez-P. 1997	
Cymbopogon sternophyllum Donn. Sm.	MEXICO: Chiapas Murray 1993	
Diospyros nitida Mart.	NO DATA Pellmyr 1985, citing pers. comm. from J. Beach	The plant was reported as *D. nitida* [sic].
Duguetia spixiana Mart.	PERU: Madre de Dios (Tambopata) Maas *et al.* 2003	
Echinopsis ancirophyra Spec. subsp. ancistrophora	ARGENTINA Slumpberger *et al.* 2009	
Elaeis oleifera (Kunth) Cortés	NO DATA Hardon 1969, citing unpublished data of J. J. Hardon	
Hancornia speciosa Gomes	BRAZIL: Minas Gerais Göttsberger 1986	
Magnolia ovoida (A. St.-Hil.) Sprang.	BRAZIL: São Paulo Göttsberger 1986	
Oenocarpus bacaba Mart.	BRAZIL: Amazonas Küchmeister *et al.* 1998	
Opuntia monacantha Haw.	BRAZIL: Santa Catarina (Florianópolis) Lenzi and Inácio Orth 2011	
Philodendron aurutiliolum subsp. aurutiliolum* Schott	COSTA RICA: Heredia (La Selva Biological Station) Grayum 1996	
Philodendron psittacinum Steyerm. var. rugosum Bunt.	VENEZUELA: Bolivar (Canaima National Park) Ramírez 1989	Two unidentified *Cyclocephala* species came to *P. psittacinum*. One scarab species was identified as *C. atricicapilla* [sic] (= *C. atricapilla* in Ramírez 1992).
Porcelia sp.	NO DATA Schatz 1987, citing pers. comm. from P. J. M. Maas	
Prosakia sp.	BRAZIL: Minas Gerais Göttsberger 1986	
Syngonium sanconna (Kunth) H. Karst.	COLOMBIA Núñez-Avellaneda and Neita 2009	
Syngonium triplum Birdsey ex Croat	COSTA RICA Croat 1981, citing pers. comm. from T. Ray	
Tabernaemontana sp.	BRAZIL: Minas Gerais Göttsberger 1986	
Wettinia quintana (O. F. Cook & Doyle) Burret	COLOMBIA: Chocó (El Anagral Biological Station) Núñez *et al.* 2005	
Xanthosoma undipes (K. Koch and C. D. Bouché) Koch	VENEZUELA (Henri Pittier National Park) Seres and Ramírez 1995	
Xanthosoma wendlandii (Schott) Standl.	COSTA RICA: Guanacaste (Carmona de Naundayre) Valerio 1988	
Appendix 1. Continued.

Species	Location	Reference	Notes	
Astrocyrum alatum Loomis	COSTA RICA	Villa 1988; Ratcliffe 2003	—	
Annona muricata L.	COSTA RICA	Bullock 1981	—	
Bactris coloradonis L. Bailey	COSTA RICA	Ratcliffe 2003	—	
Bactris hondurensis Standl.	COSTA RICA	Bullock 1981	—	
Oenocarpus batatae Mart.	COLOMBIA: Antioquia, Chocó, Meta	Nunez-Avellaned and Rojas-Robles 2008	—	
Xanthosoma sagittifolium (L.) Schott	MEXICO: Chiapas (Cacahauatan)	Morin 1997	—	
Xanthosoma wendlandii (Schott) Standl.	MEXICO: Chiapas (Cacahauatan)	Morin 1997	—	
Cyclanthus bipartitus Poit. ex A. Rich.	VENEZUELA (Henri Pittier National Park)	Seres and Ramirez 1995	—	
Dieffenbachia nitidipetiola Croat & Grayum	COSTA RICA: Heredia (La Selva Biological Station)	Young 1986; Young 1988; Young 1990	C. tutillina is not recorded in Costa Rica (Ratcliffe 2003). The plant was reported as D. longispatha (Creay 2004).	
Dieffenbachia seguine (Jacq.) Schott	VENEZUELA: Aragua (Henri Pittier National Park)	Ratcliffe and Cave 2006; Label data of A. Seres and N. Ramirez	The plant was reported as D. seguine [sic] (Ratcliffe and Cave 2006). A single voucher was examined from UNSM.	
Philodendron macroglossum Schott	VENEZUELA (Henri Pittier National Park)	Seres and Ramirez 1995	—	
Xanthosoma sp.	ECUADOR	Ohaus 1910; Label data of A. Seres and N. Ramirez	A single voucher examined from UNSM	
Xanthosoma undipes (K. Koch and C. D. Bouché) K. Koch	VENEZUELA (Henri Pittier National Park)	Seres and Ramirez 1995	—	
Cyclanthus tylifera Höhne, 1923	Philodendron squamiferum Poir.	FRENCH GUIANA: Kourou	Gibernau and Barahi 2002; Ponchel 2006	—
Annona foetida Mart.	BRAZIL: Amazonas (Manaus)	Gottsberger 1999, citing unpublished data of A. C. Weber and G. Gottsberger	—	
Annona montana Macfad.	NO DATA	Gottsberger et al. 1998	—	
Bactris hirta Mart.	BRAZIL: Amazonas	Küchmeister et al. 1998	—	
Cympodecatum eunervum N. A. Murray	BRAZIL: Amazonas (Duque Forest Reserve)	Weber and Gottsberger 1993	—	
Duguetia asterotricha (Diels) R. E. Fr.	BRAZIL: Manaus	Label data of G. Gottsberger	A single voucher examined from UNSM	
Duguetia riparia Huber	BRAZIL: Amazonas	Küchmeister et al. 1998	—	
Duguetia sul (Diels) R. E. Fr.	BRAZIL: Amazonas	Küchmeister et al. 1998	—	
Malmia manausensis Maas & Miralha	NO DATA	Gottsberger et al. 1998	—	
Montrichardia arborescens (L.) Schott	FRENCH GUIANA	Ponchel 2006	—	
Cyclanthus variabilis Burmeister, 1847	Attalea geraniensis Barb. Rodr.	BRAZIL: São Paulo	Gottsberger 1986	—
Montrichardia arborescens (L.) Schott	FRENCH GUIANA: Kourou, Sinnamary	Gibernau et al. 2003; Ponchel 2006	—	
Montrichardia linifera (Arruda) Schott	FRENCH GUIANA	Ponchel 2006	—	
Nympheaeaceae	FRENCH GUIANA	Ponchel 2006	—	
Cycloopshpala variolosa Burmeister, 1847	Philodendron bipinnatifidum Schott ex Endl.	BRAZIL: São Paulo (Botucatu)	Gottsberger and Aamaral 1984; Gottsberger 1986	—
Philodendron sp.	BRAZIL: São Paulo (Botucatu)	Gottsberger and Aamaral 1984	—	
Cycloopshpala vestita Höhne, 1923	Annona muricata L.	BRAZIL (northeastern)	Cavalcante 2000; Maia et al. 2010, citing unpublished data of Maia, Schindwein and Gibernau	—
Montrichardia arborescens (L.) Schott	FRENCH GUIANA: Kourou, Sinnamary	Gibernau et al. 2003; Ponchel 2006	—	
Appendix 1. Continued.

Genus	Species	Location	Collection Data	Notes
Cyclocephala verticalis	Burneister, 1847			
Corythophora rimoswa W. A.	Rodrigue	BRAZIL: Amazonas (Manaus)	Prance 1976	
Escheviella decolorans	Sandwith	BRAZIL: Amazonas (Manaus)	Prance 1976	
Escheviella sp.		BRAZIL: Amazonas (Manaus)	Prance 1976	
Lecithis lurida (Miers)	S. A. Mori	BRAZIL: Amazonas (Manaus)	Prance 1976	
Nymphadora amazonum	Mart. & Zucc.	SURINAME	Cramer et al. 1975; Prance and Anderson 1976	
Nymphaea conardii	Wiersema	VENEZUELA: Barinas (Sosa)	Wiersema 1987	
Nymphaea rugosa G. Mey.		BRAZIL: Pará (Belém)	Cramer et al. 1975; Prance and Anderson 1976	
Victoria amazonica (Poeppl)	J. C. Sowerby	GUYANA: Upper Takutu-Upper	Prance and Arias 1975; Seymour and Matthews 2006	
		Essequibo (Kararambu Ranch)		
Cyclocephala williamsi	Ratcliffe, 1992a	Psidium sp.	Ratcliffe 1992a; Ratcliffe 2003	
Annona sp. ex aff. Annona	densuscima Mart.	BRAZIL (lower Rio Purús)	Gottsberger 1989	The scarab was attracted to floral odors but was not collected in inflorescences (Gottsberger 1989).
Dieffenbachia nitidipetala	Croat & Grayum	COSTA RICA (La Selva Biological Station)	Young 1986; Young 1988a; Young 1988b; Young 1990; Beath 1999; Ratcliffe 2003	The plant was reported as *D. longispina* (Croat 2004).
Dieffenbachia sp.		COSTA RICA (La Selva Biological Station)	Label data of M. Grayum	A single voucher examined from INBC
Philodendron anisotomum	Schott	COSTA RICA (La Selva Biological Station)	Croat 1997, citing pers. comm. from H. Young	
Philodendron aurantifolium	Schott	COSTA RICA (La Selva Biological Station)	Label data of M. Grayum; Grayum 1996	A single voucher examined from INBC. *Grayum (1996)* reported this beetle as *E. proba* Sharp, which does not occur in Costa Rica (Ratcliffe 2003)
Philodendron brevipes	Schott	COSTA RICA (La Selva Biological Station)	Grayum 1996; Croat 1997	Beetle was reported as *E. proba* Sharp (Grayum 1996; Croat 1997), which does not occur in Costa Rica (Ratcliffe 2003)
Philodendron gaudíipes	K. Krause	COSTA RICA: Limón	Croat 1997	
Philodendron guttiferum	Kunth	COSTA RICA (La Selva Biological Station)	Morón 1997, citing pers. comm. from A. Solis	
Philodendron jodavistanum	G. S. Bunting	COSTA RICA (La Selva Biological Station)	Croat 1997, citing pers. comm. from H. Young	
Philodendron radianum	Schott	COSTA RICA (La Selva Biological Station)	Croat 1997, citing pers. comm. from H. Young	
Philodendron rotshackianum	(Engl.) Croat & Grayum	COSTA RICA (La Selva Biological Station)	Croat 1997, citing pers. comm. from H. Young	
Philodendron tripartitum	(Jacq.) Schott	COSTA RICA (La Selva Biological Station)	Croat 1997, citing pers. comm. from H. Young	
Symposium schottianum	Wendl. ex Schott	COSTA RICA (La Selva Biological Station)	Morón 1997, citing pers. comm. from A. Solis; Beath 1998; Label data of M. Grayum	Three vouchers examined from INBC
Appendix 1. Continued.

Species	Genera	Location	Collector(s)	Data Source	Notes
Erioscelis emarginata (Mannerheim, 1829)					
Philodendron bipinnatifidum Schott ex Endl.					
Xanthosoma striatipes (Kunth & C. D. Bouché) Madison	Araceae	BRAZIL: Pará	Martínez 1968	–	
NO DATA	BRAZIL	Mannerheim 1829	–		
Dieffenbachia seguine (Jacq.) Schott					
Montrichardia arborescens (L.) Schott					
Philodendron squamiferum Poeppl.	Dieffenbachia seguine				
(Nouragues Field Station)	FRENCH GUIANA	Label data of M. Gibernau	28 vouchers examined from UNSM		
Astrocaryum alatum Loomis					
Bactris coloradonis L. H. Bailey					
Bactris hondurensis Standl.					
Bactris longiseta H. Wendl. ex Burret	Astrocaryum alatum				
(La Selva Biological Station)	COSTA RICA: Heredia				
(La Selva Biological Station)	Bullock 1981	–			
Mimeoma acuta (Arrow, 1902)	Bactris spp.	PANAMA	Ratcliffe 2003	–	
Mimeoma englemani Ratcliffe, 1977					
Mimeoma maculata (Burmeister, 1847)					
Mimeoma signatoides (Höhn, 1923)	*Astrocaryum paramaca*				
(Huatulco National Park)	FRENCH GUIANA	Poncet 2006; Poncet 2010	The plant was reported as *Astrocaryum paramaca* (sic).		
Peltonotus malayensis Arrow, 1910					
Peltonotus nasutus Arrow, 1910					
Ruteloryctes morio (Fabricius, 1798)					
Nymphaea lotus L.					
Nymphaea sp.					
Echinopsis anistophora Spg. subsp. anistophora					
Rhodospatha sp.	*Epipremnum falcifolium*				
Eng.	BRUNEI	Jameson and Wada 2004	–		
Amorphophallus paenunifolius (Dennst.) Nicolson	THAILAND: Changwat				
(Thung Yai Wildlife Sanctuary)	Grimm 2009	–			
CÔTE d’IVOIRE: Zanzan (Comité National Park)					
SENÉGAL: Kaolack, Tambacounda	*Nymphaea sp.*				
(West Indies)	Fabricius 1798	Reports as a destructive, nocturnal scarab. Based on photographs, the beetle is probably cyclocephaline (in litt. with B. Schlumpberger, April 2011).			
Echinopsis anistophora Spg. subsp. anistophora	ARGENTINA	Schlumpberger and Raguso 2008	–		
Rhodospatha sp.	COSTA RICA: Heredia				
 (La Selva Biological Station) | Schatz 1990 | – |
Appendix 1. Continued.

Genus	Country	Location	Collector	Notes
Bactris gasipae Kunth	PERU	Huánuco	Listabarth 1996	This scarab was reported as a most rare visitor (Listabarth 1996).
Bactris maraja Mart.	PERU	Huánuco	Listabarth 1996	This scarab was reported as a most rare visitor (Listabarth 1996).
Bactris bifida Mart.	PERU	Huánuco	Listabarth 1996	This scarab was reported as a most rare visitor (Listabarth 1996).
Bognera recondita (Madison) Mayo & Nicolson	BRAZIL	Amazonas (Lago Cauzi near Atalaia)	Gonçalves and Maia 2006; Bogner 2008, citing unpublished data of E. G. Gonçalves	The authors did not explicitly state the locality of the association data, although extensive observations of *B. recondita* were made only in Amazonas, Brazil.
Homalomena sp.	MALAYA		Grayum 1990, citing pers. comm. From G. E. Schatz	This is likely a misidentification. *Peltomota* was not in the Cyclocephalini prior to 2006 (Smith 2006). These beetles could be *Parastaxis* spp. (Scarabaeidae: Rutelinae), species of which are known visitors of *Homalomena* spp. on Borneo (Malaysia) (Momose et al. 1998; Chen et al. 2011).
Monotera cœpitha Madison	PANAMA	Chiriquí	Grayum 1990	–
Ambandra decasperma O. F. Cook	COLOMBIA	Valle del Cauca (Buenaventura)	Cook 1927	–
Annona montana Macfad.	COSTA RICA	Heredia (La Selva Biological Station)	Bawa et al. 1985b	–
Asimina sp.	NO DATA		Gottsberger 1988	–
Attalea speciosa Mart.	BRAZIL	Maranhão (Lago Verde); Pará (Serra Norte, Canaã)	Anderson et al. 1988	–
Chloropsipha spp.	NO DATA		Madison 1981	–
Eudianthus funifer (Poit.) Lindm. subsp. *funifer*	PERU (Lower Rio Liulapiachus, Panguana Field Station)	Gottsberger 1991	–	
Homalomena hennelli Croat and Grayum	NO DATA		Grayum 1984	–
Philodendron bipinnatifidum Schott ex Endl.	BRAZIL	Minas Gerais (Lagoa Santa)	Warming 1883	–
Philodendron davidsonii Croat	NO DATA		Grayum 1984	–
Philodendron grandipes K. Krause	NO DATA		Grayum 1984	–
Philodendron ligulatum Schott	NO DATA		Grayum 1984	–
Philodendron venosum (Wild. Ex Schult. & Schult.f.) Croat	NO DATA		Grayum 1984	–
Philodendron radiatum Schott	NO DATA		Grayum 1984	–
Philodendron rotshaeukianum (Engl.) Croat & Grayum	NO DATA		Grayum 1984	–
Porcella sp.	NO DATA		Gottsberger 1988	–
Syngonium schottianum H. Wendl. ex Schott	NO DATA		Grayum 1984	–
Xanthosoma robustum Schott	NO DATA		Grayum 1984	–
Appendix 1. Continued.

Coleoptera	Philodendron acuminatissimum Engl.	NO DATA	Madison 1979	Inflorescences of this plant species rotate to capture water after anthesis which is a strategy to drive beetles out of the spathe (Madison 1979).
	Philodendron cruentospathum Madison	NO DATA	Madison 1979, citing pers. comm. from C. H. Dodson	
	Philodendron senatocarpium Madison	NO DATA	Madison 1979	Inflorescences of this plant species are often filled with water which is a strategy to drive beetles out of the spathe (Madison 1979).
	Philodendron venosum (Willd. ex Schult. & Schult.f.) Croat	NO DATA	Madison 1979	Inflorescences of this plant species are often filled with water which is a strategy to drive beetles out of the spathe. Scarabs have been reported from *P. venosum* (Grayum 1984).
	Rhodospatha forgetii N. E. Br.	NO DATA	Grayum 1986, citing pers. comm. from G. Schatz	The beetles could be cyclocephalines based on the observations of Schatz (1990).
	Xanthoxoma sagittifolium (L.) Schott	NO DATA	Madison 1979	The plant species displays a “drowning” strategy similar to *Philodendron* (Madison 1979).

Evidence of beetle feeding

| Nymphaea oxypetala Planch. | VENEZUELA | Wiersema 1987 | – |

Appendix 2. Cyclocephaline synonyms reported in the floral association literature.

Valid Name	Synonym (Reported Name)	Reference
Cyclocephala amazona (Liinaeus, 1767)	*Cyclocephala signata* (Fabricius, 1781)	Mora-Urpi and Solís 1980, Mora-Urpi 1982, Gotti-berger 1986
Cyclocephala brevis Hohn, 1847	*Cyclocephala pubescens* Burmeister, 1847	Valério 1984, Valério 1988
Cyclocephala epistomalis Bates, 1888	*Cyclocephala molis* Endrodi, 1963	Prance 1980
Cyclocephala maffia Burmeister, 1847	*Cyclocephala maffia* (Lindem) Burmeister, 1847	Poncet 2006
Cyclocephala melanopelephala (Fabricius, 1775)	*Cyclocephala dimidiata* Burmeister, 1847	Cockerell 1897, Moore 1977, Saylor 1945, Tinsley 1960
Appendix 3.
Plant synonyms reported in floral association literature and on voucher specimen label data.

Valid Name	Synonym (Reported Name)	Reference
Annona warmingiana Mello-Silva & Piriápolis	*Annona pygmaea* (Warms.) Warm.	Gotschberger 1986; Gotschberger 1989
Astrocaryum aculeatissimum (Schott) Burret	*Astrocaryum aryu* Mart.	Luederwalt 1926
Attalea speciosa Mart.	*Ovirgynia phalerata* Mart.	Anderson et al. 1988
Attalea spectabilis Mart.	*Ovirgynia spectabilis* (Mart.) Burret	Küchmeister et al. 1993
Bactris coloradon L. H. Bailey	*Bactris porciflora* Burret	Beach 1984; Ratcliffe 2003
Bactris hirta var. *pectinata* (Mart.) Govaerts	*Bactris hirta* var. *spruceana* (Trall) A.J.Hend.	Henderson et al. 2000
Bactris hondurensis Standl.	*Bactris wendlandiana* Burret	Bullock 1981; Ratcliffe 1992a
Bavaria maraja Mart.	*Bavaria monticola* Barb. Rodr.	Listbarth 1996
Brugmansia sp.	*Datura arborea* (no author)	Ohaus 1910; Gotschberger 1986
Cryosophila williamsii P. H. Allen	*Cryosophila albida* Bartlett	Henderson 1984; Silberbauer-Gotschberger 1990
Datura innoxia Mill.	*Datura meteloides* DC. ex Dunal	Cockrell 1897
Lecythis lurida (Miers) S. A. Mori	*Holodiscus jaranum* Huber ex Duke	Prance 1976
Mandevilla longiflora (Desf.) Pichon	*Macrospiphon longiflora* (Desf.) Müll. Arg.	Gotschberger 1986
Magnolia ovata (A. St.-Hil.) Spreng.	*Talauma ovata* A. St.-Hil., 1824	Gibbs et al. 1977; Gotschberger 1986; Gotschberger 1989
Oenocarpus sp.	*Jessenia* sp.	Label data of Balslev and Henderson. Three specimens deposited in UNSM
Nymphaea glandulifera Rodschied	*Nymphaea blanda* var. *fenzliana* (Lehm.) Casp.	Cramer et al. 1975
Philodendron bipinnatifidum Schott ex Endl.	*Philodendron selloum* C. Koch	Gotschberger 1986; Gotschberger and Amaral 1984; Gotschberger and Silberbauer-Gotschberger 1991
Philodendron venosum (Willd. ex Schult. & Schult.F.) Croat	*Philodendron karstenianum* Schott	Grayum 1984
Phytelephas aequatorialis Spruce	*Pseudanthera aequatorialis* (Spruce) O. F. Cook	Balslev and Henderson 1987
Tabernaemontana sp.	*Pexchiera* sp.	Gotschberger 1986
Victoria amazonica (Poepp.) J. C. Sowerby	*Victoria regia* Lindl.	von Bayern 1897; Knuth et al. 1904; Gessner 1962; Martínez 1968
Xanthosoma mexicanum Liebm.	*Xanthosoma pilosum* K. Koch & Augustin	Beath 1998
Xanthosoma sagittifolium (L.) Schott	*Xanthosoma violaceum* Schott	Morón 1997
Xanthosoma striatipes (Kunth & C. D. Bouché) Madison	*Caladium striatipes* (Kunth & C. D. Bouché) Schott	Schrottky 1910; Gotschberger 1986; Gotschberger 1989
Xanthosoma wendlandii (Schott) Standl.	*Xanthosoma hoffmannii* [sic] (Schott) Schott	Morón 1997
Appendix 4. Unavailable and unresolved plant names from the floral association literature and voucher specimen label data.

Valid Name	Reported Name	Reference or Label Data
Alocasia macrorhizos (L.) G. Don (pers. comm. with T. B. Croat, May 2011)	*Xanthosoma macrorhizas*	Valerio 1984; Label data of unaccredited collector
Dieffenbachia tonduzi Croat & Grayum (pers. comm. with T. B. Croat and M. Grayum, May 2011)	*Dieffenbachia longivaginata* Croat & Grayum *ined.*	Label data of M. Grayum. Beetle voucher specimens deposited at INBC
Philodendron ligulatum Schott (pers. comm. with T. B. Croat and M. Grayum, May 2011)	*Philodendron atlanticum* Croat & Grayum	Grayum 1984; Label data of H. Young
Philodendron ptarianum Stey. or *Philodendron rugosum* Bogner & G.S.Bunting	*Philodendron ptarianum* Stey. var. *rugosum* Bunt.	Ramírez 1989; Ramirez 1992
Unresolved	*Cereus pernambucensis* Lem.	Rosa et al. 1995; Rosa et al. 1999; Lechance et al. 2001
Unresolved	*Kielmeyera variabilis* Mart. & Zucc.	Gottsberger 1986
Unresolved	*Malmea manausensis* Maas & Miraíha	Gottsberger et al. 1998

ined: a name only that appears in an unpublished manuscript and is thus invalid.