Abstract

Let \mathfrak{F} be a class of group and G a finite group. Then a set Σ of subgroups of G is called a G-covering subgroup system for the class \mathfrak{F} if $G \in \mathfrak{F}$ whenever $\Sigma \subseteq \mathfrak{F}$.

We prove that: If a set of subgroups Σ of G contains at least one supplement to each maximal subgroup of every Sylow subgroup of G, then Σ is a G-covering subgroup system for the classes of all σ-soluble and all σ-nilpotent groups, and for the class of all σ-soluble $P\sigma T$-groups.

This result gives positive answers to questions 19.87 and 19.88 from the Kourovka notebook.
The group G is said to be: σ-primary if G is a σ_i-group for some $i = i(G)$; σ-decomposable or σ-nilpotent if $G = G_1 \times \cdots \times G_n$ for some σ-primary groups G_1, \ldots, G_n; σ-soluble if every chief factor of G is σ-primary.

A set \mathcal{H} of subgroups of G is a complete Hall σ-set of G if every member $\neq 1$ of \mathcal{H} is a Hall σ_i-subgroup of G for some $\sigma_i \in \sigma$ and \mathcal{H} contains exactly one Hall σ_i-subgroup of G for every i.

Recall that a subgroup A of G is said to be σ-permutable in G if G possesses a complete Hall σ-set \mathcal{H} such that $AHx = HxA$ for all $H \in \mathcal{H}$ and all $x \in G$.

We say that G is a $P\sigma T$-group if σ-permutability is a transitive relation in G, that is, if K is a σ-permutable subgroup of H and H is a σ-permutable subgroup of G, then K is a σ-permutable subgroup of G.

Let \mathfrak{F} be a class of group and G a finite group. Then a set Σ of subgroups of G is called a G-covering subgroup system [5] for the class \mathfrak{F} if $G \in \mathfrak{F}$ whenever $\Sigma \subseteq F$.

In this paper, we prove the following

Theorem A. Suppose that a set of subgroups Σ of G contains at least one supplement to each maximal subgroup of every Sylow subgroup of G. Then Σ is a G-covering subgroup system for any class \mathfrak{F} in the following list:

(i) \mathfrak{F} is the class of all σ-soluble groups.

(ii) \mathfrak{F} is the class of all σ-nilpotent groups.

(iii) \mathfrak{F} is the class of all σ-soluble $P\sigma T$-groups.

The theory of $P\sigma T$-groups was built in the works [1, 2, 3]. Theorem A gives positive answers to questions 19.87 and 19.88 from the Kourovka notebook [6] and, also, allows us to give the following new characterization of σ-soluble $P\sigma T$-groups.

Corollary 1.1. G is a σ-soluble $P\sigma T$-group if and only if each maximal subgroup of every Sylow subgroup of G has a supplement T in G such that T is a σ-soluble $P\sigma T$-group.

In the classical case when $\sigma = \sigma^1 = \{\{2\}, \{3\}, \ldots\}$: G is σ^1-soluble (respectively σ^1-nilpotent) if and only if G is soluble (respectively nilpotent); σ^1-permutable subgroups are also called S-permutable [7]; in this case a $P\sigma T$-group is also called a PST-group [7].

A significant place to the theory of PST-groups is given in the book [6]. From Theorem A we get also the following result in this line researches.

Corollary 1.2. G is a soluble PST-group if and only if each maximal subgroup of every Sylow subgroup of G has a supplement T in G such that T is a soluble PST-group.
2 Basic lemmas

If \(n \) is an integer, the symbol \(\pi(n) \) denotes the set of all primes dividing \(n \); as usual, \(\pi(G) = \pi(|G|) \), the set of all primes dividing the order of \(G \). \(G \) is said to be a \(D_\pi \)-group if \(G \) possesses a Hall \(\pi \)-subgroup \(E \) and every \(\pi \)-subgroup of \(G \) is contained in some conjugate of \(E \).

By the analogy with the notation \(\pi(n) \), we write \(\sigma(n) \) to denote the set \(\{ \sigma_i | \sigma_i \cap \pi(n) \neq \emptyset \} \); \(\sigma(G) = \sigma(|G|) \). \(G \) is said to be: a \(\sigma \)-full group of Sylow type \([1]\) if every subgroup \(E \) of \(G \) is a \(D_{\sigma_i} \)-group for every \(\sigma_i \in \sigma(E) \).

Lemma 2.1 (See Theorem A \([3]\)). Every \(\sigma \)-soluble group is a \(\sigma \)-full group of Sylow type.

Lemma 2.2 (Theorem 1 in \([9]\)). \(G \) is \(\pi \)-separable if and only if
(i) \(G \) has a Hall \(\pi \)-subgroup and a Hall \(\pi' \)-subgroup;
(ii) \(G \) has a Hall \(\pi \cup \{ p \} \)-subgroup and a Hall \(\pi' \cup \{ q \} \)-subgroup for all \(p \in \pi' \) and \(q \in \pi \).

Lemma 2.3 (See Corollary 2.4 and Lemma 2.5 in \([1]\)). The class of all \(\sigma \)-nilpotent groups \(\mathcal{N}_\sigma \) is closed under taking products of normal subgroups, homomorphic images and subgroups. Moreover, if \(E \) is a normal subgroup of \(G \) and \(E/(E \cap \Phi(G)) \) is \(\sigma \)-nilpotent, then \(E \) is \(\sigma \)-nilpotent.

In view of Lemma 2.3, the class \(\mathcal{N}_\sigma \), of all \(\sigma \)-nilpotent groups, is a hereditary saturated formation and so from Proposition 2.2.8 in \([10]\) we get the following

Lemma 2.4 (See Proposition 2.2.8 in \([10]\)). If \(N \) is a normal subgroup of \(G \), then \((G/N)^{\mathcal{N}_\sigma} = G^{\mathcal{N}_\sigma} N/N\).

In this lemma, \(G^{\mathcal{N}_\sigma} \) denotes the \(\sigma \)-nilpotent residual of \(G \), that is, the intersection of all normal subgroups \(N \) of \(G \) with \(\sigma \)-nilpotent quotient \(G/N \).

Lemma 2.5 (See Theorem A in \([2]\)). If \(G \) is a \(\sigma \)-soluble \(P\sigma T \)-group and \(D = G^{\mathcal{N}_\sigma} \), then the following conditions hold:
(i) \(G = D \rtimes M \), where \(D \) is an abelian Hall subgroup of \(G \) of odd order, \(M \) is \(\sigma \)-nilpotent and every element of \(G \) induces a power automorphism in \(D \);
(ii) \(O_{\sigma_i}(D) \) has a normal complement in a Hall \(\sigma_i \)-subgroup of \(G \) for all \(i \).

Conversely, if Conditions (i) and (ii) hold for some subgroups \(D \) and \(M \) of \(G \), then \(G \) is a \(P\sigma T \)-group.

3 Proof of Theorem A

Proof of Theorem A. Assume that this theorem is false. We can assume without loss of generality that \(\sigma(G) = \{ \sigma_1, \sigma_2, \ldots, \sigma_t \} \).
(I) G is not σ-nilpotent. Hence $t > 1$ and $D := G^{o_{\sigma}} \neq 1$.

Indeed, assume that G is σ-nilpotent. Then G is σ-soluble. Hence Statements (i) and (ii) hold for G. Moreover, in this case for every i the product H_i, of all normal σ_i-subgroups of G, is the unique normal Hall σ_i-subgroup of G and $G = H_1 \times H_2 \times \cdots \times H_t$. Hence every subgroup of G is σ-permutable in G. Thus Statement (iii) also holds for G, contrary to our assumption on G. Hence (I) holds.

(i) Assume that this assertion is false and let G be a counterexample of minimal order.

(*) G has no non-identity normal σ-primary subgroups.

Assume that G has a minimal normal σ-primary subgroup, R say.

Let P/R be any non-identity Sylow subgroup of G/R. Then for some prime p and for a Sylow p-subgroup G_p of G we have $G_pR/R = P/R$, so G_p is non-identity.

Now let V/R be any maximal subgroup of P/R, that is, $|P:V| = |P/R : V/R| = p$. Then $V = R(G_p \cap V)$, so

$$p = |G_p R : R(G_p \cap V)| = (|G_p| |R| : |G_p \cap R|) : (|R| (G_p \cap V) : |R \cap G_p \cap V|) = |G_p : G_p \cap V|,$$

so $G_p \cap V$ is a maximal subgroup of G_p. Hence G has a σ-soluble subgroup T such that $(G_p \cap V)T = G$.

But then $RT/R \cong T/(T \cap R)$ is a σ-soluble subgroup of G/R such that

$$(V/R)(RT/R) = (R(G_p \cap V)/R)(TR/R) = G/R.$$

Therefore the hypothesis holds for G/R, so G/R is σ-soluble by the choice of G. But then G is σ-soluble, a contradiction. Hence we have (*).

(**) $t = 2$, that is, $\sigma(G) = \{\sigma_1, \sigma_2\}$.

Assume that $t > 2$ and let P_i be a Sylow p_i-subgroup of G for some $p_1 \in \sigma_1 \cap \pi(G)$, $p_2 \in \sigma_2 \cap \pi(G)$ and $p_3 \in \sigma_3 \cap \pi(G)$. Let V_i be a maximal subgroup of P_i. Then, by hypothesis, G has σ-soluble subgroups T_1, T_2 and T_3 such that $G = V_iT_i$ for $i = 1, 2, 3$.

Let R be a minimal normal subgroup of T_1. Then R is σ-primary, R is a σ_k-group say. Since $|G : T_2| = |T_1T_2 : T_2| = |T_1 : T_1 \cap T_2|$ is a p_2-number and $|T_1 : T_1 \cap T_3|$ is a p_3-number, where $p_2 \in \sigma_2$ and $p_3 \in \sigma_3$, we have either $R \leq T_1 \cap T_2$ or $R \leq T_1 \cap T_3$, $R \leq T_1 \cap T_2$ say. Hence $R^G = R^{T_1T_2} = R^{T_2} \leq T_2$, so G has a non-identity normal σ-primary subgroup, contrary to Claim (*). Thus (**') holds.

The final contradiction for (i). Let $\pi = \sigma_1 \cap \pi(G)$. Since T_1 is σ-soluble, T_1 has a Hall σ_k-subgroup for all k by Lemma 2.1. Then a Hall σ_2-subgroup of T_1 is a Hall π'-subgroup of G and a Hall σ_1-subgroup of T_2 is a Hall $\pi-$subgroup of G.

Now we show that G has a Hall $\pi \cup \{p\}$-subgroup for every $p \in \sigma_2 \cap \pi(G)$. If $|\sigma_2 \cap \pi(G)| = 1$ it is evident. Now assume that $|\sigma_2 \cap \pi(G)| > 1$ and let $q \in (\sigma_2 \cap \pi(G)) \setminus \{p\}$. Let V be a maximal
subgroup of a Sylow q-subgroup Q of G. And let T be a σ-soluble supplement to V in G. Then T is π-separable by Claim (**). Hence T has a Hall $\pi \cup \{p\}$-subgroup H by Lemma 2.2. But $|G : T|$ is a $\{q\}$-number, where $p \neq q \notin \sigma_1$, so H is a Hall $\pi \cup \{p\}$-subgroup of G.

Similarly it can be proved that G has a Hall $\pi' \cup \{p\}$-subgroup for all $p \in \pi$. Therefore G is π-separable by Lemma 2.2 and so G is σ-soluble by Claim (**), contrary to the choice of G. Hence Statement (i) holds.

(iii) Assume that this assertion is false and let G be a counterexample of minimal order. Then G is σ-soluble by Part (i).

(1) If R is a non-identity normal subgroup of G, then the hypothesis holds for G/R. Hence G/R is a σ-soluble $P\sigma T$-group (See the proof of Claim (*)).

(2) If R is an abelian minimal normal subgroup of G, then R is not a Sylow subgroup of G.

Indeed, assume that R is Sylow subgroup of G and let V be an y maximal subgroup of R. Then for every supplement T to V in G we have that $T \cap R$ is normal in G, the minimality of R implies that $T = G$. Hence G is a σ-soluble $P\sigma T$-group, a contradiction. Hence (2) holds.

(3) D is σ-nilpotent.

Assume that this is falls. Then D is not σ-primary. Let R be a minimal normal subgroup of G, so R is a σ_i-group for some i since G is σ-soluble. Moreover, from Lemmas 2.3 and 2.4 we get that

$$(G/R)^{\Omega_i} = G^{\Omega_i}R/R = DR/R \simeq D/(D \cap R)$$

is a Hall σ-nilpotent subgroup of G/R by Claim (1). Hence R is the unique minimal normal subgroup of G, $R < D$ and $R \notin \Phi(G)$ since D is not σ-nilpotent. Therefore $C_G(R) \leq R$ and D/R is a Hall subgroup of G/R. Moreover, D/R is not a σ_i-group since D is not σ-primary. Let p be a prime dividing $|D/R|$ such that $p \notin \sigma_i$. And let P be a Sylow p-subgroup of D. Then $P \cap R = 1$ and P is a Sylow p-subgroup of G since D/R is a Hall subgroup of G/R.

Let V be a maximal subgroup of P and T a supplement to V in G such that T is a $P\sigma T$-group. Then $T^{\Omega_i} \leq D$ and T^{Ω_i} is a Hall abelian subgroup of T such that every subgroup of T^{Ω_i} is normal in T by Lemma 2.5. Moreover, $R \leq T$ since $|G : T|$ is a $\{p\}$-number. Hence $T^{\Omega_i} \cap R$ is a normal abelian Hall subgroup of R. Hence either $T^{\Omega_i} \cap R = 1$ or $T^{\Omega_i} \cap R = R$ and so $R \leq T^{\Omega_i}$.

First assume that $T^{\Omega_i} \cap R = 1$. Then $T^{\Omega_i} \leq C_G(R)$, so $T^{\Omega_i} = 1$ and hence T is σ-nilpotent. From $P = P \cap VT = V(P \cap T)$ it follow that T is not a σ_i-group. Hence for a Hall σ_i-subgroup E of T we have $E \neq 1$ and $E \leq C_G(R) \leq R$, a contradiction. Therefore $R \leq T^{\Omega_i}$, so $R = T^{\Omega_i}$ is a q-group for some prime $q \neq p$ since $C_G(R) \leq R$ and T^{Ω_i} is abelian. Let Q be a Sylow q-subgroup of T. Then $R = Q$ since $R = T^{\Omega_i}$ is a Hall subgroup of T. Moreover, R is a Sylow q-subgroup of G since $p \neq q$ and $|G : T|$ is a $\{p\}$-number, contrary to Claim (2). Hence we have (3).

(4) D is nilpotent.

Assume that this false and let R be a minimal normal subgroup of G. Then $R \leq D$ and
C_G(R) \leq R and D/R is a Hall subgroup of G/R (see the proof of Claim (3)). Hence D \leq O_{\pi_i}(G) for some i by Claim (3). Let P be a Sylow p-subgroup of G, where p \in \pi(G) \setminus \pi_i. Let V be a maximal subgroup of P and T a supplement to V in G such that T is a P_\sigma T-group. Then R \leq D \leq T, so \tau^{\pi_i} \cap R is a normal abelian Hall subgroup of R. Hence R \leq T^{\pi_i} (see the proof of Claim (\ast)). On the other hand, T^{\pi_i} \leq D. Therefore R = T^{\pi_i} is a Sylow q-subgroup of G for some q \neq p, contrary to Claim (2).

(5) D is a Hall subgroup of G.

Suppose that this is false and let P be a Sylow p-subgroup of D such that 1 < P < G_p, where G_p \in \text{Syl}_p(G). We can assume without loss of generality that G_p \leq H_1.

(a) D = P is a minimal normal subgroup of G.

Let R be a minimal normal subgroup of G contained in D. Since D is nilpotent by Claim (4), R is a q-group for some prime q. Moreover, D/R = (G/R)^{\pi_i} is a Hall subgroup of G/R by Claim (1) and Lemma 2.3. Suppose that PR/R \neq 1. Then PR/R \in \text{Syl}_p(G/R). If q \neq p, then P \in \text{Syl}_p(G). This contradicts the fact that P < G_p. Hence q = p, so R \leq P and therefore P/R \in \text{Syl}_p(G/R) and we again get that P \in \text{Syl}_p(G). This contradiction shows that PR/R = 1, which implies that R = P is the unique minimal normal subgroup of G contained in D. Since D is nilpotent by Claim (4), a p'-complement E of D is characteristic in D and so it is normal in G. Hence E = 1, which implies that R = D = P.

(b) D \notin \Phi(G). Hence for some maximal subgroup M of G we have G = D \rtimes M.

(c) If G has a minimal normal subgroup L \neq D, then G_p = D \times (L \cap G_p). Hence O_{\pi'}(G) = 1.

Indeed, DL/L \simeq D is a Hall subgroup of G/L by Claim (1). Hence G_pL/L = RL/L, so G_p = D \times (L \cap G_p). Thus O_{\pi'}(G) = 1 since D < G_p by Claim (a).

(d) V = C_G(D) \cap M is a normal subgroup of G and C_G(D) = D \times V \leq H_1.

In view of Claim (b), C_G(D) = D \times V, where V = C_G(D) \cap M is a normal subgroup of G. By Claim (a), V \cap D = 1 and hence V \simeq DV/D is \sigma-nilpotent by Lemma 2.2. Let W be a \sigma_1-complement of V. Then W is characteristic in V and so it is normal in G. Therefore we have (d) by Claim (c).

The final contradiction for (5). Let Q be a Sylow q-subgroup of G, where q \in \pi(G) \setminus \pi(H_1). Let V be a maximal subgroup of P and T a supplement to V in G such that T is a P_\sigma T-group. Then T^{\pi_i} \leq D and T^{\pi_i} is a Hall abelian subgroup of T. Then D is not a Sylow q-subgroup of T and so T^{\pi_i} = 1, which implies that T is \sigma-nilpotent. But then for a Sylow q-subgroup T_q of T we have 1 < T_q \leq C_G(D) \leq H_1, a contradiction.

(6) Every subgroup H of D is normal in G. Hence every element of G induces a power automorphism in D.

Since D is nilpotent by Claim (4), it is enough to consider the case when H \leq O_p(D) for some p\pi(D).
Let R be any Sylow r-subgroup of G, where $r \not\in \pi(D)$. Let V_1, V_2, \ldots, V_i be the set of all maximal subgroups of R. Let T_i be a supplement to V_i in G such that T_i is a $P\sigma T$-group with $D_i = T^\sigma i$.

Since $G = V_i T_i$, $R = V_i (T_i \cap R)$. Hence for some $a_i \in T_i \cap R$ we have we have $a_i \not\in V_i$. We show that $a_i \in N_G(H)$.

First observe that $D \leq T_i$ since $|G:T_i|$ is a q-number, where $r \not\in \pi(D)$. Moreover, $D_i \leq D$. But D_i is a Hall subgroup of T_i and every subgroup of D_i is normal in T_i, so D_i is a Hall subgroup of D. So either $H \leq O_p(D) \leq D_i$ or $O_p(D) \cap D_i = 1$. In the former case we have $a_i \in N_G(H)$ since every subgroup of D_i is normal in T_i. Now assume that $O_p(D) \cap D_i = 1$, so $D_i \cap O_p(D) < a_i = 1$ since $D_i \leq D$ and $r \not\in \pi(D)$, so $O_p(D)(a_i) \simeq D_i O_p(D)(a_i) / D_i$ is σ-nilpotent. Hence $[O_p(D), a_i] = 1$, so $a_i \in N_G(H)$.

Let $V = \langle a_1, a_2, \ldots, a_i \rangle$. Then $V \leq N_G(H)$. Moreover, if $V < R$, then for some i we have $V \leq V_i$. But then $a_i \not\in V_i$ and $a_i \in V \leq V_i \leq V_i$, a contradiction. Therefore $V = R \leq N_G(H)$. Hence $R^G \leq N_G(H)$. Therefore $E^G \leq N_G(H)$, where E is a Hall $\pi(D)'$-subgroup of G. But then $E^G D/E^G \simeq D/(D \cap E^G)$ is nilpotent, so $D \leq E^G$ and hence $G = GE = E^G$. Hence we have (6).

(7) If p is a prime such that $(p - 1, |G|) = 1$, then p does not divide $|D|$. In particular, $|D|$ is odd.

Assume that this is false. Then, by Claim (4), D has a maximal subgroup E such that $|D : E| = p$ and E is normal in G. It follows that $C_G(D/E) = G$ since $(p - 1, |G|) = 1$. Since D is a Hall subgroup of G, it has a complement M in G. Hence $G/E = (D/E) \times (ME/E)$, where $ME/E \simeq M \simeq G/D$ is σ-nilpotent. Therefore G/E is σ-nilpotent. But then $D \leq E$, a contradiction. Hence p does not divide $|D|$. In particular, $|D|$ is odd.

(8) D is abelian.

In view of Claim (5), D is a Dedekind group. Hence D is abelian since $|D|$ is odd by Claim (7).

From Claims (5)–(8) we get that G is σ-soluble $P\sigma T$-group, contrary to the choice of G. Hence Statement (iii) holds.

(ii) Assume that this assertion is false and let G be a counterexample of minimal order. Then G is a σ-soluble $P\sigma T$-group by Part (iii) since every σ-nilpotent group is a σ-soluble $P\sigma T$-group. Then G^{ab} is a Hall subgroup of G of odd order and every subgroup of G^{ab} is normal in G by lemma 2.5. Moreover, the hypothesis holds on G/R for every minimal normal subgroup R of G and hence G/R is σ-nilpotent by the choice of G, so $R = G^{ab}$ is a group of prime order p for some prime p and R is a Sylow p-subgroup of G. But then the maximal V subgroup of R is identity and so G is the unique supplement to V in G, so H is σ-nilpotent, a contradiction. Therefore Statement (ii) holds.

The theorem is proved.
References

[1] A.N. Skiba, On σ-subnormal and σ-permutable subgroups of finite groups, *J. Algebra*, 436 (2015), 1–16.

[2] A.N. Skiba, Some characterizations of finite σ-soluble PoT-groups, *J. Algebra*, 495 (2018), 114–129.

[3] A.N. Skiba, On sublattices of the subgroup lattice defined by formation Fitting sets, *J. Algebra*, 550, (2020), 69–85.

[4] W. Guo, A.N Skiba, On σ-supersoluble groups and one generalization of CLT-groups, *J. Algebra*, 512 (2018), 92–108.

[5] W. Guo, K.P. Shum, A.N. Skiba, G-covering subgroup systems for the classes of supersoluble and nilpotent groups, Israel J. Math. 138 (2003) 125–138.

[6] V.D. Mazurov, E.I. Khukhro, The Kourovka Notebook, Novosibirsk, No 19, 2018.

[7] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, *Products of Finite Groups*, Walter de Gruyter, Berlin-New York, 2010.

[8] A.N. Skiba, A generalization of a Hall theorem, *J. Algebra Appl.*, 15(4) (2015), 21–36.

[9] Z. Du, Hall subgroups and π-separable groups, *J. Algebra*, 195 (1997), 501–509.

[10] A. Ballester-Bolinches, L.M. Ezquerro, *Classes of Finite groups*, Springer, Dordrecht, 2006.