Research Article

Numerical Analysis of an H^1-Galerkin Mixed Finite Element Method for Time Fractional Telegraph Equation

Jinfeng Wang, 1 Meng Zhao, 2 Min Zhang, 2 Yang Liu, 2 and Hong Li 2

1 School of Statistics and Mathematics, Inner Mongolia University of Finance and Economics, Hohhot 010070, China
2 School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China

Correspondence should be addressed to Yang Liu; mathliuyang@aliyun.com and Hong Li; smslh@imu.edu.cn

Received 7 April 2014; Revised 10 July 2014; Accepted 13 July 2014; Published 24 July 2014

Academic Editor: Yui Chuin Shiah

Copyright © 2014 Jinfeng Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We discuss and analyze an H^1-Galerkin mixed finite element (H^1-GMFE) method to look for the numerical solution of time fractional telegraph equation. We introduce an auxiliary variable to reduce the original equation into lower-order coupled equations and then formulate an H^1-GMFE scheme with two important variables. We discretize the Caputo time fractional derivatives using the finite difference methods and approximate the spatial direction by applying the H^1-GMFE method. Based on the discussion on the theoretical error analysis in L^2-norm for the scalar unknown and its gradient in one dimensional case, we obtain the optimal order of convergence in space-time direction. Further, we also derive the optimal error results for the scalar unknown in H^1-norm. Moreover, we derive and analyze the stability of H^1-GMFE scheme and give the results of a priori error estimates in two- or three-dimensional cases. In order to verify our theoretical analysis, we give some results of numerical calculation by using the Matlab procedure.

1. Introduction

In this paper, our purpose is to present and discuss a mixed finite element method for the time fractional telegraph equation

$$\partial_{0,t}^{\alpha} u(x,t) + 2\kappa \partial_{0,t}^{\alpha} u(x,t) - \Delta u(x,t) + \beta u(x,t) = f(x,t), \quad (x,t) \in \Omega \times J,$$

(1)

with boundary condition

$$u(x,t) = 0, \quad (x,t) \in \partial \Omega \times J,$$

(2)

and initial conditions

$$u(x,0) = u_0(x), \quad u_t(x,0) = u_1(x), \quad x \in \Omega,$$

(3)

where $\Omega \subset \mathbb{R}^d$, $d = 1, 2, 3$) is a bounded domain with boundary $\partial \Omega$ and $J = (0,T]$ is the time interval with $0 < T < \infty$. The coefficients $\kappa > 0$ and $\beta \geq 0$ are two constants, $f(x,t)$ is a given source function, $u_0(x)$ and $u_1(x)$ are two given initial functions, and the time Caputo fractional-order derivatives $\partial_{0,t}^{\alpha} u(x,t)$ and $\partial_{0,t}^{2\alpha} u(x,t)$ are defined, respectively, by

$$\partial_{0,t}^{\alpha} u(x,t) = \frac{1}{\Gamma(1-\alpha)} \int_0^t \frac{\partial u(x,\tau)}{\partial \tau} (t-\tau)^{-\alpha},$$

$$\partial_{0,t}^{2\alpha} u(x,t) = \frac{1}{\Gamma(2-2\alpha)} \int_0^t \frac{\partial^2 u(x,\tau)}{\partial \tau^2} (t-\tau)^{-2\alpha-1},$$

(4)

where $1/2 < \alpha < 1$.

In the current literatures, we can see that some numerical methods for solving fractional partial differential equations (PDEs), which include finite element methods [1–8], mixed finite element methods [9], finite difference methods [10–24], finite volume methods [25, 26], spectral methods [27], and discontinuous Galerkin methods [28–31], have been considered and analyzed. In 2014, Liu et al. [9] gave some theoretical error analysis for a class of fractional PDE based on a nonstandard mixed method in spatial direction and a finite difference scheme in time direction. In [32], Zhao and Li discussed finite element method for the fractional telegraph equation. In 2014, Wei et al. [31] studied the numerical
solution for time fractional telegraph equation based on the LDG method. But, we have not seen any related studies on mixed finite element methods for solving the fractional telegraph equation.

Recently, some people have made use of the method to obtain the numerical solution for some partial differential equations since Pani (in 1998) [33] proposed an H^1-GMFE method. This method includes some advantages, such as avoiding the LBB consistency condition, allowing different polynomial degrees of the finite element spaces, and obtaining the optimal a priori estimates in both H^1 and L^2-norms. In [34], Pani and Fairweather discussed some detailed a priori error analysis and numerical results on mixed finite element methods for solving the fractional telegraph equation. In Section 5, we will give some remarks and extensions about the H^1-GMFE method for fractional PDEs.

For the need of study, we denote the natural inner product as (\cdot, \cdot) in $(L^2(\Omega))^d$, $d = 1, 2, 3$. Further, we write the classical Sobolev spaces $W^{m,2}(\Omega)$ as H^m with norm $\| \cdot \|_m = [\sum_{|\alpha| \leq m} \int_{\Omega} |D^\alpha u(x)|^2 dx]^{1/2}$. When $m = 0$, we simply write the norm $\| \cdot \|_0$ as $\| \cdot \|$.

2. An H^1-GMFE Scheme in One Space Dimension

In this section, we first consider the H^1-GMFE method for the following time fractional telegraph equation in ID case:

$$
\begin{align*}
\frac{\partial^{2n}}{\partial t^{2n}} u(x,t) + 2 \kappa \frac{\partial^{n}}{\partial t^{n}} u(x,t) - \frac{\partial^2 u(x,t)}{\partial x^2} + \beta u(x,t) &= f(x,t), \quad (x,t) \in \Omega \times J, \\
\frac{\partial u(x,t)}{\partial x} - \frac{\partial \sigma(x,t)}{\partial x} &= 0, \\
\end{align*}
$$

with boundary condition

$$
\begin{align*}
u(x,t) &= u(x_t, t) = 0, \quad t \in J, \\
\end{align*}
$$

and initial conditions

$$
\begin{align*}
u(x,0) &= u_0(x), \\
u_t(x,0) &= u_1(x), \\
x \in \Omega,
\end{align*}
$$

where $\Omega = [x_L, x_R] \subset \mathbb{R}$.

In order to get the H^1-GMFE formulation, we first introduce an auxiliary variable $\sigma = \partial u(x,t)/\partial x$ and split (5) into the following first-order system by

$$
\begin{align*}
\frac{\partial^{2n}}{\partial t^{2n}} u(x,t) + 2 \kappa \frac{\partial^{n}}{\partial t^{n}} u(x,t) - \frac{\partial \sigma(x,t)}{\partial x} &= f(x,t), \\
\frac{\partial \sigma(x,t)}{\partial x} - \frac{\partial u(x,t)}{\partial x} &= 0.
\end{align*}
$$

Multiplying (8) by $-\partial \sigma/\partial x$, $\nu \in H^1$, integrating with respect to space from x_L to x_R, and using an integration by parts with $\partial u(x,L,t)/\partial t = \partial u(x_R,t)/\partial t = 0$ and $\partial^2 u(x,t)/\partial t^2 = \partial^2 u(x_R,t)/\partial t^2 = 0$, we easily get

$$
\begin{align*}
\left(\frac{\partial^{2n}}{\partial t^{2n}} u, \sigma \right) + 2 \kappa \left(\frac{\partial^{n}}{\partial t^{n}} u, \sigma \right) + \left(\frac{\partial \sigma}{\partial x}, \frac{\partial u}{\partial x} \right) &= \beta \left(\frac{\partial \nu}{\partial x}, \sigma \right) - \left(f, \frac{\partial \nu}{\partial x} \right).
\end{align*}
$$

Multiply (9) by $\partial \nu/\partial x$, $\nu \in H^1$, and integrate with respect to space from x_L to x_R to obtain

$$
\begin{align*}
\left(\frac{\partial u}{\partial x}, \sigma \right) - \left(\frac{\partial \nu}{\partial x}, \sigma \right) &= \left(\frac{\partial \nu}{\partial x} \right)_L^R, \\
\end{align*}
$$

for formulating finite element scheme, we now choose the finite element spaces $V_h \subset H^1_0$ and $W_h \subset H^1$, which satisfy
the following approximation properties: for \(1 \leq p \leq \infty \) and \(k, r\) positive integers [33],
\[
\inf_{v_h \in V_h} \left\{ \|v - v_h\|_{L^p} + h \|v - v_h\|_{W^{k+1,p}} \right\} \\
\leq C h^{k+1} \|v\|_{W^{k+1,p}}, \quad v \in H^1_0 \cap W^{k+1}.
\]

A Priori Error Estimates

3.1. Two Projection Lemmas. For a priori error estimates for fully discrete scheme, we introduce two projection operators [33, 44] in Lemmas 1 and 2.

Lemma 1. One defines a Ritz projection \(P_h u \in V_h\) for the variable \(u\) by
\[
(u - P_h u, v_h) = 0, \quad v_h \in V_h.
\]

Then the following estimates hold, for \(j = 0, 1\):
\[
\|u - P_h u\| \leq C_s h^{k+1-j} \|u\|_{k+1}.
\]

Lemma 2. Further, one also defines an elliptic projection \(R_h \sigma \in W_h\) of \(\sigma\) as the solution of
\[
\mathfrak{B} (\sigma - R_h \sigma, w_h) = 0, \quad w_h \in W_h,
\]
where \(\mathfrak{B} (\sigma, w) = (\sigma, w_x) + \lambda (\sigma, w)\). Here \(\lambda > 0\) is chosen to satisfy
\[
\mathfrak{B} (w, w) \geq \mu_0 \|w\|^2, \quad w \in H^1, \quad \mu_0 > 0.
\]

Then the following estimates are found: for \(j = 0, 1\),
\[
\|\sigma - R_h \sigma\| \leq C_s h^{r+1-j} \|\sigma\|_{r+1}.
\]

3.2. Approximation of Time-Fractional Derivative. For formulating fully discrete scheme, let \(0 = t_0 < t_1 < t_2 < \cdots < t_M = T\) be a given partition of the time interval \([0, T]\) with step length \(\Delta t = T/M\) and nodes \(t_n = n \Delta t\), for some positive integer \(M\). For a smooth function \(\phi\) on \([0, T]\), define \(\phi^n = \phi(t_n)\). In the following analysis, for deriving the convenience of theoretical process, we now denote
\[
B_{n-k}^{\alpha} = (n-k+1)^{-\alpha} - (n-k)^{-\alpha}, \quad j = 1, 2
\]
\[
D_\alpha \sigma^k = \frac{\sigma^k - \sigma^{k-1}}{\Delta t}, \quad D_\alpha \sigma^{k-1} = \frac{\sigma^{k-2} - 2\sigma^{k-1} + \sigma^{k-2}}{\Delta t^2}.
\]

Now, we will introduce two lemmas on the approximations of time fractional derivatives.

Lemma 3 (see [27]). The time fractional derivative \(\partial_{\alpha,x} u(x, t)\) at \(t = t_n\) is approximated by, for \(0 < \alpha < 1\),
\[
\partial_{\alpha,x}^n u(x, t_n) = \frac{\Delta t^{1-\alpha}}{\Gamma (2-\alpha)} \sum_{k=1}^{n} B_{n-k}^{\alpha} D_{\alpha} \sigma^{k} + E_{2\alpha}^n
\]
and then holds
\[
|E_{2\alpha}^n| \leq C_0 \Delta t^{2-\alpha}.
\]

Lemma 4 (see [1]). The time fractional order derivative \(\partial_{\alpha,x} u(x, t)\) at \(t = t_n\) is estimated by, for \(1 < 2\alpha < 2\),
\[
\partial_{\alpha,x}^n u(x, t_n) = \frac{\Delta t^{2-2\alpha}}{\Gamma (3-2\alpha)} \sum_{k=1}^{n} B_{n-k}^{2\alpha} D_{\alpha} \sigma^{k} + E_{2\alpha}^n
\]
and then holds
\[
|E_{2\alpha}^n| \leq C_0 \Delta t.
\]

In the next analysis, we will derive and prove some a priori error results for \(u\) and \(\sigma\).

3.3. Error Estimates for Fully Discrete Scheme. Based on the approximation formulas (20) and (22) of time-fractional derivatives, we obtain the time semidiscrete scheme of (10) and (11):
\[
\frac{\partial u^n}{\partial x} = \frac{\partial v^n}{\partial x}, \quad \frac{\partial v^n}{\partial x} = (\sigma^n, \frac{\partial v^n}{\partial x}), \quad \forall v \in H^1_0,
\]
\[
\Delta t^{2-2\alpha} \Gamma (3-2\alpha) \sum_{k=1}^{n} B_{n-k}^{2\alpha} D_{\alpha} \sigma^{k} + E_{2\alpha}^n
\]

\[
\begin{align*}
\Delta t^{2-2\alpha} & \Gamma (3-2\alpha) \sum_{k=1}^{n} B_{n-k}^{2\alpha} (D_{\alpha} \sigma^{k}, w) + \left(\frac{\partial \sigma^n}{\partial x}, \frac{\partial w}{\partial x} \right) \\
& = \beta \left(u^n, \frac{\partial w}{\partial x} \right) - (f^n, \frac{\partial w}{\partial x}) + (E_{2\alpha}^n, w), \quad \forall w \in H^1.
\end{align*}
\]

where \(E_{2\alpha}^n = E_{\alpha}^n + E_{2\alpha}^n\).
Now, we formulate a fully discrete procedure: find $(u^n_h, \sigma^n_h) \in V_h \times W_h (n = 1, \ldots, M - 1)$ such that

$$
\left(\frac{\partial u^n_h}{\partial x}, \frac{\partial v_h}{\partial x} \right) = \left(\sigma^n_h, \frac{\partial v_h}{\partial x} \right), \quad \forall v_h \in V_h,
$$

$$
\frac{\Delta t^{2-2\alpha}}{\Gamma(3 - 2\alpha)} \sum_{k=1}^{n} B_{n-k}^\alpha \left(D_h \delta_h^{k-1}, w_h \right) + \frac{2 \kappa \Delta t^{1-\alpha}}{\Gamma(2 - \alpha)} \sum_{k=1}^{n} B_{n-k}^\alpha \left(D_h \delta_h^{k}, w_h \right) + \frac{2 \kappa \Delta t^{1-\alpha}}{\Gamma(2 - \alpha)} \sum_{k=1}^{n} B_{n-k}^\alpha \left(D_h \delta_h^{k}, w_h \right) = \beta \left(u^n_h, \frac{\partial w_h}{\partial x} \right) - \left(f^n, \frac{\partial w_h}{\partial x} \right), \quad \forall w_h \in W_h.
$$

(25)

Making a combination of (24)-(25) with two projections (14) and (16), we get the following error equations:

$$
\left(\frac{\partial \psi^n}{\partial x}, \frac{\partial v_h}{\partial x} \right) = \left(\psi^n, \frac{\partial v_h}{\partial x} \right) + \left(e^n, \frac{\partial v_h}{\partial x} \right), \quad \forall v_h \in V_h,
$$

(26)

$$
\frac{\Delta t^{2-2\alpha}}{\Gamma(3 - 2\alpha)} \sum_{k=1}^{n} B_{n-k}^\alpha \left(D_h \delta_h^{k-1}, w_h \right) + \frac{2 \kappa \Delta t^{1-\alpha}}{\Gamma(2 - \alpha)} \sum_{k=1}^{n} B_{n-k}^\alpha \left(D_h \delta_h^{k}, w_h \right) + \beta \left(\psi^n + \phi^n, \frac{\partial w_h}{\partial x} \right), \quad \forall w_h \in W_h,
$$

(27)

where

$$
\phi^n + \phi^n = (u(t_n) - P_h u^n) + (P_h u^n - u^n_h)
$$

$$
= u(t_n) - u^n_h;
$$

$$
\psi^n + \psi^n = (\sigma(t_n) - R_h \phi^n) + (R_h \phi^n - \sigma^n_h)
$$

$$
= \sigma(t_n) - \sigma^n_h.
$$

(28)

In the following discussion, we will derive the proof for the fully discrete a priori error estimates.

Theorem 5. With $\sigma_0 = u_0$, and $\sigma(0) = u_0$, suppose that $u^n \in H^1 \cap H^{k+1}$, $\sigma^n \in H^{r+1}$, $\sigma^n_h = R_h \sigma(0)$, and $\sigma^n_h(0) = L_h \sigma_t(0)$, where L_h is the L^2 projection defined by $(w - L_h w, w_h) = 0$, $w_h \in W_h$. Then there exists a positive constant $C(u, \sigma, \alpha, \beta)$ free of space-time discrete parameters h and Δt such that, for $1/2 < \alpha < 1$,

$$
\|\sigma^n - \sigma^n_h]\| \leq C \frac{(u, \sigma, \alpha, \beta)}{2 - 2\alpha} \left(\Delta t^{1-2\alpha} h^{\min[k+1, r+1]} + \Delta t^{3-2\alpha} \right)
$$

$$
+ C(\sigma) h^{r+1},
$$

(29)

and for $\alpha \to 1$

$$
\|\sigma^n - \sigma^n_h]\| \leq C \frac{(u, \sigma, \alpha, \beta)}{2 - 2\alpha} \left(\Delta t^{1-2\alpha} h^{\min[k+1, r+1]} + \Delta t \right)
$$

$$
+ C(\sigma) h^{r+1},
$$

(31)

$$
\|u^n - u^n_h]\|_j \leq C \frac{(u, \sigma, \alpha, \beta)}{2 - 2\alpha} \left(\Delta t^{1-2\alpha} h^{\min[k+1, r+1]} + \Delta t \right)
$$

$$
+ C(\sigma) h^{r+1} + C(u) h^{k+1-j}, \quad j = 0, 1,
$$

(32)

Proof. For the need of error analysis, we first consider the L^2-norm $\|\psi^n\|$ and the H^1-norm $\|\psi^n\|_1$. Taking $\psi_h = \psi^n$ in (26) and using Poincaré inequality based on the H_0^1-space and Cauchy-Schwarz inequality, we easily get

$$
\|\psi^n\| \leq \|\psi^n\|_1 \leq C \left(\|\psi^n\| + \|\psi^n\|_1 \right). \quad (33)
$$

In the next analysis, we will give the estimates of $\|\delta^n\|$ and $\|\psi^n\|$ in L^2-norm. Noting that

$$
\sum_{k=1}^{n} B_{n-k}^\alpha D_h \delta_h^{k-1} = \sum_{k=0}^{n-1} B_k^\alpha D^n \delta_h^{n-k} - \sum_{k=0}^{n-1} B_k^\alpha D^n \delta_h^{n-k-1} = \sum_{k=0}^{n-1} B_k^\alpha D^n \delta_h^{n-k-1},
$$

(34)
then (27) may be rewritten as

\[
\frac{\Delta t^{2-2\alpha}}{\Gamma(3-2\alpha)} \sum_{k=0}^{n-1} B_k^{2\alpha} (D_\alpha \delta^{n-k-1}, w_h)
\]

\[
+ \frac{2\kappa \Delta t^{1-\alpha}}{\Gamma(2-\alpha)} \sum_{k=0}^{n-1} B_k^{\alpha} (D_\alpha \delta^{n-k}, w_h) + \mathfrak{B} (\delta^n, w_h)
\]

\[
= -\frac{\Delta t^{2-2\alpha}}{\Gamma(3-2\alpha)} \sum_{k=1}^{n} B_{n-k}^{2\alpha} (D_\alpha \delta^{k-1}, w_h)
\]

\[
- \frac{2\kappa \Delta t^{1-\alpha}}{\Gamma(2-\alpha)} \sum_{k=0}^{n} B_{n-k}^{\alpha} (D_\alpha \delta^{k}, w_h)
\]

\[
+ \lambda (\phi^n, w_h) + (E_0^n, w_h) + \beta \left(\phi^n + \delta^n, \frac{\partial w_h}{\partial x} \right).
\]

We take \(w_h = \delta^n\) in (35) and multiply by

\[
\Gamma_a \equiv \Gamma(3-2\alpha) \Gamma(2-\alpha) \Delta t^{2\alpha},
\]

to arrive at

\[
\Gamma(2-\alpha) \sum_{k=0}^{n-1} B_k^{2\alpha} (\delta^{n-k-2} - 2\delta^{n-k-1} + \delta^{n-k}, \delta^n)
\]

\[
+ 2\kappa \Gamma(3-2\alpha) \Delta t^{\alpha} \sum_{k=0}^{n-1} B_k^{\alpha} (\delta^{n-k} - \delta^{n-k-1}, \delta^n)
\]

\[
+ \Gamma_a \mathfrak{B} (\delta^n, \delta^n)
\]

\[
= -\Gamma(2-\alpha) \sum_{k=0}^{n-1} B_k^{2\alpha} (\delta^{n-k} - 2\delta^{n-k-1} + \delta^{n-k-2}, \delta^n)
\]

\[
- 2\kappa \Gamma(3-2\alpha) \Delta t^{\alpha} \sum_{k=0}^{n-1} B_k^{\alpha} (\delta^{n-k} - \delta^{n-k-1}, \delta^n)
\]

\[
+ \lambda \Gamma_a (\phi^n, \delta^n) + \Gamma_a (E_0^n, \delta^n) + \beta \Gamma_a \left(\phi^n + \delta^n, \frac{\partial \delta^n}{\partial x} \right).
\]

By the simple calculation, we get the following equality:

\[
\Gamma(2-\alpha) \sum_{k=0}^{n-1} B_k^{2\alpha} (\delta^{n-k-2} - 2\delta^{n-k-1} + \delta^{n-k}, \delta^n)
\]

\[
+ 2\kappa \Gamma(3-2\alpha) \Delta t^{\alpha} \sum_{k=0}^{n-1} B_k^{\alpha} (\delta^{n-k} - \delta^{n-k-1}, \delta^n)
\]

\[
= (\Gamma(2-\alpha) + 2\kappa \Gamma(3-2\alpha)) \| \delta^n \|^2 + \Gamma(2-\alpha)
\]

\[
\times \left[(B_1^{2\alpha} - 2B_0^{2\alpha}) (\delta^{n-1}, \delta^n)
\right.

\[
- B_n^{2\alpha} (\delta^0, \delta^n) + B_{n-1}^{2\alpha} (\delta^{-1}, \delta^n)
\]

\[
+ \sum_{k=1}^{n-1} (B_{k+1}^{2\alpha} - 2B_k^{2\alpha} + B_{k-1}^{2\alpha}) (\delta^{n-k-1}, \delta^n)
\]

+ 2\kappa \Gamma(3-2\alpha) \Delta t^{\alpha} \times \left[\sum_{k=1}^{n-1} (B_{k+1}^{2\alpha} - B_{k-1}^{2\alpha}) (\delta^{n-k-1}, \delta^n) - B_{n-1}^{2\alpha} (\delta^0, \delta^n) \right].
\]

By applying the similar process of calculation to (38), we use Cauchy-Schwarz inequality to get

\[
-\Gamma(2-\alpha) \sum_{k=0}^{n-1} B_k^{2\alpha} (\phi^{n-k} - 2\phi^{n-k-1} + \phi^{n-k-2}, \delta^n)
\]

\[
- 2\kappa \Gamma(3-2\alpha) \Delta t^{\alpha} \sum_{k=0}^{n-1} B_k^{\alpha} (\phi^{n-k} - \phi^{n-k-1}, \delta^n)
\]

\[
\leq (\Gamma(2-\alpha) + 2\kappa \Gamma(3-2\alpha) \Delta t^{\alpha}) \| \phi^n \| + \Gamma(2-\alpha)
\]

\[
\times \left[(2B_0^{2\alpha} - B_1^{2\alpha}) \| \phi^{n-1} \| + B_1^{2\alpha} \| \phi^0 \| + B_n^{2\alpha} \| \phi^{n-1} \| \right] \| \delta^n \|
\]

\[
+ 2\kappa \Gamma(3-2\alpha) \Delta t^{\alpha}
\]

\[
\times \left[\sum_{k=1}^{n-1} |B_{k+1}^{2\alpha} - B_{k-1}^{2\alpha}| \| \phi^{n-k} \| + B_{n-1}^{2\alpha} \| \phi^0 \| \right] \| \delta^n \|.
\]

Noting (33), we use Cauchy-Schwarz inequality and Young inequality to have

\[
\beta \Gamma_a \left(\phi^n + \delta^n, \frac{\partial \delta^n}{\partial x} \right)
\]

\[
\leq \beta \Gamma_a \| \phi^n \| \| \frac{\partial \delta^n}{\partial x} \| + \beta \Gamma_a \| \delta^n \| \| \frac{\partial \delta^n}{\partial x} \|
\]

\[
\leq C(\beta) \Gamma_a \| \phi^n \|^2 + \| \delta^n \|^2
\]

\[
+ C(\beta) \Gamma_a \| \phi^n \|^2 + \| \delta^n \|^2 + C(\beta) \Gamma_a \| \delta^n \|^2.
\]

Substitute (38), (39), and (40) into (37) and use Cauchy-Schwarz inequality to arrive at

\[
\Gamma(2-\alpha) + 2\kappa \Gamma(3-2\alpha) \Delta t^{\alpha} - C(\beta) \Gamma_a \| \delta^n \|^2
\]

\[
+ \Gamma_a \mathfrak{B} (\delta^n, \delta^n).
\]
By an application of Young inequality, we get

$$\leq \left((\Gamma (2 - \alpha) + 2 \kappa \Gamma (3 - 2 \alpha) \Delta t^\alpha) \| \varepsilon^\alpha \| + \Gamma (2 - \alpha) \right)$$

$$\times \left[\left(2 B_{0}^{2\alpha} - B_{1}^{2\alpha} \right) \left(\| \delta^{n-1} \| + \| \varepsilon^{n-1} \| \right) + B_{n}^{2\alpha} \left(\| \delta^0 \| + \| \varepsilon^0 \| \right) + \sum_{k=1}^{n-1} \left(B_{k}^{2\alpha} - 2 B_{k}^{\alpha} + B_{k}^{2\alpha} \right) \times \left(\| \delta^{n-k-1} \| + \| \varepsilon^{n-k-1} \| \right) \right]$$

$$\times \left[\left(B_{n}^{2\alpha} \left(\| \delta^0 \| + \| \varepsilon^0 \| \right) + B_{n-1}^{2\alpha} \left(\| \delta^{-1} \| + \| \varepsilon^{-1} \| \right) \right) \right]$$

$$+ \lambda \Gamma_{\alpha} \left(\| \varepsilon^n \| + \Gamma_{\alpha} \| E_{0}^\alpha \| \right) \| \delta^n \|$$

$$+ 2 \kappa \Gamma (3 - 2 \alpha) \Delta t^\alpha$$

$$\times \left[\sum_{k=1}^{n-1} \left(B_{k}^{2\alpha} - B_{k-1}^{2\alpha} \right) \left(\| \delta^{n-k} \| + \| \varepsilon^{n-k} \| \right) \right]$$

$$+ \lambda \Gamma_{\alpha} \left(\| \varepsilon^n \| + \Gamma_{\alpha} \| E_{0}^\alpha \| \right)$$

Noting that $B_{k}^{2\alpha} - B_{k-1}^{2\alpha} > 0$, we arrive at

$$\sum_{k=1}^{n-1} \left| B_{k}^{2\alpha} - B_{k-1}^{2\alpha} \right|$$

$$\leq \sum_{k=1}^{n-1} \left(B_{k}^{2\alpha} - B_{k-1}^{2\alpha} \right) + \sum_{k=1}^{n-1} \left(B_{k}^{2\alpha} - B_{k-1}^{2\alpha} \right)$$

$$= B_{1}^{2\alpha} - B_{n}^{2\alpha} + B_{n}^{2\alpha} - B_{n-1}^{2\alpha}.$$
Substitute (45) into (42) and note that \(\mu_0 \| \delta^n \|_1 \leq \mathcal{B}(\delta^n, \delta^n)/\| \delta^n \|_1 \leq \mathcal{B}(\delta^n, \delta^n)/\| \delta^n \|_1 \) to get

\[
\sqrt{\Gamma(2-\alpha)} \| \delta^n \| + \mu_0 \sqrt{\Gamma(2-\alpha)} \| \delta^n \|_1 \\
\leq \sqrt{\Gamma(2-\alpha)} \left[(2B_0^{2\alpha} - B_1^{2\alpha}) \| \delta^{n-1} \| \\
+ B_n^{2\alpha} \| \delta^0 \| + B_n^{2\alpha} \| \delta^{-1} \| \\
+ \sum_{k=1}^{n-1} \left\| B_{k+1}^{2\alpha} - 2B_k^{2\alpha} + B_{k-1}^{2\alpha} \right\| \| \delta^{n-k-1} \| \right] \\
+ 2\alpha \Gamma(3-2\alpha) \frac{\Delta t^{2\alpha}}{\sqrt{\Gamma(2-\alpha)}} \\
\times \left[\left\| \frac{1}{B_{k+1}^{2\alpha} - B_{k-1}^{2\alpha}} \right\| \| \delta^{n-k} \| + B_n^{2\alpha} \| \delta^0 \| \right] \\
+ \frac{\Gamma(2-\alpha) + 2\alpha \Gamma(3-2\alpha) \Delta t^{2\alpha}}{\sqrt{\Gamma(2-\alpha)}} \\
\times (\Gamma(2-\alpha) + 2\alpha \Gamma(3-2\alpha) \Delta t^{2\alpha}) \right) \\
+ 2\alpha \Gamma(3-2\alpha) \Delta t^{2\alpha} \\
\times \left[\sum_{k=1}^{n-1} \left\| B_{k+1}^{\alpha} - B_{k-1}^{\alpha} \right\| \frac{C(u, \sigma, \alpha, \beta)}{B_n^{2\alpha}} \right] \\
\times (\Gamma(2-\alpha) + 2\alpha \Gamma(3-2\alpha) \Delta t^{2\alpha}) \\
+ \frac{\Gamma(2-\alpha) \Delta t}{\sqrt{\Gamma(2-\alpha)}} \\
\times \left[\left\| \frac{1}{B_{k+1}^{\alpha} - B_{k-1}^{\alpha}} \right\| \| \delta^0 \| \right] \\
+ \Gamma(3-2\alpha) \frac{\Delta t^{2\alpha}}{\sqrt{\Gamma(2-\alpha)}} \\
\times \left(\Gamma(2-\alpha) + 2\alpha \Gamma(3-2\alpha) \Delta t^{2\alpha} \right)
\right)
\]

In the following discussion, we apply mathematical induction to obtain the error result

\[
\| \delta^n \| \leq \frac{C(u, \sigma, \alpha, \beta)}{B_n^{2\alpha}} (h^{k+1} + h^{r+1} + \Delta t^2 + \Delta t^{1+2\alpha})
\]

(47)

Take \(n = 1 \) in (46) and note that \(B_0^{2\alpha} = 1 \); it is easy to find that the following inequality holds:

\[
\| \delta^1 \| + \Delta t^2 \| \delta^1 \|_1 \\
\leq C(u, \sigma, \alpha, \beta) (h^{k+1} + h^{r+1} + \Delta t^2 + \Delta t^{1+2\alpha})
\]

(48)

Based on the process of mathematical induction, we claim that (47) holds.

For the need of the next proof, we have to estimate the term \(n^{1-2\alpha}/B_n^{2\alpha} \). We now use Taylor formula to arrive at

\[
\frac{n^{1-2\alpha}}{B_n^{2\alpha}} = \frac{n^{1-2\alpha}}{n^{2-2\alpha} - (n-1)^{2-2\alpha}} \\
= \frac{1}{n - (n-1)^2(1 + (n-1)^{2-2\alpha})^{-1}} \\
= \left(\frac{1}{n - (n-1)}
ight) \\
\times \left[1 + (2\alpha - 1) \frac{1}{n-1} + \frac{(2\alpha - 1)(2\alpha - 2)}{2!} \right]^{-1} \\
\times \left(1 + \theta \frac{1}{n-1} \right)^{2\alpha-3} \left(\frac{1}{n-1} \right)^2
\]

Assuming that the inequalities \(\| \delta^j \| \leq (C(u, \sigma, \alpha, \beta)/B_j^{2\alpha})(h^{k+1} + h^{r+1} + \Delta t^2 + \Delta t^{1+2\alpha}) \) hold for \(j = 1, 2, \ldots, n-1 \), we now prove that the inequality (47) holds. Noting that \(1/B_j^{2\alpha} < 1/B_{j+1}^{2\alpha} \), \(j = 1, 2 \), and combining (43) and (44) with (46), we have
where $0 < \theta < 1$ and $1/2 < \alpha < 1$. Noting that $(n\Delta t)^{2\alpha-1} \leq T^{2\alpha-1}$ and (50), we have

$$
\|\delta^n\| + \Delta t^\alpha \|\delta^n\|_1 \leq C(u, \sigma, \alpha, \beta) \left(h^{r+1} + h^{k+1} + \Delta t^2 + \Delta t^{1+2\alpha} \right)
$$

$$
= n^{2\alpha-1} \Delta t^{2\alpha-1} \Delta t^{-1-2\alpha} n^{-1-2\alpha} C(u, \sigma, \alpha, \beta) \left(h^{r+1} + h^{k+1} + \Delta t^2 + \Delta t^{1+2\alpha} \right)
$$

$$
= C(u, \sigma, \alpha, \beta) T^{2\alpha-1} \left(h^{r+1} + h^{k+1} + \Delta t^2 + \Delta t^{3-2\alpha} \right) + C(\alpha) h^{r+1}.
$$

By combining (51) and (18) with triangle inequality, the L^2-norm estimate $\|\sigma^n - \sigma^n_\alpha\|$ is got. Similarly, the estimate $\|u^n - u^n_\alpha\|$ in the L^2-norm and the estimate $\|u^n - u^n_\alpha\|_1$ in the H^1-norm also are obtained by a combination of (52) and (15) with triangle inequality.

Now we mainly analyze the case $\alpha \to 1$. We can find that the error inequality (29) in this case has no meaning since the coefficient $C(u, \sigma, \alpha, \beta)/(2 - 2\alpha) \to \infty$ as $\alpha \to 1$. So, we have to look for another error estimate's process. Noting the fact that $n\Delta t \leq T$ ($n = 1, 2, \ldots, M$), we can obtain the following error inequality:

$$
\|\delta^n\| \leq C(u, \sigma, \alpha, \beta) n\Delta t \left(\Delta t^{1-2\alpha} (h^{r+1} + h^{k+1}) + \Delta t^{3-2\alpha} \right).
$$

Now we can use induction to prove the inequality (53). The detailed proof is similar to the above process of analysis, so we do not give the detailed proof again. Making a combination of (53) and (18) with triangle inequality, we can get the estimate (31). A similar discussion for (32) can also be made. \qed

4. An H^1-GMFE Scheme for Several Spaces Variables

In this section, we consider (1) with two and three spaces variables. Let $L^2(\Omega) = (L^2(\Omega))^d$, $(d = 2$ or 3) with inner product and norm

$$
(q, w) = \sum_{i=1}^d (q_i, w_i), \quad \|w\| = \left(\sum_{i=1}^d \|w_i\|^2 \right)^{1/2}.
$$

Further, let

$$
W = H(\text{div}, \Omega) = \{w \in L^2(\Omega) \mid \nabla \cdot w \in L^2(\Omega)\}
$$

with norm

$$
\|w\|_{H(\text{div}, \Omega)} = \left(\|w\|^2 + \|
abla \cdot w\|^2 \right)^{1/2}.
$$

Taking $q = \nabla u$, we use a similar process to the system (10) and (11) to get the H^1-Galerkin mixed weak formulation $\{u, q\} : [0, T] \mapsto H_0^1 \times W$ by

$$
(\nabla u, \nabla v) = (q, \nabla v), \quad \forall v \in H_0^1,
$$

$$
(\alpha_{q0}^n, q, w) + 2\kappa (\alpha_{q0}^n, q, w) + (\nabla \cdot q, \nabla \cdot w)
$$

$$
= \beta(u, \nabla \cdot w) - (f, \nabla \cdot w), \quad \forall w \in W.
$$

The corresponding time semidiscete system is defined by

$$
\frac{\Delta t^{2-2\alpha}}{\Gamma(3-2\alpha)} \sum_{k=1}^n B_{n-k}^{2\alpha} (D_k q^{k-1}, w)
$$

$$
+ 2\kappa \Delta t^{1-\alpha} \sum_{k=1}^n B_{n-k}^{2\alpha} (D_k q^k, w) + (\nabla \cdot q^n, \nabla \cdot w)
$$

$$
= \beta(u^n, \nabla \cdot w) - (f^n, \nabla \cdot w) + (R_{n0}^q, w), \quad \forall w \in W,
$$

where $R_{n0}^q = O(\Delta t)$, which can be estimated by a similar process to E_{n0}^q.

\[\Box\]
In order to get fully discrete mixed finite element scheme, we now choose the finite element spaces $V_h \subset H^1_0$ and $W_h \subset W$, which satisfy the following approximation properties: for $1 \leq p \leq \infty$ and k, r positive integers [33],
\[
\inf_{v_h \in V_h} \left\{ \| v - v_h \| + h \| \nabla v - \nabla v_h \| \right\}_{1,1} \\
\leq Ch^{k+1} \| \nabla v \|_{k+1}, \quad v \in H^1 \cap H^{k+1}, \quad \inf_{w_h \in W_h} \left\{ \| w - w_h \| + h \| \nabla w - \nabla w_h \|_{H(div;\Omega)} \right\} \\
\leq Ch^{r+1} \| \nabla w \|_{r+1}, \quad w \in H^{r+1}. \quad (59)
\]

The fully discrete H^1-GMFE scheme is to find $\{u^n_h, q^n_h\} : [0, T] \mapsto V_h \times W_h$ such that
\[
\left(\nabla u^n_h, \nabla v_h \right) = (q^n_h, \nabla v_h), \quad \forall v_h \in V_h, \quad (60)
\]
\[
\frac{\Delta t^{2-\alpha}}{\Gamma(3-2\alpha)} \sum_{k=1}^{n} \beta_{n-k} (D_t q_{k-1}^n, w_h) \\
+ \frac{2\kappa\Delta t^{1-\alpha}}{\Gamma(2-\alpha)} \sum_{k=1}^{n} B_{n-k} (D_t q_k^n, w_h) \\
+ \beta (u^n_h, \nabla \cdot w_h) - (f^n, \nabla \cdot w_h), \quad \forall w \in W_h. \quad (61)
\]

4.1. The Analysis of Stability. In the following discussion, we will give the stability for the system (60) and (61). First, we need to obtain an important lemma on two initial value conditions.

Lemma 6. With $q_0 = \nabla u_0$ and $q(0) = \nabla u_1$, the following inequality holds:
\[
\| q^{-1}_h \| \leq C (\| u_0 \|_1 + \Delta t \| u_1 \|_1). \quad (62)
\]

Proof. By a similar discussion as in [32], we have
\[
\| q^{-1}_h \| \leq C (\| q_0 \| + \Delta t \| q(0) \|). \quad (63)
\]

Based on the given initial value conditions and (63), we arrive at
\[
\| q^{-1}_h \| \leq C (\| \nabla u_0 \| + \Delta t \| \nabla u_1 \|) \leq C (\| u_0 \|_1 + \Delta t \| u_1 \|_1). \quad (64)
\]

Theorem 7. The following stable inequality for the system (60) and (61) holds:
\[
\| u^n_h \|_1 + \| q^n_h \| + \sqrt{\Gamma \alpha} \| \nabla \cdot q^n_h \| \\
\leq C (\| u_0 \|_1 + \Delta t \| u_1 \|_1) \quad (65)
\]

Proof. In (60), we take $v_h = \nabla u^n_h$ and use Cauchy-Schwarz inequality and Poincaré inequality to arrive at
\[
\| u^n_h \|_1 + \| q^n_h \| \leq C \| \nabla u^n_h \| \leq C \| q^n_h \|. \quad (66)
\]

In (61), we choose $w_h = q^n_h$ and use Cauchy-Schwarz inequality, Young inequality, and (66) to get
\[
\frac{\Delta t^{2-2\alpha}}{\Gamma(3-2\alpha)} \sum_{k=1}^{n} \beta_{n-k} (D_t q_{k-1}^n, q^n_h) \\
+ \frac{2\kappa\Delta t^{1-\alpha}}{\Gamma(2-\alpha)} \sum_{k=1}^{n} B_{n-k} (D_t q_k^n, q^n_h) + \| \nabla \cdot q^n_h \|^2 \\
\leq C \| q^n_h \| \| \nabla \cdot q^n_h \| + \| f^n \| \| \nabla \cdot q^n_h \| \\
\leq C \left(\| q^n_h \|^2 + \| f^n \|^2 \right) + \frac{1}{2} \| \nabla \cdot q^n_h \|^2. \quad (67)
\]

By the simple simplification for (67), we easily get
\[
\frac{\Delta t^{2-2\alpha}}{\Gamma(3-2\alpha)} \sum_{k=1}^{n} \beta_{n-k} (D_t q_{k-1}^n, q^n_h) \\
+ \frac{2\kappa\Delta t^{1-\alpha}}{\Gamma(2-\alpha)} \sum_{k=1}^{n} B_{n-k} (D_t q_k^n, q^n_h) + \frac{1}{2} \| \nabla \cdot q^n_h \|^2 \\
\leq C \left(\| q^n_h \|^2 + \| f^n \|^2 \right). \quad (68)
\]

For the case $n = 1$ in (68), we multiply (36) to get easily
\[
\Gamma (2 - \alpha) B_0^{\alpha} \left(q_1 - 2q_0 + q_1 \right) \\
+ 2\kappa\Delta t^{1} \Gamma (3-2\alpha) B_0^{\alpha} (q_0 - q_0, q_0) + \kappa \Gamma \alpha \| \nabla \cdot q_0 \|^2 \\
\leq CT_\alpha \left(\| q_0 \|^2 + \| f \|^2 \right). \quad (69)
\]

Noting that $B_0^{\alpha} = 1 = B_0^{2\alpha}$ and Lemma 6, we use Cauchy-Schwarz inequality to get
\[
\left(\frac{1}{2} \Gamma (2 - \alpha) + \kappa \Delta t \Gamma (3-2\alpha) - CT_\alpha \right) \| q_0 \|^2 \\
+ \kappa \Gamma \alpha \| \nabla \cdot q_0 \|^2 \\
\leq CT_\alpha \| f \|^2 + C (\| u_0 \|^2 + \| q_0 \|^2) \\
\leq \Gamma \alpha \| f \|^2 + C (\| u_0 \|^2 + \Delta t \| u_1 \|^2) \\
\leq C (\| u_0 \|^2 + \Delta t \| u_1 \|^2)^2. \quad (70)
\]

By the simple calculation for (70), we arrive at
\[
\| q_1 \| + \sqrt{\Gamma \alpha} \| \nabla \cdot q_1 \| \\
\leq C (\| u_0 \|^2 + \Delta t \| u_1 \|^2) \quad (71)
\]
For the case \(n \geq 1 \), using a similar process to the proof of Theorem 5 based on the mathematical induction, we can get
\[
\| q^n_k \| + \sqrt{T_n} \| \nabla \cdot q^n_k \| \\
\leq C(\alpha) \left(\| \mathcal{R} \| + \sum_{j=1}^n \| f^j \| + \| u_0 \| + T \right).
\] (72)

By a combination of (72) and (66), we get the conclusion of Theorem 7.

4.2. A Priori Error Results. For deriving the a priori error analysis, we define the Ritz projection \(\tilde{u}_h \in V_h \) by
\[
(\nabla (u - \tilde{u}_h), \nabla v_h) = 0, \quad v_h \in V_h.
\] (73)

Further, let \(\tilde{q}_h \in W_h \) be the standard finite element interpolant of \(q \).

Let \(r = q - \tilde{q}_h, \eta = u - \tilde{u}_h \); see \([33, 44]\); we obtain
\[
\| r \|_j \leq C h^{k+1-j} \| u \|_{k+1}, \quad j = 0, 1,
\]
\[
\| r \| \leq C h^{r+1} \| q \|_{r+1}.
\] (74)

Now, we can get the following theorem of a priori error estimates based on the above contents.

Theorem 8. With \(q_0 = \nabla u_0, \eta = u - \tilde{u}_h \), \(\nabla u^n = H^1 \cap H^{k+1} \), and \(q^n \in H^{k+1} \), there exists a positive constant \(C(u, q, \alpha, \beta) \) free of space-time meshes \(h \) and \(d \) such that, for \(1/2 < \alpha < 1 \),
\[
\| q^n - q^n_k \| \leq C(u, q, \alpha, \beta) \left(\frac{T_{k+1}}{2 - 2\alpha} \| u \|_{k+1} \right) + C(\alpha) h^{r+1},
\]
\[
\| u^n - u^n_k \| \leq C(u, q, \alpha, \beta) \left(\frac{T_{k+1}}{2 - 2\alpha} \| u \|_{k+1} \right) + C(\alpha) h^{r+1}, \quad j = 0, 1,
\] (75)

and for \(\alpha \to 1 \)
\[
\| q^n - q^n_k \| \leq C(u, q, \alpha, \beta) \left(\frac{T_{k+1}}{2 - 2\alpha} \| u \|_{k+1} \right) + C(\alpha) h^{r+1},
\]
\[
\| u^n - u^n_k \| \leq C(u, q, \alpha, \beta) \left(\frac{T_{k+1}}{2 - 2\alpha} \| u \|_{k+1} \right) + C(\alpha) h^{r+1}, \quad j = 0, 1.
\] (76)

Proof. We can use a similar proof as in Theorem 5 to get the conclusion of Theorem 8, so we do not discuss that again.

5. Some Numerical Results

Here, in order to show the numerical performances on the rate of convergence and a priori error estimates, we now choose \(\kappa = 1/2 \) and \(\beta = 0 \), the exact solution \(u(x, t) = t^{\frac{\alpha}{2}} \sin(2\pi x) \), for all \((x, t) \in [0, 1] \times [0, 1]\), and the determined source term \(f(x, t) \) by the exact solution in (5) and then calculate some numerical results by using Matlab procedure. In the numerical calculation, the time direction is approximated by finite difference schemes and the spatial direction is discretized by the \(H^1 \)-GMFE method. Now, we divide interval \([0, 1]\) into equal-length intervals \(e_i = [x_i, x_{i+1}] \), \(0 \leq i \leq N - 1 \). Now we choose the piecewise linear spaces \(V_h = \text{span}\{\varphi_1, \varphi_2, \ldots, \varphi_{N-1}\} \) and \(W_h = \text{span}\{\psi_0, \psi_1, \ldots, \psi_N\} \) with index \(k = r = 1 \). Let
\[
u^n_h = \sum_{k=1}^{N-1} u_k \varphi_k, \quad \sigma^n_h = \sum_{k=0}^{N} \sigma_k \psi_k.
\] (77)

Based on the above expressions (77), we can get the following equivalent algebraic equation of (25):
\[
[(a + b) E + F] \bar{q}^{n+1} = a \sum_{k=1}^{n-1} \left(-B_{n-k}^{2\alpha} - 2 B_{n-k} - B_{n-k-1}^{2\alpha} \right) \bar{E}^{k-1} + a \left(2 B_0^{2\alpha} - B_1^{2\alpha} \right) \bar{E}^{n-1} + b \sum_{k=1}^{n} \left(-B_{n-k}^{2\alpha} + B_{n-k} \right) \bar{E}^{k-1} - a B_{n-1}^{2\alpha} \bar{E}^{0} \bar{f}^{n},
\]
\[
G\bar{q}^{n} = H \bar{q}^{n},
\] (78)

where \(a = \Delta t^{-2\alpha}/(3 - 2\alpha), \quad b = \Delta t^{1-\alpha}/(2 - \alpha), \quad \bar{u}^{n} = (u_1^n, u_2^n, \ldots, u_{N-1}^n)^T, \quad \bar{q}^{n} = (\sigma_0^n, \sigma_1^n, \ldots, \sigma_{N-1}^n)^T, \quad \bar{f}^{n} = (f_1^n, \psi_0, \ldots, f_{N}^n, \psi_N)^T, \quad E = \begin{pmatrix} h & h & h \\ \frac{h}{3} & \frac{2h}{3} & h \\ \frac{2h}{6} & \frac{h}{3} & \frac{h}{6} \end{pmatrix}_{(n+1)\times(n+1)}
\]
\[
F = \begin{pmatrix} -1 & -1 & -1 \\ 2 & 1 & \frac{1}{2} \\ \frac{1}{h} & \frac{1}{2} & \frac{1}{h} \end{pmatrix}_{(n+1)\times(n+1)}
\]
The changed spatial meshes

TheScientificWorldJournal 11

Based on the algebraic equation (78), we calculate and get the detailed numerical results listed in Tables 1–4.

In Table 1, we calculate the numerical results of a priori error results and orders of convergence in L^2-norm for both u and σ with a fixed time step length $\Delta t = 1/4000$ and the changed spatial meshes $h_1 = 1/20$, $h_2 = 1/40$, and $h_3 = 1/80$. From the calculated data, we can clearly see that the orders of convergence in L^2-norm keep unchanged with the changed $\alpha = 0.6, 0.7, 0.8, 0.9$, which confirm the optimal second-order convergence results of H^1-Galerkin mixed finite element method. Similarly, we obtain optimal first-order rates of convergence of H^1-norm for u and σ in Table 2.

In Table 3, we calculate the numerical results of a priori error results and orders of convergence in L^2-norm for both u and σ with different space-time step length $h = 5\Delta t = 1/M (M = 20, 40, 80)$. From the calculated data, we can find that the rates of convergence, which are higher than the results $O(\Delta t^{3-2\alpha} + h^2)$ of theory, gradually decrease with the increased α (which is taken from 0.6 to 0.9 with interval 0.1). In Table 4, some first-order convergence results for both u and σ in H^1-norm, which are unchanged with the changed $\alpha = 0.6, 0.7, 0.8, 0.9$, are given.

In view of the above analysis on the numerical results, we now announce that the time fractional telegraph equation can be well solved by the H^1-GMFE method.

6. Some Concluding Remarks and Extensions

As far as we know, more and more people have proposed and analyzed a lot of numerical methods for fractional partial differential equations. However, the discussions on mixed finite element methods for solving fractional partial differential equations are fairly limited. The a priori error analysis of H^1-GMFE method for time fractional telegraph equation, especially, has not been made and discussed. In this paper, we give the detailed proof’s process of the error analysis on H^1-GMFE method for time fractional telegraph equation. Further, we provide a numerical procedure to verify the theoretical results of the studied method.
In the near future, our aim is to study an H^1-Galerkin moving mixed finite element method, which is based on a combination of H^1-GMFE methods and moving finite element methods.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

The authors thank the anonymous referees and editor for their valuable comments and suggestions, which greatly help them improve this work. This work is supported by the National Natural Science Fund (11301258, 11361035), the National Science Fund of Inner Mongolia Autonomous Region (2012MS0108, 2012MS0106), and the Scientific Research Projection of Higher Schools of Inner Mongolia (NJZZ1201, NJZY13199).

References

[1] C. Li, Z. Zhao, and Y. Chen, “Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion,” Computers and Mathematics with Applications, vol. 62, no. 3, pp. 855–875, 2011.

[2] H. Sun, W. Chen, and K. Y. Sze, “A semi-discrete finite element method for a class of time-fractional diffusion equations,” Philosophical Transactions of the Royal Society of London A, vol. 371, no. 1990, Article ID 20120268, 2013.

[3] Y. J. Jiang and J. T. Ma, “High-order finite element methods for time-fractional partial differential equations,” Journal of Computational and Applied Mathematics, vol. 235, no. 11, pp. 3285–3290, 2011.

[4] Y. Y. Zheng, C. P. Li, and Z. G. Zhao, “A note on the finite element method for the space-fractional advection diffusion equation,” Computers & Mathematics with Applications, vol. 59, no. 5, pp. 1718–1726, 2010.

[5] J. T. Ma, J. Q. Liu, and Z. Q. Zhou, “Convergence analysis of moving finite element methods for space fractional differential equations,” Journal of Computational and Applied Mathematics, vol. 255, pp. 661–670, 2014.

[6] N. J. Ford, J. Xiao, and Y. Yan, “A finite element method for time fractional partial differential equations,” Fractional Calculus and Applied Analysis, vol. 14, no. 3, pp. 454–474, 2011.

[7] N. Zhang, W. H. Deng, and Y. J. Wu, “Finite difference/element method for a two-dimensional modified fractional diffusion equation,” Advances in Applied Mathematics and Mechanics, vol. 4, no. 4, pp. 496–518, 2012.

[8] Z. G. Zhao and Y. Y. Zheng, “Leapfrog/finite element method for fractional diffusion equation,” The Scientific World Journal, vol. 2014, Article ID 982413, 9 pages, 2014.

[9] Y. Liu, H. Li, W. Gao, S. He, and Z. C. Fang, “A new mixed finite element method for a class of time-fractional partial differential equations,” The Scientific World Journal, vol. 2014, Article ID 141467, 8 pages, 2014.
[10] M. M. Meerschaert and C. Tadjeran, “Finite difference approximations for fractional advection-dispersion flow equations,” Journal of Computational and Applied Mathematics, vol. 172, no. 1, pp. 65–77, 2004.

[11] A. Atangana and D. Baleanu, “Numerical solution of a kind of fractional parabolic equations via two difference schemes,” Abstract and Applied Analysis, vol. 2013, Article ID 828764, 8 pages, 2013.

[12] M. M. Meerschaert and C. Tadjeran, “Finite difference approximations for two-sided space-fractional partial differential equations,” Applied Numerical Mathematics, vol. 56, no. 1, pp. 80–90, 2006.

[13] F. Liu, P. Zhuang, V. Anh, I. Turner, and K. Burrage, “Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation,” Applied Mathematics and Computation, vol. 191, no. 1, pp. 12–20, 2007.

[14] H. Zhang, F. Liu, M. S. Phanikumar, and M. M. Meerschaert, “A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model,” Computers & Mathematics with Applications, vol. 66, no. 5, pp. 693–701, 2013.

[15] D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, vol. 3 of Series on Complexity, Nonlinearity and Chaos, World Scientific Publishing, New York, NY, USA, 2012.

[16] S. Shen, F. Liu, V. Anh, I. Turner, and J. Chen, “A characteristic difference method for the variable-order fractional advection-diffusion equation,” Journal of Applied Mathematics and Computation, vol. 42, no. 1-2, pp. 371–386, 2013.

[17] K. Wang and H. Wang, “A fast characteristic finite difference method for fractional advection-diffusion equations,” Advances in Water Resources, vol. 34, no. 7, pp. 810–816, 2011.

[18] R. Lin, F. Liu, V. Anh, and I. Turner, “Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation,” Applied Mathematics and Computation, vol. 212, no. 2, pp. 435–445, 2009.

[19] S. B. Yuste and J. Quintana-Murillo, “A finite difference method with non-uniform timesteps for fractional diffusion equations,” Computer Physics Communications, vol. 183, no. 12, pp. 2594–2600, 2012.

[20] S. B. Yuste, “Weighted average finite difference methods for fractional diffusion equations,” Journal of Computational Physics, vol. 216, no. 1, pp. 264–274, 2006.

[21] E. Sousa, “A second order explicit finite difference method for the fractional advection diffusion equation,” Computers & Mathematics with Applications, vol. 64, no. 10, pp. 3141–3152, 2012.

[22] H. Sun, W. Chen, C. Li, and Y. Chen, “Finite difference schemes for variable-order time fractional diffusion equation,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 22, no. 4, Article ID 1250085, 16 pages, 2012.

[23] Y. N. Zhang, Z. Z. Sun, and X. Zhao, “Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation,” SIAM Journal on Numerical Analysis, vol. 50, no. 3, pp. 1535–1555, 2012.

[24] G.-H. Gao and Z.-Z. Sun, “The finite difference approximation for a class of fractional sub-diffusion equations on a space unbounded domain,” Journal of Computational Physics, vol. 236, pp. 443–460, 2013.

[25] Q. Q. Yang, I. Turner, T. Moroney, and F. W. Liu, “A finite volume scheme with preconditioned Lanczos method for two-dimensional space-fractional reaction-diffusion equations,” Applied Mathematical Modelling, 2014.

[26] F. Liu, P. Zhuang, I. Turner, K. Burrage, and V. Anh, “A new fractional finite volume method for solving the fractional diffusion equation,” Applied Mathematical Modelling, 2013.

[27] Y. M. Lin and C. J. Xu, “Finite difference/spectral approximations for the time-fractional diffusion equation,” Journal of Computational Physics, vol. 225, no. 2, pp. 1533–1552, 2007.

[28] W. H. Deng and J. S. Hesthaven, “Local discontinuous Galerkin methods for fractional ordinary differential equations,” http://arxiv.org/abs/1403.5759.

[29] Z. Ren, L. Wei, Y. He, and S. Wang, “Numerical analysis of an implicitly discrete local discontinuous Galerkin method for the fractional Zakharov-Kuznetsov equation,” Mathematical Modelling and Analysis, vol. 17, no. 4, pp. 558–570, 2012.

[30] X. Zhang, J. Liu, J. Wen, B. Tang, and Y. N. He, “Analysis for one-dimensional time-fractional Tricomi-type equations by LDG methods,” Numerical Algorithms, vol. 63, no. 1, pp. 143–164, 2013.

[31] L. Wei, H. Dai, D. Zhang, and Z. Si, “Fully discrete local discontinuous Galerkin method for solving the fractional telegraph equation,” Calcolo, vol. 51, no. 1, pp. 175–192, 2014.

[32] Z. G. Zhao and C. P. Li, “Fractional difference/finite element approximations for the time-space fractional telegraph equation,” Applied Mathematics and Computation, vol. 219, no. 6, pp. 2975–2988, 2012.

[33] A. K. Pani, “An H^1-Galerkin mixed finite element method for parabolic partial differential equations,” SIAM Journal on Numerical Analysis, vol. 35, no. 2, pp. 712–727, 1998.

[34] A. K. Pani and G. Fairweather, “H^1-Galerkin mixed finite element methods for parabolic partial integro-differential equations,” IMA Journal of Numerical Analysis, vol. 22, no. 2, pp. 231–252, 2002.

[35] A. K. Pani, R. K. Sinha, and A. K. Otta, “An H^1-Galerkin mixed method for second order hyperbolic equations,” International Journal of Numerical Analysis and Modeling, vol. 1, no. 2, pp. 111–129, 2004.

[36] L. Guo and H. Z. Chen, “H^1-Galerkin mixed finite element method for the regularized long wave equation,” Computing, vol. 77, no. 2, pp. 205–221, 2006.

[37] L. Guo and H. Z. Chen, “H^1-Galerkin mixed finite element method for the Sobolev equation,” Journal of Systems Science and Mathematical Sciences, vol. 26, no. 3, pp. 301–314, 2006.

[38] Y. Liu, H. Li, Y. Du, and J. Wang, “Explicit multistep mixed finite element method for RLW equation,” Abstract and Applied Analysis, vol. 2013, Article ID 768976, 12 pages, 2013.

[39] Y. Liu and H. Li, “H^1-Galerkin mixed finite element methods for pseudo-hyperbolic equations,” Applied Mathematics and Computation, vol. 212, no. 2, pp. 446–457, 2009.

[40] Z. Zhou, “An H^1-Galerkin mixed finite element method for a class of heat transport equations,” Applied Mathematical Modelling, vol. 34, no. 9, pp. 2414–2425, 2010.

[41] H. T. Che, Z. J. Zhou, Z. W. Jiang, and Y. J. Wang, “H^1-Galerkin expanded mixed finite element methods for nonlinear pseudo-parabolic integro-differential equations,” Numerical Methods for Partial Differential Equations, vol. 29, no. 3, pp. 799–817, 2013.

[42] Y. D. Zhang and D. Y. Shi, “Superconvergence of an H^1-Galerkin nonconforming mixed finite element method for a parabolic equation,” Computers & Mathematics with Applications, vol. 66, no. 11, pp. 2362–2375, 2013.

[43] D. Shi and Q. Tang, “Nonconforming H^1-Galerkin mixed finite element method for strongly damped wave equations,”
Numerical Functional Analysis and Optimization, vol. 34, no. 12, pp. 1348–1369, 2013.

[44] M. F. Wheeler, "A priori L_2 error estimates for Galerkin approximations to parabolic partial differential equations," SIAM Journal on Numerical Analysis, vol. 10, no. 4, pp. 723–759, 1973.