Uneven distribution of ventilation in acute respiratory distress syndrome

Christian Rylander¹, Ulf Tylén², Rauni Rossi-Norrlund³, Peter Herrmann⁴, Michael Quintel⁵ and Björn Bake⁶

¹Department of Anaesthesiology and Intensive Care, Sahlgrenska University Hospital, Göteborg, Sweden
²Professor, The Sahlgrenska Academy at Göteborg University, Department of Radiology, Sahlgrenska University Hospital, Göteborg, Sweden
³The Sahlgrenska Academy at Göteborg University, Department of Radiology, Sahlgrenska University Hospital, Göteborg, Sweden
⁴Engineer, Department of Anaesthesiology II – Intensive Care Medicine, Z.A.R.I., University Hospital Gottingen, Gottingen, Germany
⁵Professor, Department of Anaesthesiology II – Intensive Care Medicine, Z.A.R.I., University Hospital Gottingen, Gottingen, Germany
⁶Professor, The Sahlgrenska Academy at Göteborg University, Department of Pulmonary Medicine, Sahlgrenska University Hospital, Göteborg, Sweden

Corresponding author: Christian Rylander, christian.rylander@vgregion.se

Abstract

Introduction The aim of this study was to assess the volume of gas being poorly ventilated or non-ventilated within the lungs of patients treated with mechanical ventilation and suffering from acute respiratory distress syndrome (ARDS).

Methods A prospective, descriptive study was performed of 25 sedated and paralysed ARDS patients, mechanically ventilated with a positive end-expiratory pressure (PEEP) of 5 cmH₂O in a multidisciplinary intensive care unit of a tertiary university hospital. The volume of poorly ventilated or non-ventilated gas was assumed to correspond to a difference between the ventilated gas volume, determined as the end-expiratory lung volume by rebreathing of sulphur hexafluoride (EELVSF₆), and the total gas volume, calculated from computed tomography images in the end-expiratory position (EELVCT). The methods used were validated by similar measurements in 20 healthy subjects in whom no poorly ventilated or non-ventilated gas is expected to be found.

Results EELVSF₆ was 66% of EELVCT, corresponding to a mean difference of 0.71 litre. EELVSF₆ and EELVCT were significantly correlated (r² = 0.72; P < 0.001). In the healthy subjects, the two methods yielded almost identical results.

Conclusion About one-third of the total pulmonary gas volume seems poorly ventilated or non-ventilated in sedated and paralysed ARDS patients when mechanically ventilated with a PEEP of 5 cmH₂O. Uneven distribution of ventilation due to airway closure and/or obstruction is likely to be involved.

Introduction

Decreased functional residual capacity (FRC) and increased pulmonary resistance are hallmarks of acute respiratory distress syndrome (ARDS) [1]. Pathophysiological mechanisms include alveolar flooding and/or collapse, which contribute to shunting of blood and to hypoxaemia [2]. Whether true alveolar collapse or intraluminal oedema with increased impedance dominates is a matter of debate [3]. Furthermore, the expiratory flow limitation observed in ARDS patients has been attributed to the closure of small airways [4]. Pulmonary gas distal

ARDS = acute respiratory distress syndrome; CT = computed tomography; CV = coefficient of variation; EELVCT = total gas volume calculated from computed tomography images in the end-expiratory position; EELVSF₆ = end-expiratory lung volume measured by rebreathing of sulphur hexafluoride; FRC = functional residual capacity; FRCCT = FRC calculated from computed tomography scans; FRCSF₆ = FRC measured by sulfur hexafluoride rebreathing; HU = Hounsfield unit; PEEP = positive end-expiratory pressure; ZEEP = zero end-expiratory pressure.
to such an airway closure/obstruction may be poorly ventilated or non-ventilated. If so, it might not be included in FRC measurements based on tracer gas dilution. The end-expiratory lung volume determined by tracer gas dilution is termed ‘ventilated gas volume’ in this paper. Other techniques such as body plethysmography and radiographical methods [5] determine the total end-expiratory volume of pulmonary gas, irrespective of whether it is well ventilated, poorly ventilated or non-ventilated. This volume is termed ‘total gas volume’ in this report. A difference between the ventilated gas volume and the total gas volume can be interpreted as a volume of gas being poorly ventilated or non-ventilated. This difference is obvious in patients with chronic obstructive airway disease in whom FRC determined by gas dilution might be considerably lower than FRC determined by body plethysmography [6]. However, in mechanically ventilated ARDS patients the volume of poorly ventilated or non-ventilated gas seems not to have been studied in detail.

The aim of the present study was therefore to assess the volume of poorly ventilated or non-ventilated gas in mechanically ventilated ARDS patients, assuming the difference between the ventilated gas volume and the total gas volume to represent poorly ventilated or non-ventilated gas. To validate the methods involved, similar measurements were performed in young healthy subjects in whom no poorly ventilated or non-ventilated gas is expected to be found.

Materials and methods

Ethical approval

The study was approved by the local ethics committee and conducted in accordance with the Helsinki Declaration. Informed consent was obtained from the next-of-kin of the patients and directly from the healthy subjects.

Patients

Twenty-five sedated and mechanically ventilated patients were included from a mixed-adult intensive care unit. The criterion for selection was the eligible ARDS patient [7] having spent the longest time on mechanical ventilation at the time of the once-weekly available opportunity for computed tomography (CT). Patients were eligible for the study only if their arterial oxygenation was stable and between 10 and 26 kPa during mechanical ventilation with the following parameters: fraction of inspired oxygen 0.5; constant flow volume-controlled mode; tidal volume 8 to 10 ml/kg; positive end-expiratory pressure (PEEP) 5 cmH2O. Chronic obstructive pulmonary disease was not an exclusion criterion but was present only in one patient (no. 13). Clinical data are given in Table 1. Twenty healthy non-smoking students independent of the investigating institutions were enrolled and interviewed to rule out any history of tobacco use or obstructive lung disease. Anthropometric data for both groups are given in Table 2.

Measurements

The ventilated gas volume was determined in both groups by a gas dilution technique using rebreathing of sulphur hexafluoride. End-expiratory measurements in the ventilated patients were made at a PEEP of 5 cmH2O (EELV$_{SF6}$) and measurements in the spontaneously breathing healthy subjects were made at the FRC level (FRC$_{SF6}$). A prototype system (AMIS 2001; Innovation A/S, Odense, Denmark) equipped with a photoacoustic and magnetoacoustic multigas analyser [8] was used. The accuracy of the analyser was checked by comparison with mass spectrometry (AMIS 2000; Innovation A/S) before and after the series of experiments. Before each measurement, the ambient temperature and pressure were registered and correct readings from the gas analyser were verified by supplying room air and the undiluted tracer gas mixture to the gas inlet. The gas sampling rate was 120 ml/min. The rebreathing unit consisted of a bag-in-box system in which the flexible rubber bellows could be manually ventilated by a piston fitted through the distal short end of the cylinder. For operation, the unit was instantly switched into the patient circuit by a pneumatic slide valve without disconnection. The bellows was initially filled with 1.2 litres (ambient temperature and pressure, dry) of a gas mixture of 1.0% SF$_6$ in 5.0% nitrous oxide (N$_2$O) and oxygen (bal; medical grade). The presence of N$_2$O was due to the circulatory monitoring function of the multimodal monitoring system. The SF$_6$ concentration was continuously plotted during 30 s of ventilation at a frequency of 20 breaths per minute (Fig. 1). Allowing for the tubing dead space (101 ml in the subjects, 107 ml in the patients), the ventilated gas volume was calculated from a formula based on standard gas dilution principles for FRC measurements:

$$FRC(l) = 1.2 \frac{310 \times P_b}{T(P_b - 47)} \left(\frac{SF_{6i}}{SF_{6e}} - 1\right)$$

where P_b is the barometric pressure in torr, T is the ambient absolute temperature and SF$_{6i}$ and SF$_{6e}$ are the initial and equilibrated concentration of SF$_6$ (standard temperature and pressure, dry), respectively, and 1.2 is the bellows volume. FRC symbolises both FRC$_{SF6}$ in the young healthy subjects and EELV$_{SF6}$ in the ventilated patients.

The total gas volume was calculated from CT images reconstructed from a scan lasting about 20 s in a high-speed scanner (GE High Speed CT/i; General Electric Medical Systems, Milwaukee, WI, USA). End-expiratory measurements in the patients were made in apnoea at PEEP 5 cmH2O (EELV$_{CT}$) and measurements in the healthy subjects were made in apnoea at the FRC level (FRC$_{CT}$). The following exposure parameters were used: 120 kV; 170 mA; rotation time 1.0 s; collimation 1 mm and a matrix of 512 x 512, yielding voxel volumes of 0.25 to 0.49 mm3 depending on the field of view. An initial topogram defined the limits of the lungs, and the first and last scanning levels were positioned at the apical and caudal
extremes, respectively. In between, eight more scanning levels were evenly dispersed, making a total of 10 consecutive single exposures with a distance between the scans of 18 to 25 mm, depending on thoracic dimensions. The total effective radiation dose was estimated to equal one standard chest X-ray examination, yielding an average absorbed radiation of 0.8 mGy to the breasts of female subjects. Within each image, the lungs were manually delineated from the thoracic wall in a single region of interest. Within the region of interest, the voxels with attenuation values between –1,000 and 0 Hounsfield units (HU) were automatically selected for analysis by software (MALUNA 2.02; Peter Herrmann, Mannheim, Germany) on a personal computer, and their gas volume (V) was calculated from the formula [9]

$$V = \sum_{i=1}^{n} V_{vox} \times \left(\frac{-HU}{1000} \right)$$

where V_{vox} is the single-voxel volume of n voxels within the slice. The total gas volume was calculated by interpolating for the volume of gas in the lung tissue between the 10 scan levels by the method of Kvist [10] with the modified formula

$$FRC = \sum_{i=1}^{9} \left[\frac{V_i + V_{i+1}}{2t} \right]$$

Table 1

Clinical data of the ARDS patients

Patient	Age (years)	Diagnosis	Ventilator days	Discharge status
1	52	Bilateral pneumonia	4	S
2	44	Sepsis with MOF	63	S
3	79	Postoperative MOF	10	NS
4	37	Bilateral pneumonia	40	S
5	85	Postoperative MOF	3	NS
6	18	Postoperative ARDS	2	S
7	54	Bilateral pneumonia	5	S
8	79	Postoperative ARDS	2	S
9	62	Bilateral pneumonia	5	NS
10	60	Aspiration	3	NS
11	46	Postoperative ARDS	3	S
12	44	Bilateral pneumonia	6	S
13	76	Bilateral pneumonia	13	S
14	22	Multiple trauma	2	S
15	78	Bilateral pneumonia	4	NS
16	58	Postoperative sepsis	3	NS
17	29	Multiple trauma	10	S
18	63	Pneumonia	4	S
19	53	Postoperative sepsis	26	S
20	71	Postoperative ARDS	2	S
21	31	Multiple trauma	3	S
22	22	Multiple trauma	5	S
23	70	Bilateral pneumonia	12	NS
24	82	Bilateral pneumonia	13	NS
25	20	Bilateral pneumonia	7	S

Mean 53 - 10 8/25 NS

Ventilator days were calculated on the day of study. ARDS, acute respiratory distress syndrome; MOF, multi-organ failure; NS, non-survivor; S, survivor.
where V_1 and V_2 are the gas volumes of two adjacent slices with the thickness t, separated by the centre distance d. FRC symbolises both FRC_{CT} in the young healthy subjects and EELV_{CT} in the ventilated patients.

During the measurements, the sedated patients were temporarily paralysed and ventilated by means of a mobile ventilator (Servo 900 C; Siemens, Solna, Sweden) with the settings described above. The end-expiratory position was achieved by activation of the expiratory hold function on the ventilator. The patient was then either ventilated from the rebreathing circuit or CT scanned in maintained apnoea. The rebreathing procedure was performed in duplicate before and after a single CT exposure.

Before the supine measurements, the nose-clipped, supine and relaxed healthy subjects breathed room air through a mouthpiece connected to the rebreathing system through a three-way valve. At the FRC level, the valve was either switched into the rebreathing system for gas dilution by spontaneous breathing or was closed during the CT examination.

The rebreathing procedure was performed in duplicate before and after a single CT exposure.

Statistical analysis

Data are presented as means ± standard deviation if not specified otherwise. The level of significance was defined as $P < 0.05$. The coefficient of variation (CV) for paired measurements was calculated as the standard deviation of the differences divided by the mean of all measurements [11]. Calculations were performed with the software package Statistica 6.0 (StatSoft Inc., Tulsa, OK, USA) on a personal computer.

Results

In the ARDS patients, EELV_{SF6} was $66 \pm 14\%$ of EELV_{CT}. EELV_{SF6} was found systematically lower than EELV_{CT} except in one patient (no. 19), in whom they were similar. The mean difference, corresponding to the poorly ventilated or non-ventilated gas volume, was 0.71 ± 0.47 litre. The magnitude of the poorly ventilated or non-ventilated gas volume was not correlated with age or ventilator days. Mean results are given in
Table 3

Lung volumes

Group	Supine EELV or FRC (litres)	
	SF₆	CT
ARDS patients	1.2 ± 0.4	1.9 ± 0.8
Healthy subjects	1.7 ± 0.3	1.8 ± 0.3

(78% of predicted) (80% of predicted)

End-expiratory lung volume (EELV) in the acute respiratory distress syndrome (ARDS) patients and functional residual capacity (FRC) in the healthy subjects were measured by rebreathing of sulphur hexafluoride (SF₆) and computed tomography (CT), respectively. Predicted normal FRC values are from [25].

Discussion

This study shows that there is a considerable volume of poorly ventilated or non-ventilated gas present in the lungs of sedated and paralysed ARDS patients when mechanically ventilated with a PEEP of 5 cmH₂O.

In the supine healthy subjects, FRCSF₆ was 99 ± 9% of FRCCT, and they were closely correlated (r = 0.91; P < 0.001) (Fig. 3). The CV of duplicate FRCSF₆ measurements was 3.1%.

We assumed that the difference between the ventilated gas volume determined by gas dilution and the total gas volume calculated from CT corresponds to a poorly ventilated or non-ventilated gas volume. The methods used to determine these volumes were validated by comparison of similar measurements in young healthy subjects, in whom they should yield similar results because these lungs are homogeneously ventilated with no obstruction and no airway closure. Indeed, almost identical results were obtained in the young healthy subjects. Furthermore, the CV of duplicate measurements in the healthy subjects indicated a good repeatability. The FRCSF₆ values might seem somewhat low compared with predicted FRC values based on a mixed adult population (Table 3), but normal FRC values in supine young subjects are rare and the predictions therefore remain uncertain. The CT interpolation technique has been validated previously for heterogeneously scattered tissue [12] and should be precise enough with 10 scans evenly distributed over the lungs.
Bland-Altman plot [24] of supine functional residual capacity measured by rebreathing of sulphur hexafluoride (FRC_{SFE}) and by computed tomography (FRC_{CT}) in 20 healthy subjects. The individual differences of paired measurements (y axis) did not depend on the magnitude of their average values (x axis). The mean difference (solid line; dotted lines represent the mean ± 2SD) was small.

Conclusion

We conclude that about one-third of the total gas volume is poorly ventilated or non-ventilated in the lungs of sedated and paralysed ARDS patients when mechanically ventilated with a PEEP of 5 cmH₂O. This indicates uneven distribution of ventilation due to the presence of small-airway closure and/or obstruction at this PEEP level. Such a poorly ventilated or non-ventilated gas volume might be recruited for more effective ventilation by a moderate increase in airway pressure that is less than that needed to inflate completely collapsed lung units. If the volume of poorly ventilated or non-ventilated gas is small or non-existent, a moderately raised airway pressure might be ineffective for recruitment.

Competing interests

The author(s) declare that they have no competing interests.
Key messages

- This study demonstrates uneven distribution of ventilation in 25 sedated and ventilated ARDS patients by comparing the total end-expiratory gas end volume calculated from computed tomography and the ventilated gas volume measured by inert gas rebreathing.
- The poorly ventilated or non-ventilated volume distal to the possible airway closure and/or obstruction might be recruited for more effective ventilation by an increase in airway pressure that is less than the inflation pressure of completely collapsed lung units.

Authors’ contributions
CR, UT and BB conceived the study and designed the protocol. UT, MQ and PH defined the radiographical image analysis. CR and RRN performed measurements. CR, UT and BB wrote and revised the manuscript, which was reviewed and approved by all authors before final submission.

Acknowledgements
The results of this study were in part presented at the ESICM meeting in Rome in 1999. The study was supported by departmental funding and by grants from the Gothenburg Medical Association. The inert gas system (AMIS 2001) with consumables was made available by Innovision by grants from the Gothenburg Medical Association. The acute respiratory distress syndrome.

References
1. Ramachandran PR, Fairley HB: Changes in functional residual capacity during respiratory failure. Can Anaesth Soc J 1970, 17:359-369.
2. Ware LB, Matthay MA: The acute respiratory distress syndrome. N Engl J Med 2000, 342:1334-1349.
3. Hubmayr RD: Perspective on lung injury and recruitment: a skeptical look at the opening and collapse story. Am J Respir Crit Care Med 2002, 165:1647-1653.
4. Koutsoukou A, Armaganidis A, Stavaraki-Kallergi C, Vassilakopoulou T, Lymbieris A, Roussos C, Milic-Emili J: Expiratory flow limitation and intrinsic positive end-expiratory pressure at zero positive end-expiratory pressure in patients with adult respiratory distress syndrome. Am J Respir Crit Care Med 2000, 161:1590-1596.
5. Kendrick AH: Comparison of methods of measuring static lung volumes. Monaldi Arch Chest Dis 1996, 51:431-439.
6. Rodenstein DO, Stanescu DC: Reassessment of lung volume measurement by helium dilution and by body plethysmography in chronic air-flow obstruction. Am Rev Respir Dis 1982, 126:1040-1044.
7. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R: The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 1994, 149:818-824.
8. Clemensen P, Christensen P, Norsk P, Gronlund J: A modified photo- and magnetoacoustic multigas analyzer applied in gas exchange measurements. J Appl Physiol 1994, 76:2832-2839.
9. Gattinoni L, Pesenti A, Valli L, Rossi F, Bombino M: Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 1987, 136:730-736.
10. Krist H, Sjostrom L, Tylen U: Adipose tissue volume determinations in women by computed tomography: technical considerations. Int J Obes 1986, 10:53-67.
11. Hankinson JL, Stocks J, Peslin R: Reproducibility of lung volume measurements. Eur Respir J 1998, 11:787-790.
12. Krist H: Adipose tissue volume measurements by computed tomography. In Dissertation Göteborg University, Sweden; 1988.
13. Edmark L, Kostova-Aherdan K, Enlund M, Hedenstierna G: Optimal oxygen concentration during induction of general anesthesia. Anesthesiology 2003, 98:20-33.
14. Freischl I, Hahn G, Golišch W, Kürpitz M, Burchardi H, Hellige G: Monitoring perioperative changes in distribution of pulmonary ventilation by functional electrical impedance tomography. Acta Anaesthesiol Scand 1996, 42:721-726.
15. Kallet RH, Katz JA: Respiratory system mechanics in acute respiratory distress syndrome. Respir Care Clin N Am 2003, 9:297-319.
16. Esteban A, Anzueto A, Alia I, Gordo F, Apezteguia C, Palizas F, Cide D, Goldwasser R, Soto L, Bugedo G, et al.: How is mechanical ventilation employed in the intensive care unit? An international utilization review. Am J Respir Crit Care Med 2000, 161:1450-1458.
17. Patroniti N, Bellani G, Manfio E, Ghielfrida A, Foti G, Pesenti A: Lung volume in mechanically ventilated patients: measurement by simplified helium dilution compared to quantitative CT scan. Intensive Care Med 2004, 30:282-289.
18. Koutsoukou A, Bekos B, Sotropoulou C, Koulouris NG, Roussos C, Milic-Emili J: Effects of positive end-expiratory pressure on gas exchange and expiratory flow limitation in adult respiratory distress syndrome. Crit Care Med 1994, 22:1941-1949.
19. Ranieri VM, Issa NT, Corbeil C, Chasse M, Braidy J, Matar N, Milic-Emili J: Effects of positive end-expiratory pressure on alveolar recruitment and gas exchange in patients with the adult respiratory distress syndrome. Am Rev Respir Dis 1991, 144:544-551.
20. Vieira SR, Puybasset L, Richceceur J, Lu Q, Cluzel P, Gusman PB, Coria P, Rouby JJ: A lung computed tomographic assessment of positive end-expiratory pressure-induced lung overdistension. Am J Respir Crit Care Med 1998, 158:1571-1577.
21. Esteban A, Anzueto A, Alia I, Gordo F, Apezteguia C, Palizas F, Cide D, Goldwasser R, Soto L, Bugedo G, et al.: How is mechanical ventilation employed in the intensive care unit? An international utilization review. Am J Respir Crit Care Med 2000, 161:1450-1458.
22. Rouby JJ, Puybasset L, Nieszowska A, Lu Q: Acute respiratory distress syndrome: lessons from computed tomography of the whole lung. Crit Care Med 2003, 31(4 Suppl):S285-295.
23. Puybasset L, Gusman P, Muller JC, Cluzel P, Coria P, Rouby JJ: Regional distribution of gas and tissue in acute respiratory distress syndrome. III. Consequences of the effects of positive end-expiratory pressure. CT Scan ARDS Study Group. Adult Respiratory Distress Syndrome. Intensive Care Med 2000, 26:1215-1227.
24. Bland JM, Altman DG: Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1988, 1:307-310.
25. Ibanez J, Rauch JM: Normal values of functional residual capacity in the sitting and supine positions. Intensive Care Med 1982, 8:173-177.

Available online http://ccforum.com/content/9/2/R165