Fracture Resistance of Roots Obturated by Different Techniques After the Removal of Broken Instruments

Abstract

Aim: The aim of this study was to evaluate the effect of different obturation techniques on vertical root fracture resistance after the removal of broken instruments using ultrasonic tips and the Masserann kit.

Material and Method: Three-hundred-fifty extracted single and straight roots were used. All canals were prepared to a size using ProTaper F1 instruments and divided into three experimental and two control groups. 4 mm of F2 instruments were fractured in coronal, middle or apical third of the canal. The fractured instruments were removed using ultrasonic tips or Masserann kits. The groups were divided into 3 sub-groups based on the obturation methods including lateral condensation, the warmed gutta-percha technique (SystemB+Obtura) and Resilon&Epiphany sealer.

Findings: The samples were subjected to a continuous vertical loading, using Instron for vertical fracture. Data were analysed using a one-way Anova and Post Hoc Tukey tests. The roots from which the broken instruments had been removed using ultrasonic tips required significantly more force for fracture than the roots in the Masserann group in the middle and apical sections (p<0.05), but not the coronal section (p>0.05). The groups which were obturated with the Resilon system required significantly more force for fracture than the lateral condensation group (p<0.05). Lateral condensation showed the least resistance at the middle section in the Masserann group (p<0.05).

Results: Removal of a fractured instrument from the middle and apical third of the canal decreased the force required to fracture the root vertically, regardless of the technique used for instrument removal.

Keywords: Fractured instrument; Instrument removal; Masserann Kit; Ultrasonics, Resilon

INTRODUCTION

As new instruments and techniques are being developed, the use of NiTi rotary instruments has become popular over...
the years. However, aside from their favourable qualities, they fracture. Intra-canal breakage hinders cleaning and shaping of the root canal system, resulting in a high chance of failure, especially in infected canals (1,2).

The clinician must evaluate the treatment choices with consideration for a root canal infection, the anatomy of the root canal, the position and type of fractured instrument, and the potential amount of damage to the remaining tooth structure (3-5). Removing the instrument, bypassing and sealing the broken instrument within the root canal space, or true blockage are chosen approaches. Removing a broken instrument is a difficult and time-consuming procedure, especially from the middle and apical third of the canal. Fors & Berg (6) also, stated that the potential to remove a broken instrument depends mainly on its location within the root canal system.

There are reports in the literature regarding using special instruments, such as the Masserann kit, EndoExtractor, Canal Finder System, or ultrasonic tips for the removal of broken instruments. The Masserann kit (Micromega, Besançon, France) has been used successfully for a long time (7). However, it removes a gross amount of dentin, which weakens the tooth structure especially in the middle or apical third of the canal (8-10). Weakened root canal walls lead to a fracture of the vertical root during condensation or after completion of the root canal treatment (11-13). To improve the potential of safety and success of the removal procedures special ultrasonics tips have been used by a technique described as staging platform and and this technique has been used successfully for this purpose, as described in literature (14). It is suggested that ultrasonic vibration transmitted to the broken instrument loosens it making it easier to remove. However, in both techniques the root canal must be sufficiently enlarged for visualization and handling of the broken instrument. Excessive removal of the root structure may weaken the tooth structure and result in perforation or a vertical root fracture (7,15,16). After procedure of removal, the canal should be obturated by proper material which can strengthen the root and be durable.

The effect of different obturation techniques on a weakened root canal wall after removing the broken instruments has not been properly investigated. Lateral condensation or vertical condensation might create stress on the root canal wall if it was shaped too thin after instrumentation and removal procedure. However, resin-based Resilon is a polycaprolactone polymer that contains bioactive glass and fillers and is a good alternative to gutta-percha. Resilon can bond to the adhesive sealer and dentin, thereby creating a monoblock. Studies have shown improved fracture resistance in Resilon-obturated teeth (17,18). Thus, monoblock obturation with Resilon may strengthen a root that has been weakened after the removal of fractured instruments. The aims of the present study were to investigate tooth strength after removing broken instruments from coronal, middle or apical thirds of the canals using the Masserann technique or ultrasonic tips and to investigate the effect of different obturation techniques (lateral condensation, warmed gutta-percha condensation techniques, or resin-based Resilon and Epiphany sealer) on tooth strength by using a universal testing device.

MATERIALS AND METHODS

A total of 342 mandibular premolars with a single canal with fully formed apices were collected. All teeth were free of restoration, root resorption, root cracks or root canal therapy. The roots were examined by eye-loops (Carl-Zeiss, Oberkochen, Germany) under 4.5 X magnification. Teeth that had caries, resorption or cracks were discarded. A range of 12 mm to 16 mm was defined as an appropriate root length. Roots that were longer or shorter were discarded. The crowns were sectioned at the cementoenamel junction and an access cavity was prepared. Pulp tissue was removed by using K-files (Mani Inc., Japan). All teeth were instrumented by using Protaper instruments (Protaper Universal-Dentsply, Tulsa OK, USA) and the crown-down technique. Canals were copiously irrigated with 5.25% sodium hypochlorite during instrumentation. A separated instrument was created by using a diamond bur to notch F2 instruments 3 mm from the tip. Three-hundred-eighteen notched instruments were used in the canal at 250 rpm until the instruments separated in the coronal, middle, or apical thirds of the canals. Radiographs were taken from all the experimental teeth and categorized into three groups based on the position of the broken instrument (coronal, middle, and apical thirds of the root). The remainder of the teeth were used as positive controls with no broken instruments (Table1). The removal procedure was performed with a Masserann kit or ultrasonic tips with eye loops under 4.5 × magnification.

Ultrasonic groups. Following straight-line access, Gates-Glidden burs (Lexicon GG Burs, Tulsa Dental, OK, USA) were shaped with a diamond bur to create an end-cutting
drill as described by Ruddle (14). This standardized the amount of dentine removed from the roots for the removal groups. This was taken down to the level of the obstruction in order to create the “staging platform.” VDW Ultra Unit with ultrasonic tips (VDW Redo 1,2,3 VDW GmbH, Munich, Germany) were used to circumferentially trephine around the broken instrument in a counter-clockwise direction.

Table1. All groups were summerized.

Locating of Broken Instrument	Removing Procedure	Obturation Technique
Group A	Group A1	Negative Control (n=8)
Coronal Third	Ultrasonic	Monoblock (n=15)
n=106	n=53	System B+Obtura (n=15)
		Lateral Condensation (n=15)
Group A2	Negative Control (n=8)	
Masserann	Monoblock (n=15)	
n=53	System B+Obtura (n=15)	
	Lateral Condensation (n=15)	
Group B	Group B1	Negative Control (n=8)
Middle Third	Ultrasonic	Monoblock (n=15)
n=106	n=53	System B+Obtura (n=15)
		Lateral Condensation (n=15)
Group B2	Negative Control (n=8)	
Masserann	Monoblock (n=15)	
n=53	System B+Obtura (n=15)	
	Lateral Condensation (n=15)	
Group C	Group C1	Negative Control (n=8)
Apical Third	Ultrasonic	Monoblock (n=15)
n=106	n=53	System B+Obtura (n=15)
		Lateral Condensation (n=15)
Group C2	Negative Control (n=8)	
Masserann	Monoblock (n=15)	
n=53	System B+Obtura (n=15)	
	Lateral Condensation (n=15)	
Group D	Positive Control (no broken instrument)	Monoblock (n=15)
		System B+Obtura (n=15)
n=24		Lateral Condensation (n=15)

Masserann groups. A Masserann kit was used according to the manufacturer’s instructions.

After the removal procedure, all canals were shaped to a size F5 file. For irrigation, 10 mL of 5.25% NaOCl was used and after all canals were prepared, they were flushed with 10 mL of 17% EDTA, rinsed with 10 mL of saline solution, and then dried with paper points. Subsequently, canals were obturated by the following three different obturation methods: lateral condensation, warmed gutta-percha technique (System B & Obtura), or using the Resilon & Epiphany sealer.

Lateral Condensation technique. Canals were filled with gutta-percha points (Dentsply Maillefer, Ballaiguese, Switzerland) and AH Plus sealer (Dentsply DeTrey GmbH, Costanz, Switzerland) using lateral condensation.

Warmed gutta-percha technique.

Canals were obturated using the Elements Obturation Unit (Analytic, Sorbon Dental Specialties, CA, USA). A matched taper master cone was placed to obturate the canal below the level of the staging platform and seared off at that level with a System B heat source. The remaining portion of the canal was back-filled with warm thermoplasticized gutta-percha using Obtura II to a level that was 1 mm below the canal orifice.

Resilion and Epiphany.

Canals were filled with Resilon points (No. 40 with .06 point) with Epiphany sealer (Pentron, Clinical Technologies, Wallingford, CT, USA) using lateral condensation technique. After filling the canal, the coronal part of the filling was subject to supplementary light curing of the sealer for 40 s, as indicated by the manufacturer’s instructions.

Positive control group.

Forty-five teeth were obturated with one of three obturation methods (15 for each) with no broken instruments.

The access cavity was sealed with Coltosol (Coltene/Whalesdent, Switzerland) temporary filling. Subsequently, the teeth were stored at 37°C and 100 % humidity for 7 days to allow the sealer to set. After a 1-week incubation, the roots were covered with a 0.2 mm-thick layer of polyether material (Impregum Garant L Duosoft, 3M ESPE, Seefeld, Germany) to stimulate human periodontium. The apical part of the root (5 mm) was vertically embedded in an acrylic resin block and stored for 24 hours to allow the resin to set completely.

A universal testing machine (Shimadzu, Tokyo, Japan) was used to evaluate the force required to fracture the roots (Fig1a,b). The force was recorded in Newtons. All data were recorded and analysed using the NCSS 2007 statistical software program (Kaysville, Utah, USA) One-way analysis of variance (ANOVA) and Tukey honest significant difference tests (p<0.05).
RESULTS

The mean and standard deviation of forces required to vertical fracture for experimental groups are presented in Table 2 and Fig 2.

Table 2. The Mean Force Required for Vertical Root Fracture for Experimental Groups Tested (Newtons) (*P<0.05)

Location	Obturation method	Ultrasonic Mean S.D.	Messerann Mean S.D.	P
Coronal 1/3	negative control (empty)	143,13±35,21	147,46±33,29	0,731
	Resilon+Epiphany	311,1±30,53	245,84±89,56	0,012*
	System B+Obtura	290,67±48,99	255,38±48,52	0,057
	lateral condensation	240,02±88,91	246,38±19,52	0,789
Middle 1/3	negative control (empty)	94,42±16,41	79,58±18,09	0,026*
	Resilon+Epiphany	238,56±14,25	217,73±83,45	0,349
	System B+Obtura	210,27±118	210,68±58,9	0,99
	lateral condensation	208,81±74,86	139,52±23,4	0,002*
Apical 1/3	negative control (empty)	51,51±12,1	42,14±9,26	0,024*
	Resilon+Epiphany	177,52±56,27	130,48±35,4	0,047*
	System B+Obtura	152,18±29,06	113,14±18,69	0,046*
	lateral condensation	136,89±25,04	105,08±18,32	0,083

Control groups: Negative control groups (instrument removed and not obturated) showed significantly less strength than the experimental groups in all sections (p<0.05). The group that used ultrasonic tips showed more strength than the Messerann group, but a significant difference was only found in the middle and apical thirds (p<0.05), but not in the coronal third of the canal (p>0.05). Positive control groups (obturated without a broken instrument) showed significantly more strength than all the experimental groups (p<0.05). When obturated techniques were compared, the Resilon system had a significantly better result than the lateral condensed teeth in the positive control groups (p>0.05). No other significant differences was found among the obturation methods (p>0.05).

Experimental groups: In the coronal section, Resilon-obturated teeth had a significantly better result with ultrasonic instruments than with the Messerann technique (p<0.05). No other significant differences were found among the groups (p>0.05).

In middle the section, laterally condensed teeth had better results with ultrasonic tips that with the Messerann technique (p<0.05). No other significant differences were found among the groups (p>0.05).
In the apical section, Resilon-obturated teeth were stronger in the ultrasonic tips group than in the Masserann technique group (p<0.05).

The warmed gutta-percha technique had teeth that were stronger when they were manipulated using ultrasonic tips teeth than those manipulated by the Masserann technique (p<0.05).

DISCUSSION

Instrument breakage leads to endodontic failures due to incomplete root canal instrumentation and obturation (19-21). Therefore, removal of the broken instrument is an important issue, especially in infected canals. During the removal procedure a great amount of dentin can be removed due to location of the instrument or anatomy of the canal. This may lead to weakening and fracture the root structure (8,22-25). Thus, the instrument removal process must be exceptionally delicate without compromising the strength and the clinician must prefer a method that induces less tissue damage in the least amount of time during the removal procedure.

Although removal of the broken instrument was considered a success in some published studies, in most studies bypassing the instrument was also accepted (3,5,26). In the present study, a broken instrument was removed to investigate the damage caused to the root structure by the removal procedure. We also investigated the effect of the obturation technique on a weakened tooth structure.

Although different methods were used to remove broken instruments, the use of ultrasonic instruments was found to be successful in most studies (5,26-28). Ward et al.(27,28) and Gencoglu et al.(9) used ultrasonic instruments to successfully remove the fractured instrument in their respective studies. Gettleman et al. (29) and Madarati et al.(30) investigated the effects of ultrasonic usage on the removal of fractured files and found that the greatest change in the canal volume occurred when the fractured files were removed from the apical third, followed by middle and coronal thirds. In the present study, although both techniques were found to be effective for the removal of instruments, it seemed any instrument that used for the removal procedure decreased the tooth strength. However, the ultrasonic tips removed less dentin than the Masserann technique in almost all teeth (obturated or not obturated groups). This was only significantly different in the middle and coronal sections of the negative control groups. In addition, tooth strength decreased in the coronal to apical sections due to the removal technique and the volume of the hard tissue as expected.

The Masserann kit has been used for over 30 years to remove broken instruments (3,9,31-34). However, Yoldaş et al.(31) suggested that Masserann kits increase the risk of perforation in the curved canals. Most studies results showed that ultrasonic devices were superior to the Masserann kit (5). In our previous study, we also found that ultrasonic tips were more effective than Masserann, especially in curved canals.

This study also showed that the Masserann device produced more tissue damage to the middle and apical third of the canal than the ultrasonic instruments. This contributes to the tooth strength. However, the difference was not significant in the coronal section and both techniques were effective for removal of the broken instrument in this section. Besides the instrument type used for the removal process, many other factors such as the size, type of broken instrument, anatomy of the root, or location of the instrument all affect the removal procedure (3,5,35). In the present study, the middle and apical sections of the tooth were found to be weaker, most likely due to the loss of more hard tissue. So clinicians must consider whether more tissue damage will be created by attempting to remove the instrument or leaving it in. Fors &Berg (6) suggested that objects in the apical third should be left in situ; otherwise, removal can result in root perforation, which reduces the prognosis of the root canal treatment.

After the removal of the fractured instruments, one of the aims of long-term success of these treatments should the selection of a material that has the potential to reinforce the root structure and protect it against fracture. In the present study, all obturated groups showed significantly more resistance to fracture than the non-obturated negative control group. However, the resin-based Resilon sealer showed better strength than the other groups. This was only significantly different for lateral condensation. In the positive control group (with no broken instrument), the same results were obtained for the Resilon sealer. It seems that resin coating of gutta-percha facilitates a chemical bond with the Epiphany sealer and adheres better to the root canal than the lateral condensation technique with the AH Plus sealer. Although warmed gutta-percha showed better result than the lateral condensation technique, the difference was not significant.
It seems logical to remove as little dentin as possible during the removal procedure without jeopardizing long-term success. If wedging forces of the spreader are added during lateral condensation or excessive dentine is removed to facilitate plugger placement for vertical condensation, the likelihood for root fracture increases (13). According to the result of this study, lateral condensation technique seems not to be a good choice, especially after removal of broken instruments from the middle or apical sections. In addition, the resin-based based material, Resilon, may compensate for this weakening effect, making it more useful than the lateral condensation technique. It seems that the Resilon system has the potential to reinforce the root structure against fractures. Hammad et al. (36) compared vertical forces on the fracture of teeth obturated with different materials and found that resin-based materials (Resilon and EndoRez) increased the likelihood for root fracture. In the present study, Resilon increased the tooth’s resistance to fracture as a result of a chemical bond to dentine and formed a monoblock system after removal of the broken instrument. More research to find alternatives that may better seal and mechanically reinforce compromised roots is needed.

References
1. Sjöergen U, Haggglund B, Sundquist G, Wing K. Factors affecting the long-term results of endodontic treatment. J Endod 1990; 16: 498-504.
2. Siqueira JF. Aetiology of root canal treatment failure: why well-treated teeth can fail. Int Endod J 2001; 34: 1-10.
3. Suter B, Lussi A, Sequeira P. Probability of removing fractured instrument from root canals. Int Endod J 2005; 38: 112-123.
4. Parashos P, Messer HH. Rotary NiTi instrument fracture and its consequences. J Endod 2006; 32: 1031-1043.
5. Madarati AA, Hunter MJ, Dummer PMH. Management of intracanal separated instruments. J Endod 2013; 39: 569-581.
6. Fors UGH, Berg JO. Endodontic treatment of root canals obstructed by foreign objects. Int Endod J 1986;19: 2-10.
7. Hülsmann M. Methods for removing metal obstructions from the root canal. Endod Dent Traumatol 1993; 9: 223-237.
8. Souter NJ, Messer HH. Complications associated with fractured file removal using an ultrasonic technique. J Endod 2005; 31: 450-452.
9. Gencoglu N, Hulvacigolu D. Comparison of the different techniques to remove fractured endodontic instruments from root canal systems. Eur J Dent 2009; 3: 90-95.
10. Madarati AA, Qualtrough AJE, Watts DC. Effect of retained instruments on tooth resistance to vertical fracture with or without attempt at removal. Int Endod J 2010; 43:1047-1053.
11. Lim SS, Stock CJR (1987) The risk of perforation in the curved canal: anticurvature filing compared with the stepback technique. Int Endod J 1987; 20: 33-39.
12. Wilcox LRW, Roskelley C, Sutton T. The relationship of root canal enlargement to finger-spreader induced vertical root fracture. J Endod 1997; 23: 533-534.
13. Rundquist BD, Versluis A. How does canal taper affect root stesses? Int Endod J 2006; 39: 226-237.
14. Ruddle C. Nonsurgical retreatment. J Endod 2004; 30: 827-845.
15. Hülsmann M, Schinkel I. Influence of several factors on the success or failure of removal of fractured instruments from the root canal. Endod Dent Traumatol 1999; 15: 252-258.
16. Lertchirakarn V, Palamara JEA, Messer HH. Patterns of vertical root fractures: factors affecting stress distribution in the root canal. J Endod 2003; 29: 523-528.
17. Teixeira FB, Teixeira EC, Thompson JY, Trope M. Fracture resistance of roots endodontically treated with anew resin filling material. J Am Dent Assoc 2004; 135: 646-652.
18. Belli S, Eraslan O, Eskitascioglu G, Karbharti V. Monoblocks in root canals: a finite elemental stress analysis study. Int Endod J 2011;44: 817-826.
19. Yared GM, Kulkarni GK. Failure of Profile NiTi instruments used by inexperienced operator under Access limitations. Int Endod J 2002; 35: 536-541.
20. Roda SR, Gettleman BH. Nonsurgical Retreatment. In: Cohen S, Hargreaves KM, editors. Pathways of the pulp. 9th Edition. St. Louis, Mosby, 2006.p. 944-1010.
21. Terauchi Y, O’Leary L, Kikuchi I, Asanagi M, Yoshioka T, Kobayashi C, Suda H. Evaluation of the efficiency of a new file removal system in comparison with two conventional systems. J Endod 2007; 33: 585-588.
22. Dang DA, Walton RE. Vertical root fracture and root distortion: effect of spreader design. J Endod 1989;15: 294-301.
23. Wu MK, Vander Sluis LW, Wesselink PR. Comparison of mandibular premolars and canines with respect to their resistance to vertical root fracture. J Dent 2004; 32: 265-268.
24. Gutmann JL, Dumsha TC, Lofvahl PE. Problem solving in endodontics: prevention, identification and management. 4th ed. St.Louis MO, Elsevier Mosby 2006, p.50
25. Tamse A. Vertical root fractures in endodontically treated teeth: diagnostic signs and clinical management. Endod Topics 2006; 13: 84-94.
26. Platino G, Pameijer CH, Grande NM, Somma F. Ultrasonic in endodontics: A review of the literature. J Endod 2007; 33: 81-95.
27. Ward JR, Parashos P, Messer HH. Evaluation of the ultrasonic technique to remove fractured rotary nickel-titaium endodontic instruments from root canals: an experimental study. J Endod 2003; 29: 756-763.
28. Ward JR, Parashos P, Messer HH. Evaluation of the ultrasonic technique to remove fractured rotary nickel-titaium endodontic instruments from root canals: Clinical cases. J Endod 2003; 29: 764-767.
29. Gettleman BH, Spriggs KA, ElDeeb ME, Messer HH. Removal of canal obstructions with the endo extractor. J Endod 1991; 17: 608-611.
30. Madarati AA, Qualtrough AJ, Watts DC. A microcomputed tomography scanning study of root canal space: changes after the ultrasonic removal of fractured files. J Endod 2009; 35: 125-8.
31. Yoldas O, Oztunc H, Tinaz C, Alparslan N. Perforation risks associated with the use of Masserann endodontic kit drills in mandibular molars. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2004; 97: 513-517.
32. Terauchi Y, O’Leary L, Suda H. Removal of separated files from root canals with a new file-removal system: Case reports. J Endod 2006; 32: 789-97.
33. Thirumalai AK, Sekar M, Mylswamy S. Retrieval of a separated instrument using Masserann technique. J Conserv Dent 2008; 11: 42-5.
34. Gerek M, Baser ED, Kayahan MB, Sunay H, Kaptan RF, Bayırlı G. Comparison of the force required to fracture roots vertically after ultrasonic and Masserann removal of broken instruments. Int Endod J 2012; 45: 429-432.
35. Hulsmann M. Removal of fractured instruments using a combined automated/ultrasonic technique. J Endod 1994; 20: 144-147.
36. Hammad M, Qualtrough A, Silikas N. Effect of new obturating materials on vertical root fracture resistance of endodontically treated teeth. J Endod 2007; 33: 732-736.
37. Shen Y, Peng B, Cheung GS. Factors associated with the removal of fractured instruments from root canal systems. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2004; 98: 605-610.
Fiber ve Metal Destekli Postların Klinik ve Radyolojik Olarak Değerlendirilmesi: 5 Yıllık Takip

Clinical and Radiographic Evaluation of Fiber and Metal Post-Core Systems: 5 Years Follow up

Erkut KAHRAMANOĞLU¹, Elçin KESKİN ÖZYER², Coşkun YILDIZ³, Yasemin KULAK ÖZKAN³

Öz

Amaç: Bu çalışmanın amacı farklı post-kor sistemleri ile desteklenen kron restorasyonlarının klinik ve radyolojik olarak durumunu değerlendirektir.

Materyal ve Metot: Bu araştırmada Marmara Üniversitesi Diş Hekimliği Fakültesi'nde tedavi edilen 145 hasta gözlemlenmiştir. Bu hastaların 49'una fiber destekli post (toplamba 60 adet diş), 96'sına prefabrike metal destekli post (toplamba 129 adet diş) uygulanmıştır.

Bulgular: Hastalardan memnuniyet, estetik, fonetik, temizlenebilirlik, retansiyon, çiğneme etkinliği hakkındaki değerlendirmeleri puanlandırılması istenmiştir (0: kötü, 1: yeterli, 2: iyı, 3: çok iyı). Prefabrike metal destekli post uygulanmış hastalarda genel memnuniyet oranı 2.1 (%70) olarak belirlenmiştir. Araştırmaya alınan 129 prefabrike metal destekli postun 29'unda komplikasyona rastlanmıştır. Fiber post uygulanan hastalarda genel memnuniyet oranı ise 2.3 (%76) olarak belirlenmiştir. Araştırmaya alınan 60 fiber destekli postun 13'ünde komplikasyona rastlanmıştır. Farklı tip siman kullanımı, restore edilmiş dişlerin kırılma dayanımını etkilemezken (p=0.209), 10 mm derinlikte post yerleşimi 5 mm derinlikte yerleşime göre daha yüksek kırılma dayanımı göstermiştir (p<0.001).

Sonuç: Çalışmanın limitasyonları dahilinde, hangi tip simanın kullanılacağına bakılmaksızın, post kavitesinin daha derin açılması post-kor destekli kron restorasyonu dişlerin kırılma dayanımını artıraktadır.

Anahtar Kelime: Post-kor, fiber post, retrospektif.

Abstract

Aim: The aim of the study is to evaluate single crown restorations with different post-core systems clinically and radiographically.

Material & Method: 145 patients treated in Marmara University Faculty of Dentistry was examined for this study. Fiber posts was applied 49 of these patients (60 teeth), while prefabricated metal posts were applied 96 of them (129 teeth).

Results: A survey is applied to the patients to evaluate satisfaction, esthetic, phonetic, cleanability, retention and masticatory activity (0: bad 1: adequate 2: good 3: very good). General satisfaction is found 2.1 of 3 (%70) in prefabricated metal post patients. Some complications are seen in 29 of 129 of prefabricated metal posts. General satisfaction is found 2.3 of 3 (%76) in fiber post patients. Some complications are also seen in 13 of 60 of fiber posts. Using different type of adhesive cements do not affect the fracture resistance of the restorated teeth (p=0.209), and 10 mm post cavity depth showed greater fracture resistance than 5 mm cavity depth (p<0.001).

Conclusion: With all the limitations of this study, depth of the post cavity will increase the fracture resistance of restored teeth regardless of the type of adhesive cements.

Keywords: Post-core, fiber post, retrospective.

1.GİRİŞ

1.1. Post – Kor Restorasyonlar

Aşırı koronal doku kaybına uğramış dişlerin restorasyonunda kullanılan yöntemlerden biri post – kor uygulamasıdır (Çalışkan, 2006). Post, pulp boşluğu direkt ve indirekt olarak hazırlanan farklı materyallerden ve tasarrımlardan oluşan yapının yerleştirilmesidir. Kor, kök kanal boyunun en az 2/3’üne kadar uzanıp post yapısında destek olarak yapılacak restorasyona tutuculuğu sağlayan alt yapıdır. Böylece kalan diş dokusundan daha etkin yararlanılama, dişin ve restorasyonun dayanıklılığını artırmak mümkün olmaktadır (Schwartz ve Robbins, 2004).
Fiber ve Metal Destekli Postların Değerlendirilmesi

Post kor tedavilerinde uygun ürün ve sistemin seçilmesi tedavinin en önemli safhasıdır. Post seçiminde dikkat edilmesi gereken kriterler;
1. Koronal sert doku kaybının miktarı,
2. Kök morfolojisi ve kök seçimi,
3. Post boşluğunun hazırlanması,
4. Postun yerleştirilme derinliği,
5. Post çapı,
6. Postların yüzey özellikleri,
7. Stres dağılımı ve çiğneme kuvvetlerinin transferi,
8. Ferrule etkisi,
9. Postların yapısında kullanılan mevcut materyallerin fiziksel özellikleri
10. Korozyon
11. Kullanılan siman tipi
12. Kor materyalinin tipi (Çalışkan, 2006).

Postların çok çeşitli sınıflaması mevcuttur, en yaygın kullanıma sahip olan sınıflama üretilen malzemeye göre olandır.

a. Metal alemından yapılan postlar

Kyrmetsit veya kyrmetsiz metal alemından yapılan döküm postlar ve metal alemından yapılan prefabrik postlardır. Ancak kyrmetsit metallerin maliyeti; kyrmetsiz metallerin ise rijet olması, korozyona uğramasını, rezistansının düşük olması ve nikel alerjisi yapan metal alaşım postların dezavantajları olarak sayılmaktadır. Titanyum alemından yapılan postlar en az korozyona uğramayı ve biyoyuvmuluğun en yüksek postlardır; ancak kırılma direncinin düşük olması ince kanallarda kullanını kısıtlamaktadır ve sıkıklamalarını güçlendirmektedir (Sagsen ve ark., 2012).

b. Metal alemdan olmayan postlar

Artan estetik beklentiler metal olmayan post sistemlerinin geliştirilmesini sağlamıştır (Robbins, 2002). Metal alemdan olmayan post sistemleri şekil 1 de gösterilmiştir.

1.2. Post – Kor Restorasyonların Başarısını Etkileyen Faktörler

- Endikasyonun doğru verilmesi önemlidir. Dişin dental arkta pozisyonu, kalan diş maddesi miktarı ve diş fonksiyonel gereksinimlerine dikkat edilmelidir.
- Dişler başarılı bir endodontik tedaviye sahip olmalıdır.
- Postun retansiyonu post uzunluğu ile doğru orantılıdır. Post uzunluğunu 5 mm’den 8 mm’ye çıkarmak retansiyon %47 oranında artırmaktadır.
- Normal periodontal destekli bir dişte post uzunluğunun standart parametreleri:
 - İnsizoservikal veya okluzoservikal boyuta eşit, Kron dan uzun,
 - Kron uzunluğunun 4/3’ü kadar,
 - Kron uzunluğunun yarısı, 3/2’si ya da 5/4’ü kadar,
 - Kıkık apaksi ve krestal kemik arası uzunluğun yarısı kadar,

Apikal tıkamayı bozmayacak şekilde mümkün olduğunca uzun olmalıdır.

- Post fonksiyonel kuvvetlere karşı koyabilme için yeterli genişlikte olmalıdır. Post küçük dinamik, çap genişlihileri arttırmalaz. Goodacre post çapını küçük herhangi bir yerinde küçük çapının 1/3’ünü geçmemesi gerektiğini ifade etmiştir (Goodacre, 2010).
- Post yapımında kullanılan materyaller, fonksiyonel streslere dayanabilmeleri, korrozona dirençli ve biyoyuvmulu olmalıdır.
Post yerleştirilirken stres konsantrasyonu en aza indirilmelidir. Paralel, aktif ve döküm postlarda stresi en aza indirmek için siman kaştı yolu hazırlanmalıdır.

1.3. Post – Kor Restorasyonlarda Başarısızlık Tipleri

Post tutuculuğun kaybı: Diş ile restorasyon arasındaki marjinal aralıklar, mikrosızıntı olduğunda postun desimantasyonu görülebilir. Kullanılan adeziv sistemlerin başarısı ve postun dizaynı postun tutuculuğunda önemli rol almaktadır (Peroz ve ark., 2005).

Kron tutuculuğun kaybı (gevşemesi): Ferrule etkisi oluşturmayan restorasyonların tutuculuğu tamamen postun retansiyonuna bağlıdır. Kron kaybı simantasyondaki başarısızlık kaynaklandığı gibi, sonradan oluşan çürüklerden de kaynaklanabilmektedir (Bavbek ve ark., 2011).

Postun deformasyonu: Posta ilişkin deformasyonlar, materyalin özelliklerine ve postun çapına bağlı olarak gözlenebilir. Postlar deformasyon göstermemeleri için gerekli direnci sağlayacak kadar kalın; kalan diş dokusunu koruyacak kadar ince olmalıdır (Baba ve ark., 2009).

Postun kırılması: Genellikle koronal dentin seviyesinde mekanik özelliklere bağlı olarak gözlenebilir (Cagidiaco ve ark., 2007).

Kök kırıkları: Post – kor restorasyonlarında sistem tamamen başarısız olmasına neden olan geri dönüşünsüz bir komplikasyondur. Yapılan çalışmalarla kıkır직 sklüğü %10-20 arasında bulunmuştur. Post – kor uygulamasında kron diş sert dokusu üzerinde değiş ise (ferrule etkisi oluşturulamadıysa) kıkır직 riski artmaktadır (Shillingburg ve ark., 1997). Kırıkna yivler yardımıyla aktif tutunan postların kullanımlı kıkır직 oluşturmada en etkili faktörlere biridir. Yapılan çalışmalarla yivli postların %7, apikse doğru incelen postların %3 ve paralel postların ise %1 oranında kıkır직ına sebep olduğu bildirilmiştir (Morgano ve ark., 2004; Baba ve ark., 2009).

Estetik sorunlar: Metal postlar ve karbon fiber postların, köle bölgesi incce dentine sahip dışlerde dış eti altında gri renklı bir yansıma oluşturması estetik boğularda kullanılmasını kısıtlaymaktadır. Tam seramik postlar ve karbon fiber dışında fiberle güçlendirilmiş postlar kullanılabilmektedir (Bavbek ve ark., 2011).

Korozyon: Post ve kanal arasındaki ara yüzeyi zayıflatır ve kökte renk değişimine neden olur. Krymetli olmayan metal alastingında korozyon riski daha yüksektir (Freedman, 2001).

2. GEREÇ VE YÖNTEM

Bu çalışmanın protokolü Marmara Üniversitesi Diş Hekimliği Fakültesi Girişimsel Olmayan Klinik Araştırmalar Etik Kurulu tarafından 06.06.2017 tarihinde 2017-118 protokol numarası ile onaylanmıştır. Marmara Üniversitesi Diş Hekimliği Fakültesi Protektif Diş Tedavisi Kliniğinde yürütülen bu araştırmada 145 hastanın 5 yıllık klinik takibi gerçekleştirildi. Çalışmamız, 60 adet fiber destekli post (49 hasta) ve 129 adet prefabrike metal destekli posttan (96 hasta) oluşmaktadır. Araştırmaya alınan maksiller ve mandibular dış gruplara göre uygulanmış post sayıları (Tablo 1-2) ve uygulama sayısının bölgeye göre ilişkişi aşağıdaki belirtilmiştir (Grafik 1).

Dış Numaraları	17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Uygulama Sayısı	3 7 9 10 11 12 13 14 15 7 6 8 10 8 7 7 5 3

Dış Numaraları	17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Uygulama Sayısı	3 7 9 10 11 12 13 14 15 7 6 8 10 8 7 7 5 3

Grafik 1. Uygulama sayısının bölgeye göre ilişkişi.
Postların simantasyonu için klinikte rutin olarak kullandığımız farklı simanlar tercih edilmiştir. Prefabrike metal destekli postlar için geleneksel yapıştırma simanları (Polikarboksilat: Adhesor Carbofine, Pentron, Čekoslovakya; Cam iyonomer: Kavitan Cem, Pentron, Čekoslovakya); fiber destekli postlar için ise adeziv rezin yapıştırma simanları (Maxcem Elite, Kerr, ABD; Variolink N, Ivoclar vivadent, Lihtenştayn) kullanıldı.

Tüm testlerin istatistiksel analizleri için SPSS (Statistical Package for Social Sciences) for Windows 21.0 programı (SPSS Inc, Chicago, Illinois, ABD) kullanılarak P = .05 düzeyinde anlamlı bir düzeyde gerçekleştirilmiştir. Çalışma verileri değerlendirilirken tanımlayıcı istatistiksel metotlar Frekans, Yüzde, Ortalama, Standart kullanıldı. Elde edilen klinik değerlendirme sonuçları Wilcoxon rank testi ile istatistiksel olarak değerlendirildi (P < 0.05). Sürekli ölçüm araçlarındaki farklılıklar tekrarlayan ölçümler varyans analizi ile test edildi (ANOVA).

3. BULGULAR

3.1. Prefabrike Metal ve Fiber Destekli Postun Uygulanmasından İtibaren Geçen Süre ve Komplikasyon İlişkisi Analizi

Araştırıma alınan 129 prefabrike metal destekli postun 29’unda; 60 fiber destekli postun 13’ünde komplikasyona rastlanmıştır. Uygulama tarihinden itibaren geçen süre ile komplikasyon oluşması arasındaki ilişki aşağıda belirtilmiştir (Grafik 2).

3.2. Komplikasyon Gelişme Olasılığının Plak Birikimyle İlişkisi Analizi

Araştırıma alınan prefabrike metal destekli postun 29’unda; 60 fiber destekli postun 13’ünde rastlanan komplikasyonların plak birikimine bağlı ilişki aşağıdaki gösterilmiştir (Grafik 3).

3.3. Postların Başarı Durumları Analizi

Araştırıma alınan postların başarı (zaman içerisinde komplikasyon görülmeyen) oranı grafik 4’de belirtilmiştir.

3.4. Memnuniyet Analizi

Hastalardan memnuniyet, estetik, fonetik, temizlenebilirlik, retansiyon, çığneme etkinliği hakkındaki değerlemleri puanlandırları istenmiştir (0: kötü, 1: yeterli, 2: iyi, 3: çok iyi). Prefabrike metal destekli post uygulanan hastalarda genel memnuniyet oranı 3 üzerinden 2,1 (%70); fiber destekli post uygulanan hastalarda 2,3 (%76) olarak belirlenmiştir.
Hastalarımızın %68'i ihtiyaç olduğu takdirde post uygulamasını tekrar yaptırabileceğini belirtirken, %32'si tekrar sağlamak istemeyeceğini belirtmiştir.

3.5. Komplikasyonlar

Çalışmamızda dahil edilen vakalarda başarısız olan post kor restorasyonlarda komplikasyonlar gözlenmiştir. Bunlar (Tablo 1);

Komplikasyon	Prefabrike metal destekli post	Fiber destekli post
Post tutuculuğunun kaybı	9	2
Postun kırılması	2	1
Kron retansiyon kaybı	9	3
Çürük oluşumu	6	4
Kanalda tekrar enfeksiyon	3	3

Plak birikimi, post kor restorasyonu dişlerde kemik kaybına neden olabilmektedir. Plak birikimine neden olabilecek bütün faktörler (uyumsuz restorasyon marjini, mevcut dişeti hastalıkları vb.) elimine edilmelidir.

Aşağıda araştırmaya dahil edilmiş olan komplikasyon gelişmiş hastamızın 36 numaralı dişinin ön tırnakları örnek olarak gösterilmiştir. Postun simansasyonu aşamasında alınan röntgeni resim 1’de; 33. ay kontrol seansı ise resim 2’de gözlenmektedir.

Vakamızın kronu retansiyon ile ilgili komplikasyon sonucu düştü. 36 numaralı dişin başlangıç cep ölçümleri mesial ve distalde 1 mm, bukkal ve linguade 2 mm iken; 33. ay kontrol seansında mesial ve distalde 3 mm, bukkal ve linguade 5 mm’ye ulaşılmıştır.

Komplikasyon gelişen diğer bir hastada ise 15 numaranın periapikal filmî yer almaktadır (Resim 3). Dişte post kırığı sonucu krona retansiyon kaybı ve çürük oluşumu gözlenmiştir.

Diğer bir vakamızda ise 13 numaralı dişin kanalında tekrar enfeksiyonuna bağlı apikal kemik kaybı gözlemlenmiştir. Röntgeni resim 4’de bulunmaktadır.

Farklı tip siman kullanımı, restore edilmiş dişlerin kırlma dayanımını etkilemezken (p=0.209), 10 mm derinlikte post yerleşimi 5 mm derinlikte yerleşime göre daha yüksek kırlma dayanımı göstermiştir (p=0.001).

4. TARTIŞMA

Post – kor restorasyonlar endodontik tedavi görmüş ve maddelik kaybı fazla olan dişlerde uygulanır (Schwartz ve Robbins, 2004). Yaygın endikasyonu bulunan post – kor tedavileri için çok farklı materyaller ve teknikler geliştirilmştir; kullanılabilecek post-kor sistemlerinin seçimi, çeşitli kriterler değerlendirilmiştir. Çalışan dört dokusu miktari, dişin morfoloji, estetik ve fonksiyonel ihtiyaçlar, dişin arktaki pozisyonu, periodontal durum, hastanın ağiz hijyenini bu kriterlerden öne çıkarlar (Akkayan ve Canikoğlu, 1997).

Çeşitli post-kor sistemleri mevcuttur. Seçilen sistemde aranan özellikler klinik uygulama aşamalarının kolay olması ve ekonomik olmasıdır (Schwartz ve Robbins, 2004). Rutin klinik uygulamada tek köklü dişlerde docks post; büyük ağı dişleri için docks post-korun giriş yüzünün ayarlanması olmasında problemler meydana gelebilir. Bu nedenle genellikle prefabrike metal post tercih edilir (Akkayan, 2004). Prefabrike metal postların dezavantajı ise, zamanla korozyon ugrayması sonucunda dişte ve estetik restorasyonlarda renklendirme yol açabilmeleridir (Fraga ve ark., 1998). Estetik vakalarda ise klinisyenlerin önenciliği tercihi fiberle güçlendirilmiş postlar ve direkt yöntemle
kompozit kor yapısının oluşturulmasıdır. Post – kor restorasyonlarda en çok görülen başarısızlık tipleri; postun kırlması ve desmantlamanın. Çalışmamızda sıkıca tercih edilmiş olan prefabrike metal destekli postlar ve fiber destekli postlar kullanılabilecek klinik başarı oranlarının ve başarısızlık tiplerinin değerlendirilmesi amaçlanmıştır.

Goodacre ve Spolnik 1995 yılında yapılan çalışmalarda, post uzuşununun idealde kanal boyunun 3/4’ü kadar olması gerektiğini belirtmişlerdir. Ancak bunun her zaman mümkün olmadığı; apikal tikamayı bozmaksızın postun mümkün olduğunca uzun olması gerektiğini söylerlerdir. Araştırmacılardan apikalde 3 mm’den daha az gutta perka bırakılmaması ve kök ucunda bırakılan gutta perkanın 4-5 mm. olduğu takdirde yeterli apikal tikamayı sağlayacağı konusunda hemfikirdirler (Akan, 2000; Abramovitz ve ark., 2000; Schwartz ve Robbins, 2004). Çalışmamızda da yeterli apikal sızınmaktadır için tüm vakalarda gutta perka kök kanal içerisinde 4mm bırakılmıştır; uygulanan post materyallerinin kıkı uzuşununun ¼’ü ile ½’i arasında olduğu saptanmıştır.

 Bazı klinisyenler post kor uyuşmalarda dışın servikal bölgesinde ferrule hazırlanması önermiştir (Torbjörner ve ark., 1995). Ferrule etki, coping işlevi gören gingival dentini korur. Bu etki postun hareketini ve marjinal açıklığı önlemeden ve önlenir. Ferrule içerisinde vakaların takibinde elde edilen kompleksiyon sonuçları ve röntgen görünümü, daha kabul edilebilecek yapılar ve dokulara görülmiştir (Torbjörner ve ark., 1995). Bu sebeple bu çalışmamızda tüm dışın servikalinde ferrule parazapronu yapılmıştır.

 Post çeşitleri kanal farklı yapılabilecek yapıtırıcı ajanlarla simante edilebilir. Prefabrik metal destekli postlar geleneksel simanlar ile simante edilirken; fiber destekli postlar günümüzde gelişmiş olan rezin simanlar ile simante edilir. Kimyasal veya işıkla polimerize olan tiplerin yanı sıra dual-cure yanı her iki şekilde de polimerize olan simanlar da mevcuttur (Stockton, 1999).

 Göğüsmetal ve prefabrike metal postlar işığı geçirmesidir için sadece işıkla polimerize olan simanların bu post sistemleri ile kullanılması kontraendikedir. Dual-cure simanlar da işığın yeterlili olması, polimerizasyonun başlaması ve tamamlanması geciktirebilir (Yurdakoru ve Eskitasçıoğlu, 1996). Yurdakor ve Eskitasçıoğlu kimyasal olarak polimerize olan kompozit rezinlerin postlar tarafından kullanıldığında işık ile restorasyon arasındaki fazla kompozit rezinin polimerizasyonunun tamamlanmadan uzaklaştırılması nedeniyle bol hücrelerine damgo etme eğilimindedirler.

 Hem kimyasal hem işık ile polimerize olan dual-cure sertleşen rezin simanları ise kompozit rezin materyalin tamamen polimerize olmasından önce tavan simanının uzaklaştırılması ve işığın ulaşımadığı bölgelerde de simanının kimyasal polimerizasyonuna imkan verir (Yurdakor ve Eskitasçıoğlu, 1996). Çalışmamızda prefabrik metal destekli postlar için konvansiyonel; fiber destekli postlar için ise dual-cure rezin simanları kullanılmıştır.

 Günümüzde karşılaşılan geleneksel döküm postlar kullanılmıştır. Ancak yapılan çalışmalarda edilen dışınların preparasyonu sırasında meydana gelen madde kaybının dişin özellikle okluzel kuvvetlerle olan dayanıklılığını zayıflatığını ve bunun sonucu olarak kök kırıklarına yol açtığı gözlemlemiştir (Torbjörner ve ark., 1995; Isador ve ark., 1999; Bedestenci, 2003). Döküm postlar, prefabrik metal destekli postlar ile karşılaştırıldığında retansyonunun ve dışın olusan stres durumunun daha iyi olduğu görülmüştür (Bedestenci, 2003). Bu bilgiler işığında döküm postlara kıyaslal prefabrik postların kullanımı daha konservatif ve pratik bir çözüm olarak değerlendirilebilir.

 Prefabrik postlar için prefabrik postların değerlendirildiği bir çalışmada klinik başarı oranları hastanın 1 yıllık takibe de gelen geleneksel döküm postlar ve prefabrik postlar için tavan simanın kimyasal polimerizasyonuna imkan verir (Yurdakor ve Eskitasçıoğlu, 1996). Çalışmamızda prefabrik metal destekli postlar için konvansiyonel; fiber destekli postlar için ise dual-cure rezin simanları kullanılmıştır.

 Günümüzde prefabrik metal postlar ile fiber postların değerlendirildiği bir çalışmada, prefabrik metal postların korozyon ve metal yansımaları gibi dezavantajlarından dolayı estetik özelliklerinin gelişirildiği fiber postlar kullanılmaya başlanmıştır (Eskitasçıoğlu ve ark., 2002). Rutin klinik uygulamada estetik post materyali olarak klinisyenlerin öncelikli tercihi fiberle güçlendirilmiş postlar ve direkt yöntemle kompozit kor yapısının oluşturulmasıdır.

 Prefabrik metal postlar ile fiber postların değerlendirildiği bir çalışmada klinik başarı oranları hastanın 1 yıllık takibe de gelen prefabrik metal postların koruyucu kullanılarak klinik başarı oranları 100 hastanın 1 yıllık takibinde fiberle güçlendirilmiş postlar, prefabrik metal postların yüksek başarı oranlarını gösterdikleri tespit edilmiştir. Metal postlarda kök kırığı komplikasyonunun yüksek olduğu ve dışın koronal yapısının metal postların başarısının etkilediği buna karşın fiber postların etkilediği belirtilmiştir (Naumann ve ark., 2005).

 Fiber postların yaklaşık 2 yıldır klinik takibinin yapıldığı başka bir çalışmada en çok görülen başarısızlığın post desmantasyonunu (%4,3) ve metal tabanı çeşitli başarsızlığı (%3) olduğu gözlenmiştir (Cagidiaco ve ark., 2008). Çalışmamızda fiber postlar ile prefabrik metal postların başarısı yakın bulunmuştur. Prefabrik metal destekli postlarda çürüktür görüluemeyene ve kanal tedavi başarısının rastlanmasının
Marmara Üniversitesi Protetik Diş Tavdavısı Anabilim Dalı’nda gerçekleştirildiğimiz araştırmaımız dahilinde incelenen prefabrike metal destekli post uygulamaları ile fiber destekli post uygulamalarının birbirine göre başarısı üstünüğü gözlemledi. Post-cor restorasyon gerektiren tedaviye tekrar başvurmak isteyeen hasta sayısı, prefabrike metal destekli ve fiber destekli post için aynı bulundu. Hastaların %68’si tekrar yapabileceğini belirtirken, %32’si ise yapmak istemeyeceği belirtti.

5. SONUÇ
Prefabrike metal destekli post uygulamışı dışlerde kompleksiyon nedenlerinden biri olarak zamanla bağlı plak bíriktirmi,纤维 destekli post uygulamışı dışlerde başarısızlık sebebi çoğunlukta hekimin bağlı sebeplerden dolayı ortaya çıkmış ve zamanla kompleksiyon gelişiminin pozitif bir ivme göstermediği görülüyordu. Bunun nedeni olarak fiber destekli postların yapışal olarak daha dayanıklı olması ve elastik modülünün dentine yakın olması sonucu stres dağılımı açısından apikal yapıya daha dayanıklı olması bekleniyordu. Ancak fiber postlar ve prefabrik postlar için aynı bulundu.

Kaynaklar
1. Abramovitz L, Lev R, Fuss Z, Metzzer Z. The unpredictability of seal after post space preparation: a fluid transport study. J Endod. 2001; 27, 292-295.
2. Akcan H, Kesim B. Üç farklı core sisteminin kırmızıya dayanımı ve dayanımı için çekilemeleri. Cumhuriyet Diş Hek Derg. 2000;3(1):31.37.
3. Akkayan B, Caniklioğlu MB. Farklı post türlerinin kök kırmızıya dayanımı etkileri ve post seçim kriterleri, Hacettepe Ü Diş Hek Derg. 1997; 21, 75-84.
4. Akkayan B. An in vitro study evaluating the effect of ferrule length on fracture resistance of endodontically treated teeth restored with fiber – reinforced and zirconia dowel systems, J Prostheth Dent. 2004; 92:155-162.
5. Baba NZ, Goodacre CJ, Daher T. Restoration of endodontically treated teeth: the seven keys to success. Gen Dent. 2009;57(6):596-603.
6. Baybik AB, Belli S, Eskitasçoğlu G. Esthetic restorations of endodontically treated teeth: post-cores. Türkiye Klinikerleri J Dental Sci-Special Topics. 2011; 2(1):29-36.
7. Bedestenci B. Metal ve metal olmayan prefabrik post sistemlerinin dış ve alveol kemiğinde oluşturduğu streslerin üç boyutlu sonlu elemanlar stres analizi yöntemiyle değerlendirilmesi, Gazi Ü Sağlık Bilimleri Enstitüsü, Doktora Tezi, 200, Ankara (Danışman: Prof.Dr. Yavuz BURGAZ).
8. Cagidiaco MC, Goracci C, Garcia-Godoy F, Ferrari M. Clinical studies of fiber posts: a literature review. Int J Prosthodont. 2008; 21(4):328-36.
9. Cagidiaco MC, Radovic I, Simonetti M, Tay F, Ferrari M. Clinical performance of fiber post restorations in endodontically treated teeth: 2-year results. Int J Prosthodont. 2007;20(3):293-8.
10. Çalışkan MK. Root canal instrument and root canal preparation methods. In: Endodontide tani ve tedaviler. İstanbul: Nobel Tip Kitapçılık; 2006, p:273-313.
11. Fraja RC, Chaves GSB, Mello JF, Siqueira JR. Fracture resistance of endodontically treated roots after restoration, J Oral Rehabil. 1998; 25, 809–813.
12. Freedman GA. Esthetic post and core treatment. Dent Clin North Am. 2001 ;45(1):103-16. 32.
13. Goodacre CJ. Carbon fiber posts may have fewer failures than metal posts. J Evid Based Dent Pract. 2010;10(1):32-4.
14. Heydecke G, Budtz F, Strub JR. Fracture strength and survival rate of endodontically treated maxillary incisors with approximal cavities after restoration with different post and core systems: an in vitro study. J Dent. 2001;29(6):427-33. 27.
15. Morgano SM, Rodrigues AH, Sabrosa CE. Restoration of endodontically treated teeth. Dent Clin North Am. 2004;48(2):397-416.
16. Naumann M, Blankenstein F, Dietrich T. Survival of glass fibre reinforced composite post restorations after 2 years-an observational clinical study. J Dent. 2005; 33(4):305-12.
17. Peroz I, Blankenstein F, Lange KP, Naumann M. Restoring endodontically treated teeth with posts and cores-a review. Quintessence Int. 2005;36(9):737-46.
18. Robbins JW. Restoration of the endodontically treated tooth. Dent Clin North Am. 2002;46(2):367-84.
19. Sagsen B, Ertas H, Gürbulak AG, Er Ö, Yağcı F, Akdoğan G. Bağlama özelliği olan bir kanal dolgu materyali ile veya farklı fibrilli J Dent Fac Ataturk Uni. 2012;46(3):367-84.
20. Schwartz RS, Robbins JW. Post placement and restoration of endodontically treated teeth: a literature review, J Endod. 2004; 30:290–301.
21. Shillingberg HT, Hoby S, Whitsett L, Jacobi R, Brackett SE. Preparation for extensively damaged teeth. In: Fundamentals of Fixed Prosthodontics. 3rd ed. Chicago: Quintessence Publishing Inc; 1997, p:181-209.
22. Stockton LW. Factors affecting retention of post systems: A literature review, J Prosthet Dent. 1999; 81:380–385.
23. Torbjörner A, Karlsson S, Ödman PA. Survival rate and failure characteristic for two post designs, J Prostheth Dent. 1995; 73:439–444.
24. Yurdukor B, Eskitasçoğlu G. Kıyımtaş bir metalin dual-cure kompozit rezinlerle bağlanma direnci. Ankara Ü Diş Hek Fak Derg. 1999; 23:53–55.
Evaluation of Impacted Third Molar and Canines with Cone Beam Computed Tomography

Gömülü Üçüncü Molar ve Kanin Dişlerin Konik Işınlı Bilgisayarı Tomografi ile Değerlendirilmesi
Melike BAŞARAN1 Esin BOZDEMİR2

Öz

Amaç: Bu çalışmanın amacı; gömülü üçüncü molar ve kanin dişlerin lokalizasyonlarını, komşu anatomin yapularla ilişkilerini ve bu dişlerle ilişkili patolojik değişiklikleri KIBT ile değerlendirerek ve elde edilen verilerde, bu özelliklerin prevalansını saptamak, tedavi planlamasının belirlenmesinde ve cerrahi operasyonlarında kastınma amacıyla klinisyenlere farkındalık oluşturmaktur.

Yöntemler: Çalışmada 200 hastadan alınan KIBT görüntülerinde 316 gömülü kanin ve üçüncü molar diş incelendi. Gömülü üçüncü molar ve kanin dişlerin pozisyonları, komşu dişlerin kök veya kronuda rezorpsiyon oluşturup oluşturmadığı, gömülü dişlerin follikülünde kistik değişimin olup olmadığını, mandibüler üçüncü molarların mandibular kanalla, maksiller üçüncü molarların maksiller sinüsle arasındaki ilişki değerlendirildi.

Bulgular: Gömülü molarların çoğunluğu mandibuldayken, gömülü kanin dişlerin hepsi maxilladaydı. Mandibular üçüncü molarların çoğunlukla mezioanguler, maxillary üçüncü molarların çoğunlukla distoanguler, kaninlerin ise mezioanguler mezypalatal pozisyonyada gömülü olduğu saptandı. Gömülü mandibular molarların %52’sinde, mandibular kanalla gömülü diş arasında kemik dokusunun olmadığı belirlendi. Gömülü maksiller üçüncü molarların çoğunlukla mandibular kanalına ve maksiller sinüsle arasındaki ilişki değerlendirildi. Komşu dişte rezorpsiyon neden olan gömülü dişlerin hepsi komşu dişin kanıldı.

Sonuç: Gömülü dişler dünya üzerinde geniş bir populasyonu etkileyen yaygın bir problemdir. Gömülü dişlerin uygun tedavi yöntemlerin belirlenmesi, tedavi esnasında ve sonrasıda yariya gelebilecek komplikasyonların önune geçilmesi için gömülü dişlerin ve komşu dişlerin pozisyonları, komşu anatomin yapularla olan ilişkileri ayrıntılı olarak değerlendirilmesi gerekmektedir.

Anahtar Kelimeler: Gömülü üçüncü molar dişleri, Gömülü kanin dişleri, Konik işınlı bilgisayarı tomografi

Abstract

Objective: The aim of this study is to evaluate position and relationship between adjacent anatomic structures of impacted third molar and canine and pathological alterations associated with these teeth with cone beam computed tomography (CBCT) and in the light of the obtained data to raise awareness in clinicians so as to determine prevalence of these features, decide appropriate management of impacted teeth and avoid possible complications in surgical operations.

Methods: In this study, 316 impacted third molars and canines were examined on 200 CBCT images. Impacted third molars and canines were assessed according to position, resorption of adjacent tooth and cystic lesion. Impacted mandibular third molars were examined relationship with mandibular canal, impacted maxillary third molars were examined relationship with maxillary sinus.

Results: Most of impacted teeth were in mandible. All impacted canines were in maxilla. Mostly mandibular third molars were impacted mesioangular, maxillary third molars were impacted distoangular, the canines were impacted mesial-palatally position. 52% impacted mandibular third molars had no bone tissue between mandibular canal. Impacted maxillary third molars had no bone septa between maxillary sinus and they were localized border of the maxillary sinus frequently. Only impacted canines caused resorption of the adjacent teeth.

Conclusion: Impacted teeth that influenced extensive population on the world is a common problem. In order to determine appropriate management of impacted teeth and avoid complications that may occur during or after treatment, localization and relations with adjacent anatomic structures of impacted teeth should be evaluated in detail.

Keywords: Impacted third molar, Impacted canine, Cone beam computed tomography

GİRİŞ

Başka bir diş ya da kist-tümör gibi patolojik durumlar nedeniyle, üzerindeki kemik veya yumuşak doku tarafından okluzyona gelmesi engellenmiş zamanında tam olarak sürmemiş dişlere gömülü dişler denir. Tüm dişler içinde
daimi mandibular ve maksiller üçüncü molar dişler gömülü kalma oranını en yüksek olan dişlerdir. Bu dişler daimi maksiller kanin ve mandibular premolar dişler izler.(1)

Üçüncü molar dişler arasında mandibuler üçüncü molar dişler en sık gömülü kalan dişlerdir. Tüm ırklarda en son süren üçüncü molar dişlerin gömülü kalma sebepleri arasında yüz gelişimindeki farklılıklar, çene ve diş boyutları, beslenme, diş atrizyonunun ve şişme kaslarının kullanım derecesi, çene arkında yer darlığı, geçikmiş üçüncü molar mineralizasyonu, hereditet, raşitizm, anemi, konjenital sifiliz, tümörler ve endokrin bozukluklar veya sendromlar sayılabilir (2, 3).

Gömülü dişlerin canon dişlerinin gömülü kalma sıklığı mandibülar kanin dişlerinden iki kat daha fazladır (4). Arka boyununun dişlerin yapısı ile uyumuz olması, lateral dişin konjenital eksikliği, süt kanin dişin enken kayби veya uzamsı retansiyonu, kök dilesarasyonlar, malpoze diş germi, endokrin hastalıklar, kistik ve/veya neoplazik oluşumlar, kalıtım gibi pek çok farklı etiyolojik faktör kanin dişlerin gömülü kalmasına sebep olabilmektedir (5).

Gömülü dişler hiçbir semptom vermeden ve patolojik bir duruma sebep olmadan yıllarca çenelerde kalabildiği gibi, perikoronitis, trismus, enfeksiyon, temporomandibular eklem problemleri, komşu dişlerde kök rezorpsiyonu, kist veya tümör oluşumu, çürüktür, ağır ve yanak isırma gibi durumları sebep olabilir (6).

Gömülü dişlerin çevresinde oluşabilecek herhangi bir patolojinin ve tedavi yöntemlerinin belirlenmesi, bu dişlerin çekimi snorunun olmasına, komşu dişlerin konjenital eksiklikleri gibi, perikoronitis, trismus, enfeksiyon, temporomandibular eklem problemleri, komşu dişlerde kök rezorpsiyonu, kist veya tümör oluşumu, çürüktür, ağır ve yanak isırma gibi durumlara sebep olabilir (5).

Mandibular gömülü üçüncü molar dişlerle mandibular kanal arasındaki kemik dokusunun varlığı ve mandibular canalın gömülü üçüncü molar dişle göre konumunu, linguode, bukkalde, inferiorda ve interradiküler alanda değerlendirildi.

Çalışmanın amacı; gömülü üçüncü molar ve kanin dişlerin lokalizasyonlarının, komşu anatomik yapılarla ilişkisini ve bu dişlerle ilişkili patolojik değişikliklerin KIBT ile değerlendirilmesi sonucunda elde edilen veriler işığında; bu özelliklerin prevalansını saptamak, tedavi planlamasının belirlenmesinde ve cerrahi operasyonlarda olası komplikasyonların kaçınma amacıyla klinisyenlerde farkındalık oluşturmak.
(hiperplastik follikül), 5 mm ve üzerinde ise dentigeröz kist olarak tanımlanıdı (11).

BULGULAR

Çalışmaya 18 yaş üstü, yaş ortalaması 35,8±13,6 olan 200 hasta (101 erkek 99 kadın) dahil edildi. Toplam 316 tane gömülü diş tespit edilirken, tespit edilen gömülü dişlerin 261 tanesi üçüncü molar dişti. Gömülü dişlerin çoğunluğu mandibuladaydı (%48,5). Erkeklerde gömülü diş sayısı kadınlara göre daha fazlaydı (p˃0.05).

Hastaların çoğunluğunda dişler (%71,5) tek taraflı gömülüydü. Gömülü maksiller molar (%26,5) ve kanin dişlerin (%20,5) çoğunluğunu tek taraflı gömülüyken, gömülü mandibular dişlerin çoğunluğu (%21) çift taraflı gömülüydi.

Mandibulada gömülü üçüncü molar dişler; hem sağ tarafta (%47) hem de sol tarafta (%42,5) en çok mezyoanguler pozisyonda gömülüyken, maksiller dişlerin çoğunluğu (%21) çift taraflı gömülüydi.

Hem sağ tarafta (%66,7) hem de sol tarafta (%73,4) gömülü mandibular üçüncü molar dişlerin büyük çoğunluğunda, mandibular kanalın inferiorda konumlandığı gözlemdi. Mandibulada gömülü üçüncü molar dişlerle mandibular kanal arasında %48 oranında kemik septanın varlığı saptandı (Tablo 2).

Maksillada gömülü molar dişlerin %44,7’si maksiller sinüs sınırdan konumlanırken; %47,3 oranda gömülü diş maksiller sinüsle ilişkilidi. Gömülü molar dişlerle maksiller sinus arasında kemik septa varlığı %6,9 oranda saptandı (Tablo 2). Sağ tarafta vertikal pozisyonda olan gömülü maksiller molar dişlerinin çoğunluğu (%22,2) dişin 1/3’ünün maksiller sinüs içerisinde olduğu ve distoanguler pozisyonu olanların çoğunluğunun (%16,7) ise maksiller sinüs sınırdan olduğu ve dişle maksiller sinus arasında kemik septanın olmadığı görüldü (p=0,02). Sol tarafta ise vertikal (%16,4) ve mezyoanguler (%16,4) pozisyonu olan gömülü molar dişlerin çoğunluğununda dişlerin maksiller sinus sınırdan olduğu ve dişle sinüs arasında kemik septanın olmadığı belirlendi (p=0,00).

Tespit edilen 55 (sağda 26, sola 29) gömülü kanin dişinin hepsi hepsi maksillaydı ve kadınlardaki (%54,2) erkeklerde (%45,8) göre daha fazla gömülü kanin diş belirlendi. Gömülü kanin dişlerinin çoğunluğu mezyopalatal pozisyonda gömülü olarak saptandı (Tablo 3).

Tablo 1. Gömülü üçüncü molar dişlerin pozisyonlarına göre dağılımı.

Maksiller molar	Vertikal	Horizontal	Mezyoanguler	Distoanguler	Bukkolingual	Diğer	p	
Sağ	21(38,8)	-	8 (14,8)	22(40,7)	3(5,5)	-	0,00*	
Sol	22(36,6)	2(3,2)	10(16,3)	24(39,3)	2(3,2)	1(1,6)		
Mandibular molar	Sağ	7(10,6)	21(31,8)	31(47)	2(3)	2(3)	3(4,5)	0,08
Sol	6(7,5)	31(38,7)	34(42,5)	2(2,5)	5(6,2)	2(2,5)		

*p<0,05

Tablo 2. Gömülü molar dişlerin komşu anatomi yapılarla ilişkisinin taraflara göre dağılımı.

Maksiller molar	Diş maksiller sinüsle ilişkili n(%)	Diş maksiller sinüs sınırında n(%)	Maksiller sinüsle diş arasınada kemik septa var n(%)	Mandibular kanalda diş arasınada septa var n(%)	Mandibular kanalda diş arasınada septa yok n(%)
Sağ	28 (24,1)	24 (20,6)	2 (1,7)	33 (22,6)	33 (22,6)
Sol	27 (23,2)	28 (24,1)	6 (5,2)	37 (25,3)	43 (29,4)
Toplam	55 (47,3)	52 (44,7)	8 (6,9)	70 (47,9)	76 (52)

*p<0,05

Tablo 3. Gömülü kanin dişlerin pozisyonlarına ve taraflara göre dağılımı.

Maksiller	Mezyolabil n(%)	Mezyopalatal n(%)	Mezyodistal n(%)	Palatal n(%)	Apikal n(%)	Horizontal n(%)	p
Sağ	3(11,5)	13(57,7)	3(11,5)	-	4(15,4)	1(3,8)	0,08
Sol	5 (17,2)	13(44,8)	1(3,4)	-	9(31)	1(3,4)	
Komşu dişte rezorpsiyona neden olan dişlerin hepsi gömülü kanin dişlerdi. Gömülü kanin dişlerin %18’inin komşu dişte rezorpsiyona neden olduğu belirldi. Kistik değişim izlenen 40 gömülü dişin 15’inde follikülde genişleme, 25’inde dentigeröz kist belirlendi. En fazla kistik değişim izlenen dişler mandibular üçüncü molar dişleridı (Grafik 1).

Grafik 1. Gömülü dişlerle ilişkili oluşan patolojik değişikliklerin dağılımı.

TARTIŞMA

Gömülü dişler; görülme sıklığı %18-32 arasında olan, dünya üzerinde geniş bir populasyonu etkileyen yaygın bir problemidir (1). Gömülü dişlerin uygun tedavi yönteminin belirlenmesi tedavi esnasında veya sonrasında meydana gelebilecek komplikasyonların önüne geçilmesi için gömülü dişlerin çene içerisindeki konumlarının, komşu anatomik yapılar ve dişlerle olan ilişkilerinin ayrıntılı olarak değerlendirilmesi gerekmektedir. Tedavi planının oluşturulmasında radyolojik değerlendirme önemli bir rol oynar. Radyolojik değerlendirme kullanılan periapikal, okluzal ve panoramik radyografiler gibi iki boyutlu görüntüleme yöntemleri, çene ve dişlerin ayırt edilmesini sağlar. Ancak, bu yöntemlerde çevre dokuların süperpozisyonu, magnifikasyon, görüntülerin distorsiyonu, perspektif problemleri gibi dezavantajlar mevcuttur. Son yıllarda, üç boyutlu görüntüleme sağlayan KIBT’ın gömülü dişlerin tanısında iyi boyutlu görüntüleme tekniklerinden üstün olduğu birçok çalışmada gösterilmişdir (9, 12, 13).

Çalışmalarda gömülü dişlerin konumunun belirlenmesi için kullanılan farklı sınıflamalar bulunmaktadır. Bu sınıflandırmalar gömülü dişin okuluzal düzlemle ilişkisini, açısı, mandibulada ramusun anterior sınırıyla olan ilişkisini gibi faktörlerle dayanarak radyografik sınıflandırma sistemleridir ve hekimler arasında çeşitli içerir. Bu çenelerde geçerlilikleri sağlayan KIBT’ın gömülü dişlerin tanısında iyi boyutlu görüntüleme tekniklerinden üstünlüğünü göstermiştir (9, 12, 13).

Çalışmalarda gömülü dişlerin konumunu belirlemek için kullanılan farklı sınıflamalar kullanılmıştır. Bu sınıflandırmalar gömülü dişin okuluzal düzlemle ilişkisini, açısı, mandibulada ramusun anterior sınırıyla olan ilişkisini gibi faktörlerle dayanarak radyografik sınıflandırma sistemleridir ve hekimler arasında çeşitli içerir. Bu çenelerde geçerlilikleri sağlayan KIBT’ın gömülü dişlerin tanısında iyi boyutlu görüntüleme tekniklerinden üstünlüğünü göstermiştir (9, 12, 13).

Yetersiz klinik ve radyolojik değerlendirme sonucunda gömülü maksiller üçüncü molar dişlerin çekimi sonucunda alveolit, enfeksiyon, parestezi gibi komplikasyonlar meydana gelebilir. Yapılan çalışmalarda gömülü mandibular üçüncü molar dişlerin çekiminden sonra %8 oranında geçici inferior alveolar sinir zedelenmesi saptanırken, %3,6 oranında kalıcı inferior alveolar sinir zedelenmesi saptanmıştır (15). Mandibular kanalin gömülü üçüncü molar dişin lingualinde ya da kökleri arasında olması inferior alveolar sinir zedelenmesi saptanmıştır (15). Mandibular kanalin gömülü üçüncü molar dişin lingualinde ya da kökleri arasında olması inferior alveolar sinir zedelenmesi için diğer pozisyonlara göre daha büyük bir risk oluşturmaktadır. Çalışmalarda bazı çalışmalarda (13, 18) benzer şekilde mandibular kanal en sık gömülü üçüncü molar dişin inferiorunda gözlenmiştir. Mandibular kanal en sık gömülü üçüncü mandibular molar dişin lingualinde (19, 20) ya da bukkların (21, 22) konumlandığı bildiren çalışmalarda mevcuttur. Ayrıca çalışmalarda gömülü mandibular üçüncü molar dişlerin %52’sinde mandibular kanalla gömülü üçüncü molar diş arasında farklı zon bölgesinde zedelenmiştir. Bu durumda gömülü mandibular molar dişlerin iki tanesinden birinde inferior alveolar sinirle teması olduğu sanyönel bir risk oluşturabilir.

Fanourakis ve ark. (14) ile Yıldırım ve arkadaşlarının (15) çalışmalaryla uyumu olarak bizim çalışmamızda da gömülü mandibular üçüncü molar dişlerin en çok mezzyoanguler pozisyonu olduğu belirldi. Literatürde mandibular üçüncü molar dişlerin en çok vertikal pozisyonda gömülü olduğu bildiren çalışmalar da (3, 16) mevcuttur. Bazı çalışmalarda maksiller üçüncü molar dişlerin en çok vertikal daha sonra distoanguler pozisyonda gömülü olduğu saptanırken (2, 17) bizim çalışmamızda maksiller üçüncü molar dişler en çok distoanguler daha sonra en vertikal pozisyonda gömülü olarak tespit edildi.

Gömülü dişlerin çekimi sonrasında alveolit, enfeksiyon, parestezi gibi komplikasyonlar meydana gelebilir. Yapılan çalışmalarda gömülü mandibular üçüncü molar dişlerin çekiminden sonra %8 oranında geçici inferior alveolar sinir zedelenmesi saptanırken, %3,6 oranında kalıcı inferior alveolar sinir zedelenmesi saptanmıştır (15). Mandibular kanalin gömülü üçüncü molar dişin lingualinde ya da kökleri arasında olması inferior alveolar sinir zedelenmesi için diğer pozisyonlara göre daha büyük bir risk oluşturmaktadır. Çalışmalarda bazı çalışmalarda (13, 18) benzer şekilde mandibular kanal en sık gömülü üçüncü molar dişin inferiorunda gözlenmiştir. Mandibular kanal en sık gömülü üçüncü mandibular molar dişin lingualinde (19, 20) ya da bukkların (21, 22) konumlandığı bildiren çalışmalar mevcuttur. Ayrıca çalışmalarda gömülü mandibular üçüncü molar dişlerin %52’sinde mandibular kanalla gömülü üçüncü molar diş arasında farklı zon bölgesinde zedelenmiştir. Bu durumda gömülü mandibular molar dişlerin iki tanesinden birinde inferior alveolar sinirle teması olduğu sanyönel bir risk oluşturabilir.
Kanin dişler; estetikte, dental arık gelişiminde ve okluzyonda kilit rol oynar. Bu dişlerin ortodontik-cerrahi tedavisindeki en önemli rolü, komşu anatominin yapılara ilişkisi tam olarak saptanmadığı için, kanin dişlerinde çok palatal pozisyonunda gömülü dişlerin tedavisinin tespit etmek意義 önemindedir (13, 23). Literatürde yapılan çalışmaların bazlarındaki gömülü dişlerin çok yüksek oranda bu pozisyondadır (23, 24) tespit edilenin, bu pozisyonda gömülü dişlerin, çok labial pozisyonda gömülü dişlerin olma olasılığını yüksek göstermektedir. Çalışmamızda Liu ve ark. tarafından (9) gömülü dişlerin sonuçlarını benzer şekilde gömülü dişler en çok mezopatalalı pozisyonda görülenmiştir.

Gömülü dişlerin lateral dişlerde daha sık rezorpsiyon sebebi olduğu yapılan çalışmalarla birlikte gömülü dişlerin lateral dişlerde oldukça yüksek rezorpsiyon oranını %27 ile %35 arasında değişen bir şekilde çalışmalarda rezorpsiyon oranını %18 olarak bulmuştur. Bu oran çalışmadan çalışma boyunca gömülü dişlerin lateral dişlerde gömülü dişlerin rezorpsiyon oranını %12,3 olarak bulunmuştur. Gömülü dişlerde patolojik değişikliklerin değerlendirilmesinde, sadece radyografik değerlendirmeye dayanarak gömülü dişlerde rezorpsiyonun incelenmesi ve değerlendirilmesi, golü dişlerin pozisyonunun özelliklerini, dişlerin rezorpsiyonuna etki eden faktörleri ve rezorpsiyonun patolojik değişiklikler ile ilgisi olarak değerlendirilmesi, bu durumda gömülü dişlerin rezorpsiyonu ile gömülü dişlerin rezorpsiyonuna olan iliski ve etkisi analizi, sadece radyografik değerlendirme ile geçilemez. Gömülü dişlerin rezorpsiyonu, gömülü dişlerin pozisyonuna bağlıdır ve bu pozisyonun gömülü dişlerin rezorpsiyonunu etkiler. Bu yüzden, gömülü dişlerin rezorpsiyonunun incelenmesi, gömülü dişlerin pozisyonunu, gömülü dişlerin rezorpsiyonunun gömülü dişlerin pozisyonuna bağlı olduğunu göstermektedir.

Yaşanıhlar sayısında, gömülü dişlerin, lateral dişlerde daha sık rezorpsiyon sebebi olduğu yapılan çalışmalarla birlikte gömülü dişlerin lateral dişlerde oldukça yüksek rezorpsiyon oranını %27 ile %35 arasında değişen bir şekilde çalışmalarda rezorpsiyon oranını %18 olarak bulmuştur. Bu oran çalışmadan çalışma boyunca gömülü dişlerin lateral dişlerde gömülü dişlerin rezorpsiyon oranını %12,3 olarak bulunmuştur. Gömülü dişlerde patolojik değişikliklerin değerlendirilmesinde, sadece radyografik değerlendirmeye dayanarak gömülü dişlerde rezorpsiyonun incelenmesi ve değerlendirilmesi, gömülü dişlerin pozisyonunun özelliklerini, dişlerin rezorpsiyonuna etki eden faktörleri ve rezorpsiyonun patolojik değişiklikler ile ilgisi olarak değerlendirilmesi, sadece radyografik değerlendirme ile geçilemez. Gömülü dişlerin rezorpsiyonu, gömülü dişlerin pozisyonuna bağlıdır ve bu pozisyonun gömülü dişlerin rezorpsiyonunu etkiler. Bu yüzden, gömülü dişlerin rezorpsiyonunun incelenmesi, gömülü dişlerin pozisyonunu, gömülü dişlerin rezorpsiyonunun gömülü dişlerin pozisyonuna bağlı olduğunu göstermektedir.

Kaynaklar

1. Padhye MN, Dabir AV, Girotra CS, Pandhi VH. Pattern of mandibular third molar impaction in the Indian population: a retrospective clinico-radiographic survey. Oral surgery, oral medicine, oral pathology and oral radiology. 2013;116(3):e161-6.
2. Hashemipour MA, Tahmasbi-Arashlow M, Fahimi-Hanzaei F. Incidence of impacted mandibular and maxillary third molars: a radiographic study in a Southeast Iran population. Med Oral Patol Oral Cir Bucal. 2013;18(1):e140-5.
3. Kumar Pillai A, Thomas S, Paul G, Singh SK, Moghe S. Incidence of impacted third molars: A radiographic study in People’s Hospital, Bhopal, India. Journal of oral biology and craniofacial research. 2014;4(2):76-81.
4. Richardson G, Russell K A. A review of impacted permanent maxillary cuspid–diagnosis and prevention. J Can Dent Assoc. 2000;Oct;66(9):497-501.
5. Yavuz M S, Aras M H, Büyükkurut C M, Tozgolu S. Impacted Mandibular Canines J Contemp Dent Pract 2007;8:78-85.
6. Santosh P. Impacted Mandibular Third Molars: Review of Literature and a Proposal of a Combined Clinical and Radiological Classification. Annals of medical and health sciences research. 2015;5(4):229-34.
7. Peker I, Sarikir C, Alkurt MT, Zor ZF. Panoramic radiography and cone-beam computed tomography findings in preoperative examination of impacted mandibular third molars. BMC oral health. 2014;14:71.
8. Mah JK, Alexandroni S. Cone-Beam Computed Tomography in the Management of Impacted Canines. Seminars in Orthodontics. 2010;16(3):199-204.
9. Liu DG, Zhang WL, Zhang ZY, Wu YT, Ma XC. Localization of impacted maxillary canines and observation of adjacent incisor resorption with cone-beam computed tomography. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics. 2008;105(1):91-8.
10. Bouquet A, Coudert JL, Bourgeois D, Mazoyer JF, Bossard D. Contributions of
11. reformatted computed tomography and panoramic radiography in the localization of third molars relative to the maxillary sinus. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics. 2004;98(3):342-7.
12. White SC, Pharoah MJ, Oral Radiology: Principles and Interpretation. Eds. 7th Ed., St. Louis: Elsevier Health Sciences, 2014, p.338.
13. Tantanapornkul W, Okouchi K, Fujiwara Y, Yamashiro M, Maruoka Y, Ohbayashi N, Kurabayashi T. A comparative study of cone-beam computed tomography and conventional panoramic radiography in assessing the topographic relationship between the mandibular canal and impacted third molars. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics. 2007;103(2):253-9.
14. Walker L, Enciso R, Mah J. Three-dimensional localization of maxillary canines with cone-beam computed tomography. American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics. 2005;128(4):418-23.
15. Fanourakis J, Kamberos S, Kolokoudias M, J. Z. Topographic evaluation of the impacted mandibular third molar. Radiographic study. Hell Period Stomat Gnathopathoprosopike Cheir. 1990 Sep;5(3):115-9.
16. Yıldırım G, Ataoğlu H, Bulut T, Menziletoğlu D, Özkan BT. Is it different in Turkish population?: Evaluation of impacted third molars. SÜ Dişhek Fak Derg. 2009;18:55-62.
17. Hazza’a A, Bataineh A, Odat A. Angulation of Mandibular Third Molars as a Predictive Factor for Pericoronitis. J Contemp Dent Pract. 2009 May;10(3):051-058.
18. de Andrade PF, Silva JNN, Sotto-Maior BS, Ribeiro CG, Devito KL, Assis N. Three-dimensional analysis of impacted maxillary third molars: A cone-beam computed tomographic study of the position and depth of impaction. Imaging science in dentistry. 2017;47(3):149-55.
19. Kocaelli H, Balcioglu HA, Erdem TL. Displacement of a maxillary third molar into the buccal space: anatomical implications apropos of a case. International journal of oral and maxillofacial surgery. 2011;40(6):650-3.
20. Ghaeminia H, Meijer GJ, Soehardi A, Borstlap WA, Mulder J, Berge SJ. Position of the impacted third molar in relation to the mandibular canal. Diagnostic accuracy of cone beam computed tomography compared with panoramic radiography. International journal of oral and maxillofacial surgery. 2009;38(9):964-71.
21. de Melo Albert DG, Gomes AC, do Egito Vasconcelos BC, de Oliveira e Silva ED, Holanda GZ. Comparison of orthopantomographs and conventional tomography images for assessing the relationship between impacted lower third molars and the mandibular canal. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons. 2006;64(7):1030-7.
22. Maegawa H, Sano K, Kitagawa Y, Ogasawara T, Miyauchi K, Sekine J, Inokuchi T. Preoperative assessment of the relationship between the mandibular third molar and the mandibular canal by axial computed tomography with coronal and sagittal reconstruction. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics. 2003;Nov;96(5):639-46.
23. Miller CS, Nummikoski PV, Barnett DA, Langlais RP. Cross-sectional tomography. A diagnostic technique for determining the buccolingual relationship of impacted mandibular third molars and the inferior alveolar neurovascular bundle. Oral Surg Oral Med Oral Pathol. 1990 Dec;70(6):791-7.
24. da Silva Santos LM, Bastos LC, Oliveira-Santos C, da Silva SI, Neves FS, Campos PS. Cone-beam computed tomography findings of impacted upper canines. Imaging science in dentistry. 2014;44(4):287-92.
25. Lai CS, Bornstein MM, Mock L, Heuberger BM, Dietrich T, Katsaros C. Impacted maxillary canines and root resorptions of neighbouring teeth: a radiographic analysis using cone-beam computed tomography. European journal of orthodontics. 2013;35(4):529-38.
26. Jung YH, Liang H, Benson BW, Flint DJ, Cho BH. The assessment of impacted maxillary canine position with panoramic radiography and cone beam CT. Dentomaxillofac Radiol. 2012;Jul;41(5):356-60.
27. Almuhtaseb E, Mao J, Mahony D, Bader R, Zhang ZX. Three-dimensional localization of impacted canines and root resorption assessment using cone beam computed tomography. J Huazhong Univ Sci Technolog Med Sci. 2014;Jun;34(3):425-30.
28. Shin SM, Choi EJ, Moon SY. Prevalence of pathologies related to impacted mandibular third molars. SpringerPlus. 2016;5:915-20.
29. Patil S, Halgatti V, Khandelwal S, Santosh BS, Maheshwari S. Prevalence of cysts and tumors around the retained and unerupted third molars in the Indian population. J Oral Biol Craniofac Res. 2014 May-Aug;4(2):82-7.
30. Glosser JW, Campbell JH. Pathologic change in soft tissues associated with radiographically “normal” third molar impactions. Br J Oral Maxillofac Surg. 1999;37:259-60.
31. Saravana GH, Subhashraj K. Cystic changes in dental follicle associated with radiographically normal impacted mandibular third molar. Br J Oral Maxillofac Surg.2008 Oct;46(7):552-3.
32. Slater LJ. Comments on “pathologic changes in the soft tissues associated with asymptomatic impacted third molars”. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics.2009;107(1):5.
33. Brkić A. Dental follicle: role in development of odontogenic cysts and tumours. İstanbul Üniversitesi Diş Hekimliği Fakültesi Dergisi. 2014;48(1):89-96.
CAD-CAM İnley Onley Restorasyonların Klinik Takibi

Clinical Follow-up of the CAD-CAM produced Inlay and Onlay Restorations: A Review

Can METİNER1, Sebnem Begum TURKER2, Yasemin OZKAN3

Öz
Amaç: Çalışmamızda CAD-CAM teknolojisi üretilmiş inley ve onley restorasyonların klinik takibini içeren makaleler sistemik olarak değerlendirilmiştir. Pubmed veritabanındaki 2000-2017 yılları arasında yayınlanan makaleler restorasyonların klinik başarı ve başarısızlık nedenleri, sağ kalmış oranları ve hasta memnuniyeti açısından incelenmek istenmiştir.

Materyal Metod: Çalışmamızda Pubmed veri tabanında “CAD-CAM in-vivo” (n=40), “CAD-CAM clinical survival” (n=110), “CAD-CAM follow up” (n=186), “CAD-CAM prospective” (n=100), “CAD-CAM cohort” (n=171) anahtar kelimeleri girilerek arama yapılmıştır. 2000 yılından 2018 yılına kadar SCI kapsamındaki tüm çalışmalar belirlenmiştir. Duplikatlar, in vitro çalışmalar, 1 yıldan kısa takip süresi olan vaka çalışmaları çıkarılduktan sonra toplamda 18 tane inley onley klinik takip çalışması değerlendirilmiştir.

Sonuç: CAD/CAM sistemlerinin klinikte doğru endikasyonla kullanım, uzun dönemde yüksek sağ kalmış oran ile klinik olarak başarılı restorasyonların üretilmesine olanak sağlamaktadır. CAD/CAM sistemle üretilen restorasyonların klinik takibi, sağ kalmış oranını, in-vivo çalışmalarda, restorasyonların başarı oranını ve hasta memnuniyetini belirlemek için oldukça önemlidir.

Anahtar Kelimeler: cad cam, inlay, onlay, klinik takip, sağ kalmış, in-vivo

Abstract
Objectives: The aim of this study is to systematically review articles related to the clinical follow-up of CAD-CAM-produced inlay and onlay restorations. The articles published in Pubmed database between the years 2000-2017 were examined in terms of patient satisfaction, clinical success, failure and survival rates.

Materials and Methods: In our study, we generated searches in the Pubmed database, by entering the keywords “CAD-CAM in-vivo” (n=40), “CAD-CAM clinical survival” (n=110), “CAD-CAM prospective” (n=100) and “CAD-CAM cohort” (n=171). All studies within the scope of SCI published between 2000 to 2018 were included. A total of 18 inlay only clinical follow-up studies were included after duplicates, in vitro studies, and case studies with a follow-up period of less than 1 year were excluded.

Results: The use of CAD / CAM systems when indicated allow clinicians to produce clinically successful restorations with long-term high survival rate. The completion of the treatment in a single session increased the patient satisfaction of the restorations produced by CAD / CAM systems.

Conclusion: It is concluded that failures related to the structure of ceramic and marginal edge problems are also seen in CAD / CAM systems. Well designed clinical trials with large sample size are still needed to achieve more accurate results about the clinical features of CAD/CAM inlays and onlays.

Keywords: cad-cam, inlay, onlay, clinical follow-up, survival, in-vivo

GİRİŞ
Diş hekimliğinde kullanılan CAD/CAM sistemleri, aşağıdaki tarayıcı, bilgisayar ve monitörü içeren taşıtlarla bir ünitenin ve frezeline cihağından oluşur. Estetik diş hekimliğindeki güncel yaklaşımlar, metal kullanımını azaltması ve sonlandırılması, ve CAD/CAM teknolojisinin kullanımını artırmak amacıyla yonelendirilmiştir. Bu yaklaşımlar, seramik ve kompozit materyalleri kullanmanın yaygınlaştırılması, ve CAD/CAM sistemlerindeki gelişmelere katkıda bulunmuştur (He ve Swain, 2011).
CAD/CAM sistemleri ile günümüzde çeşitli endikasyonlara sahip restorasyonlar farklı materyaller kullanılarak üretilmekte (Miyazaki ve Hotta, 2011). Bütün CAD/CAM sistemleri tekniğin 3 aşamayi gerektirir. Bu sistemler, geleneksel ölçü alma yöntemlerini ortadan kaldırduğu veya beklemesi süresini kısalduğu için oldukça ilgi görmektedir. Restorasyon hazırlanan cement modelleri bilgisayarla digital olarak aktarılır. Bilgisayar, tasarımın yapılan kuron ya da alt yapı formunu, günümüzde metal, seramik ya da zirkon bloklardan çeşitli eksenlerde hareket edebilen kesici uçlar sayesinde şekillendirerek üretilmektedir.

CAD/CAM restorasyonları; hasta başında, laboratuarda ve merkezi üretim tesislerinde olmak üzere 3 farklı şekilde üretilir. Hasta başında üretim tekniğinde hastadan dijital olarak ölçü alındıktan sonra restorasyon aynı seansa klinikteki kramatik hava tabandırılır. Bu tipi üretimde laboratuar kooperasyonuna gerek duyulmamıştır. Ancak bu durum zaman kazandırmaktadır ancak bu durum kramatik hava tabandırılır. Bu tipi üretimde ise geleneksel laboratuar laböryumları ise geleneksel olarak işbirliğine gerek duyulmamıştır. Üretimin diğer tüm safhaları laboratuarda teknisyen tarafından yapılmaktadır.

CAD/CAM sistemleriyle yapılan restorasyonların klinik başarısı, değişik faktörlere bağlıdır. Bu sistemler, intraoral kameranın ve extraoral tarayıcıların çözünürlüğü, milling ünitesinin netliği, software programının ve dizayn algoritmalarının sınırlamaları, yapıştırıcı simanın ve hekimin uyguladığı performansı, son bitirme işlemleri ve uygun oklüzyonun tesisi şeklinde sıralanabilir.

CAD/CAM Inley ve Onley Restorasyonlarında Kullanılan Materyaller

CAD/CAM sistemlerinde en sık kullanılan materyaller sinterlenmemiş alümina ve zirkon bloklar ve tam seramik bloklar olup, ancak akrilikler, silikat seramikler, titanyum, değerli ve değersiz metal alaşımları da kullanılabilmektedir. CAD/CAM restorasyonlarında kullanılmak üzere üretilmiş pek çok seramik materyali mevcuttur. Inley onley restorasyonlarında ise sıkıla kompozit ve lityum disilikat içerikli bloklar tercih edilmektedir. (Davidowitz G ve Kotick P, 2011)

Günümüzde inley onley restorasyonlarında sıkıla lityum disilikatla güçlendirilmiş cam seramik bloklar kullanılmaktadır. Bu seramik bloklar %40 oranında parsiyel stabilize lityum metasilik kristalleri içermektedir. Yaptındaki bu kristaller materyali 300 MPa’nın üzerinde direnç kazandırmaktadır. Aynı materyalin monolitik tam kontur blok formu da inley onley restorasyonlarında ise sıkıla kompozit ve lityum disilikat içerikli bloklar tercih edilmektedir. (Guess ve arkadaşları, 2010)

Üstün frezelenebilme özelliği sayesinde porösen bloklara alternatif olarak üretilmiştir. Feldspar ve lösit içeriğinin az olması sebebi ile daha az aşınmaya sebep olmaktadır. (Koller ve arkadaşları, 2011) Nanoteknoloji ile üretilen seramik ve kompozit kanıştı nanozemik bloklar porösen bloklara alternatif olarak üretilmiştir. %80’i polimerik bir matriks içerisinde gömülü nanosera mik blokların kullanılması ile inley onley restorasyonlarında sıkıla lityum disilikatla güçlendirilmiş cam seramik bloklar kullanılmaktadır. Bu seramik bloklar %40 oranında parsiyel stabilize lityum metasilik kristalleri içermektedir. Yaptındaki bu kristaller materyali 300 MPa’nın üzerinde direnç kazandırmaktadır. Aynı materyalin monolitik tam kontur blok formu da inley onley restorasyonlarında ise sıkıla kompozit ve lityum disilikat içerikli bloklar tercih edilmektedir. (Guess ve arkadaşları, 2010)

Üstün frezelenebilme özelliği sayesinde porösen bloklara alternatif olarak üretilmiştir. Feldspar ve lösit içeriğinin az olması sebebi ile daha az aşınmaya sebep olmaktadır. (Koller ve arkadaşları, 2011) Nanoteknoloji ile üretilen seramik ve kompozit kanıştı nanozemik bloklar porösen bloklara alternatif olarak üretilmiştir. %80’i polimerik bir matriks içerisinde gömülü nanosera mik blokların kullanılması ile inley onley restorasyonlarında sıkıla lityum disilikatla güçlendirilmiş cam seramik bloklar kullanılmaktadır. Bu seramik bloklar %40 oranında parsiyel stabilize lityum metasilik kristalleri içermektedir. Yaptındaki bu kristaller materyali 300 MPa’nın üzerinde direnç kazandırmaktadır. Aynı materyalin monolitik tam kontur blok formu da inley onley restorasyonlarında ise sıkıla kompozit ve lityum disilikat içerikli bloklar tercih edilmektedir. (Guess ve arkadaşları, 2010)

Üstün frezelenebilme özelliği sayesinde porösen bloklara alternatif olarak üretilmiştir. Feldspar ve lösit içeriğinin az olması sebebi ile daha az aşınmaya sebep olmaktadır. (Koller ve arkadaşları, 2011) Nanoteknoloji ile üretilen seramik ve kompozit kanıştı nanozemik bloklar porösen bloklara alternatif olarak üretilmiştir. %80’i polimerik bir matriks içerisinde gömülü nanosera mik blokların kullanılması ile inley onley restorasyonlarında sıkıla lityum disilikatla güçlendirilmiş cam seramik bloklar kullanılmaktadır. Bu seramik bloklar %40 oranında parsiyel stabilize lityum metasilik kristalleri içermektedir. Yaptındaki bu kristaller materyali 300 MPa’nın üzerinde direnç kazandırmaktadır. Aynı materyalin monolitik tam kontur blok formu da inley onley restorasyonlarında ise sıkıla kompozit ve lityum disilikat içerikli bloklar tercih edilmektedir. (Guess ve arkadaşları, 2010)

Üstün frezelenebilme özelliği sayesinde porösen bloklara alternatif olarak üretilmiştir. Feldspar ve lösit içeriğinin az olması sebebi ile daha az aşınmaya sebep olmaktadır. (Koller ve arkadaşları, 2011) Nanoteknoloji ile üretilen seramik ve kompozit kanıştı nanozemik bloklar porösen bloklara alternatif olarak üretilmiştir. %80’i polimerik bir matriks içerisinde gömülü nanosera mik blokların kullanılması ile inley onley restorasyonlarında sıkıla lityum disilikatla güçlendirilmiş cam seramik bloklar kullanılmaktadır. Bu seramik bloklar %40 oranında parsiyel stabilize lityum metasilik kristalleri içermektedir. Yaptındaki bu kristaller materyali 300 MPa’nın üzerinde direnç kazandırmaktadır. Aynı materyalin monolitik tam kontur blok formu da inley onley restorasyonlarında ise sıkıla kompozit ve lityum disilikat içerikli bloklar tercih edilmektedir. (Guess ve arkadaşları, 2010)

Üstün frezelenebilme özelliği sayesinde porösen bloklara alternatif olarak üretilmiştir. Feldspar ve lösit içeriğinin az olması sebebi ile daha az aşınmaya sebep olmaktadır. (Koller ve arkadaşları, 2011) Nanoteknoloji ile üretilen seramik ve kompozit kanıştı nanozemik bloklar porösen bloklara alternatif olarak üretilmiştir. %80’i polimerik bir matriks içerisinde gömülü nanosera mik Blokların kullanılması ile inley onley restorasyonlarında sıkıla lityum disilikatla güçlendirilmiş cam seramik bloklar kullanılmaktadır. Bu seramik bloklar %40 oranında parsiyel stabilize lityum metasilik kristalleri içermektedir. Yaptındaki bu kristaller materyali 300 MPa’nın üzerinde direnç kazandırmaktadır. Aynı materyalin monolitik tam kontur blok formu da inley onley restorasyonlarında ise sıkıla kompozit ve lityum disilikat içerikli bloklar tercih edilmektedir. (Guess ve arkadaşları, 2010)

Üstün frezelenebilme özelliği sayesinde porösen bloklara alternatif olarak üretilmiştir. Feldspar ve lösit içeriğinin az olması sebebi ile daha az aşınmaya sebep olmaktadır. (Koller ve arkadaşları, 2011) Nanoteknoloji ile üretilen seramik ve kompozit kanıştı nanozemik bloklar porösen bloklara alternatif olarak üretilmiştir. %80’i polimerik bir matriks içerisinde gömülü nanosera mik blokların kullanılması ile inley onley restorasyonlarında sıkıla lityum disilikatla güçlendirilmiş cam seramik bloklar kullanılmaktadır. Bu seramik bloklar %40 oranında parsiyel stabilize lityum metasilik kristalleri içermektedir. Yaptındaki bu kristaller materyali 300 MPa’nın üzerinde direnç kazandırmaktadır. Aynı materyalin monolitik tam kontur blok formu da inley onley restorasyonlarında ise sıkıla kompozit ve lityum disilikat içerikli bloklar tercih edilmektedir. (Guess ve arkadaşları, 2010)
partiküllerden oluşur. İçerişindeki silika ve zirkonya partiküller reçine matriks içerisinde silan ve bond ile beraber eklennmiştir. Avantajı seramikler kadar kırılgan olmamasıdır. Cila işlemleri kolaylıkla yapılabilmesidir ve glazür işlemine gerek duymamaktadır. Bu bloklar da inley onley restorasyonlarında siklikla tercih edilmektedir. (Dirksen ve arkadaşları, 2013)

Zirkonyum dioksit esaslı bloklar inley onley restorasyonlarında ve özellikle interokluzal mesafemin yetersiz olduğu ve bruksist hastalarda kullanılabilir. (Zimmermann ve arkadaşları, 2013)

CAD/CAM İnley ve Onley Restorasyonlarının Klinik Takip Çalışmaları

Çalışmamızda Pubmed veri tabanında “CAD-CAM in-vivo” (n=40), “CAD-CAM clinical survival” (n=110), “CAD-CAM follow up” (n=186), “CAD-CAM prospective” (n=100), “CAD-CAM cohort” (n=171) anahtar kelimeleri girilerek arama yapılmıştır. 2000 yılından 2018 yılına kadar SCI kapsamındaki tüm çalışmalar belirlenmiştir. Duplikatlar, in vitro çalışmalar, 1 yıldan kısa takip süresi olan vaka çalışmaları çıkarıldıkten sonra toplamda 18 tane inley onley klinik takip ihlali değerlendirilmiştir.

Çalışmanın amacı, zaman ile gelişen teknoloji ve yeni materyallerin klinik başarıya olan etkisini araştırmaktır. Yapılan çalışmalar kronolojik araya göre açıklanmış olup zaman içerisinde kullanılan sistemlerin ve materyallerin gelişimi, üretilen restorasyonların klinik başarıları ve başarısızlık sebepleri özetlenmeye çalışılmıştır.

Pallesen U ve van Dijken JW 2000 yılında yayınladıkları çalışmalarda Cerec 1 sistemini kullanarak ürettikleri 32 adet inleyin 8 yıllık takip sonuçlarını paylaşmışlardır. Çalışmadaki restorasyonlardan 31 tanesinde Dicor MCG Blok (Dentsply, Almanya) kullanılmışken 1 tanesinde Vita Mark II (Vita Zahnfabrik, Almanya) kullanılmıştır. 8. yıl sonunda 29 inleyin (%90.6) klinik olarak kabul edilmiştir. Başarısız olan 3 inleyde porselen kırığına rastlanmıştır. Vital olan inleylerden sadece bir tanesinde postoperatif hassasiyet görülmüştür ve 8. aya kadar devam ettiği görülmüştür. Çalışmadaki 8. yılın proksimal kontakta bozulma, çürük, yüzey renk değişikliği ve dişlerde kırılma görülmüştür. 8. yıldan takip sonucunda hiç bir dişte vitalite kaybı oluşumunun ancak tüm restorasyonlarda aşınma ve minor chippingler görülmüştür. 8. yılın sonunda 32 restorasyondan 13 tanesinde renk uyumunun bozulduğu görülmüştür. Restorasyonların yarısından fazlasında 8. Yılı sonunda periodontal durumda bir değişim olmadığı görülmüştür. Başlangıçta ortalama sondalama değeri 2.4 mm iken 8. yılda bu ortalama 2.7’ye yükselmiştir (Pallesen ve van Dijken, 2000).

Otto ve arkadaşlarının Cerec 1 sistemi ile yaptıkları ve 2002 yılında yayınladıkları çalışmalarda 187 adet Vita Mark I CAD/CAM inley ve onleyin 10 yıllık takip sonuçlarını açıklanmıştır. 15 vakada restorasyonların yerleştirilmesi takiben oluşan rahatsızlığın genellikle okluzal kontakta bağlı olduğu analiz edilmiştir. 7. aylık sonunda bu rahatsızlıkların tamamen ortadan kalktığını görülmüştür. 10. yıl sonunda restorasyonların sağ kalm oranının %90.4 olduğu görünmüştür. 8 restorasyonda porselen kirınının rastlanması 3 vaka ve diş kırığı, 3 vaka çürük ve bir dişte endondotik problemlere bağlı olmak üzere toplam 15 dişte başarısızlığa rastlanmıştır (Otto ve De Nisco, 2002). Otto ve arkadaşlarının Cerec 1 sistemile yaptıkları 17 yıllık sonuçları 2008 yılında açıklanmıştır. Sağ kalm oranı 2002 yılında %90.4 iken 2008 yılında %88.7’ye düşmüştür. 17. yıl sonunda toplama 21 restorasyonda başarısızlık görülmüştür. Başarısızlıklarдан 13 tanesinin porselen kirliğini 3 tanesinin diş kırığı, 4 tanesinin çürük ve 1 tanesinin endondotik problem olduğu görülmüştür. 17. yıldan takip süreçinde bu restorasyondan 10 tanesinin yenilenmesi gerektiği analiz edilmiştir. (Otto ve Schneider, 2008). Aynı çalışmanın 2017 yılında yayınlanan sonuçlarına göre ise de takip edilebilen 141 restorasyonda toplama 23 restorasyonda başarısızlık görülmüş olup sağ kalm oranı %87.5’ye düşmüştür. 2008 yılında sona 2017 yılına kadar toplama sadece 2 restorasyonda porselen kirğini rastlanmıştır. (Otto, 2017).

Otto 2004 yılında yayınladığı çalışmasında Vita Mark II ve Cerec 3 chair-side üretimi metodunu kullanarak ürettiği 10 adet endokuronların 15 aylık takip sonuçlarını açıklanmıştır. 140 takip sonuçunda restorasyondan hiçbirinde de bonding, porselen veya diş çırkı görülmemiştir. Dentesply, Almanya) kullanılmıştır. 8. yılın sonunda 29 inleyin (%90.6) ağızda kabul edilmiştir. Başarısız olan 3 restorasyondan 2 porselen kirığına rastlanmıştır. Vital olan inleylerden sadece bir tanesinde postoperatif hassasiyet görülmüştür ve 8. aya kadar devam ettiği görülmüştür. Çalışmadaki dişlerde 8. yılın sonunda proksimal kontakta bozulma, çürük, yüzey renk değişikliği ve dişlerde kırılma görülmüştür. 8. yıldan takip sonucunda hiç bir dişte vitalite kaybı oluşumunun ancak tüm restorasyonlarda aşınma ve minor chippingler görülmüştür. 8. yılın sonunda 32 restorasyondan 13 tanesinde renk uyumunun bozulduğu görülmüştür. Restorasyonların yarısından fazlasında 8. Yılı sonunda periodontal durumda bir değişim olmadığı görülmüştür. Başlangıçta ortalama sondalama değeri 2.4 mm iken 8. yılda bu ortalama 2.7’ye yükselmiştir (Pallesen ve van Dijken, 2000).

Otto ve arkadaşlarının Cerec 1 sistemide 2002 yılında yayınladıkları çalışmalarda 187 adet Vita Mark I CAD/CAM inley ve onleyin 10 yıllık takip sonuçlarını açıklanmıştır. 15 vakada restorasyonların yerleştirilmesi takiben oluşan rahatsızlığın genellikle okluzal kontakta bağlı olduğu analiz edilmiştir. 7. aylık sonunda bu rahatsızlıkların tamamen ortadan kalktığını görülmüştür. 10. yıl sonunda restorasyonların sağ kalm oranının %90.4 olduğu görülmüştür. 8 restorasyonda porselen kirınının rastlanması 3 vaka ve diş kırığı, 3 vaka çürük ve bir dişte endondotik problemlere bağlı olmak üzere toplam 15 dişte başarısızlığa rastlanmıştır (Otto ve De Nisco, 2002). Otto ve arkadaşlarının Cerec 1 sistemi ile yaptıkları 17 yıllık sonuçları 2008 yılında açıklanmıştır. Sağ kalm oranı 2002 yılında %90.4 iken 2008 yılında %88.7’ye düşmüştür. 17. yıl sonunda toplama 21 restorasyonda başarısızlık görülmüştür. Başarısızlıklarından 13 tanesinin porselen kirğini 3 tanesinin diş kırığı, 4 tanesinin çürük ve 1 tanesinin endondotik problem olduğu görülmüştür. 17. yıldan takip süreçinde bu restorasyondan 10 tanesinin yenilenmesi gerektiği analiz edilmiştir. (Otto ve Schneider, 2008). Aynı çalışmanın 2017 yılında yayınlanan sonuçlarına göre ise de takip edilebilen 141 restorasyonda toplama 23 restorasyonda başarısızlık görülmüş olup sağ kalm oranı %87.5’ye düşmüştür. 2008 yılında sona 2017 yılına kadar toplama sadece 2 restorasyonda porselen kirğini rastlanmıştır. (Otto, 2017).

Otto 2004 yılında yayınladığı çalışmasında Vita Mark II ve Cerec 3 chair-side üretim metodunu kullanarak ürettiği 10 adet endokaronların 15 aylık takip sonuçlarını açıklanmıştır. 140 takip sonuçunda restorasyondan hiçbirinde de bonding, porselen veya diş çırkı görülmemiştir. Dentesply, Almanya) kullanılmıştır. 8. yılın sonunda 29 inleyin (%90.6) ağızda kabul edilmiştir. Başarısız olan 3 restorasyondan 2 porselen kirığına rastlanmıştır. Vital olan inleylerden sadece bir tanesinde postoperatif hassasiyet görülmüştür ve 8. aya kadar devam ettiği görülmüştür. Çalışmadaki dişlerde 8. yılın sonunda proksimal kontakta bozulma, çürük, yüzey renk değişikliği ve dişlerde kırılma görülmüştür. 8. yıldan takip sonucunda hiç bir dişte vitalite kaybı oluşumunun ancak tüm restorasyonlarda aşınma ve minor chippingler görülmüştür. 8. yılın sonunda 32 restorasyondan 13 tanesinde renk uyumunun bozulduğu görülmüştür. Restorasyonların yarısından fazlasında 8. Yılı sonunda periodontal durumda bir değişim olduğu görülmüştür. Başlangıçta ortalama sondalama değeri 2.4 mm iken 8. yılda bu ortalama 2.7’ye yükselmiştir (Pallesen ve van Dijken, 2000).
Reich ve arkadaşlarının Cerec 2 sistemi kullanılarak yaptıkları 2004 yılında yayınlanan çalışmada ise toplama 30 adet Vita Mark II CAD/CAM onley ve endokronunun 3 yıllık takip çalışması sonucunda sadece 1 adet restorasyonda porsele kırığı gözlemişlerdir. Başlangıç aşamasında sadece 8 dişte hassasiyet şikayetine formda istatiksel olarak anlamlı bir değişim görülmüyordu. (Reich ve arkadaşları, 2004) Proksimal kontaklar ve oklusalilikler tattım edici olduğu görülmüştür. Bu çalışmada marjinal sınırları derinde olan 8 restorasyonda simanasyon aşamasında rubber dam kullanılmadığı halde, 3. yıl sonunda marjinal umum, marjinal renklemeye ve çürükmüş ancak anlamlı bir fark bulunamamıştır. USPHS kriterlerine göre bir restorasyonda marjinal umum ve yüzey pürüzlükları skorlanmıştır. Diğer tüm restorasyonlar “Alfa” veya “Bravo” olarak derecelendirilmiştir. 3. yıl sonunda yapılan değerlendirilmede tüm hastaların restorasyonlarından monun olduğu gözlemli bir şekilde görülmüştür (Reich ve arkadaşları, 2004).

Sjögren ve arkadaşları 2004 yılında yayınlanan çalışmasında dual cure rezin siman ve kıyıyalas polimerize olan rezin simanları Vita Mark II kullanılarak ürettiği 66 inley rezisonunun 10 yıllık takipsonuçlarını açıklamışlardır. 10. yıl sonunda hastaların hepsinin restorasyonlarından monun olduğu görülmüştür. 10. yıl takibinde 61 inledeki 7 tanesinin başarılı olduğu gözlemli bir şekilde görülmüştür. Dişlerden bir tanesinin kırık olduğu, 4 restorasyonda porselenin kırığı olduğu, 1 dişte endodontik problem olduğu ve 1 dişte de postoperatif şikayetleri oturduğu başarısızlık görülüyordu. 10. yıl sonunda ortalama sağ kalmın oranı %89 olduğu görülüyordu. Bu oran dual-cured simanlar için ortalama %77 iken kıyıyalas polimerize rezin simanlar için %100 olarak hesaplanmıştır. Bu arada farklı anlamlı olup bu hususta daha fazla klinik çalışma yapılması gerektiği gösternmiştir (Sjögren ve arkadaşları, 2004).

Wrbas ve arkadaşları 2007 yılında yayınlanan çalışımda Vita Mark II bloklar kullanılarak stajyer öğrenciler tarafından yapılan 60 inleyin 2 yıllık klinik takip sonuclarını paylaşmışlardır. 1 restorasyonda marjinal yuvarlaklıkla bağlı, 1 restorasyonda porselen kırışına bağlı ve 2 restorasyonda ise endodontik problemle bağlı başarısızlık görülmüyordu. 2. yıl sonunda mevcut çürülürlerin hiçbirinde sekonder çürükle rastlanmamış olup tüm günler vitalite testine pozitif cevap vermiştir. Gözlem süreci boyunca renk uyumu, yüzey morfolojisinde ve anatomik formında istatistiksel olarak anlamlı bir değişim görülmemiştir. Başlangıç aşamasında sadece 8 dişte hassasiyet şikayetine rastlanmış iken bunlardan 5 tanesindeki şikayetlerin ilk biraç ay içerisinde kaybolduğu görülüyordu. 2 dişte takip sonunda endodontik tedavi yapılmasına karar verilmiştir. 1 dişte ise zaman zaman kendini gösteren ve klinik olarak kabul edilebilen hassasiyet şikayeti devam etmiştir. Restorasyonların sağ kalmın oranının 2. yıl sonunda %93.3’e düştiği görülüyordu. Wrbas ve arkadaşları, 2007).

Guess ve arkadaşları 2009 yılında vital onleylerin üretim metodalarına göre 3 yıllık klinik takip sonuçlarını göstermiştirler. Bu çalışmada 40 restorasyon IPS e.max Press ile geleneksel metodla üretilirken, 40 restorasyon ProCAD materyali kullanılarak Cerec 3 hastabaşında üretilmiştir. 3. yıl sonunda sadece 1 adet ProCAD ile üretilmiş restorasyonda porselen kırışına bağlı başarısızlık görülüyordu. IPS e.max Press’in sağ kalmın oranı %100 iken ProCAD’ın %97 olsun tespit edilmiştir. Dişlerden hiçbirinde sekonder çürük, endodontik kompleksiyon ve postoperatif şikayeti rastlanmamıştır. Vital olan tüm dişlerin vitalitesini koruduğu görülüyordu. 3. yıl sonunda marjinal umum, marjinal renklemeye, yüzey pürüzlülgüsü, renk uyumu ve anatomik form kriterlerinde “Alfa” skorlarında azalma görülmüyordu. Cilalı yüzeylerdeki aşınma ya bağlı olarak yüzey pürüzlülgüsünde zaman içerisinde belirgin bir artış olduğu görülüyordu. CAD/CAM ile üretilen restorasyonların “Bravo” skorlarının geleneksel metodla üretilen restorasyonlara göre daha fazla olduğu anlaşılmıştır (Guess ve arkadaşları, 2009). Guess ve arkadaşları aynı çalışmının 2013 yılında 7 yıllık sonuçlarını yayınlamıştır. Aradaki süreçte hiçbir restorasyonda başarısızlık olmadığı görülmüyordu olup sağ kalmın oranlarında herhangi bir değişiklik tespit edilmemiştir. Bu çalışmada elde edilen bilgiler doğrultusunda uzun dönemde tüm “Alfa” kriterlerinde azalma görmenin özellikle marjinal renklemeye ve marjinal umumda bu azalmanın belirgin olduğu görülüyordu. Ancak 7 yıllık takip sonucunda sadece bir restorasyondaki marjinal umumun klinik olarak kabul edilebilmeye olduğu diğer restorasyonların ise “Alfa” ve “Bravo” skorları alarak klinik olarak kabul edilebiliyordu olduğu görülüyordu. Bu çalışmanın limitasyonları dahilinde renk uyumu ve yüzey pürüzlülgüsü skorlarının uzun dönemde IPS e.max Press restorasyonlarına daha belirgin şekilde değiştiği görülüyordu (Guess ve arkadaşları, 2013).

Schenke ve arkadaşları 2011 yılında yayınlanan çalışımda Vita Mark II bloklar kullanılarak üretilen restorasyonların simanasyonu sırasında selektif mine asıtemlesimin restorasyonun klinik özelliklerine olan etkisini araştırılmışlardır. 2. yıl sonunda 34 hastaya yapılan toplama 68 restorasyon 2 tanesinde debondinge bağlı 2 tanesinde 2004) Proksimal kontaklar ve oklusalilikler tattım edici olduğu görülmüştür. Bu çalışmada marjinal sınırları derinde olan 8 restorasyonda simanasyon aşamasında rubber dam kullanılmadığı halde, 3. yıl sonunda marjinal umum, marjinal renklemeye ve çürükmüş ancak anlamlı bir fark bulunamamıştır. USPHS kriterlerine göre bir restorasyonda marjinal umum ve yüzey pürüzlükları skorlanmıştır. Diğer tüm restorasyonlar “Alfa” veya “Bravo” olarak derecelendirilmiştir. 3. yıl sonunda yapılan değerlendirilmede tüm hastaların restorasyonlarından monun olduğu gözlemli bir şekilde görülmüştür (Reich ve arkadaşları, 2004).

Wrbas ve arkadaşları 2007 yılında yayınlanan çalışımda Vita Mark II bloklar kullanılarak stajyer öğrenciler tarafından yapılan 60 inleyin 2 yıllık klinik takip sonuclarını paylaşmışlardır. 1 restorasyonda marjinal yuvarlaklıkla bağlı, 1 restorasyonda porselen kırışına bağlı ve 2 restorasyonda ise endodontik problemle bağlı başarısızlık görülmüyordu. 2. yıl sonunda mevcut çürülürlerin hiçbirinde sekonder çürükle rastlanmamış olup tüm günler vitalite testine pozitif cevap vermiştir. Gözlem süreci boyunca renk uyumu, yüzey morfolojisinde ve anatomik formında istatistiksel olarak anlamlı bir değişim görülmemiştir. Başlangıç aşamasında sadece 8 dişte hassasiyet şikayetine rastlanmış iken bunlardan 5 tanesindeki şikayetlerin ilk
de porselen kırılmasına bağlı başarısızlık görülmüştür. 2. yıl sonunda sağlıklı oranı takip edilebilen 58 restaoryonda %93.3 olarak hesaplanmıştır. Bir restaoryonda endodontik tedavi gerekliliği oluşmuştur ancak restaoryonda hala aşağıda durmaktadır. Çalışmada araştırılan iki farklı simantasyon teknigi arasında uzun dönemde klinik başarı açısından anlamli bir farklilik görülmemiştir. (Schenke ve arkadaşları, 2011). Federlin ve arkadaşları ise 2014 yılında aynı hasta grubunun 3 yıllık takip sonuçlarını açıklamalarıdır. 3. yıl sonunda toplamda 46 restaoryon takip edilmiştir. 3 restaoryonda debonding görülür iken 1 restaoryonda endodontik problemlere bağlı başarısızlık, 7 restaoryonda porselen kırığı ve 1 restaoryonda ise çürüğü rastlanmıştır olup sağlıklı oranı %67.6'ya düşüştür. 3. yıl sonunda hiçbir restaoryon postoperatif şişayet görulmemiştir. Marjinal adaptasyon ve marjinal renklemeye kriterlerinde “Bravo” skorlarında anlamli bir artış görülür. İnley onley simantasyonları arasında önce seyirci adilin adilin restorasyonun uzun dönem başarısı katılma sağlanmadığı görülür (Federlin ve arkadaşları, 2014).

Roggendorf ve arkadaşlarının 2011 yılında yayınlanan çalışmasında Cerec 2 ile yapılması olan 40 adet Vitablocks Mark II (Vita Zahnfabrik, Almanya) ve ProCAD (Ivoclar Vivadent) endokron ve onley restaoryonunun 7 yıllık takip sonuçlarını göstermiştir. Restorasyonlardan 1 tanesinde porselen kırığı, 2 tanesinde çürük, 2 vakada ise dışte kırık meydana geldiği görülür. 7. yılda takip edilebilen 22 onley ve 11 endokron restaoryonunda ortalama sağlıklı oranı %78.2 olarak hesaplanmıştır. Anatomik form geliştirilmesinde %69.5 oranında “Alfa” skoru almışken %30.5 oranında “Bravo” almıştır. Bu değerlere tüm restaoryonların anatomik form açısından klinik olarak kabul edilebilirliğini korudukunu göstermektedir. Renk uyumu değerlendirilmesinde ise restaoryonların %78'i “Alfa” skorunu almış iken %22'si ise “Bravo” skoru ile derecelendirilmiştir. Marjinal renklemeye 34 vakada (%57.6) “Alfa” olarak skorlanırken 9 vakada (%37.3) ise “Bravo” olarak değerlendirilmiştir. Marjinal renklemeye 39 vakada (%66.1) “Alfa” olarak skorlanırken 17 vakada (%28.8) ise “Bravo” olarak değerlendirilmiştir. Çalışmada restaoryonlardan hiçbir belirsiz ve %7. yıl sonunda “Oscar” skoru alamamıştır. Çalışmada 7. yıl sonunda ilgili dişlerin hiçbirinde perküzyona hassasiyet ve endodontik tedavi ihtiyacı görülmemiştir. Kavite simüllarının rubber dam yerleşimi sonrası eşi durumda rubber dam kullanılmış olup, 2 farklı rezin siminin marjinal renklemeye açısından uzun dönemde anlamli bir etki oluşturmadığı görülür. (Roggendorf ve arkadaşları, 2012).

Bernhart ve arkadaşları 2010 yılında yayınladıkları çalışmadada Vita Mark II bloklarından yapılmiş 20 adet endokronun rezin simantasyon sonrası 3 yıllık klinik takip sonuçlarını açıklamalarıdır. Çalışmada 2. yıl sonunda 20 restaoryonda sadece 2'sinde porselen kırığı görülmüştür. Dolayısı ile restaoryonların sağlıklı yüzdesi %90 olarak hesaplanmıştır. Takip süresi sonunda döşeme sekonder çürüğe ve endodontik problemlere rastlanmamıştır. Çalışmada CAD/CAM aracılığı ile üretimmiş endokronların fonksiyonel ve estetik olarak başarılı sonuçlar verdiği dolayısı ile endodontik tedavi görmüş dişlerde iyi bir tedavi alternatif olduğu bildirilmiştir. (Bernhart ve arkadaşları, 2010)

Nejatidanesh ve arkadaşlarının 2015 yılında yayınlanan çalışmalarda 264 hastada yapıtıkları 310 adet Cerec ile üretimmiş tam seramik overlaylerin 10 yıllık klinik takip sonuçlarını açıklamalarıdır. 10 yıllık süresi sonucunda takip edilen toplam 286 restaoryon dandaki 10 tanesi modifiye USPHS kriterine göre “Charlie” ve “Delta” skorlarını almış ve başarısız olarak kabul edilmiştir. Dolayısı ile bu tip tekrar restaoryonların 10 yıl sağlık yüzdesi %96.5 olarak hesaplanmıştır. Restorasyonlardan 1 tanesinde kontakt uygulaması olduğu, 2 tanesinde porselen kırığı olduğu, 3 tanesinde marjinal uygulama olduğu, 1 dişte sekonder çürük ve 2 restaoryonda ise yüzey değişiminin bağlı başarısızlık olduğu gözlemiştir. Takip edilen hastaların tümünün restaoryonundan memnun olduğu görülmüştür. (Arnetzl, 2012).

Arnetzl ve arkadaşlarının 2012 yılında yayınlanan çalışmalarda 2012 yılında yayınlanan çalışmalarda 264 hastada yapıtıkları 310 adet Cerec ile üretimmiş tam seramik overlaylerin 10 yıllık klinik takip sonuçlarını açıklamalarıdır. 10 yıllık süresi sonucunda takip edilen toplam 286 restaoryonunun 10 tanesi modifiye USPHS kriterine göre “Charlie” ve “Delta” skorlarını almış ve başarısız olarak kabul edilmiştir. Dolayısı ile bu tip tekrar restaoryonların 10 yıl sağlık yüzdesi %96.5 olarak hesaplanmıştır. Restorasyonlardan 1 tanesinde kontakt uygulaması olduğu, 2 tanesinde porselen kırığı olduğu, 3 tanesinde marjinal uygulama olduğu, 1 dişte sekonder çürük ve 2 restaoryonda ise yüzey değişiminin bağlı başarısızlık olduğu gözlemiştir. Takip edilen hastaların tümünün restaoryonundan memnun olduğu görülmüştür. (Arnetzl, 2012).

Arnetzl ve arkadaşlarının 2012 yılında yayınlanan çalışmalarda 2012 yılında yayınlanan çalışmalarda 264 hastada yapıtıkları 310 adet Cerec ile üretimmiş tam seramik overlaylerin 10 yıllık klinik takip sonuçlarını açıklamalarıdır. 10 yıllık süresi sonucunda takip edilen toplam 286 restaoryonunun 10 tanesi modifiye USPHS kriterine göre “Charlie” ve “Delta” skorlarını almış ve başarısız olarak kabul edilmiştir. Dolayısı ile bu tip tekrar restaoryonların 10 yıl sağlık yüzdesi %96.5 olarak hesaplanmıştır. Restorasyonlardan 1 tanesinde kontakt uygulaması olduğu, 2 tanesinde porselen kırığı olduğu, 3 tanesinde marjinal uygulama olduğu, 1 dişte sekonder çürük ve 2 restaoryonda ise yüzey değişiminin bağlı başarısızlık olduğu gözlemiştir. Takip edilen hastaların tümünün restaoryonundan memnun olduğu görülmüştür. (Arnetzl, 2012).

Nejatidanesh ve arkadaşlarının 2015 yılında yayınlanan çalışmalarda 264 hastada yapıtıkları 310 adet Cerec ile üretimmiş tam seramik overlaylerin 10 yıllık klinik takip sonuçlarını açıklamalarıdır. 10 yıllık süresi sonucunda takip edilen toplam 286 restaoryonunun 10 tanesi modifiye USPHS kriterine göre “Charlie” ve “Delta” skorlarını almış ve başarısız olarak kabul edilmiştir. Dolayısı ile bu tip tekrar restaoryonların 10 yıl sağlık yüzdesi %96.5 olarak hesaplanmıştır. Restorasyonlardan 1 tanesinde kontakt uygulaması olduğu, 2 tanesinde porselen kırığı olduğu, 3 tanesinde marjinal uygulama olduğu, 1 dişte sekonder çürük ve 2 restaoryonda ise yüzey değişiminin bağlı başarısızlık olduğu gözlemiştir. Takip edilen hastaların tümünün restaoryonundan memnun olduğu görülmüştür. (Arnetzl, 2012).
tek seansta tamamlanmasına bağlamıştır (Nejatidanesh ve arkadaşları, 2015).

Zimmermann ve arkadaşları 2017 yılında Cerec Bluecam ve Cerec inLab MCXL ile Lava Ultimate materyali kullanarak 42 adet onley restorasyonun 2 yıl takip sonuçlarını yayınlamışlardır. Toplamda 3 restorasyonda debonding görülmüşken 2 dişte ise kırık olmuştur. Bu çalışmada restorasyonların 1. yıl sonunda sağ kalım oranında %95 iken 2. yıl sonunda bu oran %85.7’ye düşmüştür. FDI kriterlerine göre yapılan klinik değerlendirmede başarılı ve 2. yıl sonunda sadece anatomik form ve marjinal adaptasyon skorlarında anlamlı değişimler gözlemlenmiştir. (Zimmermann ve arkadaşları, 2017)

Spitznagel ve arkadaşlarının 2017 yılında yayınlanan çalışmasında ise Vita Enamic (Vita Zahnfabrik, Almanya) ile yapılan 103 adet inley ve onley restorasyonun 3 yıllık takip sonuçları verilmiştir. Üretilen 103 adet inley ve onley restorasyonun 3 yıllık takip sonuçları açıklanmıştır. Bu çalışmada 3. yıl sonunda sağ kalım oranında %97.4 iken onleylerde %96.4 olarak hesaplanmıştır. 103 inley ve onley restorasyonunda 3. yıl sonunda debonding görülme olasılığı %97.4 olarak hesaplanmıştır. 103 inley onley restorasyonunda 3. yıl sonunda debonding görülme olasılığı %97.4 olarak hesaplanmıştır. Bu çalışmada 3. yıl sonunda debonding görülme olasılığı %97.4 olarak hesaplanmıştır. 103 inley onley restorasyonunda 3. yıl sonunda debonding görülme olasılığı %97.4 olarak hesaplanmıştır. 103 inley onley restorasyonunda 3. yıl sonunda debonding görülme olasılığı %97.4 olarak hesaplanmıştır. 103 inley onley restorasyonunda 3. yıl sonunda debonding görülme olasılığı %97.4 olarak hesaplanmıştır. 103 inley onley restorasyonunda 3. yıl sonunda debonding görülme olasılığı %97.4 olarak hesaplanmıştır. 103 inley onley restorasyonunda 3. yıl sonunda debonding görülme olasılığı %97.4 olarak hesaplanmıştır. 103 inley onley restorasyonunda 3. yıl sonunda debonding görülme olasılığı %97.4 olarak hesaplanmıştır. 103 inley onley restorasyonunda 3. yıl sonunda debonding görülme olasılığı %97.4 olarak hesaplanmıştır. 103 inley onley restorasyonunda 3. yıl sonunda debonding görülme olasılığı %97.4 olarak hesaplanmıştır. 103 inley onley restorasyonunda 3. yıl sonunda debonding görülme olasılığı %97.4 olarak hesaplanmıştır. 103 inley onley restorasyonunda 3. yıl sonunda debonding görülme olasılığı %97.4 olarak hesaplanmıştır. 103 inley onley restorasyonunda 3. yıl sonunda debonding görülme olasılığı %97.4 olarak hesaplanmıştır. 103 inley onley restorasyonunda 3. yıl sonunda debonding görülme olasılığı %97.4 olarak hesaplanmıştır. 103 inley onley restorasyonunda 3. yıl sonunda debonding görülme olasılığı %97.4 olarak hesaplanmıştır. 103 inley onley restorasyonunda 3. yıl sonunda debonding görülme olasılığı %97.4 olarak hesaplanmıştır. 103 inley onley restorasyonunda 3. yıl sonunda debonding görülme olasılığı %97.4 olarak hesaplanmıştır. 103 inley onley restorasyonunda 3. yıl sonunda debonding görülme olasılığı %97.4 olarak hesaplanmıştır. 103 inley onley restorasyonunda 3. yıl sonunda debonding görülme olasılığı %97.4 olarak hesaplanmıştır. 103 inley onley restorasyonunda 3. yıl sonunda debonding görülme olasılığı %97.4 olarak hesaplanmıştır. 103 inley onley restorasyonunda 3. yıl sonunda debonding görülme olasılığı %97.4 olarak hesaplanmıştır. 103 inley onley restorasyonunda 3. yıl sonunda debonding görülme olasılığı %97.4 olarak hesaplanmıştır. 103 inley onley restorasyonunda 3. yıl sonunda debonding görülme olasılığı %97.4 olarak hesaplanmıştır. 103 inley onley restorasyonunda 3. yıl sonunda debonding görülme olasılığı %97.4 olarak hesaplanmıştır. 103 inley onley restorasyonunda 3. yıl sonunda debonding görülme olasılığı %97.4 olarak hesaplanmıştır. 103 inley onley restorasyonunda 3. yıl sonunda debonding görülme olasılığı %97.4 olarak hesaplanmıştır. 103 inley onley restorasyonunda 3. yıl sonunda debonding görülme olasılığı %97.4 olarak hesaplanmıştır. 103 inley onley restorasyonunda 3. yıl sonunda debonding görülme olasılığı %97.4 olarak hesaplanmıştır. 103 inley onley restorasyonunda 3. yıl sonunda debonding görülme olasılığı %97.4 olarak hesaplanmıştır. 103 inley onley restorasyonunda 3. yıl sonunda debonding görülme olasılığı %97.4 olarak hesaplanştır.
of a 5-year prospective clinical split mouth study. J Dent. 2009;37(8): 627-37.

10. Guess PC, Zavanelli RA, Silva NR, Bonfante EA, Coelho PG, Thompson VP. Monolithic CAD/CAM lithium disilicate versus veneered Y-TZP crowns: Comparison of failure modes and reliability after fatigue. Int J Prosthodont. 2010;23(5): 434-442.

11. Hayashi M, Wilson NHF, Yeung CA, Worthington HV. Systematic review of ceramic inlays. Clin Oral Investig. 2003;7: 8–19.

12. Hopp CD, Land MF. Considerations for ceramic inlays in posterior teeth: a review. Clin Cosmet Investig Dent. 2013;5: 21-32.

13. Irfan UB, Aslam K, Nadim R. A review on cad cam in dentistry. J Pak Dent Assoc. 2015;24(3): 112-116.

14. Koller M, Ametzl GV, Holly L, Arnetzl G. Lava ultimate resin nano ceramic for CAD/CAM: customization case study. Int J Comput Dent. 2011;15(2): 159-164.

15. Miyazaki T, Hotta Y. CAD/CAM systems available for the fabrication of crown and bridge restorations. Aust Dent J. 2011;56(l): 97–106.

16. Mörmann W, Wolf D, Ender A. Effect of two self-adhesive cements on marginal adaptation and strength of esthetic ceramic CAD/CAM molar crowns. J Prosthodont. 2009;18: 403-410.

17. Nejatidaneshe F, Amjadi M, Akouchekian M, Savabi O. Clinical performance of CEREC AC Bluecam conservative ceramic restorations after five years-A retrospective study. J Dent. 2015;43(9): 1076-1082.

18. Otto T, De Nisco S. Computer-aided direct ceramic restorations-a 10-year prospective clinical study of Cerec CAD/CAM inlays and onlays. Int J Prosthodont. 2002;15(2): 122-8.

19. Otto T, Schneider D. Long-term clinical results of chairside Cerec CAD/CAM inlays and onlays: a case series. Int J Prosthodont. 2008;21(1): 53-9.

20. Otto T. Computer-aided direct all-ceramic crowns: preliminary 1-year results of a prospective clinical study. Int J Periodontics Restorative Dent. 2004;24(5): 446-55.

21. Otto T. Up to 27-years clinical long-term results of chairside Cerec 1 CAD/CAM inlays and onlays. Int J Comput Dent. 2017;20(3): 315-329.

22. Pallesen U, van Dijken JW. An 8-year evaluation of sintered ceramic and glass ceramic inlays processed by the Cerec CAD/CAM system. Eur J Oral Sci. 2000;108(3): 239-46.

23. Reich SM, Wichmann M, Rinne H, Shortall A. Clinical performance of large, all-ceramic CAD/CAM-generated restorations after three years: a pilot study. J Am Dent Assoc. 2004;135(5): 605-12.

24. Roggendorf MJ, Kunzi B, Ebert J, Roggendorf HC, Frankenberger R, Reich SM. Seven-year clinical performance of CEREC-2 all-ceramic CAD/CAM restorations placed within deeply destroyed teeth. Clin Oral Investig. 2012;16(5): 1413-24.

25. Schenke F, Federlin M, Hiller KA, Moder D, Schmalz G. Controlled prospective randomized clinical evaluation of partial ceramic crowns inserted with RelyX Unicem with or without selective enamel etching. 1-year results. Am J Dent. 2010;23(5): 240-6.

26. Sjögren G, Molin M, van Dijken JW. A 10-year prospective evaluation of CAD/CAM-manufactured (Cerec) ceramic inlays cemented with a chemically cured or dual-cured resin composite. Int J Prosthodont. 2004;17(2): 241-6.

27. Spitznagel FA, Scholz KJ, Strub JR, Vach K, Gierthmuehlen PC. Polymer-infiltrated ceramic CAD/CAM inlays and partial coverage restorations–3-year results of a prospective clinical study over 5 years. Clin Oral Investig. 2017;6: 17-22.

28. Tinschert J, Natt G, Hassenpfug S, Spiekermann H. Status of current CAD/CAM technology in dental medicine. Int J Comput Dent. 2004;7(1): 25-45.

29. Wittneben, J.G., Wright, R.F., Weber, H.P.,Gallucci, G.O. A systematic review of the clinical performance of CAD/CAM single-tooth restorations. Int J Prosthodont. 2009;22(5): 466-471.

30. Wrbas KT, Hein N, Schirmeister JF, Altenburger MJ, Hellwig E. Two-year clinical evaluation of Cerec 3D ceramic inlays inserted by undergraduate dental students. Quintessence Int. 2007;38(7): 575-81.

31. Zimmermann M, Koller C, Reymus M, Mehl A, Hickel R. Clinical Evaluation of Indirect Particle-Filled Composite Resin CAD/CAM Partial Crowns after 24 Months. J Prosthodont. 2017;19(4).

32. Zimmermann M, Mehl A, Reich S. New CAD/CAM materials and blocks for chairside procedures. Int J Comp Dent. 2013;16(2): 173-181.
Tablo 1. PubMED veri tabanındaki belirtilen kriterdeki inley onley takip çalışmaları

Araştırma ve yılı	Çalışma tipi	Rehber	Kullanılan sistem	Kullanılan mağazalar	Takip süresi	Ölçü belirtilmemiş	Belirtilmemiş	Belirtilmemiş	Belirtilmemiş	Belirtilmemiş	Belirtilmemiş	Belirtilmemiş	Belirtilmemiş	Belirtilmemiş	Belirtilmemiş	Belirtilmemiş	Belirtilmemiş	Belirtilmemiş	Belirtilmemiş	Belirtilmemiş	Belirtilmemiş	Belirtilmemiş	Belirtilmemiş	Belirtilmemiş	Belirtilmemiş	Belirtilmemiş	Belirtilmemiş	Belirtilmemiş
Pallesen ve arkadaşları (2000)	Prospektif klinik çalışma	Inley	(n=32)	Vita Cerec Mk II (Vita Zahnfabrik, Almanya) (n=11)	8 yıl	Ölçü belirtilmemiş ve Cerec-1 kama	Evet	Kulser Cerec Cement (Kulser, Almanya)	Modifiye USPHS Kriterleri	8. yıl (n=32) %90.6	Porselen kırığı 3																	
Otto ve arkadaşları (2002)	Prospektif klinik çalışma	Inley	(n=187)	Vita Cerec Mk I (Vita Zahnfabrik, Almanya)	10 yıl	Ölçü belirtilmemiş ve Cerec-1 kama	Evet	Cerec Duo-CEment (Heraus-Kulzer, Almanya)	Modifiye USPHS Kriterleri	10. yıl (n=187) %90.4	Porselen kırığı 8 Dış kırığı 3 Çürük 1 Endodontik problem 1																	
Otto ve arkadaşları (2004)	Prospektif klinik çalışma	En-dokron	(n=10)	Vita Mk II (Vita Zahnfabrik, Almanya)	1 yıl	Cerec-3 optik ölçü ve Cerec-3 inlab	Evet	Duo-Cement Plus (Coltene, İsviçre)	Modifiye USPHS Kriterleri	1. yıl (n=10) %100	Bağışıklık restorasyon gürültümemiştir																	
Reich ve arkadaşları (2004)	Prospektif klinik çalışma	Onlay En-dokron	(n=30)	Vitablocs 3D Mark II (Vita Zahnfabrik, Almanya)	3 yıl	SV optik ölçü (Cerec 12 PVs ölçüt (President, Coltene)	Belirtilmemiş	Vita Cerec Duo-Cement (Coltene, İsviçre) (n=33) Cavex Clearfill F2 (Cavex, Hollanda) (n=33)	Modifiye USPHS Kriterleri	9 id (n=33) %689	Dış kırığı 1 Porselen kırığı 4 Endodontik Problem 1 Postoperatif şıkayet 1																	
Björk ve arkadaşları (2007)	Prospektif klinik çalışma	Inley	(n=60)	Vitablocs 3D Mark II (Vita Zahnfabrik, Almanya)	2 yıl	PVs ölçüt (M3 Espe)	Evet	Dual-Cement (Coltene, İsviçre)	Modifiye USPHS Kriterleri	4. yıl (n=60) %96.3	Endodontik problem 2 Porselen kırığı 1 Marşal uyuması 1																	
Otto ve arkadaşları (2008)	Prospektif klinik çalışma	Inley	(n=187)	Vita Cerec Mk I (Vita Zahnfabrik, Almanya)	15 yıl (Ortalama)	Ölçü belirtilmemiş ve Cerec-1 kama	Evet	Cerec Duo-CEment (Heraus-Kulzer, Almanya)	Modifiye USPHS Kriterleri	17. yıl (n=187) %87.7	Diş kırığı 3 Porselen kırığı 13 Çürük 4 Endodontik problem 1																	
Guess ve arkadaşları (2009)	Prospektif klinik çalışma	Vital Onley (PCR)	(n=80)	IPS e.max Press (Ivoclar, Liechtenstein) (40) ProCAD (Ivoclar, Liechtenstein) (40)	5 yıl	Polyehter Ölçüt ve Cerec 3 inLab	Evet	Tetrić/Syntact Classic (Ivoclar, Liechtenstein)	Modifiye USPHS Kriterleri	3. yıl %47 %100 %PSE% %97 ProCAD	Porselen kırığı 1																	
Bernhart ve arkadaşları (2010)	Prospektif klinik çalışma	En-dokron	(n=20)	Vitablocks Mark II (Vita Zahnfabrik, Almanya)	2 yıl	Belirtilmemiş Belirtilmemiş	Panavia TM F2.0 (Kuraray, Japonya)	Modifiye USPHS Kriterleri	2. yıl (n=20) %90	Porselen kırığı 2																		
Schenke ve arkadaşları (2011)	Prospektif klinik çalışma	Onley	(n=68)	Vitablocks 3D Mark II (Vita Zahnfabrik, Almanya)	2 yıl	Silaplast soft (Detax, Almanya) ve Cerec 3 inLab	Evet	Rely X Unicem (3M Espe, Almanya)	Modifiye USPHS Kriterleri	2. yıl (n=68) %93.3	Debonding 2 Porselen Kirk 2																	
Roggendorf ve arkadaşları (2011)	Prospektif klinik çalışma	Onley (28) ve En-dokron (12)	(n=40)	Vitablocks Mark II (Vita Zahnfabrik, Almanya) ProCAD (Ivoclar, Liechtenstein)	7 yıl	Ölçü belirtilmemiş ve Cerec-2 kama	Evet	Onley (19) En-dokron (6)	Tetrić Ceram Ulvikr (Ivoclar, Liechtenstein) (sayı belirtilmemiş)	Modifiye USPHS Kriterleri	7. yıl Onley =22 Endokron n=11 %78.2 (ortalama)	Porselen kırığı 1 Çürük 2 Dış kırığı 2																
Araştırmacı ve arkadaşları (2012)	Prospektif klinik çalışma	Overlay (n=286)	Vitablocks Mark II (Vita Zahnfabrik, Almanya)	7 yıl	Ölçü belirlenmemiş kazima Cerec	Evet	VarioLink (Ivoclar, Liechtenstein)	Modifiye USPHS Kriterleri	7. yıl (n=286) %96.5	Kontak uyuşuluğu 1 Porselen kirığı 2 Marjinal uyuşmazlık 4 Çürük 1 Yüzey değişimi 2																		
Arnetzl ve arkadaşları (2012)	Prospecıtf klinik çalışma	Vital Onley (PCR) (n=80)	IPS e.max Press [Ivoclar Vivadent, Liechtenstein] (40) ProCAD (Ivoclar Vivadent, Liechtenstein) (40)	7 yıl	Polyether Olçulu ve Cerec 3 inLab	Evet	Tetric/Syntac Classic (Ivoclar, Liechtenstein)	Modifiye USPHS Kriterleri	7. yıl %100 IPSe.max Press %97 ProCAD	Porselen kirığı (1 ProCAD)																		
Federlin ve arkadaşları (2013)	Kontrollü, Randomize, Prospektif klinik çalışma	Onley 34+34 (n=68)	Vitablocks 3D Mark II (Vita Zahnfabrik, Almanya)	3 yıl	Silaplast soft (Detax, Almanya) ve Cerec 3 inLab	Evet	Rely X Unicem (3M Espe, Almanya)	Modifiye USPHS Kriterleri	3. yıl (n=46) %67.6	Debonding 3 Endodontik problem 1 Porselen Kırık 7 Çürük 1																		
Nejatıdașev ve arkadaşları (2015)	Retrospektif klinik çalışma	Cerec Blocks (Sirona, Almanya)	Cerec Blue-cam ve Cerec inLab MCXL	5 yıl	Cerec Blue-cam ve Cerec inLab MCXL	Evet	ALL-BOND 2 (Bisco, ABD)	CDA (California Dental Association) Kriterleri	5. yıl (n=153) CerecBlo-cks %99.0 IPS Em-pressCAD %96.4	Endodontik problem 3 Porselen kirığı 3 Retansiyon kaybı 1																		
Zimmermann ve arkadaşları (2017)	Prospektif klinik çalışma	Onley (n=42) (29 molar 13pre-molar)	Lava ultimate (3M Espe, Almanya)	2 yıl	Cerec Blue-cam ve Cerec inLab MCXL	Evet	VarioLink II high viscosity (Ivoclar, Liechtenstein)	Modifiye FDI kri-terleri	1.yıl %95 2. yıl %85.7	Diş kirığı 2 Debonding 3																		
Spitznagel ve arkadaşları (2017)	Prospektif klinik çalışma	Inley (45) Onley (58) (n=103)	Vita Enamic (Vita Zahnfabrik, Almanya)	3 yıl	PVS ölçü ve Cerec inLab MCXL	Evet	VarioLink II (Ivoclar, Liechtenstein)	Modifiye USPHS Kriterleri	3. yıl inley %87.4 PCR %96.4	Porselen kirığı 3																		
Otto ve arkadaşları (2017)	Retrospektiv klinik çalışma	Inley Onley (n=141)	Vita Cerec Mk I (Vita Zahnfabrik, Almanya)	27 yıl (Orta-lama)	Ölçü belirlenmemiş ve Cerec-1 kazıma	Evet	Cerec Duo-Cement (Heraus-Kulzer, Almanya)	Modifiye USPHS Kriterleri	27. yıl %87.5 (n=187)	Diş kirığı 3 Porselen kirığı 15 Endodontik problem 1 Çürük 4																		
CASE REPORT / OLGU SUNUMU

Decoronation of ankylosed incisors in two adolescent patients
İki genç hastada ankiloze kesici dişlerin dekoranasyonu

Sevgin İbiş¹, Hatice Açıkel², Emine Şen Tunç³

Abstract
Avulsion of permanent dentition represents a serious if relatively uncommon type of traumatic injury. The most frequent complication after replantation of teeth is ankylosis, from initial root resorption through eventual replacement of lost root substance with bone. Decoronation may be considered an alternative treatment strategy for ankylosed incisors in young patients. In the two cases reported here, ankylosed teeth in adolescent patients were decoronated and prosthetically restored after late and less-than-ideal replantation procedures. The results obtained in these two cases are indications that decoronation may be a good treatment option for teeth affected by replacement and external resorption in young people who have not yet completed their growth and development. Keywords: ankylosis, decoronation, dental trauma.

Öz
Daimi dişlenmede avulsiyon oldukça nadir görülmekle birlikte, ciddi travmatik yaralanmalarından da biri olarak kabul edilir. Ciddi travmatik yaralanmalarda, ağırlık kök rezorbsiyonu sonrasi kök dokularının zamanla kemik ile yer değiştirilmesi şeklinde gelişen ankiloz, reimplante edilen dişlerde en sık karşılaşılan komplikasyondur. Genç erişkin hastaların ankiloze kesici dişlerinin dekoranasyonu alternatif tedavi seçeneklerindendir. Bu olgu raporunda; geç ve uygunsuz reimplotasyona bağlı anklor gelişen kesici dişlerin dekoranasyonu ve protetik tedavisi sunulmaktadır. Büyüme ve gelişimi henüz tamamlanmamış genç hastaların yer değiştirme ve dışsal rezorbsiyon gözlenen dişlerinin tedavisinde dekoronasyonun iyi bir tedavi seçeneği olabileceği sonucuna varılmıştır. Anahtar Kelimeler: ankiloz, dekoronasyon, diş travmalar.

Introduction
Avulsion is a type of severe traumatic dental injury that accounts for 0.5-3% of all traumatic injuries to permanent dentition (1). Not only is the affected tooth completely displaced from its socket, the trauma causes injury to apical pulp, periodontal tissue and supporting bone and cement (2,3) and may result in pulpal necrosis, root resorption and tooth loss(1-4).

Healing of an avulsion injury is a very complex process that is affected by numerous factors, including patient age, duration and medium of extraoral storage, and replantation management(1-5). Ankylosis-related replacement resorption is frequently observed after avulsion of permanent incisors (2), and Donaldson and Kinirons found that teeth left in dry conditions for longer than 15 min or whose roots suffered from additional damage or contamination faced higher risks of early resorption (6). Complications following ankylosis of a permanent incisor in children include early loss of the traumatised tooth, local arrest of alveolar-bone development, tilting of adjacent teeth, arch length loss, orthodontic
complications related to arch irregularities, and poor aesthetics (2,7). For these reasons, extraction of ankylosed or heavily resorbed young permanent teeth is not recommended (8). Alternative treatment options include autotransplantation of the tooth with a viable periodontal ligament, orthodontic closure, and decoronation (1,8,9). The later treatment option preserves the labial contours of the socket and improves conditions for implant insertion in the future (7,10).

The following report presents two cases of decoronation and prosthetic rehabilitation of teeth ankylosed due to late and less-than-ideal replantation procedures.

Case reports

Case 1

A healthy, 10-year-old girl was referred to the Ondokuz Mayas University Faculty of Dentistry’s Department of Pediatric Dentistry the day after a bicycle accident resulting in a traumatic avulsion injury to the maxillary right central incisor tooth, which was treated by replantation at another dental clinic. Extraoral examination showed no injuries, whereas intraoral examination revealed that the tooth had not been fully inserted into the socket and no splint had been applied. Radiographic examination confirmed that the tooth was incorrectly positioned and had an open apex (Figure 1). Under local anaesthesia (Ultracain DS Forte, Sanofi Aventis, Luleburgaz, Turkey), gentle finger pressure was used to guide the tooth into its original place, and a wire splint was applied using composite resin. A control radiograph was taken, the patient was prescribed a 10-day course of antibiotics along with analgesics and mouth rinse (Chlorhexidine gluconate 0.12%), and tetanus vaccination status was ascertained. The patient and her parents were also given instructions regarding diet and about the importance of chemical and mechanical plaque control. The splint was removed after 2 weeks, but no further treatment was undertaken in order to allow for possible revascularization of the pulp space. Follow-up visits were scheduled for 1, 3, 6 and 12 months and annually thereafter. No clinical or radiographic pathology was observed at 1 or 3 months, after which time the patient discontinued follow-up. However, the patient presented 2 years later with an unrelated problem, and while intraoral examination showed no abnormalities, radiographic examination revealed replacement and external root resorption (Figure 2). The patient and her parents were informed about the likelihood of progressive root resorption and eventual tooth loss, and monthly follow-up appointments were scheduled.

After 3 months, the patient reported pain during chewing in her maxillary right central incisor, and radiographic examination revealed continuing external root resorption (Figure 3). After informing the parents about the current clinical situation and treatment options, the decision was made to decoronate the tooth. Local anaesthesia (Ultracain DS Forte, Sanofi Aventis, Luleburgaz, Turkey) was administered, a full buccal and palatal mucoperiosteal flap was lifted, and the maxillary right central incisor was decoronated. The root canal was rinsed with saline, bleeding from the surrounding tissue was allowed to fill the canal (Figure 4a), and following clotting, an incision was made in the periosteum to enable wound-edge approximation without tension. The flap was primarily closed with 4-0 vicryl sutures using a horizontal mattress suturing technique, and the crown of the decoronated tooth was stored in saline solution in anticipation of soft-tissue healing. A post-operative radiograph was taken (Figure 4b), and the patient was prescribed antibiotics the (amoxicillin 500 mg tid), analgesics ibuprofen 400mg tid) and chlorhexidine mouthwash for 5 days. After 15 days, the tooth crown was removed from storage, sectioned horizontally at the cementoenamel junction using a diamond abrasive disc, and contoured using a flame-shaped bur. Pulp remains were then removed with a bur, the pulp chamber was etched with 37% phosphoric acid, and the tooth was washed with air-blow and lightly air-dried. A bonding agent (Clearfil SE Bond, Kuraray, Okayama, Japan) was applied to the etched surface, and the access opening was sealed with light-curing resin composite (Gradia Direct Anterior, GC Corporation, Tokyo, Japonya). A fixed appliance was constructed using the natural crown, which was adapted using 0.9-mm round orthodontic wire and supported by the permanent first molar teeth. Following satisfactory try-in and occlusal adjustments, the appliance was cemented in place using glass ionomer cement at the same appointment (Figure 4c).
Case 2

An 11-year-old female patient was referred to the Ondokuz Mayis University Faculty of Dentistry’s Department of Pediatric Dentistry the day after an avulsion injury to the maxillary right central incisor caused by a fall at a playground, after which the tooth was stored in milk and replanted by a general practitioner 2 hours later. A medical history was non-contributory, physical and neurological assessments showed no specific findings, and no injuries were detected at extraoral examination. A clinical examination showed a less-than-ideal rigid composite splint on the injured tooth and adjacent teeth; however, radiographic examination showed that the tooth was positioned correctly and its apex was closed (Figure 5). The rigid composite splint was removed, and the traumatized tooth was replanted with an acid-etched composite resin for one week. The patient was also given oral hygiene instruction and referred to a physician for evaluation of tetanus vaccination status. Endodontic treatment of the maxillary right central incisor was initiated 2 days after splint construction. The canal was instrumented and irrigated with normal saline and 2% sodium hypochlorite solutions. Calcium hydroxide (3M Espe, St Paul, MN, ABD) was used as a temporary intracanal medicament, and permanent endodontic treatment was completed 15 days later (Sealapex Kerr Italia S.R.L. Via Passanti, Salerno-Italia). The tooth was then restored with composite resin (Gradia Direct Anterior, GC Corporation, Tokyo, Japonya), and follow-up visits were scheduled for clinical and radiographic evaluation of the root-healing process. At the 6-month follow-up visit, the replanted tooth showed signs of ankylosis on percussion. The patient and her parents were informed about the prognosis, and it was decided to continue with follow-up throughout the patient’s growth and developmental period. At the 1-year follow-up visit, when the patient was 12 years of age, radiographic examination showed severe replacement and inflammatory cervical root resorption of the maxillary right lateral incisor along with pulp canal obliteration (Figure 6), but the tooth was clinically asymptomatic and provided good aesthetics. However, approximately 30 months later, when the patient was almost 15 years old, she sustained another traumatic dental injury, at which time clinical examination showed a fistula and mobility of the maxillary right central incisor, and a periapical radiograph revealed a horizontal root fracture in the area of resorption (Figure 7). A new treatment plan was decided on that included decoronation of the maxillary right central incisor followed by prosthetic treatment using the patient’s own tooth to restore aesthetics until the patient’s developmental growth was complete, after which an implant-supported porcelain crown would be provided. The surgical procedure and risks were explained to the parents, and the decoronation procedure was performed following removal of the root-canal filling (Figure 8a, b). A fixed appliance similar to the one described above for Case 1 was provided 15 days later (Figure 8c). Both the patients and the parents were
given hygiene instructions, and follow-up examinations were scheduled at 3-month intervals. The patient was able to use the appliance without discomfort and was highly motivated by the aesthetic results and improved biting.

Figure 5: Initial radiographic view of Case 2.

Figure 6: 6 months later radiographic view shows external root resorption and ankylosis of Case 2.

Figure 7: The radiograph of Case 2 shows horizontal root fracture, after additional traumatic injury.

Figure 8a: Operation view

Figure 8b: Immediate radiographic view after decoronation procedure

Figure 8c: Prosthetic rehabilitation of Case 2

Discussion

Ideal treatment of an avulsed permanent tooth involves its immediate replantation in the socket; however, for the majority of avulsed teeth, this is not achieved. With delayed replantation, the long-term prognosis is poor, as the periodontal ligament becomes necrotic and is not expected to heal (2-4,6), and the chance of external resorption for teeth that have been out of the mouth for more than 2 hours is reportedly 95% (11). In spite of the poor prognosis for these teeth, replantation is performed for aesthetic, functional and psychological reasons and to maintain the alveolar bone contour (2,7). In both cases described here, delayed replantation was expected to result in ankylosis and external resorption, which were observed at 24 months in Case 1 and at 15 months in Case 2.

When deciding among treatment options for ankylosed teeth in young patients, the factors to be considered include the age of the child, the vertical discrepancy between the ankylosed and adjacent teeth, growth patterns and other minor variables, future orthodontic or prosthetic treatment,
space maintenance, aesthetics, eruption status of adjacent teeth, behaviour management, risk of caries, and treatment cost (7,8,10,12). Treatment modalities include early extraction of the ankylotic tooth, extraction followed by orthodontic space-closure, auto-transplantation, single-tooth dento-osseous osteotomy, intentional replantation, and decoronation (2,8,9,12-15). Immediate extraction of ankylotic teeth is not routinely recommended because early extraction can lead to alveolar bone damage (8). Orthodontic space-closure following early loss of a traumatized tooth offers an aesthetic solution as well as rehabilitation of the alveolar bone ridge; (14) however, underlying malocclusions, dental and skeletal age as well as tooth shape and size need to be taken into consideration when weighing the costs and benefits of this type of treatment (7) Auto-transplantation of a premolar, preferably using a first mandibular premolar, offers a long-lasting physiological and aesthetic solution that is recommended when the premolar root has completed less than three-quarters of its development and is considered an appropriate option for younger patients (9,15) For adult patients, a single-tooth dento-osseous osteotomy, which involves the transposition of bone to move the ankylosed tooth to a more coronal position, is preferred (13).

In the cases reported on here, decoronation followed by prosthetic rehabilitation was chosen as the most appropriate treatment modality because of the patients’ young ages and the lower cost and faster treatment time in relation to the other treatment options. In addition, in Case 2, the patient had a peg-shaped adjacent lateral incisor and congenital tooth abnormalities that made orthodontic treatment, autotransplantation and implant treatment complicated.

Decoronation of ankylotic teeth is recommended especially to preserve the contour of the alveolar ridge (7,10,16-19). According to Oikarinen et al.’s review of the most recent literature on the procedures and materials used in rebuilding a narrow anterior alveolar ridge, an ankylotic tooth that is well-aligned in the bony arch does not usually require ridge augmentation following decoronation (19). Disadvantages of decoronation include the need for a long-term aesthetic space maintainer as well as the surgical nature of the procedure, which may be challenging with young children (18).

The replacement of a lost crown in young patients in mixed dentition can be complicated. The available treatment options include placement of the natural crown or acrylic tooth in a fixed or removable prosthesis, fiber-reinforced composite, implants, substitution of laterals and canines, and conventional and adhesive bridges (20-25). There are some disadvantages associated with removable prostheses, such as a lack of stability, unfavourable distribution of stress, tissue inflammation and the need for patient compliance. A conventional bridge requires preparation of healthy abutment teeth for crowns. Maryland bridges are preferred in growing children; however, when used to restore a missing tooth, clinical and laboratory procedures take up extensive time, including preparation of a slot in abutment teeth to receive the retentive extensions of the wings of the pontic (22) and debonding of the cast-metal framework (23). In contrast to Maryland bridges, fiber-reinforced composite (FRC) bridges require very little or no tooth reduction and offer enhanced aesthetics (21) without complicated laboratory procedures (23). Despite these advantages, in the cases presented here, FRC bridges could not be used due to the small size of the adjacent teeth. After discussing all available treatment options with the parents and children, construction of fixed appliances using the patients’ natural crowns was agreed in both cases.

Successful management of ankylosed teeth requires an interdisciplinary approach. Decoronation makes it possible to maintain alveolar bone ridge width, height and continuity in order to support future rehabilitation. Maintaining the width of the alveolar ridge allows for optimal positioning of an implant and ideal aesthetic shaping of the crown. The cases reported on here highlight decoronation as an appropriate treatment option for ankylosed permanent teeth.

References

1. Glendor U, Hailing A, Andersson L, Eilert – Petersson E. Incidence of traumatic tooth injuries in children and adolescents in the county of Vastmanland, Sweden. Swed Dent J 1996; 20:15-28.
2. Andersson L, Andreasen JO, Day P, Heithersay G, Trope M, Diangelis AJ, Kenny DJ, Sigurdsson A, Bourguignon C, Flores MT, Hicks ML, Lenzi AR, Malmgren B, Moule AJ, Tsukiboshi M. International Association of Dental Traumatology. International Association of Dental Traumatology guidelines for the management of traumatic dental injuries: 2. Avulsion of permanent teeth. Dent Traumatol 2012; 28:88-96.
3. Andreasen J.O. and Andreasen F.M. Textbook and Color Atlas of Traumatic Injuries to the Teeth. Ed. Copenhagen, Denmark. 2007;444-480.
4. Andreasen JO, Borum MK, Jacobsen HL, Andreasen FM. Replantation of 400 avulsed permanent incisors. Factors related to periodontal ligament healing. Endod Dent Traumatol 1995; 11:76-89.
5. Kinirons MJ, Boyd DH, Gregg TA. Inflammatory and replacement resorption in reimplanted permanent incisors teeth: a study of the characteristics of 84 teeth. Endod Dent Traumatol 1999; 15:269–272.
6. Donaldson M, Kinirons MJ. Factors affecting the time of onset of resorption in avulsed and replanted incisor teeth in children. Dent Traumatol 2001; 17:205-209.
7. Andreasen JO, Malmgren B, Bakland L. Tooth avulsion in children: to replant or not. Endod Topics 2006; 14: 28–34.
8. Malmgren B. Decoronation: how, why and when?. J Calif Dent Assoc 2000; 28:846–854.
9. Andreasen JO, Andreasen FM. Textbook and Color Atlas of Traumatic Injuries to the Teeth Ed. Copenhagen, Denmark 2007; 40–760.
10. Malmgren B, Cvek M, Lundberg M, Frykholm A. Surgical treatment of ankylosed and infra-positioned reimplanted incisors in adolescents. Scand J Dent Res 1984; 92:391–399.
11. Andreasen JO. Effect of extra-alveolar period and storage media upon periodontal and pulpal healing after replantation of mature permanent incisors in monkeys. Int J Oral Surg 1981; 10:43-53.
12. Filippi A, Pohl Y, von Arx T. Treatment of replacement resorption with Emdogain – preliminary results after 10 months. Dent Traumatol 2001; 17:134–138.
13. Medeiros PJ, Bezerra AR. Treatment of an ankylosed incisor by single tooth dento-osseous osteotomy. Am J Orthod Dentofacial Orthop 1997; 112:496–501.
14. Sabri R. Treatment of a class I crowded malocclusion with an ankylosed maxillary central incisor. Am J Orthod Dentofacial Orthop 2002; 122:557–565.
15. Andreasen JO, Paulsen HU, Yu Z, Schwartz O. A long-term study of 370 autotransplanted premolars. Part III. Periodontal healing subsequent to transplantation. Eur J Orthod 1990; 12:25–37.
16. Malmgren B, Tsilingaridis G, Malmgren O. Long-term follow up of 103 ankylosed permanent incisors surgically treated with decoronation – a retrospective cohort study. Dent Traumatol 2015; 31:184–189.
17. Díaz JA, Sandoval HP, Pineda PI, Junod PA. Conservative treatment of an ankylosed tooth after delayed replantation: a case report. Dent Traumatol 2007; 23:313-317.
18. Sapir S, Kalter A, Sapir MR. Decoronation of an ankylosed permanent incisor: alveolar ridge preservation and rehabilitation by an implant supported porcelain crown. Dent Traumatol 2009; 25:346-349.
19. Oikarinen KS, Sandor GKB, Kainulainen VT, Salopen – Kemppi M. Augmentation of the narrow traumatized anterior alveolar ridge to facilitate dental implant placement. Dent Traumatol 2003; 19:19–29.
20. Ulusoy AT, Cehreli ZC. Provisional use of a natural tooth crown following failure of replantation: A case report. Dent Traumatol 2008; 24:96–99.
21. Tuzuner T, Kusgoz A, Nur BG. Temporary management of permanent central incisors loss caused by trauma in primary dentition with natural crowns: A case report. Dent Traumatol 2009; 25:522–526.
22. Parker RM. An ultraconservative technique for restoring a missing central incisor. Contemp Esthetics 2007; 7:30–34.
23. Aydin Y, Kargul B. Glass-Fiber Reinforced Composite in Management of Avulsed Central Incisor: A Case Report. J Dent Child 2004; 71:66–68.
24. Ticheler HM, Abraham JE. Management of a congenitally missing maxillary central incisor: A case study. N Y State Dent J 2007; 73:20–22.
25. Kokich VG, Crabill KE. Managing the patient with missing or malformed maxillary central incisors. Am J Orthod Dentofacial Orthop 2006; 129:55–63.