miRNA biogenesis: Biological impact in the development of cancer

Sandra L Romero-Cordoba, Ivan Salido-Guadarrama, Mauricio Rodriguez-Dorantes, and Alfredo Hidalgo-Miranda*

National Institute of Genomic Medicine; Mexico City, Mexico

Keywords: cancer, cellular signaling, miRNA biogenesis

Abbreviations: Ago2, Argonaute 2 protein; Ars2, Arsenic Resistance protein 2; circRNA, circular RNA; miRNAs, microRNAs; hnRNPs, heterogeneous nuclear ribonucleoproteins; DGCR8, DiGeorge syndrome Critical Region 8 protein; TRBP, TAR RNA binding protein; PACT, kinase R–activating protein; RISC, RNA-induced silencing complex; PABP, poly(A)-binding protein; EMT, epithelial–mesenchymal transition; PRC2, Polycomb repressor complex; MK2, MAPK-activated protein kinase 2; KSRP, KH-type splicing regulatory protein; XPO5, exportin 5; TUT4, terminal uridine transferase-4

microRNAs (miRNAs) are non coding RNAs with different biological functions and pathological implications. Given their role as post-transcriptional gene expression regulators, they are involved in several important physiological processes like development, cell differentiation and cell signaling. miRNAs act as modulators of gene expression programs in different diseases, particularly in cancer, where they act through the repression of genes which are critical for carcinogenesis. The expression level of mature miRNAs is the result of a fine mechanism of biogenesis, carried out by different enzymatic complexes that exert their function at transcriptional and post-transcriptional levels. In this review, we will focus our discussion on the alterations in the miRNA biogenesis machinery, and its impact on the establishment and development of cancer programs.

miRNAs as Cancer Modulators

For over a decade, different studies pointed out the relevance of miRNAs biology in cancer, indicating that they can act as cancer genes, either as tumor suppressors, negatively regulating protein-coding oncogenes, or as oncomiRs, repressing known tumor suppressors.1,2 Functional studies have demonstrated that miRNAs can affect cancer phenotypes, and several reports have identified miRNA expression profiles that provide information about tumor origin, prognosis or risk prediction, even better than other expression profiles like mRNA signatures 3,4 (A more detailed overview is discussed in ref 5). Furthermore, understanding the physiological and pathological miRNA biogenesis mechanisms is important to gain knowledge on the role of this process in carcinogenesis, a situation that will result in the development and improvement of tools for diagnosis, risk evaluation and follow up of cancer patients.

From the Beginning: MiRNA Biogenesis

miRNAs sequences are distributed all throughout the genome, being localized in exonic or intronic regions, as well as intergenic locations.6 The biogenesis of miRNAs starts with their transcription by RNA polymerase II,7 although some other miRNAs are transcribed by RNA polymerase III,7,8 resulting in a primary transcript known as pri-miRNA which contains a 33bp hairpin stem, a terminal loop and a flanking single stranded sequence of hundreds of bases or even several kilobases. In general, pri-miRNAs are capped at the 5’ end and polyadenylated at the 3’ end.7,9 After transcription, the RNase III Drosha processes the pri-miRNA by cleaving it 11bp away from the hairpin stem (SD junction).10 During miRNA biogenesis, Drosha might create 2 different complexes to facilitate pri-miRNA cleavage. One is composed by the RNA helicases, p68 and p72, and the heterogeneous nuclear ribonucleoproteins (hnRNPs). The other complex, known as the microprocessor, is composed by Drosha and the DiGeorge syndrome Critical Region 8 protein (DGCR8), a dsRNA-binding protein that stabilizes Drosha through interaction with its C-terminal domain.11,12 DGCR8, also serves as a molecular ruler, directing the cleavage of Drosha to the SD junction.13 Drosha digestion can occur co-transcriptionally or before splicing,14 and the product of this digestion is an intermediary RNA molecule known as pre-miRNA, which has ~22 nt in the stem and ~48nt in the terminal loop.15,16

Alternatively, some non-canonical biogenesis pathways may occur during miRNA splicing, giving rise to “miTrons”. MiTrons are in fact, the spliced-out introns of miRNAs, which constitute functional pre-miRNAs. Therefore, production of miTrons is independent of Drosha digestion 17 (Fig. 1A).

Following pre-miRNA generation, Exportin-5, a Ran-GTP-dependent dsRNA-binding protein, transports the pre-miRNAs
to the cytoplasm in a GTP dependent process. Exportin-5 can also protect pre-miRNAs against nuclear degradation. Once in the cytoplasm, Dicer, another RNase III, digests the pre-miRNA into a 22nt mature duplex miRNA (miRNA:miRNA*, where miRNA* is called as the passenger strand). During this process, Dicer is associated with other proteins like TAR RNA binding protein (TRBP) and kinase R–activating protein (PACT) to increase its stability and its processing activity. Dicer is an essential protein of miRNA maturation and its down-regulation decreases the mature miRNA levels. In fact, under certain conditions the absence of Dicer is lethal (Fig. 1A).

After generation of the miRNA duplex, the strands are unwound in an ATP-independent process (it is not clear how this process occurs). One strand (the miRNA-guide strand) is loaded onto the RNA-induced silencing complex (RISC), formed by the association of Dicer, TRBP, PACT, most commonly the Argonaute 2 protein (Ago2) and GW182, which promotes Argonaute stability. The resultant complex between mature miRNA and RISC is denominated miRISC. In mammals, selection of the guide strand is dictated by thermodynamic stability, the less stable strand at the 5’ end has more probability of being incorporated into the RISC; the remaining strand (miRNA*-passenger strand) is excluded and generally degraded. However, recent miRNA sequencing data, as well as results from our laboratory, demonstrate that a large number of miRNA* are not degraded and are expressed in similar concentrations to their corresponding guide strand. These observations suggest that the passenger strand might also be incorporated into the RISC complex. Consequently, one miRNA sequence can produce 2 different mature miRNAs, each one having different targets and, therefore, different biological functions (Fig. 1A).

Finally, the miRISC functions as a guide to recognize the mRNA targets, based on complementarity rules, to negatively

Figure 1. Biogenesis of miRNAs

(A) Production of miRNAs starts in the nucleus with the polimerization of the primary hairpin miRNA transcript (pri-miRNA) by RNA polymerase II or III, followed by the cleavage and digestion of the pri-miRNA by the microprocessor complex (Drosha–DGCR8). The resulting transcript is the pre-miRNA, which is exported to the cytoplasm by Exportin-5–Ran-GTP. Once in the cytoplasm, Dicer, TRBP and Paz proteins cleave the pre-miRNA hairpin and digest it to produce a mature duplex miRNA. Then, one of the strands is loaded onto the RISC complex and finally this guides the miRNA to its mRNA target to silence it by direct degradation or by translational repression. (B) Mechanism of post-transcriptional regulation of miRNA target by miRNA i) Regulation by translation repression. ii) Regulation by repression of translation initiation. iii) Regulation by mRNA degradation. iv) Regulation by degradation or storage of mRNA targets in P bodies.
regulate mRNAs. During this process, Ago2, a protein with RNA cleavage activity, together with GW182, which interacts with the cytoplasmic poly(A)-binding protein (PABP) and the PAN2–PAN3 and CCR4–NOT deadenylase plays a central role in miRNA-mediated mRNA silencing. There are at least 3 possible mechanisms by which miRNA mediate repression of gene expression: (1) mRNA target hybridization and degradation, (2) translation inhibition during the initiation or elongation phases and (3) mRNA decay by its recruitment to P bodies (Fig. 1B).

miRNA Biogenesis Defects and Their Biological Consequences in Cancer Transcriptional Regulation, a Transcription Factor Network

In cancer, numerous transcription factors, some of them well-characterized tumor suppressors or oncogenes, regulate miRNA transcription. Nucleosome positioning methods and ChIP-on-ChIP or ChIP-seq analysis suggest that a set of transcription factors promotes or inhibits miRNA transcription, many of them overlapping with well-known transcription factors of coding genes like Myc and p53, as well as cell type-specific transcription factors such as MEF2, PU.1, and REST. Furthermore, cellular context triggers pri-miRNA transcription in response to growth factor stimuli such as PDKG, TGF-β and BDNF.

Recent evidence indicates that the oncogenic transcription factor Myc acts as a miRNA transcriptional regulator, promoting the transcription of some oncogenic miRNAs as well as transcriptional inhibition of tumor suppressor miRNAs. One of the first documented oncogenic miRNA clusters promoted by Myc is miR-17–92, which is activated when Myc binds to the E-box in the miR-17–92 coding sequence. The miR-17–92 cluster is frequently over-expressed in a variety of tumors like B-cell lymphomas, breast, colon, lung, pancreas, prostate, and stomach cancers.

Some other tumorigenic miRNAs induced by Myc are miR-19a/b, implicated in cancer metabolism and cell cycle survival, miR-18a which contributes to angiogenesis and miR-9 which modulates the expression of mediators of metastasis.

Myc can also actively repress the transcription of numerous miRNAs, including some members of the let-7 and miR-29 families, as well as miR-15a/16–1, miR-26a and miR-34a. These miRNAs have been related to antiproliferative, proapoptotic and antitumorigenic activities in different tumors. In fact, miRNAs regulated by Myc can silence some Myc regulators, in a coordinated negative feedback loop.

Myc not only regulates miRNA activity during transcription, it also blocks the maturation of certain miRNAs through its cooperative relationship with some other binding proteins like Lin28, which acts as negative regulator of let-7.

Epigenetic Alterations at MiRNA loci

Epigenetic mechanisms are also important for miRNA transcriptional regulation. Different approaches have shown that DNA methylation and histone deacetylase inhibitors can modify the expression of several miRNAs. The characterization of CpG island content in genomic regions harboring miRNAs, reveals that such regions share a similar DNA and chromatin context, for example, the promotion of a closed chromatin configuration defined by CpG island hypermethylation and covalent histone modifications.

The identification of miRNAs undergoing DNA methylation in a broad set of tumors, pointed out the importance of this process in miRNA downregulation and in the establishment of cancer programs. miR-124 and miR-34, well defined tumor suppressors, are subject to epigenetic silencing by aberrant DNA hypermethylation affecting cell cycle pathways in tumors; while down-regulation of miR-34 affects the Notch pathway involved in cell invasion and apoptosis. Furthermore, DNA methylation profiles in miRNA promoter regions can be useful as a diagnostic and prognostic marker. For example, miR-23b, a miRNA with tumor suppressor activity in prostate cancer, is down-regulated through DNA hypermethylation of its promoter region and its expression level is correlated with overall survival and recurrence-free survival. A more comprehensive list of hypermethylated miRNAs in cancer is included in Table 1.

Deregulated expression of miRNAs in cancer is also a consequence of alteration in histone marks, which occur primarily due to the aberrant action of histone deacetylases and the Polycomb repressor complex (PRC2). For example, over expression of PRC2 in prostate cancer contributes to the repression of miR-101 and miR-205 by increasing the levels of H3K27me3 at their promoters. These alterations result in an increased rate of cell proliferation. In colorectal cancer, chromatin at promoter regions of tumor-suppressor miRNAs show a closed configuration, producing a repressed transcriptional state. Moreover, BRCA1, a well-known tumor suppressor, in addition to its canonical function, can also epigenetically repress the oncomiR miR-155 via its association with HDAC2, which deacetylates histones H2A and H3 on the miR-155 promoter.

CTCF, another epigenetic factor, acts as a border that delimits the propagation of DNA methylation and histone repressive marks over different regulatory regions controlling gene expression.

| Table 1. Methylated miRNAs and their role in cancer |
miRNA	Cancer activity	Ref
miR-145	Involved in cell pluripotency	61
miR-193	Controls cell differentiation and cell growth in acute myeloid leukemia	62
miR-199a	Controls the expression of genes associated with tumor progression in gastric, ovarian and testicular tumors	63
miR-335	Its hypermethylated phenotype has been associated with metastases in breast cancer	64
miR-1–133a cluster	Modulates metastases in colorectal cancer by repressing TAGLN2	65
miR-200 family	Downregulated in colorectal and breast tumors, favoring epithelial–mesenchymal transition (EMT) phenotypes	66
expression. In different cancers, CTCF is lost, promoting repressive epigenetic mechanisms. Recent studies have shown that CTCF regulates miRNAs such as the tumor suppressor miR-125b1 and the oncomiR miR-375 in breast cancer cells.

Post-transcriptional Regulation

Editing miRNA hairpin base pairs
Another potential regulatory mechanism for miRNA biogenesis and activity, is the post-transcriptional editing carried out by the catalyzing enzymes ADAR1 and ADAR2. In this process, adenosine residues are replaced by inosine (A-to-I), therefore, producing an A–U base pair instead of an I–G base pair. Consequently, miRNA edition may influence the transition from pri-miRNA to pre-miRNA. Furthermore, it may also affect miRNA-target specificity by modifying the seed region (a necessary sequence for mRNA and miRNA hybridization). It has been demonstrated that the miRNA-editing process is affected in gliomas, resulting in the production of unedited forms of miR-376*, which lacks the ability to target its natural mRNAs targets, like AMFR. This alteration promotes a higher invasive capacity in the glioma cells.

Drosha processing and alterations in cancer
Immunoprecipitation analyses reveal that the RNA helicases p68 (DDX5) and p72 (DDX17) are associated with the microprocessor complex, modulating the association of Drosha and the pri-miRNA. Additionally, p68 and p72 might interact with some other RNA processing enzymes or transcription factors, modifying Drosha processivity. For example, p68/p72 interacts with Smad, p53, and the estrogen receptor, which also regulate miRNA processing. The Smad proteins, act as signal transducers promoting the expression of at least 20 human miRNAs by increasing Drosha cleavage activity upon their target pri-miRNAs. Although there is no clear idea about the mechanisms that determine the set of miRNAs undergoing this type of regulation, sequencing data show that the majority of miRNAs regulated by Smad contain a consensus sequence within the stem region of the corresponding pri-miRNA, to which Smads bind. In breast cancer, especially in invasive tumors, TGF-β, as miR-155 negatively regulates RHO A, which in turn silences TGF-β, favoring EMT, cell migration and invasion.

In a different cellular context, the tumor suppressor p53 is related with the biological activity of miRNAs, not only because p53 is, in itself, targeted by miRNAs, but also because it regulates miRNAs expression at different levels. Immunoprecipitation experiments have demonstrated that p53 might enhance the cleavage processivity of Drosha. Thus, p53 can promote the processing of specific pri-miRNAs to pre-miRNAs such as miR-145 and miR-34, which regulate the cell cycle, miR-194, miR-195, miR-15a and miR16–1, and miR-200a/200b/429, miR-200c/141 that antagonize EMT. Recent data showed that p53 plays another regulatory role in miRNA maturation by influencing the accessibility to miRNA targets through the recruitment of RNA-binding proteins, which compete against miRNAs for binding to the 3' UTRs on mRNAs (Fig. 2A).

BRCA is also a post-transcriptional modulator of miRNA biogenesis. The tumor-suppressor BRCA1 binds directly to the pri-miRNA sequences of let-7a-1, miR-16–1, miR-145, and miR-34a (all of them tumor suppressors), and increases the pre-miRNA levels of this subset of miRNAs through the interaction with Drosha, Smad and p53. This regulatory mechanism expands the potential consequences of BRCA disruption in cancer and its possible impact in genomic stability (Fig. 2A).

The increased proliferation rate of cancer cells is reflected in many genomic and biochemical processes, which also have an important impact on miRNA biogenesis. For instance, under physiological conditions Arsenic Resistance protein 2 (Ars2) is required for cell proliferation, furthermore, ARS2 contributes to microRNA biogenesis under cell proliferation signaling. Ars2 depletion represses the biogenesis of a subset of miRNAs that are important in cancer, including let-7 and miR-21 (Fig. 2A). Experimental evidence suggests that Ars2 either binds directly to pri-miRNA transcripts and recruits the Drosha microprocessor or acts as a cofactor for Drosha’s enzymatic activity. Other examples involve apoptotic modulators, like DR5 (TRAIL-R2) which also inhibits miRNA maturation of let-7 through direct interaction with Drosha and DGCR8 in pancreatic cancer cell lines, promoting proliferation of cancer cells. Moreover, the expression level of DR5 in pancreatic tumor samples is correlated with poor outcome (Fig. 2A).

In addition to its previously mentioned editing function, ADAR1, can form a complex along with DGCR8, preventing the association between DGCR8 and Drosha during pri-miRNA processing. Moreover, it seems that ADAR1 can control the expression of more than 100 miRNAs which are positive regulators of metastatic programs in melanoma (Fig. 2A).

The participation of several signal transduction pathways in the maturation process of miRNAs has also been described. Recent work has demonstrated that upon activation, the kinase MAPK-activated protein kinase 2 (MK2) phosphorylates p68, enhancing its nuclear localization and incorporation into the microprocessor complex. In breast cancer cell lines, the inhibition of MK2 signaling promotes cell proliferation by enhancing the expression of c-Myc through the suppression of pri-miRNA processing of miR-145, which targets c-Myc (Fig. 2A).

Apart from their activity as transcription factors, hormone receptors could affect the maturation of miRNAs by preventing the pri-miRNA to pre-miRNA conversion. In breast cancer, ERβ down-regulates miR-30a inhibiting pri-miRNA polymerization, while ERα, but not ERβ, shows inhibitory effects over the maturation of the pri-miRNA cluster miR-23b/27b/24–1 through its direct binding to the p68/p72 Drosha microprocessor complex, which can be activated by E2. A Recent study reported that E2 negatively regulates the expression of miR-30c in endometrial cancer cells, likely through prevention of miRNA maturation. Moreover, the androgen receptor, an important tumorigenic player in prostate cancer, induces the transcription of miR-23a, miR-27a and miR-24–2, but more significantly accelerates primiR-23a/27a/
24–2 cluster processing. The evidence indicates that pri-miR-23/27/24 cluster is regulated by hormone signaling in different cancers, which highlights its potential implication in the therapeutic area as a new drug target95 (Fig. 2B).

More than a Loop, the Architecture of Pri-miRNA and its Regulatory Role

An important aspect in miRNA genomic organization is that a set of miRNAs can be located within the same transcription unit in the same manner as a polycistronic transcript. These miRNAs clustered inside the same transcriptional unit may be subject to independent regulation. There are few examples of miRNAs located in the same cluster, which are processed independently from each other. Some studies indicate that the hnRNP A1 binds to the loop region of miR-18, contained in the cluster mir17–92, generating a structural rearrangement in the hairpin that promotes Drosha cleavage, favoring the independent and unique processing of miR-18.96 The loop region of miR-18a is evolutionarily conserved, suggesting that some other well-conserved loop regions can be modulated by this mechanism (Fig. 2A). Some other studies have pointed out the importance of the loop region in pri-miRNA processing regulation, and have described the action of KH-type splicing regulatory protein (KSRP) which directly interacts with G-rich regions present in the loop of some pri-miRNAs, like let-7a and miR-206, promoting Drosha and Dicer processing97 (Fig. 3).

Another well-described mechanism is the link between Lin28 and let-7. Lin28 proteins are oncogenes activated in cancer which function through the repression of the let-7 miRNA family.98 It has been described that Lin28 blocks let-7 processing at the pri- and pre-miRNA steps, inhibiting the association of the microprocessor or Dicer complexes. This inhibitory mechanism can be the result of the strong interaction between Lin28 and Drosha/Dicer proteins.
DGCR8. Alternatively, the interaction of Lin28 with the loop region might rearrange the secondary structure of the hairpin and inhibit Drosha cleavage. Lin28A and Lin28B are in fact targets of let-7, indicating that Lin28/let-7 regulation involves a double-negative feedback loop, which under physiological conditions serves as a developmental switch (Fig. 3).

In cancer, germline mutations play an important role in the establishment of tumor pathways. In this context, the effect of germline mutations on the regulation of let-7/Lin28 loop might have a huge impact, in particular in breast cancer. The Lin28 rs3811463 (T/C) SNP, located near the let-7 binding site, might disrupt the loop of Lin28/let-7. Specifically, the C allele induced the repression of let-7 by Lin28, resulting in an increased expression of Lin28 and the consequent downregulation of mature let-7.

Exportin 5: Defects in Pre-miRNA Transportat to the Cytoplasm

The miRNA biogenesis pathway can also be affected by mutations in the conveyor exportin 5 (XPO5). Some tumors have mutations that generate pre-miRNA accumulation in the nucleus, reducing Lin28 can also be transported between the nucleus and cytoplasm, although it is enriched in the cytoplasm, suggesting that this is its primary compartment. Lin28 over-expression results in the reduction of Drosha association with let-7 pre-miRNA and, therefore, reduces mature duplex miRNA levels. One possible explanation, is that Lin28 competes with Dicer for recognition of the let-7 pre-miRNA sequence. Another mechanism involves the 3’-polyuridylation of pre-let-7, accomplished through cooperative activity of Lin28 with terminal uridine transferase TUT4.

miRNA pro-cessing and diminishing mature miRNA expression. The mutant exportin protein lacks a C-terminal region that prevents its association and the export of the pre-miRNA to the cytoplasm, inducing pre-miRNA degradation in the nucleus.

Cytoplasmatic Regulation

Role of Dicer cleavage and expression in cancer

Studies in murine models show that partial depletion of Dicer and Drosha accelerates cellular transformation and tumorigenesis. Furthermore, the complete depletion of Dicer causes miRNA silencing, tumor development and lethality. Heterozygous germ-line mutations in Dicer1 have been described in the pleuropulmonary blastoma-inherited cancer syndrome, and somatic missense mutations have been detected in ovarian tumors. In addition, mutations in other proteins can also alter the expression of Dicer and consequently, its function. For example, truncating mutations in TARBP2, a stabilizer of Dicer 1 protein, down-regulates miRNA global expression in sporadic and hereditary colon carcinomas with microsatellite instability.

Figure 3. Several post-transcriptional mechanisms of miRNA biogenesis regulation. (A) Lin28 prevents the association of Drosha to the pri-miRNA let-7. (B) KSRP binds to the loop region and promotes Drosha processing. (C) Lin28 prevents the association of Dicer to the pre-miRNA let-7. (D) Lin28 promotes the association of TUT4 with the pre-miRNA let-7, enhancing the 3’ uridylation of the pre-miRNA, and consequently its degradation. (E) KSRP binds to the loop region and promotes Dicer processing. (F) MAPK/ERK signaling modulates the expression or activity of Dicer, by promoting phosphorylation of TRBP. (G) The recognition of the 5’ monophosphate of the pre-miRNAs by Dicer is disrupted by the RNA-methyltransferase BCDIN3D, which phospho-dimethylates the pre-miR-145, and decreases miRNA processing by Dicer. (H) EGFR inhibits the processing of pre-miRNA through phosphorylation of AGO2-Y393, which attenuates the processing of pre-miRNAs to mature miRNAs under hypoxic conditions.
Drosha and Dicer T-Cell Lymphoma Single Nucleotide Polymorphism of Drosha (rs6877842) and Dicer (rs3742330) are correlated with progression-free survival.

In several cancer programs, the pleiotropic activity of miRNAs constitutes a mean that provides a wide range of modulatory factors which can considerably modify the malignant phenotype of cancer cells. Particularly, in cell reprogramming, miRNAs have been proved to work as factors that may accelerate or suppress the reprogramming process. Recent work in colorectal cancer demonstrated that Dicer1-deficient cells showed a reduced number of reprogrammed cells than wild type cells, suggesting that the miRNAs biogenesis machinery can also impact the reprogramming process and tumor phenotype.\(^{112}\)

The expression of Dicer may also be regulated by cofactors such as TRBP and PACT. Depletion of either of these cofactors decreases the basal levels of Dicer protein.\(^23\) Furthermore, TRBP mutations have been described in cancer and are associated with decreased miRNA levels and with the destabilization of Dicer. Moreover, the overexpression of TRBP contributes to the malignant phenotype of cancer cells.\(^{113}\) It has been shown that cellular signaling pathways like MAPK/ERK can also modulate the expression or activity of Dicer by promoting the phosphorylation of TRBP, which enhances miRNA production by increasing the stability of Dicer.\(^{114}\) (Fig. 3).

Finally, the recognition of the 5' monophosphate in premiRNAs by Dicer has been reported to be an important mechanism to achieve effective miRNA biogenesis. Recently, the RNA-methyltransferase BCDIN3D, has been identified as a negative regulator for miRNA maturation. In breast cancer, BCDIN3D phospho-dimethylates the tumor suppressor pre-miR-145 causing a reduction in its processing by Dicer.\(^{115}\) (Fig. 3).

The expression of Dicer may also be regulated by cofactors such as TRBP and PACT. Depletion of either of these cofactors decreases the basal levels of Dicer protein.\(^23\) Furthermore, TRBP mutations have been described in cancer and are associated with decreased miRNA levels and with the destabilization of Dicer. Moreover, the overexpression of TRBP contributes to the malignant phenotype of cancer cells.\(^{113}\) It has been shown that cellular signaling pathways like MAPK/ERK can also modulate the expression or activity of Dicer by promoting the phosphorylation of TRBP, which enhances miRNA production by increasing the stability of Dicer.\(^{114}\) (Fig. 3).

Finally, the recognition of the 5' monophosphate in premiRNAs by Dicer has been reported to be an important mechanism to achieve effective miRNA biogenesis. Recently, the RNA-methyltransferase BCDIN3D, has been identified as a negative regulator for miRNA maturation. In breast cancer, BCDIN3D phospho-dimethylates the tumor suppressor pre-miR-145 causing a reduction in its processing by Dicer.\(^{115}\) (Fig. 3).

Table 2. Relation between Drosha and Dicer with clinical parameters

Molecule	Cancer type	Clinical	Cite
Drosha	Cutaneous melanoma	Reduced nuclear expression of Drosha, and its aberrant subcellular localization is correlated with disease progression	115
Dicer	Non-small cell lung cancer	Overexpression of Drosha is an independent predictor of reduced disease-specific survival.	116
Dicer	Non-small cell lung carcinoma	Downregulation of Dicer is related to poor prognosis.	117
Dicer	Breast Cancer	Derepressed Dicer expression is associated with aggressive tumors and is an independent prognostic marker for overall survival.	118
Dicer	Oral squamous cell carcinoma	Dicer is a potential marker for clinical response to 5-FU-based chemoradiotherapy and overall survival.	119
Dicer	Colorectal cancer patients	Low expression of Dicer seems to be an independent predictor of positive outcome and response to Bevacizumab therapy.	120
Dicer	Soft tissue sarcomas	Elevated Dicer immunoreactivity was significantly associated with poor outcome and Dicer expression level is an independent negative prognostic factor.	121
Dicer	Chronic lymphocytic leukemia	Low expression of Dicer is associated with a more aggressive tumor.	122
Dicer and Drosa	Ovarian cancer	Patients with over-expression of Dicer and Drosa have a higher median survival time, while low Dicer expression is associated with advanced tumor stage.	123
Dicer and Drosa	Gallbladder adenocarcinoma	Loss of Dicer and Drosa expression is related to metastasis, invasion, and poor-prognosis.	124
Dicer and Drosa	Triple negative breast cancer	Derepression of Dicer and Drosa cellular localization. These tumors exhibit detectable levels of Dicer protein in the nuclear compartment.	125
Drosha and Dicer	Nasopharyngeal cancer	Positive correlation between Drosha and Dicer expression with progression-free survival and overall survival.	126
Drosha and Dicer	T-Cell Lymphoma	Single Nucleotide Polymorphism of Drosha (rs6877842) and Dicer (rs3742330) are significantly associated with survival.	127
Novel miRNA product: semi-miRNA
A semi-microRNA of 12-nt long, corresponding to the 5' region of the microRNA let-7 is generated during miRNA biogenesis. This new miRNA biogenesis product could participate in gene expression regulation by controlling the activity of mature microRNAs.

Novel role for Argonaute in promoting the biogenesis of the tumor-suppressor let-7, and possible nuclear activity of Ago. Data suggests that miRNAs can also hybridize with non-coding RNAs. This study reveals a new mechanism for controlling miRNA expression and possible implications in disease.

Autoregulation of microRNA biogenesis
Argonaute binds to pri-miRNA let-7 in human cells promoting downstream processing events. There is an interesting positive feedback loop, in which the mature let-7 miRNA modulates the interaction of Ago and the pri-miRNA.

Mammalian Argonautes may define the length and, possibly, the biological activity of mature miRNAs in a developmental controlled manner. In cancer, this mechanism could impact cell biology and cancer phenotype, since Ago expression and activity is disrupted.

New control steps for miRNA length and activity
It has been observed that the average length of many miRNAs is diminished during neuronal development. This decrease is correlated with an increased expression level of Ago2 in the adult brain. Ago may function in size establishment through its interaction with the Paz domain.

The conserved pre-miR-451 hairpin is directly cleaved by Argonaute via slicer activity, in a Dicer independent manner. This new mechanism can have a potential role in cancer since miR-451 has already been related with oncogenesis. The down-regulation of miR-451 has been described in esophageal squamous cell carcinoma, in gliomas, and in drug resistance in colorectal cancer.

Independent mechanisms
Hairpin length confers advantage to certain miRNAs to undergo independent maturation process via Ago2-mediated pathways. These data show the importance of the hairpin architecture in miRNA biogenesis.

The conserved pre-miR-451 hairpin is directly cleaved by Argonaute via slicer activity, in a Dicer independent manner. This new mechanism can have a potential role in cancer since miR-451 has already been related with oncogenesis. The down-regulation of miR-451 has been described in esophageal squamous cell carcinoma, in gliomas, and in drug resistance in colorectal cancer.

Circulating miRNAs
Ago2 generates complexes and microvesicles (MVs) to provide specific and non-specific protection for circulating miRNAs.

Different studies have described the altered-state of circulating miRNAs in cancer, with potential consequences in cancer development. Ago2 plays a critical role in stabilizing circulating miRNAs. Moreover, the identification of extracellular Ago2-miRNA complexes in plasma reveals the possibility that cells release a functional RISC into the circulatory system.

Alternative ways to generate miRNAs
A small number of miRNAs are generated from single-stranded regions known as loop-miR.

Further studies are necessary for unravel the pathological roles of the endogenous loop-miRs.

Another intermediate processing product
AGO2-cleaved pre-miRNAs (ac-pre-miRNAs) are generated as a secondary product of miRNA biogenesis and as a functional substrate for Dicer.

A large number of isomiRs, isoforms of mature miRNAs, potentially derive from ac-pre-miRNAs, with similar expression as the canonical miRNAs. These studies reveal the functional activity of ac-pre-miRNAs, targeting genes enriched in pathways important in cell maintenance and cancer pathways.

miRNA sponges
miRNA sponges, also known as circular RNA (circRNA) bind to miRNAs and suppress their function.

Bioinformatic predictions suggest the presence of thousands of circRNAs in the cancer genome with critical post-transcriptional functions. Specific miRNAs contain sequence elements that control their subcellular localization with potential different implications in cancer cells.

Nuclear mature miRNAs
Increasing evidence reports the function of miRNAs in the nucleus. It has been described that mature miRNAs can shuttle between the cytoplasm and the nucleus via Exportin 1 (XPO1).

Relationship between endocrine signaling and the miRNA processing machinery would provide new knowledge for the engineering of novel therapeutics.

RISC proteins act as oncogenes in hormone-dependent cancers in the nucleus
TRBP acts as nuclear receptor co-activator that is recruited to hormone-responsive promoters in cancer cells. Dicer also acts as nuclear receptor co-activator in prostate cancer cells and enhances androgen receptor signaling.

Stress responses in tumor cells are also important for the modulation of miRNA biogenesis. EGFR, a well-known oncogene, suppresses the maturation of specific miRNAs in response to hypoxic stress. The association between EGFR and Ago2 promotes the Ago2-Y393 phosphorylation, which in turn inhibits miRNA processing by impairing the proper formation of the enzyme prolyl hydroxylation, which hydroxilates Ago2. Thus, hydroxylation of Ago2 is required for miRNA loading onto the RISC; more hydroxilated Ago2 protein results in an increase level of mature miRNAs. These data show how a posttranslational modification of Ago2 via hypoxia might mediate the miRNA biogenesis pathway.

Table 3. Novel mechanisms of miRNA biogenesis and their possible impact on cancer

Mechanism	Description	Cancer implication	Ref
Novel miRNA product: semi-miRNA	A semi-microRNA of 12-nt long, corresponding to the 5’ region of the microRNA let-7 is generated during miRNA biogenesis.	This new miRNA biogenesis product could participate in gene expression regulation by controlling the activity of mature microRNAs.	136
Autoregulation of microRNA biogenesis	Argonaute binds to pri-miRNA let-7 in human cells promoting downstream processing events. There is an interesting positive feedback loop, in which the mature let-7 miRNA modulates the interaction of Ago and the pri-miRNA.	Novel role for Argonaute in promoting the biogenesis of the tumor-suppressor let-7, and possible nuclear activity of Ago. Data suggests that miRNAs can also hybridize with non-coding RNAs. This study reveals a new mechanism for controlling miRNA expression and possible implications in disease.	137
New control steps for miRNA length and activity	It has been observed that the average length of many miRNAs is diminished during neuronal development. This decrease is correlated with an increased expression level of Ago2 in the adult brain. Ago may function in size establishment through its interaction with the Paz domain.	Mammalian Argonautes may define the length and, possibly, the biological activity of mature miRNAs in a developmental controlled manner. In cancer, this mechanism could impact cell biology and cancer phenotype, since Ago expression and activity is disrupted.	138
Independent mechanisms	Hairpin length confers advantage to certain miRNAs to undergo independent maturation process via Ago2-mediated pathways. These data show the importance of the hairpin architecture in miRNA biogenesis.	The conserved pre-miR-451 hairpin is directly cleaved by Argonaute via slicer activity, in a Dicer independent manner. This new mechanism can have a potential role in cancer since miR-451 has already been related with oncogenesis. The down-regulation of miR-451 has been described in esophageal squamous cell carcinoma, in gliomas, and in drug resistance in colorectal cancer.	139
Circulating miRNAs	Ago2 generates complexes and microvesicles (MVs) to provide specific and non-specific protection for circulating miRNAs.	Different studies have described the altered-state of circulating miRNAs in cancer, with potential consequences in cancer development. Ago2 plays a critical role in stabilizing circulating miRNAs. Moreover, the identification of extracellular Ago2-miRNA complexes in plasma reveals the possibility that cells release a functional RISC into the circulatory system.	140
Alternative ways to generate miRNAs	A small number of miRNAs are generated from single-stranded regions known as loop-miR.	Further studies are necessary for unravel the pathological roles of the endogenous loop-miRs.	141
Another intermediate processing product	AGO2-cleaved pre-miRNAs (ac-pre-miRNAs) are generated as a secondary product of miRNA biogenesis and as a functional substrate for Dicer.	A large number of isomiRs, isoforms of mature miRNAs, potentially derive from ac-pre-miRNAs, with similar expression as the canonical miRNAs. These studies reveal the functional activity of ac-pre-miRNAs, targeting genes enriched in pathways important in cell maintenance and cancer pathways.	142
miRNA sponges	miRNA sponges, also known as circular RNA (circRNA) bind to miRNAs and suppress their function.	Bioinformatic predictions suggest the presence of thousands of circRNAs in the cancer genome with critical post-transcriptional functions. Specific miRNAs contain sequence elements that control their subcellular localization with potential different implications in cancer cells.	143
Nuclear mature miRNAs	Increasing evidence reports the function of miRNAs in the nucleus. It has been described that mature miRNAs can shuttle between the cytoplasm and the nucleus via Exportin 1 (XPO1).	Relationship between endocrine signaling and the miRNA processing machinery would provide new knowledge for the engineering of novel therapeutics.	144
RISC proteins act as oncogenes in hormone-dependent cancers in the nucleus	TRBP acts as nuclear receptor co-activator that is recruited to hormone-responsive promoters in cancer cells. Dicer also acts as nuclear receptor co-activator in prostate cancer cells and enhances androgen receptor signaling.		145

www.landesbioscience.com Cancer Biology & Therapy 1451
The role of Ago2 in the function of mature miRNAs extends beyond its activity as member of the RISC complex. In fact, down-regulation of Ago2 reduces the half-lives of multiple miRNAs. Argonaute proteins post-transcriptionally regulate mature miRNA levels via increasing miRNA stability. Ago2 may also have a role as translational repressor of the miRNA-mRNA duplex. All this data highlights the versatility of Ago2 as modulator of miRNA gene expression and function.

Even though Ago2 is the only catalytic argonaute protein in mammals, all 4 human argonaute proteins bind to miRNAs. Genomic approaches have shown that some miRNA subpopulations preferentially bind to a certain argonaute protein (Ago1, Ago3, Ago4 - which might be redundant- and Ago2) in a context dependent manner with different implications in carcinogenesis.

Conversely, miRNA incorporation into the RISC complex might be regulated and influenced by different factors; one of them is incorporation of ago 3, which enhances the incorporation of the passenger strand of the tumor suppressor let-7a (let-7-a*) to the RISC complex, and by consequence, promotes its biological activity in cancer cells. It seems that Ago3 modulates the ratio between microRNA guide and passenger strands.

References

1. Garzon R, Calin GA, Croce CM. MicroRNAs in Cancer. Annu Rev Med 2009; 60:167-79; PMID: 19630570; http://dx.doi.org/10.1146/annurev.med.59.050608.104707
2. Esquela-Kersch A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006; 6:259-69; PMID:16557279; http://dx.doi.org/10.1038/nrc1840
3. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visonne R, Iorio M, Roldo C, Ferracin M, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 2006; 103:2257-62; PMID: 16641640; http://dx.doi.org/10.1073/pnas.0510653103
4. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435:834-8; PMID:15944708; http://dx.doi.org/10.1038/nature03702.
5. Lujambio A, Lowe SW. The microsomes of cancer. Nature 2012; 482:347-55; PMID:22537054; http://dx.doi.org/10.1038/nature10888
6. Alvira Y, Landgraf P, lithwick G, Elefant N, Pfeffer S, Aravin A, Brownstein MJ, Tuschl T, Margaliot H. Conservation and patterns of human microRNAs. Nucleic Acids Res 2005; 33:2697-706; PMID:15891114; http://dx.doi.org/10.1093/nar/gki567
7. Lee Y, Kim M, Han J, Youm KH, Lee S, Baeck SH, Kim VN. MicroRNA genes are transcribed by RNA polymerase II. Embo J 2004; 23:4051-60; PMID: 15372072; http://dx.doi.org/10.1038/sj.emboj.7600385
8. Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcripts human microRNAs. Nat Struct Mol Biol 2006; 13:1097-101.
9. Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as miRNAs. Rna 2004; 10:1957-66; PMID:15525708; http://dx.doi.org/10.1261/rna.7135204
10. Blazczyk J, Tropea JE, Babunenko M, Rozsahna KM, Waugh DS, Court DL; JX. Cryotranslocation and modeling studies of Rnase III suggest a mechanism for double-stranded RNA cleavage. Structure 2001; 9:1225-36; PMID:11738048; http://dx.doi.org/10.1016/S0969-2126(01)00685-2
11. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 2004; 18:3016-27; PMID:15574589; http://dx.doi.org/10.1101/gad.126504
12. Han J, Pedersen JS, Kwon SC, Belair CD, Kim YK, Yeom KH, Yang WY, Haussler D, Bliloch R, Kim VN. Posttranscriptional crossregulation between Drosha and Vasa1. Cell 2009; 136:785-94
13. Han J, Lee Y, Yeom KH, Nam JW, Hoo I, Rhee JK, Sohn SY, Cho Y, Zhang BT, Kim VN. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 2006; 125:887-901; PMID:16751099; http://dx.doi.org/10.1016/j.cell.2006.03.043
14. Morlando M, Ballarino M, Gromak N, Pagano F, Bozzone I, Proudfoot NJ. Primary microRNA transcripts are processed co-transcriptionally. Nat Struct Mol Biol 2008; 15:902-9; PMID:19172742; http://dx.doi.org/10.1038/nsb.1475
15. Zeng Y, Cullen BR. Sequence requirements for micro RNA processing and function in human cells. Rna 2003; 9:112-23; PMID:12554881; http://dx.doi.org/10.1261/rna.2780503
16. Lee Y, Ahn C, Han J, Choi H, Kim J, Yinn J, Lee J, Provost P, Radmark O, Kim S, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003; 425:415-9.
17. Berezhkov E, Chung WJ, Willis J, Cuppen J, Eai LC. Mammalian mirtron genes. Mol Cell 2007; 28:328-36; PMID:17964270; http://dx.doi.org/10.1016/j.molcel.2007.09.028
18. Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003; 17:3011-6; PMID:14081208; http://dx.doi.org/10.1101/gad.1158903
19. Zeng Y, Cullen BR. Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res 2004; 32:4776-85; PMID:15536295; http://dx.doi.org/10.1093/nar/gkh824
20. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 2005; 123:631-40; PMID:16271387; http://dx.doi.org/10.1016/j.cell.2005.10.022
21. Feng Y, Zhang X, Graves P, Zeng Y. A comprehensive analysis of precursor microRNA cleavage by human Dicer. Rna 2012; 18:2082-92; PMID:22984192; http://dx.doi.org/10.1016/j.molcel.2013.06.012
22. Chendrimada TP, Gregory RI, Kumarawatwong E, Norman J, Cooch N, Nishikura K, Shiekhattar R, TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 2005; 436:764-40; PMID:15973356; http://dx.doi.org/10.1038/nature03868
23. Lee Y, Hur I, Park SY, Kim YK, Suh MR, Kim VN. The role of PACT in the RNA silencing pathway. Embo J 2006; 25:522-32; PMID:16424907; http://dx.doi.org/10.1038/sj.emboj.7609042
24. Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ, Mills AA, Elledge SJ, Anderson KV, Hannon GJ. Dicer is essential for mouse development. Nat Genet 2003; 35:215-7.
25. Davis TH, Guillar TL, Koch SM, Barker AJ, Harfe BD, McManus MT, Ullian EM. Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J Neurosci 2008; 28:4322-30; PMID:18434510; http://dx.doi.org/10.1523/JNEUROSCI.4815-07.2008
26. Maniataki E, Mourelatos Z. A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev 2005; 19:2979-90; PMID:16357210; http://dx.doi.org/10.1101/gad.138405
27. Ducheky S, Rottgers S, Girir A, Bradke J, Teigel-Schlegel A, Meister G, Borkhardt A, Landgraf P. MicroRNAs distinguish cytogenetic subgroups in pediatric AML and contribute to complex regulatory networks in AML-relevant pathways. PloS One 2013; 8:e56354; PMID:23418555
28. Schwarz DS, Huvargan G, Du T, Xu Z, Aronin N, Zamore PD. Asymmetry in the assembly of the
RNA enzyme complex. Cell 2003; 115:199-208; PMID:14567917; http://dx.doi.org/10.1016/S0092-8674(03)00759-1

Khrorova A, Reynolds A, Jayasena SD. Functional siRNAs and TaqMan® inhibitors inhibit HIV-1 in cell culture. Cell 2003; 115:209-16; PMID:14567918; http://dx.doi.org/10.1016/S0092-8674(03)00808-1

Romero-Corbera S, Rodriguez-Guevara S, Reboliar-Vega R, Quintanar-Jurado V, Mauri-Smith E, de la Peña V, Arbeloa-Lázaro I, Hidalgo-Miranda A. Identification and pathway analysis of microRNAs with no previous involvement in breast cancer. PLoS One 2012; 7:e31904.

Marco A, Macpherson JJ, Ronsheim M, Griffiths-Jones S. MicroRNAs from the same precursor have different targeting properties. Science 2011; 332:831-3; PMID:21247915; http://dx.doi.org/10.1126/science.1203021

Havragner B, Simard JM. Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 2008; 9:22-32; PMID:18073770; http://dx.doi.org/10.1038/nrm2321

Eulalio A, Hunzinger E, Iaurralde E. Getting to the root of eukaryotic gene silencing. Cell 2008; 132:9-14; PMID:18191211; http://dx.doi.org/10.1016/j.cell.2007.12.024

Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 2007; 9:717-23.

He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, et al. A microRNA component of the p53 tumour suppressor network. Nature 2007; 447:1130-4; PMID:17554337; http://dx.doi.org/10.1038/nature05993

Davis BN, Hannon JM. Regulation of MicroRNA Bio-genesis: A MiRiad of mechanisms. Cell Commun Signal 2007; 5:7:1-8; PMID:17646273; http://dx.doi.org/10.1186/cc5478

Davis BN, Hiliard AC, Nguyen PH, Laga G, Hara A. Induction of microRNA-221 by platelet-derived growth factor signaling is critical for modulation of vascular smooth muscle phenotype. J Biol Chem 2006; 281:3728-38; PMID:16008079; http://dx.doi.org/10.1074/jbc.M808878200

Shao M, Rossi S, Chelladurai B, Shirmia M, Ntkouko O, Ivan M, Calin GA, Maiz E, Dief G. PDGF induced microRNA expression alterations in cancer cells. Nucleic Acids Res 2011; 39:4035-47; PMID:21266676; http://dx.doi.org/10.1093/nar/gkq3105

Burz H, Racz K, Hunyadi L, Patocs A. Crosstalk between TGF-beta signaling and the microRNA machinery mediates fibrosis. Proc Natl Acad Sci USA 2012; 109:3583-8; PMID:22621783; http://dx.doi.org/10.1073/pnas.1204031

Bui TV, Mendell JT. Myc: Maestro of MicroRNAs. Genes Cancer 2010; 1:166-79; PMID:20882107; http://dx.doi.org/10.1177/1946009210377491

Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, Dang CV, Thomas-Tikhonenko A, Mendell JT. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 2008; 40:43-50; PMID:18066065; http://dx.doi.org/10.1038/ng.1087.2007.30

O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005; 435:839-43; PMID:15970906; http://dx.doi.org/10.1038/nature03677

Loven J, Zinn N, Walstrøm T, Muller I, Bodin P, Fredlund E, Ribache U, Pirvacic A, Pahlman S, Henriksson M. MYCN-regulated microRNAs repress estrogen receptor-alpha (ESR1) expression and neuronal differentiation in human neuroblastoma. Proc Natl Acad Sci U S A 2010; 107:1553-8; PMID:20808637; http://dx.doi.org/10.1073/pnas.0915170107

He L, Sun L, Thomson JM, Hennant-MIT, Hernandez-Mongo E, Ma D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Calin GA, et al. Micro RNA polyclonal as a potential human oncogene. Nature 2005; 435:828-33; PMID:15944707

Yu G, Tang JQ, Tian ML, Li H, Wang X, Wu T, Zhu J, Huang SJ, Wan YL. Propagated values of the miR-17-92 cluster and its paralogs in colon cancer. J Surg Oncol 2012; 106:232-7; PMID:22065543

Xiao M, Sinivasan L, Calado DP, Patterson HC, Zhang B, Wang J, Henderson JM, Kurok JL, Rajewsky K. Lymphoid tumour suppressor activity of Bcl-2 in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 2008; 9:490-14; PMID:18327259

Dow M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel JE, Furr EE, Lee WM, Enders GH, Mendell JT, et al. Augmentation of tumour angiogenesis by a Myc-activated microRNA cluster. Nat Genet 2006; 38:1060-5; PMID:16878133; http://dx.doi.org/10.1038/ng1855

Ma J, Young J, D’Alloba H, Pan E, Mondragón P, Muth D, Tettamanti-Feldstein J, Reinhardt F, Onder TT, Valastyan S, et al. miR-9, a MYCN/MYCN-activated microRNA, regulates c-atherin and cancer metastasis. Nat Cell Biol 2010; 12:247-56.

Klein U, Li M, Crespo M, Siegel R, Shen Q, Mo T, Ambesi-Impambio A, Califano A, Mignazza A, Bhuag G, et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 2010; 17:28-40; PMID:20060366

Linsley PS, Scheller J, Burchard J, Ikubakata M, Marian MM, Barri SR, Johnson JM, Cummins JM, Raymond CK, Dai H, et al. Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol 2007; 27:2240-52.

Cannell KG, Kong YM, Johnston SJ, Chen ML, Collins HM, Dobbin HC, Elias A, Kress TR, Dickens M, Clemens MJ, et al. p18 MAPK/MEK2-mediated induction of miR-34c following DNA damage prevents Myc-dependent DNA replication. Proc Natl Acad Sci U S A 2010; 107:5375-80.

Chang TC, Zeitels LR, Hwang HW, Chivukula RR, Wentzel EA, Dew M, Jung J, Gao P, Dang CV, Beer MA, et al. p18 inhibition is necessary for Myc-mediated let-7 repression and proliferation. Proc Natl Acad Sci U S A 2009; 106:3384-9; PMID:19211792; http://dx.doi.org/10.1073/pnas.0809301106

Lujambio A, Calin GA, Villanueva A, Ropero S, Benito-Hernandez P, et al. Molecular definition of an epigenetically silenced microRNA in human cancer cells. Cancer Res 2007; 67:1424-9; PMID:17308079; http://dx.doi.org/10.1158/0008-5472.CAN-06-1873

Lujambio A, Portela A, Litz J, Melo SA, Rossi S, Spizzo R, Croce CM, Calin GA, Esteller M. CpG island hypermethylation associated silencing of non-coding RNAs transcribed from unprocessed regions in human cancer. Cancer Cell 2007; 11:136-46; PMID:17308079; http://dx.doi.org/10.1016/j.leukres.2006.09.030

Soto Reyes E, Gonzalez-Barrios R, Cisneros-Soberanis F, Herrera-Goeprert P, Perez V, Cantu D, Prada D, Castro C, Recillas-Targa F, Herrera LA. Disruption of CTFC at the miR-125b1 locus in cervical carcinomas. BMC Cancer 2012; 12:40; http://dx.doi.org/10.1186/1471-2407-12-40.
Hermeking H. MicroRNAs in the p53 network: development. Cancer Cell 2010; 18:367-81.

Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata S, Shiohama A, Sasaki T, Noda S, Minoshima S, Shimizu Y, Kawahara Y, Zinshteyn B, Chendrimada TP, Zhang Y, Yan LX, Wu QN, Du ZM, Chen J, Liao WM, et al. MDM2 autoregulatory loop in multiple myeloma microRNAs 192, 194, and 215 impairs the p53/MDM2 microRNA-155 in Western diet-promoted micromanagement of tumour suppression. Nat Rev Cancer 2011; 9:960-75; PMID:21653642; http://dx.doi.org/10.1038/nrc3318

Michlewski G, Guil S, Semple CA, Caceres JF. Post-transcriptional regulation of miRNAs harboring conserved terminal loops. Mol Cell 2008; 32:383-93; PMID:18392584; http://dx.doi.org/10.1016/j.molcel.2008.10.013

Insam H, Soomi MC. Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell 2010; 38:323-32; PMID:20472273; http://dx.doi.org/10.1016/j.molcel.2010.03.013

Kawahara Y. The role of DICER in tumorigenesis. Cancer Cell 2010; 18:293-302; PMID:20951941; http://dx.doi.org/10.1016/j.ccr.2010.08.030

Yang Y, Guo Y, Liu W, et al. A TARBP2 mutation in human invasive breast cancer. Cancer Res 2011; 71:3552-62; PMID:21444677; http://dx.doi.org/10.1158/0008-5472.CAN-10-2435

Hollingworth D, Oude Vrielink J, le Sage C, Melo SA, Moutinho C, Ropero S, Calin GA, Rossi S, Spizzio R, Fernandez AF, Davalos V, Villanueva A, Monteagudo G, et al. A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer Cell 2010; 18:503-15; PMID:20951941; http://dx.doi.org/10.1016/j.ccr.2010.09.007

Kondoh S, Suzuki Y, Takahashi H, et al. TAp63 suppresses metastasis through miR-29b expression by estrogen receptor beta. Oncogene 2012; 31:4955-64; PMID:22089371; http://dx.doi.org/10.1038/onc.2012.231

Viswanathan SR, Powers JT, Einhorn W, Hoshida Y, Ng TL, Toftgard R, Sullivan M, Lu J, Phillips LA, Lockhart VL, et al. Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet 2009; 41:843-8.

Hsu I, Joo C, Kim YK, Ha M, Yoon MJ, Cho J, Yoon JH, Kh, J. VMI mutant TAT4 in concert with Lin28 suppresses microRNA biogenesis through pre-miRNA uridylation. Cell 2009; 138:696-708; PMID:19705396; http://dx.doi.org/10.1016/j.cell.2009.08.002

Rybak A, Fuchs H, Smirnova L, Brandt C, Pabst E, Nitsch R, Walczyn FG. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol 2008; 10:987-93; PMID:18661915; http://dx.doi.org/10.1038/ncomms1759

Pandol SJ, Bessesen D, Zanella A, et al. TBP associates with LIN28 to stimulate let-7 biogenesis. J Biol Chem 2007; 282:13464-51; PMID:17363527; http://dx.doi.org/10.1074/jbc.M106560200

Hollingworth D, Oude Vrielink J, le Sage C, Melo SA, Moutinho C, Ropero S, Calin GA, Rossi S, Spizzio R, Fernandez AF, Davalos V, Villanueva A, Monteagudo G, et al. A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer Cell 2010; 18:503-15; PMID:20951941; http://dx.doi.org/10.1016/j.ccr.2010.09.007

Melo SA, Esteller M. A precursor microRNA in a cancer cell nucleus gets me out of here! Cell Cycle 2011; 10:922-5; PMID:21346411

Zhu S, Si ML, Wu H, Mo YY. MicroRNA-21 targets the tumor suppressor gene tropomysin 1 (TPM1). J Biol Chem 2007; 282:14328-36; PMID:17763572; http://dx.doi.org/10.1074/jbc.M113.502138

Hill DA, Ivanovich J, Priest JR, Gurnett CA, Dehmer LP, Destreesiusa D, Jazwinski JB, Wikenheiser-Brokamp KA, Suarez BK, Whelan AJ, et al. DICER1 mutations in familial pleuropulmonary blastoma. Science 2009; 325:965.

Davalos V, Esteller M. Rolling the dice to discover the role of DICER in tumorigenesis. Cancer Cell 2012; 21:717-9; PMID:22608979; http://dx.doi.org/10.1016/j.ccr.2012.05.030

Melo SA, Ropero S, Moutinho C, Altonen LA, Yamamoto H, Calin GA, Rossi S, Fernandez AF, Carneiro F, Oliveira C, et al. A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 functioning. Nat Genet 2010; 42:565-70; PMID:20519204; http://dx.doi.org/10.1038/ng.317

Newman MA, Thomson JM, Hammond SM. Lin-28 interaction with the Let-7 precursor mediatesregulated microRNA processing. Rna 2008; 14:1535-49.

Hsu I, Ha M, Lim J, Yoon MJ, Park JE, Kwon SC, Chang H, Kim VN. Mono-urdylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs. Cell 2012; 151:321-32; PMID:22003664; http://dx.doi.org/10.1016/j.cell.2012.09.022

Su X, Chakravarti D, Cho MS, Liu L, Gij YJ, Lin YL, Leung MG, EL-Naggar A, Creighton CJ, Suraoka MB, et al. TAp63 suppresses metastasis through coordinated regulation of dic and mirnas. Nature 2010; 467:986-90; PMID:20657990; http://dx.doi.org/10.1038/nature09346

Muller PA, Trinidad AG, Caswell PT, Norman JC, Voudsen KH. Mutant P53 regulates Dicer through p53-dependent and -independent mechanisms to promote an invasive phenotype. J Biol Chem 2014; 289:122-32; PMID:24220032; http://dx.doi.org/10.1074/jbc.M113.502138

Dewi DL, Ishii H, Haraguchi N, Nishikawa S, Kano Y, Fukushima T, Okazi M, Sato T, Sakai D, Sanoh T, et al. Dicer 1, ribonuclease type III modulates a
Shu GS, Yang ZL, Liu DC. Immunohistochemical study of Dicer and Drosha expression in the benign and malignant lesions of gallbladder and their clinicopathological significances. Pathol Res Pract 2012; 208:39-57; PMID:22484874; http://dx.doi.org/10.1016/j.prp.2012.05.001

250 Passon N, Gromet-Mendel A, Pappin C, Lavrere E, Puglisi F, Tell G, Di Lorenzo C, Damante G. Expression of Dicer and Drosha in triple-negative breast cancer. Cancer 2010; 65:526-9; PMID:20591982; http://dx.doi.org/10.1136/jclinpath-2011-200496

251 Guo X, Liao Q, Chen P, Li X, Xiong W, Ma J, Luo Z, Tang H, Deng M, Zheng Y, et al. The micro-RNA-processing enzymes Drosha and Dicer can predict prognosis of nasopharyngeal carcinoma. J Cancer Res Clin Oncol 2012; 138:49-56; PMID:21953080

252 Li X, Tian X, Zhang B, Chen J. Polymorphisms in microRNA-related genes are associated with survival of patients with T-Cell lymphoma. Oncologist 2014; 19:243-9; PMID:24563077; http://dx.doi.org/10.1634/theoncologist.2013-0570

253 Deni C, Pedraza-Toret A, et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer 2012; 121:65-73; PMID:22572655; http://dx.doi.org/10.1111/j.1349-7006.2005.00015.x

254 Caffrey E, Ingoldby H, Wall D, Webber M, Dinunzio KA, Wang YH, Zhu HY, Miao KR, Liu P, et al. Down-regulation of Dicer expression in breast cancer. PloS One 2013; 8: e83724.

255 Kawahara K, Nakayama H, Nagata M, Yshida R, Hiroue A, Tanaka T, Nakagawa Y, Motoyama Y, Kojima T, Takamune Y, et al. A low dicer expression is associated with resistance to 5-FU-based chemoradiation. Cancer Sci 2005; 96:111-5; PMID:15732664; http://dx.doi.org/10.1111/j.1349-7006.2005.00015.x

256 Guo X, Liao Q, Chen P, Li X, Xiong W, Ma J, Luo Z, Tang H, Deng M, Zheng Y, et al. The micro-RNA-processing enzymes Drosha and Dicer can predict prognosis of nasopharyngeal carcinoma. J Cancer Res Clin Oncol 2012; 138:49-56; PMID:21953080

257 Guo X, Liao Q, Chen P, Li X, Xiong W, Ma J, Luo Z, Tang H, Deng M, Zheng Y, et al. The micro-RNA-processing enzymes Drosha and Dicer can predict prognosis of nasopharyngeal carcinoma. J Cancer Res Clin Oncol 2012; 138:49-56; PMID:21953080

258 Li X, Tian X, Zhang B, Chen J. Polymorphisms in microRNA-related genes are associated with survival of patients with T-Cell lymphoma. Oncologist 2014; 19:243-9; PMID:24563077; http://dx.doi.org/10.1634/theoncologist.2013-0570

259 Deni C, Pedraza-Toret A, et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer 2012; 121:65-73; PMID:22572655; http://dx.doi.org/10.1111/j.1349-7006.2005.00015.x

260 Caffrey E, Ingoldby H, Wall D, Webber M, Dinunzio KA, Wang YH, Zhu HY, Miao KR, Liu P, et al. Down-regulation of Dicer expression in breast cancer. PloS One 2013; 8: e83724.

261 Kawahara K, Nakayama H, Nagata M, Yshida R, Hiroue A, Tanaka T, Nakagawa Y, Motoyama Y, Kojima T, Takamune Y, et al. A low dicer expression is associated with resistance to 5-FU-based chemoradiation. Cancer Sci 2005; 96:111-5; PMID:15732664; http://dx.doi.org/10.1111/j.1349-7006.2005.00015.x

262 Guo X, Liao Q, Chen P, Li X, Xiong W, Ma J, Luo Z, Tang H, Deng M, Zheng Y, et al. The micro-RNA-processing enzymes Drosha and Dicer can predict prognosis of nasopharyngeal carcinoma. J Cancer Res Clin Oncol 2012; 138:49-56; PMID:21953080

263 Li X, Tian X, Zhang B, Chen J. Polymorphisms in microRNA-related genes are associated with survival of patients with T-Cell lymphoma. Oncologist 2014; 19:243-9; PMID:24563077; http://dx.doi.org/10.1634/theoncologist.2013-0570

264 Deni C, Pedraza-Toret A, et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer 2012; 121:65-73; PMID:22572655; http://dx.doi.org/10.1111/j.1349-7006.2005.00015.x

265 Caffrey E, Ingoldby H, Wall D, Webber M, Dinunzio KA, Wang YH, Zhu HY, Miao KR, Liu P, et al. Down-regulation of Dicer expression in breast cancer. PloS One 2013; 8: e83724.

266 Kawahara K, Nakayama H, Nagata M, Yshida R, Hiroue A, Tanaka T, Nakagawa Y, Motoyama Y, Kojima T, Takamune Y, et al. A low dicer expression is associated with resistance to 5-FU-based chemoradiation. Cancer Sci 2005; 96:111-5; PMID:15732664; http://dx.doi.org/10.1111/j.1349-7006.2005.00015.x

267 Guo X, Liao Q, Chen P, Li X, Xiong W, Ma J, Luo Z, Tang H, Deng M, Zheng Y, et al. The micro-RNA-processing enzymes Drosha and Dicer can predict prognosis of nasopharyngeal carcinoma. J Cancer Res Clin Oncol 2012; 138:49-56; PMID:21953080

268 Li X, Tian X, Zhang B, Chen J. Polymorphisms in microRNA-related genes are associated with survival of patients with T-Cell lymphoma. Oncologist 2014; 19:243-9; PMID:24563077; http://dx.doi.org/10.1634/theoncologist.2013-0570

269 Deni C, Pedraza-Toret A, et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer 2012; 121:65-73; PMID:22572655; http://dx.doi.org/10.1111/j.1349-7006.2005.00015.x

270 Caffrey E, Ingoldby H, Wall D, Webber M, Dinunzio KA, Wang YH, Zhu HY, Miao KR, Liu P, et al. Down-regulation of Dicer expression in breast cancer. PloS One 2013; 8: e83724.

271 Kawahara K, Nakayama H, Nagata M, Yshida R, Hiroue A, Tanaka T, Nakagawa Y, Motoyama Y, Kojima T, Takamune Y, et al. A low dicer expression is associated with resistance to 5-FU-based chemoradiation. Cancer Sci 2005; 96:111-5; PMID:15732664; http://dx.doi.org/10.1111/j.1349-7006.2005.00015.x

272 Guo X, Liao Q, Chen P, Li X, Xiong W, Ma J, Luo Z, Tang H, Deng M, Zheng Y, et al. The micro-RNA-processing enzymes Drosha and Dicer can predict prognosis of nasopharyngeal carcinoma. J Cancer Res Clin Oncol 2012; 138:49-56; PMID:21953080

273 Li X, Tian X, Zhang B, Chen J. Polymorphisms in microRNA-related genes are associated with survival of patients with T-Cell lymphoma. Oncologist 2014; 19:243-9; PMID:24563077; http://dx.doi.org/10.1634/theoncologist.2013-0570

274 Deni C, Pedraza-Toret A, et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer 2012; 121:65-73; PMID:22572655; http://dx.doi.org/10.1111/j.1349-7006.2005.00015.x

275 Caffrey E, Ingoldby H, Wall D, Webber M, Dinunzio KA, Wang YH, Zhu HY, Miao KR, Liu P, et al. Down-regulation of Dicer expression in breast cancer. PloS One 2013; 8: e83724.