NON-COERCIVE LYAPUNOV FUNCTIONS FOR INPUT-TO-STATE STABILITY OF INFINITE-DIMENSIONAL SYSTEMS

BIRGIT JACOB †, ANDRII MIRONCHENKO ‡, JONATHAN R. PARTINGTON §, AND FABIAN WIRTH ¶

Abstract. We consider an abstract class of infinite-dimensional dynamical systems with inputs. For this class the significance of noncoercive Lyapunov functions is analyzed. It is shown that the existence of such Lyapunov functions implies integral-to-integral input-to-state stability. Assuming further regularity it is possible to conclude input-to-state stability. For a particular class of linear systems with unbounded admissible input operators, explicit constructions of noncoercive Lyapunov functions are provided. The theory is applied to a heat equation with Dirichlet boundary conditions.

Key words. infinite-dimensional systems, input-to-state stability, Lyapunov functions, nonlinear systems, linear systems.

AMS subject classifications. 35Q93, 37B25, 37L15, 93C10, 93C25, 93D05, 93D09

1. Introduction. The concept of input-to-state stability (ISS), introduced in [36] for ordinary differential equations (ODEs), unifies the classical Lyapunov and input-output stability theories and has broad applications in nonlinear control theory, in particular to robust stabilization of nonlinear systems [9], design of nonlinear observers [2], analysis of large-scale networks [17, 7], etc.

The influence of finite-dimensional ISS theory and a desire to develop powerful tools for robust control of linear and nonlinear distributed parameter systems resulted in extensions of ISS concepts to broad classes of infinite-dimensional systems, including partial differential equations (PDEs) with distributed and boundary controls, semilinear equations in Banach spaces, time-delay systems, etc. [6, 28, 25, 39, 15, 19, 11, 20, 21].

Currently ISS of infinite-dimensional systems is an active research area at the intersection of nonlinear control, functional analysis, Lyapunov theory and PDE theory, which brings such important techniques for stability analysis as characterizations of ISS and ISS-like properties in terms of weaker stability concepts [28], [11, 34], constructions of ISS Lyapunov functions for PDEs with distributed and boundary controls [33, 25, 39, 43], efficient methods for study of boundary control systems [42, 11, 13, 19, 21], etc. For a survey on ISS of infinite-dimensional systems we refer to [27].

It is a fundamental result in input-to-state stability theory that the existence of an ISS Lyapunov function implies ISS. However, the construction of ISS Lyapunov functions for infinite-dimensional systems is a challenging task, especially for systems

*This work is partially supported by German Research Foundation (DFG), grant: MI 1886/2-1.
A short conference version of this paper was presented at the 57th Conference on Decision and Control as: B. Jacob, A. Mironchenko, J. R. Partington and F. Wirth. Remarks on input-to-state stability and non-coercive Lyapunov functions. Proc. of the 57th IEEE Conference on Decision and Control (CDC 2018), Miami Beach, USA, pp. 48034808, 2018.
†B. Jacob is with Functional analysis group, School of Mathematics and Natural Sciences, University of Wuppertal, D-42119 Wuppertal, Germany (jacob@math.uni-wuppertal.de).
‡Andrii Mironchenko is with Faculty of Computer Science and Mathematics, University of Passau, Germany (andrii.mironchenko@uni-passau.de). Corresponding author.
§J. R. Partington is with School of Mathematics, University of Leeds, Leeds LS2 9JT, Yorkshire, United Kingdom (j.r.partington@leeds.ac.uk).
¶F. Wirth is with Faculty of Computer Science and Mathematics, University of Passau, 94030 Passau, Germany (fabian.(lastname}@uni-passau.de).
Non-coercive Lyapunov functions for ISS of infinite-dimensional systems

with boundary inputs and/or for nonlinear systems. Already for undisturbed linear systems over Hilbert spaces, "natural" Lyapunov function candidates constructed via solutions of Lyapunov equations are of the form $V(x) := \langle Px, x \rangle$, where $\langle \cdot, \cdot \rangle$ is a scalar product in X and P is a self-adjoint, bounded and positive linear operator, whose spectrum may contain 0. In this case V is not coercive and satisfies only the weaker property that $V(x) > 0$ for $x \neq 0$. Hence the question arises, whether such "non-coercive" Lyapunov functions can be used to conclude that a given system is ISS. A thorough study of a similar question related to characterizations of uniform global asymptotic stability has recently been performed in [30].

In [28, Section III.B] it was shown for a class of semilinear equations in Banach spaces with Lipschitz continuous nonlinearities that the existence of a non-coercive Lyapunov function implies ISS provided the flow of the system has some continuity properties with respect to states and inputs at the origin and the finite-time reachability sets of the system are bounded. However, this class of systems does not include many important systems such as linear control systems with admissible inputs operators, which are crucially important for the study of partial differential equations with boundary inputs.

In this paper we extend the results from [28, Section III.B] to a broader class of systems, which includes at least some important classes of boundary control systems. The characterizations of ISS developed in [28] will play a central role in these developments.

It is insightful to define another ISS-like property which we call integral-to-integral ISS. Its finite-dimensional counterpart has been studied in [37] and it was shown that integral-to-integral ISS is equivalent to ISS for systems of ordinary differential equations. Further relations of ISS and integral-to-integral ISS have been developed in [10, 22] and other works.

We start by defining a general class of control systems in Section 2. This class covers a wide range of infinite-dimensional systems. For this class several stability concepts are defined which relate to the characterization of ISS, in particular to the characterization with the help of noncoercive Lyapunov functions. In Section 3 we show in Theorem 3.8 that integral-to-integral ISS implies ISS for a broad class of infinite-dimensional systems provided the flow of the system has some continuity properties w.r.t. states and inputs at the origin and the finite-time reachability sets of the system are bounded. The proof of this fact is performed in 3 steps. The first one is to show that integral-to-integral ISS implies a so-called uniform limit property. This result has been already obtained in [28, Section III.B]. The second step, is to show that integral-to-integral ISS implies local stability of a control system provided the flow of the system is continuous w.r.t. state and inputs at the origin. This is done in Proposition 3.7. The third and final step in the proof of Theorem 3.8 is the application of the main result in [28].

In Section 4 we derive a constructive converse ISS Lyapunov theorem for certain classes of linear systems with admissible input operators. In particular, our results can be applied for a broad class of subnormal operators, as discussed in Section 5.2.

It is well-known that the classic heat equation with Dirichlet boundary inputs is ISS, which has been verified by means of several different methods: [11, 19, 26]. However, no constructions for ISS Lyapunov functions have been proposed. In Section 5 we show that using the constructions developed in Theorem 4.2 one can construct a non-coercive ISS Lyapunov function for this system. It is still an open question, whether a coercive ISS Lyapunov function for a heat equation with the Dirichlet
boundary input exists (note, that for the system with Neumann boundary input a coercive ISS Lyapunov function can be constructed, see [43]).

Notation: We use the following notation. The nonnegative reals are $\mathbb{R}_+ := [0, \infty)$. The open ball of radius r around 0 in a normed vector space X is denoted by $B_r := B_{r, X} := \{x \in X : \|x\|_X < r\}$. Similarly, $B_{r, U} := \{u \in U : \|u\|_U < r\}$. By \lim we denote the limit superior. For any normed linear space X, for any $S \subset X$ we denote the closure of S by \overline{S}. For a linear operator $A : X \to X$ (bounded or unbounded), we denote by A^* the adjoint of the operator A.

For a function $u : \mathbb{R}_+ \to U$, where U is any set, we denote by $u|_{[0,t]}$ the restriction of u to the interval $[0,t]$, that is $u|_{[0,t]} : [0, t] \to U$ and $u|_{[0,t]}(s) = u(s)$ for all $s \in [0,t]$.

For the formulation of stability properties the following classes of comparison functions are useful:

$$
\begin{align*}
\mathcal{K} &:= \{\gamma : \mathbb{R}_+ \to \mathbb{R}_+ \mid \gamma \ \text{is continuous, strictly increasing and } \gamma(0) = 0\}, \\
\mathcal{K}_\infty &:= \{\gamma \in \mathcal{K} \mid \gamma \ \text{is unbounded}\}, \\
\mathcal{L} &:= \{\gamma : \mathbb{R}_+ \to \mathbb{R}_+ \mid \gamma \ \text{is continuous and strictly decreasing with } \lim_{t \to \infty} \gamma(t) = 0\}, \\
\mathcal{KL} &:= \{\beta : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+ \mid \beta \ \text{is continuous,} \\
&\quad \beta(\cdot, t) \in \mathcal{K}, \ \beta(r, \cdot) \in \mathcal{L}, \ \forall t \geq 0, \ \forall r > 0\}.
\end{align*}
$$

2. Preliminaries. We begin by defining (time-invariant) forward complete control systems evolving on a Banach space X.

Definition 2.1. Let $(X, \| \cdot \|_X), (U, \| \cdot \|_U)$ be Banach spaces and $\mathcal{U} \subset \{f : \mathbb{R}_+ \to U\}$ be a normed vector space which satisfies the following two axioms:

Axiom of shift invariance: For all $u \in \mathcal{U}$ and all $\tau \geq 0$ we have $u(\cdot + \tau) \in \mathcal{U}$ with $\|u(\cdot + \tau)\|_U = \|u(\cdot)\|_U$.

Axiom of concatenation: For all $u_1, u_2 \in \mathcal{U}$ and for all $t > 0$ the concatenation of u_1 and u_2 at time t

$$
\begin{equation}
(2.1) \quad u(t) := \begin{cases}
\quad u_1(\tau), & \text{if } \tau \in [0, t], \\
\quad u_2(\tau - t), & \text{otherwise},
\end{cases}
\end{equation}
$$

belongs to \mathcal{U}. Consider a map $\phi : \mathbb{R}_+ \times X \times \mathcal{U} \to X$.

The triple $\Sigma = (X, \mathcal{U}, \phi)$ is called a forward complete control system, if the following properties hold:

($\Sigma 1$) Identity property: for every $(x, u) \in X \times \mathcal{U}$ it holds that $\phi(0, x, u) = x$.

($\Sigma 2$) Causality: for every $(t, x, u) \in \mathbb{R}_+ \times X \times \mathcal{U}$, for every $\tilde{u} \in \mathcal{U}$ with $u|_{[0,t]} = \tilde{u}|_{[0,t]}$ it holds that $\phi(t, x, u) = \phi(t, x, \tilde{u})$.

($\Sigma 3$) Continuity: for each $(x, u) \in X \times \mathcal{U}$ the map $t \mapsto \phi(t, x, u)$, $t \in [0, \infty)$ is continuous.

($\Sigma 4$) Cocycle property: for all $t, h \geq 0$, for all $x \in X$, $u \in \mathcal{U}$ we have $\phi(h, \phi(t, x, u), u(t + \cdot)) = \phi(t + h, x, u)$.

The space X is called the state space, U the input space and ϕ the transition map. This class of systems encompasses control systems generated by ordinary differential equations (ODEs), switched systems, time-delay systems, evolution partial differential equations (PDEs), abstract differential equations in Banach spaces and many others.

Remark 2.2. Note however, that not all important systems are covered by our definitions. In particular, the input space $C(\mathbb{R}_+, U)$ of continuous U-valued functions.
does not satisfy the axiom of concatenation. This, however, should not be a big restriction, since already piecewise continuous and L_p inputs, which are used in control theory much more frequently than continuous ones, satisfy the axiom of concatenation.

Some authors consider more general types of control systems, which fail to satisfy a cocycle property, see e.g. [18].

We single out two particular cases which will be of interest.

Example 2.3. (Seminlinear systems with Lipschitz nonlinearities). Let A be the generator of a strongly continuous semigroup $(T(t))_{t \geq 0}$ of bounded linear operators on X and let $f : X \times U \to X$. Consider the system

$$
\dot{x}(t) = Ax(t) + f(x(t), u(t)), \quad u(t) \in U,
$$

where $x(0) \in X$. We study mild solutions of (2.2), i.e. solutions $x : [0, \tau] \to X$ of the integral equation

$$
x(t) = T(t)x(0) + \int_0^t T(t-s)f(x(s), u(s))ds,
$$

belonging to the space of continuous functions $C([0, \tau], X)$ for some $\tau > 0$.

For system (2.2), we use the following assumption concerning the nonlinearity f: (i) $f : X \times U \to X$ is Lipschitz continuous on bounded subsets of X, uniformly with respect to the second argument, i.e. for all $C > 0$, there exists a $L_f(C) > 0$, such that for all $x, y \in B_C$ and for all $v \in U$, it holds that

$$
\|f(x, v) - f(y, v)\|_X \leq L_f(C)\|x - y\|_X.
$$

(ii) $f(x, \cdot)$ is continuous for all $x \in X$ and $f(0, 0) = 0$.

Let $\mathcal{U} := PC_b(\mathbb{R}_+, U)$ be the space of piecewise continuous functions, which are bounded and right-continuous, endowed with the supremum norm: $\|u\|_\mathcal{U} := \text{sup}_{t \geq 0}\|u\|_U$. Then our assumptions on f ensure that mild solutions of initial value problems of the form (2.2) exist and are unique, according to [3, Proposition 4.3.3]. For system (2.2) forward completeness is a further assumption. If these mild solutions exist on $[0, \infty)$ for every $x(0) \in X$ and $u \in PC_b(\mathbb{R}_+, U)$, then $(X, PC_b(\mathbb{R}_+, U), \phi)$, defines a forward complete control system, where $\phi(t, x(0), u)$ denotes the mild solution at time t.

Example 2.4. (Linear systems with admissible control operators). Consider linear systems of the form

$$
\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) \in X, \quad t \geq 0,
$$

where A is the generator of a C_0-semigroup $(T(t))_{t \geq 0}$ on a Banach space X and $B \in L(U, X_{-1})$ for some Banach space U. Here X_{-1} is the completion of X with respect to the norm $\|x\|_{X_{-1}} = \|(\beta I - A)^{-1}x\|_X$ for some $\beta \in \mathbb{C}$ in the resolvent set $\rho(A)$ of A. The semigroup $(T(t))_{t \geq 0}$ extends uniquely to a C_0-semigroup $(T_{-1}(t))_{t \geq 0}$ on X_{-1} whose generator A_{-1} is an extension of A, see e.g. [8]. Thus we may consider Equation (2.5) on the Banach space X_{-1}. For every $x_0 \in X$ and every $u \in L^1_{\text{loc}}([0, \infty), U)$, the function $x : [0, \infty) \to X_{-1}$,

$$
x(t) := T(t)x_0 + \int_0^t T_{-1}(t-s)Bu(s)ds, \quad t \geq 0,
$$

is called a mild solution of Equation (2.5).
The operator $B \in L(U, X_{-1})$ is called a q-admissible control operator for $(T(t))_{t \geq 0}$, where $1 \leq q \leq \infty$, if
\[
\int_0^t T_{-1}(t-s)Bu(s)ds \in X
\]
for every $t \geq 0$ and $u \in L^q([0, \infty), U)$ \cite{41}. If the operator $B \in L(U, X_{-1})$ is an q-admissible control operator for $(T(t))_{t \geq 0}$, then there exists for any $t \geq 0$ a constant $\kappa(t) > 0$ such that
\[
\left\| \int_0^t T_{-1}(t-s)Bu(s)ds \right\|_X \leq \kappa(t)\|u\|_q, \quad u \in L^q([0, t), U)
\]
see \cite{41}.

If B is ∞-admissible and for every initial condition $x_0 \in X$ and every input function $u \in L^\infty([0, \infty), U)$ the mild solution $x : [0, \infty) \to X$ is continuous, then $(X, L^\infty([0, \infty), U), \phi)$, where
\[
\phi(t, x_0, u) := T(t)x_0 + \int_0^t T_{-1}(t-s)Bu(s)ds,
\]
defines a forward-complete control system as defined in Definition 2.1.

\textbf{Remark 2.5.} We note that, ∞-admissibility and continuity of all mild solutions $\phi(\cdot, x_0, u) : [0, \infty) \to X$, where $x_0 \in X$ and $u \in L^\infty([0, \infty), U)$ is implied by each of the following conditions:

- B is q-admissible for some $q \in [1, \infty)$ \cite{11},
- B is ∞-admissible, $\dim U < \infty$, X is a Hilbert space and $A - \lambda I$ generates for a certain $\lambda \in \mathbb{R}$ an analytic semigroup which is similar to a contraction semigroup \cite{13}.

In this article various stability concepts are needed for forward complete control systems.

\textbf{Definition 2.6.} Consider a forward complete control system $\Sigma = (X, U, \phi)$.

1. We call $0 \in X$ an equilibrium point (of the undisturbed system) if $\phi(t, 0, 0) = 0$ for all $t \geq 0$.
2. We say that Σ is continuous at the equilibrium point (CEP), if 0 is an equilibrium and for every $\varepsilon > 0$ and for any $h > 0$ there exists a $\delta = \delta(\varepsilon, h) > 0$, so that
\[
t \in [0, h], \|x\|_X \leq \delta, \|u\|_U \leq \delta \Rightarrow \|\phi(t, x, u)\|_X \leq \varepsilon.
\]
3. We say that Σ has bounded reachability sets (BRS), if for any $C > 0$ and any $\tau > 0$ it holds that
\[
\sup \{\|\phi(t, x, u)\|_X : \|x\|_X \leq C, \|u\|_U \leq C, \ t \in [0, \tau]\} < \infty.
\]
4. System Σ is called uniformly locally stable (ULS), if there exist $\sigma \in K_\infty$, $\gamma \in K_\infty$ and $r > 0$ such that for all $x \in B_r$ and all $u \in B_{r, U}$:
\[
\|\phi(t, x, u)\|_X \leq \sigma(\|x\|_X) + \gamma(\|u\|_U) \ \forall t \geq 0.
\]
5. We say that Σ has the uniform limit property (ULIM), if there exists $\gamma \in K$ so that for every $\varepsilon > 0$ and for every $r > 0$ there exists a $\tau = \tau(\varepsilon, r)$ such that for all x with $\|x\|_X \leq r$ and all $u \in U$ there is a $t \leq \tau$ such that
\[
\|\phi(t, x, u)\|_X \leq \varepsilon + \gamma(\|u\|_U).
\]
6. System Σ is called (uniformly) input-to-state stable (ISS), if there exist $\beta \in K_L$ and $\gamma \in K$ such that for all $x \in X, u \in U$ and $t \geq 0$ it holds that

$$\|\phi(t, x, u)\|_X \leq \beta\|x\|_X + \gamma(\|u\|_U). \quad (2.9)$$

7. We call Σ integral-to-integral ISS if there are $\alpha \in K$ and $\psi \in K_\infty$, $\sigma \in K_\infty$ so that for all $x \in X, u \in U$ and $t \geq 0$ it holds that

$$\int_0^t \alpha(\|\phi(s, x, u)\|_X)ds \leq \psi(\|x\|_X) + \int_0^t \sigma(\|u(s + \cdot)\|_U)ds. \quad (2.10)$$

Remark 2.7. The notion of integral-to-integral ISS is a variation of the notion given by equation (7) in [37]. The difference is that in equation (7) in [37] instead of $\|u(s + \cdot)\|_U$ there is a term $|u(s)|$. This is due to the difference in the formulation of Lyapunov functions in this paper and in [37].

Example 2.8. (Linear systems with admissible control operators) We continue with Example 2.4, that is, we consider again Equation (2.5) and assume that A generates a C_0-semigroup, $B \in L(U, X_{-1})$ is ∞-admissible and for every initial condition $x_0 \in X$ and every input function $u \in L^\infty([0, \infty), U)$ the mild solution $x : [0, \infty) \to X$ is continuous. These assumptions guarantee that $(X, L^\infty([0, \infty), U), \phi)$, where

$$\phi(t, x_0, u) := T(t)x_0 + \int_0^t T^{-1}(t - s)Bu(s)ds,$$

defines a forward-complete control system. The system has the following properties

1. $0 \in X$ is an equilibrium point due to the linearity of the system,
2. $(X, L^\infty([0, \infty), U), \phi)$ has the CEP property, and bounded reachability sets (BRS) [11],
3. If $(T(t))_{t \geq 0}$ is exponentially stable, then $(X, L^\infty([0, \infty), U), \phi)$ has the uniform limit property (ULIM), is uniformly locally stable (ULS) and input-to-state stable (ISS) [11],
4. $(T(t))_{t \geq 0}$ is exponentially stable if and only if $(X, L^\infty([0, \infty), U), \phi)$ is ISS [11].
5. If $(X, L^\infty([0, \infty), U), \phi)$ is integral-to-integral ISS, then $(X, L^\infty([0, \infty), U), \phi)$ is ISS [11].

Remark 2.9. To the best of the knowledge of the authors it is unknown, whether or not the converse statement to item 5) of Example 2.8 holds for every linear system (2.5).

3. Non-coercive Lyapunov theorem. Lyapunov functions are a powerful tool for the investigation of ISS. Let $x \in X$ and V be a real-valued function defined in a neighborhood of x. The (right-hand upper) Dini derivative of V at x corresponding to the input u along the trajectories of Σ is defined by

$$\dot{V}_u(x) = \lim_{t \to +0} \frac{1}{t} \left(V(\phi(t, x, u)) - V(x) \right). \quad (3.1)$$

Definition 3.1. A continuous function $V : X \to \mathbb{R}_+$ is called a non-coercive ISS Lyapunov function for a system $\Sigma = (X, U, \phi)$, if there exist $\psi_2, \alpha \in K_\infty$ and $\sigma \in K$ such that

$$0 < V(x) \leq \psi_2(\|x\|_X), \quad \forall x \in X \setminus \{0\} \quad (3.2)$$
and the Dini derivative of V along the trajectories of Σ for all $x \in X$ and $u \in U$ satisfies
\begin{equation}
\dot{V}_u(x) \leq -\alpha(\|x\|_X) + \sigma(\|u\|_U).
\end{equation}

Moreover, if (3.3) holds just for $u = 0$, we call V a (non-coercive) Lyapunov function for the undisturbed system Σ. If additionally there is $\psi_1 \in \mathcal{K}_\infty$ so that the following estimate holds:
\begin{equation}
\psi_1(\|x\|_X) \leq V(x) \leq \psi_2(\|x\|_X), \quad \forall x \in X,
\end{equation}
then V is called a coercive ISS Lyapunov function for Σ.

Remark 3.2. We point out that on the right-hand side of the dissipation inequality (3.3) the growth bound is given in terms of $\|u\|_U$ instead of the more familiar $\|u\|_U$ for $u \in U$. For some input spaces this is a necessity, but for the input space of bounded piecewise continuous functions it is equivalent to require the condition
\begin{equation}
\dot{V}_u(x) \leq -\alpha(\|x\|_X) + \sigma(\|u(0)\|_U)
\end{equation}
for all $x \in X, u \in U$. This may be shown similarly to the proof for "implication form" Lyapunov functions provided in [6, Proposition 5].

For a real-valued function $b : \mathbb{R}_+ \to \mathbb{R}$ define the right-hand upper and lower Dini derivatives at $t \in \mathbb{R}_+$ by
\begin{align}
D^+ b(t) &:= \lim_{h \to +0} \frac{b(t+h) - b(t)}{h}, \\
D_+ b(t) &:= \lim_{h \to +0} \frac{b(t+h) - b(t)}{h},
\end{align}
respectively. Note that for all $b : \mathbb{R}_+ \to \mathbb{R}$ and all $t \in \mathbb{R}_+$ it holds that $D^+ b(t) = -D_+ (-b(t))$.

We need a lemma on derivatives of monotone functions.

Lemma 3.3. Let $b : \mathbb{R}_+ \to \mathbb{R}$ be a nonincreasing function. Then for each $t \in \mathbb{R}_+$ it holds that
\begin{equation}
b(t) \geq D^+ \int_0^t b(s)ds \geq D_+ \int_0^t b(s)ds \geq \lim_{h \to +0} b(t + h).
\end{equation}

Proof. Pick any $t \geq 0$. By the definition of the Dini derivative and using monotonicity it holds that
\begin{align*}
D^+ \int_0^t b(s)ds &= \lim_{h \to +0} \frac{1}{h} \left(\int_0^{t+h} b(s)ds - \int_0^t b(s)ds \right) \\
&= \lim_{h \to +0} \frac{1}{h} \int_t^{t+h} b(s)ds \\
&\leq \lim_{h \to +0} \frac{1}{h} \int_t^{t+h} b(t)ds = b(t).
\end{align*}
On the other hand, we have that
\begin{align*}
D_+ \int_0^t b(s)ds \geq \lim_{h \to +0} \frac{1}{h} \int_t^{t+h} b(t + h)ds &= \lim_{h \to +0} b(t + h).
\end{align*}
The inequality $D^+ \int_0^t b(s)ds \geq D^+ \int_0^t b(s)ds$ is clear. □

The next proposition shows that the integral-to-integral ISS property arises naturally in the theory of ISS Lyapunov functions:

Proposition 3.4. Let $\Sigma = (X,U,\phi)$ be a forward complete control system. Assume that there exists a non-coercive ISS Lyapunov function for Σ. Then Σ is integral-to-integral ISS.

Proof. Assume that V is a non-coercive ISS Lyapunov function for Σ with the corresponding ψ_2, α, σ. Pick any $u \in U$ and any $x \in X$. As we assume forward completeness of Σ, the trajectory $\phi(\cdot, x, u)$ exists for all $t \geq 0$ and due to (3.3), we have for any $t > 0$ that:

$$(3.8) \quad \dot{V}_{u(t^+)}(\phi(t, x, u)) \leq -\alpha(\|\phi(t, x, u)\|_X) + \sigma(\|u(t + \cdot)\|_U).$$

By definition of \dot{V}, and using the cocycle property for Σ, we have that

$$\dot{V}_{u(t^+)}(\phi(t, x, u)) = \lim_{h \to 0} \frac{1}{h} \left(V(\phi(h, \phi(t, x, u), u(t + \cdot))) - V(\phi(t, x, u)) \right)$$

$$= \lim_{h \to 0} \frac{1}{h} \left(V(\phi(t + h, x, u)) - V(\phi(t, x, u)) \right).$$

Defining $y(t) := V(\phi(t, x, u))$, we see that

$$\dot{V}_{u(t^+)}(\phi(t, x, u)) = D^+ y(t),$$

and $y(0) = V(x)$ due to the identity axiom of the system Σ.

In view of the continuity axiom of Σ, for fixed x, u the map $\phi(\cdot, x, u)$ is continuous, and thus $t \mapsto -\alpha(\|\phi(t, x, u)\|_X)$ is continuous as well.

For $t \geq 0$, define $G(t) := \int_0^t \alpha(\|\phi(s, x, u)\|_X)ds$ and $b(t) := \sigma(\|u(t + \cdot)\|_U)$. Note that by the Axiom of Shift Invariance, b is non-increasing. As G is continuously differentiable, we can rewrite the inequality (3.8) as

$$(3.9) \quad D^+ y(t) \leq -\frac{d}{dt} G(t) + b(t).$$

Pick any $r > 0$ and define $b(s) = b(0)$ for $s \in [-r, 0]$. As b is a nonincreasing function on $[-r, \infty)$, it holds for any $t \geq 0$ that $b(t) \leq \lim_{h \to 0^+} b(t - r + h)$, and by the final inequality in Lemma 3.3 applied to $b(-r)$ we obtain

$$b(t) \leq D^+ \int_0^t b(s - r)ds = -D^+ \left(-\int_0^t b(s - r)ds \right).$$

Thus, (3.9) implies that

$$(3.10) \quad D^+ y(t) + \frac{d}{dt} G(t) + D^+ \left(-\int_0^t b(s - r)ds \right) \leq 0.$$

Due to $D^+(f_1(t) + f_2(t)) \leq D^+(f_1(t)) + D^+(f_2(t))$, which holds for any functions f_1, f_2 on the real line, this implies that

$$D^+ \left(y(t) + G(t) - \int_0^t b(s - r)ds \right) \leq 0.$$
It follows from [38, Theorem 2.1] that \(t \mapsto y(t) + G(t) - \int_0^t b(s - r) ds \) is nonincreasing. As \(G(0) = 0 \), it follows that for all \(r > 0 \)
\[
y(t) + G(t) - \int_0^t b(s - r) ds \leq y(0) = V(x).
\]
As \(b \) is bounded, we may pass to the limit \(r \to 0 \) and obtain
\[
y(t) + G(t) - \int_0^t b(s) ds \leq y(0) = V(x).
\]
Now \(y(t) \geq 0 \) for all \(t \in \mathbb{R}_+ \), and so
\[
\int_0^t \alpha(\|\phi(s, x, u)\|_X)ds \leq \psi_2(\|x\|_X) + \int_0^t \sigma(\|u(s + \cdot)\|_U)ds
\]
This completes the proof. \(\square \)

In [37, Theorem 1] it was shown that for ODE systems with Lipschitz continuous nonlinearities the notions of ISS and integral-to-integral ISS are equivalent. Next we show that integral-to-integral ISS implies ISS for a class of forward-complete control systems satisfying the CEP and BRS properties. In order to prove this, we are going to use the following characterization of ISS, shown in [28]:

Theorem 3.5. Let \(\Sigma = (X, U, \phi) \) be a forward complete control system. Then \(\Sigma \) is ISS if and only if \(\Sigma \) is ULIM, ULS, and BRS.

In [28, Proposition 8] it was shown (with slightly different formulation, but the same proof) that

Proposition 3.6. Let \(\Sigma = (X, U, \phi) \) be a forward complete control system. If \(\Sigma \) is integral-to-integral ISS, then \(\Sigma \) is ULIM.

Next we provide a sufficient condition for the ULS property.

Proposition 3.7. Let \(\Sigma = (X, U, \phi) \) be a forward complete control system satisfying the CEP property. If \(\Sigma \) is integral-to-integral ISS, then \(\Sigma \) is ULS.

Proof. Let \(\Sigma \) be integral-to-integral ISS with the corresponding \(\alpha, \psi, \sigma \) as in Definition 7.

Seeking a contradiction, assume that \(\Sigma \) is not ULS. Then there exist an \(\varepsilon > 0 \) and sequences \(\{x_k\}_{k \in \mathbb{N}} \) in \(X \), \(\{u_k\}_{k \in \mathbb{N}} \) in \(U \), and \(\{t_k\}_{k \in \mathbb{N}} \subset \mathbb{R}_+ \) such that \(x_k \to 0 \) as \(k \to \infty \), \(u_k \to 0 \) as \(k \to \infty \) and
\[
\|\phi(t_k, x_k, u_k)\|_X = \varepsilon \quad \forall k \geq 1.
\]

Since \(\Sigma \) is CEP, for the above \(\varepsilon \) there is a \(\delta_1 = \delta_1(\varepsilon, 1) \) so that
\[
(3.11) \quad \|x\|_X, \|u\|_U \leq \delta_1, \ t \in [0, 1] \quad \Rightarrow \quad \|\phi(t, x, u)\|_X < \varepsilon.
\]
Define for \(k \in \mathbb{N} \) the following time sequence:
\[
t^1_k := \sup\{t \in [0, t_k] : \|\phi(t, x_k, u_k)\|_X \leq \delta_1\},
\]
if the supremum is taken over a nonempty set, and set \(t^1_k := 0 \) otherwise.

Again as \(\Sigma \) is CEP, for the above \(\delta_1 \) there is a \(\delta_2 > 0 \) so that
\[
(3.12) \quad \|x\|_X, \|u\|_U \leq \delta_2, \ t \in [0, 1] \quad \Rightarrow \quad \|\phi(t, x, u)\|_X < \delta_1.
\]
Without loss of generality we assume that δ_2 is chosen small enough so that

$$\alpha(\delta_1) > \psi(\delta_2).$$

We now define

$$t_k^2 := \sup\{t \in [0, t_k]: \|\phi(t, x_k, u_k)\|_X \leq \delta_2\},$$

if the supremum is taken over a nonempty set, and set $t_k^2 := 0$ otherwise.

Since $u_k \to 0$ and $x_k \to 0$ as $k \to \infty$, there is $K > 0$ so that $\|u_k\|_{\mathcal{U}} \leq \delta_2$ and $\|x_k\|_X \leq \delta_2$ for $k \geq K$.

From now on, we always assume that $k \geq K$.

Using (3.11), (3.12) and the cocycle property, it is not hard to show that for $k \geq K$ it must hold that $t_k \geq 2$, as otherwise we arrive at a contradiction to $\|\phi(t_k, x_k, u_k)\|_X = \varepsilon$.

Assume that $t_k - t_k^1 < 1$. This implies (since $t_k \geq 2$), that $t_k^1 > 0$. By the cocycle property we have

$$\|\phi(t_k, x_k, u_k)\|_X = \|\phi(t_k - t_k^1, \phi(t_k^1, x_k, u_k), u_k(\cdot + t_k^1))\|_X.$$

The axiom of shift invariance justifies the inequalities

$$\|u_k(\cdot + t_k^1)\|_{\mathcal{U}} \leq \|u_k\|_{\mathcal{U}} \leq \delta_2 \leq \delta_1.$$

Since $\|\phi(t_k^1, x_k, u_k)\|_X = \delta_1$, and $t_k - t_k^1 < 1$, we have by (3.11) that $\|\phi(t_k, x_k, u_k)\|_X < \varepsilon$, a contradiction. Hence $t_k - t_k^1 \geq 1$ for all $k \geq K$.

Analogously, we obtain that $t_k^1 - t_k^2 \geq 1$ and $t_k - t_k^2 \geq 2$.

Define

$$x_k^2 := \phi(t_k^2, x_k, u_k), \quad u_k^2 := u_k(\cdot + t_k^2)$$

and

$$x_k^1 := \phi(t_k^1, x_k, u_k), \quad u_k^1 := u_k(\cdot + t_k^1).$$

Due to the axiom of shift invariance $u_k^1, u_k^2 \in \mathcal{U}$ and

$$\|u_k^1\|_{\mathcal{U}} \leq \|u_k^2\|_{\mathcal{U}} \leq \|u_k\|_{\mathcal{U}} \leq \delta_2.$$

Also by the definition of t_k^2 we have $\|x_k^2\|_X = \delta_2$.

Applying (2.10), and estimating the integral on the right hand side of (2.10), we obtain for $t := t_k - t_k^2$ that

$$\int_0^{t_k - t_k^2} \alpha(\|\phi(s, x_k^2, u_k^2)\|_X) ds \leq \psi(\|x_k^2\|_X) + (t_k - t_k^2)\sigma(\|u_k^2\|_{\mathcal{U}})$$

$$\leq \psi(\delta_2) + (t_k - t_k^2)\sigma(\|u_k\|_{\mathcal{U}}).$$

(3.14)

On the other hand, changing the integration variable and using the cocycle property
we obtain that
\[
\int_{t_0}^{t_k-t_k^2} \alpha(||\phi(s,x_k^2,u_k^2)||_X)ds
\]
\[
= \int_{t_0}^{t_k-t_k^1} \alpha(||\phi(s,x_k^2,u_k^2)||_X)ds + \int_{t_k-t_k^1}^{t_k-t_k^2} \alpha(||\phi(s,x_k^2,u_k^2)||_X)ds
\]
\[
= \int_{t_0}^{t_k-t_k^1} \alpha(||\phi(s,x_k^2,u_k^2)||_X)ds + \int_{t_k-t_k^1}^{t_k-t_k^2} \alpha(||\phi(s,x_k^2,u_k^2)||_X)ds
\]
\[
+ \int_{t_k-t_k^1}^{t_k-t_k^1+\alpha(\delta_2)} \alpha(||\phi(s+t_k^1-t_k^2,x_k^2,u_k^2)||_X)ds
\]
\[
= \int_{t_0}^{t_k-t_k^1} \alpha(||\phi(s,x_k^2,u_k^2)||_X)ds + \int_{t_0}^{t_k-t_k^1} \alpha(||\phi(s,x_k^1,u_k^1)||_X)ds.
\]

By definition of \(t_k^2\) and \(t_k^1\) we have that
\[
||\phi(s,x_k^2,u_k^2)||_X \geq \delta_2, \quad s \in [t_k^1,t_k]
\]
and
\[
||\phi(s,x_k^1,u_k^1)||_X \geq \delta_1, \quad s \in [t_k^1,t_k].
\]

Continuing the above estimates and using that \(t_k-t_k^1 \geq 1\) and \(\alpha(\delta_1) > \alpha(\delta_2)\), we arrive at
\[
\int_{t_0}^{t_k-t_k^1} \alpha(||\phi(s,x_k^2,u_k^2)||_X)ds \geq (t_k^1-t_k^2)\alpha(\delta_2) + (t_k-t_k^1)\alpha(\delta_1)
\]
\[
\geq (t_k-t_k^2-1)\alpha(\delta_2) + \alpha(\delta_1).
\]

Since \(t_k-t_k^2 \geq 2\) and in view of (3.13), we derive
\[
\tag{3.15}
\int_{t_0}^{t_k-t_k^1} \alpha(||\phi(s,x_k^2,u_k^2)||_X)ds > \frac{t_k-t_k^2}{2}\alpha(\delta_2) + \psi(\delta_2).
\]

Combining inequalities (3.14) and (3.15), we obtain
\[
\frac{t_k-t_k^2}{2}\alpha(\delta_2) < (t_k-t_k^2)\sigma(||u_k||_U).
\]

This leads to
\[
\frac{1}{2}\alpha(\delta_2) < \sigma(||u_k||_U), \quad k \geq K.
\]

Finally, since \(\lim_{k \to \infty} ||u_k||_U = 0\), letting \(k \to \infty\) we come to a contradiction. This shows that \(\Sigma\) is ULS. \(\square\)

Now we combine the derived results to state a relationship between ISS and integral-to-integral ISS.

Theorem 3.8. Let \(\Sigma\) be a forward complete control system, which is CEP and BRS. If \(\Sigma\) is integral-to-integral ISS, then \(\Sigma\) is ISS.

Proof. Propositions 3.6 and 3.7 imply that \(\Sigma\) is ULIM and ULS. Since \(\Sigma\) is assumed to be BRS, Theorem 3.5 shows that \(\Sigma\) is ISS. \(\square\)
We may now state our main result on noncoercive ISS Lyapunov functions.

Theorem 3.9. Let \(\Sigma \) be a forward complete control system, which is CEP and BRS. If there exists a (noncoercive) ISS Lyapunov function for \(\Sigma \), then \(\Sigma \) is ISS.

Proof. Follows from a combination of Proposition 3.4 and Theorem 3.8. \(\square \)

Remark 3.10. Note that forward complete ODE systems with locally Lipschitz nonlinearities are BRS (see [23, Proposition 5.1]) and CEP. Hence for this special class of systems we recover the result of Sontag that integral-to-integral ISS implies ISS (which is a part of [37, Theorem 1]).

3.1. Remark on input-to-state practical stability.

In some cases it is impossible (as in quantized control) or too costly to construct a feedback that results in an ISS closed-loop system. For these applications one defines the following relaxation of the ISS property:

Definition 3.11. A control system \(\Sigma = (X, U, \phi) \) is called (uniformly) input-to-state practically stable (ISpS), if there exist \(\beta \in KL, \gamma \in K_{\infty} \) and \(c > 0 \) such that for all \(x \in X, u \in U \) and \(t \geq 0 \) the following holds:

\[
\|\phi(t, x, u)\|_X \leq \beta(\|x\|_X, t) + \gamma(\|u\|_U) + c. \tag{3.16}
\]

The notion of ISpS has been proposed in [17] and has become very useful for control in the presence of quantization errors [35, 16], sample-data control [31] to name a few examples.

One of the requirements in Theorem 3.8 is that the CEP property holds. If this property is not available, we can still infer input-to-state practical stability of \(\Sigma \), using the main result in [24].

Theorem 3.12. Let \(\Sigma \) be a forward complete control system, which is BRS. If \(\Sigma \) is integral-to-integral ISS, then \(\Sigma \) is ISpS.

Proof. Proposition 3.6 implies that \(\Sigma \) is ULIM. Since \(\Sigma \) is also BRS, [24, Theorem III.1] shows that \(\Sigma \) is ISpS. \(\square \)

4. Construction of ISS Lyapunov functions for systems with unbounded input operators.

In the remainder of this paper we specialize to the case of complex Hilbert spaces \(X \).

A classical method for construction of Lyapunov functions for exponentially stable semigroups is the solution of the operator Lyapunov equation [5, Theorem 5.1.3]. This method can also be used for the construction of ISS Lyapunov functions for systems with bounded input operators [29].

The following result holds (this is a Hilbert-space version of [29, Proposition 6], and thus we omit the proof):

Proposition 4.1. Let \(X \) be a complex Hilbert space, let \(A \) generate a strongly continuous semigroup over \(X \) and let \(B \in L(U, X) \). If (2.5) is ISS, then there is an operator \(P = P^* \in L(X) \) so that \(\langle Px, x \rangle > 0 \) for \(x \neq 0 \) and \(P \) solves the Lyapunov equation

\[
\langle Px, A x \rangle_X + \langle A x, Px \rangle_X = -\|x\|_X^2, \quad x \in D(A). \tag{4.1}
\]

Furthermore, \(V : X \to \mathbb{R}_+ \) defined by

\[
V(x) = \langle Px, x \rangle \tag{4.2}
\]

is a non-coercive ISS Lyapunov function for (2.5).
Non-coercive Lyapunov functions for ISS of infinite-dimensional systems

Note that the operator \(P \) and the Lyapunov function \(V \) can be chosen independently on the input operator \(B \) (the function \(\sigma \) in the dissipative estimate (3.3) however does depend on \(B \)). In the next theorem we derive a counterpart of Proposition 4.1 for systems with merely admissible operators \(B \). In contrast to systems with bounded input operators, we need further assumptions that relate the operators \(P \) and \(A \).

Theorem 4.2. Let \(A \) be the generator of a \(C_0 \)-semigroup \((T(t))_{t \geq 0} \) on a complex Hilbert space \(X \). Assume that there is an operator \(P \in L(X) \) satisfying the following conditions:

(i) \(P \) satisfies

\[
\Re \langle Px, x \rangle_X > 0, \quad x \in X \setminus \{0\}.
\]

(ii) \(\text{Im}(P) \subset D(A^*) \).

(iii) \(PA \) has an extension to a bounded operator on \(X \), that is, \(PA \in L(X) \). (We also denote this extension by \(PA \).)

(iv) \(P \) satisfies the Lyapunov inequality

\[
\Re \langle (PA + A^*P)x, x \rangle_X \leq -\langle x, x \rangle_X, \quad x \in D(A),
\]

Then for any \(\infty \)-admissible input operator \(B \in L(U, X_{-1}) \) the function

\[
V(x) := \Re \langle Px, x \rangle_X
\]

is a non-coercive ISS Lyapunov function for (2.5), which satisfies for each \(\varepsilon > 0 \) the dissipation inequality

\[
\hat{V}_u(x_0) \leq (\varepsilon - 1)\|x_0\|_X^2 + c(\varepsilon)\|u\|_{\infty}^2,
\]

where

\[
c(\varepsilon) := \frac{1}{4\varepsilon} (\|A^*P\|_{L(X)} + \|PA\|_{L(X)})^2 \|A^{-1}B\|^2_{L(U,X)}M^2 + \|A^*P\|_{L(X)} \|A^{-1}B\|_{L(U,X)} \kappa(0),
\]

and \(\kappa(0) = \lim_{t \to 0} \kappa(t) \), where \(\kappa(t) > 0 \) is the smallest constant satisfying

\[
\left\| \int_0^t T_{-1}(t-s)Bu(s) \, ds \right\|_X \leq \kappa(t)\|u\|_{\infty},
\]

for every \(u \in L^\infty((0,t),U) \). (The existence of the constants \(\kappa(t) \) is implied by the \(\infty \)-admissibility of \(B \).)

In particular, (2.5) is ISS for such \(B \).

Remark 4.3. Note that we have to take the real parts of the expressions in (4.5) and (4.4), as we deal with complex Hilbert spaces and we do not assume that \(P \) is a positive operator on \(X \).

Remark 4.4. If in addition to the assumptions of Theorem 4.2 the operator \(P \) is self-adjoint, that is, if \(P = P^* \), then equation (4.1) is equivalent to (4.4).

Proof. Note that linear systems with admissible input operators satisfy both the CEP and the BRS property. Due to Theorem 3.9, ISS of \(\Sigma \) will follow if we can show that \(V \) is a non-coercive ISS Lyapunov function for \(\Sigma \).
By the assumptions
\[0 < V(x) \leq \|P\|_{L(X)} \|x\|^2_X, \quad x \in X \setminus \{0\}, \]
and thus (3.2) holds. It remains to show the dissipation inequality (3.3) for \(V \).

The operator \(A : D(A) \subset X \to X \) is densely defined as an infinitesimal generator of a \(C_0 \)-semigroup, and hence \(A^* \) is well-defined and again the generator of a \(C_0 \)-semigroup, see [32, Corollary 10.6]. In particular, this implies that \(A^* \) is a closed operator. Since \(P \in L(X) \), the operator \(S := A^* P \) with the domain \(D(S) := \{ x \in X : Px \in D(A^*) \} \) is a closed operator, see [40, Exercise 5.6]. However, by our assumptions \(\text{Im}(P) \subset D(A^*) \), which implies \(D(S) = X \), and thus \(S = A^* P \in L(X) \) by the Closed Graph Theorem. In particular, the term \(\|A^* P\|_{L(X)} \) in (4.7) makes sense.

For \(x_0 \in X \) and \(u \in L^\infty([0, \infty), U) \) we have
\begin{align}
V(\phi(t, x_0, u)) - V(x_0) &= \text{Re} \left(P \left(T(t)x_0 + \int_0^t T_1(t-s)Bu(s)ds \right) \right) \\
&= \text{Re} \left(PT(t)x_0, x_0 \right) - \text{Re} \left(Px_0, x_0 \right) \\
&= \text{Re} \left((PT(t)x_0, T(t)x_0) - (PT(t)x_0, x_0) \right) \\
&+ \text{Re} \left(PT(t)x_0, \int_0^t T_1(t-s)Bu(s)ds, T(t)x_0 \right) \\
&+ \text{Re} \left(P \int_0^t T_1(t-s)Bu(s)ds, T(t)x_0 \right) \\
&+ \text{Re} \left(P \int_0^t T_1(t-s)Bu(s)ds, \int_0^t T_1(t-s)Bu(s)ds, T(t)x_0 \right).
\end{align}

The terms in line (4.10) of the previous expression can be transformed into:
\begin{align}
\text{Re} \left(PT(t)x_0, T(t)x_0 \right) &- \text{Re} \left(PT(t)x_0, x_0 \right) \\
&= \text{Re} \left(PT(t)x_0, T(t)x_0 - x_0 \right).
\end{align}

Applying [5, Theorem 5.1.3] to the operator \(\frac{1}{2}(P + P^*) \), we see that the conditions (i), (ii) and (iv) imply that \(A \) generates an exponentially stable semigroup. This implies (see e.g. [14, Proposition 5.2.4]) that \(0 \in \rho(A) \) and thus \(A^{-1} \in L(X) \) exists. Further, the exponential stability of the \(C_0 \)-semigroup \((T(t))_{t \geq 0} \) implies
\[\|T(t)\|_{L(X)} \leq Me^{-\omega t}, \quad t \geq 0, \]
for some constants \(M, \omega > 0 \). Thanks to \(\rho(A) = \rho(A^{-1}) \) the operator \(A^{-1} \) exists as well.

By [8, Theorem II.5.5] the map \(A : D(A) \to X \) can be continuously extended to the linear isometry \(A^{-1} \) which maps \((X, \| \cdot \|_X) \) onto \((X^{-1}, \| \cdot \|_{X^{-1}}) \). Hence \(A^{-1} \), mapping \((X^{-1}, \| \cdot \|_{X^{-1}}) \) onto \((X, \| \cdot \|_X) \), is again a linear isometry, and thus a bounded operator. As \(B \in L(U, X) \), we have that \(A^{-1} B \in L(U, X) \). In particular, \(T_1(t -
s)A_{-1}^{-1}Bu(s) = T(t-s)A_{-1}^{-1}Bu(s) \in X \text{ for all } s \geq 0. \text{ Due to the fact, that } A_{-1}^{-1} \text{ and } T_{-1}(t-s) \text{ commute, we obtain }

\|A_{-1}^{-1} \int_0^t T_{-1}(t-s)Bu(s)ds\|_X = \| \int_0^t A_{-1}^{-1}T_{-1}(t-s)Bu(s)ds\|_X

\leq \int_0^t \|T(t-s)\|_{L(X)} \|A_{-1}^{-1}B\|_{L(U,X)} \|u(s)\|_U ds

\leq \int_0^t Mds \|A_{-1}^{-1}B\|_{L(U,X)} \|u\|_\infty

(4.15) \leq Mt\|A_{-1}^{-1}B\|_{L(U,X)} \|u\|_\infty.

Since \text{Im}(P) \subset D(A^*), \text{ we estimate the expression in (4.11) using the Cauchy-Schwarz inequality and (4.15)}

\text{Re} \langle PT(t)x_0, \int_0^t T_{-1}(t-s)Bu(s)ds \rangle_X

=\text{Re} \langle PT(t)x_0, AA^{-1} \int_0^t T_{-1}(t-s)Bu(s)ds \rangle_X

=\text{Re} \langle A^*PT(t)x_0, A_{-1}^{-1} \int_0^t T_{-1}(t-s)Bu(s)ds \rangle_X

\leq \|A^*PT(t)x_0\|_X \cdot \|A_{-1}^{-1} \int_0^t T_{-1}(t-s)Bu(s)ds\|_X

(4.16) \leq \|A^*P\|_{L(X)} \|T(t)x_0\|_X \cdot Mt\|A_{-1}^{-1}B\|_{L(U,X)} \|u\|_\infty.

To bound the expression (4.12) we use again (4.15) to obtain

\text{Re} \left\langle P \int_0^t T_{-1}(t-s)Bu(s)ds, T(t)x_0 \right\rangle_X

=\text{Re} \left\langle PAA^{-1} \int_0^t T_{-1}(t-s)Bu(s)ds, T(t)x_0 \right\rangle_X

\leq \|PA\|_{L(X)} \cdot \|A_{-1}^{-1}B\|_{L(U,X)} \|u\|_\infty \|T(t)x_0\|_X.

(4.17)\leq \|PA\|_{L(X)} \cdot \|A_{-1}^{-1}B\|_{L(U,X)} \|u\|_\infty \|T(t)x_0\|_X.

Finally, we estimate the expression (4.13) using (4.15) as

\text{Re} \left\langle P \int_0^t T_{-1}(t-s)Bu(s)ds, \int_0^t T_{-1}(t-s)Bu(s)ds \right\rangle_X

= \text{Re} \left\langle P \int_0^t T_{-1}(t-s)Bu(s)ds, AA_{-1}^{-1} \int_0^t T_{-1}(t-s)Bu(s)ds \right\rangle_X

= \text{Re} \left\langle A^*P \int_0^t T_{-1}(t-s)Bu(s)ds, A_{-1}^{-1} \int_0^t T_{-1}(t-s)Bu(s)ds \right\rangle_X

(4.18) \leq \|A^*P\|_{L(X)} \kappa(t) \|u\|_\infty \cdot Mt\|A_{-1}^{-1}B\|_{L(U,X)} \|u\|_\infty.
Substituting (4.14), (4.16), (4.17), and (4.18) into (4.9), we obtain:

\[
V(\phi(t, x_0, u)) - V(x_0) \\
\leq \text{Re} \langle PT(t)x_0 - Px_0, x_0 \rangle_X \\
+ \text{Re} \langle PT(t)x_0, T(t)x_0 - x_0 \rangle_X \\
+ \|A^*P\|_{L(X)}\|T(t)x_0\|_X \cdot Mt\|A^{-1}_2B\|_{L(U, X)}\|u\|_\infty \\
+ \|PA\|_{L(X)} \cdot Mt\|A^{-1}_1B\|_{L(X)}\|u\|_\infty \|T(t)x_0\|_X \\
+ \|A^*P\|_{L(X)}\kappa(t)\|u\|_\infty \cdot Mt\|A^{-1}_1B\|_{L(U, X)}\|u\|_\infty.
\]

This yields

\[
\lim_{t \to 0} \text{Re} \frac{1}{t} \langle PT(t)x_0 - Px_0, x_0 \rangle_X \\
= \lim_{t \to 0} \text{Re} \frac{1}{t} \langle PA[T(t)A^{-1}x_0 - A^{-1}x_0], x_0 \rangle_X \\
= \text{Re} \langle PAx_0, x_0 \rangle_X
\]

and

\[
\lim_{t \to 0} \text{Re} \langle PT(t)x_0, T(t)x_0 - x_0 \rangle_X \\
= \lim_{t \to 0} \text{Re} \frac{1}{t} \langle A^* PT(t)x_0, T(t)A^{-1}x_0 - A^{-1}x_0 \rangle_X \\
= \text{Re} \langle A^*Px_0, x_0 \rangle_X.
\]

This implies for every \(\varepsilon > 0 \) that

\[
\dot{V}_u(x_0) = \lim_{t \to 0} \frac{1}{t} (V(\phi(t, x_0, u)) - V(x_0)) \\
\leq \text{Re} \langle PAx_0, x_0 \rangle_X + \text{Re} \langle A^*Px_0, x_0 \rangle_X \\
+ \|A^*P\|_{L(X)}\|x_0\|_X \|A^{-1}_2B\|_{L(U, X)}M\|u\|_\infty \\
+ \|PA\|_{L(X)} \|A^{-1}_1B\|_{L(U, X)}\|u\|_\infty \|x_0\|_X \\
+ \|A^*P\|_{L(X)} \|A^{-1}_1B\|_{L(U, X)}\kappa(0)\|u\|_2^2 \\
= \text{Re} \langle PAx_0, x_0 \rangle_X + \text{Re} \langle A^*Px_0, x_0 \rangle_X \\
+ \|x_0\|_X (\|A^*P\|_{L(X)} + \|PA\|_{L(X)}) \|A^{-1}_2B\|_{L(U, X)}M\|u\|_\infty \\
+ \|A^*P\|_{L(X)} \|A^{-1}_1B\|_{L(U, X)}\kappa(0)\|u\|_2^2.
\]

Using Young's inequality and the estimate (4.4) we proceed to

\[
\dot{V}_u(x_0) \leq -\|x_0\|_X^2 + \|x_0\|_X^2 \\
+ \left(\|A^*P\|_{L(X)} + \|PA\|_{L(X)} \right)^2 \|A^{-1}_2B\|_{L(U, X)}^2 M^2\|u\|_\infty^2 \\
\leq \frac{4\varepsilon}{\varepsilon} + \|A^*P\|_{L(X)} \|A^{-1}_1B\|_{L(U, X)}\kappa(0)\|u\|_\infty^2,
\]

which shows the dissipation inequality (4.6), and thus also (3.3).

Remark 4.5. Theorem 4.2 has been formulated as a direct Lyapunov theorem. However, the following reformulation as a partial converse result is also possible.
Assume that (2.5) is ISS, and the solution P of the Lyapunov equation (4.1) satisfies $\text{Im}(P) \subset D(A^*)$ and PA is bounded. Then (4.5) is an ISS Lyapunov function for (2.5).

It is of virtue to compare the ISS Lyapunov theorem for bounded input operators (Proposition 4.1) and ISS Lyapunov theorem for admissible input operators (Theorem 4.2). The ISS Lyapunov function candidate considered in both these results, is the same. What differs is the assumptions and the set of input operators, for which this function is indeed an ISS Lyapunov function. Proposition 4.1 states that if the semigroup, generated by A is exponentially stable, then there is an operator P, which satisfies the assumptions (i) and (iv) of Theorem 4.2 and the condition $P = P^*$, and furthermore (4.2) is an ISS Lyapunov function for (2.5) for any bounded input operator. Thus, the key additional assumptions which we impose in order to tackle the unboundedness of an input operator, are the assumptions (ii) and (iii). We note, that that with these assumptions (4.5) is an ISS Lyapunov function for any ∞-admissible operator B.

5. Applications of Theorem 4.2. In this section we show applicability of Theorem 4.2 for some important special cases. We start with sufficient conditions, guaranteeing that Theorem 4.2 can be applied with $P = -A^{-1}$. Then we show that these sufficient conditions are fulfilled for broad classes of systems, generated by subnormal operators. Finally, we proceed to diagonal semigroups (whose generators are self-adjoint operators) and finally we give a construction of a non-coercive ISS Lyapunov function for a heat equation with Dirichlet boundary inputs.

5.1. A special case: the bilinear form $P = -A^{-1}$. In this section we give sufficient conditions for applicability Theorem 4.2 with $P := -A^{-1}$.

Proposition 5.1. Let A be the generator of an exponentially stable C_0-semigroup $(T(t))_{t \geq 0}$ on a (complex) Hilbert space X.

Further, assume that $D(A) \subset D(A^*)$ and the inequality

\[(5.1) \quad \text{Re} \, \langle A^* A^{-1} x, x \rangle_X + \delta \|x\|^2_X \geq 0\]

holds for some $\delta < 1$ and every $x \in X$, and $\text{Re} \, \langle Ax, x \rangle_X < 0$ for every $x \in D(A) \setminus \{0\}$.

Then

\[(5.2) \quad V(x) := -\text{Re} \, \langle A^{-1} x, x \rangle_X\]

is an ISS Lyapunov function for any ∞-admissible operator $B \in L(U, X, -1)$.

Proof. As A generates an exponentially stable semigroup, $0 \in \rho(A)$ and thus $P := -A^{-1} \in L(X)$. We show step by step that this choice of P satisfies all the requirements (i)-(iv) of Theorem 4.2.

(i). For any $x \in X \setminus \{0\}$ there is $y \in D(A) \setminus \{0\}$ so that $x = Ay$. Then by the assumptions of the proposition it holds that

\[V(x) = -\text{Re} \, \langle y, Ay \rangle = -\text{Re} \, \langle Ay, y \rangle > 0.\]

(ii). We have $\text{Im}(P) = \text{Im}(A^{-1}) = D(A) \subset D(A^*)$, which holds by our assumptions.

(iii). Trivial as $PA = -I$.

(iv). By assumptions there is a $\delta < 1$ so that

\[\text{Re} \, \langle (PA + A^* P)x, x \rangle_X = \text{Re} \, \langle (-I - A^* A^{-1})x, x \rangle_X\]
\[= -\langle x, x \rangle_X - \text{Re} \, \langle A^* A^{-1} x, x \rangle_X\]
\[\leq -(1 - \delta) \langle x, x \rangle_X,\]
and thus \(P \) satisfies the Lyapunov inequality up to a scaling coefficient (and \(\tilde{P} := \frac{1}{1 - \delta} P \) satisfies precisely (4.4)).

Hence all assumptions of Theorem 4.2 are satisfied, and application of Theorem 4.2 shows the claim. \(\square \)

Remark 5.2. If \(D(A) \subset D(A^*) \), then inequality (5.1) is equivalent to the existence of a constant \(\delta' < 1 \) satisfying

\[
\| (A + A^*)x \|_X^2 + \delta' \| Ax \|_X^2 \geq \| A^*x \|_X^2, \quad x \in D(A).
\]

If \(A \) generates a strongly continuous contraction semigroup, then (5.1) implies that the semigroup \((T(t))_{t \geq 0} \) is \(2 \)-hypercontractive [12]. In particular, subnormal and normal operators whose spectrum lie in a sector, satisfy (5.1), see Proposition 5.6.

5.2. Analytic semigroups generated by subnormal operators

In this section we show that Theorem 4.2 can be applied to a broad class of analytic semigroups over Hilbert spaces generated by subnormal operators.

A closed, densely-defined operator \(A \) on a Hilbert space \(X \) is called subnormal, if there is a Hilbert space \(Z \) containing \(X \) as a subspace and a normal operator \((N, D(N)) : Z \to Z \) so that \(A = N|_X \) (the restriction of \(N \) to \(X \)) and \(X \) is an invariant subspace for \(N \), that is, \(N(D(N) \cap X) \subset X \). We write \(P \) for the orthogonal projection from \(Z \) onto \(X \). That is, up to unitary equivalence \(N = M_\phi \), a multiplication operator on some \(L^2(\mu) \) space, and \(Ax = \phi x, A^*x = P(\overline{\phi x}) \). See, for example [4, Th. X.4.19].

Moreover:

Lemma 5.3. A subnormal operator \(A \) satisfies \(D(A) \subset D(A^*) \). Further, there exists a minimal normal extension \(N \) satisfying \(\sigma(N) \subset \sigma(A) \).

Proof. The first assertion follows from \(D(N) = D(N^*) \), see [4, Prop. X.4.3]. The second assertion is proved in [1, Theorem 2.3]. \(\square \)

Example 5.4.

1. Clearly, every normal operator on a Hilbert space is subnormal.
2. Symmetric operators on Hilbert spaces and analytic Toeplitz operators \(T_\theta \) on the Hardy space \(H^2(D) \) are subnormal, [1].

For \(\theta \in [0, \pi/2) \) we define

\[
S_\theta := \{ s \in \mathbb{C} \mid |\arg(-s)| \leq \theta \}.
\]

Proposition 5.5. Let \(A \) be a subnormal operator on a Hilbert space \(X \) and assume \(\sigma(A) \subset \Sigma_\theta \), for some \(\theta \in [0, \pi/2) \), and \(B \in L(\mathbb{C}^m, X_{-1}) \). Then:

(i) \(A \) generates a bounded analytic \(C_0 \)-semigroup of contractions \((T(t))_{t \geq 0} \),

(ii) \(B \) is \(\infty \)-admissible for \((T(t))_{t \geq 0} \).

Moreover, if in addition \(0 \notin \sigma(A) \), then

(iii) \(A \) generates an exponentially stable semigroup and the system (2.5) is ISS.

Proof. Assertion (i) follows from Lemma 5.3, the fact that normal operators \(N \) with \(\sigma(N) \subset S_\theta \) generate bounded analytic \(C_0 \)-semigroups, see [8, Corollary II.4.7], and from the observation that \(A \) is the restriction of \(N \) to an invariant subspace. The assertion (ii) has been proved in [13]. Finally, \(A \) generates an exponentially stable semigroup since for analytic semigroups the spectral bound equals the growth bound [8, Corollary IV.3.12], and ISS follows as \(B \) is assumed to be \(\infty \)-admissible, see Example 2.8. \(\square \)

We have the following important inequality for the subnormal operators:

Proposition 5.6. Let \(A \) be a subnormal operator on a Hilbert space \(X \) satisfying \(\sigma(A) \subset S_\theta \), for some \(\theta \in [0, \pi/2) \). Then for \(\delta \geq 1 - 2 \cos^2 \theta \) we have

\[
\text{Re} \langle x, A^2x \rangle_X + \delta \| Ax \|^2_X \geq 0, \quad x \in D(A^2).
\]
Proof. Expanding (5.3) we obtain the equivalent assertion

\[\text{Re} \langle \phi x, P\overline{\phi} x \rangle + \delta \| \phi x \|^2 \geq 0, \]

and we note that \(\langle \phi x, P\overline{\phi} x \rangle = \langle \phi x, \overline{\phi} x \rangle = \langle \phi^2 x, x \rangle. \) The left hand side of (5.4) is

\[\langle (\text{Re} \phi^2 + \delta |\phi|^2) x, x \rangle = \langle (2(\text{Re} \phi)^2 + (\delta - 1)|\phi|^2) x, x \rangle. \]

Now, since the essential range of \(\phi \) lies in \(\sigma(A) \), we have by sectoriality

\[2(\text{Re} \phi)^2 \geq 2 \cos^2 \theta \| \phi \|^2 \]

and hence

\[\langle (2(\text{Re} \phi)^2 + (\delta - 1)|\phi|^2) x, x \rangle \geq 0, \]

for \(\delta \geq 1 - 2 \cos^2 \theta. \) \(\Box \)

Now we can derive a converse ISS Lyapunov theorem for a broad class of systems with subnormal generators:

Corollary 5.7. Let \(A \) be a subnormal operator on a Hilbert space \(X \) satisfying \(\sigma(A) \subset S_\theta \setminus \{0\} \), for some \(\theta \in [0, \pi/2) \). Further, let and \(B \in L(\mathbb{C}^n, X^{-1}) \). Then

\[V(x) := -\text{Re} \langle A^{-1} x, x \rangle_X \]

is an ISS Lyapunov function satisfying

\[\dot{V}_u(x) \leq -c_1 \| x_0 \|^2_X + c_2 \| u \|^2_\infty \]

for some constants \(c_1, c_2 > 0 \) and all \(x_0 \in X \) and \(u \in L^\infty([0, \infty), U) \).

Proof. By Proposition 5.5 \(A \) generates an exponentially stable and analytic \(C_0 \)-semigroup of contractions \((T(t))_{t \geq 0}\) and \(B \) is \(\infty \)-admissible for \((T(t))_{t \geq 0}\). Further, Lemma 5.3 guarantees that \(D(A) \subset D(A^*) \). As \(A \) generates a contraction semigroup, the operator \(A \) is dissipative (that is, \(\langle Ax, x \rangle \leq 0 \) for \(x \in D(A) \)). This together with \(0 \in \rho(A) \) implies \(\langle Ax, x \rangle < 0 \) for \(x \in D(A) \setminus \{0\} \).

Furthermore, as \(0 \in \rho(A) \), for all \(y \in D(A) \) there is \(x \in D(A^2) \) so that \(y = Ax \) and applying Proposition 5.6 we obtain

\[0 \leq \text{Re} \langle x, A^2 x \rangle_X + \delta \| Ax \|^2_X \]

\[= \text{Re} \langle A^* A^{-1} y, y \rangle_X + \delta \| y \|^2_X. \]

This shows (5.1).

Hence all assumptions of Proposition 5.1 are satisfied, and application of Proposition 5.1 shows the claim. \(\Box \)

Remark 5.8. The above corollary also holds if we replace \(B \in L(\mathbb{C}^n, X^{-1}) \) by an \(\infty \)-admissible \(B \in L(\mathbb{C}^n, U) \), where \(U \) is a Hilbert space.

5.3. ISS Lyapunov functions for input-to-state stable diagonal systems.

Consider a linear system (2.5) with the state space

\[X = l_2(\mathbb{N}) := \{ x = \{ x_k \}_{k=1}^\infty : \| x \|_X = \left(\sum_{k=1}^{\infty} |x_k|^2 \right)^{1/2} < \infty \}. \]
endowed in the usual way with the scalar product $\langle \cdot, \cdot \rangle$. Let $U := \mathbb{R}$.

Consider an operator $A : X \to X$, defined by $Ae_k = -\lambda_k e_k$, where e_k is the k-th unit vector of $l^2(\mathbb{N})$ and $\lambda_k \in \mathbb{R}$ with $\lambda_k < \lambda_{k+1}$ for all k, $\lambda_1 > \varepsilon > 0$ and $\lambda_k \to \infty$ as $k \to \infty$.

The operator A can be represented using the spectral decomposition

\begin{equation}
Ax := \sum_{k=1}^{\infty} -\lambda_k \langle x, e_k \rangle e_k, \quad x \in D(A),
\end{equation}

with

\begin{equation}
D(A) = \{ x \in l^2(\mathbb{N}) : \sum_{k=1}^{\infty} -\lambda_k \langle x, e_k \rangle e_k \text{ converges} \}.
\end{equation}

We have the following result:

Proposition 5.9. Let A be given by (5.6)-(5.7) and $B \in L(C^m, X_{-1})$. Then (2.5) is ISS and

\begin{equation}
V(x) := \sum_{k=1}^{\infty} -\frac{1}{\lambda_k} \langle x, e_k \rangle^2
\end{equation}

is a non-coercive ISS Lyapunov function for (2.5).

Proof. By assumptions the operator A is self-adjoint with $\sigma(A) \subset (-\infty, 0)$. Thus the assumptions of Corollary 5.7 are satisfied. Furthermore, the inverse of A is given by

\begin{equation}
A^{-1}x := \sum_{k=1}^{\infty} -\frac{1}{\lambda_k} \langle x, e_k \rangle e_k,
\end{equation}

and thus the Lyapunov function (5.5) has the form (5.8). \square

It is easy to see that P (as well as the corresponding ISS Lyapunov function V) is not coercive since $\lambda_k \to \infty$ as $k \to \infty$.

5.4. ISS Lyapunov functions for a heat equation with Dirichlet boundary input. It is well-known that a classical heat equation with Dirichlet boundary inputs is ISS, which has been verified by means of several different methods: [11, 19, 26]. However, no constructions for ISS Lyapunov functions have been proposed. In the next example we show that using Theorem 4.2 one can construct a non-coercive ISS Lyapunov function for this system.

Example 5.10. Let us consider the following boundary control system given by the one-dimensional heat equation on the spatial domain $[0, 1]$ with Dirichlet boundary control at the point 1,

\begin{align*}
x_t(\xi, t) &= ax_{\xi\xi}(\xi, t), \quad \xi \in (0, 1), \ t > 0, \\
x(0, t) &= 0, \quad x(1, t) = u(t), \quad t > 0, \\
x(\xi, 0) &= x_0(\xi),
\end{align*}

where $a > 0$.

We choose $X = L^2(0, 1)$, $U = \mathbb{C}$,

\begin{align*}
Af &= f'', \quad f \in D(A), \\
D(A) &= \{ f \in H^2(0, 1) \mid f(0) = f(1) = 0 \}.
\end{align*}
and $B = a\delta_1$. Here $H^2(0,1)$ denotes the Sobolev space of functions $f \in L^2(0,1)$, which have weak derivatives of order ≤ 2, all of which belong to $L^2(0,1)$. Clearly, A is a self-adjoint operator on X generating an exponentially stable analytic C_0-semigroup on X. Moreover, $B \in X_{-1} = L(U,X_{-1})$ is ∞-admissible, for every $x_0 \in X$ and $u \in L^\infty(0,\infty)$ the corresponding mild solution is continuous and $\kappa(0) = 0$ [11]. Further, in [11] the following ISS-estimates has been shown:

$$\|x(t)\|_{L^2(0,1)} \leq e^{-a\pi^2t}\|x_0\|_{L^2(0,1)} + \frac{1}{\sqrt{3}}\|u\|_{L^\infty(0,t)},$$

$$\|x(t)\|_{L^2(0,1)} \leq e^{-a\pi^2t}\|x_0\|_{L^2(0,1)} + c \left(\int_0^t |u(s)|^p ds \right)^{1/p},$$

for every $x_0 \in X$, $u \in L^\infty(0,\infty)$, $p > 2$ and some constant $c = c(p) > 0$. Direct application of Corollary 5.7 shows that

$$V(x) = -\langle A^{-1}x, x \rangle_X$$

$$= \int_0^1 \left(\int_0^1 (\xi - \tau) x(\tau) d\tau \right) x(\xi) d\xi$$

is a non-coercive ISS Lyapunov function for the one-dimensional heat equation on the spatial domain $[0,1]$ with Dirichlet boundary control at the point 1.

6. Conclusions.

In this paper we have investigated the question to what extent the existence of a non-coercive ISS Lyapunov function implies that a forward complete system is input-to-state stable (ISS). It was shown that the property of integral-to-integral ISS follows from the existence of such Lyapunov functions for a large class of systems. In order to arrive at ISS, further assumptions are necessary, namely the continuity of the flow map near the equilibrium and boundedness of finite-time reachability sets. These assumptions are related to questions of the richness of the possible dynamics both close to the origin and in the large.

Non-coercive Lyapunov functions are to some extent natural in infinite dimensions. Already Datko’s construction of quadratic Lyapunov functions $V(x) = \langle Px, x \rangle$ for exponentially stable linear systems on Hilbert space generally leads to non-coercive Lyapunov functions. In this paper we show that under some additional conditions, which relate the generator of a semigroup and an operator P, this function V is a non-coercive ISS Lyapunov function for a linear system with any ∞-admissible input operator. Furthermore, we have shown in this paper that for broad classes of linear systems with unbounded input operators (including analytic systems with subnormal generators) the construction of Lyapunov functions using the resolvent at 0 as an operator P is a natural choice and one that leads to noncoercive Lyapunov functions. As an example we have constructed an ISS Lyapunov function for a heat equation with a Dirichlet boundary input, which seems to be the first construction of an ISS Lyapunov function for this system, which was widely studied by non-Lyapunov methods.

In a future work we plan to extend the class of systems for which explicit constructions are possible and to deepen our understanding of noncoercive ISS Lyapunov functions.

REFERENCES

[1] A.B. Parel and S. Bhatt. On unbounded subnormal operators. *Proc. Indian Acad. Sci. (Math. Sci.)*, 99(1):85–92, 1989.
Non-coercive Lyapunov functions for ISS of infinite-dimensional systems

[2] M. Arcak and P. Kokotović. Nonlinear observers: a circle criterion design and robustness analysis. *Automatica*, 37(12):1923–1930, 2001.

[3] T. Cazenave and A. Haraux. *An Introduction to Semilinear Evolution Equations*. Oxford University Press, New York, 1998.

[4] J. B. Conway. *A Course in Functional Analysis*. Springer-Verlag, New York, 1990.

[5] R. F. Curtain and H. Zwart. *An Introduction to Infinite-Dimensional Linear Systems Theory*. Springer-Verlag, New York, 1995.

[6] S. Dashkovskiy and A. Mironchenko. Input-to-state stability of infinite-dimensional control systems. *Mathematics of Control, Signals, and Systems*, 25(1):1–35, 2013.

[7] S. Dashkovskiy, B. Rüffer, and F. Wirth. Small gain theorems for large scale systems and construction of ISS Lyapunov functions. *SIAM Journal on Control and Optimization*, 48(6):4089–4118, 2010.

[8] K.-J. Engel and R. Nagel. *One-Parameter Semigroups for Linear Evolution Equations*, volume 194 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 2000. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt.

[9] R. A. Freeman and P. V. Kokotovic. *Robust Nonlinear Control Design: State-Space and Lyapunov Techniques*. Birkhäuser, Boston, MA, 2008.

[10] L. Grüne, E. Sontag, and F. Wirth. Asymptotic stability equals exponential stability, and ISS equals finite energy gain — if you twist your eyes. *Systems & Control Letters*, 38(2):127–134, 1999.

[11] B. Jacob, R. Nabiullin, J. R. Partington, and F. L. Schwenninger. Infinite-dimensional input-to-state stability and Orlicz spaces. *SIAM Journal on Control and Optimization*, 56(2):868–889, 2018.

[12] B. Jacob, J. R. Partington, S. Pott, and A. Wynn. β-admissibility of observation operators for hypercontractive semigroups. *Journal of Evolution Equations*, 18(1):153–170, 2018.

[13] B. Jacob, F. L. Schwenninger, and H. Zwart. On continuity of solutions for parabolic control systems and input-to-state-stability. *Journal of Differential Equations*, 266:6284–6306, 2019.

[14] B. Jacob and H. J. Zwart. *Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces*. Springer, Basel, 2012.

[15] B. Jayawardhana, H. Logemann, and E. P. Ryan. Infinite-dimensional feedback systems: the circle criterion and input-to-state stability. *Communications in Information and Systems*, 8(4):413–444, 2008.

[16] B. Jayawardhana, H. Logemann, and E. P. Ryan. Input-to-state stability of differential inclusions with applications to hysteretic and quantized feedback systems. *SIAM Journal on Control and Optimization*, 48(2):1031–1054, 2009.

[17] Z.-P. Jiang, A. R. Teel, and L. Praly. Small-gain theorem for ISS systems and applications. *Mathematics of Control, Signals, and Systems*, 7(2):95–120, 1994.

[18] I. Karafyllis and Z.-P. Jiang. *Stability and Stabilization of Nonlinear Systems*. Springer-Verlag, London, 2011.

[19] I. Karafyllis and M. Krstic. ISS with respect to boundary disturbances for 1-D parabolic PDEs. *IEEE Transactions on Automatic Control*, 61(12):3712–3724, 2016.

[20] I. Karafyllis and M. Krstic. Small-gain stability analysis of certain hyperbolic–parabolic PDE loops. *Systems & Control Letters*, 118:52–61, 2018.

[21] I. Karafyllis and M. Krstic. *Input-to-State Stability for PDEs*. Springer, 2019.

[22] C. M. Kellett and P. M. Dower. Input-to-state stability, integral input-to-state stability, and L_2-gain properties: Qualitative equivalences and interconnected systems. *IEEE Transactions on Automatic Control*, 61(1):3–17, 2016.

[23] Y. Lin, E. D. Sontag, and Y. Wang. A smooth converse Lyapunov theorem for robust stability. *SIAM Journal on Control and Optimization*, 34(1):124–160, 1996.

[24] A. Mironchenko. Criteria for input-to-state practical stability. *IEEE Transactions on Automatic Control*, 64(1):298–304, 2019.

[25] A. Mironchenko and H. Ito. Construction of Lyapunov functions for interconnected parabolic systems: An iISS approach. *SIAM Journal on Control and Optimization*, 53(6):3364–3382, 2015.

[26] A. Mironchenko, I. Karafyllis, and M. Krstic. Monotonicity methods for input-to-state stability of nonlinear parabolic PDEs with boundary disturbances. *SIAM Journal on Control and Optimization*, 57(1):510–532, 2019.

[27] A. Mironchenko and C. Prieur. Input-to-state stability of infinite-dimensional systems: recent results and open questions. *Submitted to SIAM Review*, 2019.

[28] A. Mironchenko and F. Wirth. Characterizations of input-to-state stability for infinite-
Non-coercive Lyapunov functions for ISS of infinite-dimensional systems. *IEEE Transactions on Automatic Control*, 63(6):1602–1617, 2018.

[29] A. Mironchenko and F. Wirth. Lyapunov characterization of input-to-state stability for semilinear control systems over Banach spaces. *Systems & Control Letters*, 119:64 – 70, 2018.

[30] A. Mironchenko and F. Wirth. Non-coercive Lyapunov functions for infinite-dimensional systems. *Journal of Differential Equations*, 105:7038–7072, 2019.

[31] N. Noroozi, A. Khayatian, and H. R. Karimi. Semiglobal practical integral input-to-state stability for a family of parameterized discrete-time interconnected systems with application to sampled-data control systems. *Nonlinear Analysis: Hybrid Systems*, 17:10–24, 2015.

[32] A. Pazy. *Semigroups of Linear Operators and Applications to Partial Differential Equations*. Springer-Verlag, New York, 1983.

[33] C. Prieur and F. Mazenc. ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws. *Mathematics of Control, Signals, and Systems*, 24(1-2):111–134, 2012.

[34] J. Schmid. Weak input-to-state stability: characterizations and counterexamples. *arXiv preprint arXiv:1807.08950*, 2018.

[35] Y. Sharon and D. Liberzon. Input to state stabilizing controller for systems with coarse quantization. *IEEE Transactions on Automatic Control*, 57(4):830–844, 2012.

[36] E. D. Sontag. Smooth stabilization implies coprime factorization. *IEEE Transactions on Automatic Control*, 34(4):435–443, 1989.

[37] E. D. Sontag. Comments on integral variants of ISS. *Systems & Control Letters*, 34(1-2):93–100, 1998.

[38] J. Szarski. *Differential Inequalities*. Polish Sci. Publ. PWN, Warszawa, Poland, 1965.

[39] A. Tanwani, C. Prieur, and S. Tarbouriech. Stabilization of linear hyperbolic systems of balance laws with measurement errors. In *Control subject to computational and communication constraints*, pages 357–374. Springer, 2018.

[40] J. Weidmann. *Linear Operators in Hilbert Spaces*. Graduate texts in mathematics; 68. Springer-Verlag, 1980.

[41] G. Weiss. Admissibility of unbounded control operators. *SIAM Journal on Control and Optimization*, 27(3):527–545, 1989.

[42] J. Zheng and G. Zhu. A De Giorgi iteration-based approach for the establishment of ISS properties for Burgers’ equation with boundary and in-domain disturbances. *Accepted to IEEE Transactions on Automatic Control*, 2018.

[43] J. Zheng and G. Zhu. Input-to-state stability with respect to boundary disturbances for a class of semi-linear parabolic equations. *Automatica*, 97:271–277, 2018.