SHORT TERM OUTCOMES OF ACUTE CHOLECYSTITIS MANAGED AT A UNIVERSITY HOSPITAL

Munirah Fetaini¹, MBBS, Hatan Mortada¹, MBBS, Wafa AlQethmi¹, MBBS, Shahd Al Aslany¹, MBBS, Nora Trabulsi², FRCPC, Mohammed Nassif ², FRCPC

¹ Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
² Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.

Abstract:
The aim of our retrospective study was to assess the different outcomes of early (performed on the patient’s first admission for acute cholecystitis) and delayed cholecystectomy (done on a second admission) at King Abdulaziz University Hospital in Jeddah, Saudi Arabia.

Methods: Data were collected retrospectively from our hospital electronic medical records data system. All adult patients presented to the emergency department with acute cholecystitis, between January 2010 to April 2018 were included in the study. The data were composed of 37 variables divided into four main parts: demographics, current presentation related variables, hospitalization and type of surgical procedure, progress while in hospital and patient’s outcome after discharge.

Results: Eighty-eight patients (70.5% females) were included in the study. Sixty-six patients received surgery in their first admission (mean age 42.56 years; median BMI 24.22 kg/m²). Twenty-two patients underwent surgery during their second admission (mean age 43.68 years; median BMI 26.89 kg/m²). The median duration of surgery was the same for both admission groups (120 min). Time from admission to surgery was longer in the first admission group, 48 h, compared to 36 h in the second admission group. Length of hospital stay after surgery was very similar in both groups: median (range) in the first admission group was 2 (1–30) days, and in the second 1.5 (1–14) days.

Conclusion: We found that patients who are overweight are more likely to have their surgery during a second admission, likely indicating that surgeons shy away from operating on patients with higher body mass indexes.

Keywords: Acute cholecystitis; Cholecystectomy; overweight; BMI; early; delayed.

Corresponding author:
Munirah Fetaini,
Medical Intern, Faculty of Medicine,
King Abdulaziz University, Jeddah, Saudi Arabia.
Email: Munirahfetaini@gmail.com.

Please cite this article in press Munirah Fetaini et al., Short Term Outcomes of Acute Cholecystitis Managed At a University Hospital,, Indo Am. J. P. Sci, 2019; 06(01).
INTRODUCTION:
Acute cholecystitis (AC) is a common gastrointestinal disease requiring hospital admission [1,2]. It is more frequent in women, during pregnancy, and with obesity, rapid weight loss, exogenous estrogens, hemolytic disease, hepatic cirrhosis, biliary tree infections, and hypercholesterolemia [3]. Approximately 10% of patients with gallstones will exhibit biliary symptoms within five years after diagnosis, and one quarter will eventually undergo surgery [4,5].

The options for managing AC include early cholecystectomy, which remains the only definitive treatment, and conservative management with antibiotics and interval cholecystectomy within 6 to 8 weeks, and patients who fail to improve are referred to either percutaneous cholecystostomy or surgery [6,7]. Percutaneous cholecystectomy is preferred for elderly and high-risk patients with severe comorbidities such as chronic obstructive pulmonary disease, ischemic heart disease, and uncontrolled diabetes mellitus [8-11]. The choice depends on patient condition, surgical expertise and hospital policy [12].

Early laparoscopic cholecystectomy is difficult because of edema, exudate, friability of tissues, adhesions with adjoining structures, and unclear vascular and ductal anatomy. These factors predispose patients to higher conversion rates to open cholecystectomy [13,14]. Delayed cholecystectomy, on the other hand, increases the risk for gallstone complications and additional hospital admissions [15].

The aim of this study was to assess the difference in characteristics and outcome between patients who had early versus delayed cholecystectomy for acute cholecystitis at King Abdulaziz University Hospital (KAUH) in Jeddah, Saudi Arabia.

MATERIALS AND METHODS:
Study design and data collection:

The data were collected retrospectively from the electronic medical records data system at KAUH. We included all adult patients who presented to the Emergency Department of KAUH with an acute cholecystitis between January 2010 and April 2018. The variables were formulated on the basis of our own study objectives and available articles with similar objectives. This study was approved by the Institutional Review Board of KAUH and the Research Ethics Committee of King Abdulaziz University, Jeddah, Saudi Arabia.

Patient- and disease-related variables:

The collected data were composed of 37 variables divided into four main parts: demographics, presentation-related variables, hospitalization and type of surgical procedure, and progress and patient outcome after discharge. The first part focused on demographic information, such as sex, age, nationality, marital status, level of education, and smoking status. The second part included variables related to the patient’s presentation at admission. The third part included hospital course and type of surgical procedure, if done. The fourth part related to the patient’s progress and outcome after discharge.

Statistical methods:

Statistical analysis was performed using IBM SPSS statistics version 20.0. Shapiro-Wilk test was used to test the normality of the study sample. Non-parametric Mann-Whitney Test was applied to determine statistical significance.

RESULTS:

The number of patients included in our study was 88. Sixty-six patients had surgery in their first hospital admission: mean (SD) age 42.56 (15.66) years, median BMI 24.22 kg/m2 (range, 13.77 – 41.55). Twenty-two patients had surgery during their second admission: mean (SD) age 43.68 (14.22) years, and median BMI 26.89 kg/m2 (range, 15.66 – 37.73). The majority of patients in our study were women, 62 (70.5%), and of Saudi nationality 62 (70.5%). Only 34 (38.6%) patients had a chronic illness, diabetes being the most frequent, 14 (15.9%).

For the purpose of comparison, we grouped the patients based on when they had their surgery (during first admission or second). Table 1 shows a detailed comparison of patient demographics and characteristics between first and second-admission groups. When comparing patient BMI between the two groups, most patients in the first-admission group fell into the normal BMI range. However, most patients in the second group were overweight (Figure 1).

When patients were grouped by BMI cutoff of 25 kg/m2, a much higher proportion of patients in the second-admission group had a BMI ≥ 25 kg/m2, P = 0.073, likely because of the small sample size (figure 2). This was also evident when we compared readmission within 30 days, P =0.03, (Figure 3).
Clinical and radiological presentation:
When comparing clinical and radiological characteristics (Tables 2 and 3, respectively), there was no significant difference except for wall thickening which was found more frequently in patients who underwent surgery during their second admission, 16 (72.7%), compared to those who had it in their first admission, 28 (42.4%), $P = 0.014$.

Table 4 shows variables related to the surgical procedure. The median duration of surgery was the same for both admission groups (120 min), with varying ranges, and the time interval from admission to surgery was longer in the first-admission group. The majority of the patients in both groups underwent laparoscopic cholecystectomy without requiring conversion to open surgery. Postoperative ICU admission, blood transfusion, and length of hospital stay after surgery are also shown.

DISCUSSION:
Despite the evidence and the consensus of the experts on the timing of cholecystectomy, there is still a considerable variation in practice[16]. The factors that contribute to patients undergoing cholecystectomy during a second hospital admission include the experience of the surgeon; the presentation of the patient to hospital, whether during day or night; duration of symptoms more than 72 hours; operating theater availability; as well as skilled staff availability[6,15].

Consistent with findings by Barceló et al.[17], we found no statistically significant difference in patient demographics and characteristics between the first- and second-admission groups, which likely did not affect the decision for cholecystectomy in the first-admission group.

The majority of patients in our study who underwent surgery during their first admission had normal BMI indexes. More patients who had surgery in their second admission were overweight. Other studies showed no great difference[18-20].

In a prospective, randomized study by Agrawal et al.[12], no statistically significant difference in clinical and radiological characteristics was found between first- and second-admission groups except for gallbladder-wall thickening ($P = 0.032$). Our study also found wall thickening more frequently in patients who had surgery during their second admission ($P = 0.014$).

The median duration of surgery in the first-admission group was the same as for the second-admission group. This was consistent with a number of past studies that found no statistically significant difference in the duration of surgery between both groups[12,21]. One meta-analysis, however, concluded that surgery took longer in the first admission[22].

The majority of patients in both groups underwent laparoscopic cholecystectomy without requiring conversion to open cholecystectomy. Several studies support this finding[12, 21-23]. More patients required blood transfusion in the first-admission group compared to the second, however the difference was not significant, other studies have shown similar results[12,22]. Length of hospital stay after the operation was almost the same for both admission groups in our sample. The literature[12, 21-24], however, shows studies where patients who had surgery during their first admission had significantly shorter hospital stays.

Six patients needed readmission within 30 days in the second-admission group, four of them required emergency cholecystectomy during their interval waiting time, this disadvantage was also found by other studies[12, 21-23].

The limitations of this study include that it was based on retrospective review of patient records and that the sample size was small—KAUH is an educational hospital with limited capacity and not all types of cases are accepted for admission as in public hospitals.

CONCLUSION:
We found that patients who are overweight are more likely to have their surgery on a second admission which likely indicates that surgeons shy away from operating on patients with higher body mass indexes.

Conflict of Interest
The authors report no conflicts of interest

Disclosure
None of the authors received any type of commercial support either in form of compensation or financial for this study. The authors have no financial interest in any of the products, devices, or drugs mentioned in this article.

Ethical Approval

Conflict of Interest
The authors report no conflicts of interest

Disclosure
None of the authors received any type of commercial support either in form of compensation or financial for this study. The authors have no financial interest in any of the products, devices, or drugs mentioned in this article.

Ethical Approval
This study was approved by the Institutional Review Board of KAUH and the Research Ethics Committee of King Abdulaziz University, Jeddah, Saudi Arabia.

Acknowledgments

We would like to thank the following data collectors who participated with us in the collection of the data: Amjaad Abubaker Bin Ghanem, Rayan Atif Ghurab, Hotoun Fayez Bokhari, Batool Ali AlKhazal, Esraa Abdulrahman Alshahrani, Abualelah Ibrahim Kinkar, Omar Mohammed Alharbi, Fatemah Adnan Alhalawani, Mohammed Abdullah AlZahrani, Shahad Taha Matasif

REFERENCES:

1. Russo MW, Wei JT, Thiny MT, Gangarosa LM, Brown A, Ringel Y, et al. Digestive and liver diseases statistics, 2004. Gastroenterology. 2004 May 1;126(5):1448-53.

2. Williams JG, Roberts SE, Ali MF, Cheung WY, Cohen DR, Demery G, et al. Gastroenterology services in the UK. The burden of disease, and the organisation and delivery of services for gastrointestinal and liver disorders: a review of the evidence. Gut. 2007 Feb;56(1):1-113.

3. Schirmer BD, Winters KL, Edlich R. Cholelithiasis and cholecystitis. J Long Term Eff Med Implants. 2005;15(3):329-38.

4. NIH Consensus Statement. Gallstones and laparoscopic cholecystectomy. NIH Consensus Statement 1992;10:1-28.

5. Attili AF, De Santis A, Capri R, Repice AM, Maselli S, Group G. The natural history of gallstones: the GREPCO experience. Hepatology. 1995 Mar;21(3):655-60.

6. Papi C, D’Ambrosio L, Capurso L. Timing of cholecystectomy for acute calculous cholecystitis: a meta-analysis. Am J Gastroenterol 2004 Jan;99(1):147-55.

7. Bagla P, Sarria JC, Riall TS. Management of acute cholecystitis. Current Opinion in Infectious Diseases. 2016 Oct 1;29(5):508-13.

8. Macri A, Scuderi G, Saladino E, Trimarchi G, Terranova M, Versaci A, et al. Acute gallstone cholecystitis in the elderly: treatment with emergency ultrasonographic percutaneous cholecystostomy and interval laparoscopic cholecystectomy. Surg Endosc. 2006 Jan;20(1):88-91.

9. Lyass S, Perry Y, Venturero M, Muggia-Sullam M, Eid A, Durst A, et al. Laparoscopic cholecystectomy: what does affect the outcome? A retrospective multifactorial regression analysis. Surg Endosc. 2000 Jul;14(7):661-5.

10. Teoh WM, Cade RJ, Banting SW, Mackay S, Hassen AS. Percutaneous cholecystostomy in the management of acute cholecystitis. ANZ J Surg. 2005 Jun;75(6):396-8.

11. Welschbillig-Meunier K, Pessaux P, Lebigot J, Lermite E, Aube C, Brehant O, et al. Percutaneous cholecystostomy for high-risk patients with acute cholecystitis. Surg Endosc. 2005 Sep;19(9):1256-9.

12. Agrawal R, Sood KC, Agarwal B. Evaluation of early versus delayed laparoscopic cholecystectomy in acute cholecystitis. Surg Res Pract. 2015;2015.

13. Nagle AP, Soper NJ, Hines JR. Cholecystectomy (open and laparoscopy) In: Zinner MJ, Asmhley SW, editors. Maingot’s: Abdominal Operations. 11th. New York, NY, USA: McGraw-Hill; 2007. pp. 847–861.

14. Serralta AS, Bueno JL, Planells MR, Rodero DR. Prospective evaluation of emergency versus delayed laparoscopic cholecystectomy for early cholecystitis. Surg Laparosc Endosc Percutan Tech. 2003 Apr 1;13(2):71-5. doi: 10.1097/00129689-200304000-00002.

15. Lo CM, Liu CL, Fan ST, Lai EC, Wong J. Prospective randomized study of early versus delayed laparoscopic cholecystectomy for acute cholecystitis. Ann Surg. 1998 Apr;227(4):461-7.

16. De Mestral C, Rotstein OD, Laupacis A, Hoch JS, Zagorski B, Alali AS, Nathens AB. Comparative operative outcomes of early and delayed cholecystectomy for acute
cholecystitis: a population-based propensity score analysis. Ann Surg. 2014 Jan 1;259(1):10-5. doi:10.1097/SLA.0b013e3182a5cf36

17. Barceló M, Cruz-Santamaría DM, Alba-López C, Devesa-Medina MJ, Díaz-Rubio M, Rey E. Advantages of early cholecystectomy in clinical practice of a tertiary care center. Hepatobiliary Pancreat Dis Int. 2013 Feb 15;12(1):87-93. doi:10.1016/j.hpd.2013.02.002

18. Lee AY, Carter JJ, Hochberg MS, Stone AM, Cohen SL, Pachter HL. The timing of surgery for cholecystitis: a review of 202 consecutive patients at a large municipal hospital. The Am J Surg. 2008 Apr 1;195(4):467-70. doi:10.1016/j.amjsurg.2007.04.015

19. Lo CM, Liu CL, Fan ST, Lai EC, Wong J. Prospective randomized study of early versus delayed laparoscopic cholecystectomy for acute cholecystitis. Ann Surg. 1998 Apr;227(4):461-7.

20. Stevens KA, Chi A, Lucas LC, Porter JM, Williams MD. Immediate laparoscopic cholecystectomy for acute cholecystitis: no need to wait. Am J Surg. 2006 Dec 1;192(6):756-61. doi:10.1016/j.amjsurg.2006.08.040

21. Menahem B, Mulliri A, Fohlen A, Guittet L, Alves A, Lubrano J. Delayed laparoscopic cholecystectomy increases the total hospital stay compared to an early laparoscopic cholecystectomy after acute cholecystitis: an updated meta-analysis of randomized controlled trials. HPB. 2015 Oct;17(10):857-62. doi:10.1111/hpb.12449

22. Cao AM, Eslick GD, Cox MR. Early Cholecystectomy is Superior to Delayed Cholecystectomy for Acute Cholecystitis: a Meta-analysis. J Gastrointest Surg. 2015 May;19(5):848-57. doi:10.1007/s11605-015-2747-x

23. Taha AM, Mohamed Yousef A, Gaber A. Early Versus Delayed Laparoscopic Cholecystectomy for Uncomplicated Acute Cholecystitis. Journal of Surgery. 2016;4(3-1):29-33. doi:10.11648/j.js.2016040301.16

24. Cheng WC, Chiu YC, Chuang CH, Chen CY. Assessing clinical outcomes of patients with acute calculous cholecystitis in addition to the Tokyo grading: a retrospective study. Kaohsiung J Med Sci. 2014 Sep 1;30(9):459-65. doi:10.1016/j.kjms.2014.05.005
Table 1: Demographic characteristics of patients

	First Admission N (%)	Second Admission N (%)	P value
Gender:			
- Female	44 (66.7%)	18 (81.8%)	1.39
- Male	22 (33.3%)	4 (18.2%)	
Nationality:			
- Saudi	50 (75.8%)	12 (54.5%)	0.055
- Non-Saudi	16 (24.2%)	10 (45.5%)	
Marital status:			
- Single	10 (15.2%)	5 (22.7%)	
- Married	47 (71.2%)	13 (59.1%)	$
- Other	9 (13.6%)	4 (18.2%)	
BMI Group:			
- Underweight	6 (10.0%)	1 (4.8%)	
- Normal	24 (40.0%)	5 (23.8%)	$
- Overweight	12 (20.0%)	8 (38.1%)	
- Obese Class I	8 (13.3%)	5 (23.8%)	
- Obese class II/III	10 (16.7%)	2 (9.5%)	
BMI Group:			
- ≤ 24.99	30 (50.0%)	6 (28.6%)	0.073
- > 25	30 (50.0%)	15 (71.4%)	
Smoking:			
- Yes	6 (12.2%)	1 (6.2%)	0.445
- No	43 (87.8%)	15 (93.8%)	
Chronic Illness:			
- Yes	26 (39.4%)	8 (36.4%)	0.800
- No	40(60.6%)	14 (63.6%)	
Diabetes:			
- Yes	10 (15.2%)	4 (18.2%)	0.484
- No	56 (84.8%)	18 (81.8%)	
Sickled Cell:			
- Yes	3 (4.5%)	1 (4.5%)	0.741
- No	63 (95.5%)	21 (95.5%)	

$, P value could not be computed as >20% of cells had counts less than 5; BMI, body mass index.
Table 2: Symptoms and signs documented during patient presentation to the hospital

	First Admission N (%)	Second Admission N (%)	P value
Abdominal Pain:			
- Yes	61 (92.4%)	22 (100%)	0.228
- No	5 (7.6%)	0 (0%)	
Nausea:			
- Yes	33 (50%)	13 (59.1%)	0.460
- No	33 (50%)	9 (40.9%)	
Vomiting:			
- Yes	41 (62.1%)	16 (72.2%)	0.367
- No	25 (37.9%)	6 (27.3%)	
Fever at Home:			
- Yes	12 (23.1%)	4 (21.1%)	0.566
- No	40 (76.9%)	15 (78.9%)	
Fever at Hospital:			
- Yes	5 (7.6%)	1 (4.5%)	0.530
- No	61 (92.4%)	21 (95.5%)	
Relation to Food:			
- Yes	30 (66.7%)	16 (84.2%)	0.154
- No	15 (33.3%)	3 (15.8%)	
Tachycardia:			
- Yes	15 (22.7%)	2 (9.1%)	0.136
- No	51 (77.3%)	20 (90.9%)	

Table 3: Comparison of radiological findings between first- and second-admission groups

	First Admission N (%)	Second Admission N (%)	P value
Stones or Sludge:			
- Yes	49 (86.0%)	20 (100%)	0.079
- No	8 (14.0%)	0 (0%)	
Dilated CBD			
- Yes	14 (24.6%)	7 (35.0%)	0.367
- No	43 (75.4%)	13 (65.0%)	
Pericholecystic Fluid:			
- Yes	14 (21.2%)	5 (22.7%)	0.548
- No	52 (78.8%)	17 (77.3%)	
Size of largest stone (cm)			
	1.7600	2.0000	0.926
Wall Thickening:			
- Yes	28 (42.4%)	16 (72.7%)	0.014
- No	38 (57.6%)	6 (27.3%)	
GB Distension:			
- Yes	29 (43.9%)	12 (54.5%)	0.388
- No	37 (56.1%)	10 (45.5%)	
US Murphy’s sign:			
- Yes	15 (22.7%)	4 (18.2%)	0.452
- No	51 (77.3%)	18 (81.8%)	

Abbreviations: CBD, common bile duct; GB, gallbladder; US, ultrasound.
Table 4: Comparison of variables related to the surgical procedure between both groups

	First Admission N (%)	Second Admission N (%)	P value
Type of surgery:			
- Laparoscopic cholecystectomy	62 (93.9%)	20 (90.9%)	0.470
- Laparoscopic cholecystectomy converted to open	4 (6.1%)	2 (9.1%)	
Blood Transfusion:			
- Yes	4 (6.6%)	1 (4.5%)	0.600
- No	57 (93.4%)	21 (95.5%)	
ICU admission:			
- Yes	0	1 (4.5%)	0.250
- No	66 (100%)	21 (95.5%)	
Duration of Surgery			
Minutes (range)	120 (15-285)	120 (45-300)	0.547
Time to OR (hours)	48	36	0.503
Length of stay after surgery	2 (1-30)	1.50 (1-14)	0.484

Abbreviations: OR, operating room; ICU, intensive care unit

Figure 1: Body mass index distribution and comparison between both groups.
Figure 2: Distribution of patients according to body mass index cutoff of 25 kg/m².

Figure 3: Patient readmission within 30 days according to body mass index cutoff of 25.