HIF-1α rs11549465 C>T polymorphism contributes to increased cancer susceptibility: Evidence from 49 studies

Hu-Nian Li1*, Ting He2*, Yong-Jiu Zha1, Fang Du1, Jie Liu1, Hui-Ran Lin3, Wen-Zi Yang1

1. Emergency and Critical Care Center, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China.
2. Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China.
3. Animal Experimental Management Center, Public Technology Service Platform, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.

*These authors contributed equally to this work.

Abstract

HIF-1α (hypoxia-inducible factor-1α) is a transcriptional factor that participates in the regulation of oxygen homeostasis. Despite the substantial number of case-control studies working in this area, the actual relationship of HIF-1α gene generic variant rs11549465 C>T imposing on cancer susceptibility remains unclear. To get a better understanding of such relationship, this meta-analysis was carried out by incorporating all eligible case-control studies. Qualified articles were acquired from PubMed, CNKI, EMBASE, PMC, and Wanfang database update to April 2019. Odds ratios (ORs) and their corresponding 95% confidence intervals (CIs) were employed to estimate the relationship of interest. Heterogeneity tests, sensitivity analyses and publication bias assessments were also carried out to ensure the strength of our conclusion. A total of 46 articles with 49 studies including 12920 cases and 13363 controls were included. The results indicated that HIF-1α rs11549465 C>T was significantly related to the increased risk of overall cancer under four genetic models (TT vs. CC: OR=2.06, 95% CI=1.34-3.16; TT vs. CC/CT: OR=2.42, 95% CI=1.60-3.65; CT/TT vs. CC: OR=1.21, 95% CI=1.04-1.40; T vs. C: OR=1.29, 95% CI=1.12-1.48). Furthermore, enhanced cancer risk was detected after stratification by cancer type, ethnicity, the source of controls and HWE. These results suggest that HIF-1α rs11549465 C>T polymorphism may predispose to cancer susceptibility.

Key words: HIF-1α; rs11549465 C>T; polymorphism; cancer; susceptibility

Introduction

Cancer ranks itself the leading causes of death around the world. In 2019, 1,762,450 new cancer cases and 606,880 cancer deaths are projected to occur in the United States. It has become a universal public health issue [1]. The most distinguished feature of cancer, un-controlled cell proliferation being one of them, is that it can assault the other vicinal parts of the body and diffuse to other organs. We refer this process to metastases, and this process could later evolve into a major cause of death from cancer. The exact etiology of carcinogenesis has not been fully verified [2]. More and more evidence point to genetic variation in contributing to the initiation and progression of cancer [3, 4]. However, due to cancer’s complexity in nature, with heterogeneity being one of is feature, identification of this susceptibility is still a puzzle for us and most correlation has not been ascertained. On the other hand, during the decades, it has become universally agreed that single nucleotide polymorphisms (SNPs) are a common type of genetic variations that is the most frequently studied in connection with cancer susceptibility and that it consequently can act as the markers of many cancers [5].
Hypoxia possesses a vital role in the maintenance of tumor microenvironments. Hypoxic tumor microenvironment triggers extensive cellular responses, such as angiogenesis, proliferation and invasion [6]. By adjusting the oxygen pressure that results in gene alteration, hypoxia may control tumor cell phenotypes [6]. Hypoxia-inducible factor 1 (HIF-1) is a major transcriptional regulator implicated in homeostasis of oxygen. Koshiji et al. illustrated that HIF-1 leads to genetic instability by restraining the DNA mismatching repair system (MSH2 and MSH6) [7]. HIF-1 is a dimeric protein complex that possesses two components known as α and β subunits [8]. Studies have demonstrated that HIF-1α plays a vital role in activating various genes that is significantly involved with cell adhesion, erythropoiesis, angiogenesis and glucose transportation in the process of cancer development and progress [9].

Mounting evidence provided that featuring a high tumor grade, HIF-1α is over-stated in numbers of human cancers, indicating that HIF-1α functions as an independent element of cancer prognosis [10]. HIF-1α has been a research hot spot and numerous SNPs in HIF-1α were identified, whose polymorphism known as 1772 C>T (rs11549465 C>T, Pro582Ser), having been the most widely investigation polymorphism. rs11549465 C>T is a nonsynonymous SNP. Compared to the wild type, this polymorphic variant can tremendously enhance transcriptional activity in both normoxic and hypoxic environment in in-vitro studies [11]. Moreover, HIF-1α rs11549465 C>T is linked to increased tumor microvesSEL density which makes contribution to the cancer progression. HIF-1α rs11549465 C>T polymorphism was previously investigated in various types of cancer. Nevertheless, the conclusions obtained from previous epidemiological studies are inconsistent and contradictory. Thus, the relationship between HIF-1α rs11549465 C>T polymorphism and cancer risk requires further exploration. Herein, we performed this more comprehensive meta-analysis on selected case-control studies in the aim of giving a more thorough demonstration of the association of HIF-1α rs11549465 C>T polymorphism with cancer risk.

Materials and Methods

Publication search

We systematically searched EMBASE, PubMed, PMC, Wanfang and CNKI to retrieve relatively pertinent publications based on case-control studies (update to March 18, 2019). No language restriction is made for this analysis. The search terminology involved were as listed: 1) hypoxia-inducible factor-1 or HIF-1α or rs11549465 or 1772 C>T; 2) SNPs or polymorphisms or polymorphism or variants; 3) cancer or carcinoma or neoplasm or tumor. To acquire all qualified publications, we also reviewed the references of the selected studies.

Eligibility criteria

Impertinent and irrelevant studies were excluded on primary stage. Elimination criteria were: if 1) the study population was not mapped out; 2) it is not case-control study; 3) lack of information in allele frequency. Other than that, editorials, reviews and meta-analysis were ruled out. Only case-control studies with detailed number of different genotypes for estimating odds ratios (ORs) with 95% confidence intervals (CIs) were taken into the final analysis.

Data extraction

Two authors (Hu-Nian Li and Ting He) were arranged to extract information of all the articles respectively. Items listed below were extracted from every single study: 1) authors name; 2) publication year; 3) ethnicity of the study subject; 4) cancer type; 5) allelic frequency; 6) quality score. Studies with scores ≤9 were of low quality, whereas those with scores >9 were of high quality [12, 13]. All the disputable parts were compromised by discussion before consensus was made finally.

Statistical methods

We first performed Hardy-Weinberg equilibrium (HWE) for the controls utilizing the goodness-of-fit test. Homozygous model, heterozygous model, recessive model, dominant model, and allele model were employed to determine the relationship between HIF-1α rs11549465 C>T polymorphism and cancer risk by calculating ORs with the corresponding 95% CIs. Moreover, we conducted the stratification analysis by ethnicity, cancer type, source of control, and HWE in controls. We also used Chi square-base Q-test to gauge the presence of heterogeneity. The fixed-effect model was used to compute the pooled OR, given the studies were confirmed to be homogeneous (P>0.10 for the Q test). Or the random-effect model should be used instead. Sensitivity analysis was undertaken on the base of re-calculation of the ORs and 95% CIs by excluding each study individually. In order to detect the presence of publication bias, Begg’s funnel plot and Egger’s linear regression were adopted simultaneously. We also performed the trial sequential analysis (TSA) to avoid the random errors caused by repeated significance testing and dispersed data [13]. Version 11.0 STATA (Stata Corporation, College Station, TX) was selected to generate all statistical analysis. All the statistics were two-sided with P value <0.05 as a baseline significant finding.
Results

Study characteristics

The study workflow was graphically displayed in Figure 1. We first collected 196 articles of the interest by a comprehensive search in the above-mentioned databases. After a basic check-up on articles relevance and abstracts conciseness, 156 articles were ruled out, which left us a total of 40 articles for full text assessment. To expand its sample size to ensure statistical representativeness, we identified another 6 articles from retrieve studies, quantity adding up to 46 articles in total [14-59]. Ultimately, 46 articles with 49 studies were contained in this analysis. A total of 12920 cases and 13363 controls was enrolled into this study for analyzing (Table 1).

Quantitative analysis

The quantitative results of the meta-analysis were displayed in Table 2 and Figure 2. The results concluded that the rs11549465 C>T polymorphism was significantly related to the increased risk of overall cancer under homozygous model (TT vs. CC: OR=2.06, 95% CI=1.34-3.16), recessive model (TT vs. CC/CT: OR=2.42, 95% CI=1.60-3.65); dominant model (CT/TT vs. CC: OR=1.21, 95% CI=1.04-1.40), and allele model (T vs. C: OR=1.29, 95% CI =1.12-1.48). We failed to detect any distinguished relationship between rs11549465 C>T and renal cell carcinoma (RCC), endometrial cancer, colorectal cancer, lung cancer, breast cancer, hepatocellular cancer (HCC) under all the five genetic models. However, we observed that the rs11549465 C>T polymorphism could confer to increased risk in subgroups of prostate cancer (CT vs. CC/CT: OR=1.51, 95% CI=1.01-2.26; CT/TT vs. CC: OR=1.56, 95% CI=1.04-2.34; T vs. C: OR=1.54, 95% CI =1.05-2.25), cervical cancer (TT vs. CC: OR=7.63, 95% CI=1.83-31.8; TT vs. CC/CT: OR=6.60, 95% CI=2.07-21.0), oral cancer (TT vs. CC: OR=2.61, 95% CI=1.19-5.72; TT vs. CC/CT: OR=13.2, 95% CI=1.08-162), pancreatic cancer (TT vs. CC: OR=3.39, 95% CI=1.28-8.97; TT vs. CC/CT: OR=2.42, 95% CI=1.60-3.65) and other cancers (TT vs. CC: OR=2.62, 95% CI=1.24-5.55; TT vs. CC/CT: OR=2.64, 95% CI=1.26-5.56; T vs. C: OR=1.28, 95% CI=1.00-1.62).

When it comes to the stratification analysis by the ethnicity, significant increased risk was detected in Asians, Caucasians and mixed population. In terms of source of controls, either population-based controls or hospital-based controls were associated with the increase risk of cancer. Further subgroup analysis by HWE in controls revealed that no significant correlation was observed in subgroup of HWE≤0.05. As regard to the quality of publications, significant increased risk was detected in high-quality and low-quality publications.

Heterogeneity and sensitivity analysis

The Q test (P<0.001) implied an existence of heterogeneity under all the genetic models. Thus, we adopted a random-effect model to produce ORs and 95% CIs. In addition, the sequential sensitivity analysis was performed to give an evaluation of the impact of a sole study on the pooled estimation. Given the attempt of omitting in each study incurred no statistical fluctuation of the pooled ORs, we have reason to believe that the meta-analysis’s data is of great reliability (Figure 3).

Publication bias

From the shape of the Begg’s funnel plot shown in Figure 4, no evidence of asymmetry was found. Egger’s test’s statistics also gives no evidence of publication bias among the studies.

Trial sequential analysis (TSA)

The TSA showed that the cumulative z-curve did not cross both the traditional threshold and the TSA threshold, yet the accumulated information was sufficient, indicating that no further evidence was needed to verify the conclusion (Figure 5).
Table 1. Main characteristics of included studies in the meta-analysis

Surname	Year	Cancer type	Country	Ethnicity	Control source	Genotype method	Case	Control	HWE Score
Clifford	2001	RCC	UK	Caucasian	PCR	-			
Tanimoto	2003	HNSCC	Japan	Asian	PCR-Sequencing	-			
Ollershaw	2004	RCC	UK	Caucasian	PCR	-			
Kuwait	2004	Colorectal	Japan	Asian	PCR-Sequencing	-			
Chau	2005	Prostate	USA	Mixed	PCR	-			
Li	2005	ESCC	China	Asian	PCR-RFLP	-			
Fransen	2006	Colorectal	Sweden	Caucasian	PCR-RFLP	-			
Konac	2007	Cervical	Turkey	Caucasian	PCR-RFLP	-			
Konac	2007	Ovarian	Turkey	Caucasian	PCR-RFLP	-			
Ore-Utrreger	2007	RCC	Turkey	Caucasian	PCR-RFLP	-			
Li	2007	Prostate	USA	Mixed	PCR-RFLP	-			
Horre'e	2008	Endometrial	Netherlands	Caucasian	PCR	-			
Apaydin	2008	Breast	Turkey	Caucasian	PCR-RFLP	-			
Jacobs	2008	Prostate	USA	Mixed	MassARRAY	-			
Kim	2008	Breast	Korea	Asian	PCR-Sequencing	-			
Lee	2008	Breast	Korea	Asian	SNP-ITM	-			
Nadaoka	2008	Bladder	Japan	Asian	PCR-RFLP	-			
Chen	2009	Oral	China	Asian	PCR-RFLP	-			
Li	2009	Prostate	Japan	Asian	PCR-LDR	-			
Naidu	2009	Breast	Malaysia	Asian	PCR-RFLP	-			
Foley	2009	Prostate	Ireland	Caucasian	PCR-Sequencing	-			
Muñoz-Guerra	2009	Oral	Spain	Caucasian	PCR	-			
Morris	2009	RCC	UK	Caucasian	Taqman	-			
Konac	2009	Lung	Turkey	Caucasian	PCR-RFLP	-			
Shieh	2010	OSCC	China	Asian	PCR-RFLP	-			
Shieh	2010	Oral	China	Asian	PCR	-			
Chai	2010	Cervical	China	Asian	PCR	-			
Hisiao	2010	HCC	China	Asian	PCR-RFLP	-			
Kim	2011	Cervical	Korea	Asian	SNaPshot	-			
Putra	2011	Lung	Japan	Asian	PCR-Sequencing	-			
Wang	2011	Pancreatic	China	Asian	PCR-Sequencing	-			
Xu	2011	Glioma	China	Asian	PCR-RFLP	-			
Li	2012	Prostate	China	Asian	Taqman	-			
Ruiz-Tovar	2012	Pancreatic	Spain	Caucasian	PCR	-			
Kuo	2012	Lung	China	Asian	PCR-RFLP	-			
Alves	2012	Oral	Brazil	Mixed	PCR	-			
Zagouri	2012	Breast	Greece	Caucasian	PCR-RFLP	-			
Qin	2012	RCC	China	Asian	Taqman	-			
Rebeerio	2013	Prostate	Portugal	Caucasian	PCR-RFLP	-			
Mera-Menendez	2013	Glottic	Spain	Caucasian	PCR	-			
Fu	2014	Cervical	China	Asian	PCR	-			
Fraga	2014	Prostate	Portugal	Caucasian	Taqman	-			
Liu	2014	HCC	China	Asian	PCR-RFLP	-			
Ni	2015	Digestive	China	Asian	PCR-RFLP	-			
Meka	2015	Breast	India	Asian	PCR	-			
Yamamoto	2016	Lung	Japan	Asian	TaqMan	-			
Demirel	2017	Colorectal	Turkey	Caucasian	ARMS-PCR	-			
Uslu	2018	Laryngeal	Turkey	Caucasian	PCR	-			

Note: HWE, Hardy-Weinberg equilibrium; PB, population based; HB, hospital based; RCC, renal cell carcinoma; HNSCC, head and neck squamous cell carcinoma; ESCC, esophageal squamous cell carcinoma; OSCC, oral squamous cell carcinoma; HCC, hepatocellular cancer; PCR-RFLP, polymerase chain reaction-restriction fragment length polymorphism.

Table 2. Meta-analysis of HIF-1a rs1154946 C>T polymorphism and cancer risk

Variables	Homozygous	Heterozygous	Recessive	Dominant	Allele
TT vs. CC	CT vs. CC	TT vs. CC/CT	CT/TT vs. CC/CT	TT vs. C	
OR (95% CI)	P				

Note: All **<0.001**; **Cancer type: RCC 0.37 (0.12-1.12) 0.282 0.64 (0.32-1.29) 0.012 1.31 (0.77-2.24) 0.350 0.66 (0.33-1.23) 0.024 0.92 (0.70-1.19) 0.252; Colorectal 1.30 (0.40-4.17) 0.579 0.83 (0.24-2.83) 0.005 1.18 (0.37-3.78) 0.465 0.86 (0.29-2.60) 0.008 0.92 (0.37-2.26) 0.019; Prostate 1.67 (0.64-6.19) 0.008 1.51 (1.01-2.26) 0.001 1.62 (0.66-3.99) 0.011 1.56 (1.04-2.34) <0.001 1.54 (1.05-2.25) <0.001; Cervical 7.63 (1.83-31.8) 0.170 1.22 (0.76-1.96) 0.064 6.60 (2.07-21.0) 0.289 1.46 (0.78-2.72) 0.004 1.55 (0.80-3.02) <0.001; Endometrial 9.06 (0.53-156.2) 0.014 1.69 (0.18-16.2) 0.003 5.85 (0.93-36.9) 0.086 2.29 (0.25-21.1) 0.001 2.12 (0.46-9.78) 0.002; Breast 1.38 (0.33-5.74) 0.045 0.99 (0.80-1.23) 0.329 1.38 (0.33-5.75) 0.044 1.02 (0.85-1.22) 0.458 1.04 (0.88-1.23) 0.434

http://www.jcancer.org
Variables	Homozygous	Heterozygous	Recessive	Dominant	Allele						
	OR (95% CI)	P hap									
Oral	2.61 (1.95-5.72)	0.514	1.06 (0.61-1.85)	0.081	13.2 (1.08-162)	<0.001	1.24 (0.79-1.93)	0.149	1.90 (0.88-4.07)	<0.001	
Lung	1.92 (0.35-10.5)	0.103	1.19 (0.78-1.82)	0.044	1.93 (0.43-8.66)	0.154	1.23 (0.71-2.13)	0.002	1.23 (0.69-2.20)	<0.001	
HCC	3.20 (0.13-79.1)	-	0.96 (0.17-5.29)	0.021	3.33 (0.14-82.2)	-	1.06 (0.24-4.68)	0.035	1.15 (0.33-4.06)	0.061	
Pancreatic	3.39 (128-8.97)	-	0.50 (0.02-14.0)	0.001	2.42 (1.60-6.35)	-	1.39 (0.54-3.56)	0.032	1.75 (1.23-2.51)	0.349	
Others	2.62 (124-5.55)	0.784	1.13 (0.87-1.47)	0.275	2.64 (1.26-5.56)	0.810	1.22 (0.95-1.57)	0.274	1.28 (1.00-1.62)	0.239	
Ethnicity											
Caucasian	1.54 (0.81-2.87)	<0.001	1.01 (0.75-1.35)	<0.001	1.82 (1.15-2.89)	0.004	1.10 (0.84-1.44)	<0.001	1.21 (0.97-1.51)	<0.001	
Asian	4.07 (2.61-6.34)	0.995	1.19 (1.02-1.38)	0.010	3.67 (2.37-5.72)	0.997	1.25 (1.06-1.47)	0.001	1.28 (1.09-1.51)	<0.001	
Mixed	1.27 (0.26-6.15)	0.028	1.85 (0.70-4.86)	<0.001	7.57 (0.31-184)	<0.001	1.86 (0.67-5.16)	<0.001	3.24 (1.02-10.3)	<0.001	
Source of control											
PB	1.61 (0.90-2.89)	0.014	1.03 (0.76-1.40)	<0.001	2.51 (1.33-4.74)	<0.001	1.12 (0.85-1.47)	<0.001	1.27 (0.99-1.62)	<0.001	
HB	2.61 (1.39-4.91)	<0.001	1.17 (1.00-1.36)	0.001	2.36 (1.33-4.18)	<0.001	1.25 (1.05-1.48)	<0.001	1.30 (1.09-1.55)	<0.001	
HWE	>0.05	2.92 (1.34-3.16)	0.015	1.20 (1.02-1.41)	<0.001	2.71 (1.76-4.16)	0.111	1.26 (1.06-1.50)	<0.001	1.30 (1.10-1.54)	<0.001
≤0.05	1.18 (0.59-2.36)	<0.001	0.91 (0.62-1.33)	<0.001	2.10 (0.99-4.44)	<0.001	1.04 (0.78-1.38)	0.002	1.24 (0.95-1.63)	<0.001	
Score	>9	2.26 (1.32-3.85)	0.001	1.13 (0.97-1.32)	<0.001	2.19 (1.32-3.63)	0.004	1.21 (1.02-1.43)	<0.001	1.25 (1.05-1.49)	<0.001
≤9	1.76 (0.84-3.67)	<0.001	1.10 (0.83-1.47)	<0.001	2.59 (1.31-5.14)	<0.001	1.18 (0.90-1.54)	<0.001	1.31 (1.03-1.67)	<0.001	

Het, heterogeneity; RCC, renal cell carcinoma; HB, hospital based; PB, population based.

Figure 2. Forest plot for the correlation between the HIF-1α rs1154965 C>T polymorphism and cancer susceptibility under the allele comparison model. The horizontal lines represent the study-specific ORs and 95% CIs. The diamond represents the pooled results of OR and 95% CI.
Discussion

In the current meta-analysis, we systematically evaluate the relationship between HIF-1α rs11549465 C>T polymorphism and cancer risk by using 49 case-control studies. Our analysis showed that HIF-1α rs11549465 C>T polymorphism could increase risk of overall cancer risk and specific cancer risk. Among all the epidemiological studies on the rs11549465 C>T polymorphism and cancer risk, this could be by now the most comprehensive one.

The HIF-1α gene is located at chromosome 14q21-24. HIF-1α regulates the expression of hundreds of genes which moderates the vital cellular functions like proliferation, apoptosis, angiogenesis, glucose metabolism, erythropoiesis, and iron metabolism [60]. Due to the complex functional mechanism and regulatory roles of HIF-1α in hypoxic stress, the possible role of HIF-1α gene SNPs in cancer susceptibility has evoked intensive investigation. The most broadly studied HIF-1α polymorphism rs11549465 C>T (Pro582Ser) could induce proline-to-serine amino acid substitutions. However, the exact role of rs11549465 C>T polymorphism in cancer risk obtained from different studies remain inconclusive.

In 2001, Clifford et al. [14] carried out a first case-control study investigating the relationship between HIF-1α rs11549465 C>T and cancer risk. However, association analysis between rs11549465 C>T and RCC risk in panels of 20 cases and 44 non-neoplastic controls did not reveal allelic frequency differences. An investigation conducted by Konac et al. [21] using endometrial, ovarian, and cervical cancers in the Turkish population revealed that the rs11549465 C>T polymorphism of the HIF-1α may contribute to risk of endometrial and cervical cancers. In a meta-analysis performed by Zhao et al. [10] in 2009 using 5387 controls and 4131 cancer cases, the HIF-1α rs11549465 C>T polymorphism was reported to be related to increased cancer risk. In 2015, Li et al. [61] conducted an updated meta-analysis by enrolling 7807 cases and 8633 controls. They obtained a similar result that the HIF-1α rs11549465 C>T polymorphism predispose to higher overall cancer risk. To better illustrate the relationship of interest, we hereby conducted this updated meta-analysis by using all the qualified publications with a total of 12920 cases and 13363 controls. The results revealed that HIF-1α rs11549465 C>T polymorphism contributes to increased overall cancer risk. In a sense, this meta-analysis has succeeded in giving a clearer clue of the relationship between HIF-1α rs11549465 C>T polymorphism and cancer risk.
In the current meta-analysis, we undertaken many measurements to increase the credibility of our conclusion. First and foremost, we included as many as qualified studies to expand the analyzed sample size, by incorporating studies not only pressed in English but also in Chinese. Second, we adopted the sensitivity analysis and the publication bias. However, several limitations could not be settled down. First, between-study heterogeneity exists, which might weaken the persuasiveness of the conclusion. Second, the relationship strength was only assessed by use of unadjusted estimates. Lacking original data, such as environment factor, adjustment analysis was absent. Third, most of the included studies were conducted among Asians and Caucasians. The lack of other ethnicities, such as
Africans, compromised the generalization of the conclusion.

In a word, our finding has come to a fruition that HIF-1α rs11549465 C>T polymorphism was significantly related to an increase in cancer risk. Our work no doubt will encourage more dedication into further elucidation of the etiology of cancer predisposition. However, with limited sample size of subgroup analysis, we must admit that this analysis is imperfect and thus in the future more case-control studies should be conducted with a larger size of samples.

Abbreviations

HIF-1: hypoxia-inducible factor 1; ORs: odds ratios; Cis: confidence intervals; HWE: Hardy-Weinberg equilibrium; TSA: trial sequential analysis.

Acknowledgments

This study was supported by grant from Hubei Provincial Microcirculation Society Personnel Training Special Fund Project [No: HBWXH2018(1)-4].

Author Contributions

H.L. and W.Y. conceived and designed the study; H.L. and T.H. collected articles and extracted information; H.L., Y.Z., F.D. and J.L. analyzed the data and prepared the tables and figures; H.L., T.H. and W.Y. wrote the manuscript. All authors read and approved the manuscript.

Competing Interests

The authors have declared that no competing interest exists.

References

1. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin. 2017; 67: 3-30.
2. Theodoratou E, Timofeeva M, Li X, Meng X, Ioannidis JPA. Nature, Nurture, and Cancer Risks: Genetic and Nutritional Contributions to Cancer. Annu Rev Nutr. 2017; 37: 293-320.
3. Mirza EA, Recco JW. The challenges of tumor genetic diversity. Cancer. 2017; 123: 917-27.
4. Malhotra J. Molecular and genetic epidemiology of cancer in low- and middle-income countries. Ann Glob Health. 2014; 80: 418-25.
5. Erichsen HC, Chanock SJ. SNPs in cancer research and treatment. Br J Cancer. 2005; 92: 1222-5.
6. Hill RP, Marie-Egyptienne DT, Hedley DW. Cancer stem cells, hypoxia and metastasis. J Biomed Sci. 2012; 19: 102.
7. Schmid T, Zhou J, Brune B. HIF-1 and p53: communication of transcription factors under hypoxia. J Cell Mol Med. 2004; 8: 423-31.
8. Tsai YP, Wu KJ. Hypoxia-regulated target genes implicated in tumor subgroup analysis, we must admit that this analysis is imperfect and thus in the future more case-control studies should be conducted with a larger size of samples.
9. Malhotra J. Molecular and genetic epidemiology of cancer in low- and middle-income countries. Ann Glob Health. 2014; 80: 418-25.
10. Schmid T, Zhou J, Brune B. HIF-1 and p53: communication of transcription factors under hypoxia. J Cell Mol Med. 2004; 8: 423-31.
11. Tsai YP, Wu KJ. Hypoxia-regulated target genes implicated in tumor subgroup analysis, we must admit that this analysis is imperfect and thus in the future more case-control studies should be conducted with a larger size of samples.
12. Malhotra J. Molecular and genetic epidemiology of cancer in low- and middle-income countries. Ann Glob Health. 2014; 80: 418-25.
13. Schmid T, Zhou J, Brune B. HIF-1 and p53: communication of transcription factors under hypoxia. J Cell Mol Med. 2004; 8: 423-31.
14. Tsai YP, Wu KJ. Hypoxia-regulated target genes implicated in tumor subgroup analysis, we must admit that this analysis is imperfect and thus in the future more case-control studies should be conducted with a larger size of samples.
15. Malhotra J. Molecular and genetic epidemiology of cancer in low- and middle-income countries. Ann Glob Health. 2014; 80: 418-25.
16. Schmid T, Zhou J, Brune B. HIF-1 and p53: communication of transcription factors under hypoxia. J Cell Mol Med. 2004; 8: 423-31.
37. Chai D, Chen YL, Zheng A, Liu YY, Chu YK, Han L. [Relationship between polymorphism of hypoxia inducible factor-1alpha and cervical cancer in Han population in Sichuan Province of China]. Sichuan Da Xue Xue Bao Yi Xue Ban. 2011; 41: 674-7.

38. Hsiao PC, Chen MK, Su SC, Ueng KC, Chen YC, Hsieh YH, et al. Hypoxia inducible factor-1alpha gene polymorphism G1790A and its interaction with tobacco and alcohol consumptions increase susceptibility to hepatocellular carcinoma. J Surg Oncol. 2010; 102: 163-9.

39. Shieh TM, Chang KW, Tu HF, Shih YH, Ko SY, Chen YC, et al. Association between the polymorphisms in exon 12 of hypoxia-inducible factor-1alpha and the clinicopathological features of oral squamous cell carcinoma. Oral Oncol. 2010; 46: e47-53.

40. Kang MJ, Jung SA, Jung JM, Kim SE, Jung HK, Kim TH, et al. Associations between single nucleotide polymorphisms of MMP2, VEGF, and HIF1A genes and the risk of developing colorectal cancer. Anticancer Res. 2011; 31: 575-84.

41. Kim YH, Park IA, Park WY, Kim JW, Kim SC, Park NH, et al. Hypoxia-inducible factor 1alpha polymorphisms and early-stage cervical cancer. Int J Gynecol Cancer. 2011; 21: 2-7.

42. Putra AC, Tanimoto K, Arfin M, Hiyama K. Hypoxia-inducible factor-1alpha polymorphisms are associated with genetic aberrations in lung cancer. Respirology. 2011; 16: 796-802.

43. Xu G, Wang M, Xie W, Bai X. Hypoxia-inducible factor-1 alpha C1772T gene polymorphism and glioma risk: a hospital-based case-control study from China. Genet Test Mol Biomarkers. 2011; 15: 461-4.

44. Alves LR FC, Oliveira MVM, Sousa AA, Jorge ASB, Marques-Silva L, Santos SHS, Jones KM, de Paula AMB, Guimaraes ALS. High HIF-1a expression genotypes increase odds ratio of oral cancer. Head Neck Oncol. 2012; 4: 87.

45. Kuo WH, Shih CM, Lin CW, Cheng WE, Chen SC, Chen W, et al. Association of hypoxia inducible factor-1alpha polymorphisms with susceptibility to non-small-cell lung cancer. Transl Res. 2012; 159: 42-50.

46. Li P, Cao Q, Shao PF, Cai HZ, Zhou H, Chen JW, et al. Genetic polymorphisms in HIF1A are associated with prostate cancer risk in a Chinese population. Asian J Androl. 2012; 14: 864-9.

47. Qin C, Cao Q, Ju X, Wang M, Meng X, Zhu J, et al. The polymorphisms in the HIF and HIF1A genes are associated with the prognosis but not the development of renal cell carcinoma. Ann Oncol. 2012; 23: 981-9.

48. Ruiz-Tovar J, Fernandez-Contreras ME, Martin-Perez E, Gamallo C. Association of thymidylate synthase and hypoxia inducible factor-1alpha DNA polymorphisms with pancreatic cancer. Tumori. 2012; 98: 364-9.

49. Zagouri F, Sergentanis TN, Gazouli M, Tsigginou A, Dimitrakakis C, Papapetrou I, et al. HSP90, HSPA8, HIF-1alpha and HSP70-2 polymorphisms in breast cancer: a case-control study. Mol Biol Rep. 2012; 39: 10873-9.

50. Mera-Menendez E, Sanchez JJ, et al. Polymorphisms in HIF-1alpha and HIF1A genes are associated with prostate cancer risk in a Chinese population. Asian J Androl. 2012; 14: 864-9.

51. Ribeiro AL, Gaspar JF, Pereira T, Ribeiro V. Lack of relevance of HIF-1alpha polymorphism and its association with the presence of lymph node metastasis and can influence tumor size in squamous-cell carcinoma of the glottic larynx. Clin Transl Oncol. 2013; 15: 358-63.

52. Chai D, Chen YL, Zheng A, Liu YY, Chu YX, Han L. [Relationship between polymorphism of hypoxia inducible factor-1alpha and cervical cancer in Han population in Sichuan Province of China]. Sichuan Da Xue Xue Bao Yi Xue Ban. 2011; 41: 674-7.

53. Fu SL, Miao J, Ding B, Wang XL, Cheng WJ, Dai HH, et al. A polymorphism in the 3' untranslated region of Hypoxia-Inducible Factor-1alpha confers an increased risk of cervical cancer in a Chinese population. Neoplasma. 2014; 61: 63-9.

54. Liu Y, Sui J, Zhai L, Yang S, Huang L, Huang L, et al. Genetic polymorphisms in hypoxia-inducible-factor-1a gene and its association with HBV-related hepatocellular carcinoma in a Chinese population. Med Oncol. 2014; 31: 200.

55. Meka PB, Cingestham A, Nancheri SR, Dameni S, Tiprinneti N, Gorre M, et al. HIF-1alpha (1772C>T) polymorphism as marker for breast cancer development. Tumour Biol. 2015; 36: 3215-20.

56. Ni Zhi-Hai LX, Mo Jing-Gang, Zhang Jian-Liang, Ding Yin-Lu, Zhang Peng, Wang Jin-Qing. Associations of hypoxia inducible factor-1a gene polymorphisms with susceptibility to digestive tract cancers: a case-control study and meta-analysis. Genes & Genomics. 2015; 37: 931-8.

57. Demirel HS, Cetinkaya S, Cinar I, Kucukkartallar K, Dursun G. Colorectal Cancer Risk in Relation to Hypoxia Inducible Factor-1 (HIF-1) and Von Hippel-Lindau (VHL) Gene Polymorphisms. International Journal of Hematology and Oncology 2017; 27: 13-20.

58. Yamamoto Y, Kiyohara C, Ogata-Suetsugu S, Hamada N, Nakanishi Y, et al. Association between genetic polymorphisms involved in the hypoxia-inducible factor pathway and lung cancer risk: a case-control study in Japan. Asia Pac J Clin Oncol. 2017; 13: 234-42.

59. Ushu C, Tuz M, Yasan H, Okur E. Investigation of GLUT1, HIFalpha and TBX21 Gene Polymorphisms in Laryngeal Cancer. Turk Arch Otorhinolaryngol. 2018; 56: 70-4.

60. Balamurugan R. HIF-1 at the crossroads of hypoxia, inflammation, and cancer. Int J Cancer. 2016; 138: 1058-66.

61. Li Y, Li C, Shi H, Lou L, Liu P. The association between the rs1549465 polymorphism in the hif-1alpha gene and cancer risk: a meta-analysis. Int J Clin Exp Med. 2015; 8: 1361-74.