LOCAL WELL-POSEDNESS AND GLOBAL STABILITY OF THE
TWO-PHASE STEFAN PROBLEM

M. HADŽIĆ, G. NAVARRO, S. SHKOLLER

ABSTRACT. The two-phase Stefan problem describes the temperature distribution in a
homogeneous medium undergoing a phase transition such as ice melting to water. This
is accomplished by solving the heat equation on a time-dependent domain, composed of
two regions separated by an a priori unknown moving boundary which is transported by
the difference (or jump) of the normal derivatives of the temperature in each phase. We
establish local-in-time well-posedness and a global-in-time stability result for arbitrary
sufficiently smooth domains and small initial temperatures. To this end, we develop a
higher-order energy with natural weights adapted to the problem and combine it with
Hopf-type inequalities. This extends the previous work by Hadžić & Shkoller [31, 32] on
the one-phase Stefan problem to the setting of two-phase problems, and simplifies the
proof significantly.

CONTENTS

1. Introduction to the problem 2
1.1. Problem formulation and the reference domain 2
1.2. Specifying a smooth reference interface Γ and reference domains Ω± 3
1.3. Notation 4
1.4. Sobolev norms 5
1.5. Tangential derivatives 5
1.6. Steady states 5
1.7. Pulling-back to the reference domains Ω± 5
1.8. Higher-order Norm used for our Analysis 6
1.9. Compatibility conditions 8
1.10. Non-degeneracy or Rayleigh-Taylor stability condition 8
2. Main results 9
2.1. A brief history of prior results 10
2.2. Methodology and outline of the paper 11
2.3. Future work 13
2.4. Outline of the paper 13
3. Local well-posedness: proof of Theorem 2.1 13
3.1. Sequence of approximate κ-problems 14
3.2. Existence theorem for the κ-problem 17
3.3. Definition of the energy functionals 26
The weight functions W± 26
The natural energy Eκ(t) 27
3.4. Local-in-time energy control 27
3.5. Derivation of the energy identities 28
3.6. Energy estimates for the local theory 32
Boundary estimates 34

Date: July 1, 2016.
Key words and phrases. Stefan problem, two-phase problem, interface motion, free-boundary problem.
1. Introduction to the Problem

1.1. Problem formulation and the reference domain. We consider the local and global well-posedness and interface regularity of solutions to the classical two-phase Stefan problem, describing the evolving interface, separating a freezing liquid and a melting solid. The temperature of the liquid-solid phase $p^\pm(t,x)$ and the a priori unknown moving interface $\Gamma(t)$ must satisfy the following system of equations:

\begin{align}
 p_t^\pm - \Delta p^\pm &= 0 & \text{in } \Omega^\pm(t) \\
 [\partial_n p]^\pm &= -V_{\Gamma(t)} & \text{on } \Gamma(t) \\
 p^+ &= p^- = 0 & \text{on } \Gamma(t) \\
 p^\pm(0,\cdot) &= p_0^\pm, \Gamma(0) = \Gamma_0,
\end{align}

where for each time $t \in [0,T]$, $\Omega^+(t)$ and $\Omega^-(t)$ denote two evolving open and bounded domains as shown in Figure 1, and $\Gamma(t)$ denotes the moving interface separating $\Omega^+(t)$ and $\Omega^-(t)$, so that $\Gamma(t) = \overline{\Omega^-(t) \cap \Omega^+(t)}$.

Definition 1.1 (The domains Ω and $\Omega^\pm(t)$). For $d \geq 2$, we denote by $\Omega \subset \mathbb{R}^d$, a fixed, open, and bounded set such that

\[\Omega = \overline{\Omega^-(t) \cup \Omega^+(t)}, \]

as shown Figure 1. We assume that the fixed boundary $\partial\Omega$ is C^∞.

1.2. Bootstrap assumptions
1.3. Global estimates for W^\pm and energy equivalence
1.4. A priori bounds on h
1.5. Lower bounds on $\partial_N q^\pm$
1.6. Improved bounds for the lower order terms of the energy $S(t)$
1.7. Proof of Theorem 2.2

Appendix A. Basic inequalities
Acknowledgements
References
The equations (1.1a) model temperature diffusion in the bulk $\Omega^\pm(t)$, while the interface jump condition (1.1b) states that the jump in temperature gradients evolves the interface; that is, $[\partial_n p]^\pm := \partial_n p^+ - \partial_n p^- = \nabla (p^+ - p^-) \cdot n$ on $\Gamma(t)$, where $n(\cdot, t)$ denotes the outward unit normal on $\Gamma(t)$ (pointing into $\Omega^+(t)$), and $V_{\Gamma(t)}$ denotes the speed or normal velocity of the interface $\Gamma(t)$. Note that the freezing of the liquid and the melting of the solid occur at a constant temperature $p=0$ as seen from the Dirichlet boundary condition (1.1c). Initial conditions are prescribed in (1.1d): the initial interface Γ_0 and the initial temperature functions p_0^- and p_0^+ are specified.

Herein, we shall, for simplicity, consider the two-dimensional Stefan problem $d=2$, although all of our methods easily extend in a straightforward manner to the case that $d \geq 3$. No convexity assumptions are made on the initial interface Γ_0, but we shall assume that Γ_0 is diffeomorphic to the unit circle S^1.

Remark 1.2. Surface tension effects can be included as well by replacing (1.1c) with

$$ p^\pm = \gamma H_{\Gamma(t)} \quad \text{on} \quad \Gamma(t), \quad (1.2) $$

where $\gamma \geq 0$ is the surface tension parameter and $H_{\Gamma(t)}$ is the mean curvature of $\Gamma(t)$. Herein, we shall study the case that $\gamma = 0$. We shall also consider the two-dimensional problem $d=2$, although all of our results extend in a straightforward manner to the case that $d \geq 3$.

1.2. Specifying a smooth reference interface Γ and reference domains Ω^\pm. In order to describe our initial interface Γ_0, we employ an H^6-class parameterization $z_0 : S^1 \rightarrow \Gamma_0$, where S^1 is identified with the period $[0,2\pi]$. To construct a smooth reference interface, we consider a C^∞ nearby interface Γ_σ which is constructed by smoothing $z_0(\theta)$, $\theta \in S^1$ using a standard mollification approach. For $\sigma > 0$ taken sufficiently small, we define the convolution operator Λ_σ as follows:

$$ \Lambda_\sigma z_0(\theta) = \int_{\mathbb{R}} \rho_\sigma(\theta - \vartheta) z_0(\vartheta) d\vartheta, \quad (1.3) $$

where $\rho_\sigma(\theta) = \sigma^{-1} \rho(\theta / \sigma)$, and ρ is the standard mollifier on \mathbb{R}, given by

$$ \rho(x) = \begin{cases}
C e^{1-|x|^2} & |x| \leq 1, \\
0 & |x| > 1.
\end{cases} $$

Definition 1.3 (C^∞ reference interface and domains). For $\sigma > 0$ taken sufficiently small and fixed, we set

$$ z_0^\sigma(\theta) = \Lambda_\sigma z_0(\theta), $$

and we define the nearby C^∞ curve

$$ \Gamma := z_\sigma(S^1). $$

The curve Γ is the reference interface, and define the reference domain Ω^- to be the open set enclosed by Γ, and we set $\Omega^- = \Omega - \Omega^+.$

The initial interface Γ_0 is in the normal bundle of Γ; hence there exists a signed height function $h_0 \in H^6(\Gamma_\sigma)$ such that

$$ z_0(\theta) = z_0^\sigma(\theta) + h_0(\sigma(\theta)) N_\sigma(z_0^\sigma(\theta)), \quad z_0^\sigma(\theta) \in \Gamma_\sigma, $$

where $N_\sigma(z_0^\sigma(\theta))$ is the unit normal vector to Γ (pointing into Ω^+) at the point $z_0^\sigma(\theta)$. It follows that the initial height function h_0 has amplitude of order σ, and that $h_0 \rightarrow 0$ as $\sigma \rightarrow 0$.

As time evolves, if the interface $\Gamma(t)$ stays in the normal bundle of Γ_σ, then for each time t, we can define the corresponding signed height function $h(t, z_\sigma)$ as follows:

$$
\Gamma(t) := \{ y \mid y = z_0^\sigma + h(t, z_0^\sigma)N_\sigma(z_0^\sigma), \ z_0^\sigma \in \Gamma_\sigma \},
$$

with the initial condition

$$
h(0, z_\sigma) = h_0(z_\sigma).
$$

We note, that while it is not essential, it is convenient to use the C^∞ curve Γ_σ as the reference interface. This allows us to use the normal bundle of Γ_σ with a C^∞ unit normal vector field. If we had instead worked with the initial interface Γ_0 as the reference interface, we would have been forced to use a different (from the normal) transverse vector field to define the height function due to the limited regularity of Γ_0 and the fact that the regularity of the normal would have one derivative loss.

For notational clarity, we shall henceforth drop the explicit dependence on σ in our parametrization, and write $z_0(\theta)$ for $z_0^\sigma(\theta)$.

1.3. Notation

We denote the identity map $x \mapsto x$ by e and the identity (2×2)-matrix $(\delta_{ij})_{i,j=1,2}$ by Id. A constant C is a generic constant and may change from line to line, and we write $X \lesssim Y$ to denote $X \leq CY$. Similarly, we use the notation $P(\cdot)$ to denote a generic polynomial of the form $P(x) = C x^p$, with $p \geq 1$, and the constants C and p may also change from line to line.

We use $\nabla = (\partial_x, \partial_y)$ to denote the gradient operator. For $i = 1, 2$, we shall abbreviate partial differentiation of a function f as $f_i := \partial_x f$ and for time-differentiation we let $F_i := \partial_t F$. We shall use the Einstein summation convention, where repeated indices are summed from 1 to 2. Furthermore, given a function $F(t, x)$, we shall often write $F(t)$ instead of $F(t, \cdot)$ and $F(0)$ instead of $F(0, x)$.

To deal with lower-order terms in energy estimates, we shall use the abbreviation l.o.t. for spacetime integrals in which the integrand has sufficiently few derivatives so as to be bounded by a simple application of Hölder’s inequality; this is made precise in (3.84).

It will be useful for some estimates to set the following notation for functions evaluated at time $t = 0$:

$$
\Psi_0^\pm := \Psi^\pm(0), \ \Theta_0^\pm := \Theta^\pm(0), \ A_0^\pm := A^\pm(0) = [\nabla \Psi_0^\pm]^{-1}, \ \Theta_0^\pm := \Theta^\pm(0) = [\nabla \Theta_0^\pm]^{-1},
$$

and we can define as well the respective differential operators

$$
\Delta_{\Psi_0^\pm} f := A_0^{\pm j} (A_0^{\pm k} f_{ik})_i, \\
\Delta_{\Theta_0^\pm} f := \Theta_0^{\pm j} (\Theta_0^{\pm k} f_{ik})_i, \\
(\nabla_{\Psi_0^\pm} f)^j := A_0^{\pm j} f_i, \\
(\nabla_{\Theta_0^\pm} f)^j := \Theta_0^{\pm j} f_i,
$$

which are the generalizations of the Laplacian and the gradient respectively for a scalar function f over the regions Ω^\pm. For a vector field F, we defined the matrices,

$$
[\nabla_{\Psi_0^\pm} F]^j_k := A_0^{\pm j} F^i_k, \\
[\nabla_{\Theta_0^\pm} F]^j_k := \Theta_0^{\pm j} F^i_k.
$$
1.4. **Sobolev norms.** For any \(s \geq 0 \) and given functions \(F^\pm : \Omega^\pm \to \mathbb{R}, \varphi : \Gamma \to \mathbb{R} \), we denote the norms in the standard Sobolev spaces \(H^s(\Omega^\pm), H^s(\Gamma) \) as,
\[
\| F^\pm \|_s := \| F^\pm \|_{H^s(\Omega^\pm)}, \quad |\varphi|_s := \| \varphi \|_{H^s(\Gamma)},
\]
where \(\| F^\pm \|_s \) is either \(\| F^+ \|_{H^s(\Omega^+)} \) or \(\| F^- \|_{H^s(\Omega^-)} \) depending on which domain we are considering.

If \(F : [0,T] \times \Omega \to \mathbb{R}, \varphi : [0,T] \times \Gamma \to \mathbb{R} \) are given time-dependent functions, then
\[
\| F \|_{L^2_t L^s_x} := \left(\int_0^t \| f(s) \|_{H^s(\Omega)}^2 \, ds \right)^{1/2},
\]
\[
\| F \|_{L^\infty_t L^s_x} := \sup_{0 \leq s \leq t} \| F(s) \|_{H^s(\Omega)},
\]
\[
|\varphi|_{L^2_t H^s_x} := \left(\int_0^t |\varphi(s)|^2_{H^s(\Gamma)} \, ds \right)^{1/2},
\]
\[
|\varphi|_{L^\infty_t H^s_x} := \sup_{0 \leq s \leq t} |\varphi(s)|_{H^s(\Gamma)}.
\]

For given weight functions \(W^\pm : \Omega^\pm \to \mathbb{R} \) such that \(W^\pm > 0 \), we define the **weighted** \(L^2 \) norm as
\[
\| F^\pm \|^2_{L^2_t W^\pm} := \int_{\Omega^\pm} |F^\pm(s,x)|^2 W^\pm \, dx. \tag{1.5}
\]

1.5. **Tangential derivatives.** For a given \(0 < \nu \ll 1 \), we define a smooth cut-off function \(\mu : \bar{\Omega} \to \mathbb{R}_+ \) satisfying
\[
\mu(x) \equiv 1 \quad \text{if dist}(x, \Gamma \cup \partial \Omega) \leq \nu \quad \text{and} \quad \mu(x) \equiv 0 \quad \text{if dist}(x, \Gamma \cup \partial \Omega) \geq 2\nu. \tag{1.6}
\]
This will allow us to localize the analysis to a neighborhood of the interface, wherein we define tangential derivative as \(\partial f = \nabla f \cdot \tau \), where \(\tau \) is the smooth extension of the tangent vector to \(\Gamma \) into that neighborhood. In the case of functions defined solely on \(\Gamma \), we define the tangential derivative naturally as \(\partial \Phi = \frac{1}{\|z_0\|} \frac{d}{d\theta} g(z_0(\theta)) \), where \(z_0(\theta) \) is the parametrization of \(\Gamma \) described in Section 1.2.

1.6. **Steady states.** Let \(\bar{\Gamma} \) be any given closed \(C^1 \)-curve separating \(\Omega \) into two connected components \(\Omega^+ \) and \(\Omega^- \). Then the triple \((u^+, u^-, \Gamma) \equiv (0,0,\Gamma) \) constitutes a steady state solution to (1.1). The space of steady states is therefore infinite-dimensional and NOT parametrized by finitely many parameters. The main goal of this article is to understand the nonlinear stability of these steady states.

1.7. **Pulling-back to the reference domains** \(\Omega^\pm \). To develop a well-posedness theory for (1.1), we pull-back the equations to the reference domains \(\Omega^\pm \). It is convenient to construct harmonic diffeomorphisms. Hence, for each \(t \in [0,T] \), we define the diffeomorphisms \(\Psi^\pm(\cdot,t) : \Omega^\pm \to \Omega^\pm(t) \) as the solution of
\[
\Delta \Psi^\pm = 0 \quad \text{in} \quad \Omega^\pm, \tag{1.7a}
\]
\[
\Psi^\pm(t,x) = x + h(t,x)N(x) \quad \text{on} \quad \Gamma, \tag{1.7b}
\]
\[
\Psi^\pm = e \quad \text{on} \quad \partial \Omega, \tag{1.7c}
\]
where \(e \) is the identity map on \(\partial \Omega \). Elliptic estimates show that for \(k \geq 1 \),
\[
\| \Psi^\pm - e \|_{6,5} \leq C(\|h\|_6). \tag{1.8}
\]
When \(\|h\|_6 \leq \varepsilon \ll 1 \), the inverse function theorem, together with the Sobolev embedding theorem, show that \(\Psi^\pm(\cdot,t) : \Omega^\pm \to \Omega^\pm(t) \) are \(H^{6.5} \)-class diffeomorphisms. Of course, we
could have used any Sobolev space H^s, in place of $H^{6.5}$, but our analysis will make use of the latter.

We next introduce our physical variables set on the fixed reference domains Ω^\pm. We set

$$q^\pm := p^\pm(t, \cdot) \circ \Psi^\pm,$$
(1.9a)
$$v^\pm := \nabla p^\pm(t, \cdot) \circ \Psi^\pm,$$
(1.9b)
$$A^\pm := (\nabla \Psi^\pm)^{-1},$$
(1.9c)
$$w^\pm := \Psi_t^\pm.$$
(1.9d)

In the parlance of fluid dynamics, the mappings Ψ^\pm are often called Arbitrary Lagrangian Eulerian (ALE) coordinates. The Laplace operator in ALE coordinates is given by

$$\Delta \Psi^\pm := A^\pm_{ij} \partial_i (A^\pm_{jk} \partial_j).$$

Therefore, on the fixed reference domains Ω^\pm, the Stefan problem (1.1) has the following form:

$$q^\pm_t - \Delta_{\Psi^\pm} q^\pm = -v^\pm \cdot w^\pm \quad \text{in } \Omega^\pm,$$
(1.10a)
$$v^\pm + A^{\pm T} \nabla q^\pm = 0 \quad \text{in } \Omega^\pm,$$
(1.10b)
$$q^\pm(t, x) = 0 \quad \text{on } \Gamma,$$
(1.10c)
$$h_t = [v \cdot \vec{n}]^+ \quad \text{on } \Gamma,$$
(1.10d)
$$v^+ \cdot \mathbf{N}^+ = 0 \quad \text{on } \partial \Omega,$$
(1.10e)
$$q^\pm(0, x) = q^\pm_0(x) \quad \text{on } \{t = 0\} \times \Omega^\pm,$$
(1.10f)
$$h = h_0 \quad \text{on } \{t = 0\} \times \Gamma.$$
(1.10g)

The motion of the interface $\Gamma(t)$ is given by equation (1.10d), which is an equivalent form of (1.1b), since the speed $V_\Gamma(t)$ of $\Gamma(t)$ is equal to $\Psi_t \cdot n = h_t N \cdot n$, where n is the outward normal vector to $\Omega^-(t)$ to be defined below, and $\vec{n} := \frac{n}{n \cdot N}$. Observe that the matrices A^\pm depend on Ψ^\pm, and the Ψ^\pm are extensions of $e + hN$ obtained from (1.7).

Notice that using the description of the reference interface Γ as a curve $z(\theta)$, the moving interface $\Gamma(t)$ is described as $y(\theta) = z(\theta) + h(t, z(\theta))N(z(\theta))$, and so the normal vector n is given by

$$n(t, y(\theta)) = \frac{-\partial h \tau + (1 + H(\theta) h(t, z(\theta)))N}{\sqrt{(\partial h)^2 + (1 + H(\theta) h)^2}},$$
(1.11)

where $H(\theta) := \frac{\frac{z' \frac{z''}{|z'|^2} - \frac{z'}{|z'|^2} z''}{|z'|^2}}{|z'|^2}$ is the signed curvature of Γ at the point $z(\theta)$ and τ is defined in Section 1.3.

1.8. **Higher-order Norm used for our Analysis.**

1.8.1. **Local well-posedness theory.** We will develop the local-in-time well-posedness theory with respect to the following norm:

$$S(t) := \underbrace{\varepsilon^+(t) + \varepsilon^-(t) + \varepsilon^0_{\text{loc}}(t)}_{L^\infty\text{-in-time-control}} + \underbrace{\int_0^t (D^+(s) + D^-(s) + D^0_{\text{loc}}(s)) \, ds}_{L^2\text{-in-time-control}},$$
(1.12)
where

\[C^\pm(t) := \sum_{l=0}^{3} \left\| \partial^l_t q^\pm \right\|^2_{L^\infty_t H^{6-2l} \Omega^\pm} + \left\| \bar{\partial}^{5-2l} \partial^l_t v^\pm \right\|^2_{L^2_t L^2(\Omega^\pm)}, \]

\[D^\pm(t) := \sum_{l=0}^{3} \left\| \partial^l_t q^\pm(t) \right\|^2_{H^{6.5-2l}(\Omega^\pm)} + \left\| \bar{\partial}^{5-2l} \partial^l_t v^\pm(t) \right\|^2_{L^2(\Omega^\pm)}, \]

\[E^\pm_{\text{loc}}(t) := \sum_{l=0}^{3} \sup_{0 \leq s \leq t} \left| \partial^l_t h(s) \right|^2_{H^{6-2l}(\Omega^\pm)}, \]

\[E^\pm_{\text{glob}}(t) := 2 \| \partial^l_t h \|^2_{L^2(\Omega^\pm)}. \]

1.8.2. **Global well-posedness and nonlinear stability theory.** We will develop the global-in-time well-posedness and our nonlinear stability theory with respect to the following norm:

\[S(t) := C^+(t) + C^-(t) + C(t) + \int_0^t \left(D^+(s) + D^-(s) + D^\Gamma(s) \right) ds + E^+_{\beta}(t) + E^-_{\beta}(t), \tag{1.13} \]

where

\[C^\pm(t) := \sum_{l=0}^{3} \left\| \partial^l_t q^\pm \right\|^2_{L^\infty_t H^{6-2l} \Omega^\pm} + \left\| \bar{\partial}^{5-2l} \partial^l_t v^\pm \right\|^2_{L^2_t L^2(\Omega^\pm)}, \]

\[D^\pm(t) := \sum_{l=0}^{3} \left\| \partial^l_t q^\pm(t) \right\|^2_{H^{6.5-2l}(\Omega^\pm)} + \left\| \bar{\partial}^{5-2l} \partial^l_t v^\pm(t) \right\|^2_{L^2(\Omega^\pm)}, \]

\[E^\Gamma(t) := e^{-\lambda_1 t} \sum_{l=0}^{2} \left\| \partial^l_t h \right\|^2_{H^{5.2l}(\Omega^\pm)}, \]

\[E^\pm_{\beta}(t) := e^{\beta t} \sum_{l=0}^{2} \left\| \partial^l_t q^\pm(t) \right\|^2_{H^{4.2l}(\Omega^\pm)}, \]

where \(\lambda_1 = \min\{\lambda_1^+, \lambda_1^-\} \) is the smaller of the two first eigenvalues \(\lambda_1^\pm \) of the Dirichlet-Laplacian on the reference domains \(\Omega^\pm \), \(\eta > 0 \) is a small constant relative to \(\lambda_1 \) to be fixed later, and

\[\beta^\pm = 2\lambda_1^\pm - \eta. \tag{1.14} \]

Remark 1.4. The definition of our higher-order energy function requires the definition of the terms \(\partial^l_t q \) and \(\partial^l_t h \) at time \(t = 0 \). These are computed using the time-differentiated version of the equation (1.10a) at time \(t = 0 \). For example,

\[q_1^\pm := q_0^\pm(0) = \Delta \varphi^\pm(0) q_0^\pm + A^\pm(0) \nabla q_0^\pm \cdot \Psi^\pm(0). \tag{1.15} \]

The other time derivatives follow the same procedure. The terms \(\partial^l_t h \big|_{t=0} \) follow similarly by means of taking time derivatives of the evolution equation (1.10d) and restricting it at
time \(t = 0 \). We define the functions,
\[
\begin{align*}
g_1 & := h_t(0) = [v(0) \cdot \tilde{n}(0)]^+ \\
g_2 & := h_{tt}(0) = [v_t(0) \cdot \tilde{n}(0)]^+ + [v(0) \cdot \tilde{n}_t(0)]^+ \\
g_3 & := h_{ttt}(0) = [v_{tt}(0) \cdot \tilde{n}(0)]^+ + 2[v_t(0) \cdot \tilde{n}_t(0)]^+ + [v(0) \cdot \tilde{n}_{tt}(0)]^+,
\end{align*}
\]
where \(v(0), v_t(0), v_{tt}(0) \) are computed from equation (1.10b) by taking time derivatives and restricting to \(t = 0 \). Notice that they depend only on \(h_0 \) and \(q_0^\pm \). The derivatives of \(\tilde{n}(0) \) are given by,
\[
\begin{align*}
\tilde{n}(0) & := (N - \tau \frac{\partial h_0}{1 + Hh_0}), \\
\tilde{n}_t(0) & := \tau \left(\frac{\partial g_1}{1 + Hh_0} - \frac{\partial h_0 Hg_1}{(1 + Hh_0)^2} \right), \\
\tilde{n}_{tt}(0) & := \tau \left(\frac{\partial g_2}{1 + Hh_0} + \frac{\partial g_1 Hg_1}{1 + Hh_0} - \frac{(\partial g_1 Hg_1 + \partial h_0 Hg_2)}{(1 + Hh_0)^2} + \frac{2\partial h_0 H^2(g_1)^2}{(1 + Hh_0)^3} \right).
\end{align*}
\]

1.9. Compatibility conditions. Since we study the twice time-differentiated problem, in order to ensure the continuity of the solution in time, we have to impose certain compatibility conditions. Since \(q_0^\pm |_{\Gamma} = q_{00}^\pm |_{\Gamma} \equiv 0 \), by restricting time derivatives of equation (1.15) to \(\Gamma \) at time \(t = 0 \), we obtain that \(q_{00}^\pm \) must satisfy,
\[
\begin{align*}
\Delta_{\psi_0}^2 q_0^+ & = \nabla_{\psi_0} q_0^+ \cdot N g_1 \text{ on } \Gamma, \\
-\Delta_{\psi_0}^2 q_0^- & = -A^{ij}_0 \psi_t(0)_{ij} A^{k}_{0j} A^{s}_{0j} q_0^0 - A^{ij}_0 \psi_t(0)_{ij} A^{k}_{0j} A^{s}_{0j} q_0^0 - A^{ij}_0 \psi_t(0)_{ij} A^{k}_{0j} A^s_{0j} q_0^0 \\
& + \nabla_{\psi_0} q_0^0 \cdot N g_2 + \Delta_{\psi_0} (\nabla_{\psi_0} q_0^0 \cdot \psi_t(0)) \cdot N g_1 \equiv 0, \\
\nabla_{\psi_0} q_0^0 \cdot N & = 0, \\
\nabla_{\psi_0} (\Delta_{\psi_0} q_0^0) \cdot N & = -\nabla_{\psi_0} (\nabla_{\psi_0} q_0^+ \cdot \psi_t(0)) \cdot N^+ + A^{ij}_0 \psi_t(0)_{ij} A^{k}_{0j} A^{s}_{0j} q_0^0 + N^{ij}. \quad (1.17d)
\end{align*}
\]

Remark 1.5. Notice that, when the initial data \(h_0 \equiv 0 \), equation (1.17a) takes the more familiar form
\[
\Delta q_0^\pm = \partial_N q_0^\pm [\partial_N q_0^\pm] \text{ on } \Gamma, \quad (1.18)
\]
and the functions \(q_0^\pm = \pm \text{dist}(x, \Gamma) \), satisfy (1.18).

Remark 1.6. Unlike the analysis of [31], herein, the matrix \(A^\pm(0) \neq \text{Id} \), but it is nevertheless a very small perturbation of the identity matrix. We have the following estimate:
\[
||A^\pm(0) - \text{Id}||_s \lesssim |h_0| s^{-0.5} \lesssim \sigma,
\]
which follows from the boundary condition (1.7b) restricted at time \(t = 0 \). Recall that \(h_0 \) is defined on the smooth reference curve \(\Gamma \), and the graph of \(h_0 \) defines the initial interface \(\Gamma_0 \) in the normal bundle over \(\Gamma \).

1.10. Non-degeneracy or Rayleigh-Taylor stability condition. To ensure the local-in-time well-posedness of the Stefan problem, we impose the well-known nondegeneracy condition that has been used by Meirmanov [43], Prüss, Saal, & Simonett [44], Hadžić & Shkoller [31, 32] and other authors; specifically, we make the following requirement on the initial temperature function:
\[
\partial_N q_0^\pm \geq \delta > 0, \text{ uniformly on } \Gamma, \quad (1.19)
\]

for some constant $\delta > 0$. Condition (1.19) is the classical Rayleigh-Taylor sign condition that naturally appears in the context of many free boundary and moving interface problems in fluid dynamics as a stability condition for well-posedness [16], wherein the function q_0 is the initial pressure function rather than temperature function. For the one-phase water waves equations with an interface that does not self-intersect, (1.19) was shown to always hold in [51] using the Hopf lemma. For the incompressible Euler equations with vorticity, it is essential to chose an initial velocity profile that provides a pressure function satisfying (1.19), for if (1.19) holds, then the free boundary incompressible Euler equations are well-posed (see, for example, [16] and the references therein), while if (1.19) does not hold, then the problem is ill-posed, as shown in [23]. In the setting of compressible flows with the so-called physical vacuum boundary, condition (1.19) is equivalent to the sound speed of the gas vanishing as the square-root of the distance function to the vacuum boundary, and is also required for well-posedness as shown in [18, 19]. This condition also appears in both the Hele-Shaw and Muskat problems (see, for example, [10] and [11]). In all of these problems, the natural control of the second-fundamental form of the moving interface $\Gamma(t)$ can be obtained in a somewhat similar fashion (at least for short-time), and we will discuss this further in Section 2.2.

To ensure the global-in-time nonlinear stability of the steady state solutions of the Stefan problem (1.1) described in Section 1.6, we shall demand natural sign assumptions on the initial temperatures in the liquid and the solid phases, respectively:

$$q_0^+ > 0 \text{ in } \Omega^+ \quad \text{and} \quad q_0^- < 0 \text{ in } \Omega^-.$$ \hfill (1.20)

In addition to this, given some universal constant $C^* > 0$, we consider initial temperature distributions q_0^\pm satisfying

$$k(q_0^\pm) := \inf_{x \in \Gamma} \partial_N q_0^\pm(x) \geq C^*,$$ \hfill (1.21)

where $\varphi_1^\pm \geq 0$ denotes the first eigenfunction of the Dirichlet-Laplacian on Ω^\pm. The quantity $k(q_0)$ is dimensionless and it is invariant under scaling, i.e. $k(\varepsilon q_0) = k(q_0)$, $\varepsilon \neq 0$. We also denote

$$c_1^\pm := \int_{\Omega^\pm} q_0^\pm \varphi_1^\pm dx,$$ \hfill (1.22)

i.e. c_1^\pm is the projection of q_0^\pm onto the first eigenfunction of the Dirichlet-Laplacian. Observe that (1.21) implies (1.19). Notice that under the sign assumptions (1.20) the parabolic Hopf Lemma implies that $\partial_N q^\pm(t) > 0$ for some period of time $0 < t < T$; however, as $t \to 0^+$, there is no uniformity on this lower bound. Condition (1.21) is designed to ensure a uniform lower bound on $\partial_N q^\pm(t)$ as $t \to 0$ in a certain quantified manner, involving the quantity c_1^\pm. This will be crucial in obtaining a sharp lower bound for $\partial_N q^\pm(t), t > 0$, which is used in the proof of the global-in-time stability.

2. Main results

Our first result is a local well-posedness theorem in Sobolev spaces.

Theorem 2.1 (Local well-posedness). With Ω and Ω^\pm as given in Definition 1.1, and with (q_0^\pm, h_0) satisfying the initial data compatibility conditions (1.17a)–(1.17d), the Rayleigh-Taylor sign condition (1.19) and

$$S(0) < \infty,$$

where $S(t)$ is defined in (1.12), there exists a time $T > 0$ and a universal constant $C > 0$, such that there exists a unique solution to the two-phase Stefan problem (1.10), the map
\(t \rightarrow S(t) \) is continuous on \([0,T]\), and the solution verifies the following estimate:

\[
S(t) \leq CS(0) \quad \text{for all } t \in [0,T].
\]

Having established short-time existence for arbitrarily large data, we next consider the nonlinear stability of equilibria. To do so, we introduce the following dimensionless quantity:

\[
K(q^\pm_0) := \frac{\|q^\pm_0\|_4}{\|q^\pm_0\|_0}, \tag{2.23}
\]

which is invariant under the rescaling \(q^\pm_0 \mapsto \varepsilon q^\pm_0 \). Note that \(K > 1 \), since, in the standard definition of the norm in \(H^4(\Omega^\pm) \), the \(L^2(\Omega^\pm) \) norm is contained in the sum.

Theorem 2.2 (Global existence, nonlinear stability, and decay). For \(K > 1 \), suppose that the initial data \((q^\pm_0, h_0)\) satisfies the conditions (1.17a)–(1.17d), (1.20), and (1.21), as well as the condition

\[
\max\{K(q^+_0), K(q^-_0)\} \leq K,
\]

where \(K(q^\pm_0) \) is defined in (2.23). Then, there exists an \(\varepsilon_0 > 0 \) and a monotonically increasing function \(F:(1,\infty) \rightarrow \mathbb{R}_+ \) which is independent of \(\varepsilon_0 \) and \(K \), such that if

\[
S(0) < \frac{\varepsilon^2_0}{F(K)}, \tag{2.24}
\]

then there exist a unique global-in-time solution \((q^\pm, h)\) to problem (1.10) satisfying

\[
S(t) < C\varepsilon^2_0, \quad t \in [0,\infty), \tag{2.25}
\]

for some universal constant \(C > 0 \). Moreover, the temperature \(q^\pm(t) \rightarrow 0 \) as \(t \rightarrow \infty \) with a decay rate

\[
\|q^\pm(t)\|_{H^1(\Omega^\pm)}^2 \leq Ce^{-\beta^\pm t}, \tag{2.26}
\]

where \(\beta^\pm = 2\lambda^\pm_1 - \eta \) is defined in (1.14). The moving boundary \(\Gamma(t) \) converges asymptotically to some nearby time-independent hypersurface \(\overline{\Gamma} \), and

\[
\sup_{0 \leq t < \infty} |h(t, \cdot) - h_0(\cdot)|_{4.5} \leq C\sqrt{\varepsilon_0}. \tag{2.27}
\]

Remark 2.3. Other existing global stability results for the Stefan problem contain an effective heat source most commonly introduced through the presence of nontrivial Dirichlet boundary conditions \([43, 46]\). Such stability questions are simpler than our problem, as the presence of a heat source makes the family of possible steady states finite-dimensional. This allows to a priori guess a possible asymptotic attractor for the nonlinear dynamics. In our case, due to an abundance of possible steady states, small perturbations converge to some nearby element of the set of steady states. Characterization of such a nearby asymptotic state in terms of initial data is a difficult problem.

2.1. A brief history of prior results.

The Stefan problem was introduced by Jožef Stefan in 1889 as a model for the melting of ice caps \([48, 49]\), and is now considered a prototype free boundary problem in the area of nonlinear partial differential equations; a historical account of the analysis of related free boundary is given in \([25, 39]\) for results prior to the 1980s. An account of more recent results is provided in \([43, 47, 25, 50]\); see also the introduction to \([31]\).

Weak solutions to the classical Stefan problem were shown to exist in \([34, 24, 41]\), for both the one-phase and the two-phase problem. In the one-phase case, the problem lends itself to a variational approach that was successfully used in \([26]\) to study the existence and regularity of solutions. Important regularity results were established in \([6, 37, 38, 7, 9]\). The continuity of the temperature function for the weak solutions of the two-phase classical
Stefan problem in any dimension was proved in [8]. Another notion of a generalized solution for the classical Stefan problem, called the viscosity solution, was introduced and studied in the seminal works [1, 2, 3, 4], while the existence proof and further regularity results can be found in [35, 36, 12, 13]. An overview of various regularity results for viscosity solutions prior to 2005 can be found in the monograph [5].

Short-time existence of classical solutions of the one-phase problem was established in [33] under sufficient regularity assumptions and higher-order compatibility conditions. In [27] the authors prove local existence for the one-phase classical Stefan problem in higher dimension. In the two-phase case, local existence and uniqueness of classical solutions was proven in [43]. Neither of these papers, however, established the full well-posedness in the sense of Hadamard, as the constructed solutions experience a potential derivative loss. Under mild regularity assumptions on the initial data and a more general domain, the local-in-time solutions were shown to exist in [44], proving additionally the space-time analyticity of the solutions. Smoothness of the free boundary and the temperature was also shown in [40].

Using initial domains \(\mathbb{T}^{d-1} \times (0,1) \) and \(\mathbb{T}^{d-1} \times (-1,0) \) and temperature profiles that allows for only one steady state solution to the two-phase Stefan problem, global-in-time stability was established in [43], by imposing Dirichlet boundary conditions on the two fixed boundaries: \(\mathbb{T}^{d-1} \times \{ x_d = 1 \} \) and \(\mathbb{T}^{d-1} \times \{ x_d = -1 \} \). In such a setting, the solution to the nonlinear problem, can be treated as a small perturbation of the known linear solution by contrast to our problem.

A similar strategy is taken in [46], where a global-in-time description of the dynamics for the one-phase classical Stefan problem is given. Therein, the authors study the exterior problem in the presence of a nontrivial heat source, modeled again through the imposition of an appropriate Dirichlet boundary condition. The corresponding free boundary expands to infinity and the asymptotic rate is given. That method relies on the availability of a non-trivial background Hele-Shaw solution.

Global existence of classical solutions of the one-phase problem was proved in [22] for log-concave initial temperatures, and hence for convex initial domains.

In the presence of surface tension, the families of steady states to the Stefan problem are parametrized by finitely many parameters and therefore the problem does not exhibit the same type of difficulty as the Stefan problem in the absence of surface tension. The global-in-time nonlinear stability of flat steady states was established in [29]. In the more complicated case of steady spheres, the nonlinear stability was first proved in [28], and by a different method in [45].

In the absence of surface tension, the nonlinear stability of nearly spherical steady state solutions to the one-phase Stefan problem was proved in [31] and the authors generalized that result to allow for arbitrary (bounded) initial domains in [32]. Due to the infinite-dimensional space of steady states, the nonlinear stability theory cannot be viewed as a perturbation of a given linear profile; thus, a novel hybrid methodology was developed in [31, 32], which combined energy methods with pointwise maximum principle techniques to establish exponential-in-time lower-bounds on the Rayleigh-Taylor stability condition. Maximum principles together with energy estimates were also used in [14] for the analysis of the related Muskat problem.

2.2. Methodology and outline of the paper. Our first main result is Theorem 2.1 proving the local well-posedness for the two-phase classical Stefan problem. Our methodology extends the hybrid method developed in [30, 31] for the one-phase problem in a fundamental way.

Following the energy method of [16] for the incompressible Euler equations, tangential and temporal energy estimates on the problem (1.10) lead to control of the interface regularity
via an integral of the type $\int_{\Gamma} F(x,t) \bar{\nabla}^k h^2 \, dx$ for some function $F(x,t) > 0$. Unlike the one-phase problem wherein $\Gamma(t)$ moves with speed $v \cdot n$ and so $F(x,t) = -\partial_N q$, in the two-phase setting, $\Gamma(t)$ moves with the jump of $v \cdot n$, and hence weight functions must be introduced into the energy method to obtain the function $F(x,t)$. Specifically, since on Γ,

$$\partial_N q^+ \neq \partial_N q^-,$$

(2.28)

we introduce the weight functions W^\pm (3.69) in the interior of the two phases Ω^\pm designed to resolve the mismatch in (2.28), and to allow us to form a common factor in the difference of the two boundary integrals arising from integration-by-parts in both phases Ω^+ and Ω^-. With our weighted energy method, we obtain control on the boundary integral

$$\varepsilon^t = e^{-(\lambda_1+\eta)t} \int_{\Gamma} |\bar{\nabla} h|^2 \, dx,$$

(2.29)

where λ_1 is the smaller of the two first eigenvalues of the Dirichlet-Laplacian on the domains Ω^\pm. In order to use this energy control to prove the existence of solutions, we will regularize in the tangential directions with the convolution-by-layers smoothing operator introduced in [16], and study the regularized problem. We obtain that for a short time T, depending on the smoothing parameter κ, there exists a solution. The aforementioned energy control will give us a uniform bound, which will guarantee that the time of existence does not vanish as the smoothing parameter goes to zero. Taking a limit as $\kappa \to 0$ leads to a local-in-time solution to (1.10).

In order to prove global-in-time stability of a given steady state, we need to contend with the exponentially decaying weight present in (2.29). Its presence suggests that a bound on (2.28) implies that $|\bar{\nabla} h|_0$ can grow exponentially fast. A related issue is also present in the one-phase case [31] and our general strategy is similar; whenever we have to bound the top order norms of h we do that at the cost of an exponentially growing factor, since

$$|\bar{\nabla} h|_0 \leq e^{(\lambda_1+\eta)t/2} (\varepsilon^t)^{1/2}.$$

(2.30)

On the other hand, we do expect that the temperature q will decay exponentially fast to the equilibrium, as it solves a heat equation. Therefore, each time we use (2.30) we have to make sure that it comes coupled with a lower order derivative of q which decays sufficiently fast to counter balance a possible growth coming from (2.30). While this strategy works for most of the error terms, there are certain energy critical error terms with no room left to obtain the desired exponentially decaying factor in the error terms.

In [31] this critical term took the form

$$\int_{\Gamma} \partial_N q_t |\bar{\nabla} h|^2,$$

(2.31)

which could not be treated as an error term since the expected decay rate of $\partial_N q_t$ is exactly the same as the decay rate of $\partial_N q$. To resolve this issue, the authors proved that after a sufficiently long time interval, the term (2.31) is sign-definite, with a favorable sign. This required a complicated usage of comparison principles and a decomposition of the temperature into the eigenfunctions of the Dirichlet-Laplacian.

In our current treatment, we circumvent this difficulty through the introduction of the weights W^\pm in the definition of the natural energy E. As a consequence, the corresponding “critical” term takes the form

$$\int_{\Gamma} \partial_t \left(e^{-(\lambda_1+\eta)t} \right) |\bar{\nabla} h|^2 = - (\lambda_1 + \eta) \int_{\Gamma} e^{-(\lambda_1+\eta)t} |\bar{\nabla} h|^2 < 0.$$

(2.32)

The simplification in our analysis caused by the estimate (2.32) is very substantial, but it does come with a small price. Terms $\partial_N q^\pm_t$ are implicitly hidden in the terms $\partial_t W^\pm$ which appear inside some of the interior error terms involving integration over Ω^\pm. However, the
dissipative effects are stronger inside Ω^\pm and we combine norm interpolation and energy estimates to overcome a potentially exponential growth in our estimates caused by $\partial_t W^\pm$.

This simplifies the proof significantly, as we no longer need to \textit{wait} until the dynamics settle into a regime dominated by the first eigenfunction of the \textit{Dirichlet-Laplacian} as in Section 4.3 of [31].

To get quantitative lower bounds on the weights W^\pm, we must obtain sharp quantitative lower bounds for the quantities $\partial_t N^\pm$. We implement a bootstrap scheme, where we first assume such bounds and use them to prove important energy-norm equivalence Lemmas in Section 4.1. Just like in [32], to show that the lower bound is dynamically preserved, we make a very sharp use of the Pucci operators and comparison principles as explained in Section 4.4. Finally, using standard continuity arguments and the improvement of the bootstrap bounds, we present the proof of Theorem 2.2 in Section 4.7.

To summarize, a novel aspect of our methodology is the introduction of the weight functions $W^\pm(t,x)$ with very specific decay properties. One of its key features is that it measures the boundary energy contribution in terms of a higher-order Sobolev norm weighted by an explicit exponential $e^{(-\lambda_1+\eta) t}$. This simplifies the global-in-time analysis with respect to [31], and provides a tool for studying similar multi-phase problems in the absence of surface tension. Equally importantly, using the weighted higher-order energy, we are able to show that the top-order norms \mathcal{E}^\pm also decay-in-time. The top-order terms decay at a slower rate than predicted by the linear theory, a consequence of the degeneracy caused by the nonlinear and mixed parabolic-hyperbolic character of the equations.

Finally, the perturbation, given by h, from our initial geometry does not decay, but rather it converges, as $t \to \infty$, to some nontrivial h_∞ which is very small in a suitable Sobolev norm.

2.3. Future work. The well-posedness framework introduced in this work is well-suited for the investigation of various singular limits that commonly arise in the study of free boundary problems. We intend to establish that solutions to the one-phase Stefan problem are, in fact, limits of solutions of the two-phase Stefan problem in the limit as the ratio of the diffusion coefficients converges to zero. A second important singular limit amenable to our approach is the problem of the vanishing surface tension limit. Our energy method naturally extends to the surface tension problem, by simply adding new top-order energy terms, weighted by the surface tension coefficient. We intend to examine the possibility of a splash singularity for the one-phase Stefan problem as in [20] and to investigate if a splash singularity can occur for the two-phase Stefan problem following the methodology of [21].

2.4. Outline of the paper. Section 3 is devoted to the proof of the local well-posedness Theorem 2.1. In Section 3.1 we regularize the Stefan problem. In Section 3.3 we define the energy functionals with the new weights W^\pm. In Sections 3.4 and 3.5 we establish the short-time relationship between the natural energy and the norms and derive the energy identities respectively. In Section 3.6 we prove the energy estimates and in Section 3.7 we finally finish the proof of the local existence Theorem. In Section 4.1 we re-introduce the hypotheses for the global stability Theorem, and the bootstrap assumptions. In Sections 4.2 and 4.3 we obtain global estimates for the weights W^\pm, energy-norm equivalence, and some a priori estimates for the height function h. Sections 4.4, 4.5 and 4.6 are dedicated to the proof of the dynamic improvement of our the bootstrap assumptions, and in Section 4.7 we present the proof of the global stability Theorem. Appendix A briefly presents some useful bounds for the change of variables Ψ^\pm.

3. Local well-posedness: proof of Theorem 2.1

We begin by constructing a sequence of approximate, so called κ-problems which retain the nonlinear structure of the original two-phase Stefan problem. The small number $\kappa > 0$
is the radius of convolution, and our κ-problems (3.36) are founded upon the smoothing of the evolving interface $\Gamma(t)$; in particular, in Section 3.1, we regularize the height function h using a symmetric horizontal convolution operator Λ_κ, and otherwise keep the structure of the equations the same. In Section 3.2 we establish an existence theorem for our sequence of κ-approximations (3.36) by the contraction mapping principle. The time of existence T_κ, a priori, may shrink to zero as $\kappa \to 0$, but in Section 3.6, we establish κ-independent estimates, which allow us to prove that T_κ is, in fact, independent of κ. Passing to the limit as $\kappa \to 0$, we shall obtain solutions to the Stefan problem (1.10).

3.1. Sequence of approximate κ-problems

For a given parameter $\kappa > 0$ and a height function h, we define its regularization by

$$h_\kappa := \Lambda_\kappa A_\kappa h,$$

where Λ_κ is the smoothing operator defined in (1.3). We introduce the regularized coordinate transformations Ψ^\pm_κ as the solutions to

$$\Delta \Psi^\pm_\kappa = 0 \quad \text{in } \Omega^\pm,$$

$$\Psi^\pm_\kappa(t,x) = x + h_\kappa(t,x)N \quad \text{on } \Gamma,$$

$$\Psi^\pm_\kappa = e \quad \text{on } \partial \Omega,$$

where we recall that e is the identity map on $\partial \Omega$. Similarly as for (1.7), notice that equation (1.8) for this regularized problem is,

$$\|\Psi^\pm_\kappa - e\|_{6,5} \leq C|h_\kappa|_6.$$

Therefore, the smallness of $|h_\kappa - h_0|_6$ for short time together with the choice of $|h_0|_6 \leq C\sigma \ll 1$ gives us that Ψ^\pm_κ are in fact $H^{5,5}$-class diffeomorphisms. As in (1.9c), we define now, $A^\pm_\kappa := (\nabla \Psi^\pm_\kappa)^{-1}$, and let $w^\pm_\kappa := \partial_\kappa \Psi^\pm_\kappa$. We introduce our sequence of approximations to the Stefan problem as the following κ-problem:

$$q^\pm_t - \Delta_\kappa q^\pm = -v^\pm : \nabla w^\pm_\kappa + \alpha^\pm \quad \text{in } \Omega^\pm, \quad (3.36a)$$

$$v^\pm + A^\pm_\kappa \nabla q^\pm = 0 \quad \text{in } \Omega^\pm, \quad (3.36b)$$

$$q^\pm = \mp \kappa^2 ((v^\pm)^i A^j_\kappa N^j) \pm \kappa^2 \beta^\pm(t,x) \quad \text{on } \Gamma, \quad (3.36c)$$

$$h_t = [v \cdot \tilde{\kappa}^\pm] \quad \text{on } \Gamma, \quad (3.36d)$$

$$v^\pm \cdot N^+ = \gamma \quad \text{on } \partial \Omega, \quad (3.36e)$$

$$q^\pm|_{t=0} = \kappa Q_0^\pm \quad \text{on } \{t=0\} \times \Omega^\pm, \quad (3.36f)$$

$$h|_{t=0} = h_0^\kappa \quad \text{on } \{t=0\} \times \Gamma. \quad (3.36g)$$

where N^+ is the exterior normal vector to the fixed boundary $\partial \Omega$, $\tilde{\kappa}^\kappa := \frac{\kappa^\kappa}{n^\kappa \cdot N}$, n^κ is the normal vector to the regularized interface $\Gamma_\kappa(t)$, given by

$$n^\kappa(t,y(\theta)) = \frac{-\bar{\partial} h_\kappa \bar{\kappa} + (1 + H(\theta)h_\kappa(t,z(\theta)))N}{\sqrt{(\bar{\partial} h_\kappa)^2 + (1 + H(\theta)h_\kappa)^2}},$$

and κQ_0^\pm is the initial data defined carefully in Section 3.1.1. The introduction of this special initial data, and the functions α^\pm, β^\pm and γ into equations (3.36a), (3.36c), (3.49d) respectively, has the purpose of cancelling the new compatibility conditions that arise in the κ-problem due to the smoothing. The central idea is that equations (3.36) and their time derivatives, when restricted to time $t=0$, will produce new terms from the κ-dependent coefficients κA^\pm_κ, that the functions $\alpha^\pm(0)$, $\beta^\pm(0)$, and $\gamma(0)$ will cancel and replace with the analogous terms of the non-regularized problem (1.10), which in turn
corresponds to the original compatibility conditions satisfied by \(q_0^\pm \) (1.17).

For \(s \geq 0 \), let \(E^\pm: H^s(\Omega^\pm) \to H^s(\mathbb{R}^2) \) be the Sobolev extension operator of \(\Omega^\pm \). Then we define the function \(\alpha^\pm(t,x) \) over \(\Omega^\pm \) as,
\[
\alpha^\pm(t,x) = \alpha_0^\pm(x) + \int_0^t r^\pm(s,x) ds,
\]
where \(\alpha_0^\pm \) is given by
\[
\alpha_0^\pm := -\nabla \cdot q_0^\pm \cdot \Psi^\pm(0) + \nabla \cdot q_0^\pm \cdot \Psi^\pm(0),
\]
and \(r^\pm = \bar{r}^\pm|_{\Omega^\pm} \) is the restriction to \(\Omega^\pm \) of the solution to the parabolic problem,
\[
\bar{r}^\pm + \Delta^2 \bar{r}^\pm = 0 \text{ in } \mathbb{R}^2,
\]
\[
\bar{r}^\pm(t=0) = E^\pm(\alpha_1^\pm) \text{ on } \mathbb{R}^2 \times \{t = 0\},
\]
where \(\alpha_1^\pm \) is defined in \(\Omega^\pm \) as,
\[
\alpha_1^\pm := -B_1^\pm(\nabla \cdot q_0^\pm, q_0^\pm) + B_2^\pm(q_0, h_0),
\]
with,
\[
B_1(\nabla \cdot q_0^\pm, q_0^\pm) := \Delta \cdot q_0^\pm \cdot \nabla \cdot q_0^\pm \cdot \Psi^\pm_0(0) + \alpha_0^\pm - \nabla \cdot q_0^\pm \cdot \nabla \cdot q_0^\pm \cdot \Psi^\pm_0(0) - \nabla \cdot q_0^\pm \cdot \nabla \cdot q_0^\pm \cdot \Psi^\pm_0(0) - \nabla \cdot q_0^\pm \cdot \nabla \cdot q_0^\pm \cdot \Psi^\pm_0(0) + \nabla \cdot q_0^\pm \cdot \nabla \cdot q_0^\pm \cdot \Psi^\pm_0(0) + \nabla \cdot q_0^\pm \cdot \nabla \cdot q_0^\pm \cdot \Psi^\pm_0(0),
\]
\[
B_2(q_0, h_0) := -A_0^i \cdot i^\pm_{0} \cdot i_{0}^{\pm} + A_0^j \cdot j^\pm_{0} \cdot j_{0}^{\pm} - A_0^j \cdot j^\pm_{0} \cdot j_{0}^{\pm} - A_0^j \cdot j^\pm_{0} \cdot j_{0}^{\pm} + \nabla \cdot q_0^\pm \cdot \nabla \cdot q_0^\pm \cdot \Psi^\pm_0(0) + \nabla \cdot q_0^\pm \cdot \nabla \cdot q_0^\pm \cdot \Psi^\pm_0(0).
\]
Notice that, since \(q_0 \) satisfies the compatibility conditions (1.17b), when restricted to \(\Gamma \), \(B_1 \) and \(B_2 \) can be written simply as,
\[
B_1(\nabla \cdot q_0^\pm, q_0^\pm) = \partial_t (\Delta \cdot q_0^\pm + \nabla \cdot q_0^\pm \cdot \Psi^\pm_0(0))|_{t=0} - \Delta^2 q_0^\pm \cdot \Psi^\pm_0(0),
\]
\[
B_2(q_0, h_0) = \Delta^2 q_0^\pm q_0^\pm,
\]
where the value for \(q(0) \) can be obtained from restricting equation (3.36a) to \(t=0 \) and using that \(q(0) = \nabla \cdot q_0^\pm \).

Remark 3.1. Since, in the right-hand side of equation (3.36a) we have the term \(\alpha^\pm(t,x) \), the regularity of \(\partial_t q^\pm \) for \(l=0,...,3 \), depends, among other things, on the regularity of this term and its time derivative. Specifically, we will need to bound \(\alpha^\pm \) in \(H^5(\Omega^\pm) \) (see Section 3.6.1), in order to obtain the desired regularity of \(q^\pm \), but at the same time we require that \(\partial_t \alpha^\pm(0) = \alpha_1^\pm \) on \(\Gamma \), which does not have enough derivatives. The introduction of \(r^\pm \) solves this problem since, from the standard parabolic regularity theory, the solution \(r^\pm(t,x) \) is in \(L^2((0,T);H^5(\Omega^\pm)) \) since the initial datum \(\bar{r}^\pm(t=0) \) belongs to \(H^3(\Omega) \) by our regularity assumptions on \((q_0, h_0) \).

Now let us define the function \(\gamma \) on \(\partial \Omega \) as:
\[
\gamma := G \cdot N^+ + \int_0^t G^1(s) \cdot N^+ ds + \int_t^s G^2(\tau) \cdot N^+ d\tau ds \text{ in } \Omega^+,
\]
3.1.1. Definition of the smooth initial data with specific boundary data designed to satisfy the compatibility conditions. We proceed by solving the tri-Laplacian, \(\Delta^2 \tilde{G}^i = 0 \) in \(\mathbb{R}^2 \),

\[
\tilde{G}^i(t=0) = E^+(\gamma_i) \quad \text{on} \quad \mathbb{R}^2 \times \{t = 0\},
\]

with \(\gamma_i \) defined in \(\Omega^+ \) as,

\[
\gamma_0 := -\nabla_{\psi_0^+} \cdot \kappa Q_0^+ + \nabla_{\psi_0^+} q_0^+,
\]

\[
\gamma_1 := -[\alpha_0^+ \nabla \kappa \psi_i^+(0) \alpha_0^+] \cdot \nabla^\kappa Q_0^+ + \nabla_{\psi_0^+} \cdot (\nabla_{\psi_0^+} q_0^+ \cdot \psi_i^+(0)) + \nabla_{\psi_0^+} (\Delta_{\psi_0^+} q_0^+),
\]

\[
\gamma_2 := \partial_t^2 (\nabla_{\psi_0^+} q_i^+) |_{t=0} - \nabla_{\psi_0^+} (\Delta_{\psi_0^+} Q_0^+) + \nabla_{\psi_0^+} (\Delta_{\psi_0^+} q_0^+).
\]

As a consequence of (3.40)–(3.41) and the Sobolev regularity of \(\tilde{G}^i(t=0), i = 0, 1, 2 \), standard parabolic regularity theory gives the bound

\[
\|\tilde{G}^0\|_{L^\infty_t H^{3.5}} + \sum_{i=0}^2 \|\tilde{G}^i\|_{L^2_t H^6} \lesssim 1.
\]

Estimate (3.42) plays a crucial role in the nonlinear estimates in Section 3.6.1.

The function \(\beta^\pm(t,x) \) is defined on \(\Gamma \) as

\[
\beta^\pm(t,x) := \sum_{k=0}^3 \frac{t^k}{k!} \partial_t^k ((v^\pm_i)^T \kappa A_i^j N^j)|_{t=0}.
\]

Note that \(\beta \) is a cubic polynomial in \(t \) with space dependent coefficients.

Remark 3.2. The functions \(\beta^\pm \) serves a similar purpose on the boundary \(\Gamma \) as \(\alpha \) does in the interior, and they are used to avoid new compatibility conditions that may appear from the boundary regularization (3.36c). This regularization is needed to overcome a technical difficulty in the highest-in-time energy estimates when we have a term of the form

\[
\int_{\Gamma} (\kappa \nabla u_{ttt} \cdot n) (v^\pm_{tti} \cdot n) d\sigma,
\]

because the trace of \(v^\pm_{tti} \cdot n \) is not necessarily well defined.

3.1.1. Definition of the smooth initial data \(Q_0^\pm \). We now construct a smooth version of the initial data \(q_0^\pm \) that will satisfy the compatibility conditions for the \(\kappa \)-problem (3.36). We solve the tri-Laplacian,

\[
\Delta^3_{\psi_0^+} \kappa Q_0^\pm = \Delta^3_{\psi_0^+} (\eta \ast E(q_0^\pm)) \quad \text{in} \quad \Omega^\pm,
\]

with specific boundary data designed to satisfy the compatibility conditions. We proceed by solving the equivalent system of elliptic equations:

\[
\Delta_{\psi_0^+} \kappa Q_0^\pm = \kappa R_0^\pm \quad \text{in} \quad \Omega^\pm,
\]

\[
\kappa R_0^\pm = 0 \quad \text{on} \quad \Gamma,
\]

\[
\nabla_{\psi_0^+} \kappa Q_0^\pm \cdot N^\pm = 0 \quad \text{on} \quad \partial \Omega,
\]

\[
\Delta_{\psi_0^+} \kappa R_0^\pm = \kappa U^\pm_0 \quad \text{in} \quad \Omega^\pm,
\]

\[
\kappa U^\pm_0 = -((\nabla_{\psi_0^+} q_0^\pm \cdot N) g_1) \quad \text{on} \quad \Gamma,
\]

\[
\nabla_{\psi_0^+} \kappa R_0^\pm \cdot N^\pm = \nabla_{\psi_0^+} (\Delta_{\psi_0^+} q_0^\pm) \cdot N^\pm \quad \text{on} \quad \partial \Omega.
\]
Recall that g_1 is defined in (1.16a). Notice that the system is decoupled, and therefore existence of solutions follows directly. This choice of initial data, and the fact that q_0^\pm satisfy (1.17), shows that the compatibility conditions for equation (3.36) are automatically satisfied. Moreover, as $\kappa \to 0$,
\[\kappa Q_0^\pm \to q_0^\pm \text{ in } H^6(\Omega^\pm). \]

Remark 3.3. We actually have strong convergence of κQ_0^\pm to q_0^\pm in $H^6(\Omega^\pm)$. The argument is simple, but cumbersome, as it involves elliptic estimates from all three equations (3.44). Consider for example equations (3.44g) with boundary condition (3.44h), on the region Ω^- (we will omit the index “-”). In order to estimate the difference between $\kappa U_0 - \Delta^2_\psi g_0$ we analyze the elliptic problem:

\[\Delta^2_\psi (\kappa U_0 - \Delta^2_\psi g_0) = \Delta^2_\psi (\kappa \ast E(q_0)) - \Delta^2_\psi g_0 \quad \text{in } \Omega, \]
\[\kappa U_0 - \Delta^2_\psi g_0 = 0 \quad \text{on } \Gamma. \]

Let us define $G := \kappa U_0 - \Delta^2_\psi g_0$; Then, the system can be rewritten as

\[\Delta^2_\psi G = \Delta^2_\psi (\kappa \ast E(q_0)) - \Delta^2_\psi g_0 + (\Delta_\psi - \Delta_\psi) G \quad \text{in } \Omega, \]
\[G = 0 \quad \text{on } \Gamma, \]

and so, by elliptic estimates we have the bound:

\[\|G\|_2 \leq \|\Delta^2_\psi (\kappa \ast E(q_0)) - \Delta^2_\psi g_0\|_2 + \|A_0 A_0 - \|A_0 \| \|L^\infty \|G\|_2 + O_\kappa, \]

where we have gathered all the lower-order terms coming from the product rule in O_κ. Since we have strong convergence of $h^\Psi_0 \to h_0$ in $H^6(\Gamma)$, we conclude that $\kappa \Psi_0 \to \Psi_0$ in $H^{6.5}(\Omega)$, and therefore $\kappa A_0 \to A_0$ in $H^{5.5}(\Omega)$. Combining this fact together with the strong convergence of $\eta_\kappa \ast E(q_0)$ to q_0 in $H^6(\Omega)$, the right-hand side of equation (3.45) goes to zero as $\kappa \to 0$, and therefore, $G \to 0$ in $H^2(\Omega)$, or equivalently: $\kappa U_0 \to \Delta^2_\psi g_0$ in $H^2(\Omega)$. This same procedure applied to the other equations of the system (3.44) gives us the necessary estimates to prove the strong convergence $\kappa Q_0^\pm \to q_0^\pm$ in $H^6(\Omega^\pm)$.

3.2. Existence theorem for the κ-problem

In this section, we use the contraction mapping theorem to find solutions to the κ-problem (3.36). We introduce the following normed space of functions:

\[X^\kappa_3 = \left\{ \partial^3_t h^\kappa \in C([0,T_\kappa];H^{6-2l}(\Gamma)), \partial^3_t h^\kappa \in L^2([0,T_\kappa];H^{5-2s}(\Gamma)) : 0 \leq l \leq 3, 0 \leq s \leq 2, \right\} \]
\[\sum_{l=0}^3 |\partial^l_t h^\kappa(s)|^2_{L^\infty H^{6-2l}(\Gamma)} + \sum_{l=0}^2 |\partial^l_t h^\kappa|^2_{L^2 H^{5-2s}(\Gamma)} \leq M, \]
\[h^\kappa(0,x) = h^0_\kappa(x), h^\kappa_t(0,x) = g^\kappa_2(x), h^\kappa_{tt}(0,x) = g^\kappa_3(x), \]

with $M > 0$ a function of the initial data to be determined, and $g^\kappa_i := \Lambda_\kappa g_i, i = 1, 2, 3$, the smooth versions of (1.16).

Theorem 3.4 (Solutions to the κ-problem). For any fixed $\kappa > 0$ there exist a time $T_\kappa > 0$, such that there exists a unique solution (q,h^κ) to the non-linear κ-problem (3.36) on the time-interval $[0,T_\kappa]$, and $S(t) = S(q^\kappa, h^\kappa) \leq M$.

Proof. We will separate the proof into three steps.
3.2.1. Step 1: The linear problem. Assuming that a function $\bar{h} \in X_M$ is given, consider the regularized version of h:

$$\tilde{h}^\kappa := \Lambda_\kappa A_\kappa \bar{h}. \quad (3.47)$$

Again, we define the regularized coordinate transformations $^\kappa \tilde{\Psi}^\pm$, as the solutions to:

$$\Delta ^\kappa \tilde{\Psi}^\pm = 0 \quad \text{in } \Omega^\pm, \quad (3.48a)$$

$$^\kappa \tilde{\Psi}^\pm(t,) = x + \tilde{h}^\kappa(t,)N(\cdot) \quad \text{on } \Gamma, \quad (3.48b)$$

$$^\kappa \tilde{\Psi}^\pm = e \quad \text{on } \partial \Omega. \quad (3.48c)$$

We define $^\kappa \tilde{A}^\pm := (\nabla ^\kappa \tilde{\Psi})^{-1}$, $^\kappa \tilde{J} := \det \nabla ^\kappa \tilde{\Psi}$, the cofactor matrix $^\kappa \tilde{u} := ^\kappa \tilde{J} ^\kappa \tilde{A}$, and $^\kappa \tilde{w}^\pm := ^\kappa \tilde{\Psi}^\pm$. Recall that equation (1.8) holds for $^\kappa \tilde{\Psi}^\pm$ with \bar{h}^κ in the right-hand side. This gives us that the transformations $^\kappa \tilde{\Psi}^\pm$ are in $C^\infty(\Omega^\pm)$. We then define the following linearization of the κ-problem:

$$q^\pm - \Delta ^\kappa \Psi^\pm q^\pm = -v^\pm, ^\kappa \tilde{w}^\pm + \alpha^\pm \quad \text{in } \Omega^\pm, \quad (3.49a)$$

$$v^\pm + ^\kappa \tilde{A}^\pm \nabla q^\pm = 0 \quad \text{in } \Omega^\pm, \quad (3.49b)$$

$$q^\pm = +\kappa^2((v^\pm)^i ^\kappa \tilde{A}^\pm_i N_j) \pm \kappa^2 \beta^\pm(t,x) \quad \text{on } \Gamma, \quad (3.49c)$$

$$v^\pm \cdot N^\pm = \gamma \quad \text{on } \partial \Omega, \quad (3.49d)$$

$$q^\pm|_{t=0} = ^\kappa Q_0^\pm \quad \text{on } \Omega^\pm \times \{ t = 0 \}, \quad (3.49e)$$

where α^\pm, β^\pm and γ are the functions of the initial data defined in (3.37), (3.43) and (3.39) respectively. Since $\tilde{h}^\kappa(t)$ is prescribed, the linear system of equations (3.49) decouples into two linear heat equations on Ω^\pm respectively, with $C^\infty(\Omega^\pm)$ coefficients. The initial data for the linear smooth problem is $^\kappa Q_0^\pm \in H^0(\Omega^\pm)$, which was designed in (3.44), along with the terms α^\pm, β^\pm, γ, to recover the original two-phase compatibility conditions from the decoupled two phases as $\kappa \to 0$.

3.2.2. Step 2: Higher regularity for the linear problem. We want to prove that there exists solutions to (3.49) such that $\partial_t^l q^\pm \in C([0,T_\kappa];H^{9-2l}(\Omega^\pm)) \cap L^2([0,T_\kappa];H^{7-2l}(\Omega^\pm))$, for all $l=0,\ldots,3$. We proceed as in [15]. Since the two phases are decoupled we have the weak formulation of the two different problems on the regions Ω^\pm separately. For a given function $f \in L^2([0,T_\kappa], \mathbb{R})$ consider the discrete time difference $\delta_t^l f(t) = (\mathcal{E} f(t+s) - \mathcal{E} f(t))s^{-1}$, where \mathcal{E} is a Sobolev extension operator to the positive real line $[0,\infty)$. We define then q^\pm to be a weak solution to equation (3.49), if for all $\phi^\pm \in H^1(\Omega^\pm)$, the following equations hold pointwise in time for all $t \in [0,T_\kappa]$:

$$\langle \partial_t^l (\tilde{J}_\kappa q,t), \phi^\pm \rangle + \left(\partial_t^l (^\kappa \tilde{A}^\pm_j q, s^\pm) \phi^\pm |^s \right)_{L^2(\Omega^\pm)} + \int_\Gamma \partial_t^l (\tilde{J}_\kappa (\kappa^{-2} q^\pm - \beta^\pm)) \phi^\pm d\sigma$$

$$= \left(\partial_t^l (^\kappa \tilde{A}^\pm_j q,t), \phi^\pm \right)_{L^2(\Omega^\pm)} + \left(\partial_t^l (\tilde{J}_\kappa \alpha^\pm), \phi^\pm \right)_{L^2(\Omega^\pm)}, \quad (3.50a)$$

$$\langle \partial_t^l (\tilde{J}_\kappa q,t), \phi^\pm \rangle + \left(\partial_t^l (^\kappa \tilde{A}^\pm_j q, s^\pm) \phi^\pm |^s \right)_{L^2(\Omega^\pm)} + \int_\Gamma \partial_t^l (\tilde{J}_\kappa (\kappa^{-2} q^\pm + \beta^\pm)) \phi^\pm d\sigma$$

$$= \left(\partial_t^l (^\kappa \tilde{A}^\pm_j q,t), \phi^\pm \right)_{L^2(\Omega^\pm)} + \int_{\partial \Omega} \left(\partial_t^l (\tilde{J}_\kappa \gamma) \right) \phi^\pm d\sigma$$

$$+ \left(\partial_t^l (\tilde{J}_\kappa \alpha^\pm), \phi^\pm \right)_{L^2(\Omega^\pm)}, \quad \text{for } l = 0,\ldots,3. \quad (3.50b)$$
with initial conditions given by \(q^\pm(0) = \Theta_0^\pm \), and for \(l = 1, 2, 3 \), \(\partial_t^l q^\pm(0) := \partial_t^{l-1}(\Delta \Psi q + \nabla \Psi \cdot \nabla \Psi q + \alpha) \big|_{t=0} \). Notice that the solution \(q^\pm \) depends on the parameter \(s \), but we will omit its dependence for simplicity of notation, and only at the end of the proof we will take limit as \(s \to 0 \). The use of the difference quotient \(\delta_t \) in equations (3.50a) and (3.50b), is necessary in order to study the third time-differentiated problem; This is due to the fact \(\bar{\Psi}^{tttt} \) is not well defined when \(\bar{h} \) is given in \(X_M^\kappa \).

In what follows, we will omit the upper index \(\pm \) for simplicity of notation, but we will keep in mind that we must perform the analogous techniques in the now decoupled regions \(\Omega^\pm \). Existence of solutions \(q \in C([0, T]; L^2(\Omega)) \cap L^2([0, T]; H^1(\Omega)) \), follow from a Galerkin approximation scheme for parabolic equations, i.e. we consider a solution of the form,

\[
q^m(t, x) = \sum_{n=1}^{m} c_n(t) \varphi_n,
\]

where \(\{\varphi_n\}_{n \in \mathbb{N}} \) is a basis of \(H^1(\Omega) \) that, for simplicity, we will choose so that,

\[
(\bar{J}_\kappa(0) \varphi_n, \varphi_n)_{L^2(\Omega)} = 1, \quad (\bar{J}_\kappa(0) \varphi_n, \varphi_s)_{L^2(\Omega)} = 0, \quad \forall s \neq n,
\]

and the coefficients \(c_n(t) \) satisfy the system of fourth-order differential equations:

\[
\sum_{n=1}^{m} \left\{ e_4 s_n c_n^{(4)}(t) + e_3 s_n c_n^{(3)}(t) + e_2 s_n c_n^{(2)}(t) + e_1 s_n c_n^{(1)}(t) + e_0 s_n c_n(t) \right\} = A_s + B_s, \quad \forall s = 1, \ldots, m,
\]

with initial data given by,

\[
q^m(0) = \Theta_0^m = \sum_{n=1}^{m} (\Theta_0^m, \varphi_n)_{L^2(\Omega)} \varphi_n,
\]

\[
\partial_t^k q^m(0) = \Theta_k^m = \sum_{n=1}^{m} \Theta_k^m(n) \varphi_n \text{ for } k = 1, 2, 3,
\]

where the coefficients \(\Theta_k^m(n) \) are given by,

\[
\Theta_k^m(n) := \left[\left(\partial_t^{k-1}(J_\kappa(q^m), \varphi_n) \right)_{L^2(\Omega)} - \int_{\Gamma} \partial_t^{k-1}(J_\kappa(\nabla \Psi q^m + \beta)) \varphi_n d\sigma \
+ \left(\partial_t^{k-1}(\bar{a}_j^m, \varphi_n) \right)_{L^2(\Omega)} + \left(\partial_t^{k-1}(\bar{\nu}^m, \varphi_n) \right)_{L^2(\Omega)} \right]_{t=0}.
\]
The coefficients \(e^i_{sn} \) for \(i = 1, \ldots, 4 \) of the system (3.52), are given by,

\[
\begin{align*}
e^4_{sn} := & \left(\bar{J}_k \varphi_n , \varphi_s \right)_{L^2(\Omega)}, \\
e^3_{sn} := & \left(\partial_t (\bar{J}_k) \varphi_n , \varphi_s \right)_{L^2(\Omega)} + \left(\kappa a_j^i \bar{A}_j^k \varphi_{n,k}, \varphi_{s,i} \right)_{L^2(\Omega)} \\
& + \int_{\Gamma} \bar{J}_k \kappa^{-2} \varphi_n \varphi_s d\sigma - \left(\kappa a_j^i \varphi_{n,i} \delta^j_i (\bar{\Psi}^j) , \varphi_l \right)_{L^2(\Omega)}, \\
e^2_{sn} := & \left(\partial_t^2 (\bar{J}_k) \varphi_n , \varphi_s \right)_{L^2(\Omega)} + 3 \left(\partial_t (\kappa a_j^i \bar{A}_j^k) \varphi_{n,k} , \varphi_{s,i} \right)_{L^2(\Omega)} \\
& + 3 \int_{\Gamma} \partial_t (\bar{J}_k) \kappa^{-2} \varphi_n \varphi_s d\sigma - 3 \left(\partial_t (\kappa a_j^i \delta^j_i (\bar{\Psi}^j)) \varphi_{n,i} , \varphi_l \right)_{L^2(\Omega)}, \\
e^1_{sn} := & \left(\partial_t^3 (\bar{J}_k) \varphi_n , \varphi_s \right)_{L^2(\Omega)} + 3 \left(\partial_t^2 (\kappa a_j^i \bar{A}_j^k) \varphi_{n,k} , \varphi_{s,i} \right)_{L^2(\Omega)} \\
& + 3 \int_{\Gamma} \partial_t^2 (\bar{J}_k) \kappa^{-2} \varphi_n \varphi_s d\sigma - 3 \left(\partial_t^2 (\kappa a_j^i \delta^j_i (\bar{\Psi}^j)) \varphi_{n,i} , \varphi_l \right)_{L^2(\Omega)}, \\
e^0_{sn} := & \left(\partial_t^3 (\kappa a_j^i \bar{A}_j^k) \varphi_{n,k} , \varphi_{s,i} \right)_{L^2(\Omega)} + \int_{\Gamma} \partial_t^3 (\bar{J}_k) \kappa^{-2} \varphi_n \varphi_s d\sigma \\
& - \left(\partial_t^3 (\kappa a_j^i \delta^j_i (\bar{\Psi}^j)) \varphi_{n,i} , \varphi_l \right)_{L^2(\Omega)},
\end{align*}
\]

and,

\[
\begin{align*}
A_s := & \left(\partial_t^3 (\bar{J}_k \alpha) , \varphi_s \right)_{L^2(\Omega)}, \\
B_s := - & \int_{\Gamma} \partial_t^3 (\bar{J}_k \beta) \varphi_s d\sigma.
\end{align*}
\]

Remark 3.5. Notice that we are considering as a generic model the weak formulation in the domain \(\Omega^- \), but an analogous process works for \(\Omega^+ \), with the inclusion of the integral term on the boundary \(\partial \Omega \) : \(C_s = \int_{\partial \Omega} \partial_t^3 (\bar{J}_k \gamma) \varphi_s d\sigma \).

The fundamental theorem of ODEs provides us then with a solution \(q^n \) of the form (3.51), that satisfies the system (3.52) in the time interval \([0,T^n]\), which a priori depends on the parameter \(m \). Moreover, from linearity, \(q^n \) satisfies,

\[
\begin{align*}
(\partial_t^3 (\bar{J}_k q^n), \phi^-)_{L^2} + & \left(\partial_t^3 (\kappa a_j^i \bar{A}_j^k q^{n,k}), \phi^-_{,i} \right)_{L^2(\Omega^-)} + \int_{\Gamma} \partial_t^3 (\bar{J}_k (\kappa^{-2} q^m + \beta^-)) \phi^- d\sigma \\
= & \left(\partial_t^3 (\kappa a_j^i q^{m,i} \delta^i_j (\bar{\Psi}^j)) , \phi^- \right)_{L^2(\Omega^-)} + \left(\partial_t^3 (\bar{J}_k \alpha^-) , \phi^- \right)_{L^2(\Omega^-)}, \quad (3.54a) \\
(\partial_t^3 (\bar{J}_k q^n), \phi^+)_{L^2} + & \left(\partial_t^3 (\kappa a_j^i \bar{A}_j^k q^{m,k}) , \phi^+_{,i} \right)_{L^2(\Omega^+)} + \int_{\Gamma} \partial_t^3 (\bar{J}_k (\kappa^{-2} q^m + \beta^+)) \phi^+ d\sigma \\
= & \left(\partial_t^3 (\kappa a_j^i q^{m,i} \delta^i_j (\bar{\Psi}^j)) , \phi^+ \right)_{L^2(\Omega^+)} + \int_{\partial \Omega} \left(\partial_t^3 (\bar{J}_k \gamma) \right) \phi^+ d\sigma \\
& + \left(\partial_t^3 (\bar{J}_k \alpha^+) , \phi^+ \right)_{L^2(\Omega^+)}, \quad (3.54b)
\end{align*}
\]

for all \(\phi^\pm \) in the finite dimensional space generated by \(\{ \varphi_n^\pm \}_{n \leq m} \). In addition, given the definition of the initial data (3.53), we can integrate in time equation (3.55) as many as
three times, to obtain that \(q^m \) solves an analogous formulation as (3.50) for \(l = 0, 1, 2, 3 \)

\[
\left(\partial^l_t (J_κ q^m), \phi^{-} \right)_{L^2} + \left(\partial^l_t (\kappa \alpha^l \bar{\Psi}), \phi^{-} \right)_{L^2} + \int_{\Gamma} \partial^l_t (J_κ (\kappa^{-2} q^m + β^+)) \phi^{-} dσ \\
= \left(\partial^l_t (\kappa \alpha^l \bar{\Psi}), \phi^{-} \right)_{L^2} + \left(\partial^l_t (J_κ \alpha^-), \phi^{-} \right)_{L^2},
\]

(3.55a)

\[
\left(\partial^l_t (\kappa \alpha^l \bar{\Psi}), \phi^{+} \right)_{L^2} + \left(\partial^l_t (\kappa \alpha^l \bar{\Psi}), \phi^{+} \right)_{L^2} + \int_{\partial \Gamma} \bar{\Psi} (\partial^l_t (J_κ \gamma)) \phi^{+} dσ + \left(\partial^l_t (J_κ \gamma), \phi^{+} \right)_{L^2},
\]

(3.55b)

The next step is to obtain estimates independent of \(m \). Standard parabolic estimates give us that \(q^m \in L^∞([0, T_κ]; L^2(\Omega)) \cap L^2([0, T_κ]; H^1(\Omega)) \) with \(m \)-independent bounds, which allows us to extend \(q^m(t) \) beyond \(T_κ \), and up to an \(m \)-independent time \(T_κ \). Indeed, substituting \(\phi = q^m \) on equation (3.55) for \(l = 0 \), we have the bound,

\[
\|q^m(t)\|^2_{L^2} + \|\nabla \cdot q^m\|^2_{L^2} + \kappa^{-2} |q^m|^2_{L^2} \leq C(M, q_0), \quad \forall t \in [0, T_κ],
\]

(3.56)

where \(C(M, q_0) \) is a constant that depends only on \(M \) and \(q_0 \) (see Lemma A.4 in the appendix for more details). Moreover, given the regularity of \(\bar{\Psi} \), we can improve the bounds so that \(q^m \in L^∞([0, T_κ]; H^1(\Omega)) \) and \(q^m \in L^2([0, T_κ]; H^1(\Omega)) \) by using as a test function \(\phi = q^m \) in (3.55) with \(l = 0 \), and following similar estimates as in the proof of (3.56). Consequently, we found that \(q^m \in C([0, T_κ]; L^2(\Omega)) \), and furthermore, using elliptic estimates, we obtain that \(q^m \in L^2([0, T_κ]; H^2(\Omega)) \), and therefore \(q^m \in C([0, T_κ]; H^1(\Omega)) \cap L^2([0, T_κ]; H^2(\Omega)) \).

Consider now the first time differentiated problem, equation (3.55) for \(l = 1 \). Using the previously found regularity of \(q^m \) and \(q^m \), and repeating the parabolic regularity arguments for \(\tilde{q}^m := q^m \), we have that \(\tilde{q}^m \in C([0, T_κ]; H^1(\Omega)) \cap L^2([0, T_κ]; H^2(\Omega)) \), and \(q^m \in L^2([0, T_κ]; L^2(\Omega)) \). These estimates for \(q^m \), combined again with elliptic estimates for the non-time-differentiated problem (3.55) for \(l = 0 \), gives us that \(q^m \in C([0, T_κ]; H^3(\Omega)) \cap L^2([0, T_κ]; H^4(\Omega)) \). Iterating this process once more time for the twice-in-time differentiated problem, we obtain that \(q^m \in C([0, T_κ]; H^4(\Omega)) \cap L^2([0, T_κ]; H^5(\Omega)) \), and therefore, using elliptic regularity once again on the non-time-differentiated problem, we obtain estimates for \(q^m \in C([0, T_κ]; H^6(\Omega)) \cap L^2([0, T_κ]; H^7(\Omega)) \). The final step follows from the triple time-differentiated problem in the same way, but some terms must be treated carefully, and we address them below. First we will show that the triple time-differentiated approximation \(q^{m \pm} \) to (3.50) satisfies the following inequality:

\[
\frac{1}{2} \|q^{m \pm}\|^2_{L^2} + \|q^{m \pm}\|^2_{L^2(H^1)} + \kappa^{-2} |q^{m \pm}|^2_{L^2} \leq C_κ M_0 + C_κ \sqrt{I}(\|q^{m \pm}\|_{L^2} + \|q^{m \pm}\|^2_{L^2(H^1)}),
\]

(3.57)

where \(M_0 = M(q_0, h_0) \) is a function of the initial data, and \(C_κ \) is a constant that depends badly on the smoothing parameter \(κ \). Indeed, the weak form of the triple time-differentiated problem can be written as,

\[
(\bar{J}_κ q^{m \pm}, \phi) + (\bar{J}_κ \kappa^\dagger q^{m \pm}, \kappa^\dagger \phi)_{L^2(\Omega^k)} + \int_Γ \bar{J}_κ (\kappa^{-2} q^{m \pm} + \partial^3_t (v^m, \nabla^T N)|_{t=0}) dσ \\
= - (\bar{J}_κ v^m \cdot \kappa^\dagger \bar{Ψ}, \phi)_{L^2} + \mathcal{Q}_3(\phi),
\]
where in the right-hand side we write the highest order remainder \(I := -(\bar{J}_k v^m \cdot \delta_t^s (\kappa \bar{\Psi}_{ttt}), \phi)_{L^2} \) by itself, and the lower order terms collected in,

\[
Q_3^m(\phi) = \left([\partial_t^3, \bar{\alpha}_j^m L_j^m] q^{m-k}, \phi \right)_{L^2} - \left([\partial_t^3, \bar{J}_k v^m] \cdot \kappa \bar{\Psi}_t, \phi \right)_{L^2} - \int_{\Gamma} [\partial_t^3, \bar{J}_k] (\kappa^{-2} q^m + \beta^m) \phi
+ (\partial_t^3 (\bar{J}_k \alpha^m), \phi)_{L^2},
\]

where \([a,b]c = a(bc) - b(ac)\) denotes the commutator. We will prove that, choosing \(\phi = q^m_{ttt} \), we have the bound

\[
\int_0^t (I + Q_3(q^m_{ttt})) ds \lesssim M + C_\kappa \sqrt{t} (\|q^m_{ttt}\|_{L^2 H^1} + \|q^m_{ttt}\|_{L^\infty L^2}), \tag{3.58}
\]

where \(C_\kappa \) is a constant that depends badly on \(\kappa \). The integral \(I \) contains as a factor the term \(\delta_t^s \kappa \bar{\Psi}_{ttt} \), which, if we were to take the limit as \(s \to 0 \) right away, it would depend on \(h^4_{ttt} \), which has too many time derivatives on \(h^4 \) (here lies the necessity to include the discrete operator \(\delta_t^s \) into the weak formulation). Nonetheless, this problem is easy to overcome. Recall that, since we know that \(q^m_{ttt} \) is in \(L^2_t L^2 \) and \(q^m_{ttt} \) is in \(L^2_t H^2 \), we can use the strong form of the twice-in-time differentiated heat equation to obtain,

\[
I_2 := -\int_0^t (\bar{J}_k v^m \cdot \delta_t^s \kappa \bar{\Psi}_{ttt}, q^m_{ttt})_{L^2} ds = -\int_0^t (\bar{J}_k v^m \cdot \delta_t^s \kappa \bar{\Psi}_{ttt}, -v^m \cdot \kappa \bar{\Psi}_{ttt} + \Delta_{\kappa \phi} q^m_{ttt})_{L^2} + Q_4,
\]

where \(Q_4 \) corresponds to the error terms that follow from the \(L^2 \)-inner product of \(v^m \cdot \delta_t^s \kappa \bar{\Psi}_{ttt} \) with the remainder terms from the twice-in-time differentiated heat equation. Estimates for these terms follow from integrating by parts in time to remove a derivative from \(\delta_t^s \kappa \bar{\Psi}_{ttt} \), and then using standard Cauchy-Schwarz inequality. Therefore, we focus on the higher-order terms, which can be rewritten as,

\[
I_3 := \int_0^t (\bar{J}_k v^m \cdot \delta_t^s \kappa \bar{\Psi}_{ttt}, -v^m \cdot \kappa \bar{\Psi}_{ttt} + \Delta_{\kappa \phi} q^m_{ttt})_{L^2}
= \frac{1}{2} \int_0^t \delta_t^s \left[\| \bar{J}_k (v^m \cdot \kappa \bar{\Psi}_{ttt}) \|_0^2 \right] ds - \int_0^t (\delta_t^s (\bar{J}_k v^m) \cdot \kappa \bar{\Psi}_{ttt}, v^m \cdot \kappa \bar{\Psi}_{ttt})_{L^2} ds
- \int_0^t (\bar{J}_k v^m \cdot \kappa \bar{\Psi}_{ttt}, \delta_t^s (\Delta_{\kappa \phi} q^m_{ttt}))_{L^2} ds - \int_0^t (\delta_t^s (\bar{J}_k v^m) \cdot \kappa \bar{\Psi}_{ttt}, \Delta_{\kappa \phi} q^m_{ttt})_{L^2} ds
+ \int_0^t \delta_t^s \left[(\bar{J}_k v^m \cdot \kappa \bar{\Psi}_{ttt}, \Delta_{\kappa \phi} q^m_{ttt})_{L^2} \right] ds.
\]

Most of these terms are easily bounded as (3.58) by using Cauchy-Schwarz inequality, but the fourth and sixth terms require an intermediate step. It is necessary to first integrate by parts in space to remove a derivative from \(q^m_{ttt} \) or \(q^m_{ttt} \) respectively.
\[I_4 := - \int_0^t \left(\bar{J}_k v^m \cdot \nabla \bar{\Psi}_{ttt}, \partial_t^k (\Delta_{\phi} q^m_{ttt}) \right)_{L^2} ds \]

\[= - \int_0^t \int_{\Gamma} \bar{J}_k \nabla q^m \cdot \bar{A}^i N \bar{h}_{ttt}^k \delta^i_j (\bar{A}^j_{ttt} A^m_{dit}) N^k ds \]

\[+ \int_0^t \int_{\Omega} \left(\bar{J}_k v^m \cdot \nabla \bar{\Psi}_{ttt} \right)^k \bar{A}^i_j \delta^i_j \bar{A}^k_{dit} + \left(\bar{J}_k v^m \cdot \nabla \bar{\Psi}_{ttt} \right)^i \bar{A}^k_j \delta^i_j \bar{A}^m_{dit} + l.o.t. \]

\[\leq \kappa^{-2} \int_0^t \int_{\Gamma} \bar{J}_k (v^m \cdot N) \bar{h}_{ttt}^k \delta^i_j \bar{q}^m_{dit} ds \]

\[\leq C \kappa^{-2} \sqrt{t} \| \bar{h}_{ttt}^k \|_{L^\infty L^2} \| q^m_{dit} \|_{L^2} + l.o.t. \]

\[\leq C \kappa^{-2} \sqrt{t} \| \bar{h}_{ttt}^k \|_{L^\infty L^2} \| q^m_{dit} \|_{L^2} \]

where in the last inequality we used the previously found bounds for the terms \(\| \partial_t^k q^m \|_{L^2} \). Now, for the sixth term, we integrate by parts one of the derivatives on \(q^m_{dit} \),

\[I_5 := \int_0^t \delta_t^k \left(\left(\bar{J}_k v^m \cdot \nabla \bar{\Psi}_{ttt}, \Delta_{\phi} q^m_{dit} \right)_{L^2} \right) ds \]

\[= \int_0^t \delta_t^k \left[- \int_{\Omega} \left(\bar{J}_k v^m \cdot \nabla \bar{\Psi}_{ttt} \right)^i \bar{A}^k_j q^m_{dit} + \int_{\Gamma} \bar{J}_k v^m \cdot \nabla \bar{\Psi}_{ttt} \bar{A}^i_j N \bar{h}_{ttt}^k \bar{A}^m_{dit} \right] ds \]

\[\leq C \kappa^{-1} \| q^m_{dit} \|_{L^\infty H^1} \| \bar{h}_{ttt}^k \|_{L^\infty L^2} + \int_0^t \delta_t^k \left[\int_{\Gamma} \bar{J}_k v^m \cdot N \bar{h}_{ttt}^k (v^m_{dit} A^i_j N^i) ds \right] ds + l.o.t. \]

\[\leq C \kappa M_0 + \int_0^t \delta_t^k \left[\int_{\Gamma} \bar{J}_k v^m \cdot N \bar{h}_{ttt}^k \right] ds + l.o.t. \]

\[\leq C \kappa M_0 + C \kappa^{-2} \| \bar{h}_{ttt}^k \|_{L^\infty L^2} \| q^m_{dit} \|_{L^\infty H^1} + l.o.t. \]

\[\leq C \kappa M_0, \]

where in line three we pulled a coefficient \(\kappa^{-1} \) to absorb a derivative from the norm of \(\bar{h}_{ttt}^k \), and in line four we used the strong form of the boundary condition (3.36c) differentiated twice in time. Combining all the estimates together, and using the bounds for \(\bar{J}_k \) analogous to the ones in Lemma A.3, we obtain therefore,

\[\frac{1}{2} \| q^m_{dit} \|^2_{L^\infty L^2} + \| \nabla_{\phi} q^m_{dit} \|^2_{L^2} + \kappa^{-2} \| q^m_{dit} \|^2_{L^2} \leq C \kappa M_0 + C \kappa \sqrt{t} \| q^m_{dit} \|_{L^2} + \| q^m_{dit} \|^2_{L^2} \]

With the bounds for the matrices \(\bar{A} \) being analogous as those of Lemma A.1, combined with a modified Poincaré inequality detailed in equation (4.6) of [32], we obtain the desired inequality.

Now, taking \(T_\kappa \) small enough on equation (3.57) gives us \(m \)-independent bounds for \(q_{dit}^m \in L^\infty([0,T_\kappa],L^2(\Omega^\pm)) \cap L^2([0,T_\kappa],H^4(\Omega^\pm)) \), and moreover, from the weak formulation (3.55), we can obtain as well that \(q_{dit}^m \in L^2([0,T],H^4(\Omega^\pm)) \) with bounds independent of \(m \). As a consequence, \(q_{dit}^m \in C([0,T_\kappa];L^2(\Omega^\pm)) \cap L^2([0,T_\kappa];H^4(\Omega^\pm)) \), and therefore we can use elliptic regularity in succession on the time differentiated problems to obtain the desired \(m \)-independent estimates for \(\partial_t^l q^m \in C([0,T_\kappa];H^{6-2l}(\Omega)) \cap L^2([0,T_\kappa];H^{7-2l}(\Omega)) \) for \(l = 0, 1, 2, 3 \).

Passing to the limit as \(m \to \infty \), we obtain a weak solution \(q^m \) to (3.50) for \(l = 3 \), that, from lower semi-continuity, satisfies that \(\partial_t^l q^m \in C([0,T_\kappa];H^{6-2l}(\Omega)) \cap L^2([0,T_\kappa];H^{7-2l}(\Omega)) \), and \(q_{dit}^m \in L^2([0,T_\kappa];H^1(\Omega^\pm)) \). Consider now the the time integral of equation (3.50) for
\(l = 3 \). Given the compatibility conditions, we will recover that \(q \) satisfy (3.50) for \(l = 2 \), and for this case, the term containing \(\delta^2_t \Phi_{tt} \) converges strongly to \(\kappa \Phi_{tt} \) in \(L^2(\Omega) \) as \(s \to 0 \). The estimates that we obtained independent of the parameter \(s \), therefore we can pass to the limit as \(s \to 0 \), to obtain a weak solution \(q^\pm \), such that,

\[
\langle \partial^2_t(\bar{J}_k q_t), \phi^- \rangle + \left(\partial^2_t(\bar{a}_j^{\kappa} q_{t,k}), \phi^- \right)_{L^2(\Omega)} + \int_{\Omega} \partial^2_t(\bar{J}_k (\kappa^{-2} q^- + \beta^-)) \phi^- \, d\sigma \\
= \left(\partial^2_t(\bar{a}_j^{\kappa} q_t), \phi^- \right)_{L^2(\Omega)} + \left(\partial^2_t(\bar{J}_k (\kappa^{-2} q^- + \beta^-)) \right)_{L^2(\Omega)},
\]

(3.59)

\[
\langle \partial^2_t(J_k q_t), \phi^+ \rangle + \left(\partial^2_t(\bar{a}_j^{\kappa} q_{t,k}), \phi^+ \right)_{L^2(\Omega)} + \int_{\Omega} \partial^2_t(J_k (\kappa^{-2} q^+ + \beta^+)) \phi^+ \, d\sigma \\
= \left(\partial^2_t(\bar{a}_j^{\kappa} q_t), \phi^+ \right)_{L^2(\Omega)} + \int_{\partial\Omega} \partial^2_t(J_k (\kappa^{-2} q^+ + \beta^+)) \phi^+ \, d\sigma \\
+ \left(\partial^2_t(J_k \gamma) \right)_{L^2(\Omega)},
\]

holds for all \(\phi^\pm \in H^1(\Omega^\pm) \), and that it satisfies that \(\partial^3_t q^\pm \in C([0,T_\kappa];H^0(\Omega^\pm)) \cap \Omega \in L^2([0,T_\kappa];H^1(\Omega^\pm)) \). This finishes the proof of existence of weak solutions to the linear problem (3.49).

3.2.3. Step 3: Contraction mapping theorem. We now define an operator \(\Phi_\kappa \) on \(X_M \). Given \(\bar{h} \in X_M \) we set

\[
\Phi_\kappa(\bar{h}) = h := h_0 + \int_0^t [v_i \cdot \bar{n}^\kappa]_t^+ \, ds,
\]

(3.60)

where \(v^\pm \) is the solution to the linearized problem (3.49), and \(\bar{n}^\kappa := (N - \tau \frac{\partial h_\alpha^\kappa}{(1+H^\alpha)} \right) \). Notice that \(\Phi_\kappa \) maps \(X_M \) to itself as proven in Lemma A.5 in the Appendix. To prove that \(\Phi_\kappa \) is a contraction, we assume \(h^1, h^2 \) are given, and consider \(\Phi_\kappa(h^1) = h^1, \Phi_\kappa(h^2) = h^2 \) with the associated temperature gradients \(v_1, v_2 \). The difference \(\delta h_\kappa = h^1 - h^2 \) is given by,

\[
\delta h_\kappa = [\delta v \cdot \bar{n}^\kappa]_t^+ + [v_2 \cdot \delta \bar{n}^\kappa]_t^+,
\]

(3.61)

where \(\bar{n}^\kappa = N \frac{\partial h_\alpha}{(1+H^\alpha)} \), for \(\alpha = 1,2 \), \(\delta v = v_1 - v_2 \), and \(\delta h^\kappa = \bar{n}^\kappa - \bar{n}^\kappa \). Taking two time derivatives we obtain that,

\[
\delta h_{tt} = [\delta v_{tt} \cdot \bar{n}^\kappa]_t^+ + [v^2_2 \cdot \bar{n}^\kappa]_t^+ + \mathcal{Y},
\]

where we gather the lower order terms in \(\mathcal{Y} \),

\[
\mathcal{Y} := [v_2 v_1 \cdot \delta \bar{n}^\kappa + \delta v \cdot \bar{n}^\kappa + 2 \delta v_{tt} \cdot \bar{n}^\kappa + 2v_2 v_1 \cdot \delta \bar{n}^\kappa]_t^+.
\]

A straightforward bound using Sobolev and trace inequalities gives:

\[
|\delta h_{tt}|_{H^k} \leq C \left(\|v_{tt}^+\|_{k+0.5} + \|\bar{v}_{tt}^-\|_{k+0.5} + (\|v_2^+\|_{k+0.5} + \|v_2^-\|_{k+0.5}) \|\delta h^\kappa_{tt}\|_{H^{k+1}} \right), \text{ for } k = 0,1,
\]

(3.62)

where \(\delta h^\kappa = h^1 - h^2 \). We now obtain the necessary estimates for \(\|\delta v^\pm\|_{L^2(\Omega^{1.5})} \). We will omit the superscript \(\pm \) for simplicity of notation. Taking the difference of equations (3.49b) for \(v_1 \) and \(v_2 \), and taking two time derivatives we obtain,

\[
\delta v_{tt} + \partial^2_t (\bar{a}_1^\top \nabla \delta q) = \partial^2_t (- \delta (\bar{a}_1^\top) \nabla q_2),
\]
with $\delta (A^T) = A^1 - A^2$. Therefore, using the bounds for \bar{A} from Lemma A.2 we arrive at
\[
\| v_{tt} \|_{H^{1/2}} \leq \| \delta A^1 \|_{1.5} \| \delta q_{tt} \|_{2.5} + \| \delta A^2 \|_{1.5} \| q_{tt} \|_{2.5} + \| \delta A_{tt} \|_{1.5} \| q_2 \|_{2.5} + \| \delta A_{tt} \|_{1.5} \| \delta q \|_{2.5} + l.o.t.
\]
\[
\leq C_M (\| \delta q_{tt} \|_{2.5} + \sqrt{T} | \bar{h}_{tt} |_{L^2H^2})
\]
(3.63)

Furthermore, the difference δq_{tt} satisfies the following parabolic problem:
\[
\begin{align*}
\delta q_{tt}^+ - \delta A^1_{i,j} (\delta q_{tt}^+ + \delta q_{tt,j,k})_{,i} &= f^+ \text{ in } \Omega^+, \\
\delta q_{tt}^- = 0 &\text{ on } \Gamma, \\
\delta v_{tt}^+ \cdot N^+ = 0 &\text{ on } \partial \Omega, \\
\delta q_{tt}^+ (0,x) = 0 &\text{ on } \Omega^+ \times \{ t = 0 \},
\end{align*}
\]
where
\[
f = \partial_t^2 \left(-\delta v \cdot \bar{w}_1 - v_2 + \delta \bar{A} \right) (\delta A^2_{i,j} (\delta q_{tt}^+ + \delta q_{tt,j,k})_{,i}) + \partial_t^2 \delta A^1_{i,j} (\delta q_{tt}^+ + \delta q_{tt,j,k})_{,i} + \partial_t^2 \delta A^2_{i,j} (\delta q_{tt}^+ + \delta q_{tt,j,k})_{,i} + \partial_t^2 \delta A^1_{i,j} (\delta q_{tt}^+ + \delta q_{tt,j,k})_{,i} + \partial_t^2 \delta A^2_{i,j} (\delta q_{tt}^+ + \delta q_{tt,j,k})_{,i} + \partial_t^2 \delta A^1_{i,j} (\delta q_{tt}^+ + \delta q_{tt,j,k})_{,i} + \partial_t^2 \delta A^2_{i,j} (\delta q_{tt}^+ + \delta q_{tt,j,k})_{,i}
\]
(3.65)

Standard parabolic regularity provides:
\[
\| \delta q_{tt}^+ \|_{L^\infty H^2} + \| \delta q_{tt}^- \|_{L^2 H^{2.5}} \leq C_\kappa \| f^\pm \|_{L^2 H^{0.5}},
\]
(3.66)

where estimates for the source term f^\pm given in Lemma A.7 in the appendix gives us,
\[
\| \delta q_{tt}^+ \|_{L^\infty H^2} + \| \delta q_{tt}^- \|_{L^2 H^{2.5}} \leq C_M \kappa^{-1} \sqrt{T_\kappa} S(\delta q, \delta \bar{h}^\kappa),
\]
where $S(\delta q, \delta \bar{h}^\kappa)$ is the high-order norm defined in (1.12) evaluated in δq and $\delta \bar{h}^\kappa$. Repeating this argument for the parabolic problems associated to δq and $\delta \bar{h}$, and adding all the inequalities together we obtain that,
\[
\varepsilon^+ (\delta q, \delta \bar{h}^\kappa) + \varepsilon^- (\delta q, \delta \bar{h}^\kappa) + \int_0^t \left(\varepsilon^+ (\delta q, \delta \bar{h}^\kappa) + \varepsilon^- (\delta q, \delta \bar{h}^\kappa) \right) ds \leq C_M \kappa^{-1} \sqrt{T_\kappa} S(\delta q, \delta \bar{h}^\kappa),
\]
(3.67)

where we recall the definitions of ε^\pm and ε^\mp from Section 1.8 as the higher-order norms of $\partial_t^i \delta q$. A small enough time T_κ allows us to absorb the terms in the right side of equation (3.67) with the same norms of $\partial_t^i \delta q$ as the in the left side, leaving only the boundary norms,
\[
\varepsilon^+ (\delta q, \delta \bar{h}^\kappa) + \varepsilon^- (\delta q, \delta \bar{h}^\kappa) + \int_0^t \left(\varepsilon^+ (\delta q, \delta \bar{h}^\kappa) + \varepsilon^- (\delta q, \delta \bar{h}^\kappa) \right) ds \leq M \kappa^{-1} \sqrt{T_\kappa} (\varepsilon^+ (\delta \bar{h}^\kappa) + \int_0^t \varepsilon^- (\delta \bar{h}^\kappa) ds).
\]
Therefore, using this together with (3.63) and (3.62), we obtain
\[
\left| \bar{h}_{tt} \right|_{L^\infty (\Gamma)}^2 + \left| \bar{h}_{tt} \right|_{L^2 H^1 (\Gamma)}^2 \leq M \kappa^{-1} \left(\varepsilon^+ (\delta \bar{h}^\kappa) + \int_0^t \varepsilon^- (\delta \bar{h}^\kappa) ds \right).
\]

An analogous estimate for $\partial_t^l \delta h$ in $L^\infty H^{6-2l} \cap L^2 H^{6.5-2l}$ for $l = 0,1,2$ respectively, allows us to conclude that,
\[
\varepsilon^+ (\delta \bar{h}^\kappa) + \int_0^t \varepsilon^- (\delta \bar{h}^\kappa) ds \leq M \kappa^{-1} \sqrt{T_\kappa} (\varepsilon^+ (\delta \bar{h}^\kappa) + \int_0^t \varepsilon^- (\delta \bar{h}^\kappa) ds).
\]
We see that $\Phi_κ$ is a contraction for $T_κ$ sufficiently small and the theorem follows from the contraction mapping theorem.

\[\square \]

3.3. **Definition of the energy functionals.** The key ingredient to the proof of the main theorems is the introduction of the higher-order **weighted** energy $E_κ(t)$, which will be shown it controls the norm S evaluated on the solutions of the regularized problem (3.49), which we define as,

$$ S_κ(t) := S(q^±, h_κ). $$

Note that $(q^±, h_κ)$ is the solution to the regularized problem (3.36) obtained in Theorem 3.4, and therefore $S_κ(t)$ is bounded for all $t \in [0, T_κ]$.

The weight functions $W^±$. To define the energy associated with the two-phase Stefan problem, we will introduce **weight** functions $W^±(t,x)$, that will allow us to successfully include the non-degeneracy condition (1.19) in our theory. Let $W^± : Ω^± → R$ be a solution to the following Dirichlet problem:

\begin{align*}
\Delta W^± &= 0, \quad x \in Ω^±, \quad (3.69a) \\
W^± &= e^{(-λ_1+η)t}, \quad x \in Π, \quad (3.69b) \\
|W^+| &≡ e^{(-λ_1+λ_1^++η)t} \frac{1}{|c^+_1|}, \quad x \in ∂Ω, \quad (3.69c)
\end{align*}

where $c^+_1 := (q^+_0, ϕ^+_1)_{L^2}$, defined in (1.22). Note that $W^± > 0$ in $Ω^±$ by the maximum principle and the Rayleigh-Taylor assumption (1.19), which, by continuity guarantees that $∂_N q^± > 0$ at least for short times. The long-time behavior of $W^±$ is very important for the proof of global stability and it depends on the difference between the first eigenvalues of the Dirichlet-Laplacian in the regions $Ω^+$ and $Ω^-$. On the other hand, the short-time behavior of $W^±$ is easily characterized in the following lemma.

Lemma 3.6 (Local estimates for $W^±$). Suppose the Taylor sign condition (1.19) holds for some $δ > 0$, and assume there exists a constant $M > 0$ such that $S(t) ≤ M$. Then there exist positive constants $c_{δ,M} > 0$, $C_{δ,M} > 0$, such that the solution $W^±$ to (3.69) satisfy,

$$ c_{δ,M} ≤ W^± ≤ C_{δ,M}. $$

Proof. Notice that for short time, the Rayleigh-Taylor condition (1.19) gives us the following upper bound on $∂_N q^±$

$$ |∂_N q^±| ≤ C∥q^±∥_{2,25} ≤ CS(t) ≤ CM. $$

Similarly, by the fundamental theorem of calculus

$$ |∂_N q^±(t)| ≥ |∂_N q^±_0| - ∫_0^t ∂_a(∂_N q^±)(s) ds ≥ |∂_N q^±_0| - C\sqrt{t}∥q_0∥_2 ≥ δ - C\sqrt{t}M. $$

Therefore, for small times we have the lower bound

$$ |∂_N q^±| ≥ c_{δ,M} > 0. $$

By the maximum principle conclude that

$$ c_{δ,M}e^{(-λ_1+η)t} ≤ \min_{x ∈ Π} W^±(t,x) ≤ \max_{x ∈ Π} W^±(t) ≤ C_{δ,M}e^{(-λ_1+η)t}. $$

Taking t so small that $1/2 ≤ e^{(-λ_1+η)t} ≤ 1$, we obtain the result. \[\square \]
The natural energy $\mathcal{E}_\kappa(t)$. The following definition of the “natural” energy is seemingly technical, but as it will become apparent in Section 3.10 it is precisely the natural higher-order positive definite quantity arising from an integration-by-parts argument.

Definition 3.7 (Higher-order weighted energy $\mathcal{E}_\kappa(t)$ and dissipation functional $\mathcal{D}_\kappa(t)$). Let $q^\pm: \Omega^\pm \to \mathbb{R}$, $h: \Gamma \to \mathbb{R}$, and recall the cut off function μ from (1.6). We set:

$$
\mathcal{E}_\kappa^\pm (t) := \frac{1}{2} \sum_{a+2b \leq 5} \left(\| \mu^{1/2} \partial_a \partial^b v^\pm \|_{L^2(\Omega^\pm)}^2 + \kappa^2 e^{(-\lambda_1+\eta)t} \right) \left(\sqrt{r_{\kappa}^\pm} \partial_a \partial^b h \right)_{L^2(\Gamma)}^2 \\
+ \frac{1}{2} \sum_{a+2b \leq 6} \left(\| \mu^{1/2} (\partial_a \partial^b q^\pm + \partial_a \partial^b \Psi^\pm \cdot v^\pm) \|_{L^2(\Omega^\pm)}^2 + e^{(-\lambda_1+\eta)t} \right) \left(\partial_a \partial^b h \right)_{L^2(\Gamma)}^2 \bigg),
$$

(3.70)

$$
\mathcal{D}_\kappa^\pm (t) := \sum_{a+2b \leq 5} \left(\| \mu^{1/2} \partial_a \partial^b v^\pm \|_{L^2(\Omega^\pm)}^2 + \kappa^2 e^{(-\lambda_1+\eta)t} \right) \left(\sqrt{r_{\kappa}^\pm} \partial_a \partial^b h \right)_{L^2(\Gamma)}^2 \\
+ \sum_{a+2b \leq 5} \left(\| (1-\mu)^{1/2} (\partial_a \partial^b q^\pm + \partial_a \partial^b \Psi^\pm \cdot v^\pm) \|_{L^2(\Omega^\pm)}^2 \right) \\
+ \sum_{a+2b \leq 6} \left(\| (1-\mu)^{1/2} (\partial_a \partial^b q^\pm + \partial_a \partial^b \Psi^\pm \cdot v^\pm) \|_{L^2(\Gamma)}^2 \right),
$$

(3.71)

(3.72)

where $J_{\kappa} := \det \nabla \Psi$ is the determinant of the Jacobian, g_κ is defined by $g_\kappa := (\partial h^k)^2 + (1 + H(x)h^k)^2$, and the coefficients $r_{\kappa}^\pm(t,x) := (\partial \nabla q^\pm)^{-1} J_{\kappa}^{-2} g_\kappa$ and $a_\kappa(t,x) := J_{\kappa}^{-1}(1 + Hh^k)$.

We remind the reader that the horizontal derivatives ∂ are defined in Section 1.5. We introduce the total energy:

$$
\mathcal{E}_\kappa(t) := \sup_{0 \leq s \leq t} \mathcal{E}_\kappa^+(s) + \sup_{0 \leq s \leq t} \mathcal{E}_\kappa^-(s) + \int_0^t (\mathcal{D}_\kappa^+(s) + \mathcal{D}_\kappa^-(s)) ds.
$$

(3.73)

Remark 3.8. For the proof of the local well-posedness theorem, we will show that the following a-priori energy estimate holds,

$$
\mathcal{E}_\kappa(t) \leq \mathcal{E}_\kappa(0) + C\sqrt{t}P(\mathcal{E}_\kappa(t)),
$$

(3.74)

where $P(\cdot)$ is some polynomial of degree greater than or equal to one, but that it does not depend on κ. A simple continuity argument then yields Theorem 2.1. A more careful energy estimate combined with a maximum principle argument gives us the global stability result, which is explained in Section 4.

3.4. Local-in-time energy control. Assuming that the Rayleigh-Taylor condition (1.19) holds, we shall prove in this section that the control over the derivatives of q^\pm and h^κ provided by the norm $S_\kappa(t)$ is dominated by the energy $\mathcal{E}_\kappa(t)$ defined by (3.73).

Proposition 3.9. Suppose the Taylor sign condition (1.19) holds for some $\delta > 0$, then the norm $S_\kappa(t)$ is equivalent to $\mathcal{E}_\kappa(t)$ in the sense that,

$$
S_\kappa(t) \leq P(\mathcal{E}_\kappa(t)),
$$

(3.75)

for any t on the interval of definition of $\mathcal{E}_\kappa(t)$ and $S_\kappa(t)$ and for P a universal polynomial as described in 1.3.
Proof. The proof of this Proposition follows exactly as the proof of Proposition 2.4 of [30], but with the weights W^\pm. First, the contribution from the boundary terms is easy to bound, since, instead of having the weight $\partial_N q$ in our energy, we have the coefficient $e^{(\lambda_1 + \eta)t}$. Also we have the estimate,

$$J^{-1}(1 + Hh^k) = 1 + O(|h^k|) \geq \frac{1}{2},$$

where we used the characterization of J from subsection A.3 of the appendix, the bound for the curvature H, and that for short time h^k is small. Recall that H is the curvature of the smooth reference curve, thus it is σ-close to the original initial interface. Therefore

$$\varepsilon_h^I(t) \leq C \sum_{a+2b \leq 6} |J^{-1}(1 + Hh^k)\partial^a \partial^b \Lambda_h h|_{L^2(\Gamma)},$$

$$\mathcal{D}_h^I(t) \leq C \sum_{a+2b \leq 5} |J^{-1}(1 + Hh^k)\partial^a \partial^{b+1} \Lambda_h h|_{L^2(\Gamma)}.$$

Second, note that both $S_h(t)$ and $E_h(t)$ have terms of the form $\|\mu^{1/2} \partial^a \partial^b \nu\|^2$, with the difference that in $E_h(t)$, the norm has the weights W^\pm. The upper and lower bounds for W^\pm in Lemma 3.6, gives us that these terms satisfy inequality (3.75) directly.

Finally, we need to show that we can control all derivatives in the interior by controlling only the tangential ones that appear on $E_h(t)$, but this process is analogous as the proof of estimate (a) from Proposition 2.4 of [30], multiplying and dividing by the coefficient W^\pm on the corresponding integrals over Ω^\pm. We obtain,

$$\sum_{|a|+2b \leq 6} \|\partial^a \partial^b q^\pm\|_{L^\infty L^2(\Omega^\pm)} \leq P \left(\frac{E_h(t)}{\inf W^\pm} \right) \leq P(E_h(t)),$$

$$\sum_{|a|+2b \leq 5} \|\partial^a \partial^b q^\pm\|_{L^2 H^{0.5}(\Omega^\pm)} \leq P \left(\frac{E_h(t)}{\inf W^\pm} \right) \leq P(E_h(t)),$$

where the last inequalities follow again from the local estimates 3.6 for W^\pm. This concludes the proof. \qed

3.5. Derivation of the energy identities. For the various notations used in this section we encourage the reader to consult Subsect. 1.3 - 1.5.

Lemma 3.10. Let (q^\pm, h^k) be a smooth solution to the two-phase Stefan problem given by Theorem 3.4, on the time interval $[0, T_\kappa]$. Then the following energy identity holds:

$$\frac{d}{dt} E_h(t) = \frac{d}{dt} (E^+_h(t) + E^-_h(t)) + D^+_h(t) + D^-_h(t) = R(t),$$

where the right-hand term $R(t)$ is an error given explicitly in Lemma A.8 of the Appendix.

Proof. Apply the operator $\partial^a \partial^b$ to (3.36b), for $0 \leq a + 2b \leq 6$, multiply by $\partial^a \partial^b v W\mu$, and integrate over Ω^\pm respectively. The inclusion of the factor W^\pm is very important as it allows us to recover the positive definite boundary energy by providing a common factor on both regions to form the difference $h_t = v^+ \cdot \hat{n}^+ - v^- \cdot \hat{n}^-$. We obtain the identity:

$$(\partial^a \partial^b v + \partial^a \partial^b q^\pm + \hat{A}^i_{aj} \partial^a \partial^b q^i + \hat{A}^i_{aj} \partial^a \partial^b \dot{h}^q_i, \partial^a \partial^b v W\mu)_{L^2(\Omega^\pm)} = R^\pm_1$$

(3.77)

where R^\pm_1 is the error term that contains the lower order derivatives arising from the application of the product rule to $\hat{A}^i_{aj} q^i$, integrated over the regions Ω^\pm respectively. The process then follows the same methodology as in the proof of Proposition 3.1 from [31], or the proofs of Lemmas 2.2 and 2.3 from [30], with the added weights W^\pm. A few new error terms appear while integrating by parts, as some derivatives fall on W^\pm. Additional new
We describe the effect of this weight on the boundary terms, but omit the rest for brevity.

Analogously to the appendix of [31], equation (A.1), when the derivatives $\partial^a \partial_b^k$ hit the matrix A we have the following identity,

$$
\partial^a \partial_b^k \Psi^i_j = -\kappa^i_j \partial^a \partial_b^k \Psi^l_{\kappa,m} \kappa^m_j - \sum_{1 \leq s \leq a \atop 1 \leq l \leq b} c_{sl} \partial^a \partial_b^{s-1} \kappa^i_j \partial^a \partial_b^k \Psi^l_{\kappa,m} \kappa^m_j.
$$

Therefore, the second term of equation (3.77) becomes,

$$
\left(\partial^a \partial_b^k A^T \nabla q, \partial^a \partial_b^k B \nabla \mu \right)_{L^2(\Omega^\pm)} = -\int_{\Omega^\pm} \kappa^a_i \partial^a \partial_b^k \nabla^\kappa \Psi^i A \nabla \partial^a \partial_b^k \Psi^i \partial^a \partial_b^k \nabla \mu - R^+_2
$$

where R^+_2 is the error term containing the lower order derivatives hitting $\nabla \nabla \Psi$. We will specify briefly a computation over the two regions Ω^\pm as there is a small difference when integrating by parts over the region Ω^+ since it has an exterior fixed boundary $\partial \Omega$. We have, after integrating by parts,

$$
-\int_{\Omega^+} \kappa^a_i \partial^a \partial_b^k \nabla^\kappa \Psi^i A \nabla \partial^a \partial_b^k \Psi^i \partial^a \partial_b^k \nabla \mu = -\int_{\Gamma} \kappa^a_i \partial^a \partial_b^k \Psi^i \kappa^k_j q, i, l \partial^a \partial_b^k \nabla W (-N^k) + \int_{\partial \Omega} \left(\partial^a \partial_b^k \Psi^i \cdot v \right) \partial^a \partial_b^k \nabla \mu.
$$

Where the boundary condition (3.49d) implies that the term in $\partial \Omega$ is an error term, that we call $R^a_{\partial \Omega^+}$, and, by the definition of W^+ on Γ (3.69b), the integral on Γ becomes,

$$
-\int_{\Gamma} \kappa^a_i \partial^a \partial_b^k \Psi^i \kappa^k_j q, i, l \partial^a \partial_b^k \nabla W (-N^k) = \int_{\Gamma} \partial^a \partial_b^k \Psi^i \kappa^k_j q, i, l \partial^a \partial_b^k \nabla W (-N^k) e^{(-\lambda_1 + \gamma) t} / \partial N q^+
$$

$$
= \int_{\Gamma} \partial^a \partial_b^k \Psi^i \kappa^k_j \left(\left(\nabla q^+ \cdot \tau \right) \gamma, \eta \right) \partial^a \partial_b^k \nabla W (-N^k) e^{(-\lambda_1 + \gamma) t} / \partial N q^+
$$

$$
= e^{(-\lambda_1 + \gamma) t} \int_{\Gamma} J_{\kappa}^{-2} \gamma \left(\partial^a \partial_b^k \nabla \Psi \cdot \nabla \right) \left(\partial^a \partial_b^k \nabla W (-N^k) e^{(-\lambda_1 + \gamma) t} / \partial N q^+ \right) + R^a_{\Gamma^+},
$$

where

$$
R^a_{\Gamma^+} := e^{(-\lambda_1 + \gamma) t} \int_{\Gamma} \partial^a \partial_b^k \nabla \Psi \cdot \nabla \kappa^{-1} \sqrt{\gamma} / \partial N q^+.
$$

since the term $\nabla q^+ \cdot \eta = \partial \Omega q^+$, and q^+ along Γ is given by (3.36c). The last equalities follows from the geometric identity $\kappa^a T N = J_{\kappa}^{-1} \sqrt{\gamma} n \kappa$, where $n \kappa$ is the normal vector to the moving domain.

We obtain therefore,

$$
\| \partial^a \partial_b^k \nabla W \|_{L^2(\Omega^+, W)} + \frac{1}{2} \frac{d}{dt} \| \partial^a \partial_b^k \nabla \Psi \cdot \nabla \|_{L^2(\Omega^+, W)} + e^{(-\lambda_1 + \gamma) t} \int_{\Gamma} J_{\kappa}^{-2} \gamma \left(\partial^a \partial_b^k \nabla \Psi \cdot \nabla \right) \left(\partial^a \partial_b^k \nabla W (-N^k) e^{(-\lambda_1 + \gamma) t} / \partial N q^+ \right) + R^a_{\Gamma^+}.
$$

$$
R^a_{\Gamma^+} + R^a_{\partial \Omega^+} + R^a_{\partial \Omega^+} + R^a_{\partial \Omega^+}.
$$
where we have gathered all the residue terms of the interior into $\mathcal{R}_{a,b}^+$. An analogous process now with W^- in the region Ω^- gives,

\[
\|\mu^{1/2}\partial^a t_v^-\|_{L^2(W^-)}^2 + \frac{1}{2}\frac{d}{dt}\|\mu^{1/2}(\partial^a t_v^+ + \partial^a t_v^- + \Psi^-)\|_{L^2(W^-)}^2 \quad - e^{-(\lambda_1 + \eta)t} \int_{\Gamma} J^{-2}_k g_k(\partial^a t_v^+ \cdot n^\kappa)(\partial^a t_v^- \cdot n^\kappa) d\sigma \\
+ \kappa^2 e^{-(\lambda_1 + \eta)t} \int r_{-k} |\partial^a t_v^- \cdot n^\kappa|^2 d\sigma \\
= \mathcal{R}_{a,b}^+ + \mathcal{R}_{a,b}^-.
\]

Hence, adding together the terms from both regions we obtain,

\[
\|\mu^{1/2}\partial^a t_v^+\|_{L^2(W^+)}^2 + \frac{1}{2}\frac{d}{dt}\|\mu^{1/2}(\partial^a t_v^+ + \partial^a t_v^- + \Psi^+ - \Psi^-)\|_{L^2(W^+)}^2 \\
+ \|\mu^{1/2}\partial^a t_v^-\|_{L^2(W^-)}^2 + \frac{1}{2}\frac{d}{dt}\|\mu^{1/2}(\partial^a t_v^- + \partial^a t_v^+ - \Psi^+ - \Psi^-)\|_{L^2(W^-)}^2 \quad + \kappa^2 e^{-(\lambda_1 + \eta)t} \left(|\sqrt{\rho}(\partial^a t_v^+ \cdot n^\kappa)|_{L^2(\Gamma)}^2 + |\sqrt{\rho}(\partial^a t_v^- \cdot n^\kappa)|_{L^2(\Gamma)}^2 \right) \\
+ e^{-(\lambda_1 + \eta)t} \int_{\Gamma} J^{-2}_k g_k(\partial^a t_v^+ \cdot n^\kappa - \partial^a t_v^- \cdot n^\kappa) d\sigma \\
= \mathcal{R}_{a,b}^+ + \mathcal{R}_{a,b}^- + \mathcal{R}_{a,b}^{a,b} + \mathcal{R}_{a,b}^{b,a} + \mathcal{R}_{a,b}^{b,b}.
\]

On the last boundary term of equation (3.78) we can factor the $(\partial^a t_v^+ \cdot n^\kappa)$-term, since on the boundary Γ, both ψ^+ and ψ^- are the same, obtaining

\[
I_{\Gamma} := e^{-(\lambda_1 + \eta)t} \int_{\Gamma} J^{-2}_k g_k(\partial^a t_v^+ \cdot n^\kappa)(\partial^a t_v^- \cdot n^\kappa - \partial^a t_v^- \cdot n^\kappa) d\sigma \\
= e^{-(\lambda_1 + \eta)t} \int_{\Gamma} J^{-2}_k g_k(\partial^a t_v^+ \cdot n^\kappa)(\partial^a t_v^- \cdot n^\kappa) d\sigma.
\]

Recall that on the boundary Γ, $\partial^a t_v^+ = x + h^\kappa(t,x)N(x)$, therefore,

\[
\partial^a t_v^+ = \partial^a t_v^+ x + \partial^a t_v^+ h^\kappa N + h^\kappa \partial^a t_v^+ N + \sum_{s,l} \partial^a t_v^+ s^h \kappa^l \partial^a t_v^+ N,
\]

and the normal vector,

\[
n^\kappa = \frac{-\partial h^\kappa \tau + (1 + H(x) h^\kappa) N}{\sqrt{\partial h^\kappa)^2 + (1 + H(x) h^\kappa)^2}} = \frac{-\partial h^\kappa \tau + (1 + H(x) h^\kappa) N}{\sqrt{\partial h^\kappa}}.
\]

Then the boundary term (3.79) can be rewritten as

\[
I_{\Gamma} = e^{-(\lambda_1 + \eta)t} \int_{\Gamma} J^{-2}_k \partial^a t_v^+ h^\kappa \left[(1 + H h^\kappa)^2 \left(\partial^a t_v^+ \cdot \left(N - \frac{\partial h^\kappa}{1 + H h^\kappa} \tau \right) \right) \right]^+ - \mathcal{R}_{a,b}^{a,b}_{\Gamma 2}
\]

where

\[
\mathcal{R}_{a,b}^{a,b}_{\Gamma 2} = -e^{-(\lambda_1 + \eta)t} \int_{\Gamma} J^{-2}_k (1 + H h^\kappa) \left((h^\kappa \partial^a t_v^+ N + \partial^a t_v^+ x + \sum_{s,l} \partial^a t_v^+ s^h \kappa^l \partial^a t_v^+ N) \cdot (\partial h^\kappa \tau \\
+ (1 + H h^\kappa) N) \right) \left[\partial^a t_v^+ \cdot \left(N - \frac{\partial h^\kappa}{1 + H h^\kappa} \tau \right) \right]^+.
\]

Recall from equation (3.60),

\[
h_t = [v \cdot (N - \frac{\partial h^\kappa}{1 + H h^\kappa} \tau)]^+.
\]
then we have,

\[I_\Gamma = e^{(-\lambda_1 + \eta)t} \int \kappa \big(\bar{\partial}^d \partial^b \bar{h} + \bar{\partial}^d \partial^b \bar{h}_t \big) - R_{\Gamma_2}^{a,b} - R_{\Gamma_3}^{a,b} \]

where

\[R_{\Gamma_3}^{a,b} := e^{(-\lambda_1 + \eta)t} \int \kappa \big(\bar{\partial}^d \partial^b \bar{h} \big) \big(\bar{\partial}^d \partial^b \bar{h}_t \big) - R_{\Gamma_2}^{a,b} - R_{\Gamma_3}^{a,b} \]

First, observe that in this error there is a higher-order term hidden when the highest order derivatives hit the tangential derivative of \(h^\kappa \), i.e. a term of the form \(\bar{\partial}^d \partial^b \bar{h} \), and must be considered carefully when we prove the energy estimates. Second, notice that one of the factors has the regularized \(h^\kappa \), but the other factor is not regularized, since it comes from equation (3.60). Therefore, we must commute the smoothing operator \(\Lambda \) from \(h^\kappa \) to \(h_t \), to form the quadratic energy term. Recall that this operator commutes with the tangential derivatives and therefore

\[I_\Gamma = e^{(-\lambda_1 + \eta)t} \int \kappa \big(\bar{\partial}^d \partial^b \big(\Lambda \kappa \bar{h} \big) \big) \big(\bar{\partial}^d \partial^b \big(\Lambda \kappa \bar{h}_t \big) \big) - R_{\Gamma_2}^{a,b} - R_{\Gamma_3}^{a,b} \]

Pulling out a time derivative and grouping the error terms, we recover the positive definite energy term,

\[I_\Gamma = \frac{1}{2} \frac{d}{dt} \left(e^{(-\lambda_1 + \eta)t} \int \kappa \big(\bar{\partial}^d \partial^b \big(\Lambda \kappa \bar{h} \big) \big)^2 \right) - R_{\Gamma_4}^{a,b} \]

where \(R_{\Gamma_4}^{a,b} \) is given by,

\[R_{\Gamma_4}^{a,b} = \frac{1}{2} \int \kappa \left(e^{(-\lambda_1 + \eta)t} \kappa \right) \big(\bar{\partial}^d \partial^b \big(\Lambda \kappa \bar{h} \big) \big)^2 - R_{\Gamma_2}^{a,b} + R_{\Gamma_3}^{a,b} \]

Collecting all together we have,

\[\| \mu^{1/2} \bar{\partial}^d \partial^b v^+ \|_{L^2, W^+}^2 + \frac{1}{2} \frac{d}{dt} \| \mu^{1/2} \big(\bar{\partial}^d \partial^b q^+ + \bar{\partial}^d \partial^b \bar{h} \cdot v^+ \big) \|_{L^2, W^+}^2 + \| \mu^{1/2} \bar{\partial}^d \partial^b v^- \|_{L^2, W^-}^2 + \frac{1}{2} \frac{d}{dt} \| \mu^{1/2} \big(\bar{\partial}^d \partial^b q^- + \bar{\partial}^d \partial^b \bar{h} \cdot v^- \big) \|_{L^2, W^-}^2 + \kappa^2 e^{(-\lambda_1 + \eta)t} \left(\left(v^+ \cdot n^\kappa \right) \right)^2_{L^2 (\Gamma)} + \left(v^- \cdot n^\kappa \right)^2_{L^2 (\Gamma)} \]

where \(R_{\Gamma}^{a,b} \) contains all the error terms in the boundary \(\Gamma \) and \(R_{\partial \Omega}^{a,b} \) the errors in \(\partial \Omega \). An analogous analysis can be done to obtain energy identities of the second type by considering the differential operator \(\bar{\partial}^d \partial^b \bar{h} \) to equation (3.49b), and multiplying by \(\bar{\partial}^d \partial^b v^\pm W^\pm \). For the interior derivatives we consider the differential operator \(\bar{\partial}^d \partial^b \), where \(a \) is now a multi index, and \(\bar{\partial}^d = \bar{\partial}_{x_1}^a \bar{\partial}_{x_2}^a \) is a combination of derivatives in all cartesian directions. The result follows by summing over the corresponding values of \(a,b \). See [31] for more details. □
Remark 3.11. In contrast to [31], when the time derivative is applied to the weight \(e^{(-\lambda_1 + \eta)t} \), we obtain the obvious inequality:

\[
(-\lambda_1 + \eta)e^{(-\lambda_1 + \eta)t} \int_\Gamma q^2 \left(\partial^2 \partial^2_{\delta^4} \Lambda \right) < 0, \quad \text{for } \eta < \lambda_1.
\]

Therefore, we do not need to prove estimates for this energy-critical term as it is sign-definite with a favorable sign. In particular, many of the technical complications from [31] are eliminated.

3.6. Energy estimates for the local theory. In this section we prove energy estimates for the solutions of the regularized problem (3.49). The aim is to obtain \(\kappa \)-independent estimates, and therefore a uniform-in-\(\kappa \) time of existence for our family of regularized solutions. We will accomplish this by using the energy identity (3.76), and bounding the error terms in \(\mathcal{R}(t) \). As a first step, we prove short time a priori bounds for \(\nabla W^\pm \) and \(W^\pm_t \).

Lemma 3.12. Under the assumptions of Theorem 2.1, the derivatives of the weight functions \(W^\pm \) satisfy the following bounds,

\[
\| \nabla W^\pm \|_{L^\infty(\Omega^\pm)} + \| W^\pm_t \|_{L^\infty(\Omega^\pm)} \leq C(1 + P(\mathcal{E}_\kappa(t))).
\]

Proof. Without loss we will show only the estimates in \(\Omega^+ \). Since \(W^+ \) satisfies (3.69), standard elliptic estimates and Sobolev inequality give

\[
\| \nabla W^+ \|_{L^\infty} \leq C\| W^+ \|_{2.25} \leq C e^{(-\lambda_1 + \eta)t} \left(\frac{1}{\partial N q^+} \| 2 + C e^{(-\lambda_1 + \lambda^+_t + \eta)t} \leq C e^{(-\lambda_1 + \lambda^+_t + \eta)t} (1 + \frac{1}{\partial N q^+})^2).
\]

On the other hand

\[
\| \partial^2 \left(\frac{1}{\partial N q^+} \right) \|_{L^2} \leq \| \partial^2 \partial N q^+ \|_{L^2}^2 + \frac{\| \partial \partial N q^+ \|_{L^4}^2}{\delta^2}
\leq \| q^+ \|_{3.5}^2 + \| q^+ \|_{3}^2 \leq CP(\mathcal{E}_\kappa^+(t)),
\]

where we used the lower bound for \(\partial N q^+ \) from (1.19). The other components of the \(H^2(\Gamma) \) norm follow similarly, therefore,

\[
\| \nabla W^+ \|_{L^\infty} \leq C e^{(-\lambda_1 + \lambda^+_t + \eta)t} (1 + P(\mathcal{E}_\kappa^+(t))).
\]

Taking time short enough so that \(e^{(-\lambda_1 + \lambda^+_t + \eta)t} \leq 2 \) gives the desired bound. Next, \(W^+_t \) satisfies the following problem,

\[
\Delta W^+_t = 0 \quad \text{in } \Omega^+ \tag{3.80a}
\]

\[
W^+_t = e^{(-\lambda_1 + \eta)t} \left(\frac{(-\lambda_1 + \eta)}{\partial N q^+_t} - \frac{\partial N q^+_t}{(\partial N q^+_t)^2} \right) \quad \text{on } \Gamma \tag{3.80b}
\]

\[
W^+_t = (-\lambda_1 + \lambda^+_t + \eta) e^{(-\lambda_1 + \lambda^+_t + \eta)t} \quad \text{on } \partial \Omega^+_{\text{fixed}}. \tag{3.80c}
\]

On the interface \(\Gamma \),

\[
\| W^+_t \|_{L^\infty(\Gamma)} \leq C e^{(-\lambda_1 + \eta)t} \left(\frac{|-\lambda_1 + \eta|}{\delta} + \frac{\| \partial N q^+_t \|_{L^2}}{\delta^2} \right) \leq C e^{(-\lambda_1 + \eta)t} (1 + \| q^+_t \|_{2.75}) \leq C e^{(-\lambda_1 + \eta)t} (1 + P(\mathcal{E}_\kappa^+(t)))
\]

Therefore, by the maximum principle,

\[
\| W^+_t \|_{L^\infty} \leq C e^{(-\lambda_1 + \lambda^+_t + \eta)t} (1 + P(\mathcal{E}_\kappa^+(t))),
\]
which again, for a sufficiently short time, gives the result. \hfill \Box

\textbf{Lemma 3.13.} Higher regularity for \(q \). We have the following inequality,

\[
\int_0^t \| q^+(s) \|^2 + \| \nabla \Psi^+(s) \|^2 ds \leq C\mathcal{E}_\kappa(t). \tag{3.81}
\]

\textit{Proof.} The proof of this Lemma follows the same argument detailed in the proof of Lemma 2.4 of [30], so we will omit it for economy. \hfill \Box

\textbf{Proposition 3.14.} For each \(\kappa > 0 \), the energy function \(\mathcal{E}_\kappa(t) \) is continuous in \([0,T_\kappa]\), and there exists a constant \(C \) and a polynomial \(P \), both independent of \(\kappa \), such that the following bound holds:

\[
\mathcal{E}_\kappa(t) \leq C\mathcal{E}_\kappa(0) + C\sqrt{t} P(\mathcal{E}_\kappa(t)), \quad \text{for all} \quad t \in [0,T_\kappa]. \tag{3.82}
\]

\textit{Proof.} First we show that the map \(t \mapsto \mathcal{E}_\kappa(t) \) is continuous on \([0,T_\kappa]\). The continuity of the terms of the type \(L^2([0,t];H^4) \) follows from the fundamental theorem of calculus, and, for the norms \(\| q^+(t) \|_{H^\alpha} \), continuity follows from the parabolic regularity estimates that we carried out in section 3.2.2 for the solution of the regularized equation (3.36).

Using the definition of \(h_t \) (3.36d), we can obtain the continuity of \(h_t \in C([0,T_\kappa];H^4(\Gamma)) \) and \(h_{ttt} \in C([0,T_\kappa];H^2(\Gamma)) \), from the trace estimates for \(v^\pm \) and \(v^\pm_t \) respectively, combined with the already known continuity of \(q \) and \(q_t \). Moreover, the continuity of \(h_{ttt} \in C([0,T_\kappa];L^2(\Omega)) \) can be obtained from the three-time-differentiated definition of \(h_t \) in (3.36d), since, for a fixed \(\kappa > 0 \), we have control of \(\kappa|v_{ttt} \cdot n|\|_{L^2_tL^2(\Gamma)} \), so the fundamental theorem of calculus gives us the desired continuity.

Finally, from the higher regularity estimate (3.81), we have the norm \(h \in L^2([0,T_\kappa];H^{6,5}(\Gamma)) \). This estimate, combined with the control of \(\kappa|\partial^9 v \cdot n|\|_{L^2_tL^2(\Gamma)} \), implies that \(h_t \in L^2([0,T_\kappa];H^6(\Gamma)) \), gives us by interpolation that \(h \in C([0,T_\kappa];H^6(\Gamma)) \).

Now we will prove the estimate (3.82). The argument consists of carefully bounding the error terms from the energy identity (3.76). Most of these estimates are done analogously as in the proof of Proposition 2.5 from [30], so we will address first the new error terms that appear as a consequence of having two interacting phases. These terms appear in the last line of the definitions of \(R_{a,b} \), \(\tilde{R}_{a,b} \) with derivatives of the weight function \(W \). Consider for example on the positive region \(\Omega^+ \) the errors,

\[
R_{5}^{a,b} := \int_0^t \int_{\Omega^+} (\partial^a \partial^b q^+ + \partial^a \partial^b \Psi^+ \cdot v^+) A^+ \partial^a \partial^b v^+ \nabla W^+ \mu
\]

\[
R_{6}^{a,b} := \frac{1}{2} \int_0^t \int_{\Omega^+} (\partial^a \partial^b q^+ + \partial^a \partial^b \Psi^+ \cdot v^+)^2 W^+_t \mu.
\]

By Lemma 3.12, \(R_{5}^{a,b} \) can be easily bounded as follows:

\[
|R_{5}^{a,b}| \leq \int_0^t \| \mu^{1/2} (\partial^a \partial^b q^+ + \partial^a \partial^b \Psi^+ \cdot v^+) \|_{L^2,\infty} \| A^+ \|_{L^\infty} \| \mu^{1/2} \partial^a \partial^b v^+ \|_{L^2,\infty} \| \nabla W^+ \|_{L^\infty}
\]

\[
\leq C \int_0^t \mathcal{E}_\kappa^+(s)^{1/2} \mathcal{D}_\kappa^+(s)^{1/2} (1 + P(\mathcal{E}_\kappa(s))) ds
\]

\[
\leq P \left(\sup_{0 \leq s \leq t} \mathcal{E}_\kappa^+(s) \right) \int_0^t \mathcal{D}_\kappa^+(s)^{1/2} ds \leq \sqrt{t} P(\mathcal{E}_\kappa(t))
\]
where we used the bounds for A^+ from A.1, Hölder’s inequality, and the definition of the energy $\mathcal{E}_\kappa(t)$. In the same way we bound $\mathcal{R}^{a,b,+}_\kappa$:

$$|\mathcal{R}^{a,b,+}_\kappa| \leq \frac{1}{2} \int_0^t \left| \frac{\mathcal{E}_\kappa^+(s)}{W^+_t} \right| W^+_t \, ds \leq t \sup_{0 \leq s \leq t} \mathcal{E}_\kappa^+(s).$$

The remaining error terms are dealt with in the same way as in the proof of Proposition 2.5 of [30], since the only difference, the weight W^\pm, can be bounded in L^∞ using Lemma 3.6.

Boundary estimates. We write the boundary error \mathcal{R}_Γ as a sum of its integral terms:

$$\mathcal{R}_\Gamma = \mathcal{R}^{a,b}_{\Gamma_1} + \mathcal{R}^{a,b}_{\Gamma_2} + \mathcal{R}^{a,b}_{\Gamma_3} + \mathcal{R}^{a,b}_{\Gamma_4} + \mathcal{R}_{\text{comm}}$$

Estimates for $\mathcal{R}^{a,b}_{\Gamma_3}$. The third term, as we have mentioned previously, is very distinctive, since it has the same order as the energy. We will see now that, because of our choice of W^\pm, this is not a problem.

$$\int_0^t \mathcal{R}^{a,b}_{\Gamma_3}(s) \, ds = \frac{1}{2} \int_0^t \int_{\Gamma} \partial_t \left(e^{-\lambda_1 + \eta} a^2 \sigma_t \partial_t \Lambda h \right)^2 \, ds \leq \frac{1}{2} \mathcal{E}_\kappa(s) \left| \frac{\partial_t (a^2)}{a^2} \right|_{L^\infty} \leq t \sup_{0 \leq s \leq t} \mathcal{E}_\kappa(s),$$

where we recall the meaning of H from Section 1.7, and a from Definition 3.7. The first term is negative, since $-\lambda_1 + \eta < 0$ for η small enough, so we can eliminate it from the estimates, and the second can be bounded by,

$$\leq \int_0^t \mathcal{E}_\kappa(s) \left(\frac{\partial_t J_\kappa}{J_\kappa} + \frac{HH^\kappa}{1+HH^\kappa} \right)_{L^\infty} \leq t \sup_{0 \leq s \leq t} \mathcal{E}_\kappa(s),$$

where we used the estimates for J_κ from A.3, Sobolev embedding, and the evolution equation (3.36d) for h^κ.

Estimates for $\mathcal{R}^{a,b}_{\Gamma_2}$ and $\mathcal{R}^{a,b}_{\Gamma_4}$. In these errors there are problematic terms that contain higher-order derivatives of the normal vector to the reference curve. If the reference curve were the initial domain (which is H^6), we would have at most 6 tangential derivatives in L^2, which is not enough to bound $\partial^6 N$, since N contains one derivative of the parametrization. Instead, the reference domain is a C^∞ curve, which is σ-close to the initial domain, described by a height function $h_0 \in H^6$, and σ is a fixed, but small parameter. Our energy estimates will therefore depend on the parameter σ as well as the time of existence, but that will not interfere with the proof. We write the first error terms as:

$$\int_0^t \mathcal{R}^{a,b}_{\Gamma_2}(s) \, ds = \int_0^t \int_{\Gamma} e^{-\lambda_1 + \eta} J^{\kappa - 2}_\kappa (1 + HH^\kappa) h^\kappa (\partial^2 \partial_t N \cdot \tau) \partial h^\kappa \partial^2 \partial_t h, \quad - \int_0^t \int_{\Gamma} e^{-\lambda_1 + \eta} J^{\kappa - 2}_\kappa (1 + HH^\kappa) h^\kappa (\partial^2 \partial_t N \cdot \tau) \partial h^\kappa [v \cdot \partial^2 \partial_t (N - \frac{\partial h^\kappa}{1+HH^\kappa} \tau)]^+ \leq t \mathcal{E}_\kappa(s),$$

where “l.o.t.” stands for a collection of integral terms of the form,

$$\int_0^t \int_{\Omega^+} f(x,t) \, dx \, dt, \quad \text{or} \quad \int_0^t \int_{\Omega^+} g(x,t) \, dx \, dt,$$
that can be bounded to obtain estimate (3.82) using Hölder’s inequality in a straightforward way. The first term of (3.83), after taking one copy of the smoothing operator \(\Lambda_\kappa \) from \(h^\kappa = \Lambda_\kappa \Lambda_\kappa h \) and applying it to \(h_t \) gives

\[
I_{G_2} := \int_0^t \int_\Gamma e^{(-\lambda_1+\eta)s} J_\kappa^{-2} (1 + H h^\kappa) \left(\partial^a \partial^b_t N \cdot \tau \right) \bar{\partial} h^\kappa (\bar{\partial}^a \partial^b_t \Lambda_\kappa h_t) + I_{\text{comm}},
\]

(3.85)

where \(I_{\text{comm}} \) is a lower-order commutator error given by,

\[
I_{\text{comm}} = \int_0^t \int_\Gamma \Lambda_\kappa h \left[\Lambda_\kappa, e^{(-\lambda_1+\eta)s} J_\kappa^{-2} (1 + H h^\kappa) \left(\partial^a \partial^b_t N \cdot \tau \right) \bar{\partial} h^\kappa \partial^a_\kappa \right] h_t.
\]

The first term in (3.85) has too many tangential derivatives over \(\Lambda_\kappa h_t \) since the index \(a \leq 6 \), and the natural energy \(E_\kappa(t) \) can control at most 5 tangential derivatives of \(\Lambda_\kappa h_t \). We integrate by parts to pass one derivative to the other terms which are lower order,

\[
I_{G_2} = - \int_0^t \int_\Gamma \partial \left(e^{(-\lambda_1+\eta)s} J_\kappa^{-2} (1 + H h^\kappa) \left(\partial^a \partial^b_t N \cdot \tau \right) \bar{\partial} h^\kappa \left(\bar{\partial}^a \partial^b_t \Lambda_\kappa h_t \right) \right) + I_{\text{comm}}
\]

\[
\leq C \sqrt{t} \left| e^{(-\lambda_1+\eta)t/2} \sqrt{\alpha_\kappa} \partial^a \partial^b_t \Lambda_\kappa h_t \right| L^2_t L^2 |
\frac{\partial \left(J_\kappa^{-2} (1 + H h^\kappa) \left(\partial^a \partial^b_t N \cdot \tau \right) \bar{\partial} h^\kappa \right)}{J_\kappa^{-1} (1 + H h^\kappa)}| L^\infty_t L^2 + l.o.t.
\]

\[
\leq \sqrt{t} \, E_\kappa(t)^{1/2} P(E_\kappa(t)).
\]

For the second integral term of (3.83), we notice that there is a higher-order term when the operator \(\partial^a \partial^b_t \) inside the bracket hits the \(\bar{\partial} h^\kappa \) coefficient. Integrating by parts we get,

\[
I_{G_3} := \int_0^t \int_\Gamma e^{(-\lambda_1+\eta)s} J_\kappa^{-2} (1 + H h^\kappa) h^\kappa (\bar{\partial}^a \partial^b_t N \cdot \tau) \bar{\partial} h^\kappa \left[(v \cdot \tau) \frac{\partial^a \partial^b_t h^\kappa}{1 + H h^\kappa} \right]^+ + l.o.t.
\]

\[
= - \int_0^t \int_\Gamma e^{(-\lambda_1+\eta)s} \partial \left(J_\kappa^{-2} (1 + H h^\kappa) h^\kappa (\bar{\partial}^a \partial^b_t N \cdot \tau) \bar{\partial} h^\kappa \left[(v \cdot \tau) \frac{\partial^a \partial^b_t h^\kappa}{1 + H h^\kappa} \right]^+ \right) \partial^a \partial^b_t h^\kappa + l.o.t.
\]

\[
\leq C t \left| e^{(-\lambda_1+\eta)t/2} J_\kappa^{-1} (1 + H h^\kappa) \partial^a \partial^b_t h^\kappa \right| L^\infty_t L^2 P(E_\kappa(t)) + l.o.t.
\]

\[
\leq C t \, E_\kappa(t)^{1/2} P(E_\kappa(t)).
\]

We now examine the error \(R_{G,3}^{\alpha,b} \). Notice that a similar situation occurs when the derivatives \(\partial^a \partial^b_t \) inside the bracket hits the term \(\bar{\partial} h^\kappa \), but observe that now we cannot just integrate by parts since there is another higher-order factor \(\partial^a \partial^b_t h^\kappa \) inside the integral. We extract a full derivative instead as follows:

\[
\int_0^t R_{G,3}^{\alpha,b}(s) ds = \int_0^t \int_\Gamma e^{(-\lambda_1+\eta)s} J_\kappa^{-2} (1 + H h^\kappa)^2 \partial^a \partial^b_t h^\kappa \left[(v \cdot \tau) \frac{\partial^a \partial^b_t h^\kappa}{1 + H h^\kappa} \right]^+ \partial^a \partial^b_t h^\kappa
\]

\[
= \int_0^t \int_\Gamma e^{(-\lambda_1+\eta)s} J_\kappa^{-2} (1 + H h^\kappa) [v \cdot \tau]^+ \frac{1}{2} \partial (\partial^a \partial^b_t h^\kappa)^2
\]

\[
= - \frac{1}{2} \int_0^t \int_\Gamma e^{(-\lambda_1+\eta)s} \partial \left(J_\kappa^{-2} (1 + H h^\kappa) [v \cdot \tau]^+ \right) (\partial^a \partial^b_t h^\kappa)^2
\]

\[
\leq C t \left| e^{(-\lambda_1+\eta)t/2} J_\kappa^{-1} (1 + H h^\kappa) \partial^a \partial^b_t h^\kappa \right| L^\infty_t L^2 \left| \frac{\partial \left(J_\kappa^{-2} (1 + H h^\kappa) [v \cdot \tau]^+ \right)}{J_\kappa^{-2} (1 + H h^\kappa)^2} \right| L^\infty_t L^\infty
\]

\[
\leq t \, E_\kappa(t) P(E_\kappa(t)).
\]
Estimates for the commutation error R_{comm}^{ab}.

$$
\int_0^t R_{\text{comm}}^{ab}(s)ds = -\int_0^t e^{-(\lambda_1+\eta_1)s} \partial^a \partial^b_t (\Lambda_\kappa h)[\Lambda_\kappa, a^2 \partial^a \partial^b_t]h_t.
$$

To bound this term, we will use the commutation estimate described in Lemma 5.1 from \cite{17},

$$
|\Lambda_\kappa (f \partial g) - f \Lambda_\kappa \partial g| \leq C |f|_{W^{1,\infty}(-\Gamma)}|g|_0,
$$

where the constant C does not depend on κ. Therefore,

$$
\int_0^t R_{\text{comm}}^{ab}(s)ds \leq \int_0^t e^{-(\lambda_1+\eta_1)s} |\partial^a \partial^b_t (\Lambda_\kappa h)|_0 |[\Lambda_\kappa, a^2 \partial^a \partial^b_t]h_t|_0
$$

$$
\leq P(\mathcal{E}_\kappa(t)) \int_0^t e^{-(\lambda_1+\eta_1)s/2} |[\Lambda_\kappa, a^2 \partial^a \partial^b_t]h_t|_0
$$

and

$$
|[\Lambda_\kappa, a^2 \partial^a \partial^b_t]h_t|_0 \leq |a^2|_{W^{1,\infty}(-\Gamma)} |\partial^a \partial^b_t h_t|_0
$$

Notice that, since there is not a smoothing operator Λ_κ on h_t, we cannot bound it directly by the dissipation term $D_\kappa(t)$. Instead, we use the definition of h_t from (3.60). We have,

$$
|\partial^a \partial^b_t h_t|_0 \leq |[\partial^a \partial^b_t v \cdot (N - \frac{\partial h^\kappa}{(1+Hh^\kappa)^\tau})]|_0 + \left| \frac{[v \cdot \tau]_+}{1+Hh^\kappa} \right|_{L^\infty} |\partial^a \partial^b_t h_t|_0 + l.o.t.
$$

We notice that the second term, multiplied by $e^{-(\lambda_1+\eta_1)t/2}$, is an energy term that is bounded by the L^∞-norm in time. The first term now has the same number of derivatives on ν as the dissipation term $D_\kappa(t)$, yet it cannot be bounded by it as it is a boundary norm. We have instead the following bounds using the control of the norm $\mathcal{S}_\kappa(t)$ with $\mathcal{E}_\kappa(t)$,

$$
|[\partial^a \partial^b_t v \cdot (N - \frac{\partial h^\kappa}{(1+Hh^\kappa)^\tau})]|_0 \leq \left(|[\partial^a \partial^b_t A T \nabla q]_+|_0 + |[A T \partial^a \partial^b_t \nabla q]_+|_0 \right) \left| (N - \frac{\partial h^\kappa}{(1+Hh^\kappa)^\tau}) \right|_{L^\infty} + l.o.t.
$$

$$
\leq P(\mathcal{E}_\kappa(t)) \left(|\partial^a \partial^b_t h^\kappa|_0 + \|\partial^b_t q\|_{H^{0.5-2\nu}} \right).
$$

Therefore,

$$
\int_0^t R_{\text{comm}}^{ab}(s)ds \leq P(\mathcal{E}_\kappa(t)) \int_0^t e^{-(\lambda_1+\eta_1)s/2} \left(|\partial^a \partial^b_t h^\kappa|_0 + \|\partial^b_t q\|_{H^{0.5-2\nu}} \right) ds + l.o.t.
$$

$$
\leq P(\mathcal{E}_\kappa(t))(t \mathcal{E}_\kappa(t)^{1/2} + \sqrt{t} P(\mathcal{E}_\kappa(t))) \leq \sqrt{t} P(\mathcal{E}_\kappa(t)).
$$

Estimates for R_{comm}^{ab} are straightforward, since it has a factor κ^2, and therefore we can bound the higher-order factors inside of the integral in $L^2(\Gamma)$ and use the extra terms in the energy with the κ-coefficients to obtain the desired estimate. The error $\widehat{R}_\Gamma(t)$ can be studied similarly as R_{comm}^{ab}, but it is actually simpler, since \widehat{R}_Γ does not contain the conflicting term R_{comm}^{ab}. Thus, simple integration by parts and Sobolev estimates suffice for obtaining the desired bounds. For the outside boundary error terms $\mathcal{R}_{\partial \Omega}^+$ and $\widehat{\mathcal{R}}_{\partial \Omega}^+$, we capitalize on the boundary condition (3.49d), and the smoothness of $\partial \Omega$, which allows us to remove derivatives from the critical terms, and put them in the smooth normal vector. The estimates for the interior errors \mathcal{R}^\pm, follow the same methodology as the terms in $\mathcal{R}_{\text{comm}}^{ab}$. We will omit these estimates as there is no new ideas involved in their bounds.
3.6.1. Estimates for the errors with α and γ.

$$R^{a,b}_\alpha := \int_{\Omega^+} (\bar{\partial}^a \partial_t^b q + \bar{\partial}^a \partial_t^b \kappa \Psi \cdot v) (\bar{\partial}^a \partial_t^b \alpha) W_\mu, \quad \text{for } a + 2b \leq 6,$$

$$\tilde{R}^{a,b}_\alpha := \int_{\Omega^+} (\bar{\partial}^a \partial_t^{b+1} q + \bar{\partial}^a \partial_t^{b+1} \kappa \Psi \cdot v) (\bar{\partial}^a \partial_t^b \alpha) W_\mu, \quad \text{for } a + 2b \leq 5.$$

Let us look at the case when $a = 6$, $b = 0$,

$$R^{6,0}_\alpha \leq \int_{\Omega^+} (\bar{\partial}^7 q + \bar{\partial}^7 \kappa \Psi \cdot v) \bar{\partial}^6 \alpha W_\mu + \text{l.o.t.} \leq C(\|q\|_{L^2} + \|\kappa \Psi\|_{L^2}) \|\alpha\|_5 + \text{l.o.t.}$$

Now, recall that from the definition of α in (3.37) we get,

$$\|\alpha\|_5 \leq \|\alpha_0\|_5 + \int_0^T \|r(s)\|_5 ds \lesssim \|q_0\|_6 + \sqrt{T_\kappa} \|r\|_{L^2_t H^5} \lesssim \|q_0\|_6 + C \sqrt{T_\kappa}.$$

Therefore the bound follows directly. Similarly for the other terms a, b, and for the error terms involving γ,

$$R^{a,b}_{\partial \Omega} = -\int_{\partial \Omega} (\bar{\partial}^a \partial_t^b q^+ + \bar{\partial}^a \partial_t^b \kappa \Psi \cdot v) \bar{\partial}^a \partial_t^b \gamma \ W + \text{l.o.t.},$$

$$\tilde{R}^{a,b}_{\partial \Omega} = \int_{\partial \Omega} (\bar{\partial}^a \partial_t^{b+1} q^+ + \bar{\partial}^a \partial_t^{b+1} \kappa \Psi \cdot v) \bar{\partial}^a \partial_t^b \gamma \ W + \text{l.o.t.},$$

since, after integrating by parts a tangential derivative, control for $|\bar{\partial}^{a-1} \partial_t^b \gamma|_{L^2(\Gamma)}$ follows from the definition of γ in (3.39). Consider for example $a = 6$, $b = 0$, then,

$$|\bar{\partial}^5 \gamma|_{L^\infty_t L^2} \lesssim \|\bar{\partial}^0 \|_{L^\infty_t H^{5.5}} + \sqrt{t} \|\bar{\partial}^{1} \|_{L^\infty_t H^{5.5}} ds + t^{3/2} \|\bar{\partial}^{2} \|_{L^\infty_t H^{5.5}} \leq C(1 + \sqrt{T_\kappa}),$$

where we have used the bound (3.42). Therefore, for T_κ small enough,

$$\int_0^T R^{6,0}_{\partial \Omega} ds \lesssim t \ E_\kappa(t)^{1/2} (1 + T_\kappa) \lesssim t \ E_\kappa(t)^{1/2}.$$

The other terms of $R^{a,b}_{\partial \Omega}$ and $\tilde{R}^{a,b}_{\partial \Omega}$ follow directly using the same ideas, so we will omit them for brevity.

\[\square\]

3.7. Proof of Theorem 2.1.

Existence of solutions to the two-phase Stefan problem. The energy estimates of Proposition 3.14, and a continuation argument like the one described in Section 9 of [15], gives us that there exists a κ-independent time $T > 0$ such that the following bound holds,

$$E_\kappa(t) \leq C E_\kappa(0) \quad \text{for all } t \in [0, T],$$

(3.86)

where C is independent of κ. The energy control of Lemma 3.9, and the definition of the initial data $^\kappa Q_0$, gives us the bound,

$$S_\kappa(t) \leq P(E_\kappa(t)) \leq P(E_\kappa(0)) \leq C S(0) \quad \text{for all } t \in [0, T],$$

where we note that the polynomial P is also independent of κ. We conclude then that for all $\kappa > 0$, the solutions to the κ-problem exist at least until a κ-independent time $T > 0$, and they are bounded by,

$$S_\kappa(t) \leq C S(0) \quad \forall \ t \in [0, T].$$

(3.87)
Consider now $\kappa = \frac{1}{n}$ and let $n \to \infty$. Let us define the reflexive Hilbert space,
\[
X(T) := \left\{ (q^{\pm}, h) \mid \partial^l_t q^{\pm} \in L^2([0,T]; H^{6.5-2l}(\Omega^{\pm})) \text{ for } l = 0, 1, 2, 3, \right. \\
\left. \partial^l_t h \in L^2([0,T]; H^{5-2l}(\Gamma)) \text{ for } s = 0, 1, 2 \right\},
\]
then the uniform bound (3.87) implies that there exists a subsequence that converges weakly in $X(T)$ to a limit which we call (q^{\pm}, h), and that $S(t) = S(q^{\pm}, h)$ also satisfies the estimate,
\[
S(t) \leq C S(0) \quad \forall t \in [0,T].
\]
(3.88)
Since the space of functions such that $S(T)$ is bounded imbeds compactly into
\[
C^{1,2} := \left\{ (q^{\pm}, h) : q \in C^1([0,T]; C^2(\Omega^{\pm})) \cap C([0,T]; C^2(\Omega^{\pm})), \right. \\
\left. h \in C^1([0,T]; C^0(\Gamma)) \cap C([0,T]; C^2(\Gamma)) \right\},
\]
we have that the subsequence in fact converges strongly to a solution $(q^{\pm}, h) \in C^{1,2}$ of (1.10). This finishes the existence part of Theorem 2.1.

Continuity of $S(t)$. An application of the fundamental theorem of calculus and the bound (3.88) gives us continuity of the lower-order norms. Namely,
\[
\partial^l_t q^{\pm} \in C([0,T]; H^{5-2l}(\Omega^{\pm})), \quad \partial^l_t h \in C([0,T]; H^{5-2l}(\Gamma)), \quad \text{for } l = 0, \ldots, 2.
\]
(3.89)
Moreover, since we have the higher regularity estimate (3.81), then $q^{\pm} \in L^2([0,T]; H^7(\Omega^{\pm}))$ and $\partial^l_t q^{\pm} \in L^2([0,T]; H^{5-2l}(\Omega^{\pm}))$, so we can use interpolation estimates to obtain that in fact $q^{\pm} \in C([0,T]; H^6(\Omega^{\pm}))$, $q^{\pm}_t \in C([0,T]; H^5(\Omega^{\pm}))$, and $q^{\pm}_{tt} \in C([0,T]; H^4(\Omega^{\pm}))$. The same estimate (3.81), gives us that $h \in L^2([0,T]; H^{7}(\Gamma))$, and from the definition of h_t in (3.60), we can actually recover a higher regularity than $L^2([0,T], H^5(\Gamma))$. Indeed, notice that
\[
|h_t|^2_{L^2_t H^{5.5}} \leq \int_0^t \left| [v \cdot \vec{n}]^\pm \right|^2_{L^5} ds,
\]
where the right-hand side is easily bounded using the known higher order estimates (3.81). Therefore we have instead that $h_t \in L^2([0,T]; H^{5.5}(\Gamma))$, and consequently, via interpolation, we have that $h \in C([0,T]; H^5(\Gamma))$, $h_t \in C([0,T]; H^4(\Gamma))$, and $h_{tt} \in C([0,T]; H^2(\Gamma))$. It is left to prove then that the norms with the higher-order time derivatives are continuous functions of time, i.e. $q^{\pm}_{tt} \in C([0,T]; L^2(\Omega^{\pm}))$, and $h_{ttt} \in C([0,T]; L^2(\Gamma))$.

The continuity of $h_{ttt}(t)$ in $L^2(\Gamma)$ follows from the definition of h_t in equation (1.10d) time differentiated two times,
\[
h_{ttt} = [v_{tt} \cdot \vec{n} + 2v_t \cdot \vec{n}_t + v \cdot \vec{n}_{tt}]^+.
\]
The continuity of $q^{\pm} \in C([0,T]; H^2(\Omega^{\pm}))$, and the continuity of $\partial^l_t h$ in the lower-order norms, gives us then that $v^{\pm} \in C([0,T]; H^1(\Omega^{\pm}))$ and thus the continuity of h_{ttt} follows. Finally, from the triple time differentiated problem (1.10a), we have that q^{\pm}_{ttt} satisfies,
\[
q^{\pm}_{ttt} = \partial^2_t (\Delta q^{\pm} - \Psi^+_t \cdot v^+),
\]
where we see that all the terms of the right-hand side are continuous in $L^2(\Omega)$, including the higher-order term $\Psi^+_tt \cdot v$, since $h_{ttt} \in C([0,T], L^2(\Gamma))$. This concludes the proof of the continuity in time of $S(t)$.

Uniqueness. The uniqueness can be derived from the energy estimates in a straightforward way. A brief sketch of the argument is presented in [30], so we omit the analogous proof in this article.
4. Global well-posedness

In Sections 4.1 - 4.6, we shall collect all the necessary ingredients for the proof of Theorem 2.2, which is presented in Section 4.7. We shall consider small initial data satisfying the hypothesis (2.24), which implies the bound

\[E^\pm(q_0^\pm, h_0) \leq \frac{C}{|c_1^+| F(K)}, \]

(4.90)

where the denominator \(|c_1^+|\) comes from (3.69b) and (1.21).

4.1. Bootstrap assumptions. As guaranteed by the local well-posedness Theorem 2.1, we assume that the solution \((q^\pm, h)\) to the two-phase Stefan problem (1.10) exists on a time-interval \([0, T]\), for some \(T > 0\). For \(\epsilon_0 < \epsilon \ll 1\) to be specified later, we make the following bootstrap assumptions:

\[E^\pm(t) \leq \frac{\epsilon^2}{|c_1^+|}, \]

(4.91a)

\[\sup_{0 \leq s \leq T} E^\pm(s) \leq \tilde{C} E^\pm(0), \]

(4.91b)

\[\chi^\pm(t) := \inf_{x \in \Gamma} \partial_N q^\pm \geq C|c_1^\pm| e^{-\left(\lambda_1^\pm + \eta/2\right)t}, \]

(4.91c)

where we recall the definitions from Section 1.8.

Remark 4.1. Note that the bounds for the boundary norms \(E^\pm, D^\pm\) satisfy (4.91a) in both the + and the - case, and therefore with \(c_1 = \max\{1, |c_1^+|, |c_1^-|\}\) we have the bound:

\[E^\pm(t) + D^\pm(t) \leq \frac{\epsilon^2}{c_1}. \]

As in [31], we will prove first that if \(T\) is the maximal time for which the solution exists and satisfies the bootstrap assumptions, we actually improve upon the smallness assumptions (4.91a), (4.91b) and the lower bounds (4.91c). A standard continuity argument then leads to the proof of global existence.

The following technical lemma will be fundamental for our analysis and it is a direct consequence of the bootstrap assumptions. Intuitively, the lower order norms of the temperature have strong enough decay to counter the decay of the weight \(e^{\left(-\lambda_1^\pm + \eta\right)t}\) of the boundary norms. This will be used when proving the energy estimates of Lemma 4.14, as we will be able to bound products of boundary and interior terms by multiplying and dividing by the weight \(e^{\left(-\lambda_1^\pm + \eta\right)t}\), while still maintaining control of the decay.

Lemma 4.2. If the bootstrap assumptions (4.91) hold, we have that

\[\frac{E^\pm(t) e^{-\beta^\pm t}}{e^{\left(-\lambda_1^\pm \eta\right)t}} \leq C \frac{\epsilon^2_0}{F(K)} e^{-\gamma^\pm t}, \]

(4.92)

with

\[\gamma^\pm = 2\lambda_1^\pm - \lambda_1 > 0. \]

Proof. Using the bootstrap assumptions (4.91b) and (4.91c) we arrive at

\[\frac{E^\pm(t) e^{-\beta^\pm t}}{e^{\left(-\lambda_1^\pm + \eta\right)t}} \leq \frac{\tilde{C} E^\pm(0) e^{-\beta^\pm t}}{e^{\left(-\lambda_1^\pm + \eta\right)t}} \leq C E^\pm(0) e^{-\gamma^\pm t}, \]
Since by definition \(E^\pm_\beta(0) = \sum_{b=0}^2 \| \partial^b q^\pm(0) \|_{H^{4-2b}}^2 \), it follows from the compatibility assumptions (1.17a, 1.17b) that \(E^\pm_\beta(0) \leq C\| q^\pm_0 \|_2^2 \). Therefore

\[
\frac{E^\pm_\beta(t)e^{-\beta^* t}}{e^{(-\lambda_1+\eta)t}} \leq C\| q^\pm_0 \|_2^2 e^{-\gamma^* t} \leq C\frac{e^2}{F(K)} e^{-\gamma^* t}.
\]

where the last inequality follows from the smallness of the initial data (2.24).

Remark 4.3. Using a higher order Hardy inequality as in Lemma 2.1 of [31], we obtain as well the following bound for the initial lower order energy:

\[
E^\pm_\beta(0) \leq C(K^\pm)^4|c_1^\pm|^2,
\]

which, by inspecting the proof of the Lemma leads to the following alternative bound :

\[
\frac{E^\pm_\beta(t)e^{-\beta^* t}}{e^{(-\lambda_1+\eta)t}} \leq C(K^\pm)^4|c_1^\pm|^2 e^{-\gamma^* t}.
\]

4.2. Global estimates for \(W^\pm \) and energy equivalence.

Lemma 4.4 (Global estimates for \(W^\pm \)). Let the bootstrap assumptions (4.91) hold. Then \(W^\pm \) satisfy the following bounds,

\[
\frac{CE^{\gamma^* t}}{(K^\pm)^2|c_1^\pm|} \leq \min_{x \in \Omega^\pm} W^\pm(t,x) \leq \max_{x \in \Omega^\pm} W^\pm(t,x) \leq \frac{Ce^{(\sigma^* + \eta)t}}{|c_1^\pm|},
\]

where

\[
\sigma^* := \lambda^*_1 - \lambda_1 + \frac{\eta}{2} > 0.
\]

Proof. We use the bootstrap assumptions (4.91) to obtain the following bounds for \(\partial N q^\pm \):

\[
C|c_1^\pm|e^{(-\lambda^*_1-\eta/2)t} \leq |\partial N q^\pm| \leq \| q^\pm \|_{2.25} \leq CE^\pm_\beta(t)^{1/2}e^{-\beta^* t/2} \leq C(K^\pm)^2|c_1^\pm|e^{(-\lambda^*_1+\eta/2)t},
\]

where we used the Sobolev embedding \(H^{1.25}(\Omega^\pm) \hookrightarrow L^\infty(\Omega^\pm) \) in the second inequality. Now the proof follows analogously to the proof of Lemma 3.6 but using the above bounds instead.

With these estimates, we have a new equivalence relation between the natural energy \(E(t) \) and the norm \(S(t) \).

Proposition 4.5. With the bootstrap assumptions (4.91) holding, and with \(\epsilon > 0 \) sufficiently small, there exists a constant \(C \), and a \(\gamma > 0 \) such that

\[
\sup_{0 \leq s \leq t} \frac{e^{\gamma^* s} E^\pm(s)}{(K^\pm)^2|c_1^\pm|} + \sup_{0 \leq s \leq t} E^\gamma(s) + \int_0^t \left(\frac{e^{\gamma^* s} D^\pm(s)}{(K^\pm)^2|c_1^\pm|} + D^\gamma(s) \right) ds \leq C \sup_{0 \leq s \leq t} E^\pm(s) + C \int_0^t e^{-\gamma^* s} E^\pm(s) ds + C \int_0^t D^\pm(s) ds \leq C\| E(t) \|.
\]

We will use this relationship in Section 4.7 to prove the final Theorem.

Proof. The proof of this Proposition follows the same steps as the proofs of Lemma 2.9, Lemma 2.10 and Corollary 2.11 of [31], with the caveat of adding the weights \(W^\pm \). We will show the highest order estimate for illustration purposes, assuming that we have shown
Lemma 4.7 (Suboptimal decay bound for h_t). Under the bootstrap assumptions (4.91), the following decay bound holds:

$$
|\psi|_{4.5} \leq C|\psi|_{4.5} + C(\psi)_{1/2}\left(\psi(t)\right)_{1/2}\epsilon^{1/2}e^{-\beta t/2} + C(\psi(t)\right)_{1/2}\epsilon^{1/2}e^{-\beta t/2}
$$

Thus, using the estimates for ψ and ψ_t in terms of their boundary value, interpolating, and using that the normal ψ, divergence of $\nabla \psi$ gives us control of the normal derivatives. We obtain the bound:

$$
\|\psi\|_{6.5} \leq |\psi|_{4.5} + \left(|\psi|_{6} + |\psi_t|_{4} + \|\psi^5_v\|_{0}\right)e^{1/2}e^{-\beta t/2} + C(\psi(t)\right)_{1/2}\epsilon^{1/2}e^{-\beta t/2}.
$$

Recall that the boundary norms in the natural energy have the weight $e^{(-\lambda_1+\eta)t}$, and the interior norm of ψ^5_v has the weights W. Therefore,

$$
\|\psi\|_{6.5} \leq |\psi|_{4.5} + C(\psi(t)\right)_{1/2}\left(\psi(t)\right)_{1/2}\epsilon^{1/2}e^{-\beta t/2} + C(\psi(t)\right)_{1/2}\epsilon^{1/2}e^{-\beta t/2}
$$

with $\gamma^\pm = \lambda_1^\pm - \lambda_1/2$. The result then follows using the estimates for $|\psi|_{4.5}$. □

Remark 4.6. Notice that, just as in the one-phase problem, the exponential growth introduced by bounding the norms of h with the natural energy is counterbalanced by the decay of the lower order norms.

4.3. A priori bounds on h.

Lemma 4.7 (Suboptimal decay bound for h_t). Under the bootstrap assumptions (4.91), the following decay bound holds:

$$
|\psi|_{2.5} \leq C\epsilon(e^{\gamma^- t/2} + e^{-\gamma^+ t/2}) \leq C\epsilon e^{-\lambda_1 t/2}. \quad (4.98)
$$

Proof. The proof of this Lemma follows exactly as in Lemma 2.4 of [31], but instead of multiplying and dividing by \sqrt{X} to obtain a boundary energy term, we multiply by $e^{(-\lambda_1+\eta)t}$. Since the boundary condition for h_t depends on the jump of the temperature gradients from both regions, we obtain the sum of the two exponential decays. The last inequality follows since we defined $\lambda_1 = \min\{\lambda_1^+,\lambda_1^\pm\}$. Notice that the weights W^\pm do not show up in this proof, as this estimate only uses the lower order energy $E_{\beta}(t)$, which has no weights. □

Remark 4.8. A more precise statement can be achieved by following the bootstrap regularity arguments of Lemma 2.6 of [31], wherein we keep track of constant c_1 in our estimates. In particular we have

$$
|h_t|_{2.5} \leq C_1 e^{-\lambda_1 t},
$$

which will be useful in Lemma 4.9.

Lemma 4.9 (Smallness of the height function). Suppose that the bootstrap assumptions (4.91) hold. Then, for $\epsilon > 0$ taken sufficiently small,

$$
\sup_{0 \leq s \leq t} \|h(s)\|_{4.5} \leq C\sqrt{\epsilon}, \quad (4.99)
$$
while for the lower order norms,

\[\sup_{0 \leq s \leq t} |h(s)|_{2,5} \leq Cc_1 \quad \text{and} \quad \sup_{0 \leq s \leq t} |h(s)|_4 \leq Ce^{1/2}c_1^{1/4}. \]

(4.100)

Proof. The proof follows the same argument as in the proof of Lemma 2.6 of [31], but with again the same modification as before, when instead of multiplying by \(\sqrt{X} \) we use \(e^{(\lambda_1 + \eta)t} \). We will show only the higher order estimate for brevity. Recall the interpolation estimate,

\[|h|^2_{4.5} \leq C \int_0^t |h|^6|ht|_3ds \leq C \int_0^t |h|^6|ht|^{1/5}_5|ht|^{4/5}_{2.5} \]

Then, using an improved bound for \(|ht|_{2.5} \), we have,

\[|h|^2_{4.5} \leq C \int_0^t |h|^6|ht|^{4/5}_{2.5}|ht|^{1/5}_5 \leq Cc_1^{4/5} \int_0^t |h|^6e^{-4\lambda_1t/5}|ht|^{1/5}_5 ds \]

\[\leq Cc_1^{4/5} \int_0^t e^{(-\lambda_1+\eta)s/2}|h|^6|ht|^{1/5}_5 e^{(-3\lambda_1/4 - \frac{1}{2}\eta)s} ds \]

Let \(\tilde{\eta} := \frac{3\lambda_1}{10} + \frac{1}{2} \eta > 0 \). Then,

\[|h|^2_{4.5} \leq Ccc_1^{3/10} \int_0^t e^{-\tilde{\eta}s}|ht|^{1/5}_5 ds \]

\[\leq Ccc_1^{3/10} \left(\int_0^t (e^{-\tilde{\eta}s/2})^{10/9} ds \right)^{9/10} \left(\int_0^t (e^{-\tilde{\eta}s/2}|ht|^{1/5}_5)^{10} \right)^{1/10} \]

\[\leq Ccc_1^{3/10} \left(\int_0^t e^{-\tilde{\eta}s/2}|ht|^{1/5}_5 \right)^{1/10} \]

\[\leq Ccc_1^{3/10} \left(\int_0^t \mathcal{P}^{\mathcal{L}}(s) \right)^{1/10} \]

\[\leq Ce^{6/5}c_1^{1/5}, \]

and the claim easily follows. Note that we have used Hölder’s inequality, the definition of \(\mathcal{P}^{\mathcal{L}} \) from Section 1.8 and the bootstrap assumption (4.91a).

4.4. **Lower bounds on** \(\partial_X q^\pm \). The main objective of this section is to prove a lower bound which improves the bootstrap assumption (4.91c). The detailed study of the decay rates of \(\partial_X q^\pm \) is of fundamental importance as it also determines the growth and decay-in-time properties of the weights \(W^\pm \). We present the following,

Lemma 4.10 (Lower bound for \(X^\pm(t) \)). Assuming the bootstrap assumptions (4.91) with \(\epsilon \) small enough, there exists a universal constant \(C > 0 \) such that

\[X^\pm(t) \geq C|c_1^\pm|e^{-(\lambda_1^\pm + \tilde{\lambda}(t))t}. \]

(4.101)

Moreover, \(\tilde{\lambda}^\pm \geq 0 \) satisfies, \(\tilde{\lambda}^\pm \leq C\sqrt{\epsilon} \) for some positive constant \(C \). In particular, with \(\epsilon > 0 \) sufficiently small so that \(C\sqrt{\epsilon} < \eta/4 \), we obtain the improvement of the bootstrap bound (4.91c) given by

\[X^\pm(t) \geq C|c_1^\pm|e^{-(\lambda_1^\pm + \frac{\eta}{4})t}. \]

We will omit the proof as it is detailed in Section 2.6 of [32], where a comparison function is constructed using the so-called *demi-eigenvalues and demi-eigenfunctions* of the maximal Pucci operators detailed in [42].
4.5. **Improved bounds for the lower order terms of the energy** $S(t)$. In this Section we prove the improvement of the bootstrap bounds for the terms E^\pm_β, responsible for the decay of the below-top-order energy terms.

Lemma 4.11. There exists a constant \tilde{C} and $\epsilon > 0$ sufficiently small, such that if the bootstrap assumptions (4.91) hold with such ϵ and \tilde{C}, then the following improved bound holds:

$$E^\pm_\beta(t) \leq \frac{\tilde{C}}{2} E^\pm_\beta(0).$$

Proof. Notice that the lower order norms E^\pm_β, do not contain weights W^\pm in their definitions (see Section 1.8). Therefore the proof of the Lemma is analogous to the proof of Lemma 4.1 of [31] and we omit the details of the proof for brevity purposes. In [31] the authors used elliptic estimates and a Poincaré inequality. Note that the Poincaré constant is given precisely by the first eigenvalue of the Dirichlet-Laplacian in each region Ω^\pm, which gives us the different decay rates λ^\pm_1 in each respective region. The basic mechanism for the decay of the H^4-norm of the temperature q is exactly the same as in the standard heat equation. We can not however propagate this nearly-optimal decay rate to the top-order norms of q as that would require a stronger control on the top-order derivatives of h, than the one dictated by the natural energy \mathcal{E}. \[\Box\]

4.6. **Improved bounds for the energy** $\mathcal{E}(t)$. In this Section we prove the higher-order energy estimates to be used in the proof of Theorem 2.2 in Section 4.7. Most of the energy terms are dealt with using the same techniques as in [31], but all the new terms that arise from the interaction of the two phases via the weights W^\pm are presented in detail. This is the price we must pay for eliminating the critical term of [31], but we will see it is a low price to pay. As a starting point we first prove sharp upper bounds on the spacetime derivatives of the weights W^\pm as they will be used crucially in dealing with the above mentioned “critical” terms.

Lemma 4.12 (Global estimates for ∇W^\pm and W^\pm_t). Under the bootstrap assumptions (4.91), the derivatives of the weight functions W^\pm satisfy the following bounds:

$$\|W^\pm_t\|_{L^\infty(\Omega^\pm)} \leq P(K) \frac{e^{\sigma^\pm t}}{|c^\pm_1|} e^{2\eta t} \quad \text{and} \quad \|\nabla W^\pm\|_{L^\infty(\Omega^\pm)} \leq P(K) \frac{e^{\sigma^\pm t}}{|c^\pm_1|} e^{3\eta t}$$

where we recall from (4.96) $\sigma^\pm = \lambda^\pm_1 - \lambda_1 + \frac{\eta}{2}$.

Proof. Recall that W^\pm_t solves the elliptic boundary value problem (3.80). Therefore

$$|W^\pm_t|_{L^\infty(\Gamma)} \leq C e^{(-\lambda_1 + \eta)t} \left(\frac{1}{\lambda^\pm(t)} + \frac{|\partial_N q^\pm|_{L^\infty}}{\lambda^\pm(t)^2} \right)$$

$$\leq C e^{(-\lambda_1 + \eta)t} \left(e^{(\lambda^\pm_1 + \eta/2)t} \frac{(K^\pm)}{|c^\pm_1|} + \frac{|c^\pm_1|^2 |e^{-\beta^\pm t}/2|}{|c^\pm_1|^2} \right)$$

$$\leq e^{(-\lambda_1 + \lambda^\pm_1 + 3\eta/2)t} \frac{1 + (K^\pm)^2 e^{\eta t}}{|c^\pm_1|}$$

$$\leq C(K^\pm)^2 e^{(-\lambda_1 + \lambda^\pm_1 + 5\eta/2)t} \frac{1}{|c^\pm_1|}$$

$$\leq P(K) \frac{e^{\sigma^\pm t}}{|c^\pm_1|} e^{2\eta t}.$$
And so the result follows from the maximum principle applied to W^\pm_t. To obtain the bound on $\|\nabla W^\pm\|_{L^\infty}$, we first use the Sobolev inequality and then the elliptic theory to infer that

$$\|\nabla W^-\|_{L^\infty} \leq C\|\nabla W^-\|_{L^2} \leq C e^{(-\lambda_1 + \eta)t} \frac{1}{|\partial Nq^-|},$$

$$\|\nabla W^+\|_{L^\infty} \leq C\|\nabla W^+\|_{L^2} \leq C e^{(-\lambda_1 + \eta)t} \frac{1}{|\partial Nq^+|} + C e^{(-\lambda_1 + \lambda^+_1 + \eta)t}.$$

To estimate the right-hand sides, let us first estimate the $L^2(\Gamma)$-norm of two tangential derivatives applied to $\frac{1}{\partial Nq^\pm}$:

$$\left| \frac{\partial^2}{\partial Nq^\pm} \right|_0 \leq C \frac{\|\partial Nq^\pm\|^2_{L^2}}{X^+(t)^3} + C \frac{\|\partial^2 Nq^\pm\|_0}{X^+(t)^2}$$

$$\leq \frac{\|q^\pm\|^2_{L^2}}{|c^+_1|^3} e^{3(\lambda^+_1 + \eta/2)t} + \frac{\|q^\pm\|^2_{L^2}}{|c^+_1|^2} e^{(2\lambda^+_1 + \eta)t}$$

$$\leq \frac{(K^+_1)^4}{|c^+_1|} e^{(-\beta^+ + 3\lambda^+_1 + 3\eta/2)t} + \frac{(K^+_1)^2}{|c^+_1|} e^{(-\beta^+/2 + 2\lambda^+_1 + \eta)t}$$

$$\leq \frac{e^{(\lambda^+_1 + 5\eta/2)t}}{|c^+_1|} ((K^+_1)^4 + (K^+_1)^2 e^{-\eta t})$$

$$\leq P(K) \frac{e^{(\lambda^+_1 + 5\eta/2)t}}{|c^+_1|},$$

where we used the continuous embedding $H^{1/2} \hookrightarrow L^4$, the trace estimates, and the bound (4.94). Recall as well the definition (1.14) of $\beta^\pm = 2\lambda^\pm_1 - \eta$. The same bound for $\left| \frac{\partial}{\partial Nq^\pm} \right|_0$ follows analogously. As a result, we obtain that

$$\|\nabla W^\pm\|_{L^\infty} \leq P(K) \frac{e^{(-\lambda_1 + \lambda^+_1 + \eta)t}}{|c^+_1|} e^{3\eta t} = P(K) \frac{e^{\sigma^+_t}}{|c^+_1|} e^{3\eta t},$$

for some universal polynomial P. This concludes the proof of the Lemma.

Remark 4.13. The proof of the lemma depends on the boundary estimates for W^\pm_t and ∇W^\pm on Γ. This inevitably leads us to study sharp upper bounds for the reciprocals $\frac{1}{\partial Nq^\pm}$, which in turn demands a very good understanding of the lower bounds on the decay rate of the Neumann derivative ∂Nq^\pm. These ingredients are provided by Lemma 4.10.

We can now prove the improvement on the higher-order bootstrap assumption (4.91a). Notice that, because of the way in which the norm and the natural energy are related in equation (4.97), we need to build the estimates with the appropriate coefficients $|c^\pm_1|, K^\pm$, and exponential growth $e^{\sigma^\pm_t}$.

Lemma 4.14 (Higher-order energy estimates). Suppose that the bootstrap assumptions (4.91) hold with $\epsilon > 0$ and $\eta > 0$ sufficiently small. Then the following bound holds:

$$\mathcal{E}(t) \leq C\mathcal{E}(0) + P(K)\frac{e^{\sigma^-}}{|c^+_1|} + O(\epsilon + \delta) \left[\sup_{0 \leq s \leq t} \frac{\mathcal{E}^+(s) e^{\sigma^+_s}}{(K^+_1)^2 |c^+_1|} + \sup_{0 \leq s \leq t} \frac{\mathcal{E}^-(s) e^{\sigma^-_s}}{(K^-_1)^2 |c^-_1|} + \sup_{0 \leq s \leq t} \mathcal{E}^+(s) \right]$$

$$+ \int_0^t \left(\mathcal{D}^+(s) e^{\sigma^+_s} + \mathcal{D}^-(s) e^{\sigma^-_s} + \mathcal{P}^+(s) \right) ds, \quad \text{for all } t \in [0, T] \quad (4.102)$$

where $P(K)$ is some universal polynomial, $0 \leq \delta \ll 1$ is sufficiently small, and $\sigma^\pm = \lambda^\pm_1 - \lambda_1 + \eta/2 > 0$ has already been introduced in (4.96).
Proof. Recall the energy identity \((3.76)\) from Lemma 3.10, and notice that we need only to prove bounds for the error terms \(\mathcal{R}\). We will exemplify this by showing the estimates for \(\mathcal{R}_{a,b}^\pm\), defined in the statement of Lemma 3.10.

Bounds for \(\mathcal{R}_{a,b}^\pm\). Let us re write \(\mathcal{R}_{a,b}^\pm\) as a sum:

\[
\int_0^t \mathcal{R}_{a,b}^\pm = \sum_{a,b} \mathcal{R}_{1,a,b}^\pm + \mathcal{R}_{2,a,b}^\pm + \mathcal{R}_{3,a,b}^\pm + \mathcal{R}_{4,a,b}^\pm + \mathcal{R}_{5,a,b}^\pm + \mathcal{R}_{6,a,b}^\pm,
\]

where \(\mathcal{R}_{1,a,b}^\pm\) are the integrated terms written in the definition of \(\mathcal{R}_{a,b}^\pm\), see Lemma 3.10. The estimates for \(\mathcal{R}_{1,a,b}^\pm, \mathcal{R}_{2,a,b}^\pm, \mathcal{R}_{3,a,b}^\pm, \mathcal{R}_{4,a,b}^\pm\) follow the same strategy as in Section 3.2 of [31]. The only addition is the presence of the weights \(W^\pm\), which we bound in \(L^\infty\) yielding an additional exponentially growing term with a rate \(\sigma^\pm + \eta\). It is therefore left to show that in every such error term, there exists a below-top-order energy term which decays sufficiently fast to counteract the potential exponential growth stemming from \(W^\pm\). We illustrate this by estimating the term \(\mathcal{R}_{1,a,b}^\pm\):

\[
\left| \int_{\Omega^\pm} \partial^\alpha A \partial \phi \partial^\beta v W \right| \leq \| \partial^\alpha A \|_{L^4} \| \partial \phi \|_{L^4} \| \partial^\beta v \|_{0} \| W \|_{L^\infty}
\]

\[
\leq C |h_0| q_2.5 \| \partial^\beta v \|_{0} \frac{C}{|c_1^\pm|} e^{(\sigma^\pm + \eta)t}
\]

\[
\lesssim 1 |c_1^\pm|^{-1/2} \sqrt{C_0} \epsilon_0 \frac{F(\beta)}{\sqrt{F(\kappa)}} e^{\epsilon_0 (t/2)^{1/2}} e^{e^{(\sigma^\pm + \eta)t}/2t} \leq C_0 \epsilon_0 \frac{\sigma^\pm + \eta}{F(K)} \frac{e^{\sigma^\pm t}}{F(K)} \| \partial^\beta v \|_{0} \frac{C}{|c_1^\pm|} e^{(\sigma^\pm + \eta)t},
\]

where \(\sigma^\pm\) is given by \((4.96)\), \(\gamma^\pm = 2\lambda_1^\pm - \lambda_1\), and therefore \(\sigma^\pm - \gamma^\pm + \eta = -\frac{1}{2} \lambda_1 + \frac{3}{2} \eta < 0\) for \(\eta\) sufficiently small. Note that we used \((4.95)\) in the second line, the definition of \(\beta^\pm\) in the third line, and the estimate \((4.94)\) in the fourth line to bound the ratio \(\frac{E_{\beta}(t)e^{-\beta t/2}}{e^{(-\lambda_1 + \eta)t/2}}\) by \(C K^2 |c_1^\pm|^2 \sqrt{\frac{\epsilon_0}{F(K)}} e^{-\gamma^\pm t/2}\). In the fifth line we used Young’s inequality and in the last line the negativity of \(\sigma^\pm - \gamma^\pm + \eta\). Considering \(\epsilon_0\) small enough so that \(C_0 (K^\pm)^4 \frac{\epsilon_0}{F(K^\pm)} < \epsilon\), gives us the desired inequality.

We can apply an entirely analogous reasoning to bound the terms \(\mathcal{R}_{j,a,b}^\pm, j = 2,3,4\). Integrating-in-time we therefore obtain that

\[
\mathcal{R}_{1,a,b}^\pm + \mathcal{R}_{2,a,b}^\pm + \mathcal{R}_{3,a,b}^\pm + \mathcal{R}_{4,a,b}^\pm \leq O(\epsilon + \delta) \left[\sup_{0 \leq s \leq t} \left(\frac{\epsilon^+(s)e^{\epsilon^+ s}}{(K^+)^2 |c_1^\pm|} + \frac{\epsilon^-(s)e^{\epsilon^- s}}{(K^-)^2 |c_1^\pm|} + \epsilon^s(s) \right) \right]
\]

\[
\int_0^t \left(\frac{\epsilon^+(s)e^{\epsilon^+ s}}{(K^+)^2 |c_1^\pm|} + \frac{\epsilon^-(s)e^{\epsilon^- s}}{(K^-)^2 |c_1^\pm|} + \epsilon^s(s) \right) ds.
\]

The estimates for the terms \(\mathcal{R}_{\Gamma}^\pm\), \(\mathcal{R}_{\Gamma}^\pm\), and \(\mathcal{R}_{\Gamma}^\pm\), follow the same methodology and we omit the details.
The remaining integrals $\mathcal{R}_{5}^{a,b,\pm}$ and $\mathcal{R}_{6}^{a,b,\pm}$ in the definition of $\mathcal{R}_{a,b}^{\pm}$ (see Lemma 3.10) are new error terms with respect to $[31, 32]$ and they involve derivatives of the weights W^{\pm}:

\[
\mathcal{R}_{5}^{a,b,\pm} := \int_{0}^{t} \int_{\Omega_{t}^{\pm}} (\bar{\partial}^{a} \partial_{t}^{b} q^{\pm} + \bar{\partial}^{a} \partial_{t}^{b} \Psi^{\pm} \cdot v^{\pm}) A \bar{\partial}^{a} \partial_{t}^{b} v^{\pm} \nabla W^{\pm}
\]

\[
\mathcal{R}_{6}^{a,b,\pm} := \frac{1}{2} \int_{0}^{t} \int_{\Omega_{t}^{\pm}} (\bar{\partial}^{a} \partial_{t}^{b} q^{\pm} + \bar{\partial}^{a} \partial_{t}^{b} \Psi^{\pm} \cdot v^{\pm})^2 W_{t}^{\pm}
\]

To bound $\mathcal{R}_{5}^{a,b,\pm}$ and $\mathcal{R}_{6}^{a,b,\pm}$ we need upper bounds for ∇W^{\pm} and W_{t}^{\pm} in L^{∞} provided by Lemma 4.12. We will show that even for these terms, the additional exponential growth is also counterbalanced by the decay of the lower order norms. In the following we omit the upper index \pm for simplicity, and consider only the hardest case $a=6$, $b=0$, as the argument remains the same for the other cases.

\[
\mathcal{R}_{5}^{a=6,b=0,\pm} \leq \int_{0}^{t} \|\bar{\partial}^{6} q + \bar{\partial}^{6} \Psi \cdot v\|_{0} \|\bar{\partial}^{6} v\|_{0} \|\nabla W\|_{L^{\infty}}
\]

\[
\leq \frac{P(K)}{|c_{1}^{\pm}|} \int_{0}^{t} (\|q\|_{0} + \|\bar{\partial}^{6} \Psi\|_{0} v_{L^{\infty}}) \|\bar{\partial}^{6} v\|_{0} e^{\sigma \bar{v} s} e^{3\eta s} ds
\]

\[
\leq \frac{P(K)}{|c_{1}^{\pm}|} \int_{0}^{t} \|q\|_{0} \|\bar{\partial}^{6} v\|_{0} e^{\sigma \bar{v} s} e^{3\eta s} ds + \frac{P(K)}{|c_{1}^{\pm}|} \int_{0}^{t} \|\bar{\partial}^{6} \Psi\|_{0} v_{L^{\infty}} \|\bar{\partial}^{6} v\|_{0} e^{\sigma \bar{v} s} e^{3\eta s} ds,
\]

(4.103)

where we used Lemma 4.12 in the second line. The first term of the right-most side is estimated as follows:

\[
\frac{P(K)}{|c_{1}^{\pm}|} \int_{0}^{t} \|q\|_{0} \|\bar{\partial}^{6} v\|_{0} e^{\sigma \bar{v} s} e^{3\eta s} ds \leq \frac{P(K)}{|c_{1}^{\pm}|} \int_{0}^{t} \|q\|_{0} e^{\frac{1}{5} \|q\|_{0}^{4/5} D^{\pm}(s)^{1/2} e^{\sigma \bar{v} s} e^{3\eta s} ds}
\]

\[
\leq \frac{P(K)}{|c_{1}^{\pm}|} \int_{0}^{t} E^{\pm}_{\beta}(s)^{1/10} e^{-\beta \bar{v} s} e^{3\eta s} ds
\]

\[
\leq \frac{C}{|c_{1}^{\pm}|} \int_{0}^{t} \left(C_{\delta} P(K) E^{\pm}_{\beta}(s) e^{(-\beta + 30\eta)s} + \frac{\delta}{(K^{\pm})^{2} D^{\pm}(s)} \right) e^{\sigma \bar{v} s} ds
\]

\[
\leq \frac{C_{\delta} P(K) E^{\pm}_{\beta}(0)}{|c_{1}^{\pm}|} \int_{0}^{t} e^{-\delta s} ds + \frac{\delta}{(K^{\pm})^{2} |c_{1}^{\pm}|} \int_{0}^{t} D^{\pm}(s) e^{\sigma \bar{v} s} ds
\]

\[
\leq \frac{P(K) e_{0}^{2}}{|c_{1}^{\pm}| |F(K)|} + \delta \int_{0}^{t} D^{\pm}(s) e^{\sigma \bar{v} s} ds,
\]

where we note that $\tilde{\sigma}^{\pm} = \lambda^{\pm} + \lambda_{1} - 63\eta / 2 > 0$ for η small enough. We used an interpolation estimate and the definition of the norm σ^{\pm} in the first line, and Young’s inequality in the third. Similarly, the second integral on the right-most side of (4.103) satisfies:

\[
\frac{P(K)}{|c_{1}^{\pm}|} \int_{0}^{t} \|\bar{\partial}^{6} \Psi\|_{0} \|v\|_{L^{\infty}} \|\bar{\partial}^{6} v\|_{0} e^{\sigma \bar{v} s} e^{3\eta s} ds \leq \frac{P(K)}{|c_{1}^{\pm}|} \int_{0}^{t} h_{5.5} E^{\pm}_{\beta}(s)^{1/2} e^{(-\lambda^{\pm} + \frac{3}{2}\eta)s} D(s)^{1/2} e^{\sigma \bar{v} s} e^{3\eta s} ds
\]

\[
\leq P(K) \int_{0}^{t} e^{(-\lambda_{1} + \eta)s/2} h_{5.5} D(s)^{1/2} e^{\sigma \bar{v} s} e^{(-\lambda^{\pm} + \lambda_{1} / 2 + 3\eta)s} ds
\]

\[
\leq P(K) \int_{0}^{t} e^{s} D(s)^{1/2} e^{(-\lambda_{1} + \lambda_{2} + 3\eta)s} ds
\]

\[
\leq \delta \sup_{0 \leq s \leq t} e^{s} + C_{\delta} \frac{P(K)}{|F(K)|^{1/2}} \int_{0}^{t} \frac{e^{s}}{(K^{\pm})^{2} |c_{1}^{\pm}|} e^{(-\lambda_{1} / 2 + 3\eta)s} ds.
\]
Taking ϵ_0 so small that $\frac{P(K)\epsilon_0}{F(K)} \leq \epsilon$, we obtain the desired inequality. For the error term $R^{a,b}_6$ in the case $a=6,b=0$ we follow the same idea, but instead use the bound on W_t^{\pm} from Lemma 4.12:

$$R^{a=6,b=0,\pm}_6 \leq \frac{1}{2} \int_0^t \|\partial^6 q + \partial^6 \Psi \cdot v\|_0^2 \|W_t\|_{L^\infty} ds \leq \frac{P(K)}{|c_1^T|} \int_0^t (\|q\|_0^2 + \|\partial^6 \Psi \cdot v\|_0^2) \|e^{\sigma^T} \|_{2} 2 \eta ds + \frac{P(K)}{|c_1^T|} \int_0^t \| \Psi \|_{2.75} \| \partial^6 \| \|e^{\sigma^T} \|_{2} 2 \eta ds$$

$$\leq \frac{P(K)}{|c_1^T|} \int_0^t E^\beta_0(s) \|e^{\sigma^T} \|_{2} 2 \eta ds + \frac{P(K)\epsilon_0}{F(K)} \frac{1}{2} \int_0^t e^{\sigma^T} e^{-\lambda_{1}\pm 5/2}ds \leq C_0 \frac{P(K)}{|c_1^T|} \int_0^t E^\beta_0(s) \|e^{\sigma^T} \|_{2} 2 \eta ds + \frac{P(K)\epsilon_0}{F(K)} \frac{1}{2} \int_0^t e^{\sigma^T} e^{-\lambda_{1}\pm 5/2}ds$$

$$\leq C_0 \frac{P(K)\epsilon_0}{|c_1^T|} + \int_0^t e^{\sigma^T} e^{-\lambda_{1}\pm 5/2}ds + \int_0^t e^{\sigma^T} e^{-\lambda_{1}\pm 5/2}ds + \epsilon \sup_{0 \leq s \leq t} e^{\sigma^T} (s),$$

(4.104)

where $\gamma^{\pm} = \lambda_{1} + 19/2 > 0$ for a sufficiently small $\eta > 0$. Note that we used norm-interpolation in the third line and the exponential decay in the fifth line to infer that $\frac{P(K)\epsilon_0}{F(K)} \int_0^t e^{\sigma^T} e^{-\lambda_{1}\pm 5/2}ds \leq \epsilon \sup_{0 \leq s \leq t} e^{\sigma^T} (s)$. This completes the proof of the higher-order energy estimate.

\[\square \]

4.7. Proof of Theorem 2.2. To finish the proof we consider $T > 0$, to be the maximal time at which the solution exists and satisfies the bootstrap assumptions (4.91). We will assume by means of a contradiction argument that T is finite, and will obtain an improved estimate for the higher energy bootstrap up to T, which, via the local well-posedness Theorem, will give us a contradiction to the maximality of T.

From the global energy equivalence relation (4.97), we have that,

$$\sup_{0 \leq s \leq t} \frac{e^{\pm}(s)}{(K^\pm)^2 |c_1^T|} e^{\sigma^T} + \sup_{0 \leq s \leq t} e^{\sigma^T} (s) + \int_0^t \left(\frac{D^{\pm}(s)}{(K^\pm)^2 |c_1^T|} e^{\sigma^T} + d^{\sigma^T} (s) \right) ds \leq CE(t).$$

Therefore, using Lemma 4.14, we have that

$$\sup_{0 \leq s \leq t} \frac{e^{\pm}(s)}{(K^\pm)^2 |c_1^T|} e^{\sigma^T} + \sup_{0 \leq s \leq t} e^{\sigma^T} (s) + \int_0^t \left(\frac{D^{\pm}(s)}{(K^\pm)^2 |c_1^T|} e^{\sigma^T} + d^{\sigma^T} (s) \right) ds \leq CE(0) + \frac{P(K)\epsilon_0}{F(K) |c_1^T|} + O(\epsilon + \delta) \left[\sup_{0 \leq s \leq t} \frac{e^{\pm}(s)}{(K^\pm)^2 |c_1^T|} e^{\sigma^T} + \sup_{0 \leq s \leq t} e^{\sigma^T} (s) + \int_0^t \left(\frac{D^{\pm}(s)}{(K^\pm)^2 |c_1^T|} e^{\sigma^T} + d^{\sigma^T} (s) \right) ds \right].$$

Taking δ and ϵ small enough, we can absorb the term in the rectangular brackets to obtain

$$\sup_{0 \leq s \leq t} \frac{e^{\pm}(s)}{(K^\pm)^2 |c_1^T|} e^{\sigma^T} + \sup_{0 \leq s \leq t} e^{\sigma^T} (s) + \int_0^t \left(\frac{D^{\pm}(s)}{(K^\pm)^2 |c_1^T|} e^{\sigma^T} + d^{\sigma^T} (s) \right) ds \leq CE(0) + \frac{P(K)\epsilon_0}{F(K) |c_1^T|}.$$

Using the smallness condition on the initial data (4.90),

$$\sup_{0 \leq s \leq t} \frac{e^{\pm}(s)}{(K^\pm)^2 |c_1^T|} e^{\sigma^T} + \sup_{0 \leq s \leq t} e^{\sigma^T} (s) + \int_0^t \left(\frac{D^{\pm}(s)}{(K^\pm)^2 |c_1^T|} e^{\sigma^T} + d^{\sigma^T} (s) \right) ds \leq \frac{\epsilon_0^2}{|c_1^T| F(K)} (1 + P(K)).$$
Taking ϵ_0 small enough so that

$$\frac{\epsilon_0^2 (K^\pm)^2 (1 + P(K))}{F(K)} \leq \frac{\epsilon^2}{2},$$

we obtain an improvement on the bootstrap assumption (4.91a),

$$\sup_{0 \leq s \leq t} \epsilon^{\pm}(s) e^{\sigma^{\pm} s} + \sup_{0 \leq s \leq t} \epsilon^{\mp}(s) + \int_0^t \left(\frac{\epsilon^{\pm}(s)}{|c_1^\pm|} e^{\sigma^{\pm} s} + \epsilon^{\mp}(s) \right) ds \leq \frac{\epsilon^2}{2|c_1^\pm|}, \tag{4.105}$$

for all $t \in [0, T]$. Therefore, by the continuity of the energy, we can extend the solution by the local well-posedness Theorem to $[0, T + T_0)$, for some small $T_0 > 0$, so that the bootstrap assumptions hold up until $T + T_0$. This contradicts the maximality of T, and therefore $T = +\infty$, and the proof is complete.

Remark 4.15. Notice that not only we obtained an improvement on the energy bootstrap, but from (4.105) we also obtained that the higher order norms ϵ^{\pm} and ϵ^{\mp} decay at a rate $e^{-\sigma^{\mp} t}$, with $\sigma^{\pm} = \lambda_1^{\pm} - \lambda_1 + \eta/2$. Recall that λ_1 is the minimum of the two eigenvalues, which means intuitively that the temperature in the region with smaller surface area decays faster to an equilibrium. Note however that the norm ϵ^+ measuring the size of the free boundary deviation from the reference domain does not exhibit any decay, which is consistent with the idea that the asymptotic equilibrium shape is selected from a continuum of possible nearby steady states.

Appendix A. Basic inequalities

Lemma A.1 (A priori bounds for A in terms of h). Let $h \in H^3(\Gamma)$ such that $|h|_3$ is small, and consider Ψ^{\pm} the solution to the elliptic problem (1.7), and $A^{\pm} := (\nabla \Psi^{\pm})^{-1}$, then:

$$\|A^{\pm}\|_{L^\infty} \leq 1 + C|h|_{2.25} + O(|h|_{2.25}^2). \tag{A.106}$$

Proof. We will omit the super-index \pm throughout the proof for clarity. First, we bound the difference $\nabla \Psi - I$, using Sobolev embedding and elliptic estimates:

$$\|\nabla \Psi - I\|_{L^\infty} \leq \|\nabla \Psi - I\|_{L^{1.75}} \leq C|h|_{2.25}.$$

Moreover, for $0 \leq s \leq 3$,

$$\|\nabla^2 \Psi\|_s \leq C|h|_{s+1.5}$$

Using this we obtain,

$$\|A - I\|_{L^\infty} \leq \|A(I - \nabla \Psi)\|_{L^\infty} \leq C\|A\|_{L^\infty} |h|_{2.25}.$$

Therefore,

$$\|A\|_{L^\infty} \leq \|I\|_{L^\infty} + \|A - I\|_{L^\infty} \leq 1 + C\|A\|_{L^\infty} |h|_{2.25}$$

$$\|A\|_{L^\infty} \leq \frac{1}{1 - C|h|_{2.25}} \leq 1 + C|h|_{2.25} + O(|h|_{2.25}^2).$$

Moreover we have that for $0 \leq s \leq 3$,

$$\|\nabla A\|_s \leq C|h|_{s+1.5}. \tag{\Box}$$

Lemma A.2. Considering \tilde{h}_α such that $S(\tilde{q}_\alpha, \tilde{h}_\alpha) \leq M$, $\alpha = 1, 2$, we have that there exists a time T_κ small enough so that the following bound for $\delta A = A_1 - A_2$ holds, for $s > 1.5$:

$$\|\delta A\|_{L^\infty H^s} \leq \epsilon \|\tilde{h}_\kappa\|_{L^2 H^{s+0.5}} \tag{A.107}$$

for any $\epsilon > 0$.

Proof.
\[A_1 - A_2 = \int_0^t A_{1t} - A_{2t} = - \int_0^t A_1 A_1 \nabla \delta \Psi_t^1 + (A_1 (A_1 - A_2) + (A_1 - A_2) A_2) \nabla \Psi_t^2, \]
\[\| \delta A \|_s \leq \int_0^t (\| A_1 \|^2 \| \delta \Psi_t \|_{s+1} + (\| A_1 \|_s + \| A_2 \|_s) \| \delta A \|_s \| \delta \Psi_t^2 \|_{s+1}), \]
\[\| \delta A \|_{L^\infty H^s} \leq \sqrt{T_\kappa} \| A_1 \|^2_{L^\infty H^s} \| \delta \tilde{h}_t \|_{L^2 H^{s+0.5}}. \]
(A.108)

Taking \(T_\kappa \) small enough yields the result. \(\square \)

Lemma A.3 (Bounds for \(J \)). Under the hypothesis of Proposition 3.9, there exist a \(\delta > 0 \) such that if \(t < \delta \), then the determinants \(J^x = \det(\nabla \Psi^x) \) satisfy the bound,
\[\frac{1}{2} \leq J \leq \frac{3}{2} \] on \(\Gamma \). \hspace{1cm} (A.109)

Proof. For any of the regions \(\Omega^\pm \),
\[J = \det(\nabla \Psi) = \Psi_{1,1}^1 \Psi_{2,2}^2 - \Psi_{1,2}^1 \Psi_{2,1}^2 = 1 + [(\Psi_{1,1}^1 - 1) \Psi_{2,2}^2 + (\Psi_{2,2}^2 - 1) - \Psi_{1,2}^1 \Psi_{2,1}^2]. \]
Now,
\[|(\Psi_{1,1}^1 - 1) \Psi_{2,2}^2 + (\Psi_{2,2}^2 - 1) - \Psi_{1,2}^1 \Psi_{2,1}^2| \leq |\Psi_{1,1}^1 - 1| |\Psi_{2,2}^2| + |\Psi_{2,2}^2 - 1| |\Psi_{1,2}^1| + |\Psi_{1,2}^1| |\Psi_{2,1}^2| \leq \| \nabla \Psi - I \|_{1.25} (\| \nabla \Psi \|_{1.25} + 1) + \| \nabla \Psi - I \|_{1.25}^2 \leq C|h|_{1.75} + C|h|_{1.75}^2. \]

But recall that, \(h = h_0 + \int_0^t h_t(s) ds \), therefore, \(|h|_s \leq |h_0|_s + \int_0^t |h_t(s)|_s ds \leq |h_0|_s + \sqrt{t}|h_t|_{L^2 H^s} \), with \(|h_0|_s = O(\sigma) \) which we can make as small as we want. Therefore, taking \(t \) small enough, and since we are considering \(|h_t|_{L^2 H^s} \leq M \), we obtain that \(|h|_s \) can be made small for short time, and so,
\[1 - C|h|_{1.75} - C|h|_{1.75}^2 \leq J \leq 1 + C|h|_{1.75} + C|h|_{1.75}^2 \]
\[\frac{1}{2} \leq J \leq \frac{3}{2} \] on \(\Gamma \). \(\square \)

Lemma A.4. Parabolic estimates for \(q^m \). Given \(q^m \) as in (3.51), there exists a small enough time \(T_\kappa \) independent of \(m \), such that we have the following estimates,
\[\| q^m(t) \|^2_{L^2(\Omega)} + \| q^m \|^2_{L^2(t) H^1} + \kappa^{-2} |q^m|^2_{L^2(t) L^2} \leq C(M,q_0), \] for all \(t \in [0, T_\kappa] \),
where \(C(M,q_0) \) is a constant independent of \(m \).

Proof. Indeed, considering \(\phi = q^m \) on the weak formulation (3.50) for \(l = 0 \), and integrating in time, we obtain,
\[\| J_\kappa^{q^m} \|^2_{t} + \int_0^t \| J_\kappa^{q^m} \|_{t} \nabla \phi q^m(s) \|^2 + \kappa^{-2} J_\kappa^{q^m} q^m \|_{t} ds \leq \| Q_0^m \|^2_{t} + \mathcal{R}, \] \hspace{1cm} (A.110)
where the error \(\mathcal{R} \) is given by,
\[\mathcal{R} := \int_0^t \left[\int_{\Omega} \partial_t (J_\kappa)(q^m)^2 - \int_{\Gamma} J_\kappa \beta^m q^m \, d\sigma + \int_{\Omega} \sigma_i^{q^m} q^m \, d\sigma + \int_{\Omega} \tilde{J}_\kappa \alpha^m q^m \right] ds. \]
Using Sobolev and Cauchy-Schwarz inequality for the terms of \mathcal{R}, we have that,

$$
\mathcal{R} \leq \int_0^t \left[\| \tilde{J}_\kappa \|_{L^\infty} \| q_m^m \|_2^2 + \| \beta^m \|_0 \| q_m \|_{L^2(\Gamma)} \right] \nonumber
$$

$$
+ \| \tilde{J}_\kappa \|_{L^\infty} \| \nabla_{\omega \phi} q_m \|_0 \| q_m \|_0 + \| \tilde{J}_\kappa \|_{L^\infty} \| \alpha^m \|_0 \| q_m \|_0 \right] \right) \, ds
\leq C(M, q_0) + C \sqrt{T_\kappa^m} \left(\| q_m \|_{L^\infty L^2}^2 + \| q_m \|_{L^\infty L^2}^2 \right),
$$

(A.111)

where in the last inequality we used Young's inequality, trace estimates, and that by definition, α^m and β^m are bounded by a function of the initial data $C(M, q_0)$. Finally, estimates for Φ from Lemma A.1, gives us that for small enough time (that does not depend on m),

$$
\| q_m \|_2^2 \leq \| q_m \|_0^2 + \| \nabla_{\omega \phi} q_m \|_0^2 + \| A - I \|_2^2 \| q_m \|_2^2
\leq \| q_m \|_0^2 + \| \nabla_{\omega \phi} q_m \|_0^2 + \epsilon \| q_m \|_1^2,
$$

therefore $\| q_m \|_2^2 \leq \| q_m \|_0^2 + \| \nabla_{\omega \phi} q_m \|_0^2$, and combining (A.111) with (A.110) along with the estimates for J_κ from A.3, we obtain that for a time $T_\kappa^m \leq 1/4C^2$,

$$
\| q_m \|_{L^\infty L^2}^2 + \| q_m \|_{L^\infty H^1}^2 + \kappa^{-2} \| q_m \|_{L^2 L^2}^2 \leq C(M, q_0).
$$

(A.112)

Note that since the previous estimate holds up to any $T_\kappa \leq 1/4C^2$, if $T_\kappa^m < T_\kappa$, we can extend the solution $q_m(t)$ past T_κ^m all the way to T_κ, while still satisfying the bound (A.112).

\[\square \]

Lemma A.5. For a small enough time $T_\kappa > 0$, the operator Φ_κ defined in (3.60) is a well defined function from X_κ^M to itself.

Proof. From the definition of Φ_κ (3.60), the definition of v_\pm (3.49b), and the regularization of \tilde{h}^κ (3.47), we have that h satisfy the initial data of X_κ^M. The parabolic estimates obtained for the solution q_\pm of the linear problem (3.49) in Section 3.2.2 are the key ingredients to show that $\Phi_\kappa(h) = h \in X_\kappa^M$. We have for example, by the estimates for Φ_κ from Lemma A.1,

$$
| h_{tt} | = | \partial^2_{tt} [v \cdot \tilde{n}]_\pm | \leq | \nabla_{\omega \phi} q_{tt}^+ \cdot \tilde{n} |_1 + | \nabla_{\omega \phi} q_{tt}^- \cdot \tilde{n} |_1 + | \nabla_{\omega \phi} q^+ \cdot \tau \frac{\partial h_{tt}^\kappa}{1 + H \kappa} |_1
\leq \| q_{tt}^+ \|_{L^\infty L^2} + \| q_{tt}^- \|_{L^\infty L^2} + \| h_{tt}^\kappa \|_{L^\infty H^1} 1 + \text{o.t.t.}
\leq \| q_{tt}^+ \|_{L^\infty L^2} + \| q_{tt}^- \|_{L^\infty L^2} + \| h_{tt}^\kappa \|_{L^\infty H^1} 1 + \text{o.t.t.}
\leq \sqrt{t} C(M_0) + t M_0 \mu
\leq \sqrt{t} M,
$$

where $C(M_0)$ is a constant function of the initial data, and the last inequality follows by choosing M so that $M \geq M_0$ and T_κ small enough so that $\sqrt{t} M_0 \leq 1$, $\forall t \leq T_\kappa$. A similar
estimate can be done for $h_t \in H^5(\Gamma)$,
\[
|h_t|_5 \leq C(\|v^+\|_{5.5} + \|v^-\|_{5.5})(1 + \|\bar{h}_t^\kappa\|_6)
\leq C(\|q^+\|_{6.5} + \|q^-\|_{6.5})(1 + \|\bar{h}_t^\kappa\|_6)^2
\leq C(\|q^+\|_{6.5} + \|q^-\|_{6.5})(1 + |h^\kappa_0|_6 + \sqrt{T_\kappa} |\bar{h}_t^\kappa|_{L^2 H^6})^2
\leq C(\|q^+\|_{6.5} + \|q^-\|_{6.5})(1 + |h^\kappa_0|_6 + \kappa^{-1} \sqrt{T_\kappa} |\bar{h}_t^\kappa|_{L^2 H^6})^2,
\]
where on the third line we used the definition of \bar{h}_t^κ and Cauchy-Schwarz inequality to get the term $\sqrt{T_\kappa} |\bar{h}_t^\kappa|_{L^2 H^6}$. The next line follows from absorbing one of the derivatives of the H^6 norm in exchange for the κ^{-1} coefficient due to the tangential convolution structure of \bar{h}_t^κ. Taking the L^2_t norm in time we obtain,
\[
|h_t|_{L^2 H^5} \leq C(\|q^+\|_{L^2 H^{6.5}} + \|q^-\|_{L^2 H^{6.5}})(1 + |h^\kappa_0|_6 + \kappa^{-1} \sqrt{T_\kappa} |\bar{h}_t^\kappa|_{L^2 H^5})^2
\leq C(M_0)(1 + |h^\kappa_0|_6 + \kappa^{-1} \sqrt{T_\kappa} |\bar{h}_t^\kappa|_{L^2 H^5})^2.
\]
Choosing $M \geq C(M_0)(2 + |h^\kappa_0|_6)$ and T_κ small enough so that $\kappa^{-1} \sqrt{T_\kappa} M \leq 1$ we obtain the desired inequality. The bounds for the other norms of h in the definition of X^κ_M follow in similar fashion, so we will omit their proof for brevity.

\[\square\]

Remark A.6. Notice that the time of existence T_κ depends on M, which is a function of the initial data.

Lemma A.7. The source function f defined by (3.65) satisfies the bound:
\[
\|f\|_{L^2 H^{0.5}} \leq C_M \kappa^{-1} \sqrt{T_\kappa} S(\delta q, \delta \bar{h}^\kappa)^{1/2},
\]
where $S(\delta q, \delta \bar{h}^\kappa$) is the norm defined in (1.12) evaluated in the differences δq and $\delta \bar{h}^\kappa$.

Proof. First, let us identify the higher order terms of f,
\[
\begin{align*}
f &= \bar{A}_{1,tt}^i (\bar{A}_{1,j}^k \delta q_{j,k})_{,i} - \delta v_{tt} \cdot \bar{w}_{1,tt} - \delta v \cdot \bar{w}_{1,tt}
&\quad - v_{2tt} \cdot \delta \bar{\Psi}_t - v_2 \cdot \delta \bar{\Psi}_{tt} + \delta A_{tt}^i (A_{1,j}^k q_{2,k})_{,i} \\
&\quad + \delta A_j^i (A_{1,j}^k q_{2tt,k})_{,i} + l.o.t.,
\end{align*}
\]
where we group together in “l.o.t.” all the lower order terms that can be bounded as in equation (A.113) via a simple application of Cauchy-Schwarz inequality and where the norms are directly bounded by the norm $S(\delta q, \delta h)$. The first term in the definition (3.65) of f satisfies the bound,
\[
\|\bar{A}_{1,j,tt}^i (\bar{A}_{1,j}^k \delta q_{j,k})_{,i}\|_{L^2_t H^1} \leq C_M \|\nabla^6 \bar{\Psi}_{tt}^1 \nabla^2 \delta q\|_{L^2_t H^1} + l.o.t.
\leq C_M |\bar{h}_t^1|_{L^2_t H^2} \|\delta q\|_{L^\infty_t H^{3.5}}
\leq C_M \sqrt{T_\kappa} |\bar{h}_t^1|_{L^\infty_t H^2} \|\delta q\|_{L^\infty_t H^{3.5}}
\leq C_M \sqrt{T_\kappa} \|\delta q\|_{L^\infty_t H^{3.5}},
\]
where we used Cauchy-Schwarz inequality in the time integration to obtain the coefficient $\sqrt{T_\kappa}$. The second term can be bounded by,
\[\| \delta v_t \cdot \bar{w}_{15} \|_1 \leq \| \delta v_t \|_1 \| \bar{\Psi}_{1}^1 \|_{L^\infty} + \| \delta v_t \|_{L^4} \| \bar{\nabla} \bar{\Psi}_{1}^1 \|_{L^4} \]
\[\leq C_M(\| \bar{\nabla} \bar{\Psi}_{1}^1 \|_{1} \| \delta q \|_{2.5} + \| \delta q_t \|_{2}) | \bar{h}_{tt}^1 |_{1} + \text{.o.t.} \]
\[\leq C_M(| \bar{h}_{tt}^1 |_{1.5} \| \delta q \|_{2.5} + \| \delta q_t \|_{2}) | \bar{h}_{tt}^1 |_{1} + \text{.o.t.} , \]
therefore,
\[\| \delta v_t \cdot \bar{w}_{15} \|_{L^2_t H^1} \leq C_M \sqrt{T} (\| \delta q \|_{L^\infty_t H^{2.5}} + \| \delta q_t \|_{L^\infty_t H^2}) \]
The third term can be bounded by,
\[\| \delta v \cdot \bar{\Psi}_{tt}^1 \|_{L^2_t H^1} \leq C \| \delta v \|_{L^\infty_t H^{1.5}} | \bar{h}_{tt}^1 |_{L^2} \]
\[\leq C_M^{-1} \| \delta v \|_{L^\infty_t H^{1.5}} | \bar{h}_{tt}^1 |_{L^2} \]
\[\leq C_M^{-1} \sqrt{T} \| \delta v \|_{L^\infty_t H^{1.5}} | \bar{h}_{tt}^1 |_{L^2} \]
where we used the smoothing of \(\bar{h}_{tt}^1 \) in line 2, to lower the Sobolev norm in exchange for
the coefficient \(k^{-1} \). The fourth term can be bounded by,
\[\| v_{25} \cdot \delta^2 \bar{\Psi}_{tt} \|_{L^2_t H^1} \leq C \| v_{25} \|_{L^2_t H^1} \delta^2 \bar{\Psi}_{tt} \|_{L^1} \]
\[\leq C_M(\| \bar{\Psi}_{tt}^2 |_{L^2_t H^2} \| q_{2} |_{L^\infty_t H^{2.5}} + \| q_{25} \|_{L^2_t H^2}) | \delta \bar{h}_{tt}^1 |_{L^\infty_t H^1} + \text{o.t.} \]
\[\leq C_M \sqrt{T} (| \bar{h}_{tt}^1 |_{L^\infty_t H^{1.5}} \| q_{2} |_{L^\infty_t H^{2.5}} + \| q_{25} \|_{L^\infty_t H^2}) | \delta \bar{h}_{tt}^1 |_{L^\infty_t H^1} + \text{o.t.} \]
\[\leq C_M \sqrt{T} | \delta \bar{h}_{tt}^1 |_{L^\infty_t H^1} \]
The fifth term,
\[\| v_{2} \cdot \delta^2 \bar{\Psi}_{tt} \|_{L^2_t H^1} \leq C \| v_{2} \|_{L^\infty_t H^{1.5}} \| \delta^2 \bar{\Psi}_{tt} \|_{L^2_t H^1} \]
\[\leq C^{-1} \| v_{2} \|_{L^\infty_t H^{1.5}} | \delta \bar{h}_{tt}^1 |_{L^2_t H^1} \]
\[\leq C_M^{-1} \sqrt{T} | \delta \bar{h}_{tt}^1 |_{L^\infty_t H^1} \]
The sixth term,
\[\| \delta^2 A_{tt}^{i}(\bar{A}_{1, j}^k q_{2, k})_{i} \|_{L^2_t H^1} \leq \| \delta^2 A_{tt}^{i} \bar{A}_{1, j}^k \nabla^2 q_{2} \|_{L^2_t H^1} + \text{o.t.} \]
\[\leq C_M \| \delta^2 A_{tt}^{i} \|_{L^2_t H^1} \| q_{2} \|_{L^\infty_t H^{3.5}} + \text{o.t.} \]
\[\leq C_M \sqrt{T} | \delta \bar{h}_{tt}^1 |_{L^\infty_t H^{1.5}} \]
The last and most critical term need to be analyzed in the actual \(H^{0.5} \) Sobolev norm,
\[\| \delta^2 A_{tt}^{i}(\bar{A}_{1, j}^k q_{2, k})_{i} \|_{L^2_t H^{0.5}} \leq C_M \| \delta^2 A \|_{L^\infty_t H^{1.5}} \| q_{25} \|_{L^\infty_t H^{2.5}} + \text{o.t.} \]
\[\leq C_M \sqrt{T} | \delta \bar{h}_{tt}^1 |_{L^\infty_t H^2} \]
where we used the bounds for \(\delta^2 A \) from lemma \(\text{A.2} \), and that \(\| q_{25} \|_{L^\infty_t H^{2.5}} \leq S(q_2) \leq C_M \).
The proof then follows from collecting all the terms together along with the straightforward
estimates of the lower-order terms.
\[\square \]
Lemma A.8 (Error terms). The error terms from Lemma 3.10 are given by,

\[\mathcal{R}(t) = \mathcal{R}^+(t) + \mathcal{R}^-(t) + \mathcal{R}_T(t) + \mathcal{R}_{\partial \Omega}^+(t) + \mathcal{R}_{\partial \Omega}^-(t), \]

where,

\[\mathcal{R}^\pm = \sum_{a+2b \leq 6} \mathcal{R}^\pm_{a,b} + \sum_{a+2b \leq 5} \tilde{\mathcal{R}}^\pm_{a,b}, \]

\[\mathcal{R}_T = \sum_{a+2b \leq 6} \mathcal{R}^{+,b}_{T} + \sum_{a+2b \leq 5} \tilde{\mathcal{R}}^{+,b}_{T}, \]

\[\mathcal{R}_{\partial \Omega}^+ = \sum_{a+2b \leq 6} \mathcal{R}_{\partial \Omega}^{+,b} + \sum_{a+2b \leq 5} \tilde{\mathcal{R}}_{\partial \Omega}^{+,b}, \]

\[\mathcal{R}_{\partial \Omega}^- = \sum_{a+2b \leq 6} \mathcal{R}_{\partial \Omega}^{-,b} + \sum_{a+2b \leq 5} \tilde{\mathcal{R}}_{\partial \Omega}^{-,b}. \]

with,

\[\mathcal{R}_{a,b}^\pm = \sum_{1 \leq a \leq a-1,} \sum_{1 \leq b \leq b-1} \int_{\Omega} c_{st} \bar{\partial}^{a-s} \partial_b^{b-l} A^T \left(-\bar{\partial}^a \partial_t^b \nabla q + \bar{\partial}^a \partial_t^b \nabla \Psi A \nabla q \right) \bar{\partial}^a \partial_t^b v W \mu \]

\[+ \int_{\Omega} \bar{\partial}^a \partial_t^b \Psi A \nabla v \partial_a \partial_b v W \mu \]

\[- \int_{\Omega} (\bar{\partial}^a \partial_t^b q + \bar{\partial}^a \partial_t^b \Psi \cdot v) \left(\bar{\partial}^a \partial_t^b A \nabla v + \sum_{1 \leq s \leq a-1, 1 \leq l \leq b-1} c_{st} \bar{\partial}^{a-s} \partial_b^{b-l} A \bar{\partial}^s \partial_t^l \nabla v \right) W \mu \]

\[- \int_{\Omega} (\bar{\partial}^a \partial_t^b q + \bar{\partial}^a \partial_t^b \Psi \cdot v) \left(-\bar{\partial}^a \partial_t^b \Psi \cdot v_l + \Psi_l \cdot \bar{\partial}^a \partial_t^b v + \sum_{1 \leq s \leq a-1, 1 \leq l \leq b-1} c_{st} \bar{\partial}^{a-s} \partial_b^{b-l} \Psi l \cdot \bar{\partial}^s \partial_t^l v \right) W \mu \]

\[+ \int_{\Omega} (\bar{\partial}^a \partial_t^b q + \bar{\partial}^a \partial_t^b \Psi \cdot v) (\bar{\partial}^a \partial_t^b \alpha) W \mu \]

\[+ \frac{1}{2} \int_{\Omega} (\bar{\partial}^a \partial_t^b q + \bar{\partial}^a \partial_t^b \Psi \cdot v)^2 W_t + \int_{\Omega} (\bar{\partial}^a \partial_t^b q + \bar{\partial}^a \partial_t^b \Psi \cdot v) A \bar{\partial}^a \partial_t^b v \nabla (W \mu), \]
\[
\tilde{\mathcal{R}}_{a,b}^{\pm} = - \sum_{1 \leq s \leq a - 1} c_{sl} \int_{\Omega^{\pm}} \bar{\partial}^{a-s} \partial_t^{b+1-l} A_i^a \bar{\partial}^s \partial_t q_{ij} \bar{\partial}^a \partial_t^j v^j W_{\mu} \\
+ \int_{\Omega^{\pm}} (\Psi^k_{t,l} \bar{\partial}^{a} \partial_t^b (A_k^b A_j^l) + \sum_{1 \leq s \leq a-1} \sum_{1 \leq l \leq b - 1} c_{sl} \bar{\partial}^{a-s} \partial_t^{b-1} \Psi^k_{t,l} \bar{\partial}^s \partial_t (A_k^b A_j^l)) q_{ij} \bar{\partial}^a \partial_t^j v^j W_{\mu} \\
+ \int_{\Omega^{\pm}} \bar{\partial}^{a} \partial_t^{b+1} \Psi^k_{t,l} A_i^a \bar{\partial}^a \partial_t^j v^j W_{\mu} \\
- \int_{\Omega^{\pm}} (\bar{\partial}^{a} \partial_t^{b+1} q + \bar{\partial}^a \partial_t^{b+1} \Psi \cdot v) \left(\Psi_t \cdot \bar{\partial}^a \partial_t^b v + \bar{\partial}^a \partial_t^b A_i^a v^i_{\nu} \right) + \sum_{1 \leq s \leq a - 1} \sum_{1 \leq l \leq b - 1} c_{sl} \left(\bar{\partial}^{a-s} \partial_t^{b-1} \Psi_{t} \cdot \bar{\partial}^a \partial_t^j v^j \right) W_{\mu} \\
+ \int_{\Omega^{\pm}} (\bar{\partial}^{a} \partial_t^{b+1} q + \bar{\partial}^a \partial_t^{b+1} \Psi \cdot v) (\bar{\partial}^a \partial_t^b \alpha) W_{\mu} \\
+ \frac{1}{2} \int_{\Omega^{\pm}} (\bar{\partial}^{a} \partial_t^{2} v^2) W_{\mu} + \int_{\Omega^{\pm}} (\bar{\partial}^{a} \partial_t^{b+1} q + \bar{\partial}^a \partial_t^{b+1} \Psi \cdot v) (A_i^a \bar{\partial}^a \partial_t^j v^j) (W_{\mu})_{\nu} ,
\]

\[
\mathcal{R}_{a,b}^{\kappa} = - \frac{1}{2} \int_{\mathbb{R}^{n}} \partial_t \left(e^{-\lambda_{1+\eta} t} a_{\kappa}^2 \right) (\bar{\partial}^a \partial_t^b \Lambda_{\kappa} h)^2 \\
- e^{-\lambda_{1+\eta} t} \int_{\mathbb{R}^{n}} J^{-2}_{\kappa} (1 + H h^\kappa)((h^\kappa \bar{\partial}^a \partial_t^b N + \bar{\partial}^a \partial_t^b x + \sum_{1 \leq s \leq a - 1} \sum_{1 \leq l \leq b - 1} \bar{\partial}^{a-s} \partial_t^{b-l} h^\kappa \bar{\partial}^s \partial_t^l N) \cdot (-\bar{\partial}^a \partial_t^b \tau) \\
+ (1 + H h^\kappa) N)) [\bar{\partial}^a \partial_t^b v \cdot \bar{\kappa}^\nu]^{-} \\
+ e^{-\lambda_{1+\eta} t} \int_{\mathbb{R}^{n}} a_{\kappa}^2 \bar{\partial}^a \partial_t^b h^\kappa \left([v \cdot \bar{\partial}^a \partial_t^b \bar{\kappa}^\nu] + \sum_{1 \leq s \leq a - 1} \sum_{1 \leq l \leq b - 1} c_{sl} [\bar{\partial}^{a-s} \partial_t^{b-l} v \cdot \bar{\partial}^s \partial_t^l \kappa^\nu]^{-} \right) \\
- e^{-\lambda_{1+\eta} t} \int_{\mathbb{R}^{n}} \bar{\partial}^a \partial_t^b (\Lambda_{\kappa} h) \left([\Lambda_{\kappa}, a_{\kappa}^2 \bar{\partial}^a \partial_t^b h^\kappa] \right) \\
- \kappa^2 e^{-\lambda_{1+\eta} t} \int_{\mathbb{R}^{n}} \left(r_{+}^a \bar{\partial}^a \partial_t^b \beta^+(\bar{\partial}^a \partial_t^b v^+ \cdot n^\kappa) + r_{-}^a \bar{\partial}^a \partial_t^b \beta^-(\bar{\partial}^a \partial_t^b v^- \cdot n^\kappa) \right) \\
- \kappa^2 e^{-\lambda_{1+\eta} t} \sum_{1 \leq i \leq a} \sum_{1 \leq l \leq b} c_{sl} \int_{\mathbb{R}^{n}} (\bar{\partial}^a \partial_t^b (A_i^a N)) (\bar{\partial}^a \partial_t^b v^+ \cdot A^T N) \\
+ (\bar{\partial}^a \partial_t^b (A_i^a N)) (\bar{\partial}^a \partial_t^b v^- \cdot A^T N) \\
- \kappa^2 e^{-\lambda_{1+\eta} t} \int_{\mathbb{R}^{n}} \left(\bar{\partial}^a \partial_t^b \Psi^b A_i^a \bar{\partial}(v^+ \cdot A^T N) (\bar{\partial}^a \partial_t^b v^+ \cdot n^\kappa) J_{\kappa}^{-1} \sqrt{g_{\kappa}} (\bar{\partial}^a \partial_t^b v^+ \cdot n^\kappa) \right) \\
+ \kappa^2 e^{-\lambda_{1+\eta} t} \int_{\mathbb{R}^{n}} \left(\bar{\partial}^a \partial_t^b \Psi^b A_i^a \bar{\partial}(v^- \cdot A^T N) (\bar{\partial}^a \partial_t^b v^- \cdot n^\kappa) J_{\kappa}^{-1} \sqrt{g_{\kappa}} (\bar{\partial}^a \partial_t^b v^- \cdot n^\kappa) \right) ,
\]
\[\tilde{R}_{\Gamma}^{a,b} = -e^{-(\lambda_1+\eta)t} \int_{\Gamma}^{\cdot} J_{\kappa}^{-2}(1+H h^{\kappa})(h_t^e \partial^a \partial^b h^e N + \sum_{1 \leq i \leq a \leq 1 \leq i \leq b} c_{sl} \partial^a_{\Gamma} \partial^{b-1}_t h^e \partial^s \partial^i_\Gamma N) \cdot (-\partial h^e t) \\
+ (1+H h^{\kappa})N)\tilde{\partial}^a_{\Gamma} \partial^{b+1}_t v \cdot n \] \\
+ e^{-(\lambda_1+\eta)t} \int_{\Gamma}^{\cdot} a^2 \partial^a_{\Gamma} \partial^{b+1}_t h^e \left([v \cdot \tilde{\partial}^a_{\Gamma} \partial^{b+1}_t n^e]^{\pm} + \sum_{1 \leq i \leq a \leq 1 \leq i \leq b} c_{sl} [\partial^a_{\Gamma} \partial^{b-1}_t v \cdot \tilde{\partial}^s \partial^i_\Gamma n^e]^{\pm} \right) \\
+ e^{-(\lambda_1+\eta)t} \int_{\Gamma}^{\cdot} \partial^a_{\Gamma} \partial^{b+1}_t \Lambda h[a^2 \partial^a_{\Gamma}, \Lambda_k] \tilde{\partial}^{b+1}_t h \\
+ \kappa^2 e^{-(\lambda_1+\eta)t} \int_{\Gamma}^{\cdot} \left(\partial^a_{\Gamma} \partial^{b+1}_t \Psi \partial^A_k \tau^i \partial(v \cdot \tau^{A} N) \partial^a_{\Gamma} \partial^{b+1}_t v^+ \cdot \tau^{A} N(\partial N q^+)^{-1} \right. \\
+ \left. \partial^a_{\Gamma} \partial^{b+1}_t \Psi A_k^i \tau^i \partial(v \cdot \tau^{A} N) \partial^a_{\Gamma} \partial^{b+1}_t v^- \cdot \tau^{A} N(\partial N q^-)^{-1} \right) \\
- \kappa^2 e^{-(\lambda_1+\eta)t} \sum_{s,l} c_{sl} \int_{\Gamma}^{\cdot} \left(\partial_t (\partial^a_{\Gamma} \partial^{b-1}_t v^+ \cdot \partial^s \partial^i_\Gamma (\tau^{A} N)) - \partial^a_{\Gamma} \partial^{b+1}_t (\partial^a_{\Gamma} \partial^{b+1}_t v^+ \cdot \tau^{A} N) (\partial N q^+)^{-1} \right. \\
- \left. (\partial_t (\partial^a_{\Gamma} \partial^{b-1}_t v^- \cdot \partial^s \partial^i_\Gamma (\tau^{A} N)) - \partial^a_{\Gamma} \partial^{b+1}_t (\partial^a_{\Gamma} \partial^{b+1}_t v^- \cdot \tau^{A} N) (\partial N q^-)^{-1} \right) \\
\frac{\kappa^2}{2} \int_{\Gamma}^{\cdot} (\partial^a_{\Gamma} \partial^{b+1}_t v^+ \cdot \tau^{A} N)^2 \partial_t (e^{-(\lambda_1+\eta)t}(\partial N q^+)^{-1}) + (\partial^a_{\Gamma} \partial^{b+1}_t v^- \cdot \tau^{A} N)^2 \partial_t (e^{-(\lambda_1+\eta)t}(\partial N q^-)^{-1}) \]
\[
\tilde{R}_{a,b}^{0\pm} = - \sum_{0 \leq s \leq d^i} c_{sl} \int_{\Omega^\pm} (1 - \mu) \partial^{a-s} \partial_t^{b-l} A_j^{s} \partial^s \partial_t^l q_{ij} \partial^a \partial_t^l v^j W
\]

\[
+ \int_{\Omega^\pm} \left(\Psi_t^{k} \partial^a \partial_t^{b+1} A_j^{s} A_i^{j} \right) + \sum_{0 \leq s \leq d^i} c_{sl} \partial^{a-s} \partial_t^{b-l} \Psi_t^{k} \partial^s \partial_t^l (A_j^{s} A_i^{j}) \right) q_{ij} \partial^a \partial_t^l v^j (1 - \mu) W
\]

\[
+ \int_{\Omega^\pm} \partial^a \partial_t^{b+1} \Psi^k v_{i} A_j^{s} \partial^a \partial_t^l v^j (1 - \mu)
\]

\[
+ \int_{\Omega^\pm} (\partial^a \partial_t^{b+1} q + \partial^a \partial_t^{b+1} \Psi \cdot v) (A_j^{s} \partial^a \partial_t^l v^j) ((1 - \mu)W)_{ij}
\]

\[
- \int_{\Omega^\pm} (\partial^a \partial_t^{b+1} q + \partial^a \partial_t^{b+1} \Psi \cdot v) \left(\Psi_t \cdot \partial^a \partial_t^l v + \partial^a \partial_t^l A_j^{s} v^j, i + \sum_{0 \leq s \leq d^i} c_{sl} \left(\partial^{a-s} \partial_t^{b-l} \Psi_t \cdot \partial^a \partial_t^l v
\]

\[
+ \partial^{a-s} \partial_t^{b-l} A_j^{s} \partial^a \partial_t^l v^j, i \right) \right) (1 - \mu) W
\]

\[
+ \int_{\Omega^\pm} (\partial^a \partial_t^{b+1} q + \partial^a \partial_t^{b+1} \Psi \cdot v) (\partial^a \partial_t^l \alpha) (1 - \mu) W,
\]

where we have omitted the upper indices \(\pm \) inside the interior integrals for simplicity of notation, but it is assumed that the functions \(q^\pm, \Psi^\pm, A^\pm, v^\pm, W^\pm \), are being integrated over the corresponding region \(\Omega^\pm \).

ACKNOWLEDGEMENTS

S.S. was supported by the National Science Foundation under grant no. DMS-1301380 and by a Royal Society Wolfson Merit Award.

REFERENCES

[1] I. Athanasopoulos, L. Caffarelli, and S. Salsa. Caloric functions in Lipschitz domains and the regularity of solutions to phase transition problems. Ann. of Math. (2), 143(3):413–434, 1996.

[2] I. Athanasopoulos, L. Caffarelli, and S. Salsa. Regularity of the free boundary in parabolic phase-transition problems. Acta Math., 176(2):245–282, 1996.

[3] I. Athanasopoulos, L. A. Caffarelli, and S. Salsa. Phase transition problems of parabolic type: flat free boundaries are smooth. Comm. Pure Appl. Math., 51(1):77–112, 1998.

[4] I. Athanasopoulos, L. A. Caffarelli, and S. Salsa. Stefan-like problems with curvature. J. Geom. Anal., 13(1):21–27, 2003.

[5] L. Caffarelli and S. Salsa. A geometric approach to free boundary problems, volume 68 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2005.

[6] L. A. Caffarelli. The regularity of free boundaries in higher dimensions. Acta Math., 139(3-4):155–184, 1977.

[7] L. A. Caffarelli. Some aspects of the one-phase Stefan problem. Indiana Univ. Math. J., 27(1):73–77, 1978.

[8] L. A. Caffarelli and L. C. Evans. Continuity of the temperature in the two-phase Stefan problem. Arch. Ration. Mech. Anal., 81(3):199–220, 1983.

[9] L. A. Caffarelli and A. Friedman. Continuity of the temperature in the Stefan problem. Indiana Univ. Math. J., 28(1):53–70, 1979.

[10] C. H. A. Cheng, D. Coutand, and S. Shkoller. Global existence and decay for solutions of the Hele-Shaw flow with injection. Interfaces Free Bound., 16(3):297–338, 2014.
[11] C. H. A. Cheng, R. Granero-Belinchón, and S. Shkoller. Well-posedness of the Muskat problem with H^2 initial data. *Adv. Math.*, 286:32–104, 2016.

[12] S. Choi and I. C. Kim. Regularity of one-phase Stefan problem near Lipschitz initial data. *Amer. J. Math.*, 132(6):1693–1727, 2010.

[13] S. Choi and I. C. Kim. The two-phase Stefan problem: regularization near Lipschitz initial data by phase dynamics. *Anal. PDE*, 5(5):1063–1103, 2012.

[14] A. Córdoba, D. Córdoba, and F. Gancedo. Interface evolution: the Hele-Shaw and Muskat problems. *Ann. of Math. (2)*, 173(1):477–542, 2011.

[15] D. Coutand and S. Shkoller. The interaction between quasilinear elastodynamics and the Navier-Stokes equations. *Arch. Ration. Mech. Anal.*, 179(3):303–352, 2006.

[16] D. Coutand and S. Shkoller. Well-posedness of the free-surface incompressible Euler equations with or without surface tension. *J. Amer. Math. Soc.*, 20(3):829–930, 2007.

[17] D. Coutand and S. Shkoller. A simple proof of well-posedness for the free-surface incompressible Euler equations. *Discrete Contin. Dyn. Syst. Ser. S*, 3(3):429–449, 2010.

[18] D. Coutand and S. Shkoller. Well-posedness in smooth function spaces for moving-boundary 1-D compressible Euler equations in physical vacuum. *Comm. Pure Appl. Math.*, 64(3):328–366, 2011.

[19] D. Coutand and S. Shkoller. Well-posedness in smooth function spaces for moving-boundary 3-D compressible Euler equations in physical vacuum. *Arch. Ration. Mech. Anal.*, 2012.

[20] D. Coutand and S. Shkoller. On the finite-time splash and splat singularities for the 3-D free-surface Euler equations. *Comm. Math. Phys.*, 325(1):143–183, 2014.

[21] D. Coutand and S. Shkoller. On the Impossibility of Finite-Time Splash Singularities for Vortex Sheets. *Arch. Ration. Mech. Anal.*, 221(2):987–1033, 2016.

[22] P. Daskalopoulos and K. Lee. All time smooth solutions of the one-phase Stefan problem and the Hele-Shaw flow. *Comm. Partial Differential Equations*, 29(1-2):71–89, 2004.

[23] D. G. Ebin. The equations of motion of a perfect fluid with free boundary are not well posed. *Comm. Partial Differential Equations*, 12(10):1175–1201, 1987.

[24] A. Friedman. The Stefan problem in several space variables. *Trans. Amer. Math. Soc.*, 133:51–87, 1968.

[25] A. Friedman. *Variational principles and free-boundary problems*. Robert E. Krieger Publishing Co., Inc., Malabar, FL, second edition, 1988.

[26] A. Friedman and D. Kinderlehrer. A one phase Stefan problem. *Indiana Univ. Math. J.*, 24(11):1005–1035, 1974/75.

[27] E. V. Frolova and V. A. Solonnikov. L_p-theory for the Stefan problem. *J. Math. Sci.*, 373(1):989–1006, 2000.

[28] M. Hadžić. Orthogonality conditions and asymptotic stability in the Stefan problem with surface tension. *Arch. Ration. Mech. Anal.*, 203(3):719–745, 2012.

[29] M. Hadžić and Y. Guo. Stability in the Stefan problem with surface tension (I). *Comm. Partial Differential Equations*, 35(2):201–244, 2010.

[30] M. Hadžić and S. Shkoller. Well-posedness for the classical Stefan problem and the zero surface tension limit. *ArXiv e-prints*, December 2011.

[31] M. Hadžić and S. Shkoller. Global stability and decay for the classical Stefan problem. *Comm. Pure Appl. Math.*, 68(5):689–757, 2015.

[32] M. Hadžić and S. Shkoller. Global stability of steady states in the classical Stefan problem for general boundary shapes. *Phil. Trans. R. Soc. A*, 373(2050):20140284, 2015.

[33] E. Hanzawa. Classical solutions of the Stefan problem. *Tôhoku Math. J. (2)*, 33(3):297–335, 1981.

[34] S. L. Kamenomostskaja. On Stefan’s problem. *Mat. Sb. (N.S.)*, 53 (95):489–514, 1961.

[35] I. C. Kim. Uniqueness and existence results on the Hele-Shaw and the Stefan problems. *Arch. Ration. Mech. Anal.*, 168(4):299–328, 2003.

[36] I. C. Kim and N. Požár. Viscosity solutions for the two-phase Stefan problem. *Comm. Partial Differential Equations*, 36(1):42–66, 2011.

[37] D. Kinderlehrer and L. Nirenberg. Regularity in free boundary problems. *Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)*, 4(2):373–391, 1977.

[38] D. Kinderlehrer and L. Nirenberg. The smoothness of the free boundary in the one phase Stefan problem. *Comm. Pure Appl. Math.*, 31(3):257–282, 1978.

[39] D. Kinderlehrer and G. Stampacchia. *An introduction to variational inequalities and their applications*, volume 88 of *Pure and Applied Mathematics*. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980.

[40] H. Koch. Classical solutions to phase transition problems are smooth. *Comm. Partial Differential Equations*, 23(3-4):389–437, 1998.
[41] O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural’ceva. Linear and quasilinear equations of parabolic type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence, R.I., 1968.

[42] P.-L. Lions. Bifurcation and optimal stochastic control. Nonlinear Anal., 7(2):177–207, 1983.

[43] A. M. Meirmanov. The Stefan problem, volume 3 of de Gruyter Expositions in Mathematics. Walter de Gruyter & Co., Berlin, 1992. Translated from the Russian by Marek Niezgódka and Anna Crowley, With an appendix by the author and I. G. Götz.

[44] J. Prüss, J. Saal, and G. Simonett. Existence of analytic solutions for the classical Stefan problem. Math. Ann., 338(3):703–755, 2007.

[45] J. Prüss, G. Simonett, and R. Zacher. Qualitative behavior of solutions for thermodynamically consistent Stefan problems with surface tension. Arch. Ration. Mech. Anal., 207(2):611–667, 2013.

[46] F. Quirós and J. L. Vázquez. Asymptotic convergence of the Stefan problem to Hele-Shaw. Trans. Amer. Math. Soc., 353(2):609–634 (electronic), 2001.

[47] L. I. Rubenstein. The Stefan problem. American Mathematical Society, Providence, R.I., 1971. Translated from the Russian by A. D. Solomon, Translations of Mathematical Monographs, Vol. 27.

[48] J. Stefan. Über die theorie der eisbildung, insbesondere über die eisbildung im polarmeere. Sitzungsberichter der Österreichischen Akademie der Wissenschaften Mathematisch-Naturwissenschaftliche Klasse, Abteilung 2, Mathematik, Astronomie, Physik, Meteorologie und Technik, 98:965–983, 1889.

[49] J. Stefan. Über die theorie der eisbildung, insbesondere über die eisbildung im polarmeere. Annalen der Physik und Chemie, 42:269–286, 1891.

[50] A. Visintin. Models of phase transitions. Progress in Nonlinear Differential Equations and their Applications, 28. Birkhäuser Boston, Inc., Boston, MA, 1996.

[51] S. Wu. Well-posedness in sobolev spaces of the full water wave problem in 3-d. J. Amer. Math. Soc., 12:445–495, 1990.