Commentary: Large Trees Dominate Carbon Storage in Forests East of the Cascade Crest in the United States Pacific Northwest

James D. Johnston1*, R. Keala Hagmann2,3, S. Trent Seager4, Andrew G. Merschel1, Jerry F. Franklin2 and K. Norman Johnson1,3

1 College of Forestry, Department of Forest Ecosystems and Society, Oregon State University College of Forestry, Corvallis, OR, United States, 2 College of Environment, School of Environmental and Forest Sciences, University of Washington College of the Environment, Seattle, WA, United States, 3 Applegate Forestry LLC, Corvallis, OR, United States, 4 Sustainable Northwest, Portland, OR, United States

Keywords: carbon storage, climate change mitigation, dry forests, eastern Oregon, eastside screens, forest restoration, 21-inch rule

INTRODUCTION

The U.S. Forest Service (USFS) recently made revisions to an interim prohibition on cutting trees ≥53 cm diameter at breast height (DBH) in seasonally dry, fire-prone forests of eastern Oregon. This policy change is designed to allow cutting of young (<150 years) shade-tolerant fir ≥53 cm DBH to facilitate the conservation and recruitment of old (>150 years) shade-intolerant pine and larch (United States Department of Agriculture (USDA) Forest Service, 2020). Mildrexler et al. (2020) criticize this proposal based solely on evidence that large trees (i.e., trees ≥53 cm DBH) store more carbon than small trees (i.e., trees <53 cm DBH). Without any analysis of tree-, stand-, or landscape-scale carbon fluxes, Mildrexler et al. argue that forest-based climate change mitigation goals can best be served by maintaining prohibitions on cutting young trees ≥53 cm or even extending prohibitions to include trees as small as 30 cm DBH.

Mildrexler et al. err in assuming that prohibiting logging of relatively large but young shade-tolerant trees will enhance forest carbon storage over time in seasonally dry, fire-prone landscapes. Carbon stores in these forest communities are increasingly vulnerable to the combined effects of more than a century of fire exclusion and a warming climate (Hessburg et al., 2019). Mildrexler et al. disregard the ecological benefits of thinning projects that remove young shade-tolerant trees to enhance the resistance of old shade-intolerant trees that can store carbon over longer periods in the face of a warming climate (Henson et al., 2013; Bradford and Bell, 2017; Stephens et al., 2020). The errors, oversights, and misrepresentations in Mildrexler et al. summarized below and in Table 1 make this study an unsuitable basis for evaluating policy change.
TABLE 1 | Summary of key errors and misrepresentations in Mildrexler et al. (2020).

Error or misrepresentation	Explanation: why this is a problem
Inconsistencies and inaccuracies in estimates of stored and removed carbon in the snow basin case study	Mildrexler et al. report estimates for carbon removed and retained using all inventory plots at the forest-scale (Table 5). They claim these results are similar to those derived using only inventory plots from within the Snow Basin project area and provide a comparison in Tables S4, S5. However, estimates in Tables S4, S5 are substantially lower than those reported in Table 5.
Misrepresenting previous research: drought-tolerance of grand fir	Mildrexler et al. misrepresent their own research (Berner and Law, 2015), claiming that grand fir is well-adapted to drought (“grand fir radial growth was not strongly associated with variability in temperature or water variability”). The cited paper showed that “all species, particularly fir, experienced pronounced declines in radial growth associated with below-average water availability.” Mildrexler et al. overestimate the carbon storage potential of large young fir because they assume this species will grow as well as ponderosa pine in the face of climate change-driven drought. In fact, ponderosa pine is far better suited to assimilate carbon under a warming climate (Lopushinsky, 1969; Lopushinsky and Klock, 1974).
Misrepresenting previous research: emissions from heart rot	Mildrexler et al. assert that “a synthesis shows no evidence of carbon consequences of heart rot in grand fir” (Harmon et al., 2008)” and “heart rot respiration has been estimated for another species and it had a scant contribution to ecosystem respiration (Harmon et al., 2004).” Harmon et al. (2008) does not discuss carbon consequences of heart rot in grand fir, except to note that grand fir coarse woody debris is a third less dense (i.e., stores a third less carbon) than ponderosa pine. Harmon et al. (2004) show that failing to account for heart rot leads to a significant overestimate of carbon stores, and that the extent of heart rot is often the difference between a forest stand serving as a carbon source vs. carbon sink.
Misrepresenting previous research: emissions from heart rot	Mildrexler et al. claim that prohibiting logging of young fir will result in centuries of live tree carbon storage. Ponderosa pine and larch typically live three times longer than grand fir (Merschel et al., 2014; Johnston, 2017). Grand fir is highly susceptible to disease and drought, especially in environments where it was historically rare (Cochran, 1998; Filip et al., 2007; Hood et al., 2018). Actions that conserve old pine and larch increase the likelihood of maintaining stable carbon stores over the long term.
Misrepresenting the historical abundance of grand fir	Mildrexler et al. claim that contemporary inventory data shows large grand fir are not over-represented on the landscape relative to historical conditions. The preponderance of evidence, including historical records of forest structure and composition (Hagmann et al., 2013, 2014), logging records and early aerial photographymetry (Hessburg and Agee, 2003), and dendroecological reconstruction of forest conditions and fire regimes (Merschel et al., 2014, 2018; Johnston et al., 2016; Hagmann et al., 2019; Heyerdahl et al., 2019) shows that the vast majority of grand fir basal area in eastern Oregon has developed over the last 150 years in the absence of frequent fire. FIA plot data for eastern Oregon and Washington show that the number of large larch is declining and the number of large trees of other species are increasing substantially faster than ponderosa pine (Figure 16 in Hessburg et al., 2020).
Failing to account for carbon fluxes associated with climatic and disturbance variability	Mildrexler et al. claim that carbon stores can only decrease if policies that prohibit cutting of trees >21” are amended. Mildrexler et al. contains no analysis of changes in carbon stocks over time, despite current and projected increases in climate change-driven drought and wildfire (Halofsky et al., 2020; Parks and Abatzoglou, 2020). Other studies of dry forest ecosystems that incorporate disturbance-mediated mortality conclude that management strategies informed by historical conditions stabilize carbon stocks given projected climate change (Liang et al., 2018; Hurteau et al., 2019; Wotscheck et al., 2019; McCauley et al., 2019).
Misrepresenting previous research: fire risk	Mildrexler et al. state that USFS policy change will result in increased fire risk. The studies cited in support of this claim (i.e., Lindenmayer et al., 2009; Zald and Dunn, 2018) are relevant to fire following clearcutting of productive mesic forests (e.g., western Oregon Douglas-fir forests). The preponderance of evidence from seasonally dry, fire-prone forests (e.g., Kalies and Kent, 2016) shows that fuel reduction thinning reduces fire risk and maintains ecosystem functions (Hessburg et al., 2019; Stephens et al., 2020).
Misrepresenting previous research: water stress	Mildrexler et al. claim that removal of large but young fir will decrease water available to old-growth trees. The studies cited in support of these claims (Koob and Robberecht, 1996; Brooks et al., 2002; Allen et al., 2015; Kim et al., 2016; Bormosky et al., 2017; Kwon et al., 2018; Davis et al., 2019a) are specific to highly productive Douglas-fir forests of western Oregon, or make the case for removing young trees to increase water availability for old-growth pine in dry forests.
Misrepresenting previous research: microclimatic buffering	Mildrexler et al. claim that removal of large but young fir will increase solar radiation to the forest floor, dry understory vegetation, and decrease resilience to climate change. The literature cited in support of this claim (Chen et al., 1993, 1999; Frey et al., 2016; Davis et al., 2019b; Buotte et al., 2020) is either relevant to clearcutting of highly productive Douglas-fir forests of western Oregon or makes the case for opening up the canopy of seasonally dry forest stands to enhance native vegetation and improve stand resiliency.

(Continued)
MILDREXLER ET AL. MISREPRESENT FOREST ECOLOGY AND CARBON DYNAMICS IN SEASONALLY DRY FORESTS

At the heart of Mildrexler et al.’s argument is the conviction that current carbon stocks can be maintained, and even more carbon can be stored in seasonally dry forests of eastern Oregon if thinning is limited to trees <53 cm DBH (or, alternatively, 30 cm DBH). This argument ignores the fact that current carbon stores in eastern Oregon forests accumulated because fire was effectively excluded from the landscape for more than a century (Parks et al., 2015; Reilly et al., 2017; Haugo et al., 2019). In particular, the number of shade-tolerant fir ≥53 cm DBH increased substantially over the last century as a consequence of fire exclusion (Hagmann et al., 2013, 2014; Merschel et al., 2014; Johnston, 2017; Johnston et al., 2018). Mildrexler et al. ignore research showing that dry forests have overshot their carbon-carrying capacity and that thinning treatments, although they reduce carbon stocks in the short term, will tend to stabilize carbon stocks over multi-decadal time scales in the face of a warming climate (e.g., Hurteau et al., 2019; Krofcheck et al., 2019). Mildrexler et al. assert without evidence that large shade-tolerant fir are not overrepresented on the landscape and that forests of eastern Oregon have “low future climatic vulnerability.” But deepening drought and increasing fire extent and severity throughout eastern Oregon (Reilly et al., 2017; Parks and Abatzoglou, 2020) have made it clear that much of the carbon currently stored on this landscape is increasingly vulnerable to loss over the next several decades if stand densities remain at their current levels (Halofsky et al., 2018; Kerns et al., 2018; Stephens et al., 2020).

The USFS’s proposal to allow cutting of some large but young shade-tolerant trees is designed to restore ecosystem resilience to fire and drought and increase the resistance (and long-term carbon storage potential) of shade-intolerant old-growth trees, especially ponderosa pine. Old-growth ponderosa pine has extensive heartwood and exceptional drought, insect, and fire tolerance when freed from competition with fast-growing shade-tolerant fir with high leaf area and transpiration demands (Hessburg et al., 2020). Mildrexler et al. assert that extant populations of young shade-tolerant fir can provide “centuries of long-term carbon storage” and that removal of relatively large young trees facilitated by Forest Service policy change represents a net emission to the atmosphere over all spatial and temporal scales. In fact, relative to the old pine and larch they endanger, large young fir that were off-limits to removal are far more prone to heart rot, which results in significant greenhouse gas emissions (Aho, 1977; Covey et al., 2012). They are also far more prone to mortality from drought, insects, and root diseases than pine. A number of studies investigating mortality of grand fir in eastern Oregon report 100% mortality of large fir over 10–20 years of observations (i.e., Cochran, 1998; Filip et al., 2007).

Throughout their paper, Mildrexler et al. assert that prohibitions on cutting large but young fir in eastern Oregon convey significant benefits to wildlife, water quality, and fire and drought resilience. But the literature cited in support of these claims either speaks to management of old-growth trees in highly productive mesic forests of western Oregon or actually makes the case for the USFS’s proposal to remove large but young fir to reduce competition with fire- and drought-tolerant old-growth pine and larch. There is little doubt that conserving the most productive structurally complex older forests in western Oregon achieves carbon storage, water quality, and wildlife habitat benefits without risking uncharacteristically extensive mortality from fire and drought (Halofsky et al., 2018). But in seasonally dry forests of eastern Oregon, research demonstrates that providing a wide range of wildlife habitat, protecting old-growth trees, and enhancing stream and watershed health is best achieved by judicious removal of young trees, including large shade-tolerant trees, that established while fire was excluded from the landscape (Lehmkuhl et al., 2007; Fontaine and Kennedy, 2012; Hessburg et al., 2020).

DISCUSSION

Avoiding catastrophic effects of rising global temperatures is the most important challenge facing human civilization (IPCC, 2018). Forests have an important role in sequestering carbon to offset anthropogenic emissions. For instance, deferring harvest or increasing rotation ages in mesic forests
currently below their carbon storage capacity has tremendous potential for offsetting emissions (Hudiburg et al., 2009). But relying on seasonally dry, fire-prone stands that are currently well above historical levels of aboveground tree carbon is likely to destabilize carbon stocks and forfeit the multiple ecological benefits associated with restoration treatments, especially as the climate warms (Hurteau et al., 2016; Liang et al., 2018; Foster et al., 2020; Stephens et al., 2020). We urge policy makers to rely on comprehensive and accurate accounts of carbon dynamics when crafting policy for dry forests.

REFERENCEs

Aho, P. E. (1977). Decay of grand fir in the Blue Mountains of Oregon and Washington. USDA Forest Service Research Paper PNW-229, 18.

Allen, C. D., Breshears, D. D., and McDowell, N. G. (2015). On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. *Ecosphere* 6:129. doi: 10.1890/ES15-00203.1

Barnosky, A. D., Hadly, E. A., Gonzalez, P., Head, J., Polly, P. D., Lawing, A. M., et al. (2017). Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. *Science* 355:eaah4787. doi: 10.1126/science.aah4787

Berner, L. T., and Law, B. E. (2015). Water limitations on forest carbon cycling and conifer traits along a steep climatic gradient in the Cascade Mountains, Oregon. *Biogeosciences* 12, 6617–6635. doi: 10.5194/bg-12-6617-2015

Bradford, J. B., and Bell, D. M. (2017). A window of opportunity for climate-change adaptation: easing tree mortality by reducing forest basal area. *Front. Ecol. Environ.* 15, 11–17. doi:10.1002/fee.1445

Brooks, J. R., Meinzer, F. C., Coulombre, R., and Gregg, J. (2002). Hydraulic redistribution of soil water during summer drought in two contrasting Pacific Northwest coniferous forests. *Tree Physiol.* 22, 1107–1117. doi:10.1093/treephys/22.15-16.1107

Buotte, P. C., Law, B. E., Ripple, W. J., and Berner, L. T. (2020). Carbon sequestration and biodiversity co-benefits of preserving forests in the western United States. *Ecol. Appl.* 30:e02039. doi: 10.1002/eco.2039

Chen, J., Franklin, J. F., and Spies, T. A. (1993). Contrasting microclimates among clearcut, edge, and interior of old-growth Douglas-fir forest. *Agric. For. Meteorol.* 63, 219–237. doi: 10.1016/0168-1923(93)90061-1

Chen, J., Saunders, S. C., Crow, T. R., Naiman, R. J., Brokosfke, K. D., Mroz, G. D., et al. (1999). Microclimate in forest ecosystem and landscape ecology. *BioScience* 49, 288–297. doi:10.2307/3131612

Cochrans, P. H. (1998). Examples of Microclimate and Reduced Annual Increments of White Fir Induced by Drought, Insects, and Disease at Different Stand Densities, Vol. 525. US Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR.

Covey, K. R., Wood, S. A., Warren, R. J., Lee, X., and Bradford, M. A. (2012). Elevated methane concentrations in trees of an upland forest. *Geophys. Res. Lett.* 39. doi:10.1029/2012GL052361

Davis, K. T., Dobrowski, S. Z., Higuera, P. E., Holden, Z. A., Veblen, T. T., Rother, M. T., et al. (2019a). Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. *Proc. Natl. Acad. Sci. U.S.A.* 116, 6193–6198. doi: 10.1073/pnas.1815107116

Davis, K. T., Dobrowski, S. Z., Holden, Z. A., Higuera, P. E., and Abatzoglou, J. T. (2019b). Microclimatic buffering in forests of the future: the role of local water balance. *Ecography* 42, 1–11. doi: 10.1111/ecog.03836

Dunn, C. J., and Bailey, J. D. (2012). Temporal dynamics and decay of coarse woody in early seral habitats of dry-mixed conifer forests in Oregon’s Eastern Cascades. *For. Ecol. Manage.* 276, 71–81. doi: 10.1016/j.foreco.2012.03.013

AUTHOR CONTRIBUTIONS

JJ, RH, SS, AM, JF, and KJ contributed research and writing. All authors contributed to the article and approved the submitted version.

ACKNOWLEDGMENTS

The authors are indebted to Harold Zald, Matt Reilly, the associate editor, and two reviewers for helpful comments that improved a draft manuscript.

Filip, G. M., Maffei, H., and Chadwick, K. L. (2007). Forest health decline in a central Oregon mixed-conifer forest revisited after wildfire: a 25-year case study. *West. J. Appl. For.* 22, 278–284. doi:10.1093/wjaf/22.4.278

Fontaine, J. B., and Kennedy, P. L. (2012). Meta-analysis of avian and small-mammal response to fire severity and fire surrogate treatments in US fire-prone forests. *Ecol. Appl.* 22, 1547–1561. doi: 10.1890/12-0009.1

Foster, D. E., Battles, J. J., Collins, B. M., York, R. A., and Stephens, S. L. (2020). Potential wildfire and carbon stability in frequent-fire forests in the Sierra Nevada: trade-offs from a long-term study. *Ecosphere* 11:e03198. doi:10.1002/ecs2.3198

Frey, S. J. K., Hadley, A. S., Johnson, S. L., Schulze, M., Jones, J. A., and Betts, M. G. (2016). Spatial models reveal the microclimate buffering capacity of old-growth forests. *Sci. Adv.* 2:e1501392. doi:10.1126/sciadv.1501392

Hagmann, R. K., Franklin, J. F., and Johnson, K. N. (2013). Historical structure and composition of ponderosa pine and mixed-conifer forests in south-central Oregon. *For. Ecol. Manage.* 304, 492–504. doi:10.1016/j.foreco.2013.04.005

Hagmann, R. K., Franklin, J. F., and Johnson, K. N. (2014). Historical conditions in mixed-conifer forests on the eastern slopes of the northern Oregon Cascade Range, *USA. For. Ecol. Manage.* 330, 158–170. doi:10.1016/j.foreco.2014.06.044

Hagmann, R. K., Merschel, A. G., and Reilly, M. J. (2019). Historical patterns of fire severity and forest structure and composition in a landscape structured by frequent large fires: Pumice Plateau ecoregion, Oregon, USA. *Landscape Ecol.* 34, 551–568. doi:10.1007/s10980-019-00791-1

Halofsky, J. F., Peterson, D. L., and Harvey, B. J. (2020). Changing wildfire, changing forests: the effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. *Fire Ecol.* 16:4. doi:10.1186/s42408-019-0066-8

Halofsky, J. S., Donato, D. C., Franklin, J. F., Halofsky, J. E., Peterson, D. L., and Harvey, B. J. (2018). The nature of the beast: examining climate adaptation options in forests with stand-replacing fire regimes. *Ecosphere* 9:e02140. doi:10.1002/ecs2.2140

Harmon, M. E., Bible, K., Ryan, M. G., Shaw, D. C., Chen, H., Klopatek, J., et al. (2004). Production, respiration, and overall carbon balance in an old-growth Pseudotsuga-Tsuga forest ecosystem. *Ecosystems* 7, 498–512. doi: 10.1007/s10021-004-0140-9

Harmon, M. E., Woodall, C. W., Fasth, B., and Sexton, J. (2008). Woody detritus density and density reduction factors for tree species in the united states: a synthesis. Gen. Tech. Rep. NRS-29. Newtown Square, PA: U.S. Department of Agriculture, 84.

Haugo, R. D., Kellogg, B. S., Canzler, C. A., Kolden, C. A., Kemp, K. B., Robertson, J. C., et al. (2019). The missing fire: quantifying human exclusion of wildfire in Pacific Northwest forests, USA. *Ecosphere* 10:e02702. doi:10.1002/ecs2.2702

Henson, P., Thrailkill, J., Glenn, B., Woodbridge, B., and White, B. (2013). Using ecological forestry to reconcile spotted owl conservation and forest management. *J. For.* 111, 433–437. doi: 10.5849/jof.13-072

Hessburg, P. F., and Agee, J. K. (2003). An environmental narrative of Inland Northwest United States forests, 1800–2000. *For. Ecol. Manage.* 178, 23–59. doi: 10.1016/S0378-1127(03)00023-5

Hessburg, P. F., Charnley, S., Wendel, K. L., White, E. M., Singleton, P. H., Peterson, D. W., et al. (2020). The 1994 Eastside Screens Large-Tree Harvest Limit: Review of Science Relevant to Forest Planning 25 Years Later. Gen. Tech.
