Effects of Reusing Baseline Volumes of Interest by Applying (Non-)Rigid Image Registration on Positron Emission Tomography Response Assessments

Floris H. P. van Velden, Ida A. Nissen, Wendy Hayes, Linda M. Velasquez, Otto S. Hoekstra, Ronald Boellaard

Abstract

Objectives: Reusing baseline volumes of interest (VOI) by applying non-rigid and to some extent (local) rigid image registration showed good test-retest variability similar to delineating VOI on both scans individually. The aim of the present study was to compare response assessments and classifications based on various types of image registration with those based on (semi-)automatic tumour delineation.

Methods: Baseline (n = 13), early (n = 12) and late (n = 9) response (after one and three cycles of treatment, respectively) whole body $[^{18}F]$fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (PET/CT) scans were acquired in subjects with advanced gastrointestinal malignancies. Lesions were identified for early and late response scans. VOI were drawn independently on all scans using an adaptive 50% threshold method (A50). In addition, various types of (non-)rigid image registration were applied to PET and/or CT images, after which baseline VOI were projected onto response scans. Response was classified using PET Response Criteria in Solid Tumors for maximum standardized uptake value (SUV$_{\text{max}}$), average SUV (SUV$_{\text{mean}}$), peak SUV (SUV$_{\text{peak}}$), metabolically active tumour volume (MATV), total lesion glycolysis (TLG) and the area under a cumulative SUV-volume histogram curve (AUC).

Results: Non-rigid PET-based registration and non-rigid and non-rigid CT-based registration followed by non-rigid PET-based registration (CTPET) did not show differences in response classifications compared to A50 for SUV$_{\text{max}}$ and SUV$_{\text{peak}}$, however, differences were observed for MATV, SUV$_{\text{mean}}$, TLG and AUC. For the latter, these registrations demonstrated a poorer performance for small lung lesions (<2.8 ml), whereas A50 showed a poorer performance when another area with high uptake was close to the target lesion. All methods were affected by lesions with very heterogeneous tracer uptake.

Conclusions: Non-rigid PET- and CTPET-based image registrations may be used to classify response based on SUV$_{\text{max}}$ and SUV$_{\text{peak}}$. For other quantitative measures future studies should assess which method is valid for response evaluations by correlating with survival data.

Introduction

Positron emission tomography/computed tomography (PET/CT) has been shown to be a valuable tool in oncology for monitoring response to treatment [1]. Volumes of interest (VOI) can be defined on the pre-treatment PET/CT scan and on consecutive (response) scans during or after treatment to measure changes (response) in metabolically active tumour volume (MATV). tracer uptake or uptake heterogeneity [2]. A 3 dimensional isocontour method at 50% of the maximum pixel value that corrects for local background (A50) is a highly reproducible method to define VOI (semi-)automatically [3–6]. Ideally baseline VOI should be projected onto the consecutive (response) scans to enable more efficient therapy efficacy assessment [7]. One practical issue with longitudinal PET/CT studies is that patient positioning between consecutive scans may vary, thereby inhibiting the direct reuse of baseline VOI for response scans. Image registration between consecutive scans is required to facilitate reuse of baseline VOI. These image registrations can be performed either rigidly or non-rigidly. Rigid image registration only allows for rotational and translational movements of the entire image, whereas non-rigid image...
registration allows for any type of local (elastic) deformations. A previous test-retest study showed that reusing baseline VOI by applying non-rigid and to lesser extent [local] rigid image registration has good repeatability, similar to delineating VOI on either scan separately [8]. However, in a test-retest setting, no changes in tumour shape, volume, tracer uptake and/or tracer uptake heterogeneity are expected, because these studies are acquired within a limited time frame and without administration of therapy. In a response monitoring setting, the interval between consecutive scans can be several weeks. For this reason, not only difference in patient positioning between consecutive PET/CT scans may pose a challenge for image registration strategies in longitudinal PET/CT studies, but also changes in tumour shape, volume, tracer uptake and tracer uptake heterogeneity, resulting from either treatment effects or progression of the disease [8,9].

The purpose of the present study was to investigate the effects of reusing baseline VOI by (non-)rigid image registration strategies proposed previously [8] on PET/CT response assessments and response classifications by comparing the results to those obtained using A50 to delineate VOI on baseline and response scans separately.

Materials and Methods

Patient data

Baseline whole-body [18F]fluoro-2-deoxy-D-glucose ([18F]FDG) PET/CT studies were acquired for 13 patients (9 male, 4 female; age: 60±12 y; weight: 84±17 kg; height: 172±9 cm) with advanced colorectal carcinoma at five different sites [10]. Patients were only included if their double baseline studies demonstrated good repeatability [10]. All patients had received no therapy (chemotherapy, radiotherapy, or surgical treatment) for 2 weeks prior to the baseline scan. The patients were treated by BMS-582664 (brivanib alaninate) in combination with full-dose cetuximab (Erbitux), a monoclonal antibody targeting epidermal growth factor receptor. BMS-582664 is a selective dual inhibitor of fibroblast growth factor and vascular endothelial growth factor signalling, and is taken orally on a daily schedule [11]. Twelve patients underwent an early [18F]FDG PET/CT response scan after 1 cycle (day 15) of treatment, and nine patients a late [18F]FDG PET/CT response scan after 3 cycles (day 56). Patients fasted for at least 4 h prior to scanning and refrained from strenuous physical activity. Blood glucose levels were obtained for each patient prior to scanning and were within the normal range (5.6±1.0 mmol·l⁻¹).

A static whole-body emission scan was started 84±32 min after injection of [18F]FDG (469±85 MBq). Prior to the emission scan, a (low dose) CT scan (120/130 kVp and 78–126 mAs) was acquired for attenuation correction purposes. All data were reconstructed according to local guidelines, which comply with published guidelines for quantitative [18F]FDG PET/CT studies [12]. Two patients were scanned on a Gemini PET/CT scanner (Philips Healthcare, Cleveland, OH, USA). PET images were reconstructed onto a 144×144 image matrix (voxel size: 4.0×4.0×4.0 mm) using a row action maximum likelihood algorithm with 2 iterations and 33 subsets. The corresponding CT images were reconstructed onto a 512×512 image matrix with a voxel size of 0.98×0.98×2.4 (n = 4), 0.98×0.98×2.5 (n = 6) or 0.98×0.98×4.0 (n = 1) mm. Following reconstruction, PET image data were expressed in standardized uptake values (SUV) by normalising voxel radioactivity concentrations to the injected dose and lean body mass [13]. All data were acquired as part of an ongoing clinical study [10,11] approved by authorised medical ethical review committees (Georgetown University Oncology Institutional Review Board, University of South Florida Institutional Review Board, Western Institutional Review Board, University of Southern California School of Medicine Institutional Review Board and University Health Network Research Ethics Board), and written informed consent was obtained from each patient prior to inclusion in the study.

Image registration strategies

All registrations were performed using Elastix (UMC Utrecht, The Netherlands) [14]. Various rigid and non-rigid strategies were evaluated based on various input data [8]:

- PET to PET image registration. This registration type takes functional information into account;
- CT to CT image registration. This registration takes anatomical information into account. The low dose CT scans were downsampled to the PET resolution prior to image registration to increase computational performance and to avoid issues with computer memory;
- CT to PET image registration, after which the transformation was used to initialize PET to PET registration (referred to as CTPET). This registration initially takes the anatomical followed by the functional information. This method was only used for (non-linear) non-rigid transformations, as (linear) rigid CTPET-based image registration would produce identical results to rigid PET-based image registration.

These various types of rigid and non-rigid image registration were applied on whole-body images, referred to as ‘global’. In addition, these various types of rigid image registration were also applied on selected whole-body images, cropped in such a way that they included slices with either the abdomen or lung. This method is referred to as ‘local’. In total, 7 different image registration strategies were investigated for response monitoring purposes. More details on the applied registration strategies and the corresponding settings for Elastix can be found in the literature [8].

Table 1. Response thresholds derived from retrospective test-retest data.

SUVmean	MATV	TLG	AUC	
Mean test-retest variability (%)	8.2±7.4	29.8±39.3	31.1±36.3	2.6±2.5
Mean absolute difference	0.4±0.6	2.2±4.1	8.4±9.6	0.02±0.02
Response threshold (%)	30	110	110	10
Absolute response threshold	1.6	11	28	0.06

Units are g/ml and ml for SUVmean, MATV and TLG, respectively. Abbreviations: SUV, standardized uptake value; MATV, metabolically active tumour volume; TLG, total lesion glycolysis; AUC, area under a cumulative SUV-volume histogram curve.

doi:10.1371/journal.pone.0087167.t001
Data analysis

In total, 29 lesions were identified on the baseline scan located in the liver (n = 17), lung (n = 10), bone (n = 1) or pancreas (n = 1). For early response assessments, 27 lesions could be identified located in the liver (n = 15), lung (n = 10), pancreas (n = 1) or bone (n = 1). For late response assessments, 18 lesions could be identified located in the liver (n = 9), lung (n = 8) or pancreas (n = 1). VOI were drawn on baseline and both response scans using A50, resulting in baseline and (early and late) response VOI\(_{A50}\). In addition, baseline scans were registered onto the (early and late) response scans using the various registration strategies, after which baseline VOI\(_{A50}\) were transformed according to the transformation parameters obtained, resulting in VOI\(_{\text{registered}}\). For each VOI, maximum SUV (SUV\(_{\text{max}}\)), peak SUV based on 1.2 cm diameter spherical VOI (SUV\(_{\text{peak}}\)) [15], average SUV (SUV\(_{\text{mean}}\)), MATV, total lesion glycolysis (TLG, calculated as product of SUV\(_{\text{mean}}\) and MATV) and area under a cumulative SUV-volume histogram (AUC) [2,16] were obtained. AUC is a quantitative index of uptake heterogeneity, with lower AUC corresponding to a higher degree of (global) uptake heterogeneity [2,17,18]. SUV\(_{\text{mean}}\), MATV, TLG and AUC were not determined for VOI obtained using rigid image registration, due to its inability to change the shape or volume of a VOI. For all the quantitative measures, (early and late) responses were calculated as the values of the (early or late) response scans (obtained from either VOI\(_{\text{registered}}\) or response VOI\(_{A50}\) divided by the values of the baseline scan (obtained using baseline VOI\(_{A50}\) times 100%.

To assess the agreement between VOI\(_{\text{registered}}\) and response VOI\(_{A50}\), Dice similarity coefficients (DSC) were calculated between VOI\(_{\text{registered}}\) and response VOI\(_{A50}\) using \[\text{DSC}(X, Y) = \frac{2 |X \cap Y|}{|X| + |Y|}, \]

where X denotes the volume of VOI\(_{\text{registered}}\), Y the volume of response VOI\(_{A50}\), and \(X \cap Y\) the overlap between the two volumes. A value of 0 indicates no overlap, whereas a value of 1 indicates perfect agreement. The level of agreement between responses obtained using A50 and each registration strategy was determined for each quantitative measure using intraclass correlation coefficients (ICC) with a two-way random single measures model (SPSS, Chicago, IL, USA). An ICC of 1 indicates a perfect agreement. Statistical significance was determined using a two-tailed paired Student’s t-test, where p-values less than 0.05 were considered significant. Correlations between DSC and various values derived from MATV and AUC (absolute values of baseline and consecutive scans, and absolute responses) were assessed using squared Pearson’s correlation coefficients (R\(^2\)).

Response classification

The obtained (early and late) responses for SUV\(_{\text{peak}}\) were classified using PET Response Criteria in Solid Tumors version 1.0 (PERCIST) [15] as progressive metabolic disease (PMD), stable metabolic disease (SMD), partial metabolic response (PMR) and complete metabolic response (CMR). PERCIST specifies that PMR requires greater than a 30% and a 0.8 g/ml decline in SUV\(_{\text{peak}}\) between the most intense lesions before as well as after treatment (not necessarily the same lesion); PMD requires > 30% and 0.8 g/ml increase in SUV\(_{\text{peak}}\) or new lesions; CMR is assigned when all metabolically active tumours have visually disappeared. Unlike PERCIST, classification was not performed per subject for the metabolically most active lesion only, but for each lesion individually. As CMR can be observed visually, CMR lesions were excluded. The response thresholds of SUV\(_{\text{peak}}\) were also used for
SUVmax. PERCIST does not specify response thresholds for SUVmean, TLG (only for PMD), MATV and AUC. Therefore, these thresholds were derived from retrospective test-retest data obtained using A50 [3]. These thresholds could then be used to classify responses in SUVmean, TLG, MATV as PMD, SMD and PMR, and observed responses in AUC as an increase in tracer uptake heterogeneity (IUH), stable tracer uptake heterogeneity (SUH) or a decrease in tracer uptake heterogeneity (DUH). The percentage response thresholds were obtained by calculating the mean test-retest value plus two times the standard deviation, rounded up to the next multiple of ten. The absolute response thresholds were obtained by calculating the mean absolute difference between test and retest values plus two times the standard deviation, rounded up to the tenth decimal place. More details on the used dataset can be found in [3]. Response thresholds derived from retrospective test-retest data were 30% with a minimum change of 1.6 g/ml, 110% with a minimum change of 11 ml, 10% with a minimum change of 0.06, and 110% with a minimum change of 28 g for SUVmean, MATV, AUC and TLG, respectively (table 1).

Results

Overlap between VOI obtained using A50 and each registration strategy

Both non-rigid PET and CTPET registration showed the highest median DSC for early and late response assessments (early response assessments: 0.61 and 0.65, respectively; late response assessments: 0.55 and 0.54, respectively). For early response assessments, local rigid PET registration also showed a high median DSC (0.59). All registration strategies showed a decrease in median DSC from 9% (non-rigid PET registration) up to 38% (non-rigid CTPET registration).

Table 2. Correlation (R²) of DSC with MATV, AUC or the absolute differences in MATV or AUC between baseline and response scans.

Response assessment	Measure	Registration strategy	Baseline scan	Response scan	Absolute responses	Response scan	Absolute responses
			Absolute				
Data obtained using A50			values of			values of	
Early	MATV	Global rigid PET	0.02	0.11	0.24	-	-
		Global rigid CT	0.02	0.10	0.26	-	-
		Local rigid PET	0.00	0.08	0.20	-	-
		Local rigid CT	0.01	0.08	0.29	-	-
		Non-rigid PET	0.00	0.01	0.29	0.02	0.24
		Non-rigid CT	0.01	0.00	0.16	0.01	0.03
		Non-rigid CTPET	0.02	0.00	0.28	0.00	0.42
AUC		Global rigid PET	0.05	0.08	0.11	-	-
		Global rigid CT	0.16	0.07	0.06	-	-
		Local rigid PET	0.04	0.06	0.11	-	-
		Local rigid CT	0.07	0.04	0.11	-	-
		Non-rigid PET	0.09	0.05	0.15	0.10	0.33
		Non-rigid CT	0.02	0.06	0.18	0.11	0.31
		Non-rigid CTPET	0.00	0.00	0.18	0.08	0.33
Late	MATV	Global rigid PET	0.01	0.00	0.04	-	-
		Global rigid CT	0.01	0.00	0.04	-	-
		Local rigid PET	0.06	0.03	0.19	-	-
		Local rigid CT	0.05	0.03	0.05	-	-
		Non-rigid PET	0.05	0.00	0.31	0.03	0.02
		Non-rigid CT	0.10	0.06	0.18	0.09	0.08
		Non-rigid CTPET	0.03	0.00	0.19	0.02	0.01
AUC		Global rigid PET	0.04	0.23	0.05	-	-
		Global rigid CT	0.10	0.12	0.00	-	-
		Local rigid PET	0.04	0.00	0.05	-	-
		Local rigid CT	0.00	0.11	0.10	-	-
		Non-rigid PET	0.02	0.19	0.11	0.10	0.37
		Non-rigid CT	0.00	0.02	0.12	0.08	0.11
		Non-rigid CTPET	0.09	0.34	0.08	0.09	0.31

Abbreviations: DSC, Dice similarity coefficient; MATV, metabolically active tumour volume; AUC, area under a cumulative SUV-volume histogram curve; A50, 3 dimensional (semi-)automatic isocontour method at 50% of the maximum pixel value that corrects for local background.
between early and late response assessments (figures 1A and 1B, respectively). One VOI, located in bone, did not show overlap between A50 and global rigid PET or local rigid CT registration, and is illustrated in figure 2.

In general, DSC values obtained from lung VOI were significantly higher for non-rigid image registration compared to (local) rigid registration \((p < 0.04, \text{figures } 1C \text{ and } 1D) \), except in early response assessments using local PET registration compared to non-rigid PET registration \((p = 0.10) \). For liver VOI (figures 1E and 1F), non-rigid PET registration showed higher DSC values compared to (local) rigid PET registration in late response assessments \((p < 0.01) \), whereas non-rigid CT registration showed significantly lower DSC compared to local CT registration in early response assessments \((p < 0.05) \). Other results obtained for liver VOI were insignificant \((p > 0.12) \).

For early response assessments, there was a weak relationship between DSC and the absolute MATV response values obtained from either A50 or the registration strategy itself \((R^2: 0.20 - 0.42) \), except for non-rigid CT registration that showed no relationship \((R^2: <0.16) \). In late response assessments, only non-rigid PET registration showed a weak relationship between DSC and absolute MATV response values \((R^2: 0.31) \), all other methods did not show a relationship \((R^2: <0.19) \). Only non-rigid PET and CTPET registration showed a moderate relationship between DSC and the absolute AUC response values obtained from the registration strategy itself for both response assessments \((R^2: 0.31 - 0.37) \). All other values investigated \((table \ 2) \) generally showed no relationship with DSC. Some typical scatter plots for non-rigid PET registration are shown in figure 3.

Effects on response values

Absolute values of various quantitative PET measures obtained using A50 are listed in table 3. Median response values obtained using A50 and the various registration strategies are shown in figure 4. For both response assessments, \(\text{SUV}_{\text{max}} \) and \(\text{SUV}_{\text{peak}} \) response values derived from all registration strategies showed an almost perfect agreement with corresponding \(\text{SUV}_{\text{max}} \) and \(\text{SUV}_{\text{peak}} \) response values derived from A50 \((table \ 4, \text{ICC}: >0.921) \), except for local rigid CT registration in early response assessments \((\text{ICC}: 0.616) \). However, only non-rigid PET and CTPET image registration showed no significant differences in \(\text{SUV}_{\text{max}} \) and \(\text{SUV}_{\text{peak}} \) response values compared to those...
obtained from A50 (p>0.056). In addition, an almost perfect agreement was observed between SUV_{mean} response values derived from A50 and from non-rigid PET or CTPET registration (ICC: 0.93), but the observed differences were significant (p<0.011). Poor to moderate agreement was found between MATV, TLG and AUC response values derived from A50 and from non-rigid PET or CTPET registration (ICC: 0.034–0.763). One lesion (outlier in figure 4G) showed a large increase in MATV (447%) for A50 in the early response assessment and is illustrated in figure 2.

Effects on response classifications

Only non-rigid PET and CTPET registrations showed no differences in response classifications compared to A50 for SUV_{max} and SUV_{peak} (figure 5). However, for MATV, SUV_{mean} and TLG, compared with A50, non-rigid PET and CTPET registration showed in general more PMR and less SMD (up to 17%) or more SMD and less PMD (up to 11%). Moreover, non-rigid PET and CTPET registration showed more IUH and less SUH and/or DUH for AUC compared with A50 (up to 50%). Non-rigid CTPET and PET registration seemed to misclassify response using SUV_{mean} and AUC for small lung lesions (<2.0 ml, figure 6), whereas A50 seemed to misclassify response using MATV when another lesion with high uptake was close to the target lesion (figure 7). All methods seem to be affected by lesions with visually (increased) heterogeneous tracer uptake (figure 8). Furthermore, some lesions showed a larger or smaller VOI in A50 compared to non-rigid PET or CTPET registration in late response assessment that had no apparent cause (figure 9). For AUC, an additional 13 lesions showed deviating classification non-rigid CTPET and/or PET registration and A50 when lesions were very small (<5.0 ml) or had a slightly larger or smaller volume for the VOI obtained with CTPET and PET compared to the VOI obtained with A50.

The registration of small lung lesions may be hampered by the limited registration parameters used in this study. As previously reported [8], registration parameters of the registration software (Elastix) could be adjusted to allow higher DSC for some patients, thereby likely obtaining more accurate SUV_{mean}, MATV and TLG for some lesions. However, the use of these parameters was considered not feasible for reuse of baseline VOI due to image artefacts that were observed for some patients in the registered images. Only those parameters were used that showed a high DSC without any image artefacts, but this limits the flexibility of Elastix that may be required for some types of lesions. Classification of AUC was more affected by small lesions than classifications of other quantitative measures. An explanation for this is that AUC is ultimately dependent upon intensity histograms derived from individual tumours [23]. Therefore, tumour volumes should be sufficiently large to obtain valid results for AUC [24,25].

Another high uptake area or lesion close to the target lesion can cause potential outliers for A50, as illustrated in figure 2. This
Figure 4. Effects on responses of various quantitative measures obtained using A50 and various registration strategies. Box plots illustrating the effects of various registration strategies on early (A, C, E, G, I and K) and late (B, D, F, H, J and L) responses derived from maximum standardized uptake value (SUV$_{\text{max}}$; A, B), SUV$_{\text{mean}}$ (C, D), SUV$_{\text{peak}}$ (E, F), metabolically active tumour volume (MATV; G, H), total lesion glycolysis (TLG; I, J) or area under a cumulative SUV-volume histogram curve (AUC; K, L). Responses were calculated as the values of the (early or late) response scans divided by the values of the baseline scan times 100%. The mean is illustrated by a square, outliers by dots, and minimum and maximum values by crosses. Note that one data point for A50 falls outside the scale of subfigure G (447%). Abbreviations: A50, 3 dimensional (semi-)automatic isocontour method at 50% of the maximum pixel value that corrects for local background.

doi:10.1371/journal.pone.0087167.g004
The resulting SUV\text{max} was close to the [18F]FDG uptake of the heterogeneity than normalized cross correlation. More appropriate for tumours that show (increased) tracer uptake data not shown), indicating that mutual information might not be 0.26) compared to normalized cross correlation (0.37 and 0.35, uptake heterogeneity were lower for mutual information (0.31 and 0.29) compared to normalized cross correlation (0.37 and 0.35, respectively). However, DSC for the two lesions that showed (increased) tracer uptake heterogeneity. For SUV\text{mean}, MATV, TLG and/or AUC, some lesions (three that affected two or more quantitative measures, and seven that affected AUC alone) showed deviating response classification when obtained with non-rigid PET and/or CTPET registration compared to A50 for late response assessments. These lesions showed a larger or smaller VOI for A50 compared to those obtained using non-rigid PET or CTPET registration. The difference in VOI between those obtained using A50 and non-rigid PET or CTPET registration could not be explained by the presence of high uptake area or lesion close to the target lesion. Possible scenarios include either the VOI obtained using A50 were larger or smaller because of the decrease/increase in SUV\text{max}, or the VOI obtained using non-rigid PET or CTPET registration were smaller or larger because of used similarity measure or the limited parameters used for the registration software (Elastix). Which VOI is more predictive can only be determined by future studies that correlate quantitative measures derived from each method to patient survival data. Therefore, for quantitative parameters such as SUV\text{mean}, TLG, MATV and AUC, future studies should be performed to further validate the use of non-rigid PET or CTPET registration methods for tumours that show (increased) tracer uptake heterogeneity.

Table 4. ICC and p-values calculated from response data obtained with various registration strategies and A50.

Measure	Registration strategy	P-value	ICC	Lower 95% CI	Upper 95% CI	Early response assessment	Late response assessment		
SUV\text{max}	Global rigid PET	0.044*	0.965	0.920	0.984	0.067	0.993	0.979	0.997
	Global rigid CT	0.024*	0.986	0.964	0.994	0.104	0.997	0.991	0.999
	Local rigid PET	0.037*	0.993	0.984	0.997	0.053	0.993	0.997	0.997
	Local rigid CT	0.018*	0.975	0.936	0.989	0.281	0.938	0.846	0.976
	Non-rigid PET	0.060	0.999	0.997	0.999	0.180	0.998	0.995	0.999
	Non-rigid CT	0.053	0.995	0.989	0.998	0.106	0.997	0.993	0.999
	Non-rigid CTPET	0.128	0.999	0.997	0.999	0.116	0.997	0.990	0.999
SUV\text{peak}	Global rigid PET	0.048*	0.962	0.914	0.983	0.086	0.998	0.995	0.999
	Global rigid CT	0.031*	0.984	0.962	0.993	0.013*	0.999	0.994	1.000
	Local rigid PET	0.670	0.978	0.952	0.990	0.820	0.921	0.801	0.970
	Local rigid CT	0.989	0.616	0.310	0.806	0.297	0.923	0.810	0.970
	Non-rigid PET	0.056	1.000	0.999	1.000	0.170	1.000	0.999	1.000
	Non-rigid CT	0.051*	0.998	0.996	0.999	0.030*	0.999	0.997	1.000
	Non-rigid CTPET	0.208	1.000	1.000	1.000	0.105	0.999	0.996	0.999
SUV\text{mean}	Non-rigid PET	0.002*	0.923	0.762	0.970	<0.001*	0.945	0.524	0.986
	Non-rigid CT	<0.001*	0.853	0.131	0.957	<0.001*	0.818	0.042	0.956
	Non-rigid CTPET	0.011*	0.939	0.841	0.974	<0.001*	0.932	0.488	0.982
MATV	Non-rigid PET	0.057	0.034	-0.295	0.380	0.616	0.456	0.009	0.757
	Non-rigid CT	0.218	0.146	-0.229	0.488	0.920	-0.035	-0.524	0.443
	Non-rigid CTPET	0.046*	0.140	-0.197	0.469	0.658	0.393	-0.091	0.722
TLG	Non-rigid PET	0.012*	0.306	-0.034	0.597	0.319	0.763	0.479	0.903
	Non-rigid CT	0.015*	0.307	-0.034	0.598	0.176	0.407	-0.032	0.722
	Non-rigid CTPET	0.012*	0.373	0.025	0.648	0.351	0.747	0.449	0.896
AUC	Non-rigid PET	0.001*	0.160	-0.124	0.459	<0.001*	0.238	-0.113	0.597
	Non-rigid CT	<0.001*	0.026	-0.132	0.150	<0.001*	0.058	-0.055	0.276
	Non-rigid CTPET	0.002*	0.142	-0.143	0.445	<0.001*	0.194	-0.113	0.543

*Statistically significant difference (P<0.05).

Abbreviations: SUV, standardized uptake value; MATV, metabolically active tumour volume; TLG, total lesion glycosysis; AUC, area under a cumulative SUV-volume histogram curve; A50, 3 dimensional (semi-)automatic isocontour method at 50% of the maximum pixel value that corrects for local background; PET, positron emission tomography; CT, computed tomography; ICC, intraclass correlation coefficient; CI, confidence interval; VOI, volume of interest.

doi:10.1371/journal.pone.0087167.t004

Bone lesion showed a decrease in SUV\text{max} from 8.0 to 3.0 g/ml. The resulting SUV\text{max} was close to the [18F]FDG uptake of the surrounding bone tissue, causing A50 to delineate a larger fraction of the bone. Nevertheless, this large increase in MATV (447%) was only 2.8 ml, thereby not classified as PMD. However, for the lesion depicted in figure 7, this did result in the inclusion of a nearby lesion and was therefore erroneously classified as a PMD.

Tumours with heterogeneous tracer uptake affect threshold-based delineation methods such as A50 [26]. For the image registration strategies, all PET-based image registration strategies used in this study measure similarity by maximizing normalized cross correlation [27]. Other similarity measures, such as normalized mutual information, might more appropriate for tumours that show (increased) tracer uptake heterogeneity. However, DSC for the two lesions that showed (increased) tracer uptake heterogeneity were lower for mutual information (0.31 and 0.26) compared to normalized cross correlation (0.37 and 0.35, data not shown), indicating that mutual information might not be more appropriate for tumours that show (increased) tracer uptake heterogeneity than normalized cross correlation.
Figure 5. Response classifications for early and late response assessments. Response classifications for early (left part of each subfigure) and late (right part of each subfigure) response assessments based on maximum standardized uptake value (SUV\text{max}; A), SUV\text{mean} (B), SUV\text{peak} (C), metabolically active tumour volume (MATV; D), total lesion glycolysis (TLG; E) or area under a cumulative SUV-volume histogram curve (AUC; F). The response values were obtained using A50, local or global rigid image registration, or non-rigid image registration. Abbreviations: PMD, progressive metabolic disease; SMD, stable metabolic disease; PMR, partial metabolic response; IUH, an increase in tracer uptake heterogeneity; SUH, stable tracer uptake heterogeneity; DUH, a decrease in tracer uptake heterogeneity; A50, 3 dimensional (semi-)automatic isocontour method at 50% of the maximum pixel value that corrects for local background.

doi:10.1371/journal.pone.0087167.g005
PET or CTPET registration for response classifications and correlating these to survival data. The fact that more deviating classifications were observed for AUC than for other quantitative measures may be explained by the higher sensitivity of AUC for differences in VOI placement/delineation compared to other metrics (i.e. SUV\text{max}, SUV\text{peak} or even SUV\text{mean}, TLG and MATV). This indicates that any results on heterogeneity measures should be carefully checked for errors in tumor delineation or VOI placements. Recently, it has been shown that AUC is less sensitive to the type of tumor delineation compared to other (more local or regional) tracer uptake heterogeneity measures [28]. This may suggest that the performance for CTPET or PET registration may not be adequate enough for quantification of changes in global tracer uptake heterogeneity.

Figure 6. Sagittal images of a patient with a small lung metastasis. Top row: baseline (left) and early response (right) PET/CT images. Bottom row: volumes of interest (shown in red) projected onto the baseline (first image) and early response scans (other images) that were obtained using (from left to right): A50 defined on baseline scan, A50 defined on early response scan, and local rigid PET, non-rigid PET and non-rigid CTPET image registration. All images are shown using the same colour scales. Abbreviations: SUV, standardized uptake values; HU, hounsfield units; A50, 3 dimensional (semi-)automatic isocontour method at 50% of the maximum pixel value that corrects for local background.

doi:10.1371/journal.pone.0087167.g006

Figure 7. Axial images of a patient with liver metastases. Top row: baseline (left) and early response (right) PET/CT images. Bottom row: volumes of interest (shown in red) projected onto the baseline (first image) and early response scans (other images) that were obtained using (from left to right): A50 defined on baseline scan, A50 defined on early response scan, and local rigid PET, non-rigid PET and non-rigid CTPET image registration. All images are shown using the same colour scales. Abbreviations: SUV, standardized uptake values; HU, hounsfield units; A50, 3 dimensional (semi-)automatic isocontour method at 50% of the maximum pixel value that corrects for local background.

doi:10.1371/journal.pone.0087167.g007
Limitations

One limitation of this study is that the interval between $[^{18}F]$FDG administration and the start of acquisition between subjects was 84 ± 32 min, i.e. a fairly large inter-subject variability.

The European Association of Nuclear Medicine (EANM) guidelines for quantitative $[^{18}F]$FDG PET/CT studies [12] emphasize that the recommended scan time should be 60 min post injection and the same interval (tolerance ±5 min) should be applied in the

Figure 8. Coronal images of a patient with a large liver metastasis showing heterogeneous tracer uptake. Top row: baseline (left) and early response (right) PET/CT images. Bottom row: volumes of interest (shown in red) projected onto the baseline (first image) and early response scans (other images) that were obtained using (from left to right): A50 defined on baseline scan, A50 defined on early response scan, and local rigid PET, non-rigid PET and non-rigid CTPET image registration. All images are shown using the same colour scales. Abbreviations: SUV, standardized uptake values; HU, hounsfield units; A50, 3 dimensional (semi-)automatic isocontour method at 50% of the maximum pixel value that corrects for local background.

doi:10.1371/journal.pone.0087167.g008

Figure 9. Coronal images of a patient with a liver metastasis that showed an increased metabolically active tumour volume. Top row: baseline (left) and late response (right) PET/CT images. Bottom row: volumes of interest (shown in red) projected onto the baseline (first image) and late response scans (other images) that were obtained using (from left to right): A50 defined on baseline scan, A50 defined on late response scan, and local rigid PET, non-rigid PET and non-rigid CTPET image registration. All images are shown using the same colour scales. Abbreviations: SUV, standardized uptake values; HU, hounsfield units; A50, 3 dimensional (semi-)automatic isocontour method at 50% of the maximum pixel value that corrects for local background.

doi:10.1371/journal.pone.0087167.g009
context of therapy response assessments. Note, however, that this study occurred prior to the EANM guidelines and the sites were asked to scan at 60±10 min and then at the same time ±15 min for next scan. For most patients, the difference in scan time between baseline and response scan was small (i.e. 9±6 min). Only two patients showed a rise in difference in this interval (i.e. 38±18 min). As previously shown by Cheng et al. [29] the expected [18F]FDG uptake in the background surrounding a lesion may vary significantly at different imaging time points. Therefore, the variability in scan time between baseline and response scan is expected to have affected the observed absolute SUV and response values based on relative SUV changes, at least for these two patients. This would have been a serious limitation when the results would have been correlated with patient survival data and both patients should then have been excluded from the study. However, in this study, both A50 and the various registration strategies use the same input data and only differences between these methods are investigated. Furthermore, both methods are less sensitive for changes in contrast. All PET-based registration strategies use normalized cross correlation as a registration strategies use the same input data and only differences between these methods are investigated. Another limitation of this study is the lack of correlative data, e.g. patient group survival data. As discussed earlier, both A50 as well as the proposed registration strategies have limitations and therefore this comparison can only provide limited conclusions. However, both methods use A50 as a common method to delineate VOI and therefore the comparison lies merely in the effect of reusing the baseline VOI after registration as opposed to independently delineating the VOI in all response scans. In addition, although there is no consensus on which (semi-)automatic delineation method to use in response monitoring studies, A50 has been shown to be an accurate and reproducible method to define VOI [3–6,30].

Conclusions

Non-rigid PET and CT PET image registration may be used to classify response based on SUV_{max} and SUV_{peak}. For MATV, SUV_{mean}, TLG and AUC future studies should be able to assess which method is valid for response evaluations by correlation with survival data.

Acknowledgments

The authors would like to thank Niki J Hooijtjes MSc and Paul van Beers MSc for their assistance in the data analysis, Patralu Chemebsumon PhD for the test-retest data and Stefan Klein PhD from Erasmus MC Rotterdam for his advice on the optimization of Elastix.

Author Contributions

Conceived and designed the experiments: FHPvV RB. Performed the experiments: FHPvV IAN. Analyzed the data: FHPvV. Contributed reagents/materials/analysis tools: FHPvV WH LMV OSH RB. Wrote the paper: FHPvV IAN WH LMV OSH RB.

References

1. Bussink J, Kaanders JH, van der Graaf WT, Oyen WVJ (2011) PET-CT for radiotherapy treatment planning and response monitoring in solid tumors. Nat Rev Clin Oncol 8: 233–242.
2. van Velden FHP, Chemebsumon P, Yaqub M, Smit EF, Hoekstra OS, et al. (2011) Evaluation of a cumulative SUV-volume histogram method for parameterizing heterogeneous intratumoral FDG uptake in non-small cell lung cancer PET studies. Eur J Nucl Med Mol Imaging 38: 1636–1647.
3. Chemebsumon P, van Velden FH, Yaqub M, Frings V, de Langen AJ, et al. (2011) Effects of image characteristics on performance of tumor delineation methods: a test-retest assessment. J Nucl Med 52: 1550–1558.
4. Frings V, de Langen AJ, Smit EF, van Velden FHP, Hoekstra OS, et al. (2010) Metabolically active volume measurements with 18F-FDG and 18F-FLT PET in non-small cell lung cancer. J Nucl Med 51: 1870–1877.
5. Chemebsumon P, Yaqub M, van Velden FH, Hoekstra OS, Lammertuma AA, et al. (2011) Impact of [(18)F]FDG PET imaging parameters on automatic tumor delineation: need for improved tumor delineation methodology. Eur J Nucl Med Mol Imaging 38: 2136–2144.
6. Chemebsumon P, Boellaard R, De Rooscher D, van Elfruit W, van Baardwijk A, et al. (2012) Assessment of tumor size in PET/CT lung cancer studies: PET- and CT-based methods compared to pathology. EJNMMI Res 2: 56.
7. De Moor K, Nuyts J, Pissers L, Sroobants S, Maes F, Dupont P (2006) Non-rigid registration with position dependent rigidity for whole body PET follow-up studies. IEEE Nuclear Science Symposium Conference Record 3502–3508.
8. van Velden FHP, van Beers P, Nuyts J, Velasquez LM, Hayes W, et al. (2012) Effects of rigid and non-rigid image registration on test-retest variability of quantitative FDG studies. EJNMMI Res 2: 10.
9. Li X, Abramson RG, Amlinhamn LR, Chakravarty AB, Abramson V, et al. (2012) An algorithm for longitudinal registration of PET/CT images acquired during neoadjuvant chemotherapy in breast cancer: preliminary results. EJNMMI Res 2: 62.
10. Velasquez LM, Boellaard R, Kollia G, Hayes W, Hoekstra OS, et al. (2009) Repeatability of 18F-FDG PET in a multicenter phase I study of patients with advanced gastrointestinal malignancies. J Nucl Med 50: 1646–1654.
11. Garrett CR, Sui LL, El-Khoury A, Buter J, Rocha-Lima CM, et al. (2011) Phase I dose-escalation study to determine the safety, pharmacokinetics and pharmacodynamics of brivanib alaninate in combination with full-dose cetuximab in patients with advanced gastrointestinal malignancies who have failed prior therapy. Br J Cancer 105: 44–52.
12. Boellaard R, O’Doherty MJ, Weher WA, Motaghy FM, Lonsdale MN, et al. (2010) FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging version 1.0. Eur J Nucl Med Mol Imaging 37: 181–200.
13. Sugawara Y, Zasadny KR, Neuhoff AW, Wahl RL (1999) Reevaluation of the standardized uptake value for FDG: variations with body weight and methods for correction. Radiology 213: 521–525.
14. Klein S, Staring M, Murphy K, Viergever MA, Phim JP (2010) elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 29: 196–205.
15. Wahl RL, Jacene H, Kasamon Y, Lodge MA (2009) From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J Nucl Med 50 Suppl 1: 1298–1308.
16. El Naqi I, Grigby P, Apte A, Kidd E, Donnelly E, et al. (2009) Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recognit 42: 1162–1171.
17. Watabe T, Tatsuni M, Watabe H, Ioshiki K, Kato H, et al. (2012) Intratumoral heterogeneity of F-18 FDG uptake differentiates between patients with Colorectal Carcinoma. Mol Imaging Biol: In press.
18. van Velden FHP, Niessen WJ, Jongma F, van Beers P, Velasquez LM, Hayes W, et al. (2013) Test-Retest Variability of Various Quantitative Measures to Characterize Tracer Uptake and/or Tracer Uptake Heterogeneity in Metastasized Liver for Patients with Colorectal Carcinoma. Mol Imaging Biol: In press.
19. van Elruit W, Hamill J, Jones D, De Rooscher D, Lambin P, et al. (2011) Optimal gating compared to 3D and 4D PET reconstruction for characterization of lung tumours. Eur J Nucl Med Mol Imaging 38: 843–855.
20. Shekhar R, Walimbe V, Raja S, Zagrodzky V, Kanvinde M, et al. (2005) Automated 3-dimensional elastic registration of whole-body PET and CT from separate or combined scanners. J Nucl Med 46: 1408–1409.
21. Grigic A, Nestle U, Schaefer-Schuler A, Kremp S, Balek E, et al. (2009) Nonrigid versus rigid registration of thoracic 18F-FDG PET and CT in patients with lung cancer: an intraregional comparison of different breathing maneuvers. J Nucl Med 50: 1921–1926.
22. van Herk M, Gilhuijs KG, de Munck J, Touw A (1997) Effect of image artifacts, organ motion, and poor segmentation on the reliability and accuracy of three-dimensional chamfer matching. Comput Aided Surg 2: 346–355.

23. Brooks FJ (2013) Area under the cumulative SUV-volume histogram is not a viable metric of intratumoral metabolic heterogeneity. Eur J Nucl Med Mol Imaging 40: 967–968.

24. van Velden FHP, Boellaard R (2013) Reply to: Area under the cumulative SUV-volume histogram is not a viable metric of intratumoral metabolic heterogeneity. Eur J Nucl Med Mol Imaging 40: 1469–1470.

25. Brooks FJ, Grigsby PW (2013) The effect of small tumor volumes on studies of intratumoral heterogeneity of tracer uptake. J Nucl Med: In press.

26. Hatt M, Visvikis D, Albarghach NM, Tixier F, Pradier O, et al. (2011) Prognostic value of (18)F-FDG PET image-based parameters in oesophageal cancer and impact of tumour delineation methodology. Eur J Nucl Med Mol Imaging 38: 1191–1202.

27. Hutton BF, Braun M, Thurfjell I, Lau DY (2002) Image registration: an essential tool for nuclear medicine. Eur J Nucl Med Mol Imaging 29: 559–577.

28. Hatt M, Tixier F, Cheze Le RC, Pradier O, Visvikis D (2013) Robustness of intratumour (18)F-FDG PET uptake heterogeneity quantification for therapy response prediction in oesophageal carcinoma. Eur J Nucl Med Mol Imaging 40: 1602–1617.

29. Cheng G, Alavi A, Lim E, Werner TJ, Del Bello CV, et al. (2013) Dynamic changes of FDG uptake and clearance in normal tissues. Mol Imaging Biol 15: 345–352.

30. Cheebsumon P, van Velden FH, Yaqub M, Hoekstra CJ, Velasquez LM, et al. (2011) Measurement of metabolic tumor volume: static versus dynamic FDG scans. EJNMMI Res 1: 35.