Factor Path of Constraints to Adaptive Capacity on Climate Change among IFAD-VCDP Farmers in North Central Nigeria

H. Sallawu1*, J. N. Nmadu1, A. A. A. Coker1 and U. S. Mohammed1

1Department of Agricultural Economics and Farm Management, Federal University of Technology, P. O. Box 65, Minna, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. Author JNN designed the study. Author HS performed the statistical analysis and wrote the first draft of the manuscript. Authors AAAC and USM managed the literature searches and edited the manuscript. All authors read and approved the final manuscript.

ABSTRACT

Aim: Adaptive capacity is the ability of the farmer to adjust his farm plans and programmes in the face of emerging risks, constraints and currently available information. In this study, the various constraints faced by International Fund for Agricultural Development-Value Chain Development Programme’s farmers (IFAD-VCDP) in North Central Nigeria in adapting to climate change challenges were investigated.

Study Design: A multi-stage sampling technique was employed in the selection of respondents.

Place and Duration of Study: The study was conducted in Benue and Niger States of Nigeria in 2018.

Methodology: Data were collected from a total of 483 respondents using interview schedule and questionnaire. The data were analysed using exploratory (principal component analysis) and confirmatory (structural equation modelling) factor analysis.

Results: The results of the analysis revealed the significant constraints the farmers faced in order to improve their adaptive capacity to climate change which were institutional and technical.

*Corresponding author: E-mail: halima.sallawu@futminna.edu.ng;
1. INTRODUCTION

Adaptive capacity is the ability of the farmer to adjust his farm plans and programmes in the face of emerging risks, constraints and currently available information. The effects of climate change on human and the environment are so vital that it can hardly be ignored. Africa is one of the most vulnerable continents to environment and climate change because of multiple stress and low adaptive capacity [1]. According to Klein et al. [2] adaptive capacity is affected by actors’ capacities to gain accessible open opportunities that facilitate the arranging and usage of adaptation just as imperatives that make adaptation forms increasingly hard for both human and natural systems. Constraints are unevenly disseminated among global regions, communities and species just as crosswise over various timespans. Improving the consciousness of individuals, associations and institutions about climate change vulnerability, effects and adjustment can help build individual and institutional capacity with respect to adaptation planning and implementation.

An adaptation constraint represents a factor or procedure that makes adaptation planning and execution progressively troublesome. This could incorporate decreases in the scope of adaptation alternatives that can be actualized, increments in the expenses of implementation or diminished viability of chosen choices with respect to accomplishing adaptation targets. The presence of a constraint alone does not imply that adaptation is unimaginable or that one’s goals cannot be accomplished. Actors have different capacities to adapt to climate variability and change [3]. Literature on adaptive capacity advanced along two unique pathways. One spotsights on the scope of chances that exist to encourage adaptation planning and execution. The other, which is likewise progressively broad, centres around portraying the constraints that restrain adaptation. Despite the fact that they are sometime treated in the literature as distinct, opportunities and requirements are corresponding in that adaptive capacity is affected mutually by the degree to which actors exploit accessible chances to seek after adaptation reactions and the degree to which the individuals, unmanaged systems experience limitations [4].

In the view of [5,6], there are significant knowledge gaps and obstructions to streams of information that can compel adaptation. Adaptation professionals and stakeholders in both developed and developing countries keep on recognizing knowledge deficits as an adaptation constraint. Regularly this interest for more information is connected to concerns with respect to decision making under uncertainty about the future [7]. As indicated by [8] population growth and economic development can prompt more noteworthy asset utilization and biological debasement which can compel adaptation in areas where livelihoods are firmly connected to environment merchandise and ventures.

Timely and requisite information is important to take adaptive measures for relieving the hazard caused by climate change and take advantage of it. The dispersal of climate information like precipitation conditions, credit information, improved varieties and the board practices will assume a significant role in adapting various strategies to change. Regardless of the smallholders’ craving to set up useful shields

(49.45%) and climate information (26.62%) constraints, although the factors differ slightly within the two states under study. In Benue State, institutional (31.26%), personal (14.63%), land and farm inputs (12.54%) and population (11.73%) while in Niger State, public and institutional (22.34%), land and farm inputs (14.78%), and personal (10.75) were the constraints to adaptive capacity.

Conclusion: These constraints make it harder to plan and implement adaptation actions by restricting the variety and effectiveness of options available to the farmers to improve their productivity and cope with the vagaries of climate change. It was therefore recommended that government and NGOs should intensify efforts on public, institutional, educational and climate policies, assist in increasing the adaptive capacity of the farmers in order to employ more adaptation measures, land governance systems should be strengthened in Nigeria to provide tenure security for all, financial institutions should help facilitate access to credit by farmers and assist in making reliable climate information accessible to all farmers.

Keywords: Climate change; constraints; adaptive capacity; IFAD-VCDP; exploratory and confirmatory factor analysis; North Central Nigeria.
against the conceivably unfavourable effects of climate variability and change, a number of challenges stand in their way. These obstacles incorporate those exuding from both the downstream and upstream levels [9]. With an improved access to education, one is probably going to obtain more abilities helpful in unravelling life-related difficulties, both at individual and societal levels, thus widening their social and technical capital [10]. Furthermore, expanding more skills is probably going to empower individuals to access different livelihood streams. This at that point empowers them to assemble a more grounded financial and technical capital, resulting in lowering socioeconomic constraints related to their undertakings [11].

The Value Chain Development Programme (VCDP) is a six years development initiative of the Federal Government of Nigeria (FGN) and International Fund for Agricultural Development (IFAD) programme that focuses on supporting cassava and rice value chains for small farmers in the six states of Anambra, Benue, Ebonyi, Niger, Ogun and Taraba. Within each state, the programme is being implemented in five (5) Local Government Areas (LGAs) selected on the basis of objective criteria. VCDP is well anchored in Nigeria government’s vision for agricultural transformation through commodity value chain approach, with emphasis on enhancing productivity and access to markets for rice and cassava smallholder farmers [12].

Various studies by [13,14,15] had identified Africa as one of the most exposed continents to suffer the devastating effects of climate change because of inadequate adaptive capacity. The enhancement of adaptive capacity is an effective means of facilitating adaptation to climate change and variability especially for vulnerable groups such as small-scale farmers in developing countries. Effective adaptation requires not only identifying adaptation alternatives but also constraints to adaptive capacity so as to explore available mechanisms for increasing the adaptive capacity of the farmers to climate change. According to the Forth Assessment Report, there are impressive ecological, financial, informational, social, attitudinal and conduct barriers to the usage of adaptation and availability of assets and building adaptive capacity are especially significant [16]. This study seeks to identify the constraints to adaptive capacity of the farmers in the light of the foregoing.

Adaptive capacity constraints are factors that make it harder to plan and implement adaptation actions. Adaptive capacity constraints restrict the variety and effectiveness of options for actors to secure their existing objectives, or for a natural system to change in ways that maintain productivity or functioning. Adaptive capacity constraints confine the assortment and adequacy of alternatives for actors to verify their current goals, or for a natural system to change in manners that keep up profitability or functioning. Adaptive capacity at the level of the individual farm has been identified as critical for successful climate change adaptation [17]. This is because farmers are not responding sufficiently to recent climate changes [18]. Adaptive capacity is not a static attribute of the system [19], it can be improved over time, which makes it an important factor to be examined and discussed from both a research and a policy point of view. It is therefore important to account for the constraints to adaptive capacity in order to avoid incorrect assumptions about adaptation options available to the farmer. However, there is need to consider the constraints adaptive capacity in order to obtain a realistic picture of adaptation. The aim of this study is to investigate the constraints to adaptive capacity on climate change among IFAD-VCDP farmers in North Central Nigeria. The objectives are to utilise Principal Component Analysis (PCA) to retrieve the inherent factors in the constraints faced by the farmers in the study area, estimate the relationship within and between the retrieved factors using parallel factoring and regressions, and then established the inter-relationship between them using PATH diagram.

1.1 Theoretical Frame Work on Adaptation

Climate change adaptation researchers traced their methodologies from agricultural technology adaptation because of the methodological similarities [20]. Agricultural technology adoption models are based on farmers’ utility or profit maximizing behaviours. The assumption here is that farmers adopt a new technology only when the perceived utility or profit from using this new technology is significantly greater than the traditional or the old method. However, their capacity also constrained them to adopt new technologies. Maddison [21] noted that African farmers have been constrained by different factors to adopt climate change adaptation strategies. Adaptive capacity to climate change is the ability of a system or an individual to adjust to
climate change or climate variability so as to minimize the potential damages or cope with the consequences [22]. Therefore, adaptive capacity is the ability to plan and use adaptation measures to moderate the effect of climate change. Adaptive capacity varies from farmer to farmer based on certain factors that are peculiar to each farmer. It is assumed that farmers are rational and as such they adapt to climate change in order to reduce its consequences. Some farmers have higher ability to adjust to climate change than others. Measuring adaptive capacity is difficult, since adaptive capacity is essentially measuring the potential to respond to changes in climate or climate related disasters [23].

It was pointed by Deressa et al. [24] out that decision of farmers who perceived climate change to adopt or not to adopt a particular adaptation strategy depends on the utility associated with each decision. Therefore, adaptation strategy falls under theory of utility maximization. The decision of farmers to adopt or not to adopt any particular adaptation strategy (technology) to reduce the effects of climate change on agricultural production is characterized by certain socioeconomic factors, farm characteristics, changes in climatic factors. A farmer chooses an adaptation method by considering the weighted expected utility that he or she will derive from adopting that strategy. A farmer uses an adaptation strategy j if and only if he or she perceives that the utility or net benefit from using that adaptation strategy is significantly greater than the situation of not using it. The utility associated with such decisions are not directly observed. Meanwhile, the choices of adaptation measures of farmers are observed. The choices of farmers are unordered and hence their decisions on adaptation strategies are linked to random utility maximization. Assume that \(U_j \) is the expected utility that a farmer will gain from using adaptation strategy j whereas \(U_k \) is the expected utility for not choosing adaptation strategy j but rather k. The linear random utility model of adapting to climate change by choosing \(j \text{th} \) adaptation strategy (U) can be expressed as a function of explanatory variables \(X_i \) as shown below.

\[
U_i = x_i \beta_i + \mu_i \tag{1}
\]

Also, the linear random utility model for \(j \text{th} \) farmer who does not use \(j \text{th} \) adaptation strategy but rather \(k \text{th} \) adaptation strategy is given by:

\[
U_k = x_k \beta_k + \mu_k \tag{2}
\]

Where \(x_i \) is a vector of explanatory variables (socioeconomic factors, farm characteristics, perception of farmers on changes in climatic factors), \(\beta_j \) and \(\beta_k \) are vectors of parameters for choosing \(j \text{th} \) and \(k \text{th} \) adaptation strategy respectively. Also, \(\mu_j \) and \(\mu_k \) are error terms for choosing \(j \text{th} \) and \(k \text{th} \) adaptation strategy respectively. The error terms in the above equations are assumed to be normally independently and identically distributed [25]. Following the commonly used adaptation strategies identified in the studies conducted by [26,27], and the preliminary survey by the researchers, the adaptation strategies mostly considered are changing crop varieties, changing planting dates, planting of trees, destocking, increase farm size, application of fertilizer, farming on fallowed land, diversification, mulching, changing farming practices, purchase of insurance, early warning systems, and incentives for relocation. If a farmer chooses to adopt \(j \text{th} \) adaptation strategy to climate change, then the expected utility that the farmer gets is greater than the expected utility for not using that strategy. According to [28], a farmer chooses adaptation strategy \(j \) over adaptation strategy \(k \) if and only if the expected utility from adaptation strategy \(j \) is greater than that of \(k \).

\[
E(U_{\text{adopting } j \text{ strategy}}) > E(U_{\text{adopting } k \text{ strategy}}) \tag{3}
\]

The actual inequality is expressed as:

\[
U_i(x_i \beta_j + \mu_j) > U_k(x_k \beta_k + \mu_k) \tag{4}
\]

Where \(j \neq k \).

The CFA utilized in this research is Structural Equation Modelling (SEM), which is a state of art methodology and fulfills much of broader inference and causal analysis. SEM are models consisting of a combination of multivariate analysis, factor analysis and regression analysis, used to validate or reject one or more hypothesis about an existing relation between different variables. It estimates simultaneously dependency relations between variables (observed or latent) and estimate measurement error in model’s variables. Holzinger and Swineford [29] proposed one of the most famous CFA models. In the model estimates, \(x_{x} \) are exogenous variables that record scores and \(y_{y_1} \) are latent (and endogenous) variables respectively. Double-headed arrows represent an association between \(y_1 y_1 \), \(y_2 y_2 \), and \(y_3 y_3 \), single-
headed arrows represent direct effects, and ε, represent error terms. It estimates factor loading, which is a measurable effect reflecting the incidence of an observed variable over another either observed or latent variable. Interpreting factor loadings is equivalent to interpreting direct effects in a linear econometric model. According to [30,31] CFA becomes a causal model if all latent variables are defined by observed variables.

2. MATERIALS AND METHODS

2.1 Study Area and Sampling

The IFAD-VCDP is currently being implemented in six states of Nigeria, viz Anambra, Benue, Ebonyi, Niger, Ogun, Taraba. This study was conducted in Niger and Benue States which are the participating states in North Central Nigeria (Fig. 1). Niger State is located between latitudes 8° 20' and 11° 30' North and longitudes 3° 30' and 7° 20' East. The state covers a total land area of 76,266,779 km² or about 8.3 million hectares which represent 8% of the total land area of Nigeria. About 85% of the land is arable and the vegetation consists mainly of short and scattered trees. The state experiences distinct dry and wet seasons with annual rainfall varying from 1,100 mm in the northern part to 1,600 mm in the southern parts. The temperature ranges from 23°C to 37°C and daylight duration is averagely 8.5 hours and it has a relative humidity of 40% [32]. The 2018 projected population based on the 2006 census at 2.5% growth is 5,312,642. The state has 25 Local Government Areas (LGAs) grouped into three agricultural zones i.e. I, II and III, each having 8, 9 and 8 LGAs respectively. There are three major ethnic groups in the state, Nupe, Gbagyi, and Hausa. Other tribes are Kadara, Koro, Dibo, Kambari, Kakanda, Dukkawa, Dakarkari, Gana-Gana, Kamuku. The major economic activity is agriculture (farming, fishing and livestock rearing).

Benue state on the other hand is located between latitudes 6° 25' and 8° 8' North and longitudes 7° 47' and 10° 0' East, with total landmass of 34,059 km² with estimated population of 5,707,674 based on the 2006 census with growth rate of 2.8%. The State experiences two distinct seasons, the wet season and the dry season. The rainy season lasts from April to October with annual rainfall in the range of 1500-1800 mm and average precipitation of 1500 mm. The dry season begins in November and ends in March. Temperatures fluctuate between 21°C to 37°C in a year, with mean temperature of 28°C. Benue State has of 23 LGAs divided into three Agricultural Development Project zones. It is inhabited predominantly by the Tiv and Idoma people. Other ethnic groups include Igbele, Etulo, Abakwa, Jukun, Hausa, Igbo, Akweya, and Nyifon. Benue State has abundant human and material resources, most of the people in the State are farmers while inhabitants of the riverine areas engage in fishing as their primary or secondary occupations [33].

Multi-stage sampling technique was employed in sampling the location and the collection of primary data for this study. In the first stage, the two (2) participating States in North Central Nigeria under IFAD – VCDP that is, Niger and Benue States were selected purposively based on their participation in the IFAD-VCDP. In the second stage, all the five (5) participating Local Government Areas (LGAs) in each State were selected, given a total of ten (10) LGAs. In the third stage, sampling of farm households in each community was determined proportionately using [34] formula and adopted by [35]. The formula is presented in eqn. (5)

\[
S = \frac{X^2NP(1-P)}{d^2(N-1)+X^2P(1-P)}
\]

Where:

- \(S\) = The required sample size,
- \(X^2\) = Table value of chi-square for 1 degree of freedom at the desired confidence level (1.96),
- \(N\) = Population size,
- \(P\) = Population proportion (assumed to be 0.80),
- \(d^2\) = Degree of accuracy squared expressed as a proportion (0.05) and
- 1= Constant.

A total of 500 questionnaires were distributed, however only 483 were completed and returned. As such the data analysis was based on 483 respondents fully interviewed. Data for this study were collected using interview schedules with the aid of trained enumerators.

2.2 Data Analysis

The data were analysed using exploratory (EFA) and confirmatory (CFA) factor analysis. Factor analysis is a data reduction technique used to reduce a large number of variables to a smaller
set of underlying factors that summarize the essential information contained in the variables. The EFA utilised in this study is the Principal Component Analysis (PCA). PCA was used to group the constraints with the aid of principal factor method with varimax orthogonal rotation method developed by Kaiser [36]. The factor solution should explain at least half of each original variable's variance, so the communality value for each variable should be 0.30 or higher. The criterion of eigen value or characteristic root (Eigen value) greater than 1.0 was used for defining the number of the factors that were retained [37]. Model acceptance was based on three criteria: each variable, in order to be included in the variable cluster of a factor, must load to it more than 0.4, each factor must have more than two variables and variables that load in more than one constraint were discarded following [38,39]. The model is presented in eqn. (6):

\[
Y_1 = a_{11}X_1 + a_{12}X_2 + \cdots + a_{1n}X_n \\
Y_2 = a_{21}X_1 + a_{22}X_2 + a_{2n}X_n \\
Y_3 = a_{31}X_1 + a_{32}X_2 + \cdots + a_{3n}X_n
\]

(6)

\[
Y_n = a_{n1}X_1 + a_{n2}X_2 + \cdots + a_{nm}X_m
\]

Where:

\[Y_1, Y_2, \ldots, Y_n = \text{Observed variables/ constraints to adaptive capacity; }\]
\[a_{ij} = \text{Constraint loading or correlation coefficients; }\]
\[X_1, X_2, \ldots, X_n = \text{Unobserved underlying factors constraining the farmers to improve their adaptive capacity.}\]

The model for CFA is of the form given in eq. (7)

Definition of latent variable
\[F_1 = x_1 + x_2 + x_3 \]
\[F_2 = y_1 + a^2 y_2 + b^2 y_3 + c^2 y_4 \]
\[F_3 = y_5 + a^2 y_6 + b^2 y_7 + c^2 y_8 \]
\[\ldots \]
\[F_K = y_{i+K} + a^2 y_{i+K} + b^2 y_{i+K} + c^2 y_{i+K} \]

The regressions
\[F_1 \sim F_2 \]
\[F_2 \sim F_4 + F_9 \]
\[F_5 \sim F_6 + F_7 \]
\[\ldots \]

Residual correlations
\[y_1 \sim y_5 \]
\[y_2 \sim y_4 + y_6 \]
\[y_3 \sim y_7 \]
\[y_4 \sim y_8 \]
\[y_6 \sim y_8 \]

To judge the sampling adequacy and the factorability of the matrix as a whole, Bartlett’s test of sphericity and the Kaiser-Meyer-Olkin (KMO) were used. Bartlett’s test of sphericity relates to the significance of the study and therefore shows the validity and suitability of the responses collected. If the KMO is greater than 0.8 (meritorious) then factorability is assumed. High values Kaiser-Meyer-Olkin (KMO) between 0.8 and 1.0 indicate factor analysis is appropriate [40].

Factor extraction: The communality which is the percentage of variance for the variable that is explained by the common factors for all the variables were above 0.30.

Factor rotation and interpretation: To make the structural factor more interpretable, the factors were rotated. For this study, varimax rotation was chosen in order to create more interpretable clusters of factors. The reason for this, is that varimax rotation attempts to maximize the distance between the factors orthogonally. Also, varimax is good for simple factor analysis since it is known to be a good general approach that simplifies the interpretation of factors.

The estimations and all the analysis were carried out in RStats [41] using lavaan [42], semPlot [43] and semTools [44] packages.

3. RESULTS AND DISCUSSION

Several well-recognized criteria for factor analysis were employed. The factor analysis in this study consists of five parts. Firstly, the sample adequacy and factorability of the matrix as a whole was examined. Secondly, factors were extracted and presented. Thirdly, factors were rotated in order to see if any variables should not be included in the intended constructs. Fourthly, the reliability of the chosen constructs was tested using Cronbach’s alpha test. In the end, a confirmatory analysis was conducted to validate the chosen constructs.

3.1 Sample Adequacy and Factorability of the Data Matrix

Firstly, it was observed that all the 20 variables correlated at least 0.3 with at least one other variable which shows that the variables are correlated but not highly correlated, indicating that there is relationship between the variables and also uniquely contributing to explaining the data matrix of the variables scale, suggesting reasonable factorability. Secondly, the Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy for Benue State was 0.852 (meritorious), for Niger State was 0.801 (meritorious) and for the pooled data was 0.963 (marvellous) based on the KMO classification. The KMO provides an overall measure of the overlap or shared variance between pairs of variables. Since the study tried to identify variables that are related but yet provide unique information to the factors, higher values indicate overlap but not to the point of hindering the analysis due to multicollinearity. The Bartlett’s test of sphericity for Benue State was significant \(\chi^2(240) = 3569.547 \quad P< 0.001 \), for Niger State was significant \(\chi^2(243) = 1956.465 \quad P< 0.001 \) and pooled data was also significant \(\chi^2(483) = 11357.558 \quad P< 0.001 \) which shows that the matrices are significantly different from zero (0). This indicated that there are sufficient inter-correlations to conduct the factor analysis based on the results presented in Table 1. Given all the above indicators, factor analysis was deemed to be suitable with all 20 variables in the two States and for the pooled data.

The results in Table 2 shows that the first combination of variables in the first factor explained 49.45% of the variance and the second factor explained 26.62% of the variance in the 20-variable scale. The two factors retained explained 76.07% of the variance in 20 constraining variables. After the varimax orthogonal rotation, only two factors were retained which were code-named Institutional and technical constraints; and climate information constraints. The findings are in line
with [45,46]. The findings also conform with [47,48] who noted that the absence of location specific climate forecasts followed by poor reliability and failure of the climate forecasts, coupled with poor extension service on climate prediction, forecasts in the media not answering operational needs and low conviction of climate prediction were the major constraints to adaptive capacity of the farmers. Farmers are known to practice different adaptive strategies to minimize the effect of climate change, although it takes time for farm households to recover from climatic events, but households with better access to diverse resources and a more balanced livelihood portfolio would be able to cope with vagaries of the climate.

On state specific findings, 70% of the variance in 20 constraining variables extracted four latent variables code-named, Institutional constraints, Personal constraints, land and farm inputs constraints; and population constraints for Benue State while 47.87% of the variance in 17 constraining variables extracted three factors code-named Public and institutional constraints, land and farm inputs constraints; and Personal constraints for Niger State. These results are supported by the study conducted by Centre for Environmental Economics and Policy in Africa which opined that lack of access to credit is a major problem encountered by farmers in adapting to the effects of climate change [49]. The findings are also in line with [50-56]. The implications are that external and internal barriers to adaptation may be quantitative, such as population density or average income, or qualitative, representing factors such as the principal type of economic activity in a region, or people’s perceptions of risk. Such elements constitute tangible and intangible barriers to adopt adaptation practices, generating adaptation lock-in which may lead to ‘wait and see’ or reactive approaches, low cognitive learning, misperception, and insufficient awareness of climate risks with inefficient individual response to face extreme events.

The scree plot in Fig. 2 confirmed the number of constraining factors retained in Benue State which is four, that is, the number of factors that are above the simulated data or where the rate of change on the slope is quite minimum.

The scree plot in Fig. 3 confirmed the number of constraining factors retained in Niger State which is three, that is, the number of factors that are above the simulated data or where the rate of change on the slope is quite minimum.

Table 1. Kaiser-Meyer-Olkin measure of sampling adequacy and Bartlett’s test of sphericity

Analysis	Benue State	Niger State	Pooled data
KMO	0.852	0.801	0.963
Bartlett test: Approx. Chi-square	3569.547	1956.465	11357.558
Degrees of freedom	190	190	190
Sig.	0.000	0.000	0.000

Source: Field survey, 2018
Table 2. Principal components of constraints to adaptive capacity in North Central Nigeria

State	Latent variable	Observed variables	Factor loadings
Benue and Niger	Institutional and technical constraints	Poor access to credit	0.889
		Poor access to input supply	0.883
		High cost and ownership of land	0.872
		High cost of farm inputs	0.871
		High poverty status	0.869
		Poor access to extension service delivery	0.858
		Limited land availability	0.853
		Low educational status	0.828
		Lack of opportunities	0.827
		Low economic activities	0.784
		Poor technical know-how	0.747
		Shortage of labour	0.727
		Low cognitive learning	0.704
	Climate information constraints	Inadequate information on climate change	0.829
		Government irresponsiveness on climate change risk management	0.812
		Extensive subsistence agriculture	0.767
		Lack of policy support	0.756
		Population density	0.723
		Low migration	0.707
		Wide spread nomadism	0.705
	Personal constraints	High poverty status	0.879
Benue	Institutional constraints	Poor access to credit	0.867
		Poor access to input supplies	0.832
		Poor access to extension services	0.815
		Inadequate infrastructure	0.748
		Government irresponsiveness on climate change risk management	0.731
		Lack of policy support	0.726
		Extensive subsistence agriculture	0.724
		Lack of opportunities	0.616
		Low economic activities	0.587
		Shortage of labour	0.576
		Wide spread nomadism	0.508
State	Latent variable	Observed variables	Factor loadings
---------------	--	--	-----------------
	Low educational status	0.869	
	Poor technical know-how	0.723	
	Low cognitive learning	0.63	
Niger	Land and farm inputs constraints	High cost and ownership of land	0.844
		Limited land availability	0.764
		High cost of farm inputs	0.606
	Population constraints	Population density	0.812
		Low migration	0.789
	Public and institutional constraints	Inadequate information on climate change	0.851
		Government irresponsiveness on climate change risk	0.801
		Poor access to input supply	0.783
		Extensive subsistence agriculture	0.76
		Poor access to extension service delivery	0.74
		Lack of policy support	0.723
		Population density	0.631
		Low migration	0.482
	Land and farm inputs constraints	High cost and ownership of land	0.658
		High cost of farm inputs	0.649
		Low educational status	0.633
		Low economic activities	0.577
		Limited land availability	0.446
		Poor technical know-how	0.4
	Personal constraints	High poverty status	0.789
		Poor access to credit	0.765
		Wide spread nomadism	0.574

Source: Computed from field survey data, 2018.
Extraction method: Principal Component Analysis.
Rotation method: varimax with Kaiser Normalization
The scree plot in Fig. 4 confirmed the number of constraining factors retained in the pooled data which is two, that is, the number of factors that are above the simulated data or where the rate of change on the slope is quite minimum.

Reliability test: Based on the results of the reliability consistency presented in Table 3 revealed that the internal consistency reliability for the overall scale and factor 1 in Benue State were 0.928 and 0.934 respectively which are excellent. The coefficient alpha for factor 2 and 4 were 0.838 and 0.810 respectively which are very good. The coefficient alpha for factor 3 is 0.790 which is good based on Cronbach’s alpha classification. This indicated that the responses were consistent and reliable. This implies that the most severe constraint to adaptive capacity to climate change in Benue State is institutional constraint, followed by personal constraint, then land and farm inputs constraint and the least constraint is population constraint. In Niger State, the internal consistency reliability for the overall scale and factor 1 were very good with values of 0.815 and 0.880 respectively. Coefficient alpha for factor 2 and 3 were good with values of 0.737 and 0.736 respectively. This indicated that the responses were consistent and reliable. The result implies that the most severe constraint to
The internal consistency reliability for the overall scale, factor 1 and factor 2 in the pooled data were excellent with values of 0.972, 0.976 and 0.928 respectively. This indicated that the responses were consistent and reliable. This also implies that the most severe constraint to adaptive capacity in the pooled data is institutional and technical constraints. Followed by climate information constraints. These constraints makes it harder to plan and implement adaptation actions by restricting the variety and effectiveness of options available to the farmers to maintained or improve their productivity and cope with the vagaries of climate change.

3.2 Confirmatory Factor Analysis of Constraints to Adaptive Capacity

The results of the confirmatory factor analysis of extracted factors on constraints to adaptive capacity to climate change for the two States and pooled data are presented in Tables 4, 5 and 6, and Figs. 5, 6 and 7 respectively. The results indicated that the hypothesized (four for Benue State, three for Niger State and two for the pooled data) factor models fit the data well for all the 20 variable items. Based on the diagnostics statistics, model fit test statistic was (885.481) for Benue State, (436.584) for Niger State and (1162.521) for the pooled data. The Chi square statistics were significant at 1% probability level for the two States and pooled data, with Comparative Fit Index of 0.794 for Benue State, 0.774 for Niger State and 0.911 for the pooled data. Tucker-Lewis Index was 0.756 for Benue State, 0.729 for Niger State and 0.900 for pooled data. The Root Mean Square Error of approximation was 0.013 for Benue State, 0.011 for Niger State and pooled data. This indicated that the models are of good fit. The results further indicate that all the variables constraints included in the model are significantly related to the factors measured. The standardized loading shows the correlation between the variables and the factors. The variable item with the highest standardized value is the best indicator of the factor, which usually have the least error variance left over. In Benue State, variable X19 has the highest loading of 0.886 in factor 1, for the factor 2 variable X2 load highest with 0.878, for factor 3 variable X17 load highest with 0.873 and for factor 4 variable X5 load highest with 0.846. In Niger State, for factor 1 variable X4 load highest with 0.885, for factor 2 variable X17 load highest with 0.721 and for factor 3 variable X11 load highest with 0.822. For the pooled data, variable X2 has the highest loading of 0.929 in factor 1 and for factor 2 variable X4 load highest with 0.879.

Confirmatory factor analysis is the analysis of covariance, in other words it is the analysis of correlation and directional path. Covariance estimates how the constructs are correlated since they are on the same constructs, it implies that they might be related to each other. The results of the covariances in Tables 4, 5 and 6 and Figs. 5, 6 and 7 indicated that in Benue State, factor 2, 3 and 4 are significantly correlated with factor 1. Factor 4 is significantly correlated with factor 2 and 3. In Niger State, Factor 1 and 2 are significantly correlated with factor 3. In the pooled data, Factor 1 is significantly correlated with factor 2. Usually, all measurements are made with error (random and / or systematic). The confirmatory factor analysis tends to isolate “true score” component of measurement by decomposing the variable item into true score and error variance. The error variance is the left over variation in that variable not accounted for by the model. The estimates of the error variance for all the variables are presented in Table 6.

Table 3. Cronbach’s alpha analysis for the scale and factors retained

Construct	Benue State	Niger State	Pooled
Overall scale	0.928	0.815	0.972
Factor 1	0.934	0.880	0.976
Factor 2	0.838	0.737	0.928
Factor 3	0.790	0.736	
Factor 4	0.810		

Source: Field survey, 2018
Table 4. Extracted factors of constraints to adaptive capacity in Benue State

| Latent Variables | Estimate | z-value | P(>|z|) | Standardize all |
|------------------|----------|---------|---------|----------------|
| MR1 =~ | | | | |
| X8 | 1 | 0.6 | | |
| X10 | 1.038 | 9.026 | 0 | 0.705 |
| X11 | 1.372 | 10.204 | 0 | 0.845 |
| X12 | 1.389 | 10.162 | 0 | 0.839 |
| X13 | 1.169 | 8.91 | 0 | 0.692 |
| X14 | 1.341 | 9.821 | 0 | 0.796 |
| X16 | 1.135 | 8.422 | 0 | 0.63 |
| X18 | 1.261 | 9.823 | 0 | 0.797 |
| X19 | 1.329 | 10.511 | 0 | 0.886 |
| X20 | 1.239 | 9.721 | 0 | 0.74 |
| X7 | 0.373 | 2.771 | 0.006 | 0.232 |
| X9 | 0.83 | 7.31 | 0 | 0.536 |
| MR2 =~ | | | | |
| X1 | 1 | | 0.68 | |
| X2 | 1.318 | 11.23 | 0 | 0.878 |
| X3 | 1.202 | 10.295 | 0 | 0.763 |
| X4 | 1.015 | 9.668 | 0 | 0.709 |
| MR3 =~ | | | | |
| X16 | 1 | | 0.249 | |
| X20 | 0.908 | 3.813 | 0 | 0.243 |
| X15 | 3.002 | 4.483 | 0 | 0.783 |
| X17 | 3.301 | 4.441 | 0 | 0.873 |
| MR4 =~ | | | | |
| X5 | 1 | | 0.846 | |
| X6 | 0.808 | 9.286 | 0 | 0.646 |
| X7 | 0.776 | 5.95 | 0 | 0.606 |
| Covariances | | | | |
| MR1 ~~ | 0.056 | 4.964 | 0 | 0.463 |
| MR2 | 0.023 | 3.485 | 0 | 0.455 |
| MR3 | 0.095 | 6.289 | 0 | 0.666 |
| MR2 ~~ | 0.067 | 4.979 | 0 | 0.446 |
| MR4 | 0.016 | 2.546 | 0.011 | 0.251 |
| MR4 ~~ | | | | |
| Variances | | | | |
| X8 | 0.203 | 10.64 | 0 | 0.64 |
| X10 | 0.124 | 10.402 | 0 | 0.503 |
| X11 | 0.086 | 9.555 | 0 | 0.287 |
| X12 | 0.092 | 9.615 | 0 | 0.296 |
| X13 | 0.169 | 10.439 | 0 | 0.521 |
| X14 | 0.118 | 9.981 | 0 | 0.366 |
| X16 | 0.147 | 10.131 | 0 | 0.398 |
| X18 | 0.104 | 9.98 | 0 | 0.365 |
| X19 | 0.055 | 8.9 | 0 | 0.215 |
| X20 | 0.073 | 9.189 | 0 | 0.23 |
| X7 | 0.114 | 7.879 | 0 | 0.39 |
| X9 | 0.195 | 10.73 | 0 | 0.713 |
| X1 | 0.148 | 9.532 | 0 | 0.537 |
| X2 | 0.065 | 5.436 | 0 | 0.228 |
Latent Variables

| Estimate | z-value | P(>|z|) | Standardize all |
|----------|---------|---------|-----------------|
| X3 | 0.132 | 8.554 | 0.418 |
| X4 | 0.13 | 9.273 | 0.498 |
| X15 | 0.131 | 6.608 | 0.388 |
| X17 | 0.078 | 3.862 | 0.238 |
| X5 | 0.071 | 4.562 | 0.284 |
| X6 | 0.163 | 9.254 | 0.582 |

Model Fit Test Statistics

- Degrees of freedom: 161
- P-value (Chi-square): 0
- Comparative Fit Index (CFI): 0.794
- Tucker-Lewis Index (TLI): 0.756
- Akaike (AIC): 5059.876
- Root Mean Square Error of Approximation (RMSEA): 0.014
- P-value RMSEA (0.05): 0

Source: Field survey, 2018

Table 5. Extracted factors of constraints to adaptive capacity in Niger State

| Latent Variables | Estimate | z-value | P(>|z|) | Standardize all |
|------------------|----------|---------|---------|-----------------|
| **MR1 =~** | | | | |
| X3 | 1 | | | 0.728 |
| X4 | 1.472 | 13.304 | 0 | 0.885 |
| X7 | 0.934 | 10.834 | 0 | 0.718 |
| X9 | 0.991 | 9.388 | 0 | 0.624 |
| X12 | 1.325 | 11.315 | 0 | 0.749 |
| X18 | 0.957 | 8.93 | 0 | 0.595 |
| X20 | 0.981 | 10.528 | 0 | 0.702 |
| X13 | 0.688 | 7.567 | 0 | 0.506 |
| **MR2 =~** | | | | |
| X1 | 1 | | | 0.424 |
| X20 | 0.024 | 0.153 | 0.878 | 0.009 |
| X5 | 1.232 | 5.041 | 0 | 0.574 |
| X15 | 1.067 | 4.33 | 0 | 0.422 |
| X16 | 1.138 | 5.038 | 0 | 0.573 |
| X17 | 1.56 | 5.381 | 0 | 0.721 |
| **MR3 =~** | | | | |
| X8 | 1 | | | 0.432 |
| X11 | 2.087 | 5.657 | 0 | 0.822 |
| X19 | 2.156 | 5.716 | 0 | 0.699 |

Covariances

| MR1 ~ MR3 | 0.051 | 1.971 | 0.049 | 0.162 |
| MR2 ~ MR3 | 0.093 | 3.667 | 0 | 0.587 |

Variances

X3	0.602	9.695	0	0.469
X4	0.408	6.782	0	0.216
X7	0.558	9.774	0	0.484
X9	1.045	10.28	0	0.61
X12	0.935	9.515	0	0.439
X18	1.136	10.387	0	0.646
| Latent Variables | Estimate | z-value | P(>|z|) | Standardize all |
|------------------|----------|---------|---------|----------------|
| X20 | 0.67 | 9.877 | 0 | 0.505 |
| X13 | 0.938 | 10.627 | 0 | 0.744 |
| X1 | 0.782 | 10.164 | 0 | 0.82 |
| X5 | 0.529 | 9.049 | 0 | 0.67 |
| X15 | 0.9 | 10.173 | 0 | 0.822 |
| X16 | 0.453 | 9.06 | 0 | 0.672 |
| X17 | 0.386 | 6.716 | 0 | 0.481 |
| X8 | 0.641 | 10.274 | 0 | 0.813 |
| X11 | 0.308 | 4.011 | 0 | 0.324 |
| X19 | 0.718 | 7.073 | 0 | 0.512 |

Model Fit Test Statistics
- 436.584
- Degrees of freedom: 100
- P-value (Chi-square): 0
- Comparative Fit Index (CFI): 0.774
- Tucker-Lewis Index (TLI): 0.729
- Akaike (AIC): 10571.4
- Root Mean Square Error of Approximation (RMSEA): 0.011
- P-value RMSEA (0.05): 0

Source: Field survey, 2018

Table 6. Extracted factors of constraints to adaptive capacity in the pooled data

| Latent Variables | Estimate | z-value | P(>|z|) | Standardize all |
|------------------|----------|---------|---------|----------------|
| MR1 =~ | | | | |
| X1 | 1 | | 0.851 | |
| X2 | 1.223 | 29.508 | 0 | 0.929 |
| X5 | 1.073 | 28.418 | 0 | 0.912 |
| X6 | 1.046 | 27.365 | 0 | 0.895 |
| X8 | 1.058 | 27.153 | 0 | 0.892 |
| X10 | 0.936 | 24.544 | 0 | 0.845 |
| X11 | 0.999 | 26.058 | 0 | 0.873 |
| X13 | 0.904 | 22.644 | 0 | 0.806 |
| X14 | 1.134 | 28.921 | 0 | 0.92 |
| X15 | 0.758 | 19.906 | 0 | 0.743 |
| X16 | 1.141 | 28.633 | 0 | 0.916 |
| X17 | 0.913 | 25.021 | 0 | 0.854 |
| X19 | 1 | 23.766 | 0 | 0.829 |

| Latent Variables | Estimate | z-value | P(>|z|) | Standardize all |
|------------------|----------|---------|---------|----------------|
| MR2 =~ | | | | |
| X3 | 1 | | 0.862 | |
| X4 | 0.987 | 26.341 | 0 | 0.879 |
| X7 | 0.879 | 25.351 | 0 | 0.861 |
| X9 | 0.958 | 23.545 | 0 | 0.827 |
| X12 | 0.923 | 22.825 | 0 | 0.812 |
| X18 | 0.541 | 14.172 | 0 | 0.586 |
| X20 | 0.841 | 23.81 | 0 | 0.832 |

Covariances
- MR1 ~ MR2
 - 1.02 | 11.767 | 0 | 0.774

Variances
- X1: 0.504 | 14.679 | 0 | 0.276
- X2: 0.314 | 13.471 | 0 | 0.137
- X5: 0.307 | 13.908 | 0 | 0.168
Latent Variables

| Latent Variables | Estimate | z-value | P(|z|) | Standardize all |
|------------------|----------|---------|--------|----------------|
| X6 | 0.358 | 14.212 | 0 | 0.199 |
| X8 | 0.381 | 14.264 | 0 | 0.205 |
| X10 | 0.464 | 14.722 | 0 | 0.286 |
| X11 | 0.412 | 14.489 | 0 | 0.238 |
| X13 | 0.581 | 14.931 | 0 | 0.35 |
| X14 | 0.308 | 13.726 | 0 | 0.154 |
| X15 | 0.614 | 15.135 | 0 | 0.448 |
| X16 | 0.332 | 13.834 | 0 | 0.162 |
| X17 | 0.409 | 14.656 | 0 | 0.271 |
| X19 | 0.599 | 14.816 | 0 | 0.312 |
| X3 | 0.453 | 12.918 | 0 | 0.256 |
| X4 | 0.378 | 12.473 | 0 | 0.228 |
| X7 | 0.354 | 12.947 | 0 | 0.258 |
| X9 | 0.559 | 13.593 | 0 | 0.316 |
| X12 | 0.579 | 13.796 | 0 | 0.34 |
| X18 | 0.737 | 15.074 | 0 | 0.657 |
| X20 | 0.414 | 13.512 | 0 | 0.307 |

Model Fit Test Statistics

Model Fit Test Statistics	Value
Degrees of freedom	169
P-value (Chi-square)	0
Comparative Fit Index (CFI)	0.911
Tucker-Lewis Index (TLI)	0.9
Akaike (AIC)	22366
Root Mean Square Error of Approximation (RMSEA)	0.011
P-value RMSEA (0.05)	0

Source: Field survey, 2018

Fig. 5. Confirmatory factor analysis of the extracted factors from the exploratory factor analysis in Benue State
Fig. 6. Confirmatory factor analysis of the extracted factors from the exploratory factor analysis in Niger State

Fig. 7. Confirmatory factor analysis of the extracted factors from the exploratory factor analysis in pooled data
4. CONCLUSION

In conclusion this study has validated empirical findings of many studies by revealing the principal constraints that the farmer faced in order to improve their adaptive capacity to climate change, asserting that constraints are unevenly disseminated among the various communities as well as individuals in the study area. It was revealed that the significant constraints faced by the beneficiaries of IFAD-VCDP farmers in North Central Nigeria were institutional, personal, land and farm inputs, and population constraints in Benue State; and public and institutional, land and farm inputs, and personal constraints in Niger State. The constraints among the combined farmers are institutional and technical as well as climate information constraints. These constraints make it harder to plan and implement adaptation actions by restricting the variety and effectiveness of options available to the farmers to maintained or improve their productivity.

Arising from this, the study recommended that government and non-government organizations should intensify efforts on weather and climate services including policies that would enhance the attainment of the twin objectives of increasing agricultural production and effectively adapting to the effects of climate change. Access to timely weather and climate information is key to adequately preparing adaptive and adaptation plans and actions thus increasing the adaptive capacity of the farmers in order to employ more adaptation measures. Public and private institutions should conduct educational campaign and training on climate change and adaptation techniques while land governance systems and access should be strengthened in Nigeria to provide tenure security for all to adapt to a variety of livelihood options and enhance negotiation position and planning. There is need to increase capacity for low cost land survey and registration as a safeguard against corruption in land administration. Financial institutions should help facilitate access to credit by farmers so as to stimulate the adoption of climate smart practices and access to extension services in the States.

ACKNOWLEDGEMENTS

This study was conducted with a grant from funding support of TETFUND Institutional-Based Research Intervention (IBRI) FUND. Grant No. TETFUND/FUTMINNA/2016-2017/6th BRP/08.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, et al. Climate variability, impacts, adaptation, and vulnerability. Intergovernmental Panel on Climate Change (IPCC) Working Group II, Fifth Assessment Report Phase I (Report Launch, 31 March); 2014.
2. Klein RJT, Midgley, GF, Preston BL, Alam M, Berkhout FGH, Dow K, et al. Adaptation opportunities, constraints, and limits. In: Climate Change 2014: Impacts, Adaptation and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2014:899-943.
3. Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi, KL, et al. Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working Groups I and II of the Intergovernmental Panel on Climate Change. (Cambridge University Press, Cambridge, UK, and New York, NY, USA; 2012.
4. Klein RJT, Midgley GF, Preston BL, Alam M, Berkhout FGH, Dow K, et al. Adaptation opportunities, constraints, and limits. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2014:899-943.
5. Milfont TL. The interplay between knowledge, perceived efficacy, and concern about global warming and climate change: a one-year longitudinal study. Risk Analysis. 2012;32(6):1003-1020.
6. Pasquini L, Cowling RM, Ziervogel G. Facing the heat: Barriers to mainstreaming climate change adaptation in local government in the Western Cape Province, South Africa. Habitat International. 2013; 40(1):225-232.
7. Stoutenborough JW, Vedlitz A. The effect of perceived and assessed knowledge of climate change on public policy concerns: An empirical comparison. Environmental Science & Policy. 2013;2(1):1-10. [Accessed 30th September, 2019] Available: https://books.google.com/books ?hl=en&lr=&id=nQg3SJtkOGwC&oi=fnd& pg=PR4&q=Managing+the+risk+of+extreme+events+and+disasters+to+advance+climate+change+adaptation.+A+special+report+of+Working+Groups+I+and+II+of+the+Intergovernmental+Panel+on+Climate+Change.+Cambridge:+Cambridge+University+Press. &ots=13CfrssDWM&sig=xmKettobUm5AFtaWL7uvBpttC

8. Liu GY, Yang ZF, Chen B. Energy-based urban dynamic modeling of long-run resource consumption, economic growth and environmental impact: Conceptual considerations and calibration. Procedia Environmental Sciences. 2012;13(1):1179-1188.

9. Elizumi T, Ramankutty N. Changes in yield variability of major crops for 1981–2010 explained by climate change. Environmental Research Letters; 2016. [Accessed 30th September 2019] Available: http://iopscience.iop.org/article/10.1088/1748-9326/11/3/034003/meta

10. Musingi JK, Ayiemba EH. Effects of technological development on rural livelihoods in developing world: A case study of effects of a large scale multipurpose dam on malaria prevalence in a rural community around Kenya’s largest dam. European Scientific Journal. 2012;8(14):132–143.

11. Wilkinson J. Food security and the global agri-food system: Ethical issues in historical and sociological perspective. Global Food Security. 2015;3(1):11-20. [Accessed 30th September, 2019] Available: http://www.sciencedirect.com/science/article/pii/S221912415300201

12. Value Chain Development Programme (VCDP), Federal Republic of Nigeria, value chain development programme supervision report. West and Central Africa division programme report No. 4217-NG; 2016. [Accessed 24th March, 2019] Available: www.supervisionmissionreport_vcdp_pat_0006-1-1136

13. Metz BOR, Davidson PR, Bosch R, Dave LA, Meyer A. Mitigation of climate change. Intergovernmental Panel on Climate Change. Fourth Assessment Report Working Group III (New York: Cambridge University Press); 2007.

14. Field C. Managing the risks of extreme events and disasters to advance climate change adaptation Special report of the Intergovernmental Panel on Climate Change; 2012. [Accessed: 7th June 2019]

15. Metz BOR, Davidson PR, Bosch R, Dave LA, Meyer A. Mitigation of climate change. Intergovernmental panel on climate change. Fourth Assessment Report Working Group III (New York: Cambridge University Press); 2007.

16. Wamsler C, Brink E. The role of individual adaptive practices for sustainable adaptation. International Journal of Disaster Resilience in the Built Environment. 2015;6(1):6–29.

17. Burke M, Emerick K. Adaptation to climate change: Evidence from US agriculture. American Economic Journal: Economic Policy. 2016;8(3):106–140.

18. Smit B, Wandel J. Adaptation, adaptive capacity and vulnerability. Global Environmental Change. 2006;16(1):282–292.

19. Maddison D. The perception of adaptation to climate change in Africa. Policy Research working Paper 4308. Centre for environmental, economics and Policy in Africa, University of Pretoria, South Africa; 2006.

20. Maddison D. The perception of adaptation to climate change in Africa. Policy Research working Paper 4308. Centre for environmental, economics and Policy in Africa, University of Pretoria, South Africa; 2006.

21. Mabe FN, Sarpong DB, Osei-Asare Y. Adaptive capacities of farmers to climate change adaptation strategies and their effects on rice production in the Northern Region of Ghana. Russian Journal of Agricultural Socio-Economic Sciences. 2012;11(11):9-17.

22. Byrne TR. Household adaptive capacity and current vulnerability to future climate change. Environmental Research Letters. 2015;10(1):1-8.

23. Byrne TR. Household adaptive capacity and current vulnerability to future climate change. Environmental Research Letters. 2015;10(1):1-8.
change in Rural Nicaragua. A thesis submitted to the Department of Geography, University of Lethbridge, Alberta, Canada; 2014.

24. Deressa TT, Hassan RM, Ringler C, Alemu T, Yesuf M. Analysis of the determinants of farmers’ choice of adaptation methods and perceptions of climate change in the Nile Basin of Ethiopia. International Food Policy Research Institute. Washington, DC; 2008.

25. Gujarati DN. Essentials of econometrics (3rd Edition.). Boston: McGraw-Hill-Irwin; 2006.

26. Mabe FN, Sarpong DB, Osei-Asare Y. Adaptive capacities of farmers to climate change adaptation strategies and their impact on rice production in the Northern Region of Ghana. Russian Journal of Agricultural Socio-Economic Sciences. 2012;11(11):9-17.

27. Bryan E, Ringler C, Okoba B, Roncolio C, Silvetrin S, Herrero M. Adapting agriculture to climate change: Households and Community Strategies and Determinants. World Bank; 2011.

28. Falco DS, Yesuf M, Kohlin G. What adaptation to climate change? Evidence from the Nile Basin, Ethiopia. International Food Policy Research Institute; 2007.

29. Holzinger KJ, Swineford F. A study in factor analysis: The stability of a bi-factor solution. Chicago: University of Chicago; 1939.

30. Fox J. Structural equation models. An R and S-PLUS companion to Applied Regression. Thousand Oaks, CA: Sage; 2002.

31. Kline R. Principles and practices of structural equation modelling (2nd Edition.). New York: Guilford; 2005.

32. Niger State Agricultural Mechanization and Development Authority (NAMDA). National Farmers Data Base; 2013.

33. Benue State Agricultural & Rural Development Authority (BNARDA). Impact of Benue State Agricultural and Rural Development Authority on Agriculture and Rural Development in Benue State, BNA RDA, Makurdi, Nigeria; 1998.

34. Krejcie RV, Morgan DW. Determining sample size for research activities. Educational and Psychological Measurement. 1970;30(1):607-610.

35. Ardakani SR, Ansari A, Ardakani MR. Organizational Climate and Commitment. Research. 2012;4(12):1-3.

36. Kaiser HF. The Varimax criterion for analytic rotation in factor analysis. Psychometrika. 1958;23(1):187-200.

37. Chong KR, Yap BC, Mohammed Z. A study on the application of factor analysis and the distributional properties of financial ratio of Malaysian companies. International Journal of Academic Research in Management (IJARM). 2013;2(4):83-95.

38. Akinnagbe OM. Constraints and strategies towards improving cassava production and processing in Enugu North Agricultural Zone of Enugu State, Nigeria. Bangladesh Journal of Agricultural Resources. 2010; 35(3):387-394.

39. Mohammed SC, Rabiul I, Zahurul A. Constraints to the development of small and medium sized enterprises in Bangladesh: An empirical investigation. Australian Journal of Basic and Applied Sciences. 2013;7(8):690-696.

40. Chong KR, Yap BC, Mohammed Z. A study on the application of factor analysis and the distributional properties of financial ratio of Malaysian companies. International Journal of Academic Research in Management (IJARM). 2013;2(4):83-95.

41. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2019. Available:https://www.R-project.org/

42. Rosseel Y. lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 2012;48(2):1-36. Available:http://www.jstatsoft.org/v48/i02/

43. Epskamp S. semPlot: Path Diagrams and Visual Analysis of Various SEM Packages' Output. R package version 1.1.2; 2019. Available:https://CRAN.R-project.org/package=semPlot

44. Jorgensen TD, Pornprasertmanit S, Schoemann AM, Rosseel Y. semTools: Useful tools for structural equation modeling. R package version 0.5-2; 2019. Available:https://CRAN.R-project.org/package=semTools

45. Ajayi JO. Adaptive strategies to climate change by farmers in Ekiti State, Nigeria. In (eds). Amos, T. T., Imoudu, P. B., and Oseni, J. O. Proceedings of the 14th Annual National Conference of the Nigerian Association of Agricultural Economist. Theme: Climate Change, agriculture and food security in Nigeria. Held at the Federal University of
Technology, Akure, Nigeria between 24th-27th, February. 2014:1-10.

46. Brown PR, Afroz S, Chialue L, Chiranjeevi T, Sotheary EI, Grunbuhel CM. Constraints to the capacity of smallholder farming households to adapt to climate change in South and Southeast Asia. Climate and Development. 2019;11(5):1-9.

47. Ravi Shankar K, Nagasree K, Venkateswarlu B, Pochaiah M. Constraints and suggestions in adopting seasonal climate forecasts by farmers in South India. Journal of Agricultural Education and Extension. 2011;17(2):153-163.

48. Idrisa YL, Ogunbameru BO, Ibrahim AA, Bawa DB. Analysis of awareness and adaptation to climate change among farmers in the Sahel savannah agro-ecological zone of Borno State, Nigeria. African Journal of Agricultural Research. 2012;7(25):3632-3637.

49. Ibitoye O, Ogunyemi A, Ajayi JO. Constraints to climate variability adaptation among arable crop farmers in Ekiti State, Nigeria. In (eds). Amos, T. T., Imoudu, P. B., and Oseni, J. O. Proceedings of the 14th Annual National Conference of the Nigerian Association of Agricultural Economist. Theme: Climate Change, Agriculture and Food Security in Nigeria, Held at the Federal University of Technology, Akure, Nigeria; 2014.

50. Confalonieri U, Menne B, Akhtar R, Ebi KL, Hauengue M, Kovats RS, et al. Human health. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, Cambridge, UK); 2007.

51. Titonell P, Giller KE. When yield gaps are poverty traps: The paradigm of ecological intensification in African smallholder agriculture. Field Crops Research. 2013; 143(1):76–90.

52. Fikru TA. Case study of non-farm rural livelihood diversification in Lume Woreda, Oromiya Regional State. M.Sc. Thesis, School of Graduate Studies Lume Woreda; 2008.

53. Barnett N, Woodward A, Lim B. Assessing and enhancing adaptive capacity. Technical Paper 7; 2016.

54. Wilkinson J. Food security and the global agri-food system: Ethical issues in historical and sociological perspective. Global Food Security. 2015;3(1):11-20. [Accessed 30th September, 2019] Available:http://www.sciencedirect.com/science/article/pii/S2211912415300201

55. Le Dang H, Elton L, Nuberg I, Bruwer J. Understanding farmers’ adaptation intention to climate change: A structural equation modelling study in the Mekong Delta, Vietnam. Environmental Science & Policy. 2014;41(1):11–22.

56. Baird J, Plummer R, Haug C, Huitema D. Learning effects of interactive decision-making processes for climate change adaptation. Global Environmental Change. 2014;27(1):51–63.

© 2020 Sallawu et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/54542