Complementarity-determining Regions of Human Antibodies

Mats Ohlin‡

From the Department of Immunotechnology, Lund University, P.O. Box 7031, S-220 07 Lund, Sweden

Received for publication, August 16, 2002, and in revised form, September 16, 2002
Published, JBC Papers in Press, September 16, 2002, DOI 10.1074/jbc.M208401200

Antibodies are highly specific receptors of the immune system that also have a great potential as reagents in biological chemistry and as therapeutic agents. The part of the antibody that makes contact with the antigen is comprised of two variable (V) domains, the heavy (H) and the light (L), which both are made up of a two-β-sheet framework. From this framework, six complementarity-determining region (CDR) loops, three from the light domain and three from the heavy domain, protrude and make up the antigen-binding site. Five of these CDR loops generally adopt only a limited number of backbone conformations, so-called canonical structures (reviewed in Ref. 3), which are determined by the lengths of the loops and by the presence of specific key residues. The antigen specificity of the binding site is mainly determined by the sequence and conformation of these CDR loops.

Antibody diversity is generated by the imprecise recombination of two or three sets of germline gene segments and by the combination of different heavy and light domains (4). The diversity is further increased by the process of somatic hypermutation (5) and by receptor editing and revision (6). As the germline variable gene repertoire encodes a rather limited number of CDR loop lengths (IMGT, the international ImMunoGeneTics database, Ref. 7), the number of observed canonical structures is similarly limited. However, it was recently discovered that B cells evolve the genes encoding immunoglobulin V domains not only by nucleotide substitution but also through an additional mechanism of insertion and deletion of nucleotides during the hypermutation process (8–11). This mechanism has the potential to expand the available repertoire of loop lengths and conformations if the insertions and deletions involve entire codons and occur at positions in the sequence that can tolerate such modifications. A number of examples of seemingly functional insertions and deletions in the CDR of both the heavy and light domains of human antibodies have in fact been encountered lately (Refs. 8 and 12 and references therein). Furthermore, we have recently discovered that human IGHV germline genes carry features in CDR1 and CDR2 that make these regions particularly prone to deletions of entire codons (12).

The occurrence of insertions and deletions in antibody V genes is not only of fundamental interest but is also of biotechnological importance. It has been known for some time that the topography of the antigen-binding site is related to the size of the antigen (13–15). Three different types of binding sites have been described: cavity, groove, and planar, which roughly correspond to hapten, peptide, and protein, respectively. This relationship has been further investigated by Vargas-Madrazo et al. (16), who have described a correlation between the length of the CDR loops and the antigen recognized. According to these findings, cleft-like binding sites that recognize small molecules are created by long loops (especially the CDRH2 and L1 loops), whereas planar-binding sites that are specific for large molecules are formed by short loops. In other words, by modifying the loop lengths of an antibody-binding site, it may thus be possible to design antibodies optimally suited for recognition of a particular class of antigen. Lamminmäki et al. (17) have in fact used this approach to modify a murine antibody specific for 17β-estradiol. They introduced additional residues into CDR2 of the heavy domain and were able to improve the recognition of the antigen. This improvement was suggested to be the result of a deeper binding site, created through the extension of CDRH2, which better accommodated the hapten (17).

Despite the establishment of insertions and deletions as naturally occurring modifications of antibody sequences and the use of amino acid insertions for antibody engineering, little is still known about the functional consequences of such mod-

‡ To whom correspondence should be addressed. Tel.: 46-46-222-4202; Fax: 46-46-222-4200; E-mail: mats.ohlin@immun.lth.se.
ifications. We have therefore created single-codon insertions and deletions as well as more complex modifications in the CDR of two human antibody single chain V region fragments (scFv) specific for a peptide and a hapten, respectively, and investigated the effects on antigen recognition, thermal stability, and protein folding. Our results demonstrate that single amino acid insertions in both CDRH1 and H2 and deletions in CDRH2 could be reliably well tolerated and permitted probing of folded proteins despite the fact that the modified loops carry amino acids that are disallowed at key residue positions in canonical loops of the corresponding length or do not take on a characteristic length of a known canonical structure. Modifications of this kind are in other words an efficient mode of expanding antibody sequence and structure space beyond what is encoded by the germline gene repertoire, which may enable targeting of novel or otherwise poorly immunogenic antigens.

EXPERIMENTAL PROCEDURES

Antibody Frameworks—The frameworks encoding the anti-cytomegalovirus scFv AE11F and the anti-fluorescein isothiocyanate (FITC) scFv FITC8 have been described elsewhere (18–20). The cloning and production of the AE11F and AE11F/3-20L1 scFv in Pichia pastoris have also been described (21).

Creation of Insertion and Deletion Variants—Mini-libraries of scFv genes carrying codon insertions at various positions were created by the use of overlap extension PCR with degenerate primers that introduced NNK codons. Variants with a deletion were similarly created with primers lacking one codon. The AE11F-based variants carrying CDRH1 sequences derived from the IGHV4 subgroup were created using the CDR-shuffling technique (22) essentially as described previously (21, 23).

Production and Purification of scFv Variants—The FITC8 scFv and all variant scFv were cloned into the pPICZa vector (Invitrogen) with C-terminal FLAG sequences (24) and produced in P. pastoris as described previously (21). The mini-libraries encoding AE11F and FITC8 variants were screened for scFv production or antigen binding according to the colony lift assay by McGrew et al. (25). Briefly, transformed P. pastoris colonies were lifted onto cellulose acetate filters (Pall Gelman Sciences, Ann Arbor, MI) and were grown on top of nitrocellulose filters, which were placed on methanol-containing plates. After 48 h of induction, scFv bound to the nitrocellulose filters were detected by a combination of anti-FLAG M2 antibody (Sigma) and rabbit anti-mouse IgG/horseradish peroxidase conjugate (Dako A/S, Glostrup, Denmark) or FITC-biotin (Sigma) and streptavidin/horseradish peroxidase conjugate (Dako A/S) using the ECL Plus™ Western blotting detection reagents (Amersham Biosciences) according to the manufacturer’s recommendations. Single colonies were also picked and grown in liquid cultures to enable further characterization of the antigen binding properties (see below). In addition, a number of scFv variants were produced at a larger scale and purified as monomers. The AE11F-based variants were purified essentially as described previously (21), whereas the FITC8-based variants were purified by affinity chromatography on a Sepharose resin with FITC-conjugated bovine serum albumin (BSA) (kindly provided by Dr. B. Jansson, BioInvent Therapeutic AB, Lund, Sweden) followed by gel filtration as before.

Analysis of Antigen Recognition—The reactivity of the scFv variants with different antigens, both as crude expression supernatants and as purified monomers, was analyzed by enzyme-linked immunosorbent assay (ELISA) and by using the BIAcore technology (BIAcore AB, Uppsala, Sweden). The AE11F-based clones were tested on BSA, ovalbumin, streptavidin, and a biotinylated peptide that mimics the viral epitope (21) bound via streptavidin and the FITC8-based clones on BSA, streptavidin, FITC-BSA, FITC-biotin (bound via streptavidin), and a number of irrelevant BSA-coupled haptons obtained from Sigma or Biogenie Inc. (Nova Protein, Cambridge, MA). The ELISA was performed according to standard protocols with anti-FLAG M2 (Sigma) and rabbit anti-mouse immunoglobulin/horseradish peroxidase conjugate (Dako) to detect bound scFv. The BIAcore measurements and the calculation of the reaction rate kinetics were performed essentially as described previously (21).

Differential Scanning Calorimetry (DSC)—DSC measurements were performed using a VP-DSC from Microcal Inc. (Northampton, MA) in the temperature range 20–90 °C at a heating rate of 60/°C. All measurements were performed in phosphate-buffered saline (PBS), pH 7.4, containing 0.02% sodium azide at protein concentrations between 0.1 and 0.2 mg/ml with PBS in the reference cell. Prior to protein versus PBS measurements, PBS versus PBS scans were performed.

CD Spectroscopy—CD spectra were recorded on a J-720 spectropolarimeter (Jasco Inc., Easton, MD) in a 2-mm cuvette at a protein concentration of 0.1 mg/ml in 50 mM sodium phosphate, pH 7.4. Each sample was scanned two to eight times from 250 to 200 nm at a scan speed of 10 nm/min, a resolution of 1 nm, a bandwidth of 1 nm, and a sensitivity of 20 millidegrees, and the scans were combined to produce the final spectrum. Data are presented as mean residue molar ellipticity, which was calculated using the mean residue weight of each scFv.

Sequencing and Canonical Structure Classification—The nucleotide sequences of the variant scFv clones were determined by automated DNA sequencing as described elsewhere (26) after isolation of the templates by direct PCR on P. pastoris colonies using vector-specific primers. In the case of the CDRH1-grafted clones, the origin of the CDR was determined using the IMGT/VO-QUEST alignment tool at IMGT, the international ImMunoGeneTics data base (imgt.cines.fr and Ref. 7). All sequences were defined and numbered in accordance with the IMGT nomenclature and unique numbering (7). Complete sequences of the variant scFv from this study can be found in GenBank™ under accession codes AF543317–AF543349. The canonical structure classification was performed using the software implemented on the Antibodies—Structure and Sequence server (www.bioinf.org.uk/abs/chothia.html and Ref. 27).

RESULTS

The scFv Frameworks—The parent antibody frameworks used in this study are both of human origin although there are differences in the way they were obtained. The AE11F scFv was derived from a monoclonal antibody isolated from a cytomegalovirus-seropositive blood donor (18, 19). It originates from the IGHV3–30 and IGKV3–11 genes, which both have acquired a number of mutations (21). This scFv recognizes both intact glycoprotein B from cytomegalovirus and peptides mimicking the AD-2 epitope (21, 28). The hapten (FITC)-specific scFv FITC8 was derived from a synthetic scFv library, which had been constructed by shuffling of human CDR sequences into a single framework consisting of the human IGHV3–29 and IGLV1–47 genes (20). The CDR sequences utilized by this scFv originate from IGHV3–7 and IGHV3–23 in the case of CDRH1 and CDRH2, IGLV1–40 and IGLV1–40 or IGLV1–50 in the case of CDRL1 and CDRL2, and IGLV1–47 in the case of CDRL3. Except for the CDRL1 loop, which is one residue longer than the IGLV1–47 germline length, the CDR loops of the FITC8 scFv are of the same length as the loops normally encoded by the framework genes. As the structures of the two scFv have not been determined, the loop structures are unknown. However, by analyzing the deduced amino acid sequences using the tools at the Antibodies—Structure and Sequence server (27), the most similar of the observed canonical classes were identified (Table I).

Single-codon Insertions and Deletions—To determine the capability of the two antibody frameworks to tolerate length modifications in the CDR loops, we made single-codon insertions in CDRH1 and CDRH2 and a single-codon deletion in CDRH2. The modifications involved insertions after positions 31–33 in CDRH1, insertions after positions 57 and 58 in CDRH2, and a deletion at position 58 in CDRH2 (Fig. 1). All modifications were introduced at positions corresponding to the apices of the loops, i.e. the positions where the natural length variation occurs (31). A study of the IGHV germline gene repertoire has shown that these parts of the CDR carry repetitive sequence tracts, which naturally target them with deletions (and possibly also insertions) during the hypermutational process (12). Residues in these regions have also been shown to frequently make contact with the antigen in known antibody-antigen complexes (15), suggesting that modifications at the above mentioned positions will result in an expansion of structure space that is relevant for antigen recognition.

Libraries of scFv clones producing different insertion vari-
Modifications refer to the nature of the changes in loop length; Ins indicates insertion, and Del indicates deletion. Numbering is according to the IMGT unique numbering (7). Canonical class indicates the combination of canonical structures of CDRH1, H2, and L1 as determined by automatic canonical structure classification (27). The altered canonical structure is indicated in bold. Antigen recognition: –, negative; ±, weakly positive; +, positive; ++, strongly positive.

scFv clone	Modification	Canonical class	Antigen recognition	Unfolding temperature
AE11F	Original sequence	H1-H2-L1	++	62.4
ASV18	Ins Pro-31A	2-3-2	+	
ASV19	Ins Asn-31A	2-3-2	+	
ASV43	Ins Arg-31A	2-3-2	+	
ASV15	Ins His-32A	2-3-2	±	
ASV37	Ins Ile-32A	2-3-2	+	
ASV39	Ins Phe-32A	2-3-2	±	
ASV02	Ins Phe-33A	2-3-2	±	
ASV35	Ins Asn-33A	2-3-2	–	
ASV07	Ins Lys-57A	1-U-2	++	63.0
ASV08	Ins Ile-57A	1-U-2	–	
ASV28	Ins Thr-57A	1-U-2	++	
ASV05	Ins Glu-58A	1-U-2	++	
ASV10	Del Val-58	1-1-2	±	61.9
ASV17F3–20L1	Ins CDR1U*	1-3-6-6	+	62.3
FITC8	Original sequence	H1-H2	++	63.4
FSV71	Ins Ser-31A	2-3	+	
FSV73	Ins His-31A	2-3	±	
FSV76	Ins Arg-31A	2-3	+	
FSV81	Ins Asn-32A	2-3	+	
FSV84	Ins Pro-32A	2-3	++	61.7
FSV85	Ins Arg-32A	2-3	+	
FSV91	Ins Leu-33A	2-3	+	
FSV93	Ins His-33A	2-3	+	
FSV96	Ins Tyr-33A	2-3	+	
FSV51	Ins Ser-57A	1-U	+	
FSV52	Ins Ala-57A	1-U	+	
FSV56	Ins Leu-57A	1-U	++	61.1
FSV43	Ins Thr-58A	1-U	+	
FSV46	Ins Arg-58A	1-U	±	63.9
FSV61	Del Gly-58	1-1	+	

* U indicates that the canonical structure of the created loop length is currently unknown.

** See text for details regarding the insertion.

The automatic canonical class algorithms failed to unambiguously predict a structure for the CDRL1 loop of this scFv. Similarities in length and sequence with Fab 1f7 (PDB entry 1fig) suggest that the loop belongs to canonical structure class 6 (30). Antigens were screened directly by the use of a colony lift assay (25).

A number of clones of each specificity, chosen to exemplify the different modifications, were produced at a large scale to study the interaction with the original antigens in detail and determine the stability of the purified proteins. BIAcore measurements with the purified monomers of the ASV07, ASV10, ASV35, FSV43, FSV61, and FSV84 clones confirmed the previously obtained results with crude expression supernatants (Table I and Fig. 2). Furthermore, evaluation of the reaction rate kinetics with the original antigen showed that the modifications did not affect the dissociation rates of the FITC8-based clones to any greater extent (Fig. 2B). The thermal stability of the purified monomers was determined by DSC, and all tested clones displayed unfolding temperatures very similar to the parent scFv (Table I), further verifying that the IGHV3-derived antibody frameworks tolerate single-codon insertions and deletions in CDRH1 and H2 very well.
As insertions and deletions have been demonstrated to occur naturally in both heavy and light domain V genes (8), we decided to extend this study and also evaluate the stability of a previously produced AE11F-based scFv variant with an insertion in CDRL1 (AE11F/3-20L1) (21). The modified CDRL1 of this scFv is identical, except for an additional serine residue, to the germline gene from which AE11F originates. This clone has also been demonstrated to recognize both the epitope-mimicking peptide and intact, recombinant glycoprotein B, albeit with a lower affinity than the affinity matured AE11F scFv (21, 32). The thermal stability of the AE11F/3-20L1 scFv was determined as before after purification of monomeric scFv, and the unfolding temperature was found to be similar to that of the original scFv (Table I), thus indicating that not only heavy but also light domain CDR tolerate modifications of this nature well.

Grafting of CDRH1 Loops from Distantly Related IGHV Genes—As all of the insertions and deletions described so far were introduced at the tips of the hypervariable loops, the parts of the immunoglobulin fold that best can be expected to accommodate such modifications, we decided to introduce more extensive modifications to investigate the effect of such changes of antibody sequence and structure. These modifications were introduced into and immediately adjacent to CDRH1 of the AE11F framework by the CDR-shuffling technique (22) using CDR sequences isolated from activated human B cells. Sequences originating from the IGHV4 subgroup were chosen for...
Insertions and Deletions in Antibody Hypervariable Loops

TABLE II

Deduced amino acid sequences, germline gene origin, and canonical structure class belonging of the CDRH1 loops of the AE11F scFv and the CDRH1-grafted variants of this

scFv clone	Amino acid sequence	Germline origin	Canonical structure
2	SCAASGF1PSY92--MNVRQ	IGHV3-30	1
2	V..V..SGYYSW91..	IGHV4-31	3
E3	V..V..S3IGVY-W91..	IGHV4-6	2
E10	V..V..SGYYSW91..	IGHV4-39	1
E11	V..V..G9--WS91..	IGHV4-34	3
E14	V..V..SGYYSW91..	IGHV4-30-2	3

the grafting as these are only distantly related to the IGHV3 CDR and therefore allow for a higher degree of variability. In addition, genes from the IGHV4 subgroup encode loops of different lengths than genes from the IGHV3 subgroup, including loops of the same length as the ones created by the single-codon insertions in CDRH1, thus enabling a comparison with these modifications. Sequencing of randomly picked clones showed that seemingly functional, i.e. in-frame and without stop codons, IGHV3 genes carrying IGHV4-derived CDRH1 sequences were obtained (Table II). However, when analyzing crude expression supernatants of the constructs, it was found that all of the clones had lost the original antigen specificity and structures. Although sequence modifications of this kind, especially insertions, have also been exploited in antibody engineering, knowledge about the effects of these modifications on protein stability and antigen recognition is still limited. Such factors are critical as they determine the success of this mode of molecular evolution, whether employed by nature or by the molecular engineer. To study the functional consequences of both insertions and deletions in the CDR of human antibodies, we have here made single-codon insertions and deletions as well as more extensive modifications in the CDR of two antibody fragments with different specificities and assessed the thermal stability and the antigen binding properties of the resulting proteins.

The single-codon modifications were well tolerated by the two scFv frameworks as determined by the thermal stability measurements and the high ratio of functional clones despite the fact that they created both loop lengths that do not occur normally within the human IGHV3 subgroup and combinations of loop lengths that do not exist in the human germline repertoire. Insertion of one residue in CDRH2 of the two scFv studied here creates a loop length (CDR2-IMGT length 9 amino acids) that is not naturally encoded by any IGHV genes except for the only member of the IGHV6 subgroup (7). This loop length has been predicted to have its own distinct conformation (canonical structure 5, Ref. 31), but as no immunoglobulin encoded by this gene has been structurally determined, this canonical structure has not been defined. The insertion of one residue in CDRH1 produces a loop length (CDR1-IMGT length 9 amino acids) that occurs naturally within the human IGHV4, but not the IGHV3 subgroup, and which could correspond to canonical structure 2 as judged by the automatic canonical structure classification. This coexistence of canonical structure 2 in CDRH1 with canonical structure 3 in CDRH2 (Table I) does not occur naturally within the human IGHV germline repertoire, although it has been observed in hypermutated antibodies with insertions in CDRH1 (8). In addition, the structure classification also revealed that a large number of the key residue requirements for canonical structure 2 were not fulfilled (27), i.e. the thus modified CDRH1 loops either take on structures not covered by the described canonical structures or adopt the observed structure corresponding to this loop length despite the presence of a large number of disallowed amino acids at key residue positions. Irrespective of the circumstances, the insertions in CDRH1 seem to, like the rest of the single-codon modifications, give rise to scFv that are correctly folded and stable.

Table: Insertions and Deletions in Antibody Hypervariable Loops

Insertions and deletions of nucleotides have recently been shown to be an additional mechanism whereby immunoglobulin V region genes are evolved (8–11) and which may expand the available repertoire of antibody hypervariable loop lengths and structures. Although sequence modifications of this kind, especially insertions, have also been exploited in antibody engineering, knowledge about the effects of these modifications on protein stability and antigen recognition is still limited. Such factors are critical as they determine the success of this mode of molecular evolution, whether employed by nature or by the molecular engineer. To study the functional consequences of both insertions and deletions in the CDR of human antibodies, we have here made single-codon insertions and deletions as well as more extensive modifications in the CDR of two antibody fragments with different specificities and assessed the thermal stability and the antigen binding properties of the resulting proteins.

The single-codon modifications were well tolerated by the two scFv frameworks as determined by the thermal stability measurements and the high ratio of functional clones despite the fact that they created both loop lengths that do not occur normally within the human IGHV3 subgroup and combinations of loop lengths that do not exist in the human germline repertoire. Insertion of one residue in CDRH2 of the two scFv studied here creates a loop length (CDR2-IMGT length 9 amino acids) that is not naturally encoded by any IGHV genes except for the only member of the IGHV6 subgroup (7). This loop length has been predicted to have its own distinct conformation (canonical structure 5, Ref. 31), but as no immunoglobulin encoded by this gene has been structurally determined, this canonical structure has not been defined. The insertion of one residue in CDRH1 produces a loop length (CDR1-IMGT length 9 amino acids) that occurs naturally within the human IGHV4, but not the IGHV3 subgroup, and which could correspond to canonical structure 2 as judged by the automatic canonical structure classification. This coexistence of canonical structure 2 in CDRH1 with canonical structure 3 in CDRH2 (Table I) does not occur naturally within the human IGHV germline repertoire, although it has been observed in hypermutated antibodies with insertions in CDRH1 (8). In addition, the structure classification also revealed that a large number of the key residue requirements for canonical structure 2 were not fulfilled (27), i.e. the thus modified CDRH1 loops either take on structures not covered by the described canonical structures or adopt the observed structure corresponding to this loop length despite the presence of a large number of disallowed amino acids at key residue positions. Irrespective of the circumstances, the insertions in CDRH1 seem to, like the rest of the single-codon modifications, give rise to scFv that are correctly folded and stable.

The fact that the loop lengths that were created by the single-codon insertions are not part of the IGHV3-encoded repertoire does not mean that they are completely unnatural in the context of an IGHV3 framework. Apparently functional antibodies belonging to the IGHV3 subgroup with insertions in CDRH1 and CDRH2 leading to CDR-IMGT loop lengths of 9 amino acids have in fact been described by others (8, 34, 35). As the deletions at position 58 in CDRH2 of both scFv give rise to loop lengths that are used by other members of the IGHV3 subgroup, it is not entirely unexpected that these modifications...
Clones carrying CDRH1 sequences from distantly related IGHV genes displayed a polyreactive character. Reactivity of the AE11F (□), E3 (■), E6 (○), E10 (▲), E11 (●), and E14 (●) scFv with streptavidin-bound viral peptide (A), streptavidin (B), BSA (C), ovalbumin (D), and uncoated polystyrene wells (E), as determined by ELISA. Relative concentrations of the expression supernatants were estimated by immunoblotting. The coefficient of variation was below 10% for the whole data set.

CD spectroscopy indicated an unordered folding of the CDRH1-grafted clones. CD spectra of purified monomers of the AE11F (thick solid line), FITC8 (thin solid line), E3 (thick broken line), and E6 (thin broken line) scFv in 50 mM sodium phosphate, pH 7.4.

Insertions and Deletions in Antibody Hypervariable Loops are tolerated by the scFv frameworks studied here. Furthermore, in a previous study, we have found that single-codon deletions, some of which have also been shown to be functional, occur in antibodies belonging to the IGHV3 subgroup at or immediately adjacent to position 58 (12). The single-codon modifications of antibody sequence space we have presented here are in other words highly representative of changes that may occur naturally as a consequence of the somatic hypermutation process.

As some of the single-codon insertions produced loop lengths found in antibodies belonging to the IGHV4 subgroup, we decided to investigate the possibility of using CDRH1 sequences originating from this subgroup to diversify the AE11F scFv. This approach resembles evolution through receptor revision, which occurs in vivo (36, 37) and has also been shown to provide a selection advantage in vitro (38). However, grafting of CDRH1 loops of different lengths from the IGHV4 subgroup into the IGHV3 framework used by the AE11F scFv resulted not only in a loss of the original antigen specificity but also in the acquisition of a polyreactive character, even when not having been put through a potentially denaturing purification process (39), by the thus modified scFv clones (Fig. 3). This polyreactivity is most likely due to a destabilized or inappropriately folded V domain, as demonstrated by the CD spectra of two of the clones (Fig. 4). Destabilizing effects of loop grafting into an antibody framework have been reported previously (40), but in that particular case, the grafted sequences were totally unrelated to antibody hypervariable loops. The use of naturally occurring CDR sequences for grafting into immunoglobulin frameworks often ensures that the inserted loops are optimally functional as they have been proofread and selected for functionality during the formation of the B cell receptors. Our data show, however, that the functionality of the grafted loops also depends on the framework they are inserted into even if they are natural immunoglobulin sequences. The reason for the observed effects probably lies in the differences in certain key residues between the IGHV3 and IGHV4 frameworks. In fact, many of the amino acids that differ between the original AE11F sequence and the grafted sequences are residues that are used to define the canonical structures (27, 31). In addition, Tramontano et al. (41) have shown that framework residue 80 of the heavy V domain packs against residues in both CDRH1 (position 30) and CDRH2 (position 58) and that it is an important determinant of the conformation of the CDRH2 loop. A subsequent mutational study has also shown that the nature of this residue determines the binding characteristics of an antibody by influencing the conformation of the heavy chain CDR loops (42). The AE11F framework has, like all unmutated antibodies belonging to the IGHV3 subgroup, an Arg at position 80, whereas all genes belonging to the IGHV4 subgroup, from which the CDRH1 sequences were obtained, encode a Val residue at this position in their germline configurations. The larger, charged Arg possibly causes clashes with the IGHV4-derived residues in and adjacent to CDRH1, which leads to an improper fold and poor stability of the resulting scFv product.

In conclusion, we demonstrate here that single amino acid insertions in both CDRH1 and H2 and deletions in CDRH2, which are highly representative of modifications that occur naturally in regions of the hypervariable loops known to be involved in antigen contact (15) during the maturation of B cell receptors, are well tolerated and permit production of stably folded proteins. This is true despite the fact that the thus modified loops do not fulfill the key residue requirements for canonical loops of the corresponding length or are of a length not associated with a known canonical structure (27). This demonstrates the plasticity of antibody V domain frameworks belonging to the important IGHV3 subgroup, which makes up a large fraction of all human antibodies (43), and its capacity to tolerate modifications that expand sequence and structure space beyond the limits set by the germline-encoded diversity.
Based on the similarities with naturally occurring alterations of loop lengths, our results with insertions and deletions in CDRH1, H2, and L1 of the antibody fragments used in this study, and work on an unrelated scFv with a three-amino acid CDRI, H2, and L1 of the antibody fragments used in this study, our conclusion is that both insertions and deletions can be efficiently utilized in antibody engineering to expand the structural space available to human antibodies as long as alteration is paid to key residues in the framework (41). As demonstrated by previous studies on murine antibodies, this approach can be used for improving already existing specificities (17, 44). However, analogously with the correlation between CDR loop lengths and the antigen repertoire, the natural occurring alterations in CDR lengths and combinations of loop lengths not encoded by the germline class of antigens such as haptens, peptides, or large molecules.

Finally, we hypothesize that introduction of novel loop lengths and combinations of loop lengths not encoded by the germline repertoire may also enable the targeting of poorly immunogenic or previously unrecognized antigens and epitopes as entirely new regions of antibody structure space are explored by this mode of sequence diversification.

Acknowledgments—We thank Ola Jakobsson and Micael Owald for technical assistance.

REFERENCES

1. Amzel, L. M., and Poljak, R. J. (1979) Annu. Rev. Biochem. 48, 961–997
2. Padlan, E. A. (1994) Mol. Immunol. 31, 169–217
3. Al-Lazikani, B., Lesk, A. M., and Chothia, C. (1997) J. Mol. Biol. 273, 927–948
4. Tonegawa, S. (1983) Nature 302, 575–581
5. Berek, C., and Milstein, C. (1987) Immunol. Rev. 96, 23–41
6. Nemazee, D., and Weigert, M. (2000) J. Exp. Med. 191, 1813–1817
7. Lefranc, M. P. (2001) Nucleic Acids Res. 29, 207–209
8. de Wildt, R. M., van Venrooij, W. J., Winter, G., Hoet, R. M., and Tomlinson, I. M. (1999) J. Mol. Biol. 294, 701–710
9. Goossens, T., Klein, U., and Kuppers, R. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 2463–2468
10. Ohlin, M., and Borrebaeck, C. A. K. (1998) Mol. Immunol. 35, 233–238
11. Wilson, P. C., de Bouteiller, O., Liu, Y. J., Potter, K., Banchereau, J., Capra, J. D., and Pascual, V. (1998) J. Exp. Med. 187, 59–70
12. Lantto, J., and Ohlin, M. (2002) J. Mol. Biol. 324, 346–353
13. Wilson, I. A., and Stanfield, R. L. (1990) Curr. Opin. Struct. Biol. 3, 113–118
14. Webster, D. M., Henry, A. H., and Rees, A. R. (1994) Curr. Opin. Struct. Biol. 4, 123–129
15. MacCallum, R. M., Martin, A. C., and Thornton, J. M. (1996) J. Mol. Biol. 262, 732–745
16. Vargas-Madrazo, E., Lara-Ochoa, F., and Almagro, J. C. (1995) J. Mol. Biol. 254, 497–504
17. Lammimmaki, U., Paupério, S., Westerlund-Karlsson, A., Kärvinen, J., Virtanen, P. L., Lovgren, T., and Saviranta, P. (1999) J. Mol. Biol. 291, 589–602
18. Ohlin, M., Sundqvist, Y. A., Mach, M., Wahren, B., and Borrebaeck, C. A. K. (1993) J. Viral. 67, 703–710
19. Ohlin, M., Owman, H., Mach, M., and Borrebaeck, C. A. K. (1996) Mol. Immunol. 33, 47–56
20. Söderlind, E., Strandberg, L., Jirholt, P., Kobayashi, N., Alexeivska, V., Åberg, A. M., Nilsson, A., Jansson, B., Ohlin, M., Wingren, C., Danielsson, L., Carlsson, R., and Borrebaeck, C. A. K. (2000) Nat. Biotechnol. 18, 852–856
21. Lantto, J., Lindroth, Y., and Ohlin, M. (2002) Eur. J. Immunol. 32, 1659–1669
22. Jirholt, P., Ohlin, M., Borrebaeck, C. A. K., and Söderlind, E. (1998) Gene (Amst.) 215, 471–476
23. Lantto, J., Jirholt, P., Barrios, Y., and Ohlin, M. (2002) Methods Mol. Biol. 178, 303–316
24. Hopp, T. P., Prickett, K. S., Price, V. L., Libby, R. T., March, C. J., Cerretti, D. P., Urdal, D. L., and Conlon, P. J. (1988) Bio/Technology 6, 1204–1210
25. McGrew, J. T., Leiske, D., Dell, B., Klinke, R., Krasa, D., Wei, S. F., Abbott, N., Armitage, R., and Harrington, K. (1997) Gene (Amst.) 187, 193–200
26. Jirholt, P., Strandberg, L., Jansson, B., Krambovitis, E., Söderlind, E., Borrebaeck, C. A. K., Carlsson, R., Danielsson, L., and Ohlin, M. (2001) Protein Eng. 14, 67–74
27. Martin, A. C., and Thornton, J. M. (1996) J. Mol. Biol. 263, 800–815
28. Lantto, J., Fletcher, J. M., and Ohlin, M. (2002) J. Gen. Virol. 83, 2001–2005
29. Whitelegg, N. R., and Rees, A. R. (2000) Protein Eng. 13, 819–824
30. Tomlinson, I. M., Cox, J. P., Gherardi, E., Lesk, A. M., and Chothia, C. (1995) EMBO J. 14, 4628–4638
31. Chothia, C., Lesk, A. M., Gherardi, E., Tomlinson, I. M., Walter, G., Marks, J. D., Llewelyn, M. B., and Winter, G. (1992) J. Mol. Biol. 227, 799–817
32. Lantto, J., Fletcher, J. M., and Ohlin, M. (2002) Virology, in press
33. Woody, W. R. (1995) Methods Enzymol. 246, 34–71
34. Brezinschek, H. P., Foster, S. J., Brezinschek, R. I., Dorner, T., Dominati-Saad, R., and Lipsky, P. E. (1997) Clin. Invest. 99, 2488–2501
35. Nopp, S. M., Herrmann, C., Bakkus, M. H., Brinsinck, J., Schots, R., and Thielenman, K. (1999) Br. J. Haematol. 107, 625–640
36. Wilson, P. C., Wilson, K., Liu, Y. J., Banchereau, J., Pascual, V., and Capra, J. D. (2000) J. Exp. Med. 191, 1881–1894
37. Itok, M., Meffe, E., Alesiasi, E., Farber, A., Dines, D., Stein, F., Anisi, S. E., Furie, R. A., Jain, R. I., and Chiorazzi, N. (2000) J. Exp. Med. 192, 1151–1164
38. Ellmark, P., Esteban, O., Furehoogle, C., Malmborg Hager, A.-C., and Ohlin, M. (2002) Mol. Immunol. 39, 349–356
39. McMahon, M. J., and O’Kennedy, R. (2000) J. Immunol. Methods 241, 1–10
40. Helms, L. R., and Wetzel, R. (1995) Protein Sci. 4, 2073–2081
41. Tramantana, A., Chothia, C., and Lesk, A. M. (1990) J. Mol. Biol. 215, 175–182
42. Xiang, J., Sha, Y., Jia, Z., Prasad, L., and Delbaere, L. T. (1995) J. Mol. Biol. 253, 385–390
43. de Wildt, R. M., Hoet, R. M., van Venrooij, W. J., Tomlinson, I. M., and Winter, G. (1999) J. Mol. Biol. 283, 893–901
44. Parhami-Seren, B., Visswanathan, M., and Margolies, M. N. (2002) J. Immunol. Methods 259, 43–53
