Amyloid precursor protein maintains constitutive and adaptive plasticity of dendritic spines in adult brain by regulating D-serine homeostasis

Chengyu Zou1,2, Sophie Crux1,2,3, Stephane Marinesco4, Elena Montagna1,2, Carmelo Sgobio1, Yuan Shi1,2, Song Shi2, Kaichuan Zhu1,2, Mario M Dorostkar2, Ulrike C Müller5 & Jochen Herms1,2,3,*

Abstract

Dynamic synapses facilitate activity-dependent remodeling of neural circuits, thereby providing the structural substrate for adaptive behaviors. However, the mechanisms governing dynamic synapses in adult brain are still largely unknown. Here, we demonstrate that in the cortex of adult amyloid precursor protein knock-out (APP-KO) mice, spine formation and elimination were both reduced while overall spine density remained unaltered. When housed under environmental enrichment, APP-KO mice failed to respond with an increase in spine density. Spine morphology was also altered in the absence of APP. The underlying mechanism of these spine abnormalities in APP-KO mice was ascribed to an impairment in D-serine homeostasis. Extracellular D-serine concentration was significantly reduced in APP-KO mice, coupled with an increase of total D-serine. Strikingly, chronic treatment with exogenous D-serine normalized D-serine homeostasis and restored the deficits of spine dynamics, adaptive plasticity, and morphology in APP-KO mice. The cognitive deficit observed in APP-KO mice was also rescued by D-serine treatment. These data suggest that APP regulates homeostasis of D-serine, thereby maintaining the constitutive and adaptive plasticity of dendritic spines in adult brain.

Keywords amyloid precursor protein; dendritic spine; D-serine microelectrode biosensor; spine plasticity; two-photon in vivo imaging

Subject Categories Neuroscience

DOI 10.15252/embj.201694085 | Received 10 February 2016 | Revised 20 July 2016 | Accepted 8 August 2016 | Published online 29 August 2016

The EMBO Journal (2016) 35: 2213–2222

Introduction

Small protrusions of dendrites, known as spines, provide primary sites for excitatory inputs in principal neurons of most brain regions. Harboring the receptive elements of glutamatergic connections, dendritic spines are of major importance for synaptic integration and plasticity, hence a prerequisite for encoding cortical representations and adaptive remodeling of neural circuits (Nimchinsky et al, 2002; Yuste, 2011; Sala & Segal, 2014). To ensure these functions, the morphology and distribution of dendritic spines are maintained in a highly dynamic state and are tightly regulated (Yuste & Bonhoeffer, 2001; Kasai et al, 2010; May, 2011). Thus, it is not surprising that the structural parameters of dendritic spines including spine density, morphology, and plasticity are affected in an array of neurodegenerative diseases (Fiala et al, 2002; Fuhrmann et al, 2007; Bittner et al, 2010; Lai & Ip, 2013; Fol et al, 2016). As such, research into mechanisms governing functions and structural plasticity of dendritic spines, which remain largely unexplored in adult brain, holds important clues not only toward understanding the basic biology of synapses with neural mechanisms of adaptive behavior but may also reveal key areas for therapeutic interventions.

Enduring interest toward amyloid precursor protein (APP), due to its key role for the pathogenesis of Alzheimer’s disease, has been fueled by recent evidence indicating its multifaceted role in synaptic physiology and development (Moya et al, 1994; Herms et al, 2004; Hoe et al, 2012; Muller & Zheng, 2012). While the mechanistic details remain to be elucidated, increasing evidence indicates important trans-synaptic adhesive functions for trans-membrane APP and major neurotrophic roles of secreted ectodomain APPsα in neurons (Soba et al, 2005; Bell et al, 2008; Jimenez et al, 2011; Aydin et al, 2012; Caldwell et al, 2013; Baumkotter et al, 2014). The high level of APP expression in the developing nervous system with its enrichment at nascent synapses and potent synaptogenic effects of secreted APPsα have also been implied in the formation and stability of synapses during neurodevelopment (Caille et al, 2004; Claassen et al, 2009; Wang et al, 2009; Weyer et al, 2011, 2014; Hoe et al, 2012; Klevanski et al, 2014, 2015; Hick et al, 2015). Despite of the key relevance of these processes for integrative mechanisms of neurons and synaptic plasticity, the role of APP in governing...
Results

Dendritic spine dynamics are decreased in the absence of APP

APP proved critical in the formation and stabilization of synaptic connections in the developing nervous system (Priller et al., 2006; Weyer et al., 2011, 2014; Hoe et al., 2012; Muller & Zheng, 2012). To find out if the dynamics of dendritic spines in adult brain are also regulated by APP, we monitored and compared the density and turnover rate (TOR) of dendritic spines in cortical pyramidal neurons of 4- to 5-month-old WT and APP-KO mice in vivo. Apical tufts of layer V pyramidal neurons were imaged in the somatosensory cortex (Fig 1A). While the spine densities of WT and APP-KO mice remained unchanged during our imaging period (Fig 1B), both the elimination and formation of spines were significantly lower in neurons of APP-KO mice compared to controls (Fig 1D and E), resulting in reduced spine TOR (Fig 1C). Thus, the decrease in spine TOR without change in spine density indicates a key role of APP in maintaining dendritic spine dynamics.

Adaptive plasticity of dendritic spines is impaired in APP-KO mice

To investigate whether reduced spine dynamics has a functional consequence in neural circuit remodeling in adult brain, both WT and APP-KO mice were exposed to environmental enrichment (EE) over 5 weeks, with spine density and dynamics monitored (Fig 2A). EE is known to provide a spectrum of synaptic inputs, which activate and lead to adaptive synaptic alterations within the adult brain (Nithianantharajah & Hannan, 2006; Mora et al., 2007; Sale et al., 2014). In agreement with earlier reports (Berman et al., 1996; Kozorovitskiy et al., 2005; Jung & Herrms, 2014), in WT mice environmental enrichment induced a steady increase of spine density. In sharp contrast, environmental enrichment failed to increase spine density in APP-KO mice (Fig 2B). Of note, unlike WT mice demonstrating gradual decline in dendritic spine elimination upon environmental enrichment (EE), the rate of spine elimination in APP-KO genotype remained unaltered (Fig 2C). Collectively, these data demonstrate an essential role of APP in regulating constitutive turnover of dendritic spines and their adaptive remodeling in the adult brain.

Impaired spine plasticity in APP-KO mice coincides with altered spine morphology

Structural plasticity of dendritic spines is closely correlated with spine morphology, which presents a reliable indicator of the developmental state and strength of excitatory synaptic inputs of cortical neurons (Hayashi & Majewska, 2005; Bosch & Hayashi, 2012). Classified in three major groups—stubby, mushroom, and thin spines, the relative fraction of various spine types in the brain is regulated by synaptic activity and developmental mechanisms (Benavides-Piccione et al., 2002; Konur et al., 2003). To find out whether impaired plasticity of dendritic spines in APP-KO mice correlates with aberrations in spine morphology, we assessed spine type distribution in adult WT and APP-KO mice housed under standard or enriched conditions (Fig 3). In APP-KO mice, the fraction of thin spines was reduced while the relative number of mushroom spines was enhanced irrespective of housing conditions (Fig 3A–C). Counting of stubby spines revealed no differences between two genotypes (not shown). As thin spines are more dynamic and responsive to external stimulation (Bourne & Harris, 2007), the reduction in thin spines paralleled by an increased fraction of mushroom spines support our observations on spine plasticity impairments of APP-KO genotype.

D-serine homeostasis is impaired in APP-KO mice

Synaptic plasticity depends on the glial release of D-serine, the endogenous co-agonist of N-methyl-D-aspartate (NMDA) receptors (Panatier et al., 2006; Henneberger et al., 2010). D-serine release from glial cells occurs mainly through calcium-dependent exocytosis (Martineau et al., 2014). Interestingly, calcium signaling in APP-KO astrocytes is dysregulated (Hamid et al., 2007; Linde et al., 2011). All these facts prompted us to measure cortical extracellular and total D-serine concentrations in APP-KO mice. We found that extracellular concentration of endogenous D-serine measured using microelectrode biosensors was dramatically decreased in the absence of APP (Fig 4A), which was in contrast to the increase of total D-serine and L-serine in APP-KO mice, quantified using HPLC (Fig 4B and C). These results suggest that the maintenance of D-serine homeostasis requires APP.

Exogenous D-serine treatment restores D-serine homeostasis and the structural plasticity of dendritic spines in APP-KO mice

As the extracellular D-serine concentration is decreased, we tested whether treatment with exogenous D-serine could rescue the impaired structural plasticity of dendritic spines in APP-KO mice. D-serine was supplemented to the drinking water of APP-KO mice housed under standard or enriched conditions, and dendritic spines were monitored over several weeks. To our surprise, exogenous D-serine treatment not only restored extracellular D-serine level (Fig 4A), but also normalized the concentrations of total D-serine and L-serine in APP-KO brain (Fig 4B and C). Also, as illustrated in Fig 5A, D-serine treatment in APP-KO mice increased constitutive spine dynamics under standard housing conditions (Fig 5B and C) and rescued the adaptive gain of spines upon environmental enrichment (Fig 5E). Likewise, treatment of APP-KO mice with D-serine enhanced the fraction of thin spines and lowered the relative number of spines with mushroom morphology (Fig 5F and G). In WT mice, spine dynamics and adaptive plasticity were not altered following D-serine administration (Fig EV1). These data suggest that constitutive and adaptive structural plasticity of dendritic spines depend on the homeostasis of D-serine, which is impaired in the absence of APP.
Treatment with D-serine rescues cognitive deficit of APP-KO mice

The structural plasticity of dendritic spines has important implications for cognition and memory (Kasai et al., 2010; Lai & Ip, 2013). To investigate whether the impaired spine plasticity in APP-KO mice is associated with perturbed cognitive performance, we subjected mice to the novel objective recognition test. As a baseline, we monitored motor performance, which was not significantly different between genotypes (Fig 6A). In contrast to WT mice that spend more time exploring a novel object, APP-KO mice displayed memory deficits, as they spent similar time to explore novel and already familiar objects (Fig 6B). Strikingly, treatment of APP-KO mice with D-serine, restored the preference for the novel object, as indicated by significantly longer exploration time (Fig 6B). These results indicate that exogenous D-serine treatment improved cognitive performance in APP-KO mice, which may relate to the restoration of spine dynamics and remodeling.

Discussion

We have shown here that in adult APP-KO mice, dendritic spine dynamics and remodeling are impaired. This finding assigns an important role to APP in governing structural plasticity of dendritic spines. Remarkably, the impaired spine plasticity and cognitive deficits could be rescued by exogenous D-serine administration, which also restores unbalanced D-serine homeostasis in APP-KO brain.
These converging results pinpoint the functional role of APP in affecting the homeostasis of D-serine and thereby maintaining constitutive and adaptive plasticity of dendritic spines in the adult brain.

As a ubiquitous type I trans-membrane glycoprotein expressed in the brain, APP with its cleavage product Aβ has long been implicated in AD (Hardy & Selkoe, 2002; Selkoe, 2008). Produced by β/γ proteolysis of APP, Aβ40/42 peptides represent the main constituents of amyloid plaques in AD brain and are considered a major cause of synapse loss and neurotoxicity, leading to cognitive decline and memory deficits. At the same time, the role of APP and its fragments in synaptic physiology has been widely recognized with several studies demonstrating the essential role of APP and related APP-like proteins (APLPs) for synaptogenesis (Muller et al, 1994; Priller et al, 2006; Hoe et al, 2012; Muller & Zheng, 2012; Hick et al, 2015). In fact, recent evidence emphasizes the crucial role of protective effects mediated by full-length APP and APPα on synapses and neurons (Ring et al, 2007; Yang et al, 2009; Hick et al, 2015; Klevanski et al, 2015; Fol et al, 2016). Hence, deciphering molecular mechanisms mediating APP functions is essential not only for basic research of synaptic physiology but also for translational neuroscience. Because the morphology and dynamics of dendritic spines correlate with the strength and stability of excitatory synapses, decrease in the fraction of thin spines with reduction in spine turnover in APP-KO mice are consistent with impaired structural plasticity. The lower fraction of dynamic thin spines with an increase in more stable mushroom spines suggest that the excitatory inputs of layer V pyramidal neurons of APP-KO mice are hardwired more rigidly and are less prone to contextual and behavioral remodeling.

Extracellular D-serine is involved in the modulation of plasticity at glutamatergic synapses, as endogenous co-agonist of synaptic NMDA receptors (Panatier et al, 2006). Indeed, long-term potentiation (LTP), a classical form of NMDA receptor-dependent synaptic plasticity, depends on extracellular D-serine, which is mainly released from astrocytes (Henneberger et al, 2010). The mechanism underlying astrocytic D-serine released into the extracellular space is largely attributed to calcium-dependent exocytosis. Disrupting calcium signaling in astrocytes reduces D-serine release (Takata et al, 2011; Shigetomi et al, 2013). Intriguingly, in vitro experiments in astrocytes of APP-KO mice have previously indicated an important physiological role of APP for regulating calcium signaling (Hamid et al, 2007; Linde et al, 2011). Together with our in vivo data, this suggests that dysregulated calcium signaling in APP-KO astrocytes might decrease their ability to release D-serine into the extracellular space. At the same time, disrupted exocytosis in astrocytes triggers D-serine accumulation in their vesicular pools, explaining why total D-serine levels did not decrease but actually increased in APP-KO compared to control mice. Note that total D-serine level measured by HPLC is more than 99% intracellular (Pernot et al, 2012). So far, the only D-serine storage mechanism described in literature is the pool of vesicles located in astrocytes (Martineau et al, 2014), while D-serine synthesized in neurons is not stored, but released through Ascl transporters and eliminated through the blood or taken up by astrocytes.
Therefore, D-serine accumulation in astrocytic vesicles resulted in increased D-serine amount in our HPLC measurements. In addition, APP fragments, including amyloid beta-peptide and secreted APP, have been reported to induce the release of D-serine from microglia by increasing serine racemase (SR) expression (Wu et al., 2004, 2007). All these findings suggest that APP might modulate extracellular D-serine release in different cell types via different mechanisms.

To restore the decreased level of extracellular D-serine, we treated APP-KO mice chronically with oral administration of D-serine. As we expected, we observed in APP-KO mice that extracellular D-serine release recovered, as well as deficits in behavioral and spine dynamics. Surprisingly, the total D-serine and L-serine, the precursor of D-serine, levels in APP-KO brains were also normalized to control level after exogenous D-serine treatment. This observation clearly links APP deficiency to alteration of production, maintenance and/or release of D-serine. Further investigations are needed to dissect the specific components resulting in unbalanced D-serine homeostasis, which may also involve in vitro studies. However, in vitro condition may not guarantee the physiological balance between intracellular and extracellular amino acid concentrations, important for a functional tonic and phasic D-serine release. For example, prolonged recording session in slices, as well as in cell cultures, might dilute D-serine concentration and diffusion between cells. Although our data cannot rule out the contribution of synaptic and neurotrophic functions of APP in APP-KO mice, the restorative effects of exogenous D-serine suggest that APP regulates...
Figure 5. Treatment of APP-KO mice with exogenous D-serine restores the structural plasticity and morphology of dendrite spines.

A Consecutive in vivo imaging of the same apical dendrites from layer V pyramidal neurons in the somatosensory cortex of APP-KO mice housed under standard or enriched environment. Note that both groups of mice received D-serine after the second imaging time point (8 days); white and empty arrowheads point to newly formed and eliminated spines, respectively. Scale bar, 10 μm.

B Spine TOR prior and during continuous D-serine treatment.

C, D Summary plots of the fraction of spine elimination and formation in APP-KO mice before and after D-serine treatment (8 and 46 days, respectively).

E Relative spine densities in D-serine treated APP-KO mice housed under standard and enriched environments.

F, G Summary plots of the fraction of thin and mushroom spines in control and D-serine treated APP-KO mice.

Data information: For illustration purpose, the control data from Fig 3B and C are presented also here. Results are presented as mean ± SEM. Nonlinear regression (F-test) has been used for fitting the data points. Two-tailed Student’s t-test was used in (C, D, F and G) and repeated one-way ANOVA was performed followed by Dunnett’s test in (B and E). N = 5 mice in each group; *P < 0.05, **P < 0.01, NS = no significant difference.
the dynamics and plasticity of dendritic spines in vivo via controlling D-serine homeostasis.

To conclude, our data corroborate a major role of APP for structural plasticity and adaptive remodeling of cortical synapses in the adult brain. They also indicate that lack of APP holoprotein leads to impaired D-serine homeostasis, which is associated with dysfunctional synaptic plasticity. Further research of APP-mediated functions is likely to provide valuable insights into the biology of dendritic spines and may open avenues for discovery of novel therapeutic targets for AD, a scientific investment with immense beneficial potential.

Materials and Methods

Experimental animals

All protocols and procedures involving animals were approved and conducted in accordance with the regulations of LMU and the government of Upper Bavaria (Az. 55.2-1-54-2532-62-12). GFP-M mice (Feng et al, 2000) were purchased from Jackson Laboratory, USA. APP-KO mice were described previously (Magara et al, 1999; Ring et al, 2007). APP-KO (APP−/−) × GFP-M+/− mice were generated by interbreeding. All transgenic mice were maintained on C57BL/6 background. Female transgenic mice at the age of 4 months were used for imaging, and female age-matched wild-type (WT) litters were used as controls. Mice were housed and bred in pathogen-free environment in the animal facility at the Centre for Neuropathology and Prion Research of the Ludwig Maximilian University Munich (LMU), with food and water provided ad libitum (21 ± 1°C, at 12-h/12-h light/dark cycle). All mice were either housed singly in standard cages (30 × 15 × 20 cm) or in groups in an environmentally enriched (EE) cage (80 × 50 × 40 cm) equipped with platforms and variety of toys, which were relocated every 2–3 days. In experiments with D-serine treatment, every other day D-serine (Sigma-Aldrich) was prepared freshly and supplemented into drinking water (0.55 mg/ml).

Longitudinal in vivo two-photon imaging experiments

The surgical procedure of chronic cranial window implantation and the details of experiments have been described previously (Fuhrmann et al, 2007; Holtmaat et al, 2009). In brief, under anesthesia with ketamine/xylazine (120 and 10 mg/kg, respectively) (WDI/Bayer Health Care), cranial window (4.0 mm) was implanted above the somatosensory cortex of mice after open-skull craniotomy. After 4 weeks of recovery period, in vivo two-photon microscopy was carried out using LSM 7 MP microscope (Carl Zeiss) equipped with 20× objective (NA 1.0; Carl Zeiss). Mice were anesthetized with isoﬂurane (1% in 95% O2 and 5% CO2), and body temperature was kept at 37°C with the heating pad (Fine Science Tools GmbH). Apical dendrites originating from GFP-positive layer V pyramidal neurons were imaged in consecutive sessions at specified time points. GFP was excited with a femtosecond laser (Mai Tai DeepSee, Spectra Physics) at a wavelength of 880 nm. The imaging session did not exceed 60 min. Special efforts were made to keep the intensity of laser and data acquisition settings consistent throughout the experiments. Due to limitation in axial resolution, only laterally protruding spines were included into analysis. Emerging or disappearing spines over two consecutive imaging sessions over 1 week were defined as forming or eliminating spines, with their fractions normalized to the total spine number. Spine turnover rate (TOR) was defined with the following formula: \(\text{TOR} = (N_f - N_e)/(2 \times N_t \times D) \), where \(N_f \) = formed spines, \(N_e \) = eliminated spines, \(N_t \) = total spines, \(D \) = interval days between imaging sessions. For illustration purposes only, distracting neighboring dendritic elements were removed (LSM Image examiner, Zeiss) and high-resolution (0.138 μm/pixel per frame with 1 μm/pixel z-direction) maximal projection images were deconvolved (AutoQuantX3, Media Cybernetics), with contrast and brightness adjusted.

Confocal microscopy and spine morphometry

To achieve a better resolution of spine morphologies, ex vivo confocal microscopy of GFP positive somatosensory neurons was used. Mice were injected with a lethal dose of ketamine/xylazine (200/14 mg/kg, i.p.), perfused transcardially with phosphate-buffered saline (0.1 M PBS, 50 ml) followed by paraformaldehyde (150 ml, 4% in PBS). Brains were extracted and postfixed in PFA at 4°C overnight and cut in coronal plane (60 μm) with the vibratome (VT 1000S, Leica). Sections containing somatosensory cortex were incubated in 0.1% Triton X-100, 5% normal goat serum (NGS) for 2 h at room temperature and exposed to rabbit anti-GFP antibody tagged...
implanted in cortex (2.0 mm AP, was placed under the skin of the neck and biosensors were temperature maintained at 37°C. Mice were anesthetized by isoflurane (5% for induction, then and run time was 41 min for all analyses. Amino acid standards and

HPLC measurements

To measure total D-serine concentrations, brain homogenates were prepared from mice anesthetized with a lethal dose of sodium pentobarbital. Homogenates were centrifuged at 10,000 g for 12 min to collect supernatant. HPLC measurements were performed using a Waters Alliance instrument (Waters Corporation, Guyancourt, France) with a Shiseido Capcell PAK C18 MG100 column (4.6 × 250 mm; 5 µm). The column and sample compartments were kept at 27 and 8°C, respectively, and flow rate was set at 0.9 ml/min and run time was 41 min for all analyses. Amino acid standards and brain samples were derivatized in 325-µl aliquots of a solution composed of treated with 1 mg/ml N-acetylcycteine and 2 mg/ml o-phthalaldehyde in a 0.1 M borate buffer, pH 10.5. Amino acids were eluted in a gradient composed of phase A (sodium acetate 50 mM, pH 6.5) and phase B (methanol 100%) and evolving as follows: 0–7 min phase A 95% and phase B 5%, 7–19 min phase A 80% and phase B 20%, 19–27 min phase A 10% and phase B 90%, and 28–41 min phase A 95% and phase B 5%. Amino acid derivatives were detected using a Waters fluorescence detector (excitation 340 nm–emission 450 nm) and data were acquired using the Empower Pro software package (Waters Corporation, Guyancourt, France). Calibration of D-serine detection was performed using a 4-point standard curve.

Novel objective recognition test

To evaluate cognition and memory, novel objective recognition test was used as described before (Leger et al., 2013). Mice, with or without D-serine treatment over 5 weeks, were allowed to explore an open-field arena (40 × 40 cm) freely in the absence of objects for 10 min with motor activity recorded. One day later, mice were placed in the open-field arena with two identical sample objects with exploration period of 10 min. Mice were returned to their home cages. After 24 h, mice were put back to the arena with one of the sample objects changed into a novel one. This test phase lasted 5 min. The time spent on each object was then calculated.

Statistics

For statistical analysis and comparison, GraphPad Prism 5 was used. Comparison between two different groups was performed using two-tailed Student’s t-test. Wilcoxon signed-rank test was used test whether the quotient of interaction time with the novel object divided by interaction time with the familial object significantly differed from a hypothetical value of 1 (equal interaction times). In the longitudinal measurements of spine analysis, repeated one-way ANOVA was performed followed by Dunnett’s test. For line fittings, an extra sum-of-squares F-test was used to determine whether the slopes significantly differed from the hypothetical value of 0 (i.e., no dynamic change). If the null hypothesis (no dynamic change) could not be rejected with a P value < 0.05, then a slope of 0 is shown. The numbers of mice per group for in vivo imaging are chosen based on our previous experience and stated in figure legends. About 8–12 dendrites were imaged in each mouse; the length of each dendrite was 25–35 µm. The data are presented as the means for every mouse. Results are presented as mean ± SEM unless further specified. P-value < 0.05 was defined as statistically significant. Analysis was performed blinded with respect to mouse genotype and no explicit form of randomization was used.

Expanded View for this article is available online.

Acknowledgements

We would like to thank Sonja Steinbach, Eric Griessinger, Julia Goppert, and Katharina Bayer for their excellent technical support and animal care. We also thank Dr. Saak V. Ovsepian for his support in discussing and preparing a
previous version of this manuscript. We appreciate the help of Dr. Gerhard Ramnes in analyzing data. We are grateful to Anne Meiller and Clélia Allioux for excellent technical assistance in biosensor recordings. This work was funded by the German Federal Ministry of Education and Research Bundesministerium für Bildung und Forschung (BMBF) project 13N12778 and 0316033C and the European Commission within the 7th framework [Extra-brain–606950] and Deutsche Forschungsgemeinschaft Grants (MU548 1457/8–1 and MU 1457/9–1, 9–2 to UM).

Author contributions
CZ, MMD, UCM, and JH have designed this study. CZ, SC, SM, EM, CS, YS, SS, and KZ have collected and analyzed the data. CZ, SC, and CS have drafted the article. UCM and JH have revised the article critically. All authors have approved the version of the manuscript to be published.

Conflict of interest
The authors declare that they have no conflict of interest.

References

Aydin D, Weyer SW, Muller UC (2012) Functions of the APP gene family in the nervous system: insights from mouse models. Exp Brain Res 217: 423 – 434

Baumkotter F, Schmidt N, Vargas C, Schilling S, Weber R, Wagner K, Fiedler S, Klug W, Radzimanowski J, Nickolaus S, Keller S, Eggert S, Wild K, Kins S (2014) Amyloid precursor protein dimerization and synaptic function depend on copper binding to the growth factor-like domain. J Neurosci 34: 11159 – 11172

Bell KF, Zheng L, Fahrenholz F, Cuello AC (2008) ADAM-10 over-expression increases cortical synapticogenesis. Neurobiol Aging 29: 554 – 565

Benavides-Piccione R, Ballesteros-Yanez I, DeFelipe J, Yuste R (2002) Cortical area and species differences in dendritic spine morphology. J Neurocytol 31: 337 – 346

Berman RF, Hannigan JH, Sperry MA, Zajac CS (1996) Prenatal alcohol exposure and the effects of environmental enrichment on hippocampal dendritic spine density. Alcohol 13: 209 – 216

Bittner T, Fuhrmann M, Burgold S, Ochs SM, Hoffmann N, Mittelberger G, Kretzschmar H, LaFerla FM, Herms J (2010) Multiple events lead to dendritic spine loss in triple transgenic Alzheimer’s disease mice. PLoS ONE 5: e15477

Bosch M, Hayashi Y (2012) Structural plasticity of dendritic spines. Curr Opin Neurobiol 22: 383 – 388

Bourne J, Harris KM (2007) Do thin spines learn to be mushroom spines that remember? Curr Opin Neurobiol 17: 381 – 386

Caille I, Allinquant B, Dupont E, Bouillot C, Langer A, Muller U, Prochiantz A (2004) Soluble form of amyloid precursor protein regulates proliferation of progenitors in the adult subventricular zone. Development 131: 2173 – 2181

Caldwell JH, Klevaniska M, Saar M, Muller UC (2013) Roles of the amyloid precursor protein family in the peripheral nervous system. Mech Dev 130: 433 – 446

Claassen AM, Cuevermont D, Mason-Parker SE, Bourne K, Tate WP, Abraham WC, Williams JM (2009) Secreted amyloid precursor protein-alpha upregulates synaptic protein synthesis by a protein kinase C-dependent mechanism. Neurosci Lett 460: 92 – 96

Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, Neronne JM, Lichtman JW, Sanes JR (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28: 41 – 51

Fiala JC, Spacek J, Harris KM (2002) Dendritic spine pathology: cause or consequence of neurological disorders? Brain Res Brain Res Rev 39: 29 – 54

Fol R, Braudeau J, Ludewig S, Abel T, Weyer SW, Roederer JP, Brod F, Audrain M, Bemelamins AP, Buchholz CJ, Korte M, Cartier N, Muller UC (2016) Viral gene transfer of APPsalpha rescues synaptic failure in an Alzheimer’s disease mouse model. Acta Neuropathol 131: 247 – 266

Fuhrmann M, Mittelberger G, Kretzschmar H, Herms J (2007) Dendritic pathology in prion disease starts at the synaptic spine. J Neurosci 27: 6224 – 6233

Hamid R, Kilger E, Willem M, Vassallo N, Kostka M, Bornhovd C, Reichert AS, Kretzschmar HA, Haass C, Herms J (2007) Amyloid precursor protein intracellular domain modulates cellular calcium homeostasis and AMP content. J Neurochem 102: 1264 – 1275

Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297: 353 – 356

Hayashi Y, Majewska AK (2005) Dendritic spine geometry: functional implication and regulation. Neuron 46: 529 – 532

Heenepber C, Papouin T, Oliet SH, Rusakov DA (2010) Long-term potentiation depends on release of D-serine from astrocytes. Nature 463: 232 – 236

Herms J, Anliker B, Heber S, Ring S, Fuhrmann M, Kretzschmar H, Sisodia S, Muller U (2004) Cortical dysplasia resembling human type 2 lissencephaly in mice lacking all three APP family members. EMBO J 23: 4106 – 4115

Hick M, Herrmann U, Weyer SW, Mallim JP, Tschape JA, Borgers M, Mercken M, Roth FC, Drugan A, Smolianka L, Wolfer DP, Korte M, Muller UC (2015) Acute function of secreted amyloid precursor protein fragment APPalpha in synaptic plasticity. Acta Neuropathol 129: 21 – 37

Hoe HS, Lee HK, Pak DT (2012) The upside of APP at synapses. CNS Neurosci Ther 18: 47 – 56

Holmsta A, Bonhoffter T, Chow DK, Chuckowree J, De Paola V, Hofer SB, Hubener M, Keck T, Knott G, Lee WC, Mostany R, Mrsic-Flogel TD, Nedivi E, Portera-Cailliau C, Svoboda K, Trachtenberg JT, Wilbrecht L (2009) Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat Protoc 4: 1128 – 1144

Jimenez S, Torres M, Vizuete M, Sanchez-Varo R, Sanchez-Mejias E, Trujillo-Estrada L, Carmona-Cuenca I, Caballero C, Ruano D, Gutierrez A, Vitorica J (2011) Age-dependent accumulation of soluble amyloid beta (Abeta) oligomers reverses the neuroprotective effect of soluble amyloid precursor protein-alpha (sAPPalpha) by modulating phosphatidylinositol 3-kinase (PI3K)Akt-GSK3beta pathway in Alzheimer mouse model. J Biol Chem 286: 18414 – 18425

Jung CK, Herms J (2014) Structural dynamics of dendritic spines are influenced by an environmental enrichment: an in vivo imaging study. Cereb Cortex 24: 377 – 384

Kasai H, Fukuda M, Watanabe S, Hayashi-Takagi A, Noguchi J (2010) Structural dynamics of dendritic spines in memory and cognition. Trends Neurosci 33: 121 – 129

Klevanski M, Saar M, Baumkotter F, Weyer SW, Kins S, Muller UC (2014) Differential role of APP and APLPs for neuromuscular synaptic morphology and function. Mol Cell Neurosci 61: 201 – 210

Klevanski M, Herrmann U, Weyer SW, Fol R, Cartier N, Wolfer DP, Caldwell JH, Korte M, Muller UC (2015) The APP intracellular domain is required for normal synaptic morphology, synaptic plasticity, and hippocampus-dependent behavior. J Neurosci 35: 16018 – 16033

Konur S, Rabinowitz D, Fenstermaker VL, Yuste R (2003) Systematic regulation of spine sizes and densities in pyramidal neurons. J Neurosci 56: 95 – 112

Kozorovitskiy Y, Gross CC, Kopil C, Battaglia L, McBreen M, Stranahan AM, Gould E (2005) Experience induces structural and biochemical changes in the adult primate brain. Proc Natl Acad Sci USA 102: 17478 – 17482
Lai KO, Ip NY (2013) Structural plasticity of dendritic spines: the underlying mechanisms and its dysregulation in brain disorders. Biochim Biophys Acta 1832: 2257–2263
Leger M, Quedeville A, Bouet V, Haelewyn B, Boulouard M, Schumann-Bard P, Frevert T (2013) Object recognition test in mice. Nat Protoc 8: 2531–2537
Linde CI, Baryshnikov SG, Mazzocco-Spezzia A, Golovina VA (2011) Dysregulation of Ca2+ signaling in astrocytes from mice lacking amyloid precursor protein. Am J Physiol Cell Physiol 300: C1502–C1512
Magara F, Muller U, Li ZW, Lipp HP, Weissmann C, Stagglar M, Wolfer DP (1999) Genetic background changes the pattern of forebrain commissure defects in transgenic mice underexpressing the beta-amyloid-precursor protein. Proc Natl Acad Sci USA 96: 4656–4661
Martineau M, Parpura V, Mothet JP (2014) Cell-type specific mechanisms of D-serine uptake and release in the brain. Front Synaptic Neurosci 6: 12
May A (2011) Experience-dependent structural plasticity in the adult human brain. Trends Cogn Sci 15: 475–482
Mora F, Segovia G, del Arco A (2007) Aging, plasticity and environmental enrichment: structural changes and neurotransmitter dynamics in several areas of the brain. Brain Res Rev 55: 78–88
Moya KL, Benowitz LJ, Schneider GE, Allinquant B (1999) The amyloid precursor protein is developmentally regulated and correlated with synaptogenesis. Dev Biol 161: 597–603
Muller U, Cristina N, Li ZW, Wolfer DP, Lipp HP, Rulicke T, Brandner S, Aguzzi A, Weissmann C (1994) Behavioral and anatomical deficits in mice homozygous for a modified beta-amyloid precursor protein gene. Cell 79: 755–765
Muller UC, Zheng H (2012) Physiological functions of APP family proteins. Cold Spring Harb Perspect Med 2: a006288
Nimchinsky EA, Sabatini BL, Svoboda K (2002) Structure and function of dendritic spines. Annu Rev Physiol 64: 313–353
Nithianantharajah J, Hannan AJ (2006) Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci 7: 697–709
Panatier A, Theodossis DT, Mothet JP, Touquet B, Pollegioni L, Poulain DA, Oliet SH (2006) Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Annu Rev Physiol 68: 251–280
Perrot P, Mothet JP, Schuvalov O, Soldatkin A, Pollegioni L, Pilone M, Adeline MT, Cespuglio R, Marinesco S (2008) Characterization of a yeast D-amino acid oxidase microbiosensor for D-serine detection in the central nervous system. Anal Chem 80: 1589–1597
Perrot P, Mauceler C, Tholance Y, Vasylieva N, Debilly G, Pollegioni L, Cespuglio R, Marinesco S (2012) D-Serine diffusion through the blood-brain barrier: effect on D-serine compartmentalization and storage. J Neurosci 32: 10143–10153
Saba P, Eggert S, Wagner K, Zentgraf H, Siehl K, Kreger S, Lower A, Langer A, Merdes G, Paro R, Masters CL, Muller U, Kins S, Beyreuther K (2005) Homo- and heterodimerization of APP family members promotes intercellular adhesion. EMBO J 24: 3624–3634
Takata N, Mishima T, Hisatsune C, Nagai T, Ebisu E, Mikoshiba K, Hirase H (2011) Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo. J Neurosci 31: 18155–18165
Vasylieva N, Barmych B, Meiller A, Mauceler C, Pollegioni L, Lin JS, Bariber D, Marinesco S (2011) Covalent enzyme immobilization by poly(ethylene glycol) diglycidyl ether (PEGDE) for micro electrode biosensor preparation. Biosens Bioelectron 26: 3993–4000
Wang Z, Wang B, Yang L, Guo Q, Aithmitti N, Songyang Z, Zheng H (2009) Presynaptic and postsynaptic interaction of the amyloid precursor protein promotes peripheral and central synaptogenesis. J Neurosci 29: 10788–10801
Weyer SW, Klevanskii M, Deleata A, Voikar V, Aydin D, Hick M, Filippov M, Drost N, Schaller KL, Saar M, Vogt MA, Gass P, Samanta A, Jaschke A, Korte M, Wolfer DP, Caldwell JH, Muller UC (2011) APP and APLP2 are essential at PNS and CNS synapses for transmission, spatial learning and LTP. EMBO J 30: 2266–2280
Weyer SW, Zagrebelsky M, Herrmann U, Hick M, Ganss L, Gobbert J, Gruber M, Altmann C, Korte M, Wolfer DP, Caldwell JH, Muller UC (2014) Comparative analysis of single and combined APP/APLP knockout mice as a tool for investigating the role of APP and APP-related proteins in brain diseases. J Neurosci 34: 11351–11362
Wu S, Basile AS, Barger SW (2004) Induction of serine racemase expression and D-serine release from microglia by amyloid beta-peptide. J Neuroinflammation 1: 2
Wu S, Basile AS, Barger SW (2007) Induction of serine racemase expression and D-serine release from microglia by secreted amyloid precursor protein (SAPP). J Neuroinflammation 4: 243–251
Yang L, Wang Z, Wang B, Justice NJ, Zheng H (2009) Amyloid precursor protein regulates Cav1.2 L-type calcium channel levels and function to influence GABAergic short-term plasticity. J Neurosci 29: 15660–15668
Yuste R, Bonhoeffer T (2001) Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu Rev Neurosci 24: 1071–1089
Yuste R (2011) Dendritic spines and distributed circuits. Neuron 71: 772–781

License: This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.