Peroxisome proliferator–activated receptor γ (PPARγ) induces the gene expression of integrin α5β3 to promote macrophage M2 polarization

Received for publication, March 27, 2018, and in revised form, August 14, 2018 Published, Papers in Press, September 4, 2018, DOI 10.1074/jbc.RA118.003161

Qinyu Yao†, Jia Liu‡, Zihui Zhang‡, Fan Li‡, Chao Zhang§, Baochang Lai*, Lei Xiao†, and Nanping Wang†‡

From the †Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China and the §Advanced Institute for Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China

Edited by Luke O’Neill

Peroxisome proliferator–activated receptor γ (PPARγ) is a member of the nuclear receptor superfamily and polarizes the macrophages into an anti-inflammatory M2 state. Integrins are transmembrane receptors that drive various cellular functions, including monocyte adhesion and foam cell formation. In this study, we first reported that the expression of integrins α5 and β3 was up-regulated by PPARγ activation in RAW264.7 cells and human peripheral blood monocytes. Luciferase reporter and ChIP assay revealed that PPARγ directly bound to the potential PPAR-responsive elements sites in the 5’-flanking regions of both murine and human integrin α5, and β3 genes, respectively. In addition, we showed that PPARγ augmented the ligation of integrins α5, and β3. Knockdown of integrin α5β3 by siRNA strategy or treatment with cilegitudide, a potent inhibitor of integrin α5β3, attenuated PPARγ-induced expression of Ym1, Arg1, Fizz1, and interleukin-10 genes, respectively. In addition, we showed that PPARγ increases the expression and the ensuing ligation of integrins α5, and β3 are implicated in macrophage M2 polarization.

Macrophages are markedly heterogenous cells that are responsive to various stimuli in either acute (infection) or chronic (metabolic syndrome) state (1, 2). M1 macrophages, activated upon classical pro-inflammatory cytokines (Toll-like receptor ligands and interferon-γ), are involved in Th1 immune response (3). In the presence of Th2 cytokines (interleukin-4, interleukin-13, and colony-stimulating factor), monocytes undergo an alternative M2 activation, characterized by an increased expression of Ym1, Arg1, Fizz1, and interleukin-10 (IL-10) (4). Macrophage polarization is tightly regulated at the transcription level (5, 6). Interferon-regulatory factor 5 and signal transducer and activator of transcription 1 (STAT1) promote M1 polarization, whereas PPARγ cooperates with STAT6 to drive to a M2 phenotype (7). PPARγ is a member of the nuclear receptor superfamily and a key regulator of lipid metabolism. It has been shown to suppress inflammation by inhibiting nuclear factor κ light-chain enhancer of activated B cells, STAT, and activator protein-1 pathways (8, 9). Constitutive expression of PPARγ in macrophages leads to an anti-inflammatory M2-like phenotype in adipose tissue. In contrast, knockdown of PPARγ impairs M2 polarization and insulin signaling (10). It has been demonstrated that PPARγ-dependent monocyte differentiation into M2 macrophage is beneficial to human carotid atherosclerosis (11). PPARγ activation by pioglitazone regulates M2 macrophage infiltration and stabilizes the neovessels in the infarct border zone, leading to a better outcome for patients after stroke (12). Previous studies showed that Arg1 and IL-10 are regulated by PPARγ and involved in M2 polarization (10, 13). However, the PPARγ-target genes driving the transcriptional program toward M2 polarization remain largely unknown.

Integrins are a family of ubiquitious transmembrane receptor expressed on a variety of cell types. Mammalian integrins comprise 18 α and 8 β subunits that constitute 24 heterodimers. Ligation of α and β subunits leads to a conformational change according to the extracellular ligands presented on the cell surface (14). In macrophages, integrin ανβ5 (15), α5β2 (16), and α5β3 (17) have been implicated in phagocytosis, M1 polarization, and inflammasome activation. Integrin α5 has recently been found to modulate metabolic inflammation in obesity (18). The absence of integrin β3 favors macrophage polarization into M2a phenotype, which in turn increases fibrosis and impairs muscle regeneration (19). Mice lacking integrin β3 in macrophage lineage cells have enhanced melanoma and breast cancer growth, because of increased tumor-promoting M2 macrophages (20). In addition, ligation of integrin α5β3 prevents macrophage differentiating into foam cells (21). In this study, we identified integrins α5, and β3 as PPARγ target genes, reverse transcriptase–polymerase chain reaction; hPBMC, human peripheral blood monocyte; PPRE, PPAR-responsive element; STAT, signal transducers and activators of transcription; iNOS, inducible nitric-oxide synthase; TNF, tumor necrosis factor; RGZ, rosiglitazone.
and the heterodimer of integrin $\alpha_v\beta_5$ was involved in M2 polarization.

Results

PPARγ regulated the expression of integrin $\alpha_v\beta_5$

To investigate the activation of PPARγ on different integrins, RAW264.7 cells were treated with rosiglitazone, a PPARγ agonist for 24 h, the mRNA level of integrins $\alpha_{5\alpha i}$, α_v, $\alpha_{5\alpha j}$, $\alpha_{1\beta i}$, $\alpha_{1\beta j}$, β_1, β_2, β_5, and β_6 was detected with RT–qPCR. Integrins α_v, β_5, and α_M were increased upon rosiglitazone treatment, whereas integrins α_5, α_v, $\alpha_{1\beta i}$, and β_1 remained unchanged. Integrin β_5 was down-regulated. Integrin β_5 was undetectable (Fig. S1).

Integrins α_v and β_5 are the most prominently up-regulated subunits and could be potentially ligated, prompting us to evaluate their precise regulations by PPARγ. To this end, RAW264.7 cells were treated with rosiglitazone for the indicated times or with different doses. Rosiglitazone increased the expression of integrins α_v and β_5 in a time- (Fig. 1, A and B) and concentration-dependent manner (Fig. 1, C and D). Moreover, they were up-regulated by pioglitazone, another agonist of PPARγ (Fig. 1, E and F). Selective PPARγ antagonists GW9662 abolished the stimulatory effect of rosiglitazone on integrin α_v and β_5 expression (Fig. 1, G and H), indicating that the up-regulation by rosiglitazone was PPARγ-specific. Experiments conducted in human peripheral blood monocytes (hPBMCs) confirmed that both integrins α_v and β_5 could be induced by PPARγ activation. We then tested the expression of integrins α_v and β_5 in IL-4-promoted M2 macrophages. We found that both integrins α_v and β_5 could be induced by PPARγ in RAW264.7 cells (Fig. 2, A and B) and hPBMCs (Fig. 2C), demonstrating that integrins α_v and β_5 might be downstream molecules during M2 polarization.

The heterodimer of integrin $\alpha_M\beta_5$ was shown to mediate the inflammatory response in macrophages. To verify whether PPARγ activation could affect the expression of integrins α_M and β_5, RAW264.7 cells were treated with rosiglitazone as mentioned above. Expression of integrin α_M was increased in a time- (Fig. 3A) and dose-dependent manner (Fig. 3B) by rosiglitazone treatment, whereas integrin β_5 expression was significantly decreased (Fig. 3, C and D). Taken together, these results indicated that PPARγ was capable of regulating the expression of integrins α_M and β_5 in macrophages.

Integrins α_v and β_5 were direct target genes of PPARγ

To investigate whether murine integrin α_v could be targeted by PPARγ, sequence analysis was performed using PPAR GENE (22) and JASPAR Database (http://jaspar.genereg.net/). Integrin α_v possesses two potential PPREs within the 2300-bp region upstream of murine integrin α_v gene (Fig. 4A). ChIP assay was executed to examine the bindings for PPARγ to the promoter region of integrin α_v. PPARγ could directly bind to integrin α_v promoter at either mPPRE-α_v1 (−1297/−1283) or mPPRE-α_v2 (−802/−788). The binding for mPPRE-α_v1 was increased with the treatment of rosiglitazone, whereas the binding for mPPRE-α_v2 remained unchanged (Fig. 4B). We then created two plasmid constructs containing different upstream regions of the integrin α_v promoter fused to the luciferase reporter. HEK 293 cells were treated with rosiglitazone after transfection with mLuc-α_v (containing mPPRE-α_v1 and mPPRE-α_v2) or mLuc-α_v-Δ (containing mPPRE-α_v2) plasmid. Luciferase activity of mLuc-α_v, but not mLuc-α_v-Δ, was increased by rosiglitazone treatment (Fig. 4C), suggesting that mPPRE-α_v1 could mediate the induction of integrin α_v gene by PPARγ. To further confirm the role of PPARγ in integrin α_v induction, mLuc-α_v vector was transfected into HEK 293 cells and then treated with rosiglitazone in the presence of a PPARγ specific antagonist GW9662 (Fig. 4D). The increase of luciferase activity of mLuc-α_v by rosiglitazone were prevented by GW9662, indicating that integrin α_v might be a direct target gene of PPARγ.

Similarly, the promoter region of integrin β_5 possesses three PPREs (Fig. 4E). Both mPPRE-$\beta_5$1 (−1278/−1264) and mPPRE-$\beta_5$2 (−287/−273) could be bound to PPARγ, and these bindings were enhanced by rosiglitazone treatment. PPARγ did not bind to mPPRE-$\beta_5$3 (−240/−226) (Fig. 4F). Next, mLuc-β_5 (containing mPPRE-$\beta_5$1, mPPRE-$\beta_5$2, and mPPRE-$\beta_5$3), mLuc-β_5-Δ (containing mPPRE-$\beta_5$2 and mPPRE-$\beta_5$3), or mLuc-β_5-Δ' (containing PPRE-β_3) plasmids were transfected into HEK293 cells. Luciferase activity of mLuc-β_5, but not mLuc-β_5-Δ or mLuc-β_5-Δ', was increased by rosiglitazone treatment (Fig. 4G), suggesting that mPPRE-$\beta_5$1 could mediate the induction of integrin β_5 gene by rosiglitazone. Meanwhile, the increase of luciferase activity of mLuc-β_5 by rosiglitazone was prevented by GW9662 (Fig. 4H), indicating that integrin β_5 might be direct target gene of PPARγ as well.

In addition, we also identified cognate PPARγ motifs in the regulation region of the human integrin α_v and β_5 genes. By using ChIP assay, we confirmed that PPARγ could bind to the promoter regions for human integrin α_v at hPPRE-α_v1 (−2109/−2095) or hPPRE-α_v2 (−1247/−1233) (Fig. 4I). Moreover, either the binding for hPPRE-α_v1 or for hPPRE-α_v2 was increased by rosiglitazone (Fig. 4J). Similarly, the functionality of PPRE in the human integrin β_5 gene was also confirmed (Fig. 4K).

Ligation of integrin $\alpha_v\beta_5$ were increased by PPARγ activation

Given that integrins are obligate heterodimers, immunoprecipitation analysis was performed to examine the effect of rosiglitazone on $\alpha_v\beta_5$ ligation. Consistent with the up-regulation of integrin α_v and β_5 expression by rosiglitazone, their ligation was significantly enhanced in RAW264.7 cells and hPBMCs (Fig. 5, A and B). Although integrin α_M was slightly increased, integrin $\alpha_M\beta_5$ ligation was attenuated when treated with rosiglitazone in RAW264.7 cells and hPBMCs (Fig. 5, C and D). These results suggested that PPARγ activation might shift the ligation of different integrins, leading to a distinct downstream signaling pathway in macrophages.
Integrin $\alpha_\nu\beta_5$ in M2 polarization

To investigate the participation of integrin $\alpha_\nu\beta_5$ in PPARγ-induced M2 polarization, siRNA strategy was first used following a treatment with rosiglitazone. Rosiglitazone induced mRNA and protein levels of M2 marker genes, including Ym1, Arg1, and Fizz1. Importantly, either siRNA against integrin α_ν or β_5 attenuated the induction of M2 marker genes by rosiglitazone. Combination of siRNA against integrins α_ν and β_5 abrogated this augmentation in RAW264.7 cells (Fig. 6, A and B) and hPBMCs (Fig. 6C). Rosiglitazone exhibited an anti-inflammatory effect in monocytes/macrophages by reducing the expression of M1 marker genes such as iNOS, TNFα, and IL-6. Neither siRNA against integrin α_ν nor β_5 nor their combination could reverse the reduced expression of iNOS, TNFα and IL-6 expressions (Fig. S2, A and B).

Furthermore, pharmacological blockage with cilengitide, a potent inhibitor blocking the accessibility of integrin $\alpha_\nu\beta_5$ to their ligands (23), effectively abolished rosiglitazone-induced Ym1, Arg1, and Fizz1 in RAW264.7 cells (Fig. 7, A and B) and hPBMCs (Fig. 7C). In contrast, cilengitide had no effect on rosiglitazone-decreased expression of M1 marker genes (Fig. S3, A and B). These data suggested that the heterodimer of integrin $\alpha_\nu\beta_5$ was required in PPARγ-induced M2 polarization.

Discussion

In this present study, we demonstrated a novel mechanism by which PPARγ regulates macrophage polarization via integrin $\alpha_\nu\beta_5$ induction. These results also provided evidence that a specific integrin heterodimer plays an important role in M2 polarization.

Integrins are important signaling receptors that mediate the interactions of the cells with extracellular matrix (24). They are involved in multiple inflammatory responses, including coronary atherosclerosis, obesity, etc. (25, 26). However, the gene regulation of specific integrin subunits in macrophages has not been well-characterized. Here we showed that PPARγ transcriptionally activated integrins α_ν and β_5. GW9662, an antagonist of PPARγ, attenuated the up-regulation of integrins α_ν and β_5 by rosiglitazone. It is noticed that GW9662 elevated the basal level of integrins α_ν and β_5 by an unrecognized mechanism, which has been reported in the case of the other nuclear receptor antagonist (27). We identified murine PPRE-α_ν1 (−1297/−1283) and murine PPRE-$\beta_5$1 (−1278/−1264) as functional binding sites to trigger integrin α_ν and β_5 transcription, respectively. Meanwhile, we found that the expression of inflammatory integrins α_ν and β_5 was regulated by PPARγ as well.

Integrin is strictly heterodimer of α and β subunits, which are ligated by extracellular stimuli and required for its signaling

Figure 1. Expression of integrins α_ν and β_5 was increased by PPARγ activation. A–D, RAW264.7 cells were incubated with 10 μmol/liter rosiglitazone (RGZ) for the indicated time (A and B) or with the indicated concentrations of RGZ for 24 h (C and D). Cell lysates were analyzed for the level of integrins α_ν and β_5 by using RT–qPCR or immunoblotting. *, $p < 0.05$ versus control (Ctrl; integrin α_ν); #, $p < 0.05$ versus Ctrl (integrin β_5). E–J, RAW264.7 cells and hPBMCs were stimulated with RGZ (10 μmol/liter), pioglitazone (PGZ, 10 μmol/liter), or both. The integrin α_ν and β_5 mRNA (E and F) or protein (G and J) levels were examined by RT–qPCR or immunoblotting. G–I, cells were pretreated with or without GW9662 for 1 h and then exposed to RGZ (10 μmol/liter) for 24 h. Cell lysates were analyzed to determine the mRNA (G and K) and protein (H and L) levels of integrin α_ν and β_5. *, $p < 0.05$.

Figure 2. Expression of integrins α_ν and β_5 in IL-4–induced M2 macrophages. RAW264.7 cells and hPBMCs were stimulated with IL-4 (10 ng/ml) for 24 h. Cell lysates were analyzed for the levels of integrins α_ν and β_5 using RT–qPCR (A and C) or immunoblotting (B). *, $p < 0.05$ versus control (Ctrl; integrin α_ν); #, $p < 0.05$ versus control (integrin β_5).
Integrin α\textsubscript{V}β\textsubscript{5} in M2 polarization

Figure 3. Expression of integrins α\textsubscript{V} and β\textsubscript{5} was modulated by PPARγ activation. RAW264.7 cells were incubated with 10 μmol/liter RGZ for the indicated times (A and C) or with indicated concentrations of RGZ for 24 h (B and D). The cell lysates were analyzed for the level of integrin α\textsubscript{V} and β\textsubscript{5} by using RT–qPCR or immunoblotting. Immunoblots of A and C were from the same representative experiment consecutively used to detect integrin α\textsubscript{V}, integrin β\textsubscript{5}, and β-actin. The results were separately presented, but the loading control (β-actin) was identical. The same situation applies to B and D. * p < 0.05 versus control (Ctrl).

Transduction (24). The mechanism of the formation of integrin heterodimer has not been well-understood. The heterodimer of integrin α\textsubscript{2}β\textsubscript{1} ligated by C1q-containing immune complexes is required for peritoneal mast cells activation during innate immunity (28). Adhesion of monocytes to the endothelium results in integrin α\textsubscript{v},β\textsubscript{3} ligation and prevents macrophage transition into foam cells (21). Here, we found that a signaling pathway initiated by integrin α\textsubscript{V}β\textsubscript{3} ligation could participate in macrophage M2 polarization. Meanwhile, ligation of integrin α\textsubscript{M}β\textsubscript{2}, which has been implicated in inflammatory response (26), was decreased upon PPARγ activation. This is the first evidence that PPARγ switches the ligation of specific integrin subunits, leading to distinct cellular functions in macrophages.

PPARγ has been shown to function as insulin sensitizers and thus improve hyperglycemia in patients with type 2 diabetes mellitus (29). Knockdown of PPARγ in immune cells reduces insulin sensitivity by decreasing the infiltration of macrophages into white adipose tissue (30). Dominant mutations in PPARγ cause insulin resistance accompanied by early onset of severe hypertension (31, 32). The aortas from troglitazone-treated mice show decreased accumulation of macrophages in atherosclerotic lesions and attenuated expression of numerous inflammatory markers such as TNFα and iNOS (33), which is consistent with our results that the expression and ligation of inflammatory integrin α\textsubscript{M}β\textsubscript{2} were decreased by PPARγ activation in macrophages. Alternation of macrophage polarization and function requires precise regulation of master factors, including cytokines (IL-4 and IL-13) and transcription factors like PPARγ. PPARγ activates anti-inflammatory gene expressions, such as Arg-1 and IL-10 through the PPREs at their promoter regions (10, 13). In this study, we found that integrins α\textsubscript{V} and β\textsubscript{5} are PPARγ target genes and necessary to PPARγ-induced M2 polarization. To the best of our knowledge, this is the first evidence implicating a specific integrin heterodimer in M2 macrophages.

Integrins are transmembrane receptors that respond to extracellular stimuli. Ligation of two integrin subunits is not sufficient to induce the downstream signaling; thus it is important to identify the ligands of integrin α\textsubscript{V}β\textsubscript{5} during M2 polarization, especially on the basis of physiopathological context. Integrin α\textsubscript{V}β\textsubscript{5} binds to a variety of extracellular matrix proteins, including osteopontin, fibronectin, vitronectin, von Willebrand factor, and thrombospondin. An *in vitro* study demonstrated that IL-10 acts synergistically with IL-18 to amplify the production of osteopontin, thereby augmenting M2 polarization of macrophage (34). The osteopontin-generated M2 macrophages exhibit a protective effect in vascular calcification of patients with hypertension (35). Although the culture of macrophage on fibronectin-coated surface does not induce a M2 phenotype (36), the production and deposition of fibronectin are common features during M2 polarization (37, 38), which is believed to govern the remodeling process after tissue damage (39). Moreover, the downstream signaling of integrin α\textsubscript{V}β\textsubscript{5} in macrophages should be implemented in our further studies. It has been previously shown that the selective inhibitor of Rok2 (Rho–associated kinase 2) decreases M2-like macrophages (40).
Integrin αvβ5 in M2 polarization

As an upstream receptor of Rho, integrin αvβ5 activation on Rok2 could explain how it participated in M2 polarization. Furthermore, because macrophages exhibit a longer shape when differentiated into M2 phenotypes (41), the effect of integrin αvβ5 on cytoskeleton rearrangement (42) could be another hypothesis to elucidate the involving mechanism. Taken together, our results suggested a novel molecular mechanism with which the induction and ligation of integrin αvβ5 participate in PPARγ-induced M2 polarization, whereas PPARγ represses the inflammation by targeting the expression and the ligation of integrin αvβ5 (Fig. 8), which may provide a potential target against inflammatory diseases.

Experimental procedures

Reagents

Rosiglitazone, GW9662, and recombinant IL-4 were from Sigma–Aldrich. Pioglitazone and cilengitide were from Selleck Chemicals (Houston, TX). Antibodies against integrins αv and β2 were from Santa Cruz Biotechnology (Dallas, TX). Antibodies against Ym1 and Fizz1 were from Abcam (Cambridge, MA). From Cell Signaling (Danvers, MA). Antibodies against Arg1, mLuc-α5, and mLuc-β5 were from Abcam (Cambridge, MA).

Cell culture, isolation, and transfection

Murine monocytic cell line RAW264.7 and HEK 293 cells were obtained from ATCC (Manassas, VA) and maintained in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum in a humidified 5% CO2 atmosphere at 37 °C. Human PBMCs were isolated from healthy donors by Ficoll– Hypaque density centrifugation. After washing three times, hPBMCs were incubated in RPMI 1640 medium supplemented with 10% fetal bovine for 4 days. The experiments were approved by the institutional ethics review board of Xi’an Jiaotong University (approval XJTULAC2018-497) and performed in accordance with the National Institutes of Health guidelines.

RNA extraction and reverse transcriptase–PCR (RT–qPCR)

Total RNA was extracted from RAW264.7 cells and hPBMCs by using TRIzol (Invitrogen). Quantitative RT–qPCR was performed using the SYBR Green technique (Promega, Madison, WI). Primer sequences were described in Table S1. GAPDH was used as a housekeeping gene.

Plasmids and luciferase reporter assay

mLuc-α5 (−1383/+109), mLuc-α5-Δ (−831/+109), Luc-β5 (−1346/+40), mLuc-β5-Δ (−443/+40), and mLuc-β5-Δ′ were transfected into HEK293 cells incubated with RGZ (10 μmol/liter) after pretreatment with GW9662 (20 μmol/liter). Luciferase activity was measured and normalized to that of β-gal. Schematic presentation of PPREs located in the regions of human integrin αv and β5 promoters. hPBMCs were treated with RGZ (10 μmol/liter). The indicated human PPREs of integrin αv (J) or β5 (K) were analyzed by ChIP assay with the use of anti-PPARγ antibody. IgG was used as an isotype control. * p < 0.05.
(-270/+40) plasmids were made by PCR cloning into the pGL3 basic luciferase-reporter plasmid. The cells were co-transfected with a reporter gene and a β-gal plasmid. Luciferase and the β-gal activities were measured as previously described (43).

ChIP assay

The cells were cross-linked with 0.75% formaldehyde before harvesting. Sheared chromatin was immunoprecipitated with an anti-PPARγ antibody (or control IgG) and pulled down with protein A/G–Sepharose beads (Santa Cruz). The eluted immunoprecipitates were digested with proteinase K to reverse the cross-link between DNA and proteins. DNA was extracted and subjected to PCR experiment with specific primers flanking the putative PPARγ binding motifs. Primer sequences were described in Table S2.

Immunoblotting and immunoprecipitation

Proteins were extracted in RIPA buffer supplemented with protease inhibitors. Protein concentrations were measured

Figure 6. Integrin αvβ3 knockdown abolished rosiglitazone-promoted M2 polarization. RAW264.7 cells and hPBMCs were transfected with murine and human si control (Ctrl), si αv, si β3 or si αv+β3, respectively. Then the cells were treated with RGZ (10 μmol/liter) for 24 h. The cell lysates were analyzed for the level of Ym1, Arg1, and Fizz1 by using RT-qPCR (A and C) or immunoblotting (B).
Integrin αvβ5 in M2 polarization

A.

![Graph showing the level of Ym1, Arg1, and Fizz1 in RAW264.7 cells and hPBMCs.](image)

Figure 7. Cilengitide partially inhibited rosiglitazone-induced M2 polarization. RAW264.7 cells and hPBMCs were pretreated with cilengitide (Cilen, 1 μmol/liter) for 30 min and then incubated with RGZ (10 μmol/liter) for 24 h. Lysates were analyzed for the level of Ym1, Arg1, and Fizz1 by using RT-qPCR (A and C) or immunoblotting (B). Ctrl, control.

B.

![Immunoblots showing the level of Ym1, Arg1, and Fizz1 in RAW264.7 cells.](image)

C.

![Immunoblots showing the level of Ym1, Arg1, and Fizz1 in hPBMCs.](image)

Figure 8. Mechanism of integrin in PPARγ-induced M2 macrophage polarization. PPARγ activates the expression of integrin αv and β5 by targeting the PPREs in their promoter regions. The formation of integrin αvβ5 heterodimer is therewith increased, leading to M2 macrophages polarization. Meanwhile, PPARγ activation regulates the expression and the ligation of integrin αM and β2, leading to a reduced inflammatory phenotype in macrophages.

Using the BCA protein assay. Immunoblotting was performed with appropriate primary antibodies and horseradish peroxidase-conjugated secondary antibodies followed by ECL detection. Immunoblots shown were representative of three independent experiments.

For immunoprecipitation, cell lysates were incubated with the appropriate antibodies or control IgG at 4 °C overnight followed by incubation with protein A/G-Sepharose beads. Immunoprecipitates were washed with NETN buffer (20 mM Tris, pH 8.0, 100 mM NaCl, 1 mM EDTA, and 0.5% NP-40). Immunoblots shown were representative of three independent experiments.

siRNA and transfection

RAW264.7 cells or hPBMCs were transfected with adequate species of integrin αv, integrin β5, or scrambled siRNA (si Ctrl). Sequences were described in Table S3. Experiments using these cells were executed at 24 h after transfection.

Statistical analysis

The results are reported as means ± S.D. Comparisons within and between groups were performed using analysis of variance and Mann–Whitney U test, respectively. p < 0.05 was considered significant.
References

1. Pello, O. M. (2016) Macrophages and c-Myc cross paths. *Oncoimmunology* 5, e1151991
2. Vergadi, E., Ieronymaki, E., Lyroni, K., Vaporidi, K., and Tsatsanis, C. (2017) Akt signaling pathway in macrophage activation and M1/M2 polarization. *J. Immunol.* 198, 1006–1014
3. Covarrubias, A. J., Aksoy cooler, H. I., and Horng, T. (2015) Control of macrophage metabolism and activation by mTOR and Akt signaling. *Semin. Immunol.* 27, 286–296
4. Orihuela, R., McPherson, C. A., and Harry, G. J. (2016) Microglial M1/M2 polarization and metabolic states. *Br. J. Pharmacol.* 173, 649–665
5. Guo, X., Li, T., Xu, Y., Xu, X., Zhu, Z., Zhang, Y., Xu, J., Xu, K., Cheng, H., Zhang, X., and Ye, K. (2017) Increased levels of Gab1 and Gab2 adaptor proteins skew interleukin-4 (IL-4) signaling toward M2 macrophage-driven pulmonary fibrosis in mice. *J. Biol. Chem.* 292, 14003–14015
6. Steiger, S., Kumar, S. V., Honarpisheh, M., Lorenz, G., Günthner, R., Rothen, N., M., and Staels, B. (1999) Peroxisome proliferator-activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway. *Circ. Res.* 85, 394–402
7. Ricote, M., Li, A. C., Willson, T. M., Kelly, C. J., and Glass, C. K. (1998) The peroxisome proliferator-activated receptor-γ is a negative regulator of dendritic cell, monocyte, and macrophage function. *Front. Immunol.* 8, 1866
8. Xiao, L., Zhang, Z., Luo, X., Yang, H., Li, F., and Wang, N. (2016) Retinoid acid receptor-related orphan receptor α (RORα) regulates macrophage M2 polarization via activation of AMPKα. *Mol. Immunol.* 80, 17–23
9. Guri, A. J., Hontecillas, R., Ferrer, G., Casagran, O., Wankhade, U., Noble, A. M., Eizirik, D. L., Ortis, F., Cnop, M., Liu, D., Si, H., and Bassaganya-Riera, J. (2008) Loss of PPARα in immune cells impairs the ability of abscisic acid to improve insulin sensitivity by suppressing monocyte chemotactic protein-1 expression and macrophage infiltration into white adipose tissue. *J. Nutr. Biochem.* 19, 216–228
10. Halabi, C. M., Beyer, A. M., de Lange, W. J., Keen, H. L., Baumbach, G. L., Faraci, F. M., and Sigmund, C. D. (2008) Interference with PPARy function in smooth muscle causes vascular dysfunction and hypertrophy. *Cell Metab.* 7, 215–226
11. Katsawatsomkrong, P., Pelham, C. J., Groh, S., Keen, H. L., Faraci, F. M., and Sigmund, C. D. (2010) Does peroxisome proliferator-activated receptor-γ...
Integrin α\(\text{V}\)β\(\text{5}\) in M2 polarization

(PPAR\(\gamma\)) protect from hypertension directly through effects in the vasculature? J. Biol. Chem. 285, 9311–9316 CrossRef Medline

33. Chen, Z., Ding, X., Jin, S., Pitt, B., Zhang, L., Billiar, T., and Li, Q. (2016) WISP1-α\(\text{V}\)β\(\text{3}\) integrin signaling positively regulates TLR-triggered inflammation response in sepsis induced lung injury. Sci. Rep. 6, 28841 CrossRef Medline

34. Kobori, T., Hamasaki, S., Kitaura, A., Yamaizaki, Y., Nishinaka, T., Niwa, A., Nakao, S., Wake, H., Mori, S., Yoshino, T., Nishibori, M., and Takahashi, H. (2018) Interleukin-18 amplifies macrophage polarization and morphological alteration, leading to excessive angiogenesis. Front. Immunol. 9, 334 CrossRef Medline

35. Ge, Q., Ruan, C. C., Ma, Y., Tang, X. F., Wu, Q. H., Wang, J. G., Zhu, D. L., and Gao, P. J. (2017) Osteopontin regulates macrophage activation and osteoclast formation in hypertensive patients with vascular calcification. Sci. Rep. 7, 40253 CrossRef Medline

36. Ploeger, D. T., van Putten, S. M., Koerts, J. A., van Luyn, M. J., and Harnsen, M. C. (2012) Human macrophages primed with angiogenic factors show dynamic plasticity, irrespective of extracellular matrix components. Immunobiology 217, 299–306 CrossRef Medline

37. Rabal, O. M., Wolfe, A. R., Mandal, P. K., Larson, R., Tin, S., Jimenez, C., Zhang, D., Horton, J., Reuben, J. M., McMurray, J. S., and Woodward, W. A. (2018) Blocking interleukin (IL)-4- and IL13-mediated phosphorylation of STAT6 (Tyre641) decreases M2 polarization of macrophages and protects against macrophage-mediated radioresistance of inflammatory breast cancer. Int. J. Radiat. Oncol. Biol. Phys. 100, 1034–1043 CrossRef Medline

38. Wang, D., Xiong, M., Chen, C., Du, L., Liu, Z., Shi, Y., Zhang, M., Gong, J., Song, X., Xiang, R., Liu, E., and Tan, X. (2018) Legumin, an asparaginyl endopeptidase, mediates the effect of M2 macrophages on attenuating renal interstitial fibrosis in obstructive nephropathy. Kidney Int. 94, 91–101 CrossRef Medline

39. Cory, T. J., Birket, S. E., Murphy, B. S., Hayes, D., Jr, Anstead, M. I., Kanga, J. F., Kuhn, R. J., Bush, H. M., and Feola, D. J. (2014) Impact of azithromycin treatment on macrophage gene expression in subjects with cystic fibrosis. J. Cyst. Fibros. 13, 164–171 CrossRef Medline

40. Zandi, S., Nakao, S., Chun, K. H., Fiorina, P., Sun, D., Arita, R., Zhao, M., Kim, E., Schueller, O., Campbell, S., Taher, M., Melhorn, M. I., Schering, A., Gatti, F., Tezza, S., et al. (2015) ROCK-isoform-specific polarization of macrophages associated with age-related macular degeneration. Cell Reports 10, 1173–1186 CrossRef Medline

41. McWhorter, F. Y., Wang, T., Nguyen, P., Chung, T., and Liu, W. F. (2013) Modulation of macrophage phenotype by cell shape. Proc. Natl. Acad. Sci. U.S.A. 110, 17253–17258 CrossRef Medline

42. Lee, J., Abdeen, A. A., Wycislo, K. L., Fan, T. M., and Kilian, K. A. (2016) Interfacial geometry dictates cancer cell tumorigenicity. Nat. Materials 15, 856–862 CrossRef Medline

43. Tian, J., Wong, W. T., Tian, X. Y., Zhang, P., Huang, Y., and Wang, N. (2010) Rosiglitazone attenuates endothelin-1-induced vasoconstriction by upregulating endothelial expression of endothelin B receptor. Hypertension 56, 129–135 CrossRef Medline

16582 J. Biol. Chem. (2018) 293(43) 16572–16582