Research Article

Ju Myung Kim*

Approximation properties of tensor norms and operator ideals for Banach spaces

Abstract: For a finitely generated tensor norm α, we investigate the α-approximation property (α-AP) and the bounded α-approximation property (bounded α-AP) in terms of some approximation properties of operator ideals. We prove that a Banach space X has the λ-bounded $g_{p,q}$-AP if it has the λ-bounded g_{p}-AP. As a consequence, it follows that if a Banach space X has the λ-bounded g_{p}-AP, then X has the λ-bounded w_{p}-AP.

Keywords: approximation property, tensor norm, Banach operator ideal

MSC 2020: 46B28, 46B45, 47L20

1 Introduction

The main subjects of this paper originate from the classical approximation properties for Banach spaces, which was systematically investigated by Grothendieck [1]. A Banach space X is said to have the approximation property (AP) if

$$\text{id}_X \in \mathcal{F}(X, X)^c,$$

where id_X is the identity map on X, \mathcal{F} is the ideal of finite rank operators and τ_c is the topology of uniform convergence on compact sets.

Let X and Y be Banach spaces. We denote by $X \otimes Y$ the algebraic tensor product of X and Y. The normed space $X \otimes Y$ equipped with a norm α is denoted by $X \circlearrowleft_{\alpha} Y$ and its completion is denoted by $X \otimes_{\alpha} Y$. The basic two norms on $X \otimes Y$ are the injective norm ε and the projective norm π which are defined as follows.

$$\varepsilon(u; X, Y) = \sup \left\{ \sum_{j=1}^{n} x_j^* y_j^* : x_j^* \in B_{X^*}, y_j^* \in B_{Y^*} \right\},$$

where $\sum_{j=1}^{n} x_j \otimes y_j$ is any representation of u and we denote by B_Z the closed unit ball of a normed space Z.

$$\pi(u; X, Y) = \inf \left\{ \sum_{j=1}^{n} \| x_j \| \| y_j \| : u = \sum_{j=1}^{n} x_j \otimes y_j, n \in \mathbb{N} \right\}.$$

It is well known that a Banach space X has the AP if and only if for every Banach space Y, the natural map $J_{\pi} : Y \otimes_{\pi} X \to Y \otimes_{c} X$ is injective (cf. [2, Theorem 5.6]). This equivalent statement can be naturally extended to tensor norms. For basic definitions and general background of the theory of tensor norms, we refer to [2,3]. For a finitely

* Corresponding author: Ju Myung Kim, Department of Mathematics and Statistics, Sejong University, Seoul 05006, Korea, e-mail: kjm21@sejong.ac.kr

Open Access. © 2020 Ju Myung Kim, published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.
generated tensor norm \(\alpha \), a Banach space \(X \) is said to have the \(\alpha \)-AP if for every Banach space \(Y \), the natural map

\[
I_\alpha : Y \hat{\otimes}_\alpha X \to Y \otimes_\varepsilon X
\]

is injective (cf. [2, Section 21.7]). It is well known that if a Banach space \(X \) has the AP, then it has the \(\alpha \)-AP for every finitely generated tensor norm \(\alpha \) (cf. [2, Proposition 21.7(1)]).

Some of the well-known tensor norms can be obtained from the tensor norm \(\alpha_{p,q} \) (1 \(\leq p, q \leq \infty \), \(1/p + 1/q \geq 1 \)), which was introduced by Lapresté [4]. For \(1 \leq p < \infty \), \(\ell_p^w(X) \) stands for the Banach space of all \(X \)-valued weakly \(p \)-summable sequences endowed with the norm \(\| \cdot \|_p^w \). Let \(1 \leq r \leq \infty \) with \(1/r = 1/p + 1/q - 1 \). For \(u \in X \otimes Y \), let

\[
\alpha_{p,q}(u) = \inf \left\{ \| (\lambda_j)_{j=1}^n \|_p \| (x_j)_{j=1}^n \|_q \| (y_j)_{j=1}^n \|_p : u = \sum_{j=1}^n \lambda_j x_j \otimes y_j, n \in \mathbb{N} \right\},
\]

where \(p^* \) is the conjugate index of \(p \). Then \(\alpha_{p,q} \) is a finitely generated tensor norm and the transposed tensor norm \(\alpha_{q,p}^* = \alpha_{q,p} \) (cf. [2, Proposition 12.5]). The special cases \(g_p = \alpha_{p,1} \) and \(d_p = \alpha_{1,p} \) are called the Chevet-Saphar tensor norms [5,6] and \(a_1 = \pi \). The tensor norm \(w_p = \alpha_{p,p^*} \) is also well known. Díaz et al. [7] studied the \(\alpha_{p,q} \)-AP in terms of certain approximation properties of operator ideals. As a consequence, it was shown that a Banach space \(X \) has the \(\alpha_{p,q} \)-AP if it has the \(\alpha_{p,1} \)-AP.

Let \(\lambda \geq 1 \). A Banach space \(X \) is said to have the \(\lambda \)-bounded AP if

\[
\text{id}_X \in \{ S \in \mathcal{L}(X,X) : \| S \| \leq \lambda \}.
\]

It is well known that a Banach space \(X \) has the \(\lambda \)-bounded AP if and only if for every Banach space \(Y \), the natural map

\[
I_\lambda : Y \otimes_\lambda X \to (Y^* \otimes_\varepsilon X^*)^*
\]

satisfies \(\pi(u; Y, X) = \lambda \| I_\lambda(u) \|_{Y^* \otimes_\omega X^*} \) for every \(u \in Y \otimes X \) (cf. [2, Corollary 16.3.2]). More generally, for a finitely generated tensor norm \(\alpha \), a Banach space \(X \) is said to have the \(\lambda \)-bounded \(\alpha \)-AP if for every Banach space \(Y \), the natural map

\[
I_\lambda : Y \otimes_\alpha X \to (Y^* \otimes_\omega X^*)^*
\]

satisfies \(\alpha(u; Y, X) = \lambda \| I_\lambda(u) \|_{Y^* \otimes_\omega X^*} \) for every \(u \in Y \otimes X \) (cf. [2, Section 21.7]), where \(\omega' \) is the dual tensor norm (cf. [2]) of \(\alpha \). Note that \(\pi' = \varepsilon \).

The main goal of this paper is to study the \(\alpha \)-AP and the \(\lambda \)-bounded \(\alpha \)-AP in terms of operator ideals. In Section 2, we extend the result of Díaz et al. [7], and in Section 3, we obtain some bounded versions of the results obtained in Section 2. As an application, it is shown that a Banach space \(X \) has the \(\lambda \)-bounded \(\alpha_{p,q} \)-AP if it has the \(\lambda \)-bounded \(\alpha_{p,1} \)-AP. Consequently, if \(X \) has the \(\lambda \)-bounded \(\alpha_{p,1} \)-AP, then \(X \) has the \(\lambda \)-bounded \(\alpha_{p,p^*} \)-AP.

2 The \(\alpha \)-approximation property

We denote by \([\mathcal{L}, \| \cdot \|] \) the ideal of all operators and refer to [2,8–10] for operator ideals and their some information. A tensor norm \(\alpha \) is said to be associated with a Banach operator ideal \([\mathcal{A}, \| \cdot \|_\mathcal{A}] \) if the canonical map \((\mathcal{A}(M, N), \| \cdot \|_\mathcal{A}) \to M^* \otimes_\alpha N \) is an isometry for all finite-dimensional normed spaces \(M \) and \(N \). Let \(X \) and \(Y \) be Banach spaces. For \(T \in \mathcal{L}(X, Y) \), let

\[
\| T \|_\alpha = \sup \{ \| q_T^Y T I_{\mathcal{M}}^X \| : \dim M, \dim Y/L < \infty \},
\]

where \(I_{\mathcal{M}}^X: M \to X \) is the inclusion map and \(q_T^Y : Y \to Y/L \) is the quotient map, and

\[
\mathcal{A}^\text{max}(X, Y) = \{ T \in \mathcal{L}(X, Y) : \| T \|_\alpha < \infty \}.
\]
We call \([\mathcal{A}^{\max}, \| \cdot \|_{\mathcal{A}^{\max}}] \) the maximal hull of \([\mathcal{A}, \| \cdot \|_{\mathcal{A}}] \). If \([\mathcal{A}, \| \cdot \|_{\mathcal{A}}] = [\mathcal{A}^{\max}, \| \cdot \|_{\mathcal{A}^{\max}}] \), then \([\mathcal{A}, \| \cdot \|_{\mathcal{A}}] \) is called maximal. If \(\alpha \) is a finitely generated tensor norm, then its associated maximal Banach operator ideal is uniquely determined (cf. [2, Sections 17.1, 17.2 and 17.3]). For a finitely generated tensor norm \(\alpha \), the adjoint ideal \([\mathcal{A}^{\text{adj}}, \| \cdot \|_{\mathcal{A}^{\text{adj}}}] \) is the maximal Banach operator ideal associated with the adjoint tensor norm \(\alpha^* = (\alpha')' = (\alpha'^{*})' \).

Lemma 2.1. [2, Theorem 17.5] Let \([\mathcal{A}, \| \cdot \|_{\mathcal{A}}] \) be the maximal Banach operator ideal associated with a finitely generated tensor norm \(\alpha \). Then for all Banach spaces \(X \) and \(Y \), \(\mathcal{A}(X, Y^*) \) is isometric to \((X \otimes_{\alpha} Y^*)^* \) and \(\mathcal{A}(X, Y) \) is isometrically imbedded in \((X \otimes_{\alpha} Y)^* \) by the natural dual actions.

Let \(\alpha \) be a finitely generated tensor norm. According to [2, Proposition 21.7(4)], a Banach space \(X \) has the \(\alpha \)-AP if and only if for every Banach space \(Y \), the natural map

\[
J_{\alpha} : Y^* \otimes_{\alpha} X \rightarrow Y^* \otimes_{\alpha} X \hookrightarrow \mathcal{L}(Y, X)
\]

is injective.

Theorem 2.2. Let \([\mathcal{A}, \| \cdot \|_{\mathcal{A}}] \) be the maximal Banach operator ideal associated with a finitely generated tensor norm \(\alpha \). Then the following statements are equivalent for a Banach space \(X \).

(a) \(X \) has the \(\alpha \)-AP.

(b) For every Banach space \(Y \), \(\mathcal{F}(X, Y) \) is dense in \(\mathcal{A}^{\text{adj}}(X, Y) \) with the weak* topology on \((X \otimes_{\alpha} Y^*)^* \).

(c) For every Banach space \(Y \), \(\mathcal{F}(X, Y^*) \) is dense in \(\mathcal{A}^{\text{adj}}(X, Y^*) \) with the weak* topology on \((X \otimes_{\alpha} Y^*)^* \).

Proof. (a) \(\Rightarrow \) (b): Let \(Y \) be a Banach space. Since \([\mathcal{A}^{\text{adj}}, \| \cdot \|_{\mathcal{A}^{\text{adj}}}] \) is associated with \(\alpha^* \) and \((\alpha')' = \alpha^* \), by Lemma 2.1, \(\mathcal{A}^{\text{adj}}(X, Y) \) is isometrically imbedded in \((X \otimes_{\alpha^*} Y^*)^* \). Let \(T \in \mathcal{A}^{\text{adj}}(X, Y) \). Suppose that \(T \notin \mathcal{F}(X, Y)^{\text{weak}} \). Then by the separation theorem, there exists a \(u \in X \otimes_{\alpha^*} Y^* \) such that for every \(S \in \mathcal{F}(X, Y) \),

\[
\langle S, u \rangle = 0 \text{ but } \langle T, u \rangle \neq 0,
\]

where \(\langle \cdot, \cdot \rangle \) is the dual action on \((X \otimes_{\alpha^*} Y^*)^* \). We will show that \(u = 0 \) in \(X \otimes_{\alpha^*} Y^* \), which is a contradiction. Let

\[
J_{\alpha'} : X \otimes_{\alpha^*} Y^* \rightarrow X \otimes_{\alpha} Y^* \hookrightarrow \mathcal{L}(X^*, Y^*)
\]

be the natural map. To show that \(J_{\alpha'}u = 0 \) in \(X \otimes_{\alpha} Y^* \), let \(x^* \in X^* \) and \(y \in Y \). For every \(v = \sum m k=1, n k=1 x_k \otimes y_k^* \in X \otimes Y^* \),

\[
\langle x^* \otimes y, v \rangle = \sum m k=1 x^*(x_k) y_k^*(y) = (J_{\alpha'}v)x^*(y).
\]

Let \((u_n)\) be a sequence in \(X \otimes Y^* \) such that \(\lim_{n \to \infty} \alpha^* (u_n - u) = 0 \). Then

\[
\lim_{n \to \infty} \langle x^* \otimes y, u_n \rangle = \langle x^* \otimes y, u \rangle.
\]

Since

\[
|\langle J_{\alpha'}u_n x^* \rangle(y) - \langle J_{\alpha'}u x^* \rangle(y) | \leq \|x^*\| \|y\| \|t_{\alpha'}(u_n - u)\| X, Y^* \leq \|x^*\| \|y\| \|\alpha^*(u_n - u)\| \rightarrow 0
\]

as \(n \to \infty \), and for every \(n \),

\[
\langle x^* \otimes y, u_n \rangle = \langle J_{\alpha'}u_n x^* \rangle(y),
\]

\[
0 = \langle x^* \otimes y, u \rangle = \langle J_{\alpha'}u x^* \rangle(y).
\]

Thus, \(J_{\alpha'}u = 0 \) in \(X \otimes_{\alpha} Y^* \).

The aforementioned argument also shows that

\[
x^*(J_{\alpha'}u) = \langle J_{\alpha'}u x^* \rangle(y)
\]

for every \(x^* \in X^* \) and \(y \in Y \), where \(J_{\alpha} : Y^* \otimes_{\alpha} X \rightarrow Y^* \otimes_{\alpha} X \hookrightarrow \mathcal{L}(Y, X) \) is the natural map. Consequently, \(J_{\alpha}u^t = 0 \) in \(Y^* \otimes_{\alpha} X \). Since \(X \) has the \(\alpha \)-AP, \(u^t = 0 \) in \(Y^* \otimes_{\alpha} X \) and so \(u = 0 \) in \(X \otimes_{\alpha^*} Y^* \).
(b) ⇒ (c): Let Y be a Banach space. By Lemma 2.1, $\mathcal{A}^{\text{adj}}(X, Y)$ is isometric to $\left(X \hat{\otimes}_d Y \right)^*$. Let $T \in \mathcal{A}^{\text{adj}}(X, Y^*)$. Then by (b),

$$T \in \mathcal{F}(X, Y^*)^{\text{weak}'} \cap \left(X \hat{\otimes}_d Y^* \right)^*.$$

Since the canonical imbedding from $X \hat{\otimes}_d Y$ to $X \hat{\otimes}_d Y^{**}$ is an isometry,

$$T \in \mathcal{F}(X, Y^*)^{\text{weak}'} \cap \left(X \hat{\otimes}_d Y \right)^*.$$

(c) ⇒ (a): Let Y be a Banach space. We show that the natural map

$$J_a : Y \hat{\otimes}_a X \to Y \hat{\otimes}_a X \hookrightarrow \mathcal{L}(Y^*, X)$$

is injective. Assume that $J_a u = 0$ in $Y \hat{\otimes}_a X$. To show that $u = 0$ in $Y \hat{\otimes}_a X$, we will show that $u' = 0$ in $X \hat{\otimes}_d Y$, that is, $\langle T, u' \rangle = 0$ for every $T \in \mathcal{A}^{\text{adj}}(X, Y^*)$. Let $T \in \mathcal{A}^{\text{adj}}(X, Y^*)$ be fixed. Since $J_a u = 0$ in $Y \hat{\otimes}_a X$, for every $x^* \in X^*$ and $y^* \in Y^*$,

$$y'(J_a u') x^* = x'(J_a u) y^* = 0,$$

where $J_a' : X \hat{\otimes}_d Y \to X \hat{\otimes}_a Y \hookrightarrow \mathcal{L}(X^*, Y)$ is the natural map. As in the proof of (a) ⇒ (b), we see that

$$\langle x^* \otimes y^*, u' \rangle = y'(J_a u') x^* = 0$$

for every $x^* \in X^*$ and $y^* \in Y^*$, and so

$$\langle S, u' \rangle = 0$$

for every $S \in \mathcal{F}(X, Y^*)$. Since $T \in \mathcal{F}(X, Y^*)^{\text{weak}'} \cap \left(X \hat{\otimes}_d Y \right)^*$, this implies

$$\langle T, u' \rangle = 0. \quad \square$$

Let $1 \leq p, q \leq \infty$ with $1/p + 1/q \leq 1$ and let $1 \leq r \leq \infty$ with $1/p + 1/q + 1/r^* = 1$, where $1/r + 1/r^* = 1$. A linear map $T : X \to Y$ is called (p, q)-dominated if there exists a $C > 0$ such that

$$\|y^*_n(Tx_n)\| \leq C \|(x_n)\|_p \|y^*_n\|_q$$

for every $(x_n) \in \ell^p(X)$ and $(y^*_n) \in \ell^q(Y)$. We denote by $\mathcal{D}_{p,q}(X, Y)$ the collection of all (p, q)-dominated operators from X to Y and for $T \in \mathcal{D}_{p,q}(X, Y)$, let $\|T\|_{\mathcal{D}_{p,q}}$ be the infimum C satisfying all such inequalities. Then $[\mathcal{D}_{p,q}, \|\cdot\|_{\mathcal{D}_{p,q}}]$ is a Banach operator ideal (cf. [2, Section 19]). $\mathcal{D}_p = \mathcal{D}_{p,\infty}$ is well known as the ideal of absolutely p-summing operators (cf. [2,8–10]) and $\mathcal{D} = \mathcal{D}_{p,p^*}$ is the ideal of p-dominated operators. For $1/p + 1/q \geq 1$, let $[\mathcal{L}_{p,q}, \|\cdot\|_{\mathcal{L}_{p,q}}]$ be the maximal Banach operator ideal associated with the tensor norm $\alpha_{p,q}$. $\mathcal{L}_{p,q}$ is well known as the ideal of (p, q)-factorable operators. Then

$$[\mathcal{L}_{p,q}, \|\cdot\|_{\mathcal{L}_{p,q}}]^{\text{adj}} = [\mathcal{D}_{p',q'}, \|\cdot\|_{\mathcal{D}_{p',q'}}]$$

(see [2, Section 17.12] and [9, Section 17.4]).

Theorem 2.2 applied to the tensor norm $\alpha_{p,q}$ covers [7, Theorem 1].

Corollary 2.3. Let $1 \leq p, q \leq \infty$ with $1/p + 1/q \geq 1$. The following statements are equivalent for a Banach space X.

(a) X has the $\alpha_{p,q}$-AP.

(b) For every Banach space Y, $\mathcal{F}(X, Y)$ is dense in $\mathcal{D}_{p',q'}(X, Y)$ with the weak* topology on $\left(X \hat{\otimes}_{a,q} Y^* \right)^*$.

(c) For every Banach space Y, $\mathcal{F}(X, Y^*)$ is dense in $\mathcal{D}_{p',q'}(X, Y^*)$ with the weak* topology on $\left(X \hat{\otimes}_{a,q} Y \right)^*$.

Recall that a Banach space X has the AP if and only if X has the π-AP. Then the most special case of Corollary 2.3 is the following.
Corollary 2.4. The following statements are equivalent for a Banach space X
(a) X has the AP.
(b) For every Banach space Y, $\mathcal{F}(X, Y)$ is dense in $\mathcal{L}(X, Y)$ with the weak* topology on $(X \hat{\otimes}_\pi Y)^*$.
(c) For every Banach space Y, $\mathcal{F}(X, Y')$ is dense in $\mathcal{L}(X, Y')$ with the weak* topology on $(X \hat{\otimes}_\pi Y)^*$.

Proof. It is well known that π is associated with the ideal I of integral operators and $I^\text{adj} = \mathcal{L}$ holds isometrically (cf. [2]). Since $\pi' = \pi$, we have the conclusion. \hfill \square

Theorem 2.5. Let $[\mathcal{A}, \|\cdot\|_\mathcal{A}]$ be the maximal Banach operator ideal associated with a finitely generated tensor norm a. Then a Banach space X has the α^t-AP if and only if for every Banach space Y, $\mathcal{F}(Y, X')$ is dense in $\mathcal{A}^\text{adj}(Y, X')$ with the weak* topology on $(Y \hat{\otimes}_\alpha X)^*$.

Proof. Assume that X has the α^t-AP. Let Y be a Banach space. By Lemma 2.1, $\mathcal{A}^\text{adj}(Y, X')$ is isometric to $(Y \hat{\otimes}_\alpha X)^*$. Let $T \in \mathcal{A}^\text{adj}(Y, X')$. Suppose that $T \notin \overline{\mathcal{F}(Y, X')}^\text{weak}$. Then there exists a $u \in Y \hat{\otimes}_\alpha X$ such that for every $S \in \mathcal{F}(Y, X')$,
\[
\langle S, u \rangle = 0 \text{ but } \langle T, u \rangle \neq 0.
\]
Then as in the proof of Theorem 2.2, we can show that the natural map $J_{\alpha^t} : Y \hat{\otimes}_\alpha X \to Y \hat{\otimes}_\varepsilon X$ is not injective. This contradicts the assumption that X has the α^t-AP.

To show the converse, let Y be a Banach space. We want to show that the natural map
\[
J_{\alpha^t} : Y \hat{\otimes}_\alpha X \to Y \hat{\otimes}_\varepsilon X \hookrightarrow \mathcal{L}(Y^*, X)
\]
is injective. Assume that $J_{\alpha^t}u = 0$ in $Y \hat{\otimes}_\varepsilon X$. Let $T \in \mathcal{A}^\text{adj}(Y, X')$. Since $J_{\alpha^t}u = 0$ in $Y \hat{\otimes}_\varepsilon X$, we see that for every $y^* \in Y^*$ and $x^* \in X^*$,
\[
\langle y^* \otimes x^*, u \rangle = x^*((J_{\alpha^t}u)y^*) = 0.
\]
Thus, $\langle S, u \rangle = 0$ for every $S \in \mathcal{F}(Y, X')$. Since $T \notin \overline{\mathcal{F}(Y, X')}^\text{weak}$, $\langle T, u \rangle = 0$. Hence, $u = 0$ in $Y \hat{\otimes}_\alpha X$. \hfill \square

Corollary 2.6. Let $1 \leq p, q \leq \infty$ with $1/p + 1/q \geq 1$. Then a Banach space X has the $\alpha_{p,q}$-AP if and only if for every Banach space Y, $\mathcal{F}(Y, X')$ is dense in $\mathcal{D}_{p,q}(Y, X')$ with the weak* topology on $(Y \hat{\otimes}_{\alpha_{p,q}} X)^*$.

3 The bounded α-approximation property

Let $\tilde{\alpha}$ be a tensor norm and let X and Y be Banach spaces. Recall from [2, 12.4] that for every $u \in X \otimes Y$, let
\[
\tilde{\alpha}(u; X, Y) = \inf \{ \alpha(u; M, N) : u \in M \otimes N, \dim M, \dim N < \infty \}
\]
and
\[
\widetilde{\alpha}(u; X, Y) = \sup \{ \alpha((q_K^R \otimes q_L^T)(u); X/K, Y/L) : \dim X/K, \dim Y/L < \infty \}.
\]
It follows that $\tilde{\alpha} \leq \alpha \leq \widetilde{\alpha}$. A tensor norm α is called totally accessible if $\tilde{\alpha} = \widetilde{\alpha}$.

From [2, Proposition 21.7(2)], a Banach space X has the λ-bounded α-AP if and only if for every Banach space Y,
\[
\alpha(u; Y, X) \leq \lambda \tilde{\alpha}(u; Y, X)
\]
for every $u \in Y \otimes X$. Since $\tilde{\alpha}^t = (\tilde{\alpha})^t$, it follows that a Banach space X has the λ-bounded α^t-AP if and only if for every Banach space Y,
\[
\alpha(u; Y, X) \leq \lambda \tilde{\alpha}(u; Y, X)
\]
for every $u \in X \otimes Y$.

\[\]
Lemma 3.1. [2, Theorem 15.5] For all Banach spaces X and Y, and a tensor norm α, the natural maps
\[I_\alpha : X \otimes_\alpha Y \to (X^* \otimes_{\alpha^*} Y^*)^*, \]
\[I_\alpha^* : X^* \otimes_\alpha Y^* \to (X \otimes_{\alpha^*} Y)^* \]
are isometries.

The following lemma is a reformulation of [2, Lemma 16.2].

Lemma 3.2. Let α be a tensor norm and let X and Y be Banach spaces. Let $\lambda \geq 1$. Then $\alpha \leq \lambda \alpha$ on $X \otimes Y$ if and only if for every $\phi \in B_{(X_0,Y)^*}$, there exists a net (T_η) in $\lambda B_{X_0^*Y^*}$ such that for every $x \in X$ and $y \in Y$,
\[\lim_{\eta} (T_\eta x) (y) = \langle \phi, x \otimes y \rangle. \]

Proof. Suppose that $\alpha \leq \lambda \alpha$ on $X \otimes Y$. Let $\phi \in B_{(X_0,Y)^*}$. By Lemma 3.1, we can choose a Hahn-Banach extension $\hat{\phi} \in (X^* \otimes_{\alpha^*} Y^*)^*$ of ϕ. By Goldstine's theorem, there exists a net (T_η) in $\lambda B_{X_0^*Y^*}$ such that
\[\lim_{\eta} \langle \hat{\phi}, f \rangle = \langle \phi, f \rangle \]
for every $f \in (X^* \otimes_{\alpha^*} Y^*)^*$. Thus, for every $x \in X$ and $y \in Y$,
\[\lim_{\eta} (T_\eta x) (y) = \lim_{\eta} \langle x \otimes y, T_\eta \rangle = \langle \hat{\phi}, x \otimes y \rangle = \langle \phi, x \otimes y \rangle. \]

Also, since
\[\| \hat{\phi} \|_{X_0^*Y^*} = \| \phi \|_{X_0^*Y^*} \leq \lambda \| \phi \|_{X_0^*Y^*} \leq \lambda, \]
the net (T_η) is in $\lambda B_{X_0^*Y^*}$.

To show the converse, let $u = \sum_{k=1}^m x_k \otimes y_k \in X \otimes Y$. Then there exists $\phi \in B_{(X_0,Y)^*}$ such that $\phi(u; X, Y) = \langle \phi, u \rangle$. By assumption, there exists a net (T_η) in $\lambda B_{X_0^*Y^*}$ such that
\[\lim_{\eta} \langle \phi, u \rangle = \lim_{\eta} \sum_{k=1}^m \langle T_\eta x_k, y_k \rangle = \langle \phi, u \rangle. \]

Hence,
\[\alpha(u; X, Y) = \langle \phi, u \rangle \leq \lambda \sup \{ \| \langle u, v \rangle \| : v \in B_{X_0^*Y^*} \} = \lambda \| u \|_{X_0^*Y^*} = \lambda \alpha(u; X, Y). \]

Lemma 3.3. [2, Proposition 21.8] Let $[\mathcal{A}, \| \cdot \|_\pi]$ be the maximal Banach operator ideal associated with a finitely generated tensor norm α and let $\lambda \geq 1$. Let X and Y be Banach spaces. Then $\alpha \leq \lambda \alpha$ on $X \otimes Y$ if and only if for every $T \in B_{\mathcal{A}^0(\mathcal{L}(X,Y^*))}$, there exists a net (T_η) in $\lambda B_{X_0^*Y^*}$ such that for every $x \in X$ and $y^* \in Y^*$,
\[\lim_{\eta} y^*(T_\eta x) = (Tx)(y^*). \]

We denote the strong operator topology and the weak operator topology on \mathcal{L}, respectively, by τ_{so} and τ_{wo}. For a net (T_η) in $\mathcal{L}(X,Y^*)$, we say that $T_\eta \to 0$ in the weak* operator topology if
\[\lim_{\eta} (T_\eta x)(y) \to 0 \]
for every $x \in X$ and $y \in Y$. We denote the weak* operator topology by τ_{w^*}.

Theorem 3.4. Let $[\mathcal{A}, \| \cdot \|_\pi]$ be the maximal Banach operator ideal associated with a finitely generated tensor norm α and let $\lambda \geq 1$. Then the following statements are equivalent for a Banach space X.

(a) X has the λ-bounded α-AP.
(b) For every Banach space Y and every $T \in \mathcal{A}^{\text{adj}}(X, Y)$,

$$T \in \left\{ S \in \bar{F}(X, Y) : \alpha'(S; X', Y) \leq \lambda \|T\|_{\mathcal{A}} \right\}^{\text{tna}}.$$

(c) For every Banach space Y and every $T \in \mathcal{A}^{\text{adj}}(X, Y^*)$,

$$T \in \left\{ S \in \bar{F}(X, Y^*) : \alpha'(S; X', Y^*) \leq \lambda \|T\|_{\mathcal{A}} \right\}^{\text{tna}}.$$

\textbf{Proof.}

(b) \Rightarrow (c) is trivial.

(a) \Rightarrow (b): This proof is essentially due to [11, Theorem 4.1]. Let Y be a Banach space and let $T \in \mathcal{A}^{\text{adj}}(X, Y)$. Consider $i_T T \in \mathcal{A}^{\text{adj}}(X, Y^*)$, where $i_T : Y \to Y^*$ is the canonical isometry. Since X has the λ-bounded α-AP, by Lemma 3.3, there exists a net (T_{η}) in $\mathcal{F}(X, Y)$ with $\alpha'(T_{\eta}; X^*, Y) \leq \lambda$ such that for every $x \in X$ and $y^* \in Y^*$,

$$\lim_{\eta} y^*(\|i_T T_{\eta} x\|) = (i_T T x)(y^*) = y^*(Tx).$$

Since $\alpha'(\|i_T T_{\eta} x\|) \leq \lambda \|i_T T_{\eta} x\|$, we have

$$T \in \left\{ S \in \bar{F}(X, Y) : \alpha'(S; X', Y) \leq \lambda \|T\|_{\mathcal{A}} \right\}^{\text{tna}} = \left\{ S \in \bar{F}(X, Y) : \alpha'(S; X', Y) \leq \lambda \|T\|_{\mathcal{A}} \right\}^{\text{tna}}.$$

(c) \Rightarrow (a): Let Y be a Banach space. Since $\alpha = (\alpha')^*$, $\alpha \leq \lambda \alpha^*$ on $Y \otimes X$ if and only if $\alpha^* \leq \lambda \alpha^*$ on $X \otimes Y$. So, in order to show that X has the λ-bounded α-AP, we will show that $\alpha^* \leq \lambda \alpha^*$ on $X \otimes Y$ using Lemma 3.2.

Now, let $\phi \in B_{X_{\alpha^*}, Y^*}$. By Lemma 2.1, we can choose the representation $T_\phi \in \mathcal{A}^{\text{adj}}(X, Y^*)$ of ϕ with $\|T_\phi\|_{\mathcal{A}} \leq 1$. Then by (c), there exists a net (S_{η}) in $\lambda B_{X_{\alpha^*}, Y^*}$ such that for every $x \in X$ and $y \in Y$,

$$\lim_{\eta} (S_{\eta} x)(y) = (T_\phi x)(y) = \langle \phi, x \otimes y \rangle.$$

Hence by Lemma 3.2, we complete the proof.

\textbf{Corollary 3.5.} Let $1 \leq p, q \leq \infty$ with $1/p + 1/q \geq 1$ and let $\lambda \geq 1$. The following statements are equivalent for a Banach space X.

(a) X has the λ-bounded $\alpha_{p,q}$-AP.
(b) For every Banach space Y and every $T \in \mathcal{D}_{p',q'}(X, Y)$,

$$T \in \left\{ S \in \bar{F}(X, Y) : \|S\|_{\mathcal{D}_{p',q'}} \leq \lambda \|T\|_{\mathcal{D}_{p',q'}} \right\}^{\text{tna}}.$$

(c) For every Banach space Y and every $T \in \mathcal{D}_{p',q'}(X, Y^*)$,

$$T \in \left\{ S \in \bar{F}(X, Y^*) : \|S\|_{\mathcal{D}_{p',q'}} \leq \lambda \|T\|_{\mathcal{D}_{p',q'}} \right\}^{\text{tna}}.$$

\textbf{Proof.} If \mathcal{A} is the maximal Banach operator ideal associated with a totally accessible finitely generated tensor norm α, then by Lemmas 2.1 and 3.1, $a = \|\alpha\|$ on \mathcal{F}. Since $\alpha_{p,q}$ is totally accessible (cf. [2, Theorem 21.5]), by Theorem 3.4, we have the conclusion. The equivalence (a) \iff (b) is also a consequence of [11, Theorem 4.1].

For the following result, we will need [11, Corollary 2.14], which can be reformulated as follows.

\textbf{Lemma 3.6.} Let $1 \leq p \leq \infty$ and let $\lambda \geq 1$. The following statements are equivalent for a Banach space X.

(a) For every Banach space Y and every $T \in \mathcal{P}_p(X, Y)$,

$$T \in \left\{ S \in \bar{F}(X, Y) : \|S\|_{\mathcal{P}_p} \leq \lambda \|T\|_{\mathcal{P}_p} \right\}^{\text{tna}}.$$

(b) For every Banach space Y and every $T \in \mathcal{P}_p(X, Y)$,

$$\text{id}_X \in \left\{ S \in \bar{F}(X, X) : \|TS\|_{\mathcal{P}_p} \leq \lambda \|T\|_{\mathcal{P}_p} \right\}^{\text{tna}}.$$
According to [11, Definition 1.2], for a Banach operator ideal \mathcal{A}, a Banach space X is said to have the weak λ-BAP for \mathcal{A} if for every Banach space Y and every $T \in \mathcal{A}(X, Y)$,

$$id_X \in \{ S \in \mathcal{F}(X, X) : \| TS \|_{\mathcal{A}} \leq \lambda \| T \|_{\mathcal{A}} \}^{\text{w}}.$$

Theorem 3.7. Let $1 \leq p, q \leq \infty$ with $1/p + 1/q \geq 1$ and let $\lambda \geq 1$. If a Banach space X has the λ-bounded g_p-AP, then X has the weak λ-BAP for $D_{p', q'}$.

Proof. By Corollary 3.5 and Lemma 3.6, if X has the λ-bounded g_p-AP, then for every Banach space Z and every $T \in \mathcal{P}_{p'}(X, Z)$,

$$id_X \in \{ S \in \mathcal{F}(X, X) : \| TS \|_{\mathcal{P}_{p'}} \leq \lambda \| T \|_{\mathcal{P}_{p'}} \}^{\text{w}}.$$

Now, let Y be a Banach space and let $T \in D_{p', q'}(X, Y)$. Let $\delta > 0$. Then by Kwapień's factorization theorem (cf. [2, Theorem 19.3]), there exist a Banach space Z, $R \in \mathcal{P}_{p'}(X, Z)$ and $U^* \in \mathcal{P}_{q'}(Y', Z')$ with $\| U^* \|_{p'} \| R \|_{p'} \leq (1 + \delta) \| T \|_{\mathcal{D}_{p', q'}}$ such that the following diagram is commutative.

\[
\begin{array}{ccc}
X & \xrightarrow{T} & Y \\
\downarrow{R} & & \downarrow{U} \\
Z & & \\
\end{array}
\]

By the aforementioned statement, for every finite $x_1, ..., x_m \in X$ and every $\varepsilon > 0$, there exists an $S \in \mathcal{F}(X, X)$ with $\| RS \|_{p'} \leq \lambda \| R \|_{p'}$, such that

$$\| Sx_i - x_i \| \leq \varepsilon$$

for every $i = 1, ..., m$. Since

$$\| TS \|_{\mathcal{D}_{p', q'}} \leq \| U^* \|_{p'} \| RS \|_{p'} \leq (1 + \delta) \lambda \| T \|_{\mathcal{D}_{p', q'}},$$

we have shown that for every $\delta > 0$,

$$id_X \in \{ S \in \mathcal{F}(X, X) : \| TS \|_{\mathcal{D}_{p', q'}} \leq (1 + \delta) \lambda \| T \|_{\mathcal{D}_{p', q'}} \}^{\text{w}}.$$

Let $x_1, ..., x_m \in X$ and let $\varepsilon > 0$. Choose a $\delta > 0$ so that

$$\left(\delta \lambda / (1 + \delta) \lambda \right) \max_{1 \leq k \leq m} \| x_k \| \leq \varepsilon / 2.$$

Then, there exists an $S \in \mathcal{F}(X, X)$ with $\| TS \|_{\mathcal{D}_{p', q'}} \leq (1 + \delta) \lambda \| T \|_{\mathcal{D}_{p', q'}}$ such that for every $i = 1, ..., m$, $\| Sx_i - x_i \| \leq \varepsilon / 2$. Consider

$$\left(\lambda / (1 + \delta) \lambda \right) S \in \{ S \in \mathcal{F}(X, X) : \| TS \|_{\mathcal{D}_{p', q'}} \leq \lambda \| T \|_{\mathcal{D}_{p', q'}} \}.$$

Then for every $i = 1, ..., m$,

$$\left\| \frac{\lambda}{(1 + \delta) \lambda} Sx_i - x_i \right\| \leq \frac{\lambda}{(1 + \delta) \lambda} \| Sx_i - x_i \| + \frac{\lambda}{(1 + \delta) \lambda} \max_{1 \leq k \leq m} \| x_k \| \leq \varepsilon.$$

Hence, $id_X \in \{ S \in \mathcal{F}(X, X) : \| TS \|_{\mathcal{D}_{p', q'}} \leq \lambda \| T \|_{\mathcal{D}_{p', q'}} \}^{\text{w}}$. \hfill \Box

In [7, Proposition 2], it was shown that if a Banach space X has the g_p-AP, then X has the $a_{p', q'}$-AP. From Theorem 3.7 and Corollary 3.5, we have:

Corollary 3.8. Let $1 \leq p, q \leq \infty$ with $1/p + 1/q \geq 1$ and let $\lambda \geq 1$. If a Banach space X has the λ-bounded g_p-AP, then X has the λ-bounded $a_{p, q}$-AP.
Theorem 3.9. Let $[\mathcal{A}, \|\cdot\|_{\mathcal{A}}]$ be the maximal Banach operator ideal associated with a finitely generated tensor norm α and let $\lambda \geq 1$. Then a Banach space X has the λ-bounded α^t-AP if and only if for every Banach space Y and every $T \in \mathcal{A}^{\alpha t}(Y, X)$,

$$T \in \{S \in \mathcal{F}(Y, X) : \alpha^t(S; Y^*, X^*) \leq \lambda \|T\|_{\mathcal{A}^{\alpha t}}^{\tau^{\|\cdot\|_{\mathcal{A}}}}\}.$$

Proof. Let

$$i : X \otimes_{\alpha} Y \rightarrow Y \otimes_{\alpha'} X$$

be the isometry defined by $i(u) = u'$.

Suppose that X has the λ-bounded α^t-AP. Let Y be a Banach space and let $T \in \mathcal{A}^{\alpha t}(Y, X)$. By Lemma 2.1, we can choose the representation $\phi_T \in (Y \otimes_{\alpha'} X)^*$ of T. Consider $\phi_T i \in (X \otimes_{\alpha} Y)^*$. Since X has the λ-bounded α^t-AP, $\alpha \leq \lambda^{\alpha}$ on $X \otimes Y$. Then by Lemma 3.2, there exists a net $(u_{\eta})_{\eta}$ in $\lambda B_{X \otimes_{\alpha} Y}$ such that for every $x \in X$ and $y \in Y$,

$$\lim_{\eta} \langle x \otimes y, u_{\eta} \rangle = \left(\frac{\phi_T i}{\|\phi_T i\|_{(X \otimes_{\alpha} Y)^*}} \right) x \otimes y.$$

Let us consider the net $(\|\phi_T i\|_{(X \otimes_{\alpha} Y)^*} u_{\eta}^T)_{\eta}$ in $Y^* \otimes X^* = \mathcal{F}(Y, X^*)$. Then

$$\alpha^t(\|\phi_T i\|_{(X \otimes_{\alpha} Y)^*} u_{\eta}^T; Y^*, X^*) = \|\phi_T i\|_{(X \otimes_{\alpha} Y)^*} \alpha^t(u_{\eta}; X^*, Y^*) \leq \lambda \|T\|_{\mathcal{A}^{\alpha t}}^{\tau^{\|\cdot\|_{\mathcal{A}}}},$$

and for every $y \in Y$ and $x \in X$,

$$\lim_{\eta} (\|\phi_T i\|_{(X \otimes_{\alpha} Y)^*} u_{\eta}^T)(y) = \lim_{\eta} \langle x \otimes y, u_{\eta} \rangle = \langle \phi_T i, x \otimes y \rangle = (Ty)(x).$$

Hence, $T \in \{S \in \mathcal{F}(Y, X^*) : \alpha^t(S; Y^*, X^*) \leq \lambda \|T\|_{\mathcal{A}^{\alpha t}}^{\tau^{\|\cdot\|_{\mathcal{A}}}}\}$.

To show the converse, we also use Lemma 3.2. Let Y be a Banach space and let $\phi \in B_{(X \otimes_{\alpha} Y)^*}$. Consider $\phi T^{-1} \in B_{(Y \otimes_{\alpha'} X)^*}$. By Lemma 2.1, we can choose the representation $T^{-1}_{\phi^t} \in \mathcal{A}^{\alpha t}(Y, X)$ of ϕT^{-1} with $\|T^{-1}_{\phi^t}\|_{\mathcal{A}^{\alpha t}} \leq 1$. By assumption, there exists a net $(S_{\eta})_{\eta}$ in $\lambda B_{X \otimes_{\alpha} Y}$ such that for every $y \in Y$ and $x \in X$,

$$\lim_{\eta} (T_{\phi^t} S_{\eta})(y) = (T_{\phi^t} y)(x).$$

Consider the net $(S_{\eta}^T)_{\eta}$ in $X^* \otimes Y^*$. Then $\alpha(S_{\eta}^T; X^*, Y^*) = \alpha^t(S_{\eta}; Y^*, X^*) \leq \lambda$ and for every $x \in X$ and $y \in Y$,

$$\lim_{\eta} (S_{\eta}^T)(x) = \lim_{\eta} (S_{\eta})(y) = (T_{\phi^t} y)(x) = \langle \phi, x \otimes y \rangle.$$

Thus by Lemma 3.2, $\alpha \leq \lambda^{\alpha}$ on $X \otimes Y$. Hence, X has the λ-bounded α^t-AP. \qed

From Theorem 3.9, we have:

Corollary 3.10. Let $1 \leq p, q < \infty$ with $1/p + 1/q \geq 1$ and let $\lambda \geq 1$. A Banach space X has the λ-bounded a_{q, p^*}-AP if and only if for every Banach space Y and every $T \in \mathcal{D}_{a_{q, p^*}}(Y, X)$,

$$T \in \{S \in \mathcal{F}(Y, X^*) : \|S\|_{\mathcal{D}_{a_{q, p^*}}} \leq \lambda \|T\|_{\mathcal{D}_{a_{q, p^*}}}^{\tau^{\|\cdot\|_{\mathcal{A}}}}\}.$$

4 Open problems

The following question is a well-known problem (cf. [2, Section 21.12]).

Problem 1
Is the tensor norm w_p ($1 < p < \infty$, $p \neq 2$) totally accessible?
Since a finitely generated tensor norm α is totally accessible if and only if every Banach space has the 1-bounded α-AP, the problem can be reformulated as follows.

Problem 1
Does every Banach space have the 1-bounded w_p-AP ($1 < p < \infty$, $p \neq 2$)?

According to Corollaries 3.5 and 3.10, a Banach space X has the 1-bounded w_p-AP if and only if for every Banach space Y and every $T \in \mathcal{D}_p(X, Y)$,
\[T \in \{ S \in \mathcal{F}(X, Y) : \| S \|_{\mathcal{D}_p} \leq \| T \|_{\mathcal{D}_p} \}^{w_0} \]
if and only if for every Banach space Y and every $T \in \mathcal{D}_p(Y, X^*)$,
\[T \in \{ S \in \mathcal{F}(Y, X^*) : \| S \|_{\mathcal{D}_p} \leq \| T \|_{\mathcal{D}_p} \}^{w_0}. \]

Therefore, the problem can be reformulated as follows.

Problem 1
Let $1 < p < \infty$, $p \neq 2$. For all Banach spaces X and Y is dense in $\mathcal{D}_p(X, Y)$ with the weak* topology on $(X \hat{\otimes}_{w_p} Y)^*$ for every Banach space Y if and only if $\mathcal{F}(Y, X^*)$ is dense in $\mathcal{D}_p(Y, X^*)$ with the weak* topology on $(Y \hat{\otimes}_{w_p} X)^*$ for every Banach space Y. We ask:

Problem 2
Let $1 < p < \infty$, $p \neq 2$. For all Banach spaces X and Y is dense in $\mathcal{D}_p(X, Y)$ with the weak* topology on $(X \hat{\otimes}_{w_p} Y^*)$?

Or, is the space $\mathcal{F}(Y, X^*)$ dense in $\mathcal{D}_p(Y, X^*)$ with the weak* topology on $(Y \hat{\otimes}_{w_p} X)^*$?

Acknowledgments: The author would like to thank the referees for valuable comments. This work was supported by the National Research Foundation of Korea (NRF-2018R1D1A1B07043566).

References

[1] A. Grothendieck, *Produits tensoriels topologiques et espaces nucléaires*, Mem. Amer. Math. Soc. **16** (1955), DOI: http://dx.doi.org/10.1090/memo/0016.

[2] A. Defant and K. Floret, *Tensor Norms and Operator Ideals*, Elsevier, North-Holland, 1993.

[3] O. Reinov, *Approximation properties of order p and the existence of non-p-nuclear operators with p-nuclear second adjoints*, Math. Nachr. **109** (1982), 125–134.

[4] J. T. Lapresté, *Opérateurs sommants et factorisations à travers les espaces L^n*, Studia Math. **57** (1976), 47–83.

[5] S. Chevet, *Sur certains produits tensoriels topologiques d’espaces de Banach*, Z. Wahrscheinlichkeitstheorie verw. Gebiete **11** (1969), 120–138.
[6] P. Saphar, Applications à puissance nucléaire et applications de Hilbert-Schmidt dans les espaces de Banach, Ann. Scient. Ec. Norm. Sup. 83 (1966), 113–151.

[7] J. C. Díaz, J. A. López-Molina, and M. J. Rivera, The approximation property of order (p,q) in Banach spaces, Collect. Math. 41 (1990), 217–232.

[8] J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators, Cambridge University Press, Cambridge, 1995.

[9] S. Lassalle, E. Oja, and P. Turco, Weaker relatives of the bounded approximation property for a Banach operator ideal, J. Approx. Theory 205 (2016), 25–42.

[10] N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-Dimensional Operator Ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 38, Longman Scientific and Technical, New York, 1989.

[11] R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer, Berlin, 2002.

[12] A. Pietsch, Operator Ideals, North-Holland, Amsterdam, 1980.