The Impact of Intraoperative Nursing Care on Perioperative Complications During Wide-Awake Local Anesthesia Hand Surgery

Lili Schindelar, MD, MPH,* Clay B. Townsend, MD,* Asif M. Ilyas, MD, MBA,* Jonas L. Matzon, MD*

* Rothman Orthopaedic Institute at Thomas Jefferson University, Philadelphia, PA

Original Research

Article Info

Article history:
Received for publication July 7, 2021
Accepted in revised form December 1, 2021
Available online January 7, 2022

Key words:
Hand surgery
Nursing
Perioperative Complications
Wide-awake hand surgery
Wide-awake local anesthesia no tourniquet

Purpose: The wide-awake local anesthesia technique in hand surgery is widely used, but there are currently no guidelines or protocols for the number of operating room personnel required to optimize patient safety intraoperatively. This study aimed to evaluate perioperative complication rates of wide-awake local anesthesia hand surgeries performed at surgery centers that used different numbers of operating room nurses.

Methods: We conducted a retrospective review of patients who underwent wide-awake local anesthesia hand surgery at 4 surgical centers over a 30-month consecutive period. Two surgical centers used 3 operating room nurses, and 2 centers used 2 operating room nurses. The complications reported included intraoperative case abortion because of critical change in patient vitals, intraoperative medication delivery, intraoperative intravenous placement for medication delivery, intraoperative conversion to sedation, intraoperative medical complications, and postoperative transfer to the emergency department or a hospital.

Results: A total of 1,771 wide-awake local anesthesia surgical procedures were identified, with 925 performed at a facility that used 2 operating room nurses and 846 performed at a facility that used 3 operating room nurses. There were no perioperative complications in either group during the study period.

Conclusions: There was no difference in perioperative complications between the surgery centers that used 3 versus 2 intraoperative nurses during wide-awake local anesthesia hand surgery. This study supports that limiting the nursing personnel for wide-awake local anesthesia hand surgeries could be an efficient way to cut procedural costs without compromising patient safety.

Type of study/level of evidence: Therapeutic IV.

With its cost savings and improved efficiency, wide-awake local anesthesia surgery is growing in popularity.1–3 As more surgeons adopt wide-awake local anesthesia for hand surgeries, the logistics of running these operating rooms are still being refined by surgical facilities. An anesthetic provider is unnecessary without formal anesthesia, and a registered nurse may monitor the patient. However, the number of personnel needed in the operating room during wide-awake surgery is unclear.

Declarations of interests: No benefits in any form have been received or will be received by the authors related directly or indirectly to the subject of this article.

Corresponding author: Asif M. Ilyas, MD, MBA, Rothman Institute, Thomas Jefferson University Hospital, 925 Chestnut Street, 5th Floor, Philadelphia, PA 19107.
E-mail address: asif.ilyas@rothmanortho.com (A.M. Ilyas).

Our experience is that some centers provide only a circulating nurse and a scrub technician/nurse in the room for wide-awake procedures (2 nurses), whereas other centers provide an additional patient-monitoring nurse along with the circulating nurse and the scrub technician/nurse (3 nurses). There are no formal guidelines by the Association of periOperative Registered Nurses that we are aware of that provide requirements for a minimal number of nurses to be present during a local procedure. The Association of periOperative Registered Nurses guidelines state that the “patients’ acuity, level of anxiety, and complexity of the procedure” must be considered with determining the number of personnel needed to care for a patient receiving local anesthesia without the presence of an anesthesia care provider.4

Although minimizing the number of nurses would save cost per procedure, it is imperative to maintain patient safety during
surgery. This study aimed to evaluate the perioperative complications of wide-awake local anesthesia hand surgeries performed with and without an additional patient-monitoring nurse in the operating room and to determine how many patients required higher-level care during surgery. We hypothesized that there would be no difference in patient complications.

Materials and Methods

An approval from the institutional review board was obtained, with a waiver of informed consent per institutional protocol. A retrospective chart review was conducted for patients operated on between January 1, 2018 and June 5, 2020, at 4 separate surgical centers associated with a single academic practice. Two board-certified, hand surgery fellowship–trained hand surgeons performed all surgeries using the wide-awake local anesthesia technique. Two surgical centers used 3 nurses for local anesthetic cases, whereas 2 surgical centers used 2 nurses. The duties of the various nurses discussed are depicted in Table 1. All wide-awake local anesthesia cases were reviewed for complications during the procedure and in the immediate postoperative recovery room by performing a chart review. Queries were run to identify any complications or instances in which the patient required additional treatment or a higher level of care. All the surgical centers reported complications via Quantros data reporting. The specific outcomes included intraoperative case abortion because of vital sign instability, intraoperative medication delivery, intraoperative intravenous placement for medication delivery, intraoperative conversion to sedation, intraoperative medical complications, and postoperative transfer to the emergency department or hospital. Demographic data were collected, including age, sex, body mass index, smoking history, and past medical history. The patients were divided into 2 groups based on who underwent surgery at a facility that used 3 nurses and who underwent surgery at a facility that used 2 nurses.

The demographic information, medical history, and complications for each group were summarized using means and standard deviation for continuous data and counts and percentages for categorical data. Continuous data were analyzed using independent t tests, and categorical data were analyzed using chi-square tests. Statistical significance was set at P value of <.05. A power calculation determined that we needed a total of 1,428 procedures in this study, 714 per group, to achieve a power of 0.8 and an α of 0.05.

Table 1
Responsibilities of the Circulating Nurse Versus the Dedicated Patient-Monitoring Nurse

2-Nurse Operating Room	3-Nurse Operating Room	Circulating Nurse
Circulating Nurse	Circulating Nurse	Patient-Monitoring Nurse
- Verification of H&P/consents	- Intraoperative monitoring (blood pressure/pulse oximeter)	- Verification of H&P/consents
- Transporting the patient from the preoperative holding area to the OR	- Communicating with the patient	- Transporting the patient from the preoperative holding area to the OR
- Positioning the patient	- Intraoperative monitoring (blood pressure/pulse oximeter)	- Positioning the patient
- Prepping the patient	- Communicating with the patient	- Prepping the patient
- Time-out procedure	- Surgical documentation	- Time-out procedure
- Intraoperative monitoring (blood pressure/pulse oximeter)	- Circulating (retrieving/opening supplies)	- Surgical documentation
- Communicating with the patient	- Transferring the patient from the OR to the PACU	- Circulating (retrieving/opening supplies)
- Surgical documentation	- Giving report to the PACU	- Transferring the patient from the OR to the PACU
- Circulating (retrieving/opening supplies)	- Room turnover between cases	- Giving report to the PACU
- Transferring the patient from the OR to the PACU	- Room turnover between cases	- Room turnover between cases

H&P, history and physical exam; OR, operating room; PACU, post-anesthesia care unit.

Results

A total of 1,771 patients who underwent wide-awake local anesthesia hand surgery were identified at the 4 separate surgery centers. A total of 925 patients had surgery at a facility that used 2 nurses in the operating room, whereas 846 patients had surgery at a facility that used 3 nurses. The patient demographics and medical history for both groups are summarized in Table 2. On demographic analysis, the patients in the 3-nurse group had a significantly higher average body mass index (P < .001), significantly more former/current smokers (P = .008), and significantly more patients with hypertension (P = .004) and diabetes (P = .015) than those in the 2-nurse group. There were no other statistical differences in the other demographics between the 2 groups. The types of surgeries performed in both study groups were similar, with the majority being soft tissue surgeries. (Table 3)

No perioperative complications were recorded in either group (Table 4). There was no difference between using 2 versus 3 intraoperative nurses during wide-awake local anesthesia hand surgeries. Statistical analysis of our perioperative complication rate was not possible, given that there were zero complications in both groups.

Discussion

After reviewing 1,771 consecutive wide-awake local anesthesia upper-extremity surgeries, we found no difference in perioperative complications when using 2 versus 3 operating room nurses. Although having a nurse solely to monitor the patient may seem judicious, it does not seem to impact patient safety objectively.

The wide-awake local anesthesia technique in hand surgery has many benefits, including increased cost savings and improved operational efficiency. As wide-awake local anesthesia surgery has become increasingly adopted, protocols for the implementation of this technique into a surgeon’s practice have been well published. In contrast, minimal information exists in the literature to help guide facilities in incorporating this technique. When using general anesthesia, an anesthesia provider always monitors the patient because of the critical importance of guarding and maintaining the patient’s airway. However, with wide-awake local anesthesia, the anesthesia provider is no longer necessary to either anesthetize the patient or supervise the airway. This has left the decision on how to best monitor the patient up to the individual facilities.
When performing the wide-awake local anesthesia surgery in our region, we have at the minimum an attending surgeon, a scrub technician/nurse, and a circulating nurse. Moreover, at 2 of our facilities, there is an additional nurse who solely monitors the patient. The additional personnel used at some facilities may be because of a lack of universal guidelines for the wide-awake local anesthesia surgery. The current study demonstrates that having 1 nurse to monitor the patient and circulate the room, rather than anesthesia surgery. The current study demonstrates that having 1 nurse to monitor the patient and circulate the room, rather than

Table 2

Variable	2-Nurse Group (n = 925)	3-Nurse Group (n = 846)	P Value
Age (SD)	60 (15)	61 (15)	.380
BMI (SD)	28.3 (6.1)	30.1 (6.0)	<.001*
Sex			.263
Male (%)	451 (48.8)	390 (46.1)	
Female (%)	474 (51.2)	456 (53.9)	
Hypertension (%)	339 (36.6)	356 (42.1)	.004
CKD (%)	17 (1.8)	25 (3.0)	.131
Diabetes (%)	129 (13.9)	154 (18.2)	.015
Vascular disease (%)	19 (2.1)	19 (2.2)	.732
Bleeding disease (%)	26 (2.8)	24 (2.8)	.901
Tobacco use			.008
Former smoker (%)	184 (19.9)	168 (19.9)	
Current smoker (%)	86 (9.3)	105 (12.4)	

BMI, body mass index; CKD, chronic kidney disease; SD, standard deviation.

* Indicates statistical significance.

Table 3

Procedure Types in Each Group	2-Nurse Group N	3-Nurse Group N
Open CTR	251	393
TFR	174	135
Endoscopic CTR	119	70
Mass excision	75	27
Flexor tenosynovectomy	48	23
Extensor tenosynovectomy	35	22
IPJ arthrodesis	31	20
Tendon repair	25	19
Ulnar neuroplasty	18	19
Local flap	17	18
Ganglion excision	12	16
Foreign body removal	11	11
Mass excision	11	10
Nerve repair	10	9
External fixation	10	9
Dupuytren fasciectomy	8	8
Wound exploration	8	8
Nailed repair	8	7
Cyst excision	7	6
CRPP	7	5
Endoscopic CTR, TFR	6	3
Tendon transfer	5	2
DeQuervain release	5	Metacarpal ORIF
Polydactyly excision	4	Endoscopic CTR,
		mallet finger
Finger repair		1
Extensor tenosynovectomy	3	Central slip
Ganglion excision	3	Contracture
Excision olecranon bursa	2	Open CTR, TFR
Wound debridement	2	Hook of hamate
IPJ capsulotectomy	2	846
Phalanx ORIF	2	
Bursa aspiration	1	
Removal of hardware	1	
Osteophyte excision	1	
Endoscopic CTR, mass excision	1	
Digit amputation	1	
Piform excision	1	
Total	925	

CRPP, closed reduction and percutaneous pinning; CTR, carpal tunnel release; I&D, incision and drainage; IPJ, interphalangeal joint; ORIF, open reduction internal fixation; TFR, trigger finger release.

Therefore, it is important for facilities to use the best available evidence when adopting protocols for the use of this technique. This will allow them to realize these same benefits.

Our study has several strengths. First, this is a relatively high number of surgeries performed under the wide-awake local anesthesia comparing intraoperative personnel. Second, we evaluated a topic that has been understudied and that has safety and economic implications. Third, it provides empirical data to facilities that may help them develop appropriate safety protocols for the wide-awake surgery.

Our study also has several limitations. First, although we concluded that the additional patient-monitoring nurse is unnecessary from a perioperative patient safety standpoint, we did not investigate the potential benefits of the additional nurse. It is possible that the additional operating room personnel could have a positive effect on patient satisfaction, operating room efficiency, or other measures. Second, this study did not evaluate the overall outcomes of these surgeries as they relate to the use of 2 or 3 nurses in the operating room. Third, given that we had zero perioperative complications, it is possible that the study may be underpowered. Nevertheless, with the number of patients in each group, we believe that any potential difference would have minimal clinical
implications. Fourth, the operative time was not recorded for procedures in either group, so we cannot conclude whether the length of operative time in wide-awake hand surgery procedures contributes to perioperative complications. Finally, as with any retrospective study, it is possible that a complication was missed or not recorded in the medical chart.

With the benefits of wide-awake local anesthesia surgery now well-known and published in the literature, more centers are incorporating this style into their practices. Guidelines and protocols for implementing wide-awake local anesthesia surgery are becoming available. However, the number of nursing staff required for safe patient care has not been defined. The current study found no difference in perioperative complications between operating rooms functioning with 2 versus 3 nurses in wide-awake local anesthesia hand surgery. In an effort to decrease unnecessary personnel in the operating room and to reduce cost, we recommend having a single nurse to monitor the patient and to act as a circulator.

References

1. Coddington JL, Bhat SB, Ilyas AM. An economic analysis of MAC versus WALANT: a trigger finger release surgery case study. *Hand (N Y)*. 2017;12(4):348–351.
2. Maliha SG, Cohen O, Jacoby A, Sharma S. A cost and efficiency analysis of the WALANT technique for the management of trigger finger in a procedure room of a major city hospital. *Plast Reconstr Surg - Glob Open*. 2019;7(11):e2509.
3. Rhee PC, Fischer MM, Rhee LS, McMillan H, Johnson AE. Cost savings and patient experiences of a clinic-based, wide-awake hand surgery program at a military medical center: a critical analysis of the first 100 procedures. *J Hand Surg Am*. 2017;42(3):e139–e147.
4. Bourdon L. Care of the patient receiving local anesthesia. *AORN J*. 2015;101(3):P10–P12.
5. Tang JB. Local anesthesia without tourniquet in hand and forearm surgery: my story of using and promoting it. *Hand Clin*. 2019;35(1):xv–xx.
6. Van Demark RE, Becker HA, Anderson MC, Smith VJS. Wide-awake anesthesia in the in-office procedure room: lessons learned. *Hand (N Y)*. 2018;13(4):481–485.
7. Lalonde DH. Conceptual origins, current practice, and views of wide awake hand surgery. *J Hand Surg Eur Vol*. 2017;42(9):886–895.
8. Lalonde DH. Reconstruction of the hand with wide awake surgery. *Clin Plast Surg*. 2011;38(4):761–769.
9. Lalonde DH. “Hole-in-one” local anesthesia for wide-awake carpal tunnel surgery. *Plast Reconstr Surg*. 2010;126(5):1642–1644.
10. Lalonde D, Bell M, Benoit P, Sparkes G, Denkler K, Chang P. A multicenter prospective study of 3,110 consecutive cases of elective epinephrine use in the fingers and hand: the dalhousie project clinical phase. *J Hand Surg Am*. 2005;30(5):1061–1067.
11. Ilyas AM, Jennings JD, Banner L, Matzon JL. Wide-awake surgery with local anesthesia and epinephrine is safe. *Orthopedics*. 2020;43(6):e529–e532.

Table 4

Complication	2-Nurse Group (n = 925)	3-Nurse Group (n = 846)
Intraoperative		
Cases aborted due to vital signs	0	0
Medication delivery	0	0
Intravenous placement for medication delivery	0	0
Conversion to sedation	0	0
Medical complications (ie, MI)	0	0
Postoperative		
Transfer to ED or hospital	0	0

ED, emergency department; MI, myocardial infarct.