The Effect of Non-Thermal Plasma on the Topographical and Optical Constants of Cd Doped ZnO Thin Films

Khudheir A Mishjil¹, Ali H Abdulsada¹, Hayfa G Rashid¹, Hamid H Murbat² and Nadir F Habubi¹, *
¹Department of Physics, College of Education, Mustansiriyah university, Iraq.
²Department of Physics, College of Science for Women, University of Baghdad, Iraq.
* Corresponding author E-mail: nadirfadhil@uomustansiriyah.edu.iq

Abstract. Nanostructured ZnO and Cd doped ZnO were deposited employing spray pyrolysis technique. Atomic force microscope and double beam spectrophotometer were utilized to study the influence of non-thermal plasma on topographical and some optical constants. AFM results indicate that the average diameter was 43.4-68.81 nm before exposure and their values was slightly influenced by exposure to plasma to be 42.74-69.25 nm and all the result indicate the deposited films have a nanostructure. Surface roughness Ra and root mean square roughness Rrms were in the ambit of (2.09-5.3 nm), (2.43-6.12 nm) before exposure to plasma, while their values were in the ambit of (2.09-5.3 nm), (2.58-10.3 nm) after the influence of plasma. Optical constants such as absorbance was increased with the increment of Cd content, the same trend was noticed after exposure to non thermal plasma. High absorbance was seen near 400 nm. Whereas extinction coefficient, refractive index show a decrement with the increment of Cd content before and after exposure to plasma. Reflectance also offers the same trend of the above optical constants, a comparatively low reflectance is shown for the pure ZnO thin films before and after exposure. Finally, all the studied parameters were influenced by plasma exposure.

Keywords: non-thermal plasma, optical constants, reflectance profile, ZnO nanostructure.

1. Introduction

Metal oxides have gained great awareness in the last decade [1-15]. ZnO was interesting due to its good physical and chemical characterization, non-toxic compound, wide bandgap [16-20]. It is interned in many fabrication devices like solar cells [21], gas sensor[22], photocatalyst[23], photodetector[24], photoanode[25], lithium ion battery[26]. Various techniques were employed to fabricate ZnO films including, thermal evaporation[27], pulsed laser deposition [28], sol gel [29] SILAR[30], physical vapor deposition [31] and spray pyrolysis[32]. The physical characteristics of thin film could be tuned upon doping, whereas the literature on cd doped ZnO is scarce. Guzman-Embus et al. [33] studied the morphology
and optical properties of ZnO: Cd employing hydrothermal method showing a decrease in the crystalline order as Cd content increase. Kumar, and Srivastava [34] approved that photoresponsivity and photoluminescence were boost via Cd doping. Vinoth et al. [35] show that 20% of Cd content was enough to enhance gas sensitivity for methanol. Zhao et al. [36] try to enhance the response of by adding 2.5% as doping material in ZnO nanoparticle. Buyukbas-Ulusan et al.[37] fabricate a device employing Cd as dopant in ZnO, the result indicate that Cd was affected the performance of ZnO that the capacitance was increased upon Cd doping. In this work Spray Pyrolysis technique SPT was utilized to deposited ZnO: Cd thin film to study their morphology and optical constants before and after exposure to non-thermal plasma.

2. Experimental

ZnO and ZnO:Cd films were deposited employing SPT. A solution containing 0.1 M of (Zn(CH$_3$CO$_2$)$_2$·2H$_2$O) and 100 ml of deionized water was utilized to get the spraying solution. Cd(CH$_3$COO)·2H$_2$O of 0.1 M was dissolve in deionized water adding to the solution as a volumetric percentage of (2,4,6). Many experiments were done to obtain the optimum status that recached the following, base to spout to nozzle distance was 30 cm, base temperature was 400 °C, spray rate, spray time interval time between to sprayer were 5 ml/min, 10 S and 1.5 min respectively. Film thickness was evaluated via weighing method and was about 450± 50 nm. Absorbance spectra were recorded via Shimadzu spectrophotometer. XRD was employed to set film structure. AFM was employed to set films morphology. Non-thermal plasma device was utilized to study the effect of cold plasma, it operating voltage was 12.5 KV and exposure time =10 min(the experimental setup was discussed in detail in reference [38].

3. Results and Discussion

‘Figure 1’ offers the AFM images of the deposited film before and after exposure to non-thermal plasma. It can be clearly seen that images display violently congested columnar crystalline grains and homogenous, suffer from some aggregation and agglomeration. All the images prove that these films fell in the category of nano as nanostructured films. Their values were analyzed by granularity cumulation distribution report see ‘figure 2’. They were in the domain of (42.74- 68.81 nm) before exposure to plasma whilst their values were in the domain of (43.3-68.83 nm) after exposure to plasma. It seem that there is a slight increase in their value after exposed to plasma except the value of znO:6% Cd. These results are fit with the results obtained by Mishjil et al. [39] concerning the crystallite size after exposure. This could be attributed to the improvement in crystallinity after exposure, that means cold plasma act as healing to improve crystallinity. Surface roughness R_a and root mean square roughness R_{rms} were in the ambit of (2.09-5.3) nm, (2.43-6.12) nm before to plasma. While their values were in the ambit of (2.09-5.3) nm, (2.58-10.3) nm. It can be noticed that plasma exposure affects the R_a, R_{rms} and offer increment in their values (see Table 1). This behavior is in good fit with Tilmatine et al. [40].
Before exposure to plasma for pure ZnO

After exposure to plasma for pure ZnO

Before exposure to plasma for pure ZnO:2% Cd

After exposure to plasma for pure ZnO:2% Cd
Before exposure to plasma for pure ZnO:4% Cd

After exposure to plasma for pure ZnO:4% Cd

Before exposure to plasma for pure ZnO:6% Cd

After exposure to plasma for pure ZnO:6% Cd

Figure 1. AFM images before and after exposure to plasma for all the doping percentages.
Figure 2. Granularity cumulation distribution (a-d) before exposure (e-h) after exposure to plasma.
Table 1 AFM parameters for the ZnO:Cd thin films.

Sample	G.S. before Plasma	G. S. after plasma	R_a before plasma	R_a after plasma	R_rms before plasma	R_rms after plasma
ZnO	42.74	43.4	2.09	2.23	2.43	2.58
ZnO :2% Cd	52.18	52.92	4.21	4.88	4.86	6.51
ZnO :4% Cd	60.24	60.87	4.66	5.34	5.38	8.87
ZnO :6% Cd	68.81	68.83	5.3	8.87	6.12	10.3

Figure 3’ displays the absorbance (A) against wavelength, it can be clearly seen that A increases as the Cd content increase, the same behavior was noticed after exposure to plasma but their value after exposed to plasma was less than its value before the exposure. High absorbance was seen near 400 nm, this results agree well with Saleem et al. [41]. Besides their curves were spread after exposure in comparison with the curves before exposure.

The extinction coefficient (k) was obtained utilizing the formula [42]

\[k = \frac{\alpha \lambda}{4\pi} \] (1)

Figure 4’ offer the relation of K with wavelength for all the specimen under study. It can be seen that by increasing wavelength, extinction coefficient values decrease, this can be deduced to normal semiconducting dispersion behavior of the material, this behavior were in fit with Kumar and Rao [43]. On the other hand \(k \) suffer an exponential decay till 440 nm and 420 nm for the curves before and after exposure to cold plasma respectively, then it seems that there is a semi-linear relation after these values for both before and after exposure to plasma. We can mention that \(k \) was affected by increasing their values after exposure to plasma.

Figure 5’ is a plot of reflectance as a function of wavelength for ZnO and ZnO: Cd (2, 3, 6 %). The film shows an average reflectance of 12.8% and 16.05% in the wavelength range of (400 - 900) nm for the deposited films before and after exposure to non-thermal plasma respectively. A relatively low reflectance can noticed for the pure ZnO thin films before and after exposure, which can be served as an anti-reflecting coating material [44].
Figure 3. Absorbance as a function of wavelength for the deposited films.
Figure 4. Extinction coefficient versus wavelength of the deposited films.
Figure 5. Reflectance versus wavelength of the deposited films.
The refractive index (n) is a remarkable coefficient for optical materials and their implementation. So it is essential to determine the complex n of the films. n of the films was obtained employing the following relation [45].

\[
R = \frac{(n-1)^2}{(n+1)^2}
\]

The variation of refractive index varies with wavelength for all the films is offer in 'Figure 6', which shows that The refractive index increase as Cd content increases, which may be related to an increase of the compactness of the films [46]. The decrease in refractive index after exposure to plasma is related to the increase in grain size. This behavior coincides with Wang et al. [47].

![Refractive index of the deposited thin films](image-url)
4. Conclusions

Zinc oxide and ZnO: Cd was prosperous utilizing SPT. AFM images indicate that the average diameter of all the prepared film fall in nano-area. The affect of non-thermal plasma was studied which confirmed that topography, absorbance, extinction coefficient, reflectance and refractive index are influenced by cold plasma.

5. Acknowledgment

The authors would like to thank Mustansiriyah University (www.uomustansiriyah.edu.iq), University of Baghdad (https://uobaghdad.edu.iq) Baghdad- Iraq for their support in the present work.

References

[1] Habubi NF, Ismail RA, Hamoudi WK, Abid HR. Annealing time effect on nanostructured n-ZnO/p-Si heterojunction photodetector performance. *Surface Review and Letters*. 2015 Apr 25;22(02):1550027.

[2] Ismail RA, Habubi NF, Hadi EH. New trends in ZnO nanoparticles/n-Si heterojunction photodetector preparation by pulsed laser ablation in ethanol. *Optik*. 2017 Oct 1;147:391-400.

[3] Solodovnikov SF, Atuchin VV, Solodovnikova ZA, Khyzhun OY, Danylenko MI, Pischur DP, Plyusnin PE, Pugachev AM, Gavrilova TA, Yelisseyev AP, Reshak AH. Synthesis, structural, thermal, and electronic properties of palmierite-related double molybdate α-C$_2$Pb (MoO$_4$)$_2$. *Inorganic chemistry*. 2017 Mar 20;56(6):3276-86.
[4] Habubi NF, Abd AN, Dawood MO, Reshak AH. Fabrication and Characterization of a p-AgO/PSi/n-Si Heterojunction for Solar Cell Applications. *Silicon*. 2018 Mar;10(2):371-6.

[5] Rzaij JM, Ibrahim IM, Alalousi MA, Habubi NF. Hydrogen sulfide sensor based on cupric oxide thin films. *Optik*. 2018 Nov 1;172:117-26.

[6] Rzaij JM, Ibrahim IM, Alalousi MA, Habubi NF. Hydrogen sulfide sensor based on cupric oxide thin films. Optik. 2018 Nov 1;172:117-26.

[8] Yousif SA, Rashid HG, Mishjil KA, Habubi NF. Design and Preparation of Low Absorbing Antireflection Coatings Using Chemical Spray Pyrolysis. *International Journal of Nanoelectronics & Materials*. 2018 Oct 1;11(4).

[9] Jandow NN, Elttayef AK, Majied AF, Habubi NF, Saadeddin N, Al-Douri Y. Thickness effect of ZnO/PPC gas sensor on the sensing properties of NO2 gas. In*AIP Conference Proceedings 2019 Mar 21* (Vol. 2083, No. 1, p. 020003). AIP Publishing LLC.

[10] Habubi NF, Ismail RA, Mishjil KA, Hassoon KI. Increasing the silicon solar cell efficiency with nanostructured SnO2 anti-reflecting coating films. *Silicon*. 2019 Feb;11(1):543-8.

[11] Abed HR, Alwan AM, Yousif AA, Habubi NF. Efficient SnO2/CuO porous silicon nanocomposites structure for NH3 gas sensing by incorporating CuO nanoparticles. *Optical and Quantum Electronics*. 2019 Oct;51(10):1-3.

[12] Jandow NN, Habubi NF, Al-Baidhany IA, Qaeed MA. Annealing Effects on Band Tail Width, Urbach Energy and Optical Parameters of Fe 2 O 3: Ni Thin Films Prepared by Chemical Spray Pyrolysis Technique. *International Journal of Nanoelectronics & Materials*. 2019 Jan 1;12(1).

[13] Othman MS, Mishjil KA, Rashid HG, Chiad SS, Habubi NF, Al-Baidhany IA. Comparison of the structure, electronic, and optical behaviors of tin-doped CdO alloys and thin films. *Journal of Materials Science: Materials in Electronics*. 2020 Jun;31(11):9037-43.

[14] Muhammad SK, Hassan ES, Qader KY, Abass KH, Chiad SS, Habubi NF. Effect of vanadium on structure and morphology of SnO2 thin films. *Nano Biomed. Eng*. 2020;12(1):67-74.

[15] Rzaij JM, Habubi NF. Room temperature gas sensor based on La 2 O 3 doped CuO thin films. *Applied Physics A*. 2020 Jul;126(7):1-0.

[16] Khodiar ZT, Habubi NF, Abd IK, Shano AM. Structural and Morphological Properties of Cu 1-x Al x O Nanostructures Prepared by sol-gel Method. *International Journal of Nanoelectronics & Materials*. 2020 Jul 1;13(3).

[17] Ismail A, Abdullah MJ. The structural and optical properties of ZnO thin films prepared at different RF sputtering power. *Journal of King Saud University-Science*. 2013 Jul 1;25(3):209-15.

[18] Bedia A, Bedia FZ, Aillerie M, Maloufi N, Benyoucef B. Influence of the thickness on optical properties of sprayed ZnO hole-blocking layers dedicated to inverted organic solar cells. *Energy Procedia*. 2014 Jan 1;50:603-9.
[19] Zawadzka A, Płociennik P, El Kouari Y, Bougharraf H, Sahraoui B. Linear and nonlinear optical properties of ZnO thin films deposited by pulsed laser deposition. *Journal of Luminescence*. 2016 Jan 1;169:483-91.

[20] Shelke V, Sonawane BK, Bhole MP, Patil DS. Electrical and optical properties of transparent conducting tin doped ZnO thin films. *Journal of Materials Science: Materials in Electronics*. 2012 Feb;23(2):451-6.

[21] Luo JT, Zhu XY, Chen G, Zeng F, Pan F. The electrical, optical and magnetic properties of Si-doped ZnO films. *Applied surface science*. 2012 Jan 1;258(6):2177-81.

[22] Dhamodharan P, Manoharan C, Bououidina M, Venkadachalapathy R, Ramalingam S. Al-doped ZnO thin films grown onto ITO substrates as photoanode in dye sensitized solar cell. *Solar Energy*. 2017 Jan 1;141:127-44.

[23] Paliwal A, Sharma A, Tomar M, Gupta V. Carbon monoxide (CO) optical gas sensor based on ZnO thin films. *Sensors and Actuators B: Chemical*. 2017 Oct 1;250:679-85.

[24] Changlin YU, Kai YA, Qing SH, Jimmy CY, Fangfang CA, Xin LI. Preparation of WO3/ZnO composite photocatalyst and its photocatalytic performance. *Chinese Journal of Catalysis*. 2011 Jan 1;32(3-4):555-65.

[25] Wang K, Vygranenko Y, Nathan A. Optically transparent ZnO-based n–i–p ultraviolet photodetectors. *Thin Solid Films*. 2007 Jun 13;515(17):6981-5.

[26] Cao S, Yan X, Kang Z, Liang Q, Liao X, Zhang Y. Band alignment engineering for improved performance and stability of ZnFe2O4 modified CdS/ZnO nanostructured photoanode for PEC water splitting. *Nano Energy*. 2016 Jun 1;24:25-31.

[27] Zhu B, Liu N, McDowell M, Jin Y, Cui Y, Zhu J. Interfacial stabilizing effect of ZnO on Si anodes for lithium ion battery. *Nano Energy*. 2015 Apr 1;13:620-5.

[28] Jouya M, Taromian F, Abolkarolou MA. Growth of Zn thin films based on electric field by thermal evaporation method and effect of oxidation time on physical properties of ZnO nanorods. *Journal of Materials Science: Materials in Electronics*. 2020 Jun;31(11):8680-9.

[29] Kumar V, Ntwaeaborwa OM, Swart HC. Effect of oxygen partial pressure during pulsed laser deposition on the emission of Eu doped ZnO thin films. *Physica B: Condensed Matter*. 2020 Jan 1;576:411713.

[30] Ebrahimifard R, Abdizadeh H, Golobostanfard MR. Controlling the extremely preferred orientation texturing of sol–gel derived ZnO thin films with sol and heat treatment parameters. *Journal of Sol-Gel Science and Technology*. 2020 Jan;93(1):28-35.

[31] Devi KR, Selvan G, Karunakaran M, Raj IL, Ganesh V, AlFaify S. Enhanced room temperature ammonia gas sensing properties of strontium doped ZnO thin films by cost-effective SILAR method. *Materials Science in Semiconductor Processing*. 2020 Nov 15;119:105117.
[32] Stewart JA, Dingreville R. Microstructure morphology and concentration modulation of nanocomposite thin-films during simulated physical vapor deposition. *Acta Materialia*. 2020 Apr 15;188:181-91.

[33] Karyaoui M, Jemia DB, Gannouni M, Assaker IB, Baradaoui A, Amlouk M, Chtourou R. Characterization of Ag-doped ZnO thin films by spray pyrolysis and its using in enhanced photoelectrochemical performances. *Inorganic Chemistry Communications*. 2020 Jul 11;108114.

[34] Guzmán-Embús DA, Vargas-Charry MF, Vargas-Hernández C. Optical and structural properties of ZnO and ZnO: Cd particles grown by the hydrothermal method. *Journal of the American Ceramic Society*. 2015 May;98(5):1498-505.

[35] Kumar N, Srivastava A. Faster photoresponse, enhanced photosensitivity and photoluminescence in nanocrystalline ZnO films suitably doped by Cd. *Journal of Alloys and Compounds*. 2017 Jun 5;706:438-46.

[36] Vinoth E, Gowrishankar S, Gopalakrishnan N. RF magnetron sputtered Cd doped ZnO thin films for gas-sensing applications. *Materials and Manufacturing Processes*. 2017 Mar 12;32(4):377-82.

[37] Zhao R, Li K, Wang Z, Xing X, Wang Y. Gas-sensing performances of Cd-doped ZnO nanoparticles synthesized by a surfactant-mediated method for n-butanol gas. *Journal of Physics and Chemistry of Solids*. 2018 Jan 1;112:43-9.

[38] Buyukbas-Uluslan A, Taşçıoğlu İ, Tataraoğlu A, Yakuphanoğlu F, Altındağ S. A comparative study on the electrical and dielectric properties of Al/Cd-doped ZnO/p-Si structures. *Journal of Materials Science: Materials in Electronics*. 2019 Jul;30(13):12122-9.

[39] Razuqi NS, Muftin FS, Murbat HH, Abdalameer NK. Influence of Dielectric-barrier Discharge (DBD) Cold Plasma on Water Contaminated Bacteria. *Annual Research & Review in Biology*. 2017 Jul 10:1-9.

[40] Mishjil KA, Abdulwada AH, Rashid HG, Mansour HL, Rasheed HS, Murbat HH, Habibi NF. Non-thermal plasma effects on structural and optical properties of Cd doped ZnO thin films. In *IOP Conference Series: Materials Science and Engineering* 2020 Jun 1 (Vol. 871, No. 1, p. 012061). IOP Publishing.

[41] Tilmatine O, Zeghloul T, Fatu A, Dascălescu L. Study of the effect of duration of non-thermal plasma treatment on the surface properties of polymers. In *IOP Conference Series: Materials Science and Engineering* 2020 (Vol. 724, No. 1, p. 012050). IOP Publishing.

[42] Saleem AH, Noor HA, Ali AH. An Investigation of the Effect of Time Exposure of Nonthermal Plasma on the Optical Properties of CdO Thin Film Prepared by Pulsed Laser Deposition. In *Journal of Physics: Conference Series* 2019 Jul 1 (Vol. 1234, No. 1, p. 012053). IOP Publishing.

[43] Jacques IP, Pankove J. *Optical processes in semiconductors*. by Prentice-Hall. Englewood Cliffs. Inc. New Jersey,(1ed). 1971:87.

[44] Kumar P, Rao GK. The effect of precursor concentration and post-deposition annealing on the optical and micro-structural properties of SILAR deposited SnO2 films. *Materials Research Express*. 2020 Jan 20;7(1):016428.
[45] Ajuba AE, Ezugwu SC, Asogwa PU, Ezema FI. COMPOSITION AND OPTICAL CHARACTERIZATION OF ZnO/NiO MULTILAYER THIN FILM: EFFECT OF ANNEALING TEMPERATURE. Chalcogenide Letters. 2010 Oct 1;7(10).

[46] Ashour A, El-Kadry N, Mahmoud SA. On the electrical and optical properties of CdS films thermally deposited by a modified source. Thin solid films. 1995 Nov 15;269(1-2):117-20.

[47] Kaid MA, Ashour A. Preparation of ZnO-doped Al films by spray pyrolysis technique. Applied surface science. 2007 Jan 15;253(6):3029-33.

[48] Wang L, Meng L, Teixeira V, Song S, Xu Z, Xu X. Structure and optical properties of ZnO: V thin films with different doping concentrations. Thin Solid Films. 2009 May 1;517(13):3721-5.