Analysis of 239 ordinary and severe cases of COVID-19: Clinical features and treatment

Susan Azizmohammadi (1), Sima Azizmohammadi (2), Sarah Dahrmardeh (3), Hossein Azargashb (1), Seyyed Javad Hosseini Shokouh (1), Mojgan Mohajeri-Iravani (4), Maziar Mobasher (1), Saeed Soleiman-Meigooni (1), Mahdi Zabihi (1)

(1) Hajar Hospital, Aja University of Medical Science, Tehran, Iran; (2) Department of Gynecology, Hajar Hospital, AJA University of Medical Sciences, Tehran, Iran; (3) Medical Doctor, Tehran, Iran; (4) Department of Anesthesiology, Paramedical Faculty, Hajar Hospital, AJA University of Medical Sciences, Tehran, Iran.

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License (CC BY-NC 4.0) which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Abstract

This study retrospectively analyzed the clinical characteristics of patients with new coronavirus infection (COVID-19) and summarizes the treatment experience. A total of 239 COVID-19 patients admitted to the Hajar Hospital, Aja University of Medical Science, Tehran, Iran from March 22, 2020 to May 18, 2020 were selected, including 176 cases in the ordinary group and 63 cases in the severe/critical group. We collected and compared the clinical data of the two groups of patients, including general conditions, clinical symptoms, signs, laboratory tests, lung CT imaging and prognosis, and analyzed the treatment plans of the two groups. The mean age of 239 COVID-19 patients was 48.1±17.6 years, including 132 males. Patients in the severe and critically ill groups were older than the normal group, with more males and more underlying diseases. The difference was statistically significant (p < 0.05). The lymphocyte (LYM) counts and albumin (ALB) counts of the severe and critically ill groups were more significantly lower than those of the normal group; while the percentage of neutrophils (NEU), C-reactive protein (CRP), D-dimer, and lactate The increase of lactate dehydrogenase (LDH) and urea nitrogen (BUN) was more significant, and the difference was statistically significant (p < 0.05). Patients in the severe and critically ill groups received more antiviral drugs, glucocorticoids, and nasal catheters than those in the normal group, and the difference was statistically significant (p < 0.05). Also, we observed that the most radiological finding was bilateral ground-glass opacity in both groups, however, the rate of typical abnormalities in both chest CT scan and chest x-ray was significantly higher in severe/critical group except air-bronchogram. Taken together, we showed that combination of oseltamivir and glucocorticosteroid such as dexamethasone was very effective in severe patients.

Key Words: COVID-19; clinical features; severity; imaging; laboratory test.
Ordinary and severe cases of COVID-19 in Iran
Eur J Transl Myol 31 (3): 9579, 2021 doi: 10.4081/ejtm.2021.9579

The main presentations of COVID-19 in Iranian population have not been published widely. In this regard, we tried to share our experience and clinical manifestation of COVID-19 cases in Iran. Therefore, present study is aimed to evaluate and analyze the clinical characteristics of the COVID-19 patients in Iran, and summarize the treatment experience from them, and provide reference for clinicians on the front line of anti-epidemic disease. In reaching this goal, we enrolled 239 admitted patients, including 63 severe cases.

Table 1. Comparison of clinical characteristics of 239 COVID-19 patients in general and severe/critical group
Overall (n=239)
Age (x±s)
Gender (n, %)
Female (n, %)
Male (n, %)
Close contact with confirmed cases (n, %)
Comorbidities (n, %)
Hypertension (n, %)
Chronic kidney disease (n, %)
Chronic liver disease (n, %)
Coronary heart disease (n, %)
Malignant tumor (n, %)
Immunosuppressive (n, %)
COPD (n, %)
No comorbidity (n, %)
1 comorbidity (n, %)
2 comorbidities (n, %)
≥3 comorbidities (n, %)
Symptoms (n, %)
Fever≥37.3℃ (n, %)
Dry cough (n, %)
Fatigue, muscle aches (n, %)
Dyspnea (n, %)
Expectorant (n, %)
Dizziness, headache (n, %)
Poor appetite (n, %)
Sore throat (n, %)
Diarrhea (n, %)
Vomiting (n, %)
Stomachache (n, %)
Onset of symptom to hospital admission
Signs [median (IQR)]
Pulse [median (IQR)]
Respiratory rate [median (IQR)]
Systolic pressure (x±s)
Diastolic pressure (x±s)
Blood oxygen saturation [median (IQR)]
Ordinary and severe cases of COVID-19 in Iran
Eur J Transl Myol 31 (3): 9579, 2021 doi: 10.4081/ejtm.2021.9579

Materials and Methods
This study was a single-center, retrospective observational study and collected clinical data from 239 patients diagnosed with COVID-19 from March 22nd to May 18th, 2020. The collection and use of relevant information fully guaranteed the privacy of patients and comply with ethical regulations. The study done according to the Declaration of Helsinki on human subjects. The ethical committee approved with protocol number(IR.AJAUMS.REC.1399.06) In this study, all cases have at least one positive real-time fluorescence quantitative polymerase chain reaction (RT-PCR) for SARS-CoV-2 nucleic acid.8

Patients groups
We divided the COVID-19 patients in three subgroups:

1- Ordinary type: patients with mild symptoms such as low grade fever, cough, and etc.
2- Severe: patients with two of the following conditions (1) shortness of breath, respiratory rate ≥30/min; (2) fingertip oxygen saturation ≤93% at rest; (3) arterial partial pressure of oxygen (PaO2)/ Fraction of inspiration oxygen (FiO2) ≤300 mmHg (1 mmHg = 0.133 kPa); (4) Pulmonary imaging showed significant progress of the lesion within 24 to 48 h >50% was managed
3- Critical and severe: patients consistent with one of the following conditions: A) Respiratory failure occurred and mechanical ventilation was required; B) Shock occurred; C) Combining other organ failures required ICU monitoring treatment.

Table 2. Comparison of laboratory tests in patients with COVID-19 on admission to hospital.

Item (unit, normal range)	Overall(n=239), Median (IQR)	Ordinary group(n=176), Median (IQR)	Severe/critical group(n=63), Median (IQR)	p Value
Blood routine				
WBC count×10⁹·L⁻¹, 3.5–9.5	5.4 (4.1–6.8)	4.9 (4.0–5.9)	6.5 (5.1–11.5)	0.003
NEU% (40–75)	68.3 (56.8–78.8)	61.6 (51.8–72.4)	84.2 (75.1–91.2)	< 0.001
NEU count×10⁵·L⁻¹, 1.8–6.3	3.4 (2.2–5.2)	2.8 (2.0–4.0)	5.5 (3.8–10.8)	< 0.001
LYM % (20–50)	23.5 (13.3–34.2)	28.0 (20.4–37.4)	9.9 (6.4–19.3)	< 0.001
LYM count×10⁵·L⁻¹, 1.1–3.2	1.1 (0.7–1.5)	1.3 (0.9–1.7)	0.7 (0.4–1.1)	< 0.001
PLT×10⁵·L⁻¹, 125–350	164 (133–218)	163 (140–216)	182 (129–227)	0.717
Indicators of inflammation				
CRP (mg·L⁻¹, 0–8)	13.6 (3.7–34.1)	5.6 (0.8–21.4)	36.9 (19.3–96.1)	< 0.001
PCT & (%) (n, %)	78.0 (98.7)	55.0 (100)	23.0 (95.8)	0.304
Coagulation				
PT (s, 9.5–14.5)	14.3 (13.4–15.9)	14.4 (13.5–16.0)	14.3 (13.3–15.0)	0.713
D-Dimer (μg·mL⁻¹, 0–1.1)	0.22 (0.14–0.35)	0.19 (0.09–0.26)	0.45 (0.22–0.64)	< 0.001
Myocardial enzymes				
CK (IU·L⁻¹, 22–269)	91.4 (54.8–158.2)	92.7 (55.5–154.4)	86.2 (46.0–178.1)	0.543
CK-MB (IU·L⁻¹, 0–25)	11.1 (9.5–15.7)	11.3 (9.4–15.8)	11.1 (9.6–13.6)	0.598
LDH (U·L⁻¹, 120–250)	246 (178–306)	202 (169–270)	295 (265–374)	< 0.001
Biochemical indicators				
ALT (IU·L⁻¹, 9–50)	23 (15–42)	20 (15–35)	29 (21–43)	0.098
AST (IU·L⁻¹, 15–45)	27 (21–36)	25 (21–35)	40 (23–37)	0.159
ALB (g·L⁻¹, 40–55)	42.4 (38.3–46.9)	44.3 (41.2–47.7)	36.3 (33.0–39.1)	< 0.001
TB (umol·L⁻¹, 3.4–21)	16.4 (11.8–21.1)	14.7 (11.4–20.1)	17.2 (12.9–21.3)	0.263
Cr (umol·L⁻¹, 57–111)	69 (58–81)	70 (59–80)	60 (59–81)	0.819
BUN (mmol·L⁻¹, 3.1–8)	4.0 (3.0–5.4)	3.6 (3.0–4.5)	5.4 (4.3–6.0)	< 0.001

WBC: white blood cells, NEU: neutrophils, LYM: lymphocytes, PLT: platelets, CRP: C-reactive protein, PCT: procalcitonin, PT: prothrombin time, CK: creatine kinase, CK-MB: creatine kinase isoenzyme, LDH: lactate dehydrogenase, ALT: alanine aminotransferase, AST: aspartate aminotransferase, TB: total bilirubin, Cr: creatinine, BUN: urea nitrogen.
Data collection

The relevant data was collected and obtained through the in-hospital electronic medical record system, which was summarized in an electronic format and reviewed by senior physicians. The information collected included demographic data, previous medical history, history of epidemic exposure, clinical symptoms and signs, laboratory tests, chest imaging findings, treatment measures, and prognosis. The laboratory tests at least included: blood routine, CRP, PCT, prothrombin time (PT), D-dimer, creatine kinase (CK), creatine kinase isoenzymes (CK-MB), LDH, alanine aminotransferase (ALT), aspartate aminotransferase (AST), serum albumin (ALB), total bilirubin (TB), creatinine (Cr), and BUN. The laboratory examination data of ordinary patients were collected within 48 hours of admission, and the severe and critically ill patients were collected within 48 hours of admission to the intensive care unit.

Statistics

All statistical analyses were performed by using SPSS 25.0 software, the t-test and chi-square test were used to compare the mean of two groups of samples. The measurement data of normal distribution is represented by mean (X) ± SD; p value under 0.05 was consider as a significance level.

Results

General information

Table 1 shows the general data of 239 COVID-19 patients collected in this study. The average age of the patients was 48.1±17.6 years. Among them, 132 were male (55.3%) and 107 were female (44.7%). In terms of disease susceptibility, there was no statistically significant difference between men and women (p = 0.42), but men were more likely to develop severe pneumonia (47 cases (75%) vs 16 cases (25%), P=0.032). Compared with the common type, patients with severe and critically ill patients are older [(59.8±14.1) years vs (43.9±14.5) years, p < 0.001], and previously had hypertension [32 cases (50.8%) vs 16 cases (9.1%), p < 0.001] and cerebrovascular diseases [9 cases (14.3%) vs 0 cases, p = 0.026], and the number of underlying diseases of previous diseases was higher than that of the ordinary group (p < 0.001). Other indicators such as contact history, onset symptoms, pulse, breathing frequency and other indicators showed no significant differences (all p > 0.05).

Laboratory findings

Table 2 shows the comparison of laboratory examination items between 63 severe /critically ill patients and 176 ordinary patients. In blood tests and 26 patients (11.0%),
Ordinary and severe cases of COVID-19 in Iran
Eur J Transl Myol 31 (3): 9579, 2021 doi: 10.4081/ejtm.2021.9579

86 patients (36.4%), 41 patients (17.4%), and 184 patients (77.9%) had elevated white blood cell counts, NEU%, NEU absolute value, and CRP, respectively in ordinary and severe/critically ill patients. In addition, we observed that 44 patients (18.6%), 117 patients (49.6%), and 45 patients (19.1%) were accompanied by a decrease in the total number of white blood cells, the absolute value of LYM, and platelets (PLT), respectively in both groups. Also, 96 patients (40.7%), 72 patients (30.5%), and 9 patients (3.8%) had increased or prolonged PT, APTT, and D-dimer, respectively in both groups; 28 cases (11.9%), 14 cases (5.9%), and 117 cases (49.6%) were accompanied by increased CK, CK-MB, and LDH. In the biochemical examination, 36 patients (15.2%), 27 patients (11.4%), 60 patients (25.5%), 12 patients (5.1%), 9 patients (3.8%) developed ALT, AST, TB, Cr, BUN increased and ALB decreased in 93 cases (39.3%). During routine blood tests, the total number of white blood cells in the ordinary group [4.9 (4.0~5.9) × 10^9 L^-1 vs 6.5 (5.1~11.5) × 10^9 L^-1, p = 0.003], NEU% [61.6% (51.8~72.4) vs 84.2% (75.1~91.2), p <0.001] and absolute value [2.8 (2.0~4.0)×10^9 L^-1 vs 5.5(3.8~10.8)×10^9 L^-1, p < 0.001] significantly lower than the heavy and critical groups; the percentage of LYM in the heavy and critical groups [9.9% (6.4~19.3) vs 28% (20.4~37.4), p < 0.001] and the absolute value [0.7(0.4~1.1)×10^9 L^-1 vs 1.3 (0.9~1.7)×10^9 L^-1, p < 0.001] significantly lower than the normal group. CRP [36.9(19.3~96.1)mg·L^-1 vs 5.6(0.8~21.4)mg·L^-1, p < 0.001], D dimer [0.45(0.22~0.64) μg·mL^-1 vs 0.19(0.09~0.26) μg·mL^-1 , p < 0.001], and LDH [295(265~374) U·L^-1 vs 202(169~270) U·L^-1 , p < 0.001], detection value was significantly higher than that of normal group patients. The ALB detection value of the heavy and critical groups was significantly lower than that of the normal group [36.3(33.0~39.1) g·L^-1 vs 44.3(41.2~47.7) g·L^-1, p < 0.001]. There was no significant difference in Cr detection value between the two groups (p = 0.819); BUN increased more significantly in severe and critically ill patients [5.4 (4.3 ~ 6.0) mmol L^-1 vs 3.6 (3.0 ~ 4.5) mmol L^-1] (p < 0.001), but the mean is still within normal range.

Comparison of lung CT changes
Among 236 patients, 207 patients were undergoing lung CT examination and 88 patients were undergoing chest X-ray upon admission. 207 patients had lung CT imaging on admission, including patients 144 (81.8%) in ordinary patients and 63 patients (100%) in severe patients with CT imaging changes in the lungs. In addition, among 88 patients with chest X-ray evaluation, 57 patients (32.3%) was placed into ordinary group and 31 patients (49.2%) were severe/critically ill patients. Table 3 shows the detailed findings of chest X-ray and chest CT examination in ordinary and severe/critically ill patients. There was no statistically significant difference between the groups. The lung CT signs of the diagnosed cases are summarized as follows: Most patients with lung CT usually show single or multiple ground glass shadows, and consolidations. Our results showed that the most prevalent chest CT feature was ground-glass opacity (43.0%) with bilateral involvement pattern (78.7%) and followed by consolidation and peripheral distribution. Severe/critically ill patients had a significant higher rate of abnormalities, including ground-glass opacity, consolidation, crazy-paving pattern (p < 0.001). Only air-bronchogram was not significantly differ among two

Table 4. Treatments of Patients Infected With SARS-CoV-2

	Overall (n=239) (n, %)	General group (n=176) (n, %)	Severe and critical group (n=63) (n, %)	p Value
Antiviral therapy				
Oseltamivir	239 (100)	176 (100)	63 (100)	<0.001
Lopinavir	44 (18.4)	12 (6.8)	32 (50.7)	
No antiviral drug	0	0	0	
Other treatments				
Hydroxychloroquine	188 (78.6)	143 (81.25)	45 (71.4)	0.238
Antibiotic*	148 (62)	105 (59.6)	33 (52.4)	0.346
Glucocorticoid	78 (32.9)	34 (19.4)	44 (69.8)	<0.001
Supportive therapy				
Intranasal oxygen inhalation	121 (50.6)	61 (34.5)	60 (95.8)	<0.001
High flow oxygen	13 (5.4)	0	13 (20.6)	<0.001
Non-invasive and invasive mechanical ventilation	8 (3.3)	0	8 (12.7)	<0.001

* including Azithromycin or Levofloxacin
groups. In addition, the same results were seen in chest X-ray (Table 3).

Treatment and prognosis
Table 4 shows that all patients received one or more treatment, including 239 cases of oseltamivir (100%) and 44 cases of lopinavir (18.4%). Patients in the severe and critically ill groups received significantly more antiviral drugs than the general group (p < 0.001). More than 50% of patients in both groups used antibacterial drugs, mainly including azithromycin and levofloxacin. Glucocorticoids in severe and critically ill patients [44 cases (69.8%) vs 34 cases (19.4%), p < 0.001]. The rate of nasal catheters and high flow oxygen inhalation is also higher (p <0.001, 0.026). In this study, five critically ill patients died of acute respiratory distress and other patients were discharged from the hospital.

Discussion
The initial reports on the SARS-CoV-2 and COVID-19 believed that they were similar to the SARS and MERS coronaviruses that occurred in the early years. Most infected patients showed fever, dry cough, fatigue, and dyspnea. This study also confirmed that fever and dry cough accounted for 84.8% and 57.0% of the patients' onset symptoms, respectively. The other onset symptoms also included fatigue, muscle aches, difficult breathing, dizziness, headache, and diarrhea. However, we observed that fewer patients started with typical upper respiratory symptoms, such as runny nose, sneezing, swollen throat, etc., which is different from the previously reported symptoms related to SARS and MERS. Earlier reports showed that the new coronavirus is more susceptible to men, which may be related to the 99 patients included are mostly male workers in Wuhan South China Seafood Market. The ratio of men to women in this study is 1:0.81, but there is no statistical difference, so there is insufficient evidence to prove that men are more susceptible to COVID-19. However, we found that men account for a higher proportion of severe and critically ill patients, which means that men are more likely to develop severe and critically pneumonia. This study also found that severe and critically ill patients often have more comorbid diseases, which mainly include hypertension and cerebrovascular diseases, suggesting that these past medical histories may be a risk factor for severe and critically ill patients. According to the analysis of the duration of time from onset to admission of the two groups of patients, the time between the onset and admission to hospital of patients in the heavy and critically ill groups is significantly longer than that of ordinary patients, which also provides us with inspiration for disease prevention and control: suspected cases should be diagnosed and detected early, early isolation, early diagnosis, early treatment, to avoid the conversion of some ordinary patients to heavy and critical due to delayed diagnosis and treatment. Laboratory analysis shows that many indicators are significantly different between the patients in the severe and critical group and the normal group. We observed that the absolute value of NEU, NEU%, and CRP were more significantly increased in patients with severe and critically ill patients; and the percentage and absolute value of lymphocytes of LYM% were also more significantly decreased than those of ordinary type. Changes in these indicators indicate that the mechanism of COVID-19 development may be similar to pneumonia caused by SARS and MERS coronavirus, and there may be a process of cellular immune impairment. SARS-CoV-2 infection also has a certain impact on the coagulation system. Some patients have prolonged PT, APTT, and severe and critically ill patients. The D-dimer increase is more obvious than the normal type. At the same time, we also observed that lactate dehydrogenase (LDH) was significantly higher in patients with severe and critically ill patients than in the normal group, which indicates that the virus may directly or indirectly damage cardiomyocytes through cytokine storms. The reduction of ALB levels is particularly obvious in severe and critically ill patients. It is speculated that it may be related to the liver albumin synthesis disorder caused by the direct damage of the virus to liver cells. In addition, increased body consumption due to inflammation, fever, etc. can also lead to low ALB. Although the vast majority of patients did not have obvious renal impairment and their BUN values were within the normal range, the BUN levels of patients in the severe and critical group were still generally higher than those in the normal group, which may be more severe than the former. Fever caused by high metabolism. In conclusion, SARS-CoV-2 infection has adverse effects on multiple organs and systems, including the coagulation system, heart, liver, and kidneys, and the specific damage mechanism requires further pathophysiology for the pathogenicity of the virus the study. Anti-viral drugs is particularly important in the treatment of coronavirus, but there is still no specific drug for coronavirus infection. In this study, all patients received oseltamivir antiviral therapy. We showed that combination of oseltamivir and glucocorticosteroid such as dexamethasone was very effective in severe patients. However, statistical analysis failed to show the effectiveness of this treatment in criticaly ill patients. In view of previous reports that SARS-CoV, MERS-CoV, and SARS-CoV-2 infections can induce cytokine storms, glucocorticoids are often used to treat severely ill patients and can benefit by reducing lung damage caused by inflammation. However, there are also studies that the application of glucocorticoids does not significantly improve the prognosis. In conclusion, Taken together, our data reported that five critically ill patients died of acute respiratory distress and other patients were discharged from the hospital. Elderly patients with multiple cardiovascular and cerebrovascular diseases are more prone to severe and critical COVID-19, and often have abnormalities in multiple organs or systems. Totally, we

Ordinary and severe cases of COVID-19 in Iran
Eur J Transl Myol 31 (3): 9579, 2021 doi: 10.4081/ejtm.2021.9579
showed that combination of oseltamivir and glucocorticosteroid such as dexamethasone was very effective in severe patients. Clinicians should make timely decisions based on clinical symptoms, signs and laboratory examination results judge and adjust the treatment plan.

List of acronyms

- ALB – albumin
- ALT - alanine aminotransferase
- AST - aspartate aminotransferase
- BUN - urea nitrogen
- CK - creatine kinase
- CK-MB - creatine kinase isoform enzymes
- COVID-19 - new coronavirus infection
- Cr - creatinine,
- CRP - C-reactive protein
- FiO2 - Fraction of inspiration oxygen
- ICU – intensive care unit
- LDH - lactate dehydrogenase
- LYM - lymphocyte
- NEU – neutrophils
- PaO2 - partial pressure of oxygen
- PLT - platelets
- PT - prothrombin time
- RT-PC - real-time fluorescence quantitative polymerase chain reaction
- SARS-CoV-2 - severe acute respiratory syndrome coronavirus 2
- TB - total bilirubin

Authors contributions

SuZ, SiZ, SD, HA, SJHS, MMI, MM, SSM, and MZ contributed to the research concept and study design, literature review, data collection, statistical analyses, data interpretation, manuscript writing and review.

Acknowledgments None

Funding None

Conflict of Interest

The authors declare no conflicts of interest.

Ethical Publication Statement

We confirm that we have read the Journal’s position on issues involved in ethical publication and affirm that this report is consistent with those guidelines.

Corresponding Author

Sarah Dahmardeh, Pasteur Institute of Iran,Tehran, Iran. ORCID iD: 0000-0002-0015-2819

Sarah Dahmardeh: sarahdahmardeh@gmail.com

E-mails and ORCID iD of co-authors

Susan Azizmohammadi: dr.azizmohamadi@gmail.com

ORCID iD: 0000-0001-7364-1253

Sima Azizmohammadi: simaazizmohammadi@yahoo.com

ORCID iD: 0000-0003-0560-0497

References

1. Bogoch II, Watts A, Thomas-Bachli A, Huber C, Kraemer MUG, Khan K. Potential for global spread of a novel coronavirus from China. J Travel Med. 2020 Mar 13;27(2):taaa011. doi: 10.1093/jtm/taaa011.

2. National Health Commission of the People's Republic of China. The latest situation of the new coronavirus pneumonia epidemic situation as of 24:00 on February 18. [EB/OL].[2020-02-19]

3. Shang Y, Pan C, Yang X, Zhong M, Shang X, Wu Z, Yu Z, Zhang W, Zhong Q, Zheng X, Sang L, Jiang L, Zhang J, Xiong W, Liu J, Chen D. Management of critically ill patients with COVID-19 in ICU: statement from front-line intensive care experts in Wuhan, China. Ann Intensive Care. 2020 Jun 6;10(1):73. doi: 10.1186/s13613-020-00689-1.

4. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020 Feb 15;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5. Epub 2020 Jan 24. Erratum in: Lancet. 2020 Jan 30.

5. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020 Mar 17;323(11):1061-1069. doi: 10.1001/jama.2020.1585. Erratum in: JAMA. 2021 Mar 16;325(11):1113.

6. Chan JF, Yuan S, Kok KH, To KK, Chu H, Yang J, Xing F, Liu J, Yip CC, Poon RW, Tsow HW, Lo SK, Chan KH, Poon VK, Chan WM, Ip JD, Cai JP, Cheng VC, Chen H, Hui CK, Yuen KY. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet.
2020 Feb 15;395(10223):514-523. doi: 10.1016/S0140-6736(20)30154-9. Epub 2020 Jan 24.

7. Ren LL, Wang YM, Wu ZQ, Xiang ZC, Guo L, Xu T, Jiang YZ, Xiong Y, Li YJ, Li XW, Li H, Fan GH, Gu XY, Xiao Y, Gao H, Xu JY, Yang F, Wang XM, Wu C, Chen L, Liu YW, Liu B, Yang J, Wang XR, Dong J, Li L, Huang CL, Zhao JP, Hu Y, Cheng ZS, Liu LL, Qian ZH, Qin C, Jin Q, Cao B, Wang JW. Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chin Med J (Engl). 2020 May 5;133(9):1015-1024. doi: 10.1097/CM9.0000000000000722.

8. Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 2020 Apr;92(4):418-423. doi: 10.1002/jmv.25681. Epub 2020 Feb 7. Erratum in: J Med Virol. 2020 Oct;92(10):2249.

9. Lee N, Hui D, Wu A, Chan P, Cameron P, Joynt GM, Ahuja A, Yung MY, Leung CB, To KF, Lui SF, Szeto CC, Chung S, Sung JJ. A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med. 2003 May 15;348(20):1986-94. doi: 10.1056/NEJMoa030685. Epub 2003 Apr 7.

10. Assiri A, Al-Tawfiq JA, Al-Rabeelah AA, Al-Rabiah FA, Al-Hajjari S, Al-Barrak A, Flemban H, Al-Nassir WN, Balkhy HH, Al-Hakeem RF, Makhdoom HQ, Zumla AI, Memish ZA. Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet Infect Dis. 2013 Sep;13(9):752-61. doi: 10.1016/S1473-3099(13)70204-4. Epub 2013 Jul 26.

11. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020 Feb 15;395(10223):507-513. doi: 10.1016/S0140-6736(20)30211-7. Epub 2020 Jan 30.

12. de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016 Aug;14(8):523-34. doi: 10.1038/nrmicro.2016.81. Epub 2016 Jun 27.

Submission: December 31, 2020
Revision received: April 28, 2021
Accepted for publication: April 29, 2021