CANDY-PASSING GAMES ON GENERAL GRAPHS, II

PAUL MYER KOMINERS AND SCOTT DUKE KOMINERS

ABSTRACT. We give a new proof that any candy-passing game on a graph G with at least $4|E(G)| - |V(G)|$ candies stabilizes. Unlike the prior literature on candy-passing games, we use methods from the general theory of chip-firing games which allow us to obtain a polynomial bound on the number of rounds before stabilization.

1. INTRODUCTION

We let G be an undirected graph and respectively denote the vertex and edge sets of G by $V(G)$ and $E(G)$. The candy-passing game on G is defined by the following rules:

- At the beginning of the game, $c > 0$ candies are distributed among $|V(G)|$ students, each of whom is seated at some distinct vertex $v \in V(G)$.
- A whistle is sounded at a regular interval.
- Each time the whistle is sounded, every student who is able to do so passes one candy to each of his neighbors. (If at the beginning of this step a student holds fewer candies than he has neighbors, he does nothing.)

Tanton [6] introduced this game for cyclic G. The authors [4] extended the game to general graphs G.

The candy-passing game on G is a special case of the well-known chip-firing game on G introduced by Björner, Lovász, and Shor [2]. Furthermore, terminating candy-passing games on G are actually equivalent to terminating chip-firing games on G, by the following key theorem:

Theorem 1 ([2]). The initial configuration of a chip-firing game on G determines whether the game will terminate. If the game does terminate, then both the final configuration and length of the game are dependent only on the initial configuration.

Terminating chip-firing games have been studied extensively and are surprisingly well-behaved. In addition to Theorem 1 it is known that terminating chip-firing processes finish in polynomial time (see [7]). Chip-firing games also have important applications; notably, they are related to Tutte polynomials (see [5]) and the critical groups of graphs (see [1]).

Infinite chip-firing games have received less attention, as the notion of an “end state” of such a game is ambiguous. By contrast, an infinite candy-passing game admits a clear stabilization condition: the game is said to have stabilized if the configuration of candy will never again change.

2000 Mathematics Subject Classification. 05C35, 05C85, 68Q25 (Primary); 37B15, 68R10, 68Q80 (Secondary).

Key words and phrases. candy-passing, chip-firing, graph game, stabilization, polynomial time.

The second author gratefully acknowledges the support of a Harvard Mathematics Department Highbridge Fellowship.
The first author [3] studied the end behavior of candy-passing games on \(n \)-cycles, proving the eventual stabilization of any candy-passing game on an \(n \)-cycle with at least \(3n - 2 \) candies. The authors [4] extended this analysis to arbitrary connected graphs \(G \), showing that any candy-passing game on such \(G \) with at least \(4|E(G)| - |V(G)| \) candies will stabilize.

Here, we give a new proof of the stabilization result for general connected graphs, using methods which allow us to obtain a polynomial bound on the stabilization time. Our approach draws from the literature on chip-firing, using in particular a key result from Tardos’s [7] proof that terminating chip-firing games conclude in polynomial time.

2. The Setting

As in the earlier work on candy-passing games, we refer to the interval between soundings of the whistle as a round of candy-passing. We denote by \(\varphi_t(v) \) the total number times a vertex \(v \in V(G) \) has passed candy by the end of round \(t \).

Since infinite candy-passing games differ from infinite chip-firing games, we will continue to distinguish between “candies” and “chips.” However, we drop the student metaphor, treating the candy piles as belonging to the vertices of the graph \(G \). For consistency, we denote the total number of candies in a candy-passing game by \(c \) throughout.

Abusing terminology slightly, we say that a vertex has stabilized in some round if, after that round, the amount of candy held by that vertex will not change during the remainder of the game.

For a vertex \(v \in V(G) \), we denote the degree of \(v \) by \(\deg(v) \). We say that a vertex \(v \in V(G) \) is abundant if it holds at least \(2 \deg(v) \) pieces of candy.

Any vertex \(v \in V(G) \) with \(k \geq \deg(v) \) candies at the beginning of a round passes \(\deg(v) \) pieces of candy to its neighbors and can, at most, receive one piece of candy from each of its \(\deg(v) \) neighbors. Thus, such a vertex cannot end the round with more than \(k \) candies. In particular, then, the set of abundant vertices of \(G \) can only shrink over the course of a candy-passing game on \(G \).

3. Main Theorem

We will prove the following stabilization theorem:

Theorem 2. Let \(G \) be a connected graph with diameter \(d \). In any candy-passing game on \(G \) with

\[
c \geq 4|E(G)| - |V(G)|
\]

candies, every vertex \(v \in V(G) \) will stabilize within \(|V(G)| \cdot d \cdot c \) rounds.

The stabilization component of Theorem 2 was obtained in [4, Theorem 2]. Our methods are inspired by those of Tardos [7]; they are essentially independent of the arguments used in [3] and [4].

We use the following lemma, which is a special case of Tardos’s [7] Lemma 5:

Lemma 3. Let \(v, v' \in V(G) \) be adjacent vertices of \(G \). Then, \(|\varphi_t(v) - \varphi_t(v')| \leq c \) for all \(t \).

Additionally, we need an observation about the condition \(c \geq 4|E(G)| - |V(G)| \).
Lemma 4. For G a graph and $c \geq 4|E(G)| - |V(G)|$, in any chip-firing game on G with c candies there is at least one vertex $v_\ast \in V(G)$ which passes candy every round.

Proof. It suffices to find a vertex $v_\ast \in V(G)$ which passes candy every round t during which some vertex $v \in V(G)$ holds fewer than $2\deg(v) - 1$ candies.

As observed above, it is not possible for a vertex $v \in V(G)$ which is not abundant at the beginning of round t to become abundant after round t. However, the condition
\[c \geq 4|E(G)| - |V(G)| \]
guarantees that whenever some $v \in V(G)$ holds fewer than $2\deg(v) - 1$ candies there is also at least one abundant vertex $v' \in V(G)$. The existence of some vertex $v_\ast \in V(G)$ which is abundant in every round when some vertex $v \in V(G)$ has fewer than $2\deg(v) - 1$ candies then follows immediately. □

Remark. Lemma 4 is, in some sense, dual to Tardos’s [7] Lemma 4 which shows that for any terminating chip-firing game on G there is a distinguished vertex $v_\ast \in V(G)$ which never fires.

We may now proceed with the proof of our main result:

Proof of Theorem 2. By Lemma 4 there is some vertex $v_\ast \in V(G)$ which passes candy every round. Denoting the rounds by $t = 1, 2, \ldots$, we then have $\varphi_t(v_\ast) = t$ for all rounds t. By Lemma 3 we then know that
\[|\varphi_t(v_\ast) - \varphi_t(v)| \leq d \cdot c \]
for all t and $v \in V(G)$. Since $\varphi_t(v_\ast)$ is strictly increasing in t, no $v \in V(G)$ may fail to pass candy for more than $d \cdot c$ rounds. In the worst case, all but one vertex pass candy in each round when some vertex does not pass candy; hence after $|V(G)| \cdot d \cdot c$ rounds all the vertices of G pass candy every round. □

References

[1] N. L. Biggs, Chip-firing and the critical group of a graph, Journal of Algebraic Combinatorics 9(1), 1999, pp. 25–45.
[2] A. Björner, L. Lovász, and P. Shor, Chip-firing games on graphs, European Journal of Combinatorics 12(4), 1991, pp. 283–291.
[3] P. M. Kominers, The candy-passing game for $c \geq 3n - 2$, Pi Mu Epsilon Journal 12(8), 2008, pp. 459–460.
[4] P. M. Kominers and S. D. Kominers, Candy-passing games on general graphs, I, arXiv:0807.4450.
[5] C. M. López, Chip firing and the Tutte polynomial, Annals of Combinatorics 1(1), 1997, pp. 253–259.
[6] J. Tanton, Today’s puzzler, The St. Mark’s Institute of Mathematics Newsletter, November 2006.
[7] G. Tardos, Polynomial bound for a chip firing game on graphs, SIAM Journal on Discrete Mathematics 1(3), 1998, pp. 397–398.

Student, Department of Mathematics, Massachusetts Institute of Technology
E-mail address: pkoms@mit.edu

Student, Department of Mathematics, Harvard University
c/o 8520 Burning Tree Road
Bethesda, MD 20817
E-mail address: kominers@fas.harvard.edu