Calculations of \mathcal{P} and \mathcal{T}-odd interaction constants of alkaline-earth monofluorides using KRCI method

Renu Bala1,3, H S Nataraj1 and Malaya K Nayak2

1 Department of Physics, Indian Institute of Technology Roorkee, Roorkee-247667, India
2 Theoretical Chemistry Section, Chemistry Group, Bhabha Atomic Research Centre, Trombay Mumbai 400085, India

E-mail: rbala@ph.iitr.ac.in

Received 21 December 2019, revised 26 March 2020
Accepted for publication 8 April 2020
Published 2 June 2020

Abstract

We have reported the results of ab initio calculations of parity- and time-reversal-odd interaction constants for the ground state of alkaline-earth monofluorides. The Kramers-restricted configuration interaction method limited to single and double excitations in conjunction with the quadruple zeta quality basis sets have been employed to perform these four-component relativistic calculations. The results are compared with the existing semi-empirical and other theoretical results, wherever available.

Keywords: parity and time-reversal-odd interaction constants, AEMFs, eEDM

1. Introduction

The parity- and time-reversal (\mathcal{P} and \mathcal{T}) symmetry violating effects such as the electric dipole moment of an electron (eEDM) and the scalar-pseudoscalar (S–PS) interactions between nucleons and electrons manifest in giving rise to the intrinsic electric dipole moment (EDM) of atoms and molecules. The effects will be more pronounced in heavier atomic/molecular systems. Numerous atoms and molecules have thoroughly been scrutinized for the observation of such effects [1–11] as they hold answers to some of the fundamental mysteries of our Universe [3, 12–14].

In spite of more than seven decades of laborious efforts by several experimental groups, the conclusive evidence of a non-zero eEDM has mostly been elusive. In this context, the heavy open-shell polar molecules would be considered more suitable than atoms because of the large values of effective intrinsic electric fields (ε_{eff}) [15] in the former. The high precision measurements carried out using diatomic molecules such as ThO, HFF$^+$ and YbF molecules [4, 6, 7] have yielded best limits on eEDM so far. An accurate knowledge of \mathcal{P} and \mathcal{T}-odd interaction constants such as: W_d that characterizes ε_{eff} and W_s that characterizes the S–PS interaction between the nucleons and electrons, is required to interpret the results of the experiments. Invocation of accurate quantum chemical methods will be necessary for the calculation of such interaction constants.

Among several diatomic molecules that have been considered, the alkaline-earth monofluorides (AEMFs) have a special place since laser cooling and trapping experiments have been or being performed for MgF [16], CaF [17, 18], SrF [19–22], BaF [23–25] molecules. Heavier members of this series, particularly BaF and RaF, have been studied for the nuclear anapole moment [26–29], another parity-violating effect. The \mathcal{P} and \mathcal{T} odd effects induced by nuclear magnetic quadrupole moments in BaF have also been studied in reference [30]. The theoretical as well as experimental results of spectroscopic constants, valence properties and vibrational parameters for the ground and excited states of AEMFs have also been reported by several research groups [28, 31–48]. Nevertheless, there is a scope to carry out the calculations of \mathcal{P} and \mathcal{T}-odd interaction constants of these molecules consistently employing accurate many-body methods as there are only a very few calculations available in the literature. Nayak and Chaudhuri have reported the values of W_d constant for the ground state of BaF system using the Dirac–Fock (DF) and the restricted active space configuration interaction (RASCI) methods [26],...
Kudashov et al have reported the ab initio calculations of W_d and W_s constants for RaF molecule using coupled cluster (CC) method [27]. Kozlov et al have done semi-empirical, and ab initio calculations at self-consistent field (SCF) and restricted active space SCF (RASSCF) levels to report the P and T-odd interaction constants of BaF system [49, 50]. Isaev and Berger have computed the W_d and W_s results for BaF and RaF molecules using two-component zeroth order regular approximation (ZORA) together with generalized Hartree–Fock (HF) method [51]. Further, the CC calculations in Z-vector and expectation value approach have been performed by Sasmal et al to report the ε_{eff} and W_s constant for the RaF system [52]. Recently, Abe et al have performed the calculations of ε_{eff} for AEMF (AE = Be, Mg, Ca, Sr, Ba) molecules using linearized expectation value approach in CC approximation (LECC) and finite-field CC (FFCC) method [53]. The calculations of W_d and W_s constants for AEMFs using two-component ZORA at the generalized HF and generalized Kohn–Sham (KS) level of theories have been reported in references [54, 55].

In the present work, we have performed the calculations of P and T-odd interaction constants in AEMFs using Kramers-restricted configuration interaction method limited to single and double excitations (KRCISD) together with the quadruple zeta (QZ) quality basis sets. In reference [35], we have applied this method to compute the valence properties: permanent dipole moments (PDMs) and dipole polarizabilities of AEMFs, and the atomic polarizabilities of AE and fluorine atoms.

This paper is organized in three other sections: the following section 2 discusses theory and method used for the calculations of symmetry violating constants, followed by the detailed discussion on the computed results in section 3 and the summary of the present work in the last section.

2. Theory and method of calculations

2.1. P and T-odd interaction constant relevant to eEDM

The ε_{eff} arises from the relativistic interactions of the eEDM with the electric fields created due to all other charged particles in a molecular system. The expectation value of the operator describing the interaction of eEDM in a molecular system is given by [56–60],

$$
\Delta U = \left\langle \sum_{j=1}^{n} H_{\text{EDM}}(j) \right\rangle_\Psi \approx -d_e \left\langle \sum_{j=1}^{n} \gamma^0 \gamma_j \hat{S}^j \varepsilon_j \right\rangle_\Psi \approx \frac{2ie\gamma_5}{\hbar} \left\langle \sum_{j=1}^{n} \gamma^0 \gamma_j \hat{S}^j \hat{p}_j \right\rangle_\Psi
$$

where d_e is the electric dipole moment of an electron; γ^0 and γ^5 are the four-component Dirac matrices; ε_j is the electric field at the position of jth electron; p_j is the momentum operator; and Ψ is the wavefunction determined from the many-body theory. Finally, the ε_{eff} experienced by the unpaired electron in the molecular system is defined as,

$$
\varepsilon_{\text{eff}} = W_d \Omega
$$

Table 1. Details of the basis sets, in uncontracted form, used in this work.

Atom	Basis
Be	cc-pVQZ: 12s, 6p, 3d, 2f, 1g
Mg	cc-pVQZ: 16s, 12p, 3d, 2f, 1g
Ca	dyyall.v4z: 30s, 20p, 6d, 5f, 3g
Sr	dyyall.v4z: 35s, 25p,15d,4f,3g
Ba	dyyall.v4z: 35s, 30p, 19d, 4f, 4g
Ra	dyyall.v4z: 37s, 34p, 23d, 15f, 3g
F	cc-pVQZ: 12s, 6p, 3d, 2f, 1g

and Ψ is the wavefunction determined from the many-body theory. Finally, the ε_{eff} experienced by the unpaired electron in the molecular system is defined as,

$$
\varepsilon_{\text{eff}} = W_d \Omega
$$

where $W_d = (2ie/\hbar)\varepsilon^0(\gamma^0 \gamma^5 \gamma^j \hat{p}_j)$ is the P and T-odd interaction constant and $\Omega = \left\langle \gamma^5 \right\rangle_\Psi$ is the z-component of the total angular momentum for the ground states of AEMFs. The intrinsic value of eEDM is calculated from the theoretically determined ε_{eff} together with the experimentally measured energy shift (ΔU) via equation $\Delta U \propto -d_e \varepsilon_{\text{eff}}$.

2.2. Scalar–pseudoscalar interaction constant

The nucleon–electron interaction that arises due to the coupling between scalar-hadronic current and the pseudoscalar electronic current is known as scalar–pseudoscalar (S–PS) interaction. The S–PS interaction Hamiltonian for any system is given by [27, 59],

$$
H_{S-PS} = \frac{i}{\sqrt{2}} \sum_{j=1}^{n} \sum_{A=1}^{N} k_{A} Z_{A} \gamma^0 \gamma^5 \rho_{A}(r_{A})
$$

where $G_F (= 2.22249 \times 10^{-14} E_{\text{h}} a_0^3)$ is the Fermi coupling constant [27, 61]; ρ_{A} is the nuclear charge density normalized to unity; the summation indices j and A run over the number of electrons and nuclei, respectively. The k_{A} is a dimensionless electron–nucleus S–PS coupling constant of an atom and it is defined as [61],

$$
k_{A} = Z_{A} \frac{N_{A}}{k_{s,p}} \frac{N_{A}}{k_{s,n}}
$$

where Z_{A} and N_{A} represent the number of protons and neutrons, respectively, $k_{s,p}$ and $k_{s,n}$ represent the S–PS coupling constant of an electron and a proton (neutron). Further, the P and T-odd interaction constant (W_s) arising from the electron–nucleon S–PS interaction can be evaluated as,

$$
W_s = \frac{1}{k_{s,p} \Omega} \left\langle H_{S-PS} \right\rangle_\Psi
$$

In order to compute the P and T-odd interaction constants, we have utilized CI method available in the KRCI module.

4 Here, E_h (Hartree) is the atomic unit of energy and a_0 (Bohr radius) is the atomic unit of distance.
of DIRAC17 software suite [62]. After generating the reference state using DF Hamiltonian, the generalized active space (GAS) technique is employed to perform KRCISD calculations. The finite nuclear model described by the Gaussian charge distribution is used in these calculations, which is of the form [63],

$$\rho(r) = eZ\left(\frac{\zeta}{\pi}\right)^{3/2}e^{-\zeta r^2}$$ \hspace{1cm} (6)

where \(\zeta = \frac{3}{2r_{\text{rms}}}\); \(r_{\text{rms}}\) is the root mean square value of the Gaussian radial distribution and \(Z\) is the nuclear charge. Further, we have used the uncontracted correlation-consistent polarized valence quadruple zeta (cc-pVQZ) [64] basis sets for low \(Z\) elements: Be, F and Mg, and Dyall basis sets of similar quality (dyall.v4z) [65] for high \(Z\) elements: Ca, Sr, Ba and Ra. These basis sets are significantly large, particularly when used in uncontracted form, as it can be seen from the explicit number of functions shown in table 1.

The DF orbitals having energy less than \(-2E_h\) are considered as frozen core. The alkaline-earth atom is chosen as the coordinate origin of the corresponding diatomic molecule. In the GAS technique, active DF orbitals are divided into three subspaces: paired (GAS1), unpaired (GAS2), and virtual orbitals (GAS3). Further, cutoff energy of \(10E_h\) is set uniformly for all molecules in order to truncate the higher virtual orbitals so as to make the computations manageable. The number of Slater determinants along with the number of active orbitals in different subspaces for all molecules are given in table 2.

The values of equilibrium bond lengths used in the present work are: 1.359 Å for BeF [33], 1.778 Å for MgF [33], 2.015 Å for CaF [33], 2.124 Å for SrF [32], 2.162 Å for BaF [31], and 2.244 Å for RaF [28].

Results and discussion

3.1 \(P\) and \(T\)-odd interaction constant relevant to \(e\text{EDM}\)

The computed values of \(P\) and \(T\)-odd interaction constants, \(W_d\), calculated at the KRCISD level of theory together with the available results in the literature are tabulated in table 3. The value of \(W_d\) increases as we move from lighter to the heavier system due to increase in the difference between the \(Z\) values of two atoms forming a diatomic molecule. Our results calculated at the KRCISD/QZ level compare well with the existing semi-empirical and \(ab\) initio results reported in references [26, 27, 49–55].

We have also examined the effect of basis set augmentation and core-valence functions on \(W_d\) by performing additional calculations using augmented-pCVQZ basis sets for lighter atoms and augmented-dyall.cv4z basis sets for heavy atoms. We referred these basis sets further as `aug-CV-QZ’. It can be seen from the last column of table 2 that the number of Slater determinants increases significantly with the aug-CV-QZ basis sets. We have observed that the effect of adding extra functions to the QZ basis sets on the values of \(W_d\) are about 1% to all AEMFs, except BeF. The computational cost, on the other hand, increases considerably for the aug-CV-QZ calculations. To quote in this context, the amount of RAM required for the calculation of \(W_d\) for RaF, at KRCISD/aug-CV-QZ level is about 500% times larger than that required for the KRCISD/QZ level calculation, even when the number of filled active orbitals and the virtual energy cutoff are kept intact.

Kozlov and Labzowsky [49] have reported the semi-empirical values of \(W_d\) constant for BaF molecule based on two different experimental values of hyperfine structure constants [66, 67] to be 0.35 \((\times10^{-25} \text{ Hz/e cm})\) and 0.41 \((\times10^{-25} \text{ Hz/e cm})\). Our \(ab\) initio result of \(W_d = 0.27426 \times10^{-25} \text{ Hz/e cm}\) differs from those reported in their work by 0.07574 \((\times10^{-25} \text{ Hz/e cm})\) and 0.13574 \((\times10^{-25} \text{ Hz/e cm})\). Later, in reference [50], Kozlov et al have performed RASSCF calculations by considering 11 electrons in three RASs: RAS1 (2,0,0,0), RAS2 (2,1,1,0) and RAS3 (6,4,4,2). Further, they have used effective operators (EOs) to include the core-polarization effects. Their final value of \(W_d = 0.364 \times10^{-25} \text{ Hz/e cm}\) at RASSCF-EO level, which is larger from that computed in our work at KRCISD/QZ level by 0.08974 \((\times10^{-25} \text{ Hz/e cm})\).

Nayak and Chaudhuri [26] have utilized the RASCI method together with the uncontracted Gaussian basis sets (27s 27p 12d 8f) for Ba and (15s 10p) for F to compute the \(W_d\) constant of BaF. Further, they have considered 17 electrons in 76 active orbitals. We have, on the other hand, considered the same number of electrons in 143 active orbitals, which is very large in comparison to that included in reference [26]. Our computed result using QZ basis sets differs from their result by 0.07774 \((\times10^{-25} \text{ Hz/e cm})\) at the similar level of correlation.

Table 2. Generalized active space model for the CI wavefunctions of AEMFs with \(10E_h\) virtual cutoff energy.

Molecule	Frozen core	GAS1	GAS2	GAS3	Number of determinants	Number of determinants
BeF	2	4	1	80	132	410645
MgF	6	4	1	84	146	452681
CaF	7	7	1	139	189	3789982
SrF	15	8	1	132	182	4463853
BaF	24	8	1	134	212	4600095
RaF	40	8	1	133	203	4531718

*For the case of aug-CV-QZ basis sets.

Molecule	\mathcal{W}_d ($\times 10^{-25}$)	Ref.
BeF	0.00021a	This work
	0.00027b	This work
	0.00024w	[53]
MgF	0.00269a	This work
	0.00272b	This work
	0.00339w	[53]
	0.00466d	[55]
	0.00522e	[55]
CaF	0.01161a	This work
	0.01165b	This work
	0.01354w	[53]
	0.0147d	[55]
	0.0140c	[55]
SrF	0.08979a	This work
	0.08964b	This work
	0.10446w	[53]
	0.105f	[55]
	0.101e	[55]
BaF	0.27425c	This work
	0.27321b	This work
	0.293f, 0.352f	[26]
	0.31240w	[53]
	0.26w	[51]
	0.230e, 0.224e, 0.375e, 0.364e	[50]
	0.35w, 0.41w	[49]
	0.33d	[54]
	0.29d	[54]
	0.332d	[55]
	0.290d	[55]
RaF	2.34303a	This work
	2.33571b	This work
	2.40w, 2.25w, 2.65w, 2.36w, 2.33w, 2.30w, 2.56w	[27]
	2.20w	[51]
	2.54w, 2.55w	[52]
	2.73d	[54]
	2.44d	[54]
	2.80d	[55]
	2.51d	[55]

aThese results are calculated using QZ quality basis sets.
bThese results are calculated using aug-cc-pVQZ quality basis sets.
cFFCCSD.
dGeneralized HF.
eGeneralized KS.
fDF.
gUsing two-component GHF-ZORA value of W_s.
hSCF.
iRASSCF.
jSCF-EO.
kRASSCF-EO.
lSemi-empirical calculations.
mSODCI.
nRASSCF.
oFS-RCCSD.
pCCSD.
qCCSD(T).
rCCSD(T) enlarged.
sCASSCF.
tZ-vector method in CC approach.
uExpectation value in CC approach.
vThese results are computed using equation (2) with the values of ε_{eff} taken from the corresponding references.
Table 4. $S-PS$ constant, W_s (in kHz) for alkaline-earth atoms in alkaline-earth monofluorides calculated at KRCISD level of theory, compared with the available results in the literature.

Molecule	Atom	W_s	Ref.
BeF	Be	0.00132a	This work
		0.00142b	This work
F		0.00301a	This work
		0.00317b	This work
MgF	Mg	0.04138a	This work
		0.04116b	This work
		0.0593c	[55]
		0.0648d	[55]
F		0.00408a	This work
		0.00428b	This work
CaF	Ca	0.17751a	This work
		0.17699b	This work
		0.219c	[55]
		0.209d	[55]
F		0.00131a	This work
		0.00137b	This work
SrF	Sr	1.70329a	This work
		1.70028b	This work
		2.010c	[55]
		1.940d	[55]
F		0.00098a	This work
		0.00102b	This work
BaF	Ba	7.28604a	This work
		7.25918b	This work
		11e, 13f	[49]
		6.1g, 5.9h	[50]
		8.670i	[55]
		7.580j	[55]
		8.5k	[51]
F		0.00025a	This work
		0.00025b	This work
RaF	Ra	130.52357a	This work
		130.12190b	This work
		131e, 122f, 144g, 128h, 127m, 125n, 139p	[27]
		150p	[51]
		141.2p, 142q	[52]
		152q	[55]
		136r	[55]
F		0.00066a	This work
		0.00069b	This work

aThese results are calculated using QZ quality basis sets.
bThese results are calculated using aug-CV-QZ quality basis sets.
cGeneralized HF.
dGeneralized KS.
eSemi-empirical calculations.
fSCF.
gRASSCF.
hTwo-component ZORA generalized Hartree–Fock (GHF).
iSODCI.
jFS-RCCS.
kFS-RCCSD.
lCCSD.
mCCSD(T).
nCCSD enlarged.
oCCfinal.
pZ-vector method in CC approach.
qExpectation value in CC approach.
Isaev and Berger [51] have obtained the ε_{eff} for BaF and RaF numerically by using relationship between matrix elements of P and T-odd and P-odd operators. Our value of W_d parameter is larger by 5.5% (6.5%) for BaF (RaF) from that computed using the results of ε_{eff} reported in their work via equation (2).

Kudashov et al [27] have performed spin-orbit direct CI (SODCI) calculations by considering 19 electrons explicitly to report the W_d constant for RaF and our result varies by 2.4% from that estimated in their work. In the same work, those authors have also reported the W_d constant using relativistic two-component Fock-Space CC method by considering single and double excitations (FS-CCSD). Our value of W_d at KRCISD/QZ level differs by 11.9% from that reported at FS-CCSD level in reference [27]. Further, they have corrected FS-CCSD result by including the contributions due to triple excitations as well as basis set enlargement. Their final value $\approx 2.56 \times 10^{-25}$ Hz/e cm of W_d including these corrections is larger by 8.5% from our result $\approx 2.34303 \times 10^{-25}$ Hz/e cm using the relativistic Hamiltonian at the KRCISD/QZ level.

Sasimal et al [52] have applied the expectation value and Z-vector approach in CC framework to compute the ε_{eff} of RaF molecule. Further, they have considered single and double excitations together with the dyall.cv3z and dyall.cv4z basis sets for Ra and cc-pCVTZ and cc-pCVQZ basis sets for F atom. Our value of W_d at KRCISD/QZ is smaller by 7.8% and 8.1% than their results using Z-vector method and expectation value approach, respectively, at the similar level of basis sets.

Abe et al [53] have reported the values of ε_{eff} for the ground states of AEMFs: BeF, MgF, CaF, SrF and RaF using FFCCSD method. The authors have performed all-electron calculations using cc-pVNZ (N = D, T, Q) basis sets for Be, Mg, Ca and F, and a combination of Dyall and Sapporo basis sets for heavier elements: Sr and Ra. However, we have compared, in table 3, our results with theirs computed at the QZ level only, for a fair comparison. The maximum difference between our results and those reported in their work is 0.038 14 $(\times 10^{-25}$ Hz/e cm) for BaF.

Gaul and Berger [54] have calculated the values of W_d constants for BaF and RaF molecules using quasi-relativistic two-component ZORA at the generalized HF and generalized KS level of theory together with the B3LYP correlation functional. Further, they have used (37s 34p 14d 9f) basis functions for heavy atoms, and atomic natural orbitals basis of triple-zeta quality for the F atom. On the contrary, we have performed fully relativistic four-component calculations using the quadruple-zeta basis sets. In reference [55], the authors have extended their study to several other molecules including the lower members of AEMFs. The mean field methods used in references [54, 55] are not as accurate as compared to post-DF methods. Therefore, the results reported in our work disagree significantly from that reported in their work.

3.2. Scalar–pseudoscalar interaction constant

The calculated S–PS P and T-odd interaction constants (W_{T}) for the ground states of AEMFs at the KRCISD level of correlation along with the available results in the literature are given in table 4. It is clear from equation (3) that the matrix element of $h_{S–PS}$ varies roughly as $A Z^2 \approx Z^2$ [59] and hence, heavy polar molecules are preferred for the study of symmetry violating effects. As can be seen from table 4, the contribution of the lighter atom, viz. fluorine, in a diatomic molecule is negligibly small. On the other hand, as one moves from BeF to RaF, the contribution of AE atom to W_T increases. The value of W_T calculated using aug-CV-QZ basis sets for Be is larger by 7.6% from that computed using QZ basis sets. However, for all other AE atoms, the inclusion of extra functions to the QZ basis sets lower the values of W_T by about 1% or less. The difference between the values of W_T using aug-CV-QZ and QZ basis sets for fluorine is 5.3% in BeF, 4.9% in MgF, 4.6% in CaF, 4.1% in SrF and 4.5% in RaF, whereas for the case of BaF, it does not change at least up to the accuracy reported in our work.

There are not many calculations available in the literature to compare our results for the first four members of the AEMF series. The only existing results reported in reference [55] at KS level differ from the values of our work at KRCISD/QZ level by 36% for MgF, 15% for CaF, and 12% for SrF. However, our values for BaF and RaF lies in between the results reported in references [27, 49–52, 55]. Our result of 130.5236 kHz at KRCISD/QZ level for RaF is very close to 131 kHz reported in reference [27] at SODCI level. The final CC value that includes triple contributions as well as large basis set effects estimated in reference [27], is 6.1% larger than our result. However, the calculated value of W_T using two-component ZORA generalized HF method in reference [51] is larger by 13% than our result. Our result of W_T for RaF system is smaller by 7.6% and 8.1% than computed using Z-vector method and as an expectation value, respectively in reference [52].

4. Summary

In summary, we have performed relativistic calculations of P and T-odd interaction constants: W_d and W_T in AEMFs using KRCISD method in conjunction with the quadruple-zeta quality basis sets. Further, the effect of adding diffuse as well as core-valence functions to the QZ basis sets on P and T-odd interaction constants are studied and we have observed that the results of W_d of AEMFs will not be affected by more than 1% while the results of W_T of AE atoms, the change is also about 1% or less, with an exception of BeF. Our results at KRCISD/QZ level of the theory show reasonably good agreement with most of the existing ab initio calculations in the literature. We thus believe that the results reported in this work would be useful for the future theoretical and experimental studies relevant for the search of electric dipole moment of an electron in these molecules.

Acknowledgments

A major part of the calculations reported in this work were performed on the computing facility available in the Department of...
of Physics at IIT Roorkee, India. This research was supported by the Department of Science and Technology, Inspire and FIST division, India (Grant No. SR/FST/PS1-148/2009(C)).

ORCID iDs

Renu Bala https://orcid.org/0000-0001-8257-884X

References

[1] Bernreuther W and Suzuki M 1991 Rev. Mod. Phys. 63 313
[2] Meyer E R, Bohn J L and Deskevich M P 2006 Phys. Rev. A 73 062108
[3] Chupp T E, Fierlinger P, Ramsey-Musolf M J and Singh J T 2019 Rev. Mod. Phys. 91 015001
[4] Baron J et al ACME Collaboration 2017 New J. Phys. 19 073029
[5] Hudson J J, Sauer B E, Tarbutt M R and Hinds E A 2002 Phys. Rev. Lett. 89 023003
[6] Cairncross W B, Gresh D N, Grau M, Cossel K C, Roussy T S, Ni Y, Zhou Y, Ye J and Cornell E A 2017 Phys. Rev. Lett. 119 153001
[7] Hudson J J, Kara D M, Smallman I J, Sauer B E, Tarbutt M R and Hinds E A 2011 Nature 473 493
[8] DeMille D, Cahn S B, Murphee D, Rahmlow D A and Kozlov M G 2008 Phys. Rev. Lett. 100 023203
[9] Sunaga A, Prasannaa V S, Abe M, Hada M and Das B P 2019 Phys. Rev. A 99 040501
[10] Altuntas E, Ammon J, Cahn S B and DeMille D 2018 Phys. Rev. Lett. 120 142501
[11] Sushkov P and Flambaum V V 1978 Zh. Eksp. Teor. Fiz. 75 1208
[12] DeMille D, Doyle J M and Sushkov A O 2017 Science 357 990
[13] Fuyuto K, Hisano J and Senaha E 2016 Phys. Lett. B 755 491
[14] Flambaum V V, Pospelov M, Ritz A and Stadnik Y V 2019 arXiv:1912.13129
[15] Sandars P G H 1967 Phys. Rev. Lett. 19 1396
[16] Yin Y, Xia Y, Li X, Yang X, Xu S and Yin J 2015 Appl. Phys. Express 8 092701
[17] Tarbutt M R and Steimle T C 2015 Phys. Rev. A 92 053401
[18] Zhelyazkova V, Cournol A, Wall T E, Matsushima A, Hudson J J, Hinds E A, Tarbutt M R and Sauer B E 2014 Phys. Rev. A 89 053416
[19] Barry J F, McCarron D J, Norrgard E B, Steinecker M H and DeMille D 2014 Nature 512 286
[20] Barry J F, Shuman E S, Norrgard E B and DeMille D 2012 Phys. Rev. Lett. 108 103002
[21] Shuman E S, Barry J F and DeMille D 2010 Nature 467 820
[22] Trolle S, Williams H J, Hambach M, Caldwell L, Fitch N J, Hinds E A, Sauer B E and Tarbutt M R 2017 Nat. Phys. 13 1173
[23] Bu W, Chen T, Lv G and Yan B 2017 Phys. Rev. A 95 032701
[24] Altunta E, Ammon J, Cahn S B and DeMille D 2018 Phys. Rev. A 97 042101
[25] The NL-EDM Collaboration Aggarwal P et al 2018 Eur. Phys. J. D 72 197
[26] Nayak M K and Chaudhuri R K 2006 J. Phys. B: At. Mol. Opt. Phys. 39 1231
[27] Kudashov A D, Petrov A N, Skripnikov L V, Mosyagin N S, Isaev T A, Berger R and Titov A V 2014 Phys. Rev. A 90 052513
[28] Isaev T A, Hoeckstra S and Berger R 2010 Phys. Rev. A 82 052521
[29] Hao Y and Ili"as M, Elia"e E, Schwetfeldge P, Flambaum V V and Borschevsky A 2018 Phys. Rev. A 98 032510
[30] Flambaum V V, DeMille D and Kozlov M G 2014 Phys. Rev. Lett. 113 103003
[31] Tohme S N and Korek M 2015 J. Quant. Spectrosc. Radiat. Transfer 167 82
[32] Jardali F, Korek M and Yunes G 2014 Can. J. Phys. 92 1223
[33] El-Kork N, el kher N A, Korjieh F, Chtiy J A and Korek M 2017 Spectrochim. Acta A 177 170
[34] Fowler P W and Sadlej A J 1991 Mol. Phys. 73 43
[35] Bala R, Nataraj H S and Nayak M K 2019 J. Phys. B: At. Mol. Opt. Phys. 52 085101
[36] Meyer E R and Bohn J L 2011 Phys. Rev. A 83 032714
[37] Kosicki M B, Kedziera D and Zuchowsky P S 2017 J. Phys. Chem. A 121 4152
[38] Hao Y et al 2019 J. Chem. Phys. 151 034302
[39] Pelegrini M, Vivacqua C S, Roberto-Neto O, Ornellas F R and Machado F B C 2005 Braz. J. Phys. 35 950
[40] Bündgen P, Engels B and Peyerimhoff S D 1991 Chem. Phys. Lett. 176 407
[41] Machado F B C and Ornellas F R 1989 Mol. Phys. 67 1129
[42] Ornellas F R, Machado F B C and Roberto-Neto O 1992 Mol. Phys. 67 1169
[43] Yang Q-S and Gao T 2018 Spectrochim. Acta A 204 763–9
[44] Rice S F, Martin H and Field R W 1985 J. Chem. Phys. 82 5023
[45] Childs W J, Goodman L S, Nielsen U and Pfeifer V 1984 J. Chem. Phys. 80 2283
[46] Sheridan P M, Wang J-G, Dick M J and Bernath P F 2009 J. Mol. Spectrosc. 197 289–96
[47] Wall T E, Kanen J F, Hudson J J, Sauer B E, Cho D, Boshier M G, Hinds E A and Tarbutt M R 2008 Phys. Rev. A 78 062509
[48] Kozlov M G and Labzowsky L N 1995 J. Phys. B: At. Mol. Opt. Phys. 28 1933
[49] Kozlov M G, Titov A V, Mosyagin N S and Souchko P V 1997 Phys. Rev. A 56 R3326
[50] Isaev T A and Berger R 2013 arXiv:1302.5682
[51] Sasnal S, Pathak H, Nayak M K, Valal N and Pal S 2016 Phys. Rev. A 93 062506
[52] Abe M, Prasannaa V S and Das B P 2018 Phys. Rev. A 97 032515
[53] Gaul K and Berger R 2017 J. Chem. Phys. 147 014109
[54] Gaul K, Marquardt S, Isaev T and Berger R 2019 Phys. Rev. A 99 032509
[55] Flieg T and Nayak M K 2014 J. Mol. Spectrosc. 300 1621
[56] Das B P 1989 Relativistic many-body theory of electric dipole moment of atoms due to parity and time reversal violation Aspects of Many-Body Effects in Molecules and Extended Systems ed D Mukherjee (Berlin: Springer) p 411
[57] Flieg T and Nayak M K 2013 Phys. Rev. A 88 032514
[58] Commins E D 1999 Electric dipole moments of leptons Advances in Atomic, Molecular, and Optical Physics vol 40 (New York: Academic) p 1
[59] Prasannaa V S, Vutha A C, Abe M and Das B P 2015 Phys. Rev. Lett. 114 183001
[60] Sunaga A, Abe M, Hada M and Das B P 2016 Phys. Rev. A 93 042507
[61] Visscher L et al 2017 DIRAC, a relativistic ab initio electronic structure program, release DIRAC17 http://diracprogram.org
[62] Visscher L and Dyall K G 1997 J. Chem. Phys. 100 763
[63] Visscher L and Dyall K G 2009 J. Phys. B: At. Mol. Opt. Phys. 42 12638
[64] Dyall K G 2009 J. Phys. B: At. Mol. Opt. Phys. 42 1982
[65] Dyall K G 2009 J. Phys. B: At. Mol. Opt. Phys. 42 1982
[66] Zuchowski P S 2017 J. Phys. B: At. Mol. Opt. Phys. 50 023003
[67] Knight L B Jr, Easley W C and Weltner W 1971 J. Chem. Phys. 54 322