Blood coagulation parameter abnormalities in hospitalized patients with confirmed COVID-19 in Ethiopia

Shambel Araya1,2*, Mintesnot Aragaw Mamo1,2, Yakob Gebregziabher Tsegay3,4, Asegdew Atlaw2, Aschalew Aytenew2, Abebe Hordofa5, Abebe Edao Negeso1, Moges Wordofa1, Tirhas Niguse1, Mahlet Cheru1, Zemenu Tamir1

1 Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia, 2 Department of Medical Laboratory, Millennium COVID-19 Treatment and Care Centre, St. Pual Millennium Medical College, Addis Ababa, Ethiopia, 3 Department of Medical Biotechnology, Institute of Biotechnology, University of Gondar, Gondar, Ethiopia, 4 Department of Research and Development Center, College of Health Sciences, Defense University, Addis Ababa, Ethiopia

* shambelaraya8@gmail.com

Abstract

Background
Coagulopathy and thromboembolic events are among the complications of Corona Virus disease 2019 (COVID-19). Abnormal coagulation parameters in COVID-19 patients are important prognostic factors of disease severity. The aim of this study was to analyze coagulation profiles of hospitalized COVID-19 patients in Addis Ababa, Ethiopia.

Methods
This prospective cross-sectional study was conducted among 455 Covid-19 patients admitted at Millennium COVID-19 care and treatment center, Addis Ababa, Ethiopia from July 1-October 23, 2020. Prothrombin Time (PT), Activated Partial Thromboplastin Time (APTT) and International normalized ratio (INR) were determined on HUMACLOT DUE PLUS® coagulation analyzer (Wiesbaden, Germany). In all statistical analysis of results, p<0.05 was defined as statistically significant.

Result
A prolonged prothrombin time was found in 46.8% of study participants with COVID-19 and a prolonged prothrombin time and elevated INR in 53.3% of study subjects with severe and 51% of critically COVID patients. Thrombocytopenia was detected in 22.1% of COVID-19 patients. 50.5% and 51.3% of COVID-19 patients older than 55 years had thrombocytopenia and prolonged APTT respectively.

Conclusion
In this study, prolonged prothrombin time and elevated INR were detected in more than 50% of severe and critical COVID-19 patients. Thrombocytopenia and prolonged APTT were dominant in COVID-19 patients older than 55 years. Thus, we recommend emphasis to be
given for monitoring of platelet count, PT, APTT and INR in hospitalized and admitted COVID-19 patients.

Introduction

Coronavirus disease 2019 (COVID-19) is caused by a novel beta corona virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [1]. COVID-19 has become a pandemic that has affected the global population. As of November 8, 2020, there have been more than 49 million confirmed cases of COVID-19 and more than 1.2 million deaths, reported to World Health organization (WHO). Similarly, there have been 99,204 confirmed cases of COVID-19 with 1,518 deaths in Ethiopia [2].

The severity of COVID-19 infection ranges considerably from asymptomatic to life threatening, with lung injury being the main clinical manifestation. Most of the patients have a favorable prognosis, but some rapidly progress to severe respiratory distress syndrome, coagulation dysfunction and multiple organ failures [3, 4]. Although the pathophysiology and the underlying mechanisms of clinical manifestations remain unclear, thrombo inflammation and cytokine storm are clearly established components in Severe Acute Respiratory Distress Syndrome (SARS) of COVID-19 [5–8].

Coagulopathy and abnormal coagulation parameters were indicated among the most significant biomarkers of poor prognosis in COVID-19 patients [9–11]. A retrospective cohort study conducted in Spain Madrid demonstrated that COVID-19 non-survivors had significantly lower prothrombin time, abnormal coagulation parameters such as prolonged PT, APTT, higher D- dimer and higher fibrinogen levels compared to survivors indicating coagulation parameters could be an efficient measure for predicting the prognosis of patients with SARS COV-2 [7] and used as guiding clinical management. Similarly, Long et al. has reported that occurrence of coagulation dysfunction is more likely in severe and critically ill patients. The study also showed that D-dimer and prothrombin time could be considered as main indicators in predicting the mortality of COVID-19 patients [3]. Many studies have also demonstrated the increased occurrence of intravascular disseminated coagulopathy (DIC) in patients with COVID-19 [12, 13]. The result of blood coagulation profiles in COVID-19 patients can also guide management decisions and improve outcomes [12, 14].

Moreover, routine coagulation parameter tests results could potentially be utilized in symptomatic patients in resource limited settings with inadequate access to COVID-19 RT-PCR, as in Ethiopia, to raise suspension of this infection. However, data on coagulation profiles among Ethiopian COVID-19 patients is not readily available. Thus, the aim of this study was to determine the coagulation profile of COVID-19 patients admitted at Millennium COVID-19 treatment center, Addis Ababa, Ethiopia.

Methods

Ethical consideration

Ethical clearance was obtained and approved by Addis Ababa University College of Health Sciences, department of Medical Laboratory Sciences research ethics review committee (DRERC/538/20/MLS) and it was in accordance with the principles of the Helsinki II declaration. Laboratory test results were communicated to the responsible clinicians working at COVID-19 care and treatment center. Written informed consent was obtained from the study participants. All the personal identifying information obtained from the study participants were kept confidential.
Study population
In this study, we have included 455 consecutive patients with confirmed SARS-CoV-2 infection admitted to Millennium COVID-19 treatment center, Addis Ababa, Ethiopia from July 1- October 23, 2020. The treatment center is the first referral center for COVID-19 patients in Ethiopia, since May 02, 2020. None of the study participants were receiving anticoagulant medications before blood drawing. Diagnosis of SARS-CoV-2 infection was made with real time RT-PCR.

Sample collection and coagulation profile analysis

Laboratory analysis. Venous bloods were collected by professional nurses working in the COVID-19 care and treatment center: 5 mL in EDTA and 3 mL in 3.2% sodium citrated anticoagulated tube for analysis of coagulation parameters. The samples for coagulation profile tests were collected at hospital admission. The prothrombin time (PT), activated partial thrombin time (APTT), and international normalized ratio (INR) were analyzed using HUMAACL OT DUE PLUS® coagulation analyzer (Wiesbaden®, Germany). Platelet count was performed using Unicel® DxH 800 Coulter® Cellular Analysis System (Beckman Coulter®, Inc. 4300 N. Harbor Blvd. Fullerton, CA 92835). The coagulation parameters were compared with the manufacturer cut off normal range of PT = 11.7–15 seconds, APTT = 23.8–37.9 seconds, INR = 1.0–1.2 and PLT = 159–386/μl. The coagulation parameters above the cut off value were considered as a prolonged and thrombocytopenia in the case of lower than cut off value for platelets. All laboratory tests and interpretation were done following the manufacturers’ recommendation and standard operating procedures set out by the center.

Statistical analysis
Statistical Package for the Social Sciences (SPSS) software version 25.0 (SPSS® Inc., Chicago, IL, USA) was used for statistical analysis. Chi-square test was used to determine association among categorical variables. The quantitative data were expressed as Mean ± SD. P value < 0.05 was considered as statistically significant.

Results
Socio-demographic and clinical characteristics of study participants
In this study, 455 patients diagnosed with COVID-19 were included. Among the study participants, 289 (63.5%) were males. The study participants were between the age of 4 and 90 years with a mean of 49.9 ±18.3 years. From the total 455 study subjects, there were 297 mild cases, 90 severe cases, and 68 critical cases based on disease severity of COVID-19 (Table 1).

Table 1. Socio-demographic characteristics of study participants.

Variables	Frequency	Percent
Gender		
Male	289	63.5%
Female	166	36.5%
Age group		
0–18 years	15	3.2%
18–35 years	101	22.1%
36–55 years	158	34.7%
>55 years	181	39.7%
Disease severity		
Moderate	297	65.2%
Severe	90	19.8%
Critical	68	15%

https://doi.org/10.1371/journal.pone.0252939.t001
The median time from the disease onset to admission was 4 days (2–8 days). Severe and critical groups showed differences in sex ratio and age distribution. In severe (36.6%) and critical groups (48.5%), were elderly males of the age of >55 years old (Table 2).

Magnitude of coagulation abnormalities

In this study, 209 COVID-19 patients (46%) showed prolonged PT and elevated INR values. Among those study participants with prolonged PT, 51.3% were above 55 years of age. Prolonged PT values were demonstrated more frequently among males (49.8%) than females (41%) and this difference was statistically significant (P = 0.045). Similarly, 51.4% and 53.3% of ICU (critical) and severe patients had prolonged PT values. Notably, prolonged APTT values were found among 43.1% of individuals, and from these 47%, 45% and 41% were among ICU (critical), severe and moderate patients, respectively. 57.2% of female patients had prolonged APTT; and 51.3% of patients aged older than 55 years had a prolonged APTT.

Thrombocytopenia was detected in 22.1% (101 out of 455) study subjects. 50.5% (50 out of 99) patients aged older than 55 years had thrombocytopenia and the occurrence was higher among male (23.8%) than female (18%) ICU patients (Table 3).

| Table 2. Socio-demographic characteristics and disease severity of COVID-19 patients. |
|---|-----------------|-----------------|-----------------|-----------------|
| Variables | Disease Severity | | | |
| | Moderate, n (%) | Severe, n (%) | Critical, n (%) |
| Age (year) | | | | |
| 0–18, n = 15 | 10(66.7) | 4(26.7) | 1(6.7) | 0.283 |
| 18–35, n = 101 | 65(64.35) | 22(21.78) | 14(13.8) | |
| 36–55, n = 158 | 107(67.7) | 31(19.6) | 20(12.65) | |
| >55, n = 181 | 115(63.5) | 33(18.2) | 33(18.2) | |
| Sex | | | | |
| Male, n = 289 | 187(64.7) | 56(19.3) | 46(15.9) | 0.045 |
| Female, n = 166 | 110(66.2) | 34(20.4) | 22(13.2) | |

The median time from the disease onset to admission was 4 days (2–8 days). Severe and critical groups showed differences in sex ratio and age distribution. In severe (36.6%) and critical groups (48.5%), were elderly males of the age of >55 years old (Table 2).

Table 3. Result of coagulation parameters in patients with severe COVID-19 according to different variables.

Coagulation parameters	Variables	Age	Sex	Disease severity						
		0–18 n(%)	19–35 n(%)	36–55 n(%)	>55 n(%)	Male n(%)	Female n(%)	Moderate n(%)	Severe n(%)	Critical n(%)
PT	High n = 213	9(4.2)	50(23.47)	61(28.6)	93(43.6)	144(67.6)	69(32.4)	130(61)	48(22.5)	35(16.4)
	Normal n = 220	8(2.7)	45(20.45)	89(40.4)	80(36.3)	131(59.5)	89(40.4)	149(67.7)	40(18.1)	31(14.1)
	Low n = 22	0	6(27.2)	8(36.3)	8(36.3)	14(63.6)	8(36.3)	18(81)	2(9)	2(9)
APTT	High n = 196	6(3)	46(23.4)	68(34.7)	76(38.77)	101(51.5)	95(48.5)	115(58.67)	41(21)	42(21.4)
	Normal n = 193	6(3.1)	38(19.7)	70(36.2)	79(41)	136(70.4)	57(29.5)	137(71)	36(18.6)	21(10.8)
	Low n = 66	3(4.5)	17(25.7)	20(30.3)	26(39.3)	52(78.7)	14(21)	45(68)	13(19.7)	5(7.5)
PLT	High n = 65	4(6.1)	11(17)	24(37)	26(40)	43(66)	22(33.8)	39(60)	8(12.3)	8(12.3)
	Normal n = 289	8(3)	70(24.2)	105(36.3)	105(36.3)	175(60.8)	114(39)	214(74)	44(15)	31(10.6)
	Low n = 101	3(2.9)	20(20)	28(27.7)	50(49.5)	69(69.70)	30(30.3)	33(32)	38(37.6)	30(29.7)
INR	High n = 210	9(4.2)	50(24.7)	60(28.5)	91(43.3)	141(67)	69(32.8)	127(60.4)	50(23.8)	33(15.7)
	Normal n = 224	5(2.2)	49(19.6)	93(41.5)	82(36.6)	115(51)	75(33.4)	113(50.4)	45(20)	32(14.2)
	Low n = 21	1(4.7)	7(33.3)	5(23.8)	8(38)	14(66.6)	7(33.3)	15(71)	3(14.5)	3(14.5)

PLT = platelet; PT = prothrombin time; APTT = activated partial thromboplastin time; INR = international normalized ratio.

The median time from the disease onset to admission was 4 days (2–8 days). Severe and critical groups showed differences in sex ratio and age distribution. In severe (36.6%) and critical groups (48.5%), were elderly males of the age of >55 years old (Table 2).

Magnitude of coagulation abnormalities

In this study, 209 COVID-19 patients (46%) showed prolonged PT and elevated INR values. Among those study participants with prolonged PT, 51.3% were above 55 years of age. Prolonged PT values were demonstrated more frequently among males (49.8%) than females (41%) and this difference was statistically significant (P = 0.045). Similarly, 51.4% and 53.3% of ICU (critical) and severe patients had prolonged PT values. Notably, prolonged APTT values were found among 43.1% of individuals, and from these 47%, 45% and 41% were among ICU (critical), severe and moderate patients, respectively. 57.2% of female patients had prolonged APTT; and 51.3% of patients aged older than 55 years had a prolonged APTT.

Thrombocytopenia was detected in 22.1% (101 out of 455) study subjects. 50.5% (50 out of 99) patients aged older than 55 years had thrombocytopenia and the occurrence was higher among male (23.8%) than female (18%) ICU patients (Table 3).
Discussion

The COVID-19 pandemic had a major impact on health care globally. COVID-19 has already caused >1.2 million deaths worldwide and more than 1400 in Ethiopia as of October 30, 2020 according to WHO report [15]. Coagulation abnormalities are frequent in COVID-19 patients and are associated with poor prognosis and reduced survival [7]. The dysregulation of coagulation associated with hypercoagulability manifests as venous and arterial thrombosis and multi-organ dysfunction [16] which are poor prognostic markers [13, 14, 17–19]. Previous studies indicated that the coagulopathy in patients hospitalized with COVID-19 is characterized by increases in coagulation parameters such as PT, APTT and INR [20, 21].

Patients with serious infection are more likely to have COVID-19 associated coagulopathy than patients with a mild infection [21, 22]. In this recent study, prolonged PT, APTT and INR were more frequent among severe and critical COVID-19 patients. Similarly, studies also reported that thrombotic complications are common among COVID-19 patients admitted to intensive care unit (ICU) [22–24].

Treatment of the underlying condition is suggested to be paramount in coagulopathies. It is shown that bleeding is not common clinical manifestation in COVID-19 infections despite abnormal coagulation parameters [23, 24] and supportive care including blood product transfusion should be individualized in COVID-19 patients [25, 26]. Laboratory findings alone should not be taken as basis for instituting blood transfusion therapy, rather it should be reserved for those who are bleeding, requires an invasive procedure, or who are otherwise at high risk for bleeding complications [26, 27].

Published studies indicate that COVID-19 is associated with a hyper-coagulable state. Venous thromboembolism (VTE) and arterial thrombosis ranging from 15% to 30% were found in critically ill patients with COVID-19 and about 7% in those admitted to medical wards [28–30]. Abnormal thrombosis of different medical devices, deep vein thrombosis and multiple thrombi in the vessels of the lungs, kidneys and other organs at autopsy of patients who died of Covid-19 have been reported serving as the impetus behind guidelines [9, 29] which support the use of therapeutic doses of heparin or low-molecular-weight heparin instead of prophylactic doses in critically ill COVID-19 patients [12, 26, 31]. In the current study, thrombocytopenia was observed more frequently among males (23.8%) than females (19.8%) and older people (27.6%). Severe (42.68%) and critical (42%) patients also more frequently had thrombocytopenia and this was in line with studies conducted in different countries [20, 22, 32, 33]. Thrombocytopenia, defined as platelet count less than 100×10^9 cells/L were independently associated with COVID-19 severity [34]. Studies suggest that routine coagulation test results are markers of disease severity and assist in management decision. In critically ill patients, thrombocytopenia correlates with multi-organ failure and death, and a decline in platelet count, even in the absence of overt thrombocytopenia, portends a worse outcome [9, 12, 13]. In patients who are not bleeding, there is no evidence that correction of laboratory parameters with blood products improves outcomes. Replacement might worsen disseminated thrombosis and further deplete scarce blood products [28, 35].

Many studies reported that coagulopathy associated with COVID-19 is characterized by thrombocytopenia, prolongation of the prothrombin time, high levels of D-dimer, and elevated levels of fibrinogen, factor VIII, and von Willebrand factor [3, 11, 16]. Published studies indicate that COVID-19-associated coagulopathy is characterized by a decreased platelet count [9, 36–38] and a cytokine storm with an extreme hyper-coagulable state. Even though the reason for this life-threatening condition is not known, this might be due to an uncontrolled hyper-inflammatory response without previous immunity [39, 40].
Conclusion

In this study, prolonged prothrombin time and high INR were found among severe and critical COVID-19 patients. Thrombocytopenia and prolonged clotting time assay were dominant in COVID-19 patients older than 55 years. Thus, we recommend emphasis to be given for monitoring of platelet count, PT, APTT and INR in hospitalized COVID-19 patients management.

Author Contributions

Conceptualization: Shambel Araya, Mintesnot Aragaw Mamo, Yakob Gebregziabher Tsegay, Asegdew Atlaw, Aschalew Aytenew, Abebe Hordofa, Abebe Edao Negeso, Moges Wordofa, Tirhas Niguse.

Data curation: Shambel Araya, Mintesnot Aragaw Mamo, Yakob Gebregziabher Tsegay, Asegdew Atlaw, Aschalew Aytenew, Abebe Hordofa, Abebe Edao Negeso, Moges Wordofa, Tirhas Niguse, Mahlet Cheru, Zemenu Tamir.

Formal analysis: Shambel Araya, Mintesnot Aragaw Mamo, Yakob Gebregziabher Tsegay, Asegdew Atlaw, Aschalew Aytenew, Abebe Hordofa, Abebe Edao Negeso, Moges Wordofa, Tirhas Niguse, Mahlet Cheru, Zemenu Tamir.

Funding acquisition: Shambel Araya, Yakob Gebregziabher Tsegay, Asegdew Atlaw, Aschalew Aytenew, Abebe Hordofa, Abebe Edao Negeso, Moges Wordofa, Tirhas Niguse, Mahlet Cheru, Zemenu Tamir.

Investigation: Shambel Araya, Mintesnot Aragaw Mamo, Yakob Gebregziabher Tsegay, Asegdew Atlaw, Abebe Hordofa, Abebe Edao Negeso, Moges Wordofa, Tirhas Niguse, Mahlet Cheru, Zemenu Tamir.

Methodology: Shambel Araya, Mintesnot Aragaw Mamo, Yakob Gebregziabher Tsegay, Asegdew Atlaw, Aschalew Aytenew, Abebe Hordofa, Abebe Edao Negeso, Moges Wordofa, Tirhas Niguse, Mahlet Cheru, Zemenu Tamir.

Project administration: Shambel Araya, Abebe Edao Negeso, Tirhas Niguse.

Resources: Shambel Araya, Mintesnot Aragaw Mamo, Yakob Gebregziabher Tsegay, Asegdew Atlaw, Aschalew Aytenew, Abebe Hordofa, Abebe Edao Negeso, Moges Wordofa, Tirhas Niguse, Mahlet Cheru, Zemenu Tamir.

Software: Shambel Araya, Mintesnot Aragaw Mamo, Yakob Gebregziabher Tsegay, Asegdew Atlaw, Aschalew Aytenew, Abebe Hordofa, Abebe Edao Negeso, Moges Wordofa, Tirhas Niguse, Mahlet Cheru, Zemenu Tamir.

Supervision: Shambel Araya, Yakob Gebregziabher Tsegay, Asegdew Atlaw, Aschalew Aytenew, Abebe Hordofa, Tirhas Niguse, Zemenu Tamir.

Validation: Shambel Araya, Mintesnot Aragaw Mamo, Yakob Gebregziabher Tsegay, Asegdew Atlaw, Abebe Hordofa, Abebe Edao Negeso, Moges Wordofa, Tirhas Niguse, Mahlet Cheru, Zemenu Tamir.

Visualization: Shambel Araya, Mintesnot Aragaw Mamo, Yakob Gebregziabher Tsegay, Asegdew Atlaw, Aschalew Aytenew, Abebe Hordofa, Abebe Edao Negeso, Moges Wordofa, Tirhas Niguse, Mahlet Cheru, Zemenu Tamir.

Writing – original draft: Shambel Araya, Aschalew Aytenew, Abebe Edao Negeso, Tirhas Niguse, Zemenu Tamir.
Writing – review & editing: Shambel Araya, Mintsnot Aragaw Mamo, Yakob Gebregziabher Tsegay, Asegdew Atlaw, Ashalew Aytenew, Abebe Hordofa, Abebe Edao Negeso, Moges Wordofa, Tirhas Niguse, Mahlet Cheru, Zemenu Tamir.

References

1. Sohrabi C, Alsafi Z, O’Neill N, Khan M, Kerwan A, Al-Jabir A, et al. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int J Surg. 2020; 76:71–6. https://doi.org/10.1016/j.ijsu.2020.02.034 PMID: 32112977
2. World Health Organization. Who coronavirus disease (covid-19) dashboard 2020, November 8 [Available from: https://covid19.who.int/].
3. Long H, Nie L, Xiang X, Li H, Zhang X, Fu X, et al. D-Dimer and Prothrombin Time Are the Significant Indicators of Severe COVID-19 and Poor Prognosis. BioMed research international. 2020; 2020:6159720. https://doi.org/10.1155/2020/6159720 PMID: 32596339
4. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. The New England journal of medicine. 2020; 382(18):1708–20. https://doi.org/10.1056/NEJMoa2002032 PMID: 32109013
5. Aggarwal M, Dass J, Mahapatra M. Hemostatic Abnormalities in COVID-19: An Update. Indian J Hematol Blood Transfus. 2020:1–11. https://doi.org/10.1007/s12288-020-01328-2 PMID: 32837053
6. Coccheri S. COVID-19: The crucial role of blood coagulation and fibrinolysis. Intern Emerg Med. 2020; 15(8):1369–73. https://doi.org/10.1007/s11739-020-02443-8 PMID: 32748128
7. Quintana-Díaz M, Andrés-Esteban EM, Ramírez-Cervantes KL, Oliván-Blázquez B, Juárez-Vela R, Gea-Caballero V. Coagulation Parameters: An Efficient Measure for Predicting the Prognosis and Clinical Management of Patients with COVID-19. Journal of Clinical Medicine. 2020; 9(11). https://doi.org/10.3390/jcm9113482 PMID: 33126706
8. Parasher A. COVID-19: Current understanding of its pathophysiology, clinical presentation and treatment. Postgrad Med J. 2020. https://doi.org/10.1136/postgradmedj-2020-138577 PMID: 32978337
9. Al-Samkari H, Karp Leaf RS, Dzik WH, Carlson JCT, Fogerty AE, Waheed A, et al. COVID-19 and coagulation: bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood. 2020; 136(4):489–500. https://doi.org/10.1182/blood.2020006520 PMID: 32492712
10. Annunziata A, Imitazione P, Polistina GE, Lanza M, Coppola A, Fiorentino G. Pulmonary Embolism in Covid-19: Coagulation Parameters, Close Monitoring to Prevent? Turk Thorac J. 2020; 21(4):287–8. https://doi.org/10.5152/TurkThoracJ.2020.20067 PMID: 32530411
11. Saviozzi F, Rocha LL. Coagulation profile in severe COVID-19 patients: what do we know so far? Revista Brasileira de Terapia Intensiva. 2020; 32(2).
12. Buioni D, Nardi P, Ruvolo G. Thrombocytopenia and coagulation disorders due to COVID-19 infection with concomitant cardiovascular diseases requiring anti-platelet and anticoagulant therapy, which strategy? Clin Chim Acta. 2020; 508:109. https://doi.org/10.1016/j.cca.2020.05.031 PMID: 32417209
13. Levi M. COVID-19 coagulopathy vs disseminated intravascular coagulation. Blood Adv. 2020; 4(12):2850. https://doi.org/10.1182/bloodadvances.2020002197 PMID: 32574369
14. Quintana-Díaz M, Andres-Esteban EM, Ramirez-Cervantes KL, Oliván-Blázquez B, Juárez-Vela R, Gea-Caballero V. Coagulation Parameters: An Efficient Measure for Predicting the Prognosis and Clinical Management of Patients with COVID-19. J Clin Med. 2020; 9(11). https://doi.org/10.3390/jcm9113482 PMID: 33126706
15. WHO. Coronavirus disease (COVID-19). 2020. https://www.who.int/emergencies/diseases/novel-coronavirus-2019
16. Chan NC, Weitz JI. COVID-19 coagulopathy, thrombosis, and bleeding. Blood. 2020; 41:100648.
17. Rauch A, Labbreuche J, Lassalle F, Goutay J, Caplan M, Charbonnier L, et al. Coagulation biomarkers are independent predictors of increased oxygen requirements in COVID-19. J Thromb Haemost. 2020. https://doi.org/10.1111/jth.15067 PMID: 3281304
18. Zhang Y, He L, Chen H, Lu S, Xiong Y, Liu J, et al. Manifestations of blood coagulation and its relation to clinical outcomes in severe COVID-19 patients: Retrospective analysis. Int J Lab Hematol. 2020. https://doi.org/10.1111/ijlh.13273 PMID: 32592539
19. Zhang A, Leng Y, Zhang Y, Wu K, Ji Y, Lei S, et al. Meta-analysis of coagulation parameters associated with disease severity and poor prognosis of COVID-19. International journal of infectious diseases: IJID: official publication of the International Society for Infectious Diseases. 2020; 100:441–8. https://doi.org/10.1016/j.ijid.2020.09.021 PMID: 32947052
20. Luo HC, You CY, Lu SW, Fu YQ. Characteristics of coagulation alteration in patients with COVID-19. Ann Hematol. 2020. https://doi.org/10.1007/s00277-020-04305-x PMID: 33079220

21. Levi M, Thachil J, Iba T, Levy JH. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020; 7(6):e438–e40. https://doi.org/10.1016/S2352-3026(20)30145-9 PMID: 32350161

22. Zou Y, Guo H, Zhang Y, Zhang Z, Liu Y, Wang J, et al. Analysis of coagulation parameters in patients with COVID-19 in Shanghai, China. Biosci Trends. 2020; 14(4):285–9. https://doi.org/10.5582/bst.2020.03086 PMID: 32350161

23. Sayad B, Rahimi Z. Blood coagulation parameters in patients with severe COVID-19 from Kermanshah Province, Islamic Republic of Iran. East Mediterr Health J. 2020; 26(9):999–1004. https://doi.org/10.26719/emhj.20.105 PMID: 33047789

24. Adam EH, Zacharowski K, Miesbach W. A comprehensive assessment of the coagulation profile in critically ill COVID-19 patients. Thromb Res. 2020; 194:42–4. https://doi.org/10.1016/j.thromres.2020.06.026 PMID: 32723615

25. Paar V, Wernly B, Zhou Z, Motloch LJ, Hoppe UC, Egle A, et al. Anti-coagulation for COVID-19 treatment: both anti-thrombotic and anti-inflammatory? J Thromb Thrombolysis. 2020.

26. Belen-Apak FB, Sarialioglu F. Pulmonary intravascular coagulation in COVID-19: possible pathogenesis and recommendations on anticoagulant/thrombolytic therapy. J Thromb Thrombolysis. 2020; 50(2):278–80. https://doi.org/10.1007/s11239-020-02129-0 PMID: 32372336

27. Lee AY, Connors JM, Kreuziger LB, Murphy M, Gernsheimer T, Lin Y, et al. COVID-19 and Coagulopathy 2020, December 1 [Available from: https://www.hematology.org/COVID-19/COVID-19-and-coagulopathy.

28. Harenberg J, Favaloro E. COVID-19: progression of disease and intravascular coagulation—present status and future perspectives. Clin Chem Lab Med. 2020; 58(7):1029–36. https://doi.org/10.1515/ccclm-2020-0502 PMID: 32406381

29. Pizzi R, Gini G, Caiano L, Castelli B, Dotan N, Magni F, et al. Coagulation parameters and venous thromboembolism in patients with and without COVID-19 admitted to the Emergency Department for acute respiratory insufficiency. Thromb Res. 2020; 196:209–12. https://doi.org/10.1016/j.thromres.2020.09.004 PMID: 32911392

30. Mei H, Hu Y. [Characteristics, causes, diagnosis and treatment of coagulation dysfunction in patients with COVID-19]. Zhonghua Xue Ye Xue Za Zhi. 2020; 41(3):185–91. https://doi.org/10.3760/cma.j.issn.0253-2777.2020.0002 PMID: 32133825

31. Bao C, Tao X, Cui W, Yi B, Pan T, Young KH, et al. SARS-CoV-2 induced thrombocytopenia as an important biomarker significantly correlated with abnormal coagulation function, increased intravascular blood clot risk and mortality in COVID-19 patients. Exp Hematol Oncol. 2020; 9:16. https://doi.org/10.1186/s40164-020-00172-4 PMID: 32695551

32. Xiong M, Liang X, Wei YD. Changes in blood coagulation in patients with severe coronavirus disease 2019 (COVID-19): a meta-analysis. Br J Haematol. 2020; 189(6):1050–2. https://doi.org/10.1111/bjh.16725 PMID: 32304581

33. Song JC, Wang G, Zhang W, Zhang Y, Li WQ, Zhou Z, et al. Chinese expert consensus on diagnosis and treatment of coagulation dysfunction in COVID-19. Mil Med Res. 2020; 7(1):19. https://doi.org/10.1186/s40779-020-00247-7 PMID: 32307014

34. Chen X, Wang Q, Xu M, Li C. A Retrospective Analysis of the Coagulation Dysfunction in COVID-19 Patients. Clin Appl Thromb Hemost. 2020; 26:1076029620964868. https://doi.org/10.1177/1076029620964868 PMID: 3300047

35. Pavoni V, Gianesello L, Pazzi M, Stera C, Meconi T, Frigieri FC. Evaluation of coagulation function by rotation thromboelastometry in critically ill patients with severe COVID-19 pneumonia. J Thromb Thrombolysis. 2020; 50(2):281–6. https://doi.org/10.1007/s11239-020-02130-7 PMID: 32394236

36. Savioli F, Rocha LL. Coagulation profile in severe COVID-19 patients: what do we know so far? Rev Bras Ter Intensiva. 2020; 32(2):197–9. https://doi.org/10.5935/0103-507x.20200031 PMID: 32667446

37. Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med. 2020; 8(6):e46–e7. https://doi.org/10.1016/S2213-2600(20)30216-2 PMID: 32353251
40. Kasinathan G, Sathar J. Haematological manifestations, mechanisms of thrombosis and anti-coagulation in COVID-19 disease: A review. Ann Med Surg (Lond). 2020; 56:173–7. https://doi.org/10.1016/j.amsu.2020.06.035 PMID: 32637095