Rainfall-Runoff and Sediment Yield Modelling in Volcanic catchment using SWAT, a Case Study in Opak Watershed.

N Christanto¹, ², M A Setiawan¹, ², A Nurkholis³, S Istikhomah¹, D W ANajib² A D Purnomo¹

¹Departement of Environmental Geography, Faculty of Geography, Gadjah Mada University
²Transbulent Laboratory – Transition of Natural Processes in Built-up Environment

Abstract. Understanding hydrological functions and sediment dynamics in a volcanic area will help decisions makers to a better rehabilitation and reconstruction processes including environmental restoration efforts. The volcanic material can provide the multiple functions; they can improve water quality by allowing water aeration along the river and work as a good aquifer that will keep the water in the groundwater storage. On the other hand, runoff in a volcano has the possibility to induce a more significant hazard. Lahar can cause bigger destruction. The general objectives of this paper were to develop a hydrologic model to characterise the water balance in a volcanic watershed to inform the relationship between rainfall and runoff. The Soil and Water Assessment Tool (SWAT) was chosen to test its applicability in an active volcanic watershed. By using this model, the hydrographs were simulated over the area. From the model, we found that Opak watershed consists of 83 sub-catchments. The highest erosion and sediment yield of the area from 2004 – 2013 were found on the sub-catchment number 83 with the total sediment yield is 147.8 ton/year The model achieved a reasonable fit after calibration. This work can provide information on simulated hydrologic processes and function on an active volcanic watershed using SWAT.

1. Introduction

Runoff is one of the essential hydrological variables in the study of hydrology. The study of runoff and its response to land-use and population changes has become a significant challenge on local and global scales [1–6]. Runoff can carry contaminants (chemical, biological, heavy metal etc.)[7–10] as well as sediment[11,12]. On the other hand, climate change will influence the runoff patterns. This condition will lead to stream degradation, erosion, flooding [13–15]. Understanding runoff patterns is a critical step in effective environmental management. From the runoff patterns, we can select the best management practices for watershed management. At this point, the model can play an important role in simulating runoff condition of a watershed. Hydrological watershed modelling has become a central tool for conceptualizing the runoff and subsurface water. From the model, we can simulate the water balance in a particular area. Besides understanding the water balances, we can use models to predict the impact of different management practices on a watershed response, sediment and contaminant transport[16–18]. SWAT model was developed in the 1980s. This model aimed to manage water supplies and assess the non-point source of pollution of an agricultural basin [19]. SWAT is
increasingly being applied to many watersheds, ranging from tropical to an arid area, from rural to urban watersheds.

This study aims to apply the SWAT model in the unique context of a volcanic watershed to test the model’s ability to perform. The result of this research will lead to a better understanding of hydrological processes in an active volcanic area. Therefore, better watershed management can be achieved base on the result of this model.

2. The Methods
The general objectives of this paper were to develop a hydrologic model to characterize the water balance in a volcanic watershed to inform the relationship between rainfall and runoff. The Soil and Water Assessment Tool (SWAT) was chosen to test its applicability in an active volcanic watershed. Using this model, the hydrographs were simulated over the area. The model achieved a reasonable fit after calibration. This work can provide information about simulated hydrologic processes and function on an active volcanic watershed using SWAT.

2.1. Study Area
The study area is located in the Merapi Volcano, Yogyakarta, Indonesia (Fig. 1). The Opak watershed is located between 7°32’54”-8°2’25” S and 104°15’24”–104°51’38”E, covering a surface area of 47,485.99 ha. It is located between 14-2660 msl. Average rainfall in this area is 2.319 mm/year, and the minimum rainfall recorded in this area was 1.206 mm/year. Geologically, Opak watershed consist of 6 formation, they are alluvium deposit, EMerapi Volcano Deposit, FormasiNgelanggran, FormasiSemilir, FormasiSambipitu, andold Merapi deposit.

![Fig. 1: The study area in Opak watershed, Yogyakarta, Indonesia](image_url)
Table 1. Rainfall data in the study area

Sub DAS Opak	Sub DAS	Nama Stasiun Hujan	Lokasi	Curah Hujan (mm)	CH Rate2
	Bedugan			2016.6	1597.83
	Bronggeng			2326.65	1933.6
	Cermawangi			2249.6	1934.6
	Karangploso			1811.1	1545.2
	Kepatihan			2015.7	1758.2
	Pumpung			2263.6	1682.84
	Pantang			1990.0	1597.83
	Tanjungiru			2347.9	1574.10

2.2. SWAT Model

SWAT (Soil Water Assessment Tool) model is a physically based semi distributed model that is able to simulate the runoff and sediment yield of a watershed [20,21], and assess the effect of land use change [22,23] and its effect on water quality [24]. The model based on the equation as follow[25].

\[
SW_t = SW_0 + \sum_{n=1}^{t} (R_{day} - Q_{surf} - E_a - W_{seep} - Q_{gw}) \]

where \(SW_t\) is soil water capacity (mm), \(SW_0\) is initial water content (mm), \(R_{day}\) is rainfall (mm), \(Q_{surf}\) is surface runoff (mm), \(E_a\) is evapotranspiration (mm), \(W_{seep}\) is percolation (mm), \(Q_{gw}\) is ground water discharge (mm) and \(t\) is time (hari).

a. Surface runoff

SAWT Model calculate surface runoff base on SCS-CN. The equation is :

\[
Q_{surf} = \frac{(R_{day} - I_a)^2}{(R_{day} - I_a + S)} \quad \text{…… 2}
\]

\[
S = 25.4 \left(\frac{100}{CN} - 10 \right) \quad \text{…… 3}
\]

where \(Q_{surf}\) is total surface runoff , \(R_{day}\) is number of rainy day, \(I_a\) is initial abstraction, \(S\) is retention and \(CN\) is Curve Number

b. Erosion and Sedimentation

Erosion and sedimentation is calculated using Modified Universal Soil Loss Equation (MUSLE).

\[
SED = 11.8 \cdot Q_{surf} \cdot q_{peak} \cdot \text{Area}_{HRU}^{0.54} \cdot K_{USLE} \cdot C_{USLE} \cdot P_{USLE} \cdot L_{USLE} \cdot CFRG \quad \text{…… 4}
\]

Where \(SED\) is total sediment that leave the catchment, \(Q_{surf}\) total runoff, \(q_{peak}\) is peak discharge and \(Area_{HRU}\) is the area of HRU.

3. Results and discussions

Parametrization

a. Soil

The soil is one of the critical parameters in the SWAT Model. Since the information of soil in Indonesia is limited, pedogeomorphology approach was used in this research. We divided the area into 32 landform unit as the base map for soil mapping (table 2). Figure 2 shows the distribution of the soil in the study area.
Landform Unit	Soil coding
Bukit Sisa Formasi Semilir	HSD1
Dataran Aluvial Gunungapi	PF1
Dataran Kaki Fluvio - Koluvial	PDF2
Gunungapi Merapi Tua	HVD1
Kawah Gunungapi	VV1
Lembah Dataran Aluvial Gunungapi	PF2
Lembah Kerucut Gunungapi	VF1
Lembah Lereng Atas Gunungapi	VF2
Lembah Lereng Tengah Gunungapi	VF3
Lembahlereng kaki gunungapimerapi	PF3
Lereng Atas Gunungapi	VVD1
Lereng Atas Perbukitan Denudasional Breksi Andesit	MSD3
Lereng Atas Perbukitan Denudasional Formasi Nglanggran	UD2
Lereng Atas Perbukitan Denudasional Formasi Semilir	MSD4
Lereng Bawah Perbukitan Denudasional Formasi Semilir	MSD6
Lereng Kaki Gunungapi	VVD2
Lereng Kaki Koluvial	PDF3
Lereng Kaki Perbukitan Denudasional Formasi Semilir	USD1
Lereng Tengah Gunungapi	VVD3
Lereng Tengah Perbukitan Denudasional Andesit	MSD7
Lereng Tengah Perbukitan Denudasional Formasi Semilir	UDF1
Lereng Tengah Perbukitan Struktural Formasi Semilir	MSD8
Puncak Perbukitan Denudasional Baturagung	MSD9
Puncak Perbukitan Denudasional Formasi Semilir	USD2
Puncak Perbukitan Struktural Formasi Semilir	MSD10
Puncak Igir Denudasional Formasi Nglanggran	HD2
Lembah Struktural Fluvio - Koluvial	PF4
Dataran Aluvial Struktural	PDF1
Escarpment Baturagung	MSD1
Kerucut Gunungapi	VV2
Kompleks Perbukitan Struktural Baturagung	MSD2
Lereng Tengah Perbukitan Denudasional Formasi Nglanggran	HD1
b. Land-use

We divided the land-use in the Opak watershed into 12 type of land-uses. Sawah dominated the study area by 40.22%. Other land-use are open water (0.39%), shrub (3.32%), building (0.53%), Forest (0.99), settlement (25.31%), bareland (sand) (0.05%), grass (1.69%), mix garden (9.08%), rainfed farm (2.83%), bareland (sand and stone) (0.17) and agriculture area (15.52%). Table 3 shows the land-use of the study area. Figure 3 shows the land-use distribution.

Type of landuse	Luas (Ha)
Open water	161.15
Shrub	1317.67
Building	218.36
Forest	405.26
Garden	3725.43
Bareland (sand)	20.65
Settlement	10380.72
Grass	692.64
Sawah	16493.36
Rainfed Sawah	1158.57
Bareland (sand and stone)	67.74
Dryland agriculture	6366.13
Runoff and Sediment yield in Opak Watershed

From the model, we found that Opak watershed consists of 83 sub-catchment. Based on the SWAT model, we found that there are 5176 HRUs. The highest erosion and sediment yield of the area from 2009 – 2013 were found on the sub-catchment number 21 with the total sediment yield is 87.25 ton/year. While the other sub-catchment number 22, 26, 30, 32, 34, 41, 42 and 44 is considered as high and very high. Figure 4 shows the sediment yield in each sub-catchment while figure 5 shows the distribution of the sub-catchment as well as the sediment yield of the study area.
Table 4. Surface Runoff's on each Sub Basin

Sub Basin	Runoff (mm/year)	Class	Sub Basin	Runoff (mm/year)	Class	Sub Basin	Runoff (mm/year)	Class
1	265	Very Low	17	999	Medium	33	161	Very Low
2	512	Low	18	693	Low	34	236	Very Low
3	441	Very Low	19	832	Medium	35	246	Very Low
4	739	Low	20	844	Medium	36	175	Very Low
5	657	Low	21	1641	Very High	37	150	Very Low
6	467	Low	22	217	Very Low	38	239	Very Low
7	507	Low	23	700	Low	39	259	Very Low
8	380	Very Low	24	669	Low	40	175	Very Low
9	669	Low	25	163	Very Low	41	207	Very Low
10	589	Low	26	209	Very Low	42	242	Very Low
11	1086	High	27	154	Very Low	43	232	Very Low
12	344	Very Low	28	144	Very Low	44	263	Very Low
13	620	Low	29	155	Very Low	45	174	Very Low
14	896	Medium	30	203	Very Low	46	203	Very Low
15	1144	High	31	772	Medium	47	211	Very Low
16	727	Low	32	243	Very Low			

Table 5. Sediment yield on each Sub Basin

Sub Basin	Sediment (ton/ha/year)	Class	Sub Basin	Sediment (ton/ha/year)	Class	Sub Basin	Sediment (ton/ha/year)	Class
1	1.60	Very Low	17	7.66	Very Low	33	0.85	Very Low
2	2.88	Very Low	18	1.96	Very Low	34	9.73	Very Low
3	1.99	Very Low	19	2.01	Very Low	35	0.63	Very Low
4	1.49	Very Low	20	1.85	Very Low	36	0.74	Very Low
5	1.14	Very Low	21	87.25	Very High	37	0.59	Very Low
6	6.22	Very Low	22	23.48	Low	38	0.59	Very Low
7	1.01	Very Low	23	1.96	Very Low	39	0.59	Very Low
8	1.77	Very Low	24	5.22	Very Low	40	5.62	Very Low
9	1.98	Very Low	25	4.74	Very Low	41	12.02	Very Low
10	1.51	Very Low	26	29.11	Low	42	15.48	Very Low
11	1.29	Very Low	27	1.57	Very Low	43	0.67	Very Low
12	1.78	Very Low	28	0.69	Very Low	44	7.92	Very Low
13	1.98	Very Low	29	4.52	Very Low	45	0.74	Very Low
14	1.79	Very Low	30	15.40	Very Low	46	4.08	Very Low
15	1.29	Very Low	31	2.36	Very Low	47	0.79	Very Low
16	1.85	Very Low	32	11.81	Very Low			
4. Conclusion
Soil, land use, topography and rainfall hold a significant role in runoff and sediment dynamic within a watershed. An area with limited data like Indonesia needs other approaches to obtain better hydrological modelling results. Pedogeomorphology is one of the best methods to tackle the absent of soil information. Land-use from the topographic map updated with Google Earth image can be very useful, while the topographic features can be obtained from some global dataset. From the model, by avoiding the sediment from lahar, we found that the sediment from an active volcano is smaller compared to a structural old volcanic mountain. Catchment 21 that falls on the structural old volcanic mountain have 87.25 ton/ha/year, while from the active volcano is less than 20 ton/ha/year. Therefore, we can conclude that the watershed management in Merapi based on its land-use is good while in the structural old volcanic mountain of Batur Agung need more effort.

References
[1] Christanto N 2008 Hydrological – Slope Stability Modeling for Landslide Hazard Assessment by means of GIS and Remote Sensing Data in Geo-Information for Spatial Planning and Risk Management
[2] ZHANG X, CAO W, GUO Q and WU S 2010 Effects of landuse change on surface runoff and sediment yield at different watershed scales on the Loess Plateau Int. J. Sediment Res. 25 283–93
[3] DeFries R and Eshleman K N 2004 Land-use change and hydrologic processes: a major focus for the future Hydrol. Process. 18 2183–6
[4] Kundu S, Khare D and Mondal A 2017 Past, present and future land use changes and their impact on water balance J. Environ. Manage. 197 582–96
[5] Christanto N, Sartohadi J, Setiawan M A, Shrestha D B P and Jetten V G 2018 Land use change analysis using spectral similarity and vegetation indices and its effect on runoff and sediment yield in tropical environment IOP Conf. Ser. Earth Environ. Sci. 148

[6] Science E 2018 Evaluation of spatial plan in controlling stream flow rate in Wakung Watershed, Pemalang, Central Java, Indonesia Evaluation of spatial plan in controlling stream flow rate in Wakung Watershed, Pemalang, Central Java, Indonesia

[7] Lacher I L, Ahmadisharaf E, Fergus C, Akre T, Mcshea W J, Benham B L and Kline K S 2019 Scale-dependent impacts of urban and agricultural land use on nutrients, sediment, and runoff Sci. Total Environ. 652 611–22

[8] Grenestam E and Nordin M 2018 Estimating the impact of agri-environmental payments on nutrient runoff using a unique combination of data Land use policy 75 388–98

[9] Vadas P A and Powell J M 2013 Monitoring nutrient loss in runoff from dairy cattle lots Agric. Ecosyst. Environ. 181 127–33

[10] Yaşar Korkanç S and Dorum G 2019 The nutrient and carbon losses of soils from different land cover systems under simulated rainfall conditions CATENA 172 203–11

[11] Krishnaswamy J, Richter D D, Halpin P N and Hofmockel M S 2001 Spatial patterns of suspended sediment yields in a humid tropical watershed in Costa Rica Hydrol. Process. 15 2237–57

[12] Gebremicael T G, Mohamed Y A, Betrie G D, van der Zaag P and Teferi E 2013 Trend analysis of runoff and sediment fluxes in the Upper Blue Nile basin: A combined analysis of statistical tests, physically-based models and landuse maps J. Hydrol. 482 57–68

[13] Christanto N, Shrestha D P, Jetten V G and Setiawan A 2012 Modeling the effect of terraces on land degradation in tropical upland agricultural area EGU Gen. Assem. 2012, held 22-27 April. 2012 Vienna, Austria., p.1075 14 1075

[14] Christanto N, Hadmoko D S, Westen C J, Lavigne F, Sartohadi J and Setiawan M A 2009 Characteristic and Behavior of Rainfall Induced Landslides in Java Island, Indonesia: an Overview EGU Gen. Assem. 2009, held 19-24 April. 2009 Vienna, Austria http://meetings.copernicus.org/egu2009, p.4069 11 4069

[15] Setiawan M A, Stoetter J, Sartohadi J and Christanto N 2009 The Integrated Soil Erosion Risk Management Model of Central Java, Indonesia 11

[16] Ratna Reddy V, Saharawat Y S and George B 2017 Watershed management in South Asia: A synoptic review J. Hydrol. 551 4–13

[17] Asdak C, Supian S and Subiyanto 2018 Watershed management strategies for flood mitigation: A case study of Jakarta’s flooding Weather Clim. Extrem. 21 117–22

[18] Boongaling C G K, Faustino-Eslava D V. and Lansigan F P 2018 Modeling land use change impacts on hydrology and the use of landscape metrics as tools for watershed management: The case of an ungauged catchment in the Philippines Land use policy 72 116–28

[19] Arnold J G, Kiniry J R, Srinivasan R, Williams J R, Haney E B and Neitsch S L 2012 Soil and Water Assessment Tool: Input/Output Files

[20] Briak H, Moussadek R, Aboumrika K and Mrabet R 2016 Assessing sediment yield in Kalaya gauged watershed (Northern Morocco) using GIS and SWAT model Int. Soil Water Conserv. Res. 4 177–85

[21] Rodriguez-Lloveras X, Bussi G, Francés F, Rodriguez-Caballero E, Solé-Benet A, Calle M and Benito G 2015 Patterns of runoff and sediment production in response to land-use changes in an ungauged Mediterranean catchment J. Hydrol. 531 1054–66

[22] Lin B, Chen X, Yao H, Chen Y, Liu M, Gao L and James A 2015 Analyses of landuse change impacts on catchment runoff using different time indicators based on SWAT model Ecol. Indic. 58 55–63

[23] Zhang S, Fan W, Li Y and Yi Y 2017 The influence of changes in land use and landscape patterns on soil erosion in a watershed Sci. Total Environ. 574 34–45

[24] Pyo J, Pachepsky Y A, Kim M, Baek S, Lee H, Cha Y, Park Y and Cho K H 2017 Simulating
seasonal variability of phytoplankton in stream water using the modified SWAT model

Environ. Model. Softw.

[25] Neitsch S L, Arnold J G, Kiniry J R and Williams J R 2011 Soil and Water Assessment Tool Theoretical Documentation Version 2009 Texas Water Resources Institute