On Weyl-covariant channels

M. Fukuda
Statistical Laboratory, CMS, University of Cambridge
A. S. Holevo
Steklov Mathematical Institute

October 31, 2018

Abstract

Formalism of discrete noncommutative Fourier transform is developed and applied to the study of Weyl-covariant channels. We then extend a result in [7] concerning a bound of the maximal output 2-norm of a Weyl-covariant channel. A class of channels which attain the bound is introduced, for which the multiplicativity of the maximal output 2-norm is proven. Complementary channels are described which share the multiplicativity properties with the Weyl-covariant channels.

1 A noncommutative Fourier transform

A state of finite quantum system is represented by a positive operator \(\rho \) of trace one (density operator) in a Hilbert space \(\mathcal{H} \) of dimensionality \(d \). The set of density operators in \(\mathcal{H} \) is denoted \(\mathfrak{S}(\mathcal{H}) \). A channel \(\Phi \) is a completely positive (CP) trace-preserving (TP) map of the algebra \(\mathfrak{M}(\mathcal{H}) \) of all operators in \(\mathcal{H} \). Although the TP condition is redundant in the context of our results, we shall impose it just for notational convenience.

The maximal output \(p \)-norm of \(\Phi \) is defined as

\[
\nu_p(\Phi) := \sup_{\rho \in \mathfrak{S}(\mathcal{H})} \| \Phi(\rho) \|_p,
\]

where \(\| \|_p \) is the Schatten \(p \)-norm: \(\| \rho \|_p := (\text{tr}|\rho|^p)^{\frac{1}{p}} \).
The current multiplicativity conjecture is that
\[\nu_p(\Phi \otimes \Omega) = \nu_p(\Phi)\nu_p(\Omega), \] (1.2)
for arbitrary channels \(\Phi \) and \(\Omega \), and for \(p \in [1, 2] \). Note that the inequality \(\nu_p(\Phi \otimes \Omega) \geq \nu_p(\Phi)\nu_p(\Omega) \) is straightforward. In this paper we consider the case \(p = 2 \), which is still an open problem (see [3],[8],[10] for some general results in this direction).

Let us choose an orthonormal basis \(\{e_k; k = 0, \ldots, d-1\} \) in \(\mathcal{H} \). Consider the additive cyclic group \(\mathbb{Z}_d \) and define an irreducible projective unitary representation of the group \(Z = \mathbb{Z}_d \oplus \mathbb{Z}_d \) in \(\mathcal{H} \) as
\[z = (x, y) \mapsto W_z = U^x V^y, \]
where \(x, y \in \mathbb{Z}_d \), and \(U \) and \(V \) are the unitary operators such that
\[U|e_k\rangle = |e_{k+1(\text{mod} d)}\rangle, \quad V|e_k\rangle = \exp\left(\frac{2\pi ik}{d}\right)|e_k\rangle. \]

The discrete Weyl operators \(W_z \) satisfy relations similar to the canonical commutation relations for Weyl operators on \(Z = \mathbb{R}^s \oplus \mathbb{R}^s \) (see e. g. [4]):
\begin{align*}
W_z W_{z'} &= \exp(i\langle y, x' \rangle)W_{z+z'}; \quad (1.3) \\
W_z W_{z'} &= \exp(i(\langle x', y \rangle - \langle y', x \rangle))W_{z'}W_z; \quad (1.4)
\end{align*}
where \(\langle y, x \rangle := 2\pi yx/d \).

For future use we introduce the duality form on \(Z \)
\[\langle z', z \rangle := \langle x', x \rangle + \langle y', y \rangle, \]
and the symplectic form
\[\langle z', Jz \rangle := \langle x', y \rangle - \langle y', x \rangle, \]
where \(J(x, y) := (y, -x) \).

Instead of the relation \(W_z^* = W_{-z} \) for the usual Weyl operators, we have
\[W_z^* = \exp(i\langle y, x \rangle)W_{-z}. \] (1.5)
Moreover,
\[\text{Tr}W_z W_{z'}^* = d\delta_{z,z'}. \] (1.6)
Consider \(\mathcal{M}(\mathcal{H}) \) as a Hilbert space with the Hilbert-Schmidt inner product. The Weyl operators form an orthogonal basis in \(\mathcal{M}(\mathcal{H}) \). Hence for all \(X \in \mathcal{M}(\mathcal{H}) \)
\[X = \sum_z f_X(z)W_z, \quad \text{where} \quad f_X(z) = \frac{1}{d}\text{Tr}XW_z^*. \]
The correspondence $X \leftrightarrow f_X(z)$ is a discrete analog of the “noncommutative Fourier transform”, see [4]. It has Parceval-type properties

$$\mathrm{Tr}X = df_X(0); \quad \mathrm{Tr}X^* = d\sum_z |f_X(z)|^2. \quad (1.7)$$

It follows that for a state $\rho \in \mathcal{S}(\mathcal{H})$

$$f_\rho(0) = \frac{1}{d}; \quad |f_\rho(z)| \leq \frac{1}{d} \quad (1.8)$$

and

$$\sum_{z \neq 0} |f_\rho(z)|^2 \leq \frac{d-1}{d^2}. \quad (1.9)$$

Moreover, ρ is a pure state if and only if $\mathrm{Tr}\rho^2 = 1$, which is equivalent to

$$\sum_{z \neq 0} |f_\rho(z)|^2 = \frac{d-1}{d^2}. \quad (1.9)$$

The relation (1.5) implies

$$f_X(z) = \exp(-i\langle y, x \rangle)f_X^*(-z). \quad (1.10)$$

A necessary and sufficient condition for a Hermitian $X \in \mathfrak{M}(\mathcal{H})$ to be positive is: the $d^2 \times d^2$ -matrix

$$[f_X(z' - z) \exp(i\langle y, x - x' \rangle)]_{z,z' \in \mathbb{Z}}$$

is nonnegative definite. The necessity follows from

$$\sum_{z,z'} \overline{c}_z c_{z'} f_X(z' - z) \exp(i\langle y, x - x' \rangle) = \frac{1}{d} \mathrm{Tr}X \left(\sum_z c_z W_z \right)^* \left(\sum_{z'} c_{z'} W_{z'} \right) \geq 0.$$

The proof of sufficiency is similar to that for the case of the “noncommutative Fourier transform”, see [4].

2 Multiplicativity for the Weyl-covariant maps and channels

A linear map Φ of $\mathfrak{M}(\mathcal{H})$ is Weyl-covariant if

$$\Phi(W_z X W_z^*) = W_z \Phi(X) W_z^*$$
for all \(z \in Z \) and \(X \in \mathfrak{M}(\mathcal{H}) \). Inserting \(X = W_{z'} \) we find that \(\Phi(W_{z'}) \) satisfies the same relation (1.4) as \(W_{z'} \), hence \(\Phi(W_{z'})W^*_z \) commute with all \(W_z \). Therefore

\[
\Phi(W_z) = \phi(z)W_z, \quad (2.1)
\]

where \(\phi(z); z \in Z \), is a complex function. By making a normalization, we can always assume that \(\phi(0) = 1 \). The class of such maps we denote \(\mathfrak{M}_1(\mathcal{H}) \). We shall also use the notation \(\|A\|_2 = \sqrt{\text{Tr}A^*A} \).

Defining the Fourier transform

\[
p_\gamma = \frac{1}{d^2} \sum_{z \in Z} \phi(z) \exp(i\langle \gamma, z \rangle),
\]

we have

\[
\phi(z) = \sum_{\gamma \in Z} p_\gamma \exp(-i\langle \gamma, z \rangle),
\]

for \(\gamma = (\alpha, \beta) \in Z \). The relation (1.4) implies that

\[
\Phi(X) = \sum_{\gamma} p_\gamma W_{J\gamma} X W_{J\gamma}^*, \quad (2.2)
\]

There is a simple formula for composition of two Weyl-covariant maps

\[
(\Phi_1 \circ \Phi_2)(\rho) = (\Phi_2 \circ \Phi_1)(\rho) = \sum_{\gamma} p_\gamma W_{J\gamma} \rho W_{J\gamma}^*,
\]

where \(p_\gamma = p_\gamma^{(1)} * p_\gamma^{(2)} \) is the convolution of functions \(p_\gamma^{(1)}, p_\gamma^{(2)} \), defining the maps \(\Phi_1, \Phi_2 \), since the action of the composition on the maps is given by (2.1), where \(\phi(z) = \phi_1(z)\phi_2(z) \).

The map \(\Phi \) is channel if and only if \(\{p_\gamma\} \) is probability distribution on \(Z \), and \(\phi(z) \) – its characteristic function [5]. The relation (2.2) is then the Kraus representation.

Our principal estimate is:

Theorem 1. Let \(\Phi \in \mathfrak{M}_1(\mathcal{H}) \) and \(\hat{\rho} \) – an operator in \(\mathcal{H} \otimes K \). Then

\[
\|(\Phi \otimes \text{Id}_K)(\hat{\rho})\|_2^2 \leq \frac{1}{d}(1 - \max_{z \neq 0} |\phi(z)|^2)\|\text{Tr}_\mathcal{H}\hat{\rho}\|_2^2 + \max_{z \neq 0} |\phi(z)|^2 \|\hat{\rho}\|_2^2. \quad (2.3)
\]

Proof. Defining \(A_z = \frac{1}{d} \text{Tr}_\mathcal{H}\hat{\rho}(W_z^* \otimes I) \), we have

\[
\hat{\rho} = \sum_z W_z \otimes A_z.
\]
Note that
\[\|\hat{\rho}\|^2_2 = \text{Tr} \left(\sum_{z'} W^*_{z'} \otimes A^*_{z'} \right) \left(\sum_z W_z \otimes A_z \right) = d \sum_z \text{Tr} A^*_z A_z; \]
\[\text{Tr}_\mathcal{H} \hat{\rho} = \sum_z \text{Tr} W_z \otimes A_z = d A_0; \]
\[\|\text{Tr}_\mathcal{H} \hat{\rho}\|^2_2 = d^2 \text{Tr} A^*_0 A_0. \] (2.4)

Next, we have
\[\| (\Phi \otimes \text{Id}_\mathcal{K})(\hat{\rho}) \|^2_2 = \text{Tr} \left(\sum_{z'} \phi(z')^* W^*_{z'} \otimes A^*_{z'} \right) \left(\sum_z \phi(z) W_z \otimes A_z \right) \]
\[= d \sum_z |\phi(z)|^2 \text{Tr} A^*_z A_z \]
\[= d \left(\text{Tr} A^*_0 A_0 + \sum_{z \neq 0} |\phi(z)|^2 \text{Tr} A^*_z A_z \right) \]
\[\leq d \left(\text{Tr} A^*_0 A_0 + \max_{z \neq 0} |\phi(z)|^2 \sum_{z \neq 0} \text{Tr} A^*_z A_z \right) \] (2.5)
\[= d \left(1 - \max_{z \neq 0} |\phi(z)|^2 \right) \text{Tr} A^*_0 A_0 + \max_{z \neq 0} |\phi(z)|^2 \sum_{z} \text{Tr} A^*_z A_z \]
\[= \frac{1}{d} \left(1 - \max_{z \neq 0} |\phi(z)|^2 \right) \|\text{Tr}_\mathcal{H} \hat{\rho}\|^2_2 + \max_{z \neq 0} |\phi(z)|^2 \|\hat{\rho}\|^2_2. \]

QED

In the case of one dimensional \(\mathcal{K} \) the bound (2.3) implies the following inequality for channel \(\Phi \) obtained in proposition 9 of [7]:
\[\text{Tr} \Phi (\rho)^2 \leq \frac{1}{d} \left(1 + (d - 1) \max_{z \neq 0} |\phi(z)|^2 \right). \]

Moreover, this proposition states that, in the case \(d = 3 \), the equality is attained here for a special pure state \(\rho \). This observation can be substantially generalized (see theorem 3 below).

Theorem 2. Let \(\Phi \in \mathcal{W}_1(\mathcal{H}) \) be such that
\[|\phi(z)| \leq 1; \quad z \in Z, \] (2.6)
and
\[\nu_2(\Phi) = \frac{1}{\sqrt{d}} \left(1 + (d - 1) \max_{z \neq 0} |\phi(z)|^2 \right)^{\frac{1}{2}}, \] (2.7)
then the multiplicativity of the maximal output 2-norm holds for $\Phi \otimes \Omega$, where Ω is an arbitrary CP map.

Proof. We have

$$\|\text{Tr}_H(\text{Id}_H \otimes \Omega)(\hat{\rho})\|_2 = \|\Omega(\text{Tr}_H\hat{\rho})\|_2 \leq \nu_2(\Omega)$$

$$\|(\text{Id}_H \otimes \Omega)(\hat{\rho})\|_2 \leq \nu_2(\text{Id}_H \otimes \Omega) = \nu_2(\Omega),$$

where the last equality follows from \[1\]. Replacing $\hat{\rho}$ by $(\text{Id}_H \otimes \Omega)(\hat{\rho})$ in Theorem 1 and using (2.6) gives

$$\|\Phi \otimes \Omega)(\hat{\rho})\|_2 \leq \left(1 + (d-1) \max_{z \neq 0} |\phi(z)|^2 \right) (\nu_2(\Omega))^2.$$ \hspace{1cm} (2.8)

Therefore by (2.7)

$$\nu_2(\Phi \otimes \Omega) \leq \nu_2(\Phi) \nu_2(\Omega).$$

QED

Define the set of optimizers of $|\phi(z)|$ for $z \neq 0$

$$E_{\text{max}} := \{z : z \neq 0, z = \arg \max_{z \neq 0} |\phi(z)|\}.$$

For a unit vector $|\psi\rangle \in \mathcal{H}$ consider the subset of Z defined as

$$\mathcal{G}_\psi := \{z : |\psi\rangle \text{ is an eigenvector of } W_z\}.$$ \hspace{1cm} (2.10)

By (1.3) \mathcal{G}_ψ is a subgroup of Z and $|\mathcal{G}_\psi| \leq d$ as we shall see from the proof of theorem 3.

Theorem 3. Let d be arbitrary. A necessary condition for the equality (2.7) is $|E_{\text{max}}| \geq d - 1$. A sufficient condition is that there is a subgroup $\mathcal{G}_\psi \subseteq Z$ such that $|\mathcal{G}_\psi| = d$ and

$$\mathcal{G}_\psi \setminus \{0\} \subseteq E_{\text{max}}.$$

Proof. If (2.7) holds then there exists a pure state ρ such that equality holds in (2.5) with $A_z = f_\rho(z)$. This implies $\mathcal{N} := \{z : z \neq 0, f_\rho(z) \neq 0\} \subseteq E_{\text{max}}$. Hence the necessity follows from (1.8) and (1.9).

Let $|\psi\rangle$ be a common eigenvector for the unitaries $W_z; z \in \mathcal{G}_\psi$, with eigenvalues c_z of modulus 1, and let us show first that $|\mathcal{G}_\psi| \leq d$. If $|\mathcal{G}_\psi| \geq d$, then the operator

$$X = \frac{1}{d} \left(I + \sum_{z \in \mathcal{L}} c_z W_z\right),$$ \hspace{1cm} (2.11)
where \mathcal{L} is any subset of $\mathcal{G}_\psi \setminus \{0\}$, such that $|\mathcal{L}| = d - 1$, satisfies $X|\psi\rangle = |\psi\rangle$, and $\text{Tr}X^*X = 1$ by (1.7). This can be only the case if $X = \rho_0 = |\psi\rangle\langle\psi|$. Then it follows: 1) $|\mathcal{G}_\psi| = d$, for otherwise the operator ρ_0 would have several different decompositions (2.11) corresponding to different subsets \mathcal{L}; 2) under the assumptions of the theorem

$$
\text{Tr}\Phi(\rho_0)^*\Phi(\rho_0) = d \left(\frac{1}{d^2} + \sum_{z \in \mathcal{G}_\psi \setminus \{0\}} |\phi(z)|^2 \frac{|c_z|^2}{d^2} \right) = \frac{1}{d} \left(1 + (d - 1) \max_{z \neq 0} |\phi(z)|^2 \right).
$$

QED (2.12)

A subset $\mathcal{F} \subseteq Z = \mathbb{Z}_d \oplus \mathbb{Z}_d$ will be called degenerate if the symplectic form vanishes on \mathcal{F}:

$$
\langle z', Jz \rangle = 0, \quad z, z' \in \mathcal{F}.
$$

A subgroup of Z generated by \mathcal{F} is again a degenerate subset. Let \mathcal{F} be degenerate, then the operators $W_z; z \in \mathcal{F}$, all commute by (1.4) and hence have common eigenvector(s). We conclude that $\mathcal{F} \subseteq \mathcal{G}_\psi$ for some ψ, hence $|\mathcal{F}| \leq d$, and if the equality holds, then \mathcal{F} is a (maximal degenerate) subgroup of Z.

Examples

1) Consider the cyclic subgroup generated by an element $z \in Z$

$$
\mathcal{G}(z) := \{kz : k = 0, 1, \ldots, d - 1\}.
$$

This subgroup is degenerate and $|\mathcal{G}(z)| = d$ in the case where $z = (\alpha, \beta)$ and α, β, d have no common nontrivial divisor, in particular if d is prime.

2) Assume $d = p_1p_2$, where p_1, p_2 are primes, then the subgroup generated by two elements $(p_1, 0)$ and $(0, p_2)$ is a maximal degenerate noncyclic subgroup.

Corollary. If there is a maximal degenerate subgroup $\mathcal{G} \subseteq \mathcal{E}_{\text{max}} \cup \{0\}$, then (2.7) holds.

Examples

1) As noticed in [7], the condition of Theorem 3 always holds if $d = 3$ and Φ is a channel. By using the fact that $2z_0 = -z_0$ in case $d = 3$, our Theorem 2 implies the multiplicativity of 2-norm in case $|\phi(z)| = |\phi(-z)|$, e.g. the map Φ is hermitian.

2) Any unital qubit ($d = 2$) channel is unitarily equivalent to the form

$$
\Phi(\rho) = \sum_{\gamma} p_\gamma \sigma_\gamma \rho \sigma_\gamma,
$$

where $\gamma = 0, x, y, z$ and σ_γ are the Pauli matrices (see e.g. [9]). But in the case $d = 2$ the discrete Weyl operators are

$$
W_{00} = I = \sigma_0, \quad W_{01} = V = \sigma_z, \quad W_{10} = U = \sigma_x, \quad W_{11} = UV = -i\sigma_y.
$$
Thus any unital qubit channel is covariant with respect to the projective representation of the group $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ generated by these discrete Weyl operators.

For any $z \neq 0$ the cyclic group $\mathcal{G}(z)$ consists of two elements $\{0, z\}$. Hence the assumption of the corollary is always satisfied for the unital qubit channels. More generally, it holds for arbitrary qubit map $\Phi \in \mathfrak{W}_1(\mathcal{H})$.

3) The d-depolarizing channel

$$
\Phi(\rho) = \lambda \rho + (1 - \lambda) \text{Tr}\rho \frac{1}{d} I
$$

is unitarily covariant, hence Weyl-covariant. For this channel $\phi(z) = \lambda$ for $z \neq 0$, hence $\mathcal{E}_{\text{max}} = Z \setminus \{0\}$ and the assumption of the corollary is trivially satisfied. Moreover, the conclusion holds for the map Φ with arbitrary $\lambda \in \mathbb{C}, |\lambda| \leq 1$.

4) Let \mathcal{G} be a subgroup of order d and define a function on Z:

$$
\phi(z) = \begin{cases}
1, & z = 0 \\
 a + b, & z \in \mathcal{G} \setminus \{0\} \\
b, & z \notin \mathcal{G}
\end{cases}
$$

where a, b are complex numbers to be restricted later. By the Fourier transform,

$$
p_\gamma = \frac{1}{d^2} \sum_z \phi(z) \exp(i\langle \gamma, z \rangle)
$$

for a subgroup $\Gamma \subseteq \mathbb{Z}$. To see this, for each $\gamma \notin \Gamma^\perp$ choose $\bar{z} \in Z$ such that $\langle \gamma, \bar{z} \rangle \neq 0$. Factor Γ by $\mathcal{G}(\bar{z})$ of the order, say, N. Then the sum over each coset is 0:

$$
\sum_{k=0}^{N-1} \exp(i\langle \gamma, z + k\bar{z} \rangle) = \exp(i\langle \gamma, z \rangle) \sum_{k=0}^{N-1} \exp(i\langle \gamma, \bar{z} \rangle k) = 0.
$$

A direct calculation shows that the Weyl-covariant map Φ defined by the function (2.13) can be written as

$$
\Phi(\rho) = a\Psi(\rho) + b\rho + (1 - a - b)\text{Tr}\rho \frac{I}{d}.
$$
where

\[\Psi(\rho) = \frac{1}{d} \sum_{z \in G} W_{Jz} \rho W_{Jz}^*. \] (2.18)

If the group \(G \) is maximal degenerate, then \(G^\perp = JG \). To see this, take \(J(x', y') = (y', -x') \in G^\perp \). This implies \(\langle y', x \rangle + \langle -x', y \rangle = 0 \) for all \((x, y) \in G \). Since \(G \) is maximal degenerate we have \(G^\perp \subseteq JG \). The inverse inclusion is obvious. Thus (2.18) takes the form

\[\Psi(\rho) = \frac{1}{d} \sum_{z \in G} W_z \rho W_z^*. \] (2.19)

Assuming \(|b| \leq 1, |a + b| \leq 1 \) gives the condition (2.6). Moreover, if \(a, b \) satisfy the condition \(|a + b| \geq |b| \), the map (2.17) has the property in the corollary, giving another case for which the multiplicativity of 2-norm holds.

If \(G \) is maximal cyclic then \(\Psi \) is a “completely dephasing channel”:

\[\Psi(\rho) = \sum_{j=1}^{d} |h_j\rangle \langle h_j| \rho |h_j\rangle \langle h_j|, \] (2.20)

where \(\{h_j\} \) is the orthonormal basis of the commuting operators \(\{W_z; z \in G\} \) as we shall show in a moment. The sum is an expectation onto Abelian subalgebra of operators diagonal in basis \(\{|h_k\}\). In this case the condition \(|a + b| \geq |b| \) becomes redundant. In fact defining the Weyl operators relative to the new basis \(\{|h_k\}\), we have the relation (2.19), where \(G = \{k(0, 1) : k = 0, \ldots, d - 1\} \). Then \(G^\perp = \{l(1, 0) : l = 0, \ldots, d - 1\} \), and

\[|a + b| \geq |b| \Rightarrow G \setminus \{0\} \subseteq \mathcal{E}_{\text{max}} \]

\[|a + b| \leq |b| \Rightarrow G^\perp \setminus \{0\} \subseteq \mathcal{E}_{\text{max}} \]

so that the condition of the corollary is always fulfilled.

Let us show that (2.19) is the same as the completely dephasing channel (2.20). Let \(G = \{kz_0 : k = 0, 1, \ldots, d - 1\} \), then we have

\[\Psi(\rho) = \frac{1}{d} \sum_{k=0}^{d-1} W_{kz_0} \rho W_{kz_0}^* = \frac{1}{d} \sum_{k=0}^{d-1} (W_{z_0})^k \rho (W_{z_0}^*)^k. \] (2.21)

Let

\[W_{z_0} |h_j\rangle = c_j |h_j\rangle; \quad c_j = \exp \left(\frac{2\pi i}{d} \alpha_j \right), \] (2.22)

where all \(\alpha_j \) must be different mod \(d \), for otherwise two different pure states emerging from the corresponding eigenvectors would have the same representations (2.11). Hence we can assume that \(\alpha_j = j + \alpha_0; j = 0, 1, \ldots, d - 1 \). Therefore
we have
\[
\Psi(|h_m\rangle\langle h_n|) = \frac{1}{d} \sum_{k=0}^{d-1} (W_{z_0})^k |h_m\rangle\langle h_n|(W_{z_0}^*)^k
\]
\[
= \frac{1}{d} \sum_{k=0}^{d-1} \exp \left(\frac{2\pi i}{d} (m - n)k \right) |h_m\rangle\langle h_n|
\]
\[
= \begin{cases} |h_m\rangle\langle h_m| & m = n \\ 0 & m \neq n \end{cases}.
\]
(2.23)

Finally consider the case where (2.17) is channel. If the point \((a,b) \in \mathbb{R}^2\) is in the triangle, defined by the corners \((0,1), (-1/(d-1),0), (d/(d-1),-1/(d-1))\) (see Figure), the function \(p_\gamma\) is nonnegative for all \(\gamma\) and defines the Weyl-covariant channel (2.2). The condition \(|a+b| \geq |b|\) then amounts to \(a(a+2b) \geq 0\) (this corresponds to the shaded area on the Figure). In the case of the channel (2.17) with \(\Psi\) given by (2.20) it becomes redundant. The multiplicativity of 2-norm in this case follows also from a general result in [10]. To investigate this case further in terms of the additivity of the minimal output entropy and the multiplicativity for \(p \in [1, +\infty]\), see [2].

3 Complementary channels

The relation between a channel and its complementary [6] (conjugate [7]) was investigated in these papers to show that the multiplicativity of the original channel implies that of the complementary channel. Suppose the original channel is given by the Kraus representation

\[
\Phi(\rho) = \sum_{\alpha=1}^{d_C} W_\alpha \rho W_\alpha^*, \quad W_\alpha : \mathcal{H}_A \to \mathcal{H}_B
\]

and the complementary channel by

\[
\tilde{\Phi}(\rho) = \sum_{t=1}^{d_B} \tilde{W}_t \rho \tilde{W}_t^*, \quad \tilde{W}_t : \mathcal{H}_A \to \mathcal{H}_C.
\]

Here \(d_B = \dim \mathcal{H}_B\) and \(d_C = \dim \mathcal{H}_C\). Then [6]

\[
\langle \tilde{e}_\alpha | \tilde{W}_t \rangle = \langle e_t | W_\alpha \rangle,
\]

where \(\{e_t\}_t\) is an orthonormal basis in \(\mathcal{H}_B\) and \(\{\tilde{e}_\alpha\}_\alpha\) in \(\mathcal{H}_C\).
In this section we compute the complementary of a Weyl-covariant channel. This was also derived in [7] but we give somewhat more explicit form by using a different method. In this section we use, for convenience, different notations for the Weyl-covariant channel

\[\Phi(\rho) = \sum_{x,y=1}^{d} \lambda_{x,y}^2 U^x V^y \rho (U^x V^y)^* . \]

Let \(e_t \) be a row vector with \(t \)-th entry 1 and others 0. Then

\[U^x = \begin{pmatrix} e_{1-x} \\ \vdots \\ e_{t-x} \\ \vdots \\ e_{d-x} \end{pmatrix} ; \quad V^y = \text{diag} \left[\exp \left(\frac{2\pi i}{d} y \right), \ldots, \exp \left(\frac{2\pi i}{d} ty \right), \ldots, 1 \right] . \]

Hence

\[U^x V^y = \begin{pmatrix} \exp \left(\frac{2\pi i}{d} (1-x) y \right) e_{1-x} \\ \vdots \\ \exp \left(\frac{2\pi i}{d} (t-x) y \right) e_{t-x} \\ \vdots \\ \exp \left(\frac{2\pi i}{d} (d-x) y \right) e_{d-x} \end{pmatrix} . \]

Therefore reordering the Kraus operators we have

\[\tilde{W}_t = \begin{pmatrix} \tilde{W}_t^{(1)} \\ \vdots \\ \tilde{W}_t^{(s)} \\ \vdots \\ \tilde{W}_t^{(d)} \end{pmatrix} . \]
Here

\[\tilde{W}_t^{(s)} = \begin{pmatrix}
 \lambda_{d,1-s} \exp \left(\frac{2\pi i}{d} t (1-s) \right) e_t \\
 \vdots \\
 \lambda_{1,u,1-s} \exp \left(\frac{2\pi i}{d} (t-1+u)(1-s) \right) e_{t-1+u} \\
 \vdots \\
 \lambda_{1,1-s} \exp \left(\frac{2\pi i}{d} (t-1)(1-s) \right) e_{t-1}
\end{pmatrix} \]

\[= \begin{pmatrix}
 \lambda_{d,1-s} e_t \\
 \vdots \\
 \lambda_{1,1-s} e_{t-1}
\end{pmatrix} \begin{pmatrix}
 \exp \left(\frac{2\pi i}{d} 1 \cdot (1-s) \right) & \cdots & 0 \\
 \vdots & \ddots & \vdots \\
 0 & \cdots & \exp \left(\frac{2\pi i}{d} d (1-s) \right)
\end{pmatrix}
\]

\[= \begin{pmatrix}
 \lambda_{d,1-s} & \cdots & 0 \\
 \vdots & \ddots & \vdots \\
 0 & \cdots & \lambda_{1,1-s}
\end{pmatrix} U^{1-t} V^{1-s}
\]

\[= D_s U^{1-t} V^{1-s}, \]

where

\[D_s = \begin{pmatrix}
 \lambda_{d,1-s} & \cdots & 0 \\
 \vdots & \ddots & \vdots \\
 0 & \cdots & \lambda_{1,1-s}
\end{pmatrix}, \]

which is a diagonal matrix defined for each \(s \). Then we have

\[\tilde{W}_t = \begin{pmatrix}
 D_1 & \cdots & 0 \\
 \vdots & \ddots & \vdots \\
 0 & \cdots & D_d
\end{pmatrix} \begin{pmatrix}
 U^{1-t} V^d \\
 \vdots \\
 U^{1-t} V
\end{pmatrix}. \]

In general, a channel of the form

\[\Phi(\rho) = \sum_{k=1}^{N} A_k \rho A_k^* \]

can be rewritten as

\[\Phi(\rho) = (A_1, \ldots, A_N) (I \otimes \rho) \begin{pmatrix}
 A_1^* \\
 \vdots \\
 A_N^*
\end{pmatrix}. \]

Therefore the complementary channel of the Weyl covariant channel can be written as

\[\tilde{\Phi}(\rho) = \tilde{W}(I \otimes \rho) \tilde{W}^*, \]

12
where
\[
\tilde{W} = \begin{pmatrix}
D_1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & D_d
\end{pmatrix}
\begin{pmatrix}
U^d V^d & \cdots & U^1 V^d \\
\vdots & \ddots & \vdots \\
U^d V^1 & \cdots & U^1 V^1
\end{pmatrix}.
\]

Acknowledgments. This work was accomplished when A. H. was the Leverhulme Visiting Professor at DAMTP, CMS, University of Cambridge. The authors are grateful to Yu. M. Suhov and N. Datta for useful discussions.

References

[1] G. G. Amosov, A. S. Holevo and R. F. Werner, On some additivity problems in quantum information theory; math-ph/0003002.

[2] M. Fukuda, “Extending additivity from symmetric to asymmetric channels” J. Phys. A, 38, L753-L758 (2005); quant-ph/0505022.

[3] V. Giovannetti and S. Lloyd, M. B. Ruskai, Conditions for the multiplicativity of maximal l_p-norms of channels for fixed integer p, J. Math. Phys. 46, 042105 (2005); quant-ph/0408103.

[4] A. S. Holevo, Probabilistic and statistical aspects of quantum theory, North Holland, 1982, Ch. V.

[5] A. S. Holevo, Additivity conjecture and covariant channels, Proc. Conference “Foundations of Quantum Information”, Camerino, 16-19.04.2004. Int. J. Quant. Inform., vol. 3, N1, 2005, 41-48

[6] A. S. Holevo, On complementary channels and the additivity problem, quant-ph/0509101.

[7] C. King, K. Matsumoto, M. Natanson and M. B. Ruskai, Properties of conjugate channels with applications to additivity and multiplicativity, quant-ph/0509126.

[8] C. King, M. Nathanson and M. B. Ruskai, Multiplicativity properties of entry-wise positive maps, quant-ph/0409181.

[9] C. King and M. B. Ruskai, Minimal entropy of states emerging from noisy quantum channels, IEEE Trans. Info. Theory, 47, 192-209 (2001); quant-ph/9911079.

[10] C. King and M. B. Ruskai, Comments on multiplicativity of maximal p-norms when $p = 2$, in: “Quantum Information, Statistics, Probability”, ed. by O. Hirota, Rinton Press, Princeton, New Jersey, 2004; quant-ph/0401026.
A : (0, 1); \quad B : \left(\frac{d}{d-1}, -\frac{1}{d-1}\right); \quad E : \left(-\frac{1}{d-1}, 0\right);

AB : a + b = 1; \quad AE : a(d - 1) - b = -1;

BE : a(d - 1) + b(d^2 - 1) = -1; \quad CF : a + 2b = 0