Genetic Variations in the Serotonergic System Contribute to Body-Mass Index in Chinese Adolescents

Chunhui Chen1,9, Wen Chen1,9, Chuansheng Chen2, Robert Moyzis3, Qinghua He4, Xuemei Lei1, Jin Li1, Yunxin Wang1, Bin Liu1, Daiming Xiu1, Bi Zhu1, Qi Dong4

1 State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China, 2Department of Psychology and Social Behavior, University of California Irvine, Irvine, California, United States of America, 3Department of Biological Chemistry and Institute of Genomics and Bioinformatics, University of California Irvine, Irvine, California, United States of America, 4Department of Psychology, University of Southern California, Los Angeles, California, United States of America

Abstract

Objective: Obesity has become a worldwide health problem in the past decades. Human and animal studies have implicated serotonin in appetite regulation, and behavior genetic studies have shown that body mass index (BMI) has a strong genetic component. However, the roles of genes related to the serotonergic (5-hydroxytryptamine, 5-HT) system in obesity/BMI are not well understood, especially in Chinese subjects.

Subjects and Design: With a sample of 478 healthy Chinese volunteers, this study investigated the relation between BMI and genetic variations of the serotonergic system as characterized by 136 representative polymorphisms. We used a system-level approach to identify SNPs associated with BMI, then estimated their overall contribution to BMI by multiple regression and verified it by permutation.

Results: We identified 12 SNPs that made statistically significant contributions to BMI. After controlling for gender and age, four of these SNPs accounted for 7.7% additional variance of BMI. Permutation analysis showed that the probability of obtaining these findings by chance was low (p = 0.015, permuted for 1000 times).

Conclusion: These results showed that genetic variations in the serotoninergic system made a moderate contribution to individual differences in BMI among a healthy Chinese sample, suggesting that a similar approach can be used to study obesity.

Introduction

A decade ago, the World Health Organization warned about a growing obesity epidemic and listed more than 30 diseases that are causally related to obesity [1]. Globally, approximately 1.6 billion adults are either overweight (BMI [weight in kilogram divided by the square of height in meter] ≥ 25) or obese (BMI ≥ 30) [2]. In fact, the rates of obesity have tripled in developing countries in the past 20 years [3]. Moreover, childhood obesity is also increasing rapidly worldwide [4].

Although many environmental factors (e.g., freely available high-calorie food, sedentary life style, low socio-economic status and high-danger neighborhood environment) predispose individuals to gaining weight [5,6,7,8], genetic factors also contribute to energy homeostasis or appetite, which can lead to obesity. Family, twin, and adoption studies indicate that 24%–90% of human BMI variation is due to genetic factors [9,10,11,12,13,14]. Recent molecular genetic studies have identified many genes that regulate appetite or energy balance (e.g., FTO, MC4R, SH2B1, and serotonin related genes) and have robust associations with obesity or BMI [15,16].

Because serotonin can regulate appetite by activating pro-opiomelanocortin (POMC) neurons, which play a key role in the regulation of feeding by sending anorectic signals to the periventricular nucleus (PVN) and other brain areas associated with energy homeostasis [17], serotonin as well as related genes are often tested for association with weight gain and obesity. Indeed, a strong negative correlation between blood 5-HT concentration and body mass was found both in mice [18] and in human [19]. Studies of SERT knockout mice have uncovered SERT as a candidate gene for obesity, with SERT mutant (SCL6A4+/−) mice becoming obese [20]. This polymorphism has also been associated in some studies with eating disorder [21,22,23] and obesity [24,25], although other studies showed no association between the 5-HTTLPR polymorphism and weight regulation [26,27,28]. In terms of the 5-HT receptor genes, the serotonin (5-HT) receptor HTR2C was demonstrated to play a role.
in modulating appetite behavior using knock-out mice [29,30],
normal population [31] and patients [32,33,34,35], although some
studies [36,37] failed to replicate that result. HTR1B [38,39],
HTR2A [40,41], HTR3B [42] were also reported to be associated
with body mass or obesity. MAO4 was also found to influence body
mass [43] or obesity [44].

Although these serotonin-related genes have been identified as
being relevant to body mass and obesity, the results have not
always been consistent and the size of their effects has been
typically small, far less than previously estimated 24%–90%
heritability. There may be many reasons for these inconsistent
results and small effect sizes. One most likely reason is
polygenicity. Complex quantitative traits are influenced by many
genes, each with a small effect. As early as 1918, Fisher proposed
this polygenic model that combined many genes of small effects
to yield the continuous variation for most quantitative traits [45].
Recently, some studies have successfully applied the polygenic
model by combining effects of the whole genome [46,47,48] or
effects of genes within a pathway [49,50,51]. Since several
serotonin-related genes exert their effect on BMI, it is likely that
their effects are cumulative. The current study used a system-level
approach to examine the role of the serotoninergic system in
BMI/obesity.

Another possible reason for inconsistent results may be the
heterogeneity in samples across studies. Subjects in different
studies differ in their health status, age, sex, and ethnicity, which
might have confounded the relations between genes and BMI. For
example, associations between 5HT2A and BMI are found in
obese [40] and anorexia nervosa patients [41] but not in healthy
controls. Similarly, 5HTTLPR was associated with BMI in non-
elderly (<65 yr) stroke patients but not in elderly patients (> or = 65 yr). An association was observed between MAO4 and
obesity among white and Hispanic American subjects, but not
among African-American subjects [44]. Thus it is important
to control for these potential confounding factors.

The current study adopted the system-level approach to
examine the role of the serotoninergic system in body mass in
a relatively homogenous sample (in terms of age, health status, and
ethnicity). We enrolled a sample of young healthy Han Chinese
subjects, genotyped polymorphisms within the serotonin system,
and calculated their BMI. Specifically, we selected 136 poly-
morphic loci (including 134 SNPs and 2 VNTR polymorphisms)
to cover a substantial portion (by LD) of the common variations
within known genes of the 5-HT system to estimate the additive
and multiplicative contributions of these genes on BMI.

Materials and Methods

Participants

Four hundred and eighty healthy Chinese college students
(mean age = 20, SD = 1) were recruited from Beijing Normal
University, Beijing, China. They had normal or corrected-to-
normal vision, and had no history of neurological or psychiatric
problems according to self-report. None of them were identified as
having alcohol or nicotine dependence according to the Alcohol
Use Disorders Identification Test [52] and the Fagerström Test for
Nicotine Dependence [53]. Two participants were excluded
because of poor genotyping results. A written consent form was
obtained from each subject after a full explanation of the study
procedure. This study was approved by the IRB of the State Key
Laboratory of Cognitive Neuroscience and Learning at Beijing
Normal University, China.

BMI Measurements

Height and weight of subjects were self-reported. BMI was
calculated as weight (kg) divided by the square of height (m). Self-
reported data on weight and height have been used by previous
large-scale studies on body mass and proved to be highly reliable
in calculating BMI [22,38,46,54,55,56,57]. Furthermore, all
students including all of our participants were given an annual
physical examination at the beginning of the academic year in
September and they were informed of their height and weight.
Self-report data on height and weight were collected in December.

Genetic Analysis

Gene selection. We selected 25 genes and 136 associated
polymorphisms (134 SNPs and 2 VNTR polymorphisms) distrib-
uted across the synthesis, degradation, transporter, and receptor
subsystems of the 5-HT system. 5-HT synthesis involves convert-
ing the tryptophan (via TPH) to 5-hydroxytryptophan (5-HTP),
followed by subsequent hydroxylation (by TPH) to 5-HT. We
included two genes related to 5-HT synthesis: tryptophan
hydroxylase (TPH1 and TPH2, with three SNPs each). For the
degradation subsystem, released 5-HT is directly broken down at
the synapse into inactive metabolites by two enzymes, COMT and
MAO (including MAOA and MAOB). We included catechol-O-
methyl transferase gene (COMT) with 7 SNPs) and monoamine
oxidase genes (MAOA, with 5 SNPs and 1 VNTR, and
MAOB with 3 SNPs). The 5-HT transporter includes (1) SLC6A4, an
integral membrane-spanning protein that pumps the neurotransmitter
serotonin from synaptic spaces into presynaptic neurons and (2)
VMAT, a transport protein integrated into the membrane of
intracellular vesicles of presynaptic neurons, which acts to
transport monoamines into the synaptic vesicles. We included
SLC6A4 (7 SNPs plus 5HTTLPR), FMAT1 (SLC18A1, 9 SNPs),
and FMAT2 (SLC18A2, 5 SNPs). For the receptor subsystem, we
included all 17 genes (with the respective number of SNPs in
parentheses): HTR1A (2), HTR1B (2), HTR1D (13), HTR1F (5),
HTR2A (21), HTR2B (6), HTR2C (3), HTR3A (1), HTR3B (2),
HTR3C (3), HTR3D (4), HTR3E (2), HTR4 (10), HTR5A (4),
HTR5B (2), HTR6 (5), and HTR7 (7). Together, the above 25
genes represent all major genes involved in these four 5-HT
subsystems in humans [58]. Details about these genes and the
selected loci can be found in Table S1.

Genotyping techniques. The SNPs were genotyped using the
standard Illumina Golden Gate Genotyping protocol (see
Illumina Golden-Gate Assay Protocol for details, http://www.
southgene.com.cn; Shanghai South Gene Technology Co., Ltd,
Shanghai, China). In addition, three genetic markers (5HTTLPR,
MAO4 VNTR, and COMT rs4680) were ascertained by standard
PCR procedures [59,60,61].

Gene data preprocessing. Two subjects with more than
10% null genotyping were excluded. In addition to automatic
calling of genotypes, Illumina genotyping platform supplied
a quantitative quality measure known as the GenCall score. It
measures how close a genotype is to the center of the cluster of
other samples assigned to the same genotypes, compared with the
centers of the clusters of the other genotypes. This measure ranges
from 0 to 1, with a higher score indicating a more reliable result.
The conventional cutoff point is.25 (62). Of the 63574 genotypes
(133 SNPs by 478 subjects) in the current study, 120 genotypes
(0.2%) were excluded because their GenCall scores were lower
than.25.

Additional data cleaning included the treatment of low-
frequency alleles. For SNPs with either heterozygote or minor
homozygote found in fewer than 10 (about 2%) participants, these
two genotype groups were combined. If the combined group still
had fewer than 10 participants, the SNPs were excluded from further analysis. SNPs that showed no polymorphisms were also deleted. In order to examine sample representativeness, Hardy-Weinberg equilibrium (HWE) index was calculated using the Chi square test and setting \(\alpha \) to 1. Since males have only one X chromosome, only females were included in HWE calculation for SNPs located on X chromosome. Five of the SNPs showed significant HW disequilibrium (\(p<0.01 \)). The inclusion of both SNPs and additional SNPs in regions detected in selection screens [63,64] resulted in high LD among a number of SNPs. Thirty-one SNPs included in initial analysis were excluded from multiple regression analysis because of their high LD with other adjacent SNPs (\(R^2 > 0.5 \), calculated with Plink [65]), yielding a final list of 105 polymorphisms for the main data analyses. It is worth mentioning that the “redundant” SNPs showed the same or almost the same results as the linked SNPs, confirming the association. Table S1 shows the details about all 136 polymorphic loci (134 SNPs and 2 VNTRs) included in our study: location (\(rs \) number, chromosome, position), gene, serotonin subsystem, allele polymorphism and frequency, Hardy Weinberg equilibrium, linkage disequilibrium and deleted SNPs. Finally, genetic relatedness of subjects was checked following Anderson et al. [66] protocol using Plink. We used all 240 unrelated autosome SNPs \((R^2 < 0.8) \) available in the larger project of these subjects and set the threshold of 0.95 (personal communication with Drs. Anderson and Zondervan). We found no pair of subjects showing high relatedness (all PI_HAT smaller than or equal to 0.5).

Data Analysis

The goal of the current study was to understand the relation between individual differences in BMI and genetic variations in the 5-HT system in healthy subjects. Moving beyond the single-gene or a small number of haplotypes approaches used in typical molecular behavior genetics research, this study used the system-level approach [50] to examine the overall contributions of the serotonergic system (characterized by the major genes and their associated loci) on BMI.

Briefly, the analysis includes three steps: First, ANOVA was used to screen polymorphism loci that showed nominal significance \((p<0.05) \) on BMI; these loci were then entered into a regression model to estimate their overall contribution to BMI after controlling for gender and age; and lastly the regression model was verified by permutation. In this study, we built two kinds of regression models. In model 1 (main effects), we included the loci with significant main effects based on the ANOVA results and used the forward stepwise method to build the model. Gender and age were entered as control variables. To run multiple regression analyses, all SNPs were coded in a linear way, i.e. the major homozygote, heterozygote, and minor homozygote were coded as 1, 2, and 3, respectively. SNPs on X chromosome were coded as 1 and 3 for major and minor allele, and 2 for female heterozygotes. In addition, the MAOA VNTR was coded as 1 for the 3 repeat and 3 for the 4 repeat in males and 1 for 3 repeat homozygotes and 3 for others in females. In model 2, all two-way interactions of these loci in model 1 were added using forward stepwise method. Permutation was done 1000 times by shuffling BMI (along with gender and age) across subjects, and the probability of getting a larger \(R^2 \) in the shuffled data than in the real data was defined as \(\beta \) value of the model.

Results

The mean BMI for our sample was 20.5 kg/m\(^2\) (SD = 2.4), ranging from 16.3 to 37.5. According to WHO BMI classification, there were 93 (71 female) underweight participants (BMI < 18.5), 359 (192 female) normal weight participants (18.5 ≤ BMI < 25), and 26 (8 female) overweight participants (BMI ≥ 25). The BMI distribution in the present study was comparable to other studies with Chinese college students [67,68]. Males \((21.14±2.44)\) had significantly higher BMI than females \((20.00±2.67); \(t(476) = 5.30, p = 1.0E^{-7}\)\), which was consistent with previous findings in healthy young Chinese [69].

Of the 105 SNPs, 12 showed significant main effects with uncorrected \(p<0.05 \). Specifically, individuals with the following genotypes showed lower BMI than those with alternative alleles: homozygous for the major allele of rs13166761 (HTR4), rs1018079 (SLC18A1 (VMAT1)), rs11214769 (HTR3B), rs977003, rs2224721 (HTR2A), rs2192371 (HTR2C), rs4911871 (HTR2C), or rs2270638 (VMAT1); or heterozygous/ minor allele homozygous for rs6651806 (MAOB), rs5905512 (MAOB); or homozygous for the major allele of rs2904569 (HTR7) or rs6644065 (HTR2C) (see Table 1, and Table S2 for effects of all loci). These SNPs were used in a regression analysis to build model 1 (main effects). There was no significant gender-by-SNP interaction except rs5905512 (see Table 1), and this SNP did not contribute to regression model 1, so we included gender, but not gender-by-gene interactions, as a covariate in the following analysis.

Table 2 shows the results of the multiple regression analysis. On the first step, two control variables (gender and age) were entered. Together they accounted for 5.6% variance of BMI. On the second step, forward stepwise regression resulted in four of the 12 SNPs to be included in the regression equation, showing that they made unique contributions to explaining variance in BMI. Together these SNPs accounted for 7.7% additional variance, yielding a total \(R^2 \) of 13, \(F(6,455) = 11.61, \ p = 4.08E^{-12} \).

Permutation results are shown in Figure 1. Based on 1000 permutations, the probability of attaining the \(R^2 \) or adjusted \(R^2 \) found in our model was 0.015 and 0.011, respectively.

We then added potential interactive effects to investigate whether additional variance in BMI can be accounted for by gene–gene interactions. In this analysis, we first entered the control variables (gender and age) and the four SNPs in model 1 and finally their two-way interactions using the stepwise procedure. For the four SNPs that entered model 1, there were 6 potential interactions. None of the interaction terms made significant and unique contributions to the model.

Discussion

Based on the system-level analysis of 5-HT neurotransmitter genes, we identified 12 SNPs of the 5-HT-related genes showing nominal effects on BMI. Four of these SNPs made significant unique contributions to BMI even after controlling for gender and age. This result has two significant implications. First, the current study revealed a significant role for genes in the 5-HT system on BMI. Together these SNPs accounted for 7.7% additional variance, yielding a total \(R^2 \) of 13, \(F(6,455) = 11.61, \ p = 4.08E^{-12} \).

Permutation results are shown in Figure 1. Based on 1000 permutations, the probability of attaining the \(R^2 \) or adjusted \(R^2 \) found in our model was 0.015 and 0.011, respectively.

We then added potential interactive effects to investigate whether additional variance in BMI can be accounted for by gene–gene interactions. In this analysis, we first entered the control variables (gender and age) and the four SNPs in model 1 and finally their two-way interactions using the stepwise procedure. For the four SNPs that entered model 1, there were 6 potential interactions. None of the interaction terms made significant and unique contributions to the model.
Serotonine Genes and BMI

Table 1. Means and standard deviations of BMI for each polymorphism, and main effects and post hoc comparisons of SNPs that showed significant main effects and were used in subsequent multiple regression analysis.

SNP	Subsystem	Gene	Maj Mean SD n	Het Mean SD n	Min Mean SD n	F	p	mh	mm	hm	F(p)
rs6651906	Degradation	MAOB	AA 20.63 2.45 381	AC 19.95 2.16 97	CC 6.32 0.01	b	0.40 (0.53)				
rs9503512	Degradation	MAOB	AA 20.76 2.62 284	AG 20.10 2.01 194	GG 9.02 <0.01 b	0.02 (0.89)					
rs1018079	Transport	SLC18A1	AA 20.29 2.26 303	AC 20.72 2.32 156	GC 22.10 4.35 18	5.92 <0.01 0.07	<0.01 0.02	0.34 (0.71)			
rs2270638	Transport	SLC18A1	AA 20.33 2.47 344	AC 20.92 2.20 133	GG 5.77 0.02 b	0.27 (0.60)					
rs970003	Receptor	HTR2A	AA 20.29 2.30 299	AC 20.92 2.62 151	CC 20.40 2.19 28	3.45 0.03	0.01 0.82	0.29 (0.14)			
rs2227421	Receptor	HTR2A	AA 20.12 2.12 216	AC 20.79 2.61 209	AG 20.87 2.51 53	4.85 0.01	<0.01 0.04	0.82 (0.13)			
rs2192371	Receptor	HTR2C	AA 20.61 2.42 242	AC 19.79 1.80 124	GC 21.03 2.78 112	8.62 <0.01 <0.01 0.12	<0.01 0.95 (0.33)				
rs6640065	Receptor	HTR2C	AA 20.45 2.26 373	AC 20.05 2.81 68	GC 21.74 2.77 37	6.30 <0.01 0.21	<0.01 <0.01 0.66 (0.01)				
rs4918871	Receptor	HTR2C	AA 20.39 2.23 350	AC 20.17 2.74 76	GC 21.68 2.76 51	7.44 <0.01 0.47	<0.01 <0.01 1.09 (0.30)				
rs11214769	Receptor	HTR3B	AA 20.31 2.22 335	AC 20.88 2.85 124	GC 21.21 2.20 19	3.46 0.03	0.02 0.11	0.58 1.65 (0.19)			
rs13166761	Receptor	HTR4	AA 20.38 2.23 244	AC 20.79 2.64 202	AG 19.48 1.81 32	4.74 0.01	0.07 0.05	<0.01 0.54 (0.59)			
rs7904569	Receptor	HTR7	AA 20.50 2.38 206	AC 20.69 2.53 215	GC 19.72 1.85 57	3.64 0.03	0.43 0.03	0.01 1.34 (0.26)			

Note: Empty cells mean no such genotypes were found in our sample. Maj: Major allele; Het: Heterozygote; Min: Minor allele.

-table-

Table 2. Regression models.

Regressor	Gene	Beta	T	P
Gender	-0.24	-5.39	0.00	
Age	0.02	0.47	0.64	
rs1018079	SLC18A1	0.16	3.63	0.00
rs11214769	HTR3B	0.14	3.08	0.00
rs2224721	HTR2A	0.12	2.76	0.01
rs491871	HTR2C	0.12	2.81	0.01

Note: ‘Gene’ is the corresponding gene for each SNP; ‘beta’ is the standardized regression coefficient, ‘T’ and ‘P’ are t-test results.

not always consistent, of association between the HTR2A and HTR2C genes and BMI. However, other genes we identified have not been tested previously in BMI-related studies to the best of our knowledge.

VMAT1 is expressed primarily in neuroendocrine cells such as the adrenal medulla and pineal gland [70,71,72]. As early as in 1999, Hayashi et al. [73] found that VMAT1 was responsible for the storage of 5-hydroxytryptamine in rat pinealocytes. Mammalian pinealocytes contain more 5-HT than any other cells. Upon stimulation by norepinephrine (NE), the internal 5-HT is released and then stimulates serotonin N-acetyltransferase activity via the 5-HT2 receptor, resulting in increased melatonin output [73]. Melatonin has been found to be involved in energy metabolism and body weight control in both animals [74,75] and humans [76]. Decreased activity of the melanocortin system produces a marked anorectic effect, while increased activity increases appetite and BMI [80]. Previous studies have found that VMAT plays an important role in the life cycle of ghrelin and obestatin in the A-like cells of the stomach [81,82], and ghrelin and obestatin have effects on food intake and energy balance. Therefore, we speculate that the VMAT1 gene may have an effect on BMI through melatonin output, ghrelin, obestatin or anxiety mood. This gene accounted for the largest proportion of the variance of BMI in our study (Table 2).

The 5-HT3 receptor has been suggested to be involved in anxiety, depression, pain, alcohol dependence, and eating disorders [42,03]. The HTR3B gene encodes the B-subunit of the type 3 serotonin receptor (5-HT3), a ligand-gated ion channel that is known to be involved in gut motility and peristalsis. Thus the HTR3B gene may regulate BMI because gut motility is associated with numerous gastrointestinally derived peptides with significant effects on food intake and energy balance [04]. Many studies have also reported that the 5-HT3B polymorphism is associated with the incidence of major depression [85], efficiency of the antidepressant treatment [86], and the incidence and severity of nausea after paroxetine treatment of psychiatric patients [07]. Although the specific biological mechanisms are not well understood, our results indicate that HTR3B gene polymorphism may influence body mass via gut motility or mood.

Our analysis also showed that HTR2C and HTR2A are possible factors influencing BMI in Chinese subjects, as have been reported by previous studies. Different from the most often studied C759T polymorphism associated with weight gain [31,32,33,34,35,88], three SNP we found related to BMI are all located in the intron region of HTR2C. First, there is strong evidence for an interaction between leptin and the 5-HTergic system [88]. Second, McCarthy et al. showed a strong effect of HTR2C polymorphism −759G>A on circulating leptin levels after adjusting for body fat. Other studies also suggested that serotonin influences food intake because of variations in the HTR2C receptor [89,90]. Similarly, previous researchers have also found an association between a polymor-
Several limitations of the current study need to be mentioned. First, height and weight of the subjects were self-reported. Although other large-scale studies also used self-reported data [22,38,46,54,55,56,57] and previous research showed high correlations ($r = .92$) between BMI calculated from self-reports and from actual measurements [56], it would still be better to measure weight and height during the experiment. Second, this study focused only on healthy Han Chinese college students, so these results may or may not be generalized to other populations (e.g., clinical samples, other ethnic groups). Third, the sample size of the current study is modest. As power calculations based on the effect sizes of established variants have suggested that increasing the sample size would likely lead to the discovery of additional significant SNP rs2224721 we found is intronic. Recent studies suggest that polymorphic variation in the $HTR2A$ gene may be associated with abdominal obesity and the metabolic syndrome, and that $HTR2A$ may be linked to the stability of the stress-related system (i.e., the serotonin-hypothalamic-pituitary-adrenal system) [95,96].

In conclusion, we used a system-level approach to identify several genetic SNPs associated with variations in BMI. This analysis provides further evidence for the association between genetic variants in the serotonin pathway and BMI. Because current lifestyle interventions are largely ineffective in addressing the challenges of growing obesity [98,99], new insights into the biology of obesity are critically needed to guide the development and application of future therapies and interventions.

Supporting Information

Table S1 Detailed information of the loci used in this study.

(DOC)

Table S2 Means and standard deviations of BMI for each polymorphism, and main effects and post hoc comparisons of each locus.

(DOC)

Acknowledgments

We thank all graduate research assistants who helped with data collection and the reviewers for their insightful comments.

Author Contributions

Conceived and designed the experiments: Chunsheng Chen RM Chunhui Chen QD. Performed the experiments: QH XL JL YW BL DX RZ. Analyzed the data: Chunhui Chen WC. Wrote the paper: WC Chunsheng Chen Chunhui Chen.

References

1. WHO (2000) Obesity: preventing and managing the global epidemic. Report of a WHO Consultation/WHO Technical Report Series 894.Geneva.

2. WHO (2009) Global Database on Body Mass Index (BMI). Geneva, Switzerland: World Health Organization.

3. Hassain P, Kawar B, El Nahas M (2007) Obesity and diabetes in the developing world—a growing challenge. N Engl J Med 356: 213–215.

4. Lobstein T, Baur L, Uauy R (2004) Obesity in children and young people: a crisis in public health. Obes Res 3 Suppl 1: 4–104.

5. Bloom SR, Kuhajda FP, Laber I, Pe-Sunyer X, Ronnett GV, et al. (2000) The obesity epidemic: pharmacological challenges. Mol Interact 8: 82–98.

6. Mekhmooski A, Chapelot D, Bellisle F (2012) Influence of environmental factors on meal intake in overweight and normal-weight male adolescents. A laboratory study. Appetite 59: 90–95.

7. Strue J, Sallis JF, Orleans CT (2009) Adolescent obesity: towards evidence-based policy and environmental solutions. J Adolesc Health 45: S1–5.

8. Saelens BE, Sallis JF, Frank LD, Couch SC, Zhou C, et al. (2012) Obesogenic neighborhood environments, child and parent obesity: the Neighborhood Impact on Kids study. Am J Prev Med 42: e57–64.

9. Fabuiz RR, Sholinsky P, Carmelli D (1994) Genetic influences on adult weight gain and maximum body mass index in male twins. Am J Epidemiol 139: 711–720.

10. Austin MA, Friedlander Y, Newman B, Edwards K, Mayer-Davis EJ, et al. (1997) Genetic influences on changes in body mass index: a longitudinal analysis of women twins. Obes Res 5: 326–331.

11. Maes HH, Neale MC, Eaves LJ (1997) Genetic and environmental factors in relative body weight and adiposity. Behav Genet 27: 325–351.

12. Fox CS, Heard-Costa NL, Vasan RS, Murabito JM, D’Agostino RB, Sr., et al. (2005) Genomewide linkage analysis of weight change in the Framingham Heart Study. J Clin Endocrinol Metab 90: 3197–3201.
Serotonin Genes and BMI

13. Hjelmberg JB, Fugazzoni C, Silventoinen K, McGue M, Korkela M, et al. (2008) Genetic influences on growth traits of BMI: a longitudinal study of adult twins. Obesity (Silver Spring) 16: 847–852.

14. Wardle J, Carroll S, Haworth CM, Plomin R (2000) Evidence for a strong genetic influence on childhood adiposity despite the force of the obesogenic environment. Am J Clin Nutr 87: 398–404.

15. Walley AJ, Asher JE, Froguel P (2009) The genetic contribution to non-syndromic human obesity. Nature Reviews Genetics 10: 431–442.

16. Schulske EK, Willer CJ, Berndt SI, Mondia KL, Thulieidson G, et al. (2010) Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 42: 937–948.

17. Sargent BJ, Moore NA (2009) New central targets for the treatment of obesity. J Clin Pharmacol 68: 852–860.

18. Alhoy R, Chen A, Anderson GM, Tatevosyan M, Janatiolin S (2009) Relationships among body mass, brain size, gut length, and blood tryptophan and serotonin in young wild-type mice. BMC Physiology 9: 4.

19. Irwin M, Addis R, Hodges JR (2012) Considering the role of semantic memory in episodic future thinking: evidence from semantic dementia. Brain 135: 2178–2191.

20. Murphy DL, Lech KP (2008) Targeting the murine serotonin transporter: insights into human obesity. Nat Rev Neurosci 9: 85–96.

21. Monteleone P, Santonastasso P, Mauri M, Belloli L, Ezzeveczii S, et al. (2006) Investigation of the serotonin transporter regulatory region polymorphism in bulimia nervosa: relationships to harm avoidance, nutritional parameters, and serotonin metabolites. Comus Psychosom Med 68: 99–103.

22. van Strien T, van der Zwaluw CS, Engels RC (2010) Emotional eating in adolescents: a gene (SLC6A4/5-HTT) - depressive feelings interaction analysis. J Psychiatri Res 44: 1035–1042.

23. Ciaranello R, De Ronchi D, Bellini M, Serrilli A (2011) The 5-HTTLPR polymorphism and eating disorders: a meta-analysis. Int J Eat Disord 44: 191–199.

24. Lan MY, Chang YY, Chen WH, Kao YF, Lin HS, et al. (2009) Serotonin transporter gene promoter polymorphism is associated with body mass index and obesity in nonelderly stroke patients. J Endocrinol Invest 32: 119–122.

25. Sookoian S, Gianotti TF, Gemma C, Burgueno A, Pirola CJ (2008) Contribution of the functional 5-HTTLPR variant of the SLC6A4 gene to obesity risk in males. Obesity (Silver Spring) 16: 488–491.

26. Mergen H, Karaaslan C, Mergen M, Deniz Ozsoy E, Ozata M (2007) LEPR, ADR3, IRS-1 and 5-HTT polymorphisms do not associate with obesity. Endocr J 54: 89–94.

27. Hume C, Bankier A, N, Ziegler A, von Pritzvetw S, Humann A, et al. (1997) Serotonin transporter gene-linked polymorphic region: allele distributions in relationship to body weight and in anorexia nervosa. Life Sci 61: PL 295–303.

28. Shinokura S, Granovitz TF, Gemma C, Burgueno A, Pirola CJ (2008) Contribution of the functional 5-HTTLPR variant of the SLC6A4 gene to obesity risk in males. Obesity (Silver Spring) 16: 488–491.

29. Hinney A, Barth N, Ziegler A, von Prittwitz S, Hamann A, et al. (1997) ADPR3, IRS-1 and 5-HTT genes polymorphisms do not associate with obesity. Hum Genet 103: 273–279.

30. Guan L, Wang B, Chen Y, Yang L, Li J, et al. (2009) A high-density single-nucleotide polymorphism map of the human genome. Nat Genet 41: 760–765.

31. Strauss RS (1999) Comparison of measured and self-reported weight and height. Am J Clin Nutr 18: 579–584.

32. Wang ET, Kodama G, Baldi P, Moyzis RK (2006) Global landscape of recent inferred Darwinian selection for Homo sapiens. Proc Natl Acad Sci U S A 103: 759–764.

33. Guan L, Wang B, Chen Y, Yang L, Li J, et al. (2009) A high-density single-nucleotide polymorphism map of the human genome. Nat Genet 41: 760–765.

34. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, et al. (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81: 551–557.
66. Anderson CA, Petersson FH, Clarke GM, Cardon LR, Morris AP, et al. (2010) Data quality control in generic case-control association studies. Nat Protoc 5: 1564–1573.

67. Sakamaki R, Toyama K, Amamoto R, Liu CJ, Shinfuku N (2005) Nutritional knowledge, food habits and health attitude of Chinese university students -a cross sectional study. Nutrition Journal 4: 4.

68. Ge K (1997) Body mass index of young Chinese adults. Asia Pacific J Clin Nutr 6: 175–179.

69. Lei SF, Liu MY, Chen XD, Deng FY, Li JH, et al. (2006) Relationship of total body fatness and five anthropometric indices in Chinese aged 20–40 years: different effects of age and gender. Eur J Clin Nutr 60: 511–518.

70. Erickson JD, Schafer MK, Boumer TL, Enfen WE, Weile E. (1996). Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter. Proc Natl Acad Sci U S A 93: 5166–5171.

71. Mahata SK, Mahata M, Fischer-Colbrie R, Winkler H. (1999). Vesicle monoamine transporter 1 and 2: differential distribution and regulation of their mRNAs in chromaffin and ganglion cells of rat adrenal medulla. Neurosci Lett 156: 70–72.

72. Peter D, Lin Y, Sternini C, de Giorgio R, Brecha N, et al. (1995) Differential expression of two vesicular monoamine transporters. J Neurosci 15: 6179–6189.

73. Hayashi M, Haga M, Yatsushiro S, Yamamoto A, Moriya Y. (1999). Vesicular monoamine transporter 1 is responsible for storage of 5-hydroxytryptamine in rat pinealectomy. J Neurochem 73: 2530–2545.

74. Apil A, Navarro-Alvarez M, Ruiz R, Abdulamadah S, El-Mir MY, et al. (2011) Beneficial effects of melatonin on obesity and lipid profile in young Zucker diabetic fatty rats. J Pineal Res 50: 207–212.

75. Widlon-Hanson T, Mitton DR, McQuilck RL, Yellon SM, Wilkinson CW, et al. (2011) Significance and application of melatonin in the regulation of brown adipose tissue metabolism: relation to human obesity. Obes Rev 12: 167–188.

76. Lohoff FW, Lautenschlager M, Mohr J, Ferraro TN, Eiden LE, et al. (1998) Expression of two vesicular monoamine transporters. J Neurosci 18: 6179–6189.

77. Peter D, Liu Y, Sternini C, de Giorgio R, Brecha N, et al. (1995) Differential expression of two vesicular monoamine transporters. J Neurosci 15: 6179–6189.

78. Lei SF, Liu MY, Chen XD, Deng FY, Li JH, et al. (2006) Relationship of total body fatness and five anthropometric indices in Chinese aged 20–40 years: different effects of age and gender. Eur J Clin Nutr 60: 511–518.

79. Strine TW, Mokdad AH, Dube SR, Balluz LS, Gonzalez O, et al. (2008) The association of depression and anxiety with obesity and unhealthy behaviors: a community survey. Aust N Z J Public Health 27: 434–440.

80. Zhao CM, Furnes MW, Stenstrom B, Kulseng B, Chen D (2008) Characterization of obestatin- and ghrelin-producing cells in the gastrointestinal tract and pancreas of rats: an immunohistochemical and electron-microscopic study. Cell Tissue Res 331: 575–587.

81. Furnes MW, Zhao CM, Stenstrom B, Arum CJ, Tommeras K, et al. (2009) Feeding behavior and body weight development: lessons from rats subjected to gastric bypass surgery or high-fat diet. J Physiol Pharmacol 60 Suppl 7: 25–31.

82. Zhao CM, Furnes MW, Stenstrom B, Kulseng B, Chen D (2008) Characterization of obestatin- and ghrelin-producing cells in the gastrointestinal tract and pancreas of rats: an immunohistochemical and electron-microscopic study. Cell Tissue Res 331: 575–587.