Localization of putative pituitary stem/progenitor cells in female dairy cattle

Ai OGUCHI1), Masashi HIGUCHI1)#* and Yoshiaki YAMANO1)

1)Laboratory of Veterinary Biochemistry, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-minami, Tottori-shi, Tottori 680-8553, Japan

ABSTRACT. Research on sex-determining region Y-box 2 (SOX2)-positive pituitary stem/progenitor cells, as a source of hormone-producing cells, is progressing rapidly in rodents. However, the stem/progenitor cells supplying hormone-producing cells that are essential for growth, reproduction, and lactation in bovines have not yet been identified. In this study, we characterized SOX2-positive cells in the pituitary gland of dairy cattle (Holstein heifers) after sexual maturity. Immunofluorescence analysis revealed that the localization pattern of SOX2-positive cells in the dairy cattle pituitary gland was similar to that observed in the rodent pituitary gland; the marginal cell layer (MCL), dense cell clusters, and single cells scattered in the parenchyma of the anterior lobe. Furthermore, most of the SOX2-positive cells were positive for the pituitary stem/progenitor cell niche markers E-cadherin and cytokeratin 8+18, which have been reported in rodents. In addition, in the MCL of the anterior lobe, there was a subpopulation of SOX2-positive cells positive for paired-related homeobox 1 and 2, whereas negative for S100β. Moreover, in the parenchyma of the anterior lobe, co-localization of SOX2 and pituitary hormones was infrequent. In summary, this study reveals the localization of putative pituitary stem/progenitor cells positive for SOX2 in dairy cattle. These results provide valuable information to support further investigation of cell supply in the dairy cattle pituitary gland.

KEY WORDS: dairy cattle, pituitary gland, sex-determining region Y-box 2, stem/progenitor cell
Table 1. List of antibodies used for immunofluorescence analysis

| Antigen                  | Species | Label | Cat. No       | Identifier                                         |
|--------------------------|---------|-------|---------------|----------------------------------------------------|
| Human SOX2 (1:400)       | Goat    | None  | GT15098       | Neuromics, Minneapolis, MN, USA                    |
| Cow Cytokeratin 8+18 (1:200) | Guinea pig | None  | ab194130      | Abcam, Cambridge, UK                               |
| Human PRRX2 (1:500)      | Mouse   | None  | H00051450-A01 | Abnova, Taipei, Taiwan                             |
| Human Ki67 (1:100)       | Mouse   | None  | 350501        | BioLegend, San Diego, CA, USA                      |
| Human E-cadherin (1:100) | Rabbit  | None  | #3195         | Cell Signaling Technology, Danvers, MA, USA        |
| Cow S100 (1:500)         | Rabbit  | None  | #3504         | Dako, Carpinteria, CA                              |
| Human POMC (1:800)       | Rabbit  | None  | #23499        | Cell Signaling Technology                          |
| Canine LHβ (1:2,000)     | Rabbit  | None  | HAC-CN27-02-RBP97 | Kindly provided by the Institute for Molecular and Cellular Regulation (IMCR), Gunma University, through the courtesy of Dr. K. Sato |
| Canine TSHβ (1:8,000)    | Rabbit  | None  | HAC-CN29-02-RBP97 |                                                   |
| Rat GH (1:2,000)         | Rabbit  | None  | HAC-RT25-02-RBP85 |                                                   |
| Rat PRL (1:10,000)       | Rabbit  | None  | HAC-RT26-01-RBP85 |                                                   |

SOX2, sex-determining region Y-box 2; PRRX2, paired-related homeobox 2; POMC, proopiomelanocortin; LHβ, luteinizing hormone beta-subunit; TSHβ, thyroid-stimulating hormone beta-subunit; GH, growth hormone; PRL, prolactin.

reported that, in the bovine pituitary gland, interleukin 18-positive cells, which are localized to both the MCL and the parenchyma of the anterior lobe, express pituitary stem/progenitor cell markers such as Oct4, Nanog, Nestin, and Pita 1 [12]. However, isolated interleukin 18-positive cells have been shown to be immune-negative for S100β [12]. At first, S100β is found as a marker for folliculo-stellate cells [15]. Furthermore, since the majority of S100β-positive cells in the adult rodent pituitary gland express SOX2, it has been proposed that S100β/SOX2 double-positive cells are pituitary stem/progenitor cells responsible for the supply of hormone-producing cells [1, 22]. That is, in the rodents, a subpopulation of S100β-positive cells is pituitary stem/progenitor cells. On the other hand, research on bovine pituitary stem/progenitor cells has barely progressed over the past 10 years.

Here, we analyzed the stem/progenitor cells in the pituitary gland of sexually matured female dairy cattle, focusing on SOX2-positive cells. Immunofluorescence analysis revealed that SOX2-positive cells are widely distributed throughout the pituitary gland, especially in the MCL and in clusters present in the parenchyma of the anterior lobe. In addition, most of SOX2-positive cells, which were located in the MCL and the parenchymal cell clusters, co-localized with E-cadherin and cytokeratin (CK) 8+18 known as the pituitary stem/progenitor cell niche marker in the rodent [4, 5]. Furthermore, co-localization of SOX2 with paired-related homeobox 1 and 2 (PRRX1+2) and a proliferation cell marker Ki67 was observed in the MCL and the parenchymal cell clusters of the anterior lobe, but no co-localization with S100β. Altogether, the results in the present study provide novel information about stem/progenitor cells in the bovine pituitary gland, which can serve as a source of hormone-producing cells.

MATERIALS AND METHODS

Animals

Pituitary glands (n=3) from one-year-old female dairy cattle (Holstein heifers) were kindly provided by Tottori Livestock Hygiene Service Center of Tottori Prefecture (Tottori, Japan).

Immunofluorescence analysis

The pituitary glands of female dairy cattle were immersed with 4% paraformaldehyde in 20 mM HEPES buffer (pH 7.5) immediately after dissection (within about 30 min after euthanasia) and fixed for 24 hr at 4°C, followed by immersion in 30% trehalose in 20 mM HEPES buffer for 48 hr at 4°C to cryoprotect the tissues. Glands were then embedded in Tissue-Tek O.C.T. immediately after dissection (within about 30 min after euthanasia) and fixed for 24 hr at 4°C, followed by immersion in 30%

---

**List of antibodies used for immunofluorescence analysis**

| Antigen                  | Species | Label | Cat. No       | Identifier                                         |
|--------------------------|---------|-------|---------------|----------------------------------------------------|
| Human SOX2 (1:400)       | Goat    | None  | GT15098       | Neuromics, Minneapolis, MN, USA                    |
| Cow Cytokeratin 8+18 (1:200) | Guinea pig | None  | ab194130      | Abcam, Cambridge, UK                               |
| Human PRRX2 (1:500)      | Mouse   | None  | H00051450-A01 | Abnova, Taipei, Taiwan                             |
| Human Ki67 (1:100)       | Mouse   | None  | 350501        | BioLegend, San Diego, CA, USA                      |
| Human E-cadherin (1:100) | Rabbit  | None  | #3195         | Cell Signaling Technology, Danvers, MA, USA        |
| Cow S100 (1:500)         | Rabbit  | None  | #3504         | Dako, Carpinteria, CA                              |
| Human POMC (1:800)       | Rabbit  | None  | #23499        | Cell Signaling Technology                          |
| Canine LHβ (1:2,000)     | Rabbit  | None  | HAC-CN27-02-RBP97 | Kindly provided by the Institute for Molecular and Cellular Regulation (IMCR), Gunma University, through the courtesy of Dr. K. Sato |
| Canine TSHβ (1:8,000)    | Rabbit  | None  | HAC-CN29-02-RBP97 |                                                   |
| Rat GH (1:2,000)         | Rabbit  | None  | HAC-RT25-02-RBP85 |                                                   |
| Rat PRL (1:10,000)       | Rabbit  | None  | HAC-RT26-01-RBP85 |                                                   |
preabsorbed antibodies (Supplementary Fig. 1). However, the anti-PRRX2 antibody recognized bovine PRRX1, similar to previous findings in rats [17]. Therefore, the results of immunofluorescence analysis using the anti-PRRX2 antibody were described as PRRX1+2. On the other hand, antibodies against E-cadherin, CK8+18, Ki67, S100β, and proopiomelanocortin (POMC), which is a precursor of alpha-melanocyte-stimulating hormone (α-MSH) and adrenocorticotropic hormone (ACTH), have been shown to be cross-reactive with cow as described in the data sheet.

Hematoxylin and eosin (H&E) staining

Frozen sections were stained with Mayer’s hematoxylin solution for 4 min at room temperature and then rinsed in tap water until the water was colorless, followed by staining with 1.0% cosin Y solution for 2 min. Next, the section was treated stepwise with 70–100% ethanol and xylene, and then mounted with EUKITT mounting medium (O. Kindler, Freiburg, Germany). The image was detected using a light microscope (Eclipse Ts2-FL; Nikon Instech, Tokyo, Japan).

RESULTS

Localization of SOX2-positive cells in the pituitary glands of female dairy cattle

H&E-stained sections in the pituitary gland of female dairy cattle are shown in Fig. 1. A cell layer in contact with Rathke’s cleft was observed on the anterior and intermediate lobe sides (Fig. 1B). There was a dense cell cluster in the parenchyma of the anterior lobe (Fig. 1C). In addition, there were several vacuolar structures with blood cells (i.e. blood vessels) in the parenchyma of the anterior lobe (Fig. 1D). Immunofluorescence analysis revealed that SOX2-positive cells were widely distributed throughout the pituitary glands of dairy cattle (Fig. 2A). Furthermore, SOX2-positive cells were localized densely in the area facing Rathke’s cleft, the MCL (Fig. 2B). In the parenchyma of the anterior lobe, although most of the SOX2-positive cells were singly scattered, dense SOX2-positive cell clusters were also detected (Fig. 2C). In each individual, the proportion of SOX2-positive cells (SOX2-positive cells / total cells stained with DAPI / 0.24 mm² in each section) in the anterior lobe was 20.1 ± 1.3% (Subject 1), 21.3 ± 0.9% (Subject 2), and 19.4 ± 0.3% (Subject 3) (4 sections / each subject). These data showed no differences between individuals.

Co-localization of SOX2 and niche markers in the dairy cattle pituitary gland

To analyze whether SOX2-positive cells localize in the pituitary stem/progenitor cell niches (the MCL and parenchymal niches), we performed double-immunostaining using antibodies against SOX2 and E-cadherin or CK8+18, epithelial stem/cell niche markers [4, 5]. Interestingly, most of SOX2-positive cells located in the MCL were positive for E-cadherin and CK8+18 (Fig. 3A and 3C). In addition, dense SOX2-positive cell clusters in the parenchyma of the anterior lobe were also positive for both niche markers, but some cells were negative (Fig. 3B and 3D). These results show that SOX2-positive cells in the dairy cattle pituitary gland are localized in two niches defined in mammals such as rodents and humans.

Co-localization of SOX2 and other stem/progenitor cell or proliferative cell markers in the dairy cattle pituitary gland

To investigate the heterogeneity of SOX2-positive cells in the pituitary gland of female dairy cattle, we performed double-immunostaining for SOX2 and other pituitary stem/progenitor cell markers, S100β or PRRX1+2. No co-localization of SOX2 and S100β was observed in both the MCL and parenchyma of the anterior lobe (Fig. 4A and 4B). In the MCL of the anterior lobe, SOX2
mostly co-localized with PRRX1+2 at a high frequency, whereas SOX2-single positive cells were also detected (Fig. 4C). On the other hand, SOX2-positive cells in the parenchymal cell cluster of the anterior lobe co-localized with PRRX1+2, but PRRX1+2-single positive cells were also scattered in the parenchyma (Fig. 4D). To analyze whether SOX2-positive cells proliferate, we
Fig. 4. Immunofluorescence analysis for sex-determining region Y-box 2 (SOX2) and other stem/progenitor cell markers in the dairy cattle pituitary gland. (A–D) Double-immunostaining for SOX2 (green) and S100β or PRRX1+2 (purple) on the marginal cell layer (the dotted lines) and the parenchyma of the anterior lobe in the pituitary glands of dairy cattle was performed, together with DAPI (nuclei staining, blue). Merged images are shown in upper panels, and the boxed areas are enlarged in middle and lower panels. Arrows, open arrowheads and closed arrowheads show SOX2 single-, S100β (PRRX1+2) single-, and SOX2/PRRX1+2 double-positive cells, respectively. Scale bars=100 µm (upper panels), 20 µm (middle and lower panels). AL, anterior lobe; IL, intermediate lobe; RC, Rathke’s cleft.

Fig. 5. Immunofluorescence analysis for sex-determining region Y-box 2 (SOX2) and the proliferative cell marker in the dairy cattle pituitary gland. (A, B) Double-immunostaining for SOX2 (green) and Ki67 (purple) on the marginal cell layer (the dotted lines) and the parenchyma of the anterior lobe in the pituitary glands of dairy cattle was performed, together with DAPI (nuclei staining, blue). Merged images are shown in upper panels, and the boxed areas are enlarged in middle and lower panels. Arrowheads show SOX2/Ki67 double-positive cells. Scale bars=100 µm (upper panels), 20 µm (middle and lower panels). AL, anterior lobe; IL, intermediate lobe; RC, Rathke’s cleft.
performed double-immunostaining using antibodies against SOX2 and Ki67, a proliferative cell marker. As a result, although Ki67-positive cells were very rare in the MCL and the parenchyma of the anterior lobe, most of them were positive for SOX2 (Fig. 5A and 5B). These results indicate the heterogeneity and proliferative activity of SOX2-positive cells in the dairy cattle pituitary gland.

Co-localization of SOX2 and hormones in the dairy cattle pituitary gland

Finally, we performed immunofluorescence analysis to evaluate the co-localization of SOX2 and pituitary hormones (Fig. 6A). The hormone-positive rate among total cells (stained with DAPI) was 12.6 ± 1.1% (ACTH), 11.3 ± 1.4% (LHβ), 3.6 ± 1.5% (TSHβ), 29.5 ± 3.5% (GH), and 20.6 ± 3.5% (PRL) (Fig. 6B, n=4 in each hormone). Moreover, α-MSH-positive cells were detected in the intermediate lobe. Next, double-positive cells for SOX2 and each hormone were counted to examine whether SOX2 is present in a transitional state of terminal differentiation into hormone-producing cells. The coexistence of SOX2 was observed at a low frequency in all types of hormone-producing cells (Fig. 6C, ACTH: 0.92 ± 0.18%, LHβ: 0.13 ± 0.07%, TSHβ: 0.07 ± 0.00%, GH: 0.73 ± 0.23%, PRL: 0.09 ± 0.04%). The co-localization of α-MSH and SOX2 was also observed. As shown in Fig. 6D, although the hormone-positive rate among SOX2-positive cells was high for ACTH (4.55 ± 0.71%) and GH (3.20 ± 1.10%), other lineage cells showed low-value coexistence ratios (LHβ: 0.59 ± 0.32%, TSHβ: 0.39 ± 0.08%, PRL: 0.39 ± 0.19%). These results indicate that SOX2-positive cells exist as non-hormone-producing cells in the dairy cattle pituitary gland and can differentiate into all types of hormone-producing cells, in line with the results reported in the context of rodents.

**Fig. 6.** Proportion of cells positive for sex-determining region Y-box 2 (SOX2) and hormones in the dairy cattle pituitary gland. (A) Double-immunostaining for SOX2 (green) and each pituitary hormone [adrenocorticotropic hormone (ACTH); luteinizing hormone β (LHβ); thyroid-stimulating hormone β (TSHβ); growth hormone (GH); prolactin (PRL); alpha-melanocyte-stimulating hormone (α-MSH)] (red) on the parenchyma of the anterior lobe in the dairy cattle pituitary gland was performed, together with DAPI (nuclei staining, blue). Merged images are shown in upper panels, and the boxed areas are enlarged in middle and lower panels. Arrowheads show SOX2/hormone double-positive cells. Scale bars=100 µm (upper panels), 20 µm (middle and lower panels). AL, anterior lobe; IL, intermediate lobe; PL, posterior lobe. (B–D) Numbers of cells positive for each protein in an area of 0.24 mm²/section were counted, and the hormone-positive rate among total cells (Hormone + / DAPI), SOX2/hormone double-positive rate among total cells (Double + / DAPI), and SOX2/hormone double-positive rate among SOX2-positive cells (Double + / SOX2 +) were calculated. Data are shown as the means ± SD of four sections per hormone.
DISCUSSION

The fact that SOX2-positive cell subpopulations in rodents, located in both the MCL and parenchymal niches, have the proliferative activity and differentiate into hormone-producing cells, indicate that these cells exist as stem/progenitor cells in the pituitary gland. In the present study, we performed the immunofluorescence analysis for SOX2-positive cells in the pituitary gland of dairy cattle.

In the pituitary glands of adult rodents, the MCL (facing Rathke’s cleft) and SOX2-positive dense cell clusters scattered throughout the parenchyma of the anterior lobe are proposed to act as primary and secondary stem/progenitor cell niches, respectively [4, 8, 14, 22]. The present study showed that SOX2-positive cells are widely distributed in the dairy cattle pituitary gland, especially in the MCL facing the lumen of the pouch and parenchymal cell clusters at high density. Furthermore, the stem/progenitor cell niche markers E-cadherin and CK8+18 are enriched in the MCL and parenchymal cell clusters. Our data are consistent with the findings in mice and rats [4, 8, 14], suggesting that SOX2-positive pituitary stem/progenitor cells are present across species, at least mammals, in the MCL and parenchymal niches. Additionally, we also found that some SOX2-positive cells co-localized with Ki67 and hormones. These results suggest that SOX2-positive cells in the dairy cattle pituitary gland can proliferate and differentiate into all types of hormone-producing cells. Furthermore, the proportion of hormone-producing cells in dairy cattle was relatively similar to that in rats after sexual maturity [10]. From this result, it is considered that the dairy cattle used in the present study have mature pituitary functions; 1-year-old Holstein heifers are already fertile [6].

Gene expression studies using rodent pituitary glands have demonstrated that pituitary stem/progenitor cells in the anterior lobe are composed of SOX2-positive cell subpopulations [1, 3, 7–9, 14, 18, 21]. The present study revealed that most of the SOX2-positive cells, located in the MCL of the dairy cattle pituitary gland, expressed PRRX1+2, similar to the observation in rats and mice [9, 14]. However, we identified a subpopulation of SOX2-positive pituitary stem/progenitor cells that do not express S100β in dairy cattle. Of note, we have recently demonstrated that SOX2/PRRX1 double-positive cells isolated from the MCL-niche of the mouse pituitary gland show high proliferation activity and differentiation capacity into hormone-producing cells and do not express S100b [14]. Furthermore, it has been reported that the majority of SOX2-positive cells in adult mouse and common marmoset pituitary glands are S100β-positive, and that the SOX2-positive/S100β-negative cell subpopulation is a minority [1, 19]. The finding that all SOX2-positive cells are S100β-negative may indicate a unique feature of bovine pituitary stem/progenitor cells. The results of the present study clearly suggest that SOX2-positive pituitary stem/progenitor cells might be conserved across rodents, common marmosets, and bovines, but main cell populations localized to the MCL-niche could be classified into several types depending on the animal species.

In summary, we demonstrated that SOX2-positive pituitary stem/progenitor cells in dairy cattle are localized especially in the stem/progenitor cell niche, the MCL, in line with the observation in mice [14]. Recently, the construction of artificial pituitary glands for use in regenerative medicine has become a reality via three-dimensional culture methods using embryonic stem cells, inducible pluripotent stem cells, and experimentally isolated pituitary stem/progenitor cells from humans and mice [5, 11, 13, 16]. However, this approach was not possible in the context of the bovine, since, thus far, their pituitary pluripotent cells were unknown. If the isolation of SOX2/PRRX1+2 double-positive pituitary stem/progenitor cells in dairy cattle can be achieved using our established method in mice [14], it will be an essential technique for investigating the supply of hormone-producing cells and tissue regeneration in bovine.

CONFLICT OF INTEREST. The authors declare no competing interests.

ACKNOWLEDGMENTS. The authors wish to thank Dr. K. Sato (Gunma University) for the anti-hormone antibodies. This work was partially supported by JSPS KAKENHI (grant number JP20K21371; to M.H). We are also grateful to the staff of Tottori Livestock Hygiene Service Center of Tottori Prefecture for the collection of bovine pituitaries.

REFERENCES

1. Andoniadou, C. L., Matsushima, D., Mousavy Gharavy, S. N., Signore, M., Mackintosh, A. I., Schaeffer, M., Gaston-Massuet, C., Mollard, P., Jacques, T. S., Le Tissier, P., Dattani, M. T., Pevny, L. H. and Martinez-Barbera, J. P. 2013. Sox2+ stem/progenitor cells in the adult mouse pituitary support organ homeostasis and have tumor-inducing potential. Cell Stem Cell 13: 433–445. [Medline] [CrossRef]
2. Chen, C. C. and Chuong, C. M. 2012. Multi-layered environmental regulation on the homeostasis of stem cells: the saga of hair growth and alopecia. J. Dermatol. Sci. 66: 3–11. [Medline] [CrossRef]
3. Chen, J., Gremeaux, L., Fu, Q., Liekens, D., Van Laere, S. and Vankelecom, H. 2009. Pituitary progenitor cells tracked down by side population dissection. Stem Cells 27: 1182–1195. [Medline] [CrossRef]
4. Chen, M., Kato, T., Higuchi, M., Yoshida, S., Yako, H., Kanno, N. and Kato, Y. 2013. Coxsackievirus and adenovirus receptor-positive cells compose the putative stem/progenitor cell niches in the marginal cell layer and parenchyma of the rat anterior pituitary. Cell Tissue Res. 354: 823–836. [Medline] [CrossRef]
5. Cox, B., Laporte, E., Vennekens, A., Kobayashi, H., Nys, C., Van Zundert, I., Uji-I, H., Vercauteren Drubbel, A., Beck, B., Roose, H., Boretto, M. and Vankelecom, H. 2019. Organoids from pituitary as a novel research model toward pituitary stem/progenitor cell exploration. J. Endocrinol. 240: 287–308. [Medline] [CrossRef]
6. Desjardins, C. and Hafs, H. D. 1969. Maturation of bovine female genitalia from birth through puberty. J. Anim. Sci. 28: 502–507. [Medline] [CrossRef]
7. Fauquier, T., Rizzoti, K., Dattani, M., Lovell-Badge, R. and Robinson, I. C. 2008. SOX2-expressing progenitor cells generate all of the major cell

J. Vet. Med. Sci. 83(7): 1031–1038, 2021 1037
types in the adult mouse pituitary gland. *Proc. Natl. Acad. Sci. USA* **105**: 2907–2912. [Medline] [CrossRef]

8. Garcia-Lavandeira, M., Quereda, V., Flores, I., Saez, C., Diaz-Rodriguez, E., Japon, M. A., Ryan, A. K., Blasco, M. A., Dieguez, C., Malumbres, M. and Alvarez, C. V. 2009. A GRFa2/Prop1/stem (GPS) cell niche in the pituitary. *PLoS One* **4**: e4815. [Medline] [CrossRef]

9. Higuchi, M., Yoshiida, S., Ueharu, H., Chen, M., Kato, T. and Kato, Y. 2014. PRRX1 and PRRX2 distinctively participate in pituitary organogenesis and a cell-supply system. *Cell Tissue Res.* **357**: 323–335. [Medline] [CrossRef]

10. Hymer, W. C. and Hatfield, J. M. 1983. Separation of cells from the rat anterior pituitary gland. *Methods Enzymol.* **103**: 257–287. [Medline] [CrossRef]

11. Kasai, T., Suga, H., Sakakibara, M., Ozone, C., Matsumoto, R., Kano, M., Mitsumoto, K., Ogawa, K., Kodani, Y., Nagasaki, H., Inoshita, N., Sugiyama, M., Onoue, T., Tsunekawa, T., Ito, Y., Takagi, H., Hagiwara, D., Iwama, S., Goto, M., Banno, R., Takahashi, J. and Arima, H. 2020. Hypothalamic contribution to pituitary functions is recapitulated *in vitro* using 3D-cultured human iPSC cells. *Cell Rep.* **30**: 18–24.e5. [Medline] [CrossRef]

12. Nagai, Y., Ogasawara, H., Taketa, Y., Aso, H., Tanaka, S., Watanabe, K., Ohwada, S., Muneta, Y. and Yamaguchi, T. 2008. Bovine anterior pituitary progenitor cell line expresses interleukin (IL)-18 and IL-18 receptor. *J. Neuroendocrinol.* **20**: 1233–1241. [Medline] [CrossRef]

13. Ozone, C., Suga, H., Eiraku, M., Kadoshima, T., Yonemura, S., Takata, N., Oiso, Y., Tsuji, T. and Sasai, Y. 2016. Functional anterior pituitary generated in self-organizing culture of human embryonic stem cells. *Nature* **480**: 57–62. [Medline] [CrossRef]

14. Shintani, A. and Higuchi, M. 2021. Isolation of PRRX1-positive adult pituitary stem/progenitor cells from the marginal cell layer of the mouse anterior lobe. *Stem Cell Res.* **52**: 102223. [Medline] [CrossRef]

15. Soji, T. and Herbert, D. C. 1989. Intercellular communication between rat anterior pituitary cells. *Anat. Rec.* **224**: 523–533. [Medline] [CrossRef]

16. Suga, H., Kadoshima, T., Minaguchi, M., Ohgushi, M., Soen, M., Nakano, T., Takata, N., Wataya, T., Muguruma, K., Miyoshi, H., Yonemura, S., Oiso, Y. and Sasai, Y. 2011. Self-formation of functional adenohypophysis in three-dimensional culture. *Nature* **480**: 57–62. [Medline] [CrossRef]

17. Susa, T., Kato, T., Higuchi, M. and Kato, Y. 2012. Paired-related homeodomain proteins Prx1 and Prx2 are expressed in embryonic pituitary stem/progenitor cells and may be involved in the early stage of pituitary differentiation. *J. Neuroendocrinol.* **24**: 1201–1212. [Medline] [CrossRef]

18. Vankelecom, H. and Gremeaux, L. 2010. Stem cells in the pituitary gland: A burgeoning field. *Gen. Comp. Endocrinol.* **166**: 478–488. [Medline] [CrossRef]

19. Yoshida, S., Fujiwara, K., Inoue, T., Sasaki, E., Kametani, Y., Takekoshi, S., Inoshita, N., Kato, T. and Kato, Y. 2018. Localization of SOX2-positive stem/progenitor cells in the anterior lobe of the common marmoset (*Callithrix jacchus*) pituitary. *J. Reprod. Dev.* **64**: 417–422. [Medline] [CrossRef]

20. Yoshida, S., Kato, T. and Kato, Y. 2016. Regulatory system for stem/progenitor cell niches in the adult rodent pituitary. *Int. J. Mol. Sci.* **17**: 75. [Medline] [CrossRef]

21. Yoshida, S., Kato, T., Susa, T., Cai, L. Y., Nakayama, M. and Kato, Y. 2009. PROP1 coexists with SOX2 and induces PIT1-commitment cells. *Biochem. Biophys. Res. Commun.* **385**: 11–15. [Medline] [CrossRef]

22. Yoshida, S., Nishimura, N., Ueharu, H., Kanno, N., Higuchi, M., Horiguchi, K., Kato, T. and Kato, Y. 2016. Isolation of adult pituitary stem/progenitor cell clusters located in the parenchyma of the rat anterior lobe. *Stem Cell Res.* **17**: 318–329. [Medline] [CrossRef]