Public Transit Labeling

Daniel Delling1, Julian Dibbelt2, Thomas Pajor3 and Renato F. Werneck4

1Sunnyvale, USA, daniel.delling@gmail.com
2Karlsruhe Institute of Technology, Germany, dibbelt@kit.edu
3Microsoft Research, USA, tpajor@microsoft.com
4San Francisco, USA, rwerneck@acm.org

May 5, 2015

Abstract

We study the journey planning problem in public transit networks. Developing efficient preprocessing-based speedup techniques for this problem has been challenging: current approaches either require massive preprocessing effort or provide limited speedups. Leveraging recent advances in Hub Labeling, the fastest algorithm for road networks, we revisit the well-known time-expanded model for public transit. Exploiting domain-specific properties, we provide simple and efficient algorithms for the earliest arrival, profile, and multicriteria problems, with queries that are orders of magnitude faster than the state of the art.

1 Introduction

Recent research on route planning in transportation networks \cite{} has produced several speedup techniques varying in preprocessing time, space, query performance, and simplicity. Overall, queries on road networks are several orders of magnitude faster than on public transit \cite{}. Our aim is to reduce this gap.

There are many natural query types in public transit. An earliest arrival query seeks a journey that arrives at a target stop t as early as possible, given a source stop s and a departure time (e.g., “now”). A multicriteria query also considers the number of transfers when traveling from s to t. A profile query reports all quickest journeys between two stops within a time range.

*An extended abstract of this paper has been accepted at the 14th International Symposium on Experimental Algorithms (SEA’15). Work done mostly while all authors were at Microsoft Research Silicon Valley.
These problems can be approached by variants of Dijkstra’s algorithm [13] applied to a graph modeling the public transit network, with various techniques to handle time-dependency [18]. In particular, the time-expanded (TE) graph encodes time in the vertices, creating a vertex for every event (e.g., a train departure or arrival at a stop at a specific time). Newer approaches, like CSA [12] and RAPTOR [11], work directly on the timetable. Speedup techniques [5] such as Transfer Patterns [4,6], Timetable Contraction Hierarchies [14], and ACSA [20] use preprocessing to create auxiliary data that is then used to accelerate queries.

For aperiodic timetables, the TE model yields a directed acyclic graph (DAG), and several public transit query problems translate to reachability problems. Although these can be solved by simple graph searches, this is too slow for our application. Different methodologies exist to enable faster reachability computation [7,15,16,19,21–23]. In particular, the 2-hop labeling scheme [8] associates with each vertex two labels (forward and backward); reachability (or shortest-path distance) can be determined by intersecting the source’s forward label and the target’s backward label. On continental road networks, 2-hop labeling distance queries take less than a microsecond [2].

In this work, we adapt 2-hop labeling to public transit networks, improving query performance by orders of magnitude over previous methods, while keeping preprocessing time practical. Starting from the time-expanded graph model (Section 3), we extend the labeling scheme by carefully exploiting properties of public transit networks (Section 4). Besides earliest arrival and profile queries, we address multicriteria and location-to-location queries, as well as reporting the full journey description quickly (Section 5). We validate our Public Transit Labeling (PTL) algorithm by careful experimental evaluation on large metropolitan and national transit networks (Section 6), achieving queries within microseconds.

2 Preliminaries

Let \(G = (V, A) \) be a (weighted) directed graph, where \(V \) is the set of vertices and \(A \) the set of arcs. An arc between two vertices \(u, v \in V \) is denoted by \((u, v)\). A path is a sequence of adjacent vertices. A vertex \(v \) is reachable from a vertex \(u \) if there is a path from \(u \) to \(v \). A DAG is a graph that is both directed and acyclic.

We consider aperiodic timetables, consisting of sets of stops \(S \), events \(E \), trips \(T \), and footpaths \(F \). Stops are distinct locations where one can board a transit vehicle (such as bus stops or subway platforms). Events are the scheduled departures and arrivals of vehicles. Each event \(e \in E \) has an associated stop \(\text{stop}(e) \) and time \(\text{time}(e) \). Let \(E(p) = \{e_0(p), \ldots, e_{k_p}(p)\} \) be the list (ordered by time) of events at a stop \(p \). We set \(\text{time}(e_i(p)) = -\infty \) for \(i < 0 \), and \(\text{time}(e_i(p)) = \infty \) for \(i > k_p \). For simplicity, we may drop the index of an event (as in \(e(p) \in E(p) \)) or its stop (as in \(e \in E \)). A trip is a sequence of events served by the same vehicle. A pair of a consecutive departure and arrival events of a trip is a connection. Footpaths model transfers between nearby stops, each with a predetermined walking duration.

A journey planning algorithm outputs a set of journeys. A journey is a sequence of trips
(each with a pair of pick-up and drop-off stops) and footpaths in the order of travel. Journeys can be measured according to several criteria, such as arrival time or number of transfers. A journey \(j_1 \) dominates a journey \(j_2 \) if and only if \(j_1 \) is no worse in any criterion than \(j_2 \). If \(j_1 \) and \(j_2 \) are equal in all criteria, we break ties arbitrarily. A set of non-dominated journeys is called a Pareto set. Multicriteria Pareto optimization is NP-hard in general, but practical for natural criteria in public transit networks \([11,12,17,18]\). A journey is tight if there is no other journey between the same source and target that dominates it in terms of departure and arrival time, e.g., that departs later and arrives earlier.

Given a timetable, stops \(s \) and \(t \), and a departure time \(\tau \), the \((s, t, \tau)\)-earliest arrival (EA) problem asks for an \(s-t \) journey that arrives at \(t \) as early as possible and departs at \(s \) no earlier than \(\tau \). The \((s, t)\)-profile problem asks for a Pareto set of all tight journeys between \(s \) and \(t \) over the entire timetable period. Finally, the \((s, t, \tau)\)-multicriteria (MC) problem asks for a Pareto set of journeys departing at \(s \) no earlier than \(\tau \) and minimizing the criteria arrival time and number of transfers. We focus on computing the values of the associated optimization criteria of the journeys (i.e., departure time, arrival times, number of transfers), which is enough for many applications. Section 5 discusses how the full journey description can be obtained with little overhead.

Our algorithms are based on the 2-hop labeling scheme for directed graphs \([8]\). It associates with every vertex \(v \) a forward label \(L_f(v) \) and a backward label \(L_b(v) \). In a reachability labeling, labels are subsets of \(V \), and vertices \(u \in L_f(v) \cup L_b(v) \) are hubs of \(v \). Every hub in \(L_f(v) \) must be reachable from \(v \), which in turn must be reachable by every hub in \(L_b(v) \). In addition, labels must obey the cover property: for any pair of vertices \(u \) and \(v \), the intersection \(L_f(u) \cap L_b(v) \) must contain at least one hub on a \(u-v \) path (if it exists). It follows from this definition that \(L_f(u) \cap L_b(v) \neq \emptyset \) if and only if \(v \) is reachable from \(u \).

In a shortest path labeling, each hub \(u \in L_f(v) \) also keeps the associated distance \(\text{dist}(u, v) \), or \(\text{dist}(v, u) \) for backward labels, and the cover property requires \(L_f(u) \cap L_b(v) \) to contain at least one hub on a shortest \(u-v \) path. If labels are kept sorted by hub ID, a distance label query efficiently computes \(\text{dist}(u, v) \) by a coordinated linear sweep over \(L_f(u) \) and \(L_b(v) \), finding the hub \(w \in L_f(u) \cap L_b(v) \) that minimizes \(\text{dist}(u, w) + \text{dist}(w, v) \). In contrast, a reachability label query can stop as soon as any matching hub is found.

In general, smaller labels lead to less space and faster queries. Many algorithms to compute labelings have been proposed \([2,8,7,15,21,23]\), often for restricted graph classes. We leverage (as a black box) the recent RXL algorithm \([9]\), which efficiently computes small shortest path labelings for a variety of graph classes at scale. It is a sampling-based greedy algorithm that builds labels one hub at a time, with priority to vertices that cover as many relevant paths as possible.

Different approaches for transforming a timetable into a graph exist (see \([18]\) for an overview). In this work, we focus on the time-expanded model. Since it uses scalar arc costs, it is a natural choice for adapting the labeling approach. In contrast, the time-dependent model (another popular approach) associates values with the arcs, which makes adaption more difficult.

...
3 Basic Approach

We first find the earliest event. We build the time-expanded graph from the timetable as follows. We group all departure

L

until time from ∅ that is reachable, i.e., such that e

to the earliest event

by probing the hash with hubs

Moreover, to avoid evaluating e

events (skip) all

prune

earliest event

1

b

Arc (u, v) is time(v) − time(u), i.e., the time difference of the corresponding events. To account for footpaths between two stops a and b, we add, from each vertex at stop a, a foot arc to the first reachable vertex at b (based on walking time), and vice versa. As events and vertices are tightly coupled in this model, we use the terms interchangeably.

Any label generation scheme (we use RXL [9]) on the time-expanded graph creates two (forward and backward) event labels for every vertex (event), enabling event-to-event queries. For our application reachability labels [21], which only store hubs (without distances), suffice. First, since all arcs point to the future, time-expanded graphs are DAGs. Second, if an event e is reachable from another event e′ (i.e., L_f(e′) ∩ L_b(e) ≠ ∅), we can compute the time to get from e′ to e as time(e′) − time(e). In fact, all paths between two events have equal cost.

In practice, however, event-to-event queries are of limited use, as they require users to specify both departure and arrival times, one of which is usually unknown. Therefore, we discuss earliest arrival and profile queries, which optimize arrival time and are thus more meaningful. See Section 5 for multicriteria queries.

Earliest Arrival Queries. Given event labels, we answer an (s, t, τ)-EA query as follows. We first find the earliest event e_i(s) ∈ E(s) at the source stop s that suits the departure time, i.e., with time(e_i(s)) ≥ τ and time(e_i−1(s)) < τ. Next, we search at the target stop t for the earliest event e_j(t) ∈ E(t) that is reachable from e_i(s) by testing whether L_f(e_i(s)) ∩ L_b(e_j(t)) ≠ ∅ and L_f(e_i(s)) ∩ L_b(e_j−1(t)) = ∅. Then, time(e_j(t)) is the earliest arrival time. One could find e_j(t) using linear search (which is simple and cache-friendly), but binary search is faster in theory and in practice. To accelerate queries, we prune (skip) all events e(t) with time(e(t)) < τ, since L_f(e_i(s)) ∩ L_b(e(t)) = ∅ always holds in such cases. Moreover, to avoid evaluating L_f(e_i(s)) multiple times, we use hash-based queries [9]: we first build a hash set of the hubs in L_f(e_i(s)), then check the reachability for an event e(t) by probing the hash with hubs h ∈ L_b(e(t)).

Profile Queries. To answer an (s, t)-profile query, we perform a coordinated sweep over the events at s and t. For the current event e_i(s) ∈ E(s) at the source stop (initialized to the earliest event e_0(s) ∈ E(s)), we find the first event e_j(t) ∈ E(t) at the target stop that is reachable, i.e., such that L_f(e_i(s)) ∩ L_b(e_j(t)) ≠ ∅ and L_f(e_i(s)) ∩ L_b(e_j−1(t)) = ∅. This gives us the earliest arrival time time(e_j(t)). To identify the latest departure time from s for that earliest arrival event (and thus have a tight journey), we increase i until L_f(e_i(s)) ∩ L_b(e_j(t)) = ∅, then add (time(e_i−1(s)), time(e_j(t))) to the profile. We
repeat the process starting from the events $e_i(s)$ and $e_{j+1}(t)$. Since we increase either i or j
after each intersection test, the worst-case time to find all tight journeys is linear in the
number of events (at s and t) multiplied by the size of their largest label.

4 Leveraging Public Transit

Our approach can be refined to exploit features specific to public transit networks. As
described so far, our labeling scheme maintains reachability information for all pairs of
events (by covering all paths of the time-expanded graph, breaking ties arbitrarily). However,
in public transit networks we actually are only interested in certain paths. In particular,
the labeling does not need to cover any path ending at a departure event (or beginning at
an arrival event). We can thus discard forward labels from arrival events and backward
labels from departure events.

Trimmed Event Labels. Moreover, we can disregard paths representing dominated jour-
nets that depart earlier and arrive later than others (i.e., journeys that are not tight,
cf. Section 2). Consider all departure events of a stop. If a certain hub is reachable from
event $e_i(s)$, then it is also reachable from $e_0(s), \ldots, e_{i-1}(s)$, and is thus potentially added
to the forward labels of all these earlier events. In fact, experiments show that on average
the same hub is added to 1.8–5.0 events per stop (depending on the network). We therefore
compute trimmed event labels by discarding all but the latest occurrence of each hub from
the forward labels. Similarly, we only keep the earliest occurrence of each hub in the
backward labels. (Preliminary experiments have shown that we obtain very similar label
sizes with a much slower algorithm that greedily covers tight journeys explicitly [2,9].)

Unfortunately, we can no longer just apply the query algorithms from Section 3 with
trimmed event labels: if the selected departure event at s does not correspond to a tight
journey toward t, the algorithm will not find a solution (though one might exist). One
could circumvent this issue by also running the algorithm from subsequent departure events
at s, which however may lead to quadratic query complexity in the worst case (for both EA
and profile queries).

Stop Labels. We solve this problem by working with stop labels: For each stop p, we merge
all forward event labels $L_f(e_0(p)), \ldots, L_f(e_k(p))$ into a forward stop label $SL_f(p)$, and all
backward event labels into a backward stop label $SL_b(p)$. Similar to distance labels, each
stop label $SL(p)$ is a list of pairs $(h, \text{time}_p(h))$, each containing a hub and a time, sorted by
hub. For a forward label, $\text{time}_p(h)$ encodes the latest departure time from p to reach hub h.
More precisely, let h be a hub in an event label $L_f(e_i(p))$: we add the pair $(h, \text{time}(e_i(p)))
to the stop label $SL_f(p)$ only if $h \notin L_f(e_j(p)), j > i$, i.e., only if h does not appear in the
label of another event with a later departure time at the stop. Analogously, for backward
stop labels, $\text{time}_p(h)$ encodes the earliest arrival time at p from h.
By restricting ourselves to these entries, we effectively discard dominated (non-tight) journeys to these hubs. It is easy to see that these stop labels obey a tight journey cover property: for each pair of stops \(s \) and \(t \), \(SL_f(s) \cap SL_b(t) \) contains at least one hub on each tight journey between them (or any equivalent journey that departs and arrives at the same time; recall from Section 2 that we allow arbitrary tie-breaking). This property does not, however, imply that the label intersection only contains tight journeys: for example, \(SL_f(s) \) and \(SL_b(t) \) could share a hub that is important for long distance travel, but not to get from \(s \) to \(t \). The remainder of this section discusses how we handle this fact during queries.

Stop Label Profile Queries. To run an \((s,t)\)-profile query on stop labels, we perform a coordinated sweep over both labels \(SL_f(s) \) and \(SL_b(t) \). For every matching hub \(h \), i.e., \((h, time_s(h)) \in SL_f(s) \) and \((h, time_t(h)) \in SL_b(t) \), we consider the journey induced by \((time_s(h), time_t(h))\) for output. However, since we are only interested in reporting tight journeys, we maintain (during the algorithm) a tentative set of tight journeys, removing dominated journeys from it on-the-fly. (We found this to be faster than adding all journeys during the sweep and only discarding dominated journeys at the end.) We can further improve the efficiency of this approach in practice by (globally) reassigning hub IDs by the time of day. Note that every hub \(h \) of a stop label is still also an event and carries an event time \(time(h) \). (Not to be confused with \(time_s(h) \) and \(time_t(h) \).) We assign sequential IDs to all hubs \(h \) in order of increasing \(time(h) \), thus ensuring that hubs in the label intersection are enumerated chronologically. Note that this does not imply that journeys are enumerated in order of departure or arrival time, since each hub \(h \) may appear anywhere along its associated journey. However, preliminary experiments have shown that this approach leads to fewer insertions into the tentative set of tight journeys, reducing query time. Moreover, as in shortest path labels \([9]\), we improve cache efficiency by storing the values for hubs and times separately in a stop label, accessing times only for matching hubs.

Overall, stop and event labels have different trade-offs: maintaining the profile requires less effort with event labels (any discovered journey is already tight), but fewer hubs are scanned with stop labels (there are no duplicate hubs).

Stop Label Earliest Arrival Queries. Reassigned hub IDs also enable fast \((s,t,\tau)\)-EA queries. We use binary search in \(SL_f(s) \) and \(SL_b(t) \) to find the earliest relevant hub \(h \), i.e., with \(time(h) \geq \tau \). From there, we perform a linear coordinated sweep as in the profile query, finding \((h, time_s(h)) \in SL_f(s) \) and \((h, time_t(h)) \in SL_b(t) \). However, instead of maintaining tentative profile entries \((time_s(h), time_t(h))\), we ignore solutions that depart too early (i.e., \(time_s(h) < \tau \)), while picking the hub \(h^* \) that minimizes the tentative best arrival time \(time_t(h^*) \). (Note that \(time(h) \geq \tau \) does not imply \(time_s(h) \geq \tau \).) Once we scan a hub \(h \) with \(time(h) \geq time_t(h^*) \), the tentative best arrival time cannot be improved anymore, and we stop the query. For practical performance, pruning the scan, so that we only sweep hubs \(h \) between \(\tau \leq time(h) \leq time_t(h^*) \), is very important.
5 Practical Extensions

So far, we presented stop-to-stop queries, which report the departure and arrival times of the quickest journey(s). In this section, we address multicriteria queries, general location-to-location requests, and obtaining detailed journey descriptions.

Multicriteria Optimization and Minimum Transfer Time. Besides optimizing arrival time, many users also prefer journeys with fewer transfers. To solve the underlying multicriteria optimization problem, we adapt our labeling approach by (1) encoding transfers as arc costs in the graph, (2) computing shortest path labels based on these costs (instead of reachability labels on an unweighted graph), and (3) adjusting the query algorithm to find the Pareto set of solutions.

Reconsider the earliest arrival graph from Section 3. As before, we add a vertex for each unique event, linking consecutive events at the same stop with waiting arcs of cost 0. However, each connection arc \((u, w)\) in the graph is subdivided by an intermediate connection vertex \(v\), setting the cost of arc \((u, v)\) to 0 and the cost of arc \((v, w)\) to 1. By interpreting costs of 1 as leaving a vehicle, we can count the number of trips taken along any path. To model staying in the vehicle, consecutive connection vertices of the same trip are linked by zero-cost arcs.

A shortest path labeling on this graph now encodes the number of transfers as the shortest path distance between two events, while the duration of the journey can still be deduced from the time difference of the events. Consider a fixed source event \(e(s)\) and the arrival events of a target stop \(e_0(t), e_1(t), \ldots\) in order of increasing time. The minimum number of transfers required to reach the target stop \(t\) never increases with arrival times. (Hence, the whole Pareto set \(P\) of multicriteria solutions can be computed with a single Dijkstra run [18].)

We exploit this property to compute \((s, t, \tau)-EA\) multicriteria (MC) queries from the labels as follows. We initialize \(P\) as the empty set. We then perform an \((s, t, \tau)-EA\) query (with all optimizations described in Section 3) to compute the fastest journey in the solution, i.e., the one with most transfers. We add this journey to \(P\). We then check (by performing distance label queries) for each subsequent event at \(t\) whether there is a journey with fewer transfers (than the most recently added entry of \(P\)), in which case we add the journey to \(P\) and repeat. The MC query ends once the last event at the target stop has been processed. We can stop earlier with the following optimization: we first run a distance label query on the last event at \(t\) to obtain the smallest possible number of transfers to travel from \(s\) to \(t\). We may then already stop the MC query once we add a journey to \(P\) with this many transfers. Note that, since we do not need to check for domination in \(P\) explicitly, our algorithm maintains \(P\) in constant time per added journey.

Minimum Transfer Times. Transit agencies often model an entire station with multiple platforms as a single stop and account for the time required to change trips inside the station by associating a minimum transfer time \(mtt(p)\) with each stop \(p\). To incorporate them into
the EA graph, we first locally replace each affected stop \(p \) by a set of new stops \(p^* \), distributing conflicting trips (between which transferring is impossible due to \(mtt(p) \)) to different stops of \(p^* \). We then add footpaths between all pairs of stops in \(p^* \) with length \(mtt(p) \). A small set \(p^* \) can be computed by solving an appropriate coloring problem \[10\]. For the MC graph, we need not change the input. Instead, it is sufficient to shift each arrival event \(e \in E(p) \) by adding \(mtt(p) \) to \(time(e) \) before creating the vertices.

Location-to-Location Queries. A query between arbitrary locations \(s^* \) and \(t^* \), which may employ walking or driving as the first and last legs of the journey, can be handled by a two-stage approach. It first computes sets \(S \) and \(T \) of relevant stops near the origin \(s^* \) and destination \(t^* \) that can be reached by car or on foot. With that information, a forward superlabel [1] is built from all forward stop labels associated with \(S \). For each entry \((h, time_p(h)) \in SL_f(p) \) in the label of stop \(p \in S \), we adjust the departure time \(time_s(h) = time_p(h) - \text{dist}(s^*, p) \) so that the journey starts at \(s^* \) and add \((h, time_s(h)) \) to the superlabel. For duplicate hubs that occur in multiple stop labels, we keep only the latest departure time from \(s^* \). This can be achieved with a coordinated sweep, always adding the next hub of minimum ID. A backward superlabel (for \(T \)) is built analogously. For location-to-location queries, we then simply run our stop-label-based EA and profile query algorithms using the superlabels. In practice, we need not build superlabels explicitly but can simulate the building sweep during the query (which in itself is a coordinated sweep over two labels). A similar approach is possible for event labels. Moreover, point-of-interest queries (such as finding the closest restaurants to a given location) can be computed by applying known techniques [1] to these superlabels.

Journey Descriptions. While for many applications it suffices to report departure and arrival times (and possibly the number of transfers) per journey, sometimes a more detailed description is needed. We could apply known path unpacking techniques [1] to retrieve the full sequence of connections (and transfers), but in public transit it is usually enough to report the list of trips with associated transfer stops. We can accomplish that by storing with each hub the sequences of trips (and transfer stops) for travel between the hub and its label vertex.

6 Experiments

Setup. We implemented all algorithms in C++ using Visual Studio 2013 with full optimization. All experiments were conducted on a machine with two 8-core Intel Xeon E5-2690 CPUs and 384 GiB of DDR3-1066 RAM, running Windows 2008R2 Server. All runs are sequential. We use at most 32 bits for distances.

We consider four realistic inputs: the metropolitan networks of London (data.london.gov.uk) and Madrid (emtmadrid.es), and the national networks of Sweden (trafiklab.se) and Switzerland (gtfs.geops.ch). London includes all modes of transport, Madrid contains
Table 1. Size of timetables and the earliest arrival (EA) and multicriteria (MC) graphs.

Instance	Stops	Conns	Trips	Footp.	Dy.	EA Graph	MC Graph						
						$	\,	A		$	\,	A	
London	20.8k	5,133k	133k	45.7k	4	4,719k 51,043k	9,852k 72,162k						
Madrid	4.7k	4,527k	165k	1.3k	1	3,003k 13,730k	7,530k 34,505k						
Sweden	51.1k	12,657k	548k	1.1k	2	8,151k 34,806k	20,808k 93,194k						
Switzerland	27.1k	23,706k	2,198k	29.8k	2	7,979k 49,656k	31,685k 170,503k						

only buses, and the national networks contain both long-distance and local transit. We consider 24-hour timetables for the metropolitan networks, and two days for national ones (to enable overnight journeys). Footpaths were generated using a known heuristic [10] for Madrid; they are part of the input for the other networks. See Table 1 for size figures of the timetables and resulting graphs. The average number of unique events per stop ranges from 160 for Sweden to 644 for Madrid. (Recall from Section 3 that we merge all coincident events at a stop.) Note that no two instances dominate each other (w. r. t. number of stops, connections, trips, events per stop, and footpaths).

Preprocessing. Table 2 reports preprocessing figures for the unweighted earliest arrival graph (which also enables profile queries) and the multicriteria graph. For earliest arrival (EA), preprocessing takes well below an hour and generates about one gigabyte, which is quite practical. Although there are only 37–70 hubs per label, the total number of hubs per stop (i.e., the combined size of all labels) is quite large (5,630–49,247). By eliminating redundancy (cf. Section 4), stop labels have only a fifth as many hubs (for Madrid). Even though they need to store an additional distance value per hub, total space usage is still smaller. In general, average labels sizes (though not total space) are higher for metropolitan instances. This correlates with the higher number of daily journeys in these networks.

Table 2. Preprocessing figures. Label sizes are averages of forward and backward labels.
Table 3. Evaluating earliest arrival queries. Bullets (●) indicate different features: profile query (Prof.), stop labels (St. lbs.), pruning (Prn.), hashing (Hash), and binary search (Bin.). The column “=” indicates the average number of matched hubs.

	London			Sweden			Switzerland		
Prof.	St. lbs.	Prn.	Hash	Bin.	Lbls. Hubs =	Lbls. Hubs =	Lbls. Hubs =		
o o o o o	108.4 6,936	1	14.7	68.0 2,415	1	6.9	89.0 3,485	1	8.7
o o ● o o	16.1 1,360	1	5.9	34.4 1,581	1	5.4	33.5 1,676	1	5.8
o o ● ● o	16.1 1,047	1	4.2	34.4 1,083	1	3.6	33.5 1,151	1	3.8
o o ● ● ●	7.0 332	4	2.8	6.5 179	3	2.1	7.6 204	4	2.1
o ● o o o	2.0 13,037	1,126	54.8	2.0 2,855	81	10.0	2.0 5,707	218	20.4
o ● ● o o	2.0 861	62	6.2	2.0 711	16	3.6	2.0 699	19	3.8
● o o o o	658.5 40,892	211	141.7	423.7 13,590	118	39.4	786.6 29,381	240	81.4
● ● o o o	2.0 13,037	1,126	74.3	2.0 2,855	81	12.1	2.0 5,707	218	24.5

Preprocessing the multicriteria (MC) graph is much more expensive: times increase by a factor of 26.2–54.8 for the metropolitan and 67.9–88 for the national networks. On Madrid, Sweden, and Switzerland labels are five times larger compared to EA, and on London the factor is even more than ten. This is immediately reflected in the space consumption, which is up to 26 GiB (London).

Queries. We now evaluate query performance. For each algorithm, we ran 100,000 queries between random source and target stops, at random departure times between 0:00 and 23:59 (of the first day). Table 3 reports detailed figures, organized in three blocks: event label EA queries, stop label EA queries, and profile queries (with both event and stop labels). We discuss MC queries later.

We observe that event labels result in extremely fast EA queries (6.9–14.7 µs), even without optimizations. As expected, pruning and hashing reduce the number of accesses to labels and hubs (see columns “Lbls.” and “Hubs”). Although binary search cannot stop as soon as a matching hub is found (see the “=” column), it accesses fewer labels and hubs, achieving query times below 3 µs on all instances.

Using stop labels (cf. Section 4) in their basic form is significantly slower than using event labels. With pruning enabled, however, query times (3.6–6.2 µs) are within a factor of two of the event labels, while saving a factor of 1.1–2.4 in space. For profile queries, stop labels are clearly the best approach. It scans up to a factor of 5.1 fewer hubs and is up to 3.3 times faster, computing the profile of the full timetable period in under 80 µs on all instances. The difference in factors is due to the overhead of maintaining the Pareto set during the stop label query.
Table 4. Comparison with the state of the art. Presentation largely based on [5], with some additional results taken from [6]. The first block of techniques considers the EA problem, the second the MC problem and the third the profile problem.

Algorithm	Name	Stops [-10^3]	Conns [-10^6]	Dy.	Prep. [h]	Jn. [ms]	Query [ms]
CSA	London	20.8	4.9	1	o	n/a	1.8
ACSA	Germany	252.4	16.6	2	o	o	2.2
CH	Europe (LD)	30.5	1.7	p	o	<0.1	0.3
TP	Italy	4.6	4.8	1	o	o	0.2
TP	Germany	248.4	13.9	1	o	o	0.9
PTL	London	20.8	5.1	1	o	o	0.9
PTL	Madrid	4.7	4.5	1	o	o	0.9
PTL	Sweden	51.1	12.7	2	o	o	1.0
RAPTOR	London	20.8	5.1	1	o	o	1.8
TP	Italy	4.6	4.8	1	o	o	3.1
PTL	London	20.8	5.1	1	o	o	49.3
PTL	Madrid	4.7	4.5	1	o	o	10.9
PTL	Sweden	51.1	12.7	2	o	o	36.2
PTL	Switzerland	27.1	23.7	2	o	o	61.6
CSA	London	20.8	4.9	1	o	o	98.2
ACSA	Germany	252.4	16.6	2	o	o	171.0
CH	Europe (LD)	30.5	1.7	p	o	<0.1	3.7
TP	Germany	248.4	13.9	1	o	o	249
PTL	London	20.8	5.1	1	o	o	9.0
PTL	Madrid	4.7	4.5	1	o	o	0.4
PTL	Sweden	51.1	12.7	2	o	o	0.5
PTL	Switzerland	27.1	23.7	2	o	o	0.7
Comparison. Table 4 compares our new algorithm (indicated as PTL, for Public Transit Labeling) to the state of the art and also evaluates multicriteria queries. In this experiment, PTL uses event labels with pruning, hashing and binary search for earliest arrival (and multicriteria) queries, and stop labels for profile queries. We compare PTL to CSA \cite{12} and RAPTOR \cite{11} (currently the fastest algorithms without preprocessing), as well as Accelerated CSA (ACSA) \cite{20}, Timetable Contraction Hierarchies (CH) \cite{14}, and Transfer Patterns (TP) \cite{4,6} (which make use of preprocessing). Since RAPTOR always optimizes transfers (by design), we only include it for the MC problem. Note that the following evaluation should be taken with a grain of salt, as no standardized benchmark instances exist, and many data sets used in the literature are proprietary. Although precise numbers are not available for several competing methods, it is safe to say they use less space than PTL, particularly for the MC problem.

Table 4 shows that PTL queries are very efficient. Remarkably, they are faster on the national networks than on the metropolitan ones: the latter are smaller in most aspects, but have more frequent journeys (that must be covered). Compared to other methods, PTL is 2–3 orders of magnitude faster on London than CSA and RAPTOR for EA (factor 643), profile (factor 2,167), and MC (factor 203) queries. We note, however, that PTL is a point-to-point algorithm (as are ACSA, TP, and CH); for one-to-all queries, CSA and RAPTOR would be faster.

PTL has 1–2 orders of magnitude faster preprocessing and queries than TP for the EA and profile problems. On Madrid, EA queries are 233 times faster while preprocessing is faster by a factor of 48. Note that Sweden (PTL) and Germany (TP) have a similar number of connections, but PTL queries are 95 times faster. (Germany does have more stops, but recall that PTL query performance depends more on the frequency of trips.) For the MC problem, the difference is smaller, but both preprocessing and queries of PTL are still an order of magnitude faster than TP (up to 48 times for MC queries on Madrid).

Compared to ACSA and CH (for which figures are only available for the EA and profile problems), PTL has slower preprocessing but significantly faster queries (even when accounting for different network sizes).

7 Conclusion

We introduced PTL, a new preprocessing-based algorithm for journey planning in public transit networks, by revisiting the time-expanded model and adapting the Hub Labeling approach to it. By further exploiting structural properties specific to timetables, we obtained simple and efficient algorithms that outperform the current state of the art on large metropolitan and country-sized networks by orders of magnitude for various realistic query types. Future work includes developing tailored algorithms for hub computation (instead of using RXL as a black box), compressing the labels (e.g., using techniques from \cite{6} and \cite{9}), exploring other hub representations (e.g., using trips instead of events, as in 3-hop labeling \cite{21}), using multicore- and instruction-based parallelism for preprocessing and
queries, and handling dynamic scenarios (e.g., temporary station closures and train delays or cancellations ⁵).

References

[1] Ittai Abraham, Daniel Delling, Amos Fiat, Andrew V. Goldberg, and Renato F. Werneck. HLDB: Location-based services in databases. In Proceedings of the 20th ACM SIGSPATIAL International Symposium on Advances in Geographic Information Systems (GIS’12), pages 339–348. ACM Press, 2012. Best Paper Award.

[2] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck. Hierarchical hub labelings for shortest paths. In Proceedings of the 20th Annual European Symposium on Algorithms (ESA’12), volume 7501 of Lecture Notes in Computer Science, pages 24–35. Springer, 2012.

[3] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. Fast exact shortest-path distance queries on large networks by pruned landmark labeling. In Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data (SIGMOD’13), pages 349–360. ACM Press, 2013.

[4] Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger, Chris Harrelson, Veselin Raychev, and Fabien Viger. Fast routing in very large public transportation networks using transfer patterns. In Proceedings of the 18th Annual European Symposium on Algorithms (ESA’10), volume 6346 of Lecture Notes in Computer Science, pages 290–301. Springer, 2010.

[5] Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller–Hannemann, Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route planning in transportation networks. Technical Report MSR-TR-2014-4, Microsoft Research, 2014.

[6] Hannah Bast and Sabine Storandt. Frequency-based search for public transit. In Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM Press, November 2014.

[7] James Cheng, Silu Huang, Huanhuan Wu, and Ada Wai-Chee Fu. Tf-label: A topological-folding labeling scheme for reachability querying in a large graph. In Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data (SIGMOD’13), pages 193–204. ACM Press, 2013.

[8] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reachability and distance queries via 2-hop labels. SIAM Journal on Computing, 32(5):1338–1355, 2003.

[9] Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck. Robust distance queries on massive networks. In Proceedings of the 22nd Annual European Symposium on Algorithms (ESA’14), volume 8737 of Lecture Notes in Computer Science, pages 321–333. Springer, September 2014.

[10] Daniel Delling, Bastian Katz, and Thomas Pajor. Parallel computation of best connections in public transportation networks. ACM Journal of Experimental Algorithmics, 17(4):4.1–4.26, July 2012.

[11] Daniel Delling, Thomas Pajor, and Renato F. Werneck. Round-based public transit routing. Transportation Science, 2014. accepted for publication.
[12] Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Intriguingly simple and fast transit routing. In *Proceedings of the 12th International Symposium on Experimental Algorithms (SEA’13)*, volume 7933 of *Lecture Notes in Computer Science*, pages 43–54. Springer, 2013.

[13] Edsger W. Dijkstra. A note on two problems in connexion with graphs. *Numerische Mathematik*, 1:269–271, 1959.

[14] Robert Geisberger. Contraction of timetable networks with realistic transfers. In *Proceedings of the 9th International Symposium on Experimental Algorithms (SEA’10)*, volume 6049 of *Lecture Notes in Computer Science*, pages 71–82. Springer, May 2010.

[15] Ruoming Jin and Guan Wang. Simple, fast, and scalable reachability oracle. *Proceedings of the VLDB Endowment*, 6(14):1978–1989, 2013.

[16] Florian Merz and Peter Sanders. Preach: A fast lightweight reachability index using pruning and contraction hierarchies. In *Proceedings of the 22nd Annual European Symposium on Algorithms (ESA’14)*, volume 8737 of *Lecture Notes in Computer Science*, pages 701–712. Springer, September 2014.

[17] Matthias Müller-Hannemann and Karsten Weihe. On the cardinality of the Pareto set in bicriteria shortest path problems. *Annals of Operations Research*, 147(1):269–286, 2006.

[18] Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. Efficient models for timetable information in public transportation systems. *ACM Journal of Experimental Algorithmics*, 12(2.4):1–39, 2008.

[19] Stephan Seufert, Avishek Anand, Srikanta Bedathur, and Gerhard Weikum. Ferrari: Flexible and efficient reachability range assignment for graph indexing. In *Proceedings of the 29th International Conference on Data Engineering*, pages 1009–1020. IEEE Computer Society, 2013.

[20] Ben Strasser and Dorothea Wagner. Connection scan accelerated. In *Proceedings of the 16th Meeting on Algorithm Engineering and Experiments (ALENEX’14)*, pages 125–137. SIAM, 2014.

[21] Yosuke Yano, Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. Fast and scalable reachability queries on graphs by pruned labeling with landmarks and paths. In *Proceedings of the 22nd International Conference on Information and Knowledge Management*, pages 1601–1606. ACM Press, 2013.

[22] Hilmi Yildirim, Vineet Chaoji, and Mohammad J. Zaki. Grail: Scalable reachability index for large graphs. *Proceedings of the VLDB Endowment*, 3(1):276–284, 2010.

[23] Andy Diwen Zhu, Wenqing Lin, Sibo Wang, and Xiaokui Xiao. Reachability queries on large dynamic graphs: A total order approach. In *Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data (SIGMOD’14)*, pages 1323–1334. ACM Press, 2014.