Pharmacokinetic Study of Lappaconitine Hydrobromide Transfersomes in Rats by LC-MS

Zheng WS*, Sheng YX, Zhang YJ, Fang XQ and Wang LL

Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Beijing 100050, People’s Republic of China

Abstract

A rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for determination of lappaconitine hydrobromide in rat plasma and study on the pharmacokinetics of lappaconitine hydrobromide transfersomes in rat. Analyses were performed on Altima™ HP C18 column (50 mm×2.1 mm, 3 μm) with internal standard of tetrahydropalmatine and a mobile phase of methanol-0.1% formic acid (80:20). Agilent™ LC/ MSD QQQ mass spectrometer with the mode of multiple reactions monitoring (MRM) was applied in the detection. Pharmacokinetic parameters of isodose lappaconitine hydrobromide transfersomes in transdermal patch were analyzed and calculated by DASver 2.0 software. The results indicated that with the linear range of 2.0-2000.0 ng/ml, quantitative lower limit was 2.0 ng and both the inter-day and the intra-day precisions were less than 9.9%. Lappaconitine hydrobromide transfersomes could significantly increase AUC and extend the circulation time of in rats.

Keywords: Lappaconitine hydrobromide; Transfersomes; Pharmacokinetic study

Introduction

Transfersomes (TF), alias ultradeformable nano-liposomes, were obtained by adding surfactants (such as sodium cholate, etc) in phospholipid bilayers of conventional liposomes. Besides advantages of the good affinity with skin, innocuity and safety, the priorities associated with transfersomes were their high deformability and high skin penetration. The drugs transfer across the skin from the epidermis into the dermis and finally into lymphatic vessels and blood vessels, and possess a therapeutic effect. A research report on transfersomes system, which was first proposed by professor Cevc from Technical University of Munich, indicated that transfersomes membrane had high deformability and its composition was stable via the skin. It was reported by Zellmer that there were complete transfersomes in blood circulation, which had extraordinary superiority in transdermal administration [1-9].

Lappaconitine hydrobromide (LH) was an alkaloidal hydrobromate extracted from the roots of Aconitum Sinomontanum Nakai (Ranunculaceae). Its chemical name was (1α,14α,16β)-20-sulfo-ethyl-1,14,16-trimethoxyaconitane-4,8,9-triol-4-[2-(acetylamino)benzoxyl] hydrobromide-monohydrate with a molecular formula of C_{32}H_{44}N_{2}O_{8}·HBr·H_{2}O. The structural formula was illustrated in Figure 1. The molecular weight and melting point of LH were 683.64 Dalton and 192.217-221°C, respectively. LH was soluble in methanol and hexane, slightly soluble in water, very slightly soluble in ethanol, but practically insoluble in chloroform. Due to the relatively strong analgesic effect [10,11], LH was a good non-addictive anodyne and an effective therapy for various pain symptoms in clinic, such as postoperative pain, gastrointestinal ulcer, gastritis, hepatitis, rheumatoid arthritis, sciatica, headache caused by cold and so on. The applications show that LH indeed provide an good analgesia effect on patients with advanced cancer and certain chronic patients. As a surgical analgesic and an adjuvant drug for radiotherapy and chemotherapy, LH was used in the treatment of cancer pain and simultaneously in improving general symptoms of tumor patients to enhance immune function. Analgesic effect of LH was seven times as strong as aminopyrine, equivalent with dolantin [12]. Because the efficacy kept for a long time without...
teratogenic effect, mutagenesis or accumulative intoxication, LH was a good non-addictive analgesic.

LH was an insoluble drug taken in low dose. As an analgesic, there was a requirement in clinic that its preparations ought to have the characteristics of fast absorption and rapid action in order to relieve pain quickly. However, lappaconitine hydrobromide tablets sold in market belong to conventional tablet formulation. The properties of excipient employed in preparation result in long disintegration time, low dissolution rate, fast action and low bioavailability, which cannot satisfy the clinical requirements [13–15]. Therefore, a new preparation was urgently needed to be developed to improve the bioavailability and to reduce the times of administration for convenient administration. According to the WHO three ladder acetylsalicylic principle, non-invasive administration was the first choice in treating cancer pain and thus LH was made into transdermal preparation with the advantages of convenient administration and non-invasion. It avoided gastrointestinal damage of drug and hepatic first pass effect, and reduces the toxicity and side effects and the times of administration. In addition, it led to steady-state plasma concentration and long effect, was convenient for long-term administration and rarely had psychological dependence (addiction). Based on its physicochemical properties, pharmacological effects and the requirement of fast absorption and rapid action in clinic, LH was made into transfersomes, which had small the particle size, fast percutaneous absorption, short onset time and good analgesia effect, to improve bioavailability.

Although lappaconitine had remarkable pharmacological activities and promising clinical application, pharmacokinetics of lappaconitine were rarely reported at present. In this study, lappaconitine and promising clinical application, pharmacokinetics of lappaconitine improve bioavailability.

LH was made into transfersomes, which had small the particle size, fast effects and the requirement of fast absorption and rapid action in clinic, long-term administration and rarely had psychological dependence, steady-state plasma concentration and long effect, was convenient for convenient administration and non-invasion. It avoided gastrointestinal homogenization pressure of 500–600 bar and cycle number of 3–4, emulsion color changed from turbidity to clarification and blue opalescence.

Sample preparation

Preparation of transfersomes: Preparation of lappaconitine hydrobromide transfersomes: lappaconitine hydrobromide in methanol solution and soybean lecithin and sodium deoxycholate in ethanol solution were mixed and homogenized and subsequently the appearance of mixture was clarification and transparent. After most organic solvent was evaporated by vacuum, the left was removed by nitrogen. As hydration media the pellet in 100 ml distilled water was completely hydrated at room temperature. With high pressure homogenization pressure of 300–600 bar and cycle number of 3–4, emulsion color changed from turbidity to clarification and blue opalescence.

Sample preparation

Lappaconitine hydrobromide weighed 58.5 mg (equivalent to 50.0 mg free base of lappaconitine) was placed in a 50 ml volumetric flask. After adding appropriate amount of saline, the volumetric flask was shook to make solution homogenized and clarified. Saline was filled up to the mark and 1.0 mg/ml physic liquor was obtained.

Treatment of plasma samples

After precisely pipetting of 100 μl plasma sample into an EP tube, 20 μl internal standard solution (10.0 μg/ml tetrahydropalmatine), 100 μl ultrapure water and 60 μl sodium hydroxide solution (1.0 mol/l) were added and mixed, and then 1 ml extraction solvent (n-hexane : methanol, 95:5, v/v) was added. The mixture was homogenized for 10 min, shook for 10 min and centrifuged for 5 min (at 14000 rpm). Subsequently, 20 μl supernatant was analyzed by LC/MS/MS (Wang Qing et al. 2011).

Standard curve and quantitative limit of LH in plasma

After precisely pipetting of 100 μl rat plasma into an EP tube, various concentrations of reference substance solutions of LH and internal standard solution were added precisely. Plasma samples, in which LH concentrations were 2.0, 10.0, 20.0, 80.0, 400.0, 1000.0 and 2000.0 ng/ml respectively, were treated according to "Treatment of plasma samples” except adding 100 μl water to establish the standard curve. The linear regression equation, so called standard curve, was obtained with determine and as abscissa and the ratio of determined compound concentration.
Recovery

Three portion standard solutions of LH were treated according to “Treatment of plasma samples” to obtain quality control (QC) samples, which plasma concentrations were 10.0, 400.0 and 1000.0 ng/ml. Each concentration divided into six portions was analyzed for three days. The extraction recovery at low, middle and high concentrations was calculated using plasma standard calibration curve.

Stability investigation

The stabilities of treated plasma samples of lappaconitine placed at room temperature for 24 h and untreated plasma samples of lappaconitine placed at room temperature for 15 min, 30 min, 1 h and 2 h were investigated in this experiment. In addition, the stabilities of plasma samples with freezing-thawing cycle once and for three times and plasma samples with freezing at -20°C for 30 days were studied. In stability investigation, 100 μl blank plasma was treated according to “Standard curve and quantitative limit of LH in plasma” to obtain the plasma samples of lappaconitine at low and high concentrations (10.0 ng plus 1, 1000.0 ng/ml). Each concentration divided into three portions was analyzed.

Stability experiment

According to the treatment method of standard curve, the plasma samples at 10.0, 400.0 and 1000.0 ng/ml were treated and each concentration divided into three portions was analyzed. The stabilities of plasma samples with freezing-thawing cycle once and for three times and plasma samples with freezing at -20°C for 30 days and then thawing at room temperature were determined.

Method for animal experiment

All animal studies were performed in accordance with the experimental protocols approved by the Animal Care Committee of Institute of Materia Medica, Chinese Academy of Medical Sciences. Male SD rats used in the present study were supplied by Institute of Materia Medica (Beijing, China). Rats were housed in standard cages and allowed free movement and access to water and standard laboratory diet throughout the experiments. 15 rats weighed 200 ± 20 g were randomly and equivalently divided into 3 groups, which were A group, B group and C group and were given different doses. During experiment period, rats were fed free with food and water. Then, transdermal administration at same dose of LH transfersomes was accomplished. 0.3 ml Blood was collected from postocular venous plexus at 1, 2, 4, 6, 8, 10, 12, 14 h and intervals of 1 hour, 72 hours in total, after administration. Plasma was obtained after centrifuging at 5000 rpm for 10 min. The supernatant was frozen for later use.

Data statistical method

Pharmacokinetic parameters of lappaconitine administration were analyzed and calculated by DASver 2.0 software. The compartmental model fitting of dynamic process in rat was accomplished.

Results and Discussion

HPLC-MS chromatograms

The chemical structures of lappaconitine and IS both contained nitrogen atom, so the abundance was strong in positive mode. Appropriate amount of standard solution of lappaconitine (2.0 ng/ml) and internal standard solution (10.0 μg/ml) were added to blank plasma and treated as the same process to obtain the corresponding chromatogram. The fragmentation process of lappaconitine (m/z 585→m/z162) and tetrahydropalmatine (m/z356→m/z192) were shown in Figure 2. The retention times of lappaconitine and IS were about 1.8 and 1.9 min, respectively. The overall chromatographic run time was finished within 4 min. The endogenous substance in plasma did not interfere with the determination of lappaconitine and internal standard tetrahydropalmatine. Under the mass spectrometer conditions, the plasma sample collected at 5 h after transdermal administration of 10 mg/ml lappaconitine hydrobromide transfersomes and added with internal standard was treated according to “Treatment of plasma samples”. When secondary scanning was carried out under MRM mode, the endogenous substance and other impurities in plasma did not interfere with the separation and determination of sample.

Standard curve of LH in plasma

The linear regression equation was calculated according to area ratio of LH to internal standard in plasma with the standard curve of typical rat plasma sample as y=3.8799E-005*x+0.0027. The standard curve in the range of 2.0-2000.0 ng/ml had good linear relation with weighted coefficient of 1/X² (r=0.9996). The limit of quantification was 2 ng/ml. Data of the limit of quantification indicated that the determination of LH in rat was extremely sensitive and accurate.

Accuracy and precision

Three portion standard solutions of LH were treated according to “Treatment of plasma samples” to obtain quality control (QC) samples, which plasma concentrations were 10.0, 400.0 and 1000.0 ng/ml. Each concentration divided into six portions was analyzed for three days. Concentrations of quality control samples were calculated based on intraday standard curve. The accuracy (RE) was below ±4.8% and both intra-day precision and inter-day precision (RSD) were below 8.11 (Table 1).

Extraction recovery

Three portion standard solutions of LH were treated according to “Treatment of plasma samples” to obtain quality control (QC) samples, which plasma concentrations were 10.0, 400.0 and 1000.0 ng/ml. Each concentration divided into six portions was analyzed. The extraction recovery at low, middle and high concentrations was 81.6%, 94.4% and 92.3% by calculating peak area ratio by two treatment methods of one concentration (Table 2).

Stability investigation

The stabilities of treated LH plasma samples with freezing-thawing cycle once and for three times and LH plasma samples with freezing at -20°C for 30 days were investigated. Data of stability investigation illustrated that both treated LH plasma samples with freezing-thawing cycle once and for three times and LH plasma samples with freezing at -20°C for 30 days were steady (RSD< 4.87 , RSD< 8.34) (Table 3).

Application of the method to pharmacokinetic study

The plasma concentration after transdermal administration of 10 mg/ml lappaconitine hydrobromide transfersomes in rat was determined by LC/MS and the pharmacokinetic behavior of lappaconitine hydrobromide transfersomes in rat was deeply investigated. The obtained plasma concentration-time curve was shown in Figure 3. The average plasma concentration after transdermal administration was fitted to two- compartments model by DASver2.0 software. The fitted pharmacokinetic parameters were listed in Table 4. The areas under plasma concentration-time curve (AUC_{0-t}) were 53.886 at transdermal administration of dose of 10.0 mg/kg in rats, respectively.
Figure 2: Typical chromatograms for the determination of lappaconitine and tetrahydropalmatine in samples: (A) chromatogram of a blank plasma sample; (B) chromatogram of a plasma sample spiked with lappaconitine hydrobromide transfersomes and internal standard (I.S.); (C) chromatogram of the plasma sample collected between 12 h and 24 h after transdermal administration of 10 mg/ml of hydrobromide transfersomes.

Figure 3: Pharmacokinetic parameters for lappaconitine after transdermal administration of 10 mg/ml in rats.
“Peak and valley” phenomenon is often observed in time-plasma concentration curve by oral or injection administration. The therapeutic effects are hardly exerted completely at valley plasma concentration, while drug overdose leads to toxicity at peak plasma concentration. In this study, after transdermal administration, that peak time increased, peak concentration decreased and the curve trended to smooth with mean retention time (MRT) of 38.708 avoided “peak and valley” phenomenon clearly shown in Table 4 and Figure 3. That the area under curve increased relatively indicated better absorption via transdermal administration.

Due to sustained drug release of patches, plasma concentration had a slight decline, which helped medicine with sustained efficacy. The constant speed release of drug avoided first pass effect and gastrointestinal stimulation.

Both the time of steady-state plasma concentration and half-life were long, which extended the time of dosing intervals.

Conclusions

The method for determination and pharmacokinetics of lappaconitine hydrobromide transfersomes in rat were established in this study and it features high sensitivity, simple operation, good linearity and high precision. There is no obvious detected endogenous substance that might interfere with the determination. This method can be successfully applied in pharmacokinetic evaluations of lappaconitine hydrobromide transfersomes for transdermal administration and provides pharmacokinetic theoretical basis for clinical medication by offering pharmacokinetic parameters of lappaconitine hydrobromide transfersomes.

References

1. Cevc G (2004) Lipid vesicles and other colloids as drug carriers on the skin. Adv Drug Deliv Rev 56: 675-711.
2. Cevc G, Vierl U, Mazgareanu S (2008) Functional characterization of novel analgesic product based on self-regulating drug carriers. Int J Pharm 360: 18-28.
3. Cevc G, Gebauer D, Stieber J, Schatzlein A, Blume G (1998) Ultraflexible vesicles, Transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin. Biochim Biophys Acta 1368: 201-215.
4. Cevc G (1996) Transfersome, Liposomes and other lipid suspensions on the skin: permeation enhancement, vesicle penetration, and transdermal drug delivery. Crit Rev Ther Drug Carrier Syst 13: 287-388.

Table 1: Intra-day and inter-day precision and accuracy of LC/MS determination of lappaconitine in rats plasma.

Concentration added to plasma (ng/ml)	Intra-day (n=6)	Inter-day (n=4)				
	Mean measured concentration (ng/ml)	Accuracy (%)	RSD (%)	Mean measured concentration (ng/ml)	Accuracy (%)	RSD (%)
10	8.88 ± 0.72	88.8	8.11	8.95 ± 0.61	89.5	6.82
400	372.5 ± 8.46	93.1	2.27	377.6 ± 11.67	94.4	3.09
1000	875.5 ± 5.78	87.5	0.66	901.0 ± 6.33	90.1	0.70

Table 2: Recoveries of lappaconitine in rats plasma (n=6).

Concentration added to plasma (ng/ml)	Room temperature (8 h)	Four freeze-thaw circles				
	Mean measured concentration (ng/ml)	Accuracy (%)	RSD (%)	Mean measured concentration (ng/ml)	Accuracy (%)	RSD (%)
10	8.75 ± 0.73	87.5	8.34	8.42 ± 0.41	84.2	4.67
400	369.4 ± 11.32	92.4	3.06	355.6 ± 9.24	88.9	2.60
1000	934.6 ± 18.91	93.4	2.02	978.7 ± 15.34	97.9	1.57

Table 3: Stability of lappaconitine in rats plasma (n=6).

parameters	Statistical moment parameters		
t1/2α	h	6.013	65.292
t1/2β	h	10.108	65.531
V1/F	L/kg	209.773	2527.314
CL/F	L/kg/h	182.692	2552.735
AUC(0-t)	ug/L/h	53.886	38.708
AUC(0-∞)	ug/L/h	54.737	38.955
K10	1/h	0.871	254.471
K12	1/h	0.774	270.65
K21	1/h	0.086	0.095
Ka	1/h	0.28	123
t1/2Ka	h	2.477	0.023
Tmax	h	7.32	24
Vz/F	L/kg	1611.844	
CLz/F	L/kg/h	152.601	
Cmax	ug/L	1.51673914	

Table 4: Pharmacokinetic parameters for lappaconitine hydrobromide transfersomes after transdermal administration of 10 mg/ml of rats.
5. Ning YM, Guo YZ (2004) Liposome for transdermal absorption of drugs progress. J. Fore Med Pharm 31: 302-307.

6. Wang H, Guo DH, Guo SL (2006) New non-invasive transfersomals delver of drugs: transfersomals. Chin J New Drugs 15: 341-344.

7. Simoes SI, Marques CM, Cruz ME, Cevc G (2004) The effect of cholate on solubilisation and permeability of simple and protein-loaded phosphatidylycholine/sodium cholate mixed aggregates designed to mediate transdermal delivery of macromolecules. Eur J Pharm Biopharm 58: 509–519.

8. Chen TK, Lin HQ, Li Y (2009) the progress of new carrier transdermal delivery of flexible nano-liposomes. Prog Pharm Sci 12: 732-734.

9. Zelimer S, Cevc G (1996) Tumor targeting in vivo by means of Thermolabile fusogenic liposomes. J Drug Target 4: 19-29.

10. Tang XC, Zhu MY, Feng J (1986) Studies on pharmacological actions of lappaconitine hydrobromide. Acta Pharm Sin 15: 579-583.

11. Ono M, Satoh T (1988) Pharmacological studies of lappaconitine: Analgesic activities. Arzneimittelforschung 38: 862-895.

12. YU Ji-zhi, ZHANG Bai-jing, JIANG Xue-tao (2005) Clinical application of lappaconitine hydrobromide. Acad J Second Mil Med Univ 26: 822-824.

13. Ono M, Satoh T (1989) Pharmacological studies of lappaconitine: occurrence of analgesic effect without opioid receptor. Res Commun Chem Pathol Pharmacol 63: 13-25.

14. Heubach JF, Schüle A (1998) Cardiac effects of lappaconitine and N-deacetyl lappaconitine, two diterpenoid alkaloids from plants of the Aconitum and Delphinium species. Planta Med 64: 22-26.

15. Wright SN (2001) Irreversible block of human heart (hH1) sodium channels by the plant alkaloid lappaconitine. Mol Pharmacol 59: 183-192.