IN Variant AND PREserving TRANSforms FOR CROSS RATIO OF 4-POINTS IN A LINE ON DESARGUES AFFINE PLANE

ORGEST ZAKA AND JAMES F. PETERS

Dedicated to Girard Desargues and Karl G. C. von Staudt

Abstract. This paper introduces advances in the geometry of the transforms for cross ratio of four points in a line in the Desargues affine plane. The results given here have a clean, based Desargues affine plan axiomatics and definitions of addition and multiplication of points on a line in this plane, and for skew field properties. In this paper are studied, properties and results related to the some transforms for cross ratio for 4-points, in a line, which we divide into two categories, Invariant and Preserving transforms for cross ratio. The results in this paper are (1) the cross-ratio of four points is Invariant under transforms: Inversion, Natural Translation, Natural Dilation, Möbius Transform, in a line of Desargues affine plane. (2) the cross-ratio of four points is Preserved under transforms: parallel projection, translations and dilation’s in the Desargues affine plane.

1. Introduction and Preliminaries

Influenced by the recently achieved results, related to the ratio of 2 and 3 points (see, [17], [10]), but mainly on the results presented in the paper [23] for cross-ratio of four collinear points in a line ℓ_{OI}, in Desargues affine planes, in this paper we study some transforms regrading to cross-ratio of four collinear points (four point in a line ℓ_{OI} on Desargues affine plane). We divide this transforms in two categories Invariant-Transforms and Preserving-Transforms.

Earlier, we define addition and multiplication of points in a line on Desargues affine plane, and we have prove that on each line on Desargues affine plane, we can construct a skew-field related to these two actions, so $(\ell_{OI}, +, \cdot)$-is a skew-field, this construction has been achieved, simply and constructively, using simple elements of elementary geometry, and only the basic axioms of Desargues affine plane (see [16], [4], [14], [22]). In this paper, we consider dilations and translations entirely in the Desargues affine plane (see [19], [18], [14], [22]).

The foundations for the study of the connections between axiomatic geometry and algebraic structures were set forth by D. Hilbert [7]. And some classic for this are, E. Artin [1], D.R. Hughes and F.C. Piper [8], H. S. M Coxeter [3]. Marcel Berger in [2], Robin Hartshorne in [5], etc. Even earlier, in we works [19] [16] [4] [18] [15] [14] [22] [24] [21] [20] we have brought up quite a few interesting facts about the association

2010 Mathematics Subject Classification. 51-XX; 51Axx; 51A30; 51E15; 51N25; 30C20; 30F40.

Key words and phrases. Cross Ratio, Skew-Field, Desargues Affine Plane.

The research has been supported by the Natural Sciences & Engineering Research Council of Canada (NSERC) discovery grant 185986, Instituto Nazionale di Alta Matematica (INdAM) Francesco Severi, Gruppo Nazionale per le Strutture Algebriche, Geometriche e Loro Applicazioni grant 9 920160 000362, n.prot U 2016/000036 and Scientific and Technological Research Council of Turkey (TÜBİTAK) Scientific Human Resources Development (BİDEB) under grant no: 2221-1059B211301223.

arXiv:2211.16055v2 [math.GM] 23 May 2023
of algebraic structures with affine planes and with 'Desargues affine planes’, and vice versa.

In this paper, all results based in geometric intuition, in axiomatic of Desargues affine plane, and in skew-field properties, we utilize a method that is naive and direct, without requiring the concept of coordinates.

1.1. Desargues Affine Plane. Let \(P \) be a nonempty space, \(L \) is a family of subsets of \(P \). The elements \(P \) of \(P \) are points and an element \(\ell \) of \(L \) is a line.

Definition 1. The incidence structure \(A = (P, L, I) \), called affine plane, where satisfies the above axioms:

1: For each points \(P, Q \in P \), there is exactly one line \(\ell \in L \) such that \(P, Q \in \ell \).
2: For each point \(P \in P, \ell \in L, P \notin \ell \), there is exactly one line \(\ell' \in L \) such that \(P \in \ell' \) and \(\ell \cap \ell' = \emptyset \) (Playfair Parallel Axiom [11]). Put another way, if the point \(P \notin \ell \), then there is a unique line \(\ell' \) on \(P \) missing \(\ell \)
3: There is a 3-subset of points \(\{P, Q, R\} \subset P \), which is not a subset of any \(\ell \) in the plane. Put another way, there exist three non-collinear points \(P \).

Desargues’ Axiom, circa 1630 [9, §3.9, pp. 60-61] [13]. Let \(A, B, C, A', B', C' \in P \) and let pairwise distinct lines \(\ell^{AA'}, \ell^{BB'}, \ell^{CC'}, \ell^{AC}, \ell^{BC} \in L \) such that
\[
\ell^{AA'} \parallel \ell^{BB'} \parallel \ell^{CC'} \quad \text{(Fig. 1(a)) or } \ell^{AA'} \cap \ell^{BB'} \cap \ell^{CC'} = P \quad \text{(Fig. 1(b))}
\]
and \(\ell^{AB} \parallel \ell^{A'B'} \) and \(\ell^{BC} \parallel \ell^{B'C'} \).

A, B \in \ell^{AB}, A'B' \in \ell^{A'B'}, A, C \in \ell^{AC}, \text{ and } A'C' \in \ell^{A'C'}, B, C \in \ell^{BC}, B'C' \in \ell^{B'C'}.

\(A \neq C, A' \neq C' \), and \(\ell^{AB} \neq \ell^{A'B'}, \ell^{BC} \neq \ell^{B'C'} \).

Then \(\ell^{AC} \parallel \ell^{A'C'} \).

A Desargues affine plane is an affine plane that satisfies Desargues’ Axiom.

Notation 1. Three vertexes \(ABC \) and \(A'B'C' \), which, fulfilling the conditions of the Desargues Axiom, we call ‘Desarguesian’.

1.2. Addition and Multiplication of points in a line of Desargues affine plane.

The process of construct the points \(C \) for addition (Figure 2(a)) and multiplication (Figure 2(b)) of points in \(\ell^{O1} \)–line in affine plane, is presented in the tow algorithm form.

![Figure 1. Desargues Axioms: (a) For parallel lines \(\ell^{AA'} \parallel \ell^{BB'} \parallel \ell^{CC'} \); (b) For lines which are cutting in a single point \(P \), \(\ell^{AA'} \cap \ell^{BB'} \cap \ell^{CC'} = P \).](image-url)
Addition Algorithm

Step.1: $B_1 \notin \ell_{OI}$

Step.2: $\ell_{Oi}^{B_1} \cap \ell_{OB_1}^{A} = P_1$

Step.3: $\ell_{BB_1}^{P_1} \cap \ell_{OI}^{C} = C(= A + B)$

Multiplication Algorithm

Step.1: $B_1 \notin \ell_{OI}$

Step.2: $\ell_{IB_1}^{A} \cap \ell_{OB_1}^{C} = P_1$

Step.3: $\ell_{BB_1}^{P_1} \cap \ell_{OI}^{C} = C(= A \cdot B)$

Figure 2. (a) Addition of points in a line in an affine plane, (b) Multiplication of points in a line in an affine plane

In [14] and [4], we have proved that $(\ell_{OI}, +, \cdot)$ is a skew field in Desargues affine plane, and is field (commutative skew field) in the Pappus affine plane.

Definition 2. The parallel projection between the two lines in the Desargues affine plane, will be called, a function,

$$P_P : \ell_1 \to \ell_2, \quad \forall A, B \in \ell_1, \quad AP_P(A)||BP_P(B)$$

It is clear that this function is a bijection between any two lines in Desargues affine planes, for this reason, it can also be thought of as isomorphism between two lines.

Definition 3. [18] Dilatation of an affine plane $\mathcal{A} = (\mathcal{P}, \mathcal{L}, I)$, called a its collineation δ such that: $\forall P \neq Q \in \mathcal{P}, \delta(PQ)||PQ$.

Definition 4. [18] Translation of an affine plane $\mathcal{A} = (\mathcal{P}, \mathcal{L}, I)$, called identical dilatation id_P his and every other of its dilatation, about which he affine plane has not fixed points.

Some well-known results related to translations and dilation’s in Desargues affine planes.

- The dilatation set Dil$_A$ of affine plane \mathcal{A} forms a group with respect to composition \circ ([18]).
- The translations set Tr$_A$ of affine plane \mathcal{A} forms a group with respect to composition \circ; which is a sub-group of the dilation group (Dil$_A$, \circ) ([18]).
- In a affine plane: the group (Tr$_A$, \circ) of translations is normal sub-group of the group of dilatations (Dil$_A$, \circ) ([18]).
- Every dilatation in Desargues affine plane $\mathcal{A}_D = (\mathcal{P}, \mathcal{L}, I)$ which leads a line in it, is an automorphism of skew-fields constructed on the same line $\ell \in \mathcal{L}$, of the plane \mathcal{A}_D ([19]).
- Every translations in Desargues affine plane $\mathcal{A}_D = (\mathcal{P}, \mathcal{L}, I)$ which leads a line in it, is an automorphism of skew-fields constructed on the same line $\ell \in \mathcal{L}$, of the plane \mathcal{A}_D ([19]).
Each dilatation in a Desargues affine plane, \(A_D = (\mathcal{P}, \mathcal{L}, I) \) is an isomorphism between skew-fields constructed over isomorphic lines \(\ell_1, \ell_2 \in \mathcal{L} \) of that plane (22).

Each translations in a Desargues affine plane, \(A_D = (\mathcal{P}, \mathcal{L}, I) \) is an isomorphism between skew-fields constructed over isomorphic lines \(\ell_1, \ell_2 \in \mathcal{L} \) of that plane (22).

1.3. Some algebraic properties of Skew Fields. In this section \(K \) will denote a skew field [6] and \(z[K] \) its center, where \(z[K] \) is the set \(z[K] = \{ k \in K \mid ak = ka, \forall a \in K \} \).

Proposition 1. \(z[K] \) is a commutative subfield of a skew field \(K \).

Let now \(p \in K \) be a fixed element of the skew field \(K \), we will denote by \(z_K(p) \) the centralizer in \(K \) of the element \(p \), where is the set, \(z_K(p) = \{ k \in K, pk = kp \} \).

where \(z_K(p) \) is sub skew field of \(K \), but, in general, it is not commutative.

Let \(K \) be a skew field, \(p \in K \), and let us denote by \([p_K] \) the conjugacy class of \(p \):

\[
[p_K] = \{q^{-1}pq, \quad q \in K \setminus \{0\}\}
\]

If, \(p \in z[K] \), for all \(q \in K \) we have that \(q^{-1}pq = p \).

1.4. Ratio of two and three points. In the paper [17], we have done a detailed study, related to the ratio of two and three points in a line of Desargues affine plane. Below we are listing some of the results for ratio of two and three points.

Definition 5. [17] Let\(s \) have two different points \(A, B \in \ell \)–line, and \(B \neq O \), in Desargues affine plane. We define as ratio of this tow points, a point \(R \in \ell \), such that,

\[
R = B^{-1}A,
\]

we mark this, with, \(R = r(A : B) = B^{-1}A \).

For a ‘ratio-point’ \(R \in \ell \), and for point \(B \neq O \) in line \(\ell \), is a unique defined point, \(A \in \ell \), such that \(R = B^{-1}A = r(A : B) \).

![Figure 3](image-url)
Figure 3. Illustrate the Ratio-Point, of 2-Points in a line of Desargues affine plane \(R = r(A : B) = B^{-1}A \).

Some results for Ratio of 2-points in Desargues affine plane (see [17]).

- If have two different points \(A, B \in \ell \)–line, and \(B \neq O \), in Desargues affine plane, then, \(r^{-1}(A : B) = r(B : A) \).
• For three collinear points A, B, C and $C \neq O$, in ℓ^O_l–line, have,

$$r(A + B : C) = r(A : C) + r(B : C).$$

• For three collinear points A, B, C and $C \neq O$, in ℓ^O_l–line, have,

1. $r(A \cdot B : C) = r(A : C) \cdot B$.
2. $r(A : B \cdot C) = C^{-1}r(A : C)$.

• Let’s have the points A, B in the line ℓ^O_l where B, O. Then have that,

$$r(A : B) = r(B : A) \Leftrightarrow A = B.$$

• This ratio-map, $r_B : \ell^O_l \rightarrow \ell^O_l$ is a bijection in ℓ^O_l–line in Desargues affine plane.

• The ratio-maps-set $R_2 = \{r_B(X), \forall X \in \ell^O_l\}$, for a fixed point B in the line ℓ^O_l, forms a skew-field with ‘addition and multiplication’ of points. This, skew field $(R_2, +, \cdot)$ is sub-skew field of the skew field $(\ell^O_l, +, \cdot)$.

Ratio of three points in a line on Desargues affine plane. (see [17])

Definition 6. If A, B, C are three points on a line ℓ^O_l (collinear) in Desargues affine plane, then we define their **ratio** to be a point $R \in \ell^O_l$, such that:

$$(B - C) \cdot R = A - C,$$

concisely

$$R = (B - C)^{-1}(A - C),$$

and we mark this with $r(A, B; C) = (B - C)^{-1}(A - C)$.

![Figure 4. Ratio of 3-Points in a line of Desargues affine plane $R = r(A, B; C)$](image)

Some Results for Ratio of 3-points in Desargues affine plane ([17]).

• For 3-points A, B, C in a line ℓ^O_l of Desargues affine plane, we have that,

$$r(-A, -B; -C) = r(A, B; C).$$

• For 3-points A, B, C in a line ℓ^O_l in the Desargues affine plane, have

$$r^{-1}(A, B; C) = r(B, A; C).$$
If A, B, C, are three different points, and different from point O, in a line t_{O1} on Desargues affine plane, then

$$r(A^{-1}, B^{-1}; C^{-1}) = B[r(A, B; C)]A^{-1}.$$

In the Pappus affine plane, for three point different from point O, in t_{O1}–line, we have $r(A^{-1}, B^{-1}, C^{-1}) = r(A, B; C) \cdot r(B, A; O)$.

This ratio-map, $r_{BC} : t_{O1} \rightarrow t_{O1}$ is a bijection in t_{O1}–line in Desargues affine plane.

The ratio-maps-set $\mathcal{R}_3 = \{r_{BC}(X), VX \in t_{O1}\}$, for a different fixed points B, C in t_{O1}–line, forms a skew-field with ‘addition and multiplication’ of points in t_{O1}–line. This, skew field $(\mathcal{R}_3, +, \cdot)$ is sub-skew field of the skew field $(t_{O1}, +, \cdot)$.

1.5. Cross-Ratio in a line of Desargues affine plane. Let us have the line t_{O1} in Desargues affine plane \mathcal{A}_D, and four points, $A, B, C, D \in t_{O1}$

Definition 7. If A, B, C, D are four points on a line t_{O1} in Desargues affine plane \mathcal{A}_D, no three of them equal, then we define their cross ratio to be a point:

$$c_r(A, B; C, D) = [(A - D)^{-1}(B - D)][(B - C)^{-1}(A - C)]$$

Definition 8. If the line t_{O1} in Desargues affine plane, is a infinite line (number of points in this line is $+\infty$), we define as follows:

$$c_r(\infty, B; C, D) = (B - D)(B - C)^{-1}$$
$$c_r(A, \infty; C, D) = (A - D)^{-1}(A - C)$$
$$c_r(A, B; \infty, D) = (A - D)^{-1}(B - D)$$
$$c_r(A, B; C, \infty) = (B - C)^{-1}(A - C)$$

From this definition and from ratio definition$[5]$ we have that,

- $c_r(A, B; C, D) = [(A - D)^{-1}(B - D)][(B - C)^{-1}(A - C)] = r(B, A; D) \cdot r(A, B; C)$.
- $c_r(\infty, B; C, D) = (B - D)(B - C)^{-1} = [(D - B)^{-1}(C - B)]^{-1} = r^{-1}(C, D; B)$.
- $c_r(A, \infty; C, D) = (A - D)^{-1}(A - C) = (D - A)^{-1}(C - A) = r(C, D; A)$.
- $c_r(A, B; \infty, D) = (A - D)^{-1}(B - D) = r(A, B; D)$.
- $c_r(A, B; C, \infty) = (B - C)^{-1}(A - C) = r(A, B; C)$.

Some results for Cross-Ratio of 4-collinear points in Desargues affine plane (see $[23]$).

- If A, B, C, D are distinct points in a t_{O1}–line, in Desargues affine plane, then
 $$c_r(-A, -B; -C, -D) = c_r(A, B; D, C) \quad \text{and} \quad c_r^{-1}(A, B; C, D) = c_r(A, B; D, C).$$

- If A, B, C, D are distinct points in a line, in Desargues affine plane and I is unitary point for multiplications of points in same line, then,
 (a): $I - c_r(A, B; C, D) = c_r(A, C; B, D)$
 (b): $c_r(A, D; B; C) = I - c_r^{-1}(A, B; C, D)$
 (c): $c_r(A, C; D, B) = [I - c_r(A, B; C, D)]^{-1}$
 (d): $c_r(A, D; C, B) = [c_r(A, B; C, D) - I]^{-1}c_r(A, B; C, D)$

- If A, B, C, D are distinct points, and different from zero-point O, in a line, in Desargues affine plane and I is unitary point for multiplications of points in same line, have,

$$c_r(A^{-1}, B^{-1}, C^{-1}, D^{-1}) = A \cdot c_r(A, B; C, D) \cdot A^{-1}$$
• If the point \(A \in \mathcal{z}[K] \) (center of skew field \(K = (\ell^{OI}, +, \cdot) \)), then,

\[
c_r(A, C; B, D) = c_r(A^{-1}, B^{-1}; C^{-1}, D^{-1}).
\]

• If \(A, B, C, D \in \mathcal{O} \) are distinct points in a line, in Desargues affine plane and \(I \) is unital point for multiplications of points in same line, then equation

\[
c_r(A, B; C, D) = c_r(B, A; D, C)
\]

it’s true, if
(a): points \(A, B, C, D \) are in ‘center of skew-field’ \(\mathcal{z}[K] \);
(b): ratio-points \(r(A, B; C) \) are in ‘center of skew-field’;
(c): ratio-point \(r(B, A; D) \) are in ‘center of skew-field’;
(d): ratio-point \(r(A, B; D) \) is in centralizer of point \(r(A, B; C) \), or vice versa.

2. Some Invariant Transforms for Cross-Ratio of 4-points in a line of Desargues affine plane

In this section we will see some transformations, for which the cross-ratio are invariant under their action.

First, we are defining these transforms and illustrating them with the corresponding figures, respectively: Inversion with Fig.5, Reflection with Fig.6, Natural Translation with Fig.7 and Natural Dilation with Fig.8.

Definition 9. Inversion of points in \(\ell^{OI} \)-line, called the map

\[
j_P : \ell^{OI} \rightarrow \ell^{OI},
\]

where \(P \in \ell^{OI} \) is fix-point, and which satisfies the condition,

\[
\forall A \in \ell^{OI} \quad j_P(A) = P \cdot A.
\]

Figure 5. Illustrate the Inversion of Points, in a line of Desargues affine plane \(j_P(A) = P \cdot A \).

Notation 2. Inversion of points in \(\ell^{OI} \)-line,

\[
j_P : \ell^{OI} \rightarrow \ell^{OI},
\]

where \(P = -I \in \ell^{OI} \), called Involution or Reflection about the point \(O \) in \(\ell^{OI} \)-line and we have,

\[
\forall A \in \ell^{OI} \quad j_P(A) = -I \cdot A = -A,
\]

where \(-A \) is opposite point of point \(A \), regrading to addition of points in \(\ell^{OI} \)-line.
Figure 6. Illustrate the Reflection of Points, in a line of Desargues affine plane \(j_{-1}(A) = -I \cdot A = -A \).

Definition 10. A natural translation with point \(P \), of points in \(ℓ^{OI} \)-line, called the map
\[\varphi_P : ℓ^{OI} \rightarrow ℓ^{OI}, \]
for a fixed \(P \in ℓ^{OI} \) which satisfies the condition,
\[\forall A \in ℓ^{OI} \quad \varphi_P(A) = P + A. \]

Figure 7. Illustrate the Natural Translation of Points, in a line of Desargues affine plane \(\varphi_P(A) = P + A \).

Definition 11. A natural Dilation of points in \(ℓ^{OI} \)-line, called the map
\[\delta_n : ℓ^{OI} \rightarrow ℓ^{OI}, \]
for a fixed natural number \(n \in \mathbb{Z} \) which satisfies the condition, if \(n > 0 \), have,
\[\forall A \in ℓ^{OI} \quad \delta_n(A) = nA = A + A + \cdots + A, \]
and if \(n < 0 \), we have
\[\forall A \in ℓ^{OI} \quad \delta_n(A) = nA = \underbrace{[-A] + [-A] + \cdots + [-A]}_{(-n)-\text{times}}. \]
where \(-A = (-I) \cdot A \) is the opposite point of point \(A \), regarding to addition of points in \(\ell^{OI} \)-line.

Figure 8. Illustrate the Natural Translation of Points, in a line of Desargues affine plane \(\delta_n(A) = nA \).

Definition 12. Let have three fixed points \(B, C, D \in \ell^{OI} \). Möbius transform for cross-ratio, we called the map,

\[
\mu : \ell^{OI} \to \ell^{OI},
\]

which satisfies the condition,

\[
\forall X \in \ell^{OI}, \quad \mu(X) = c_r(X, B; C, D).
\]

Theorem 1. The cross-ratios are invariant under the natural translation with a point \(P \).

Proof. From cross-ratio definition, have,

\[
\mu[c_r(\varphi_P(A), \varphi_P(B); \varphi_P(C), \varphi_P(D))] = c_r(\varphi_P(A), \varphi_P(B); \varphi_P(C), \varphi_P(D))
\]

so for cross-ratio we have that,

\[
c_r(\varphi_P(A), \varphi_P(B); \varphi_P(C), \varphi_P(D)) = c_r(A + P, B + P; C + P, D + P)
\]

\[
= [(A + P) - (D + P)]^{-1}[(B + P) - (D + P)]
\]

\[
\cdot [(A + P) - (C + P)]^{-1}[(A + P) - (C + P)]
\]

\[
= [(A + P - D - P)^{-1}(B + P - D - P)]
\]

\[
\cdot [(B + P - C - P)^{-1}(A + P - C - P)]
\]

\[
= [(A - D)^{-1}(B - D)][(B - C)^{-1}(A - C)]
\]

\[
= c_r(A, B; C, D)
\]

Theorem 2. The Cross-Ratios are invariant under the natural dilation with a fixet \(n \in \mathbb{Z} \).

Proof. From cross-ratio definition, we have

\[
c_r(A, B; C, D) = [(A - D)^{-1}(B - D)][(B - C)^{-1}(A - C)]
\]

so for cross-ratio of natural dilation-points we have that,

Case 1 For \(n > 0 \), we have,
\[c_r[\delta_n(A), \delta_n(B); \delta_n(C), \delta_n(D)] = c_r(nA, nB; nC, nD) \]

\[= [(nA - nD)^{-1}(nB - nD)][(nB - nC)^{-1}(nA - nC)] \]
\[= [(nA - D)^{-1}n(B - D)][(n(B - C))^{-1}n(A - C)] \]
\[= [(A - D)^{-1}n^{-1}n(B - D)][(B - C)^{-1}n^{-1}n(A - C)] \]
\[= [(A - D)^{-1}(B - D)][(B - C)^{-1}(A - C)] \]
\[= c_r(A, B; C, D) \]

Case.2 For \(n < 0 \), we mark \(m = -n > 0 \) or \(-m = n \) where \(m > 0 \), and have that,
\[c_r[\delta_n(A), \delta_n(B); \delta_n(C), \delta_n(D)] = c_r(nA, nB; nC, nD) \]
\[= c_r([-m]A, [-m]B; [-m]C, [-m]D) \]
\[= [([-m]A - [-m]D)^{-1}([-m]B - [-m]D)] \]
\[\cdot \cdot \cdot \cdot \cdot \cdot \cdot \]
\[= [(m(-A) - m(-D)^{-1}(m(-B) - m(-D))] \]
\[\cdot \cdot \cdot \cdot \cdot \cdot \cdot \]
\[= [(m(-A) - m(-D)]^n m([-B] - m([-D))] \]
\[\cdot \cdot \cdot \cdot \cdot \cdot \cdot \]
\[= [(m([-A] - [-D]))^{-1}m([-B] - [-D])] \]
\[\cdot \cdot \cdot \cdot \cdot \cdot \cdot \]
\[= [(m([-A] - [-D])^{-1}m([-B] - [-D])] \]
\[\cdot \cdot \cdot \cdot \cdot \cdot \cdot \]
\[= [(m([-A] - [-D])^{-1}m([-B] - [-D]) \]
\[\cdot \cdot \cdot \cdot \cdot \cdot \cdot \]
\[= [(m([-A] - [-D])^{-1}([-B] - [-D])] \]
\[\cdot \cdot \cdot \cdot \cdot \cdot \cdot \]
\[= [(m([-B] - [-C])^{-1}([-A] - [-C])] \]
\[\cdot \cdot \cdot \cdot \cdot \cdot \cdot \]
\[= [(m([-B] - [-C]))^{-1}([-A] - [-C])] \]
\[\cdot \cdot \cdot \cdot \cdot \cdot \cdot \]
\[= [(m([-B] - [-C])^{-1}([-A] - [-C])] \]
\[\cdot \cdot \cdot \cdot \cdot \cdot \cdot \]
\[= [(m([-B] - [-C])^{-1}([-A] - [-C])] \]
\[\cdot \cdot \cdot \cdot \cdot \cdot \cdot \]
\[= \cdot \cdot \cdot \cdot \cdot \cdot \cdot \]
\[= \cdot \cdot \cdot \cdot \cdot \cdot \cdot \]
\[= \cdot \cdot \cdot \cdot \cdot \cdot \cdot \]
\[= \cdot \cdot \cdot \cdot \cdot \cdot \cdot \]
\[= \cdot \cdot \cdot \cdot \cdot \cdot \cdot \]
\[= c_r(A, B; C, D) \]

Remember that, \([-I]^{-1} = -I \) and \(-I \cdot (-I) = I \).

Another Proof of Case.2, for \(n < 0 \), we mark \(m = -n > 0 \) or \(-m = n \) where \(m > 0 \), and have that,
\[c_r[\delta_n(A), \delta_n(B); \delta_n(C), \delta_n(D)] = c_r(nA, nB; nC, nD) = c_r([-m]A, [-m]B; [-m]C, [-m]D) \]
so,
\[c_r([-m]A, [-m]B; [-m]C, [-m]D) = c_r([-m]A, -[m]B; -[m]C, -[m]D) \]
but from the results listed in section 1, for cross-ratio, we have that,

\[c_r(-A, -B; -C, -D) = c_r(A, B; C, D), \quad \text{for all different points } A, B, C, D \in \ell_{OI} \]

therefore

\[c_r([-mA], [-mB]; [-mC], [-mD]) = c_r(mA, mB; mC, mD) \]

and from Case 1 (since \(m > 0 \)), have

\[c_r(mA, mB; mC, mD) = c_r(A, B; C, D). \]

Hence,

\[c_r[\delta_n(A), \delta_n(B); \delta_n(C), \delta_n(D)] = c_r(A, B; C, D). \]

\[\square \]

Theorem 3. The Cross-Ratios are invariant under Inversion with a given point \(P \in \ell_{OI} \).

Proof. From cross-ratio definition, we have

\[c_r(A, B; C, D) = [(A - D)^{-1}(B - D)][(B - C)^{-1}(A - C)] \]

so, for cross-ratio of the points \(j_P(A), j_P(B); j_P(C), j_P(D) \in \ell_{OI} \) (cross-ratio of Inversion-points) we have that,

\[c_r[j_P(A), j_P(B); j_P(C), j_P(D)] = c_r(PA, PB; PC, PD) \]

\[= [(PA - PD)^{-1}(PB - PD)][(PB - PC)^{-1}(PA - PC)] \]

\[= [(P(A - D))^{-1}P(B - D)][(P(B - C))^{-1}P(A - C)] \]

\[= [(A - D)^{-1}P(B - D)][(B - C)^{-1}P(A - C)] \]

\[= [(A - D)^{-1}(P^{-1}P)(B - D)][(B - C)^{-1}(P^{-1}P)(A - C)] \]

\[= [(A - D)^{-1}I(B - D)][(B - C)^{-1}I(A - C)] \]

\[= [(A - D)^{-1}(B - D)][(B - C)^{-1}(A - C)] \]

\[= c_r(A, B; C, D) \]

\[\square \]

Corollary 1. The Cross-Ratios are invariant under reflection about the point \(O \) in \(\ell_{OI} \)-line in Desargues affine plane.

Proof. We have the Inversion with point \((-I) \in \ell_{OI} \)-line, and from cross-ratio definition, we have

\[c_r(A, B; C, D) = [(A - D)^{-1}(B - D)][(B - C)^{-1}(A - C)] \]
so, for cross-ratio of the points \(j_{[-I]}(A), j_{[-I]}(B); j_{[-I]}(C), j_{[-I]}(D) \in \ell^O \) (cross-ratio of Inversion-points) we have that,

\[
c_r[j_{[-I]}(A), j_{[-I]}(B); j_{[-I]}(C), j_{[-I]}(D)] = c_r([-I]A, [-I]B; [-I]C, [-I]D) \\
= [([-I]A - [-I]D)^{-1}([-I]B - [-I]D)] \\
\quad \cdot [([-I]B - [-I]C)^{-1}([-I]A - [-I]C)] \\
= [([-I](A - D))^{-1}([-I](B - D))] \\
\quad \cdot [([-I](B - C))^{-1}([-I](A - C))] \\
= [(A - D)^{-1}([-I])^{-1}(B - D)] \\
\quad \cdot [(B - C)^{-1}([-I])^{-1}(A - C)] \\
= [(-1)^{-1}(B - D)][(B - C)^{-1}(A - C)] \\
= c_r(A, B; C, D)
\]

we used the fact that, in the skew field we have true \([-I]^{-1} = -I\) and \([-I][-I] = I\). Hence

\[
c_r[j_{[-I]}(A), j_{[-I]}(B); j_{[-I]}(C), j_{[-I]}(D)] = c_r(A, B; C, D)
\]

Theorem 4. Cross-Ratios are invariant under Möbius transform.

Proof. From Möbius transform definition[12] we have

\[
\mu(X) = c_r(X, B; C, D) = [(X - D)^{-1}(B - D)][(B - C)^{-1}(X - C)]
\]

so, for cross-ratio of the points \(\mu(A), \mu(B), \mu(C), \mu(D) \in \ell^O \) first, we calculate, this point, according to following the definition of \(\mu \)-map, and we have

- \(\mu(A) = c_r(A, B; C, D) \),
- \(\mu(B) = c_r(B, B; C, D) \), so

\[
\mu(B) = [(B - D)^{-1}(B - D)][(B - C)^{-1}(B - C)] \\
= [I][I] \\
= I.
\]

Thus

\[
\mu(B) = I
\]

- \(\mu(C) = c_r(C, B; C, D) \), so,

\[
\mu(C) = [(C - D)^{-1}(B - D)][(B - C)^{-1}(C - C)] \\
= [(C - D)^{-1}(B - D)][(B - C)^{-1}O] = O \\
= [(C - D)^{-1}(B - D)][O] \\
= O
\]

Thus

\[
\mu(C) = O.
\]
• \(\mu(D) = c_r(D; B; C, D) \), so,

\[
\begin{align*}
\mu(D) &= [(D - D)^{-1}(B - D)][(B - C)^{-1}(D - C)] \\
&= [O^{-1}(B - D)][(B - C)^{-1}(D - C)] \\
&= [\infty][B - C)^{-1}(D - C)] \\
&= \infty
\end{align*}
\]

Thus

\[\mu(D) = \infty \]

Now, calculate, cross-ratio of points \(\mu(A), \mu(B), \mu(C), \mu(D) \), and have

\[
c_r[\mu(A), \mu(B); \mu(C), \mu(D)] = c_r(\mu(A), I; O, \infty) \\
= r(\mu(A), I; O) \\
= (I - O)^{-1}(\mu(A) - O) \\
= (I)^{-1}(\mu(A)) \\
= \mu(A) \\
= c_r(A, B; C, D)
\]

\[\Box \]

3. Transforms which Preserving Cross-Ratios of 4-points in a line of Desargues affine plane

In this section we prove that the parallel projection, Translations and Dilation of a line in itself or in isomorphic line in Desargues affine plane, preserving: the cross-ratios for 4-points. The geometrical interpretations, even in the Euclidean view, are quite beautiful in the above theorems, regardless of the rather rendered figures. This is also the reason that we are giving the proofs in the algebraic sense. So we will always have in mind the close connection of skew field and a line in Desargues affine plane, and the properties of parallel projection, translations and dilation’s.

Theorem 5. Translations \(\varphi \) with trace the same line \(\ell^O \) of points \(A, B, C, D \), preserve the cross-ratio of this points,

\[\varphi(c_r(A, B; C, D)) = c_r(\varphi(A), \varphi(B); \varphi(C), \varphi(D)) \]

Proof. For the proof of that theorem, we refer to the translation properties, which are studied in the papers (see \[14, 18, 19, 22\]). We will follow algebraic properties for these proofs. Whatever the translation \(\varphi \), automorphism or isomorphism, \(\varphi: \ell^O \to \ell^O \), \(\varphi: \ell^O \to \ell'^O \), where \(\ell^O \neq \ell'^O \) and \(\ell^O \parallel \ell'^O \), we have true the above equals,
\[\phi(c(A, B; C, D)) = \phi \left[\left((A - D)^{-1} (B - D) \right) \left((B - C)^{-1} (A - C) \right) \right] \]

(For this equation, we use the fact that \(\phi \) is homomorphisms)

\[= \phi \left[(A - D)^{-1} (B - D) \right] \cdot \phi \left[(B - C)^{-1} (A - C) \right] \]

\[= \phi(\ell(A - D)^{-1} (B - D)) \cdot \phi(\ell(B - C)^{-1} (A - C)) \]

(again, from the fact that \(\phi \) is a homomorphism,

\[= \left[\phi \left((A - D)^{-1} \right) \cdot \phi(B - D) \right] \cdot \left[\phi \left((B - C)^{-1} \right) \cdot \phi(A - C) \right] \]

(translation \(\phi \) is bijective,

\[= \left[\phi(A) - \phi(D) \right] \cdot \left[\phi(B) - \phi(D) \right] \cdot \left[\phi(A) - \phi(C) \right] \]

(from cross-ratio definition7)

\[= c(\phi(A), \phi(B); \phi(C), \phi(D)) \]

\[\square \]

Theorem 6. The parallel projection between the two lines \(\ell_1 \) and \(\ell_2 \) in Desargues affine plane, preserving the cross-ratio of 4-points,

\[P_{\ell}(c(A, B; C, D)) = c_{\ell}(P_{\ell}(A), P_{\ell}(B); P_{\ell}(C), P_{\ell}(D)) \]

Proof. If \(\ell_1 \parallel \ell_2 \), we have that the parallel projection is a translation, and have true this theorem.

If lines \(\ell_1 \) and \(\ell_2 \) they are not parallel (so, they are cut at a single point), we have \(A, B, C \in \ell_1 \) and \(P_{\ell}(A), P_{\ell}(B), P_{\ell}(C), P_{\ell}(D) \in \ell_2 \). Also since \(P_{\ell} \) is a bijection we have that,

\[P_{\ell}(c(A, B; C, D)) = P_{\ell} \left[\left((A - D)^{-1} (B - D) \right) \left((B - C)^{-1} (A - C) \right) \right] \]

\[= P_{\ell} \left[(A - D)^{-1} (B - D) \right] \cdot P_{\ell} \left[(B - C)^{-1} (A - C) \right] \]

\[= \left[P_{\ell}(A - D)^{-1} \cdot P_{\ell}(B - D) \right] \cdot \left[P_{\ell}(B - C)^{-1} \cdot P_{\ell}(A - C) \right] \]

\[= \left[P_{\ell}(A) - P_{\ell}(D) \right]^{-1} \cdot \left[P_{\ell}(B) - P_{\ell}(D) \right] \]

\[= c(\phi(A), \phi(B); \phi(C), \phi(D)) \]

Theorem 7. Dilation \(\delta \) with fixed point in the same line \(\ell_0 \) of points \(A, B, C, D \), preserve the cross-ratio of this points,

\[\delta(c(A, B; C, D)) = c_{\delta}(\delta(A), \delta(B); \delta(C), \delta(D)) \]

Proof. For the proof of that theorem, we refer to the dilation properties, which are studied in the papers (see [14], [18], [19], [22]). We will follow algebraic properties for these proofs. Whatever the dilation \(\delta \), is an automorphism or a isomorphism, \(\delta : \ell_0 \to \ell_0 \) or \(\delta : \ell_0 \to \ell_0^\prime \), where \(\ell_0 \neq \ell_0^\prime \) and \(\ell_0 \parallel \ell_0^\prime \), we have true the above equals.
\[\delta(G(A, B; C, D)) = \delta\left(\left[(A - D)^{-1}(B - D) \right] \left[(B - C)^{-1}(A - C) \right] \right) \]
\[= \delta((A - D)^{-1}(B - D)) \cdot \delta((B - C)^{-1}(A - C)) \]
\[= \left[\delta((A - D)^{-1}) \cdot \delta(B - D) \right] \cdot \left[\delta((B - C)^{-1}) \cdot \delta(A - C) \right] \]
\[= \left[\delta(A - D)^{-1} \cdot \delta(B - D) \right] \cdot \left[\delta(B - C)^{-1} \cdot \delta(A - C) \right] \]
\[= \left[\delta(A) - \delta(D) \right]^{-1} \cdot \left[\delta(B) - \delta(D) \right] \cdot \left[\delta(B) - \delta(C) \right]^{-1} \cdot \left[\delta(A) - \delta(C) \right] \]
\[= c, (\delta(A), \delta(B); \delta(C), \delta(D)) \]
\[\square \]

4. Declarations

Funding. The research by J.F. Peters was supported by the Natural Sciences & Engineering Research Council of Canada (NSERC) discovery grant 185986 and Instituto Nazionale di Alta Matematica (INdAM) Francesco Severi, Gruppo Nazionale per le Strutture Algebriche, Geometriche e Loro Applicazioni grant 9 920160 000362, n.prot U 2016/000036 and Scientific and Technological Research Council of Turkey (TÜBİTAK) Scientific Human Resources Development (BİDEB) under grant no: 2221-1059B211301223.

Conflict of Interest Statement. There is no conflict of interest with any funder.

Authors’ contributions. The authors’ contribution is as follows: O. Zaka introduced the geometry and its results in this paper. J.F. Peters refined and clarified various aspects of the presented geometry and results in this paper.

References

1. Emil Artin, *Geometric algebra*, Intersc. Tracts Pure Appl. Math., vol. 3, Interscience Publishers, New York, NY, 1957 (English).
2. Marcel Berger, *Geometry. I, II. Transl. from the French by M. Cole and S. Levy*, corrected 4th printing ed., Universitext, Springer, 2009 (English).
3. H. S. M. Coxeter, *Introduction to geometry*, 2nd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1969, xxv+469 pp., MR0123930, MR0346644.
4. K. Filipi, O. Zaka, and A. Jusufi, *The construction of a corp in the set of points in a line of desargues affine plane*, Matematicki Bilten 43 (2019), no. 01, 1–23, ISSN 0351-336X (print), ISSN 1857–9914 (online).
5. R. Hartshorne, *Foundations of projective geometry*, New York: W.A. Benjamin, Inc. 1967. VII, 167 p. (1967), 1967.
6. J.N. Herstein, *Topics in algebra*, 2nd ed., Xerox College Publishing, Lexington, Mass., 1975, xi+388 pp., MR0356988; first edition in 1964, MR0171801 (detailed review).
7. D. Hilbert, *The foundations of geometry*, The Open Court Publishing Co., La Salle, Ill., 1959, viii+143 pp., MR0116216.
8. D.R. Hughes and F.C. Piper, *Projective planes*, graduate texts in mathematics, vol. 6, Springer-Verlag, Berlin, New York, 1973, x+291 pp., MR0333959.
9. A. Kryftis, *A constructive approach to affine and projective planes*, Ph.D. thesis, University of Cambridge, Trinity College and Department of Pure Mathematics and Mathematical Statistics, 2015, supervisor: M. Hyland, v+170 pp., arXiv 1601.04998v1 19 Jan. 2016.
10. O.Zaka and J.F.Peters, *Progress in invariant and preserving transforms for the ratio of co-linear points in the desargues affine plane skew field*, corr abs/2209.02636 (2022), arXiv:2209.02636.
11. G. Pickert, *Affine planes: An example of research on geometric structures*, The Mathematical Gazette 57 (2004), no. 402, 278–291, MR2047017.
12. M. Przamowska, *A proof of the projective Desargues axiom in the Desarguesian affine plane*, Demonstratio Mathematica 37 (2004), no. 4, 921–924, MR2103894.
13. W. Szmielew, *Od geometrii afinicznnej do euklidesowej (polish) [from affine geometry to euclidean geometry] rozważania nad aksjomatyk? [an approach through axiomatics]*, Biblioteka Matematyczna [Mathematics Library], Warsaw, 1981, 172 pp., ISBN: 83-01-01374-5, MR0664205.
14. O. Zaka, Contribution to reports of some algebraic structures with affine plane geometry and applications, Ph.D. thesis, Polytechnic University of Tirana, Tirana, Albania, Department of Mathematical Engineering, 2016, supervisor: K. Filipi, vii+113pp.

15. O. Zaka, Three vertex and parallelograms in the affine plane: Similarity and addition abelian groups of similarly n-vertexes in the Desargues affine plane, Mathematical Modelling and Applications 3 (2018), no. 1, 9–15, http://doi:10.11648/j.mma.20180301.12.

16. O. Zaka and K. Filipi, The transform of a line of Desargues affine plane in an additive group of its points, Int. J. of Current Research 8 (2016), no. 07, 34983–34990.

17. O. Zaka and J.F. Peters, Advances in the geometry of the ratio of linear points in the Desargues affine plane skew field, corr abs/2208.12745 (2022), arXiv:2208.12745.

18. Orgest Zaka, A description of collineations-groups of an affine plane, Libertas Mathematica (N.S.) 37 (2017), no. 2, 81–96. ISSN print: 0278 – 5307, ISSN online: 2182 – 567X, MR3828328.

19. Orgest Zaka, Dilations of line in itself as the automorphism of the skew-field constructed over in the same line in desargues affine plane, Applied Mathematical Sciences 13 (2019), no. 5, 231–237.

20. Orgest Zaka and Mohanad A. Mohammed, The endomorphisms algebra of translations group and associative unitary ring of trace-preserving endomorphisms in affine plane, Proyecciones 39 (2020), no. 4, 821–834 (English).

21. Orgest Zaka and Mohanad A. Mohammed, Skew-field of trace-preserving endomorphisms, of translation group in affine plane, Proyecciones 39 (2020), no. 4, 835–850 (English).

22. Orgest Zaka and James F. Peters, Isomorphic-dilations of the skew-fields constructed over parallel lines in the Desargues affine plane, Balkan J. Geom. Appl. 25 (2020), no. 1, 141–157 (English).

23. Orgest Zaka and James F. Peters, Cross ratio geometry advances for four co-linear points in the desargues affine plane-skew field, corr abs/2209.14241 (2022), arXiv:2209.14241.

24. Orgest Zaka and James Francis Peters, Ordered line and skew-fields in the Desargues affine plane, Balkan J. Geom. Appl. 26 (2021), no. 1, 141–156 (English).

Orgest ZAKA: DEPARTMENT OF MATHEMATICS-INFORMATICS, FACULTY OF ECONOMY AND AGRIBUSINESS, AGRICULTURAL UNIVERSITY OF TIRANA, TIRANA, ALBANIA

Email address: ozaka@ubt.edu.al, gertizaka@yahoo.com, ozaka@risat.org

James F. PETERS: DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING, UNIVERSITY OF MANITOBA, WPG, MB, R3T 5V6, CANADA AND DEPARTMENT OF MATHEMATICS, FACULTY OF ARTS AND SCIENCES, ADYAMAN UNIVERSITY, 02040 ADYAMAN, TURKEY

Email address: James.Peters3@umanitoba.ca