Resistance to mecillinam and nine other antibiotics for oral use in Escherichia coli isolated from urine specimens of primary care patients in Germany, 2019/2020

M Kresken¹,², Y Pfeifer ³, F Wagenlehner ⁴, G Werner ³, E Wohlfarth ¹

¹Antiinfectives Intelligence GmbH, Cologne, Germany; ²University of Applied Sciences, Cologne, Germany; ³Robert Koch Institute, FG13 Nosocomial Pathogens and Antibiotic Resistances, Wernigerode Branch, Wernigerode, Germany; ⁴Clinic for Urology, Pediatric Urology and Andrology, Justus-Liebig-University Gießen, Gießen, Germany

Third party affiliation:
Study Group ‘Antimicrobial Resistance’ of the Paul-Ehrlich-Society for Chemotherapy

Disclosures

– The authors declare the following real or perceived conflicts of interest during the last 3 years in relation to this presentation:
 MK is a partner and CEO of Antiinfectives Intelligence GmbH (AI), a research organisation providing services to pharmaceutical companies; EW is an employee of AI.
– This study was funded by Apogepha Arzneimittel GmbH.
Resistance to mecillinam and nine other antibiotics for oral use in *Escherichia coli* isolated from urine specimens of primary care patients in Germany, 2019/2020

M Kresken 1,2, Y Pfeifer 3, F Wagenlehner 4, G Werner 3, E Wohlfarth 1

1Antinfectives Intelligence GmbH, Cologne, Germany; 2University of Applied Sciences, Cologne, Germany; 3Robert Koch-Institute, FG13 Nosocomial Pathogens and Antibiotic Resistances, Wernigerode Branch, Wernigerode, Germany; 4Clinic for Urology, Pediatric Urology and Andrology, Justus-Liebig-University Gießen, Gießen, Germany. Study Group “Antimicrobial Resistance” of the Paul-Ehrlich-Society for Chemotherapy

Background
Urinary tract infections (UTIs) are among the most common bacterial infections in humans. *Escherichia coli* is the leading cause of community acquired UTI.1

Pivmecillinam, the oral prodrug of the penicillin derivative mecillinam (amdinocillin), was re-introduced in Germany in March 2016. This study aimed to evaluate the prevalence of resistance to mecillinam in comparison to nine other antibiotics used for oral treatment in *E. coli* urine isolates after the re-introduction of pivmecillinam for first-line treatment of uncomplicated lower UTI.

Methods
Isolates were collected prospectively at 23 laboratories between October 2019 and March 2020. Verification of species identification and susceptibility testing were performed at a reference laboratory.

MICs were determined by either agar dilution (mecillinam) or broth microdilution (amoxicillin, amoxicillin-clavulanic acid, cefuroxime, cefpodoxime, cefixime, ciprofloxacin, trimethoprim-sulfamethoxazole, fosfomycin, nitrofurantoin), and interpreted by EUCAST criteria (v.12.0).2 Isolates with a confirmed extended-spectrum beta-lactamase (ESBL) phenotype were screened for presence of beta-lactamase genes by PCR.3

Results
A total of 460 isolates were collected. Forty-six isolates (10.0%) produced an ESBL of the CTX-M family, 25 of which also harboured one or more other beta-lactamase gene. Of the 460 isolates, 49.1% were fully susceptible to all antimicrobials. Sixty-seven isolates (14.6%) were resistant to one drug class, 70 (15.2%) to two drug classes and 97 isolates (21.1%) to more than two drug classes.

Resistance to amoxicillin was most widespread, followed by resistance to trimethoprim-sulfamethoxazole, amoxicillin-clavulanic acid, and cefuroxime, and least widespread to fosfomycin, nitrofurantoin and mecillinam (Table). Resistance to mecillinam was detected in 24 isolates (5.2 %). The concentrations of mecillinam needed to inhibit 50 / 90 % of the ESBL producing isolates and the remaining isolates were 1 / 4 mg/L, and 0.5 / 4 mg/L, respectively. All but one mecillinam-resistant isolates showed cross-resistance to amoxicillin and amoxicillin-clavulanic acid.

Conclusions
Overall, the degree of resistance to oral antibiotics in uropathogenic *E. coli* from outpatients seems to be favorable. The frequency of resistance to individual drugs, however, varied. Resistance rates were below 10% for fosfomycin, nitrofurantoin and mecillinam, all of which are recommended for first-line treatment of uncomplicated lower UTI by international guidelines.

Table: *In-vitro* activity of ten oral antibiotics against urinary *E. coli* isolates (n=460)

Antibacterial agent	Breakpoint (mg/L)	MIC-50 (mg/L)	MIC-90 (mg/L)	Percent of isolates
S	I	R		
Amoxicillin	> 8	4	≥ 64	56.7 - 43.3
Amoxicillin-clavulanic acid	> 8	4	16	82.0 - 18.0
Mecillinam	> 8	0.5	4	94.8 - 5.2
Cefuroxime	> 8	4	≥ 64	88.7 - 11.3
Cefixime	> 1	0.25	4	89.3 - 10.7
Cefpodoxime	> 1	0.5	≥ 8	88.9 - 11.1
Ciprofloxacin	> 0.5	≤ 0.06	8	86.3 2.6 11.1
Trimethoprim-sulfamethoxazole	> 4	≤ 0.25	≥ 32	72.2 0.9 27.0
Fosfomycin	> 8	2	8	92.6 - 7.4
Nitrofurantoin	> 64	≤ 16	32	98.9 - 1.1

References
Naber KG et al., Eur Urol 2008;54(5):1164-75
The European Committee on Antimicrobial Susceptibility Testing (EUCAST). 2022. Breakpoint tables for interpretation of MICs and zone diameters, Version 12.0
Schuster CF et al., J Antimicrob Chemother 2021; https://doi.org/10.1093/jac/dkab407

Disclosures
MK is a partner and CEO of Antinfectives Intelligence GmbH a research organisation providing services to pharmaceutical companies; E.W. is an employee at Antinfectives Intelligence GmbH.

This study was funded by Apogepha Arzneimittel GmbH.

1 EUCAST breakpoints for orally administered antibiotics. 2 Resistance was confirmed by agar dilution.
Urinary tract infections (UTIs) are among the most common bacterial infections in humans.

Escherichia coli is the leading cause of community acquired UTI.

Pivmecillinam, the oral prodrug of the penicillin derivative mecillinam (amdinocillin), was re-introduced in Germany in March 2016.

This study aimed to evaluate the prevalence of resistance to mecillinam in comparison to nine other antibiotics used for oral treatment in *E. coli* urine isolates after the re-introduction of pivmecillinam for first-line treatment of uncomplicated lower UTI.

Isolates were collected prospectively at 23 laboratories between October 2019 and March 2020.

Verification of species identification and susceptibility testing were performed at a reference laboratory.

MICs were determined by either agar dilution (mecillinam) or broth microdilution (amoxicillin, amoxicillin-clavulanic acid, cefuroxime, cefpodoxime, cefixime, ciprofloxacin, trimethoprim-sulfamethoxazole, fosfomycin, nitrofurantoin).

EUCAST criteria (v.12.0) were applied for interpretation.

Isolates with a confirmed extended-spectrum beta-lactamase (ESBL) phenotype were screened for presence of beta-lactamase genes by PCR.
Results & Conclusions

Table: In-vitro activity of ten oral antibiotics against urinary E. coli isolates (n=460)

Antibacterial agent	Breakpoint (mg/L)	MIC-50 (mg/L)	MIC-90 (mg/L)	Percent of isolates		
		S	I	R		
Amoxicillin	> 8	4	≥ 64	56.7	-	43.3
Amoxicillin-clavulanic acid	> 8	4	16	82.0	-	18.0
Mecillinam	> 8	0.5	4	94.8	-	5.2
Cefuroxime	> 8	4	≥ 64	88.7	-	11.3
Cefixime	> 1	0.25	4	89.3	-	10.7
Cefpodoxime	> 1	0.5	≥ 8	88.9	-	11.1
Ciprofloxacin	> 0.5	≤ 0.06	8	86.3	2.6	11.1
Trimethoprim-sulfamethoxazole	> 4	≤ 0.25	≥ 32	72.2	0.9	27.0
Fosfomycin	> 8	2	8	92.6	-	7.4
Nitrofurantoin	> 64	≤ 16	32	98.9	-	1.1

S (susceptible at standard dose), I (susceptible at increased exposure), R, resistant.

1 EUCAST breakpoints for orally administered antibiotics. 2 Resistance was confirmed by agar dilution.

Overall, the degree of resistance to oral antibiotics in uropathogenic E. coli from outpatients seems to be favorable. The frequency of resistance to individual drugs, however, varied. Resistance rates were below 10% for fosfomycin, nitrofurantoin and mecillinam, all of which are recommended for first-line treatment of uncomplicated lower UTI by international guidelines.

ESBL producing isolates
- 10 % (n=46): all CTX-M family
- One or more additional beta-lactamase (n=25)

Antimicrobial susceptibility of the isolates
- Fully susceptible to all antimicrobials: 49.1%
- Resistant to one drug class: 14.6% (n=76)
- Resistant to two drug classes: 15.2% (n=70)
- Resistant to more than two drug classes: 21.1% (n=97)
- Most widespread: resistance to amoxicillin, followed by resistance to trimethoprim-sulfamethoxazole, amoxicillin-clavulanic acid, and cefuroxime
- Least widespread: resistance to fosfomycin, nitrofurantoin and mecillinam
- Mecillinam-resistant: 5.2 % (n=24)
- MIC 50 / 90 % of mecillinam for ESBL producing isolates: 1 / 4 mg/L
- MIC 50 / 90 % of mecillinam for remaining isolates: 0.5 / 4 mg/L
- All but one mecillinam-resistant isolates showed cross-resistance to amoxicillin and amoxicillin-clavulanic acid.