Allocation of the diet of the Argentine Islands’ inshore ichthyofauna

A. V. Zinkovskyi*, I. V. Dykyy**, V. M. Trokhymets*

*Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
**Ivan Franko National University of Lviv, Lviv, Ukraine

Received in revised form 16.03.2021, accepted 16.03.2021.

Fish diets are important indicators of ecosystem change. This aspect of the ichthyofauna of the coast of the Argentine Islands has been insufficiently studied in comparison with other regions. This article presents the results of comparison of dietary and somatic parameters of the dominant species Notothenia coriiceps depending on the point, depth and season of catch. The sample was collected between February 2006 and February 2007. In the year of study, N. coriiceps, Trematomus bernacchii, Channichthys acutirostris (common species), Harpagifer antarcticus and Pagohypopomus boehmigi (rare species in this region) were caught. The average fish size in this region does not differ from other places in the Southern Ocean. In Cornice Channel and Stella Creek, N. coriiceps was smaller than at other points due to the narrowness and shallow depth of these places. In winter, large individuals apparently migrated from the coast. The diet of N. coriiceps consisted mainly of crustaceans and seaweeds, with a small number of mollusks (especially limpets), which are common. The number of fish in the diet of N. coriiceps is relatively low for this region. Access to food was relatively the same at different points and depths of the catch. The lowest amount of food was in the fall, the highest amount of food was in the spring and summer. The condition and hepatosomatic index also did not change depending on the point and depth of the catch, but they were low in spring and high in summer. Perhaps this is due to the low energy value of food, which is not compensated by the amount. It is necessary to conduct studies of the diet of N. coriiceps in other years to clarify the specificity of fish in the diet and phenological changes in somatic parameters. Similar studies are needed for other species in the region if catches are sufficient to collect a representative sample.

Keywords: South Ocean; Antarctic Peninsula; Antarctic fish fauna; Notothenia coriiceps; Notothenioidei.

Introduction

The dominant group of demersal fish in the Southern Ocean is the suborder Notothenioidei (order Perciformes) (Gosnold & Heemstra, 1990; Eastman, 2005). The coastal waters of the Argentine Islands (Wilhelm Archipelago, West Coast of Antarctic Peninsula) are no exception. Of the 35 species recorded in this region, 31 belong to this group. Of these, 18 species belong to the family Nototheniidae, 2 to the family Arctidae, 4 to the family Harpagidae, 5 to the family Channichthyidae and 1 to the family Bovichthidae (Manilo, 2006). However, only 16 out of 35 species are more or less regularly found; all of them are in the suborder Notothenioidei. The closest area for which the fish fauna and its diet is well-studied is the Danco Coast, Antarctic Peninsula (Casaux et al., 2003; Casaux & Barrera-Oro, 2013). However, despite the proximity, the different ecological conditions of these places can cause a difference in the feeding habits of the fish. Also available research in the area indicates that the diet of the dominant species N. coriiceps may vary over the years (Trokhymets & Zinkovskyi, 2017). The closest area for which the fish fauna and its diet is well-studied is the Danco Coast, Antarctic Peninsula (Casaux et al., 2003; Casaux & Barrera-Oro, 2013). However, despite the proximity, the different ecological conditions of these places can cause a difference in the feeding habits of the fish. Also available research in the area indicates that the diet of the dominant species N. coriiceps may vary over the years (Trokhymets & Zinkovskyi, 2017). Zinkovskyi et al., 2019. We believe that this may indicate a strong change in the ecological conditions of the Argentine Islands. Therefore, our goal was to study the contents of the gastrointestinal tracts of fish caught between February 2006 and February 2007 and compare them with the available knowledge.

Material and methods

Fishes for this study were caught during 9th Ukrainian Antarctic Expedition from February 2006 to February 2007. This and other materials were collected in accordance with the tasks of State Research Program of Ukraine in Antarctica for 2002–2010 (Order of the Cabinet of Ministers of Ukraine on September 13, 2001 № 422-p).
Catching of samples was carried out by hook tools such as “bottom fishing tackle”. Trawling was performed with a fishing rod in cases where the fish did not react to the bait for a long time. Catching was also carried out by grids, but only 13 individuals (1 Ch. aceratus and 12 N. coriiceps) were caught in this way. Nets (immovable or travis) cannot be used due to the rocky bottom, floating ice and narrow straits with strong currents between the islands in this area. Pieces of fresh meat were used as bait.

All of fish were collected in the Argentine Islands area (Fig. 1). Cornice Channel (S 65°1505′ W 64°15′14′), Meek Channel (S 65°14′38′ W 64°15′18′), Stella Creek Channel (corner of Emergency Bay, S 65°14′49′ W 64°15′17′) and Marina Point (S 65°14′42′ W 64°15′25′) were the main catch points. There were also small numbers of catches near the Barchans Islands (S 65°14′33′ W 64°17′15′).

Fig. 1. The map of catch points: 1—Barchans Islands, 2—Cornice Channel, 3—Meek Channel, 4—Stella Creek Channel, 5—Marina Point

The collective monograph “Fishes of the Southern Ocean” (Gon & Heemstra, 1990), the species identification sheet of the FAO “Southern Ocean (fishing areas 48, 58, 88) (CCAMLR Convention Area)” (Fischer & Hureau, 1985) and guide for fishermen “Bottom and subbottom fish of Antarctica and adjacent waters” (Solyanik, 1975) were used to determine the species of fish.

Comparisons were made mainly among N. coriiceps, as only individuals of this species were sufficient for statistical analysis. Individuals were compared by point, depth and season. Seasons were named according to the Southern Hemisphere so as to match seasonal weather conditions. So, summer includes December, January and February etc.

The statistical analysis of the following indicators was carried out: hepatosomatic index (liver to body weight ratio), Fulton’s (KF) and Clark’s (KC) body condition factor, index of food (gastrointestinal tract contents to body weight ratio), total (TL) and standard (SL) body lengths, total body weight and body weight without entrails (Aleksienko & Podobailo, 1998; Raga et al., 2015; Plotnikov et al., 2018). Total and standard lengths were measured with an accuracy of 0.1 cm; body, organs and food weights were measured with an accuracy of 1 g.

Fisher’s Exact Test (F-test) for Count Data (Fisher, 1935) was used to compare the frequency of occurrence of diet components. F-test was also used to compare 3 or more manifestations of the factor. To reduce the possible effect of random distribution, Monte Carlo simulated P-values with the number of repetitions of simulation cycles 10,000 was used (Mundform, 2012). F-test reporting is P-value. The Shapiro-Wilk Normality Test (Shapiro & Wilk, 1965) showed that most indicators were not distributed according to the normal distribution, so non-parametric tests were used. To compare the dimensional and weight characteristics, the Kruskal-Wallis Rank Sum Test (H-test, or KW) (Kruskal & Wallis, 1952) with the notation form (the value of χ² H (the value of degrees of freedom), the P-value of the test) was used. In the case of statistically significant influence of the factor according to the result of Kruskal-Wallis, for pairwise analysis the Pairwise Test for Multiple Comparisons of Mean Rank Sums (Dunn’s Test) was used with the Benjamini & Hochberg correction (Dunn, 1964; Benjamini & Hochberg, 1995; Dinno, 2015). Dunn’s-Test reporting is shown as P-values. R 3.6.2 language and environment for statistical computing with RStudio 1.2.5033 interface (R Core Team, Austria, 2019) included packages “PMCMR” version 4.3 (Thoma- ten Pohlert, 2014) and “readxl” version 1.3.1 (Hadley Wickham and Jennifer Bryan, 2019) were used for statistical analysis.

Results

Frequency of occurrence. During the expedition the following species of fish were caught: Nototthenia coriiceps Richardson, 1844 – 86.1% (149 individuals), Trematomus bernacchii Bou力争er, 1902 – 6.4% (11 individuals), Chaenocephalus aceratus (Linné, 1758) – 6.4% (11 individuals), Harpagifer antarcticus Nybelin, 1947 – 0.6% (1 individual), Pagophoca thor Greviniiski (Bou力争er, 1902) – 0.6% (1 individual).

N. coriiceps was the most numerous species and it occupied 86.1% in individuals or 81.8% by weight of the total fish catch. Insufficient numbers of the other species were caught to speak about their presence as being statistically significant. The F-test showed strong (P < 0.0100) difference between each point of catch except Cornice Channel and Stella Creek Channel (P = 0.4322), Meek Channel and Marina Point (P = 0.4846), and Stella Creek Channel and Marina Point (P = 0.0734). T. bernacchii was relatively often met in Cornice Channel and Stella-Creek catches (Table 1). The Meek Channel and Marina Point catches showed similarity in the large number of N. coriiceps. Also, there was a big difference between depths of catches. The difference was not only between < 10 m and 11–20 m catches (P = 0.1539); these catch groups have the same ratio of N. coriiceps and T. bernacchii (Table 1). Catches in winter were strongly different from those of summer (P < 0.0001), weakly different from those of spring (P = 0.0194) and almost different from autumn catches (P = 0.0067). There is not any statistically significant difference between other seasons. 8 of 11 T. bernacchii individuals were caught in winter, which is a reason for such results (Table 1).

Size. The only P. bor Greviniiski caught had total length 24.6 cm (standard length 21.0 cm) and total body weight 158 g (body weight without entrails 145 g), and H. antarcticus had total length 8.8 cm (standard length 7.4 cm) and total body weight 9 g (body weight without entrails was not measured). Size characteristics of Ch. aceratus, N. coriiceps and T. bernacchii are shown in Table 2.

Lengths of N. coriiceps were strongly different depending on the point (TL H(4) = 31.567, P < 0.0001; SL H(4) = 32.22, P < 0.0001), depth (TL H(3) = 16.652, P = 0.0008; SL H(3) = 16.151, P = 0.0011) and season (TL H(3) = 24.745, P < 0.0001; SL H(3) = 25.948, P < 0.0001) of catching. Pairwise comparison shows strong difference between Cornice Channel and 3 points: Barchans Islands (P = 0.0011), Meek Channel (P < 0.0001) and Marina Point (P = 0.0023). Fish from Cornice Channel had the smallest length (Table 3). Fish from Stella Creek Channel also were quite small, so there was weak difference with the Barchans Islands (P = 0.0108) and strong difference with Meek Channel (P = 0.0073). Average length increased with depth: the smallest individuals were caught on < 10 m, the biggest – on > 31 m. Accordingly, differences were between < 10 m and 21–30 m (P = 0.0021), and < 10 m and > 31 m (P = 0.0314). Fish caught in winter had the smallest length compared with the other three seasons (Table 3). Pairwise comparison showed strong differences with spring (P = 0.0001), summer (P < 0.0001) and autumn (P < 0.0001). Wherein there are not significant differences between other seasons.

In this description P-values are given for total length, but standard length has completely the same distribution characteristic. The exception is the absence of difference between < 10 m and > 31 m (P = 0.0514).

Weights of N. coriiceps had exactly the same differences as the SL (Table 3).

Diet and somatic indexes. Remains of subphylum Crustacea (orders Euphausiacea, Amphipoda and Isopoda of class Malacostraca), superclass Pisces, phylum Mollusca (class Gastropoda, especially Limpet, and class Bivalvia) and phylum Polychaeta representatives were found in the fishes’ gastrointestinal tracts. The order Euphausiacea was represented predominantly by Euphausia superba. Among the order Amphipoda representa-
tives remains of *Paraceradocus gibber* were defined authentically. The study of zoobenthos shows that *Patinigera polaris* was the most frequent Limpet species in the research area. Materials collected in 2008 showed that contents of *N. coriiceps* gastrointestinal tract consisted of classes Phaeophyceae (*Desmarestia* spp.) and Florideophyceae (*Mazzaella* spp., *Leptosomia* spp. and *Kallymenia* spp.) in this region.

Table 1
Number of fish in catches during February, 2006 – February, 2007 depending of point, depth and season of catching

Factor	Group	N. coriiceps	Ch. aceratus	T. bernacchii	P. borchgrevinki	H. antarcticus
Point	Barchans Islands	3	4	1	2	1
	Cornice Channel	12	5	3	7	1
	Meek Channel	91	3	7	2	1
	Stella Creek Channel	17	3	2	1	1
	Marina Point	26	2	3	2	1
Depth	< 10 m	35	3	3	1	1
	11–20 m	22	3	2	1	1
	21–30 m	82	3	1	1	1
	> 31 m	4	1	1	1	1
Season	Winter	37	5	4	1	1
	Spring	27	2	2	2	2
	Summer	57	4	2	2	2
	Autumn	26	4	3	1	1

Mean annual values of the main biological characteristics of fish caught during February, 2006 – February, 2007 (x ± SE)

Species	Total body length, cm	Standard body length, cm	Total body weight, g	Body weight without entrails, g	Index of food	Index of liver
N. coriiceps	20.6 ± 0.4	18.4 ± 1.4	176 ± 33	142 ± 29	0.80 ± 0.41	1.55 ± 0.05
Ch. aceratus	26.9 ± 0.4	24.8 ± 1.4	354 ± 14	192 ± 0.05	1.68 ± 0.01	1.95 ± 0.02
T. bernacchii	26.0 ± 0.4	24.8 ± 0.4	360 ± 39	264 ± 34	1.76 ± 0.26	1.61 ± 0.04

Table 2
Mean annual values of the main biological characteristics of fish caught during February, 2006 – February, 2007 (x ± SE)

Species	Total body length, cm	Standard body length, cm	Total body weight, g	Body weight without entrails, g	Index of food	Index of liver
N. coriiceps	30.5 ± 0.4	26.9 ± 0.4	417 ± 18	354 ± 14	1.92 ± 0.05	1.68 ± 0.01
Ch. aceratus	53.5 ± 1.3	48.6 ± 1.2	1148 ± 79	816 ± 55	0.48 ± 0.36	0.70 ± 0.02

Table 3
Mean annual values of the main biological characteristics of *N. coriiceps* caught during February, 2006 – February, 2007, depending of point, depth and season of catching (x ± SE)

Species	Total body length, cm	Standard body length, cm	Total body weight, g	Body weight without entrails, g	Index of food	Index of liver
N. coriiceps	30.5 ± 0.4	26.9 ± 0.4	417 ± 18	354 ± 14	1.92 ± 0.05	1.68 ± 0.01

Note: The same letters of one column values within a boundary of a factor indicate statistically insignificant differences in the compared pair according to Dunn’s test.

Ch. aceratus gastrointestinal tracts contained crustaceans in 2 cases (one was representative of the order Euphausiacea) and fish in 3 cases. 7 fish had empty gastrointestinal tracts. Only remains of crustaceans were found in *T. bernacchii* gastrointestinal tract in 4 cases (representatives of orders Euphausiacea in 1 fish and Isopoda in 2 fish); 6 fish had empty gastrointestinal tracts. The only caught individual of *H. antarcticus* had an empty gastrointestinal tract. Remains of Amphipoda representatives were found in the only *P. borchgrevinki* sample.

Gastrointestinal tracts of *N. coriiceps* were filled with representatives of: order Euphausiacea – 27.6% (34 cases), order Amphipoda – 37.4% (46 cases), order Isopoda – 17.9% (22 cases), subclass Polychaeta total – 77.2% (95 cases), superclass Pisces – 13.0% (16 cases), Limpet – 21.1% (26 cases), class Gastropoda total – 34.2% (42 cases), class Brachiopoda total – 0.8% (1 case), phylum Mollusca total – 35.0% (43 cases), phylum Polychaeta – 5.7% (7 cases) and Algae – 61.0% (75 cases). 26 individuals of *N. coriiceps* had empty gastrointestinal tracts. Further, the representation of the food component was calculated by the number of individuals, with a full gastrointestinal tract (123 fish). Details about the diet components are shown in Table 4. Three fish caught near the Barchans Island had remains of crustaceans in their gastrointestinal tracts (representatives of Amphipoda in 1 case, and Euphausiacea and Isopoda in 2 cases). Also, there were found remains of a Limpet representative (1 case) and seaweeds (1 case). Crustaceans were the most numerous diet components among all of points (except Meek Channel, where seaweeds were more prevalent) and there isn’t any difference between these groups (Table 4). Also, no difference was for representation of the order Isopoda: they were not numerous food items, indeed no fish from Cornice Channel had Isopoda in their gastrointestinal tract. Representative of the order Euphausiacea were found more often in the Meek Channel catch than at other points, especially the Stella Creek Channel (P = 0.0307). The biggest difference among subphylum Crustacea representatives was in the order Amphipoda: in the Cornice Channel catch group representatives of the order Amphipoda were found in most individuals. This is much more than at other points, especially Meek Channel (P = 0.0024) and Marina Point (P = 0.0080). However, there are not differences in Amphipoda representation between depths of catching, just as with crustaceans. The number of fish with remains of representatives of the order Euphausiacea increased with depth, but the only statistically significant difference is between < 10 m and 21–30 m (P = 0.0023). Representatives of the order Isopoda were more unevenly distributed among depths. There are differences between < 10 m and 11–
20 m \((P = 0.0446) \), < 10 m and > 31 m \((P = 0.0015) \), and 21–30 m and > 31 m \((P = 0.0026) \). In autumn remains of crustaceans were found less often than in other seasons, but there is not a statistically significant difference. Representatives of the order Isopoda were not found in autumn, but the difference was only between spring and summer \((P = 0.0322) \).

Representatives of the phylum Mollusca included class Gastropoda (especially Limpet) found everywhere with the same frequency. There was a weak difference in Limpet frequency between < 10 m and 11–20 m \((P = 0.0326) \) only. However, this type of food was encountered more often than fish (Table 4).

Representatives of the phylum Polychaeta were found less often than fish and other types of food and there is no statistically significant difference among groups, except spring and summer \((P = 0.0117) \).

Remains of seaweeds were especially often found in the gastrointestinal tracts of fish from Meek Channel (Table 4). This greatly exceeds their frequency in fish caught in the Cornice Channel \((P = 0.0016) \), Stella Creek Channel \((P = 0.0003) \), and Marina Point \((P = 0.0294) \). There is no difference between the other three points. Among depths Algae representatives were found more often at 21–30 m, and there are differences between < 10 m \((P = 0.0002) \) and with 11–20 m \((P = 0.0224) \). Fish gastrointestinal tracts from summer and autumn contained more remains of seaweeds than contents of tracts of fish caught in spring and winter. There are statistically significant differences between winter and summer \((P = 0.0059) \), winter and autumn \((P = 0.0224) \), and spring and summer \((P = 0.0244) \).

Mass index of food is slightly different from scoring system (Table 3). There is no statistically significant difference among point \((H(4) = 4.7131, P = 0.3180) \) and depth \((H(3) = 5.0638, P = 0.1672) \) of catching. However, the high value of food in summer and spring are very different from winter and, especially, autumn. So, there is not a strong difference between spring and summer \((P = 0.2578) \) only.

Despite the high level of difference in size characteristics (length and weight), their ratio as Clark’s and Fulton’s conditions factors is distributed more evenly (Table 3). Clark’s factor does not show difference among points of catch \((H(4) = 6.4207, P = 0.1699) \). There is a weak statistical significant test result in Fulton’s factor \((H(4) = 9.5015, P = 0.0497) \), but pairwise comparison give no confirmation of this. There were differences among depths \((K(C) = 8.0343, P = 0.0453 \) and \(K(F) = 10.306, P = 0.0161) \), but it is connected with difference between < 10 m (the lowest value) and 21–30 m (the highest value) catch groups \((K(C) = 0.0350 \) and \(K(F) = 0.0086) \) only. Seasonal changes of condition were more pronounced \((K(C) = 13.932, P = 0.0030 \) and \(K(F) = 24.157, P < 0.0001) \). In summer the condition factor had the highest value, so there are differences with spring \((K(C) = 0.0110 \) and \(K(F) = 0.0028) \), and with autumn \((K(C) = 0.0110 \) and \(K(F) = 0.0001) \). Also, there is difference of Fulton’s factor between autumn and winter \((P = 0.0093) \).

There is difference in hepatosomatic index among point of catch \((H(4) = 12.197, P = 0.0159) \) only between Cornice Channel (the highest value; Table 3) and Marina Point \((P = 0.0084) \). There was no difference among the depths of the catch \((H(3) = 1.3720, P = 0.7121) \). The lowest value of hepatosomatic index was in autumn and spring \((H(3) = 10.924, P = 0.0121) \). However, there are differences between spring and summer \((P = 0.0099) \), and spring and winter \((P = 0.0099) \) only (Table 3).

Table 4

Diet components occurrence of *N. corticpes* caught during February, 2006 – February, 2007 (numbers in the table shows amounts in % of fish in whose gastrointestinal tracts the remains were found depending of point, depth and season of catching)

Diet component	Cornice Channel	Meek Channel	Stella Creek Channel	Marina Point
Crustacea	90.9	73.6	80.0	81.0
Euphausiacea	9.1	36.1	6.7	19.1
Amphipoda	11.8	31.9	46.7	28.6
Isopoda	0.0	18.1	20.0	19.1
Pisces	0.0	18.1	0.0	14.3
Molusca	36.4	34.7	33.3	38.1
Gastropoda	36.4	34.7	26.7	38.1
Liropot	18.2	35.0	6.7	19.1
Polichauta	9.1	5.6	6.7	4.8
Algae	27.3	77.8	26.7	52.4

Remains of fish were found equally rarely among all the points, depth and seasons; in Cornice Channel and Meek Channel, and also in autumn there were no fish in the gastrointestinal tracts. There was a very weak difference \((P = 0.0439) \) between winter and summer catches, and that appears to be more like a random feature than a regularity (Table 4).

Frequencies of occurrence. *N. corticpes* is a common coastal species throughout the Southern Ocean, including the Antarctic Peninsula (Casaux & Barrera-Oro, 2013; Raga et al., 2015). This species always takes up the majority of the catches (Manilo et al., 2009; Trokhymets et al., 2010). The Argentine Islands are within the range of *Ch. aceratus* (Reid et al., 2007), so the catch of this species was not an accident. 3 years before this study, *Ch. aceratus* was about 2%, and in 2007–2008 – 4% of the catch (quantity) in the study area. In the year of study the relative amount of the catch of this species was about the same – 6% (Manilo et al., 2009; Trokhymets et al., 2010). This frequency of occurrence is normal for this species. In the Danco Coast area the relative catch of this species was less than 1% in 2000 (Casaux et al., 2003).

The relative amount of catch of *T. bernacchii* 6% in 2006–2007 was very small compared to the previous three years of research in this area (Manilo et al., 2009). However, in 2007–2008, its proportion was already about 2% (Trokhymets et al., 2010). There was a similar catch from the Danco Coast (Casaux et al., 2003; Casaux & Barrera-Oro, 2013). Overall, *T. bernacchii* is circumpolar and is found almost everywhere in the Southern Ocean (Moreno, 1980).

H. antarcticus had already been seen in catches in the area and also in very small numbers (Manilo et al., 2009; Trokhymets et al., 2010). But between 2002 and 2007 *P. borchgrevinki* was caught only in the year of study (Manilo et al., 2009; Trokhymets et al., 2010). *H. antarcticus* and *P. borchgrevinki* did not occur off the Danco Coast even in single cases (Casaux et al., 2003; Casaux & Barrera-Oro, 2013). Sufficient numbers of adults and larva of *H. antarcticus* have been found in the South Shetland Islands for it to be considered a common species in the West Antarctic (Piccinato et al., 2018). The catch of *P. borchgrevinki* in the Antarctic Peninsula is rarely mentioned. However, this species is part of the diet of seals (Casaux et al., 2011) and shags (Casaux et al., 2002).

The caught individuals of the *Ch. aceratus*, *T. bernacchii*, *H. antarcticus* and *P. borchgrevinki* were typical in size relative to this area and their range in general (Casaux et al., 2002; La Mesa et al., 2004; Reid et al., 2007; Rigellina et al., 2016; Piccinato et al., 2018).

N. corticpes at the Cornice Channel and Stella Creek Channel were significantly smaller than the rest of the total catch. These places are located in the narrowest and shallowest places among other points in this research. It appears that *N. corticpes* either leaves these areas as it grows or does not reach the same size as elsewhere. The average size increased with depth, but the general trend has little confirmation. The fact that
smaller individuals were caught in winter can be explained by the possible migration of large individuals during this period. Studies in Admiralty Bay, Antarctic Peninsula (Raga et al., 2015) indicate that larger individuals of this species are more common in warm water. The water temperature directly depends on the season, so the migration of large individuals to a warm place in winter is an acceptable explanation. However, this phenomenon requires additional research.

Diet and somatic index. The numbers of caught and analyzed *Ch. aceratus*, *Tr. bernacchii*, H. antarcticus, and *P. borishegorodski* were too few for dietary analysis and conclusions to be drawn. Gastrointestinal tracts of these species were generally poorly filled, especially *Ch. aceratus*. Diet remains found are not unique to these species and are common (Casaux et al., 2003; La Mesa et al., 2004; Reid et al., 2007).

Overall, the most important parts of *N. coriiceps* diet were representatives of the phyla Crustacea and Algæ for this region in 2006–2007. This is common for this species both in this area (Manullo et al., 2009; Trokhymets & Zinkovsky, 2017; Zinkovsky et al., 2019) and in the West Antarctic in general (Casaux et al., 2003; Barrena-Oro et al., 2018). Also, common is a low but stable number of representatives of the phylum Mollusca (especially Limpet) and a very small number of representatives of the phylum Polychaeta. But such a low quantity of the representatives of the superclass Pisces in the diet is unusual – it is low even in comparison with 2008, when fish were found in about 30% of *N. coriiceps* (Zinkovsky et al., 2019). This is much lower in comparison with 2007, when there were more fish than crustaceans (Trokhymets & Zinkovsky, 2017). In 2000, about 15% of *N. coriiceps* analyzed caught from the Danco Coast contained fish (Casaux et al., 2003). However, re-calculating of the relative mass of the component indicates the predominance of fish over crustaceans and its formation as the main component of the diet at the level with seaweeds (Casaux & Barrena-Oro, 2013). So far, we have no hypotheses to explain such a wavelike change in the amount of fish as a component of the diet of *N. coriiceps*.

The differences in diet in relation to the place of capture was not large. The main difference was the high number of the order Amphipoda representatives at Corniche Channel and Algae representatives at Meek Channel. The relatively high number of representatives of the order Isopoda did not seem to compensate for the lack of other components. Also, the number of food was sufficient, so the hepatosomatic index was high. Despite the small amount of food in the summer, the relative weight of the liver can be high due to fattening in the summer. In winter, the average level of food availability was the same as in summer, therefore the hepatosomatic index was high. The average hepatosomatic index in the year of study was similar to 2007 (Trokhymets & Zinkovsky, 2017) and slightly lower than in 2008 (Zinkovsky et al., 2019). The distribution of this indicator is similar to the distribution in Admiralty Bay (Raga et al., 2015).

Conclusions

Mostly the diet and changes in somatic indices in *N. coriiceps* are characteristic both for this region and for the Antarctic Peninsula as a whole. This also applies to the species composition of the catch of the studied year. This indicates that despite the geographical differences of the Argentine Islands, the ichthyofauna as part of the local ecosystem does not differ from other ecosystems on the West Coast of the Antarctic Peninsula. An exception is the number of fish in the diet, which varies greatly from year to year in this region. This was not the case in other regions. Also, there are seasonal changes of the condition that are not similar to other areas researched. These facts need to be studied by doing more research in other years.

Unfortunately, the numbers of the other 4 species caught were too small for a representative sample to be collected and, therefore, to perform similar research. Obtained data on the size and diet of *Ch. aceratus* and *T. bernacchii* do not differ from other regions. Accordingly, in the subsequent studies, one should try to recruit the required number of representatives of these species to conduct a similar study.

The authors of this study express their gratitude to the National Antarctic Research Center of Ukraine (Ministry of Education and Science of Ukraine) for funding and organizing the Ukrainian Antarctic Expedition, during which the samples were collected. The authors are also grateful for the full support of the original study. In addition, the authors are grateful to the Educational and Scientific Center “Institute of Biology and Medicine” of Taras Shevchenko National University of Kiev for providing laboratory conditions.

The authors would like to thank SCAR Antarctic Digital Database for the opportunity to freely use and edit detailed maps of Antarctica.

References

Alekseenko, V. R., & Podobailo, A. V. (1998). Metodychni vkazivky do vyvchennya ikhlotohiyi [Methodological instructions for studying ichthyology]. Kyiv University, Kyiv (in Ukrainian).

Barrena-Oro, E., Marschott, E., & Ainley, D. (2017). Changing status of three nototheniid fish at the South Shetland Islands (1983–2016) after impacts of the 1970–80s commercial fishery. Polar Biology, 40, 1–8.

Barrena-Oro, E., Moreira, E., Seifeldt, M., Francione, M., & Quartino, M. (2018). The importance of macroalgae and associated amphipods in the selective ben-thic feeding of sister rodток species *Nototthenia rossi* and *N. coriiceps* (Notothenioidea) in West Antarctica. Polar Biology, 42, 317–334.

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B, 57, 289–300.

Casaux, R., & Barrera-Oro, E. (2013). Dietary overlap in ishore nototheniid fish from the Danco Coast, Western Antarctic Peninsula. Polar Research, 32, 21319.

Casaux, R., Baroni, A., & Barrena-Oro, E. (2002). Fish in the diet of the Antarctic shag at four colonies on the Danco Coast, Antarctic Peninsula. *Antarctic Science*, 14(1), 32–36.

Casaux, R., Barrera-Oro, E., Baroni, A., & Ramon, A. (2003). Ecology of ishore nototheniid fish from the Danco Coast, Antarctic Peninsula. *Polar Biology*, 26, 157–165.
Eastman, J. T. (2005). The nature of the diversity of Antarctic fishes. Polar Biology, 28, 93–107.

Ferreira, M. F., Varela, M. L., Lo Nostro, F., Ansaldo, M., & Genovese, G. (2017). Reproductive aspects of Notothenia rossi and N. coriiceps (Perciformes, Nototheniidae) at Potter Cove, 25 de Mayo (King George) Island during austral summer. Polar Biology, 40, 1–11.

Fischer, W., & Hureau J. (1985). FAO species identification sheet for fishery purposes / Southern Ocean (Fishing areas 48, 58 and 88) (CCAMLR Convention Area). FAO, Rome.

Fisher, R. A. (1935). The logic of inductive inference. Journal of the Royal Statistical Society Series A, 98, 39–54.

Gon, O., & Heenstra, P. (1990). Fishes of the Southern Ocean. Institute of ichthyology, Grahamstown.

Griffiths, H. J. (2010). Antarctic marine biodiversity – what do we know about the distribution of life in the Southern Ocean? PLoS One, 5(8), e11683.

Jurajda, P., Roche, K., Sedláček, I., & Vsetíčková, L. (2016). Assembilge characteristics and diet of fish in the shallow coastal waters of James Ross Island, Antarctica. Polar Biology, 39, 2299–2309.

Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47(260), 583–612.

La Mesa, M., Dalá, V., & Vacech, M. (2004). Trophic ecology of the emerald notothen, Trematomus bernacchii (Pisces, Nototheniidae) from Terra Nova Bay, Ross Sea, Antarctica. Polar Biology, 27(11), 721–728.

Manoilo, L. G. (2006). Biljofauna i morfobiologicheskaya karakteristika massovykh vidov ryb pribrezhnykh vod Argentinskikh ostrovov (Antarktika) [Ichthyofauna and morphophysiological Characteristics of Mass Fish Species of Coastal Waters of Argentine Islands (Antarctica)]. Zhirmyk Prac Zooloogichnogo razzu (Kyiv), 38, 5–22 (in Russian).

Marina, T. I., Salinas, V., Cordone, G., Campina, G., Morein, M. E., Dereguia, D., Torre, L., Sahade, R., Tatian, M., Barren Oro, E., De Troch, M., Doyle, S., Quartinio, M. L., Saravia, L. A., & Momo, F. R. (2017). The food web of Potter Cove (Antarctica): Complexity, structure and function. Estuarine, Coastal and Shelf Science, 200, 141–151.

Marschall, E., Barrera-Oro, E., Alesco, N., & Ainley, D. (2012). Slow recovery of previously depleted demersal fish at the South Shetland Islands, 1983–2010. Fisheries Research, 125–126, 206–213.

Moreira, E., Juáres, M., & Barrera-Oro, E. (2014). Dietary overlap among early juvenile stages in an Antarctic notothenid fish assemblage at Potter Cove, South Shetland Islands. Polar Biology, 37, 1507–1515.

Moreno, C. A. (1980). Observations on food and reproduction in Trematomus bernacchii (Pisces: Nototheniidae) from the Palmer Archipelago, Antarctica. Copena, 1, 171–173.

Piacentino, G. M., Moreira, E., & Barrera-Oro, E. (2018). Early stages of notothenid fish from Potter Cove, South Shetland Islands. Polar Biology, 41, 2607–2613.

Pilotakiv, G. K., Peskova, T. Y., Skute, A., Pupina, A., & Papins, M. (2018). Osnovy iktihologii. Storonnii iktihologicheskiy metodov iktihologicheskoy issledovaniy dlya ispolzovaniy v akvakulture [Ichthyology basics. Collection of classical methods of ichthyological researches for use in aquaculture]. Daugavpils University Press “Zaikle”, Daugavpils (in Russian).

Raga, G., Pichler, H., Zaleski, T., de Silva, F., Machado, C., Rodrigues, E., Kawall, H., Rio, C., & Donatti, L. (2015). Ecological and physiological aspects of the Antarctic fishes Notothenia rossi and Notothenia coriceps in Adelie Bay, Antarctic Peninsula. Environmental Biology of Fishes, 98(3), 775–788.

Reid, W., Clarke, S., Collins, M., & Belcher, M. (2007). Distribution and ecology of Chaenocephalus aceratus (Channichthyidae) around South Georgia and Shag Rocks (Southern Ocean). Polar Biology, 30, 1523–1533.

Raginella, E., Mazzoldi, C., Ashford, J., Jones, C. D., Morgan, C., & La Mesa, M. (2016). Life history strategies of the Scotia Sea icefish, Chaenocephalus aceratus, along the Southern Scotia Ridge. Polar Biology, 39, 497–509.

Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52, 59–61.

Solyanik, G. A. (1975). Donnyye i pridonnyye ryby Antarktiki i sopredel'nykh vod [Bottom and subbottom fish of Antarctica and adjacent waters]. Tavtia, Simferopol (in Russian).

Trokhlmeta, V. M., Tymofoeyev, V. A., & Perechrest, J. S. (2010). Biljofauna ra-forum Arhentynsikh ostrovov (Antarktika) [Ichthyofauna and morphological features of the biology of mass species of the fishes in the area of Ukrainian Antarctic station Archenko Vernadsky]. Fisheries of Ukraine, 64(5), 7–23 (in Russian).

Marina, T. I., Salinas, V., Cordone, G., Campina, G., Morein, M. E., Dereguia, D., Torre, L., Sahade, R., Tatian, M., Barren Oro, E., De Troch, M., Doyle, S., Quartinio, M. L., Saravia, L. A., & Momo, F. R. (2017). The food web of Potter Cove (Antarctica): Complexity, structure and function. Estuarine, Coastal and Shelf Science, 200, 141–151.