General Congruences Modulo 5 and 7 for Colour Partitions

Nipen Saikia1,2 and Chayanika Boruah3

1Department of Mathematics, Rajiv Gandhi University,
Rono Hills, Doimukh, Arunachal Pradesh, India-791112.
E. Mail: nipennak@yahoo.com

3Department of Mathematics, University of Science and Technology,
Ri-Bhoi, Meghalaya-793101, India.
E. Mail: cboruah123@gmail.com

Abstract: For any positive integers \(n\) and \(r\), let \(p_r(n)\) denotes the number of partitions of \(n\) where each part has \(r\) distinct colours. Many authors studied the partition function \(p_r(n)\) for particular values of \(r\). In this paper, we prove some general congruences modulo 5 and 7 for the colour partition function \(p_r(n)\) by considering some general values of \(r\). To prove the congruences we employ some \(q\)-series identities which is also in the spirit of Ramanujan.

Keywords and Phrases: colour partition; \(q\)-series; congruence.

Mathematics Subject Classifications: 11P82; 11P83.

1. Introduction

A partition of a positive integer \(n\) is a non-increasing sequence of positive integers, called parts, whose sum equals \(n\). For example, \(n = 3\) has three partitions, namely,

\[3,\ 2+1,\ 1+1+1.\]

If \(p(n)\) denote the number of partitions of \(n\), then \(p(3) = 3\). The generating function for \(p(n)\) is given by

\[
\sum_{n=0}^{\infty} p(n)q^n = \frac{1}{(q;q)_{\infty}},
\]

where, here and throughout the paper

\[(a;q)_{\infty} = \prod_{n=0}^{\infty} (1 - aq^n).\]
Ramanujan [11] established following beautiful congruences for \(p(n) \):

\[
p(5n + 4) \equiv 0 \pmod{5},
\]

\[
p(7n + 5) \equiv 0 \pmod{7},
\]

and

\[
p(11n + 6) \equiv 0 \pmod{11}.
\]

In this paper we are concerned with colour partitions of positive integer \(n \). A part in a partition of \(n \) has \(r \) colours if there are \(r \) copies of each part available and all of them are viewed as distinct objects. For example, if each part in the partition of 3 has two colours, say red and green, then the number of two colour partitions of 3 is 10, namely

\[
3_r, \ 3_g, \ 2_r + 1_r, \ 2_r + 1_g, \ 2_g + 1_g, \ 2_g + 1_r,
\]

\[
1_r + 1_r + 1_r, \ 1_g + 1_g + 1_g, \ 1_r + 1_g + 1_g, \ 1_r + 1_g + 1_g.
\]

Thus, number of 2-colour partitions of 3 is 10. The generating function of \(r \)-colour partitions of any positive integer \(n \) is connected to the general partition function \(p_r(n) \) introduced by Ramanujan in a letter to Hardy [4] and is given by

\[
\sum_{n=0}^{\infty} p_r(n) q^{n} = \frac{1}{(q; q)_\infty}.
\]

(1.2)

For \(r = 1 \), \(p_1(n) \) is the usual unrestricted partition function \(p(n) \) defined in (1.1). If \(r \) is negative, then

\[
p_r(n) = (p_r(n, e) - p_r(n, o)),
\]

(1.3)

where \(p_r(n, e) \) (resp. \(p_r(n, o) \)) is the number of partitions of \(n \) with even (resp. odd) number of distinct parts and each part have \(r \) colours. For example, if \(n = 5 \) and \(r = -1 \) then \(p_{-1}(5, e) = 2 \) with relevant partitions \(4 + 1 \) and \(3 + 2 \), and \(p_{-1}(5, o) = 1 \) with the relevant partition 5. Thus, \(p_{-1}(5) = 2 - 1 = 1 \). Similarly, we see that \(p_{-2}(3) = 4 - 2 = 2 \).

The case \(r = -1 \) in (1.3) is the famous Euler’s pentagonal number theorem. Ramanujan [4] showed that, if \(\lambda \) is a positive integer and \(\overline{w} \) is a prime of the form \(6\lambda - 1 \), then

\[
p_{-4}\left(n\overline{w} - \frac{(\overline{w} + 1)}{6}\right) \equiv 0 \pmod{\overline{w}}.
\]

(1.4)

Ramanathan [10], Atkin [1], and Ono [9] investigated the partition function for some negative values of \(r \). Recently, Saikia and Chetry [14] proved some infinite families of congruences modulo 7 for the partition function \(p_r(n) \) for negative values of \(r \).
For positive values of r, $p_r(n)$ counts the number of r-colour partitions of a positive integer n. Gandhi [5] studied the colour partition function $p_r(n)$ for some particular values of r and found some Ramanujan-type congruences for certain values of r. For example, he proved that

$$p_2(5n + 3) \equiv 0 \pmod{5} \quad \text{and} \quad p_8(11n + 4) \equiv 0 \pmod{11}.$$

Newman [8] also found some congruences for colour partition. Baruah and Ojah [2] proved some congruences for $p_3(n)$ modulo some powers of 3. Recently, Hirschhorn [7] found congruences for $p_3(n)$ modulo higher powers of 3.

In this paper, we prove some general congruences modulo 5 and 7 for the r-colour partition function $p_r(n)$ for some general values of r. To prove our congruences we will employ some q–series identities which is also in the spirit of Ramanujan. We list our congruences moduli 5 and 7 in Theorems 1.1 and 1.2 respectively below:

Theorem 1.1. For any non-negative integer k, we have

\begin{enumerate}[(i)]
 \item $p_{5k+1}(5n + 4) \equiv 0 \pmod{5}$.
 \item $p_{5k+2}(5n + i) \equiv 0 \pmod{5}$, \quad for \quad $i = 2, 3, 4$.
 \item $p_{5k+4}(5n + i) \equiv 0 \pmod{5}$, \quad for \quad $i = 3, 4$.
 \item $p_{25k+3}(25n + 22) \equiv 0 \pmod{5}$.
 \item $p_{25k+4}(25n + 21) \equiv 0 \pmod{5}$.
\end{enumerate}

Theorem 1.2. For any non-negative integer k, we have

\begin{enumerate}[(i)]
 \item $p_{7k+1}(7n + 5) \equiv 0 \pmod{7}$.
 \item $p_{7k+4}(7n + j) \equiv 0 \pmod{7}$, \quad for \quad $j = 2, 4, 5, 6$.
 \item $p_{7k+6}(7n + j) \equiv 0 \pmod{7}$, \quad for \quad $j = 3, 4, 6$.
 \item $p_{49k+2}(49n + 7j + 3) \equiv 0 \pmod{7}$, \quad for \quad $j = 2, 4, 5, 6$.
 \item $p_{49k+3}(49n + 7j + 1) \equiv 0 \pmod{7}$, \quad for \quad $j = 2, 4, 5, 6$.
 \item $p_{49k+5}(49n + 39) \equiv 0 \pmod{7}$.
\end{enumerate}
2. Preliminaries

Ramanujan [12] stated that
\[
(q; q)_\infty = (q^{25}; q^{25})_\infty (F^{-1}(q^5) - q^2 F(q^5)),
\]
where \(F(q) := q^{-1/5}R(q) \) and \(R(q) \) is the Rogers-Ramanujan continued fraction given by
\[
R(q) := q^{1/5} \frac{(q^2; q^5)_\infty (q^3; q^5)_\infty}{(q; q^5)_\infty (q^4; q^5)_\infty} = \frac{q^{1/5}}{1 + \frac{q}{1 + \frac{q^2}{1 + \frac{q^3}{1 + \ldots}}}, \quad |q| < 1.
\]

From (2.1), it is easy to see that
\[
(q; q)^2 = (q^{25}; q^{25})^2 \left(F^{-2}(q^5) - 2qF^{-1}(q^5) - q^2 + 2q^3 F(q^5) + q^4 F^2(q^5) \right),
\]
\[
(q; q)^3 = (q^{25}; q^{25})^3 \left(F^{-3}(q^5) - 3qF^{-2}(q^5) + 5q^3 - 3q^5 F^2(q^5) - q^6 F^3(q^5) \right),
\]
and
\[
(q; q)^4 = (q^{25}; q^{25})^4 \left(F^{-4}(q^5) - 4qF^{-3}(q^5) + 2q^2 F^{-2}(q^5) + 8q^3 F^{-1}(q^5) - 5q^4
\]
\[- 8q^5 F(q^5) + 2q^6 F^2(q^5) + 4q^7 F^3(q^5) + q^8 F^4(q^5) \right). \]

Again, by [3] p. 303, Entry 17(v)], we have
\[
(q; q)_\infty = (q^{49}; q^{49})_\infty \left(A(q^7) - qB(q^7) - q^2 + q^5 C(q^7) \right),
\]
where
\[
A(q^7) = \frac{f(-q^{14}, -q^{35})}{f(-q^7, -q^{42})}, \quad B(q^7) = \frac{f(-q^{21}, -q^{28})}{f(-q^{14}, -q^{35})}, \quad C(q^7) = \frac{f(-q^7, -q^{42})}{f(-q^{21}, -q^{28})},
\]
and
\[
f(a, b) = \sum_{n=-\infty}^{\infty} a^{n(n+1)/2} b^{n(n-1)/2}, \quad |ab| < 1.
\]

Squaring (2.5), we find that
\[
(q; q)^2 = (q^{49}; q^{49})^2 \left((A(q^7)^2 - 2q^7 C(q^7)) - 2q A(q^7) B(q^7) + q^2 \left(B(q^7)^2 - 2A(q^7) \right)
\]
\[+ q^3 \left(2B(q^7) + q^7 C(q^7)^2 \right) + q^4 + 2q^5 A(q^7) C(q^7) - 2q^6 B(q^7) C(q^7) \right). \]

Also, from [3] p. 39, Entry 24(ii)] we note that
\[
(q; q)^3 = \sum_{n=0}^{\infty} (-1)^n (2n + 1) q^{n(n+1)/2}.
\]

From (2.7), it follows that
\[
(q; q)^3 = J_0(q^7) - qJ_1(q^7) + q^3 J_3(q^7) - 7q^6 J_6(q^7)
\]
\[J_0(q^7) - qJ_1(q^7) + q^3J_3(q^7) \equiv 0 \pmod{7} \] (2.8)

and

\[
(q;q)_\infty^6 \equiv J_0(q^7)^2 - 2qJ_0(q^7)J_1(q^7) + q^2J_1(q^7)^2 + 2q^3J_0(q^7)J_3(q^7) - 2q^4J_1(q^7)J_3(q^7) + q^6J_3(q^7)^2 \pmod{7},
\]

(2.9)

where \(J_0, J_1, J_3, \) and \(J_6 \) are series with integral powers of \(q^7 \).

From [6, Lemma 3.12] we note that, if

\[
(\frac{(q^7; q^7)}{q^2(q^{49}; q^{49})})_\infty^\infty = 0,
\]

(2.10)

and \(H_7 \) is an operator which acts on a series of powers of \(q \) and picks out those terms in which the power of \(q \) is congruent to 0 modulo 7, then

\[H_7(\xi^4) = -4T_7 - 7 \quad \text{and} \quad H_7(\xi^5) = 10T_7 + 49. \]

(2.11)

In addition to the above \(q^- \) identities, we will also need the following congruence which follows from the binomial theorem (or see [13, Lemma 2.4]): For any prime \(p \), we have

\[(\frac{q^p; q^p}{q^p; q^p})_\infty^\infty \equiv (\frac{q; q}{q; q})_\infty^\infty \pmod{p}. \]

(2.12)

3. Proof of Theorem 1.1

Proof of (i): Setting \(r = 5k + 1 \) in (1.2), we obtain

\[
\sum_{n=0}^{\infty} p_{5k+1}(n)q^n = \frac{1}{(q;q)_{5k+1}^5}, \]

(3.1)

Using (2.12) in (3.1), we obtain

\[
\sum_{n=0}^{\infty} p_{5k+1}(n)q^n \equiv \frac{(q; q)_\infty^4}{(q^5; q^5)_{k+1}^k} \pmod{5}, \]

(3.2)

Employing (2.4) in (3.2) and then extracting terms involving \(q^{5n+4} \), dividing by \(q^4 \), and replacing \(q^5 \) by \(q \), we arrive at the desired result.

Proof of (ii): Setting \(r = 5k + 2 \) in (1.2), we obtain

\[
\sum_{n=0}^{\infty} p_{5k+2}(n)q^n = \frac{1}{(q;q)_{5k+2}^5}, \]

(3.3)

Using (2.12) in (3.3), we obtain

\[
\sum_{n=0}^{\infty} p_{5k+2}(n)q^n \equiv \frac{(q; q)_\infty^3}{(q^5; q^5)_{k+1}^k} \pmod{5}, \]

(3.4)
Employing (2.3) in (3.4) and extracting terms involving \(q^{5n+i} \) for \(i = 2, 3, 4 \), we arrive at the desired result.

Proof of (iii): Setting \(r = 5k + 4 \) in (1.2), we obtain
\[
\sum_{n=0}^{\infty} p_{5k+4}(n)q^n = \frac{1}{(q; q)_{5k+4}^\infty},
\]
(3.5)
Using (2.12) in (3.5), we obtain
\[
\sum_{n=0}^{\infty} p_{5k+4}(n)q^n \equiv \frac{(q; q)_{\infty}^2}{(q^5; q^5)_{\infty}^{k+1}} \pmod{5},
\]
(3.6)
Using (2.1) in (3.6) and extracting terms containing \(q^{5n+i} \) for \(i = 3, 4 \), we complete the proof.

Proof of (iv): Setting \(r = 25k + 3 \) in (1.2), we obtain
\[
\sum_{n=0}^{\infty} p_{25k+3}(n)q^n = \frac{1}{(q; q)_{25k+3}^\infty},
\]
(3.7)
Using (2.12) in (3.7), we obtain
\[
\sum_{n=0}^{\infty} p_{25k+3}(n)q^n \equiv \frac{4(q; q)_{\infty}^4}{(q^5; q^5)_{\infty}^{k-2}} \pmod{5},
\]
(3.8)
Employing (2.2) in (3.8) and then extracting terms involving \(q^{5n+2} \), dividing by \(q^2 \), and replacing \(q^5 \) by \(q \), we obtain
\[
\sum_{n=0}^{\infty} p_{25k+3}(5n + 2)q^n \equiv \frac{4(q; q)_{\infty}^4}{(q^5; q^5)_{\infty}^{k-2}} \pmod{5},
\]
(3.9)
Simplyfing (3.9) by using (2.12), we obtain
\[
\sum_{n=0}^{\infty} p_{25k+3}(5n + 2)q^n \equiv \frac{4(q; q)_{\infty}^4}{(q^5; q^5)_{\infty}^{k-1}} \pmod{5},
\]
(3.10)
Employing (2.4) in (3.10) and extracting terms involving \(q^{5n+4} \), we complete the proof.

Proof of (v): Setting \(r = 25k + 4 \) in (1.2), we obtain
\[
\sum_{n=0}^{\infty} p_{25k+4}(n)q^n = \frac{1}{(q; q)_{25k+4}^\infty},
\]
(3.11)
Using (2.12) in (3.11), we obtain
\[
\sum_{n=0}^{\infty} p_{25k+4}(n)q^n \equiv \frac{(q; q)_{\infty}^4}{(q^5; q^5)_{\infty}^{k-1}} \pmod{5},
\]
(3.12)
Employing (2.1) in (3.12) and then extracting terms involving q^{5n+1}, dividing by q, and replacing q^5 by q, we have

$$\sum_{n=0}^{\infty} p_{25k+4}(5n + 1)q^n \equiv \frac{4(q; q)^4_{\infty}}{(q^5; q^5)^{k+1}_{\infty}} \pmod{5}, \quad (3.13)$$

Again, employing (2.1) in (3.13) and extracting terms involving q^{5n+4}, we arrive at the desired result.

4. Proof of Theorem 1.2

Proof of (i): Setting $r = 7k + 1$ in (1.2), we obtain

$$\sum_{n=0}^{\infty} p_{7k+1}(n)q^n = \frac{1}{(q; q)^{7k+1}_{\infty}}, \quad (4.1)$$

Using (2.12) in (4.1), we obtain

$$\sum_{n=0}^{\infty} p_{7k+1}(n)q^n \equiv \frac{(q; q)^6_{\infty}}{(q^7; q^7)^{k+1}_{\infty}} \pmod{7}, \quad (4.2)$$

Employing (2.9) in (4.2) and extracting the terms involving q^{7n+5}, we arrive at the desired result.

Proof of (ii): Setting $r = 7k + 4$ in (1.2), we have

$$\sum_{n=0}^{\infty} p_{7k+4}(n)q^n = \frac{1}{(q; q)^{7k+4}_{\infty}}, \quad (4.3)$$

Using (2.12) in (4.3), we obtain

$$\sum_{n=0}^{\infty} p_{7k+4}(n)q^n \equiv \frac{(q; q)^3_{\infty}}{(q^7; q^7)^{k+1}_{\infty}} \pmod{7}, \quad (4.4)$$

Employing (2.8) in (4.4) and extracting the terms involving q^{7n+j} for $j = 2, 4, 5, 6$, we complete the proof.

Proof of (iii): Setting $r = 7k + 6$ in (1.2), we obtain

$$\sum_{n=0}^{\infty} p_{7k+6}(n)q^n = \frac{1}{(q; q)^{7k+6}_{\infty}}, \quad (4.5)$$

Using (2.12) in (4.5), we obtain

$$\sum_{n=0}^{\infty} p_{7k+6}(n)q^n \equiv \frac{(q; q)_{\infty}}{(q^7; q^7)^{k+1}_{\infty}} \pmod{7}, \quad (4.6)$$
General congruences modulo 5 and 7 for colour partitions

Employing (2.5) in (4.6) and extracting terms involving in \(q^{7n+j}\) for \(j = 3, 4, 6\), we complete the proof.

Proof of (iv): Setting \(r = 49k + 2\) in (1.2), we find that

\[
\sum_{n=0}^{\infty} p_{49k+2}(n)q^n = \frac{1}{(q;q)_{49k+2}^{10k+2}}. \tag{4.7}
\]

Using (2.12) in (4.7), we obtain

\[
\sum_{n=0}^{\infty} p_{49k+2}(n)q^n \equiv \frac{(q;q)_{\infty}^{9k} (q^{49};q^{49})_{\infty}^{5k-5} (q^7; q^7)_{\infty}}{(q^{49}; q^{49})_{\infty}^{k-5} (q^7; q^7)_{\infty}} \quad (\text{mod } 7). \tag{4.8}
\]

Employing (2.10) in (4.8), we obtain

\[
\sum_{n=0}^{\infty} p_{49k+2}(n)q^n \equiv \frac{\xi^5 q^{10}}{(q^{49}; q^{49})_{\infty}^{k-5} (q^7; q^7)_{\infty}} \quad (\text{mod } 7). \tag{4.9}
\]

Extracting the terms involving \(q^{7n+3}\) and using operator \(H_7\) in (4.9), we obtain

\[
\sum_{n=0}^{\infty} p_{49k+2}(7n+3)q^{7n+3} \equiv \frac{H_7(\xi^5)q^{10}}{(q^{49}; q^{49})_{\infty}^{k-5} (q^7; q^7)_{\infty}} \quad (\text{mod } 7), \tag{4.10}
\]

Employing (2.11) in (4.10), we obtain

\[
\sum_{n=0}^{\infty} p_{49k+2}(7n+3)q^{7n+3} \equiv 3q^3 \frac{(q^7; q^7)_{\infty}^{3k-1}}{(q^{49}; q^{49})_{\infty}^{k-5} (q^7; q^7)_{\infty}} \quad (\text{mod } 7), \tag{4.11}
\]

Dividing (4.11) by \(q^3\) and replacing \(q^7\) by \(q\), we obtain

\[
\sum_{n=0}^{\infty} p_{49k+2}(7n+3)q^n \equiv 3 \frac{(q; q)_{\infty}^{3k-1}}{(q^7; q^7)_{\infty}^{k-1}} \quad (\text{mod } 7), \tag{4.12}
\]

Employing (2.8) in (4.12) and extracting terms involving \(q^{7n+j}\) for \(j = 2, 4, 5, 6\), we complete the proof.

Proof of (v): Setting \(r = 49k + 3\) in (1.2), we obtain

\[
\sum_{n=0}^{\infty} p_{49k+3}(n)q^n = \frac{1}{(q;q)_{49k+3}^{10k+3}}. \tag{4.13}
\]

Using (2.12) in (4.13), we obtain

\[
\sum_{n=0}^{\infty} p_{49k+3}(n)q^n \equiv \frac{(q;q)_{\infty}^{4k} (q^{49};q^{49})_{\infty}^{k-5} (q^7; q^7)_{\infty}}{(q^{49}; q^{49})_{\infty}^{k-5} (q^7; q^7)_{\infty}} \quad (\text{mod } 7), \tag{4.14}
\]
Employing (2.10) in (4.14), we obtain
\[\sum_{n=0}^{\infty} p_{49k+3}(n)q^n \equiv \frac{\xi^4 q^8}{(q^{49}; q^{49})_{k-4}^2(q^7; q^7)_{\infty}} \quad (\text{mod } 7), \tag{4.15} \]

Extracting the terms involving \(q^{7n+1} \) and using operator \(H_7 \) in (4.15), we obtain
\[\sum_{n=0}^{\infty} p_{49k+3}(7n+1)q^{7n+1} \equiv \frac{H_7(\xi^4)q^8}{(q^{49}; q^{49})_{k-4}^2(q^7; q^7)_{\infty}} \quad (\text{mod } 7), \tag{4.16} \]

Employing (2.11) in (4.16), we obtain
\[\sum_{n=0}^{\infty} p_{49k+3}(7n+1)q^{7n+1} \equiv 3q^8(q^7; q^7)_{\infty}^2(q^{49}; q^{49})_{k-1}^2 \quad (\text{mod } 7), \tag{4.17} \]

Dividing (4.17) by \(q \) and replacing \(q^7 \) by \(q \), we obtain
\[\sum_{n=0}^{\infty} p_{49k+3}(7n+1)q^n \equiv 3(q; q)_{\infty}^2(q^7; q^7)_{\infty}^2 \quad (\text{mod } 7), \tag{4.18} \]

Employing (2.8) in (4.18) and extracting terms involving \(q^{7n+j} \) for \(j = 2, 4, 5, 6 \), we arrive at the desired result.

\textit{Proof of (vi):} Setting \(r = 49k + 5 \) in (1.2), we find that
\[\sum_{n=0}^{\infty} p_{49k+5}(n)q^n = \frac{1}{(q; q)_{49k+5}^2}, \tag{4.19} \]

Using (2.12) in (4.19), we obtain
\[\sum_{n=0}^{\infty} p_{49k+5}(n)q^n \equiv \frac{(q; q)_{\infty}^2}{(q^{49}; q^{49})_{k}^2(q^7; q^7)_{\infty}^2} \quad (\text{mod } 7), \tag{4.20} \]

Employing (2.6) in (4.20), extracting terms involving in \(q^{7n+4} \), dividing by \(q^4 \) and replacing \(q^7 \) by \(q \), we obtain
\[\sum_{n=0}^{\infty} p_{49k+5}(7n + 4)q^n \equiv \frac{1}{(q^7; q^7)_{\infty}^2(q^7; q^7)_{\infty}} \quad (\text{mod } 7), \tag{4.21} \]

Using (2.12) in (4.21), we obtain
\[\sum_{n=0}^{\infty} p_{49k+5}(7n + 4)q^n \equiv \frac{(q; q)_{\infty}^6}{(q^7; q^7)_{k-1}^2} \quad (\text{mod } 7), \tag{4.22} \]

Employing (2.9) in (4.22) and extracting terms involving \(q^{7n+5} \), we arrive at the desired result.
Compliance with Ethical Standards

Conflict of interest: The author declares that there is no conflict of interest regarding the publication of this article.

Human and animal rights: The author declares that there is no research involving human participants and/or animals in the contained of this paper.

References

[1] A. O. L. Atkin: Ramanujan congruence for \(p_k(n) \). Canad. J. Math. 20 (1968), 67-78.
[2] N. D. Baruah and K. K. Ojha: Some congruences deducible from Ramanujan’s cubic continued fraction. Int. J. Number Theory. 7 (2011), 1331-1343
[3] B. C. Berndt: Ramanujan’s Notebooks, Part III. Springer-Verlag, New York, 1991.
[4] B. C. Berndt and R. A. Rankin: Ramanujan: Letters and Commentary. Amer. Math. Soc. (1995).
[5] J. M. Gandhi: Congruences for \(p_r(n) \) and Ramanujan’s \(\tau \) function. Amer. Math. Monthly. 70 (1963), 265-274
[6] F. G. Garvan: A simple proof of Waston’s partition congruences for powers of 7. Int. J. Aust. Math. Soc. 36 (1984), 316-334.
[7] M. D. Hirschhorn: Partitions in 3 colours. Ramanujan J. DOI 10.1007/s11139-016-9835-8 (2016)
[8] M. Newman: Congruence for the coefficients of modular forms and some new congruences for the partition function. Canad. J. Math. 9 (1957), 549-552
[9] K. Ono: Distribution of the partition function modulo \(m \). Ann. Math. 151(1) (2000), 293-307.
[10] K. G. Ramanathan: Identities and congruences of the Ramanujan type. Canad. J. Math. 2(1950),168-178.
[11] S. Ramanujan: Some properties of \(p(n) \), the number of partition of \(n \). Proc. Camb. Philos. Soc. 19 (1919), 207-210
[12] S. Ramanujan: Collected Papers. Chelsea, New York, 1962.
[13] N. Saikia: Infinite families of congruences for 3-regular partitions with distinct odd parts. Commun. Math. Stat. (2019) https://doi.org/10.1007/s40304-019-00182-7
[14] N. Saikia and J. Chetry: Infinite families of congruences modulo 7 for Ramanujans general partition function. Ann. Math. Quebec. 42 (2018), 127-132.