Research Article

A Meta-Analysis of Studies Evaluating Visual and Anatomical Outcomes in Patients with Treatment Resistant Neovascular Age-Related Macular Degeneration following Switching to Treatment with Aflibercept

Sophie Seguin-Greenstein, 1,2 Sue Lightman, 1,2,3 and Oren Tomkins-Netzer 1,2,3,4

1 Moorfields Eye Hospital, 162 City Road, London EC1V 2PD, UK
2 UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
3 Royal Surrey County Hospital, Egerton Road, Guildford, Surrey GU2 7XX, UK
4 Bnai Zion Medical Center, 47 Golomb Road, 31048 Haifa, Israel

Correspondence should be addressed to Oren Tomkins-Netzer; o.tomkins-netzer@ucl.ac.uk

Received 31 August 2015; Accepted 11 January 2016

Academic Editor: Naoshi Kondo

Copyright © 2016 Sophie Seguin-Greenstein et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the introduction of aflibercept, eyes with neovascular age-related macular degeneration (AMD) not responding well to injections of ranibizumab or bevacizumab can be switched to treatment with aflibercept. We carried out a meta-analysis to analyze all available evidence of visual and anatomical outcomes of eyes with resistant neovascular AMD switched to aflibercept at six months. Data from seven retrospective and prospective studies looking at change in best corrected visual acuity (BCVA) and central retinal thickness (CRT) were included. Weighted mean difference (WMD) and 95% CI were estimated using the standardized mean change method. The overall results of the meta-analysis showed a small but statistically significant improvement in BCVA six months following treatment switch to aflibercept (WMD 0.142, 95% CI 0.006 to 0.28; $p = 0.04$), and the effect was more significant in data gathered from prospective studies (WMD 0.407, 95% CI 0.023 to 0.791, $p = 0.038$). There was a significant improvement in CRT following treatment switch to aflibercept (WMD -0.36, 95% CI -0.485 to -0.235; $p < 0.0001$). Our meta-analysis indicates that following treatment switch to aflibercept patients may have a significant improvement in CRT with stabilization or even some improvement in their visual acuity.

1. Introduction

Age-related macular degeneration (AMD) is a chronic degenerative process and is the leading cause of severe vision loss in people over the age of 60 in developed countries [1]. The neovascular (wet or exudative) form of AMD, which accounts for approximately 10% of cases, results in rapid deterioration in visual acuity often with permanent severe loss of vision [2]. The identification of the pathophysiologic mechanisms at the basis of neovascular AMD, particularly the role of vascular endothelial growth factor (VEGF), has led to the development and use of intravitreally delivered anti-VEGF agents, which target and cause regression of choroidal neovascularization [3, 4] and have become the standard of care. Currently, there are three clinically available agents, ranibizumab (Lucentis, Genentech, South San Francisco, CA), bevacizumab (Avastin, Genentech), and a more recent addition aflibercept (Eylea, Regeneron, Tarrytown, NY, USA). Each of these drugs has been tested in large multicenter, randomized, controlled clinical trials and found to have comparable effects on treatment of naïve patients [5–8]. To date, no clear evidence has been presented demonstrating a significant difference between aflibercept and any other agent for the treatment of either naïve or resistant neovascular AMD. Indeed, patients that are deemed unresponsive to treatment with any one agent are regularly offered an alternative drug. Treatment protocols with aflibercept also differ among studies, with a loading dose of three...
monthly nata injections followed either by a bimonthly or by a pro
treatment regimen. Recently, a study examining the response
to anti-VEGF treatment, using all three drugs, of patients
with diabetic macular edema demonstrated that eyes with
severe vision loss were more likely to benefit from the use of
afibercept [9]. This suggests that there may be a difference in
drug response among some patient subgroups.

In this paper we aimed to perform a meta-analysis of the
published literature on the efficacy of afibercept in patients
with neovascular AMD resistant to previous treatment with
ranibizumab and/or bevacizumab. We evaluated the changes
in their visual acuity and central retinal thickness (CRT) fol-
lowing the switch to afibercept.

2. Methods

2.1. Search Strategy. Major databases including PubMed
(MEDLINE), EMBASE, the Science Citation Index Expanded,
and the Cochrane Central Register of Controlled Trials
(CENTRAL) in the Cochrane Library were searched for
studies comparing visual acuity and/or change in CRT on
optical coherence tomography (OCT) of eyes with resistant
neovascular AMD on prior anti-VEGF treatment switching
to afibercept, published in English from January 2012 to May
2015. The medical search headings “ranibizumab,” “beva-
cizumab,” “Avastin,” “anti-VEGF,” “Lucentis,” “Afibercept,”
“Eylea,” and combinations of these were used, so were the
keywords “persistent,” “resistant,” and “recurrent” and the
keywords “switching,” “transitioning,” and “conversion.” The
reference lists of articles identified were examined to find
additional relevant studies that had not been identified by
the database searches. We only included comparative clinical
studies with the same group of patients treated with anti-
VEGF prior to switching to afibercept and that had full
text available in English. The final inclusion of articles was
determined by consensus between the authors SSG and OTN.

We followed the Preferred Reporting Items for Systematic
Reviews and Meta-Analysis (PRISMA) guidelines in
designing, performing, and reporting the systematic review
[10]. Included studies were required to (1) assess visual acuity
and/or CRT of patients with persistent and resistant
neovascular AMD treated with one anti-VEGF drug and then
switched to afibercept, (2) have a minimum follow-up of six
months after switching to afibercept, (3) have the treatment
regimen used clearly stated, and (4) be published in English.

2.2. Data Extraction and Quality Assessment. Data were
extracted using standardized forms. Data recorded included
patient and study characteristics, BCVA, CRT, and statistics
used for the study. In order to evaluate the reliability of the
comparative evidence, two authors (SSG and OTN) indepen-
dently assessed the risk of bias of the included studies using a
modified version of the Newcastle-Ottawa Scale for assessing
the quality of prospective and retrospective studies in meta-
analysis [11, 12]. Each paper was awarded a score in four
categories, patient selection (0–3), treatment comparability
(0–6), statistical methods (0–3), and outcome (0–6). Studies
achieving ten or more points were considered to be of high
quality. Only these studies were included in the final analysis.

Prospective studies scored higher on patient selection than
retrospective studies as were multicenter studies, as they are
more likely to be representative of the entire patient popula-
tion. Use of fluorescein fundus angiography (FFA), OCT, or
combination of both received an increasingly higher score on
treatment comparability. Outcome and timing assessments
of best corrected visual acuity (BCVA) and CRT as well as
reporting of follow-up were all evaluated. For the purpose
of the analysis, all BCVA values were converted to the log
minimum angle of resolution (LogMAR).

2.3. Statistical Analysis. Original data were extracted from
the studies and analyzed and the standardized mean change
was used to calculate intervention effects. The standardized
mean change was used to compute the estimates of treatment
for correlated designs. The standardized mean change has
been shown to be a more appropriate measure of effect size for
the direct comparison of data from studies using a pretest and
posttest design without control groups [13–15]. For the pur-
poses of this meta-analysis, we used the mean, standard devi-
ation (SD), and the correlation for pre/postswitching data. In
all studies, the correlation between pre- and postswitching
data was not reported and values were obtained either directly
from the authors or by calculating the correlation using the
p value/t-test values, means, standard deviation, and
the number of patients included from the published data
[14]. Using these values we were then able to calculate the
standardized mean change for each group [15]. Studies for
which such information could not be obtained were excluded
from the meta-analysis ($n = 5$). The standardized mean
change was calculated as the difference between the means
of the posttreatment switching values and the baseline divided
by the pooled standard deviation. Five studies lacked enough
statistical information to be included in this meta-analysis
and their outcomes were reviewed for information only [16–
20]. Studies specific standardized mean change was pooled
using fixed effect models with the Mantel-Haenszel method
if heterogeneity was negligible or using random effect models
with the DerSimonian-Laird method when heterogeneity was
significant [21, 22]. Interstudies heterogeneity was assessed
using the Cochran Q test and I^2 tests [22], with a $p < 0.05$
and $I^2 > 50\%$ suggesting a high interstudy heterogene-
ity. In an attempt to identify the source of heterogeneity
in the data, we performed a metaregression analysis on
confounders such as the type of study, the previous total
length of treatment, previous total number of anti-VEGF
injections prior to switching, and mean BCVA at baseline.
A p value < 0.05 was regarded as significant results and all
tests were 2 sided. All statistical analyses were performed
using commercially available software comprehensive meta-
analysis (CMA, Biostat, Englewood, NJ, USA, v 3.0). The
estimates of treatment effect are presented as weighted mean
difference (WMD) and graphically as forest plots. Sensitivity
analysis was carried out by including only studies deemed
with a quality score of 90% or above (13 points and above)
and excluding each study from the analysis of each outcome
measure to confirm the stability of our findings. Publication
bias was assessed with the funnel plot and with the Egger test
[23].
Table 1: Characteristics of all studies included in the Meta Analysis.

Authors	Year	Country	Study design	N (eyes)	Inclusion/exclusion criteria	Matching/comparable factors	Study quality (points scoring scale)
Kumar [24]	2013	USA	Retro	34	IRF/SRF or sub-RPE with adjacent IRF/SRF on OCT	BCVA, CRT	Selection: 2 Comparability: 2 Stats: 1 Outcome: 6 Overall: 11
Bakall [25]	2013	USA	Retro	36	CNV confirmed by OCT and FFA at baseline visit IRF/SRF present at least for 3 months prior to conversion and treated with 3 monthly anti VEGF injections	BCVA, CRT	Selection: 3 Comparability: 3 Stats: 1 Outcome: 4 Overall: 11
Gharbiya [26]	2014	Italy	Retro	31	IRF/SRF on OCT At least 6 previous anti VEGF injections Less than 4 weeks between last anti VEGF treatment and conversion	BCVA, CRT	Selection: 2 Comparability: 2 Stats: 3 Outcome: 6 Overall: 13
Messenger [27]	2014	USA	Retro	109	IRF/SRF or sub-RPE with adjacent IRF/SRF on OCT At least 12 months of anti VEGF treatment prior to conversion VA > 20/400 at conversion At least 12 months follow up	CRT	Selection: 2 Comparability: 3 Stats: 2 Outcome: 4 Overall: 11
Wykoff [28]	2014	USA	Prosp	46	Patients who completed the 2 years SAVE trial	BCVA, CRT	Selection: 3 Comparability: 3 Stats: 3 Outcome: 6 Overall: 15
Chang [29]	2014	Australia	Prosp	50	CNV on OCT and FFA At least 4 anti VEGF injections prior to conversion	BCVA	Selection: 3 Comparability: 2 Stats: 3 Outcome: 6 Overall: 14
Singh [30]	2014	USA	Prosp	26	Active CNV confirmed by FFA BCVA between 25–80 ETDRS letters at baseline At least one anti VEGF injection within 3 months of conversion	BCVA	Selection: 3 Comparability: 2 Stats: 3 Outcome: 6 Overall: 14

3. Results

3.1. Search Findings and Results Characteristics. The search strategy initially generated 28 relevant clinical studies, of which 13 scored higher than 10 on the quality assessment. Of these, seven studies had sufficient outcome data and statistical information to be included in the meta-analysis of visual and/or CRT following switching to aflibercept, six studies in the analysis of BCVA (223 eyes of 225 patients) [24–26, 28–30] and five in the analysis of CRT (266 eyes of 259 patients) [24–28]. Table 1 details study characteristics, quality, and comparability assessments, and Table 2 shows the analyzed outcome measures. Median patient age at time of treatment switching was 78 years (range 70.1–80.3 years), with a median female percentage of 35.96% (range 30.9–70.5%). At the time of treatment switching
Table 2: Clinical characteristics of all studies included in the Meta-analysis.

Authors	Mean age (years)	Duration of disease (months)	Nb of injections prior to conversion	Time between last antiVEGF and conversion	Mean time of follow up (months)	Mean number aflibercept injections	Treatment regimen
Kumar [24]	79 (IQR 72–84)	44.7 (IQR 24–76)	28.6 (IQR 10–47)	34.4 days (IQR 32–37)	6	5.6 (NS)	Loading then PRN
Bakall [25]	79 (range 60–88)	NS	25.6 (6–74)	NS	6	5.2 (4–6)	Loading then PRN
Gharbiya [26]	70.1 (range 60–86)	41.3 (15–58)	34.4 (15–50)	5.1 weeks (range 4–6)	6	4.5 (3–6)	Loading then PRN
Messenger [27]	80.3 (range 59–96)	NS	21.4 (4–60)	NS	6	7.2 (1–12) for 12 months. NS at 6 months	Loading then PRN
Wykoff [28]	77.8 (range 55–95)	NS	42 (19–67)	33 days (range 28–68)	6	5.6 (4–6)	Loading then PRN
Chang [29]	77.8 (NS)	40	34.94	NS	6	NS	Loading then bimonthly
Singh [30]	78 (NS)	14	9.62 (3–23)	50 days (range 21–91)	6	NS	Loading then bimonthly

Records identified through database searching (n = 28)
Duplicate records removed (n = 8)
Records screened (n = 20)
Records excluded (n = 7)
Full-text articles assessed for eligibility (n = 13)
6 full-text articles excluded (1 outcome assessment, 1 treatment nonspecified, 4 insufficient data)
Studies included in quantitative synthesis (meta-analysis) (n = 7)

Figure 1: PRISMA flow diagram of study selection.
Group by types of studies

Study name	Std diff in means	Lower limit	Upper limit	p value	Std diff in means and 95% CI	Relative weight
Prospective						
Singh et al.	0.731	0.298	1.163	0.001	28.65	
Prospective	0.501	0.204	0.798	0.001	35.47	
Prospective	0.055	−0.234	0.344	0.708	35.87	
Prospective	0.407	0.023	0.791	0.038		
Prospective	0.288	0.102	0.474	0.002	26.14	
Prospective	0.071	−0.079	0.222	0.352	30.67	
Prospective	0.015	−0.037	0.067	0.578	43.20	
Prospective	0.104	−0.042	0.249	0.162		
Overall	0.142	0.006	0.277	0.041		

Random effects model

Heterogeneity $I^2 = 21.97\%$ overall

Figure 2: Forrest plot of six studies reporting comparative results of best corrected visual acuity six months after switching to aflibercept. Note that for the prospective studies the accumulated effect demonstrated a significant improvement, which was not found for the retrospective studies. The overall effect was found to be significant ($p = 0.04$). The lower and upper limits represent the 95% confidence interval.

Study name

Std diff in means	Standard error	Lower limit	Upper limit	p value	Std diff in means and 95% CI	Relative weight
Bakall et al.	−0.768	0.190	−1.140	−0.396	0.000	9.42
Wykoff et al.	−0.380	0.160	−0.693	−0.067	0.017	12.41
Messenger et al.	−0.337	0.044	−0.423	−0.252	0.000	43.92
Kumar et al.	−0.321	0.091	−0.499	−0.142	0.000	26.07
Gharbiya et al.	−0.104	0.206	−0.508	0.301	0.615	8.17
Gharbiya et al.	−0.360	0.064	−0.485	−0.235	0.000	

Random effects model

Heterogeneity $I^2 = 24.82\%$, $p < 0.001$

Figure 3: Forrest plot of five studies reporting comparative results of the central retinal thickness (CRT) six months after switching to aflibercept. The overall effect demonstrated a significant reduction in CRT. The lower and upper limit represents the 95% CI.

patients had been diagnosed with neovascular AMD for a median of 40.65 months (range 20.5–44.1 months) and eyes had already been given a median of 28.6 anti-VEGF injections (range 9.6–42.0 injections). The median time between the last anti-VEGF injection and beginning of aflibercept treatment was 35.0 days (range 33.3–46.5 days) and eyes were treated with a median of 5.1 aflibercept injections (range 4.50–5.60 injections). The median BCVA at baseline was 0.53 LogMAR (range 0.32–0.64 LogMAR) and CRT on OCT was 413 μm (range 336.3–448.3 μm).

3.2. Best Corrected Visual Acuity (6 Studies). The overall results of the meta-analysis showed a small but statistically significant improvement in BCVA at six months after switching to aflibercept (WMD 0.407, 95% CI 0.02 to 0.79, $p = 0.04$, Figure 2) than retrospective studies (WMD 0.104, 95% CI −0.04 to 0.25; $p = 0.16$). Other covariates such as mean number of anti-VEGF injections prior to switching to aflibercept, length of time of treatment with anti-VEGF prior to switching, mean BCVA at switching, and the type of treatment had no effect on the overall results.

3.3. Central Retinal Thickness (5 Studies). Overall, patients with their current treatment resistant AMD had a significant improvement in CRT at six months following switching to aflibercept (WMD −0.36, 95% CI −0.49 to −0.24; $p < 0.0001$, Figure 3). The random model was used as heterogeneity of the data (I^2) was 66.79%. The weighted regression on the 5 studies included for covariates (mean number of anti-VEGF prior to switching to aflibercept, total length of treatment with anti-VEGF prior to switching, mean BCVA at switching, and mean CRT at switching) showed no significant effect on CRT at 6 months.

3.4. Sensitivity and Subgroup Analysis. We performed a sensitivity analysis, to determine the effect of each study on
the overall result, by removing each of the studies one at a time and recalculating the summary WMD. The overall pooled WMD remained stable indicating that our results were not influenced by any single study. We performed a further sensitivity analysis of all studies scoring above 90% of the maximal score (13 points and above, WMD 0.204, CI from 0.012 to 0.395, \(p = 0.037 \)) and excluding each study from the analysis of each outcome measure [26, 28–30]. These exclusions did not alter the results obtained in the overall analysis.

3.5. Publication Bias. We assessed possible publication bias with a funnel plot (not shown). Although the funnel plot showed evidence of publication bias, the small number of studies limits this analysis, as confirmed by Egger’s test (\(p = 0.03 \)). The same tests did not suggest publication bias for the anatomical outcome (\(p = 0.43 \)).

4. Discussion

This study systematically reviewed and analyzed the evidence in the literature of the effect of switching to treatment with aflibercept in eyes with neovascular AMD resistant to previous anti-VEGF treatment. Overall, we included four retrospective and three prospective studies that had a follow-up period of at least six months (three retrospective studies had a follow-up period of up to twelve months). While we were able to identify other studies that examined the effect of switching to aflibercept, insufficient outcome information prevented these from being included in this analysis.

Our meta-analysis demonstrated a small but significant improvement in BCVA following switching to aflibercept. While this improvement in BCVA was indeed small and of limited clinical significance, it was driven by a significant improvement noted in the analyzed prospective studies (ranging between 0.1 and 0.14 LogMAR), suggesting that the retrospective design of the studies where no effect was found may have influenced their outcome.

The metaregression analysis did not demonstrate any effects on BCVA from confounders such as mean number of anti-VEGF injections, mean length of treatment or the drug used prior to switching, which is in keeping with results from other studies [19, 27]. While most studies used a standard treatment protocol following switching, of a loading dose of three monthly injections followed by a bimonthly regime, other studies used a pro re nata regimen, neither of which resulted in a difference in treatment effect.

The results of this meta-analysis demonstrated a significant improvement in CRT following the treatment switch to aflibercept. This was a consistent finding in all the studies and was maintained during the longer follow-up up to twelve months [27, 31, 32]. While there was a definite improvement in retinal thickness, this did not correlate with significant restoration of visual function. Repeated use of any drug can result over time in tachyphylaxis with resultant loss of clinical effect [33–35], which can often be overcome by switching to another drug with an alternative mode of action. Thus, restoration of effect may be achieved following switching, resulting in clearing of retinal fluid and reduction in CRT.

However, the lack of a concomitant gain in visual function suggests it may be related either to an accumulating effect of long-term neovascularization, such as development of retinal gliosis, or to progression of retinal atrophic changes that have been documented to occur in neovascular AMD eyes treated with anti-VEGF injections [36–38].

While this meta-analysis included all current studies examining treatment switching to aflibercept in eyes with neovascular AMD, it nevertheless suffers from several limitations, mainly related to the quality of the studies analyzed. Most studies performed to date were nonrandomized retrospective treatment comparison studies, which introduce potential confounding biases due to an inability to adjust for patient baseline demographic characteristics or disease severity. Though we found a significant improvement in CRT on OCT and BCVA, study design and population varied across studies and this variation was reflected in significant heterogeneity in the estimated comparative effect for the analysis of both BCVA and CRT. We found that the type of study had a significant impact on our results when analyzing BCVA, supporting the view that information gathered from prospective studies may offer clearer conclusions and that overinterpretation of retrospective studies should be avoided. Sensitivity and subgroup analysis of only high quality studies did not reveal any difference in the results and suggests that these results indeed represent the culmination of all current studies. The main strength of our meta-analysis is in incorporating all previous studies, resulting in a large sample size and allowing us to focus the results of all previous studies.

5. Conclusions

To date, this is the first systematic meta-analysis evaluating the visual and anatomical outcomes of patients with resistant AMD converted to aflibercept. Our analysis provides substantial evidence that following switching there is a significant anatomical effect, resulting in CRT thinning. However, the visual function change was far more modest and while there is evidence to support that aflibercept has a comparable effect to other anti-VEGF agents in maintaining vision, any potential significant benefit should be regarded with caution. While this study has clarified the known effect of aflibercept in treatment failure neovascular AMD eyes, future results, especially from prospective studies, may offer new insights into the different effects of these agents.

Conflict of Interests

The authors have no conflict of interests to disclose.

Authors’ Contribution

All authors contributed to this work.

Acknowledgment

This study was supported by an educational grant from Bayer AG. All authors had no other financial support for this study.
References

[1] L. S. Lim, P. Mitchell, J. M. Seddon, E. G. Holz, and T. Y. Wong, "Age-related macular degeneration," The Lancet, vol. 379, no. 9827, pp. 1728–1738, 2012.

[2] F. L. Ferris III, S. L. Fine, and L. Hyman, "Age-related macular degeneration and blindness due to neovascular maculopathy," Archives of Ophthalmology, vol. 102, no. 11, pp. 1640–1642, 1984.

[3] H. Takahashi and M. Shibuya, "The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions," Clinical Science, vol. 109, no. 3, pp. 227–241, 2005.

[4] N. Ferrara, H.-P. Gerber, and J. LeCouter, "The biology of VEGF and its receptors," Nature Medicine, vol. 9, no. 6, pp. 669–676, 2003.

[5] D. M. Brown, P. K. Kaiser, M. Michels et al., "Ranibizumab versus verteporfin for neovascular age-related macular degeneration," The New England Journal of Medicine, vol. 355, no. 14, pp. 1432–1444, 2006.

[6] J. S. Heier, D. M. Brown, V. Chong et al., "Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration," Ophthalmology, vol. 119, no. 12, pp. 2537–2548, 2012.

[7] P. J. Rosenfeld, D. M. Brown, J. S. Heier et al., "Ranibizumab for neovascular age-related macular degeneration," The New England Journal of Medicine, vol. 355, no. 14, pp. 1419–1431, 2006.

[8] D. F. Martin, M. G. Maguire, G.-S. Ying, J. E. Grunwald, S. L. Fine, and G. J. Jaffe, "Ranibizumab and bevacizumab for neovascular age-related macular degeneration," The New England Journal of Medicine, vol. 364, no. 20, pp. 1897–1908, 2011.

[9] Diabetic Retinopathy Clinical Research Network, "Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema," The New England Journal of Medicine, vol. 372, no. 13, pp. 1193–1203, 2015.

[10] A. Liberati, D. G. Altman, J. Tetzlaff et al., "The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration," The British Medical Journal, vol. 339, Article ID b2700, 2009.

[11] G. Wells, L. Brodsky, D. O’Connell, and J. Robertson, "Evaluation of the Newcastle-Ottawa Scale (NOS): an assessment tool for evaluating the quality of non-randomized studies," in Proceedings of the 11th Cochrane Colloquium: Evidence, Health Care and Culture, Barcelona, Spain, October 2003.

[12] M. Bawor, B. B. Dennis, R. Anglin, M. Steiner, L. Thabane, and Z. Samaan, "Sex differences in outcomes of methadone maintenance treatment for opioid addiction: a systematic review protocol," Systematic Reviews, vol. 3, article 45, 2014.

[13] B. J. Becker, "Synthesizing standardized mean change measures," British Journal of Mathematical and Statistical Psychology, vol. 41, pp. 257–278, 1988.

[14] M. W. Lipsey and D. B. Wilson, Practical Meta Analysis, SAGE Publications, 2001.

[15] M. Borenstein, L. V. Hedges, J. P. T. Higgins, and H. R. Rothstein, Introduction to Meta-Analysis, John Wiley & Sons, 2009.

[16] P. J. Ferrone, F. Anwar, J. Nayyan et al., "Early initial clinical experience with intravitreal aflibercept for wet age-related macular degeneration," British Journal of Ophthalmology, vol. 98, supplement 1, pp. i17–i21, 2014.

[17] H. Cho, C. P. Shah, M. Weber, and J. Heier, "Aflibercept for exudative AMD with persistent fluid on ranibizumab and/or bevacizumab," British Journal of Ophthalmology, vol. 97, no. 8, pp. 1032–1035, 2013.

[18] C. A. Arcinue, F. Ma, G. Bartesseli, L. Sharpsten, M. L. Gomez, and W. R. Freeman, "One-year outcomes of aflibercept in recurrent or persistent neovascular age-related macular degeneration," American Journal of Ophthalmology, vol. 159, no. 3, pp. 426–436.e2, 2015.

[19] C. K. Chan, A. Jain, S. Sidda, and N. Varshney, "Optical coherence tomographic and visual results at six months after transitioning to aflibercept for patienton prior ranibizumab or bevacizumab treatment for exudative age-related macular degeneration (an American Ophthalmological Society thesis)," Transactions of the American Ophthalmological Society, vol. 112, pp. 160–198, 2014.

[20] M. R. Thorell, R. P. Nunes, G. W. Chen et al., "Response to aflibercept after frequent re-treatment with bevacizumab or ranibizumab in eyes with neovascular AMD," Ophthalmic Laser and Imaging Retina, vol. 45, no. 6, pp. 526–533, 2014.

[21] R. DerSimonian and R. Kacker, "Random-effects model for meta-analysis of clinical trials: an update," Contemporary Clinical Trials, vol. 28, no. 2, pp. 105–114, 2007.

[22] J. P. T. Higgins, S. G. Thompson, J. J. Deeks, and D. G. Altman, "Measuring inconsistency in meta-analyses," British Medical Journal, vol. 327, no. 7414, pp. 557–560, 2003.

[23] M. Egger, G. D. Smith, M. Schneider, and C. Minder, "Bias in meta-analysis detected by a simple, graphical test," British Medical Journal, vol. 315, no. 7109, pp. 629–634, 1997.

[24] N. Kumar, M. Marsiglia, S. Mrjejen et al., "Visual and anatomical outcomes of intravitreal aflibercept in eyes with persistent subfoveal fluid despite previous treatments with ranibizumab in patients with neovascular age-related macular degeneration," Retina, vol. 33, no. 8, pp. 1605–1612, 2013.

[25] B. Bakali, J. C. Folk, H. C. Boldt et al., "Aflibercept therapy for exudative age-related macular degeneration resistant to bevacizumab and ranibizumab," American Journal of Ophthalmology, vol. 156, no. 1, pp. 15–22.e1, 2013.

[26] M. Gharbiya, L. Iannetti, F. Parisi, U. De Vico, M. L. Munro, and M. Marenco, "Visual and anatomical outcomes of intravitreal aflibercept for treatment-resistant neovascular age-related macular degeneration," BioMed Research International, vol. 2014, Article ID 273754, 7 pages, 2014.

[27] W. B. Messenger, J. P. Campbell, A. Faridi et al., "Injection frequency and anatomic outcomes 1 year following conversion to aflibercept in patients with neovascular age-related macular degeneration," British Journal of Ophthalmology, vol. 98, no. 9, pp. 1205–1207, 2014.

[28] C. C. Wykoff, D. M. Brown, M. E. Maldonado, and D. E. Croft, "Aflibercept treatment for patients with exudative age-related macular degeneration who were incomplete responders to multiple ranibizumab injections (TURF trial)," British Journal of Ophthalmology, vol. 98, no. 7, pp. 951–955, 2014.

[29] A. A. Chang, H. Li, G. K. Broadhead et al., "Intravitreal aflibercept for treatment-resistant neovascular age-related macular degeneration," Ophthalmology, vol. 121, no. 1, pp. 188–192, 2014.

[30] R. P. Singh, S. Srivastava, J. P. Ehlers, R. Bedi, A. P. Schachat, and P. K. Kaiser, "A single-arm, investigator-initiated study of the efficacy, safety and tolerability of intravitreal aflibercept injection in subjects with exudative age-related macular degeneration, previously treated with ranibizumab or bevacizumab: 6-month interim analysis," British Journal of Ophthalmology, vol. 98, supplement 1, pp. 122–127, 2014.

[31] D. S. Grewal, M. K. Gill, D. Sarezky, A. T. Lyon, and R. G. Mirza, "Visual and anatomical outcomes following intravitreal
afibercept in eyes with recalcitrant neovascular age-related macular degeneration: 12-month results,” *Eye*, vol. 28, no. 7, pp. 895–899, 2014.

[32] J. Pinheiro-Costa, J. M. Costa, J. N. Beato et al., "Switch to afibercept in the treatment of neovascular amd: one-year results in clinical practice," *Ophthalmologica*, vol. 233, no. 3-4, pp. 155–161, 2015.

[33] F. Forooghian, C. Cukras, C. B. Meyerle, E. Y. Chew, and W. T. Wong, "Tachyphylaxis after intravitreal bevacizumab for exudative age-related macular degeneration," *Retina*, vol. 29, no. 6, pp. 723–731, 2009.

[34] S. Binder, "Loss of reactivity in intravitreal anti-VEGF therapy: tachyphylaxis or tolerance?" *British Journal of Ophthalmology*, vol. 96, no. 1, pp. 1–2, 2012.

[35] J. L. Gasperini, A. A. Fawzi, A. Khondkaryan et al., "Bevacizumab and ranibizumab tachyphylaxis in the treatment of choroidal neovascularisation," *British Journal of Ophthalmology*, vol. 96, no. 1, pp. 14–20, 2012.

[36] N. Kumar, S. Mrejen, A. T.-C. Fung, M. Marsiglia, B. K. Loh, and R. F. Spaide, "Retinal pigment epithelial cell loss assessed by fundus autofluorescence imaging in neovascular age-related macular degeneration," *Ophthalmology*, vol. 120, no. 2, pp. 334–341, 2013.

[37] J. E. Grunwald, E. Daniel, J. Huang et al., “Risk of geographic atrophy in the comparison of age-related macular degeneration treatments trials," *Ophthalmology*, vol. 121, no. 1, pp. 150–161, 2014.

[38] J. E. Grunwald, M. Pistilli, G. Ying, M. G. Maguire, E. Daniel, and D. F. Martin, “Growth of geographic atrophy in the comparison of age-related macular degeneration treatments trials," *Ophthalmology*, vol. 122, no. 4, pp. 809–816, 2015.