Chikungunya and Zika Virus Cases Detected against a Backdrop of Endemic Dengue Transmission in Vietnam

Nguyen Than Ha Quyen,1 Duong Thi Hue Kien,1 Maia Rabaa,1,2 Nguyen Minh Tuan,3 Tran Thuy Vi,1 Le Van Tan,1 Nguyen Thanh Hung,3 Ha Manh Tran,4 Ta Van Tram,3 Nguyen Le Da Ha,6 Han Khoi Quang,7 Nguyen Quoc Doanh,8 Nguyen Van Vinh Chau,9 Bridget Wills,1,2 and Cameron P. Simmons1,2,10*

1Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam; 2Nuffield Department of Medicine, Centre for Tropical Medicine, University of Oxford, Oxford, United Kingdom; 3Children’s Hospital No. 1, Ho Chi Minh, Vietnam; 4Children’s Hospital No. 2, Ho Chi Minh, Vietnam; 5Tien Giang Hospital, My Tho, Vietnam; 6Dong Nai Children Hospital, Bien Hoa, Vietnam; 7Binh Duong Hospital, Thu Dau Mot, Vietnam; 8Long An Hospital, Tan An, Vietnam; 9Hospital for Tropical Diseases, Ho Chi Minh, Vietnam; 10Department of Microbiology and Immunology at the Doherty Institute, University of Melbourne, Parkville, Australia.

Abstract. Between 2010 and 2014, four chikungunya and two Zika virus infections were identified among 8,105 febrile children in southern Vietnam. Zika viruses were linked to French Polynesian strains, chikungunya to Cambodian strains. Against a backdrop of endemic dengue transmission, chikungunya and Zika present an additional arboviral disease burden in Vietnam.

INTRODUCTION

The emergence of the Zika virus (ZIKV) in the Western Pacific and Latin America, followed by the World Health Organization (WHO) declaration of a global public health emergency, has brought renewed attention to this and other epidemic arboviral infections. ZIKV is a flavivirus, whereas chikungunya virus (CHIKV) is an alphavirus. Both viruses are transmitted to humans by Aedes spp. mosquitoes. Clinical signs and symptoms of CHIKV and ZIKV infections are similar to those of dengue, particularly in the first few days of illness when the symptoms are non-specific, including but not limited to fever, arthralgia, maculopapular rash, muscle and joint pain, malaise, and headache.1

There are three genotypes of CHIKV: Asian, West African, and East/Central/South African (ECSA). The Asian genotype is thought to have circulated in southeast Asia for many decades without ever posing a perceivable public health problem. More recently, one lineage of the CHIKV ECSA genotype, the Indian Ocean Lineage (IOL), emerged from east Africa and seeded large epidemics in the Indian Ocean region, and later in Europe and Asia.2–5 Sporadic cases of illness caused by the CHIKV IOL were first detected in Cambodia in 2011.5 In neighboring Vietnam, no virologically confirmed cases of CHIKV infection have been described.

ZIKV has also evolved into three distinct genotypes of similar geographic distribution: West African (Nigerian cluster), East African (MR766 prototype cluster), and Asian.6 ZIKV was first detected in humans in 1954 but has recently emerged as a global threat to public health7,8 because it can be an infectious teratogen to the unborn fetus and an occasional cause of Guillain–Barré syndrome in adults.9,10 Since 2015, 67 countries have reported outbreaks (WHO situation report, October 27, 2016; http://www.who.int/emergencies/zika-virus/situation-report/27-october-2016/). Prior to 2016, only sporadic ZIKV infections have been reported in southeast Asia; sequence analysis shows that historical southeast Asian viruses cluster within the Asian ZIKV lineage.7,11 In Vietnam, the first two confirmed cases of locally acquired ZIKV infections were reported in southern Vietnam in April 2016 (http://www.who.int/csr/don/12-april-2016-zika-viet-nam/en/).

Against a backdrop of seasonally hyperendemic dengue transmission, this retrospective study sought to understand the burden and trajectory of CHIKV and ZIKV infections in Vietnam from 2010 to 2014.

THE STUDY

This was a retrospective diagnostic study. The study population was children from 1 to 15 years of age with fever of less than 72 hours and clinical symptoms that suggested to the attending physician that dengue could be a possible diagnosis. Study participants were enrolled at the outpatient clinics of seven hospitals in southern Vietnam between October 2010 and December 2014. The detailed inclusion and exclusion criteria and study procedures are described elsewhere.12 Reverse transcription polymerase chain reaction (RT-PCR) tests for ZIKV13 and CHIKV14 were performed on stored frozen plasma samples from study participants that were tested negative in a dengue virus (DENV) RT-PCR assay that has been described extensively elsewhere.15 Virus surveillance was only carried out on stored specimens from patients who had consented to having their samples used for future research. The study protocol was reviewed and approved by the institutional review boards of the seven hospitals and the Oxford Tropical Research Ethical Committee (OxTREC 592-16).

RESULTS

During the study period, 8,105 participants were enrolled and 2,203 dengue cases identified on the basis of direct virological confirmation (non-structural protein 1 or RT-PCR positive) or IgM seroconversion (Panbio IgM capture enzyme-linked immunosorbent assay) as described previously.16 Among all DENV PCR–negative samples (6,037), including those showing serological evidence of recent DENV
infection, a total of 5,617 frozen acute plasma samples (collected within 72 hours of fever onset) were of adequate sample volume for CHIKV and ZIKV testing. Of the 5,617 samples tested, four CHIKV (0.07%) and two ZIKV (0.035%) cases were identified.

Clinical manifestations. All four CHIKV cases were detected between August and November 2012—one case lived in Ho Chi Minh City and three in Binh Duong Province (Figure 1). Three of the infections were relatively mild, with fever, rash and mild to moderate systemic symptoms.

FIGURE 1. Residential location of the study patients and study hospitals. Locations of the chikungunya and Zika cases are shown with black circles and stars, respectively; hospitals are shown as black crosses. Two chikungunya cases were located approximately 20 km from the border with Cambodia.
FIGURE 2. Maximum likelihood phylogenies of chikungunya and Zika virus. (A) Maximum likelihood phylogeny of the E1 gene of the chikungunya virus East/Central/South African (ECSA) Indian Ocean Outbreak lineage. The tree was constructed in IQ-TREE (TNe + Γ_4, 1,000 bootstraps) using a 1,743-nt alignment of a representative subsample of Indian Ocean Lineage (IOL) viruses, with Angola 1962 (HM045823) as an outgroup. Vietnamese isolates are indicated by closed black circles. Cambodian sequences are shown with open circles. (B) Maximum likelihood phylogeny of the E gene of the Zika virus Asian genotype. The tree was constructed in IQ-TREE (Vienna, Austria; TN + Γ_4, 1,000 bootstraps) using a 1,512-nt alignment of a representative subsample of Asian genotype viruses, with Malaysia 1966 (KX694533) as an outgroup. Vietnamese isolates from this study (2013) are indicated by closed black squares. The Vietnamese isolate from 2016 is indicated by an open square. Bootstrap values are shown for nodes with bootstrap support $\geq 70\%$. Scale bars represent the number of nucleotide substitutions per site.
reported. One case, a 13-year-old boy, was briefly hospital-
ized. All patients made unremarkable recoveries.

The two ZIKV infections were identified in a 12-year-old from
Long An Province, and a 4-year-old from Cu Chi District, Ho Chi
Minh City, in January and June 2013, respectively. The 12-year-
old was briefly hospitalized. Both children recovered fully.

Viral genetics. Nucleotide sequences of the 1,743-
nucleotide (nt) CHIKV E1 gene with partial 3’ untranslated re-
dition and 1,512-nt ZIKV E gene were determined using Miseq
Illumina (San Diego, CA) techniques. Sequence assembly and
alignment of these sequences to global databases was
performed using CLC Workbench 9.1 (Qiagen, Redwood
City, CA). The four Vietnamese CHIKV E1 sequences (GenBank Accession KY131437, KY131438, KY131439, and
KY131440) shared 99.77–100% pairwise nucleotide identity
and carried the E1-A226V mutation reported to increase in-
feciousness for *Aedes albopictus.*

Phylogenetic analysis indicated that the four Vietnamese samples were of the Indian
Ocean Outbreak lineage within the ECSA genotype and
clustered closely with 2011 Cambodian sequences (99.71–99.94% identity) (Figure 2A). Notably, two of the Viet-
namese cases in Binh Duong Province resided approximately
20 km from the Vietnam–Cambodian border.

The two ZIKV E gene sequences captured in Vietnam in
2013 (GenBank Accession KY131441 and KY131442) dif-
fened by a single nucleotide. There was strong bootstrap
support to place these sequences among other Asian
lineage ZIKV sampled from southeast Asia and the Western
Pacific, with a close phylogenetic link to a sequence
obtained from French Polynesia in late 2013 (Figure 2B).
The similarity of the two Vietnamese sequences coupled with their spatial and temporal spread (42 km and 5 months apart), suggests that ZIKV may have circulated at very low
levels or caused mild enough illness to be largely un-
detected within southern Vietnam in 2013. Alternatively,
the viruses could represent multiple isolated importations
of ZIKV from another population. As this investigation was
conducted retrospectively and travel histories were not
collected at enrollment, we cannot definitively determine
whether the viruses detected in this study were locally
acquired or travel related. Importantly, these sequences
do not appear to be phylogenetically linked to the only
other available ZIKV sequence from Vietnam, sampled in
2016 (GenBank accession KX216633), which suggests that the two 2013 viruses characterized in this study are
unlikely to represent ancestral viruses to those causing
more recent infections within Vietnam.

CONCLUSIONS

These data suggest that CHIKV and ZIKV have recently cir-
culated, or been imported, into southern Vietnam. The detection
of Zika cases in 2013 is concerning for the potential conse-
quences of local transmission for pregnant women. Greater
surveillance is required to understand the trajectory of the in-
cidence of these arboviral diseases in Vietnam, and underscores
the importance of performing differential diagnosis in pop-
ulations where multiple arboviral pathogens may cocirculate.
8. Faye O, Freire CC, Iamarino A, Faye O, de Oliveira JV, Diallo M, Zanotto PM, Sall AA, 2014. Molecular evolution of Zika virus during its emergence in the 20th century. PLoS Negl Trop Dis 8: e2636.

9. Calvet G, Aguiar RS, Melo AS, Sampaio SA, de Filippis I, Fabri A, Araujo ES, de Sequeira PC, de Mendonca MC, de Oliveira L, Tschoeke DA, Schrago CG, Thompson FL, Brasil P, Dos Santos FB, Nogueira RM, Tanuri A, de Filippis AM, 2016. Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study. Lancet Infect Dis 16: 653–660.

10. Cao-Lormeau VM, Blake A, Mons S, Lastere S, Roche C, Vanhomwegen J, Dub T, Baudouin L, Teissier A, Larre P, Vial AL, Decam C, Choumet V, Halstead SK, Willisson HJ, Musset L, Manuguerre JC, Despres P, Fournier E, Mallet HP, Musso D, Fontanet A, Neil J, Ghawche F, 2016. Guillain-Barre syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet 387: 1531–1539.

11. Ellison DW, Ladner JT, Buathong R, Alera MT, Wiley MR, Hermann L, Rutvisutinunt W, Kungthong C, Chinnawirotpisan P, Manasatienkij W, Melendez MC, Maljkovic Berry I, Thaisomboonsuk B, Ong-Achaowierd P, Kanechit W, Velasco JM, Tac-An IA, Villa D, Lago CB, Roque VG Jr, Pilpat T, Nisalak A, Srikiatkhachorn A, Fernandez S, Yoon IK, Haddow AD, Palacios GF, Jarman RG, Macareo LR, 2016. Complete genome sequences of Zika virus strains isolated from the blood of patients in Thailand in 2014 and the Philippines in 2012. Genome Announc 4: e00359-16.

12. Tuan NM, Nhan HT, Chau NV, Hung NT, Tuan HM, Tram TV, Ha Nie D, Loi P, Quang HK, Kien DT, Hubbard S, Chau TN, Wills B, Wolbers M, Simmons CP, 2015. Sensitivity and specificity of a novel classifier for the early diagnosis of dengue. PLoS Negl Trop Dis 9: e0003638.

13. Waggoner JJ, Pinsky BA, 2016. Zika virus: diagnostics for an emerging pandemic threat. J Clin Microbiol 54: 860–867.

14. Pastorino B, Bessaud M, Grandadam M, Muri S, Tolou HJ, Peyrefitte CN, 2005. Development of a TaqMan RT-PCR assay without RNA extraction step for the detection and quantification of African chikungunya viruses. J Virol Methods 124: 65–71.

15. Hue KD, Tuan TV, Thi HT, Bich CT, Anh HH, Wills BA, Simmons CP, 2011. Validation of an internally controlled one-step realtime multiplex RT-PCR assay for the detection and quantitation of dengue virus RNA in plasma. J Virol Methods 177: 168–173.

16. Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S, 2007. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog 3: e201.