Lightweight Post-Quantum Key Encapsulation for 8-bit AVR Microcontrollers

Hao Cheng Johann Großschädl Peter B. Rønne Peter Y. A. Ryan

University of Luxembourg

CARDIS 2020
IoT on the Rise

Source: Ericsson Mobility Report (June 2020)
IoT on the Rise

Source: Ericsson Mobility Report (June 2020)

IoT needs lightweight cryptographic schemes and protocols
8-bit AVR Microcontrollers
8-bit AVR Microcontrollers

8-bit AVR Architecture

- RISC philosophy and modified Harvard memory model
- 32 general-purpose working registers of 8-bit width
8-bit AVRs are microcontrollers designed by Atmel.

8-bit AVR Architecture

- RISC philosophy and modified Harvard memory model
- 32 general-purpose working registers of 8-bit width
- Bitwise logical and most arithmetic instructions take 1 clock cycle
- Multiplication and RAM accessing instructions take 2 clock cycles
Quantum Cryptanalyses

Quantum Computing exploits quantum-mechanical phenomena

Shor’s Algorithm solves IFP and DLP in polynomial time
Post-Quantum Cryptography Standardization

The Round 3 candidates were announced July 22, 2020. NISTIR 8309, Status Report on the Second Round of the NIST Post-Quantum Cryptography Standardization Process is now available. NIST has developed Guidelines for Submitting Tweaks for Third Round Finalists and Candidates.

- Solicit, evaluate and standardize one or more quantum-resistant PKC algorithms
- Evaluate candidates’ performance also on resource-constrained devices
- Now is Round 3
Lattice-Based KEMs in IoT

- Benchmarking results collected in pqm4 \(^1\) (ARM Cortex-M4)
 - faster than Curve25519
 - RAM footprint often between 5 kB ~ 30 kB (vs 500 bytes of Curve25519)

\(^1\)https://github.com/mupq/pqm4
Lattice-Based KEMs in IoT

- Benchmarking results collected in pqm4\(^1\) (ARM Cortex-M4)
 - faster than Curve25519
 - RAM footprint often between 5 kB ~ 30 kB (vs 500 bytes of Curve25519)

- Deployment in AVR devices
 - AVR devices feature only a few kB of RAM (e.g. MICAz mote has only 4 kB RAM)
 - need low-memory implementations

\(^1\)https://github.com/mupq/pqm4
A Fairy Tale

- Designer
 - Mike Hamburg

- Ed448-Goldilocks [Ham15]
 - RFC7748 and TLS 1.3
 - “Golden-ratio” Solinas prime
 \(2^{448} - 2^{224} - 1 \) (Goldilocks)

- ThreeBears
 - NIST PQC Round 2 candidate (KEM)
 - Integer Module Learning With Errors (I-MLWE) [Gu17]
 - BabyBear (II), MamaBear (IV), PapaBear (V)
 - has both CCA and CPA instances
This Work

- Analyzes the performance of ThreeBears on AVR
- Studies its flexibility to achieve different trade-offs between RAM footprint and execution time
Our Implementation

- First highly-optimized software implementations of BabyBear for AVR platform (constant-time)
Our Implementation

- First highly-optimized software implementations of BabyBear for AVR platform (constant-time)
 - Memory-Efficient ME-BBear (CCA) ME-BBear-Eph (CPA)
 based on low-memory implementation in NIST package
 most memory-efficient software implementation of Round 2 candidate
Our Implementation

- First highly-optimized software implementations of BabyBear for AVR platform (constant-time)
 - **Memory-Efficient** ME-BBear (CCA) ME-BBearer-Eph (CPA)
 based on low-memory implementation in NIST package
 - **High-Speed** HS-BBear (CCA) HS-BBearer-Eph (CPA)
 based on optimized implementation in NIST package
Our Implementation

- First highly-optimized software implementations of BabyBear for AVR platform (constant-time)
 - Memory-Efficient ME-BBear (CCA) ME-BBear-Eph (CPA) based on low-memory implementation in NIST package
 most memory-efficient software implementation of Round 2 candidate
 - High-Speed HS-BBear (CCA) HS-BBear-Eph (CPA) based on optimized implementation in NIST package

- Memory-optimized and speed-optimized
 Multiply-ACcumulate (MAC) operations $r = r + a \times b$
ThreeBears KEM

- The underlying field
 - \mathbb{Z}/N

- Prime ("golden-ratio" Solinas prime [Ham15])
 - $N = 2^{3120} - 2^{1560} - 1$
 - $N = \phi(x) = x^D - x^{D/2} - 1$
 - $N = \lambda^2 - \lambda - 1$
ThreeBears KEM

- The underlying field
 - \(\mathbb{Z}/N \)

- Prime ("golden-ratio" Solinas prime [Ham15])
 - \(N = 2^{3120} - 2^{1560} - 1 \)
 - \(N = \phi(x) = x^D - x^{D/2} - 1 \)
 - \(N = \lambda^2 - \lambda - 1 \)

- Field operations
 - \((+, \cdot)\) are conventional integer addition and multiplication
 - addition (+) \(a + b := a + b \mod N \)
 - multiplication (*) \(a \cdot b := a \cdot b \cdot \lambda^{-1} \mod N \)
ThreeBears KEM (CCA)

Key Generation

- $sk \leftarrow \text{random}()$
- $a, b \leftarrow \text{noise_sampler}(sk)$
- $r \leftarrow \text{hash}(sk)$
- $M \leftarrow \text{uniform_sampler}(r)$
- $z \leftarrow z_i = b_i + \sum_{j=0}^{d-1} M_{i,j} \cdot a_j$

private key sk
public key (r, z)

Dimension d is 2 for BabyBear, 3 for MamaBear, 4 for PapaBear
ThreeBears KEM (CCA)

Key Generation

\[sk \leftarrow \text{random}() \]
\[\alpha, \beta \leftarrow \text{noise_sampler}(sk) \]
\[r \leftarrow \text{hash}(sk) \]
\[M \leftarrow \text{uniform_sampler}(r) \]
\[z \leftarrow z_i = b_i + \sum_{j=0}^{d-1} M_{i,j} * \alpha_j \]

Private key: \(sk \)
Public key: \((r, z) \)

Encapsulation

\[g \leftarrow \text{random}() \]
\[\hat{\alpha}, \hat{\beta}, c \leftarrow \text{noise_sampler}(r, g) \]
\[M \leftarrow \text{uniform_sampler}(r) \]
\[y \leftarrow y_i = \hat{b}_i + \sum_{j=0}^{d-1} M_{j,i} * \hat{\alpha}_j \]
\[x = c + \sum_{j=0}^{d-1} y_j * \hat{\alpha}_j \]
\[f \leftarrow \text{FEC_encode}(g, x) \]
\[ss \leftarrow \text{hash}(r, g) \]

Shared secret: \(ss \)
Cipher text: \((f, y) \)

Dimension \(d \) is 2 for BabyBear, 3 for MamaBear, 4 for PapaBear
ThreeBears KEM (CCA)

Key Generation

\[sk \leftarrow \text{random}() \]
\[\mathbf{a}, \mathbf{b} \leftarrow \text{noise} _\text{ sampler}(sk) \]
\[r \leftarrow \text{hash}(sk) \]
\[\mathbf{M} \leftarrow \text{uniform} _\text{ sampler}(r) \]
\[\mathbf{z} \leftarrow z_i = b_i + \sum_{j=0}^{d-1} M_{i,j} \ast a_j \]

- private key \(sk \)
- public key \((r, \mathbf{z}) \)

Encapsulation

\[g \leftarrow \text{random}() \]
\[\hat{a}, \hat{b}, c \leftarrow \text{noise} _\text{ sampler}(r, g) \]
\[\mathbf{M} \leftarrow \text{uniform} _\text{ sampler}(r) \]
\[y \leftarrow y_i = \hat{b}_i + \sum_{j=0}^{d-1} M_{j,i} \ast \hat{a}_j \]
\[x = c + \sum_{j=0}^{d-1} z_j \ast \hat{a}_j \]
\[f \leftarrow \text{FEC} _\text{ encode}(g, x) \]
\[ss \leftarrow \text{hash}(r, g) \]

- shared secret \(ss \)
- ciphertext \((f, y) \)

Decapsulation

\[a \leftarrow \text{noise} _\text{ sampler}(sk) \]
\[x = \sum_{j=0}^{d-1} y_j \ast a_j \]
\[g \leftarrow \text{FEC} _\text{ decode}(f, x) \]
\[(r', \mathbf{z}') \leftarrow \text{KeyGen}(sk) \]
\[(f', y') \leftarrow \text{Encaps}(g, (r', \mathbf{z}')) \]
\[(f', y') \overset{?}{=} (f, y) \]

- shared secret \(ss' \)
- ciphertext \((f', y') \)

Dimension \(d \) is 2 for BabyBear, 3 for MamaBear, 4 for PapaBear
ThreeBears KEM (CPA)

Key Generation

\[\text{sk} \leftarrow \text{random()} \]
\[\text{a}, \text{b} \leftarrow \text{noise}_\text{ampler(sk)} \]
\[r \leftarrow \text{hash(sk)} \]
\[M \leftarrow \text{uniform}_\text{ampler(r)} \]
\[z \leftarrow z_i = b_i + \sum_{j=0}^{d-1} M_{i,j} \times a_j \]

private key	\(\text{sk} \)
public key	\((r, z)\)

Encapsulation

\[\text{g} \leftarrow \text{random()} \]
\[\hat{\text{a}}, \hat{\text{b}}, \text{c} \leftarrow \text{noise}_\text{ampler(r, g)} \]
\[M \leftarrow \text{uniform}_\text{ampler(r)} \]
\[y \leftarrow y_i = \hat{b}_i + \sum_{j=0}^{d-1} M_{j,i} \times \hat{a}_j \]
\[x = c + \sum_{j=0}^{d-1} z_j \times \hat{a}_j \]
\[t \leftarrow \text{hash(r, g)} \]
\[f \leftarrow (\text{FEC}_\text{encode}(t), x) \]
\[ss \leftarrow \text{hash(r, t)} \]

shared secret	\(ss \)
ciphertext	\((f, y)\)

Decapsulation

\[\text{a} \leftarrow \text{noise}_\text{ampler(sk)} \]
\[x = \sum_{j=0}^{d-1} y_j \times a_j \]
\[t \leftarrow \text{FEC}_\text{decode}(f, x) \]
\[r \leftarrow \text{hash(sk)} \]
\[ss \leftarrow \text{hash}(r, t) \]

| shared secret | \(ss \) |

Dimension \(d \) is 2 for BabyBear, 3 for MamaBear, 4 for PapaBear
Implementation View Point

- Auxiliary functions
 - samplers: noise/uniform sampler → cSHAKE256 → Keccak permutation
 - forward error correction (FEC): Melas BCH code

- Arithmetic components
 - MAC operation: \(r = r + a \times b \mod N \)

\(^{2}\text{https://github.com/XKCP/XKCP/tree/master/lib/low/KeccakP-1600/AVR8}\)
Implementation View Point

- **Auxiliary functions**
 - samplers: noise/uniform sampler \rightarrow cSHAKE256 \rightarrow Keccak permutation
 - open-source highly-optimized AVR Assembler
 - forward error correction (FEC): Melas BCH code

- **Arithmetic components**
 - MAC operation: $r = r + a \times b \mod N$

²https://github.com/XKCP/XKCP/tree/master/lib/low/KeccakP-1600/AVR8
Implementation View Point

- Auxiliary functions
 - samplers: noise/uniform sampler → cSHAKE256 → Keccak permutation
 - open-source highly-optimized AVR Assembler
 - forward error correction (FEC): Melas BCH code
 - small memory/code requirements, constant time and runtime is almost negligible

- Arithmetic components
 - MAC operation: $r = r + a \times b \mod N$

²https://github.com/XKCP/XKCP/tree/master/lib/low/KeccakP-1600/AVR8
Implementation View Point

- **Auxiliary functions**
 - Samplers: noise/uniform sampler → cSHAKE256 → Keccak permutation
 - open-source highly-optimized AVR Assembler
 - Forward error correction (FEC): Melas BCH code
 - Small memory/code requirements, constant time and runtime is almost negligible

- **Arithmetic components**
 - MAC operation: $r = r + a \times b \mod N$
 - Dominate both the RAM footprint and the execution time!!

2https://github.com/XKCP/XKCP/tree/master/lib/low/KeccakP-1600/AVR8
Field Element Representation

\[N = 2^{3120} - 2^{1560} - 1 \rightarrow 3120\text{-bit integer} \]
Field Element Representation

\[N = 2^{3120} - 2^{1560} - 1 \rightarrow 3120\text{-bit integer} \]

Reduced-radix representation \((w = 32)\)

Description	Value
Format	\(120 \times 26\) bits = 3120 bits
RAM usage	\(120 \times 4\) bytes = 480 bytes
Field Element Representation

\[N = 2^{3120} - 2^{1560} - 1 \rightarrow 3120\text{-bit integer} \]

Reduced-radix representation \((w = 32)\)

- Format \(120 \times 26\text{ bits} = 3120\text{ bits}\)
- RAM usage \(120 \times 4\text{ bytes} = 480\text{ bytes}\)

Full-radix representation \((w = 32)\)

- Format \(97.5 \times 32\text{ bits} = 3120\text{ bits}\)
- RAM usage \(98 \times 4\text{ bytes} = 392\text{ bytes}\)
- Why?
 - Sequential order in AVR
 - Reduce RAM consumption
MAC Operation $r = r + a \times b \mod N$

$$N = \lambda^2 - \lambda - 1 \quad \rightarrow \quad \lambda^{-1} = \lambda - 1$$
MAC Operation $r = r + a \times b \mod N$

$$N = \lambda^2 - \lambda - 1 \rightarrow \lambda^{-1} = \lambda - 1$$

$$z := a \times b = a \times b \times \lambda^{-1} = (a_L + a_H \lambda)(b_L + b_H \lambda) \times \lambda^{-1} \mod N$$

$$= a_L b_L \lambda^{-1} + (a_L b_H + a_H b_L) + a_H b_H \lambda \mod N$$

$$= a_L b_L (\lambda - 1) + (a_L b_H + a_H b_L) + a_H b_H \lambda \mod N$$

$$= (a_L b_H + a_H b_L - a_L b_L) + (a_L b_L + a_H b_H) \lambda \mod N$$

e_L/e_H stands for the lower/higher half of element e
MAC Operation $r = r + a \ast b \mod N$

\[N = \lambda^2 - \lambda - 1 \quad \rightarrow \quad \lambda^{-1} = \lambda - 1 \]

\[z := a \ast b = a \cdot b \cdot \lambda^{-1} = (a_L + a_H \lambda)(b_L + b_H \lambda) \cdot \lambda^{-1} \mod N \]

\[= a_L b_L \lambda^{-1} + (a_L b_H + a_H b_L) + a_H b_H \lambda \mod N \]

\[= a_L b_L (\lambda - 1) + (a_L b_H + a_H b_L) + a_H b_H \lambda \mod N \]

\[= (a_L b_H + a_H b_L - a_L b_L) + (a_L b_L + a_H b_H) \lambda \mod N \]

\[= (a_H b_H - (a_L - a_H)(b_L - b_H)) + (a_L b_L + a_H b_H) \lambda \mod N \] (1)

e_L/e_H stands for the lower/higher half of element e
MAC Operation $r = r + a * b \mod N$

\[
r := r + a \ast b \mod N
\]

\[
= (r_L + a_H b_H - (a_L - a_H)(b_L - b_H)) + (r_H + a_L b_L + a_H b_H)\lambda \mod N \quad (2)
\]

\[
= (r_L + a_H b_L - a_L(b_L - b_H)) + (r_H + (a_L + a_H)b_H + a_L(b_L - b_H))\lambda \mod N \quad (3)
\]

\[
= (r_L + a_H b_L - 2a_L(b_L - b_H)) + (r_H + (a_L + a_H)b_H)\lambda + a_L(b_L - b_H)\lambda^2 \mod N \quad (4)
\]
Memory-Optimized MAC

\[r := (r_L + a_H b_L - 2a_L(b_L - b_H)) + (r_H + (a_L + a_H)b_H)\lambda + a_L(b_L - b_H)\lambda^2 \mod N \]

Algorithm 1 Memory-optimized MAC operation

Input: Aligned \(s \)-word integers \(A = (A_{s-1}, \ldots, A_1, A_0) \), \(B = (B_{s-1}, \ldots, B_1, B_0) \), and \(R = (R_{s-1}, \ldots, R_1, R_0) \), each word contains \(\omega \) bits; \(\beta \) is a parameter of alignment

Output: Aligned \(s \)-word product \(R = R + A \cdot B \cdot \lambda \mod N = (R_{s-1}, \ldots, R_1, R_0) \)

1. \(Z_0 \leftarrow 0, Z_1 \leftarrow 0 \)
2. \(l \leftarrow s/2 \)
3. for \(i \) from 0 to \(l - 1 \) by 1 do
 4. \(Z_2 \leftarrow 0, k \leftarrow i + 1 \)
 5. for \(j \) from 0 to \(i \) by 1 do
 6. \(Z_0 \leftarrow Z_0 + A_j \cdot B_k \)
 7. \(Z_1 \leftarrow Z_1 + (A_j + A_{j+1}) \cdot B_k \)
 8. \(Z_2 \leftarrow Z_2 + A_j \cdot (B_k - B_{k+1}) \)
 9. end for
10. \(Z_0 \leftarrow Z_0 - 2 \cdot Z_2 \)
11. \(k \leftarrow l \)
12. for \(j \) from \(i + 1 \) to \(l - 1 \) by 1 do
13. \(k \leftarrow k - 1 \)
14. \(Z_1 \leftarrow Z_1 + 2^\beta \cdot A_{j+1} \cdot B_k \)
15. \(Z_2 \leftarrow Z_2 + 2^\beta \cdot (A_j + A_{j+1}) \cdot B_{k+1} \)
16. \(Z_0 \leftarrow Z_0 + 2^\beta \cdot A_j \cdot (B_k - B_{k+1}) \)
17. end for
18. \(Z_0 \leftarrow Z_0 + Z_3 + R_i \)
19. \(Z_1 \leftarrow Z_1 + Z_2 + R_{i+1} \)
20. \(R_i \leftarrow Z_0 \mod 2^\omega \)
21. \(Z_0 \leftarrow Z_0/2^\omega \)
22. end for
23. \(R_{i+1} \leftarrow Z_1 \mod 2^\omega \)
24. \(Z_1 \leftarrow Z_1/2^\omega \)
25. end for
26. \(Z_0 \leftarrow 2^\beta \cdot Z_0 + R_{i-1}/2^\omega - \beta \)
27. \(Z_1 \leftarrow 2^\beta \cdot Z_1 + R_{i-1}/2^\omega - \beta \)
28. \(R_{i-1} \leftarrow R_{i-1} \mod 2^\omega - \beta \)
29. \(R_{i-1} \leftarrow R_{i-1} \mod 2^\omega - \beta \)
30. \(Z_0 \leftarrow Z_0 + Z_1 \)
31. for \(i \) from 0 to \(l - 1 \) by 1 do
32. \(Z_1 \leftarrow Z_1 + R_i \)
33. \(R_i \leftarrow Z_1 \mod 2^\omega \)
34. \(Z_1 \leftarrow Z_1/2^\omega \)
35. end for
36. \(Z_0 \leftarrow 2^\beta \cdot Z_0 + R_{i-1}/2^\omega - \beta \)
37. \(R_{i-1} \leftarrow R_{i-1} \mod 2^\omega - \beta \)
38. for \(i \) from \(l \) to \(s - 1 \) by 1 do
39. \(Z_0 \leftarrow Z_0 + R_i \)
40. \(R_i \leftarrow Z_0 \mod 2^\omega \)
41. \(Z_0 \leftarrow Z_0/2^\omega \)
42. end for
43. return \((R_{s-1}, \ldots, R_1, R_0) \)

RAM consumption

- Three 80-bit accumulators
- Some local variables
- No more levels of Karatsuba (reduce RAM usage)
Memory-Optimized MAC

\[r := (r_L + a_H b_L - 2a_L (b_L - b_H)) + (r_H + (a_L + a_H) b_H) \lambda + a_L (b_L - b_H) \lambda^2 \mod N \]

Algorithm 1 Memory-optimized MAC operation

Input: Aligned \(s \)-word integers \(A = (A_{s-1}, \ldots, A_1, A_0) \), \(B = (B_{s-1}, \ldots, B_1, B_0) \), and \(R = (R_{s-1}, \ldots, R_1, R_0) \), each word contains \(\omega \) bits; \(\beta \) is a parameter of alignment.

Output: Aligned \(s \)-word product \(R = R + A \cdot B \cdot \lambda \mod N = (R_{s-1}, \ldots, R_1, R_0) \)

```plaintext
1: \( Z_0 \leftarrow 0, Z_1 \leftarrow 0 \)
2: \( l \leftarrow s/2 \)
3: for \( i \) from 0 to \( l - 1 \) by 1 do
4: \( Z_2 \leftarrow 0, k \leftarrow i + 1 \)
5: for \( j \) from 0 to \( i \) by 1 do
6: \( k \leftarrow k - 1 \)
7: \( Z_0 \leftarrow Z_0 + A_{j+l} \cdot B_k \)
8: \( Z_1 \leftarrow Z_1 + (A_j + A_{j+l}) \cdot B_{k+l} \)
9: \( Z_2 \leftarrow Z_2 + A_j \cdot (B_k - B_{k+l}) \)
10: end for
11: \( Z_0 \leftarrow Z_0 - 2 \cdot Z_2 \)
12: \( k \leftarrow l \)
13: for \( j \) from \( i + 1 \) to \( l - 1 \) by 1 do
14: \( k \leftarrow k - 1 \)
15: \( Z_1 \leftarrow Z_1 + 2^\beta \cdot A_{j+l} \cdot B_k \)
16: \( Z_2 \leftarrow Z_2 + 2^\beta \cdot (A_j + A_{j+l}) \cdot B_{k+l} \)
17: \( Z_0 \leftarrow Z_0 + 2^\beta \cdot A_j \cdot (B_k - B_{k+l}) \)
18: end for
19: \( Z_0 \leftarrow Z_0 + Z_2 + R_i \)
20: \( Z_1 \leftarrow Z_1 + Z_2 + R_{i+l} \)
21: \( R_i \leftarrow Z_0 \mod 2^\omega \)
22: \( Z_0 \leftarrow Z_0/2^\omega \)
23: \( R_{i+l} \leftarrow Z_1 \mod 2^\omega \)
24: \( Z_1 \leftarrow Z_1/2^\omega \)
25: end for
26: \( Z_0 \leftarrow 2^\beta \cdot Z_0 + R_{i-1}/2^{\omega-\beta} \)
27: \( Z_1 \leftarrow 2^\beta \cdot Z_1 + R_{i-1}/2^{\omega-\beta} \)
28: \( R_{i-1} \leftarrow R_{i-1} \mod 2^{\omega-\beta} \)
29: \( R_{i-1} \leftarrow R_{i-1} \mod 2^{\omega-\beta} \)
30: \( Z_0 \leftarrow Z_0 + Z_1 \)
31: for \( i \) from 0 to \( l - 1 \) by 1 do
32: \( Z_1 \leftarrow Z_1 + R_i \)
33: \( R_i \leftarrow Z_1 \mod 2^\omega \)
34: \( Z_1 \leftarrow Z_1/2^\omega \)
35: end for
36: \( Z_0 \leftarrow 2^\beta \cdot Z_0 + R_{i-1}/2^{\omega-\beta} \)
37: \( R_{i-1} \leftarrow R_{i-1} \mod 2^{\omega-\beta} \)
38: for \( i \) from \( l \) to \( s - 1 \) by 1 do
39: \( Z_0 \leftarrow Z_0 + R_i \)
40: \( R_i \leftarrow Z_0 \mod 2^\omega \)
41: \( Z_0 \leftarrow Z_0/2^\omega \)
42: end for
43: return \((R_{s-1}, \ldots, R_1, R_0)\)
```

Main MAC loop

- Product-scanning
- Interleaved with modular reductions \(\lambda^2 = \lambda + 1 \) (lines from 19 to 24)
Memory-Optimized MAC

\[r := (r_L + a_H b_L - 2a_L (b_L - b_H)) + (r_H + (a_L + a_H) b_H) \lambda + a_L (b_L - b_H) \lambda^2 \mod N \]

Algorithm 1 Memory-optimized MAC operation

Input: Aligned \(s \)-word integers \(A = (A_{s-1}, \ldots, A_1, A_0) \), \(B = (B_{s-1}, \ldots, B_1, B_0) \), and \(R = (R_{s-1}, \ldots, R_1, R_0) \), each word contains \(\omega \) bits; \(\beta \) is a parameter of alignment

Output: Aligned \(s \)-word product \(R = R + A \cdot B \cdot \lambda \mod N = (R_{s-1}, \ldots, R_1, R_0) \)

```plaintext
1: \( Z_0 \leftarrow 0, Z_1 \leftarrow 0 \)
2: \( l \leftarrow s/2 \)
3: for \( i \) from 0 to \( l - 1 \) by 1 do
4: \( Z_2 \leftarrow 0, k \leftarrow i + 1 \)
5: for \( j \) from 0 to \( i \) by 1 do
6: \( k \leftarrow k - 1 \)
7: \( Z_0 \leftarrow Z_0 + A_{j+i} \cdot B_k \)
8: \( Z_1 \leftarrow Z_1 + (A_j + A_{j+i}) \cdot B_{k+l} \)
9: \( Z_2 \leftarrow Z_2 + A_j \cdot (B_k - B_{k+i}) \)
10: end for
11: \( Z_0 \leftarrow Z_0 - 2 \cdot Z_2 \)
12: \( k \leftarrow l \)
13: for \( j \) from \( i + 1 \) to \( l - 1 \) by 1 do
14: \( k \leftarrow k - 1 \)
15: \( Z_1 \leftarrow Z_1 + 2^\beta \cdot A_{j+i} \cdot B_k \)
16: \( Z_2 \leftarrow Z_2 + 2^\beta \cdot (A_j + A_{j+i}) \cdot B_{k+l} \)
17: \( Z_0 \leftarrow Z_0 + 2^\beta \cdot A_j \cdot (B_k - B_{k+i}) \)
18: end for
19: \( Z_0 \leftarrow Z_0 + Z_2 + R_i \)
20: \( Z_1 \leftarrow Z_1 + Z_2 + R_{i+l} \)
21: \( R_i \leftarrow Z_0 \mod 2^\omega \)
22: \( Z_0 \leftarrow Z_0^2 \mod 2^\omega \)
23: \( R_{i+1} \leftarrow Z_1 \mod 2^\omega \)
24: \( Z_1 \leftarrow Z_1 / 2^\omega \)
25: end for
26: \( Z_0 \leftarrow 2^\beta \cdot Z_0 + R_{i-1} / 2^\omega - \beta \)
27: \( Z_1 \leftarrow 2^\beta \cdot Z_1 + R_{i-1} / 2^\omega - \beta \)
28: \( R_{i-1} \leftarrow R_{i-1} \mod 2^\omega - \beta \)
29: \( R_{s-1} \leftarrow R_{s-1} \mod 2^\omega - \beta \)
30: \( Z_0 \leftarrow Z_0 + Z_1 \)
31: for \( i \) from 0 to \( l - 1 \) by 1 do
32: \( Z_1 \leftarrow Z_1 + R_i \)
33: \( R_i \leftarrow Z_1 \mod 2^\omega \)
34: \( Z_1 \leftarrow Z_1 / 2^\omega \)
35: end for
36: \( Z_0 \leftarrow 2^\beta \cdot Z_0 + R_{l-1} / 2^\omega - \beta \)
37: \( R_{l-1} \leftarrow R_{l-1} \mod 2^\omega - \beta \)
38: for \( i \) from \( l \) to \( s - 1 \) by 1 do
39: \( Z_0 \leftarrow Z_0 + R_i \)
40: \( R_i \leftarrow Z_0 \mod 2^\omega \)
41: \( Z_0 \leftarrow Z_0^2 \mod 2^\omega \)
42: end for
43: return \( (R_{s-1}, \ldots, R_1, R_0) \)
```

Final reduction modulo \(N \)

Carry propagation
Memory-Optimized MAC

\[r := (r_L + a_H b_L - 2a_L (b_L - b_H)) + (r_H + (a_L + a_H) b_H) \lambda + a_L (b_L - b_H) \lambda^2 \mod N \]

Algorithm 1 Memory-optimized MAC operation

Input: Aligned \(s \)-word integers \(A = (A_{s-1}, \ldots, A_0) \), \(B = (B_{s-1}, \ldots, B_1, B_0) \), and \(R = (R_{s-1}, \ldots, R_1, R_0) \), each word contains \(\omega \) bits; \(\beta \) is a parameter of alignment

Output: Aligned \(s \)-word product \(R = R + A \cdot B \cdot \lambda \mod N = (R_{s-1}, \ldots, R_1, R_0) \)

1. \(Z_0 \leftarrow 0, Z_1 \leftarrow 0 \)
2. \(l \leftarrow s/2 \)
3. **for** \(i \) from 0 to \(l - 1 \) by 1 **do**
4. \(Z_2 \leftarrow 0, k \leftarrow i + 1 \)
5. **for** \(j \) from 0 to \(i \) by 1 **do**
6. \(k \leftarrow k - 1 \)
7. \(Z_0 \leftarrow Z_0 + A_{j+i} \cdot B_k \)
8. \(Z_1 \leftarrow Z_1 + (A_j + A_{j+i}) \cdot B_{k+l} \)
9. \(Z_2 \leftarrow Z_2 + A_j \cdot (B_k - B_{k+l}) \)
10. **end for**
11. \(Z_0 \leftarrow Z_0 - 2 \cdot Z_2 \)
12. \(k \leftarrow l \)
13. **for** \(j \) from \(i + 1 \) to \(l - 1 \) by 1 **do**
14. \(k \leftarrow k - 1 \)
15. \(Z_1 \leftarrow Z_1 + 2^{\beta} \cdot A_{j+i} \cdot B_k \)
16. \(Z_2 \leftarrow Z_2 + 2^{\beta} \cdot (A_j + A_{j+i}) \cdot B_{k+l} \)
17. \(Z_0 \leftarrow Z_0 + 2^{\beta} \cdot A_j \cdot (B_k - B_{k+l}) \)
18. **end for**
19. \(Z_0 \leftarrow Z_0 + Z_3 + R_i \)
20. \(Z_1 \leftarrow Z_1 + Z_2 + R_{i+l} \)
21. \(R_i \leftarrow Z_0 \mod 2^\omega \)
22. \(Z_0 \leftarrow Z_0/2^\omega \)
23. \(R_{i+l} \leftarrow Z_1 \mod 2^\omega \)
24. \(Z_1 \leftarrow Z_1/2^\omega \)
25. **end for**
26. \(Z_0 \leftarrow 2^\beta \cdot Z_0 + R_{i-1}/2^{\omega-\beta} \)
27. \(Z_1 \leftarrow 2^\beta \cdot Z_1 + R_{i-1}/2^{\omega-\beta} \)
28. \(R_{i-1} \leftarrow R_{i-1} \mod 2^{\omega-\beta} \)
29. \(R_{s-1} \leftarrow R_{s-1} \mod 2^{\omega-\beta} \)
30. \(Z_0 \leftarrow Z_0 + Z_1 \)
31. **for** \(i \) from 0 to \(l - 1 \) by 1 **do**
32. \(Z_1 \leftarrow Z_1 + R_i \)
33. \(R_i \leftarrow Z_1 \mod 2^\omega \)
34. \(Z_1 \leftarrow Z_1/2^\omega \)
35. **end for**
36. \(Z_0 \leftarrow 2^\beta \cdot Z_0 + R_{i-1}/2^{\omega-\beta} \)
37. \(R_{i-1} \leftarrow R_{i-1} \mod 2^{\omega-\beta} \)
38. **for** \(i \) from \(l \) to \(s - 1 \) by 1 **do**
39. \(Z_0 \leftarrow Z_0 + R_i \)
40. \(R_i \leftarrow Z_0 \mod 2^\omega \)
41. \(Z_0 \leftarrow Z_0/2^\omega \)
42. **end for**
43. **return** \((R_{s-1}, \ldots, R_1, R_0)\)
Memory-Optimized MAC

\[r := (r_L + a_H b_L - 2a_L (b_L - b_H)) + (r_H + (a_L + a_H) b_H) \lambda + a_L (b_L - b_H) \lambda^2 \mod N \]

Algorithm 2 First triple MAC loop

1: \(Z_2 \leftarrow 0, \ k \leftarrow i + 1 \)

2: **for** \(j \) from 0 to \(i \) by 1 **do**

3: \(\ k \leftarrow k - 1 \)

4: \(\ Z_0 \leftarrow Z_0 + A_{j+l} \cdot B_k \)

5: \(\ Z_1 \leftarrow Z_1 + (A_j + A_{j+l}) \cdot B_{k+l} \)

6: \(\ Z_2 \leftarrow Z_2 + A_j \cdot (B_k - B_{k+l}) \)

7: **end for**

8: \(\ Z_0 \leftarrow Z_0 - 2 \cdot Z_2 \)
Memory-Optimized MAC

\[r := (r_L + a_H b_L - 2a_L (b_L - b_H)) + (r_H + (a_L + a_H) b_H) \lambda + a_L (b_L - b_H) \lambda^2 \mod N \]

Algorithm 3 Second triple MAC loop

1: \[k \leftarrow l \]
2: \[\textbf{for } j \text{ from } i + 1 \text{ to } l - 1 \text{ by } 1 \text{ do} \]
3: \[k \leftarrow k - 1 \]
4: \[Z_1 \leftarrow Z_1 + 2^\beta \cdot A_{j+i} \cdot B_k \]
5: \[Z_2 \leftarrow Z_2 + 2^\beta \cdot (A_j + A_{j+i}) \cdot B_{k+l} \]
6: \[Z_3 \leftarrow Z_3 + 2^\beta \cdot A_j \cdot (B_k - B_{k+l}) \]
7: \[\textbf{end for} \]
8: \[Z_1 \leftarrow Z_1 - 2 \cdot Z_3 \]

Product of \(A \cdot B \)
\[r := (r_L + a_H b_L - 2a_L (b_L - b_H)) + (r_H + (a_L + a_H) b_H) \lambda + a_L (b_L - b_H) \lambda^2 \mod N \]

Algorithm 3 Second triple MAC loop

1: \(k \leftarrow l \)

2: **for** \(j \) from \(i + 1 \) to \(l - 1 \) **do**

3: \(k \leftarrow k - 1 \)

4: \(Z_1 \leftarrow Z_1 + 2^\beta \cdot A_{j+l} \cdot B_k \)

5: \(Z_2 \leftarrow Z_2 + 2^\beta \cdot (A_j + A_{j+l}) \cdot B_{k+l} \)

6: \(Z_3 \leftarrow Z_3 + 2^\beta \cdot A_j \cdot (B_k - B_{k+l}) \)

7: **end for**

8: \(Z_1 \leftarrow Z_1 - 2 \cdot Z_3 \)

\[\lambda^3 = (\lambda + 1) \cdot \lambda = \lambda^2 + \lambda = (\lambda + 1) + \lambda = 2\lambda + 1 \mod N \]

\[Z_0 \leftarrow Z_0 + Z_3 \]

\[Z_1 \leftarrow Z_1 - 2 \cdot Z_3 + 2 \cdot Z_3 = Z_1 \]
Memory-Optimized MAC

\[r := (r_L + a_H b_L - 2a_L(b_L - b_H)) + (r_H + (a_L + a_H) b_H) \lambda + a_L(b_L - b_H) \lambda^2 \mod N \]

Algorithm 3 Second triple MAC loop

1: \(k \leftarrow l \)

2: for \(j \) from \(i + 1 \) to \(l - 1 \) by 1 do

3: \(k \leftarrow k - 1 \)

4: \(Z_1 \leftarrow Z_1 + 2^\beta \cdot A_{j+l} \cdot B_k \)

5: \(Z_2 \leftarrow Z_2 + 2^\beta \cdot (A_j + A_{j+l}) \cdot B_{k+l} \)

6: \(Z_0 \leftarrow Z_0 + 2^\beta \cdot A_j \cdot (B_k - B_{k+l}) \)

7: end for

\(\lambda^3 = \lambda^2 \cdot \lambda = (\lambda + 1) \cdot \lambda = \lambda^2 + \lambda = (\lambda + 1) + \lambda = 2\lambda + 1 \mod N \)

\(Z_0 \leftarrow Z_0 + Z_3 \)

\(Z_1 \leftarrow Z_1 - 2 \cdot Z_3 + 2 \cdot Z_3 = Z_1 \)

product of \(A \cdot B \)
Reverse Product Scanning (RPS) multiplication [LSGK14]

- Enhanced variant of conventional hybrid multiplication [GPW+04]
- Fast, small-code-size, fewer-registers and parameterized

Inner-loop operations of RPS multiplication (middle)
Speed-Optimized MAC

\[r := (r_L + a_H b_H - (a_L - a_H)(b_L - b_H)) + (r_H + a_L b_L + a_H b_H) \lambda \mod N \]
\[= (r_L + h + m) + (r_H + l + h) \lambda \mod N \]
\[= (r_L + (h_L + h_H \lambda) + (m_L + m_H \lambda)) + (r_H + (l_L + l_H \lambda) + (h_L + h_H \lambda)) \lambda \mod N \]
\[= (r_L + h_L + m_L) + (r_H + l_L + h_L + m_H + h_H) \lambda + (l_H + h_H) \lambda^2 \mod N \]
\[= (r_L + m_L + \underbrace{h_L + h_H + l_H}) + (r_H + m_H + h_H + l_L + \underbrace{h_L + h_H + l_H}) \lambda \mod N \] (5)
Speed-Optimized MAC

\[r := (r_L + m_L + h_L + h_H + l_H) + (r_H + m_H + h_H + l_L + h_L + h_H + l_H) \lambda \mod N \]

Experiments for speed-optimized MAC

- **Combination**
 - Subtractive Karatsuba method \([HS14]\) \(\Theta(n^{\log_2 3})\)
 - RPS multiplication \([LSGK14]\) \(\Theta(n^2)\)

- **Result**
 - 3-level Karatsuba with \((390 \times 390)\)-bit RPS multiplication underneath for the entire MAC
MAC Optimization Strategies

- Memory-optimized MAC operation
 - Equation (4)
 - one-level Karatsuba multiplication (product-scanning)
 - RPS technique for inner-loop operation

- Speed-optimized MAC operation
 - Equation (5)
 - three-level Karatsuba multiplication
 - RPS multiplication
Measurement Environment

Experiment Setup

- Target MCU: ATmega1284 (16 kB RAM; 128 kB flash memory)
- Development tool: Atmel Studio v7.0
- Compiler: avr-gcc 5.4.0

Our source code

- AVR Assembler: MAC operation; Keccak permutation
- C code: other components
Performance Evaluation

Execution time (in clock cycles) of our implementations on AVR

Implementation	Security	MAC	KeyGen	Encaps	Decaps
ME-BBear	CCA-secure	1,033,728	8,746,418	12,289,744	18,578,335
ME-BBear-Eph	CPA-secure	1,033,728	8,746,418	12,435,165	3,444,154
HS-BBear	CCA-secure	604,703	6,123,527	7,901,873	12,476,447
HS-BBear-Eph	CPA-secure	604,703	6,123,527	8,047,835	2,586,202

HS version is \(1.5x\) faster compared to ME
Performance Evaluation

RAM usage and code size (both in bytes) of our implementations on AVR

Implementation	MAC RAM	KeyGen RAM	Encaps RAM	Decaps RAM	Total RAM
ME-BBear	82	1,715	1,735	2,368	2,368
ME-BBear-Eph	82	1,715	1,735	1,731	1,735
HS-BBear	934	2,733	2,752	4,559	4,559
HS-BBear-Eph	934	2,733	2,752	2,356	2,752

ME version is **1.5x** RAM-efficient compared to HS.
Comparison – AVR Implementations

Comparison with other key-establishment algorithms (all of which target 128-bit security) on 8-bit AVR (Encaps and Decaps in clock cycles; RAM and code size in bytes)

Implementation	Algorithm	Encaps	Decaps	RAM	Size
This work (ME-CCA)	ThreeBears	12,289,744	18,578,335	2,368	12,264
This work (ME-CPA)	ThreeBears	**12,435,165**	**3,444,154**	**1,735**	10,998
This work (HS-CCA)	ThreeBears	7,901,873	12,476,447	4,559	11,568
This work (HS-CPA)	ThreeBears	8,047,835	2,586,202	2,752	10,296
[CDG+19]	NTRU Prime	8,160,665	15,602,748	n/a	11,478
[DHH+15] (ME)	Curve25519	14,146,844	14,146,844	510	9,912
[DHH+15] (HS)	Curve25519	**13,900,397**	**13,900,397**	**494**	17,710

Encaps $1.12x$ faster; Decaps $4.0x$ faster; RAM $3.5x$ more; compared to Curve25519
Comparison – RAM Footprint

Comparison of RAM consumption (in bytes) of NIST PQC implementations (all of which target NIST security category 1 or 2) on AVR and Cortex-M4 microcontrollers

Implementation	Algorithm	Platform	KeyGen	Encaps	Decaps
CCA-secure schemes					
This work (ME)	ThreeBears	AVR	1,715	1,735	**2,368**
[Ham19] pqm4	ThreeBears	Cortex-M4	2,288	2,352	3,024
pqm4	ThreeBears	Cortex-M4	3,076	2,964	5,092
pqm4	Kyber	Cortex-M4	2,388	2,476	2,492
pqm4	NTRU	Cortex-M4	**11,848**	6,864	5,144
pqm4	Saber	Cortex-M4	9,652	11,388	12,132
CPA-secure schemes					
This work (ME)	ThreeBears	AVR	1,715	**1,735**	1,731
[Ham19] pqm4	ThreeBears	Cortex-M4	2,288	2,352	2,080
pqm4	ThreeBears	Cortex-M4	**3,076**	2,980	2,420
pqm4	NewHope	Cortex-M4	3,836	**4,940**	3,200
pqm4	Round5	Cortex-M4	4,052	**4,500**	2,308

The most RAM-efficient software implementation of Round 2 candidates
The first highly-optimized Assembler implementation of ThreeBears for AVR

Many trade-offs between execution time and RAM consumption are possible

A new record for memory efficiency among second-round candidates

Very well suited for a hybrid pre/post-quantum key agreement protocol

An excellent candidate for a post-quantum cryptosystem to secure the IoT
Thank you for your attention!