Supporting Information

Optical Nature of Non-Substituted Triphenylmethyl Cation: Crystalline State Emission, Thermochromism, and Phosphorescence

Tomohiko Nishiuchi,*[a,b] Hikaru Sotome,[c] Risa Fukuuchi,[d,e] Kenji Kamada,[d,e] Hiroshi Miyasaka,[c] and Takashi Kubo *[a,b]

[a] Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
[b] Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives, (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
[c] Division of Frontier Materials Science and Center for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
[d] Nanomaterial Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan.
[e] Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, 669-1337, Japan

Contents

1. General Information S2
2. Synthesis S2
3. Differential scanning calorimetry (DSC) measurement S3
4. UV-vis spectra measurements S3
5. X-ray crystallographic analysis S4
6. Variable-temperature X-ray analyses in O-crystal S8
7. Quantum chemical calculations S9
8. Excitation and emission spectra of Y-crystal S12
9. TD-DFT calculations S13
10. Emission spectra of trityl cation in frozen state S26
11. Emission decay curves of trityl cation S27
12. Evaluation of spin-orbit coupling between singlet and triplet states S29
General Information

Hexafluorophosphate (60%) and acetic anhydride were purchased from Fujifilm Wako chemicals and used without purification for reaction. For measurements, dried chloroform was purchased. Data collection for X-ray crystal analysis was performed on Rigaku R-AXIS RAPID II Imaging Plate or Rigaku XtaLAB Synergy Custom (Mo-Kα, λ = 0.71069 Å). The structure was solved with direct methods and refined with full-matrix least squares. The UV-vis spectra were recorded on JASCO V-570 spectrophotometer. The Solid state UV-vis spectra were recorded on JASCO V-570 spectrophotometer with ISN-470 integral sphere unit (Jasco). The emission spectra and emission quantum yields were recorded on FP-8500 spectrofluorometer with ILFC-847 fluorescence integral sphere unit (Jasco).

Measurement for emission lifetime. The emission profiles in the millisecond region as shown in Figure S23 were measured with a home-built setup. A commercially available camera flash was converted to UV flash by replacing its plastic window with a UV transmission filter (HOYA, U330). The UV flash was irradiated to the sample. The emission was guided into a monochromator and detected by a photomultiplier tube equipped with a digital oscilloscope. The sample cell was filled in liquid nitrogen and its temperature was kept at 77 K during the measurement. The emission lifetimes in the nanosecond region as shown in Figure S24 were measured with another home-built time-correlated single-photon counting (TCSPC) apparatus. The pulsed light source was a Ti:sapphire oscillator (Spectra-Physics, Tsunami, 900 nm, 100 fs, 80 MHz) and its output was divided into two portions. One was used for the start pulse of TCSPC and the other was converted to the second harmonics at 450 nm with a beta-barium borate crystal for the excitation pulse. The repetition rate of the pulsed irradiation was reduced to 8 MHz using an electro-optic modulator (Conoptics, Model 350). The polarization of the excitation pulse was set to the magic angle with respect to that of the fluorescence detection by using a film polarizer and Babinet-Soleil compensator. The emission signals were detected by a photomultiplier tube with a pre-amplifier and a TCSPC module (PicoQuamt, PicoHarp 300) after the spectral selection with a monochromator. The instrumental response function was 43 ps and the validity of the measurement was confirmed by measuring a fluorescence lifetime of a standard sample (coumarin 153 in methanol). The nano-–microsecond emission decay curves in Figure S25 were recorded with the other setup. Nanosecond UV pulses (355 nm, 10 Hz) from a frequency-tripled nanosecond YAG laser irradiated to sample in glass tube immersed in liquid nitrogen. The pulse energy employed was 0.4 mJ/pulse or less. The emission from the sample was collected in perpendicular direction by a high-NA lens and coupled to an optical fiber bundle. Excitation-cut filter (L39) was used to ensure to block the scattering of the excitation. The fiber bundle was connected to a monochromator (Jovin-Yvon HR-10) and detected by a photomultiplier tube (Hamamatsu R926). The signal from the photomultiplier was acquired and averaged by a digital oscilloscope (500 MHz, 5 GS/s).

Computational Methods. MP2 and TD-DFT calculations were performed with the Gaussian 16 program. The calculations of spin-orbit coupling (SOC) were performed with ORCA program (program version 4.2.1). The molecular geometries from X-ray crystallographic analysis were used for the calculations.

Synthesis

Synthesis of triphenylmethyl hexafluorophosphate (trityl PF₆)

To a solution of triphenylmethyl alcohol (100 mg, 0.38 mmol) in acetic anhydride (2 ml) was slowly added hexafluorophosphoric acid solution (60%, 0.5 ml) at room temperature (Caution! This reaction is exothermic and the solution is splashed.). For collecting yellow crystal (Y-crystal), the reaction vial was putted in a fridge to keep 4–5 °C for several hours whereas, for collecting orange crystal (O-crystal), the reaction vial was left at room temperature for several days to over a week with absence of light. Y- or O-crystal was collected by filtration and washed by acetic anhydride and dried diethyl ether. The obtained yield was 115 mg (0.29 mmol, 78%) or 122 mg (0.31 mmol, 83%), respectively. To avoid hydration reaction by air moisture, both crystals were stored in vacuumed glass tube. Mp: 183 °C (Y-crystal), 259 °C (O-crystal, decomp.). MS (DI): m/z 243 [M – PF₆].

S2
• Differential scanning calorimetry (DSC) measurement

Figure S1. DSC measurements (a) Y-crystal, (b) O-crystal. Heating scan rate was 20 °C/min because a slow decomposition below its melting point or decomposition point occurs during the measurement.

• UV-vis spectra measurements

Figure S2. (a) UV-vis spectrum of trityl cation (2% TFA in CHCl₃) and solid state diffuse reflection spectra of Y- and O-crystals after applying Kubelka-Munk function. (b) Solid-state diffuse reflectance spectrum of Y-crystal (Normalized intensity range: 0 to 1.0 a.u.) and translucent solution spectrum of trityl cation (Normalized intensity range: 0 to 0.12 a.u.).
X-ray crystallographic analysis

X-ray crystallography of Y-crystal

Crystal date for Y-crystal_170K: CCDC 2063283. C_{19}H_{15}PF_{6}, M_W = 388.29, Cubic, space group F 4_3 2 (no 210), a = b = c = 19.280(4) Å, V = 7166(5) Å^3, Z = 16, D = 1.440 g cm^3, T = 170 K, Data collection with MoKα radiation (multi-layer mirror monochromated). 17648 measured reflection, 697 unique reflections; structure solution by direct methods (Shelxs), refinement by fullmatrix least squares on F with anisotropic temperature factors for the non-H atoms. Final R1 = 0.0626, wR2 = 0.1698, GOF = 1.061.

Crystal date for Y-crystal_273K: CCDC 2063286. C_{19}H_{15}PF_{6}, M_W = 388.29, Cubic, space group F 4_3 2 (no 210), a = b = c = 19.401(6) Å, V = 7302(7) Å^3, Z = 16, D = 1.413 g cm^3, T = 273 K, Data collection with MoKα radiation (multi-layer mirror monochromated). 18004 measured reflection, 707 unique reflections; structure solution by direct methods (Shelxs), refinement by fullmatrix least squares on F with anisotropic temperature factors for the non-H atoms. Final R1 = 0.0701, wR2 = 0.2088, GOF = 1.147.

Figure S3. X-ray crystallography of Y-crystal at 170 K. (a) D_3 symmetric trityl cation in Y-crystal. Torsion angle of three phenyl rings is 32.93°. Bond length between C1 and C2 is 1.434 Å. (b) Depicting with two independent PF_6 anions and shortest distances between trityl cation and PF_6 anions. Inter-atomic distance between C1 and F1 is 3.503 Å, and between C4 and F7 is 3.273 Å. (c) Inter-atomic distance of central sp^2 carbons between neighboring trityl cations is 6.817 Å (Left figure is top view. Right figure is side view.). For clarity, other two trityl cations constructing a tetragonal cage are shown as wireframe and a central PF_6 anion is shown as capped stick. (d) Packing structure of Y-crystal. Protons are omitted for clarity.
Figure S4. X-ray crystallography of Y-crystal at 273 K. (a) D_3 symmetric trityl cation in Y-crystal. Torsion angle of three phenyl rings is 33.05°. Bond length between C1 and C2 is 1.431 Å. (b) Depicting with two independent PF$_6$ anions and shortest distances between trityl cation and PF$_6$ anions. Inter-atomic distance between C1 and F1 is 3.529 Å, and between C4 and F7 is 3.357 Å. (c) Inter-atomic distance of central sp2 carbons between neighboring trityl cations is 6.859 Å (Left figure is top view. Right figure is side view.). For clarity, other two trityl cations constructing a tetragonal cage are shown as wireframe and a central PF$_6$ anion is shown as capped stick. (d) Packing structure of Y-crystal. Protons are omitted for clarity.

Table S1. Structural difference of Y-crystal between 273 K and 170 K.

	Cell length / Å	Cell volume / Å3	Torsion angle $\theta / ^\circ$	C1-C2 / Å	C1-F1 / Å	C4-F7 / Å	C1(A)-C1(B) / Å
273 K	19.401(6)	7302(7)	33.05	1.431	3.529	3.357	6.859
170 K	19.280(4)	7166(5)	32.93	1.434	3.503	3.273	6.817
X-ray crystallography of Trityl BF$_4$

Crystal data for Trityl BF$_4$: CCDC 2093998. C$_{19}$H$_{15}$BF$_4$, $M_w = 330.13$, Cubic, space group F 23 (no 196), $a = b = c = 18.5320(6)$ Å, $V = 6364.5(6)$ Å3, $Z = 16$, $D = 1.378$ g cm$^{-3}$, $T = 200$ K, Data collection with MoKα radiation (multi-layer mirror monochromated). 2248 measured reflection, 894 unique reflections; structure solution by direct methods (Shelxs), refinement by fullmatrix least squares on F with anisotropic temperature factors for the non-H atoms. Final $R_1 = 0.1303$, $wR_2 = 0.3474$, GOF = 1.630.

Figure S5. X-ray crystallography of Trityl BF$_4$ at 200 K. (a) D_3 symmetric trityl cation. Torsion angle of three phenyl rings is 30.90°. Bond length between C1 and C2 is 1.459 Å. (b) Depicting with two independent BF$_4$ anions and shortest distances between trityl cation and BF$_4$ anions. (c) Inter-atomic distance of central sp2 carbons between neighboring trityl cations is 6.694 Å (Left figure is top view. Right figure is side view.). For clarity, other two trityl cations constructing a tetragonal cage are shown as wireframe and a central BF$_4$ anion is shown as capped stick. (d) Packing structure of Trityl BF$_4$. Protons are omitted for clarity.
X-ray crystallography of O-crystal

Crystal date for O-crystal_195K: CCDC 2063287. C_{10}H_{15}·PF_6, M_W = 388.29, Monoclinic, space group P 2_1/n (no 14), a = 9.9081(3), b = 8.6985(2), c = 19.3133(5) Å, β = 90.482(2)°, V = 1664.47(8) Å^3, Z = 4, D = 1.549 g cm^-3, T = 195 K, Data collection with MoKα radiation (multi-layer mirror monochromated). 21205 measured reflection, 4400 unique reflections; structure solution by direct methods (Shelxs), refinement by fullmatrix least squares on F with anisotropic temperature factors for the non-H atoms. Final R1 = 0.0435, wR2 = 0.1227, GOF = 1.070

Crystal date for O-crystal_273K: CCDC 2063285. C_{19}H_{15}·PF_6, M_W = 388.29, Monoclinic, space group P 2_1/n (no 14), a = 10.0072(3), b = 8.7452(3), c = 19.3379(6) Å, β = 90.121(3)°, V = 1692.35(9) Å^3, Z = 4, D = 1.524 g cm^-3, T = 273 K, Data collection with MoKα radiation (multi-layer mirror monochromated). 21566 measured reflection, 4466 unique reflections; structure solution by direct methods (Shelxs), refinement by fullmatrix least squares on F with anisotropic temperature factors for the non-H atoms. Final R1 = 0.0443, wR2 = 0.1255, GOF = 1.068

Crystal date for O-crystal_83K: CCDC 2063284. C_{19}H_{15}·PF_6, M_W = 388.29, Monoclinic, space group P 2_1/n (no 14), a = 9.8111(2), b = 8.6592(2), c = 19.2629(5) Å, β = 90.665(2)°, V = 1636.39(7) Å^3, Z = 4, D = 1.576 g cm^-3, T = 83 K, Data collection with MoKα radiation (multi-layer mirror monochromated). 31097 measured reflection, 4509 unique reflections; structure solution by direct methods (Shelxs), refinement by fullmatrix least squares on F with anisotropic temperature factors for the non-H atoms. Final R1 = 0.0464, wR2 = 0.1276, GOF = 1.059

Figure S6. X-ray crystallography of O-crystal (273 K). (a) Top view of trityl cation dimer in O-crystal with different colors and without PF_6 anions for clarity. (b) Side view of trityl cation dimer in O-crystal with PF_6 anions. (c) One dimensional alignment of trityl PF_6 (viewing from c axis). (d) The alignment of 1D chains and the distance between neighboring 1D chains is 7.197 Å. Protons are omitted for clarity. Ortep drawing is 50% probability.
Figure S7. X-ray crystallography of O-crystal (83 K). (a) Top view of trityl cation dimer in O-crystal with different colors and without PF₆ anions for clarity. (b) Side view of trityl cation dimer in O-crystal with PF₆ anions. (c) One dimensional alignment of trityl PF₆ (viewing from c axis). (d) The alignment of 1D chains and the distance between neighboring 1D chains is 7.059 Å. Protons are omitted for clarity. Ortep drawing is 50% probability.

· Variable-temperature X-ray analyses in O-crystal

Table S2. Structural comparison of trityl cation scaffold in O-crystal at 273 K, 195 K, and 83 K.

	φ₁	φ₂	φ₃	C1-C2	C1-C3	C1-C4
273 K	26.1°	32.4°	39.6°	1.440 Å	1.447 Å	1.449 Å
195 K	25.4°	31.8°	40.2°	1.437 Å	1.450 Å	1.450 Å
83 K	24.8°	31.5°	40.5°	1.438 Å	1.450 Å	1.450 Å
Δ(273 K-83 K)	1.3°	0.9°	-0.9°	0.002 Å	-0.003 Å	-0.001 Å
• Quantum chemical calculations

NBO analysis

Figure S8. Natural bond orbital analysis of trityl PF₆ (MP2/6-311+G**) for evaluating charge transfer interaction between trityl cation and PF₆ anion. (a) X-ray structures in O-crystal at both 273 and 83 K. From NBO analysis, lone pairs on F1 (PF₆ anion) act as donor to a vacant orbital on C1 (trityl cation). Upon cooling the temperature from 273 K to 83 K, the charge transfer interaction energies \(E \) are increased due to shorten the C1···F1 distance. (b) X-ray structures in Y-crystal at 170 K. Due to having \(C_3 \) symmetry, three inter-atomic distance C1···F1, C1···F2, and C1···F3 are equal. The charge transfer interactions \(E \) between C1···F1 are weaker than those observed in O-crystal owing to its longer C1···F1 distance.

Donor NBO (i)	Acceptor NBO (j)	\(E \) (kcal/mol)
LP (1) F 1	LP*(1) C 1	0.49
LP (3) F 1	LP*(1) C 1	0.68
LP (4) F 1	LP*(1) C 1	0.14

Donor NBO (i)	Acceptor NBO (j)	\(E \) (kcal/mol)
LP (1) F 1	LP*(1) C 1	0.71
LP (3) F 1	LP*(1) C 1	1.03
LP (4) F 1	LP*(1) C 1	0.19

Figure S9. Natural bond orbital analysis of trityl PF₆ face-to-face dimer (MP2/6-311+G**) for evaluating charge transfer interaction between trityl cation and PF₆ anion. Compared with those in monomers (Figure S7), the charge transfer interaction energies \(E \) at both 273 K and 83 K are increased probably for reducing the cation-cation repulsive energy in the face-to-face cation dimer structure.

Donor NBO (i)	Acceptor NBO (j)	\(E \) (kcal/mol)
LP (1) F 1	LP*(1) C 1	0.56
LP (3) F 1	LP*(1) C 1	0.79
LP (4) F 1	LP*(1) C 1	0.20
LP (1) F 2	LP*(1) C 2	0.56
LP (3) F 2	LP*(1) C 2	0.79
LP (4) F 2	LP*(1) C 2	0.20

Donor NBO (i)	Acceptor NBO (j)	\(E \) (kcal/mol)
LP (1) F 1	LP*(1) C 1	0.82
LP (3) F 1	LP*(1) C 1	1.17
LP (4) F 1	LP*(1) C 1	0.27
LP (1) F 2	LP*(1) C 2	0.82
LP (3) F 2	LP*(1) C 2	1.17
LP (4) F 2	LP*(1) C 2	0.27
Table S3. Hirshfeld atomic population analysis of (a) trityl PF$_6$ monomer and (b) trityl PF$_6$ face-to-face dimer (MP2/6-311+G**) in O-crystal at both 273 and 83 K, and (c) trityl PF$_6$ monomer in Y-crystal at 170K. X-ray structures at both temperatures were used for the calculations as shown in Figure S7 and S8. The absolute value of total net charges both trityl cation and PF$_6$ anion are decreased upon cooling and formation of dimeric structure. This is because that the shortening C1···F1 distance increases the charge transfer from PF$_6$ anion to trityl cation, and the cation-cation repulsive energy in the face-to-face cation dimer structure increases the charge transfer as well, as discussed in Figure S8.

	(a) Trityl PF$_6$ monomer (O-crystal)	(b) Trityl PF$_6$ face-to-face dimer (O-crystal)	(c) Trityl PF$_6$ monomer (Y-crystal)						
	Total	Trityl cation	PF$_6$ anion	Total	Trityl cation	PF$_6$ anion	Total	Trityl cation	PF$_6$ anion
273 K	+0.92237	-0.92241		273 K	+0.92043	-0.92031	170 K	+0.92002	-0.92008
83 K	+0.91581	-0.91589		83 K	+0.91373	-0.91366			

Evaluation of six-fold phenyl embrace interaction

Figure S10. DFT calculations for evaluating the complexation energies of trityl PF$_6$ dimer in O-crystal at 273 K and 83 K by counterpoise method with BSSE correction (CAM-B3LYP/6-31G**). (a) Calculated results of the complexation energy (CE$_{TP}$) between trityl cation and PF$_6$ anion. (b) Calculated results of the complexation energy (CE$_{T-T}$) between trityl cations. (c) Calculated results of the complexation energy (CE$_{2TP}$) between trityl PF$_6$ dimer. The energy CE$_{2TP}$ is the sum of complexation energy working at between trityl cations (CE$_{TP-TP}$) as well as between trityl cation and PF$_6$ anion (CE$_{TP}$). (d) Calculation of the complexation energy working at between trityl cations (CE$_{TP-TP}$).
Electrostatic potential surfaces

Figure S11. Electrostatic potential (ESP) surfaces calculated by CAM-B3LYP/6-31G**. (a) ESP surfaces of trityl PF$_6$ at 273 K. (b) ESP surfaces of trityl PF$_6$ at 83 K. (c) ESP surfaces of trityl cation dimer at 273 K. (d) ESP surfaces of trityl cation dimer at 83 K. (e) ESP surfaces of trityl PF$_6$ dimer at 273 K. (f) ESP surfaces of trityl PF$_6$ dimer at 83 K. Compared with both temperatures, there is no significant differences on the ESP surfaces.
Excitation and emission spectra of Y-crystal

Figure S12. Excitation (blue line) and emission (yellow line) spectra of Y-crystal. (a) Measured at 293 K. (b) Measured at 77 K. Although there are spectra shifting upon cooling, the degree of shift is relatively small and it is hard to recognize the color changing with naked eye as shown in Movie S3-4.
TD-DFT calculations

Trityl PF$_6$ (face-to-face dimer) in O-crystal.

Table S4. TD-DFT calculation results of face-to-face dimer in O-crystal at 273 K. Grayed characters indicated a forbidden transitions (allowed transition wrote as black characters). A yellow highlighted transition as shown in allowed transitions indicated a major contribution for its transition.

The calculation was conducted by CAM-B3LYP/6-311+G(d,p) level with tuned parameters ($\alpha = 0.079$, $\beta = 0.921$, $\mu = 0.15$).

The values for α and β indicate the contribution of HF exchange in short-range and long-range, respectively. (For example, in long-range correction (LC) scheme, the parameters of α and β are 0 and 1.0, respectively.) The parameter μ determines the balance of DFT to HF exchange depending on the range distance.

Excited State 1: 2.8805 eV 430.42 nm $\neq 0.0000$	Excited State 6: 2.9187 eV 424.80 nm $\neq 0.0116$
178 \rightarrow 199 0.10428	
195 \rightarrow 200 0.14651	
196 \rightarrow 199 -0.16366	
197 \rightarrow 197 0.48042	
198 \rightarrow 200 0.43131	
195 \rightarrow 199 0.46835	
196 \rightarrow 200 -0.41615	
197 \rightarrow 200 -0.14209	
198 \rightarrow 199 -0.15822	

Excited State 2: 2.8806 eV 430.42 nm $\neq 0.0004$	Excited State 7: 2.9369 eV 422.16 nm $\neq 0.0000$
177 \rightarrow 199 -0.10586	
195 \rightarrow 199 0.15132	
196 \rightarrow 199 -0.13497	
197 \rightarrow 200 0.43275	
198 \rightarrow 199 0.48300	
196 \rightarrow 199 0.50422	
197 \rightarrow 199 -0.37581	
198 \rightarrow 199 -0.10484	
199 \rightarrow 199 -0.21653	

Excited State 3: 2.8851 eV 429.74 nm $\neq 0.0000$	Excited State 8: 2.9666 eV 418.22 nm $\neq 0.0421$
193 \rightarrow 199 0.50367	
194 \rightarrow 200 0.45281	
197 \rightarrow 199 0.50739	
198 \rightarrow 200 0.50739	
199 \rightarrow 199 0.50739	
196 \rightarrow 199 0.50739	
197 \rightarrow 199 0.50739	
198 \rightarrow 199 0.50739	

Excited State 4: 2.8861 eV 429.59 nm $\neq 0.0035$	Excited State 9: 3.0883 eV 401.46 nm $\neq 0.0000$
195 \rightarrow 199 0.45384	
196 \rightarrow 199 0.45384	
197 \rightarrow 199 0.45384	
198 \rightarrow 199 0.45384	
199 \rightarrow 199 0.45384	
196 \rightarrow 199 0.45384	
197 \rightarrow 199 0.45384	
198 \rightarrow 199 0.45384	

Excited State 5: 2.9154 eV 425.28 nm $\neq 0.0000$	Excited State 10: 3.1339 eV 395.62 nm $\neq 0.0490$
175 \rightarrow 199 0.11628	
176 \rightarrow 199 -0.10961	
192 \rightarrow 199 -0.13212	
195 \rightarrow 199 -0.40230	
196 \rightarrow 199 0.45322	
197 \rightarrow 199 0.15849	
198 \rightarrow 199 0.14978	
175 \rightarrow 199 0.11628	
176 \rightarrow 199 -0.20649	
185 \rightarrow 199 0.29158	
187 \rightarrow 199 0.19401	
188 \rightarrow 199 -0.13540	
189 \rightarrow 199 0.55665	
190 \rightarrow 199 -0.24895	
Figure S13. Kohm-Sham molecular orbitals (no. 189-200) of face-to-face trityl PF₆ dimer at 273 K (upper) and its energy diagram (lower). The calculation was conducted by CAM-B3LYP/6-311+G(d,p) level with tuned parameters ($\mu = 0.15$, $\alpha = 0.079$, $\beta = 0.921$).
Table S5. TD-DFT calculation results of face-to-face dimer in O-crystal at 83 K. Grayed characters indicated a forbidden transitions (allowed transition wrote as black characters). A yellow highlighted transition as shown in allowed transitions indicated a major contribution for its transition.

The calculation was conducted by CAM-B3LYP/6-311+G(d,p) level with tuned parameters ($\mu = 0.15$, $\alpha = 0.079$, $\beta = 0.921$).

Excited State 1	2.9073 eV 428.46 nm f=0.0000
187 -> 199	0.13065
188 -> 200	0.15170
189 -> 200	-0.10990
190 -> 199	-0.10338
191 -> 200	-0.36546
192 -> 199	0.53036

Excited State 2	2.9378 eV 422.02 nm f=0.0441
186 -> 200	0.10410
187 -> 200	-0.19258
188 -> 199	-0.22698
191 -> 199	0.47966
192 -> 200	-0.36843

Excited State 3	3.0361 eV 408.37 nm f=0.0000
186 -> 199	-0.14067
189 -> 200	0.25272
190 -> 199	0.39355
191 -> 200	-0.12880
193 -> 200	-0.16941
194 -> 199	0.20511
197 -> 199	-0.28683
198 -> 200	0.24453

Excited State 4	3.0528 eV 406.13 nm f=0.0052
186 -> 200	-0.11798
188 -> 199	0.10113
189 -> 199	0.13018
193 -> 199	0.27832
194 -> 200	-0.24708
195 -> 200	-0.32992
196 -> 199	0.37037
197 -> 200	-0.11955
198 -> 199	0.15146

Excited State 5	3.0558 eV 405.73 nm f=0.0000
178 -> 199	0.10474
186 -> 199	0.10732
193 -> 200	-0.26211
194 -> 199	0.25214
195 -> 199	0.39474
196 -> 200	-0.35159

Excited State 6	3.0688 eV 404.28 nm f=0.0039
173 -> 199	0.10446
193 -> 199	0.42196
194 -> 200	-0.37796
195 -> 200	0.24614
196 -> 199	-0.27597

Excited State 7	3.0692 eV 403.96 nm f=0.0000
193 -> 200	-0.30326
194 -> 199	0.34737
195 -> 199	-0.30601
196 -> 200	0.27282
197 -> 199	0.19298
198 -> 200	-0.17592

Excited State 8	3.0792 eV 402.65 nm f=0.0438
171 -> 199	0.11736
172 -> 200	0.10764
189 -> 199	0.16187
195 -> 200	0.16713
196 -> 199	-0.18829
197 -> 200	-0.38989
198 -> 199	0.43851

Excited State 9	3.1041 eV 399.42 nm f=0.0000
172 -> 199	-0.10117
185 -> 200	0.13271
186 -> 199	-0.13319
187 -> 199	-0.20677
189 -> 200	0.18627
190 -> 199	0.30966
193 -> 200	0.10149
194 -> 199	0.34400
197 -> 199	0.30608

Excited State 10	3.1338 eV 395.64 nm f=0.0331
183 -> 199	-0.11551
185 -> 199	0.22670
186 -> 200	-0.26596
187 -> 200	-0.17814
188 -> 199	0.14908
189 -> 199	0.41208
190 -> 200	0.20010
197 -> 200	0.17151
198 -> 199	-0.17550
Figure S14. Kohm-Sham molecular orbitals (no. 189-200) of face-to-face trityl PF$_6$ dimer at 83 K (upper) and its energy diagram (lower). The calculation was conducted by CAM-B3LYP/6-311+G(d,p) level with tuned parameters ($\mu = 0.15$, $\alpha = 0.079$, $\beta = 0.921$).
Figure S15. Simulated UV-vis spectra of face-to-face trityl PF$_6$ dimers (a) 273 K, and (b) 83 K. Red bars in the spectra indicated a charge-transfer transition from PF$_6$ anion to trityl cation.
TD-DFT calculations of trityl PF$_6$ monomer in O-crystal.

Table S6. TD-DFT calculation results of tritylPF$_6$ in O-crystal at (a) 273 K, and (b) 83 K. A yellow highlighted transition indicated a major contribution for its transition.

The calculation was conducted by CAM-B3LYP/6-311+G(d,p) level with tuned parameters ($\mu = 0.15$, $\alpha = 0.079$, $\beta = 0.921$).

![Molecular orbital energy diagram](no. 93-100) of trityl PF$_6$ monomer at (a) 273 K, and (b) 83 K. The calculation was conducted by CAM-B3LYP/6-311+G(d,p) level with tuned parameters ($\mu = 0.15$, $\alpha = 0.079$, $\beta = 0.921$).
Figure S17. Kohm-Sham molecular orbitals (no. 93-100) of trityl PF$_6$ monomer at 273 K. The molecular orbitals at 83 K shows identical distributions with that at 273 K.

Figure S18. Simulated UV-vis spectra of face-to-face trityl PF$_6$ monomers (a) 273 K, and (b) 83 K. Red bars in the spectra indicated a charge-transfer transition from PF$_6$ anion to trityl cation.
TD-DFT calculations of trityl PF₆ (lateral dimer) in O-crystal.

Figure S19. The calculated structure of lateral dimer observed in O-crystal. (a) Side view. (b) Top view.

Table S7. TD-DFT calculation results of lateral dimer in O-crystal at 273 K. A yellow highlighted transition indicated a major contribution for its transition.

The calculation was conducted by CAM-B3LYP/6-311+G(d,p) level with tuned parameters ($\mu = 0.15$, $\alpha = 0.079$, $\beta = 0.921$).

Excited State	1: 2.9678 eV 417.76 nm f=0.0287
187 -> 199	0.13114
191 -> 200	0.11134
194 -> 200	0.15919
195 -> 200	0.15988
196 -> 200	0.54045
198 -> 200	0.30516
Excited State	2: 2.9762 eV 416.58 nm f=0.0123
181 -> 200	-0.10807
187 -> 199	-0.14491
196 -> 200	-0.29121
197 -> 200	-0.14431
198 -> 200	-0.57732
Excited State	3: 2.9812 eV 415.89 nm f=0.0554
182 -> 199	-0.10646
184 -> 199	-0.21565
186 -> 199	0.21723
187 -> 199	0.56350
196 -> 200	-0.21998
Excited State	4: 3.0052 eV 412.57 nm f=0.0083
180 -> 200	-0.16618
185 -> 200	0.10709
194 -> 200	-0.11677
197 -> 200	0.63218
198 -> 200	0.18611
Excited State	5: 3.0366 eV 408.29 nm f=0.0502
193 -> 200	-0.34970
194 -> 200	0.21541
195 -> 200	0.52010
196 -> 200	-0.19426
Excited State	6: 3.0759 eV 403.08 nm f=0.0236
182 -> 199	-0.21622
184 -> 199	0.26621
186 -> 199	0.30006
189 -> 199	0.22306
190 -> 199	0.12645
192 -> 199	0.41459
Excited State	7: 3.1088 eV 398.81 nm f=0.0284
189 -> 199	0.17473
191 -> 200	0.28731
193 -> 200	0.21576
194 -> 200	0.50984
195 -> 200	-0.15806
196 -> 200	-0.10262
197 -> 200	0.12157
186 -> 199	-0.11072
188 -> 199	0.55802
191 -> 199	-0.11334
192 -> 199	-0.31958
194 -> 200	-0.11321
186 -> 199	0.23993
188 -> 199	-0.23703
190 -> 199	0.38067
192 -> 199	-0.35485
Excited State	9: 3.1380 eV 395.10 nm f=0.0145
179 -> 199	-0.10341
182 -> 199	-0.17409
184 -> 199	0.13201
186 -> 199	0.23993
189 -> 199	-0.23703
190 -> 199	0.38067
192 -> 199	-0.35485
173 -> 199	0.11735
182 -> 199	0.19199
184 -> 199	-0.12596
186 -> 199	-0.26220
190 -> 199	0.54155
192 -> 199	0.20497
Figure S20. Kohm-Sham molecular orbitals (no. 187-200) of lateral trityl PF$_6$ dimer at 273 K (upper) and its energy diagram (lower). The calculation was conducted by CAM-B3LYP/6-311+G(d,p) level with tuned parameters ($\mu = 0.15$, $\alpha = 0.079$, $\beta = 0.921$).
Table S8. TD-DFT calculation results of lateral dimer in O-crystal at 83 K. A yellow highlighted transition indicated a major contribution for its transition.

The calculation was conducted by CAM-B3LYP/6-311+G(d,p) level with tuned parameters ($\mu = 0.15$, $\alpha = 0.079$, $\beta = 0.921$).

Excited State 1	2.9611 eV 418.71 nm $f=0.0911$	Excited State 6	3.1452 eV 394.21 nm $f=0.0011$
185 -> 199	-0.25830	178 -> 200	0.12732
186 -> 199	0.24392	196 -> 200	0.35880
187 -> 199	0.45201	197 -> 200	0.44616
188 -> 199	0.35410	198 -> 200	-0.35924
189 -> 199	-0.10270	195 -> 200	-0.10268
195 -> 200	-0.10268	177 -> 200	0.17740
Excited State 2	3.0066 eV 412.38 nm $f=0.0537$	192 -> 200	0.19647
192 -> 200	-0.12974	194 -> 200	-0.16051
193 -> 200	-0.30104	197 -> 200	0.40179
194 -> 200	0.31588	198 -> 200	0.46567
195 -> 200	0.48082	195 -> 200	0.16541
196 -> 200		191 -> 199	-0.16596
Excited State 3	3.0741 eV 403.31 nm $f=0.0286$	184 -> 199	0.36215
185 -> 199	0.12056	185 -> 199	0.18805
186 -> 199	0.15237	186 -> 199	-0.30551
192 -> 200	-0.30196	187 -> 199	-0.12257
193 -> 200	0.24001	188 -> 199	0.34976
194 -> 200	0.40910	189 -> 199	-0.16272
195 -> 200	-0.21087	181 -> 199	0.29319
197 -> 200	0.11065	184 -> 199	-0.22291
198 -> 200	0.22460	184 -> 199	-0.22291
Excited State 4	3.0957 eV 400.50 nm $f=0.0794$	185 -> 199	0.27181
184 -> 199	0.36436	185 -> 199	0.28598
185 -> 199	0.28106	188 -> 199	-0.11128
186 -> 199	0.38403	192 -> 199	-0.12617
190 -> 199	0.10560	193 -> 200	-0.27395
191 -> 199	-0.17230	194 -> 199	0.12711
192 -> 200	0.12874	195 -> 200	-0.19978
194 -> 200	-0.13940	180 -> 199	-0.10611
198 -> 200	0.22460	184 -> 199	-0.22291
Excited State 5	3.1382 eV 395.08 nm $f=0.0102$	181 -> 199	0.36787
180 -> 200	-0.11280	189 -> 199	-0.10444
193 -> 200	0.12113	190 -> 199	-0.35444
194 -> 200	-0.14595	191 -> 199	0.28381
196 -> 200	0.55225	192 -> 200	-0.10131
197 -> 200	-0.26090	193 -> 200	0.15842
198 -> 200	0.21627	195 -> 199	0.13414
		196 -> 200	0.13829
Figure S21. Kohm-Sham molecular orbitals (no. 181-200) of lateral trityl PF₆ dimer at 83 K (upper) and its energy diagram (lower). The calculation was conducted by CAM-B3LYP/6-311+G(d,p) level with tuned parameters (μ = 0.15, α = 0.079, β = 0.921).
Figure S22. Simulated UV-vis spectra of lateral trityl PF$_6$ dimers (a) 273 K, and (b) 83 K. Red bars in the spectra indicated a charge-transfer transition from PF$_6$ anion to trityl cation.
Table S9. TD-DFT calculation results of trityl cation monomer and dimer without PF₆ anion in O-crystal at both 27 K and 83 K. The calculation was conducted by CAM-B3LYP/6-311+G(d,p) level with tuned parameters (μ = 0.15, α = 0.079, β = 0.921). Comparison with each conditions (temperature as well as monomer and dimer), no significant difference is observed, indicating that only the trityl-trityl interaction did not affect its optical properties.

Trityl cation monomer at 273 K

Excited State	Energy (eV)	Wavelength (nm)	f
1: 62 -> 65	2.9646	418.22	63.79
1: 64 -> 65	0.35303		
2: 61 -> 65	3.0731	403.45	4.019
2: 62 -> 65	0.46770		
2: 63 -> 65	0.5915		

Trityl cation monomer at 83 K

Excited State	Energy (eV)	Wavelength (nm)	f
1: 62 -> 65	2.9477	420.62	63.78
1: 64 -> 65	0.38346		
2: 61 -> 65	3.0636	404.70	4.049
2: 62 -> 65	0.51192		
2: 63 -> 65	0.45935		

Trityl cation dimer at 273 K

Excited State	Energy (eV)	Wavelength (nm)	f
1: 122->129	2.9115	425.84	6.000
1: 123->129	0.14209		
1: 124->130	0.17711		
1: 125->130	-0.14251		
1: 126->130	0.17424		
1: 127->130	-0.34020		
1: 128->129	0.51155		
2: 122->130	2.9513	420.10	6.0359
2: 123->130	0.16575		
2: 124->129	0.17547		
2: 125->129	-0.27959		
2: 126->129	0.11956		
2: 127->129	-0.14734		
2: 128->129	0.43217		
3: 121->130	3.0249	409.88	6.0000
3: 122->129	0.20854		
3: 123->129	0.21221		
3: 125->130	-0.23477		
3: 126->129	0.45460		
3: 127->130	0.11714		
3: 128->129	-0.15125		
4: 121->129	3.0748	403.23	6.0381
4: 122->130	-0.30561		
4: 123->130	-0.25798		
4: 124->129	0.25611		
4: 125->129	0.21423		
4: 126->130	0.37923		

Trityl cation dimer at 83 K

Excited State	Energy (eV)	Wavelength (nm)	f
1: 122->129	2.8831	430.03	6.0000
1: 123->129	0.12562		
1: 124->130	-0.14763		
1: 125->130	-0.17098		
1: 126->130	-0.17996		
1: 127->129	0.16941		
1: 128->129	0.51921		
2: 122->130	2.9257	423.78	6.0325
2: 123->130	-0.14812		
2: 124->129	0.20431		
2: 125->129	0.29235		
2: 126->129	0.15858		
2: 127->129	0.41870		
2: 128->130	-0.13231		
3: 121->130	3.0039	412.74	6.0000
3: 122->129	0.20062		
3: 123->129	-0.21595		
3: 125->130	-0.22829		
3: 126->130	-0.28615		
3: 127->129	0.15304		
3: 128->129	0.46549		
4: 121->129	3.0633	404.74	6.0419
4: 122->130	-0.31781		
4: 123->130	0.26822		
4: 124->129	0.25177		
4: 125->129	-0.24683		
4: 126->130	0.35645		
4: 127->130	-0.23857		
Emission spectra of trityl cation in frozen state

![Emission spectra](image)

Figure S23. Emission spectra of frozen state of trityl cation at different temperature (CHCl₃ with 2% TFA, 5.0 x 10⁻⁶ M).

Figure S24. (a) Phosphorescence of Frozen state (CHCl₃ with 2% TFA at 77 K) of trityl cation with different concentrations (1.0 x 10⁻³ M and 5.0 x 10⁻⁶ M) to evaluate a dependence of the concentration. (b) Phosphorescent excitation spectra of frozen state (5.0 x 10⁻⁶ M) with different wavelength monitoring at 600 nm and 545 nm. (c) Phosphorescent excitation spectra of frozen state (1.0 x 10⁻³ M) with different wavelength monitoring at 600 nm and 545 nm.
Emission decay curves of trityl cation

Figure S25. Emission decay curves of trityl cation at 77 K. (a) Frozen state (CHCl₃ with 2% TFA). (b) Y-crystal. (c) O-crystal.

Figure S26. Emission decay curves of (a) Y-crystal, and (b) O-crystal at 293 K (excited with a nanosecond laser pulse at 450 nm). The monitoring wavelengths were set to 525 and 575 nm, respectively.
Figure S27. Long range emission decay curves (from ns to μs) of Y- and O-crystal at 77 K. (a) 0 to 1.5 μs, (b) 0 to over 400 μs (excited with a nanosecond laser pulse at 355 nm). Integration ratio of emission intensities between nanosecond region (< 240 ns) and microsecond region are 1.0 : 0.16 (for Y-crystal) and 1.0 : 0.10 (for O-crystal).
Evaluation of spin-orbit coupling between singlet and triplet states.

Figure S28. Spin-orbit coupling (SOC) calculation results of trityl cation monomers observed at 273 K and 83 K in O-crystal. (a) Calculated energy diagrams and its levels of (b) S\textsubscript{1-5} and (c) T\textsubscript{1-6}. (d) Calculated SOC values of S\textsubscript{0}/T\textsubscript{1} as well as S\textsubscript{1}/T\textsubscript{1-6}. However, the SOC values between S\textsubscript{1} and T\textsubscript{1-6} are quite small and thus only trityl cation scaffold seems not likely to exhibit the phosphorescence property. The calculation was conducted by CAM-B3LYP/6-31+G(d) level with tuned parameters ($\mu = 0.15$, $\alpha = 0.079$, $\beta = 0.921$).

Figure S29. SOC calculation results of trityl PF\textsubscript{6} ion pairs observed at 273 K in O-crystal. (a) Calculated energy diagrams and its levels of (b) S\textsubscript{1,8} and (c) T\textsubscript{1,9}. (d) Calculated SOC values of S\textsubscript{0}/T\textsubscript{1}, S\textsubscript{1}/T\textsubscript{6-8}, and S\textsubscript{2}/T\textsubscript{6-8} because the energy difference between S\textsubscript{1} and S\textsubscript{2} is quite small. Different from trityl cation itself, large SOCs between S\textsubscript{1,2} and T\textsubscript{6-8} could be observed. The calculation was conducted by CAM-B3LYP/6-31+G(d) level with tuned parameters ($\mu = 0.15$, $\alpha = 0.079$, $\beta = 0.921$).
Figure S30. SOC calculation results of trityl PF₆ ion pairs observed at 83 K in O-crystal. (a) Calculated energy diagrams and its levels of (b) S₁₋₈ and (c) T₁₋₉. (d) Calculated SOC values of Sₐ/Tₖ and Sₖ/Tₖ₋₈. Due to changing the energy levels from those at 273 K, the energy of S₁ is slightly off from those of T₆₋₈. The calculation was conducted by CAM-B3LYP/6-31+G(d) level with tuned parameters (μ = 0.15, α = 0.079, β = 0.921).

Sₐ energy	Tₖ energy	Sₐ / Tₖ	SOC / cm⁻¹
S₁ 3.019 eV (411 nm)	T₁ 2.319 eV (533 nm)	S₀ / T₁ 2.62	
S₂ 3.115 eV (398 nm)	T₂ 2.414 eV (514 nm)	S₁ / T₅ 4.24	
S₃ 3.124 eV (397 nm)	T₃ 2.590 eV (479 nm)	S₆ / T₆ 9.59	
S₄ 3.142 eV (395 nm)	T₄ 2.619 eV (473 nm)	S₇ / T₇ 7.41	
S₅ 3.214 eV (386 nm)	T₅ 2.771 eV (447 nm)	S₈ / T₈ 12.3	
S₆ 3.337 eV (372 nm)	T₆ 3.119 eV (398 nm)		
S₇ 3.365 eV (369 nm)	T₇ 3.124 eV (397 nm)		
S₈ 3.479 eV (356 nm)	T₈ 3.133 eV (396 nm)		
	T₉ 3.280 eV (375 nm)		

Figure S31. SOC calculation results of trityl PF₆ ion pairs observed at 170 K in Y-crystal. (a) Calculated energy diagrams and its levels of (b) S₁₋₈ and (c) T₁₋₉. (d) Calculated SOC values of S₀/T₁ as well as S₁/T₁₋₈. The calculation was conducted by CAM-B3LYP/6-31+G(d) level with tuned parameters (μ = 0.15, α = 0.079, β = 0.921).

Sₐ energy	Tₖ energy	Sₐ / Tₖ	SOC / cm⁻¹
S₁ 3.019 eV (411 nm)	T₁ 2.319 eV (533 nm)	S₀ / T₁ 2.89	
S₂ 3.115 eV (398 nm)	T₂ 2.414 eV (514 nm)	S₁ / T₅ 0.96	
S₃ 3.124 eV (397 nm)	T₃ 2.590 eV (479 nm)	S₆ / T₆ 4.11	
S₄ 3.142 eV (395 nm)	T₄ 2.619 eV (473 nm)	S₇ / T₇ 1.46	
S₅ 3.214 eV (386 nm)	T₅ 2.771 eV (447 nm)	S₈ / T₈ 1.99	
S₆ 3.337 eV (372 nm)	T₆ 3.119 eV (398 nm)	S₁ / T₅ 1.67	
S₇ 3.365 eV (369 nm)	T₇ 3.124 eV (397 nm)	S₆ / T₆ 15.3	
S₈ 3.479 eV (356 nm)	T₈ 3.133 eV (396 nm)	S₇ / T₇ 4.56	
	T₉ 3.280 eV (375 nm)	S₈ / T₈ 10.3	
Figure S32. SOC calculation results of trityl PF₆ face-to-face dimer observed at 273 K in O-crystal. (a) Calculated energy diagrams and its levels of (b) S₁₁–₁₄ and (c) T₁₁–₁₈. (d) Calculated SOC values of S₀/T₁. (e) Calculated SOC values between S₁ and T₁₁–₁₈. The calculation was conducted by CAM-B3LYP/6-31+G(d) level with tuned parameters (μ = 0.15, α = 0.079, β = 0.921).

Figure S33. SOC calculation results of trityl PF₆ face-to-face dimer observed at 83 K in O-crystal. (a) Calculated energy diagrams and its levels of (b) S₁₁–₁₄ and (c) T₁₁–₁₈. (d) Calculated SOC values of S₀/T₁. (e) Calculated SOC values between S₁ and T₁₁–₁₈. The calculation was conducted by CAM-B3LYP/6-31+G(d) level with tuned parameters (μ = 0.15, α = 0.079, β = 0.921).