Loss of immunity-related GTPase GM4951 leads to nonalcoholic fatty liver disease without obesity

Zhao Zhang1,2✉, Yu Xun1,2, Shunxing Rong3,4, Lijuan Yan1, Jeffrey A. SoRelle1, Xiaohong Li1, Miao Tang1, Katie Keller1, Sara Ludwig1, Eva Marie Y. Moresco1 & Bruce Beutler1

Obesity and diabetes are well known risk factors for nonalcoholic fatty liver disease (NAFLD), but the genetic factors contributing to the development of NAFLD remain poorly understood. Here we describe two semi-dominant allelic missense mutations (Oily and Carboniferous) of Predicted gene 4951 (Gm4951) identified from a forward genetic screen in mice. GM4951 deficient mice developed NAFLD on high fat diet (HFD) with no changes in body weight or glucose metabolism. Moreover, HFD caused a reduction in the level of Gm4951, which in turn promoted the development of NAFLD. Predominantly expressed in hepatocytes, GM4951 was verified as an interferon inducible GTPase. The NAFLD in Gm4951 knockout mice was associated with decreased lipid oxidation in the liver and no defect in hepatic lipid secretion. After lipid loading, hepatocyte GM4951 translocated to lipid droplets (LDs), bringing with it hydroxysteroid 17β-dehydrogenase 13 (HSD17B13), which in the absence of GM4951 did not undergo this translocation. We identified a rare non-obese mouse model of NAFLD caused by GM4951 deficiency and define a critical role for GTPase-mediated translocation in hepatic lipid metabolism.
Nonalcoholic fatty liver disease (NAFLD) is a condition in which excess fat is stored in the liver in people who drink little or no alcohol. NAFLD has become the most common cause of liver disease worldwide with an estimated global prevalence of 25.24%. Isolated hepatosteatosis is the most frequent and least severe form of NAFLD, which also encompasses the more serious nonalcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma. The development of NAFLD is a complex process determined by both environmental cofactors and genetic predisposition, and is strongly associated with obesity, insulin resistance, and type 2 diabetes. In recent decades, it has been suggested that lifestyle changes drive the prevalence of NAFLD. However, hepatic fat content varies substantially among individuals with equivalent adiposity, indicating that genetic factors contribute to NAFLD.

We have performed a screen for NAFLD in mice with randomly induced germline mutations, sensitized by a high fat diet (HFD). Screening was coupled to automated meiotic mapping (AMM), which permits identification of causative mutations in real time. Two semi-dominant allelic missense mutations (Oily and Carboniferous) of Predicta gene 4951 (Gm4951) were discovered using this approach. As distinct from most mouse NAFLD models, which are associated with obesity, Gm4951 deficient mice developed hepatosteatosis with no change in body weight. Gm4951 is one of 20 “immunity-related GTPase” (IRG) genes in the mouse, which are organized in tandem gene clusters on chromosomes 11 and 18. The encoded proteins, including genes in the mouse, which are organized in tandem gene clusters on chromosomes 11 and 18.

One hallmark of hepatosteatosis is the accumulation of lipid droplets (LDs), ubiquitous organelles important for lipid storage and subsequently, for metabolism. LDL cores contain neutral lipids and can grow and shrink in response to different signals. LDL surfaces are decorated by specific proteins that are the major executors of LD functions. Hydroxysteroid 1β-dehydrogenase 13 (HSD17B13) is a LD-associated protein expressed specifically in the liver. Recently, several reports have linked variants of HSD17B13 with the development of NAFLD both in mice and humans. The molecular mechanism(s) underlying NAFLD, and identities of HSD17B13-associated proteins remain largely uncharacterized.

In this work we demonstrate that Gm4951 interacts with HSD17B13, transporting HSD17B13 to LDs in a GTPase-dependent manner to regulate hepatic lipid metabolism.

Results
Identification of Oily and Carboniferous alleles. Wild type (WT) C57BL/6J mice fed a HFD for four weeks develop NAFLD, as detected by elevated liver triglycerides relative to levels prior to HFD feeding. We screened for mutations that modify the NAFLD phenotype and identified a phenotype termed Oily, characterized by increased liver triglycerides compared to WT mice after four weeks on a HFD (Fig. 1a). The Oily phenotype was mapped as a quantitative trait. Liver triglycerides were measured in a total of 44 G3 mice and normalized to total protein. AMM implicated a missense allele of Gm4951 as the causative mutation, displaying strongest linkage in an additive model of inheritance (P = 1.66 × 10⁻⁵) (Fig. 1b). The Oily mutation was a single nucleotide transition from C to A, causing substitution of a lysine for an asparagine at position 86 (N86K) in the GM4951 protein (Supplementary Fig. 1a). Later, a second allele of Gm4951, termed Carboniferous, was also identified by our screen (Fig. 1c).

Carboniferous also scored in an additive model of inheritance (P = 2.332 × 10⁻⁵) (Fig. 1d). The Carboniferous mutation was a single nucleotide transition from A to G, causing substitution of a glycine for an aspartic acid at position 125 (D125G) in the GM4951 protein (Fig. S1a). Combination of these two pedigrees in superpedigree analysis revealed a significant P value of 5.16 × 10⁻¹⁰ in an additive model of inheritance (Fig. 1e, f). Body weight before and after HFD, fasting and refeeding glucose, fasting and refeeding insulin, and fasting and refeeding free fatty acids (FFA) were also measured during the course of screening (Supplementary Fig. 2). None of these phenotypes were significantly different in reference allele homozygotes as compared to homozygous or heterozygous Oily mice (Supplementary Fig. 2). These data suggested that Oily and Carboniferous mutations caused a form of NAFLD unassociated with obesity or abnormal glucose metabolism.

Oily and Carboniferous are caused by loss-of-function mutations in Gm4951. Neither the Oily (N86K) nor the Carboniferous (D125G) mutations affected stability of GM4951 as revealed by a similar expression level as the WT protein in 293T cells (Fig. 2a, b). We suspected that these mutations affect the function of GM4951 protein. By CRISPR/Cas9 gene targeting, we introduced a null allele of Gm4951, encoding the first 35aa of the GM4951 protein followed by six aberrant amino acids and a termination codon, into the germline of C57BL/6J mice (Fig. 2a, Supplementary Fig. 1a). Gm4951 knockout homozygotes appeared indistinguishable from WT mice and both sexes were fertile. Crosses of knockout heterozygotes yielded the anticipated Mendelian ratio among offspring at weaning age (Supplementary Fig. 1b). Gm4951 knockout mice were bred and expanded to form a large pedigree with all three zygosities represented, and subjected to the same screens as G3 mice. The Gm4951 null allele recapitulated all aspects of the Oily and Carboniferous phenotypes (Fig. 2c–I) and reproduced the additive inheritance pattern (Fig. 2c, d). These data confirm that Gm4951 mutations in Oily and Carboniferous strains were causative of the observed phenotypes, and ruled out gain-of-function as a mechanism.

The development of NAFLD in Gm4951 knockout mice is not associated with alterations in body weight or glucose metabolism. Obesity is strongly associated with an increased risk of NAFLD. The presence of hepatosteatosis is often associated with aberrant glucose, fatty acid, and lipoprotein metabolism, reflective of insulin resistance and other metabolic dysfunctions. It is still not clear whether NAFLD causes metabolic dysfunction or whether metabolic dysfunction is responsible for the development of NAFLD, or both. Although obesity correlates with NAFLD, a minority of patients with NAFLD are lean. Similarly, Oily mice and Gm4951−/− mice on a HFD did not show significant alterations in body weight or glucose metabolism concomitant with development of hepatosteatosis (Fig. 2, Supplementary Fig. 2). The inguinal white adipose tissue (iWAT) of 4 week HFD-fed Gm4951−/− mice expressed similar mRNA levels of lipid metabolism genes (Acaca, Pnplal2, Dgat1, Fasn), adipokines (Fabp4, Adipoq, Leptin), and key transcription factors (Fabp4, Cebpa) (Supplementary Fig. 3a). Besides parameters tested in our screen, we checked additional lipid profiles in serum and liver from 4 week HFD-fed mice. Compared with WT mice, Gm4951−/− mice exhibited increased serum triglycerides (Supplementary Fig. 3b) with no change in serum total cholesterol (Supplementary Fig. 3c), low-density lipoprotein (LDL) cholesterol (Supplementary Fig. 3d), and high-density lipoprotein (HDL) cholesterol (Supplementary Fig. 3e). Gm4951 deficiency significantly increased both triglycerides...
Liver triglyceride data from G3 mice plotted vs. genotype at the Oily mutation site of Gm4951 after four weeks on a HFD (n = 10 mice in WT; n = 14 mice in REF; n = 25 mice in HET; n = 5 mice in VAR). b Manhattan plot showing P values calculated using a likelihood-ratio test from an additive model of inheritance. c Liver triglyceride data from G3 mice plotted vs. genotype at the Carboniferous mutation site of Gm4951 after four weeks on a HFD (n = 19 mice in WT; n = 16 mice in REF; n = 26 mice in HET; n = 8 mice in VAR). d Manhattan plot showing P values calculated using a likelihood-ratio test from an additive model of inheritance. e Liver triglyceride data from pedigrees R5938 (Oily) and R6446 (Carboniferous) were pooled together in superpedigree analysis and plotted as in a and c (n = 29 mice in WT; n = 30 mice in REF; n = 51 mice in HET; n = 13 mice in VAR); Manhattan plot as in (b) and (d). P values were calculated using a likelihood-ratio test from an additive model of inheritance. WT, C57BL/6J mice age-matched with G3 mice; REF, G3 mice homozygous for the reference allele of the indicated gene; HET, G3 mice heterozygous for the reference allele and for the mutant allele; VAR, G3 mice homozygous for the mutant allele. Each data point represents one mouse; mean (μ) and SD (σ) are indicated (a, c, e). Data are from one experiment.

(Supplementary Fig. 3f) and FFA (Supplementary Fig. 3g) in the liver, with no change in liver cholesterol (Supplementary Fig. 3h). To check if Gm4951−/− mice develop NAFLD on a standard chow diet, we monitored liver triglycerides at different ages in WT and Gm4951−/− mice (Fig. 3a). Significantly increased liver triglycerides were observed in Gm4951 knockout mice by 24 weeks of age (Fig. 3a). Along with the development of hepatosteatosis, we also detected an elevated level of alanine transaminase (ALT) in the serum of Gm4951−/− mice, indicating liver damage caused by hepatosteatosis (Fig. 3b). On a chow diet, Gm4951 deficiency changed neither the body weight nor body fat content measured by magnetic resonance imaging (MRI) (Fig. 3c, d). Also, fasting glucose, insulin, and serum triglycerides remained the same in Gm4951−/− and WT mice (Fig. 3e–g). These data suggest that NAFLD develops spontaneously in Gm4951 deficient mice with no noticeable obesity or insulin resistance.

In screening, a 4-week HFD was used to augment the development of NAFLD in C57BL/6J mice. To maximize the obesogenic effect of HFD, Gm4951−/− mice were fed a HFD for 24 weeks. Compared to the 4-week course of HFD, a long-term HFD further increased liver weight (Fig. 3h), liver triglycerides (Fig. 3i), and serum ALT in Gm4951−/− mice (Fig. 3j). Despite the further development of NAFLD, no significant differences in body weight, fat weight, glucose, insulin, and serum triglycerides were observed between long-term HFD-fed WT and Gm4951−/− mice (Fig. 3k–o). Histologically, compared to Gm4951+/+ controls, Gm4951−/− mice fed a long-term HFD exhibited severe hepatosteatosis as detected by both hematoxylin and eosin (H&E) staining (Fig. 3p, q, Supplementary Fig. 4a) and oil red O staining (Fig. 3r, s, Supplementary Fig. 4b) of liver sections. Long-term HFD fed WT and Gm4951−/− mice were also checked for different aspects of liver fibrosis which is a prognostic factor for NAFLD patients. Compared with WT mice, Gm4951−/− mice had increased collagen in the liver detected by picrosirius red (PSR) staining (Fig. 3t, u, Supplementary Fig. 4c). We also observed increased α-smooth muscle actin (α-SMA)-positive myofibroblasts in Gm4951−/− liver sections, suggesting the activation of hepatic stellate cells (HSCs) (Fig. 3v, w, Supplementary Fig. 4d). The overall NAFLD Activity Score (NAS) was increased for livers from Gm4951−/− mice (Supplementary Fig. 4e), suggesting the development of NASH in Gm4951−/− mice after long-term HFD. Along with this, the mRNA levels of several liver fibrosis-related genes (Colla1, Mmp9, Timp1) were also increased in livers from Gm4951−/− mice (Fig. 3x). To determine the effect of Gm4951 overexpression on liver triglycerides, we used hydrodynamic tail vein injection to deliver 3xFlag-Gm4951 expression plasmid to the liver. Two weeks after HFD, 3xFlag-Gm4951-injected mice had a decreased level of liver triglycerides compared with control vector-injected mice (Fig. 3y, z). All
these data suggest a liver intrinsic role of GM4951 in the regulation of liver triglycerides.

GM4951 is an interferon inducible GTPase highly expressed in hepatocytes. To characterize the function of GM4951, we first studied the expression profile of Gm4951 mRNA in different mouse tissues. Among tissues tested from 8-week-old male C57BL/6J mice, Gm4951 mRNA was maximally expressed in the liver (Fig. 2a). Gm4951 mRNA was also detected in the intercapular white adipose tissue (iWAT), lung, epididymal white adipose tissue (eWAT), stomach, and spleen, but in each case, at levels far lower than in liver (Fig. 2a). To measure relative expression of the endogenous GM4951 protein, we generated 3xFlag-Gm4951 knockin mice by CRISPR-mediated homologous replacement (Fig. 2b). Consistent with the Gm4951 mRNA profile, endogenous GM4951 protein (as indicated by anti-Flag tag immunoblotting) showed highest expression level in the liver, with detectable amounts in the spleen, lung, eWAT, iWAT, thymus, and intestine (Fig. 2c). 90% of liver mass is composed of hepatocytes, while the remainder consists of nonparenchymal elements including Kupffer cells, liver sinusoidal endothelial cells, hepatic stellate cells, and cholangiocytes. Previously reported mass spectrometry-based protein quantification revealed highest expression of GM4951 protein in hepatocytes (Fig. 2d). The subcellular localization of GM4951 in AML12 mouse hepatocytes appeared perinuclear and partially colocalized with markers for mitochondria (apoptosis-inducing factor, AIF), endosomes (early endosome antigen 1, EEA1), ER (protein disulfide isomerase, PDI), and Golgi (receptor-binding cancer antigen expressed on hepatocytes with recombinant IFN-γ), overnight fasting glucose (Fig. 2e-i). This expression was confirmed by immunofluorescence using an anti-HA tag 2xFlag-GRM4951 (Fig. 2j). These results suggest that GM4951 harbors common features of IRG family proteins.

Among 20 IRG proteins in mice, GM4951 displays the highest sequence identity (77%) with interferon inducible GTPase 1 (IIGP1, now known as IRGA6) (Supplementary Fig. 5a). The
n.s.

The crystal structure of IRGA6 revealed that GTP-dependent oligomerization of IRGA6 is required for cooperative GTP hydrolysis. We constructed both the mutant form (N86K) and Carboniferous mutant form (D125G) of GM4951, each tagged with both HA and 3xFlag, and tested whether either mutation might disrupt dimerization. Overexpressed WT GM4951 protein in 293T cells interacted strongly with itself (Supplementary Fig. 5b). Neither Oily nor Carboniferous mutations affected self-interaction. As expected, the predicted dimerization interface mutation (E434A-K474A) strongly disrupted the self-interaction of GM4951 in 293T cells (Supplementary Fig. 5c).

Structural study of IRGA6 revealed active site residues critical for GDP and GppNHP binding, including G81/K82 (P loop/G1),...
Fig. 4 GM4951 is an interferon inducible GTPase that is highly expressed in hepatocytes. a Relative Gm4951 mRNA level in different mouse tissues normalized by Pol2a (n = 3 mice). b Generation of 3xFlag tagged Gm4951 knockin mice by CRISPR. c Immunoblot analysis of 3xFlag-Gm4951 protein expression in different mouse tissues (eight weeks old male). Gapdh was used as a loading control. Quantification of bands in the lower panel are shown as ratio of intensity of Gm4951 to Gapdh. d Label-free quantification (LFQ) intensity data27 for Gm4951 protein in different primary cells isolated from the mouse liver or cell lines (n = 1 assay for J744A1, Hepa16, and Hep53; n = 4 assays for other cells). e–h AML12 cells expressing 3xFlag-tagged Gm4951 were immunostained with Flag antibody (green), Hoechst 33342 (blue) to visualize nuclei, and organelle markers (red): AIF (mitochondria), EEA1 (endosome), PDI (ER), and RCA51 (Golgi apparatus). (Scale bar: 10 μm.) i Relative mRNA level of Gm4951 in primary hepatocytes treated with different doses of IFNγ for 24 h (n = 3 independent cultures). j Immunoblots of lysates of primary hepatocytes isolated from 3xFlag-Gm4951 knockin mice. Different doses of IFNγ were added into the medium for 24 h. Gapdh was used as a loading control. k Luminescence to quantify the amount of GTP remaining 1 h after the GTPase assay with different concentrations of purified GM4951 protein (n = 3 assays per condition). l Luminescence to quantify the amount of GTP remaining 1 h after the GTPase assay with purified GM4951 WT and mutated proteins (n = 3 assays per condition). Each data point represents one mouse (a) or one reaction (d, l). Data are presented as means ± SD. P values were determined by one-way ANOVA with Tukey’s multiple comparison test. P values are denoted by ****P < 0.0001; ns, not significant with P > 0.05. The exact P value of statistically significant group is 3.473 × 10⁻⁸ (Blank vs GM4951-WT). Data are representative of two independent experiments (a, c, e–l).

D126 (126DLPG129/G3), D186 (183TKVD186/G4), and S231/N232 (G5)⁹. All these amino acids are identical in GM4951. The D125 in GM4951 is equivalent to D126 in IRGA6, which is in close contact with Mg²⁺ as shown in the IRGA6-GDP structure (Supplementary Fig. 5d). The N86 in GM4951 is equivalent to N87 in IRGA6, which is adjacent to P loop (Supplementary Fig. 5e). Both purified Oily (N86K) and Carboniferous (D125G) mutated GM4951 showed dramatically reduced intrinsic GTPase activity compared with WT GM4951 protein in vitro (Fig. 4l). Taken together, these data indicate that GM4951 is a hepatocyte interferon-inducible protein with intrinsic GTPase activity. In addition, they suggest that the Oily and Carboniferous mutations disrupt the ability of GM4951 to hydrolyze GTP, without affecting its dimerization.

GM4951 supports lipid oxidation. Hepatic lipid accumulation results from an imbalance between lipid acquisition and lipid disposal, which are regulated through four major pathways: uptake of circulating lipid, de novo lipogenesis, fatty acid oxidation, and export of lipids via very low-density lipoproteins (VLDL). To investigate changes in expression of representative genes encoding components of these four major pathways, a group of WT and Gm4951−/− mice was placed on HFD for four weeks while another age-matched group of WT and Gm4951−/− mice was placed on a standard chow diet. The mRNA levels of two lipid transporters (Slc27a1, Cd36), two lipid exporters (Apol, Mttp), and four lipogenesis enzymes (Acaca, Fasn, Elovl6, Scd1) were similar between WT and Gm4951−/− livers both in chow and HFD groups (Fig. 5a, b). Significantly decreased expression of Ppara and Acox1 were observed in livers from Gm4951−/− mice on HFD, and a trend toward decreased expression (not significant) of Aco1 and Acadl were observed in Gm4951−/− mice on HFD (Fig. 5b). These four genes encode constituents of lipid oxidation pathways. No significant changes of these lipid oxidation genes were observed in Gm4951−/− mice on chow diet at 10 weeks of age when NAFLD had not developed yet (Fig. 5a).
Fig. 5 GM4951 is involved in lipid oxidation and is downregulated by HFD feeding. a-c Relative mRNA level of different genes in the liver from WT and GM4951−/− mice on chow diet (a) and HFD (b) for four weeks (n = 3 mice per genotype), and Chow diet for 24 weeks (c) (n = 5 mice per genotype). Levels were normalized to PolI2a mRNA and then to levels in WT mice. d Relative mRNA level of different genes in hepatocytes from WT and GM4951−/− mice after 0.5 mM OA for 24 h (n = 3 mice per genotype). e, f CO2 released (e) and acid soluble CoAs (f) from fatty acid oxidation experiment were measured with scintillation counting and normalized with total protein of liver lysates (n = 5 mice per genotype). g The serum level of triglycerides at different time points after Triton WR-1399 injection in WT and GM4951−/− mice on HFD for 4 weeks (n = 3 mice per genotype). h Relative mRNA level of GM4951 in the liver from C57BL6/J mice on Chow diet or HFD for 24 weeks (n = 3 mice per genotype). Levels were normalized to PolI2a mRNA and then to levels in WT mice. i Relative mRNA level of 3xFlag-GM4951 in the liver from mice of the indicated genotypes on Chow diet at eight weeks of age (n = 4 mice per genotype). n.d. not detected. Levels were normalized to PolI2a mRNA and then to levels in WT mice. Each data point represents one mouse (a-f, h-i). Data are presented as means ± SD. P values were determined by two-tailed Student’s t-test. P values are denoted by *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; ns, not significant with P > 0.05. The exact P values of statistically significant groups are: 0.0176 (b, Ppara); 0.0009 (b, Acox1); 0.0416 (c, Apob); 0.0041 (c, Mttp); 0.0281 (c, Ppara); 0.0017 (d, Ppara); 0.0401 (d, Acox1); 8.466 × 10−3 (d, Acox1); 0.0288 (d, AcaD); 0.0201 (e); 0.0039 (f); 0.0116 (g, O1h); 0.0132 (g, 1h); 0.0040 (g, 2h); 0.0005 (h); 6.292 × 10−6 (i). Data are representative of two independent experiments (a-d, g-i) or from one experiment (e-f).

Reduced expression of these lipid oxidation genes was observed in livers from GM4951−/− mice on Chow diet at 24 weeks of age when NAFLD had developed (Fig. 5c). Primary hepatocytes isolated from GM4951−/− mice also showed significantly decreased expression of the four lipid oxidation genes after oleic acid (OA) treatment, suggesting this phenotype is hepatocyte intrinsic (Fig. 5d). To assay lipid oxidation ability in the liver, we measured the reaction products from oxidation of 14C labeled palmitic acid by proteins in liver lysates from 4 week HFD fed mice in vitro. Compared with WT livers, GM4951−/− livers showed a significantly decreased rate of lipid oxidation as revealed by reduced CO2 released and acid soluble CoAs in the reaction mix (Fig. 5e–f). To rule out a defect in triglyceride secretion, WT and GM4951−/− were put on HFD for 4 weeks which effectively induces NAFLD in GM4951−/− mice. After inhibition of lipoprotein lipase by Triton WR-1399 injection, we measured serum triglycerides. We noticed a small but significantly higher level of triglycerides in the serum of GM4951−/− mice (Fig. 5g). This suggests that hepatosteatosis observed in GM4951−/− mice was not caused by failure to export triglycerides. We have shown that the development of NAFLD in GM4951 deficient mice was not associated with increased body weight or altered glucose metabolism (Fig. 3). Taken together, these data suggest that defective lipid oxidation pathways contribute to hepatic lipid accumulation in GM4951 deficient mice.

HFD inhibits the expression of GM4951. The acceleration of NAFLD in GM4951 deficient mice by HFD (Fig. 3) prompted us to test whether the expression of GM4951 is regulated during the development of NAFLD. We fed C57BL6/J mice a Chow diet or HFD for 24 weeks and checked the mRNA level of GM4951 in the
GM4951 interacts with HSD17B13. To investigate the molecular mechanism of GM4951 in the regulation of lipid metabolism, we utilized our 3xFlag-Gm4951 knockin mice to pull down GM4951 in liver lysates and identify interacting proteins by mass spectrometry (Fig. 6a). Among all proteins identified from mass spectrometry (Supplementary Data 1), HSD17B13, a recently identified liver restricted LD-associated protein, was considered highly relevant due to its association with human NAFLD.\cite{16,18} GM4951 interacted with HSD17B13 when expressed in 293T cells (Fig. 6b, c). In vitro GST pull-down experiments supported a direct interaction between GM4951 and HSD17B13 (Fig. 6d). Interestingly, neither the Oily (N86K) nor Carboniferous (D125G) mutations disrupted the interaction of GM4951 with HSD17B13 (Fig. 6e). We checked the protein level of HSD17B13 in the liver of WT and Gm4951−/− mice, and no significant changes were observed when mice were fed with chow diet or HFD (Supplementary Fig. 6). These data suggest that the interaction between GM4951 and HSD17B13 is not dependent on the GTPase activity of GM4951 and does not regulate the protein level of HSD17B13 in the liver.

GM4951 is necessary for HSD17B13 translocation to LDs. To better understand the association of GM4951 and HSD17B13 in lipid metabolism, we checked their subcellular localization in hepatocytes. In untreated mouse primary hepatocytes with absent or very small LDs, HSD17B13 only partially colocalized with GM4951 in the cytoplasm (Fig. 7a). When primary hepatocytes were loaded with LDs after OA treatment, HSD17B13 and GM4951 almost completely colocalized around LDs to form a “circle-like” distribution (Fig. 7b). Similar results were also observed in AML12 hepatocytes (Supplementary Fig. 7a, b). These data suggest that GM4951 interacts with HSD17B13 and translocates to LDs to regulate lipid metabolism. Although WT GM4951 translocated to LDs in lipid loaded primary hepatocytes (Fig. 7c, d) and AML12 cells (Supplementary Fig. 7c, d), both Oily (N86K) and Carboniferous (D125G) mutated GM4951 showed dramatically reduced LD translocation (Fig. 7e–h, Supplementary Fig. 7e–h), suggesting that the GTPase activity of GM4951 is important for this translocation. OA induced a strong and continuous localization of HSD17B13 around LDs in WT primary hepatocytes (Fig. 7i, j). In Gm4951−/− primary hepatocytes, the LD localization of HSD17B13 became weak and discontinuous (Fig. 7k, l, Supplementary Fig. 7i). Consistent with this, isolated LDs from Gm4951−/− primary hepatocytes had decreased protein levels of HSD17B13 by immunoblot (Supplementary Fig. 7j). A similar phenotype was also observed in primary hepatocytes isolated from HFD-fed Gm4951−/− mice (Fig. 7m, n). In contrast, another LD protein, Perilipin 2 (PLIN2) still maintained LD localization in the absence of GM4951 (Fig. 7o, p). Taken together, these data suggest that GM4951 brings HSD17B13 to LDs in a GTPase activity dependent manner.

Identification of potential human homologs of mouse GM4951. Mouse Gm4951 was not included in the NCBI HomoloGene database. A search for human protein sequences with similarity to mouse GM4951 protein sequence using Basic Local Alignment Search Tool (BLAST) identified two IRGs: immunity related GTPase cinema (IRGC) and immunity related GTPase M (IRGM), with identities of 35% and 38%, respectively (Fig. 8a, Supplementary Fig. 5a). IRGC contains an IIGP domain (aa 34-402) in mouse GM4951. Flag tag-specific real-time PCR primers were designed to amplify only 3xFlag-Gm4951 but not WT Gm4951. mRNA expression derived from a single copy of Gm4951 was approximately 53% of that derived from two copies of Gm4951 in WT livers (Fig. 5i). These data suggest that the 70% reduction of Gm4951 after long-term HFD feeding in WT mice may be a key step leading to hepatic steatosis. The downregulation of GM4951, caused by HFD, might in itself promote development of NAFLD.

liver by real-time PCR. Interestingly, the relative hepatic mRNA level of Gm4951 in WT mice on HFD decreased to around 30% of that observed in mice on chow diet, suggesting a strong inhibition of hepatic Gm4951 under HFD feeding (Fig. 5h). In mice fed a HFD for 4 weeks, an intermediate level of lipid accumulation was observed when one copy of Gm4951 was mutated (Gm4951Oily+/−, Gm4951Carboniferous+/−) or deleted (Gm4951−/−) (Figs. 1, 2). We compared the mRNA level of Gm4951 in mice with a single WT Gm4951 allele with that in WT mice using 3xFlag-Gm4951 knockin mice. Flag tag-specific real-time PCR primers were designed to amplify only 3xFlag-Gm4951 but not WT Gm4951. mRNA expression derived from a single copy of Gm4951 was approximately 53% of that derived from two copies of Gm4951 in WT livers (Fig. 5i). These data suggest that the 70% reduction of Gm4951 after long-term HFD feeding in WT mice may be a key step leading to hepatic steatosis. The downregulation of GM4951, caused by HFD, might in itself promote development of NAFLD.
IRGM contains a smaller IIGP domain (aa 2-193) than GM4951. Immunostaining in AML12 cells showed that IRGM exclusively colocalized with AIF positive mitochondria, with no overlap with EEA1 positive endosomes (Fig. 8d, e). It has been reported that variants of IRGM contribute to the development of human NAFLD by altering hepatic lipid metabolism through an effect on autophagy. Thus, we checked the autophagic flux in primary hepatocytes isolated from WT and Gm4951−/− mice. No dramatic difference in LC3BI/II and p62 expression was observed between Gm4951 knockout and WT hepatocytes with or without the treatment of the autophagy inhibitor bafilomycin A1 (Supplementary Fig. 8a). No consistent difference in autophagic flux was observed between WT and Gm4951−/− liver lysates (Supplementary Fig. 8b). Interaction between human HSD17B13 and...
IRGC, but not IRGM (v1, longer isoform; v2, shorter isoform), was observed in 293T cells (Fig. 8f). In cultured primary human hepatocytes, overexpression of GM4951 or IRGC decreased the level of triglycerides after OA treatment, while no reduction of triglycerides was observed in IRGC overexpressing hepatocytes after OA treatment (Fig. 8g, h). IRGC was shown to be expressed almost exclusively in human testis (Human Protein Atlas; proteinatlas.org)30. Quantification of IRGC mRNA by real-time PCR revealed a low level of IRGC in primary human hepatocytes, and this level was elevated compared with that detected in primary human pre-adipocytes and other human cell lines (SW1088, astrocytoma cell line; SK-LMS-1, leiomyosarcoma cell line; SW872, liposarcoma cell line; THP-1, monocytic cell line; 293T, embryonic kidney cell line; primary pre-adipocytes; HepG2, hepatocarcinoma cell line) (Fig. 8i). Knockdown of IRGC in OA treated primary human hepatocytes decreased the expression of several lipid oxidation genes, including PPARA, ACOT1, and ACOXI (Fig. 8j). All these data favor IRGC as a biologically relevant human homolog of mouse GM4951.

Discussion

To identify new regulators of NAFLD, we utilized unbiased forward genetic screening and AMM to identify mutations that cause NAFLD in mice sensitized by a HFD for 4 weeks. Two semi-dominant missense alleles of

\[\text{Gm4951} \]

named **Oily** and **Carboniferous**, were detected in this screen. GM4951 deficient mice had dramatically increased hepatic lipid accumulation without a concomitant increase in body weight on a HFD. GM4951 knockout liver also showed decreased expression of lipid oxidation genes. Moreover, HFD caused a reduction in the level of

\[\text{Gm4951} \]

in WT mice, which may promote the development of NAFLD. Mechanistically, we have shown that GM4951 interacted with LD protein HSD17B13, and translocated to LDs in response to lipids. The **Oily** and **Carboniferous** mutations abolished the intrinsic GTPase activity of GM4951 and blocked its translocation to LDs. HSD17B13 translocation to LDs required GM4951.

We did not observe differences in body weight, fat weight, fasting glucose, or insulin between

\[\text{Gm4951}^{-/-} \]

and WT mice even after HFD feeding for 24 weeks (Fig. 3k–n). GM4951

\[\text{Gm4951}^{-/-} \]

mice did not show any differences from WT mice in body weight, fat weight, and glucose metabolism on chow diet either (Fig. 3c–f). These data suggest that the NAFLD caused by GM4951 deficiency is a liver intrinsic effect that reflects the role of GM4951 in hepatocytes, consistent with the predominantly hepatic expression of GM4951. Besides the liver, low but detectable levels of GM4951 existed in the spleen, thymus, lung, eWAT, and iWAT (Fig. 4c). Similar to other IRG genes, GM4951 is an interferon inducible GTPase. Thus, it would be interesting to check whether GM4951 is directly involved in the resistance to intracellular pathogens in the liver or other GM4951 expressing tissues. As the most common cause of chronic liver disease, NAFLD often coexists with liver infections such as hepatitis C. We showed that interferon directly induced the expression of GM4951 in primary hepatocytes (Fig. 4i, j). Further experiments are needed to check whether hepatosteatosis is affected by liver infections through the interferon–GM4951 axis.

GM4951 was not classified as an IRG protein initially, probably due to the variation in the IRG domain with other IRG family proteins. Nevertheless, GM4951 shares 77% amino acid sequence identity with IRGA6, a well characterized IRG protein. Indeed, we observed many similar features between these two proteins. IRGA6 has been shown as a GTPase to undergo nucleotide-dependent oligomerization and cooperatively hydrolyze GTP, acting as its own GTPase-activating protein (GAP)31–33. Here we have shown that GM4951 is a bona fide GTPase (Fig. 4k). The N86K substitution of **Oily** is predicted to occur near the GTP-binding pocket and the D125G substitution of **Carboniferous** affects a residue within the predicted binding pocket; both N86 and D125 are conserved in IRGA6 and the **Oily** and **Carboniferous** mutations disrupted the ability of GM4951 to hydrolyze GTP, but not to homodimerize. In response to parasitic infection, IRGA6 translocates from the ER to the parasitophorous vacuole in a mechanism that is dependent on its binding to GTP, a subsequent conformational change, and interactions with mouse IRGM1, IRGM2, and IRGM334–36. Notably, we also identified IRGM1 as a GM4951 interacting protein by mass spectrometry (Supplementary Data 1), raising the possibility that GM4951 may also depend on IRGM1 for translocation to LDs. Similar to IRGA6, GTP binding may affect the conformation of GM4951 and interactions with partner proteins such as IRGM1. Interestingly, Irgm1-deficient macrophages exhibited increased glycolysis and accumulation of long chain acylcarnitines37. Future study is needed to test the relationship between IRGM1 and GM4951 in lipid metabolism. Our finding of **Oily** and **Carboniferous** mutants highlights the importance of GTPase activity of GM4951 in the regulation of hepatic lipid. Lipid loading appears to positively influence the LD translocation of GM4951, but also to decrease transcription of GM4951.

We utilized Flag tag knockin mice to search for endogenous GM4951 interacting proteins under physiological conditions by mass spectrometry. Although HSD17B13 has been identified as a NAFLD-associated protein both in mice and humans, the reported phenotypes in human patients and different mouse models are not consistent. Two loss-of-function alleles of HSD17B13 in humans are associated with reduced risk of chronic liver disease and protection from progression to steatohepatitis from steatosis16,38. Another human study reported that HSD17B13 plays an important role in promoting NAFLD through its retinol dehydrogenase activity18. Hsd17b13 knockout mice were first reported to develop severe hepatic steatosis with aging (9-month-old), similar to that reported here in

\[\text{Gm4951}^{-/-} \]

knockout mice, which developed significant hepatic steatosis on chow diet in 6-month-old animals (Fig. 3a). Hsd17b13 knockout mice exhibited NAFLD despite normal body weight, overall body fat content, and glucose metabolism37, which is also consistent with the key features of NAFLD development in

\[\text{Gm4951}^{-/-} \]
Fig. 8 Identification of potential human homologs of mouse GM4951. a Protein domain diagrams of mouse GM4951 and human IRGC and IRGM. Locations of IIGP domains and amino acid identities across the full length of the proteins are indicated. b–e AML12 cells expressing 3xFlag-tagged IRGC or IRGM were immunostained with Flag antibody (green), Hoechst 33342 (blue) to visualize nuclei, and organelle markers (red): AIF (mitochondria) and EEA1 (endosome). (Scale bar: 10 μm.) f Immunoblot of immunoprecipitates (top and middle) or lysates (bottom) of 293T cells expressing HA-tagged human HSD17B13 and 3xFlag-tagged human IRGC, IRGM_v1, and IRGM_v2. g, h Immunoblots of lysates (g) or triglyceride level in lysates (h) of primary human hepatocytes expressing different IRG genes with or without 0.5 mM OA treatment for 24 h. i Relative mRNA level of IRGC from different human cell lines or human primary cells. Levels were normalized to ACTB mRNA and then to levels in SW1088 cells (n = 3 cultures per group). j Relative mRNA level of IRGC and several lipid oxidation genes (PPARA, ACOT1, ACOX1, and ACADL) from primary human hepatocytes transfected with control siRNA or IRGC siRNA with 0.5 mM OA treatment for 24 h (n = 3 cultures per group). Levels were normalized to ACTB mRNA and then to levels in control RNAi. Data points represent independent cultures. Data are presented as means ± SD. P values were determined by one-way ANOVA with Tukey’s multiple comparison test (h) or two-tailed Student’s t test (j). P values are denoted by *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant with P > 0.05. The exact P values of statistically significant groups are: 0.0158 (h, Vector vs 3xFlag-Gm4951 OA); 0.0026 (h, Vector vs 3xFlag-IRGC); 0.0019 (j, IRGC); 0.0015 (j, PPARA); 0.0001 (j, ACOX1); 0.0031 (j, ACOX1). Data are representative of two independent experiments (b–j).
knockout mice (Fig. 3c–g). These data support the physiological significance of our finding that GM4951 associates with HSD17B13. A recent paper reported a different observation that Hsd17b13 knockout mice did not show differences from WT mice in hepatic steatosis, liver injury, fibrosis, and inflammation under several fatty liver-inducing dietary conditions39. It has also been reported that overexpression of HSD17B13 in mouse liver increases lipogenesis and triglyceride content accompanying higher liver SREBP-1 maturation and fatty acid synthase protein expression12. Further study is needed to explain the discrepancy of these results and the exact role of HSD17B13 in NAFLD in mice and humans.

There are 20 IRG genes in mice and two IRG genes, encoding IRGM and IRGC, in humans30. Human IRGM variants are associated with NAFLD and IRGM directly affects autophagy flux to modulate autophagic degradation of LDs (lipophagy)30. While this manuscript was in preparation, it was reported that GM4951 (also known as IFGGA2) induces lipophagy to prevent hepatic lipid accumulation31. IRGM has been proposed to be the human orthologue of GM495140. However, we compared feature of protein domain structures and subcellular localizations between mouse GM4951 and human IRGC and IRGM, which suggested a different conclusion. Compared to GM4951, IRGC has a similar length of IGGP domain and a similar subcellular localization, whereas IRGM has a much shorter IGG domain and a distinct mitochondria exclusive subcellular localization (Supplementary Fig. 5a, Fig. 8a–e). The Carboniferous mutation site (D125) is conserved among GM4951, IRGA6, IRGC, and IRGM, while the Oily mutation site (N86) is only conserved among GM4951, IRGA6, and IRGC (Supplementary Fig. 5a). More importantly, overexpression of either IRGC or GM4951 reduced triglyceride accumulation in primary human hepatocytes, while overexpression of IRGM had no such effect. The interaction between GM4951/IRGC and HSD17B13 is also conserved in human cells. Consistent with the supportive role of GM4951 in lipid oxidation (Fig. 5), loss of IRGC in primary human hepatocytes resulted in decreased expression of several lipid oxidation genes (Fig. 8j). IRGM participates in the clearance of intracellular pathogens through autophagy, while IRGC is not known to be involved in immunity7. The function of IRGC is largely unknown. Although detectable in a low level in primary human hepatocytes, IRGC is reportedly expressed almost exclusively in human testis (Human Protein Atlas; proteinatlas.org)30, which is different from the predominantly hepatic expression of GM4951 in mice. The reduced number of IRG proteins in humans relative to mice and low expression of IRGC in human liver might explain why IRGC has not yet been implicated in NAFLD in humans. Further study is needed to determine whether human IRGC is associated with NAFLD though a mechanism similar to that used by mouse GM4951.

An array of hepatocyte nuclear factor (HNF) binding elements constitutes a liver-specific promoter upstream of Irga6 transcripts41. We found a similar array of HNF elements upstream of exon 1 of Gm4951. Similar to Irga641, the promoter region of Gm4951 also contains several IFN-stimulated response elements (ISRE) and gamma-activated sequences (GAS). These data could explain the predominantly hepatic and IFNγ inducible expression of Gm4951. Long-term HFD decreased liver Gm4951 transcript expression to a level below that in livers from Gm4951/Oby+/+ or Gm4951/Carboniferous/+ mice, which develop hepatic steatosis (Fig. 5h, i). This suggests that Gm4951 downregulation may be an important step during the development of diet induced NAFLD. Studying the transcriptional regulation of Gm4951 may lay the groundwork for the future development of approaches to transcriptionally activate the human Gm4951 ortholog to combat NAFLD.
Plasmids. PCR was carried out using mouse liver cDNA as the template and oligonucleotide primers designed to obtain the coding DNA sequence (CDS) of the mouse wild-type (NM_001163486.1) and human HepG2 cell cDNA was used to obtain the CDS of the human IRGM (v1, NM_0013456552.2, v2, NM_0011458052.2) and IRGC (NM_019162.4). These clones were cloned into the HA-tagged or 3xFlag-tagged pB8 vector for protein expression in E. coli. The Gm6921 mutants were generated with PCR mutagenesis. All constructs were verified by sequencing.

Cell culture, transfection, infection, mouse primary hepatocytes isolation, LD isolation, human primary hepatocytes culture, and knockdown by siRNA. The 293T cells (CRL-3216) were purchased from American Type Culture Collection (ATCC) and grown in culture medium [DMEM (Gibco), 10% (vol/vol) FBS (ATCC), Pen-Strep antibiotics (Gibco)] at 37 °C with 5% CO2. Transfection of GST-tagged pGEX4T1 vector for protein expression in E. coli, HA-tagged or 3xFlag-tagged pBOB vector for packaging lentivirus, or the pDNA+PEGX4T1 vector for protein expression in E. coli. The Gm6921 mutants were generated with PCR mutagenesis. All constructs were verified by sequencing.

6 h after attachment, the medium was replaced with culture medium [DMEM:F12 (ATCC), 10% (vol/vol) FBS (ATCC), 10 µg/ml Pen-Strep antibiotics (Gibco)] at 37 °C with 5% CO2. The primary pre-adipocytes (PCS-210-010) were purchased from American Type Culture Collection (ATCC) and grown in culture medium [MEM (ATCC), 10% (vol/vol) FBS (ATCC), Pen-Strep antibiotics (Gibco)]. The THP-1 (TIB-202) cells were purchased from American Type Culture Collection (ATCC) and grown in culture medium [RPMI-1640 (Gibco), 10% (vol/vol) FBS (ATCC), 0.05 mM 2-mercaptoethanol (Sigma-Aldrich), Pen-Strep antibiotics (Gibco)] at 37 °C with 5% CO2. The primary pre-adipocytes were isolated with a two-step collagenase perfusion technique. Non-adherent cells were first perfused with medium I [10 mM HEPES (pH 7.4), 1x PBS, 0.05% (wt/vol) KCl, 5 mM glucose, 0.2 mM EDTA] and then perfused with medium II [10 mM HEPES, 1x PBS, 0.05% (wt/vol) KCl, 20 µM CaCl2, 500 µM collagenase Type 4 (CLS-4, Worthington)]. Isolated hepatocytes were cultured in attachment medium [William’s E (Gibco), 10% FBS (ATCC), 1% (vol/vol) non-essential amino acids (Gibco), 1x GlutaMAX (Gibco), Pen-Strep antibodies (Gibco)]. 6 h after attachment, the medium was replaced with culture medium [William’s E (Gibco), 10% FBS (ATCC), 5 µM oleic acid (Sigma-Aldrich), 0.5 mM bafilomycin A1 (Sigma-Aldrich) + 100 nM baflomycin A1]. Isolated hepatocytes were cultured in culture medium with or without 0.5 mM OA for 24 h. The next morning, the medium was changed to heparinized maintenance medium with or without 0.5 mM OA for 24 h. Triglycerides were measured using a method similar to the liver triglyceride protocol described above.

For the knockdown assay, control siRNA or Accell SMART pool IRGC siRNA was transfected into these cells 24 h before harvesting. LDs were isolated from hepatocytes treated with 0.5 mM OA for 100 nM bafilomycin (9F3, CST, 1:2000), anti-p62 (D6M5X, CST, 1:1000), anti-LC3B (D3U4C, CST, 1:2000), and anti-PLIN2 (EPR3713, Abcam, 1:200). The following secondary antibodies were used in the study: Alexa Fluor 488 Goat anti-Mouse IgG (H + L) (115-454-66, Jackson ImmunoResearch, 1:500), Alexa Fluor 488 Goat anti-Rabbit IgG (H + L) (115-454-14, Jackson ImmunoResearch, 1:500), Rhodamine Red-X Goat anti-Mouse IgG (H + L) (115-295-146, Jackson ImmunoResearch, 1:500), and Rhodamine Red-X Goat anti-Rabbit IgG (H + L) (115-295-144, Jackson ImmunoResearch, 1:500).

Sample preparation, immunoprecipitation, mass spectrometric analysis, GST pull-down, western blot analysis, and GTPase assay. To test if carbohydrate metabolism was increased in wild-type mice, we harvested liver from wild-type and diabetic mice and prepared the samples for immunoblot analysis. For immunoblot analysis, samples were resolved by NuPAGE 4-12% (wt/vol) Bis-Tris gels (Thermo Fisher Scientific), transferred to nitrocellulose membrane, and probed with primary antibodies. The following primary antibodies were used in this study: mouse anti-α-tubulin (α-Tub, Sigma-Aldrich, 1:5000), rabbit anti-β-actin (A2228, Sigma-Aldrich, 1:500), rabbit anti-p62 (D6M5X, CST, 1:1000), anti-LC3B (D3U4C, CST, 1:1000), and anti-PLIN2 (EPR3713, Abcam, 1:200). The following secondary antibodies were used in the study: Alexa Fluor 488 Goat anti-Mouse IgG (H + L) (115-454-66, Jackson ImmunoResearch, 1:500), Alexa Fluor 488 Goat anti-Rabbit IgG (H + L) (115-454-14, Jackson ImmunoResearch, 1:500), Rhodamine Red-X Goat anti-Mouse IgG (H + L) (115-295-146, Jackson ImmunoResearch, 1:500), and Rhodamine Red-X Goat anti-Rabbit IgG (H + L) (115-295-144, Jackson ImmunoResearch, 1:500).

Further information on research design is available in the Nature Research Reporting Summary linked to this article.

RNA isolation, reverse transcription, and quantitative PCR. Sample tissues or cells were lysed in TRIzol (Invitrogen) for RNA isolation following a standard protocol, and 1 µg of RNA was used for reverse transcription by SuperScript III First-Strand Synthesis SuperMix (Life Technologies). Quantitative PCR was performed with ABI StepOnePlus with PowerUp SYBR Green Master Mix (Life Technologies). The 2 –ΔΔCT method was used for relative quantification. The primer information is listed in Supplementary Table 1.

Data availability
The mass spectrometry proteomics data generated in this study have been deposited in the MassIVE repository with the accession code MSV000089462. All other data are
available in the main article or the Supplementary Information files. Source data are provided with this paper.

Received: 6 June 2021; Accepted: 5 July 2022; Published online: 16 July 2022

References

1. Younossi, Z. M. et al. Global epidemiology of nonalcoholic fatty liver disease:Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64, 73–84 (2016).
2. Cohen, J. C., Horton, J. D. & Hobbs, H. H. Human fatty liver disease: old questions and new insights. Science 322, 1519–1523 (2011).
3. Wree, A., Broderick, L., Canbay, A., Hoffman, H. M. & Feldstein, A. E. From NAFLD to NAS: new insights into disease mechanisms. Nat. Rev. Gastroenterol. Hepatol. 10, 627–636 (2013).
4. Michiotta, G. A., Machado, M. V. & Diehl, A. M. NAFLD, NAS and liver cancer. Nat. Rev. Gastroenterol. Hepatol. 10, 656–665 (2013).
5. Byrne, C. D. & Targher, G. NAFLD: a multisystem disease. J. Hepatol. 62, S74–S86 (2015).
6. Wang, T. et al. Real-time resolution of point mutations that cause phenovarience in mice. Proc. Natl Acad. Sci. USA 112, E440–E449 (2015).
7. Bkpens, C., Xavier, R. J. & Eichler, E. E. Human IRGM gene “to be or not to be”. Semin Immunopathol. 32, 437–444 (2010).
8. Pilla-Moffett, D., Barber, M. F., Taylor, G. A. & Coers, J. Interferon-inducible GTPase: a paradigm for interferon-inducible p47 resistance GTPases. Mol. Cell 15, 727–739 (2004).
9. Mashek, D. G., Khan, S. A., Sathyaranayanan, A., Ploeger, J. M. & Franklin, M. P. Hepatic lipid droplet biology: Getting to the root of fatty liver. Hepatology 62, 964–976 (2015).
10. Willing, F., Haas, J. T., Walther, T. C. & Farese, R. V. Jr Lipid droplet biogenesis. Curr. Opin. Cell Biol. 29, 39–45 (2014).
11. Zhang, C. & Liu, P. The new face of the lipid droplet: lipid droplet proteins. Proteomics 19, e1700223 (2019).
12. Haudenschild, C. A. & Motoimura, K. 17beta-Hydroxysteroid dehydrogenase type 3 is a liver-specific lipid droplet-associated protein. Biochem Biophys. Res Commun. 370, 235–238 (2008).
13. Liu, S. et al. Molecular cloning and expression analysis of a new gene of IIGP1: a paradigm for interferon-inducible p47 resistance GTPases. Methods Mol. Biol. 438, 3495–3513 (2016).
14. Ghosh, A., Uthaiha, R., Howard, J., Herrmann, C. & Wolf, E. Crystal structure of IIGP1: a paradigm for interferon-inducible p47 resistance GTPases. Mol. Cell 15, 727–739 (2004).
15. Mashek, D. G., Khan, S. A., Sathyaranayanan, A., Ploeger, J. M. & Franklin, M. P. Hepatic lipid droplet biology: Getting to the root of fatty liver. Hepatology 62, 964–976 (2015).
16. Willing, F., Haas, J. T., Walther, T. C. & Farese, R. V. Jr Lipid droplet biogenesis. Curr. Opin. Cell Biol. 29, 39–45 (2014).
17. Zhang, C. & Liu, P. The new face of the lipid droplet: lipid droplet proteins. Proteomics 19, e1700223 (2019).
18. Haudenschild, C. A. & Motoimura, K. 17beta-Hydroxysteroid dehydrogenase type 3 is a liver-specific lipid droplet-associated protein. Biochem Biophys. Res Commun. 370, 235–238 (2008).
19. Liu, S. et al. Molecular cloning and expression analysis of a new gene for short-chain dehydrogenase/reductase 9. Acta Biochim Pol. 54, 213–218 (2007).
20. Sui, W. et al. Comparative proteomic study reveals 17beta-HSD13 as a pathogenic protein in nonalcoholic fatty liver disease. Proc. Natl Acad. Sci. USA 111, 11437–11442 (2014).
21. Abul-Husn, N. S. et al. A protein-truncating HSD17B13 variant and protection from chronic liver disease. N. Engl. J. Med. 378, 1096–1106 (2018).
22. Adamcz, M. et al. Hydroxysteroid (17beta) dehydrogenase 13 deficiency triggers hepatic steatosis and inflammation in mice. FASEB J. 32, 3434–3447 (2018).
23. Ma, Y. et al. 17beta-hydroxysteroid dehydrogenase 13 Is a Hepatic Retinol Dehydrogenase Associated with histological features of nonalcoholic fatty liver disease. Hepatology 69, 1504–1519 (2019).
24. Fabbri, E., Sullivan, S. & Klein, S. Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology 51, 679–689 (2010).
25. Khan, R. S., Brlil, F., Cusi, K. & Newsome, P. N. Modulation of insulin resistance in nonalcoholic fatty liver disease. Hepatology 70, 711–724 (2019).
26. Birkenfeld, A. L. & Shulman, G. I. Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology 59, 713–723 (2014).
27. Samuel, V. T. et al. Considering the links between nonalcoholic fatty liver disease and insulin resistance: revisiting the role of protein kinase C epsilon. Hepatology 70, 2217–2220 (2019).
28. Utschneider, K. M. & Kahn, S. E. Review: the role of insulin resistance in nonalcoholic fatty liver disease. J. Clin. Endocrinol. Metab. 91, 4753–4761 (2006).
29. Woo Baidal, J. A. & Levine, J. E. The intersection of nonalcoholic fatty liver disease and obesity. Sci. Transl. Med. 8, 323rv321 (2016).
30. Taylor, R. S. et al. Association between fibrosis stage and outcomes of patients with nonalcoholic fatty liver disease: a systematic review and meta-analysis. Gastroenterology 158, 1611–1625, e1612 (2020).
31. Kleiner, D. E. et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41, 1313–1321 (2005).

Author contributions

Conceptualization, Z.Z., B.B.; Data curation, Z.Z., B.B.; Formal analysis, Z.Z., B.B.; Funding acquisition, Z.Z., B.B.; Investigation, Z.Z., Y.X., S.R., L.Y., J.S.; Methodology, Z.Z., B.B.; Project administration, Z.Z., B.B.; Resources, Z.Z., X.L., M.T., K.K., S.L., B.B.; Software, Z.Z., B.B.; Supervision, Z.Z., B.B.; Validation, Z.Z., B.B.; Visualization, Z.Z.; Writing- original draft, Z.Z.; Writing- review and editing, Z.Z., E.M.Y.M., B.B.

Competing interests

The authors declare no competing interests.
