Measuring Discrimination Abilities of Monk Parakeets Between Discreet and Continuous Quantities Through a Digital Life Enrichment Application

Jérémy Barbay
Departamento de Ciencias de la Computación (DCC), Universidad de Chile
Santiago, Region Metropolitana, Chile
jeremy@barbay.cl

Fabián Jaña-Ubal
Departamento de Ciencias de la Computación (DCC), Universidad de Chile
Santiago, Region Metropolitana, Chile
fmju96@gmail.com

Cristóbal Sepulveda-Álvarez
Departamento de Ciencias de la Computación (DCC), Universidad de Chile
Santiago, Region Metropolitana, Chile
c.sepulveda.a23@gmail.com

Figure 1: The Monk Parakeet Tina selecting the largest value out of two displayed, in heap mode.

Figure 2: The Monk Parakeet Lorenzo selecting the largest value out of four displayed, in rectangle mode.

ABSTRACT
Ain et al. [1] measured three African Grey (Psittacus Erithacus) parrots’ discrimination abilities between discrete and continuous quantities. Some features of their experimental protocol make it difficult to apply to other subjects and/or species without introducing a risk for some bias, as subjects could read cues from the experimenter (even though the study’s subjects probably did not). Can digital life enrichment techniques permit us to replicate their results with other species with less risk for experimental bias, with a better precision, and at lower cost? Inspired by previous informal digital life enrichment experiments with parrots, we designed and tested a web application to digitally replicate and extend Ain et al.’s experimental setup. We were able to obtain similar results to theirs for two individuals from a distinct species of parrots, Monk Parakeets (Myiopsitta Monachus), with increased guarantees against potential experimental biases, in a way which allows the replication of such experiments at larger scale and at a much lower cost.

KEYWORDS
Comparative Cognition Study, Continuous and Discreet Comparative Abilities, Digital Life Enrichment, Monk Parakeet

1 INTRODUCTION
Al Aïn et al. [1] measured the discrimination abilities between discrete and continuous quantities of three African Grey parrots (Psittacus erithacus), showing that their accuracy in choosing between two small quantities was inversely correlated with the ratio of the smallest quantity to the largest one.

Generalizing the experimental protocol described and implemented by Al Aïn et al. [1] to other subjects or species present some difficulties. The fact that the experimenter knows which answer is expected from the subjects is not an issue in their study because it was previously verified that the three subjects were unable to read such cues from human experimenters, but it means that the replication of such a protocol is limited to individuals (from the same or from other species) whose inability to read cues has been previously demonstrated. Beyond such a weakness, the cost of the
experimental set-up and of the analysis of the video recordings of the experiments reduces the probability that such a protocol will be replicated with other subjects from the same species, or with subjects from the many other species of parrots existing around the world. Touchscreens have been successfully used for experiments in life enrichment [4, 10, 17] and in Comparative Psychology [6], with individuals from various nonhuman species. Could digital Life Enrichment techniques allow the replication of Al Ain et al. [1]’s results at a lower cost, but with a better precision, and with less potential experimental bias? Which additional advantages could such digital variants bring?

Inspired by previous informal Digital Life Enrichment experiments such as Monk Parakeets learning to use touch interfaces by playing music on it (Figures 3 and 4), we designed, tested and used a Digital Life Enrichment web application InCA-WhatIsMore to digitally replicate and extend Al Ain et al. [1]’s experimental setup. We obtained similar results to that of Al Ain et al. for two individuals of a distinct species of parrots, Monk Parakeets (Myiopsitta Monachus), using an experimental protocol with increased guarantees against potential experimental biases, at a lower set-up cost, with additional advantages brought by the digital context, such as automatic logging and increased subject’s agency. After describing a selection of concepts and results in the research area of comparative psychology (Section 2), we describe the application InCA-WhatIsMore (Section 3), an experimental protocol (including separate development, training and testing phases) based upon it (Section 4), an implementation of this protocol and an analysis of its results (Section 5), and we conclude with a recapitulation of our results, a discussion of their potential weaknesses and a perspective on future research (Section 6).

2 COMPARATIVE PSYCHOLOGY

Comparative psychology refers to the scientific study of the behavior and mental processes of non-human animals (referred to as “nonhumans” thereafter), especially as these relate to the phylogenetic history, adaptive significance, and development of behavior in many different species, from insects to primates. The abilities of nonhumans, traditionally less studied than that of humans, have been receiving more attention in the last half century. Such studies started with the nonhumans perceived to be “closest” to humankind, such as apes [4, 17], and has spread more recently to birds [1, 5, 16]. We describe Al Ain et al. [1]’s study of the discrimination abilities of some parrots (Section 2.1); how devices (analogical and digital) were introduced to nonhumans in order to improve their well being, and often study their abilities at the same time (Section 2.2); how the distrust in results obtained by improper experimental protocols has plagued scientific research in this area in the past; and how some general guiding principles in the design of experimental protocols permit scientists to avoid such experimental biases (Section 2.3).

2.1 Discrimination Abilities in African Grey parrots – Al Ain et al. Study

Al Ain et al. [1] tested the discrimination abilities of African Grey (Psittacus erithacus) parrots on discrete and continuous amounts. More precisely, they investigated the ability of three African grey parrots to select the largest amount of food between two sets, in two types of experiments. In the first experiment type, the subjects were tested on discrete quantities via the presentation of two distinct quantities of sunflower seeds, between 1, 2, 3, 4 and 5 seeds. In the second experiment type, the subjects were tested on continuous quantities via the presentation of two distinct quantities of parrot formula, with amounts between 0.2, 0.4, 0.6, 0.8 and 1 ml. For each experiment, the two amounts were presented simultaneously and were visible at the time of choice. Albeit the subjects sometimes failed to choose the largest value, they performed globally above chance, their performance improving when the difference between amounts was the greatest.

The experimental setup was completely physical. A permanent table was set-up in the aviary, and two black pieces of cardboard were used to present the food items (sunflower seeds or parrot formula). For each experiment, different amounts of either seeds or parrot formula were placed on each piece of cardboard. The experimenter put the subject for 5 seconds in a position from which they could observe the two sets, then placed them on the table at
equal distances from the two sets, letting them choose one set to it while removing the ignored set. The position of the sets (small and large) was pseudo-randomized: the larger set was never presented more than two times on the same side and was presented as often on the right side as on the left side.

In the experimental setup described by Al Aïn et al. [1], some subjects could potentially read involuntarily cues from the experimenter: even though the experimenter was standing behind the subject, at equal distances from each set, not pointing to it, looking at the subject, aiming to avoid communicating any cue to the subject, the experimenter knew where the largest quantity was. While it was not an issue with the specific subjects of Al Aïn et al. where non professional experimenters (such as zoo personal or any citizen) would guide the experiments (see Section 6.3.4 for a short discussion of such potential project), a masked protocol where the experimenters ignore what the correct answer is (because they did not receive the information that the subject did) would be more robust against subjects reading cues from the experimenter. We describe in Section 3 an application allowing for such an alternate experimental setup which, if not exactly equivalent to that of Al Aïn et al. [1] (e.g. the reward is not proportional to the quantity selected), presents the advantage of being “experimenter-masked”, inspired by some of the life enrichment experiences described in the next section.

2.2 Life Enrichment and Comparative Psychology

The study of the abilities of nonhumans and the use of life enrichment activities in general, and digital ones in particular, have been interconnected from their very beginning. In 1990, when Richardson et al. [19] describe a Computerized Test System to measure some abilities in a population of rhesus monkeys, they mention that “the animals readily started to work even when the reward was a small pellet of chow very similar in composition to the chow just removed from the cage”, and that “the tasks have some motivating or rewarding of their own”.

Furthermore, nonhuman subjects seem to enjoy participating in cognitive studies involving game-like digital applications. Washburn [22] describes, among various other anecdotes, how game-like application for apes were developed as early as 1984, and how the subjects “chose to work on joystick-based tasks, even though they did not need to perform the game-like tests in order to receive food”, and “opted for computer task activity over other potential activities that were available to them”. Lastly, he describes evidence that the subjects were not only motivated by food rewards, but also by the enjoyment of the tasks themselves: when given a choice between completing trials for pellets or receiving pellets for free but not being able to play the game-like tasks during the free-pellet period, the subjects chose to work for their reward.

Both physical and digital setups must be careful to avoid experimental biases: we describe two particularly relevant ones to this work in the next section.

2.3 Experimental Biases

The history of Comparative Psychology has been prone with arguments about the validity of methodologies and results: Pepperberg [14] describes various such tensions between researchers about the psychology of animals, with some accusing other researchers in the field to be “liars, cheats and frauds”, and she highlights how sign language researchers were accused of “cuing their apes by ostensive signals” and of “consistently over-interpreting the animals’ signs”. We explore here two issues relevant to the experimentation protocol described in this work, namely selective reporting bias (Section 2.3.1) and the “Clever Hans” effect (Section 2.3.2).

2.3.1 Selective Reporting Bias. Selection biases occur in a survey or experimental data when the selection of data points is not sufficiently random to draw a general conclusion. Selective reporting biases are a specific form of selection bias whereby only interesting or relevant examples are cited. Cognitive skills can be particularly hard to study in nonhumans, requiring unconventional approaches which often present an increased risk of such biases. For example, an experimenter who would present a subject repeatedly with the same exercise could be tempted to omit or exclude bad performances (eventually attributing them to a “bad mood” of the subject, which remains a real possibility) and report only on good performances, creating a biased representation of the abilities of the subject, leading to a selective reporting bias. We describe how to use a digital application to systematically log the result and easily avoid such bias in Section 3.

2.3.2 “Clever Hans” effect. Among such methodological issues resulting in experimental biases, the most iconic one might be the case of the eponymous horse nicknamed “Clever Hans” which appeared to be able to perform simple intellectual tasks, but in reality relied on involuntary cues not only given by their human handler, but also by a variety of human experimenters. It is possible to avoid the confusion between a subject’s ability to read cues from the experimenter from its ability to answer the tests presented to them by such an experimenter. The principle is quite simple: make sure that the experimenter does not know the test, by having a third party out of reach from the subject’s reading to prepare the test. Whereas such experimental setup was historically referred to as a “Blind Setup” or a “Blinded Setup”, we follow the recommendations of Morris et al. [12] and prefer the term of “masked” to the term “blind” when describing the temporary and purposeful restricted access of the experimenter to the testing information. In the next section, we describe an application designed so that to facilitate a type of “masked” experimental set-up, in which it is guaranteed that the ability of the subject to read cues from the experimenter does not affect the result of the experiment, as the experimenter himself ignores the question (and hence its correct answer) being asked to the subject.
Figure 5: The main menu of the application is designed so that the subject can choose in which visualisation mode it wishes to play, in the hope to support a sense of agency.

3 APPLICATION

We developed a web application InCA-WhatIsMore as a simple combination of JavaScript, CSS, and HTML using libraries from the Svelte project, made available on a simple webpage. While its simple structure (described in Section 3.1) was originally developed as a simple mock-up to visualize how a simple web application could help setting up masked experiments (described in Section 3.2) with extensive logging abilities (described in Section 3.3), it was found complete enough to be used as a final application, and the structure to be simple enough that even the subjects themselves could navigate it (hence increasing their agency).

3.1 Application’s Structure

The web application is composed of four views. The Main Menu and the Gaming views are especially designed to be navigable by nonhuman subjects, with large icons which do not overlap with icons from other views to prevent extra touches on a selected icon to be mistakenly interpreted as a touch on another icon. The settings and information views are aimed to human users: their access requires the long pressing of a button, which was enough to prevent the nonhuman subjects to access it.

3.2 Masked Experimental Setup

Among other features, the web application was designed to facilitate digital experiments, or digitally replicate some similar to that performed by Al Aïn et al. [1] but in a way such that the experimenter does not know where the “correct” answer is, a masked experimental setup (see Figures 10 to 12 for an illustration and pictures illustrating such a setup). This ensures that the subject cannot receive any voluntary or involuntary cues from the experimenter. Such a purpose is achieved through the extensive audio feedback system, which aims at notifying the experimenter about any event which requires their intervention (e.g. rewarding or encouraging the subject, or acknowledging that the subject does not want to play this game any more), so that they do not need to check the screen of the device at any point.

3.3 Logging structure

In traditional, non digital experiment in comparative psychology, the experiments are usually recorded on video so that the video recording can be later processed to generate an extensive log of the interactions of the subject during the experiment. Such a task is long and tedious, and no video processing software is yet able to automate such a process. An important advantage of a digital experimental set-up, such as that allowed by the software InCA-WhatIsMore that we developed, is the ability to automatically log the interactions of the subject with the application. The software InCA-WhatIsMore generates logs with data to be analyzed by researchers, including information on both the test performed and the subject’s performance (see Figure 13 for a short extract).

4 EXPERIMENTATION PROTOCOL

The experimental protocol was divided in three phases, which we describe in Section 4.1, in which participated two subjects, described in Section 4.2. The precautions taken to protect their well-being (described in Section 4.3) were validated by the Institutional Animal Care and Use Committee (IACUC) (in Spanish “COMITÉ INSTITUCIONAL de CUIDADO y USO de ANIMALES (CICUA)”) of the researcher’s institution. The statistical analysis (described in Section 4.4) were scheduled as part of the experimental protocol, independently from the results of the experiments.
Figure 8: The part of the setting page dedicated to the appearance and difficulty of the exercises. Four modes are available: dice, heap, rect and disc. One can select the set of values used to generate the random instances, the foreground and background colors, and the opacity of the background. Additionally, one can select the number of values composing each instance, from 1 to 5, and various parameters setting the rhythm of the application.

4.1 Phases of the protocol
The protocol was implemented in three phases: a phase of development (of the software) with only one subject (the first one) interacting with the application, a phase of training with two subjects interacting with the application in a mix of unmasked and masked protocols, and a phase of measure using exclusively the masked protocol and collecting data with both subjects.

4.2 Experimentation Subjects
We experimented with two subjects - both Monk Parakeets (Myiopsitta Monachus) - the first one participating in the development phase, and the second one, younger, sometimes voluntarily joined during the training and measure phases. Both can be considered as pets (as opposition to research animals used in professional laboratories). The first subject, named “Lorenzo”, is 6 year-old male, and has been trained since he was 1 year old. The second subject named “Tina”, is 3 a year-old female and has been trained since she was 1 year old. Both are fully able of flight, were previously trained to perform tricks (e.g. sorting coins by size, putting small basket balls in small suspended hoops, etc.), and to use touch screens via the use of music applications, first with a piano application making the whole surface of the screen active (see Figure 3 for a picture), then with a steel drum application reducing the active surfaces of the screen to a few circles (see Figure 4 for a picture).

Figure 9: The part of the setting page dedicated to the game features and sound feedback. One can select the number of questions composing a “game”, the criterias applied in order to give distinct audio feedback such as “Excellent” or “Pass”, and the words pronounced by the application in various situations.

4.3 Ethical Precautions
Various precautions were taken to protect both the physical (Section 4.3.1) and psychological well-being (Sections 4.3.2, 4.3.3 and 4.3.4) of the subjects during the three phases of the project.

4.3.1 Physical settings. At no point were the subjects food or water deprived: at any point they could fly to their housing space, where food and water was available.

4.3.2 Application Usability. In order to minimize the potential frustration of the subjects when facing inadequate answers from the
Figure 10: An artistic rendition of a masked experimental setup. The subject (left) can see the display and hear the device (center), but the experimenter (right) can hear the device but not see its display.

Figure 11: Example of masked experimental set-up: the experimenter can hear the instructions from the device and encourage and reward the subject, but cannot give any cue about correct answers.

Figure 12: The masked experimental set-up as viewed by the experimenter, with two subjects participating in the experiment at the same time, each with its own device.

Application, each version of the application was systematically tested by two human subjects, and any issue detected during such a phase corrected, before being presented to the nonhuman subjects. During the phase of software development, when a feature of the application (whether due to an error or to a setting proved to be inadequate) was encountered to frustrate the subjects, the use of this application was replaced by another activity until the software was corrected, tested and separately validated by two human subjects.

4.3.3 Sense of Agency. Both physical and virtual aspects of the protocol were designed to maintain a sense of agency in the subjects. The physical setting of the experimentation was designed to ensure that the subject’s participation was voluntary during all three phases of the process: the subjects were invited to come to the training area (but could, and sometimes did refuse); at any time the subjects could fly from the training area back to their aviary, to a transportation pack with a large amount of seeds suspended above the training area, or to an alternate training area on the side, presenting an alternate choice of (non digital) training exercises. Concerning the psychological aspects, the main menu of the application was designed so that each subject can choose in which visualisation mode they wish to play (see Figures 5 and 6), and a large orange “exit” button is present on the playing screen allowing the subject to signal that they do not wish to play this game any more, and to return to the main menu.

4.3.4 Approval of the experimental protocol by IACUC. All the interactions with animals reported in this work were governed by a protocol reviewed and approved by the Institutional Animal Care and Use Committee (IACUC) (in Spanish “COMITÉ INSTITUCIONAL de CUIDADO y USO de ANIMALES (CICUA)”) of the researchers’ institution, through a form of Experimentation Protocol of Management and Care of Animals (“Protocolo de Manejo y Cuidado de Animales”).

4.4 Statistical Analysis Process

The statistical analysis of the experimental results was designed as part of the experimental protocol, with the objectives to compute the accuracy of each subject for each display mode and each size of the set of values presented to the subject (Section 4.4.1), to compare it with the accuracy of selecting a value uniformly at random (Section 4.4.2) and to search for correlation between the answer’s accuracy and some measure on the values presented (Section 4.4.3).

4.4.1 Statistical tools used. The statistical analysis was performed in a Python notebook, executed and shared via the collaborative website https://colab.research.google.com. This Python notebook was developed and tested on the logs generated during the (masked and unmasked) training sessions, to be used later without major modification on the logs generated during the masked experimental sessions of the measure phase.
19th of May 2022. Observe that the subject was offered to choose the largest between 2 (on the first test) and 3 (on the
180th test) values, represented as dice (first test), rect (81st test) and heap (180th test), and that the subject chose once correctly,
and two times incorrectly, in games where the values were taken from the set \{1, 2, 3, 4, 5\}, with the precise time and date of
each answer duly recorded. The columns labeled C3 and C4 are empty because no test was performed requesting the subject to
choose the maximal value between 4 or 5 in this log.

Figure 13: A short extract showing four selected lines of the log generated by the application for the afternoon session of the
19th of May 2022. Observe that the subject was offered to choose the largest between 2 (on the first test) and 3 (on the 81st and
180th tests) values, represented as dice (first test), rect (81st test) and heap (180th test), and that the subject chose once correctly,
and two times incorrectly, in games where the values were taken from the set \{1, 2, 3, 4, 5\}, with the precise time and date of
each answer duly recorded. The columns labeled C3 and C4 are empty because no test was performed requesting the subject to
choose the maximal value between 4 or 5 in this log.

Test no	Test Name	C0	C1	C2	C3	C4	Correction	Date (2022-05-19 17:35)	Other Parameters
1	dice	1	4	4	4	true	[2022-05-19 17:02(25.981)]	Value Set [1,2,3,4,5]	
81	rect	4	2	3	3	false	[2022-05-19 17:26(55.124)]	Value Set [1,2,3,4,5]	
180	heap	3	2	1	2	false	[2022-05-19 17:35(06.6)]	Value Set [1,2,3,4,5]	

Figure 14: A screenshot of the game view of the application, asking to choose the largest disk out of four. Top left is the
orange “Exit” button actionable by the subject. Bottom right is the setting button requesting a long pressure to be activated.
Bottom center is a summary of the game’s score.

Figure 15: The Monk Parakeet Lorenzo selecting the largest
disc out of four.

4.4.2 Binomial Tests. The average accuracy of each subject for
each display mode and each size of the set of values presented to
the subject is then the average of the Correction entry in the log
(replacing True by 1 and False by 0) over all data points matching
the criteria. For each such accuracy, we performed a binomial
test in order to decide if such accuracy was substantially better
than that achieved by selecting a value uniformly at random. We
performed such statistical analyses on the data of each particular
session and on their union, on each particular visualisation mode
and on the type of visualisation mode (discrete or continuous) as
well as on all visualisation modes (see Tables 2, 3, 4 and 5).

4.4.3 Pearson Correlation Analysis. In order to compare our results
with that of Al Aïn et al. [1]’s experiments, we performed a Pearson
correlation analysis of the relation between the accuracy of the
subjects’ answers when asked to select the maximal out of two
values on one hand, and the three variables they considered on the
other hand:

- the sum of the values for each test (e.g. from \[1 + 2 = 3\] to
 \[8 + 9 = 17\]),
- the difference between the two extreme values presented
 within a trial (e.g. from \[1 to 9 - 1 = 8\]) and
- the ratio of continuous quantities presented, by dividing the
 smallest presented value by the largest one (e.g. from \[\frac{1}{3} = 0.2\]
to \[8 \div 9 = 0.89\]).

5 RESULTS

After relatively long phases of development and training (15 months)
using various domains of values (from \{0, 1\} to \{0, 1, \ldots, 9\}),
the experimental phase was quite short (two weeks), with all experi-
ments performed using a masked setup and a domain of values
restricted to the set \{1, 2, 3, 4, 5, 6, 7, 8, 9\}. We summarize the number
and content of the logs obtained (Section 5), perform binomial tests
on the experimental results when choosing the maximal value out
of two for both subjects (Section 5.1), perform binomial tests on the
experimental results when choosing the maximal value out of three
and four for the first subject (Section 5.2), and perform various
correlation tests between the performance of the subjects and the
sum, difference and ratio of the values presented (Section 5.1.3).

A measure session typically lasted some 5 to 10 games of 20
questions each, resulting into a log of 100 to 200 data points: see
Figure 13 for a shortened example of log. The measure phase
occurred between the 19th of July 2022 and the 31th of July 2022.
The experiments used four different display modes (“Dice”, “Heap”,
“Disc” and “Rectangle”), requesting the subject to select the maximal
value out of a set of 2, 3 , 4 or 5 values, randomly chosen among a
set of nine values \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, in order to produce a setup
relatively similar to that of Al Aïn et al. [1], with the vast majority of experiments selecting the maximal value out of two values, and only a few out of three, four or five values. Each log file can correspond to various separate training sessions, containing between 80 and 400 entries (each entry being a separate question and answer). For the first subject were collected 3 log files, corresponding to a total of 13 sessions and 3,699 data points. For the second subject, were collected 3 log files, corresponding to a total of 8 sessions and 1,460 data points. Mostly, the first subject was requested to select the maximal value out of 2, 3, 4 or 5 values, while the second subject was requested to select the maximal value only out of 2 values.

See Table 1 for a summary of the number of data points collected separated by display modes (“Dice”, “Heap”, “Disc” and “Rectangle”), accumulated by the type of display mode (“Discrete” or “Continuous”) and accumulated over all display modes (“Total”).

We analyze those results statistically in the following sections.

5.1 Selecting the maximal value out of two
Both subjects played the game in the four display modes, the first subject showing much more interest in participating than the second one. The first subject learned to pick a display mode in the starting menu while the second subject did not, and used the application in a mode picking a display mode uniformly at random at each new game. The first subject showed a marked preference for the rectangular mode, but did pick up the other modes with some regularity. The first subject showed an average accuracy of 81.79% (Section 5.1.1), the second subject an average accuracy of 74% (Section 5.1.2). Both performed better when the values were very different and worse when the values were close (Section 5.1.3), exactly as the three African Grey parrots in [1]’s study.

5.1.1 First Subject. The results show a clear ability from the first subject to discriminate the maximal value out of two quantities. Over all experimentations requesting to select the maximal value out of two, the first subject responded correctly 1540 times out of a total of 1763 trials, corresponding to an average accuracy of 87.35%. A simple binomial tests indicates that the probability to achieve such an accuracy by answering uniformly at random 1763 such binary questions is \(p = 3.13 \times 10^{-224} \) (see Table 2 for a more detailed description of the results, by session and by display mode).

5.1.2 Second Subject. The second subject was more reluctant to participate, often staying in the housing space or choosing among other activities available, but showed a similar ability when they did. Overall experimentations requesting to select the maximal value out of two during the measure phase, the second subject responded correctly 1137 times out of a total of 1460 trials, corresponding to an average accuracy of 77.87%. A simple binomial test indicates that the probability of answering correctly 1137 or more such binary questions out of 1460 by answering uniformly at random is \(p = 1.33 \times 10^{-106} \).

5.1.3 Relation between accuracy and variables. When requested to select the maximal value out of two, both subjects showed a lower accuracy when the two values were close (difference or ratio close to 1). Such results corroborate those of the three African Grey parrots in Al Aïn et al. [1]’s study.

Pearson’s correlation tests for the first subject (see Figure 16 for the corresponding heat map and Figure 17 for the corresponding scatter plots) suggest an inverse correlation between the accuracy of the subject’s selection and the ratio of the smallest value to the largest one: for example, for a combination with small ratio \(r = 0.11 \), the subject is more likely to correctly select the maximal value. There is a strong negative correlation ratio of \(r = -0.82 \) between the accuracy and the ratio, and a positive correlation ratio of \(r = 0.78 \) between the accuracy and the difference (see the heat map in Figure 16). The scatter plots (in Figure 17) show a decreasing relationship between the accuracy and the ratio, and an increasing relationship between the accuracy and the difference.

There is a similar correlation between accuracy and ratio in the results of the second subject (see the heat-map in Figure 18 and the scatter plots in Figure 19). There is a strong negative correlation ratio of \(r = -0.82 \) between the ratio and the accuracy. The correlation ratio of \(r = 0.62 \) between the difference and the accuracy is much weaker than for the first subject’s results.

5.2 Selecting the maximal value out of three, four values and five values
Only the first subject was tested on selecting the maximal value out of three, four and five values. The subject performed with a lower accuracy in these contexts than in the previous one: on average they achieved an accuracy of 78.77% for selecting the maximal out of three values, 63.81% for selecting the maximal out of four values and 62.26% for selecting the maximal out of five values, but still much better than what would be expected (33%, 25% and 20% respectively) if the subject chose uniformly randomly among the values proposed (see Tables 4, 5 and 6 for the detailed performances separated by display mode and sessions). Three simple binomial tests give a more formal measure of how much better the subject performed compared to one chosen uniformly at random: the probabilities of obtaining an accuracy equivalent or superior by randomly choosing the same number of answers is \(p = 6.06 \times 10^{-22} \) with probability 0.33 of success (for selecting the maximal out of 3 values 913 times), \(p = 8.24 \times 10^{-60} \) with probability 0.25 of success (for selecting the maximal out of 4 values 254 times) and \(p = 9.23 \times 10^{-72} \) with probability 0.20 of success (for selecting the maximal out of 5 values 236 times) : with very high probability, the subject showed their ability to discriminate between three, four and five values.

6 CONCLUSION
We conclude with a summary of what the project achieved to the date (Section 6.1), a discussion of the potential issues with the results presented (Section 6.2) and some perspective for future research (Section 6.3).

6.1 Achievements
Whereas Al Aïn et al. [1]’s protocol requested the subject to choose between two pieces of cardboard holding distinct amounts of food, for discrete and continuous types of food material; we proposed a protocol which requests the subject to choose the largest among a set of values (of parameterized size) on a visual display, using discrete and continuous representations of values, by touching a touchscreen on the representation of the largest value. We developed
Table 1: Number of data points collected separated by display modes ("Dice", "Heap", "Disc" and "Rectangle"), accumulated over all display modes ("Total"). The imbalance between the frequencies of the display modes and between the amounts of test results for each subject is explained by the care to support the agency of the subjects: they could interrupt the session at any time, and had the option to choose the display mode at any time (which they seldom did).

Subject	Set Size	Dice	Heap	Discrete	Disc	Rectangle	Continuous	Total
1	2	434	352	786	330	647	997	1763
1	3	344	134	478	178	503	681	1159
1	4	90	66	156	95	147	242	389
1	5	110	68	178	40	161	201	379
2	2	486	378	864	269	327	596	1460
1 total		978	620	1598	643	1458	2121	3699
2 total		486	378	864	269	327	596	1460
total	total	1464	998	2462	912	1785	2697	5159

Table 2: Finer analysis of the first subject’s performance on selecting the maximal value out of two, separated by display modes ("Dice", "Heap", "Disc" and "Rectangle"), accumulated over all display modes ("Total"). The sessions occurred during the month of July 2022 and are identified by the date d and hour h (e.g. the session which occurred at 17:02 on the 17th of July 2022 is identified by the tag “17,17h”). Each entry is in the format a(p) where a is the accuracy reported, and p is the probability of achieving such accuracy or better by selecting answers uniformly at random. Note how the accuracy percentages are mostly above 80%, and that the probability of such accuracy or a better one to be attained by selecting answers uniformly at random is smaller than 0.001 in almost all the cases.

Session	Dice	Heap	Discrete	Disc	Rectangle	Continuous	Total
17,17h	80(2e-01)	71(9e-02)	73(5e-02)	60(4e-01)	77(2e-02)	71(2e-02)	72(2e-03)
19,11h	80(6e-03)	94(7e-05)	86(2e-06)	81(1e-06)	98(6e-15)	89(1e-18)	89(1e-23)
20,10h	82(2e-09)	84(2e-09)	83(2e-17)	87(2e-14)	87(9e-13)	87(7e-26)	85(1e-41)
22,09h	60(5e-01)	100(3e-02)	80(5e-02)	(no data)	82(6e-06)	(no data)	(no data)
23,17h	85(4e-06)	92(2e-10)	88(5e-15)	85(4e-06)	82(6e-06)	83(1e-14)	85(6e-28)
24,09h	100(3e-02)	80(2e-01)	90(1e-02)	(no data)	95(2e-05)	95(2e-05)	93(4e-07)
26,12h	88(7e-08)	88(2e-06)	88(4e-13)	100(1e-03)	80(2e-01)	93(5e-04)	89(5e-16)
27,09h	86(3e-05)	93(4e-07)	90(5e-11)	(no data)	80(5e-02)	80(5e-02)	88(9e-12)
29,09h	87(2e-07)	90(4e-06)	88(9e-12)	90(2e-04)	92(2e-10)	91(1e-13)	90(5e-24)
30,10h	77(1e-04)	90(2e-12)	85(6e-15)	92(1e-11)	90(1e-25)	90(6e-36)	88(6e-49)
31,08h	87(4e-15)	86(3e-05)	87(5e-12)	86(3e-07)	88(2e-27)	88(3e-33)	87(9e-54)
Total	84(3e-24)	88(1e-25)	86(1e-25)	86(7e-25)	88(1e-25)	88(1e-25)	87(3e-24)

Table 3: Finer analysis of the second subject’s performance on selecting the maximal value out of two, separated by display mode and combined. Note how the accuracy percentages are in between 60% (not much better than random, on the last session) and 100% with an average of 77% (both much better than random), and that the probability of such accuracy to be attained by selecting answers uniformly at random is p < 0.001 in almost all the cases.
Figure 16: Heat map correlation plot between the **Accuracy** of the first subject, the **Total** value of the representation shown to the test subject, the **Difference** between the two values presented, and the **Ratio** of the smallest quantity divided by the largest quantity. Notice the strong negative correlation (−0.82) between **Accuracy** and **Ratio** on one hand, and the strong positive correlation (0.78) between **Accuracy** and **Difference** on the other hand.

Figure 17: Scatter-plot of the variables described in Figure 16 for the first subject. The diagonal plots show the distribution of the values of each variable. Note the uniform distribution of the **Total** and **Ratio**.

Figure 18: Heat map correlation plot between the variables described in Figure 16 for the second subject. Notice the negative correlation (−0.82) between **Accuracy** and **Ratio**.

Figure 19: Scatter plots for the variables described in Figure 16 for the second subject.

A simple but extensively parameterized Digital Life Enrichment web application requesting the user to select the largest among two to five values chosen at random, using discrete and continuous representations of values and providing visual and audio feedback about the correctness of the answer. Using such application, we demonstrated that an experiment using a digital application can reproduce results from purely physical experiments, with better guarantees against subjects reading potential cues from the experimenter, an increased agency of the subjects of the experiments, increased settings (choosing the maximal value out of tuples rather
than just pairs), and more diverse representations (four instead of two). Furthermore, such experiment comes at a lower cost, thus allowing us to increase the number of experiments ten fold, to use truly random instances, while automatically generating logs with more information and with better precision than in traditional settings. As a side result, we gathered solid arguments that Monk Parakeet parrots are at least as able to discriminate between small discrete and continuous quantities as African Grey parrots.

6.2 Discussion

Our digital adaptation of Al Aïn et al. [1]'s experimental protocol present some other key difference, which might make the result of our study relatively difficult to compare to that of Al Aïn et al. [1]. We attempt to list such difference as follows:

- The proportionality of rewards could result in a larger incentive to select the maximum value when the difference between the two values is the largest, and a reduced incentive when the difference is small, and Al Aïn et al. [1] indeed

6.2.1 Non proportional rewards and reward withdrawal

The protocol defined by Al Aïn et al. [1] instructs to reward the subject with the content of the container they chose: the importance of the reward is proportional to the value being selected. The protocol we defined instructs to reward the subject with a single type of reward each time it does select the maximal value of the set, and to withdraw such reward when the subject fails to do so. Such a difference might alter the results of the experiment in at least two distinct ways:

Table 4: Finer analysis of the first subject's performance on selecting the maximal value out of three, separated by display mode and combined. The average accuracy of selecting a random positions out of three is 33%: the observed accuracy between 64% and 90% indicates that the subject did much better than choosing at random.

Session	Dice	Heap	Discrete	Disc	Rect	Continuous	Total
19,15h	64(2e-03)	73(4e-03)	68(3e-07)	76(1e-06)	67(7e-06)	70(6e-13)	69(9e-19)
21,09h	84(7e-06)	70(2e-02)	79(5e-07)	84(3e-07)	83(9e-10)	83(8e-16)	82(2e-21)
22,16h	(no data)	100(4e-03)	100(4e-03)	100(4e-03)	100(4e-03)	100(4e-03)	100(4e-03)
23,17h	80(3e-03)	90(4e-04)	85(3e-06)	(no data)	(no data)	(no data)	85(3e-06)
24,09h	64(2e-03)	100(2e-04)	72(4e-06)	100(4e-03)	90(2e-07)	92(1e-15)	81(1e-15)
25,10h	71(1e-17)	73(9e-06)	72(5e-22)	80(1e-15)	79(1e-34)	79(1e-48)	76(1e-68)
27,09h	75(3e-16)	60(3e-02)	73(6e-17)	77(3e-06)	86(3e-39)	84(7e-44)	80(5e-58)
28,17h	83(2e-14)	66(2e-04)	77(7e-17)	90(2e-07)	90(5e-22)	90(4e-28)	84(2e-42)
Total	74(1e-34)	73(1e-21)	74(1e-74)	81(1e-39)	82(3e112)	81(3e130)	78(6e221)

Table 5: Finer analysis of the first subject's performance on selecting the maximal value out of four, separated by display mode and combined. The average accuracy of selecting a position at random out of four is 25%. The observed accuracies between 53% and 72% indicate that the subjects did not choose positions at random.

Session	Dice	Heap	Discrete	Disc	Rect	Continuous	Total
19,16h	70(4e-03)	90(3e-05)	80(4e-03)	65(2e-04)	80(5e-14)	75(8e-15)	76(1e-22)
21,16h	50(3e-03)	63(1e-05)	62(2e-03)	54(1e-05)	61(8e-09)	58(6e-11)	57(7e-19)
26,07h	55(1e-03)	61(9e-05)	57(5e-09)	68(7e-06)	72(4e-09)	70(1e-15)	63(9e-23)
27,17h	20(8e-01)	(no data)	20(8e-01)	(no data)	80(4e-04)	80(4e-04)	60(4e-05)
Total	53(8e-09)	66(1e-12)	58(3e-17)	60(5e-13)	71(4e-32)	66(1e-32)	63(8e-09)

Table 6: Finer analysis of the first subject's performance on selecting the maximal value out of five, separated by display mode and combined. The average accuracy of selecting a random position out of five is 20%. Most of the observed accuracies, between 40% and 68%, indicate that the subject did not pick positions at random. The sessions with an accuracy of 0% correspond to sessions where the game was interrupted after a few errors and no correct answer, either by the subject selecting the exit button (and selecting another display mode) or moving to another activity.
While such a random generation yields various advantages, it has not yielded such issues. They were deliberately ignored to develop a solution able to measure discrimination abilities on values taken not from large domains, and presenting the subject with a systematic enumeration of the possible sets of values is practical only for small domains (e.g. values from 1 to 5). For a domain of size 5 (as that of Al Aïn et al. [1]), enough data points were generated that no pair was under represented.

6.2.3 Extension to sensory diverse species.

The colors displayed by digital displays and the sound frequencies played by devices are optimized for the majority of humans. It is not always clear how much and which colours and sound can be seen and heard by individual of each species, an issue absent from purely physical experimental set-ups such as that of Al Aïn et al. [1]. The web application presents extensive parameters to vary the colours displayed and the sounds played to the subject. Even less intuitively, species can differ in their Critical Flicker Fusion Frequency (CFFF) [13], the frequency at which they perceive the world and can react to it (in some species, such frequency even vary depending on the time of the day or of the season [9, 18]). For instance, dogs have higher CFFF while cats have lower ones, and the CFFF of reptiles vary with the ambient temperature. Such variation might affect not only their ability to comprehend the visual display and sound play from devices, but might also affect how they comprehend some application designs over others. The web application presents extensive parameters to vary the time between each exercise and each game, so that part of the rhythm of the application can be adjusted by the experimenter to the CFFF of the subject, but more research is required in order to automatically adapt the rhythm of such applications to the CFFF of individuals from a variety of species.

6.3 Perspective on future work

Some issues with the results presented in this work are not related to any difference with Al Aïn et al. [1]’s experimental protocol, but rather with limitations of the current one. We list them along with some tentative solutions, to be implemented in the future.

6.3.1 Random Dice and Heap representations.

The discrete representations modes Dice and Heap associate each value with a fixed representation of a number of points corresponding to the value being represented. This differs from what happens in Al Aïn et al. [1]’s experimental protocol, where the seeds are in no arranged configuration on the cardboard. This might affect the results of the experience in that a subject could learn to select a particular symbol (e.g. the one corresponding to the largest value of the domain) anytime it is present, without any need for any comparison between the presented values. The development and evaluation of their impact on the discrimination abilities of human and nonhuman subjects will be the topic of a future study, once the corresponding randomized representations have been added to the web application.

6.3.2 Systematic logs.

The easiness with which logs are generated tends to make one forget about it, to the point that the bottleneck could become the transfer of the logs from the device used to perform the experience to a central repository. As one guardian might get more excited to transfer the logs of sessions where the subjects excelled at the activities than that of less positive sessions, this might create a bias toward positive results in their report. Though not an issue while implemented by personnel with a scientific training, such risk of a bias might become more problematic in

Display Mode	Subject 1	Subject 2
Dice	643	327
Heap	620	269
Disc	978	388
Rect	1458	490
Total	3699	1475

Table 7: Representation of the display modes in the data set for both subjects. The first subject learned to choose a display mode from the menu, while the second one did not, and was given a display mode uniformly at random, for games of 5 questions. Note that the first subject did not make the choice 3,699, as each choice starts a game of 5 to 20 questions, but that the number of games is not multiples of 5 because any game can be interrupted any time. One can note a clear preference from the first subject for the rectangle display mode, but that they still chose quite uniformly the other three modes.

Implementing the proportionality of rewards is not incompatible with the use of a digital application. For instance, it would be relatively easy to extend the web application to vocalize the value selected by the subject, so that the experimenter could reward the subject with the corresponding amount of food. Such an extension was not implemented mostly because it would slow down the experimentation, for relatively meagre benefits.

6.2.2 Irregular pairs and tuples.

The web application generates the sets of value presented to the subject uniformly at random (without repetitions) from the domain of values set in the parameter page. While such a random generation yields various advantages, it has a major drawback concerning the statistical analysis of the results, as some sets of value might be under-represented. An unbalanced representation of each possible set of values is guaranteed only on average and for a large number of exercises; whereas Al Aïn et al. [1]’s protocol, using a systematic enumeration of the possible sets of values (presented in a random order to the subject), does not yield such issues. They were deliberately ignored to develop a solution able to measure discrimination abilities on values taken uniformly at random, for games of 5 questions. Note that the first subject did not make the choice 3,699, as each choice starts a game of 5 to 20 questions, but that the number of games is not multiples of 5 because any game can be interrupted any time. One can note a clear preference from the first subject for the rectangle display mode, but that they still chose quite uniformly the other three modes.
the context of a citizen science project [2]. The development of a website serving as a central repository of experimental data sent by web applications such as the one presented in this work will be the topic of a future study. The roles of such a central “back-end” website could include the automating of the most frequent statistical tests on the data received; a greater ease of separation between the roles of experimenter and researcher, which will be an important step toward a true citizen science generalisation of this project (see Section 6.3.4 for a short discussion about the challenges of such projects); and the aggregation of sensory and cognitive data from distinct applications, individuals and species.

6.3.3 Adaptive Difficulty. The great amount of parameters available in the settings page of the web application makes it possible to adapt the difficulty of the activities to the level of abilities of the subject. Such abilities evolve with time, most often advancing and only rarely receding (such as after a long period without using the web application). Choosing which values of the parameters is the most adequate to the current level of abilities of the subject requires an extensive understanding of the mechanisms of the application. An extension of the web application presenting the subject with a sequence of parametrization of increasing difficulty, along with a mechanism raising or lowering the difficulty of the activities presented to the subject would greatly simplify the task of the experimenter, and will be the topic of a future study.

6.3.4 Citizen Science Extensions. The term “Citizen Science” refers to scientific projects conducted, in whole or in part, by amateur (or nonprofessional) scientists [8]. It is sometimes described as “public participation in scientific research”, with the dual objectives to improve the scientific community’s capacity, as well as the public’s understanding of science and conscience about the research’s themes [2]. Citizen Science has become a means of encouraging curiosity and greater understanding of science whilst providing an unprecedented engagement between professional scientists and the general public.

Such methodology must be used with care, in particular regarding the validity of volunteer generated data. Projects using complex research methods or requiring a lot of repetitive work may not be suitable for volunteers, and the lack of proper training in research and monitoring protocols in participants might introduce bias into the data [20]. Nevertheless, in many cases the low cost per observation can compensate for the lack of accuracy of the resulting data [7], especially if using proper data processing methods [11].

Scientific researchers in comparative psychology could definitely benefit from some help, with many cognitive aspects to explore for so many species. In the process of defining the anecdotal method of investigation for creative and cognitive processes, Bates and Byrne [3] mentioned that “collation of records of rare events into data-sets can illustrate much about animal behavior and cognition”. Now that the technology is ready to analyze extremely large data-sets, what is lacking in comparative psychology are the means to gather such large data-sets.

Delegating part of the experimental process to citizens without proper scientific training is not without risk. Given the conflicted history of Comparative Psychology [15] in general and Animal Language Studies [14] in particular, the challenge of avoiding “Clever Hans” biases and related ones will be of tremendous importance.

We hope that applications and experimental protocols such as the one described in this work could help to design citizen science projects for the study of sensory and cognitive abilities in nonhuman primates living in close contact with humans.

REFERENCES

[1] Syrina Al Ain, Nicolas Giret, Marion Grand, Michel Kreutzer, and Dalila Bovet. 2008. The discrimination of discrete and continuous amounts in African grey parrots (Psittacus erithacus). Animal cognition 12 (09 2008), 145–54. https://doi.org/10.1007/s10071-008-0178-8
[2] Citizen Science Association. 2021. CitizenScience.org. Website https://citizenscience.org/. Last accessed on [2022-05-27 Fri].
[3] Lucy Bates and Richard Byrne. 2007. Creative or created: Using anecdotes to investigate animal cognition. Methods (San Diego, Calif.) 42 (06 2007), 12–21. https://doi.org/10.1016/j.meth.2006.11.006
[4] Simon Coghlan, Sarah Webber, and Marcus Carter. 2021. Improving ethical attitudes to animals with digital technologies: the case of apes and zoo. Ethic and Information Technology 23 (12 2021), 1–15. https://doi.org/10.1007/s10676-021-09618-7
[5] Jennifer Cunha and Susan Clubb. 2018. Advancing Communication with Birds: Can They Learn to Read? https://www.academia.edu/45183882/Advancing_Communication_with_Birds_Can_They_Learn_to_Read
[6] Crystal Egelkamp and Stephen Ross. 2018. A review of zoo-based cognitive research using touchscreen interfaces. Zoo Biology 38 (11 2018), 220–235. https://doi.org/10.1002/zoo.21458
[7] Mary M Gardiner, Leslie L. Allee, Peter MJ Brown, John E. Losey, Helen E. Roy, and Rebecca Rice Smyth. 2012. Lessons from lady beetles: accuracy of monitoring data from US and UK citizen-science programs. Frontiers in Ecology and the Environment 10, 9 (2012), 471–476. https://doi.org/10.1890/110155
[8] Trisha Gura. 2015. Citizen science: Amateur experts. Nature volume 496 (2013), 259–261.
[9] Kevin Healy, Luke McNally, Graeme D. Ruxton, Natalie Cooper, and Andrew L. Jackson. 2013. Metabolic rate and body size are linked with perception of temporal information. Animal Behaviour 86, 4 (2013), 685–696. DOI: 10.1016/j.anbehav.2013.06.018.
[10] B. Kohn. 1994. Zoo animal Welfare. Rev Sci Tech 13, 1 (1994), 233–45. doi: 10.20506/rst.13.1.764.
[11] Eva C. McClure, Michael Sievers, Christopher J. Brown, Christina A. Buelow, Ellen M. Dittra, Matthew A. Hayes, Ryan M. Pearson, Vivitskaia J.D. Tulloch, Richard K.F. Unsworth, and Rod M. Connolly. 2020. Artificial Intelligence Meets Citizen Science to Supercharge Ecological Monitoring. Patterns 1, 7 (09 2020), https://doi.org/10.1007/s13752-020-01019-5
[12] Womrald R. Morris D. Fraser S. 2007. Masking is better than blinding. BMJ: British Medical Journal 334, 7597 (Apr 2007).
[13] Mankowska ND, Marcinkowska AB, Wadow M, Sharma RI, Kot J, and Winiklewski PJ. 2021. Critical Flicker Fusion Frequency: A Narrative Review. Medicina 57, 10 (Oct 2021), 1096.
[14] Irene Pepperberg. 2016. Animal language studies: What happened? Psychonomic Bulletin & Review 24 (07 2016). https://doi.org/10.3758/s13423-016-1101-y
[15] Irene Pepperberg. 2020. The Comparative Psychology of Intelligence: Some Thirty Years Later. Frontiers in Psychology 11 (05 2020). https://doi.org/10.3389/fpsyg.2020.00973
[16] Irene Maxine Pepperberg. 1999. The Alex Studies: Cognitive and Communicative Abilities of Grey Parrots. Harvard University Press, Cambridge, Massachusetts and London, England.
[17] Bonnie M. Perdue, Andrea W. Clay, Diann E. Gaalena, Terry L. Maple, and Tara S. Stoinski. 2012. Technology at the Zoo: The Influence of a Touchscreen Computer on Orangutans and Zoo Visitors. Zoo Biology 31, 1 (2012), 27–39. https://doi.org/10.1016/j.zoo.2012.06.013.
[18] E. Reas. 2014. Small Animals Live in a Slow-Motion World. Scientific American Mind 25, 4 (2014).
[19] W. K. Richardson, D. A. Washburn, W. D. Hopkins, E. S. Savage-Rumbaugh, and D. M. Rumbaugh. 1990. The NASA/LRC computerized test system. Behavior Research Methods, Instruments, and Computers 22 (1990), 127–131. https://doi.org/10.3758/BF03203132.
[20] Brett Thelen and Rachel Thiet. 2008. Cultivating connection: Incorporating meaningful citizen science into Cape Cod National Seashore’s estuarine research and monitoring programs. Park Science 25 (06 2008).
[21] Michael Trestman. 2015. Clever Hans, Alex the Parrot, and Kanzi: What can Exceptional Animal Learning Teach Us About Human Cognitive Evolution? Biological Theory 10 (03 2015). https://doi.org/10.1007/s13752-014-0199-2
[22] David Washburn. 2015. The Four Cs of Psychological Wellbeing: Lessons from Three Decades of Computer-based Environmental Enrichment. Animal Behavior and Cognition 2 (08 2015), 218–232. https://doi.org/10.12966/abc.08.02.2015