SOFTCARDINALITY-CORE: Improving Text Overlap with Distributional Measures for Semantic Textual Similarity

Sergio Jimenez, Claudia Becerra
Universidad Nacional de Colombia
Ciudad Universitaria, edificio 453, oficina 114
Bogotá, Colombia
sgjimenezv@unal.edu.co
cjbecerrac@unal.edu.co

Alexander Gelbukh
CIC-IPN
Av. Juan Dios Bátiz, esq. Av. Mendizábal,
Col. Nueva Industrial Vallejo,
CP 07738, DF, México
www.gelbukh.com

Abstract

Soft cardinality has been shown to be a very strong text-overlapping baseline for the task of measuring semantic textual similarity (STS), obtaining 3rd place in SemEval-2012. At *SEM-2013 shared task, beside the plain text-overlapping approach, we tested within soft cardinality two distributional word-similarity functions derived from the ukWack corpus. Unfortunately, we combined these measures with other features using regression, obtaining positions 18th, 22nd and 23rd among the 90 participants systems in the official ranking. Already after the release of the gold standard annotations of the test data, we observed that using only the similarity measures without combining them with other features would have obtained positions 6th, 7th and 8th; moreover, an arithmetic average of these similarity measures would have been 4th (mean = 0.5747). This paper describes both the 3 systems as they were submitted and the similarity measures that would obtained those better results.

1 Introduction

The task of textual semantic similarity (STS) consists in providing a similarity function on pairs of texts that correlates with human judgments. Such a function has many practical applications in NLP tasks (e.g. summarization, question answering, textual entailment, paraphrasing, machine translation evaluation, among others), which makes this task particularly important. Numerous efforts have been devoted to this task (Lee et al., 2005; Mihalcea et al., 2006) and major evaluation campaigns have been held at SemEval-2012 (Agirre et al., 2012) and in *SEM-2013 (Agirre et al., 2013).

The experimental setup of STS in 2012 consisted of three data sets, roughly divided in 50% for training and for testing, which contained text pairs manually annotated as a gold standard. Furthermore, two data sets were provided for surprise testing. The measure of performance was the average of the correlations per data set weighted by the number of pairs in each data set (mean). The best performing systems were UKP (Bär et al., 2012) mean = 0.6773, TakeLab (Šaric et al., 2012) mean = 0.6753 and soft cardinality (Jimenez et al., 2012) mean = 0.6708. UKP and TakeLab systems used a large number of resources (see (Agirre et al., 2012)) such as dictionaries, a distributional thesaurus, monolingual corpora, Wikipedia, WordNet, distributional similarity measures, KB similarity, POS tagger, machine learning and others. Unlike those systems, the soft cardinality approach used mainly text overlapping and conventional text preprocessing such as removing of stop words, stemming and idf term weighting. This shows that the additional gain in performance from using external resources is small and that the soft cardinality approach is a very challenging baseline for the STS task. Soft cardinality has been previously shown (Jimenez and Gelbukh, 2012) to be also a good baseline for other applications such as information retrieval, entity matching, paraphrase detection and recognizing textual entailment.

Soft cardinality approach to constructing similarity functions (Jimenez et al., 2010) consists in using any cardinality-based resemblance coefficient (such as Jaccard or Dice) but substituting the classical set
cardinality with a softened counting function called soft cardinality. For example, the soft cardinality of a set containing three very similar elements is close to (though larger than) 1, while for three very different elements it is close to (though less than) 3. To use the soft cardinality with texts, they are represented as sets of words, and a word-similarity function is used for the soft counting of the words. For the sake of completeness, we give a brief overview of the soft-cardinality method in Section 3.

The resemblance coefficient used in our participation is a modified version of Tversky’s ratio model (Tversky, 1977). Apart from the two parameters of this coefficient, a new parameter was included and functions max and min were used to make it symmetrical. The rationale for this new coefficient is given in Section 2.

Three word similarity features used in our systems are described in Section 4. The one is a measure of character q-gram overlapping, which reuses the coefficient proposed in Section 2; this measure is described in subsection 4.1. The other two ones are distributional measures obtained from the ukWack corpus (Baroni et al., 2009), which is a collection of web-crawled documents containing about 1.9 billion words in English. The second measure is, again, a reuse of the coefficient specified in Section 2, but using instead sets of occurrences (and co-occurrences) of words in sentences in the ukWack corpus; this measure is described in subsection 4.2. Finally, the third one, which is a normalized version of pointwise mutual information (PMI), is described in subsection 4.3.

The parameters of the three text-similarity functions derived from the combination of the proposed coefficient of resemblance (Section 2), the soft cardinality (Section 3) and the three word-similarity measures (Section 4) were adjusted to maximize the correlation with the 2012 STS gold standard data. At this point, these soft-cardinality similarity functions can provide predictions for the test data. However, we decided to test the approach of learning a resemblance function from the training data instead of using a preset resemblance coefficient. Basically, most resemblance coefficients are ternary functions \(F(x, y, z) \) where \(x = |A|, y = |B| \) and \(z = |A \cap B| \): e.g. Dice coefficient is \(F(x, y, z) = 2z/x+y \) and Jaccard is \(F(x, y, z) = z/(x+y-z) \). Thus, this function can be learned using a regression model, providing cardinalities \(x, y \) and \(z \) as features and the gold standard value as the target function. The results obtained for the text-similarity functions and the regression approach are presented in Section 7.

Unfortunately, when using a regressor trained with 2012 STS data and tested with 2013 surprise data we observed that the results worsened rather than improved. A short explanation of this is over-fitting. A more detailed discussion of this, together with an assessment of the performance gain obtained by the use of distributional measures is provided in Section 8.

Finally, in Section 9 the conclusions of our participation in this evaluation campaign are presented.

2 Symmetrical Tversky’s Ratio Model

In the field of mathematical psychology Tversky proposed the ratio model (TRM) (Tversky, 1977) motivated by the imbalance that humans have on the selection of the referent to compare things. This model is a parameterized resemblance coefficient to compare two sets \(A \) and \(B \) given by the following expression:

\[
\text{trm}(A, B) = \frac{|A \cap B|}{\alpha|A \setminus B| + \beta|B \setminus A| + |A \cap B|}.
\]

Having \(\alpha, \beta \geq 0 \). The numerator represents the commonality between \(A \) and \(B \), and the denominator represents the referent for comparison. Parameters \(\alpha \) and \(\beta \) represent the preference in the selection of \(A \) or \(B \) as referent. Tversky associated the set cardinality, to the stimuli of the objects being compared. Let us consider a Tversky’s example of the 70s: \(A \) is North Corea, \(B \) is red China and stimuli is the prominence of the country. When subjects assessed the similarity between \(A \) and \(B \), they tended to select the country with less prominence as referent. Tversky observed that \(\alpha \) was larger than \(\beta \) when subjects compared countries, symbols, texts and sounds. Our motivation is to use this model by adjusting the parameters \(\alpha \) and \(\beta \) for better modeling human similarity judgments for short texts.

However, this is not a symmetric model and the parameters \(\alpha \) and \(\beta \), have the dual interpretation of modeling the asymmetry in the referent selection, while controlling the balance between \(|A \cap B| \) and
|A - B| + |B - A| as well. The following reformulation, called symmetric TRM (strm), is intended to address these issues:

\[
\text{strm}(A, B) = \frac{c}{\beta (\alpha a + (1 - \alpha) b) + c},
\]

where \(a = \min(|A - B|, |B - A|)\), \(b = \max(|A - B|, |B - A|)\) and \(c = |A \cap B| + \text{bias}\). In strm, \(\alpha\) models only the balance between the differences in the cardinalities of \(A\) and \(B\), and \(\beta\) models the balance between \(|A \cap B|\) and \(|A - B| + |B - A|\). Furthermore, the use of functions min and max makes the measure to be symmetric. Although the motivation for the bias parameter is empirical, we believe that this reduces the effect of the common features that are frequent and therefore less informative, e.g. stop words. Note that for \(\alpha = 0.5, \beta = 1\) and bias \(= 0\), strm is equivalent to Dice’s coefficient. Similarity, for \(\alpha = 0.5, \beta = 2\) and bias \(= 0\), strm is equivalent to the Jaccard’s coefficient.

3 Soft Cardinality

The cardinality of a set is its number of elements. By definition, the sets do not allow repeated elements, so if a collection of elements contains repetitions its cardinality is the number of different elements. The classical set cardinality does not take into account similar elements, i.e. only the identical elements in a collection counted once. The soft cardinality (Jimenez et al., 2010) considers not only identical elements but also similar using an auxiliary similarity function \(\text{sim}\), which compares pairs of elements. This cardinality can be calculated for a collection of elements \(A\) with the following expression:

\[
|A|^{p} = \sum_{i=1}^{n} w_{i} \left(\sum_{j=1}^{n} \text{sim}(a_{i}, a_{j})^{p} \right)^{-1}
\]

where \(A = \{a_{1}, a_{2}, \ldots, a_{n}\}\); \(w_{i} \geq 0; p \geq 0\); \(1 > \text{sim}(x, y) \geq 0, x \neq y\); and \(\text{sim}(x, x) = 1\). The parameter \(p\) controls the degree of "softness" of the cardinality. This formulation has the property of reproducing classical cardinality when \(p\) is large and/or when \(\text{sim}\) is a rigid function that returns 1 only for identical elements and 0 otherwise. The coefficients \(w_{i}\) are the weights associated with each element. In text applications elements \(a_{i}\) are words and weights \(w_{i}\) represent the importance or informative character of each word (e.g. idf weights). The apostrophe is used to differentiate soft cardinality from the classic set cardinality.

4 Word Similarity

Analogous to the STS, the word similarity is the task of measuring the relationship of a couple of words in a way correlated with human judgments. Since when Rubenstein and Goodenough (1965) provided the first data set, this task has been addressed primarily through semantic networks (Resnik, 1999; Pedersen et al., 2004) and distributional measures (Agirre et al., 2009). However, other simpler approaches such as edit-distance (Levenshtein, 1966) and stemming (Porter, 1980) can also be used. For instance, the former identifies the similarity between "song" and "sing", and later that between "sing" and "singing". This section presents three approaches for word similarity that can be plugged into the soft cardinality expression in eq. 2.

4.1 \(Q\)-grams similarity

\(Q\)-grams are the collection of consecutive-overlapped sub-strings of length \(q\) obtained from the character string in a word. For instance, the 2-grams (bi-grams) and 3-grams (trigrams) representation of the word “sing” are \{'#s', 'si', 'in', 'ng', 'g#'\} and \{'#si', 'sin', 'ing', 'ng#\} respectively. The character '#' is a padding character that distinguishes \(q\)-grams at the beginning and ending of a word. If the number of characters in a word is greater or equal than \(q\) its representation in \(q\)-grams is the word itself (e.g. the 6-grams in “sing” are \{'sing'\}). Moreover, the 1-grams (unigrams) and 0-grams representations of “sing” are \{'s', 'i', 'n', 'g'} and \{'sing'\}. A word can also be represented by combining multiple representations of \(q\)-grams. For instance, the combined representation of “sing” using 0-grams, unigrams, and bi-grams is \{'sing', 's', 'i', 'n', 'g', '#s', 'si', 'in', 'ng', 'g#'\}, denoted by [0:2]-grams. In practice a range \([q_{1} : q_{2}]\) of \(q\)-grams can be used having \(0 \leq q_{1} < q_{2}\).

The proposed word-similarity function (named \(q\)grams) first represents a pair of words using \([q_{1} : q_{2}]\)-grams and then compares them reusing the strm \(\text{coefficient (eq.1). The parameters of the
4.2 Context-Set Distributional Similarity

The hypothesis of this measure is that the co-occurrence of two words in a sentence is a hint of the possible relationship between them. Let us define \(sf(t) \) as the sentence frequency of a word \(t \) in a corpus. The sentence frequency is equivalent to the well known document frequency but uses sentences instead of documents. Similarly, \(sf(t_A \land t_B) \) is the number of sentences where words \(t_A \) and \(t_B \) co-occur. The idea is to compute a similarity function between \(t_A \) and \(t_B \) representing them as \(A \) and \(B \), which are sets of the sentences where \(t_A \) and \(t_B \) occur. Similarly, \(A \cap B \) is the set of sentences where both words co-occur. The required cardinalities can be obtained from the sentence frequencies by: \(|A| = sf(t_A) \); \(|B| = sf(t_B) \) and \(|A \cap B| = sf(t_A \land t_B) \). These cardinalities are combined reusing again the \(strm \) coefficient (eq. 1) to obtain a word-similarity function. The parameters of this function, which we refer to it as \(csds \), are \(\alpha_{csds}, \beta_{csds} \) and \(bias_{csds} \).

4.3 Normalized Point-wise Mutual Information

The pointwise mutual information (PMI) is a measure of relationship between two random variables. PMI is calculated by the following expression:

\[
\text{pmi}(t_A, t_B) = \log_2 \left(\frac{P(t_A \land t_B)}{P(t_A) \cdot P(t_B)} \right)
\]

The probabilities required by PMI can be obtained by MLE using sentence frequencies in a large corpus: \(P(t_A) \approx \frac{sf(t_A)}{S} \); \(P(t_B) \approx \frac{sf(t_B)}{S} \) and \(P(t_A \land t_B) \approx \frac{sf(t_A \land t_B)}{S} \). Where \(S \) is the total number of sentences in the corpus.

5 Text-similarity Functions

The “building blocks” proposed in sections 2, 3 and 4, are assembled to build three text-similarity functions, namely \(STS_{qgrams}, STS_{csds} \) and \(STS_{npmi} \). The first component is the \(strm \) resemblance coefficient (eq. 1), which takes as arguments a pair of texts represented as bags of words with importance weights associated with each word. In the following subsection 5.1 a detailed description of the procedure for obtaining such weighted bag-of-words is provided.

The \(strm \) coefficient is enhanced by replacing the classical cardinality by the soft cardinality, which exploits two resources: importance weights associated with each word (weights \(w_i \)) and pairwise comparisons among words (\(sim \)). Unlike \(STS_{qgrams} \) measure, \(STS_{csds} \) and \(STS_{npmi} \) measures require statistics from a large corpus. A brief description of the used corpus and the method for obtaining such statistics is described in subsection 5.2. Finally, the three proposed text-similarity functions contain free parameters that need to be adjusted. The method used to get those parameters is described in subsection 5.3.

5.1 Preprocessing and Term Weighting

All training and test texts were preprocessed with the following sequence of actions: i) text strings were tokenized, ii) uppercase characters are converted into lower-cased equivalents, iii) stop-words were removed, iv) punctuation marks were removed, and v) words were stemmed using Porter’s algorithm (1980). Then each stemmed word was weighted with \(idf \) (Jones, 2004) calculated using the entire collection of texts.

5.2 Sentence Frequencies from Corpus

The sentence frequencies \(sf(t) \) and \(sf(t_A \land t_B) \) required by \(esds \) and \(npmi \) word-similarity functions were obtained from the ukWaC corpus (Baroni et al., 2009). This corpus has roughly 1.9 bil-
lion words, 87.8 millions of sentences and 2.7 millions of documents. The corpus was iterated sentence by sentence with the same preprocessing that was described in the previous section, looking for all occurrences of words and word pairs from the full training and test texts. The target words were stored in a trie, making the entire corpus iteration took about 90 minutes in a laptop with 4GB and a 1.3Ghz processor.

5.3 Parameter optimization

The three proposed text-similarity functions have several parameters: \(p \) exponent in the soft cardinality; \(\alpha \), \(\beta \), and \(\text{bias} \) in \text{strm} coefficient; their sub-scripted versions in \text{qgrams} and \text{csds} word-similarity functions; and finally \(q_1 \)and \(q_2 \) for \text{qgrams} function. Parameter sets for each of the three text-similarity functions were optimized using the full STS-SemEval-2012 data. The function to maximize was the correlation between similarity scores against the gold standard in the training data. The set of parameters for each similarity function were optimized using a greedy hill-climbing approach by using steps of 0.01 for all parameters except \(q_1 \) and \(q_2 \) that used 1 as step. The initial values were \(p = 1 \), \(\alpha = 0.5 \), \(\beta = 1 \), \(\text{bias} = 0 \), \(q_1 = 2 \) and \(q_2 = 3 \). All parameters were optimized until improvement in the function to maximize was below 0.0001. The obtained values are:

\[\text{STS}_\text{qgrams} \quad p = 1.32, \alpha = 0.52, \beta = 0.64, \text{bias} = -0.45, \quad q_1 = 0, \quad q_2 = 2, \quad \alpha_{\text{qgrams}} = 0.95, \quad \beta_{\text{qgrams}} = 1.44, \quad \text{bias}_{\text{qgrams}} = -0.44. \]

\[\text{STS}_\text{csds} \quad p = 0.5, \quad \alpha = 0.63, \quad \beta = 0.69, \quad \text{bias} = -2.05, \quad \alpha_{\text{csds}} = 1.34, \quad \beta_{\text{csds}} = 2.57, \quad \text{bias}_{\text{csds}} = -1.22. \]

\[\text{STS}_{\text{npmi}} \quad p = 6.17, \quad \alpha = 0.83, \quad \beta = 0.64, \quad \text{bias} = -2.11. \]

6 Regression for STS

The use of regression is motivated by the following experiment. First, a synthetic data set with 1,000 instances was generated with the following three features: \(|A| = \text{RandomBetween}(1, 100) \), \(|B| = \text{RandomBetween}(1, 100) \) and \(|A \cap B| = \text{RandomBetween}(0, \text{min}(|A|, |B|)) \). Secondly, a linear regressor was trained using the Dice’s coefficient (i.e., \(2|A \cap B|/|A| + |B| \)) as target function. The Pearson correlation obtained using 4-fold cross-validation as method of evaluation was \(r = 0.93 \). Besides, a Reduced Error Pruning (REP) tree (Witten and Frank, 2005) boosted with 30 iterations of Bagging (Breiman, 1996) was used instead of the linear regressor obtaining \(r = 0.99 \). We concluded that a particular resemblance coefficient can be accurately approximated using a nonlinear regression algorithm and training data.

This approach can be used for replacing the \text{strm} coefficient by a similarity function learned from STS training data. The three features used in the previous experiment were extended to a total of 19 (see table 1) plus the gold standard as target. The feature \#1 is the score of the corresponding text-similarity function described in the previous section. Three sets of features were constructed, each with 19 features using the soft cardinality in combination with the word-similarity functions \text{qgrams}, \text{csds} and \text{npmi}. Let us name these feature sets as \text{fs:qgrams}, \text{fs:csds} and \text{fs:npmi}. The submission labeled \text{run1} was obtained using the feature set \text{fs:qgrams} (19 features). The submission labeled \text{run2} was obtained using the aggregation of \text{fs:qgrams} and \text{fs:csds} (19 \times 2 = 38 features). Finally, \text{run3} was the aggregation of \text{fs:qgrams}, \text{fs:csds} and \text{fs:npmi} (19 \times 3 = 57 features).

7 Results in *SEM 2013 Shared Task

In this section three groups of systems are described by using the functions and models proposed in the previous sections. The first group (and simplest)

#1	STS\textsubscript{sim}	#11	\[\frac{	A \cap B	}{	A	}\]								
#2	\[A	\]	#12	\[\frac{	A \cap B	}{	B	}\]						
#3	\[B	\]	#13	\[A	\cdot	B	\]						
#4	\[A \cap B	\]	#14	\[\frac{	A \cap B	}{	A \cup B	}\]						
#5	\[A \cup B	\]	#15	\[2 \cdot	A \cap B	/\max(A	,	B)\]				
#6	\[A \setminus B	\]	#16	\[\frac{	A \cap B	}{\min(A	,	B)}\]				
#7	\[B \setminus A	\]	#17	\[\frac{	A \cap B	}{\max(A	,	B)}\]				
#8	\[A \cup B - A \cap B	\]	#18	\[\frac{	A \cap B	}{\sqrt{	A	\cdot	B	}}\]				
#9	\[A - B	/	A	\]	#19	\[\frac{	A \cap B	+	A \setminus B	}{2 \cdot	A - B	/	B	}\]
#10	\[B - A	/	B	\]	#20	gold standard								

Table 1: Feature set for regression
of systems consist in using the scores of the three text-similarity functions ST_{qgrams}, ST_{csds} and ST_{npmi}. Table 2 shows the unofficial results of these three systems. The bottom row shows the positions that these systems would have obtained if they had been submitted to the *SEM shared task 2013. The last column shows the results of a system that combines the scores of three measures on a single score calculating the arithmetic mean. This is the best performing system obtained with the methods described in this paper.

Tables 3 and 4 show unofficial and official results of the method described in section 6 using linear regression and Bagging (30 iterations)+REP tree respectively. These results were obtained using WEKA (Hall et al., 2009).

8 Discussion

Contrary to the observation we made in training data, the methods that used regression to predict the gold standard performed poorly compared with the text similarity functions proposed in Section 5. That is, the results in Table 2 overcome those in Tables 3 and 4. Also in training data, Bagging+REP tree surpassed linear regression, but, as can be seen in tables 3 and 4 the opposite happened in test data. This is a clear symptom of overfitting. However, the $OnWN$ data set was an exception, which obtained the best results using linear regression. $OnWN$ was the only one among the 2013 data sets that was not a surprise data set. Probably the 5.97% relative improvement obtained in run3 by the linear regression versus the best result in Table 2 may be justified owing to some patterns discovered by the linear regressor in the $OnWN’2012$ training data which are projected on the $OnWN’2013$ test data.

It is worth noting that in all three sets of results, the lowest mean was consistently obtained by the text-overlapping methods, namely ST_{qgrams} and run1. The relative improvement in mean due to the use of distributional measures against the text-overlapping methods was 3.18%, 3.62% and 2.45% in each set of results (see Tables 2, 3 and 4). In $FNWM$ data set, the biggest improvements achieved 55.88%, 31.11% and 11.50% respectively in the three groups of results, followed by SMT data set. Both in $FNWM$ data set as in SMT, the texts are systematically longer than those found in $OnWN$ and $headlines$. This result suggests that the improvement due to distributional measures is more significant in longer texts than in the shorter ones.

Lastly, it is also important to notice that the ST_{qgrams} text-similarity function obtained $mean = 0.5570$, which proved again to be a very strong text-overlapping baseline for the STS task.

9 Conclusions

We participated in the CORE-STS shared task in *SEM 2013 with satisfactory results obtaining positions 18^{th}, 22^{nd}, and 23^{rd} in the official ranking. Our systems were based on a new parameterized resemblance coefficient derived from the Tversky’s
ratio model in combination with the soft cardinality. The three proposed text-similarity functions used q-grams overlapping and distributional measures obtained from the ukWack corpus. These text-similarity functions would have been attained positions 6th, 7th and 8th in the official ranking, besides a simple average of them would have reached the 4th place. Another important conclusion was that the plain text-overlapping method was consistently improved by the incremental use of the proposed distributional measures. This result was most noticeable in long texts.

In conclusion, the proposed text-similarity functions proved to be competitive despite their simplicity and the few resources used.

Acknowledgments

This research was funded in part by the Systems and Industrial Engineering Department, the Office of Student Welfare of the National University of Colombia, Bogotá, and through a grant from the Colombian Department for Science, Technology and Innovation, Colciencias, proj. 1101-521-28465 with funding from “El Patrimonio Autónomo Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación, Francisco José de Caldas.”

The Section 2 was proposed during the first author’s internship at Microsoft Research in 2012. The third author recognizes the support from Mexican Government (SNI, COFAA-IPN, SIP 20131702, CONACYT 50206-H) and CONACYT–DST India (proj. 122030 “Answer Validation through Textual Entailment”). Entailment”.

References

Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana Kravalova, Marius Pasca, and Aitor Soroa. 2009. A study on similarity and relatedness using distributional and WordNet-based approaches. In Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, NAACL ’09, pages 19–27, Stroudsburg, PA, USA. Association for Computational Linguistics.

Eneko Agirre, Daniel Cer, Mona Diab, and Gonzalez-Agirre Aitor. 2012. SemEval-2012 task 6: A pilot on semantic textual similarity. In Proceedings of the 6th International Workshop on Semantic Evaluation (SemEval *SEM 2012), Montreal, Canada. Association for Computational Linguistics.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. 2013. *SEM 2013 shared task: Semantic textual similarity, including a pilot on typed-similarity. Atlanta, Georgia, USA. Association for Computational Linguistics.

Daniel Bár, Chris Biemann, Iryna Gurevych, and Torsten Zesch. 2012. UKP: computing semantic textual similarity by combining multiple content similarity measures. In Proceedings of the 6th International Workshop on Semantic Evaluation (SemEval *SEM 2012), Montreal, Canada. Association for Computational Linguistics.

Marco Baroni, Silvia Bernardini, Adriano Ferraresi, and Eros Zanchetta. 2009. The WaCky wide web: a collection of very large linguistically processed web-crawled corpora. Language resources and evaluation, 43(3):209–226.

Danushka Bollegala, Yutaka Matsuto, and Mitsuru Ishizuka. 2007. Measuring semantic similarity between words using web search engines. In Proceedings of the 16th international conference on World Wide Web, WWW ’07, pages 757–766, New York, NY, USA. ACM.

Leo Breiman. 1996. Bagging predictors. Machine Learning, 24(2):123–140.

Mark Hall, Frank Elbe, Geoffrey Holmes, and Bernhard Pfahringer. 2009. The WEKA data mining software: An update. SIGKDD Explorations, 11(1):10–18.

Sergio Jimenez and Alexander Gelbukh. 2012. Baselines for natural language processing tasks. Appl. Comput. Math., 11(2):180–199.

Sergio Jimenez, Fabio Gonzalez, and Alexander Gelbukh. 2010. Text comparison using soft cardinality. In Edgar Chavez and Stefano Lonardi, editors, String Processing and Information Retrieval, volume 6393 of LNCS, pages 297–302. Springer, Berlin, Heidelberg.

Sergio Jimenez, Claudia Becerra, and Alexander Gelbukh. 2012. Soft cardinality: A parameterized similarity function for text comparison. In Proceedings of the 6th International Workshop on Semantic Evaluation (SemEval *SEM 2012), Montreal, Canada.

Karen Spärck Jones. 2004. A statistical interpretation of term specificity and its application in retrieval. Journal of Documentation, 60(5):493–502, October.

Michael D Lee, B.M. Pincombe, and Matthew Welsh. 2005. An empirical evaluation of models of text document similarity. IN COGSCI2005, pages 1254–1259.

Vladimir I. Levenshtein. 1966. Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Doklady, 10(8):707–710.
Rada Mihalcea, Courtney Corley, and Carlo Strapparava. 2006. Corpus-based and knowledge-based measures of text semantic similarity. In *AAAI ’06*, pages 775–780.

Ted Pedersen, Siddharth Patwardhan, and Jason Michalizzi. 2004. WordNet::Similarity: measuring the relatedness of concepts. In *Proceedings HLT-NAACL-Demonstration Papers*, Stroudsburg, PA, USA. Association for Computational Linguistics.

Martin Porter. 1980. An algorithm for suffix stripping. *Program*, 3(14):130–137, October.

Phillip Resnik. 1999. Semantic similarity in a taxonomy: An information-based measure and its application to problems of ambiguity in natural language. *Journal of Artificial Intelligence Research*, 11:95–130.

Herbert Rubenstein and John B. Goodenough. 1965. Contextual correlates of synonymy. *Commun. ACM*, 8(10):627–633, October.

Frane Šaric, Goran Glavaš, Mladen Karan, Jan Šnajder, and Bojana Dalbelo Bašić. 2012. TakeLab: systems for measuring semantic text similarity. In *Proceedings of the 6th International Workshop on Semantic Evaluation (SemEval *SEM 2012)*, Montreal, Canada. Association for Computational Linguistics.

Peter D. Turney. 2001. Mining the web for synonyms: PMI-IR versus LSA on TOEFL. In Luc De Raedt and Peter Flach, editors, *Machine Learning: ECML 2001*, number 2167 in Lecture Notes in Computer Science, pages 491–502. Springer Berlin Heidelberg, January.

Amos Tversky. 1977. Features of similarity. *Psychological Review*, 84(4):327–352, July.

I.H. Witten and E. Frank. 2005. *Data Mining: Practical Machine Learning Tools and Techniques*. Morgan Kaufmann Publishers Inc., San Francisco, CA, 2nd edition.