Comparison of Fluorescent Techniques Using Two Enzymes Catalysed for Measurement of Atmospheric Peroxides

Jieya Sun 1,2, Yi Ning 1,2, Xuan Chen 2,*, Xinlu Zhang 2, Yanjun Ren 2,* and Bin Li 1,*

1 School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China; s1914021@st.nuc.edu.cn (J.S.); s1914019@st.nuc.edu.cn (Y.N.)
2 State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; zhang.xinlu@craes.org.cn
* Correspondence: chenxuan@craes.org.cn (X.C.); renyj@craes.org.cn (Y.R.); 20040408@nuc.edu.cn (B.L.)

Abstract: Atmospheric peroxides, especially hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}), are essential oxidants. The peroxide concentration is closely related to the extent of OH radicals and the O\textsubscript{3} cycle in the tropospheric atmospheric chemistry. However, only a few studies have investigated their atmospheric concentrations in China because of inadequacies in the measurement techniques or higher costs of analytical instruments. Therefore, it is essential to design a suitable analysis method of peroxides with higher sensitivity, lower detection limit, and low cost. In view of that, this study investigated the optimum analysis conditions of two H\textsubscript{2}O\textsubscript{2} analytical techniques: the high-performance liquid chromatography (HPLC) with fluorescence detection using two-enzyme catalysis of horseradish-peroxidase (HRP method) and Hemin (Hemin method). Furthermore, these two analysis methods were systematically compared in terms of detection limit, calibration curve, precision, accuracy, and applicability for the first time. The findings showed that the HRP method had a lower detection limit, higher sensitivity, and better applicability for detecting H\textsubscript{2}O\textsubscript{2} and methyl hydroperoxide (MHP) than the Hemin method. Moreover, the HRP method is better suitable for H\textsubscript{2}O\textsubscript{2} and MHP detection, which requires low detection limits and high sensitivity. Besides this, the Hemin method is inexpensive and is more suitable for detecting hydroxyl alkyl peroxides (C\textsubscript{3} \textgreek{g}). The atmospheric concentrations (average) of H\textsubscript{2}O\textsubscript{2} and MHP were 0.60 ± 0.37 ppb and 0.081 ± 0.039 ppb, respectively, as determined by the HRP method. Importantly, atmospheric peroxide concentrations were higher on sunny days than on cloudy days in Beijing in September 2016. H\textsubscript{2}O\textsubscript{2} concentrations showed a diurnal variation with the lowest value in the morning and two peaks at 13:00–17:00. In contrast, MHP concentrations were lowest in the morning and highest after 17:00. Photochemical reactions were responsible for the production of H\textsubscript{2}O\textsubscript{2} and MHP. The reactions of O\textsubscript{3} and olefins emitted by motor vehicles also caused H\textsubscript{2}O\textsubscript{2} concentration to increase during the evening rush hour.

Keywords: hydrogen peroxide; methyl hydroperoxide; analysis method; high-performance liquid chromatography system; fluorescence technique; horseradish peroxidase; Hemin; catalyze
primary oxidants for the oxidation of SO$_2$ to SO$_4^{2-}$ in the aqueous phase when the pH is less than 4.5 [6]. The concentration of peroxides is closely related to the extent of OH radicals present and the O$_3$ cycle in the tropospheric atmospheric chemistry [7,8]. Therefore, researchers have focussed on peroxides and have conducted extensive measurements in the atmosphere since 1985. However, the database is still limited, especially in China, because of the inadequacies in the measurement techniques and higher costs of analytical instruments. Hence, more cost-effective analytical methods with lower detection limits and higher sensitivity are needed to determine peroxide concentration in the atmosphere.

Since the 1980s, the concentrations of atmospheric peroxides have been mainly measured by enzyme catalyzation–fluorescence detection technology, which has a lower detection limit [9,10]. This method is based on the oxidation of a non-fluorescent substrate into a potent fluorescence substance and using an enzyme as the catalyst. Horseradish peroxidase (HRP) is often used as an enzyme to catalyze the peroxide oxidation of p-hydroxyphenylacetic acid (POPHA) into a dimer of POPHA with strong fluorescence properties. This provides more stability and a lower detection limit to the fluorescence method [11]. Hellpointner and Gab [12] successfully separated and quantitatively analyzed H$_2$O$_2$ and partial organic peroxides in atmospheric samples by combining enzyme catalyzation–fluorescence detection technology and high-performance liquid chromatography (HPLC), followed by a post-column derivation reaction. However, this method can only quantify H$_2$O$_2$ and alkyl peroxides of C $\leq$ 2 because the pH value restricts the specificity of HRP enzyme catalysis. Hence, peroxide with C $\geq$ 3 cannot be well quantified [13,14]. Furthermore, an additional pump is required to provide a solution that adjusts the pH of the detected solution because the optimum pH of HRP-catalysed reaction and fluorescence detection is different [13,15,16]. Therefore, Zhang and Dasgupta [13] used an inexpensive hematin method, instead of expensive HRP methods, to measure H$_2$O$_2$ and other organic peroxides. They discovered that the catalytic activity of hematin was similar to that of HRP for H$_2$O$_2$ and was 1/10th of HRP for MHP. The hydroxyl alkyl peroxides (C $\geq$ 3) can be detected using the H$_2$O$_2$ standard curve [12] because the optimum pH in this reaction system was 10.5. Some hydroxyl alkyl peroxides, such as HOCH$_2$OOCH$_2$OH (BMHP), can rapidly decompose into H$_2$O$_2$. A pump-delivered pH-adjusting solution was not needed because the pH of the post-column derivatization reaction (using hematin as an enzyme) was consistent with that of fluorescence detection. Hence, the experimental facility was simplified and economical. Qi et al. [14] devised a method of using cheaper Hemin instead of expensive HRP as a catalyst for analyzing H$_2$O$_2$ and some water-soluble organic peroxides because Hemin can be quickly converted to hematin in an alkaline solution. Xu and Chen [17] investigated the optimal analysis conditions of Qi’s method. However, no attempts have been made to systematically compare these two methods regarding the detection limit, precision and other factors.

This study investigated the optimum analysis conditions of two analytical methods of peroxides using the HRP (HRP method) and Hemin (Hemin method) as catalysts and compared the two methods. After that, this study measured the concentrations of atmospheric peroxides using the more sensitive and accurate method.

2. Materials and Methods

2.1. Experimental Methods

An HPLC post-column derivatization system with a fluorescence detector (LC-20A, Shimadzu, Kyoto, Japan) was used to analyze the concentrations of H$_2$O$_2$ and MHP. Peroxides were separated by the ODS-II column (5 um, 4.6 × 250 mm, GL Science, Tokyo, Japan) and then reacted with p-hydroxyphenyl acetic acid (POPHA, Sigma-Aldrich, St. Louis, MO, USA) to produce the fluorescent dimer of POPHA in the presence of an enzyme. The fluorescence detector was used to determine the fluorescence intensity of the dimer, which shared a linear relationship with the concentration of peroxides. The reaction tube and chromatographic column were placed in the column oven (GL Science, Tokyo, Japan) at 1–2 °C to maintain the stability of enzyme activity [18] and reduce the decomposition of...
peroxides. The chromatographic column, pipes, and joints made of Peek material were used in the HPLC system to reduce peroxides’ decomposition and adsorption. The quantity of injected sample was 20 µL.

Figure 1 is the schematic diagram of the HPLC system. The system using HRP as an enzyme included three high-pressure pumps to deliver the mobile phase (pH: 3.5 H₃PO₄, Fuchen Chemical Reagent, Tianjin, China), the HRP enzyme reagent (6.25 U/mL HRP, Sigma-Aldrich, St. Louis, MO, USA; 6.57 × 10⁻⁵ mol/L POPHA, Sigma-Aldrich, St. Louis, MO, USA; 0.01 mol/L KH₂PO₄, Fuchen Chemical Reagent, Tianjin, China), and the alkali solution (pH 10.5 NH₄Cl/NH₃-H₂O, Fuchen Chemical Reagent, Tianjin, China). The system using Hemin as the enzyme system included two high-pressure pumps to deliver the mobile phase (pH: 3.5 H₃PO₄) and the hemin enzyme reagent (8 × 10⁻⁶ mol/L Hemin, Sigma-Aldrich, St. Louis, MO, USA; 8 × 10⁻⁵ mol/L POPHA; and pH: 10.5 NH₄Cl/NH₃-H₂O, Fuchen Chemical Reagent, Tianjin, China). Every day, all reagents were prepared afresh using deionized distilled water (DDW) obtained from a DDW apparatus (RFD240NA, Advantec, Tokyo, Japan). The calibration curves of H₂O₂ and MHP were built using their diluted standard solutions. Moreover, 1 mL of DDW as the blank sample was injected into the HPLC system and analyzed daily. Notably, single-point calibration checks were performed every two hours. The H₂O₂ standard solution was prepared by diluting the commercially available H₂O₂ solution (35%, Sigma-Aldrich, St. Louis, MO, USA). Its concentration was calibrated once every two months [18,19]. MHP standard solutions were synthesized and calibrated according to the relevant literature [15,20]. Similarly, H₂O₂ and MHP were identified according to the retention times of their respective standards.

2.2. Field Observation

The atmospheric concentrations of peroxides were measured on the top of Building No. 3 of the Chinese Research Academy of Environmental Sciences (40°04’ N, 116°42’ E) in September 2016 (Figure 2). A nebulization-reflux concentration technique [21,22], which turns the trapped solution into mist, was used to sample H₂O₂ and MHP at a velocity of 2.5 L/min for 30 min at 1-h intervals from 7:00 to 19:00 daily. The sampling system was constructed by connecting the sampler, pump, and mass flowmeter. The sampler was made by installing the mist chamber (Figure 3) comprising 8 mL of trapping solution–DDW–on a filter holder with a 0.45-µm filter to prevent DDW from entering the flowmeter. The air was circulated through the mist chamber once the sample system was energized. The peroxide in the chamber was immediately dissolved in the DDW mist and then collected. Blank samples were collected via the same method as the peroxide samples, except that the air pump was not turned on. MHP concentrations obtained during the measurement period were corrected for their low sampling efficiency (73%, the results of the lab’s research). Once the sampling was finished, the samples were immediately analyzed in the HRP method by the HPLC system at wavelengths of λ-exc = 315 nm (excitation) and λ-em = 405 nm (emission). The flow rates of the mobile phase, enzyme reagent, and alkali solution were set at 0.5, 0.2, and 0.1 mL/min, respectively. Notably, the column oven’s temperature was set at 4 ºC.
The precision experiments were performed six times sequentially. The RSD was calculated from three replicate measurements. The results of peroxide concentrations in the atmosphere were the average concentrations of 30-min sampling.

2.3. Data Analysis

Except for precision, all experiments, such as the experiment of optimum analysis conditions and accuracy, were performed thrice to ensure precision and accuracy. The relative standard deviations (RSD) were calculated from three replicate measurements. The precision experiments were performed six times sequentially. The RSD was calculated using six parallel measurement results. The results of peroxide concentrations in field observations were the average concentrations of 30-min sampling.

3. Results and Discussion

3.1. Optimum Analysis Conditions of Two Methods

H₂O₂ (400 μg/L) was selected to examine the optimum analysis conditions of two methods, including the flow rate of reagents, reaction temperature, and others because H₂O₂ is the most prevalent and essential peroxide in the atmosphere. The results were expressed by the signal-to-noise (SNR) ratio (peak area).

The optimum excitation wavelength (λex) and emission wavelength (λem) were investigated when the flow rates of mobile phase, enzyme reagent, and alkali solution were set at 0.5 mL/min, 0.2 mL/min, and 0.2 mL/min, respectively, and the reaction temperature was set at 25 °C. The HRP and Hemin methods were used to analyze H₂O₂ solution at λex of 310 nm, 315 nm, 320 nm, and 325 nm, respectively, and λem of 400 nm, 415 nm, 420 nm, and 425 nm, respectively. The results demonstrated that the SNR of H₂O₂ was highest at λex = 315 nm and λem = 405 nm for both the HRP and Hemin methods (Figure 4).
Atmosphere 2022, 13, 659

5 of 12

2022, 13

was crucial in this reaction system. Notably, the amount of enzyme could affect the rate of fluorescent reaction. Therefore, this study aimed to determine an optimum flow rate that could achieve the lowest detection limit and shorter analysis time on the premise of a sharp peak shape. H$_2$O$_2$ solution was analyzed at the flow rate (set) of both the enzyme reagent and the alkali solution (0.2 mL/min), and the mobile phase rates were set at 0.3, 0.4, 0.5, and 0.6 mL/min. The results showed that the mobile phase’s flow rates of 0.5 mL/min and 0.3 mL/min were best suitable for the HRP and Hemin methods, respectively (Figure 5a). The enzyme reagent was crucial in this reaction system. Notably, the amount of enzyme could affect the rate of fluorescent reaction. The findings showed that the optimal flow rate of enzyme reagent for both methods was 0.2 mL/min (Figure 5b). The optimum pH of fluorescent detection for the dimer of PHPAA was about 10.5 [14]. The H$_2$O$_2$ solution was analyzed at flow rates of 0.1, 0.2, and 0.3 mL/min of the alkali solution to achieve the optimum pH of the detection solution. The results showed that the SNR of H$_2$O$_2$ reached the highest value when the flow rate of alkali solution was set at 0.1 mL/min for the HRP method (Figure 5c).

The optimal flow rates of the mobile phase, enzyme reagent, and alkali solution were investigated at optimal wavelengths and reaction temperature of 25 °C. The sample solution was transported by the mobile phase through the column to the detector in the HPLC system (Figure 1). The amount of the mobile phase can affect the shape of the chromatographic peak, the detection limit, and the analysis time. If the flow rate of the mobile phase is low, the separation of H$_2$O$_2$ by a column is slower, resulting in a longer retention time of H$_2$O$_2$ and a broader chromatographic peak. In contrast, high flow rates can decrease the concentration of enzyme reagent and fluorescence signals. Therefore, this study aimed to determine an optimum flow rate that could achieve the lowest detection limit and shorter analysis time on the premise of a sharp peak shape. H$_2$O$_2$ solution was analyzed at the flow rate (set) of both the enzyme reagent and the alkali solution (0.2 mL/min), and the mobile phase rates were set at 0.3, 0.4, 0.5, and 0.6 mL/min. The results showed that the mobile phase’s flow rates of 0.5 mL/min and 0.3 mL/min were best suitable for the HRP and Hemin methods, respectively (Figure 5a). The enzyme reagent was crucial in this reaction system. Notably, the amount of enzyme could affect the rate of fluorescent reaction. The findings showed that the optimal flow rate of enzyme reagent for both methods was 0.2 mL/min (Figure 5b). The optimum pH of fluorescent detection for the dimer of PHPAA was about 10.5 [14]. The H$_2$O$_2$ solution was analyzed at flow rates of 0.1, 0.2, and 0.3 mL/min of the alkali solution to achieve the optimum pH of the detection solution. The results showed that the SNR of H$_2$O$_2$ reached the highest value when the flow rate of alkali solution was set at 0.1 mL/min for the HRP method (Figure 5c).

The temperature is an essential factor in chemical reactions. In general, the speed of enzymatic fluorescence reaction increases with an increase in temperature [11], whereas the quantum yield and fluorescence intensity of the fluorescent substance decrease with the rise in temperature [23]. Furthermore, peroxides are also unstable at high temperatures,
and their decomposition rates will increase with increasing temperature [24]. Therefore, a suitable temperature is crucial for fluorescent reactions. \( \text{H}_2\text{O}_2 \) solution was analyzed at the fluorescent reaction temperatures of 20, 25, 30, 35, and 40 °C. The findings showed that the SNRs at different temperatures were almost the same with 1% of RSD, implying that the reaction was unaffected by temperature within 20–40 °C in the HRP method (Figure 6). However, the SNR increased with an increase in temperature in the Hemin method, as expected, because high temperature can enhance the activity of Hemin (Figure 6).

Figure 6. The results of two methods under different reaction temperatures.

3.2. Comparison of Two Methods

Two analytical methods were compared for detection limits, calibration curves, precision, accuracy, and applicability.

3.2.1. Detection Limit

The detection limit in this study is defined as the concentration of \( \text{H}_2\text{O}_2 \) solution that corresponds to three times the mean value of 20 noises detected under the optimum analysis conditions. The detection limits of \( \text{H}_2\text{O}_2 \) and MHP in the liquid phase were 0.04 \( \mu \text{g} \)/L and 0.64 \( \mu \text{g} \)/L, respectively, in the HRP method, and were 0.61 \( \mu \text{g} \)/L and 61 \( \mu \text{g} \)/L, respectively, in the Hemin method (Table 1). At the sampling flow of about 180 L, the detection limits of \( \text{H}_2\text{O}_2 \) and MHP in the gaseous phase were 0.4 ppt and 4.5 ppt, respectively, in the HRP method, and 4 ppt and 282 ppt, respectively, in the Hemin method (Table 1). These results indicated that the detection limits of gaseous \( \text{H}_2\text{O}_2 \) and MHP in the HRP method were 10 and 62 times, respectively, lower than that in the Hemin method. This study’s results are different from Qi’s [14]. This result means that low levels of \( \text{H}_2\text{O}_2 \) and MHP can be analyzed more accurately using the HRP method than the Hemin method.

Table 1. Detection limits of \( \text{H}_2\text{O}_2 \) and MHP in liquid and gaseous phases obtained by two methods.

| Method      | Liquid Phase (\( \mu \text{g} \)/L) | Gas-Phase (ppt) |
|-------------|-------------------------------------|-----------------|
|             | \( \text{H}_2\text{O}_2 \) | MHP | \( \text{H}_2\text{O}_2 \) | MHP |
| HRP method  | 0.04                               | 0.64 | 0.4               | 4.5  |
| Hemin method| 0.61                               | 61   | 4                 | 282  |

3.2.2. Calibration Curve and Sensitivity

The value of five times the detection limit of \( \text{H}_2\text{O}_2 \) in the liquid phase was taken as the lowest point of calibration curves, which is 0.2 \( \mu \text{g} \)/L in the HRP method and 3 \( \mu \text{g} \)/L in the Hemin method respectively. The lowest calibration curve points of MHP were 3 \( \mu \text{g} \)/L and 300 \( \mu \text{g} \)/L in the HRP method and Hemin method, respectively. The calibration curves of \( \text{H}_2\text{O}_2 \) and MHP in the two methods were created under their optimum analysis conditions. The results demonstrated that the calibration curves for \( \text{H}_2\text{O}_2 \) were linear between 0.2 \( \mu \text{g} \)/L and 1000 \( \mu \text{g} \)/L in the HRP method and between 3 \( \mu \text{g} \)/L and 4000 \( \mu \text{g} \)/L in the Hemin
method (Table 2, Figure 7). The calibration curves for MHP were linear between 3 µg/L and 3000 µg/L in the HRP method and between 300 µg/L and 4000 µg/L in the Hemin method. The correlation coefficient of the calibration curve for H₂O₂ and MHP in the HRP method (>0.999) was higher than using the Hemin method (between 0.99 and 0.999). The slope of the calibration curve of H₂O₂ for the HRP method (152,324) was 4.6 times higher than that of the Hemin method (27,129). The slope of MHP for the HRP method (46,232) was 171 times higher than that of the Hemin method (268). These results indicate that the HRP method was more sensitive in detecting H₂O₂ and MHP than the Hemin method.

Table 2. The linear range, equation of linear regression, and correlation coefficients of calibration curves of H₂O₂ obtained from two methods.

| Compounds | Method       | Linear Range (µg/L) | Equation of Linear Regression       | Correlation Coefficients |
|-----------|--------------|---------------------|-------------------------------------|--------------------------|
|            | HRP method   | 0.2~1000            | y = 152,324x + 847,775              | >0.999                   |
|            | Hemin method | 3~4000              | y = 27,129x − 789,287               | 0.99−0.999               |
| H₂O₂      |              |                     |                                     |                          |
| MHP       | HRP method   | 3~3000              | y = 46,232x + 625,650               | >0.999                   |
|           | Hemin method | 300~4000            | y = 268x − 70,175                   | 0.99−0.999               |

Figure 7. The calibration curves of (a) H₂O₂ and (b) MHP by two methods.

Table 3 shows the slopes of eight standard curves of H₂O₂ and eight results of H₂O₂ standard solutions of 100 ppb and 600 ppb measured in the HRP method on different days within a 16-day period. The RSD of the slope was 0.77%, and the RSDs of H₂O₂ standard solutions of 100 ppb and 600 ppb were 2.2% and 1.3%, respectively. These results indicate high repeatability on peroxide calibrations.

Table 3. Slopes of standard curves and the signal value of H₂O₂ standard solution measured in HRP method on different days.

| Items            | Area 1 | Area 2 | Area 3 | Area 4 | Area 5 | Area 6 | Area 7 | Area 8 | RSD (%) |
|------------------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
| Slope (×10^5)    | 1.52   | 1.51   | 1.53   | 1.51   | 1.52   | 1.52   | 1.49   | 1.52   | 0.774   |
| 100 (×10^7 µg/L) | 1.59   | 1.61   | 1.61   | 1.51   | 1.58   | 1.59   | 1.54   | 1.58   | 2.22    |
| 600 (×10^7 µg/L) | 9.53   | 9.28   | 9.55   | 9.16   | 9.36   | 9.46   | 9.36   | 9.40   | 1.35    |

Standard solutions mixed with the same concentration of H₂O₂ (150 µg/L), HMHP (400 µg/L), and different concentrations of MHP were analyzed by two methods. MHP concentration in the mixed solution of the Hemin method (4000 µg/L) was four times higher than that of the HRP method (1000 µg/L). Figure 8 is the chromatogram obtained by two methods. H₂O₂, HMHP, and MHP were detected at the retention times of 6, 7.7,
and 12 min. The signal values of H$_2$O$_2$, HMHP, and especially, MHP in the HRP method were significantly higher than those in the Hemin method (Figure 8). This result indicates that the sensitivity of the HRP method in detecting H$_2$O$_2$, HMHP, and MHP was higher than that of the Hemin method. Zhang and Dasgupta [13] studied the kinetic profiles of HRP and hemin catalytic systems for analyzing H$_2$O$_2$. Their results indicated that the fluorescence development rate of HRP and Hemin was 80% and 55% of the highest catalytic activity of hematin after 30-s reactions. The initial rate of fluorescence development with HRP was higher than that with hematin. The reaction time was about 15 s in this study, meaning that the HRP method showed more sensitivity to H$_2$O$_2$ and HMHP than the hematin method. The above results indicate that the relative sensitivities of the HRP and Hemin methods in detecting H$_2$O$_2$ in this study were different from the data of Zhang and Dasgupta [13] and Qi [14]. Zhang and Dasgupta [13] mainly studied the fluorescence kinetics of HRP and hematin. They did not examine the analysis method of peroxides. They gave HRP and hematin calibration data but did not explain any analysis conditions. While analyzing peroxides, many factors, such as enzyme activity and pH value of the reaction system, can affect the fluorescence reaction that determines the magnitude of signal value. Therefore, the difference mentioned above between this study and Zhang and Dasgupta [13] was not fully understood. Qi [14] investigated the analysis method of peroxides using Hemin instead of HRP. However, the concentration (Table 4), manufacturer, date of manufacture of HRP, and the filling material and manufacturing process of the chromatographic column used in this study are different from Qi [14]. These factors may cause differences in the relative sensitivities of the HRP and Hemin methods in detecting H$_2$O$_2$ between the two methods. As for MHP, the HRP method exhibited much higher sensitivity than the Hemin method [13].

![Figure 8](https://example.com/figure8.png)

**Figure 8.** Chromatogram of peroxides analysed by two methods.

**Table 4.** The concentration and flow rate of HRP in the reaction system used in this study and ref. [14].

| Items                                      | Present Study | Ref. [14] |
|--------------------------------------------|---------------|-----------|
| HRP concentration in enzyme reagent (U/mL) | 6.25          | 6.0       |
| Flow rate of enzyme reagent (mL/min)       | 0.2           | 0.1       |
| Flow rate of reaction solution (mL/min)    | 0.7           | 0.7       |
| HRP concentration in reaction solution (U/mL) | 1.8          | 0.86      |

3.2.3. Precision

The low concentration (20 µg/L), medium concentration (400 µg/L), and high concentration (800 µg/L) of the H$_2$O$_2$ standard curve were analyzed six times to evaluate the precision of the two methods (Table 5). The RSD of the six results measured H$_2$O$_2$ solution
at low, medium, and high concentrations of 0.44%, 0.49%, and 0.35% for the HRP method, respectively. Similarly, these low, medium, and high concentrations were 0.97%, 0.49%, and 0.47% for the Hemin method, displaying that the repeatability of the two methods was excellent.

Table 5. Average value and RSD of six analysis results of \( \text{H}_2\text{O}_2 \) standard solution with different concentrations.

| \( \text{H}_2\text{O}_2 \) (µg/L) | Area (×10⁶)                        | HRP Method |            |            | Hemin Method |            |
|-------------------------------|-----------------------------------|------------|------------|------------|--------------|------------|
|                               | Mean ± SD | RSD (%) | Mean ± SD | RSD (%) | Mean ± SD | RSD (%) |
| 20                            | 3.03 ± 0.0133 | 0.44 | 0.142 ± 0.00138 | 0.97 |            |            |
| 400                           | 65.8 ± 3.22 | 0.49 | 7.85 ± 0.389 | 0.49 |            |            |
| 800                           | 125 ± 4.38  | 0.35 | 21.3 ± 1.00  | 0.47 |            |            |

3.2.4. Accuracy

The accuracy of the two methods was assessed by adding a given amount of \( \text{H}_2\text{O}_2 \) standard solution to the actual sample and calculating the \( \text{H}_2\text{O}_2 \) recovery rate. The results demonstrated that the recovery rates were 97.8% and 101.6% in the HRP and Hemin methods, respectively, indicating that both methods were highly accurate (Table 6).

Table 6. Recovery rates of \( \text{H}_2\text{O}_2 \) by two methods.

| Analytical Method | Recovery Rates (%) |        |        |        |            |
|-------------------|--------------------|--------|--------|--------|------------|
|                   | 1                  | 2      | 3      | Mean   | RSD (%)    |
| HRP Method        | 97.1               | 96.5   | 99.7   | 97.8   | 1.7        |
| Hemin Method      | 102                | 99.0   | 103    | 102    | 2.2        |

3.2.5. Applicability of Methods

The results presented in Figure 6 demonstrated that the catalytic reaction rate using the HRP method was free from temperature effects within 15–40 °C. In contrast, the Hemin method’s rate increased with increased temperature (Figure 6). This result suggests that the HRP method has broader applicability than the Hemin method.

The above results show that the HRP method had a lower detection limit, higher sensitivity, and better applicability for analyzing atmospheric \( \text{H}_2\text{O}_2 \) and MHP than the Hemin method. The Hemin method is more economical than the HRP method.

3.3. Measurement of Atmospheric Peroxides Concentrations

Atmospheric peroxide concentrations were measured using the HRP method from 07:00 to 19:00 for eight days in September 2016. A total of 96 data sets were obtained. During the period, the measurements of blank samples, parallel samples, and spiked recovery rates in the whole monitoring process were conducted twice a day to ensure the precision and accuracy of the measurements. The relative errors of the two parallel samples ranged from 2.5% to 6.3%, and the recovery rates ranged from 96% to 105%. These results indicated that the measurement of atmospheric \( \text{H}_2\text{O}_2 \) and MHP by the HRP methods had good repeatability and high accuracy.

During the measurement period, only \( \text{H}_2\text{O}_2 \) and MHP were quantitatively detected. The concentrations of \( \text{H}_2\text{O}_2 \) ranged from 0.13 ppb to 1.6 ppb, with an average value of 0.60 ± 0.37 ppb. Similarly, the MHP concentrations ranged from 0.020 ppb to 0.21 ppb with an average value of 0.081 ± 0.039 ppb, respectively (Table 7). Their concentrations were significantly higher on sunny days than cloudy days (Table 8, Figure 9) because \( \text{H}_2\text{O}_2 \) and MHP were secondary products of photochemical reactions. Moreover, stronger solar radiation and higher temperature on sunny days promoted the production of \( \text{H}_2\text{O}_2 \) and MHP.
Atmosphere 2022, 13, 659

| Table 7. Concentrations of H₂O₂ and MHP in Beijing, September 2016 (ppb). |
|------------------|---------|------|-----|
| Air Pollutions   | Mean    | Min  | Max |
| H₂O₂             | 0.60 ± 0.37 | 0.13 | 1.6 |
| MHP              | 0.081 ± 0.039 | 0.020 | 0.21 |

| Table 8. Concentrations of H₂O₂ and MHP were observed on sunny days and cloudy days in September 2016, Beijing (ppb). |
|------------------|---------|------|------|------|------|------|------|
| Air Pollutions   | Mean Sunny | Min Sunny | Max Sunny | Mean Cloudy | Min Cloudy | Max Cloudy |
| H₂O₂             | 0.69 ± 0.37 | 0.13 | 1.6 | 0.30 ± 0.089 | 0.16 | 0.49 |
| MHP              | 0.089 ± 0.039 | 0.020 | 0.21 | 0.047 ± 0.015 | 0.021 | 0.081 |

Figure 9. The diurnal variation of the concentrations of O₃, H₂O₂, and MHP in September 2016, Beijing.

The concentrations of O₃ and H₂O₂ generally showed diurnal variations similar to those of solar radiation. On most days, their concentrations started to increase with the increase of solar radiation from 9:00 and peaked at 14:00 or 15:00 when the solar radiation was high. This is primarily induced by photolysis and O₃ and the photolysis and photooxidation of VOCs emitted from anthropogenic and natural sources. In addition, H₂O₂ concentration showed a second peak at 17:00–18:00 when the solar radiation decreased to a lower level on most days, whereas O₃ did not show a second peak. This may be caused by the reaction of O₃ and a large amount of olefins emitted from motor vehicles during the evening rush hour [25]. The photolysis of NO₂ generates O₃, and the reduction of solar radiation leads to a decrease in O₃ generation. MHP concentration showed a different diurnal variation from that of H₂O₂. MHP concentration increased from around noon with fluctuations on most sunny days, and the highest value occurred after 17:00. This result indicates that MHP, like H₂O₂, was also generated by photochemical reactions; however, it also has different production and reduction pathways from H₂O₂ [26].

4. Conclusions

The optimum analytical conditions for determining peroxides using the HRP and Hemin methods were investigated in this study. The results indicated that the optimum excitation and emission wavelengths are 315 nm and 405 nm, respectively, for the two methods. The optimum flow rates of the mobile phase, enzyme reagent, and alkali solution for the HRP method are 0.5, 0.2, and 0.1 mL/min, respectively. Those of the mobile phase and enzyme reagent for the Hemin method are 0.3 and 0.2 mL/min, respectively. Compared
with the Hemin method, the HRP method has a lower detection limit, higher sensitivity, and better applicability for analyzing atmospheric \( \text{H}_2\text{O}_2 \) and MHP. The HRP method is more suitable for \( \text{H}_2\text{O}_2 \) and MHP detection, which requires low detection limits and high sensitivity. In contrast, the Hemin method was better for detecting hydroxyl alkyl peroxides \((C \geq 3)\) and had lower analysis costs.

The maximum \( \text{H}_2\text{O}_2 \) and MHP levels were 1.6 and 0.21 ppb, and the average concentrations of \( \text{H}_2\text{O}_2 \) and MHP were 0.60 ± 0.37 ppb and 0.081 ± 0.039 ppb in Beijing in September 2016, respectively. The concentrations of \( \text{H}_2\text{O}_2 \) and MHP were higher on sunny days than on cloudy days. They were the lowest in the morning on most sunny days and gradually increased. Two peaks of \( \text{H}_2\text{O}_2 \) concentrations were observed at 13:00–17:00 on most sunny days, whereas the MHP concentration reached the peak value after 17:00. \( \text{H}_2\text{O}_2 \) and MHP were mainly generated from photochemical reactions. The reaction of \( \text{O}_3 \) and olefins emitted by motor vehicles during the evening rush hours also increased \( \text{H}_2\text{O}_2 \) concentrations.

Author Contributions: Conceptualization, J.S. and X.C.; methodology, X.C.; software, J.S.; validation, B.L. and Y.R.; formal analysis, Y.N.; investigation, X.Z.; resources, Y.N. and X.Z.; data curation, J.S.; writing—original draft preparation, J.S.; writing—review and editing, J.S., B.L. and X.C.; visualization, J.S. and Y.N.; supervision, B.L. and Y.R.; project administration, Y.R.; funding acquisition, Y.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (NSFC) (Grant No. 42075182) and the Key Project of Heavy Air Pollution Cause and Control (No. DQGG202111).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This study was supported by the National Natural Science Foundation of China (NSFC) (Grant No. 42075182) and the Key Project of Heavy Air Pollution Cause and Control (No. DQGG202111). We thank the participants in our measurements for their help and support throughout this research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gunz, D.W.; Hoffmann, M.R. Atmospheric chemistry of peroxides: A review. Atmos. Environ. Part A Gen. Top. 1990, 7, 1601–1633. [CrossRef]
2. Chen, X.; Aoki, M.; Takami, A.; Chai, F.; Hatakeyama, S. Effect of ambient-level gas-phase peroxides on foliar injury, growth, and net photosynthesis in Japanese radish (Raphanus sativus). Environ. Pollut. 2010, 158, 1675–1679. [CrossRef] [PubMed]
3. Xu, S.F.; Zheng, Z.W.; Xu, S. Measuring Method for Hydrogen Peroxide in Liquid Phase and Its Progress at Home and Abroad. China Saf. Sci. J. 2007, 3, 166–170.
4. Jackson, A.V.; Hewitt, C.N. Hydrogen peroxide and organic hydroperoxide concentrations in air in a eucalyptus forest in central Portugal. Atmos. Environ. 1996, 6, 819–830. [CrossRef]
5. Chen, X.; Aoki, M.; Zhang, S.; Zhang, J.; Nozoe, S.; Komori, D.; Takami, A.; Hatakeyama, S. Observation of hydrogen peroxide concentrations in a Japanese red pine forest. J. Atmos. Chem. 2008, 60, 37–49. [CrossRef]
6. Hua, W.; Chen, Z.; Jie, C.; Kondo, Y.; Hofzumahaus, A.; Takegawa, N.; Chang, C.; Lu, K., III; Miyazaki, Y.; Kita, K.; et al. Atmospheric hydrogen peroxide and organic hydroperoxides during PRIDE-PRD’06, China: Their concentration, formation mechanism and contribution to secondary aerosols. Atmos. Chem. Phys. 2008, 8, 6755–6773. [CrossRef]
7. Takami, A.; Shiratori, N.; Yonekura, H.; Hatakeyama, S. Measurement of hydroperoxides and ozone in Oku-Nikko area. Atmos. Environ. 2003, 37, 3861–3872. [CrossRef]
8. Sakugawa, H.; Kaplan, I.R. Observation of the Diurnal Variation of Gaseous \( \text{H}_2\text{O}_2 \) in Los Angeles Air Using a Cryogenic Collection Method. Aerosol Sci. Technol. 1990, 12, 77–85. [CrossRef]
9. Zika, R.G.; Saltzman, E.S. Interaction of ozone and hydrogen peroxide in water: Implications for analysis of \( \text{H}_2\text{O}_2\text{in} \) air. Geophys. Res. Lett. 1982, 9, 231–234. [CrossRef]
10. Lazrus, A.L.; Kok, G.L.; Gitlin, S.N.; Lind, J.A.; McLaren, S.E. Automated fluorimetric method for hydrogen peroxide in atmospheric precipitation. Anal. Chem. 1985, 57, 917–922. [CrossRef]
11. Guilbault, G.G.; Kramer, D.N.; Hackley, E.B. New substrate for fluorometric determination of oxidative enzymes. *Anal. Chem.* 1967, 39, 271. [CrossRef]
12. Hellpointner, E.; Gäb, S. Detection of methyl, hydroxymethyl and hydroxyethyl hydroperoxides in air and precipitation. *Nature* 1989, 337, 631–634. [CrossRef]
13. Zhang, G.; Dasgupta, P.K. Hematin as a peroxidase substitute in hydrogen peroxide determinations. *Anal. Chem.* 1992, 64, 517–522. [CrossRef] [PubMed]
14. Qi, B.; Tang, X.Y.; Zhang, Y.H.; Shao, K.H.; Hu, M.; Chen, Z.M. Determination of Hydrogen Peroxide and Hydrophilic Organic Peroxides by High-Performance Liquid Chromatography with Hemin as a Peroxidase Substitute. *Chin. J. Anal. Chem.* 1998, 26, 1041–1046.
15. Kok, G.L.; McLaren, S.E.; Stafflbach, T.A. HPLC Determination of Atmospheric Organic Hydroperoxides. *J. Atmos. Ocean. Technol.* 1995, 12, 282–289. [CrossRef]
16. Lee, M.; Noone, B.C.; O’Sullivan, D.; Heikes, B.G. Method for the collection and HPLC analysis on hydrogen peroxide and C1 and C2 hydroperoxides in the atmosphere. *J. Atmos. Ocean. Technol.* 1995, 12, 1060–1070. [CrossRef]
17. Xu, J.R.; Chen, Z.M. Determination of Peroxides in Environmental Samples by High Performance Liquid Chromatography with Fluorescence Detection. *Chin. J. Chromatogr.* 2005, 23, 366–369.
18. Kurth, H.H.; Gaeb, S.; Turner, W.V.; Kettrup, A. A high-performance liquid chromatography system with an immobilized enzyme reactor for detection of hydrophilic organic peroxides. *Anal. Chem.* 1991, 63, 2586–2589. [CrossRef]
19. Staffelbach, T.A.; Kok, G.L. Henry’s Law Constants for Aqueous Solutions of Hydrogen Peroxide and Hydroxymethyl Hydroperoxide. *J. Geophys. Res. Atmos.* 1993, 98, 12713–12717. [CrossRef]
20. Vaghjiani, G.L.; Ravishankara, A.R. Absorption Cross Sections of CH$_3$OOH, H$_2$O$_2$, and D$_2$O$_2$Vapors between 210 and 365 nm at 297 K. *J. Geophys. Res. Atmos.* 1989, 94, 3487–3492. [CrossRef]
21. Cofer, W.R.; Collins, V.G.; Talbot, R.W. Improved aqueous scrubber for collection of soluble atmospheric trace gases. *Environ. Sci. Technol.* 1985, 19, 557–560. [CrossRef] [PubMed]
22. Sauer, F.; Limbach, S.; Moortgat, G.K. Measurement of hydrogen peroxide and individual organic peroxides in the marine troposphere. *Atmos. Environ.* 1997, 31, 1173–1184. [CrossRef]
23. Li, W.; Su, W.H. Determination of hydrogen peroxide in air and precipitation by automatic fluorescence method. *Environ. Chem.* 1987, 6, 23–29.
24. Liu, X.Z.; Xie, C.X.; Shi, N.; Xu, W. Research on decomposition behavior of hydrogen peroxide solution. *Qilu Petrochem. Technol.* 2009, 37, 99–102.
25. Zhang, Q.; Liu, J.; He, Y.; Yang, J.; Gao, J.; Liu, H.; Tang, W.; Chen, Y.; Fan, W.; Chen, X. Measurement of hydrogen peroxide and organic hydroperoxide concentrations during autumn in Beijing, China. *J. Environ. Sci.* 2018, 64, 72–81. [CrossRef]
26. Sauer, F.; Beck, J.; Schuster, G.; Moortgat, G.K. Hydrogen peroxide, organic peroxides and organic acids in a forested area during FIELDVOC’94. *Chemosphere-Glob. Chang. Sci.* 2001, 3, 309–326. [CrossRef]