Property	Formula	Description	Fr. Name
MaxEStateIndex	PEOE_VSA9	NumAliphaticHeterocycles	fr_benzodiazepine
MinEStateIndex	SMR_VSA1	NumAliphaticRings	fr_bicyclic
MaxAbsEStateIndex	SMR_VSA10	NumAromaticCarbocycles	fr_diazo
MinAbsEStateIndex	SMR_VSA2	NumAromaticHeterocycles	fr_dihydropyridine
qed	SMR_VSA3	NumAromaticRings	fr_epoxide
MolWt	SMR_VSA4	NumHAcceptors	fr_esteer
HeavyAtomMolWt	SMR_VSA5	NumHDonors	fr_ether
ExactMolWt	SMR_VSA6	NumHeteroatoms	fr_furan
NumValenceElectrons	SMR_VSA7	NumRotatableBonds	fr_guanido
NumRadicalElectrons	SMR_VSA8	NumSaturatedCarbocycles	fr_halogen
MaxPartialCharge	SlogP_VSA1	NumSaturatedRings	fr_hdrzone
MinPartialCharge	SlogP_VSA10	RingCount	fr_imidazole
MaxAbsPartialCharge	SlogP_VSA11	MolLogP	fr_imide
MinAbsPartialCharge	SlogP_VSA12	MolMR	fr_isocyan
FpDensityMorgan1	SlogP_VSA2	fr_Al_COO	fr_isothiocyan
FpDensityMorgan2	SlogP_VSA3	fr_Al_OH	fr_ketone
FpDensityMorgan3	SlogP_VSA4	fr_Al_OH_noTert	fr_ketone_TopliSS
BalabanJ	SlogP_VSA5	fr_ArN	fr_lactam
Kappa1	SlogP_VSA6	fr_Ar_COO	fr_lactone
Chi0	SlogP_VSA7	fr_Ar_N	fr_methoxy
Chi0n	SlogP_VSA8	fr_Ar_NH	fr_morpholine
Chi1	SlogP_VSA9	fr_Ar_OH	fr_nitrile
Chi1n	TPSA	fr_COO	fr_nitro
Chi1v	Estate_VSA1	fr_COO2	fr_nitro_arom
Chi2n	Estate_VSA10	fr_C_O	fr_nitro_arom_nonortho
Chi2v	Estate_VSA11	fr_C_O_noCOO	fr_nitroso
Chi3n	Estate_VSA2	fr_C_S	fr_oxazole
Chi3v	Estate_VSA3	fr_HOCCN	fr_oxime
Chi4n	Estate_VSA4	fr_Imine	fr_para_hydroxylation
Chi4v	Estate_VSA5	fr_NH0	fr_phenol
HallKierAlpha	Estate_VSA6	fr_NH1	fr_phenol_noOrthoHbond
Ipc	Estate_VSA7	fr_NH2	fr_phos_acid
Kappa1	Estate_VSA8	fr_N_O	fr_phos_ester
Kappa2	Estate_VSA9	fr_Ndealkylation1	fr_piperdine
Kappa3	VSA_EState1	fr_Ndealkylation2	fr_piperazine
LabuteASA	VSA_EState10	fr_Nhprrrole	fr_priamide
PEOE_VSA1	VSA_EState2	fr_SH	fr_priulfonamid
PEOE_VSA10	VSA_EState3	fr_aldehyde	fr_pyridine
PEOE_VSA11	VSA_EState4	fr_alkyl_carbamate	fr_quatN
PEoe_VSA12	VSA_EState5	fr_alkyl_halide	fr_sulfide
PEoe_VSA13	VSA_EState6	fr_allylic_oxid	fr_sulfonamid
PEoe_VSA14	VSA_EState7	fr_amide	fr_sulfone
PEoe_VSA2	VSA_EState8	fr_amidine	fr_term_acetylene
PEoe_VSA3	VSA_EState9	fr_aniline	fr_tetrazole
PEoe_VSA4	FractionCSP3	fr_aryl_methyl	fr_thiazole
PEoe_VSA5	HeavyAtomCount	fr_azide	fr_thiocyan
PEoe_VSA6	NHOHCount	fr_azo	fr_thiophene
PEoe_VSA7	NOCount	fr_barbitur	fr_unbrch_alkane
PEoe_VSA8	NumAliphaticCarbocycles	fr_benzene	fr_urea

Table S1. List of function names for molecular descriptor calculation in RDKit (65).
In Silico Generation of Dataset C

For the generation of Dataset C, polyimides can be synthesized through the reaction between a dianhydride and a diamine with the elimination of water molecules, or through the reaction between a dianhydride and a diisocyanate with the elimination of carbon dioxide molecules, shown in **Fig. S1(a)**. All of the polyimides in Dataset C are generated via this mechanism from binary pairs of known chemicals in PubChem.

Double-stranded ladder polymers can be obtained through the binary reaction of a tetra-halogenated aromatic monomer and a tetra-hydroxy aromatic monomer, as shown in **Fig. S1(b)**. We obtain ~500 ladder polymers from different binary combinations of selected reacting monomers, which defines a chemical space of ladder polymers with sparse data points. To better explore this chemical space, we train a RNN model to learn its structure patterns and populate another 500 ladder polymers to supplement the chemical space. Together, the ladder polymers from monomer combinations and RNN generation comprise Dataset D.

![Fig. S1](image-url) **Fig. S1. In-silico reaction routes for the generation of polyimides (Dataset C) and ladder polymers (Dataset D).** (a) The polycondensation of diisocyanate/diamine and dianhydride to form a polyimide. Each generated polyimide features two functional imide groups. (b) The formula for ladder polymer formation from a tetra-halogenated aromatic monomer and a tetra-hydroxy aromatic monomer. Each ladder polymer repeating unit features four connection points along its double stranded backbone. Reacting groups are highlighted in yellow.
Fig. S2. Visualization of the MFF chemical space for the datasets explored in this work, using uniform manifold approximation and projection (UMAP), which captures local and global structure in the data. (a-d) correspond to Datasets A-D respectively, each compared to the PoLyInfo database, one of the largest polymer databases. Dataset A (training set) generally spans the feature space occupied by Datasets B, C, and D.
Fig. S3. Further visualization of imputed permeabilities in the training set, Dataset A, from the PoLyInfo and the MSA Databases. (a) O$_2$/N$_2$, (b) CO$_2$/CH$_4$, (c) CO$_2$/N$_2$ and (d) H$_2$/CO$_2$ Robeson plots after imputation using extremely randomized trees (ERT) and Bayesian linear regression (BLR), with permeabilities averaged across entries that correspond to the same polymer. The gas permeabilities of all six gases (He, H$_2$, O$_2$, N$_2$, CO$_2$, and CH$_4$) as visualized in lower-dimensional space using (e) principal components analysis (PCA).
Fig. S4. Summary of the performance of the random forest model trained on MFFs and gas permeabilities imputed using BLR. The predicted and actual permeabilities in Barrers for six gases are plotted for the train and test datasets.
Fig. S5. Summary of the performance of the ensemble of DNNs trained on MFFs and gas permeabilities imputed using BLR. The predicted and actual permeabilities in Barrers for six gases are plotted for the train and test datasets.
	He	H₂	O₂	N₂	CO₂	CH₄
RMSE train set	0.296	0.327	0.366	0.405	0.387	0.453
RMSE test set	0.259	0.309	0.340	0.410	0.383	0.495
RMSE blind set	0.366	0.388	0.473	0.549	0.439	0.566
Mean single-model test R²	0.69	0.68	0.71	0.68	0.70	0.70
Std of test R²	0.043	0.070	0.049	0.098	0.043	0.054
Ensemble test R²	0.91	0.90	0.92	0.91	0.90	0.88
Mean variance of normalized test predictions	0.071	0.086	0.072	0.101	0.073	0.074

Table S2. Summary of performance and uncertainty quantification for the ensemble of 16 DNNs trained on MFFs and permeabilities imputed using BLR. Performance on three different datasets is measured by the root mean squared error (RMSE) normalized by the standard deviation of permeabilities in the training set. The train and test sets are drawn from a shared distribution (from MSA and PoLyInfo). However, the blind set consists of 74 other high-performance polymers in the literature, which are assumed to be drawn from an unseen distribution. The train and test sets have similar normalized RMSEs, which suggests that the DNN model generalizes well to the distribution of polymers from MSA and PoLyInfo. The errors are about 25% higher when performing zero-shot learning on the blind set, which suggests that the DNN model still generalizes relatively well to completely unseen polymers. The last row refers to variance on predicted permeability values that have been normalized to a standard deviation of 1 and a mean of 0. The polymers used in the blind set can be found in the data repository associated with this work: http://dx.doi.org/10.22002/D1.20048.
ID	Descriptor Name	Description
101	VSA_EState8	Hybrid MOE-type descriptor using EState indices and VSA contributions for 6.45 < x < 7.00
107	NumAliphaticCarbocycles	Number of carbocycles that contain at least one non-aromatic bond
109	NumAliphaticRings	Number of rings that contain at least one non-aromatic bond
15	FpDensityMorgan2	Approximated density of the molecule
75	SlogP_VSA4	Sum of the approximate accessible VDW surface areas of atoms in the molecule with contributions between 0 and 0.1 to the molecule octanol/water partition coefficient calculation method proposed by Crippen
79	SlogP_VSA8	Sum of the approximate accessible VDW surface areas of atoms in the molecule with contributions between 0.25 and 0.3 to the molecule octanol/water partition coefficient calculation method proposed by Crippen
103	FractionCSP3	Fraction of C atoms that are sp3 hybridized
91	EState_VSA8	Hybrid MOE-type descriptor using EState indices and VSA contributions for 2.05 < x < 4.69
16	FpDensityMorgan3	Approximated density of the molecule
69	SlogP_VSA1	Sum of the approximate accessible VDW surface areas of atoms in the molecule with contributions less than -0.40 to the molecule octanol/water partition coefficient calculation method proposed by Crippen
92	EState_VSA9	Hybrid MOE-type descriptor using EState indices and VSA contributions for 4.69 < x < 9.17
65	SMR_VSA6	MOE-type descriptor using surface area contributions where 2.75 < x < 3.05

Table S3. Definitions of the top molecular descriptors as identified using SHAP on the DNN model trained on descriptors with permeabilities imputed using BLR. All descriptors are calculated based on the graph structure and atom and bond types within the molecule. EState refers to the electrotopological state indices calculated as proposed by Hall and Kier (69). Large positive values indicate atoms of high electronegativity and/or terminal atoms, while small or negative EState values indicate atoms with only \(\sigma \) electrons, interior atoms, or atoms near electronegative atoms. VSA refers to the accessible van der Waals surface area.
Fig. S6. SHAP summary plots showing the impacts of the twenty most important chemical descriptors. We consider (a) He, (b) H$_2$, (c) O$_2$, (d) N$_2$, (e) CO$_2$, and (f) CH$_4$ gas permeabilities in the DNN ensemble model trained on descriptors with permeabilities imputed via BLR.
Fig. S7. Correlations of top molecular descriptors. The descriptors can be broken down into two main opposing correlation groups: [15, 16] are anti-correlated with [107, 109], whereas the other descriptors are relatively independent.
Fig. S8. SHAP summary plots showing the impacts of the twenty most important chemical substructures. We consider (a) He, (b) H₂, (c) O₂, (d) N₂, (e) CO₂, and (f) CH₄ gas permeabilities in the DNN ensemble model trained on MFFs with permeabilities imputed via BLR.
Fig. S9. Correlations of top molecular fingerprints. The main correlation group is [822, 1432, 1781].
Fig. S10. Visualization of predicted permeabilities for polymers in Datasets B, C, and D, based on the RF trained on MFFs with BLR-imputed permeabilities. The training dataset (Dataset A) is overlaid on the predicted permeabilities. The data is visualized for (a) O$_2$/N$_2$, (b) CO$_2$/CH$_4$, (c) CO$_2$/N$_2$, and (d) H$_2$/CO$_2$ separations. Units of permeability are Barrers.
Name	Polymer	Component A	Component B
P-DNN-C1	![Diagram](P-DNN-C1.png)	![Structure](P-DNN-C1_STRUCTURE.png)	![Structure](P-DNN-C1_STRUCTURE_B.png)
P-DNN-C2	![Diagram](P-DNN-C2.png)	![Structure](P-DNN-C2_STRUCTURE.png)	![Structure](P-DNN-C2_STRUCTURE_B.png)
P-DNN-C3	![Diagram](P-DNN-C3.png)	![Structure](P-DNN-C3_STRUCTURE.png)	![Structure](P-DNN-C3_STRUCTURE_B.png)
P-DNN-C4

N(C(C)=O)C(=O)CS(=O)(=O)CC(=O)N(C(C)=O)C(C)C1()CCCCCCCCC

P-DNN-D1

Oc1cc2c(cc1O)C1(c3cc4c(cc3-
c3cc5c(cc31)C(C)(C)CCC5(C)C)Oc1c(c(C(=
O)c3cc(F)c(F)c(F)c3)c(*)c(*)c1C(=O)c1cc(F)
ce(F)e1)O4)e1cc3c(e1-2)C(C)(C)CC3(C)C

P-DNN-D2

Oc1cc2c(cc1O)C1(c3cc4c(cc3-
c3cc5c(cc31)C(C)(C)CCC5(C)C)Oc1c(c(C(=
O)c3cc(F)c(F)c(F)c3)c(*)c(*)c1C(=O)c1cc(F)
ce(F)e1)O4)e1cc3c(e1-2)C(C)(C)CC3(C)C

P-RF-C

*e1eC)cc2cccccc2c1-
c1e(N2C(=O)c3cc4e(cc3C2=O)C2(C)CC4(C)
c3cc4e(cc32)C(=O)N(*)C4=O)e(c(C)cc2cccccc1

SA: 5.65
AS: -8.36, -6.76

SA: 3.06
AS: -1.29, -1.04

SA: 1.99
AS: -7.97, -8.74

SA: 2.55
AS: -6.5, -9.27

SA: 4.00
AS: -4.81, -6.66

SA: 2.29
AS: -5.81, -5.61

SA: 1.99
AS: -7.97, -8.74
Table S4. Selected top polymer candidates and the individual components required for their syntheses. Polymers are labeled by their SMILES strings, associated synthetic accessibility (SA) scores (53), and aqueous solubilities (AS). SAs are calculated using an algorithm that accounts for fragment contributions and a complexity penalty, producing a rating between 1 (easy to synthesize) and 10 (very difficult to synthesize); this method has been validated by ratings given by expert medicinal chemists. We use AqSolPred (70) and SolTranNet (71) to estimate the AS of components A and B. These two methods are essentially supervised machine learning models trained on drug-like molecules to predict solubility values (LogS).
Fig. S11. Distributions of the synthetic accessibility (SA) scores. (a) diamines/diisocynates and (b) dianhydrides required for the formation of the promising polyimides summarized in Table 3 of the main text.
Solubility estimations for polymers

We further utilize the Polymer Genome (72) to predict the solubilities of polymer candidates in organic solvents based on the Hildebrand solubility parameter. Essentially, the Polymer Genome is a machine learning model that predicts various properties of polymers, trained on properties from first-principles computations and experimental measurements. Several solvent options are found to be suitable for each selected polymer candidate, as summarized in Table S5-12. These estimations can provide guidelines for experimentalists to select a proper solvent for fabrication.

Solvent	Solubility parameter	Non-Solvent	Solubility parameter
Butyric Acid	18.7 MPa$^{1/2}$	3-Methoxypropyl Amine/Acetic Acid	36.8 MPa$^{1/2}$
Methyl Acetate	18.7 MPa$^{1/2}$	2-Amino-2-Methyl-1-Propanol/Acetic Acid	36.7 MPa$^{1/2}$
Di-Isobutyl Carbinol	18.7 MPa$^{1/2}$	Formamide	36.7 MPa$^{1/2}$
Furan	18.7 MPa$^{1/2}$	Dimethyl Ethanolamine/Formic Acid	35.6 MPa$^{1/2}$
Cyclohexylamine	18.7 MPa$^{1/2}$	Dimethyl Ethanolamine/p-Toluene Sulfonic Acid	35.6 MPa$^{1/2}$
Ethylene Glycol Monoisobutyl Ether	18.6 MPa$^{1/2}$	Dimethyl Ethanolamine/Thioglycolic Acid	35.6 MPa$^{1/2}$
Hexafluoro hexanol	18.6 MPa$^{1/2}$	Ethylene Glycol	33 MPa$^{1/2}$
Chloroform	19 MPa$^{1/2}$	Dimethyl Ethanolamine/Acetic Acid	32.7 MPa$^{1/2}$
Diethylene Glycol Methyl t-Butyl Ether	19 MPa$^{1/2}$	Triethanolamine/Acetic Acid	32.4 MPa$^{1/2}$
Mesityl Oxide	18.5 MPa$^{1/2}$	Ethanolamine/Acetic Acid	32.4 MPa$^{1/2}$

Table S5. Solubility summary for P-DNN-C1.
Solvent	Solubility parameter	Non-Solvent	Solubility parameter
Methyl Methacrylate	17.9 MPa$^{1/2}$	3-Methoxypropyl Amine/Acetic Acid	36.8 MPa$^{1/2}$
Ethyl Acrylate	17.9 MPa$^{1/2}$	2-Amino-2-Methyl-1-Propanol/Acetic Acid	36.7 MPa$^{1/2}$
p-Xylene	17.9 MPa$^{1/2}$	Formamide	36.7 MPa$^{1/2}$
Ethylene Glycol Methyl t-Butyl Ether*	18.1 MPa$^{1/2}$	Dimethyl Ethanolamine/p-Toluene Sulfonic Acid	35.6 MPa$^{1/2}$
Carbon Tetrachloride	18.1 MPa$^{1/2}$	Dimethyl Ethanolamine/Formic Acid	35.6 MPa$^{1/2}$
Ethyl Benzene	17.9 MPa$^{1/2}$	Dimethyl Ethanolamine/Thioglycolic Acid	35.6 MPa$^{1/2}$
Carbon Dioxide	17.9 MPa$^{1/2}$	Ethylene Glycol	33 MPa$^{1/2}$
Ethyl Acetate	18.2 MPa$^{1/2}$	Dimethyl Ethanolamine/Acetic Acid	32.7 MPa$^{1/2}$
Triethylamine	17.8 MPa$^{1/2}$	Ethanolamine/Acetic Acid	32.4 MPa$^{1/2}$
Carbon tetrachloride	17.8 MPa$^{1/2}$	Morpholine/Acetic Acid	32.4 MPa$^{1/2}$

Table S6. Solubility summary for P-DNN-C2.
Table S7. Solubility summary for P-DNN-C3.

Solvent	Solubility parameter	Non-Solvent	Solubility parameter
Cyclohexanol	22.4 MPa$^{1/2}$	3-Methoxypropyl Amine/Acetic Acid	36.8 MPa$^{1/2}$
Aniline	22.5 MPa$^{1/2}$	2-Amino-2-Methyl-1-Propanol/Acetic Acid	36.7 MPa$^{1/2}$
Methacrylonitrile	22.5 MPa$^{1/2}$	Formamide	36.7 MPa$^{1/2}$
Acetic anhydride	22.3 MPa$^{1/2}$	Dimethyl Ethanolamine/Formic Acid	35.6 MPa$^{1/2}$
Benzyl Butyl Phthalate	22.3 MPa$^{1/2}$	Dimethyl Ethanolamine/p-Toluene Sulfonic Acid	35.6 MPa$^{1/2}$
Triethylphosphate	22.2 MPa$^{1/2}$	Dimethyl Ethanolamine/Thioglycolic Acid	35.6 MPa$^{1/2}$
Diethylene Glycol Monoethyl Ether	22.2 MPa$^{1/2}$	Ethylene Glycol	33 MPa$^{1/2}$
2-Butanol	22.2 MPa$^{1/2}$	Dimethyl Ethanolamine/Acetic Acid	32.7 MPa$^{1/2}$
Isobutyl Alcohol	22.7 MPa$^{1/2}$	Morpholine/Acetic Acid	32.4 MPa$^{1/2}$
Nitrobenzene	22.2 MPa$^{1/2}$	Ethanolamine/Acetic Acid	32.4 MPa$^{1/2}$
Table S8. Solubility summary for P-DNN-C4.

Solvent	Solubility parameter	Non-Solvent	Solubility parameter
Ethylene Dichloride	20.8 MPa$^{1/2}$	3-Methoxypropyl Amine/Acetic Acid	36.8 MPa$^{1/2}$
Ethylene Glycol Monobutyl Ether	20.8 MPa$^{1/2}$	2-Amino-2-Methyl-1-Propanol/Acetic Acid	36.7 MPa$^{1/2}$
Diacetone Alcohol	20.8 MPa$^{1/2}$	Formamide	36.7 MPa$^{1/2}$
2-Nitropropane	20.6 MPa$^{1/2}$	Dimethyl Ethanolamine/p-Toluene Sulfonic Acid	35.6 MPa$^{1/2}$
1-Bromonaphthalene	20.9 MPa$^{1/2}$	Dimethyl Ethanolamine/Formic Acid	35.6 MPa$^{1/2}$
Carbon Disulfid	20.5 MPa$^{1/2}$	Dimethyl Ethanolamine/Thioglycolic Acid	35.6 MPa$^{1/2}$
1,4-Dioxane	20.5 MPa$^{1/2}$	Ethylene Glycol	33 MPa$^{1/2}$
o-Dichlorobenzene	20.5 MPa$^{1/2}$	Dimethyl Ethanolamine/Acetic Acid	32.7 MPa$^{1/2}$
Propylene Glycol Monomethyl Ether	20.4 MPa$^{1/2}$	Triethanolamine/Acetic Acid	32.4 MPa$^{1/2}$
Diethylene Glycol Monobutyl Ether	20.4 MPa$^{1/2}$	Morpholine/Acetic Acid	32.4 MPa$^{1/2}$
Table S9. Solubility summary for P-DNN-D1.

Solvent	Solubility parameter	Non-Solvent	Solubility parameter
2-Ethyl-hexanol	20.1 MPa$^{1/2}$	3-Methoxypropyl Amine/Acetic Acid	36.8 MPa$^{1/2}$
Methyl Isobutyl Carbinol	20 MPa$^{1/2}$	2-Amino-2-Methyl-1-Propanol/Acetic Acid	36.7 MPa$^{1/2}$
Dibutyl Phthalate	20.2 MPa$^{1/2}$	Formamide	36.7 MPa$^{1/2}$
Dipropylene Glycol Methyl Ether	20 MPa$^{1/2}$	Dimethyl Ethanolamine/p-Toluene Sulfonic Acid	35.6 MPa$^{1/2}$
Methylene Dichloride	20.2 MPa$^{1/2}$	Dimethyl Ethanolamine/Formic Acid	35.6 MPa$^{1/2}$
Acetone	19.9 MPa$^{1/2}$	Dimethyl Ethanolamine/Thioglycolic Acid	35.6 MPa$^{1/2}$
Isophorone	19.9 MPa$^{1/2}$	Ethylene Glycol	33 MPa$^{1/2}$
Tetrahydronaphthalene	19.9 MPa$^{1/2}$	Dimethyl Ethanolamine/Acetic Acid	32.7 MPa$^{1/2}$
Butyl Lactate	19.9 MPa$^{1/2}$	Ethanolamine/Acetic Acid	32.4 MPa$^{1/2}$
Butyronitrile	20.3 MPa$^{1/2}$	Triethanolamine/Acetic Acid	32.4 MPa$^{1/2}$

Predicted Hildebrand solubility parameter: 20.1 MPa$^{1/2}$
Solvent	Solubility parameter	Non-Solvent	Solubility parameter
2,4-Pentanediode	19.8 MPa\(^{1/2}\)	3-Methoxypropyl Amine/Acetic Acid	36.8 MPa\(^{1/2}\)
Butyl Lactate	19.9 MPa\(^{1/2}\)	2-Amino-2-Methyl-1-Propanol/Acetic Acid	36.7 MPa\(^{1/2}\)
Tetrahydronaphthalene	19.9 MPa\(^{1/2}\)	Formamide	36.7 MPa\(^{1/2}\)
Ethylene Glycol Mono-t-Butyl Ether	19.7 MPa\(^{1/2}\)	Dimethyl Ethanolamine/Formic Acid	35.6 MPa\(^{1/2}\)
Acetone	19.9 MPa\(^{1/2}\)	Dimethyl Ethanolamine/Thioglycolic Acid	35.6 MPa\(^{1/2}\)
Isophorone	19.9 MPa\(^{1/2}\)	Dimethyl Ethanolamine/p-Toluene Sulfonic Acid	35.6 MPa\(^{1/2}\)
Dipropylene Glycol Methyl Ether	20 MPa\(^{1/2}\)	Ethylene Glycol	33 MPa\(^{1/2}\)
Ethylene Glycol Monoethyl Ether Acetate	19.7 MPa\(^{1/2}\)	Dimethyl Ethanolamine/Acetic Acid	32.7 MPa\(^{1/2}\)
Butoxy Ethoxy Propanol	19.7 MPa\(^{1/2}\)	Triethanolamine/Acetic Acid	32.4 MPa\(^{1/2}\)
Methyl Isobutyl Carbinol	20 MPa\(^{1/2}\)	Morpholine/Acetic Acid	32.4 MPa\(^{1/2}\)

Table S10. Solubility summary for P-DNN-D2.
Solvent	Solubility parameter	Non-Solvent	Solubility parameter
Dimethyl Phthalate	22.1 MPa$^{1/2}$	3-Methoxypropyl Amine/Acetic Acid	36.8 MPa$^{1/2}$
Tetrahydrofurfuryl Alcohol	22.1 MPa$^{1/2}$	2-Amino-2-Methyl-1-Propanol/Acetic Acid	36.7 MPa$^{1/2}$
Nitrobenzene	22.2 MPa$^{1/2}$	Formamide	36.7 MPa$^{1/2}$
Diethylene Glycol Monoethyl Ether	22 MPa$^{1/2}$	Dimethyl Ethanolamine/p-Toluene Sulfonic Acid	35.6 MPa$^{1/2}$
2-Butanol	22.2 MPa$^{1/2}$	Dimethyl Ethanolamine/Formic Acid	35.6 MPa$^{1/2}$
Diethylene Glycol Monoethyl Ether	22.2 MPa$^{1/2}$	Dimethyl Ethanolamine/Thioglycolic Acid	35.6 MPa$^{1/2}$
Triethylphosphate	22.2 MPa$^{1/2}$	Ethylene Glycol	33 MPa$^{1/2}$
1-Pentanol	21.9 MPa$^{1/2}$	Dimethyl Ethanolamine/Acetic Acid	32.7 MPa$^{1/2}$
Benzyl Butyl Phthalate	22.3 MPa$^{1/2}$	Morpholine/Acetic Acid	32.4 MPa$^{1/2}$
Acetic anhydride	22.3 MPa$^{1/2}$	Ethanolamine/Acetic Acid	32.4 MPa$^{1/2}$

Table S11. Solubility summary for P-RF-C.
Predicted Hildebrand solubility parameter: 23.4 MPa$^{1/2}$

Solvent	Solubility parameter	Non-Solvent	Solubility parameter
Hexamethylphosphoramide	23.3 MPa$^{1/2}$	3-Methoxypropyl Amine/Acetic Acid	36.8 MPa$^{1/2}$
Ethylene Glycol Monoethyl Ether	23.5 MPa$^{1/2}$	2-Amino-2-Methyl-1-Propanol/Acetic Acid	36.7 MPa$^{1/2}$
3-Chloro-1-Propanol	23.6 MPa$^{1/2}$	Formamide	36.7 MPa$^{1/2}$
1-Butanol	23.2 MPa$^{1/2}$	Dimethyl Ethanolamine/Formic Acid	35.6 MPa$^{1/2}$
2-Propanol	23.6 MPa$^{1/2}$	Dimethyl Ethanolamine/Thioglycolic Acid	35.6 MPa$^{1/2}$
Tricresyl Phosphate	23.1 MPa$^{1/2}$	Dimethyl Ethanolamine/p-Toluene Sulfonic Acid	35.6 MPa$^{1/2}$
Hexafluoroisopropanol	23.1 MPa$^{1/2}$	Ethylene Glycol	33 MPa$^{1/2}$
Benzyl Alcohol	23.8 MPa$^{1/2}$	Dimethyl Ethanolamine/Acetic Acid	32.7 MPa$^{1/2}$
N-Methyl-2-Pyrrolidone	23 MPa$^{1/2}$	Morpholine/Acetic Acid	32.4 MPa$^{1/2}$
N,N-Dimethyl Acetamide	22.8 MPa$^{1/2}$	Ethanolamine/Acetic Acid	32.4 MPa$^{1/2}$

Table S12. Solubility summary for P-RF-D.
Polymer	# Gas mols:	Gas Number/ Diffusivity [10^-8 cm^2/s]	Solubility [cm^3 (STP)/cm^2 bar]				
		10	20	30	40	50	
P-DNN-C1	CH4	44.6067	60.5667	59.4783	58.085	99.6317	21.473
	CO2	79.935	190.8	181.9	190.9933	261.8417	69.456
	N2	53.1483	79.9667	82.9083	82.6283	124.0167	13.161
	O2	283.4	439.5333	454.55	445.4833	658.0833	10.67
	H2	5085.1768	8706.2073	8612.0009	8318.7770	9630.0227	0.827
P-DNN-C2	CH4	1066.467	2940.167	3008.667	3069.833	4436.917	33.832
	CO2	2457.167	9288.333	8900	8613.333	11448.17	75.4
	N2	1186.283	2080	2329.5	2203.667	2603.667	13.843
	O2	3436.667	5883.833	5820.167	5622	6508.167	9.081
	H2	18510.480	25402.7283	25005.3350	25673.7933	31672.1650	1.359
P-DNN-C3	CH4	607.9195	934.1333	974.1057	900.75	1510.1495	57.225
	CO2	16001.2953	27005.769	28008.8731	27506.6922	45003.2976	1.419
	N2	365.1723	632.5788	613.1065	653.1013	904.6467	10.017
	O2	4008.6947	6204.4736	6608.0365	6406.684	9503.2363	6.088
	H2	450.3511	709.6833	632.9442	669.0403	1258.4709	33.926
P-DNN-C4	CH4	2710.163	4709.488	4501.601	4654.203	8001.208	34.534
	CO2	30007.729	47002.976	45508.835	47506.752	70008.792	1.983
	N2	347.1227	852.2008	822.1247	862.3635	1509.3613	8.135
	O2	7008.975	10503.245	10005.407	9504.424	18007.930	5.424
	H2	457.240	1359.953	1282.746	1486.643	1808.290	19.443
P-DNN-D1	CH4	290.7	250.95	252.375	270.325	399.325	5.700
	CO2	125.1567	163.38	154.735	156.5817	163.5967	75.101
	N2	202.4	421.8833	414.8667	432.25	791.7167	3.68
	O2	619.4833	1899	1863.5	1949	2496.5	1.518
	H2	9999.3383	15892.3700	15706.9133	16479.6533	19980.1867	0.284
P-DNN-D2	CH4	303.4167	480.8667	428.8333	537	549.9	5.922
	CO2	652.225	1122.87	1081.99	1012.725	3161.725	17.876
	N2	482.5	1052.2	1023.517	1046.45	1834.833	3.581
	O2	1226.667	2994.667	2666.667	2752.167	3828.833	2.175
	H2	14993.9500	21997.9900	20999.5850	23004.1967	27019.6850	0.389
P-RF-C	CH4	12.9317	12.33	11.9883	13.2017	35.76	16.050
	CO2	30.8567	30.74	32.5	34.9843	101.59	70.120
	N2	5.9833	12.7667	10.8333	12.0333	19.4883	10.941
	O2	36.65	64.86	73.9517	70.12	78.1167	6.575
	H2	1001.2217	1902.8250	2058.2783	2002.8350	2890.8383	0.716
P-RF-D	CH4	1.8483	2.3267	3.02	2.745	6.98	53.742
	CO2	8.9933	9.8783	8.4167	8.4933	29.4	218.717
	N2	1.9	3.0042	3.9547	3.3403	6.6538	29.255
	O2	15.8738	33.63	33.0467	37.5233	64.1417	13.437
	H2	644.5450	1201.9217	1185.6833	1244.1850	1634.6150	1.203

Table S13. Intermediate values in the calculation of permeability as diffusivity times solubility for selected top polymer candidates, via MD simulations with the COMPASS forcefield (73). The diffusivity was calculated as the average of the shaded values, which refer to simulations with 20, 30, and 40 gas molecules.
PIM-1	Gas	\([\text{cm}^3 \text{ (STP)/cm}^3 \text{ (polymer bar)}]\)	\([10^{-8} \text{ cm}^2/\text{s}]\)	Permeability				
		\(S_{\text{sim}}\)	\(D_{\text{sim}}\)	\(S_{\text{exp}}\) (46)	\(D_{\text{exp}}\) (46)	\(P_{\text{exp}}\) (46)		
	Our work	Ref. (23)	Our work	Ref. (23)	Our work			
CH\(_4\)	15.1±1.91	14.2±3.1	13.70	8.05±0.23	112±27	6.80	155.147±10.71	121.108
CO\(_2\)	49.93±3.41	50.7±9	66.90	28.45±4.19	151±47	26.00	2150.966±200.718	2261.22
H\(_2\)	0.42±0.06	0.46±0.03	0.58	1826.33±43.33	6630±215	1700.00	983.104±121.417	1281.8
N\(_2\)	7.31±0.89	-	-	31.60±3.51	-	-	289.318±26.73	-
O\(_2\)	3.93±0.68	4.11±0.58	3.50	82.31±5.82	452±81	81.00	400.507±56.293	368.55

Table S14. Benchmark MD simulations for the PIM-1 polymer membrane. Simulated solubility coefficients \([\text{cm}^3 \text{ (STP)/cm}^3 \text{ (polymer) bar]}\), diffusion coefficients \([10^{-8} \text{ cm}^2/\text{s}]\) at 300K, and permeabilities \([\text{Barrer}]\) are given. The values from our study show good agreement with simulation and experimental values in the literature.
Fig. S12. Ten relevant polymers used for further benchmarking of MD simulations, using the method outlined in this study. (a) Chemical components and (b) atomistic models of the respective in-silico membranes for these polymers.
No	Polymer	Gas type	Simulation value	Experiment value	Ref.
			Unit: Barrer	Unit: Barrer	
1	6FDA+3MPDA	H₂	396.7708 ± 11.7018	344	(13)
		CO₂	25.9387 ± 1.9684	15	
		CH₄	0.72062 ± 0.1422	-	
		N₂	8.73845 ± 0.81306	5.2	
		O₂	59.49297 ± 5.4821	62.5	
2	BTDA+4MPDA	H₂	129.5787 ± 1.8292	108	(13)
		CO₂	0.73685 ± 0.0305	0.428	
		CH₄	3.30228 ± 0.61435	-	
		N₂	21.6524 ± 7.36388	-	
		O₂	13.2569 ± 1.2996	11.8	
3	HQDPA+3MPDA	H₂	48.8671 ± 2.8231	40	(13)
		CO₂	27.9553 ± 2.0265	18.2	
		CH₄	2.35364 ± 0.2153	-	
		N₂	1.24346 ± 0.27718	0.9	
		O₂	5.8980 ± 0.3891	4.42	
4	6FDA+DABA	H₂	32.8373 ± 1.7064	25	(74)
		CO₂	5.96324 ± 0.8199	3.4	
		CH₄	0.07622 ± 0.0189	0.054	
		N₂	0.20209 ± 0.05512	0.126	
		O₂	1.29972 ± 0.07917	1.01	
5	DPPD+IMM	H₂	1210.6574 ± 37.7677	-	(13)
		CO₂	416.8465 ± 16.9437	392	
		CH₄	30.8792 ± 1.5332	24	
		N₂	24.4127 ± 0.9755	19	
		O₂	85.08897 ± 4.6695	75	
6	6FDA+SA55	H₂	591.9396 ± 48.1532	-	(13)
		CO₂	166.0332 ± 10.2192	149.72	
		CH₄	9.13827 ± 0.76672	6.11	
		N₂	6.16553 ± 0.41005	4.87	
		O₂	7.74326 ± 0.8687	5.79	
7	Ladder A	H₂	4972.909 ± 168.8742	4520	(75)
		CO₂	10124.307 ± 221.659	8890	
		CH₄	797.9956 ± 96.9325	622	
		N₂	497.1791 ± 44.0883	441.875	
		O₂	1825.66322 ± 156.654	1624	
8	Ladder B	H₂	2861.160 ± 181.16214	2520	(76)
		CO₂	2964.663 ± 493.1082	2741	
		CH₄	3374.360 ± 293.1177	337	
		N₂	246.25352 ± 19.04919	220	
		O₂	895.8939 ± 14.13505	813	
	Ladder C	H₂	591.9765 ± 33.67194	530	
		CO₂	1337.6652 ± 126.0247	1100	
		CH₄	90.3421 ± 10.0136	77	
		N₂	72.8467 ± 3.0673	47	
		O₂	163.8977 ± 23.8086	150	
	Ladder D	H₂	721.01859 ± 15.50565	859	
		CO₂	2133.1443 ± 200.727	1747	
		CH₄	189.53161 ± 35.42094	148	
		N₂	82.11123 ± 6.06716	76	
		O₂	361.03137 ± 54.31964	273	

Table S15. Comparison of MD-simulated permeabilities with experimental values for the ten selected polymers [Barrer: \(10^{-10} \text{cm}^3\text{STP cm}^2\text{cm}^{-3}\text{s}^{-1}\text{cmHg}\) at 300 K. Overall, our MD simulations agree well with experimentally measured gas permeabilities from the literature.
Table S16. Comparison of gas permeabilities calculated from MD simulations with permeabilities predicted from ML models, with error and uncertainty quantification, of selected top polymer candidates. Units of permeability are Barrers.

Polymer	Gas	MD-Simulated Permeability (PMD)	Standard Deviation of PMD	ML-Predicted Permeability (PML)	log(PML)	Standard Deviation of log(PML) from Bootstrapping	%Difference (PML - PMD)/PMD
P-DNN-C1	CH4	1657.512	84.81211	1653.12891	3.218306	2.019868	-0.26%
	CO2	16965.81	602.6442	17662.1029	4.247042	1.803747	4.10%
	N2	1400.094	46.43858	1367.46	3.135914	2.210223	-2.33%
	O2	6193.831	158.9193	6251.10322	3.795956	1.777441	0.92%
	H2	4727.856	123.3328	4685.6193	3.670767	1.803201	-0.89%
P-DNN-C2	CH4	52486.33	1830.314	59462.9225	4.774246	2.756414	13.29%
	CO2	155897.4	5214.004	33963.203	5.531011	2.413820	117.86%
	N2	38486.6	3429.304	49003.579	4.69022	2.302411	27.33%
	O2	100832.1	8783.601	125618.927	5.09905	2.180247	24.58%
	H2	44794.08	1108.444	45040.167	4.6536	1.950639	0.55%
P-DNN-C3	CH4	69655.9	2230.851	66988.469	4.826	3.704102	-3.83%
	CO2	50742.37	755.4335	51789.4144	4.714241	2.526167	2.06%
	N2	8242.063	212.6468	7448.64026	3.872077	3.014252	-9.63%
	O2	50702.8	1303.929	53790.1803	4.730703	3.087153	6.09%
	H2	29574.06	1382.519	32884.0273	4.516985	2.570558	11.19%
P-DNN-C4	CH4	207490.4	3946.849	215341.632	5.333128	4.503192	3.78%
	CO2	120318	2187.07	126352.547	5.101584	3.771231	5.02%
	N2	8942.252	180.6803	9603.36782	3.982514	4.410758	7.42%
	O2	70542.73	2875.251	80745.9968	4.907121	3.758369	14.46%
	H2	26738.73	1632.816	22549.9197	4.353145	3.595450	-15.67%
P-DNN-D1	CH4	1911.04	70.41345	1790.3582	3.23283	0.799550	-10.55%
	CO2	15448.42	371.7476	14724.1268	4.168029	0.800241	-4.69%
	N2	2023.817	60.26185	2117.81715	3.325888	0.920442	4.64%
	O2	3757.197	83.67529	3673.05404	3.565263	0.824867	-2.19%
	H2	5915.074	158.5987	5925.44539	3.772721	0.567156	0.18%
P-DNN-D2	CH4	3712.361	354.0196	4066.00857	3.609168	0.862484	9.53%
	CO2	24924.16	1507.761	26067.0875	4.416092	0.792417	4.59%
	N2	4844.493	100.834	4733.66914	3.67519	0.924626	-2.29%
	O2	7929.709	402.0509	7832.41445	3.893895	0.754249	-1.23%
	H2	11111.7	461.5145	11813.6745	4.072385	0.628416	6.32%
P-RF-C	CH4	260.9494	14.06993	164.128095	2.215182	n/a	-37.10%
	CO2	2983.488	168.798	2713.03121	3.433454	n/a	-9.07%
	N2	168.9471	11.53365	126.766191	2.103003	n/a	-24.97%
	O2	595.2628	34.40819	514.335227	2.711246	n/a	-13.60%
	H2	1849.185	70.50671	1645.7581	3.21636	n/a	-11.00%
P-RF-D	CH4	184.9357	21.46799	118.081848	2.072183	n/a	-36.15%
	CO2	2538.926	218.0743	2123.91166	3.237136	n/a	-16.35%
	N2	130.5626	14.98025	92.1239731	1.964372	n/a	-29.44%
	O2	606.7425	35.17128	413.90048	2.616895	n/a	-31.78%
	H2	1893.513	73.42637	1791.57503	3.253235	n/a	-5.38%
Fig. S13. Microstructure analysis of the eight selected candidate polymer models, with the benchmark of PIM-1 shown for comparison. (a) Three-dimensional molecular structures of monomers used to form crosslinked polymers. (b) Top row shows the free-volume elements, including interconnected and disconnected voids, with respect to a probe radius of 0.80 Å. Bottom row shows voids colored with respect to the largest radius probe that can be inserted. Here, only those voids having a minimum radius of 1.42 Å (the kinetic radius of H₂) are shown. (c) Pore size distribution of the polymers, calculated by averaging across five models for each polymer. (d) The calculated density values of the polymers. P-DNN-C1, P-DNN-C2, P-DNN-D1, and P-DNN-D2 have relatively higher densities, while P-RF-C and P-RF-D, P-DNN-C3 and P-DNN-C4 have relatively lower densities compared with PIM-1. For void analysis, we apply the Poreblazer code (https://github.com/SarkisovGroup/PoreBlazer) to directly quantify pore size, and its distribution and interconnectivity, which is based on the Hoshen-Kopelman cluster labeling algorithm. The radius of the probe is chosen to be 1.42 Å, representing the mean Van der Waals radius of hydrogen gas molecules.							
Polymer	Model	Simulation value (FFV)	Experiment or other simulations value (FFV)	Ref			
-------------------------	-------	------------------------	--	-----			
AOPIM-1 (flexible fluorinated polyimide)	1	0.263388					
	2	0.266421					
	3	0.264481					
	4	0.266					
	5	0.266915	0.26507	79			
	6	0.266927					
	7	0.263741					
	8	0.26427					
	9	0.265235					
	10	0.263328					
Kapton (semi-crystalline polymer)	1	0.4235					
	2	0.417864					
	3	0.413167					
	4	0.418509					
	5	0.40949	0.418085	80			
	6	0.417786					
	7	0.416903					
	8	0.423771					
	9	0.419132					
	10	0.420725					

Table S17. Comparison of experimentally determined fraction of free volumes (FFV) with those of the atomistic in-silico models, generated using the method in this work. Two polymers with small pore sizes are considered: AOPIM-1 (flexible fluorinated polyimide) and Kapton (semi-crystalline polymer).
Fig. S14. Training model verification for the ensemble of 16 DNNs trained on MFFs and gas permeabilities imputed using BLR.
In silico crosslinking of ladder polymers and polyimides

The multi-step cross-linking reaction for ladder polymers is exemplified by the case of PIM-1 (Fig. S15(a)). After 45 of each of the two reactants are packed into a 3D-periodic amorphous cell, there are 180 potential reaction sites in the total system (each monomer has four potential reaction sites). As we increase the cutoff distance from 4.5 to 9.5 Å step by step, the cross-linking degree increases from 33.3% to 92.8% (Fig. S15(b)). The final cross-linked system after relaxation contains 2501 atoms with a density of 1.07 g/cm³, and the box length is 31.87 Å (Fig. S15(c)). During the cross-linking process, extra hydrogen atoms are removed, and partial charges are updated to satisfy charge-neutrality. Then the generated cross-linked polymer structure is used for subsequent calculations of solubility and diffusivity. The ladder polymers in Dataset D of our work are subject to a similar cross-linking procedure, before further MD simulations.

The multi-step crosslinking strategy used for PIM-1 and other ladder polymers is also applied to novel polyimides, namely P-DNN-C1 through P-DNN-C4, whose case studies are shown in Fig. S16-S19, respectively. The difference for polyimides, compared to ladder polymers, is that after 45 of each component are packed into the 3D-periodic amorphous cell, there are 90 potential reaction sites in the total system (each monomer has two potential reaction sites). Differently, the reactive atoms for polyimides are carbon and nitrogen.
Fig. S15. Cross-linking steps for the generation of an atomistic model of PIM-1. (a) The reaction mechanism between 5,5',6,6'-tetrahydroxy-3,3',3'-tetramethyl-1,1'-spirobisindane (PubChem CID 66162) and Tetrafluoroterephthalonitrile (PubChem CID 104426). Carbon-oxygen bonds (C-O) are formed through the crosslinking of highlighted carbon and oxygen accompanied by the elimination of hydrogen molecules. (b) The cross-linking degree increases as the cutoff distance increases from 4.5 to 9.5 Å. The final cross-linking degree reaches 92.8%. (c) Snapshot of the final cross-linked network of PIM-1. Cross-linked C and O atoms are highlighted with sticks and balls, while other atoms are drawn as lines.
Fig. S16. Cross-linking steps for the generation of an atomistic model of P-DNN-C1. (a) The reaction mechanism between the diamine component ‘4-[2-[3-[2-(4-aminocyclohexyl)propan-2-yl]phenyl]propan-2-yl]cyclohexan-1-amine’ (PubChem CID 54351456) and the dianhydride component ‘1,6-Bis(Heptadecafluorooctyl)-3,4,9,10-Perylenetetracarboxylic Acid 3,4:9,10-Dianhydride’ (PubChem CID 46217647). The imide groups are formed through the crosslinking of highlighted carbons and nitrogens, accompanied by eliminating hydrogen molecules. (b) The cross-linking degree increases as the cutoff distance is increased from 4.5 to 20 Å. The final cross-linking degree reaches 90.0%. (c) Snapshot of the final cross-linked network of P-DNN-C1. Cross-linked C and N atoms are highlighted with sticks and balls, while other atoms are drawn as lines.
Fig. S17. Cross-linking steps for the generation of an atomistic model of P-DNN-C2. (a) The reaction mechanism between the diamine component ‘4-[4-(4-amino-2,3,3,4-tetramethylpentan-2-yl)-2,2,3,3,5,5,6,6-octamethylcyclohexyl]-2,3,3,4-tetramethylpentan-2-amine’ (PubChem CID 118069048) and the dianhydride component ‘1,6-Bis(Heptadecafluoroctyl)-3,4,9,10-Perylenetetracarboxylic Acid 3,4,9,10-Dianhydride’ (PubChem CID 46217647). The imide groups are formed through the crosslinking of highlighted carbons and nitrogens accompanied by eliminating hydrogen molecules. (b) The cross-linking degree increases as the cutoff distance is increased from 0.5 to 17.5 Å. The final cross-linking degree reaches 90.0%. (c) Snapshot of the final cross-linked network of P-DNN-C2. Cross-linked C and N atoms are highlighted with sticks and balls, while other atoms are drawn as lines.
Fig. S18. Cross-linking steps for the generation of an atomistic model of P-DNN-C3. (a) The reaction mechanism between the diisocyanate component ‘N-[1,17-ditert-butyl-5-ethyl-8-(2-isocyanatoazepane-1-carbonyl)-19,20-dimethyl-4,12-dioxo-18,21,23-trioxa-3,5,8,11,13-pentaza-1,17-disilabicyclo[15.4.3]tetracosan-11-yl]-2-isocyanato-N-methylazepane-1-carboxamide’ (PubChem CID 60139559) and the dianhydride component ‘Dodecahydro-[5,5’-biisobenzofuran]-1,1’,3,3’-tetraone’ (PubChem CID 11077626). The imide groups are formed through the crosslinking of highlighted carbons and nitrogens, accompanied by eliminating hydrogen molecules. (b) The cross-linking degree increases with the increase of the cutoff distance from 4.5 to 15 Å. The final cross-linking degree reaches 90.0%. (c) Snapshot of the final cross-linked network of P-DNN-C3. Cross-linked C and N atoms are highlighted with sticks and balls, while other atoms are drawn as lines.
Fig. S19. Cross-linking steps for the generation of an atomistic model of P-DNN-C4. (a) The reaction mechanism between the diisocyanate component ‘14-Isocyanato-14-(1-isocyanatoethyl)trispiro [10.0.0.1113.1012.1011] tetratetracontane’ (PubChem CID 141382908) and the dianhydride component ‘2,2’-[Ethylenebis(sulfonyl)]bis(acetic acid)dialectic acid dianhydride’ (PubChem CID 101718050). The imide groups are formed through the crosslinking of highlighted carbons and nitrogens, accompanied by eliminating hydrogen molecules. (b) The cross-linking degree increases with the increase of the cutoff distance from 4.5 to 15 Å. The final cross-linking degree reaches 90.0%. (c) Snapshot of the final cross-linked network of P-DNN-C4. Cross-linked C and N atoms are highlighted with sticks and balls, while other atoms are drawn as lines.
REFERENCES AND NOTES

1. S. Basu, A. L. Khan, A. Cano-Odena, C. Liu, I. F. J. Vankelecom, Membrane-based technologies for biogas separations. *Chem. Soc. Rev.* **39**, 750–768 (2010).

2. S. Zhao, P. H. M. Feron, L. Deng, E. Favre, E. Chabanon, S. Yan, J. Hou, V. Chen, H. Qi, Status and progress of membrane contactors in post-combustion carbon capture: A state-of-the-art review of new developments. *J. Membr. Sci.* **511**, 180–206 (2016).

3. Y. Han, W. S. W. Ho, Polymeric membranes for CO$_2$ separation and capture. *J. Membr. Sci.* **628**, 119244 (2021).

4. B. D. Freeman, Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. *Macromolecules* **32**, 375–380 (1999).

5. D. F. Sanders, Z. P. Smith, R. Guo, L. M. Robeson, J. E. McGrath, D. R. Paul, B. D. Freeman, Energy-efficient polymeric gas separation membranes for a sustainable future: A review. *Polymer* **54**, 4729–4761 (2013).

6. H. B. Park, J. Kamcev, L. M. Robeson, M. Elimelech, B. D. Freeman, Maximizing the right stuff: The trade-off between membrane permeability and selectivity. *Science* **356**, eaab0530 (2017).

7. L. M. Robeson, The upper bound revisited. *J. Membr. Sci.* **320**, 390–400 (2008).

8. B. Comesaña-Gándara, J. Chen, C. G. Bezzu, M. Carta, I. Rose, M.-C. Ferrari, E. Esposito, A. Fuoco, J. C. Jansen, N. B. McKeown, Redefining the Robeson upper bounds for CO$_2$/CH$_4$ and CO$_2$/N$_2$ separations using a series of ultrapermeable benzotriptycane-based polymers of intrinsic microporosity. *Energ. Environ. Sci.* **12**, 2733–2740 (2019).

9. R. Swaidan, B. Ghanem, I. Pinnau, Fine-tuned intrinsically ultramicroporous polymers redefine the permeability/selectivity upper bounds of membrane-based air and hydrogen separations. *ACS Macro Lett.* **4**, 947–951 (2015).

10. J. R. Werber, C. O. Osuji, M. Elimelech, Materials for next-generation desalination and water purification membranes. *Nat. Rev. Mater.* **1**, 1–15 (2016).
11. S. Wang, X. Li, H. Wu, Z. Tian, Q. Xin, G. He, D. Peng, S. Chen, Y. Yin, Z. Jiang, M. D. Guiver, Advances in high permeability polymer-based membrane materials for CO$_2$ separations. *Energ. Environ. Sci.* **9**, 1863–1890 (2016).

12. T. J. Corrado, Z. Huang, D. Huang, N. Wamble, T. Luo, R. Guo, Pentiptycene-based ladder polymers with configurational free volume for enhanced gas separation performance and physical aging resistance. *Proc. Natl. Acad. Sci. U.S.A.* **118**, e2022204118 (2021).

13. H. Sanaeepur, A. Ebadi Amooghin, S. Bandehali, A. Moghadassi, T. Matsuura, B. Van der Bruggen, Polyimides in membrane gas separation: Monomer’s molecular design and structural engineering. *Prog. Polym. Sci.* **91**, 80–125 (2019).

14. J. Wang, Z. Shi, Y. Zang, H. Jia, M. Teraguchi, T. Kaneko, T. Aoki, Macromolecular design for oxygen/nitrogen permselective membranes—Top-performing polymers in 2020. *Polymers* **13**, 3012 (2021).

15. J. Liu, X. Hou, H. B. Park, H. Lin, High-performance polymers for membrane CO$_2$/N$_2$ separation. *Chem. A Eur. J.* **22**, 15980–15990 (2016).

16. N. B. McKeown, Polymers of intrinsic microporosity (PIMs). *Polymer* **202**, 122736 (2020).

17. T. Corrado, R. Guo, Macromolecular design strategies toward tailoring free volume in glassy polymers for high performance gas separation membranes. *Mol. Syst. Des. Eng.* **5**, 22–48 (2020).

18. M. F. Jimenez-Solomon, Q. Song, K. E. Jelfs, M. Munoz-Ibanez, A. G. Livingston, Polymer nanofilms with enhanced microporosity by interfacial polymerization. *Nat. Mater.* **15**, 760–767 (2016).

19. B. S. Ghanem, R. Swaidan, E. Litwiller, I. Pinnau, Ultra-microporous triptycne-based polyimide membranes for high-performance gas separation. *Adv. Mater.* **26**, 3688–3692 (2014).

20. B. S. Ghanem, R. Swaidan, X. Ma, E. Litwiller, I. Pinnau, Energy-efficient hydrogen separation by AB-type ladder-polymer molecular sieves. *Adv. Mater.* **26**, 6696–6700 (2014).
21. I. Rose, C. G. Bezzu, M. Carta, B. Comesaña-Gándara, E. Lasseuguette, M. C. Ferrari, P. Bernardo, G. Clarizia, A. Fuoco, J. C. Jansen, K. E. Hart, T. P. Liyana-Arachchi, C. M. Colina, N. B. McKeown, Polymer ultrapermeability from the inefficient packing of 2D chains. *Nat. Mater.* **16**, 932–937 (2017).

22. R. C. Dutta, S. K. Bhatia, Atomistic investigation of mixed-gas separation in a fluorinated polyimide membrane. *ACS Appl. Polym. Mater.* **1**, 1359–1371 (2019).

23. W. Fang, L. Zhang, J. Jiang, Polymers of intrinsic microporosity for gas permeation: A molecular simulation study. *Mol. Simul.* **36**, 992–1003 (2010).

24. R. M. Venable, A. Krämer, R. W. Pastor, Molecular dynamics simulations of membrane permeability. *Chem. Rev.* **119**, 5954–5997 (2019).

25. S. Yi, B. Ghanem, Y. Liu, I. Pinnau, W. J. Koros, Ultraselective glassy polymer membranes with unprecedented performance for energy-efficient sour gas separation. *Sci. Adv.* **5**, eaaw5459 (2019).

26. L. M. Robeson, C. D. Smith, M. Langsam, A group contribution approach to predict permeability and permselectivity of aromatic polymers. *J. Membr. Sci.* **132**, 33–54 (1997).

27. E. R. Hensema, M. H. V. Mulder, C. A. Smolders, C. A. Smolders, On the mechanism of gas transport in rigid polymer membranes. *J. Appl. Polym. Sci.* **49**, 2081–2090 (1993).

28. M. H. Cohen, D. Turnbull, Molecular transport in liquids and glasses. *J. Chem. Phys.* **31**, 1164–1169 (1959).

29. G. Chen, Z. Shen, A. Iyer, U. F. Ghumman, S. Tang, J. Bi, W. Chen, Y. Li, Machine-learning-assisted de novo design of organic molecules and polymers: Opportunities and challenges. *Polymers* **12**, 163 (2020).

30. D. J. Audus, J. J. de Pablo, Polymer informatics: Opportunities and challenges. *ACS Macro Lett.* **6**, 1078–1082 (2017).

31. L. Tao, G. Chen, Y. Li, Machine learning discovery of high-temperature polymers. *Patterns* **2**, 100225 (2021).
32. G. Chen, L. Tao, Y. Li, Predicting polymers’ glass transition temperature by a chemical language processing model. *Polymers* **13**, 1898 (2021).

33. L. Tao, V. Varshney, Y. Li, Benchmarking machine learning models for polymer informatics: An example of glass transition temperature. *J. Chem. Inf. Model.* **61**, 5395–5413 (2021).

34. S. Wu, Y. Kondo, M. Kakimoto, B. Yang, H. Yamada, I. Kuwajima, G. Lambard, K. Hongo, Y. Xu, J. Shiomi, C. Schick, J. Morikawa, R. Yoshida, Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm. *Npj Comput. Mater.* **5**, 1–11 (2019).

35. A. Mannodi-Kanakkithodi, G. Pilania, T. D. Huan, T. Lookman, R. Ramprasad, Machine learning strategy for accelerated design of polymer dielectrics. *Sci. Rep.* **6**, 20952 (2016).

36. W. Sun, Y. Zheng, K. Yang, Q. Zhang, A. A. Shah, Z. Wu, Y. Sun, L. Feng, D. Chen, Z. Xiao, S. Lu, Y. Li, K. Sun, Machine learning–assisted molecular design and efficiency prediction for high-performance organic photovoltaic materials. *Sci. Adv.* **5**, eaay4275 (2019).

37. R. Gómez-Bombarelli, J. Aguilera-Iparraguirre, T. D. Hirzel, D. Duvenaud, D. Maclaurin, M. A. Blood-Forsythe, H. S. Chae, M. Einzinger, D.-G. Ha, T. Wu, G. Markopoulos, S. Jeon, H. Kang, H. Miyazaki, M. Numata, S. Kim, W. Huang, S. I. Hong, M. Baldo, R. P. Adams, A. Aspuru-Guzik, Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. *Nat. Mater.* **15**, 1120–1127 (2016).

38. C. L. Ritt, M. Liu, T. A. Pham, R. Epsztein, H. J. Kulik, M. Elimelech, Machine learning reveals key ion selectivity mechanisms in polymeric membranes with subnanometer pores. *Sci. Adv.* **8**, eabl5771 (2022).

39. J. W. Barnett, C. R. Bilchak, Y. Wang, B. C. Benicewicz, L. A. Murdock, T. Bereau, S. K. Kumar, Designing exceptional gas-separation polymer membranes using machine learning. *Sci. Adv.* **6**, eaaz4301 (2020).

40. T. Liu, L. Liu, F. Cui, F. Ding, Q. Zhang, Y. Li, Predicting the performance of polyvinylidene fluoride, polyethersulfone and polysulfone filtration membranes using machine learning. *J. Mater. Chem. A* **8**, 21862–21871 (2020).
41. D. Rogers, M. Hahn, Extended-connectivity fingerprints. *J. Chem. Inf. Model.* **50**, 742–754 (2010).

42. S. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions. arXiv:1705.07874 [cs.AI] (22 May 2017).

43. R. Ma, T. Luo, PIIM: A benchmark database for polymer informatics. *J. Chem. Inf. Model.* **60**, 4684–4690 (2020).

44. A. Ghosh, S. K. Sen, S. Banerjee, B. Voit, Solubility improvements in aromatic polyimides by macromolecular engineering. *RSC Adv.* **2**, 5900–5926 (2012).

45. S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B. A. Shoemaker, P. A. Thiessen, B. Yu, L. Zaslavsky, J. Zhang, E. E. Bolton, PubChem 2019 update: Improved access to chemical data. *Nucleic Acids Res.* **47**, D1102–D1109 (2019).

46. P. M. Budd, K. J. Msayib, C. E. Tattershall, B. S. Ghanem, K. J. Reynolds, N. B. McKeown, D. Fritsch, Gas separation membranes from polymers of intrinsic microporosity. *J. Membr. Sci.* **251**, 263–269 (2005).

47. N. Du, M. D. Guiver, G. P. Robertson, Ladder polymers with intrinsic microporosity and process for production thereof. U.S. Patent 9,371,429 (2016).

48. L. McInnes, J. Healy, J. Melville, UMAP: Uniform manifold approximation and projection for dimension reduction. arXiv:1802.03426 [stat.ML] (9 February 2018).

49. Q. Yuan, M. Longo, A. W. Thornton, N. B. McKeown, B. Comesaña-Gándara, J. C. Jansen, K. E. Jelfs, Imputation of missing gas permeability data for polymer membranes using machine learning. *J. Membr. Sci.* **627**, 119207 (2021).

50. T. H. Kim, W. J. Koros, G. R. Husk, K. C. O’Brien, Relationship between gas separation properties and chemical structure in a series of aromatic polyimides. *J. Membr. Sci.* **37**, 45–62 (1988).
51. Y. Hu, M. Shiotsuki, F. Sanda, B. D. Freeman, T. Masuda, Synthesis and properties of indan-based polyacetylenes that feature the highest gas permeability among all the existing polymers. *Macromolecules* **41**, 8525–8532 (2008).

52. H. Lin, B. D. Freeman, Gas permeation and diffusion in cross-linked poly(ethylene glycol diacrylate). *Macromolecules* **39**, 3568–3580 (2006).

53. P. Ertl, A. Schuffenhauer, Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. *J. Chem.* **1**, 8 (2009).

54. J. G. Wijmans, R. W. Baker, The solution-diffusion model: A review. *J. Membr. Sci.* **107**, 1–21 (1995).

55. M. Pardakhti, E. Moharreri, D. Wanik, S. L. Suib, R. Srivastava, Machine learning using combined structural and chemical descriptors for prediction of methane adsorption performance of metal organic frameworks (MOFs). *ACS Comb. Sci.* **19**, 640–645 (2017).

56. L. Hirschfeld, K. Swanson, K. Yang, R. Barzilay, C. W. Coley, Uncertainty quantification using neural networks for molecular property prediction. *J. Chem. Inf. Model.* **60**, 3770–3780 (2020).

57. K. Yang, K. Swanson, W. Jin, C. Coley, P. Eiden, H. Gao, A. Guzman-perez, T. Hopper, B. Kelley, M. Mathea, A. Palmer, V. Settels, T. Jaakkola, K. Jensen, R. Barzilay, Analyzing learned molecular representations for property prediction. *J. Chem. Inf. Model.* **59**, 3370–3388 (2019).

58. C. Rudin, Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. *Nat. Mach. Intell.* **1**, 206–215 (2019).

59. S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair, R. Katz, J. Himmelfarb, N. Bansal, S.-I. Lee, From local explanations to global understanding with explainable AI for trees. *Nat. Mach. Intell.* **2**, 56–67 (2020).

60. J. Jiménez-Luna, M. Skalic, N. Weskamp, G. Schneider, Coloring molecules with explainable artificial intelligence for preclinical relevance assessment. *J. Chem. Inf. Model.* **61**, 1083–1094 (2021).
61. N. Du, G. P. Robertson, J. Song, I. Pinnau, S. Thomas, M. D. Guiver, Polymers of intrinsic microporosity containing trifluoromethyl and phenylsulfone groups as materials for membrane gas separation. *Macromolecules* **41**, 9656–9662 (2008).

62. Y. He, F. M. Benedetti, S. Lin, C. Liu, Y. Zhao, H.-Z. Ye, T. Van Voorhis, M. G. De Angelis, T. M. Swager, Z. P. Smith, Polymers with side chain porosity for ultrapermeable and plasticization resistant materials for gas separations. *Adv. Mater.* **31**, 1807871 (2019).

63. Y. Zhao, Y. He, T. M. Swager, Porous organic polymers via ring opening metathesis polymerization. *ACS Macro Lett.* **7**, 300–304 (2018).

64. R. Swaidan, B. Ghanem, E. Litwiller, I. Pinnau, Physical aging, plasticization and their effects on gas permeation in “rigid” polymers of intrinsic microporosity. *Macromolecules* **48**, 6553–6561 (2015).

65. G. Landrum, *RDKit: A Software Suite for Cheminformatics, Computational Chemistry, and Predictive Modeling* (Academic Press, 2013).

66. S. Plimpton, Fast parallel algorithms for short–range molecular dynamics. *J. Comput. Phys.* **117**, 1–19 (1995).

67. H. Sun, S. J. Mumby, J. R. Maple, A. T. Hagler, An ab initio CFF93 all-atom force field for polycarbonates. *J. Am. Chem. Soc.* **116**, 2978–2987 (1994).

68. V. Varshney, S. S. Patnaik, A. K. Roy, B. L. Farmer, A molecular dynamics study of epoxy-based networks: Cross-linking procedure and prediction of molecular and material properties. *Macromolecules* **41**, 6837–6842 (2008).

69. L. H. Hall, B. Mohney, L. B. Kier, The electrotopological state: Structure information at the atomic level for molecular graphs. *J. Chem. Inf. Comput. Sci.* **31**, 76–82 (1991).

70. M. C. Sorkun, J. M. V. A. Koelman, S. Er, Pushing the limits of solubility prediction via quality-oriented data selection. *iScience* **24**, 101961 (2021).
71. P. G. Francoeur, D. R. Koes, SolTranNet—A machine learning tool for fast aqueous solubility prediction. *J. Chem. Inf. Model.* **61**, 2530–2536 (2021).

72. A. Chandrasekaran, C. Kim, S. Venkatram, R. Ramprasad, A deep learning solvent-selection paradigm powered by a massive solvent/nonsolvent database for polymers. *Macromolecules* **53**, 4764–4769 (2020).

73. H. Sun, COMPASS: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. *J. Phys. Chem. B* **102**, 7338–7364 (1998).

74. S.-H. Park, K.-J. Kim, W.-W. So, S.-J. Moon, S.-B. Lee, Gas separation properties of 6FDA-based polyimide membranes with a polar group. *Macromol. Res.* **11**, 157–162 (2003).

75. C. G. Bezzu, M. Carta, M.-C. Ferrari, J. C. Jansen, M. Monteleone, E. Esposito, A. Fuoco, K. Hart, T. P. Liyana-Arachchi, C. M. Colina, N. B. McKeown, The synthesis, chain-packing simulation and long-term gas permeability of highly selective spirobifluorene-based polymers of intrinsic microporosity. *J. Mater. Chem. A* **6**, 10507–10514 (2018).

76. B. Satilmis, M. Lanč, A. Fuoco, C. Rizzuto, E. Tocci, P. Bernardo, G. Clarizia, E. Esposito, M. Monteleone, M. Dendisová, K. Friess, P. M. Budd, J. C. Jansen, Temperature and pressure dependence of gas permeation in amine-modified PIM-1. *J. Membr. Sci.* **555**, 483–496 (2018).

77. B. S. Ghanem, N. B. McKeown, P. M. Budd, J. D. Selbie, D. Fritsch, High-performance membranes from polyimides with intrinsic microporosity. *Adv. Mater. Deerfield Beach Fla.* **20**, 2766–2771 (2008).

78. M. Carta, P. Bernardo, G. Clarizia, J. C. Jansen, N. B. McKeown, Gas permeability of hexaphenylbenzene based polymers of intrinsic microporosity. *Macromolecules* **47**, 8320–8327 (2014).

79. J. Wu, S. Japip, T.-S. Chung, Infiltrating molecular gatekeepers with coexisting molecular solubility and 3D-intrinsic porosity into a microporous polymer scaffold for gas separation. *J. Mater. Chem. A* **8**, 6196–6209 (2020).
80. Y. Liu, A. Tang, J. Tan, C. Chen, D. Wu, H. Zhang, Structure and gas barrier properties of polyimide containing a rigid planar fluorene moiety and an amide group: Insights from molecular simulations. *ACS Omega* **6**, 4273–4281 (2021).