CHANDRA AND ROSAT OBSERVATIONS OF A194: DETECTION OF AN X-RAY CAVITY AND MAPPING THE DYNAMICS OF THE CLUSTER

Ákos Bogdán1, Ralph P. Kraft1, William R. Forman1, Christine Jones1, Scott W. Randall1, Ming Sun2, Christopher P. O’Dea3, Eugene Churazov4, and Stefi A. Baum3

1 Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138, USA; abogdan@head.cfa.harvard.edu
2 Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22901, USA
3 Rochester Institute of Technology, 84 Lomb Memorial Drive, Rochester, NY 14623, USA
4 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-str. 1, 85741 Garching bei München, Germany

Received 2011 June 10; accepted 2011 August 25; published 2011 November 22

ABSTRACT

Based on Chandra and ROSAT observations, we investigated the nearby poor cluster A194, which hosts two luminous radio galaxies, NGC 547 (3C 40B) and NGC 541 (3C 40A). We demonstrated the presence of a large X-ray cavity (r \sim 34 kpc) formed by the giant southern radio lobe arising from 3C 40B in NGC 547. The estimated age of the cavity is t = 7.9 \times 10^7 years and the total work of the active galactic nucleus is 3.3 \times 10^{59} erg, hence the cavity power is P_{cav} = 1.3 \times 10^{44} erg s^{-1}. Furthermore, in the Chandra images of NGC 545 and NGC 541 we detected sharp surface brightness edges, identified as merger cold fronts, and extended tails. Using the pressure ratios between inside and outside the cold fronts we estimated that the velocities of NGC 545 and NGC 541 correspond to Mach numbers of M = 1.0^{+0.3}_{-0.5} and M = 0.9^{+0.2}_{-0.5}, respectively. The low radial velocities of these galaxies relative to the mean radial velocity of A194 imply that their motion is oriented approximately in the plane of the sky. Based on these and earlier observations, we concluded that NGC 545 and NGC 541 are falling through the cluster, whose center is NGC 547, suggesting that A194 is undergoing a significant cluster merger event. Additionally, we detected 20 bright X-ray sources around NGC 547 and NGC 541, a surprisingly large number, since the predicted number of resolved low-mass X-ray binaries and cosmic X-ray background sources is 2.2 and 4.1, respectively. To explain the nature of additional sources, different possibilities were considered, none of which are satisfactory. We also studied the origin of X-ray emission in Minkowski’s object (MO) and concluded that it is most likely dominated by the population of high-mass X-ray binaries rather than by hot diffuse interstellar medium. Moreover, in view of the galaxy dynamics in A194, we explored the possibility that the starburst in MO was triggered by its past interaction with NGC 541, and concluded that it may be a viable path.

Key words: galaxies: active – galaxies: clusters: individual (A194) – galaxies: stellar content – intergalactic medium – X-rays: galaxies: clusters

Online-only material: color figures

1. INTRODUCTION

The essential element of the cooling flow problem is that in the centers of galaxy clusters the intracluster medium (ICM) should cool on a timescale much shorter than the Hubble time (Fabian 1994). However, observational evidence from XMM-Newton (Fabian1994). However, observational evidence from Chandra and XMM-Newton revealed that only relatively small amounts of gas cools to low temperatures (David et al. 2001; Peterson et al. 2003; Kaastra et al. 2004). The most commonly accepted resolution of this problem is the (re)heating of the ICM by the central active galactic nucleus (AGN) (e.g., Churazov et al. 2001; Peterson & Fabian 2006). In galaxy clusters the most direct signature of the interaction of AGN outbursts and the ICM is the detection of X-ray cavities (e.g., Boehringer et al. 1993; Forman et al. 2005). Outbursts from powerful radio sources can significantly increase the entropy of the ICM, thereby inflating the gas distribution and reducing the gas density. Hence at the position of radio lobes a decrement in the X-ray surface brightness becomes observable.

A194, shown in Figure 1, is a poor cluster at a redshift of z = 0.018 and hosts two luminous radio sources, 3C 40B (wide-angle-tail radio galaxy—WAT), associated with NGC 547, and 3C 40A (narrow-angle-tail radio galaxy—NAT), associated with NGC 541 (O’Dea & Owen 1985). The jet emanating from the latter is believed to be responsible for triggering star formation in Minkowski’s object (MO; van Breugel et al. 1985; Brodie et al. 1985). The extended Hα emission from 3C 40B (e.g., Baum et al. 1988) is associated with a dust disk and diffuse UV emission (Allen et al. 2002), the latter likely due to star formation. The nucleus is not detected at 11.8 μm (van der Wolk et al. 2010) and the optical emission line spectrum is low excitation (Buttiglione et al. 2009, 2010), which indicate that the AGN accretion disk is faint—consistent with a low accretion rate.

A194 is one of the most striking “linear” clusters of galaxies, as its galaxy distribution and X-ray emission are both linearly elongated along the northeast–southwest direction (Chapman et al. 1988; Nikogossyan et al. 1999; Jones & Forman 1999). The optical bridge between NGC 545/NGC 547 and NGC 541 (Croft et al. 2006) indicates past and/or recent interactions, thereby suggesting that A194 is not a relaxed cluster. As a consequence of the linear distribution of A194, it has not been clear whether any of the massive radio galaxies are in the center of the cluster, and whether A194 is undergoing a major merger event. Recently, Sakelliou et al. (2008) investigated the cluster relying on XMM-Newton and radio observations. The XMM-Newton data did not reveal significant stripping of the interstellar medium (ISM) of the massive galaxies, and the bending of the radio jets suggested that both NGC 547 and NGC 541 are moving with subsonic velocities on the order of
a few hundred km s\(^{-1}\). Thus, Sakelliou et al. (2008) concluded that the central region of A194 is relatively quiescent and is not suffering a major merger event.

Hereby we present the results of two Chandra pointed observations supplemented with an archival ROSAT pointing and complemented with 1.4 GHz Very Large Array (VLA) data to study the connection between the radio jet originating from 3C 40B and the X-ray surface brightness of the ICM. Furthermore, we aim to study the surface brightness distribution of the hot ISM of the massive early-type galaxies in A194 relying on the superb angular resolution of Chandra, thereby unveiling the dynamics of the cluster. Additionally, we also investigate the origin of the population of bright resolved X-ray sources around the massive early-type galaxies located in A194. Throughout the paper we assume \(H_0 = 71\) km s\(^{-1}\) Mpc\(^{-1}\), \(\Omega_M = 0.3\), and \(\Omega_{\Lambda} = 0.7\) (1\(\arcsec = 0.36\) kpc at \(z = 0.018\)). The Galactic column density toward A194 is \(N_H = 3.78 \times 10^{20}\) cm\(^{-2}\) (Dickey & Lockman 1990). All errors in the paper represent 1\(\sigma\) uncertainties, unless otherwise specified.

The paper is structured as follows: in Section 2, we introduce the analyzed data and describe its reduction. In Section 3, we demonstrate the existence of a cavity and compute the cavity power. The cold fronts in NGC 545 and NGC 541 and the dynamics of A194 are studied in Section 4. The population of bright resolved X-ray sources around the massive early-type galaxies located in A194. Throughout the paper we assume \(H_0 = 71\) km s\(^{-1}\) Mpc\(^{-1}\), \(\Omega_M = 0.3\), and \(\Omega_{\Lambda} = 0.7\) (1\(\arcsec = 0.36\) kpc at \(z = 0.018\)). The Galactic column density toward A194 is \(N_H = 3.78 \times 10^{20}\) cm\(^{-2}\) (Dickey & Lockman 1990). All errors in the paper represent 1\(\sigma\) uncertainties, unless otherwise specified.
of bright resolved sources around NGC 541, NGC 545, and NGC 547 is investigated in Section 5. The X-ray emission from MO is studied in Section 6. Finally, we conclude in Section 7.

2. DATA REDUCTION

2.1. Chandra

The central part of A194 was observed by two Chandra observations on 2007 September 3 for 9.2 ks (Obsid: 9583) and on 2007 September 7 for 65.7 ks (Obsid: 7823) using the ACIS-S detector (Figure 2, left panel). The data were processed with CIAO 4.3 and CALDB 4.4.2.

The main steps in the data analysis agree with those outlined in Bogdán & Gilfanov (2008). After filtering flare-contaminated time intervals, the total remaining exposure time was 72.3 ks. The data were combined by projecting the shorter observation into the coordinate system of ObsId 7823. Point sources were detected with the CIAO wavdetect tool in three separate energy bands: in the soft (0.5–2 keV), full (0.5–8 keV), and hard (2–8 keV) bands. The scales on which we searched for sources were the \(\sqrt{2} \)-series from 1.0 to 8.0, all other parameters of the wavdetect tool were left at default values. The resulting source lists were combined, which were used to study the population of bright X-ray sources and to mask out the point sources for further study of the diffuse emission.

To correct for vignetting and to estimate source detection sensitivities, exposure maps were produced using a power-law model with slope of \(\Gamma = 1.56 \), typical for low-mass X-ray binaries (LMXBs; Irwin et al. 2003). Assuming this spectrum and 10 photons as a detection threshold, the source detection sensitivity of the combined observation is \(\approx 7 \times 10^{39} \) erg s\(^{-1} \). Since the cluster fills the entire field of view (FOV) of the ACIS-S3 detector, we used “blank-sky” (http://cxc.harvard.edu/contrib/maxim/acisbg/) observations to subtract the background components. To account for variations in the normalizations of the background, we normalized the background level using the hard band (10–12 keV) count rate ratios.

Temperature maps were derived using the method of Randall et al. (2008). For each temperature map pixel, we extracted a spectrum from a circular region containing a minimum number of 1000 net counts in the 0.6–4.0 keV band. The resulting spectrum was fitted with an absorbed APEC model using XSPEC, with the abundance allowed to vary.

2.2. ROSAT

ROSAT observed A194 in a pointed PSPC observation on 1992 July 13 for 23.6 ks (Figure 2, right panel). Data analysis was performed with standard Xselect tools and a vignetting correction was applied using the provided exposure map. Due to the large FOV, the background was subtracted from the outer regions of the detector which is not affected by emission from A194. To study the diffuse emission from the cluster, the brightest point sources were excluded based on the Chandra source list, with source cell sizes appropriate for the point spread function of the ROSAT PSPC.

2.3. VLA Data

To study the properties of A194 in radio wavelengths, we rely on the 1.4 GHz radio observation taken by the VLA on 1997 September 16. The observation was performed in the VLA C configuration, the mean rms noise in the image is 0.151 mJy beam\(^{-1} \). The radio power was computed as \(P_v = 4\pi D_L^2 S_v \), where \(D_L = D_o (1 + z)^{-(\alpha - 1)/2} \). The bolometric radio luminosity was obtained by integrating the radio flux as

\[
L_{\text{radio}} = 4\pi D_L^2 S_v \int_{v_1}^{v_2} (v/v_0)^{-\alpha} dv,
\]

\(D_L \) is the distance, \(S_v \) is the radio flux density, and \(\alpha \) is the spectral index.
where \(v_1 = 10 \text{ MHz} \) and \(v_2 = 10000 \text{ MHz} \) and \(S_{v_0} \) is the VLA flux at 1.4 GHz. Additionally, a power-law spectrum (\(S \propto \nu^{-\alpha} \)) is assumed, where \(\alpha \) is the spectral index. The exact value of \(\alpha \) is somewhat uncertain: Andernach et al. (1980), Kuehr et al. (1981), and Spinrad et al. (1985) give spectral indices of 0.7, 0.87, and 0.66, respectively. In the further discussion we adopted the mean of these values, namely \(\alpha = 0.74 \).

2.4. Two Micron All Sky Survey

To trace the stellar light of the massive early-type galaxies in A194, we used the Two Micron All Sky Survey (2MASS) Large Galaxy Atlas (Jarrett et al. 2003), which is commonly applied for this purpose (e.g., Bogdán & Gilfanov 2010). Since the 2MASS \(K \)-band images of A194 are not background subtracted, we used nearby regions off the galaxies to estimate the background level. To convert counts to luminosity, we assumed that the absolute \(K \)-band magnitude of the Sun is \(M_K = 3.28 \).

3. THE X-RAY CAVITY

3.1. Detection of the Cavity

In the right panel of Figure 2, we show the 0.5–1.5 keV ROSAT PSPC image of a 1.08 × 1.44 Mpc region around A194, overlaid are the intensity levels of the 1.4 GHz VLA image. The giant radio lobes originating from 3C 40B (WAT) extend up to ~100 kpc. Note that the southern lobe is within the FOV of the Chandra ACIS-S3 detector. On the western side of the cluster another, much less prominent, jet is observable from 3C 40A (NAT), which is believed to trigger star formation in MO (Section 6). In the left panel of Figure 2, we present a 0.98 Gaussian-smoothed 0.3–2 keV band Chandra ACIS-S3 image of the central 216 × 288 kpc region of A194. The image was background subtracted and corrected for vignetting as described in Section 2.1. The most striking objects on the image are the three massive early-type galaxies, two of them hosting bright AGNs. Additionally, truly diffuse emission is also present, which is concentrated in the region enclosed by NGC 547 and NGC 541.

The large radio lobes indicate a relatively recent outburst from 3C 40B. In general, jets extending outside from the central AGN inflate radio lobes, thereby pushing the X-ray-emitting gas away and creating bubbles of relativistic plasma. The directly observable consequence of this process is the detection of cavities in the X-ray surface brightness distribution. Therefore, in A194 we expect to observe a decrement in the X-ray surface brightness at the position of the radio lobe. To unveil such a decrement we studied Chandra, ROSAT, and XMM-Newton data.

First, we studied the 0.3–2 keV band Chandra image to identify the cavity. We selected two circular regions with 1′ radii on the southern part of the cluster, marked on the left panel of Figure 2. One region is centered at the expected position of the cavity (R.A.: 01°26′05″; decl.: −01°23′46″), whereas the other is located in the southwestern part of the cluster (R.A.: 01°25′47″; decl.: −01°25′15″). If an X-ray decrement exists, a significantly lower X-ray flux is expected from the former region. The observed counts from both regions were converted into flux using an optically thin thermal plasma emission model (MeKAL model in XSPEC) with \(kT = 3.0 \text{ keV} \), which is the best-fit temperature of the ICM. The obtained flux in the cavity region is \(F_1 = (2.95 \pm 0.15) \times 10^{-14} \text{ erg s}^{-1} \text{ cm}^{-2} \), and is significantly lower than the neighboring region, \(F_2 = (3.75 \pm 0.16) \times 10^{-14} \text{ erg s}^{-1} \text{ cm}^{-2} \). This suggests the existence of an X-ray cavity coincident with the southern 3C 40B radio lobe.

Second, to confirm the existence of the cavity, we investigated the available ROSAT PSPC data, whose major advantages are its low background level and large FOV. In Figure 3, a 0.5–1.5 keV band vignetting-corrected and background-subtracted ROSAT image is shown and overlaid are the intensity levels of the 1.4 GHz VLA image. It is striking that the southern radio lobe is coincident with a clear cavity in the X-ray surface brightness distribution.

(A color version of this figure is available in the online journal.)

Figure 3. 0.5–1.5 keV band background-subtracted and vignetting-corrected ROSAT image of the central 324 × 432 kpc region of A194 cluster. Overlay are the intensity levels of the 1.4 GHz VLA image. It is striking that the southern radio lobe is coincident with a clear cavity in the X-ray surface brightness distribution.

Finally, as a consistency check we also investigated whether the available XMM-Newton EPIC data show an evidence of the X-ray cavity. The data were prepared as described in Bogdán & Gilfanov (2008). The same circular regions with 1′ radii were used to describe the cavity and the neighboring regions as for the Chandra data (Figure 2, left panel). The observed counts were converted to flux using a MeKAL model with \(kT = 3.0 \text{ keV} \). The obtained flux in the cavity region is \(F_1 = (2.8 \pm 0.4) \times 10^{-14} \text{ erg s}^{-1} \text{ cm}^{-2} \), and is significantly lower than...
Figure 4. Surface brightness distribution of the 0.5–1.5 keV band ROSAT PSPC image. Background components are subtracted and vignetting correction is applied. On the x-axis distance is measured from the peak of the radio emission and shows the decrement in the X-ray surface brightness (arrow). The values along the x-axis decrease toward east.

(A color version of this figure is available in the online journal.)

the neighboring region, $F_2 = (4.0 \pm 0.5) \times 10^{-14}$ erg s$^{-1}$ cm$^{-2}$. The observed flux is in good agreement with that obtained by Chandra. Although the difference between the X-ray flux in the cavity and neighboring region is statistically significant, the significance is somewhat smaller due to the larger error bars, caused by the higher and less stable background of XMM-Newton’s EPIC detectors.

Thus, Chandra, ROSAT, and XMM-Newton results demonstrate the existence of a highly statistically significant X-ray cavity in A194, produced by the giant southern radio lobe arising from 3C 40B.

3.2. Cavity Power

Measuring the cavity power (P_{cav}) offers a straightforward estimate of the energy injected to the X-ray-emitting gas by the AGN outburst. P_{cav} can be estimated by computing the minimal energy required to inflate the cavity and the age of the cavity. The former is obtained by measuring the cavity enthalpy as $H = 4pV$ (for relativistic plasma), whereas the latter is calculated as the sound crossing time. However, the calculation of P_{cav} involves a number of uncertainties (see below), hence the obtained cavity power should be considered as a sensible estimate.

Based on the VLA data, we describe the detected cavity in A194 with a circular region with a radius of 34 kpc ($\approx 1.5\prime$) centered on the coordinates: R.A.: 01h26m05s, decl.: $-01^\circ 23^\prime 46.1$. The distribution of the cavity is assumed to be spherically symmetric. Since the ICM is not strongly peaked in A194, we used the average ICM properties within the Chandra FOV to obtain the physical parameters of the gas. Therefore, we selected a circular region with 4\prime radius centered in the center of the ACIS-S3 detector. Note that resolved point sources were excluded along with three circular regions around NGC 541, NGC 545, and NGC 547 with radii of 15\prime, 13\prime, and 13\prime, respectively. The spectra of the 4\prime large region was described with an optically thin thermal plasma emission model (MEKAL model in XSPEC) with a best-fit temperature of $kT = 3.0 \pm 0.3$ keV (90% confidence interval). From the normalization of the model the emission measure is $\int n_e n_H dV = 3.0 \times 10^{63}$ cm$^{-3}$, implying an average density of $n = 1.9 \times 10^{-3}$ cm$^{-3}$. Thus, the average pressure is $p = 1.9 n k T = 1.7 \times 10^{-11}$ erg cm$^{-2}$. Using these parameters and computing the volume of the cavity region, the total AGN work is deduced as $4pV = 3.3 \times 10^{59}$ erg.

To compute the cavity power from the 4pV work, the age of the cavity has to be estimated. To apply a realistic expansion velocity, we consider two observational facts. On the one hand, the lack of a shock indicates that the expansion of the lobe is not very supersonic; on the other hand, the lobe is not strongly deformed by the buoyancy force and hence the expansion is also not very subsonic. Therefore, a somewhat uncertain but reasonable assumption is that the radio lobes propagate with the sound speed, which, in a $kT = 3.0$ keV plasma, is $c_s = \sqrt{(\gamma k T)/(\mu m_H)} = 875$ km s$^{-1}$ by adopting $\gamma = 5/3$ and $\mu = 0.62$. Assuming that the lobes are in the plane of the sky, the center of the cavity is approximately $d = 71$ kpc (≈ 3.3) from 3C 40B, hence the cavity age is $t = d/c_s = 7.9 \times 10^7$ years. Based on these, the approximate cavity power of the southern cavity is $P_{\text{cav}} = 4pV/t = 1.3 \times 10^{44}$ erg s$^{-1}$.

3.3. Comparison with Other Radio Induced Cavities

During the operation of Chandra the existence of radio-induced X-ray cavities has been shown in many galaxies and galaxy clusters. The correlation between the cavity power (P_{cav}) and the corresponding radio luminosity (L_{radio}) was studied in a broad sample of systems by Birzan et al. (2004, 2008). The best-fit relation for the total source luminosity given by Birzan et al. (2008) is

$$\log P_{\text{cav}} = (0.48 \pm 0.07) \log L_{\text{radio}} + (2.32 \pm 0.09),$$

where L_{radio} represents the bolometric radio luminosity. In this relation both P_{cav} and L_{radio} are in units of 10^{42} erg s$^{-1}$. Since the detected cavity in A194 is similar to those investigated earlier (Birzan et al. 2004, 2008), we examine if its properties fit this relation.

The bolometric radio luminosity was computed from the 1.4 GHz VLA data as described in Section 2.3, which yielded $L_{\text{radio}} = 1.7 \times 10^{44}$ erg s$^{-1}$, whereas the cavity power is $P_{\text{cav}} = 1.3 \times 10^{44}$ erg s$^{-1}$ (Section 3.2). Substituting the observed radio luminosity in the Birzan et al. (2008) relation, we find that the corresponding predicted cavity power is about 8.9×10^{43} erg s$^{-1}$. This value is similar albeit somewhat lower than the observed cavity power in A194. Considering the uncertainties in the estimation of P_{cav}, and the dispersion in the relation given by Birzan et al. (2008), we conclude that the detected cavity in A194 is in good agreement with those obtained in other galaxies and clusters of galaxies.

4. COLD FRONTS IN NGC 545 AND NGC 541 AND LARGE-SCALE DYNAMICS IN A194

4.1. Cold Fronts in NGC 545 and NGC 541

Two galaxies in A194, namely NGC 545 and NGC 541, exhibit sharp surface brightness edges and extended tails in the soft band Chandra images (Figure 5, upper panels). The edges are located on the northeastern and western side of NGC 545 and NGC 541, respectively. To demonstrate the existence of the edges and tails, we extracted surface brightness profiles of the galaxies using the regions depicted in the upper panels of Figure 5. The background-subtracted 0.3–2 keV band profiles are depicted in the lower panels of Figure 5. As suggested by the images, the X-ray surface brightness drops at $\sim 5\prime$ on the
northeastern and western sides of NGC 545 and NGC 541, whereas on the opposite sides it extends beyond \(\sim 10'' \) radius.

To further study the X-ray emission inside and outside the edges, we extracted X-ray energy spectra from both regions. Due to the relatively low number of counts, only one region could be investigated inside and outside the edges. The former was represented by circular regions centered on each galaxy with 5'' (1.80 kpc) and 6'' (2.16 kpc) radii for NGC 545 and NGC 541, respectively. The soft emission was described with a Mekal model and the abundances were fixed at 0.33 solar (Anders & Grevesse 1989). The best-fit temperatures were 3.2\(^{+0.9}_{-0.7}\) keV in NGC 545 and 2.8\(^{+0.8}_{-0.6}\) keV in NGC 541.

The observed sharp surface brightness edges in NGC 545 and NGC 541, and the temperature difference between the regions inside and outside the edges suggest that these features are contact discontinuities or cold fronts (Vikhlinin et al. 2001; Machacek et al. 2005; Markevitch & Vikhlinin 2007).

4.2. Large-scale Dynamics of A194

The detection of cold fronts in NGC 545 and NGC 541 permits us to compute their velocity, and hence map the large-scale dynamics of A194. Ideally, their velocities can be directly calculated from X-ray observations using the ratio of the thermal pressures at the stagnation point \(p_0 \) and in the free stream \(p_1 \) (Vikhlinin et al. 2001). However, due to the relatively low number of counts a number of assumptions are involved, and hence only crude estimates can be given. On the one hand, \(p_0 \) cannot be constrained across the surface brightness
edges, instead we used the average pressure in the galaxy; on the other hand, outside the cold fronts \(p_1 \) can only be measured in a relatively large region. Thus, we assume that no significant temperature and pressure gradients are present inside and outside the galaxies. Additionally, the poorly constrained abundances further limit the accuracy of the estimates.

The pressure ratios were estimated using the regions described in Section 4.1. We derived \(p_0/p_1 = 2.1^{+0.7}_{-0.9} \) for NGC 545 and \(p_0/p_1 = 1.8^{+0.5}_{-0.5} \) for NGC 541, which translate to Mach numbers of \(M = 1.0^{+0.3}_{-0.5} \) for NGC 545 and \(M = 0.9^{+0.2}_{-0.5} \) for NGC 541. The sound speed in 3 keV gas is \(\sqrt{p} = 875 \text{ km s}^{-1} \), hence the Mach numbers correspond to velocities of \(875^{+263}_{-438} \text{ km s}^{-1} \) and \(788^{+175}_{-438} \text{ km s}^{-1} \) for NGC 545 and NGC 541, respectively.

Based on the velocities of NGC 545 and NGC 541 and their radial velocities, the orientation of the galaxy motions can be deduced. The radial velocities of NGC 545 and NGC 541 are \(5338 \text{ km s}^{-1} \) and \(5422 \text{ km s}^{-1} \) (NASA/IPAC Extragalactic Database, NED), implying a velocity of \(-96 \text{ km s}^{-1} \) and \(26 \text{ km s}^{-1} \) relative to the mean radial velocity of A194 (\(5396 \text{ km s}^{-1} \)). Thus, we conclude that both NGC 545 and NGC 541 are moving essentially in the plane of the sky, since the direction of their motion differs \(\lesssim 10^\circ \) from it.

The observed cold fronts and the estimated transonic velocities of NGC 545 and NGC 541 suggest that they are falling through the cluster. The gas distribution in NGC 547 appears to be symmetric and does not reveal any surface brightness edges or tails, indicating its relatively low velocity. Indeed, from the bending of the radio jet emanating from 3C 40B, Sakelliou et al. (2008) estimated that NGC 547 moves with subsonic velocity, \(v_{\text{NGC547}} \lesssim 300 \text{ km s}^{-1} \). Additionally, the radial velocities of NGC 547, NGC 545, and NGC 541 are very similar to each other: 5468 \(\text{ km s}^{-1} \), 5338 \(\text{ km s}^{-1} \), and 5422 \(\text{ km s}^{-1} \), respectively. The minor differences in the radial velocities and the small projected distances between these galaxies suggest that they compose a gravitationally bound system. Thus, the center of A194 is presumably NGC 547, and NGC 545 and NGC 541 are falling through the cluster, implying that A194 is undergoing a significant cluster merger event.

The temperature map of the central regions of A194 is depicted in Figure 6. Interestingly, the temperature map reveals a hot elongated region between NGC 547/545 and NGC 541, and cooler temperature outside this region. To verify the temperature difference, the spectra of two regions were extracted (Figure 6). One of them represents the hot region between the bright cluster galaxies, whereas the other corresponds to the cooler region north of these galaxies. The obtained best-fit temperatures were \(kT = 3.2^{+0.8}_{-0.6} \) keV and \(kT = 1.4^{+0.3}_{-0.5} \) keV (90% confidence intervals), which indicate a statistically significant difference.

The higher temperature between NGC 547/545 and NGC 541 is most likely caused by a reverse merger shock (Markevitch & Vikhlinin 2001). Note that the forward shock cannot be unambiguously observed since on the one hand it is likely partly outside the FOV, on the other hand, it may be too faint due to the low ICM density. We thus conclude that the detection of hot ICM between the bright cluster galaxies is consistent with the picture of the galaxy dynamics in A194.

The non-detection of large-scale cold fronts in A194 indicates that the merger is not between two roughly equal mass systems in the first pass stage. Instead, the galaxies may have already undergone more than one pass, during which most of the cold gas was stripped from them. In agreement with this, the optical/X-ray bridge between NGC 547/NGC 545 and NGC 541 (Croft et al. 2006) also indicates past and/or recent interactions between them, implying that the potential probably extends to the western side of the cluster as well.

5. OVERDENSITY OF BRIGHT SOURCES AROUND MASSIVE EARLY-TYPE GALAXIES IN A194

5.1. Predicted Number of LMXBs and CXB Sources

A surprising result of our analysis is that around the massive early-type galaxies of A194 (NGC 541, NGC 545, NGC 547) an unusually high number of bright resolved sources are observed (Figure 7). To study the number of sources around these galaxies, two circular regions were selected with 1' radius: the first is centered between NGC 547 and NGC 545 (henceforth region A) whereas the second is centered on NGC 541 (henceforth region B). The central parts (15'' for NGC 547 and 13'' for NGC 541 and NGC 545) of galaxies were excluded from the analysis since their bright X-ray coronae notably reduce the point source detection sensitivity. Considering only sources with at least 10 counts in the 0.5–8 keV energy range, in regions A and B 11 and 9 sources were detected, respectively.
The most likely origins of the detected sources are: first, they could be LMXBs associated with the galaxies; second, they may be resolved cosmic X-ray background (CXB) sources.

The number of resolved LMXBs above a certain sensitivity limit can be determined using their average luminosity function (Gilfanov 2004). In the selected regions the source detection sensitivity is $\approx 7.2 \times 10^{38}$ erg s$^{-1}$. The corresponding K-band luminosities are $2.4 \times 10^{11} L_{K,\odot}$ and $1.5 \times 10^{11} L_{K,\odot}$ in regions A and B, respectively. According to the LMXB luminosity function we predict 0.8 and 0.5 resolved LMXBs above the detection threshold in regions A and B, respectively. Thus, only $\approx 6\%$ of the resolved sources can be explained by LMXBs.

The number of predicted CXB sources were determined using two independent approaches. As a first method, we used the log N–log S function of Moretti et al. (2003). We converted the observed 0.5–8 keV band sensitivity limit (1.14×10^{-15} erg s$^{-1}$ cm$^{-2}$) to the 2–10 keV band assuming a power-law spectral model with $\Gamma = 1.4$ and Galactic column density, which results in the sensitivity limit of 1.03×10^{-15} erg s$^{-1}$ cm$^{-2}$. Based on this value, the surface area of regions A and B, and the log N–log S function, we predicted 1.9 and 2.0 sources in A and B regions, respectively. As a second method, we used the field of A194 to determine the average surface density of resolved CXB sources. Using a circular region with 3′ radii, centered in the CCD, 17 point sources were observed. Note that in this computation the sources located within regions A and B are excluded, along with the point source associated with the elliptical galaxy CGCG 385-127.
Based on the surface area of regions A and B, we expect 2.0 and 2.1 sources within these regions. We stress that the predicted numbers of CXB sources obtained with the two methods are in excellent agreement with each other. Therefore, no more than $\approx 20\%$ of the detected sources could arise from resolved CXB sources.

Based on these, in the first instance, we find that LMXBs and CXB sources altogether can be responsible for ≈ 5.4 sources, whereas the observed number is 20, implying a $>5\sigma$ excess of point sources. We mention that Hudaverdi et al. (2006) reported an excess of sources in A194 (and A1060) in the luminosity range of $10^{39.6} < L_X < 10^{41.4}$ erg s$^{-1}$ over the full XMM-Newton FOV. They suggested that these sources, many identified with cluster member galaxies, are AGNs within cluster-member galaxies. The source excess we report has a very different origin since these sources appear to be associated with the massive early-type galaxies in A194 and are fainter, typically $L_X \sim 10^{39}$ erg s$^{-1}$, than those studied by Hudaverdi et al. (2006).

5.2. Possible Origin of the Source Overdensity

The normalization of the LMXB luminosity function exhibits a scatter of about a factor of two (e.g., Gilfanov 2004). Although such variations cannot explain the total number of excess sources, they may be responsible in part. The stable shape of the luminosity function implies that if its bright-end normalization is higher, then its faint end must also have an elevated level. Thus, we can scale the average luminosity function using the 2–8 keV band flux from the unresolved emission in regions A and B. The derived total hard band unresolved X-ray luminosity of $L_X = 3.9 \times 10^{40}$ erg s$^{-1}$ corresponds to $L_X/L_K = 1.0 \times 10^{59}$ erg s$^{-1}$ L_K^{-1}. Below the 7.2×10^{38} erg s$^{-1}$ sensitivity limit, the average LMXB luminosity function (Gilfanov 2004) predicts $L_X/L_K = 5.9 \times 10^{28}$ erg s$^{-1}$ L_K^{-1} in the 2–8 keV energy band, assuming an average power-law LMXB spectrum with slope of $\Gamma = 1.56$ and Galactic column density (Irwin et al. 2003). Thus, the luminosity function of LMXBs has to be scaled up by $\approx 70\%$. Therefore, the total predicted number of LMXBs is 2.2 in regions A and B. Taking this as the expectation value, the total number of predicted LMXBs and CXBs is 6.3, whereas 20 sources are observed.

An additional major uncertainty in the average LMXB luminosity function is the relatively low number of bright ($L_X \gtrsim 8 \times 10^{38}$ erg s$^{-1}$) sources in the sample of Gilfanov (2004). This implies large systematic uncertainties at the bright end of the luminosity function. Indeed, according to Gilfanov (2004) the number of bright LMXBs above $L_X \gtrsim 8 \times 10^{38}$ erg s$^{-1}$ may be factor of ≈ 4 times higher within 90\% confidence interval due to systematic errors. Taking this uncertainty into account, it is feasible that significantly more, altogether 8–9, resolved sources are bright LMXBs in regions A and B. Therefore, LMXBs and CXB sources may account for up to 11 sources of the 20 detected.

Since no significant star formation is associated with early-type galaxies, it is implausible that the additional population of point sources are high-mass X-ray binaries (HMXBs). To illustrate this point we estimate the star formation rate (SFR) required to produce nine HMXBs brighter than 7.2×10^{38} erg s$^{-1}$. Relying on the average HMXB luminosity function from Grimm et al. (2003) and using the normalization by Shtykovskiy & Gilfanov (2005) the required SFR is $\sim 18 M_\odot$ yr$^{-1}$. As this value is consistent with those observed for starburst galaxies, we conclude that the importance of HMXBs is negligible.

Since the galaxies we consider are in a cluster, it is possible that (at least some of) the X-ray sources are associated with galaxies within the cluster, alternatively foreground stars may play a role. To identify such galaxies we cross-checked the coordinates of all X-ray sources in NED. Additionally, we visually inspected Hubble Space Telescope and Digitized Sky Survey (DSS) images (Figure 7 right panel) to search for optical counterparts of X-ray sources. We found only one X-ray source around NGC 541 (R.A.: 01h25m40s66; decl.: $-01^\circ22^\prime2\prime$1297) which has an optical counterpart. Excluding this source the observed number of X-ray sources is 19, whereas LMXBs and CXB sources may account for up to 11 sources.

As is clear from Figure 7, NGC 547, NGC 545, and NGC 541 have very luminous X-ray coronae extending to large radii, within which a notable fraction of the detected sources are located. As our experience shows, it is feasible that some (unknown) fraction of the resolved sources are not pointlike compact sources, but are features of the shock-heated gas distribution. Obviously, such features in the gas distribution would further decrease the discrepancy between the observed and predicted number of resolved pointlike sources. However, taking the depth of the Chandra observations and the distance of A194, with the currently available exposures this question cannot be resolved.

We conclude that in regions A and B a $>2\sigma$ excess of point sources is detected, which may (partly) be due to unresolved features of the shocked X-ray gas and/or an excess population of bright sources.

6. MINKOWSKI’S OBJECT

6.1. Origin of the X-Ray Emission

MO (Minkowski 1958) lies along the jet emanating from NGC 541 (3C 40A), and is believed to be a classic example of jet-triggered star formation in the local universe. MO was studied by van Breugel et al. (1985) and Brodie et al. (1985) who suggested that the observed emission originated in a starburst. More recently, a multi-wavelength study by Croft et al. (2006) found that the stellar population of MO is dominated by a 7.5 \times 106 years old, 1.9 \times 10$^7 M_\odot$ instantaneous burst, with a current SFR of 0.52 M_\odot yr$^{-1}$.

In actively star-forming galaxies the dominant fraction of the observed X-ray emission is a combination of the population of HMXBs and the diffuse hot ISM (e.g., Grimm et al. 2003; Bogdán & Gilfanov 2011). However, due to the relatively high source detection sensitivity ($\approx 7 \times 10^{38}$ erg s$^{-1}$) in MO, most of the HMXBs are not resolved. Indeed, in a circular region with 15″ radius around MO we detected only one X-ray source with eight counts ($L_X \approx 5.6 \times 10^{38}$ erg s$^{-1}$). Thus, in MO the various X-ray-emitting components cannot be separated from each other since they all contribute to the unresolved emission. Therefore, we can only place upper limits on the observed X-ray emission by assuming that it originates either from unresolved HMXBs or from hot ISM.

First, we assume that the total X-ray luminosity is due to the population of unresolved HMXBs. The observed source counts from the selected 15″ circular region in the 0.5–8 keV band correspond to a luminosity of $(2.3 \pm 0.4) \times 10^{39}$ erg s$^{-1}$ assuming a typical HMXB power-law spectrum with slope of $\Gamma = 2$ and Galactic column density. Converting this luminosity into the 2–10 keV band, and taking into account the SFR in
MO (Croft et al. 2006), we obtained $L_X / \text{SFR} = (2.7 \pm 0.4) \times 10^{39}$ (erg s$^{-1}$)/(M$_\odot$ yr$^{-1}$). This value is in good agreement with that observed for HMXBs (Grimm et al. 2003; Shtykovskiy & Gilfanov 2005), thereby suggesting that at least part of the observed X-ray emission originates from the population of HMXBs.

Second, we assume that the observed X-ray emission is due to hot ISM. Since the observed number of counts is not enough to perform a spectral fit, we adopt a gas temperature of $kT = 1$ keV and 0.4 Solar abundance. Applying this conversion the observed counts correspond to a luminosity of $(1.0 \pm 0.2) \times 10^{39}$ erg s$^{-1}$. Assuming a spherically symmetric gas distribution within the selected 15$''$ circular region, the estimated average gas density is 4.4×10^{-3} cm$^{-3}$ and the total gas mass in MO is 7×10^9 M$_\odot$. Note that the upper limit on the gas mass is ~ 4 times higher than the stellar mass in MO (Croft et al. 2006). Therefore, it is unlikely that the hot ISM dominates the observed X-ray emission. Additionally, if the X-ray emission in MO is dominated by hot ISM, the associated thermal energy is on the order of a few times 10^{56} erg, the exact value depending on the gas temperature. To inject this large an amount of energy into the hot ISM, a few times 10^5 Type Ia supernova (SN Ia) explosions are required. On a timescale of 7.5×10^9 years, this implies an SN Ia rate of few times 10^{-2} yr$^{-1}$, being 1–2 orders of magnitude higher than the predicted SN Ia rate in MO based on its SFR (Sullivan et al. 2006; Croft et al. 2006). Therefore, SNe Ia cannot heat 7×10^9 M$_\odot$ gas to X-ray temperatures, but only a small fraction of it. Thus, we conclude that the X-ray emission in MO is either dominated by HMXBs or the jet interaction with the ambient ISM plays a role in heating the gas.

6.2. An Alternative Origin of the Star Formation in Minkowski’s Object

Although it is widely believed that the star formation in MO is triggered by the jet emanating from NGC 541 (3C 40A), based on our results on the dynamics of A194 we explore an alternate origin of MO. In Section 4, we demonstrated that NGC 541 is falling through the cluster and its direction of movement is pointing toward the west. Interestingly, its motion approximately points back to NGC 547/NGC 545 and also crosses the position of MO. This suggests that the active star formation in MO could be triggered by its interaction with NGC 541.

The projected distance of MO from NGC 541 is ~ 19 kpc, and the velocity of NGC 541 is 788^{+175}_{-138} km s$^{-1}$ (Section 4.2). Assuming that the motion takes place in the plane of the sky, and considering only the velocity of NGC 541, the interaction between NGC 541 and MO could have happened $(1.9 \pm 5.3) \times 10^7$ years ago. The age of MO can be estimated by different methods: on the one hand, Croft et al. (2006) obtained a stellar age of 7.5×10^9 years based on spectral energy distribution models; on the other hand, if constant SFR $(0.52 M_\odot$ yr$^{-1})$ is assumed and the total stellar mass of MO $(1.9 \times 10^9 M_\odot)$ is considered, an average age of $\approx 3.7 \times 10^7$ years is computed. Thus, the estimated age of MO is $(0.75 \pm 3.7) \times 10^7$ years, which is in approximate agreement with the time range of the possible interaction between MO and NGC 541.

Thus, it is feasible that the interaction between a preexisting gas-rich dwarf galaxy (now observed as MO) and NGC 541 triggered a starburst event, which largely rejuvenated the stellar population of MO.

7. CONCLUSIONS

We investigated the poor cluster, A194, based on Chandra and ROSAT observations. The main results of our work are outlined below.

1. We demonstrated the existence of an X-ray cavity at the southern part of A194 formed by the southern radio lobe arising from 3C 40B. Using the parameters of the hot ICM, the extent and location of the cavity, we estimated the total work of the AGN, 3.3×10^{59} erg, the age of the cavity, $t = 7.9 \times 10^7$ years, and the total cavity power, $P_{\text{cav}} = 1.3 \times 10^{44}$ erg s$^{-1}$.

2. We detected sharp surface brightness edges, identified as merger cold fronts, and extended tails in the Chandra images of NGC 545 and NGC 541. We estimated that NGC 545 and NGC 541 are moving with transonic velocities, and their motion is oriented approximately in the plane of the sky. Based on these and earlier observations, we concluded that NGC 547, associated with 3C 40B, lies at the center of A194 and NGC 545 and NGC 541 are falling through the cluster.

3. A $\geq 2\sigma$ excess of point sources were detected around the massive early-type galaxies in A194. The additional sources may be (partly) due to unresolved features of the shocked X-ray gas in the coronae of the galaxies and/or an excess population of bright sources.

4. We also investigated the X-ray emission from MO and concluded that it is most likely dominated by the population of HMXBs rather than by hot diffuse ISM. Additionally, in the view of the galaxy dynamics in A194, we explored the possibility that the starburst in MO was triggered by the interaction of a preexisting gas-rich dwarf galaxy and NGC 541.

The authors thank Martin Hardcastle for critical reading of the manuscript and the anonymous referee for helpful and constructive comments. This research has made use of Chandra archival data provided by the Chandra X-ray Center (CXC). The publication makes use of software provided by the CXC in the application package CIAO. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. The Digitized Sky Survey (DSS) and the NASA/IPAC Extragalactic Database (NED) have been used. The Very Large Array (VLA) is a facility of the National Radio Astronomy Observatory (NRAO). The NRAO is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. W.F. and C.J. acknowledge support from the Smithsonian Institution. The financial support for this work was partially provided by the Chandra X-ray Center through NASA contract NAS8-03060, and the Smithsonian Institution.

REFERENCES

Allen, M. G., Sparks, W. B., Kookstra, A., et al. 2002, ApJS, 139, 411
Andermach, H., Waldhauser, H., & Wielebinski, R. 1980, A&AS, 41, 339
Anders, E., & Grevesse, N. 1989, Geochim. Cosmochim. Acta, 53, 197
Baum, S. A., Heckman, T. M., Bridle, A., van Breugel, W. J. M., & Milew, G. K. 1988, ApJS, 68, 643
Birzan, L., McNamara, B. R., Nulsen, P. E. J., Carilli, C. L., & Wise, M. W. 2008, ApJ, 686, 859
