Entity Extraction for Clinical Notes, a Comparison Between MetaMap and Amazon Comprehend Medical

Fatemeh Shah-Mohammadi, Wanting Cui, Joseph Finkelstein
Icahn School of Medicine at Mount Sinai
New York, NY
Overview

- Why is Entity Extraction needed?
- Clinical Entity Extraction Tools:
 - MetaMap (MM)
 - Amazon Comprehend Medical (ACM)
- Dataset
- Evaluation Metrics
- Results
- Discussion
- Conclusion
Why is Entity Extraction needed?

- Clinical Notes recorded in unstructured format
- Clinical Notes contain vast amount of information
- Information needs to be extracted for further utilization and analysis in daily healthcare setting
- Extracted information also form basis for other tasks (disease correlation and classification)
Tools: MetaMap (MM)

- A rule-based entity extraction tool
- Developed by National Library of Medicine (NLM)
- Maps biomedical texts to UMLS concepts
- Uses hybrid approach: NLP, computational linguistic techniques and knowledge-intensive approach

Aronson AR. Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. In Proceedings of the AMIA Symposium. 2001;17-21.
Aronson AR, Lang FM. An overview of MetaMap: historical perspective and recent advances. JAMIA. 2010;17(3):229-36.
Tools: Amazon Comprehend Medical (ACM)

- A deep neural network-based entity extraction tool
- Developed by Amazon Web Service (AWS)
- Uses deep learning based system (Long Short Term Memory (LSTM) network and Transfer Learning)
Dataset

- The 2014 i2b2 heart disease and its associated risk factors identification dataset
- Consists of 521 medical records with distribution of 8 disease risk factor categories and 38 associated indicators

Category	Indicator
Hypertension	Hyperlipidemia
Hyperlipidemia	Dyslipidemia
Diabetes	Hypercholesterolemia
Obese	High Cholesterol
Coronary Artery Disease (CAD)	
Medication	
Evaluation Metrics

- Expert annotation considered as a gold standard for evaluation
- Data cleaning pipeline:
 - Records in XML format
 - Separated actual narrative text from the annotations
 - Imported annotations into a relational database
- Evaluation metrics: Recall, Precision, and F-score

id	start	end	text	tag
M0	1339	1346	ZESTRIL	MEDICATION
M3	1400	1407	LIPITOR	MEDICATION
M6	1272	1275	ASA	MEDICATION
M9	1174	1180	PLAVIX	MEDICATION
Results

30 entities has been selected for comparison

Entities annotated by	MM	Evaluation	ACM
frequency of occurrences			
Hypertension (264)	1	0.74	0.85
Hypertensive (14)	0.29	1	0.44
htn (352)	1	0.78	0.88
Hyperlipidemia (166)	1	0.59	0.74
Dyslipidemia (24)	1	0.69	0.81
Hypercholesterolemia (3)	1	0.66	0.8
High Cholesterol (12)	1	0.67	0.8
Diabetes Mellitus (4)	0.75	1	0.86
Diabetic (17)	0.51	1	0.69
DM (268)	1	0.94	0.97
Insulin Dependent Diabetes Mellitus (1)	1	1	1
Non Insulin Dependent Diabetes Mellitus (1)	1	1	1
Condition	MM	ACM	Average
-----------------------------------	----	-----	---------
Obesity (70)	1	0.75	0.85
Morbid Obesity (13)	1	0.75	0.87
Coronary Artery Disease (104)	1	0.71	0.83
Coronary Artery Bypass Surgery (7)	0.72	1	0.83
Myocardial Infarction (41)	1	0.8	0.89
MI (68)	0.55	1	0.71
Chest Pressure (7)	1	1	1
Zestril (56)	1	0.53	0.76
Lipitor (201)	1	0.64	0.78
Verapamil (19)	1	0.79	0.88
Beta-Blocker (26)	0.39	1	0.56
AVERAGE	0.88	1	0.90

ACM resulted in better performance in comparison with MM with 10% higher average recall, 4% higher average precision, and 10% higher average F-score.
Discussion

- Poor recall performance of MM: stems from its inability in identifying multi word phrases as concepts, unless exact matches can be found in the dictionary.

- ACM is a neural network-based tool, its training dataset included a wider range of vocabularies.

Tag name	Entities annotated by experts	MM	ACM	R	P	F
and frequency of occurrences		R	P	F		

Hyperlipidemia						
High Chol (1)		nan	1	1	1	
Increased Cholesterol (1)		nan	1	1	1	

Diabetes						
Insulin Dependent Diabetes (1)		nan	nan	nan	nan	nan
Insulin independent Diabetes (5)		nan	nan	nan	nan	nan
Insulin Requiring Diabetes (1)		nan	nan	nan	nan	nan

Obese						
Morbidly Obese (7)		nan	1	1	1	
Severely Obese (2)		nan	nan	nan	nan	nan
Conclusion

- Need for automated entity extraction tools
- Two such tools: MetaMap and Amazon Comprehend Medical (with different computational capability)
- ACM resulted in better performance in comparison with MM with 10% higher average recall, 4% higher average precision, and 10% higher average F-score.
- ACM is a neural network-based tool, its training dataset included a wider range of vocabularies.
- Future use: Amazon Comprehend Medical
Thank you