Research Article

An improved lower bound for the degree Kirchhoff index of bipartite graphs

Ş. Burcu Bozkurt Altındağ1,*, Igor Milovanović2, Emina Milovanović2, Marjan Matejić2

1Yenikent Kardelen Konutları, Selçuklu, 42070 Konya, Turkey
2Faculty of Electronic Engineering, University of Niš, Niš, Serbia

(Received: 8 November 2021. Received in revised form: 15 January 2022. Accepted: 15 January 2022. Published online: 18 January 2022.)

© 2022 the authors. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

For a connected graph \(G \) with \(n \) vertices and \(m \) edges, the degree Kirchhoff index of \(G \) is defined as

\[
K_f^\ast (G) = 2m \sum_{i=1}^{n-1} (\gamma_i)^{-1},
\]

where \(\gamma_1 \geq \gamma_2 \geq \cdots \geq \gamma_{n-1} > \gamma_n = 0 \) are the normalized Laplacian eigenvalues of \(G \). In this paper, a lower bound on the degree Kirchhoff index of bipartite graphs is established. Also, it is proved that the obtained bound is stronger than a lower bound derived by Zhou and Trinajstić in [J. Math. Chem. 46 (2009) 283–289].

Keywords: topological indices; degree Kirchhoff index.

2020 Mathematics Subject Classification: 05C12, 05C50.

1. Introduction

Let \(G = (V(G), E(G)) \) be a simple connected graph with \(n \) vertices and \(m \) edges, where \(V(G) = \{v_1, v_2, \ldots, v_n\} \). The degree of a vertex \(v_i \in V(G) \) is denoted by \(d_i \), where \(i = 1, 2, \ldots, n \). If \(v_i \) and \(v_j \) are two adjacent vertices of \(G \), then it is written as \(i \sim j \).

Denote by \(A(G) \) and \(D(G) = \text{diag}(d_1, d_2, \ldots, d_n) \) the adjacency and the diagonal degree matrix of \(G \), respectively. The Laplacian matrix of \(G \) is defined as \(L(G) = D(G) - A(G) \) (see [16]). Since \(G \) is assumed to be a connected graph, the matrix \(D(G)^{-1/2} \) exists. The normalized Laplacian matrix of \(G \) is the matrix defined [8] by

\[
L(G) = D(G)^{-1/2} L(G) D(G)^{-1/2}.
\]

The eigenvalues \(\gamma_1 \geq \gamma_2 \geq \cdots \geq \gamma_{n-1} > \gamma_n = 0 \) of \(L(G) \) represent the normalized Laplacian eigenvalues of \(G \). Details on the spectra of \(L(G) \) can be found in [8].

Chen and Zhang [7] introduced the degree Kirchhoff index of a connected graph \(G \) as

\[
K_f^\ast (G) = \sum_{i<j} d_i d_j r_{ij},
\]

where \(r_{ij} \) is the effective resistance distance between the vertices \(v_i \) and \(v_j \) of \(G \). In [7], it was also demonstrated that the degree Kirchhoff index can be expressed in terms of normalized Laplacian eigenvalues as follows:

\[
K_f^\ast (G) = 2m \sum_{i=1}^{n-1} \frac{1}{\gamma_i}.
\]

Both of the definitions of the graph invariant \(K_f^\ast (G) \) given by (1) and (2) are much studied in the chemical and mathematical literature. For survey and details, see \([1,2,4,5,10–12,14,15,17,18,20,21]\).

In this paper, we present a lower bound on the degree Kirchhoff index of bipartite graphs. In addition, we show that our lower bound improves the lower bound obtained by Zhou and Trinajstić [21].

2. Lemmas

In this section, we recall a few well-known properties of the normalized Laplacian eigenvalues of graphs.

*Corresponding author (srf_burcu.bozkurt@hotmail.com).
Lemma 2.1. [8] Let G be a connected graph with $n \geq 2$ vertices. Then, the following properties regarding the normalized Laplacian eigenvalues are valid:

1. $\sum_{i=1}^{n} \gamma_i = n$.
2. $\gamma_1 \leq 2$ with equality if and only if G is a bipartite graph.
3. For each $1 \leq i \leq n$, $\gamma_i \in [0,2]$, $\gamma_n = 0$ and $\gamma_{n-1} \neq 0$.

Lemma 2.2. [9] Let G be a connected graph with n vertices and m edges. Then,

$$\prod_{i=1}^{n-1} \gamma_i = \frac{2m \cdot t(G)}{\prod_{i=1}^{n} d_i},$$

where $t(G)$ is the total number of spanning trees of G.

Lemma 2.3. [13] Let G be a connected graph of order n. Then, $\gamma_2 \geq 1$ with equality if and only if G is a complete bipartite graph.

3. A lower bound for the degree Kirchhoff index of bipartite graphs

We now give an improved lower bound on the degree Kirchhoff index of bipartite graphs.

Theorem 3.1. Let G be a connected bipartite graph with $n \geq 2$ vertices, m edges and $t(G)$ spanning trees. Then, for any real α, $\gamma_2 \geq \alpha \geq 1$,

$$K_{f^*}(G) \geq 2m \left(\frac{1}{2} + \frac{1}{\alpha} + n - 3 - \ln \left(\frac{m \cdot t(G)}{\prod_{i=1}^{n} d_i} \right) + \ln \alpha \right).$$

Equality in (3) holds if and only if $\alpha = 1$ and $G \cong K_{p,q}$ ($p + q = n$).

Proof. For $x > 0$, the following inequality can be found in the monograph [19]

$$x \leq 1 + x \ln x,$$

where the equality holds if and only if $x = 1$. For $x > 0$, the above inequality can be considered as

$$\frac{1}{x} \geq 1 - \ln x$$

with equality if and only if $x = 1$. By Lemma 2.1, $\gamma_1 = 2$ and $\gamma_i > 0$, $i = 1, 2, \ldots, n-1$, since G is a connected bipartite graph. Then, using these results and Lemma 2.2, we have

$$\sum_{i=1}^{n-1} \frac{1}{\gamma_i} = \frac{1}{\gamma_1} + \frac{1}{\gamma_2} + \sum_{i=3}^{n-1} \frac{1}{\gamma_i}$$

$$= \frac{1}{2} + \frac{1}{\gamma_2} + \sum_{i=3}^{n-1} \frac{1}{\gamma_i}$$

$$\geq \frac{1}{2} + \frac{1}{\gamma_2} + \sum_{i=3}^{n-1} (1 - \ln \gamma_i)$$

$$= \frac{1}{2} + \frac{1}{\gamma_2} + n - 3 - \ln \prod_{i=3}^{n-1} \gamma_i$$

$$= \frac{1}{2} + \frac{1}{\gamma_2} + n - 3 - \ln \left(\frac{m \cdot t(G)}{\prod_{i=1}^{n} d_i} \right) + \ln \gamma_2. \quad (4)$$

Now, consider the function $f(x) = \frac{1}{x} + \ln x$. It can be easily seen that this function is increasing in the interval $1 \leq x \leq 2$. Then for any real α, $\gamma_2 \geq \alpha \geq 1$, we have that

$$f(\gamma_2) \geq f(\alpha) = \frac{1}{\alpha} + \ln \alpha.$$

Bearing this fact in mind and using (2) and (4), we obtain that

$$K_{f^*}(G) \geq 2m \left(\frac{1}{2} + \frac{1}{\alpha} + n - 3 - \ln \left(\frac{m \cdot t(G)}{\prod_{i=1}^{n} d_i} \right) + \ln \alpha \right).$$
which is the required inequality (3). Now, assume that the equality holds in (3). Then

\[\gamma_2 = \alpha \text{ and } \gamma_3 = \cdots = \gamma_{n-1} = 1. \]

Since \(G \) is bipartite, by Lemma 2.1, \(\sum_{i=2}^{n-1} \gamma_i = n - 2 \). Considering this with the above conditions, we get that \(\gamma_2 = \alpha = 1 \), which implies that \(G \cong K_{p,q} \).

Conversely, it is not difficult to show that the equality holds in (3) for the complete bipartite graph \(K_{p,q} \). Hence, the proof is completed. \(\Box \)

By Theorem 3.1 and Lemma 2.3, we have the following corollary.

Corollary 3.1. Let \(G \) be a connected bipartite graph with \(n \geq 2 \) vertices, \(m \) edges and \(t(G) \) spanning trees. Then,

\[Kf^*(G) \geq m(2n - 3) - 2m \ln \left(\frac{m t(G)}{\prod_{i=1}^{n} d_i} \right). \]

Equality in (5) holds if and only if \(G \cong K_{p,q} \) \((p + q = n)\).

Remark 3.1. For a connected bipartite graph \(G \) with \(n \geq 2 \) vertices and \(m \) edges, Zhou and Trinajstić [21] obtained that

\[Kf^*(G) \geq m(2n - 3) \]

with equality if and only if \(G \) is a complete bipartite graph. Furthermore, for connected bipartite graphs, the following inequality can be obtained from Theorem 3 of [3]:

\[0 < \frac{m t(G)}{\prod_{i=1}^{n} d_i} \leq 1. \]

From the above and (5), we conclude that

\[Kf^*(G) \geq m(2n - 3) - 2m \ln \left(\frac{m t(G)}{\prod_{i=1}^{n} d_i} \right) \geq m(2n - 3). \]

This implies that the lower bound (5) improves the lower bound (6).

Recall that the general Randić index of a graph \(G \) is one of the graph topological indices defined by \(R_{-1}(G) = \frac{1}{\sum_{i<j} \frac{1}{d_i d_j}} \) (see [6]). The following lower bound was found in Theorem 3.2 of [5]

\[\gamma_2 \geq 1 + \sqrt{\frac{2(R_{-1}(G) - 1)}{n-2}}. \]

Remark 3.2. Notice that the lower bound (5) can be improved by taking \(\alpha = 1 + \sqrt{\frac{2(R_{-1}(G) - 1)}{n-2}} \) in Theorem 3.1.

Acknowledgment

The authors are grateful to two anonymous referees for their valuable comments and suggestions.

References

[1] M. Bianchi, A. Cornaro, J. L. Palacios, J. M. Renom, A. Torriero, Revisiting bounds for the multiplicative degree-Kirchhoff index, *MATCH Commun. Math. Comput. Chem.* 75 (2016) 227–231.

[2] M. Bianchi, A. Cornaro, J. L. Palacios, A. Torriero, Bounding the sum of powers of normalized Laplacian eigenvalues of graph through majorization method, *MATCH Commun. Math. Comput. Chem.* 70 (2013) 707–716.

[3] Ş. B. Bozkurt, Upper bounds for the number of spanning trees of graphs, *J. Inequal. Appl.* 269 (2012) 1–7.

[4] Ş. B. Bozkurt, D. Bozkurt, On the sum of powers of normalized Laplacian eigenvalues of graphs, *MATCH Commun. Math. Comput. Chem.* 68 (2012) 917–930.

[5] Ş. B. Bozkurt Altındağ, I. Milovanović, M. Matejić, E. Milovanović, On the degree Kirchhoff index of bipartite graphs, *Sci. Publ. State Univ. Novi Pazar, Ser. A: Appl. Math. Inform. Mech.* 13 (2021) 1–8.

[6] M. Cavers, S. Fallat, S. Kirkland, On the normalized Laplacian energy and general Randić index \(R_{-1} \) of graphs, *Linear Algebra Appl.* 433 (2010) 172–190.

[7] H. Chen, F. Zhang, Resistance distance and the normalized Laplacian spectrum, *Discrete Appl. Math.* 155 (2007) 654–661.

[8] F. R. K. Chung, *Spectral Graph Theory*, Amer. Math. Soc., Providence, 1997.

[9] D. Cvetković, M. Doob, H. Sachs, *Spectra of graphs*, Academic press, New York, 1980.

[10] K. C. Das, Y. Yang, K. Xu, Nordhaus-Gaddum-type results for resistance distance-based graph invariants, *Discuss. Math. Graph Theory* 36 (2016) 695–707.

[11] L. Feng, I. Gutman, G. Yu, Degree Kirchhoff index of unicyclic graphs, *MATCH Commun. Math. Comput. Chem.* 69 (2013) 629–648.

[12] M. Hakimi-Nezhad, A. R. Ashrafi, I. Gutman, Note on degree Kirchhoff index of graphs, *Trans. Combin.* 2 (2013) 43–52.
[13] J. Li, J. M. Guo, W. C. Shiu, Bounds on normalized Laplacian eigenvalues of graphs, *J. Inequal. Appl.* **316** (2014) 1–8.

[14] J. Li, J. M. Guo, W. C. Shiu, Ş. B. Bozkurt Altındağ, D. Bozkurt, Bounding the sum of powers of normalized Laplacian eigenvalues of a graph, *Appl. Math. Comput.* **324** (2018) 82–92.

[15] M. Matejić, I. Milovanović, E. Milovanović, Remarks on the degree Kirchhoff index, *Kragujevac J. Math.* **43** (2019) 15–21.

[16] R. Merris, Laplacian matrices of graphs: a survey, *Linear Algebra Appl.* **197&198** (1994) 143–176.

[17] I. Milovanović, I. Gutman, E. Milovanović, On Kirchhoff and degree Kirchhoff indices, *Filonat* **29** (2015) 1869–1877.

[18] I. Milovanović, E. Milovanović, Bounds of Kirchhoff and degree Kirchhoff indices, In: I. Gutman, B. Furtula, K. C. Das, E. Milovanović, I. Milovanović (Eds.), *Bounds in Chemical Graph Theory – Mainstreams*, Univ. Kragujevac, Kragujevac, 2017, pp. 95–119.

[19] D. S. Mitrinović, *Elementary Inequalities*, P. Noordhoff, Groningen, 1964.

[20] J. Palacios, J. M. Renom, Another look at the degree Kirchhoff index, *Int. J. Quantum Chem.* **111** (2011) 3453–3455.

[21] B. Zhou, N. Trinajstić, On resistance-distance and Kirchhoff index, *J. Math. Chem.* **46** (2009) 283–289.