BOUNDED EQUIDISTRIBUTION OF SPECIAL SUBVARIETIES II
KE CHEN

CONTENTS

References 1
introduction 2
1. lower bound of the Galois orbit of a special subvariety 2
2. bounded sequence and bounded Galois orbits 8

REFERENCES

[1] Y. André, Six lectures on Shimura varieties, subvarieties and CM points, lectures in Franco-Taiwan Arithmetic Festival 2001, cf. http://www.math.purdue.edu/jyu/notes.andre2001.ps
[2] W. Baily and A. Borel, Compactification of arithmetic quotients of bounded symmetric domains, Annals of Mathematics 84(2), 442-528, 1966
[3] D. Bertrand, Minimal heights and polarizations on abelian varieties, MSRI preprint 06220-87, Berkeley, 1987
[4] K. Chen, Special subvarieties of mixed Shimura varieties, Ph.D thesis 2009, Université Paris-Sud XI, 2009
[5] K. Chen, On special subvarieties of Kuga varieties, Mathematische Zeitschrift 274, 821-839, 2013
[6] K. Chen, Bounded equidistribution of special subvarieties I, preprint, arXiv:1403.2157
[7] L. Clozel and E. Ullmo, Équidistribution des sous-variétés spéciales, Annals of Mathematics 161(2), 1571-1588, 2005
[8] B. Conrad, Finiteness of class number of algebraic groups over global function fields, to appear in Compositio Mathematica
[9] P. Deligne, Variété des de Shimura: interpretation modulaire, et techniques de construction de modèles canoniques, in Proceedings of Symposia in Pure Mathematics Vol. 33, Part 2, pp. 247-290, AMS, 1970
[10] B. Edixhoven and A. Yafaev, Subvarieties of Shimura varieties, Annals of Mathematics 157(2), 621-645, 2003
[11] B. Klingler and A. Yafaev, On the André-Oort conjecture, to appear in Annals of Mathematics
[12] B. Moonen, Linearity properties of Shimura varieties II, Compositio Mathematica 114(1), 3-35, 1998
[13] S. Mozes and N. Shah, On the space of ergodic invariant measures of unipotent flows, Ergodic theory and Dynamical Systems 15(1), 149-159, 1995
[14] F. Oort, Canonical liftings and dense sets of CM-points, in Arithmetic geometry (Cortona 1994), pp. 228-234, Symposia Mathematica, Cambridge Univ. Press, Cambridge, 1997
[15] J. Pila, O-minimality and the André-Oort conjecture for \mathbb{C}^n, Annals of Mathematics, (2), 173(3), 1779-1840, 2011
[16] R. Pink, Arithmetical compactification of mixed Shimura varieties, Bonner Mathematische Schriften vol. 209
[17] R. Pink, A combination of the conjectures of Mordell-Lang and André-Oort, in Geometric methods in algebra and number theory, Progress in Mathematics, vol. 253, pp. 251-282, 2005
[18] N. Ratazzi and E. Ullmo, Galois + Equidistribution = Manin-Mumford, in Arithmetic geometry, pp. 419-430, Clay Mathematics Proceedings, vol. 8, AMS, 2009
[19] T. Scanlon, Local André-Oort conjecture for the universal abelian variety, Inventiones mathematicae, 163(1), 191 - 211, 2006

1991 Mathematics Subject Classification. Primary 14G35(11G18), Secondary 14K05.
Key words and phrases. Shimura varieties, mixed Shimura varieties varieties, André-Oort conjecture, special subvarieties, Diophantine approximation, equidistribution.
Theorem 0.1. Assume GRH for CM fields. Let $M = M_K(P,Y)$ be a mixed Shimura variety, with $K \subset P(\bar{Q})$ a compact open subgroup of finite product type, and E its reflex field. Fix an integer N, Then for M' a pure special subvariety in M defined by $(wG^t w^{-1}, wX; wX^+)$, we have
\[
\#\text{Gal}(\bar{Q}/E) \cdot M' \geq c_N D_N(T) \prod_{p \in \Delta(T,K_G(w))} \max\{1, I(T, K_G(w)_p)\}
\]
where
- c_N is some absolute constant, independent of K, M';
- T is the connected center of G', $D_N(T) := (\log(D(T)))^N$ with $D(T)$ the absolute discriminant of the splitting field of T;
- $K_G(w) = \{g \in K_G : wgw^{-1}g^{-1} \in K_W\}$ following the notations in [6], and $\Delta(T, K_G(w))$ is the set of rational primes such that $T(\bar{Q}_p) \cap K_G(w)_p \subset K_{T,p}^{\max}$, $K_{T,p}^{\max}$ being the maximal compact open subgroup of $T(\bar{Q}_p)$;
- $I(T, K_G(w)_p) = b \cdot [K_{T,p}^{\max} : T(\bar{Q}_p) \cap K_G(w)_p]$ with b some absolute constant independent of K, M'.

For a general special subvariety $M' \subset M$ which is not pure, we introduce the notion of test invariants $\tau_M(M')$ as a substitute for the lower bound of Galois orbits, and we get

Theorem 0.2. Assume GRH for CM fields. Let M be a mixed Shimura variety defined by (P,Y) at some level K of finite product type. Let (M_n) be a sequence of special subvarieties in M, such that the sequence of test invariants $(\tau_M(M_n))$ is bounded. Then the sequence (M_n) is bounded by some finite bounding set B in the sense of [6]. In particular, the Zariski closure of $\bigcup_n M_n$ is a finite union of special subvarieties bounded by B.

Note that [21] has formulated their main lower bound via the intersection degree against the automorphic line bundle on pure Shimura varieties, which fits into the framework of [11]. We do not need this step yet in this paper, and we stick to the counting of Galois orbits.

1. LOWER BOUND OF THE GALOIS ORBIT OF A SPECIAL SUBVARIETY

In the pure case, Ullmo and Yafaev proved the following lower bound of Galois orbits of special subvarieties in a pure Shimura variety:
Theorem 1.1 (lower bound in the pure case, cf. [21] Theorem 2.19). Let $S = M_K(G, X)$ be a pure Shimura variety with reflex field E, with $K \subset G(\mathbb{Q})$ a level of product type. Assume the GRH for CM fields, and fix an integer $N > 0$. Then for $S' \subset S$ a T-special subvariety, we have
\[
\#	ext{Gal}(\bar{\mathbb{Q}}/E) \cdot S' \geq c_N \cdot D_N(T) \cdot \prod_{p \in \Delta(T, K)} \max \{1, I(T, K_p)\}
\]
with

- $D_N(T) = (\log D(T))^N$, where $D(T)$ is the absolute discriminant of the splitting field of the \mathbb{Q}-torus T;
- $\Delta(T, K)$ is the set of rational primes p such that $K_{T,p} \subset K_{T,p}^{\text{max}}$, where $K_{T,p} = T(\mathbb{Q}_p) \cap K_p$,
- $K_{T,p}^{\text{max}}$ the unique maximal compact open subgroup of $T(\mathbb{Q}_p)$,
- $\Delta(T, K)$ is finite, i.e. $K_{T,p} = K_{T,p}^{\text{max}}$ for all but finitely many p's.
- $I(T, K_p) = b[K_{T,p}^{\text{max}} : K_{T,p}]$
- and $c_N, b \in \mathbb{R}_{>0}$ are constants independent of K, T.

Remark 1.2 (dependence on levels). (1) The results in [21] was formulated for an ambient pure Shimura datum (\mathfrak{G}, X), and a faithful algebraic representation $\rho: \mathfrak{G} \to \text{GL}_{n\mathbb{Q}}$.

The constants c_N and b are independent of K. This was not mentioned explicitly in [21], but one can verify through their arguments that c_N and b are determined by (\mathfrak{G}, X) and ρ. c_N does not depend on the prescribed integer N, but any fixed N will suffice.

(2) The estimation depends on an embedding of (G, X) into some ambient pure Shimura datum (\mathfrak{G}, X), and a faithful algebraic representation $\rho: \mathfrak{G} \to \text{GL}_{n\mathbb{Q}}$.

(3) The quantity $D_N(T)$ is independent of K, while $I(T, K_p)$ describe the position of $T(\mathbb{Q})$ relative to K_p. Whether p lies in $\Delta(T, K)$ or not is closely related to the integral structure of T at p, and is also related to the reduction property of the special subvarieties, see [10] and [22] for details.

(4) The estimation in [21] was formulated using intersection degrees against the ample line bundle of top degree automorphic forms on $S = M_K(G, X)$. Actually the intersection degree of a single (connected) special subvariety only contributes as a real number greater than 1 in the lower bound. The formulation is used in further study of unbounded orbits in [11].

We can thus consider the lower bound of the Galois orbits of pure special subvariety in a given mixed Shimura variety.

Theorem 1.3 (orbit of a pure special subvariety). Let $(P, Y) = (U, V) \rtimes (G, X)$ be a mixed Shimura subdatum, defining a mixed Shimura variety M at a level K of product type. Write E for the reflex field of (P, Y), and π for the natural projection $M \to S = M_K(G, X)$ with $\pi(0)$ the zero section.

Let M' be a pure special subvariety of M defined by a subdatum of the form $(wG'w^{-1}, wX')$ for some pure subdatum $(G', X') \subset (G, X)$ and $w \in W(\mathbb{Q})$. Then we have the following lower bound assuming the GRH for CM fields, using the same constants c_N, b, and notations in [11]:
\[
\#	ext{Gal}(\bar{\mathbb{Q}}/E) \cdot M' \geq c_N D_N(T) \prod_{p \in \Delta(T, K_{G}(w))} \max \{1, I(T, K_{G}(w)_p)\}
\]
where

- T is the connected center of G', and $D_N(T) = (\log D(T))^N$;
Lemma 1.5

where

Proof. In the statement above, \(K_G(w)_p = G(\mathbb{Q}_p) \cap K_G(w) \) is a compact open subgroup in \(K_{G,p} \), and the inclusion \(K_G(w)_p \subset K_{G,p} \) is an equality for all but finitely many rational primes \(p \)’s. In particular, the group \(K_G(w) \) is a compact open subgroup in \(K_G \) of fine product type, i.e. \(K_G(w) = \prod_p K_G(w)_p \).

Proof. For all but finitely many \(p \)’s, we have \(w \in W(\mathbb{Q}) \) lies in \(K_{W,p} \) and \(w g w^{-1} g^{-1} \in K_{W,p} \) for \(g \in K_{G,p} \).

When \(w \notin K_{W,p} \), write \(w = (u, v) \) for some \(u \in U(\mathbb{Q}) \) and \(v \in V(\mathbb{Q}) \), then by ?? we have \(w^n = (nu, nv) \) for any \(n \in \mathbb{Z} \), hence the subgroup \(K'_{W,p} \) generated by \(w \) and \(K_{W,p} \) is compact and open, containing \(K_{W,p} \) as a subgroup of finite index. \(K_{G,p} \) stabilizes \(K_{W,p} \), hence a compact open subgroup in \(K_{G,p} \) of finite index stabilizes \(K_{W,p} \).

The theorem is reduced to the following

Lemma 1.5 (reflex field). \((P, Y) = W \rtimes (G, X) \) has the same reflex field as \((G, X) \) does, and the action of \(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \) on \(M_{K_{G,w}}(w G w^{-1}, w X) \) is identified with its action on \(M_{K_{G,w}}(G, X) \) where \(K_{G,w} := w G(\overline{\mathbb{Q}}) w^{-1} \cap K_{W} \rtimes K_{G} \).

Proof. From the definition of reflex fields [16] Chapter 11, we know that for a morphism of mixed Shimura data \((P, Y) \rightarrow (P', Y') \) we have \(E(P, Y) \supseteq E(G, X) \). Thus \(E(P, Y) = E(G, X) \) because we have the natural projection and the zero section. Conjugation by \(w \in W(\mathbb{Q}) \) gives the isomorphism \((G, X) \cong (w G w^{-1}, w X) \) as maximal pure subdata of \((P, Y) \). It also induces an isomorphism of pure Shimura varieties \(M_{K_{G,w}}(G, X) \cong M_{w K_{G,w}^{-1}}(w G w^{-1}, w X) \).

It is easy to verify that \(w K_{G,w}^{-1} \cap K_{W} \rtimes K_{G} = w K_{G}(w) w^{-1} \). Therefore when \(K_{G,w} = K_{G}(w) \), the conjugation by \(w \) gives an isomorphism \(M_{K_{G,w}^{-1}}(P, Y) \cong M_{K}(P, Y) \) sends the zero section \(M_{w K_{G,w}^{-1}}(w G w^{-1}, w X) \) with respect to \((P, Y) = W \rtimes (w G w^{-1}, w X) \) to the zero section \(M_{K_{G,w}}(G, X) \) with respect to \((P, Y) = W \rtimes (G, X) \). In particular, for any pure subdatum \((G', X') \) of \((G, X) \), the special subvariety defined by \((w G' w^{-1}, w X'; w X'^{1}) \) is isomorphic to the one defined by \((G', X'; X'^{1}) \), and the isomorphism respects the canonical models.

Hence the theorem holds trivially when \(K_{G,w} = K_{G}(w) \). When \(K_{G}(w) \subsetneq K_{G} \), it suffices to take a base change \(f : S' = M_{K_{G,w}}(G, X) \rightarrow S = M_{K_{G}}(G, X) \) which is a morphism of pure Shimura varieties defined over \(E(G, X) \). The base change is finite étale as we have taken \(K_{G} \) to be neat. It respects the special subvarieties of \(M = M_{K}(P, Y) \) and of \(MS' \) as well as their canonical models, hence the lemma.

Before we take a closer look at the term \(I(T, K_{G}(w)_p) \), we introduce the following

Notation 1.6. For \(w = (u, v) \in W(\mathbb{Q}) \), we have \((u, v)^n = (nu, nv) \), hence it makes sense to talk about the order of \(w = (u, v) \) with respect to \(K_{W} \); it is the smallest positive integer \(m > 0 \) such that \(w^m \in K_{W} \), i.e. \(mw \in K_{U} \) and \(nv \in K_{V} \), which makes sense because \(u \) and \(v \) are in \(U(\mathbb{Q}) \) and \(V(\mathbb{Q}) \) respectively. We can also talk about the \(p \) order of \(w \) with respect to \(K_{W} \), namely the integer \(m \in \mathbb{N} \) such that \(w^n \in K_{W,p} \) if and only if \(p^m \) divides \(n \).

In the lower bound we have the set \(\Delta(T, K_{G}(w)) \) containing the subset \(\delta(T, K_{G}(w)) \) of primes \(p \) such that \(K_{T,p} \supseteq K_{T}(w)_p \). We want to show that for \(p \in \delta(T, K_{G}(w)) \), the inequality

\[
[K_{T,p}^{\text{max}} : K_{T}(w)_p] \geq c \cdot \text{ord}_p(w, K_{W})
\]
holds for some absolute constant \(c \) independent of \(K, w, T \). This is clear when \(T \cong \mathbb{G}_m \) acts on \(U \) and \(V \) by scaling \(g(u, v) = (gu, gv) \) using the central cocharacters \(\mathbb{G}_m \to \text{GL}_U \) and \(\mathbb{G}_m \to \text{GL}_V \). In fact, for the action on \(U(Q_p) \), \(K_{T,p} \) is a compact open subgroup of \(\mathbb{G}_m(Q_p) = \mathbb{Q}_p^* \) stabilizing \(K_{U,p} \) contained in the maximal compact open subgroup \(K_{T,p}^{\max} \cong \mathbb{Z}_p^* \), and \(K_T(u) \) is the stabilizer of the class \(u \) modulo \(K_{U,p} \). Since the automorphism by \(K_{T,p}^{\max} \cong \mathbb{Z}_p^* \) preserves the torsion order in \(U(Q_p)/K_{U,p} \) and leaves the line \(\mathbb{Q}_p u \) stable, we see that

\[
[K_{T,p}^{\max} : K_T(u) \] \geq (p - 1)p^{m-1}
\]

because \((p - 1)p^{m-1} \) is the number of elements of order \(p^m \) in \(\mathbb{Q}_p u \) modulo \(K_{U,p} \). The case of \(T \) acting on \(V \) is similar under our assumption \(T \cong \mathbb{G}_m \), and it is obvious that

\[
\text{ord}_p(w, K_W) = \max\{\text{ord}_p(u, K_U), \text{ord}_p(v, K_V)\}
\]

hence

\[
[K_{T,p}^{\max} : K_T(u) \] \geq (1 - \frac{1}{p})\text{ord}_p(w, K_W) \geq \frac{1}{2}\text{ord}_p(w, K_W).
\]

In general, the \(\mathbb{Q} \)-torus does admit quotients isomorphic to split \(\mathbb{Q} \)-tori:

Lemma 1.7 (split tori). Let \((P, Y) = (U, V) \times (G, X) \) be a mixed Shimura datum, with \(T \) the connected center of \(G \). Then for the actions of \(T \) on \(U \) and on \(V \),

1. there is a \(T \)-equivariant decomposition \(U = \bigoplus_{r=1}^{s_1} U_i \) such that \(T \) acts on \(U_i \) via the central scaling \(\mathbb{G}_m \to \text{GL}_U \);
2. there exists a \(T \)-equivariant decomposition \(V = \bigoplus_{j=1}^{s_2} V_j \) such that in the representation \(T \to \text{GL}_V \), the image of \(T \) contains the center of \(\text{GL}_V \).

Proof. \(G \) and \(T \) being reductive, it suffices to consider the case when \(U \) and \(V \) are irreducible as representations of \(G \).

1. This is clear because by [16] 2.16, \(G \), hence \(T \), acts on \(U \) through a split \(\mathbb{Q} \)-torus, hence the irreducible representation \(U \) is one-dimensional. Since \(U \) is of Hodge type \((-1, -1)\), the action of \(G \), hence the action of \(T \) on it is through the central scaling.

2. \(\rho : G \to \text{GL}_V \) is an irreducible representation of \(G \), such that for any \(x \in X \), the composition \(\rho \circ x \) is a rational Hodge structure of type \(\{(-1, 0), (0, -1)\} \). It thus follows from the definition of pure Shimura data [16] 1. ? that the Hodge structure is polarizable, namely \(G \) preserves some polarization \(\psi : V \times V \to \mathbb{Q}(-1) \) up to scalars, hence the representation factors through the Siegel datum, i.e. \((G, X) \to (\text{GSp}_V, \mathcal{H}_V)\).

It suffices to show that the image \(G \to \text{GSp}_V \) contains the center of \(\text{GSp}_V \). If it does not contain the center, then it is contained in \(\text{Sp}_V = \text{Ker}(\text{GSp}_V \xrightarrow{\det} \mathbb{G}_m) \). The construction in [21] ? shows that \((\text{Sp}_V, X') \) is a pure Shimura subdatum of \((\text{GSp}_V, \mathcal{H}_V) \) with \(X' \) the \(\text{Sp}_V(\mathbb{R}) \)-orbit of the image of \(X \) in \(\mathcal{H}_V \), which is ridiculous because \(x(S) \notin \text{Sp}_V(\mathbb{R}) \) for any \(x \in \mathcal{H}_V \) due to the \(\mathbb{R} \)-torus \(\mathbb{G}^{\text{mR}} \subset \mathbb{S} \).

We are thus led to

Proposition 1.8 (torsion order). For \(p \in \delta(T, K_G(w)) \) as above, we have \([K_{T,p}^{\max} : K_T(w) \] \geq cp^{\text{ord}_p(w, K_W)} \) for some constant \(c \) which is independent of \(K, w, T \).

Proof. Since the number of irreducible representations in \(U \) (resp. in \(V \)) is uniformly bounded by the dimension of \(U \) (resp. of \(V \)), we are reduced to the case when \(U \) and \(V \) are irreducible under \(G' \).

Thus \(U \) is one-dimensional, with \(T \) acts on it through the central scaling \(\mathbb{G}_m \cong \text{GL}_U \). It suffices to show that for each prime \(p \), the homomorphism \(T(Q_p) \to \mathbb{G}_m(Q_p) \) sends \(K_{T,p}^{\max} \) to a compact open subgroup of \(\mathbb{Z}_p^* \) whose index in \(\mathbb{Z}_p^* \) is uniformly bounded.
Recall that the splitting field $F = F_T$ is a number field, and $[F : \mathbb{Q}]$ is uniformly bounded by some constant c_1 that only depends on the dimension of G; in particular, we can rearrange $c_1 \in \mathbb{N}_{>0}$ such that for any connected center T of pure Shimura subdatum (G', X') of (G, X), $[F_T : \mathbb{Q}]$ divides c_1 and $[F_T(p) : \mathbb{Q}_p]$ divides c_1 with $F_T(p)$ the splitting field of the \mathbb{Q}_p-torus $T_{\mathbb{Q}_p}$.

Fix p a prime, F the splitting field of $T_{\mathbb{Q}_p}$ over \mathbb{Q}_p. Write X for the group of characters $\text{Hom}(T_F, \mathbb{G}_m)$ with the natural action of $\Gamma = \text{Gal}(F/\mathbb{Q}_p)$. Then $T(F) = \text{Hom}(X, F^\times)$, and $T_q(p) = \text{Hom}(X, F^\times)$ is the Γ-fixed part of $T(F)$. The maximal compact open subgroup of $T(F)$ is $\text{Hom}(X_T, O_F^\times)$ with O_F the integer ring of F, and the norm map $Nm : T(F) \rightarrow T_q(p)$ sends $\text{Hom}(X, O_F^\times)$ into the maximal compact open subgroup $K_{\mathbb{Q}_p}^{\text{max}}$ of $T(q_p)$.

From [1.7] we have homomorphism of \mathbb{Q}-tori $T \rightarrow \mathbb{G}_m$, where \mathbb{G}_m is a \mathbb{Q}-subtorus in GL_U (or GL_V) that acts as central scaling on direct summands of U (or on V). The condition on Hodge types show that for the corresponding map of characters $\mathbb{Z}^d \rightarrow X$, the image of \mathbb{Z}^d is of index at most 2 in a direct summand of X on which Γ acts trivially.

Now consider the commutative diagram

\[
\begin{array}{ccc}
\text{Hom}(X, O_F^\times) & \rightarrow & \text{Hom}(\mathbb{Z}^d, O_F^\times) \\
\downarrow Nm & & \downarrow Nm \\
K_{\mathbb{Q}_p}^{\text{max}} & \rightarrow & \text{Hom}(\mathbb{Z}^d, \mathbb{Z}_p^\times)
\end{array}
\]

where the horizontal maps are induced from the norm $Nm : F^\times \rightarrow \mathbb{Q}_p^\times$, the horizontal maps are induced by $T \rightarrow \mathbb{G}_m$, and the image of the upper horizontal map is of index at most 2^d.

Since the degree $[\mathbb{Z}_p^\times : Nm(O_F^\times)] \leq [F : \mathbb{Q}_p]$ by local class field theory, we see that the image of the lower horizontal map $K_{\mathbb{Q}_p}^{\text{max}} \rightarrow \text{Hom}(\mathbb{Z}^d, \mathbb{Z}_p^\times)$ is of finite index, and the index is bounded by a constant that only depends on c_1 and the dimension of T.

We summarize the above computation into the following

Corollary 1.9 (unipotent defects). There is some constant c, independent of c, K, w, such that in the expression $I(T, K_G(w))$ in [1.3] we have $I(T, K_G(w)) \geq cp^{\text{ord}_p(m, K \Gamma w)}$ for $p \in \delta(T, K_G(w))$.

For $p \in \Delta(T, K_G(w))$ such that $K_{\mathbb{Q}_p}^{\text{max}} \supseteq K_{\mathbb{Q}_p} = K_T(w_p)$ we still have $I(T, K_G(w)) \geq cp$ by [21].

As we have mentioned in ??, for a subdatum $(P', Y') = W' \times (wG'w^{-1}, wX')$, the choice of w is unique up to translation by $W'(\mathbb{Q})$. In this case, we have:

Corollary 1.10. Let M' be a special subvariety defined by a subdatum $(P', Y'; Y'^{+}) = W' \times (wG'w^{-1}, wX'; wX'^{+})$. Then the infimum

\[
\inf_{w' \in W'(\mathbb{Q})w} \prod_{p \in \Delta(T, K_G(w))} \max\{1, bI(T, K_G(w)_p)\}
\]

is reached at some $w' \in W'(\mathbb{Q})w$.

Proof. We first note that the representation of T on V (resp. U) does not admit any trivial subrepresentation. Otherwise we have some \mathbb{Q}-subspace $V' \subset V$ stabilized by T and by G^der because they commute with each other, hence

Write $w = (u, v)$ and $w' = (u', v') = (u + u' + \psi(u, v), v' + v)$ for $(u', v') \in W'(\mathbb{Q})$, and $\text{ord}_p(u', K_U)$ resp. $\text{ord}_p(v', K_V)$ for the p-order of u' with respect to K_U resp. of v' with respect to K_V.
We have $I(T, K_G(w')_p) \geq cp^m$ with $m = \max\{\text{ord}_p(u', \text{ord}_p(u', K_U)), \text{ord}_p(v', K_V)\}$ for $p \in \delta(T, K_G(w))$. $K_{T,p}$ is a compact open subgroup of $T(Q_p)$ stabilizing $K_{U,p}$ and $K_{V,p}$, hence $K_{T,w'} \subseteq K_{T,p}$ when either $\text{ord}_p(u', K_U)$ or $\text{ord}_p(v', K_V)$ are large. Combining with the estimation in [1], we see that the inferium is reached for some w' such that $\text{ord}_p(w', K_W)$ is small.

For convenience we introduce the following:

Definition 1.11. Let M be a mixed Shimura variety defined by $(P, Y) = W \ltimes (G, X)$ at some level K of fine product type. For M' a special subvariety defined by $(P', Y'; Y'^+) = W' \ltimes (wG'w^{-1}, wX', wX'^+)$, we define the test invariant of M' in M to be

$$\tau_M(M') := D(T) \min_{w' \in W^\prime(Q)w} \prod_{p \in \Delta(T, K_G(w))} \max\{1, b \cdot I(T, K_G(w)_p)\},$$

where T is the connected center of G', $D(T)$ is the absolute discriminant of the splitting field of T, and the minimum makes sense by the corollary above.

It is actually independent of the choice of subdata defining M': by ??, if we pass to a second defining subdatum $(P'', Y''; Y''^+)$, then its image under the natural projection is a pure subdatum (G'', X'', X''^+) of $(G, X; X^+)$ with $G'' = \gamma G' \gamma^{-1}$ for some $\gamma \in \Gamma_G$, and its connected center is $\gamma T \gamma^{-1}$, hence the absolute discriminant remains unchanged; the element w could be replaced by a Γ_w-translation, which again leaves the set $\Delta(T, K_G(w))$ and the quantities $I(T, K_G(w)_p)$ unchanged.

In particular, when M' is a pure special subvariety, then it is defined by some pure subdatum $(wG'w^{-1}, wX'; wX'^+)$ with w unique up to translation by Γ_w. Different choices of w give the same value of the test invariant, and we remove the minimum in this case.

We can thus transform the bounded equidistribution in Section 3 into:

Proposition 1.12 (bounded test invariants). Assume GRH for CM fields. Let M be a mixed Shimura variety defined by $(P, Y) = W \ltimes (G, X)$ at some level K of fine product type, with E its reflex field. Then a sequence (M_n) of special subvarieties is bounded in the sense of ?? if and only if its sequence of associated sequence of test invariants $(\tau_M(M_n))$ is bounded, i.e. $t(M_n) \leq C$ for all n with $C \in \mathbb{R}_{>0}$ some constant.

Proof. When the sequence is bounded by some $B = \{(T_1, w_1), \ldots, (T_r, w_r)\}$ then only finitely many values appear as test invariants of the sequence.

Conversely, assume that we are given a sequence of special subvarieties with test invariants uniformly bounded by some $C > 0$. The natural projection $M = M_K(P, Y) \to S = M_{K_G}(G, X)$ sends (M_n) to a sequence of pure special subvarieties (S_n) in S. If M_n is (T_n, w_n)-special, defined by some subdatum $(P_n, Y_n; Y_n^+) = W_n \ltimes (w_n G_n w_n^{-1}, w_n X_n; w_n X_n^+)$ with T_n the connected center of G_n and w_n chosen so that the minimum in the definition of test invariants of M_n is reached at w_n.

Then S_n is a T_n-special subvariety of S. From the definition of test invariants we have $\tau_S(S_n) \leq \tau_M(M_n)$ because the two invariants involve the same Q-torus T_n, and for the sets of primes of defects we have $\Delta(T_n, K_G) \subseteq \Delta(T_n, K_G(w_n))$. Now that (S_n) is a sequence with bounded test invariants, we may apply [2] ?? under GRH for CM fields, which implies the existence of a finite set of Q-tori $\{C_1, \ldots, C_r\}$ in G such that each S_n is C_i-special for some i (and it is clear that T_n is conjugate to C_i by some $\gamma_n \in \Gamma_G$). We may thus assume that $\{T_n : n \in \mathbb{N}\} = \{C_1, \ldots, C_r\}$.

Therefore only finitely many values arise as $D(T_n)$ in the test invariants $\tau_M(M_n)$, and by the assumption we see that the sequence
\[
\prod_{p \in \Delta(T_n, K_G(w_n))} I(T_n, K_G(w_n)_p)
\]
is also uniformly bounded, hence by [LR] and ?? the classes of w_n's modulo Γ_W is finite, which means that the sequence (M_n) is bounded.

\section{Bounded sequence and bounded Galois orbits}

Let M be a mixed Shimura variety defined by $(P, Y) = W \times (G, X)$ at some level $K = K_W \times K_G$. If M' is a special subvariety defined by $(P', Y'; Y'^+)$, then it contains the maximal special subvariety S' defined by $(G', X'; X'^+)$, which is a section to the natural projection $M' \to S' \subset S$, and they have the same field of definition. In particular, the Galois conjugates of M' are in natural bijection with those of S', and in this case we have $\tau_M(M') = \tau_S(S')$, as M' is $(T, 0)$-special, T being the connected center of G'.

In general we do not have an explicit way to describe the Galois conjugates of M' defined by $(P', Y'; Y'^+) = W' \rtimes (G'X'; X'^+)$ by the conjugates of some maximal pure special subvariety of it, unless we know a priori that $K_G = K_G(w)$. To remedy this we have the following two potential estimates:

\begin{proposition}
Assume GRH for CM fields. Let M be a mixed Shimura variety defined by $(P, Y) = W \rtimes (G, X)$ at some level $K = K_W \rtimes K_G$ of fine product type, with E its reflex field. Let (M_n) be a sequence of special subvarieties defined by $(P_n, Y_n; Y_n^+) = W_n \rtimes (w_nG_nw_n^{-1}, w_nX_n; w_nX_n^+)$. If the sequence of test invariants $(\tau_M(M_n))$ is bounded, then there exists some compact open subgroup $K'_G \subset K_G$ of fine product type such that when we pass to $M' = M_{K'}(P, Y)$ for the level $K' = K_W \rtimes K'_G$, the sequence (M'_n) with M'_n defined by $(P_n, Y_n; Y_n^+) = \#Gal(\bar{Q}/E) \cdot M'_n \geq c_N D_N(T_n) \prod_{p \in \Delta(T_n, K'_G(w_n))} \max\{1, I(T_n, K'_G(w_n)_p)\}$
\end{proposition}

where T_n is the connected center of G_n and $w'_n \in W_n(\bar{Q})w_n$.

\begin{proof}
By [11.12] the sequence (M_n) is bounded, namely we can choose the defining subdata to be $(P_n, Y_n; Y_n^+) = W_n \rtimes (w_nG_nw_n^{-1}, w_nX_n; w_nX_n^+)$, which are bounded by some finite set $B = \{ (T_\alpha, w_\alpha) : \alpha \in A \}$: G_α is of connected center T_α and $w_n = w_\alpha$ for some $\alpha \in A$ depending on n.

We thus take $K'_G = \bigcap_{\alpha \in A} K_G(w_\alpha)$, and consider the mixed Shimura variety $M' = M_{K'}(P, Y)$ with $K' = K_W \rtimes K'_G$. Now that $K_G = K'_G(w_\alpha)$ for all $\alpha \in A$, we have
\[
K_W \rtimes K'_G = w_\alpha(K_W \rtimes K'_G)w_\alpha^{-1} = K_W \rtimes w_\alpha K'_G w_\alpha^{-1}, \forall \alpha \in A
\]
and $K' \cap w_\alpha G w_\alpha^{-1}(\bar{Q}) = w_\alpha K'_G w_\alpha^{-1}, \forall \alpha \in A$. In particular, the natural projection $\pi : M' = M_{K'}(P, Y) \to S' = M_{K'_G}(G, X)$ has more pure sections than the one given by $(G, X) \to (P, Y)$: for each $\alpha \in A$ we have $(G, X) \cong (w_\alpha G w_\alpha^{-1}, w_\alpha X) \subset (P, Y)$, and the pure section it defines is
\[
S'(w_\alpha) := M_{w_\alpha K'_G w_\alpha}(w_\alpha G w_\alpha, w_\alpha X) \hookrightarrow M'
\]
which is isomorphic to $S'(0) := S'$ using the Hecke translate by w_α, i.e. $M' \to M', [x, aK'] \mapsto [x, aw_\alpha K']$ because $w_\alpha K'_G w_\alpha^{-1} = K'$.

Therefore the Galois conjugates of pure special subvarieties in $S'(0)$ and in $S'(w_\alpha)$ are the same using the Hecke translate, and the Galois orbits of M'_n is in bijection with the conjugates of its pure section $M'_n \cap S'(w_\alpha)$, as long as the original M_n is (T_α, w_α)-special.
\end{proof}
The propositions above justify our use of test invariants as a substitute of the lower bound for the Galois orbit of a general special subvariety: it is "potentially" the correct one when we work with any bounded sequence of special subvarieties.

We also mention the following fact, as a complement to the notion of bounded sequences:

Lemma 2.2 (upper bound). Let M be a mixed Shimura variety defined by $(P, Y) = W \times (G, X)$ with reflex field E at some level $K = K_W \times K_G$ of fine product type. Let M' be a (T, w)-special subvariety of M. Then we have an upper bound
\[
\#\text{Gal} (\bar{\mathbb{Q}}/E) \cdot M' \leq c_0 \cdot C(T, K_G) \text{ord}(w, K_W)^d
\]
where

- $c_0 > 0$ is some constant that only depends on $\dim G$;
- $C(T, K_G)$ is the class number $\#T(\hat{\mathbb{Q}})/T(\mathbb{Q})K_T$;
- $\text{ord}(w, K_W)$ is the order of the class w in the sense of , and d is the square of the dimension of W.

In particular, a sequence of special subvarieties bounded by some finite set $B = \{(T, w)\}$ is of uniformly bounded Galois orbits.

Proof. We first consider the case when $w = 0$, which is the same as the case of a T-special pure subvariety S' in a given pure Shimura variety $S = M_K(G, X)$. It suffices to consider the $\text{Gal} (\bar{\mathbb{Q}}/E')$-orbit of S' in S, with E' the reflex field of the subdatum defining S', because $[E' : E]$ is bounded by some constant that only depends on $\dim G$.

The size of $\text{Gal} (\bar{\mathbb{Q}}/E') \cdot S'$ is the size of the image of the reciprocity map describing the Galois action permuting connected components $\text{rec}_{G', X'} : \text{Gal} (\bar{\mathbb{Q}}/E') \to \pi_c(G')/K_{G'}$, which is reduced , up to some absolute constant that only depends on $\dim G$, to the image of $\text{rec}_N : \text{Gal} (\bar{\mathbb{Q}}/E') \to T(\hat{\mathbb{Q}})/T(\mathbb{Q})K_T$, $a \mapsto (\text{rec}_{G', X'}(a))^N$, $N \in \mathbb{N}$ being some absolute constant. Hence the image is bounded by the class number $T(\hat{\mathbb{Q}})/T(\mathbb{Q})K_T$ up to some constant c_0 that only depends on $\dim G$.

When $w \neq 0$, it suffices to shrink K_G to $K_G(w)$ and replace $C(T, K_G)$ by $C(T, K_G(w))$. But
\[
[K_T : K_T(w)] \leq [K_G : K_G(w)] \leq \#(\text{Aut} (K_U[w]/K_U) \times \text{Aut} (K_V[w]/K_V))
\]
which is bounded by $\text{ord}(w, K_W)^d$ as is desired. \hfill \Box

Department of Mathematics, University of Science and Technology of China, 230026 Hefei, Anhui Province, China

E-mail address: kechen@ustc.edu.cn