This paper proposes spatial periodic table developed based on classic electron shell structure model. The periodic table determines location and chemical properties of superheavy elements. 14 new long-living superheavy elements found by Proton-21 laboratory and one long-living superheavy element found by A.Marinov were identified.

Introduction

At present there are 118 elements known [1]. However, there are only 104 of them well-studied. The superheavy nuclei existence problem and also nuclones collective states problems (super-nuclei, nuclear associations, multi-nuclei clusters, nuclear condensate etc.) long ago have become subject of experimental and theoretical research [2-7]. This problem is specially important for modern astrophysical concepts [8-10].

The main branch of experimental research of superheavy nuclei isotopes and exotic isotopes of light nuclei is a new elements synthesis by different accelerator with latter investigation of nuclei collision results. However this method has two important and unsolved problems [11, 12].

The first one is the excess energy of the synthesized nucleus. The energy required to overcome the Coulomb barrier during the nuclei collision transforms
into internal energy of the newly formed nucleus and it is usually enough for instant nuclei fission, because the internal clusters of the nuclei have energy over Coulomb barrier. This leads to a very complex experimental task of "discharge" of excess energy by high-energy particle radiation - gamma-quantum, neutron, positron, proton, alpha-particle [13] etc. As a result of excess energy the synthesized nuclei lifetime may be 10^{-22}s and less [14, 15].

The second problem is a neutron deficiency of the synthesized elements [13, 16]. The isotopes stability curve manifests non-linear increase of required neutrons for nucleus stabilization by proton quantity increase. Therefore it is almost impossible to obtain a stable superheavy nucleus isotope (so-called islands of stability) from usual combination nuclei because all the heavy nuclei synthesized by collision of lighter nuclei will have neutron deficiency. The experiments on nuclei collision are usually made on neutron excess nuclei, such as several lead isotopes. Thou this doesn't guarantee the synthesized nucleus stability, because its stable isotope requires a specific neutron-proton ratio (usually having a few possible variants) and while pursing heavier nuclei synthesis this neutron excess becomes insufficient.

Both mentioned problems of superheavy nuclei synthesis in modern accelerators lead to extremely small lifetimes of the synthesized nuclei and underestimate of their possible lifetime in normal conditions.

Additional experimental ambiguity is uniqueness of successful superheavy nuclei syntheses events. I.e. there were only 3 cases of 118th element registered by 2011 [17]. Not only this restricts speaking of its physical-and-chemical properties but also brings concerns on purposefulness and experimental reliability of such experiment.

Moreover very small lifetimes (less than a second) of the obtained nuclei don't enable studying electron shells configuration, because they have time to form and relaxate and therefore there is not enough time for obtaining optical spectrum and chemical properties.
Theoretical investigations of superheavy nuclei is made by quantum modeling. However, strong force behavior at small distances is unknown. Moreover, quantum many-body problem has no rigor solution at present. Therefore such modeling often yields contradictory results. Moreover diversity and nonconformity of nuclei models leads to significant errors even for well-studied light nuclei.

In this paper, understanding all the problems of superheavy nuclei and electron shells behavior theory we try a simplified approach based on Madelung (Klechkovsky) rule which yield stable accuracy for known chemical elements and predictable deviation scale [18].

Superheavy elements mass determination problem

For experimental search for superheavy elements except their charge, electron shell structure and chemical properties the data on their atomic mass is also required, which consists of neutron and proton total mass “minus” interaction energy. Then in case of mass-spectrometric or tracks investigations some events may be positively identified as relating to superheavy elements.

Another problem is that the atomic mass dependance on atomic number is ambiguous and one chemical element may have multiple stable isotopes, determined by a complex and partially unknown principle.

One of the most simple approach we use in this paper is «freezing» of neutron to atomic mass ratio of relatively stable isotopes having half-life time over 100 days. For stability island isotopes this ratio is 0.609±0.003 and asymptotically approaches “the golden section” 0.618.

Therefore, considering statistical deviations we may suggest that atomic mass is 2.536 to 2.574 times greater than nucleus charge. In this paper we use value 2.54, also used by other authors [1, 4]. If suggestion of static neutron-to-proton ratio is true then statistical error estimate of nucleus mass at atomic number
550 will be around 12 a.m.u., which is quiet well for modern mass-spectrometric investigations.

Such dependency is incorrect for elements with atomic number over 1000 because it yields statistical error over 20 a.m.u.

However, we must note that such dependency in general case is incorrect. As said above, the nuclei mass dependency on its charge is ambiguous and non-linear function and just for the next (linear) approximation the estimate leads to almost doubling the estimated nucleus mass for element number 550 and it is almost three times greater for 1000th element comparing to static model.

Therefore it is quiet unreasonable to estimate superheavy nuclei mass with atomic number over 250 which has difference between static and linear model at +34.7%. More exact theoretical-and-experimental nucleus stability curve is required.

Let's stress that difference of just 1 proton may lead to significant chemical and optical properties change. As a consequence, the most calculations in this paper made in static model should be considered as example of the model application.

Maximal atomic number

Another problem considering superheavy nuclei investigation is the maximum possible quasi-stable elements in the nature. This question mainly relates to nuclones collective states and association problem, strong force peculiarities and many-body problem as said above. Here we just give the results of different authors.

Let's note, we investigate here only atoms in their classic understanding (i.e. a relatively small quasi-spherical homogeneous nucleus with multi-electron shells). We do not consider so-called «bubble» nuclei, superdense nuclei, supercharged nuclei, neutron nuclei, hadron nuclei [2] etc.
As soon as all these estimates are based on approximate nuclei structure models none of them may be considered ultimate.

Kapustinsky and Ozhigov earlier predicted the total maximum number of elements in the periodic table to be 120 [19, 20].

The estimate made according to relativistic Dirac equation yields maximal amount of 137 elements [21], while 138th element is predicted to have imaginary energy. The same maximal quantity of elements is obtained by classic Bohr model, when electron speed at lowest orbit in hydrogen-like ion becomes greater than speed of light.

Some nucleus models predict equality of electromagnetic and strong forces at around Z=150. Khazan based on method of rectangular hyperbolas suggested absolute maximum of possible nuclei charge 155 with atomic mass 411.663243 [22, 23].

The periodic table symmetry considerations yields 170 as maximum of elements possible in nature [24, 25]. Another symmetry considerations provide for 170 or 220 elements [18] (however, the total number of elements is not strictly limited to this number, 292, 390, 518, 680 and more satisfying symmetry conditions are possible).

Other authors predict total number of elements to be either 172 [26] or 173 [27] when according to relativistic Dirac equation atom ground state energy becomes greater than double electron rest energy (i.e. spontaneous beta-decay of the nuclei is simultaneously triggered in case ground state is free).

V.A. Kostyghin based on electron orbit and nuclei radii comparison and electron orbital properties suggests absolute maximal numbers of elements to be 558 [28].

In this approach the maximal number of elements is derived from the following theoretical considerations.

The radius of first orbital for hydrogen-like ion is determined by:
\[R_{\text{ion}} = \frac{h^2 \varepsilon_0}{\pi m_e e^2 Z} \]

where \(h = 6.626 \cdot 10^{-34} \text{ m}^2 \text{ kg/s} \) is Planck constant, \(\varepsilon_0 = 8.854 \cdot 10^{-12} \text{ F/m} \) - dielectric vacuum permittivity, \(m_e = 9.109 \cdot 10^{-31} \text{ kg} \) is electron mass, \(e = 1.602 \cdot 10^{-19} \text{ C} \) is the electron charge, \(\pi = 3.14... \), and \(Z \) is the nucleus charge.

On the other hand, by rough approximation we may present atom's nucleus as a sphere, then its mass is defined by:

\[M = \frac{4}{3} \pi \rho R_{\text{nucleus}}^3 \]

where \(\rho \) and \(R_{\text{nucleus}} \) is nucleus density and radius, correspondingly. In this paper we consider \(\rho = m_p/(4\pi/3)/r_0^3 \), where \(m_p = 1.673 \cdot 10^{-27} \text{ kg} \) is proton mass and \(r_0 = 1.25 \cdot 10^{-15} \text{ m} \) is nucleus radius constant [29] (where deviations up to 20% from this value are observed for known nuclei). Therefore, the mean nucleus density value is \(\rho = 2.04 \cdot 10^{17} \text{ kg/m}^3 \) (while maximum nucleus density for known nuclei is \(3.99 \cdot 10^{17} \text{ kg/m}^3 \) and minimum is \(1.18 \cdot 10^{17} \text{ kg/m}^3 \)).

On the other hand we may approximately calculate \(M \) by total amount of protons and neutrons in the nucleus:

\[M = Z \cdot j \cdot m_p \]

where \(m_p \) is proton mass and \(j = 2.54 \) is a linear empirical coefficient discussed earlier.

In case \(R_{\text{ion}} = R_{\text{nucleus}} \) the elements will undertake an inevitable rapid stability drop, therefore, considering (2) and (3) it defines the final element to be considered in our model:
Finally we obtain solution $Z_{\text{max}} = 2338$ for mean nuclei density. Considering final closed shell element in the periodic table we assume $Z_{\text{max}} = 2310$.

Considering possible nucleus density deviation for known nuclei, the maximum possible value is 2756 (i.e. the final closed-shell element is 2598th and 23 periods in the periodic table) and minimum value is 2039 (the final closed-shell element is 3022th and 21 periods in the periodic table) according to nuclear density deviations.

Therefore we consider 2310 elements as base for the spatial periodic table.

Spatial periodic table

Today there are many different variants of the periodic table extrapolation to include superheavy nuclei. Earlier on group theory basis, group $SO(4, 2)$ was used to describe the periodic table [30, 31]. In this paper we propose advanced model of $SO(4, 2)$ group in graph table form. The main goal of this model is to show the limits and the structure of the periodic table, to forecast properties of unknown elements and to propose a method for search for superheavy nuclei.

The full theoretical basis for spatial periodic table construction was published earlier [28, 32, 33].

The result of its construction is given below.

In this way we visualize every chemical element with a 3D cube corresponding to its electron structure build a spatial periodic table. Practically this model is a volume graph of atomic principal quantum numbers.

Let us consider the model in detail.

The 1st period is composed of Hydrogen and Helium, their electron structure is $1s^1$ and $1s^2$ (electron structure of all elements is taken from [34]).
The 2nd period consists of Li, Be, - s-elements and B, C, N, O, F, Ne, - p-elements.

The 3rd period: Na, Mg, Al, Si, P, S, Cl, Ar. s-elements are placed under s-elements, and p-elements are placed under p-elements.

While building 4th period when we come to d-elements there is a turn and when we come to p-elements of 4th period Ga, Ge, As, Se, Br, Kr - there is another turn. These elements are placed parallel to p-elements of 2nd and 3rd periods.

Similar to 4th period we fill the 5th period.

There are lanthanides in the sixth period that "follow" the same direction as p-elements. But, starting from lanthanides there are some new peculiarities. First, lanthanides form a loop. The first loop side consists of: La, Ce, Pr, Nd, Pm, Sm, Eu, Gd. The second loop side consists of: Tb, Dy, Ho, Er, Tm, Yb, Lu. Second, the cells are formed with two elements: La/Ce and Hf/Lu.

The 7th (unfinished) period contains actinides that are placed under lanthanides forming a similar loop, e.g. Ac matches Th, The loop turn takes place at Cm and Bk, and Lr shares a single cell with Ku.

The 8th and 9th periods are characterized by a new element class: the g-elements. They form loop parallel to d-elements, there are 4 matched elements pairs with f-elements, i.e. there are 8 matched elements.

The 10th and 11th periods each contains 22 h-elements, they form a complex loop parallel to f-elements, "crossing" with g-elements. There are 6 pairs of "double" elements.

12th and 13th periods each contains 26 i-elements filling all the remaining internal cells between f, d, p-elements.

14th and 15th periods each contains 30 j-elements (let's note that some notation systems do not use letter j for electron shells in order not to be confused with i). 16th and 17th periods each contains 34 k-elements. 18th and 19th periods each contains 38 v-elements. 20th and 21st both include 42 w-elements. And the 22nd period has 46 t-elements.
Therefore, the spatial model contains 2310 elements and consists of 22 periods.

Method of search for and identification of superheavy elements

It is known, that with increase of elements charge their chemical properties differ less, because the chemical properties are provided by external orbitals but the internal orbitals are being filled. I.e. the admixtures of superheavy elements may almost inseparably exist in light elements and could be identified by standard mass-spectrometric means. However, there is a method uncertainty of expected superheavy nucleus peak identification. This is either superheavy nucleus either molecular ion of a specimen impurity.

The obtained spatial model of periodic table allows obtaining mass numbers of superheavy elements, that can be identified is the mass spectrum of a specific element as nuclei and not molecular ions.

Fig.1 presents the outer view of spatial periodic table up to Z=558. And fig.2 presents outer view of spatial periodic model up to Z=2310.

Fig. 3-24 present internal "sections" i.e. the periods of the model for all 22 periods.

Let us give the procedure of identification of superheavy elements nuclei using the spatial periodic table (up to 558th element). E.g. we take Cu subgroup. this subgroup includes the following elements: Cu, Ag, Au, 111, 161, 132, 133, 211, 182, 183. Multiplying 2.54 by nucleus charge we obtain mass numbers of Cu subgroup: (starting from 111th) 218.94; 408.94; 335.28; 337.82; 535.94; 462.28; 464.82.

Then we have to obtain Cu specimen mass spectrum and analyze it. If it will have peaks corresponding to the found atomic numbers, then there is a high probability that this is a super-heavy nucleus peak, not a molecular ion, because the probability of a specific number combination is low when explaining given
experimental peaks as molecular. Similar procedure may be also done for other
known elements. Some numbers will cross over, therefore increasing probability of
superheavy nuclei detection. The full information on availability of superheavy
elements (including 13 periods) is given in the Table 1.

However, we should note that this method will only work for superheavy
nuclei rich sample with superheavy nuclei concentration over 10^{-5}. Thou according
to Marinov estimates in normal chemical compounds their concentration is about
10^{-9} to 10^{-12} [35, 36] which is far less than obtainable sample cleanness which may
lead to misinterpretation of molecular ions with different isotopes as superheavy
nuclei. So, much better way is to find possible physical and/or chemical reactions
enabling “enrichment” of superheavy nuclei content in the sample. Another way is
obtaining superheavy nuclei-rich samples (e.g. synthesizing stable superheavy
nuclei by some “cold” nuclear reaction).

However, we should point out that just as regular ores, some rocks may be
rich in superheavy nuclei, thou their concentration is expected to be far less than
that of lighter elements. E.g. Migdal proposed to search for astrophysically-
gennerated superheavy elements in lunar rock, meteorites and cosmic rays [2, 10].

Synthesis in nuclear explosions [8, 13] eliminates both synthesis problems
providing for automatic energy discharge and automatic neutron sufficiency, but
generating sample collection problem.

nuclei charge	121	154	105	106	107	108	109	109	110	111
atomic number	307.34	391.16	266.7	269.24	271.78	274.32	276.86	279.4	281.94	
nuclei charge	122	153	155	156	177	158	159	160	161	
atomic number	309.88	388.62	393.7	396.24	449.58	401.32	403.86	406.4	408.94	
nuclei charge	123	152	126	127	128	129	130	131	132	
atomic number	312.42	386.08	320.04	322.58	325.12	327.66	330.2	332.74	335.28	

| Table 1. Superheavy elements groups |
nuclei charge	atomic number	124	125	139	138	137	136	135	134	133
314.96	317.5	353.06	350.52	347.98	345.44	342.9	340.36	337.82		
360.68	383.54	520.7	523.24	525.78	528.32	530.86	533.4	535.94		
314.96	317.5	353.06	350.52	347.98	345.44	342.9	340.36	337.82		
360.68	383.54	520.7	523.24	525.78	528.32	530.86	533.4	535.94		
314.96	317.5	353.06	350.52	347.98	345.44	342.9	340.36	337.82		
360.68	383.54	520.7	523.24	525.78	528.32	530.86	533.4	535.94		
nuclei charge	223	274	301	306	315	421	525	524	523	
atomic number	566.42	695.96	764.54	777.24	800.1	1069.34	1333.5	1330.96	1328.42	
nuclei charge	224	225	302	305	449	428	475	476	477	
atomic number	568.96	571.50	767.08	774.7	1140.46	1087.12	1206.5	1209.04	1211.58	
nuclei charge	264	273	303	304	408	417	480	479	478	
atomic number	670.56	693.42	769.62	772.16	1036.32	1059.18	1219.2	1216.66	1214.12	
nuclei charge	263	262	447	448	420	376	489	490	491	
atomic number	668.02	665.48	1135.38	1137.92	1066.8	955.04	1242.06	1244.6	1247.14	
nuclei charge	265	272	370	407	409	416	494	493	492	
atomic number	673.10	690.88	939.8	1033.78	1038.86	1056.64	1254.76	1252.22	1249.68	
nuclei charge	266	271	418	419	429	383	-	-	-	
atomic number	675.64	688.34	1061.72	1064.26	1089.66	972.82	-	-	-	
nuclei charge	267	270	371	406	410	415	-	-	-	
atomic number	678.18	685.80	942.34	1031.24	1041.4	1054.1	-	-	-	
nuclei charge	268	269	431	430	375	390	-	-	-	
atomic number	680.72	683.26	1094.74	1092.2	952.5	990.6	-	-	-	
nuclei charge	293	348	372	405	411	414	-	-	-	
atomic number	744.22	883.92	944.88	1028.7	1043.94	1051.56	-	-	-	
nuclei charge	294	347	373	374	384	397	-	-	-	
atomic number	746.76	881.38	947.42	949.96	975.36	1008.38	-	-	-	
nuclei charge	295	346	399	404	412	548	-	-	-	
atomic number	749.30	878.84	1013.46	1026.16	1046.48	1391.92	-	-	-	
nuclei charge	296	297	386	385	389	519	-	-	-	
atomic number	751.84	754.38	980.44	977.9	988.06	1318.26	-	-	-	
nuclei charge	336	345	400	403	413	526	-	-	-	
atomic number	853.44	876.30	1016	1023.62	1049.02	1336.04	-	-	-	
nuclei charge	335	334	387	388	398	515	-	-	-	
atomic number	850.90	848.36	982.98	985.52	1010.92	1308.1	-	-	-	
nuclei charge	337	344	401	402	547	474	-	-	-	
atomic number	855.98	873.76	1018.54	1021.08	1389.38	1203.96	-	-	-	
nuclei charge	338	343	545	546	506	514	-	-	-	
atomic number	858.52	871.22	1384.3	1386.84	1285.24	1305.56	-	-	-	
nuclei charge	339	342	468	505	518	481	-	-	-	
atomic number	861.06	868.68	1188.72	1282.7	1315.72	1221.74	-	-	-	
nuclei charge	340	341	516	517	507	513	-	-	-	
atomic number	863.60	866.14	1310.64	1313.18	1287.78	1303.02	-	-	-	
nuclei charge	365	446	469	504	527	488	-	-	-	
atomic number	927.10	1132.84	1191.26	1280.16	1338.58	1239.52	-	-	-	
nuclei charge	366	445	529	528	508	512				
atomic number	929.64	1130.30	1343.66	1341.12	1290.32	1300.48				
nuclei charge	367	444	470	503	473	495				
atomic number	932.18	1127.76	1193.8	1277.62	1201.42	1257.3				
nuclei charge	368	369	471	472	509					
atomic number	934.72	937.26	1196.34	1198.88	1292.86					
nuclei charge	434	443	497	502	482					
atomic number	1102.36	1125.22	1262.38	1275.08	1224.28					
nuclei charge	433	432	484	483	510					
atomic number	1099.82	1097.28	1229.36	1226.82	1295.4					
nuclei charge	435	442	498	501	487					
atomic number	1104.90	1122.68	1264.92	1272.54	1236.98					
nuclei charge	436	441	485	486	511					
atomic number	1107.44	1120.14	1231.9	1234.44	1297.94					
nuclei charge	437	440	499	500	496					
atomic number	1109.98	1117.60	1267.46	1270	1259.84					
nuclei charge	438	439								
atomic number	1112.52	1115.06								
nuclei charge	463	544								
atomic number	1176.02	1381.76								
nuclei charge	464	543								
atomic number	1178.56	1379.22								
nuclei charge	465	542								
atomic number	1181.10	1376.68								
nuclei charge	466	467								
atomic number	1183.64	1186.18								
nuclei charge	532	541								
atomic number	1351.28	1374.14								
nuclei charge	531	530								
atomic number	1348.74	1346.20								
nuclei charge	533	540								
atomic number	1353.82	1371.60								
nuclei charge	534	539								
atomic number	1356.36	1369.06								
nuclei charge	535	538								
atomic number	1358.90	1366.52								
nuclei charge	536	537								
atomic number	1361.44	1363.98								
Fig. 1. Outer view of the spatial periodic table model up to 13th period
Fig. 2. Outer view of the spatial periodic table model up to 22nd period
Fig. 3. Period 1

H^1

He^2
Li3					
Be4					
B5					
C6					
N7					
O8					
F9					
Ne10					

Fig. 4. Period 2
Na¹¹
Mg¹²
Al¹³
Si¹⁴
P¹⁵
S¹⁶
Cl¹⁷
Ar¹⁸

Fig.5. Period 3
^19K							
^{20}Ca	^{21}Sc	^{22}Ti	^{23}V	^{24}Cr	^{25}Mn	^{26}Fe	^{27}Co
^{28}Ni	^{29}Cu	^{30}Zn	^{31}Ga				
^{32}Ge							
^{33}As							
^{34}Se							
^{35}Br							
^{36}Kr							

Fig.6. Period 4
	Rb37	Sr38	Y39	Zr40	Nb41	Mo42	Te43	Ru44	Rh45	Pd46	Ag47	Cd48

Fig.7. Period 5
Cs55	Ba56	La57	Ce58	Hf92	Ta73	W74	Re75	Os76	Ir77	Pt78	Au79	Hg80
Pr59	Yb70											
Nd60	Tm69											
Pm61	Er68											
Sm62	Ho67											
Eu63	Dy66											
Gd64	Tb65											

Fig. 8. Period 6
	Fr⁸⁷	Ra⁸⁸	Ac⁸⁹	Th⁹⁰	Ku¹⁰⁴	Lr¹⁰³	d¹⁰⁵	d¹⁰⁶	d¹⁰⁷	d¹⁰⁸	d¹⁰⁹	d¹¹⁰	d¹¹¹	d¹¹²
		Pa⁹¹	No¹⁰²											
		U⁹²	Md¹⁰¹											
		Np⁹³	Fm¹⁰⁰											
		Pu⁹⁴	Es⁹⁹											
		Am⁹⁵	Cf⁹⁸											
		Cm⁹⁶	Bk⁹⁷											

Fig.9. Period 7
\(s_{119} \)	\(s_{120} \)	\(d_{121} \)	\(f_{122} \)	\(d_{154} \)	\(f_{153} \)	\(d_{155} \)	\(d_{156} \)	\(d_{177} \)	\(d_{158} \)	\(d_{159} \)	\(d_{160} \)	\(d_{161} \)	\(d_{162} \)
\(f_{123} \)	\(f_{152} \)	\(g_{127} \)	\(g_{128} \)	\(g_{129} \)	\(g_{130} \)	\(g_{131} \)	\(g_{132} \)	\(p_{163} \)					
\(g_{124} \)	\(g_{125} \)												
\(f_{142} \)	\(f_{151} \)	\(g_{138} \)	\(g_{137} \)	\(g_{136} \)	\(g_{135} \)	\(g_{134} \)	\(g_{133} \)	\(p_{164} \)					
\(g_{141} \)	\(g_{140} \)												
\(f_{143} \)	\(f_{150} \)							\(p_{165} \)					
\(f_{144} \)	\(f_{149} \)							\(p_{166} \)					
\(f_{145} \)	\(f_{148} \)							\(p_{167} \)					
\(f_{146} \)	\(f_{147} \)							\(p_{168} \)					

Fig. 10. Period 8
Fig. 11. Period 9
	s^219	d^220	d^221	d^276	d^227	d^277	d^278	d^279	d^280	d^281	d^282	d^283	d^284
f		f	f										
g													
h													
p													

Fig. 12. Period 10
	\(s^{291}\)	\(d^{292}\)	\(d^{293}\)	\(d^{348}\)	\(d^{349}\)	\(d^{350}\)	\(d^{351}\)	\(d^{352}\)	\(d^{353}\)	\(d^{354}\)	\(d^{355}\)	\(d^{356}\)
\(s^{292}\)	\(f^{294}\)	\(d^{348}\)	\(d^{349}\)	\(d^{350}\)	\(d^{351}\)	\(d^{352}\)	\(d^{353}\)	\(d^{354}\)	\(d^{355}\)	\(d^{356}\)		
\(f^{295}\)	\(g^{296}\)	\(g^{297}\)	\(g^{320}\)	\(g^{321}\)	\(g^{322}\)	\(g^{323}\)	\(g^{324}\)	\(g^{325}\)	\(g^{326}\)	\(p^{357}\)		
\(g^{335}\)	\(g^{334}\)	\(g^{333}\)	\(g^{332}\)	\(g^{331}\)	\(g^{330}\)	\(g^{329}\)	\(g^{328}\)	\(g^{327}\)	\(p^{358}\)			
\(f^{37}\)	\(f^{44}\)	\(h^{300}\)	\(h^{307}\)	\(h^{312}\)	\(h^{319}\)	\(p^{359}\)						
\(f^{38}\)	\(f^{43}\)	\(h^{301}\)	\(h^{306}\)	\(h^{313}\)	\(h^{318}\)	\(p^{360}\)						
\(f^{39}\)	\(f^{42}\)	\(h^{302}\)	\(h^{305}\)	\(h^{314}\)	\(h^{317}\)	\(p^{361}\)						
\(f^{40}\)	\(f^{41}\)	\(h^{303}\)	\(h^{304}\)	\(h^{315}\)	\(h^{316}\)	\(p^{362}\)						

Fig.13. Period 11
	Fig.14. Period 12												
s^{363}													
d^{364}	f^{366}	f^{446}	d^{447}	d^{448}	d^{449}	d^{450}	d^{451}	d^{452}	d^{453}	d^{454}			
f^{367}	g^{368}	g^{369}	h^{370}	h^{407}	h^{408}	g^{421}	g^{422}	g^{423}	g^{424}	p^{455}			
f^{343}	g^{433}	g^{432}	h^{431}	h^{406}	h^{409}	g^{428}	g^{427}	g^{426}	g^{425}	p^{456}			
f^{355}	f^{442}	h^{372}	h^{405}	h^{410}	h^{417}	i^{377}	i^{378}	i^{379}	p^{457}				
f^{336}	f^{441}	h^{399}	h^{404}	h^{411}	h^{416}	i^{382}	i^{381}	i^{380}	p^{458}				
f^{377}	f^{440}	h^{400}	h^{403}	h^{412}	h^{415}	i^{391}	i^{392}	i^{393}	p^{459}				
f^{338}	f^{439}	h^{401}	h^{402}	h^{413}	h^{414}	i^{396}	i^{395}	i^{394}	p^{460}				
s^461	d^463	g^464	d^465	h^466	h^467	g^468	h^505	h^506	g^519	g^520	g^521	g^522	p^553
-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------
s^462	d^463	d^544	d^545	d^546	d^547	d^548	d^549	d^550	d^551	d^552			
f^465	g^466	f^467	h^516	h^517	h^518	g^519	g^520	g^521	g^522				
f^532	g^531	f^530	g^529	h^528	h^527	g^526	g^525	g^524	g^523				
f^533	f^530	h^470	h^503	h^508	h^515	i^475	i^476	i^477					
f^534	f^539	h^497	h^502	h^509	h^514	i^480	i^479	i^478					
f^535	f^538	h^498	h^501	h^510	h^513	i^489	i^490	i^491					
f^536	f^537	h^499	h^500	h^511	h^512	i^494	i^493	i^492					

Fig. 15. Period 13
f	g	h	i	j
561	562	563	564	565
566	567	568	569	570
571	572	573	574	575
576	577	578	579	580
581	582	583	584	585
586	587	588	589	590
591	592	593	594	595
596	597	598	599	600
601	602	603	604	605
606	607	608	609	610
611	612	613	614	615
616	617	618	619	620
621	622	623	624	625
626	627	628	629	630
631	632	633	634	635
636	637	638	639	640
641	642	643	644	645
646	647	648	649	650

Fig. 16. Period 14
	s^687	s^688	d^689	f^690	d^6900	f^6909	d^801	d^802	d^803	d^804	d^805	d^806	d^807	d^808								
f^691	g^692	f^698	g^693	h^694	g^772	h^761	g^773	h^762	g^774	g^775	g^776	g^777	g^778	p^809								
f^788	g^787	f^797	g^786	h^695	g^785	h^760	g^784	h^763	g^783	g^782	g^781	g^780	g^779	p^810								
f^789	j^697	f^696	j^698	h^752	i^727	j^700	h^764	i^728	j^701	h^771	i^729	j^702	i^730	j^703	i^731	j^704	i^732	j^705	p^811			
f^790	j^714	f^695	j^713	h^753	i^739	j^712	h^758	i^738	j^711	h^765	i^737	j^710	h^770	i^736	j^709	i^735	j^708	i^734	j^707	i^733	j^706	p^812
f^791	j^715	f^694	j^716	h^754	i^740	j^717	h^757	i^741	j^718	h^766	i^742	j^719	h^769	i^743	j^720	i^744	j^721	i^745	j^722	i^746	j^723	p^813
f^792	j^715	f^693	j^755	h^767	i^751	h^768	i^750	i^749	j^726	i^748	j^725	i^747	j^724	p^814								

Fig.17. Period 15
s 815	d 816	d 817	d 818	d 819	d 862	d 863	d 864	d 865	d 866	d 867	d 868	d 869	d 870
	f 820	g 821	g 822	h 823	h 824	g 825	g 844	k 933	i 926	i 927	i 928	i 929	i 930
	g 850	g 851	f 852	f 853	f 854	i 855	i 856	i 857	i 858	i 859	i 860	i 861	i 862

Fig. 18. Period 16
s	d	d	d	d	d	d	d	d	d	d	d
977	980	1124	1125	1126	1127	1128	1129	1130	1131	1132	
978	981	982	983	984	1085	1086	1089	1090	1100	1101	p
d	f	g	g	h	g	h	g	j	k	g	p
1111	1110	1109	1084	1087	1106	1105	1104	1103	1102	1133	
1112	f	g	h	i	j	k	g	k	k	g	
1113	f	j	j	h	i	j	h	i	j	j	p
1114	f	j	j	h	i	j	h	i	j	j	p
1115	f	j	j	h	i	j	h	i	j	j	p
1116	f	k	k	h	i	j	h	i	j	j	p
1117	f	k	k	h	i	j	h	i	j	j	p
1118	f	k	k	h	i	j	h	i	j	j	p
1119	f	k	k	h	i	j	h	i	j	j	p
1120	f	k	k	h	i	j	h	i	j	j	p
1121	f	k	k	h	i	j	h	i	j	j	p
1122	f	k	k	h	i	j	h	i	j	j	p
1123	f	k	k	h	i	j	h	i	j	j	p
1124	f	k	k	h	i	j	h	i	j	j	p
1125	f	k	k	h	i	j	h	i	j	j	p
1126	f	k	k	h	i	j	h	i	j	j	p
1127	f	k	k	h	i	j	h	i	j	j	p
1128	f	k	k	h	i	j	h	i	j	j	p
1129	f	k	k	h	i	j	h	i	j	j	p
1130	f	k	k	h	i	j	h	i	j	j	p
1131	f	k	k	h	i	j	h	i	j	j	p
1132	f	k	k	h	i	j	h	i	j	j	p

Fig.19. Period 17
Fig. 20. Period 18

s	d	f	g	h	i	j	k	l	m	n	o	p																									
1139	1140	1141	1142	1143	1144	1145	1146	1147	1148	1149	1150	1151																									
d	f	d	d	f	f	d	d	d	d	d	d	d																									
1152	1153	1154	1155	1156	1157	1158	1159	1160	1161	1162	1163	1164																									
f	g	v	h	g	v	h	g	v	h	g	v	h																									
1165	1166	1167	1168	1169	1170	1171	1172	1173	1174	1175	1176	1177																									
f	g	v	h	g	v	h	g	v	h	g	v	h																									
1178	1179	1180	1181	1182	1183	1184	1185	1186	1187	1188	1189	1190																									
f	g	v	h	g	v	h	g	v	h	g	v	h																									
1191	1192	1193	1194	1195	1196	1197	1198	1199	1200	1201	1202	1203																									
f	g	v	h	g	v	h	g	v	h	g	v	h																									
1204	1205	1206	1207	1208	1209	1210	1211	1212	1213	1214	1215	1216																									
f	g	v	h	g	v	h	g	v	h	g	v	h																									
1217	1218	1219	1220	1221	1222	1223	1224	1225	1226	1227	1228	1229																									
f	g	v	h	g	v	h	g	v	h	g	v	h																									
1230	1231	1232	1233	1234	1235	1236	1237	1238	1239	1240	1241	1242																									
f	g	v	h	g	v	h	g	v	h	g	v	h																									
1243	1244	1245	1246	1247	1248	1249	1250	1251	1252	1253	1254	1255																									
f	g	v	h	g	v	h	g	v	h	g	v	h																									
1256	1257	1258	1259	1260	1261	1262	1263	1264	1265	1266	1267	1268																									
f	g	v	h	g	v	h	g	v	h	g	v	h																									
1269	1270	1271	1272	1273	1274	1275	1276	1277	1278	1279	1280	1281																									
f	g	v	h	g	v	h	g	v	h	g	v	h																									
1282	1283	1284	1285	1286	1287	1288	1289	1290	1291	1292	1293	1294																									
f	g	v	h	g	v	h	g	v	h	g	v	h																									
1295	1296	1297	1298	1299	1300	1301	1302	1303	1304	1305	1306	1307																									
f	g	v	h	g	v	h	g	v	h	g	v	h																									
1308	1309	1310	1311	1312	1313	1314	1315	1316	1317	1318	1319	1320																									
f	g	v	h	g	v	h	g	v	h	g	v	h																									
1321	1322	1323	1324	1325	1326	1327	1328	1329	1330	1331	1332	1333																									
f	g	v	h	g	v	h	g	v	h	g	v	h																									
1334	1335	1336	1337	1338	1339	1340	1341	1342	1343	1344	1345	1346																									
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---																
	s	1340		f	1341		d	1524	1342		d	1525		d	1526		d	1527		d	1528		d	1529		d	1530		d	1531		d	1532				
	f	1343		g	1344		v	1352			h	1346		g	1496		g	1547		v	1497		g	1555		v	1498		g	1556		v	1499		v	1501	
	f	1512		g	1511		v	1369			h	1347		g	1509		v	1367		h	1508		g	1366		h	1507		g	1365		v	1506				
	f	1513		g	1510		v	1514			h	1476		g	1476		g	1424		h	1425		i	1374		v	1495		v	1426		i	1397				
	f	1514		g	1513		v	1515			h	1477		g	1477		g	1424		h	1425		i	1374		v	1495		v	1426		i	1397				
	f	1515		g	1514		v	1516			h	1478		g	1478		g	1424		h	1425		i	1374		v	1495		v	1426		i	1397				
	f	1516		g	1515		v	1517			h	1479		g	1479		g	1424		h	1425		i	1374		v	1495		v	1426		i	1397				

Fig. 21. Period 19
s 1539	d 1541	f 1542	d 1543	f 1681
1 46	h 1546	g 1547	h 1547	g 1682
1 53	g 1738	v 1596	g 1609	v 1567
1 554	w 1554	w 1557	w 1566	w 1567
1 555	w 1555	w 1558	w 1565	w 1568
1 556	w 1556	w 1569	w 1570	w 1571
1 557	w 1557	w 1560	w 1561	w 1563
1 558	w 1558	w 1562	w 1564	w 1565
1 559	w 1559	w 1566	w 1567	w 1568
1 560	w 1560	w 1569	w 1570	w 1571
1 561	w 1561	w 1562	w 1563	w 1564
1 562	w 1562	w 1563	w 1564	w 1565
1 563	w 1563	w 1564	w 1565	w 1566
1 564	w 1564	w 1565	w 1566	w 1567
1 565	w 1565	w 1566	w 1567	w 1568
1 566	w 1566	w 1567	w 1568	w 1569
1 567	w 1567	w 1568	w 1569	w 1570
1 568	w 1568	w 1569	w 1570	w 1571
1 569	w 1569	w 1570	w 1571	w 1572
1 570	w 1570	w 1571	w 1572	w 1573
1 571	w 1571	w 1572	w 1573	w 1574
1 572	w 1572	w 1573	w 1574	w 1575
1 573	w 1573	w 1574	w 1575	w 1576
1 574	w 1574	w 1575	w 1576	w 1577
1 575	w 1575	w 1576	w 1577	w 1578
1 576	w 1576	w 1577	w 1578	w 1579
1 577	w 1577	w 1578	w 1579	w 1580
1 578	w 1578	w 1579	w 1580	w 1581
1 579	w 1579	w 1580	w 1581	w 1582
1 580	w 1580	w 1581	w 1582	w 1583
1 581	w 1581	w 1582	w 1583	w 1584
1 582	w 1582	w 1583	w 1584	w 1585
1 583	w 1583	w 1584	w 1585	w 1586
1 584	w 1584	w 1585	w 1586	w 1587
1 585	w 1585	w 1586	w 1587	w 1588
1 586	w 1586	w 1587	w 1588	w 1589
1 587	w 1587	w 1588	w 1589	w 1590
1 588	w 1588	w 1589	w 1590	w 1591
1 589	w 1589	w 1590	w 1591	w 1592

Fig.22. Period 20
Year	Event
1782	d f
1783	d f
1784	d f
2007	d f
2008	d f
2009	d f
2010	d f
2011	d f
2012	d f
2013	d f
2014	d f
2015	d f
2016	d f
2017	d f
1995	g v
1996	g v
1997	g v
1998	g v
1999	g v
2000	g v
2001	g v
2002	g v
2003	g v
2004	g v
2005	g v
2006	g v
2007	g v
2008	g v
2009	g v
2010	g v
2011	g v
2012	g v
2013	g v
2014	g v
2015	g v
2016	g v
2017	g v
2018	g v
2019	g v
2020	g v
2021	g v
2022	g v

Fig. 23. Period 21
2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
s	d	d	d	d	d	d	d	d	d	f	f	f	f	f	f
f	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
v	v	v	v	v	v	v	v	v	v	v	v	v	v	v	v
k	k	k	k	k	k	k	k	k	k	k	k	k	k	k	k
j	j	j	j	j	j	j	j	j	j	j	j	j	j	j	j
t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t
i	i	i	i	i	i	i	i	i	i	i	i	i	i	i	i
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w
h	h	h	h	h	h	h	h	h	h	h	h	h	h	h	h
v	v	v	v	v	v	v	v	v	v	v	v	v	v	v	v
g	g	g	g	g	g	g	g	g	g	g	g	g	g	g	g
t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t
2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054	2055	2056
2086	2087	2088	2089	2090	2091	2092	2093	2094	2095	2096	2097	2098	2099	2010	2011
2128	2129	2130	2131	2132	2133	2134	2135	2136	2137	2138	2139	2140	2141	2142	2143
2182	2183	2184	2185	2186	2187	2188	2189	2190	2191	2192	2193	2194	2195	2196	2197
2181	2182	2183	2184	2185	2186	2187	2188	2189	2190	2191	2192	2193	2194	2195	2196

Fig. 24. Period 22
Experimental results suggesting existence of superheavy elements

In this paragraph we briefly consider experimental data that may be evidence of superheavy elements existence with relatively long half-decay times sufficient for their discovery and experimental investigation of their properties. Unfortunately only mass-spectra (and similar experimental results determining only atomic mass) of the specimens are available, therefore their chemical properties and electron structure remain unknown.

Fig.25-27 presents experimental data mass spectra obtained, obtained by laboratory of electrodynamics investigations "PROTON-21" group (Ukraine, Kyiv) by initiating an electron collapse wave in the specimen. As a result, the nuclei locally transform into collective state with following generation of majority of stable light nuclei and also some amount of super-heavy elements.

Fig. 25. 7 unidentified atomic masses events (atomic masses 311, 327, 370, 410, 867, 1450 and 4250) with accuracy of 1-3 events [37].
Fig. 26. Secondary ion mass-spectrometry (IMS-4f, masses analyzed up to 500). 6 unidentified atomic masses: 329.5, 338, 341.5, 343.5, 344, 345.5 and 433 [37-39].

Fig. 27. Scattering nitrogen (14N) ions by 150° angle with primary energy 8.7 MeV (sample № 8163). There are 6 unidentified atomic masses: 232, 236, 242, 290, 540 and 1700 [39].

Another set of experiments my Marinov [1, 40] describes superheavy elements found in natural metals. In this experiment the metals were «enriched» with superheavy elements by prolonged sublimation vaporization. Therefore according to the Author claims the following stable superheavy elements were discovered: Z=111 in Au and Z=122 in Th.

Let's sum up all these elements in table 2. As we have already discussed above, the atomic mass to atomic number conversion is a very ambiguous
procedure. In this table we've used static model with coefficient 2.54. In such case this table is more an example of superheavy atoms identification than some exact calculations. However it shows well the possibilities of the model.

Table 3 shows the same information for confirmed synthesized elements with atomic numbers 105-118.

The element type and analogue is determined according to the spatial periodic table.

No	Atomic mass	Charge (atomic number)	Type	Analogue	Notes
1	292	122	f	Th	Found by Marinov in natural Th sample
	311				Proton-21
2	327	129	g	Fe	Proton-21
3	329.5	130	g	Co	Proton-21
	329.9				Proton-21
4	338	133	g	Cu	Proton-21
5	341.5	134	g	Ni	Proton-21
6	343.5	135	g	Co	Proton-21
	344				Proton-21
7	345.2	136	g	Fe	Proton-21
8	370	146	f	Gd	Proton-21
9	410	161	d	Cu	Proton-21
10	433	170	s	Ba	Proton-21
11	540	213	p	Tl	Proton-21
12	867	341	f	Tb	Proton-21
13	1450	571	j	V	Proton-21
14	1700	669	f	Tm	Proton-21
15	4250	1673	j	Ni	Proton-21
Table 3. Identification of known superheavy elements.

Charge (atomic number)	Type	Analogue	Notes
105	d	Ta	
106	d	W	
107	d	Re	
108	d	Os	>100 atoms synthesized
109	d	Ir	
110	d	Pt	
111	d	Au	Found by Marinov in Au sample
112	d	Hg	~ 75 atoms synthesized
113	p	Tl	
114	p	Pb	~ 80 atoms synthesized; Synthesized by Proton-21
115	p	Bi	~ 50 atoms synthesized
116	p	Po	~ 35 atoms synthesized
117	p	At	2 successful synthesis events (yet unconfirmed)
118	p	Rn	3 successful synthesis events

Conclusions

1. This paper presents new spatial periodic table that includes 2310 elements and has 22 periods.

2. Possible ways of search for and identification of stable superheavy elements are described.

3. Analysis results of 15 superheavy elements with atomic numbers 122, 129, 130, 133, 134, 135, 136, 146, 161, 170, 213, 341, 571, 669 and 1673 are given. Based on spatial periodic table the recently-synthesized superheavy elements and superheavy elements reported by A.Marinov and Proton-21 laboratory chemical properties were determined.
References

1. A. Marinov, I. Rodushkin, D. Kolb, A. Pape, Y. Kashiv, R. Brandt, R.V. Gentry, H.W. Miller Evidence for a long-lived superheavy nucleus with atomic mass number $A = 292$ and atomic number $Z = 122$ in natural Th // arXiv:0804.3869v1 [nucl-ex]

2. Мигдал А.Б. Теория конечных ферми-систем и свойства атомных ядер // 2-е изд., перераб. и доп. М:Наука, 1983, 432с.

3. S.V. Adamenko, A.S. Adamenko. Isotopic composition peculiarities in products of nucleosynthesis in extremely dense matter // Proceedings of Int. Symp. New Projects and Lines of Research in Nuclear Physics, 24–26 Oct. Messina, Italy, p. 33-44 (2002)

4. S. V. Adamenko, A. A. Shvedov. Superheavy nuclei research // Proceedings of Int. Symp. New Projects and Lines of Research in Nuclear Physics, 24–26 Oct. Messina, Italy, p. 355-361 (2002)

5. S. V. Adamenko, A. S. Adamenko Analysis of laboratory nucleosynthesis products // arXiv:nucl-ex/0307011 v1 11 Jul 2003

6. S. V. Adamenko, A. S. Adamenko, I. A. Kossko, V. D. Kurochkin, V. V. Kovylyaev, S. S. Ponomarev, and A. V. Andreev. Estimation of the amount of the nuclear transformation products formed under explosion-induced compression of a substance to the superdense state // arXiv:nucl-ex/0404040v1

7. Shailesh K. Singh, Mohammad Ikram, S. K. Patra Ground state properties and bubble structure of superheavy nuclei // arXiv:1207.2858v1 [nucl-th]

8. S.K. Patra, R.N. Panda Formation of neutron-rich and superheavy elements in astrophysical objects // arXiv:0906.3797v1 [nucl-th]

9. Проблемы современной космогонии: Монография / Под ред. В.А. Амбарцумяна. // 2-е изд., перераб.и доп. - М. : Наука. Гл. ред. физ.-мат. лит., 1972 - 470 с.
10. Мигдал А.Б. Устойчивость вакуума и предельные поля. // ЖЭТФ, 1971, т.61, C.2209-2224

11. G. Mandaglio, A. K. Nasirov, F. Curciarello, V. De Leo, M. Romaniuk, G. Fazio, G. Giardina What perspectives for the synthesis of heavier superheavy nuclei? Results and comparison with models // arXiv:1208.5363v2 [nucl-th]

12. V. Zagrebaev, W. Greiner Synthesis of superheavies: State of affairs and outlooks // arXiv:0807.2537v1 [nucl-th]

13. Alexander Botvina, Igor Mishusti, Valery Zagrebaev, Walter Greiner On possibility of synthesizing superheavy elements in nuclear explosions // arXiv:1006.4738v1 [nucl-th]

14. Ogannesian, Yu. Heaviest nuclei from 48Ca-induced reactions // J. Phys. G: Nucl. Part. Phys. 34, R165-R242 (2007).

15. Nan Wang, En-Guang Zhao, Werner Scheid, Shan-Gui Zhou Theoretical study of the synthesis of superheavy nuclei with Z=119 and 120 in heavy-ion reactions with trans-uranium targets // arXiv:1203.4864v1 [nucl-th]

16. V.I. Zagrebaev, A.V. Karpov, I.N. Mishustin, Walter Greiner Superheavies: Theoretical incitements and predictions // arXiv:1105.1659v1 [nucl-th]

17. The Top 6 Physics Stories of 2006 // Discover Magazine. 2007-01-07. http://discovermagazine.com/2007/jan/physics/article_view?b_start:int=1&-C=

18. E.Loza, V.Vaschenko Madelung rule violation statistics and superheavy elements electron shell prediction // arXiv:1206.4488v1 [physics.gen-ph]

19. Капустинский А.Ф. Периодическая система химических элементов и её связь с теорией чисел и физико-химическим анализом // Известия АН СССР, Отделение Химических Наук 1953, 1, 3-11.

20. Ожигов Е.П. Сибирское отделение АН СССР Труды Дальневосточного филиала им. В.Л. Комарова. Сер. Химия, Т.5 с 5-11, 1961.

21. Hartmut M. Pilkuhn. Relativistic Quantum Mechanics // Springer Verlag, 2003.
22. Khazan A. Upper Limit in the Periodic Table of Elements // Progress in Physics, 2007, v. 1, 38–41

23. Albert Khazan Upper Limit in Mendeleev’s Periodic Table — Element No. 155 // Third Edition, American Research Press, Rehoboth, New Mexico, USA, 2012, www.ptep-online.com/index_files/books_files/khazan2012.pdf

24. JERIES A. RIHANI Symmetry Of The Periodic Table Two Equivalent Versions // http://jeri.rihani.com/symmetry/

25. Additional Explanations to “Upper Limit in Mendeleev's Periodic // www.ptep-online.com/index_files/2009/PP-18-L1.PDF

26. Extended elements: new periodic table 22 October 2010 // http://www.rsc.org/Publishing/ChemScience/Volume/2010/11/Extended_elements.asp

27. Greiner, W.; Schramm, S. (2008) // American Journal of Physics. 76. p. 509.

28. Костыгин В.А. "Опыт построения пространственной модели системы элементов Д.И.Меделеева" // Вісник ЧДТУ, - 2003, №1- с.103-108.

29. K.S. Krane (1987). Introductory Nuclear Physics. // Wiley-VCH. ISBN 0-471-80553-X.

30. Mohd Abubakr An Alternate Graphical Representation of Periodic table of Chemical Elements // arXiv:0910.0273v1 [physics.gen-ph]

31. M. R. KIBLER On the use of the group SO(4, 2) in atomic and molecular physics // ccsd-00002968, version 1 - 29 Sep 2004

32. Костигін В.О. Україна, Міністерство освіти і науки Свідоцтво на реєстрацію авторського права на науковий твір №35185 «Пространственная модель системы элементов Д.И.Менделеева и метод поиска сверхтяжелых элементов». Дата публикования: 29.09.2010.

33. Заявка на полезную модель № 2011 11079 Пристрій - об’ємна модель періодичної системи хімічних елементів "Хімічний граф-матриця (трансформер) Костигіна В.О. - Ващенка В.М."
34. Кемпбел Дж. Современная общая химия. // М.: Мир, 1975

35. A. Marinov, A. Pape, D. Kolb, L. Halicz, I. Segal, N. Tepliakov, Y. Kashiv, R. Brandt Enrichment of the Superheavy Element Rg in Natural Au // arXiv:1011.6510v1 [nucl-ex]

36. A. Marinov, S. Gelberg, D. Kolb, R. Brandt, A. Pape New Outlook on the Possible Existence of Superheavy Elements in Nature // arXiv:nucl-ex/0210039v1

37. Adamenko S. Conception of the artificially initiated collapse of the substance and key results of the first stage of its experimental implementation. // Preprint 2004, Kyiv, Academperiodica, p. 36.

38. S. V. Adamenko, A. S. Adamenko, and V.I. Vysotskii. Full-Range Nucleosynthesis in the Laboratory. Stable Superheavy Elements: Experimental Results and Theoretical Descriptions. // ISSUE 54, 2004. Infinite Energy. p. 1-8.

39. Results of experiments on collective nuclear reaction in superdense substance // http://www.proton21.com.ua/publ/Booklet_en.pdf

40. A. Marinov, I. Rodushkin, A. Pape, Y. Kashiv, D. Kolb, R. Brandt, R.V. Gentry, H.W. Miller, L. Halicz, I. Segal Existence of long-lived isotopes of a superheavy element in natural Au // arXiv:nucl-ex/0702051v1