A NOTE ON WHITEHEAD’S QUADRATIC FUNCTOR

B. MIRZAI, F. Y. MOKARI, AND D. C. ORDINOLA

Abstract. For an abelian group A, we give a precise homological description of the kernel of the natural map $\Gamma(A) \to A \otimes \mathbb{Z} A$, $\gamma(a) \mapsto a \otimes a$, where Γ is whitehead’s quadratic functor from the category of abelian groups to itself.

Introduction

Whitehead’s quadratic functor is an important functor, which first appeared in the context of algebraic topology. This is a functor from the category of abelian groups to itself and usually is denoted by Γ. Most of important aspects of this functor is known and its has been generalized in various ways.

For an abelian group A, we give a precise homological description of the kernel of the natural map

$$\Gamma(A) \to A \otimes \mathbb{Z} A, \quad \gamma(a) \mapsto a \otimes a$$

which it is known to be 2-torsion. The cokernel of this map is isomorphism to $H_2(A, \mathbb{Z})$, the second integral homology group of A.

In this short article we give a precise homological description of the kernel of the above map. As our main result we prove that we have the exact sequence

$$0 \to H_1(\Sigma_2, \text{Tor}^\mathbb{Z}_1(2^\infty A, 2^\infty A)) \to \Gamma(A) \to A \otimes \mathbb{Z} A \to H_2(A, \mathbb{Z}) \to 0,$$

where $2^\infty A$ is the 2-power torsion subgroup of A, $\Sigma_2 := \{\text{id}, \sigma^z\}$ the symmetric group with two elements and σ^z being the involution on $\text{Tor}^\mathbb{Z}_1(2^\infty A, 2^\infty A)$ induced by the involution $A \times A \to A \times A$, $(a, b) \mapsto (b, a)$.

If $A \to B$ is a homomorphism of abelian groups, by B/A we mean coker$(A \to B)$. For a group A, nA is the subgroup of n-torsion elements of A. For prime p, $p^\infty A$ is the p-power torsion subgroup of A.

1. Whitehead’s quadratic functor

A function $\psi : A \to B$ of (additive) abelian groups is called a quadratic map if

1. for any $a \in A$, $\psi(a) = \psi(-a)$,
(2) the function \(A \times A \to B \) with \((a, b) \mapsto \psi(a + b) - \psi(a) - \psi(b) \) is bilinear.

For any abelian group \(A \), there is a universal quadratic map

\[\gamma : A \to \Gamma(A) \]

such that for any quadratic map \(\psi : A \to B \), there is a unique group homomorphism \(\Psi : \Gamma(A) \to B \) such that \(\Psi \circ \gamma = \psi \). It is easy to see that \(\Gamma \) is a functor from the category of abelian groups to itself.

The functions \(\phi : A \to A/2 \) and \(\psi : A \to A \otimes \mathbb{Z} A \), given by \(\phi(a) = \bar{a} \) and \(\psi(a) = a \otimes a \) respectively, are quadratic maps. Thus we get the canonical homomorphisms

\[\Phi : \Gamma(A) \to A/2, \gamma(a) \mapsto a \quad \text{and} \quad \Psi : \Gamma(A) \to A \otimes \mathbb{Z} A, \gamma(a) \mapsto a \otimes a. \]

Clearly \(\Phi \) is surjective and \(\text{coker}(\Psi) = A \wedge A \cong H_2(A, \mathbb{Z}) \). Furthermore we have the bilinear pairing

\[\left\langle , \right\rangle : A \otimes \mathbb{Z} A \to \Gamma(A), \ [a, b] := \gamma(a + b) - \gamma(a) - \gamma(b). \]

It is easy to see that for any \(a, b, c \in A \), \([a, b] = [b, a] \), \(\Phi[a, b] = 0 \), \(\Psi[a, b] = a \otimes b + b \otimes a \) and \([a + b, c] = [a, c] + [b, c] \). Using (1) and this last equation, for any \(a, b, c \in A \), we obtain

(a) \(\gamma(a) = \gamma(-a) \),

(b) \(\gamma(a + b + c) - \gamma(a + b) - \gamma(a + c) - \gamma(b + c) + \gamma(a) + \gamma(b) + \gamma(c) = 0. \)

Using these properties we can construct \(\Gamma(A) \). Let \(A \) be the free abelian group generated by the symbols \(w(a), a \in A \). Set \(\Gamma(A) := A/\mathcal{R} \), where \(\mathcal{R} \) denotes the relations (a) and (b) with \(w \) replaced by \(\gamma \).

Now \(\gamma : A \to \Gamma(A) \) is given by \(a \mapsto \bar{w}(a) \).

Using this properties one can show that for any nonnegative integer \(n \), we have

\[\gamma(na) = n^2 \gamma(a). \]

It is known that the sequence

\[A \otimes \mathbb{Z} A \xrightarrow{[\ , \]} \Gamma(A) \xrightarrow{\Phi} A/2 \to 0 \]

is exact and the kernel of \([\ , \]\) is generated by the elements of the form \(a \otimes b - b \otimes a, a, b \in A \). Therefore we have the exact sequence

(1.1) \[0 \to H_0(\Omega_2, A \otimes \mathbb{Z} A) \xrightarrow{\gamma} \Gamma(A) \xrightarrow{\Phi} A/2 \to 0, \]

where \(\Omega_2 := \{ \text{id}, \omega \} \) and \(\omega \) is the involution \(\omega(a \otimes b) = b \otimes a \) on \(A \otimes \mathbb{Z} A \).

It is easy to see that the composition

\[A \otimes \mathbb{Z} A \xrightarrow{[\ , \]} \Gamma(A) \xrightarrow{\Psi} A \otimes \mathbb{Z} A \]
Whitehead’s quadratic functor takes $a \otimes b$ to $a \otimes b + b \otimes a$. Moreover the composition
\[
\Gamma(A) \xrightarrow{\Psi} A \otimes \mathbb{Z} A \xrightarrow{\delta} \Gamma(A)
\]
coincide with multiplication by 2. Thus $\ker(\Psi)$ is 2-torsion.

To give a homological description of the kernel of ψ, we will need the following fact.

Proposition 1.1. For any abelian group A, $\Gamma(A) \simeq H_4(K(A, 2), \mathbb{Z})$, where $K(A, 2)$ is the Eilenberg-Maclane space of type $(A, 2)$.

Proof. See [3, Theorem 21.1] \[\square\]

2. **Tor-functor and third homology of abelian groups**

Let A and B be abelian groups. For any positive integer n there is a natural homomorphism
\[
\tau_n : nA \otimes \mathbb{Z} nB \to n\text{Tor}_1^\mathbb{Z}(A, B).
\]
We denote the image of $a \otimes b$, under τ_n by $\tau_n(a, b)$.

For any pair of integers s and n such that $n = sm$, the maps τ_n are related by the commutative diagrams
\[
\begin{array}{c}
\begin{array}{ccc}
& & nA \otimes \mathbb{Z} nB \\
& p_m \otimes \text{id} & \downarrow \tau_n \\
\tau_s & \downarrow & n\text{Tor}_1^\mathbb{Z}(A, B) \\
& \text{id} \otimes i_m & \\
sA \otimes \mathbb{Z} sB & \tau_s & nA \otimes \mathbb{Z} nB,
\end{array}
\end{array}
\]
\[
\begin{array}{c}
\begin{array}{ccc}
& & nA \otimes \mathbb{Z} nB \\
& \text{id} \otimes p_m & \text{id} \otimes \text{id} \\
\tau_s & \downarrow & n\text{Tor}_1^\mathbb{Z}(A, B) \\
& \text{id} \otimes i_m & \\
sA \otimes \mathbb{Z} sB & \tau_s & nA \otimes \mathbb{Z} nB,
\end{array}
\end{array}
\]
in which $i_m : sA \to nA$ and $p_m : nA \to sA$ are the inclusion and the map induced by multiplication by m respectively. The commutativity of these diagrams expresses the relations
\[
\tau_n(a, b) = \tau_s(ma, b), \quad \text{for} \quad a \in nA \text{ and } b \in sB,
\]
and
\[
\tau_n(a', b') = \tau_s(a', mb'), \quad \text{for} \quad a' \in sA \text{ and } b' \in nB.
\]
The following proposition is well-known [1, Proposition 3.5].
Proposition 2.1. The induced map \(\tau : \lim_I nA \otimes nB \to \text{Tor}^Z_1(A, B) \), where \(I \) is the inductive system of objects \(nA \otimes \mathbb{Z} nB \) determined by the above diagrams for varying \(n \), is an isomorphism.

Let \(\sigma_0 : A \otimes B \to B \otimes A \) and \(\sigma_1 : \text{Tor}^Z_1(A, B) \to \text{Tor}^Z_1(B, A) \) be induced by interchanging the groups \(A \) and \(B \). It is well known that the diagram

\[
\begin{array}{ccc}
A \otimes \mathbb{Z} nB & \xrightarrow{\sigma_0} & nB \otimes \mathbb{Z} nA \\
\downarrow{\tau_n} & & \downarrow{\nu'_n} \\
n\text{Tor}^Z_1(A, B) & \xrightarrow{-\sigma_1} & n\text{Tor}^Z_1(B, A)
\end{array}
\]

commutes. By passing to the inductive limit, the same is true for the diagram

\[
\begin{array}{ccc}
\lim_I (nA \otimes \mathbb{Z} nB) & \xrightarrow{\sigma_0} & \lim_I (nB \otimes \mathbb{Z} nA) \\
\downarrow{\tau} & & \downarrow{\nu'} \\
\text{Tor}^Z_1(A, B) & \xrightarrow{-\sigma_1} & \text{Tor}^Z_1(B, A).
\end{array}
\]

It is useful to observe that the map \(\sigma_1 : \text{Tor}^Z_1(A, B) \to \text{Tor}^Z_1(B, A) \) is indeed induced by the involution \(A \otimes \mathbb{Z} B \to B \otimes \mathbb{Z} A \) given by \(a \otimes b \mapsto -b \otimes a \) and therefore \(-\sigma_1 \) is induced by the involution \(a \otimes b \mapsto b \otimes a \).

Let \(\Sigma_2 \) be the symmetric group of order 2. For an abelian group \(A \), \(\Sigma_2 \) acts on \(A \otimes \mathbb{Z} A \) and \(\text{Tor}^Z_1(A, A) \), through \(\sigma_0 \) and \(\sigma_1 \). Let us denote the symmetric group by \(\Sigma_2^c \), rather than simply by \(\Sigma_2 \), when it acts on \(\text{Tor}^Z_1(A, A) \) as

\[
(\sigma^c, x) \mapsto -\sigma_1(x).
\]

We need the following well-known lemma on the third homology of abelian groups [5, Lemma 5.5], [1, Section 6].

Proposition 2.2. For any abelian group \(A \) we have the exact sequence

\[
0 \to \bigwedge^3_A \mathbb{Z} A \to H_3(A, \mathbb{Z}) \to \text{Tor}^Z_1(A, A)^{\Sigma_2^c} \to 0,
\]

where the right side homomorphism is obtained from the composition

\[
H_3(A, \mathbb{Z}) \xrightarrow{\Delta_A} H_3(A \times A, \mathbb{Z}) \to \text{Tor}^Z_1(A, A),
\]

\(\Delta_A \) being the diagonal map \(A \to A \times A, a \mapsto (a, a) \).
3. The kernel of $Ψ : Γ(A) → A ⊗ A$

We study the kernel of $Ψ : Γ(A) → A ⊗ Z A$. If $Θ = [,] : A ⊗ Z A → Γ(A)$, then from the commutative diagram

$$
\begin{array}{cccccc}
0 & → & \ker(Θ) & → & A ⊗ Z A & → & \im(Θ) & → & 0 \\
& & ↓ & & ↓Θ & & ↓γ & & \\
0 & → & \ker(Ψ) & → & Γ(A) & → & A ⊗ Z A & → & 0
\end{array}
$$

and exact sequence (1.1) we obtain the exact sequence

$$\ker(Ψ) → A/2 → (A ⊗ Z A)_{Ω_2} → H_2(A, Z) → 0,$$

where $(A ⊗ Z A)_{Ω_2} = (A ⊗ Z A)/(a ⊗ b + b ⊗ a | a, b ∈ A)$ and $δ(\bar{a}) = \bar{a} ⊗ \bar{a}$. But the sequence

$$0 → A/2 → (A ⊗ Z A)_{Ω_2} → H_2(A, Z) → 0$$

is always exact. Thus the map $\ker(Ψ) → A/2$ is trivial, which shows that

$$\ker(Γ(A) → A ⊗ Z A) ⊆ \im(A ⊗ Z A → Γ(A)).$$

We give a precise description of the kernel of $Ψ$.

Theorem 3.1. For any abelian group A, we have the exact sequence

$$0 → H_1(Σ^e_2, \Tor^Z_1(2∞ A, 2∞ A)) → Γ(A) → A ⊗ Z A → H_2(A, Z) → 0.$$

Proof. If $A ⊢ B ⊔ C$ is an extension of abelian groups, then standard classifying space theory gives a (homotopy theoretic) fibration of Eilenberg-MacLane spaces $K(A, 1) → K(B, 1) → K(C, 1)$. From this we obtain the fibration [4, Lemma 3.4.2]

$$K(B, 1) → K(C, 1) → K(A, 2).$$

For the group A, the morphism of extensions

$$\begin{array}{ccc}
A & ← & i_1 \rightarrow A × A \xrightarrow{p_2} A \\
& ↓ & ↓\mu & ↓ \\
A & ← & = \rightarrow A \rightarrow \{1\},
\end{array}$$

where $i_1(a) = (a, 1)$, $p_2(a, b) = b$ and $μ(a, b) = ab$, induces the morphism of fibrations

$$\begin{array}{ccc}
K(A × A, 1) & → & K(A, 1) \xrightarrow{\Psi} K(A, 2) \\
& ↓ & ↓ & ↓ \\
K(A, 1) & → & K(\{1\}, 1) \rightarrow K(A, 2).
\end{array}$$
By analysing the Serre spectral sequences associated to this morphism of fibrations, we obtain the exact sequence

$$0 \to \ker(\Psi) \to H_4(K(A, 2)) \xrightarrow{\Psi} A \otimes_{\mathbb{Z}} A \to H_2(A) \to 0,$$

where

$$\ker(\Psi) \cong H_3(A, \mathbb{Z})/\mu_*(A \otimes_{\mathbb{Z}} H_2(A, \mathbb{Z}) \oplus \text{Tor}_1^Z(A, A)).$$

By Proposition 2.2 we have the exact sequence

$$0 \to \Lambda^3_{\mathbb{Z}} A \to H_3(A, \mathbb{Z}) \to \text{Tor}_1^Z(A, A) \to 0.$$

Clearly $\mu_*(A \otimes_{\mathbb{Z}} H_2(A, \mathbb{Z})) \subseteq \Lambda^3_{\mathbb{Z}} A$. Therefore

$$\ker(\Psi) \cong \text{Tor}_1^Z(A, A)/\Delta_{\mathbb{Z}} \circ \mu_*(\text{Tor}_1^Z(A, A)).$$

We prove that the map $\Delta \circ \mu : A \times A \to A \times A$, which is given by $(a, b) \mapsto (ab, ab)$, induces the map

$$\text{id} + \sigma^\epsilon : \text{Tor}_1^Z(A, A) \to \text{Tor}_1^Z(A, A).$$

By studying the map $(\Delta \circ \mu)_* : H_2(A \times A) \to H_2(A \times A)$ using the fact that $A \otimes A \simeq H_2(A \times A)/(H_2(A) \oplus H_2(A))$ (the Künneth Formula), one sees that $\Delta \circ \mu$ induces the map

$$A \otimes A \to A \otimes A, \quad a \otimes b \mapsto a \otimes b - b \otimes a,$$

Thus to study the induced map on $\text{Tor}_1^Z(A, A)$ by $\Delta \circ \mu$ we should study the map induced on $\text{Tor}_1^Z(A, A)$ by the map

$$A \otimes A \to A \otimes A, \quad a \otimes b \mapsto a \otimes b + b \otimes a = (\text{id} + \iota)(a \otimes b),$$

where $\iota : A \otimes A \to A \otimes A$ is given by $a \otimes b \mapsto b \otimes a$. Let

$$0 \to F_1 \xrightarrow{\partial} F_0 \xrightarrow{\epsilon} A \to 0$$

be a free resolution of A. Then the sequence

$$0 \to F_1 \otimes F_1 \xrightarrow{\partial_2} F_0 \otimes F_1 \oplus F_1 \otimes F_0 \xrightarrow{\partial_1} F_0 \otimes F_0 \to 0$$

can be used to calculate $\text{Tor}_1^Z(A, A)$, where $\partial_2 = (\partial \otimes \text{id}_{F_1}, -\text{id}_{F_1} \otimes \partial)$, $\partial_1 = \text{id}_{F_0} \otimes \partial + \partial \otimes \text{id}_{F_0}$. The map $\text{id} + \iota : A \otimes A \to A \otimes A$ can be extended to the morphism of complexes

$$0 \to F_1 \otimes F_1 \xrightarrow{\partial_2} F_0 \otimes F_1 \oplus F_1 \otimes F_0 \xrightarrow{\partial_1} F_0 \otimes F_0 \to 0$$

$$0 \to F_1 \otimes F_1 \xrightarrow{\partial_2} F_0 \otimes F_1 \oplus F_1 \otimes F_0 \xrightarrow{\partial_1} F_0 \otimes F_0 \to 0,$$
where
\[
\begin{align*}
f_0(x \otimes y) &:= x \otimes y + y \otimes x, \\
f_1(x \otimes y, y' \otimes x') &:= (x \otimes y + x' \otimes y', y \otimes x + y' \otimes x'), \\
f_2(x \otimes y) &:= x \otimes y - y \otimes x.
\end{align*}
\]
Since
\[
f_1(x \otimes y, y' \otimes x') = (x \otimes y, y' \otimes x') + (x' \otimes y', y \otimes x),
\]
\(\Delta \circ \mu\) induces the map \(\text{id} + \sigma^e : \text{Tor}^Z_1(A, A) \to \text{Tor}^Z_1(A, A).\) Therefore
\[
\ker(\Psi) \simeq \text{Tor}^Z_1(A, A) / (\text{id} + \sigma^e)(\text{Tor}^Z_1(A, A)) = H_1(\Sigma_2, \text{Tor}^Z_1(A, A)).
\]
Finally since \(\text{Tor}^Z_1(A, A) = \text{Tor}^Z_1(A_T, A_T),\) \(A_T\) being the subgroup of torsion elements of \(A,\) and since for any torsion abelian group \(B,\)
\(B \simeq \bigoplus_{p \text{ prime}} p^{\infty} B,\) we have the isomorphism
\[
H_1(\Sigma_2, \text{Tor}^Z_1(A, A)) \simeq H_1(\Sigma_2, \text{Tor}^Z_1(2^{\infty} A, 2^{\infty} A)).
\]
This completes the proof of the theorem. \qed

Corollary 3.2. For any abelian group \(A,\) we have the exact sequence
\[
0 \to \lim_I H_1(\Sigma_2, 2^{\infty} A \otimes Z 2^{\infty} A) \to \Gamma(A) \xrightarrow{\Psi} A \otimes Z A \to H_2(A, Z) \to 0.
\]
In particular if \(2^{\infty} A\) is finite then we have the exact sequence
\[
0 \to H_1(\Sigma_2, 2^{\infty} A \otimes Z 2^{\infty} A) \to \Gamma(A) \xrightarrow{\Psi} A \otimes Z A \to H_2(A, Z) \to 0.
\]
Proof. This follows from Theorem 3.1 and Proposition 2.1. \qed

References

[1] Breen, L. On the functorial homology of abelian groups. Journal of Pure and Applied Algebra 142 (1999) 199–237.

[2] Brown, K. S. Cohomology of Groups. Graduate Texts in Mathematics, 87. Springer-Verlag, New York, 1994.

[3] Eilenberg, S., MacLane, S. On the groups \(H(\Pi, n),\) II: Methods of computation. Ann. of Math. 70 (1954), no. 1, 49–139.

[4] May, J. P., Ponto, K. More concise algebraic topology: Localization, completion, and model categories. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2012.

[5] Suslin, A. A. \(K_3\) of a field and the Bloch group. Proc. Steklov Inst. Math. 183 (1991), no. 4, 217–239.