WEB SERVICES SUPPLY CHAINS: A LITERATURE REVIEW

Krithika V¹, Dr. Arshinder Kaur² and Dr. K. Chandra Sekaran³

¹Department of Management Studies, Indian Institute of Technology Madras, India
krithika1288@gmail.com

²Assistant professor, Department of Management Studies, Indian Institute of Technology Madras, India
arshinder@gmail.com

³Professor, Department of Computer Science Engineering, National Institute of Technology, Surathkal, India
kchnitk@gmail.com

Abstract:

The aim of this review paper is to bring into light a potential area i.e., web services supply chains for research by analyzing the existing state of art in this. It is observed from the review process that there seems to be much less work done in the area of web service supply chains as compared to e-commerce and product oriented service supply chains. The service quality assurance models, end to end Quality of Service (QoS) models, attempts made to QoS attributes are also found to be from individual perspectives of participating entities in a service process rather than a collective perspective considering individual QoS attributes rather than multiple QoS attributes. In light of these gaps we highlight the comparison between product oriented and pure online/web service supply chains, a need for quality driven optimization in the web services supply chains, perceived complexities in the existing work and propose a conceptual model.

Key words:

Web services, Quality of Service (QoS), Service supply chains, QoS attributes

I. Introduction

The globalization era has bought almost all services to the internet environment with multiple providers providing the same service in different ways. The same functionality is being offered by multiple providers so it becomes necessary to differentiate one self from the crowd in order to thrive against the cut throat competition from the service provider’s view. On the other hand it is absolutely essential for the client to select a service provider who meets not only the functional requirements of the client but also provides the best possible quality of service (QoS) to the customers. The services industry has contributed approximately 55.3% to the GDP of India in the year 2009. The service sector employs about 34% of the labor force in India [CIA report]. The exponentially growing service industry has started making its
global presence through the internet enabled online environment. The web environment has made almost all kind of services available online be it a simple movie ticket booking or the most complex processes such as outsourcing, funds transfer and others. The online services are special kind of services as compared to the static or product supply chain which is more offline or the semi online service supply chains in which part of the service is offline and partly online.

The objective of this paper is to present a literature review about web services supply chains and the non – functional or QoS attributes consideration in them. The web service non – functional attributes considered in the literature so far, the methodologies used the perspectives of consideration and the topics considered till now. The outcome is to point out the research gap as far as web services supply chains and the QoS aspects of web services supply chains are considered and possible future research work.

II. Online service supply chains and the web service ecosystem

A. Defining service supply chains:

The service supply chain literature till now considers static services/services allied to a manufacturing product and semi – online services where a part of service takes place online and remaining takes place offline. The pure online services / web services on the other hand involve service delivery by the dynamic collaboration of multiple entities in the internet environment. The simple definition of web services come from [1] which defines web services as a service offered as a software. The collaboration is many times not a pre- defined or fixed one it involves selection from a pool of service providers and intermediate providers based on a virtual run time contract. The service selection, service providing and acceptance are instantaneous and dynamic. The service supply chain is defined as, an integration of a series of entities (individual person, organization, enterprise) to provide personalized service directly or indirectly [2]. This definition when coupled with the internet environment makes the service supply chain more dynamic. The dynamism makes these supply chains more different from the service supply chains definitions in the literature. The advent of advanced concepts like service oriented architecture SOA and web services have made the dynamic collaboration possible [3]. The indulgence of SOA and web services resulted in the web service ecosystem defining the
participants of online service supply chains [4]. The web eco system has three main entities namely the service provider, intermediate and the client/ customer.

![Web service ecosystem diagram](image)

Fig 1: Web service ecosystem

The intermediate can be either other service providers or just brokers. The brokers can be of two types namely forwarding broker and match making broker. The forwarding brokers play the role of plumbing between the service provider and the client through which the client communicates with the service provider to get the service. The match making broker on the other hand just act like match makers in the real world they just connect the service providers and clients acting like a common connecting point [5]. The performance of the eco system depends on all the three entities but in case of matchmaking broker type ecosystem the performance of the broker will not affect the ecosystem much because the broker just acts as the connecting point.

B. Comparison of service supply chains with manufacturing supply chains

The properties that differentiate service supply chains from product oriented / manufacturing supply chains are,

i. Perish ability: A service perishes once it is not consumed on time i.e the service cannot be reused later e.g. A flight’s empty seat after the take off of the airplane is a loss since it has already perished

ii. Simultaneity: Services must be consumed simultaneously at the time of production since they cannot be inventoried or stored

iii. Intangibility: Services are mostly not physical i.e. tangible they are intangible because they are either experience oriented or meant for individual demands.
iv. Non-transferability: The services are non-transferable due to the lack of ability to be inventoried.

These characteristics are based on the literature [2] on service supply chains till now which is very limited in nature.

III. Research methodology

A. Journals and Conferences

The literature review presented here is based on the exploratory study of literature from various prestigious international journals and conferences. The journals and conferences considered for the literature review include the following,

Publication	Total	Conference Papers	Journal Papers	% over total number of papers
IEEE	55	44	11	44.35
Elsevier	8	0	8	6.45
Emerald	4	0	4	3.23
International Journal of web service research	5	0	5	4.03
International Journal of web service practices	4	0	4	3.23
Journal of Computers and System Sciences	4	0	4	3.23
Journal of Simulation	3	0	3	2.42
Information Technology Journal	5	0	5	4.03
Other journals / Conferences	36	4	32	29.03
Total	124	48	76	

Table1. List of references

The contribution in terms of the number of journals and conferences include areas such as web service’s non-functional aspects, method of consideration of non-functional attributes, web services and service oriented architectures in enabling service supply chains, service oriented supply chains.

B. Classification topics:

The topics are considered in such a way so as to investigate the relationship among the enablers of service supply chains, the non-functional aspects of online services considered so
far in the literature thus moving from lower to higher level of abstraction while classifying
the literature. The classification we present concentrates more on the web services and their
non-functional properties/QoS aspects and service supply chains.

Topics	Total	Conference papers	Journal Papers	% over total number of papers
Broker based web services selection with QoS	4	3	1	5.71
Business service networks (SOA and web services for supply chains)	5	3	2	7.14
Web service selection with QoS	9	3	6	12.86
Web service discovery with QoS	3	1	2	4.29

Fig 2. Classification based on topic

Table 2. Classification based on topic
The literature review process however considers the literature related to service oriented architecture’s (SOA) role in enabling web services [6], [7], [8], [9], [4] SOA’s applicability to supply chains in enabling automation, collaboration and integration of supply chains [10], [11], [12], [13], [14], and so the classification is done on topics in each aspect as shown in fig 2.

The literature classification based on various topics considered so far shows that the research has concentrated on web service composition and selection while considering QoS predominantly. The non functional properties or QoS aspects of web services have gained importance because it is necessary to differentiate a web service which is in turn a pure service [1] based on quality when multiple providers of same functionality are present. The automation of manufacturing supply chain has gained importance due to the expansion of industries and need to cater to global demand and compete globally. The advent of SOA and web services has resulted in middle wares and broker based architectures to be routes of QoS negotiation between service providers and clients. There is scanty amount of work in the area of service supply chains in general irrespective of semi-static or pure online services supply chains and their collaboration. The combination of SOA and web services has started to pave way for a new class of research study called the business service networks that majorly collaborate in the internet environment. How ever the research in this area is very less as it can be seen from Table 2.

Classification of QoS properties	5	5	0	7.14
Web service QoS monitoring/support	14	4	10	20.00
Web service composition with QoS	13	12	1	18.57
Non-functional properties/QoS of web services	3	3	0	4.29
Survey/Classification of QoS properties	9	5	4	12.86
Service oriented architecture (SOA) for supply chains	3	3	0	4.29
Service supply chains	2	2	0	2.86
Supply chains as collaborative networks	70	44	26	

The literature review process considers the literature related to service oriented architecture’s (SOA) role in enabling web services [6], [7], [8], [9], [4] SOA’s applicability to supply chains in enabling automation, collaboration and integration of supply chains [10], [11], [12], [13], [14], and so the classification is done on topics in each aspect as shown in fig 2.

The literature classification based on various topics considered so far shows that the research has concentrated on web service composition and selection while considering QoS predominantly. The non functional properties or QoS aspects of web services have gained importance because it is necessary to differentiate a web service which is in turn a pure service [1] based on quality when multiple providers of same functionality are present. The automation of manufacturing supply chain has gained importance due to the expansion of industries and need to cater to global demand and compete globally. The advent of SOA and web services has resulted in middle wares and broker based architectures to be routes of QoS negotiation between service providers and clients. There is scanty amount of work in the area of service supply chains in general irrespective of semi-static or pure online services supply chains and their collaboration. The combination of SOA and web services has started to pave way for a new class of research study called the business service networks that majorly collaborate in the internet environment. How ever the research in this area is very less as it can be seen from Table 2.

C. Classification based on Perspectives

The use of SOA and web services brings into light the need to consider the service supply chain entities namely the service provider, intermediaries and the client [4]. The perspectives all these three participating entities must be considered and the benefit for each of these entities must be taken into account. The perspective of each entity must be analyzed and maximum gain for each must be identified and balanced without affecting...
the interest of another entity. This makes it necessary to look at the literature interns of
the perspectives of the participating entities to get a clear picture of the state of the art
research in this dimension.

Perspective	Total	Conference Papers	Journal Papers	% over total number of papers
Client / Customer view	28	12	16	35.44
Service provider view	34	24	10	43.04
Middle wares	5	5	0	6.33
Mutual view (service provider and client)	3	2	1	3.80
Generic (applicability of concepts)	9	6	3	11.39
Total	79	49	30	

Table 3. Classification based on perspective

The classification clearly shows that the research till now pertains to one of the participating entities predominantly the clients and the service providers. The research works considering the participating entities’ effect on each other, the conflict of interests that might arise, how the performance of one entity affects the collective performance, the optimal gain possible for all the entities and other related questions are scarce. The middle wares however have started gaining research focus but the mutual consideration is still taking a back seat in terms of the research work.

D. Classification based on methods

The method used in a research decides the perspective and objective of a research work. The methods range from very old ones to brand new ones with many new dimensions to the research problem and tradeoffs for each method used. The classification based on methods is shown below in table 4. The classification clearly shows that conceptual work, ontology and frame works have got lot of research attention. There is however equal amount of mathematical formulation and prototyping/ implementation methods used to prove the concepts proposed. The use of automata theory to handle time properties is gaining
importance. The extension of this is the latest use of petrinets to verify time properties of online services. The need to incorporate client requirements and suggestions has started getting attention with the use of methods like quality function deployment, fuzzy logic and neural networks approaches that help to convert subjective user inputs to objective values that can be used for further analysis to take appropriate actions.

Method	Total	Conference Papers	Journal Papers	% over total number of papers
Petri nets	4	1	3	5.33
Fuzzy logic/ Neural networks	4	2	2	5.33
Quality Function Deployment	2	1	1	2.67
Timed Automata	3	3	0	4.00
Ontology	13	9	4	17.33
Architectures and Framework	20	13	7	26.67
Graphs	2	1	1	2.67
Conceptual	10	6	4	13.33
Mathematical formulation and analysis	8	5	3	10.67
Implementation and Prototyping	9	5	4	12.00
Total	75	46	29	

Table 4a. Classification based on methods

The research however points out that the collaborating service entities in the web environment form a logical graph rather than a traditional client server link [15] but the research methods with graphs is very scanty compared to the other methods that have been used till now. The combinations of some methods such as fuzzy logic and quality function deployment [16] are used together to get better results. The advent of programming languages and ease of programming has led to the increase in prototyping and implementation of concepts easily. The operations research (OR) methods applied in this research area are shown below in table 4b.

Operations research methods used	Total	Conference Papers	Journal papers	% over total number of papers

Genetic Algorithm & 2 & 2 & 0 & 18.18 \\
Optimization (Linear programming, Mixed Integer programming) & 3 & 0 & 3 & 27.27 \\
Simulation & 4 & 2 & 2 & 36.36 \\
Multi-criteria decision making and Analytical hierarchy Process & 2 & 0 & 2 & 18.18 \\
Total & 11 & 4 & 7 & \\

Table 4b. Classification based on OR methods

The classification based on OR methods clearly show that very few methods are used in the current area of research. The use of simulation and optimization is higher compared to other OR methods used. The use of methods like genetic algorithms is reported to have problems of computational complexity and local maxima how ever better versions of genetic algorithms relevant to the problem may give near optimal solutions in many cases. In the context of selection among multiple choices based on multiple factors/criteria multi – criteria decision making methods are very useful but almost all multi- criteria methods suffer from the problem of deciding the correct weights for the factors/ criteria under consideration. The use of methods like analytical hierarchy process is enormous when it is needed to rank the service providers from the available pool based on the user preferred criteria. The case of web service supply chains considering all the participating entities and optimizing for all to reach their objectives OR methods like goal programming, dynamic programming and other methods might be of great help in taking the problem towards solution.

E. Classification based on attributes

The need for non – functional attributes or QoS in a web environment is enormous due to multiple competitors providing the same functionality. The QoS attributes act as order winners for the service providers. There are a large number of QoS attributes and the QoS attribute most important for a service is dependent on the user requirements and the type of the service itself. The QoS attributes are how ever considered individually in the literature rather than being considered together. The classification based on the non – functional attributes is presented below in table 5a as shown. The classification itself shows the various QoS attributes possible for web services.
Attributes	Papers	Papers	number of papers
Reliability	11	8	3
Latency	2	1	1
Availability	7	4	3
Execution time	1	1	0
Security	2	1	1
Safety	1	1	0
Throughput time	3	2	1
Response time	2	1	1
Time	8	4	4
Performance	3	3	0
Usability	2	2	0
Reputation	2	2	0
Responsiveness	1	0	1
Completion time	1	1	0
Mean peak period latency	1	1	0
Success of completion	3	1	2
Cost	4	1	3
Accessibility	1	1	0
Capacity	1	1	0
MTBF (Mean time before failure), MTTR	2	2	0
(Mean time to recover)			
Total	58	38	20

Table 5a. Classification based on QoS attributes

The table clearly points out that there has not been even consideration of the QoS attributes as far as literature is concerned. The major research literature relating to QoS attributes focus on few parameters like reliability, availability and time in general. The literature however has each of these terms defined and represented mathematically.
QoS Attribute	References
Accessibility	[17], [18]
Availability	[17],[18], [19], [20], [21], [22], [23], [24], [25], [26], [39]
Capacity	[17]
Completion time	[27]
Cost	[21], [25], [33]
Execution time	[25], [39]
Latency	[28]
Mean peak period latency	
Performance	[17], [23], [26] [29]
Reliability	[17], [19], [20], [25], [27], [30], [31], [32]
Reputation	[29], [33],[39]
Response time	[19], [20], [24]
Security/Safety	[9], [20], [19] ,[32] ,[33]
Success of completion	[18], [27]
Throughput time	[19], [20]
Time	[21], [23], [33], [34],[36], [37]
Usability	[17] [35]
Work load	[19]

Table 5b QoS attributes literature

The table 5b points out the need to consider the QoS attributes more rigorously rather than concentrating on selected few QoS attributes. The need to concentrate evenly on all
QoS attributes is because these QoS attributes can be grouped into customer related and service provider related QoS attributes as shown below in table 5c.

Customer	Service provider
Reliability	Success of completion Mean time before failure/ MTBF
Availability	Security
Usability	Safety
Accessibility	Capacity
Reputation	Performance
Time	Throughput time
	Response time/Latency
	Completion time
	Execution time

Table 5c. Grouping of QoS attributes into client and service provider related QoS

The QoS attributes on client column shows the QoS attributes that the clients considered being most important to select a service and the QoS attributes in the service provider side show how the client perceived QoS translates to the service provider. The research making use of this relationship does not exist to the best of our knowledge. This is a huge research gap that might answer many QoS related questions in the web service supply chains context.

IV. Research gaps

There is a huge gap in terms of the concept of web services supply chains, the QoS attributes, the mutual optimization based on the requirements of all participating entities. The gap needs to be addressed effectively and efficiently.

a. Conceptual gap:

There is a lack of definition of web services supply chain concept though there are definitions for many of the enablers and drivers of the web services supply chains. The defining of roles in a web services supply chains, the interaction among the entities and the issues related to this kind of pure service supply chain.

b. QoS / non – functional requirements gap:
The need for quality in web services supply chains is essential in order to differentiate from the crowd as pointed out earlier. The entities participating in a particular service delivery is not known so considering QoS attributes individually might not help since the web service supply chain is affected by individual bad performance to a higher degree than that of a static/semi-static supply chains. A way of consolidating the QoS attributes is necessary for fixing minimum QoS requirements that each participating entity must satisfy and for easier QoS calculations.

c. Mutual optimization methods:

The mutual optimization for all entities considering each one’s constraints, requirements, capabilities and considering how each entity’s good/bad performance adds/affects the others is needed. This kind of optimization is very complicated since it involves multiple viewpoints and requirements. Some suitable methods for this kind of optimization is to be put forward to resolve this gap.

V. Conclusion

In this paper we presented a thorough literature review considering the area of web services supply chains and the need for QoS optimization in such supply chains. The gaps in various dimensions such as conceptual gap, QoS gap and the method gap are identified and pointed out. The current methods used, the QoS attributes considered and various other dimensions of the literature are classified and presented clearly for understanding the need for considering this new area of research. The defining of the characteristics, consolidation of QoS attributes for the web services supply chains and the mutual optimization of the same will be our future work.
References:

1. Krishnan, S; Clementi, L; Ren, J; Papadopolous, P; Li, W, Design and Evaluation of Opal2: A Toolkit for Scientific Software as a Service, 2009 IEEE Congress on Services, PP 709 – 716

2. Huaqing Wu; Shu Yang, “Service supply chain: A conceptual framework compared with manufacturing supply chain”, Conference on management and service sciences, 2009, pp 1-4

3. Jos van Hillegersberg; Ruurd Boeke; Willem-Jan van den Heuvel, “The potential of web services to enable smart business networks”, Journal of information technology, 2004, Vol: 19, pp 281 – 287

4. Munindar.P.Singh; Michael . N. Huhns, “Service oriented computing: Key concepts and principles”, Journal on internet computing, 2005, Vol: 9; issue: 1, pp 75 – 81

5. Muhamed Sukkar, “A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Mathematics in Computer Science”, Ontario, Canada, 2010

6. Carey, M.J, “SOA What?”, IEEE Journal, 2008, Vol: 41, Issue: 3 pp 92 – 94
7. Papazoglou, M; Heuvel, W, Service oriented architectures: approaches, technologies and research issues, 2007 International Journal on Very Large Data Bases Volume 16 Issue 3, pp 389 – 415

8. Menasce, D.A.; Dubey, V, Utility-based QoS Brokerage in Service Oriented Architectures, 2007, IEEE International Conference on web services ICWS pp 422 – 430

9. Casola, V; Fasolino, A.R; Mazzocca, P; Tramontana, P, A policy based evaluation framework for quality and security in service oriented architecture, 2007 IEEE International Conference on Web Services pp 1181 – 1190

10. Qiu, R.G; Jin, D, A Practical Approach to Enabling Service-Oriented Value Nets: An IBM SUR Project Overview, 2006 IEEE International Conference on Service Operations and Logistics, and Informatics, SOLI, PP 1125 – 1129

11. Qiu, R. G; Zhigang Fang; Ming yu; Jin Dong; Zhang Shen, “ Design and development of a service – oriented supply chain: An IT perspective”, 5th International Conference on Industrial Informatics, 2007, Vol : 1, pp 585 – 590

12. Tingbin, C; Lina, W; Yimin, Z; Fuquan, S, Research on Methods of Services-oriented Integration for Supply Chain Collaboration, 2007 International Conference on Wireless communications, Networking and Mobile computing pp 4706 -4709

13. Gonçalo Cândidoa; José Barata; Armando Walter Colombo; François Jammes, “ SOA in reconfigurable supply chains: A research road map”, Journal of engineering applications of artificial intelligence, 2009, Vol : 22; issue : 6, pp 939 - 949

14. Seo-Tsyr, Y; Mei -Rung, L, “An value-centric event driven model and architecture: A case study of adaptive complement of SOA for distributed care service delivery”, Expert Systems with Applications ,2009,Vol 36, Issue 2, Part 2,PP 3671-3694

15. Chan, A.T.S.; Jiannong Cao; Chan, C.K , “WEBGOP: collaborative web services based on graph-oriented programming”, IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2005, vol 35, issue 6, pp 811 – 830

16. Zhu, L; Liu, X , “Technical Target Setting in QFD for Web Service Systems Using an Artificial Neural Network”, IEEE Transactions on Services Computing, 2010, vol 3, issue 4, pp 338 – 352
17. Galster, M; Eva, B, “A Taxonomy for Identifying and Specifying Non-functional Requirements in Service-oriented Development”, IEEE Congress on Services, 2008, pp 345 – 352

18. Yeom, G; Yun, T; Min, D, “A QoS Model and Testing Mechanism for Quality-driven Web services Selection”, International Workshop on Collaborative Computing, Integration, and Assurance (SEUS-WCCIA), 2006, pp 199 – 204

19. D.A. Menasce, “Automatic QoS Control”, IEEE Computer society, 2003, pp 92 – 96

20. M. Tian, A. Gramm, H. Ritter, J. Schiller, R. Winter, “A Survey of current Approaches towards Specification and Management of Quality of Service for Web Services”, PIK vol 27 no 3, 2004, pp 132 – 140

21. O'Sullivan, J; Edmond, D; Hofstede, H.M, “Formal description of non-functional service properties”, Centre for Information Technology Innovation Queensland University of Technology, Business Process Management Group 2005

22. Erradi, A; Maheshwari, P, “A Broker-based Approach for Improving Web Services Reliability”, IEEE International Conference on Web Services (ICWS), 2005

23. Zhang, L; Zhang, J, “Criteria analysis and validation of reliability for web service oriented systems”, ICWS ’05 Proceedings of the IEEE International Conference on Web Services, 2005

24. Zadeh, M.H; Seyyedi, M.A, “QoS Monitoring for Web Services by Time Series Forecasting”, 3rd IEEE International Conference on Computer Science and Information Technology (ICCSIT), 2010.

25. Li, Y; Xiong, A; Qi, X, “A New Algorithm about QoS of Web Service”, 2nd IEEE International Conference on Information Management and Engineering (ICIME), 2010, pp 521 – 523

26. Shuping Ran, “A Model for Web Service Discovery with QoS”, ACM SIGecom Exchanges Volume 4 Issue 1, 2003, pp 1 – 10

27. Lamanna, D.D.; Skene, J.; Emmerich, W, “SLAng: a language for defining service level agreements”, Proceedings of The Ninth IEEE Workshop on Future Trends of Distributed Computing Systems, 2003, FTDCS PP 100 – 106
28. Raimondi, F; Skene, J; Emmerich, W, “A Methodology for On-line Monitoring Non-Functional Specifications of Web-Services”, Proceedings of the First International Workshop on Property Verification for Software Components and Services (PROVECS) 2007, pp 50 – 59

29. Kalepu, S.; Krishnaswamy, S.; Seng Wai Loke, “Reputation = f(User Ranking, Compliance, Verity)”, IEEE International Conference on Web Services, 2004, Proceedings pp 200 – 207

30. Anja Strunk, “An Algorithm to Predict the QoS-Reliability of Service Compositions”, IEEE 6th World Congress on Services, 2010, pp 205 – 212

31. Erradi, A.; Maheshwari, P.; Tosic, V, “Recovery Policies for Enhancing Web Services Reliability”, International Conference on Web Services, 2006. ICWS pp 189 – 196

32. Hongyu Sun; Basu, S.; Honavar, V.; Lutz, R., “Automata-Based Verification of Security Requirements of Composite Web Services” IEEE 21st International Symposium on Software Reliability Engineering (ISSRE) 2010, pp 348 – 357

33. Badr, Y; Abraham, A; Biennier, F; Grosan, C, Enhancing Web Service Selection by User Preferences of Non-Functional Features, 2008, 4th International Conference on Next Generation Web Services Practices NWESP

34. Liu, R; Hu, C; Zhao, C; Gao, Z, “Verification for Time Consistency of Web Service Flow”, Seventh IEEE/ACIS International Conference on Computer and Information Science, ICIS 2008, pp 624 – 629

35. Li, Y; Wen, T, “Quality and Relation Driven Service Selection for Web Services Composition”, 2009 International Conference on New Trends in Information and Service Science pp 152 – 155

36. Kazhamiakin, R.; Pandya, P.; Pistore, M, “Representation, Verification, and Computation of Timed Properties in Web Service Compositions”, International Conference on Web Services, 2006. ICWS pp 497 – 504

37. Del Val, E; Navarro, M; Julian, V; Rebollo, M, “Ensuring time in service composition”, IEEE computer society Congress on Services 2009
38. Liangzhao Zeng, Boualem Benatallah, Anne H.H. Ng, Marlon Dumas, Jayant Kalagnanam, Henry Chang, QoS-Aware Middleware for Web Services Composition, 2004, IEEE Transactions on Software Engineering Vol : 30, Issue : 5 pp 311-327

39. Alonso, G; Fiedler, U; Hagen, C; Lazcano, A; Schuldt, H; Weiler, N, “WISE: Business to Business E-Commerce”, Research issues on data engineering information technology for virtual enterprises, May 1999, pp 132 – 139

40. Wing Lam, “Client – centered strategies for E-Commerce success, IEEE Journal of IT Professional, Sept/Oct 1999, Vol : 1; issue : 5, pp 45

41. Tom McGuffog, “E-Commerce and the value chain”, IEEE seminar on rethinking manufacturing, May 1999, PP 157 – 160

42. Yan Wang; Kwei – Jay Lin, “Reputation – oriented trustworthy computing in E-Commerce environments, IEEE journal on Internet Computing, 2008, Vol : 12; issue : 4, pp 55-59

43. Atif. Y, “Building trust in E-Commerce”, IEEE journal on Internet Computing, Vol : 6; issue : 1, 2002, pp 18 – 24

44. Moyaux, T; Chaib - Draa, B; D’Amours, S, “Information sharing as a co-ordination mechanism for reducing the bull whip effect in a supply chain”, IEEE transactions on systems management and cybernatics, 2007, Vol : 37, issue : 3, pp 396 – 409

45. Hiu Hu; Davei Hu, “Study on intelligent collaboration mode of supply chain”, IEEE conference on service operations and logistics and informatics, 2010, pp 205 – 207

46. Jun Lan; Laatikainen, M; Dijinkov, Y; Sinha, D, “How can supply chain collaboration contribute to a retail company’s competitive strategy: The design of an empirical research”, International conference on management and service science, 2009, pp 1-5

47. Chituc, C-M; Toscano, C; Azevedo, A, “E-Business and collaborative networks: A service oriented ICT platform for the foot wear industry”, 5th International conference on industrial informatics, 2005, Vol : 1, pp 591 – 596
48. Michalako ,S; Anagnostopoulos ,A; Depasta ,C; Pramatari ,K, “Using web – services to support collaboration practices along the supply chain”, International conference on next generation web service practices, 2005, pp 66

49. http://www.cia.gov/library/publications/the-worldfactbook/geos/in.html

50. Pierre.F.Tiako,” Web services modeling fro E-Market place”, Symposium on applications and the internet (SAINT) , 2003, pp 111

51. Jiang Hu; Shekao Hu, “ Analysis on the model of information sharing in the management of supply chain”, International conference on management and service science, 2009, pp 1-3

52. Sanjeev kumar; Vijay Dakshinamoorthy; M.S. Krishnan, “Does SOA improve the supply chain? An empirical analysis of the impact of SOA adoption on electronic supply chain performance, “40th International conference on system sciences, 2007

53. S.E.Sampson, “ Customer – supplier duality in bi-directional supply chains in service organizations”, International journal of service industry management, 2004, Vol : 11; issue : 4, pp 348 – 364

54. Nancy.K.Lankton; E.Vance Wilson, “ Antecedents and dimension of online service expectation”, IEEE transaction on Engineering management, 2007, pp 776 – 778

55. Zhang, X; Prybutok, V,“A Consumer Perspective of e-Service Quality”, IEEE Transactions on Engineering Management, 2005, Vol : 52; issue : 4, pp 461-477

56. N. Sato, K. Trivedi, “Accurate and efficient stochastic reliability of composite services”, IEEE International conference on services computing, pp 114 – 121, 2007

57. Pathak, J., Basu, S., Honavar, V, “Modeling Web Services by Iterative Reformulation of Functional and Non-functional Requirements”, International conference on service oriented computing ICSOC, LNCS 4294, pp. 314–326, 2006

58. Kirkham ,T; Varsamidis ,T, “A Business Service Network to Aid Collaboration between Small to Medium Enterprises”, 8th IEEE International Conference on E-Commerce Technology and The 3rd IEEE International Conference on Enterprise Computing, E-Commerce, and E-Services (CEC/EEE’), 2006.
59. Tong, H; Cao, J; Zhang, S; Mou, Y, “A fuzzy evaluation system for web services selection using extended QoS model”, Kybernetes, Vol. 38 Iss: 3/4, 2009, pp. 513 – 521

60. Wang, L; Bai, X; Zhou, L, “A Hierarchical Reliability Model of Service-Based Software System”, 33rd Annual IEEE International Computer Software and Applications Conference, 2009, pp 198 – 208

61. Tran, VX; Tsuji, H; Masuda, R, “A new QoS ontology and its QoS-based ranking algorithm for Web services”, Simulation Modelling Practice and Theory Vol 17, Issue 8, 2009, PP 1378-1398

62. Rao, J; Su, X, “A Survey of Automated Web Service Composition Methods”, Semantic Web Services and Web Process Composition, 2004, vol 3387, pp 43 – 54

63. Hofner, P; Lautenbacher, F, “Algebraic Structure of Web Services”, Electronic Notes in Theoretical Computer Science 2000, PP 171–187

64. Jizi, L; Ling, Y; Jun, G, “Business Integrated Architecture for Dynamic Supply Chain Management with Web Service”, IEEE International Conference on New Trends in Information and Service Science, 2009, pp 356 – 361

65. Gregoire, B.; Schmitt, M.;, “Business service network design: from business model to an integrated multi-partner business transaction”, 3rd IEEE International Conference on Enterprise Computing, E-Commerce and E-Services, 2006, pp 84 – 91

66. Liu, X; Zhu, L, “DESIGN OF SOA BASED WEB SERVICE SYSTEMS USING QFD FOR SATISFACTION OF QUALITY OF SERVICE REQUIREMENTS”, IEEE International Conference on Web Services, 2009, pp 567 – 574

67. Tian, M.; Gramm, A.; Ritter, H.; Schiller, J, “Efficient Selection and Monitoring of QoS-aware Web services with the WS-QoS Framework”, IEEE/WIC/ACM International Conference on Web Intelligence WI, 2004, pp 152 – 158

68. Agarwal, V.; Jalote, P, “Enabling End-to-End Support for Non-Functional Properties in Web Services”, IEEE International Conference on Service-Oriented Computing and Applications (SOCA), 2009, pp 1-8
69. Badr, Y; Abraham, A; Biennier, F; Grosan, C, “Enhancing Web Service Selection by User Preferences of Non-Functional Features”, 4th International Conference on Next Generation Web Services Practices NWESP, 2008.

70. O’Sullivan, J; Edmond, D; Hofstede, H.M, “Formal description of non-functional service properties”, Centre for Information Technology Innovation Queensland University of Technology, Business Process Management Group 2005.

71. Karhunen, H.; Eerola, A.; Jantti, M, “Improving Service Management in Supply Chains”, International Conference on Service Systems and Service Management, 2006, vol 2, pp 1415 – 1420

72. Salo, J; Karjaluoto, H, “IT—Enabled Supply Chain Management”, Contemporary Management Research, 2006, Vol. 2, No. 1, PP 17-30

73. Wang, P, “QoS-aware web services selection with intuitionistic fuzzy set under consumer’s vague perception”, Expert Systems with Applications, 2009, Vol 36, Issue 3, Part 1, PP 4460-4466

74. Mayerl, C.; Vogel, T.; Abeck, S, “SOA-based Integration of IT Service Management Applications”, International Conference on Web Services, 2005, ICWS.

75. Yu, T.; Lin, K.-J, “The Design of QoS Broker Algorithms for QoS-Capable Web Services”, IEEE International Conference on e-Technology, e-Commerce and e-Service, IEEE, 2004, pp 17 – 24

76. Zhang, X; Chen, Y; Cao, H, “The Discussion of Collaboration Management of Tourism Services Supply Chain”, International Conference on Management and Service Science MASS, 2010, pp 1 – 4

77. Kart, F.; Shen, Z; Gerede, C.E, “The MIDAS System: A Service Oriented Architecture for Automated Supply Chain Management”, IEEE International Conference on Services Computing SCC, 2006, pp 487 – 494

78. Jughans, M; Sudhir, A, “Web Service Discovery Based on Unified View on Functional and Non-Functional Properties”, IEEE Fourth International Conference on Semantic Computing, 2010, pp 224 – 227
79. Erradi, A.; Padmanabhuni, S.; Varadharajan, N., “Differential QoS support in Web Services Management”, International Conference on Web Services, 2006, ICWS pp 781 – 788

80. Kritikos, K.; Plexousakis, D., “Mixed-Integer Programming for QoS-Based Web Service Matchmaking”, IEEE Transactions on Services Computing, 2009, vol 2, issue 2, pp 122 – 139

81. Weider, D; Rachana, B; Radhakrishna, Sumana, P; Vijaya, K., “Modeling the Measurements of QoS Requirements in Web Service Systems” , SIMULATION, 2007; vol. 83, 1: pp. 75-91

82. Xiong, P.C; Fan, Y; Zhou, M., “Web Service Configuration Under Multiple Quality-of-Service Attributes”, IEEE Transactions on Automation Science and Engineering, 2009 vol 6, issue 2, pp 311 – 321

83. Zhovtobryukh, D, “A Petri Net-based Approach for Automated Goal-Driven Web Service Composition” SIMULATION, 2007, vol. 83, 1: pp. 33-63.

84. Conti, M.; Kumar, M.; Das, S.K.; Shirazi, B.A., “Quality of service issues in Internet Web services”, IEEE Transactions on Computers, 2002, vol 51, issue 6, pp 593 – 594