Oscillating Bianchi IX Universe in Hořava-Lifshitz Gravity

御園生 洋祐 1, *

1 明野大学 先進理工学研究科

(Dated: August 5, 2011)

2011 年度天文天体物理若手 夏の研究 (2011 年 8 月 1 日から 4 日まで愛知県蒲郡にて開催) に於ける
講演 “Oscillating Bianchi IX Universe in Hořava-Lifshitz Gravity” (宇宙論 17a) の概要。この講演は
Yosuke Misonoh, Kei-ichi Maeda, Tsutomu Kobayashi による論文 [3, 4] に基づくものである。

PACS numbers: 04.60.-m, 98.80.Cq, 98.80-k

宇宙は高温、高密度の火の玉から始まったとするビッグバン理論は宇宙膨張、全天に渡る等方的な宇宙マイクロ波
背景放射（CMB）の存在、さらには宇宙初期に於ける転元
素合成などを説明する理論で、今日では標準宇宙論と
しての地位を确立している。しかし、ビッグバン理論は宇
宙の始まりがエネルギー密度や曲率の発散を伴う特異点で
あるという問題を有する。これを宇宙初期特異点問題と
いう。この問題は、ミクロな高エネルギー領域に至る古
典的な重力理論を適用していることが原因であると考えられ、力
重を量子的に扱うことで解消されると期待される。この如
何な亜機付けにより、量子重力理論が精密に研究されてき
たが、力の振動的な流れ込みが困難であるという理由か
ら、未だ完全な理論を構築するには至っていない。

そのような状況下Horava-Lifshitz(HL)重力理論は近年
量子重力理論の崩壊として注目を集めている [1]。一般相
対論の重要な特性である一般標数変換に対する不変性を高
エネルギー領域で破ることによって、力の振動的な流れ込
みを目指す理論である。作用に含まれる 2 階の時間微分に
に対して、空間微分の数を 6 階にまで増やすことにより、量
子重力理論の困難である流れ込み不可能という問題が解消
出来ることが示されている。この理論が本当に重力の流れ
込みを可能にするか、低エネルギー領域で観測と一致する
可能性を高めに一般相対論を再現し得るかどうか、数のかけ
べき点が存在するか、他の相互作用と同様の手順で量子
化出来る可能性があるかどうかを決定する理論と言え
よう。

HL 重力理論の応用は宇宙論の分野で顕著である。特に
Brandenberger により、高密度の空間微分項が宇宙を膨張さ
せる力として用いるためが示唆されたことは重要で
ある [2]。この指摘が核となる、HL 重力理論に基づく初
期特異点回避に成功多く研究が発表された。その結
果、等方空間時空(FLRW 時空)に於ける宇宙初期特異
点を回避する解として、収縮する宇宙が空間的な膨張へと振
じるパルス解、収縮と膨張を周期的に繰り返す振動解が
発見されている。しかし、従来の研究では作用に対して特
別な制限を課した FLRW 時空では示す計算が行われていな
い。多様な条件に対して HL 重力理論の特異点回避の性質
を調べることは、パルス宇宙や膨張宇宙といったシナリ
オがどの様に一般的であるのかを知ることに意味がある。

以上的ような動向により、本研究では最も一般的な作用
に対して FLRW 時空及び、閉じた一様時空 (Bianchi IX 時
空) に於ける特異点回避を議論した。FLRW 時空に対して
振動的に非等方性を加える方法を比較すると、Bianchi IX
時空での解は振動とは見なせない大きな非等方性を持つ
場合を扱うことが出来る利点がある。Bianchi IX 時空の基本
方程式は高次の非線形微分方程式であるため、数値的な
解析を行った。

平坦でない一様等方宇宙では、高密度空間微分項が仮想的
な発散や stiff mater のように振る舞い、その結果として発
生する宇宙は膨張させる力として働くことがわかった。
一般等方宇宙に於ける特異点回避は定常宇宙、パルス
宇宙、膨張宇宙によって実現される。定常宇宙、定常解には、
他の解には不変なりが安定解と、他の解には不変なる安定
解が存在することがわかった。不安定な定常宇宙では、
emergent universe という特異点回避のシナリオが考えら
れる。過去に幾度となく宇宙がある有限の体積へと無
限の時間をかけて無限に収束するものであり、エネルギー
密度と曲率の発散を伴わないという点で特異点回避が
解の宇宙をベースにするスケールファクターの振動
幅を解析したところ、結合定数を不自然な値に取らない
限り Planck スケール程度のミクロスケールとなることが
わかった。マクロスケール宇宙への接続するために、量
子的どうネル効果によって膨張宇宙に遷移するというシナ
リオが考えられる。

Bianchi IX 時空の場合、一様等方宇宙で実現されていた
パルス宇宙や膨張宇宙に対して非等方位性を加えると、宇
宙の体積がゼロとなって特異点が現れる解や、宇宙が正
の場合であれば、加速膨張宇宙に転じる解へと遷移する傾
向が見られた。特に、振動宇宙から加速膨張宇宙に転じる
解は宇宙が誕生してからでは加速膨張化へと振動してい
ているの、宇宙無毛仮説を破ることによって興味深いため、振
動宇宙に見られた初期値に対する強い依存性はカオス的
さを示している可能性がある。

log(a)

FIG. 1: 振動から加速膨張へと遷移する解。
[1] P. Hořava, Phys. Rev. D 79, 084008 (2009) [arXiv: 0901.3775 [hep-th]].
[2] R.H. Brandenberger, Phys. Rev. D 80, 043516 (2009) [arXiv:0904.2835 [hep-th]].
[3] K. Maeda, Y. Misonoh and T. Kobayashi, Phys. Rev. D 82, 064024 (2010) [arXiv:1006.2739 [hep-th]].
[4] Y. Misonoh, K. Maeda and T. Kobayashi, arXiv:1104.3978 [hep-th].