Amplification of quantum discord between two uncoupled qubits in a common environment by phase decoherence

Ji-Bing Yuan, Le-Man Kuang, and Jie-Qiao Liao

1 Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha 410081, People’s Republic of China
2 Department of Physics, Hunan Normal University, Changsha 410081, People’s Republic of China
3 Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
E-mail: lmkuang@hunnu.edu.cn

Received 16 June 2010, in final form 16 June 2010
Published 4 August 2010
Online at stacks.iop.org/JPhysB/43/165503

Abstract
We study analytically the dynamic behaviours of quantum correlation measured by a quantum discord between two uncoupled qubits, which are immersed in a common Ohmic environment. We show that the quantum discord of the two non-interacting qubits can be greatly amplified or protected for certain initially prepared X-type states in the time evolution. In particular, it is found that stable amplification of the quantum discord exists for the case of two identical qubits, and the quantum discord can be protected for the case of two different qubits with a large detuning. It is also indicated that in general a sudden change of the quantum discord occurs in the time evolution at a critical time point t_c, and the discord amplification and protection may occur only in the time interval $0 < t < t_c$ for certain X-type states. This sheds new light on the creation and protection of quantum correlation.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It is well known that the total correlation in a bipartite quantum system can be measured by quantum mutual information [1, 2], which may be divided into classical and quantum parts [2–9]. The quantum part is called quantum discord, which was originally introduced by Oliver and Zurek [7]. Recently, it has become known that quantum discord is a more general concept to measure quantum correlation than quantum entanglement since there is nonzero quantum discord in some separable mixed states [7]. In fact, quantum discord is a different type of quantum correlation from entanglement, and it can be considered as a more universal resource than quantum entanglement in some sense. As shown in [10, 11], although there is no quantum entanglement, quantum discord can also be responsible for the quantum computational efficiency of deterministic quantum computation with one pure qubit [12]. In addition, much recent attention has been paid to many related topics of quantum discord [13–22], such as quantum discord of open quantum systems.

We know that any realistic quantum systems interact inevitably with their surrounding environments, which introduce quantum noise into the systems. As a result, the quantum systems will lose their energy (dissipation) and/or coherence (dephasing). Thus, it is of fundamental importance to know the influence of the environment on quantum correlation. In several recent papers [23–28], quantum correlation dynamics in open quantum systems have been studied. It was shown that the quantum correlation measured by quantum discord is more resistant against the environment than quantum entanglement [23]. For a certain class of states under Markovian dynamics, quantum entanglement
can disappear within a finite time, a phenomenon called entanglement sudden death [29], which has been widely investigated in recent years [29–34]. Conversely, quantum discord only vanishes asymptotically at infinite time [23, 35]. Moreover, for some special initial states, quantum correlation in a bipartite quantum system will not be affected initially prepared quantum discord for certain -type initial states, and show that the initially prepared phase decoherence can induce a stable amplification of the qubit–environment interaction under some conditions. In particular, when the two qubits are identical, we find that it is possible to amplify and protect the quantum discord qubits immersed in a common Ohmic environment. We show that the two above-mentioned facts, that the quantum discord is a useful resource for quantum information processing and that quantum systems couple inevitably with their environment, naturally there are two interesting questions. (i) Can the environment enhance the quantum discord of the systems to realize the discord amplification? (ii) Can we obtain a stable quantum discord induced by the environment? With these questions, in this paper, we study the dynamics of the quantum discord between two non-interacting qubits immersed in a common Ohmic environment. We show that it is possible to amplify and protect the quantum discord by the qubit–environment interaction under some conditions. In particular, when the two qubits are identical, we find that the phase decoherence can induce a stable amplification of the initially prepared quantum discord for certain X-type states.

This paper is organized as follows. In section 2, we present our physical model and its solution. In section 3, we investigate dynamical behaviours of quantum discord for the so-called X-type initial states. In section 4, we study analytically and numerically the quantum discord for certain X-type initial states, and show that the initially prepared discord can be amplified or protected for X-type states. We conclude this work in section 5.

2. Physical model and solution

Let us begin by introducing the physical system, as shown in figure 1; the two uncoupled qubits, qubit A and qubit B with energy separations ω_A and ω_B respectively, are immersed in a common environment. The Hamiltonian of the total system including the two qubits and the environment is composed of four parts:

$$\hat{H}_T = \hat{H}_S + \hat{H}_E + \hat{H}_I + \hat{H}_R,$$

where \hat{H}_S is the Hamiltonian of the two qubits, \hat{H}_E is the Hamiltonian of the environment, \hat{H}_I represents the interaction Hamiltonian between the two qubits and the environment, and \hat{H}_R is a renormalization term, which was introduced originally in [36].

The expression of the Hamiltonian \hat{H}_S reads

$$\hat{H}_S = \frac{1}{2} \omega_A \sigma_A^+ \sigma_A^- + \frac{1}{2} \omega_B \sigma_B^+ \sigma_B^-,$$

(2)

where $\sigma_A^+ = |0\rangle_{A\langle B}|1\rangle_{A\langle B}$ and $|1\rangle_{A\langle B}$ being the excited and the ground states of the qubit A (B), respectively. Hereafter, we take $\hbar = 1$.

The environment of the two qubits is modelled by a heat bath with temperature T, which is composed of an infinite set of harmonic oscillators with the following Hamiltonian:

$$\hat{H}_E = \sum_k \omega_k \hat{b}_k^\dagger \hat{b}_k,$$

(3)

where ω_k is the frequency of the kth harmonic oscillator depicted by the usual bosonic creation and annihilation operators \hat{b}_k^\dagger and \hat{b}_k, satisfying the commutative relation $[\hat{b}_k, \hat{b}_k^\dagger] = 1$.

For the interaction Hamiltonian \hat{H}_I between the two qubits and the heat bath, we assume that it is given by the following expression:

$$\hat{H}_I = \hat{H}_S \sum_k g_k (\hat{b}_k^\dagger + \hat{b}_k),$$

(4)

where g_k is the coupling constant between the system and the kth harmonic oscillator of the heat bath. It is obvious that \hat{H}_I commutes with the Hamiltonian \hat{H}_S. Therefore, there is no energy dissipation in this system. Note that this form of coupling has been used to study quantum decoherence in Bose–Einstein condensation and trapped ions by Kuang and co-workers [37].

The renormalization term has the following form:

$$\hat{H}_R = (\hat{H}_S)^2 \sum_k \frac{g_k^2}{\omega_k^2},$$

(5)

According to [37], Hamiltonian (1) can be exactly solved by making use of the unitary transformation

$$\hat{U} = \exp \left[\hat{H}_S \sum_k g_k (\hat{b}_k^\dagger - \hat{b}_k) \right].$$

(6)

Corresponding to Hamiltonian (1), the total density operator of the system plus the heat bath can be expressed as

$$\hat{\rho}_T(t) = e^{-i\hat{H}_S \tau} \hat{U}^{-1} e^{-i\sum \omega_k \hat{b}_k^\dagger \hat{b}_k} \hat{\rho}_T(0) \hat{U}^{-1} e^{i\sum \omega_k \hat{b}_k^\dagger \hat{b}_k} e^{i\hat{H}_S \tau},$$

(7)

where $\hat{\rho}_T(0)$ is the initial total density operator.

We assume that the system and the heat bath are initially uncorrelated with the density operator $\hat{\rho}_T(0) = \hat{\rho}(0) \otimes \hat{\rho}_R(0)$, where $\hat{\rho}(0)$ is the initial density operator of the system and $\hat{\rho}_R(0)$ is the density operator of the heat bath, which is assumed to be $\hat{\rho}_R = \prod_k \hat{\rho}_R(k)$, where $\hat{\rho}_R(k)$ is the density operator of the kth harmonic oscillator in thermal equilibrium of temperature T. We can obtain the reduced density operator of the system, denoted by $\hat{\rho}(t) = \text{Tr}_R[\hat{\rho}_T(t)]$. Its matrix elements

![Figure 1. Schematic of our physical system: two uncoupled qubits, of the energy separations ω_A and ω_B, are immersed in a common heat bath with temperature T.](image-url)
In the eigenrepresentation of H_S (with the four eigenstates $|00\rangle, |01\rangle, |10\rangle, |11\rangle$) can be written as
\[
\rho(t) = \rho(0) e^{-iE(lA,lB)\Delta t} + \sum_{k} p_k \tau_k(t),
\]
where $E(lA,lB)$ is the eigenvalue of the operator H_S with the corresponding eigenstate $|lA,lB\rangle$. The expression of $E(lA,lB)$ is $E(lA,lB) = \{-1\}^{lA} \omega_A + \{-1\}^{lB} \omega_B$. The quantity $R(|lA,lB\rangle\langle lA,lB|)$ is a reservoir-dependent part given by
\[
R(|lA,lB\rangle\langle lA,lB|) = e^{-iE(lA,lB)\Delta t} + \sum_{k} p_k \tau_k(t).
\]

The two reservoir-dependent functions $Q_1(t)$ and $Q_2(t)$ in equation (9) are given by
\[
Q_1(t) = \int_0^\infty d\omega J(\omega) g_\omega^2 \sin(\omega t),
\]
\[
Q_2(t) = 2 \int_0^\infty d\omega J(\omega) g_\omega^2 \sin^2(\omega t/2) \coth(\beta \omega/2).
\]

Here, we have taken the continuum limit of the reservoir modes $\sum_k \rightarrow \int_0^\infty d\omega$, where $J(\omega)$ is the spectral density of the reservoir, g_ω is the corresponding continuum expression for g_k and $\beta = 1/T$ (with the Boltzmann constant $k_B = 1$).

3. Dynamics of the quantum discord for two-qubit X-type states

In this section, we investigate the dynamics of the quantum discord for the two non-interacting qubits in the phase decoherence environment for three-parameter-two-qubit X-type states. The quantum discord [7] is defined as the difference between the total correlation and the classical correlation with the following expression:
\[
\mathcal{D}(\rho) = I(\rho_A : \rho_B) - C(\rho).
\]

Here, the total correlation in a bipartite quantum state ρ is measured by quantum mutual information given by
\[
\mathcal{I}(\rho_A : \rho_B) = S(\rho_A) + S(\rho_B) - S(\rho),
\]
where $S(\rho) = -\text{Tr}(\rho \log \rho)$ is the von Neumann entropy, $\rho_A = \text{Tr}_B(\rho)$ and $\rho_B = \text{Tr}_A(\rho)$ are the reduced density operators for subsystems A and B, respectively. The classical correlation between the two subsystems A and B can be defined as
\[
C(\rho) = \max_{\{\hat{P}_k\}} \left[S(\rho_A) - \sum_k p_k S(\rho_A^{(k)}) \right] = S(\rho_A) - \min_{\{\hat{P}_k\}} \left[\sum_k p_k S(\rho_A^{(k)}) \right].
\]

Here, $\{\hat{P}_k\}$ is a set of projects performed locally on the subsystem B and $\rho_A^{(k)} = 1/p_k \text{Tr}_B(\rho_A \otimes \hat{P}_k) \hat{P}_k (\rho_A \otimes \hat{P}_k)$ is the state of the subsystem A conditioned on the measurement of the outcome labelled by k, where $p_k = \text{Tr}_A(\hat{P}_k \rho_A \otimes \hat{P}_k)$.

In terms of the relation given in equation (8), we can study the quantum discord dynamic properties of the two qubits. We assume that the two qubits are initially prepared in a class of state with the maximally mixed marginals $(\rho_{AB} = \hat{I}_{AB}/2)$ described by the three-parameter X-type density matrix
\[
\rho(0) = \frac{1}{4} \left(\hat{I} + \sum_{i=1}^3 c_i \sigma_i^A \otimes \sigma_i^B \right),
\]
where σ_i^A and σ_i^B $(i = 1, 2, 3)$ mean the Pauli operators of qubit A and qubit B, respectively, and $c_i (0 \leq c_i \leq 1)$ are the real numbers satisfying the unit trace and positivity conditions of the density operator ρ. The density operator \hat{I} includes the Werner states and the Bell states as two special cases. Under the decoherence environment, the evolution of the density operator $\rho(t)$ initially prepared in equation (14) can be obtained according to equation (8). Its explicit form at time t is
\[
\rho(t) = \frac{1}{4} \left(\begin{array}{cccc}
1 + c_3 & 0 & 0 & \mu e^{i\Delta_1} \\
0 & 1 - c_3 & c_1 + c_2 & 0 \\
c_1 - c_2 & 0 & 1 + c_3 & 0 \\
\mu e^{-i\Delta_1} & 0 & 0 & 1 + c_3
\end{array} \right),
\]
where we have introduced the following parameters:
\[
\Delta_1 = (\omega_A + \omega_B)t, \quad \Delta_2 = (\omega_A - \omega_B)t, \\
\mu(t) = (c_1 - c_2) \gamma_1(t), \quad \nu(t) = (c_1 + c_2) \gamma_2(t),
\]
\[
\gamma_1(t) = e^{-(\omega_A + \omega_B)t} Q_1(t), \quad \gamma_2(t) = e^{-(\omega_A - \omega_B)t} Q_2(t).
\]

As shown in equation (16), the decay parameters γ_1 and γ_2 depend on the frequencies ω_A and ω_B of the two qubits and on the reservoir-dependent function Q_2. For convenience, we define a detuning parameter of the two qubits as
\[
r = \frac{\omega_A}{\omega_B},
\]
which indicates that the detuning parameter is $r = 1$ for two identical qubits due to $\omega_A = \omega_B$, and $r \neq 1$ for two different qubits due to $\omega_A \neq \omega_B$. In other words, the two qubits are resonant (non-resonant) when the detuning parameter is $r = 1$ ($r \neq 1$). Then the two decay parameters γ_1 and γ_2 can be connected with each other through the detuning parameter with the following simple expression:
\[
\gamma_2 = \gamma_1 r^2.
\]
In order to obtain the mutual information of state $\hat{\rho}(t)$ given in equation (15), we first calculate the four eigenvalues of $\hat{\rho}(t)$:

$$\lambda_{1,2} = \frac{1}{2} \left(1 + c_3 \mp \mu \right), \quad \lambda_{3,4} = \frac{1}{2} \left(1 - c_3 \mp v \right). \quad (19)$$

Then the mutual information reads

$$I(\hat{\rho}_A : \hat{\rho}_B) = 2 + \sum_{i=1}^{4} \lambda_i \log \lambda_i. \quad (20)$$

Note that here we have used $S(\hat{\rho}_A(t)) = S(\hat{\rho}_B(t)) = 1$, since the two reduced density matrices $\hat{\rho}_A(t)$ and $\hat{\rho}_B(t)$ are maximally mixed, that is $\hat{\rho}_A(t) = \hat{I}_A/2$ and $\hat{\rho}_B(t) = \hat{I}_B/2$.

For calculation of the amount for the classical correlation $C(\hat{\rho})$ defined in equation (13), we propose the complete set of orthogonal projectors $\{ \hat{P}_k = |\theta_k \rangle \langle \theta_k |, k = \|, \bot \}$ for a local measurement performed on the subsystem B, where the two projectors are defined in terms of the following two orthogonal states:

$$|\theta \rangle = \cos \theta |0\rangle + e^{i\phi} \sin \theta |1\rangle, \quad (21a)$$
$$|\theta \rangle = -e^{-i\phi} \sin \theta |0\rangle - \cos \theta |1\rangle, \quad (21b)$$

with $0 \leq \theta \leq \pi/2$ and $0 \leq \phi \leq 2\pi$. After the two project measurements with $p_{\|} = p_{\bot} = 1/2$, the reduced density matrices of the subsystem A read

$$\hat{\rho}_{A\|} = \frac{1}{4} \begin{pmatrix} 2(1 - c_3 \cos(2\theta)) & e^* \sin(2\theta) \\ e \sin(2\theta) & 2(1 + c_3 \cos(2\theta)) \end{pmatrix}, \quad (22a)$$
$$\hat{\rho}_{A\bot} = \frac{1}{4} \begin{pmatrix} 2(1 + c_3 \cos(2\theta)) & -e \sin(2\theta) \\ -e^* \sin(2\theta) & 2(1 - c_3 \cos(2\theta)) \end{pmatrix}, \quad (22b)$$

where we have introduced the parameter $\epsilon = \mu e^{i(\Delta_1 - \phi)} + \nu e^{i(\Delta_1 + \phi)}$. According to equation (22), it is straightforward to obtain the eigenvalues of the reduced density matrix $\hat{\rho}_A^{(k)}$ as follows:

$$\xi_{1,2}^{(k)} = \frac{1}{2} (1 \pm \Lambda_k), \quad (23)$$

where we have defined Λ as

$$\Lambda = \left[c_3^2 \cos^2(2\theta) + \frac{1}{4} [\mu^2 + \nu^2 + 2\mu \nu \cos(\Delta_2 - \Delta_1 + 2\phi)] \sin^2(2\theta) \right]^{1/2}. \quad (24)$$

Since $\xi_{1,2}^{(k)} = \xi_{1,2}^{(k)}$, then we have $S(\hat{\rho}_A^{(k)}) = S(\hat{\rho}_A^{(k)}) = f(\Lambda)$ defined by

$$f(\Lambda) = -\frac{1 - \Lambda}{2} \log_2 \left(\frac{1 - \Lambda}{2} \right) - \frac{1 + \Lambda}{2} \log_2 \left(\frac{1 + \Lambda}{2} \right). \quad (25)$$

which leads to the classical correlation

$$C(\hat{\rho}(t)) = 1 - \min_{\theta, \phi} f(\Lambda). \quad (26)$$

Since the function $f(\Lambda)$ is a monotonically decreasing function, for getting the minimal value of $S(\hat{\rho}_A^{(k)}) = f(\Lambda)$, we should choose proper parameters θ and ϕ to ensure that the parameter Λ defined in equation (24) is maximal. Obviously, from equation (24) we can see that the maximal value depends on c_3, μ and ν. From equation (24) it is easy to get the following inequality:

$$\Lambda \leq \left[c_3^2 \cos^2(2\theta) + \frac{1}{4} [\mu^2 + \nu^2 + 2\mu \nu \cos(\Delta_2 - \Delta_1 + 2\phi)] \sin^2(2\theta) \right]^{1/2} \leq \left[\frac{|c_3|^2}{2}, \quad \text{for} \quad |c_3| > (|\mu| + |\nu|)/2, \right.$$
$$\left. (|\mu| + |\nu|)/2, \quad \text{for} \quad |c_3| < (|\mu| + |\nu|)/2. \right) \quad (27)$$

If we define $\chi(t)$ as

$$\chi(t) = \max \left[|c_3|, (|\mu| + |\nu|)/2, \right.$$
$$\left. (|\mu| + |\nu|)/2 \right], \quad (28)$$

then the classical correlation can be expressed as

$$C(\hat{\rho}(t)) = \frac{2}{\log_2 2} \chi(t) - 1. \quad (29)$$

Therefore, the quantum discord can be written as

$$D(\hat{\rho}(t)) = 2 + \sum_{i=1}^{4} \lambda_i \log_2 \lambda_i - C(\hat{\rho}(t)), \quad (30)$$

where the amount of the classical correlation $C(\hat{\rho}(t))$ is given by equation (29). In principle, we have obtained the dynamics of the quantum discord according to the expression given in equation (30), provided that we know the initial condition of the system. In what follows we study the dynamic properties of quantum discord for some initial states in detail.

4. Quantum discord amplification

In the section, we would like to find the possibility of the quantum discord enhancement induced by phase decoherence in the dynamic evolution of the X-type quantum states. From equation (16) we can see that both $\mu(t)$ and $\nu(t)$ are two decaying functions with respect to the evolution time t due to the reservoir function $Q(t)$ being an increasing function as indicated below; hence, there may exist a critical time t_c. At this time, the following equation may be satisfied:

$$\frac{\mu(t_c)}{\nu(t_c)} = \frac{|c_3|}{2}, \quad (31)$$

which is the equation to determine t_c. Obviously, the critical time t_c depends on initial-state and reservoir parameters.

From equations (16) and (28) we can obtain

$$\chi(t) = \left\{ \begin{array}{ll} |c_3|, & \text{for} \ t > t_c, \\
(|\mu(t)| + |\nu(t)|)/2, & \text{for} \ t < t_c. \end{array} \right. \quad (32)$$

which indicates that the classical correlation expressed by equation (29) exhibits a sudden change at the critical time t_c determined by equation (31). The classical correlation decays monotonically from the initial time to the critical time t_c, and then remains constant. Then making use of equations (29)–(32) we can obtain expressions of the quantum discord in different regimes of the time evolution:

$$D(\hat{\rho}(t)) = 2 + \sum_{i=1}^{4} \lambda_i \log_2 \lambda_i - \frac{1}{2} \sum_{n=1}^{4} \Lambda_n \log_2 \Lambda_n, \quad t < t_c, \quad (33a)$$
\[\mathcal{D}(\hat{\rho}(t)) = 2 + \sum_{i=1}^{4} \lambda_i \log_2 \lambda_i - \frac{1}{2} \sum_{n=1}^{2} \Lambda_n \log_2 \Lambda_n, \quad t \geq t_c, \]

which is determined by the spectral density of the environment \(\eta \). \hfill (33b)

where \(\Lambda_n \) and \(\Lambda'_n \) are given by

\[\Lambda_n = 1 + (-1)^n |c_3|, \quad \Lambda'_n = 1 + (-1)^n \frac{|\mu| + |v|}{2}. \]

From equations (33a) and (33b) we can see that there exists a critical time at which the quantum discord evolution exhibits a sudden change. Therefore, dynamic evolution of the quantum discord may have different behaviours in the time interval \(0 \leq t < t_c \) and after the critical time. In what follows, we investigate the dynamic characteristics of the quantum discord in the time evolution for two identical and different qubits, respectively.

4.1. The case of two identical qubits

For the sake of simplicity, we first consider the case of two identical qubits and assume that the three initial-state parameters obey \(c_2 = 0 \) and \(c_1 > c_3 > 0 \). In this case, we have \(\omega_A = \omega_B = \Omega, r = 1 \) and \(\gamma_2 = 1 \). From equation (31) we find that the critical time \(t_c \) satisfies the equation

\[Q_2(t_c) = \frac{1}{4\Omega^2} \ln \left(\frac{2c_3}{c_1} - 1 \right), \]

where \(Q_2(t) \) is the reservoir function defined in equation (10) which is determined by the spectral density of the environment \(J(\omega) \). We consider the Ohmic reservoir \([38]\) with the spectral density \(J(\omega) \) given by

\[J(\omega) = \frac{\eta \omega}{g^2(\omega)} \exp \left(-\frac{\omega}{\omega_c} \right), \]

where \(\omega_c \) is the high-frequency cutoff and \(\eta \) is a positive characteristic parameter of the reservoir. With this choice, at low temperature the function \(Q_2(t) \) is given by the following expression:

\[Q_2(t) = \eta \left[\frac{1}{2} \ln [1 + (\omega_c \omega t)^2] + \ln \left(\frac{\beta}{\pi t} \right) \right]. \]

The critical time \(t_c \) can be obtained from equations (35) and (37). However, it should be pointed out that the critical time exists only for certain values of the three initial-state parameters \((c_1, c_2, c_3)\), not for arbitrary values of these three parameters. Taking into account the positivity of the density operator and the reservoir function given by equation (37), we find that the critical time \(t_c \) exists for some initial states with \(0 < c_1/2 < c_3 < c_2 \leq 2/3 \) and \(c_2 = 0 \). It is a difficult task to get an analytical expression of \(t_c \) for an arbitrary reservoir temperature. However, at zero temperature, from equations (35) and (37) it is straightforward to get an analytic result of \(t_c \) given by

\[t_c = \frac{1}{\omega_c} \sqrt{\left(2c_3/c_1 - 1 \right)^{-1/(2\gamma\Omega^2)} - 1}. \]

Figure 2. Plot of the scaled critical time \(\omega_c t_c \) given in equation (38) versus the qubit parameter \(\eta \Omega^2 \) and the initial-state parameter \(c_3/c_1 \) at zero temperature.

From equation (38) we can see that \(t_c \) depends not only on the characteristics of the two qubits and their environment but also on the initial-state parameters. For a set of given parameters \((c_1, c_3, \eta, \Omega)\), the lower the cut-off frequency of the reservoir, the longer the critical time. In particular, when \(2c_3 = c_1 \), we have \(t_c = \infty \). This means that the quantum discord will not exhibit the sudden change in the whole process of the time evolution. In figure 2 we display \(t_c \) with respect to the parameters \(\eta \Omega^2 \) and \(c_3/c_1 \) at zero temperature. In the following we show that at zero temperature it is possible to realize the discord amplification in the case of \(2c_3 = c_1 \) for the two identical qubits.

For the two identical qubits, when \(2c_3 = c_1 \) and \(c_2 = 0 \), \(t_c \) approaches infinity. Then the quantum discord is given by

\[\mathcal{D}_{id}(t) = 2 + \sum_{i=1}^{4} \lambda_i \log_2 \lambda_i - \frac{1}{2} \sum_{n=1}^{2} \Lambda'_n \log_2 \Lambda'_n, \]

\[0 \leq t < \infty, \]

where \(\lambda_i, \Lambda'_n \) and \(\gamma_i(t) \) are given by

\[\lambda_{1,2} = \frac{1}{8}[2 + c_1(1 \mp 2\gamma_1(t))], \quad \lambda_{3,4} = \frac{1}{8}[2 - c_1(1 \mp 2\gamma_1(t))], \quad \lambda_{1,2} = 1 \mp \frac{1}{2}c_1(1 + \gamma_1(t)), \]

\[\gamma_1(t) = e^{-4\Omega^2\Omega^2(t)}, \]

where the temperature-dependent reservoir function \(Q_2(t) \) is given by equation (37).

In figure 3 we have plotted the quantum discord \(\mathcal{D}_{id}(t) \) with respect to the initial-state parameter \(c_1 \) in the time evolution. Figure 3 clearly indicates the amplification of the initial discord in the time evolution. The discord amplification becomes more apparent for large values of \(c_1 \). In particular, when the time approaches infinity, we have \(\gamma_1 = 0 \); hence, the quantum discord reaches its maximal value given by

\[\mathcal{D}_{id}(\infty) = \frac{2 + c_1}{8} \log_2(2 + c_1) - \frac{2 - c_1}{4} \log_2(2 - c_1) + \frac{2 - 3c_1}{8} \log_2(2 - 3c_1), \]

which implies that the interaction between the reservoir and the two identical qubits can lead to the stable amplification of the initially prepared discord. The stable value of the quantum
discord depends only on the initial-state parameters. In figure 4 we display the stable discord $D_{id}(\infty)$ with respect to the initial-state parameter c_1. From figure 4 we can see that the larger the initial-state parameter c_1, the more apparent the amplification of the quantum discord.

In order to calculate the amplification rate of the quantum discord, we need the quantum discord of the corresponding initial states with the following expression:

$$D(0) = -1 + \frac{2}{8} - c_1 \log_2(2 - c_1) + \frac{2 + c_1}{8} \log_2(2 + c_1) + \frac{2}{2 + 3c_1} \log_2(2 + 3c_1) + \frac{2 - 3c_1}{8} \log_2(2 - 3c_1) - \frac{1 + c_1}{2} \log_2(1 + c_1) - \frac{1 - c_1}{2} \log_2(1 - c_1).$$

Then, we define the amplification rate of the quantum discord as $\Gamma = D_{id}(\infty)/D(0)$. In figure 5 we have plotted the amplification rate Γ with respect to the initial-state parameter c_1. Figure 5 indicates that the initially prepared discord under consideration can be amplified for the whole regime in which c_1 can takes its values, and the amplification rate is larger in the middle regime than in other regimes for the values of c_1. In particular, we can obtain the maximal amplification rate $\Gamma_{\max} \approx 2.17$ when the initial-state parameter $c_1 \approx 0.33$.

Physically, the stable amplification phenomenon of the quantum discord for the two resonant qubits in the common heat bath is related to the existence of a decoherence-free subspace of the two qubits in the time evolution. In fact, from equation (15) we can see that when the two qubits are resonant, i.e. $r = 1$, we have $\nu(t) = 0$; the subspace formed by $|0, 1\rangle_{AB}$ and $|0, 1\rangle_{AB}$ is a decoherence-free subspace of the two qubits in the time evolution. Therefore, the stable amplification phenomenon of quantum discord can be understood as a quantum coherent effect of a two qubits in common heat bath.

4.2. The case of two different qubits

Dynamic evolution of the quantum discord for two uncoupled different qubits in a common environment can be studied through analysing the first derivative of the quantum discord with respect to time. In this case, we have $r \neq 1$ due to $\omega_A \neq \omega_B$. We now discuss the general conditions to realize the amplification of the quantum discord by phase decoherence. Note that the time dependence of the quantum discord given by equation (33) can be described in terms of only one parameter $\gamma(t)$ since the other time-dependent parameters $\lambda_i, \Lambda_i^\prime$ and $\gamma_2(t)$ can be expressed by $\gamma_1(t)$ through the relations given by equations (16) and (17). For the Ohmic-reservoir case under our consideration and at low temperature, making use of equation (36), we can find $\gamma_1(t)$ to be

$$\gamma_1(t) = \left[1 + (\omega_A t)^2\right]^{1/2} \frac{\beta}{\pi t} \sinh \left(\frac{\pi t}{\beta}\right) e^{-\eta(t+1)^2\omega_B^2}. \quad (43)$$
From equation (44), it is easy to see that the first derivative of γ_1 with respect to the time t is always negative, i.e.

$$\frac{\partial \gamma_1}{\partial t} < 0,$$ \hspace{1cm} (44)

which means that the parameter γ_1 monotonically decreases with respect to the time t. In fact, $\gamma_1 = \gamma_2 = 1$ at the beginning and $\gamma_1 \to 0, \gamma_2 \to 0$ at infinite time.

Hence, the derivative of the quantum discord with respect to the evolution time can be expressed as

$$\frac{\partial D(\hat{\rho}(t))}{\partial t} = \frac{\partial D(\hat{\rho}(t))}{\partial \gamma_1} \frac{\partial \gamma_1}{\partial t},$$ \hspace{1cm} (45)

which implies that when

$$\frac{\partial D(\hat{\rho}(t))}{\partial \gamma_1} < 0,$$ \hspace{1cm} (46)

and making use of equation (45), we can find

$$\frac{\partial D(\hat{\rho}(t))}{\partial t} > 0,$$ \hspace{1cm} (47)

which indicates that the quantum discord is enhanced with the time evolution. This is the condition of the amplification of quantum discord. In the following we further study the amplification condition.

In order to demonstrate the possibility of the discord amplification, we calculate the first derivative of the quantum discord with respect to γ_1. Substituting equations (18), (19) and (34) into equation (33), the first derivative of $D(\hat{\rho}(\gamma_1))$ with respect to γ_1 has the following forms:

$$\frac{\partial D(\hat{\rho}(\gamma_1))}{\partial \gamma_1} = \begin{cases} F(\gamma_1) + G(\gamma_1), & 0 < t < t_c, \\ G(\gamma_1), & t \geq t_c, \end{cases}$$ \hspace{1cm} (48)

where we have introduced the following three functions:

$$F(\gamma_1) = \frac{|c_1 - c_2| + |h|}{4} \log_2 \left(\frac{2 - |\mu| - |v|}{2 + |\mu| + |v|} \right),$$

$$G(\gamma_1) = \frac{c_1 - c_2}{4} \log_2 \left(\frac{1 + c_1 + \mu}{1 + c_3 - \mu} \right) + \frac{h}{4} \log_2 \left(\frac{1 + c_3 - v}{1 - c_3 - v} \right),$$

$$h(\gamma_1) = \frac{\gamma_1}{\gamma_1 + 2} \log_2 \left(\frac{r - 1}{r + 1} \right).$$ \hspace{1cm} (49)

For the initial state of $0 \leq c_2 < c_1 < 1$ and $|c_3| < 1$, from equation (49), we can see that the first derivative $G(\gamma_1)$ is always positive. This implies that when $t > t_c$, the derivative of the quantum discord with respect to the time is always negative, i.e. $\partial D(\hat{\rho}(\gamma_1)) / \partial t < 0$. Hence, the quantum discord always decreases monotonically when $t > t_c$. That is, it is impossible to amplify the prepared quantum discord in the time evolution after t_c.

On the other hand, from equations (48) and (49) we can see that the function $F(\gamma_1)$ is always negative due to $(2 - |\mu| - |v|)/(2 + |\mu| + |v|) < 1$. Then, $\partial D(\hat{\rho}(\gamma_1)) / \partial \gamma_1 < 0$, i.e. $\partial D(\hat{\rho}(\gamma_1)) / \partial t < 0$, is possible due to the competing change of the two functions $F(\gamma_1)$ and $G(\gamma_1)$ in the time evolution when $t < t_c$. Therefore, it is possible to amplify the initially prepared quantum discord before t_c.

We now numerically investigate the discord amplification for certain initially prepared X-type states of two different qubits. In figure 6 we display the dynamic evolution of the quantum discord at zero temperature. Here, the two qubits are initially prepared in the X-type state with $c_1 = 0.6, c_2 = 0$ and $c_3 = 0.3$, and the detuning parameter $r = 1, 1.5, 2$ and 5, respectively. The solid line corresponds to the case of two identical qubits discussed in the previous subsection. In this case, the initially prepared discord can be amplified and this discord amplification is stable with $t_c = \infty$. Figure 6 can see that the detuning of the two qubits described by the parameter r can seriously affect the discord evolution. The critical time at which the sudden change of the discord occurs shortens with the increase of the detuning parameter r. After the critical time, the discord begins to decay asymptotically. There exists an amplification regime of the discord before t_c. The amplification regime becomes narrow with the increase of r and the amplification disappears when the detuning is large enough.

The above discussions on the discord dynamics inspire us to ask an interesting question: might the discord remain unchanged in the time evolution before the critical time for certain cases? In the following we show that it is possible to maintain the discord before the critical time. In order to see this, we consider two different qubits with a large detuning $r \gg 1$, which are initially prepared X-type states with the three state parameters $c_1 = 1$ and $0 < -c_2 = c_3 = c < 1$. In this case, at zero temperature, we find that t_c is given by

$$t_c = \frac{1}{\omega_{\ell}} \sqrt{c^{-2} / (\eta_{\ell} \rho_s^2)} - 1,$$ \hspace{1cm} (50)

and the quantum discord has the following expressions:

$$D(\hat{\rho}) = \begin{cases} \frac{1}{2} \log_2 (1 + c) + \frac{1}{2} \log_2 (1 - c), & t < t_c, \\ \frac{1}{2} \log_2 (1 + \gamma_1) + \frac{1}{2} \log_2 (1 - \gamma_1), & t \geq t_c. \end{cases}$$ \hspace{1cm} (51)
where $\gamma(t)$ is given by equation (43). From equation (51) we can see that before t_c the quantum discord is independent of the time. This indicates that the initial discord of the X-type states under present consideration does not change in the time evolution before t_c. Hence, the environment does not affect the quantum discord in this time evolution regime. In other words, the quantum discord is decoherence free for such X-type states with the three state parameters $c_1 = 1$ and $0 < -c_2 = c_3 = c < 1$ in the time evolution before t_c. From equation (50) we can see that the smaller the value of the state parameter c, the longer the discord remains unchanged. Therefore, a small value of the state parameter c may permit us to extend the time of usefulness of the quantum discord.

5. Concluding remarks

In conclusion, we have studied the quantum discord dynamics of two uncoupled qubits immersed in a common heat bath. This system is depicted by an exactly solvable phase decoherence model. We have shown that the quantum discord of two non-interacting qubits can be amplified or protected for certain initially prepared X-type states in the time evolution. In particular, it has been found that stable amplification of the quantum discord exists for certain X-type states when the two qubits are identical, and the quantum discord can be protected for the case of two different qubits with a large detuning. However, stable amplification cannot be created when the two qubits are not identical for the same X-type states. The degree of the discord amplification decreases with the increase of the detuning between the two qubits. The amplification and protection of the quantum discord can be understood as quantum effects induced by the environment since the two qubits interact neither directly nor with a third system, but with the common reservoir with infinitely many degrees of freedom. Both of them are decoherence free. The stable amplification (protection) of the quantum discord can also be considered as a resonant (large-detuning) effect of the two qubits interacting with the common reservoir.

It has been indicated that in general a sudden change of the quantum discord occurs for two qubits in the time evolution at a critical time point t_c, and discord amplification and protection may occur only in the time interval $0 < t \leq t_c$ for certain X-type states. Generally, t_c depends on the initial-state parameters, characteristic parameters of the two qubits and their environment, and the qubit–reservoir interaction. The quantum discord will decay asymptotically to zero after t_c. The creation of stable amplification and protection of quantum discord for two qubits in a heat bath sheds new light on the production of quantum states with long-lived quantum discord.

Acknowledgments

This work was supported by the National Fundamental Research Program of China under grant no 2007CB925204, the National Natural Science Foundation of China under grant no 10775048, the Program for Changjiang Scholars and Innovative Research Team in University under grant no IRT0964 and the Research Fund of Hunan Provincial Education Department grant no 08W012. JBY thanks Qiong Wang, Qing-Shou Tan, Mi Jiang and Yu-Xia Shu for useful discussions.

References

[1] Schumacher B and Westmorel M D 2006 Phys. Rev. A 74 042305
[2] Groisman B, Popescu S and Winter A 2005 Phys. Rev. A 72 032317
[3] Henderson L and Vedral V 2001 J. Phys. A: Math. Gen. 34 6889
[4] Vedral V 2003 Phys. Rev. Lett. 90 050401
[5] Oppenheim J, Horodecki M, Horodecki P and Horodecki R 2002 Phys. Rev. Lett. 89 180402
[6] Yang D, Horodecki M and Wang Z D 2008 Phys. Rev. Lett. 101 140501
[7] Zhou D L 2008 Phys. Rev. Lett. 101 180505
[8] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[9] Kaszlikowski D, Sen(De) A, Sen U, Vedral V and Winter A 2008 Phys. Rev. Lett. 101 070502
[10] Piani M, Horodecki P and Horodecki R 2008 Phys. Rev. Lett. 100 090502
[11] Piani M, Christandl M, Mora C E and Horodecki P 2009 Phys. Rev. Lett. 102 250503
[12] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
[13] Lanyon B P, Barbieri M, Almeida M P and White A G 2008 Phys. Rev. Lett. 101 200501
[14] Knill E and Laflamme R 1998 Phys. Rev. Lett. 81 5672
[15] Dellenschnieder R 2008 Phys. Rev. B 78 224413
[16] Sarandy M S 2009 Phys. Rev. A 80 022108
[17] Cui J and Fan H 2010 J. Phys. A: Math. Theor. 43 045305
[18] Rodriguez-Rosario C A, Modi K, Kuah A, Shaji A and Sudarshan E C G 2008 J. Phys. A: Math. Theor. 41 205301
[19] Shabani A and Lidar D A 2009 Phys. Rev. Lett. 102 100402
[20] Werlang T and Rigolin G 2010 Phys. Rev. A 81 044101
[21] Wang Q, Liao J Q and Zeng H S 2010 Chin. Phys. B at press
[22] Chen Y X and Yin Z 2010 arXiv:quant-ph/1002.0176
[23] Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
[24] Luo S 2008 Phys. Rev. A 77 042303
[25] Lu X M, Xi Z J, Sun Z and Wang X G 2010 arXiv:quant-ph/1004.5281
[26] Werlang T, Souza S, Fanchini F F and Villas Boas C J 2009 Phys. Rev. A 80 042103
[27] Maziero J, Céleri L C, Serra R M and Vedral V 2009 Phys. Rev. A 80 044102
[28] Wang B, Xu Z Y, Chen Z Q and Feng M 2010 Phys. Rev. A 81 041401
[29] Fanchini F F, Werlang T, Brasil C A, Arruda L G E and Caldeira A O 2010 Phys. Rev. A 81 052107
[30] Maziero J, Werlang T, Fanchini F F, Céleri L C and Serra R M 2010 Phys. Rev. A 81 022116
[31] Mazzola L, Piilo J and Maniscalco S 2010 Phys. Rev. Lett. 104 200401
[32] Fanchini F F, Castelano L K and Caldeira A O 2010 arXiv:quant-ph/0912.1468
[33] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[34] Yu T and Eberly J H 2009 Science 323 598
[35] Czyzewska K, Horodecki P, Horodecki M and Horodecki R 2001 Phys. Rev. A 65 012101
[36] Bellomo B, Franco R L and Compagno G 2007 Phys. Rev. Lett. 99 160502
[37] Laurat J, Choi K S, Deng H, Chou C W and Kimble H J 2007 Phys. Rev. Lett. 99 180504

J. Phys. B: At. Mol. Opt. Phys. 43 (2010) 165503
J-B Yuan et al
Reference	Year	Journal	Volume	Page
[32] López C E, Romero G, Lastra F, Solano E and Retamal J C	2008	Phys. Rev. Lett.	101	080503
[33] Al-Qasimi A and James D F V	2008	Phys. Rev. A	77	012117
[34] Maniscalco S, Francica F, Zaffino R L, LoGullo N L and Plastina F	2008	Phys. Rev. Lett.	100	090503
[35] Ferraro A, Aolita L, Cavalcanti D, Cucchietti F M and Acln A	2010	arXiv:quant-ph/0908.3157v3		
[36] Caldeira A O and Leggett A J	1983	Ann. Phys., NY	149	374
[37] Kuang L M, Zeng H S and Tong Z Y	1999	Phys. Rev. A	60	3815
Kuang L M, Tong Z Y, Ouyang Z W and Zeng H S	1999	Phys. Rev. A	61	013608
[38] Chakravarty S and Leggett A J	1984	Phys. Rev. Lett.	52	5
Legett A J, Chakravarty S, Dorsey A T, Fisher M P A, Garg A and Zwerger W	1987	Rev. Mod. Phys.	59	1