The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer
Gisella Figlioli, Massimo Bogliolo, Irene Catucci, Laura Caleca, Sandra Viz Lasheras, Roser Pujol, Johanna Kiiski, Taru Muranen, Daniel Barnes, Joe Dennis, et al.

To cite this version:
Gisella Figlioli, Massimo Bogliolo, Irene Catucci, Laura Caleca, Sandra Viz Lasheras, et al.. The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer. npj Breast Cancer, 2019, 5 (1), 10.1038/s41523-019-0127-5. hal-02463255

HAL Id: hal-02463255
https://amu.hal.science/hal-02463255
Submitted on 7 Jun 2023
The **FANCM**:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer

Gisella Figlioli et al.

Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes **BRCA1**, **BRCA2**, **PALB2**, **ATM**, and **CHEK2** are associated with breast cancer risk. **FANCM**, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants **FANCM**:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of **BRCA1** or **BRCA2**. These three variants were also studied functionally by measuring survival and chromosome fragility in **FANCM**⁻/⁻ patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that **FANCM**:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, \(P = 0.034 \) and OR = 3.79; \(P = 0.009 \), respectively). In a country-restricted analysis, we confirmed the associations detected for **FANCM**:p.Arg658* and found that also **FANCM**:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; \(P = 0.006 \)). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with **FANCM**:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare **FANCM** deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat **FANCM**-associated tumors.

npj Breast Cancer (2019)5:38; https://doi.org/10.1038/s41523-019-0127-5

INTRODUCTION

The genetic architecture of inherited breast cancer is complex and involves germline pathogenic variants in high and moderate-risk genes and polygenic factors. The major high-penetrance breast cancer risk genes include **BRCA1**, **BRCA2**, **PALB2**, **ATM**, and **CHEK2**. The genetic variants predisposing to different human cancers (e.g., breast, colon, lung, ovary, endometrium and prostate cancers). Recently, based on a prospective cohort of families carrying **BRCA1** or **BRCA2** pathogenic variants, the average cumulative risk by age 80 was estimated to be 72% and 69% for carriers of **BRCA1** and **BRCA2** pathogenic variants, respectively.

PALB2 has been previously considered a moderate-risk gene, but the latest estimate of about 44% lifetime risk associated with pathogenic variants may raise this gene to the high-risk group. Pathogenic variants in moderate-penetrance genes **ATM** and **CHEK2** are also associated with breast cancer, conferring a 20% average lifetime risk. Recently, **BARD1**, **RADS1D**, **BRI1P1**, and **RADS1C** have been proposed as risk factors for triple-negative breast cancer (TNBC) with **BARD1** and **RADS1D** conferring high risk, and **BRI1P1** and **RADS1C** associated with moderate risk. Thus, the risk associated with pathogenic variants in each gene may vary by breast tumor subtype.

Many of the **BRCA1**/**FA** pathway genes when altered by biallelic mutations cause FA disease. The **FANCM** gene (FA complementation group M, OMIM #609644) encodes for a translocase, which is a member of the **BRCA1**/**FA** molecular pathway but has been recently disqualified as a disease-causing factor for FA. Some protein-truncating variants in the **FANCM** gene were described as moderate breast cancer risk factors with a greater risk of TNBC. In the Finnish population, **FANCM**:c.5101 C > T (p.Gln1701*, rs147021911) is relatively frequent and was reported to be associated with breast cancer with odds ratio (OR) of 1.86 with 95% confidence intervals (CIs) = 1.26–2.75. A larger effect was observed in familial cases (OR = 2.11; 95% CI = 1.43–3.32), for estrogen receptor-negative (ER-negative) breast cancer (OR = 2.37; 95% CI = 1.37–4.12) and for TNBC (OR = 3.56; 95% CI = 1.81–6.98). We showed an increased risk (OR = 3.93; 95% CI = 1.28–12.11) of the **FANCM**:c.5791 C > T (rs144567652) truncating variant using familial cases and controls. In vitro analysis showed that this variant causes the skipping of the **FANCM** exon 22 and the creation of a downstream stop codon (p.Gly1906Alafs12*).

However, in the present study we refer to the **FANCM**:c.5791 C > T base change as to **FANCM**:p.Arg1931*, which is the conventional amino acid annotation (consistent with the stop codon creation according to genetic code). The **FANCM**:p.Arg1931* was also found to be associated with TNBC risk in the Finnish population (OR = 5.14; 95% CI = 1.65–16.0). A burden analysis of truncating variants discovered by a re-sequencing analysis of the entire **FANCM** coding region in German cases and controls confirmed that **FANCM** pathogenic variants had a particularly high risk for TNBC (OR = 3.75; 95% CI = 1.0–12.85).

To study the effect of **FANCM** on breast cancer risk further, we tested three recurrent truncating variants **FANCM**:p.Arg658*, p.Gln1701*, and p.Arg1931*, within the OncoArray Consortium, a collaboration of consortia established to discover germline genetic variants predisposing to different human cancers (e.g., breast, colon, lung, ovary, endometrium and prostate cancers). These three variants were tested for association with breast cancer risk in 67,112 breast cancer cases, 53,766 controls, and 26,662 carriers of pathogenic variants in **BRCA1** or **BRCA2**. We also studied the functional effect of these three variants after their lentiviral transduction into a **FANCM**⁻/⁻ patient-derived cell line in which

email: paolo.peterlongo@ifom.eu. A full list of authors and their affiliations appears at the end of the paper.
we measured survival and chromosome fragility after exposure to diepoxybutane (DEB) or the poly (ADP-ribose) polymerase inhibitor (PARPi) olaparib.

RESULTS
Case-control analyses
We analyzed the association of three FANCM truncating variants, p.Arg658*, p.Gln1701*, and p.Arg1931*, with breast cancer risk for each variant separately and using a burden analysis. We tested 67,112 invasive breast cancer cases and 53,766 controls collected by the Breast Cancer Association Consortium (BCAC, http://bcac.ccge.medschl.cam.ac.uk/) and 26,662 carriers of BRCA1 or BRCA2 pathogenic variants collected by the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA, http://cimba.ccge.medschl.cam.ac.uk/), of whom 13,497 were affected with breast cancer and 13,165 were unaffected.

In the BCAC dataset we assessed the breast cancer risk associated with the FANCM variation as a primary overall analysis and in a restricted analysis including only countries in which the variant carrier frequencies were higher than the median of the frequencies. In these analyses we tested association with the variants in all available invasive breast cancer cases or in the ER-positive, ER-negative and TNBC subgroups (Table 1). In the overall analysis, no evidence of association was observed, either with the presence of any FANCM variant or with any of the three variants individually. However, FANCM:p.Arg658* showed a higher heterozygote frequency in ER-negative breast cancer cases (0.093%) than in controls (0.035%) with a greater than two-fold increased breast cancer risk (OR = 2.44, 95% CI = 1.12–5.34, P = 0.034). When only TNBC cases were considered, the association was stronger (OR = 3.79, 95% CI = 1.56–9.18, P = 0.009). No association with ER-negative breast cancer or TNBC was seen for p.Gln1701* or p.Arg1931*.

Analyses of carriers of BRCA1 or BRCA2 pathogenic variants
We found no evidence of associations for FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* truncating variants with breast cancer risk in carriers of BRCA1 or BRCA2 pathogenic variants included in CIMBA (Supplementary Table 1). The p.Arg658* was detected with approximately four-fold higher frequencies in the BRCA1 affected individuals (0.063%) in comparison to the unaffected (0.013%), and in the BRCA2 affected individuals (0.071%) in comparison to the unaffected (0.019%). Consistently, hazard ratios (HRs) above two were estimated for BRCA1 (HR = 2.4, 95% CI = 0.52–11.12) and for BRCA2 (HR = 2.13, 95% CI = 0.41–11.14) pathogenic variant carriers. The frequencies of p.Gln1701* and p.Arg1931* were not increased in affected versus unaffected individuals carrying BRCA1 or BRCA2 pathogenic variants (Supplementary Table 1).

Functional studies
We tested the functional effect of FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* on DNA repair using genetic complementation assays (Fig. 1). These assays were based on the EGF280 cell line derived from immortalized fibroblasts from a patient who lacked the FANCM protein due to a homozygous c.1506_1507insTA (p. Ile503*, rs764743944) truncating variant. Complemented FANCM–/– cells were tested for sensitivity to DEB and olaparib.

Table 1. Single-variant and burden analyses of FANCM:p.Arg658*, p. Gln1701* and p.Arg1931* truncating variants in overall and country-restricted invasive breast cancer cases and controls

Overall	Subgroup	Carriers	Non-carriers	Freq %	OR 95% CI	P
FANCM:p.Arg658*	Controls	19	53,717	0.035	NA	
All cases	31	67,038	0.046	1.26	0.71–2.25	0.430
ER-positive	19	44,516	0.043	1.15	0.61–2.20	0.670
ER-negative	10	10,750	0.093	2.44	1.12–5.34	0.034
TNBC	7	4794	0.146	3.79	1.56–9.18	0.009
FANCM:p.Gln1701*	Controls	122	53,635	0.229	NA	
All cases	116	66,968	0.232	1.09	0.85–1.38	0.798
ER-positive	74	44,467	0.218	1.02	0.78–1.34	0.893
ER-negative	27	10,742	0.204	0.97	0.61–1.56	0.369
TNBC	10	4795	0.208	1.29	0.67–2.50	0.461
All variants	237	53,455	0.443	NA		
Controls	302	66,736	0.452	1.02	0.86–1.21	0.823
ER-positive	190	44,323	0.427	0.96	0.79–1.16	0.698
ER-negative	58	10,700	0.548	1.23	0.92–1.64	0.154
TNBC	27	4773	0.583	1.32	0.89–1.95	0.167

Country-restricted

Overall	Subgroup	Carriers	Non-carriers	Freq %	OR 95% CI	P
FANCM:p.Arg658*	Controls	19	48,887	0.039	NA	
All cases	31	59,540	0.052	1.23	0.69–2.20	0.478
ER-positive	19	39,453	0.048	1.12	0.59–2.15	0.722
ER-negative	10	9613	0.104	2.31	1.05–5.07	0.047
TNBC	7	4283	0.163	3.56	1.46–8.69	0.011
FANCM:p.Gln1701*	Controls	120	48,506	0.249	NA	
All cases	152	58,919	0.259	1.08	0.85–1.38	0.813
ER-positive	96	38,892	0.246	1.02	0.77–1.34	0.895
ER-negative	21	9558	0.230	0.97	0.60–1.56	0.368
TNBC	10	4197	0.261	1.09	0.56–2.10	0.150
FANCM:p.Arg1931*	Controls	77	34,988	0.220	NA	
All cases	93	37,903	0.245	1.14	0.84–1.54	0.396
ER-positive	59	25,274	0.233	1.09	0.77–1.53	0.632
ER-negative	25	5920	0.421	1.96	1.24–3.10	0.006
TNBC	10	2614	0.381	1.77	0.91–3.45	0.116

Controls NA | All cases NA | ER-positive NA
by measuring cell survival and chromosome fragility. The FANCM protein was not detectable in the EGF280 fibroblasts. The transduction of these cells with lentiviral vectors carrying wild-type (wt) FANCM cDNA and cDNAs harboring FANCM:p.Gln1701* and p.Arg1931* variants produced, as expected, different C-terminal truncated forms of FANCM. In the EGF280 cells transduced with FANCM:p.Arg658* no visible band was observed on western blot (Fig. 1a and Supplementary Fig. 1). As we lack information on the epitope recognized by the antibody, we could not determine whether the p.Arg658*-derived truncated protein was unstable or if the epitope was lost due to the truncation. We therefore analyzed the mRNA expression of FANCM:p.Arg658* by reverse transcription and digestion of the PCR-amplified cDNAs. The c.1972C>T base substitution causing the p.Arg658* variant was expected to abolish a digestion site for the restriction enzyme TseI present in the wt sequence. TseI-digestion of wt and mutated cDNAs clearly indicated the presence of a mutated mRNA product in the EGF280 cells transduced with FANCM:p.Arg658* (Fig. 1b and Supplementary Fig. 1).

In the DEB sensitivity-based assay (Fig. 1c), the EGF280 patient-derived cell line showed a high-sensitivity phenotype, that was rescued by expression of the wt FANCM. EGF280 cells expressing FANCM:p.Arg658* failed to rescue DEB sensitivity and showed survival rates overlapping with those of the native EGF280 cells. In comparison, cells expressing FANCM:p.Gln1701* and p.Arg1931* variants showed an intermediate phenotype with survival rates significantly higher than those of EGF280 cells, though significantly lower than those of the cells expressing wt FANCM (Fig. 1c and Supplementary Table 2). These results were confirmed in the chromosome fragility tests where the number of chromatid breaks in cells harboring p.Gln1701* or p.Arg1931* variants was statistically lower than that of EGF280 cells or cells expressing the p.Arg658* and statistically higher than that of cells expressing wt FANCM (Fig. 1d). In the olaparib sensitivity-based assay, the survival rates of the cell lines transduced with the three FANCM truncating variants were not statistically different. Only at higher olaparib concentrations (>5000 nM) the survival rates of these cell lines were significantly lower than that of the wt FANCM cells and higher than that of the EGF280 cells (Fig. 1e and Supplementary Table 3).

DISCUSSION

In this study we investigated the association of the three recurrent FANCM truncating variants p.Arg658*, p.Gln1701*, and p.Arg1931*, with breast cancer risk overall and by tumor subtype. While in non-Finnish Europeans these are the three most common FANCM truncating variants, their carrier frequency is low being 0.033, 0.21 and 0.21%, respectively (https://gnomad.broadinstitute.org/). We conducted large case-control studies in 67,112 unselected breast cancer cases, 53,766 controls, and 26,662 carriers of BRCA1 or BRCA2 pathogenic variants. Furthermore, we performed functional analyses based on a patient-derived FANCM−/− cell line transduced with vectors carrying the three FANCM variants and tested for sensitivity to DEB or olaparib. Our genetic data suggest that FANCM:p.Arg658* is a risk factor for ER-negative and TNBC subtypes with statistically significant ORs of 2.44 and 3.79, respectively. These associations were confirmed when we restricted the analyses to countries with higher carrier frequencies. In these restricted analyses we also found that the p.Arg1931* was associated with breast cancer risk in the ER-negative subtype with statistically significant OR = 1.96. (Table 1). These data, together with previously published genetic studies,10–13 confirm that FANCM truncating variants are risk factors for breast cancer, with a stronger association for the ER-negative and TNBC subtypes. Our functional data, obtained in a background of a FANCM null cell line, support these findings showing that all three truncating variants were deleterious; hence, it is expected that, in the heterozygous state, any of these FANCM variants have partial activity. In the functional tests, we also observed that olaparib had a greater effect on survival of the cells harboring any of the FANCM:p.Arg658*, p.Gln1701*, or p.Arg1931* variants with respect to that on EGF280 cells complemented with wt FANCM (Fig. 1e). As this is consistent with previous results,16 PARP1 inhibition might be a possible therapeutic approach to treat patients with breast tumors associated with germline FANCM pathogenic variants. On the contrary, the DEB sensitivity assays showed that FANCM:p.Arg658*, is associated with a stronger impairment of DNA repair activity, compared to p.Gln1701* and p.Arg1931*, possibly reflecting the position of protein truncation (Fig. 1c, d).

FANCM encodes for a key protein of the upstream FA/BRC-A pathway mediating the assembly of the FA core complex. This protein is 2048 AA long, possesses in its N-terminal region an intrinsic ATP-dependent DNA translocase activity and, with its central region, recognizes the Bloom’s complex, which is also involved in the DNA HR repair. By interacting with its C-terminal binding partner, the FA associated protein 24 (FAAP24), the FANCM protein brings to sites of ICL DNA lesions the FA and the binding partner, the FA associated protein 24 (FAAP24), the central region, recognizes the Bloom’s complex, 17 which is involved in the DNA HR repair. By interacting with its C-terminal binding partner, the FA associated protein 24 (FAAP24), the FANCM protein brings to sites of ICL DNA lesions the FA and the binding partner, the FA associated protein 24 (FAAP24), the central region, recognizes the Bloom’s complex, which is also involved in the DNA HR repair. By interacting with its C-terminal binding partner, the FA associated protein 24 (FAAP24), the FANCM protein brings to sites of ICL DNA lesions the FA and the binding partner, the FA associated protein 24 (FAAP24), the central region, recognizes the Bloom’s complex, which is also involved in the DNA HR repair. The p.Gln1701* and p.Arg1931* forms were expressed and that the p.Arg658*-mRNA is transcribed (Fig. 1b, b). An N-terminus fragment including the first 422 AA of FANCM was shown to be stable when expressed in human cell lines,17 thus supporting the possibility that the FANCM:p.Arg658* derived protein may also be expressed and stable. Hence, we hypothesize that the observed difference in survival and chromosome fragility of cells treated with DEB may be attributable to the diverse residual function of the different truncated forms of FANCM. In fact, the p.Gln1701* and p.Arg1931* derived forms are expected to lose the interaction with FAAP24, but to retain the ability of binding other FANCM interacting proteins. Hence, our data suggest that the lack of interaction between FANCM and FAAP24 has a less severe impact on the DNA damage response than when protein truncation occurs upstream the FANCM domains AA 687–1104 and AA 1027–1362 mediating the interaction with the FA core complex and the Bloom’s complex, respectively.

Previously published genetic and clinical data support our hypothesis of a position effect. FANCM pathogenic variants were shown to be associated with a moderate risk of developing high-grade serous epithelial ovarian cancer, but p.Arg1931* appeared to confer a lower risk.18 Moreover, five female breast cancer

Table 1 continued

Subgroup	Country-restricted	Carriers	Non-carriers	Freq % OR 95% CI P
ER-negative	NA			
TNBC	NA			

In bold are indicated the statistically significant results. Freq frequency, OR odds ratio CI confidence interval, P P-value, TNBC triple-negative breast cancer, NA not applicable.

*The burden analyses were performed by univariate logistic regression.

**These analyses were not possible in the country-restricted cases and controls as different countries were included for each variant. P-values were from Pearson chi-squared test.
Fig. 1 Functional studies of the FANCM:p.Arg658*, p.Gln1701* and p.Arg1931* truncating variants using the patient-derived FANCM−/− EGF280 cell line.

a Western blot showing the FANCM expression in EGF280 cells complemented with lentiviral vectors harboring the three different variants. Bands corresponding to truncated FANCM protein were visible for EGF280+p.Gln1701* and p.Arg1931*, and no bands were present for the EGF280+p.Arg658*.

b Study of the expression of the FANCM protein in EGF280+p.Arg658*. The c.1972C > T base substitution, causing the p.Arg658* variant abrogates a digestion site for the restriction enzyme TseI that is present in the wild-type (wt) cDNA sequence. Total RNA was extracted from EGF280+wtFANCM and from the EGF280+p.Arg658* and subjected to reverse transcription. PCR-amplified cDNA products were digested with TseI. Digested and undigested cDNAs were loaded. In the first two lanes are shown bands of 386 bp corresponding to uncut wt cDNA, and bands of 257 and 129 bp corresponding to cut wt cDNA. In next two lanes bands of 386 bp indicate that p.Arg658* cDNA was not cut due to the c.1972C > T base substitution abrogating the TseI site. In the two lanes after the molecular weight marker (M) undigested and digested cDNAs were loaded. In the two lanes after the molecular weight marker (M) undigested and digested cDNAs were loaded. In the two lanes after the molecular weight marker (M) undigested and digested cDNAs were loaded.

c Analysis of diepoxybutane (DEB) sensitivity on cell survival. The EGF280 cells expressing p.Arg658* are significantly more sensitive to DEB than the cells expressing p.Gln1701* or p.Arg1931* (P-values from Tukey’s range test are reported in Supplementary Table 4). EGF280 and EGF280+wtFANCM are used as controls (N = 3; error bars: standard deviation).

d Chromatidic break patterns of the cells expressing wt FANCM, of the cells harboring p.Gln1701* or p.Arg1931* variants, and of the native EGF280 cells or the cells expressing p.Arg658* were statistically different. (P-values from chi-squared test; N = 2).

e Analysis of cellular sensitivity to olaparib. Contrarily to what we observed in the DEB sensitivity assays, survival rates of the different complemented cell lines were apparently not different. Human fibroblasts (BRCA2−/−) were homozygous for the c.469 A > T (p.Lys157*) truncating variant and were used as a positive control. (P-values from Tukey’s range test are reported in Supplementary Table 5; N = 3; error bars: standard deviation). All blots derive from the same experiment and were processed in parallel.
METHODS

Study participants

The individuals included in this study were women of genetically confirmed European ancestry who were originally ascertained in 73 case-control studies from 19 countries participating in the BCAC or in 59 studies enrolling BRCA1 or BRCA2 pathogenic variants carrier from 30 countries participating in the CIMBA.

Ethics

All participating studies, listed in Supplementary Table 4 and Supplementary Table 5, were approved by their ethics review boards and followed national guidelines for informed consent. However, due to the retrospective nature of the majority of the studies, not all participant individuals have provided written informed consent to take part in the present analysis. The Milan Breast Cancer Study Group (MBCSG) was approved by ethics committee from Istituto Nazionale dei Tumori di Milano and Istituto Europeo di Oncologia, in Milan.

The BCAC studies contributed 67,112 invasive breast cancer cases and 53,766 controls. The majority of these studies were population-based, hospital-based or case-control studies nested within population-based cohorts (86%); few were family-clinic-based studies (14%; Supplementary Table 4). For each study subject, information on the disease status and the age at diagnosis or at interview were provided. Data on lifestyle risk factors were available for most studies and clinical and pathological data were available for most cases. All these data were incorporated in the BCAC dataset (version 10). A total of 44,565 (66%) cases were ER-positive, 10,770 (16%) were ER-negative, and 4,805 (7%) were TNBC; 13,743 (20%) had a first-degree family history of breast cancer.

The CIMBA studies contributed 15,679 carriers of a pathogenic BRCA1 variant and 10,983 carriers of a pathogenic BRCA2 variant to this analysis (Supplementary Table 5). Nearly all (98%) of these carriers were ascertained through cancer genetic clinics; few carriers were recruited by population-based sampling of cases or by community recruitment. In some instances, multiple members of the same family were included. For each pathogenic variant carrier, the information on the type of the BRCA1 or BRCA2 variant, disease status, and censoring variables (see below, Statistical analyses) were collected and included in the CIMBA database.

Genotyping

Genotyping of FANCMp.Arg658*, p.Gln1701*, and p.Arg1931* truncating variants was conducted using a custom-designed Illumina genotyping array (the “OncoArray”), Illumina, Inc. San Diego, CA, USA at six independent laboratories. To ensure consistency of the genotype data, all laboratories used the same genotype-clustering file and genotyped the same set of reference-samples selected from the HapMap project. Samples with a call rate <95% and those with heterozygosity <5% or >40% were excluded. Further details of the genotype-calling and quality control have been described previously. The cluster plots of the three FANCM truncating variants were curated manually to confirm the automatic calls (Supplementary Fig. 2).

Statistical analyses

The BCAC data were analyzed to test the association between FANCMp.Arg658*, p.Gln1701*, and p.Arg1931* and breast cancer risk. Logistic regression analyses were performed to estimate ORs with 95% CIs for variant carriers versus non-carriers, adjusting for country and the first ten principal components, as previously described. P-values were calculated by applying the likelihood ratio test (LRT) comparing the model containing the variant carrier status as a covariate to a model without the variant carrier status. The primary analyses were performed including all invasive breast cancer cases and controls and subgrouping cases based on tumor hormonal status. We then performed a country-restricted analysis.
including the 50% of the countries with the higher variant carrier frequencies. Specifically, we included only countries in which the carrier frequencies in cases and controls combined were higher than the median of the carrier frequencies observed in all countries. Median frequencies were 0.007, 0.114 and 0.163 for p.Arg658*, p.Gln1701* and p.Arg1931* carriers, respectively.

The CIMBA data were analyzed to evaluate the association between each FANCM truncating variant and breast cancer risk in carriers of BRCA1 or BRCA2 pathogenic variant. A survival analyses framework was applied. Briefly, each variant carrier was followed from the age of 18 years until the first breast cancer diagnosis, or censored as unaffected at ovarian cancer diagnosis, bilateral prophylactic mastectomy, or age at last follow-up. The analyses were performed by modelling the retrospective likelihood of the observed genotypes conditional on the disease phenotype as detailed previously. All analyses were stratified for country. The per-allele hazard ratio (HR), 95% CIs were estimated separately for each variant. A score test was used to derive P-values for the associations. The analyses of the BCAC data were performed using STATA version 15 (StataCorp LLC, College Station, Texas, USA). The analyses of the CIMBA data were carried out using custom-written code in Python and Fortran. All statistical tests were two-sided and P-values <0.05 were considered statistically significant.

Cell lines, plasmids, and lentiviral particles production and transduction

The immortalized patient-derived FANCM−/− cell line EGF280 was transduced with pLenti CMV rtTA3 Blast, a gift from E. Campeau (Addgene plasmid #26429). The doxyxycycline-inducible lentiviral vector pLVX-3TRE3-G-FANCM, a gift from N. Ameziane (Vrije Universiteit Medical Center, Amsterdam) was mutated by site-directed mutagenesis using the QuickChange II XL Site-Directed Mutagenesis Kit (Agilent Technologies) and the following PAGE purified mutagenic primers. FANCM c.1972C>T primer 1: 5′-GCTTCTCGGAACTTGAGAAGTCTCATCTTCTCC-3′ and primer 2: 5′-GGGAAATGATGACCTTCACTGGAAGTCCAGAACG-3′ for the p.Arg658*; FANCM c.5101C>T primer 1: 5′-TAAACATGTCGC-TATGTGCTTCCTTTAAGCGTCTCTGTTG-3′ and primer 2: 5′-ACCCAAAGCAGTTGAAAGAACCAACAGGACCACCTGTTAAA-3′ for the p.Gln1701*.

Generation of the lentiviral vector containing the FANCMc.5791C>T (p.Arg1931*) and transduction of the EGF280 cells were already described. Expression of exogenous FANCM protein was achieved supplementing cell culture medium with doxycycline (1 μg/ml, final concentration). All the cell lines used in this study were routinely checked for mycoplasma contamination using the MycoAlert™ Mycoplasma Detection Kit (Lonza).

Western blot and mRNA expression studies

Cell lysis and western blot assays were performed as previously described.8 The following primary antibodies were used: mouse monoclonal anti-FANCM primary antibody, clone C2V1 diluted 1:100 (ref. MABC45, MERCK Millipore), mouse monoclonal anti-Vinculin diluted 1:3000 (ref: ab18058, abcam). Western blotting detection was achieved with LuminataTM (Millipore), mouse monoclonal anti-Vinculin (clone CV5.1 diluted 1:100 (ref: MABC545, MERCK Millipore), mouse monoclonal anti-Vinculin diluted 1:3000 (ref: ab18058, abcam). Western blot and mRNA expression studies

Cell survival assay

The effect of the different FANCM variants on cell survival was measured with a Sulforhodamine B (SRB) assay.5 One-thousand cells were seeded in 96-well plates and treated constantly with DEB or PARPi olaparib at the indicated concentrations until untreated cells reached confluency. Cell monolayers were fixed overnight at 4 °C with 75 μl of 20% trichloroacetic acid (TCA). TCA was aspirated, and cells washed with tap water. Once dried, 50 μl of SRB was added to the wells and plates were incubated on a shaker at room temperature for 30 min. The excess of SRB dye was removed by washing repeatedly with 1% acetic acid, the plates were dried for 20 min, and the protein-bound dye was dissolved in 10 mM Tris for OD determination at 492 nm using a microplate reader (Tecan Sunrise™).
Hannah Park at the University of California Irvine, and Fred Schumacher at Case Western Reserve University. DIETCOMPLYF thanks the patients, nurses and clinical staff involved in the study. The DietComplyF study was funded by the charity Against Breast Cancer (Registered Charity Number 1121258) and the NCRN. We thank the participants and the investigators of EPIC (European Prospective Investigation into Cancer and Nutrition). ESTHER thanks Hartwig Ziegler, Sonja Wolf, Volker Hermann, Christian Schulte-Voß, Katja Bibich, Sabine Pauschinger (Anstis) 26, 54–64 (2015).

14. Amos, C. I. et al. The OncoArray consortium: a network for understanding the genetic architecture of common cancers. Cancer Epidemiol. Biomark. Prev. 26, 126–135 (2017).

15. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

16. Stoopker, C. et al. DNA helicases FANCQ and DOXI1 are determinants of PARP inhibitor resistance and targeted DNA repair. Mol. Cancer Res. (Amst.) 26, 54–64 (2015).

17. Deans, A. J. & West, S. C. FANCQ connects the genome instability disorders Bloom’s Syndrome and Fanconi Anemia. Mol. Cell 36, 943–953 (2009).

18. Dicks, E. et al. Germline whole exome sequencing and large-scale replication identifies FANCQ as a likely high grade serous ovarian cancer susceptibility gene. Oncotarget 8, 50930–50940 (2017).

19. Michailidou, K. et al. Genome-wide association analysis identifies 65 new breast cancer risk loci. Nature 551, 92–94 (2017).

20. Antoniou, A. C. et al. RAD51 135G->C modifi-

21. Vichai, V. & Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 1, 1112–1116 (2006).

22. Figlioli, G. et al. Metadatas supporting data files of the related manuscript: The FANCMap.Arg658* truncating variant is associated with risk of triple-negative breast cancer. figshare. https://doi.org/10.6084/m9.figshare.8982299 (2019).
G. Figlioli et al.

Gerdes for the recruitment and genetic counseling of participants; Alicia Barroso, Rosario Alonso and Guillermo Pita; all the individuals and the researchers who took part in CONSIT TEAM (Consorzio Italiano Tumori Ereditari Alla Mammella), thanks in particular: Giulia Cagnoli, Roberta Villa, Irene Feroce, Mariarosaria Calvello, Riccardo Dolcetti, Giuseppe Giannini, Laura Papì, Gabriele Lorenzo Capone, Liliana Varesco, Viviana Gismondi, Maria Grazia Tiliberti, Daniela Furlan, Antonella Savarese, Aline Martayart, Stefania Tommasi, Brunella Pilato, Isabella Marchi, Elena Bandieri, Antonio Dolcetti, Giuseppe Giannini, Laura Papi, Gabriele Lorenzo Capone, Liliana Varesco, (Diana Torres, Ignacio Briceno, Fabian Gil), Genetic Modifiers of Cancer Risk in BRCA1/2 Mutation Carriers (GEMO) study is a study from the National Cancer Genetics Network UNICANCER Genetic Group, France. We wish to pay a tribute to Olga M. Sinilnikova, who with Dominique Stoppa-Lyonnet initiated and coordinated GEMO until she sadly passed away on the 30th June 2014. The team in Lyon (Olga Sinilnikova, Mélanie Léoné, Laure Barjhoux, Carole Verny-Pierre, Sylvie Mazoyer, Francesca Damila, Valérie Sorini) managed the GEMO samples until the biological resource centre was transferred to Paris in December 2015 (Nouar Mebiou, Fabienne Lesueur, Dominique Stoppa-Lyonnet). We want to thank all the GEMO coordinating groups for their contribution to this study. Drs.Sofia Khan, Ija Erkäll and Virpi Palola; The Hereditary Breast and Ovarian Cancer Research Group Netherlands (HEBON) consists of the following Collaborating Centers: Netherlands Cancer Institute, Amsterdam; N.L. M. Aarts, F.B.L. Hogervorst, F.E. van Leeuwen, M.A. Adank, M.K. Schmidt, N.S. Russell, D.J. Jenner; Erasmus Medical Center, Rotterdam, NL: J.M. Collée, A.M.W. van den Ouwelend, M.J. Hoening, C.M. Seynaeve, C.H.M. van Deurzen, I.M. Obdeijn; Leiden University Medical Center, NL: C.J.J. van Aerssen, P. Devielle, T.C.T.E.F. van Cronenborg; Radboud University Nijmegen Medical Center, NL: C.M. Kets, A.R. Mensenkamp; University Medical Center Utrecht, NL: M.G.E.M. Ausems, M.J. Koudijs; Amsterdam Medical Center, NL: C.M. Aafels, H.E.J. Meijers-Jieboier; VU University Medical Center, Amsterdam, NL: K. van Engelen, J.J. Gille; Maastricht University Medical Center, NL: E.B. Gómez-García, M.J. Blok; University of Groningen, NL: J.C. Oosterwijk, A.H. van der Hout, M.J. Mourits, G.H. de Bock; The Netherlands Comprehensive Cancer Organization (IKON); S. Siesling, J. Verloop; The nationwide network and registry of histo- and cytopathology in The Netherlands (PALGA); A.W. van den Belt-Dusebout. OncoArray is funded by the Dutch Cancer Society [grants NKI 2007-3838; 2009 4363]. The Australian Breast Cancer Tissue Bank (ABCST) was supported by the National Health and Medical Research Council of Australia, the New South Wales Cancer Council, the Victorian Health Promotion Foundation (Australia) and the Victorian Breast Cancer Research Consortium. J.H.U. is a National Health and Medical Research Council (NHMRC) Senior Principal Research Fellow. M.C.S. is a NHMRC Senior Research Fellow. The ABCS study was supported by the Dutch Cancer Society [grants NKI 2007-3838; 2009 4363]. The Australian Breast Cancer Tissue Bank (ABCST) was supported by the National Health and Medical Research Council of Australia, the Australian Institute of Bio-Trauma Prevention Unit of the University Hospital Vall d’Hebron (CP10/00617), and the Cellex Foundation for providing research facilities and equipment; the ICO Hereditary Cancer Program team led by Dr. Gabriel Capella; the Danish Cancer Institute, The Danish Breast Cancer Society, the Danish Health Authority, and The Danish Cancer Society. The ABCS study is financially supported by The Breast Cancer Family Registry (BCRF), nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government or the BCFR. BCINS study was funded by the BCRF (The Breast Cancer Research Foundation, USA). The Breast Oncology Galician Network (BREGAN) is funded by Acción Estratégica de Salud del Instituto de Salud Carlos III FIS P12/02125/Cofinanciado FEDER; Acción Estratégica de Salud del Instituto de Salud Carlos III FIS Intrasalud (PI13/01136); Programa Grupos Emergentes, Cancer Genetics Unit, Instituto de Investigación Biomédica Galicia Sur. Xerencia de Xestión Integra de Vigo-SERGAS, Instituto de Salud Carlos III, Spain; Grant 10CSA012E, Conselleria de Industria Programa Sectorial de Investigación Aplicada, PENE I + D e I + D Suma del Plan Gallego de Investigación, Desarrollo e Innovación, Xunta de Galicia, Spain; Grant EC11-192. Fomento de la Investigación Clínica Independiente, Ministerio de Sanidad, Servicios Sociales y Igualdad, Spain; and Grant FEDER-Interconecta. Ministerio de Economía y Competitividad, Xunta de Galicia, Spain. The BSUCH study was supported by the Dietmar-Hopp Foundation, the Helmholtz Society and the German Cancer Research Center (DKFZ). Sample collection and processing was funded in part by grants from the National Institutes of Health (CA20120 and K24CA169004). CBCS is funded by the Canadian Cancer Society (grant # 313404) and the Canadian Institutes of Health Research. CCGP is supported by funding from the University of Crete. The CECILE study was supported by Fondation de France, Institut National du Cancer (INCA), Ligue Nationale contre le Cancer, Agence Nationale de Sécurité Sanitaire, de l’Alimentation, de l’Environnement et du Travail (ANSES), Agence Nationale de la Recherche (ANR). The GPGS was supported by the Chief Physician Johan Boserup and Lise Boserup Fund, the Danish Medical Research Council, and Herlev and Gentofte Hospital. The American Cancer Society funds the creation, maintenance, and updating of the CPS-II cohort. The CTS was initially supported by the California Breast Cancer Act of 1993 and the California Breast Cancer Research Fund (contract 97-10500) and is currently funded through the California Institute of Health (R01 CA77398, K55 CA136967, U1M CA164917, and U01 CA199277). Cancer Education and Information project data was supported by the California Department of Public Health as part of the statewide cancer reporting program mandated by California Health and Safety Code Section 103885. The University of Westminster curates the DietCompLyf database funded by Against Breast Cancer Registered Charity No. 1121258 and the NCRI. The coordination of EPIC is financially supported by the European Commission (DG-SANCO) and the International Agency for Research on Cancer. The national cohorts are supported by: Ligue contre le Cancer; Fonds de la Recherche Scientifique de l’INCa; Institut National de la Santé et de la Recherche Médicale (INSERM) (France); German Cancer Aid, German Cancer Research Center (DKFZ), Federal Ministry of Education and Research (BMBF) (Germany); the Hellenic Health Foundation, the Stavros Niarchos

Published in partnership with the Breast Cancer Research Foundation
Cancer Research (ARC; IG2014 no.15547) to P. Radice. Funds from Italian citizens who allocated the 5 x 1000 share of their tax payment in support of the Fondazione IRCCS Istituto Nazionale Tumori, according to Italian laws (INT-Institutional strategic projects '5 x 1000') to S. Manoukian.

UNIROMA1: Italian Association for Cancer Research (ARC; grant no. 21389) to L. Ottini. DFKZ: German Cancer Research Center. EMBRACE: Cancer Research UK Grants CI287/AI0118 and CI287/11990. D. Gareth Evans and Fiona Lalloo are supported by an NHRF grant to the Biomedical Research Centre, Manchester (IS-BRC-1215-2007). The Investigators at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust are supported by an NHF grant to the Biomedical Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust. Ros Eeles and Elizabeth Bancroft are supported by Cancer Research UK Grant CS047/AS385. Ros Eeles is also supported by NHF support to the Biomedical Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust. Rs Eeles and Elizabeth Bancroft are supported by Cancer Research UK Grant CS047/AS385. Ros Eeles is also supported by NHF support to the Biomedical Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust. Ros Eeles and Elizabeth Bancroft are supported by Cancer Research UK Grant CS047/AS385. Ros Eeles is also supported by NHF support to the Biomedical Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust.

Author Contributions
G. F. and M. B. contributed equally to this work as first author. J. S. and P. P. contributed equally to this work as last author. Conceived the study: G. F., M. B., I. C., P. R., H. N., J. S., P. P. Wrote the manuscript: G. F., P. P. Contributed to manuscript writing: M. B., T. A., A. J., M. H. G., W. C. K., R. L. M., G. C. T., D. T., M. K. S., D. F. E., P. R., H. N. Conceived, designed, or obtained financial support for the OncoArray: P. K., J. S., D. F. E. A. Data management: D. J., J. D., K. M., M. K. B. G., A. L. M. D. L., Q. L. W., L. M., T. M. P. P., D. P. P., A. C. Statistical analyses: G. F., J. J. K., H. N. P. P. Functional analyses: M. B., L. C., S. V. L., J. P., P. J., J. D. T., M. A. T., T. T., N. T., M. U., C. M., J. S. C., K. B. M., C. C., A. C., T. A. C., D. G. C., C. C., K. M. B., D. M. B., D. M. D., P. D., V. C. D. G. S., D. N., S. M. D., C. M. D., I. D. S. S., K. D., M. D., D. M., A. B. E., A. H. E., C. E., M. E., D. G. E., P. A. F., J. F., J. F. W., D. F. F., T. M. F., E. M. F., G. M. O., M. G. D., C. M. G., S. M. G., J. M. G., J. A. S., M. M. G., S. A. G. G., G. G., A. K. G., M. D. G. E., P. G., G. U., A. G. B., L. H., C. A. H., N. H., P. H., U. A., H. P., A. H., J. H., P. H., A. H., J. L. H., H. D. H. I. I. H., A. H. O., C. H., P. J. H., D. H., E. N. I., J. N., C. W., A. W., X. R. Y., W. Z., A. Z., K. K. Z., A. M. O. A., S. M. O., J. E. O., H. O., A. O., L. O., B. P., A. P., J. P., D. P.-K., T. P., N. P., M. A. P., K. B., J. R., M. U. R., R. R. M., G. H. S., A. R., A. R., E. M., R. R., V. R., M. U., E. S., K. S., M. S., M. T. S., R. K. S., M. C. S., C. S. L., M. S. H., P. S., X. O.-S., J. S., C. F. S., C. S. O., P. S., M. C. S., J. S. L., D. S. L., W. J. T., M. R. T., M. B. T., M. T., J. T., D. L. T., M. T., R. A. E. M. T., D. T. M. A. T. T., N. T., M. U., C. M. V., E. J. V. R., E. M. V., A. V., A. V., B. W., J. N. W., C. W., G. W., A. W., X. R. Y., W. Z., A. K., K. Z., A. M. D., M. L., Q. L. W., L. M., T. M. P. P. P., P. F., A. E. T., L. A. I., S. J. R., A. J. S., M. H. G., W. C. K., R. L. M., G. C. T., D. T., M. K. S. D. E. F., P. R., E. H., A. C. A., F. J. H., N. H., P. P. All authors read and approved the final version of the manuscript.

Competing Interests
C. J. reports consulting with AstraZeneca and Pfizer and her institution receives research support for Tesaro, AstraZeneca, and Pfizer. B. Y. K. served on Invitae Corporation’s Advisory Board from 2017 to 2018. K. P. reports receiving fee to his institution, for lectures and/or participation in advisory board of AstraZeneca and Pfizer and travel support from AstraZeneca and Pfizer. Jordi Surrallés’ institution received research support from Rocket Pharmaceuticals. The remaining authors declare no competing interests.

Additional Information
Supplementary information is available for this article at https://doi.org/10.1038/s41523-019-0127-5.

Contact and requests for materials should be addressed to P. P.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in partnership with the Breast Cancer Research Foundation
Institution	Department	Location
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	University of Helsinki, Department of Clinical Genetics, Helsinki University Hospital, Helsinki, Finland.	1
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	Texas A&M University, College of Medicine, College Station, TX, USA.	2
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	University of California Irvine, Department of Epidemiology, Genetic Epidemiology Research Institute, Irvine, CA, USA.	3
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	University of California, Los Angeles (UCLA), David Geffen School of Medicine, Division of Hematology and Oncology, Los Angeles, CA, USA.	4
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	University of California, San Francisco (UCSF), Department of Surgery, San Francisco, CA, USA.	5
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	University of California, San Francisco (UCSF), Department of Medicine, San Francisco, CA, USA.	6
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	University of California, San Francisco (UCSF), Department of Epidemiology, San Francisco, CA, USA.	7
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	University of California, San Francisco (UCSF), Department of Public Health Sciences, San Francisco, CA, USA.	8
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	University of California, San Francisco (UCSF), Department of Medicine, San Francisco, CA, USA.	9
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	University of California, San Francisco (UCSF), Department of Medicine, San Francisco, CA, USA.	10
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	University of California, San Francisco (UCSF), Department of Medicine, San Francisco, CA, USA.	11
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	University of California, San Francisco (UCSF), Department of Medicine, San Francisco, CA, USA.	12
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	13
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	14
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	15
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	16
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	17
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	18
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	19
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	20
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	21
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	22
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	23
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	24
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	25
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	26
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	27
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	28
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	29
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	30
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	31
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	32
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	33
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	34
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	35
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	36
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	37
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	38
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	39
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	40
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	41
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	42
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	43
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	44
National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	National Institutes of Health, Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA.	45

G. Figlioli et al. 2019 National Cancer Institute (NCI) Breast Cancer Research Program (BCRP) 2019, published with the Breast Cancer Research Foundation.
