Relaxation and emittance growth of a thermal charged-particle beam

Tarcísio N. Teles, Renato Pakter, and Yan Levin
Instituto de Física, UFRGS, Caixa Postal 15051, CEP 91501-970 Porto Alegre, Rio Grande do Sul, Brazil

(Received 10 July 2009; accepted 6 October 2009; published online 26 October 2009)

We present a theory that allows us to accurately calculate the distribution functions and the emittance growth of a thermal charged-particle beam after it relaxes to equilibrium. The theory can be used to calculate the fraction of particles, which will evaporate from the beam to form a halo. The calculated emittance growth is found to be in excellent agreement with the simulations. © 2009 American Institute of Physics. [doi:10.1063/1.3254245]

The understanding of physics involved in the transport of high-intensity charged-particle beams is of fundamental importance in the development of a new generation of accelerators and electromagnetic wave generators to be used in applications such as heavy ion fusion, high-energy physics, communication, materials processing, and cancer therapy. A very detrimental effect that may seriously influence the efficiency of such devices is a halo formation and emittance growth of the beam. These not only cause degradation of the beam quality but may also be responsible for the activation of accelerator channel wall and pulse shortening in microwave devices. Emittance growth is generally associated with the relaxation of initially nonstationary beam toward a more stable stationary configuration. The emittance growth can be calculated if the final stationary distribution is known. However, the determination of this distribution is not an easy task because particles in an intense beam interact through long-range forces, which prevent the system from relaxing to the true thermodynamic equilibrium. Instead these systems get trapped in metastable states, the lifetime of which diverges with the number of particles. To understand the properties of these states, one cannot use the standard statistical mechanics, and new nonequilibrium theories must be developed.

In this letter, we will present a theoretical framework that will allow us to accurately calculate the density and the velocity distributions of particles in the final stationary state achieved by a space-charge dominated beam focused by a uniform external magnetic field. Our approach is based on the theory of violent relaxation in gravitational systems, modified so as to explicitly account for the effects of single particle resonances responsible for the halo formation. The theory is applicable to arbitrary initial conditions. In this letter we will show how the theory can be used to accurately calculate the density and the velocity distributions as well as to account for the emittance growth of a charged-particle beam launched with a thermal (Maxwell) velocity distribution. The predictions of the theory will be tested against the molecular dynamics simulations.

The physical system considered here is an intense charged-particle beam of perveance $K=2q^2N_b/\gamma_b^2e^2m$—where c is the speed of light in vacuo, and q, m, and $\gamma_b=\sqrt{1-(v/c)^2}$ are the charge, mass, and the relativistic factor of the beam particles, respectively—propagating with an axial velocity $v_\parallel \hat{e}_z$ through a magnetic focusing channel enclosed by a cylindrical conducting wall located at $r=r_m$. The external focusing magnetic field is given by $B=B_0\hat{e}_z$. It is convenient to work in the Larmor frame, which rotates with respect to the laboratory frame with angular velocity $\Omega_\alpha=qB_0/2\gamma_b v_-mc$, normalized to v_-. In the Larmor frame, the external magnetic field produces a parabolic confining potential $U(r)=\kappa_r r^2/2$, with the focusing field parameter $\kappa_r=\Omega_\alpha^2/r^2$. The effective electromagnetic scalar potential between the particles ψ incorporates both the self-electric and the self-magnetic fields, \mathbf{E}^\ast and \mathbf{B}^\ast. This potential satisfies the Poisson equation with the boundary condition $\psi(r_0)=0$,

$$\nabla^2\psi=-(2\pi K/N_b)n_b(r,s),$$

(1)

where N_b is the number of particles per unit axial length, r is the position vector in the transverse plane, and $n_b(r,s)=\int_{-\infty}^{\infty} f(r,v)\,dv$ is the transverse beam density profile, given in terms of the one particle distribution function $f(r,v,s)$. In the Larmor frame, the dynamics of the beam reduces to that of a two dimensional one component plasma with logarithmic interaction between the particles, confined by a parabolic potential $U(r)$. The axial coordinate $s=z=v_-t$ plays the role of time for this two dimensional system.

We will suppose that the initial (transverse) distribution of the beam is Gaussian in velocity space and is uniform in cross section,

$$f_0(r,v) = \frac{1}{2\pi^2 \sigma^2 \sigma^2_m} \theta(r_m-r) e^{-(\sigma^2/2\sigma^2)}$$

(2)

where σ^2 is the initial mean square transverse velocity and r_m is the beam radius. The quality of the beam is inversely proportional to the emittance, defined as $\varepsilon^2=4\langle r^2 \rangle/(v^2)$, for a stationary beam. For the distribution (2), the emittance is $\varepsilon_0^2=2\sigma r_m$.

It will be convenient to discretize Eq. (2) into a p-level distribution

$$f_p^n(r,v) = \sum_{j=1}^{p^n} \eta_j \rho^n_j(r,v),$$

(3)

where $\rho^n_j(r,v) = \Theta(|v-v_{j-1}|)\Theta(|v_j-v|)\Theta(r_m-r)$ and v_j and η_j are the maximum velocity and the amplitude of the level j, respectively, with $v_0=0$. For a perfect description of Eq. (2), an infinite number of levels ($p\to\infty$) in Eq. (3) will be necessary. In practice, however, we find that a small number of levels are already sufficient to provide a very accurate ap-
proximation for the beam dynamics. For a given value of \(p \), the optimal values of \(\eta \) and \(\nu \) can be obtained by minimizing the functional \(F = \int_0^\infty \int \frac{\rho_p^2}{2} d^3r d^3v \), with the constraints on the kinetic energy and normalization,

\[
\frac{\delta}{\delta \lambda_1} \left(\int \left(\frac{v^2}{2} \rho_p^2 d^3r d^3v - \sigma^2 \right) + \frac{\lambda_2}{\int \rho_p^2 d^3r d^3v - 1} \right) = 0,
\]

where \(\lambda_1 \) and \(\lambda_2 \) are the two Lagrange multipliers. Minimization of Eq. (4) yields the optimal parameters \(\{ \eta \} \) and \(\{ \nu \} \). The many-body dynamics of systems with unscreened long-range interaction is governed by the collisionless Boltzmann (Vlasov) equation. The distribution functions that satisfy the Vlasov equation evolve in time as the density of an incompressible fluid. In particular this means that the \(\rho_p \) hypervolumes

\[V_{\rho_p} = \int \rho_p^2 d^3r d^3v \]

will be preserved by the Vlasov flow. However, for mismatched beams, the plasma oscillations result in parametric resonances, which lead to a significant particle evaporation. After the relaxation process is complete, the stationary beam phase separates into a cold core, surrounded by a halo of highly energetic particles. For a water-bag initial condition \((p=1) \), it was shown that the core was very well described by a cold Fermi–Dirac distribution with the temperature \(T \approx T_f/40 \), where \(T_f \) is the “Fermi temperature” of the beam. The halo was reasonably approximated by a step function with energy range of one particle resonance. The full distribution function had the form of

\[f(r, v) = f_c(r, v) + f_h(r, v). \]

For a \(p \)-level system, which is used to approximate the thermal distribution given by Eq. (2), a similar phase separation will be obtained. The form of the core distribution function can be obtained, once again, by maximizing the coarse grained entropy to yield

\[f_c(r, v) = \sum_{j=1}^p \left(\eta_j - \chi \right) \rho_j(r, v), \]

with

\[\rho_j(r, v) = \frac{e^{-\beta \eta_j \epsilon(r, v) + \alpha_j}}{\int e^{-\beta \eta_j \epsilon(r, v) + \alpha_j} + 1}, \]

where the mean particle energy is \(\epsilon(r, v) = v^2/2 + U(r) + \gamma(r) \) and \(\beta \) and \(\{ \alpha \} \) are the Lagrange multipliers for the energy and the hypervolumes conservation. The oscillations of the mismatched beam excite the parametric resonances, resulting in a halo formation. The parameter \(\chi \) determines the fraction of the particles, which will evaporate to form the halo of the beam. The coarse grained distribution can no longer preserve all the hypervolumes of the original fine-grained distribution function so that only the lower energy hypervolumes will be conserved, while the particles from the higher energy states will evaporate to form a halo. We find that the halo can be modeled accurately by the distribution

\[f_h(r, v) = \chi \Theta[\epsilon_i - \epsilon(r, v)] + \chi \Theta[\epsilon(r, v) - \epsilon_i] \Theta[\epsilon - \epsilon(r, v)]e^{-\gamma(\epsilon - \epsilon_i)}. \]

The extent of the halo is up to one particle resonance energy \(\epsilon_i \). The low energy part of the halo distribution is flat, while for energies \(\epsilon > \epsilon_i = \epsilon_r/2 \), it decays exponentially with exponent \(\gamma \approx 8 \). We can now, in principle, numerically solve Eqs. (1), (5), (7), and (8) to calculate the stationary distribution function \(f(r, v) \) of the relaxed beam. There is, however, one problem. Equations (7) and (8) contain \(p+2 \) parameter: \(\beta \), \(\{ \alpha_j \} \), and \(\chi \). The conservation of energy, norm, and lower energy hypervolumes gives us \(p+1 \) additional equations,

\[
\int d^3r d^3v \epsilon(r, v) f(r, v) = \epsilon_0,
\]

\[
\int d^3r d^3v f(r, v) = 1,
\]

\[
\int d^3r d^3v \rho_j(r, v) = \int d^3r d^3v \rho_j^0(r, v),
\]

where \(1 \leq j \leq p-1 \) and \(\epsilon_0 \) is the average energy per particle of the initial thermal distribution,

\[
\epsilon_0 = \sigma^2 + \kappa \frac{r_m^2}{4} + K \left[\frac{1}{8} - \frac{1}{2} \ln \left(\frac{r_m}{r_w} \right) \right].
\]
lent. In the figures, the distances are measured in units of $\sqrt{\varepsilon_0/\Omega_L}$, and the velocities are in units of $\sqrt{\varepsilon_0}\Omega_L$. We have also defined a scaled perveance $K^* = K/\Omega_L\varepsilon_0$, and the mismatch parameter, $\mu = r_m/r_0$, which measures the deviation of the initial beam radius from the corresponding virial value $r_0 = \sqrt{K+4\sigma^2/\Omega_L}$, for which the oscillations of the beam envelope are very small. In particular, we find that the discretization of the Gaussian by only four levels already provides us with an almost perfect description of the core region.

As a direct application of the theory developed above, we calculate the emittance growth of an originally thermal beam. This quantity is of fundamental importance for the design and development of high-intensity space-charge dominated beams. The calculations are performed for beams of varying scaled perveance K^* and mismatch parameter μ. The results are compared with the molecular dynamics simulations. Once again, an excellent agreement is found between the theory and the simulations (Fig. 3).

To conclude, we have presented a theory that allows us to calculate the density and the velocity distributions of an initially thermal beam after it relaxes to the final stationary state. Comparing to the simulations, the theory is found to be extremely accurate without any adjustable parameters. In particular, it can be used to calculate the emittance growth and the fraction of particles, which will evaporate as the beam evolves to its final stationary state.

This work was supported by CNPq, FAPERGS, and INCT-FCx of Brazil and by the Air Force Office of Scientific Research (AFOSR), USA, under Grant No. FA9550-09-1-0283.

1. R. L. Gluckstern, Phys. Rev. Lett. 73, 1247 (1994).
2. S. Banna and L. Schächter, Appl. Phys. Lett. 80, 2842 (2002).
3. C. K. Allen, K. C. D. Chan, P. L. Colestock, K. R. Crandall, R. W. Garnett, J. D. Gilpatrick, W. Lysenko, J. Qiang, J. D. Schneider, M. E. Schulze, R. L. Shefield, H. V. Smith, and T. P. Wangler, Phys. Rev. Lett. 89, 214802 (2002).
4. Yu, Chekh, A. Goncharov, I. Protosenko, and I. G. Brown, Appl. Phys. Lett. 86, 041502 (2005).
5. P. Muggli, B. E. Blue, C. E. Clayton, F. J. Decker, M. J. Hogan, C. Huang, C. Joshi, T. C. Katsouleas, W. Lu, W. B. Mori, C. L. O’Connell, R. H. Siemann, D. Walz, and M. Zhou, Phys. Rev. Lett. 101, 055001 (2008).
6. M. Reiser, J. Appl. Phys. 70, 1919 (1991).
7. R. P. Nunes, R. Pakter, and F. B. Rizzato, J. Appl. Phys. 104, 013302 (2008); Phys. Plasmas 14, 023104 (2007).
8. R. C. Davidson and H. Qin, Physics of Intense Charged Particle Beams in High Energy Accelerators (World Scientific, Singapore, 2001).
9. J. Zhou, K. R. Samokhvalova, and C. Chen, Phys. Plasmas 15, 023102 (2008).
10. Padmanabhan, Phys. Rep. 188, 285 (1990).
11. P.-H. Chavantis, Physica A 359, 177 (2006).
12. R. Bachelard, C. Chandre, D. Fanelli, X. Leoncini, and S. Ruffo, Phys. Rev. Lett. 101, 260603 (2008).
13. Y. Levin, R. Pakter, and T. N. Teles, Phys. Rev. Lett. 100, 040604 (2008).
14. D. Lynden-Bell, Mon. Not. R. Astron. Soc. 136, 101 (1967).
15. M. Reiser, Theory and Design of Charged Particle Beams (Wiley, New York, 1994).
16. T. P. Wangler, K. R. Crandall, R. Ryne, and T. S. Wang, Phys. Rev. ST Accel. Beams 1, 084201 (1998).