Maxillaria anacatalinaportillae
(Orchidaceae, Maxillariinae), a new remarkable species from Ecuador

Monika M. Lipińska¹², Natalia Olędrzyńska¹, Alex Portilla³, Dorota Łuszczek⁴, Aidar A. Sumbembayev⁵⁶, Dariusz L. Szlachetko¹

¹ Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80–308 Gdańsk, Poland
² Foundation Polish Orchid Association, 81–825 Sopot, Poland
³ Géneros Ecuatorianos Ecuagenera Cia. Ltda., Km. 2 1/2 Via a Cuenca Sector Llampasay, PO Box 01.01.1110 Cuenca, Ecuador
⁴ Laboratory of Electron Microscopy, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80–308 Gdańsk, Poland
⁵ Altai Botanical Garden, Ridder, Kazakhstan
⁶ Al-Farabi Kazakh National University, Almaty, Kazakhstan

Corresponding author: Monika M. Lipińska (monika.lipinska@ug.edu.pl)

Academic editor: V. Droissart | Received 12 November 2021 | Accepted 26 January 2022 | Published 17 February 2022

Citation: Lipińska MM, Olędrzyńska N, Portilla A, Łuszczek D, Sumbembayev AA, Szlachetko DL (2022) Maxillaria anacatalinaportillae (Orchidaceae, Maxillariinae), a new remarkable species from Ecuador. PhytoKeys 190: 15–33. https://doi.org/10.3897/phytokeys.190.77918

Abstract
Neotropical genus Maxillaria Ruiz & Pav. belongs to one of the most diverse and species-rich groups of orchids. Several of its representatives are popular, horticultural plants with large and showy flowers, often nicely fragranced. It is not uncommon that some distinctly colored individuals are introduced to the commercial market under names of similar, more or less related species, as informal varieties or color forms, largely causing confusion. While investigating the diversity of Maxillaria in Ecuador, we have encountered plants that were commercially referred to as M. sanderiana xanthina. In the course of conducted morphological and micromorphological analyses, we concluded that it is a new, separate species and hereby, we describe it as M. anacatalinaportillae.

Keywords
Ecuador, Neotropics, orchids, phylogeny, pseudopollen, SEM
Introduction

Maxillaria Ruiz & Pav. is one of the most interesting species groups in the orchid family. For many years it has been, and in some way still is quite a controversial genus. The lack of clearly defined boundaries of *Maxillaria sensu stricto* resulted in proposing several taxonomic approaches of the subtribe Maxillariinae Benth. over the past few decades. For a long time, it has been suspected that it is an assemblage of taxa, consisting of morphologically disparate groups of species (Whitten et al. 2007). Establishing the exact number of species belonging to the various genera or the subtribe itself is not easy since it depends mainly on the adopted classification system and genus concept. *Maxillaria* covers about 4/5 of species belonging to the subtribe (Senghas 2002). Depending on the applied classification, it counts from approximately 420 (Dressler 1993), through 634 (Schuiteman and Chase 2015) to 750 species (Senghas 2002).

One of the most spectacular groups of species within the genus is often referred to as ‘*Maxillaria grandiflora*-complex’ or also alliance/group (Dodson 1997), it includes species such as *M. platypetala* Ruiz & Pav., *M. molitor* Rchb. f., or *M. sanderiana* Rchb. f. *ex* Sander. Their common feature is the size of flowers – generally large and showy, sometimes also brightly colored. The main reason for this reference is the supposed similarity to *Maxillaria grandiflora* (Kunth) Lindl. (Christenson 2013). Dodson (1997) characterized this group as caespitose plants with unifoliate pseudobulbs and foliaceous leaf sheaths, petiolate leaf, large flowers (5–12 cm in diameter), and broad and blunt sepals and petals. Christenson (2013) pointed out, however, that the type specimen of *M. grandiflora* itself is bifoliate and several other species included by Dodson, do not fulfill the morphological criteria presented above (e.g. *M. napoensis* Dodson, *M. batemanii* Poepp. & Endl). Indeed, for many years there have been some ambiguities about the type of *M. grandiflora* (Fig. 1) and its locality, however, they have been clarified by Blanco and Stauffer in 2011. Detailed analysis of the collection time, numbers and travel route conducted by them, have led to a conclusion that the type locality of *Maxillaria grandiflora* must be somewhere in the eastern part of La Cruz municipality in the department of Nariño, Colombia at the altitude of 2,067 m. As mentioned above, some questions were raised by Christenson (2002a, b, 2013) about the number of leaves on the pseudobulb of the type specimen. It is essential to clarify that the type collection of *Maxillaria grandiflora* consists of three sheets deposited in the Bonpland herbarium in the Muséum National d’Histoire Naturelle (P) in Paris. In their paper, Blanco and Stauffer (2011) state clearly that in this case we are dealing with a mixed collection. During our visits in P herbarium, we have examined this specimen and we agree with Blanco and Stauffer that it consist of plant parts that belong to at least two different species. As the number of apical leaves per pseudobulb is an important taxonomic feature, the existence of a pseudobulb with two apical leaves as part of the type collection of *M. grandiflora* might have been a source of confusion resulting in Christenson’s belief that this taxon is not a member of the *M. platypetala* Ruiz and Pav. alliance (*sensu* Whitten et al. 2007).
Christenson (2013) pointed out three useful clues for the proper taxonomic identification within *Maxillaria grandiflora*-complex: 1) the orientation of tepals is crucial for understanding the species circumscription (segments reflexed, inflexed, incurved, among others), 2) flower color and lip markings, 3) the shape of the lip apex (transversely terminated, usually undulate, with lobes similar to the ruffles of a petticoat or rigidly held and V-shaped in cross-section). Most of the large-flowered Andean *Maxillaria* species are at times informally referred to as *Maxillaria grandiflora*-complex. This often causes confusion as many of them have little or nothing in common with actual *M. grandiflora* (Kunth) Lindl. The general understanding of these species remains scarce and requires intensified taxonomic investigation. Especially three
sister species can be considered as challenging, and these are *M. sanderiana* Rchb.f. ex Sander, *M. grandis* Rchb.f. (sometimes believed to be a synonym of *M. sanderiana*) and *M. wojii* Christenson (often confused with both) (Christenson 2013). However, *M. sanderiana* differs from *M. grandis* Rchb.f. by narrow and strongly undulated petals and from *M. wojii* by significantly larger flowers. *Maxillaria sanderiana* and *M. grandis* share the distribution range and occur in Ecuador and Peru. According to Christenson (2013) some may consider them to be two ends of a spectrum of variation over a broad geographic range and in this concept, the name *M. grandis* takes priority and is the correct name for the broadly defined species. The variability within *M. sanderiana* may also suggest that, in fact, it is a complex of species consisting of one or more undescribed taxa. Another theory has been mentioned by Blanco as a comment in Christenson’s monograph (2013). He suggested that *M. wojii* is simply a color variation of *M. grandis* or that both are hybrids of *M. sanderiana* with some other species in the *Maxillaria grandiflora*-complex. This would expend the occurrence range of *M. grandis* as *M. wojii* is known only from Colombia.

During the past few years, we have been working intensely on the classification and especially species delimitations within *Maxillaria sensu stricto*. We have investigated herbarium materials deposited in most of the world’s collections, such as AMES, B, C, COL, MA, MO, P, W, W-R to name just a few. During our expeditions to South America, our attention was drawn to the *Maxillaria grandiflora*-complex and many taxonomical ambiguities it brings. We have collected samples from both commercial and hobby growers but also purchased several plants to cultivate them in the greenhouses of the University of Gdańsk. One of them was identified as *M. sanderiana* and was referred to by Ecuagenera as “*xanthina*”. Indeed, according to Christenson (2013), there are two color forms of *M. sanderiana*: atropurpurea (H. Williams) Christenson and *xanthina* Christenson. However, after morphological analysis of the flower, it became clear that we are facing new species and hereby we describe it as a new one. The new entity can be easily distinguished by having flat margins of petals, which are gently angled, callus extending beyond the middle of the lip and form of lip middle lobe, which is broadly cordate or triangular when spread, with fold down margins. It is known from several plants that are available commercially, however, they all originate from single (type) population.

Materials and methods

Morphological analysis

Flowering plants of the new species were collected on November 11th, 2003 in the Carchi province (northern Ecuador). The species was photographed in situ and taken to cultivation in the greenhouses of Ecuagenera Cia. Ltda with initial identification as *M. sanderiana* ‘*xanthina*’. In 2020, Ecuagenera provided plant material consisting of five plants which have been sent to Poland with corresponding CITES certificates.
Plants have been cultivated in the greenhouses of the University of Gdańsk (voucher 0148255) and used for the presented analysis. Herbarium specimen were prepared to be used as type material and deposited at UGDA. Particular parts of the flower were dissected, measured, and drawn under stereomicroscope. The line illustration of the new species was prepared from material preserved in Kew Mixture (53% ethanol: 5% formaldehyde: 5% glycerol: 37% water) and digital photos. The new entity has been compared with more than 800 herbarium specimens of other members of *Maxillaria grandiflora*-complex from the following herbaria: AMES, B, C, COL, MA, MO, NY, P, W, W-R, VALLE, QCE, and QCNE. We conducted a careful comparison of the new species with the protologues and type material of all species belonging to the complex, as well as regional floras and checklists such as Dodson and Marmol (1980), Dodson (2002), and Jørgensen and León-Yáñez (1999). The conservation status of the new species was evaluated, based on the guidelines of the International Union for Conservation of Nature (IUCN 2019).

Phylogenetic analysis

Plant material for molecular analysis has been obtained from plants provided by Ecuagenera and living orchid collection of the University of Gdańsk. Remaining sequences were obtained from NCBI database. The GenBank accession numbers of the used sequences in the study are given in the Appendix 1: Table A1.

Total genomic DNA of three species (*M. anacatalinaportillae*, *M. huebschii*, and *M. melina*) was extracted from ca. 20–25 mg of silica-dried specimens (parts of the leaves), using Sherlock AX Kit (A&A Biotechnology, Poland) and following the original protocol. Two molecular markers were used for phylogenetic reconstruction: nrITS (ITS1-5.8S-ITS2) and plastid *matK*. ITS was amplified using primers 101F and 102R (Douzery et al. 1999), while *matK* using primers 19F (Molvary et al. 2000) and 1326R (Cuénoud et al. 2002).

Polymerase chain reactions (PCR) were carried out in a total volume of 25 µl and containing 12.5 µl of StartWarm HS-PCR Mix (A&A Biotechnology, Poland), 1.0 µl of each primer (10 µM) and 1 µl of DMSO (dimethyl sulfoxide) – only for ITS. The following parameters were implemented: 94 °C – 4 min; (94 °C – 45 s; 52 °C – 45 s; 72 °C – 1 min) × 30; 72 °C – 7 min for ITS and 95 °C – 3 min; (94 °C – 45 s; 52 °C – 45 s; 72 °C – 2 min 30 s) × 33; 72 °C – 7 min for *matK* amplification. PCR products were purified using Wizard SvGel and a PCR Clean Up System (Promega, United States).

Obtained chromatograms were analyzed and edited using Finch TV (Geospiza). Two separate matrixes (ITS and *matK*) were prepared and then aligned with Mafft software (https://mafft.cbrc.jp/alignment/server/). Minor mistakes were additionally corrected in SeaView v.4. (Gouy et al. 2010).

Molecular substitution model was based on AIC (Akaike information criterion) and calculated with PhyML website (http://www.atgc-montpellier.fr). The GTR+G+I model was selected as the best one for studied matrix.
Figure 2. Phylogenetic placement of *Maxillaria anacatalinaportillae*. Maximum clade credibility tree based on combined ITS and *matK* data.
In the first step of phylogenetic tree reconstruction, two separate matrices (for ITS and *matK*) were analyzed using Bayesian Inference and maximum likelihood methods. Finally, due to the low clade support, high polytomy, and no sign of topology conflict, the combined analysis was performed (only the results of this one are shown, Fig. 2). The results of single markers analysis are available upon request.

The Bayesian analyses was performed using Markov chain Monte Carlo (MCMC) in MrBayes 3.2.7a (Huelsenbeck and Ronquist 2001) using CIPRES Science Gateway (Miller et al. 2010). The analysis was performed in two simultaneous runs of four chains for 20,000,000 generations, sampling one tree for each 100, until the average standard deviation of split ranges reached a value < 0.01. TreeAnnotator v. 1.8.1 (Drummond et al. 2012) were used to construct a maximum clade credibility tree, with a burn-in of 25%. The support of the clades was evaluated by the posterior probability (PP).

The Maximum Likelihood analysis was performed using raxmlGUI 2.0 (Edler et al. 2021) using ML + transfer bootstrap expectation + consensus option and 1000 bootstrap (BS) replications.

Micromorphological analysis

Samples for the scanning electron microscopy (SEM; voucher no. UGDA.0148255) have been preserved in 2.5% GA and 2.5% PFA in 0.05M cacodylate buffer (pH 7.0). Following dehydration in an ethanol series, they were dried by the critical point method using liquid CO2 and coated with gold. They were observed using a Philips XL-30 scanning electron microscope.

Results

Maxillaria anacatalina-portillae Szlach. & Lipińska, sp. nov.

Figs 3, 4

Maxillaria anacatalina-portillae Type: ECUADOR. Carchi Province, Maldonado. Alt. 1700 m. 11.04.2003. A. Portilla s.n. (Holotype: UGDA-DLSz! – spirit, drawings, photo).

Diagnosis. *M. anacatalina-portillae* appears to be similar to *M. grandis*, *M. sanderiana* and *M. wojii*. The new entity can be easily separated from *M. grandis* Rchb.f. by having flat margins of petals, which are gently angled (vs undulate and strongly recurved petals), longer lip callus extending beyond the middle of the lip (vs lip callus not reaching lip middle point) and form of lip middle lobe, which is broadly cordate or triangular when spread, with fold down margins (vs lip middle lobe oblong-elliptic, with undulate and planar margins). The lip middle lobe of *M. sanderiana* has strongly undulated and planar margins, and petals are shorter than dorsal sepal (vs equal in
length in our new species). *Maxillaria wojii* can be easily distinguished from all other species mentioned above by unique lip callus, consisting of the main part flanked by pair of subsidiary calli. Lip callus of *M. anacatalina.portillae* is very massive flanked by narrow wings on each side.

Figure 3. *Maxillaria anacatalina.portillae* **A** complete flower **B** column **C** pollinia and anther cap **D** side view of the column and lip **E** perianth parts **F** lip **G** habit. (Phot. Hugo Medina).
Description. Plants caespitose. Pseudobulbs 4–5.5 cm long, 4–4.5 cm wide, ellipsoid to almost orbicular, laterally compressed, unifoliolate, supported basally by 1–2 leafy sheaths. Sheaths petiolate; petiole up to 20 cm long, conduplicate, narrow; blade up to 30 cm long and 8.5 cm wide, ligulate to oblong-elliptic, acute to shortly acuminate at apex, basally cuneate. Leaf petiolate; petiole up to 5 cm long, conduplicate; blade up to 33 cm long and 7.5 cm wide, similar in form to sheaths, ligulate to oblong-elliptic, acute to shortly acuminate. Peduncle ca 5–7 cm long, enveloped in 4–5 sheaths, erect, basal, single-flowered; sheaths elliptic-lanceolate, acute, thin, fibrous, brownish. Flowers large and showy, scentless, campanulate, not fully opened, resupinate, sepals red-wine or maroon outside, yellow inside with red-maroon basal part (Fig. 3); petals yellow with red-maroon veins and irregular dots on both sides of the middle vein, lip basal part yellow, callus yellow with dark apical part, middle lobe red-black with grayish suffusion, margins yellow, red-maroon outside, gynostemium yellowish with red-maroon on the ventral surface below stigma, anther yellow. Floral bracts ca 60 mm long, elliptic-lanceolate, greenish-brown with maroon veins. Ovary 30 mm long, glabrous. Tepals thick, fibrous. Dorsal sepal 60–62 mm long, 25–27 mm wide, elliptic-ovate, concave along midvein, apex subobtuse, canaliculated. Petals 60–62 mm long, 23–25 mm wide, oblong-elliptic to ligulate-lanceolate, falcate at base, apex attenuate, thickened, subobtuse. Lateral sepals 75 mm long, 30–32 mm wide, obliquely oblong triangular, somewhat concave at the base, apex thickened, subobtuse. Lip hinged on the column foot, ca 45 mm long in total, 30 mm wide when spread, very stiff, gently arched, papillate in the apical half, 3-lobed in the apical third, callus very massive reaching beyond the midpoint of the lip, ligulate-ovate, flanked by narrow wing on each side; middle lobe ca 13–15 mm long, 18–20 mm wide, broadly cordate or triangular when spread, concave along midvein, margins crenulate-undulate, fold-down; lateral lobes 30 mm long, oblong-ovate in outline, canaliculated in natural position. SEM analysis revealed the presence of copious moniliform trichomes and pseudopollen grains on the lip surface, mainly middle lobe and callus (Fig. 5). Lip base and lateral lobes were rather smooth, with villiform to obpyriform papillae towards the middle part of the lip (Fig. 5B). These papillae seem to be the early stage in the development of the moniliform trichomes. Gynostemium 23 mm long, column foot 33 mm long, apically upcurved, clinandrium densely glandular.

Ecology and distribution. Grows as an epiphyte in cloud rainforest at altitude of 1700 m asl, known only from the type location.

Eponymy. Name dedicated to Ana Catalina Portilla Schröder – daughter of Alex Portilla, finder of the new entity.

Conservation status. According to the IUCN Red List criteria (IUCN 2019), the new entity should be classified as critically endangered (CR B2ab (iii)), based on the small number of known populations and restricted area of distribution. The province of Carchi in recent years suffered from problems caused by climate change, anthropogenic impact on the environment, and the lack of awareness of natural resources. The change of land use, expansion of the agricultural frontier, population growth, or the
opening of new roads are some dynamics that generate pressure on the ecosystems, compromising the ecological processes that take place in them. According to Global Forest Watch, from 2001 to 2020, Carchi lost 8.34 kha of tree cover, equivalent to a 3.7% decrease in tree cover since 2000.
New *Maxillaria* species from Ecuador

Notes. We know about several living collections in Ecuador that are probably representing the new entity, however, since we were not able to investigate these plants in person, we can only treat them as possible representative specimens. According to A. Hirtz, collections are located in Botanic Garden of Quito, Orquidario Las Juntas (near Gualtal at the south side of the Golondrinas Volcano, owned by Arturo and Esmeralda Mendez), Quinche (near the airport of Quito, collection of Juan Galarza), and Orquidario Casa Dracula in Quinshul (owned by Hector Yela).

Phylogeny. The results are presented on the maximum clade credibility tree obtained from Bayesian analysis. Support of particular clades (PP and additionally BS – from ML analysis) is marked with a square circle or pentagon, according to the legend given on the Fig. 2.

Figure 5. *Maxillaria anacatalinaportillae* A masses of pseudopollen accumulated on the midlobe B conical, villiform, and obpyriform papillae C grains of pseudopollen on the single celled trichome D, E magnification of moniliform trichomes F moniliform trichomes scattered on the lip surface (Phot. D. Łuszczek).

Scale bars: 50µm (A); 100µm (B, D, E); 50µm (C); 200µm (F).
Obtained phylogenetic tree consists of representatives of Maxillariinae, including those recently recognized by some authors (e.g. Szlachetko et al. 2012) genera *Calawaya* (III) and *Pseudocymbidium* (represented by *M. lueri* Dodson = *Pseudocymbidium lueri* (Dodson) Szlach. and Sitko). *Maxillaria* s. str. (II) seems to be monophyletic, but there is no PP or BS support for this clade. The clade of *Maxillaria grandiflora*-complex is well supported and includes the new species *Maxillatia anacatalinaportillae*.

Discussion

Phylogeny

The main purpose of phylogenetic reconstruction in this paper was the placement of the new species, thus the phylogenetic relationship within the Maxillarinae will not be widely discussed here. Our results indicate the affinity of *Maxillaria anacatalinaportillae* to the *Maxillaria grandiflora*-complex. However, the relationships between species within the complex are still unclear. Moreover, some authors (e.g. Whitten et al. 2007) postulated to include the complex into *Maxillaria platypetala* alliance, due to the relatively low genetic differentiation among the members of these two groups, which may suggest the recent radiation of the species. In our opinion further researches are necessary to make any decision about the taxonomic position of mentioned taxa and to fully resolve the relationships between its species.

Morphology

Many representatives of *Maxillaria grandiflora*-complex (*sensu* Christenson 2013) or *M. platypetala* alliance (*sensu* Whitten et al. 2007) are superficially similar to each other but can be easily distinguished when live plants are compared side by side (Blanco and Stauffer 2011 and references their). Some of the distinguishing features, such as color patterns, may disappear or be obscured in dried herbarium specimens; especially flowers tend to become dark brown to almost black when dry, regardless of their original color (Blanco and Stauffer 2011).

Maxillaria anacatalinaportillae is the only species morphologically similar to *M. sanderiana* (Fig. 6), *M. grandis* (Fig. 7), and *M. wojii* having flowers with yellow as basic color. Flowers of all aforementioned species are primarily white with various degrees of red-wine or maroon saturation.

The forms of the flower of *Maxillaria sanderiana* and *M. anacatalinaportillae* are quite similar, but, again, the lip middle lobe of the former has strongly undulated and planar margins, and petals are shorter than dorsal sepal (vs equal in length in our new species). The micromorphology seems to be the same – in both cases, the lip surface is predominantly covered with pseudopollen, which is formed by the fragmentation of multicellular, moniliform trichomes (Davies et al. 2000). The populations of
both species are isolated and are located at considerable distance from each other: *M. anacatalinaportillae* is known only from Maldonado (Carchi Province, Cantón Tucán), whereas the closest population of *M. sanderiana* is located in the Baeza (Napo Province), ca. 400 km from Maldonado. *Maxillaria wojii* can be easily distinguished from all other species mentioned above by the unique lip callus, consisting of the main part flanked by pair of subsidiary calli. Lip callus of *M. anacatalinaportillae* is very massive, flanked by narrow wings on each side, which seems to be an intermediate state between those found in *M. wojii* and *M. sanderiana*. The morphological differences and similarities have been summarized in Table 1.
Species	Distribution	Habit	Pseudobulbs	Leaves	Flowers	Dorsal sepal	Lateral sepals	Petals	Lip	Column
M. anacatalinaportillae	Ecuador	Caespitose epiphytes	Ellipsoid to almost orbicular,	Ligulate to oblong-elliptic, acute	Large, short, slightly acuminate,	Obliquely oblong-triangular,	Obliquely ovate-triangular,	Obliquely ovate-triangular,	3-lobed, arching, lateral lobes	Biseriate,
M. grandiflora	Colombia	Caespitose epiphytes	Oblong-lanceolate, compressed	Obovate-oblongelliptic, acute,	Short, acuminate, keeled along the back,	Oblongelliptic-acute	Obliquely ovate-triangular,	Oblongelliptic-acute,	3-lobed, arching, lateral lobes	Large, massive from the base to the
M. grandis	Ecuador, Peru	Caespitose epiphytes	Oblong-lanceolate, acute,	Oblong-lanceolate, acute,	Long, acuminate, keeled along the back,	Oblongelliptic-acute	Oblongelliptic-acute,	Oblongelliptic-acute,	3-lobed, arching, lateral lobes	Longitudinal, from the base of the
M. sanderiana	Ecuador, Peru	Caespitose epiphytes	Oblong-lanceolate, acute,	Oblong-lanceolate, acute,	Long, acuminate, keeled along the back,	Oblongelliptic-acute	Oblongelliptic-acute,	Oblongelliptic-acute,	3-lobed, arching, lateral lobes	Ligulate broad,
M. wojii	Colombia	Caespitose epiphytes	Oblong-lanceolate, acute,	Oblong-lanceolate, acute,	Long, acuminate, keeled along the back,	Oblongelliptic-acute	Oblongelliptic-acute,	Oblongelliptic-acute,	3-lobed, arching, lateral lobes	Ligulate broad,

Table 1: Summary of the morphological differences between the most similar species.
Figure 7. Drawing of the flower parts of *Maxillaria grandis* A lateral sepal B petal C dorsal sepal D lip. Scale bars: 10 mm. Redrawn from the type by N. Olędryńska.

Micromorphology

It is estimated that as many as 56% of the representatives of *Maxillaria sensu lato* attract pollinators with “empty promises”, which are a combination of visual, tactile, and olfactory stimuli (Davies et al. 2005 and references therein). Among the species that offer any kind of reward, there are three types: nectar, pseudopollen (*farina*), and wax-like substances (Davies et al. 2003a, b, 2005). Until now, the micromorphology of only
twelve members of *Maxillaria grandiflora*-complex has been studied. A common feature among its representatives is the presence of pseudopollen and at least 30 Ecuadorian species of *Maxillaria* produce pseudopollen (Davies et al. 2000). *M. anacatalinaportillae* is no exception and SEM analysis revealed the presence of copious moniliform trichomes and pseudopollen grains on the lip surface, mainly middle lobe and callus. Lip base and lateral lobes were rather smooth, with villiform to obpyriform papillae towards the middle part of the lip. (Davies and Turner 2004). Pseudopollen is usually produced by the fragmentation of labellar trichomes and it has the form of a whitish layer with a powder-like structure. It can be considered as a substitute reward for real pollen.

The presence of obpyriform and moniliform trichomes is typical for members of the *Maxillaria grandiflora*-complex (Davies and Turner 2004; Lipińska and Kowalkowska 2018) and is not surprising, since wherever pseudopollen-forming trichomes occur, labellar papillae tend to be obpyriform (Davies and Turner 2004).

The main pollinators of *Maxillaria* are stingless bees (Meliponini) (Roubik 2000). According to Davies et al. (2000), some of the members of the *Maxillaria grandiflora*-complex are pollinated by different insects: *Maxillaria fletcheriana* Rolfe by the bumblebee *Bombus volucelloides* Gribodo, *M. grandiflora* and *M. sanderiana* by *Eulaema cingulata* Fabricius. It is believed that bees collect pseudopollen from the flowers because of the nutrients it contains (Davies et al. 2000) and these include starch, oils, and proteins (van der Pijl and Dodson 1966). This may suggest that *M. anacatalinaportillae* is also pollinated by bees, similarly to closely related *M. grandiflora* and *M. sanderiana*.

Acknowledgements

This work was supported by the Faculty of Biology, University of Gdańsk: 531-D110-D585-21, grant for young scientists of the Faculty of Biology, University of Gdańsk 538-L150-B583-14, Synthesys: the European Union-funded Integrated Activities grants: AT-TAF6430, and Synthesys +: the European Union-funded Integrated Activities grants: ES-TAF-8107. Authors are grateful to Hugo Medina for preparing Fig. 3 and all reviewers for their comments on how to improve the manuscript.

References

Blanco MA, Stauffer FW (2011) On the types of *Maxillaria grandiora* and *Heterotaxis valenzuelana* (Orchidaceae: Maxillariinae). Kew Bulletin 66(4): 529–536. https://doi.org/10.1007/s12225-012-9320-5

Christenson EA (2002a) *Maxillaria*, an overview. In: Clark J, Elliott W, Tingley G, Biro J (Eds) Proceedings of the 16th World Orchid Conference. Vancouver Orchid Society, Richmond, British Columbia, 279–290.

Christenson EA (2002b) Vue d’ensemble du genre *Maxillaria*. Richardiana 2: 4–65.
New *Maxillaria* species from Ecuador

Christenson EA (2013) *Maxillaria*: An unfinished monograph. Published for Robert Christenson by Patricia Ann Harding, Lebanon OR, USA, 936 pp.

Cuénoud P, Savolainen V, Chatrou LW, Powell M, Grayer RJ, Chase MW (2002) Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid *rbcL, atpB* and *matK* DNA sequences. American Journal of Botany 89(1): 132–144. https://doi.org/10.3732/ajb.89.1.132

Davies KL, Turner MP (2004) Morphology of floral papillae in *Maxillaria* Ruiz & Pav. (Orchidaceae). Annals of Botany 93(1): 75–86. https://doi.org/10.1093/aob/mch007

Davies KL, Winters C, Turner MP (2000) Pseudopollen: Its structure and development in *Maxillaria* (Orchidaceae). Annals of Botany 85(6): 887–895. https://doi.org/10.1006/anbo.2000.1154

Davies KL, Turner MP, Gregg A (2003a) Atypical pseudopollen-forming hairs in *Maxillaria* Ruiz & Pav. (Orchidaceae). Botanical Journal of the Linnean Society 143(2): 151–158. https://doi.org/10.1046/j.1095-8339.2003.00219.x

Davies KL, Turner MP, Gregg A (2003b) Lipoidal labellar secretions in *Maxillaria* Ruiz & Pav. (Orchidaceae). Annals of Botany 91(4): 439–446. https://doi.org/10.1093/aob/mcg038

Davies KL, Stpiczynska M, Gregg A (2005) Nectar-secreting floral stomata in *Maxillaria anceps* Ames & C. Schweinf. (Orchidaceae). Annals of Botany 96(2): 217–227. https://doi.org/10.1093/aob/mci182

Dodson CH (1997) A provisional key to the Grandiflora group of *Maxillaria*. Maxillarieae 1: 15–16.

Dodson CH (2002) Native Ecuadorian Orchids, Volume III: *Lepanthopsis-Oliveriana*. Dodson Trust, Sarasota.

Dodson CH, Marmol P (1980) Orchids of Ecuador: Icones Plantarum Tropicarum Vol. 1–4, Plates 1–400. Marie Selby Botanical Gardens, Sarasota.

Douzery EJP, Pridgeon AM, Kores P, Linder HP, Kurzweil H, Chase MW (1999) Molecular phylogenetics of Disae (Orchidaceae): A contribution from nuclear ribosomal ITS sequences. American Journal of Botany 86(6): 887–899. https://doi.org/10.2307/2656709

Dressler RL (1993) Phylogeny and classification of the orchid family. Cambridge University Press, Cambridge, 330 pp.

Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 1969–1973. https://doi.org/10.1093/molbev/mss075

Edler D, Klein J, Antonelli A, Silvestro D (2021) raxmlGUI 2.0: A graphical interface and toolkit for phylogenetic analyses using RAxML. Methods in Ecology and Evolution 12(2): 373–377. https://doi.org/10.1111/2041-210X.13512

Gouy M, Gascuel O (2010) SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution 27(2): 221–224. https://doi.org/10.1093/molbev/msp259

Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics (Oxford, England) 17(8): 754–755. https://doi.org/10.1093/bioinformatics/17.8.754

IUCN (2019) Guidelines for using the IUCN Red List Categories and Criteria. Version 14. https://www.iucnredlist.org/resources/redlistguidelines [accessed June 2021]
Jørgensen PM, León-Yánez S (1999) Catalogue of the vascular plants of Ecuador. Missouri Botanical Garden, St. Louis. Monographs in Systematic Botany 75: 1–1182.

Lipińska MM, Kowalkowska AK (2018) Floral morphology and micromorphology of selected Maxillaria species (Maxillariinae, Orchidaceae). Wulpenia 25: 242–272.

Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE). New Orleans, 1–8. https://doi.org/10.1109/GCE.2010.5676129

Molvar M, Kores PJ, Chase MW (2000) Polyphyley of mycoheterotrophic orchids and functional influences on floral and molecular characters. In: Morrison DA, Wilson KL (Eds) Monocots: systematic and evolution. CSIRO Publishing, Collingwood, 441–448.

Roubik DW (2000) Deceptive orchids with Meliponini as pollinators. Plant Systematics and Evolution 222(1–4): 271–279. https://doi.org/10.1007/BF00984106

Schuiteman A, Chase MW (2015) A reappraisal of Maxillaria (Orchidaceae). Phytotaxa 225(1): 1–78. https://doi.org/10.11646/phytotaxa.225.1.1

Senghas K (2002) Maxillaria, un genre chaotique. Richardiana 2: 29–38.

Szlachetko DL, Sitko M, Tukalio P, Mytnik-Ejsmont J (2012) Taxonomy of the subtribe Maxillariinae (Orchidaceae, Vandoideae) revised. Biodiversity Research and Conservation 25(1): 13–38. https://doi.org/10.2478/v10119-012-0017-2

van der Pijl L, Dodson CH (1966) Orchid flowers: their pollinators and evolution. University of Miami Press, Coral Gables, Florida, 214 pp.

Whitten WM, Blanco MA, Williams NH, Koehler S, Carnevali G, Singer RB, Endara L, Neubig KM (2007) Molecular phylogenetics of Maxillaria and related genera (Orchidaceae: Cymbidieae) based on combined molecular data sets. American Journal of Botany 94(11): 1860–1889. https://doi.org/10.3732/ajb.94.11.1860

Appendix I

Table A1. GenBank accession numbers: taxon, accession number for ITS and matK, respectively (asterisk states for sequences obtained in this research).

Species	ITS	matK
Maxillaria angustissima	DQ210512	DQ210961
Maxillaria arachnitiflora	DQ210242	DQ210758
Maxillaria augustae victoriae	DQ210027	DQ210599
Maxillaria anacatalinaeportillae	OK032114*	OK032062*
Maxillaria cf. ananotomorum	DQ210483	DQ210966
Maxillaria cf. bennettii	DQ210352	DQ210849
Maxillaria cf. Breviceapa	DQ210544	DQ210119
Maxillaria cf. Grandiflora	DQ210026	DQ210598
Maxillaria cf. Hillii	DQ210073	DQ210616
Maxillaria chionantha	DQ210486	DQ210792
Maxillaria confusa	DQ210513	DQ210840
Maxillaria crocea	DQ210311	DQ210634
Maxillaria eburnea	DQ210454	DQ210938
Species	ITS	matK
------------------------------	-------------	--------------
Maxillaria ecuadorensis	DQ210508	DQ210771
Maxillaria elegantula	DQ210543	DQ210921
Maxillaria exaltata	DQ210320	DQ210818
Maxillaria fletcheriana	DQ210209	DQ210739
Maxillaria fractiflexa	DQ210074	DQ210617
Maxillaria galantiflora	DQ210574	DQ21049
Maxillaria gentryi	DQ210492	DQ210845
Maxillaria grandis	DQ210368	DQ210862
Maxillaria guadalupensis	DQ210504	DQ210983
Maxillaria huebschii	OK032113*	OK032061*
Maxillaria irrorata	DQ210430	DQ210917
Maxillaria lehmannii	DQ210268	DQ210778
Maxillaria lepidota	DQ210562	DQ210857
Maxillaria longicaulis	DQ210510	DQ210623
Maxillaria longiloba	DQ210432	DQ210919
Maxillaria longipes	DQ210519	DQ210999
Maxillaria lueri	DQ210471	DQ210802
Maxillaria melina	OK030847*	OK032060*
Maxillaria meridensis	DQ210427	DQ210780
Maxillaria modesta	DQ210195	DQ210726
Maxillaria molitor	DQ210370	DQ210863
Maxillaria multiflora	DQ210186	DQ210716
Maxillaria paechycron	DQ210489	DQ210593
Maxillaria patens	DQ210528	DQ210865
Maxillaria pauciflora	DQ210390	DQ210631
Maxillaria platypetala	DQ210558	DQ211033
Maxillaria porrecta	DQ210568	DQ210576
Maxillaria pseudoreichenheimiana	DQ210328	DQ210827
Maxillaria ramonensis	DQ210099	DQ209918
Maxillaria reichenheimiana	DQ210503	DQ210827
Maxillaria robusta	DQ210192	DQ210722
Maxillaria rotundulabia	DQ461792	DQ210893
Maxillaria sanderiana	DQ210271	DQ210781
Maxillaria sanderaiana	DQ210453	DQ209967
Maxillaria setigera	DQ210230	DQ210674
Maxillaria silviana	DQ210516	DQ210997
Maxillaria speciosa	DQ210075	Q210618
Maxillaria striata	DQ210267	DQ210777
Maxillaria turkeliae	DQ210276	DQ209945
Trigonidium obtusum	DQ210220	DQ210641