Interaction with PDZK1 Is Required for Expression of Organic Anion Transporting Protein 1A1 on the Hepatocyte Surface*

Received for publication, April 12, 2005, and in revised form, June 27, 2005 Published, JBC Papers in Press, June 30, 2005, DOI 10.1074/jbc.M503969200

Pijun Wang‡, Jin J. Wang‡, Yansen Xiao‡, John W. Murray‡§, Phyllis M. Novikoff‡¶, Ruth Hogue Angeletti, George A. Orr**+, Deblin Lan‡§, David L. Silver‡++, and Allan W. Wolkoff‡§ §§

From the §§Liver Research Center and §§Departments of Anatomy and Structural Biology, ¶Pathology, ¶¶Developmental and Molecular Biology, and §§Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461 and ¶¶Division of Molecular Medicine, Department of Medicine, Columbia University, New York, New York 10032

Although many organic anion transport protein (Oatp) family members have PDZ consensus binding sites at their C termini, the functional significance is unknown. In the present study, we utilized rat Oatp1a1 (NM_017111) as a prototypical member of this family to examine the mechanism governing its subcellular trafficking. A peptide corresponding to the C-terminal 16 amino acids of rat Oatp1a1 was used to affinity-isolate interacting proteins from rat liver cytosol. Protein mass fingerprinting identified PDZK1 as the major interacting protein. This was confirmed by immunoprecipitation of an Oatp1a1-PDZK1 complex from cotransfected 293T cells as well as from native rat liver membrane extracts. Oatp1a1 bound predominantly to the first and third PDZ binding domains of PDZK1, whereas the high density lipoprotein receptor, scavenger receptor B type I binds to the first domain. Although it is possible that PDZK1 forms a complex with these two integral membrane proteins, this did not occur, suggesting that as yet undescribed factors lead to selectivity in the interaction of these protein ligands with PDZK1. Oatp1a1 protein expression was near normal in PDZK1 knockout mouse liver. However, it was located predominantly in intracellular structures, in contrast to its normal basolateral plasma membrane distribution. Plasma disappearance of the Oatp1a1 ligand [35S]sulfobromophthalein was correspondingly delayed in knock-out mice. These studies show a critical role for oligomerization of Oatp1a1 with PDZK1 for its proper subcellular localization and function. Because its ability to transport substances into the cell requires surface expression, this must be considered in any assessment of physiologic function.

A major function of the hepatocyte is the removal of various xenobiotic and endogenous organic anionic compounds from the circulation. Sulfobromophthalein (BSP)1 is a model organic anion that circulates bound avidly to albumin and is extracted rapidly and efficiently by the hepatocyte (1–3). Establishment of a method to synthesize [35S]BSP of high specific activity (4) facilitated studies to identify its hepatocyte transporter(s). Studies performed in a Xenopus laevis oocyte expression system (5) identified a candidate transporter that was initially termed organic anion transporting polypeptide (Oatp). Since this initial description more than 20 additional members of the Oatp family have been described (6, 7). The original protein was termed Oatp1 and, subsequently, Oatp1a1 (see Table I) in a proposal for standardization of nomenclature (7). Studies utilizing antisense knock-out of Oatp1a1 expression in Xenopus oocytes that had been injected with rat liver mRNA suggested that this protein is responsible for a substantial fraction of organic anion transport by the liver (8), although this remains to be validated by other methods.

The family of organic anion transport proteins (Oatps) is characterized by a high degree of amino acid similarity as well as overlap of transported substrates, although their tissue distributions are varied (6, 7). In addition, they have similar predicted membrane topologies and biochemical characteristics. Although evidence suggests that the Oatps are important in clearance of drugs from the circulation (6, 7, 9), little is known regarding the mechanism by which they act, their oligomerization state, or mechanisms for subcellular trafficking. Of note is the fact that all of the Oatps that have been examined have distinct plasma membrane distributions, except for the prostaglandin transporters in which intracellular localization appears to predominate (10). Examination of their C-terminal sequences reveals that many of the known members of the Oatp family have PDZ consensus binding sites (see Table I). The prostaglandin transporters are among the group of Oatps that lack a putative PDZ binding domain (11, 12). Generally PDZ consensus binding sites are established by the sequence of the C-terminal four amino acids (13–15). Three classes of PDZ consensus binding sites have been described, relating these peptide sequences to the crystal structures of known PDZ domains to which they bind (14). The PDZ consensus sites that are present in the hepatic Oatps are all of Class I, defined by the sequence X(S/T)XΦ, where X is any amino acid, and Φ is a hydrophobic amino acid (14). A relatively large number of PDZ proteins have been described (14, 15), although there is as yet no way to predict which if any will bind a particular protein with a PDZ consensus binding site.

In the present study, we utilized rat Oatp1a1 (NM_017111) as a prototypical member of the Oatp family to examine

* This work was supported by National Institutes of Health Grants DK32026, DK41296, and CA06576, American Heart Association Grant 0130305N, and Pfizer International High Density Lipoprotein Research Award CUS16105. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† To whom correspondence should be addressed: Marion Bessin Liver Research Center, 625 Ullmann Blvd., Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461. Tel.: 718-430-3798; Fax: 718-430-8975; E-mail: wolkoff@aeom.yu.edu.

‡ The abbreviations used are: BSP, sulfobromophthalein; Oatp, organic anion transporting protein; SR-BI, scavenger receptor B type I; aa, amino acids; PBS, phosphate-buffered saline; MALDI, matrix-assisted laser desorption ionization; MS, mass spectroscopy; CHAPS, 3-[3-cholamidopropyl]dimethylammonio)-1-propanesulfonic acid.

This paper is available on line at http://www.jbc.org

30143
whether interaction with a PDZ domain-containing protein provides a mechanism governing its subcellular localization. Oatp1a1 is located on the basolateral plasma membrane of the hepatocyte (16) as well as on the apical plasma membranes of the epithelial cells of the choroid plexus and the S2 segment of the renal proximal tubule (16–18). Its terminal four amino acids (KTKL) are consistent with a type I PDZ binding motif (14). There is also a mouse homolog of this protein (NM_013797) that is 81% identical to the rat Oatp1a1, and the C-terminal 11 amino acids of these two proteins are identical.

MATERIALS AND METHODS

Antibodies and Reagents—The antibody against the N terminus of Oatp1a1 (MEETEKKIAQGECGRC) linked to KLH was prepared in rabbits by Covance Research Products Inc. (Denver, PA) as previously described (19). This antibody recognizes Oatp1a1 in rat and mouse liver and was used for-immunoblots at a 1:1000 dilution. An antibody specific to rat Oatp1a1, used in immunoblots at a dilution of 1:25,000, was raised in rabbits to a KLH-linked peptide corresponding to 13 amino acids near the C terminus of rat Oatp1a1 (aa 646–658) as described previously (16). A rabbit antibody to Oatp1a4, used in immunoblots at a dilution of 1:1000, was prepared to a rat Oatp1a4 peptide corresponding to the 11 C-terminal amino acids (aa 650–661) of the protein. Rabbit antibodies to scavenger receptor B type I (SR-BI) and PDZK1 were as previously described (20) and were used in immunoblots at dilutions of 1:1000. A rabbit polyclonal antibody that recognizes the mouse asialoglycoprotein receptor was kindly provided by Dr. Richard Stockert for immunofluorescence studies. ECL reagent for Western blot analysis was obtained from PerkinElmer Life Sciences. Horseradish peroxidase (HRP)-conjugated affinity-purified goat anti-rabbit IgG and HRP-conjugated affinity-purified goat anti-mouse IgG were obtained from Jackson ImmunoResearch (West Grove, PA) and were used in immunoblots at dilutions of 1:50,000 and 1:10,000, respectively. 293T cells were obtained from Dr. Robert Burkh (21). All other reagents were obtained from Sigma unless otherwise noted. All animal procedures were approved by the university committees on animal use.

Preparation of C-terminal Peptide Affinity Gel—The peptides CHGSPQVENDELKT (aa 333–343) and CHGSPQVENDEGL (aa 334–343) were synthesized in The Laboratory for Macromolecular Analysis and Proteomics, Albert Einstein College of Medicine. An additional cysteine residue was included at the N terminus to facilitate coupling to Ultralink Iodoacetyl Gel (Pierce) according to the manufacturer’s instructions.

Isolation of Peptide-binding Proteins from Rat Liver Cytosol—The liver was surgically removed from a rat under pentobarbital anesthesia and was immediately infused through the portal vein with 30 ml of ice-cold PBS. It was quickly weighed and Dounce-homogenized in PBS (10 ml/g of liver) and centrifuged at 12,000 rpm (Sorvall RC-5B centrifuge) for 15 min at 4 °C, and the supernatant was saved for Western blot analysis. The pellet was resuspended in 1 M Tris-base to neutralize the pH. The eluates were then subjected to 1 M Tris-base to neutralize the pH. The eluates were then subjected to

Identification of Oatp1a1-interacting PDZK1 Domains—As previously described, PDZK1 has four independent PDZ binding domains (22, 23). Briefly, rat PDZK1 was cloned into pCDNA3.1(+) (Invitrogen). PDZK1 cDNA was cloned into pFLAG-CMV-5c (Sigma) after PCR amplification from a pCDDNA3.1/hygro-PDZK1 plasmid, resulting in a plasmid encoding PDZK1 with FLAG at its N terminus. Transient co-transfection of 293T cells with the plasmid encoding rat Oatp1a1 and PDZK1 resulted in a plasmid encoding PDZK1 with FLAG at its N terminus. Transient co-transfection of 293T cells with the plasmid encoding rat Oatp1a1 and PDZK1 resulted in a plasmid encoding PDZK1 with FLAG at its N terminus. Transient co-transfection of 293T cells with the plasmid encoding rat Oatp1a1 and PDZK1 resulted in a plasmid encoding PDZK1 with FLAG at its N terminus. Transient co-transfection of 293T cells with the plasmid encoding rat Oatp1a1 and PDZK1 resulted in a plasmid encoding PDZK1 with FLAG at its N terminus. Transient co-transfection of 293T cells with the plasmid encoding rat Oatp1a1 and PDZK1 resulted in a plasmid encoding PDZK1 with FLAG at its N terminus.

Immunoprecipitation of Rat Liver Membrane Extracts—Antiserum against the N-terminal peptide of Oatp1a1 was immunopurified with peptide coupled to SulfoLink-agarose (Pierce) according to the manufacturer’s instructions. This purified antibody was covalently coupled to immobilized protein A-agarose (Sigma) by incubating for 1 h at room temperature in 40 mM dimethyl pimelimidate (Pierce) in 0.2 M triethan-
pended in extracted rat liver membrane containing protease inhibitors as prepared above (5 mg membrane/15 μl of gel), and rotated overnight at 4 °C. The gel was washed with 1% Triton X-100 in PBS 5 times before the addition of SDS-PAGE sample buffer for Western blot analysis.

Generation of PDZK1 Gene-targeted Mice—Mice in which exon 1 and part of intron 1 of the PDZK1 allele were replaced by the Neo cassette were prepared and bred in the Columbia University Transgenic Facility as described previously (27).

Immunofluorescence Localization of PDZK1 in Liver—Male wild type or PDZK1 knock-out mice were anesthetized with ether, and the livers were removed and fixed by immersion for 3 h at 4 °C with 4% paraformaldehyde in 0.1 x phosphate buffer, pH 7.4, containing 7.5% sucrose and frozen sections (~30 μm thick) were prepared (16). Sections were exposed overnight at 4 °C to anti-Oatp1a1, anti-asialoglycoprotein receptor, or anti-PDZK1 diluted 1:100 in PBS and, after rinsing in PBS, were exposed overnight at 4 °C to a 1:400 dilution of a Cy3-labeled donkey antibody to rabbit IgG (Jackson Immunoresearch). Controls included examination of sections for autofluorescence after exposure to non-specific primary antisera. Wide field immunofluorescence images were captured with a 60× Olympus objective (1.4 NA) on an Olympus IX71 microscope. Rhodamine fluorescence was excited with a DG-4 (Sutter Instruments) xenon light source, and digital images were recorded on a Photometrics CoolSnap HQ CCD camera controlled by Metamorph imaging software (Universal Imaging Corp). Images were deconvolved optically sectioned every 0.25 μm using an MS-2000 automated piezo-electric x, y, z stage (Applied Scientific Instruments) for a total of 72 optical sections. Image stacks were deconvolved using the Metamorph “measured deconvolution” algorithm. For this, suboptical resolution fluorescent beads (PS-Spec, Molecular Probes) were sectioned in the z dimension under identical conditions as the liver. Bead stacks were assessed to generate a measured “point spread function,” and this point spread function was used to optically deconvolve the stacks of liver fluorescence images.

([35S]BSP Plasma Disappearance—[35S]BSP (1000 μCi/μmol) was synthesized as previously described (4). Male wild type and PDZK1 knock-out mice were anesthetized with ketamine and injected retroorbitally with ~140,000 cpm of [35S]BSP in 0.1 ml of PBS. Timed blood samples were obtained from the contralateral retinacular sinus in heparinized capillary tubes, which were then centrifuged, and radioactivity in an aliquot of plasma was quantified. Plasma disappearance rate in s−1 was calculated as 1/τ, where τ is the fraction of injected [35S]BSP/ml plasma at time t, a is the fraction of injected [35S]BSP/ml plasma at time 0, and b is the fractional disappearance rate in s−1. The volume of distribution of [35S]BSP was calculated as 1/a, and the serum half-life of [35S]BSP (t1/2) was calculated as ln(2)/b.

RESULTS

Isolation and Identification of Rat Liver Cytosolic Proteins That Bind to the C-terminal Tail of Oatp1a1—For these experiments, a peptide corresponding to the C-terminal 16 amino acids of rat Oatp1a1 was covalently coupled to agarose gel. This peptide minus the last 4 amino acids that comprise the PDZ binding consensus domain was also coupled to agarose gel and used as a control. The columns were washed extensively with PBS as well as 1 M NaCl. Proteins bound to the washed gel were eluted with SDS-PAGE sample buffer and detected after SDS-PAGE by silver stain or staining with Coomassie Blue. A representative silver-stained SDS-PAGE gel is seen in Fig. 1a. A major protein band of ~70 kDa was detected only in the material that was bound to the intact peptide (lane 1) and not to the peptide lacking the terminal 4 amino acids (lane 2). This band was visualized by Coomassie Blue staining of replicate gels and was excised. After reduction and alkylation, the gel slice was incubated overnight with trypsin. The resulting tryptic peptides were identified by MALDI mass spectrometry. A representative MALDI mass spectrum is shown in Fig. 1b. Data base analysis revealed a high correspondence of the observed peptide masses to those that would be obtained by tryptic digestion of rat PDZK1. These 64 possible tryptic peptides are indicated in Fig. 1c by alternating shading that has been applied to the PDZK1 sequence. After analysis of multiple MALDI spectra, 50 peptides corresponding to 66% of the protein sequence of PDZK1 were identified as indicated by the solid underlines in Fig. 1c. Identification as PDZK1 was confirmed by tandem MS/MS analysis. A representative MS/MS spectrum is shown in Fig. 1d, in which the sequence corresponding to the fifth PDZK1 tryptic peptide was identified. Masses in this figure are annotated using standard nomenclature as described (28). Utilizing tandem MS/MS, the sequences of 27 peptides corresponding to 54% of the PDZK1 sequence were identified and are indicated by the broken underlines in Fig. 1c. Together, the two methods identified 93% of the PDZK1 sequence (Fig. 1c). In addition, identification of this protein as PDZK1 was confirmed by immunoblot using a peptide-specific antibody (data not shown).

Interaction of Oatp1a1 and PDZK1 in Cells and Rat Liver—These studies showed that the C-terminal four amino acids of Oatp1a1 are necessary for interaction with PDZK1. However, these results are not predictive as to whether this interaction between Oatp1a1 and PDZK1 actually occurs in vivo. Although several proteins have been shown to bind to PDZK1 under in vitro conditions, the functional significance of this interaction has not always been clear (29, 30). To assess whether the interaction found with the C-terminal peptide occurs with full-length proteins expressed in cells, 293T cells were transfected with expression plasmids encoding Oatp1a1 and FLAG-PDZK1. Immunoprecipitation was performed with FLAG antibody or an antibody raised to the N terminus of Oatp1a1 that would not be expected to interfere with interaction of the C terminus with PDZK1. Western blot analysis of the FLAG immunoprecipitate with anti-Oatp1a1 revealed the presence of Oatp1a1 (Fig. 2a, left panel), and Western blot analysis of the Oatp1a1 immunoprecipitate revealed the presence of FLAG-PDZK1 (Fig. 2a, right panel). There was no product detected in the immunoprecipitate after cotransfection of either expression plasmid with the alternate empty plasmid (Fig. 2a, lanes 2 and 3). As a control, coexpression of Oatp1a4 and FLAG-PDZK1 in 293T cells revealed that the FLAG-PDZK1 immunoprecipitate did not contain detectable Oatp1a4 (Fig. 2b). Rat Oatp1a4, formerly known as Oatp2, is a member of the Oatp family with an amino acid sequence that is ~76% identical to that of Oatp1a1. As seen in Table I, although it is distributed on the basolateral plasma membrane of the hepatocyte, it lacks a PDZ consensus sequence at its C terminus. These studies of Oatp1a1-FLAG-PDZK1 interaction were performed in cells in which synthesis of these proteins was maximized. They do not prove that such an interaction actually occurs in hepatocytes, where protein concentrations may be lower and other proteins may be competing for binding to PDZK1. Thus, although these experiments indicate that full-length PDZK1 can interact with full-length Oatp1a1, it is important to determine whether this interaction actually occurs in the liver. Consequently, a series of experiments was performed in which a rat liver membrane detergent extract was subjected to immunoprecipitation with antibody to the N terminus of Oatp1a1. The immunoprecipitates were subjected to SDS-PAGE after which Western blot analysis was performed. As seen in the left two panels of Fig. 2c, antibody to Oatp1a1 immunoprecipitated Oatp1a1 as well as PDZK1, confirming that they are bound to each other in liver. Perhaps the best characterized ligand partner for PDZK1 is the high density lipoprotein receptor, SR-BI. This protein is present on the basolateral surface of hepatocytes, where it selectively extracts lipids from high density lipoprotein particles (20, 31). Previous studies have shown that SR-BI and PDZK1 coimmunoprecipitate from rat liver (25). Interestingly, as seen in the fourth panel of Fig. 2c, there was no SR-BI found in the Oatp1a1 immunoprecipitate from rat liver. Rat Oatp1a4,
as noted above, lacks a PDZ consensus sequence at its C terminus. We hypothesized that it might sort to the cell surface as a complex with Oatp1a1, but as seen in the third panel of Fig. 2c, it is not present in the Oatp1a1 immunoprecipitate from rat liver. These results indicate that there is specific interaction of Oatp1a1 and PDZK1 in the liver.

PDZK1 has four independent PDZ domains (25, 26). SR-BI binds to the first PDZ domain of PDZK1 (25). Experiments were designed to determine the domain(s) to which Oatp1a1 binds. Plasmids encoding PDZK1 binding domains 1 (aa 1–110), 2 (aa 113–235), 3 (aa 221–343), or 4 (aa 356–519) as glutathione S-transferase fusion proteins were constructed. The respective proteins were expressed in E. coli and bound to GSH-agarose gels. Each gel was incubated with a Triton X-100 rat liver membrane extract. Gels were then washed extensively, and bound proteins were eluted into SDS-PAGE sample buffer and subjected to Western blot analysis using antibody to Oatp1a1. As seen in Fig. 2d, Oatp1a1 bound predominantly to the first and third domains of PDZK1. Although the preceding studies suggest a strong interaction of Oatp1a1 with PDZK1 in the liver, they do not prove that this interaction is physiologically relevant. To examine this issue, studies were performed in mice in which expression of PDZK1 was genetically disrupted. The mouse homolog of rat Oatp1a1 has the identical PDZ recognition motif at the C terminus and is recognized by the antibody to the N terminus of Oatp1a1 that was used in the immunoprecipitation studies. Previous studies in transgenic mice revealed that interaction with PDZK1 was essential for targeting of SR-BI to the hepa-
In concordance with these observations, SR-BI expression and function in livers from PDZK1 knock-out mice were found to be markedly reduced (27, 32). An as yet unexplained post-transcriptional process is responsible for this reduction in protein expression, as levels of mRNA encoding SR-BI were normal in these mice (32). We confirmed by Western blot that the strain of PDZK1 mice that were used in the present study had no expression of PDZK1 protein as compared with wild type mice (Fig. 3a, top panel). Similar to the earlier studies noted above that were performed in another strain of PDZK1 knock-out mice (32), this was accompanied by a substantial reduction in expression of SR-BI (Fig. 3a, middle panel). In contrast, total expression of Oatp1a1 in liver homogenate was similar to wild type when

![Image](image_url)
Interaction with PDZK1 Is Required for Oatp1a1 Function

TABLE I
Members of the Oatp family that are found in rat, mouse, or human liver

Species	Original name	New name	NCBI accession number	C-terminal sequence	Potential PDZ consensus	Plasma membrane
Rat	Oatp1	Oatp1a1	NM_017111	KTKL	Yes	Yes
Rat	Oatp2	Oatp1a4	NM_131906	VTED	No	Yes
Rat	Oatp4	Oatp1b2	NM_070165	ETPL	Yes	Yes
Rat	Oatp6	Oatp1b1	NM_080786	LQFL	No	ND*
Mouse	Oatp1	Oatp1A1	NM_013797	KTKL	Yes	Yes
Mouse	Oatp2	Oatp1A4	NM_030687	KTKL	Yes	ND
Mouse	Oatp4	Oatp1b2	NM_020495	ETPL	Yes	ND
Human	OATP-A	OATP1A2	NM_021094	KTKL	Yes	Yes
Human	OATP-C	OATP1B1	NM_006446	ETHC	No	Yes
Human	OATP8	OATP1B3	NM_019844	AAAN	No	Yes
Human	OATP-B	OATP2B1	NM_007256	DSRV	Yes	Yes

* ND, not determined.

TABLE II
Kinetic parameters of plasma disappearance of [35S]BSP in wild type (WT) and PDZK1 (−/−) mice

Data were fit by non-linear least squares regression to the equation \(C(t) = a e^{-bt} \), where \(C(t) \) is the fraction of injected [35S]BSP/ml plasma at time \(t \), \(a \) is the fraction of injected [35S]BSP/ml plasma at time 0, and \(b \) is the fractional disappearance rate in s\(^{-1}\). \(r^2 \) is the correlation coefficient of the fit. The volume of distribution of [35S]BSP (VD) is calculated as 1/\(a \), and the serum half-life of [35S]BSP (\(t_s/2 \)) is calculated as ln(2)/\(b \).

n	a	b	\(r^2 \)	VD	\(t_s/2 \)	
WT	5	0.71 ± 0.07	0.013 ± 0.003	0.84 ± 0.11	1.41 ± 0.14	55.5 ± 14.6
PDZK1 (−/−)	4	0.83 ± 0.42	0.0098 ± 0.0009*	0.82 ± 0.29	1.39 ± 0.59	70.8 ± 5.97*

* \(p < 0.05 \).

Determined in PDZK1 knock-out mice (Fig. 3a, bottom panel). However, when subcellular distribution of Oatp1a1 was examined in liver from knock-out mice, it was found to be predominantly in intracellular structures, in contrast to the typical basolateral distribution of Oatp1a1 (16) in wild type mouse liver (Fig. 3b, top panels). Importantly, the absence of PDZK1 did not cause a general disturbance in membrane behavior since the basolateral distribution of the asialoglycoprotein receptor in livers from normal and knock-out mice were indistinguishable (Fig. 3b, middle panels). As expected, PDZK1 was undetectable in the knock-out and had a primarily basolateral distribution in the wild type liver (Fig. 3b, bottom panels). Much of the cytosolic pool of PDZK1 likely washed out during the preparation and permeabilization of the tissue.

The functional significance of this subcellular redistribution of hepatocyte Oatp1a1 was determined by quantifying the plasma disappearance of [35S]BSP. BSP is a well characterized substrate for Oatp1a1-mediated cellular uptake (8, 9, 22), although several other hepatocyte plasma membrane proteins also have the ability to mediate its uptake (9). This probably accounts for the fact that plasma disappearance of BSP was relatively rapid in both wild type and PDZK1 knock-out mice (Table II). Analysis of these data by non-linear least squares regression revealed that the plasma volume of distribution was identical in wild type and knock-out mice (Table II). However, the fractional uptake rate of BSP was reduced by ~25% (\(p < 0.05 \)), and the corresponding plasma half-life was increased by the same proportion (\(p < 0.05 \)) in the PDZK1 knock-out as compared with wild type mice (Table II).
DISCUSSION

The present study establishes that Oatp1a1 binds to PDZK1 in vitro and in vivo. PDZK1 is a 70-kDa protein with 4 independent PDZ domains that has been shown to be present in a number of tissues including liver and kidney (20, 25, 26, 32, 33). Although several proteins have been shown to bind to PDZK1 under in vitro conditions, the functional significance of this interaction has not always been clear (30). Perhaps the best characterized ligand partner for PDZK1 is the high density lipoprotein receptor, SRBI. SRBI and PDZK1 coimmunoprecipitate from rat liver, and studies in transgenic mice reveal that this interaction is essential for targeting of SRBI to the hepatocyte plasma membrane (20). In concordance with these observations, there is markedly reduced SRBI expression and function in livers from PDZK1 knock-out mice (27, 32). The present study indicates that interaction with PDZK1 is also essential for hepatocyte plasma membrane expression of Oatp1a1. SRBI binds to the first PDZ domain of PDZK1 (25), whereas Oatp1a1 binds predominantly to the first and third domains (Fig. 2d). Although it is, thus, possible that PDZK1 could form a complex with these two membrane proteins, we have found no evidence for this (Fig. 2c), suggesting that as yet undescribed factors lead to selectivity in the interaction of these protein ligands with PDZK1.

Although mouse Oatp1a4 has been described as the homolog of rat Oatp1a1 (34), the mouse protein has a C-terminal PDZ binding consensus site (KTKL), whereas the rat protein does not (Table I). These proteins are 89% identical, although the C terminus of the mouse protein is eight amino acids longer than that of the rat protein. Despite the lack of a PDZ binding domain, the rat protein localizes to the basolateral plasma membrane of the hepatocyte (35). Although it is possible that Oatp1a4 traffics to the plasma membrane as a complex with Oatp1a1, we found no evidence for their binding to each other as determined by failure to recover Oatp1a4 after immunoprecipitation of Oatp1a1 from rat liver lysate (Fig. 2c). As shown in the present study, expression of Oatp1a1 at the plasma membrane requires its interaction with PDZK1 and apparently cannot utilize the as yet undescribed PDZ-independent mechanism that is utilized by Oatp1a4.

As noted above, the prostaglandin transporters, members of the Oatp family, also lack PDZ consensus binding sites. Immunolocalization of prostaglandin transporter in various rat tissues reveals a prominent intracellular distribution (10), whereas Oatp1a1 is predominantly on the plasma membrane of hepatocytes, renal tubules, and choroid plexus epithelial cells (16–18). It is interesting that in the choroid plexus, Oatp1a1 is distributed in large intracellular vesicular structures during the initial 8–10 weeks of development before assuming the adult apical plasma membrane phenotype (18). Whether this is a result of altered expression of PDZK1 during development is not known at the present time.

The present study shows that interaction of Oatp1a1 with PDZK1 is required for its expression on the hepatocyte surface. As its ability to transport substances into the cell requires surface expression, this must be considered in any assessment of its physiologic function. Most studies of Oatp1a1 function have been performed in transfected cells lacking PDZK1, in which the transporter is overexpressed. Whether the lack of a PDZK1 binding scaffold will have an affect on Oatp1a1-mediated transport function is an important subject that will need to be addressed in future studies.

REFERENCES

1. Gartner, U., Stockert, R. J., Levine, W. G., and Wolkoff, A. W. (1982) Gastroenterology 83, 1163–1169
2. Stollman, Y. R., Gartner, U., Thelmann, L., Ohmi, N., and Wolkoff, A. W. (1983) J. Clin. Investig. 72, 718–723
3. Gartner, U., Goezer, T., and Wolkoff, A. W. (1997) Gastroenterology 113, 1707–1713
4. Kuriu, H., Nilprahbassom, P., and Wolkoff, A. W. (1989) Anal. Biochem. 179, 242–247
5. Jacqueemin, E., Hagenbuch, B., Stieger, B., Wolkoff, A. W., and Meier, P. J. (1991) J. Clin. Investig. 88, 2146–2149
6. Hagenbuch, B., and Meier, P. J. (2000) Biochim. Biophys. Acta 1499, 1–18
7. Hagenbuch, B., and Meier, P. J. (2004) Pfluegers Arch. Eur. J. Physiol. 447, 653–665
8. Hagenbuch, B., Scharschmidt, B. F., and Meier, P. J. (1998) Biochem. J. 316, 1–9
9. Hata, S., Wang, P., Eftychiou, N., Ananthanarayanan, M., Battia, A., Salen, G., Pang, K. S., and Wolkoff, A. W. (2003) Am. J. Physiol. Gastroent. Liver Physiol. 285, 829–838
10. Bao, Y., Pucci, M. L., Chan, B. S., Lu, R., Ito, S., and Schuster, V. L. (2002) Am. J. Physiol. Renal Physiol. 282, 1103–1110
11. Kanai, N., Lu, R., Satriano, J. A., Bao, Y., Wolkoff, A. W., and Schuster, V. L. (1995) Science 268, 866–869
12. Lu, R., Kanai, N., Bao, Y., and Schuster, V. L. (1996) J. Clin. Investig. 98, 1142–1149
13. Sheng, M., and Sala, C. (2001) Annu. Rev. Neurosci. 24, 1–29
14. Hung, A. Y., and Sheng, M. (2002) J. Biol. Chem. 277, 5699–5702
15. Kim, E., and Sheng, M. (2004) Nat. Rev. Neurosci. 5, 771–781
16. Bergwerk, A. J., Shi, X., Ford, A. C., Kanai, N., Jaquemin, E., Burk, R. D., Bai, S., Novikoff, P. M., Stieger, B., Meier, P. J., Schuster, V. L., and Wolkoff, A. W. (1996) Am. J. Physiol. 271, G231–G238
17. Angelti, R. H., Novikoff, P. M., Juvvadi, S., Fritschy, J.-M., Meier, P. J., and Angeletti, R. H. (1998) Am. J. Physiol. 273, C882–C887
18. Glavy, J. S., Wu, S. M., Wang, P. J., Orr, G. A., and Wolkoff, A. W. (2000) J. Biol. Chem. 275, 1479–1484
19. Silver, D. L. (2002) J. Biol. Chem. 277, 34042–34047
20. Mohan, S., and Burk, R. D. (2003) Oncogene 22, 5270–5280
21. Shi, X., Iau, S., Ford, A. C., Burk, R. D., Jaquemin, E., Hagenbuch, B., Meier, P. J., and Wolkoff, A. W. (1995) J. Biol. Chem. 270, 25591–25595
22. Jaquemin, E., Hagenbuch, B., Stieger, B., Wolkoff, A. W., and Meier, P. J. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 133–137
23. Cvetkovic, M., Leake, B., Fromm, M. F., Wilkinson, G. R., and Kim, R. B. (1999) Drug Metab. Dispos. 27, 866–871
24. Ikemoto, M., Arai, H., Feng, D., Tanaka, K., Aoki, J., Dohmae, N., Takio, K., Adachi, H., Tsujimoto, M., and Inoue, K. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 6538–6543
25. Gisler, S. M., Madjdpour, C., Bacic, D., Pribanic, S., Taylor, S. S., Biber, J., and Murer, H. (2003) Kidney Int. 64, 1746–1754
26. Lan, D., and Silver, D. L. (2005) J. Biol. Chem. 280, 23390–23396
27. Addona, T., and Clauser, K. (2005) in (Coligan, J. E., Dunn, B. M., Speicher, D. W., and Wingfield, P. T., eds) Current Protocols in Protein Science, Unit 16.11, John Wiley & Sons, Inc., Hoboken, New Jersey
28. Kato, Y., Yoshida, K., Watanabe, C., Sai, Y., and Tsuji, A. (2004) Pharm. Res. (N. Y.) 21, 1886–1894
29. Capuano, P., Bacic, D., Stange, G., Hernandez, N., Kaissling, B., Pal, R., Kocher, O., Biber, J., Wagner, C. A., and Murer, H. (2005) Pflugers Arch. Eur. J. Physiol. 449, 392–402
30. Jacqueemin, E., Hagenbuch, B., Stieger, B., Wolkoff, A. W., and Meier, P. J. (1999) Kidney Int. 55, 183–188
31. Kocher, O., Pal, R., Roberts, M., Girov, C., and Gilchrist, A. (2003) Mol. Cell. Biol. 23, 1175–1180
32. van Montfoort, J. E., Schmid, T. E., Adler, I. D., Meier, P. J., and Hagenbuch, B. (2003) Biochim. Biophys. Acta 1564, 183–188
33. Gao, B., St Pierre, M. V., Stieger, B., and Meier, P. J. (2004) J. Hepatol. 41, 201–208