KALAI ORIENTATIONS ON MATROID POLYTOPES

RAUL CORDOVIL

Abstract. Let \(P \) a polytope and let \(\mathcal{G}(P) \) be the graph of \(P \). Following Gil Kalai, we say that an acyclic orientation \(O \) of \(\mathcal{G}(P) \) is **good** if, for every non-empty face \(F \) of \(P \), the induced graph \(\mathcal{G}(F) \) has exactly one sink. Gil Kalai gave a simple way to tell a simple polytope from the good orientations of its graph. This article is a broader study of “good orientations” (of the graphs) on matroid polytopes.

Dedicated to Michel Las Vergnas on the occasion of his 65th birthday

1. Introduction

Let \(P \) be a simple polytope (see [10] for details on polytopes) and let \(\mathcal{G}(P) \) be its graph (1-skeleton). M. Perles conjectured (see the reference [P] in [7]) and Blind and Mani [2] proved that the graph \(\mathcal{G}(P) \) determines the lattice of faces of \(P \). Kalai [7] gave a short and constructive prove of this result; see also [5, 6] for a discussion and refinement of Kalai’s technique. Kalai’s proof is based on an intrinsical characterization of the “good” orientations of \(\mathcal{G}(P) \) between all the acyclic orientations. Following [7], we say that an acyclic orientation \(O \) of \(\mathcal{G}(P) \) is **good** if for every non-empty face \(F \) of \(P \) the induced graph \(\mathcal{G}(F) \) has exactly one sink, i.e., a vertex of \(\mathcal{G}(F) \) with no lower adjacent vertices. Every linear ordering, \(\{v_1 \prec \cdots \prec v_n\} \), of the vertex set \(V \) of \(\mathcal{G}(M) \) induces an acyclic orientation \(O_\prec \) of the graph, where an edge is directed from its larger end-node to its smaller end-node. The linear ordering \(\{v_1 \prec \cdots \prec v_n\} \) is called **good** if \(O_\prec \) is a good orientation. Each acyclic orientation of an arbitrary graph \(G \) is induced by some linear ordering of its vertices, see [5] Proposition 1.2. Good orderings are in 1-1 correspondence with shelling orderings of the facets of the boundary \(\partial P^\Delta \) of the dual polytope \(P^\Delta \) (see Theorem 2.3 below for a matroidal generalization).

We say that an oriented matroid \(\mathcal{M} \) is a matroid polytope if it is acyclic and all the elements of the ground set \(E(\mathcal{M}) \) are extreme points of \(\mathcal{M} \). The graph \(\mathcal{G}(\mathcal{M}) \) of the matroid polytope \(\mathcal{M} \) is the graph whose vertices [resp. edges] are the faces of rank 1 [resp. 2] of \(\mathcal{M} \). In particular the vertex set of \(\mathcal{G}(\mathcal{M}) \) is the ground set \(E(\mathcal{M}) \). We say that the matroid polytope \(\mathcal{M} \) is **simple** if every vertex of \(\mathcal{G}(\mathcal{M}) \) is incident with exactly rank(\(\mathcal{M} \)) – 1 edges.

The authors’ research was supported in part by FCT (Portugal) through program POCTI and the project “Algebraic Methods in Graph Theory” approved by program Pessoa 2005/6.
The proof of Gil Kalai [7] remains true if we replace “simple polytope” by “simple matroid polytope” so, the graph $G(\mathcal{M})$ also encloses the face lattice of \mathcal{M}. If F is a non-empty face of \mathcal{M} then F also is a matroid polytope (we are identifying F and the restriction of \mathcal{M} to F). For more details on oriented matroid theory see Section 2 and [1].

2. K-orderings

Let $\mathcal{M}', \mathcal{M}''$ [resp. \mathcal{M}] denotes an acyclic oriented matroid [resp. matroid polytope] of rank r on ground set $E = \{e_1, \ldots, e_n\}$. Let $\mathcal{O} = \mathcal{O}(\mathcal{M}')$ be the class of all the acyclic reorientations of \mathcal{M}'. For every linear ordering $E(\mathcal{M})_\prec$ let \mathcal{O}_\prec denotes the orientation of $G(\mathcal{M})$ where uv is a directed edge from u to v, if $v \prec u$. Let $\mathcal{G}_\prec(\mathcal{M}) := (G(\mathcal{M}), \mathcal{O}_\prec)$ be the corresponding digraph. If F is a face of \mathcal{M} let $\mathcal{G}_\prec(F)$ be the induced directed subgraph on F. Note that an element e is the unique sink of $\mathcal{G}_\prec(\mathcal{M})$ if and only if for every element e' there is a directed path, $e' \prec e$, from e' to e.

Definition 2.1. We say that the linear ordering $\{e_1 < e_2 < \cdots < e_n\}$ of the ground set of a matroid polytope \mathcal{M} is a K-ordering if, for every non-empty face F of \mathcal{M}, the directed subgraph $\mathcal{G}_\prec(F)$ has exactly one sink. In particular the element e_1 is the unique sink of the digraph $\mathcal{G}_\prec(\mathcal{M})$.

From the “Topological Representation Theorem”, we know that there is a pure regular CW-complex of dimension $r - 1$, with the topology of a PL-sphere and encoding \mathcal{O}, see [1 Theorem 5.2.1]. We will denote this CW-complex by $\Delta(\mathcal{O})$, or by Δ for short, and called it the CW-complex of acyclic reorientations of \mathcal{M}'. To every cell $W \in \Delta$ we attach a “sign vector” $\sigma(W) \in \{0, +, -\}^{E(\mathcal{M}')}$ (for precisions see [1]). We will identify W and $\sigma(W)$ and set $W_{(e_i)} = \sigma(W)_{(e_i)}$. The set

$$\text{supp}(W) = \{e_i : W_{(e_i)} \neq 0\}$$

is called the support of W. We say that the cell W' is a face of W if the following two conditions hold:

1. $\text{supp}(W') \subset \text{supp}(W)$;
2. For every $e_i \in E$, if $e_i \in \text{supp}(W')$ then we have $W'_{(e_i)} = W_{(e_i)}$.

A cell $P \in \Delta$ has dimension 0 (is a vertex) if, seen as a signed vector, P is a signed cocircuit of \mathcal{M}. We will see Δ as an “abstract” regular cell complex over the set of its vertices. Every cell $W \in \Delta$ is identified with the set of its vertices $V(W)$:

$$W \equiv V(W) := \{P : P \text{ is a vertex of } \Delta \text{ and } P \leq W\}.$$

The facets of Δ are called the topes and have support equal to $E(\mathcal{M})$. We use the letter T to denote a tope. Every tope $T \in \Delta$ is a PL-ball and its boundary ∂T a PL-sphere. Every tope T fixes one acyclic reorientation $\mathcal{M}'' \in \mathcal{O}(\mathcal{M}')$. To explicit this correspondence we write $T = T(\mathcal{M}'')$. (The opposite tope $-T$ fix the same oriented matroid \mathcal{M}'.) If a fixed acyclic oriented matroid \mathcal{M}' is given we set $T(\mathcal{M}') = (+, +, \ldots, +)$. Let $\mathcal{L}(\mathcal{M})$
The following two statements are equivalent:

Theorem 2.3. So there is a directed edge \(\rightarrow \) \((2.3) \)

\(F \) non-empty face unique sink of \(\mathcal{E} \) \((2.3) \)

Definition 2.2. \(T \) of cells of \(\mathcal{E} \).

\(\Xi = 1 \) case, \(\{ \Xi \} \)

\(T \) \(\Xi \) denotes the element of rank \(r - s \) of \(\mathcal{L}(T(\mathcal{M})) \) determined by the following conditions:

\[
\Xi(X)(e_\ell) = \begin{cases}
0 & \text{if } e_\ell \leq X \\
+ & \text{if } e_\ell \not\leq X.
\end{cases}
\]

The atoms of \(\mathcal{L}(T(\mathcal{M})) \) are the image by \(\Xi \) of the co-atoms of \(\mathcal{L}(\mathcal{M}) \). The set of vertices and facets of CW-complex \(T \), are respectively

\[
\{ \Xi(H) : H \text{ a facet of } \mathcal{M} \} \quad \text{and} \quad \{ \Xi(e) : e \in E(\mathcal{M}) \}.
\]

If \(\mathcal{M} \) is a simple matroid polytope then \(T(\mathcal{M}) \) is an (abstract) simplicial complex of dimension rank(\(\mathcal{M} \)) \(- 1 \). In particular, for every pair \(\{ W, W' \} \) of cells of \(T(\mathcal{M}) \), we have \(V(W \land W') = V(W) \cap V(W') \). The following definition is a particular case of the standard one, see \[13\] \[14\] \[15\] for details. (The equivalence of Conditions (2.2) and \((2.2) ' \) is left to the reader.)

Definition 2.2. Let \(\Delta \) be the CW-complex of the acyclic reorientations of \(\mathcal{M} \) and \(T \in \Delta \) be the tope associated to \(\mathcal{M} \). We say that the linear ordering \(\{ \Xi_1 : \Xi_1 \prec \Xi_2 \prec \cdots \prec \Xi_n \} \) is a shelling of the PL-sphere \(\partial T \) and \(\partial T \) is shellable if one of the following equivalent conditions holds:

(2.2) \(\quad \) For every pair of co-atoms \(\Xi_i \prec \Xi_j \) such that \(\Xi_j \cap \Xi_i \neq \emptyset \), there is some facet \(\Xi_\ell \prec \Xi_j \) such that \(\Xi_\ell \cap \Xi_j \) is an abstract simplex of cardinality \(\ell - 2 \) of \(T \) and \(\Xi_i \cap \Xi_j \subseteq \Xi_\ell \cap \Xi_j \);

\((2.2) ' \) \(\quad \) For every pair of vertices \(\{ e_i, e_j \} \), \(1 \leq i < j \leq n \), on a non-singular face \(F \) of \(\mathcal{M} \), there is some \(\ell < j \) such that \(e_\ell e_\ell \) is a directed edge of the digraph \(\mathcal{G}_\prec(F) \).

Theorem 2.3. The following two statements are equivalent:

(2.3) \(\quad \) \(\{ e_1 \prec \cdots \prec e_n \} \) is a K-ordering of \(\mathcal{M} \);

(2.3) \(\quad \) \(\{ \Xi_1 = \Xi(e_1) \prec \Xi_2 \prec \cdots \prec \Xi_n \} \) is a shelling of the PL-sphere \(\partial T(\mathcal{M}) \).

Proof. (2.3) \(\Longrightarrow \) (2.3) \(\). As \(i < j \) we know that \(e_j \) is not a sink of \(\mathcal{G}_\prec(F) \). So there is a directed edge \(e_\ell e_\ell \) of \(\mathcal{G}_\prec(F) \) and (2.2) \(' \) holds.

(2.3) \(\Longrightarrow \) (2.3) \(\). Let \(\{ e_{i_1} \prec \cdots \prec e_{i_w} \} \) be the induced ordering on a non-empty face \(F \) of \(\mathcal{M} \). From Condition (2.2) \(' \) we know that \(e_{i_1} \) is the unique sink of \(\mathcal{G}_\prec(F) \) and (2.3) \(\) follows.

Let us recall that a linear ordering \(\{ e_1 \prec e_2 \prec \cdots \prec e_n \} \) of the ground set \(E(\mathcal{M}') \) is called a shelling ordering of \(\mathcal{M}' \), if the orientation obtained from \(\mathcal{M}' \) by changing the signs on the initial sets \(E_i := \{ e_1, e_2, \ldots, e_i \} \), \(i = 1, 2, \ldots, n \), is also acyclic. Edmonds and Mandel proved that in this case, \(\{ \Xi_1 = \Xi(e_1) \prec \Xi_2 \prec \cdots \prec \Xi_n \} \) is a shelling of the PL-sphere \(\partial T(A(M)) \), see \[14\] Proposition 4.3.1. Note that if \(F \) is a face of a matroid polytope \(\mathcal{M} \), every shelling ordering of \(\mathcal{M} \) induces a shelling ordering on \(F \). The following
result is a consequence of Theorem 2.3 and the above result of Edmonds and Mandel.

Corollary 2.4. Every shelling ordering of a simple matroid polytope is also a K-ordering.

Let \(f_\ell(M) \) be the number of faces of rank \(\ell + 1 \) of \(M \), \(-1 \leq \ell \leq r-1\). By convention set \(f_{-1}(M) = f_{r-1}(M) = 1 \). By analogy with the definition of the \(f \)-vector and the \(h \)-vector of a polytope, we call the vector,

\[
\mathbf{f}(M) := (f_{-1}(M), f_0(M), f_1(M), \ldots, f_{r-2}(M), f_{r-1}(M)),
\]

the \(f \)-vector of the (simple) matroid polytope \(M \) and we call the vector,

\[
\mathbf{h}^*(M) := (h_0^*(M), h_1^*(M), \ldots, h_{r-1}^*(M)),
\]

determined by the formulas

\[
(1) \quad h_\ell^*(M) = \sum_{i=0}^{\ell} (-1)^{\ell-i} \binom{r-1-i}{\ell-i} f_{r-1-i}(M), \quad \ell = 0, 1, \ldots, r-1,
\]

the \(h^*- \)vector of \(M \). Note that the \(f \)-vector also can be recovered from the \(h^* \)-vector:

\[
(2) \quad f_\ell(M) = \sum_{i=0}^{r-1-\ell} \binom{r-1-i}{\ell} h_i^*(M), \quad \ell = 0, 1, \ldots, r-1.
\]

(See [10, Section 8.3] for a good survey of \(h \)-vectors of simplicial polytopes and Dehn-Sommerville Equations.) From Euler-Poincaré formula (see [11, Corollary 4.6.11]) we know that

\[
(3) \quad \sum_{i=-1}^{r-1} (-1)^i f_i(M) = 0.
\]

The graph \(G(M) \) is regular of degree \(r-1 \). Fix a K-ordering \(\{e_1 \prec \cdots \prec e_n\} \) of \(M \). Let \(d^+(e) \) [resp. \(d^-(e) \)] denotes the outdegree [resp. indegree] of \(e \in E \). Set

\[
\mathbf{d}^+_\ell(M) := |\{e : e \in E, d^+(e) = \ell\}|
\]

\[
\mathbf{d}^-_\ell(M) := |\{e : e \in E, d^-(e) = \ell\}|
\]

We clearly have that \(\mathbf{d}^+_\ell(M) = \mathbf{d}^-_{r-1-\ell}(M) \).

Theorem 2.5. The integers \(\mathbf{d}^+_\ell(M) \), \(\ell = 0, 1, \ldots, r-1 \), are invariant of the matroid polytope \(M \) (i.e., are independent of the K-ordering) and they are determined by the equalities:

\[
(4) \quad h_\ell^*(M) = \mathbf{d}^+_\ell(M), \quad \ell = 0, 1, \ldots, r-1.
\]
Proof. Note that
\[f_\ell(M) = r - 1 - \sum_{j=\ell}^{r-1} d_j^- (M) \]
\[= \sum_{i=0}^{r-1-\ell} \binom{r-1-i}{\ell} d_{r-1-i}^- (M) \]
\[= \sum_{i=0}^{r-1-\ell} \binom{r-1-i}{\ell} d_{r-1-i}^+ (M). \]
From Equation (2) we conclude that \(d_\ell^+ (M) = h^*_\ell (M). \)

Corollary 2.6. Let \(E_\prec := \{ e_1 \prec e_2 \prec \cdots \prec e_n \} \) be a \(K \)-ordering of \(M \). Then the reverse ordering \(E_\prec^* := \{ e_n \prec^* e_{(n-1)} \prec^* \cdots \prec^* e_1 \} \) is also a \(K \)-ordering of \(M \).

Proof. It is necessary to prove that, for every non-empty face \(F \) of \(M \), the digraph \(G_\prec^* (F) \) has exactly one sink, i.e., \(d_{r-1}^+ (F) = 1 \). From the equalities (4) we know \(d_{r-1}^+ (M) = h^*_{r-1} (M) \). From Euler-Poincaré formula (3) we conclude that
\[h^*_{r-1} (M) = \sum_{i=0}^{r-1} (-1)^{r-1-i} f_{r-1-i} (M) = \]
\[= \sum_{j=0}^{r-1-\ell} (-1)^j f_j^+ (M) = f_{-1} (M) = 1. \]
So \(G_\prec^* (M) \) has exactly one sink. As every face \(F \) of \(M \) is a simple matroid polytope the result follows.

3. The Cube

Let \(C^d := \{ x \in \mathbb{R}^d : 0 \leq x_\ell \leq 1, \ \ell = 1, \ldots, d \} \) be the \(d \)-dimensional cube. As the polar of the cube \(C^d \) is the \(d \)-dimensional crosspolytope (a simplicial polytope), it results from Theorem (2.5) above that:
\[h^*(C^d) = \begin{pmatrix} \binom{d}{0} \\ \binom{d}{1} \\ \vdots \\ \binom{d}{d-1} \\ \binom{d}{d} \end{pmatrix}, \]
i.e., there are exactly \(\binom{d}{\ell} \), \(0 \leq \ell \leq d \), vertices of \(G(C^d) \) such that \(d^- (e) = d - \ell \).
Let \(B := \{0,1\}^d \) be the set of the vertices of the cube \(C^d \) and for every \(b_i \in B, 1 \leq i \leq 2^d \), set \(e_i = (b_i, 1) \in \mathbb{R}^{d+1} \). The rank \(d + 1 \) cube matroid polytope, \(C^d \), is the oriented matroid determined by the linear dependencies of vectors of \(E := \{ e_i : b_i \in B \} \). The following theorem is closely related to the results presented here. (We present here a slightly different version of the original result.)
Theorem 3.1. Proposition 3.2] Let C^d be the cube matroid polytope of rank at least three. Let $\{e_1 \prec e_2 \prec \cdots \prec e_{2d}\}$ be a linear ordering of $E(C^d)$. Then the following two conditions are equivalent:

\begin{enumerate}
 \item[(3.1.1)] $\{e_1 \prec e_2 \prec \cdots \prec e_{2d}\}$ is a K-ordering of C^d;
 \item[(3.1.2)] For every rank three face F of C^d, the digraph $G_\prec(F)$ has an unique sink. \hfill \square
\end{enumerate}

In the rank three cube matroid polytope C^2, the “K-ordering” and the “shelling orderings” coincide. This result suggest the following problem:

Open Problems 3.2. Is there a simple characterisation of shelling orderings of the cube matroid polytope C^d? Are there K-orderings of the cube matroid polytope that are not shelling orderings?

References

[1] Björner, A.; Las Vergnas, M.; Sturmfels, B.; White, N.; Ziegler, G.M.: Oriented Matroids. Second edition. Encyclopedia Math. Appl., 46, Cambridge University Press, Cambridge, 1999.
[2] Blind, Roswitha; Mani-Levitska, Peter: Puzzles and polytope isomorphisms. Aequationes Math. 34 (1987), 287–297.
[3] Danaraj, Gopal; Klee, Victor: Which spheres are shellable?. Ann. Discrete Math. 2 (1978), 33–52.
[4] Hammer, P. L.; Simeone, B.; Liebling, Th. M.; de Werra, D.: From linear separability to unimodality: a hierarchy of pseudo-Boolean functions. SIAM J. Discrete Math. 1 (1988), 174–184.
[5] Joswig, Michael; Kaibel, Volker; Körner, Friederike On the k-systems of a simple polytope. Israel J. Math. 129 (2002), 109–117.
[6] Kaibel, Volker: Reconstructing a simple polytope from its graph. Lect. Notes Comput. Sci. 2570, Springer, Berlin, 2003, 105–118.
[7] Kalai, Gil: A simple way to tell a simple polytope from its graph. J. Combin. Theory Ser. A 49 (1988), no. 2, 381–383.
[8] Kleinschmidt, Peter; Smilansky, Zeev New results for simplicial spherical polytopes. DIMACS, Ser. Discret. Math. Theor. Comput. Sci. 6 (1991), 187–197.
[9] Mihalisin, J.; Klee, V.: Convex and linear orientations of polytopal graphs. Discrete Comput. Geom. 24 (2000), no. 2-3, 421–435.
[10] Ziegler, G. M.: Lectures on Polytopes. Graduate Texts in Mathematics 152, Springer, Heidelberg, 1995.