Acupuncture alleviates chronic pain and comorbid conditions in a mouse model of neuropathic pain: the involvement of DNA methylation in the prefrontal cortex

Jae-Hwan Janga,b, Eun-Mo Songc, Young-Ho Dod, Sora Ahna,b, Ju-Young Oha,b, Tae-Yeon Hwanga,b, Yeonhee Ryud, Mi-Yeon Songc, Hi-Joon Parka,b*

Supplementary Information
Supplementary Figure 1. Correlation between behavioral changes and global DNA methylation in the PFC, PAG, hypothalamus, HIP, and AMG.

Representative graphs showing correlations between global DNA methylation levels in the brain areas (PFC [A–D], PAG [E–H], hypothalamus [I–L], HIP [M–P], and AMG [Q–T]) and behavioral test results: the acetone test (A, E, I, M, and Q), OFT (B, F, J, N, and R), TST (C, G, K, O, and S), and NOR (D, H, L, P, and T); n = 3/group. Spearman’s rank correlation coefficients were calculated. PFC, prefrontal cortex; PAG, periaqueductal gray matter; HIP, hippocampus; AMG, amygdala.
