Natural Compounds: Molecular Weapons against Leukemia’s

Simona Taverna and Chiara Corrado
Department of Biopathology and Medical Biotechnology, University of Palermo, Italy

*Corresponding author: Chiara Corrado, Department of Biopathology and Medical Biotechnology
Biology and Genetics Section University of Palermo, Italy, Tel: +390916554616; Fax +390916554624; E-mail: chiara.corrado@unipa.it

Received date: February 20, 2017; Accepted date: March 7, 2017; Published date: March 20, 2017

Copyright: © 2017 Taverna S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Nowadays cancer is one of the main reasons of death all over the world and it is estimated that deaths caused by cancer will grow dramatically in the next decades. Even if chemotherapy is the election therapy for solid tumors, as well as leukemias and lymphomas, cancer treatments are in continuous evolution trying to solve the problem of resistance mainly due to low accumulation of the drug in tumor cells (MDR). Natural compounds represent a valid alternative to treat several disease and recently the scientific community focus on these natural compounds and plant metabolites with therapeutic activities and low toxicities compared with synthetic ones.

A combination therapy, that join conventional chemotherapy with natural plant metabolites, is now considered a new promising strategy to overcome MDR and reduce cellular toxicity; in particular, in leukemia due to its very complex origin and development of leukemogenesis.

Here, we want to summarize and update the recent applications of natural compounds in the treatment of leukemia.

Introduction

Nowadays, cancer is one of the main reason of death all over the world owing to late diagnosis, poor prognosis and, frequently, drug resistance. About 6 million people die of cancer each year, and it is among the leading causes of death worldwide; it is estimated that deaths caused by cancer will grow dramatically in the next decades.

Leukemia is a hematological disease caused by persistence of immature white blood cells in different district of the organism mainly bone marrow, lymph node, spleen and circulating blood. These immature white blood cells can proliferate generating the acute form of leukemia; otherwise, leukemia is due to the action of mature cells and in this case will be chronic leukemia. According to the cell lineage transformation and clinical characteristics, leukemia is classified in acute myeloid leukemia (AML), chronic myeloid leukemia (CML), acute lymphocytic leukemia (ALL) and chronic lymphocytic leukemia (CLL).

Chemotherapy is the election therapy for solid tumors, as well as leukemia and lymphomas [1]. Cancer treatments are in continuous evolution trying to solve the problem of low accumulation of the drug in tumor cells. Multidrug resistance (MDR) of tumor cells is often associated with an overexpression of ATP-binding cassette (ABC) transporter proteins that caused an ATP-dependent decrease in cellular drug accumulation [2]. Anticancer drugs, which elude the ABC transporters, could be a solution for drug resistance. Natural Compounds that reverse the resistance against anticancer drugs are considered multi-drug resistance (MDR) inhibitors or MDR modulators [3]. Recently, there is increased interest to identify multidrug resistance reversal compounds from plants having low or no side effects for use in cancer treatments [2].

It is evident that the ability to deliver the drug to target cells could be decisive to eradicate cancer. For this reason, nanotechnology-based drug delivery system seems to be very promising. Recently, some nanoparticles have been produced to hit specifically the bulk of the tumor, thanks to the use of specific markers for tumor targeted [4]. Moreover, in the last few years, the scientific community have described in edible plants the presence of exosomes that contain and/or carry pharmacological active molecules; for this reason, in 2014 the Food and Agriculture Organisation of the United Nations (FAO) created a database that describe the presence of exosomes in food, called FoodEVs. Exosomes are natural nanovesicles derived from intracellular late endosomes [5] that have been used as vehicle for therapeutic drug and gene delivery due to its versatility [6]. Accumulating evidence demonstrated that cancer cells release higher levels of exosomes suggesting their involvement in cancer progression and microenvironment education [7,8]. Leukemia derived exosomes can also affect bone marrow microenvironment thus enhancing leukemia cell growth [9-11]. We will discuss the anticancer effects of plants extracellular vesicles in a following section.

Many medicinal plants has been used yet in the past decades to treat several diseases due to their cardioprotective, hepatoprotective and antidiabetic activities [12]. Recently, the scientific community focus on natural compounds and plant metabolites with therapeutic activities, mainly phytochemicals such as polyphenolic, terpenes and lignans compounds, as new potential chemopreventive agents with cytotoxic activity, multidrug resistance reverting potential or apoptotic effects on cancer [13]. Furthermore, a combination therapy, that join conventional chemotherapy with natural plant metabolites, is now considered a new promising strategy to overcome MDR and reduce cellular toxicity; in particular, in leukemia due to its very complex origin and development of leukemogenesis.
Here, we want to summarize and update the recent applications of natural compounds in the treatment of leukemia.

Anti-Leukemic Activities of Natural Compounds Produced By Plants

Polyphenols

Polyphenols are an important group of phytochemicals present in the plant kingdom that exert multiple protective functions against cellular oxidation, inflammation, aging, tumor initiation and progression. Recently, it was demonstrated that a diet with a regular consumption of fruits and vegetables, rich in polyphenols, significantly reduces the risk of many cancers. Some of the polyphenols studied for their anticancer potential are flavones, flavonols, isoflavones, and catechins. Tannins, present in many plant foods, are polyphenols that possess anticarcinogenic and antimutagenic potentials. It was demonstrated that the tannin resveratrol (3, 5, 4’-trihydroxystilbene), found in grapes and red wine, exhibits chemopreventive effects. Resveratrol is known to down regulate the high endogenous level of Heat shock protein 70 (Hsp70) in Choronic Myelogenous Leukemia K562 cells and induce apoptosis. It was demonstrated that resveratrol acts downstream of Bcr-Abl and inhibits Akt activity. This brings down the transcriptional activity of HSF1 and Hsp70 production in K562 cells [14].

In this section, among the polyphenols, we will discuss the role of Curcuminoids and Flavonoids.

Curcuminoids

These compounds are pigments present in dried rhizomes of *Curcuma longa* and are responsible for the yellow color of the plants. There are three compounds known as curcuminoids: curcumin, demethoxycurcumin, and bis-demethoxycurcumin [15]. We focus our attention on the role of *curcumin*, considered the king of spices. *Curcumin* is a natural dietary polyphenol with documented anti-inflammatory, antioxidant and antineoplastic properties [16]; it is the most commonly used spice in India and in Ayurveda and traditional chinese medicine [17]. Several papers demonstrated that curcumin affects different steps of cancer progression. *Curcumin* has been shown to be a strong suppressor of NF-kB that in turn down regulates the expression levels of NF-kB-regulated gene products; it inhibits the activation of IκB kinase (IKK) and, thus, prevents the phosphorylation of IκB and the subsequent translocation of NF-kB to the nucleus [17]. Curcumin also enhances cell death or apoptosis via inhibition of the MAPKs pathway, which includes c-Jun N-terminal kinases (JNKs) and extracellular signal-regulated kinases (ERKs) [16]. Moreover, Shah and colleagues indicate that Curcumin, as natural source, is able to overcome drug resistance as well as to reduce cytotoxicity profile of the conventional drug in Acute Myeloid Leukemia patients. They show that curcumin down regulates MDR genes, such as MDR1, LRP, BCRP and it has a synergistic effect in combination with cytarabine on primary leukemic cells. These data suggest that curcumin can be used as MDR modulator or chemosensitizer in combination with standard chemotherapeutic drug cytarabine [18].

It was found that curcumin induces expression of interferon regulatory genes (IFIT2) in leukemia cell lines. In leukemia, cells treated with IFNy increased apoptosis and enhanced anticancer effect of curcumin. Conversely, shRNA-IFIT2 knockdown inhibited curcumin-induced apoptosis in U937 leukemia cells. These results demonstrated that there is a cross-talk between curcumin and interferon signaling pathways, which provides the basis for a new potential therapeutic approach, with curcumin combined to interferon [19].

Recent papers demonstrated that curcumin can induce epigenetic alteration such as changes in DNA methylation, histone modifications and modulation of several oncogenic and tumor suppressor microRNAs (miRNAs) expression such as miR-21, miR-20a, miR-17-5p, and miR-27a and miR-34 a/c [20].

Our research group showed, in vitro and in vivo models, that treatment of CML cells with curcumin caused a miR-21-mediated modulation of PTEN/AKT pathway leading to the inhibition of leukemic cell growth. *Curcumin* affected the malignant properties of CML cells through a disposal of miR-21 in exosomes released by CML cells. Curcumin also induced the up-regulation of miR-196b and a decrease of BCR-ABL at mRNA and protein level. For these reasons, curcumin can be considered a promising compound that in association with conventional tyrosine kinase inhibitor, may improve the therapeutic approach for CML patients resistant to *Imatinib* [21]. Moreover, exosomes containing miR-21 and released by CML cells treated with curcumin were able to modulate the endothelial barrier organization and attenuated the angiogenic phenotype. These data suggest that curcumin could be a potential therapeutic agent for CML treatment with a double effect, on cancer cells and on tumor microenvironment [22].

Numerous papers documented the protective effects of curcumin in leukemia malignancy. Pimentel-Gutiérrez and colleagues demonstrated, in Acute lymphoblastic leukemia (ALL), the potential effect of curcumin as pharmacological co-adjvant of several chemotherapeutic agents used in ALL therapy [23].

There is a growing demand to find new therapeutic compounds that show not only lower toxicity but also more solubility and bioavailability. To answer to this request, recently different research groups work to develop derivates of natural compounds with these characteristics (Figure 1). It was identified a novel curcumin derivative with more potent antitumor activity than curcumin. This compound was shown to promote cell cycle arrest, at the G2/M phase, inducing apoptosis in the MDR chronic myeloid leukemia cell line [24].

A recent paper described the development of a stable polymeric micellar formulation of *curcumin* with improved solubility and stability and suitable, for this reason, for clinical applications in leukemia patients. Intracellular uptake to leukemic cells of *curcumin-
Terpenes and terpenoids isolated from plants have a significantly higher cytotoxic activity than curcumin dissolved in DMSO; moreover, CM-micelles have a significantly higher cytotoxic activity than curcumin dissolved in DMSO on leukemic cells [25].

Flavonoids

Flavonoids are a class of polyphenolic compounds recently revalued for their anticancer properties. They can be used as adjuvant agents for cancer, in combination with conventional chemotherapy.

Luteolin: is a flavone isolated from the leaves of dandelion and sage plants but it is also contained in carrots, fennel and celery. Luteolin is widely studied because of its anti-cancer properties already demonstrated on different models of solid tumors [26,27]. The cytotoxic effect of luteolin was demonstrated recently also on two human CLL cell lines, HG-3 and EHEB. Sak and others demonstrated that Luteolin’s effect on human CLL cell lines is due to the activation of the intrinsic apoptotic pathway mediated by caspases 3 and 9. Moreover other two flavonoids, fisetin and querceitin, probably due to a specific binding to the cellular targets of signaling pathway induced by luteolin, are able to increase the cytotoxic activity of luteolin in both cell lines thus allowing that luteolin begin more effective at lower doses [28].

Artocarpesin and cycloartocarpesin are two flavones isolated from Artocarpus heterophyllus or jackfruit, a tree belonging from the family of Moraceae and native of South and Southeast Asia. Among flavonoids, chalcones and their derivatives are known for their therapeutic effects as anti-inflammator and anti-infective [29] or anticancer agent [30]. It has been previously demonstrated the cytotoxic effects of isobavachalcone on different carcinoma cell lines [31]. Recently Kuete et al. evaluated the cytotoxic effects not only of the chalcone isobavachalcone but also of others two flavonoids, artocarpesin and cycloartocarpesin, on drug-sensitive cancer cell lines and, for the first time, against MDR cancer cell lines. In particular, they demonstrated that these compounds induce, on MDR leukemia cells CCRF-CEM, apoptosis through activation of caspases, disruption of mitochondrial membrane potential and generation of reactive oxygen species (ROS) [32].

These results are promising and encouraging to further investigating on the role of these constituents in order to find novel cytotoxic drugs against multifactorial drug resistant cancers or compounds that are effective with reduced toxicity.

Terpenes and terpenoids isolated from plants

Terpenes are a big class of organic molecules produced mainly by conifers essential oils of the plant and generally used as natural agricultural pesticides. The terpenes could be modified chemically generating terpenoids that constitute about 60% of natural products. Plant terpenes and mainly terpenoids are used as fragrances and as traditional herbal remedies in alternative medicine. Because of their antioxidant or anti-inflammatory properties, these compounds are revalued as possible anticancer agents.

Triterpenoids induce cytotoxicity not only on sensitive leukemia cell lines but also in MDR cells. Recent findings have shown that these compounds interact with transporter proteins to inhibit drug efflux mediated by MDR1, MRPI or BCRP. In particular, triterpenoids can act with different mechanisms, including direct interaction with the P-glycoprotein (P-gp) active site, stimulating the activity of the P-gp ATPase [33], or decreasing P-gp expression in a dose-dependent manner [34].

Myrica cerifera

Myrica cerifera is a tree that grows in the northern and central parts of America, Bermuda, and the Caribbean, commonly known as bayberry or wax myrtle. Several compounds have been extracted from the plant and some of them are known for their antioxidative and anti-inflammatory properties [35] or for their in vitro anticancer potential in some human cancer cell lines such as adenocarcinoma and prostate cancer cells [36], glioblastoma and melanoma cells [37].

Recently, Zhang and collaborators demonstrated that seven different triterpenoids isolated from the extract of *M. cerifera* bark hold cytotoxic activities against human breast cancer cell line SK-BR-3 and lung cancer cell line A549. Relatively to leukemia, they demonstrated the cytotoxic effect of one specific triterpenoid on human leukemia cell line HL60; furthermore their results showed that this compound activates not only mitochondrial mediated apoptotic pathway, via cleavage of caspase 3 and caspase 9, but also death-receptor mediated apoptotic pathway, via cleavage of caspase 8 [38].

Melia azedarach

Melia azedarach is a plant that grows preferentially in India, Cina and Australia. All components are toxic for humans if ingested, due to some neurotoxins mainly contained in the fruit. For this reason, ancient used the diluited infusion of leaves and bark to induce uterus relaxation or as sedative. Many studies focused on different compounds extracted from the plant, such as limonoids or triterpenoids, that exert cytotoxic activities [39,40]. Recently, new triterpenoids isolated from the fruit of *Melia azedarach* has been tested on human cancer cell lines including human leukemia cell line HL60, demonstrating their cytotoxicities thus opening new possibilities to use *M. azedarach* also for anticancer therapy [41].

Asteraceae species (*Artemisia Asiatica* and *Onopordum acanthium*)

Asteraceae, known also as Compositae, are a family of plants largely diffuse. All the member of this family are enriched in secondary metabolites, including sesquiterpene lactones and pentacyclic triterpene alcohols and many of them are used to cure malignant disorders [42]. In particular, the shrub wormwood or Artemisia asiatica and the herbaceous plant of *Onopordum acanthium* are two plants used in traditional medicine for many diseases including cancers but their antiproliferative and cytostatic effects have been tested only against human adherent cancer cell lines [43,44].

In literature, there are not data about specific compounds isolated from these plants and their effects on Leukemia until 2015. Many sesquiterpenes isolated from these two plants has been recently investigated on human promyelocytic leukemia cells HL-60 in order to identify their antiproliferative effects. In particular, it has been demonstrated that four different sesquiterpenes exert these antiproliferative effects on HL60 affecting cell cycle and inducing apoptosis. The effects on cell cycle consist in an increase in the subG1 and G2/M populations, that indicate cell cycle arrest, while the activation of apoptosis has been demonstrated by the activation of caspase 9, as well as the nuclear fragmentation and the activation of effector caspase 3 [45].
Atractylodes lancea

Atractylodes lancea is a Chinese herbal medicine. It is demonstrated that essential oils extracted from its rhizome exert apoptotic activity on human leukemia HL-60 cells. The main specific compounds responsible of these effects are b-eudesmol and the sesquiterpenoid hinesol [46]. Both compounds have cytotoxic activity on leukemia HL60 cells mediated by activation of apoptosis; this pathway is regulated by the activation of Jnk signaling, in the case of b-eudesmol [47]; instead, the sesquiterpenoid hinesol exert its effect on apoptosis through the regulation and balance between activation of the JNK and ERK pathways [48].

Lignans isolated from plants

Lignans are a large group of natural compounds extracted from different plants commonly known for its antioxidant properties and in balancing hormone levels.

Cinnamomum parthenoxylon: Cinnamomum is an evergreen tree native to South and East Asia. Cinnamomum belongs to genera of Lauraceae family that includes many species with different properties and commonly used as spices in food or as fragrances. Furthermore some of these species are used in traditional medicine and, relatively to species parthenoxylon, it has been demonstrated that the extract of the bark has antioxidant effects [49]. Several constituents of cinnamomum species have cytotoxic and apoptotic activities on various cancer cell lines [50]. Recently the scientific community investigate on possible anticancer effects of different constituents derived from the species c. parthenoxylon demonstrating the apoptotic effect of several lignans and phenylpropanoids isolated from its wood on human hepatoma cell line HUH-7 [51]. Adia and colleagues demonstrate, in leukemia, that some fractions of C. parthenoxylon are able to induce morphological changes and to inhibit cell proliferation of leukemia cells HL-60 [52].

Nectandra megapotamica: Nectandra megapotamica is a plant native to Brazil, belongs to genera of Lauraceae family. It has been used in folk medicine to treat several diseases such as rheumatism and to relieve pain. Moreover, it has been demonstrated that different constituents isolated from the plant has pharmacological and biological activities [53]. There are not any studies regarding the cytotoxic activity against cancer cells of its extract and/or constituents of nectandra megapotamica. Recently Ponci et al. described the cytotoxic effects of different neolignans, extracted from the leaves of the plant, on human leukemic cells HL-60, demonstrating that these compounds exert their effects through activation of mitochondrial apoptotic pathway [53].

Quercus suber L.

Quercus suber L. is a tree widely diffuse in southwest Europe and northwest Africa, commonly known as cork oak. Recently, because of its antioxidant effects, it has been revaluated for nutraceutical applications. In particular, it seems that phenolic, aliphatic and triterpenic components obtained from the cork are responsible of these effects. A rising number of reports describe the pro-apoptotic effects of natural compounds in cancer cells and their effects on radical scavenging. Recently, Bejarano et al. described the antitumor effects of Quercus suber L. cork extracts (QSE) in human promyelocytic leukemia cells HL-60, demonstrating that QSE is able to alter the mitochondrial outer membrane potential, activate caspase 3 and therefore induce apoptotic cancer cell death [48].

Magnolia officinalis: Magnolia is a flowering tree native to many regions in the world. Many species of Magnolia are traditionally used in Asian medicine, mainly its neolignan honokiol, extracted from the bark and the leaves of the tree. Honokiol is able to induce apoptosis and cell cycle arrest in non-small cell lung cancer [54] and in adult T-cell leukemia [55]. Recently it has been demonstrated that other natural compounds extracted from plants, such as green tea polyphenols and curcumin, exert their anti-cancer properties through the inhibition of the HDAC activity [56,57]. Li et al. demonstrated that honokiol inhibit cell growth of human leukemic cell lines and primary AML blasts through the same pathway mediated by HDAC proteins, thus suggesting honokiol as a novel nontoxic natural agent for cancer prevention and therapy in leukemia [57].

Collectively these results lead to try also the application of lignans extracted from different tree in the field of phytochemicals as anticancer agents.

Essential oils of algae extracts

Microalgae are unicellular species found in marine systems and generally used as biomass to produce energy. The biodiversity of microalgae is enormous and they are very rich in bioactive compounds, minerals, polysaccharides. Nowadays they are considered an important source to discover new bioactive compounds.

The current chemotherapy for AML is based on cytarabine, compound isolated from a marine sponge. There are few articles about the apoptotic effects of algae extracts on cancer cells. Goh et al. reported the apoptotic effects of Chaetoceros calctrans microalga on MDA-MB-231 breast cancer cells [58], Prestegard’s group instead showed the apoptotic effect of P. tricornutum microalga extract on IPC81 rat myeloid leukemia cells [59]. Bechelli et al. showed that Dunaliella salina and Aphanizomenon flos-aquae inhibit the growth of both HL-60 and MV4-11 leukemic cell lines [60].

Recently it has been published a study on antileukemic activity of fifteen microalga species to verify their potential for drug development. First of all the authors characterized the composition of essential oils of these fifteen different algae extracts and tested the different cytotoxic effects on HL60 and K562 leukemic cell lines. Afterwards, they selected five essential oils and investigated the pathways that determined the cytotoxic effects observed. This extracts are able to inhibit the activity of Akt on HL60 cells, while others increased the phosphorylation of MAPK on K562 cells finally activating apoptotic pathway mainly mediated by cleaved caspase 3 and cleaved PARP and the bcl-2 family protein BAD. The isolation of these essential oils from algae extract and their various combinations can allow to find new antileukemic agents more efficient and to reduce the toxicity because of their natural origin [61].

Extracellular vesicles in plants

Recently the interest of the scientific community toward extracellular vesicles (EVs) is grown; in the contest of natural compounds as new therapeutic molecules, the presence of exosomes in edible plants is up to now very interesting.

Already exist publications that describe the release of exosomes from tubers like carrot or ginger [62], from nuts and seeds sunflower [63] or from fruits like grape, watermelon or lemon. It is known that grapefruit nanovesicles, isolated from grape juice, act as immune modulators in the intestine and are able to attenuate inflammatory
response in human disease [64]; furthermore there are clinical trials focus on their possible application to prevent cancer progression. It was demonstrated the uptake of watermelon-derived EVs in Caco-2 cells and mouse small intestinal stem cells suggesting that EVs could be the vehicle to transfer molecules in the intestine also due to their capability to remain intact in the gastrointestinal tract [65]. Raimondo et al. also demonstrated that the juice of citrus limon contains exosome-like nanovesicles. The fruit of citrus L. is commonly used in traditional medicine and its benefits are largely known, due to its content of citric acid and vitamin C, but also for its anti-cancer properties. In particular, they showed that these plant-derived nanovesicles are able to affect cell growth of colorectal adenocarcinoma cells and leukemia cells. Furthermore, they confirmed the results in vivo on CML xenografts demonstrating that citrus nanovesicles reduce the growth of CML xenografts through activation of TRAIL-mediated apoptosis but also through inhibition of angiogenesis [66]. The authors show an alternative approach to cancer therapy based on plant-derived nanovesicles with antineoplastic capacity.

Differentiation inducers in AML and CML

Many natural compounds have been found in these years because of their ability to affect not only cell differentiation of solid tumors as chondrogenesis [67] and neuronal cells [68], but also of bone marrow-derived hematopoietic cells. Although the main differentiation inducer in acute promyelocytic leukemia therapy has been all-trans retinoic acid (ATRA), these compounds can support traditional anticancer chemotherapies or enhance the effect of ATRA [69].

Flueggea suffruticosa: Securine is an alkaloid isolated from the flowering plant *Flueggea suffruticosa*, belonging to the family of Phyllanthaceae and commonly used as herb in traditional Chinese medicine. Relatively to leukemia, Gupta et al. demonstrated that securine induces growth arrest in AML cell lines, patient samples and AML tumors in nude mice thus confirming its possible therapeutic role for AML treatment. Nowadays it is considered a potential myeloid leukemia differentiation inducing agent; moreover it was shown that securine enhances the differentiating activities of ATRA on leukemic HL60 cells, suggesting that this natural alkaloid could also be used in a combination therapy [70].

Veratrum californicum: Cyclopamine is another alkaloid isolated from the plant *Veratrum californicum* known as California corn lily, native to southwestern North America. Cyclopamine is studied as anticancer drug [71] and is also known to enhance HL60 cells differentiation, similarly to securine, in association with ATRA [72].

Scutellaria baicalensis Georgi: On the contrary, the flavonoids wogonine and wogonoside induce AML cell differentiation independently of ATRA [73]. Wogonine is isolated from the Chinese herb *Scutellaria baicalensis* Georgi, a flowering plant of the Lamiaceae family. It has been demonstrated that wogonine and its metabolite wogonoside have antioxidative and anti-inflammatory effects [74]; moreover wogonine induce cell cycle arrest, apoptosis and differentiation not only on different cancer cell lines [75], but also in hematologic malignancies where it induces apoptosis on malignant lymphocytes and suppresses cell growth of T-cells. Besides, wogonoside affects differentiation, acting on human AML cells in vitro and in vivo. In particular, wogonoside induces the monocytic differentiation of lymphoma cell line U937 and leukemia cell line HL60 [76].

In addition, wogonine exerts effects on CML cell line K562 and, interestingly, on imatinib resistant K562 cells.

Wogonine lead to differentiation of K562 cells, demonstrated by the increased expression of many markers and by the cell cycle arrest at the G0/G1 phase with inhibition of the MAPK pathway. Furthermore, it exerts its effect also on differentiation of primary CML cells from patients and on resistant K562 cells probably with a mechanism Bcr-abl independent [77].

Another mechanism through which is reactivated erythroid differentiation in K562 cells is the inhibition of heat shock protein HSP90. Many natural compounds are able to do this in combination or not with the inhibition of Bcr–Abl and finally activate the erythroid transcription factor GATA-1. Wogonin induces erythroid differentiation in K562 cells mediated by activation of GATA-1 and inhibition of Bcr–Abl [77].

Monocillium nordinii and dandelion plant

The compounds radicicol, isolated from the mushroom *Monocillium nordinii*, and apigetrin, extracted from the root of dandelion plant, act on erythroid differentiation too. Radicicol exert its effect on Bcr-Abl degradation and HSP90 inhibition through increasing of GATA-1 and inhibition of the transcription factor PU.1, an inhibitor of erythropoiesis [78]. Apigetrin induces the expression of differentiation markers, such as CD11b (granulocyte), CD14 (monocyte) and CD41a (megakaryocyte) [79]. These examples demonstrate that many compounds extracted from different herbs or root exert their effect on leukemia cell differentiation thus inhibiting, in an alternative way, cell proliferation.

Efforts to combat cancers in terms of chemotherapeutic drugs have not been effective enough and those that show promising results exhibit side effects and poor bioavailability. Natural products, that are a part of our daily diet or are easily obtained and disposable, have shown considerable anti-neoplastic effects without causing side effects[80]. Here we showed some examples of natural compounds extracted from plants and their role recently discovered as anti-leukemic agents.

Conclusion

Overall, plant extracts, which have historically been used as therapeutic agents, are continuously revealing novel anticancer properties and mechanisms and continue to hold prominent promise in future cancer therapies. The experimental data showed here, encourage the scientific community to enhance the research on drugs of natural origin with lower toxicity and easily disposable that could be used as valid alternative to chemotherapy or in combination with, thus countering drug resistance, decreasing cytotoxic effects and improving the patient’s quality of life in leukemia as well as in other cancer types.

References

1. Colak S, Medema JP (2014) Cancer stem cells--important players in tumor therapy resistance. FEBS 281: 4779–4791.
2. Ugocski K, Varga A, Molnar P, Antus S, Molnar J, et al. (2005) Effects of selected flavonoids and carotenoids on drug accumulation and apoptosis induction in multidrug-resistant colon cancer cells expressing MDR1/ LRP. In Vivo 19: 433–438.
3. Senthilkumar R, Chen BA, Cai XH, Fu R (2014) Anticancer and multidrug-resistance reversing potential of traditional medicinal plants
and their bioactive compounds in leukemia cell lines. Chin J Nat Med 12: 881-894.

4. Lu B, Huang X, Mo J, Zhao W (2016) Drug Delivery Using Nanoparticles for Cancer Stem-Like Cell Targeting, Front Pharmacol 7: 84.

5. Thery C, Zitvogel L (2002) Amigorena S: Exosomes: composition, biogenesis and function. Nat Rev Immunol 2: 569-579.

6. Giallombardo M, Taverna S, Alessandro R, Hong D, Rolfo C (2016) Exosome-mediated drug resistance in cancer: the near future is here. Ther Adv Med Oncol 8: 320-322.

7. Corrado C, Raimondo S, Chiesa A, Ciccia F, De Leo G, et al. (2013) Exosomes as intercellular signaling organelles involved in health and disease: basic science and clinical applications. Int J Mol Sci 14: 5338-3566.

8. Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, et al. (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18: 883-891.

9. Corrado C, Raimondo S, Saieva L, Flugy AM, De Leo G, et al. (2014) Exosome-mediated angiogenesis in cancer: the near future is here. Ther Adv Med Oncol 6: 320-330.

10. Corrado C, Saieva L, Raimondo S, Santoro A, De Leo G, et al. (2014) Chronic myelogenous leukemia exosomes modulate bone marrow microenvironment through activation of epidermal growth factor receptor. J Cell Mol Med 20: 1829-1839.

11. Taverna S, Flugy A, Saieva L, Kohn EC, Santoro A, et al. (2012) Role of exosomes released by chronic myelogenous leukemia cells in angiogenesis. Int J Cancer 130: 2033-2043.

12. Taverna S, Flugy A, Saieva L, Kohn EC, Santoro A, et al. (2012) Role of exosomes released by chronic myelogenous leukemia cells in angiogenesis. Int J Cancer 130: 2033-2043.

13. Kulling SE, Rawel HM (2008) Chokeberry (Aronia melanocarpa) - A review on the characteristic components and potential health effects. Planta Med 74: 1625-1634.

14. Roy S, Banerjee B, Vedasiromoni JR (2014) Cytotoxic and apoptogenic effect of Swietenia mahagoni (L.) Jacq. leaf extract in human leukemic cell lines U937, K562 and HL-60. Environ Toxicol Pharmacol 37: 234-247.

15. Banerjee MS, Chakraborty PK, Raha S (2010) Modulation of Akt and ERK1/2 pathways by resveratrol in chronic myelogenous leukemia (CML) cells results in the downregulation of Hsp70. PLoS One 5: e8719.

16. Strimpakos AS, Sharma RA (2008) Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials. Antioxid Redox Signal 10: 511-545.

17. Boyanapalli SS, Tony Kong AN (2015) Curcumin, the King of Spices: Epigenetic Regulatory Mechanisms in the Prevention of Cancer, Neurological, and Infectious Diseases. Curr Pharm Rep 1: 129-139.

18. Aggarwal BB, Sung B (2009)Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol Sci 30: 85-94.

19. Shah K, Mirza S, Desai U, Jain N, Rawal R (2016) Synergism of Curcumin and Cytarabine in the Down Regulation of Multi-Drug Resistance Genes in Acute Myeloid Leukemia. Anticaner Agents Med Chem 16:128-135.

20. Zhang Y, Kong Y, Liu S, Zeng L, Wan J (2017) Curcumin induces apoptosis in human leukemic cell lines through an ITIT2-dependent pathway. Cancer Biol Ther 18: 43-50.

21. Teicher M, Ghyselinck NA, Cerquiera V, Ravana B, Mahapatra DK, Bharti SK, Asati V (2015) Cytotoxicity of three naturally occurring flavonoid derived compounds (arocarpesin, cycoloacarpesin and isobavachalcone) towards multi-drug-resistant cancer cells. Planta Med 81: 3815-3824.

22. Corrado C, Raimondo S, Chiesa A, Ciccia F, De Leo G, et al. (2013) Exosomes as intercellular signaling organelles involved in health and disease: basic science and clinical applications. Int J Mol Sci 14: 5338-3566.

23. Lu B, Huang X, Mo J, Zhao W (2016) Drug Delivery Using Nanoparticles for Cancer Stem-Like Cell Targeting, Front Pharmacol 7: 84.

24. Thery C, Zitvogel L (2002) Amigorena S: Exosomes: composition, biogenesis and function. Nat Rev Immunol 2: 569-579.

25. Giallombardo M, Taverna S, Alessandro R, Hong D, Rolfo C (2016) Exosome-mediated drug resistance in cancer: the near future is here. Ther Adv Med Oncol 8: 320-322.

26. Corrado C, Raimondo S, Chiesa A, Ciccia F, De Leo G, et al. (2013) Exosomes as intercellular signaling organelles involved in health and disease: basic science and clinical applications. Int J Mol Sci 14: 5338-3566.

27. Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, et al. (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18: 883-891.

28. Corrado C, Raimondo S, Saieva L, Flugy AM, De Leo G, et al. (2014) Exosome-mediated angiogenesis in cancer: the near future is here. Ther Adv Med Oncol 6: 320-330.
43. Hajdu Z, Hohmann J, Jorge P, Mathe I, Molnar J, et al. (2014) Antiproliferative activity of Artemisia asiatica extract and its constituents on human tumor cell lines. Planta Med 80:1692-1697.

44. Cuspor LB, Zupko I, Molnar J, Jorge P, Hohmann J, et al. (2014) Bioactivity-guided isolation of antiproliferative compounds from the roots of Onopordum acanthium. Nat Prod Commun 9: 337-340.

45. Molnar J, Szébeni GJ, Cuspor LB, Hajdu Z, Szekerés T, et al. (2016) Investigation of the Antiproliferative Properties of Natural Sesquiterpenes from Artemisia asiatica and Onopordum acanthium on HL-60 Cells in Vitro. Int J Mol Sci 17:83.

46. Masuda Y, Kadokura T, Ishii M, Takada K, Kitajima J, et al. (2015) Hinesol, a compound isolated from the essential oils of Atractylodes lancea rhizome, inhibits cell growth and induces apoptosis in human leukemia HL-60 cells. J Nat Med 69: 332-339.

47. Li Y, Li T, Miao C, Li J, Xiao W, et al. (2013) beta-Eudesmol induces JNK-dependent apoptosis through the mitochondrial pathway in HL60 cells. Phytother Res 27: 338-343.

48. Bejarano I, Godoy-Cacho B, Franco L, Martinez-Canas MA, Tormo MA, et al. (2015) Quercus Suber L. Cork Extracts Induce Apoptosis in Human Myeloid Leukaemia HL-60 Cells. Phytother Res 29:1180-1187.

49. Sharma UK, Sharma AK, Pandey AK (2016) Medicinal properties of major phenylpropanoids present in cinnamon. BMC Complement Altern Med 16:156.

50. Daker M, Lin Y, Akowuah GA, Yam MF, Ahmad M, et al. (2013) Inhibitory effects of Cinnamomum burmannii Blume stem bark extract and trans-cinnamaldehyde on nasopharyngeal carcinoma cells: synergism with cisplatin. Exp Ther Med 5:1701-1709.

51. Mансoor TA, Ramalho RM, Rodrigues CM, Ferreira L, Wildman A, et al. (2016) Antileukemic activity of lignans and phenylpropanoids of Cinnamomum parthenoxylon. Bioorg Med Chem Lett 26: 761-764.

52. Ponsi V, Figueroed CR, Massaoka MH, de Farias CE, Matsuo AL, et al. (2015) Neolignans from Nectandra megapotamica (Lauraceae) Display in vitro Cytotoxic Activity and Induce Apoptosis in Leukemia Cells Molecules 20: 12757-12768.

53. Singh T, Prasad R, Katiyar SK (2013) Inhibition of class I histone deacetylases in non-small cell lung cancer by honokiol leads to suppression of cancer cell growth and modulation of blood platelet activity. Mar Drugs 7: 604-623.

54. Bechelli J, Coppoghe M, Rosell K, Liesveld J (2011) Cytotoxicity of algae extracts on normal and malignant cells. Leuk Res Treatment 2011:373519.

55. Aseaver-Arslan B, Vilanciclocu K, Kalkan Z, Timucin AC, Gur H, et al. (2016) Screening of new antileukemic agents from essential oils of algae extracts and computational modeling of their interactions with intracellular signaling nodes. Eur J Pharm Sci 83:120-131.

56. Mu J, Zhuang X, Wang Q, Jiang H, Deng ZB, et al. (2014) Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles. Mol Nutr Food Res 58: 1561-1573.

57. Regente M, Corti-Monzon G, Maldonado AM, Pinedo M, Jorín J, et al. (2009) Vesicular fractions of sunflower apoplastic fluids are associated with potential exosome marker proteins. FEBS Lett 583: 3363-3366.

58. Wang B, Zhuang X, Deng ZB, Jiang H, Mu J, et al. (2014) Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit. Mol Ther 22: 522-534.

59. Perez-Bermudez P, Blesa J, Soriano JM, Marcilla A (2017) Extracellular vesicles in food: Experimental evidence of their secretion in grape fruits. Eur J Pharm Sci 98: 40-50.

60. Raimondo S, Naselli F, Fontana S, Monteleone F, Lo Dico A, et al. (2015) Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death. J Cancer 6: 1914-1924.

61. Haras ES, Ono M, Kubota S, Sonoyama W, Oida Y, et al. (2013) Novel chondrogenic and chondroproteic effects of the natural compound harmine. Biochimie 95: 374-381.

62. Lecana L, Hashim AI, McCourty A, Papadopoulos V (2012) A steroid isolated from the water mold Achatya heteroalexesis induces neurogenesis in vitro and in vivo. Steroids 77: 224-232.

63. Petrie K, Zelent A, Waxman S (2009) Differentiation therapy of acute myeloid leukemia: past, present and future. Curr Opin Hematol 16: 84-91.

64. Gupta K, Chakraborti A, Rana S, Ramdeo R, Roth BL, et al. (2011) Securinine, a myeloid differentiation agent with therapeutic potential for AML. PLoS One 6: e21203.

65. Yang R, Mondal G, Wen D, Mahato RI (2016) Combination therapy of paclitaxel and cyclophosphamide polymer-drug conjugates to treat advanced prostate cancer. Nanomedicine 13: 391-401.

66. Takahashi T, Kawakami K, Mishima S, Akimoto M, Takenaga K, et al. (2011) Cyclophosphamide induces eosinophilic differentiation and upregulates CD44 expression in myeloid leukemia cells. Leuk Res 35: 638-645.

67. Zhang K, Guo QL, You QD, Yang Y, Zhang HW, et al. (2008) Wogonin induces the granulocytic differentiation of human NB4 promyelocytic leukemia cells and up-regulates phospholipid scramblase 1 gene expression. Cancer Sci 99: 689-695.

68. Chen Y, Lu N, Ling Y, Gao Y, Wang L, et al. (2009) Wogonoside inhibits lipopolysaccharide-induced angiogenesis in vitro and in vivo via toll-like receptor 4 signal transduction. Toxicology 259:10-17.

69. Huang KF, Zhang GD, Huang YQ, Diao Y, et al. (2012) Wogonin induces chondrogenic and chondroprotective effects of the natural compound harmine. Biochimie 95: 879-887.

70. Chen CQ, Yu K, Yan QX, Xing CY, Chen Y, et al. (2013) Pure curcumin increases the expression of SOCS1 and SOCS3 in myeloproliferative neoplasms through suppressing class I histone deacetylases. Carcinogenesis 34:1442-1449.

71. Thakur VS, Gupta K, Gupta S (2012) Green tea polyphenols increase p53 transcriptional activity and acetylation by suppressing class I histone deacetylases. Int J Oncol 41:353-361.

72. Goh SH, Altheem NB, Youssef FM, Yap SK, Loh SP, et al. (2014) Crude ethyl acetate extract of marine microalgae, Chaetoceros calcitrans, induces Apoptosis in MDA-MB-231 breast cancer cells. Pharmacogn Mag 10:1-8.

73. Prestegard SK, Ofstad I, Coyne RT, Nygaard G, Skjaerven KH, et al. (2013) CD44 expression and subcellular localization of PLSCR1 in AML cells. Blood 121: 3682-3691.

74. Morceau F, Buck I, Dicato M, Diederich M (2008) Radicicol-mediated inhibition of Bcr-Abl in K562 cells induced p38-MAPK dependent erythroid differentiation and PU.1 down-regulation. Biofactors 34: 313-329.

75. Tsolmon S, Nakazaki E, Han J, Isoda H (2011) Apigetrin induces erythroid differentiation of human leukemia cells K562: proteomics approach. Mol Nutr Food Res 55 Suppl 1: S93-S102.

76. Sulí SA, Adigopula LN, Syed SB, Mukherjee V, Coumar MS, et al. (2017) In-silico and in-vitro anti-cancer potential of a curcumin analogue (1E, 6E)-1, 7-di (1H-indol-3-yl) hepta-1, 6-diene-3, 5-dione. Biomed Pharmacother 85: 389-398.