Novel Mott Transitions in the Nonisotropic Two-Band Hubbard Model

A. Liebsch
Institut für Festkörperforschung, Forschungszentrum Jülich, 52425 Jülich, Germany

The Mott transition in a two-band Hubbard model involving subbands of different widths is studied as a function of temperature using dynamical mean field theory combined with exact diagonalization. The phase diagram is shown to exhibit two successive first-order transitions if the full Hund’s rule coupling is included. In the absence of spin-flip and pair-exchange terms the lower transition remains first-order while the upper becomes continuous.

PACS numbers: 71.20.Be, 71.27.+a.

The nature of the metal insulator transition in materials involving subbands of different widths has been intensively debated during the recent years. This issue is relevant for the understanding of the effect of strong local Coulomb interactions in systems such as Ca$_{2-x}$Sr$_x$RuO$_4$. In this layer perovskite the partially filled Ru t$_{2g}$ bands for $x = 2$ consist of wide d_{xy} and narrow $d_{xz,yz}$ bands. As pointed out in [14], the onsite Coulomb energy lies between the subband widths: $W_{x,y} < U < W_{xy}$. The usual criterion with the parameter U/W as a measure of the importance of correlations must then be generalized. The pure Sr compound is superconducting below 1.5 K. Iso-electronic replacement of Sr by Ca leads to an effective band narrowing due to octahedral distortions and a metal insulator transition. As a consequence of non-cubic crystal fields many other transition metal oxides also involve non-equivalent partially occupied subbands.

A key question in these materials is whether the wide and narrow subbands exhibit separate Mott transitions or whether single-particle hybridization and inter-orbital Coulomb interactions ensure a single transition for all bands simultaneously. This issue was studied initially by Anisimov et al. and Liebsch for Ca$_{2-x}$Sr$_x$RuO$_4$ using simplified band structure models which did not yet include the full complexity due to Ca-induced octahedral distortions. Correlations were treated in the dynamical mean field theory (DMFT) combined with the non-crossing approximation (NCA) and Quantum Monte Carlo (QMC) method, respectively. Since the NCA calculations (at $T = 0$) neglected interorbital Coulomb interactions the results showed separate, ‘orbital-selective’ Mott transitions for the narrow and wide subbands. In contrast, the QMC calculations (at $T = 0.125$ eV) included interorbital Coulomb interactions and suggested a common transition for all t$_{2g}$ bands.

Recent theoretical studies of the Mott transition in a paramagnetic two-band model system have led to apparent contradictions. Including the full Hund’s rule coupling Koga et al. found orbital-selective metal insulator transitions at $T = 0$. Neglecting spin-flip and pair-exchange terms Liebsch obtained at $T > 0$ a single first-order transition, followed by a bad-metallic/non-Fermi-liquid (NFL) phase. As we argue below, the various results and conclusions are consistent provided that the choice of crucial parameters such as temperature and Hund’s rule coupling is properly taken into account.

In the present work we combine finite temperature DMFT with exact diagonalization (ED) to determine the T/U phase diagram of a two-band system consisting of non-hybridizing, half-filled subbands with semi-circular density of states of width $W_1 = 2$ eV and $W_2 = 4$ eV. The subbands interact via intra- and interorbital Coulomb matrix elements U and $U' = U - 2J$, where J is the Hund’s rule exchange integral. In contrast to the multi-band QMC approach, which includes only Ising-like exchange terms to avoid sign problems at low temperatures, ED permits also the consideration of spin-flip and pair-exchange interactions. To be specific we take $J = U/4$ which is approximately satisfied in several transition metal oxides.

The main result of this work is that the T/U phase diagram in the presence of the full Hund’s rule exchange exhibits two successive first-order phase transitions, with separate hysteresis loops and coexistence regions. The intermediate region corresponds to the $T > 0$ analog of the orbital-selective Mott (OSM) phase obtained at $T = 0$ in [4]. On the other hand, if spin-flip and pair-exchange terms are omitted, we find a single first-order transition succeeded by a non-Fermi-liquid phase, in agreement with previous QMC results. Both trends are consistent with those obtained by several groups for the same two-band model at $T = 0$.

The ED/DMFT results are derived from a two-band generalization of the approach employed for single-bands. Since at $T > 0$ all states of the impurity Hamiltonian are used in the construction of the subband Green’s functions $G_i(i\omega_n)$, two bath levels per impurity level are taken into account ($n_s = 6$ per spin). To check the accuracy of this approximation we have evaluated the T/U phase diagram of a single band for $n_s = 3, \ldots, 6$. As shown in Fig. 1, the stability boundaries $U_{c1}(T)$ and $U_{c2}(T)$ for $n_s = 3$ are slightly too low. Nevertheless, the overall shape of the phase diagram agrees qualitatively with the converged results for $n_s = 6$. Thus, we are
confident that in the two-band case \(n_s = 6 \) also yields a reasonable picture of the phase diagram. Preliminary results for \(n_s = 8 \) will also be presented.

To analyze the metal/insulator transition we study the quasiparticle weights \(Z_i = 1/|1 - d \text{Re} \Sigma_i(\omega)/d\omega|_{\omega=0} \), which in the metallic range can be represented as \(Z_i \approx 1/[1 - \text{Re} \Sigma_i(i\omega_0)/\omega_0] \), where \(\Sigma_i(i\omega_0) \) is the subband self-energy at the first Matsubara frequency. Fig. 2(a) shows \(Z_i(U) \) for \(J' = J = U/4 \), where \(J' \) denotes spin-flip and pair-exchange terms \([24]\). Two critical regions can be identified, each with hysteresis loops characteristic of first-order phase transitions. The coexistence areas are \(U_i^< < U < U_i^> \) near 2.0 eV and \(U_i^< < U < U_i^> \) near 3.0 eV, where \(U_i^< \) and \(U_i^> \) are the stability boundaries obtained for increasing \((n = 2) \) and decreasing \((n = 1) \) \(U \). Let us denote the true critical energies of these transitions as \(U_i^c(T) \) and \(U_i^c(T) \). Below \(U_i^< \) both bands are metallic while above \(U_i^> \) both are insulating. At the lower transition both bands undergo first-order transitions - but in fundamentally different ways: \(Z_1(U) \) becomes very small while \(Z_2(U) \) drops to a finite value. The narrow band therefore undergoes a 'complete' metal/insulator transition, whereas the wide band exhibits an 'incomplete' transition to a new, considerably more correlated phase. This band becomes fully insulating near 3.0 eV, where it exhibits a weak second hysteresis loop. To our knowledge this is the first time that \textit{sequential} first-order transitions are identified in the \(T/U \) phase diagram of a Hubbard model involving non-equivalent bands \([25]\). If such a material could be encountered experimentally, the conductivity as a function of pressure would show two consecutive jumps.

Fig. 2(b) shows \(Z_i(U) \) for \(J' = 0, J = U/4 \), i.e., in the absence of spin-flip and pair-exchange terms. The results are similar to those in Fig. 2(a), with the important exception that the wide band above the lower transition is even more correlated and the upper transition is now continuous at smaller \(U \) \([24]\). Remarkably, the lower transition remains first-order for both subbands. In this case the conductivity shows a jump at \(U_i^< \) but a change of slope at \(U_i^> \). The results in Fig. 2(b) confirm the picture obtained previously within the QMC for \(T > 0 \), \(J' = 0 \) which showed the existence of a single first-order transition followed by a mixed insulating/bad-metallic phase \([27, 28]\). They also demonstrate that the two-band ED/DMFT for \(n_s = 6 \) is qualitatively accurate \([29]\).

The phase diagrams deduced from the ED results for \(T \geq 2.5 \text{ meV} \) are shown in Fig. 3. For \(J' = J \) as well as \(J' = 0 \) the transition at \(U_i^< \) is first-order for both subbands. The subsequent transition of the wide band at
nies by about 0.1 to 0.2 eV. Preliminary results for transitions obtained in [1, 2, 3, 4, 5, 6, 8, 9, 10] concerning
T = 31 meV. Evidently the conflicting conclusions reached in [1, 2, 3, 4, 6, 8] concerning the nature of the Mott transition in multi-band systems were caused by different behaviors obtained for T = 0 vs. T > 0 and J′ = J vs. J′ = 0. Accounting for these different parameter choices, the DMFT treatments are consistent.

Quasiparticle spectra derived within the QMC/DMFT for J′ = 0 showed that in the intermediate phase the self-energy of the wide band at small ωn deviates significantly from metallic ~ ωn behavior. Accordingly, the quasi-particle spectra show a pseudogap which for larger U gets more pronounced, indicating progressive non-Fermi-liquid properties. A true gap opens at Uc(T). Thus, Z2(U) > 0 in the region Uc(T) < U < U′c(T) does not imply existence of quasiparticles. As indicated in Fig. 3(b) the intermediate ‘orbital-selective Mott’ phase in the absence of spin-flip and pair-exchange is in fact a mixed insulating/NFL phase. The same trend is found using the T > 0 ED/DMFT.

For J′ = J, the low-frequency analysis of Σ2(ωn) reveals deviations from metallic ~ ωn variation, giving rise to small pseudogaps in the quasiparticle spectra. This behavior is incompatible with Im Σ2(ω) ~ ω2 and suggests that, as for J′ = 0, in the intermediate phase the wide band at T > 0 violates Fermi-liquid theory. The extension of the present ED approach to ns = 8 indicates, however, that the additional bath levels are important for the low-frequency variation of Σ2(ωn). As can be seen in Fig. 4(b), the deviations are absent and the ~ ωn variation is consistent with Fermi-liquid behavior. In fact, the shoulder near ω0 = 0.06 suggests that Fermi-liquid properties persist up to about T = ω0/π ∼ 20 meV. Thus, the OSM phase in Fig. 3(a) is the T > 0 analog of the orbital-selective Mott phase identified first by Koga et al. at T = 0. A more complete discussion of the results for ns = 8 will be given elsewhere. Because of finite size limitations of the present ED/DMFT scheme associated with the small number of bath levels, a precise determination of low-temperature properties is not possible. Nevertheless, an approximate extrapolation of Σ2(ωn) indicates that the T → 0 limit for J′ = J satisfies Fermi-liquid criteria, in agreement with previous
In view of the importance of spin-flip and pair-exchange terms for the Mott transition in multi-band materials, it is desirable to investigate the T/U phase diagram by methods which permit adequate treatment of the complete Hund’s rule matrix, for instance, a two-band extension of $T > 0$ numerical renormalization group studies [34]; see also [25]. Because of sign problems, recent QMC extensions including spin-flip and pair-exchange terms are limited to $T > 1/6$ eV $\gg T_c$ [7] or $T = 0$ [10]. Also, other recent works [8] employing a variety of quantum impurity methods deal so far mainly with $T = 0$ and do not yet allow the identification of the multi-band Mott transition at general T, U values.

In summary, the T/U phase diagram of the Hubbard model involving half-filled, non-equivalent subbands is shown to be remarkably rich. The competing kinetic energy scales, coupled via Coulomb and exchange energies, give rise to sequential first-order phase transitions. The lower transition separates a purely metallic phase from a mixed phase with insulating narrow and strongly-correlated wide subbands. The wide band becomes insulating at the second first-order transition. Omission of spin-flip and pair-exchange terms enhances the correlations in the wide band in the intermediate phase so that it no longer satisfies Fermi-liquid criteria, and modifies the upper phase transition from first-order to continuous.

For the analysis of experimental data of materials such as Ca$_{2-\delta}$Sr$_{\delta}$RuO$_4$ it is necessary to account also for hybridization between orbitals. Preliminary studies of this effect within two-band models for $T \gg T_c$ [3] and $T = 0$ [8] suggest significant changes. Moreover, spatial fluctuations [11] and deviations from half-filling might play a decisive role close to the Mott transition. More work is needed to investigate whether both first-order transitions persist in the presence of these effects, or whether the weak first-order behavior of the upper transition disappears and only the dominant lower transition survives as the common first-order Mott transition for all bands.

I like to thank Th. Costi, K. Held, N. Kawakami, and E. Koch for valuable discussions.

Email: a.liebsch@fz-juelich.de

[1] V. I. Anisimov, I. A. Neperskov, D. E. Kondakov, T. M. Rice and M. Sigrist, Euro. Phys. J. B 25, 191 (2002).
[2] A. Liebsch, Europhys. Lett. 63, 97 (2003).
[3] A. Liebsch, Phys. Rev. Lett. 91, 226401 (2003).
[4] A. Koga, N. Kawakami, T. M. Rice, and M. Sigrist, Phys. Rev. Lett. 92, 216402 (2004).
[5] A. Liebsch, Phys. Rev. B 70, 165103 (2004).
[6] A. Koga, N. Kawakami, T. M. Rice, and M. Sigrist, cond-mat/0406457.
[7] A. Koga, N. Kawakami, T. M. Rice, and M. Sigrist, cond-mat/0503651.
[8] M. Ferrero, F. Becca, M. Fabrizio, and M. Capone, cond-mat/0503759.
[9] L. de’ Medici, A. Georges and S. Biermann, cond-mat/0503764.
[10] R. Arita and K. Held, cond-mat/0504040.
[11] Yun Song and L.-J. Zou, cond-mat/0504420.
[12] C. Knecht, N. Blümer, and P.G.J. van Dongen, cond-mat/0505106.
[13] T. Oguchi, Phys. Rev. B 51, 1385 (1995); I. I. Mazin and D. Singh, Phys. Rev. Lett. 79, 733 (1997).
[14] A. Liebsch and A. I. Lichtenstein, Phys. Rev. Lett. 84, 1591 (2000).
[15] Y. Maeno, T. M. Rice and M. Sigrist, Physics Today 54(1), 42 (2001).
[16] A. Fang and K. Terakura, Phys. Rev. B 64, R020509 (2001); A. Fang, N. Nagaosa, and K. Terakura, Phys. Rev. B 69, 045116 (2004).
[17] S. Nakatsuji and Y. Maeno, Phys. Rev. Lett. 84, 2666 (2000).
[18] For a review, see: A. Georges, G. Kotliar, W. Krauth and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).
[19] M. Caffarel and W. Krauth, Phys. Rev. Lett. 72, 1545 (1994).
[20] For a discussion of this problem, see: K. Held and D. Vollhardt, Eur. Phys. J. B 5, 473 (1998).
[21] I like to thank the authors of [15] for making the single-band ED code available, and A.I. Lichtenstein for parts of the two-band ED code.
[22] See: R. Bulla, T. A. Costi, and D. Vollhardt, Phys. Rev. B 64, 045103 (2001) and references herein.
[23] N.H. Tong, S.Q. Shen, and F.C. Pu, Phys. Rev. B 64, 235109 (2001).
[24] More accurate results at low ω_n and T are obtained by minimizing differences between impurity and Anderson model Green’s functions via $\sum_n |\Delta G_i(i\omega_n)|^2$ rather than $\sum_n |\Delta G_i(i\omega_n)|$. I thank E. Koch for this suggestion.
[25] After completion of this work we learned of similar results by K. Inaba et al., cond-mat/0506151.
[26] The term ‘continuous’ indicates here that there is no jump; it may also signify crossover behavior.
[27] Surprisingly, two-band DMFT using iterated perturbation theory for $J' = J$ reveals the lower transition as first-order but the upper as continuous.
[28] Recent QMC/DMFT results [12] for $J = U/4$, $J' = 0$ are in agreement with those of [10]. Compare $Z_i(U)$ and $N_i(\omega)$ in Figs. 9(b) and 11 with Figs. 1(b)(inset) and 3.4 [12]. Thus, the claims in [12] that “the second transition was not seen in earlier QMC and IPT studies” and “our high-precision data correct earlier QMC results” are unfounded. See also: A. Liebsch, cond-mat/0506133.
[29] The QMC hysteresis region is slightly wider than in ED. This could be due to slow convergence of QMC at $T = 0.02$ eV and too small n_s in ED.
[30] Similar QMC results were obtained for $J' = 0$, $T > 0$, $W_1 = 0.1W_2$ by Biermann et al., cond-mat/0505737.
[31] See also Fig. 3 of [12].
[32] A. Liebsch, to be published.
[33] See also: Th. Pruschke and R. Bulla, cond-mat/0411186.
[34] Th. Costi, to be published.
[35] O. Parcollet, G. Biroli, and G. Kotliar, Phys. Rev. Lett. 92, 226402 (2004).