Changes in the CHA₂DS₂-VAS c score as a predictor of incident atrial fibrillation in older Chinese individuals: the AF-CATCH study

Wei Zhang¹, Yi Chen¹, Lei-Xiao Hu¹, Jia-Hui Xia¹, Xiao-Fei Ye¹, Yi-Bang Cheng¹,², Ying Wang¹, Qian-Hui Guo¹,², Yan Li¹, Nicole Lowres³,⁴, Ben Freedman³,⁴, and Ji-Guang Wang ¹,²,* for the AF-CATCH Investigators and Coordinators

¹Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Ruijin 2nd Road 197, Shanghai 200025, China; ²National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; ³Heart Research Institute, Sydney Medical School, Charles Perkins Center, Sydney NSW2006, Australia; and ⁴Cardiology Department, Concord Hospital, The University of Sydney, Sydney NSW2006, Australia

Received 14 March 2022; revised 4 July 2022; editorial decision 10 July 2022

Handling Editor: Frieder Braunschweig

Aims
Incidence of atrial fibrillation is highly associated with age and cardiovascular co-morbidities. Given this relationship, we hypothesized that the dynamic changes resulting in an increase in the CHA₂DS₂-VAS c score over time would improve the efficiency of predicting incident atrial fibrillation on repeated screening after a negative test.

Methods and results
We investigated in an analysis of the AF-CATCH trial [quarterly vs. annual electrocardiogram (ECG) screening for atrial fibrillation in older Chinese individuals] data, the association between the changes in the CHA₂DS₂-VAS c score from baseline to end-of-study visit and the risk of incident atrial fibrillation. Participants without a history of atrial fibrillation and with a sinus rhythm at baseline were randomized to the annual (usual) or quarterly 30 s (intensive) single-lead ECG screening groups. During a median follow-up of 2.1 years in 6806 participants, the incidence rate of atrial fibrillation in decreased from 4.2 per 1000 person-years in participants with a change in the CHA₂DS₂-VAS c score of 0 to 6.4 and 25.8 per 1000 person-years in participants with a change in the CHA₂DS₂-VAS c score of 1 and ≥2, respectively. A change in the CHA₂DS₂-VAS c score of ≥2 was associated with a significantly elevated risk of incident atrial fibrillation.

Conclusions
Patients with substantial changes in the CHA₂DS₂-VAS c score were more likely to develop incident atrial fibrillation, and regular re-assessments of cardiovascular risk factors in the elderly are probably worthwhile to improve the detection of atrial fibrillation.

Registration
URL: http://www.clinicaltrials.gov; Unique identifier: NCT02990741.

* Corresponding author. Tel: +86 21 6437 0045 ext 610911, Fax: +86 21 6466 2193, Email: jiguangwang@rjh.com.cn

© The Author(s) 2022. Published by Oxford University Press on behalf of the European Society of Cardiology. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Graphical Abstract

Changes in the CHA$_2$DS$_2$-VAS$_C$ score as a predictor of incident atrial fibrillation

During a median follow-up of 2.1 years in 6606 older (≥ 65 years) participants with sinus rhythm at baseline, the overall incidence rate of AF was 5.5 per 1000 person-years.

Factors associated with ΔCHA$_2$DS$_2$-VAS$_C$

1. Age
2. HTN
3. Stroke/TIA
4. DM
5. CHF
6. Valve

ΔCHA$_2$DS$_2$-VAS$_C$ score on the change in the CHA$_2$DS$_2$-VAS$_C$ score from baseline to end-of-study visit; AF, atrial fibrillation; HTN, hypertension; DM, diabetes mellitus; TIA, transient ischemic attack; Vas, vascular disease; HR, hazard ratio; CI, confidence interval.

AF incidence according to ΔCHA$_2$DS$_2$-VAS$_C$

- Reference
- HR=1.53, 95% CI 0.91-2.58, P=0.11
- \geq2
 - HR=6.23, 95% CI 3.26-11.90, P<0.0001

Keywords

Incident atrial fibrillation • Screening • CHA$_2$DS$_2$-VAS$_C$ score • Hypertension • Risk factor

Introduction

Atrial fibrillation is the most frequent cardiac arrhythmia in the elderly. Incidence of atrial fibrillation is highly associated with age and cardiovascular co-morbidities as well, such as hypertension, diabetes mellitus, stroke or transient ischaemic attack (TIA), congestive heart failure, ischaemic heart disease, and valvular heart disease. Given this relationship with both age and cardiovascular co-morbidities, which are part of the CHA$_2$DS$_2$-VAS$_C$ score, we hypothesized that the dynamic changes resulting in an increase in the CHA$_2$DS$_2$-VAS$_C$ score over time would improve the efficiency of predicting incident atrial fibrillation on repeated screening after a negative test. CHA$_2$DS$_2$-VAS$_C$ score is a recommended tool to guide decisions on the use of oral anticoagulants to prevent stroke in atrial fibrillation. However, it may change over time, in response to the dynamic changes of the afore-mentioned cardiovascular risk factors, and such dynamic changes have been shown to be related to stroke outcomes. Opportunistic screening in patients contacting the health system and ≥65 years of age has been recommended in many atrial fibrillation guidelines. In those who do not show atrial fibrillation on the initial screening, it has been shown that a similar proportion will show atrial fibrillation on the subsequent screen. In an analysis of the AF-CATCH trial [quarterly vs. annual electrocardiogram (ECG) screening for atrial fibrillation in older Chinese individuals] data, we investigated the association between the changes in the CHA$_2$DS$_2$-VAS$_C$ score from baseline to end-of-study visit and the risk of incident atrial fibrillation, to determine whether atrial fibrillation detection might be enriched in those study participants who had an increased CHA$_2$DS$_2$-VAS$_C$ score.

Methods

In the AF-CATCH study, participants without a history of atrial fibrillation and with sinus rhythm at baseline were randomized to the annual (usual) or quarterly 30 s (intensive) single-lead ECG screening groups. The primary outcome was the detection rate of new-onset atrial fibrillation. The study was conducted in accordance with the principles of the Declaration of Helsinki. The study protocol was approved by the Ethics Committee of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine. Written informed consent was obtained from all study participants at baseline screening clinic visits. For database management and statistical analysis, we used SAS software (Version 9.4; SAS Institute, Cary, NC).
Table 1 Baseline characteristics

Characteristic	△CHA2DS2-VASC = 0 (n = 4827)	△CHA2DS2-VASC = 1 (n = 1752)	△CHA2DS2-VASC ≥ 2 (n = 227)	P ANOVA
Age, years	71.5 ± 6.4	71.4 ± 5.5	73.0 ± 5.2	0.001
65–74 years	3552 (73.6)	1430 (81.6)	187 (82.4)	<0.0001
≥75 years	1275 (26.4)	322 (18.4)	40 (17.6)	<0.0001
Congestive heart failure	28 (0.6%)	6 (0.3%)	0	0.38
Hypertension	3290 (68.2)	438 (25.0)	66 (29.1)	<0.0001
Diabetes mellitus	1109 (23.0)	263 (15.0)	35 (15.4)	<0.0001
Previous stroke, TIA, or thromboembolism	341 (7.1)	82 (4.7)	10 (4.4)	0.001
Vascular disease	355 (7.4)	97 (5.5)	18 (7.9)	0.03
Women	2741 (56.6)	970 (55.2)	113 (49.6)	0.08
Baseline CHA2DS2-VASC score	3 (2–4)	2 (2–3)	2 (1–3)	<0.0001
Body mass index, kg/m²	24.7 ± 3.4	24.2 ± 3.4	24.2 ± 3.1	<0.0001
Systolic blood pressure, mmHg	138.6 ± 18.6	135.1 ± 19.1	136.4 ± 18.2	<0.0001
Diastolic blood pressure, mmHg	74.6 ± 9.5	73.6 ± 9.5	73.3 ± 9.2	0.0002
Pulse rate, beats per min	73.5 ± 11.1	73.2 ± 10.7	73.8 ± 9.9	0.56
Current smoking	674 (14.2)	249 (14.3)	36 (16.1)	0.68
Alcohol intake	590 (12.4)	222 (12.8)	33 (14.9)	0.48
Fasting plasma glucose concentration, mmol/L	5.68 (5.17–6.40)	5.76 (5.20–6.60)	5.70 (5.30–6.64)	0.06
Serum triglycerides concentration, mmol/L	4.99 (4.32–5.63)	5.05 (4.35–5.75)	5.20 (4.32–5.89)	0.20
Total cholesterol concentration, mmol/L	1.43 (1.05–2.00)	1.43 (1.03–2.07)	1.47 (1.09–2.05)	0.03
LDL cholesterol concentration, mmol/L	3.00 (2.44–3.58)	3.06 (2.47–3.68)	3.14 (2.42–3.89)	0.02
HDL cholesterol concentration, mmol/L	1.50 (1.29–1.80)	1.55 (1.32–1.83)	1.54 (1.29–1.81)	0.04
Serum creatinine concentration, mmol/L	69 (59–81)	68 (59–79)	69 (59–81)	0.45
Serum uric acid concentration, mmol/L	330 (279–390)	324 (274–383)	328 (280–379)	0.02

Values are mean ± standard deviation, median (interquartile range), or count (percentage) as appropriate. TIA, transient ischaemic stroke. Alcohol intake was defined as a per week volume of alcohol consumption of ≥5 g. Current smoking was defined as the present regular use of cigarettes (>1 per day) at the time of the study.

RESULTS

During a median follow-up of 2.1 years in 6806 participants [2982 (43.8%) men, mean age ± standard deviation of 71.4 ± 6.2 years, and mean CHA2DS2-VASC score of 2.8 ± 1.2. Table 1], the CHA2DS2-VASC score remained unchanged in 4827 individuals and increased by 1 and ≥2 in 1752 and 227 individuals, respectively. The corresponding number of incident cases of atrial fibrillation was 39, 22, and 12, respectively, corresponding to an atrial fibrillation detection rate of 0.8%, 1.3%, and 5.3%, respectively. The incidence rate of atrial fibrillation increased from 4.2 per 1000 person-years in participants with a change in the CHA2DS2-VASC score of 0 to 6.4 and 25.8 per 1000 person-years in participants with a change in the CHA2DS2-VASC score of 1 and ≥2, respectively. After adjustment for baseline CHA2DS2-VASC score, body mass index, current smoking and alcohol intake, fasting plasma glucose and serum total cholesterol, creatinine and uric acid, the HRs for the incidence of atrial fibrillation in participants with a change in CHA2DS2-VASC score of 1 and ≥2 vs. those with a change in CHA2DS2-VASC score of 0 was 1.53 (95% CI 0.91–2.58, P = 0.11) and 6.23 (95% CI 3.26–11.90, P < 0.0001, Figure 1), respectively.

Discussion

Our study showed a significant association between changes of CHA2DS2-VASC score and the incidence of atrial fibrillation in older individuals. A change in the CHA2DS2-VASC score of ≥2 was associated with a significantly elevated risk of incident atrial fibrillation. CHA2DS2-VASC score has been found useful in predicting stroke risk of new-onset atrial fibrillation and the risk of new-onset atrial fibrillation. Some of the cardiovascular risk factors that constitute the CHA2DS2-VASC score change over time, especially in the elderly population. Indeed, in our study, in addition to advancing age (21% of the increments of the score), the prevalence of hypertension also increased from 55.7 to 75.0% during follow-up (59% of the increments of the score, Figure 2). In participants with an increase of...
CHA2DS2-VASC score of 1, the contribution in percentage was 66.7, 20.4, 8.7, and 3.9% for hypertension, age, diabetes mellitus, and vascular disease, respectively, while in participants with an increase of CHA2DS2-VASC score of ≥2, it was 30.3, 29.8, 21.6, 11.8, and 6.5% for hypertension, stroke/TIA/thromboembolism, age, diabetes mellitus, and vascular disease, respectively. Atrial fibrillation increases disproportionally in older adults, rendering age one of the best predictors of atrial fibrillation.

Risk factors are dynamic and given the elderly population with multiple co-morbidities, the CHA2DS2-VASC score needs to be re-evaluated at each clinical review. With the increasing availability of big data and artificial intelligence technology, regular re-assessments of cardiovascular risk factors are increasingly feasible. For those who have changes in the CHA2DS2-VASC score of ≥2 over time, particularly associated with the development of hypertension, are more likely to develop atrial fibrillation, hence more frequent repeats of single-timepoint

Figure 1 Cumulative incidence of atrial fibrillation according to dynamic CHA2DS2-VASC score.

Figure 2 Contribution in the percentage of various components to the changes of the CHA2DS2-VASC score of 1 and ≥2, respectively. △CHA2DS2-VASC, the change in the CHA2DS2-VASC score from baseline to end-of-study visit. HTN, hypertension; DM, diabetes mellitus; TIA, transient ischaemic attack; CHF, congestive heart failure; Vas, vascular disease.
screening or continuous monitoring (e.g. prolonged Holter monitoring or a wearable-patch\(^3\)) might be worthwhile to detect atrial fibrillation.

Our study had a number of limitations. The number of incident cases of atrial fibrillation was relatively small. In addition, our analysis was based on the data from a randomized, controlled trial that had limited cardiac evaluations. We did not perform echocardiography. The possibility of unmeasured confounders cannot be entirely excluded.

In conclusion, our study in an elderly Chinese population showed a significantly increased risk of incident atrial fibrillation in participants with a change in CHA\(_2\)DS\(_2\)-VAS\(_c\) score of \(\geq 2\) over 2 years. Our findings suggest that patients with substantial changes in the CHA\(_2\)DS\(_2\)-VAS\(_c\) score are more likely to develop incident atrial fibrillation, and regular re-assessments of cardiovascular risk factors in the elderly are worthwhile to improve detection of atrial fibrillation. Further research is needed to address this important research question.

Acknowledgements

We gratefully acknowledge the participation of the patients and the technical assistance of Yi Zhou, Yi-Ni Zhou, Jia-Jun Zong, Jun-Wei Li, Bei-Wen Lv, Yi Zhou, Yu-Ting Jiang, Jie Zhou, Yi-Qing Zhang, and Jia-Ye Qian (The Shanghai Institute of Hypertension, Shanghai, China).

Funding

The present study was financially supported by a grant from Bayer Healthcare Company (IMPACT 19216). The study investigators were also financially supported by grants from the National Natural Science Foundation of China (91639203 and 82070435), Ministry of Science and Technology (grants 2015AA020105–06 and 2018YFC1704902), Ministry of Health (grant 2016YFC0900902), Beijing, China, the Shanghai Commission of Science and Technology (grant 19DZ2340200), and Health (GWW-10.1-XK05 and a special grant for leading academics), Shanghai, China, and the Clinical Research Programme, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine (grant 2018CR0101), Shanghai, China.

Conflict of interests

Dr J.-G.W. reports receiving lecture and consulting fees from Novartis, Omron, Servier, and Viatris.

References

1. Smith JS, Newton C, Almgren P, Struch J, Morgenthaler NG, Bergmann A, Platonov PG, Hedblad B, Engström G, Wang T, Melander O. Assessment of conventional cardiovascular risk factors and multiple biomarkers for the prediction of incident heart failure and atrial fibrillation. J Am Coll Cardiol 2010;56:1712–1719.

2. Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijns HJ. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation. Chest 2010;137:263–272.

3. Chao TF, Lip GYH, Lu QJ, Lin YJ, Chang SL, Lo LW, Hu YF, Tuan TCn, Liao JN, Chung FP, Chen TJ, Chen SA. Relationship of aging and incident comorbidities to stroke risk in patients with atrial fibrillation. J Am Coll Cardiol 2018;71:122–132.

4. Hindrickx G, Potpara T, Dagnes N, Arbelo E, Baz JI, Blomström-Lundqvist C, Boriani G, Castella M, Dan GA, Dilaveris PE, Faucher L, Filippatos G, Kalman JM, La Meir N, Lane DA, Lebeau JP, Lettinio M, Lip GYH, Pinto FJ, Thomas GN, Valmigni M, Van Gelder I, Van Putte BP, Watkins CL; ESC Scientific Document Group. 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European association of cardio-thoracic surgery (EACTS): the task force for the diagnosis and management of atrial fibrillation of the European society of cardiology (ESC) developed with the special contribution of the European heart rhythm association (EHRA) of the ESC. Eur Heart J 2021;42:373–498.

5. Sun W, Freedman B, Martinez C, Wallenhorst C, Yan BP. Atrial fibrillation detected by single time-point handheld electrocardiogram screening and the risk of ischemic stroke. Thromb Haemost 2022;122:286–294.

6. Zhang W, Chen Y, Mao CY, Huang QF, Zheng CS, Shao S, Wang D, Xu X, Lei L, Zhang D, Chen YL, Hu LX, Xia JH, Ye XF, Cheng YB, Wang Y, Guo QH, Li Y, Lowres N, Freedman B, Wang JG. Quarterly versus annual ECG screening for atrial fibrillation in older Chinese individuals (AF-CATCH): a prospective, randomised controlled trial. Lancet Healthy Longev 2021;2:e470–e478.

7. Chao TF, Liu CQ, Chen SJ, Wang KL, Lin YJ, Chang SL, Lo LW, Hu YF, Tuan TC, Wu TJ, Chen TJ, Chen SA. CHA2DS2 score and risk of new-onset atrial fibrillation: a nationwide cohort study in Taiwan. Int J Cardiol 2013;168:1360–1363.

8. Freedman B, Camm J, Calkins H, Healey JS, Rosenvist M, Wang J, Albert CM, Anderson CS, Antoniou S, Benjamin EJ, Boriani G, Brachmann J, Brandes A, Chao TF, Conen D, Engdahl J, Faucher L, Fitzmaurice DA, Friberg L, Gerbitz KJ, Gladstone DJ, Glotzer TV, Gwynne K, Hankey GJ, Harrison J, Hills GS, Hills MT, Kamei H, Kirchhof P, Kowey PR, Krieger D, Lee WWY, Levin L, Lip GYH, Lobbatan T, Lowres N, Marsess GH, Martinez C, Nebebeck L, Orchard J, Piccini JP, Poppe K, Potpara TS, Puurerfellner H, Rienstra M, Sandhu RK, Schnabel RB, Siu CW, Steinhuhi S, Svensson JH, Svensen E, Themistoclakis S, Tielenman RG, Turakhia MP, Tvet A, Uttenbogaart SB, Van Gelder IC, Verma A, Wachtler R, Yan BP; AF-Screen Collaborators. Screening for atrial fibrillation: a report of the AF-SCREEN international collaboration. Circulation 2012;135:1851–1867.

9. Halcox JP, Wareham K, Cardew A, Gilmore M, Barry JP, Phillips C, Gravener MB. Assessment of remote heart rhythm sampling using the AliveCor heart monitor to screen for atrial fibrillation: the REHEARSE-AF study. Circulation 2017;136:1784–1794.