Irregular Sampling of the Radon Transform of Bandlimited Functions

Thomas Wiese
Associate Institute for Signal Processing
Technische Universität München, Germany
Email: thomas.wiese@tum.de

Laurent Demaret
Helmholtz Center Munich, Germany
Email: laurent.demaret@helmholtz-muenchen.de

Abstract—We provide conditions for exact reconstruction of a bandlimited function from irregular polar samples of its Radon transform. First, we prove that the Radon transform is a continuous L^2-operator for certain classes of bandlimited signals. We then show that the Beurling-Malliavin condition for the radial sampling density ensures existence and uniqueness of a solution. Moreover, Jaffard’s density condition is sufficient for stable reconstruction.

I. INTRODUCTION

In computed tomography (CT), a central question is the following: what kind of detail can be resolved from a particular CT scan (sinogram)? Notwithstanding the lack of a clear definition of the term detail, in many applications a satisfactory and useful answer is provided in terms of the Nyquist frequency connected to the sampling geometry.

The “pure” case of reconstructing a function from its possibly irregular samples has been solved nicely for classes of bandlimited functions in terms of density theorems as we will see in Section III of this paper. Due to difficulties that arise when defining the Radon transform for bandlimited functions, these results have not yet been used in the context of CT. Instead, efforts revolved around the analysis of quasi-bandlimited functions and the results bear the deficiency of only asymptotically controllable errors [1], [2].

This paper closes this apparent gap in the literature, namely, we show that the Radon transform can be defined in the usual sense as a continuous L^2-operator for certain classes of bandlimited functions. The Radon transform of such signals is itself bandlimited and it is shown that stable and exact reconstruction of these signals from their irregularly sampled Radon transforms is possible if the sampling set satisfies certain density requirements.

The remainder of this paper is organized as follows: In Section II we present current techniques in reconstruction of the sampled Radon transform and how they relate to spaces of bandlimited functions and sampling. In Section III we provide a dense overview of results from sampling theory for bandlimited functions. After showing continuity of the Radon transform and its inverse for certain bandlimited functions in Section IV, we will apply these results to the sampled Radon transform in Section V.
III. REVIEW OF SAMPLING THEORY FOR BANDLIMITED FUNCTIONS

We provide a brief review of the available theorems and techniques used for irregular sampling of bandlimited square-integrable functions in one dimension. These results can be extended to more dimensions when sampling on product grids.

Definition 1 (Paley-Wiener spaces). Let F denote the Fourier transform. The Paley-Wiener space of R-radially bandlimited and square-integrable functions is defined as
\[\mathcal{PW}_R(\mathbb{R}^d) := \{ f \in L^2(\mathbb{R}^d) : \mathcal{F}f|_{\mathbb{R}^d \setminus B_R^d} = 0 \}, \]
where B_R^d is the d-dimensional ball with radius R. Similarly, for $r > 0$, we define the space of bandpass functions as
\[\mathcal{BP}_r(\mathbb{R}^d) := \{ f \in L^2(\mathbb{R}^d) : \mathcal{F}f|_{\mathbb{R}^d \setminus (n_B^d \setminus B_r^d)} = 0 \}. \]

Let $\Lambda \subset \mathbb{R}$ be a uniformly discrete set of sample positions, that is, $\inf_{\lambda, \mu} |\lambda - \mu| > 0$ for $\lambda, \mu \in \Lambda$ and $\Lambda \neq \mu$. This condition ensures that the sampling operator $S_\Lambda : \mathcal{PW}_R(\mathbb{R}) \to l^2(\Lambda)$ is always a continuous linear operator into $l^2(\Lambda)$ [7]. For a fixed bandwidth R, sampling theory gives conditions in terms of densities on the sampling set Λ under which functions in $\mathcal{PW}_R(\mathbb{R})$ can be identified by and reconstructed from its values on Λ. In particular, one wishes to establish whether
\begin{itemize}
 \item Λ is a set of uniqueness for $\mathcal{PW}_R(\mathbb{R})$, i.e., the sampling operator S_Λ is injective or whether
 \item Λ is a set of sampling for $\mathcal{PW}_R(\mathbb{R})$, i.e., the sampling operator S_Λ is continuous and continuously invertible on its range.
\end{itemize}

Definition 2 (Densities). Let $\Lambda \subset \mathbb{R}$ be uniformly discrete with $0 \notin \Lambda$ and with signed counting function $N_\Lambda(t)$, which counts the number of points in the interval with endpoints 0 and t and has negative sign for $t < 0$.

i) The Beurling-Malliavin density is defined as
\[D_{bm}(\Lambda) := \inf_{c \geq 0} c \left\{ \exists h \in C^1(\mathbb{R}), 0 \leq h'(t) \leq c, \quad \int_\mathbb{R} \frac{|N_\Lambda(t) - h(t)|}{1 + t^2} \, dt < \infty \right\}. \]

ii) The frame density is defined as
\[D_f(\Lambda) := \sup_{\Gamma \subset \Lambda} \sup_{c \geq 0} c \cdot N_\Gamma(t) - ct = O(1), \]
where the supremum is over all subsets Γ for which the asymptotics exist and $D_f(\Lambda) = 0$ if no such subset exists.

These densities apply to reasonably general sampling sets. In particular, the frame density is invariant under removals of finitely many points, i.e., one arbitrarily sized “hole” is allowed. In case of the Beurling-Malliavin density, it is possible to construct grids with $D_{bm}(\Lambda) = 1$ that have infinitely many “holes” of unbounded size [9]. If Λ is a set for which there exists $c > 0$ and for which the asymptotics $N_\Lambda(t) - ct = O(1)$ hold, one also says that Λ has uniform density c. Our definition of the Beurling-Malliavin density can be found in [10]. It is a simplification of the original exterior density $A_\Lambda(dN_\Lambda)$ used by Beurling and Malliavin [11], which also applies for sampling sets of complex numbers. The following theorem encapsulates several decades of research [11], [12], [13], [14].

Theorem 1 (Sampling theorems). For Λ to be a set of uniqueness for $\mathcal{PW}_R(\mathbb{R})$

i) it is necessary that $D_{bm}(\Lambda) \geq 1$.

ii) it is sufficient that $D_{bm}(\Lambda) > 1$.

For Λ to be a set of sampling for $\mathcal{PW}_R(\mathbb{R})$

i) it is necessary that $D_f(\Lambda) \geq 1$.

ii) it is sufficient that $D_f(\Lambda) > 1$.

In the above theorem, it is possible to replace R with $R > 0$ and 1 with R/π on the right-hand side of the density conditions. The last condition is known as Jaffard's sufficient condition.

Using the theory of frames, reproducing kernel Hilbert spaces (RKHS), and tensor products, one can generalize these results to two (and more) dimensions for Cartesian products of sampling grids [3], [15]. A RKHS H with domain \mathbb{R}^d is a Hilbert space in which all point evaluations are continuous linear functionals, i.e., for all $x \in \mathbb{R}^d$, the map $f \mapsto f(x)$ is a bounded linear functional in H [16]. Paley-Wiener spaces and subspaces of $L^2(\mathbb{R}^d)$ spanned by a finite number of functions are examples of RKHS [17].

Theorem 2. Let H_1 and H_2 be RKHS of functions on \mathbb{R}. If for $i = 1, 2$, Λ_i is a set of uniqueness, resp. set of sampling, for H_i, then $\Lambda_1 \times \Lambda_2$ is a set of uniqueness, resp. set of sampling, for $\mathcal{H}_1 \otimes \mathcal{H}_2$.

The result is a consequence of the fact that tensor products of complete systems are complete in the tensor product space and that tensor products of frames are frames in the tensor product space [15].

IV. RADON TRANSFORM OF BANDLIMITED FUNCTIONS

In an effort to apply Theorem 1 to the irregularly sampled Radon transform, we first need to ensure compatibility between Paley-Wiener spaces and the Radon transform. Therefore, in this section, we establish conditions under which the Radon transform can be defined as a continuous and continuously invertible L^2-operator between subspaces of $\mathcal{PW}_R(\mathbb{R}^2)$ and $\mathcal{PW}_R(\mathbb{R}) \otimes L^2(S^1)$, where S^1 is the unit sphere in \mathbb{R}^2. Our approach contrasts with the conventional definition of the Radon transform as a continuous—but not continuously invertible—operator between $L^2(B_R(\mathbb{R}^2))$ and $L^2([-R, R] \times S^1)$. The advantage of our definition is that for irregular sampling grids of the form $\Lambda_s \times \Lambda_\omega$, with $\Lambda_s \subset \mathbb{R}$ and $\Lambda_\omega \subset [0, \pi]$, we can apply Theorems 1 and 2 to find conditions under which exact and stable reconstruction of a function from its sampled Radon transform is possible.

First, we present a counter example which highlights the difficulties that arise when defining the Radon transform for bandlimited functions. We will use the well-known Fourier slice theorem, which provides the following decomposition of the Radon transform for Schwartz functions $f \in \mathcal{S}(\mathbb{R}^2)$:
\[(\mathcal{R} f)(s, \omega) = (F_{s^{-1}}^* \cdot \Phi F f)(s, \omega). \]
Here, we denote the two-dimensional Fourier transform by \mathcal{F}, the one-dimensional Fourier transform with respect to the radial coordinate by \mathcal{F}_r, and the change from polar to Cartesian coordinates by $\Phi: L^2(\mathbb{R}^2) \to L^2(\mathbb{R}^+ \times S^1, \sigma \, d\sigma \otimes d\omega)$. By explicitly considering the change of norms,

$$\text{id}: L^2(\mathbb{R}^+ \times S^1, \sigma \, d\sigma \otimes d\omega) \to L^2(\mathbb{R} \times S^1, d\sigma \otimes d\omega),$$

we retain the L^2-isometry property (up to some power of 2π) of the Fourier transforms and, hence, L^2-continuity of the overall operator is determined solely by that of the change of norms. To show that the Radon transform is not L^2-continuous on $PW_R(\mathbb{R}^2)$, consider the sequence $f_n \in PW_R(\mathbb{R}^2)$ defined through its Fourier transform:

$$(\mathcal{F}f_n)(\xi) = \begin{cases} |\xi|^{-1/2} & \text{if } n^{-1} \leq |\xi| \leq R, \\ 0 & \text{otherwise}. \end{cases}$$

Each f_n is bandlimited, because $(\mathcal{F}f_n)(\xi) = 0$ for $|\xi| > R$, and $f_n \in L^2(\mathbb{R}^2)$, because $\mathcal{F}f_n \in L^2(\mathbb{R}^2)$ as

$$\int_{\mathbb{R}^2} d\xi |(\mathcal{F}f_n)(\xi)|^2 = \int_{S^1} d\omega \int_{n^{-1}}^{R} \sigma \, d\sigma |\xi|^{-1/2} = 2 \int_{S^1} d\omega \int_{n^{-1}}^{R} \sigma \, d\sigma = 2\pi(R - n^{-1}).$$

As can be seen, the norm of $\mathcal{F}f_n$ tends to $\sqrt{2\pi}R$ and that of f_n to $\sqrt{R/(2\pi)}$. On the other hand, the norm of $(\text{id} \Phi \mathcal{F})(f_n)$ with respect to the “flat” measure $d\sigma \otimes d\omega$ and, hence, that of $\mathcal{R}f_n$ in $L^2(\mathbb{R} \times S^1)$, is unbounded, because

$$\int_{S^1} d\omega \int_{\mathbb{R}} d\sigma |(\mathcal{F} \Phi \mathcal{F})(f_n)(\sigma, \omega)|^2 = 2 \int_{S^1} d\omega \int_{n^{-1}}^{R} \sigma \, d\sigma |\xi|^{-1/2} = 2 \int_{S^1} d\omega \int_{n^{-1}}^{R} \sigma \, d\sigma = 4\pi(\ln R + \ln n),$$

which tends to infinity as n grows. Thus, the Radon transform cannot be continuous on $PW_R(\mathbb{R}^2)$.

This defect of the Radon transform is a consequence of the fact that the Fourier transforms of functions in $PW_R(\mathbb{R}^2)$ may have mild singularities at the origin. If we restrict the Paley-Wiener space to bandpass functions $f \in BP_R(\mathbb{R}^2)$, we can easily verify the boundedness of the Radon transform:

$$\int_{S^1} d\omega \int_{\mathbb{R}} d\sigma |(\mathcal{F} f)(\sigma, \omega)|^2 = \int_{S^1} d\omega \int_{n^{-1}}^{R} \sigma \, d\sigma |(\mathcal{F} f)(\sigma, \omega)|^2
\leq 2 \int_{S^1} d\omega \int_{n^{-1}}^{R} \sigma \, d\sigma |(\mathcal{F} f)(\sigma, \omega)|^2
= 2r^{-1} \int_{\mathbb{R}^2} d\xi |(\mathcal{F} f)(\xi)|^2.$$

The same calculation—replace r with R in the denominator and turn around the inequality—also yields the lower bound

$$2R^{-1} \|f\|^2 \leq \|\mathcal{R}f\|^2 \leq 2r^{-1} \|f\|^2.$$

1For $\sigma < 0$ we define $(\text{id} \, \Phi \, \mathcal{F})(f_n)(\sigma, \omega) = (\sigma, -\omega)$, which ensures that the new variables can still be interpreted as polar coordinates.

2The factor 2 is a consequence of id mapping \mathbb{R}^+ to the whole real line.

This implies (e.g., [18], Thm. 4.48) closedness of the range and existence of a continuous inverse of the Radon transform:

Theorem 3 (Radon isomorphism). The Radon transform is a Hilbert space isomorphism between the Hilbert spaces $BP_R(\mathbb{R}^2)$ and $R(BP_R(\mathbb{R}^2)) \subset L^2(\mathbb{R} \times S^1, ds \otimes d\omega)$.

We can also characterize the range of the Radon transform for bandpass functions. The theory of tensor products of separable L^2-spaces yields the decomposition [19]

$$L^2(\mathbb{R} \times S^1) \approx L^2(\mathbb{R}, ds) \otimes L^2(S^1, d\omega).$$

The Fourier slice theorem shows that if $(\mathcal{F} f)(\xi) = 0$ for $|\xi| < r$ and $|\xi| > R$, then $(\mathcal{F} f)(\sigma, \omega)$ also vanishes for σ outside of $[-R, -r] \cup [r, R]$. Hence, if $f \in BP_R(\mathbb{R}^2)$, then $R f \in BP_R(\mathbb{R}) \otimes L^2(S^1)$. Similarly, for $g \in BP_R(\mathbb{R}) \otimes L^2(S^1)$ with $g(s, \omega) = g(-s, -\omega)$, we can go the inverse way of the Fourier slice theorem to define a function $f = \mathcal{F}^{-1} \Phi^{-1} \text{id}^{-1} \mathcal{F} \, g$. The same calculations as above show that $f \in BP_R(\mathbb{R}^2)$ and since, by definition, $g = \mathcal{R} f$, we obtain:

Theorem 4 (Range theorem for bandpass functions). The Radon transform maps $BP_R(\mathbb{R}^2)$ isomorphically to $BP_R(\mathbb{R} \times S^1)$, where we define

$$BP_R(\mathbb{R} \times S^1) := \{ f \in BP_R(\mathbb{R}) \otimes L^2(S^1) \}.$$
Hence, the sampling operator S, set of uniqueness, resp. set of sampling, for assumptions on as all remaining operators are isomorphisms.

Let $\Omega = \Omega$ some finite dimensional subspace Ω which is a set of uniqueness and a set of sampling for G an angular sampling grid Ω consequence of $[0, \pi]$. We will provide a reconstruction formula in an upcoming journal publication. For functions with finite angular Fourier transform of bandpass functions shown in Theorem 3, the one-dimensional integration can be carried out analytically as a parallel geometry that is symmetric about the origin.

Lastly, we need to restrict the angular behavior of admitted functions to some finite dimensional and, thus, automatically RKHS subspace $G \subset L^2([0, \pi])$. The finiteness condition is a consequence of $[0, \pi]$ being bounded. One can then always find an angular sampling grid $\Lambda_s \subset [0, \pi]$ with $|\Lambda_s| = \dim(G)$ which is a set of uniqueness and a set of sampling for G.

Theorem 5 (Sampling theorem for the Radon transform). Let Λ_s be a set of uniqueness and, thus, set of sampling for some finite dimensional subspace $G \subset L^2([0, \pi])$, $\Lambda_s \subset \mathbb{R}$ a uniformly discrete set and let $\Lambda = \Lambda_s \times \Lambda_\omega$. Let $\mathcal{H} \subset B_{P_{\mathcal{H}}}(\mathbb{R}^2)$ be defined as $\mathcal{H} = (R^{-1} \circ I)(B_{P_{\mathcal{H}}}(\mathbb{R}) \otimes G)$ and let $R_{\Lambda} : \mathcal{H} \to L^2(\Lambda)$ denote the sampled Radon transform.

(i) For R_{Λ_s} to be injective it is sufficient that $D_{\text{ran}}(\Lambda_s) > \mathbb{R}/\pi$.

(ii) For R_{Λ_s} to be continuous and continuously invertible it is sufficient that $D_{\text{ran}}(\Lambda_s) > \mathbb{R}/\pi$.

Proof: Due to Theorem 1, the conditions are sufficient for Λ_s being a set of uniqueness, resp. set of sampling, for $P_{\mathcal{H}}(\mathbb{R})$ and thus also for the subspace $B_{P_{\mathcal{H}}}(\mathbb{R})$. With the assumptions on Λ_s, we use Theorem 2 to see that Λ is a set of uniqueness, resp. set of sampling, for $B_{P_{\mathcal{H}}}(\mathbb{R}) \otimes G$. Hence, the sampling operator $S_{\Lambda} : B_{P_{\mathcal{H}}}(\mathcal{H}) \otimes G \to L^2(\Lambda)$ is injective, resp. continuous and continuously invertible on its range. These properties pass to the sampled Radon transform as all remaining operators are isomorphisms.

Figure 1 shows an example of an irregular sampling grid in parallel geometry that is symmetric about the origin.

VI. CONCLUSION

As a consequence of the continuity of the inverse Radon transform of bandpass functions shown in Theorem 3, the reconstruction problem is not, strictly speaking, ill-posed, i.e., choosing $B_{P_{\mathcal{H}}}(\mathbb{R}^2)$ for reconstruction is stabilizing.

We will provide a reconstruction formula in an upcoming journal publication. For functions with finite angular Fourier series, the sinc function expansion is particularly suited for computation of the inverse Radon transform as all but a single one-dimensional integration can be carried out analytically using the theory of Bessel functions. To illustrate the practicality of our analytical reconstruction formula, we applied our method to the reconstruction of a non radially bandlimited image from its irregularly sampled Radon transform (Fig. 2).

REFERENCES

[1] F. Natterer, *The Mathematics of Computerized Tomography*. Stuttgart: Teubner, 1986.

[2] P. Rattey and A. Lindgren, “Sampling the 2-d Radon transform,” *IEEE Trans. Acoust., Speech, Signal Process.*, vol. 29, no. 5, pp. 994–1002, Oct. 1981.

[3] C. L. Epstein, *Introduction to the Mathematics of Medical Imaging*. Pearson Education, Inc., 2003.

[4] E. Margolis and Y. Eldar, “Nonuniform sampling in polar coordinates with applications to computerized tomography,” in *Electrical and Electronics Engineers in Israel*, 2004. Proceedings, 2004 23rd IEEE Convention of, Sep. 2004, pp. 372–375.

[5] E. Grinberg and I. Pesenson, “Irregular sampling and the Radon transform,” *Contemp. Math.*, vol. 251, pp. 255–268, 2000.

[6] D. Potts and G. Steidl, “Fourier reconstruction of functions from their nonstandard sampled Radon transform,” *Journal of Fourier Analysis and Applications*, vol. 8, pp. 513–533, 2002.

[7] K. Gröchenig, “Reconstruction algorithms in irregular sampling,” *Mathematics of Computation*, vol. 59, pp. 181–194, 1992.

[8] J. J. Benedetto and P. J. Ferreira, Eds., *Modern Sampling Theory: Mathematics and Applications*. Boston: Birkhäuser, 2001.

[9] N. Levenin, *Gap and Density Theorems*. ser. Colloquium Publication 26. New York: American Mathematical Society, 1940.

[10] J.-P. Kahane, “Travaux de Beurling et Malliavin,” *Séminaire N. Bourbak*, vol. 7, pp. 27–39, 1961-1962.

[11] A. Beurling and P. Malliavin, “On the closure of characters and the zeros of entire functions,” *Acta Mathematica*, vol. 118, pp. 79–93, 1967.

[12] —, “On fourier transforms of measures with compact support,” *Acta Mathematica*, vol. 107, pp. 291–309, 1962.

[13] S. Jaffard, “A density criterion for frames of complex exponentials,” *Michigan Math. J.*, vol. 38, no. 3, pp. 339–348, 1989.

[14] H. Landau, “Necessary density conditions for sampling and interpolation of certain entire functions,” *Acta Mathematica*, vol. 117, pp. 37–52, 1967.

[15] A. Bourouihiya, “The tensor product of frames,” *Sampling Theory in Signal and Image Processing*, vol. 7, no. 1, pp. 65–76, Jan. 2008.

[16] N. Aronszajn, “Theory of reproducing kernels,” *Transactions of the American Mathematical Society*, vol. 68, no. 3, pp. 337–404, May 1950.

[17] K. Yao, “Applications of reproducing kernel Hilbert spaces – bandlimited signal models,” *Information and Control*, vol. 11, no. 4, pp. 429–444, 1967.

[18] B. P. Rynne and M. A. Youngson, *Linear Functional Analysis*, 2nd ed. Springer, 2008, vol. 283.

[19] M. Reed and S. Barry, *Functional Analysis*. London, UK: AP, 1981.

[20] S. Helgason, *The Radon Transform*. Boston: Birkhäuser, 1980.