Pediatrics Standardized Concentration of Chemotherapy Intravenous Infusion: A New Initiative in Saudi Arabia

Yousef Ahmed Alomi, BSc. Pharm, MSc. Clin Pharm, BCPS, BCNSP, Diba, CDE, Critical Care Clinical Pharmacists, TPN Clinical Pharmacist, Freelancer Business Planner, Content Editor and Data Analyst, Riyadh, Saudi Arabia.

Faiz A Bahadig, R.Ph, Informatics Pharmacist, Pharmaceutical Care Department, King Abdul-Aziz Medical, City-WR-Jeddah, Ministry of National Guard, Saudi Arabia.

Hani Alhamdan, BSc Pharm, MSc. Pharm, MBA, Director, Pharmaceutical Care services Department at KAMC-Jeddah, Ministry of National Guard, Saudi Arabia.

Correspondence:
Dr. Yousef Ahmed Alomi, Bsc. Pharm, msc. Clin Pharm, bcps, BCNSP, Diba, CDE Critical Care Clinical Pharmacists, TPN Clinical Pharmacist, Freelancer Business Planner, Content Editor and Data Analyst, PO BOX 100, Riyadh 1392, Riyadh, SAUDI ARABIA.
Phone no: +966 504417712
E-mail: yalomi@gmail.com

ABSTRACT

Objectives: To discover the pediatrics and neonates standardized concentration of chemotherapy intravenous infusion as new initiatives in the Kingdom of Saudi Arabia.

Methods: It is a new initiative project drove by national standardized concentration of chemotherapy intravenous infusion services. The projects formulated from the international business model, pharmacy project guidelines and project management institution guidelines of a new project. The initiative project is written through project management professionals and consisted of several parts, including the initial phase, the planning phase, the execution phase, the monitoring and controlling phase. Results: The pediatrics and neonates standardized concentration of chemotherapy intravenous infusion services with a defined vision, mission and goals. The services had various paybacks including clinical and economic on patients as discovered in the review. The continuous of the project was assured by risk management model description and the monitoring and controlling of the services as declared. The transition to operation project though closing project stage demonstrated in the analysis. Conclusion: The pediatrics and neonates standardized concentration of chemotherapy intravenous infusion services is a new initiative as part of the intravenous admixture program. The pediatrics and neonates standardized concentration of chemotherapy intravenous infusion will lessen medication errors and recover patient safety at healthcare system; it is highly recommended to implement in the Kingdom of Saudi Arabia.

Keywords: Pediatrics, Neonates, Standardized, Concentration chemotherapy, Intravenous, Saudi Arabia.

INTRODUCTION

In 2012-2015, during the implementation of the medications safety program, the pediatrics pharmacy program was part of the plan at several hospitals in the Kingdom of Saudi Arabia. The pediatrics or neonatal pharmacy services contained of several programs and projects. The pediatrics medications safety program was part of the plan. The pharmacist did an excellent job during this period and declared the clinical and economic outcome of medication safety in pediatrics healthcare services. Furthermore, the pharmacist discovered the noteworthy role in total parenteral nutrition, intervention to reduce morbidity and avoid additional superfluous costs in the healthcare system. The pharmacist started standardized total parenteral nutrition in the pediatrics, neonates to prevent TPN related problems, and reduce healthcare providers and pharmacy staff workload. Several litterateurs’ showed mistakes with chemotherapy in pediatric patients, while local or the Middle East literature not existed. On the other hand, the standardized concentration of chemotherapy medications is a new initiative project as expandable of the role of the intravenous pharmacist in the medications safety program with pediatrics and neonatal populations. The aim of the project is to review pediatrics and neonatal standardized concentration of chemotherapy medications in the Kingdom of Saudi Arabia.

Method of the Project

It is a new initiative project drove from the national IV admixture and chemotherapy program. The task force team of standardized chemotherapeutic concentration formulated and involved of from author’s expert in the parenteral medications. The committee utilized and drove the pharmacy parenteral administration guidelines and from the textbook and international literature standardized concentration of chemotherapeutic written by utilizing the international business model, pharmacy project guidelines and project management institution guidelines of a new project. The standardized concentration adjusted based on the acceptable concentration, daily dose and the volume of bag as possible. The project is written through project management professionals and entailed of several parts, including the initial phase, the planning phase, the execution phase, the monitoring and controlling phase.

Initiative Phase

Assessment Needs

Each intravenous admixture services prepare a daily basis for various medications with...
different concentrations and multiple diluent solutions. Also, the nurses administer different medications with different concentrations and solution. A higher workload of parenteral admixture services had been done by pharmacy staff and received by patients through nursing care. The high workload of the various number of concentration and solution may lead to the preparation or administration mistakes. As a result, the standardized concentration and solution of demand to prevent medication errors and reduce the workload of healthcare providers. Moreover, it’s excellent opportunity to inspire pharmaceutical companies to manufacture the same and frequency fixed ready-made solutions.

Market Analysis

Several medications came as powers for reconstitution or ampoules for mixing with diluent solutions. Other medications came as ready-made solution or diluted with a solution ready for administration. The ready came as strength of medications regardless of the approbate concentration administration through a central venous or peripheral line. Also, the pharmacy services had a manual preparation of parenteral medications with various concentration and solution diluted in. Those multiple factors may progress to increase workload and medications mistake. As a result, the standardized concentration of intravenous medications might decrease the workload and advance medication safety in practice.

SWOT Analysis

The most popular method utilized in quality management called the SWOT Analysis, which stands for the strengths, weaknesses and opportunities elements. The project had several strong points; for instance, implemented medication safety prevention measures, the reductions of the pharmacy with healthcare workload reductions. On the other hand, the weak points, including a few medications concentration and a limited number of diluent solutions. Moreover, there are multiple points for the opportunity; for instant implementation of patient safety and accreditation standards processes, while the threat points are if the higher administration of the project or pharmacy plan changes in the future.

Project Description

The following policies were put in place for every pharmacist and other health care individuals:

✓ The pediatric and neonatal standardized chemotherapy concentration guidelines, should be formulated at healthcare organizations.
✓ The pediatric and neonatal standardized chemotherapy concentration committee should consist of pediatric, neonate’s IV pharmacist, pharmacy technician, pediatric oncology nursing representative, pediatric oncology surgical or medical representative, pediatrician physician, nurse representative, neonatal physician and nurse representative.
✓ The committee revises the pediatric and neonatal standardized chemotherapy concentration and informs at least annually.
✓ The education and training sessions should be conducted by the committee to all healthcare providers, including oncology physicians and nurses, with pediatrics and neonate’s pharmacy staff.
✓ The pediatric and neonatal standardized chemotherapy concentration distributed to healthcare sectors at the institutions (Table 1).
✓ The physician transcribes the prescription based on the pediatric and neonatal standardized chemotherapy concentration.
✓ If the physician wishes to prescribe outside the pediatric and neonatal standardized chemotherapy concentration guidelines, he should document the justification.

Plan Cost Management

The financial budget should be selected in every new project. Also, the budget comprehends several things included the cost of the administration team meeting, educational courses and updated references. However, the budget should be observed from time to time.

Executing Phase

Management Team

Each project had to have a leading administrative team. The team comprised of several essential memberships’ specialties. For an instant, a pediatric oncology clinical pharmacist, oncology distributive pharmacist, pharmacy technician, pharmacy total quality pharmacist, pediatrics medications safety pharmacist and pediatric oncology physician. The team had responsibilities for the implementation and monitoring of the project. The team had to educate and train concern healthcare providers about the project. The team update all standardized concentration medications list periodically and resolve any project problem-related issues until the project become one of operation system in healthcare organizations.

Education and Training

Any new project needs orientation for management team members, education, and training for pharmacy staff, including pharmacists, pharmacy technicians and the healthcare providers, including physicians and nurses. Regular orientation for the project
No.	Medication	Strength	Solution	Rate of infusion	Stability of solution	Final Preparation with Maximum Concentration	Final Preparation with Standard Concentration	Rate of Infusion	Ref
1	Alemtuzumab	300 mg Vial	NS, D5W	2-4 hrs	8 hr	15 mg/50 ml NS	15 mg/50 ml D5W	2-4 hrs	
2	Arsenic	1 mg/ml 10 ml Injection	NS, D5W	24 hr	8 hr	1 mg/ml	1 mg/ml	8 hr	
3	Asparaginase E.coli	10,000 IU Vial	NS, D5W	30-60 min	30 min	500 IU/100 ml NS	500 IU/100 ml D5W	30-60 min	
4	Ascorbiate	100 mg NS	NS	8 hr	8 hr	25 mg/100 ml NS	25 mg/100 ml D5W	8 hr	
5	Bevacizumab	25 mg/ml 4 ml	NS	8 hr	8 hr	1 mg/ml	1 mg/ml	8 hr	
6	Bleomycin	15 IU/Naïl	NS, D5W	24 hr	8 hr	50 mg/100 ml NS	50 mg/100 ml D5W	24 hr	
7	Carmustine	100 mg NS	NS, D5W	8 hr	8 hr	50 mg/100 ml NS	50 mg/100 ml D5W	8 hr	
8	Cisplatin	50 mg NS	NS	24 hrs	8 hr	5 mg/250 ml NS	5 mg/250 ml D5W	24 hrs	
9	Cladribine	10 mg	NS	24 hrs	8 hr	1 mg/ML	1 mg/ML	8 hr	
10	Clofarabine	20 mg/20 ml Infusion	NS, D5W	24 hrs	8 hr	0.5 mg/ML	0.5 mg/ML	8 hr	
Table 1: Suggested Pediatrics and Neonates Standardized Chemotherapy Medication

ID	Medication	Concentration	Route	Volume	Concentration/mL	Volume/mL	Administration	Storage	Duration														
12	Cyclophosphamide	100 mg	NS, D5W	25 ml SWFI or NS for each 500 mg	50 mg/25 ml NS	200 mg/100 ml NS	500 mg/250 ml NS	20 mg/mL	50 mg/15 ml NS	200 mg/50 ml NS	500 mg/100 ml NS	24 hrs	6 days NS 36 hrs D5W	1-6 hrs									
13	Cytarabine	100 mg	NS, D5W	NA	NA	NA	NA	50 mg/500 ml NS	100 mg/500 ml NS	500 mg/500 ml NS	1000 mg/500 ml NS	2000 mg/500 ml NS	500 mg/250 ml D5W	1000 mg/500 ml D5W	1000 mg/500 ml D5W	NA	50 mg/500 ml D5W	100 mg/500 ml D5W	200 mg/500 ml D5W	1000 mg/500 ml D5W	8 days	NA	1-3 hrs
14	Daunorubicin	20 mg	NS, D5W	4 ml	NA	20 mg/50 ml NS	40 mg/50 ml NS	20 mg/50 ml D5W	20 mg/25 ml D5W	20 mg/25 ml D5W	24 hrs	48 hrs	60 min										
15	Docetaxel	20 mg/ml	NS, D5W	NA	0.3 mg/mL	20 mg/50 ml NS	20 mg/25 ml D5W	50 mg/50 ml NS	20 mg/25 ml D5W	20 mg/25 ml D5W	0.74 mg/mL	20 mg/100 ml NS	50 mg/100 ml NS	20 mg/100 ml D5W	20 mg/100 ml D5W	6 hrs	48 hrs	60 min					
16	Doxorubicin	10 mg	NS, D5W	5 ml NS for 10 mg, and 25 ml for 50 mg vial	10 mg/100 ml NS	15 mg/100 ml NS	20 mg/100 ml NS	30 mg/100 ml NS	10 mg/100 ml D5W	15 mg/100 ml D5W	30 mg/100 ml D5W	50 mg/100 ml D5W	10 mg/50 ml D5W	15 mg/50 ml D5W	30 mg/50 ml D5W	50 mg/50 ml D5W	NA	NA	15-60 min				
Table 1: Suggested Pediatrics and Neonates Standardized chemotherapy medication (12-13,23-36)																							
---	---	---	---	---	---	---	---	---	---														
17	Etoposide	100 mg/5ml	NS, D5W	NA	0.2 mg/mL	20 mg/50 ml NS	30 mg/250 ml NS	50 mg/500 ml NS	24-96 hr	NA	60 min												
18	Fludarabine	50 mg Injection	NS, D5W	2 ml SWFI	0.25 mg/ml	10 mg/50 ml NS	15 mg/50 ml D5W	10 mg/50 ml NS	24 hrs	24 hrs	30 min												
19	Fluorouracil	50 mg/ml (5 ml/10 ml) Injection	NS, D5W	NA	1 mg/mL	250 mg/100 ml NS	500 mg/100 ml NS	250 mg/100 ml D5W	14 days	14 days	23-24 hrs												
20	Gemcitabine	200 mg 1000 mg	NS	5 ml NS for 200 mg, and 25 ml for 1000 mg vial	0.1 mg/mL	250 mg/250 ml NS	500 mg/250 ml NS	38 mg/mL	24 hrs	NA	30 min												
21	Idarubicin	1 mg/ml Injection	NS, D5W	10 SWFI	1 mg/mL	5 mg/25 ml NS	10 mg/25 ml D5W	NA	5 mg/10 ml NS	10 mg/10 ml D5W	72 hrs	NA	10-15 min										
22	Ifosfamide	1 gm	NS, D5W	20 SWFI	0.6 mg/mL	500 mg/100 ml NS	1000 mg/250 ml NS	20 mg/mL	500 mg/50 ml NS	1000 mg/100 ml NS	NA	24 hrs	1-6 hrs										
23	Irinotecan	100 mg/5 ml Injection	D5W	NA	0.12 mg/mL	25 mg/250 ml D5W	50 mg/250 ml D5W	25 mg/250 ml D5W	24 hrs	48 hrs	90 min												
24	Leucovorin	15 mg 50 mg	D5W	1.5 ml SWFI for 15 mg	0.1 mg/mL	15 mg/25 ml D5W	7.5 mg/25 ml D5W	20 mg/mL	15 mg/10 ml D5W	7.5 mg/10 ml D5W	24 hrs	24 h	15-120 min										
25	Mesna	400 mg	NS, D5W	NA	0.5 mg/mL	100 mg/100 ml NS	200 mg/100 ml NS	200 mg/100 ml D5W	100 mg/100 ml NS	200 mg/100 ml NS	24 hrs	48 hrs	15 min-24 hr										
26	Melphalan	50 mg Injection	NS	10 ml NS	0.1 mg/mL	25 mg/100 ml NS	50 mg/500 ml NS	100 mg/500 ml NS	25 mg/100 ml NS	50 mg/250 ml NS	100 mg/250 ml NS	4 hrs	NA	15-20 min									
	Drug Name	Dose	Solution	Volume	Concentration	Amount	Stability																
---	---	---	---	---	---	---	---	---	---														
27	Methotrexate	50mg	NS,D5W	0.97 ml NS for 50 mg	25 mg/50 ml NS	25 mg/ml	7 days	30 days	24 hrs														
27	Methotrexate	500mg	NS,D5W	9.7 ml NS for 500 mg	25 mg/50 ml NS	25 mg/ml	7 days	30 days	24 hrs														
27	Methotrexate	500mg	NS,D5W	0.97 ml NS for 50 mg	25 mg/50 ml NS	25 mg/ml	7 days	30 days	24 hrs														
27	Methotrexate	500mg	NS,D5W	9.7 ml NS for 500 mg	25 mg/50 ml NS	25 mg/ml	7 days	30 days	24 hrs														
27	Methotrexate	50mg	NS,D5W	0.97 ml NS for 50 mg	25 mg/50 ml NS	25 mg/ml	7 days	30 days	24 hrs														
27	Methotrexate	500mg	NS,D5W	9.7 ml NS for 500 mg	25 mg/50 ml NS	25 mg/ml	7 days	30 days	24 hrs														
27	Methotrexate	50mg	NS,D5W	0.97 ml NS for 50 mg	25 mg/50 ml NS	25 mg/ml	7 days	30 days	24 hrs														
27	Methotrexate	500mg	NS,D5W	9.7 ml NS for 500 mg	25 mg/50 ml NS	25 mg/ml	7 days	30 days	24 hrs														
27	Methotrexate	50mg	NS,D5W	0.97 ml NS for 50 mg	25 mg/50 ml NS	25 mg/ml	7 days	30 days	24 hrs														
27	Methotrexate	500mg	NS,D5W	9.7 ml NS for 500 mg	25 mg/50 ml NS	25 mg/ml	7 days	30 days	24 hrs														
27	Methotrexate	50mg	NS,D5W	0.97 ml NS for 50 mg	25 mg/50 ml NS	25 mg/ml	7 days	30 days	24 hrs														
27	Methotrexate	500mg	NS,D5W	9.7 ml NS for 500 mg	25 mg/50 ml NS	25 mg/ml	7 days	30 days	24 hrs														
27	Methotrexate	50mg	NS,D5W	0.97 ml NS for 50 mg	25 mg/50 ml NS	25 mg/ml	7 days	30 days	24 hrs														
27	Methotrexate	500mg	NS,D5W	9.7 ml NS for 500 mg	25 mg/50 ml NS	25 mg/ml	7 days	30 days	24 hrs														
27	Methotrexate	50mg	NS,D5W	0.97 ml NS for 50 mg	25 mg/50 ml NS	25 mg/ml	7 days	30 days	24 hrs														
27	Methotrexate	500mg	NS,D5W	9.7 ml NS for 500 mg	25 mg/50 ml NS	25 mg/ml	7 days	30 days	24 hrs														
27	Methotrexate	50mg	NS,D5W	0.97 ml NS for 50 mg	25 mg/50 ml NS	25 mg/ml	7 days	30 days	24 hrs														
27	Methotrexate	500mg	NS,D5W	9.7 ml NS for 500 mg	25 mg/50 ml NS	25 mg/ml	7 days	30 days	24 hrs														
27	Methotrexate	50mg	NS,D5W	0.97 ml NS for 50 mg	25 mg/50 ml NS	25 mg/ml	7 days	30 days	24 hrs														
27	Methotrexate	500mg	NS,D5W	9.7 ml NS for 500 mg	25 mg/50 ml NS	25 mg/ml	7 days	30 days	24 hrs														
27	Methotrexate	50mg	NS,D5W	0.97 ml NS for 50 mg	25 mg/50 ml NS	25 mg/ml	7 days	30 days	24 hrs														
27	Methotrexate	500mg	NS,D5W	9.7 ml NS for 500 mg	25 mg/50 ml NS	25 mg/ml	7 days	30 days	24 hrs														
27	Methotrexate	50mg	NS,D5W	0.97 ml NS for 50 mg	25 mg/50 ml NS	25 mg/ml	7 days	30 days	24 hrs														
27	Methotrexate	500mg	NS,D5W	9.7 ml NS for 500 mg	25 mg/50 ml NS	25 mg/ml	7 days	30 days	24 hrs														
27	Methotrexate	50mg	NS,D5W	0.97 ml NS for 50 mg	25 mg/50 ml NS	25 mg/ml	7 days	30 days	24 hrs														
27	Methotrexate	500mg	NS,D5W	9.7 ml NS for 500 mg	25 mg/50 ml NS	25 mg/ml	7 days	30 days	24 hrs														
27	Methotrexate	50mg	NS,D5W	0.97 ml NS for 50 mg	25 mg/50 ml NS	25 mg/ml	7 days	30 days	24 hrs														
27	Methotrexate	500mg	NS,D5W	9.7 ml NS for 500 mg	25 mg/50 ml NS	25 mg/ml	7 days	30 days	24 hrs														
27	Methotrexate	50mg	NS,D5W	0.97 ml NS for 50 mg	25 mg/50 ml NS	25 mg/ml	7 days	30 days	24 hrs														
27	Methotrexate	500mg	NS,D5W	9.7 ml NS for 500 mg	25 mg/50 ml NS	25 mg/ml	7 days	30 days	24 hrs														
27	Methotrexate	50mg	NS,D5W	0.97 ml NS for 50 mg	25 mg/50 ml NS	25 mg/ml	7 days	30 days	24 hrs														
	Topotecan	34	Vinblastine	35	Vincristine	36	Vinorelbine	37															
---	----------------	----	---------------	----	--------------	----	--------------	----															
	4 mg/50 ml D5W		NS, D5W	1 mg	1 mg	50 mg/5 ml D5W																	
	1 mg/100 ml D5W		NS, D5W	10 mg	1 mg	50 mg/5 ml D5W																	
	NA		NS, D5W	1 mg	1 mg	50 mg/5 ml D5W																	
	0.5 mg/25 ml D5W		NS, D5W	0.001 mg/ml	0.03 mg/ml	50 mg/5 ml D5W																	
	0.5 mg/50 ml NS		NS, D5W	0.08 mg/ml	0.2 mg/ml	50 mg/5 ml D5W																	
	0.5 mg/50 ml D5W		NS, D5W	0.1 mg/10 ml D5W	0.3 mg/ml	1 mg/5 ml D5W																	
	0.5 mg/50 ml NS		NS, D5W	0.1 mg/10 ml D5W	0.3 mg/ml	1 mg/5 ml D5W																	
	0.5 mg/50 ml NS		NS, D5W	0.1 mg/10 ml D5W	0.3 mg/ml	1 mg/5 ml D5W																	
	0.5 mg/100 ml D5W		NS, D5W	0.3 mg/ml	1 mg/5 ml D5W																		
	0.5 mg/50 ml NS		NS, D5W	0.3 mg/ml	1 mg/5 ml D5W																		
	0.5 mg/50 ml NS		NS, D5W	0.3 mg/ml	1 mg/5 ml D5W																		

Abbreviations: IVBP: Intravenous Piggyback, NA: Not Available, NS: Normal Saline, RT: Room Temperature, SWFI: Sterile Water For Injection, Hrs: hours, Mint: Minutes

Note: The healthcare professionals should adjust the concentration and the dose requirement according to the patient condition. The pharmacist should appreciate the concentration of final preparations for any new healthcare or pharmacy staff joined the organization.

Monitoring and Controlling Phase Project

Total Quality Management

The Balance Scored Card is one of the total quantity management tools used for new project pediatrics and neonatal standardized concentration of chemotherapy medications.

BSC consisted of four types the customer, finance, internal process, education, and innovation. The declared example of internal processes was the assessment of healthcare services of patients and neonatal standardized concentration of chemotherapy medications. The type of education and innovation measured the clinical outcome of pediatrics and neonatal standardized concentration of chemotherapy medications and also explored the education and competency of pharmacy staff. Another example related to the financial type; the measurement of the economic impact of pediatrics and neonatal standardized concentration of chemotherapy medications, while the customer types may be measure the patients, pharmacy staff, healthcare professionals’ pediatrics and neonatal standardized concentration of chemotherapy medications gratification in Saudi Arabia.

Risk Management

There are six types of risk management, for instance, the budget risks, scope risks, schedule risks, personal risks, technical risks and quality risks. The project might have exposed to typical risks such as personnel, budget, technical and quality risks. The current project suffered from personal risks related to the shortage of pharmacists or pharmacy technicians or not trained pharmacy staff. The second risk might be exposed to a financial budget risk, for example, the budget is not adequately covered the education and training and also not applicable to updated references. Also, it does not implement the computerized system during prescribing or alerting as it is another type of technical risk of the current project. The pediatrics and neonatal standardized chemotherapy concentration may be exposed to quality risks including of not fully implemented medication safety or non-quality pharmacist in the total management specialty.
Closing of the Project
The pediatrics and neonatal standardized concentration of chemotherapy at all healthcare governmental and private organizations is highly suggested to prevent medication errors that might lead to mortality. Also, to avoid needless economic burden on hospitals and primary healthcare centers in the Kingdom of Saudi Arabia. The project should continue at chemotherapy IV admixture at each pharmacy services and related committees. The pediatrics and neonatal Education and training for standardized concentration should be done repeatedly, update drug concentration and expanded parental medications necessary in the future. The annual celebration of all pediatrics and neonatal pharmacist and pharmacy technician staff is highly optional in the Kingdom of Saudi Arabia.

ACKNOWLEDGEMENT
None.

CONFLICT OF INTEREST
None.

FUNDING
None

CONSENT FOR PUBLICATIONS
Informed consent was obtained from all the participants

ETHICAL APPROVAL
This research exempted from research and ethical committee or an institutional review board (IRB) approval.

https://www.hhs.gov/ohrmp/regulations-and-policy/decision-charts-2018/index.html

ABBREVIATIONS
MOH: Ministry of Health; KSA: Kingdom of Saudi Arabia; TPN: Total Parenteral Nutrition; SWOT: Strengths, Weaknesses, Opportunities and Threats; IV: Intravenous; BSC: Balance Scored Cards; IAC: intravenous admixture committee.

ORCID ID
Yousef Ahmed Alomi https://orcid.org/0000-0003-1381-628X

REFERENCES
1. Alomi YA. National medication safety program at ministry of health in Saudi Arabia. J Pharmacovigil. 2015;3(2):3-6.
2. Alomi YA, Alghamdi SJ, Alattiyh RA. Strategic plan of general administration of pharmaceutical care at ministry of health in Saudi Arabia 2012-2022. J Pharm Pharm Sci. 2015;11(3):1-8.
3. Alnazer AA, Alomi YA, Almaznai MM, et al. Pharmacists’ intervention and medication errors prevention at pediatrics, obstetrics and gynecology hospital in East Province, Saudi Arabia. Int J Pharm Heal Sci. 2019;2(2):122-8.
4. Alomi YA, Alnazer AA, Almaznai MM, et al. Cost-effectiveness analysis of medication safety program at pediatrics, obstetrics and gynecology hospital, East Province, Saudi Arabia. Pharmacol Toxicol Biomed Reports. 2019;5(3):S12-8.
5. Alomi YA, Fellatah AQ, Al-Shuabab N, et al. The clinical outcomes of pharmacist interventions in total parental nutrition services in Riyadh City, Saudi Arabia. Int J Pharm Heal Sci. 2019;2(2):135-40.
6. Alomi YA, Fellatah AQ, Bahadig FA, et al. The economic outcomes of pharmacist interventions in total parenteral nutrition services in Saudi Arabia. Pharmacol Toxicol Biomed Reports. 2019;5(3):S40-9.
7. Ahmed AV, Saad AH, Fellatah AQ, et al. Neonatal Total Parenteral Nutrition: Initiative and implementa- tion of standardized formulation in Saudi Arabia. Res Pharm Heal Sci. 2018;4(3):492-6.
8. Ahmed AV, Saad AH, Minsh Al He Health Pediatrics’ total parental nutrition: Initiative and implementa- tion of standardized formulation in Saudi Arabia. Res Pharm Heal Sci. 2018;4(3):492-6.
9. United States Pharmacopeia. USP General Chapter- Hazardous Drugs Handling in Healthcare Set- tings. The United States Pharmacopeial Conven- tion. 2017;1-20.
10. Goldsplel B, Hoffman JM, Griffith NL, et al. ASHP guidelines on preventing medication errors with chemotherapy and biotherapy. Am J Health Syst Pharm. 2015;72(8):e6-35.
11. Murray KL, Wright D, Laxton B, et al. Implementa- tion of standardized pediatric i.v. medication concentra- tions. Am J Heal Pharm. 2014;71(7):1500-15.
12. Benizri F, Bonan B, Ferrio AL, et al. Stability of antineoplastic agents in use for home-based intravenous chemotherapy. Pharm World Sci. 2009;31(1):1-13.
13. Vigneron J, Aspir A, Hecq JD, et al. SFPO and ESOP recommendations for the practical stabili- ty of anticancer drugs: An update. Eur J Oncol Pharm. 2014;8(2):3-13.
14. Institute for Safe Medication Practices (ISMP). Standard Concentrations of Neonatal Drug Infu- sions. ISMP. 2011.
15. Alomi YA. National Intravenous (IV) Therapy Program at MOH in Saudi Arabia. EC Pharm Sci. 2016;3(2) and 3;307-11.
16. McDonough R. Writing a business plan for a new pharmacy service The Dynamics of Pharmaceuti- cal Care: Enriching Patients’ Health. 2010;23:1-2.
17. Harris IM, Baker E, Berry TM, et al. Developing a business-practice model for pharmacy ser- vices in ambulatory settings. Pharmacotherapy. 2008;28(2):76-86.
18. Sachdev G. Sustainable business models: Sys- tematic approach toward successful ambula- tory care pharmacy practice. Am J Heal Pharm. 2014;71(11):1366-7.
19. PMBOK Guide. A guide to the project manage- ment body of knowledge. Sixth Edition. Project Management Institute Inc. 2017.
20. Kaplan RS, Norton DP. The balanced scorecard: Measures that drive performance. Harvard Busi- ness Review. 2004;83(7):172. Cited 2020 Mar 15. Available from: https://hbr.org/199201/the-balanced-scorecard-measures-that-drive-perfor- mance-2.
21. Ray S. The risk management process in project management - Project Manager. Risk Manage- ment. 2017. Cited 2020 Mar 15. Available from: https://www.projectmanager.com/blog/risk-manage-ment-process-steps.
22. Kaplan RS, Miles A. Managing risks: A new frame- work. Harvard Business Review. 2012;90(6):48- 60. Cited 2020 Mar 15. Available from: https://hbr. org/2012/06/managing-risks-a-new-framework.
23. Brown F. Pediatric acute lymphoblastic leukemia. NCCN Clinical Practice Guidelines in Oncology. 2019;2:1-118.
24. Davies K. Pediatric Aggressive Mature B-Cell Lymphomas. NCCN Clinical Practice Guidelines in Oncology. 2019;1:1-35.
25. Adams SC, Vyas HM, Anderson RW. Pharmaceuti- cal issues in infusion chemotherapy stability and compatibility. In: Cancer Chemotherapy by Infu- sion. 1987;100-13.
26. Ministry of Health. Ministry of Health Formulary. Health services in ambulatory settings. Pharmacotherapy. 2017;1-20.
27. Saudi Food and Drug Authority. List of human medicine and herbal health. 2019. [cited 2019 Jun 17]. Available from: https://www.sfda.gov.sa/en/drug/resources/Pages/DrugsUnderRegistrations.aspx.
28. Baxter K, Aikman K, Luckhurst R, et al. British Na- tional Formulary 78 (BNF). Royal Pharmaceutical Society. 2019;1-1701.
29. Alomi YA, et al. Pediatrics Parenteral Dilution Manual. Ministry of Health. 2015. Available from: https://www.researchgate.net/publica- tion/281710402_Pediatrics_Parenteral_Dilution_ Manual.
30. Alomi YA, et al. Neonates Parenteral Dilution Manual. Ministry of Health. 2015. Available from: https://www.researchgate.net/publica- tion/281710411_Neonates_Parenteral_Dilution_ Manual.
31. Wolters Kluwer Clinical Drug Information. Inc. (Lexi-Drug). Wolters Kluwer Clinical Drug Infor- mation, Inc. 2020.
32. Drugs.com. Drugs.com, Prescription Drug Infor- mation, Interactions and Side Effects. Drugs.com. 2020. [cited 2020 Jun 16]. Available from: https:// www.drugs.com/.
33. King Abdelaziz Medical City. Unified IV Manual. 2020.
34. Wolters Kluwer Clinical Drug Information. Inc. (ASHF Essentials adults and pediatrics). Wolters Kluwer Clinical Drug Information, Inc. 2020.
35. Wolters Kluwer Clinical Drug Information, Inc. (Pe- diatrics and Neonatal Lexi-Drugs). Wolters Kluwer Clinical Drug Information, Inc. 2020.
36. Wolters Kluwer Clinical Drug Information, Inc. (Nursing Lexi-Drug). Wolters Kluwer Clinical Drug Information, Inc. 2020.