PROJECTIVE BUNDLES AND BLOW-UPS OF PROJECTIVE SPACES.

SERGEY GALKIN AND D. S. NAGARAJ

Abstract. The aim of this note is to investigate the relation between two types of non-singular projective varieties of Picard rank 2, namely the Projective bundles over Projective spaces and certain Blow-up of Projective spaces.

Keywords: Projective spaces; Projective bundles; Blow-ups.

1. Introduction

Let X be the projective variety obtained from projective space $\mathbb{P}^n = \mathbb{P}(\mathbb{C}^{n+1})$ by blowing up along a linear subspace $\mathbb{P}(W^*)$ of co-dimension r, where $\mathbb{C}^{n+1} \to W$ is a quotient vector space of dimension $n-r+1$. If K is the kernel of surjective linear map $\mathbb{C}^{n+1} \to W$ resulting projective variety admits a projective bundle structure over the smaller dimensional projective space $\mathbb{P}(K^*)$. In fact

$$X \simeq \mathbb{P}(W \otimes \mathcal{O}_{\mathbb{P}(K^*)} \oplus \mathcal{O}_{\mathbb{P}(K^*)}(1)).$$

Question: Are there any other examples of blow-ups of a projective space along a sub variety that also have a structure of a projective bundle over a projective space?

Nabanita Ray in [NR] gave examples of non-linear sub varieties in $\mathbb{P}^i, i = 3, 4, 5$ whose blow-ups are projective bundles over \mathbb{P}^2.

In this note we provide several other examples of Projective bundles over a Projective space \mathbb{P}^n which can be realised as a blow up of some \mathbb{P}^m along a non-linear sub variety.

Theorem 1.1. Let $n \geq 2$ be an integer and $N = n^2 + n - 1$. Let

$$E = \text{Hom}(\mathcal{O}^n_{\mathbb{P}^n}, T_{\mathbb{P}^n}(-1))$$

be the rank n^2 vector bundle on \mathbb{P}^n, where $T_{\mathbb{P}^n}(-1)$ is tangent bundle of \mathbb{P}^n twisted by the inverse of the ample bundle $\mathcal{O}_{\mathbb{P}^n}(1)$. The projective bundle $\mathbb{P}(E)$ is isomorphic to a blow-up of $\mathbb{P}^N = \mathbb{P}(\text{Hom}(\mathbb{C}^n, \mathbb{C}^{n+1}))$ along the sub variety of all linear mappings of rank at most $n-1$.

1991 Mathematics Subject Classification. 14F17.
Theorem 1.2. Let \(n \) be an even integer and \(N = \frac{n(n+1)}{2} - 1 \). Let \(V = \wedge^2(T_{\mathbb{P}^n}(-1)) \) be the rank \(N+1-n = \frac{n(n-1)}{2} \) vector bundle over \(\mathbb{P}^n \). The projective bundle \(\mathbb{P}(V) \) is isomorphic to \(\mathbb{P}^{N} = \mathbb{P}(\text{Alt}(n+1)) \) blown-up along the sub variety consists of all alternating linear mappings of rank at most \(n-1 \), where \(\text{Alt}(n+1) \) denote the space of all alternating linear mappings from \(\mathbb{C}^{n+1} \) to itself.

2. The Projective bundle \(\mathbb{P}(\text{Hom}(O_{\mathbb{P}^n}, T_{\mathbb{P}^n}(-1))) \)

Proof of Theorem(1.1): On \(\mathbb{P}^n \) by applying \(\text{Hom}(O_{\mathbb{P}^n}, -) \) to the standard exact sequence
\[
0 \rightarrow O_{\mathbb{P}^n}(-1) \rightarrow O_{\mathbb{P}^n}^{n+1} \rightarrow T_{\mathbb{P}^n}(-1) \rightarrow 0.
\]
we obtain the exact sequence
\[
0 \rightarrow \text{Hom}(O_{\mathbb{P}^n}, O_{\mathbb{P}^n}(-1)) \rightarrow \text{Hom}(O_{\mathbb{P}^n}, O_{\mathbb{P}^n}^{n+1}) \rightarrow E \rightarrow 0.
\]

Note that \(E \) is a globally generated vector bundle and \(\dim H^0(E) = n(n+1) \). Hence we obtain a morphism from
\[
\phi : \mathbb{P}(E) \rightarrow \mathbb{P}^{n(n+1)-1}.
\]

We claim that this is a surjective morphism of degree one, i.e., \(\phi \) is a bi-rational morphism and hence \(\mathbb{P}(E) \) is a blow-up of \(\mathbb{P}^{n(n+1)-1} \) [See, Chapter II, Theorem 7.17. citeHa] Let \(\xi = O_{\mathbb{P}(E)}(1) \) denote the tautological line bundle on \(\mathbb{P}(E) \). Then there is an exact sequence of vector bundles on \(\mathbb{P}(E) \)
\[
0 \rightarrow \Omega^1_{\mathbb{P}(E)/\mathbb{P}^n} \rightarrow \pi^*(E) \rightarrow \xi \rightarrow 0,
\]
where \(\pi : \mathbb{P}(E) \rightarrow \mathbb{P}^n \) is the natural projection. Since \(\xi^{n(n+1)-1} \) is the degree of the morphism \(\phi \) it is enough to show that \(\xi^{n(n+1)-1} = 1 \). Since \(E \) is vector bundle of rank \(n^2 \) in the cohomology ring of \(\mathbb{P}(E) \) the relation
\[
\xi^{n^2} = \sum_{i=1}^{n} (-1)^{i+1} \pi^*(C_i(E)) \xi^{n^2-i}
\]
holds, where \(C_i(E) \), \(1 \leq i \leq n \) are the Chern classes of \(E \). Repeated use of the relation 4 gives
\[
\xi^{n^2+n-1} = (-1)^n \pi^*(S_n(E)) \xi^{n^2-1},
\]
where \(S_n(E) \) is the \(n \)th Segre class of \(E \). By equation (3) and the fact that the total Segre class is the inverse of the total Chern class we deduce that \(S_n(E) = (-1)^n h^n \), where \(h \) is the class of the line bundle.
\(\mathcal{O}_{\mathbb{P}^n}(1) \) in \(H^2(\mathbb{P}^n, \mathbb{Z}) \). Hence \(\xi^{n^2+n-1} = 1.\pi^*(h^n)\xi^{n^2-1} \). Since \(\pi^*(h^n)\xi^{n^2-1} \) is the class of a point in \(\mathbb{P}(E) \) it follows that the degree of the map \(\phi \) is one.

Remark: The bi-rational morphism \(\phi \) can be described geometrically as follows: let

\[
T = \{(v, \varphi) \in \mathbb{P}^n \times \mathbb{P}(\text{Hom}(\mathbb{C}^n, \mathbb{C}^{n+1})) | (\varphi)^t(v) = 0\},
\]

where \((\varphi)^t : \mathbb{C}^{n+1} \to \mathbb{C}^n\) is the transpose of the map \(\varphi : \mathbb{C}^n \to \mathbb{C}^{n+1} \). Then \(T \simeq \mathbb{P}(E) \) and the bi-rational morphism \(\phi \) is the projection onto the second factor. Let

\[
D = \{ \varphi \in \mathbb{P}(\text{Hom}(\mathbb{C}^n, \mathbb{C}^{n+1})) | \text{rank}(\varphi) \leq n - 1 \},
\]

\(F = \phi^{-1}(D) \) and \(U = \mathbb{P}(E) \setminus F \). The morphism \(\phi \) is one-one on the open set \(U \).

Next we prove that the set \(F \) in the previous Remark is a divisor and we identify its class in the Picard group of \(\mathbb{P}(E) \). Note that Picard group of \(\mathbb{P}(E) \) is equal to \(H^2(\mathbb{P}(E), \mathbb{Z}) = \mathbb{Z}[\pi^*(h)] \oplus \mathbb{Z}[\xi] \).

Lemma 2.1. With the notations of previous Remark the set \(F \) is a divisor in \(\mathbb{P}(E) \) and its divisor class is \(n[\xi] - [\pi^*(h)] \).

Proof: Rewriting the exact sequence (2) as

\[
0 \to \mathcal{O}_{\mathbb{P}^n}(-1) \to \mathcal{O}_{\mathbb{P}^n}^{(n+1)} \to E \to 0
\]

and taking \(n \)-th symmetric power we obtain a long exact sequence

\[
0 \to \mathcal{O}_{\mathbb{P}^n}(-n) \to \mathcal{O}_{\mathbb{P}^n}^{(n+1)} \otimes \wedge^{n-1}(\mathcal{O}_{\mathbb{P}^n}(-1)) \to \cdots
\]

\[
\cdots \to S^{n-1}(\mathcal{O}_{\mathbb{P}^n}^{(n+1)}) \otimes \mathcal{O}_{\mathbb{P}^n}(-1)^n \to \mathcal{O}_{\mathbb{P}^n}^{n(n+1)} \to S^n(\mathcal{O}_{\mathbb{P}^n}^{n(n+1)}) \to S^n(E) \to 0.
\]

Tensoring the long exact sequence (7) (8) by \(\mathcal{O}_{\mathbb{P}^n}(-1) \) and computing the cohomology we deduce

\[
H^0(\mathbb{P}(E), \xi \otimes \pi^*(\mathcal{O}_{\mathbb{P}^n}(-1))) \simeq H^0(S^n(E)(-1))
\]

\[
\simeq H^n(\mathcal{O}_{\mathbb{P}^n}(-n - 1)) \simeq \mathbb{C}.
\]

This proves that the divisor class \(n[\xi] - [\pi^*(h)] \) contains a unique effective divisor. From the exact sequence (2) we deduce that the Segre class \(S_{n-1}(E) \) is equal to \((-1)^{n-1}nh^{-1}\) and hence \((n[\xi] - [\pi^*(h)]).\xi^{n^2+n-2} = n\pi^*(h^n)\xi^{n^2-1} - (-1)^{n-1}\pi^*(h)\pi^*(S_{n-1}(E))\xi^{n^2-1} = 0 \). For \(v \in \mathbb{P}^n \) the fibre \(E_v \) is isomorphic to \(\text{Hom}(\mathbb{C}^n, \mathbb{C}^{n+1}/\mathbb{C}.v) \). For \(\varphi \in \text{Hom}(\mathbb{C}^n, \mathbb{C}^{n+1}) \) rank of \((\varphi)^t\) is less than or equal to \(n - 1 \) if and only if image of \(\tilde{\varphi} \in \text{Hom}(\mathbb{C}^n, \mathbb{C}^{n+1}/\mathbb{C}.v) \) of \(\varphi \) has rank less than or equal to \(n - 1 \), i.e., \(\tilde{\varphi} \) is not an isomorphism. Since the complement of isomorphisms in
Hom(\mathbb{C}^n, \mathbb{C}^{n+1}/\mathbb{C}.v) is given by vanishing of the homogeneous polynomial of degree in \(n \), i.e., section of \(\mathcal{O}(E_v)(n) \). The set

\[F_v = \{ \bar{\varphi} \in \text{Hom}(\mathbb{C}^n, \mathbb{C}^{n+1}/\mathbb{C}.v) | \text{rank}(\bar{\varphi}) \leq n - 1 \} \]

is an irreducible divisor given by the vanishing of the restriction to \(\mathbb{P}(E_v) \) of the non-zero section (unique upto non zero scalar) of

\[H^0(\mathbb{P}(E), \xi \otimes \pi^*(\mathcal{O}_{\mathbb{P}^n}(-1))) \]

The non-zero section \(t \) (unique upto multiplication by a non zero scalar) determines a section of \(\mathcal{O}(\mathbb{P}(E_v))^n \). It is clear that \(F_v \) is the set of zeros of the section \(t|_{\mathbb{P}(E_v)} \). This proves that the set \(F \) is the support of the divisor \(n[\xi] - [\pi^*\xi] \).

\[\square \]

Remark 1: Theorem (1.1) can be used to obtain for blow up of \(\mathbb{P}^m \), \((2n - 1 \leq m \leq n(n + 1) - 1) \), along a non linear sub-variety a projective bundle structure over \(\mathbb{P}^n \) for any integer \(n \geq 2 \).

3. Projective bundle \(\mathbb{P}(\wedge^2(T_{\mathbb{P}^n}(-1))) \).

Proof of Theorem (1.2):

Let \(n \geq 3 \) be an integer. By taking 2nd exterior power in the exact sequence (1) yields the sequence

\[0 \to T_{\mathbb{P}^n}(-2) \to \wedge^2\mathcal{O}_{\mathbb{P}^n}^{n+1} \to \wedge^2(T_{\mathbb{P}^n}(-1)) \to 0. \]

If we identify \(H^0(\mathcal{O}_{\mathbb{P}^n}^{n+1}) \) with \(\mathbb{C}^{n+1} \) then the \(H^0(\wedge^2\mathcal{O}_{\mathbb{P}^n}^{n+1}) \) gets identified with \(\text{Alt}(n + 1) \), where \(\text{Alt}(n + 1) \) denote the set of all alternating linear mappings from \(\mathbb{C}^{n+1} \) to itself. Using the exact sequence (9) we obtain

\[H^0(\wedge^2(T_{\mathbb{P}^n}(-1))) \simeq \text{Alt}(n + 1). \]

Since \(T_{\mathbb{P}^n}(-1) \) is globally generated \(V = \wedge^2(T_{\mathbb{P}^n}(-1)) \) is generated by \(\text{Alt}(n + 1) \). Therefore we get a morphism

\[\psi : \mathbb{P}(V) \to \mathbb{P}(\text{Alt}(n + 1)). \]

We claim that \(\psi \) is bi-rational i.e., degree of \(\psi \) is one and hence \(\mathbb{P}(V) \) is a blow-up of \(\mathbb{P}(\text{Alt}(n + 1)) \). [See, Chapter II, Theorem 7.17. citeHa]

Let \(\zeta = \mathcal{O}(V)(1) \) denote the tautological line bundle on \(\mathbb{P}(V) \). Then there is an exact sequence of vector bundles on \(\mathbb{P}(V) \)

\[0 \to \Omega_{\mathbb{P}(V)/\mathbb{P}^n}^1 \to \pi^*(V) \to \zeta \to 0, \]

where \(\pi : \mathbb{P}(V) \to \mathbb{P}^n \) is the natural projection. Since \(\zeta^{\left(\frac{n(n+1)}{2} - 1\right)} \) computes the degree of the morphism \(\psi \) it is enough to show that, for \(n \) even,

\[\zeta^{\left(\frac{n(n+1)}{2} - 1\right)} = \pi^*(h^n)\zeta^{\frac{n(n-1)}{2} - 1}. \]
Since V is vector bundle of rank $n(n-1)/2$ in the cohomology ring of $\mathbb{P}(V)$ the relation
\[
\zeta_n^{n(n-1)/2} = \sum_{i=1}^{n} (-1)^{i+1} \pi^*(C_i(V)) \zeta_n^{n(n+1)/2-i}
\]
holds, where $C_i(V)$, $(1 \leq i \leq n)$ are the Chern classes of V. Repeated use of the relation (12) gives
\[
\zeta_n^{n(n+1)/2-1} = (-1)^n \pi^*(S_n(V)) \zeta_n^{n(n+1)/2-1},
\]
where $S_n(V)$ is the nth Segre class of V. By equation (9) and the fact that the total Segre class of V is the total Chern class $C(T_{\mathbb{P}^n}(-2))$ of $T_{\mathbb{P}^n}(-2)$. Tensoring the equation (2) by $\mathcal{O}_{\mathbb{P}^n}(-1)$ to obtain
\[
C(T_{\mathbb{P}^n}(-2)) = (1 - h)^{n+1}(1 - 2h)^{-1},
\]
where h is the class of the line bundle $\mathcal{O}_{\mathbb{P}^n}(1)$ in $H^2(\mathbb{P}^n, \mathbb{Z})$. From the equation (14) we deduce that
\[
C_n(T_{\mathbb{P}^n}(-2)) = \left(\sum_{i=0}^{n} (-1)^i \binom{n+1}{i} 2^{n-i}\right) h^n
\]

Thus
\[
S_n(V) = \begin{cases} h^n & \text{if } n \text{ even} \\ 0 & \text{if } n \text{ odd} \end{cases}
\]
Now from equation (13) we deduce that, for n even
\[
\zeta_n^{n(n+1)/2-1} = \pi^*(h^n) \zeta_n^{n(n-1)/2-1}.
\]
Since $\pi^*(h^n) \zeta_n^{n(n-1)/2-1}$ is the class of a point in $\mathbb{P}(V)$ it follows that the degree of the map ψ is one when n is even. \qed

Remark: The bi-rational morphism ψ can be described geometrically as follows: let
\[
S = \{(v, \varphi) \in \mathbb{P}^n \times \mathbb{P}(\text{Alt}(n+1)) | (\varphi)(v) = 0 \}.
\]
For $v \in \mathbb{C}^{n+1} \setminus \{0\}$ the linear subspace $\phi \in \text{Alt}(n+1)$ gets identified with fibre $\wedge^2(T_{\mathbb{P}^n}(-1))\nu$ of $\wedge^2(T_{\mathbb{P}^n}(-1))_v$ over the point $[v] \in \mathbb{P}^n$ hence $S \simeq \mathbb{P}(V)$. Under this identification, when n is even, the bi-rational morphism ψ is the projection onto the second factor. From now on we assume n is an even integer say $n = 2k$. Let
\[
D = \{\varphi \in \mathbb{P}(\text{Alt}n+1) | \text{rank}(\varphi) \leq n-1\},
\]
\(F = \phi^{-1}(D) \) and \(U = \mathbb{P}(E) \setminus F \). The morphism \(\psi \) is one-one on the open set \(U \).

Next we prove that the set \(F \) in the previous Remark is a divisor and we identify its class in the Picard group of \(\mathbb{P}(V) \). Note that Picard group of \(\mathbb{P}(V) \) is equal to \(H^2(\mathbb{P}(E), \mathbb{Z}) = \mathbb{Z}[\pi^*(h)] \oplus \mathbb{Z}[\zeta] \).

Lemma 3.1. With the notations of previous Remark the set \(F \) is a divisor in \(\mathbb{P}(V) \) and its divisor class is \(k[\zeta] - [\pi^*(h)] \), where \(k = n/2 \).

Proof: By equation (9) we obtain a long exact sequence for \(k \)-th symmetric power of \(V \)

\[
0 \to \Lambda^k(T_{\mathbb{P}^n}(-1)) \to \mathcal{O}_{\mathbb{P}^n}^{n(n+1)/2} \otimes \Lambda^{k-1}(T_{\mathbb{P}^n}(-1))) \to \cdots
\]

\[\cdots \to S^{k-1}(\mathcal{O}_{\mathbb{P}^n}^{n(n+1)/2} \otimes (T_{\mathbb{P}^n}(-1)) \to S^k(\mathcal{O}_{\mathbb{P}^n}^{n(n+1)/2}) \to S^k(V) \to 0.\]

Tensoring the long exact sequence (15) (16) by \(\mathcal{O}_{\mathbb{P}^n}(-1) \) and computing the cohomology we deduce

\[
H^0(\mathbb{P}(V), \zeta \otimes \pi^*(\mathcal{O}_{\mathbb{P}^n}(-1))) \simeq H^0(S^k(V)(-1))
\]

\[
\simeq H^k(\Lambda^k(T_{\mathbb{P}^n}(-1))(-1)) \simeq H^k((\Omega_{\mathbb{P}^n}^k)) \simeq \mathbb{C},
\]

where the \(\Omega_{\mathbb{P}^n}^k \) is the bundle \(k \) differential forms and the last isomorphism is the consequence of Bott’s formula [See, Page 8 [CMH]]. This proves that the divisor class \(k[\zeta] - [\pi^*(h)] \) contains a unique effective divisor. From the exact sequence (9) we deduce that the Segre class \(S_{n-1}(V) \) is equal to \((-1)^{n-1}kh^{n-1}\) and hence

\[
(k[\zeta] - [\pi^*(h)]).\zeta^{n(n+1)/2} - 2 = \pi^*(h^n)\zeta^{n(n-1)/2} - 1 - (-1)^{n-1}\pi^*(h)\pi^*(S_{n-1}(V))\zeta^{n(n+1)/2} - 1 = 0.
\]

For \(v \in \mathbb{P}^n \) the fibre \(V_v \) is isomorphic to \(\text{Alt}(\mathbb{C}^n, \mathbb{C}^{n+1}/\mathbb{C}.v) \). For \(\varphi \in Alt^n + 1 \) rank of \(\varphi \) is less than or equal to \(n - 1 \) if and only if image of \(\tilde{\varphi} \in \text{Alt}(\mathbb{C}^n, \mathbb{C}^{n+1}/\mathbb{C}.v) \) of \(\varphi \) has rank less than or equal to \(n - 1 \), i.e., \(\varphi \) is not an isomorphism. Since the complement of isomorphisms in \(\text{Alt}(\mathbb{C}^n, \mathbb{C}^{n+1}/\mathbb{C}.v) \) is given by vanishing of the homogeneous polynomial of degree in \(k \), i.e., section of \(\mathcal{O}_{\mathbb{P}(V_v)}(k) \). The set

\[
F_v = \{ \tilde{\varphi} \in \text{Alt}(\mathbb{C}^n, \mathbb{C}^{n+1}/\mathbb{C}.v)| \text{rank}(\tilde{\varphi}) \leq n - 1 \}
\]

is an irreducible divisor given by the vanishing of the restriction to \(\mathbb{P}(V_v) \) of the non-zero section (unique upto non zero scalar) of \(H^0(\mathbb{P}(V), \zeta \otimes \pi^*(\mathcal{O}_{\mathbb{P}^n}(-1))) \)

The non-zero section \(t \) (unique upto multiplication by a non zero scalar) determines a section of \(\mathcal{O}_{\mathbb{P}(V_v)}(k) \), namely Pfaffian whose square is the determinant of skew symmetric form. It is clear that \(F_v \) is the set of
zeros of the section $t|_{\mathbb{P}(V,v)}$. This proves that the set F is the support of the divisor $k[\zeta] - [\pi^*(h)]$.

Remark 2: Theorem (1.2) can be used to obtain for blow up of \mathbb{P}^n, $(2n-1 \leq m \leq \frac{n(n-1)}{2}-1)$ along a non linear sub-variety a projective bundle structure over \mathbb{P}^m, for even integer $n \geq 4$.

Remark 3: The special case of Theorem (1.2) appears first in [EL] and has been used in the context of Quantum Cohomology in [CCGK], [CGKS], [AS1], [AS2], [AS3].

Acknowledgement: We would like to thank organisers of the conference on ”Derived Category and Algebraic Geometry” at TIFR Mumbai for the invitation to give a talk and TIFR for its hospitality.

References

[CCGK] T. Coates, A. Corti, S. Galkin, A. Kasprzyk, Quantum Period for 3-Dimensional Fano Manifolds, Geometry & Topology, Vol. 20, issue 1 (2016), 103–256. arXiv:1303.3288.

[CGKS] T. Coates, S. Galkin, A. Kasprzyk, A. Strangeway, Quantum Period For Certain Four-Dimensional Fano Manifolds, Experimental Mathematics Vol. 29, issue 2 (2020), 183–221. arXiv:1406.4891.

[EL] L. Ein, Varieties with small dual varieties I, Invent. Math. 86 (1986), 63–74.

[Ha] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977.

[NR] Nabanita Ray, Examples of blown up varieties having projective bundle structures, Proc. Indian Acad. Sci. (Mathematical Sci.) Vol. 130, (2020)

[CMH] C. Okonek, M. Schneider and H. Spindler, Vector Bundle on Complex Projective Spaces, Progress in Mathematics, Vol. 3. Birkhauser (1980)

[AS1] A. Strangeway, A Reconstruction Theorem for Quantum Cohomology of Fano bundles on Projective Spaces, arXiv:1302.5089

[AS2] A. Strangeway, Quantum Reconstruction for Fano bundles, PhD diss., Imperial College London, 2014.

[AS3] A. Strangeway, Quantum Reconstruction for Fano bundles on Projective Spaces, Nagoya Math. 218 (2015), 1–28.

[WJ] J. Weyman, Resolutions of the exterior and symmetric powers of a module, J. Algebra 58 (1979), 333–341.

1) PUC-RIO, DEPARTAMENTO DE MATEMÁTICA, RUA MARQUES DE SO VINCENTE 225, GVEA, RIO DE JANEIRO - CEP 22451-900, BRAZIL. 2) HSE UNIVERSITY, RUSSIAN FEDERATION.

E-mail address: "sergey galkin" <sergey.galkin@phystech.edu>

INDIAN INSTITUTE OF SCIENCE EDUCATION AND RESEARCH, RAMI REDDY NAGAR, KARAKAMBADI ROAD, MANGALAM (P.O.), TIRUPATI - 517507, ANDHRA PRADESH, INDIA.

E-mail address: dsm@iisertirupati.ac.in