Putative intranuclear coccidium in *Mauremys leprosa* (Schweigger) from Morocco

El-Mustapha Laghzaoui¹, Ana Perera², D. James Harris³ and El Hassan El Mouden¹,*

¹ Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences, Semlalia, Cadi Ayyad University, Marrakech, Morocco; ² CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Vairão, Portugal

Abstract: Although intranuclear coccidiosis was first identified in chelonians less than 30 years ago, it is now considered an important emerging disease. Symptoms include anorexia, weakness and weight loss, potentially leading to death of the infected animal. The use of molecular tools has led to improved diagnosis and has also led to an increase in known host species. Here we report a putative intranuclear coccidium in *Mauremys leprosa* (Schweigger), from Morocco, based on 18S rDNA sequence analysis. This is, to the best of our knowledge, the first report of this parasite from a freshwater terrapin species.

Keywords: Coccidia, freshwater turtles, 18s rRNA

Intranuclear coccidiosis is an emerging disease in chelonians (Hofmannová et al. 2019). Although over 30 coccidian species are known from tortoises and turtles, most of these are members of the genus *Eimeria* Schneider, 1875, and there is little evidence of pathology caused by these parasitic protozoa. Jacobson et al. (1994) reported the first case of intranuclear coccidiosis in chelonians, noting that the two infected radiated tortoises *Astrochelys radiata* (Shaw) were so severely afflicted that they were euthanised. Since then, intranuclear coccidiosis has been reported in various tortoises from around the world (Garner et al. 2006, Kolesnik et al. 2017), to the point of being listed among the most important emerging infectious diseases in tortoises (Gibbons and Steffes 2013).

Coproscopical detection of oocysts can be difficult due to their fragility and small dimensions (Bardi et al. 2019), whereas genetic tools such as PCR on faecal, cloacal swab or blood samples have been used to diagnose the disease, and enlarge the known host range (Stilwell et al. 2017). At the same time, genetic data are necessary to define the phylogenetic position of the parasite involved. Currently tortoise intranuclear coccidiosis (TINC) is caused by an indeterminate genus and species of coccidium (Bardi et al. 2019), and there are limited genetic data published.

Partial 18S rRNA gene sequences have been analysed, either a short fragment in quantitative PCR for diagnosis (Alvarez et al. 2013), or longer fragments to permit phylogenetic analyses (Innis et al. 2007, Hofmannová et al. 2019). The first of these phylogenetic studies indicated that TINC from a Sulawesi tortoise (*Indotestudo forstenii* (Schlegel et Müller)) formed a highly distinct lineage, sister taxon to the *Eimeriidae* (Innis et al. 2007). In contrast, Hofmannová et al. (2019) showed that a sample from a leopard tortoise (*Stigmochelys pardalis* (Bell)) was genetically extremely similar to the earlier isolate.

Here we report results of a molecular screening of 467 *Mauremys leprosa* (Schweigger) from Morocco and, to the best of our knowledge, the first identification of an apparent TINC in a freshwater terrapin species.

Samples of two subspecies of *M. leprosa* (*M. leprosa leprosa* (Schweigger) and *M. leprosa saharica* Schleich) were collected from 30 different localities in Morocco during the period of March–June 2018 (Fig. 1). Turtles were caught by hand or with baited fish-traps. Blood samples were collected with insulin syringes from the jugular vein (0.1–0.5 ml depending on the weight and size of each individual). These specimens were collected as part of a study on other parasites, in particular haemogregarines, and precise locality details are given in Laghzaoui et al. (2020). For genetic analysis, 467 blood samples of turtles were screened with PCR using primers HepF300 and HepR900 (Ujvari et al. 2004). Although these primers were designed to amplify haemogregarines, they are known to amplify members of the *Eimeriidae* (see Harris et al. 2012), as well as more distantly related organisms such as Stramenopiles (Maia et al. 2012).

Address for correspondence: El Mouden El Hassan, Laboratory of Water, Biodiversity and Climate Change, Faculty of Sciences, Semlalia, Cadi Ayyad University, Marrakech, Morocco. E-mail: elmouden@uca.ac.ma

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
For DNA extraction we followed a standard saline protocol (Maia et al. 2014). PCR reactions were run in a 20 μl reaction mixture containing 11.6 μl pure H2O, 1.5 μl MgCl2, 0.4 μl of each nucleotide (50 μM), 2 μl of PCR buffer (200 mM Tris-HCl, 500 mM KCl), 1 μl of each primer (10 μM), 0.4 mg/ml of albumin (BSA; Roche, Manheim, Germany), 2 μl of DNA and 0.1 μl (1 unit) of Taq DNA polymerase. The PCR reaction mix was heated to 94 °C for 3 min, and then amplification was performed through 35 cycles at 94 °C for 30 sec, 60 °C for 30 sec, and 72 °C for 1 min, followed by a final 10 min extension at 72 °C. Positive PCR products were purified and sequenced by a commercial sequencing facility (Genewiz, Takeley, UK).

Sequences were preliminarily identified by comparison against published sequences on GenBank using BLAST (Altschul et al. 1990). A single specimen (male, weighing 232 g, 125 mm carapace length – specimen sample code ML262) from the town of Had Dra, Essaouira Province, Morocco (31.64, -9.58; 94 m above sea level), gave a BLAST result with over 99% similarity with 94°C for 3 min, and then amplification was performed through 35 cycles at 94°C for 30 sec, 60°C for 30 sec, and 72°C for 1 min, followed by a final 10 min extension at 72°C. Positive PCR products were purified and sequenced by a commercial sequencing facility (Genewiz, Takeley, UK).

Sequences were preliminarily identified by comparison against published sequences on GenBank using BLAST (Altschul et al. 1990). A single specimen (male, weighing 232 g, 125 mm carapace length – specimen sample code ML262) from the town of Had Dra, Essaouira Province, Morocco (31.64, -9.58; 94 m above sea level), gave a BLAST result with over 99% similarity with 94°C for 3 min, and then amplification was performed through 35 cycles at 94°C for 30 sec, 60°C for 30 sec, and 72°C for 1 min, followed by a final 10 min extension at 72°C. Positive PCR products were purified and sequenced by a commercial sequencing facility (Genewiz, Takeley, UK).

Sequences were preliminarily identified by comparison against published sequences on GenBank using BLAST (Altschul et al. 1990). A single specimen (male, weighing 232 g, 125 mm carapace length – specimen sample code ML262) from the town of Had Dra, Essaouira Province, Morocco (31.64, -9.58; 94 m above sea level), gave a BLAST result with over 99% similarity with 94°C for 3 min, and then amplification was performed through 35 cycles at 94°C for 30 sec, 60°C for 30 sec, and 72°C for 1 min, followed by a final 10 min extension at 72°C. Positive PCR products were purified and sequenced by a commercial sequencing facility (Genewiz, Takeley, UK).

Sequences were preliminarily identified by comparison against published sequences on GenBank using BLAST (Altschul et al. 1990). A single specimen (male, weighing 232 g, 125 mm carapace length – specimen sample code ML262) from the town of Had Dra, Essaouira Province, Morocco (31.64, -9.58; 94 m above sea level), gave a BLAST result with over 99% similarity with 94°C for 3 min, and then amplification was performed through 35 cycles at 94°C for 30 sec, 60°C for 30 sec, and 72°C for 1 min, followed by a final 10 min extension at 72°C. Positive PCR products were purified and sequenced by a commercial sequencing facility (Genewiz, Takeley, UK).

Sequences were preliminarily identified by comparison against published sequences on GenBank using BLAST (Altschul et al. 1990). A single specimen (male, weighing 232 g, 125 mm carapace length – specimen sample code ML262) from the town of Had Dra, Essaouira Province, Morocco (31.64, -9.58; 94 m above sea level), gave a BLAST result with over 99% similarity with 94°C for 3 min, and then amplification was performed through 35 cycles at 94°C for 30 sec, 60°C for 30 sec, and 72°C for 1 min, followed by a final 10 min extension at 72°C. Positive PCR products were purified and sequenced by a commercial sequencing facility (Genewiz, Takeley, UK).

Sequences were preliminarily identified by comparison against published sequences on GenBank using BLAST (Altschul et al. 1990). A single specimen (male, weighing 232 g, 125 mm carapace length – specimen sample code ML262) from the town of Had Dra, Essaouira Province, Morocco (31.64, -9.58; 94 m above sea level), gave a BLAST result with over 99% similarity with 94°C for 3 min, and then amplification was performed through 35 cycles at 94°C for 30 sec, 60°C for 30 sec, and 72°C for 1 min, followed by a final 10 min extension at 72°C. Positive PCR products were purified and sequenced by a commercial sequencing facility (Genewiz, Takeley, UK).

Sequences were preliminarily identified by comparison against published sequences on GenBank using BLAST (Altschul et al. 1990). A single specimen (male, weighing 232 g, 125 mm carapace length – specimen sample code ML262) from the town of Had Dra, Essaouira Province, Morocco (31.64, -9.58; 94 m above sea level), gave a BLAST result with over 99% similarity with 94°C for 3 min, and then amplification was performed through 35 cycles at 94°C for 30 sec, 60°C for 30 sec, and 72°C for 1 min, followed by a final 10 min extension at 72°C. Positive PCR products were purified and sequenced by a commercial sequencing facility (Genewiz, Takeley, UK).

Fig. 1. Distribution of sampling localities for Mauremys leprosa leprosa (Schweigger) (green circle) and Mauremys leprosa saharica Schleich (yellow triangle) within Morocco included in this study. The single host individual (ML262) infected by a putative intranuclear coccidium was identified in population 22 (Had Dra – Essaouira).
Fig. 2. Estimate of the phylogenetic relationships of the putative intranuclear coccidium (host code ML262) isolated from *Mauremys leprosa* (Schweigger) from Morocco, based on a Maximum Likelihood approach. Bootstrap support values > 50% are indicated beside nodes.

species, and the first in *M. leprosa*. The infected individual looked in good health and showed no visible symptoms. The ratio of size/weight can be used as an estimate of body condition (reviewed in Green 2000). In the population at Had Dra, adult males (n = 9) had an average size of 134 ± 19 mm (mean ± SD), and average weight of 285 ± 79 g. The infected individual (125 mm length, 232 g weight) showed no evident deviation from the expected ratio, which might have indicated poor body condition.

Given the potential importance of this disease, additional screening efforts should be made on wild populations of chelonians to establish how widespread these parasites are, and to determine which the host species are. More variable genetic markers and morphological data are also needed to determine if the different genetic lineages identified may correspond to distinct species, in which case it would become imperative to assess if some species of TINC cause more severe symptoms than others.
REFERENCES

Altschup S.F., Gish W., Miller W., Myers E.W., Lipman D.J. 1990: Basic Local Alignment Search Tool. J. Mol. Biol. 215: 403–410.

Alvarez W.A., Gibbons P.M., Rivera S., Archer L.L., Chilдрес A.L., Wellehan F.J.X. 2013: Development of a quantitative PCR for rapid and sensitive diagnosis of an intranuclear coccidian parasite in Testudines (TINC), and detection in the critically endangered Arakan forest turtle (Heosemys depressa). Vet. Parasitol. 193: 66–70.

Bardi E., Noviello E., Hofmannová L. 2019: Protozoa and protozoal infections in chelonians. J. Exot. Pet Med. 31: 5–12.

Garner M.M., Gardiner C.H., Wellehan F.X.J., Johnson A.J., McNamara T., Linn M., Terrell S.P., Childress A.L., Wellehan J.F.X. 2013: Development of a quantitative PCR for rapid and sensitive diagnosis of an intranuclear coccidian parasite in Testudines (TINC), and detection in the critically endangered Arakan forest turtle (Heosemys depressa). Vet. Parasitol. 193: 66–70.

Guindon S., Dufayard J.-F., Lefort V., Anisimova M., Hordijk W., Gascuel O. 2010: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59: 307–321.

Harris D.J., Maia J.P.M.C., Perera A. 2012: Molecular survey of Apicomplexa in Podarcis wall lizards detects Hepatozoon, Sarcocystis and Eimeria species. J. Parasitol. 98: 592–597.

Hofmannová L., Kvíčerová J., Bízková K., Modrý D. 2019: Intranuclear coccidiosis in tortoises – discovery of its causative agent and transmission. Eur. J. Protistol. 67: 71–76.

Innis C.J., Garner M.M., Johnson A.J., Wellehan J.F.X., Tabaka C., Marschang R.E., Nordhausen R.W., Jacobson E.R. 2007: Antemortem diagnosis and characterization of nasal intranuclear coccidiosis in Sulawesi tortoises (Indotestudo forstenii). J. Vet. Diagnostic Investig. 19: 660–667.

Jacobson E.R., Schumacher J., Telford J.S.R., Greiner E.C., Buergelt, C.D., Gardiner C.H. 1994: Intranuclear coccidiosis in radiated tortoises (Geochelone radiata). J. Zoo Wildl. Med. 25: 95–102.

Kolesnik E., Dietz J., Heckers K.O., Marschang R.E. 2017: Detection of intranuclear coccidiosis in Europe and China. J. Zoo Wildl. Med. 48: 328–334.

Laghzaoui E.-M., Perera A., Harris D.J. El Mouden E.H. 2021: Putative intranuclear coccidium in Mauremys leprosa from Morocco. Folia Parasitol. 68: 021.