Supporting Information S1. Illustration of eigenvector centrality.

The figure illustrates a network with nodes (circles) and connections (lines). Some nodes are connected to several other nodes, whereas some nodes are only connected to two nodes, or even just one node (see the circle in the top-right corner). For each node, the eigenvector centrality value is indicated in the circle, and the circles are scaled in size according to their eigenvector centrality value. Note that eigenvector centrality does not only take the number of connections of a node into account, but also the importance of connected nodes. For example, the nodes indicated by the dashed and the dotted arrow both have two connections, but the node indicated by the dashed arrow has a higher centrality value because it is connected to the two nodes with the highest centrality values (the node with the highest centrality value is indicated by the solid arrow). ECM as applied in the current fMRI study treats each voxel as a node, and computes an eigenvector centrality value for each node (separately for each experimental condition, i.e. rest, joy, peaceful, nervous, sad), thus identifying brain regions that are influential, or important within networks of functionally interconnected structures. Formulas for the computation of eigenvector centrality are provided in: Lohmann G, Margulies DS, Horstmann A, Pleger B, Lepsien J, Goldhahn D, et al. Eigenvector Centrality Mapping for Analyzing Connectivity Patterns in fMRI Data of the Human Brain. PLoS-one. 2010;5(4):e10232. Figure published under Creative Commons Attribution License in: Koelsch, S., Skouras, S., & Lohmann, G. (2018). The auditory cortex hosts network nodes influential for emotion processing: An fMRI study on music-evoked fear and joy. PloS one, 13(1), e0190057.
Supporting Information S2. List of music stimuli.

Joy stimuli

Title	Artist/Composer	year	genre	BPM
The Fire	Chris Blackwell	2008	Rock/Indie	126
Crackpot 3	Terry Devine-King/Adam Drake	2011	Rock/Indie	123
Invigorating	Jonathan Graham Barrett	2016	Orchestral film-style music	120
Playtime	Owain Llwyd Brown	2016	Orchestral film-style music	120
1. Symphony/I	Gustav Mahler	1888	Classical / Romantic (symphonic)	104

Nervous stimuli

Title	Artist/Composer	year	genre	BPM
Blackstar	Adam Drake	2011	Rock/Indie	118
Cinnamon Rolls 2	Pete Masitti/John Andrew Barrow	2012	Rock/Indie	120
Desperation	Red Ochsenbein	2014	Orchestral film-style music	110
Deranged	Marie-Anne Fischer	2018	Orchestral film-style music	120
1. Symphony/IV	Gustav Mahler	1888	Classical / Romantic (symphonic)	120

Peaceful stimuli

Title	Artist/Composer	year	genre	BPM
Blissful Dream	John Lithium	2012	Rock/Indie	63
Blissful Dream	Barrie Gledden	2002	Rock/Indie	85
Discovery	Dan Graham	2016	Orchestral film-style music	60
Chilled	Alexander Rudd	2016	Orchestral film-style music	60
3. Symphony/III	Robert Schumann	1850	Classical / Romantic (symphonic)	88

Sad stimuli

Title	Artist/Composer	year	genre	BPM
In-Between	Barrie Gledden	2002	Rock/Indie	72
Serendipity	Francesco de Leonardis	2002	Rock/Indie	90
Concern	Dan Graham	2016	Orchestral film-style music	60
Tragic	Andrew Swarbrick	2016	Orchestral film-style music	60
4. Symphony/I	Robert Schumann	1851	Classical / Romantic (symphonic)	84
Supporting Information S3. Questionnaire for the assessment of emotional thoughts during mind-wandering, used in the preparatory internet experiment and the fMRI experiment.

1) Were your thoughts completely focused on the music?
(Yes / No)

2) How much were you thinking about the music vs. something else?
(0 = “only about the music” ... 3 = “both” ... 6 = “only about something else”)

3) How aware were you of where your attention was focused?
(0 = “completely unaware” ... 3 = “neutral” 6 = “completely aware”)

4) Did you feel like you had control over where your thoughts went?
(0 = “not at all” ... 3 = “maybe” ... 6 = “very much”)

5) Were your thoughts related to yourself?
(0 = “not at all” ... 3 = “a little” ... 6 = “very much”)

6) Were your thoughts related to other people?
(0 = “not at all” ... 3 = “a little” ... 6 = “very much”)

7) Was what you were thinking about rather negative or positive?
(-3 = “very negative” ... 0 = “neutral” ... +3 = “very positive”)

8) Was what you were thinking about (something that would make you) rather calm or agitated?
(0 = “very calm” ... 3 = “neutral” ... 6 = “very agitated”)

9) Was what you were thinking about related to the past, present or the future?
(-3 = “distant past” ... 0 = “present” ... +3 = “distant future” or: -9/NA = “timeless”)

10) How relevant was what you were thinking about to the current concerns of your life?
(0 = “not at all relevant” ... 3 = “neutral” ... 6 = “extremely relevant”)
Supporting Information S4: Behavioral results of the internet experiment (z-standardized means and SEMs).

(a) Valence ratings

Emotion category	mean (z)	SEM (z)
joy	0.29	0.009
peaceful	0.42	0.009
nervous	-0.46	0.009
sad	-0.35	0.009

(b) Arousal ratings

Emotion category	mean (z)	SEM (z)
joy	0.36	0.008
peaceful	-0.73	0.007
nervous	0.86	0.008
sad	-0.3	0.008
Supporting Information S5. Behavioral results of the fMRI experiment (z-standardized means and SEMs)

(a) Valence ratings

Emotion category	mean (z)	SEM (z)
joy	0.07	0.18
peaceful	0.52	0.17
nervous	-0.18	0.21
sad	-0.32	0.22
rest	-0.07	0.12

(b) Arousal ratings

Emotion category	mean (z)	SEM (z)
joy	0.09	0.17
peaceful	-0.41	0.16
nervous	0.62	0.24
sad	-0.17	0.17
rest	-0.12	0.14
Supporting Information S6. ECM contrast of positive (joy & peaceful) vs. negative (nervous & sad) music, with sex, age, and framewise displacement as covariates. Results of this analysis have lower z-values than the main analysis due to considerably larger number of degrees of freedom. However, note that local maxima were observed in both area 23c and PMC (as indicated in the main analysis), and that the finding reported in the main text are not spurious results due to effects of sex, age or framewise displacement. Images are shown in neurological convention, coordinates refer to MNI space, the color-bars indicate z-values.