Preparation and Characterization of Tubelike g-C₃N₄/Ag₃PO₄ Heterojunction with Enhanced Visible-Light Photocatalytic Activity

Xin Yan *, Yuanyuan Wang, Bingbing Kang, Zhuo Li and Yanhui Niu *

School of Materials Science and Engineering, Chang’an University, Xi’an 710064, China; 2019131030@chd.edu.cn (Y.W.); 2019231022@chd.edu.cn (B.K.); lizhuo@chd.edu.cn (Z.L.)
* Correspondence: xinyan@chd.edu.cn (X.Y.); niuyh@chd.edu.cn (Y.N.); Tel.: +86-(0)29-8233-7345 (X.Y.); +86-(0)29-8233-7340 (Y.N.)

Abstract: Water pollution caused by dye wastewater is a potential threat to human health. Using photocatalysis technology to deal with dye wastewater has the advantages of strong purification and no secondary pollution, so it is greatly significant to look for new visible-light photocatalysts with high photocatalytic ability for dye wastewater degradation. Semiconductor photocatalyst silver phosphate (Ag₃PO₄) has high quantum efficiency and photocatalytic degradation activity. However, Ag₃PO₄ is prone to photoelectron corrosion and becomes unstable during photocatalysis, which severely limits its application in this field. In this study, a tubelike g-C₃N₄/Ag₃PO₄ heterojunction was constructed by the chemical precipitation method. An Ag₃PO₄ nanoparticle was loaded onto the surface of the tubelike g-C₃N₄ forming close contact. The photocatalytic activity of the photocatalyst was evaluated by the degradation of RhB under visible-light irradiation. The tubelike g-C₃N₄/Ag₃PO₄-5% heterojunction exhibited optimal photocatalytic performance. In an optimal process, the degradation rate of the RhB is 90% under visible-light irradiation for 40 min. The recycling experiment showed that there was no apparent decrease in the activity of tubelike g-C₃N₄/Ag₃PO₄-5% heterojunction after five consecutive runs. A possible Z-type mechanism is proposed to explain the high activity and stability of the heterojunction.

Keywords: photocatalysis; Ag₃PO₄; g-C₃N₄; heterojunction; degradation

1. Introduction

With the rapid development of modern industry, the problem of water pollution is becoming increasingly serious, as it could harm human health [1–4]. Dye wastewater has large discharge, biological toxicity, complex composition, high content of organic matter, and poor biodegradability, which is a difficult problem in wastewater treatment. Semiconductor photocatalysis technology can transform solar into chemical energy and completely decompose organic matter under mild conditions. It shows great potential and good application prospects in solving environmental pollution and energy shortage [5,6]. The development of highly active photocatalysts is key to the application of photocatalysis technology. Various semiconductor photocatalysts, including TiO₂, ZnO, and SnO₂, were studied [7–10]. However, these conventional photocatalytic materials still have many problems, such as photocatalytic activity only under ultraviolet light, electron-hole recombination, and potential toxicity, which are primary obstacles to further application. Thereby, it is greatly significant to explore photocatalysts with high visible-light activity for the application of semiconductor photocatalysis.

In 2010, Ye et al. [11] reported a novel visible light photocatalyst, Ag₃PO₄, which showed very strong oxidation capacity and high visible-light catalytic activity. In addition, its quantum efficiency reached 90%, far higher than that of other metal oxide semiconductor photocatalysts [12–15]. However, Ag₃PO₄ is prone to photoelectron corrosion and becomes...
unstable during photocatalytic reaction, which severely limits the application of Ag3PO4 in the field of photocatalysis. Therefore, the photocatalytic performance of Ag3PO4 was improved by adjusting the morphology [16,17], combining it with carbon materials [18,19], and constructing a heterojunction [20,21]. Among them, the Ag3PO4-based heterojunction can effectively separate electrons and holes according to energy band theory, which is regarded as the most effective method to improve the photocatalytic performance of Ag3PO4. For example, many semiconductor photocatalysts, including TiO2, SnO2, g-C3N4, SrTiO3 were used to couple with Ag3PO4 to fabricate heterojunction photocatalysts [22–25]. These heterojunctions showed excellent catalytic performance and stability. g-C3N4 is of great interest to researchers due to its matching potentials of the conduction and valence bands with Ag3PO4. The interfacial contact of heterojunction catalysts greatly affects electron and hole transport. Most of the reported g-C3N4/Ag3PO4 heterojunction catalysts, however, are bulk g-C3N4. The small specific surface area of bulk g-C3N4 is not conducive to the formation of heterojunctions with Ag3PO4 [26,27].

In this paper, a tubelike g-C3N4 was prepared by the molten salt method. A new type of Ag3PO4-based heterojunction was formed by chemical precipitation with the tubelike g-C3N4. The structure, morphology, and spectral properties of the g-C3N4/Ag3PO4 heterojunction were characterized by X-ray diffraction patterns, scanning electron microscopy, transmission electron microscopy, UV–vis diffuse reflectance spectra, and photoluminescence spectra. The photocatalytic activity of the photocatalyst was evaluated by the degradation of RhB under visible light irradiation. The effect of g-C3N4 content on the photocatalytic performance of the tubelike g-C3N4/Ag3PO4 heterojunction was investigated. Moreover, the electron transfer mechanism of the tubelike g-C3N4/Ag3PO4 heterojunction in the degradation of RhB under visible-light irradiation was studied.

2. Materials and Methods
2.1. Synthesis of Tubelike g-C3N4

The molten salt method was used to synthesize the tubelike g-C3N4 [28,29]. First, 4.5 g of lithium chloride, 5.5 g of potassium chloride, and 1 g of melamine were ground together. The mixture in the crucible was heated in a muffle furnace at 550 °C for 4 h. After the reaction, lithium chloride and potassium chloride were removed by washing with deionized water. Lastly, the tubelike g-C3N4 was collected and dried at 80 °C for 24 h. The sample was labeled as TCN.

2.2. Synthesis of Tubelike g-C3N4/Ag3PO4 Heterojunction

The tubelike g-C3N4/Ag3PO4 heterojunction was prepared by chemical precipitation. First, 0.17 g AgNO3 was dissolved in deionized water, and a certain amount of tubelike g-C3N4 was dispersed in the above solution. Then, 0.15 g Na3PO4 was dissolved in deionized water and slowly dropped into the AgNO3 solution. After magnetic stirring for 30 min, the solution was filtered, washed, and dried at 60 °C for 10 h. The tubelike g-C3N4/Ag3PO4 heterojunctions with different tubelike g-C3N4 mass contents of about 1, 3, 5, and 7% were labeled as TCN/Ag3PO4-1%, TCN/Ag3PO4-3%, TCN/Ag3PO4-5%, and TCN/Ag3PO4-7%, respectively. For comparison, the pure Ag3PO4 nanoparticle was prepared by the chemical precipitation method without tubelike g-C3N4.

2.3. Characterization

The crystal structure was determined by Philips X’pert MPD (Almelo, The Netherlands). Cu target Kα was used as the radiation source (wavelength, 0.15418 nm), working voltage was 40 kV, working current was 20 mA, scanning range was 10–70°, and scanning speed was 4° min⁻¹. The surface morphology of the sample was observed by scanning electron microscope (S-4800; working voltage, 5 kV, Kyoto, Japan) and transmission electron microscopy (FEI Tecnai G20; working voltage, 200 kV, Hillsboro, OR, USA). X-ray photoelectron spectroscopy (XPS) measurements were performed by using a Kratos Axis Ultra DLD detector (Manchester, UK). The photoluminescence (PL) spectra of the sample
at room temperature were measured with a HORIBA Fluorolog-3 (Paris, France). The UV-visible diffuse reflectance spectra of the sample were measured with a Shimadzu UV-3600 spectrophotometer (UV-3600, Shimadzu, Kyoto, Japan).

2.4. Photocatalytic Activity Evaluation

We added 0.01 g of the catalyst to a 100 mL RhB solution with an initial concentration of 10 mg/L. In order to achieve adsorption–desorption equilibrium, the RhB solution (with the photocatalyst) was magnetically stirred in the dark for 30 min. Then, the solution was placed under a 300 W xenon lamp (filtering out ultraviolet light) for photocatalytic reaction. The RhB solution was taken every 5 min. After 30 min of centrifugation, the supernatant was removed, and the concentration of RhB solution was measured with a UV-vis spectrophotometer (UV-3600, Shimadzu, Kyoto, Japan).

3. Results and Discussion

3.1. XRD and XPS Analysis

The XRD patterns of TCN, Ag3PO4, and the TCN/Ag3PO4 heterojunction are shown in Figure 1. The diffraction peaks of TCN were at 11.7, 20.6, 24.3, 26.6, 29.1, and 32.4°, which reflects different planes from (100), (110), (200), (002), (102), and (210). This is consistent with literature reports [30]. Ag3PO4 had obvious diffraction peaks at 20.88, 29.70, 33.29, 36.59, 42.49, 47.79, 52.70, 55.02, 57.28, and 61.64°. Compared with the cubic Ag3PO4 standard card (PDF 06-0505), the (110), (200), (210), (211), (220), (310), (222), (320), (321), and (400) crystal planes corresponded to their crystal phase, respectively. This shows that the pure Ag3PO4 phase was successfully prepared by chemical precipitation. The diffraction peak of the TCN/Ag3PO4 heterojunction is mainly from Ag3PO4, while the characteristic diffraction peak of the tubelike g-C3N4 did not appear because of the low content of tubelike g-C3N4 in the heterojunction, which is difficult to be detected by X-ray diffraction.

The chemical composition of the TCN/Ag3PO4 heterojunction was characterized by XPS, as shown in Figure 2. Figure 2a is the survey spectrum of the TCN/Ag3PO4-5% heterojunction, which shows the presence of Ag, P, O, N, and C. The high-resolution XPS measurements of C 1s, N 1s, Ag 3d, O 1s, and P 2p are shown in Figure 2b–f. There are three peaks in Figure 2b. The peaks with binding energy at 284.6 and 287.5 eV were attributed to the C-C bonds and sp2 carbon in the triazine ring, respectively. The peaks with binding energy at 285.7 eV corresponded to C-O bonds in the hydroxyl state on the sample surface [31]. Results show that there were many hydrophilic hydroxyl groups on the surface of the heterojunction catalyst. These oxygen-containing carbons provided
an active surface to form good contact with the Ag$_3$PO$_4$ nanoparticle. Figure 2c shows two peaks in the N 1s spectra. The peak with binding energy at 398.2 eV is attributed to sp2 nitrogen in the triazine ring, and another peak with binding energy at 399.7 eV is ascribed to the terminal amino groups [32]. Results further confirmed the existence of g-C$_3$N$_4$ in the TCN/Ag$_3$PO$_4$ heterojunction. Figure 2d shows the high-resolution spectra of Ag 3d. Peaks with binding energy at 367.8 and 373.8 eV belonged to the 3d$^{5/2}$ and 3d$^{3/2}$ characteristic peaks, respectively, with a valence state of Ag$^+$. Ag 3d is a single peak of splitting, indicating that the Ag element existed only in the form of Ag$^+$ [33]. Figure 2e shows the high-resolution spectrum of O 1s. The peak of O 1s could be fitted into two peaks, which were mainly the lattice oxygen of Ag$_3$PO$_4$ with binding energy at 530.6 eV and the surface hydroxyl oxygen at 532.4 eV [34]. Figure 2f is the high-resolution spectrum of P 2p. The electron binding energy at the center of the characteristic single peak was located at 133.2 eV, suggesting that the P element was in a +5 valence state [35]. Results further confirmed the existence of Ag$_3$PO$_4$ in the TCN/Ag$_3$PO$_4$ heterojunction.

Figure 2. XPS spectra of TCN/Ag$_3$PO$_4$-5% heterojunction: (a) XPS survey spectrum; (b) C 1s; (c) N 1s; (d) Ag 3d; (e) O 1s; (f) P 2p.

3.2. SEM Analysis

Figure 3 shows the SEM images of TCN, Ag$_3$PO$_4$, and the TCN/Ag$_3$PO$_4$-5% heterojunction, respectively. Figure 3A shows that TCN prepared by the molten salt method had a hollow tubelike shape, a square tube mouth with a smooth surface, and length distribution ranging from several microns to more than 10 microns. Figure 3B shows that Ag$_3$PO$_4$ prepared by chemical precipitation was composed of many polycrystalline nanoparticles.
with an average size of 30–50 nm, and particles presented an obvious agglomeration phenomenon. Figure 3C is the SEM image of the TCN/Ag3PO4-5% heterojunction. Results show that the Ag3PO4 nanoparticle was uniformly loaded onto the surface of tubelike g-C3N4. Figure 3D is the TEM image of TCN/Ag3PO4-5% heterojunction. The hollow tubelike g-C3N4 structure and Ag3PO4 nanoparticle were observed more clearly. Results showed that the tubelike g-C3N4 both dispersed the Ag3PO4 nanoparticle and formed the heterojunction.

![Figure 3](image_url)

Figure 3. SEM images of (A) TCN, (B) Ag3PO4, (C) TCN/Ag3PO4-5% heterojunction, and (D) TEM image of TCN/Ag3PO4-5% heterojunction.

3.3. UV–vis Diffuse Reflectance Spectra and Photoluminescence Spectra Analysis

The UV–vis DRS of TCN, Ag3PO4, and the TCN/Ag3PO4 heterojunction are shown in Figure 4a. The Ag3PO4 showed obvious absorption from the ultraviolet to the visible region, and its band edge absorption was 532 nm [36]. The band edge absorption of TCN was 460 nm, indicating a certain absorption of visible light. With the addition of TCN, the absorption spectra of TCN/Ag3PO4 heterojunction had a red shift compared to those of TCN and Ag3PO4. The shift is ascribed to the interaction between TCN and Ag3PO4. This result implied that more visible light could be harvested by the TCN/Ag3PO4 heterojunction.

The separation efficiency of a photoelectron-hole pair greatly affects the performance of the photocatalyst [37]. In Ag3PO4 systems, the rapid separation of photogenerated electrons is beneficial to reduce the photocurrent corrosion of Ag3PO4. Figure 4b shows the photoluminescence spectra of Ag3PO4 and the TCN/Ag3PO4 heterojunction, with an excitation wavelength of 365 nm. The emission peak of pure Ag3PO4 was obvious at 535 nm, indicating that the electron-hole pair in Ag3PO4 had a strong recombination rate. With the addition of TCN, the peak intensity of the TCN/Ag3PO4 heterojunction gradually decreased. The peak intensity of the TCN/Ag3PO4-5% heterojunction was the lowest, indicating a low recombination rate of charges. Therefore, the formation of the TCN/Ag3PO4 heterojunction is beneficial to the separation of electrons and holes, thus effectively improving its catalytic performance.
Figure 4. UV–vis diffuse (a) reflectance and (b) photoluminescence spectra of Ag₃PO₄ and TCN/Ag₃PO₄-5% heterojunction.

3.4. Photocatalytic Activities Analyses

The catalytic activity of different catalysts was investigated by using RhB as a simulated degradation target, as shown in Figure 5a. In the absence of a catalyst, RhB hardly degraded under visible-light irradiation. The TCN and Ag₃PO₄ samples exhibited visible-light photocatalytic activity, and the degradation rate of RhB was 25 and 44%, respectively after 40 min visible light irradiation. Compared with the TCN and Ag₃PO₄, the TCN/Ag₃PO₄ heterojunction exhibited enhanced photocatalytic activity. The TCN/Ag₃PO₄-5% heterojunction resulted in 90% degradation of RhB within 40 min. It is an important factor for the formation of heterojunction with the appropriate amount of TCN. When the amount of TCN is low, Ag₃PO₄ particles cannot be fully loaded and thus cannot effectively form the heterojunction. On the other hand, excessive TCN absorbs the visible light and forms a masking effect on the heterojunction, thus decreasing its catalytic efficiency. For low-concentration pollutants, the kinetic behaviors for the degradation reaction can be studied with the following equation:

$$\ln(c/c_0) = kt$$ (1)

Figure 5. Degradation curves (a) and kinetic plot (b) of photocatalytic degradation of RhB by TCN, Ag₃PO₄, and TCN/Ag₃PO₄ heterojunction.

The kinetic constants (k) of different samples were calculated and are shown in Figure 5b. The kinetic constant of RhB degradation with TCN/Ag₃PO₄-5% (0.0013 min⁻¹) was about 5.9 and 3.8 times as high as that of TCN (0.0001 min⁻¹) and Ag₃PO₄ (0.00020 min⁻¹), respectively. This result shows that the formation of the TCN/Ag₃PO₄ heterojunction could efficiently enhance the photocatalytic performances of Ag₃PO₄.

To investigate the stability of Ag₃PO₄ and the TCN/Ag₃PO₄ heterojunction, the photocatalyst was recovered and dried for the next cycle of degradation. Degradation conditions remained the same as before, and there were 5 cycles. Experimental results are
shown in Figure 6a. In the cyclic experiment, the photocatalytic performance of Ag₃PO₄ obviously decreased, and the degradation rate of RhB for the fifth time was only 15%. The degradation rate of RhB by the TCN/Ag₃PO₄ heterojunction for the fifth time was 85%. Results showed that the TCN/Ag₃PO₄ heterojunction exhibited excellent stability. The samples of Ag₃PO₄ and the TCN/Ag₃PO₄ heterojunction after the cycle experiment were analyzed by X-ray diffraction, and results are shown in Figure 6b. In the XRD of Ag₃PO₄, a new diffraction peak appeared at 38.1°, which is the (111) plane diffraction peak of Ag [38]. Results showed that Ag₃PO₄ was prone to photoelectron corrosion and became unstable during photocatalytic reaction. There was no new diffraction peak in the XRD of the TCN/Ag₃PO₄ heterojunction. Results showed that the TCN/Ag₃PO₄ heterojunction maintained good stability in the cyclic experiment.

Figure 6. (a) RhB degradation rate and (b) XRD patterns over Ag₃PO₄ and TCN/Ag₃PO₄ heterojunction in cyclic experiment.

3.5. Photocatalytic Mechanism of TCN/Ag₃PO₄ Heterojunction

To further investigate the photocatalytic reaction mechanism of the TCN/Ag₃PO₄ heterojunction, the TCN/Ag₃PO₄-5% heterojunction was used as photocatalyst, and different scavengers were selected to carry out the photodegradation experiment. Among them, ethylenediaminetetraacetic acid (EDTA) was the electron hole (h⁺) scavenger [39], benzoquinone (BQ) was the superoxide radical (**O₂⁻**) scavenger [40], and isopropanol (IPA) was the hydroxyl radical (**OH**) scavenger [41], with a concentration of 1 mmol/L. The effects of various scavengers on the degradation rate of RhB are shown in Figure 7.

Figure 7. Effect of different scavengers on RhB degradation by TCN/Ag₃PO₄–5% heterojunction under visible–light irradiation.
The photocatalytic efficiency of RhB decreased significantly after the addition of EDTA and BQ, and the degradation rate of RhB was 39% and 45% after 40 min reaction, respectively. Results showed that \(h^+ \) and \(\bullet O_2^- \) were captured by EDTA and BQ, respectively, so the number of \(h^+ \) and \(\bullet O_2^- \) in the photocatalytic reaction was greatly reduced, resulting in a lower degradation rate of RhB. When IPA was added, the degradation rate of RhB was 80% after 40 min reaction. The IPA mainly captured \(\bullet OH \), thus slightly decreasing the degradation rate of RhB. It is clear that \(h^+ \) and \(\bullet O_2^- \) were the main active species for RhB degradation, while \(\bullet OH \) only played a minor role. According to previous reports [42,43], the valence band (VB) and conduction band (CB) potentials of Ag\(_3\)PO\(_4\) were about 2.69 and 0.24 eV, which are both more positive than those of g-C\(_3\)N\(_4\) (−1.15 and 1.60 eV), respectively. According to traditional heterojunction theory, the CB of g-C\(_3\)N\(_4\) is more negative than that of Ag\(_3\)PO\(_4\), and the electrons generated after photoexcitation migrate from the CB of g-C\(_3\)N\(_4\) to the CB of Ag\(_3\)PO\(_4\). The VB of Ag\(_3\)PO\(_4\) is more positive than that of g-C\(_3\)N\(_4\), and holes generated after photoexcitation migrate from the VB of Ag\(_3\)PO\(_4\) to the VB of g-C\(_3\)N\(_4\). \(\bullet O_2^- /O_2 \) potential (−0.33 eV) is more negative than that of Ag\(_3\)PO\(_4\), so electrons migrating to the CB of Ag\(_3\)PO\(_4\) cannot react with oxygen to produce \(\bullet O_2^- \). This is not consistent with the results of photocapture experiments in which \(\bullet O_2^- \) is the main active species. A large number of electrons gathering on the crystal surface of Ag\(_3\)PO\(_4\) lead to the photocurrent corrosion of Ag\(_3\)PO\(_4\). This is inconsistent with the experimental results of the stability of the TCN/Ag\(_3\)PO\(_4\) heterojunction. Second, because the potential of the VB of g-C\(_3\)N\(_4\) was close to the CB of Ag\(_3\)PO\(_4\), it was easy to combine the holes in the VB and the electrons in the CB. Therefore, the electrons in the VB of g-C\(_3\)N\(_4\) and the holes in the VB of Ag\(_3\)PO\(_4\) were effectively separated. The electrons in the CB of g-C\(_3\)N\(_4\) would react with the dissolved O\(_2\) to produce \(\bullet O_2^- \), which could directly oxidize RhB. Meanwhile, the holes in the VB of Ag\(_3\)PO\(_4\) can also directly oxidize RhB. Its high valence band potential of +2.69 eV could oxidize water to produce \(\bullet OH \), and \(\bullet OH \) also had a strong oxidation capacity and can oxidize RhB. The Z-type mechanism is consistent with the experimental results of the photostabilization and photocapture of the heterojunction catalyst.

![Diagram](image_url)

Figure 8. Photocatalytic degradation RhB and charge transfer mechanism in TCN/Ag\(_3\)PO\(_4\) heterojunction.
4. Conclusions

A TCN/Ag$_3$PO$_4$ heterojunction was successfully prepared by chemical precipitation. The TCN/Ag$_3$PO$_4$ heterojunction catalyst exhibited excellent catalytic activity and stability under visible-light irradiation. A possible Z-type mechanism was proposed in which the Ag$_3$PO$_4$-excited electrons were directly recombined with holes generated by the tubelike g-C$_3$N$_4$, thus rapidly separating photogenerated electrons from the Ag$_3$PO$_4$ crystal surface. The TCN/Ag$_3$PO$_4$ heterojunction structure both reduced the photoelectronic corrosion of Ag$_3$PO$_4$ and improved the photocatalytic activity of the catalyst. As a photocatalyst with high activity and stability, the TCN/Ag$_3$PO$_4$ heterojunction has potential for applications in the field of environmental pollution control.

Author Contributions: Data curation, X.Y. and Y.W.; formal analysis, Z.L.; methodology, X.Y. and B.K.; writing—original draft, B.K. and Y.W.; writing—review and editing, X.Y. and Y.N. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the International Project on Scientific and Technological Cooperation in Shaanxi Province of China (no. 2018KW-052), and Research Funds for the Central Universities, CHD (nos. 300102311404 and 300102310301).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank the International Project on Scientific and Technological Cooperation in Shaanxi Province of China (no. 2018KW-052), and Research Funds for the Central Universities, CHD (nos. 300102311404 and 300102310301) for the financial support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhou, Q.; Gong, W.; Xie, C.; Yang, D.; Ling, X.; Yuan, X.; Chen, S.; Liu, X. Removal of neutral red from aqueous solution by adsorption on spent cottonseed hull substrate. J. Hazard. Mater. 2011, 185, 502–506. [CrossRef]
2. Yaseen, D.A.; Scholz, M. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. Int. J. Environ. Sci. Technol. 2019, 16, 1193–1226. [CrossRef]
3. Rueda-Marquez, J.J.; Levchuk, I.; Ibañez, P.F.; Sillanpää, M. A critical review on application of photocatalysis for toxicity reduction of real wastewaters. J. Clean. Prod. 2020, 258, 120694. [CrossRef]
4. Moradihamedani, P. Recent advances in dye removal from wastewater by membrane technology: A review. Polym. Bull. 2021, 78, 1–29. [CrossRef]
5. Hoffman, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96. [CrossRef]
6. Chong, M.N.; Jin, B.; Chow, C.W.K.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027. [CrossRef]
7. Lu, D.Z.; Zhao, B.; Fang, P.F.; Zhai, S.B.; Li, D.L.; Chen, Z.Q.; Wu, W.H.; Chai, W.Q.; Wu, Y.C.; Qi, N. Facile one-pot fabrication and high photocatalytic performance of nano-sized ZnO/SnO$_2$ coupled photocatalysts. Appl. Surf. Sci. 2015, 359, 435–448. [CrossRef]
8. Tian, C.; Zhang, Q.; Wu, A.; Jiang, M.; Liang, Z.; Jiang, B.; Fu, H. Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation. Chem. Commun. 2012, 48, 2858–2860. [CrossRef] [PubMed]
9. Wang, F.C.; Zhao, J.C.; Wang, X.M.; Mai, B.X.; Sheng, G.Y.; Peng, P.A.; Fu, J.M. Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO$_2$ coupled photocatalysts. Appl. Catal. B Environ. 2002, 39, 269–279.
10. Wang, C.; Li, Y.; Huang, L.; Yang, L.; Wang, H.; Liu, J.; Liu, J.; Song, Z.; Huang, L. Enhanced photocatalytic antibacterial and degradation performance by n-p type 0D/2D SnO$_2$–x/BiOI photocatalyst under LED Light. Chem. Eng. J. 2021, 411, 128505. [CrossRef]
11. Yi, Z.; Ye, J.; Kikugawa, N.; Kako, T.; Ouyang, S.; Stuart-Williams, H.; Yang, H.; Cao, J.; Luo, W.; Li, Z. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nat. Mater. 2010, 9, 559–564. [CrossRef]
12. Guan, X.; Shi, J.; Guo, L. Ag$_3$PO$_4$ photocatalyst: Hydrothermal preparation and enhanced O$_2$ evolution under visible-light irradiation. Inter. J. Hydrogen. Energy. 2013, 38, 11870–11877. [CrossRef]
13. Petala, A.; Spyrou, D.; Frontistis, Z.; Mantzavinos, D.; Kondarides, D.I. Immobilized Ag$_3$PO$_4$ photocatalyst for micro-pollutants removal in a continuous flow annular photoreactor. Catal. Today. 2019, 328, 223–229. [CrossRef]
14. Osman, N.S.; Sulaiman, S.N.; Muhamad, E.N.; Mukhair, H.; Tan, S.T.; Abdullah, A.H. Synthesis of an Ag$_3$PO$_4$/Nb$_2$O$_5$ photocatalyst for the degradation of dye. *Catalysts* 2021, 11, 458. [CrossRef]

15. Li, D.; Wang, W.; Shang, X.; Tang, H.; Zulfiquar, S. Solar-driven photocatalytic water oxidation of Ag$_3$PO$_4$/CNTs@MoSe$_2$ ternary composite photocatalyst. *Appl. Surf. Sci.* 2019, 505, 144613. [CrossRef]

16. Teng, F.; Liu, Z.; Zhang, A.; Min, L. Photocatalytic performances of Ag$_3$PO$_4$ polyods for degradation of dye pollutant under natural indoor weak light irradiation. *Environ. Sci. Technol.* 2015, 49, 9489–9494. [CrossRef] [PubMed]

17. Ma, Y.; Li, J.; Jin, Y.; Gao, K.; Cai, H.; Ou, G. The enhancement mechanism of ultra-active Ag$_3$PO$_4$ modified by tungsten and the effective degradation towards phenolic pollutants. *Chemosphere* 2021, 285, 131440. [CrossRef]

18. Najafabadi, M.N.; Ghanbari, H.; Naghizadeh, R. Graphene/silver-based composites and coating on dead coral for degradation of organic pollution using the z-scheme mechanism. *RSC Adv.* 2021, 11, 19890–19901. [CrossRef]

19. Muthukumar, P.; Alex, V.; Pannipara, M.; Al-Sehemi, A.G.; Anthony, S.P. Fabricating highly efficient Ag$_3$PO$_4$-Fe$_2$O$_3$-GO ternary nanocomposite photocatalyst: Effect of Fe$_2$O$_3$-GO preparation methods on photocatalytic activity. *Mater. Res. Bull.* 2021, 141, 111337. [CrossRef]

20. Yan, X.; Hui, X.-Y.; Gao, Q.; Yu, G.-J.; Mo, Y.-C.; Yu, G.-J.; Mo, Y.-C.; Ma, Z.-Y.; Sun, G.-D. Synthesis and visible light photocatalytic activity and stability of SrCoO$_2$ nanocomposites. *Adv. Powder. Technol.* 2021, 32, 260–268. [CrossRef]

21. Li, N.; Chen, J.; Chen, X.; Lai, Y.; Yu, C.; Yao, L.; Liang, Y. Novel visible-light-driven SrCoO$_2$ nanocomposite photocatalyst. *ACS Catal.* 2021, 11, 3020–3026. [CrossRef]

22. He, Y.M.; Zhang, L.H.; Teng, B.T.; Fan, M.H. New application of Z-Scheme Ag$_3$PO$_4$/g-C$_3$N$_4$ composite in converting CO$_2$ to fuel. *Environ. Sci. Technol.* 2015, 49, 649–656. [CrossRef]

23. Cui, X.; Tian, L.; Xian, X.; Tang, H.; Yang, X. Solar photocatalytic water oxidation over Ag$_3$PO$_4$/g-C$_3$N$_4$ composite materials mediated by metallic Ag and graphene. *Appl. Surf. Sci.* 2018, 430, 108–115. [CrossRef]

24. Tian, L.; Li, J.; Liang, F.; Wang, J.K.; Li, S.; Zhang, H.J.; Zhang, S.W. Molten salt synthesis of tetragonal carbon nitride hollow tubes and their application for removal of pollutants from wastewater. *Appl. Catal. B Environ.* 2018, 225, 307–313. [CrossRef]

25. Schwinghammer, K.; Tufty, B.; Mesch, M.B.; Wirth, C.; Martineau, F.; Taulelle, W.; Lotsch, B.V. Triazine-based carbon nitrides for visible-light-driven hydrogen evolution. *Angew. Chem. Int. Ed.* 2013, 125, 2495–2499. [CrossRef]

26. Yan, X.; Ning, G.; Zhao, P. Enhanced visible light photocatalytic reduction of Cr(VI) over a novel square nanotube poly(triazine imide) hollow tube/ZnO heterojunction. *ACS Catal.* 2014, 4, 3020–3026. [CrossRef]

27. Cui, X.; Song, J.; Tan, S.; Yang, L.; Yu, G.; Chen, H.; Zhou, L.; Zhang, Z.; Zhang, Y.; Su, Y. Facile synthesis of z-scheme ZnO/Ag$_3$PO$_4$ composite photocatalysts with enhanced performance for the degradation of ciprofloxacin. *Mater. Chem. Phys.* 2021, 260, 124136. [CrossRef]

28. Ma, S.; Zhan, S.; Jia, Y.; Shi, Q.; Zhou, Q. Enhanced disinfection application of Ag-modified g-C$_3$N$_4$ composite under visible light. *Appl. Catal. B Environ.* 2016, 186, 77–87. [CrossRef]

29. Xie, Y.; Huang, Z.; Zhang, Z.; Ni, W.; Liu, Y.; Fang, M.; Wu, X. Controlled synthesis and photocatalytic properties of rhombic dodecahedral Ag$_3$PO$_4$ with high surface energy. *Appl. Surf. Sci.* 2016, 389, 56–66. [CrossRef]

30. Zhang, Y.; Xie, C.; Fu, F.L.; Wu, H.; Guo, Q. Significant visible-light photocatalytic enhancement in Rhodamine B degradation of silver orthophosphate via the hybridization of N-doped graphene and poly(3-hexylthiophene). *J. Hazard. Mater.* 2016, 315, 23–34. [CrossRef] [PubMed]

31. Xiao, X.; Yue, X.; Ji, Z.; Shen, X.; Zhou, H.; Liu, M.; Xu, K.; Zhu, J.; Zhu, G.; Kong, L. Nitrogen-doped carbon dots decorated on g-C$_3$N$_4$/Ag$_3$PO$_4$ photocatalyst with improved visible light photocatalytic activity and mechanism insight. *Appl. Catal. B Environ.* 2018, 227, 459–469. [CrossRef]

32. Liu, J.J.; Fu, X.; Chen, S.F.; Zhu, Y.F. Electronic structure and optical properties of Ag$_3$PO$_4$ photocatalyst calculated by hybrid density functional method. *Appl. Phys. Lett.* 2011, 99, 191903. [CrossRef]

33. Yan, X.; Qin, J.; Ning, G.; Li, J.; Ai, T.; Su, X.; Wang, Z. A novel poly(triazine imide) hollow tube/ZnO heterojunction for tetracycline hydrochloride degradation under visible light irradiation. *Adv. Powder. Technol.* 2019, 30, 359–365. [CrossRef]

34. Chen, Z.; Bing, F.; Liu, Q.; Zhang, Z.G.; Fang, X.M. Novel z-scheme visible-light-driven Ag$_3$PO$_4$/Ag/SiC photocatalysts with enhanced photocatalytic activity. *J. Mater. Chem. A* 2015, 3, 4652–4658. [CrossRef]

35. Yan, X.; Li, J.; Zhou, H. Molten salts synthesis and visible light photocatalytic activity of crystalline poly(triazine imide) with different morphologies. *J. Mater. Sci. Cem. Electron.* 2019, 30, 11706–11713. [CrossRef]

36. Li, J.; Jin, L.; Liu, F.; Liu, X. Synthesis of cocoon-like Ag$_3$PO$_4$ and its high-performance in photocatalytic degradation of ciprofloxacin. *Mater. Lett.* 2019, 242, 139–142. [CrossRef]
41. Ding, M.; Zhou, J.; Yang, H.; Cao, R.; Zhang, S.; Shao, M.; Xu, X. Synthesis of Z-scheme g-C₃N₄ nanosheets/Ag₃PO₄ photocatalysts with enhanced visible-light photocatalytic performance for the degradation of tetracycline and dye. *Chinese Chem. Lett.* **2020**, *31*, 71–76. [CrossRef]

42. Yan, X.; Gao, Q.; Hui, X.; Yan, C.; Ai, T.; Wang, Z.; Sun, G.; Su, X.; Zhao, P. Fabrication of g-C₃N₄/MoS₂ nanosheet heterojunction by facile ball milling method and its visible light photocatalytic performance. *Rare. Metal. Mat. Eng.* **2018**, *47*, 3015–3020.

43. Sun, M.; Zeng, Q.; Zhao, X.; Shao, Y.; Ji, P.; Wang, C.; Yan, T.; Du, B. Fabrication of novel g-C₃N₄ nanocrystals decorated Ag₃PO₄ hybrids: Enhanced charge separation and excellent visible-light driven photocatalytic activity. *J. Hazard. Mater.* **2017**, *339*, 9–21. [CrossRef] [PubMed]