Title: FR-Match: A non-parametric multivariate statistical test for matching gene expression clusters from single cell RNA sequencing experiments

Authors: Yun Zhang¹, Brian D. Aevermann¹, Trygve Bakken², Jeremy A. Miller², Rebecca Hodge², Ed S. Lein², Richard H. Scheuermann¹,3,4*

Affiliations: ¹J. Craig Venter Institute, La Jolla, CA, USA; ²Allen Institute for Brain Science, Seattle, WA, USA; ³Department of Pathology, University of California San Diego, La Jolla, CA, USA; ⁴Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA

Abstract

Single cell/nucleus RNA sequencing (scRNAseq) provides an unbiased transcriptomic profiling of individual cells, and is emerging as an essential tool to unravel the phenotypic heterogeneity of cells in complex biological systems. While computational methods for scRNAseq cell type clustering have advanced, the ability to integrate datasets to identify common and novel cell types across experiments remains a challenge. Here, we introduce a cluster-to-cluster cell type matching algorithm – FR-Match – that incorporates shared information among cells to determine whether two cell type clusters are from the same underlying multivariate gene expression distribution. In validation studies using simulated data, FR-Match proved to be a stringent method that produces fewer erroneous matches of distinct cell subtypes compared to existing methods. FR-Match also has the unique ability to identify novel cell phenotypes in new datasets. When integrating two real datasets from specimens isolated from overlapping human brain regions (cortical layer one versus full thickness middle temporal gyrus), FR-Match precisely preserved the laminar characteristics of matched cell type clusters that reflect distinct neuroanatomical functions. Open-source software is available at

https://github.com/JCVenterInstitute/FRmatch.
Introduction

Global collaborations, including the Human Cell Atlas\(^1\) (HCA) and the NIH BRAIN Initiative\(^2\), are making rapid advances in the application of single cell/nucleus RNA sequencing (scRNAseq) to characterize the transcriptional profiles of cells in healthy and diseased tissues as the basis for understanding fundamental cellular processes and for diagnosing, monitoring, and treating human diseases. The standard workflow for processing and analysis of scRNAseq data includes steps for quality control to remove poor quality data based on quality metrics\(^3-5\), sequence alignment to reference genomes/transcriptomes\(^6-8\), and transcript assembly and quantification\(^8,9\) to produce a gene expression profile (transcriptome) for each individual cell. In most cases, these expression profiles are then clustered\(^10-13\) to group together cells with similar gene expression phenotypes, representing either discrete cell types or distinct cell states. Once these cell phenotype clusters are defined, it is also useful to identify sensitive and specific marker genes for each cell phenotype cluster that could be used as targets for quantitative PCR, probes for \textit{in situ} hybridization assays, and other purposes (e.g. semantic cell type representation where biomarkers can be used for defining cell types based on their necessary and sufficient characteristics\(^14,15\)).

A major challenge emerging from the broad application of these scRNAseq technologies is the ability to compare transcriptional profiles across studies. In some cases, basic normalization\(^16,17\) or batch correction\(^18,19\) methods have been used to combine multiple scRNAseq datasets with limited success. Recently, several computational methods have been developed to address this challenge more comprehensively\(^20-25\). General steps in these methods include feature selection/dimensionality reduction and quantitative learning for matching. Scmap\(^20\) is a method that performs cell-to-cell (scmapCell) and cell-to-cluster (scmapCluster) matchings. The feature selection step is unsupervised and based on a combination of expression levels and dropout
rates, pooling genes from all clusters in the reference dataset. Matching is based on agreement of nearest neighbor searching using multiple similarity measures. Seurat21,22 provides a cell-to-cell matching method within its suite of scRNAseq analysis tools. Feature selection is unsupervised and selects highly variable features in the reference dataset to define the high-dimensional space. Both query and reference cells are aligned in a search space projected by PCA-based dimensionality reduction and canonical correlation analysis, to transfer cluster labels through “anchors”. Among many others23-25, these methods have focused on individual cell level strategies when comparing a query dataset to a reference dataset, not relying on clustering results to guide supervised feature selection or cluster-level matching.

Here, we present a supervised cell phenotype matching strategy, called FR-Match, for cluster-to-cluster cell transcriptome integration across scRNAseq experiments. Utilizing \textit{a priori} learned cluster labels and computationally- or experimentally-derived marker genes, FR-Match uses the Friedman-Rafsky statistical test26,27 (FR test) to learn the multivariate distributional concordance between query and reference data clusters in a graphical model. In this manuscript, we first illustrate the matching properties of FR test in this scRNAseq adaptation using thorough simulation and validation studies in comparison with other popular matching methods. We then use FR-Match to match brain cell types defined in the full thickness of human middle temporal gyrus (MTG) neocortex with cell types defined in a Layer 1 dissection of MTG using public datasets from the Cell Types Database of the Allen Brain Map [https://portal.brain-map.org/atlas\-es\-\textand\-\textdata\-rnaseq]. We also report the cell types that are consistently matched between the two brain regions using multiple matching methods. An R-based implementation, user guide, and ShinyApp for FR-Match are available in the open-source GitHub repository [https://github.com/JCVenterInstitute/FRmatch].

\section*{Results}
FR-Match: cluster-to-cluster mapping of cell type clusters

FR-Match, is a novel application of the Friedman-Rafsky test26,27, a non-parametric statistical test for multivariate data comparison, tailored for single cell clustering results. FR-Match takes clustered gene expression matrices from query and reference experiments and returns the FR statistic with p-value as evidence that the query and reference cell clusters being compared are matched or not, i.e. they share a common gene expression phenotype. The general steps of FR-Match (Fig. 1a) include: i) select informative marker genes using, for example, the NS-Forest marker gene selection algorithm14; ii) construct minimum spanning trees for each pair of query and reference clusters (different colors); iii) remove all edges that connect a node from the query cluster with a node from the reference cluster, and iv) calculate FR statistics and p-values by counting the number of subgraphs remaining in the minimum spanning tree plots.

Intuitively, the larger the FR statistic, the stronger the evidence that the cell clusters being compared represent the same cell transcriptional phenotype.

Supervised marker gene selection provides unique cell type clusters “barcodes”

We adopted the NS-Forest algorithm14 v2.0 (available at \url{https://github.com/JCVenterInstitute/NSForest}) to select informative marker genes for a given cell type cluster. Applying NS-Forest feature selection to the cortical Layer 1 and full thickness MTG datasets produced a collection of 34 and 157 marker genes that, in combination, can distinguish the 16 cortical Layer 128 and 75 full MTG29 cell type clusters, respectively. These markers include well known neuronal marker genes like $SATB2$, $LHX6$, VIP, $NDNF$, $NTNG1$, etc. (Supplementary Fig. 1). The selected marker genes display on-off binary expression patterns producing, in combination, a unique gene expression “barcode” for each cell cluster (Fig. 1b). In addition to producing marker genes for each of the individual cell type clusters, this composite barcode serves as an effective dimensionality reduction strategy that captures gene features
that are informative for every cell type cluster. The collection of informative marker genes effectively creates an essential subspace that reflects the composite cell cluster phenotype structure in the single cell gene expression data. Thus, supervised feature selection by NS-Forest was used as the dimensionality reduction step for the FR-Match method in this study. Although NS-Forest was used for marker gene selection here, FR-Match is compatible with any feature selection/dimensionality reduction approach that selects informative cluster classification features.

Matching performance in cross-validation and simulation studies

To assess the performance of FR-Match in comparison with other matching methods, we generated cross-validation datasets utilizing the cortical Layer 1 data and its known 15 cell type clusters for validation studies (excluding the smallest cluster in the original studies with too few cells). Matching was performed using six implementations of the three core methods: FR-Match (using NS-Forest genes), FR-Match incorporating p-value adjustment (FR-Match adj.), scmap (scmapCluster) with default gene selection (500 genes based on dropout proportions), scmap with NS-Forest marker genes (scmap+NSF), scmap with extended NS-Forest marker genes (scmap+NSF.ext) (see Methods section), and Seurat with default gene selection (top 2000 highly variable genes). (Seurat with NS-Forest marker genes was not reported since the results were similar to the results obtained using default marker genes.)

Cross-validation assessment of 1-to-1 positive matches

In the two-fold cross-validation study, half of the cells serve as the query dataset and the other half as the reference dataset. Exactly one 1-to-1 true positive match should be identified for each cluster. Figure 2a displays the average matching rate over the cross-validation iterations, where true positives are expected to lay along the diagonal. Four implementations, FR-Match, FR-Match adj., scmap+NSF.ext, and Seurat had excellent performance with 0.93~1 true
positive rates (TPR) calculated as the grand average of the diagonal entries. Scmap using its
default gene selection approach performed sub-optimally, especially for glial cell types. This is
likely due to the fact that informative marker genes for these cell types were not selected using
the dropout rate-based feature selection criterion (Supplementary Fig. 2). However, using NS-
Forest marker genes (scmap+NSF) instead of its default genes resulted in a significant
improvement in scmap performance, suggesting that supervised feature selection is
advantageous for cell type matching in general. FR-Match implementations had median
matching accuracies approaching 0.98 and above, while the next tier performers,
s cmap+NSF.ext and Seurat, had median accuracies around 0.95 (Fig. 2b). Sensitivity and
specificity metrics further break down the accuracy measure and indicate the balance between
the diagonal (true positive, a.k.a. sensitivity) and off-diagonal (true negative, a.k.a. specificity)
matching performance. FR-Match after p-value adjustment is the only algorithm that identified
all positive matches. Most methods had very high specificities, whereas FR-Match adj. had
somewhat lower specificity due to slightly more false positives.

Cross-validation assessment of 1-to-0 negative matches

Leave-K-cluster-out cross-validation was used to test the performance of these methods under
circumstances where one or more cell phenotypes is missing from the reference datasets, i.e. a
situation where a novel cell type has been discovered. The left-out cluster(s) should have 1-to-0
match(s) and should be unassigned. While FR-Match implementations clearly identified the left-
out cluster as unassigned, other methods produced inappropriate matching when query cell
types were missing from the reference dataset (Fig. 3). Figure 3a shows results for when the i5
cluster was left out; Supplementary Figs. 3-8 show results for when other cluster were left-out in
turn. Both FR-Match implementations easily identified the true negative match and correctly
labeled the query i5 cluster as unassigned. Other methods partially or primarily mis-matched the
query cluster (i5) to a similar yet distinct cluster (i1), as seen in the UMAP embedding where the
query i5 nuclei are nearest neighbors to the reference i1 nuclei (Supplementary Fig. 9). The accuracy measure for leave-1-cluster-out cross-validation again suggests that the FR-Match method is the best performer with median accuracies approaching 0.99 (Fig. 3b). Furthermore, as we removed more and more reference clusters, the FR-Match method showed robust precision-recall curve that consistently outperformed default implementations of scmap and Seurat in ROC analysis (Fig. 3c). Seurat’s curve deteriorated because its current implementation lacks an option for unassigned matches; therefore, all cells in the query dataset were forced to map somewhere in the reference dataset. Interestingly, scmap implementations with NS-Forest selected features also had robust precision-recall curves with respect to the increasing number of true negatives.

The leave-K-cluster-out cross-validation has important implications for the capability of each matching method to detect novel cell types in new data sets that are not present in the reference datasets when integrating single cell experiments. In this important use case, the FR-Match method exhibits desirable properties for novel cell phenotype discovery.

Simulation of under- and over-partitioning during upstream clustering

Accurate cell type determination from scRNAseq analysis is dependent on accurate partitioning of the cellular transcriptomes into clusters based on their similarity. Existing neuroscientific knowledge\(^\text{28}\) suggests that the 15 cortical Layer 1 cell clusters are the current “optimal” clustering of the human brain upper cortical layer scRNAseq data. By combining and splitting these optimal cell type clusters, we simulated under- and over-partitioning scenarios of the upstream clustering analysis. Figure 4a summarizes five cluster partitions ranging from 3 to 18 clusters with F-measure scores indicating the classification power of partition-specific marker genes. The “Top nodes” under-partitioning combines clusters into the three top-level broad cell type classes: inhibitory neurons, excitatory neurons, and non-neuronal cells, producing well
known GABAergic, glutamatergic, and neuroglia markers with high F-measure score. The "Mid
nodes" under-partitioning combines three groups of closely related GABAergic clusters – i1 + i5,
i3 + i4, and i6 + i8 + i9 – resulting in 11 clusters. Over-partitioning of either one (e1) or three (i1,
i2, and i3) clusters was performed by running k-means clustering with k = 2 independently for
each cluster to simulate real over-partitioning scenarios.

It is important to note that over- and under-partitioning will also have an effect on the gene
selection step; it would be predicted that marker gene selection algorithms would have difficulty
finding maker genes specific for over-partitioned clusters, which would be reflected in the drop
in F-measure scores. Indeed, particularly low F-measure scores may be a good indication of
cluster over-partitioning. Figure 4b describes the expected effects on marker gene identification
and FR-Match performance after p-value adjustment when clusters are under-, optimally-, and
over-partitioned. The types of marker genes that would be selected with different reference
cluster partitioning scenarios would impact their ability to effectively drive cluster matching.

Supplementary Figs. 10-15 show the matching results of all considered matching methods in
various partitioning scenarios. The FR-Match and Seurat methods showed good quality and
expected matching results in most partitioning scenarios; scmap had the same problem with the
unmatched glial clusters. Seurat showed excellent performance when reference clusters were
under-partitioned, but poor performance when query clusters were under-partitioned. Overall,
the FR-Match method had stable matching performance in the cluster partitioning simulations.
Indeed, 1-to-many and many-to-1 matching results using FR-Match could possibly indicate
under- or over-partitioning of the upstream clustering step in scRNAseq data analysis.

Cell type mapping between cortical Layer 1 and full MTG

We next extended the validation testing to a more realistic real-world scenario where a new
dataset has been generated in the same tissue region using slightly different experimental and
computational platforms. We tested FR-Match with p-value adjustment using two single nucleus RNA sequencing datasets from overlapping human brain regions – the single apical layer of the MTG cerebral cortex (cortical Layer 1), in which 16 discrete cell types were identified28, and the full laminar depth of the MTG cerebral cortex, in which 75 distinct cell types were identified29.

Matching results were assessed from two perspectives: i) agreement with prior knowledge such as layer metadata from the design of these experiments28,29, and ii) agreement with other matching methods. Since these datasets targeted the same cortical region with overlapping laminar sampling, we expect that matching algorithm should find 1-to-1 matches of each cell types in the cortical Layer 1 data to one cell type in layers 1-2 from the full MTG data. The final matching results were concluded from two matching directions: Layer 1 query to MTG reference with MTG markers, and MTG query to Layer 1 reference with Layer 1 markers. The two-way matching approach was applied to all comparable matching algorithms.

FR-Match uniquely maps cell types reflecting the overlapping anatomic regions

Using FR-Match, we mapped each of the 13 Layer 1 cell types uniquely to one MTG cell type (Fig. 5a), i.e. 1-to-1 two-way matches. These matches precisely reflect the overlapping anatomic regions in these two independent experiments in that the matched MTG cell types all have an “L1” layer indicator in their nomenclature. The one exception for the Layer 1 e1 cluster likely reflects the incidental capture of upper cortical layer 2 excitatory neurons in the original Layer 1 experiment28. And while most of the SST cell subtypes are located in deeper cortical layers, FR-Match specifically selected the small number of L1 SST clusters as top matches. The same was true for VIP and LAMP5 cell subtypes. The minimum spanning tree plots produced by FR-Match provide a clear visualization of matched and unmatched cell clusters (Fig. 5b).

To validate further, we compared the matching results to the hierarchical taxonomy of MTG cell types29, which reflects cell type relatedness (left side of Fig. 5a). First, the block of one-way
matches in Box A precisely corresponds to a specific sub-clade of VIP-expressing cells with close lineage relationships, suggesting that one-way FR-Match results are evidence of closely related cell types. Second, FR-Match correctly identified excitatory neurons that were incidentally captured from upper Layer 2 in the cortical Layer 1 experiment in Box B, corresponding to L2/3 excitatory neurons in the full MTG dataset. Third, Box C suggests under-partitioning of the Layer 1 astrocyte cluster as multiple two-way matches were found for the same cluster.

Directional one-way matching results are shown in Supplementary Fig. 16. Though different matching patterns are observed from each direction, they reflect the fact that these datasets are measuring different cell types. There are some cases where the difference might be due to the cell complexity in the datasets, e.g. the VIP or SST types, and this might be leading to the dynamic range and skewness of p-value distributions for each query cluster.

Cell type mapping using other existing approaches

In mapping cell types between cortical Layer 1 and the full MTG, both FR-Match and Seurat produced similar unique two-way matches (Fig. 6). Examining all matching results and all matching algorithms, FR-Match produced the most “conservative” mapping of cell types. The other matching algorithms produced matching results that had more sparsely-distributed VIP types (Box A), and were not laminar specific (Box B). Among all approaches, glial cell types were mapped somewhat differently (Box C), probably due to their overall lower sampling and distinct phenotypes compared to the majority of GABAergic and glutamatergic neurons.

FR-Match shows three advantages over the alternative methods. First, by using supervised feature selection for each cell type, major and minor cell populations are equally represented in the reduced-dimensional space for cell type matching. This strategy would also benefit other matching methods with sub-optimal feature selection/dimensionality reduction. Second, FR-
Match clearly excludes the matching of cell types that are only present in one of the datasets.

Third, FR-Match allows one-to-multiple and unassigned matches, which allows for detecting potential cluster partitioning issues and the discovery of novel cell types.

The other existing cell-level matching approaches naturally provide the probabilistic cluster-level matching of cell types as the percentage of matched cells in query cluster (Supplementary Figs. 17-20); a deterministic cluster-level match would depend on the selection of an ad-hoc cutoff of the probabilistic matching. Thus, deterministic cell type mapping or discovery of novel cell types would be difficult as i) individual cells may be alike in the same broad cell class even if the specific cell type may not be present in the reference dataset, and ii) the probabilistic cutoff may be subjective. Therefore, both scmap and Seurat identified many more non-specific one-way matches than FR-Match, which uses an objective p-value cutoff.

Combining all results, we finally report 15 high-confidence ensemble matches between Layer 1 and full MTG cell types in Supplementary Table 1.

Discussion

FR-Match offers a cluster-level approach for mapping cell phenotypes identified in scRNAseq experiments. It extends the current cell-level matching algorithms by: i) borrowing information from all the cells in the same cluster using a statistical test that provides both probabilistic matching in p-values and objective p-value thresholds for deterministic matching, and ii) providing simple visualization of cell type data clouds in the minimum spanning tree graphical representation. Matching results of FR-Match are relatively conservative yielding highly specific matches, which can confirm cell type equivalence, lead to novel cell type discovery, and diagnose upstream clustering problems. Among many other scRNAseq data integration strategies, this approach combines informative feature selection and cluster-level integration of the NS-Forest and FR-Match software suites, producing intuitive results with high interpretability,
including useful intermediate results such as binary marker genes and minimum spanning tree
graphs for users to monitor and gain meaningful insights from the mapping solutions.

Based on the computational and statistical investigation of both simulated and real datasets, we
conclude that: i) the FR-Match and Seurat methods show excellent performance in mapping
neuronal and glial cell types using snRNAseq data from human brain; and ii) supervised feature
selection, such as the NS-Forest algorithm, appears to produce excellent marker gene
combinations that can be used as an effective feature selection/dimensionality reduction
technique for cell type mapping with multiple methods, including FR-Match and scmap.

One of the biggest challenges in scRNAseq alignment at the moment seems to be the proper
assignment of cells from a cell type found in only one dataset. These cells are often matched to
a closely related cell type in a second dataset. In this regard, FR-Match appears to be superior
in being able to determine which cell types from two datasets are not matched, for novel cell
type discovery.

For all compared methods in this study, it's interesting to note that under-partitioning the query
clusters leads to degraded performance, except if the reference clusters are also under-
partitioned. This suggests that a useful strategy would be to map to reference types in a
hierarchical manner by first mapping to broad classes of references types and then moving
down the tree to finer types until ambiguous matches appear.

Automated cell type integration of independent scRNAseq datasets remains challenging.
Creating an unbiased, high-resolution and comprehensive cell type reference would be a critical
task for the whole single cell research community. Consensus mapping schemes that survey
both cell-level and cluster-level matchings will be useful for establishing such a reference data
atlas. We believe that final mapping of the brain cell types agreed upon by the type of bi-
directionally and multi-level matchings reported here represents the best-practice for computational cell type mapping, requiring minimal expert intervention.

Single cell evaluation is a fast-evolving field. Although not explored here, we expect FR-Match to be applicable to cross-platform, cross-specimen, cross-anatomy, and cross-species matching of scRNAseq clustered data. The effect of dropouts and the dynamic range of single cell sequencing data from protocols other than the Smart-seq protocol stand out as key challenges to be overcome. To address these challenges, we are now developing add-on features to the core FR-Match algorithm, including imputation techniques for the relatively high dropout rates in 10X Genomics droplet-based protocols, and moment-based normalization options for the discrete and dispersed values produced in single cell spatial in-situ hybridization protocols. While these emerging technologies will produce more complicated data integration challenges, the adaptation of methods like FR-Match are poised to play an essential role in the broad integration of scRNAseq cell phenotyping experiments.

Acknowledgements

The development and assessment of FR-Match was funded by the JCVI Innovation Fund, the Allen Institute for Brain Science, and the Chan–Zuckerberg Initiative DAF, an advised fund of the Silicon Valley Community Foundation (2018-182730). The funding bodies had no role in the design or conclusions of this study.

Author contributions

Y.Z. and R.H.S. designed the study, conceived the statistical model, and wrote the manuscript. Y.Z. and B.D.A. developed the software suites. Y.Z. and B.D.A applied the software to real data analysis. Y.Z., B.D.A, T.B., J.A.M., and R.H.S. interpreted the real data analysis. R.H., T.B.,
J.A.M., R.H.S., and E.S.L. performed the single nucleus RNA sequencing experiments used.

R.H.S. and E.S.L. supervised the work.
I. Dimensionality reduction

Data input

Expression matrix
Informative marker genes
Cell cluster labels

Full expression matrix
Cell cluster labels

Reference dataset

Query dataset

Same set of informative marker genes

For each pair of cross-dataset clusters

II. Cluster-to-cluster matching

Complete graph
Minimum spanning tree
Multivariate test

Friedman-Rafsky (FR) test

\[W = \frac{R - E(R)}{\text{Var}(R)^{1/2}} - N(0,1) \]

Layer 1, 2020, SLC17A7, L5b, Cdh13

Layer 1, 289, SLC17A7, Astro, Csa1

Layer 1, 289, SLC17A7, Astro, Csa1

Layer 1, 289, SLC17A7, Astro, Csa1

Layer 1, 289, SLC17A7, Astro, Csa1
Figure 1. FR-Match schematic and marker gene “barcodes”. (a) FR-Match cluster-to-cluster matching schematic diagram. Input data: query/new and reference datasets, each with cell-by-gene expression matrix and cell cluster membership labels. Step I: dimensionality reduction by selecting expression data of reference cell type marker genes from the query dataset. Here, we use the NS-Forest marker genes selected for the reference cell types. Step II: Cluster-to-cluster matching through the Friedman-Rafsky (FR) test. From left to right: multivariate data points of cell transcriptional profiles (colored by cell cluster labels) in a reduced dimensional (reference marker gene expression) space; construct a complete graph by connecting each pair of vertices (i.e. cells); find the minimum spanning tree that connects all vertices with minimal summed edge lengths; remove the edges that connect vertices from different clusters; count the number of disjoint subgraphs, termed “multivariate runs” and denoted as R; calculate the FR statistic W, which has asymptotically a standard normal distribution. (b) “Barcodes” of the cortical Layer 1 NS-Forest marker genes in four Layer 1 clusters. Heatmaps show marker gene expression levels of 30 randomly selected cells in each cell cluster. The “Marker” column indicates if the gene is a marker gene of the cluster or not (1=yes, 0=no).
Figure 2. Cross-validation results. Two-fold cross-validation were repeated 20 times on the cortical Layer 1 data with all clusters. Training (reference) and testing (query) data were evenly split in proportion to the cluster sizes. Cluster-level matching results for the cell-level matching methods were summarized as the most mapped cluster labels beyond a defined threshold (see Methods section). Matching output: 1 if a match; 0 otherwise. If a query cluster is not matched to any reference cluster, then it is unassigned. (a) Heatmaps show the average matching result for each matching method. True positive rate (TPR) is calculated as the average of the diagonal matching rates, i.e. true positives. (b) Median, interquartile range, and full range of accuracy, sensitivity, and specificity of all cluster-matching results in cross-validation for each matching method is shown.
Figure 3. Leave-K-cluster-out cross-validation results. The same cross-validation settings as in Fig. 2 were used. After data split, $K \geq 1$ reference clusters were held-out to simulate the situation in which the query dataset contains one or more novel cell type clusters. (a) Heatmaps show the average matching result for each matching method when the i5 “rosehip” cluster was left out. (b) Accuracy, sensitivity, and specificity of the leave-1-cluster-out cross-validation performance for each matching method is shown. Each cluster was left out in turn, and performance was evaluated across all turns. (c) Precision-Recall Curves of the leave-K-cluster-out cross-validation performance for $K = 1, 3, 5,$ and 7 are shown and Area-Under-the-Curves (AUC) statistics are calculated. Performance was evaluated across 20 iterations of randomly selected K clusters. Curves for the FR-Match with and without p-value adjustment have the same shape since the adjustment preserves the order of p-values. Note that the Seurat package by default does not provide for unassigned cells/clusters as a direct output.
Cluster partitioning

	# clusters	F-measure
Under-partition		
Top nodes	3	0.959
Mid nodes	11	0.929
Optimal-partition	**15 clusters**	0.874
Over-partition		
Split e1	16	0.864
Split i1, i2, i3	18	0.818

Query cluster

Reference cluster	Marker type (F-measure)	Under-partition	Optimal-partition	Over-partition
Under-partition	Common marker (higher)	1-to-1 (TPR=0.98)	Many-to-1 (TPR=0.94)	Many-to-1 (TPR=0.95)
Optimal-partition	Specific markers (high)	1-to-many or missing (TPR=0.72)	1-to-1 (TPR=1)	Many-to-1 (TPR=0.99)
Over-partition	Noisy markers (low)	1-to-many or missing (TPR=0.78)	1-to-many (TPR=0.99)	Many-to-many (TPR=0.94)
Figure 4. Design of the under-, optimally-, and over-partitioned cluster simulations and their matching properties. (a) A schematic of simulating cluster partitions. The optimal partitioning produced nodes where cells were consistently co-clustered across 100 bootstrap iterations for clustering and curated by domain expert knowledge13,28. Connectivity (edge width) between nodes are measured by the number of intermediate cells/nuclei shared by similar nodes. Two under-partition scenarios, “Mid nodes” and “Top nodes”, were simulated by merging similar/hierarchically-connected nodes (e.g. i1 + i5 clusters and all inhibitory clusters, respectively). Two over-partition scenarios, split e1 and split i1, i2, and i3, were simulated by splitting those large size clusters by k-means clustering with k=2. Median F-measure of the NS-Forest marker genes for each partition are reported in the table. (b) FR-Match properties and expected marker gene types with respect to under-, optimally-, and over-partitioned reference and query cluster scenarios, summarized from the simulation results (Supplementary Fig. 11). Green blocks in the table are cases with high true positive rate (TPR); red blocks are warning cases with low TPR.
Figure 5. FR-Match results for cell type matching between the cortical Layer 1 and full MTG datasets. (a) Two-way matching results are shown in three colors: red indicates that a pair of clusters are matched in both directions (Layer 1 query to MTG reference with MTG markers, and MTG query to Layer 1 reference with Layer 1 markers); yellow indicates that a pair of clusters are matched in only one direction; and blue indicates that a pair of clusters are not matched. The hierarchical taxonomy of the full MTG clusters is from the original study. FR-Match produced 13 unique, and two non-unique two-way matches between the two datasets. Box A shows densely located one-way matches in the subclade of VIP-expressing clusters. Box B shows incidentally captured cells from upper cortical Layer 2 mixed in the Layer 1 e1 cluster. Box C shows the non-unique two-way matches of astrocyte clusters. (b) Examples of matched and unmatched minimum spanning tree plots from the FR-Match graphical tool. Top row: examples of two-way matched inhibitory clusters. Middle row: examples of two-way matched non-neuronal clusters. Bottom row: examples of unmatched excitatory clusters from different layers. Legend: cluster name (cluster size).
Figure 6. Cell type matching results between the cortical Layer 1 and full MTG datasets using other matching methods. Two-way cluster-level matching results for the cell-level matching methods were summarized as the most mapped cluster labels beyond a defined threshold (see Methods section). Box A shows matches in the VIP-expressing subclade. Box B shows matches spanning multiple layers among the MTG clusters. Box C shows matches of glial clusters.
Methods

Human brain cells datasets

Two published single-nucleus RNA-seq datasets from the Allen Institute of Brain Science of human brain were used: i) cortical Layer 1 of middle temporal gyrus (MTG)28 and ii) full thickness MTG29. The Layer 1 dataset contains expression data from 871 intact nuclei that form 16 cell type clusters, including four non-neuronal type clusters, one excitatory neuron type cluster, and 11 inhibitory neuron type clusters. The MTG dataset contains filtered expression data from 15,603 nuclei that form 75 cell type clusters, subdivided into six non-neuronal type clusters, 24 excitatory neuron type clusters, and 45 inhibitory neuron type clusters. These cell type clusters are regarded as transcriptionally distinct cell types with nomenclature asserted after iterative clustering analysis13. Gene-level read count values were preprocessed to log-CPM (counts per million) values for all nuclei.

The cell type matching problem

Consider two single cell RNA sequencing experiments – one query/new experiment and one reference experiment. A cell-by-gene expression matrix for each experiment is obtained by standard scRNAseq data processing and analysis workflows, including quality control, reference alignment, sequence assembly, and transcript quantification. Cell cluster labels are also obtained from clustering analysis using, for example, the community detection Louvain algorithm10, and/or other domain specific knowledge. These cell clusters represent transcriptionally-distinct cellular phenotypes within each experiment. The cell type matching problem is whether a pair of query and reference cell clusters identified in related but independent experiments are instances of the same or different transcriptionally-defined cell phenotypes.
We propose a computational solution to the cell type matching problem — FR-Match — an adaptation the Friedman-Rafsky statistical test for scRNAseq data, which takes two input datasets (query and reference) each with a gene expression matrix and cell cluster membership labels (Fig. 1a). Importantly, FR-Match uses a set of informative marker genes that characterize the reference cell type clusters. Dimensionality reduction is done by imposing the same set of marker genes on the query dataset, to select the most informative features shared with the reference dataset. For each pair of cross-dataset clusters, we perform cluster-to-cluster matching via the Friedman-Rafsky statistical test. As a result, FR-Match outputs the following types of match (format: query-to-reference): 1-to-0 or unassigned (indicative of a novel cell type), 1-to-1 (indicative of a uniquely matched cell type), 1-to-many (indicative of an under-partitioned query cluster or over-partitioned reference cluster), many-to-1 (indicative of an over-partitioned query cluster or an under-partitioned reference cluster).

Necessary and sufficient marker gene identification by random forest

In order to perform dimensionality reduction, random forest machine learning as implemented in the NS-Forest algorithm\(^ {14,15} \) (v2.0 at https://github.com/JCVenterInstitute/NSForest) was used to select necessary and sufficient marker genes for each reference cell type cluster. NS-Forest includes steps for: i) feature selection, ii) feature ranking, and iii) minimum feature determination. Let \(\mathbf{X} \) be an \(n \times m \) dimensional cell-by-gene matrix, where \(n \) is the number of cells and \(m \) is the number of genes. Let \(\mathbf{y} \) be an \(n \times 1 \) vector of cluster labels. In step (i), random forest models, with 10,000 decision trees each, are built for input data \(\mathbf{X} \) and each cluster label in \(\mathbf{y} \) under a binary classification scheme. From each random forest model, the average information gain based on the Gini index for each gene is extracted, which is then used as a measure of feature importance to rank the gene features. In step (ii), for the top 15 ranked genes, a binary expression score for gene \(g \) in cluster \(k \) is calculated as
where \(\text{med}_{g,k} \) is the median expression level of gene \(g \) in cluster \(k \), \(K \) is the total number of clusters, and \((\cdot)^+\) defines the non-negative value of the equation. The binary expression score ranges from 0 to 1, where 1 indicates absolute binaryness, i.e. the gene exclusively expressed in the target cluster and not at all in non-target clusters. In step (iii), the top 6 genes from step (ii) are selected and all combinations are evaluated by the F-beta score. F-beta is an F-measure weighted by \(\beta \) such that

\[
F_\beta = (1 + \beta^2) \cdot \frac{\text{precision} \cdot \text{recall}}{\beta^2 \cdot \text{precision} + \text{recall}}.
\]

\(\beta = 0.5 \) was set to weight precision more than recall, which compensates the effect of false negatives dropouts due to technical artifacts in scRNAseq experiments. The output from step (iii) is a minimum set of marker genes for each cell type cluster (usually 1 – 4), whose expression in combination is sufficient to discriminate the target cell type cluster from the rest of the cells. In addition to the minimum set of NS-Forest marker genes, the algorithm also provides an extended list of binary marker genes as a supplementary output from step (ii), which may achieve higher discriminative power under certain circumstances. The top 15 NS-Forest genes for each cell type formed an NS-Forest extended gene list as an alternative feature selection option for matching algorithms.

Friedman-Rafsky test

The Friedman-Rafsky (FR) test\(^\text{26}\) is a multivariate generalization of the non-parametric two-sample comparison problem. This classical statistical test is distribution free. Consider two general distributions \(F_X \) and \(F_Y \) for samples \((x_1, \ldots, x_m) \) and \((y_1, \ldots, y_n) \) in a \(p \)-dimensional space, respectively. (In the context of FR-Match, the \(x \)'s and \(y \)'s denote the expression profiles of each
cell in the query and reference clusters; \(m \) and \(n \) are the number of cells in each cluster; \(p \) is
determined by the number of informative marker genes from the reference dataset). Under the
hypothesis testing framework, the original FR test is designed for testing

\[H_0: F_X = F_Y \quad \text{versus} \quad H_1: F_X \neq F_Y, \]

in which the null hypothesis states that the cells from both query and reference clusters are from
the same transcriptional distribution; the alternative hypothesis states that the two cell
populations are from different transcriptional distributions. Thus, the cell type matching problem
becomes a statistical test to detect comparisons for which \(H_0 \) is true.

The underlying model of the FR test is a graphical model based on the minimum spanning tree
of pooled samples (Fig. 1a). In the multi-dimensional informative marker gene space, cells from
different clusters (indicated by colors) are pooled and form a mixture of data points. A complete
graph can be constructed, which connects all cells to each other and uses the edge length to
preserve the pairwise Euclidean distance between cells in the original space. Next, the
complete graph is trimmed to a tree graph that connects all cells with the minimum total length
of edges, i.e. the minimum spanning tree. Edges that connect cells of different clusters are then
removed and the number of disjoint subtrees is counted. Intuitively, if there are a large number
of subtrees, it implies that the pooled cells are closely interspersed and therefore more likely to
be from the same multivariate gene expression distribution.

Formally, let \(R \) be the total number of subtrees – “multivariate runs” in the FR test framework,
with mean \(E(R) \) and variance \(\text{Var}(R) \) directly derived from graph theory. The FR statistic is
defined as

\[W = \frac{R - E(R)}{\text{Var}(R)^{1/2}}. \]
Friedman and Rafsky showed that the asymptotic distribution of W follows a standard normal distribution for large sample sizes:

$$W \sim N(0,1) \text{ as } m, n \to \infty \text{ with } m/n \text{ bounded away from } 0 \text{ and } \infty.$$ \hspace{1cm} (1)

For the hypothesis testing purpose, H_0 is rejected for small values of W, i.e. p-value is one-sided such that $p = \Pr(W \leq w)$. Note that, in the cell type matching application, we determine a match if $p > 0.05$, but other p-value thresholds could also be used.

FR-Match method

Extending from the classical statistical test, FR-Match is a novel application of FR test to approach the cell type matching problem with scRNAseq data. The full FR-Match algorithm not only implements the basic testing procedure, but also adapts modifications for specific issues pertaining to the scRNAseq application. A major issue is that two cell clusters to be compared may have very different cluster sizes, such as a dozen cells versus hundreds of cells (Supplementary Fig. 21). The unbalanced cluster sizes will often cause two problems: i) unstable statistical power as the ratio of cluster sizes deviates from the asymptotic condition, and ii) exponentially long computational time needed for constructing minimum spanning tree for large number of cells. To address these problems, an iterative subsampling scheme was implemented, which repeatedly performs sampling without replacement of S cells, or all cells if $S > \text{cluster size}$, from each cell cluster for B times. Default values of S and B are 10 and 1000, respectively, but are tunable. The median p-value of all iterations is outputted. Other modifications include filtering small clusters with less than C cells each, and p-value adjustment for multiple hypothesis testing correction. Empirically, $C = 10$ was chosen for defining a cell type cluster with high confidence since it appeared to provide enough cell instances to be representative. It is suggested to set $S = C$, but it is not a necessary condition for the algorithm.
A disproportionate ratio of S to C would adversely affect the underlying statistical assumptions due to the unmet asymptotic condition in Equation (1).

The FR-Match algorithm is summarized in the following pseudocode.

```plaintext
algorithm FR-Match is

    input: Query dataset of clustered gene expression matrix,
           reference dataset of clustered gene expression matrix,
           informative marker genes

    output: Binary matching matrix, and other optional results

    1 Remove clusters with less than $C$ cells
    2 Subset the query dataset with only the informative marker genes
    3 Subset the reference dataset with only the informative marker genes
    4 for each pair (query cluster, reference cluster) do
       5     for $i$ in 1 to $B$ do
       6         $X$ ← sample without replacement min{$S$, cluster size} cells
                   from query cluster
       7         $Y$ ← sample without replacement min{$S$, cluster size} cells
                   from reference cluster
       8         Perform FRtest_function($X,Y$), and store p-value in $p_{each\_i}$
       9     end for
      10     $p_{each} ← \text{med}\{p_{each\_1}, \ldots, p_{each\_B}\}$
```
11 end for

12 Store \(p_{each} \)'s in a matrix where columns are query clusters and rows are reference clusters

13 P-value adjustment using chosen method

14 Determine final matches based on adjusted p-value cutoff, and store them in a binary matching matrix with 1 = match and 0 = no match

15 return binary matching matrix, optionally, adjusted p-value matrix

In the Layer 1 and full MTG matching analysis, tunable parameters were set at the default values described above, and Benjamini & Yekutieli\(^{37}\) was used for p-value adjustment.

Determining cluster-level match for the cell-level matching methods

In comparison with other popular matching methods, a voting rule was adopted after obtaining the cell-level matching results from algorithms scmap (cell-to-cluster) and Seurat (cell-to-cell). Scmap provides a map: query cell \(\rightarrow \) reference cluster. We calculate the % of reference cluster labels grouped by the query cell labels, and thereby obtain a quantitative measure ranging from 0 to 1 that indicates the probability of being the same cell type between the query and reference cell clusters. Similarly, the Seurat alignment is extended to query cell \(\rightarrow \) reference cell \(\rightarrow \) reference cluster, and calculate the cluster-to-cluster matching measure in the same way. For a specific query cluster, its cluster-level match is determined by the votes of its member cells for their mapped reference cluster labels. An ad-hoc threshold at 30% was used for defining a deterministic match, which accounts for both the detection of a substantial proportion of query
cells matched to one reference cluster and the possibility that some query clusters might be matched to multiple reference clusters. If the 30%-criterion is not met, then the query cluster is defined as unassigned in the matching results. The cluster-level matching results may change depending on the ad-hoc threshold used. For example, if changing the threshold to 40%, Seurat would identify the same set of two-way matches, but with three fewer one-way matches (Supplementary Fig. 22). A data-driven decision on such a threshold can be guided by the distribution of % of matched cells in Supplementary Figs. 17-20.

Cross-validation and simulation design

Data generation for the cross-validation and simulation studies were from the cortical Layer 1 data with 15 cell clusters (excluding one cluster, i11, with too few cells). All cross-validation designs were two-fold by evenly splitting data into training and testing in proportion to the original cluster sizes. All cross-validations were repeated 20 times each design.

Real data-guided simulations were used to mimic under-/over-partitioned scenarios (Fig. 4). “Top nodes” under-partitions are cells merged into three broad classes: GABAergic inhibitory neurons, glutamatergic excitatory neurons, and neuroglial cells. “Mid nodes” under-partitions are cells merged into similar inhibitory neurons according to the constellation diagram of cluster network from the original study; for the purpose of simulation, i1 and i5, i3 and i4, and i6, i8, and i9 were merged. For over-partitions, large cell clusters were split by running k-means clustering with k = 2 independently for each over-partitioned cluster. “Split e1” divided the excitatory cluster into two sub-clusters of sizes 180 and 119 cells, resulting in 16 (= 15 + 1) over-partitioned clusters. “Split i1, i2, i3” divided each of the inhibitory clusters into two sub-clusters of sizes 56 and 34, 39 and 38, 32 and 24 cells, respectively, resulting in 18 (= 15 + 3) over-partitioned clusters in total. NS-Forest marker genes were identified for each of the
simulated datasets. Matching performances of the under-/over-partitioned datasets were evaluated through two-fold cross-validation repeated 20 times.

References

1 Regev, A. et al. The Human Cell Atlas. *Elife* 6, doi:10.7554/eLife.27041 (2017).

2 The impact of the NIH BRAIN Initiative. *Nat Methods* 15, 839, doi:10.1038/s41592-018-0210-0 (2018).

3 Aevermann, B. et al. in *PACIFIC SYMPOSIUM ON BIOCOMPUTING 2017*. 564-575 (World Scientific).

4 Ilicic, T. et al. Classification of low quality cells from single-cell RNA-seq data. *Genome Biol* 17, 29, doi:10.1186/s13059-016-0888-1 (2016).

5 Islam, S. et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. *Genome Res* 21, 1160-1167, doi:10.1101/gr.110882.110 (2011).

6 Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. *Nature biotechnology* 37, 907-915 (2019).

7 Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* 29, 15-21, doi:10.1093/bioinformatics/bts635 (2013).

8 Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics* 25, 1754-1760, doi:10.1093/bioinformatics/btp324 (2009).
Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. *Nature biotechnology* **33**, 290 (2015).

Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. *Journal of statistical mechanics: theory and experiment* **2008**, P10008 (2008).

Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. *Genome Biol* **19**, 15, doi:10.1186/s13059-017-1382-0 (2018).

Kiselev, V. Y. et al. SC3: consensus clustering of single-cell RNA-seq data. *Nature methods* **14**, 483 (2017).

Bakken, T. E. et al. Single-nucleus and single-cell transcriptomes compared in matched cortical cell types. *PloS one* **13**, e0209648 (2018).

Aevermann, B. D. et al. Cell type discovery using single-cell transcriptomics: implications for ontological representation. *Hum Mol Genet* **27**, R40-R47, doi:10.1093/hmg/ddy100 (2018).

Bakken, T. et al. Cell type discovery and representation in the era of high-content single cell phenotyping. *BMC Bioinformatics* **18**, 559, doi:10.1186/s12859-017-1977-1 (2017).

Lun, A. T., Bach, K. & Marioni, J. C. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. *Genome Biol* **17**, 75, doi:10.1186/s13059-016-0947-7 (2016).
Bacher, R. et al. SCnorm: robust normalization of single-cell RNA-seq data. *Nat Methods* **14**, 584-586, doi:10.1038/nmeth.4263 (2017).

Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. *Nat Biotechnol* **36**, 421-427, doi:10.1038/nbt.4091 (2018).

Polanski, K. et al. BBKNN: fast batch alignment of single cell transcriptomes. *Bioinformatics* **36**, 964-965, doi:10.1093/bioinformatics/btz625 (2020).

Kiselev, V. Y., Yiu, A. & Hemberg, M. scmap: projection of single-cell RNA-seq data across data sets. *Nat Methods* **15**, 359-362, doi:10.1038/nmeth.4644 (2018).

Stuart, T. et al. Comprehensive Integration of Single-Cell Data. *Cell* (2019).

Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. *Nat Biotechnol* **36**, 411-420, doi:10.1038/nbt.4096 (2018).

Hie, B., Bryson, B. & Berger, B. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama. *Nat Biotechnol* **37**, 685-691, doi:10.1038/s41587-019-0113-3 (2019).

Lin, Y. et al. scMerge leverages factor analysis, stable expression, and pseudoreplication to merge multiple single-cell RNA-seq datasets. *Proc Natl Acad Sci U S A* **116**, 9775-9784, doi:10.1073/pnas.1820006116 (2019).
Johansen, N. & Quon, G. scAlign: a tool for alignment, integration, and rare cell identification from scRNA-seq data. *Genome Biol* 20, 166, doi:10.1186/s13059-019-1766-4 (2019).

Friedman, J. H. & Rafsky, L. C. Multivariate generalizations of the Wald-Wolfowitz and Smirnov two-sample tests. *The Annals of Statistics*, 697-717 (1979).

Hsiao, C. *et al.* Mapping cell populations in flow cytometry data for cross-sample comparison using the Friedman-Rafsky test statistic as a distance measure. *Cytometry A* 89, 71-88, doi:10.1002/cyto.a.22735 (2016).

Boldog, E. *et al.* Transcriptomic and morphophysiological evidence for a specialized human cortical GABAergic cell type. *Nat Neurosci* 21, 1185-1195, doi:10.1038/s41593-018-0205-2 (2018).

Hodge, R. D. *et al.* Conserved cell types with divergent features in human versus mouse cortex. *Nature* 573, 61-68, doi:10.1038/s41586-019-1506-7 (2019).

Picelli, S. *et al.* Full-length RNA-seq from single cells using Smart-seq2. *Nat Protoc* 9, 171-181, doi:10.1038/nprot.2014.006 (2014).

Zhang, L. & Zhang, S. Comparison of computational methods for imputing single-cell RNA-sequencing data. *IEEE/ACM Trans Comput Biol Bioinform*, doi:10.1109/TCBB.2018.2848633 (2018).

Zheng, G. X. *et al.* Massively parallel digital transcriptional profiling of single cells. *Nat Commun* 8, 14049, doi:10.1038/ncomms14049 (2017).
Vallejos, C. A., Risso, D., Scialdone, A., Dudoit, S. & Marioni, J. C. Normalizing single-cell RNA sequencing data: challenges and opportunities. *Nat Methods* **14**, 565-571, doi:10.1038/nmeth.4292 (2017).

Moffitt, J. R. *et al.* High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization. *Proc Natl Acad Sci U S A* **113**, 11046-11051, doi:10.1073/pnas.1612826113 (2016).

Shah, S., Lubeck, E., Zhou, W. & Cai, L. In Situ Transcription Profiling of Single Cells Reveals Spatial Organization of Cells in the Mouse Hippocampus. *Neuron* **92**, 342-357, doi:10.1016/j.neuron.2016.10.001 (2016).

Perkel, J. M. Starfish enterprise: finding RNA patterns in single cells. *Nature* **572**, 549-551, doi:10.1038/d41586-019-02477-9 (2019).

Benjamini, Y. & Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. *Annals of statistics*, 1165-1188 (2001).