A MICROLENSING MEASUREMENT OF DARK MATTER FRACTIONS IN THREE LENSING GALAXIES

N. F. Bate, D. J. E. Floyd, R. L. Webster, and J. S. B. Wyithe
School of Physics, The University of Melbourne, Parkville, Vic. 3010, Australia; nbate@physics.unimelb.edu.au
Received 2010 November 22; accepted 2011 February 15; published 2011 March 24

ABSTRACT

Direct measurements of dark matter distributions in galaxies are currently only possible through the use of gravitational lensing observations. Combinations of lens modeling and stellar velocity dispersion measurements provide the best constraints on dark matter distributions in individual galaxies, however they can be quite complex. In this paper, we use observations and simulations of gravitational microlensing to measure the smooth (dark) matter mass fraction at the position of lensed images in three lens galaxies: MG 0414+0534, SDSS J0924+0219, and Q2237+0305. The first two systems consist of early-type lens galaxies, and both display a flux ratio anomaly in their close image pair. Anomalies such as these suggest that a high smooth matter percentage is likely, and indeed we prefer ~50% smooth matter in MG 0414+0534 and ~80% in SDSS J0924+0219 at the projected locations of the lensed images. Q2237+0305 differs somewhat in that its lensed images lie in the central kiloparsec of the barred spiral lens galaxy, where we expect stars to dominate the mass distribution. In this system, we find a smooth matter percentage that is consistent with zero.

Key words: dark matter – gravitational lensing: micro – quasars: individual (MG 0414+0534, SDSS J0924+0219, Q2237+0305)

1. INTRODUCTION

Gravitational lensing measurements provide the only direct method to probe the non-luminous matter component of lensing systems. Weak lensing measurements of cluster masses and mass distributions are becoming routine; however, the measurement of the dark matter components of individual galaxies is a new and exciting prospect. By analyzing gravitational microlensing signals in some strongly lensed quasars, we are able to infer the ratio of clumpy to continuously distributed matter along the line of sight to the background source. This gives us a method to probe the non-luminous matter component of lensing galaxies. However, there is a significant risk that measurements of the smooth matter component are biased, and so we need a direct measurement of this component. In this paper, we present constraints on the smooth matter percentage in the lens as a nuisance parameter.

Cosmological microlensing occurs when the light path to a lensed quasar image intersects a starfield in a foreground lensing galaxy. The lensing galaxy as a whole magnifies the lensed image; microlensing by individual stars induces variations about this macro-magnification. This is most readily detected in light curves of quasar images, where relative motion between observer, lens, and source causes uncorrelated fluctuations in brightness between lensed images. This effect was first observed in the lensed quasar Q2237+0305 (Irwin et al. 1989).

In some lensing systems, we observe a close pair of quasar images. Basic lensing theory suggests that these two images should have approximately equal magnifications (Chang &Refsdal 1979; Blandford & Narayan 1986). On the contrary, in eight out of ten known cases we find that the brightness of one of the images is different from the other by a factor of 3-10 (Schechter &Wambsganss 2002). This discrepancy could be accounted for by adding a significant amount of smooth matter to the lens, since minimum and saddle point images are microlensed differently when a smooth matter component is added.

Recent years have seen considerable advancement in the mapping of dark and stellar mass in lensing galaxies (e.g., Keeton et al. 1998; Ferreras et al. 2005; Barnabé et al. 2009). Usually, the total mass within the Einstein Radius is constrained by modeling the lensing galaxy to fit the observed lensed image positions. Photometry of the lensing galaxy, in combination with stellar population synthesis models, provides the distribution of stellar mass. Finally, observations of stellar velocity dispersions can be used to break the mass-sheet and mass-anisotropy degeneracies, and thus constrain the overall mass density profile (see, for example, Koopmans & Treu 2003; Treu & Koopmans 2004; Ferreras et al. 2005; Ferreras et al. 2008; Barnabé et al. 2009; Auger et al. 2009, and references therein).

These analyses can provide a very detailed picture of the structure of lensing galaxies. However, they are quite complex, relying on often difficult observations and detailed modeling. A complementary method exists, in which observations of microlensing in the lensed quasar images are used to constrain the dark matter percentage along those lines of sight directly.

This paper uses data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.}

1 OCIW, Las Campanas Observatory, Casilla 601, Colina El Pino, La Serena, Chile.
matter percentage of \( \sim 80\% \) is favored. Pooley et al. (2009) measured the smooth matter percentage in PG 1115+080 to be \( \sim 90\% \), using X-ray observations. Morgan et al. (2008) found a weak trend supporting this result. Most recently, Dai et al. (2009) favored a smooth matter fraction of \( \sim 70\% \) using X-ray and optical monitoring of RXJ 1131-1231. Microlensing analyses consistently predict a significant smooth matter percentage in the lensing galaxy at the position of anomalous images.

In this paper, we present constraints on the dark matter percentages in three lensing galaxies: MG 0414+0534, SDSS J0924+0219, and Q2237+0305. MG 0414+0534 and SDSS J0924+0219 are both lensed by early-type galaxies and consist of close image pairs displaying a flux ratio anomaly. MG 0414+0534 is moderately anomalous, whereas SDSS J0924+0219 is the most anomalous lensed quasar currently known. Q2237+0305 differs from the previous sources in two key ways: it is lensed by a barred spiral galaxy, and it does not contain a close image pair. Nevertheless, it is known to be affected by microlensing (e.g., Irwin et al. 1989).

This paper is laid out as follows. In Section 2, we discuss the observational data on the three systems of interest. The simulation technique is briefly described in Section 3. We present our results and discussion in Section 4, and conclude in Section 5. Throughout this paper, we use a cosmology with \( H_0 = 70 \text{ km s}^{-1}\text{Mpc}^{-1} \), \( \Omega_M = 0.3 \), and \( \Omega_\Lambda = 0.7 \).

2. OBSERVATIONAL DATA

2.1. MG 0414+0534

MG 0414+0534 was discovered by Hewitt et al. (1992). It consists of a background quasar at \( z_s = 2.64 \) (Lawrence et al. 1995) and a foreground early-type lensing galaxy at \( z_l = 0.96 \) (Tonry & Kochanek 1999). Four images of the quasar are observed, with the close image pair (images \( A_1 \) and \( A_2 \)) displaying a flux ratio anomaly. This anomaly is weak in both the mid-infrared (\( A_2/A_1 = 0.90 \pm 0.04 \) on 2005 October 10, Minezaki et al. 2009) and the radio (\( A_2/A_1 = 0.90 \pm 0.02 \) on 1990 April 2, Katz & Hewitt 1993), but somewhat stronger in the optical (\( A_2/A_1 = 0.45 \pm 0.06 \) on 1991 November 2–4, Schechter & Moore 1993).

In our analysis, we used three epochs of multi-wavelength MG 0414+0534 observations, presented in Table 1. The first two epochs were archival HST data, obtained from the CASTLES Survey Web site (Falco et al. 1997). The third epoch was obtained by us using the Magellan 6.5 m Baade telescope. These data were first presented in Bate et al. (2008).

2.2. SDSS J0924+0219

SDSS J0924+0219 is the most anomalous lensed quasar currently known. The minimum image \( A \) has been observed to be a factor of \( \sim 20 \) brighter than the saddle point image \( D \) in the optical (Keeton et al. 2006). The quasar was discovered by Inada et al. (2003) in Sloan Digital Sky Survey (SDSS) imaging, and consists of an early-type lensing galaxy at \( z_s = 0.394 \) (Eigenbrod et al. 2006) and a background quasar at \( z_l = 1.524 \) (Inada et al. 2003).

Again, we use three epochs of observational data. These are presented in Table 2. The 2008 March 21 data were obtained by us using the Magellan 6.5 m Baade telescope (Floyd et al. 2009). The 2003 November 18–23 data were taken using HST/NICMOS and WFPC2 for the CASTLES Survey (Keeton et al. 2006).

Q2237+0305 is perhaps the most well-studied gravitationally lensed quasar. It was discovered by Huchra et al. (1985), and consists of a lensing galaxy at \( z_s = 0.0394 \) and a background quasar at \( z_l = 1.695 \). The two previous sources had early-type lensing galaxies; the lens in Q2237+0305 is a barred spiral. Near-perfect alignment between observer, lens and quasar results in four virtually symmetric images of the background source, located in the bulge of the lensing galaxy. The optical depth to stars is therefore quite high, making the system an excellent target for microlensing analyses. Typically, this is taken to mean the smooth matter percentage in microlensing

Table 1 Observed Flux Ratios in MG 0414+0534

| Filter | \( \lambda_c (\text{Å}) \) | \( F_{\text{obs}} = A_2/A_1 \) | Date |
|--------|----------------|-----------------|------|
| H      | 16500          | 0.67 \pm 0.05   | 2007 November 3 |
| J      | 12500          | 0.60 \pm 0.2    | 2007 November 3 |
| z'     | 9134           | 0.34 \pm 0.1    | 2007 November 3 |
| i'     | 7625           | 0.26 \pm 0.1    | 2007 November 3 |
| r'     | 6231           | 0.21 \pm 0.1    | 2007 November 3 |
| F205W  | 20650          | 0.83 \pm 0.03   | 1997 August 14 |
| F110W  | 11250          | 0.64 \pm 0.04   | 1997 August 14 |
| F814W  | 7940           | 0.47 \pm 0.01   | 1994 November 8 |
| F675W  | 6714           | 0.40 \pm 0.01   | 1994 November 8 |

Notes. Central wavelengths \( \lambda_c \) and observed (anomalous) flux ratios \( F_{\text{obs}} \) between images \( A_2 \) and \( A_1 \) in MG 0414+0534, in each of nine filters. The 2007 November 3 observations were taken with the IMACS and PANIC instruments on the Magellan 6.5 m Baade telescope (Bate et al. 2008). The 1997 August 14 observations were taken with the NICMOS instrument on HST (obtained from the CASTLES Survey Web site). The 1994 November 8 observations were taken with the WFPC2 instrument on HST (Falco et al. 1997).

Table 2 Observed Flux Ratios in SDSS J0924+0219

| Filter | \( \lambda_c (\text{Å}) \) | \( F_{\text{obs}} = D/A \) | Date |
|--------|----------------|----------------|------|
| H      | 16500 \pm 1450 | 0.23 \pm 0.05  | 2008 March 21 |
| J      | 12500 \pm 800  | 0.15 \pm 0.05  | 2008 March 21 |
| Y      | 10200 \pm 500  | 0.14 \pm 0.05  | 2008 March 21 |
| z'     | 9134 \pm 800   | 0.19 \pm 0.10  | 2008 March 21 |
| i'     | 7625 \pm 650   | 0.16 \pm 0.10  | 2008 March 21 |
| r'     | 6231 \pm 650   | 0.10 \pm 0.10  | 2008 March 21 |
| g'     | 4750 \pm 750   | 0.08 \pm 0.08  | 2008 March 21 |
| u'     | 3540 \pm 310   | <0.09          | 2001 December 15 |
| F160W  | 15950 \pm 2000 | 0.08 \pm 0.01  | 2003 November 18 |
| F814W  | 8269 \pm 850   | 0.05 \pm 0.005 | 2003 November 18–19 |
| F555W  | 5202 \pm 600   | 0.05 \pm 0.01  | 2003 November 23 |

Notes. Central wavelengths \( \lambda_c \) and observed (anomalous) flux ratios \( F_{\text{obs}} \) between images \( A \) and \( D \) in SDSS J0924+0219, in each filter. The 2008 March 21 observations were taken with the IMACS and PANIC instruments on the Magellan 6.5 m Baade telescope (Floyd et al. 2009). The 2001 December 15 data were taken using MagIC on Baade (Inada et al. 2003). The 2003 data were taken using HST/NICMOS and WFPC2 for the CASTLES Survey (Keeton et al. 2006).

Survey Web site (Falco et al. 1997). The third epoch was obtained by us using the Magellan 6.5 m Baade telescope. These data were first presented in Bate et al. (2008).
Table 3

| Band | Emitted \( \lambda_c \) (Å) | Observed \( \lambda_c \) (Å) | \( B/A \) | Date          |
|------|----------------|----------------|--------|---------------|
| 1    | 1625 ± 125    | 4379 ± 337    | 0.52 ± 0.02 | 2005 November 11 |
| 2    | 1875 ± 125    | 5053 ± 337    | 0.51 ± 0.02 | 2005 November 11 |
| 3    | 2125 ± 125    | 5727 ± 337    | 0.50 ± 0.01 | 2005 November 11 |
| 4    | 2375 ± 125    | 6401 ± 337    | 0.49 ± 0.01 | 2005 November 11 |
| 5    | 2625 ± 125    | 7074 ± 337    | 0.48 ± 0.01 | 2005 November 11 |
| 6    | 2875 ± 125    | 7748 ± 337    | 0.47 ± 0.01 | 2005 November 11 |
| 1    | 1625 ± 125    | 4379 ± 337    | 0.33 ± 0.02 | 2006 November 10 |
| 2    | 1875 ± 125    | 5053 ± 337    | 0.34 ± 0.02 | 2006 November 10 |
| 3    | 2125 ± 125    | 5727 ± 337    | 0.35 ± 0.01 | 2006 November 10 |
| 4    | 2375 ± 125    | 6401 ± 337    | 0.36 ± 0.02 | 2006 November 10 |
| 5    | 2625 ± 125    | 7074 ± 337    | 0.37 ± 0.02 | 2006 November 10 |
| 6    | 2875 ± 125    | 7748 ± 337    | 0.37 ± 0.01 | 2006 November 10 |

Notes. Two epochs of observational \( B/A \) flux ratios for Q2237+0305, obtained from Eigenbrod et al. (2008). Photometry was extracted from spectra obtained with the FORS1 spectrograph on the Very Large Telescope (VLT) at the European Southern Observatory (ESO). Filter wavelengths are in the rest frame of the source quasar, located at a redshift of \( z_s = 1.695 \). Following the Eigenbrod et al. (2008) numbering, the 2005 November 11 data set is epoch number 17 and the 2006 November 10 data set is epoch number 28.

Simulations can be set to zero. We will test this assumption here.

Q2237+0305 also differs from the two previous sources in that it does not contain a close image pair displaying a flux ratio anomaly. Nevertheless, its images are known to vary in brightness due to microlensing. We choose to examine images \( A \) and \( B \) both because they are well modeled, and they are roughly equidistant from the center of the lensing galaxy.

Our observational data were obtained from Eigenbrod et al. (2008), in which 43 epochs of Q2237+0305 spectroscopic data from the FORS1 spectrograph on the Very Large Telescope (VLT) were analyzed. Eigenbrod and collaborators deconvolved their Q2237+0305 spectra into a broad emission line component, a continuum emission component, and an iron pseudo-continuum. The continuum emission was fit with a power-law of the form \( f_\nu \propto \nu^\gamma \). The power-law fit was then split into six wavelength bands, each with a width of 250 Å in the quasar rest frame, and integrated in each band. The result is pseudo-broadband photometry in six wavebands, with contamination from broad emission lines and the iron continuum removed.

We selected two epochs from these data for our analysis, separated by approximately a year. The flux ratios are presented in Table 3. Following the Eigenbrod et al. (2008) numbering, the 2005 November 11 data set is epoch number 17 and the 2006 November 10 data set is epoch number 28.

3. MICROLENSING SIMULATIONS

The simulation technique used in this work has been presented previously in Bate et al. (2008) and Floyd et al. (2009). In those papers, we marginalized over the smooth matter percentage \( s \) as a nuisance parameter. Here, we instead marginalize over the accretion disk radius \( \sigma_0 \) and the power-law index \( \gamma \) relating the radius of the accretion disk to the observed wavelength.

Our microlensing simulations were conducted using an inverse ray-shooting technique (Kayser et al. 1986; Wambsganss et al. 1990; Wambsganss 1990, 1999). The key parameters in these simulations are the convergence \( \kappa_{\text{tot}} \), which is a measure of the focusing power of the lens, and shear \( \gamma \), which is a measure of the distortion introduced by the lens. The lensing parameters used in this analysis are presented in Table 4.

The convergence can be split into two components \( \kappa_{\text{tot}} = \kappa_s + \kappa_\gamma \), where \( \kappa_s \) describes a clumpy stellar component and \( \kappa_\gamma \) a smoothly distributed component. We define the smooth matter percentage \( s \) to be the ratio of the continuously distributed component to the total convergence:

\[
s = \frac{\kappa_s}{\kappa_{\text{tot}}}. \tag{1}
\]

We allowed the smooth matter percentage to vary from 0% to 99%, in 10% increments. The smooth matter percentage is thus relatively coarsely sampled; our simulations were optimized to probe the accretion disk sources in each system.

The microlenses in our simulations were drawn from a Salpeter mass function \( dN/dM \propto M^{-2.35} \) with a mass range \( M_{\text{max}}/M_{\text{min}} = 50 \). Physical sizes are therefore scaled by the average Einstein Radius projected on to the source plane \( \theta_0 \), which varies from system to system. Magnification maps were generated covering an area of \( 24\theta_0 \times 24\theta_0 \), with a resolution of 2048 \( \times \) 2048 pixels. Ten maps were generated for each image and smooth matter percentage.

As discussed in Bate et al. (2008), we randomly selected source positions in each combination of magnification maps, to build up a simulated library of flux ratio curves as a function of wavelength. Comparing these with the observations allows us to construct a three dimensional likelihood distribution for the observed flux ratio spectrum \( F_{\text{obs}} \) given three model parameters: the radius of the quasar source in the bluest filter \( \sigma_0 \), the power-law index relating observed wavelength to radius of the source \( \gamma \), and the smooth matter percentage \( s \). We can convert these likelihoods to an a posteriori probability distribution for the three model parameters given the observations using Bayes theorem:

\[
\frac{d^3P}{ds\sigma_0d\gamma} \propto L(F_{\text{obs}}|\sigma_0, \gamma, s) \frac{dP_{\text{prior}}}{ds} \frac{dP_{\text{prior}}}{d\sigma_0} \frac{dP_{\text{prior}}}{d\gamma}. \tag{2}
\]

Uniform priors were used for the two dimensionless quantities, smooth matter percentage \( s \) and power-law index \( \gamma \). A logarithmic prior was used for the radius \( \sigma_0 \). We note that this differs slightly from the analyses in Bate et al. (2008) and Floyd et al. (2009), where a uniform prior was also used for \( \sigma_0 \). We will briefly discuss prior dependence in Section 4. We marginalize over the accretion disk parameters \( \sigma_0 \) and \( \gamma \) to obtain a probability distribution for the smooth matter percentage \( s \):

\[
\frac{dP}{ds} = \int \int \frac{d^3P}{ds\sigma_0d\gamma} ds\sigma_0d\gamma. \tag{3}
\]
Our analysis focuses on two lensed images in each system. By dealing with flux ratios between images only, we remove the intrinsic quasar flux from the problem, provided the difference in light travel time between images is short. We assume that the smooth matter percentages in the two lensed images are identical. This is reasonable for the two anomalous systems, MG 0414+0534 and SDSS J0924+0219, as the anomalous images lie very close to each other. In Q2237+0305, where the images are widely separated, we choose to analyze image A and B only as they are essentially equidistant from the center of the lensing galaxy, and do not lie atop any obvious spiral features.

The probability distributions we obtain for smooth matter percentage are presented for MG 0414+0534 (Figure 1), SDSS J0924+0219 (Figure 2), and Q2237+0305 (Figure 3). The dashed histograms show the differential probability distributions, and the solid lines show the cumulative probability distributions.

4. RESULTS AND DISCUSSION

We obtain the following formal constraints on smooth matter percentage at the image positions in each system: 50±30−40% in MG 0414+0534, 80±10−10% in SDSS J0924+0219, and ≤50 in Q2237+0305 (68% confidence limits are quoted). Our simulations are not optimized to probe smooth matter percentage; we sample smooth matter parameter space only sparsely, in order to reduce simulation time. These results should therefore be considered estimates, rather than exact measurements. Nevertheless, they provide an interesting, and currently poorly explored, measurement of smooth matter content within only a few effective radii of early-type galaxies.

In MG 0414+0534, the differential probability distribution (Figure 1, dashed line) does not particularly favor any single smooth matter percentage. This leads to a quite broad formal constraint on the smooth matter percentage. Conversely, our measured smooth matter percentage in SDSS J0924+0219 is high, as we would expect for such an anomalous system. There is one other measurement of smooth matter percentage of this system in the literature. Keeton et al. (2006) estimated it to be 80%–85%, based on the estimated size of the broad emission line region in the system. Our analysis is focused on the accretion disk and finds essentially identical results. We do use the Keeton et al. (2006) observational data in obtaining our constraints, however excluding it and working only with the Magellan data does not significantly alter our results.

As has been discussed earlier, the lensed images in Q2237+0305 lie in the bulge of the lensing galaxy. Stars are therefore expected to dominate the microlensing signal, rather than a smooth matter component. Indeed, we find a smooth matter percentage that is consistent with zero in this system. There is a peak in the differential probability distribution (Figure 3, dashed line) at ∼20%. Though we are reluctant to suggest that this peak is real, we do note that such a feature could be evidence of additional absorbing features along the line of sight (see, for example, Foltz et al. 1992, who reported Mg ii absorption features in the spectrum of Q2237+0305 at a redshift of 0.97).

To confirm that our results are not dominated by the choice of prior probability for the radius of the background quasar accretion disk σ₀, we repeated our analysis using a uniform prior rather than a logarithmic prior. Within their errors, we found no significant variation in our constraints on smooth matter percentage in any of our systems.

We can perform a simple calculation to obtain a rough theoretical prediction of the percentage of dark matter we expect to see at the image positions in each source. The method is briefly described by Schechter & Wambsganss (2002) but will be repeated here for clarity. It is only applicable to MG 0414+0534 and SDSS J0924+0219 as it assumes an early-type lensing galaxy. We begin by working out a stellar surface mass density
\( \Sigma \) at the image positions. To do this, we take the observed effective radius of the lensing galaxy \( R_e \), and compare it with Figure 10 in Bernardi et al. (2003) to obtain a \( g \)-band surface brightness in magnitudes per square arcsecond (assuming no evolution in early-type galaxies between redshift \( z = 0 \) and the redshift of the lensing galaxy).

Kauffmann et al. (2003) provide a relationship between mass-to-light ratio \( M/L \) and \( g \)-band magnitude derived from 10^5 Sloan galaxies in their Figure 14. Using the \( g \)-band surface brightness obtained from Bernardi et al. (2003), we can get a rough mass-to-light ratio for our lensing galaxy. We convert our surface brightness from magnitudes per square arcsecond into solar luminosities per square parsec using the following relationship:

\[
S(\text{mag arcsec}^{-2}) = M_{\odot} + 21.572 - 2.5 \log_{10} S(\text{L}_\odot \text{ pc}^{-2}),
\]

where \( S \) is the surface brightness and \( M_{\odot} = 5.45 \) is the solar magnitude in the \( g \) band. Now that we have the lens galaxy surface brightness in solar magnitudes, we can use the mass-to-light ratio to convert into a stellar surface mass density in solar masses per square parsec. This is the stellar surface mass density at the effective radius \( R_e \)—we use the deVaucouleurs profile to extrapolate this value out to the Einstein Radius, which is the approximate location of the lensed images.

The final piece of information we need is the surface mass density at the image positions. The critical surface mass density \( \Sigma_{cr} \) for lensing is obtained from the following relationship:

\[
\Sigma_{cr} = \frac{c^2}{4 \pi G} \frac{D_s}{D_d D_{ds}},
\]

where \( D_d \) is the angular diameter distance to the lens, \( D_s \) is the angular diameter distance to the source, and \( D_{ds} \) is the angular diameter distance between lens and source. The other symbols have their usual meanings. For an isothermal sphere, the surface mass density at the Einstein Radius is half the critical surface mass density \( \Sigma_{cr} \). The smooth matter percentage \( s \) is simply obtained as follows:

\[
s = 1 - \frac{\Sigma_s}{0.5 \Sigma_{cr}}.
\]

MG 0414+0534 has a deVaucouleurs effective radius \( R_e = 0'78 \) (Kochanek et al. 2000), which gives a \( g \)-band magnitude of \( \sim 21.75 \) and a mass-to-light ratio \( M/L \sim 4 \). This gives a stellar surface mass density at the effective radius of \( 514 M_\odot \text{ pc}^{-2} \). For an Einstein Radius of 1'15 (Trotter et al. 2000), the stellar surface mass density on the Einstein Ring is smaller by a factor of 0.46, giving \( \Sigma_{cr} = 236 M_\odot \text{ pc}^{-2} \). For a source at \( z = 0.39 \) and a lens at \( z = 0.96 \), the critical surface mass density for lensing is \( \Sigma_{cr} = 2189 M_\odot \text{ pc}^{-2} \). This gives a theoretically predicted smooth matter percentage of 78%. Note that this number differs slightly from the figure quoted in Schechter & Wambsganss (2002) as they were using preprints of Bernardi et al. (2003) and Kauffmann et al. (2003). This prediction is on the high side of our measured smooth matter percentage of 50\(^{+30}_{-20} \)\%, although it is formally consistent.

SDSS J0924+0219 has two measured effective radii in the literature: \( R_e = 0'31 \pm 0'02 \) (Morgan et al. 2006) and \( R_e = 0'50 \pm 0'05 \) (Eigenbrod et al. 2006). Both results were obtained using \( HST \) data. Morgan et al. (2006) fit a deVaucouleurs profile to the lensing galaxy, whereas Eigenbrod et al. (2006) chose a two-dimensional exponential disk. Since an exponential profile is shallower than a deVaucouleurs profile, it would tend to give a larger effective radius. This may allow the two effective radii to be reconciled, however we will deal with each case separately. The system has a lensing galaxy at \( z = 0.39 \) and a source at \( z = 1.524 \), giving a critical surface mass density of \( \Sigma_{cr} = 2323 M_\odot \text{ pc}^{-2} \).

For an effective radius \( R_e = 0'50 \) we expect a \( g \)-band surface brightness of \( \sim 20.5 \) mag arcsec\(^{-2} \), and a mass-to-light ratio \( M/L = 5.6 \). At the effective radius, the stellar surface mass density is 2285 \( M_\odot \text{ pc}^{-2} \). For an Einstein Radius of 0'85 (Inada et al. 2003) and a deVaucouleurs profile, the stellar surface mass density at the Einstein Radius is lower by a factor of 0.35, giving \( \Sigma_s = 791 M_\odot \text{ pc}^{-2} \). Thus, we predict a smooth matter percentage of 32%. This is significantly lower than our 1σ measured smooth matter percentage of 80\(^{+10}_{-11} \)\%. Even at the 95% level, our measured smooth matter percentage is not consistent with the prediction of this rough calculation.

The situation is somewhat different for an effective radius \( R_e = 0'31 \). Here, an early-type galaxy with no evolution between \( z = 0 \) and \( z = 0.39 \) should have a \( g \)-band surface brightness of \( \sim 19.75 \) mag arcsec\(^{-2} \) and a mass-to-light ratio \( M/L = 5 \). This gives a stellar surface mass density of 4052 \( M_\odot \text{ pc}^{-2} \) at the effective radius. Again assuming a deVaucouleurs profile, the stellar surface mass density is reduced by a factor of 0.13 at the Einstein Radius of 0'85, giving 539 \( M_\odot \text{ pc}^{-2} \). We therefore expect 46% of the mass to be in stars and 54% in smooth matter. This is consistent with our measured smooth matter percentage at the 95% level (80\(^{+10}_{-30} \)\%).

In Figure 4, we show a comparison between the results of this rough theoretical calculation and our microlensing measurements for MG 0414+0534 (circle) and SDSS J0924+0219 (square). No errors are provided for the rough theoretical calculations, although we emphasize that they should only be considered rough estimates. With only two data points, there does not seem to be any systematic difference between the microlensing measurements and the rough calculation.

It is, however, not correct to connect smooth matter percentage in our simulations directly with dark matter content in the lens. Intervening systems (which may not be detected otherwise) can contribute smooth matter to the surface mass density, as can gas and dust in the lens. As the lensing galaxies in both
MG 0414+0534 and SDSS J0924+0219 are early-type galaxies, we would expect this contribution to be very small. More importantly, Lewis & Gil-Merino (2006) showed that small compact masses can mimic a smooth matter component. This was first demonstrated analytically in Dyer & Roeder (1981). For a source with a radius $0.1\eta_{0}$, Lewis & Gil-Merino (2006) find that compact masses smaller than $\sim 0.01 M_{\odot}$ can mimic a smoothly distributed mass component. This may help to explain why our measured microlensing smooth matter percentage in SDSS J0924+0219 appears to be slightly higher than we would expect from a simple deVaucouleurs galaxy profile in an isothermal dark matter profile.

We note that the three lensing systems analyzed in this paper do not represent a fair statistical sample of gravitationally lensed quasars. The single-epoch imaging technique used here requires short time delays between images, and so we preferentially select lenses with close image pairs (or high symmetry in the case of Q2237+0305). We have chosen close image pairs that exhibit strongly anomalous flux ratios for our analysis. Since a priori, anomalous flux ratios are driven by a smooth matter fraction (Schechter & Wambsganss 2002), this selection biases our estimates toward larger smooth dark matter fractions. Thus these measurements were obtained using a single-epoch imaging technique that is free from the need for long-term monitoring campaigns, which are required for detailed analysis of the lens mass profile. Our results also do not depend upon the typically unknown velocities of the stars in the lensing galaxy, and of the lensing galaxy and background source themselves, which enter into analyses of microlensing light curves. It is however only appropriate for systems with time delays between images of less than a day, so we can ensure we are observing the background source in the same state along each line of sight. It also does not provide us with any information on the slope of the dark matter profile; for that, stellar velocity dispersions in the lensing galaxy are required.

Nevertheless, our technique does provide an observationally inexpensive method for estimating the dark matter fraction in lensing galaxies at the location of lensed images. Gravitational lensing remains the only method for directly probing the dark matter content of galaxies.

N.F.B. acknowledges the support of an Australian Postgraduate Award. D.J.E.F. acknowledges the support of a Magellan Fellowship from Astronomy Australia Limited. We are indebted to Joachim Wambsganss for the use of his inverse ray-shooting code. We thank the referee for comments which helped improve the final version of this manuscript.

Facilities: Magellan:Baade, HST, VLT:Kueyen

REFERENCES

Auger, M. W., Treu, T., Bolton, A. S., Gazavazi, R., Koopmans, L. V.E., Marshall, P. J., Bundy, K., & Moustakas, L. A. 2009, ApJ, 705, 1099
Barnabe, M., Czoske, O., Koopmans, L. V.E., Treu, T., Bolton, A. S., & Gazavazi, R. 2009, MNRAS, 399, 21
Bate, N. F., Floyd, D. J. E., Webster, R. L., & Wyithe, J. S. B. 2008, MNRAS, 391, 1955
Bernardi, M., et al. 2003, AJ, 125, 1849
Blandford, R., & Narayan, R. 1986, ApJ, 310, 568
Chang, K., & Refsdal, S. 1979, Nature, 282, 561
Chartas, G., Kochanek, C. S., Dai, X., Poindeexter, S., & Garmire, G. 2009, ApJ, 693, 174
Dai, X., Kochanek, C. S., Chartas, G., Kozlowski, S., Morgan, C. W., Garmire, G., & Agol, E. 2010, ApJ, 709, 278
Dyer, C. C., & Roeder, R. C. 1981, Gen. Rel. Grav., 13, 1157
Eigenbrod, A., Courbin, F., Dye., S., Meylan, G., Sluse, D., Vuissiez, C., & Magain, P. 2006, A&A, 451, 747
Eigenbrod, A., Courbin, F., Meylan, G., Agol, E., Anguita, T., Schmidt, R. W., & Wambsganss, J. 2008, A&A, 490, 933
Falco, E. E., Lehar, J., & Shapiro, I. I. 1997, AJ, 113, 540
Ferreras, I., Saha, P., & Burles, S. 2008, MNRAS, 383, 857
Ferreras, I., Saha, P., & Williams, L. L. R. 2005, ApJ, 623, 58
Floyd, D. J. E., Bate, N. F., & Webster, R. L. 2009, MNRAS, 398, 233
Foltz, C. B., Hewett, P. C., Webster, R. L., & Lewis, G. F. 1992, ApJ, 386, L43
Hewitt, J. N., Turner, E. L., Lawrence, C. R., Schneider, D. P., & Brody, J. P. 1992, AJ, 104, 968
Huchra, J., Gorenstein, M., Kent, S., Shapiro, I., Smith, G., Horine, E., & Perley, R. 1985, AJ, 90, 691
Inada, N., et al. 2003, AJ, 126, 666
Irwin, M. J., Webster, R. L., Hewett, P. C., Corrigan, R. T., & Jedezejewski, R. I. 1989, AJ, 98, 1989
Katz, C. A., & Hewitt, J. N. 1993, ApJ, 409, L9
Kauffmann, G., et al. 2003, MNRAS, 341, 33
Kayser, R., Refsdal, S., & Stabell, R. 1986, A&A, 166, 36
Keeton, C. R., Burles, S., Schechter, P. L., & Wambsganss, J. 2006, ApJ, 639, 1
Keeton, C. R., Kochanek, C. S., & Falco, E. E. 1998, ApJ, 509, 161
Kochanek, C. S. 2004, ApJ, 605, 58
Kochanek, C. S., et al. 2000, ApJ, 543, 131
Koopmans, L. V. E., & Treu, T. 2003, ApJ, 583, 606
Lawrence, C. R., Elston, R., Januzzi, B. T., & Turner, E. L. 1995, AJ, 110, 2570
Lewis, G. F., & Gil-Merino, R. 2006, ApJ, 645, 835
Minezaki, T., Chiba, M., Kashikawa, N., Inoue, K. T., & Kataza, H. 2009, ApJ, 697, 610
Morgan, C. W., Kochanek, C. S., Dai, X., Morgan, N. D., & Falco, E. E. 2008, ApJ, 689, 755
Morgan, C. W., Kochanek, C. S., Morgan, N. D., & Falco, E. E. 2006, ApJ, 647, 874
Pooley, D., Blackburne, J. A., Rappaport, S., & Schechter, P. L. 2007, ApJ, 661, 19
Pooley, D., Rappaport, S., Blackburne, J., Schechter, P. L., Schwab, J., & Wambsganss, J. 2009, ApJ, 697, 1892
Schechter, P. L., & Moore, C. B. 1993, AJ, 105, 1
Schechter, P. L., & Wambsganss, J. 2002, ApJ, 580, 685
Schechter, P. L., & Wambsganss, J. 2004, in IAU Symp. 220, Dark Matter in Galaxies, ed. S. D. Ryder, et al. (San Francisco, CA: ASP), 103
Tonry, J. L., & Kochanek, C. S. 1999, AJ, 117, 2034
Treu, T., & Koopmans, L. V. E. 2004, ApJ, 611, 739
Trott, C. M., Treu, T., Koopmans, L. V. E., & Webster, R. L. 2010, MNRAS, 401, 1540
Trotter, C. S., Winn, J. N., & Hewitt, J. N. 2000, ApJ, 535, 671
Wambsganss, J. 1990, PhD thesis, Munich Univ.
Wambsganss, J. 1999, J. Comput. Appl. Math., 109, 353
Wambsganss, J., Paczynski, B., & Katz, N. 1990, ApJ, 352, 407
Witt, H. J., Mao, S., & Schechter, P. L. 1995, ApJ, 438, 18