Early View

Review

Systematic review of diagnostic methods for Acute Respiratory Distress Syndrome

Laura A. Hagens, Nanon F.L. Heijnen, Marry R. Smit, Marcus J. Schultz, Dennis C.J.J. Bergmans, Ronny M. Schnabel, Lieuwe D.J. Bos

Please cite this article as: Hagens LA, Heijnen NFL, Smit MR, et al. Systematic review of diagnostic methods for Acute Respiratory Distress Syndrome. ERJ Open Res 2020; in press (https://doi.org/10.1183/23120541.00504-2020).

This manuscript has recently been accepted for publication in the ERJ Open Research. It is published here in its accepted form prior to copyediting and typesetting by our production team. After these production processes are complete and the authors have approved the resulting proofs, the article will move to the latest issue of the ERJOR online.

Copyright ©ERS 2020. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0.
Systematic review of diagnostic methods for Acute Respiratory Distress Syndrome

Authors:
Laura A. Hagens [1], Nanon F.L. Heijnen [3], Marry R. Smit [1], Marcus J. Schultz [1,4,5], Dennis C.J.J. Bergmans [3], Ronny M. Schnabel [3], Lieuwe D.J. Bos [1,2]
On behalf of the DARTS consortium.

Affiliations:
Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.

[1] Department of Intensive Care
[2] Department of Respiratory Medicine

Maastricht University Medical Centre+, P. Debyelaan 25, 6229 HX Maastricht, The Netherlands.

[3] Department of Intensive Care

Mahidol University, Bangkok, Thailand.

[4] Mahidol-Oxford Tropical Medicine Research Unit (MORU)

University of Oxford, Oxford, United Kingdom.

[5] Nuffield Department of Medicine
Members of the DARTS consortium:

Amsterdam UMC: Laura A. Hagens, Marry R. Smit, Marcus J. Schultz, Lieuwe D.J. Bos.

Maastricht UMC: Nanon F.L. Heijnen, Dennis C.J.J. Bergmans, Ronny M. Schnabel.

Philips Research: Alwin R.M. Verschueren, Tamara M.E. Nijsen, Inge Geven.

Word count: 3382

Corresponding author: Laura Hagens, Department of Intensive Care, Amsterdam University Medical Center, location AMC, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands; l.a.hagens@amsterdamumc.nl; +31205666339.

Take home message:

Diagnostic accuracy for diagnosis of Acute Respiratory Distress Syndrome (ARDS) is associated with risk of bias. There is a lack of validated diagnostic tests in an unbiased setting, we emphasize the necessity for quality driven diagnostic research in ARDS.
ABSTRACT

Rationale:
Acute Respiratory Distress Syndrome (ARDS) is currently diagnosed by the Berlin definition, which does not include a direct measure of pulmonary oedema, endothelial permeability or pulmonary inflammation. We hypothesized that biomarkers of these processes have good diagnostic accuracy for ARDS.

Methods:
Medline and Scopus were searched for original diagnostic studies using minimal invasive testing. Primary outcome was the diagnostic accuracy per test and categorised by control group. The methodological quality was assessed with Quadas-2 tool. Biomarkers that had an area under the Receiver Operating Characteristic curve (AUROCC) of more than 0.75 and were studied with minimal bias against an unselected control group were considered to be promising.

Results:
Forty-four articles were included. The median AUROCC for all evaluated tests was 0.80 (25th to 75th percentile: 0.72 – 0.88). The type of control group influenced the diagnostic accuracy (p=0.0095). Higher risk of bias was associated with higher diagnostic accuracy (AUROCC 0.75 for low bias, 0.77 for intermediate bias and 0.84 for high bias studies; p=0.0023). Club Cell protein 16 and soluble receptor for advanced glycation end-products in plasma and two panels with biomarkers of oxidative stress in breath showed good diagnostic accuracy in low bias studies that compared ARDS patients to an unselected intensive care unit (ICU) population.
Conclusion:

This systematic review revealed only four diagnostic tests fulfilling stringent criteria for a promising biomarker in a low bias setting. For implementation into the clinical setting, prospective studies in a general unselected ICU population with good methodological quality are needed.
INTRODUCTION

Acute Respiratory Distress Syndrome (ARDS) is characterized by the acute onset of non-cardiogenic pulmonary oedema and hypoxemia and is associated with a high mortality and morbidity [1], [2]. The combination of increased permeability of the endothelium and injury to the alveolar epithelium results in protein rich alveolar fluid [3]. Procoagulatory and inflammatory proteins and metabolites of oxidative stress are abundant in the alveoli of ARDS patients [1]. Translational evidence suggests that lung injury can be initiated via alveolar inflammation as well as endothelial injury [3].

ARDS is currently diagnosed by means of the Berlin definition [4], [5]. The criteria utilize information that is commonly available at the bedside: it captures hypoxemia via PaO2/FiO2 and alveolar oedema via bilateral opacities on chest radiography. Interpretation of chest images gives inconsistent results, which makes diagnosing ARDS subjective and challenging [6]. But even without this limitation, chest radiography can only diagnose alveolar oedema after onset and it will never identify the molecular mechanism resulting in alveolar oedema.

A diagnostic test that captures extra-vascular lung water earlier or that identifies the pathophysiological mechanisms resulting in lung injury is likely to lead to better diagnostic accuracy for the diagnosis of ARDS. Biomarkers are objective, can be derived minimally invasive from plasma, urine, bronchoalveolar lavage fluid or breath, and can be reflective of key biological pathways known to be involved in ARDS development [3]. A clear diagnostic biomarker could help clinical decisions in several matters: (1) earlier recognition of pulmonary oedema can help to prevent fluid overload and (2) identification of the biological pathways resulting in lung injury can inform targeted treatments in personalized medicine randomized controlled trials (RCTs). Up to now, a clear diagnostic biomarker has not been identified [7], though
the accuracy of a biomarker may be biased by the quality of the performed study and therefore it is important to evaluate potential bias when reviewing the currently available evidence.

The aim of this review is to give an overview of the minimal invasive diagnostic tests assessing the pathogenesis of ARDS to early and objectively diagnose ARDS in patients on the intensive care unit (ICU). We hypothesized that tests for (1) pulmonary oedema, (2) endothelial permeability, (3) pulmonary inflammation, (4) coagulation and (5) oxidative stress have good diagnostic accuracy, and that the diagnostic accuracy is lower in well-conducted studies than in biased studies.
METHODS

Search

A systematic review following preferred reporting items for systematic reviews was performed [8]. We searched Medline and Scopus for potentially relevant articles up to 9 June 2020. The following terms were used: ARDS, Acute Lung Injury (ALI), inflammation, biomarker, cytokine, breath, oedema, lung water, diagnosis, diagnostic, human, adult. The exact search can be found in the supplemental material (Supplemental methods). Two researchers (LB and LH) independently reviewed the abstracts and/or full text manuscripts and selected relevant articles. Disagreements were solved in a consensus meeting. The review protocol is registered at PROSPERO (www.crd.york.ac.uk/prospero, CRD42020186974).

Selection criteria

Inclusion criteria were (1) original research with a diagnostic purpose that (2) reported the diagnostic accuracy of (3) a minimal invasive test for (4) pathophysiological mechanisms of ARDS (5) comparing patients having ARDS to relevant other patients. A relevant control group was defined as patients at risk for ARDS, for example receiving mechanical ventilation or respiratory support. Studies with a focus on treatment or prediction of ARDS were excluded. Other exclusion criteria were articles not available in English, animal or preclinical studies, studies in children, and unclear reference or index test. Finally, studies were excluded if the primary endpoint, diagnostic accuracy of the index test, was not available and could not be inferred from the data. Details are given in appropriate paragraphs below.

Reference test
The first American-European consensus criteria (AECC) date back to 1994 [9]. Studies from 1994 until 2012 were included if they used the applicable AECC definition or criteria that were closely related. Patients within the category of “acute lung injury” were included in this review as having ARDS, since the in 2012 introduced Berlin definition included this group as mild ARDS. For studies from 2012 onward the Berlin definition was introduced and this ARDS definition was used as reference test [2].

Index test

The index tests were categorized into the following domains, regarding the pathophysiological mechanisms: (1) endothelial permeability, (2) pulmonary oedema, (3) inflammation, (4) coagulation or (5) oxidative stress. The index test should assess one of the pathophysiological mechanisms of ARDS, so studies looking into diagnostic tools based on cardiac function or, for example, terms in the electronic health record were excluded. Second, the tests were categorized based on the sample material: plasma, breath, alveolar fluid or other. The limit for invasiveness of the test was set at performing a bronchoalveolar lavage (BAL) procedure, all tests more invasive than this method were excluded. Effectively, this excludes any type of biopsy. Last, index tests were categorized on diagnostic accuracy, a potentially clinically relevant diagnostic accuracy was defined as an area under the receiver operating characteristics curve (AUROCC) of above 0.75.

Outcome and data extraction

The primary outcome was the AUROCC of the diagnostic test. If not available, sensitivity and specificity were used in a secondary analysis. In case both results
were not reported and the paper included a figure with individual data points, we extracted the data from the figure and recalculated the AUROCC, sensitivity and specificity. If this was unsuccessful, the study was excluded. The study population was categorized into: (1) general ICU patients, (2) cardiopulmonary surgery or cardiac ICU patients, (3) sepsis patients or (4) highly selected populations (such as only trauma patients or organ transplant patients). The control group was categorized into: (1) unselected ICU patients, (2) patients with cardiopulmonary oedema (CPE) and (3) patients with (suspected) pneumonia.

Methodological assessment and categorization
The methodological quality of each article was assessed with the QUADAS-2 tool [10]. Risk of bias was assessed concerning patient selection, blinding and use of index test, blinding and use of reference test and regarding patient flow. Timing of the test was considered to have a low risk of bias when the index test and reference test were performed on the same day or subsequent day. All tests that were performed later were classified as having a high risk of bias. For the assessment of the overall methodological quality of the papers, a cumulative score was calculated. The risk and concern scores were classified as follows: ‘High’ 1 point; ‘Unclear’ 0.5 points; ‘Low’ 0 points, resulting in a cumulative score between 0 and 6. Based on the cumulative score, studies were categorized into tertiles: “Low”, “Intermediate” and “High” biased studies with the following cut-offs: Low: ≤1.5, Intermediate: >1.5 and ≤2.5, High: >2.5 points.

Statistical analysis
The AUROCC was summarized for each index test (so one study investigating multiple tests would provide multiple AUROCCs) and stratified for the following domains:

- pathophysiological processes: endothelial permeability, pulmonary oedema, inflammation, coagulation or oxidative stress
- population: general ICU, sepsis, cardiac care unit (CCU) or a specific group
- control group: unselected ICU, CPE or pneumonia
- sample material: plasma, breath, alveolar fluid or other
- quality of the study: low, intermediate or high risk of bias

Subsequently the AUROCC was compared between the groups with one-way ANOVA. Significant results, defined as a p-value <0.05, were further studied using post-hoc analysis with pairwise T-tests. The influence of the processes resulting in changes in biomarkers concentration, like tested material, pathophysiological mechanism, population and control group on the association between bias and diagnostic accuracy, was evaluated using two-way ANOVA. For studies that reported sensitivity and specificity, meta-analysis of diagnostic accuracy was performed using the mada package to visually confirm any association that was found for AUROCC in the primary analysis [11]. All analysis were performed in R version 3.6.1 using the R-studio interface.
RESULTS

The Medline and Scopus search was last updated on 9 June 2020 and revealed 1096 articles, of which 958 remained after removing duplicates (Figure 1). Title screening resulted in 143 eligible articles, of which 52 remained after reading the abstracts. After reading the full texts, 44 articles were included (Figure 1; Table 1). Assessment of the included articles yielded a total of 84 index tests, including 68 different types of tests. Plasma biomarkers were most frequently studied (48/84; 57%). Categorization based on pathophysiological mechanisms led to the following numbers: 39 tests for inflammation, 20 for endothelial permeability, 15 for pulmonary oedema, 8 for oxidative stress and 2 for coagulation (Table S1). The following populations were included in the studies: 29 studies with general ICU population (66%), 9 studies with a specific population (20%), 5 studies with sepsis patients (11%) and 1 study with a CCU population (2%). The control group consisted of patients with CPE in 11 studies (25%) and pneumonia in 2 study (5%). The other studies included a cohort of ICU patients that did not have CPE or pneumonia specifically (70%).
Author	Year	Population	ARDS	Control group	Biomarkers	
Abbas [12]	2017	ICU general	Berlin	ICU all	MBG/creatinine	
Aman [13]	2011	ICU general	Other	ICU all	Albumin, transferrin	
Arif [14]	2002	ICU general	Other	CPE	Transferrin, total protein, albumin, PLI	
Bai [15]	2017	Specific group	Berlin	ICU all	Glutamate increase	
Bajwa [16]	2013	ICU general	AECC	CPE	sST2	
Bauer [17]	2000	Specific group	Other	CPE	TNF-alfa, IL-1 beta, IL-6	
Bersten [18]	2001	ICU general	Other	ICU all	SP-A, SP-B	
Bos [19]	2014a	ICU general	Berlin	ICU all	Three metabolites identified by GCMS	
Bos [20]	2014b	ICU general	Berlin	ICU all	Pattern recognized by e-nose 1, pattern recognized by e-nose 2	
Brett [21]	1998	ICU general	AECC	ICU all	NO	
Bursten [22]	1996	ICU general	AECC	ICU all	Acyl ratio	
Copetti [23]	2008	ICU general	AECC	CPE	7 characteristics of lung ultrasound	
Determann [24]	2009	ICU general	AECC	Pneumonia	CC16, CC16 increase, KL-6, sRAGE, SP-D	
Reference	Year	Setting	System	Sample Size	ICU Type	Biomarkers Details
-------------------	-------	--------------------------	--------	-------------	----------	--
El Solh [25]	2005	Specific group	AECC	34	ICU all	17
Fremont [26]	2010	Specific group	AECC	85	ICU all	107 Model with 7 biomarkers, model with 3 biomarkers
Grissom [27]	2003	ICU general	AECC	6	ICU all	33 PAF-AH
Herrera [28]	1988	Cardiac Care Unit	Other	11	CPE	23 PPK
Hoeboer [29]	2015	Specific group	Berlin	1790	ICU all	143 Albumin
Howrylak [30]	2009	ICU general	Berlin	53	ICU all	48 Genetic model
Huang [31]	2019	Sepsis	AECC	21	ICU all	21 IG percentage
Izquierdo-Garcia [32]	2018	Specific group	AECC	31	Pneumonia 25 Metabolic biomarker panel	
Jabaudon [33]	2018	ICU general	Berlin	188	ICU all	34 sRAGE0, sRAGE1, sRAGE 1-0
Jorens [34]	1992	ICU general	Other	12	ICU all	15 IL-8
Kietzmann [35]	1993	ICU general	Other	29	ICU all	7 Maximum H2O2
Kushimoto [36]	2012	ICU general	Other	59	CPE	207 PVPI, ITBV
LeTourneau [37]	2012	ICU general	AECC	10	ICU all	19 EVLWi, PaO2/FiO2, EDI
Lin [38]	2012	ICU general	Berlin	129	ICU all	83 Copeptin
Lin [39]	2013	ICU general	AECC	28	CPE	78 HBP
Lin [40]	2018	ICU general	AECC	34	CPE	87 CC16, CRP
Liu [41]	2015	Specific group	Berlin	10	ICU all	18 MDA, NO, H2O2, 8-isoprostaglandin F2 alfa,
Author	Year	Condition	Criteria	Study	Biomarkers	
------------	------	-----------	----------	-------	---	
Liu [42]	2017	Sepsis	AECC	ICU all	19 TNF-alfa, IL-8, SOD, IL-10	
Monnet [43]	2007	ICU general	Other	CPE	36 PVPI, ELVWi/GEDVi	
Park [44]	2017	ICU general	Berlin	ICU all	39 SP-D	
Sato [45]	2004	ICU general	AECC	ICU all	28 PARK7	
Sekiguchi [46]	2015	ICU general	AECC	CPE	42 CCUS prediction model	
Shan [47]	2016	ICU general	Berlin	ICU all	45 suPAR, hsCRP, PCT	
Sweeney [48]	2018	ICU general	Berlin	ICU all	148 Model with 7 genes	
Verheij [49]	2005	ICU general	Other	CPE	13 PLI, PTCER, Ga/Tc slope/intercept, Ga/Tc monoexponential TER	
Ware [50]	2013	Sepsis	AECC	ICU all	100 Model with 5 biomarkers	
Ware [51]	2017	Specific group	Berlin	ICU all	78 Model with 11 biomarkers, model with 2 biomarkers	
Wu [52]	2019	Specific group	Berlin	ICU all	73 Tissue factor	
Xue [53]	2015	Sepsis	Other	ICU all	94 CC16	
Yeh [54]	2017	Sepsis	AECC	ICU all	18 Gas6	
Zhou [55]	2019	ICU general	Berlin	ICU all	21 Panel with 9 metabolites	

Footnote: Abbreviations (in alphabetical order): AECC = American-European consensus criteria, ARDS = Acute Respiratory Distress Syndrome, CC16 = Club Cell protein 16, CCUS = critical care ultrasonography, CPE = cardiac pulmonary oedema, CRP = c-reactive protein, EDI = EVLW physiologic dead space index, EVLW = extra vascular lung water, Gas6 = growth arrest-specific...
gene 6, Ga/Tc = gallium/technetium, GCMS = gas chromatography mass spectrometry, H2O2 = hydrogen peroxide, HBP = heparin-binding protein, hsCRP = high sensitive c-reactive protein, ICU = intensive care unit, IG = immature granulocyte, IL = interleukin, ITBV = intrathoracic blood volume, KL = Krebs von den Lungen, MDA = malondialdehyde, NO = nitric oxide, PAF-AH = platelet-activating factor acetylhydrolase, PAI-1 = plasminogen activator inhibitor-1, PARK7 = Parkinson disease 7, PCT = procalcitonin, PLI = pulmonary leak index, PPK = prekallikrein, PTCER = pulmonary transcapillary escape rate, PVPI = extravascular lung water/pulmonary blood volume, SOD = superoxide dismutase, SP = surfactant protein, sRAGE = soluble receptor for advanced glycation end-products, sST2 = soluble suppression of tumorigenicity-2, suPAR = soluble urokinase-type plasminogen activator receptor, TER = transcapillary escape rate, TNF = tumor necrosis factor.
Diagnostic accuracy for diagnosing ARDS

For 74 of the 84 tests (88%) the AUROCC was available. The median AUROCC was 0.80 with an interquartile range (IQR) from 0.72 to 0.88. A good diagnostic accuracy (AUROCC >0.75) was shown in 47 of the 74 tests (64%), spread over all different processes associated with ARDS development.

Diagnostic accuracy was higher in tests comparing ARDS patients to CPE patients (median AUROCC: 0.89, IQR: [0.81-0.93]), than in ARDS patients compared to general ICU patients (median AUROCC: 0.78, IQR: [0.71-0.84], p=0.0095). The AUROCC was not different between studies with control group of pneumonia patients compared to unselected ICU patients (p=0.82) or between pneumonia patients compared to CPE patients (p=0.14; Figure 2). No differences in AUROCC were found for the type of studied pathophysiological mechanism (p=0.76), the studied biological material (p=0.51) and the population (p=0.60).

Sensitivity and specificity were available or could be calculated for 46/84 (55%) studies. Similar patterns regarding the influence of the type of test, the studied biological material, the population and the control group were found when these studies were evaluated based on a single cut-off (Figure S1-S4).

Assessment of bias in study methodology

The methodological quality as assessed by the QUADAS-2 tool is shown in Table 2. The final score varied among studies, with a cumulative score with median of 2.0, IQR: [1.5 to 3.00]. Categorization into tertiles based on the cumulative score led to 14 studies in the “Low” bias category, 17 studies in the category “Intermediate” and 13 studies were in the “High” category (Table 2). The risk of bias was most frequently
observed for patient selection, blinding of the index test and in the timing of the index test.
Author	Year	Domain 1 Risk score	Domain 2 Risk score	Domain 3 Risk score	Domain 4 Risk score	Cumulative score	Risk of bias category			
Abbas	2017	1	0	0.5	0.5	2.5	Intermediate			
Aman	2011	1	0	0.5	0	2	Intermediate			
Arif	2002	1	1	0.5	0	3.5	High			
Bai	2017	1	1	0.5	0	3	High			
Bajwa	2013	1	1	1	0	3.5	High			
Bauer	2000	0	0	0.5	0.5	1	Low			
Bersten	2001	0.5	1	0.5	0	2	Intermediate			
Bos	2014a	0	0	0	0	0.5	0.5	Low		
Bos	2014b	0	0	0	0	0.5	0.5	Low		
Brett	1998	1	0	0.5	0	0.5	2	Intermediate		
Bursten	1996	0.5	0	0.5	0	0.5	1.5	Low		
Copetti	2008	0	1	1	0	2	Intermediate			
Determann	2009	1	1	1	0	3.5	High			
El Solh	2005	0	1	1	0.5	2	2.5	Intermediate		
Fremont	2010	1	0	0.5	0.5	1	3	High		
Grissom	2003	0.5	0	1	0.5	1	3	High		
Herrera	1988	0.5	0	0.5	0	0.5	2	Intermediate		
Author	Year	Country	Code	Risk	Control	Quality	Design	Methodology	Impact	Findings
-------------------------	------	---------	------	------	---------	---------	--------	-------------	--------	----------
Hoeboer [29]	2015	0	0	0	0	0	0	0	0	Low
Howrylak [30]	2009	1	0	0.5	0	0	1	2.5	Intermediate	
Huang [31]	2019	0	1	0.5	0.5	0	0	2	Intermediate	
Izquierdo-Garcia [32]	2018	1	1	0.5	0.5	0	0	3	High	
Jabadon [33]	2018	0.5	0	0	0	0	0	0.5	Low	
Jorens [34]	1992	1	0	1	0.5	0	0	2.5	Intermediate	
Kietzmann [35]	1993	0.5	0	1	0.5	0	1	3	High	
Kusimoto [36]	2012	1	0	0	0	0	0	1	Low	
LeTourneau [37]	2012	0.5	0	0.5	0	0	1	2	Intermediate	
Lin [38]	2012	0	0	0.5	0	0	0	0.5	Low	
Lin [39]	2013	0	0	0.5	0.5	0	0	1	Low	
Lin [40]	2018	0	0	0.5	0	0	0.5	1	Low	
Liu [41]	2015	1	1	0.5	0.5	0	0.5	3.5	High	
Liu [42]	2017	0	1	0.5	0	0.5	0	2	Intermediate	
Monnet [43]	2007	1	0	1	0.5	0	0	2.5	Intermediate	
Park [44]	2017	1	0	1	0.5	0	1	3.5	High	
Sato [45]	2004	1	1	1	0.5	0	1	4.5	High	
Sekiguchi [46]	2015	1	0	0	0	0	0	1	Low	
Shan [47]	2016	1	0	1	0	0	0.5	2.5	Intermediate	
Sweeney [48]	2018	1	0	0	1	1	1	4	High	
Author	Year	Value	Type							
--------------	------	-------	-------	-------	-------	-------	-------	-------	--------	
Verheij [49]	2005	1	0	1	0	0	1	3	High	
Ware [50]	2013	1	0	0.5	0	0	0	1.5	Low	
Ware [51]	2017	1	0	0.5	0	0	1	2.5	Intermediate	
Wu [52]	2019	0	1	0	0.5	0	0.5	2	Intermediate	
Xue [53]	2015	1	0	1	0.5	0	0	2.5	Intermediate	
Yeh [54]	2017	0	0	1	0	0	0	1	Low	
Zhou [55]	2019	0.5	0	0.5	0	0	0.5	1.5	Low	
Association between bias and diagnostic accuracy

The risk of bias of the study was associated with the diagnostic accuracy of the index test \(p=0.0023 \). The median AUROCC was 0.75 IQR: [0.69 to 0.82] for low bias studies and 0.77 IQR: [0.72 to 0.88] for intermediate bias and 0.84 IQR: [0.79 to 0.90] for high bias studies (Figure 3). Based on the pairwise comparison, the AUROCC was significantly higher for studies in the high bias category, compared to the intermediate and low bias category \(p=0.020 \) and \(p=0.0077 \), respectively). Two-way ANOVA showed that this association was consistent after correction for the type of test \(p=0.0027 \), sample material \(p=0.0026 \), population \(p=0.0026 \) and control group \(p=0.0011 \). Figure 3 shows the diagnostic accuracy per test after stratification for risk of bias. The other comparisons are visualized in figures S5-S7 of the online supplement. The same trend was visible in the analysis of sensitivity and specificity with respect to the risk of bias (Figure S1-S4).

Low bias studies with good diagnostic accuracy

Nine tests showed a good diagnostic accuracy in the low bias group. Of these, 5 compared ARDS versus CPE and 4 compared ARDS versus the general ICU population. The studies comparing ARDS versus ICU patients measured biomarkers in plasma and metabolites in exhaled breath. The plasma biomarkers assessed were Club Cell protein 16 (CC16) and soluble receptor for advanced glycation end-products (sRAGE), assessing inflammation and permeability. In exhaled breath a panel with 3 metabolites and a panel with 9 metabolites were assessed. The three metabolites describe oxidative stress, the 9 metabolites most likely too, but no clear reporting on this topic was available. The first three studies performed the test on the
day of ARDS diagnosis or the day after, providing early information on diagnosis of ARDS. For the last test it was unclear at what time it was performed.
DISCUSSION

When comparing patients with ARDS to patients who are also admitted to the ICU, only four studies yielded a good diagnostic accuracy with a limited risk of potential bias. We identified CC16 and sRAGE in plasma and two exhaled breath tests for biomarkers of oxidative stress as tests that currently have the strongest rationale for further validation. This review provides strong evidence that the diagnostic accuracy of minimally invasive tests for the diagnosis of ARDS is highly dependent on the potential bias of the study and the type of control group that is included.

Diagnostic accuracy varied widely between tests and studies included in this review. We identified that the inclusion of CPE patients as a control group consistently resulted in a higher diagnostic accuracy, suggesting that CPE can be better distinguished from ARDS than ICU patients at risk for ARDS or pneumonia patients. An attractive explanation could be that the test differentiates between protein rich and hydrostatic oedema, but this explanation was rejected because most tests did not evaluate this phenomenon directly and could still separate these groups. For example, cardiac injury markers are also able to distinguish between CPE and ARDS, but instead of being a relevant test for ARDS it rather signifies the homogeneity of the CPE population [56]. Importantly, ARDS patients differ from CPE patients in many more aspects than the type of pulmonary oedema alone. For example, ARDS patients showed increased levels of inflammation parameters compared to CPE patients, but this is not necessarily related to ARDS but may be due to an underlying syndrome such as sepsis, pneumonia or pancreatitis. Indeed, when compared to an unselected ICU population with similar risk factors as the ARDS patients, these markers had a lower diagnostic accuracy.
The risk of bias assessed by the QUADAS-2 tool was strongly associated with the diagnostic accuracy of the study. A large part of the studies showed risk of bias due to the method of patient selection, performance and interpretation and timing of the index test. Unfortunately this relationship and the fact that biased studies are known to overestimate diagnostic accuracy [57], makes it hard to rely on results from studies with a considerable amount of bias. It will be necessary to redo studies with tests showing good diagnostic accuracy but then in a low bias setting before any firm conclusions can be drawn.

Focussing on studies with good diagnostic accuracy with low risk of bias, 9 tests remained. Only 4 of them compared ARDS to an unselected ICU population. One test assessed the plasma concentration of CC16 [40]. This protein is suggested to protect the lungs against oxidative stress as well as inflammation [58]. However, CC16 also is a marker of increased permeability of the epithelial barrier, and therefore seems to be involved in multiple processes of ARDS development [40], [58]. Another test assessed sRAGE in plasma, which is released by lung inflammation and leads to epithelial injury, and is therefore a marker of increased permeability [33], [59]. The other two were exhaled breath tests [19], [55], with the major advantage that it can be obtained non-invasively. One test assessed a panel of three biomarkers, octane, acetaldehyde and 2/3-methylheptane, that reflect oxidative stress [19]. Of these three compounds, octane explained most of the diagnostic accuracy. Octane is generated through oxygenation of oleic acid and previous data suggest that ARDS is associated with an increased concentration of oleic acid in the circulation [60]. The other breath test assessed a larger biomarker panel, with 9
exhaled breath biomarkers, not clearly reflective of one pathophysiological mechanism [55]. A drawback of the exhaled breath test is the fact that these are experimental and are therefore not directly suitable for clinical implementation. All tests seem to relate to oxidative stress, inflammation and increased permeability in the lungs which are all known to be important in the early course of ARDS, and are related to pulmonary pathophysiology directly.

This is the first review to systematically assess the diagnostic accuracy of minimally invasive techniques for ARDS while considering potential biases of each study. Our analyses show that it is pivotal to evaluate the methodological quality of the study to reveal the confounding factors while interpreting the results. This approach is one of the most important strengths of this study. Furthermore, papers not reporting diagnostic accuracy directly, were not excluded when we could deduce the accuracy from figures showing individual data points. To our knowledge, no other study in critical care has utilized this approach up to now. Finally, we did not limit the definition of ARDS to those patients with a PaO2/FiO2 below 200mmHg by including patients who were labelled as “acute lung injury” according to the 1994 AECC definition. Since ARDS nowadays involves a heterogeneous population, of which patients with mild ARDS are a large part, it is important to recognize also this group [61]. Another strength is the exclusion of studies that used healthy volunteers as control group leaving only more relevant control groups and hopefully resulting in a more accurate comparison between similarly ill patients.

The main limitation of this review is the small number of studies that is left in each category after stratification. This sometimes led to groups with few studies, for
example only one study assessed the CCU patients and only two studies compared
diagnosis of ARDS with patients with a pneumonia. With regard to pneumonia, it is
questionable if unilateral pneumonia is the appropriate control group for ARDS as
many patients with ARDS have pneumonia and because unilateral and bilateral
pneumonia in the ICU have similar outcomes [62]. Furthermore, both studies that
compared ARDS to pneumonia scored high on the risk of bias. A second limitation is
the fact that the AUROCC was not for all studies reported. Therefore, the analysis
was performed in two parts with two different approaches, which yielded similar
results. We also acknowledge that the diagnostic tests cannot be categorized into
completely distinct groups, for example, there is considerable overlap between
markers of oxidative stress and inflammation and our attempted separation of the two
is arbitrary. Another limitation of this study is the fact that the definition of ARDS has
changed over the years and therefore the “case-definition” is slightly different
between studies, which might have confounded the diagnostic accuracy of specific
tests. Finally, it should be noted however that we assessed multiple diagnostic tests
described in a single paper as independent tests, which they potentially are not. To
our knowledge, there is no adequate multi-level alternative to study this phenomenon
otherwise.

Results of this review show that there is no validated minimal invasive method to
diagnose ARDS in an unselected ICU population. Four promising tests were
identified in a low bias setting and these warrant validation. New diagnostic studies
should better attempt to minimise bias and should be reported according to STARD
guidelines [63].
A diagnostic test does not have to separate ARDS patients perfectly. This is likely impossible due to the biological heterogeneity observed in ARDS patients. Indeed, another way to evaluate these results is to appreciate the heterogeneity that is shown and advocate a personalized approach based on pathophysiological characteristics of each patient shown through the diagnostic tests that are described here [64]. A biomarker may have value when it identifies a phenotype that consistently responds to a specific type of treatment, a so-called treatable trait [65].
CONCLUSION

There is no minimally invasive diagnostic test for ARDS that is validated in a low bias setting against an adequate control group. Many studies that evaluated diagnostic tests for ARDS showed risk of bias, which makes it hard to rely on the reported diagnostic accuracy. The plasma concentration of CC16, sRAGE and two panels of oxidative stress biomarkers in exhaled breath did show high diagnostic accuracy in low bias setting and warrant external validation. For implementation into the clinical setting, prospective studies in a general unselected ICU population with good methodological quality are needed.

ACKNOWLEDGEMENTS

Lieuwe Bos is supported by Health Holland via the Dutch Lung Foundation (longfonds) industry-academia partnership and via the Dirkje Postma Award. They had no role in the design, conduction or interpretation of this review.
REFERENCES

[1] B. Thompson, R. Chambers, and K. Liu, “Acute Respiratory Distress Syndrome,” NEJM, vol. 377, pp. 562–572, 2017.

[2] S. A. Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L and T. Ards Definition Task Force, “Acute respiratory distress syndrome: The berlin definition,” JAMA J. Am. Med. Assoc., vol. 307, no. 23, pp. 2526–2533, 2012.

[3] M. A. Matthay et al., “Ards Review 2019,” Nat. Rev. Dis. Prim.

[4] T. Ards Definition Task Force, “Acute respiratory distress syndrome: The berlin definition,” JAMA J. Am. Med. Assoc., vol. 307, no. 23, pp. 2526–2533, 2012.

[5] A. Agrawal et al., “Pathogenetic and predictive value of biomarkers in patients with ALI and lower severity of illness: results from two clinical trials,” Am. J. Physiol. - Lung Cell. Mol. Physiol., vol. 303, no. 8, pp. L634–L639, 2012.

[6] M. W. Sjoding, T. P. Hofer, I. Co, A. Courey, C. R. Cooke, and T. J. Iwashyna, “Interobserver Reliability of the Berlin ARDS Definition and Strategies to Improve the Reliability of ARDS Diagnosis,” Chest, vol. 153, no. 2, pp. 361–367, Feb. 2018.

[7] A. Binnie, J. L. Y. Tsang, and C. C. Dos Santos, “Biomarkers in acute respiratory distress syndrome,” Curr. Opin. Crit. Care, vol. 20, no. 1, pp. 47–55, 2014.

[8] D. Moher, A. Liberati, J. Tetzlaff, and D. G. Altman, “Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.,” PLoS Med., vol. 6, no. 7, p. e1000097, Jul. 2009.

[9] G. R. Bernard et al., “The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial
coordination,” *Am J Respir Crit Care Med*, vol. 20, no. 3, pp. 818–824, 1994.

[10] P. F. Whiting et al., “QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies.,” *Ann. Intern. Med.*, vol. 155, no. 8, pp. 529–536, Oct. 2011.

[11] J. Lee, K. W. Kim, S. H. Choi, J. Huh, and S. H. Park, “Systematic Review and Meta-Analysis of Studies Evaluating Diagnostic Test Accuracy: A Practical Review for Clinical Researchers-Part II. Statistical Methods of Meta-Analysis.,” *Korean J. Radiol.*, vol. 16, no. 6, pp. 1188–1196, 2015.

[12] M. M. K. Abbas et al., “Involvement of the Bufadienolides in the Detection and Therapy of the Acute Respiratory Distress Syndrome,” *Lung*, vol. 195, no. 3, pp. 323–332, 2017.

[13] J. Aman et al., “Plasma protein levels are markers of pulmonary vascular permeability and degree of lung injury in critically ill patients with or at risk for acute lung injury/acute respiratory distress syndrome.,” *Crit. Care Med.*, vol. 39, no. 1, pp. 89–97, Jan. 2011.

[14] S. K. Arif, J. Verheij, A. B. J. Groeneveld, and P. G. H. M. Raijmakers, “Hypoproteinemia as a marker of acute respiratory distress syndrome in critically ill patients with pulmonary edema.,” *Intensive Care Med.*, vol. 28, no. 3, pp. 310–317, Mar. 2002.

[15] W. Bai et al., “Dramatic increases in blood glutamate concentrations are closely related to traumatic brain injury-induced acute lung injury.,” *Sci. Rep.*, vol. 7, no. 1, p. 5380, Jul. 2017.

[16] E. K. Bajwa et al., “Prognostic and Diagnostic Value of Plasma Soluble Suppression of Tumorigenicity-2 Concentrations in Acute Respiratory Distress Syndrome,” *Crit Care Med*, 2013.
[17] T. T. Bauer et al., “Comparison of systemic cytokine levels in patients with acute respiratory distress syndrome, severe pneumonia, and controls,” *Thorax*, vol. 55, no. 1, pp. 46–52, 2000.

[18] A. D. Bersten, T. Hunt, T. E. Nicholas, and I. R. Doyle, “Elevated plasma surfactant protein-B predicts development of acute respiratory distress syndrome in patients with acute respiratory failure.,” *Am. J. Respir. Crit. Care Med.*, vol. 164, no. 4, pp. 648–652, Aug. 2001.

[19] L. D. J. Bos et al., “Exhaled breath metabolomics as a noninvasive diagnostic tool for acute respiratory distress syndrome,” *Eur. Respir. J.*, vol. 44, no. 1, 2014.

[20] L. D. J. Bos, M. J. Schultz, and P. J. Sterk, “Exhaled breath profiling for diagnosing acute respiratory distress syndrome,” *BMC Pulm. Med.*, vol. 14, no. 1, 2014.

[21] S. J. Brett and T. W. Evans, “Measurement of endogenous nitric oxide in the lungs of patients with the acute respiratory distress syndrome,” *Am J Respir Crit Care Med*, vol. 157, no. 3 Pt 1, pp. 993–997, 1998.

[22] S. L. Bursten et al., “An increase in serum C18 unsaturated free fatty acids as a predictor of the development of acute respiratory distress syndrome,” Jul. 1996.

[23] R. Copetti, G. Soldati, and P. Copetti, “Chest sonography: A useful tool to differentiate acute cardiogenic pulmonary edema from acute respiratory distress syndrome,” *Cardiovasc. Ultrasound*, vol. 6, 2008.

[24] R. M. Determann, J. L. Millo, S. Waddy, R. Lutter, C. S. Garrard, and M. J. Schultz, “Plasma CC16 levels are associated with development of ALI/ARDS in patients with ventilator-associated pneumonia: a retrospective observational study.,” *BMC Pulm. Med.*, vol. 9, p. 49, Dec. 2009.
[25] A. A. El Solh, M. Bhora, L. Pineda, A. Aquilina, L. Abbetessa, and E. Berbary, “Alveolar plasminogen activator inhibitor-1 predicts ARDS in aspiration pneumonitis,” *Intensive Care Med.*, vol. 32, no. 1, pp. 110–5, Jan. 2006.

[26] R. D. Fremont et al., “Acute lung injury in patients with traumatic injuries: Utility of a panel of biomarkers for diagnosis and pathogenesis,” *J. Trauma - Infect. Crit. Care*, vol. 68, no. 5, pp. 1121–1127, 2010.

[27] C. K. Grissom, J. F. J. Orme, L. D. Richer, T. M. McIntyre, G. A. Zimmerman, and M. R. Elstad, “Platelet-activating factor acetylhydrolase is increased in lung lavage fluid from patients with acute respiratory distress syndrome,” *Crit. Care Med.*, vol. 31, no. 3, pp. 770–775, Mar. 2003.

[28] C. Herrera, F. Velasco, A. Guerrero, R. Guerrero, F. Alvarez, and A. Torres, “Contact phase of blood coagulation in cardiogenic pulmonary oedema (CPO) and adult respiratory distress syndrome (ARDS),” *Intensive Care Med.*, vol. 15, no. 2, pp. 99–104, 1989.

[29] S. H. Hoeboer, H. M. Oudemans-van Straaten, and A. B. J. Groeneveld, “Albumin rather than C-reactive protein may be valuable in predicting and monitoring the severity and course of acute respiratory distress syndrome in critically ill patients with or at risk for the syndrome after new onset fever,” *BMC Pulm. Med.*, vol. 15, p. 22, Mar. 2015.

[30] J. A. Howrylak et al., “Discovery of the gene signature for acute lung injury in patients with sepsis,” *Physiol. Genomics*, vol. 37, no. 2, pp. 133–139, 2009.

[31] Y. Huang et al., “Immature granulocytes: A novel biomarker of acute respiratory distress syndrome in patients with acute pancreatitis,” *J. Crit. Care*, vol. 50, pp. 303–308, 2019.

[32] J. L. Izquierdo-Garcia et al., “Metabolomic profile of ards by nuclear magnetic
resonance spectroscopy in patients with h1n1 influenza virus pneumonia,”*Shock*, vol. 50, no. 5, pp. 504–510, 2018.

[33] M. Jabaudon *et al.*, “Receptor for advanced glycation end-products and ARDS prediction: a multicentre observational study.,” *Sci. Rep.*, vol. 8, no. 1, p. 2603, Feb. 2018.

[34] P. G. Jorens *et al.*, “Interleukin 8 (IL-8) in the bronchoalveolar lavage fluid from patients with the adult respiratory distress syndrome (ARDS) and patients at risk for ARDS.,” *Cytokine*, vol. 4, no. 6, pp. 592–597, Nov. 1992.

[35] D. Kietzmann, R. Kahl, M. Muller, H. Burchardi, and D. Kettler, “Hydrogen peroxide in expired breath condensate of patients with acute respiratory failure and with ARDS.,” *Intensive Care Med.*, vol. 19, no. 2, pp. 78–81, 1993.

[36] S. Kushimoto *et al.*, “The clinical usefulness of extravascular lung water and pulmonary vascular permeability index to diagnose and characterize pulmonary edema: a prospective multicenter study on the quantitative differential diagnostic definition for acute lung injury/acute ,” *Crit. Care*, vol. 16, no. 6, p. R232, Dec. 2012.

[37] J. L. LeTourneau, J. Pinney, and C. R. Phillips, “Extravascular lung water predicts progression to acute lung injury in patients with increased risk*.,” *Crit. Care Med.*, vol. 40, no. 3, pp. 847–854, Mar. 2012.

[38] Q. Lin, F. Fu, H. Chen, and B. Zhu, “Copeptin in the assessment of acute lung injury and cardiogenic pulmonary edema.,” *Respir. Med.*, vol. 106, no. 9, pp. 1268–1277, Sep. 2012.

[39] Q. Lin, J. Shen, L. Shen, Z. Zhang, and F. Fu, “Increased plasma levels of heparin-binding protein in patients with acute respiratory distress syndrome.,” *Crit. Care*, vol. 17, no. 4, p. R155, Jul. 2013.
[40] J. Lin, W. Zhang, L. Wang, and F. Tian, “Diagnostic and prognostic values of Club cell protein 16 (CC16) in critical care patients with acute respiratory distress syndrome,” *J. Clin. Lab. Anal.*, vol. 32, no. 2, Feb. 2018.

[41] D. Liu, G. Luo, C. Luo, T. Wang, G. Sun, and Z. Hei, “Changes in the concentrations of mediators of inflammation and oxidative stress in exhaled breath condensate during liver transplantation and their relations with postoperative ARDS,” *Respir. Care*, vol. 60, no. 5, pp. 679–688, May 2015.

[42] X. W. Liu, T. Ma, Q. Cai, L. Wang, H. W. Song, and Z. Liu, “Elevation of Serum PARK7 and IL-8 Levels Is Associated With Acute Lung Injury in Patients With Severe Sepsis/Septic Shock,” *J. Intensive Care Med.*, vol. 34, no. 8, pp. 662–668, 2019.

[43] X. Monnet, N. Anguel, D. Osman, O. Hamzaoui, C. Richard, and J.-L. Teboul, “Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI/ARDS,” *Intensive Care Med.*, vol. 33, no. 3, pp. 448–453, 2007.

[44] J. Park et al., “Plasma surfactant protein-D as a diagnostic biomarker for acute respiratory distress syndrome: Validation in US and Korean cohorts,” *BMC Pulm. Med.*, vol. 17, no. 1, 2017.

[45] H. Sato et al., “KL-6 levels are elevated in plasma from patients with acute respiratory distress syndrome,” *Eur. Respir. J.*, vol. 23, no. 1, pp. 142–145, Jan. 2004.

[46] H. Sekiguchi et al., “Critical care ultrasonography differentiates ARDS, pulmonary edema, and other causes in the early course of acute hypoxemic respiratory failure,” *Chest*, vol. 148, no. 4, pp. 912–918, 2015.

[47] L. Shan, F. Shan, J. Li, X. Li, and Y.-B. Sun, “Association of circulating suPAR
with disease severity and clinical outcomes in patients with ARDS induced by intra-abdominal infections: A prospective observational study," *Int. J. Clin. Exp. Med.*, vol. 9, no. 7, pp. 12788–12795, 2016.

[48] T. E. Sweeney, N. J. Thomas, J. A. Howrylak, H. R. Wong, A. J. Rogers, and P. Khatri, “Multicohort Analysis of Whole-Blood Gene Expression Data Does Not Form a Robust Diagnostic for Acute Respiratory Distress Syndrome,” vol. 46, no. 2, 2018.

[49] J. Verheij, P. G. H. M. P. G. H. M. Raijmakers, A. Lingen, and A. B. J. Groeneveld, “Simple vs complex radionuclide methods of assessing capillary protein permeability for diagnosing acute respiratory distress syndrome,” *J. Crit. Care*, vol. 20, no. 2, pp. 162–171, Jun. 2005.

[50] L. B. Ware *et al.*, “Biomarkers of lung epithelial injury and inflammation distinguish severe sepsis patients with acute respiratory distress syndrome,” *Crit. Care*, vol. 17, no. 5, p. R253, Oct. 2013.

[51] L. B. Ware *et al.*, “Derivation and validation of a two-biomarker panel for diagnosis of ARDS in patients with severe traumatic injuries,” *Trauma Surg. Acute Care Open*, vol. 2, no. 1, p. e000121, 2017.

[52] C.-Y. Wu, Y.-J. Cheng, M.-H. Hung, I.-J. Lin, W.-Z. Sun, and K.-C. Chan, “Association between Early Acute Respiratory Distress Syndrome after Living-Donor Liver Transplantation and Perioperative Serum Biomarkers: The Role of Club Cell Protein 16.,” *Biomed Res. Int.*, vol. 2019, p. 8958069, 2019.

[53] M. Xue *et al.*, “Diagnostic and prognostic utility of tissue factor for severe sepsis and sepsis-induced acute lung injury.,” *J. Transl. Med.*, vol. 13, p. 172, May 2015.

[54] L.-C. Yeh *et al.*, “Elevated Plasma Levels of Gas6 Are Associated with Acute
Lung Injury in Patients with Severe Sepsis,” Tohoku J. Exp. Med., vol. 243, no. 3, pp. 187–193, Nov. 2017.

[55] M. Zhou et al., “Rapid breath analysis for acute respiratory distress syndrome diagnostics using a portable two-dimensional gas chromatography device.,” Anal. Bioanal. Chem., vol. 411, no. 24, pp. 6435–6447, Sep. 2019.

[56] K. Komiya, T. Akaba, Y. Kozaki, J.-I. Kadota, and B. K. Rubin, “A systematic review of diagnostic methods to differentiate acute lung injury/acute respiratory distress syndrome from cardiogenic pulmonary edema,” Crit. Care, vol. 21, no. 1, 2017.

[57] A. W. S. Rutjes, J. B. Reitsma, M. Di Nisio, N. Smidt, J. C. van Rijn, and P. M. M. Bossuyt, “Evidence of bias and variation in diagnostic accuracy studies,” CMAJ, vol. 174, no. 4, pp. 469–476, Feb. 2006.

[58] F. Broeckaert and A. Bernard, “Clara cell secretory protein (CC16): Characteristics and perspectives as lung peripheral biomarker,” Clin. Exp. Allergy, vol. 30, no. 4, pp. 469–475, 2000.

[59] T. Uchida et al., “Receptor for advanced glycation end-products is a marker of type I cell injury in acute lung injury,” Am. J. Respir. Crit. Care Med., vol. 173, no. 9, pp. 1008–1015, 2006.

[60] G. J. Quinlan, N. J. Lamb, T. W. Evans, and J. M. C. Gutteridge, “Plasma fatty acid changes and increased lipid peroxidation in patients with adult respiratory distress syndrome,” Crit. Care Med., vol. 24, no. 2, pp. 241–246, 1996.

[61] G. Bellani et al., “Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries,” JAMA, vol. 315, no. 8, pp. 788–800, 2016.

[62] C. Cilloniz et al., “Acute Respiratory Distress Syndrome in Mechanically-
Ventilated Patients with Community-Acquired Pneumonia,” *Eur. Respir. J.*, p. 1702215, 2018.

[63] P. M. Bossuyt *et al.*, “Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative,” *BMJ*, vol. 326, no. 7379, pp. 41–44, 2003.

[64] P. Sinha and C. S. Calfee, “Phenotypes in acute respiratory distress syndrome: moving towards precision medicine,” *Curr. Opin. Crit. Care*, vol. 25, no. 1, pp. 12–20, Feb. 2019.

[65] A. Agusti *et al.*, “Treatable traits: toward precision medicine of chronic airway diseases,” *Eur. Respir. J.*, vol. 47, no. 2, pp. 410–419, Feb. 2016.
Flowchart of article selection.
AUROCC = area under the receiver operating characteristics curve. Each dot represents a diagnostic test, multiple tests could be evaluated per study. Red: high risk of bias, blue: intermediate risk of bias, green: low risk of bias. AUROCC was higher in tests comparing ARDS patients to CPE patients, then in ARDS patients compared to general ICU patients \((p=0.0095)\). The AUROCC was not different between studies with control group of pneumonia patients compared to unselected ICU patients \((p=0.82)\) or between pneumonia patients compared to CPE patients \((p=0.14)\).
AUROCC = area under the receiver operating characteristics curve. Each dot represents a diagnostic test, multiple tests could be evaluated per study. Red: high risk of bias, blue: intermediate risk of bias, green: low risk of bias. The AUROCC was significantly higher in the group with high risk of bias, compared to the intermediate and low bias group (p=0.020 and p=0.00077 respectively).
ONLINE SUPPLEMENT

Systematic review of diagnostic methods for Acute Respiratory Distress Syndrome

Authors:
Laura A. Hagens [1], Nanon F.L. Heijnen [3], Marry R. Smit [1], Marcus J. Schultz [1,4,5], Dennis C.J.J. Bergmans [3], Ronny M. Schnabel [3], Lieuwe D.J. Bos [1,2]
On behalf of the DARTS consortium.

Content:
- Supplemental methods
- Checklist of reported items
- Online tables (S1)
- Online figures (S1-S7)
- References
SUPPLEMENTAL METHODS

Search:

Exact search Medline:

(ARDS[title] OR "Acute respiratory distress syndrome"[title] OR ALI[title] OR "acute lung injury"[title]) AND (diagnosis OR diagnostic) AND (biomarker OR breath OR cytokine OR inflammation OR edema OR "lung water") AND (Humans[Mesh] AND adult[MeSH]) NOT review

Exact search Scopus:

(TITLE (ards) OR TITLE ("acute respiratory distress syndrome") OR TITLE (ali) OR TITLE ("acute lung injury") AND TITLE-ABS-KEY ((inflammation OR biomarker OR cytokine OR breath) OR (edema OR "lung water")) AND TITLE-ABS-KEY (diagnosis OR diagnostic)) AND (EXCLUDE (DOCTYPE, "re")) AND (LIMIT-TO (EXACTKEYWORD, "Human") OR LIMIT-TO (EXACTKEYWORD, "Humans") OR LIMIT-TO (EXACTKEYWORD, "Adult"))
CHECKLIST OF REPORTED ITEMS

Prisma checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	3-4
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	5-6
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	6
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	7
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	7
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	7
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	S2
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	7-9
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	7-9
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	7-10
Section	Item	Description	Page
--------------------------------------	------	---	------
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	9
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	8-9
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I²) for each meta-analysis.	8-9
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	N/A
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	10
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	11
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	12-15, S5-S11, S16-18
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	16-22
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	N/A
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	N/A
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	N/A
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	S12-S15
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	23-25
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	25-26
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	28
FUNDING			
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	28

N/A = not applicable.
ONLINE TABLES

Table S1:
Overview of all index tests.

Author	Test	Timing	Material	What is tested?	ROC	Sensitivity	Specificity	Cut-off	Unit	Bias	
Abbas (1)	MBG/creatinine	Unclear.	Other	Pulmonary water	0.88	84	93	95	pg/mg	Intermediate	
Aman (2)	Albumin	Within 12 hours after meeting sepsis criteria or 3 hours after major surgery.	Plasma	Permeability	0.8	79	64	17.05	g/L	Intermediate	
Aman (2)	Transferrin		Plasma	Permeability	0.78	93	65	1.05	g/L	Intermediate	
Arif (3)	Transferrin	Within 72 hours after admission.	Plasma	Permeability	0.98	87	100	1.5	g/L	High	
Arif (3)	Total protein		Plasma	Permeability	0.9	81	87	56	g/L		
Arif (3)	Albumin		Plasma	Permeability	0.77	44	100	24	g/L		
Arif (3)	PLI		Plasma	Pulmonary water	0.98	87	100	16.3	*10^-3/min		
Bai (4)	Glutamate increase	At admission.	Plasma	Inflammation	0.79	N.D.	N.D.	99.89	µM	High	
Bajwa (5)	sST2	Unclear.	Plasma	Inflammation	0.98	91	94	142	ng/mL	High	
Bauer (6)	TNF-alfa	Within 24 hours after diagnosis.	Plasma	Inflammation	0.71	50	90	51.87	pg/mL	Low	
Bauer (6)	IL-1 beta		Plasma	Inflammation	0.88	87	75	N.D.	N.D.		
Bauer (6)	IL-6		Plasma	Inflammation	0.61	96	35	14.81	pg/mL		
Bersten (7)	SP-A	Within 24 hours after inclusion.	Plasma	Permeability	0.61	N.D.	N.D.	N.D.	N.D.	Intermediate	
Bersten (7)	SP-B		Plasma	Permeability	0.77	85	78	4994	ng/mL		
Author (Ref)	Method/Parameter	Time/Condition	Sample Type	Parameter	Value 1	Value 2	Value 3	Value 4	Value 5	Notes	
-------------	------------------	----------------	-------------	-----------	---------	---------	---------	---------	---------	--------	
Bos (8)	Three metabolites identified by GCMS	Unclear.	Breath	Oxidative stress	0.78	N.D.	N.D.	N/A	N/A	Low	
Bos (9)	Pattern recognized by e-nose 1	Unclear.	Breath	Oxidative stress	0.71	N.D.	N.D.	N/A	N/A	Low	
Bos (9)	Pattern recognized by e-nose 2	Unclear.	Breath	Oxidative stress	0.73	N.D.	N.D.	N/A	N/A	Low	
Brett (10)	NO	After diagnosing ARDS or after intubation	Breath	Inflammation	0.93	92	89	0.149	ppb	Intermediate	
Bursten (11)	acyl ratio	Within 24 hours.	Plasma	Inflammation	N.D.	84	87	1.45	increase	Low	
Copetti (12)	Alveolar interstitial syndrome	Unclear which time point used for test. Time points: at first day of admission and after diagnosis.	Other	Pulmonary water	N.D.	100	0	N/A	N/A	Intermediate	
Copetti (12)	Pleural line abnormalities				N.D.	100	45	N/A	N/A		
Copetti (12)	Lung sliding				N.D.	100	100	N/A	N/A		
Copetti (12)	Spared areas				N.D.	100	100	N/A	N/A		
Copetti (12)	Consolidations				N.D.	83.3	100	N/A	N/A		
Copetti (12)	Pleural effusion				N.D.	66.6	5	N/A	N/A		
Copetti (12)	Lung pulse				N.D.	50	100	N/A	N/A		
Determann (13)	CC16	On day of diagnosis.	Plasma	Inflammation	0.91	80	92	18	ng/mL	High	
Determann (13)	CC16 increase				N.D.	90	92	0.3	increase		
Study	Biomarkers	Timepoints	Sample Type	Inflammation	Coagulation	Permeability	Other Measures				
-------------------------------	--	--	-------------	--------------	-------------	--------------	------------------------------				
KL-6	sRAGE										
SP-D											
El Solh (14)	PAI-1	Within 8 hours after intubation	Alveolar fluid	0.71	N.D.	N.D.	N.D.				
	PAI-1		Plasma	0.63	N.D.	N.D.	N.D.				
	Model with 7 biomarkers (RAGE, PCPIII, BNP, ANG2, IL-10, TNF-alfa, IL-8)		Plasma	0.8	N.D.	N.D.	N.D.				
Fremont (15)	Model with 3 biomarkers	Within 72 hours after admission.	Plasma	0.93	82.4	97.1	1518 ng/mL				
	Model with 3 biomarkers		Plasma	0.65	N.D.	N.D.	N.D.				
Grissom (16)	PAF-AH	Within 96 after diagnosis.	Alveolar fluid	0.83	63	100	37.87 mU/mL				
Herrera (17)	PPK	Within 24 hours after diagnosis.	Plasma								
Hoeboer (18)	Albumin	Within 24 hours after fever onset.	Plasma	0.62	71	58	20 g/L				
Howrylak (19)	Genetic model	Within 48 hours after admission.	Plasma	0.89	100	50	N/A				
Huang (20)	IG percentage	At admission.	Plasma	0.821	N.D.	N.D.	N.D.				
Izquierdo-Garcia (21)	Metabolic biomarker panel	Within 24 hours after admission.	Plasma	N.D.	100	91	N/A				
Jabaudon (22)	sRage0	At admission.	Plasma	0.71	N.D.	N.D.	N.D.				
Study	Indicator	Time Point	Measurement	Value 1	Value 2	Value 3	Value 4	Value 5	Category		
------------------	-----------	---	-------------	---------	---------	---------	---------	---------	----------		
Jorens (23)	IL-8	Within 12 hours after diagnosis.	Inflammation	0.63	0.73	0.67	299.3	pg/mL	Intermediate		
Kietzmann (24)	maximum H2O2	Within the first 7 days.	Inflammation	0.7	0.71	0.84	468.6	nmol/L	High		
Kushimoto (25)	PVPI	On day of enrollment, within 5 days after onset of acute respiratory failure.	Permeability	0.886	N.D.	N.D.	N.D.	N.D.	Low		
	ITBV		Pulmonary water	0.471	N.D.	N.D.	N.D.	N.D.	Low		
LeTourneau (26)	EVLWi	Within 48 hours after meeting ARDS criteria.	Pulmonary water	0.75	63	88	10	ml/kg PBW	Intermediate		
	PaO2/FiO2			0.71	N.D.	N.D.	N.D.	N.D.	Low		
				0.77	N.D.	N.D.	N.D.	N.D.	Low		
Lin (27)	Copeptin	Within 12 hours after admission.	Inflammation	0.823	60.9	88.2	40.11	pmol/L	Low		
Lin (28)	HBP	After diagnosis.	Permeability	0.815	75	78.2	11.55	ng/mL	Low		
Lin (29)	CC16	Within 12 hours after admission.	Inflammation	0.911	90.4	79.8	33.3	ng/mL	Low		
	CRP			0.648	54.4	73.2	N.D.	N.D.	Low		
Liu (30)	MDA	Two hours after graft reperfusion.	Oxidative stress	0.88	N.D.	N.D.	N.D.	N.D.	High		
	NO		Oxidative stress	0.88	N.D.	N.D.	N.D.	N.D.	High		
	H2O2		Oxidative stress	0.78	N.D.	N.D.	N.D.	N.D.	High		
-----	--------------------------------	------------------------------	--------------------------------	-----	-----	-----	-----	-----			
	8-isoprostaglandin F2 alfa										
	TNF-alfa										
	IL-8										
	SOD										
	IL-10										
Liu (31)	PARK7	At admission.	Plasma	Oxidative stress	0.73	78	70	200	ng/mL	Intermediate	
	Monnet (32)	PVPI	At diagnosis of oedema.	Other	Permeability	0.92	85	100	3	N/A	Intermediate
	Monnet (32)	EVLW/GEDVi			Pulmonary water	0.92	85	100	1.8*10^2	N/A	
Park (33)	SP-D	Within 72 hours after admission.	Plasma	Inflammation	0.71	74	63	12.7	ng/mL	High	
Sato (34)	KL-6	Up to a week after diagnosis.	Plasma	Inflammation	0.9	75	100	393.75	U/mL	High	
Sekiguchi (35)	CCUS prediction model	Within 4 hours after inclusion.	Other	Pulmonary water	0.79	N.D.	N.D.	≤3	N/A	Low	
Shan (36)	suPAR	After diagnosis.	Plasma	Inflammation	0.63	N.D.	N.D.	N.D.	pg/mL	Intermediate	
	hsCRP										
	PCT										
Sweeney (37)	Model with seven genes	Within 48 hours after diagnosis.	Plasma	Inflammation	0.74	63	74	N/A	N/A	High	
Verheij (38)	PLI	Within 72 hours after admission.	Other	Permeability	0.94	N.D.	N.D.	N.D.	N.D.	High	
	PTCER										
Study (Ref)	Biomarker Model	Time of Measurement	Sample Type	Inflammation	Permeability	Additional Details					
------------	-----------------	---------------------	--------------	--------------	--------------	--------------------					
Ware (39)	Model with 5 biomarkers (SP-D, RAGE, IL-8, CC16, IL-6)	On day 2.	Plasma	Inflammation	0.75	70	68	N/A	N/A	Low	
Ware (40)	Model with 11 biomarkers	Within 72 hours after admission.	Plasma	Inflammation	0.78	N.D.	N.D.	N/A	N/A	Intermediate	
	Model with 2 biomarkers (ang-2 and RaGE)	Within 72 hours after admission.	Plasma	Inflammation	0.74	N.D.	N.D.	N/A	N/A	Intermediate	
Wu (41)	CC16	Within 24 hours.	Plasma	Inflammation	0.8	91	60	16.8 ng/mL	Intermediate		
Xue (42)	Tissue factor	At inclusion.	Plasma	Permeability	0.75	61.7	80.8	1005.8 pg/mL	Intermediate		
Yeh (43)	Gas6	Within 24 hours after admission.	Plasma	Inflammation	0.74	78	72	18 ng/mL	Low		
Zhou (44)	Panel with 9 metabolites	Unclear.	Breath	Inflammation	0.82	N.D.	N.D.	N/A	N/A	Low	

N/A = not applicable. N.D. = not described.

Abbreviations (in alphabetical order): AECC = American-European consensus criteria, ARDS = Acute Respiratory Distress Syndrome, CC16 = Club Cell protein 16, CCUS = critical care ultrasonography, CPE = cardiac pulmonary oedema, CRP = c-reactive protein, EDI = EVLW physiologic dead space index, EVLW = extra vascular lung water, Gas6 = growth arrest-specific gene 6, Ga/Tc = gallium/technetium, GCMS=gas chromatography mass spectrometry, H2O2 = hydrogen peroxide, HBP =
heparin-binding protein, hsCRP = high sensitive c-reactive protein, ICU = intensive care unit, IG = immature granulocyte, IL = interleukin, ITBV = intrathoracic blood volume, KL = Krebs von den Lungen, MDA = malondialdehyde, NO = nitric oxide, PAF-AH = platelet-activating factor acetylhydrolase, PAI-1 = plasminogen activator inhibitor-1, PARK7 = Parkinson disease 7 , PCT = procalcitonin, PLI = pulmonary leak index, PPK = prekallikrein, PTCER = pulmonary transcapillary escape rate, PVPI = extravascular lung water/pulmonary blood volume, SOD = superoxide dismutase, SP = surfactant protein, sRAGE = soluble receptor for advanced glycation end-products, sST2 = soluble suppression of tumorigenicity-2, suPAR = soluble urokinase-type plasminogen activator receptor, TER = transcapillary escape rate, TNF = tumor necrosis factor.
Figure S1: Sensitivity and specificity, stratified per control group

Triangle: CPE (n=20)
Circle: ICU all (n=24)
Diamond: Pneumonia (n=3)

Green: low bias. Blue: intermediate bias. Red: high bias.
Figure S2: Sensitivity and specificity, stratified per population

Triangle: Sepsis (n=6)
Circle: ICU general (n=34)
Square: Specific group (n=6)
Diamond: CCU (n=1)

Green: low bias. Blue: intermediate bias. Red: high bias.
Figure S3: Sensitivity and specificity, stratified per material

- **Triangle:** Breath (n=2)
- **Circle:** Plasma (n=31)
- **Square:** Other (n=11)
- **Diamond:** Alveolar fluid (n=3)

Green: low bias. *Blue:* intermediate bias. *Red:* high bias.
Figure S4: Sensitivity and specificity, stratified per mechanism

Triangle: Inflammation (n=23)

Circle: Permeability (n=10)

Filled square (solid line): Pulmonary oedema (n=11)

Diamond: Coagulation (n=1)

Open square (dot-dash line): Oxidative stress (n=1)

Green: low bias. Blue: intermediate bias. Red: high bias.
Figure S5: Association between risk of bias and diagnostic accuracy, stratified per type of process measured by the test.

Caption: AUROCC = area under the receiver operating characteristics curve. No difference in AUROCC was found for the type of studied pathophysiological mechanism (p=0.76).
Figure S6: Association between risk of bias and diagnostic accuracy, stratified per tested biomaterial.

Caption: AUROCC = area under the receiver operating characteristics curve. No difference in AUROCC was found for the used material (p=0.51).
Figure S7: Association between risk of bias and diagnostic accuracy, stratified per included population.

Caption: AUROCC = area under the receiver operating characteristics curve. No difference in AUROCC was found for the different populations (p=0.60).
REFERENCES

1. Abbas MMK, Patel B, Chen Q, Jiang W, Moorthy B, Barrios R, et al. Involvement of the Bufadienolides in the Detection and Therapy of the Acute Respiratory Distress Syndrome. Lung [Internet]. 2017;195(3):323–32. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85020647793&doi=10.1007%2Fs00408-017-9989-1&partnerID=40&md5=49ac111eee5c9ba30242ebf56dcc5c57

2. Aman J, van der Heijden M, van Lingen A, Girbes ARJ, van Nieuw Amerongen GP, van Hinsbergh VWM, et al. Plasma protein levels are markers of pulmonary vascular permeability and degree of lung injury in critically ill patients with or at risk for acute lung injury/acute respiratory distress syndrome. Crit Care Med. 2011 Jan;39(1):89–97.

3. Arif SK, Verheij J, Groeneveld ABJ, Raijmakers PGHM. Hypoproteinemia as a marker of acute respiratory distress syndrome in critically ill patients with pulmonary edema. Intensive Care Med. 2002 Mar;28(3):310–7.

4. Bai W, Zhu W-L, Ning Y-L, Li P, Zhao Y, Yang N, et al. Dramatic increases in blood glutamate concentrations are closely related to traumatic brain injury-induced acute lung injury. Sci Rep. 2017 Jul;7(1):5380.

5. Bajwa EK, Volk JA, Christiani DC, Harris RS, Matthay MA, Thompson BT, et al. Prognostic and Diagnostic Value of Plasma Soluble Suppression of Tumorigenicity-2 Concentrations in Acute Respiratory Distress Syndrome. Crit Care Med [Internet]. 2013/08/14. 2013; Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=23939353

6. Bauer TT, Montón C, Torres A, Cabello H, Fillela X, Maldonado A, et al.
Comparison of systemic cytokine levels in patients with acute respiratory distress syndrome, severe pneumonia, and controls. Thorax [Internet]. 2000;55(1):46–52. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034016008&doi=10.1136%2Fthorax.55.1.46&partnerID=40&md5=774a3f643a12e988b1e1d1a571a6d3d4

7. Bersten AD, Hunt T, Nicholas TE, Doyle IR. Elevated plasma surfactant protein-B predicts development of acute respiratory distress syndrome in patients with acute respiratory failure. Am J Respir Crit Care Med. 2001 Aug;164(4):648–52.

8. Bos LDJ, Weda H, Wang Y, Knobel HH, Nijsen TME, Vink TJ, et al. Exhaled breath metabolomics as a noninvasive diagnostic tool for acute respiratory distress syndrome. Eur Respir J [Internet]. 2014;44(1):188–97. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84903850983&doi=10.1183%2F09031936.00005614&partnerID=40&md5=d79bcbabbd1e66f6520d8af4d4e

9. Bos LDJ, Schultz MJ, Sterk PJ. Exhaled breath profiling for diagnosing acute respiratory distress syndrome. BMC Pulm Med [Internet]. 2014;14(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84899641551&doi=10.1186%2F1471-2466-14-72&partnerID=40&md5=b8275a0dd40600ce1dbb20834033a3dc

10. Brett SJ, Evans TW. Measurement of endogenous nitric oxide in the lungs of patients with the acute respiratory distress syndrome. Am J Respir Crit Care Med [Internet]. 1998;157(3 Pt 1):993–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9517623
11. Bursten SL, Federighi DA, Parsons P, Harris WE, Abraham E, Moore EE, et al. An increase in serum C18 unsaturated free fatty acids as a predictor of the development of acute respiratory distress syndrome [Internet]. 1996/07/01. Vol. 24, Crit Care Med. 1996 Jul. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8674324

12. Copetti R, Soldati G, Copetti P. Chest sonography: A useful tool to differentiate acute cardiogenic pulmonary edema from acute respiratory distress syndrome. Cardiovasc Ultrasound [Internet]. 2008;6. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-44049107516&doi=10.1186%2F1476-7120-6-16&partnerID=40&md5=736fb6c93e5cfd680915e0e922a9cfe2

13. Determann RM, Millo JL, Waddy S, Lutter R, Garrard CS, Schultz MJ. Plasma CC16 levels are associated with development of ALI/ARDS in patients with ventilator-associated pneumonia: a retrospective observational study. BMC Pulm Med. 2009 Dec;9:49.

14. El Solh AA, Bhora M, Pineda L, Aquilina A, Abbetessa L, Berbary E. Alveolar plasminogen activator inhibitor-1 predicts ARDS in aspiration pneumonitis. Intensive Care Med [Internet]. 2006 Jan [cited 2015 Jul 8];32(1):110–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16284739

15. Fremont RD, Koyama T, Calfee CS, Wu W, Dossett LA, Bossert FR, et al. Acute lung injury in patients with traumatic injuries: Utility of a panel of biomarkers for diagnosis and pathogenesis. J Trauma - Inj Infect Crit Care [Internet]. 2010;68(5):1121–7. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-
16. Grissom CK, Orme JFJ, Richer LD, McIntyre TM, Zimmerman GA, Elstad MR. Platelet-activating factor acetylhydrolase is increased in lung lavage fluid from patients with acute respiratory distress syndrome. Crit Care Med. 2003 Mar;31(3):770–5.

17. Herrera C, Velasco F, Guerrero A, Guerrero R, Alvarez F, Torres A. Contact phase of blood coagulation in cardiogenic pulmonary oedema (CPO) and adult respiratory distress syndrome (ARDS). Intensive Care Med. 1989;15(2):99–104.

18. Hoeboer SH, Oudemans-van Straaten HM, Groeneveld ABJ. Albumin rather than C-reactive protein may be valuable in predicting and monitoring the severity and course of acute respiratory distress syndrome in critically ill patients with or at risk for the syndrome after new onset fever. BMC Pulm Med. 2015 Mar;15:22.

19. Howrylak JA, Dolinay T, Lucht L, Wang Z, Christiani DC, Sethi JM, et al. Discovery of the gene signature for acute lung injury in patients with sepsis. Physiol Genomics [Internet]. 2009;37(2):133–9. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-66149092331&doi=10.1152%2Fphysiolgenomics.90275.2008&partnerID=40&md5=bcd5dfe0eee56387982778ec4c8eef19

20. Huang Y, Xiao J, Cai T, Yang L, Shi F, Wang Y, et al. Immature granulocytes: A novel biomarker of acute respiratory distress syndrome in patients with acute pancreatitis. J Crit Care. 2019;50:303–8.

21. Izquierdo-Garcia JL, Nin N, Jimenez-Clemente J, Horcajada JP, Del Mar
Arenas-Miras M, Gea J, et al. Metabolomic profile of ARDS by nuclear magnetic resonance spectroscopy in patients with H1N1 influenza virus pneumonia. Shock [Internet]. 2018;50(5):504–10. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054890540&doi=10.1097%2FSHK.0000000000001099&partnerID=40&md5=425f41fe72b1812b2802523973692639

22. Jabaudon M, Berthelin P, Pranal T, Roszyk L, Godet T, Faure J-S, et al. Receptor for advanced glycation end-products and ARDS prediction: a multicentre observational study. Sci Rep. 2018 Feb;8(1):2603.

23. Jorens PG, Van Damme J, De Backer W, Bossaert L, De Jongh RF, Herman AG, et al. Interleukin 8 (IL-8) in the bronchoalveolar lavage fluid from patients with the adult respiratory distress syndrome (ARDS) and patients at risk for ARDS. Cytokine. 1992 Nov;4(6):592–7.

24. Kietzmann D, Kahl R, Muller M, Burchardi H, Kettler D. Hydrogen peroxide in expired breath condensate of patients with acute respiratory failure and with ARDS. Intensive Care Med. 1993;19(2):78–81.

25. Kushimoto S, Taira Y, Kitazawa Y, Okuchi K, Sakamoto T, Ishikura H, et al. The clinical usefulness of extravascular lung water and pulmonary vascular permeability index to diagnose and characterize pulmonary edema: a prospective multicenter study on the quantitative differential diagnostic definition for acute lung injury/acute. Crit Care. 2012 Dec;16(6):R232.

26. LeTourneau JL, Pinney J, Phillips CR. Extravascular lung water predicts progression to acute lung injury in patients with increased risk*. Crit Care Med. 2012 Mar;40(3):847–54.

27. Lin Q, Fu F, Chen H, Zhu B. Copeptin in the assessment of acute lung injury
and cardiogenic pulmonary edema. Respir Med. 2012 Sep;106(9):1268–77.

28. Lin Q, Shen J, Shen L, Zhang Z, Fu F. Increased plasma levels of heparin-binding protein in patients with acute respiratory distress syndrome. Crit Care. 2013 Jul;17(4):R155.

29. Lin J, Zhang W, Wang L, Tian F. Diagnostic and prognostic values of Club cell protein 16 (CC16) in critical care patients with acute respiratory distress syndrome. J Clin Lab Anal. 2018 Feb;32(2).

30. Liu D, Luo G, Luo C, Wang T, Sun G, Hei Z. Changes in the concentrations of mediators of inflammation and oxidative stress in exhaled breath condensate during liver transplantation and their relations with postoperative ARDS. Respir Care [Internet]. 2015 May;60(5):679–88. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84928918228&doi=10.4187%2Frespcare.03311&partnerID=40&md5=6beb1c903730c49c317f7d297ced3d27

31. Liu XW, Ma T, Cai Q, Wang L, Song HW, Liu Z. Elevation of Serum PARK7 and IL-8 Levels Is Associated With Acute Lung Injury in Patients With Severe Sepsis/Septic Shock. J Intensive Care Med. 2019;34(8):662–8.

32. Monnet X, Anguel N, Osman D, Hamzaoui O, Richard C, Teboul J-L. Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI/ARDS. Intensive Care Med [Internet]. 2007;33(3):448–53. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33847342498&doi=10.1007%2Fs00134-006-0498-6&partnerID=40&md5=28ff45fd94c3f88f76d1f96c31487e56

33. Park J, Pabon M, Choi AMK, Siempos II, Fredenburgh LE, Baron RM, et al.
Plasma surfactant protein-D as a diagnostic biomarker for acute respiratory distress syndrome: Validation in US and Korean cohorts. BMC Pulm Med [Internet]. 2017;17(1). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85038085246&doi=10.1186%5Fs12890-017-0532-1&partnerID=40&md5=ced57f1a61f6682b00c4983d61b20d56

34. Sato H, Callister MEJ, Mumby S, Quinlan GJ, Welsh KI, duBois RM, et al. KL-6 levels are elevated in plasma from patients with acute respiratory distress syndrome. Eur Respir J. 2004 Jan;23(1):142–5.

35. Sekiguchi H, Schenck LA, Horie R, Suzuki J, Lee EH, McMenomy BP, et al. Critical care ultrasonography differentiates ARDS, pulmonary edema, and other causes in the early course of acute hypoxemic respiratory failure. Chest. 2015;148(4):912–8.

36. Shan L, Shan F, Li J, Li X, Sun Y-B. Association of circulating suPAR with disease severity and clinical outcomes in patients with ARDS induced by intra-abdominal infections: A prospective observational study. Int J Clin Exp Med [Internet]. 2016;9(7):12788–95. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84982688510&partnerID=40&md5=aad0d69eb8cebd381aa4d60f4e472694

37. Sweeney TE, Thomas NJ, Howrylak JA, Wong HR, Rogers AJ, Khatri P. Multicohort analysis of whole-blood gene expression data does not form a robust diagnostic for acute respiratory distress syndrome. Crit Care Med [Internet]. 2018;46(2):244–51. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047737579&doi=10.1097%2FCCM.0000000000002839&partnerID=40&md5
38. Verheij J, Raijmakers PGHMPGHM, Lingen A, Groeneveld ABJ. Simple vs complex radionuclide methods of assessing capillary protein permeability for diagnosing acute respiratory distress syndrome. J Crit Care [Internet]. 2005 Jun;20(2):162–71. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-24044533496&doi=10.1016%2Fj.jcrc.2004.12.002&partnerID=40&md5=02999dabd75fc1cf8fc68c86177d1548

39. Ware LB, Koyama T, Zhao Z, Janz DR, Wickersham N, Bernard GR, et al. Biomarkers of lung epithelial injury and inflammation distinguish severe sepsis patients with acute respiratory distress syndrome. Crit Care. 2013 Oct;17(5):R253.

40. Ware LB, Zhao Z, Koyama T, Brown RM, Semler MW, Janz DR, et al. Derivation and validation of a two-biomarker panel for diagnosis of ARDS in patients with severe traumatic injuries. Trauma Surg Acute Care Open [Internet]. 2017;2(1):e000121. Available from: http://tsaco.bmj.com/lookup/doi/10.1136/tsaco-2017-000121

41. Wu C-Y, Cheng Y-J, Hung M-H, Lin I-J, Sun W-Z, Chan K-C. Association between Early Acute Respiratory Distress Syndrome after Living-Donor Liver Transplantation and Perioperative Serum Biomarkers: The Role of Club Cell Protein 16. Biomed Res Int. 2019;2019:8958069.

42. Xue M, Sun Z, Shao M, Yin J, Deng Z, Zhang J, et al. Diagnostic and prognostic utility of tissue factor for severe sepsis and sepsis-induced acute lung injury. J Transl Med. 2015 May;13:172.

43. Yeh L-C, Huang P-W, Hsieh K-H, Wang C-H, Kao Y-K, Lin T-H, et al. Elevated
Plasma Levels of Gas6 Are Associated with Acute Lung Injury in Patients with Severe Sepsis. Tohoku J Exp Med. 2017 Nov;243(3):187–93.

44. Zhou M, Sharma R, Zhu H, Li Z, Li J, Wang S, et al. Rapid breath analysis for acute respiratory distress syndrome diagnostics using a portable two-dimensional gas chromatography device. Anal Bioanal Chem. 2019 Sep;411(24):6435–47.