Retrospective Study

Risk factors for preoperative carcinogenesis of bile duct cysts in adults

Xin Wu, Bing-Lu Li, Chao-Ji Zheng, Xiao-Dong He

ORCID number: Xin Wu 0000-0002-3839-4768; Bing-Lu Li 0000-0002-9142-0793; Chao-Ji Zheng 0000-0002-8989-2556; Xiao-Dong He 0000-0002-4761-9199.

Author contributions: All authors helped to perform the research; Wu X designed and performed the research and wrote the paper; Li BL designed the research and supervised the report; Zheng CJ and He XD contributed to the analysis and provided clinical advice.

Supported by the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences, No. 2019XK320012.

Institutional review board statement: This study was reviewed and approved by the Peking Union Medical College Hospital Institutional Review Board (S-K1483).

Informed consent statement: The requirement of informed consent for publication of data was waived owing to the retrospective nature of the study.

Conflict-of-interest statement: The authors declare no conflict of interests for this article.

Data sharing statement: No

Abstract

BACKGROUND
Bile duct cyst (BDC) is a rare congenital bile duct malformation. The incidence of bile duct malignancy in BDC patients is markedly higher than that in the general population. However, few studies have been conducted on the risk factors for preoperative carcinogenesis in BDC patients.

AIM
To analyze the risk factors associated with preoperative carcinogenesis in BDC patients.

METHODS
The medical records of BDC patients treated at our hospital between January 2012 and December 2018 were retrospectively reviewed. We constructed a database and compared the characteristics of BDC patients with dysplasia and carcinoma against those with benign cysts. The risk factors for preoperative carcinogenesis were identified using univariate and multivariate analyses.

RESULTS
The cohort comprised 109 BDC patients. Ten patients had preoperative dysplasia or adenocarcinoma. Univariate and multivariate analyses showed that gallbladder wall thickness > 0.3 cm [odds ratio (OR), 6.551; 95% confidence interval (CI), 1.351 to 31.763; P = 0.020] and Todani type IV (OR, 7.675; 95%CI, 1.584 to 37.192; P = 0.011) were independent factors associated with preoperative carcinogenesis.

CONCLUSION
BDC is a premalignant condition. Our findings show that gallbladder wall thickness > 0.3 cm and Todani type IV are independent risk factors for preoperative carcinogenesis of BDC. They are therefore useful for deciding on the...
INTRODUCTION

Bile duct cyst (BDC), or biliary dilatation, is a rare congenital bile duct malformation that can occur in the intrahepatic biliary system, extrahepatic biliary tree, or both. Todani et al.[1-3] systematically described and classified BDC in 1977 and then updated the classification in 1997 and 2003. BDC is more common in women, with a female-to-male ratio of 4:1[4]. The incidence rate of BDC is higher in Asian countries than in Western countries[5]. Most patients with BDC are diagnosed in the first decade of life, and only around 20% go undiagnosed into adulthood[6].

The currently recommended treatment modality for BDC is complete cyst excision plus Roux-en-Y hepaticojejunostomy[7,8]. Liver resection and transplantation are treatment choices of BDC type V[6]. For patients with symptoms like abdominal pain, jaundice, and fever, surgery is more acceptable. However, the necessity and timing of surgery are a difficult choice in asymptomatic patients due to the high incidence of postoperative complications. Most studies recommend complete cyst removal even in asymptomatic patients because the incidence of bile duct malignancy in BDC patients is 20- to 30-fold higher than that in the general population[6,9-11]. However, few studies have been conducted on the risk factors for preoperative carcinogenesis of BDC patients[12,13]. Precise estimates of the risk of preoperative carcinogenesis in BDC are lacking[14], and the patient features that are indications for surgery are still unknown. Thus, the present study aimed to analyze the potential risk factors associated with preoperative carcinogenesis in patients with BDC to provide a deeper understanding of BDC and determine the optimal treatment options for asymptomatic BDC patients.

MATERIALS AND METHODS

All the medical records of BDC patients treated at our hospital between January 2012 and December 2018 were retrospectively reviewed. Patients who were diagnosed with BDC by both preoperative imaging and postoperative pathology, and at least 18 years old were selected, while those who did not undergo operation or had incomplete medical records were excluded. Clinical data were compiled from both inpatient and outpatient medical records, and a retrospective database was constructed. The demographic characteristics, symptoms, laboratory tests, operation details, pathology information, and prognoses were analyzed. This study was approved by the Peking Union Medical College Hospital Institutional Review Board (S-K1483). The requirement of informed consent for publication of data was waived owing to the

Additional data are available.
RESULTS

A total of 129 adult patients with BDC were treated at our institution during the study period, and we excluded 20 patients who did not undergo operation due to severe underlying disease. Thus, the cohort comprised 109 patients with BDC, and they were further divided into two groups based on pathology results: Group A comprised patients with benign pathology ($n = 99$), while group B comprised patients with dysplasia or carcinoma ($n = 10$). The preoperative dysplasia/carcinoma rate was 9.2% (10/109). The demographic characteristics, symptoms, and laboratory tests by group are shown in Table 1. There was no significant difference between the two groups. The mean age at admission was 40.4 ± 15.0 years (range, 18-80 years), and the male-to-female ratio was 1:4.7. Abdominal pain (82.6%) was the most common preoperative symptom, followed by fever (26.6%) and jaundice (12.8%). Abnormal pancreatic biliary duct was confirmed in 55 (50.5%) patients via endoscopic retrograde cholangiopancreatography or magnetic resonance cholangiopancreatography. Stratified analysis by age group was also conducted to further analyze the correlation between age and dysplasia/carcinoma rates (Table 2).

All patients were diagnosed with BDC by both preoperative imaging and postoperative pathology. The operation details, pathology information, and Todani classification are shown in Table 3. The number of patients with gallbladder wall thickness > 0.3 cm, cyst transverse diameter > 3 cm, and Todani type IV was significantly higher in group B than in group A. Multivariate logistic regression analysis showed that gallbladder wall thickness > 0.3 cm and Todani type IV were independently associated with preoperative carcinogenesis, with odds ratios of 6.551 and 7.675, respectively (Table 4). A flow chart of treatment recommendations for patients with BDC is shown in Figure 1.

As of December 2020, 97 (89.0%) patients were followed for a mean duration of 59.7 ± 24.6 mo (range, 6-102 mo). No postoperative carcinoma was observed. In group B, nine out of ten patients were followed. The detailed clinical features of patients in group B are presented in Table 5. In total, 4, 3, and 3 patients had dysplasia or carcinoma in the cyst, the gallbladder, and in both the cyst and the gallbladder, respectively. Five patients had dysplasia and the other five had adenocarcinoma. The longest follow-up time was 81 mo, and the patient remains alive and disease free to date.

DISCUSSION

The incidence of BDC diagnoses in adult patients has increased worldwide due to the widespread use of health screening and improvements in noninvasive bile duct imaging[15,16]. Approximately 10%-30% of adult patients with BDC develop carcinomatous change within BDC was reported by Irwin et al[19] in 1944. The tumor may arise in the cyst wall, gallbladder, undilated parts of the biliary tree, and even in remnant tissue after operation. The pathogenesis of preoperative and postoperative carcinogenesis of BDC is entirely different[20]. Preoperative carcinoma is mainly caused by abnormal confluent pancreatic juice that can erode the bile duct epithelium[21,22]. This problem is resolved after operation because the pancreatic and biliary drainage is separated. Meanwhile, postoperative carcinogenesis is primarily caused by recurrent cholangitis, which can be avoided via complete cyst dissection and proper bile duct flow. In the present study, we only focused on preoperative carcinogenesis. As observed in esophageal and colon cancer, the progression of carcinoma in BDC involves simple hyperplasia and dysplasia that ultimately leads to the formation of invasive carcinoma[23-26]. Carcinogenesis may be related to dysplasia of the bile duct epithelium, and thus we analyzed the risk factors for both dysplasia and carcinoma in

retrospective nature of the study.

Statistical analyses were performed using the Statistical Package for Social Sciences software (version 25.0, IBM Corp, Armonk, NY, United States). Continuous variables are presented as the mean ± SD and were analyzed using Student’s t test. Categorical variables are shown as an absolute number or frequency and were analyzed using the χ^2 test or Fisher’s exact test as appropriate. Logistic multivariate regression analysis was performed to identify potential independent risk factors for preoperative carcinogenesis of BDC patients. A P value < 0.05 was considered statistically significant.
this study to further clarify the risk factors for carcinogenesis and determine the optimal treatment modality given that the need to treat in asymptomatic patients is based on the risk of developing a malignancy[27,28]. A meta-analysis reported that the preoperative malignancy rate of BDC is 7.3%[14]. The preoperative rates of both dysplasia and carcinoma and only carcinoma in this study (9.2% and 4.6%, respectively) are consistent with those reported in the literature. Several previous studies have identified potential risk factors for preoperative carcinogenesis in patients with BDC[14,26,29]. Although some variables such as age and cyst type have been presented, the results are still controversial. We examined the association between dysplasia/carcinoma and several variables and found that gallbladder wall thickness > 0.3 cm and Todani type IV were independent risk factors for carcinogenesis. For patients with these characteristics, surgery should be highly recommended. Although complete cyst excision is the recommended treatment modality, it is not always achievable especially in Todani type IV patients with widespread intrahepatic cysts. For these patients, we recommend to remove cysts as much as possible and rebuild proper bile duct flow because proper bile duct flow, rather than complete excision, is the most critical factor determining treatment outcomes of BDC[20]. Xia et al[20] reported that complete or incomplete cyst excision made no significant difference in terms of long-term biliary function and late postoperative complications in Todani type IVa cysts with proper bile flow.

Chronic inflammation of the bile duct leads to K-ras mutations, cellular atypia, overexpression of the p53 encoding protein, and loss of heterozygosity of p53 at the molecular level[30-33]. These mutations could result in malignant transformation and cause an association between chronic inflammation and bile duct carcinoma. Concurrently, metaplastic changes of the bile duct epithelium are considered premalignant lesions that progress to bile duct carcinoma[32], and this is frequently observed in chronic bile duct inflammation. Bile duct inflammation causes the gallbladder wall to thicken to > 0.3 cm, and this could explain why such thickness is a risk factor for carcinogenesis. Some previous studies also reported the thickness of the gallbladder

Table 1 Demographic data, symptoms, and laboratory test findings for patients with bile duct cyst
Overall cohort (n = 109)
Male/female (n)
Age at symptom onset (yr)
Age at admission (yr)
BMI (kg/m²)
Smoking (n)
Abdominal pain (n)
Fever (n)
Jaundice (n)
CA19-9 > 34 U/mL (n)
CEA > 5 ng/mL (n)
APBD (n)

BMI: Body mass index; CA19-9: Carbohydrate antigen 19-9; CEA: Carcinoembryonic antigen; APBD: Abnormal pancreatic biliary duct.

Table 2 Stratified analysis for association between age and dysplasia/carcinoma rates
Age (yr)
18-30
31-40
41-50
51-60
≥ 61
Table 3: Operation details, pathology information, and Todani types for patients with bile duct cyst

	Overall cohort (n = 109)	Group A (n = 99)	Group B (n = 10)	P value
Operative time (min)	219.2 ± 64.8	215.8 ± 61.6	249.5 ± 86.6	0.119
Bleeding amount (mL)	212.3 ± 210.0	204.8 ± 202.0	263.0 ± 277.5	0.265
Max diameter of GB (cm)	7.8 ± 1.7	7.9 ± 1.7	7.0 ± 1.7	0.147
GB wall thickness > 0.3 cm (n)	20	15	5	0.022
TD of cyst > 3 cm (n)	46	38	8	0.028
Cyst wall thickness > 0.3 cm (n)	8	8	0	1.000
Bile duct stone (n)	22	21	1	0.668
Todani classification (n)				0.031
I	74	71	3	
III	1	1	0	
IVa	31	24	7	
V	3	3	0	

1There was no patient with Todani type II or IVb.

GB: Gallbladder; TD: Transverse diameter.

Table 4: Multivariate analysis for risk factors for preoperative carcinogenesis of bile duct cyst

	P value	OR	95%CI
Gallbladder wall thickness > 0.3 cm	0.020	6.551	1.351-31.763
Todani type IV	0.011	7.675	1.584-37.192
Transverse diameter of cyst > 3 cm	0.051	5.479	0.990-30.333

OR: Odds ratio; CI: Confidence interval.

wall as a predictor of premalignant mucosal transformation[34,35]. The incidence of cholangiocarcinoma varies between different types of BDC, with type I and type IV having the highest risk of malignant transformation[6,9,14]. Todani IV cysts were strongly associated with chronic inflammation of the bile duct and abnormal pancreaticobiliary duct junction[26,36]. Prolonged reflux of pancreatic secretions could lead to malignant degeneration of the bile duct epithelium[28], and these factors cause the high dysplasia and carcinoma rate. Ten Hove et al[14] reported Todani type I and IV as risk factors for preoperative carcinogenesis, and He et al[12] reported a higher carcinogenesis rate in type I than in type IV. The difference between the findings of the current study and those in the literature might be caused by the limited number of patients with dysplasia and carcinoma in the current study.

Age has been consistently reported as an independent risk factor for carcinogenesis [9,12,13], and the incidence of carcinogenesis particularly increased with high age at presentation[37,38]. However, we found no relationship between incidence and age in our study (Table 2) and this may be due to the following: First, the reported age-dependent increase in incidence was only for tumors, while the present study calculated the incidence of both dysplasia and carcinoma. Second, because of the popularity of health examination, the number of young patients diagnosed and treated is increasing, while the number of patients diagnosed at an older age is decreasing. Third, the sample size, particularly the number of patients with dysplasia or carcinoma was limited, and the possibility of selection bias could not be ruled out.

In the present study, all the patients with dysplasia and carcinoma were women. The reason may be that BDC is more common in women than in men. Further, at the molecular level, increased estrogen receptor expression in the biliary epithelium was found in patients with neoplastic changes[39]. Of the ten patients with dysplasia and carcinoma, nine were followed and had a mean survival time of 49.2 ± 21.5 mo, and seven were still alive and disease free at the last follow-up. The patient prognosis in
Table 5 Clinical data of ten bile duct cyst patients with dysplasia or carcinoma

No.	Sex	Age (yr)	Todani type	Operation	Lesion location	Pathology	TNM stage†	Follow-up time (mo)	Outcome
1	F	39	IVa	CH + CE + HJ	Cyst	Mucinous adenocarcinoma	T4N0M0	40	Recurred 10 mo after surgery, alive with tumor
2	F	46	IVa	CH + CE + HJ	Gallbladder	Mucinous adenocarcinoma	T3N0M0	6	Survived disease free for 6 mo after surgery, then lost to follow-up
3	F	44	IVa	CH + CE + HJ	Cyst	Moderate dysplasia	--	52	Disease-free survival
4	F	26	IVa	CH + CE + HJ	Cyst + gallbladder	Mild dysplasia	--	53	Disease-free survival
5	F	61	I	CH + CE + HJ	Gallbladder	Adenocarcinoma	T2N0M0	40	Disease-free survival
6	F	27	IVa	CH + CE + HJ	Cyst + gallbladder	Moderate dysplasia	--	66	Disease-free survival
7	F	33	IVa	Pancreatoduodenectomy	Cyst	Adenocarcinoma	TisN0M0	81	Disease-free survival
8	F	18	I	CH + CE + HJ	Cyst + gallbladder	Mild dysplasia	--	40	Disease-free survival
9	F	65	I	CH + CE + HJ	Gallbladder	Adenocarcinoma	T1N0M0	65	Disease-free survival
10	F	22	IVa	CH + CE + HJ	Cyst	Mild dysplasia	--	--	Lost to follow-up

†Staging was according to the American Joint Committee on Cancer 8th 2018 Tumor Node Metastasis classification.

CH: Cholecystectomy; CE: Cyst excision; HJ: Hepaticojejunostomy; TNM: Tumor node metastasis.

Figure 1 Flow chart of treatment recommendations for patients with bile duct cyst. Operation is the currently recommended treatment modality for bile duct cyst. For patients who refuse surgery, risk factor assessment should be performed.

the current study was markedly better than that in the literature[12], and this may be because not only patients with carcinoma, but also those with dysplasia were also included in this study. Another possible reason was that the exclusion of 20 patients with severe underlying disease would lead to an improvement in overall outcomes.

This study has some limitations. First, the registration information and patient number could not be designated in advance due to its retrospective nature. Second, the study is confined to a single institution, and the number of patients is limited. Given that the number of BDC cases diagnosed and treated is increasing, prospective, observational, controlled, and multi-center clinical trials are needed to identify reliable
risk factors for malignancy in BDC.

CONCLUSION

BDC is a rare congenital bile duct malformation. Prophylactic operation is recommended but not well accepted by all asymptomatic patients. Precise estimates of the risk of preoperative carcinogenesis in BDC are lacking. Our findings show that gallbladder wall thickness > 0.3 cm and Todani type IV are independent risk factors for carcinogenesis of BDC in adults and are thus valuable in choosing the appropriate treatment strategy in these patients.

ARTICLE HIGHLIGHTS

Research background
The currently recommended treatment modality for bile duct cyst (BDC) is operation due to the high incidence of bile duct malignancy. However, few studies have been conducted on the risk factors for preoperative carcinogenesis of BDC patients.

Research motivation
To find out the patient features that are indications for surgery in BDC and provide better treatment recommendation.

Research objectives
To analyze the risk factors associated with preoperative carcinogenesis in BDC patients.

Research methods
This retrospective study included patients with BDC treated at our hospital between January 2012 and December 2018. A database containing demographic characteristics, symptoms, laboratory tests, operation details, pathology information, and prognoses was constructed. The characteristics of BDC with dysplasia/carcinoma were compared with benign cysts. Univariate and multivariate analyses were used to analyze the risk factors for preoperative carcinogenesis.

Research results
A total of 109 patients with BDC were included. Ten patients had preoperative dysplasia or adenocarcinoma. Univariate analysis showed that gallbladder wall thickness > 0.3 cm, cyst transverse diameter > 3 cm, and Todani type IV were associated with preoperative carcinogenesis. Multivariate logistic regression analysis showed that gallbladder wall thickness > 0.3 cm and Todani type IV were independently associated with preoperative carcinogenesis. The follow-up information of ten patients with dysplasia/carcinoma was presented.

Research conclusions
BDC is a premalignant condition. Gallbladder wall thickness > 0.3 cm and Todani type IV are independent risk factors for preoperative carcinogenesis.

Research perspectives
The two risk factors are useful for deciding on the appropriate treatment strategy, especially in asymptomatic patients.

ACKNOWLEDGEMENTS

We wish to thank our colleagues in the Department of Medical Records for their cooperation.
Matsumoto Y, Fuji i J, Itakura J, Matsuda M, Yang Y, Nobukawa B, Suda K. Pancreaticobiliary maljunction: pathophysiological and clinical aspects and the impact on biliary carcinogenesis.

REFERENCES

1 Todani T, Watanabe Y, Narusue M, Tabuchi K, Okajima K. Congenital bile duct cysts: Classification, operative procedures, and review of thirty-seven cases including cancer arising from choledochal cyst. Am J Surg 1977; 134: 263-269 [PMID: 889044 DOI: 10.1016/0002-9610(77)90359-2]

2 Todani T. Congenital choledochal dilatation: classification, clinical features, and long-term results. J Hepatobiliary Pancreat Surg 1997; 4: 276-282 [DOI: 10.1007/BF02489025]

3 Todani T, Watanabe Y, Toki A, Morotomi Y. Classification of congenital biliary cystic disease: special reference to type Ic and IVA cysts with primary ductal stricture. J Hepatobiliary Pancreat Surg 2003; 10: 340-344 [PMID: 14598133 DOI: 10.1007/s00534-002-0733-7]

4 Atkinson HD, Fischer CP, de Jong CH, Madhavan KK, Parks RW, Garden OJ. Choledochal cysts in adults and their complications. HPB (Oxford) 2003; 5: 105-110 [PMID: 18332966 DOI: 10.1080/13651820310001144]

5 Akaraviputh Y, Boonmuch W, Watanapa P, Lert-Akayamanee N, Lohsiriwat D. Surgical management of adult choledochal cysts. J Med Assoc Thai 2005; 88: 939-943 [PMID: 16241023]

6 Mahrur JY, Bozio G, Hubert C, Gigot JF. Management of congenital bile duct cysts. Dig Surg 2010; 27: 12-18 [PMID: 20357446 DOI: 10.1159/000268109]

7 Jan YY, Chen HM, Chen MF. Malignancy in choledochal cysts. Hepatogastroenterology 2000; 47: 337-340 [PMID: 10791183]

8 Xia HT, Dong JH, Yang T, Liang B, Zeng JP. Selection of the surgical approach for reoperation of adult choledochal cysts. J Gastrointest Surg 2015; 19: 290-297 [PMID: 25373703 DOI: 10.1007/s11605-014-2684-0]

9 Söreide K, Körner H, Hvanen J, Söreide JA. Bile duct cysts in adults. Br J Surg 2004; 91: 1538-1548 [PMID: 15597778 DOI: 10.1002/bjs.8185]

10 Kamisawa T, Okamoto A, Tsuruta K, Tu Y, Egawa N. Carcinoma arising in congenital choledochal cysts. Hepatogastroenterology 2008; 55: 329-332 [PMID: 18613359]

11 Morine Y, Shimada M, Takamatsu H, Araida T, Endo I, Kubota M, Toki A, Noda T, Matsumura T, Miyakawa S, Ishibashi H, Kamisawa T, Shimada H. Clinical features of pancreaticobiliary maljunction: update analysis of 2nd Japan-natioanwide survey. J Hepatobiliary Pancreat Sci 2013; 20: 472-480 [PMID: 23579990 DOI: 10.1007/s00534-013-0606-2]

12 He XD, Wang L, Liu W, Liu Q, Li BL, Hong T. The risk of carcinogenesis in congenital choledochal cyst patients: an analysis of 214 cases. Ann Hepatol 2014; 13: 819-826 [PMID: 25332269]

13 Sastry AV, Abbadesa B, Wayne MG, Steele JG, Cooperman AM. What is the incidence of biliary carcinoma in choledochal cysts, when do they develop, and how should it affect management? World J Surg 2015; 39: 487-492 [PMID: 25322698 DOI: 10.1002/wj.s.0-283-2830-2]

14 Ten Hove A, de Meijer VE, Hulscher JBF, de Kleine RHJ. Meta-analysis of risk of developing malignancy in congenital choledochal malformation. Br J Surg 2018; 105: 482-490 [PMID: 29480528 DOI: 10.1002/bjs.10795]

15 Dhupar R, Gulack B, Geller DA, Marsh JW, Gamblin TC. The changing presentation of choledochal cyst disease: an incidental diagnosis. HPB Surg 2009; 2009: 103739 [PMID: 19841688 DOI: 10.1155/2009/103739]

16 Cho MJ, Hwang S, Lee YJ, Kim KH, Ahn CS, Moon DB, Lee SK, Kim MH, Lee SS, Park DH, Lee SG. Surgical experience of 204 cases of adult choledochal cyst disease over 14 years. World J Surg 2011; 35: 1094-1102 [PMID: 21360306 DOI: 10.1007/s00268-011-0909-7]

17 Liu CL, Fan ST, Lo CM, Lam CM, Poon RT, Wong J. Choledochal cysts in adults. Arch Surg 2002; 137: 465-468 [PMID: 11926955 DOI: 10.1001/archsurg.137.4.465]

18 Tashiro S, Imaizumi T, Ohkawa H, Okada A, Katoh T, Kawaharada Y, Shimada H, Takamatsu H, Miyake H, Todani T; Committee for Registration of the Japanese Study Group on Pancreaticobiliary Maljunction. Pancreaticobiliary maljunction: retrospective and nationwide survey in Japan. J Hepatobiliary Pancreat Surg 2003; 10: 345-351 [PMID: 14598134 DOI: 10.1007/s00534-002-0741-7]

19 Irwin ST, Morison JE. Congenital cyst of the common bile duct containing stones and undergoing cancerous change. Br J Surg 1944; 32: 319-321 [DOI: 10.1002/bjs.18003212614]

20 Xia HT, Yang T, Liu Y, Liang B, Wang J, Dong JH. Proper bile duct flow, rather than radical excision, is the most critical factor determining treatment outcomes of bile duct cysts. BMC Gastroenterol 2018; 18: 129 [PMID: 30139348 DOI: 10.1186/s12876-018-0662-3]

21 Kim JW, Moon SH, Park DH, Lee SS, Seo DW, Kim MH, Lee SK. Course of choledochal cysts according to the type of treatment. Scand J Gastroenterol 2010; 45: 739-745 [PMID: 20201620 DOI: 10.3109/00365520103675054]

22 Kamisawa T, Kuruma S, Tabata T, Chiba K, Iwasaki S, Koizumi S, Kurata M, Honda G, Itoi T. Pancreaticobiliary maljunction and biliary cancer. J Gastroenterol 2015; 50: 273-279 [PMID: 25404143 DOI: 10.1007/s00535-014-1015-2]

23 Nagai M, Watanabe M, Iwase T, Yamao K, Isaji S. Clinical and genetic analysis of noncancerous and cancerous biliary epithelium in patients with pancreaticobiliary maljunction. World J Surg 2002; 26: 91-98 [PMID: 11898040 DOI: 10.1007/s00268-001-0187-4]

24 Matsumoto Y, Fujii H, Itakura J, Matsuda M, Yang Y, Nobukawa B, Suda K. Pancreaticobiliary maljunction: pathophysiological and clinical aspects and the impact on biliary carcinogenesis.
25 Yang B, House MG, Guo M, Herman JG, Clark DP. Promoter methylation profiles of tumor suppressor genes in intrahepatic and extrahepatic cholangiocarcinoma. *Mod Pathol* 2005; 18: 412-420 [PMID: 15467712 DOI: 10.1038/modpathol.3800287]

26 Soreide K, Soreide JA. Bile duct cyst as precursor to biliary tract cancer. *Ann Surg Oncol* 2007; 14: 1200-1211 [PMID: 17187167 DOI: 10.1245/s10434-006-9294-3]

27 Jordan PH Jr, Goss JA Jr, Rosenberg WR, Woods KL. Some considerations for management of choledochal cysts. *Am J Surg* 2004; 187: 790-795 [PMID: 15191877 DOI: 10.1016/j.amjsurg.2004.04.004]

28 Kim Y, Hyun JJ, Lee JM, Lee HS, Kim CD. Anomalous union of the pancreaticobiliary duct without choledochal cyst: is cholecystectomy alone sufficient? *Langenbecks Arch Surg* 2014; 388: 122-131 [PMID: 25015305 DOI: 10.1007/s00423-014-1223-5]

29 Madadi-Sanjani O, Wirth TC, Kuebler JF, Petersen C, Ure BM. Choledochal Cyst and Malignancy: A Plea for Lifelong Follow-Up. *Eur J Pediatr Surg* 2019; 29: 143-149 [PMID: 29258149 DOI: 10.1055/s-0037-1615275]

30 Wee A, Teh M, Raju GC. Clinical importance of p53 protein in gall bladder carcinoma and its precursor lesions. *J Clin Pathol* 1994; 47: 453-456 [PMID: 8027399 DOI: 10.1136/jcp.47.5.453]

31 Cerwenka H. Bile duct cyst in adults: interventional treatment, resection, or transplantation? *World J Gastroenterol* 2013; 19: 5207-5211 [PMID: 23983423 DOI: 10.3748/wjg.v19.i32.5207]

32 Tazuma S, Kajiyama G. Carcinogenesis of malignant lesions of the gall bladder. The impact of chronic inflammation and gallstones. *Langenbecks Arch Surg* 2001; 386: 224-229 [PMID: 11382326 DOI: 10.1007/s004230100220]

33 Cerwenka H. Bile duct cyst in adults: interventional treatment, resection, or transplantation? *World J Gastroenterol* 2013; 19: 5207-5211 [PMID: 23983423 DOI: 10.3748/wjg.v19.i32.5207]

34 Seretis C, Lagoudianakis E, Gemenetzis G, Seretis F, Pappas A, Gourgiotis S. Metaplastic changes in chronic cholecystitis: implications for early diagnosis and surgical intervention to prevent the gallbladder metaplasia-dysplasia-carcinoma sequence. *J Clin Med Res* 2014; 6: 26-29 [PMID: 24400028 DOI: 10.4021/jocmr1689w]

35 Benjamin IS. Biliary cystic disease: the risk of cancer. *J Hepatobiliary Pancreat Surg* 2003; 10: 355-339 [PMID: 14598132 DOI: 10.1007/s00534-002-0466-8]

36 Fumino S, Iwai N, Deguchi E, Kimura O, Ono S, Iwabuchi T. Estrogen receptor expression in anomalous arrangement of the pancreaticobiliary duct. *J Pediatr Surg* 2005; 40: 1716-1720 [PMID: 16291158 DOI: 10.1016/j.jpedsurg.2005.07.030]
