Prenatal Immune and Endocrine Modulators of Offspring’s Brain Development and Cognitive Functions Later in Life

Steven Schepanski1,2, Claudia Buss3,4, Ileana L. Hanganu-Opatz2† and Petra C. Arck1*†

1 Laboratory of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; 2 Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; 3 Institute of Medical Psychology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; 4 Development, Health, and Disease Research Program, University of California, Irvine, Orange, CA, United States

Milestones of brain development in mammals are completed before birth, which provide the prerequisite for cognitive and intellectual performances of the offspring. Prenatal challenges, such as maternal stress experience or infections, have been linked to impaired cognitive development, poor intellectual performances as well as neurodevelopmental and psychiatric disorders in the offspring later in life. Fetal microglial cells may be the target of such challenges and could be functionally modified by maternal markers. Maternal markers can cross the placenta and reach the fetus, a phenomenon commonly referred to as “vertical transfer.” These maternal markers include hormones, such as glucocorticoids, and also maternal immune cells and cytokines, all of which can be altered in response to prenatal challenges. Whilst it is difficult to discriminate between the maternal or fetal origin of glucocorticoids and cytokines in the offspring, immune cells of maternal origin—although low in frequency—can be clearly set apart from offspring’s cells in the fetal and adult brain. To date, insights into the functional role of these cells are limited, but it is emergingly recognized that these maternal microchimeric cells may affect fetal brain development, as well as post-natal cognitive performances and behavior. Moreover, the inheritance of vertically transferred cells across generations has been proposed, yielding to the presence of a microchime in individuals. Hence, it will be one of the scientific challenges in the field of neuroimmunology to identify the functional role of maternal microchimeric cells as well as the brain microchime. Maternal microchimeric cells, along with hormones and cytokines, may induce epigenetic changes in the fetal brain. Recent data underpin that brain development in response to prenatal stress challenges can be altered across several generations, independent of a genetic predisposition, supporting an epigenetic inheritance. We here discuss how fetal brain development and offspring’s cognitive functions later in life is modulated in the turnstile of prenatal challenges by introducing novel and recently emerging pathway, involving maternal hormones and immune markers.

Keywords: pregnancy, fetal brain development, prenatal infection, maternal distress, maternal microchimeric cells, cytokines, glucocorticoids (GC), epigenetic aberrations
INTRODUCTION

The vertical transmission of maternal immune and endocrine markers is increasingly recognized to modulate fetal neurodevelopment and future mental health of the offspring. Emerging evidence arising from observational studies in humans reveals that prenatal environmental challenges such as maternal distress perception and infections are associated with an impaired fetal neurodevelopment and increased risk for neurological or psychiatric disorders later in life (1–6). Insights into the underlying mechanisms and pathogenesis of prenatally programmed poor mental health are increasingly emerging. It is well known that neurodevelopment results from the interaction of genetic, epigenetic and environmental factors, through which proliferation, migration of neural progenitor cells and establishment of neuronal circuits are modulated. Disruptions of these neurodevelopmental pathways may subsequently affect future brain function, as reflected by cognitive and intellectual impairment and increased the risk for neurodevelopmental and psychiatric disorders later in life (7).

Here, we compile the currently available evidence arising from observational studies supporting the concept of a developmental origin of brain disorders. We further outline cornerstones of brain development in mice and humans and discuss the effect of prenatal challenges, primarily maternal distress and infections, on maternal immune-endocrine adaptation to pregnancy. Lastly, we introduce novel concepts on how an altered maternal immune-endocrine adaptation to pregnancy can impact on offspring’s brain development and subsequent mental health.

Developmental Origin of Neurological Dysfunctions and Psychiatric Disorders

Pregnancy is characterized by significant adaptational processes of the maternal immune and endocrine system in order to ensure its progression until term, which is required for adequate fetal development. These adaptational processes are highly responsive and vulnerable to challenges, such as high maternal stress perception or maternal infections. In this context, chronic stress states (e.g., depression or anxiety) affect approx. 10–15% of pregnant women worldwide (8). Moreover, negative life events may pose a significant threat to maternal wellbeing during pregnancy. Table 1 provides a comprehensive overview of published evidence largely arising from observational studies that reveal a significant association between various types of maternal distress perception to which the mother was exposed to at specific gestational periods and the risk for psychiatric disorders in the offspring later in life, i.e., during childhood or adolescence. Disorders observed in the offspring include autism spectrum disorder (ASD) (9), depressive symptoms (10–12), anxiety, borderline personality disorder, eating disorders (23) and attention-deficit/hyperactivity disorder (ADHD) (3, 14–20, 22, 45). Interestingly, whilst a sex-specific risk is well known for psychiatric disorders, only few studies paid attention whether prenatal stress perception skews the risk for such disorders in a sex-specific way. One study describes a sex-bias for ADHD upon prenatal stress, mirrored by a higher risk in daughters (20). Moreover, the timing of the prenatal challenge may be pivotal, as the risk for neurodevelopmental diseases appears to be differentially affected by the trimester of exposure (Table 1). In fact, surges of maternal IL-6 levels during the third trimester—which may result from distress or infections—showed a strongest impact on working memory performance in children. These behavioral changes were associated with alterations of brain regions tightly associated with working memory, as identified by functional MRI (46).

Besides high stress perception, maternal infection during pregnancy can interfere with fetal neurodevelopment and increase the risk for neurological dysfunctions and psychiatric disorders in the offspring (Table 2). Here, most of the studies focus on the distinct pathogens that have led to maternal infection during pregnancy (1, 35, 37, 42, 43). For example, maternal infection with influenza A or B virus has been associated with an increased risk for developing schizophrenia, although findings between studies are highly ambiguous and hence, hotly debated. Some studies report that influenza infection during the first trimester may trigger the risk for schizophrenia, whilst such effect could not be confirmed in studies focusing on infection at mid to late pregnancy (29–31, 47). The latter includes observations arising from Scandinavian registry analyses, where the query for prenatal influenza infection was solidly based on International Classification of Diseases (ICD)-coded diagnoses (48, 49). A recent meta-analysis confirms that evidence is insufficient to support gestational influenza as a risk factor for schizophrenia and bipolar disorder in the offspring (50). Besides these viral infections, also bacterial infections during pregnancy have been linked to an increased risk for schizophrenia in the offspring in adulthood (36, 44). For instance, 13% of all children surviving the maternal listeria monocytogenes infection were suffering from meningitis in early childhood (38) and this in return is significantly associated with developing schizophrenia and psychotic episodes later in life (39).

Milestones of Brain Development in Mice and Humans

Given that some of the observational studies summarized above highlight that the time point at which challenges occur prenatally may be crucial to trigger changes in fetal neurodevelopment, we here provide a brief summary of key aspects of fetal brain development that commence or are completed at distinct periods of gestation. We also include the brain development of mice, as mouse models have become pivotal in understanding how prenatal challenges affect neurodevelopment and brain functions later in life, as outlined in the subsequent paragraphs.

In humans and mice, brain development shows similar developmental processes (Figure 1). Noteworthy, sex-specific differences occur as a result of a faster cerebral maturation in girls (55), which leaves boys at higher risk for challenges-induced disruptions due to the greater window of vulnerability. Some developmental steps continue after birth in mice, which are already completed at birth in humans. This reduces the time window in mice during which vertically transferred maternal biological mediators can impact on offspring’s brain development, a confounder which should be considered when
TABLE 1 | Summary of human studies examining the effect of prenatal maternal distress on offspring’s mental health.

Proxy for prenatal maternal distress	Offspring’s age at outcome evaluation	Offspring’s outcome	Reference	
INCIDENCE DURING THE FIRST TRIMESTER				
Exposure to a natural disaster	Childhood-preadolescence	ASD symptoms	(9)	
Questionnaires-based evaluation of stress perception	Adolescence-adulthood	Internalizing and externalizing problems	(10–12)	
Self-reported stressful events	Birth-adulthood	No risk for psychosis	(13)	
INCIDENCE DURING THE SECOND TRIMESTER				
Exposure to a natural disaster	Childhood-preadolescence	ASD symptoms	(9)	
Questionnaires-based evaluation of depression	Childhood-adolescence	Internalizing and externalizing problems	(3, 14–18)	
		Anxiety symptoms		
		Depressive symptoms		
		Hyperactivity		
		Borderline personality disorder		
Self-reported stressful events	Childhood-adolescence	Internalizing problems	(13, 19–21)	
		Depressive symptoms		
		ADHD symptoms		
		No association to total psychiatric problems		
		No risk for psychosis		
Questionnaires-based assessment of anxiety	Child-preadolescence	Total psychiatric problems	(14, 22)	
		Internalizing and externalizing problems		
		Anxiety symptoms		
		Depressive symptoms		
		Hyperactivity		
		Saliva cortisol		
	Preadolescence	ADHD symptoms especially in boys	(21)	
INCIDENCE DURING THE THIRD TRIMESTER				
Exposure to a natural disaster	Childhood-preadolescence	ASD symptoms	(9, 23)	
		Eating disorder symptoms		
Questionnaires-based evaluation of depression	Preadolescence-adolescence	Externalizing problems	(18, 24)	
		Hyperactivity		
Self-reported stressful events	Birth-adulthood	ADHD symptoms	(13, 20, 21)	
		No association to total psychiatric problems		
		No risk for psychosis		
Questionnaires-based assessment of anxiety	Childhood-adolescence	Internalizing problems	(3, 14, 15)	
		Depressive symptoms		
		Hyperactivity		
Saliva cortisol	Preadolescence	ADHD symptoms especially in girls	(21)	
Physician-based diagnoses of depression	Childhood-adulthood	Depressive symptoms	(6, 25)	
		ADHD symptoms		
ICD-based diagnoses of anxiety	Childhood	ADHD symptoms	(6)	
INCIDENCE DURING PREGNANCY WITHOUT FURTHER TRIMESTER SPECIFICATION				
Self-reported stressful events	Childhood-adulthood	Eating disorders	(26–28)	
		ASD symptoms		
		Schizophrenia in male offspring		

discussing the biological relevance of findings on prenatal challenges in mice. Hence, when evaluating the impact of maternal markers on fetal development in mice, research endeavor should focus on milestones that are completed prior to birth, such as neurulation, neuronal migration and microglia invasion, as well as synaptogenesis and neurogenesis, the latter being largely completed at birth.

Effect of Prenatal Challenges on Maternal Immune-Endocrine Adaptation to Pregnancy

In mice and humans, healthy brain development is crucially dependent on an endocrine and immunological homeostasis of the mother-fetus dyad. Here, the balance between pro- and anti-inflammatory cytokines is crucial, as neurogenesis, migration, differentiation and apoptosis are well known to be responsive to cytokine challenges (Table 3). Besides cytokines, chemokines are also important in modulating neurodevelopment and the risk for psychiatric diseases. Since these interactions have been addressed in recent reviews (80–82), we refrain from including them here.

Similarly, glucocorticoids, which are initially largely maternally derived during gestation in the fetus, can interfere with fetal brain development in mice and humans. Moreover, additional factors such as maternal immune cells can affect fetal brain development. Prenatal stimuli and challenges, including maternal stress perception and infection, have been show to interfere with the
endocrine and immunological hemostasis in the mother. This includes the activation of the sympathetic nervous system and the hypothalamus-pituitary-adrenal (HPA) axis, subsequently leading to an excess secretion and availability of free, biologically active glucocorticoids (83, 84). Pregnancy itself is considered to be a state of “hypercortisolism,” which is an essential requirement to meet the maternal demand for increased metabolism and energy generation. The fetus is also critically dependent on the transfer of maternal glucocorticoids, which is controlled for by placental enzymes such as 11ß-Hydroxysteroid-Dehydrogenase (11ß-HSD)-1 and -2 (83, 84). Maternal glucocorticoids ensure structural and functional development of fetal organs, as the fetus is not capable of producing glucocorticoids until late in development. However, elevated glucocorticoid concentrations in the context of maternal stress may negatively impact on fetal brain development (83).

Besides the effect of prenatal challenges on maternal glucocorticoid levels, the maternal immune response may also be skewed toward inflammation in the context of stress in human pregnancy or infection (85, 86). Similarly in mice, maternal stress challenges have been shown to increase levels of pro-inflammatory cytokines in dams (87) and decrease tolerogenic markers such as CD4+ regulatory T cells (88). Similarly, prenatal infection e.g., with influenza A virus in mice leads to an increased type I response, along with an increased production of pro-inflammatory cytokines, compared to non-infected pregnant mice (89). Equally, the use of “danger signals” such as lipopolysaccharide to induce an inflammatory response in pregnant mice resulted in a collapse of immune tolerance toward the fetus (90).

Maternal cytokines, glucocorticoids as well as maternal immune cells can cross the placenta. Whilst it is difficult to determine if cytokines are maternally derived or produced by the fetus, maternal immune cells can be clearly identified in the offspring. These maternal microchimeric cells can persist in the offspring long after birth (91). Hence, opposed to the vertical transfer of maternal cytokines and glucocorticoids, maternal microchimeric cells may be capable to continuously modulate brain function in the offspring even after birth.

Impact of Altered Maternal Immune-Endocrine Adaptation to Pregnancy and Offspring’s Brain Development and Mental Health

The vertical transfer of maternal immune and endocrine markers is increasingly recognized to modulate fetal neurodevelopment and future mental health of the offspring. As mentioned above,
the impact of cytokines on fetal brain development has been well studied and it is widely accepted that milestones of physiological fetal brain development are modulated by cytokines (Table 3). Hence, exposure to an imbalanced cytokine response during fetal life may disturb fetal brain development, thereby increasing the risk for neurodevelopmental disorders (92).

In mice, fetal exposure to an altered, pro-inflammatory maternal cytokine response can affect brain morphology, mirrored by e.g., an increased pyramidal cell density or reduced neurogenesis (93–96). Similarly, prenatal maternal treatment with the immunostimulant polyinosinic:polycytidylic acid (poly I:C) to mirror some effects of a viral infection has been shown to result in reduced axonal size, myelin thickness and cortical volume of the hippocampus and amygdala in rodent offspring (97, 98). A general maternal immune activation during pregnancy has also been shown to cause presynaptic deficits in hippocampus (99), pro-inflammatory activation in hippocampal microglia (100) or an increase of microglial cell frequencies in the fetal brain (101). Hence, a wealth of studies has shown that maternal immune activation during pregnancy adversely affects
fetal brain development on multiple levels. Yet, it is difficult to comprehensively pinpoint distinct pathways, as the studies performed to date have been rather diverse with regard to the species, the gestational time point or the cause of maternal immune activation (102). In humans, a great deal of research focused on the role of maternal levels of interleukin-6 as a proxy for a prenatal inflammatory challenge. Key observations include that maternal IL-6 levels affects offspring's structural and functional connectivity already at the time of birth (103), delaying the development of sensory and cognitive processing (104).

Similar to cytokines, fetal exposure to elevated concentrations of maternal glucocorticoids has been proposed to exert long-lasting, partly sex-specific effects on offspring's brain morphology and function in rodents but also in humans. This includes decreased dendritic morphology and neuronal volume in hippocampi of both sexes in mice, whereas an increased dendritic branching has been detected only in females (105). Another study using mouse models reports an increased spine density, dendritic length and other morphological features in pyramidal neurons of prenatally stressed males, which was decreased in females (106).

In humans, elevated maternal cortisol concentrations in early pregnancy have been associated with larger amygdala volumes, an altered neural connectivity, along with affective symptoms and internalizing problems in girls (107). Interestingly, moderately elevated maternal cortisol levels in late pregnancy could be associated with greater cortical thickness primarily in frontal regions and enhanced cognitive performance in children (108). These findings point to the importance of considering the moderating role of sex and timing of exposure to glucocorticoids during pregnancy.

Since the experimental or study designs differ with regard to stress paradigms/glucocorticoids applications, time point of prenatal interventions or postnatal analyses, species and read-out parameter (109–111), it is not yet possible to comprehensively summarize the outcome of these studies beyond the statement that prenatal stress and related glucocorticoid surges induce sex- and brain area-specific differences in neuronal complexity and neurogenesis. This may subsequently lead to altered cognitive functions later in life.

Microglial cells, which are the resident macrophages of the CNS, have also been extensively studied in response to prenatal stress or prenatal glucocorticoid application. Due to their phagocytic phenotype, microglia have a functional role in remodeling, shaping and pruning of synapses (112). And indeed, prenatal corticosterone application increased the microglial density in the embryonic brain overall and promoted their amoeboid phenotype (113). Interestingly, this result was supported by isolating and culturing P1-2 microglial cells, showing that they are more likely to acquire an amoeboid phenotype (114). At postnatal age, stress increased the total glia cell number in the hippocampus of female but not male offspring (115). One study showed an increased number of microglia cells in the dentate gyrus, suggesting an adverse effect on neurogenesis and simultaneously no changes in the CA1 of the hippocampus (116, 117). The early stress exposure seems to support phagocytic microglia function in the early brain and potentially stimulate their activity throughout early murine lifetime. Their role as a potential mediator between prenatal stress and early neurobiological changes remains vague, especially in other important brain areas such like the PFC.

The barrier between periphery and the brain is an essential interface for communication between both compartments. Even though the blood brain barrier is supposed to be well established during early development, its function in stress and cytokine-related diseases is poorly investigated. However, its permeability is a key component in how maternal markers may influence the offspring's brain development. This topic is excellently described in an comprehensive review elsewhere [see review, (118)] and thus not explained here.

In Figure 2, we depict key effects of cytokines/inflammation and glucocorticoids on microglia cells and neurons in the prefrontal cortex, hippocampus and amygdala of the fetal brain. We deliberately focused on these specific brain regions due to their specific relevance for the mental health problems that have been described in the context of maternal stress and infection (122).
Schepanski et al. Developmental Origin of Cognitive Functions

FIGURE 2 Consequences of cytokine and glucocorticoid surges on distinct areas of the offspring’s brain. Maternal cytokines and glucocorticoids can transplacentally cross into the fetus and differentially affect offspring’s brain development by interfering with e.g., cell differentiation, axonal growth, and synaptic connectivity. The brain regions depicted here are of pivotal relevance for mental health due to their involvement in cognitive functions. Compared to physiological conditions, prenatal surges of maternal cytokines increase the number of neuronal connections in a subdivision of the prefrontal cortex, whereas glucocorticoids decreases them (105, 119). Additionally, prenatal glucocorticoid exposure decreases prefrontal cortical volume. In the hippocampus, an increase of cytokines is known to increase the number of microglial cells in the corn ammonis area 1 (CA1), whilst simultaneously reducing dendritic arborizations and neuronal complexity (111). Similarly, in the CA3 and dentate gyrus (DG) of the hippocampus, the microglia density increases after cytokine exposure. Also glucocorticoid surges deteriorate the neuronal complexity in CA1 and CA3 (109, 110) and have been shown to increases the number of microglia in DG. Both, cytokines and glucocorticoids can decrease total hippocampal volume, neurogenesis and synaptic connections. Prenatal cytokine surges can also decrease the amygdala volume, whereas glucocorticoids have been shown to increase the number of neurons and microglia. There is no evidence that the central nucleus (CN) of the amygdala is affected, but an increased microglia density after prenatal cytokine and glucocorticoid exposure has been detected in the lateral nucleus (LN) (120, 121). Contrarily, an increased number of neuronal connections and microglia was detectable upon glucocorticoid challenge in the basolateral nucleus (BLN).

Besides the effect of glucocorticoids and cytokines on neurogenesis, synaptogenesis, axon growth etc., these mediators can also exert indirect effects on these fundamental processes of fetal brain development, i.e., by altering the concentration or availability of neurotransmitters. The primary excitatory neurochemical in the central nervous system, glutamate, which acts through different types of metabotropic glutamate receptors (mGluR) has been investigated in a number of studies (123–125). Indeed, a variant of the Kozak sequence of exon 1 of the mGluR 3 could be associated with e.g., bipolar affective disorder (126). Moreover, a reduced expression of mGluR receptors in the hippocampus has been observed in response to prenatal stress (127–129). Brain functions such as mood, satiety, sleep, body temperature and nociception are also critically dependent on the serotonergic system, and prenatal challenges have been shown to interfere with the rate of serotonin synthesis (130), the number of serotonin positive cells (131) and its receptor density (132) in the offspring’s brain. Further, the cholinergic system is important in regulating brain function (e.g., learning and short-term memory) (133) that has been shown to be impacted in the offspring in the context of maternal stress and infection during pregnancy. Some evidence from rodent models support the notion that prenatal stress challenges interfere with the release of cholinergic factors in the offspring, such as acetylcholine (134), whereby changes of behavior have not been evaluated in this study.

Introducing a Novel Pathway in the Developmental Origin of Neurocognitive Functions and Psychiatric Disorders: the Impact of Maternal Microchimeric Cells

Maternal microchimeric cells, which are vertically transferred from mother to fetus during pregnancy and—at least in
part—during lactation (135–137), can be detected in the offspring’s brain during fetal and adult life. Hence, maternal microchimeric cells have the potential to modulate brain development and the risk for neurodevelopmental disorders. To date, no insights are available on the role of maternal microchimeric cells in brain development and their potential ability to tailor the nervous system individually. Moreover, brain structures where maternal microchimeric cells may abundantly populate have not yet been identified. However, since maternal microchimeric cells have been identified as maternal immune cells of the innate and adaptive immune response, they hold the strong potential to shape neurons by acquiring a phagocytic phenotype, akin to offspring’s microglial cells. Future studies should aim at elucidating the functional role of maternal microchimeric cells on the developing brain and to understand whether they may modulate the risk for brain-related disorders.

Given the plethora of mediators that may be functionally involved in shaping brain development and subsequent function, whilst being altered upon maternal stress, infection and other

![Diagram showing prenatal and postnatal challenges and related alterations of immune and endocrine markers.](image)
prenatal conditions (138), it is not surprising that we are far from fully understanding the developmental origin of neurocognitive functions and brain disorders. Also, it seems unlikely that single mediators determine a clear-cut “good or bad” outcome. It is more likely that the mediators we here proposed act synergistically in modulating brain development and subsequent function with an advantageous or disadvantageous outcome. Hypothetically, this synergistic cross talk could involve the expression of glucocorticoid receptor on maternal microchimeric cells or the release of cytokines from maternal microchimeric cells entering the fetal brain. The longevity of such cells would surpass the short-term effect that could result from the potential transplacental transfer of cytokines itself, as cytokines are rapidly metabolized.

Functional Impact of Vertically Transferred Maternal Markers on the Developing Brain

In response the environmental challenges, altered levels of maternal markers that cross the placental barrier may affect the developing brain by inducing epigenetic alterations of somatic cells (139–142). Persistent epigenetic differences triggered by the prenatal exposure to stress challenges in humans include increased and decreased methylation of insulin-like growth factor 2 or the glucocorticoid receptor gene (NR3C1) in brain cells, depending on the timing of exposure (143, 144). Prenatal distress has been associated with hyper- as well as demethylation of specific regulatory sites in key genes involved in stress processing, such as the glucocorticoid receptor (144–146). Similarly, findings arising from mouse models on maternal immune activation during pregnancy include the observations of a hypoacetylation of e.g., genes modulating neuronal development, synaptic transmission and immune signaling in the cortex region in exposed offspring (147), as well as sex-specific DNA hypomethylation in the hypothalamus of females (148), specifically affecting the promoter region of methyl CpG-binding protein 2, which is associated with neurodevelopmental disorders (149). Interestingly, prenatal immune activation in mice could be linked to hypermethylation of glutamic acid decarboxylase 1 and 2 in the brain (150), associated with altered behavior.

Strikingly, mouse models have revealed that alterations of brain function can be passed on to the next generations (151), suggesting that underlying epigenetic alterations triggered by prenatal challenges may be intergenerationally inherited. This notion could provide an explanation for the increasing incidence of behavioral disorders (152). Moreover, it implies that exposure of the mother to environmental challenges during pregnancy may not only directly interfere with fetal brain development, but also affects fetal primordial germ cells (153), which may subsequently interfere with brain development in the generation of grandchildren. Primordial germ cells undergo sequential epigenetic events, which are distinct from fetal somatic cells, hereby preserving the plasticity required for the generation of gametes (154–157). Once the offspring reaches adulthood and such oocytes are fertilized, the resulting zygote again undergoes significant epigenetic reprogramming, which includes the demethylation of the maternal and paternal genome, followed by a genome-wide de novo methylation (158).

Animal data indicate the possibility of transmission of behavioral traits mediated by epigenetic modifications through the maternal, as well as paternal germ line (159–162), implying the generation of oocytes and sperm may be equally affected. Intriguingly, how epigenetic changes induced by environmental challenges can be maintained throughout the multiple epigenetic reprogramming events physiologically occurring during reprogramming of primordial germ cells and the zygote is still largely elusive. Insights from mouse studies provide a first glimpse, as they reveal that certain regions of the genome, i.e., differentially methylated regions, are resistant to zygotic reprogramming (158). However, future research is required to identify pathways of intergenerational epigenetic inheritance of altered brain function in the offspring, aiming also to differentiate between de novo acquired epigenetic alterations from those inherited through the germ line. Besides such intergenerational inheritance of epigenetic marks, the possibility of transgenerational inheritance of epigenetic changes to one further generation of descent, the great-grand generation, has been considered. The primordial germ cells of the forth generation would not have been directly exposed to the environmental challenges or mediators released by the great-grandmother during pregnancy. However, to date, convincing evidence of transgenerational inheritance of epigenetic marks is only available from botany research using plants, whilst confirmation in mammals is somewhat elusive (163).

Besides such epigenetic pathways, the brain as target tissue for prenatal challenges may be affected in its electrical synchrony, which is defined as the coordinated oscillatory activity and neural firing rate between connected brain areas. These links are a prerequisite to execute cognitive tasks (164, 165). Interestingly, prenatal exposure to maternal inflammation or stress impairs oscillatory synchronicity (166), which commenced already during developmental stages in a mouse model of neuropsychiatric disorders (167–169) and affected spatial memory tasks (170, 171).

Outlook

Higher cognitive functions such as planning, self-regulation, memory, learning, and emotional processes result from a complex, tailored, and precisely shaped large-scale communication of neuronal networks (172). These neuronal networks begins to develop prenatally and disturbances of such developing neural systems during pregnancy can disrupt brain development via the vertical transfer of maternal markers, such as cytokines, glucocorticoids or microchimeric cells of the maternal immune system. Subsequently, the risk for mental disorders and diseases can increase in the offspring (Figure 3). As most of the studies are correlative, future research should aim to investigate causalities between maternal factors and children's health outcome. Clearly, adverse postnatal childhood experiences can further aggravate such cognitive and behavioral
dysfunctions (173–178) and thus, should be considered in experimental designs and observational studies.

AUTHOR CONTRIBUTIONS

SS and PA developed the structure of the review article, SS provided the first draft, which was amended by CB on aspects including prenatal cytokines and epigenetic pathways, by IH-O by insights on brain development and by PA on issues related to maternal immune adaptation to pregnancy. All authors have been involved in the interpretation of published evidence, critically revised the manuscript and gave their final approval of the version to be published.

ACKNOWLEDGMENTS

Writing of this review and reference to the authors' own work were made possible through funding by the Deutsche Forschungsgemeinschaft (KFO296, AR232/26-2 to PA and SFB 936 B5, SPP 1665 Ha4466/12-1 to IH-O) and ERC Consolidator Grant 681577 to IH-O and R01 MH-105538, 5UG3OD023349 and ERC Starting grant 639766 to CB.

REFERENCES

1. Christian MA, Samms-Vaughan M, Lee M, Bressler J, Hessabi M, Grove ML, et al. Maternal exposures associated with autism spectrum disorder in Jamaican children. *J Autism Dev Disord.* (2018) 48:2766–78. doi: 10.1007/s10803-018-3537-6

2. Dimitrova N, Turpin H, Borghini A, Harari MM, Urben S, Müller-Nix C. Perinatal stress moderates the link between early and later emotional skills in very preterm-born children: an 11-year-long longitudinal study. *Early Hum Dev.* (2018) 121:8–14. doi: 10.1016/j.earlhuma.2018.04.015

3. Glynn LM, Howland MA, Sandman CA, Davis EP, Phelan M, Baram DS, et al. Severe bereavement stress during the prenatal and childhood periods and risk of psychosis in later life: population based cohort study. *BMJ* (2014) 348:g7679. doi: 10.1136/bmj.g7679

4. Laplante DP, Hart KJ, O’Hara MW, Brunet A, and King S. Prenatal maternal stress predicts autism traits in 6½ year-old preterm-born children: an 11-year-long longitudinal study. *Early Hum Dev.* (2018) 116:84–92. doi: 10.1016/j.earlhuma.2017.11.012

5. Nolvi S, Pesonen H, Bridgett DJ, Korja R, Kataja EL, Karlsson H, et al. Infant sex moderates the effects of maternal pre-and postnatal stress on executive functioning at 8 months of age. *Infancy* (2018) 23:194–210. doi: 10.1111/inf.12206

6. Vizzini L, Popovic M, Zugna D, Vitelli B, Trevisan M, Pizzi C, et al. Maternal anxiety, depression and sleep disorders before and during pregnancy, and preschool ADHD symptoms in the NINFEA birth cohort study. *Epidemiol Psychiact Sci.* 2018;1–11. doi: 10.1016/j.serp.2018.06.008

7. Bale TL, Baram TZ, Brown AS, Goldstein JM, Insel TR, McCarthy MM, et al. Early life programming and neurodevelopmental disorders. *Bio Psychiatry* (2010) 68:314–9. doi: 10.1016/j.bios.2010.05.028

8. Fisher J, Cabral de Mello M, Patel V, Rahman A, Tran T, Holton S, et al. Prevalence and determinants of common perinatal mental disorders in women in low- and lower-middle-income countries: a systematic review. *Bull World Health Organ.* (2012) 90:139G–49G. doi: 10.2471/BILT.11.091850

9. Walder DJ, Laplante DP, Sousa-Pires A, Veru F, Brunet A, and King S. Prenatal maternal stress predicts autism traits in 6½ year-old children: Project Ice Storm. *Psychiatry Res.* (2014) 219:353–60. doi: 10.1016/j.psychres.2014.04.034

10. Betts KS, Williams GM, Najman JM, Alati R. Maternal depressive, anxious, and stress symptoms during pregnancy predict internalizing problems in adolescence. *Depress Anxiety* (2014) 31:9–18. doi: 10.1002/da.22210

11. Betts KS, Williams GM, Najman JM, Alati R. The relationship between maternal depressive, anxious, and stress symptoms during pregnancy and adult offspring behavioral and emotional problems. *Depress Anxiety* (2015) 32:82–90. doi: 10.1002/da.22272

12. Kingsbury M, Weeks M, MacKinnon N, Evans J, Mahedy L, Dykxhoorn J, et al. Stressful life events during pregnancy and offspring depression: evidence from a prospective cohort study. *J Am Acad Child Adolesc Psychiatry* (2016) 55:709–716.e2. doi: 10.1016/j.jaac.2016.05.014

13. Abel KM, Heuvelman HP, Jorgensen L, Magnusson C, Wicks S, Susser E, et al. Severe bereavement stress during the prenatal and childhood periods and risk of psychosis in later life: population based cohort study. *BMJ* (2014) 348:g7679. doi: 10.1136/bmj.g7679

14. O’Donnell KJ, Grover V, Holbrook JD, O’Connor TG. Maternal prenatal anxiety and child brain-derived neurotrophic factor (BDNF) genotype: effects on internalizing symptoms from 4 to 15 years of age. *Dev Psychopathol.* (2014) 26(4 Pt 2):1255–66. doi: 10.1017/S095457941400100X

15. O’Donnell KJ, Grover V, Barker ED, O’Connor TG. The persisting effect of maternal mood in pregnancy on childhood psychopathology. *Dev Psychopathol.* (2014) 26:393–403. doi: 10.1017/S095457941400029

16. Capron LE, Grover V, Pearson RM, Evans J, O’Connor TG, Stein A, et al. Associations of maternal and paternal antenatal mood with offspring anxiety disorder at age 18 years. *J Affect Disord.* (2015) 187:20–6. doi: 10.1016/j.jad.2015.08.012

17. Winsper C, Wolke D, Lereya T. Prospective associations between prenatal adversities and borderline personality disorder at 11–12 years. *Psychol Med.* (2015) 45:1025–37. doi: 10.1017/S0033291714002128

18. Leis JA, Heron J, Stuart EA, and Mendelson T. Associations between maternal mental health and child emotional and behavioral problems: does prenatal mental health matter? *J Abnormal Child Psychol.* (2014) 42:161–71. doi: 10.1007/s10802-013-9766-4

19. Tearne JE, Allen KL, Herbison CE, Lawrence D, Whitehouse AJ, Sawyer MG, et al. The association between prenatal environment and children’s mental health trajectories from 2 to 14 years. *Eur Child Adolesc Psychiatry* (2015) 24:1015–24. doi: 10.1007/s00787-014-0651-7

20. Zhu P, Hao JH, Tao RX, Huang K, Jiang XM, Zhu YD, et al. Sex-specific and time-dependent effects of prenatal stress on the early behavioral symptoms of ADHD: a longitudinal study in China. *Eur Child Adolesc Psychiatry* (2015) 24:1139–47. doi: 10.1007/s00787-015-0701-9

21. Isaksson J, Lindblad E, Valladares E, Hogberg U. High maternal cortisol levels during pregnancy are associated with more psychiatric symptoms in offspring at age of nine - A prospective study from Nicaragua. *J Psychiatr Res.* (2015) 71:97–102. doi: 10.1016/j.jpsychires.2015.09.016

22. Pickles A, Sharp H, Hellier J, and Hill J. Prenatal anxiety, maternal stroking in infancy, and symptoms of emotional and behavioral disorders at 3.5 years. *Eur Child Adolesc Psychiatry* (2017) 26:3235–34. doi: 10.1007/s00787-016-0886-6

23. St-Hilaire A, Steiger H, Liu A, Laplante DP, Thaler L, Magill T, et al. A prospective study of effects of prenatal maternal stress on later eating-disorder manifestations in affected offspring: preliminary indications based on the Project Ice Storm cohort. *Int J Eat Disord.* (2015) 48:512–6. doi: 10.1002/eat.22391

24. Korhonen M, Luoma I, Salmelin R, Tamminen T. Maternal depressive symptoms: associations with adolescents’ internalizing and externalizing problems and social competence. *Nord J Psychiatry* (2014) 68:323–32. doi: 10.3109/08039488.2013.838804

25. Plant DT, Pariente CM, Sharp D, Pawlby S. Maternal depression during pregnancy and offspring depression in adulthood: role of child maltreatment. *Br J Psychiatry* (2015) 207:213–20. doi: 10.1192/bjp.bp.114.156260

26. Fineberg AM, Ellman LM, Schafer CA, Maxwell SD, Shen L, Chaudhury N, et al. Fetal exposure to maternal stress and risk for schizophrenia spectrum disorders among offspring: differential influences of fetal sex. *Psychiatry Res.* (2016) 236:91–7. doi: 10.1016/j.psychres.2015.12.026
67. Rader M, Abe K, Saito H, Nishiyama N. Comparative effect of IL-2 and IL-6 on morphology of cultured hippocampal neurons from fetal rat brain. Brain Res. (1996) 715:9–16. doi: 10.1016/0006-8995(95)01291-5

68. Beck RD Jr, Wasserrfall C, Ha GK, Cushman JD, Huang Z, Atkinson MA, et al. Changes in hippocampal IL-1β, related cytokines, and neurogenesis in IL-2 deficient mice. Brain Res. (2005) 1041:223–30. doi: 10.1016/j.brainres.2005.02.010

69. Butovsky O, Ziv Y, Schwart A, Landau G, Talpalar AE, Pluchino S, et al. Microglia activated by IL-4 or IFN-γ differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci. (2006) 31:149–60. doi: 10.1016/j.mcn.2005.10.006

70. Yang J, Jiang Z, Fitzgerald DC, Ma C, Yu S, Li H, et al. Adult neural stem cells expressing IL-10 confer potent immunomodulation and remyelination in experimental autoimmune encephalitis. J Clin Invest. (2009) 119:6768–91. doi: 10.1172/JCI37914

71. Molina-Holgado E, Vela JM, Arevalo-Martín A, Guaza C. LPS/IFN-γ on morphology of cultured hippocampal neurons from fetal rat brain. Brain Res. (1996) 715:9–16. doi: 10.1016/0006-8995(95)01291-5

72. Yang J, Jiang Z, Fitzgerald DC, Ma C, Yu S, Li H, et al. Adult neural stem cells expressing IL-10 confer potent immunomodulation and remyelination in experimental autoimmune encephalitis. J Clin Invest. (2009) 119:6768–91. doi: 10.1172/JCI37914

73. Molina-Holgado E, Vela JM, Arevalo-Martín A, Guaza C. LPS/IFN-γ on morphology of cultured hippocampal neurons from fetal rat brain. Brain Res. (1996) 715:9–16. doi: 10.1016/0006-8995(95)01291-5

74. Yang J, Jiang Z, Fitzgerald DC, Ma C, Yu S, Li H, et al. Adult neural stem cells expressing IL-10 confer potent immunomodulation and remyelination in experimental autoimmune encephalitis. J Clin Invest. (2009) 119:6768–91. doi: 10.1172/JCI37914

75. Bauer S, Patterson PH. Leukemia inhibitory factor promotes neural stem cell self-renewal in the adult brain. J Neurosci. (2006) 26:12089–99. doi: 10.1523/JNEUROSCI.3047-06.2006

76. Deverman BE, Patterson PH. Cytokines and CNS development. Neuron (2009) 64:61–78. doi: 10.1016/j.neuron.2009.09.002

77. Li Z, Li K, Zhu L, Kan Q, Yang Y, Kumar P, et al. Inhibitory effect of IL-17 on neural stem cell proliferation and neural cell differentiation. BMC Immunol. (2013) 14:20. doi: 10.1186/1471-2172-14-20

78. Liu Q, Xin W, He P, Turner D, Yin J, Gan Y, et al. Interleukin-17 inhibits hippocampal neurogenesis. Sci Rep. (2014) 4:7554. doi: 10.1038/srep07554

79. Wang H, Hoeffer C. Maternal IL-17A in autism. Exp Neurol. (2018) 299(Pt A):228–40. doi: 10.1016/j.expneurol.2017.04.010

80. Guyon A. CXCL12 chemokine and its receptors as major players in the interactions between immune and nervous systems. Front Cell Neurosci. (2014) 8:65. doi: 10.3389/fncel.2014.00065

81. Stuart MJ, Singhal G, Baune BT. Systematic review of the neurobiological relevance of chemokines to psychiatric disorders. Front Cell Neurosci. (2015) 9:357. doi: 10.3389/fncel.2015.00357

82. Tran PB, Miller RJ. Chemokine receptors: signposts to brain development and disease. Nat Rev Neurosci. (2003) 4:444–55. doi: 10.1038/nrn1116

83. Solano ME, Holmes MC, Mittelstadt PR, Chapman KE, Tolosa E. Antenatal endogenous and exogenous glucocorticoids and their impact on immune ontogeny and long-term immunity. Semin Immunopathol. (2016) 38:739–63. doi: 10.1007/s00281-016-0575-0

84. Sandman CA, Davis EP, Russ C, Glynn LM. Prenatal programming of human neurological function. Int J Pept. (2011) 2011:837596. doi: 10.1155/2011/837596
newborn amygdala phenotypes and subsequent behavior at 2 years of age. *Biol Psychiatry* (2018) 83:109–19. doi: 10.1016/j.biopsych.2017.05.027

104. Graham AM, Buss C, Rasmussen JM, Rudolph MD, Demeter DV, Gilmore JH, et al. Implications of newborn amygdala connectivity for fear and cognitive development at 6-months-of-age. *Dev Cogn Neurosci.* (2016) 24:177–87. doi: 10.1016/j.dcn.2015.09.006

105. Mychasiuk R, Gibb R, Kolb B. Prenatal stress alters dendritic morphology and synaptic connectivity in the prefrontal cortex and hippocampus of developing offspring. *Synapse* (2012) 66:308–14. doi: 10.1002/syn.21512

106. Bock J, Murmu MS, Biala Y, Weinstock M, Braun K. Prenatal stress and neonatal handling induce sex-specific changes in dendritic complexity and dendritic spine density in hippocampal subregions of prepubertal rats. *Neuroscience* (2011) 193:34–43. doi: 10.1016/j.neuroscience.2011.07.048

107. Buss C, Davis EP, Shahbaba B, Pruessner JC, Head K, Sandman CA. Maternal exposure to prenatal stress. *Psychoneuroendocrinology* (2018) 109:E1132–9. doi: 10.1016/j.psyneuen.2018.12.010

108. Davis EP, Head K, Buss C, Sandman CA. Prenatal maternal cortisol concentrations predict neurodevelopment in middle childhood. *Psychoneuroendocrinology* (2017) 75:56–63. doi: 10.1016/j.psyneuen.2016.10.005

109. Lemaire V, Koehl M, Le Moual M, Abrous DN. Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. *Proc Natl Acad Sci USA.* (2000) 97:11032–7. doi: 10.1073/pnas.97.20.11032

110. Jia N, Yang K, Sun Q, Cai Q, Li H, Cheng D, et al. Prenatal stress causes dendritic atrophy of pyramidal neurons in hippocampal CA3 region by glutamate in offspring rats. *Dev Neurobiol.* (2010) 70:114–25. doi: 10.1002/dnne.20766

111. Hayashi A, Nagaoka M, Yamada K, Ichitani Y, Miake Y, Okado N. Maternal stress induces synaptic loss and developmental disabilities of offspring. *Int J Dev Neurosci.* (1998) 16:209–16. doi: 10.1016/S0736-5748(98)00028-8

112. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardiniy AR, Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. *Neuron* (2012) 74:691–705. doi: 10.1016/j.neuron.2012.03.026

113. Bittle J, Stevens HE. The role of glucocorticoid, interleukin-1beta, and antioxidants in prenatal stress effects on embryonic microglia. *J Neuroinflammation* (2018) 15:44. doi: 10.1186/s12974-018-1079-7

114. Slusarczyk J, Trojan E, Glombik K, Budziszewska B, Kubera M, Laszynski B, et al. Evidence of female-specific glial deficits in the hippocampus in a mouse model of prenatal stress. *Eur Neuropsychopharmacol.* (2011) 21:71–9. doi: 10.1016/j.euroneuro.2010.07.004

115. Biddle J, Stevens HE. The role of glucocorticoid, interleukin-1beta, and antioxidants in prenatal stress effects on embryonic microglia. *J Neuroinflammation* (2018) 15:44. doi: 10.1186/s12974-018-1079-7

116. Ambrosini A, Brescia L, Fracchia S, Brunello N, Raciagni G. Metabotropic glutamate receptors negatively coupled to adenyl cyclase inhibit N-methyl-D-aspartate receptor activity and prevent neurotoxicity in mesencephalic neurons in vitro. *Mol Pharmacol.* (1995) 47:1057–64.

117. Kandaswamy R, McQuillan A, Sharp SL, Fiorentino A, Anjorin A, Blizard RA, et al. Genetic association, mutation screening, and functional analysis of a Kozak sequence variant in the metabotropic glutamate receptor 3 gene in bipolar disorder. *JAMA Psychiatry* (2013) 70:591–8. doi: 10.1001/jamapsychiatry.2013.38

118. Lapouge C, Mairesse J, Van Camp G, Giovino A, Branchi I, Bouret S, et al. Anxiety-like behaviour and associated neurochemical and endocrinological alterations in male pups exposed to prenatal stress. *Psychoneuroendocrinology* (2012) 37:1646–58. doi: 10.1016/j.psyneuen.2012.02.010

119. Zueno AR, Mairesse J, Cosolimi P, Cinque C, Alera GS, Morley-Fletcher S, et al. Prenatal restraint stress generates two distinct behavioral and neurochemical profiles in male and female rats. *PLoS ONE* (2008) 3:e2170. doi: 10.1371/journal.pone.0002170

120. Yaka R, Salomon S, Matzner H, Weinstock M. Effect of gestational stress on acquisition of spatial memory, hippocampal LTP and synaptic proteins in juvenile male rats. *Behav Brain Res.* (2007) 179:126–32. doi: 10.1016/j.bbr.2007.01.018

121. Munenea K, Mikuni M, Ogawa T, Kitera K, Kamei K, Takigawa M, et al. Prenatal dexamethasone exposure alters brain monoamine metabolism and adrenocortical response in rat offspring. *Am J Physiol.* (1997) 273(5 Pt 2):R1669–75. doi: 10.1152/ajpregu.1997.273.5.R1669

122. Van der Hoeve DL, Leidink B, Snacke E, Martinez-Claro M, Lesch KP, Steinbusch HW, et al. Prenatal stress and subsequent exposure to chronic mild stress in rats; interdependent effects on emotional behavior and the serotonergic system. *Eur Neuropsychopharmacol.* (2014) 24:595–607. doi: 10.1016/j.euroneuro.2013.09.006

123. Ramboz S, Oosting R, Amara DA, Kung HF, Blier P, Mendelsohn M, et al. Serotonin receptor 1A knockout: an animal model of anxiety-related disorder. *Proc Natl Acad Sci USA.* (1998) 95:14476–81. doi: 10.1073/pnas.95.24.14476

124. Giocomo LM, Hasselmo ME. Nicotinic modulation of glutamatergic synaptic transmission in region CA3 of the hippocampus. *Eur J Neurosci.* (2005) 22:1349–56. doi: 10.1111/j.1460-9568.2005.04316.x

125. Day JC, Koehl M, Deroche V, Le Moual M, Maccari S. Prenatal stress enhances stress- and corticotropic-releasing factor-induced stimulation of hippocampal acetylcholine release in adult rats. *J Neurosci.* (1998) 18:1886–92. doi: 10.1523/JNEUROSCI.18-05-1886.1998

126. Nelson JL. The otherness of self: microchimerism in health and disease. *Trends Immunol.* (2012) 33:421–7. doi: 10.1016/j.ti.2012.03.002

127. Vernooy C, Caucheteux SM, Kanellopoulos-Langevin C. Bi-directional cell trafficking between mother and fetus in mouse placenta. *Placenta* (2007) 28:639–49. doi: 10.1016/j.placenta.2006.10.006

128. Stelzer IA, Thiele K, Solano ME. Maternal microchimerism: lessons learned from murine models. *J Reprod Immunol.* (2015) 108:12–25. doi: 10.1016/j.jri.2014.12.007
138. Buss C, Entringer S, Wadhwa PD. Fetaland processing of brain development: intraterine stress and susceptibility to psychopathology. Sci Signal. (2012) 5(245):pe7. doi: 10.1126/scisignal.2003406

139. Palma-Gudiel H, Córdova-Palomera A, Leza JC, Fananás L. Glucocorticoid receptor gene (NR3C1) methylation processes as mediators of early adversity in stress-related disorders causality: a critical review. Neurosci Biobehav Rev. (2015) 55:520–35. doi: 10.1016/j.neubiorev.2015.05.016

140. Bale TL. Epigenetic and transgenerational reprogramming of brain development. Nat Rev Neurosci. (2015) 16:332. doi: 10.1038/nrn3818

141. Bock C. Epigenetic biomarker development. Epigenomics (2009) 1:99–110. doi: 10.2217/epi.09.9

142. Teh Al, Pan H, Chen L, Ong ML, Dogra S, Wong J, et al. The effect of genotype and in utero environment on inter-individual variation in neonate DNA methymes. Genome Res. (2014) 24:1064–74. doi: 10.1101/gr.171439.113

143. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA. (2008) 105:17046–9. doi: 10.1073/pnas.0805650105

144. Oberlander TF, Weinberg J, Papsdorf M, Grunau R, Misri S, Drilev AM. Transgenerational inheritance. Birth Defects Res C Embryo Today (2017) 56:373–82. doi: 10.1016/j.jac.2017.05.036

145. Braithwaite EC, Kundakovic M, Ramchandani PG, Murphy SE, Champagne FA. Maternal prenatal depressive symptoms predict infant NR3C1 F and BDNF IV DNA methylation. Epigenetics (2015) 10:80–17. doi: 10.1080/15592294.2015.1039221

146. Radtke KM, Ruf M, Gunter HM, Dohrmann K, Schauer M, Meyer A, et al. Transgenerational effect of intimate partner violence on methylation in the promoter of the glucocorticoid receptor. Transl Psychiatry (2011) 1:e21. doi: 10.1038/tp.2011.21

147. Tang B, Jia H, Kast RJ, Thomas EA. Epigenetic changes at gene promoters in response to immune activation in utero. Brain Behav Immun. (2013) 30:168–75. doi: 10.1016/j.bbi.2013.01.086

148. Basal P, Li Q, Dempster EL, Mill J, Sham PC, Beyer ES, et al. Translational maternal immune activation causes epigenetic differences in adolescent mouse brain. Transl Psychiatry (2014) 4:e434. doi: 10.1038/tp.2014.80

149. Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, et al. MeCP2, a unique regulatory phase of DNA methylation in the early mammalian embryo. Nature (2012) 84:339–44. doi: 10.1058/nature10960

150. Gapp K, Jawaid A, Sarkies P, Boahce JC, Pelczar P, Pradose J, et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci. (2014) 17:667–9. doi: 10.1038/nn.3695

151. Franklin TB, Russig H, Weiss IC, Graff J, Linder N, Michalon A, et al. Epigenetic transmission of the impact of early stress across generations. Biol Psychiatry (2010) 68:408–15. doi: 10.1016/j.biopsych.2010.05.036

152. Pang S, Curran SP. Longevity and the long arm of epigenetics: acquired parental marks influence lifespan across several generations. Bioessays (2012) 34:652–4. doi: 10.1002/bies.201200496

153. Rodgers AB, Morgan CP, Leu NA, Bale TL. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc Natl Acad Sci USA. (2015) 112:13699–704. doi: 10.1073/pnas.1508347112

154. Heard E, Martienssen RA. Transgenerational epigenetic inheritance: myths and mechanisms. Cell (2014) 157:95–109. doi: 10.1016/j.cell.2014.02.045

155. Cenquizca LA, Swanson LW. Spatial organization of direct hippocampal field CA1 axonal projections to the rest of the cerebral cortex. Brain Res Rev. (2007) 56:1–26. doi: 10.1016/j.brainresrev.2007.05.002

156. MFB, Wilson MA. Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory task. PLoS Biol. (2005) 3:e402. doi: 10.1371/journal.pbio.0030402

157. Dickerson DD, Wolf AR, Bilkey DK. Abnormal long-range neural synchrony in a maternal immune activation animal model of schizophrenia. J Neurosci. (2010) 30:12424–31. doi: 10.1523/JNEUROSCI.3046-10.2010

158. Bitzenhofer SH, Sieben K, Siebert KD, Spehr M, Hangau-Opitz IL. Oscillatory activity in developing prefrontal networks results from theta-gamma-modulated synaptic inputs. Cell Rep. (2015) 11:486–97. doi: 10.1016/j.celrep.2015.03.031

159. Zheng C, Quan M, Zhang T. Decreased thalamo-cortical connectivity by alteration of neural information flow in theta oscillation in depression-model rats. J Comput Neurosci. (2012) 33:547–58. doi: 10.1007/s10871-012-0400-1

160. Quan M, Zheng C, Zhang N, Han D, Tian Y, Zhang T, et al. Impairments of behavior, information flow between thalamus and cortex, and prefrontal cortical synaptic plasticity in an animal model of depression. Brain Res Bull. (2011) 85:109–16. doi: 10.1016/j.brainresbull.2011.03.002

161. Oliveira IF, Dias NS, Correia M, Gama-Pereira F, Sardinha VM, Lima A, et al. Chronic stress disrupts neural coherence between cortico-limbic structures. Front Neural Circuits (2013) 7:10. doi: 10.3389/fncir.2013.00010

162. Jacinto LR, Reis JS, Dias NS, Cerqueira JJ, Correia JA, Sousa N. Stress affects theta activity in limbic networks and impairs novelty-induced exploration and familiarization. Front Behav Neurosci. (2013) 7:127. doi: 10.3389/fnbeh.2013.00127

163. Kirischuk S, Sinning A, Blanquie O, Yang JW, Luhmann HJ, Kilb W. Modulation of neocortical development by early neuronal activity: physiology and pathophysiology. Front Cell Neurosci. (2017) 11:379. doi: 10.3389/fncel.2017.00379

164. Biedermann SV, Meliss S, Simmons C, Bradford RE, Mullineux CA, et al. Differential effects of childhood neglect and abuse during sensitive exposure periods on male and female hippocampus. Neuroimage (2012) 56:1–26. doi: 10.1016/j.neuroimage.2011.11.001

165. Skinner MK. Role of epigenetics in developmental biology and transgenerational inheritance. Birth Defects Res C Embryo Today (2011) 93:313–20. doi: 10.1002/bdrc.20119

166. Cowley M, Oakley RJ. Retesting for the next generation. Mol Cell. (2012) 48:819–21. doi: 10.1016/j.molcel.2012.12.007

167. Hackett JA, Ylikoski JJ, Surani MA. Parallel mechanisms of epigenetic reprogramming in the germ line. Trends Genet. (2012) 28:614–7. doi: 10.1016/j.tig.2012.01.005

168. Seisenberger S, Andrews S, Krueger F, Arand J, Walter J, Santos F, et al. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell. (2012) 48:849–62. doi: 10.1016/j.molcel.2012.11.001

169. Smallwood SA, Tomizawa S, Krueger F, Ruf N, Carli N, Segonds-Pichon A, et al. Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat Genet. (2011) 43:811–4. doi: 10.1038/ng.884

170. Smith ZD, Chan MM, Mikkelson TS, Gu H, Gehrke A, Regge A, et al. The enduring effects of abuse and related adverse experiences in childhood. A convergence of evidence from neurobiology and epidemiology. Eur Arch Psychiatry Clin Neurosci. (2009) 256:174–86. doi: 10.1007/s00406-005-0624-4

171. Danese A, Moffitt TE, Harrington H, Milne BJ, Polanczyk G, Pariante CM, et al. Adverse childhood experiences and adult risk factors for age-related disease: depression, inflammation, and clustering of...
metabolic risk markers. *Arch Pediatr Adolesc Med.* (2009) 163:1135–43. doi: 10.1001/archpediatrics.2009.214

177. Dube SR, Felitti VJ, Dong M, Giles WH, Anda RF. The impact of adverse childhood experiences on health problems: evidence from four birth cohorts dating back to 1900. *Prev Med.* (2003) 37:268–77. doi: 10.1016/S0091-7435(03)00123-3

178. Heim C, Plotsky PM, Nemeroff CB. Importance of studying the contributions of early adverse experience to neurobiological findings in depression. *Neuropsychopharmacology* (2004) 29:641–8. doi: 10.1038/sj.npp.1300397

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Schepanski, Buss, Hangans-Opatz and Arck. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.