Recent Advances in the Biocontrol of Nosemosis in Honey Bees (Apis mellifera L.)

Massimo Iorizzo 1,*, Francesco Letizia 1, Sonia Ganassi 1,*, Bruno Testa 1, Sonia Petrarca 1,2, Gianluca Albanese 1,*, Dalila Di Criscio 1 and Antonio De Cristofaro 1

1 Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis snc, 86100 Campobasso, Italy; iorizzo@unimol.it (M.I.); f.letizia@studenti.unimol.it (F.L.); bruno.testa@unimol.it (B.T.); sonia_petrarca@ libero.it (S.P.); d.dicriscio@unimol.it (D.D.C.);
decrist@unimol.it (A.D.C.)

2 Conaproa, Consorzio Nazionale Produttori Apistici, 86100 Campobasso, Italy

* Correspondence: sonia.ganassi@unimol.it (S.G.); g.albanese@studenti.unimol.it (G.A.)

Abstract: Nosemosis is a disease triggered by the single-celled spore-forming fungi Nosema apis and Nosema ceranae, which can cause extensive colony losses in honey bees (Apis mellifera L.). Fumagillin is an effective antibiotic treatment to control nosemosis, but due to its toxicity, it is currently banned in many countries. Accordingly, in the beekeeping sector, there is a strong demand for alternative ecological methods that can be used for the prevention and therapeutic control of nosemosis in honey bee colonies. Numerous studies have shown that plant extracts, RNA interference (RNAi) and beneficial microbes could provide viable non-antibiotic alternatives. In this article, recent scientific advances in the biocontrol of nosemosis are summarized.

Keywords: beneficial microbes; biocontrol; nosemosis; plant extract; RNAi

1. Introduction

The microsporidia Nosema apis and Nosema ceranae are among the main pathogens of honey bees; they are spore-forming, obligate, intracellular parasites and are acknowledged as belonging to the kingdom of Fungi [1,2].

Most recently, Tokarev et al. [3] placed the Nosema species, which infects bees (Anthophila, Hymenoptera), under the new genus Vairimorpha. N. apis. This new genus was first isolated from the European honey bee Apis mellifera (Hymenoptera, Apidae), whereas N. ceranae was first reported from the Asian honey bee Apis cerana (Hymenoptera, Apidae). Currently, these two parasites have a worldwide distribution [4–16].

Both N. apis and N. ceranae are the etiological agents of nosemosis, one of the adult honey bee’s most widespread and serious diseases, causing significant economic losses to beekeepers [5,17–19]. N. apis is responsible for nosemosis type A, a disease that increases bee mortality in winter and causes a slow build-up in spring, making bees weak and reducing honey yield [20]. Field experiments demonstrated that N. apis infection is also responsible for the onset of foraging at a younger age than in healthy worker bees [21,22]. Dosselli et al. [23] demonstrated that N. apis infected worker bees quickly altered their flight behavior, reducing the foraging trip duration and increasing the number of flights. In addition, the disease causes diarrhea and fecal spots inside and outside the hive [9]. Nosemosis type C, caused by N. ceranae [24], includes a wide range of effects on honey bee physiology and behavioral changes, weakness and colony mortality increase, decreased brood-rearing capacity and honey production, all of which may contribute to colony collapse [25–31]. Moreover, N. ceranae infection may lead to the impairment of hormone production and lipid synthesis [32,33], the induction of nutritional and energetic stress [32,34–36] and the degeneration of the host’s midgut tissues [37,38]. N. ceranae infection can also induce
immune system suppression in the host [39,40]. Recently, different authors demonstrated
that both *N. apis* and *N. ceranae* inhibit apoptosis in the host cells [41–43].

N. ceranae infection also affects the neurobiology of honey bees by impairing olfac-
tory learning and memory [44] and, on a behavioral level, premature foraging in worker
bees [29,34,45], decreased homing ability [46] and weaker flight ability [47].

The acquisition of *Nosema* occurs via the fecal-oral route through the ingestion of
spores. In the midgut lumen, the spores extrude a polar filament through which the
sporoplasm is transferred into the epithelial cells and merogony begins. Shortly, meronts
can either turn into primary spores or mature spores; primary spores transmit the disease
to adjacent cells, whereas mature spores are released into the midgut lumen, from which
they can pass through the rectum into the feces or remain in the midgut to infect other
cells [5,48–51]. The spores excreted by the host through the feces may then contaminate the
nesting environment, comb, floral resources, collected pollen and water [20,26,52]. Beyond
horizontal transmission (e.g., via trophallaxis) [53,54], both *N. apis* and *N. ceranae* may be
airborne [55] and sexually transmitted [56,57]. Because of the disastrous consequences of
Nosema infections, there is a strong demand for the management of these pathogens.

The antibiotic fumagillin is a historically accepted treatment for *Nosema* infections [58].
Unfortunately, *Nosema* spp. strains exhibit variable levels of antibiotic resistance [59].
Furthermore, dysbiosis of the gut microbiota caused by antibiotics might increase the
susceptibility of honey bees to *N. ceranae* infections [60]. Although the fumagillin degrades
quickly in the hive, residues can persist, and their degradation products pose a potential
risk to human health [61–63]. Consequently, fumagillin is currently banned in many coun-
tries, including the European Union [64], due to its genotoxicity and tumorigenic properties
towards humans and toxicity to bees [65,66]. The inhibition of the enzyme methionine
aminopeptidase type 2 (MetAP2) is fumagillin’s proposed mechanism of action against
Nosema [67]. Therefore, Van den Heever et al. [66] recently screened other MetAP2 (me-
thionine aminopeptidase type 2) antagonist compounds in cage experiments and observed
a significant decrease in load of *N. ceranae* [58]. However, given the tight regulation on
the use of antibiotics in animal food, precautions should be taken in the development and
approval of novel MetAP2 inhibitors for honey bee diseases.

Currently, several chemical compounds are used for the management of *Nosema* infec-
tions. Formic acid and oxalic acid, both used for *Varroa* control, have the ability to control
Nosema [68,69]. The mode of action of these organic acids against *N. ceranae* is still unknown.
Strachecka et al. [70] reported that oxalic acid interfered with the activity of the cuticle
proteolytic defense system in *A. mellifera* workers. Indeed, a notable component of resis-
tance is the layer of active cuticle surface proteins that protect the honey bee from pathogen
invasion [71,72]. In a study conducted by Genath et al. [73], formic acid treatment was
shown to induce an alteration in the proteostasis of the ectoparasite *Varroa destructor*, with
significant dysregulation of proteins involved in mitochondrial cellular respiration. Two
other molecules, nitroimidazole compounds (metronidazole, tinidazole), completely inhibit
the proliferation of *N. ceranae* and constitute promising candidates for the establishment of
a new strategy to control *Nosema* [74].

In recent years, several studies have claimed that residues of veterinary treatments
have been reported in hive products, which is a public health concern as their ingestion can
pose a risk to human health [75–78]. In particular, it is relevant to note that the commercial
formulation of fumagillin consists of the dicyclohexylamine (DCH) salt of fumagillin in a
1:1 stoichiometric ratio with fumagillin. The stability of DCH, along with its genotoxicity
and tumorigenicity, renders it a major potential contaminant in hive products for human
consumption [63,65]. Therefore, to prevent and treat nosemosis over the years, developing
sustainable alternative methods to fumagillin and finding new natural agents active against
Nosema spp. has increased [79]. In this review, recent scientific advances on some alternative
approaches to control nosemosis are discussed.
2. Plant Extracts

In recent years, several studies have evaluated plant extracts and organic compounds, reporting their effectiveness for the biocontrol of nosemosis [80]. In Table 1, we list the plant extracts tested and their main effects on nosemosis.

Some scientific investigations have used products already available on the market. In the trial by Cilia et al. [81], the efficacy of two commercial products, ApiHerb® and Api-Bioxal® (Chemicals Laif SpA, Padua, Italy), was compared. ApiHerb® is composed of Allium sativum and Cinnamomum zeylanicum extracts. Instead, Api-Bioxal® is a registered veterinary drug against Varroa destructor containing oxalic acid dihydrate. While both treatments lowered the abundance of N. ceranae, ApiHerb® also diminished the prevalence of infected bees.

In a study by Shumkova et al. [82], the findings from the application of two plant extracts, NOZEMAT HERB® and NOZEMAT HERB PLUS® (Extract Pharma, Sofia, Bulgaria), are discussed. The accurate quantitative composition of these two herbal supplements is protected from patent law. Specifically, the authors demonstrated that both supplements significantly improved honey bee colony strength and diminished the number of N. ceranae spores by 68% in the group treated with NOZEMAT HERB®, while in the group treated with NOZEMAT HERB PLUS®, a reduction of 60% was found. Charistos et al. [83] showed that using HiveAlive™ (Advance Science Ltd., Galway, Ireland), a mixture of algae extracts, increased colony worker bee population size by 89% and decreased N. ceranae spores by 57%; the effect of this treatment is most likely due to the strengthening of the intestinal epithelium, although the authors do not refer to the survival of the honey bee and use colony mortality as one of the parameters to evaluate the strength of the colony [67]. In an investigation using Nozevit® (a natural product based on plant polyphenols), it was observed that this commercial phytopharmacological supplement could improve the health of honey bees by decreasing Nosema spores [84,85]. The same product was used by van den Heever et al. [66] in cage trials with negative results, which is why further investigations are required.

The phytotherapeutic product Protofil®, rich in flavonoids (rutin and quercetin) and volatile compounds such as eucalyptol (1.8-cineol) and chavicol-methyl-ether, prevents the growth cycle of N. apis [86,87], but in the description of this hydroalcoholic extract, the mechanism of action is not specified. Other studies have evaluated the integration of the honey bee diet with vitamins and nitrogen compounds. Dietary supplementation with an amino acid and vitamin complex called “BEEWELL AminoPlus” (Provet, Ankara, Turkey) decreases N. ceranae spores and prevents bees from immune suppression by increasing the expression of genes for immune peptides (abaecin, apidaecin, hymenoptaecin, defensin and vitellogenin) [88]. However, not always the products advertised as anti-nosemosis supplements have beneficial effects on honey bees infected with N. ceranae [67].

According to the study conducted by Botías et al. [89], three therapeutic agents (Nosestat®, Phenyl salicylate and Vitafeed Gold®) were screened to control N. ceranae infection in bee colonies and compared with the use of fumagillin. Nosestat® is a combination of iodine and formic acid and is commercialized for the treatment and prevention of nosemosis in bees. Vitafeed Gold® is a natural extract based on beet extract and molasses. None of the investigated products were effective against Nosema under the used experimental conditions. Among the natural products explored hitherto against nosemosis, there is propolis extract: a mixture of resinous substances collected by bees from various plant sources. Of the emerging effective treatments against N. ceranae, propolis extract is effective in three of the four bee species (A. cerana, A. mellifera and A. florea) [90–95].

As for the use of extracts obtained from different plant sources, many studies have been carried out with highly promising results, which are sometimes comparable to those obtained with fumagillin. Chaimanee et al. [96] demonstrated that plant extracts made from Annona squamosa, Ocimum basilicum, Psidium guajava and Syzygium jambos possess a strong anti-micronsporidian activity and inhibit the development of N. ceranae spores, with similar efficacy to fumagillin. In another recent study conducted by Özkırm et al. [97], the
results showed that a mix of herbal extract mixture containing *Rumex acetosella*, *Achillea millefolium*, *Plantago lanceolata*, *Salvia officinalis*, *Thymus vulgaris*, *Rosmarinus officinalis* and *Laurus nobilis* was more effective than fumagillin.

Table 1. List of plant species whose extracts, and relative bioactive compounds, are effective against nosemosis.

Plant Species	Extract	Bioactive Compounds	Relevant Reported Effects	Ref.
Achillea millefolium	Aqueous	terpenes and terpenoids (artemisia ketone, camphor, linalyl acetate and 1,8-cineole)	Antimicrobial activity, reduction of *Nosema* spores, improvement of honey bee survival.	[97]
Agastache foeniculum	Ethanolic	phenolic acids and flavonoids (chlorogenic acid, isoqueretin, quercetin, vanillin, acacetin, gallic acid, caffeic acid, p-OH cinnamic acid, resveratrol) essential oils	Reduction of *Nosema* spores.	[98]
Allium sativum	Ethanolic	terpenoids (andrographolide, dehydroandrographolide)	Reduction of *Nosema* spores; mitigation of gut epithelium degeneration caused by *N. ceranae*.	[100]
Andrographis paniculata	Aqueous	terpenoids (andrographolide, dehydroandrographolide)	Reduction of *Nosema* spores; improvement of *honey bee* survival.	[96]
Averrhoa squamosa	Ethanolic	steroids, terpenes, alkaloids, flavonoids, saponins, phenolic acids	Reduction of *Nosema* spores.	[99]
Aristotelia chilensis	Methanolic	phenolic acids, flavonoids (caffeic acid, apigenin and pinocembrin)	Antimicrobial and antioxidant activity, reduction of *Nosema* spore loads.	[100]
Artemisia absinthium	Ethanolic	flavonoids (isoqueretin, quercetin, rutin)	In vitro and in vivo anti-nosemosis activity.	[98,101]
Artemisia dubia	Aqueous	benzopyrones, phenolic compounds and quinic acids derivatives (coumarin, chlorogenic acid, 4,5-dicaffeoylquinic acid)	Antimicrobial and antioxidant activity, reduction of *Nosema* spore loads.	[102,103]
Aster scaber	Aqueous	benzopyrones, phenolic compounds and quinic acids derivatives (coumarin, chlorogenic acid, 4,5-dicaffeoylquinic acid)	In vitro and in vivo anti-nosemosis activity.	[102,103]
Brassica nigra	Organic	glucosinolates (glucoerucin, glucoraphanin, sinigrin) and isothiocyanates	In vivo and in vitro reduction of *N. ceranae* infections, improvement of honey bee survival.	[104]
Cryptocarya alba	Aqueous	terpenes and terpenoids (β-phellandrene, α-terpineol, eucalyptol)	Antimicrobial activity and reduction of *Nosema* spores.	[105]
Cucurbita pepo	Ethanolic	Essential Oils	Antimicrobial activity and reduction of *Nosema* spores.	[99]
Eleutherococcus senticosus	Ethanolic	saponins and flavonoids (eleutheroside B, eleutheroside E and naringenin)	Reduction of *Nosema* spores. Prophylactic effect in vivo against *Nosema* infections does not affect *Nosema* spores’ viability, improvement of honey bee survival.	[106]
Eruca sativa	Hexan	glucosinolates (glucoerucin, glucoraphanin, sinigrin)	In vivo and in vitro reduction of *N. ceranae* infections, improvement of honey bee survival.	[104]
Eucalyptus globulus	Ethanolic	essential oils	Reduction of *Nosema* spores.	[99]
Plant Species	Extract	Bioactive Compounds	Relevant Reported Effects	Ref.
---------------------	-----------	--	--	----------
Evernia prunastri	Ethanolic	phenolic acids and flavonoids (chlorogenic acid, vanilic acid, vanillin, rosmarinic acid, crisin, o-Cumaric acid and acacetin)	Reduction of *Nosema* spores.	[98]
Humulus lupulus	Ethanolic	flavonoids (isoquercitrin, rutin, epicatechin)	Reduction of *Nosema* spores.	[98]
Laurus nobilis	Ethanolic	phenolic acids and flavonoids (syringic acid, isoquercitrin, quercetin, kaempferol, rutin, epicatechin, resveratrol and monoterpenes (1,8-cineole, sabinene and linalool)	Reduction of *Nosema* spores.	[97,98,107,108]
Ocimum basilicum	Ethanolic	phenylpropanoid and phenylpropane (methyl eugenol, methyl chavicol)	Reduction of *Nosema* spores.	[96]
Origanum vulgare	Ethanolic	phenolic acids, flavonoids (isoquercitrin, rosmarinic acid, apigenin, vitexin 2-o-ramnoside, sinapic acid, resveratrol) and essential Oils	Reduction of *Nosema* spores.	[98,109]
Plantago lanceolata	Aqueous	flavonoids, alkaloids, terpenoids, phenolic compounds (caffeic acid derivatives), fatty acids, polysaccharides	Antimicrobial, antioxidant and cytotoxic activity; reduction of *Nosema* spores; improvement of honey bee survival.	[97]
Psidium guajava	Ethanolic	terpenes (limonene, β-Pinene, α-Pinene, caryophyllene)	Reduction of *Nosema* spores.	[96]
Rosmarinus officinalis	Aqueous	phenolic acid, terpenes and terpenoids (rosmarinic acid, caffeic acid, ursolic acid, betulinic acid, carnosic acid and carnosol, camphor, 1,8-cineole, α-pinene, borneol, camphene, β-pinene and limonene)	Antimicrobial and antioxidant activity, reduction of *Nosema* spores; improvement of honey bee survival.	[97]
Rosmarinus officinalis	Hydroalcoholic	essential oils	Reduction of *Nosema* spores.	[109]
Rumex acetosella	Aqueous	phenolic compounds and inorganic salt derivatives (fanic acid, binoxalate of potassium, and nitrogenous matter) terpenes and terpenoids (cis-thujone, camphor, cineole, humulene, trans-thujone, camphene, pinene, limonene, bornyl acetate and linalool)	Reduction of *Nosema* spores and improvement of honey bee survival.	[97]
Salvia officinalis	Aqueous	phenolic compounds, anthraquinones, and steroids	Antimicrobial and antioxidant activity, reduction of *Nosema* spores; improvement of honey bee survival.	[97]
Syzygium jambos	Ethanolic	phenolic compounds, anthraquinones, and steroids	Reduction of *Nosema* spores.	[96]
Thymus vulgaris	Ethanolic	essential oils terpenes and terpenoids (geraniol, linalool, gamma-terpineol, carvacrol, thymol and trans-thujan-4-ol/terpinen-4-ol, p-cymene, γ-terpine and thymol)	Reduction of *Nosema* spores.	[99]
Thymus vulgaris	Aqueous	phenolic acids (caffeic acid)	Reduction of *Nosema* spores. Antimicrobial and antioxidant activity, reduction of *Nosema* spores; improvement of honey bee survival.	[97]
Ugni molinae	Methanolic	phenolic acids (caffeic acid)	Reduction of *Nosema* spores.	[95]
Urtica dioica	Ethanolic	essential oils phenolic acids and flavonoids (chlorogenic acid, syringic acid, ferulic acid, isoquercitrin, quercetin, myricetin, naringenin, kaempferol)	Reduction of *Nosema* spores.	[99]
Vaccinium myrtillus	Ethanolic	phenolic acids (caffeic acid)	Reduction of *Nosema* spores.	[98]

Pašca et al. [98] reported that integrating the honey bee diet with different plant extracts (*Agastache foeniculum*, *Artemisia absinthium*, *Evernia prunastri*, *Humulus lupulus*, etc.),...
Laurus nobilis, Origanum vulgare, and Vaccinium myrtillus) decreased the number of Nosema spores in a similar way to the commercial product Proitofil. The authors hypothesize that the mechanism of action is attributable to the bioactive compounds, such as phenolic acids and flavonoids contained in these extracts.

Nanetti et al. [104] found that the administration of Brassica nigra defatted seed meal in the diet of honey bees reduced the mortality of bees affected by N. ceranae spores and increased insect lifespan. Laurus nobilis extract (essential oil, hydrolate and its main component) did not cause lethal effects on adult honey bees and significantly inhibited N. ceranae development [107,108]. Other studies reported that extracts of Andrographis paniculata, Origanum vulgare, Rosmarinus officinalis, and Artemisia absinthium were significantly effective in reducing the number of spores and controlling Nosema [100,101,109].

In some studies, the anti-microsporidian activity is related to specific compounds (e.g., phenolic compounds, terpenes, aromatic organic chemical compounds, polysaccharides) contained in the vegetal extracts used [91,96,110,111]. In particular, Mura et al. [91] showed that propolis extracts, containing mainly phenolic acids and flavonoids (caffeic acid, ferulic acid, ellagic acid and quercetin), increase the longevity of bees infected with N. ceranae and significantly lower the spore load. Promising results were also observed with chitosan, peptidoglycan and algal polysaccharides. These natural products promote antimicrobial activity and have been shown to stimulate the immune system, thus reducing N. apis infection in A. mellifera [95,112–115].

Klassen et al. [116] assessed the effect of the prebiotics eugenol, chitosan and naringenin and the probiotic Protexin® (Enterococcus faecium) on N. ceranae infection, colony population, honey production and winter survival using field colonies. In spring, treatments with eugenol, Protexin® and naringenin significantly decreased N. ceranae infections, increased adult bee populations and increased honey production, whilst chitosan was ineffective.

Ptaszyńska et al. [117] demonstrated the efficacy of porphyrins and biological nitrogen pigments (biochromes). Supplementing the diet with sugar syrup containing these substances showed significant efficacy, preventing the development of microsporidia and decreasing the mortality of infected bees.

Another recent study has shown that the use of acetic and p-coumaric acids in the honey bee diet was effective in the control of nosemosis [111]. The efficacy of p-coumaric acid confirms the results obtained by Bernklau et al. [110], who showed that this substance, together with other phytochemical compounds (caffeine, gallic acid and kaempferol), administered individually, reduces spore load and bee mortality.

The extracts of Artemisia dubia and Aster scaber, belonging to the Asteraceae family, rich in chlorogenic acid and coumarin, exhibited high potential anti-Nosema [102,103]. Instead, Arismendi et al. [95] attribute the significant anti-Nosema activity to extracts from leaves of Aristotelia chilensis (Elaeocarpaceae) and Ugni molinae (Myrtaceae) for their high content of flavonol compounds (rutin and myricetin).

Monoterpenes found in Cryptocarya alba (Lauraceae) leaves have reported inhibition activity on N. ceranae [105]. Similarly, feeding bees curcumin, a phenolic compound from turmeric (Curcuma longa, Zingiberaceae), reduced Nosema spp. spore loads and increased the survival of infected bees [118]. Resveratrol (a natural phytoalexin: trans-3,5,4′-trihydroxystilbene) and thymol (terpene; 2-iso propyl-5-methylphenol) appear to be capable of diminishing the level of infection, and thus the mortality of experimentally infected bees [119,120].

In a study conducted by Borges et al. [121], sulforaphane (organosulfur compound) from cruciferous vegetables, carvacrol from Origanum vulgare (Lamiaceae) oil and naringenin from citrus have been shown to cause a high reduction in Nosema spores.

Tkáč Gajger et al. [122] reported in their study that diet supplementation with the pentadecapeptide BPC 157, a well-studied gastrointestinal protective compound, has significant therapeutic effects. Their results showed that this specific oral therapy increased the strength of honey bee colonies, reduced the number of Nosema spores and limited...
midgut lesions of infected honey bees. Based on this scientific evidence, the efficacy of many plant extracts and organic compounds against nosemosis appears to be consolidated. However, the exact mechanism of inhibition by all these compounds is still unclear, and in some cases, the antimicrobial activity of plant extracts is not likely due to a single compound but rather to all of the constituents [102].

Several studies suggested that some phenolic compounds, typical secondary metabolites of many plants, can permeate the cell wall and plasma membrane of spores, destroy the plasma membrane and prevent germination of the spore [91,117]. Another recent study reports that the anti-nosemosis activity of several phenolic and monoterpene compounds is related to the inhibition of the expression of the \(N. ceranae \) virulence factor encoding the polar tube protein 3 (ptp3) mRNA of the ptp3 gene [123]. Furthermore, some compounds, such as polysaccharides, could have the potential to prevent spore adherence to host cells by producing a thin coating on bees’ ventricular walls [115]. The phytoderivative Nozevit, a preparation that includes polyphenols, vitamins, minerals and amino acids, induces the production of mucous from the epithelial layer of treated bees and additionally coats the peritrophic membrane to form a firm and resilient envelope [85]. Other studies have shown that plant extracts support immunity and improve bees’ resistance to nosemosis. In this regard, Ptaszyńska et al. [106] used \(Eleutherococcus senticosus \), belonging to the \(Araliaceae \) family and commonly known as Siberian ginseng. The extract of this plant, containing eleutheroside B, eleutheroside E and naringenin, proved effective both as a cure and in the prophylaxis of nosemosis. These adaptogenic compounds were important for supporting immunity and improving the resistance of honey bees.

Although they are not obtained from plants, we report the results obtained upon the application of some extracts from basidiomycetes fungi (Kingdom Fungi) and insects (Kingdom Animalia). Anti-\(N. ceranae \) and immune-protective effects of \(Agaricus bisporus \) and \(Agaricus blazei \) (Agaricaceae) were observed without any side effects but with immunostimulatory activity in the preventive application.

In two studies conducted by Glavinic et al. [124], the extract of these mushrooms stimulated the expression of abaecin, hymenoptaecin, apidaecin and vitellogenin genes reducing the oxidative stress caused by \(N. ceranae \) and consequently reducing \(N. ceranae \) infection [124,125].

Recently, a particular survey was performed by Kunat et al. [126] using aqueous extracts of the carton nest produced by the jet-black ant (\(Lasius fuliginosus \)) in the management of bees infected with \(N. ceranae \). This study showed that the administration of this extract in the honey bee diet greatly influenced the incidence of the disease, inhibiting the germination of \(Nosema \) spores. \(Lasius fuliginosus \) is a species of ant belonging to the subfamily Formicinae [127,128].

Based on the scientific evidence mentioned above, supplementing the honey bee diet with natural extracts would offer an alternative therapy for the control of nosemosis and help reduce the overuse of antibiotics in beekeeping.

3. RNA Interference

RNA interference (RNAi) is a post-transcriptional process triggered by the introduction of double-stranded RNA (dsRNA) as a tool that limits the transcript level by either suppressing transcription (transcriptional gene silencing [TGS]) or activating a sequence-specific RNA degradation process (post-transcriptional gene silencing [PTGS]/RNA interference [RNAi]) [129,130]. RNA interference (RNAi) is currently being explored for pesticide activity in agriculture and as a potent and specific strategy for controlling infections of parasites and pathogens in insects, including honey bees [131–138]. Several studies evidence that RNAi might be exploited to regulate \(Nosema \) gene expression within bee hosts [139–141].

Kim et al. [142] examined the control of nosemosis caused by \(N. ceranae \) using RNAi technology. Double-stranded RNA (dsRNA) for RNAi application targeted the mitosome-related genes of \(N. ceranae \). Two dsRNAs, specific to \(NCER_101456 \) and \(NCER_100157 \), showed high inhibitory effects on spore production. \(NCER_101456 \) and \(NCER_100157 \),
as predicted with FNR1 and FNR2, are ferredoxin NADPH+ reductases, which are flavin enzymes that reduce NADP+ by ferredoxin and are involved in electron transport and biodegradation [143,144]. In addition, these dsRNA treatments significantly increased the survival rate of honey bees [142].

Another recent study used RNAi to lower the expression of polar tube protein 3 (ptp3), a protein essential for sporoplasm injection and microsporidian cellular invasion [145]. He et al. [141] explored the therapeutic potential of silencing the sequences of two N. ceranae encoded spore wall protein (SWP) genes employing the RNAi-based methodology. This study revealed that the oral ingestion of dsRNAs corresponding to SWP8 and SWP12, used separately or in combination, could lead to a significant reduction in spore load, improved immunity and extended lifespan of N. ceranae infected bees.

Previous studies reported that N. ceranae infection could comprehensively and persistently suppress the immune system of the honey bee, causing a higher susceptibility to other bee diseases and senescence [39,96].

An interesting aspect of the RNAi response is that dsRNA treatment might not only result in a knockdown of specific gene expression post-transcriptionally, but it may also regulate a signal transduction cascade, useful for reducing the expression of negative regulators of the honey bee immune response [134].

Li et al. [146] reported that nkd (Naked Cuticle Gene) mRNA levels in adult bees were upregulated by N. ceranae infection (and thus, the parasite may use this mechanism to suppress host immune function) and that ingestion of double-stranded RNA (dsRNA) specific to nkd, efficiently silenced the expression of this gene.

Furthermore, it has been demonstrated that RNAi-mediated knockdown of nkd transcripts in Nosema-infected bees resulted in upregulation of the expression of several immune genes (Abaecin, Apidaecin, Defensin-1, and PGRP-S2), reduction of Nosema spore loads and extension of honey bee life span.

RNAi-mediated knockdown of the genes important for N. ceranae viability or honey bee immunoregulation may have the potential to control nosemosis.

Nevertheless, several obstacles should be considered when evaluating the feasibility of RNAi-based bee medications; in fact, oral delivery of dsRNA to honey bees may lower RNAi efficiency and stability, as digestive enzymes and gut pH can rapidly metabolize and alter the drug sequence before delivery to target mRNA [67].

Although many applications of RNAi have been thoroughly researched, no RNAi-based drugs or pesticides have been approved for agricultural use. Off-target and non-specific effects of RNAi are a major concern in agriculture that will likely slow the approval of RNAi-based treatments for apiarian medicine.

The efficiency of RNAi delivery can be influenced by several factors, which can act alone or in combination. Some of the influencing factors include the life stage of the target insect, stability of the target gene, target tissue site and double-stranded RNA (dsRNA) quantity [147]. Therefore, although the results from the use of RNAi-based therapies are very promising for controlling nosemosis infection in honey bees, more research is needed to implement these biomolecular techniques in beekeeping practice.

4. Beneficial Microbes

The gut microbiota plays a key role in the maintenance of honey bee health, contributing to growth and development, immune function and protection against pathogens [148–150]. However, the honey bee microbiota is destabilized (dysbiosis) by natural events such as immunosenescence or by various exogenous factors such as climate, diet, nutritional deficiencies, pathogens, pesticides and environmental pollution [151–158]. The functional outcomes of dysbiosis include poor host development, early mortality and increased susceptibility of bees to pathogens [149,152,159–161]. Recent studies provide experimental evidence for a link between nosemosis and dysbiosis in the honey bees’ gut [60,162–171]. Other studies suggested that management strategies based on re-establishing the microbiota are a promising path to restoring or improving the health of honey bees and that probiotics and several bacterial
metabolites may participate in the control of nosemosis, other than increase the survival of infected honey bees [172–176]. Table 2 provides a detailed list of the main effects obtained in the biocontrol of *Nosema* spp. through the use of different microbial cultures.

As shown in Table 2, the most commonly used bacteria belong to the group of lactic acid bacteria and specifically to the species related to *Bifidobacterium*, *Enterococcus* and *Pediococcus*. The action of these bacteria is expressed essentially through an antimicrobial action directed against *Nosema* [175,177] or through the stimulation of the immune system of the honey bee [178].

Maggi et al. [179] investigated the impacts of oral administration of organic acids produced by *Lactobacillus johnsonii* CRL1647 (lactic acid, phenyl-lactic acid and acetic acid) and reported a strong spore load reduction in bees. Similarly, De Piano et al. [180] highlighted a relationship between bacterial metabolites and the presence of *N. ceranae* spores, showing a significant decrease after dietary supplementation with *Lactobacillus johnsonii* AJ5.

Table 2. Overview of the main effects obtained in the biocontrol of *Nosema* using different microbial cultures.

Source	Microbial Cultures	Relevant Reported Effects	Ref.
Honey bee gastrointestinal tract	*Lactobacillus johnsonii* AJ5, *L. johnsonii* CRL1647	Oral administration of the metabolites produced by *L. johnsonii* (mainly organic acids) supplemented in syrup reduced the intensity of the disease.	[179,180]
Honey bee gastrointestinal tract	*L. johnsonii* CRL1647, *Lactobacillus kunkeei* *, *Lactobacillus salivarius* *A3iob, *Lactobacillus plantarum* *	Reduction of *Nosema* spores.	[181]
Honey bee gastrointestinal tract	*Bacillus subtilis* subsp. *Subtilis* Mori2	The dysbiosis induced by *Nosema* spp. was lessened by the probiotic *L. plantarum*.	[170]
Honey samples	*B. subtilis*	Reduction of *Nosema* incidence. Surfacin S2, a cyclic lipopeptide produced by *B. subtilis* C4 exhibited statistically significant anti-*Nosema* activity.	[184]
Honey bee larvae	*Parasaccharibacter apium*	Improvement of honey bee survival.	[175]
Honey bee hive	Multiple strains: *Bifidobacterium asteroides* DSM 20431, *Bifidobacterium coryneforme* C155, *Bifidobacterium indicum* C449, *L. kunkeei* *Dan39, *L. plantarum* *Dan91, *L. johnsonii* Dan92	Reduction of *Nosema* spores.	[187]
Table 2. Cont.

Source	Microbial Cultures	Relevant Reported Effects	Ref.
Commercial probiotic			
	Protecin® *(Enterococcus faecium)*	Reduction of *N. ceranae* incidence increased the population of adult bees and increased honey production.	[116,176]
	Bactocell® *(Pediococcus acidilactici)*	Improvement of honey bee survival.	[175]
	Levucell SB® *(Saccharomyces boulardii)*	Reduction of *Nosema* spores increased strength of colonies.	[177]
	EM® probiotic for bees: Multiple species of LAB and photosynthetic bacteria.		
	APIFLORA (Biowet, Poland) lyophilized selected *Lactobacillus* strains (Maria Curie-Skłodowska University in Lublin and University of Life Sciences in Lublin, Poland)	Antagonistic effect toward *N. ceranae* and increased bee survival.	Available at: https://biowet.pl/en/produkty/apiflora-2/ accessed on 9 March 2022
	VETAFLORA: *Lactobacillus acidophilus*		
	Lactobacillus delbruckii sub.bulgaricus	Reduction of *N. ceranae* incidence increased the population of adult bees and increased honey production.	[176]
	L. plantarum *		
	L. rhamnosus		
	B. bifidum		
	Enterococcus faecium		
	P. acidilactici (Lallemand SAS Blagnac, France)	Regulate genes involved in honey bee development (vitellogenin), immunity (serine protease 40, defensin) and possibly prevent infection by the parasite *N. ceranae*.	[178]

* Taxonomic correspondence: *Lactobacillus kunkeei* (currently *Apilactobacillus kunkeei*); *Lactobacillus plantarum* (currently *Lactiplanbacillus plantarum*); *Lactobacillus salivarius* (currently *Ligilactobacillus salivarius*).

Baffoni et al. [187] reported that probiotic treatment with *Lactobacillus* and *Bifidobacterium* strains successfully lowered the presence of *Nosema* spores in infected honey bees, thus demonstrating the effectiveness of a microorganism-based preventive strategy.

Other studies reported below have shown that other non-LAB bacteria and yeasts may have antagonistic activity against *Nosema*. For example, Sabaté et al. [184] reported that the endogenous intestinal bacterium *Bacillus subtilis* subsp. *subtilis* Mori2 enhanced queen egg-laying, resulting in more bees and reducing the occurrence of nosemosis; furthermore, they demonstrated that a surfactin, a cyclic lipopeptide synthesized by this bacterium, was also shown to reduce the development of *N. ceranae*, acting either by direct exposure to the purified spores or incorporated into the bee’s digestive tract.

Moreover, Corby-Harris et al. [186] have shown that *Parasaccharibacter apium* improves honey bee resistance to *Nosema*. L. kunkeei (currently *Apilactobacillus kunkeei*) and *L. salivarius* A3ioB (currently *Ligilactobacillus salivarius*) administered to honey bee colonies reduced *Nosema* disease. Feeding caged bees, the honey bee gut bacterium L. kunkeei reduced *N. ceranae* spore loads compared to the control with untreated bees [182].

Regarding the antimicrobial activity of the yeasts, Braglia et al. [111] proved that dietary supplementation with *Saccharomyces* sp. strain KIA1 was effective in the control of nosemosis.

Different commercial probiotic strains have also been tested as an alternative therapy against *N. ceranae* infections in honey bees. El Khoury et al. [175] demonstrated that administration of sugar syrup containing *P. apium* (PC1 sp.), *Bacillus* sp. (PC2 sp.) and two commercial probiotics, Bactocell® *(Pediococcus acidilactici)* and Levucell SB® *(Saccharomyces boulardii)* in the diet of honey bees, significant increases the probability of survival after two weeks in both curative and prophylactic treatments. The results reported in this work support that bacteria within the genus *Bacillus* and the species *P. apium* have antagonistic activity against *Nosema*, in accordance with Sabaté et al. [184] and Corby-Harris et al. [186]. The
commercial probiotic VETA® VETAFARM (L. acidophilus, L. delbrueckii sub. bulgaricus, L. plantarum, L. rhamnosus, Bifidobacterium bifidum, Enterococcus faecium), besides reducing N. ceranae proliferation, increased the survivorship of infected honey bees.

Tlack Gaiger et al. [177] found that the commercial probiotic EM® PROBIOTIC FOR BEES administration was followed by a significant reduction in the spore count of Nosema spp. in the colonies, and the strength of the colonies increased. The achievements from these aforementioned investigations have shown that some endogenous gut bacteria and commercial probiotics can sometimes have a biologically relevant antagonistic effect on the development of N. ceranae. However, some studies have indicated that arbitrary probiotic treatments may not have beneficial effects on the host [188]. Complementing the diet of honey bees with inadequate probiotics does not prevent the emergence of nosemosis, may de-regulate the insects’ immune system and could significantly increase bee mortality [189]. Andrearczyk et al. [190] noted an increase in Nosema spp. infections in young bees fed with commercial probiotic strains of Lactobacillus sp. and Saccharomyces cerevisiae. As a whole, this suggests that some generic and inappropriate probiotics are not suitable for feeding honey bees.

In a study conducted by Ptaszyńska et al. [189], a significant increase in Nosema spore counts, compared to the A. mellifera infected control, was caused by two probiotic supplements. The former consisted of Lactobacillus casei, L. plantarum, Saccharomyces cerevisiae and Rhodopseudomonas palustris, while the second consisted of L. acidophilus, L. delbrueckii and Bifidobacterium bifidum. Furthermore, probiotic supplementation accelerated the nosemosis incidence. Probably, increased acidity of the honey bees’ gut, which is a consequence of the uncontrolled growth of inadequate LABs, created conditions favorable to faster nosemosis development. In our opinion, based on all the aforementioned studies, it is clear that only the supplementation of the honey bee diet with appropriate probiotics can have a positive impact on nosemosis control by providing a long-lasting strategy to improve overall honey bee health.

5. Conclusions

We believe that the use in beekeeping practice of beneficial microbes, plant extracts and RNAi has enormous potential for biocontrol of nosemosis. However, for systematic application, further studies are needed for these techniques to become reliable and effective tools. The antimicrobial activity of plant extract is mainly due to the presence of phenolic compounds and terpenoids, which possess well-known antimicrobial activity. The effect that these substances may have on bee gut microflora and symbiotic LAB, however, is not fully known. Regarding the RNAi-based antiviral effect, the molecular mechanisms have not been thoroughly characterized, and little is known about the optimal RNAi delivery method for treating honey bees at different developmental stages. The use of appropriate probiotics, unlike synthetic or natural chemical compounds, does not adversely affect the balance of the gut microbiota and is also a technique that can help prevent and treat nosemosis as well as positively impact honey bee welfare.

Author Contributions: Conceptualization, M.I. and A.D.C.; software, F.L., B.T. and G.A.; writing—original draft preparation, M.I., S.G., D.D.C. and S.P.; writing—review and editing, M.I., F.L. and G.A.; visualization, B.T.; supervision, M.I. and A.D.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.
28. Botías, C.; Martín-Hernández, R.; Barrios, L.; Meana, A.; Higes, M. Nosema Spp. Infection and Its Negative Effects on Honey Bees (Apis mellifera Iberiensis) at the Colony Level. Vet. Res. 2013, 44, 25. [CrossRef]

29. Gobürirsch, M.; Huang, Z.Y.; Spivak, M. Physiological and Behavioral Changes in Honey Bees (Apis mellifera) Induced by Nosema ceranae Infection. PLoS ONE 2013, 8, e88165. [CrossRef] [PubMed]

30. Aufauvre, J.; Misme-Aucouturier, B.; Viguès, B.; Texier, C.; Delbac, F.; Blot, N. Transcriptome Analyses of the Honeybee Response to Nosema ceranae and Insecticides. PLoS ONE 2013, 9, e91686. [CrossRef] [PubMed]

31. Basualdo, M.; Barragán, S.; Antúnez, K. Bee Bread Increases Honeybee Haemolymph Protein and Promote Better Survival despite of Causing Higher Nosema ceranae Abundance in Honeybees. Environ. Microbiol. Rep. 2014, 6, 396–400. [CrossRef]

32. Li, W.; Chen, Y.; Cook, S.C. Chronic Nosema ceranae Infection Inflicts Comprehensive and Persistent Immunosuppression and Accelerated Lipid Loss in Host Apis mellifera Honey Bees. Int. J. Parasitol. 2018, 48, 433–444. [CrossRef] [PubMed]

33. Mayack, C.; Natsopoulou, M.; McMahon, D.P. Nosema ceranae Alters a Highly Conserved Hormonal Stress Pathway in Honeybees. Insect Mol. Biol. 2015, 24, 662–670. [CrossRef] [PubMed]

34. Mayack, C.; Naug, D. Energetic Stress in the Honeybee (Apis mellifera ceranae). J. Invertebr. Pathol. 2009, 100, 185–188. [CrossRef] [PubMed]

35. Aliferis, K.A.; Copley, T.; Jabaji, S. Gas Chromatography–Mass Spectrometry Metabolite Profiling of Worker Honey Bee (Apis mellifera L.) Hemolymph for the Study of Nosema ceranae Infection. J. Insect Physiol. 2012, 58, 1349–1359. [CrossRef] [PubMed]

36. Vidalu, C.; Panek, J.; Texier, C.; Biron, D.G.; Belzunces, L.P.; Le Gall, M.; Broussard, C.; Delbac, F.; El Alaoui, H. Differential Proteomic Analysis of Midguts from Nosema ceranae-Infected Honeybees Reveals Manipulation of Key Host Functions. J. Invertebr. Pathol. 2014, 121, 89–96. [CrossRef] [PubMed]

37. Dussaubat, C.; Brunet, J.-L.; Higes, M.; Colbourne, J.K.; Lopez, J.; Choi, J.-H.; Martín-Hernández, R.; Botías, C.; Cousin, M.; McDonnell, C. Gut Pathology and Responses to the Microsporidium Nosema ceranae in the Honey Bee Apis mellifera. PLoS ONE 2012, 7, e37017. [CrossRef]

38. Panek, J.; Paris, L.; Roriz, D.; Mone, A.; Dubuffet, A.; Delbac, F.; Diogon, M.; El Alaoui, H. Impact of the Microsporidian Nosema ceranae on the Gut Epithelium Renewal of the Honeybee, Apis mellifera. J. Invertebr. Pathol. 2018, 159, 121–128. [CrossRef]

39. Antúnez, K.; Martín-Hernández, R.; Prieto, L.; Meana, A.; Zunino, P.; Higes, M. Immune Suppression in the Honey Bee (Apis mellifera) Following Infection by Nosema ceranae (Microsporida). Environ. Microbiol. 2009, 11, 2284–2290. [CrossRef]

40. Roberts, K.E.; Hughes, W.O. Immunosenescence and Resistance to Parasite Infection in the Honey Bee. Apis mellifera. J. Invertebr. Pathol. 2014, 121, 1–6. [CrossRef] [PubMed]

41. Higes, M.; Meana, A.; Bartolomé, C.; Botías, C.; Martín-Hernández, R. Nosema ceranae (Microsporida), a Controversial 21st Century Honey Bee Pathogen. Microbiol. Environ. Rep. 2013, 5, 17–29. [CrossRef]

42. Kurze, C.; Le Conte, Y.; Dussaubat, C.; Erler, S.; Kryger, P.; Lewkowski, O.; Müller, T.; Widder, M.; Moritz, R.F. Nosema Tolerant Honeybees (Apis mellifera) Escape Parasitic Manipulation of Apoptosis. PLoS ONE 2015, 10, e0140174. [CrossRef] [PubMed]

43. Martín-Hernández, R.; Higes, M.; Sagastume, S.; Juarranz, A.; Días-Almeida, J.; Budge, G.E.; Meana, S.; Boonham, N. Microsporidium Infection Impacts the Host Cell’s Cycle and Reduces Host Cell Apoptosis. PLoS ONE 2017, 12, e0170183. [CrossRef] [PubMed]

44. Gage, S.L.; Kramer, C.; Calle, S.; Carroll, M.; Heien, M.; DeGrandi-Hoffman, G. Nosema ceranae Parasitism Impacts Olfactory Learning and Memory and Neurochemistry in Honey Bees (Apis mellifera). J. Exp. Biol. 2018, 221, jeb161489. [CrossRef] [PubMed]

45. Li, Z.; He, J.; Yu, T.; Chen, Y.; Huang, W.-F.; Huang, J.; Zhao, Y.; Nie, H.; Su, S. Transcriptional and Physiological Responses of Hypopharyngeal Glands in Honeybees (Apis mellifera L.) Infected by Nosema ceranae. Apidologie 2019, 50, 51–62. [CrossRef]

46. Wolf, S.; McMahon, D.P.; Lim, K.S.; Pull, C.D.; Clark, S.J.; Paxton, R.J.; Osborne, I.J. So near and yet so far: Harmonic Radar Reveals Reduced Homing Ability of Nosema Infected Honeybees. PLoS ONE 2014, 9, e103989. [CrossRef]

47. Dussaubat, C.; Maisonnasse, A.; Crauser, D.; Beslany, D.; Costagliola, G.; Soubeyrand, S.; Kretzchmar, A.; Le Conte, Y. Flight Behavior and Phenomone Changes Associated to Nosema ceranae Infection of Honey Bee Workers (Apis mellifera) in Field Conditions. J. Invertebr. Pathol. 2013, 113, 42–51. [CrossRef]

48. Fries, I. Infectivity and Multiplication of Nosema apis Z. in the Ventriculus of the Honey Bee. Apidologie 1988, 19, 319–328. [CrossRef]

49. De Graaf, D.; Raes, H.; Sabbe, G.; De Rycke, P.; Jacobs, F. Early Development of Nosema apis (Microspora: Nosematidae) in the Midgut Epithelium of the Honeybee (Apis mellifera). J. Invertebr. Pathol. 1994, 63, 74–81. [CrossRef]

50. Becnel, J.J.; Andreadis, T.G. Microsporidia in Insects. In The Microsporidia and Microsporidiosis; American Society for Microbiology: Washington, DC, USA, 1997; pp. 447–501.

51. Higes, M.; García-Palencia, P.; Martín-Hernández, R.; Meana, A. Experimental Infection of Apis mellifera Honeybees with Nosema ceranae (Microsporidia). J. Invertebr. Pathol. 2007, 94, 211–217. [CrossRef]

52. Graystock, P.; Goulson, D.; Hughes, W.O. Parasites in Bloom: Flowers Aid Dispersal and Transmission of Pollinator Parasites within and between Bee Species. Proc. R. Soc. B Biol. Sci. 2015, 282, 20151371. [CrossRef]

53. Smith, M.L. The Honey Bee Parasite Nosema ceranae: Transmissible via Food Exchange? PLoS ONE 2012, 7, e43319. [CrossRef] [PubMed]

54. Huang, W.-F.; Solter, L.F. Comparative Development and Tissue Tropism of Nosema apis and Nosema ceranae. J. Invertebr. Pathol. 2013, 113, 35–41. [CrossRef] [PubMed]

55. Sulborska, A.; Horecka, B.; Cebrat, M.; Kowalczyk, M.; Skrzypek, T.H.; Kazimierczak, W.; Trytek, M.; Borsuk, G. Microsporidia Nosema Spp.—Obligate Parasite Are Parasitized by Air. Sci. Rep. 2019, 9, 14376. [CrossRef]
83. Charistos, L.; Parashos, N.; Hatiaina, F. Long Term Effects of a Food Supplement HiveAlive™ on Honey Bee Colony Strength and Nosema ceranae Spore Counts. J. Apic. Res. 2015, 54, 420–426. [CrossRef]
84. Higes, M.; Gómez-Moracho, T.; Rodríguez-García, C.; Botías, C.; Martín-Hernández, R. Preliminary Effect of an Experimental Treatment with “Nozevit®”, (a Phyto-Pharmacological Preparation) for Nosema ceranae Control. J. Apic. Res. 2014, 53, 472–474. [CrossRef]
85. Gajger, I.; Kozaric, Z.; Berta, D.; Nejedli, S.; Petrinec, Z. Effect of the Herbal Preparation Nozevict on the Mid-Gut Structure of Honeybees (Apis mellifera) Infected with Nosema sp. Spores. Vet. Med. 2011, 56, 344–351. [CrossRef]
86. Chioveanu, G.; Ionescu, D.; Mardare, A. Control of Nosemosis-Treatment with Protofil. Apiacta 2004, 39, 31–38.
87. Cristina, R.T.; Kováčević, Z.; Cincović, M.; Dumitrescu, E.; Muselin, F.; Imre, K.; Militaru, D.; Mederle, N.; Radulov, I.; Hădărăgă, N. Composition and Efficacy of a Natural Phytotherapeutic Blend against Nosemosis in Honey Bees. Sustainability 2020, 12, 3868. [CrossRef]
88. Glavinic, U.; Stankovic, B.; Draskovic, V.; Stevanovic, J.; Petrovic, T.; Lakic, N.; Stanimirovic, Z. Dietary Amino Acid and Vitamin Complex Protects Honey Bee from Immunosuppression Caused by Nosema ceranae. PLoS ONE 2017, 12, e0187726. [CrossRef] [PubMed]
89. Botías, C.; Martín-Hernández, R.; Meana, A.; Higes, M. Screening Alternative Therapies to Control Nosemosis Type C in Honey Bee (Apis mellifera Iberiensis) Colonies. Res. Vet. Sci. 2013, 95, 1041–1045. [CrossRef] [PubMed]
90. Suwannapong, G.; Maksong, S.; Phainchajoen, M.; Benbow, M.; Mayack, C. Survival and Health Improvement of Nosema Infected Apis flora (Hymenoptera: Apidae) Bees after Treatment with Propolis Extract. J. Asia-Pac. Entomol. 2018, 21, 437–444. [CrossRef]
91. Mura, A.; Pusecdu, M.; Theodorou, P.; Angioni, A.; Floris, I.; Paxton, R.J.; Satta, A. Propolis Consumption Reduces Nosema ceranae Infection of European Honey Bees (Apis mellifera). Insects 2020, 11, 124. [CrossRef]
92. Naree, S.; Ponkit, R.; Chotiaroonrat, E.; Mayack, C.L.; Suwannapong, G. Propolis Extract and Chitosan Improve Health of Nosema ceranae Infected Giant Honey Bees, Apis Dorseta Fabricius, 1793. Pathogens 2021, 10, 785. [CrossRef]
93. Naree, S.; Ellis, J.D.; Benbow, M.E.; Suwannapong, G. The Use of Propolis for Preventing and Treating Nosema ceranae Infection in Western Honey Bee (Apis mellifera Linnaeaeus, 1778) Workers. J. Apic. Res. 2021, 60, 686–696. [CrossRef]
94. Yemor, T.; Phiancharoen, M.; Eric Benbow, M.; Suwannapong, G. Effects of Stingless Bee Propolis on Nosema ceranae Infected Asian Honey Bees, Apis cerana. J. Apic. Res. 2015, 54, 468–473. [CrossRef]
95. Arismendi, N.; Vargas, M.; López, M.D.; Barria, Y.; Zapata, N. Promising Antimicrobial Activity against the Honey Bee Parasite Nosema ceranae from Chinese Native Plants and Propolis. J. Apic. Res. 2018, 57, 522–535. [CrossRef]
96. Chaimanee, V.; Kasem, A.; Nuanjohn, T.; Boonmee, T.; Siangsuepchart, A.; Malaithong, W.; Sinpoo, C.; Disayathanoowat, T.; Pettis, J.S. Natural Extracts as Potential Control Agents for Nosema ceranae Infection in Honeybees, Apis mellifera. J. Invertebr. Pathol. 2021, 186, 107688. [CrossRef] [PubMed]
97. Özkrum, A.; Küçüközmen, B. Application of Herbal Essential Oil Extract Mixture for Honey Bees (Apis mellifera L.) Against Nosema ceranae and Nosema apis. J. Apic. Sci. 2021, 65, 163–175. [CrossRef]
98. Pasca, C.; Matei, I.A.; Diaconeasa, Z.; Rotaru, A.; Erler, S.; Dezminean, D.S. Biologically Active Extracts from Different Medicinal Plants Tested as Potential Additives against Honey Bees Pathogens. Antibiotics 2021, 10, 960. [CrossRef]
99. Yilmaz, F.; Kuvanci, A.; Konak, F.; Öztürk, S.; Şahin, A. The Effects of Some Essential Oils Against Nosemosis. Bee Stud. 2020, 12, 37–41. [CrossRef]
100. Chen, X.; Wang, S.; Xu, Y.; Gong, H.; Wu, Y.; Chen, Y.; Hu, F.; Zheng, H. Protective Potential of Chinese Herbal Extracts against Microsporidian Nosema ceranae, an Emergent Pathogen of Western Honey Bees, Apis mellifera L. Asia-Pac. Entomol. 2021, 24, 502–512. [CrossRef]
101. Pohorecka, K. Laboratory Studies on the Effect of Standardized Artemisia absinthium L. Extract on Nosea apis Infection in the Worker Apis mellifera. J. Sci. 2004, 48, 131–136.
102. Lee, J.K.; Kim, J.H.; Jo, M.; Rangachari, B.; Park, J.K. Anti-Nosemosis Activity of and Aqueous Extracts. J. Apic. Sci. 2018, 62, 27–38.
103. Balamurugan, R.; Park, J.K.; Lee, J.K. Anti-Nosemosis Activity of Phenolic Compounds Derived from Artemisia dubia and Aster scaber. J. Apic. Res. 2020, 1–11. [CrossRef]
104. Nanetti, A.; Uoglini, L.; Cilia, G.; Pagnotta, E.; Malaguti, L.; Cardaio, I.; Matteo, R.; Lazzeri, L. Seed Meals from Brassica nigra and Eruca sativa Control Artificial Nosema apis Infections in Apis mellifera. Microorganisms 2021, 9, 949. [CrossRef] [PubMed]
105. Bravo, J.; Carbonell, V.; Sepúlveda, B.; Delporte, C.; Valdovinos, C.E.; Martin-Hernández, R.; Higes, M. Antifungal Activity of the Essential Oil Obtained from Cryptocarya alba against Infection in Honey Bees by Nosema ceranae. J. Invertebr. Pathol. 2017, 149, 141–147. [CrossRef] [PubMed]
106. Ptaszyńska, A.A.; Załużski, D. Extracts from Eleutherococcus senticosus (Rupr. et Maxim.) Maxim. Roots: A New Hope against Honeybee Death Caused by Nosemosis. Molecules 2020, 25, 4552. [CrossRef] [PubMed]
107. Damiani, N.; Fernández, N.J.; Porrini, M.P.; Gende, L.B.; Álvarez, E.; Bufa, F.; Brasesco, C.; Maggi, M.D.; Marcangeli, J.A.; Eguaras, M.J. Laurel Leaf Extracts for Honeybee Pest and Disease Management: Antimicrobial, Microsporidial, and Acaridical Activity. Parasitol. Res. 2014, 113, 701–709. [CrossRef] [PubMed]
108. Porrini, M.P.; Fernández, N.J.; Garrido, P.M.; Gende, L.B.; Medicì, S.K.; Eguaras, M.J. In Vivo Evaluation of Antiparasitic Activity of Plant Extracts on Nosema ceranae (Microsporidia). Apidologie 2011, 42, 700–707. [CrossRef]
109. Radoi, I.; Sapcalesiu, A.; Mateescu, C.; Pop, A.; Savu, V. In Vitro Screening of Hydroalcoholic Plant Extracts to Control Nosema apis Infection. J. Biotechnol. 2014, 185, 46. [CrossRef]

110. Bernklau, E.; Bjestad, L.; Høgebøom, A.; Carlisle, A.; HS, A. Dietary Phytochemicals, Honey Bee Longevity and Pathogen Tolerance. Insects 2019, 10, 14. [CrossRef]

111. Braglia, C.; Alberoni, D.; Porro, M.P.; Garrido, P.M.; Baffoni, L.; Di Gioia, D. Screening of Dietary Ingredients against the Honey Bee Parasite Nosema ceranae. Pathogens 2021, 10, 1117. [CrossRef]

112. Saltykova, E.; Karimova, A.; Gataullin, A.; Frolova, M.; Albulov, A.; Nikolenko, A. The Effect of High-Molecular Weight Chitosans on the Antioxidant and Immune Systems of the Honeybee. Appl. Biochem. Microbiol. 2016, 52, 553–557. [CrossRef]

113. Saltykova, E.; Gaifullina, L.; Kaskinova, M.; Gataullin, A.; Matniyazov, R.; Poskryakov, A.; Nikolenko, A. Effect of Chitosan on Development of Nosema apis Microsporida in Honey Bees. Microbiologia 2018, 87, 738–743. [CrossRef] [PubMed]

114. Valizadeh, P.; Guzman-Novoa, E.; Goodwin, P.H. Effect of Immune Inducers on Nosema ceranae Infections in Honey Bees (Apis mellifera) Surviviorship and Behaviors. Insects 2020, 11, 572. [CrossRef] [PubMed]

115. Komm, M.; Vilea, L.; Delbac, F.; Michaud, P.; Laroche, C.; Rozier, D.; El Alaoui, H.; Diogen, M. Antimicrobial Activity of Chitosan on Enterobacteria. Carbohydr. Polym. 2015, 133, 213–220. [CrossRef]

116. Klassen, S.S.; VanBlyderveen, W.; Eccles, L.; Kelly, P.G.; Borges, D.; Goodwin, P.H.; Petukhova, T.; Wang, Q.; Guzman-Novoa, E. Nosema ceranae Infections in Honey Bees (Apis mellifera) Treated with Pre/Probiotics and Impacts on Colonies in the Field. Vet. Sci. 2021, 8, 107. [CrossRef] [PubMed]

117. Ptaszyńska, A.A.; Trytek, M.; Borsuk, G.; Buczek, K.; Rybicka-Jasińska, K.; Gryko, D. Polyphenolics of Apiaceae Plant Extracts. J. Med. Plants Res. 2011, 5, 1043–1048. [CrossRef]

118. Strachecka, A.J.; Olszewski, K.; Paleolog, J. Curcumin Stimulates Biochemical Mechanisms of Apis mellifera Resistance and Extends the Apian Life-Span. J. Apic. Sci. 2015, 59, 129–141. [CrossRef]

119. Maistrello, L.; Lodesani, M.; Costa, C.; Leonardi, F.; Marani, G.; Caldon, M.; Mutinelli, F.; Granato, A. Screening of Natural Compounds for the Control of Nosema Disease in Honeybees (Apis mellifera). Apidologie 2008, 39, 436–445. [CrossRef]

120. Costa, C.; Lodesani, M.; Maistrello, L. Effect of Thymol and Rosmarinol Administered in Canola Oil or Syrup on the Development of Nosema ceranae and on the Longevity of Honeybees (Apis mellifera) in Laboratory Conditions. Apidologie 2010, 41, 141–150. [CrossRef]

121. Borges, D.; Guzman-Novoa, E.; Goodwin, P.H. Control of the Microsporidian Parasite Nosema ceranae in Honey Bees (Apis mellifera) Using Nutraceuticals and Immuno-Stimulatory Compounds. PLoS ONE 2020, 15, e0227484. [CrossRef] [PubMed]

122. Tlak Gajger, I.; Ribarič, J.; Smodiš Škerl, M.; Vlajnić, J.; Sikirić, P. Stable Gastric Pentadecapeptide BPC 157 in Honeybee (Apis mellifera) Therapy, to Control Nosema ceranae Invasions in Apiary Conditions. J. Vet. Pharmacol. Ther. 2018, 41, 614–621. [CrossRef]

123. Go, E.B.; Kim, J.-G.; Park, H.-G.; Kang, E.-J.; Kim, H.-K.; Choi, Y.-S.; Moon, J.-H. Screening of Anti-Nosemosis Active Compounds Based on the Structure-Activity Correlation. J. Asia-Pac. Entomol. 2021, 24, 606–613. [CrossRef]

124. Glavinic, U.; Rajkovic, M.; Vunduk, J.; Vojnović, B.; Stevanovic, J.; Milenkovic, I.; Stanimirovic, Z. Effects of Agaricus bisporus Mushroom Extract on Honey Bees Infected with Nosema ceranae. Insects 2021, 12, 915. [CrossRef] [PubMed]

125. Glavinic, U.; Stevanovic, J.; Ristanic, M.; Rajkovic, M.; Davitkov, D.; Lakic, N.; Stanimirovic, Z. Potential of Fumagillin and Agaricus blazei Mushroom Extract to Reduce Nosema ceranae in Honey Bees. Insects 2021, 12, 282. [CrossRef] [PubMed]

126. Kunat, M.; Wagner, G.; Staniec, B.; Jaszek, M.; Matuszewska, A.; Stefaniuk, D.; Ptaszyńska, A. Aqueous Extracts of Jet-Black Ant Lasius fuliginosus Nests for Controlling Nosemosis, a Disease of Honeybees Caused by Fungi of the Genus Nosema. Eur. J. Zoool. 2020, 88, 770–786. [CrossRef]

127. Tragust, S. External Immune Defence in Ant Societies (Hymenoptera: Formicidae): The Role of Antimicrobial Venom and Metapleural Gland Secretion. Myrmecol. News 2016, 23, 119–128. [CrossRef]

128. Bos, N.; Kankaanpää-Kukkonen, V.; Freitak, D.; Stucki, D.; Sundström, L. Comparison of Twelve Ant Species and Their Susceptibility to Fungal Infection. Insects 2019, 10, 271. [CrossRef] [PubMed]

129. Agrawal, N.; Dasaradhi, P.; Mohammad, A.; Malhotra, P.; Bhatnagar, R.K.; Mukherjee, S.K. RNA Interference: Biology, Mechanism, and Applications. Microbiol. Mol. Biol. Rev. 2003, 67, 657–685. [CrossRef] [PubMed]

130. Hannon, G.J. RNA Interference. Nature 2002, 418, 244–251. [CrossRef]

131. Mamta, B.; Rajam, M. RNAi Technology: A New Platform for Crop Pest Control. Physiol. Mol. Biol. Plants 2017, 23, 487–501. [CrossRef]

132. Vogel, E.; Santos, D.; Mingels, L.; Verdonckt, T.-W.; Broeck, J.V. RNA Interference in Insects: Protecting Beneficials and Controlling Pests. Front. Physiol. 2019, 9, 1912. [CrossRef]

133. Zhang, J.; Khan, S.A.; Heckel, D.G.; Bock, R. Next-Generation Insect-Resistant Plants: RNAi-Mediated Crop Protection. Trends Biotechnol. 2017, 35, 871–882. [CrossRef]

134. Brutscher, L.M.; Flenniken, M.L. RNAi and Antiviral Defense in the Honey Bee. J. Immunol. Res. 2015, 2015, 941897. [CrossRef] [PubMed]

135. Grozinger, C.M.; Robinson, G.E. The Power and Promise of Applying Genomics to Honey Bee Health. Curr. Opin. Insect Sci. 2015, 10, 124–132. [CrossRef] [PubMed]
136. Yu, N.; Christiaens, O.; Liu, J.; Niu, J.; Cappelle, K.; Caccia, S.; Huvenne, H.; Smagghe, G. Delivery of DsRNA for RNAi in Insects: An Overview and Future Directions. Insect Sci. 2013, 20, 4–14. [CrossRef] [PubMed]

137. Christiaens, O.; Whyard, S.; Vélez, A.M.; Smagghe, G. Double-Stranded RNA Technology to Control Insect Pests: Current Status and Challenges. Front. Plant Sci. 2020, 11, 451. [CrossRef]

138. Joga, M.R.; Zott, M.J.; Smagghe, G.; Christiaens, O. RNAi Efficiency, Systemic Properties, and Novel Delivery Methods for Pest Insect Control: What We Know so Far. Front. Physiol. 2017, 8, 553. [CrossRef]

139. Paldi, N.; Glück, E.; Oliva, M.; Zilberberg, Y.; Aubin, L.; Pettis, J.; Chen, Y.; Evans, J.D. Effective Gene Silencing in a Microsporidian Parasite Associated with Honeybee (Apis mellifera) Colony Declines. Appl. Environ. Microbiol. 2010, 76, 5960–5964. [CrossRef]

140. Evans, J.D.; Huang, Q. Interactions Among Host–Parasite MicroRNAs During Nosema ceranae Proliferation in Apis mellifera. Front. Microbiol. 2018, 9, 698. [CrossRef]

141. He, N.; Zhang, Y.; Duan, X.L.; Li, J.H.; Huang, W.-F.; Evans, J.D.; DeGrandi-Hoffman, G.; Chen, Y.P.; Huang, S.K. RNA Interference-Mediated Knockdown of Genes Encoding Spore Wall Proteins Confers Protection against Nosema ceranae Infection in the European Honey Bee, Apis mellifera. Microorganisms 2021, 9, 505. [CrossRef]

142. Kim, I.; Kim, D.; Gwak, W.; Woo, S. Increased Survival of the Honey Bee Apis mellifera Infected with the Microsporidian Nosema ceranae by Effective Gene Silencing. Arch. Insect Biochem. Physiol. 2020, 105, e21734. [CrossRef]

143. Balconi, E.; Pennati, A.; Crobu, D.; Pandini, V.; Cerutti, R.; Zanetti, G.; Aliverti, A. The Ferredoxin-NADP+ Reductase/Ferredoxin Electron Transfer System of Plasmodium falciparum. FEBS J. 2009, 276, 3825–3836. [CrossRef]

144. Carrillo, N.; Ceccarelli, E.A. Open Questions in Ferredoxin-NADP+ Reductase Catalytic Mechanism. Eur. J. Biochem. 2003, 270, 1900–1915. [CrossRef] [PubMed]

145. Rodriguez-Garcia, C.; Evans, J.D.; Li, W.; Branchicella, B.; Li, J.H.; Heereman, M.C.; Bannemke, O.; Zhao, Y.; Hamilton, M.; Higes, M. Nosemosis Control in European Honey Bees, Apis mellifera, by Silencing the Gene Encoding Nosema ceranae Polar Tube Protein 3. J. Exp. Biol. 2018, 221, jeb184606. [CrossRef] [PubMed]

146. Li, W.; Evans, J.D.; Huang, Q.; Rodriguez-Garcia, C.; Liu, J.; Hamilton, M.; Grozinger, C.M.; Webster, T.C.; Su, S.; Chen, Y.P. Silencing the Honey Bee (Apis mellifera) Naked Cuticle Gene (Nkd) Improves Host Immune Function and Reduces Nosema ceranae Infections. Appl. Environ. Microbiol. 2016, 82, 6779–6787. [CrossRef] [PubMed]

147. Yang, D.; Xu, X.; Zhao, H.; Yang, S.; Wang, X.; Zhao, D.; Diao, Q.; Hou, C. Diverse Factors Affecting Efficiency of RNAi in Honey Bee Viruses. Front. Genet. 2018, 9, 384. [CrossRef] [PubMed]

148. Raymann, K.; Moran, N.A. The Role of the Gut Microbiome in Health and Disease of Adult Honey Bee Workers. Curr. Opin. Insect Sci. 2018, 26, 97–104. [CrossRef] [PubMed]

149. Hamdi, C.; Balloi, A.; Essanaa, J.; Crotti, E.; Gonella, E.; Raddadi, N.; Ricci, I.; Boudabous, A.; Borin, S.; Manino, A. Gut Microbiome Dysbiosis and Honeybee Health. J. Appl. Entomol. 2018, 142, 685–698. [CrossRef] [PubMed]

150. Kešnerová, L.; Emery, O.; Troilo, M.; Liberti, J.; Erskos, B.; Engel, P. Gut Microbiota Structure Differs between Honeybees in Winter and Summer. ISME J. 2020, 14, 801–814. [CrossRef] [PubMed]

151. Kakumanu, M.L.; Reeves, A.M.; Anderson, T.D.; Rodrigues, R.R.; Williams, M.A. Honey Bee Gut Microbiome Is Altered by In-Hive Pesticide Exposures. Front. Microbiol. 2016, 7, 1255. [CrossRef] [PubMed]

152. Hubert, J.; Bicianova, M.; Ledvinka, O.; Kamler, M.; Lester, P.J.; Nesvorna, M.; Kepecky, J.; Erban, T. Changes in the Bacteriome of Honey Bees Associated with the Parasite Varroa destructor, and Pathogens Nosema and Lotanaria passim. Microb. Ecol. 2017, 73, 685–698. [CrossRef] [PubMed]

153. Dolezal, A.G.; Toth, A.L. Feedbacks between Nutrition and Disease in Honey Bee Health. Curr. Opin. Insect Sci. 2018, 26, 114–119. [CrossRef]

154. Anderson, K.E.; Ricigliano, V.A. Honey Bee Gut Dysbiosis: A Novel Context of Disease Ecology. Vectors Med. Vet. Entomol. Soc. Insects 2017, 22, 125–132. [CrossRef]

155. Maes, P.W.; Floyd, A.S.; Mott, B.M.; Anderson, K.E. Overwintering Honey Bee Colonies: Effect of Worker Age and Climate on the Hindgut Microbiota. Insects 2021, 12, 224. [CrossRef] [PubMed]

156. Raymann, K.; Shaffer, Z.; Moran, N.A. Antibiotic Exposure Perturbs Gut Microbiota and Elevates Mortality in Honeybees. PLoS Biol. 2017, 15, e2001861. [CrossRef] [PubMed]

157. Kešnerová, L.; Emery, O.; Troilo, M.; Liberti, J.; Erskos, B.; Engel, P. Gut Microbiota Structure Differs between Honeybees in Winter and Summer. ISME J. 2020, 14, 801–814. [CrossRef] [PubMed]

158. Kakumanu, M.L.; Reeves, A.M.; Anderson, T.D.; Rodrigues, R.R.; Williams, M.A. Honey Bee Gut Microbiome Is Altered by In-Hive Pesticide Exposures. Front. Microbiol. 2016, 7, 1255. [CrossRef] [PubMed]

159. Hubert, J.; Bicianova, M.; Ledvinka, O.; Kamler, M.; Lester, P.J.; Nesvorna, M.; Kepecky, J.; Erban, T. Changes in the Bacteriome of Honey Bees Associated with the Parasite Varroa destructor, and Pathogens Nosema and Lotanaria passim. Microb. Ecol. 2017, 73, 685–698. [CrossRef] [PubMed]

160. Ricigliano, V.A.; Williams, S.T.; Oliver, R. Effects of Different Artificial Diets on Commercial Honey Bee Colony Performance, Health Biomarkers, and Gut Microbiota. BMC Vet. Res. 2022, 18, 52. [CrossRef] [PubMed]

161. Daisley, B.A.; Chmiel, J.A.; Pitek, A.P.; Thompson, G.J.; Reid, G. Missing Microbes in Bees: How Systematic Depletion of Key Symbionts Erodes Immunity. Trends Microbiol. 2020, 28, 1010–1021. [CrossRef]

162. Cariveau, D.P.; Elijah Powell, J.; Koch, H.; Winfree, R.; Moran, N.A. Variation in Gut Microbial Communities and Its Association with Pathogen Infection in Wild Bumble Bees (Bombus). ISME J. 2014, 8, 2369–2379. [CrossRef]

163. Dosch, C.; Manigk, A.; Streicher, T.; Tehel, A.; Paxton, R.J.; Tragust, S. The Gut Microbiota Can Provide Viral Tolerance in the Honey Bee. Microorganisms 2021, 9, 871. [CrossRef]

164. Rouze, R.; Moné, À.; Delbac, F.; Belzunces, L.; Blot, N. The Honeybee Gut Microbiota Is Altered after Chronic Exposure to Different Families of Insecticides and Infection by Nosema ceranae. Microbes Environ. 2019, 34, 226–233. [CrossRef]
163. Maes, P.W.; Rodrigues, P.A.; Oliver, R.; Mott, B.M.; Anderson, K.E. Diet-related Gut Bacterial Dysbiosis Correlates with Impaired Development, Increased Mortality and Nosema Disease in the Honeybee (Apis mellifera). Mol. Ecol. 2016, 25, 5439–5450. [CrossRef] [PubMed]

164. Rubanov, A.; Russell, K.A.; Rothman, J.A.; Nieh, J.C.; McFrederick, Q.S. Intensity of Nosema ceranae Infection Is Associated with Specific Honey Bee Gut Bacteria and Weakly Associated with Gut Microbiome Structure. Sci. Rep. 2019, 9, 3820. [CrossRef] [PubMed]

165. Schwarz, R.S.; Moran, N.A.; Evans, J.D. Early Gut Colonizers Shape Parasite Susceptibility and Microbiota Composition in Honey Bee Workers. Proc. Natl. Acad. Sci. USA 2016, 113, 9345–9350. [CrossRef] [PubMed]

166. Paris, L.; Peghaire, E.; Mone, A.; Diogon, M.; Delbac, F.; El Alaoui, H. Honeybee Gut Microbiota Dysbiosis in Pesticide/Parasite Co-Exposures Is Mainly Induced by Nosema ceranae. J. Invertebr. Pathol. 2020, 172, 107348. [CrossRef] [PubMed]

167. Castelli, L.; Branchiccela, B.; Garrodo, M.; Invernizzi, C.; Porrini, M.; Romero, H.; Santos, E.; Zunino, P.; Antunez, K. Impact of Nutritional Stress on Honeybee Gut Microbiota, Immunity, and Nosema ceranae Infection. Microb. Ecol. 2020, 80, 908–919. [CrossRef]

168. Tauber, J.P.; Nguyen, V.; Lopez, D.; Evans, J.D. Effects of a Resident Yeast from the Honeybee Gut on Immunity, Microbiota, and Nosema Disease. Insects 2019, 10, 296. [CrossRef]

169. Ptaszyńska, A.A.; Borsuk, G.; Mułęko, W.; Wilk, J. Impact of Vertebrate Probiotics on Honeybee Yeast Microbiota and on the Course of Nosemosis. Med. Wetter. 2016, 72, 430–434. [CrossRef]

170. Díaz, T.; del-Val, E.; Ayala, R.; Larsen, J. Alterations in Honey Bee Gut Microorganisms Caused by Nosema spp. and Pest Control Methods. Pest Manag. Sci. 2019, 75, 835–843. [CrossRef]

171. Panjad, P.; Yongsawas, R.; Sinpoo, C.; Pakwan, C.; Subta, P.; Krongdang, S.; In-On, A.; Chomdej, S.; Chantawannakul, P.; Disayathanawoot, T. Impact of Nosema Disease and American Foulbrood on Gut Bacterial Communities of Honeybees Apis mellifera. Insects 2021, 12, 525. [CrossRef]

172. Crotti, E.; Ballo, A.; Hamdi, C.; Sansonno, L.; Marzorati, M.; Gonella, E.; Favia, G.; Cherif, A.; Bandi, C.; Alma, A. Microbial Symbionts: A Resource for the Management of Insect-related Problems. Microb. Biotechnol. 2012, 5, 307–317. [CrossRef]

173. Crotti, E.; Sansonno, L.; Prosdocimi, E.M.; Vacchini, V.; Hamdi, C.; Cherif, A.; Gonella, E.; Marzorati, M.; Ballo, A. Microbial Symbionts of Honeybees: A Promising Tool to Improve Honeybee Health. New Biotechnol. 2013, 30, 716–722. [CrossRef]

174. Alberoni, D.; Baffoni, I.; Gaggia, F.; Ryan, P.; Murphy, K.; Ross, P.; Stanton, C.; Di Gioia, D. Impact of Beneficial Bacteria Supplementation on the Gut Microbiota, Colony Development and Productivity of Apis mellifera L. Benef. Microbes 2018, 9, 269–278. [CrossRef] [PubMed]

175. El Khoury, S.; Rousseau, A.; Lecoeur, A.; Cheaib, B.; Bouslama, S.; Mercier, P.-L.; Demey, V.; Castex, M.; Giovenazzo, P.; Derome, N. Deleterious Interaction Between Honeybees (Apis mellifera) and Its Microsporidian Intracellular Parasite Nosema ceranae Was Mitigated by Administrating Either Endogenous or Allochthonous Gut Microbiota Strains. Front. Ecol. Evol. 2019, 6, 58. [CrossRef]

176. Borges, D.; Guzman-Novoa, E.; Goodwin, P.H. Effects of Prebiotics and Probiotics on Honey Bees (Apis mellifera) Infected with the Microsporidian Parasite Nosema ceranae. Microorganisms 2021, 9, 481. [CrossRef]

177. Tlak Gajger, I.; Vlaiči, J.; Soštarić, P.; Prešern, J.; Bubić, J.; Smodiš Škerl, M.I. Effects on Some Therapeutical, Biochemical, and Immunological Parameters of Honey Bee (Apis mellifera) Exposed to Probiotic Treatments, in Field and Laboratory Conditions. Insects 2020, 11, 638. [CrossRef]

178. Peghaire, E.; Mone, A.; Delbac, F.; Debros, D.; Chaucheyras-Durand, F.; El Alaoui, H. A Pediococcus Strain to Rescue Honeybees by Decreasing Nosema ceranae and Pesticide-Induced Adverse Effects. Pestic. Biochem. Physiol. 2020, 163, 138–146. [CrossRef] [PubMed]

179. Maggi, M.; Negri, P.; Plisuch, S.; Szawarski, N.; De Piano, F.; De Feudis, L.; Eguaras, M.; Audioso, C. Effects of the Organic Acids Produced by a Lactic Acid Bacterium in Apis mellifera Colony Development, Nosema ceranae Control and Fumagillin Efficiency. Vet. Microbiol. 2013, 167, 474–483. [CrossRef] [PubMed]

180. De Piano, F.G.; Maggi, M.; Pellegrini, M.C.; Cognata, N.M.; Szawarski, N.; Buffa, F.; Negri, P.; Fuselli, S.R.; Audioso, C.M.; Ruffinengo, S.R. Effects of Lactobacillus johnsonii AJS Metabolites on Nutrition, Nosema ceranae Development and Performance of Apis mellifera L. J. Apic. Sci. 2017, 61, 93. [CrossRef]

181. Audioso, M.C.; Sabate, D.C.; Benitez-Ahrendts, M.R. Effect of Lactobacillus johnsonii CRL1647 on Different Parameters of Honey Bee Colonies and Bacterial Populations of the Bee Gut. Benef. Microbes 2015, 6, 687–695. [CrossRef]

182. Arredondo, D.; Castelli, L.; Porrini, M.P.; Garrido, P.M.; Eguaras, M.J.; Zunino, P.; Antunez, K. Lactobacillus kunkeei Strains Decreased the Infection by Honey Bee Pathogens Paenibacillus larvae and Nosema ceranae. Benef. Microbes 2018, 9, 279–290. [CrossRef]

183. Tejerina, M.R.; Benítez-Ahrendts, M.R.; Audioso, M.C. Lactobacillus Salivarius A3iob Reduces the Incidence of Varroa Destructor and Nosema Spp. in Commercial Apiaries Located in the Northwest of Argentina. Probiotics Antimicrob. Proteins 2020, 12, 1360–1369. [CrossRef]

184. Sabaté, D.C.; Cruz, M.S.; Benítez-Ahrendts, M.R.; Audioso, M.C. Beneficial Effects of Bacillus subtilis subsp. subtilis Mori2, a Honey-Associated Strain, on Honeybee Colony Performance. Probiotics Antimicrob. Proteins 2012, 4, 39–46. [CrossRef]

185. Porrini, M.P.; Audioso, M.C.; Sabaté, D.C.; Iarguren, C.; Medici, S.K.; Sarlo, E.G.; Garrido, P.M.; Eguarás, M.J. Effect of Bacterial Metabolites on Microsporidian Nosema ceranae and on Its Host Apis mellifera. Parasitol. Res. 2010, 107, 381–388. [CrossRef] [PubMed]
186. Corby-Harris, V.; Snyder, L.; Meador, C.; Naldo, R.; Mott, B.; Anderson, K. Parasaccharibacter Apium, Gen. Nov., Sp. Nov., Improves Honey Bee (Hymenoptera: Apidae) Resistance to Nosema. *J. Econ. Entomol.* 2016, 109, 537–543. [CrossRef] [PubMed]

187. Baffoni, L.; Gaggia, F.; Alberoni, D.; Cabbri, R.; Nanetti, A.; Biavati, B.; Di Gioia, D. Effect of Dietary Supplementation of *Bifidobacterium* and *Lactobacillus* Strains in *Apis mellifera* L. against *Nosema ceranae*. *Benef. Microbes* 2016, 7, 45–51. [CrossRef] [PubMed]

188. Schmidt, K.; Engel, P. Probiotic Treatment with a Gut Symbiont Leads to Parasite Susceptibility in Honey Bees. *Trends Parasitol.* 2016, 32, 914–916. [CrossRef]

189. Ptaszyńska, A.A.; Borsuk, G.; Zdybicka-Barabas, A.; Cytryńska, M.; Malek, W. Are Commercial Probiotics and Prebiotics Effective in the Treatment and Prevention of Honeybee Nosemosis C? *Parasitol. Res.* 2016, 115, 397–406. [CrossRef]

190. Andrarczyk, S.; Kadhim, M.J.; Knaga, S. Influence of a Probiotic on the Mortality, Sugar Syrup Ingestion and Infection of Honeybees with *Nosema* Spp. *under Laboratory Assessment*. *Med. Weter.* 2014, 70, 762.