Cryptic diversity found in Didymellaceae from Australian native legumes

Elizabeth C. Keirnan¹, *, Yu Pei Tan¹, *, Matthew H. Laurence³, Allison A. Mertin³, Edward C.Y. Liew³, Brett A. Summerell³, Roger G. Shivas², ⁴

¹ School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, SA 5005, Australia ² Department of Agriculture and Fisheries, Ecosciences Precinct, Dutton Park, QLD 4102, Australia ³ Australian Institute of Botanical Science, Royal Botanic Gardens and Domain Trust, Mrs Macquaries Rd, Sydney, NSW 2000, Australia ⁴ Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350, Australia

Corresponding author: Elizabeth C. Keirnan (elizabeth.keirnan@adelaide.edu.au)

Abstract

Ascochyta koolunga (Didymellaceae, Pleosporales) was first described in 2009 (as Phoma koolunga) and identified as the causal agent of Ascochyta blight of Pisum sativum (field pea) in South Australia. Since then A. koolunga has not been reported anywhere else in the world, and its origins and occurrence on other legume (Fabaceae) species remains unknown. Blight and leaf spot diseases of Australian native, pasture and naturalised legumes were studied to investigate a possible native origin of A. koolunga.

Ascochyta koolunga was not detected on native, naturalised or pasture legumes that had leaf spot symptoms, in any of the studied regions in southern Australia, and only one isolate was recovered from P. sativum. However, we isolated five novel species in the Didymellaceae from leaf spots of Australian native legumes from commercial field pea regions throughout southern Australia. The novel species were classified on the basis of morphology and phylogenetic analyses of the internal transcribed spacer region and part of the RNA polymerase II subunit B gene region. Three of these species, Nothophoma garlbiwalawarda sp. nov., Nothophoma naiawu sp. nov. and Nothophoma ngayawang sp. nov., were isolated from Senna artemisioides. The other species described here are Epicoccum djirangnandiri sp. nov. from Swainsona galegifolia and Neodidymellipsoidis tinkyukuku sp. nov. from Hardenbergia violacea. In addition, we report three new host-pathogen associations in Australia, namely Didymella pinodes on S. artemisioides and Vicia cracca, and D. lethalis on Lathyrus tingitanus. This is also the first report of Didymella prosopidis in Australia.

* These authors contributed equally to this paper.
Keywords
Alternative host, multilocus phylogeny, pathogen reservoir

Introduction

The Didymellaceae was established to accommodate Ascochyta, Didymella, and other allied Phoma-like genera (de Gruyter et al. 2009). To date, more than 5,400 species from 31 genera have been recorded, including recently established genera such as Dimorphoma and Macroascochyta (Hou et al. 2020). Species of Didymellaceae are cosmopolitan and occupy a broad range of environments. Many species are plant pathogens that cause leaf and stem lesions, often with a broad host range (Aveskamp et al. 2009; Aveskamp et al. 2010; Chen et al. 2015b). Multilocus phylogenetics and a polyphasic approach to classify species have helped to revise taxa and refine systematic relationships in the Didymellaceae (Aveskamp et al. 2009, de Gruyter et al. 2009; Aveskamp et al. 2010; Chen et al. 2015a, de Gruyter 2012; Hou et al. 2020).

In Australia, reports of taxa in the Didymellaceae mostly refer to plant pathogenic species, particularly on crop and pasture legumes (Fabaceae). In Australia, the disease Ascochyta blight of Pisum sativum (field pea) is typically caused by three fungal species, Ascochyta koolunga, Didymella pinodella, and D. pinodes. A fourth species, Ascochyta pisi, is very rarely isolated. One species in particular, A. koolunga, is an important part of the Ascochyta blight disease complex of field pea in South Australia (Davidson et al. 2009a). First described in 2009, A. koolunga (syn. Phoma koolunga) had spread across southern Australia and had been detected in Victoria and Western Australia by 2015 (Davidson et al. 2011; Tran et al. 2015a).

Molecular techniques are now routinely used to understand the genetic diversity and population structure of Didymellaceae (Aveskamp et al. 2010; Salam et al. 2011, de Gruyter 2012; Chen et al. 2015a, Hou et al. 2020). To date, there has not been a systematic inventory of leaf spot pathogens associated with Australian native legume species despite international reports from a diversity of countries on Ascochyta blight since 2009 (Le May et al. 2009; Mathew et al. 2010; Panicker and Ramraj 2010; Skoglund et al. 2011; Soylu and Dervis 2011; Gaurilcikiene and Viciene 2013; Liu et al. 2013; Ahmed et al. 2015; Liu et al. 2016). Ascochyta koolunga is only known to occur in Australia, which suggests an Australasian origin, with perhaps an association with native legume species. The aim of this study was to determine the species of Didymellaceae associated with leaf spot diseases, and to investigate possible native sources of A. koolunga. To this end we collected legume specimens from both cultivated and neighbouring natural ecosystems. In particular, we collected specimens from Australian native, pasture and naturalised legumes in the field pea growing regions of eastern and southern Australia.
Materials and methods

Sample collection and culturing

Samples of leaf tissue displaying leaf spot disease symptoms on legumes were obtained from 22 field pea trial sites, from the immediate surrounds of experimental and commercial crops and roadsides around crops in field pea growing regions of southern Australia. In total, 124 samples (stems with multiple leaves and more rarely seed pods and flowers) were collected during four separate 4–5 day (d) periods in August, September and October 2017. In addition to trial sites, local agronomists were contacted to obtain approval to allow access to growers’ properties in Eyre Peninsula (South Australia) and Horsham (Victoria).

The national parks, or conservation areas, nearest to the field pea sampling sites were identified prior to field trips and permits were obtained to enable collections of samples from native plants that exhibited leaf disease symptoms within these neighbouring natural ecosystems. Leaf disease samples were also collected from two botanic gardens, Adelaide Botanic Garden, Adelaide, South Australia and the Australian Botanic Garden, Mount Annan, New South Wales. Plants with leaf spots were photographed in the field with a Samsung galaxy S5 or S8 mobile phone camera and the GPS locations recorded. Representative leaf samples were placed in plastic bags, labelled and stored at 4 °C.

Within 5 d of collection, leaf specimens were surface disinfected by spraying with 70% v/v ethanol and blotted dry with fresh, non-sterilised tissue paper. Excised leaf pieces were placed on plates of potato dextrose agar (PDA) (Oxoid) acidified by supplementation with 1 ml of 85% v/v lactic acid per litre (APDA) to minimise bacterial contamination. Incubation was under a 12 hour (h) black and fluorescent light /12 h dark cycle at 22 °C for 7–10 d, when fungal colonies were examined microscopically for pycnidia and conidia. Representative isolates were subcultured onto PDA using hyphal tips and deposited in the culture collection of the Queensland Plant Pathology Herbarium (BRIP).

DNA extraction, PCR and sequencing

Genomic DNA was extracted from 7 d old mycelium grown on PDA from the subculture isolates using the FastDNA Kit (Q-biogene Inc. Irvine, California, USA) according to the manufacturer’s instructions. A section of DNA from the internal transcribed spacer (ITS) region was amplified with the primers ITS1 and ITS4 (White et al. 1990), and the partial region of the RNA polymerase II subunit B (rpb2) gene was amplified with the primers RPB2-5F2 (Sung et al. 2007) and RPB2-7cR (Liu et al. 1999). The PCR conditions were as described by White et al. (1990) for ITS and O’Donnell et al. (2007) for rpb2. All PCRs were undertaken
in 25 μl reaction volumes containing the final concentrations; 1 unit of PCR 5X buffer (Promega Corporation, Madison, Wisconsin, USA), 1.6 mM of 25 mM MgCl₂ (Sigma-Aldrich Corporation, Louis, Missouri, USA), 0.025 U/μl of GoTaq™ (Promega), 0.6 mM of primer 1 and primer 2 and 1.6 mM of each dNTP (Promega). The PCR amplicons were purified using ExoSAP-IT (USB Corporation) following the manufacturer’s instructions. The purified amplicons were sent to the Ramaciotti Centre for Gene Function Analysis (University of New South Wales, Kensington, NSW), where DNA sequences were determined using an ABI PRISM 3700 DNA Analyser (Applied Biosystems Inc).

Phylogenetic analysis

Forward and reverse sequences were assembled using Geneious v. 11.1.5 (Biomatters Ltd) and deposited in GenBank (Table 1, in bold). The sequences were aligned with selected reference sequences of Didymellaceae (Table 1) using the multiple alignment MAFFT algorithm (Katoh et al. 2009) in Geneious. Neoascochyta desmazieri strain CBS 267.69 was included as the outgroup. The sequences of each locus were aligned separately and manually adjusted where necessary.

Maximum likelihood (ML) analysis was run using the RAxML v. 7.2.8 (Stamatakis and Alachiotis 2010) plug-in in Geneious v. 11.1.5 starting from a random tree topology. The nucleotide substitution model used was general time-reversible (GTR) with a gamma-distributed rate variation. The Bayesian analysis was performed using the MrBayes v.3.2.1 (Ronquist and Huelsenbeck 2003) plug-in in Geneious v. 11.1.5. To remove the need for a priori model testing, the Markov chain Monte Carlo (MCMC) analysis was set to sample across the entire GTR model space with a gamma-distributed rate variation across the nucleotide sites. Ten million random trees were generated using the MCMC procedure with four chains. The sample frequency was set at 2000 and the temperature of the heated chain was 0.1. “Burn-in” was set at 25%, after which the log-likelihood values were stationary.

Morphology

Fungal isolates were cultured on four media types; PDA, oatmeal agar (OA), malt extract agar (MEA) (Boerema et al. 2004; Chen et al. 2015a), and carnation leaf agar (CLA). The colonies were measured at 7 d, and morphology examined after 12–14 d incubation in the same light and temperature conditions described above. Images of the colonies were captured by an Epson Perfection V700 scanner at a 300 dpi resolution. Colony colour was determined on surface and reverse using the colour charts of Rayner (1970). Isolates were characterised microscopically from the PDA plates. Lactic acid (100 % v/v) was used as the mounting fluid. Specimens were examined using a Leica DM5500B compound microscope with a Leica DFC 500 camera fitted to capture images under Nomarski differential interference contrast illumination. Micromorphological measurements and descriptions of pycnidia,
Cryptic diversity found in Didymellaceae from Australian native legumes

Pycnidial wall cells and conidia were taken from up to 20 samples, and septation and colour recorded. Images of pycnidia were taken from CLA plates using a Leica M165C stereo microscope and Leica DFC 500 camera. The NaOH spot test on MEA culture plates helped distinguish taxa (Boerema et al. 2004).

Results

From 124 samples of legumes collected at 22 locations, 194 isolates were obtained of which 54 isolates were identified as Didymellaceae by ITS sequences. Of these, 36 isolates were further sequenced (rpb2 locus). Duplicate isolates were excluded where they were from the same host species, which left 18 isolates for multilocus sequence analysis and inclusion in the phylogenetic analysis.

Phylogeny

A multilocus sequence analysis based on the ITS region and partial region of the rpb2 gene was used to infer the relationship of the 18 isolates and recognised species in Didymellaceae (Table 1). The resulting concatenated aligned dataset comprised 124

Table 1. Didymellaceae isolates examined in this study. Novel taxa and newly generated sequences are indicated in bold.

Species	Strain	Host	Locality	GenBank accessions		
				ITS	rpb2	
Ascochyta astragalina	CBS 113797	Lathyrus vernus	Sweden	KT389482	MT018257	
Ascochyta breutingeriorum	CBS 144957T	Soil	The Netherlands	MN823581	MN824606	
Ascochyta coronillar-emeri	MFLUCC 13-0820T	Hippocrepis emerus	Italy	MH069661	MH069679	
Ascochyta fabae	CBS 524.77	Pisum sativus	Belgium	GU237880	MT018241	
Ascochyta herbaria	CBS 629.97	Water	USA, Montana, Missoula	GU237898	KP330421	
Ascochyta koolanga	DAR 78535T	Pisum sativum	Australia, SA, Minnipa	EU338416	EU874849	
	BRIP 70265	Pisum sativum	Australia, SA, Riverton	MN567671	MG094922	
	BRIP 69590	Pisum sativum	Australia, SA, Mundulla	MN567672	MG094923	
Ascochyta lentis	CBS 370.84	Lens culinaris	Unknown	KT389474	MT018246	
Ascochyta medicagincola	CBS 112.53T	Medicago sativa	USA	GU237749	MT018251	
Ascochyta nigripycnidia	CBS 116.96T	Vicia cracca	Russia	GU237756	MT018253	
Ascochyta phaeae	CBS 184.55T	Phoca alpina	Switzerland	KT389475	MT018255	
Ascochyta pilosella	CBS 583.97T	Clintonia uniflora	Canada	MN973590	MT018258	
Ascochyta pisii	CBS 122785	Pisum sativum	The Netherlands	GU237763	MT018244	
Ascochyta rabiei	CBS 237.37T	Cicer arietinum	Bulgaria	KT389479	MT018256	
Ascochyta rosea	MFLUCC 13-0063T	Rubus ulmifolius	Italy	KY406751	KY514409	
Ascochyta syringae	CBS 545.72T	Syringa vulgaris	The Netherlands	KT389483	MT018245	
Ascochyta verubelis	CBS 876.97	Silene sp.	The Netherlands, Wageningen	GU237909	KT389561	
Ascochyta viciae	CBS 451.68	Vicia sepium	The Netherlands, Baarn, Prangmacht	KT389484	KT389562	
Ascochyta viciae-pannonicae	CBS 254.92	Vicia pannonica	Czechoslovakia	KT389485	MT018250	
Ascochyta viciae-villoae	CBS 255.92	Vicia villoa	Czechoslovakia	MN973584	MT018249	
Didymella americana	CBS 185.85	Zea mays	USA, Georgia	FJ426972	KT389594	
Didymella arrientina	CBS 253.80		Germany	KT389498	KT389595	
Didymella arachidisola	CBS 333.75T	Anachis hypogaea	South Africa, Cape Province	GU237833	KT389598	
Didymella aurita	CBS 269.93T	Medicago polymorpha	New Zealand, Auckland	GU237818	KT389599	
Didymella chlamydospora	YW23-14T		South Korea	MK836111	LC480708	
Species	Strain	Host	Locality	GenBank accessions	ITS	rpb2
---------------------------------	-------------	-------------------------------	-----------	--------------------	-----------	--------------
Didymella coffeae-arabicae	CBS 123380	Coffea Arabica	Ethiopia	FJ420993	KT389603	
Didymella comerti	CBS 137982	Combreum musambiacens	Zambia	MN973525	MT018139	
Didymella cartiisi	CBS 251.92	Nerine sp.	The Netherlands	FJ427038	MT018131	
Didymella degnissaiae	CBS 144956	Soil	The Netherlands	MN832444	MN832440	
Didymella eucalyptica	CBS 377.91	Eucalyptus sp.	Australia, WA	GU237886	KT389605	
Didymella gardeniae	CBS 620.68	Gardenia jasminoides	India	FJ420703	KT389606	
Didymella glomerata	CBS 528.66	Chrysanthemum sp.	The Netherlands	FJ427013	GU371781	
Didymella gnnataula	CBS 127976	Soil	Zimbabwe	MN973524	MT018138	
Didymella heterobasidens	CBS 109.92	Unidentified food material	The Netherlands	FJ420983	KT389601	
Didymella keratinophila	UTHSC DI16-200	Hono sapiens	USA	UT592901	UT593039	
Didymella lelalii	CBS 103.25			GU377729	KT389607	
Didymella magnoliae	MFLUCC 18-1560	Magnolia grandiflora	China	MK347814	MK434852	
Didymella majalis	CBS 588.96	Zea mays	USA, Wisconsin, Hancock	FJ420786	GU371782	
Didymella mitii	CBS 443.72	Soil	South Africa	MN973523	MT018137	
Didymella mucinea	CBS 463.69	Mangifera indica	India	FJ427026	MT018148	
Didymella nagricola	CBS 444.81	Acer palmatrum	Japan	KY742075	KY742158	
Didymella pinodes	CBS 318.90	Pisum sativum	The Netherlands	FJ427051	MN939533	
	BRIP 69589	Pisum sativum	Australia, VIC, Rainbow	MN667675	MN604926	
Didymella pinodes	CBS 525.77	Pisum sativum	Belgium	GU377883	KT389614	
	BRIP 69581	Senna artemisioide	Australia, SA, Blanchetown	MN66766	MN604927	
	BRIP 69593	Senna artemisioide	Australia, SA, Blyth	MN667677	MN604928	
	BRIP 69596	Senna artemisioide	Australia, SA, Wudinna	MN66768	MN604929	
Didymella pomorum	CBS 539.66	Polygonum tataricum	The Netherlands	FJ427056	KT389618	
Didymella prodactiisola	CBS 126182	Soil	Namibia	MN973533	MT018157	
	CBS 136414	Prosopis sp.	South Africa	KP777180	MT018149	
Didymella protobragnii	BRIP 69579	Gastrolobium celosanum	Australia, SA, Adelaide	MN667680	MN604931	
Didymella protobragnii	CBS 381.96	Lycium balsilicolon	The Netherlands	GU237853	KT389620	
Didymella sancta	CBS 281.83	Atlanticus utilissima	South Africa	FJ427063	KT389623	
Didymella sinensis	CBS 364.91	Ananas sativus		MN973531	MT018153	
Didymella subglobispora	CBS 110.92	Triticum sp.	USA, North Dakota	FJ427080	KT389626	
Didymella subglomerata	CBS 990.95	Soil	Papua New Guinea	MN973513	MT018119	
Didymella brasiliens	CBS 120105	Anamnesus sp.	Brazil	GU237760	KT389627	
Didymella carnelliae	CGMCC 3.18343	Camellia sinensis	China	KY742091	KY742170	
Didymella cateniporum	CBS 181.80	Orzzy sativa	Guinea-Bissau	FJ427069	LT325323	
Didymella dentrobi	CGMCC 3.18359	Dendrobiopsis fendriatrum	China	KY742093	MT018084	
Didymella dickmani	CBS 124671	Aeropora Formosa	Australia	MN973509	MT018113	
Didymella djirangandri	BRIP 69585	Swainsonia galgelfolia	Australia, NSW, Mount Annan	MN667673	MN604924	
spp.nov.	CBS 186.83	Dnanema sp.	Rwanda	GU237795	KT389628	
Didymella dossenhae	CGMCC 3.18345	Duchsensia indica	China	KY742095	MT018115	
Didymella hensengsi	CBS 104.80	Acanth mansieni	Kenya	GU237731	KT389629	
Didymella harderi	CGMCC 3.18360	Hordeum vulgare	Australia	KY742097	MT018102	
Didymella immortu	CBS 105.80	Sorerus sp.	Pera	GU237732	KT389630	
Didymella italicus	CGMCC 3.18361	Acer sellowiana	Italy	KY742099	KY742172	
Didymella keratinophilum	UTHSC DI16-271	Homo sapiens	USA	LT592930	LT930608	
Didymella latiosidoides	CGMCC 3.18346	Sorghum bicolor	China	KY742101	KY742174	
Didymella langistablettum	CBS 886.95	Setaria sp.	Papua New Guinea	FJ427074	MT018108	
Didymella macchani	MFLUCC 16-033	Ononis spinosa	Italy	KX698039	KX698035	
Didymella mezzettii	CBS 173.38	Pupulsp pulp	Italy	MN973496	MT018095	
Didymella nigromes	CBS 173.73	Dactylis glomerata	USA	FJ426996	KT389632	
Didymella osiporum	CBS 180.80	Zea mays	South Africa	FJ427068	LT232523	
Didymella phragmopora	CGMCC 3.19139	Saccharum officinarum	China	MN215619	MN255460	
Didymella pinipinnia	CBS 246.60	Soil	India	FJ427049	MT018100	
Didymella plurivorum	CBS 558.81	Setaria sp.	New Zealand	GU237888	KT389634	
Species	Strain ¹	Host	Locality	GenBank accessions ³		
---	----------	-----------------------	----------------	---------------------		
Epicoccum pneumoniae				**ITS**		
MFLUCC 18-1593		Prunus avium	China	MH827002		
Epicoccum pseudokeratinophilum				**rbp2**		
MFLUCC 18-1593		Prunus avium	China	MH853659		
Epicoccum purpurascens						
CBS 128906		Soil	USA	MN973488		
Epicoccum spirotrichum		Sargassum bicolore	Puerto Rico	KT389635		
CBS 179.80		Soil	Indonesia	MN973493		
Epicoccum subaureum						
CBS 2056.77		Acalypha triphylla	Canada	KT389508		
Epicoccum variae						
CBS 142853		Conocarpus erectus	Iran	KY449009		
Epicoccum vitis				KY469422		
Neoascocoryne aschidi						
CBS 286.72		Acalypha triphylla	Canada, British Columbia, Vancouver Island	KT389531		
Neoascocoryne cannabis						
CBS 234.37		Castanea sativa	Unknown	GU237804		
Neoascocoryne farahkhiiefal				KP329403		
Neoascocoryne longicolla						
CBS 382.96		Soil	Israel, En Avdat, Negev desert	KT389632		
Neoascocoryne mucedora						
MFLUCC 17-1063		Morus alba	Russia	KY684939		
Neoascocoryne negundini				MG564164		
JZB380011		Acer negundo	Germany, Hohenleith	KT389644		
Neoascocoryne polemonii						
CBS 109181.¹		Polemonium caeruleum	The Netherlands	GU237746		
Neoascocoryne ranunculi				KP330427		
CBS 286.72		Citrus limonum	Italy	MN973612		
Neoascocoryne tillae				MT019283		
CBS 519.95.¹		Tilia sp.	Italy	MN973610		
Neoascocoryne trinukuku sp. nov.	BRIP 69592 ¹	Hardenbergia violacea	Australia, SA, Clare	MN6676781		
Nothophoma achelid-mitidgal				MN604932		
CBS 308.68.¹		Delphinium sp.	The Netherlands, Baarn	GU237855		
Nothophoma acidae			Australia	MG386056		
CBS 143404.¹		Acacia melanoxylon	Australia	MG386144		
Nothophoma anigozanthi						
CBS 381.91.¹		Anigozanthus magellanicus	The Netherlands	GU237852		
Nothophoma arachidis-lygo-gangi				KT389655		
CBS 125.93		Anachis hypogaecae	India, Madras	GU237771		
Nothophoma brennandiae				KT389656		
CBS 145912.¹		Tilia sp.	Italy	MN823579		
Nothophoma garliwalawarda sp. nov.				MN604934		
BRIP 69580		Senna artemisioides	Australia, SA, Adelaide	MN6676782		
BRIP 69586		Senna artemisioides	Australia, SA, Berri	MN6676783		
BRIP 69587		Senna artemisioides	Australia, SA, Berri	MN6676784		
BRIP 69594		Senna artemisioides	Australia, SA, Kimba	MN6676785		
BRIP 69595.¹		Senna artemisioides	Australia, SA, Wadinda	MN667686		
Nothophoma eclypticgina				MN604937		
CBS 142535.¹		Eclypticgina sp.	Australia	KY797771		
Nothophoma genpinicia				KY797852		
CBS 377.67		Gynophila sp.	USA, Texas	GU237845		
Nothophoma infusa		Fuchsia pensylvanica	Argentina, Buenos Aires Province, La Plata	KT389659		
CBS 123395.¹				KT389659		
Nothophoma infuscula		Acacia longifolia	New Zealand	MN973559		
CBS 121931.¹				MN973559		
Nothophoma macropora	UTHSC DI16-199 ¹	Hono sapieru	USA, Arizona	LN880536		
Nothophoma natawsp. sp. nov.				LT39073		
BRIP 69578.¹		Sena artemisioides	Australia, SA, Blanchean	MN667687		
BRIP 69578.¹		Sena artemisioides	Australia, SA, Blanchean	MN667688		
Nothophoma sillicana				MN604938		
CPC 32330.¹		Acacia falciformis	Australia	NR_156665		
Nothophoma prati				MG386143		
MFLUCC 18-1600		Prunus avium	China	MH827005		
Nothophoma quercina		Microsporid alphaoides from Quercus sp.	Ukraine	GU237900		
CBS 633.92				KT389657		
Nothophoma variabilis	UTHSC DI16-257 ¹	Hono sapieru	USA	LT592939		

¹ BRIP, Queensland Plant Pathology Herbarium, Brisbane, QLD, Australia; CBS, Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands; CGMCC, China General Microbiological Culture Collection, Beijing, China; MFLUCC, Mae Fah Luang University Culture Collection, Chiang Rai, Thailand; UTHSC, Fungus Testing Laboratory at the University of Texas Health Science Center, San Antonio, Texas, USA.
² NSW, New South Wales; SA, South Australia; VIC, Victoria; WA, Western Australia.
³ ITS, internal transcribed spacer region; *rbp2*, RNA polymerase II second subunit.
⁴ ex-type strain.
Figure 1. Phylogenetic tree based on maximum likelihood analysis of the combined multilocus (rpb2 and ITS) alignment. RAxML bootstrap values (bs) greater than 70 % and Bayesian posterior probabilities (pp) greater than 0.95 are given at the nodes (bs/pp). Genera are delimited in coloured boxes, with the genus name indicated to the right. Isolates identified in this study are in bold, and novel taxa are in red bold. Ex-type isolates are marked with T. The outgroup is Neuroscoychta desmaziieri (CBS 297.69).
Cryptic diversity found in Didymellaceae from Australian native legumes

Figure 1. Continued.

ingroup isolates from 111 taxa, and consisted of 1,090 characters (493 for ITS, and 596 for rpb2, including alignment gaps). The ML tree based on the combined dataset is presented, with bootstrap support values (BS) greater than 70% and Bayesian posterior probabilities (PP) greater than 0.95 indicating four well-supported clades, and limited support for Nothophoma (Fig. 1). The ITS phylogeny, using either ML or Bayesian analysis, provided poor resolution at the genus and species level (data not shown). The phylogenetic tree based on the concatenated alignment of ITS and rpb2 indicates the placement of the 18 isolates (Fig. 1), five of which represent novel species (Figs 2–6).

We identified three new host-pathogen associations, and one new record for Australia Didymella pinodes (strains BRIP 69581, 69593, and 69596) was isolated from native S. artemisioides from three locations in South Australia separated by over 400 km. Didymella pinodes (strain BRIP 69578) was also isolated from naturalised Vicia cracca (tufted vetch) in New South Wales from an area which did not cultivate P. sativum.
Didymella lethalis (strain BRIP 69584) was isolated from the naturalised Lathyrus tingitanus (tangier pea) from a recreational walking area within an urban environment. Didymella prosopidis (strain BRIP 69579) was isolated from Gastrolobium celsianum from the botanic gardens in the capital city of South Australia, Adelaide.

Taxonomy

Multilocus sequence analysis and morphological comparisons classified nine fungal isolates from legumes in southern Australia into five novel species from three Didymellaceae genera. The novel species are described and illustrated in Figs 2–6. Nomenclatural novelties are registered in MycoBank.

The species epithets were derived from Indigenous Australian Peoples’ language groups to provide a uniquely Australian theme. Permission to use words from the local language of the area in which the fungi were collected was granted by elders or community representatives.

Epicoccum djiranguandiri E.C. Keirnan, M.H. Laurence, R.G. Shivas & Y.P. Tan, sp. nov.
MycoBank No: 833689
Fig. 2

Type. AUSTRALIA, New South Wales, Mount Annan, Swainsona galegifolia, 19 Jan. 2017, E.C. Keirnan (holotype BRIP 69585, includes culture ex-type).

Description. Colonies on OA, 76–80 mm diam. after 7 d, covered in dense aerial mycelium, variable shades of grey, pale cinnamon towards centre; reverse dark vinaceous; on MEA, 70–72 mm after 7 d, margin entire, covered in low dense aerial mycelium, pale mouse grey with lighter patches; reverse olivaceous with radiating spokes; on PDA, 73–80 mm after 7 d, margin entire, mycelia felty, mouse grey becoming vinaceous buff towards centre; reverse fuscous black. NaOH spot test: negative. Conidiomata on CLA, pycnidial, globose 100–200 μm diam., pale brown becoming black, solitary, glabrous, non-papillate; pycnidial wall composed of textura globulosa, pale brown, cells 5–15 μm diam. Conidiogenous cells phialidic, cylindrical, thin-walled, hyaline, rounded ends. Conidia aseptate, 5–7 × 2–3 μm.

Etymology. From the language of the Indigenous Australian Dharawal people, meaning leaf spot. The Dharawal people are from the western Sydney region in New South Wales, which includes Mount Annan, where the holotype was collected.

Notes. Epicoccum djiranguandiri is phylogenetically close to E. pneumoniae ex-type strain UTHSC DI16-257 (Fig. 1) and is distinguished in rpb2 sequences with 99% identity. Morphological comparisons could not be made as E. pneumoniae was sterile in culture (Valenzuela-Lopez et al. 2018). Epicoccum djiranguandiri is only known from one specimen on Swainsona galegifolia.
Cryptic diversity found in Didymellaceae from Australian native legumes

Figure 2. Epicoccum djirangnandiri: a leaf lesions on Swainsona galegifolia b 14-d old colonies on PDA, MEA, OA (left, top to bottom) and lower surface (right) c upper surface d pycnidia on CLA e conidia. Scale bars: 200 μm (d); 7 μm (e).

Neodidymelliopsis tinkyukuku E.C. Keirnan, M.H. Laurence, R.G. Shivas & Y.P. Tan, sp. nov.
Mycobank No: 833692
Fig. 3

Type. AUSTRALIA, South Australia, Clare, Hardenbergia violacea, 17 Sep. 2017, E.C. Keirnan (holotype BRIP 69592, includes culture ex-type).

Description. Colonies on OA, 26–28 mm diam. after 7 d, dense low aerial mycelium, buff with numerous grey patches, darker with abundant pycnidia at centre; reverse buff to rosy buff with darker concentric rings towards centre; on MEA, 28–30 mm after 7 d, margin entire, dense low aerial mycelium, vinaceous buff paler at margin; reverse rosy buff to buff at margin with abundant scattered pycnidia; on PDA, 35–38 mm after 7 d, margin entire, dense low aerial mycelium, pale mouse grey lighter at margin; reverse cinnamon with concentric dark rings, darker at centre. NaOH spot test: light yellow. Conidiomata on CLA pycnidial, globose to ampulliform, 250–350 μm diam., brown becoming black, solitary, abundant in centre of colony, zonate, glabrous, non-papillate; ostiole c. 25 μm diam.; pycnidial wall composed of textura angularis, pale brown, cells 5–8 μm diam. Conidiogenous cells phialidic, cylindrical, thin-walled, hyaline. Conidia occasionally septate, 6–9 × 2–3 μm, cylindrical, hyaline, thin-walled.
Etymology. From the language of the Indigenous Australian Kaurna people, meaning leaf disease. The Kaurna people are from the Adelaide plains region, which includes Clare, the locality where the holotype was collected.

Notes. *Neodidymelliopsis tinkyukuku* (strain BRIP 69592) is sister to a clade that includes *N. farokhinejadii* (strain CBS 142853), *N. longicolla* (ex-type strain CBS 382.96) and *N. ranunculi* (strain CBS 286.72) (Fig. 1). *Neodidymelliopsis* conidial dimensions are distinct from *N. farokhinejadii* (4.6–7.5 × 2.4–3.9 μm), *N. longicolla* (12–15 × 4–7 μm), and *N. ranunculi* (3–5 × 7.5–10 μm). *Neodidymelliopsis tinkyukuku* can be easily distinguished from these three species by DNA sequences of the *rpb2* locus.

![Image](image.png)

Figure 3. *Neodidymelliopsis tinkyukuku* **a** leaf lesions on *Hardenbergia violacea* **b** 12-d old colonies top to bottom on PDA, MEA, OA (left, top to bottom) and lower surface (right) **c** upper surface **d** pycnidia on CLA **e** pycnidia **f** pycnidial wall **g** conidia. Scale bars: 300 μm (**d, e**); 10 μm (**f**); 7 μm (**g**).

Nothophoma garlbiwalawarda E.C. Keirnan, M.H. Laurence, R.G. Shivas & Y.P. Tan, sp. nov.
MycoBank No: 833693
Fig. 4

Type. AUSTRALIA, South Australia, Wudinna, *Senna artemisioides*, 19 Aug. 2017, E.C. Keirnan (holotype BRIP 69595, includes culture ex-type).

Description. Colonies on OA, 27–30 mm diam. after 7 d, flat with scant aerial mycelia with a few zonate rings, vinaceous to dark vinaceous; vinaceous to dark vinaceous; on MEA, 23–25 mm after 7 d, margin entire, flat, scant aerial mycelium towards centre, amber with abundant pycnidia; reverse amber darker towards centre; on PDA, 28–30 mm after 7 d, margin irregular, flat with aerial mycelia tufted in centre, dark with abundant pycnidia in concentric rings, buff at margin; reverse dark becoming buff at margin. *NaOH spot test*: reddish. *Conidiomata* pycnidial, globose to
subglobose, 130–320 μm diam., pale brown, scattered, abundant, zonate, glabrous, non-papillate; ostiole c. 25 μm diam.; pycnidial wall composed of textura angularus, pale to medium brown, cells 5–12 μm diam. Conidiogenous cells phialidic, cylindrical, thin-walled, hyaline 5–12 × 2–4 μm long, narrower at the apex. Conidia aseptate, 5–7.0 × 2.0–3.0 μm, parallel to narrowly ellipsoidal, hyaline, wall c. 0.5 μm.

Etymology. From the native language of the Indigenous Australian Barngarla people, meaning leaf-fun-guy. The Barngarla people are from the Eyre Peninsula region, which includes Wudinna, the locality where the holotype was collected.

Additional material examined. AUSTRALIA, South Australia, Adelaide, *Senna artemisiodioides*, 26 Oct. 2016, E.C. Keirnan (BRIP 69580); Berri, *Senna artemisiodioides*, 01 Jul. 2017, E.C. Keirnan (BRIP 69586); ibid, 01 Jul. 2017, E.C. Keirnan (BRIP 69587); Kimba, *Senna artemisiodioides*, 17 Sep. 2017, E.C. Keirnan (BRIP 69594).

Notes. *Nothophoma garlbiwalawarda* is phylogenetically closest to *No. anigozanthi* and two novel species (see below for notes) (Fig. 2). *Nothophoma garlbiwalawarda* is distinguished from *No. anigozanthi* by its larger conidia (cf. 3.5–5 × 1.5–2.5 μm), *rpb2* sequence (93% identity), and its reaction to *NaOH spot test* on MEA (dull green then black).

Figure 4. *Nothophoma garlbiwalawarda*: a pin-prick leaf spots on *Senna artemisiodioides* from Wudinna SA b 12-d old colonies top to bottom on PDA, MEA, OA (left, top to bottom) and lower surface (right) c upper surface d pycnidia on CLA e pycnidia and pycnidial ooze on OA f pycnidia on PDA g conidia. Scale bars: 300 μm (d, e, f); 7 μm (g).

Nothophoma naiawu E.C. Keirnan, M.H. Laurence, R.G. Shivas & Y.P. Tan, sp. nov. MycoBank No: 833694
Fig. 5

Type. AUSTRALIA, South Australia, Blanchetown, from *Senna artemisiodioides*, 22 Oct. 2016, E.C. Keirnan, holotype BRIP 69583 (includes culture ex-type).
Description. Colonies on OA, 21–25 mm diam. after 7 d, flat with scant aerial mycelia, rosy vinaceous, dark at centre; reverse rosy buff, dark at centre, with a few dark radiating fissures; on MEA, 27–30 mm after 7 d, margin entire, flat, with sparse aerial mycelium towards centre rosy vinaceous; reverse peach, darker at centre; on PDA, 27–30 mm after 7 d, margin entire, flat felty, rosy buff; reverse peach, dark at centre. NaOH spot test: slightly yellow. Conidiomata pycnidial, globose to subglobose, 200–300 μm diam., pale brown becoming black, semi-immersed, confluent on MEA, glabrous, non-papillate; ostiole c. 25 μm diam.; pycnidial wall composed of textura globulosa, pale brown, cells 5–8 μm diam.. Conidiogenous cells phialidic, cylindrical, very thin-walled, hyaline. Conidia aseptate or 1-septate, 8–12 × 4–6 μm, cylindrical to narrow ellipsoidal, pale yellow.

Etymology. A variation of the Indigenous Australian Ngayawang people’s language group, who lived in the Murray River region of South Australia, which includes Blanchetown, the locality where this specimen was collected.

Notes. Nothophoma naiawu is phylogenetically close to No. eucalyptigena and No. infuscata (Fig. 2). Nothophoma naiawu is easily distinguished from No. eucalyptigena and No. infuscata by the ITS region (98 % identity to both) and the rpb2 locus (95%, and 94% identity, respectively). Nothophoma infuscata produce a pale red discolouration in response to NaOH spot test on MEA media, which is distinct from the slightly yellow response by No. naiawu.

Nothophoma ngayawang E.C. Keirnan, M.H. Laurence, R.G. Shivas & Y.P. Tan, sp. nov.
MycoBank No: 833695
Fig. 6

Type. AUSTRALIA, South Australia, Blanchetown, Senna artemisioides, 22 Oct. 2016, E.C. Keirnan, holotype BRIP 69582 (includes culture ex-type).
Description. Colonies on OA, 18–20 mm diam. after 7 d, covered by scant tufted aerial mycelia at centre becoming abundant and floccose towards margin, rosy buff becoming darker towards centre; reverse salmon with centre and margins pale isabelline; on MEA, 15–20 mm after 7 d, margin irregular, felty buff becoming white towards the margin; reverse pale rosy buff, darker at centre becoming paler near margin; on PDA, 18–21 mm after 7 d, margin regular, aerial mycelia tufted in centre becoming floccose toward the margin, white to pale rosy buff; reverse pale rosy buff with few scattered vinaceous spots. *NaOH spot test:* slightly yellow. *Conidiomata* pycnidial, globose to subglobose, 200–300 μm diam., pale brown becoming black, solitary, abundant in centre of colony, glabrous, non-papillate; ostiole c. 25 μm diam.; pycnidial wall composed of textura globulosa, pale brown, cells 5–8 μm diam. *Conidiogenous* cells phialidic, cylindrical, thin-walled, hyaline. *Conidia* aseptate, 2.5–4.0 × 1.0–2.0 μm, cylindrical to narrow ellipsoidal, hyaline, thin-walled.

Etymology. Named after the Indigenous Australian Ngayawang people’s language group, who existed in the Murray River region of South Australia, which includes Blanchetown, the locality where this specimen was collected.

Notes. *Nothophoma ngayawang* is phylogenetically close to *No. anigozanthi* ex-type strain CBS 381.91 (Fig. 2). *Nothophoma ngayawang* is distinguished from *No. variabilis* by the ITS region (98 % identity) and the *rpb2* locus (93% identity). The *NaOH spot test* of *No. variabilis* was negative on MEA, which is distinguished from the slightly yellow reaction of *No. ngayawang*.

Discussion

Our investigations did not identify *A. koolunga* from native Australian legumes. In fact, the incidence was low in that only one isolate (BRIP 69590) was collected from...
P. sativum in South Australia. It is difficult to make an association between the low incidence of A. koolunga on P. sativum and the absence of A. koolunga on other legumes. While the current evidence suggests that A. koolunga is unlikely to have originated from Australian native legumes, additional field surveys may be required to investigate the possible source of A. koolunga.

Our investigations instead uncovered five novel Didymellaceae species not yet known to science. Epicoccum djirangnandiri on S. galegifolia was collected from the botanic garden in New South Wales, where the host is endemic. Neodidymelliopsis tinkyukuku on H. violacea was collected from a public garden in South Australia. Growing in the same garden is V. sativa from which D. pinodes (strain BRIP 69578), a known Ascochyta blight pathogen, was isolated. Hardenbergia violacea has a wide distribution in southern and eastern Australia. These three native Australian legume species were found in a cultivated environment rather than in a natural environment. Further studies are warranted to understand how widespread these fungal species may be in cultivated or natural environments, and if they are host specific.

Leaf spots were commonly seen on the native legume S. artemisioides throughout the regions sampled in South Australia. Three novel Nothophoma species were isolated from S. artemisioides. Nothophoma garlbiwalawarda was collected from five locations across South Australia, separated by over 400 km, in field pea and non-field pea growing regions. Nothophoma naiawu and No. ngayawang were collected from the South Australian Murray River region on the roadside of a main highway. The leaf spot symptoms for the three Nothophoma species were similar (small pin-prick lesions), with some larger spots on the seed pods caused by No. ngayawang.

Our investigations also identified new host-pathogen associations, namely D. pinodes on S. artemisioides and V. cracca, and D. lethalis on L. tingitanus. These hosts could be a reservoir of Ascochyta blight inoculum if found growing adjacent to field pea crops. The discovery of an alternative host has implications for disease epidemiology and management. The symptoms of D. pinodes on S. artemisioides are indistinguishable from the pin-prick leaf spot symptoms caused by the three Nothophoma species described in this study. Didymella pinodes was isolated from five locations. Four of these locations also yielded a novel Nothophoma species. Didymella prosopidis was isolated from the Australian native G. celsianum, a species first described as associated with stem disease of Prosopis sp. (also a member of the Fabaceae family) in South Africa (Crous et al. 2013). This is the first report of D. prosopidis outside of South Africa.

At the outset, our study sought to identify if any A. koolunga could be isolated from Australian native legumes causing leaf spot disease. This study uncovered five novel isolates in the Didymellaceae from Australian native legumes, and identified three new legume host-pathogen associations for Australia. Ascochyta koolunga was not isolated from hosts other than field pea, which might be an artefact of the low incidence of the fungus during the collection period. Further investigations using a longitudinal systematic survey are needed to identify any native hosts of A. koolunga.
and to further investigate the diversity and prevalence of Didymellaceae species on Australian native, pasture and naturalised legumes, to classify novel isolates and to identify new Australian hosts for known species.

Acknowledgements

This research formed part of a Master of Philosophy by the first author. The authors thank the University of Adelaide and the Royal Botanic Gardens and Domain Trust, Sydney, for financial and facilities support. We acknowledge and are grateful to Professor Eileen Scott (University of Adelaide) and Associate Professor Jenny Davidson (South Australian Research and Development Institute and University of Adelaide) for providing access to facilities and resources and for general guidance. Kaylene Bransgrove (Department of Agriculture and Fisheries) is thanked for assistance with specimen curation.

References

Ahmed H, Chang K-F, Hwang S-F, Fu H, Zhou Q, Strelkov S, Conner R, Gossen B (2015) Morphological characterization of fungi associated with the ascochyta blight complex and pathogenic variability of *Mycosphaerella pinodes* on field pea crops in central Alberta. The Crop Journal 3: 10–18. https://doi.org/10.1016/j.cj.2014.08.007

Ali SM, Dennis J (1992) Host range and physiologic specialisation of *Macrophomina phaseolina* isolated from field peas in South Australia. Journal of Experimental Agriculture 32: 1121–1125. https://doi.org/10.1071/EA9921121

Ariyawansa HA, Hyde KD, Jayasiri SC (2015) Fungal diversity notes 111–252–taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 75: 27–274. https://doi.org/10.1007/s13225-015-0346-5

Aveskamp MM, Verkley GJM, de Gruyter J, Murace MA, Perello A, Woudenberg JHC, Groenewald JZ, Crous PW (2009) DNA phylogeny reveals polyphyly of *Phoma* section *Peyronellaea* and multiple taxonomic novelties. Mycologia 101: 363–382. https://doi.org/10.3852/08-199

Aveskamp MM, de Gruyter J, Woudenberg JH, Verkley GJ, Crous PW (2010) Highlights of the *Didymellaceae*: A polyphasic approach to characterise *Phoma* and related pleosporalean genera. Studies in Mycology 65: 1–60. https://doi.org/10.3114/sim.2010.65.01

Boerema GH, De Gruyter J, Noordeloos ME, Hamers MCE (2004) *Phoma* identification manual differentiation of specific and intra-specific taxa in culture. CABI Publishing, Cambridge, MA, USA, Wallingford, OX, UK, https://doi.org/10.1079/9780851997438.0000

Chen Q, Jiang JR, Zhang GZ, Crous PW (2015a) Resolving the *Phoma* enigma. Studies in Mycology 82: 137–217. https://doi.org/10.1016/j.simyco.2015.10.003

Chen Q, Zhang KE, Zhang G, Cai L (2015b) A polyphasic approach to characterise two novel species of *Phoma* (*Didymellaceae*) from China. Phytotaxa 197: 267–281. https://doi.org/10.11646/phytotaxa.197.4.4
Chen Q, Hou LW, Duan WJ, Crous PW, Cai L (2017) Didymellaceae revisited. Studies in Mycology 87: 105–159. https://doi.org/10.1016/j.simyco.2017.06.002

Chilvers MI, Rogers JD, Dugan FM, Stewart JE, Chen W, Peever TL (2009) Didymella pisi sp. nov., the teleomorph of Ascochyta pisi. Mycological Research 113: 391–400. https://doi.org/10.1016/j.mycres.2008.11.017

Crous PW, Wingfield MJ, Guarro J, Cheewangkoon R, van der Bank M, Swart WJ, Stchigel AM, Cano-Lira JF, Roux J, Madrid H, Damm U, Wood AR, Shuttleworth LA, Hodges CS, Munster M, de Jesús Yáñez-Morales M, Zúñiga-Estrada L, Cruywagen EM, de Hoog GS, Silvera C, Najafzadeh J, Davison EM, Davison PJ, Barrett MD, Barrett RL, Man-amgoda DS, Minnis AM, Klczewski NM, Flory SL, Castlebury LA, Clay K, Hyde KD, Maußé-Sitoe SN, Chen S, Lechat C, Hairaud M, Lesage-Meessen L, Pawłowska J, Wilk M, Slivinska-Wyrzychowska A, Mętrak M, Wrzosek M, Pavlic-Zupanc D, Maleme HM, Slippers B, Mac Cormack WP, Archuby DI, Grünwald NJ, Telléria MT, Dueñas M, Martín MP, Maricowitz S, de Beer ZW, Perez CA, Gené J, Marin-Felix Y, Groenewald JZ (2013b) Fungal Planet description sheets: 154–213. Persoonia 31: 188–296. https://doi.org/10.3767/003158513X675925

Crous PW, Groenewald JZ (2016) They seldom occur alone. Fungal Biology 120: 1392–1415. https://doi.org/10.1016/j.funbio.2016.05.009

Das K, Lee S-Y, Jung H-Y (2020) Molecular and morphological characterization of two novel species collected from soil in Korea. Mycobiology 48:1, 9–19. https://doi.org/10.1080/12298093.2019.1695717

Davidson JA, Hartley D, Priest M, Krysinska-Kaczmarek M, Herdina, McKay A, Scott ES (2009) A new species of Phoma causes ascochyta blight symptoms on field peas (Pisum sativum) in South Australia. Mycologia 101: 120–128. https://doi.org/10.3852/07-199

Davidson JA, Krysinska-Kaczmarek M, Wilmshurst CJ, McKay A, Herdina, Scott ES (2011) Distribution and survival of ascochyta blight pathogens in field-pea-cropping soils of Australia. Plant Disease 95: 1217–1223. https://doi.org/10.1094/PDIS-01-11-0077

Dear S, Staden R (1992) A standard file format for data from DNA sequencing instruments. DNA Sequence. 3: 107–110. https://doi.org/10.3109/10425179209034003

de Gruyter J, Aveskamp MM, Woudenberg JH, Verkley GJ, Groenewald JZ, Crous PW (2009) Molecular phylogeny of Phoma and allied anamorph genera: towards a reclassification of the Phoma complex. Mycological Research 113: 508–519. https://doi.org/10.1016/j.mycres.2009.01.002

de Gruyter J (2012) Revised taxonomy of Phoma and allied genera. PhD Dissertation, Wageningen University, Wageningen, NL, 181 pp.

Gaurilcikiene I, Viciene RC (2013) The susceptibility of pea (Pisum sativum L.) to ascochyta blight under Lithuanian conditions. Zemdirbyste (Agriculture) 100: 283–288. https://doi.org/10.13080/z-a.2013.100.036

Hibbett D, Abarenkov K, Koljalg U, Opik M, Chai B, Cole JR, Wang Q, Crous PW, Robert VA, Helgason T, Herr J, Kirk P, Lueschow S, O’Donnell K, Nilsson H, Oono R, Scholz CL, Smyth C, Walker D, Porras-Alfaro A, Taylor JW, Geiser DM (2016) Sequence-based classification and identification of Fungi. Mycologia 108: 1049–1068.
Cryptic diversity found in Didymellaceae from Australian native legumes

Hou LW, Groenewald JZ, Pfenning LH, Yarden O, Crous PW, Cai L (2020) The phoma-like dilemma. Studies in Mycology 96: 309–396. https://doi.org/10.1016/j.simyco.2020.05.001

Katoh K, Asimenos G, Toh H (2009) Multiple alignment of DNA sequences with MAFFT. In: Posada D (Ed) Bioinformatics for DNA Sequence Analysis. Humana Press, New York, NY 10013, USA, 39–64. https://doi.org/10.1007/978-1-59745-251-9_3

Le May C, Potage G, Andrivon D, Tivoli B, Outreman Y (2009) Plant disease complex: Antagonism and synergism between pathogens of the Ascochyta blight complex on pea. Journal of Phytopathology 157: 715–721. https://doi.org/10.1111/j.1439-0434.2009.01546.x

Liu J, Cao T, Feng J, Chang K-F, Hwang S-F, Strelkov SE (2013) Characterization of the fungi associated with ascochyta blight of field pea in Alberta, Canada. Crop Protection 54: 55–64. https://doi.org/10.1016/j.cropro.2013.07.016

Liu N, Xu S, Yao X, Zhang G, Mao W, Hu Q, Feng Z, Gong Y (2016) Studies on the Control of Ascochyta Blight in Field Peas (Pisum sativum L.) Caused by Ascochyta pinodes in Zhejiang Province, China. Frontiers in Microbiology 7: 481–453. https://doi.org/10.3389/fmicb.2016.00481

Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Molecular Biology and Evolution 16: 1799–1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092

Mathew FM, Goswami RS, Markell SG, Osborne L, Tande C, Ruden B (2010) First report of Ascochyta blight of field pea caused by Ascochyta pisi in South Dakota. Plant Disease 94: 789. https://doi.org/10.1094/PDIS-94-6-0789A

O’Donnell K, Sarver BAJ, Brandt M, Chang DC, Noble-Wang J, Park BJ, Sutton DA, Benjamin, L, Lindsley M, Padhye A, Geuser DM, Ward TJ (2007) Phylogenetic diversity and micosphere array-based genotyping of human pathogenic fusaria, including isolates from the multistate contact lens - Associated US Keratitis outbreaks of 2005 and 2006. Journal of Clinical Microbiology 45: 2235–2248. https://doi.org/10.1128/JCM.00533-07

Panicker S, Ramraj B (2010) Studies on the epidemiology and control of Ascochyta blight of peas (Pisum sativum L) caused by Ascochyta pinodes. Archives of Phytopathology and Plant Protection 43: 51–58. https://doi.org/10.1080/03235400701652417

Quaedvlieg W, Binder M, Groenewald JZ, Summerell BA, Carnegie AJ, Burgess TI, Crous PW (2014) Introducing the consolidated species concept to resolve species in the Teratosphaeriaceae. Persoonia 33: 1–40. https://doi.org/10.3767/003158514X681981

Ramaciotti Centre for Genomics (2019) Guide to Sanger Sequencing at RAMAC. https://www.ramaciotti.unsw.edu.au/sites/default/files/2019-04/GRAMAC_Sanger_Sequencing_Service_Guide_2019_v1.0.pdf

Rayner RW (1970) A mycological colour chart. Commonwealth Mycological Institute, Kew.

Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180

Salam MU, Davidson JA, Thomas GJ, Ford R, Jones RAC, Lindbeck KD, MacLeod WJ, Kimber RBE, Galloway J, Mantri N (2011) Advances in winter pulse pathology research in Australia. Australasian Plant Pathology 40: 549–567. https://doi.org/10.1007/s13313-011-0085-3
Skoglund LG, Harveson RM, Chen W, Dugan F, Schwartz HF, Markell SG, Porter L, Burrows ML, Goswami R (2011) Ascochyta Blight of Peas. Plant Health Progress, 1–9. https://doi.org/10.1094/PHP-2011-0330-01-RS

Snyder WC, Hansen HN (1947) Advantages of natural media and environments in the culture of fungi. Phytopathology 37: 420–421.

Soylu S, Dervis S (2011) Determination of prevalence and incidence of fungal disease agents of pea (*Pisum sativum* L.) plants growing in Amik plain of Turkey. Research on Crops 12: 588–592.

Stamatakis A, Alachiotis N (2010) Time and memory efficient likelihood-based tree searches on phylogenomic alignments with missing data. Bioinformatics 26: i132–i139. https://doi.org/10.1093/bioinformatics/btq205

Sung GH, Sung JM, Hywel-Jones NL (2007) A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): identification of localized incongruence using a combinational bootstrap approach. Molecular Phylogenetics and Evolution 44: 1204–1223. https://doi.org/10.1016/j.ympev.2007.03.011

Thambugala KM, Daranagama DA, Phillips AJL (2017) Microfungi on Tamarix. Fungal Diversity 82: 239–306. https://doi.org/10.1007/s13225-016-0371-z

Tran HS, You MP, Khan TN, Barbetti MJ (2015) Pea black spot disease complex on field pea: dissecting the roles of the different pathogens in causing epicotyl and root disease. European Journal of Plant Pathology 144: 595–605. https://doi.org/10.1007/s10658-015-0798-1

Valenzuela-Lopez N, Cano-Lira JF, Guarro J, Sutton DA, Wiederhold N, Crous PW, Stchigel AM (2018) Coelomycetous *Dothideomycetes* with emphasis on the families *Cucurbitariaceae* and *Didymellaceae*. Studies in Mycology 90: 1–69. https://doi.org/10.1016/j.simyco.2017.11.003

White TJ, Bruns T, Lee S (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ (Eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, USA, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Wijayawardene NN, Hyde KD, Wanasisinghe DN (2016) Taxonomy and phylogeny of dematiaceous coelomycetes. Fungal Diversity 77: 1–316. https://doi.org/10.1007/s13225-016-0360-2

Woudenberg JH, De Gruyter J, Crous PW, Zwiers LH (2012) Analysis of the mating-type loci of co-occurring and phylogenetically related species of *Ascochyta* and *Phoma*. Molecular Plant Pathology 13: 350–362. https://doi.org/10.1111/j.1364-3703.2011.00751.x