Targeting macrophages and their recruitment in the oral cavity using swellable (+) alpha tocopheryl phosphate nanostructures

Robert A. Harper, PhDa, Latrisha Petersen, PhDb, Mais M. Saleh, PhDa, Gordon B. Proctor, PhDc, Guy H. Carpenter, PhDc, Robert Gambogi, PhDb, Robert Hider, PhDa, Stuart A. Jones, PhDa.*

aKing’s College London, Institute of Pharmaceutical Science, London
bJohnson and Johnson, Consumer Inc, Skillman, NJ, USA
cKing’s College London, Centre for Host-Microbiome Interactions, Faculty of Dentistry London

Revised 12 March 2019

Abstract

The phosphorylation of (+) alpha tocopherol produces adhesive nanostructures that interact with oral biofilms to restrict their growth. The aim of this work was to understand if these adhesive (+) alpha tocopheryl phosphate (\(\alpha\)-TP) nanostructures could also control macrophage responses to the presence of oral bacteria. The (+) \(\alpha\)-TP planar bilayer fragments (175 nm ± 21 nm) formed in a Trizma®/ethanol vehicle swelled when exposed to the cell lines (maximum stabilized size = 29 \(\mu\)m). The swelled (+) \(\alpha\)-TP aggregates showed selective toxicity towards THP-1 macrophages (LD\(_{50}\) = 3 0 4 \(\mu\)M) compared to human gingival fibroblasts (HGF-1 cells; LD\(_{50}\) > 5 mM), and they inhibited heat killed bacteria stimulated MCP-1 production in both macrophages (control 57.3 ± 18.1 pg/mL vs (+) \(\alpha\)-TP 6.5 ± 3.2 pg/mL) and HGF-1 cells (control 673.5 ± 133 pg/mL vs (+) \(\alpha\)-TP - 463.9 ± 68.9 pg/mL).

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Key words: Alpha tocopheryl phosphate; Aggregate swelling; Human gingival fibroblasts; Human peripheral blood monocytes; Selective toxicity; Monocyte chemoattractant 1

Macrophages perform a number of important regulatory functions in the human body,1 but in several pathologies including, malignant tumors,2 inflammatory disease,3 metabolic disease,4 infections,5 and periodontitis,6 their dysfunction is thought to contribute to disease progression.7 Anti-cytokine therapies can act to counteract macrophage dysfunction, but their ‘off-target’ side-effects render the currently available agents inappropriate for this indication.8 Macrophages are highly mobile and thus they are difficult to specifically target through traditional drug delivery approaches.9 However, their ability to actively recognize and phagocytose foreign material provides a potential route to specifically deliver agents into macrophages using bespoke drug carrier systems.

One class of lipids that have the potential to be formed into materials that could target macrophages is the tocopherol lipids.10 In recent work a novel tocopherol analogue, (+) alpha tocopheryl phosphate (\(\alpha\)-TP) was synthesized and was shown to form oral bio-retentive nanomaterials that disrupt biofilm growth.11 In the mouth the ionic phosphate moiety of \(\alpha\)-TP interacts with simple electrolytes and this gives it the potential to swell and change shape,12 which could facilitate macrophage phagocytosis and release of the active from the nanomaterial structure. However, the ability of \(\alpha\)-TP nanomaterials to selectively target macrophage responses in the mouth has yet to be tested.

In the mouth, macrophages and their cytokine products play an important role, along with enzymes, in both periodontal soft tissue and jawbone destruction.13 As a consequence, macrophages and the cytokines that stimulate macrophage recruitment (e.g., MCP-114) have become targets in the search for new agents to improve oral health.15 Therefore, the aim of this work was to understand if (+) \(\alpha\)-TP nanomaterials could be used to target...
macrophage dysfunction in the mouth. It was predicted that the surface charge and size of the aggregates would influence their uptake into oral tissue; therefore, three types of tocopherol aggregates were used in this study: (+) α-T, which was predicted to display a neutral surface, and two structural isomers of α-TP, the (+) isomer and (±) isomer, both of which were predicted to be negatively charged in the mouth.

Materials

(+) α-T (type VI, ~40%), phosphorous oxychloride (POCl₃) (≥99%), tetrahydrofuran (THF) (anhydrous) (≥99.9%), trifluoroacetic acid (TFA) (≥99%), (±) α-T (≥96%), Trizma® hydrochloride (Tris(hydroxymethyl)aminomethane hydrochloride) (≥99%), (±) α-TP (≥97%), chlorhexidine digluconate (CHX) (20% w/v aqueous solution), cetylpyridinium chloride monohydrate (CPC) (99.0%-102%), Hanks Balanced Salt Solution (HBSS) (cat. no. H6648), 2-mercaptoethanol (99%), Dulbecco's Phosphate Buffered saline (PBS) (cat. no. D8537), trypsin blue (0.4%), Phorbol 12-myristate 13-acetate (PMA) (≥99%, film), trypsin–EDTA (0.25%) and TRI-Reagent® (Ambion) where purchased from Sigma Aldrich, UK. Hexane by fractions, absolute ethanol isopropanol, dimethyl sulfoxide (DMSO), disodium hydrogen phosphate (≥99%), monosodium dihydrogen phosphate (≥99%), hydrochloric acid, sodium hydroxide, heat-inactivated fetal bovine serum (FBS), penicillin G-streptomycin, MagMax™-96 for Microarrays Kit (Ambion, AM1839), High-Capacity RNA-to-cDNA™ Kit (Applied Biosystems) and TaqMan Universal PCR Master Mix (Applied Biosystems) were purchased from Fisher Scientific Ltd., UK. De-ionized water was used from laboratory supply. Dulbecco’s modified Eagle’s medium (DMEM) (ATCC 30-2002) cell culture medium and HGF-1 (ATCC CRL-2014) cells were purchased from the American Type Culture Collection (ATCC) (USA). Roswell Park Memorial Institute (RPMI)-1640 Medium (ATCC 30-2001) and the immortalized human peripheral blood monocyte cell line THP-1 (ATCC TIB-202) were sourced from LGC standards (UK). A colorimetric one step cell viability assay using a novel tetrazolium compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS] and an electron coupling reagent (phenazine methosulfate; PMS) was purchased from Promega, USA. This has been previously used to assess toxicity of zinc oxide nanoparticles. Commercial enzyme-linked immunosorbent assays (ELISAs) including human MCP-1/CCL2, human IL-8 and human IL-6 max deluxe sets were purchased from Biolegend, USA. Disposable cuvettes (Macro, PMMA), tissue culture flasks (25 and 75 cm² with ventilated caps) and 96-well plates where supplied by VWR (Germany).

Methods

(+)-α-TP synthesis

(+)-α-TP synthesis used phosphorous oxychloride with triethylamine in anhydrous THF for 3 h at room temperature as previously described. The pure product was obtained after C18 column chromatography. (+) α-TP was considered sterile due to the presence of 70% isopropanol in the purification step.

Characterization of (+) α-T, (+) α-TP, (±) α-TP aggregates in cell culture medium

The size of the aggregates was monitored in cell culture media to mimic the gum tissue environment. The volume median diameters of (+) α-T, (±) α-TP and (+) α-TP were measured using a laser diffraction technique (Mastersizer X, version 2.15, Malvern Instruments, UK). The vitamin E derivatives (3 mM) dispersed initially in 20% ethanol, 80% water vehicles with 150 mM Trizma®. Samples were diluted in cell culture medium (DMEM or RPMI without phenol red, FBS, or pen strep) to reach an obscuration ca 20%. The volume median diameters were recorded every 3 min for 15 min (N = 3).

Cultivation of gingival fibroblast cells and peripheral blood monocyte cells

Two different cell lines HGF-1 and THP-1, important in gum disease, were employed in the study. HGF-1 cells were cultured in DMEM, which included 10% FBS, and 1% penicillin G-streptomycin (complete media A). The immortalized human peripheral blood monocyte cell line THP-1 was cultured in RPMI-1640 medium, which included 10% FBS, 1% penicillin G-streptomycin and 50 μM 2-mercaptoethanol (antioxidant) (complete media B). Both cell lines were grown at 37 °C in a 5% CO₂, humidified atmosphere until HGF-1 cells reached confluence or until THP-1 monocytes reached 1 × 10⁶ cell/mL. HGF-1 cells were subcultured using trypsin–EDTA (0.25%) (5 mL) and reseeded at 50% cell density (i.e. 1 flask of confluent cells were split into 2 flasks). THP-1 monocytes were subcultured every 2-3 days (not allowed to exceed 1 × 10⁶ cell/mL) and were reseeded at 2 × 10⁵ cells/mL. HGF-1 and THP-1 cells used for experiments were between passages 3 and 8.

Preparation of heat killed bacteria

Oral heat killed bacteria were used to model the inflammatory environment found in vivo. Human saliva (1 donor) was collected, formed into bacterial pellets, re-suspended in cell culture media (1 mL) (DMEM or RPMI-1640) and heat killed using a heating block (Grant, QBA1 series, UK) at 80 °C for 10 min. The heat killed bacteria were diluted to 0.18 OD₆₀₀ with cell culture medium under sterile conditions followed by a 1/100 dilution of the solution in cell culture medium to form the inflammatory stimuli.

Determination of HGF-1 and THP-1 cell line viability

The effects of (+)/(±) α-TP, (+) α-T and heat killed human saliva bacteria, individually and in combination, were tested on HGF-1 and THP-1 cells. CHX and CPC were also tested on THP-1 macrophages as controls. To perform these assessments HGF-1 cells (passages 3-8) were seeded (1 × 10⁴ cells/well) in 96 well microplates (100 μL/well) and were incubated for 24 h at 37 °C in a 5% CO₂ atmosphere to allow for cell adhesion. The culture medium was then aspirated, and the cells were treated for 4 h with (+) α-TP (0.05, 0.5, 5, 50, 500, or 5000 μM), (+) α-T
(500 or 5000 μM) or (±) α-TP (500 μM) (100 μL/well) after which the test samples were aspirated and the cells washed with HBSS (200 μL/well). Either complete media or heat killed human bacteria from human saliva in complete media (1/100 dilution) were applied (100 μL/well) and the samples were incubated for an additional 15 h at 37 °C in a 5% CO₂ atmosphere. The THP-1 monocytes were seeded (1 x 10⁴ cells/well) with PMA (500 or 5000 μM), CHX (50, 100, 150, 500, or 5000 μM) or CPC (0.05, 0.5, 5, 50, or 500 μM) (100 μL/well) after which the test samples were aspirated, and the cells washed with HBSS and cultured in serum free media for 3 h. The cells were then treated for 2 h (the time was reduced from 4 h to reduce the time the cells were starved from FBS)²³ with (+) α-TP (0.05, 0.5, 5, 50, 500, or 5000 μM), (±) α-TP (500 μM), (+) α-T (500 or 5000 μM), CHX (50, 100, 150, 500, or 5000 μM) or CPC (0.05, 0.5, 5, 50, or 500 μM) (100 μL/well) after which the test samples were aspirated, and the cells washed with HBSS (200 μL/well). Either complete media or heat killed human bacteria from human saliva in complete media (1/100 dilution) were applied (100 μL/well) and incubated for an additional 15 h at 37 °C in a 5% CO₂ atmosphere. The 15 h supernatants were removed and the cells were incubated for an additional 15 h at 37 °C in a 5% CO₂ atmosphere.²² The THP-1 monocytes were seeded (1 × 10⁴ cells/well) with (+) α-TP (0.05, 0.5, 5, 50, 500, or 5000 μM) and washed with HBSS. The culture medium was aspirated; cells were cultured with HBSS and incubated in serum free media for 3 h. The cells were then treated for 2 h (the time was reduced from 4 h to reduce the time the cells were starved from FBS)²³ with (+) α-TP (0.05, 0.5, 5, 50, 500, or 5000 μM), (±) α-TP (500 μM), (+) α-T (500 or 5000 μM), CHX (50, 100, 150, 500, or 5000 μM) or CPC (0.05, 0.5, 5, 50, or 500 μM) (100 μL/well) after which the test samples were aspirated, and the cells washed with HBSS (200 μL/well). Neither complete media or heat killed human bacteria from human saliva in complete media (1/100 dilution) were applied (100 μL/well) and incubated for an additional 15 h at 37 °C in a 5% CO₂ atmosphere. The 15 h supernatants were removed and used for ELISA assays, fresh complete media (100 μL) were added to the wells and then the colorimetric MTS tetrazolium compound (20 μL) was added. Plates were then incubated at 37 °C in a 5% CO₂ atmosphere for 4 h and then absorbances at 490 nm (iEMS Incubator/Shaker, Thermo Scientific, UK) were measured with reference subtractions at 650 nm. Untreated control cells were assigned a value of 100% viability (negative control); cells treated with 1% Triton X (dispersed in cell culture media) were assigned a value of 0% viability (positive control). All the other conditions were compared to the controls using Eq. (1) were ABS was the corrected absorbance's. Results were expressed as means ± standard deviations of triplicate assays from three different experiments. Lethal dose 50% (LD₅₀) values were calculated using the dose response model in Origin 2016 (Silverdale scientific ltd, UK).

\[
\text{Cell viability (\%)} = \frac{ABS_{\text{negative control}} - ABS_{\text{positive control}}}{ABS_{\text{positive control}} - ABS_{\text{negative control}}} \times 100
\]

(1)

Determination of cytokine secretion

MCP-1, IL-6 and IL-8 expression was measured in the selected cell line supernatants in response to heat killed bacteria and this was repeated in the presence of the tocopherols in order to assess their anti-inflammatory effects.²⁴ ELISA kits were used to quantify the protein concentrations of MCP-1, IL-6 and IL-8 produced in the microplate cell supernatants according to the manufacturer’s protocols. Preliminary experiments showed that there was no detectable MCP-1 in the heat killed bacteria applied to the cells and hence the detected MCP-1 was solely generated from the HGF-1 cells. The test solutions at a concentration of 500 μM were not toxic against HGF-1 cells and hence this concentration was selected to assess their effect on MCP-1 release.

mRNA expression assay

mRNA transcript expression assays were performed using q-PCR on HGF-1 cells to understand how MCP-1, IL-8 and IL-6 expression was being regulated in the presence and absence of the three different tocopherol aggregates. The HGF-1 cells were cultured and treated using the same method as the cell viability assay with the exception that after the 15 h incubation with the inflammatory stimuli supernatants were removed, and the cells washed with PBS (100 μL/well) and then harvested with TRI-Reagent® (100 μL/well). Cell treatments groups were in quintuplet and were combined in microcentrifuge tubes (500 μL, 50,000 cells) (N = 3). The total RNA was extracted using MagMax™96 for Microarrays Kit. RNA was quantified using the NanoDrop (Thermo Scientific, UK). RNA integrity was analyzed using the Bioanalyzer (Agilent, UK). A 50 ng aliquot of RNA per sample was reverse transcribed to cDNA using High-Capacity RNA-to-cDNA™ Kit. Expressions of MCP-1, IL-6 and IL-8 were analyzed using probes from the Universal Probe Library (Roche). Actin beta (ACTB), Selenocysteine lyase (SCLY) and tRNA-w synthetizing protein 1 homolog (TYW1) were used as reference genes (for primer sequence and probe selection, see supplementary material, Tables S1 and S2). Assays were designed following instructions from the Universal Probe Library Assay Design Centre.²⁵ Quantitative PCR (qPCR) was performed using TaqMan Universal PCR Master Mix, following manufacturer’s protocol. Each 10 μL reaction contained 0.2 μM forward primer and reverse primer and 0.1 μM UPL probe. cDNA was diluted 10-fold, and 4 μL of diluted cDNA was used per reaction. qPCR was performed on Applied Biosystems 7900HT Real-Time PCR System under the following cycling conditions: 50 °C for 2 min, 95 °C for 10 min, followed by 40 cycles of 95 °C for 15 s and 60 °C for 1 min. Data were collected at the end of each cycle.

Data analysis

All data were expressed as their mean ± standard deviation (SD) at N = 3. The N numbers were independent experiments; each N number had three data points (three wells). Statistical analysis of the data was performed using Levine’s homogeneity test before statistical significance between the sample groups was assessed by one way analysis of variance (ANOVA) tests with post-hoc Tukey analysis in Origin 2016 (Silverdale scientific ltd, UK). Statistically significant differences were identified when P ≤ 0.05.

Results

Aggregate characterization in cell culture media

Dynamic light scattering size analysis, zeta potential, atomic force microscopy (AFM) imaging and fluorescence spectroscopy measurements of the aggregates in 20% ethanol, 80% water, 150 mM Trizma®, pH 7.4 vehicles are reported in the supplementary material (See supplementary material, Figures S1-S4).¹¹,¹² The characterization data showed (+) α-T produced spherical liposomes (563 ± 1 nm, −10.5 ± 0.2 mV), (+) α-TP produced planar bilayer fragments (175 nm ± 21 nm, −14.9 ± 3.5 mV) and (±) α-TP produced spherical liposomes (104 nm ±
Figure 1. The size changes of stereo-pure alpha tocopheryl phosphate ((+) Alpha TP) (3 mM) (A), (+) alpha tocopherol ((+) Alpha T) (3 mM) (A) and racemic alpha tocopheryl phosphate ((±) Alpha TP) (B) in either Dulbecco’s Modified Eagle’s Medium (DMEM) or Roswell Park Memorial Institute (RPMI) 1640 medium to show the introduction of the phosphate group facilitates aggregate swelling. Data represented mean ± standard deviation, n = 3.

The pre-treatment of the HGF-1 cells with (+) α-TP before mRNA transcription of MCP-1, IL-6 or IL-8 compared to the heat killed bacteria treated cells (P < 0.05, see supplementary material, Figure S6).

HGF-1 cellular response to the tocopherol aggregates

(+) α-TP was well tolerated by HGF-1 cells until a concentration of 5 mM (0.25% w/v) at which point the cell viability significantly dropped to 75.5% ± 7.9% (Figure 2). Both the (±) and the (+) α-TP isomers were found to have the same effects on cell viability (P > 0.05), which suggested that the stereochemistry was not a factor in the cell toxicity. At 5 mM (+) α-T did not reduce the cell viability (96.7% ± 6.1%), which showed that the addition of the phosphate group significantly increased the agents’ cell toxicity.

When treated with heat killed bacteria from human saliva, HFG-1 cells demonstrated a significant increase in secretion of MCP-1 (673.5 ± 133 pg/mL, Figure 3, A) as compared to the cells only treated with media (21.6 ± 15.6 pg/mL). (+) α-T and (±) α-TP (500 μM) did not significantly inhibit MCP-1 production (α-T −619 ± 63 pg/mL, P > 0.05, (±) α-TP −568 ± 107 pg/mL, P > 0.05). However, (+) α-TP (500 μM) did significantly reduce MCP-1 production (463.9 ± 68.9 pg/mL, P = 0.007). IL-8 (8601 ± 600 pg/mL) and IL-6 (18,310 ± 896 pg/mL) were also produced in response to the heat treated bacteria, but none of the tocopherol test agents were found to have an inhibitory effect on their production (See supplementary material, Figure S5).

1.3 nm, −38.7 ± 7.0 mV) in an 20% ethanol 80% Trizma® buffer vehicle. The (+) α-TP nanomaterials size was shown to increase into the micron range when aliquoted into both the DMEM and RPMI cell culture media, with no statistically significant difference in the aggregate sizes between the two media (P > 0.05) (24.0 ± 4.9 μm and 28.52 ± 6.46 μm at 15 min). The (+) α-T aggregates swelled in both DMEM and RPMI over a period of 15 min to sizes of 3.7 ± 0.7 μm and 3.8 ± 0.6 μm respectively, but unlike (+) α-TP this size did not change beyond the 15 min time point. The (±) α-TP isomer immediately swelled to a size of 35 ± 10 μm in DMEM and 16 ± 9 μm in RPMI and then the size started to reduce upon further incubation (Figure 1, B). It was not possible to gain clear images of the swelled aggregates in the cell culture media.

Discussion

The tocopherol nanomaterials tested in this work swelled when spiked into cell culture media. The different swelling profiles observed for the nanomaterials in the DMEM and RPMI
fluids were thought to be a consequence of the media composition. The iron, which was only present in the DMEM, was identified as the most likely component to explain the differential behavior, as it is known to interact with phosphorylated compounds. In both media the swelling of the nanomaterials was attributed to a transition of the lipid aggregates to multi-lamella liposomes due to the change of ionic strength in the dispersion media. An alternative explanation to the observed size changes was that the nanomaterials was attributed to a transition of the lipid aggregates to multi-lamella liposomes due to the change of ionic strength in the dispersion media. An alternative explanation to the observed size changes was that the nanomaterials were aggregating. However, this was thought to be unlikely as the dispersions changed size with a high degree of reproducibility, which is not common in aggregated systems. Unlike macrophages, non-phagocytic cells are unlikely to internalize the micron sized carriers; hence, the changes in nanomaterial characteristics in physiological fluids were thought to be beneficial for macrophage targeting. This hypothesis was supported by the cell cytotoxicity and cytokine suppression data discussed further below.

The (+) α-TP reduced MCP-1 production by HGF-1 cells exposed to heat killed bacteria by approximately 32%. In the literature there does not seem to be a report that has previously shown that α-TP can suppress MCP-1 release. The anti-inflammatory agent, Bindarit, which has some structural similarities to α-TP, has previously been shown to selectively inhibit MCP-1 through the inhibition of MCP-1 mRNA, but in this work (+) α-TP was found not to inhibit mRNA transcript expression. From the lack of MCP-1 mRNA inhibition it could be deduced that (+) α-TP influenced post mRNA transcription activity such as protein synthesis or cellular protein secretion inhibition. However, because the cell signaling pathways for the heat treated saliva induced cytokine release from HGF-1 cells have not been well established the (+) alpha-TP mechanism of action was not investigated further.

It was surprising that all the tocopherols used in this work did not inhibit cytokine release from the cell lines because (+) α-T has previously been shown to have anti-inflammatory effects. In addition, (+) α-T has been observed to inhibit IL-6 from HGF-1 cells in the literature. However, in previous work LPS from P. gingivalis was used to induce the cytokine and in this study heat killed bacteria from human saliva were used. It is possible that the tocopherols inhibit cytokine production on the LPS stimulation pathway and not other salivary inflammatory stimuli pathways.

The selective α-TP toxicity and subsequent reduction in MCP-1 secretion from THP-1 macrophages were thought to be a function of the nanomaterial swelling. The most selective of the aggregates in terms of α-TP toxicity and MCP-1 suppression was (+) α-TP followed by (±) α-TP then (+) α-T, which was not toxic and did not suppress MCP-1. This rank order aligned to the sizes of the aggregates when presented to the cells. This could, at least in part, be a consequence of greater internalization of the larger aggregates due to more material volume being phagocytized by individual macrophages. Selective macrophage toxicity of α-TP was thought to be desirable for the treatment of the chronic inflammatory phase of periodontal disease as it could control the macrophage burden and shorten the immune response. However, it is not desirable to kill all macrophages as they perform a beneficial role of engulfing microbes and preventing the spread of systemic infection. In this aspect it was promising that even though (+) α-TP showed selective toxicity towards the macrophages it was still found to be less toxic (lower LD₅₀ values) than two commercially used antimicrobial agents CHX and CPC; suggesting that it was capable of regulating macrophage accumulation without complete depletion.
Morphology was noted by phase contrast.

6 prevalence condition in 2010.35 However, at present, sub-affected by severe periodontitis, making it the sixth most adult global population with 10.5%-12% of the population

Conclusion

Data represented mean ± standard deviation, n = 3.

Figure 4. (+) alpha tocopheryl phosphate toxicity to THP-1 macrophages generated an LD50 value of 304 µM. Data represented mean ± standard deviation, n = 3.

Figure 5. Tocopherol inhibition of monocyte chemoattractant protein (MCP-1) secretion from THP-1 macrophages related to cell viability showing that cell death inhibited MCP-1 release. Cells were pre-incubated with (+) alpha tocopheryl phosphate (alpha TP), (±) alpha TP or alpha tocopherol (alpha T). Data represented mean ± standard deviation, n = 3. N.B. No change in cell morphology was noted by phase contrast.

α-TP has previously been shown to be both adherent, substantive, and capable of reducing the oral microbial burden.11,12 In this study the swelling of (+) α-TP nano-sized aggregates was shown to have an anti-inflammatory effect on macrophages by selective macrophage toxicity thereby reducing MCP-1 generation. This effect would then dampen excessive macrophage burden and therefore reduce gingival destruction making this compound an attractive prospect for development as a multifunctional agent to improve oral health.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.nano.2019.04.013.

References

1. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 2011;11:723-37.
2. De Palma M, Lewis CE. Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell 2013;23(3):277-86.
3. Firestein GS. Evolving concepts of rheumatoid arthritis. Nature 2003;423:356-61.
4. Tesch GH. Role of macrophages in complications of type 2 diabetes. Clin Exp Pharmacol Physiol 2007;34(10):1016-9.
5. Koppensteiner H, Brack-Werner R, Schindler M. Macrophages and their relevance in human immunodeficiency virus type 1 infection. Retrovirology 2012;9:82.
6. Slocum C, Kramer C, Genco CA. Immune dysregulation mediated by the oral microbiome: potential link to chronic inflammation and atherosclerosis. J Intern Med 2016;280:114-28.
7. Hea H, Ghoshb S. Nanomedicines for dysfunctional macrophage-associated diseases. J Control Release 2017;247:106-26.
8. Darcey J, Qualtrough A. Resorption: part 1. Pathology, classification and aetiology. Br Dent J 2013;214(9):439-51.
9. Van Rooijen N, Sanders A. The macrophage as target or obstacle in liposome-based targeting strategies. Pharm 1998;162(1-2):45-50.
10. Mathur P, Ding Z, Saldeen T, Mehta JL. Tocopherols in the prevention and treatment of atherosclerosis and related cardiovascular disease. Clin Cardiol 2015;38(9):570-6.
11. Harper RA, Saleh MM, Abbate V, Carpenter GH, Proctor G, Harvey RD, et al. Soft, adhesive (+) alpha tocopherol phosphate planar bilayers that control oral biofilm growth through a substantive antimicrobial effect. Nanomedicine 2018;14(7):2307-16.
12. Harper RA, Carpenter GH, Proctor GB, Harvey RD, Gambogi RJ, Geomotti AR, et al. Diminishing biofilm resistance to antimicrobial nanomaterials through electrolyte screening of electrostatic interactions. BioInterfaces 2019;173:392-9.
13. Yucel-Lindberg T, Bage T. Inflammatory mediators in the pathogenesis of periodontitis. Expert Rev Mol Med 2013;15:e7, https://doi.org/10.1017/erm.2013.8 PMID: 23915822.
14. Gunpinar S, Alptekin NO, Dündar N. Gingival crevicular fluid levels of monocyte chemoattractant protein (MCP-1) in patients with aggressive periodontitis. Oral Dis 2017, https://doi.org/10.1111/odi.12658 Epub ahead of print.
15. Boström EA, Kindstedt E, Suluniite R, Palmqvist P, Majster M, Holm CK, et al. Increased eotaxin and MCP-1 levels in serum from individuals with periodontitis and in human gingival fibroblasts exposed to pro-inflammatory cytokines. PLoS ONE 2015;10(8)e0134608, https://doi.org/10.1371/journal.pone.0134608.
16. Dechsakulthorn, F., Hayes, A., Bakand, S., Joeng, L., and Winder, C. In vitro cytotoxicity assessment of selected nanoparticles using human skin
fibroblasts. Proc. 6th World Congress on Alternatives & Animal Use in the Life Sciences. AATEX 14, Special Issue (2007) 397–400.

17. Urnowey S, Ansai T, Bitko V, Nakayama K, Takehara T, Barik S. Temporal activation of anti- and pro-apoptotic factors in human gingival fibroblasts infected with the periodontal pathogen, Porphyromonas gingivalis: potential role of bacterial proteases in host signalling. BMC Microbiol 2006;6(26).

18. Suzuki Y, Nakamura N, Miyabe M, Nishikawa T, Miyajima S-I, Adachi K, et al. Anti-inflammatory role of glucose-dependent insulinotropic polypeptide in periodontitis. J Diabetes Investig 2016;7(4):497-505.

19. Segura M, Stankova J, Gottschalk M. Heat-killed Streptococcus suis capsular type 2 strains stimulate tumor necrosis factor alpha and interleukin-6 production by murine macrophages. Infect Immun 1999;67(9):4646-54.

20. Madianos PN, Bobetsis YA, Kinane DF. Generation of inflammatory stimuli: how bacteria set up inflammatory responses in the gingiva. J Clin Periodontol 2005;32:57-71 Suppl. 6.

21. Bedran TBL, Mayer MPA, Spolidorio DP, Grenier D. Synergistic anti-inflammatory activity of the antimicrobial peptides human beta-defensin-3 (hBD-3) and cathelicidin (LL-37) in a three-dimensional co-culture model of gingival epithelial cells and fibroblasts. PLoS ONE 2014;9(9)e106766.

22. Park EK, Jung HS, Yang HI, Yoo MC, Kim C, Kim KS. Optimized THP-1 differentiation is required for the detection of responses to weak stimuli. Inflamm Res 2007;56:45-50.

23. Makon-Sébastien, N., Francis, F., Eric, S., Henri, V.P., François, L.J., Laurent, P., Yves, B., and Serge, C. Lycopene modulates THP-1 and caco-2 cells inflammatory state through transcriptional and nontranscriptional processes. Mediators Inflamm. Article ID 507227 (2014) 12 pages.

24. Mclynk BM, Morrison-Beedy D. Intervention research designing, conducting, analysing and funding a practical guide for success, in press. Springer Publishing Company; 2012.

25. Universal Probe Library Assay Design Centre. Available online at: https://lifescience.roche.com/en_gb/brands/universal-probe-library.html (accessed 5/Jan/2017).