Diversity of trypanorhynch metacestodes in teleost fishes from coral reefs off eastern Australia and New Caledonia

Ian Beveridge1*, Rodney A. Bray2, Thomas H. Cribb3, and Jean-Lou Justine4

1 Veterinary Clinical Centre, University of Melbourne, Werribee, Victoria 3030, Australia
2 Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
3 School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
4 ISYEB, Institut de Systématique, Évolution, Biodiversité (UMR7205 CNRS, EPHE, MNHN, UPMC), Muséum National d’Histoire Naturelle, CP 51, 55 rue Buffon, 75231 Paris Cedex 05, France

Received 31 August 2014, Accepted 31 October 2014, Published online November 18 2014

Abstract – Trypanorhynch metacestodes were examined from teleosts from coral reefs in eastern Australia and from New Caledonia. From over 12,000 fishes examined, 33 named species of trypanorhyncs were recovered as well as three species of tentacularioids which are described but not named. Host-parasite and parasite-host lists are provided, including more than 100 new host records. Lacistorhynchoid and tentacularioid taxa predominated with fewer otobothrioid and gymnorhynchoids. Five species, Callitetrarhynchus gracilis, Floriceps minacanthus, Pseudotobothrium dipsacum, Pseudolacistorhynchus heroniensis and Ps. shipleyi, were particularly common and exhibited low host specificity. Limited data suggested a higher diversity of larval trypanorhynchs in larger piscivorous fish families. Several fish families surveyed extensively (Blenniidae, Chaetodontidae, Gobiidae, Kyphosidae and Scaridae) yielded no trypanorhynch larvae. The overall similarity between the fauna of the Great Barrier Reef and New Caledonia was 45%. Where available, information on the adult stages in elasmobranchs has been included.

Key words: Trypanorhyncha, Metacestodes, Great Barrier Reef, New Caledonia, Teleosts.

Résumé – Diversité des métacestodes de Trypanorhynques chez les téléostéens des récifs coralliens de l’est de l’Australie et de la Nouvelle-Calédonie. Les métacestodes de Trypanorhynques de téléostéens des récifs coralliens de l’est de l’Australie et de Nouvelle-Calédonie ont été examinés. À partir de plus de 12,000 poissons examinés, 33 espèces nommées de Trypanorhynques ont été collectées ainsi que trois espèces de Tentacularioidea qui sont décrites mais non nommées. Des listes hôtes-parasites et parasites-hôtes sont fournies, et incluent plus de 100 nouvelles mentions d’hôtes. Les taxa appartenant aux Lacistorhynchoidea et Tentaculariioidea étaient moins nombreux. Cinq espèces, Callitetrarhynchus gracilis, Floriceps minacanthus, Pseudotobothrium dipsacum, Pseudolacistorhynchus heroniensis et Ps. shipleyi étaient particulièrement fréquentes et montraient une faible spécificité d’hôte. Des données limitées suggèrent une plus grande diversité de Trypanorhynques larvaires dans les familles de poissons piscivores de grande taille. Plusieurs familles de poissons étudiées intensivement (Blenniidae, Chaetodontidae, Gobiidae, Kyphosidae et Scaridae) n’avaient pas de larves de Trypanorhynques. La similitude globale entre les faunes de la Grande Barrière de Corail et de la Nouvelle-Calédonie était de 45 %. Des informations sur les stades adultes chez des élasmostrachelques ont été incluses quand disponibles.

Introduction

The identification of significant threats to the coral reefs of the world [9, 17] has been partly responsible for focussing attention on the full diversity of reefs rather than simply on the diversity of fish and corals, the most obvious examples of reef diversity. The contributions of other groups of invertebrates to diversity on reefs have been largely overlooked in the past [7, 32]. Part of this “hidden” invertebrate diversity includes the endoparasites of vertebrates.

In recent years, teleost fish occurring on coral reefs have been recognised as harbouring a particularly diverse array of parasites [20]. Studies to date have focussed either on specific parasite groups such as the Monogenea (e.g. [33]) or Digenea (e.g. [13]), or more recently have examined the diversity of all
helminth parasites found in or on specific families of fish such as the Lethrinidae or Serranidae [21–23].

Teleosts found on coral reefs are commonly infected with the larval stages (plerocerci, merocerci or plerocercoids – for terminology see Chervy, 2002 [12]) of cestodes of the order Trypanorhyncha, the adults of which are found in the stomach or spiral valves of elasmobranchs. Larval stages occur most commonly in the body cavity but may also be found in the musculature or other sites such as the gill arches [27]. They constitute a significant component of parasite diversity but have frequently been overlooked because of taxonomic difficulties in identification [27]. However, unlike other orders of cestodes found in marine fish, the larval stages have scolex features, including the distinctive tentacular armature, which are identical to those found in the adult and which allow specific morphological identification. Although taxonomic studies of this group of parasites are frequent, ecological studies are few, and while systematic collecting has been undertaken in several parts of the world (Gulf of Mexico, Gulf of California, Java, Borneo, Australia and Hawaii), there are few published descriptions of the faunas encountered in these areas (see Jensen, 2009 [19] for Gulf of Mexico and Palm and Bray, 2014 [29] for Hawaii). Some species of trypanorhynchs (e.g. Grillotia (Christianella) minuta van Beneden, 1858; Gilquinia squali Fabricius, 1794) have also been used as biological tags in teleosts [25] because the larval stages are readily identifiable and because they are long-lived in the intermediate host. However, such ecological studies of these species are limited.

In this study, we examined the larval trypanorhynch cestode parasites of teleosts, and where applicable the corresponding adults in elasmobranchs, from the Great Barrier Reef (GBR) and compared them with those from similar reef environments in New Caledonia (NC). New Caledonia is separated from the GBR by about 1200 km of deep oceanic waters.

Materials and methods

Great Barrier Reef (GBR)

Teleosts and elasmobranchs were collected opportunistically between 1986 and 2010. The two main collecting sites were Heron Island in the southern Great Barrier Reef and Lizard Island in the Northern Barrier Reef. Small numbers of parasites were collected on reefs between these two sites (Mossman, Townsville) and in these instances, the nearest geographical feature on the coast was recorded rather than the specific reef near which the collection was made (Fig. 1).

Metacestodes were collected mainly from body cavities of teleosts, although in some instances they were sought in regions of the body such as the gill arches and musculature. Metacestodes were removed from surrounding cysts (in the case of plerocerci) and the eversion of tentacles was achieved either by shaking vigorously or by applying pressure under a coverslip. Cestodes were fixed in 70% ethanol or 10% formalin and were stained with Celestine blue or carmine (Palm, 2004) [27], dehydrated in ethanol, cleared in methyl salicylate and mounted in Canada balsam. All specimens were identified by IB and have been deposited in either the British Museum (Natural History) (BMNH), the Queensland Museum, Brisbane (QM) or the South Australian Museum, Adelaide (SAM). Some of the records used in this compilation have been published previously in Beveridge & Campbell, 1996, 2001 [1, 3], Beveridge et al., 2000, 2007 [4, 5], Campbell & Beveridge, 1996 [8], Palm, 2004 [27], Palm & Beveridge, 2002 [28] and Sakanari, 1989 [34].

Records of adults from elasmobranchs are included only for species in which larval stages have been identified in teleosts; these are based on both published data and specimens held in museum collections. Additional species of trypanorhynch cestodes from elasmobranchs have been found and their larval stages may be found in the future, but for the present study, these records have not been added.

New Caledonia (NC)

Fish were collected opportunistically between 2003 and 2009 generally by line fishing, occasionally by spear fishing and on occasions supplemented by fish obtained from a market. Collections were mainly off Nouméa (Fig. 1). All fish were measured, weighed and photographed. Methods for collection from several host families have been explained elsewhere [21–23]. Trypanorhynch plerocerci were opened and compressed between two slides or immersed in hot saline to evert tentacles. Plerocercoids found in the body cavity were also fixed under pressure to evert tentacles. Metacestodes were fixed in 70% ethanol or 10% formalin and were stained with Celestine blue or carmine (Palm, 2004) [27], dehydrated in ethanol, cleared in methyl salicylate and mounted in Canada balsam. All specimens were identified by IB and have been deposited in the Muséum national
Results

Species found and other data

Larval trypanorhynchs were recovered primarily from the body cavities of the teleosts examined (Figs. 2–7). Plerocerci were usually encountered attached to the mesentery enclosed within white envelopes (Fig. 2), although in some hosts melanisation of the cyst wall had occurred rendering the cysts brown (Fig. 3). Some brown or even black envelopes contained only remnants of plerocerci (Fig. 4). Plerocercoids of tentaculariids were found either in the body cavity or in the gastrointestinal lumen; the latter were not contained within a "cyst". Occasionally, plerocerci were found in the musculature and in the gill arches (Fig. 7), although there was no systematic search of such sites for plerocerci. Merocerci of *Molonica hordidas* occurred in the livers of a limited number of species of teleosts, but the intensity of infection was high and the infections were readily observable at autopsy (Fig. 6).

Species of larval trypanorhynch cestodes found in both teleost (as larvae) and elasmobranch (as adult) hosts at sites along the GBR and off NC are shown in Tables 1 and 2.

From the GBR, the specimens examined were obtained from the dissection of more than 9000 fish, although not all were specifically examined for trypanorhynch cestodes. Likewise, from NC, approximately 3800 fish were examined but the body cavity was not examined in every fish, as explained by Justine et al. [21–23]. Consequently, prevalence data were available for some species only and abundance data were not available; for most species only presence-absence data were available (with one exception from Lizard Island).

No trypanorhynch metacestodes were found in the families Blenniidae (*n* = 215), Chaetodontidae (*n* = 1638), Gobiidae (*n* = 183), Kyphosidae (*n* = 30) and Scaridae (*n* = 147) from the GBR. Likewise, no metacestodes were found in the families Atherinidae (*n* = 13), Apogonidae (*n* = 19), Echeneidae (*n* = 10) and Haemulidae (*n* = 10) in NC. In addition, although the families Serranidae, Lethrinidae and Lutjanidae were frequently infected with trypanorhynch metacestodes, this pattern was not uniform across all species within these families and in NC, no trypanorhynch metacestodes were found in *Epinephelus areolatus* (*n* = 12), *E. merro* (*n* = 18), *Leithrinus atkinsoni* (*n* = 12), *L. nebulosus* (*n* = 14), *Lutjanus fulviflamma* (*n* = 10) and *L. kasmira* (*n* = 14).

Members of the Tentacularioidea differ from other trypanorhynch metacestodes as they are present as plerocercoids (= post-larvae) rather than plerocerci [14] and may be found in intestinal contents as well as in the viscera. In New Caledonia, tentacularioids were frequently found in smaller schooling fishes, often being the only trypanorhynchs encountered in these fishes.

In total, 33 named species were found (Tables 1 and 3) as well as three species of tentaculariid cestodes to which no current name could be applied. Lacistorhynchoid and tentacularioid trypanorhynchs dominated the fauna in terms of numbers of species recovered (Table 3), with the otobothrioid and gymnorhynchoid trypanorhynchs being less numerous.

Prevalence data were obtained from 182 fish from various families collected during a single collecting trip to Lizard Island. The prevalence of trypanorhynch larvae was: 4/6 (77%) in scombrids, 5/7 (71%) in lethrinids, 2/13 (15%) in lutjanids, 8/9 (89%) in serranids and 1/109 (0.9%) in apogonids. Other fish families were represented by smaller numbers and were excluded.

Tentacularioid metacestodes of uncertain identity

Superfamily Tentacularioidae Poche, 1926

Family Tentaculariidae Poche, 1926

1. *Nybelinia* sp. A (Fig. 8)

Material examined: plerocercoids from *Herklotsichthys quadrimaculatus* (Rüppell, 1937), New Caledonia, MNHN JNC2669C1, 2671A1.

Scolex length 1200, pars bothralis 580, pars vaginals 520; bulbs ovoid, bulb length 250; velum 160; metabasal hooks: length 15, base 10.

Remarks

This species is similar to *N. queenslandensis*, but all measurements including those of the hooks are substantially smaller. In addition, the shape of the hooks differs (Fig. 8). The hook shape aligns the species with *N. lingualis* (Cuvier, 1817), *N. bisulcata* (Linton, 1889), *N. anthicosum* Heinz & Dailey, 1974 and *N. hemipristis* Palm & Beveridge, 2002, but *N. lingualis* and *N. bisulcata* differ in having much larger scoleces (2025–2700 and 2500, respectively) and bulbs (365–425 and 450–505, respectively) while the latter two species have much larger hooks (25–40). Consequently, these
Table 1. Parasite-host list. Species of trypanorhynch cestodes collected from teleosts and elasmobranchs on the Great Barrier Reef, Australia and from New Caledonia. Authorities of cestodes are included and host species are listed in alphabetical order without authorities.

Authoritative	Great Barrier Reef	New Caledonia
GYMNORHYNCHOIDEA		
Molicola horridus (Goodsir, 1841)		
Larval	Diodon hystrix	H QM G206954, SAM 44079
		Diodon hystrix MNHN JNC2977D1, 3199C
	Diodon liturosus*	L QM G232552
Pterobothrium lintoni MacCallum, 1916		
Larval	Choerodon venustus	H SAM 40480
Pterobothrium acanthotrunccatum Escalante & Carvajal, 1984		
Larval	Plectropomus maculatus*	H QM G217640
	Scomberomorus commerson	H, L QM G217628
Adult	Pristis zijsron*	Tv G SAM 35749
Pterobothrium australiense Campbell & Beveridge, 1996		
Larval	Halichoeres trimaculatus*	H QM G217629
Adult	Pristis zijsron	Tv SAM 23898
Pterobothrium pearsoni (Southwell, 1929)		
Larval	Sphyraena jello*	L QM G233646
LACISTORHYNCHOIDEA		
Bombycirhynchus sphaerenaicum (Pintner, 1930)		
Larval	Sphyraena jello*	L QM G233583
Callitetrarhynchus gracilis (Rudolphi, 1819)		
Larval	Abudadfuf whitleyi*	H QM G212162
	Apogon poecilopterus*	H QM G217587
	Caesto cuning*	H QM G217593
	Cephalopholis miniata	H QM G232625
	Cephalopholis cyanostigma*	H, L QM G217575
	Cheroodon cyanodus*	H BM 1980.7.10.148-9
	Cromileptes altivelis*	H QM G217592
	Johnius borneensis*	H QM G217602
	Lotella rhacina*	H QM G217574
	Lutjanus carponotatus*	L QM G233588
	Johnius borneensis*	H QM G217602
	Epinephelus fasciatus*	L QM G233588
	Epinephelus retouti*	MNHN JNC2977D1, 3199C

(continued on next page)
Table 1. (continued)
Naso vlamingii
Ostorhinchus fasciatus
Plectropomus maculatus
Polyenemus hepatus
Pomatomus saltatrix
Scomberomorus commerson
Scomberomorus queenslandicus
Sphyraena obtusata
Adult
Carcharhinus melanosilus
Carcharhinus amblyrhynchoideis
Callitetrarhynchus speciosus (Linton, 1897)
Larval
Dasyiurhynchus basipunctatus (Carvajal, Campbell & Cornford, 1976)
Fistula commersonii
Adult
Carcharhinus brachyurus
Diesingium et lomentaceum (Diesing, 1850)
Larval
Floreces minacanthus Campbell & Beveridge, 1987
Larval
Cephalopholis boenak
Cephalopholis cyanostigma
Cephalopholis miniata
Epinephelus quoyanus
Euthynnus affinis
Euthynnus alleteratus
Grumamocytas bicarinatus
Lethrinus miniatus
Lethrinus macroplatus
Plectropomus areolatus
Plectropomus leopardus
Sphyraena flavicauda
Sphyraena jello

(continued on next page)
Table 1. (continued)	Great Barrier Reef	New Caledonia
Adult Carcharhinus amboinensis	StL³ SAM 22652	Carcharhinus leucas* MNHN
		Triaenodon obesus* MNHN
Florileps saccatus (Cuvier, 1817)		
Larval		
Diodon hystrix	H SAM 44081	Caranx papuensis* MNHN JNC3209
Diodon liturosus*	L QM G232554	Diodon hystrix MNHN JNC22343, 2977, 3199
Grillotiella exile (Linton, 1909)		
Larval		
Scomberomorus commerson	L QM G233632	Galeocerdo cuvier MNHN JNC1414
Adult Microbothriorynchus coelorhynchi Yamaguti, 1952		
Larval		
Lethrinus atkinsoni*	L QM G233653	Lethrinus miniatus* MNHN JNC2113 B1, 2158C
Lethrinus nebulosus*	L QM G233654	
Pseudogilquinia microbothri (MacCallum, 1917) (= Ps. magna; = Dasyrhynchus magna) **Larval**		
Lethrinus atkinsoni	L QM G233653	Epinephelus coioides MNHN JNC1535, 3140, 3265B
Lethrinus miniatus	H BM 2004.3.18.98-99	Plectropomus laevis MNHN JNC1865, 1887
Lethrinus nebulosus	L QM G233653	Epinephelus malabaricus MNHN JNC1536
Pseudogilquinia pillersi (Southwell, 1929)		
Larval		
Lethrinus atkinsoni	H BM 2004.3.18.97	
Lethrinus miniatus	L QM G233653	
Lethrinus nebulosus		
Plectropomus leopardus	H QM G212146	Abalistes filamentosus* MNHN JNC2724
		Abalistes stellatus* MNHN JNC2163, 2914, 2926
		Cephalopholis boenak MNHN JNC2288, 2890, 3205
		Cephalopholis sonnerati* MNHN JNC2934
		Gymnocranius grandoculis* MNHN JNC1726
		Epinephelus chlorostigma MNHN JNC2446C, 3141
		Epinephelus coioides* MNHN JNC3257
		Epinephelus cyanopodus [20]²
		Epinephelus fasciatus MNHN JNC1636A, 1758, 1791, 1792, 3039
		Epinephelus howlandii* MNHN JNC2768
		Epinephelus polyphekadion MNHN JNC1915C, 3036
		Epinephelus rivulatus MNHN JNC1545C
		Lethrinus miniatus* MNHN JNC2161C
		Lutjanus vitta* [22]²
		Plectropomus leopardus MNHN JNC3279
		Pseudobalistes fuscus* MNHN JNC2164, 2940B
		Stegostoma fasciatum MNHN JNC1529

(continued on next page)
Table 1. (continued)	Great Barrier Reef	New Caledonia	
Pseudolacistorhynchus shipleyi (Southwell, 1929) (= Grillotia overstreeti Sakanari, 1989)			
Larval			
Cephalopholis boenak*	H QM G232626	Cephalopholis sonnerati*	MNHN JNC3032
Cephalopholis cyanostigma*	H, L QM G214957	Cephalopholis urodeta	[20]
Choerodon cyanodon	H SAM 17416, QM G212160	Epinephelus polyhekaidion*	MNHN JNC3036
Choerodon fasciatus*	H QM G217519	Sufflamen fraenatus*	MNHN JNC1421C, 1797, 1798A, 1946, 2928, 3034
Epinephelus ongus*	H QM G212161	Epinephelus ongus*	MNHN JNC3275
Lotella rhacina*	H QM G214995		
Rhinecanthus aculeatus*	L QM G232542		
Sufflamen fraenatus*	H QM G217520		
OTOBOTHRIOIDEA			
Otobothrium alexanderi Palm, 2004			
Larval			
Tylosurus crocodilus	L QM G232555	Tylosurus crocodilus	MNHN JNC1968
Otobothrium parvum Beveridge & Justine, 2007			
Larval			
		Epinephelus maculatus*	MNHN JNC1405
		Lethrinus rubrioperculatus*	MNHN JNC1635A
		Carcharhinus amblyrhynchos	MNHN JNC1111
		Triakodon obesus	MNHN JNC2109
Otobothrium penetrans Linton, 1907			
Larval			
		Tylosurus crocodilus	MNHN JNC1968
Proemotobothrium southwelli Beveridge & Campbell, 2001			
Larval			
Johnius borneensis	H QM G217939		
Pseudotobothrium dipsacum (Linton, 1897)			
Larval			
Abalistes stellatus	H QM G217928–32	Abalistes filamentosus*	MNHN JNC2724
Cephalopholis cyanostigma	H QM G214959	Abalistes stellatus	MNHN JNC2914
Cheilinus trilobatus	L QM G233555	Cephalopholis miniata*	MNHN JNC2627
Epinephelus coioides	Tv SAM 31342	Cephalopholis sonnerati*	MNHN JNC1616, 2934–6
Lethrinus obsoletus	H QM G233888	Cephalopholis urodeta	MNHN JNC2750
Latjumas gibbus	L QM GL 10508	Cymbacephalus beauforti*	MNHN JNC1833A
Naso vlamingii	H QM G214960	Epinephelus coioides	MNHN JNC1535, 3257
Plectropomus leopardus	H, L QM G217936	Epinephelus fasciatus*	MNHN JNC1791, 3039
Plectropomus maculatus	H QM G206964	Epinephelus malabaricus	[20]
Pseudocaranx dentex	H QM G214961	Epinephelus retouti*	MNHN JNC2179
Rhinecanthus aculeatus	L QM G232590	Plectropomus laevis*	MNHN JNC1865, 1887
Rhinecanthus rectangularis	H QM G217934	Plectropomus leopardus	MNHN JNC2126
		Pseudobalistes fuscus*	MNHN JNC2927, 2940
		Variola louti	MNHN JNC1629, 1662, 1756–7, 1859, 2116–7, 2301, 3037, 3069

(continued on next page)
Specimen	Great Barrier Reef	New Caledonia
Symbothriorhynchus tigaminacanthus		
Palm, 2004		
Larval	Nemipterus furcosus*	MNHN JNC2586, 2610
	Saurida undosquamis*	MNHN JNC2079
	Sphyra lewini	MNHN JNC1628
Adult		
TENTACULARIOIDEA		
Hepatoxyton trichiuri		
Larval	Diodon hystrix*	MNHN JNC2977, 3199D
	Tetrapterus angustirostris*	MNHN JNC1399
	Thunnus obesus*	MNHN JNC1398
Adult†		
Heteronybelinia estigmena (Dollfus, 1960)		
Larval	Sarda australis	H QM G218042–6
	Atule mate*	MNHN JNC2963–5
	Herklotsichthys quadriraculatus*	MNHN JNC2669B, 2673, 2943, 2949
	Selar crumenophthalmus	MNHN JNC3043–4, 3126
	Sphyraena putnamae*	MNHN JNC3035
	Trichiurus lepturus*	MNHN JNC3045–6, 3048
Adult	Carcharhinus sp.	Qld SAM 18322
Heteronybelinia sp. C		
Larval	Safflamen fraenatus	MNHN JNC3034
Myxonybelinia southwelli (Palm & Walter, 1999)		
Larval	Choerodon venustus	H QM G218062
	Stegostoma fasciatum	MNHN JNC1529
Adult	Dendrochirus zebra*	QM G218031
Nybelinia aequidentata Shipley & Homell, 1906		
Larval		
Nybelinia basimegacantha Carvajal, Campbell & Cornford, 1976		
Larval	Parupeneus bifasciatus*	L QM G232545
	Neoniphon sammara*	MNHN JNC2552
	Parupeneus multifasciatus	MNHN JNC2111
Nybelinia goreensis Dollfus, 1960		
Larval	Lethrinus genivittatus*	MNHN JNC2033
	Lethrinus rubrioculatus*	MNHN JNC1148
	Nemipterus furcosus	MNHN JNC2612
	Parupeneus barberinus*	MNHN JNC1838B
	Parupeneus multifasciatus*	MNHN JNC2112

(continued on next page)
Table 1. (continued)	Great Barrier Reef	New Caledonia
Nybelinia indica Chandra, 1986		
(= *Nybelinia scoliodoni* Vijayalakshmi, Vijayalakshmi & Gangadharam, 1996)		
Larval	Diodon hystrix	H QM G218034–41
	Caranx sexfasciatus	MNHN JNC3194
	Diodon hystrix	MNHN JNC2977F
	Lagocephalus sceleratus*	MNHN JNC2982
	Leiognathus fasciatus*	MNHN JNC2921
	Nemipterus furcosus*	MNHN JNC2288, 2611, 3016
Adult	Taeniura lymma	H SAM 17646
	Triaenodon obesus*	MNHN JNC2109B1
Nybelinia queenslandensis Jones & Beveridge, 1998		
Larval	Ostorhinchus cookii*	H QM G232539
	Ostorhinchus properuptus*	L QM G2336644
Adult	Carcharhinus melanopterus	H, L QM G217521–31
Nybelinia strongyla Dollfus, 1960		
Larval	Johnius borneensis	H QM G218109
Nybelinia sp. A		
Larval		
Nybelinia sp. B		
Larval		

† Reported in the literature from Australia but outside the region of the Great Barrier Reef.
* New host records.
A Heron Island, Great Barrier Reef.
B Lizard Island, Great Barrier Reef.
C Queensland Museum, Brisbane.
D Muséum national d’Histoire naturelle, Paris.
E South Australian Museum, Adelaide.
F British Museum, Natural History, London.
G Townsville, Queensland.
H Snapper Island, Mossman.
I St Lawrence, Queensland.
J Published report not supported by museum specimen.
Table 2. Species of trypanorhynch cestodes collected from teleosts on the Great Barrier Reef, Australia and from New Caledonia. Authorities of fish are included and cestodes are listed in alphabetical order without authorities. GBR: Great Barrier Reef; NC: New Caledonia.

Order	Family	Host species	Parasites	Location
Anguilliformes	Congridae	Conger cinereus Rüppell, 1830	Microbothriorhynchus coelorhynchi	NC
			Symbiotheriorhynchus tigaminacanthus	NC
			Floriceps minacanthus	GBR, NC
			Otobothrium alexandri	GBR, NC
			Otobothrium penetrans	NC
			Nybelinia basingegantha	NC
Aulopiformes	Synodontidae	Saurida undosquamis (Richardson, 1848)	Symbothriorhynchus tigaminacanthus	NC
Beloniformes	Belonidae	Tylosurus crocodilus (Pérón & Lesueur, 1821)	Otobothrium alexandri	NC
			Otobothrium penetrans	NC
			Nybelinia sp. A	NC
			Callitetrarhynchus granilis	GBR
Beryciformes	Holocentridae	Neoniphon sammara (Forsskål, 1775)	Callitetrarhynchus granilis	GBR
Clupeiformes	Chirocentridae	Chirocentrus dorab (Forsskål, 1775)	Callitetrarhynchus granilis	NC
	Clupeidae	Herklotsichthys quadrimaculatus (Rüppell, 1837)	Heteronybelinia estigmena	NC
Gadiformes	Moridae	Lotella rhacina (Forster, 1801)	Callitetrarhynchus granilis	GBR
Perciformes	Acanthuridae	Naso vlamingii (Valenciennes, 1835)	Pseudolacistorhynchus shipileyi	GBR
	Apogonidae	Apogon poecilopterus Cuvier, 1828	Pseudotobothrium dipsacum	GBR
			Nybelinia basingegantha	NC
			Callitetrarhynchus granilis	GBR
			Heteronybelinia estigmena	NC
Carangidae	Atule mate (Cuvier, 1833)		Callitetrarhynchus granilis	GBR
			Heteronybelinia estigmena	NC
			Callitetrarhynchus granilis	NC
			Dieningsium cf lomentacum	NC
			Pseudolacistorhynchus shipileyi	GBR
			Pseudotobothrium dipsacum	GBR
			Nybelinia indica	NC
			Callitetrarhynchus granilis	GBR
			Floriceps saccatus	NC
	Megalaspis cordyla (Linnaeus, 1758)		Callitetrarhynchus granilis	GBR
	Pseudocaranx dentex (Bloch & Schneider, 1801)		Pseudolacistorhynchus shipileyi	GBR
	Selar crumenophthalmus (Bloch, 1793)		Pseudolacistorhynchus shipileyi	GBR
	Tetrapterus angustirostris Tanka, 1915		Pseudolacistorhynchus shipileyi	GBR
Labridae	Cheilinus trilobatus (Lacépède, 1801)		Pseudolacistorhynchus shipileyi	GBR
	Halichoeres trimaculatus (Quoy & Gaimard, 1834)		Pseudolacistorhynchus shipileyi	GBR
	Choerodon cyanodus (Richardson, 1843)		Pseudolacistorhynchus shipileyi	GBR
	Choerodon fasciatus (Günther, 1867)		Pseudolacistorhynchus shipileyi	GBR
	Choerodon venustus (De Vis, 1884)		Pseudolacistorhynchus shipileyi	GBR
	Leiogathus fasciatus (Lacépède, 1803)		Pseudolacistorhynchus shipileyi	GBR
Leiognathidae	Leiognathus atkinsoni Seale, 1910		Pseudolacistorhynchus shipileyi	GBR
	Lethrinus atkinsoni Seale, 1910		Pseudolacistorhynchus shipileyi	GBR
Lethrinidae	Lethrinus atkinsoni Seale, 1910		Pseudolacistorhynchus shipileyi	GBR
	Lethrinus genivittatus Valenciennes, 1830		Pseudolacistorhynchus shipileyi	GBR
	Lethrinus miniatus (Forster, 1801)		Pseudolacistorhynchus shipileyi	GBR
	Lethrinus nebulosus (Forsskål, 1775)		Pseudolacistorhynchus shipileyi	GBR
	Lethrinus obsoletus (Forsskål, 1775)		Pseudolacistorhynchus shipileyi	GBR
	Lethrinus rubrioperculatus Sato, 1978		Pseudolacistorhynchus shipileyi	GBR
	Gymnocranius grandoculis (Valenciennes, 1830)		Pseudolacistorhynchus shipileyi	GBR
Lutjanidae	Caesio cuning (Bloch, 1791)		Pseudolacistorhynchus shipileyi	GBR
	Lutjanus carponotatus (Richardson, 1842)		Pseudolacistorhynchus shipileyi	GBR
	Lutjanus gibbus (Forsskål, 1775)		Pseudolacistorhynchus shipileyi	GBR
	Lutjanus vittae (Quoy & Gaimard, 1824)		Pseudolacistorhynchus shipileyi	GBR
Order	Family	Host species	Parasites	Location
-----------	-----------------------	-------------------------------------	-------------------------------------	----------
Mullidae	*Parupeneus barberinus* (Lacépède, 1801)	*Nybelinia goreensis*	NC	
	Parupeneus bifasciatus (Lacépède, 1801)	*Nybelinia basimegacantha*	GBR	
	Parupeneus multifasciatus (Quoy & Gaimard, 1825)	*Nybelinia basimegacantha*	NC	
		Nybelinia goreensis	NC	
		Nybelinia sp. B	NC	
Nemipteridae	*Nemipterus furcatus* (Valenciennes, 1830)	*Callitetrarhynchus gracilis*	NC	
		Floriceps minacanthus	NC	
		Nybelinia indica	NC	
		Nybelinia goreensis	NC	
		Nybelinia queenslandensis	NC	
		Symbothriorhynchus tigamucanthis	NC	
Polynemidae	*Polynemus heptadactyla* (Cuvier, 1829)	*Callitetrarhynchus gracilis*	GBR	
Pomacentridae	*Abudefdyf whitleyi* Allen & Robertson, 1974	*Callitetrarhynchus gracilis*	GBR	
Pomatomidae	*Pomatomus saltatrix* (Linnaeus, 1766)	*Callitetrarhynchus gracilis*	GBR	
Sciaenidae	*Johnius borneensis* (Bleeker, 1851)	*Callitetrarhynchus gracilis*	GBR	
		Nybelinia strongyla	GBR	
		Proemotobothrium southwelli	GBR	
Scombridae	*Euthynnus affinis* (Cantar, 1849)	*Callitetrarhynchus gracilis*	GBR, NC	
	Euthynnus allletteratus (Rafinesque, 1810)	*Callitetrarhynchus gracilis*	GBR	
	Grammatocyclus bicornatus (Quoy & Gaimard, 1825)	*Callitetrarhynchus gracilis*	GBR, NC	
	Sarda australis (Maclay, 1881)	*Heteronybelinia estigma*	GBR	
	Scomberomorus commerson (Lacépède, 1800)	*Callitetrarhynchus gracilis*	GBR, NC	
		Grillostella exile	GBR	
		Ptero bothrium acanthotracatum	GBR	
	Scomberomorus queenslandicus Munro, 1943	*Callitetrarhynchus gracilis*	GBR	
		Hepatoxyron trichiuri	NC	
Serranidae	*Cephalopholis boenak* (Bloch, 1790)	*Callitetrarhynchus gracilis*	NC	
		Floriceps minacanthus	NC	
		Pseudolacistorhynchus heroniensis	NC	
		Pseudolacistorhynchus shiplei	GBR	
	Cephalopholis cyanostigma (Valenciennes, 1828)	*Callitetrarhynchus gracilis*	GBR, NC	
		Floriceps minacanthus	GBR	
		Pseudolacistorhynchus shiplei	GBR	
		Floriceps minacanthus	GBR	
	Cephalopholis miniata (Forsskål, 1775)	*Pseudolacistorhynchus heroniensis*	GBR, NC	
	Cephalopholis sonnerati (Valenciennes, 1828)	*Pseudolacistorhynchus shiplei*	GBR	
		Pseudolacistorhynchus heroniensis	GB, NC	
	Cephalopholis spiloparanea (Valenciennes, 1828)	*Pseudolacistorhynchus shiplei*	GBR, NC	
	Cephalopholis urodet (Schneider, 1801)	*Pseudolacistorhynchus shiplei*	GBR	
		Pseudolacistorhynchus shiplei	GBR, NC	
	Cromileptes alvelis (Valenciennes, 1828)	*Callitetrarhynchus gracilis*	GBR	
	Epinephelus cooides (Hamilton, 1822)	*Dasyrhyhanchus pacificus*	NC	
		Floriceps minacanthus	NC	
		Pseudogilquinia pillersi	NC	
	Epinephelus chlorostigma (Valenciennes, 1828)	*Pseudolacistorhynchus heroniensis*	NC	
		Dasyrhyhanchus pacificus	NC	
		Diesingium cf lomentaceum	NC	
		Pseudolacistorhynchus heroniensis	NC	
	Epinephelus cyanopodus (Richardson, 1846)	*Floriceps minacanthus*	NC	
		Pseudolacistorhynchus heroniensis	NC	

(continued on next page)
Order	Family	Host species	Parasites	Location
Epinephelus fasciatus	Callitetrarhynchus gracilis	NC		
	Pseudolacistorhynchus heroniensis	NC		
	Pseudotobothrium dipsacum	NC		
Epinephelus houlandi	Pseudolacistorhynchus heroniensis	NC		
	Floriceps minacanthus	NC		
Epinephelus maculatus	Pseudolacistorhynchus heroniensis	NC		
Epinephelus malabaricus	Pseudolacistorhynchus heroniensis	NC		
	Pseudolacistorhynchus shipleyi	GBR, NC		
Epinephelus ongus	Pseudolacistorhynchus heroniensis	NC		
	Pseudolacistorhynchus shipleyi	GBR, NC		
Epinephelus retouti	Pseudolacistorhynchus heroniensis	NC		
	Pseudolacistorhynchus shipleyi	GBR, NC		
Epinephelus quoyanus	Callitetrarhynchus gracilis	NC		
Epinephelus rivulatus	Pseudolacistorhynchus heroniensis	NC		
	Pseudolacistorhynchus shipleyi	GBR		
Plectropomus areolatus	Floriceps minacanthus	NC		
	Pseudotobothrium dipsacum	NC		
Plectropomus leopardus	Floriceps minacanthus	NC		
	Pseudotobothrium dipsacum	NC		
Sphyraenidae	Sphyraena flavicauda	GBR		
	Sphyraena jello Cuvier, 1829	GBR		
	Bombycirhynchus sphaerenaicum	GBR		
	Floriceps minacanthus	GBR		
Sphyraena obtusata	Callitetrarhynchus gracilis	GBR, NC		
	Pseudolacistorhynchus heroniensis	GBR		
	Pseudolacistorhynchus shipleyi	GBR		
	Pterobothrium acanthotruncatum	GBR		
Syngnathiformes	Fistulariidae	NC		
	Fistularia commersonii	GBR		
	Sphyraena patmamae Jordan & Seale, 1905	NC		
	Heteronybelinia estigmata	NC		
Tetraodontiformes	Balistidae	NC		
	Abalistes filamentosus Matsuura & Yoshino, 2004	NC		
	Dasyrhynchus basipunctatus	GBR		
	Pseudolacistorhynchus heroniensis	NC		
	Pseudolacistorhynchus heroniensis NC	NC		
	Pseudotobothrium dipsacum	NC		
Abalistesstellatus	Dasyrhynchus basipunctatus	NC		
	Pseudolacistorhynchus heroniensis	NC		
	Pseudolacistorhynchus heroniensis NC	NC		
	Pseudotobothrium dipsacum	NC		
Pseudobalistes fuscus	Dasyrhynchus basipunctatus	NC		
	Pseudolacistorhynchus heroniensis	NC		
	Pseudolacistorhynchus heroniensis NC	NC		
Rhinecanthus aculeatus	Pseudolacistorhynchus shipleyi	GBR		
	Pterobothrium acanthotruncatum	GBR		
Rhinecanthus rectangulus	Pseudolacistorhynchus heroniensis	NC		
	Pseudolacistorhynchus heroniensis NC	NC		
	Pterobothrium acanthotruncatum	GBR		
Sphyraenidae	Sphyraena flavicauda	GBR		
	Sphyraena jello Cuvier, 1829	GBR		
	Floriceps minacanthus	GBR		
	Pseudolacistorhynchus heroniensis	GBR		
	Pterobothrium acanthotruncatum	GBR		
	Heteronybelinia estigmata	NC		
Diodontidae	Diodon hystrix Linnaeus, 1758	NC		
	Floriceps saccatus	GBR		
	Hepatoxylon trichiuri	GBR		
	Molicola horridus	GBR		
	Nybelinia indica	GBR		
	Pterobothrium acanthotruncatum	GBR		

(continued on next page)
Table 2. (continued)

Order	Family	Host species	Parasites	Location
Tetraodontidae				
	Lagocephalus sceleratus (Gmelin, 1789)		Dasyrhynchus basipunctatus	NC
	Nybelinia indica		Nybelinia indica	NC
	Dasyrhynchus basipunctatus		Dasyrhynchus basipunctatus	NC
Scorpaeniformes	Platycephalidae	Cymbacephalus beauforti (Knapp, 1973)	Callitetrarhynchus gracilis	NC
	Scorpaenidae	Dendrochirus zebra (Cuvier, 1829)	Pseudotobothrium dipsacum	NC
Scorpaenidae			Nybelinia aequidentata	NC

Figures 2–7. Metacestodes of trypanorhynch cestodes from teleost fishes. 2. Viable plerocerci of Callitetrarhynchus gracilis in the body cavity of Scomberomorus commerson. 3. Melanised trypanorhynch plerocerci in the body cavity of Epinephelus sp. 4. Melanised and contracted cysts of trypanorhynch metacestodes in the body cavity of Cephalopholis miniata; no viable plerocerci were recovered from these cysts. 5. Plerocerci of Pseudogilquinia spp. (arrows) around the oesophagus of Lethrinus nebulosus. 6. Merocerci of Molicola horridus in the liver of Diodon hystrix. 7. Plerocerci of Grillotiella exile in the gill arches of Scomberomorus commerson (histological section).
plerocercoids most closely resemble *N. lingualis* but cannot be assigned to this species with certainty.

2. *Nybelinia* sp. B (Fig. 9)

Material examined: plerocercoid from *Parupeneus multifasciatus* (Quoy & Gaimard, 1825), New Caledonia, MNHN JNC2172 C4.

Scolex length 1750, pars bothrialis 1100, pars vaginalis 1000, bulbs elongate, 560 long, velum 200, metabasal hooks: length 20, base 14.

Remarks

This specimen most closely resembles *N. strongyla* Dollfus, 1960 in scolex length, bulb length and hook size and shape, but differs in the length of the velum (690–830 in *N. strongyla* compared with 200 in the present material).

3. *Heteronybelinia* sp. C (Fig. 10)

Material examined: plerocercoid from *Safflamen fraenatus* (Latreille, 1804), New Caledonia, MNHN JNC3034.

Scolex length 1440, pars bothrialis 770, pars vaginalis 680, bulbs elongate, bulb length 375, velum 125, metabasal hooks on botharial surface: length 17–19, base 8; on bothrial surface: length 25, base 18; basal armature heteromorphous.

Remarks

This specimen clearly belongs to *Heteronybelinia* as the hooks differ markedly in shape on the bothrial versus the anti-bothrial surfaces of the tentacle. Hook sizes are closest to *H. eureia* (Dollfus, 1960), but the specimen differs from this species in the number of hooks per half spiral and by the fact that in this specimen the bulbs are entirely posterior to the pars bothrialis while in *H. eureia*, they do not extend beyond the pars bothrialis. Therefore, this specimen cannot be accommodated within any known species of *Heteronybelinia*.

4. *Nybelinia basimegacantha* Carvajal, Campbell & Cornford, 1976 (Fig. 11)

Material examined: plerocercoid from *Parupeneus multifasciatus* (Quoy & Gaimard, 1825), New Caledonia, MNHN JNC2111 C1; plerocercoid from *Neoniphon sammara* (Forskal, 1775), New Caledonia, MNHN JNC2552.

Specimen from *P. multifasciatus*: Scolex length 2600, pars bothrialis 1400, pars vaginalis 900, bulb length 1060, bulb width 130, velum 90.

Specimen from *N. sammara*: Scolex length 1380, pars bothrialis 840, pars vaginalis 350; bulb length 450, bulb width 70, velum 70.

Remarks

Two specimens have been identified as belonging to this species with its characteristic armature. In spite of the fact that the armature of both specimens is identical, scolex measurements differed substantially and for this reason, the measurements of both specimens are presented. The specimen from *P. multifasciatus* although quite flattened, corresponds more closely with the original description of the species, also from *P. multifasciatus* from Hawaii [10]. In the specimen from *N. sammara*, all measurements are shorter but the tentacular armature is identical.

Discussion

General comments

Although the records of trypanorhynch infections listed here are based on the dissection of thousands of fish from both the GBR and NC, the data collected are based on opportunistic collecting and must be viewed in this light. Few prevalence or intensity data were collected and the data are based largely on the presence of trypanorhynch metacestodes. Fish examined that did not harbour metacestodes were not included in the data presented in the tables but representative examples have been indicated in the results.

In spite of these limitations, the large numbers of metacestodes collected from both regions provide a significant basis for comparing trypanorhynch metacestodes of teleosts inhabiting coral reefs.

Several features are evident from the data presented. In spite of potential differences in the fish faunas between the two regions examined and possible biases in sampling approaches, an extremely large number of fish specimens (thousands) was examined at each locality and even though the methods of examination varied to some degree, the study encompassed a wide range of fish families at both sites. Overall, 45% of the trypanorhynch species recorded here occurred in both regions. In addition, the trypanorhynch species most commonly encountered were similar in both locations. Records of adults from elasmobranchs from both of these regions provided additional information on potential life cycles and the collection included numerous new host and geographical records.

Host specificity

Notwithstanding the opportunistic nature of the collecting, several aspects of host specificity are detectable within the data set and are worthy of discussion particularly since Palm & Carra, 2008 [30] have shown that specificity of the larval stages of trypanorhynchas is generally lower than that of the adults. First, it is evident that several fish taxa were rarely infected with trypanorhynchs. Thus, despite examination of substantial...
numbers of Blenniidae, Chaetodontidae, Gobiidae, Kyphosidae and Scaridae, no trypanorhyncs were found in these taxa. Other taxa strikingly underrepresented, though heavily sampled, were the Acanthuridae, Pomacentridae and Echeneidae. We do not suggest that these taxa have been exhaustively examined, but certainly they are depauperate relative to families such as the Balistidae, Lethrinidae, Scombridae and Serranidae.

Among the teleost fishes that were infected, there was evidence of both stenoxenicity (parasitism of closely related

Figures 8–11. Tentacularioid metacestodes incompletely identified. 8. Nybelinia sp. A from Herklotsichthys quadriraculatus (Rüppell, 1937). Scolex, basal and metabasal armature, hook profiles. Scale-bars: scolex and tentacle, 0.1 mm; hooks, 0.01 mm. 9. Nybelinia sp. B from Parupeneus multifasciatus (Quoy & Gaimard, 1825). Scolex, basal and metabasal armature, hook profiles. Scale-bars: scolex and tentacle, 0.1 mm; hooks, 0.01 mm. 10. Heteronybelinia sp. C from Sufflamen fraenatus (Latreille, 1804). Scolex, bothrial metabasal armature and antibothrial metabasal armature. Scale-bars: scolex 0.1 mm; hooks 0.01 mm. 11. Nybelinia basimegacantha Carvajal, Campbell & Cornford, 1976, specimen from Neoniphon sammara (Forsskål, 1775). Scolex, basal and metabasal armature. Scale-bars: scolex 0.1 mm; tentacle 0.01 mm.
species) and euryxenicity (parasitism of distantly or ecologically related species). In the stenoxenous category, *Molicola horditis* was seen in two species of Diodontidae, *Pterobothrium australiense* has been only in labrids (one record), *Pseudogilquinia microbothria* was found only in lethrinids (both in NC and the GBR) and *Dasyrhyynchus basipunctatus* occurred overwhelmingly in tetraodontiforms (five species) although also once in a fustularid. The apparently restricted distributions of such species are doubtless subject to refinement with further collecting but it seems highly unlikely that they will prove to be euryxenous in the same way as are some other species.

We detected some evidence of the absence of trypanorhynch species in particular fish groups. The best evidence comes from the family Serranidae which is probably the most thoroughly characterised for its trypanorhynch fauna. The serranid fishes collected tend to be large and easily examined for trypanorhynchs with which they are often heavily infected. Our results incorporate reports from 25 serranid species and of the 181 host/parasite combinations detected, 55 were from serranids; the next highest number of combinations came from the Lethrinidae with 14. The extent to which the characterisation of this family is comprehensive is demonstrated by the fact that six of the ten trypanorhynch species recorded in this family have been reported from more than one serranid species; three species were found in ten or more serranid species although four species were found in only one. We infer that the true trypanorhynch richness is thus not likely to be very much greater than the 10 species reported so far in this region.

Thus, we predict that species that have been reported relatively frequently in other fishes are genuinely absent, rather than have simply not yet been collected. Most striking in this respect are the species of the Lentacularioidea. Twelve species of this superfamily are reported here in 34 host/parasite combinations, but none in serranids. The apparent absence of a range of species from the Serranidae thus appears consistent with the high host specificity seen for the species described above.

Several species showed remarkably low specificity. Thus, *Callitetrarhynchus gracilis* was reported here from five fish orders and 18 families, *Floriceps minacanthus* from two orders and six families, *Pseudobothrium dipsacum* from three orders and six families, *Pseudolacistorhynchus heroniensis* from two orders and four families and *Pseudolacistorhynchus shipleyi* from three orders and five families. The absence of any detectable specificity in these species leads to the prediction that further sampling will lead to even larger host ranges for these species.

Callitetrarhynchus gracilis exhibited the widest host range and has a cosmopolitan distribution [27] with carcharhinid sharks as its primary definitive hosts in the Australian region [1]. Currently recorded in the intermediate stage from approximately 130 species of teleosts [16, 27, 29], 23 new host records have been added in the present study.

Floriceps minacanthus appears to be limited to the Indo-Pacific region, and again, its known definitive hosts are carcharhinid sharks [26], with adults having been reported from four species of *Carcharhinus*. However, the present record in *Trienodon obesus* is the first from a shark not belonging to this genus. Plerocerci have been reported from 13 species of teleosts [27, 29] from the Red Sea, Australia and off Indonesia and Hawaii while 14 new species of teleosts are reported here as hosts.

Pseudobothrium dipsacum was also found in a wide variety of teleosts. It has previously been reported from numerous species of teleosts ranging from the west coast of Africa to Australia [4, 27]. Eight new hosts, all from New Caledonia, have been added in the present study. In spite of its wide host range and distribution, its definitive hosts remain unknown.

Pseudolacistorhynchus heroniensis is known only from the GBR and from NC but is found in a wide range of teleosts, with 12 new teleost hosts being added in the current study. The only record of the adult parasite is a single collection from *Stegostoma fasciatum* from New Caledonia [6]. The specimens collected were either immature or hyperapolytic such that some doubt exists as to whether this is the usual definitive host species.

Pseudolacistorhynchus shipleyi occurs widely in the Indo-West Pacific, with the adults being found in *Nebrius ferrugineus* off Sri Lanka [2]. In the current study, eleven new intermediate host records are reported.

The above five species occurred in a wide variety of teleost hosts with serranids (25 species), carangids (5), balistids (5), scrombids (5) and sphyraenids (5) being most frequently encountered. The same five species of trypanorhynch were the most commonly encountered species both on the Great Barrier Reef and off New Caledonia in spite of obvious differences in the species of fish infected at the two localities. There was no intentional bias in collecting activities, but it may have been that more of these larger fishes were collected than other smaller taxa.

Other species of trypanorhynch had a more restricted host distribution. Limited data on prevalence based on a single series of collections from Lizard Island suggested that trypanorhynch larvae were prevalent in larger fishes (serranids, sphyraenids, scrombids, lutjanids) but in small fish (a single family, Apogonidae) they occurred at a very low prevalence. However, these data were based on a very small sample of fish and need to be interpreted with caution.

Overall, the patterns of host specificity seen here, a mixture of stenoxenicity and euryxenicity, resemble that reported by Chambers et al., 2000 [11] for tetraphyllidean (*sensu lato*) metacestodes of GBR fishes. In that study, metacestode Type 4 was found in two orders and 12 families, whereas Types 9 and 10 were found only in labrids. However, in the study of tetraphyllidean metacestodes it is often not possible to be confident that a single morphotype represents only one species whereas the complex morphology of trypanorhynch scoleces makes identification to species quite reliable.

Biogeography

Of the 33 trypanorhynch species reported here, 15 (45%) were found both in NC and on the GBR. Almost certainly this number underestimates the level of sharing between the two areas. Noticeably, the nine species reported in the largest number of host/parasite combinations were all found at both sites. Of the 21 species found in only one or two host/parasite combinations, only one (*Molicola horditis*) was found both in NC and on the
GBR. It seems likely, or at least possible, that some species are restricted to one or other of the two sites but at present the evidence is generally marginal in this respect. The only robust parasitological study of which we are aware that has previously compared parasites of NC and the GBR is that of McNamara et al., 2012 [26] who analysed monorchiid trematodes of chaetodontids from NC and the GBR (as well as other sites in the Tropical Indo-West Pacific [TIWP]). Thirteen species of Hurleytrematoides Yamaguti, 1953 were found in total for the two sites of which just six were found at both sites for a similarity of 46%; four species were found only from the GBR and three only from NC. In every case, hosts suitable for the species not found in each area had been examined in numbers sufficient to suggest that they would have been found if present. The proportion of monorchiid species shared (46%) is thus remarkably similar to that for the trypanorhynchs. Given the much stricter restriction of monorchiid species shared (46%) is thus remarkably similar to that for the trypanorhynchs.

Of the species found, eight (C. gracilis, F. saccatus, Gr. exile, Heph. trichiuri, Het. estigmia, M. horridus, N. goreensis, O. penetrans) have a cosmopolitan distribution, based on records in Palm, 2004 [27], while ten species are widely distributed in the Tropical Indo-West Pacific (TIWP) (D. pacificus, F. minacanthus, N. basimegacantha, N. indica, Psgi. microbothria, Psgi. pillersi, D. basipunctatus, Psl. shipleyi, Psl. dipsacum, Pt. acanthotruncatum). By contrast, seven species occur only in south-east Asia and Australasia (N. queenslandensis, O. alexanderi, O. purvum, Psl. heroniensis, Psl. nanus, Pt. australiensis, S. tigaminacanthus). Several additional species (e.g. Pt. lintoni) with few, highly disjunct records are difficult to categorise. Nevertheless, with many of the trypanorhynch species encountered having extremely wide geographical distributions [31], it was not surprising that the species found on the GBR and from NC were broadly similar.

Localisation in host

Apart from potential differences in the species of fish present at the two sites studied, or their abundance and hence ease of obtaining a particular species, other factors may be involved such as the location of trypanorhynch metacestodes in the body of the teleost. Most are found in the body cavity and are easily recognised. However, the metacestodes of Gr. exile occur only in the gill arches of Sc. commerson [35] and this site is not always examined for the presence of metacestodes. Similarly, the metacestodes of Psgi. microbothria cluster around the oesophagus of L. nebulosus (unpublished) while those of Pt. lintoni are found in the musculature (unpublished). Failure to examine sites other than the body cavities may lead to differences in the species recovered.

Life cycles

Combining the data obtained here with that available for adult trypanorhynchs in elasmobranchs in the same region has provided some insights into life cycles such as finding the adult of Pt. acanthotruncatum for the first time in Pristis zijsron. In addition, the definitive host range of F. minacanthus is expanded to include the shark Triaenodon obesus. Many life cycles remain to be identified, but broad scale collecting, such as that undertaken in this study, can be useful in identifying both potential intermediate and definitive hosts.

Species of Diodon warrant a particular mention as they are parasitised by several well-recognised trypanorhynch species including Floriceps saccatus and Mollusca horridus. Infections with the latter species are particularly striking as much of the hepatic parenchyma may be replaced by metacestodes (Fig. 5). Species of Diodon are not only highly toxic [36], but can also inflate their bodies when threatened. As adults of these cestodes are found in large sharks such as Prionace glauca (Linnaeus, 1758) (see Dollfus, 1942) [14], it is tempting to assume that only large sharks are able to consume species of Diodon. Alternatively, it may be that the life cycles of these cestodes are completed using alternative intermediate hosts and their presence in species of Diodon indicates an occurrence in “dead-end” hosts. By comparison, in a study of the larval anisakid nematodes of teleosts off Lizard Island, Jabbar et al., 2012 [18] found no larval anisakids in their sample of tetraodontiform fishes, which would potentially be “dead-end” hosts for these nematodes.

Conclusion

This is the first study to attempt to examine the trypanorhynch larval cestode fauna of coral reef teleosts in the west Pacific, examining reefs on the GBR and NC. The trypanorhynch fauna was dominated numerically by a small number of species at both sites with considerable similarity between the two localities examined. Although large numbers of teleosts were examined at both sites, it is most unlikely that the trypanorhynch fauna has been exhaustively surveyed and more detailed comparisons must await much more extensive sampling. Nevertheless, apart from characterising the general features of the fauna, this study has provided additional insights into host specificity and life cycles of these cestode parasites.

Conflict of Interest

The Editor-in-Chief of Parasite is one of the authors of this manuscript. COPE (Committee on Publication Ethics, http://publicationethics.org/), to which Parasite adheres, advises special treatment in these cases. COPE wrote: “Editors should not be denied the ability to publish in their own journal, but they must not exploit their position. The journal must have a procedure for handling submissions from the editor or members of the editorial board that ensures that peer review is handled independently of the author/editor. This process should be detailed once the paper is published.” In this case the peer-review process was handled by Invited Editor Dominique Vuitton.

Acknowledgements. Collecting on the GBR was funded by the Australian Research Council and the Australian Biological Resources Study, the latter in part through the CREefs Program.
In New Caledonia, the following students of JLJ participated in the parasitological survey: Julie Mounier, Charles Beaufrère, Anaïs Guillou, Audrey Guérin, Damien Hinsinger, Eric Bureau, Cléo Journo, Violette Justine, Amandine Marie, Aude Sigura, Sophie Olivier, Guillaume Rascalou, Géraldine Collé, Lénaïg Hemery, Pierpaolo Brena, Cyndie Dupoux, Isabelle Mary, Adeline Gruegau, Marine Brond and Charlotte Schoelinck. Claude Chauvet (UNC, Nouméa) provided several fishes. Angelo di Matteo (IRD) provided technical help. Visiting colleagues who participated were Ian Beveridge, Louis Euzet, Eva Rehulková, Frantisek Moravec, Milan Geljar, Bernard Marchand and Susan Lim. Certain fishes from New Caledonia were identified (often from photographs) by Jack Randall (Bishop Museum, Hawaii), Ronald Fricke (Staatliches Museum für Naturkunde, Stuttgart, Germany), Kent E. Carpenter (Old Dominion University, Norfolk, Virginia, USA), Philippe Borsa (IRD, Nouméa), Bernard Séret (IRD and MNHN, Paris) and Samuel Iglesias (MNHN, Paris).

References

1. Beveridge I, Campbell RA. 1996. New records and redescriptions of trypanorhynch cestodes from Australian fishes. Records of the South Australian Museum, 29, 1–22.
2. Beveridge I, Campbell RA. 1998. Re-examination of the trypanorhynch cestode collections of A.E. Shipley, J. Hornell and T. Southwell with the erection of a new genus, Trygonicola, and redescriptions of seven species. Systematic Parasitology, 39, 1–34.
3. Beveridge I, Campbell RA. 2001. Proenomatobothrium n.g. (Cestoda: Trypanorhyncha), with the rediscription of P. linstowi (Southwell, 1912) n. comb. and description of P. southwelli n. sp. Systematic Parasitology, 48, 223–233.
4. Beveridge I, Campbell RA, Jones MK. 2000. New records of the cestode genus Pseudotobothrium (Trypanorhyncha: Otobothriidae) from Australian fishes. Transactions of the Royal Society of South Australia, 124, 151–162.
5. Beveridge I, Chauvet C, Justine J-L. 2007. Rediscription of Pseudogillquipina pilleisi (Southwell, 1929) (Cestoda: Trypanorhyncha) from serranid and lethrinid fishes from New Caledonia and Australia. Acta Parasitologica, 52, 218–222.
6. Beveridge I, Justine J-L. 2007. Pseudolacistorhynchus nanus n. sp. (Cestoda: Trypanorhyncha) parasitic in the spiral valve of the zebra shark, Stegostoma fasciatum (Hermann, 1783). Transactions of the Royal Society of South Australia, 132, 177–183.
7. Bouchet P, Lozouet P, Maestrazi P, Heros V. 2002. Assessing the magnitude of species richness in tropical marine environments: exceptionally high numbers of molluscs at a New Caledonia site. Biological Journal of the Linnean Society, London, 75, 421–436.
8. Campbell RA, Beveridge I. 1996. Revision of the family Pterobothriidae Pintner, 1931 (Cestoda: Trypanorhyncha). Invertebrate Taxonomy, 10, 617–662.
9. Carpenter KE, Abrar M, Aebly G, Aronson RB, Banks S, Bruckner A, Chiriboga A, Cortés J, Delbeek J, DeVantier L, Edgar GJ, Edwards AJ, Fenner D, Guzmán HM, Hoeksema AW, Hodgson G, Johan O, Licuanan WY, Livingstone SR, Lovell ER, Moore JA, Obura DO, Ochavillo D, Polidoro EA, Precht WF, Quilban MC, Reboton C, Richards ZT, Rogers AD, Sanciangco J, Sheppard A, Sheppard C, Smith J, Stuart S, Turk E, Veron JEN, Wallace C, Weil E, Wood E. 2008. One third of reef building corals face elevated extinction risks from climate change and local effects. Science, 321, 560–563.
10. Carvajal JG, Campbell RA, Cornford EM. 1976. Some trypanorhynch cestodes from Hawaiian fishes with the description of four new species. Journal of Parasitology, 62, 70–77.
11. Chambers CB, Cribb TH, Jones MK. 2000. Tetrathyridiid metacercoida of teleosts of the Great Barrier Reef, and the use of in vitro cultivation to identify them. Folia Parasitologica, 47, 285–292.
12. Cheryv L. 2002. The terminology of larval cestodes or metacercoida. Systematic Parasitology, 52, 1–33.
13. Cribb TH, Bray RA, Barker SC, Adlard RD, Anderson GR. 1994. Biology and diversity of digenean trematodes of reef and inshore fishes of Queensland. International Journal for Parasitology, 24, 851–960.
14. Dolfus RP. 1942. Études critiques sur les Tétrarhyncac du Muséum de Paris. Archives du Muséum National d’Histoire Naturelle, Paris, 19, 1–466.
15. Froese R, Pauly D. 2014. FishBase, World Wide Web electronic publication. www.fishbase.org.
16. Haseli M, Malek M, Valinasaab T, Palm HW. 2011. Trypanorhynch cestodes of teleost fish from the Persian Gulf, Iran. Journal of Helminthology, 85, 215–224.
17. Hoeg-Guldberg O, Bruno JF. 2010. The impact of climate change on the world’s ecosystems. Science, 328, 1523–1528.
18. Jabbar A, Asnoussi A, Norbury LJ, Eisenbarth A, Shamsi S, Gasser RB, Lopata AL, Beveridge I. 2012. Larval anisakid nematodes in teleost fishes from Lizard Island, northern Great Barrier Reef, Australia. Marine and Freshwater Research, 63, 1283–1299.
19. Jensen K. 2009. Cestoda (Platyhelminthes) of the Gulf of Mexico, in Felder DL, Camp DK, Editors. Gulf of Mexico. Origin, Waters, and Biota. Texas A & M University Press: USA, p. 487–522.
20. Justine J-L. 2010. Parasites of coral reef fish: how much do we know? With a bibliography of fish parasites in New Caledonia. Belgian Journal of Zoology, 140, 155–190.
21. Justine J-L, Beveridge I, Boxshall GA, Bray RA, Moravec F, Trilles J-P, Whittington ID. 2010. An annotated list of parasites (Isopoda, Copepoda, Monogenea, Digenea, Cestoda and Nematoda) collected from groupers (Serranidae, Epinephelinae) in New Caledonia emphasizes parasite biodiversity in coral reef fish. Folia Parasitologica, 54, 237–262.
22. Justine J-L, Beveridge I, Boxshall GA, Bray RA, Moravec F, Trilles J-P, Whittington ID. 2010. An annotated list of fish parasites (Copepoda, Monogenea, Digenea, Cestoda and Nematoda) collected from Emperors and Emperor Bream (Lethrinidae) in New Caledonia further highlights parasite biodiversity estimates on coral reef fish. Zootaxa, 2691, 1–40.
23. Justine J-L, Beveridge I, Boxshall GA, Bray RA, Miller TL, Moravec F, Trilles J-P, Whittington ID. 2012. An annotated list of fish parasites (Isopoda, Copepoda, Monogenea, Digenea, Cestoda, Nematoda) collected from Snappers and Bream (Lutjanidae, Nemipteridae, Caesionidae) in New Caledonia confirms high parasite biodiversity on coral reef fish. Aquatic Biosystems, 8, 22.
24. Lester RJG, Sewell KB. 1989. Checklist of parasites from Heron Island, Great Barrier Reef. Australian Journal of Zoology, 37, 101–128.
25. MacKenzie K. 1990. Cestode parasites as biological tags for mackerel (Scomber scombrus L.) in the northeast Atlantic.
26. McNamara MKA, Adlard RD, Bray RA, Sasal P, Cribb TH. 2012. Monorchiids (Platyhelminthes: Digenea) of chaetodontid fishes (Perciformes): biogeographical patterns in the tropical Indo-West Pacific. Parasitology International, 61, 288–306.

27. Palm HW. 2004. The Trypanorhyncha Diesing, 1863. PKSPL-IPB Press: Bogor.

28. Palm HW, Beveridge I. 2002. Tentaculariid cestodes of the order Trypanorhyncha (Platyhelminthes) from the Australian region. Records of the South Australian Museum, 35, 49–78.

29. Palm HW, Bray RA. 2014. Marine Fish Parasitology in Hawaii. Westarp & Partner: Hohenwarsleben.

30. Palm HW, Caira JN. 2008. Host specificity of adult versus larval cestodes of the elasmobranch tapeworm order Trypanorhyncha. International Journal for Parasitology, 38, 381–388.

31. Palm HW, Waeschenbach A, Littlewood DTJ. 2007. Genetic diversity in the trypanorhynch cestode Tentacularia coryphaenae Bosc, 1797: evidence for a cosmopolitan distribution and low host specificity in the teleost intermediate host. Parasitology Research, 101, 153–159.

32. Plaisance L, Caley MJ, Brainard RE, Knowlton N. 2011. The diversity of coral reefs: What are we missing? PLoS One, 6(10), e25026.

33. Rohde K. 1976. Marine parasitology in Australia. Search, 7, 477–482.

34. Sakanari J. 1989. Grillotia heroniensis, sp. nov., and G. overstreeti, sp. nov., (Cestoda: Trypanorhyncha) from Great Barrier Reef fishes. Australian Journal of Zoology, 37, 81–87.

35. Shaharom FM, Lester RJG. 1982. Description of and observations on Grillotia branchi n.sp., a larval trypanorhynch from the branchial arches of the Spanish mackerel, Scomberomorus commerson. Systematic Parasitology, 4, 1–6.

36. Trevett AJ, Mavo B, Warrell DA. 1997. Tetradotoxic poisoning from ingestion of a porcupine fish (Diodon hystrix) in Papua New Guinea: nerve conduction studies. American Journal of Tropical Medicine and Hygiene, 56, 30–32.

Cite this article as: Beveridge I, Bray RA, Cribb TH & Justine J-L: Diversity of trypanorhynch metacestodes in teleost fishes from coral reefs off eastern Australia and New Caledonia. Parasite, 2014, 21, 60.
Author/s: Beveridge, I; Bray, RA; Cribb, TH; Justine, J-L

Title: Diversity of trypanorhynch metacestodes in teleost fishes from coral reefs off eastern Australia and New Caledonia

Date: 2014-11-18

Citation: Beveridge, I., Bray, R. A., Cribb, T. H. & Justine, J.-L. (2014). Diversity of trypanorhynch metacestodes in teleost fishes from coral reefs off eastern Australia and New Caledonia. PARASITE, 21, https://doi.org/10.1051/parasite/2014060.

Persistent Link: http://hdl.handle.net/11343/263338

File Description: Published version

License: CC BY