Strong suppression of heat conduction in a laboratory replica of galaxy-cluster turbulent plasmas

Jena Meinecke1, Petros Tzeferacos1,2,3,4, James S. Ross5, Archie F. A. Bott1,6, Scott Feister2,7, Hye-Sook Park5, Anthony R. Bell1,8, Roger Blandford9, Richard L. Berger5, Robert Bingham4,8,10, Alexis Casner11, Laura E. Chen1, John Foster12, Dustin H. Froula4, Clement Goyon5, Daniel Kalantar5, Michel Koenig1,2, Brandon Lahmann1, Chikang Li14, Yingchao Lu15, Charlotte A. J. Palmer1,15, Richard D. Petrasco14, Hannah Poole1, Bruce Remington17, Brian Revilla15, Adan Reyes3, Alexandra Rigby1, Dongsu Ryu17, George Swadling3, Alex Zylstra5,18, Francesco Miniati1, Subir Sarkar1, Alexander A. Schekochihin1,19,20, Donald Q. Lamb2, Gianluca Gregori12,18

In conventional gases and plasmas, it is known that heat fluxes are proportional to temperature gradients, with collisions between particles mediating energy flow from hotter to colder regions and the coefficient of thermal conduction given by Spitzer’s theory. However, this theory breaks down in magnetized, turbulent, weakly collisional plasmas, although modifications are difficult to predict from first principles due to the complex, multiscale nature of the problem. Understanding heat transport is important in astrophysical plasmas such as those in galaxy clusters, where observed temperature profiles are explicable only in the presence of a strong suppression of heat conduction compared to Spitzer’s theory. To address this problem, we have created a replica of such a system in a laser laboratory experiment. Our data show a reduction of heat transport by two orders of magnitude or more, leading to large temperature variations on small spatial scales (as is seen in cluster plasmas).

INTRODUCTION

Galaxy clusters are filled with hot, diffuse x-ray emitting plasma, with a stochastically tangled magnetic field whose energy is close to equipartition with the energy of the turbulent motions (7, 2). In the cluster cores, the temperatures remain anomalously high compared to what might be expected considering that the radiative cooling time is short relative to the Hubble time (3, 4). While feedback from the central active galactic nuclei (AGN) (5–7) is believed to provide most of the heating, there has been a long debate as to whether conduction of heat from the bulk to the core can help the core to reach the observed temperatures (8–10), given the presence of tangled magnetic fields. Evidence of very sharp temperature gradients in structures like cold fronts implies a high degree of suppression of thermal conduction (11).

There are a number of possible mechanisms that can lead to a reduction from the classical (local) Spitzer conductivity: electrons getting stuck in local magnetic mirrors (12), alignment of local temperature gradients perpendicular to magnetic fields (13), and plasma instabilities such as whistler waves (14, 15). For these processes to occur, the electron’s Larmor radius must be small compared to its Coulomb mean free path, enabling microscale changes in the electron heat transport to alter the global properties of the plasma dynamics. Numerical simulations are unable to address these issues fully (16, 17), as comprehensive modeling of all the physical processes present at different scales remains very challenging computationally. Laboratory experiments (18) can provide an alternative approach if they can achieve sufficiently weak collisional conditions and sufficiently strong stochastic magnetic fields for the heat transport to be substantially modified.

Here we report such an experiment using the National Ignition Facility (NIF) laser at the Lawrence Livermore National Laboratory—see Fig. 1 for details of the experimental setup. The platform is similar to that already used at other laser facilities [e.g., the Omega laser (19, 20)] but with ∼30 times more energy delivered to the target. A highly turbulent plasma was created by ablating two doped plastic foils, each with 133 kJ of 351 nm light in 15 ns (see Fig. 1). The foils were separated by 8 mm and ablated on the back side to create colliding plasma flows at the center (4 mm from each target). To help excite turbulence, plastic mesh grids with 300-μm apertures and 300-μm-diameter wires were placed 2 mm from each foil to disturb the two flows before they collided. Three-dimensional simulations carried out with the FLASH code [validated on previous experiments at smaller laser facilities (20, 21)] were used to help design the platform and analyze the experimental data.

RESULTS

Several complementary plasma diagnostics were deployed (see Materials and Methods). With optical Thomson scattering (OTS), we measured an average electron density ne ∼ 5 × 10^{20} cm^{-3} in the collision region at t = 25 ns after the start of the drive beams. The
turbulent velocity in the plasma was determined via stimulated Brillouin scattering (SSB). By recording the wavelength shift of the backscattered light from a probe beam, we infer \(v_{\text{turb}} \approx 200 \text{ km/s} \). The self-generated magnetic fields were estimated from proton deflectionometry to be \(B_{\text{RMS}} \approx 0.8 \times (B_{\text{path},1}/25\text{Kgcm}) (\ell_p/100\text{mm})^{1/2} (\ell_p/2\text{mm})^{1/2} \) MG (here \(B_{\text{path},1} \) is the one component of the magnetic field that we measure), where we took the proton path length \(\ell_p \) from self-emission x-ray images (19, 20), and the magnetic field correlation length, \(\ell_p \), corresponds to a wavelength ~4\(\ell_p \) \(\approx 400 \mu \text{m} \) of the same order as the grid periodicity. Using the same diagnostic, we found the maximum field to be \(B_{\text{max}} \geq 3 \) MG.

By comparing soft x-ray emission images in two wavelength bands determined by filtering the broadband emission with either 6.56-\(\mu \text{m} \) polyimide or 2.36-\(\mu \text{m} \) vanadium (see Fig. 2), two-dimensional maps of \(\langle T_e \rangle_X \), a measure of the electron temperature averaged along the line of sight, were obtained with \(\sim 50-\mu \text{m} \) spatial resolution and ~100-ps temporal resolution (see the Supplementary Materials for details and validation with synthetic FLASH data). This temperature diagnostic closely resembles what has recently been used for galaxy-cluster x-ray analysis (22).

At \(t \gtrsim 23 \text{ ns} \) after the start of the drive beams, we measured an average electron temperature measure \(\langle T_e \rangle_X \approx 1.1 \text{ keV} \) over a 2 mm \(\times \) 1 mm region: see Fig. 3. The profile of the \(\langle T_e \rangle_X \) map is highly structured, with the magnitude of local perturbations in \(\langle T_e \rangle_X \) exceeding \(\sim 500 \text{ eV} \) through \(t \approx 25 \text{ ns} \).

Taking the measured root mean square (RMS) magnetic field, we find that the electrons in the interaction region are strongly magnetized (see the Supplementary Materials), viz., \(r_g/\lambda_e \approx 0.08 \), where \(r_g \) is their gyroradius and \(\lambda_e \approx 0.1 \mu \text{m} \) is their mean free path.

Note that \(\lambda_e \ll \ell_T \), where \(\ell_T \approx 50 \mu \text{m} \) is the thermal gradient length scale (limited by the spatial resolution of the diagnostics), implies that ordinary (Spitzer) conductivity is somewhat modified by non-local effects (23). Nonlocal thermal conduction has been previously seen in laboratory experiments (24) and results in a smoothing of the heat front—increasing its width by a factor \(\sim 5 \) for \(\lambda_e \sim \ell_T \) (14). However, in the presence of magnetic fields, electron conduction perpendicular to the field lines is further reduced by up to a factor \(\sim \lambda_e / r_g \).

The parallel heat conduction is also quenched by a factor of \(3/\beta_e \) (where \(\beta_e \) is the ratio of the electron thermal pressure to the magnetic pressure) due to the development of the whistler instability (14).

Evidence of notable reduction of heat conduction in our NIF experiment is illustrated by the electron temperature measure maps in Fig. 3. The image shows localized hot and cold patches with scale length \(\ell_T \ll 50 \mu \text{m} \). For normal conduction, we should expect the time for the temperature gradients associated with the hot and cold spots to disappear to be \(t_{\text{cond}} \approx k_B T_e / \ell_T^2 / \kappa_e \approx 8 \times 10^{-12} \) s, where \(k_B \) is the Spitzer thermal conductivity. Instead, as we do see temperature structures, they must have existed for a dynamical time \(t_{\text{age}} \approx L/c_s = 3 \times 10^{-9} \) s, where \(L \approx 1 \text{ mm} \) is the spatial extent of the interaction region and \(c_s \) is the sound speed. This implies a reduction in the effective conductivity (\(\kappa \)) by a factor \((\kappa/\kappa_S)^{-1} \sim (t_{\text{age}}/t_{\text{cond}}) \gtrsim 100 - 200 \) between \(t = 23 \text{ to } 25 \text{ ns} \) [see (25) for the same analysis applied to galaxy cluster plasmas].

DISCUSSION

The notion that the reduction in heat conduction is due to electrons being magnetized can be further strengthened if we compare NIF results with a turbulent plasma where \(r_g/\lambda_e \gtrsim 1 \), which was achieved in our previous experiments at the Omega laser facility, shown in Fig. 3C (19). While the turbulence itself exhibits a similar structure, the temperature map in this case is significantly more homogeneous, with \(\ell_T \gg \lambda_e, \ell_B \) and the same considerations as above lead to \((\kappa/\kappa_S)^{-1} \sim 1 \), as expected for normal conduction.

Our analysis is supported by numerical simulations of the Omega and NIF experiments performed with the FLASH code. For both experiments, we generated x-ray images from the simulation outputs and synthetic temperature maps (Fig. 3, G to I; see the Supplementary Materials for details). For Omega, the code, run with Spitzer’s conductivity, accurately reproduces the experimental \(\langle T_{\text{c}} \rangle_X \) maps. For NIF, we compared simulation results for the cases when Spitzer thermal conduction was turned off to those with it included. We find that a highly structured \(\langle T_{\text{c}} \rangle_X \) profile is only obtained in the conduction-off simulations.

More quantitatively, the distribution of \(\langle T_{\text{c}} \rangle_X \) fluctuations in the interaction region agrees between the experimental data and synthetic predictions from the FLASH conduction-off simulations (Fig. 4A).

Although FLASH simulations lack the kinetic physics likely responsible for the suppression of conductivity in the experiment, this agreement is expected for the following reason. In the experiment, because thermal conductivity is suppressed, mixing of temperature perturbations by turbulent motions predominates over thermal diffusion for the smallest temperature fluctuations that are
resolved by our diagnostic. The conduction-off simulations have a similar resolution (25 μm) and a very small artificial viscosity (see the Supplementary Materials), so they capture the turbulent motions and the resulting temperature fluctuations on the same scales as the experimental diagnostic.

Evidence of substantial reduction of heat conduction in our NIF experiment is also supported by measurements made using an alternative copper-vanadium filter configuration that we compared with FLASH simulations (see the Supplementary Materials).

Further analysis of the simulations suggests a plausible candidate for the mechanism that gives rise to the temperature inhomogeneities (that are then mixed by turbulent motions): A radiative cooling instability that acts on the initial temperature perturbations in the interaction region arising from asymmetries in the jets’ collision. The instability is a result of line cooling due to the dopants in the plasma, which causes the cooling function for the plasma to be a strongly decreasing function of the temperature for much of the relevant range of temperatures (see the Supplementary Materials). As a result, regions in the simulated plasma where $T_e \lesssim 400$ eV and 700 eV $\lesssim T_e \lesssim 900$ eV experience radiative cooling on a time scale that is comparable with the eddy turnover time of the turbulence (see Fig. 4B).

Also, approximate pressure balance across the whole interaction region (see the Supplementary Materials) implies that the regions that experience radiative cooling must undergo compression, while those that do not must expand (26, 27), enhancing the impact of the cooling instability across the whole plasma. The instability cannot operate in the conduction-on simulations because the initial temperature fluctuations in the plasma are rapidly suppressed by efficient heat transport.

Our results provide the first direct experimental evidence of suppression of heat conduction in a turbulent magnetized plasma for conditions that resemble those of galaxy clusters, and, more generally, in high-β turbulent plasma with weakly collisional and magnetized electrons. They suggest that the effective electron conductivity is about two orders of magnitude below that predicted by Spitzer’s
theory, and so, e.g., in cluster cores, conduction is unlikely to be able to lower the AGN feedback requirements, which requires a conductivity larger than \(\approx \kappa_S/5 \) \((8, 9)\). Since both the experiment and the cluster plasma are in the regime where the electron Larmor radius is smaller than the mean free path, such strong modification in the heat transport points to plasma micro-instabilities as the main culprit for the reduction of classical Spitzer’s conductivity \((14, 15)\). Precisely how to calculate the effective conductivity in such a plasma is currently unknown, either theoretically or numerically. Our NIF measurements thus provide an experimental benchmark for the development of future multiscale models of heat transport in turbulent and magnetized plasmas.

MATERIALS AND METHODS

OTS from collective electron plasma wave (EPW) oscillations was used to characterize the electron density in the interaction region of the two counterpropagating turbulent flows \((28)\). Four laser beams were focused at the interaction region with a spot radius of 600 \(\mu\)m, forming a cylindrical collection volume of diameter 50 \(\mu\)m and length of 1.2 mm (see Fig. 1). From a scattering angle of 40\(^\circ\), light was collected by a spectrometer, dispersed by a grating, and streaked onto a camera to measure the temporal evolution of the electron density. The peak position of the EPW is mainly determined by the plasma frequency (via the plasma dispersion relation) \((28)\). Since scattering occurs over a region that is much longer than the laser
wavelength, in a turbulent plasma, this implies that different electron densities are probed simultaneously, and so the observed broadening of the EPW is a measurement of that range of densities.

Similar to OTS is the SBS diagnostic, which measures the light scattered back in the laser direction in a narrow wavelength range near the laser frequency. The SBS instability results from the resonant coupling between the probe laser light, the scattered light, and an ion-acoustic wave (29). To drive this instability, we use four NIF beams delivering 0.5 TW in a 100-μm spot, probing different points in the interaction region. The backscattered light (mostly occurring near the peak of the density profile) shows a frequency shift Δλ_SBS = Δλ_{ion} + Δλ_{Doppler}, where Δλ_{ion} is associated with the coupling of the probe light with ion-acoustic waves, while Δλ_{Doppler} is the Doppler contribution from the plasma flow moving in the direction of the laser beam. If the plasma temperature is known (from the temperature maps shown in Fig. 3), then Δλ_{ion} can be estimated, and the SBS diagnostic measures the component of the flow moving along the probe beam, which is nearly perpendicular to the axis connecting the two grids (see Fig. 1). Since the velocities near the center of the interaction region are chaotic (as confirmed by the FLASH simulations), the SBS measurement is indicative of the turbulent velocities achieved in the experiment.

The turbulence-amplified magnetic fields were inferred from the angular deflections of energetic protons as they traversed the interaction region. These were created by illuminating a D^3 He capsule with 60 additional laser beams delivering a total of 48 kJ in a 900-ps pulse. Fusion reactions in the imploding capsule generate nearly monoenergetic 15-MeV protons. Unlike previous experiments where protons of these energies only acquired small deflections, proton monoenergetic 15-MeV protons. Unlike previous experiments where protons of these energies only acquired small deflections, proton deflections by placing a slit in the path of the protons to limit the size of the beam as it entered the plasma. Qualitatively, the notable displacement of protons from their projected positions in the absence of any deflection is consistent with strong magnetic fields. More quantitatively, we measured the mean, the RMS, and the maximum displacement of the proton flux distribution from the slit’s central position. This allows us to estimate the corresponding mean, RMS, and maximum values of the component of the path-integrated magnetic field parallel to the slit’s orientation (B_{parallel} = \int ds B_{z}). We also analyzed inhomogeneities in the proton flux distribution and found that their scale was consistent with the correlation length of the magnetic field being \approx 100 μm. Further details of this analysis are provided in the Supplementary Materials.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at https://science.org/doi/10.1126/sciadv.abj6799

REFERENCES AND NOTES

1. E. G. Zweibel, C. Heiles, Magnetic fields in galaxies and beyond. Nature 385, 131–136 (1997).

2. V. Vacca, M. Murgia, F. Govoni, T. Enßlin, N. Oppermann, L. Feretti, G. Giovannini, F. Loi, Magnetic fields in galaxy clusters and in the large-scale structure of the Universe. Galaxies 6, 142 (2018).

3. L. L. Cowie, J. Binney, Radiative regulation of gas flow within clusters of galaxies - A model for cluster x-ray sources. Astrophys. J. 215, 723 (1977).

4. A. C. Fabian, Cooling flows in clusters of galaxies. Annu. Rev. Astron. Astrophys. 32, 277–318 (1994).

5. A. Fabian, Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012).

6. L. Birzan, D. A. Rafferty, P. E. J. Nulsen, B. R. McNamara, H. J. A. Rottgering, M. W. Wise, R. Mittal. The duty cycle of radio-mode feedback in complete samples of clusters. Mon. Not. R. Astron. Soc. 427, 3468–3488 (2012).

7. E. Churazov, W. Forman, C. Jones, H. Böhringer, Asymmetric, arc minute scale structures around NGC 1275. Astron. Astrophys. 356, 788 (2000).

8. R. Narayan, M. V. Medvedev, Thermal conduction in clusters of Galaxies. Astrophys. J. 562, L129–L132 (2001).

9. M. Ruszkowski, M. C. Begelman, Heating, conduction and minimum temperatures in cooling flows. Astrophys. J. 581, 223–228 (2002).

10. M. W. Kunz, A. A. Schekochihin, S. C. Cowley, J. J. Binney, J. S. Sanders, Thermally stable heating mechanism for the intracluster medium: Turbulence, magnetic fields and plasma instabilities. Mon. Not. R. Astron. Soc. 410, 2446–2457 (2011).

11. M. Markovitch, A. Vikhlinin, Shocks and cold fronts in galaxy clusters. Phys. Rep. 443, 1–53 (2006).

12. S. V. Komarov, E. M. Churazov, M. W. Kunz, A. A. Schekochihin, Thermal conduction in a mirror-unstable plasma. Mon. Not. R. Astron. Soc. 460, 467–477 (2016).

13. S. V. Komarov, E. M. Churazov, A. A. Schekochihin, J. A. Zuhone, Suppression of local heat flux in a turbulent magnetized intracluster medium. Mon. Not. R. Astron. Soc. 440, 1153–1164 (2014).
19. P. Tzeferacos, A. Rigby, A. F. A. Bott, A. R. Bell, R. Bingham, A. Casner, F. Cattaneo, C. Graziani, D. H. Froula, G. Gregori, Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma.

Nat. Commun. 9, 591 (2018).

26. D. A. Tidman, R. A. Shanny, Field-generating thermal instability in laser-heated plasmas.

Phys. Plasmas 26, 022902 (2019).

31. G. A. Rochau, J. E. Bailey, G. A. Chandler, T. J. Nash, D. S. Nielsen, G. S. Dunham, D. Lee, A solution accurate, efficient and stable unsplit staggered mesh scheme for three-dimensional magnetohydrodynamics.

J. Comput. Phys. 54, 174–201 (1984).

Acknowledgments

Funding: The research leading to these results received funding from the U.K. EPSRC (grant numbers EP/M022331/1 and EP/N014472/1); the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreements nos. 256973 and 274039; the U.S. DOE under Contract nos. DE-SC0003866 to the Massachusetts Institute of Technology; DE-NA0003868 to the University of Chicago; DE-NA0003868 to the Laboratory for Laser Energetics (LLE), University of Rochester. LLNL work was performed under the auspices of the U.S. DOE under Contract No. B591485 to LLNL; Field Agreement nos. 256973 and 247039; the U.S. DOE under Contract No. B0011808, 89233118CNA000010, and 89233119CNA000063 to General Atomics; the University of Chicago; DE-NA0003868 to the Massachusetts Institute of Technology; DE-NA0001808, 89233118CNA000010, and 89233119CNA000063 to General Atomics; subcontract nos. 536203 and 630138 (LANL) and B632670 (LLNL) to the Flash Center for Computational Science; and Cooperative Agreement DE-NA000231 to the Laboratory for Laser Energetics (LLE), University of Rochester. LLNL work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. We acknowledge support from the NSF under grants PHY-1615739 and PHY-2033925. Awards of compute time were provided by the U.S. DOE ALCC program. Compute time was provided by the U.S. DOE ALCC and ERCAP programs, and the LLE High Performance Computing group. We acknowledge funding from grants 2016R1A1A1A11672307 and 2020R1A2C202800 of the NRF of Korea. The work of AS was supported in part by the...
U.K. EPSRC Programme Grant EP/R034737/1. Support from AWE plc. and the STFC of the U.K. is also acknowledged. The NIF shots were allocated through the NIF Discovery Science Program. The software used in this work was developed in part by the DOE NNSA- and DOE Office of Science-supported Flash Center for Computational Science at the University of Chicago and the University of Rochester. **Author contributions:** G.G., J.S.R., A.F.A.B., P.T., A.A.S., F.M., and D.Q.L. conceived the project, with G.G. leading the experimental program. J.M. and J.S.R. coordinated the shots on NIF; J.M. and J.F. developed the x-ray temperature diagnostics and J.M. performed the data analysis; B.L., C.-K.L., R.P., and A.F.A.B. contributed to the proton radiography development and data extraction; J.S.R. and J.M. contributed to the Thomson scattering diagnostics; P.T. designed, executed, and analyzed the FLASH simulations; J.M. and A.F.A.B. led the analysis of the experimental and simulation data, with support from P.T., S.F., H.-S.P., A.R.B., R.Bl., R.L.B., A.C., L.E.C., D.H.F., C.G., D.K., M.K., Y.L., C.A.J.P., H.P., B.Re., B.Rev., A.Re., A.Ri., D.R., G.S., F.M., S.S., A.A.S., D.Q.L., and G.G.; and J.M. and G.G. wrote the paper with contribution from all co-authors. **Competing interests:** D.Q.L. received consulting fees from Lawrence Livermore National Laboratory. All other authors declare that they have no competing interests. **Data and materials availability:** All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. All the data shown in the paper’s figures have been deposited in Oxford University Research Archive (ORA)—data (https://ora.ox.ac.uk/objects/uuid:fb17f8fd-fd07-444e-aa7e-e8b021fa463e). All other data are available in the main text or the Supplementary Materials. The FLASH code is publicly available at https://flash.rochester.edu.

Submitted 25 May 2021
Accepted 19 January 2022
Published 9 March 2022
10.1126/sciadv.abj6799
Strong suppression of heat conduction in a laboratory replica of galaxy-cluster turbulent plasmas

Jena Meinecke, Petros Tzeferacos, James S. Ross, Archie F. A. Bott, Scott Feister, Hye-Sook Park, Anthony R. Bell, Roger Blandford, Richard L. Berger, Robert Bingham, Alexis Casner, Laura E. Chen, John Foster, Dustin H. Froula, Clement Goyon, Daniel Kalantar, Michel Koenig, Brandon Lahmann, Chikang Li, Yingchao Lu, Charlotte A. J. Palmer, Richard D. Petrasso, Hannah Poole, Bruce Remington, Brian Reville, Adam Reyes, Alexandra Rigby, Dongsu Ryu, George Swadling, Alex Zylstra, Francesco Miniati, Subir Sarkar, Alexander A. Schekochihin, Donald Q. Lamb, Gianluca Gregori

Sci. Adv., 8 (10), eabj6799. • DOI: 10.1126/sciadv.abj6799

View the article online
https://www.science.org/doi/10.1126/sciadv.abj6799
Permissions
https://www.science.org/help/reprints-and-permissions