A REVIEW OF GENETIC LINKAGE
IN THE GUINEA-PIG

Roy ROBINSON

St. Stephen's Road Nursery
Ealing, London, W.13

SUMMARY

The published data on tests for linkage are reviewed and statistically analysed for independent inheritance of 15 different loci. Estimates are derived from the combined data for (1) the closest linkage compatible with the apparent random assortment or (2) the crossover fraction where random assortment is contradicted. Linkage is evident for the gene pairs P_x and R and m and s_t.

INTRODUCTION

Although still extensively utilised in many fields, domestic Guinea-pigs, *Cavia cobaya*, have declined somewhat from favour as genetic material. This is unfortunate since it is a useful animal in several respects. The purpose of this communication is to analyse and collate the published data on genetic linkage. If the Guinea-pig is to play a more vital role in rodent genetics, a critical review of the present position would seem opportune. In this regard, the Guinea-pig will be brought into line with the Mouse (CARTER and FALCONER, 1952), Rabbit (ROBINSON, 1956), Rat (ROBINSON, 1960) and *Peromyscus* (ROBINSON, 1964).

MATERIAL AND TECHNIQUE

The material consists of genetic segregation data for 15 mutant genes. There have been tested in 83 combinations out of the possible 105; this is a rate of investigation of 69 per cent, far higher than that for the other species mentioned above. The statistical technique employed is the system of scoring first explicitly introduced by Fisher (1946). For further details of the method, see ROBINSON (1956).
RESULTS

I. Independent segregation

The mutant genes, or the loci which they represent, are listed in table 1. The main independence data are arranged in table 2. This tabulation gives the estimated recombination fraction for the pooled data, together with the score and amount of statistical information for each pair of genes. The column headed phase balance discloses the percentage of information derived from coupling segregation. Perfect balance is indicated by an index of 50, a value which postulates that inviability or other interactions between genes should not bias the estimation.

Fig. 1 serves the double function of (a) indicating the extent of the linkage testing and particularly high-lighting those gene pairs which remain to be investigated, and (b) showing the strength of linkage which would be compatible with the observed segregation of the gene pair at the 5 per cent level of significance. This is approximated by multiplying the standard error by 1.96 and subtracting the quotient from the recombination fraction. The compatible linkage value is then expressed as a percentage.

With one exception, none of the tested pairs of genes listed in table 2 have shown any indication of linkage. The exceptions are the genes e and f. The combined data on the segregation have produced the significant recombination
Loci	Recombination fraction	Score	Information Quantité d'information	Phase balance Equilibre des phases	References
	Frequence de recombinaison	Note			
a-b	0.49 ± 0.02	41.33	4510.22	98	SOLLAS (1909), CASTLE (1916), IBSEN (1923), GREGORY (1928), WRIGHT (1941)
a-c	0.47 ± 0.02	63.56	1874.37	100	CASTLE (1916), IBSEN (1923), WRIGHT (1941)
a-e	0.49 ± 0.01	57.11	5497.93	98	SOLLAS (1909), CASTLE (1913, 1916), IBSEN (1923), WRIGHT (1941)
a-f	0.45 ± 0.03	62	1308	100	WRIGHT (1941)
a-m	0.48 ± 0.02	66	2940	99	WRIGHT (1916, 1941)
a-p	0.49 ± 0.02	20	3008	96	IBSEN (1923), GREGORY (1928), WRIGHT (1941)
a-Px	0.46 ± 0.02	46	1292	100	WRIGHT (1941)
a-R	0.51 ± 0.01	40	5544	98	WRIGHT (1916, 1941), IBSEN (1923)
a-s	0.51 ± 0.02	18	2824	100	WRIGHT (1941)
a-si	0.44 ± 0.03	92	1456	89	WRIGHT (1959)
a-sm	0.51 ± 0.05	4	420	60	GREGORY (1928)
a-St	0.52 ± 0.02	34	2108	84	WRIGHT (1949)
a-5	0.50 ± 0.02	5	2277	32	WRIGHT (1941)
b-c	0.50 ± 0.03	5.78	1346.22	100	CASTLE (1916), IBSEN (1923), WRIGHT (1941)
b-e	0.50 ± 0.02	4.33	4420.44	95	SOLLAS (1909), CASTLE (1961), IBSEN (1923), WRIGHT (1941)
b-f	0.54 ± 0.03	58	1316	100	WRIGHT (1941)
b-m	0.49 ± 0.03	14	1756	100	WRIGHT (1941)
b-p	0.50 ± 0.02	6.67	2826.67	100	IBSEN (1923), GREGORY (1928), WRIGHT (1941)
b-Px	0.56 ± 0.03	52	920	100	WRIGHT (1941)
b-R	0.40 ± 0.02	28	3504	100	IBSEN (1923), WRIGHT (1941)
b-s	0.50 ± 0.02	4.22	3526.67	100	WRIGHT (1941)
b-si	0.54 ± 0.05	18	434.67	79	WRIGHT (1959)
b-sm	0.50 ± 0.05	2	468	45	GREGORY (1928)
b-St	0.46 ± 0.03	44	1216	68	WRIGHT (1949)
b-5	0.52 ± 0.03	44.67	2470.67	49	WRIGHT (1941)
c-e	0.50 ± 0.02	51.56	2822.22	100	CASTLE (1916), IBSEN (1923), WRIGHT (1941)
c-f	0.50 ± 0.04	3.44	887.11	19	WRIGHT (1941)
c-l	1.25 ± 0.5	3.56	4.47	100	CASTLE (1913)
c-m	0.49 ± 0.03	14	1100	100	WRIGHT (1941)
c-p	0.50 ± 0.03	13.42	5148.28	98	IBSEN (1922, 1923), WRIGHT (1941)
c-Px	0.48 ± 0.04	16	776	100	WRIGHT (1941)
c-R	0.48 ± 0.02	59.78	2566.22	100	CASTLE (1913), IBSEN (1923)
c-s	0.47 ± 0.02	59.22	2014.67	100	WRIGHT (1941)
c-si	0.36 ± 0.11	10.44	75.11	55	WRIGHT (1959)
c-St	0.51 ± 0.02	24	2232	54	WRIGHT (1949)
c-5	0.49 ± 0.02	28.67	2230.67	60	WRIGHT (1941)
c-f	0.47 ± 0.04	19	728	100	WRIGHT (1941)
e-m	0.48 ± 0.02	60	2856	100	WRIGHT (1941)
e-p	0.50 ± 0.02	4	3376	100	IBSEN (1923), WRIGHT (1941)
e-Px	0.48 ± 0.03	36	1360	100	WRIGHT (1941)
However, WRIGHT (1941) is cautious in accepting the result as evidence for linkage because, of the two crosses involved, that which contributed most significantly is one in which \(f \) is most difficult to classify. In the cross where misclassification is not a problem, the recombination fraction is 0.474 ± 0.037, an insignificant value. The two genes could probably bear further investigation.

Loci	Recombination fraction	Score	Information	Phase balance	References
	Le fraction de recombinaison	Note	Quantité d'information	Équilibre des phases	
e-R	0.49 ± 0.01	8	6004	100	IBSEN (1923), WRIGHT (1941)
e-s	0.50 ± 0.02	8	3208	100	WRIGHT (1959)
e-si	0.41 ± 0.02	6	1624	88	WRIGHT (1959)
e-St	0.51 ± 0.02	22	2516	95	WRIGHT (1949)
f-m	0.50 ± 0.02	6	3332	37	WRIGHT (1941)
f-p	0.50 ± 0.04	2	628	100	WRIGHT (1941)
f-Px	0.46 ± 0.04	1	800.44	85	WRIGHT (1941)
f-R	0.52 ± 0.03	30	1308	100	WRIGHT (1941)
f-s	0.49 ± 0.03	10	900	100	WRIGHT (1941)
f-si	0.50 ± 0.09	0.44	147.56	0	WRIGHT (1959)
f-St	0.52 ± 0.04	12	552	100	WRIGHT (1949)
f-∆	0.46 ± 0.03	42	1062	67	WRIGHT (1941)
l-R	0.38 ± 0.27	1.78	14.22	100	CASTLE (1913)
m-p	0.49 ± 0.03	10	1332	100	WRIGHT (1941)
m-Px	0.50 ± 0.04	2	796	100	WRIGHT (1941)
m-R	0.48 ± 0.02	74	3188	97	WRIGHT (1916, 1941)
m-s	0.53 ± 0.03	42	1482	100	WRIGHT (1941)
m-St	0.48 ± 0.03	24	1072	7	WRIGHT (1949)
m-∆	0.49 ± 0.03	24	1696	38	WRIGHT (1941)
p-Px	0.55 ± 0.04	38	780	100	WRIGHT (1941)
p-R	0.49 ± 0.02	22	2096	100	IBSEN (1923), WRIGHT (1941)
p-s	0.49 ± 0.02	20.67	2406.67	100	WRIGHT (1941)
p-si	0.54 ± 0.04	30.44	828.89	67	WRIGHT (1959)
p-sm	0.50 ± 0.05	2	396	57	GREGORY (1928)
p-St	0.52 ± 0.02	26	1772	84	WRIGHT (1949)
p-∆	0.49 ± 0.02	15.33	2542.67	64	WRIGHT (1941)
Px-s	0.52 ± 0.05	6	380	100	WRIGHT (1941)
Px-si	0.51 ± 0.05	60	484	63	WRIGHT (1959)
Px-St	0.47 ± 0.02	54	1948	51	WRIGHT (1949)
R-s	0.53 ± 0.03	22	1096	100	WRIGHT (1941)
R-si	0.52 ± 0.02	28	2982	100	WRIGHT (1941)
R-St	0.49 ± 0.02	20	1840	100	WRIGHT (1959)
R-∆	0.47 ± 0.02	104	3952	59	WRIGHT (1949)
s-si	0.51 ± 0.02	30	3340	100	WRIGHT (1941)
s-St	0.50 ± 0.10	0.43	98.61	0	WRIGHT (1959)
s-∆	0.47 ± 0.02	4	848	89	WRIGHT (1959)
s-St	0.46 ± 0.03	38	1862.67	86	WRIGHT (1941)
s-St	0.53 ± 0.02	52	2112	63	WRIGHT (1959)
St-∆	0.48 ± 0.02	58	2572	65	WRIGHT (1949)
IBSEN (1922) reported significant excess recombination between c and p. However, the excessive recombination was only apparent for one of the two reported crosses and, when the two are combined, the results become insignificant.

2. Linkage

Two pairs of linked genes have been discovered to-date. Table 3 gives the genes concerned and the amount of recombination observed, according to linkage phase and sex of the diheterozygous parent. The discovery of only two linked pairs is remarkable considering the number of genes examined and the systematic manner with which most of the genes have been compared with each other.
The first linkage to be discovered was that between Px and R (Wright, 1941, 1949). The Px gene has variable expression and penetrance of a nature which cannot be easily compensated by statistical manipulation. Wright (1941) discusses the problem and divides the data into three groups, the last group being regarded as very unreliable for linkage estimation. This group has been rejected from the analysis since the contribution in any case is small. A curiosity of the data is the large but sub-significant heterogeneity between the four segregations of the table. This is due largely to the high rate of recombination for females of repulsion phase. No obvious reason can be deduced for the high rate but it could, of course, be due to the variable penetrance. If the repulsion female data are included, the mean recombination is 0.45 ± 0.016; if these are excluded, the mean is 0.447 ± 0.017. A sex difference in recombination is evident between the sexes but, in the main, this is due to the exceptional female data referred to above. If these are ignored, the sex difference falls appreciably.

The second case of linkage involves the genes m and si. The expression of si is variable and can be difficult to score upon certain genetic backgrounds (Wright, 1959). However, this merely interferes with the estimation of the linkage strength and not with its existence. The sex difference in recombination is insignificant.

Two forms of polydactyly are known in the guinea-pig. That due to the dominant gene Px ($PxPx$ is lethal, $Px+$ is polydactylous of variable expression) and another which is due to the combined effects of three or four mainly recessive genes (Wright, 1934). The results of Wright (1941) suggest that one of these may be linked to s. Wright states that if recessive polydactyly is assumed to be caused by a single gene, a recombination fraction of 0.443 ± 0.029 would be consistent with the data.

TABLE 3 (TABLEAU 3)

Established linkage

Linkage Group	Gene Pair	Phase	Sex	Recombination fraction	References
I $Px-R$		C	♀	0.424 ± 0.025	Wright (1941, 1949)
		R	♀	0.453 ± 0.028	Wright (1941, 1949)
		C	♀	0.484 ± 0.036	Wright (1941, 1949)
		R	♀	0.563 ± 0.056	Wright (1941, 1949)
II $m-si$	R	♀		0.203 ± 0.052	Wright (1959)
	R	♀		0.250 ± 0.078	Wright (1959)

$C =$ coupling, $R =$ repulsion.
3. Karyology

Karyotypes of the guinea-pig have been produced by several investigations within recent years (AwA et al., 1959; OHNO et al., 1961; WATSON et al., 1966 and DOBRIJANOV and GOLOJMAN, 1967a, b). The haploid number of chromosomes is 32, a relatively large number for a rodent. The karyotype consists of a large subtelocentric chromosome, which is easily identifiable, and numerous medium to small elements with few (or no) distinguishing features. The majority seem to be either telocentric or subtelocentric. The overall picture is that of fragmentation in the evolution of the present complex. The X is a large telocentric body while the Y is a small acrocentric, scarcely different in size from the small autosomes.

The large numbers of chromosomes and their small size would imply that linkage between known genes will be infrequent. Though the number of mutant genes so far investigated are few, the results support the implication.

DISCUSSION

It only remains to stress a few points. The present analysis has not produced any novel results. Most of the general comments made earlier with respect to the analysis of the Rabbit and Rat data (ROBINSON, 1956, 1960) are applicable to the guinea-pig. Most of the pairs of genes tested to date for the guinea-pig have precluded the likelihood of linkage up to 40 per cent. Beyond this linkage value, diminishing returns becomes a serious problem in that progressively larger numbers of progeny have to be examined. One solution would be to make the collection of data incidental to some other aspect of research.

Reçu pour publication en mai 1970.

RÉSUMÉ

ÉTUDE DU LINKAGE CHEZ LE COBAYE

Les données publiées concernant les tests de linkage relatif à 15 loci sont revues et analysées statistiquement. On distingue les paires de loci où l'appariement semble se faire au hasard de ceux où l'hypothèse du hasard doit être exclue. Le linkage apparaît évident pour les paires de loci P, et R et m et si.
REFERENCES

AWA A., SASAKI M., TAKAYAMA S., 1959. An in vitro study of the somatic chromosomes in several mammals. Jap. J. Zool., 12, 257-265.

CARTER T. C., FALEONER D., 1952. A review of independent segregation in the house Mouse. J. Genet., 50, 399-413.

CASTLE W. E., 1913. Reversion in Guinea-pigs and its explanation. Car. Inst. Wash. Pub., 179, 1-10.

CASTLE W. E., 1916. An expedition to the home of the Guinea-pig and some breeding experiments with material there obtained. Car. Inst. Wash. Pub., 241, 1-55.

DOBRIJANOV D. S., GOLJDMAN I. L., 1967a. (Chromosomes of the Guinea-pig.) Byull. Eksp. Biol. Med., 63 (4), 100-104.

DOBRIJANOV D. S., GOLJDMAN I. L., 1967b. The normal karyotype of the Guinea-pig. Tsitol. Genet., 1, (5), 78-82.

FISHER R. A., 1946. A system of scoring data with special reference to pied factors in Mice. Amer. Nat., 80, 568-578.

GREGORY P. W., 1928. Some new genetics types of eyes in the Guinea-pig. J. Exp. Zool., 52, 159-181.

ISSER H. L., 1922. A cross in Guinea-pigs best explained by assuming 75 per cent crossing over. Anat. Rec., 23, 96.

ISSER H. L., 1923. Evidence of the independent inheritance of six pairs of allelomorphs in Guinea-pigs. Anat. Rec., 26, 392-393.

OHNO S., WEILER C., STENIUS C., 1961. A dormant nucleolus organiser in the Guinea-pig, Cavia cobaya. Exp. Cell. Res., 25, 495-503.

ROBINSON R., 1956. A review of independent and linked segregation in the Rabbit. J. Genet., 54, 358-369.

ROBINSON R., 1960. A review of independent and linked segregation in the Norway Rat. J. Genet., 57, 173-192.

ROBINSON R., 1964. Linkage in Peromyscus. Heredity, 19, 701-709.

SOLLAS I. B. J., 1909. Inheritance of color and of supernumary mammae in Guinea-pigs, with a note on the occurrence of a dwarf form. Rep. Evol. Comm. Roy. Soc., 5, 51-79.

WATSON E. D., BLUMENTHAL H. T., HUTTON W. E., 1966. A method for the culture of leucocytes of the Guinea-pig with karyotypic analysis. Cytogenetics, 5, 179-185.

WRIGHT S., 1916. An intensive study of the inheritance of color and of other coat characters in Guinea-pigs. Car. Inst. Wash. Pub., 241, 57-160.

WRIGHT S., 1934. The results of crosses between inbred strains of Guinea-pigs differing in number of digits. Genetics, 19, 537-551.

WRIGHT S., 1941. Tests for linkage in the Guinea-pig. Genetics, 26, 650-669.

WRIGHT S., 1949. On the genetics of hair direction in the Guinea-pig. II. Evidence for a new dominant gene, star, and tests for linkage with eleven other loci. J. Exp. Zool., 112, 325-340.

WRIGHT S., 1959. On the genetics of silvering in the Guinea-pig, with special reference to interaction and linkage. Genetics, 44, 387-405.