Quantum points/patterns, Part 1.

From geometrical points to quantum points in a sheaf framework

Antonina N. Fedorova, Michael G. Zeitlin

IPME RAS, St. Petersburg, V.O. Bolshoj pr., 61, 199178, Russia

e-mail: zeitlin@math.ipme.ru

e-mail: anton@math.ipme.ru

http://www.ipme.ru/zeitlin.html

http://mp.ipme.ru/zeitlin.html

ABSTRACT

We consider some generalization of the theory of quantum states, which is based on the analysis of long standing problems and unsatisfactory situation with the possible interpretations of quantum mechanics. We demonstrate that the consideration of quantum states as sheaves can provide, in principle, more deep understanding of some phenomena. The key ingredients of the proposed construction are the families of sections of sheaves with values in the category of the functional realizations of infinite-dimensional Hilbert spaces with special (multiscale) filtration. Three different symmetries, kinematical (on space-time), hidden/dynamical (on sections of sheaves), unified (on filtration of the full scale of spaces) are generic objects generating the full zoo of quantum phenomena (e.g., faster than light propagation).

Submitted to Proc. of SPIE Meeting,
The Nature of Light: What are Photons? IV
San Diego, CA, August, 2011
Quantum points/patterns, Part 1.
From geometrical points to quantum points in a sheaf framework

Antonina N. Fedorova and Michael G. Zeitlin

IPME RAS, V.O. Bolshoj pr., 61, 199178, St. Petersburg, Russia

ABSTRACT

We consider some generalization of the theory of quantum states, which is based on the analysis of long standing problems and unsatisfactory situation with the possible interpretations of quantum mechanics. We demonstrate that the consideration of quantum states as sheaves can provide, in principle, more deep understanding of some phenomena. The key ingredients of the proposed construction are the families of sections of sheaves with values in the category of the functional realizations of infinite-dimensional Hilbert spaces with special (multiscale) filtration. Three different symmetries, kinematical (on space-time), hidden/dynamical (on sections of sheaves), unified (on filtration of the full scale of spaces) are generic objects generating the full zoo of quantum phenomena (e.g., faster than light propagation).

Keywords: Localization; quantum states; multiscales; hidden symmetry; sheaves.

1. INTRODUCTION

During a relative long period, it is well-known that there is a great difference between (at least) the mathematical levels of the investigation of quantum phenomena in different regions. Really, in the area of the so-called Strings (Math)Physics, one needs all existing machinery, like deformation quantization, non-commutative geometry, etc. [1] while more applicable in real life Quantum Mechanics/Physics uses old routines mainly. Of course, Physics at Planckian scales demands a new vision regarding Physics of (realizable) Quantum Devices (like future CPU) but, at the same time, we deal with the same phenomenon (at least on qualitative level). It is impossible to imagine that some hypothetical object can be more quantum or less quantum. It seems that it can be only quantum or not quantum, i.e. classical (surely, we ignore, at the moment, quasi-classics). At the same time, even advanced modern Mathematics cannot help us in the final (at least practically accepted) analysis of the long standing quantum phenomena and the final classification of a zoo of interpretations. The well-known incomplete list is as follows [2]:

(L) entanglement, measurement, wave function collapse, decoherence, Copenhagen interpretation, consistent histories, many-worlds interpretation/multiverse (MWI), Bohm interpretation, ensemble interpretation, (Dirac) self-interference, “instantaneous” quantum interaction, hidden variables, etc.

As a result, beyond a lot of fundamental advanced problems at Planckian scales we are still even unready to create the proper theoretical background for the reliable modeling and constructing of quantum devices far away from Planckian scales.

So, let us expose one more approach in an attempt to understand, in unified framework, some set of well-known phenomena.

anton@math.ipme.ru, zeitlin@math.ipme.ru, http://www.ipme.ru/zeitlin.html, http://mp.ipme.ru/zeitlin.html
2. QUANTUM STATES/PATTERNS: FUNCTIONS VS. SHEAVES.

MATHEMATICAL SIDE

Let us presume that Quantum Dynamics can be properly described as a part of Local Quantum Physics [3] via Wigner-Weyl-Moyal and/or Deformation Quantization approach which covers other ones. It means that:

i) we use the language, machinery and ideology of the theory of pseudo-differential operators;

ii) we work with the symbols of operators instead of the operators;

iii) Quantum Evolution is described by (pseudo-differential) Wigner-like equations (Wigner-von Neumann-Moyal-Lindblad);

iv) the adequate analysis of the full set of possible phenomena described by iii) demands the using of Microlocal Analysis (although there are some phenomena which can be described more traditionally) [4];

v) we need to consider Quantum State not as a function but as a sheaf [4]. It is more proper (at least from formal, mathematical, point of view) if we really want to take into account a lot of internal arguments from points i)-iv) above.

3. QUANTUM STATES/PATTERNS: FUNCTIONS VS. SHEAVES. PHYSICAL SIDE, HYPOTHESIS H1

It is very hard to believe that trivial simple solutions, like gaussians, can exhaust all variety of possible quantum states needed for the resolution of all contradictions, hidden inside the list (L) mentioned above. So, let us propose the following natural (physical) hypothesis:

(H1) the physically reasonable really existing Quantum States cannot be described by means of functions. Quantum state is a complex pattern which demands a set/class of functions/patches instead of one function for proper description and understanding.

There is nothing unusual in (H1) for physicists since Dirac’s description of monopole. All the more, there is nothing unusual for mathematicians who successfully used sheaves, germs, etc in different areas. Definitely, the introducing of (H1) causes a number of standard topics, the most important of them are motivations, formal (exact) definition and (at least) particular realizations. Really, why need we to change our ideology after a century (since Planck) of success? The answer is trivial and related to the list (L) which is overcompleted with contradictions and misunderstanding after many decades of discussions.

4. ON THE ROUTE TO RIGHT DESCRIPTION: STATES AS SHEAVES, HYPOTHESIS H2

In the following description, it is possible to find some features or reminiscences of previous models and interpretations from the list L, where the most important points for allusions are the hidden parameters, localization, ensemble/statistical interpretation, MWI, Dirac’s “self-interference”. Let us sketch the main ingredients.

1). Arena for Quantum Evolution

First of all, we need to divide the kinematical and dynamical features of a set of Quantum States (QS). From the formal point of view it means that one needs to consider some bundle (X, H, Hx) whose sections are the so-called |ψ > functions or QS. Here X is (kinematical) space-time base space with the proper kinematical symmetry group (like Galilei or Poincare ones), H is a total formal Hilbert space and H(x) = Hx are fibers with their own internal structures and hidden symmetries. In addition, such a bundle has the corresponding structure group which connects different fibers. Of course, in a very particular case we have the constant bundle with the trivial structure group but non-trivial fiber symmetry. Anyway, as we shall demonstrate later, it is very reasonable to provide the one-to-one correspondence between Quantum States and the proper sections

\[|QS > : \ X \rightarrow H, \ \ QS : \ x \mapsto H_x = H(x). \] (1)
As a result, we have, at least, three different symmetries inside this construction:

kinematical one on space-time, hidden one inside each fiber and the gauge-like structure group of the bundle as a whole.

It is obvious that the kinematical laws (like relativity principles) depend on the proper type of symmetry and are absolutely different in the base space and in the fibers. It should be noted that the functional realizations of fibers and the total space are very important for our aims. Roughly speaking, it can be supposed that physical effects depend on the type of the particular functional realization of formal (infinite dimensional) Hilbert space. E.g., it is impossible to use infinite smooth approximations, like gaussians, for the reliable modeling of chaotic/fractal phenomena. So, the part of Physics at quantum scales is encoded in the details of the proper functional realization.

2). Localization and a Tower of Scales

It is well-known that nobody can prove that gaussians (or even standard coherent states, etc) are an adequate and proper image for Quantum States really existing in the Nature. We can suggest that at quantum scales other classes of functions or, more generally, other functional spaces (not C^∞, e.g.) with the proper bases describe the underlying physical processes. There are two key features we are interested in.

First of all, we need the best possible localization properties for our trial base functions.

Second, we need to take into account, in appropriate form, all contributions from all internal hidden scales, from coarse-grained to finest ones. Of course, it is a hypothesis but it looks very reasonable:

(H2) there is a (infinite) tower of internal scales in quantum region that contributes to the really existing Quantum States and their evolution.

So, we may suppose that the fundamental generating physical “eigen-modes” correspond to a selected functional realization and are localized in the best way. Let us note the role of the proper hidden symmetries which are responsible for the quantum self-organization and resulting complexity.

3). An Ensemble of Scales: Self-interaction

As a result of the description above, we may have non-trivial “interaction” inside an infinite hierarchy of modes or scales. It resembles, in some sense, a sort of turbulence or intermittency. Of course, here the generating avatar is a representation theory of hidden symmetries which create the non-trivial dynamics of this ensemble of hierarchies.

4). Hidden Parameters and Hidden Symmetry

It is well-known that symmetries generate all things (at least) in fundamental physics. Here, we have a particular case where the generic symmetry corresponds to the internal hidden symmetry of the underlying functional realization. Moreover, as it is proposed above, we have even the more complicated structure because we believe that QS is not a function but a sheaf. As a result, we have interaction between two different symmetries, namely hidden symmetry in the fiber, that corresponds to the internal symmetry of the functional realization, and the structure “gauge” group of a sheaf, which provides multifibers transition/dynamics. Both these algebraic structures can be parametrized by the proper group parameters which can play the role of famous “hidden variables” introduced many decades ago.

5). MWI

Of course, MWI or Multiverse interpretation can be covered by the structure sketched above. Quantum States are the sections of our fundamental sheaf, so we can consider them as a collection of maps between the patches of base space and fibers. All such maps simultaneously exist and, as an equivalence class, represent the same Quantum State. We postpone the detailed description to the next Section but here let us mention that each member of the full family can be considered as an object belonged to some fixed World. Obviously, before measurement we cannot distinguish samples but after measurement we shall have the only copy in our hands.
5. ON THE WAY TO DEFINITION

The main reason to introduce sheaves as a useful instrument for the analysis of Quantum States is related to their main property which allows to assign to every region U in space-time X some family $F(U)$ of algebraic or geometric objects such as functions or differential operators.

The family can be restricted to smaller regions, and the compatible collections of families can be glued to give a family over larger regions, so it provides connection between small and large scales, local and global data.

Informal construction is as follows.

Let X be the space-time base space (some topological space) with a system of open subsets $U \subset X$, then for every U and map F the image $F(U)$ is some object with internal structure (more generally, $F(U)$ takes values in some category H) such that for every two open subsets, U and V, $V \subset U$ there is the so-called restriction map (more generally, morphism in the category H), $r_{V,U} : F(U) \to F(V)$ (restriction morphism).

A map F will be a presheaf if restriction morphism satisfies the following properties:

(a) for every open subset $U \subset X$, the restriction morphism $r_{U,U} : F(U) \to F(U)$ is the identity morphism,

(b) if there are three open subsets $W \subset V \subset U$, then $r_{W,V}r_{V,U} = r_{W,U}$.

This property provides the connection or ordering of the underlying scales.

In other words, let $O(X)$ be the category of open sets on X, whose objects are the open sets of X and whose morphisms are inclusions.

Then a presheaf F on X with values in category H is the contravariant functor from $O(X)$ to H.

$F(U)$ is called the section of F over U and we consider it as some pre-image for adequate Quantum State $\lvert QS \rangle$.

But our goal, in this direction, is a sheaf, so we need to add two additional properties. Let $\{U_i\}_{i \in I}$ be some family of open subsets of X, $U = \bigcup_{i \in I} U_i$.

(c) If Ψ_1 and Ψ_2 are two elements of $F(U)$ and $r_{U_i,U}(\Psi_1) = r_{U_i,U}(\Psi_2)$ for every U_i, then $\Psi_1 = \Psi_2$.

(d) for every i let a section $\Psi_i \in F(U_i)$. $\{\Psi_i\}_{i \in I}$ are compatible if, for all i and j, $r_{U_i \cap U_j,U_i}(\Psi_i) = r_{U_i \cap U_j,U_j}(\Psi_j)$.

For every set $\{\Psi_i\}_{i \in I}$ of compatible sections on $\{U_i\}_{i \in I}$, there exists the unique section $\Psi \in F(U)$ such that $r_{U_i,U}(\Psi) = \Psi_i$ for every $i \in I$.

The section Ψ is called the gluing of the sections Ψ_i.

Definitely, we can consider this property as allusion to the hypothesis of wave function collapse.

Really, Ψ looks as Multiverse Quantum State Ensemble $\{\Psi_i\}$ while Ψ_i is the result of measurement in the patch U_i. And it is unique!

The next step is to specify the Quantum Category H. According to our Hypothesis $H2$, we consider the category of the functional realization of (infinite-dimensional) Hilbert spaces with proper filtration, which allows to take into account multiscale decomposition for all dynamical quantities needed for the description of Quantum Evolution.

The well-known type of such filtration is the so-called multiresolution decomposition. It should be noted that the whole description is much more complicated because it demands the consideration of both structures together, namely, the fiber structure generated by internal hidden symmetry of the chosen functional realization and the family of gluing sections Ψ in the unified framework.
6. REALIZATION VIA MULTIRESOLUTION: DYNAMICS, MEASUREMENT, DECOHERENCE, ETC.

In the companion paper [7], we shall consider in details one important realization of this construction based on the local nonlinear harmonic analysis which has, as the key ingredient, the so-called Multiresolution Analysis (MRA) [5]. It allows us to describe internal hidden dynamics on a tower of scales [5], [6]. Introducing the Fock-like space structure on the whole space of internal hidden scales, we have the following MRA decomposition (refs. [9]-[22] for related methods, approaches, models):

$$H = \bigoplus_i \bigotimes_n H^i_n$$ \hspace{2cm} (2)

for the set of n-partial Wigner functions (states):

$$W^i = \{W_0^i, W_1^i(x_1; t), \ldots, W_N^i(x_1, \ldots, x_N; t); \ldots\},$$ \hspace{2cm} (3)

where $W_p^i(x_1, \ldots, x_p; t) \in H^p, \ H^0 = C, \ H^p = L^2(\mathbb{R}^p)$ (or any different proper functional space), with the natural Fock space like norm:

$$(W, W) = W_0^2 + \sum_i \int W_i^2(x_1, \ldots, x_i; t) \prod_{\ell=1}^i \mu_\ell.$$ \hspace{2cm} (4)

Now we consider some phenomenological description which presents some attempt of the qualitative description of quantum dynamics as a whole and in comparison with its classical counterpart. It is possible to take, for reminiscence, the famous Dirac’s phrase that “an electron can interact only itself via the process of quantum interference”.

Let G be a hidden/internal symmetry group on the spaces of Quantum States, which generates, via MRA, the multiscale/multiresolution representation for all dynamical quantities, unified in object $O(t)$, such as states, observables, partitions (e.g., Wigner quasi-distributions): $O^i(t) = \{\psi^i(t), Op^i(t), W_n^i(t)\}$, where i is the proper scale index.

Then, the following commutative diagram represents the details of quantum life from the point of view of the representations of G on the chosen functional realization which leads to the decomposition of the whole quantum evolution into the orbits or scales corresponding to the proper level of resolution. Morphisms $W(t)$ describe Wigner-Weyl evolution in the algebra of symbols, while the processes of interactions with open World, such as the measurement or decoherence, correspond to morphisms (or even functors) $m(t)$ which transform the infinite set of scales, characterizing the quantum object, into finite ones, sometimes consisting of one element (demolition/destructive measurement)

$$W(t)$$

$$\{O^i(t_1)\} \quad \rightarrow \quad \{O^j(t_2)\}$$

$$\downarrow m(t_1) \quad \Downarrow m(t_2)$$

$$\bar{W}(t)$$

$$\{O^\circ(t_1)\} \quad \rightarrow \quad \{O^\circ(t_2)\},$$

where the reduced morphisms $\bar{W}(t)$ correspond to (semi)classical or quasiclassical evolution.

Qualitatively,
Quantum Objects
can be represented by an infinite or sufficiently large set of coexisting and interacting subsets

while

(Quasi)Classical Objects can be described by one or a few only levels of resolution with (almost) suppressed interscale self-interaction.

It is possible to consider Wigner functions as some measure of the quantum character of the system: as soon as it becomes positive, we arrive to classical regime and so there is no need to consider the full hierarchy decomposition in the MRA representation.

So, Dirac’s self-interference is nothing else than the multiscale mixture/intermittency.

Certainly, the degree of this self-interaction leads to different qualitative types of behaviour, such as localized quasiclassical states, separable, entangled, chaotic etc. At the same time, the instantaneous quantum interaction or transmission of (quantum) information from Alice to Bob takes place not in the physical kinematical space-time but in Hilbert spaces of Quantum States in their proper functional realization where there is a different kinematic life.

To describe a set of Quantum Objects, we need to realize our Space of States (Hilbert space) not as one functional space but as the so-called and well known in mathematics, scale of spaces, e.g. $B_{p,q}^s, F_{p,q}^s$. The proper multiscale decomposition for the scale of spaces provides us by the method of the description of a set of quantum objects in case if the “size” of one Hilbert space of states is not enough to describe the complicated internal World. We will consider it elsewhere, while here we consider the one-scale case (to avoid possible misunderstanding, we need to mention that one-scale case is also described by an infinite scale of spaces, but it is the internal decomposition of the unique, attached to the problem, Hilbert space). Definitely, the full family of sections of non-trivial sheaf, as a model of QS, demands to take into account the double-hierarchy of the underlying internal scales generated by means of the corresponding hidden symmetries. As a result, on the proper orbits, we have nontrivial entangled dynamics, especially in contrast with its “classical” quantum orthodox counterpart.

7. DISCUSSIONS AND SUMMARY

How to get rid of geometrical points from Quantum Physics

(Reasonable) Questions:

Question 1.
Is a geometrical point a good image/model for Quantum Object?

If the answer on the Q1 is "possible, not" or "definitely, not" then the next Question, Q2, is a direct consequence of Q1.

Question 2.
Is a (point) function (standard, usual function) a proper model for ψ function and related objects?

If the answer is not, then we have Hypothesis 1:

Hypothesis 1.
Quantum Objects need to be defined on open sets (in standard topological sense) or some system of open sets, or, to be more precise mathematically, filtrations instead of one-point-sets (geometrical points)

Then, Hypothesis 2 will be obvious:

Hypothesis 2.
Sheaves are the proper realization for modeling Quantum States/Objects
One step more:

Question 3.

Is the kinematics of space-time manifolds with a proper symmetry group, like Poincare, e.g., a generic object for understanding Quantum Paradoxes/Interpretations, such as instantaneous interactions, nonlocality, hidden parameters, etc.?

Moreover, can (special) Relativity Theory describe, in principle, instantaneous interaction between Quantum Objects?

If the answer is not, then

Hypothesis 3.

The most nontrivial Quantum Phenomena can be described by means of underlying hidden symmetry of functional realization of Hilbert Space of States generating the full Zoo of Quantum Phenomena.

Of course, there is no contradiction with trivial kinematical laws (relativity): these are two different coexisting objects.

The Full Generic Symmetry is a Unification of these Symmetries.

E.g., the instantaneous quantum interaction is a phenomenon of Function Space Kinematics (with proper hidden symmetry) but not an attribute of Minkowskian kinematics.

Roughly (physically) speaking, the Quantum Signal between Quantum Objects (in the hands of Alice and Bob) propagates along Functional Realization of Hilbert space (with its own kinematics, symmetry, etc.) but not along Minkowskian space-time with Einsteinian Relativity and underlying Poincare symmetry.

Roughly (mathematically) speaking: Physical Laws at Base Space (Space–Time Manifold) of Generic Fiber Bundle (or Sheaf) are different from Physical Laws at fibers/slices/sections and, moreover, from Laws proper for the Total Space.

For the final analysis we need to unify all underlying (mostly hidden) generic Symmetries to have a chance for right description.

That is our point of view.

(Roughly) mathematically speaking, we can summarize our approach in a form of diagram:

8. PARADIGM FOR A QUANTUM STATE REPRESENTATION

\[
\begin{align*}
\text{Quantum Dynamics} & \quad H_x & \in & \quad H^{S_2} \leftarrow \quad H \quad \leftrightarrow \quad F^{S_3} \\
& \uparrow \Psi(x) & \uparrow \Psi_U & \uparrow \Psi_V & \uparrow \{ \Psi \}
\end{align*}
\]

\[
\begin{align*}
\text{Space-Time Kinematics} & \quad x & \in & \quad U_x & \subset & \quad V_x & \subset & \quad X^{S_1}
\end{align*}
\]
Here S_1, S_2, S_3 are the Three Different Generic Symmetries generating Three Different Sets of Physical Laws on the Base (Kinematical) Space X, on the Fibers (Local Hilbert Spaces over local domains of Base Space), $H_{S_2}^{\theta x}$, and on the Total Quantum Hilbert Space/Quantum Sheaf, F^{S_3}. It should be remembered that Laws of Kinematics (Einstein or Galileo Relativity), are attributes of the Base Space X only while Quantum Laws need to be described by Total Quantum Hilbert Space and the full diagram above. So, the standard “local” / “point function” Ψ Function (left row) is not enough to restore properly a full set of quantum data corresponding to Quantum State (QS). Instead of that, we consider the full family of sections over open domains unified in a whole Quantum Sheaf as a correct representative of the real QS. Correspondingly, the resulting “microlocal/sheaf description” [4] has a lot of additional possibilities to store full quantum information. As a result, Quantum Dynamics in such a framework is more complicated and complex than in the standard “orthodox” case. So, in such a way we open new horizons and, at least, we get rid of the structureless geometrical points from Quantum Context. Details will be considered elsewhere [23].

9. CONCLUSIONS

It seems very reasonable that there are no chances for the solution of long standing problems and novel ones if we constraint ourselves by old routines and the old zoo of simple solutions like gaussians, coherent states and all that.

Evidently, that even the mathematical background of regular Quantum Physics demands new interpretations and approaches. Let us mention only the procedures of quantization as a generic example.

In this respect, we can hope that our sheaf extension for representation of QS, which is natural from the formal point of view, may be very productive for the more deep understanding of the underlying (Quantum) Physics, especially, if we consider it together with the category of multiscale filtered functional realizations decomposed into the entangled orbits generated by actions of internal hidden symmetries. In such a way, we open a possibility for the exact description of a lot of phenomena like entanglement and measurement, wave function collapse, self-interference, instantaneous quantum interaction, Multiverse, hidden variables, etc. In the companion paper [7] we consider the machinery needed for the generation of a zoo of the complex quantum patterns during Wigner-Weyl evolution.

ACKNOWLEDGMENTS

We are very grateful to Prof. Chandrasekhar Roychoudhuri and Michael Ambroselli (University of Connecticut, Storrs), and Matthew Novak (SPIE) for their kind attention and help provided our presentations during SPIE2011 Meeting “The Nature of Light: What are Photons? IV” at San Diego. We are indebted to Dr. A. Sergeyev (IPME RAS/AOHGI) for his encouragement.

REFERENCES

[1] A. Connes, M. Marcolli, *Noncommutative Geometry, Quantum Fields and Motives*, AMS, (2009).
[2] http://en.wikipedia.org/wiki/Interpretation_of_quantum_mechanics and references therein.
[3] R. Haag, *Local Quantum Physics*, Springer, (1992).
[4] M. Kashiwara, P. Schapira, *Sheaves on Manifolds*, Springer, (1994).
[5] Y. Meyer, *Wavelets and Operators*, Cambridge Univ. Press, (1990).
[6] H. Triebel, *Theory of Functional Spaces*, Birkhauser, (1983).
[7] A.N. Fedorova and M.G. Zeitlin, Quantum points/patterns, Part 2. From quantum points to quantum patterns via multiresolution, this Volume.
[8] A.N. Fedorova and M.G. Zeitlin, Quasiclassical Calculations for Wigner Functions via Multiresolution, Localized Coherent Structures and Patterns Formation in Collective Models of Beam Motion, in Quantum Aspects of Beam Physics, Ed. P. Chen, World Scientific, Singapore, pp. 527–538, 539–550 (2002); arXiv: physics/0101006; physics/0101007
[9] A.N. Fedorova and M.G. Zeitlin, BBGKY Dynamics: from Localization to Pattern Formation, in Progress in Nonequilibrium Green’s Functions II, Ed. M. Bonitz, World Scientific, pp. 481–492 (2003) arXiv: physics/0212066
[10] A.N. Fedorova and M.G. Zeitlin, Pattern Formation in Wigner-like Equations via Multiresolution, in Quantum Aspects of Beam Physics, Eds. Pisin Chen, K. Reil, World Scientific, pp. 22-35 (2003); Preprint SLAC-R-630; arXiv: quant-phys/0306197.

[11] A.N. Fedorova and M.G. Zeitlin, Localization and pattern formation in Wigner representation via multiresolution, Nuclear Inst. and Methods in Physics Research, A, 502A/2-3, pp. 657 - 659 (2003); arXiv: quant-ph/0212160.

[12] A.N. Fedorova and M.G. Zeitlin, Fast Calculations in Nonlinear Collective Models of Beam/Plasma Physics, Nuclear Inst. and Methods in Physics Research, A, 502/2-3, pp. 660 - 662 (2003); arXiv: physics/0212115.

[13] A.N. Fedorova and M.G. Zeitlin, Classical and quantum ensembles via multiresolution: I-BBGKY hierarchy; Classical and quantum ensembles via multiresolution. II. Wigner ensembles; Nucl. Instr. Methods Physics Res., 534A, pp. 309-313; 314-318 (2004); arXiv: quant-ph/0406009; quant-ph/0406010.

[14] A.N. Fedorova and M.G. Zeitlin, Localization and Pattern Formation in Quantum Physics. I. Phenomena of Localization, in The Nature of Light: What is a Photon? SPIE, vol.5866, pp. 245-256 (2005); arXiv: quant-ph/0505114.

[15] A.N. Fedorova and M.G. Zeitlin, Localization and Pattern Formation in Quantum Physics. II. Waveletons in Quantum Ensembles, in The Nature of Light: What is a Photon? SPIE, vol. 5866, pp. 257-268 (2005); arXiv: quant-ph/0505115.

[16] A.N. Fedorova and M.G. Zeitlin, Pattern Formation in Quantum Ensembles, Intl. J. Mod. Physics B20, pp. 1570-1592 (2006); arXiv: 0711.0724.

[17] A.N. Fedorova and M.G. Zeitlin, Patterns in Wigner-Weyl approach, Fusion modeling in plasma physics: Vlasov-like systems, Proceedings in Applied Mathematics and Mechanics (PAMM), Volume 6, Issue 1, pp. 625-626, pp. 627-628, Wiley InterScience, (2006).

[18] A.N. Fedorova and M.G. Zeitlin, Localization and Fusion Modeling in Plasma Physics. Part I: Math Framework for Non-Equilibrium Hierarchies, pp.61-86, in Current Trends in International Fusion Research, Ed. E. Panarella, R. Raman, National Research Council (NRC) Research Press, Ottawa, Ontario, Canada (2009); arXiv: physics/0603167.

[19] A.N. Fedorova and M.G. Zeitlin, Localization and Fusion Modeling in Plasma Physics. Part II: Vlasov-like Systems. Important Reductions, pp.87-100, in Current Trends in International Fusion Research, Ed. E. Panarella, R. Raman, National Research Council (NRC) Research Press, Ottawa, Ontario, Canada (2009); arXiv: physics/0603169.

[20] A.N. Fedorova and M.G. Zeitlin, Fusion State in Plasma as a Waveleton (Localized (Meta)-Stable Pattern), p. 272, in AIP Conference Proceedings, Volume 1154, Issue 1, Current Trends in International Fusion Research, Ed. E. Panarella, R. Raman, AIP (2009).

[21] A.N. Fedorova and M.G. Zeitlin, Exact Multiscale Representations for (Non)-Equilibrium Dynamics of Plasma, p. 291, in AIP Conference Proceedings, Volume 1154, Issue 1, Current Trends in International Fusion Research, Ed. E. Panarella, R. Raman, AIP (2009).

[22] A.N. Fedorova and M.G. Zeitlin, Fusion Modeling in Vlasov-Like Models, J Plasma Fusion Res. Series, Vol. 8, pp. 126-131 (2009).

[23] A.N. Fedorova and M.G. Zeitlin, Quantum Sheaves, in progress.