Construction of an index system for big data application in health care enterprises

--A study based on the Delphi method

Yue Chang1,2,*, Wei Du1,+, Ruo Shi2, Tang Lei3, Hanni Zhou1, Duan Li1, Jiaqi Hu1, Xingyin Fan1

1 Guizhou Medical University, Guizhou, China 2 Guizhou Lianke Health Information Technology Co., Ltd., Guizhou, China 3 Guizhou Engineering Research and Development Center for Chemical Synthetic Drugs, Guizhou, China

Competing Interests: The authors have declared that no competing interests exist.

Funding: YC is supported by the Chinese central government guides the local science and technology development special grant ([2016]4008), Guizhou Provincial Science and Technology Department Plan Project ([2016]1515-3), Guizhou Province Pharmacy Management First-class Curriculum Key Construction Project ([2017]158).

* E-mail: 4567401@qq.com
+ Yue Chang and Wei Du contributed equally to this work.

Abstract

This study explored the theory of medical enterprise management and big data. Based on the Delphi method, two rounds of expert opinions were consulted on the capability of a health care enterprise big data application index system covering 11 dimensions, 46 first-level indicators and 111 second-level indicators. The index system includes two categories of input and capacity. The input category includes five dimensions: human resources, material resources, financial resources, government policies, and social service system or social environment. The capabilities category
includes six dimensions: data integration capabilities, service capabilities, data analysis capabilities, information security, profitability, and innovation capabilities. This index system aims to appraise the application capability of big data scientifically and systematically, and fills the gaps of such research in China so far, which has positive significance for further research in the future.

Keywords: Big data, Index system, Delphi method, Health care

Introduction

The Big Health Industry of China consists of two services: medical health services and non-medical health services. The industry has formed four basic industrial groups, namely *Medicine*, *Wellness*, *Health*, and *Management*. Among these, the health-raising industry, supported by *Wellness*, covers the whole life cycle, surrounding human body and mind, integrating medical services, big data health information services, health management and promotion services, health insurance services and other ancillary services. *The Wellness industry of China* consists of four major formats: *Leisure Wellness*, *Nourishing Wellness*, *Sports Wellness*, and *Hot Spring Wellness*. In 2017, Xi Jinping, Chinese President, pointed out in the report of the 19th National Congress that "during the implementation of the healthy China strategy, the people's health is an important symbol of national prosperity. We must improve the national health policy and provide all-round full-cycle health services for the people." It is predicted that the health industry will lead a new round of development boom in China, then spread to the whole world.
With the continuous popularization of network and information technology, the amount of data generated by humans is growing exponentially. Now we are entering the era of big data. The application of big data has penetrated into every industry and business and has gradually become an important basis for predicting industry markets, making decisions, and understanding competitors. For health care companies, big data applications will change their operating models and management methods. The application of big data to health care enterprises with rich connotations is a relatively new topic. The wave of big data is not only a revolution in the field of information technology, but also a tool to accelerate marketing changes and lead social change on a global scale[1].

In stark contrast to the rapid development of big data in all walks of life, there is currently no research in the world on the construction of an index system for big data and its applicability for health care enterprises. In May 2001, McKinsey first mentioned big data in a research report titled Big Data: The Next Frontier of Innovation, Competition, and Productivity. Before 2013, big data was still a new concept, which was introduced in few related studies, small number of introductory, predictive articles. Today, just a few years later, we discovered that big data has great power to accurately reflect the real world and is of great value. Managers can make decisions based on big data, so that enterprises can get greater benefits on less investment basis. Therefore, it is imperative to develop such a system and scientifically evaluate health care enterprises’ big data application, and to provide supervision standards for government regulatory authorities. This paper focuses on
the big data application capability, evaluating the results of the big data application for health care enterprises.

In the 19th century, the French economist Jules Dupuit proposed a cost-benefit theory, which posits that the ultimate goal pursued by any enterprise is efficiency. In order to benefit, costs must be paid [2]. Dupuit argues that the implementation of any policy always requires a certain amount of human, material and financial resources, thus these resources cannot be used for other policies. This is the cost of a policy. The theory requires that enterprises should know the cost-effective concept and consider the necessity and rationality of cost by comparing input and output. The United Nations Development Programme proposes that capability is the competence and strength of an organization or individual to perform functions consistently, effectively and efficiently [3]. Based on these two important theories, this paper set two categories of the index system: costs and capabilities. Human, material, and financial resources are the three dimensions of the cost category.

Using big data, health care enterprises will collect many isomorphic and heterogeneous data, so noise data interference will appear in a database. Thus the enterprise needs to perform data integration such as data cleaning and data conversion on the original data[4]. The enterprise will then integrate data and form big data analytics to generate profitability for their business[5]. As a service-oriented industry, the enterprise must respond quickly to customer needs and improve customer satisfaction by using big data. Jin Hao (2003) proposed that, in a competitive market, a company must continue to provide products or services to the market more
effectively than other companies[6] and gaining profit and self-development is an essential capability of any enterprise. In the study of enterprise input-output performance, the well-known Cobb-Douglas function, proposed by Charles Cobb and Paul Douglas, describes the value of an output brought about by innovation and is widely used in the macro-economic and micro-enterprise innovations. A report by James McKinsey also stresses the role of innovation in enterprise big data applications[7]. In summary, this paper sets the dimension of the capability category as data integration capability, data analysis capability, service capability, profitability, and innovation capability as the first round of questionnaires for expert consultation.

Methods

Literature Search

We collected research articles related to the health care industry and big data. Sources included domestic and foreign papers, dissertations, and books. Keyword search terms included *big data application, index system for big data application*, and *health care industry*. We then determined the overall framework of the index system in health care enterprises.

Expert interview

We interviewed experts from the Guizhou Provincial Development and Reform Commission, Guizhou Provincial Health Planning Commission, Guiyang Big Data Development Management Committee, Guizhou University and Guizhou Medical University, and Guizhou Lianke Health Information Technology Co., Ltd. to
understand the current status of big data applications and asked them for suggestions for the index for big data application in health care enterprises. Finally, we formulated a preliminary index system.

Delphi method

After formulating the index system, we used the Delphi method to screen the indicators. The steps are as follows:

1. Setting up a research team: The research team consisted of five members who prepared questionnaires, selected and confirmed the experts, and analyzed the results.

2. Selecting the inquiry expert: We pre-selected 17 experts based on the following selection criteria: 1) government department managers with certain decision-making significance on the popularization and application of big data; 2) enterprise managers with rich experience in big data; 3) scholars engaged in big data-related research; 4) experts who are interested in this research; 5) medium grade professional title.

3. Designing a questionnaire.

4. Consulting with experts: The questionnaire was distributed to the experts in an anonymous or back-to-back manner. After two rounds of consultation and feedback, the index system was formed.

5. Statistical analysis: Data were computerized and analyzed using SPSS version 21.0.

Indicator screening principle
1. Scientific principle: The indicator conforms to the criteria of objective facts and has a scientific theoretical basis. The definition of each indicator is clear and precise, and the specific calculation formula is expressed for indicators that are prone to ambiguity.

2. Comprehensive principle: Through systematic investigation and demonstration, all indicators that measure the big data application capability are covered as much as possible.

3. Principle of operability: The index system should reflect the direction of big data development and have guiding significance for health care enterprises to achieve further big data application. Therefore, the indicators should be universally defined. The meaning of the indicators should be observable, measurable, and operational.

Indicator screening method

Each indicator was rated on a scale of 1 to 5 where 1 represents very unimportant and 5 represents very important. Scores for each dimension and indicator were summed. The experts’ evaluation of each indicator was measured using three statistical measures: the percentage of experts who held ‘very important’ and ‘important’ opinions, the mean score, and the coefficient of variation. An indicator was deleted if the percentage of experts that felt it was important was less than 75%, the mean score was less than 4.0, and the coefficient of variation was greater than 1.0. If only one or two of these statistical measures were met, the retention of the indicator was determined after discussion by the research team.
Characteristics of Experts

This study pre-selected 17 experts and received feedback from 16. The 16 experts were senior teachers from various universities in Guizhou province, heads of big data companies, or persons from relevant departments. They all had systematic and unique insights in the area of big data. The basic information of the 16 experts is shown in Table 1.

Table 1. Expert characteristics

Category	Item	Number	Percentage
Gender	Male	11	69
	Female	5	31
Educational background	Bachelor's degree	2	13
	Master's degree	5	31
	Doctoral degree	9	56
Title	Middle Title	4	25
	Vice-senior Title	9	56
	Senior Title	3	19
Occupational position	Management	2	13
	Technology	5	31
	Research	9	56

Results and discussion

First round of inquiry

Questionnaire setting and distribution

The purpose of the first round of questionnaires was to ask experts to comment on the importance of the researcher's initial setting of the indicators for big data application capability. The questionnaire asked for evaluation of each dimension, the first-level indicators, and the second-level indicators in the index. In each part, the items of modification opinions and other indicators were set up, and experts were
 requested to propose amendments.

The first round of questionnaires was issued to 17 experts, of which 16 were recovered resulting in a recovery rate of 94%.

Reliability

Chronbach's alpha values of the whole system and for the first and second levels were 0.96, 0.85, and 0.96, respectively, indicating that the reliability of the index system was quite high.

Statistical Analysis

Table 2 shows the importance percentage for each dimension and indicator selected by the 16 experts, together with the mean, standard deviation, and coefficient of variation.

Table 2. Importance for dimensions
Category
Costs
Capabilities
As shown in Table 2, the average score of the eight dimensions was above 4.0 (important), the important percentage was higher than 90%, and the coefficient of variation was less than 1.0 indicating that the experts believed these eight dimensions were highly and consistently important.

Table 3. Importance for the first-level indicators

Dimension	First-level Indicators	Importance (%)	Mean	Standard deviation	Coefficient of variation				
		Very important	Important	General	Unimportant	Very unimportant			
Human Resource	1. Personnel	6	50	44	0	0	3.63	0.62	0.17
	2. Qualification	38	50	12	0	0	4.25	0.68	0.16
	3. Staff Training	56	38	6	0	0	4.50	0.63	0.14
Material Resource	4. Hardware	38	44	19	0	0	4.19	0.75	0.18
	5. Software	63	31	6	0	0	4.56	0.63	0.14
Financial Resource	6. Assets Size and Proportion	25	63	6	6	0	4.06	0.77	0.19
	7. Operating Costs	13	75	12	0	0	4.00	0.52	0.13
	8. Service Costs	13	81	6	0	0	4.06	0.44	0.11
	9. Technical Upgrade Costs	31	56	13	0	0	4.19	0.66	0.16
	10. Technical Staff Costs	69	31	0	0	0	4.69	0.50	0.11
Category	11. Other Costs	12. Government Big Data Subsidy Income	13. Other Income	14. Product Development	15. Market Competitiveness	16. Technology Innovation Management			
------------------------------	-----------------	---------------------------------------	------------------	-------------------------	---------------------------	------------------------------------			
11. Other Costs	0	19	69	0	12	3.36			
1. Collection	63	37	0	0	0	4.63			
2. Extracting Valid Data	88	12	0	0	0	4.88			
3. Information Security	50	44	0	0	6	4.31			
4. Service Coverage	6	63	31	0	0	3.75			
5. Service Satisfaction	31	63	6	0	0	4.25			
6. Analysis of Unstructured Data	50	31	19	0	0	4.31			
7. Real-time Insight Warning	69	25	6	0	0	4.63			
8. Precision Marketing	56	44	0	0	0	4.87			
9. Cost Reduction and Efficiency	50	44	6	0	0	4.73			
10. Personalized Customer Management	44	50	6	0	0	4.38			
11. Operating Income	25	75	0	0	0	4.25			
12. Government Big Data	0	44	50	6	00	3.38			
13. Other Income	0	19	69	6	6	3.20			
14. Product Development	56	44	0	0	0	4.56			
15. Market Competitiveness	31	63	6	0	0	4.25			
16. Technology Innovation Management	38	62	0	0	0	4.38			
Table 3 shows that in the COSTS category, the mean of ‘Personnel’ and ‘Other Costs’ was less than 4.0. In the capabilities category, the mean of ‘Service Coverage’, ‘Government Big Data Subsidy Income’, and ‘Other Income’ were below 4.0. The percentage of experts who felt that these five indicators were important was less than 75. Apart from ‘3 Information Security’, the standard deviation of other first-level indicators was less than 1.0. The coefficient of variation for all indicators was less than 1.0.
Table 4. Importance for the second-level indicators

First-level Indicator	Second-level Indicator	Importance (%)	Mean	Standard deviation	Coefficient of variation											
		Very important	Important	General	Unimportant	Very unimportant										
1. Personnel	1.1 Number of Technicians	25	38	3	0	0	3.88	0.77	0.20							
	1.2 Number of Data Analysis Technicians	69	19	12	0	0	4.56	0.73	0.16							
	1.3 Number of Operators	6	50	38	6	0	3.56	0.73	0.20							
2. Qualification	2.1 Educational Background	6	31	56	6	0	3.38	0.72	0.21							
	2.2 Work Experience	63	31	6	0	0	4.56	0.63	0.14							
	2.3 License	13	25	44	6	13	3.19	1.17	0.37							
3. Staff Training	3.1 Number of Internal Training per capita in past 3 years	0	56	38	6	0	3.50	0.72	0.21							
	3.2 Number of External Training per capita in past 3 years	19	31	44	6	0	3.63	0.89	0.24							
4. Hardware	4.1 Server	8	37	19	6	0	4.06	0.93	0.23							
	4.2 Data Center or Engine Room	44	38	6	12	0	4.13	1.02	0.25							
Category	Subcategory	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
----------------------------------	--------------------------------------	---	---	---	---	---	---	---	---	---	----	----	----	----	----	----
4.3 Network Equipment		31	38	25	6	0	3.94	0.93	0.24							
4.4 Storage Device		38	31	25	6	0	4.00	0.97	0.24							
5. Software	5.1 Data Integration Software	38	44	19	0	0	4.19	0.75	0.18							
	5.2 Data Storage Software	44	44	13	0	0	4.31	0.70	0.16							
	5.3 Data Cleaning Software	56	38	6	0	0	4.50	0.63	0.14							
	5.4 Data Analysis Software	69	31	0	0	0	4.69	0.48	0.10							
6. Assets Size and Proportion	6.1 Total Assets	6	63	31	0	0	3.75	0.58	0.15							
	6.2 The ratio of big data hardware	31	44	13	13	0	3.94	1.00	0.25							
	and software assets to total assets															
7. Operating Costs	7.1 Proportion of Operating Costs	13	75	13	0	0	4.00	0.52	0.13							
8. Service Costs	8.1 Proportion of Service Costs	6	69	25	0	0	3.81	0.54	0.14							
9. Technical Upgrade Costs	9.1 Proportion of Technical	19	69	13	0	0	4.06	0.57	0.14							
	Upgrade Costs															
10. Technical Staff Costs	10.1 Proportion of Technical	25	56	19	0	0	4.06	0.68	0.17							
	Staff Salary and Training Costs															
11. Other Costs	11.1 Proportion of Other Costs	0	25	63	13	0	3.13	0.62	0.20							
1. Collection	1.1 Timeliness of Collecting Data	63	38	0	0	0	4.63	0.50	0.11							
---------------	----------------------------------	----	----	---	---	---	------	------	------							
2. Extracting Valid Data	2.1 Information System Connectivity	38	56	6	0	0	4.31	0.68	0.16							
3. Information Security	3.1 Information Security Qualification	31	56	13	0	0	4.19	0.72	0.17							
	3.2 Security Equipment	44	44	6	6	0	4.25	0.91	0.21							
4. Service Coverage	4.1 Cumulative Number of Customer(individual/group)	25	69	6	0	0	4.19	0.58	0.14							
	4.2 Service Radius	13	38	50	0	0	3.63	0.79	0.22							
5. Service Satisfaction	5.1 Customers’ Secondary Purchase Ratio	13	88	0	0	0	4.13	0.40	0.10							
	5.2 Cycle of Repurchase	25	63	6	6	0	4.06	0.81	0.20							
	5.3 Customer Satisfaction	50	50	0	0	0	4.50	0.51	0.11							
6. Analysis of Unstructured Data	6.1 Proportion of Unstructured data	13	56	25	6	0	3.75	0.77	0.21							
	6.2 Processing and Mining Unstructured Data	50	50	0	0	0	4.50	0.50	0.11							
7. Real-time Insight Warning	7.1 Market Dynamic Monitoring Software	38	44	19	0	0	4.19	0.75	0.18							
	7.2 Public Opinion Prediction Software	38	50	13	0	0	4.25	0.66	0.15							
Section	Subsection	Count 1	Count 2	Count 3	Count 4	Avg	Min	Max								
-------------------------------	---	---------	---------	---------	---------	-------	-------	-------								
8. Precision Marketing	8.1 The number of People Captured Accurately	25	63	13	0	0	4.13	0.62	0.15							
	8.2 Increasing of Conversion Rate	31	69	0	0	0	4.31	0.46	0.11							
	8.3 Customer acquisition Costs Reduction	31	69	0	0	0	4.31	0.48	0.11							
	8.4 Conversion Profits	56	44	0	0	0	4.56	0.51	0.11							
9. Cost Reduction and Efficiency	9.1 Inventory Cost Reduction	31	63	6	0	0	4.25	0.58	0.14							
	9.2 Labor Costs Reduction	31	50	19	0	0	4.13	0.72	0.17							
10. Personalized Customer Management	10.1 Personalized Customer Management Capabilities	31	56	13	0	0	4.19	0.62	0.15							
	10.2 Personalized Products and Offers*	31	56	13	0	0	4.19	0.62	0.15							
	10.3 Customer Behavior Prediction Software	43	57	0	0	0	4.43	0.51	0.12							
11. Operating Income	11.1 Operating Income	44	50	6	0	0	4.38	0.62	0.14							
12. Government Big Data Subsidy Income	12.1 Government Big Data Subsidy Income	6	38	44	13	0	3.38	0.81	0.24							
13. Other Income	13.1 Other Income	0	33	60	7	0	3.27	0.59	0.18							
14. Product Development	14.1 Number of New Products Developed Each Year	13	69	19	0	0	3.94	0.57	0.15							
14.2 Number of New Technologies or Processes	31	56	13	0	0	4.19	0.66	0.16								
--	----	----	----	---	---	------	------	------								
14.3 Response after products entering the market	25	75	0	0	0	4.25	0.45	0.11								
15.1 Whether The Latest Products Are Highly Differentiated	38	50	13	0	0	4.25	0.68	0.16								
15.2 Average Industry Market Share	36	43	21	0	0	4.14	0.77	0.19								
16.1 Product Development and Innovation Management System	38	63	0	0	0	4.38	0.50	0.11								
16.2 Research & Development Center	25	38	38	0	0	4.44	0.63	0.14								
Table 4 shows the experts’ feedback of the second-level indicators. In the Costs category, the following indicators had importance percentages less than 75%: ‘1.1 Number of Technicians’, ‘1.3 Number of Operators’, ‘2.1 Educational Background’, ‘2.3 License’, ‘3.1 Number of Internal Training per capita in past 3 years’, ‘3.2 Number of External Training per capita in past 3 years’, ‘4.3 Network Equipment’, ‘4.4 Storage Device’, ‘6.1 Total Assets’, ‘10.1 Proportion of Technical Staff Salary and Training Costs’, ‘11.1 Proportion of Other Costs’. The mean scores for ‘1.1 Number of Technicians’, ‘1.3 Number of Operators’, ‘2.1 Educational Background’, ‘2.3 License’, ‘3.1 Number of Internal Training per capita in past 3 years’, ‘3.2 Number of External Training per capita in past 3 years’, ‘4.3 Network Equipment’, ‘6.1 Total Assets’, ‘11.1 Proportion of Other Costs’, ‘6.2 The ratio of big data hardware and software assets to total assets’, ‘8.1 Proportion of Service Costs’ were less than 4.0. The standard deviation of ‘2.3 License’, ‘4.2 Data Center or Engine Room’, ‘6.2 The ratio of big data hardware and software assets to total assets’ were greater than or equal to 1.0. The coefficient of variation for all indicators was less than 1.0.

In the Capabilities category, the importance percentage of ‘4.2 Service Radius’, ‘6.1 Proportion of Unstructured data’, ‘7.1 Market Dynamic Monitoring Software’, ‘12.1 Government Big Data Subsidy Income’, ‘13.1 Other Income’, ‘14.1 Number of New Products Developed Each Year’, ‘16.2 Research & Development Center’ were below 75%. The mean scores of ‘4.2 Service Radius’, ‘6.1 Proportion of Unstructured data’, ‘12.1 Government Big Data Subsidy Income’, ‘13.1 Other Income’, ‘14.1 Number of New Products Developed Each Year’, ‘16.2
Research & Development Center’ were less than 4.0. The standard deviation and coefficient of variation for all indicators were less than 1.0.

Indicator screening results - first round

1. Deleting

 There were no indicators that met the criteria for deleting proposed by the research team, so no indicator was deleted.

2. Adding

 In the Costs category, one of the experts proposed to add a ‘Government Policy’ dimension and add five first-level indicators, namely ‘Technical Guidance’, ‘Funding Support’, ‘Policy Sustainability’, ‘Strength’ and ‘Marketing Assistance’ and there corresponding secondary indicators. Another expert suggested adding a dimension of ‘Social Service System or Social Environment’, and adding two first-level indicators of ‘Social Information Infrastructure Construction’ and ‘Big Data Development Pilot Area’ and their corresponding secondary indicators.

 In terms of the first-level indicators, one expert suggested adding ‘Synergy’ in the Human Resource dimension. ‘Synergy’ indicates the degree of collaboration within and outside the enterprise. In the ‘Data Integration’ Capability dimension, one expert recommended adding two first-level indicators, namely ‘Data Standards’ and ‘Heterogeneous System Data Integration’. In the ‘Service’ capability dimension, one expert suggested adding the first-level indicators of ‘Service Timely Response’. The discussion team determined the second-level indicators of ‘Service Timely Response"
Capability’ as ‘Customers’ Dependence on Products’, ‘Outlets’, ‘Service Speed’, ‘Service Quality’, ‘service quality tracking feedback’. In the ‘Data Analysis’ capability dimension, two experts recommend adding ‘Machine Learning’ and ‘Combination with Corresponding Business’ as two first-level indicators. In the dimension of ‘Creativity’, one expert suggested adding ‘Acceptance of New Ideas’ to emphasize the acceptance of new corporate ideas.

In terms of the second-level indicators, one expert suggested that ‘The Number of People with Work Experience in Well-known IT Companies (such as Baidu, Alibaba)’ is important for the application of big data. So it was added as the second-level of ‘Personnel’. One expert believed that ‘Security Equipment’ and ‘Database Middleware’ are important hardware for big data enterprises. In the ‘Financial Resource’ dimension, one expert proposed adding secondary indicators of ‘Core Technology Assets’. One expert held the opinion that ‘Information Security’ should be subdivided into two categories: ‘Enterprise Security’ and ‘Product Security’, adding corresponding second-level indicators. One expert suggested that ‘Artificial Intelligence’ and ‘Risk Control’ could be used to measure machine learning capability. Finally, one expert believed that obtaining financial support from national, provincial, municipal, district and county projects is important to the profitability of the company.

3. Modifying

Two experts said that ‘Information Security’, which was originally a first-level indicator, was very important and should be a separate dimension. In terms of the
first-level indicators, the original ‘Personnel’ was changed to ‘Staffing’, the original ‘Operating Costs’ was changed to ‘Operation and Maintenance Costs’, and the original ‘Collection’ was renamed to ‘Data Collection’, the original ‘Analysis of Unstructured Data’ was renamed to ‘Analysis of Structured or Unstructured Data’.

Second round of inquiry

Questionnaire setting and distribution

According to experts' suggestions, the members of the research team decided to revise the indicators listed in the questionnaire and set up a second round of questionnaires. Significant changes included the addition of ‘Government Policy’ and ‘Social Service System or Social Environment’ dimensions in the input category, and the addition of an ‘Information Security’ dimension in the capacity category. Ma yanling summarized E. S. Masson, J. S. Bain, and Michael E. Poter’s competitive advantage external environment-based theory[8]. The investment of external factors to the enterprise is very important. The external policy environment, legal environment, and humanistic natural environment determine the number and distribution of the industry, determine market concentration and barriers to entry. In addition, one Chinese information expert (Qu Chengyi) raised vigilance and mentioned the importance of information security maintenance and supervision in big data management[9].

The results of the importance of indicators in second round were from 6 experts who gave feedback on the first round of questionnaires.
Reliability

The Chronbach Alpha values of the index system, the first level indicator, and the second level index were 0.98, 0.90, and 0.96 in the second round, indicating that the reliability of the index system was high.

Statistical Analysis

Table 5. Importance for dimension in the second round

Category	Dimension	Importance (%)	Mean	Standard deviation	Coefficient of variation				
		Very important	Important	General	Unimportant	Very unimportant			
Costs	Human Resource	100	0	0	0	0	5.00	0	0
	Material Resource	31	50	19	0	0	4.13	0.72	0.17
	Financial Resource	56	44	0	0	0	4.56	0.51	0.11
	Government Policy	38	56	6	0	0	4.31	0.60	0.14
	Social Service System or Social Environment	6	88	6	0	0	4.00	0.37	0.09
Capabilities	Data integration	100	0	0	0	0	5.00	0	0
	Service	25	63	13	0	0	4.13	0.62	0.15
	Data analysis	94	6	0	0	0	4.94	0.25	0.05
	Information Security	44	56	0	0	0	4.44	0.51	0.12
Profitability	19	56	25	0	0	3.94	0.68	0.17	
Creativity	44	38	19	0	0	4.25	0.77	0.18	

Table 6. Importance for the first-level indicators in the second round

Dimension	First-level Indicators	Importance (%)	Mean	Standard deviation	Coefficient of variation					
		Very important	Important	General	Unimportant	Very unimportant				
Human Resource	1 Staffing	25	50	25	0	0	4.00	0.73	0.18	
	2 Qualification	6	81	13	0	0	3.94	0.44	0.11	
	3 Staff Training	44	50	6	0	0	4.38	0.62	0.14	
	4 Synergy	47	53	0	0	0	4.47	0.52	0.12	
Material Resource	5 Hardware	25	69	6	0	0	4.19	0.54	0.13	
	6 Software	75	25	0	0	0	4.75	0.45	0.09	
	7 Assets Size and Proportion	6	56	38	0	0	3.69	0.60	0.16	
	8 Operation and Maintenance Costs	13	63	25	0	0	3.88	0.62	0.16	
	9 Service Costs	13	56	31	0	0	3.81	0.66	0.17	
	10 Technical Upgrade Costs	13	81	0	6	0	4.00	0.63	0.16	
	11 Technical Staff Costs	63	38	0	0	0	4.63	0.50	0.11	
	12 Other Costs	0	20	80	0	0	3.20	0.41	0.13	
Table	Data Collection	Data Cleaning	Extracting Valid Data	Data Standards	Heterogeneous System Data Integration	Enterprise Security	Product Security	Service Coverage	Service Satisfaction	Service Timely
-------	----------------	---------------	-----------------------	---------------	--------------------------------------	---------------------	-----------------	----------------	-------------------	----------------
1	88	13	0	0	0	25	38	13	6	0
2	56	44	0	0	0	63	38	13	6	0
3	81	19	0	0	0	63	38	13	6	0
4	50	44	6	0	0	25	69	6	0	0
5	63	38	0	0	0	38	56	6	0	0
6	25	69	6	0	0	38	56	6	0	0
7	31	63	6	0	0	63	38	0	0	0
8	13	63	25	0	0	13	63	0	0	0
9	31	63	6	0	0	31	63	0	0	0
10	63	38	0	0	0	63	38	0	0	0
Response Capability	11 Analysis of Structured or Unstructured Data	12 Real-time Insight Warning	13 Precision Marketing	14 Cost Reduction and Efficiency	15 Personalized Customer Management	16 Machine Learning	17 Combination with Corresponding Business			
---------------------	---	-----------------------------	-----------------------	---------------------------------	-----------------------------------	-------------------	--			
	63	38	0	0	0	4.63	0.50	0.11		
	69	31	0	0	0	4.69	0.48	0.10		
	38	56	6	0	0	4.31	0.60	0.14		
	25	75	0	0	0	4.25	0.45	0.11		
	31	69	0	0	0	4.31	0.48	0.11		
	31	56	13	0	0	4.19	0.66	0.16		
	31	69	0	0	0	4.31	0.48	0.11		

Profitability	18 Operating Income	19 Government Big Data Subsidy Income	20 Other Income	21 Undertaking Major Projects	22 Funding of Research project	23 Net Profit	24 Product Development	25 Market Competitiveness
	6	94	0	0	0	4.06	0.25	0.06
	0	44	44	13	0	3.31	0.70	0.21
	0	25	56	19	0	3.06	0.68	0.22
	31	56	13	0	0	4.19	0.66	0.16
	19	56	25	0	0	3.94	0.68	0.17
	0	81	19	0	0	3.81	0.40	0.11
	88	13	0	0	0	4.88	0.34	0.07
	19	81	0	0	0	4.19	0.40	0.10
26 Technology Innovation Management	19	75	6	0	0	4.13	0.50	0.12
------------------------------------	----	----	---	---	---	------	------	------
27 Acceptance of New Idea	25	75	0	0	0	4.25	0.45	0.11
Table 7. Importance for the second-level indicators in second round

First-level Indicators	Second-level Indicators	Importance (%)	Mean	Standard deviation	Coefficient of variation				
		Very important							
		Important							
		General							
		Unimportant							
		Very unimportant							
1 Staffing	1.1 Number of Technicians	13	63	25	0	0	3.88	0.62	0.16
	1.2 Number of Data Analysis Technicians	75	19	6	0	0	4.69	0.60	0.13
	1.3 Number of Operators	0	69	31	0	0	3.69	0.48	0.13
	1.4 Number of Compound Talents, such as medical, management, computer	40	60	0	0	0	4.40	0.51	0.12
2 Qualification	2.1 Educational Background	0	69	25	6	0	3.63	0.62	0.17
	2.2 Work Experience	75	19	0	6	0	4.63	0.81	0.17
	2.3 The Number of People with Work Experience in Well-known IT Companies (such as Baidu, Alibaba)	25	63	13	0	0	4.13	0.62	0.15
	2.4 License	6	50	38	6	0	3.56	0.73	0.20
3 Staff Training	3.1 Number of Internal Training per capita in past 3	6	63	19	13	0	3.63	0.81	0.22
---	---	---	---	---	---	---	---		
3.2 Number of External Training per capita in past 3 years	6	75	6	13	0	3.75	0.77	0.21	
4.1 Leadership	75	19	6	0	0	4.69	0.60	0.13	
4.2 Degree of Internal Cooperation	63	38	0	0	0	4.63	0.50	0.11	
4.3 Cooperation Degree of Government and Enterprises	50	44	6	0	0	4.44	0.63	0.14	
5.1 Server	44	44	13	0	0	4.31	0.70	0.16	
5.2 Data Center or Engine Room	44	44	6	6	0	4.25	0.86	0.20	
5.3 Network Equipment	44	44	6	6	0	4.25	0.86	0.20	
5.4 Storage Device	44	50	0	6	0	4.31	0.79	0.18	
5.5 Security Equipment	63	38	0	0	0	4.63	0.50	0.11	
5.6 Database Middleware	25	50	19	6	0	3.94	0.85	0.22	
6.1 Data Integration Software	63	38	0	0	0	4.63	0.50	0.11	
6.2 Data Storage Software	50	38	6	6	0	4.31	0.87	0.20	
6.3 Data Cleaning Software	75	25	0	0	0	4.75	0.45	0.09	
---------------------------	----	----	---	---	---	------	------	------	
6.4 Data Analysis Software	88	13	0	0	0	4.88	0.34	0.07	
6.5 Data Visualization Software	44	50	6	0	0	4.38	0.62	0.14	
6.6 Operation and Maintenance Management Software	19	69	6	6	0	4.00	0.73	0.18	
6.7 Big Data Analysis Support Software	63	38	0	0	0	4.63	0.50	0.11	
7.1Total Assets	13	56	31	0	0	3.81	0.66	0.17	
7.2 Core Technology Assets	50	44	6	0	0	4.44	0.63	0.14	
7.3The Ratio of Big Data Hardware and Software Assets to Total Assets	25	44	31	0	0	3.94	0.77	0.20	
8.1 Proportion of Operation and Maintenance Costs	6	56	31	6	0	3.63	0.72	0.20	
9.1 Proportion of Service Costs	19	50	25	6	0	3.81	0.83	0.22	
10.1 Proportion of Technical Upgrade Costs	0	94	0	6	0	3.88	0.50	0.13	
11.1 Proportion of Technical Staff Salary and Training	19	63	19	0	0	4.00	0.63	0.16	
Costs	12 Other Costs	13 Technical Guidance	14 Funding Support	15 Policy Sustainability	16 Strength				
-------	---------------	-----------------------	-------------------	------------------------	------------				
	12.1 Proportion of Business Costs	13.1 Government Technical Guidance	14.1 Tax Reduction	15.1 Years of Support	16.1 Strength of State Support				
	12.2 Proportion of Licensing Fees	13.2 Government Certification Guidance	14.2 Project Finance	15.2 Support Environment					
	13.3 Training Organized by Government	14.3 Interest Discount Loan	14.4 Other Subsidies	16.1 Strength of State Support					
	14.4 Other Subsidies	15.1 Years of Support	15.2 Support Environment	16.1 Strength of State Support					
	15 Policy Sustainability	16 Strength							
	16.1 Strength of State Support								

	6	19	63	13	0	3.19	0.75	0.24		
12 Other Costs	6	44	44	6	0	3.50	0.73	0.21		
13 Technical Guidance	6	63	25	6	0	3.69	0.70	0.19		
14 Funding Support	13	44	38	6	0	3.63	0.81	0.22		
15 Policy Sustainability	0	31	63	6	0	3.25	0.58	0.18		
16 Strength	25	38	38	0	0	3.88	0.81	0.21		
16.1 Strength of State Support	25	63	13	0	0	4.13	0.62	0.15		
15 Policy Sustainability	6	69	25	0	0	3.81	0.54	0.14		
15.1 Years of Support	0	19	81	0	0	3.19	0.40	0.13		
15.2 Support Environment	6	69	25	0	0	3.81	0.54	0.14		
14 Funding Support	19	69	13	0	0	4.06	0.57	0.14		
16 Strength	19	69	13	0	0	4.06	0.57	0.14		
Section	Description	Evaluation	Development	Assistance	Total	Support	Performance			
---------	-------------	------------	-------------	------------	-------	---------	-------------			
16.2	Strength of Provincial Support	25	63	13	0	0	4.13	0.62	0.15	
16.3	Strength of Municipal Support	25	63	13	0	0	4.13	0.62	0.15	
16.4	Strength of District Support	0	75	25	0	0	3.75	0.45	0.12	
17	Marketing Assistance	17.1 Help promoting products	19	69	6	6	0	4.00	0.73	0.18
	Marketing and Promotion Platform	17.2	6	75	19	0	0	3.88	0.50	0.13
	Creating Business Opportunities	17.3	19	69	13	0	0	4.06	0.57	0.14
18	Social Information Infrastructure Construction	18.1 Full Coverage of Network	56	38	6	0	0	4.50	0.63	0.14
	Demand for Self-built Data Center Infrastructure	18.2	25	31	31	13	0	3.69	1.01	0.28
	Shareable Government Data Center and Hardware and Software Environment	18.3	38	44	13	6	0	4.13	0.89	0.21
19	Big Data Development Pilot Area	19.1 Whether it is in the government pilot area and enjoy relevant preferential policies	6	75	19	0	0	3.88	0.50	0.13
1	Data Collection	1.1 Timeliness of Collecting Data	75	25	0	0	0	4.75	0.45	0.09
Section	Subsection	Code	Input	Output	Score	Mean	SD			
---------	------------	------	-------	--------	-------	------	----			
2 Data Cleaning	2.1 Quality of Data Cleaning	81	19	0	0	0	4.81	0.40	0.08	
3 Extracting Valid Data	3.1 Analysis of Complex Data and Massive Heterogeneous System Data	81	19	0	0	0	4.81	0.40	0.08	
4 Data Standards	4.1 Understanding of Industry Data Standards	63	38	0	0	0	4.63	0.50	0.11	
	4.2 Transforming Non-Standard Data	63	38	0	0	0	4.63	0.50	0.11	
5 Heterogeneous System Data Integration	5.1 Identifying Data from Multiple Sources	69	31	0	0	0	4.69	0.48	0.10	
	5.2 Integration of Information System Data from Multiple Sources	69	31	0	0	0	4.69	0.48	0.10	
6 Enterprise Security	6.1 Information Security Qualification	44	38	19	0	0	4.25	0.77	0.18	
	6.2 Security Equipment	44	50	6	0	0	4.38	0.62	0.14	
7 Product Security	7.1 Secure Grade of Products	19	69	13	0	0	4.06	0.57	0.14	
8 Service Coverage	8.1 Cumulative Number of Customers (individual/group)	13	75	13	0	0	4.00	0.52	0.13	
	8.2 Service Radius	0	75	25	0	0	3.75	0.45	0.12	
9 Service Satisfaction	9.1 Customers' Secondary Purchase Ratio	6	75	19	0	0	3.88	0.50	0.13	
Section	Subsection	Data 1	Data 2	Data 3	Data 4	Data 5	Data 6			
---------	------------	--------	--------	--------	--------	--------	--------			
9.2	Cycle of Repurchase	13	69	19	0	0	3.94			
							0.57			
							0.15			
9.3	Customer Satisfaction	56	44	0	0	0	4.56			
							0.51			
							0.11			
9.4	User Dependence on Products	73	27	0	0	0	4.73			
							0.46			
							0.10			
10.1	Quantity of Construction Branches	6	81	13	0	0	3.94			
							0.44			
							0.11			
10.2	Speed of Service	50	50	0	0	0	4.50			
							0.52			
							0.11			
10.3	Quality of Service	50	50	0	0	0	4.50			
							0.52			
							0.11			
10.4	Tracking Feedback of Service Quality	38	50	13	0	0	4.25			
							0.68			
							0.16			
11.1	Proportion of Structured data	44	50	6	0	0	4.38			
							0.62			
							0.14			
11.2	Processing and Mining Structured Data	75	25	0	0	0	4.75			
							0.45			
							0.09			
11.3	Proportion of Unstructured data	19	75	6	0	0	4.13			
							0.50			
							0.12			
11.4	Processing and Mining Unstructured Data	56	44	0	0	0	4.56			
							0.51			
							0.11			
12.1	Market Dynamic Monitoring Software	25	69	6	0	0	4.19			
							0.54			
							0.13			
12.2	Public Opinion Prediction Software	19	75	6	0	0	4.13			
							0.50			
							0.12			
8 Precision Marketing	13.1 Number of People Captured Accurately	31	56	13	0	0	4.19	0.66	0.16	
13.2 Increasing of Conversion Rate	25	69	6	0	0	4.19	0.54	0.13		
13.3 Customer Acquisition Costs Reduction	19	81	0	0	0	4.19	0.40	0.10		
13.4 Conversion Profits	56	44	0	0	0	4.56	0.51	0.11		
14 Cost Reduction and Efficiency	14.1 Inventory Cost Reduction	19	63	19	0	0	4.00	0.63	0.16	
14.2 Labor Costs Reduction	19	63	19	0	0	4.00	0.63	0.16		
15 Personalized Customer Management	15.1 Personalized Customer Management Capability	38	44	19	0	0	4.19	0.75	0.18	
15.2 Personalized Products and Offers	38	44	19	0	0	4.19	0.75	0.18		
15.3 Customer Behavior Prediction Software	56	38	6	0	0	4.50	0.63	0.14		
16 Machine Learning	16.1 Artificial Intelligence	38	50	13	0	0	4.25	0.68	0.16	
16.2 Risk Control	50	44	6	0	0	4.44	0.63	0.14		
17 Combination with Corresponding Business	17.1 Decision Dependence on Data	44	56	0	0	0	4.44	0.51	0.12	
Section	Subsection	Number	Funding	Gross Margin	ROE	ROIC				
---------	------------	--------	---------	--------------	-----	------				
18 Operating Income	18.1 Operating Income	31	56	13	0	0	4.19	0.66	0.16	
19 Government Big Data Subsidy Income	19.1 Government Big Data Subsidy Income	0	50	50	0	0	3.50	0.52	0.15	
20 Other Income	20.1 Other Income	6	19	63	13	0	3.19	0.75	0.24	
21 Undertaking Major Projects	21.1 Number of National Projects Undertaken	25	50	25	0	0	4.00	0.73	0.18	
	21.2 Number of National Projects Undertaken	25	56	19	0	0	4.06	0.68	0.17	
	21.3 Number of Provincial Projects Undertaken	6	63	31	0	0	3.75	0.58	0.15	
	21.4 Number of Municipal Projects Undertaken	0	38	63	0	0	3.38	0.50	0.15	
	21.5 The Amount of the Project Undertaken	13	69	19	0	0	3.94	0.57	0.15	
22 Funding of Research Project	22.1 Funding of Research Project	6	81	13	0	0	3.94	0.44	0.11	
23 Net Profit	23.1 Net Profit	44	56	0	0	0	4.44	0.51	0.12	
24 Product Development	24.1 Number of New Products Developed Each Year	19	38	44	0	0	3.75	0.77	0.21	
24.2 Number of New Technologies or Processes	31	63	6	0	0	4.25	0.58	0.14		
24.3 Response after products entering the market	19	75	6	0	0	4.13	0.50	0.12		
25 Market Competitiveness	25	69	6	0	0	4.19	0.54	0.13		
25.1 Whether The Latest Products Are Highly Differentiated	25	75	0	0	0	4.25	0.45	0.11		
25.2 Average Industry Market Share	25	69	6	0	0	4.19	0.54	0.13		
26 Technology Innovation Management	19	75	6	0	0	4.13	0.50	0.12		
26.1 Product Development and Innovation Management System	19	75	6	0	0	4.13	0.50	0.12		
26.2 Research & Development Center	50	50	0	0	0	4.50	0.52	0.11		
27 Acceptance of New Ideas	38	63	0	0	0	4.38	0.50	0.11		
After the second round, the research team again used the three statistical measures (importance percentage, mean score, and coefficient of variation) to evaluate the indicators. No indicator met all three conditions for deletion and the research team therefore did not delete any indicator.

From the second round of review, the dimensional consensus rate was 100%, the first-level indicator consensus rate was 87%, the second-level indicator consensus rate was 81%, and the consensus rate of all indicators was 84%, indicating that experts had high consistency in evaluation of the index. According to the Delphi method, the questionnaire could therefore be accepted.

Conclusions

Based on the Delphi method, two rounds of expert opinions were used to develop the index system, and a health care enterprise big data application capability index system covering 11 dimensions, 46 first-level indicators and 111 second-level indicators was constructed.

The index system derived from this study can be used to evaluate the big data application capability of a health care enterprise. However, the basis of big data applications is all data rather than sample data. It is difficult for health care companies to grasp all the characteristics of customers. Data sharing between medical institutions, public health agencies, and health care companies can truly reflect user profiles. This requires an integrated and open information exchange platform between the company and the government. In the future, connectivity and interaction are the
trajectories of big data applications. This index system focused on health care enterprise and lays the foundation for evaluating enterprises’ big data application. It is hoped that future research will deepen connections and interactive content of big data.

This study may be limited by research conditions and expert resources. This newly developed index system attempted to appraise the application capability of big data scientifically and systematically.

References

1. Qingzhen, Liu., *Transformation of enterprise marketing thinking under the new paradigm of "Internet +" technology and economy*[J]. Academic Exchange, 2017. 1(1): p. 123-127

2. Li, Liu., *On the Traditional View of Enterprise Benefits and Sustainable Development* [J]. Economics and Management, 2004. 18(2): p. 34-36.

3. Ping, Zhang., *Evaluation of Rural Health Service Capability — Taking J Province as an example*[D]. PhD thesis of Jilin University, 2014.

4. Zhengguang, Niu., *Research on the Impact of Big Data on the Modernization of Government Governance — Taking Hebi City as an Example*[D]. Doctoral thesis of China Agricultural University, 2017.

5. Gupta Manjul, Gorge Joey F., *Toward the development of a big data analytics capability*[J]. *Information & Management*. Information & Management, 2016. 53(8): p. 1049-1064.

6. Wei, Jin., *Report on the Competitiveness of Chinese Enterprises*[R]. Beijing:
7. Xiaocong, Qian., *The development of big data and industrial opportunities* [J]. Internet of Things technology, 2013. 10: p. 84-86.

8. Yanling, Ma., *The Study on Sustained Competitive Advantage of the Enterprise* [D]. Master Degree thesis, Jilin University, 2004.

9. Chenyi, Qu., *Cyberspace security and secrecy confrontation situation and coping strategies*[J]. Confidential Science and Technology, 2012. 4: p. 6-11.