Supplementary Information

{Cu₂SiW₁₂O₄₀}@HKUST-1 synthesized by the one-step solution method with
efficient bifunctional activity for supercapacitor and oxygen evolution reaction

Huan Liu*, Li-Ge Gong⁵,* Chun-Xiao Wang, Chun-Mei Wang‡, Kai Yu⁵,* Bai-Bin Zhou⁵,*

POMOFs constructed of polyoxometalates (POMs) and metal-organic frameworks (MOF) are very desirable for high-efficiency supercapacitor performance and electrocatalytic water oxygen evolution reaction, but it is still challenging. Herein, successfully synthesized the {Cu₂SiW₁₂O₄₀}@HKUST-1 material through a one-step solution method. The synergy between {Cu₂SiW₁₂O₄₀} and HKUST-1 can promote mass/charge transfer and the adsorption/desorption of intermediates on {Cu₂SiW₁₂O₄₀}@HKUST-1. In the three-electrode system, {Cu₂SiW₁₂O₄₀}@HKUST-1 electrode material has a specific capacitance of 5096.5 F g⁻¹ when the current density is 1 A g⁻¹, after 6000 cycles, the retention rate is 92%, which is much higher than reported in the literature. The symmetrical electrode is assembled with foamed nickel as the current collector, in the 1.0 V voltage window, the power density is 510.81 W kg⁻¹, and the energy density is 15.31 Wh kg⁻¹. In 1.0 M KOH aqueous solution, when the scanning speed is 5 mV s⁻¹, the overpotential of electrocatalytic water oxygen evolution reaction (OER) is 340 mV (without iR compensation). Especially at high current density, {Cu₂SiW₁₂O₄₀}@HKUST-1 shows better performance than commercial RuO₂. Further, it has excellent catalytic durability. It provides a basis for the further application of POMOFs.
Table of Contents

Table of Contents ... 2
1. Experimental Procedures ... 3
 1.1 Material characterization method ... 3
 1.2 Electrode preparation and electrochemical characterization for SCs .. 3
2. Results and Discussion ... 4
 2.1 The characterization diagrams ... 4
 2.2 Supercapacitor test chart of compounds ... 6
 2.3 Electrocatalytic water oxygen production diagram of compounds ... 7
 2.4 Comparison of the properties of the Keggin-based materials with published supercapacitors 12
3. References ... 12
1. Experimental Procedures

1.1 Material characterization method

In the Bruker Ver Tex 80 Fourier Transform Infrared Spectrometer (FTIR spectrometer) using KBr particles, the absorption spectrum in the range of 400-4000 cm\(^{-1}\) was recorded. The powder X-ray diffraction (XRD) pattern using Cu-Kα irradiation (λ=1.54056Å) was measured on a Bruker D8 Advance in the 2θ range of 20-80°. Scanning electron microscopy (SEM) images are characterized by Hitachi SU70 SEM coupling with an energy dispersive X-ray (EDX) detector. Transmission electron microscope (TEM) images were obtained from Tecnai G2 F20. X-ray photoelectron spectroscopy (XPS) analysis was performed on the AXIS ULTRA DLD electronic spectrometer by the Mg Ka (1253.6eV) achromatic X-ray source. Brunauer Emmett-Teller (BET) surface area was captured by N\(_2\) adsorption measurement using Nova 2000E at 77.3 K. Brunauer Emmett-Teller (BET) surface area was captured by N\(_2\) adsorption measurement using Nova 2000E at 77.3 K.

1.2 Electrode preparation and electrochemical characterization for SCs

Preparation of glassy carbon electrode(GCE): The composite electrode is made by mixing the active material and conductive carbon black with a mass ratio of 1:4. Weigh 5mg \{Cu\(_2\)SiW\(_{12}\)O\(_{40}\)\}@HKUST-1 and add certain naphthol as dispersant, disperse it ultrasonically for 40min to get a uniform turbid liquid. We used a pipette to remove 5μL drops on a pretreated glassy carbon electrode with a diameter of 3mm. After drying at room temperature, μL of 0.5% Nafion solution was dropped on the surface of the glassy carbon electrode, and dried in vacuum as the working electrode.

Preparation of nickel foam(NF) electrode: The NF was sonicated first with acetone for 30min and subsequently with 3 M HCl for 30 min. Thereafter, it was washed with distilled water and ethanol and then placed in a vacuum oven. Grind and mix the active material and acetylene black in a ratio of 1:1, add a certain amount of ethanol to dissolve ultrasonically, cut the nickel foam into 1×3cm\(^2\) size, and apply 3mg to the nickel foam. Using a tablet press, the nickel foam was pressed into a sheet at 2MPa for 8 seconds.

Assembly of symmetrical button batteries: Cut two foam nickel sheets with a diameter of 1cm, apply the material to the foam nickel and press with a tablet machine. Put a piece into the positive electrode shell of the button electrode, then add a few drops of Na\(_2\)SO\(_4\) (1M) solution. Then add a diaphragm. Put another piece of nickel foam on top, then add one or two drops of Na\(_2\)SO\(_4\) (1M). Put the metal plate shrapnel on it, and finally put the negative electrode.

Preparation of electrocatalytic water electrode: Grind the active material and acetylene black at a ratio of 2:1, weigh 5mg \{Cu\(_2\)SiW\(_{12}\)O\(_{40}\)\}@HKUST-1 and add ethanol as a dispersant to it, and ultrasonically form a uniform solution. We use a pipette to drop 5μL on the pretreated glassy carbon electrode with a diameter of 3mm. At room temperature, 7μL of 0.5% Nafion solution was dropped on the surface of the glassy carbon electrode and dried in a vacuum as a working electrode.

\[i = av^b \quad \text{Equation(S1)} \]

Where \(i\) is the peak current density, \(v\) is scan rate, and \(a\) and \(b\) are coefficients.

\[Q = Q_c + Q_d \quad \text{Equation(S2)} \]

The surface treatment controls charge (Qc), the diffusion control charge (Qd)
\[Q = Q_c + k v^{-1/2} \]
Equation(S3)

Where \(k \) = variable parameter. \(Q \) = stored charge, \(v \) = scan rate.

\[C = \frac{2i_m \int V dt}{V^2 |V_f/V_i|} \]
Equation(S4)

\(C(F\,g^{-1}) \) is the specific capacitance of the constant current charge and discharge curve. \(i_m(A\,g^{-1}) \) represents the current density, \(J V dt \) is the current in the integration region, \(V_i \) and \(V_f \) represent the initial and final values of the potential.

\[C_s = I \cdot t / (m \cdot \Delta V) \]
Equation(S5)

Where \(C_s \) represents the specific capacitance, \(I \) is the charge and discharge current(A), \(t \) is the discharge time(s), \(m(g) \) represents the load mass of the active material, and \(\Delta V \) is the voltage difference (V).

2. Results and Discussion

2.1 The characterization diagrams

![Figure S1](image-url) (a,f) SEM images; (b-e) EDX of Si, W, Cu and O of Cu₂SiW₁₂O₄₀.
Figure S2. EDS of Cu$_2$SiW$_{12}$O$_{40}$.

Figure S3. (a,c) SEM images; (b) EDS of HKUST-1. (d-f) EDX of C, Cu and O of HKUST-1.

Figure S4. EDS of {Cu$_2$SiW$_{12}$O$_{40}$}@HKUST-1.
Figure S5. XPS spectra of Cu$_2$SiW$_{12}$O$_{40}$: (a) Cu, (b) O, (c) Si and (d) W.

Figure S6. XPS spectra of HKUST-1: (a) C, (b) Cu and (c) O.

2.2 Supercapacitor test chart of compounds

Figure S7. The CVs at different scan rates: (a) [Cu$_2$SiW$_{12}$O$_{40}$]@HKUST-1, (b) Cu$_2$SiW$_{12}$O$_{40}$, (c) HKUST-1.
Figure S8. Plot of the total charge stored (q) vs. the reciprocal of the square root of the scan rate.

Figure S9. Normalized contribution ratio of the capacitive (Q_c) and diffusion-controlled (Q_d) charge storage capacities at lower scan rates of (a) HKUST-1, (b) Cu$_2$SiW$_{12}$O$_{40}$.

Figure S10. The GCD of (a)[Cu$_2$SiW$_{12}$O$_{40}$]@HKUST-1, (b)HKUST-1,(c)Cu$_2$SiW$_{12}$O$_{40}$ at different current densities.

2.3 Electrocatalytic water oxygen production diagram of compounds
Figure S11. CVs of (a) HKUST-1; (b) Cu$_2$SiW$_{12}$O$_{40}$ with different rates from 10 to 100 mV s$^{-1}$. Inset: The capacitive current at 0.34V as a function of the scan rate for (a) HKUST-1. (b) Cu$_2$SiW$_{12}$O$_{40}$.

![Graph showing CVs and capacitive current](image)

Figure S12. Time-dependent current density curve of HKUST-1 and Cu$_2$SiW$_{12}$O$_{40}$.

![Graph showing time-dependent current density](image)

Figure S13. (a) SEM image of the {Cu$_2$SiW$_{12}$O$_{40}$}@HKUST-1 catalyst after OER stability test, (b-f) EDX of C, Cu, O, Si and W.

![SEM image and EDX](image)

Figure S14. The W4f XPS spectra of {Cu$_2$SiW$_{12}$O$_{40}$}@HKUST-1 after OER tests.

![W4f XPS spectra](image)
Figure S15. The W4f XPS spectra of Cu$_2$SiW$_{12}$O$_{40}$ after OER tests.

2.4 Comparison of the properties of the Keggin-based materials with published supercapacitors

Table S1 Comparison of the properties of the Keggin-based materials with published supercapacitors

Compound	The capacitances	The cyclic stability	collector	Ref	
1 PAni/H$_3$PMo$_{12}$O$_{40}$	120 F g$^{-1}$	70% (1000 cycles)	Rigid graphite plate	[1]	
2 MWCNT/C$_x$PMo$_{12}$O$_{40}$	285 F g$^{-1}$ (0.2 A g$^{-1}$)	----	---	[2]	
3 H$_3$PMo$_{12}$O$_{40}$/MWCNT	38 F g$^{-1}$ (1 A g$^{-1}$)	-----------	porous glassy fibrous paper	[3]	
4 [BMIM]$_4$SiW$_{12}$O$_{40}$	172 F g$^{-1}$ (20 mV s$^{-1}$)	89% (1100 cycles)	glassy carbon	[4]	
5 AC/PMo$_{12}$O$_{40}$	140 F g$^{-1}$ (1 A g$^{-1}$)	91% (8000 cycles)	glassy carbon	[5]	
6 AC/PW$_{12}$O$_{40}$	254 F g$^{-1}$ (10 mV s$^{-1}$)	35% (30000 cycles)	Graphite rods	[6]	
7 RGO/PIL/PMo$_{12}$O$_{40}$	408 F g$^{-1}$	98% (2000 cycles)	stainless steel foil	[7]	
8 rGO/PMo$_{12}$O$_{40}$	276 F g$^{-1}$	96% (10000 cycles)	Graphite rods	[8]	
	Material	Specific Capacity	Cyclic Stability	Remarks	Reference
---	----------------------------------	-------------------	-------------------	--	-----------
9	SWCNT/TBA/PMo12V2O40	444 F g⁻¹	95% (6500 cycles)	glassy carbon rods and graphite papers	[9]
10	rGO/ PMo12O40	51.2 F g⁻¹	95% (5000 cycles)	commercial flexible carbon cloth	[10]
11	AC/PMo12O40	223 F g⁻¹	100% (10000 cycles)	Ti foils	[11]
12	PMo12−XWxO40⁻	140 F g⁻¹ (10 A g⁻¹)	94.6% (1700cycles)	glassy carbon	[12]
13	[Ag₅(brtmb)₄][VW₁₀V₂O₄₀]	206 F g⁻¹ (110 A g⁻¹)	81.7% (1000 cycles)	glassy carbon	[13]
14	Pinecone AC/PMo12O40	361 F g⁻¹	-----	titanium foil	[14]
15	AC/PMo12O40	293 F g⁻¹	-----	C250 carbon monoliths	[15]
16	[Ag₅(brtmb)₄][VW₁₀V₂O₄₀]	206 F g⁻¹ (110 A g⁻¹)	81.7% (1000 cycles)	glassy carbon	[16]
17	rGO-PMo₁₂	278 mF cm⁻²	89% (5000 cycles)	Carbon cloth	[17]
18	rGO-PMo₁₂∥rGO-PW₁₂	110 F cm⁻² (2 mA cm⁻²)	95% (2000 cycles)	carbon cloth	[17]
19	[Cu‘(btx)₄][SiW₁₂O₄₀]	110.3 F g⁻¹ (3.0 A g⁻¹)	87% (1000 cycles)	glassy carbon	[18]
20	NENU-5/PPy	779.8 F g⁻¹ (10 mV s⁻¹)	-----	carbon cloth	[19]
21	[H(C₁₀H₁₀N₂)Cu₂][PMo₁₂O₄₀]	287 F g⁻¹ (1 A g⁻¹)	81.5% (500 cycles)	glassy carbon	[20]
22	[H(C₁₀H₁₀N₂)Cu₂][PW₁₂O₄₀]	153.43 F g⁻¹ (1 A g⁻¹)	18.2% (500 cycles)	glassy carbon	[20]
23	NiPW₁₂NP/FrGO	437.6 F g⁻¹ (4 A g⁻¹)	94.3% (5000 cycles)	carbon paper	[21]
24	mPPy@GO-PMo₁₂	115 mF cm⁻² (1 mV s⁻¹)	80% (2000 cycles)	glassy carbon	[22]
25	[Ag₅(C₂H₂N₂)₄][H₂SiMo₁₂O₄₀]@15%GO	230.2 F g⁻¹ (0.5 A g⁻¹)	92.7% (1000 cycles)	glassy carbon	[23]
26	[CuH₂(C₂H₂N₂)₄][PMo₁₂O₄₀]−[(C₂H₂N)(H₂O)₂]	249 F g⁻¹ (3 A g⁻¹)	93.5% (1000 cycles)	glassy carbon	[24]
27	[CuV₁₂(C₂H₂N₂)₄](PMoV₉Mo³O₃₉)	154.5 F g⁻¹ (3 A g⁻¹)	91.1% (1000 cycles)	glassy carbon	[24]
28	[Cu₄H₂(bttx)₃(PMo₁₂O₄₀)₂]·2H₂O	237 F g⁻¹ (2 A g⁻¹)	92.5% (1000 cycles)	glassy carbon	[25]
29	[Cu₄H₂(bttx)₃(PW₁₂O₄₀)₂]·2H₂O	100 F g⁻¹ (2A g⁻¹)	90% (1000 cycles)	glassy carbon	[25]
30	[Cu₄Cu₄(H₂O)₃(bttx)₃(PW₆₀₁₀W₄O₄₀)]·2H₂O	82.1 F g⁻¹ (2A g⁻¹)	100% (1000 cycles)	glassy carbon	[25]
31	[Cu₄Cu₄(bttx)₃(PW₆₀₁₀W₄O₄₀)]·2H₂O	76.4 F g⁻¹ (2A g⁻¹)	100% (1000 cycles)	glassy carbon	[25]
32	[Cu₄Cu₄(bttx)₃(SiMo₃O₁₅M₀O₄₀)]·4H₂O	138.4 F g⁻¹ (2A g⁻¹)	97% (1000 cycles)	glassy carbon	[25]
33	[Ag₃(pz)₃](BW₂O₄₀)	1058 F g⁻¹ (2.16 A g⁻¹)	90.3% (1000 cycles)	glassy carbon	[26]
34	[(Ag₃(pz)₃)(SiW₁₂O₄₀)](OH)·H₂O	986 F g⁻¹ (2.16A g⁻¹)	94.5% (1000 cycles)	glassy carbon	[26]
35	(Hpyr)[(Ag(pz)₂)(PMo₁₂O₄₀)]	1611 F g⁻¹ (2.16A g⁻¹)	84.8% (1000 cycles)	glassy carbon	[26]
36	[Cu₄(pz)₂(phen)₁₂][Cu(phen)]₂	825 F g⁻¹ (2.4 A g⁻¹)	91.4% (3000 cycles)	glassy carbon	[27]
37	[Ag₃(C₂H₂N₄)₃][H₃SiMo₁₂O₄₀]@15%GO-based electrode	230.2 F g⁻¹ (0.5A g⁻¹)	92.7% (1000 cycles)	glassy carbon	[28]
38	[Ag(bpy)][(Ag(Hbpy))₃(AlW₁₂O₄₀)]·H₂O	478.41 F g⁻¹ (1 A g⁻¹)	95.71% (5000 cycles)	carbon cloth	[29]
39	[H₂en][(Cu(bpy)₃)(AlW₁₂O₄₀)]·3H₂O	625.99 F g⁻¹ (1 A g⁻¹)	97.62% (5000 cycles)	carbon cloth	[29]
40	[Ni(itmb)₄](HPMo₁₂O₄₀)·2H₂O	477.9 F g⁻¹ (15 A g⁻¹)	-----	glassy carbon	[30]
41	[Zn(itmb)₃](H₂O)(HPMo₁₂O₄₀)·4H₂O	890.2 F g⁻¹ (15 A g⁻¹)	-----	glassy carbon	[30]
42	[Mn₃(BTC)₄]₃(H₂O)₆	211.0 F g⁻¹ (1 A g⁻¹)	96.0% (5000 cycles)	nickel foam	[31]
43	PPD-PMo₁₂@rGO	790 F g⁻¹ (1 mV s⁻¹)	90.5% (30 000 cycles)	carbon paper	[32]
44	PPD-PMo₁₂	550 F g⁻¹ (1 mV s⁻¹)	-----	Carbon paper	[32]
45	PMo₁₂@GO	305 F g⁻¹ (1 mV s⁻¹)	-----	carbon paper	[32]
46	(imi)₂[(Ag₃(tpb)₃)(H₂O)₂AsW₁₂O₄₀]·6H₂O	929.7 F g⁻¹ (3.6 A g⁻¹)	89.6% (5000 cycles)	glassy carbon	[33]
47	[(Ag₃(bpy)Cl)₃]AsW₆W₄O₄₀	986.1 F g⁻¹ (3.6 A g⁻¹)	91.4% (5000 cycles)	glassy carbon	[33]
	AC/TEAPW$_{12}$	82 F g$^{-1}$ (0.5 A g$^{-1}$)	93% (10000 cycles)	aluminum foil	[34]
---	---	---	---	---	---
49	[HPMo$_{12}$O$_{40}$]@[Cu$_4$($μ_2$-OH)$_2$(C$_6$H$_5$PO$_3$)$_2$(bimb)$_4$]	267.0 F g$^{-1}$ (5 A g$^{-1}$)	95.1% (1000 cycles)	glassy carbon	[35]
50	PMo$_{10}$V$_2$@ZIF-67	475 F g$^{-1}$ (2 A g$^{-1}$)	106.41% (5000 cycles)	Ni foam	[36]
51	{Cu$_2$SiW$_{12}$O$_{40}$}@HKUST-1	5096.5 F g$^{-1}$ (1 A g$^{-1}$)	92% (6000 cycles)	glassy carbon	This work
52	H$_4$SiW$_{12}$O$_{40}$	604.6 F g$^{-1}$ (1 A g$^{-1}$)	82% (6000 cycles)	glassy carbon	This work
53	{Cu$_2$SiW$_{12}$O$_{40}$}@HKUST-1	403.7 F g$^{-1}$ (1 A g$^{-1}$)	91.7% (6000 cycles)	nickel foam	This work

References

[1] A. K. C. Gallegos, M. L. Cantú, N. C. Pastor, P. G. Romero, *Adv. Funct. Mater.*, 2005, **15**, 1125-1133. DOI:10.1002/adfm.200400326

[2] A. K. C. Gallegos, R. M. Rosales, M. Baibarac, P. G. Romero, M. E. Rincón, *Electrochem. Commun.*, 2007, **9**, 2088-2092. DOI:10.1016/j.elecom.2007.06.003

[3] M. Skunik, M. Chojak, I. A. Rutkowska, P. J. Kulesza, *Electrochim. Acta*, 2008, **53**, 3862-3869. DOI:10.1016/j.electacta.2007.11.049

[4] M. Ammam, J. Fransaer, *J. Electron. Mater.*, 2011, **158**, A14-A21. DOI:10.1149/1.3507254

[5] V. Ruiz, J. S. Guevara, P. G. Romero, *Electrochem. Commun.*, 2012, **24**, 35-38. DOI:10.1016/j.elecom.2012.08.003

[6] J. S. Guevara, V. Ruiz, P. G. Romero, *J. Mater. Chem. A*, 2014, **2**, 1014-1021. DOI:10.1039/c3ta14455k

[7] M. H. Yang, B. G. Choi, S. C. Jung, Y. K. Han, Y. S. Huh, S. B. Lee, *Adv. Funct. Mater.*, 2014, **24**, 7301-7309. DOI:10.1002/adfm.201401798

[8] J. S. Guevara, V. Ruiza, P. G. Romero, *Phys. Chem. Chem. Phys.*, 2014, **16**, 20411-20414. DOI:10.1039/C4CP03321C

[9] H. Y. Chen, R. A. Oweini, J. Friedl, C. Y. Lee, L. L. Li, U. Kortz, U. Stimming, M. Srinivasan, *Nanoscale*, 2015, **7**, 7934-7941. DOI:10.1039/c4nr07528e

[10] D. P. Dubal, J. S.Guevara, D. Tonti, E. Enciso, P. G. Romero, *J. Mater. Chem. A*, 2015, **3**, 23483-23492. DOI:10.1039/C5TA05660H

[11] C. C. Hu, E. B. Zhao, N. Nitta, Magasinski, G. Berdichevsky, G.Yushin, *J. Power Sources*, 2016, **326**, 569-574. DOI:10.1016/j.jpowsour.2016.04.036

[12] Y. H. Ding, J. Peng, H. Y. Lu, Y. Yuan, *RSC Adv.*, 2016, **6**, 81085-81091, DOI: 10.1039/C6RA15381J

[13] G. N. Wang, T. T. Chen, X. M. Wang, H. Y. Ma, H. J. Pang, *Eur. J. Inorg. Chem.*, 2017, **2017**, 5350-5355. DOI:10.1002/ejic.201701031

[14] M. Genovese and K. Lian, *J. Mater. Chem. A*, 2017, **5**, 3939-3947. DOI: 10.1039/C6TA10382K

[15] P. Palomino, J. S. Guevara,M. O. Marinc, V. Ruiz, D. P. Dubal, P. G.Romero, D.Tonti, E.Enciso, *Carbon*, 2017, **111**, 74-82. DOI: 10.1016/j.carbon.2016.09.054

[16] G. N. Wang, T. T. Chen, X. M. Wang, H. Y. Ma, H. J. Pang, *Eur. J. Inorg. Chem.*, 2017, **45**, 5350-5355. DOI:10.1002/ejic.201701031

[17] D. P. Dubal, N. R. Chodankar, A. Vinu, D. H. Kim, P. Gomez-Romero, *ChemSusChem*, 2017, **10**, 2742-2750. DOI: 10.1002/cssc.201700792
[18] D. F. Chai, Y. Hou, K. P. O’Halloran, H. J. Pang, H. Y. Ma, G. N. Wang, X. M. Wang, Chem. Electro. Chem., 2018, 5, 3443-3450. DOI: 10.1002/celc.201801081

[19] H. N. Wang, M. Zhang, A. M. Zhang, F. C. Shen, X. K. Wang, S. N. Sun, Y. J. Chen, Y. Q. Lan, ACS Appl. Mater. Interfaces, 2018, 10, 32265-32270. DOI: 10.1021/acsami.8b12194

[20] S. Roy, V. Vemuri, S. Maiti, K. S. Manoj, U. Subbarao, and S. C. Peter, Inorg. Chem., 2018, 57, 12078-12092. DOI: 10.1021/acs.inorgchem.8b01631

[21] X. G. Sang, X. X. Xu, L. J. Bian, X. X. Liu, Y. Wang, Solid State Sci., 2018, 83, 8-16. DOI:10.1016/j.solidstatesciences.2018.06.006.

[22] J. Q. Qin, F. Zhou, H. Xiao, R. Y. Ren, Z. S. Wu, Sci. China Mater., 2018, 61, 233-242. DOI:10.1007/s40843-017-9132-8.

[23] Y. Hou, D. F. Chai, B. N. Li, H. J. Pang, H. Y. Ma, X. M. Wang, L. C. Tan, ACS Appl. Mater. Interfaces, 2019, 11, 20845-20853. DOI: 10.1021/acsami.9b04649

[24] D. F. Chai, J. J. Xin, B. N. Li, H.J. Pang, H. Y. Ma, K. Q. Li, B. X. Xiao, X. M. Wang and L. C. Tana, Dalton Trans., 2019, 48, 13026-13033. DOI:10.1039/C9DT02420D

[25] D. F. Chai, Carlos J. Gómez-García, B. N. Li, H. J. Pang, H. Y. Ma, X. M. Wang, L. C. Tan, Chem. Eng. J., 2019, 373, 587-597. DOI:10.1016/j.cej.2019.05.084

[26] N. N. Du, L. G. Gong, L. Y. Fan, K. Yu, H. Luo, S. J. Pang, J. Q. Gao, Z. W. Zheng, J. H. Lv, and B. B. Zhou, ACS Appl. Nano Mater., 2019, 2, 3039-3049. DOI: 10.1021/acsnano.9b00409

[27] K. P. Wang, K. Yu, J. H. Lv, M. L. Zhang, F. X. Meng, and B. B. Zhou, Inorg. Chem., 2019, 58, 7947-7957. DOI:10.1021/acs.inorgchem.9b00692

[28] Y. Hou, D. F. Chai, B. N. Li, H. J. Pang, H. Y. Ma, X. M. Wang, L. C. Tan, ACS Appl. Mater. Interfaces, 2019, 11, 20845-20853. DOI: 10.1021/acsami.9b04649

[29] L. G. Gong, X. X. Qi, K. Yu, J. Q. Gao, B. B. Zhou, G. Y. Yang. J. Mater. Chem. A, 2020, 8, 5709-5720. DOI:10.1039/C9ta14103k

[30] G. N. Wang, T. T. Chen, C. J. G. García, F. Zhang, M. Y. Zhang, H. Y. Ma, H. J. Pang, X. M. Wang, L. C. Tan, Small, 2020, 16, 2001626, DOI: 10.1002/smll.202001626

[31] Z. W. Zheng, X. Y. Zhao, L. G. Gong, C. X. Wang, C. M. Wang, K. Yu, B. B. Zhou, J. Solid State Chem., 2020, 288, 121409, DOI: 10.1016/j.jssc.2020.121409

[32] J. Gao, M. X. Tong, Z. Y. Xing, Q. Y. Jin, J. X. Zhou, L. L. Chen, H. L. Xu, G. H. Li, Chem. Commun., 2020, 56, 7305-7308. DOI: 10.1039/d0cc02464c

[33] L. P. Cui, K. Yu, J. H. Lv, C. H. Guo, B. B. Zhou, J. Mater. Chem. A, 2020, 8, 22918-22928, DOI:10.1039/D0TA08759A

[34] J. J. Zhu, R. B. Vilaua, P. G. Romero, Electrochim. Acta, 2020, 362, 137007, DOI:10.1016/j.electacta.2020.137007

[35] S. B. Li, X. G. Tan, M. Yue, L. Zhang, D. F. Chai, W. D. Wang, H. Pan, L.L. Fan, Chem. Commun., 2020, 56, 15177-15180. DOI:10.1039/D0CC0665F

[36] A. M. Mohamed, M. Ramadan, N. Ahmed, A. O. A. ElNaga, H. H. Alalawy, T. Zaki, S. A. Shaban, H. B. Hassan, N. K. Allam, J. Energy Storage, 2020, 28, 101292, DOI: 10.1016/j.est.2020.101292