Traditional Chinese Herbal Medicine for Whitening

Na Zhao⁴*, Xiaoming Su⁴*, Yueyang Wang⁴, Jianguang Chen², and Wenyue Zhuang¹

Abstract
Melanin is the chief pigment responsible for the pigmentation of human skin. Increasing evidence indicates that traditional Chinese drugs with skin-whitening effects are attracting the attention of consumers and researchers because they are perceived to be milder, safer, and healthier than synthetic alternatives. This commentary summarizes the current research on Chinese herbal medicines that inhibit melanin and their biological activities. The findings presented in this study suggest that these traditional Chinese herbal medicines might be potential candidates for novel skin-whitening agents.

Keywords
traditional Chinese herbal medicine, melanogenesis mechanism, skin-whitening

Received: September 24th, 2019; Accepted: December 5th, 2019.

Melanin is the pigment responsible for the color of human skin and hair. Melanin serves as a double-edged sword that imposes both protective and spot-causing effects on the skin. Melanin plays a critical role in protecting the skin against ultraviolet (UV) damage, but high or uneven melanin production can cause freckles and age spots.¹ Melanogenesis is a critical pathway that regulates skin pigmentation and the development of skin-lightening/whitening drugs or cosmetics.² Traditional Chinese herbal medicine extracts are effective at inhibiting skin pigmentation in recent years and are highly efficient, low cost, and have few side effects, indicating they could have broad application prospects leading to large social and economic benefits.

Current Mechanisms for Inhibiting Melanin Production
There are several melanin production mechanisms, as shown in Figure 1. The alpha-melanocyte stimulating hormone (α-MSH) specifically binded to the G protein-coupled melanocortin type 1 receptor (MC1R), which resulted in a stimulation of adenylate cyclase enhancing the concentration of intracellular cyclic adenosine monophosphate (cAMP).³ Intracellular cAMP-activated protein kinase A (PKA) that phosphorylates Ser-133 residue of the cAMP responsive element-binding protein (CREB).⁴ Conversely, the expression of microphthalmia-associated transcription factor (MITF) which was a primary helix loop-helix protein essential for melanocyte development and differentiation was increased by phosphor (p)-CREB.⁵ At last, MITF bound to the M box of tyrosinase promoter for the activation of transcription, thus resulting in the promotion of melanin biosynthesis. Phosphorylation of glycogen synthase 3β (GSK-3β) was inhibited by the activation of the Wnt pathway, which resulted in the accumulation of β-catenin. The cumulate β-catenin was carried into the nucleus and shaped a complex with the lymphoid-enhancing factor/T-cell factor transcription factor, after which caused the upregulation of MITF expression.⁶ Binding of the stem cell factor to the extracellular domain of c-kit, a tyrosine kinase receptor, prompted dimerization of the receptor, and then a downstream of phosphatidylinositol 3′a-kinase and Ras-mitogen-activated protein kinase (Ras-MAPK) was activated via the Shc and Grb2 adaptors proteins.⁷ The c-kit...
The activation of the tyrosinase enzyme was at the endpoint of this cascade. The production and secretion of endothelin-1 (ET-1) were induced by exposure of the skin to UVB. Then the ET-1 stimulated melanocytes located in the vicinity of keratinocytes by binding to endothelin B receptor that activated intracellular signaling cascades chiefly composed of the protein kinase C pathways, which resulted in a synergistic increase of proliferation and melanin production by melanocytes.

Therefore, the key to inhibiting melanin is to prevent the formation and block the release of melanin.

Inhibition of Melanin Synthesis Through Multiple Signaling Pathways

AMP-activated protein kinase/MAPK. Kazinol U has been shown to have antimelanogenesis activity through inhibiting the expression of MITF; inactivating its downstream target genes, tyrosinase, tyrosinase-related protein (TRP)1 and TRP2; and AMP-activated protein kinase and MAPK proteins. The members of the MAPK family, extracellular signal-regulated protein kinase (ERK) and c-Jun N-terminal kinase (JNK), play important roles in regulating melanogenesis.

Wnt/β-catenin. β-catenin, which accumulates with the activation of Wnt/β-catenin signaling, is related to melanocyte differentiation and forms a complex with lymphocyte enhancer factor-1 to upregulate the expression of the MITF gene. Moreover, β-catenin directly interacts with the MITF protein itself and then activates MITF-specific target genes.

Cardamomin is a chalcone from *Alpinia katsumadai* Hayata that inhibits pigmentation in melanocytes by suppressing the Wnt/β-catenin signaling pathway. Recombinant Wnt5a adenoviruses infect melan-a cells and then make use of noncanonical Wnt/Ror2 pathway activation to inhibit the canonical Wnt pathway, leading to inhibition of melanin synthesis via downregulation of pigment cell-specific genes in melanocytes.

Inhibition of Tyrosinase Activity

The formation of dopaquinone is catalyzed by tyrosinase, which is a precursor of melanin. Therefore, the development of agents that can regulate the enzymatic activity of

Figure 1. The mechanism of melanin production. cAMP, cyclic adenosine monophosphate; CREB, cAMP responsive element-binding protein; ET-1, endothelin-1; ETB-R, endothelin B receptor; ERK, extracellular signal-regulated protein kinase; GSK-3β, glycogen synthase 3β; LEF, lymphoid-enhancing factor; α-MSH, alpha-melanocyte-stimulating hormone; MITF, microphthalmia-associated transcription factor; PKA, protein kinase A; PKC, protein kinase C; SCF, stem cell factor; TCF, T-cell factor; TRP, tyrosinase-related protein; TYR, tyrosinase.
tyrosinase could have significant value in controlling the melanin content in the skin.35 Nature has a myriad of sources of tyrosinase inhibitors, such as flavonoids,36,38 β-arbutin,39 chalcones,40 resveratrol,41 and others, and natural sources usually attract more attention than chemically synthesized compounds for using cosmetic products.42

\section*{Inhibition of Melanin Transport}

Keratinocyte-secreted substances activate melanocytes to promote melanin synthesis, which is catalyzed by tyrosinase, the rate-limiting enzyme, and TRP-1 and TRP-2 in melanosomes.43,44 Then, mature melanosomes including melanin are transported from the perinuclear area to the tips of melanocyte dendrites.45 Kinesin, a motor protein, delivers melanosomes on microtubules to the perinuclear region.46,47 Furthermore, the Rab27a and MyosinVa compound transport melanosomes associated with actin located at the tips of dendrites.46,48 Finally, melanosomes are combined with surrounding keratinocytes in globules and are scattered throughout the skin.49 In previous research, Manassantin B has been shown to be an inhibitor of the interaction between MyosinVa and melanophilin, which inhibits melanosome transport and decreases the melanin content when melanocytes are stimulated by α-MSH.50 Although it suppresses melanosome transfer, niacinamide does not affect tyrosinase activity, melanin synthesis, or the melanocyte number in a monolayer culture system.51 Ebselen is a nonprotein cell-permeable glutathione peroxidase mimic that seems to be a new depigmenting compound for skin whitening.

\section*{Active Autophagy}

Autophagy is an intracellular process by which autophagosomes are formed by sequestering cytosol and organelles in double-membrane-bound structures that later deliver their contents to lysosomes/vacuoles for degradation.56-59 Recent studies have shown that autophagy may also be related to the biogenesis of melanin and degradation of melanosomes, suggesting that its activation is involved in skin color by reducing the production of melanin pigments.50 3-MA, an autophagy inhibitor, also increases tyrosinase protein levels.61 LED photo modulation at a 585 nm wavelength reduces the melanin content of inhuman epidermal melanocytes (HEMs), via dose-dependent inhibition of melanogenesis and induction of HEM autophagy.62 It has been shown that β-mangostin from seedcases of \textit{Garcinia mangostana} control α-MSH-mediated melanogenesis by inhibiting autophagy, which clearly recovers the premelanosome protein and tyrosinase degraded in B16F10 melanoma cells and a 3-dimensional human skin model.2 Tranexamic acid (TXA) has been frequently used to decrease melanin synthesis in patients with melasma and as a raw material for functional whitening cosmetics. TXA can decrease melanin synthesis in melanoma B16F1 cells via activating the ERK signaling pathway and the autophagy system.60 3-O-glyceryl-2-O-hexyl ascorbate (VC-HG) suppresses melanogenesis by activating the autophagy system.61 In \textit{Rhizoma arisaema-tet} extract-treated B16F1 cells, autophagy is activated, which inhibits α-MSH-stimulated growth of melanogenesis and down-regulates the expression of TRP1 proteins in cells.62 Shufeng Huoxue Fumula regulates melanin metabolism and enhances tyrosinase activity and melanogenesis through the autophagy pathway to inhibit the proliferation of B16 cells in vitro.65 According to research that interrupting intracellular melanosome transport by knocking down MyosinVa degrades melanosomes through activating the autophagy system and then reduces the accumulation of melanosomes in cells, but these phenomena are only found in M-KD cells activated by theophylline.66 Resveratrol is a type of natural phenol, and its antimelanogenesis activity is suppressed by the inhibition of autophagy.67 3′-Hydroxydaidzein (3′-ODI), as an autophagy inducer, significantly reduces α-MSH-mediated melanogenesis in melanoma cells and melanocytes. Additionally, the inhibition of autophagy notably decreases the antimelanogenic effects of 3′-ODI in α-MSH-stimulated melanoma cells.68 ARP101, which is a matrix metallopeptidase -2 inhibitor, strongly induces autophagy and autophagy-associated cell death in various cancer cells.69,70 ARP101 inhibits melanogenesis and suppresses the expression of tyrosinase and TRP1 by regulating autophagy.71

\section*{Inhibition of Oxidative Stress}

Meyer has shown that the main components of polyphenolic compounds from \textit{Panax ginseng} C.A are antioxidants and inhibit melanogenesis.72 Metallothionein expressed in melanocytes acts as an inducible intracellular antioxidant,73,81 and its induction may be an effective method to suppress melanogenesis induced by nitric oxide and other melanogens.82

\section*{Traditional Chinese Herbal Medicine for Whitening}

\section*{Ginseng}

\textit{Panax ginseng} C. A. Meyer is a very well-known medical herb in Asian countries. Like Kwangmi Kim, extracts, powders, or some constituents of ginseng inhibit melanogenesis in vivo or in vitro.83 We prefer to concentrate on the updated
The ethyl acetate extract of *Panax ginseng* (Gb-AuNPs), which produces gold nanoparticles with versatile properties for cosmetic applications, can effectively scavenge and gradually suppress cellular tyrosinase and melanin in α-MSH-stimulated B16 cells. Ginsenoside Rh23, Rh2, and Rh6; vina-ginsenoside R13; vina-ginsenoside R4; picrinose A; 20-O-β-D-glucopyranosyl-3β, 6α, 12β, and 20β; and 25-pentahydrammar-23-ene can be isolated from hydroponic *P. ginseng* leaves together and not only have inhibitory activities on melanin biosynthesis without cytotoxic effects in melana-a cells but also enhance depigmentation in zebrafish as an alternative animal model. Twelve ginsenosides have been isolated and used to test antimelanogenesis effects. Only aglycones of Rh4 notably decrease the melanin content and tyrosinase activity via downregulation of cAMP levels. Ginsenoside F1 (GF1) is a metabolite of ginsenoside Rg1 that increases the production of interleukin 13 (IL-13) from human epidermal γδ T cells. Then, IL-13 significantly reduces the expression of mRNA and proteins of both tyrosinase and dopachrome tautomerase and reduces melanin synthesis in normal human epidermal melanocytes (NHEMs), leading to the visible brightening of the NHEM pellet. GF1 inhibits melanogenesis via inducing cell body enlargement and dendrite retraction in B16F10 cells. It leads to the accumulation of pigment granules in melanocyte cell bodies, which notably influences their transfer from melanocytes and thus decreases visible pigmentation. Interestingly, GF1 increases the expression of intracellular melanin and tyrosinase. Chang-Seok Lee et al found that GF1 has whitening effects in the human epidermis containing melanocytes and keratinocytes. They demonstrated that GF1 inhibits α-MSH-induced dendrite formation, leading to the inhibition of melanosome transfer to keratinocytes in human cell cocultures. GF1 disrupts melanin transfer from melanocytes in the basal layer to keratinocytes in the upper layer, indicating a whitening function in a human skin equivalent. Dan-Dan Wang et al synthesized ginsenoside 1a, a new ginsenoside derivative from F1. Ginsenoside 1a largely decreases melanin synthesis and suppresses tyrosinase activity at 100 μm, indicating that it has greater efficacy than ginsenoside F1 and arbutin at the same concentration. Cinnamic acid is mainly found in *Cinnamomum cassia* BLUME and *P. ginseng*. Melan-a cells treated with 100 ppm of cinnamic acid can lead to decreased melanin, have an effective inhibitory influence on tyrosinase activity, decrease the expression of tyrosinase in melan-a cells, and have depigmenting activity on UV-B-induced hyperpigmentation of brown guinea pig skin. The ethyl acetate extract of *P. ginseng* C. A. Meyer (PG-2) has the strongest influence on depressing melanogenesis, and its key constituents are polyphenolic compounds, which may inhibit melanogenesis through restraining oxidative stress.

Scutellaria baicalensis

According to component analyses, baicalin, wogonoside, baicalein, wogonin, and oroxylin A are the main components of *S. baicalensis*. The effects of every fraction of antimelanogenesis have been investigated. The results showed that among these 5 flavones, wogonin and wogonoside exhibit high resistance to melanin production in both B16F10 melanoma cells and primary melanocytes. Wogonin clearly inhibits melanin production and evidently lightens the color of skin equivalents, possibly due to the calpain/proteosomal pathway promoting proteolytic degradation of melanophilin. SOX9 is a potential target for the effect of these *S. baicalensis* flavones. Additionally, wogonin and 2 wogonin analogs, mono-O-methyl flavones, considerably suppress melanosome transport. The structural specificities of the mono-O-methyl group in the flavone A-ring and the aglycone form play important roles in decreasing melanosome. It has been reported that Rab27A, synaptotagmin-like protein (SLP) 2A/synaptotagmin 2, a melanophilin (MLPH)/SLP homolog lacking C2 domains-A, and myosin Va are involved in the regulation of melanosome transport. The o-methyl-positioned flavones inhibit melanosome transport through downregulating the level of MLPH. Baicalin decreases MITF protein levels and also decreases the protein level of tyrosinase, which is transcriptionally regulated by MITF. Furthermore, the baicalin-induced hypopigmenting effect is related to the PI3K/Akt signaling pathway. However, in a study by Xiaohong Li et al, baicalin was shown to lead to phosphorylation of ERK and decrease the MITF protein level, tyrosinase activity and melanin level.

Ssanghwa-tang

Herbal cocktails containing a myriad of phytochemicals simultaneously affect multiple biological and pathological processes via synergistic and reciprocal actions. Appropriately formulated herbal cocktails may act in concert to amplify the therapeutic efficacy of their components while minimizing adverse effects. These combined actions are known as pharmacological or pharmaceutical combinatorial effects. Ssanghwa-tang (SHT) is a traditional herbal medicine and has been widely used for years in Korea, China, and Japan. In a study by Aeyung Kim et al, the ability of SHT to inhibit melanin synthesis was evaluated. SHT significantly inhibits cAMP-induced melanin synthesis in B16F10 cells via repression of the PKA and p38 MAPK signaling pathways and subsequently reduces the level of CREB phosphorylation, MITF, and melanogenic enzymes. Some single herbs in SHT have already been shown to suppress melanogenesis through inhibiting tyrosinase activity, but the effective doses are much higher and potentially cytotoxic compared with the dose used in SHT.
Name	Active components	Biological activities	Reference
Angelica keiskei	Chalcones	Inhibit melanin formation	115
Alpinia zerumbet		Reduce the melanin content	116
Astragalus membranaceus	PG2	Inhibit the melanin production	117
Aunostachys roxburghii	Alcohol extracts	Inhibit melanogenesis	118
Arctostaphylos uva-ursi	Arbutin	Inhibit the biosynthesis of melanin and tyrosinase activity	119
Arctium lappa	Artigenin	Inhibit tyrosinase activity	120
Artocarpus communis		Decrease melanin content and tyrosinase activity	121
CM		Reduce cellular tyrosinase activity and melanin formation	109,110
Cinnamomum osmophloeum	Kanethira	Inhibit tyrosinase activity	122
Cassia auriculata	Methanol extract	Inhibit melanogenesis	123
Cassulina sappan Linn	Methanol extract	Inhibit melanin synthesis	124
CE		Suppress tyrosinase activity by inhibiting ANGPTL 2 expression	111
CBM		Have antimelanogenic activities	112
Cyrtomium fortunei J. Smith		Inhibit tyrosinase activity and melanin production	125
Crocetin		Anti-tyrosinase properties	126
Cnidium monieri Cusson	Osthol	Inhibit melanin content	127
Eupatorium lindleyanum		Suppress melamine production	128
ES		Regulate the expression of tyrosinase and MITF	129
Heracleum moellendorffii Hance		Inhibit melanogenic enzymes and melanin	17
Glycyrriza uralenisi	Flowers	Suppress tyrosinase activity	130
Gentiana		Suppressed melanin production through down-regulation of tyrosinase, tyrosinase related proteins, MITF and inhibiting CREB phosphorylation	86
Ganoderma lucidum	GLP	Inhibit UVB-induced skin pigmentation	88
Ginseng	Panax ginseng berry extract (Gb-AuNPs)	Suppress cellular tyrosinase and melanin	84,85
	Ginsenoside Rh23, Rb2, and Rh6; vina-ginsenoside R13; vina-ginsenoside R4; picrionside A; 20-O-β-d-glucopyranosyl-3β, 6α, 12β, and 20ß; and 25-pentahydammar-23-ene	Inhibit melanin biosynthesis	83,131–133
	A-Rh4	Decrease the melanin content and tyrosinase activity via downregulation of cAMP levels	89
	GF1	Reduce the expression of tyrosinase and dopachrome tautomerase and inhibit melanin synthesis by increasing the production of IL-13; decreases visible pigmentation by inhibiting melanosome transport;	90-92
	Ginsenoside Ia	Decreases melatin synthesis and suppresses tyrosinase activity	93
	Cinnamic acid	Reduce melanin and tyrosinase activity	134
	PG-2	Inhibit melanogenesis	72
Garvinia mangostana	Mangosenone F	Inhibit production of melanin	135
Kaempferia galanga	Ethyl p-methoxycinnamate	Inhibit tyrosinase activity	136
Limoniastrum gyninianum	The aqueous gall extract	Inhibit melanin synthesis and tyrosinase activity	137
Lepidium apetalum (ELA)		Decrease melanin content via an ELA-mediated increase in keratino-cyte IL-6 production	138
Morus alba L. Leaves	Ethyl acetate fraction	Decrease the activity of tyrosinase	139
Magnolia grandiflora		Decrease the expression of tyrosinase and TRP-1,	140
Michelia alba	(-)-N-formylanonaine	Inhibit mushroom tyrosinase	141
Phylo nodiflora Greene		Suppress melanogenesis	20
Polygonum cuspidatum	Piccid	Inhibit melanogenesis	142

(Continued)
ERK pathways.106,107 probably through modulating the PI3k/Akt and MAPK/ERK pathways.105 Activation of the PI3K/Akt and MAPK/ERK pathways results in the expression of MITF, tyrosinase, TRP-1, and TRP-2, which have been shown to reduce melanin production by reducing N and 1-

Furthermore, gomisin N has been shown to reduce melanin production by reducing N and 1-

GLP can greatly relieve erythema reactions in guinea pig skin caused by high-dosage UVB irradiation.88 Downregulation of tyrosinase expression and the expression of MITF, tyrosinase, TRP-1, and TRP-2, have been shown to reduce melanin production by reducing N and 1-

Gomisin N has been shown to reduce melanin production by reducing N and 1-

Table 1. Continued
Name
Pistacia atlantica subsp. mutica
Rhodiola rosea
Santellaria baicalensis
SHT
Schisandra chinensis (Turcz.) Baillon
Sophora flavescens
Salvia officinalis
Sauromorus chinensis
Sauropus androgynus L. Merr.
Sasa quelpaertensis Nakai
Saururus chinensis
Xanthium strumarium

Others

The Chinese herb Paeonia suffruticosa Andrews, commonly called Cortex Moutan, significantly reduces not only cellular tyrosinase activity but also melanin formation in B16 cells, which may result in the downregulation of the protein levels of MC1R, MITF, and TRP-1.108,109 Angiopoietin-like protein (ANGPTL) 2 is an inflammatory mediator produced in sun-exposed skin areas that can accelerate pigment production in keratinocytes and melanin-producing cells. Chrysanthemum indicum×Erigeron annuus suppresses ANGPTL 2 expression, thereby inhibiting tyrosinase activity in melanocytes.110 The yields and components of essential oils extracted from Chrysanthemum boreale MANKINO (CBM) (CBMEOs) are different at each stage, but CBMEOs have antimelanogenic activities in all CBM harvesting stages, resulting in skin-whitening biological activities though phosphorylation of ERK 1/2 and p38 MAPK.111 Euphorbia supina (ES) is an annual herbaceous plant and is largely used in traditional herbal formulations. ES extract weakens α-MSH-stimulated melanin synthesis by regulating the expression of tyrosinase and MITF. These activities might be due to gallic acid and protocatechuic acid, which have been detected in ES extract.112 Rab27a is essential for melanosome transport to the dendrite tips in human melanocytes.113 Sauropus androgynus L. Merr. extract weakens α-MSH-stimulated melanin synthesis by regulating the expression of tyrosinase and MITF. These activities might be due to gallic acid and protocatechuic acid, which have been detected in ES extract.112 Rab27a is essential for melanosome transport to the dendrite tips in human melanocytes.113
Heracleum moellendorfii-treated melan-a cells exhibit increased pERK levels and subsequently decrease the expression of MITF, leading to the inhibition of melanogenic enzymes and melanin. Table 1 summarizes the key properties and activities in relation to the botanical extracts described in this section.

Conclusions

The biological activities of Chinese herbal medicines that are potentially useful for treating skin hyperpigmentation are summarized in this text. The active components of Chinese herbal medicines and their biological activities are provided in Table 1. In recent years, herbal medicines have become an important approach in drug discovery programs for developing potent melanogenesis inhibitors. This method has several advantages, including being milder, safer, and less irritating than traditional methods. However, the skin-whitening effects of a single Chinese herbal medicine with a skin-whitening active ingredient are relatively limited, and they do not meet the needs of the majority of women. The development of new skin-whitening agents should search for more effective compound formulas with multiple orientations, multiple targets, and multiple levels, from reducing melanocyte formation to inhibiting tyrosinase activity to the process of migration to the epidermis to the reduction of melanin formation at the genetic level and others. Different skin-whitening active ingredients produce synergistic effects without a mutual reaction and exert a stronger whitening effect.

Acknowledgments

This work was supported by grants from the Student’s Training Program for Innovation and Entrepreneurship of Jilin Province (201811923144) and a project of the innovation plan for graduate students of Beihua University (2018041, 2019021, 2019027), Jilin Province Scientific Technology Project of Traditional Chinese Medicine (2019129).

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID ID

Na Zhao https://orcid.org/0000-0002-7495-4232

References

1. Yang Z, Zeng B, Pan Y, Huang P, Wang C. Autophagy participates in isoliquiritigenin-induced melanin degradation in human epidermal keratinocytes through PI3K/Akt/mTOR signaling. Biomed Pharmacother. 2018;97:248-254.

2. Lee KW, Ryu HW, Oh S-S, et al. Depigmentation of α-melanocyte-stimulating hormone-treated melanoma cells by β-mangostin is mediated by selective autophagy. Exp Dermatol. 2017;26(7):585-591.

3. Le Pape E, Wakamatsu K, Ito S, Wolber R, Hearing VJ. Regulation of cumulain/pheomelanin synthesis and visible pigmentation in melanocytes by ligands of the melanocortin 1 receptor. Pigment Cell Melanoma Res. 2008;21(4):477-486.

4. Ao Y, Park HY, Olaizola-Horn S, Gilchrest BA. Activation of cAMP-dependent protein kinase is required for optimal alpha-melanocyte-stimulating hormone-induced pigmentation. Exp Cell Res. 1998;244(1):117-124.

5. Bertolotto C, Abbé P, Hemesath TJ, et al. Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J Cell Biol. 1998;142(3):827-835.

6. Wu J, Saint-Jeannet J-P, Klein PS. Wnt-Frizzled signaling in neural crest formation. Trends Neurosci. 2003;26(1):40-45.

7. Cutler RL, Liu L, Damen JE, Krystal G. Multiple cytokines induce the tyrosine phosphorylation of Shc and its association with Grb2 in hemopoietic cells. J Biochem Physiol. 1993;268(29):21463-21465.

8. Lennartsson J, Blume-Jensen P, Hermanson M, Pontén E, Carlberg M, Rönstrand L. Phosphorylation of Shc by Src family kinases is necessary for stem cell factor receptor/c-kit mediated activation of the Ras/MAP kinase pathway and c-fos induction. Oncogene. 1999;18(40):5546-5553.

9. Liu L, Damen JE, Cutler RL, Krystal G. Multiple cytokines stimulate the binding of a common 145-kilodalton protein to Shc at the Grb2 recognition site of Shc. Mol Cell Biol. 1994;14(10):6926-6935.

10. Hemesath TJ, Price ER, Takemoto C, Badalian T, Fisher DE. MAP kinase links the transcription factor microphthalmia to c-kit signalling in melanocytes. Nature. 1998;391(6664):298-301.

11. Wu M, Hemesath TJ, Takemoto CM, et al. C-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Ml. Genes Dev. 2000;14(3):301-312.

12. Yada Y, Higuchi K, Imokawa G. Effects of endothelins on signal transduction and proliferation in human melanocytes. J Biochem Physiol. 1991;266(1):27-32.

13. Imokawa G, Miyagishi M, Yada Y. Endothelin-1 as a new melanogen: coordinated expression of its gene and the tyrosinase gene in UVB-exposed human epidermis. J Invest Dermatol. 1995;105(1):32-37.

14. Imokawa G, Miyagishi M, Yada Y. Endothelin-1 signaling mechanisms of endothelin-induced mitogenesis and melanogenesis in human melanocytes. Biochem J. 1996;314(1):305-312.

15. Lim J, Nam S, Jeong JH, et al. Kazinol U inhibits melanogenesis through the inhibition of tyrosinase-related proteins via AMP kinase activation. Br J Pharmacol. 2019;176(5):737-750.

16. Englaro W, Bertolotto C, Buscà R, et al. Inhibition of the mitogen-activated protein kinase pathway triggers B16 melanoma cell differentiation. J Biol Chem. 1998;273(16):9966-9970.

17. Alam M, Seo B-J, Zhao P, Lee S-H. Anti-Melanogenic activities of Heracleum moellendorffii via ERK1/2-mediated MITF downregulation. Int J Mol Sci. 2016;17(11):1844.
18. Kim D-S, Hwang E-S, Lee J-E, Kim S-Y, Kwon S-B, Park K-C. Sphingosine-1-Phosphate decreases melanin synthesis via sustained ERK activation and subsequent MITF degradation. J Cell Sci. 2003;116(Pt 9):1699-1706.

19. Ko G-A, Cho SK. Phytol suppresses melanogenesis through proteosomal degradation of MITF via the ROS-ERK signaling pathway. Chem Biol Interact. 2018;286:132-140.

20. Ko H-H, Chiang Y-C, Tsai M-H, et al. Eupafolin, a skin whitening flavonoid isolated from phyla nodiflora, downregulated melanogenesis: role of MAPK and Akt pathways. J Ethnopharmacol. 2014;151(1):386-393.

21. Back S-hwa, Lee S-H. Sesamol decreases melanin biosynthesis in melanocyte cells and zebrafish: possible involvement of MITF via the intracellular cAMP and p38/JNK signalling pathways. Exp Dermatol. 2015;24(10):761-766.

22. Park SY, Jin ML, Kim YH, Kim Y, Lee S-J. Aromatic-torrenone inhibits α-MSH and IBMX-induced melanogenesis by inactivating CREB and MITF signaling pathways. Arch Dermatol Res. 2011;303(10):737-744.

23. Yang Y-M, Son Y-O, Lee S-A, Jeon Y-M, Lee J-C. Quercetin inhibits α-MSH-stimulated melanogenesis in B16F10 melanoma cells. Phytother Res. 2011;25(8):1166-1173.

24. Lim JW, Ha JH, Jeong YJ, Park SN. Anti-melanogenic effect of dehydroyaspearin C through the downregulation of MITF via the reduction of intracellular cAMP and acceleration of ERK activation in B16F1 melanoma cells. Pharmaco Rep. 2018;70(5):930-935.

25. Choi MY, Song HS, Hur HS, Sim SS. Whitening activity of luteolin related to the inhibition of cAMP pathway in alpha-MSH-stimulated B16 melanoma cells. Arch Pharm Res. 2008;31(9):1166-1171.

26. Han JH, Bang JS, Choi YJ, Chung S-Y. Anti-Melanogenic effects of oyster hydrolysate in UVB-irradiated C57BL/6J mice and B16F10 melanoma cells via downregulation of cAMP signaling pathway. J Ethnopharmacol. 2019;229:137-144.

27. Choi M-H, Jo H-G, Yang J, Ki S, Shin H-J. Antioxidative and anti-melanogenic activities of mushroom tyrosinase. Int J Med Sci. 2018;15(2):409.

28. Takeda K, Yasumoto K, Takada R, et al. Induction of melanocyte-specific microphthalmia-associated transcription factor by Wnt-3a. J Biol Chem. 2000;275(19):14013-14016.

29. Schepsky A, Bruser K, Gunnarsson GJ, et al. The microphthalmia-associated transcription factor MITF interacts with beta-catenin to determine target gene expression. Mol Cell Biol. 2006;26(23):8914-8927.

30. Cho M, Ryu M, Jeong Y, et al. Cardamonin suppresses melanogenesis by inhibition of Wnt/beta-catenin signaling. Biochem Biophys Res Commun. 2009;380(3):500-505.

31. Zhang J, Li Y, Wu Y, et al. Wnt5A inhibits the proliferation and melanogenesis of melanocytes. Int J Med Sci. 2013;10(6):699-706.

32. Ito S, Wakamatsu K. Chemistry of mixed melanogenesis–pivotal roles of dopaquinone. Photoc hem Photobiol. 2008;84(3):582-592.

33. Riley PA. Melanin. Int J Biochem Cell Biol. 1997;29(11):1235-1239.
melanophillin-myosin Va interaction. *Pigment Cell Melanoma Res.* 2012;25(6):765-772.

51. Hakozaki T, Minwalla I, Zhuang J, et al. The effect of nicotinamide on reducing cutaneous pigmentation and suppression of melanosome transfer. *Br J Dermatol.* 2002;147(1):20-31.

52. Kasraee B, Nikolic DS, Salomon D, et al. Ebselen is a new skin depigmenting agent that inhibits melanin biosynthesis and melanosomal transfer. *Exp Dermatol.* 2012;21(1):19-24.

53. Ancans J, Tobin DJ, Hoogduijn MJ, Smit NP, Wakamatsu K, Thody AJ. Melanosomal pH controls rate of melanogenesis, eumelanin/phaeomelanin ratio and melanosome maturation in melanocytes and melanomas. *Exp Cell Res.* 2001;268(1):26-35.

54. Yoshizaki N, Hashizume R, Masaki H. A polymethoxyflavone mixture extracted from orange peels, mainly containing nobiletin, 3,3',4',5,6,7,8-heptamethoxyflavone and tangeretin, suppresses melanogenesis through the acidification of cell organelles, including melanosomes. *J Dermatol Sci.* 2017;88(1):78-84.

55. Park JI, Lee HY, Lee JE, Myung CH, Hwang JS. Inhibitory effect of 2-methyl-naphtho[1,2,3-de]quinolin-8-one on melanosome transport and skin pigmentation. *Sci Rep.* 2016;6(1):29189.

56. Seglen PO, Bohley P. Autophagy and other vacuolar protein degradation mechanisms. *Expert Rev. 1992;48(2):158-172.

57. Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. *Dev Cell.* 2004;6(4):463-477.

58. Yoshimura T. Autophagy: a regulated bulk degradation process inside cells. *Biochem Biophys Res Commun.* 2004;313(2):453-458.

59. Mizushima N. Autophagy: process and function. *Genes Dev.* 2007;21(22):2861-2873.

60. Cho YH, Park JE, Lim DS, Lee JS. Tranexamic acid inhibits melanogenesis by activating the autophagy system in cultured melanoma cells. *J Dermatol Sci.* 2017;88(1):96-102.

61. Kim N-H, Choi S-H, Yi N, Lee TR, Lee A-Y. Arginase-2, a miR-1299 target, enhances pigmentation in melasma by reducing 3- O- Glyceryl-2- O- hexyl ascorbate suppresses melanogenesis through activation of the autophagy system in cultured melanoma cells. *J Dermatol Sci.* 2018;89(1):11-18.

62. Kim S, Shin JH, Jo DS, et al. Anti-Melanogenic activity of schafoside in Rhizoma Arisaematis by increasing autophagy in B16F1 cells. *Biochem Biophys Res Commun.* 2018;503(1):309-315.

63. Geng Y-W, Wang Y-L, Deng R, Fu K-L, Deng Y. Shufeng Huoxue formula suppresses proliferation and regulates melanin metabolism in murine B16 melanoma cells in vitro through autophagy pathway. *Nan Fang Yi Ke Da Xue Xue Bao.* 2018;38(5):630-634.

64. Katsuyama Y, Taira N, Yoshioka M, Okano Y, Masaki H. Disruption of melanosome transport in melanocytes treated with theophylline causes their degradation by autophagy. *Biochem Biophys Res Commun.* 2017;485(1):126-130.

65. Kim B, Hwang JS, Kim H-S. N-Nicotinoyl dopamine inhibits skin pigmentation by suppressing of melanosome transfer. *Eur J Pharmacol.* 2015;769:250-256.

66. Kim ES, Shin JH, Seok SH, et al. Autophagy mediates anti-melanogenic activity of 3’-ODI in B16F1 melanoma cells. *Biochem Biophys Res Commun.* 2013;442(3-4):165-170.

67. Santos MA, Marques SM, Tuccinardi T, Carelli P, Panelli I, Rossello A. Design, synthesis and molecular modeling study of iminodiacetyl monohydroxamic acid derivatives as MMP inhibitors. *Bioorg Med Chem.* 2006;14(22):7539-7550.

68. Jo YK, Park SJ, Shin JH, et al. ARP101, a selective MMP-2 inhibitor, induces autophagy-associated cell death in cancer cells. *Biochem Biophys Res Commun.* 2011;404(4):1039-1043.

69. Kim ES, Jo YK, Park SJ, et al. ARP101 inhibits α-MSH-stimulated melanogenesis by regulation of autophagy in melanocytes. *FEBS Lett.* 2013;587(24):3955-3960.

70. Jiang R, Xu X-H, Wang K, et al. Ethyl acetate extract from Panax ginseng C.A. Meyer and its main constituents inhibit α-melanocyte-stimulating hormone-induced melanogenesis by suppressing oxidative stress in B16 mouse melanoma cells. *J Ethnopharmacol.* 2017;208:149-156.

71. Thornalley PJ, Vassák M. Possible role for metallothionein in protection against radiation-induced oxidative stress. kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. *Biochim Biophys Acta.* 1985;827(1):36-44.

72. Hamer DH. Metallothionein. *Annu Rev Biochem.* 1986;55:913-951.

73. Bremner I. Involvement of metallothionein in the hepatic metabolism of copper. *J Nutr.* 1987;117(1):19-29.

74. Dunn MA, Blalock TL, Cousins RJ. Metallothionein. *Proc Soc Exp Biol Med.* 1987;185(2):107-119.

75. Webb M. Toxicological significance of metallothionein. *Exp Suppl.* 1987;52:109-124.

76. Richards MP. Recent developments in trace element metabolism and function: role of metallothionein in copper and zinc metabolism. *J Nutr.* 1989;119(7):1062-1070.

77. Bremner I, Beattie JH. Metallothionein and the trace minerals. *Annu Rev Nutr.* 1990;10(1):63-83.

78. Waalkes MP, Blalock TL, Cousins RJ. Metallothionein. *Proc Soc Exp Biol Med.* 1987;185(2):107-119.

79. Chem Res Toxicol.* 1980;11(1):19-29.

80. Waalkes MP, Goering PL. Metallothionein and other cadmium-binding proteins: recent developments. *Chem Res Toxicol.* 1990;3(4):281-288.

81. Hanada K, Baba T, Hashimoto I, Fukui R, Watanabe S. Possible role of cutaneous metallothionein in protection against photooxidative stress—epidermal localization and scavenging activity for superoxide and hydroxyl radicals. *Photomed Photobiol Photomed.* 1993;39(5):209-213.

82. Sasaki M, Kizawa K, Igarashi S, Horikoshi T, Uchiwa H, Miyachi Y. Suppression of melanogenesis by induction of endogenous intracellular metallothionein in human melanocytes. *Exp Dermatol.* 2004;13(8):465-471.

83. Lee D-Y, Cha B-J, Lee Y-S, et al. The potential of minor ginsenosides isolated from the leaves of Panax ginseng as inhibitors of melanogenesis. *Int J Med Sci.* 2015;16(1):1677-1690.
84. Jiménez Z, Kim Y-J, Mathiyalagan R, et al. Assessment of radical scavenging, whitening and moisture retention activities of Panax ginseng berry mediated gold nanoparticles as safe and efficient novel cosmetic material. Artif Cells Nanomed Biotechnol. 2018;46(2):333-340.

85. Jiménez-Pérez ZE, Singh P, Kim Y-J, et al. Applications of Panax ginseng leaves-mediated gold nanoparticles in cosmetics relation to antioxidant, moisture retention, and whitening effect on B16BL6 cells. J Ginseng Res. 2018;42(3):327-333.

86. Lee D, Kim H-G, Lee Y-G, et al. Isolation and quantification of ginsenoside Rh23, a new anti-melanogenic compound from the leaves of Panax ginseng. Molecules. 2018;23(2):267.

87. Lee DY, Jeong YT, Jeong SC, Kim JH, Kang HC, Ahn YS, et al. Melanin biosynthesis inhibition effects of ginsenoside Rh2 isolated from Panax ginseng berry. J Microbial Biotechnol. 2015;25(12):2011-2015.

88. Hu S, Huang J, Pei S, et al. Ganoderma lucidum polysaccharide inhibits UVB-induced melanogenesis by antagonizing cAMP/PKA and ROS/MAPK signaling pathways. J Cell Physiol. 2019;234(5):7330-7340.

89. Jeong Y-M, Oh WK, Tran TL, et al. Aglycone of Rb4 inhibits melanin synthesis in B16 melanoma cells: possible involvement of the protein kinase A pathway. Biooi Biotechnol Biochem. 2013;77(1):119-125.

90. Han J, Lee E, Kim E, et al. Role of epidermal γδ T-cell-derived interleukin 13 in the skin-whitening effect of ginsenoside F1. Exp Dermatol. 2014;23(1):860-862.

91. Kim JH, Baek EJ, Lee EJ, et al. Ginsenoside F1 attenuates hyperpigmentation in B16F10 melanoma cells by inducing dendrite retraction and activating Rho signalling. Exp Dermatol. 2015;24(2):150-152.

92. Lee C-S, Nam G, Bae I-H, Park J. Whitening efficacy of ginsenoside F1 through inhibition of melanin transfer in cocultured human melanocytes–keratinocytes and three-dimensional human skin F1 through inhibition of melanin transfer in cocultured human melanocytes–keratinocytes and three-dimensional human skin. J Ginseng Res. 2019;43(2):300-304.

93. Wang D-D, Jin Y, Wang C, et al. Rare ginsenoside Fa synthesized from F1 by cloning and overexpression of the UDP-glycosyltransferase gene from Bassia subtilis. synthesis, characterization, and in vitro melanogenesis inhibition activity in BL6B16 cells. J Ginseng Res. 2018;42(1):42-49.

94. Kim A, Yim N-H, Im M, et al. Ssangwha-tang, an Oriental herbal cocktail, exerts anti-melanogenic activity by suppression of the p38 MAPK and PKA signaling pathways in B16F10 cells. BMC Complement Altern Med. 2013;13(1):214.

95. Kong YH, Jo YO, Cho C-W, Chang-Won CHO, et al. Inhibitory effects of cinnamic acid on melanin biosynthesis in skin. Biol Pharm Bull. 2008;31(5):946-948.

96. Kuroda TS, Fukuda M. Rab27A-Binding protein S1p2-a is required for peripheral melanosome distribution and elongated cell shape in melanocytes. Nat Cell Biol. 2004;6(12):1195-1203.

97. Wu XS, Rao K, Zhang H, et al. Identification of an organelle receptor for myosin-VA. Nat Cell Biol. 2002;4(4):271-278.

98. Kudo M, Kobayashi-Nakamura K, Tsuji-Naito K. Bifunctional effects of O-methylated flavones from Santalum album with Georgi on melanocytes: inhibition of melanin production and intracellular melanosome transport. PLoS One. 2017;12(2):e0171513.

99. Li X, Guo I, Sun Y, Zhou J, Gu Y, Li Y. Baicalein inhibits melanogenesis through activation of the ERK signaling pathway. Int J Mol Med. 2010;25(6):923-927.

100. Jeong H-S, Gu GE, Jo AR, et al. Baicalin-induced Akt activation decreases melanogenesis through downregulation of microphthalmia-associated transcription factor and tyrosinase. Easr J Pharmaco. 2015;761:19-27.

101. Corson TW, Crews CM. Molecular understanding and modern application of traditional medicines: triumphs and trials. Cell. 2007;130(5):769-774.

102. Richman DD, Margolis DM, Delaney M, Greene WC, Hazuda D, Pomerantz RJ. The challenge of finding a cure for HIV infection. Science. 2009;323(5919):1304-1307.

103. Tie I, Yang H-Q, An Y, et al. Ganoderma lucidum polysaccharide accelerates refractory wound healing by inhibition of mitochondrial oxidative stress in type 1 diabetes. Cell Physiol Biochem. 2012;29(3-4):583-594.

104. Lv N, Koo J-H, Yoon H-Y, et al. Effect of Angelica gigas extract on melanogenesis in B16 melanoma cells. Int J Mol Med. 2007;20(5):763-767.

105. Lee J, Ryu HS, Kim J-M, Jung T-H, Park S-M, Lee Y-M. Anti-Melanogenic effect of gomisin N from Schisandra chinensis (Turcz.) Baillon (Schisandraceae) in melanoma cells. Arch Pharm. 2017;40(7):807-817.

106. Chae J, Subedi L, Jeong M, et al. Gomisin N inhibits melanogenesis through regulating the P13K/Akt and MAPK/ERK signaling pathways in melanocytes. Int J Mol Sci. 2017;18(2):471.

107. Oh EY, Jang JY, Choi YH, Choi YW, Choi BT. Inhibitory effects of 1-O-methyl-fructofuranose from Schisandra chinensis fruit on melanogenesis in B16F0 melanoma cells. J Ethnopharmacol. 2010;132(1):219-224.

108. Lin D, Wang S-H, Song T-Y, Hsieh C-W, Tsai M-S. Safety and efficacy of tyrosinase inhibition of Paeonia suffruticosa Andrews extracts on human melanoma cells. J Cosmet Dermatol. 2019;18(6):1921-1929.

109. Ding H-Y, Chou T-H, Lin R-J, Chan L-P, Wang G-H, Liang C-H. Antioxidant and antimelanogenic behaviors of Paeonia suffruticosa. Plant Foods Hum Nutr. 2011;66(3):275-284.

110. Satou G, Maji D, Isamoto T, Oike Y, Endo M. UVB-activated BL6B16 cells. J Ginseng Res. 2019;43(2):300-304.

111. Kong YH, Jo YO, Cho C-W, Chang-Won CHO, et al. Inhibitory effects of cinnamic acid on melanin biosynthesis in skin. Biol Pharm Bull. 2008;31(5):946-948.

112. Kuroda TS, Fukuda M. Rab27A-Binding protein S1p2-a is required for peripheral melanosome distribution and elongated cell shape in melanocytes. Nat Cell Biol. 2004;6(12):1195-1203.

113. Wu XS, Rao K, Zhang H, et al. Identification of an organelle receptor for myosin-VA. Nat Cell Biol. 2002;4(4):271-278.

114. Kudo M, Kobayashi-Nakamura K, Tsuji-Naito K. Bifunctional effects of O-methylated flavones from Santalum album with Georgi on melanocytes: inhibition of melanin production and intracellular melanosome transport. PLoS One. 2017;12(2):e0171513.
114. Shin DH, Cha YJ, Joe GJ, et al. Whitening effect of *Sophora flavescens* extract. *Pharm Biol*. 2013;51(11):1467-1476.

115. Arung ET, Furuta S, Sugamoto K, et al. The inhibitory effects of representative chalcones contained in Angelica keiskei on melanin biosynthesis in B16 melanoma cells. *Nat Prod Commun*. 2012;7(8):1007-1010.

116. Be Tu PT, Chompoon J, Tatawa S. Hspidin and related herbal compounds from Alpinia zerumbet inhibit both PAK1-dependent melanogenesis in melanocytes and reactive oxygen species (ROS) production in adipocytes. *Drug Discov Ther*. 2015;9(3):197-204.

117. Tsao Y-T, Kuo C-Y, Kuan Y-D, Lin H-C, Wu L-H, Lee C-H. The Extracts of *Astragalus membranaceus* Inhibit Melanogenesis through the ERK Signaling Pathway. *Int J Med Sci*. 2017;14(11):1049-1053.

118. Xu JI, Zhang WJ, Wang JY, JX, Zhang X, Wang X, , , et al. The active component screening of Anoectochilus roxburghii and the functional study on inhibition of melanogenesis in zebrafish. *Yi Chuan*. 2017;39(12):1178-1187.

119. Park H, Song H, Jung H, , , Inhibitory effect of arctigenin from Fructus Arctii extract on melanin synthesis via repression of tyrosinase expression. *Evid Based Complement Alternat Med*. 2013;96(5):312-316.

120. Fu Y-T, Lee C-W, Ko H-H, Yen F-L, YT F, . Extracts of *Artocarpus communis* decrease α-melanocyte stimulating hormone-induced melanogenesis through activation of ERK and JNK signaling pathways. *ScientificWorldJournal*. 2014;2014:724314.

121. Lee S-C, Chen C-H, Yu C-W, et al. Inhibitory effect of Cinnamomum osmophloeum Kanehira ethanol extracts on melanin synthesis via repression of tyrosinase expression. *J Biosci Bioeng*. 2016;122(3):263-269.

122. Wang W, Zhang Y, Nakashima S, et al. Inhibition of melanin production by anthracenone dimer glycosides isolated from Cassia auriculata seeds. *J Nat Med*. 2013;79(1):37-44.

123. Mitani K, Takano F, Kawabata T, et al. Suppression of melanin synthesis by the phenolic constituents of sappanwood (Caesalpinia sappan). *Planta Med*. 2013;79(11):1378-1382.

124. Choi SY. Inhibitory effects of *Cytormium fortunei* J. Smith root extract on melanogenesis. *Pharmazie Mag*. 2013;9(35):227-230.

125. Hashemi-Shahri SH, Golshan A, Mohajeri SA, et al. ROS-scavenging and Anti-tyrosinase properties of crocetin on melanogenesis and anti-tyrosinase properties of *Rhodiola rosea* L. Leaves. *BMC Complement Altern Med*. 2018;13:312-316.

126. Beom Kim S, Kim C, Liu Q, et al. Optimization of extraction conditions for orthol, a melanogenesis inhibitor from *Cudium monnieri* fruits. *Pharm Biol*. 2016;54(8):1373-1379.

127. Yamashita Y, Ikeda T, Matsuda M, Maji D, Hoshino T, Mizushima T. Purification and characterization of HSP-inducers from Eupatorium lindleyanum. *Biochem Pharmacol*. 2012;83(7):909-922.

128. Kang S-H, Jeon Y-D, Cha J-Y, et al. Antioxidant and skin-whitening effects of aerial part of *Euphorbia supina* Raf. extract. *BMC Complement Altern Med*. 2018;18(1):250.
145. Sallam A, Mira A, Ashour A, Shimizu K. Acetylcholine esterase inhibitors and melanin synthesis inhibitors from Salvia officinalis. *Phytomedicine*. 2016;23(10):1005-1011.

146. Lee DH, Kim DH, Oh IY, et al. Inhibitory effects of Saururi chinensis extracts on melanin biosynthesis in B16F10 melanoma cells. *Biol Pharm Bull*. 2013;36(5):772-779.

147. Zhang J, Zhu W-F, Zhu W-Y, et al. Melanogenesis-Inhibitory and Cytotoxic Activities of Chemical Constituents from the Leaves of *Sauropus androgynus* L. Merr. (Euphorbiaceae. *Chem Biodivers*. 2018;15(2):e1700486.

148. An SM, Lee SI, Choi SW, Moon S-W, Boo YC. P-Coumaric acid, a constituent of Sasa quelpaertensis Nakai, inhibits cellular melanogenesis stimulated by alpha-melanocyte stimulating hormone. *Br J Dermatol*. 2008;159(2):292-299.

149. Lee M-H, Lin Y-P, Hsu F-L, Zhan G-R, Yen K-Y. Bioactive constituents of Spatholobus suberectus in regulating tyrosinase-related proteins and mRNA in HenN cells. *Phytochemistry*. 2006;67(12):1628-1630.

150. Yamada M, Nakamura K, Watabe T, et al. Melanin biosynthesis inhibitors from Tarragon Artemisia dracunculus. *Biosci Biotechnol Biochem*. 2011;75(8):1628-1630.

151. Park H. Inhibition of melanogenesis by Xanthium strumarium L. *Biosci Biotechnol Biochem*. 2012;76(4):767-771.