Grammar Compression by Induced Suffix Sorting

DANIEL S. N. NUNES, Federal Institute of Brasília, and Department of Computer Science, University of Brasilia, Brazil
FELIPE A. LOUZA, Faculty of Electrical Engineering, Federal University of Uberlândia, Brazil
SIMON GOG, eBay Inc., USA
MAURICIO AYALA-RINCÓN, Departments of Computer Science and Mathematics, University of Brasilia, Brazil
GONZALO NAVARRO, Center for Biotechnology and Bioengineering (CeBiB) and Department of Computer Science, University of Chile, Chile

A grammar compression algorithm, called GCIS, is introduced in this work. GCIS is based on the induced suffix sorting algorithm SAIS, presented by Nong et al. in 2009. The proposed solution builds on the factorization performed by SAIS during suffix sorting. A context-free grammar is used to replace factors by non-terminals. The algorithm is then recursively applied on the shorter sequence of non-terminals. The resulting grammar is encoded by exploiting some redundancies, such as common prefixes between right-hands of rules, sorted according to SAIS. GCIS excels for its low space and time required for compression while obtaining competitive compression ratios. Our experiments on regular and repetitive, moderate and very large texts, show that GCIS stands as a very convenient choice compared to well-known compressors such as Gzip, 7-Zip, and RePair, the gold standard in grammar compression. In exchange, GCIS is slow at decompressing. Yet, grammar compressors are more convenient than Lempel-Ziv compressors in that one can access text substrings directly in compressed form, without ever decompressing the text. We demonstrate that GCIS is an excellent candidate for this scenario because it shows to be competitive among its RePair based alternatives. We also show, how GCIS relation with SAIS makes it a good intermediate structure to build the suffix array and the LCP array during decompression of the text.

Additional Key Words and Phrases: data compression, suffix sorting, extract, suffix-array, LCP-array.

1 INTRODUCTION

Text compression is a fundamental task in Computer Science that consists in transforming an input string into another string whose bit sequence representation is smaller. The suffix array [Gonnet et al. 1992; Manber and Myers 1993] is a key data structure used to compute lossless compression transforms [Goto and Bannai 2014; Kärkkäinen et al. 2013; Ohlebusch and Gog 2011], such as the Burrows-Wheeler transform (BWT) [Burrows and Wheeler 1994] and the Lempel-Ziv factorization (LZ77) [Liu et al. 2016; Ziv and Lempel 1977], which are at the heart of the popular data compression tools like BZIP2, 7-ZIP and GZIP.

*A preliminary version of this work appeared in DCC 2018 [Nunes et al. 2018].

Authors’ addresses: Daniel S. N. Nunes, Federal Institute of Brasília, Taguatinga, Department of Computer Science, University of Brasilia, Brasilia, Brazil, daniel.nunes@ifb.edu.br; Felipe A. Louza, Faculty of Electrical Engineering, Federal University of Uberlândia, Uberlândia, Brazil, louza@ufu.br; Simon Gog, eBay Inc. San Jose, USA, sgog@ebay.com; Mauricio Ayala-Rincón, Departments of Computer Science and Mathematics, University of Brasilia, Brasilia, Brazil, ayala@unb.br; Gonzalo Navarro, Center for Biotechnology and Bioengineering (CeBiB), Department of Computer Science, University of Chile, Santiago, Chile, gnavarro@dcc.uchile.cl.
The suffix array construction (or suffix sorting) may be performed in linear time (see Puglisi et al. [2007] and Dhaliwal et al. [2012] for good reviews). Nong et al. [2009] introduced a remarkable suffix array construction algorithm called SAIS, which runs in linear time and is fast in practice. Subsequently, SAIS was adapted to directly compute the BWT [Okanohara and Sadakane 2009], the Φ-array [Goto and Bannai 2014; Kärkkäinen et al. 2009], the LCP array [Fischer 2011], and the suffix array for string collections [Louza et al. 2017a].

Grammar compression [Kieffer and Yang 2000] is a compression technique based on finding a small context-free grammar that generates (only) the text. Finding the smallest such grammar is NP-hard [Charikar et al. 2005], but heuristics like RePair [Larsson and Moffat 1999] work very well in practice. Like Lempel-Ziv, grammar compression performs particularly well on repetitive text collections. An advantage of grammar compression is that text substrings can be extracted from the compressed representation without the need to decompress the text [Bille et al. 2015]. One can then aim at never decompressing the text but work on it directly in compressed form.

This article introduces GCIS, a new grammar-based compression algorithm that builds on SAIS framework. GCIS constructs a context-free grammar recursively, based on the string factorization performed by SAIS. The rules are encoded exploiting the common prefixes between the right-hands of consecutive rules, which are sorted lexicographically by SAIS. GCIS is the first grammar-compressor algorithm, as far as we know, based on induced suffix sorting.

Our experiments show that, on repetitive texts and compared to the best grammar-compressor (RePair [Larsson and Moffat 1999]) and the best Lempel-Ziv compressor (7-zip [Pavlov 2017]), GCIS is an interesting alternative in practice because it displays the fastest compression speed and low memory usage, while reaching a compression ratio close to that of RePair. We also show that GCIS is competitive with the relevant alternatives when processing regular (not highly repetitive) and very large texts.

In exchange, GCIS is slower than most alternatives for decompressing the text. As explained, however, we may aim at extracting any desired substring while never decompressing the whole text. When compared to variants of RePair that allow extraction, GCIS turns out to be very efficient while using less space. Further, it is possible to build the suffix and LCP arrays as a byproduct of text decompression by GCIS in competitive time.

This work differs from its early version [Nunes et al. 2018] in that we support efficient extraction of substrings and computation of suffix and LCP arrays directly from decompression. We also present more thorough descriptions and experimental results.

2 BACKGROUND

2.1 Suffix array

Let T be a string of length $|T| = n$, over an ordered alphabet $Σ$. We assume that our alphabet $Σ$ has an integer size, but limited to n, that is, $1 \leq |Σ| \leq n$. The concatenation of strings or symbols is denoted by the dot operator (\cdot). The symbol $<$ is used for the lexicographic order relation between strings.

Let $T[i]$ be the i-th symbol of T. The substring (factor) from $T[i]$ to $T[j]$, both included, is denoted by $T[i, j]$, for $1 \leq i \leq j \leq n$. A prefix of T is a substring of the form $T[1, i]$ and a suffix is a substring of the form $T[i, n]$, also denoted by T_i. For convenience, it is assumed that T always ends with a special symbol $T[n] = \$\$, which is not present elsewhere in T and lexicographically precedes every symbol in $T[1, n-1]$.

The suffix array (SA) [Gonnet et al. 1992; Manber and Myers 1993] of a string $T[1, n]$ is an array of integers in the range $[1, n]$ that gives the lexicographic order of all suffixes of T, such that $T_{SA[1]} < T_{SA[2]} < \ldots < T_{SA[n]}$. The length of the longest common prefix (LCP) of two strings X and Y in $Σ^*$ is denoted $lcp(X, Y)$. The LCP array of $T[1, n]$ is an
array of integers that stores the lcp value between consecutive suffixes in SA, such that \(\text{LCP}[i] = \text{lcp}(T_{\text{SA}[i]}, T_{\text{SA}[i+1]}) \) for \(1 < i \leq n \), and we define \(\text{LCP}[1] = 0 \). The suffixes starting with the same symbol \(c \in \Sigma \) form a \(c \)-bucket in SA. The head and the tail of a \(c \)-bucket refer to the first and the last position of the \(c \)-bucket in SA.

2.2 Grammar compression

Let \(G = (\Sigma, \Gamma, P, X_S) \) be a reduced context-free grammar (i.e., with no unreachable non-terminals) such that \(\Sigma \) is the terminal alphabet of \(G \); \(\Gamma \) is the set of non-terminal symbols (disjoint from \(\Sigma \)); \(P \subseteq \Gamma \times (\Sigma \cup \Gamma)^* \) is the set of production rules; and \(X_S \in \Gamma \) is the start symbol.

A production rule \((X_i, \alpha_i)\) is also denoted \(X_i \rightarrow \alpha_i \). In this case, it is said that \(\alpha_i \) is derived from \(X_i \). For strings \(S, R \in (\Sigma \cup \Gamma)^* \), if \(R \) is obtained from \(S \) by production rules in \(P \), then \(R \) is derived from \(S \). When \(R \) is obtained by a (possibly empty) sequence of derivations from \(S \), then \(R \) is generated from \(S \).

Given a string \(T \), the grammar compression problem is to find a grammar \(G \) that generates only \(T \), such that \(G \) can be represented in less space than the original \(T \). Given that \(G \) grammar-compresses \(T \), for \((X_i, \alpha_i) \in P, G(X_i) = S \) is defined as the single string \(S \in \Sigma^* \) that is generated from \(X_i \). The language generated by \(G \) contains the unique string \(G(X_S) = T \). This notion can be extended further for a string of terminals and non-terminals \(S \), such that:

\[
G(S) = \{W_1 \cdot W_2 \cdot \ldots \cdot W_{|S|} \mid W_k \in G(S[|k|]), 1 \leq k \leq |S|\}.
\]

When each \(S[i], 1 \leq i \leq |S| \), generates a single sequence, the previous definition can be replaced by the concatenation of the strings generated by \(S[i], 1 \leq i \leq |S| \):

\[
G(S) = G(S[1]) \cdot G(S[2]) \cdot \ldots \cdot G(S[|S|])
\]

2.3 Integer Encoding

We cover various techniques to encode sequences of integers, when most of them are expected to be small. Some of the techniques allow us to directly access any integer in the sequence.

Simple8b. The Simple8b scheme, proposed by Anh and Moffat [2010], encodes a sequence of small integers in a 64-bit word using the number of bits required by the largest integer. Basically, it identifies a word with a 4-bit tag called selector, which specifies the number of integers encoded in the rest of the word and the width of such integers. Simple8b also has specific selectors for a run consisting of zeroes. If a run of 240 or 120 zeros is encountered, it can be represented with a single 64-bit word.

Directly Addressable Codes. The Directly Addressable Codes (DAC) proposed by Brisaboa et al. [2013] allow efficient retrieval of any given value \(A[i] \) from an array of integers \(A[1:n] \) while encoding such integers compactly. Let \(l_i \) be the length (number of bits) of \(A[i] \), then this encoding splits each \(A[i] \) into \([l_i/b] \) blocks \(v_{i,1}, v_{i,2}, \ldots, v_{i,k} \) of \(b \) bits each. A bit \(b_{i,j} = 1 \) is associated with a block \(v_{i,j} \) if \(j < k \), that is, \(v_{i,j} \) is not the last block of \(A[i] \). Otherwise, \(b_{i,j} = 0 \). Then a layered data structure is constructed in such a way that the \(k \)-th layer contains two bitmaps: the first bitmap is the concatenation of blocks \(v_{i,k} \), for every \(1 \leq i \leq n \), whereas the second bitmap is the concatenation of the bits \(b_{i,k} \) associated with each block \(v_{i,k} \).

To retrieve any given value \(A[i] \), one must first recover \(b_{i,j} \) and check if its value is zero. If so \(A[i] \) equals \(v_{i,j} \), otherwise, it is necessary to proceed recursively to the \(j \)-th entry of the next layer, where \(j = \sum_{m=1}^{\infty} b_{m,1} \), and append
the result of the recursive call to \(v_{i,1} \). The prefix sum value \(j \) can be computed in constant time by using auxiliary data structures on top of the bitmaps.

Elias-Fano Encoding. This format permits the encoding of a monotonically increasing sequence of \(n \) integers over the interval \([0, m - 1]\) within \(2n + n\lceil \lg \frac{m}{n} \rceil \) bits and allows the retrieval of any integer of such sequence in constant time [Vigna 2013]. Each integer \(a_i \) is divided into two parts: \(u_i \), the \(\lceil \lg n \rceil \) most significant bits of \(a_i \) and \(l_i \), the \(\lceil \lg \frac{m}{n} \rceil \) remaining bits of \(a_i \). The \(l_i \) values are concatenated in a single array of \(n\lceil \lg \frac{m}{n} \rceil \) bits and each value \(a_i \) is classified in one of the total of \(n \) possible buckets. Then, the number of elements of each bucket is represented in a negated unary representation and such representations are concatenated in a bitmap \(B \) of \(2n \) bits, \(n \) bits for each possible bucket and further \(n \) bits for every element \(a_i \).

To retrieve the \(i \)-th value of the sequence of integers, one just needs to search for the position \(k \) of the \(i \)-th one bit on \(B \), and append \(l_i \) to the binary representation of \(k - i \). The position \(k \) can be retrieved in constant time using auxiliary data structures on top of \(B \).

3 SAIS: INDUCED SUFFIX SORTING

SAIS [Nong et al. 2009] builds on the induced suffix sorting technique introduced by previous algorithms [Itoh and Tanaka 1999; Ko and Aluru 2003]. Induced suffix sorting consists in deducing the order of unsorted suffixes from a (smaller) set of already ordered suffixes.

The next definition classifies suffixes and symbols of strings.

Definition 1 (L-type and S-type). For any string \(T \), \(T_n = S \) has type S. A suffix \(T_i \) is an S-suffix if \(T_i < T_i + 1 \), otherwise \(T_i \) is an L-suffix. Each symbol \(T[i] \) has the type of \(T_i \).

The suffixes can be classified in linear time by scanning \(T \) once from right to left, so that the type of each suffix is stored in a bitmap of size \(n \).

Note that, within a \(c \)-bucket, the L-suffixes precede the S-suffixes.

Further, the classification of suffixes is refined as follows:

Definition 2 (LMS-type). Let \(T \) be a string. Then \(T_i \) is an LMS-suffix if \(T_i \) is an S-suffix and \(T_{i-1} \) is an L-suffix.

Nong et al. [2009] showed that the order of the LMS-suffixes is enough to induce the order of all suffixes. This is the basis of the SAIS algorithm.

3.1 SAIS framework

1. Sort the LMS-suffixes. This step is explained later.
2. Insert the LMS-suffixes into the tail of their respective \(c \)-buckets in \(SA[1, n] \), without changing their order. Now \(SA \) contains the LMS-suffixes positions, in sorted order, on the end of each \(c \)-bucket. The remaining values of \(SA \) are initialized with a sentinel \(\perp \) value.
3. Induce L-suffixes by scanning \(SA[1, n] \) from left to right: for each suffix \(SA[i] \neq \perp \), if \(T[SA[i] - 1] \) is L-type, insert \(SA[i] - 1 \) into the head of its \(c \)-bucket.
4. Induce S-suffixes by scanning \(SA[1, n] \) from right to left: for each suffix \(SA[i] \neq \perp \), if \(T[SA[i] - 1] \) is S-type, insert \(SA[i] - 1 \) into the tail of its \(c \)-bucket.

Whenever a value is inserted in the head (or tail) of a \(c \)-bucket, the pointer to the head (or tail) is increased (or decreased) by one.
In order to sort the LMS-suffixes in Step 1, $T[1, n]$ is divided (factorized) into LMS-substrings.

Definition 3. $T[i, j]$ is an LMS-substring if both T_i and T_j are LMS-suffixes, but no suffix between i and j has LMS-type. The last suffix T_n is an LMS-substring.

Let $r^1_0, r^1_1, \ldots, r^1_n$ be the n^1 LMS-substrings of T read from left to right. A modified version of SAIS is applied to sort the LMS-substrings. Starting from Step 2, $T[1, n]$ is scanned (right-to-left) and each new LMS-suffix starting with c is inserted (bucket-sorted) at the tail of its c-bucket. Steps 3 and 4 work exactly the same. At the end, the LMS-substrings are sorted and the beginning positions of each LMS-substring are stored in their corresponding c-buckets in SA.

3.2 Naming

A name v^1_j is assigned to each LMS-substring r^1_j according to its lexicographical rank in $[1, \sigma^1]$, such that $v^1_j < v^1_{j'}$ iff $r^1_j < r^1_{j'}$, where σ^1 is the number of different LMS-substrings in T. In order to compute the names, each consecutive LMS-substrings in SA, say r^1_i and r^1_{i+1}, are compared to determine if either $r^1_i = r^1_{i+1}$ or $r^1_i < r^1_{i+1}$. In the former case v^1_{i+1} is set to v^1_i, whereas in the latter case v^1_{i+1} is set to $v^1_i + 1$. This procedure may be sped up by comparing the LMS-substrings first by symbol and then by type, with L-type symbols being smaller than S-type symbols in case of ties [Nong et al. 2011].

3.3 Recursive call

A new (reduced) string $T^1 = v^1_1 \cdot v^1_2 \cdot \cdot \cdot v^1_{n^1}$ is created, whose length n^1 is at most $n/2$, and the alphabet size σ^1 is integer. If every $v^1_i < v^1_j$ then all LMS-suffixes are already sorted. Otherwise, SAIS is recursively applied to sort all the suffixes of T^1. Nong et al. [Nong et al. 2009] showed that the relative order of the LMS-suffixes in T and the order of the respective suffixes in T^1 are the same. Therefore, the order of all LMS-suffixes can be determined by the result of the recursive algorithm.

4 GCIS: Grammar Compression by Induced Suffix Sorting

This section introduces the Grammar Compression algorithm by Induced Sorting (GCIS).

4.1 Compressing

First, a context-free grammar $G = (\Sigma, \Gamma, P, X_S)$ that generates only $T[1, n]$ is computed. To do this SAIS is modified as follows.

Consider the j-th recursion level. In Step 1, after the input string $T[j][1, n']$ is divided into the LMS-substrings $r^j_1, r^j_2, \ldots, r^j_{n'/j}$ and named $v^j_1, v^j_2, \ldots, v^j_{n'/j}$, a new rule $v^j_i \rightarrow r^j_i$ is created for each different LMS-substring r^j_i. Moreover, an additional rule $v^j_0 \rightarrow v^j_{j-1}T[j-1, 1]$ if $j > 0$ or $v^j_0 \rightarrow T[1, j_1 - 1]$ if $j = 0$, with j_1 standing for the index of the leftmost LMS-type suffix of $T[j]$, is created for the prefix of $T[j]$ that is not included in any LMS-substring. In this context, when $j = 0$, $n^0 = n$ and $T^0 = T$.

The algorithm is then called recursively with the reduced string $T[j+1] = v^j_1 \cdot v^j_2 \cdot \cdot \cdot v^j_{n'/j}$ as input as long as $\sigma^{j+1} < n'^{j+1}$, that is, the LMS-substrings are not pairwise distinct. At the end, when $\sigma^\ell = n^\ell$, the last recursion level $j = \ell$ is reached, and the start symbol of X_S of G is created so that the initial production $X_S \rightarrow v_0^\ell \cdot v_1^\ell \cdot v_2^\ell \cdot \cdot \cdot v_n^\ell$ generates the original string $T[1, n]$.

The algorithm stops after computing X_S, since we are not interested in constructing the suffix array; Steps 2, 3 and 4 of SAIS are not executed. The recursive calls return to the top level and a grammar G that generates only $T[1,n]$ has been computed.

Since for each LMS-substring there is a unique v^j_i, there are no cycles in any generation. Further, there is only one path of derivations that from a string S generates a string S'. The consequence of this deterministic choice, for every derivation, is that $G(X_i)$, for $X_i \in \Gamma$, is a fixed string of terminals. Figure 1 shows the grammar construction on GCIS.

$$T^0 : \text{AGCTTTTCATTCTGACTGCAACAGCTTTTCACTCTGACTGCAAC}$

$V^0 \rightarrow \text{AG}$

$V^1 \rightarrow \emptyset$

$V^2 \rightarrow \text{AAC}$

$V^3 \rightarrow \text{ACTGC}$

$V^4 \rightarrow \text{AG}$

$V^5 \rightarrow \text{ATT}$

$V^6 \rightarrow \text{CTG}$

$V^7 \rightarrow \text{CTTTTC}$

$T^1 : v^0_1v^2_1v^0_2v^0_3v^0_4v^0_5v^0_6v^0_7v^0_8v^0_9$

$X_S \rightarrow v^0_1v^0_2v^0_3v^0_4v^0_5v^0_6v^0_7v^0_8v^0_9$

$T^2 : v^0_1v^2_1v^3_1$

Grammar compression. Consecutive entries in the set of productions P are likely to share a common prefix, since the LMS-substrings are given lexicographically ordered by SAIS framework, and then rules $v^0_i \rightarrow \text{AG}, v^1_i \rightarrow \emptyset, \ldots, v^7_i \rightarrow \text{CTTTTC}$ are created. Next, T^1 is obtained by replacing every LMS-substring by the left-hand side of its rule. The procedure is applied recursively to T^1. When T^2 is created, the alphabet size is equal to $|T^2| = n^2$, and thus the starting rule X_S that generates T^0 is obtained.

Time complexity. GCIS runs in $O(n)$ time, since each step of the modified SAIS runs in linear time and the length of the reduced string T^I is at most $|T^{I-1}|/2$.

Implementation details. Each non-terminal X_i is represented by a pair $a_i = (l_i, s(a_i))$, as explained. The l_i values tend to be small and, considering the j-th recursion value, the sum of such values cannot be greater than n^j, since no two LMS-substrings overlap by more than one symbol.

One can encode all l_i values by using the Simple8b encoding in an integer array W. All strings $s(a_i)$ are encoded in a single fixed-width integer array Y, of cell width $\lfloor \log_2(|\sigma^f|) \rfloor + 1$ bits. The length of each $s(a_i)$ is also encoded using Simple8b into a word array Z. The same observation of the lcp sum can be done here: the sum of all $s(a_i)$ on the j-th recursion level is no larger than n^j.

Fig. 1. Grammar construction during GCIS. All LMS-substrings (those starting with a ‘‘*’’ symbol), are sorted according to SAIS framework, and then rules $v^j_i \rightarrow \text{AG}, v^j_i \rightarrow \emptyset, \ldots, v^7_i \rightarrow \text{CTTTTC}$ are created. Next, T^1 is obtained by replacing every LMS-substring by the left-hand side of its rule. The procedure is applied recursively to T^1. When T^2 is created, the alphabet size is equal to $|T^2| = n^2$, and thus the starting rule X_S that generates T^0 is obtained.
4.2 Decompressing

The decoding process is done level-wise, starting from the last recursion level \(j = \ell \), by decoding the right side of each rule. At the end, \(T \) is decoded from \(T^1 \).

In the \(j \)-th recursion level, the values \((w, y, z)\) from \(W, Y \) and \(Z \), the data structures mentioned in the implementation details of Section 4.1, are decoded sequentially. In order to obtain the right-hand side of the production rules \(a_{k+1} \) from \(a_k \), the first \(w \) symbols of \(a_k \) are copied to \(a_{k+1} \) and the \(z \) symbols from \(Y \), which correspond to the string \(y \), are appended to \(a_{k+1} \). After this process the plain representation of each rule is stored, in a single array of cells with fixed width \(\lfloor \log(\sigma^j) \rfloor + 1 \) bits. An additional array of pointers \(D \) is also created to find the starting position of each rule in this fixed-width array.

With the fixed-width array and the array of pointers \(D \), \(T^j−1 \) now can be decoded from \(T^j \). First, the right side of \(v_j^0 \) is copied into \(T^j−1 \). Then, \(T^j \) is scanned in a left-to-right fashion and for each \(T^j[i] \) the algorithm appends to \(T^j−1 \) the right-hand side of the non-terminal \(T^j[i] \), which can be easily found with support of array \(D \) in constant time.

Time complexity. The whole decompression process takes \(O(n) \) time.

4.3 Extracting substrings

In order to support extraction of substrings from the compressed text, it is necessary to augment the dictionary with two additional data structures: \(P_S \), a partial-sum on the lengths of the symbols in the reduced string \(T^\ell \) of the last recursion level, and \(L \), a data structure that for each non-terminal \(X_i \) stores \(|G(X_i)| \). Formally, those data structures are defined as:

\[
P_S(i) = \sum_{j=1}^{i-1} |G(X_S_j)|, \quad X_S \rightarrow X_{S_1} \ldots X_{S_k} \quad \text{and} \quad 1 \leq i \leq k + 1
\]

\[
L(X) = |G(X)|, \quad X \in \Sigma \cup \Gamma
\]

The data structure \(L \) can also be defined recursively as:

\[
L(X) = \begin{cases}
1, & X \in \Sigma \\
\sum_{i=1}^{S} L(S[i]), & X \rightarrow S
\end{cases}
\]

To obtain a substring \(T[l, r] \), we then proceed as follows:

1. With a binary search, locate indices \(a \) and \(b \) from \(P_S \) such that:
 \[
a = \max\{1 \leq k \leq |T^\ell| \mid P_S(k) \leq l\}
 \]
 \[
b = \min\{1 \leq k \leq |T^\ell| + 1 \mid P_S(k) > r\} - 1
 \]
2. Let \(\ell \) be the number of levels in GCIS grammar and \(S \) the string derived from \(X_S \). Then define \(E^\ell = S[a, b] \) and follow the next steps for \(i = \ell \) to \(i = 1 \).
3. Apply a derivation step to each non-terminal \(X \in E^\ell \) to obtain a new string \(E^{i-1} \). Note that \(G(E^{i-1}) = T[l', r'] \) is a superstring of \(T[l, r] \).
4. Trim \(E^{i-1} \) from the left and right as much as possible as long as it generates a superstring of \(T[l, r] \). This can be done efficiently because we know the length of \(G(X) \), for every \(X \in \Sigma \cup \Gamma \).
(a) If $i = 1$, then E^0 contains only terminal symbols and generates a superstring $T[l', r'] = E^0$ of $T[l, r]$. Thus, one simply extracts the symbols $E^0[l - l' + 1, r - l' + 1]$ to obtain $T[l, r]$. Thus, one simply extracts the symbols $E^0[l - l' + 1, r - l' + 1]$ to obtain $T[l, r]$. We then trim E^{i-1} by using L and finding, with a linear search, two indices a and b of E^{i-1} such that:

$$a = \max \left\{ 1 \leq k \leq |E^i| \mid l' + \sum_{j=1}^{k-1} L(E^i[j]) \leq l \right\}$$

$$b = \max \left\{ 1 \leq k \leq |E^i| \mid r' - \sum_{j=k+1}^{k} L(E^i[j]) \geq r \right\}$$

E^{i-1} is then trimmed to $E^{i-1}[a, b]$ before proceeding.

Figure 2 shows an example for extracting a text using the aforementioned procedure.

\[
\begin{align*}
&\downarrow \quad \downarrow \\
E^2 : \ v_0^1 v_4^1 v_2^1 v_3^1 v_1^1 & \quad \mathcal{G}(E^2[2, 4]) = T[9, 44] \\
&\downarrow \quad \text{Decompress } E^2[2, 4] \\
&\downarrow \\
E^1 : \ v_5^0 v_6^0 v_3^0 v_2^0 v_4^0 v_5^0 v_6^0 v_3^0 v_2^0 & \quad \mathcal{G}(E^1[1, 8]) = T[9, 36] \\
&\downarrow \quad \text{Decompress } E^1[1, 8] \\
E^0 : \text{ATTCTGACTGCAACAGCTTTTTCATTCTG} & \quad \mathcal{G}(E^0[2, 26]) = T[10, 34]
\end{align*}
\]

Fig. 2. Extraction of the substring $T[10, 34]$ of the text of Figure 1. Initially, a binary search is performed on P_S to identify the substring of E^2 that shall be decompressed: $E^2[2, 4]$, which generates $T[9, 43]$, is decompressed to obtain E^1. A linear scan is performed in both ends considering the length of the terminals generated by each rule of E^1 to find the indexes $a = 2$ and $b = 8$. $E^1[2, 8]$ is then decompressed and $E^0 = T[9, 36]$ is obtained, which makes possible to extract $T[10, 34]$ by simply ignoring both ends.

Implementation details. Since the length of the string T^f is much shorter than the original text in practice, the verbatim representation of P_S as an array of integers is affordable.

The array L is represented using DACs. This representation allows efficient access while representing the data in a compact way.
To support fast extraction, we need to efficiently decompress a single rule. Simple8b encoding works very well when the objective is compressing or decompressing since all the rules are first expanded sequentially in the decompressing stage. However, when the aim is to extract symbols, we need to expand individual rules. Thus, instead of encoding all the lcp values with the simple8b scheme, Elias-Fano encoding is employed, allowing us to retrieve a random lcp value of a rule efficiently and hence the decoding of a random rule. The length of each $s(\alpha_i)$ is also encoded using Elias-Fano and the $s(\alpha_i)$ values are encoded in a fixed-width integer array. Since the lcp values are front-encoded, we force that every k-th lcp value is set to 0, with $k \in O(1)$. This setting does not have a significant impact on compression and ensures that we have to backtrack a constant number of rules to extract an individual rule prefix.

4.4 Suffix array construction

The suffix array (SA) construction boils down to sorting all suffixes of T. Although GCIS compression does not sort suffixes, it executes Step 1 of SAIS and the production rules created correspond to the LMS-substrings already sorted, which is used by SAIS for sorting all suffixes. We show next how to modify our decompression algorithm for building SA as a byproduct with, asymptotically, no additional overhead.

First, when $j = \ell$, $X_\ell \rightarrow T^\ell$ is taken, and its suffix array SA^ℓ is built directly as $SA^\ell[T^\ell[i]] = i$. Nong et al. [2009] observed that SA^ℓ also gives the order of all LMS-suffixes of string T^{j-1}. Then, T^{j-1} is decoded (Section 4.2), and Steps 2, 3 and 4 of SAIS (Section 3) are executed to obtain SA^{j-1}, and so on. The algorithm proceeds for $j = \ell - 1, \ldots, 1$, obtaining the reduced string T^{j-1} together with SA^{j-1} at each iteration. At the end, the original string T is decoded from T^1 and SA is induced from SA^1.

Time Complexity. SA is built in $O(n)$ time, since each step of SAIS is linear and the length of all reduced strings is $O(n)$.

4.5 LCP array construction

When $|\Sigma| \in O(1)$, the longest common prefix (LCP) array can also be computed in linear time within the induced suffix sorting framework [Fischer 2011; Louza et al. 2017b]. We show below how to modify our decompression algorithm to compute SA and LCP together with, asymptotically, no additional cost.

When $j = 1$, the original string T is decoded from T^1, and SA^1 stores the order of all LMS-suffixes of T. Then, in linear time, we compute the LCP array of the LMS-suffixes using a sparse variant of Φ-algorithm by Kärkkäinen et al. [2009], which avoids storing auxiliary arrays by reusing the space of $SA[n/2, n]$ and $LCP[n/2, n]$. The 1cp-values between the LMS-suffixes are used to induce the 1cp-values between the L-suffixes during Step 3 (Section 3), and these are used to induce the S-suffixes during Step 4 (see Louza et al. [2017b] for details). Given an additional stack of $O(\sigma \log n)$ bits [Gog and Ohlebusch 2011], each 1cp-value induction is done in $O(\sigma)$ time, which we assume to be constant at the top recursion level.

Therefore, at the end we have computed SA and LCP as a byproduct of GCIS decompression.

Time complexity. SA and LCP are built in $O(n)$ time, since each step of SAIS is linear and the LCP-values induction can be done in constant time.

5 EXPERIMENTS

To confirm the practical value of GCIS, we conducted experiments using several corpora. We measured compression and decompression speed, compression ratio, and memory usage during compression and decompression of GCIS.
against classical and grammar-based compressors (Section 5.4), evaluated the extraction of symbols (Section 5.6) and showed the efficiency of suffix array construction of GCIS during the decompression (Section 5.7).

In the following subsections we describe and discuss the experimental setup and the results.

5.1 Texts

Regular texts were taken from the corpora large-corpus [Trigell 1998], enwiki [Mahoney 2006], manzini [Manzini 2003], pizza-chili [Ferragina and Navarro 2005a] and silesia [Deorowicz 2003]. Repetitive texts were chosen from pizza-chili-repetitive corpus [Ferragina and Navarro 2005b]. Very large inputs were built by repeating and mutating strings such as chr19 [Consortium 2009], sars-cov [NCBI 2020] and salmonella [NCBI 2007] with a mutation rate of 0.1%, thus these texts are highly repetitive as well; each filename has an integer suffix that represents the number of repetitions. In addition, a 20GB prefix from November 2019 Wikipedia dump was taken [Wikipedia 2019]. Tables 1, 2 and 3 summarize the chosen texts and their size, grouping in boxes texts from the same corpus.
Regular text	Size (MB)	Regular text	Size (MB)	Regular text	Size (MB)
archive	27.07	cere	461.29	cere	461.29
emacs	47.46	coreutils	205.28	coreutils	205.28
linux	47.60	dblp.xml.0001.1	104.86	dblp.xml.0001.1	104.86
samba	41.58	dblp.xml.0001.2	104.86	dblp.xml.0001.2	104.86
spamfile	84.22	dblp.xml.0001.1	104.86	dblp.xml.0001.1	104.86
enwiki8	100.00	dblp.xml.0001.2	104.86	dblp.xml.0001.2	104.86
enwiki9	1000.00	dna.001.1	104.86	dna.001.1	104.86
chr22	34.55	einstein.de.txt	92.76	einstein.de.txt	92.76
etext99	105.28	einstein.en.txt	467.63	einstein.en.txt	467.63
gcc-3.0.tar	86.83	english.001.2	104.86	english.001.2	104.86
hwtto	39.42	Escherichia_Coli	112.69	Escherichia_Coli	112.69
jdk13c	69.73	influenza	154.81	influenza	154.81
linux-2.4.5.tar	116.25	kernel	257.96	kernel	257.96
rctail96	114.71	para	429.27	para	429.27
rfc	116.42	proteins.001.1	104.86	proteins.001.1	104.86
sprot34.dat	109.62	sources.001.2	104.86	sources.001.2	104.86
w3c2	104.20	world_leaders	46.97	world_leaders	46.97
dblp.xml	296.14				
dna	403.93				
english	2210.40				
pitches	55.83				
sources	210.87				
dickens	10.19				
mozilla	51.22				
mr	9.97				
nci	33.55				
ooffice	6.15				
osdb	10.99				
reymont	6.63				
samba	21.61				
sao	7.25				
webster	41.46				
xray	8.457				
xml	5.35				
5.2 Compressors and Extractors

To evaluate GCIS in compression speed, decompression speed and compression ratio, we chose the well-known compressors GZIP [Gailly and Adler 2017], BZIP2 [Seward 1996], 7-zip [Pavlov 2017]; the statistical compressor Ppmdj [Shkarin 2006]; the grammar compressor RePAIR [Wan 2014], the Lempel-Ziv approximation for very large texts ReLZ [Kosolobov et al. 2020], and the RePAIR approximation for very large texts BigRePAIR [Gagie et al. 2019].

Regarding extraction of symbols, we compared GCIS with different encodings of RePAIR grammars that allow fast extraction. These encodings can be represented in a more straightforward way, storing \(G(\mathbf{X}) \), for \(\mathbf{X} \in \Sigma \cup \Gamma \), or in a more elaborated way, creating succinct tree data structures that replace the original grammar encoding while allowing one to obtain the right-hand side of any rule, as described by Maruyama and Tabei [2013]. The implementation of such data structures was based on the work of Gagie et al. [2020] and can be found in [I 2020]. We used the following encodings:

- PlainSlp_32Fblc: uses 32-bit integers for the array representations.
- PlainSlp_FblcFblc: employs the minimum bit length required to represent the maximum value of a given integer array.
- PlainSlp_IblcFblc: uses roughly \(\lceil \log_2 i \rceil \) bits to represent the \(i \)-th rule exploiting that the \(i \)-th rule is less than \(i \). For representing \(G(\mathbf{X}) \), for \(\mathbf{X} \in \Sigma \cup \Gamma \), it uses the same strategy of PlainSlp_FblcFblc.
- PoSlp_Iblc: employs the approach POSLP of Maruyama and Tabei [2013] to represent the parse tree and encodes the leaves using roughly \(\lceil \log_2 i \rceil \) bits for the \(i \)-th rule.
- PoSlp_Sd: applies the POSLP approach of Maruyama and Tabei [2013] to represent the parse tree and encodes the leaves with Elias-Fano.

In order to assess the computation of suffix and LCP arrays directly from decompression, GCIS was compared with efficient suffix and LCP construction algorithms implemented by sais-lite [Kurpicz 2015; Mori 2010] and divsufsort [Kurpicz 2016; Mori 2008].

GCIS source code and a detailed description of the processed data are available at https://github.com/danielsaad/gcis.

5.3 Environment Setup

Due to memory capacity and availability, we conducted the experiments in two machines, one for the regular and repetitive corpora and another for the very large datasets. Their specifications follow:

Machine #1, used for regular and repetitive texts:
- CPU: 2x Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz CPUs;
- RAM Memory: 64GB;
- Operating System: Centos7, kernel version 3.10.

Machine #2, used for very large datasets:
- CPU: 2x Intel(R) Xeon(R) E5-2630 v3 @ 2.40GHz;
- RAM Memory: 386GB;
- Operating System: Debian GNU/Linux 8, kernel version 3.16.

We compiled GCIS, RePAIR (and its extractors), BigRePAIR, Ppmdj and ReLZ under gcc with -O3 -NDEBUG flags. The default command line parameters of GZIP, BZIP2, Ppmdj, ReLZ were used on the experiments. A dictionary size of 1 GB was used in 7-ZIP. BigRePAIR RAM usage was limited to 10 GB.

GCIS was implemented in C++11 using the Succinct Data Structure Library (SDSL) version 2.0 [Gog et al. 2014].
5.4 Compression and decompression

We evaluated all compressors in terms of compression ratio, compression and decompression speed. We also considered their peak memory usage during compression and decompression. BigRePAIR could not compress some texts, so its corresponding data in the graphs are missing. Decompression in ReLZ is not implemented, nonetheless, ReLZ serves as a compression benchmark since it approximates the Lempel-Ziv parse.

It is important to remark that BigRePAIR does not produce a compact representation of rules, since it represents the right-hand side of its rules with 2 integers (all the rules are of length two). However, we optimized it by representing each rule with at most \[\lceil \log_2 r \rceil\] bits, \(r\) being the number of rules, and integrating the non-terminals that occur only once in their corresponding right-hand side. This saves \(\lceil \log_2 r \rceil\) bits for each eliminated non-terminal.

For very large texts, only 7-zip, GCIS, ReLZ and BigRePAIR were evaluated, since they are the best choices for repetitive data. RePAIR was not considered because its data structures do not fit in main memory on such texts.

Compression ratio. It stands for the ratio between the compressed and the original text size, and it is given as percentage.

Figure 3 shows that RePAIR outperforms GCIS and the approximations designed for very large texts, and it is competitive with a basic Lempel-Ziv compressor such as Gzip. However, it is clearly outperformed by Bzip2, Ppmdj and 7-zip. The latter displays the best compression ratio overall, being Ppmdj a close competitor in some cases.

Figure 4 shows the compression ratios for the repetitive corpora. The compressors that exploit repetitiveness obtain much better compression ratios this time, whereas Gzip, Bzip2 and Ppmdj obtain similar compression ratios as on the regular texts. In particular, 7-zip obtains the best compression ratio in all cases, closely followed by RePAIR. The compression ratio of GCIS is about twice that of RePAIR in most cases, but it is still very good in absolute terms and outperforms ReLZ. BigRePAIR obtains a compression ratio between those of RePAIR and GCIS.

The results for the very large texts are depicted in Figure 5. 7-zip is better for the text enwiki-20191120-20G. The situation stays as in the smaller repetitive files: BigRePAIR compresses more than GCIS, and GCIS compresses better than ReLZ, except for the chromosome 19 based texts.

Compression speed. Figures 6, 7 and 8 show the compression speed, in MB/s, of the compressors for each text type.

Gzip is the fastest compressor in most regular texts. GCIS is the second-fastest compressor, followed by Ppmdj. GCIS outperforms Bzip2 and ReLZ and is faster than the others by a wide margin. In particular, GCIS is typically an order of magnitude faster than the other grammar compressors (RePAIR and BigRePAIR), which are its direct competitors.

Considering repetitive texts, GCIS is still faster than ReLZ and 7-zip (and often faster than Bzip2); it is also orders of magnitude faster than RePAIR. Gzip is still generally the fastest, but its compression ratio is unacceptable for repetitive data. BigRePAIR is also slower than GCIS in most cases and, in the exceptions where BigRePAIR is faster, it outperforms GCIS by a small margin.

For very large texts, GCIS is much faster than 7-zip, which becomes the slowest of the considered compressors. However, ReLZ and BigRePAIR become much faster than GCIS, as expected from being designed for this scenario. ReLZ is clearly the fastest compressor, though its compression ratio is the worst. A problem for GCIS on these very large files is that, once the text exceeds 2 GiB, it needs to use 64-bit integers, which doubles the memory requirements. BigRePAIR and ReLZ do not suffer from this problem and require a small amount of main memory during compression.

Decompression speed. Figure 9 depicts the results for regular texts. Gzip and RePAIR are the fastest at decompressing, followed by 7-zip and GCIS. Bzip2 and BigRePAIR are the slowest decompressors.
Figure 10 shows that the situation is similar on repetitive texts, except that 7-zip becomes way faster than the others in almost all cases. Despite the relative differences, in absolute terms GCIS is still fast, decompressing the files in around 5 MB/s.

The situation stays the same on the compressors that run on very large texts: as shown in Figure 11, 7-zip is the fastest, followed by GCIS and then by BigRePair.

Peak memory: We evaluated the peak memory consumption (resident size) of all compressors during compression and decompression for each type of text; the results are shown in Figures 12 to 17. Overall, Gzip, Bzip2 and Ppmdj require negligible space to compress or decompress. On regular texts, considering compression, GCIS is followed by ReLZ, 7-zip, BigRePair and RePair, the last being behind by a large margin. The situation is reversed in decompression: BigRePair is followed by RePair, 7-zip, and GCIS. On repetitive texts, the scenario is similar for compression, but GCIS escorts BigRePair. On very large texts, during compression ReLZ is the most space-efficient, followed by BigRePair, 7-zip and lastly by GCIS. Considering decompression the order stays the same, except for ReLZ, which does not decompress.

5.5 Overview
Figures 18 to 20 present conceptual radar charts that summarize, for each text type, the performance of all compressors in each rated aspect. The closer the values are to the pentagon borders, the better the compressor performed on the corresponding aspect.

5.6 Extract operation
Results depicted by Figures 21 and 22 show that GCIS is faster than the extractors on succinct encodings of RePair but slower than those running on the more straightforward representation using integer arrays. In turn, regarding space on regular and repetitive texts, GCIS is more space-efficient than the straightforward encodings but less space-efficient than the POSLP alternatives, as shown in Figures 23 and 24. GCIS is then a competitive alternative regarding the space-time trade-off.

5.7 Suffix Array and LCP Construction
Considering the computation of SA and LCP arrays during decompression, we measured the total time to decompress the files with GCIS without generating a plain-text file, but instead inducing the SA and the LCP arrays. We compared these results with SAIS [Kurpicz 2015] and divsufsort [Fischer and Kurpicz 2017; Kurpicz 2016] implementations based on those of Yuta Mori, which are known as the fastest suffix array construction algorithms in practice.

Figure 25 shows the SA and LCP construction on the 8 most repetitive real texts when only the GCIS compressed texts are available. Very large texts were not considered because the implementations of [Kurpicz 2015] and [Kurpicz 2016] only deal with 32-bit integers. GCIS builds the SA and LCP arrays faster than decompressing and then using the suffix array construction algorithms over the plain text.

The hatched part corresponds to the LCP computation and the black bar corresponds to the time spent in decompressing the text with GCIS to calculate SA and LCP values using the SAIS and divsufsort implementations.

6 CONCLUSIONS
We have introduced GCIS, a new grammar-based compression algorithm based on the induced suffix sorting framework of SAIS [Nong et al. 2009]. GCIS uses the meta-symbols introduced by SAIS to generate non-terminals of a balanced
grammar that reproduces the original text. Our experiments on repetitive texts show that GCIS compresses 3–7 times faster than RePair and 7-zip. Compared to RePair, the grammar compressor that compresses the most, GCIS compresses using 3–5 times less memory, yet it obtains a compressed file twice as large (yet the absolute compression is still attractive, below 5% in most cases). GCIS decompresses 2–8 times slower than RePair and 7-zip, though.

Grammar-based compression is attractive because, unlike Lempel-Ziv, it can be enriched to support fast extraction of arbitrary text substrings. From this perspective and regarding the space-time relation, our experiments show that GCIS is a competitive option when compared to RePair-based extractors, being faster and less space-efficient than the succinct encoding of RePair extractors and slower, but more space-efficient, than the more straightforwardly encoded RePair extractors.

Finally, as a by-product of GCIS, the suffix array of the text can be obtained during the decompression algorithm, faster than decompressing and running on the original text.

All previously discussed features make GCIS especially attractive in scenarios where it is required to support random access on the compressed text. Grammar compression of very large files is challenging with RePair because of its large main memory footprint, for which GCIS offers an interesting alternative. Given its slowness at decompression, the GCIS grammar is best suited as a compressed data structure to be repeatedly accessed without decompressing it completely. A possible further improvement would be to replace the variant of Nong et al. [2009] used during compression by the more space-efficient SACA-K [Nong 2013] algorithm. This could decrease the working space used during compression. Grammar-based compressed indexes are of particular interest, all of which are based on RePair [Claude and Navarro 2010, 2012]. Our next goal is to build those compressed indexes on GCIS instead. This would yield indexes that might be built much faster, using much less memory, for moderate-sized repetitive texts, and that may lead to much more efficient search times.

ACKNOWLEDGMENTS

Part of the research of DSNN was performed during visits at University of Chile and supported by FAP-DF, grants 13619.54.33621.1708/2016 and 0193.001380/2017. FAL was supported by the grant 2017/09105-0 from the São Paulo Research Foundation (FAPESP). MAR was supported by FAP-DF and CNPq, grants DE 193.001.369/2016 and PQ 307672/2017-4. GN was funded by Basal Funds FB0001 and Fondecyt Grant 1-200038, Conicyt, Chile.
Fig. 3. Compression ratio on regular texts.
Fig. 4. Compression ratio on repetitive texts.

Fig. 5. Compression ratio on very large texts.
Fig. 6. Compression speed on regular texts.
Fig. 7. Compression speed on repetitive texts.

Fig. 8. Compression speed on very large texts.
Fig. 9. Decompression speed on regular texts.
Fig. 10. Decompression speed on repetitive texts.

Fig. 11. Decompression speed on very large texts.
Fig. 12. Peak memory (in MB) used by the compressors during compression for regular texts.
Fig. 13. Peak memory (in MB) used by the compressors during compression for repetitive texts.

Fig. 14. Peak memory (in MB) used by the compressors during compression for very large texts.
Fig. 15. Peak memory (in MB) used by the compressors during decompression for regular texts.
Fig. 16. Peak memory (in MB) used by the compressors during decompression for repetitive texts.

Fig. 17. Peak memory (in MB) used by the compressors during decompression for very large texts.
Fig. 18. Compressor comparison on regular texts.
Fig. 19. Compressor comparison on repetitive texts.
Very Large Texts

Compression Speed

Decompression Speed

Compression Ratio

Memory Peak Compress

Memory Peak Decompress

7zip
GCIS
ReLZ
BigRePair

Fig. 20. Compressor comparison on very large texts.
Fig. 21. Substring length vs. extraction time (microseconds) on regular texts.
Fig. 22. Substring length vs. extraction time (microseconds) on repetitive texts.
Fig. 23. Compression ratio of the extractors on regular texts.

Fig. 24. Compression ratio of the extractors on repetitive texts.
Fig. 25. Time consumed during Suffix Array and LCP construction.
REFERENCES

Vo Ngoc Anh and Alistair Moffat. 2010. Index compression using 64-bit words. *Software, Pract. Exper.* 40, 2 (2010), 131–147.

Philip Bille, Gad M. Landau, Rajeev Raman, Kunihiko Sadakane, Sririvasa Rao Satti, and Oren Weimann. 2015. Random Access to Grammar-Compressed Strings and Trees. *SIAM J. Comput.* 44, 3 (2015), 513–539.

Nieves R. Brisaboa, Susana Ladra, and Gonzalo Navarro. 2013. DACs: Bringing direct access to variable-length codes. *Inf. Process. Lett.* 49, 1 (2013), 392–404.

Michael Burrows and David J. Wheeler. 1994. *A block-sorting lossless data compression algorithm*. Technical Report. Digital SRC Research Report. 1–18 pages.

Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran, Amit Sahai, and abhi shelat. 2005. The smallest grammar problem. *IEEE Transactions on Information Theory* 51, 7 (2005), 2554–2576.

Francisco Claude and Gonzalo Navarro. 2010. Self-Indexed Grammar-Based Compression. *Fundamenta Informaticae* 111, 3 (2010), 313–337.

Francisco Claude and Gonzalo Navarro. 2012. Improved Grammar-Based Compressed Indexes. In *Proc. 19th International Symposium on String Processing and Information Retrieval (SPIRE)* (LNCS 7608). Springer, Heidelberg, 180–192.

Genome Reference Consortium. 2009. Genome Reference Consortium Human Reference 37. http://hgdownload.cse.ucsc.edu/goldenpath/hg19/ chromosomes/. Accessed: 06/2020.

Sebastian Deorowicz. 2003. Silesia Corpus. http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia. Accessed: 06/2020.

Johannes Fischer and Florian Kurpicz. 2017. Dismantling DivSufSort. In *Proceedings of the Prague Stringology Conference*. Department of Theoretical Computer Science, Faculty of Information Technology, Czech Technical University in Prague, Prague, 62–76.

Travis Gagie, Tomohiro I, Giovanni Manzini, Gonzalo Navarro, Hiroshi Sakamoto, Louisa Seelbach Benkner, and Yoshimasa Takabatake. 2020. Practical Random Access to SLP-Compressed Texts. (2020). Accepted short paper, SPIRE.

Travis Gagie, Tomohiro I, Giovanni Manzini, Gonzalo Navarro, Hiroshi Sakamoto, and Yoshimasa Takabatake. 2019. Rpair: Scaling up RePair with Rayne. In *Proc. 20th International Symposium on String Processing and Information Retrieval (SPIRE)* (Lecture Notes in Computer Science), Vol. 11811. Springer-Verlag, Berlin, Heidelberg, 35–44.

Jean-Loup Gailly and Mark Adler. Accessed: 3/2017. The gzip home page. http://www.gzip.org/.

Jean-Loup Gailly and Mark Adler. 2013. *A block-sorting lossless data compression algorithm*. Technical Report. Digital SRC Research Report. 1–18 pages.

Simon Gog. 2011. Inducing the LCP-Array. In *Proc. Workshop on Algorithms and Data Structures (WADS) (Lecture Notes in Computer Science)*, Vol. 6844. Springer, Berlin, Heidelberg, 374–385.

Simon Gog and Florian Kurpicz. 2017. Dismantling DivSufSort. In *Proceedings of the Prague Stringology Conference*. Department of Theoretical Computer Science, Faculty of Information Technology, Czech Technical University in Prague, Prague, 62–76.

Jasbir Dhaliwal. 2015. Shaped SLP implementation. https://github.com/itomomoti/ShapedSlp. Accessed: 08/2020.

Simon Gog and Enno Ohlebusch. 2011. Fast and Lightweight LCP-Array Construction Algorithms. In *Proc. Workshop on Algorithm Engineering and Experimentation (ALENEX)*. ACM Digital Library, US, 25–34.

Gaston H. Gonnet. 1987. Fast text searching with succinct data structures. In *Proc. Annual Symposium on Combinatorial Pattern Matching (CPM)* (Lecture Notes in Computer Science), Vol. 8504. Springer, Cham., 326–337.

Gaston H. Gonnet. 2012. Random Access to SLP-Compressed Texts. (2020). Accepted short paper, SPIRE.

Johannes Fischer and Florian Kurpicz. 2017. Dismantling DivSufSort. In *Proceedings of the Prague Stringology Conference*. Department of Theoretical Computer Science, Faculty of Information Technology, Czech Technical University in Prague, Prague, 62–76.

Johannes Fischer. 2011. Inducing the LCP-Array. In *Proc. Workshop on Algorithms and Data Structures (WADS) (Lecture Notes in Computer Science)*, Vol. 6844. Springer, Berlin, Heidelberg, 374–385.

Johannes Fischer and Florian Kurpicz. 2017. Dismantling DivSufSort. In *Proceedings of the Prague Stringology Conference*. Department of Theoretical Computer Science, Faculty of Information Technology, Czech Technical University in Prague, Prague, 62–76.

Travis Gagie, Tomohiro I, Giovanni Manzini, Gonzalo Navarro, Hiroshi Sakamoto, Louisa Seelbach Benkner, and Yoshimasa Takabatake. 2020. Practical Random Access to SLP-Compressed Texts. (2020). Accepted short paper, SPIRE.

Jasbir Dhaliwal. 2015. Shaped SLP implementation. https://github.com/itomomoti/ShapedSlp. Accessed: 08/2020.

Simon Gog. 2011. Inducing the LCP-Array. In *Proc. Workshop on Algorithms and Data Structures (WADS) (Lecture Notes in Computer Science)*, Vol. 8504. Springer, Cham., 326–337.

Gaston H. Gonnet. 1987. Fast text searching with succinct data structures. In *Proc. Annual Symposium on Combinatorial Pattern Matching (CPM)* (Lecture Notes in Computer Science), Vol. 8504. Springer, Cham., 326–337.

Gaston H. Gonnet. 2012. Random Access to SLP-Compressed Texts. (2020). Accepted short paper, SPIRE.

Johannes Fischer and Florian Kurpicz. 2017. Dismantling DivSufSort. In *Proceedings of the Prague Stringology Conference*. Department of Theoretical Computer Science, Faculty of Information Technology, Czech Technical University in Prague, Prague, 62–76.

Johannes Fischer and Florian Kurpicz. 2017. Dismantling DivSufSort. In *Proceedings of the Prague Stringology Conference*. Department of Theoretical Computer Science, Faculty of Information Technology, Czech Technical University in Prague, Prague, 62–76.

Travis Gagie, Tomohiro I, Giovanni Manzini, Gonzalo Navarro, Hiroshi Sakamoto, Louisa Seelbach Benkner, and Yoshimasa Takabatake. 2020. Practical Random Access to SLP-Compressed Texts. (2020). Accepted short paper, SPIRE.

Travis Gagie, Tomohiro I, Giovanni Manzini, Gonzalo Navarro, Hiroshi Sakamoto, and Yoshimasa Takabatake. 2019. Rpair: Scaling up RePair with Rayne. In *Proc. 20th International Symposium on String Processing and Information Retrieval (SPIRE)* (Lecture Notes in Computer Science), Vol. 11811. Springer-Verlag, Berlin, Heidelberg, 35–44.

Jean-Loup Gailly and Mark Adler. Accessed: 3/2017. The gzip home page. http://www.gzip.org/.

Simon Gog. 2011. Inducing the LCP-Array. In *Proc. Workshop on Algorithms and Data Structures (WADS) (Lecture Notes in Computer Science)*, Vol. 8504. Springer, Cham., 326–337.

Gaston H. Gonnet. 1987. Fast text searching with succinct data structures. In *Proc. Annual Symposium on Combinatorial Pattern Matching (CPM)* (Lecture Notes in Computer Science), Vol. 8504. Springer, Cham., 326–337.

Gaston H. Gonnet. 2012. Random Access to SLP-Compressed Texts. (2020). Accepted short paper, SPIRE.

Johannes Fischer and Florian Kurpicz. 2017. Dismantling DivSufSort. In *Proceedings of the Prague Stringology Conference*. Department of Theoretical Computer Science, Faculty of Information Technology, Czech Technical University in Prague, Prague, 62–76.
Nunes, D. S. N. et al.

Weijun Liu, Ge Nong, Wai Hong Chan, and Yi Wu. 2016. Improving a lightweight LZ77 computation algorithm for running faster. *Softw. Pract. Exp.* 46, 9 (2016), 1201–1217.

Felipe A. Louza, Simon Gog, and Guilherme P. Telles. 2017a. Inducing enhanced suffix arrays for string collections. *Theor. Comput. Sci.* 678 (2017), 22–39.

Felipe A. Louza, Simon Gog, and Guilherme P. Telles. 2017b. Optimal suffix sorting and LCP array construction for constant alphabets. *Inf. Process. Lett.* 118 (2017), 30–34.

Matt Mahoney. 2006. Large Text Compression Benchmark. http://mattmahoney.net/dc/text.html. Accessed: 06/2020.

Udi Manber and Eugene W. Myers. 1993. Suffix Arrays: A New Method for On-Line String Searches. *SIAM J. Comput.* 22, 5 (1993), 935–948.

Giovani Manzini. 2003. Manzini’s Lightweight Corpus. http://people.unipmn.it/~manzini/lightweight/. Accessed: 06/2020.

Shiou Maruyama and Yasuo Takei. 2013. Fully Online Grammar Compression in Constant Space. In *Proc. IEEE Data Compression Conference (DCC)*. IEEE, NY, 173–182. https://doi.org/10.1109/DCC.2014.69

YuTa Mori. 2008. Divsufsort suffix array construction algorithm. https://github.com/y-256/libdivsufsort. Accessed: 06/2020.

YuTa Mori. 2010. SaiS-lite suffix sorting algorithm. https://sites.google.com/site/yuta256/sais. Accessed: 06/2020.

NCBI. 2007. Salmonella enterica subsp. enterica serovar Paratyphi B str. SFB7, complete sequence. https://www.ncbi.nlm.nih.gov/nuccore/NC_010102.1. Accessed: 06/2020, NCBI Reference Sequence: NC 010102.1.

NCBI. 2020. Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, complete genome. https://www.ncbi.nlm.nih.gov/nuccore/NC_045512.2. Accessed: 06/2020, NCBI Reference Sequence: NC 045512.2.

Ge Nong. 2013. Practical linear-time O(1)workspace suffix sorting for constant alphabets. *ACM Trans. Inform. Syst.* 31, 3 (2013), 1–15.

Ge Nong, Sen Zhang, and Wai H. Chan. 2009. Linear Suffix Array Construction by Almost Pure Induced-Sorting. In *Proc. IEEE Data Compression Conference (DCC)*. IEEE, NY, 193–202.

Ge Nong, Sen Zhang, and Wai H. Chan. 2011. Two Efficient Algorithms for Linear Time Suffix Array Construction. *IEEE Trans. Comput.* 60, 10 (2011), 1471–1484.

Daniel Saad Nogueira Nunes, Felipe Alves da Louza, Simon Gog, Mauricio Ayala-Rincón, and Gonzalo Navarro. 2018. A Grammar Compression Algorithm Based on Induced Suffix Sorting. In *Proc. IEEE Data Compression Conference (DCC)*. IEEE, NY, 42–51.

Enno Ohlebusch and Simon Gog. 2011. Lempel-Ziv Factorization Revisited. In *Proc. Annual Symposium on Combinatorial Pattern Matching (CPM)* (Lecture Notes in Computer Science), Vol. 6661. Springer, Berlin, Heidelberg, 15–26.

Daishuke Okanohara and Kunihiko Sadakane. 2009. A Linear-Time Burrows-Wheeler Transform Using Induced Sorting. In *Proc. International Symposium on String Processing and Information Retrieval (SPIRE)* (Lecture Notes in Computer Science), Vol. 5721. Springer, Berlin, Heidelberg, 90–101.

Igor Pavlov. Accessed: 10/2017. The 7zip home page. http://www.7-zip.org/.

Simon J. Puglisi, William F. Smyth, and Andrew H. Turpin. 2007. A taxonomy of suffix array construction algorithms. *ACM Comp. Surv.* 39, 2 (2007), 1–31.

Julian Seward. 1996. The bzip home page. http://www.bzip.org/. Accessed: 3/2017.

Dmitry Shkarin. 2006. PPMd algorithm variant j revision 1. http://www.compression.ru/ds/. Accessed: 07/2020.

Andrew Triggell. 1998. Andrew Triggell’s Large Corpus. https://www.samba.org/ftp/tridge/large-corpus/. Accessed: 06/2020.

Sebastiano Vigna. 2013. Quasi-succinct indices. In *Sixth ACM International Conference on Web Search and Data Mining*, WSDM 2013, Rome, Italy, February 4–8, 2013. ACM Digital Library, US, 83–92.

Raymond Wan. 2014. Offline Dictionary-based Compression (RePair, Recursive Pairing). https://github.com/rwanwork/Re-Pair. Accessed: 06/2020.

Ian H Witten, Alistair Moffat, and Timothy C. Bell. 1999. *Managing Gigabytes (2nd Ed.): Compressing and Indexing Documents and Images*, Morgan Kaufmann, San Francisco CA.

Jacob Ziv and Abraham Lempel. 1977. A universal algorithm for sequential data compression. *IEEE Transactions on Information Theory* 23, 3 (1977), 337–343.