Treatment of landfill leachate with different techniques: an overview
Amin Mojiri, John L. Zhou, Harsha Ratnaweera, Akiyoshi Ohashi, Noriatsu Ozaki, Tomonori Kindaichi and Hiroshi Asakura

ABSTRACT
Landfill leachate is characterised by high chemical and biological oxygen demand and generally consists of undesirable substances such as organic and inorganic contaminants. Landfill leachate may differ depending on the content and age of landfill contents, the degradation procedure, climate and hydrological conditions. We aimed to explain the characteristics of landfill leachate and define the practicality of using different techniques for treating landfill leachate. Different treatments comprising biological methods (e.g. bioreactors, bioremediation and phytoremediation) and physicochemical approaches (e.g. advanced oxidation processes, adsorption, coagulation/flocculation and membrane filtration) were investigated in this study. Membrane bioreactors and integrated biological techniques, including integrated anaerobic ammonium oxidation and nitrification/denitrification processes, have demonstrated high performance in ammonia and nitrogen elimination, with a removal effectiveness of more than 90%. Moreover, improved elimination efficiency for suspended solids and turbidity has been achieved by coagulation/flocculation techniques. In addition, improved elimination for metals can be attained by combining different treatment techniques, with a removal effectiveness of 40–100%. Furthermore, combined treatment techniques for treating landfill leachate, owing to its high chemical oxygen demand and concentrations of ammonia and low biodegradability, have been reported with good performance. However, more study is necessary to enhance treatment methods to achieve maximum removal efficiency.

Key words | biological treatment, chemical treatment, landfill leachate, organic pollutants

HIGHLIGHTS
- Membrane bioreactors and integrated biological techniques could remove up to 100% of ammonia.
- Enhanced elimination for metals can be gained by combining different treatment methods.
- Better elimination efficiency for suspended solids has been achieved by coagulation/flocculation.
GRAPHICAL ABSTRACT

INTRODUCTION

Urban solid waste landfills are commonly used for household, industrial nonhazardous and commercial solid wastes as well as nonhazardous sludge (Mojiri et al. 2016a). Sanitary landfilling continues to be employed in waste management plans despite its potentially hazardous effect to the environment (Mojiri et al. 2017). Compared with other methods, such as incineration, sanitary landfilling generally entails lower operation costs (Gotvajn & Pavko 2015). Waste may undergo a series of biological and physicochemical transformations after being landfilled, thereby producing extremely polluted wastewater called leachate. Such wastewater may pollute nearby ground and surface water as well as soil (Zamri et al. 2017).

Landfill leachate is characterised by high chemical and biological oxygen demand (COD, BOD) and often consists of high concentrations of organic contaminants, heavy metals, toxic materials, ammonia and inorganic materials as well as refractory compounds, such as humic substances (Chávez et al. 2019) as well as contaminants of emerging concern (Eggen et al. 2015). The characteristics of landfill leachate may differ depending on the degradation procedure, climate, hydrology conditions and age of a landfill. Ecological pollution and health issues are commonly connected to the insufficient treatment of landfill leachate (Mojiri et al. 2016a).

Minimising risks to the environment and human health is a serious concern in open dumping and sanitary landfills (Xaypanya et al. 2018). Appropriate key techniques for landfill leachate treatment consist of biological methods and chemical and physical processes. However, a comprehensive assessment on landfill leachate, including its characteristics, influences and treatment techniques, is lacking. Thus, this article serves to provide such a critical review.

LANDFILL LEACHATE AND ITS CHARACTERISTICS

Leachate forms when water penetrates waste in a landfill and transfers certain forms of contaminants (Mojiri et al. 2017). Municipal landfill leachate contains pollutants that can be categorised into four key groups, namely, organic contaminants and substrates, inorganic compounds, heavy metals, total dissolved solids (TDS) and colour (Mojiri et al. 2016a). Based on its age, landfill leachate may be divided in three key groups (Table 1), namely, young, intermediate and old (Aziz 2012; Tejera et al. 2019). Aziz (2012) and Vaccari et al. (2019) stated that in young’ landfills (i.e. the acid phase),

Table 1 | Leachate characteristics and treatability based on the landfill age

Age (years)	Young	Intermediate	Old
0–5		5–10	>10
pH	<6.5	6.5–7.5	>7.5
COD (mg/L)	>10,000	5,000–10,000	<5,000
BOD₅/COD	0.5–1.0	0.1–0.5	>0.1
NH₃–N (mg/L)	<400	–	>400
H.M	Medium to low	Low	Low
VFA/HFA	VFA (80%)	VFA (5–30%) + HFA	HFA (80%)
Biodegradability	High	Medium	Low

H.M, heavy metals; VFA, volatile fatty acids; HFA, humic and fulvic acids. (Sources: Aziz 2012; Yadav & Dikshit 2017; Tejera et al. 2019).
leachate is characterised by low pH levels, high concentrations of volatile acids and simply degraded organic matter. In mature landfills (i.e. the methanogenic phase), leachate methane production and pH are high, and the organic materials present are mainly humic and fulvic fractions. However, there is a slightly difference in some other studies (Wang et al. 2018a, 2018b) due to the wastes characteristics based on the countries. Table 2 shows the characteristics of landfill leachate around the world. Based on Table 2, most concentrated landfill leachates were located in China with COD (mg/L, 28,000) and in Riyadh (Saudi Arabia) with Fe (167.6 mg/L) for concentrated landfill leachate.

Colour and TDS

Colour is a common pollutant in landfill leachate. The decomposition of certain organic compounds, such as humic acid (HA), may cause water to turn yellow to dark brown (Naveen et al. 2016). Gotvajn & Pavko (2015) emphasised that substances and particles produce colour and turbidity. TDS display the integrative influence of certain cations and anions, such as calcium, chlorides, magnesium, sodium, potassium and bicarbonates, on water/wastewater. Furthermore, TDS can be produced from small amounts of dissolved organic matter (Sakizadeh 2019) and may inhibit or diminish the biological degradation of dissolved organic carbon (Hanson et al. 2019). Hussein et al. (2019) expressed that high electrical conductivity and TDS may specify dissolved organic and inorganic substances in samples.

Organic and inorganic pollutants, and heavy metals

The organic composition of leachate varies depending on waste characteristics, the age of a landfill and climatic conditions (Mojiri et al. 2016a). Urban solid waste and landfill leachate contain a wide variety of organic compounds (Scandelai et al. 2019). In landfill leachate, dissolved organic matter makes up 80% of total organic compounds and is generally composed of refractory humic substances and volatile fatty acids (Jiang et al. 2019). Such refractory organics may not be efficiently degraded by conventional biological treatments. Dissolved organics may be signified by BOD$_5$ and COD (Samadder et al. 2017). Moreover, persistent organic pollutants may be found in landfill leachate. Scandelai et al. (2019) indicated that various organic compounds with medium and low polarity, such as amines, alcohols, carboxylic acids, aldehydes, benzothiazolone, ketones, phenols, chlorinated benzenes, phosphates, nitrogen compounds, pesticides and aromatic and polyaromatic hydrocarbons, have been frequently noticed in leachate. Contaminants of emerging concern – pharmaceuticals, personal care products, surfactants, plasticisers, fire retardants, pesticides and nanomaterials – are also found in many municipal landfills, requiring attention on their management (Ramakrishnan et al. 2015; Qi et al. 2018).

Inorganic macro components, such as sulphates, chloride, iron, ammonia, aluminium and zinc, comprise anions and cations (Agbozu et al. 2015). Talalaj (2015) argued that landfill leachate generally consists of large amounts of compounds, 80–95% of which are inorganic and approximately 520% are organic. Inorganic ions contain chloride (Cl$^-$), nitrites and nitrates, cyanide (CN$^-$), sulphides (S$^-$) and sulphates (SO$_4^{2-}$). Moreover, inorganic cations contain ammonia and ferrous (Talalaj 2015).

One of the most toxic contaminants in landfill leachate is heavy metals. In most developing countries, the segregation of nonhazardous wastes from hazardous wastes before disposal into a landfill is uncommon (Edokpayi et al. 2018); therefore, several heavy metals in high concentrations have been reported in the landfill leachates (Chuangcham et al. 2015). Removal of heavy metals is a difficult task; consequently, we make more attention on removal of metals from landfill leachate in this study. Dan et al. (2017a) reported that the most common heavy metals in landfill leachate are chromium (Cr), manganese (Mn), cadmium (Cd), lead (Pb), iron (Fe), nickel (Ni) and zinc (Z). Metal concentrations in young (acetogenic) leachate are generally higher than those in old leachate (Dan et al. 2017a).

LANDFILL LEACHATE TREATMENT METHODS

The different landfill leachate treatment methods are shown in Figure 1 and Table 3.

Biological treatment methods

The biological degradation of contaminants results from the metabolic activities of microorganisms (Gotvajn &...
Remarks	COD (mg/L)	BOD$_5$	BOD$_5$/COD	Ammonia (mg/L)	Fe	Mn	Zn	Cd	Ni	Location	References
Concentrated leachate	28,000	950	0.04	3.50	30.00	4.03	17.80	NR	3.70	MSW incineration plants, China	Ren et al. (2018)
Semi-aerobic	935	83	0.09	483	7.9	NR	0.6	NR	NR	Pulau Burung, Malaysia	Kamaruddin et al. (2015)
	6,140	558	0.09	1,856	NR	NR	NR	0.01	NR	Heimifeng, Changsha, China	Hu et al. (2016)
Covered landfill	24,040	15,021	0.59	2,281	10.37	0.96	NR	0.95	NR	Istanbul Kümürcüoda Landfill, Turkey	Akgul et al. (2015)
Semi-aerobic	2,350	NR	NR	310	NR	NR	0.05	0.02	0.54	Sivas, Turkey	Atmaca (2009)
Sanitation landfill	2,305	105	0.04	1,240	NR	NR	NR	NR	NR	Beijing, China	Wang et al. (2016)
Semi-aerobic	1,343	96	0.07	NR	5.41	0.17	2.3	NR	0.17	Matnail landfill, Bangladesh	Jahan et al. (2016)
	10,400	1,500	0.14	NR	11.16	3.00	0.03	1.33	NR	Mavallipura landfill, India	Naveen et al. (2014)
Semi-sanitary	3,380	760	0.22	1,150	NR	NR	1.35–1.60	0.13–0.3	NR	Nonthaburi Landfill, Thailand	Xaypanya et al. (2018)
Concentrated landfill leachate	1,281	NR	NR	14.2	NR	0.692	NR	0.233	NR	Jiangsu Province, China	Cui et al. (2018)
	7,700	1,300	0.16	1,780	10.03	1.06	NR	NR	NR	Xiangtan, China	Hu et al. (2011)
	3,508–3,540	823–1,274	0.24–0.35	1,006–1,197	NR	NR	NR	NR	NR	Nam Binh Duong, Vietnam	Luu (2020)
	781	1,16	0.14	212	21	NR	NR	NR	NR	Jones County Municipal Landfill, Iowa, USA	Nivala et al. (2007)
Sanitation landfill	11,647	NR	NR	4,733	NR	NR	NR	NR	NR	Virginia, USA	Iskander et al. (2017)
NR	765	70	0.09	342	2.6	NR	0.07	NR	NR	Saint-Rosaires City, Québec, Canada	Oumar et al. (2016)
Old and active landfill	1,380	NR	NR	665.2	NR	NR	NR	0.004	NR	Jakuševac landfill, Zagreb, Croatia	Dolar et al. (2016)
Operated for 2 years (very young). Non-hazardous wastes, no fermentable wastes	260	47	0.18	187	NR	NR	NR	NR	NR	France	Ricordel & Djelal (2014)
	3,847	388	0.11	3,158.98	21.50	NR	1.70	NR	NR	Ouled Fayet landfill site, Algeria	Boumecchoeur et al. (2012)
Sanitation landfill	4,425–4,460	433–588	0.09–0.12	NR	NR	NR	NR	NR	NR	Sao Carlos, Brasil	Ferraz et al. (2014)
	1,013	NR	NR	398.02	6.84	0.42	6.26	NR	NR	Guaratinguetá, Brasil	Peixoto et al. (2018)

NR, not reported.
Pavko 2015). Owing to their cost effectiveness, biological techniques are commonly used to eliminate nutrients (e.g. ammonia) and organic compounds; however, such techniques may not be able to efficiently remove heavy metals and nonbiodegradable organics (Miao et al. 2019). Biological methods are classified into two main groups: (i) aerobic biological procedures and (ii) anaerobic biological procedures (Dabaghian et al. 2019).

Bioreactors

Bioreactors have been applied for treating wastewaters during several years because these methods are simple and
Compounds	Removal (mg/L) or Removal efficiency (%)	Treatment method	Remarks	Category	References
Ammonia	94.5%	Adsorption/Photo-Fenton-Ozone	Pre-treatment was done via activated carbon (Sawdust) activated by H₃PO₄. After the adsorption process, the leachate was moved to a solar photo-Fenton/O₃ process.	Advanced oxidation process/Adsorption	Poblete & Pérez (2020)
COD	95.1%				
Colour	95.0%				
HA (ABS₅₅₄)	97.9%				
COD	94%	Electrocoagulation/Fiber filtration	Anodic electrodes were arranged in parallel. After electrocoagulation with aluminium or iron electrodes, the treated landfill leachate was applied to two stages of fiber filters.	Advanced oxidation process/Coagulation/Adsorption	Li et al. (2017)
As	87%				
Fe	96%				
P	86%				
COD	3.381.9 mg/L	Electro-catalytic ozonation	The current density was 42.1 mA/cm², and ozone concentrations varied 100–400 mg/h. This method increased biodegradability index from 0.27 to 0.45.	Advanced oxidation process	Ghahrchi & Rezaee (2020)
BOD	1.521 mg/L				
Ammonia	90%	Supercritical water oxidation (ScWO)/Zeolite	ScWO was operated under a pressure of 23 MPa at 600 and 700 °C, without the addition of oxidants. Zeolite was used by following ScWO.	Advanced oxidation process/Adsorption (ion-exchange)	Scandelai et al. (2020)
Nitrite	100%				
Nitrate	98%				
Colour	98%				
Turbidity	98%				
COD	74%				
COD	83.3%	Kefir grains/Ag-doped TiO₂ photocatalytic	Biological pre-treatment was done in 250 mL beakers containing 50 mL of leachate inoculated with Kefir grains. Then, leachate was moved for treatment by using Ag-doped TiO₂ photocatalytic.	Advanced oxidation process/biological method	Elleuch et al. (2020)
Ammonia	70.0%				
Cd	100%				
Ni	94.0%				
Zn	62.5%				
Mn	53.1%				
Cu	47.5%				
COD	68%	Coagulation/Photo-Fenton	Ferric chloride in acidic condition and Alum in neutral condition were used as coagulant. The photo-Fenton process was conducted using a high-pressure mercury immersion lamp of 450 W from ACE-Glass.	Advanced oxidation process/Coagulation	Tejera et al. (2019)
Colour	97%				
HA (UV-254)	85%				
COD	97.8%	Fenton process	The Fenton reaction was done by adding powdered ferrous sulphate and an appropriate H₂O₂:Fe²⁺ ratio.	Advanced oxidation process	Roudi et al. (2018)
Parameter	Value	Description	Treatment Process	Reference	
-----------	-------	-------------	-------------------	-----------	
COD	90.2%	Coagulation-flocculation/Microelectrolysis-Fenton processes	Landfill leachate was treated by chemical flocculation with polyaluminium chloride (PAC) as flocculant, and subsequently purified by microelectrolysis-Fenton process. Concentration of H₂O₂ (mg/L) varied 2.66–4.	Luo et al. (2019)	
HA	93.7%	Coagulation-flocculation/Microelectrolysis-Fenton processes			
COD	88.2%	Electro-ozonation/adsorbent augmented SBR	At first stage, the raw concentrated leachate was treated by electro-ozonation reactor. The electro-ozone reactor was reinforced by a cross-column ozone chamber to develop ozone gas diffusion. Furthermore, the ozone reactor was supported with anode and cathode plates (Ti/RuO₂-IrO₂, 18 cm × 8 cm). After that leachate was moved to the second reactor (SBR + Composite adsorbent).	Mojiri et al. (2017)	
Colour	>90%	EO/Coagulation	Al₂(SO₄)₃ with dosage of 50 g/L was added as coagulant. And two stainless steel plates were applied as electrodes. Sodium sulphate 0.1 mol/L was added to the leachate in order to improve the conductivity of the solution.	de Oliveira et al. (2019)	
Turbidity	>90%				
Ammonia	>90%				
COD	36%	UV_solar/O₃/H₂O₂/S₂O₅²⁻/Zeolite	Ozone, hydrogen peroxide and UV_solar were considered in the same reactor with leachate to produce a high amount of hydroxyl radicals, which have a short life. The S₂O₅²⁻ was added directly. Then, treated leachate was treated by zeolite.	Poblete et al. (2019)	
COD	91%	UV-based sulphate radical oxidation process/Coagulation-flocculation	For coagulation-flocculation (pre-treatment), ferric chloride (FeCl₃) was used, with COD: FeCl₃ ratio = 1.13, as the coagulant. Then, leachate was treated by UV-based sulphate radical oxidation process (UV-SRAOP). For UV/SRAOP, the sulphate radical was produced using UV-activated persulphate (UV/PS) and peroxymonosulphate (UV/PMS).	Ishak et al. (2018)	
COD	99%	UV/Coagulation	UV-based sulphate radical oxidation process/Coagulation-flocculation	A. Mojiri et al. (2019)	
COD	88%	Ozone/catalyst (ZrCl₄)	Zirconium tetrachloride was added, dosage 1.2 g (COD/ZrCl₄), as a catalyst to ozone reactor.	Abu Amr et al. (2017)	
COD	79%	UV/Coagulation			
COD	100%	Ozone/catalyst (ZrCl₄)			
COD	88%	Ozone/catalyst (ZrCl₄)			
Compounds	Removal (mg/L) or removal efficiency (%)	Treatment method	Remarks	Category	References
-----------	--	------------------	---------	----------	------------
COD	16.5%	Vermiculite/Ozonation	Rotating packed bed reactor was used to provide greater gas diffusion to the medium. Optimum operation conditions were as follows: rotation of 915 rpm, pH of 5.8 and ozone flow of 3.9 L/min. Biodegradability was increased (BOD5/COD), from 0.13 to 0.49 by this treatment method.	Advanced oxidation process	Braga et al. (2020)
COD	72%	MAC/Ozonation	MnCe-ACs were produced by impregnating Mn and Ce oxides onto granular activated carbon surfaces. MnCe-AC was added to a cylinder and ozone was added from bottom of the reactor.	Advanced oxidation process/Adsorption	Wang et al. (2015a, 2015b)
COD	100%	Activated carbon (Oat hulls)	Oat hulls adsorbents were activated with phosphoric acid and pyrolysed (N2 atmosphere) at 350 and 500 °C.	Adsorption methods	Ferraz & Yuan (2020)
Colour	100%	Activated carbon (Coffee wastes)	The washed coffee was oven-dried at 105 °C for 24 h prior to activation. And then it was activated via H3PO4.	Adsorption methods	Chávez et al. (2019)
COD	93.6%	Zero-valent iron nanofibers/ reduced ultra-large graphene oxide (ZVINFs/rULGO)	At the optimum condition, pH, dosage of ZVINFs/rULGO and reaction time were 3, 1.6 g/L and 45 min.	Adsorption methods	Soubh et al. (2018)
Colour	77.3%	Silica nanoparticle	At the optimum condition, pH and dosage of adsorbent were 6 and 90 min.	Adsorption methods	Pavithra & Shanthakumar (2017)
COD	49%	Zeolite Feldspar Mineral Composite Adsorbent	Samples were shaken for 5 h with 200 rpm at pH 7.	Adsorption methods	Daud et al. (2016)
COD	65.5–92.1%	Amino acid modified bentonite	Batch experiments were done under contact time 20–100 min, pH 2–11 and bentonite dosage of 10–40 g/L.	Adsorption methods	Hajjizadeh et al. (2020)
Pb	99.2%	MS@GG	MS@GG was produced by modification of melamine sponge (MS) with polydopamine (PDA) and then coat with glutathione/graphene oxide.	Adsorption methods	Feng et al. (2020)
Parameter	Value	Description	Methodology	Reference	
-----------	-------	-------------	-------------	-----------	
COD	53.5%	Tannin-Based Natural Coagulant	Tannin dosage and pH were 0.73 g and 6, respectively.	Coagulation/flocculation	Banch et al. (2019)
Ammonia	91.3%	Polyaluminium chloride and *Dimocarpus longan* Seeds as Flocculants	A coagulation–flocculation process using a combination of Polyaluminium chloride (PACl) as a coagulant and *Dimocarpus longan* seed powder (LSP) as coagulant aid was done.	Coagulation/flocculation	Aziz et al. (2018)
TSS	60.2%	Red earth as coagulant	The optimal pH and the optimal coagulant dosage were 5.0 and of 9,000 mg/L, respectively.	Coagulation/flocculation	Zainol et al. (2018)
Fe	89.7%	Ferric chloride as coagulant and a cationic flocculant AN 954-SH polyelectrolytes as flocculant	The pH was fixed at 6.3. Optimum condition was 7.2 g/L FeCl₃ and 0.2 mL/L Flocculant.	Coagulation/flocculation	Taoufik et al. (2018)
Zn	94.6%	Using membrane processes of NF and RO	A working pressure and flow rate were set at 15 bar and 750 mL/min. The surface area of the membranes was 10.7 cm.	Membrane	Košutić et al. (2015)
Cu	94.1%	Using *Aspergillus flavus*	The *A. flavus* strain were isolated from leachate contaminated soil.	Bioremediation with the fungi	Zegzouti et al. (2020)
Cr	89.9%	Using *Brevibacillus panacihumi* strain ZB1	The pure colonies of *B. panacihumi* strain ZB1 were grown in sterile nutrient broth in the incubator shaker for 24 h. About 10% (v/v) of the *B. panacihumi* strain ZB1 was used to treat the raw leachate sample in the 200 mL conical flask. The leachate sample was treated anaerobically for 21 days and followed by 21-days aerobic treatment.	Bioremediation	Er et al. (2019)
Cd	17.2%	Using *Chlorella* sp.	After growing the *Chlorella* sp., it was inoculated for experimental studies.	Bioremediation with microalgae	Ouaer et al. (2017)
Pb	93.7%				
As	86.4%				
COD	61.9%				
Colour	98.8%				
SS	99.5%				
COD	66.9%				
Ammonia	43.3%				
Turbidity	96.2%				
COD	45%				
Ammonia	Up to 88.9%				
COD	94.6%				
BOD	17.5–48.5%				
Ammonia	45.4–81.6%				
COD	50–98.8%				
Ammonia	40%				
Mn	50%				
Cu	60%				
Se	52%				
Ammonia	90%				
COD	60%				

(continued)
Compounds	Removal (mg/L) or Removal efficiency (%)	Treatment method	Remarks	Category	References
Ammonia	83%	Using *Chlamydomonas* sp. SW15aRL	The *Chlamydomonas* sp. strain SW15aRL, previously isolated from a sample of raw leachate in 2014 from a landfill site, was maintained in raw leachate or diluted raw leachate samples with a phosphate concentration adjusted to a molar N:P ratio ~ 16:1 prior to the experiments.	Bioremediation with microalgae	Paskuliakova et al. (2018a)
Leachate Pollution Index	74.7%	Using garbage enzyme	The garbage enzyme (fermented mixture of jaggery, organic waste and water in the ratio 1:3:10) was applied.	Bioremediation/Enzyme	Rani et al. (2020)
COD	67%	Using *Colocasia esculenta*, *Gynerium sagittatum* and *Heliconia psittacorum*.	Plants were transplanted in a constructed wetland with a gravity flow ($Q = 0.5 \text{ m}^3/\text{d}$).	Phytoremediation/wetland	Madera-Parra (2016)
Pb	50%				
Hg	50%				
COD	75%	Using *Imperata cylindrica*	Contact time was ranged from 0 to 30 days.	Phytoremediation	Moktar & Tajuddin (2019)
Pb	56.3%				
Cd	16.2%				
Zn	6.5%				
COD	81.0%	Using *Typha latifolia*	Flow rate of 5 L/day and a HRT of 22 days were used.	Phytoremediation/wetland	Yalçuk & Ugurlu (2020)
Ammonia	60.0%	Using *Canna indica*			
COD	84.0%				
Ammonia	56.0%				
COD	86.7%	Using *Typha domingensis*	Plants in a reactor with two kinds of substrates including zeolite and ZELIAC. 20% of landfill leachate was mixed with 80% of domestic wastewater at optimum condition.	Wetland/co-treatment	Mojiri et al. (2016b)
Ammonia	99.2%				
Colour	90.3%				
Ni	86.0%				
Cd	87.1%				
COD	93%	Membrane bioreactor + Activated sludge	Membrane sequenced batch bioreactors were inoculated indigenous leachate bacteria or activated sludge.	Bioreactor/Membrane	Azzouz et al. (2018)
Fe	71%	Membrane bioreactor + Indigenous leachate bacteria			
Zn	78%				
COD	95%				
Fe	71%				
Zn	74%				
Parameter	Value	Process Type	Details		
-----------	-------	--------------	---------		
COD	63%	Membrane bioreactor	Organic load rate of 1.2 gCOD/L/day and sludge retention time of 80 days were selected.		
TOC	35%	Membrane bioreactor			
Ammonia	98%	Membrane bioreactor			
Phosphorous	52%				
Ammonia	>98%	Membrane bioreactor	DM filtration was conducted in a submerged configuration inside the aerobic bioreactor.		
TN	>90%	Air stripping, and aerobic and anaerobic biological processes	For aerobic reactor, the activated sludge system was applied. And for anaerobic reactor, the upflow anaerobic fixed bed reactor was used.		
COD	80%	Air stripping, and aerobic and anaerobic biological processes			
Ammonia	78%	Air stripping, and aerobic and anaerobic biological processes			
Colour	85.8%	SBR and coagulation	Sequential treatment via SBR followed by coagulation was applied. Aluminium Sulphate was used as coagulant.		
COD	84.8%	SBR and coagulation			
Ammonia	94.2%	SBR and coagulation			
TSS	91.8%	SBR and coagulation			
COD	>70%	Anoxic Sequencing Batch Biofilm Reactor	Biomass from the bottom of a landfill leachate stabilisation pond was immobilized in polyurethane foam cubes as inoculum.		
COD	30%	Aerobic sequencing batch reactor (ASBR)	Air upflow velocity was set at 1.0–1.2 cm/s.		
Ammonia	65%	Aerobic sequencing batch reactor (ASBR)			
TN	95.0%	Partial-denitrification and Anammox	Firstly, leachate diluted with municipal sewage. And two USB reactors were used.		
TN	98.7%	Partial nitrification, simultaneous anammox and denitrification	During the aerobic phase, the DO was maintained below 0.5 mg/L.		
Ammonia	98%	DM bioreactor	DM filtration was conducted in a submerged configuration inside the aerobic bioreactor provided with a hydrostatic water head of 8 cm. And the initial inoculum was collected from the aerobic bioreactor in a municipal wastewater treatment plant.		
TN	90%	DM bioreactor			
COD	99%	Activated sludge process/RO	Biological pre-treatments followed by RO.		
Ammonia	99%	Activated sludge process/RO			
Fe	79.7%	ZELIAC (a composite adsorbent), with dosage of 3 g/L, was augmented in SBR.	Powdered ZELIAC was added to the SBR.		
Mn	73.3%	ZELIAC (a composite adsorbent), with dosage of 3 g/L, was augmented in SBR.			
Cd	76.9%	ZELIAC (a composite adsorbent), with dosage of 3 g/L, was augmented in SBR.			
Ni	79.2%	ZELIAC (a composite adsorbent), with dosage of 3 g/L, was augmented in SBR.			

SBR, sequencing batch reactor; TSS, total suspended solids; SS, suspended solids.
reliable, and highly cost-effective (Gotvajn & Pavko 2015). But, the main drawbacks of bioreactor treatments involve temperature issues and leachate toxicity for microbial communities (Lippi et al. 2018).

Aerobic bioreactors. Aerobic treatments are the most commonly applied biological procedures. Aerobic reactors involve sustained aeration with large pre-established bacterial populations (i.e. activated sludge) (Torreta et al. 2017). The activated sludge process requires high concentrations of microorganisms, mainly bacteria, fungi and protozoa, to eliminate organic matter from wastewater (Rajasulochana & Preethy 2016). According to Wang et al. (2018a, 2018b), the activated sludge process may efficiently eliminate biodegradable organic material by completely transforming it into carbon dioxide and water. The sequencing batch reactor (SBR) is the most common method for treating landfill leachate. The SBR consists of several time-oriented periodic stages, and its batch operation may enhance process efficacy (Yong et al. 2018).

One of the main drawbacks of this technique involves the need for high concentrations of dissolved oxygen in bio-film reactors for denitrification (Payandeh et al. 2017).

Anaerobic bioreactors. Anaerobic methods generally demonstrate better landfill leachate treatment performance than aerobic treatment techniques owing to the high COD and high BOD/COD ratio of landfill leachates (Azreen & Zahrim 2018). Anaerobic approaches are effective biotechnological treatments for concentrated organic wastewater. Such methods are energy efficient and environment friendly owing to their low production of sludge and biogas (Gamoń et al. 2019). Anaerobic treatment involves the biological decomposition of organic or inorganic matter without oxygen molecules. Key drawbacks of this technique include long retention time, its sensitivity to temperature changes and low elimination efficiency (Azreen & Zahrim 2018). The anaerobic activated sludge process may require upflow anaerobic sludge blanket (UASB) and expanded granular sludge blanket (EGSB) reactors for the purification of landfill leachate. In a UASB reactor, wastewater flows through a sludge bed with high microbial activity (Gotvajn & Pavko 2015). Meanwhile, an EGSB is a third-generation anaerobic bioreactor that is characterised by high volumetric loading (Wang et al. 2018a, 2018b).

Anaerobic ammonium oxidation (anammox). Anammox bacteria transform ammonium (an electron donor) and nitrite (an electron acceptor) into nitrogen gas, using CO₂ as carbon source for growth (Torreta et al. 2017). The most commonly applied mechanism of the anammox process is presented by the following equation (Gamoń et al. 2019):

\[\text{NH}_4^+ + 1.3H^+ + 1.32\text{NO}_2^- + 0.06\text{HCO}_3^- \rightarrow 1.02N + 0.26\text{NO}_3^- + 2.03\text{H}_2\text{O} + 0.06\text{CH}_2\text{O}_{0.5}N_{0.15} \]

Anammox bacteria are considered monophyletic and comprise six candidate genera, namely, Candidatus jettenia, Candidatus anammoxoglobus, Candidatus brocadia, Candidatus scalindua, Candidatus anammoximicrobium and Candidatus kuenenia (Mojiri et al. 2020). Remarkably, other types of contaminants, such as high COD and heavy metals, can affect anammox activities. Therefore, the anammox reactors are often combined with other treatment methods (Kumar et al. 2016).

Nitrification and denitrification process. The denitrification and nitrification process involve the microbial elimination of ammonium. Ammonia is transformed into nitrate under an aerobic condition, which in turn is reduced to N₂ by an anoxic condition during a conventional nitrification–denitrification process (Thakur & Medhi 2019). In the process, firstly, ammonia is oxidised by ammonia-oxidising bacteria into nitrite (NO₂⁻). Secondly, NO₂⁻ is converted into nitrate by nitrite-oxidising bacteria. Finally, the denitrification of nitrate into N₂ is performed by heterotrophic bacteria during the anoxic step (Miao et al. 2019). Generally, this step is integrated into other treatment techniques owing to the effects of other pollutants on the process.

Phytoremediation

Phytoremediation methods employ the capability of plant-soil systems to degrade and inactivate potential toxic elements in leachate (Song et al. 2018). The benefits of phytoremediation include (1) low-cost installation and energy
consumption and (2) the elimination of the pollutants from landfill leachate (Madera-Parra 2016).

Daud et al. (2018) used *Lemma minor* to treat landfill leachate. More than 70% of metals, 39% of COD and 47% of BOD are removed during a 15-day contact time. Daud et al. (2018) and Song et al. (2018) said that several aquatic plants, such as *Colocasia esculenta*, *Pistia stratiotes*, *Eichhornia crassipes*, *Phragmites australis*, *Azolla filiculoides*, *Typha domingensis*, *Hydrilla verticillata*, *Azolla caroliniana*, *Salvinia Cucullata*, *Heliconia psittacorum*, *Azolla pinnata*, *L. minor*, *Lemma gibba*, *Levno aequinoctialis*, *Gynerum sagittatum* and *Spirodela polyrhiza*, can be used to treat leachate. Plants with a remarkable metal-accumulating ability are categorised as hyperaccumulator (Tangahu et al. 2011). Hyperaccumulation is a vital factor for the success of phytoremediation (Alaboudi et al. 2018). Hyperaccumulator plants can be recognised by the translocation factor (TF) and the bioconcentration factor. TF (Equation (2)) is an indication of the plant capability to translocate metals from its root to its shoot (Ndimele et al. 2014). BCF (Equation (3)) shows the accumulation of metals in plant tissues. Plants with BCF values more than 2 or TF values more than 1 are considered as hyperaccumulator (Mellem et al. 2009). Table 4 illustrates the concentration of metals in roots and shoots of plants during removing metals by phytoremediation or constructed wetlands.

\[
\text{TF} = \frac{\text{Concentration of metals in aerial parts}}{\text{Concentration of metal in roots}} \quad (2)
\]

\[
\text{BCF} = \frac{\text{Concentration of metal in plant tissues}}{\text{Concentration of metal in substrate (water)}} \quad (3)
\]

Bioremediation

Moris et al. (2018) stated that bioremediation involves biologically removing contaminants from the environment. Its benefits include cost-effective and environment-friendly techniques. The use of microalgae, algae and other fungi and bacteria for the bioremediation of landfill leachate has been reported in the literature (Moris et al. 2018; Spina et al. 2018). Paskuliakova et al. (2018a) claimed that algae can eliminate inorganic and simple organic compounds, whereas a few complex substances may undergo a certain degree of biotransformation. According to Paskuliakova et al. (2018b), microalgae that have been employed to treat landfill leachate include the *Scenedesmus*, *Chlamydomonas* and *Chlorella* genera as well as cyanobacteria and other phylogenetic. Moreover, major bacteria that have been utilised for landfill leachate treatment include *Firmicutes*, *Actinobacteria*, *Proteobacteria*, *Brevibacillus panachumii* strain ZB1 and *Pseudomonas putida* (Moris et al. 2018; Michalska et al. 2020).

Co-treatment of landfill leachate and urban wastewater with biological methods

To enhance the biodegradability of landfill leachate and BOD/COD ratios, researchers have mixed domestic wastewater with landfill leachate before treatment (Mojiri et al. 2016a). Ranjan et al. (2016) used an SBR for the co-treatment of urban wastewater and landfill leachate. With a hydraulic retention time (HRT) of 6 days and a landfill leachate concentration of 20% v/v, 93, 83, 70 and 83% of ammonia, nitrite, COD and turbidity, respectively, were removed.

Mojiri et al. (2017) emphasised that owing to high COD and BOD/COD ratios, comparing landfill leachate treatments with methods used for domestic wastewater is difficult. Thus, a combined system should be applied to treat leachate. Li et al. (2020) employed denitrification/partial nitrification–anammox to eliminate nitrogen from intermediate landfill leachate. At optimum conditions, total nitrogen (TN) removal rate and TN elimination efficacy were 0.45 m3/d and 96.7%, respectively. The denitrification–nitrification–anammox process demonstrates two vital points, that is, the improvement of degradable COD in wastewater to realise nitrate removal and the improvement of autotrophic bacteria growth. Pirsaheb et al. (2017) utilised a combined aerobic–anaerobic/biogranular activated carbon SBR for landfill leachate treatment. This biodegradable landfill leachate treatment demonstrates high performance.

Physical and chemical treatment methods

Adsorption and ion-exchange

Erabee et al. (2018) expressed that adsorption has been broadly applied for the treatment of landfill leachate.
Metal	Plant	Concentration in influent (μg/L)	Accumulation in root (μg/g)	Accumulation in shoot/leaves (μg/g)	TF	BCF	Remarks	References
Zn	Water hyacinth	1,420	1,100	600	0.58	1.3	Mixing ration of landfill leachate and tap water (75%)	Abbas et al. (2019)
Pb		770	600	360	0.68	0.7		
Cu		620	400	400	0.63	0.5		
Fe		1,120	800	650	0.53	1		
Ni		1,410	750	500	0.57	1.25		
Zn	Water lettuce	1,420	1,300	660	0.6	1.2	Mixirig ration of landfill leachate and tap water (75%)	Abbas et al. (2019)
Pb		770	650	350	0.5	0.6		
Cu		620	520	250	0.58	0.5		
Fe		1,120	1,000	500	0.5	1		
Ni		1,410	1,200	470	0.5	1.1		
Zn	Lemna minor L.	1,470	NR	NR	NR	0.78	BCF reported after 3 days	Daud et al. (2018)
Pb		830	NR	NR	NR	0.46		
Cu		690	NR	NR	NR	0.65		
Fe		1,170	NR	NR	NR	0.76		
Ni		1,210	NR	NR	NR	0.58		
Zn	S. globulosus	106–887	49.98	82.81	NR	NR	After 15 days	Ujang et al. (2005)
Ni		17–96	20.37	12.5				
Cu		8–31	11.11	12.78				
Cr		30–123	26.11	24.65				
Pb		Jun-51	7.43	8.91				
Zn	E. sexangulare	106–887	124.93	206.32	NR	NR	After 15 days	Ujang et al. (2005)
Ni		17–96	6.58	21.28				
Cu		8–31	5.99	12.06				
Cr		30–123	28.52	38.68				
Pb		Jun-51	6.1	24.87				
Pb	A. selengensis	4,080	404.79 (10^3)	65.37 (10^3)	NR	NR	–	Wang et al. (2018a, 2018b)
Cd		790	24.71 (10^3)	2.90 (10^3)				
Cr		6,120	765.59 (10^3)	127.99 (10^3)				
V		14,180	645.21 (10^3)	156.57 (10^3)				
Mn	Vetiveria zizanioides	490	121.55 (10^3)	48.12 (10^3)	NR	NR	pH was set at 7.	Roongtanakiat et al. (2007)
Fe		16,150	1,430.07 (10^3)	62.31 (10^3)				
Cu		60	4.30 (10^3)	2.45 (10^3)				
Zn		4,090	82.31 (10^3)	14.27 (10^3)				
Pb		50	4.50 (10^3)	0.69 (10^3)				
Al	Typha domingensis	6,560	303,910	NR	0.14	46.3	Industrial wastewater was treated by phytoremediation.	Hegzay et al. (2011)
Fe		10,460	154,680	NR	0.18	40.4		
Zn		3,870	117,640	NR	0.11	30.3		
Pb		990	14,870	NR	0.35	15.2		

(continued)
Advantages of this method include its ease of operation, the simplicity of its design, its insensitivity to toxic substances and its ability to remove a variety of contaminants (Chávez et al. 2019). Different adsorbents and their performance are shown in Table 5.

In adsorption, the pollutants can adhere to the surface of the adsorbent over several mechanisms (Figure 2). The surface of the adsorbent has specific characteristics that allows the attachment of the adsorbate. Adsorption occurs under certain conditions, a reversible phenomenon which named desorption, is applicable. In desorption, the adsorbates can be released from the surface of the adsorbent and got back to the liquid (Bello & Raman 2019).

Modified activated carbon (MAC), which is produced by immersing granular activated carbon (2.0 g) in a KMnO₄ solution (30 mg/L) for 6 h, was created to treat landfill leachate. Approximately 99% of ammonia and 86% of zinc can be removed by MAC in a contact timespan of 120 min. The Langmuir adsorption capacity (mg/g) of this absorbent for the removal of ammonia and zinc is 0.16 (Erabee et al. 2012). Zamri et al. (2017) used an ion-exchange resin to treat landfill leachate, with a maximum adsorption capacity (mg/g) based on a pseudo second-order kinetic model of 13.4, 13.5, 14.2, 33,333.3, 10,000.0 and 50,000.0 for Cr⁶⁺, Al³⁺, Cu²⁺, COD, ammonia and colour, respectively.

Advanced oxidation processes

Advanced oxidation processes (AOPs) that apply a combination of oxidants and catalysts to produce hydroxyl radicals (•OH) in solutions, such as ultraviolet (UV), Fenton, ozonation and electrochemical oxidation (EO) methods, have garnered interest for the degradation of hazardous organic compounds or biorefractory in wastewater (Särkkä et al. 2015). However, the main drawback of AOPs is high capital and operating costs.

In an EO process, contaminants are eliminated either by (a) direct EO in which organics are oxidised by moving electrons to an anode directly or (b) indirect EO in which certain electroactive species that act as mediators are produced to conduct the degradation procedure (Mandal et al. 2017). The EO of organics in metal oxide anodes was described by Ukundimana et al. (2018) as follows (Equations (4)–(6)).

Water is electrolysed via anodic catalysis to generate adsorbed hydroxyl radicals.

\[
\text{MOX} + \text{H}_2\text{O} \rightarrow \text{MOX(OH)}_{\text{ads}} + \text{H}^+ + \text{e}^- \tag{4}
\]
Pollutants in landfill leachate	Adsorbent	Adsorption isotherm	Adsorption capacity (mg/g)	Remarks	References
TSS	Activated carbon (AC)	Langmuir	1.77	AC was derived from coconut shell. AC was modified by heating at 600 °C.	Erabee et al. (2018)
Ammonia			3.18		
Zn			0.02		
Mn			0.06		
Cu			0.07		
S²			0.02		
COD	AC	Langmuir	272.75	AC was derived from walnut shell.	Mahdavi et al. (2018)
Colour	AC	Langmuir	555.55	AC was derived from sugarcane bagasse.	Azmi et al. (2015)
COD	AC	Langmuir	126.58		
Ammonia			14.61		
Colour		Freundlich	0.67		
COD			0.20 (10⁻²)		
Ammonia			3.0 (10⁻⁷)		
Pb	AC	Pseudo-second order	0.03	AC was derived from sugarcane bagasse.	Salas-Enríquez et al. (2019)
Cu			0.01		
Ni			0.01		
Zn			0.01		
Colour	Biochar	Langmuir	85.33	Biochar was derived from fallen mature fruits at 600 °C.	Shehzad et al. (2016)
COD	Biochar	Langmuir	35.71		
Ammonia			500.00		
COD	Biochar	Pseudo-second order	490	Biochar was derived from coconut shell at high temperature, and it is activated via microwave heating.	Lam et al. (2020)
Ammonia					
COD	Biochar	Freundlich	5.80	Biochar was derived from Miscanthus at 450.	Kwarcia-Kozłowska et al. (2019)
FA	Magnetic graphene oxide	Langmuir	82.16		
HA			106.50		
Pb			45.50		
Bisphenol A	Bentonite modified by hexadecyl trimethyl ammonium bromide (HTAB)	Pseudo-second order	10.44	The HTAB-bentonite was synthesized by cation exchange with HTAB solution (20 mmol/L) over stirring.	Li et al. (2015)
Ni	Red mud	Langmuir	11.06	Batch experiments were done with neutral pH, adsorbent dosage of 10 g/L and shaking speed of 75 rmp.	Ayala & Fernández (2019)
Zn			12.04		
Cd			12.57		
Ni		Freundlich	2.08		
Zn			4.40		
Cd			3.79		

(continued)
Table 5 | continued

Pollutants in landfill leachate	Adsorbent	Adsorption isotherm	Adsorption capacity (mg/g)	Remarks	References
Ammonia	Zeolites (Clinoptilolite)	Langmuir	17.45	-	Paizan et al. (2020)
Bisphenol A	High silica Y-type zeolite powder	Pseudo-second order	141.0	Batch experiments were done in temperature room for 4 h at pH = 7.	Chen et al. (2015)
Colour	Zeolites	Langmuir	0.01	Activated zeolites were produced by heating to 250 °C.	Aziz et al. (2020)
COD			3.0 (10^-4)		
Ammonia			8.9 (10^-3)		
Colour	Zeolites	Langmuir	42.55	-	Bashir et al. (2017)
COD			0.22		
Ammonia			0.31		
Pb	MS@GG	Pseudo-second order	253.80	MS modified with PDA and then coat with glutathione/graphene oxide (GG)	Feng et al. (2019)
HA	Aminated Magnetic Nanoadsorbent	Langmuir	181.82	Amino-functionalized Fe3O4@SiO2 nanoparticles were produced by surface functionalization of Fe3O4@SiO2 nanoparticles using (3-aminopropyl) trimethoxysilane (APMS) as the silylation agent. Batch experiments were done at neutral pH and shaken speed 150 rpm.	Wang et al. (2015a, 2015b)
Pb	Fe3O4@Mesoporous Silica-Graphene Oxide Composites	Langmuir	333.33	-	Wang et al. (2013)
Cd	Composite adsorbent	Langmuir	166.67	Composite adsorbent was produced by zeolite,	Mojiri et al. (2014)

Figure 2 | Basic model of adsorption (Source: Bello & Raman 2019).
Adsorbed hydroxyl radicals at metal oxide (MOₙ) electrodes (except for BDD and Pt) may form chemisorbed active oxygen.

\[
\text{MO}_n + (\cdot \text{OH})_{\text{ads}} \rightarrow \text{MO}_{n+1} + \text{H}^+ + e^- \tag{5}
\]

Meanwhile, the hydroxyl radicals will react to one another to form molecular oxygen to complete the electrolysis of the water molecules.

\[
\text{MO}_n(\cdot \text{OH})_{\text{ads}} \rightarrow \text{M} + \text{O}_2 + \text{H}^+ + e^- \tag{6}
\]

Organic pollutants (R) in landfill leachate can be oxidised via the mechanisms illustrated in Equation (7) by reacting to the physisorbed hydroxyl radicals \(\text{MO}_n(\cdot \text{OH})\) formed by Equation (6).

\[
\text{MO}_n + (\cdot \text{OH})_{\text{ads}} + \text{R} \rightarrow \text{MO}_n + \text{CO}_2 + \text{H}_2\text{O} + \text{inorganics} \tag{7}
\]

When electricity is applied to wastewater, oxygen gas derived from the breakup of water molecules and chlorine gas is produced in a chloridic electrolysis solution (Equations (8) and (9)). Hypochlorous acid (HOCl) and hypochlorite ion (OCl⁻) are vital ions responsible for the indirect oxidation of ammonium to nitrogen gas (Equations (10) and (11)) (Ghimire et al. 2020). EO has been deemed effective for ammonium elimination (Mandal et al. 2017).

\[
2\text{H}_2\text{O} + 2e^- \rightarrow \text{H}_2 + 2\text{OH}^- \quad E^0 = -0.83\text{V} \tag{8}
\]

\[
2\text{Cl}^- \rightarrow \text{Cl}_2 + 2e^- \quad E^0 = -1.36\text{V} \tag{9}
\]

\[
2\text{NH}_4^+ + 3\text{HOCl} \rightarrow \text{N}_2 + 3\text{H}_2\text{O} + 5\text{H}^+ + 3\text{Cl}^- \tag{10}
\]

\[
2\text{NH}_4^+ + 2\text{OCl}^- \rightarrow \text{N}_2 + 2\text{HCl} + 2\text{H}_2\text{O} + 2\text{H}^+ \tag{11}
\]

In an EO procedure, the formation of metal oxide on an anode relies on the pH of the electrolyte and metal ion. Yasri & Gunasekaran (2017) indicated that a metallic hydroxide film might form on an anode in an alkaline media for transition metals (Equations (12) and (13)).

\[
\text{M}^{n+}_{(\text{aq})} + \text{OH}^-_{(\text{aq})} \rightarrow \text{M}(ext{OH})_{n(\text{ads})} \tag{12}
\]

\[
\text{M}(ext{OH})_{n(\text{ads})} \rightarrow 2\text{M}_{n(s)} + 2n\text{H}^+ + ne^- \tag{13}
\]

EO, BDD, Ti/Pt, Ti/PbO₂, Ti/SnO₂, Ti/Pt/SnO₂–Sb₂O₄, Ti/RuO₂–IrO₂ and graphite have been commonly applied as electrodes for the treatment of landfill leachate (Ukundimana et al. 2018). Among the benefits of EO, the breakdown of high molecular organic compounds, the absence of sludge and the complete mineralisation of organics are its most significant advantages (Mandal et al. 2017).

The Fenton process has been commonly employed for the oxidation of different organics from wastewater, as it exhibits a high oxidation potential of 2.72 V (Nakahate et al. 2018). Fe(II) ions are oxidised into Fe(III) in the presence of excess H₂O₂ (Equation (14)). This reaction mechanism displays the activation of H₂O₂ in the presence of Fe(II) ions to form hydroxyl radicals that can oxidise organic compounds (Gautam et al. 2019). This classic Fenton reaction may be assisted by electric currents (i.e. the electro-Fenton process) or UV irradiation (i.e. the photo-Fenton process), thereby considerably enhancing its efficacy (Seibert et al. 2019). Singa et al. (2018) argued that compared with other AOPs, the Fenton process includes benefits such as an easy implementation operation, high efficiency and the lack of an energy requirement for H₂O₂ activation.

\[
\text{Fe}^{2+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{3+} + \text{OH}^- + \cdot \text{OH} \tag{14}
\]

Ozone is a powerful oxidant, with a redox potential of 2.07 V in an alkaline solution. Consequently, O₃ can oxidise organic and inorganic substances. Gautam et al. (2019) claimed that the key drawbacks of landfill leachate treatment through ozonation include the following. (1) Leachate is a complex wastewater with high organic compounds; hence, high amounts of ozone are required. (2) Ozone mass transfer from a gas to a liquid is low. The ozonation of pollutants may be performed by two techniques, namely, direct and indirect ozonation (Wang & Chen 2020).
A direct O$_3$ molecule reaction with contaminants involves oxidation–reduction reactions (e.g. reactions between O$_3$ and HO$_2$/or O$_2^*$; Equations (15) and (16); Wang & Chen 2020).

$$O_3 + HO_2 \rightarrow O_3^* + HO_2^* \quad (15)$$

$$O_3 + O_2^* \rightarrow O_3^* + O_2 \quad (16)$$

An indirect reaction by ·OH is revealed in the following equation (Nilsson 2018):

$$3O_3 + OH^- \rightarrow 2OH^* + 4O_2 \quad (17)$$

UV treatment has been generally used to degrade aquatic organic compounds and kill microbes. During the absorption of UV light, electrons are transferred to oxygen molecules that convert O$_2$ and contaminant molecules into radicals (Equations (18) and (19)).

$$P \rightarrow P^* \quad (18)$$

$$P^* + O_2 \rightarrow P^{**} + 2O^- \quad (19)$$

UV treatment may result in the homolytic cleavage of the chemical bonds of contaminants, thereby causing the formation of two radicals (Mishra et al. 2017).

Approximately 99.9% of diethyl phthalate (DEP; organic pollutant) is removed from landfill leachate through the ozone/hydrogen peroxide process (O$_3$/H$_2$O$_2$) at an initial concentration of 20 mg/L DEP and 120 min of ozonation (Mohan et al. 2019).

Membranes technology

The use of different membrane technology to treat wastewater has gained considerable attention (Dabaghian et al. 2019). Membrane separation involves the selective filtration of influent through different-sized pores (Warsinger et al. 2016). Microfiltration (MF), dynamic membranes (DMs), nanofiltration (NF), ultrafiltration (UF) and reverse osmosis (RO) are the main membrane processes employed in landfill leachate treatment (Dabaghian et al. 2019). The advantages of using membranes include low overall energy requirements, simplicity and high efficiency (Siyal et al. 2019).

DMs may provide a new approach by exploiting fouling as a means for solid–liquid separation. A DM is specified as a self-forming and regenerative fouling surface formed by the removal of colloids, suspended solids and microbial cell particles through a coarse underlying support material (Saleem et al. 2018b; 2019). For this purpose, cheap materials, such as filter cloths, have been applied as underlying support to develop DMs (Saleem et al. 2019).

MF and UF are categorised as low-pressure (<2 bar) processes. Separation by MF is primarily performed by sieving. However, this process is generally limited to the elimination of organic colloids, suspended solids or particles and bacteria owing to fairly large pore sizes (approximately 0.1–1.0 μm). UF membranes likewise operate mainly via sieving but contain a broader separation range compared with MF and rely on pore sizes between 0.01 and 0.1 μm to remove pathogens, particles and colloids (Warsinger et al. 2016).

Meanwhile, NF can eliminate ions that contribute substantially to osmotic pressure; thus, it allows operation pressures that are lower than those used in RO. Pre-treatment is required for heavily contaminated wastewater for NF to be effective (Nqombolo et al. 2018).

Among the new procedures for landfill leachate treatment, RO is one of the most promising and effective techniques (Yao 2017). The RO process separates contaminants into two streams, namely, permeate (filtrate) and highly polluted concentrates, which are often recirculated into the waste body (Talalaj 2019). Pertile et al. (2018) removed 43% of COD and 63% of BOD from landfill leachate through MF, with a transmembrane pressure of 0.5–1.4 bar.

Coagulation and flocculation

Fundamentally, coagulation facilities the destabilisation of fine particles (colloids) from wastewater to form a floc that can be settled simply (Achak et al. 2019). Coagulation/flocculation efficacy relies on selected coagulants/flocculants. Coagulants are generally trivalent-metal inorganic salts, such as aluminium sulphate, polyaluminium chloride and ferric chloride (Wei et al. 2018). Lippi et al. (2018) stated that the main advantage of this treatment is its high effectiveness in removing organic matter, suspended solids and
humic acids. However, drawbacks include the cost of chemicals and the management of generated sludge.

Nascimento et al. (2016) utilised natural chitosan as a coagulant for landfill leachate treatment. The removal rate for colour and turbidity was 80 and 91.4%, respectively, with a chitosan dosage of 960 mg/L with a pH of 8.5. Nithya & Abirami (2018) removed 85.2% of turbidity from landfill leachate via pine bark as a natural coagulant, with a pH of 7 and a coagulant dosage of 4 g/mL.

Hybrid physical/chemical methods

To improve removal efficiency and decrease energy consumption, several physical/chemical treatment methods have been combined to treat landfill leachate. Xiang et al. (2019) posited that hybrid processes, especially AOPs, combined with other treatments may be promising approaches for saving energy. Four integrated systems for combined physical/chemical methods have been identified.

AOPs combined with membranes. The integration of membrane filtration with AOPs may efficiently mitigate membrane-fouling problems, thereby enhancing overall separation performance (Pan et al. 2019). Santos et al. (2019) removed 94–96% of COD and 96–99% of colour from landfill leachate by combining the Fenton, NF and MF processes. Santos et al. (2019) indicated that the concentration of dissolved solids may be high after an AOP–Fenton process owing to the presence of organic matter that has not been completely oxidised and the addition of salts and acid/basic agents. Thus, the use of membranes can resolve this issue.

AOPs combined with coagulation. According to Chen et al. (2019), this integrated method can reduce the concentration of organic pollutants and increase the biodegradability of wastewater by altering the molecular structure of residual organics. Gautam et al. (2019) identified energy intensiveness, electrode passivation and the formation of chlorinated organics as the main drawbacks of electrocoagulation methods. Integrated photoelectrooxidation and activated carbon can remove 70.3% of COD, 58.3% of ammonia and 58.4% of TN (Klauck et al. 2017). Chen et al. (2019) eliminated 88.3% of COD, 98.8% of colour and 94.3% of UV254 from landfill leachate by using a combined coagulation–ozonation process.

AOPs combined with adsorption. The integration of AOPs with adsorption has been suggested to improve pollutant removal efficiency, specifically, metals from landfill leachate. Bello & Raman (2019) stated that complex organic contaminants can be degraded by AOPs but complete mineralisation is not mostly practical and some intermediate contaminants are frequently generated. Therefore, combining AOPs and adsorption could remove these intermediates. Integrated H2O2-granular activated carbon can reduce 97.3% of COD and increase biodegradable ratio by 116% (Eljaiek-Urzola et al. 2018). Eljaiek-Urzola et al. (2018) stated that integrating H2O2 with activate carbon can improve the decomposition of peroxide in free radicals and enhance performance. Jafari et al. (2017) removed 99.8% of tetracycline, as emerging pollutants, from aqueous solution by Heterogeneous Fenton: activated carbon–Fe3O4.

Membrane filtration combined with coagulation or adsorption. According to Alimoradi et al. (2018), coagulants or adsorbents have been applied sequentially to membranes to eliminate suspended and colloidal substances from wastewater, thereby reducing organic load and hindering membrane fouling. Gkotisis et al. (2017) emphasised that the use of coagulants in MBR systems could contribute significantly to reducing transmembrane pressure. Apart from that, Alimoradi et al. (2018) stated that coagulation pre-treatment delays the reversible and irreversible fouling by improving sludge filterability and by eliminating soluble microbial products, respectively. Alimoradi et al. (2018) removed more than 90% of Al by integrated coagulation-membrane bioreactor. 99.2% of COD, 100% of suspended solids and 97.3% of total organic carbon were removed by combined coagulation and membrane (Boluarte et al. 2016). 100% of 4-chlorophenol, 78–100% of oxidation intermediates from wastewater by integrated catalytic oxidation and adsorption (Arsene et al. 2013).

Hybrid physical/chemical and biological methods

Biological ways are frequently employed to treat landfill leachate. However, a biological procedure alone is not efficient enough to eliminate the bulk of refractory contaminants in
landfill leachate (Wu et al. 2010). Therefore, researchers (Mojiri et al. 2016b) have suggested integrated biological methods and physical/chemical techniques to improve biodegradability ratios and increase biological performance in treating landfill leachate. Five commonly applied combined treatment methods have been identified.

Integrated adsorption and biological treatment methods

Adsorption can be employed to diminish contaminants and leachate toxicity to provide favourable growth conditions for microbial growth (Er et al. 2016). Munz et al. (2007) listed the advantages of combination of adsorption, such as activated carbon, and biological methods as: protecting microorganisms from load pick of inhibiting organic and inorganic compounds, improving refractory organics, improving sludge settleability and dewaterability capacity. Besides, the application of the adsorption technique together with the biological method leads to reduce the quantity of adsorbent employed for the wastewater treatment process (Yi et al. 2018). Sawdust added to an SBR can remove 99% of COD and 95% of ammonia (Mohajeri et al. 2018). More than 60% of ampicillin was eliminated by integrating adsorption and biodegradation (Shen et al. 2010). Ammonia was removed for more than 70% from landfill leachate by integrated adsorption and biological treatment (Yi et al. 2018).

Integrated membrane and biological treatment methods

Generally, membrane bioreactor is a vital innovation in treating wastewater treatments since it overcomes the disadvantages of the conventional activated sludge process, such as producing excess sludge, requiring secondary clarifiers, and limitations with elimination of recalcitrant (Iorhemen et al. 2016). Among anaerobic biological methods, the anaerobic membrane bioreactor (AnMBR) system, which decouples HRT from SRT, is feasible for treating heavy wastewater, such as leachate (Abuabdou et al. 2020). Regarding the drawbacks of membrane bioreactors, Abuabdou et al. (2020) argued that starting an AnMBR in temperatures below 20 °C may result in the reduction of biomass growth, thereby causing a long SRT for stabilisation. Xu et al. (2019) removed more than 90% of sulphonamides and tetracyclines by using membrane bioreactor. More than 90% of COD was removed from landfill leachate by AnMBR (Zayen et al. 2016).

Integrated AOP and biological treatment methods

He et al. (2020) expressed that integrating AOP techniques, as a pre-treatment, leads to readily biodegradable intermediates for biological posttreatment. Therefore, it has a positive impact for treating wastewaters, such as landfill leachate. Researchers (He et al. 2020; Xia et al. 2020) reported that zone oxidation, photocatalyst and EO are promising pre-treatment ways to enhance biodegradability of refractory contaminants. A combined semiaerobic aged refuse biofilter and ozonation process can eliminate 92.1% of colour and 61.4% of UV254 from landfill leachate (Chen et al. 2019). More than 70% of aromatic pollutants, such as p-aminophenol, by hybrid reactor including ozone pre-treatment and bioreactor (Xia et al. 2020). COD concentration was decreased to less than 50 mg/L by combined photocatalytic pre-oxidation reactor with SBR (He et al. 2020). Integrated ozonation and membrane bioreactor removed up to 99% of pharmaceuticals, such as Etodolac (Kaya et al. 2017). 100% of sulfadiazine, 97% of total organic carbon, 94% of BOD$_5$ and 97% of COD were eliminated by ozonation and membrane bioreactor (Lastre-Acosta et al. 2020).

Integrated coagulation and biological treatment methods

Coagulation/flocculation can be applied as pre-treatment and posttreatment with biological treatment methods (Niazi 2018; Güvenç & Güven 2019). Employed coagulation/flocculation as a pre-treatment leads to improve the biodegradability and reduce COD, colour and metals in landfill leachate. These advantages can enhance the treatment of landfill leachate with biological methods. The use of the coagulation/flocculation as a posttreatment can remove refractory pollutants, such as metals, COD and organics. Niazi (2018) expressed that biological treatment results the degrading dissolved and colloidal organics which transform to active biomass. The active biomass in reject water produced from biological method can get more dissolved organics and colloidal solids from the wastewater which is eliminated by coagulation. An integrated
coagulation and anaerobic bioreactor process can remove 72% of COD and 70% of total organic carbon (Yadav et al. 2016).

Constructed wetlands

Mojiri et al. (2016b) suggested that the CW system was engineered to increase water quality. A wetland system comprises permeable substrata, such as gravel, which is typically planted with emergent wetland plants, such as Schoenoplectus, Typha, Phragmites and Cyperus. Dan et al. (2017b) expressed that degradable organic carbon and ammonia can be efficiently removed from landfill leachate by CW systems. Nitrogen pollutants can be removed by adsorption through substrate, absorption through plant roots, volatilisation in ammonia forms, biological degradation and biochemical transformation into N₂ (Gottshall et al. 2007; Badejo et al. 2011). Zhuang et al. (2019) expressed that more than 50% of nitrogen can be eliminated by microbial activities, such as nitrification/denitrification process, while around 25% of nitrogen may be absorbed by plant roots. Up to 89% of ammonia removal with using a CW was reported by Mannarino et al. (2006).

Most part of phenolic compounds are removed by microbial activities and adsorption through substrate (Rossmann et al. 2012). Dan et al. (2017a) removed 88–100% of phenols, 18–100% of 4-tert-butylphenol and 9–99% of bisphenol A by using a vertical flow-constructed wetland. Apart from organic contaminants, heavy metals can be removed by CW systems.

According to Dan et al. (2017b), various mechanisms, such as the adsorption of soil or substrates as well as particulates and soluble organics, the precipitation of insoluble salts and the uptake of aquatic plants and microorganisms, may affect metal removal via CW systems. Ujang et al. (2005) removed up to 92.2% of Zn, 96.8% of Ni, 99.5% of Cu, 87.5% of Cr and 98.1% of Pb by using a CW which contained E. sexangulare and media.

CONCLUSIONS

Landfill leachate often possesses significant pollution potential with high concentrations of organic and inorganic contaminants. Primary landfill leachate treatment techniques consist of physical, chemical and biological methods. Owing to high concentrations of contaminants in landfill leachate and its low biodegradability, integrated treatment methods and co-treatment with wastewater are strongly recommended. Membrane filtration and integrated biological methods (nitrification/denitrification/anammox) have demonstrated high performance in removing nitrogen and ammonia from landfill leachate. Moreover, coagulation/flocculation methods have exhibited high efficiency in removing suspended solids and turbidity, with a removal rate of more than 90%. Bioremediation has demonstrated varied removal efficiency for COD, ranging from 17.5 to 60% depending on bacteria or algae species, thereby failing to show high performance in reducing COD. Finally, physical/chemical treatments have exhibited high performance in removing heavy metals.

ACKNOWLEDGEMENT

We would like to thank the Japan Society for the Promotion of Science for their support and fellowship. This work was supported by JSPS KAKENHI, grant number JP17F17375.

DATA AVAILABILITY STATEMENT

All relevant data are included in the paper or its Supplementary Information.

REFERENCES

Abbas, Z., Arrooj, F., Ali, S., Zaheer, I. E., Rizwan, M. & Riaz, M. A. 2019 Phytoremediation of landfill leachate waste contaminants through floating bed technique using water hyacinth and water lettuce. Int. J. Phytorem. 21 (13), 1356–1367. https://doi.org/10.1080/15226514.2019.1633259.

Abuabdou, S. M. A., Ahmad, W., Aun, N. C. & Bashir, M. J. K. 2020 A review of anaerobic membrane bioreactors (AnMBR) for the treatment of highly contaminated landfill leachate and biogas production: effectiveness, limitations and future perspectives. J. Cleaner Prod. 255, 120215. https://doi.org/10.1016/j.jclepro.2020.120215

Abu Amr, S. S., Zakaria, S. N. F. & Aziz, H. A. 2017 Performance of combined ozone and zirconium tetrachloride in stabilized...
landfill leachate treatment. *Journal of Water Reuse and Desalination.* 19, 1384–1390. https://doi.org/10.1007/s10311-016-0524-x.

Achak, M., Elayadi, F. & Boumya, W. 2019 Chemical coagulation/flocculation processes for removal of phenolic compounds from olive mill wastewater: a comprehensive review. *American J. Appl. Sci.* 16, 59–91. https://doi.org/10.3844/ajassp.2019.59.91.

Agbozu, I. E., Oghama, O. E. & Odhikori, J. O. 2015 Physico-chemical characterization and pollution index determination of leachates from Warri waste dumpsite, Southern Nigeria. *J. Appl. Sci. Environ. Manage.* 19 (3), 361–372.

Akgül, D., Aktan, C. K., Yapsakli, K. & Mertoglu, B. 2015 Treatment of landfill leachate using UASB-MBR-SHARON-Anammox configuration. *Biodegradation* 24, 399–412. https://doi.org/10.1007/s10532-012-9597-y.

Alboudi, K. A., Ahmed, B. & Brodie, G. 2018 Phytoremediation of Pb and Cd contaminated soils by using sunflower (*Helianthus annuus*) plant. *Ann. Agric. Sci.* 63 (1), 123–127. https://doi.org/10.4303/ajas.2018.05.007.

Alimoradi, S., Faraj, R. & Torabian, A. 2018 Effects of residual aluminum on hybrid membrane bioreactor (coagulation-MBR) performance, treating dairy wastewater. *Chem. Eng. Process.* 133, 320–324. https://doi.org/10.1016/j.cep.2018.09.023.

Al-Wabel, M. I., Al Yehya, W. S., Al-Farraj, A. S. & El-Maghrahy, S. E. 2011 Characteristics of landfill leachates and bio-solids of municipal solid waste (MSW) in Riyadh City, Saudi Arabia. *J. Saudi Soc. Agric. Sci.* 10 (2), 65–70. https://doi.org/10.1016/j.jssas.2011.03.009.

Arsene, D., Teodosiu, C., Barjoveanu, G., Apreutesei, R. E., Apopei, P., Musteret, C. P. & Caliecan, D. 2013 Combined catalytic oxidation and adsorption of priority organic pollutants for wastewater recycling. *Environ. Eng. Manage. J.* 12 (5), 907–916.

Atmaca, E. 2009 Treatment of landfill leachate by using electro-Fenton method. *J. Hazard. Mater.* 163 (1), 109–114. https://doi.org/10.1016/j.jhazmat.2008.06.067.

Ayala, J. & Fernández, B. 2019 Treatment from abandoned mine landfill leachates: adsorption technology. *J. Mater. Res. Technol.* 8 (3), 2732–2740. https://doi.org/10.1016/j.jmrt.2019.04.009.

Aziz, S. Q. 2012 Landfill Leachate Treatment Using Powdered Activated Carbon Augmented Sequencing Batch Reactor (SBR) Process. PhD Thesis, School of Civil Engineering, Universiti Sains Malaysia, Malaysia.

Azmi, N. B., Singarayah, A., Bashir, M. J. K. & Sethupathi, S. 2015 Landfill leachate treatment by low cost activated carbon prepared from agriculture waste. *J. Eng. Res. Technol.* 2 (1), 87–94.

Aziz, H. A., Rahim, N. A., Ramli, S. F., Alazaiza, M. Y. D., Omar, F. M. & Hung, Y. T. 2018 Potential use of *dimocarpus longan* seeds as a flocculant in landfill leachate treatment. *Water* 10, 1672. https://doi.org/10.3390/w10111672.

Aziz, H. A., Noor, A. F. M., Keat, Y. W., Alazaiza, M. Y. D. & Hamid, A. A. 2020 Heat activated zeolite for the reduction of ammoniacal nitrogen, colour, and COD in landfill leachate. *Int. J. Environ. Res.* 14, 463–478. https://doi.org/10.1007/s14742-020-00270-5.

Azreen, I. & Zahrim, A. Y. 2018 Overview of biologically digested leachate treatment using adsorption. In: *Anaerobic Digestion Processes: Applications and Efficient Treatment* (N. Horan, A. Z. Yaser & N. Wid, eds.). Springer Nature, Singapore.

Azzouz, L., Boudjema, N., Aouichat, F., Kherat, M. & Mameri, N. 2018 Membrane bioreactor performance in treating Algiers’ landfill leachate from using indigenous bacteria and inoculating with activated sludge. *Waste Manage.* 75, 384–390. https://doi.org/10.1016/j.wasman.2018.02.003.

Badejo, A. A., Omole, D. O. & Ndambuki, J. M. 2018 Municipal wastewater management using *Vetiveria zizanioides* planted in vertical flow constructed wetland. *Appl. Water Sci.* 8, 110.

Banch, T. J. H., Hanafiah, M. M., Alkarkhi, A. F. M. & Amr, S. S. A. 2019 Factorial design and optimization of landfill leachate treatment using tannin-based natural coagulant. *Polymers* 11, 1349. https://doi.org/10.3390/polym11081349.

Bashir, M. J. K., Xian, T. M., Shehzad, A., Sethupahi, S., Aun, N. C. & Amr, S. A. 2017 Sequential treatment for landfill leachate by applying coagulation-adsorption process. *J. Geosys. Eng.* 20 (1), 9–20. https://doi.org/10.1080/122693528.2016.1217798.

Bello, M. M. & Raman, A. A. A. 2019 Synergy of adsorption and advanced oxidation processes in recalcitrant wastewater treatment. *Environ. Chem. Lett.* 17, 1125–1142. https://doi.org/10.1007/s10311-018-00842-0.

Boluarte, I. A. R., Andersen, M., Pramanik, B. K., Chang, C. Y., Bagshaw, S., Farago, L., Jegathesan, V. & Shu, L. 2016 Use of car wash wastewater by chemical coagulation and membrane bioreactor treatment processes. *Int. Biodeterior. Biodegrad.* 113, 44–48. https://doi.org/10.1016/j.ibiod.2016.01.017.

Boumechhour, F., Rabah, K., Lamine, C. & Said, B. M. 2012 Treatment of landfill leachate using Fenton process and coagulation/flocculation. *Water Environ. J.* 27, 114–119. https://doi.org/10.1111/j.1747-6593.2012.00332.x.

Braga, W. L. M., de Melo, D. H. A., de Morais, S. R. C., Damor, G. R. L., Franca, A. B. et al. 2020 Optimization of the treatment of sanitary landfill by the ozonation catalysed by modified nanovesicle in a rotating packed bed. *J. Cleaner Prod.* 249, 119395. https://doi.org/10.1016/j.jclepro.2019.119395.

Chávez, R. P., Fizarro, E. C. C. & Galiano, Y. L. 2019 Landfill leachate treatment using activated carbon obtained from coffee waste. *Eng. Sanit. Ambient.* 24, 8330842. https://doi.org/10.1590/S1413-41522019178655.

Chen, X., Fujiwara, T., Fukahori, S. & Ishigaki, T. 2015 Factors affecting the adsorptive removal of bisphenol A in landfill leachate by high silica Y-type zeolite. *Environ. Sci. Pollut. Res.* 22, 2788–2799. https://doi.org/10.1007/s11356-014-3522-3.

Chen, W., Zhang, A., Jiang, G. & Li, Q. 2019 Transformation and degradation mechanism of landfill leachates in a combined
process of SAARB and ozonation. Waste Manage. 85, 283–294. https://doi.org/10.1016/j.wasman.2018.12.038.

Chuangcham, U., Wirojanagud, W., Charusiri, P., Milne-Home, W. & Lertsirivorakul, R. 2008 Assessment of heavy metals from landfill leachate contaminated to soil: a case study of Kham Bon Landfill, Khon Kaen Province, NE Thailand. J. Appl. Sci. 8, 1383–1394. https://doi.org/10.3923/jas.2008.1383.1394.

Contrera, R. C., Culi, M. J. L., Morita, D. M., Rodrigues, J. A. D., Zaiat, M. & Schalch, V. 2018 Biomass growth and its mobility in an AnSBBR treating landfill leachate. Waste Manage. 82, 37–50. https://doi.org/10.1016/j.wasman.2018.10.006.

Cui, Y. H., Xue, W. J., Yang, S. Q., Tu, J. L., Guo, X. L. & Liu, Z. Q. 2018 Electrochemical/peroxydisulfate/Fe3+ treatment of landfill leachate nanofiltration concentrate after ultrafiltration. Chem. Eng. J. 353, 208–217. https://doi.org/10.1016/j.cej.2018.07.101.

Dabaghian, Z., Peyravi, M., Jahanshahi, M. & Rad, A. S. 2019 Potential of advanced nano-structured methods for landfill leachate treatment: a review. ChemBioEng Rev 5, 1–20. https://doi.org/10.1002/cben.201600020.

Dan, A., Fujii, D., Soda, S., Machimura, T. & Ike, M. 2017a Removal of phenol, bisphenol A, and 4-tert-butylphenol from synthetic landfill leachate by vertical flow constructed wetlands. Sci. Total Environ. 578, 566–576. https://doi.org/10.1016/j.scitotenv.2016.10.232.

Dan, A., Oka, M., Fujii, Y., Soda, S., Ishigaki, T., Machimura, T. & Ike, M. 2017b Removal of heavy metals from synthetic landfill leachate in a scale-wide vertical flow constructed wetlands. Sci. Total Environ. 584/585, 742–750. https://doi.org/10.1016/j.scitotenv.2017.01.112.

Daud, Z., Ibrahim, F. N. D., Latiff, A. A. A., Ridzuan, B., Ahmad, Z., Awang, H. & Marto, A. 2016 Ammoniacal nitrogen and COD removal using zeolite-feldspar mineral composite adsorbent. Int. J. Integr. Environ. 8, 9–12.

Daud, M. K., Ali, S., Abbas, Z., Zaheer, I. E., Riaz, M. A., Malik, A., Hussain, A., Zia-ur-Rehman, M. & Zhu, S. J. 2018 Potential of duckweed (Lemma minor) for the phytoremediation of landfill leachate. J. Chem. Article ID 3951540. https://doi.org/10.1155/2018/3951540.

de Oliveira, M. S., da Silva, L. F., Barbosa, A. D., Romualdo, L., Sadoyama, G. & Andrade, L. S. 2019 Landfill leachate treatment by combining coagulation and advanced electrochemical oxidation techniques. ChemElectroChem 6, 1427–1433. https://doi.org/10.1002/celc.201801677.

Dolar, D., Koštútic, K. & Strmecky, T. 2016 Hybrid processes for treatment of landfill leachate: coagulation/UF/NF-RO and adsorption/UF/NF-RO. Sep. Purif. Technol. 168, 39–46. https://doi.org/10.1016/j.seppur.2016.05.016.

Edokpayi, B. N., Durwojoa, O. S. & Odiyo, J. 2018 Assessment of heavy metals in landfill leachate: a case study of Thohoyandou landfill, Limpopo Province, South Africa. In: Heavy Metals (H. El-Din Saleh & R. Aglan eds.). IntechOpen, UK.

Eggen, T., Moeder, M. & Arukwe, A. 2010 Municipal landfill leachates: a significant source for new and emerging pollutants. Sci. Total Environ. 408 (21), 5147–5157. doi:10.1016/j.scitotenv.2010.07.049.

Eliaiekh-Urzola, M., Guardiola-Meza, L., Ghafouri, S. & Mehrvar, M. 2018 Treatment of mature landfill leachate using hybrid processes of hydrogen peroxide and adsorption in an activated carbon fixed bed column. J. Environ. Sci. Health, A 53, 238–243. https://doi.org/10.1080/10934529.2017.1394709.

Elleuch, L., Messaoud, M., Djebali, K., Attafi, M., Cherni, Y., Kasmi, M., Trabelsi, I. & Chatti, A. 2020 A new insight into highly contaminated landfill leachate treatment using Kefir grains pre-treatment combined with Ag-doped TiO2 photocatalytic process. J. Hazard. Mater. 382, 121119. https://doi.org/10.1016/j.jhazmat.2019.121119.

Er, X. Y., Seow, T. W., Lim, C. K., Ibrahim, Z. & Chan, N. W. 2018 Landfill leachate management by using combined adsorption and biological treatment. In AIP Conference Proceedings 2016. p. 020041.

Er, X. Y., Seow, T. W., Lim, C. K., Ibrahim, Z. & Mat Sarip, S. H. 2019 Biological treatment of closed landfill leachate by using Brevibacillus panicehumi strain ZB1. IOP Conf. Series: Earth Environ. Sci. 140, 012012. https://doi.org/10.1088/1755-1315/140/1/012012.

Erabee, I. K., Ahsan, A., Jose, B., Aziz, M. M. A., Ng, A. W. M., Idrus, S. & Daus, N. N. N. 2018 Adsorptive treatment of landfill leachate using activated carbon modified with three different methods. KSCE J. Civil Eng. 22 (4), 1083–1095. https://doi.org/10.1007/s12205-017-1430-z.

Feng, T., Xu, J., Yu, C., Cheng, K., Wu, Y., Wang, Y. & Li, F. 2019 Graphene oxide wrapped melamine sponge as an efficient and recoverable adsorbent for Pb(II) removal from fly ash leachate. J. Hazard. Mater. 367, 26–34. https://doi.org/10.1016/j.jhazmat.2018.12.053.

Ferraz, F. M. & Yuan, Q. 2020 Performance of oat hulls activated carbon for COD and color removal from landfill leachate. J. Water Process Eng. 33, 101040. https://doi.org/10.1016/j.jwpe.2019.101040.

Ferraz, F. M., Povinelli, J., Pozzi, E., Vieira, E. M. & Tronfino, J. C. 2014 Co-treatment of landfill leachate and domestic wastewater using a submerged aerobic biofilter. J. Environ. Manage. 141, 9–15. https://doi.org/10.1016/j.jenvman.2014.03.022.

Gamoń, F., Tomaszewski, M. & Ziemiańska-Buczyńska, A. 2019 Ecotoxicological study of landfill leachate treated in the ANAMMOX process. Water Qual. Res. J. 54, 230–241. https://doi.org/10.2166/wqrj.2019.042.

Gautam, P., Kumar, S. & Lokhandwala, S. 2019 Advanced oxidation processes for treatment of leachate from hazardous waste landfill: a critical review. J. Cleaner Prod. 237, 117639. https://doi.org/10.1016/j.jclepro.2019.117639.

Ghahrchi, M. & Rezaee, A. 2020 Electro-catalytic ozonation for improving the biodegradability of mature landfill leachate. J.
Environ. Manage. 254, 109811. https://doi.org/10.1016/j.jenvman.2019.109811.

Ghimire, U., Jang, M., Jung, S. P., Park, D., Park, S. J., Yu, H. & Oh, S. E. 2020 Electrochemical removal of ammonium nitrogen and COD of domestic wastewater using platinum coated titanium as an anode electrode. Energies 12, 883. https://doi.org/10.3390/en12050883.

Gkotis, P. K., Batsari, E. L., Peleka, E. N., Tolkou, A. K. & Zoubpulis, A. I. 2017 Fouling control in a lab-scale MBR system: comparison of several commercially applied coagulants. J. Environ. Manage. 203, 858–864. https://doi.org/10.1016/j.jenvman.2016.03.003.

Gotthall, N., Boutin, C., Crolla, A., Kinsley, C. & Champagne, P. 2007 The role of plants in the removal of nutrients at a constructed wetland treating agricultural (dairy) wastewater, Ontario, Canada. Ecol. Eng. 29 (1), 154–163. https://doi.org/10.1016/j.ecoleng.2006.06.004.

Gotvajn, A. Z. & Pavko, A. 2015 Perspectives on biological treatment of sanitary landfill leachate. In: Wastewater Treatment Engineering (M. Samer, ed.). IntechOpen, UK.

Güvenç, S. Y. & Güven, E. C. 2019 Pretreatment of food industry wastewater by coagulation: process modeling and optimization. Celal Bayar University J. Sci. 15 (3), 307–316. https://doi.org/10.18466/cbayarfbe.581611.

Hajjizadeh, M., Ghammamy, S., Ganjidoust, H. & Farsad, F. 2020 Amino acid modified bentonite clay as an eco-friendly adsorbent for landfill leachate treatment. Pol. J. Environ. Stud. 29 (6), 1–11. https://doi.org/10.15244/pjes/114507.

Hanson, A. J., Luek, J. J., Tummings, S. S., McLaughlin, M. C., Blotevogel, J. & Mouser, P. J. 2019 High total dissolved solids in shale gas wastewater inhibit biodegradation of alkyl and nonylphenol ethoxylate surfactants. Sci. Total Environ. 668, 1094–1103. https://doi.org/10.1016/j.scitotenv.2019.03.041.

He, H., Ma, H. & Liu, L. 2020 Combined photocatalytic pre-oxidation reactor and sequencing batch bioreactor for advanced treatment of industrial wastewater. J. Water Process Eng. 36, 101259. https://doi.org/10.1016/j.jwpe.2020.101259.

Hegzay, A. K., Abdel-Ghani, N. T. & El-Chaghaby, G. A. 2011 Phytoremediation of industrial wastewater potentiality by Typha domingensis. Int. J. Environ. Sci. Technol. 8 (3), 639–648.

Hu, X., Wang, X., Ban, Y. & Ren, B. 2011 A comparative study of UV-Fenton, UV–H₂O₂ and Fenton reaction treatment of landfill leachate. Environ. Technol. 32 (9), 945–951. http://dx.doi.org/10.1080/09593330.2010.521953.

Hu, L., Zeng, G., Chen, G., Dong, H., Liu, Y., Wan, J., Chen, A., Guo, Z., Yan, M., Wu, H. & Yu, Z. 2016 Treatment of landfill leachate using immobilized Phanerochaete chrysosporium loaded with nitrogen-doped TiO₂ nanoparticles. J. Hazard. Mater. 301, 106–118. https://doi.org/10.1016/j.jhazmat.2015.08.060.

Hussein, M., Yoneda, K., Zaki, Z. M., Othman, N. A. & Amir, A. 2019 Leachate characterizations and pollution indices of active and closed unlined landfills in Malaysia. Environ.

Nanotechnol. Monit. Manage. 12, 100232. https://doi.org/10.1016/j.jenmnn.2019.100232.

Iorhemen, O. T., Hamza, R. A. & Tay, J. H. 2016 Membrane bioreactor (MBR) technology for wastewater treatment and reclamation: membrane fouling. Membranes 6 (2), 33. https://dx.doi.org/10.3390/membranes6020033.

Ishak, A. R., Hamid, F. S., Mohamad, S. & Tay, K. S. 2018 Stabilized landfill leachate treatment by coagulation-flocculation coupled with UV-based sulfate radical oxidation process. Waste Manage. 76, 575–581. https://doi.org/10.1016/j.wasman.2018.02.047.

Jafari, A. J., Kakavandi, B., Jaafarzadeh, N., Kalantary, R. R., Ahmadi, M. & Babaei, A. A. 2017 Fenton-like catalytic oxidation of tetracycline by AC@Fe₃O₄ as a heterogeneous persulfate activator: adsorption and degradation studies. J. Industr. Eng. Chem. 45, 323–333. https://doi.org/10.1016/j.jiec.2016.09.044.

Jahan, E., Nessa, A., Hossain, M. F. & Parveen, Z. 2016 Characteristics of municipal landfill leachate and its impact on surrounding agricultural land. Bangladesh J. Sci. Res. 29 (1), 31–39. https://doi.org/10.3329/bjscr.v29i1.29755.

Jiang, Y., Li, R., Yang, Y., Yu, M., Xi, B., Li, M., Gao, S. & Yang, C. 2019 Migration and evolution of dissolved organic matter in landfill leachate-contaminated groundwater plume. Resour. Conserv. Recycl. 151, 104463. https://doi.org/10.1016/j.resconres.2019.104463.

Kamaruddin, M. A., Yusoff, M. S., Aziz, H. A. & Hung, Y. T. 2015 Sustainable treatment of landfill leachate. Appl. Water Sci. 5, 113–126. https://doi.org/10.1007/s13201-014-0177-7.

Kaya, Y., Bacaksz, A. M., Bayrak, H., Gönder, Z. B., Vergili, I., Hasar, H. & Yilmaz, G. 2017 Treatment of chemical synthesis-based pharmaceutical wastewater in an ozonation-anaerobic membrane bioreactor (AnMBR) system. Chem. Eng. J. 322, 293–301. https://doi.org/10.1016/j.cej.2017.03.154.

Klauck, C. R., Giacobbo, A., Altenhofen, C. G., Silva, L. B., Meneguzzi, A., Bernardes, A. M. & Rodrigues, M. A. S. 2017 Toxicity elimination of landfill leachate by hybrid processing of advanced oxidation process and adsorption. Environ. Technol. Innov. 8, 246–255. https://doi.org/10.1016/j.eti.2017.07.006.

Koštutić, K., Dolar, D. & Strmecny, T. 2015 Treatment of landfill leachate by membrane processes of nanofiltration and reverse osmosis. Desalin. Water Treat. 55, 2680–2689. https://doi.org/10.1080/19443994.2014.939863.

Kumar, G. S., Bharadwaj, J., Sruthi, P. L. & Sekhar, M. C. 2016 Removal of ammonia nitrogen (NH₄-N) from landfill leachate by chemical treatment. Indian J. Sci. Technol. 9, 1–4. https://doi.org/10.17485/ijst/2016/v9i30/99174.

Kwarciai-Kozłowska, A., Włodarczyk, R. & Wystańska, K. 2009 Biochar compared with activated granular carbon for landfill leachate treatment. E3S Web Conf. 100, 00042. https://doi.org/10.1051/e3sconf/20191000042.

Lam, S. S., Yek, P. N. Y., Ok, Y. S., Chong, C. C., Liew, R. K., Tsang, D. C. W., Park, Y. K., Liu, Z., Wong, C. S. & Peng, W.
2020 Engineering pyrolysis biochar via single-step microwave steam activation for hazardous landfill leachate treatment. J. Hazard. Mater. 390, 121649. https://doi.org/10.1016/j.jhazmat.2019.121649.

Lastre-Acosta, A. M., Palharim, P. H., Barbosa, I. M., Mierzwa, J. C. & Teixeira, A. C. S. C. 2020 Removal of sulfadiazine from simulated industrial wastewater by a membrane bioreactor and ozonation. J. Environ. Manage. 271, 111040. https://doi.org/10.1016/j.jenvman.2020.111040.

Li, Y., Jin, F., Wang, C., Chen, Y., Wang, Q., Zhang, W. & Wang, D. 2015 Modification of bentonite with cationic surfactant for the enhanced retention of bisphenol A from landfill leachate. Environ Sci. Pollut. Res. 22, 8618–8628. https://doi.org/10.1007/s11356-014-4068-0.

Li, R., Wang, B., Owete, O., Dertien, J., Lin, C., Ahmad, H. & Chen, G. 2017 Landfill leachate treatment by electrocoagulation and fiber filtration. Water Environ. Res. 89, 2015–2020. https://doi.org/10.1016/j.wer.2015.01.057-13.

Li, X., Lu, M., Qiu, Q., Huang, Y., Li, B., Yuan, Y. & Yuan, Y. 2020 The effect of different denitrification and partial nitrification-anaerobic oxidation coupling and nitrification-denitrification coupling processes on nitrogen removal from mature landfill leachate at the pilot-scale. Bioresour. Technol. 297, 122430. https://doi.org/10.1016/j.biortech.2019.122430.

Lippi, M., Ley, M. B. R. G., Mendez, G. P. & Junior, R. A. F. C. 2018 State of art of landfill leachate treatment: literature review and critical evaluation. Ciência E Natura, Santa Maria 40, e78. https://doi.org/10.5990/2179460X3239.

Luo, K., Pang, Y., Li, X., Chen, F., Liao, X., Lei, M. & Song, Y. 2019 Landfill leachate treatment by coagulation/floculation combined with microelectrolysis-Fenton processes. J. Environ. Technol. 40, 1862–1870. https://doi.org/10.1080/09593330.2018.1432694.

Luu, T. L. 2020 Post treatment of ICEAS-bioreologically landfill leachate using electochemo-oxidation with Ti/BDD and Ti/RuO2 anodes. Environ. Technol. Innov. 20, 101099. https://doi.org/10.1016/j.eti.2020.101099.

Madera-Parra, C. A. 2016 Treatment of landfill leachate by polyculture constructed wetlands planted with native plants. Ing. Compet. 18, 183–192.

Mahdavi, A. R., Ghoresyhi, A. A., Rahimpour, A., Younesi, H. & Pirzadeh, K. 2018 COD removal from landfill leachate using a high-performance and low-cost activated carbon synthesized from walnut shell. Chem. Eng. Commun. 205 (9), 1193–1206. https://doi.org/10.1080/00986445.2018.1441831.

Mandal, P., Dubey, B. K. & Gupta, A. K. 2017 Review on landfill leachate treatment by electrochemical oxidation: drawbacks, challenges and future scope. Waste Manage. 69, 250–273. http://dx.doi.org/10.1016/j.wasman.2017.08.034.

Mannarino, C. F., Ferreira, J. F., Campos, J. C. & Ritter, E. 2006 Landfill leachate treatment using wetlands: experiences in Pirai municipality solid waste landfill and Gramacho metropolitan solid waste landfill. Engenharia Sanitaria E Ambiental 11 (2), 108–112. http://dx.doi.org/10.1590/S1413-41522006000200002.

Mellem, J. J., Bajinath, H. & Odhav, B. 2009 Translocation and accumulation of Cr, Hg, As, Pb, Cu and Ni by Amananthus dubius (Amaranthaceae) from contaminated sites. J. Environ. Sci. Health A 44 (6), 568–575. https://doi.org/10.1080/10934520902784583.

Miao, L., Yang, G., Tao, T. & Peng, Y. 2019 Recent advances in nitrogen removal from landfill leachate using biological treatments – a review. J. Environ. Manage. 235, 178–185. https://doi.org/10.1016/j.jenvman.2019.01.057.

Michalska, J., Piński, A., Zur, J. & Mróz, A. 2020 Selecting bacteria candidates for the bioaugmentation of activated sludge to improve the aerobic treatment of landfill leachate. Water 12, 140. https://doi.org/10.3390/w12010140.

Mishra, N. S., Reddy, R., Kuila, A., Rani, A., Mukherjee, P., Nawaz, A. & Pichiah, S. 2017 A review on advanced oxidation processes for effective water treatment. Curr. World Environ. 12, 470–490. http://dx.doi.org/10.12944/CWE.12.3.02.

Mohajeri, P., Salamat, M. R., Aziz, H. A. & Smith, C. 2018 Removal of COD and ammonia nitrogen by a sawdust-bentonite-augmented SBR process. Clean Technol. 1, 125–140. http://dx.doi.org/10.5990/cleanchemno1010009.

Mohan, S., Mamane, H., Avisar, D., Gozlan, I., Kaplan, A. & Dayanlan, G. 2019 Treatment of diethyl phthalate leached from plastic products in municipal solid waste using an ozone-based advanced oxidation process. Materials 12, 4119. https://doi.org/10.3390/ma12094411.

Mojiri, A., Aziz, H. A., Zaman, N. Q., Aziz, S. Q. & Zahed, M. A. 2016b Metals removal from municipal landfill leachate and wastewater using adsorbents combined with biological method. Desalin. Water Treat. 57, 2819–2833. https://doi.org/10.1007/s13200-014-985180.

Mojiri, A., Ziyang, L., Tajuddin, R. M., Farraj, H. & Alifar, N. 2016 Co-treatment of landfill leachate and municipal wastewater using the ZELIAC/zeolite constructed wetland system. J. Environ. Manage. 166, 124–130. http://dx.doi.org/10.1016/j.jenvman.2015.10.020.

Mojiri, A., Ziyang, L., Hui, W., Ahmad, Z., Tajuddin, R. M., Abu Amr, S. S., Kindaichi, T., Aziz, H. A. & Farraj, H. 2017 Concentrated landfill leachate treatment with a combined system including electro-ozonation and composite adsorbent augmented sequencing batch reactor process. Process Saf. Environ. Manage. 111, 253–262. https://doi.org/10.1016/j.psep.2017.07.013.

Mojiri, A., Ohashi, A., Ozaki, N., Aoi, Y. & Kindaichi, T. 2020 Integrated anammox-biochar in synthetic wastewater treatment: performance and optimization by artificial neural network. J. Cleaner Prod. 243, 118638. https://doi.org/10.1016/j.jclepro.2019.118638.

Moktar, K. A. & Tajuddin, R. M. 2019 Phytoremediation of heavy metal from leachate using imperata cylindrical. MATEC Web
effective factors and microalgae strain performance. Arab. J. Geosci. 10, 457. https://doi.org/10.1007/s12517-017-3241-4.

Oumar, D., Patrick, D., Gerardo, B., Rino, D. & Ihsen, B. S. 2016 Coupling biofiltration process and electrocoagulation using magnesium-based anode for the treatment of landfill leachate. J. Environ. Manage. 181, 477–483. https://doi.org/10.1016/j.jenvman.2016.06.067.

Pan, Z., Song, C., Li, L., Wang, H., Pan, Y., Wang, C., Li, J., Wang, T. & Feng, X. 2019 Membrane technology coupled with electrochemical advanced oxidation processes for organic wastewater treatment: recent advances and future prospects. Chem. Eng. J. 376, 120909. https://doi.org/10.1016/j.cej.2019.01.188.

Pandey, S. K., Upadhyay, R. K., Gupta, V. K., Worku, K. & Lamba, D. 2019 Phytoremediaation potential of macrophytes of urban waterbodies in Central India. J. Health Pollut. 9 (24), 191206. https://doi.org/10.1016/j.cej.2018.10.004.

Nascimento, A. O. D. C., Guedes, A. R. P., Perelo, L. W. & Queiroz, L. M. 2016 Post-treatment of sanitary landfill leachate by coagulation–floculation using chitosan as primary coagulant. Water Sci. Technol. 74, 246–255. https://doi.org/10.2166/wst.2016.203.

Naveen, B. P., Sivapullaiah, P. V. & Sitharam, T. G. 2014 Characteristics of a municipal solid waste landfill leachate. In: Proceedings of Indian Geotechnical Conference IGC, December 18–20, Kakinada, India.

Naveen, B. P., Sivapullaiah, P. V. & Sitharam, T. G. 2016 Effect of aging on the leachate characteristics from municipal solid waste landfill. Japanese Geotechnical Society Special Publication 2, 1940–1945. https://doi.org/10.3202/jgssp.IND-06.

Ndimele, P. E., Kumolu-Johnson, C. A., Chukwuka, K. S., Ndimele, C. C., Ayorinde, O. A. & Adaramoye, O. R. 2014 Phytoremediation of iron (Fe) and copper (Cu) by water hyacinth (Eichhornia crassipes (Mart.) smols). Trends App. Sci. Res. 9, 485–493. http://dx.doi.org/10.3923/tasar.2014.485.493.

Niazi, S. 2018 Coagulation Effects of Biological Sludge Reject Water Treatment. Master Thesis, Energy and Environment Technology, University of South-Eastern Norway, Norway.

Nilsson, F. 2018 Application of Ozone in Wastewater Treatment for Mitigation of Filamentous Bulking Sludge & Reduction of Pharmaceutical Discharge. PhD Thesis, Lund University, Sweden.

Nithya, M. & Abirami, M. 2018 The leachate treatment by using natural coagulants (pine bark and chitosan). Int. Res. J. Eng. Technol. 5, 2711–2714.

Nivala, J., Hoos, M. B., Cross, C., Wallace, S. & Parkin, G. 2007 Treatment of landfill leachate using an aerated, horizontal subsurface-flow constructed wetland. Sci. Total Environ. 380 (1/3), 19–27. https://doi.org/10.1016/j.scitotenv.2006.12.030.

Nqombolo, A., Mpupa, A., Moutloali, R. M. & Nonmgongo, P. N. 2018 Wastewater treatment using membrane technology. In: Wastewater and Water Quality (T. Yonar, ed.), IntechOpen, UK.

Ouaret, M. E., Kallel, A., Kasmi, M., Hassen, A. & Trabelsi, I. 2017 Tunisian landfill leachate treatment using Chlorella sp.:
J. Environ. Manage. 253, 109697. https://doi.org/10.1016/j.jenvman.2019.109697.

Poblete, R., Oller, I., Maldonado, M. I. & Cortes, E. 2019 Improved landfill leachate quality using ozone, UV solar radiation, hydrogen peroxide, persulfate and adsorption processes. J. Environ. Manage. 252, 45–51. https://doi.org/10.1016/j.jenvman.2018.11.030.

Qi, C., Huang, J., Wang, B., Deng, S., Wang, Y. & Yu, G. 2018 Contaminants of emerging concern in landfill leachate in China: a review. Emerg. Contam. 4 (1), 1–10. https://doi.org/10.1016/j.emcon.2018.06.001.

Rajasulochana, P. & Preethy, V. 2016 Comparison on efficiency of various techniques in treatment of waste and sewage water – a comprehensive review. Resour.-Effic. Technol. 24, 175–184. https://doi.org/10.1016/j.refit.2016.09.004.

Ramakrishnan, A., Blaney, L. M., Kao, J., Tyagi, J. D., Zhang, T. C. & Surampalli, R. Y. 2019 Emerging contaminants in landfill leachate and their sustainable management. Environ. Earth Sci. 75 (3). doi:10.1007/s12665-014-3489-x.

Rani, A., Negi, S., Hussain, A. & Kumar, S. 2020 Treatment of urban municipal landfill leachate utilizing garbage enzyme. Bioreour. Technol. 297, 122437. https://doi.org/10.1016/j.biortech.2019.122437.

Ranjan, K., Chakraborty, S., Verma, M., Iqbal, J. & Kumar, R. N. 2016 Co-treatment of old landfill leachate and municipal wastewater in sequencing batch reactor (SBR): effect of landfill leachate concentration. Water Qual. Res. J. 51, 377–387. https://doi.org/10.1111/wqrc.122437.

Ren, X., Liu, D., Chen, W., Jiang, G., Wu, J. & Song, K. 2018 Investigation of the characteristics of concentrated leachate from six municipal solid waste incineration power plants in China. RSC Adv. 8, 13159. https://doi.org/10.1039/c7ra13259j.

Ricordel, C. & Djelah, H. 2014 Treatment of landfill leachate with high proportion of refractory materials by electrocoagulation: system performances and sludge settling characteristics. J. Environ. Chem. Eng. 2 (3), 1551–1557. https://doi.org/10.1016/j.jece.2014.06.014.

Roongtanakiat, N., Tangruangkit, S. & Meesat, R. 2007 Utilization of vetiver grass (Vetiveria zizanioides) for removal of heavy metals from industrial wastewaters. ScienceAsia 33, 397–403. https://doi.org/10.2306/scienceasia1513-1874.2007.33.397.

Rossmann, M., de Matos, A. T., Abreu, E. C., Silva, F. F. & Borges, A. C. 2012 Performance of constructed wetlands in the treatment of aerated coffee processing wastewater: removal of nutrients and phenolic compounds. Ecol. Eng. 49, 264–269. https://doi.org/10.1016/j.ecoleng.2012.08.017.

Roudi, A. M., Chelliapan, S., Mohtar, W. H. M. W. & Kamyab, H. 2018 Prediction and optimization of the Fenton process for the treatment of landfill leachate using an artificial neural network. Water 10, 595. https://doi.org/10.3390/w10050595.

Sakizadeh, M. 2019 Spatial analysis of total dissolved solids in Dezful aquifer: comparison between universal and fixed rank kriging. J. Contam. Hydrol. 221, 26–34. https://doi.org/10.1016/j.jconhyd.2019.01.001.

Salas-Enríquez, B. G., Torres-Huerta, A. M., Conde-Barajas, E., Domínguez-Crespo, M. A., Negrete-Rodríguez, M. L. X., Dorantes-Rosales, H. J. & López-Oyama, A. B. 2019 Stabilized landfill leachate treatment using Guadua amplexifolia bamboo as a source of activated carbon: kinetics study. Environ. Technol. 40 (6), 768–783. https://doi.org/10.1080/09593330.2017.1407828.

Saleem, M., Lavagnolo, M. C., Campanaro, S. & Squartrini, A. 2018 Dynamic membrane bioreactor (DMBR) for the treatment of landfill leachate; bioreactor’s performance and metagenomic insights into microbial community evolution. Environ. Pollut. 343, 326–335. https://doi.org/10.1016/j.envpol.2018.08.090.

Saleem, M., Spagni, A., AliBardi, L., Bertucco, A. & Lavagnolo, M. C. 2018 Assessment of dynamic membrane filtration for biological treatment of old landfill leachate. J. Environ. Manage. 213, 27–35. https://doi.org/10.1016/j.jenvman.2018.02.057.

Saleem, M., Masut, E., Spagni, A. & Lavagnolo, M. C. 2019 Exploring dynamic membrane as an alternative for conventional membrane for the treatment of old landfill leachate. J. Environ. Manage. 246, 658–667. https://doi.org/10.1016/j.jenvman.2019.06.025.

Samadder, S. R., Prabhatkar, R., Khan, D., Kishan, D. & Chauhan, M. S. 2017 Analysis of the contaminants released from municipal solid waste landfill site: a case study. Sci. Total Environ. 580, 593–601. https://doi.org/10.1016/j.scitotenv.2016.12.003.

Santos, A. V., de Andrade, L. H., Amaral, M. C. S. & Lange, L. C. 2019 Integration of membrane separation and Fenton processes for sanitary landfill leachate treatment. Environ. Technol. 40, 2897–2905. https://doi.org/10.1080/09593330.2018.1458337.

Särkkäa, H., Bhatnagar, A. & Sillanpää, A. 2015 Recent developments of electro-oxidation in water treatment – a review. J. Electro Chem. 754, 46–56. https://doi.org/10.1016/j.jelechem.2015.06.016.

ScodelaI, A. P. J., Rigobello, E. S., de Oliveira, B. L. C. & Tavares, C. R. G. 2019 Identification of organic compounds in landfill leachate treated by advanced oxidation processes. Environ. Technol. 40, 730–741. https://doi.org/10.1080/09593330.2017.1405079.

ScodelaI, A. P. J., Zotessso, J. P., Jagathesan, V., Cardozo-Filho, L. & Tavares, C. R. G. 2020 Intensification of supercritical water oxidation (SCWO) process for landfill leachate treatment through ion exchange with zeolite. Waste Manage. 101, 259–267. https://doi.org/10.1016/j.wasman.2019.10.005.

Seibert, D., Quesada, H., Bergamasco, R. & Borba, F. H. 2019 Presence of endocrine disrupting chemicals in sanitary landfill leachate, its treatment and degradation by Fenton based processes: a review. Process Safe Environ Prot. 131, 225–267. https://doi.org/10.1016/j.psep.2019.09.022.

Shehzad, A., Bashir, M. J. K., Sethupathi, S. & Lim, J. W. 2016 An insight into the remediation of highly contaminated landfill leachate using sea mango based activated bio-char: optimization, isothermal and kinetic studies. Desalin. Water Treat. 57 (47), 22244–22257. https://doi.org/10.1080/19443994.2015.1130660.
Shen, L., Liu, Y. & Xu, H. L. 2010 Treatment of ampicillin-loaded wastewater by combined adsorption and biodegradation. *Chem. Technol. Biotech.* **85**(6), 814–820. https://doi.org/10.1002/jctb.2369.

Singa, P. K., Isa, M. H., Ho, Y. C. & Lim, J. W. 2018 Treatment of hazardous waste landfill leachate using Fenton oxidation process. *E3S Web Conf.* **34**, 02034. https://doi.org/10.1051/e3sconf/20183402034.

Siyal, M. I., Lee, C. K., Par, C., Khan, A. A. & Kim, J. O. 2019 A review of membrane development in membrane distillation for emulsified industrial or shale gas wastewater treatments with feed containing hybrid impurities. *J. Environ. Manage.* **243**, 45–56. https://doi.org/10.1016/j.jenvman.2019.04.105.

Smaoui, Y., Bouzid, J. & Sayadi, S. 2020 Combination of air stripping and biological processes for landfill leachate treatment. *Environ. Eng. Res.* **25**, 80–87. https://doi.org/10.1006/ceer.2018.268.

Song, U., Waldman Park, J. S., Lee, K., Park, S. J. & Lee, E. J. 2018 Improving the remediation capacity of a landfill leachate channel by selecting suitable macrophytes. *J. Hydro-Environ. Res.* **20**, 31–37. https://doi.org/10.1016/j.jher.2018.04.005.

Soubh, A. M., Baghdadi, M., Abdoli, M. A. & Aminzadeh, B. 2018 Zero-valent iron nanofibers (ZVINFs) immobilized on the surface of reduced ultra-large graphene oxide (RULGO) as a persulfate activator for treatment of landfill leachate. *J. Environ. Chem. Eng.* **6**(2018), 6568–6579. https://doi.org/10.1016/j.jece.2018.10.011.

Spina, F., Tigini, V., Romagnolo, A. & Varese, G. C. 2018 Bioremediation of landfill leachate with fungi: autochthonous vs. allochthonous strains. *Life* **8**, 27. https://doi.org/10.3390/life8030027.

Sun, H., Wang, Z., Gao, P. & Liu, P. 2013 Selection of aquatic plants for phytoremediation of heavy metal in electroplate wastewater. *Acta Physiol. Plant* **35**, 555–564. https://doi.org/10.1007/s11738-012-1078-8.

Talalaj, I. A. 2015 Removal of organic and inorganic compounds from landfill leachate using reverse osmosis. *Int. J. Environ. Sci. Technol.* **12**, 2791–2800. https://doi.org/10.1007/s13762-014-0661-5.

Talalaj, I. A. 2019 Quality of leachate from landfill with reverse osmosis concentrate recirculation. *J. Ecol. Eng.* **20**, 205–211. https://doi.org/10.12991/22998993/111711.

Talalaj, I. A., Beidka, P. & Bartkowska, I. 2019 Treatment of landfill leachates with biological pretreatments and reverse osmosis. *Environ. Chem. Lett.* **17**, 1177–1193. https://doi.org/10.1007/s10311-019-00860-6.

Tangahu, B. V., Abdullah, S. R. S., Basri, H., Idris, M., Anuar, N. & Mukhlisin, M. 2021 A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. *Int. J. Chem. Eng.* 939161. https://doi.org/10.1155/2021/939161.

Taoufik, M., Elmoubariki, R., Moufti, A., Elhalil, A., Farnane, M., Machrouhi, A., Abdennouri, M., Pourzal, S. & Barka, N. 2018 Treatment of landfill leachate by coagulation-flocculation with FeCl₃: process optimization using Box–Behnken design. *J. Mater. Environ. Sci.* **9**, 2458–2467.

Tejera, J., Miranda, R., Hermosilla, D., Urra, I., Negro, C. & Blanco, A. 2019 Treatment of a mature landfill leachate: comparison between homogeneous and heterogeneous photo-Fenton with different pretreatments. *Water* **11**, 1849. https://doi.org/10.3390/w11091849.

Thakur, I. S. & Medhi, K. 2019 Nitritification and denitrification processes for mitigation of nitrous oxide from waste water treatment plants for biovalorization: challenges and opportunities. *Bioreosour. Technol.* **282**, 502–513. https://doi.org/10.1016/j.biortech.2019.03.069.

Torretta, V., Ferronato, N., Katsoyiannis, I. A., Tolkau, A. K. & Airoldi, M. 2017 Novel and conventional technologies for landfill leachates treatment: a review. *Sustainability* **9**, 9. https://doi.org/10.3390/su9010009.

Ujang, Z., Soedjono, E., Salim, M. R. & Shutes, R. B. 2005 Landfill leachate treatment by an experimental subsurface flow constructed wetland in tropical climate countries. *Water Sci. Technol.* **52**(12), 243–250. https://doi.org/10.2166/wst.2005.0473.

Ukundimana, Z., Omwene, P. I., Genge, E., Can, O. T. & Kobya, M. 2018 Electrooxidation as post treatment of ultrafiltration effluent in a landfill leachate MBR treatment plant: effects of BDD, Pt andDSA anode types. *Electrochem. Acta* **286**, 252–263. https://doi.org/10.1016/j.electacta.2018.08.019.

Vaccari, M., Tudor, T. & Vinti, G. 2019 Characteristics of leachate from landfills and dumpsites in Asia, Africa and Latin America: an overview. *Waste Manage.* **95**, 419–431. https://doi.org/10.1016/j.wasman.2019.06.032.

Wang, J. & Chen, H. 2020 Catalytic ozonation for water and wastewater treatment: recent advances and perspective. *Sci. Total Environ.* **704**, 135249. https://doi.org/10.1016/j.scitotenv.2019.135249.

Wang, Y., Liang, S., Chen, B., Guo, F., Yu, S. & Tang, Y. 2013 Synergistic removal of Pb(II), Cd(II) and humic acid by Fe₃O₄@Mesoporous silica-graphene oxide composites. *PLoS One* **8**(6), e65634. https://doi.org/10.1371/journal.pone.0065634.

Wang, J. M., Lu, C. S., Chen, Y. Y., Chang, Y. Y. & Fan, H. J. 2015a Landfill leachate treatment with Mn and Ce oxides impregnated GAC–ozone treatment process. *Colloids Surf. A: Physicochem. Eng. Sci.* **482**, 536–543. https://doi.org/10.1016/j.colsurfa.2015.06.042.

Wang, J., Tian, H. & Ji, Y. 2015b Adsorption behavior and mechanism of humic acid on aminated magnetic nanoadsorbent. *Sep. Purif. Technol.* **50**(9), 1285–1293. https://doi.org/10.1016/j.seppur.2014.09.011.

Wang, Z., Peng, Y., Miao, L., Cao, T., Zhang, F., Wang, S. & Han, J. 2016 Continuous-flow combined process of nitritation and ANAMMOX for treatment of landfill leachate. *Bioreosour. Technol.* **214**, 514–519. https://doi.org/10.1016/j.biortech.2016.04.118.

Wang, K., Li, L., Tan, F. & Wu, D. 2018a Treatment of landfill leachate using activated sludge technology: a review. *Archaea* Article ID: 1039453. https://doi.org/10.1155/2018/1039453.

Wang, L., Lin, H., Dong, Y. & He, Y. 2018b Effects of cropping patterns of four plants on the phytoremediation of vanadium-
containing synthetic wastewater. *Ecol. Eng.* **115**, 27–34. https://doi.org/10.1016/j.ecoeng.2018.01.008.

Warsinger, D. M., Chakraborty, S., Tow, E. W., Plumlee, M. H., Bellona, C., Loutatidou, S., Karimi, L., Mikelonis, A. M., Achilli, A., Ghassemi, A. et al. 2016 A review of polymeric membranes and processes for potable water reuse. *Prog. Polym. Sci.* **81**, 209–237. https://dx.doi.org/10.1016/j.progpolymsci.2018.01.004.

Wei, H., Gao, B., Ren, J., Li, A. & Yang, H. 2018 Coagulation/ flocculation in dewatering of sludge: a review. *Water Res.* **143**, 608–631. https://doi.org/10.1016/j.watres.2018.07.029.

Wu, L., Li, Z., Liang, D. & Peng, Y. 2018 A novel partial-denitrification strategy for post-anammox to effectively remove nitrogen from landfill leachate. *Sci. Total Environ.* **633**, 745–751. https://doi.org/10.1016/j.scitotenv.2018.03.213.

Xaypanya, P., Takemura, J., Chiemchaisri, C., Seingheng, H. & Tanchuling, M. A. N. 2018 Characterization of landfill leachates and sediments in major cities of Indochina peninsular countries – heavy metal partitioning in municipal solid waste leachate. *Environments* **5**, 65. https://doi.org/10.3390/environments5060065.

Xia, J., Sun, H., Ma, X., Huang, K. & Ye, L. 2020 Ozone pretreatment of wastewater containing aromatics reduces antibiotic resistance genes in bioreactors: the example of p-aminophenol. *Environ. Int.* **142**, 105864. https://doi.org/10.1016/j.envint.2020.105864.

Xiang, Q., Nomura, Y., Fukahori, S., Mizuno, T., Tanaka, H. & Fujiwara, T. 2019 Innovative treatment of organic contaminants in reverse osmosis concentrate from water reuse: a mini review. *Curr. Pollut. Rep.* **5**, 294–307. https://doi.org/10.1007/s40726-019-00119-2.

Xu, Z., Song, X., Li, Y., Li, G. & Luo, W. 2019 Removal of antibiotics by sequencing-batch membrane bioreactor for swine wastewater treatment. *Sci. Total Environ.* **684**, 23–30. https://doi.org/10.1016/j.scitotenv.2019.05.241.

Yadav, J. S. & Dikshit, A. K. 2017 Stabilized old landfill leachate treatment using electrococagulation. *EnvironmentAsia* **10**, 25–33. https://doi.org/10.14456/ea.2017.4.

Yadav, J. S., Dikshit, A. K. & Ng, C. A. 2016 Effect of pretreatment by coagulation on stabilized landfill leachate during anaerobic treatment. *Cogent Environ. Sci.* **2**, 1209993. https://doi.org/10.1080/23311843.2016.1209993.

Yalcük, A. & Ugurlu, A. 2020 Treatment of landfill leachate with laboratory scale vertical flow constructed wetlands: plant growth modelling. *Int. J. Phytoremediat.* **22**, 157–166. https://doi.org/10.1080/15226514.2019.1652562.

Yao, P. 2017 Perspectives on technology for landfill leachate treatment. *Arab. J. Chem.* **10**, S2567–S2574. https://doi.org/10.1016/j.arabjc.2013.09.031.

Yasri, N. G. & Gunasekaran, S. 2017 Electrochemical technologies for environmental remediation. In: *Enhancing Cleanup of Environmental Pollutants*, Vol. 2 (N. A. Anjum, S. S. Gill & N. Tuteja, eds.). Springer, Germany.

Yi, E. X., Wee, S. T., Lim, C. K., Ibrahim, Z. & Chang, N. W. 2018 Combined adsorption and biological treatment for landfill leachate management. *J. Adv. Res. Fluid Mech. Therm. Sci.* **50** (1), 26–31.

Yong, Z. J., Bashir, M. J. K., Ng, C. A., Sethupathi, S. & Lim, J. W. 2018 A sequential treatment of intermediate tropical landfill leachate using a sequencing batch reactor (SBR) and coagulation. *J. Environ. Manage.* **205**, 244–252. https://doi.org/10.1016/j.jenvman.2017.09.068.

Zainol, N. A., Pin, L. B., Rashid, N. A., Ghami, A. A., Zailani, S. N. & Rani, A. L. A. 2018 Treatment of landfill leachate by coagulation-flocculation process using red earth as coagulant. *AIP Conf. Proc.* **2030**, 020043. https://doi.org/10.1063/1.5066684.

Zamri, M. F. M. A., Kamaruddin, M. A., Yusoff, M. S. & Aziz, H. A. 2017 Semi-aerobic stabilized landfill leachate treatment by ion exchange resin: isotherm and kinetic study. *Appl. Water Sci.* **7**, 581–590. https://doi.org/10.1007/s13201-015-0266-2.

Zayen, A., Mnif, S., Aloui, F., Fki, F., Loukil, S., Bouaziz, M. & Sayadi, S. 2010 Anaerobic membrane bioreactor for the treatment of leachates from Jebel Chakir discharge in Tunisia. *J. Hazard. Mater.* **177** (1/3), 918–923. https://doi.org/10.1016/j.jhazmat.2010.01.004.

Zegzouti, Y., Boutafrica, A., Ezzariai, A., Fels, L. E., Hadek, M. E., Hassan, L. A. I. & Hafidi, M. 2020 Bioremediation of landfill leachate by *Aspergillus flavus* in submerged culture: evaluation of the process efficiency by physicochemical methods and 3D fluorescence spectroscopy. *J. Environ. Manage.* **255**, 109821. https://doi.org/10.1016/j.jenvman.2019.109821.

Zhang, J., Gong, J. L., Zenga, G. M., Ou, X. M., Jiang, Y., Chang, Y. N., Guo, M., Zhang, C. & Liu, H. Y. 2016 Simultaneous removal of humic acid/fulvic acid and lead from landfill leachate using magnetic graphene oxide. *App. Surf. Sci.* **370**, 335–350. https://doi.org/10.1016/j.apsusc.2016.02.181.

Zhang, F., Peng, Y., Wang, S., Wang, Z. & Jiang, H. 2019 Efficient step-feed partial nitrification, simultaneous Anammox and denitrification (SPNAD) equipped with real-time control parameters treating raw mature landfill leachate. *J. Hazard. Mater.* **364**, 163–172. https://doi.org/10.1016/j.jhazmat.2018.09.066.

Zhuang, L. L., Yang, T. & Li, X. 2016 Landfill leachate treatment by sequential membrane bioreactor and electro-oxidation processes. *J. Environ. Manage.* **184**, 318–326. https://doi.org/10.1016/j.jenvman.2016.10.010.

First received 16 September 2020; accepted in revised form 11 November 2020. Available online 1 December 2020.