On the separation of the roots of the generalized Fibonacci polynomial

Jonathan García * Carlos A. Gómez † Florian Luca ‡

November 4, 2022

Abstract

In this paper we prove some separation results for the roots of the generalized Fibonacci polynomials and their absolute values.

Key words and phrases: k–generalized Fibonacci polynomial; Polynomial root separation; Distribution of roots of polynomials.

Mathematics Subject Classification 2020: 11B39, 11C08, 12D10

1 Introduction

A sequence $(u_n)_{n \in \mathbb{Z}} \subseteq \mathbb{C}$ is a linear recurrence sequence of order $k \in \mathbb{Z}^+$ if it satisfies the recurrence relation

$$u_{n+k} = a_1 u_{n+k-1} + a_2 u_{n+k-2} + \cdots + a_k u_n \quad \text{for all } n \geq 0$$

with coefficients $a_1, \ldots, a_k \in \mathbb{C}$ and $a_k \neq 0$. We assume that k is minimal with the above property. Such a sequence $(u_n)_{n \in \mathbb{Z}}$ has an associated characteristic polynomial given by $f(X) = X^k - a_1 X^{k-1} - \cdots - a_k$. Let $\alpha_1, \ldots, \alpha_s \in \mathbb{C}$ be the distinct roots of $\Psi_k(X)$. From the theory of linear recurrence sequences (see [7, Theorem C.1]) there are complex single–variable polynomials A_1, A_2, \ldots, A_s, uniquely determined by the initial values u_0, \ldots, u_{k-1}, such that for all $n \in \mathbb{Z}$

$$u_n = A_1(n)\alpha_1^n + A_2(n)\alpha_2^n + \cdots + A_s(n)\alpha_s^n.$$
From here we see the importance of knowing some properties of the roots of \(f(X) \) if one wants to deduce arithmetic properties for the members of \((u_n)_{n \in \mathbb{Z}}\).

A special and recently studied case is related to the roots of the characteristic polynomial of the \(k \)-generalized Fibonacci sequence. Let \(f_k(X) \) be the generalized Fibonacci polynomial given by

\[
f_k(X) = X^k - X^{k-1} - \cdots - X - 1.
\]

This polynomial has exactly one root outside the unit disk. It is real and larger than 1 and we denote it by \(\alpha_k \) (see [8]). Let \(\rho_j e^{i\theta_j} \), \(\theta_j \in (0, \pi] \) for \(j = 1, \ldots, K \) be roots of \(f_k(X) \) which are inside the upper half \(\text{Im}(z) \geq 0 \) of the disk \(|z| \leq 1 \). Then all roots of \(f_k(X) \) are

\[
\rho_1 e^{i\theta_1}, \rho_1 e^{-i\theta_1}, \ldots, \rho_K e^{i\theta_K}, \rho_K e^{-i\theta_K}, \alpha_k, \quad \text{when} \quad k \text{ is odd}
\]

and

\[
\rho_1 e^{i\theta_1}, \rho_1 e^{-i\theta_1}, \ldots, -\rho_K, \alpha_k, \quad \text{when} \quad k \text{ is even}.
\]

The following bounds on \(\rho_j \) for \(j = 1, \ldots, K \) appear in [3].

Lemma 1. We have

\[
1 - \frac{\log 3}{k} < \rho_j < 1 - \frac{1}{2^8 k^3} \quad \text{for} \quad j = 1, \ldots, K.
\]

The distribution of the arguments \(\theta_j \) is also understood. The following appears in [11], responding to a conjecture proposed in [3].

Lemma 2. Let \(\alpha_j = \rho_j e^{i\theta_j} \) with \(\theta_j \in [0, 2\pi) \) for \(j = 1, \ldots, k \) be all the roots of \(f_k(X) \). Then for every \(h \in \{0, 1, \ldots, k-1\} \), there exists \(j \) such that

\[
\left| \theta_j - \frac{2\pi h}{k} \right| < \frac{\pi}{k}.
\]

To reconcile with our notation, the angles \(\theta_j \) for \(j = K + 1, \ldots, k \) are chosen so that \(\theta_{j+\ell} = \theta_j + \pi \) for \(\ell = 1, \ldots, K \) when \(k \) is odd. When \(k \) is even, then the same formula holds for \(\ell = 1, \ldots, K-1 \) and \(\theta_K = \pi \). Finally, \(\theta_k = 0 \) corresponds to the dominant root \(\alpha_k \).

Remark 1. Since the intervals

\[
\left(\frac{2h\pi}{k} - \frac{\pi}{k}, \frac{2h\pi}{k} + \frac{\pi}{k} \right)
\]

are disjoint modulo \(2\pi \) as \(h \) ranges in \(\{0, \ldots, k-1\} \), and since \(f_k(X) \) has \(k \) roots, each interval above contains the argument of only one of the roots of \(f_k(X) \).

*For an integer \(k \geq 2 \), the \(k \)-Fibonacci sequence is defined by the recurrence relation \(F_n^{(k)} = F_{n-k}^{(k)} + \cdots + F_1^{(k)} \) for all \(n \geq 2 \) and initial values \(F_i^{(k)} = 0 \) for \(i = -(k-2), \ldots, 0 \), followed by \(F_1^{(k)} = 1 \). The Fibonacci numbers are obtained for \(k = 2 \).
Another important and useful property is related to the separation of the roots of $f_k(X)$. In the previous paper [4] we proved that
\[
\frac{\rho_i}{\rho_j} > 1 + 8^{-k^4} \quad \text{for all} \quad 1 \leq i < j \leq K,
\]
and Dubickas [2] improved the right–hand side above to $1 + 1.454^{-k^3}$.

Our first result is improving this bound.

Theorem 1. The inequality
\[
\frac{\rho_i}{\rho_j} > 1 + \frac{1}{10k^{9.6}(\pi/e)^k} \quad \text{holds for all} \quad 1 \leq i < j \leq K. \quad (2)
\]
and all $k \geq 4$.

2 An auxiliar separation result

The above Theorem 1 is a separation result concerning the absolute values of the differences of the roots of $f_k(X)$. Quite general separation results of this kind appear in [2] but they are much worse (the denominator of the analogous expression from the right–hand side in (2) in [2] is exponential in k^2). To prove Theorem 1 we need a good separation result on the α_i’s themselves.

Before presenting our result on the root separation of $f_k(X)$, with which we will prove Theorem 1, we will show how we can obtain a better result than the one proved by Dubickas [2] in our particular case by using results of Mahler [5] and Mignotte [6]. Namely, let us show that the inequality
\[
|\alpha_i - \alpha_j| > \frac{1}{k^{3/2}3k^2} \quad \text{holds for} \quad 1 \leq i < j \leq k \quad (3)
\]
provided $k \geq 100$. This can be proved using an off–the-shelf result. Namely, let
\[
g_k(X) = (X-1)f_k(X) = X^{k+1} - 2X^k + 1 \quad \text{and} \quad h_k(X) = X^{k+1}g_k(1/X).
\]
Then the roots of $h_k(X)$ are 1 and $1/\alpha_i$ for $i = 1, \ldots, k$. Let them be y_1, \ldots, y_{k+1} with $y_\ell = 1/\alpha_\ell$ and $\alpha_{k+1} = 1$. By [5] and [6], the inequality
\[
|y_i - y_j| > \frac{\sqrt{3|\text{disc}(h_k)|}}{d^{d/2+1}\|h_k\|_d^{-d-1}} \quad \text{holds for} \quad 1 \leq i < j \leq k+1,
\]
holds where $d = \deg(h_k)$ and $\text{disc}(h_k)$ are the degree and discriminant of $h_k(X)$, respectively. For us, $d = k + 1$, and
\[
|\text{disc}(h_k)| = |\text{disc}(g_k)| = (k - 1)^2|\text{disc}(f_k)|
= 2^{k+1}k^k - (k + 1)^{k+1} = k^k \left(2^{k+1} - (k + 1) \left(1 + \frac{1}{k}\right)^k\right)
> k^k(2^{k+1} - e(k + 1)) > 2^{k}k^k \quad (4)
\]
since $2^k > e(k + 1)$ holds for $k \geq 100$. Further, $\|h_k\|_2 = \sqrt{1 + 2^2 + 1} = \sqrt{6}$.

We thus get

$$|y_i - y_j| > \frac{\sqrt{3 \cdot 2^k k^k}}{(k + 1)^{(k+3)/2}} \sqrt{6} = \frac{3^{1/2}}{(k + 1)^{3/2}} \frac{1}{(1 + 1/k)^{k/2}} \left(\frac{1}{3^{k/2}} \right)$$

$$\geq \left(\frac{3}{e} \right)^{1/2} \frac{1}{(k + 1)^{3/2} \cdot 3^{k/2}} > \frac{1.05}{k^{3/2} 3^{k/2}},$$

where we used the fact that $(3/e)^{1/2}(1/(k + 1)^{3/2}) > 1.05/k^{3/2}$ for $k \geq 100$. Evaluating the above in $y_i = 1/\alpha_i$, $y_j = 1/\alpha_j$, we get that

$$|\alpha_i - \alpha_j| > \frac{1.05|\alpha_i \alpha_j|}{k^{3/2} 3^{k/2}} > \frac{1}{k^{3/2} 3^{k/2}},$$

where we used the fact that

$$1.05|\alpha_i \alpha_j| > 1.05 \left(1 - \frac{\log 3}{k} \right)^2 > 1$$

(see Lemma 1) for $k \geq 100$. We next prove a better result.

Theorem 2. The inequality

$$|\alpha_i - \alpha_j| > \frac{1}{k^{6.6}(\pi/e)^k}$$

holds for all $1 \leq i < j \leq k$

and all $k \geq 4$.

3 Proof of the separation result Theorem 2

We assume $k \geq 100$. The proof of Mahler’s and Mignotte’s results from [5] and [6], respectively, are based on a discriminant calculation together with an upper bound for a determinant which follows from Hadamard’s inequality. Since we know quite a few things about the roots of $f_k(X)$, we visit that proof and use at the appropriate place the extra informations that we have about the roots of $f_k(X)$. We assume that α_i and α_j are small roots (i.e., $i, j \in \{1, \ldots, k - 1\}$), for otherwise one of i, j is k, say $i = k$ and then

$$|\alpha_i - \alpha_j| \geq \alpha_k - \rho_j \geq \left(2 - \frac{1}{2k-1} \right) - \left(1 - \frac{1}{2k^3} \right) = 1 + \frac{1}{2k^3} - \frac{1}{2k-1} > 0.9,$$

a much better inequality. We may also assume that $\theta_i \in (0, \pi]$ for otherwise we replace the pair of roots (α_i, α_j) by the pair of roots $(\overline{\alpha_i}, \overline{\alpha_j})$ whose separation is the same since $|\alpha_i - \alpha_j| = |\overline{\alpha_i} - \overline{\alpha_j}|$. As in the proof of (3), we pass to $h_k(X)$ and write

$$|\text{disc}(h_k)| = \prod_{\ell=1}^{k+1} |h'_k(y_\ell)|.$$

(5)
The left-hand side is
\[|\text{disc}(h_k)| = 2^{k+1}k^k - (k+1)^{k+1} > 2^k k^k \]
by the calculation (4). In the right-hand side we have
\[h_k(X)' = (k+1)X^k - 2. \]
When \(\ell = k + 1 \) (\(y_\ell = 1 \)), the corresponding factor is
\[|h'_k(1)| \leq k + 3. \]
(7)
When \(\ell = k \) (\(y_\ell = 1/\alpha_k \)), the corresponding factor is
\[|h'_k(1/\alpha_k)| = 2 - k + \frac{1}{\alpha_k} < 2 - \frac{k + 1}{2^k} < 2 \text{ for } k \geq 100. \]
(8)
When \(y_\ell = 1/\alpha_\ell \) for \(\ell \in \{1, \ldots, k-1\}\setminus\{i, j\} \), we have
\[|h'_k(1/\alpha_\ell)| \leq 2 + \frac{k + 1}{|\alpha_\ell|^k} \leq (k + 3)|\alpha_\ell|^{-k}, \quad \ell \in \{1, \ldots, k-1\}\setminus\{i, j\}. \]
(9)
Multiplying (7), (8) and (9) for \(\ell \in \{1, \ldots, k-1\}\setminus\{i, j\} \), we get
\[\prod_{1 \leq \ell \leq k+1, \ell \neq i, j} |h'_k(y_\ell)| \leq 2(k + 3)^{k-2} \prod_{1 \leq \ell \leq k-1, \ell \neq i, j} |\alpha_\ell|^{-k}. \]
By the Vieta relations,
\[\left| \prod_{1 \leq \ell \leq k-1, \ell \neq i, j} \alpha_\ell \right|^{-1} = \alpha_k |\alpha_i \alpha_j| < \alpha_k < 2. \]
Hence,
\[\prod_{1 \leq \ell \leq k+1, \ell \neq i, j} |h'_k(y_\ell)| < 2(k + 3)^{k-2}2^k. \]
(10)
Now (5) together with bounds (6) and (10) give
\[2^k k^k < |\text{disc}(h_k)| = \prod_{\ell = 1}^{k+1} |h'_k(y_\ell)| < 2|h'_k(y_i)||h'_k(y_j)|(k + 3)^{k-2}2^k, \]
which gives
\[|h'_k(y_i)||h'_k(y_j)| > \frac{(k + 3)^2}{2(1 + 3/k)^k} > \frac{(k + 3)^2}{2e^3} > \frac{k^2}{2e^3}, \]
(11)
where we used the fact that \((1 + 1/x)^x < e\) for \(x > 1\) with \(x = k/3\). We work on the left–hand side. We have

\[
|h_k'(y_i)||h_k'(y_j)| = |y_i - y_j|^2 \prod_{1 \leq \ell \leq k+1} |y_i - y_\ell||y_j - y_\ell|.
\]

When \(y_\ell = 1\) or \(y_\ell = 1/\alpha_k\), we have

\[
|y_i - y_\ell||y_j - y_\ell| \leq (1 + 1/\rho_i)(1 + 1/\rho_j) < 2.1^2 \quad y_\ell \in \{1, 1/\alpha_k\}
\]

since \(\min\{\rho_i, \rho_j\} \geq 1 - \log 3/k > 1/1.1\) for \(k \geq 100\) by Lemma (1). We thus get that

\[
|h_k'(y_i)||h_k'(y_j)| < |y_i - y_j|^2 (2.1)^4 \prod_{1 \leq \ell \leq k-1} |y_i - y_\ell||y_j - y_\ell|. \tag{12}
\]

In the right, we write \(y_i - y_\ell = 1/\alpha_i - 1/\alpha_\ell\) and do the same for \(y_j - y_\ell\) to get that the right–hand side is

\[
|\alpha_i - \alpha_j|^2 (2.1)^4 \left(\prod_{1 \leq \ell \leq k-1} |\alpha_i - \alpha_\ell||\alpha_j - \alpha_\ell| \right) |\alpha_\ell|^-(k-1) \prod_{1 \leq \ell \leq k-1} |\alpha_\ell|^{-2}.
\]

Again by the Vieta relations,

\[
|\alpha_i|^{-2} |\alpha_j|^{-2} \prod_{1 \leq \ell \leq k-1} |\alpha_\ell|^{-2} = \alpha_k^2 < 4.
\]

Thus, we get that the right–hand side in (12) is at most

\[
|\alpha_i - \alpha_j|^2 (2.1)^4 \cdot 4 \left(\prod_{1 \leq \ell \leq k-1} |\alpha_i - \alpha_\ell||\alpha_j - \alpha_\ell| \right) |\alpha_i\alpha_j|^{-(k-3)}).
\]

Since

\[
|\alpha_i| = \rho_i > 1 - \frac{\log 3}{k} = \exp \left(\log \left(1 - \frac{\log 3}{k} \right) \right) > \exp \left(- \frac{2 \log 3}{k} \right)
\]

(where we used that \(\log(1 - x) > -2x\) for \(x \in (0, 1/2)\)), we get that

\[
|\alpha_i|^{-(k-3)} < |\alpha_i|^{-k} < \exp (2 \log 3) = 9,
\]

and the same inequality holds with \(i\) replaced by \(j\). Thus, the right–hand side of (12) is at most

\[
|\alpha_i - \alpha_j|^2 (2.1)^4 \cdot 9^2 \left(\prod_{1 \leq \ell \leq k-1} |\alpha_i - \alpha_\ell||\alpha_j - \alpha_\ell| \right).
\]
Since $2.1^4 \cdot 4 \cdot 9^2 < 6500$, we get that

$$|h_k'(y_i)||h_k'(y_j)| < 6500|\alpha_i - \alpha_j|^2 \left(\prod_{1 \leq \ell \leq k-1 \atop \ell \neq i,j} |\alpha_i - \alpha_{\ell}| |\alpha_j - \alpha_{\ell}| \right).$$

Combining the above with (11), we get

$$\frac{k^2}{13000e^3} < |\alpha_i - \alpha_j|^2 \left(\prod_{1 \leq \ell \leq k-1 \atop \ell \neq i,j} |\alpha_i - \alpha_{\ell}| |\alpha_j - \alpha_{\ell}| \right).$$

(13)

It remains to bound the product in the right–hand side.

Let $h_i, h_j \in \{0, \ldots, k\}$ be such that

$$\theta_i \in \left(\frac{(2h_i - 1)\pi}{k}, \frac{(2h_i + 1)\pi}{k}\right)$$

and

$$\theta_j \in \left(\frac{(2h_j - 1)\pi}{k}, \frac{(2h_j + 1)\pi}{k}\right)$$

(14)

according to Lemma 2. By Remark 1, we have $h_i \neq h_j$. By the same remark, we have that h_i, h_j are both nonzero since the real root α_k corresponds to $h = 0$. Since $\theta_i \in (0, \pi]$, it follows that $h_i \leq (k + 1)/2$. We now justify that we may assume that h_i and h_j are consecutive modulo k and since $1 \leq h_i \leq (k + 1)/2$, it follows that either $h_j = h_i + 1$, or $h_j = h_i - 1$ and in the second case we must have $h_i \geq 2$. To see why, let us look at $|\theta_i - \theta_j|$. First of all, if $|\theta_i - \theta_j| \geq \pi/2$, it then follows that

$$|\alpha_i - \alpha_j| = |\rho_i e^{i\theta_i} - \rho_j e^{i\theta_j}| = \left| (e^{i\theta_i} - e^{i\theta_j}) + (\rho_i - 1) e^{i\theta_i} - (\rho_j - 1) e^{i\theta_j} \right|
\geq |e^{i\theta_i} - e^{i\theta_j}| - |1 - \rho_i| - |1 - \rho_j|
= 2 |\sin((\theta_i - \theta_j)/2)| - \frac{2 \log 3}{k} \geq \sqrt{2} - \frac{2 \log 3}{k} > 1$$

a much better bound. Thus, we may assume that $\theta_i - \theta_j \in (-\pi/2, \pi/2)$. Now, if h_i and h_j are not consecutive, it then follows that $\theta_i - \theta_j \geq 2\pi/k$. The same calculation as before then gives

$$|\alpha_i - \alpha_j| \geq 2 |\sin((\theta_i - \theta_j)/2)| - \frac{2 \log 3}{k}
\geq (2/\pi)|\theta_i - \theta_j| - \frac{2 \log 3}{k} \geq \frac{(4 - 2 \log 3)}{k},$$

again a much better bound. In the above, we used $|\sin x| \geq (2/\pi)|x|$ valid for $x \in (-\pi/2, \pi/2)$ with $x = \theta_i - \theta_j$.

A bit more can be said. Namely, if $h_j = h_i + 1$, then we must have

$$\frac{(2h_i - 0.5)\pi}{k} < \theta_i \leq \frac{(2h_i + 1)\pi}{k} \quad \text{and} \quad \frac{(2h_j - 0.5)\pi}{k} < \theta_j < \frac{(2h_j + 0.5)\pi}{k}.$$

(15)
Indeed, say if the first one fails, then $(2h_j - 1)\pi/k < \theta_i \leq (2h_i - 0.5)\pi/k$, while $(2h_j - 1)\pi/k = (2h_i + 1)\pi/k < \theta_j$, which shows that $|\theta_j - \theta_i| \geq 1.5\pi/k$.

As with the previous argument, we get

$$|\alpha_i - \alpha_j| \geq 2|\sin((\theta_j - \theta_i)/2)| - \frac{2\log 3}{k} \geq (2/\pi)|\theta_j - \theta_i| - \frac{2\log 3}{k} \geq \frac{3 - 2\log 3}{k},$$

again a much better inequality. A similar inequality holds if the second inequality in (15) fails. Similar inequalities hold if $h_j = h_i - 1$ (just invert the roles of i and j in the above argument to obtain the desired inequalities).

From now on we assume that $h_j = h_i + 1$ since the other case is obtained by swapping the roles of i and j. Let $\ell \in \{1, \ldots, k - 1\}\setminus\{i, j\}$ and let h_ℓ its corresponding h in $\{0, 1, \ldots, k - 1\}$ according to Lemma 2. If $\ell_{i,j}$ is such that $h_{\ell_{i,j}} = h_i - 1$, we just bound trivially

$$|\alpha_i - \alpha_\ell| \leq 2. \quad (16)$$

If $\ell \neq i, j, \ell_{i,j}$, it then follows that

$$|\theta_i - \theta_\ell| \geq \frac{2(|h_\ell - h_i| - 1)\pi}{k}, \quad (17)$$

and $|h_\ell - h_i| \geq 2$. As h_ℓ circulates in $\{1, \ldots, k - 1\}$ such that $h_\ell \not\in \{h_i - 1, h_i, h_i + 1(= h_j)\}$ the numbers $|h_\ell - h_i| - 1$ are positive integers $1, 2, 3, \ldots$ and each one of them is attained at most twice. Assume that ℓ is such that θ_ℓ is “far” from θ_i, namely $|\theta_i - \theta_\ell| \geq \pi/2$. Then

$$|e^{i\theta_\ell} - e^{i\theta_i}| = 2|\sin((\theta_\ell - \theta_i)/2)| \geq \sqrt{2},$$

and

$$|\alpha_i - \alpha_\ell| = |e^{i\theta_i} - e^{i\theta_\ell} + (\rho_i - 1)e^{i\theta_i} - (\rho_\ell - 1)e^{i\theta_\ell}| \leq |e^{i\theta_i} - e^{i\theta_\ell}| + \frac{2\log 3}{k} \leq \left|e^{i\theta_i} - e^{i\theta_\ell}\right| \left(1 + \frac{2\log 3}{k|e^{i\theta_i} - e^{i\theta_\ell}|}\right) < \left|e^{i\theta_i} - e^{i\theta_\ell}\right| \left(1 + \frac{\sqrt{2}\log 3}{k}\right). \quad (18)$$

Assume now that ℓ is such that θ_ℓ is “close” to θ_i, namely $|\theta_i - \theta_\ell| < \pi/2$. Let $w \geq 1$ be such that $|h_\ell - h_i| - 1 = w$. We then have by (17) that

$$\frac{\pi}{2} > |\theta_i - \theta_\ell| \geq \frac{2w\pi}{k},$$

so $w \leq k/4$. Since every w corresponds to at most two possible ℓ's it follows that there are at most $2 \cdot (k/4) = k/2$ such ℓ's. For them,

$$|e^{i\theta_i} - e^{i\theta_\ell}| = 2|\sin((\theta_i - \theta_\ell)/2)| \geq (2/\pi)|\theta_i - \theta_\ell| \geq \frac{4w}{k},$$
so that

\[|\alpha_i - \alpha_\ell| = |e^{i\theta_i} - e^{i\theta_\ell} + (\rho_i - 1)e^{i\theta_i} - (\rho_\ell - 1)e^{i\theta_\ell}| \leq |e^{i\theta_i} - e^{i\theta_\ell}| + \frac{2\log 3}{k} \]

\[\leq |e^{i\theta_i} - e^{i\theta_\ell}| \left(1 + \frac{2\log 3}{k|e^{i\theta_i} - e^{i\theta_\ell}|} \right) \]

\[< |e^{i\theta_i} - e^{i\theta_\ell}| \left(1 + \frac{\log 3}{4w} \right). \] (19)

As a consequence of (16), (18) and (19), letting \(I \leq k \) be the number of \(\ell \)'s for which \(h_\ell \) is far from \(h_i \), we get that

\[\prod_{1 \leq \ell \leq k-1 \atop \ell \neq i,j} |\alpha_i - \alpha_\ell| \leq 2 \prod_{1 \leq \ell \leq k-1 \atop \ell \neq i,j} |e^{i\theta_i} - e^{i\theta_\ell}| \]

\[\times \left(1 + \frac{\sqrt{2}\log 3}{k} \right)^I \prod_{1 \leq w \leq k/4} \left(1 + \frac{\log 3}{4w} \right)^2. \]

The first factor in the second line is

\[\left(1 + \frac{\sqrt{2}\log 3}{k} \right)^I < \left(1 + \frac{\sqrt{2}\log 3}{k} \right)^k \]

\[< \exp(\sqrt{2}\log 3) = 3^{\sqrt{2}} < 5. \]

The second factor is

\[\prod_{1 \leq w \leq k/4} \left(1 + \frac{\log 3}{4w} \right)^2 < \exp \left(\frac{\log 3}{2} \sum_{1 \leq w \leq k/4} \frac{1}{w} \right) \]

\[< \exp \left(\frac{\log 3}{2} \left(1 + \log \left(\frac{k}{4} \right) \right) \right) \]

\[< k^{\log 3/2} < k^{0.6}. \]

Thus,

\[\prod_{1 \leq \ell \leq k-1 \atop \ell \neq i,j} |\alpha_i - \alpha_\ell| \leq 10k^{0.6} \prod_{1 \leq \ell \leq k-1 \atop \ell \neq i,j} |e^{i\theta_i} - e^{i\theta_\ell}|. \] (20)

Finally,

\[|e^{i\theta_i} - e^{i\theta_\ell}| = 2|\sin((\theta_i - \theta_\ell)/2)| < |\theta_i - \theta_\ell| < \frac{2(|h_i - h_\ell| + 1)\pi}{k} \]

where in the last inequality we have used (14) with \(\ell \) instead of \(j \). As in the previous case, when we were counting \(\ell \) such that \(\theta_\ell \) were close from \(\theta_i \), we have that \(w := |h_i - h_\ell| \) are now integers of size at most \(k/2 \), each one of them is counted at twice except that 0 and 1 are not counted. Thus, we get that

\[\prod_{1 \leq \ell \leq k-1 \atop \ell \neq i,j} |e^{i\theta_i} - e^{i\theta_\ell}| \leq \left(\frac{2\pi}{k} |k/2| ([k/2] + 1)! \right)^2 F, \]

where \(F \) accounts for the missing factors (more about that below).
Now, by Stirling’s formula:

\[
(2\pi/k)^{[k/2]}([k/2] + 1)! \leq (2\pi/k)^{[k/2]}(k/2 + 1)[k/2]! \\
\leq 1.1(k/2 + 1)(2\pi/k)^{[k/2]} \left(\frac{k/2}{e} \right)^{[k/2]} \sqrt{2\pi k/2} \\
\leq 1.1\sqrt{\pi}(k/2 + 1)k^{0.5}(\pi/e)^k \\
< k^{1.5}(\pi/e)^{k/2},
\]

since \(1.1 \cdot \sqrt{\pi}(k/2 + 1) < k \) for \(k > 100 \). Thus,

\[
\prod_{1 \leq \ell \leq k-1 \atop \ell \neq i,j,i,j} |e^{i\theta_\ell} - e^{i\theta_i}| < k^3(\pi/e)^k F.
\]

On the other hand, \(F \) accounts for the fact that when upper bounding the product of \(|e^{i\theta_\ell} - e^{i\theta_i}| \) by the product of \(2w\pi/k \), where \(w \leq [k/2] \) is a positive integer and each \(w \) is counted at most twice, we must not count \(w = 1 \) and \(w = 2 \) corresponding to \(h \in \{h_i - 1, h_i, h_i + 1\} \). Thus,

\[
F \leq \left(\frac{k}{2\pi} \right)^2 \left(\frac{k}{4\pi} \right)^2 = \frac{k^4}{64\pi^4}.
\]

Hence,

\[
\prod_{1 \leq \ell \leq k-1 \atop \ell \neq i,j,i,j} |e^{i\theta_\ell} - e^{i\theta_i}| < k^3(\pi/e)^k \left(\frac{k^4}{64\pi^4} \right) = \frac{k^7(\pi/e)^k}{64\pi^4},
\]

which together with (20) gives

\[
\prod_{1 \leq \ell \leq k-1 \atop \ell \neq i,j,i,j} |\alpha_i - \alpha_\ell| < \frac{10k^{7.6}(\pi/e)^k}{64\pi^4}.
\]

A similar bound applies for \(i \) replaced by \(j \), so we get that

\[
\prod_{1 \leq \ell \leq k-1 \atop \ell \neq i,j,i,j} |\alpha_i - \alpha_\ell||\alpha_j - \alpha_\ell| < \frac{100k^{15.2}(\pi/e)^{2k}}{2^{12}\pi^8},
\]

which together with (13) gives

\[
\frac{k^2}{13000e^3} < |\alpha_i - \alpha_j|^2 \left(\frac{100k^{15.2}(\pi/e)^{2k}}{2^{12}\pi^8} \right),
\]

so

\[
|\alpha_i - \alpha_j| > \frac{1}{k^{6.6}(\pi/e)^k}.
\]

Note that the above inequality was obtained under assumption that \(k \leq 100 \). However, a simple calculation in Mathematica shows that the above inequality holds also for \(k < 100 \), even without the exponential term \((\pi/e)^k\).

This completes the proof of Theorem [2]

\[^{\dagger}m! = \sqrt{2\pi m} \left(\frac{m}{e} \right)^m e^{\lambda_m}, \text{ where } \frac{1}{12m+1} < \lambda_m < \frac{1}{12m}. \]
4 The proof of Theorem 1

We keep the notations from the previous proof. We may assume that θ_i, θ_j are both in $(0, \pi]$, otherwise we replace α_i by $\bar{\alpha}_i$ and/or α_j by $\bar{\alpha}_j$ since this replacement does not change the absolute values ρ_i and ρ_j of the roots. Let us assume that the claimed inequality does not hold, namely, that for some $1 \leq i < j \leq K$, we have

$$\rho_i - \rho_j \leq \frac{\rho_j}{10k^{9.6}(\pi/e)^k} < \frac{1}{10k^{9.6}(\pi/e)^k}.$$

Evaluating $h_k(z) = 0$ for $z = y_i$ and its conjugate, we get

$$y_i^{k+1} = 2y_i - 1 \quad \text{and} \quad \overline{y}_i^{k+1} = 2\overline{y}_i - 1$$

and multiplying them side by side we get

$$r_2^{k+2} = (y_i\overline{y}_i)^{k+1} = (2y_i - 1)(2\overline{y}_i - 1) = 4r_i^2 - 2(y_i + \overline{y}_i) + 1,$$

where we write $r_\ell = |y_\ell| = 1/\rho_\ell$ for $\ell = 1, 2, \ldots, K$. A similar relation holds with i replaced by j. Subtracting the two relations we get

$$(r_j - r_i)(r_i^{2k+1} + r_i^{2k}r_j + \cdots + r_j^{2k+1} - 4(r_i + r_j)) = 4(\text{Re}(y_i) - \text{Re}(y_j)).$$

We discuss the large factor in parentheses. We have

$$1 < r_\ell < \frac{1}{1 - \log 3/k} < 1 + \frac{1.2}{k} \quad \text{for} \quad \ell \in \{i, j\}$$

by Lemma 1 since $k > 100$. Thus, the factor in parenthesis is at least

$$2k + 2 - 4(r_i + r_j) > 2k + 2 - 4(2 + 2.4/k) > 2k + 2 - 9 = 2k - 7$$

is positive. On the other hand, this factor in parenthesis is at most as large as

$$(2k + 2) \left(1 + \frac{1.2}{k}\right)^{2k+1}
\leq (2k + 2) \left(1 + \frac{1.2}{k}\right) \left(1 + \frac{1.2}{k}\right)^{k/1.2} \left(1 + \frac{1.2}{k}\right)^{1/2}
\leq \left(2k + 2 + \frac{2.4k + 2.4}{k}\right) e^{2/1.2} < 5.3(2k + 5) < 12k$$

since $k > 100$. Further,

$$0 < r_j - r_i = \frac{\rho_i - \rho_j}{\rho_i\rho_j} < \frac{r_i}{10k^{9.6}(\pi/e)^k} < \frac{1}{9k^{9.6}(\pi/e)^k},$$

which shows that

$$0 < \text{Re}(y_i) - \text{Re}(y_j) < \frac{12k}{4 \cdot 9k^{9.6}(\pi/e)^k} = \frac{1}{3k^{8.6}(\pi/e)^k}. \quad (21)$$
But
\[\text{Re}(y_i) - \text{Re}(y_j) = r_i \cos \theta_i - r_j \cos \theta_j = r_i (\cos \theta_i - \cos \theta_j) + (r_j - r_i) \cos \theta_j. \]

Hence, we get from (21) and (22) that
\[r_i | \cos \theta_i - \cos \theta_j | < (\text{Re}(y_i) - \text{Re}(y_j)) + (r_j - r_i) \]
\[< \left(3 + \frac{1}{k} \right) \frac{1}{9k^{8.6}(\pi/e)^k} \]
\[< \frac{1}{2.8k^{8.6}(\pi/e)^k}. \]

Since \(r_i > 1 \), we get that
\[| \cos \theta_i - \cos \theta_j | < \frac{1}{2.8k^{8.6}(\pi/e)^k}. \]

We thus get that
\[| \sin((\theta_i - \theta_j)/2)| | \sin((\theta_i + \theta_j)/2)| < \frac{1}{2.8k^{8.6}(\pi/e)^k}. \quad (23) \]

Fix
\[x := (\theta_i + \theta_j)/2, \quad y := (\theta_i - \theta_j)/2 \]
so \(\theta_i = x + y, \quad \theta_j = x - y. \)

Assume that both \(\sin(x), \sin(y) \) above are smaller than \(1/k^2 \). Since \(x \in (0, \pi) \), \(y \in (-\pi/2, \pi/2) \) and
\[\frac{2|y|}{\pi} \leq |\sin y| \leq \frac{1}{k^2}, \]
we get that \(|y| \leq ((\pi/2)/k^2) < 2/k^2 \). Further as in the case of \(y \), if \(x \in (0, \pi/2) \), then also \(x \leq 2/k^2 \), while if \(x \in (\pi/2, \pi) \), we get that \(\pi - x < 2/k^2 \).

In case \(x \in (0, \pi/2) \), so \(x \in (0, 2/k^2) \), we get that
\[\max\{\theta_i, \theta_j\} \leq x + |y| \leq 4/k^2. \]

Since \(\theta_i, \theta_j \in (0, \pi] \), it follows that \(\theta_i, \theta_j \in (0, 4/k^2) \). In particular, \(h_i = h_j = 0 \), which contradicts Remark [1].

In the case when \(\pi - x < 2/k^2 \) (i.e. \(x \in (\pi/2, \pi) \)), we get that \(\pi - \theta_\ell \in (0, 4/k^2) \) holds for both \(\ell \in \{i, j\} \). In particular, for \(k \) odd the interval corresponding to \(h = (k - 1)/2 \) contains both \(\theta_i \) and \(\theta_j \), and this is false. When \(k \) is even, we get that the interval corresponding to \(h = k/2 \) contains both \(\theta_i \) and \(\theta_j \) and this is again false.

So, in (23), the maximum of the factors is \(> 1/k^2 \), while the minimal factor is \(< \frac{1}{2.8k^{8.6}(\pi/e)^k} \). Assume, for example, that
\[|\sin(y)| < \frac{1}{2.8k^{8.6}(\pi/e)^k}. \]
We now compute, using (21),

\[
|\text{Im}(y_i) - \text{Im}(y_j)| = |r_i \sin \theta_i - r_j \sin \theta_j| \\
\leq r_i |\sin \theta_i - \sin \theta_j| + (r_j - r_i) \\
< 2r_i |\sin(y) \cos(x)| + (r_j - r_i) \\
\leq \left(2 \cdot 1.1 + \frac{2.8}{9k^3}\right) \frac{1}{2.8k^{6.6}(\pi/e)^k} \\
< \left(\frac{2.3}{2.8}\right) \frac{1}{k^{6.6}(\pi/e)^k}
\]

(24)

for \(k > 100\). It now follows, using (22) and (24), that

\[
|y_i - y_j| = \sqrt{(\text{Re}(y_i) - \text{Re}(y_j))^2 + (\text{Im}(y_i) - \text{Im}(y_j))^2} \\
< \left(\frac{1}{9k^4} + \left(\frac{2.3}{2.8}\right)^2 \right)^{1/2} \frac{1}{k^{6.6}(\pi/e)^k} < \frac{1}{k^{6.6}(\pi/e)^k}
\]

for \(k > 100\). In turn, this gives

\[
|\alpha_i - \alpha_j| < \frac{\rho_i \rho_j}{k^{6.6}(\pi/e)^k} < \frac{1}{k^{6.6}(\pi/e)^k},
\]

contradicting Theorem 2. This was when \(|\sin((\theta_i - \theta_j)/2)|\) was small. In the case when \(|\sin((\theta_i + \theta_j)/2)|\) is small, the same argument shows that \(|\alpha_i - \overline{\alpha_j}|\) is too small again contradicting Theorem 2. As before, a quick calculation with Mathematica shows that inequality (2) also holds for \(k < 100\), even without the exponential term \((\pi/e)^k\).

This finishes the proof of Theorem 1.

Acknowledgement. J. G. thanks the Universidad del Valle for support during his master’s studies. C.A.G. was supported in part by Project 71327 (Universidad del Valle).

References

[1] A. Alahmadi, O. Klurman, F. Luca and H. Shoaib, On the arguments of the roots of the generalized Fibonacci polynomial, Lithuanian Mathematical Journal, to appear.

[2] A. Dubickas, On then distance between two algebraic numbers, Bulletin of the Malaysian Mathematical Science Society 43 (2020), 3049–3064.

[3] C. A. Gómez and F. Luca, On the distribution of the roots of the polynomial \(z^k - z^{k-1} - \cdots - z - 1\), Commentaciones Math. Univ. Carolin. 62 (3) (2021), 291–296.

[4] C. A. Gómez and F. Luca, On the zero–multiplicity of a fifth-order linear recurrence, International Journal of Number Theory 15 (2019), 585–595.
[5] K. Mahler, An inequality for the discriminant of a polynomial, *Mich. Math. J.* 11 (3) (1964), 257.

[6] M. Mignotte, An inequality about factors of polynomials, *Mathematical Computation* 28 (128) (1974), 1153–1157.

[7] T.N. Shorey and R. Tijdeman, *Exponential Diophantine equations*, Cambridge University Press, 1986; reprinted 2008.

[8] D. A. Wolfram, *Solving generalized Fibonacci recurrences*, The Fibonacci Quarterly 36 (1998), no. 2, 129–145.