Majorana Neutrino: Chirality and Helicity

V V Dvoeglazov
Universidad de Zacatecas, Ap. Postal 636, Suc. 3 Cruces, Zacatecas 98062 Zac., México
E-mail: valeri@fisica.uaz.edu.mx

Abstract. We introduce the Majorana spinors in the momentum representation. They obey the Dirac-like equation with eight components, which has been first introduced by Markov. Thus, the Fock space for corresponding quantum fields is doubled (as shown by Ziino). The particular attention has been paid to the questions of chirality and helicity (two concepts which are frequently confused in the literature) for Dirac and Majorana states.

1. The Dirac Equation
The Dirac equation has been considered in detail in a pedagogical way [1, 2]:

\[i\gamma^\mu \partial_\mu - m \Psi(x) = 0. \] (1)

At least, 3 methods of its derivation exist:

- the Dirac one (the Hamiltonian should be linear in \(\partial/\partial x^i \), and be compatible with \(E^2 - p^2 c^2 = m^2 c^4 \));
- the Sakurai one (based on the equation \((E - \sigma \cdot p)(E + \sigma \cdot p)\phi = m^2 \phi\));
- the Ryder one (the relation between 2-spinors at rest is \(\phi_R(0) = \pm \phi_L(0) \)).

The \(\gamma^\mu \) are the Clifford algebra matrices

\[\gamma^\mu \gamma^\nu + \gamma^\nu \gamma^\mu = 2g^{\mu\nu}. \] (2)

Usually, everybody uses the following definition of the field operator [3]:

\[\Psi(x) = \frac{1}{(2\pi)^3} \sum_\sigma \int \frac{d^3p}{2E_p} [u_\sigma(p)a_\sigma(p)e^{-ip\cdot x} + v_\sigma(p)b_\sigma^\dagger(p)]e^{+ip\cdot x}, \] (3)

as given \textit{ab initio}, while the general scheme of its derivation has been presented in [4].

I studied in the previous works [5, 6, 7]:

- \(\sigma \to h \) (the helicity basis); the motivation was that Berestetskii, Lifshitz and Pitaevskii [8] claimed that the helicity eigenspinors are not the parity eigenspinors, and \textit{vice versa};
- the modified Sakurai derivation (the additional \(m_2\gamma^5 \) term may appear in the Dirac equation);
• the derivation of the Barut equation [9] from the first principles, namely based on the
generalized Ryder relation, \(\phi_L^L(0) = A\phi_L^{-A^*}(0) + \hat{B}\phi_L^L(0) \). In fact, we have the second
mass state \((\mu\text{-meson})\) from the equation:
\[
[\gamma^\mu \partial_\mu - \alpha \partial^\mu / m - \beta]\psi = 0,
\]
due to existence of two parameters;
• the self/anti-self charge-conjugate Majorana 4-spinors [10, 11] in the momentum
representation.

The solutions of the Dirac equation are denoted by \(u(p) \) and letting \(\phi_R(p) \) be the self/anti-self charge-conjugate Majorana 4-spinors [10, 11] in the momentum representation.

The Wigner rules [12] of the Lorentz transformations for the \((0, S)\) left- \(\phi_L(p) \) and the \((S, 0)\) right- \(\phi_R(p) \) spinors are:
\[
\begin{align*}
(S, 0) : \phi_R(p) &= L_R(p \rightarrow 0) \phi_R(0) = \exp(\mathbf{S} \cdot \varphi) \phi_R(0), \\
(0, S) : \phi_L(p) &= L_L(p \leftarrow 0) \phi_L(0) = \exp(-\mathbf{S} \cdot \varphi) \phi_L(0),
\end{align*}
\]
with \(\varphi = n \varphi \) being the boost parameters:
\[
\begin{align*}
cosh(\varphi) &= \gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}, \\
sinh(\varphi) &= \beta \gamma = \frac{v/c}{\sqrt{1 - \frac{v^2}{c^2}}}, \tanh(\varphi) = v/c.
\end{align*}
\]
They are well known, and given, e.g., in [12, 13, 2].

On using the Wigner boost rules and the Ryder relations we can recover the Dirac equation in the matrix form:
\[
\left(\begin{array}{cc} \mp m^1 & p_0 + \sigma \cdot p \\ p_0 - \sigma \cdot p & \mp m^1 \end{array} \right) \psi(p^\mu) = 0,
\]
or \((\gamma \cdot p - m)u(p) = 0\) and \((\gamma \cdot p + m)v(p) = 0\). We have used the property \([L_{R,L}(p \leftarrow 0)]^{-1} = [L_{R,L}(p \rightarrow 0)]^\dagger\) above, and that both \(S = \sigma/2\) and \(L_{R,L}\) are Hermitian for the finite \((S = 1/2, 0) \oplus (0, S = 1/2)\) representation of the Lorentz group. Introducing \(\psi(x) \equiv \psi(p) \exp(\mp i p \cdot x)\) and letting \(p_\mu \rightarrow i \partial_\mu\), the above equation becomes the Dirac equation (1).

The solutions of the Dirac equation are denoted by \(u(p) = \text{column}(\phi_R(p) \; \phi_L(p)) \) and \(v(p) = \gamma^5 u(p) \). Let me remind that the boosted 4-spinors in the common-used basis (the standard representation of \(\gamma\) matrices) are
\[
\begin{align*}
u_{1,1/2}^1 &= \sqrt{\frac{(E + m)}{2m}} \begin{pmatrix} 1 \\ 0 \\ p_z/(E + m) \\ p_r/(E + m) \end{pmatrix}, \\
u_{1,-1/2}^1 &= \sqrt{\frac{(E + m)}{2m}} \begin{pmatrix} 0 \\ 1 \\ p_r/(E + m) \\ -p_z/(E + m) \end{pmatrix}, \\
u_{1,1/2}^{-1} &= \sqrt{\frac{(E + m)}{2m}} \begin{pmatrix} p_z/(E + m) \\ p_r/(E + m) \\ 1 \\ 0 \end{pmatrix}, \\
u_{1,-1/2}^{-1} &= \sqrt{\frac{(E + m)}{2m}} \begin{pmatrix} p_r/(E + m) \\ -p_z/(E + m) \\ 0 \\ 1 \end{pmatrix}.
\end{align*}
\]

\(7th\ International\ Conference\ on\ Quantum\ Theory\ and\ Symmetries\ (QTS7)\ IOP\ Publishing\ Journal\ of\ Physics:\ Conference\ Series\ 343\ (2012)\ 012033\ doi:10.1088/1742-6596/343/1/012033\)
\(E = \pm \sqrt{p^2 + m^2} > 0, \quad p_0 = \pm E, \quad p^\pm = E \pm p_z, \quad p_{\pm l} = p_x \pm ip_y. \) They are the eigenstates of the helicity in the case of \(p_3 = |p| \) only. They are the parity eigenstates with the eigenvalues of \(\pm 1. \) In the parity operator the matrix \(\gamma_0^{SR} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \) was used as usual. They also describe eigenstates of the charge operator, \(Q, \) if at rest
\[
\phi_R(0) = \pm \phi_L(0) \tag{12}
\]
(otherwise the corresponding physical states are no longer the charge eigenstates). Their normalizations conditions are:
\[
\bar{u}_\sigma(p) u_{\sigma'}(p) = + \delta_{\sigma\sigma'}, \tag{13}
\]
\[
\bar{v}_\sigma(p) v_{\sigma'}(p) = - \delta_{\sigma\sigma'}, \tag{14}
\]
\[
\bar{u}_\sigma(p) v_{\sigma'}(p) = 0. \tag{15}
\]
The bar over the 4-spinors signifies the Dirac conjugation.

Thus, in the most papers one uses the basis for charged particles in the \((S,0) \oplus (0,S)\) representation (in general):
\[
u_{+\sigma}(0) = N_\sigma \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 1 \end{pmatrix}, \quad u_{\sigma-1}(0) = N_\sigma \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \quad \ldots v_{-\sigma}(0) = N_\sigma \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}. \tag{16}
\]

Sometimes, the normalization factor is convenient to choose \(N(\sigma) = m^\sigma \) in order the rest spinors to vanish in the massless limit.

However, other constructs are possible in the \((1/2,0) \oplus (0,1/2)\) representation [9, 14, 15, 16, 17, 18, 19].

2. Majorana Spinors in the Momentum Representation

During the 20th century various authors introduced \textit{self/anti-self} charge-conjugate 4-spinors (including in the momentum representation), see [10, 11, 17, 18]. Later many authors [20, 5, 6, 21, 22] etc studied these spinors, they found corresponding dynamical equations, gauge transformations and other specific features of them. The definitions are:
\[
C = e^{i\theta} \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \end{pmatrix} \quad \mathcal{K} = -e^{i\theta} \gamma^2 \mathcal{K} \tag{17}
\]
is the anti-linear operator of the charge conjugation. \(\mathcal{K} \) is the complex conjugation operator. We define the \textit{self/anti-self} charge-conjugate 4-spinors in the momentum space
\[
C\lambda^{SA}(p) = \pm \lambda^{SA}(p), \tag{18}
\]
\[
C\rho^{SA}(p) = \pm \rho^{SA}(p), \tag{19}
\]
where
\[
\lambda^{SA}(p) = \begin{pmatrix} \pm i\Theta \phi_L(p) \\ \phi_L(p) \end{pmatrix}. \tag{20}
\]
and
\[
\rho_{S,A}^{S,A}(p) = \left(\frac{\phi_R(p)}{-i\Theta \phi_R(p)} \right). \tag{21}
\]

The Wigner matrix is
\[
\Theta_{[1/2]} = -i\sigma_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \tag{22}
\]
and \(\phi_L, \phi_R\) can be boosted with the \(\Lambda_{L,R}\) matrices.\(^1\)

The rest \(\lambda\) and \(\rho\) spinors can be defined conforming with (20,21) in the analogous way with the Dirac spinors:

\[
\begin{align*}
\lambda_S^\uparrow(0) &= \sqrt{\frac{m}{2}} \begin{pmatrix} 0 \\ i \\ 1 \\ 0 \end{pmatrix}, & \lambda_S^\downarrow(0) &= \sqrt{\frac{m}{2}} \begin{pmatrix} 0 \\ -i \\ 0 \\ 1 \end{pmatrix}, \tag{24}
\end{align*}
\]

\[
\begin{align*}
\lambda_A^\uparrow(0) &= \sqrt{\frac{m}{2}} \begin{pmatrix} 0 \\ -i \\ 1 \\ 0 \end{pmatrix}, & \lambda_A^\downarrow(0) &= \sqrt{\frac{m}{2}} \begin{pmatrix} 0 \\ i \\ 0 \\ 1 \end{pmatrix}, \tag{25}
\end{align*}
\]

\[
\begin{align*}
\rho_S^\uparrow(0) &= \sqrt{\frac{m}{2}} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, & \rho_S^\downarrow(0) &= \sqrt{\frac{m}{2}} \begin{pmatrix} 0 \\ i \\ 0 \\ 1 \end{pmatrix}, \tag{26}
\end{align*}
\]

\[
\begin{align*}
\rho_A^\uparrow(0) &= \sqrt{\frac{m}{2}} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, & \rho_A^\downarrow(0) &= \sqrt{\frac{m}{2}} \begin{pmatrix} 0 \\ -i \\ 0 \\ 1 \end{pmatrix}. \tag{27}
\end{align*}
\]

Thus, in this basis, with the appropriate normalization (the “mass dimension”, indeed), the explicite forms of the 4-spinors of the second kind \(\lambda_{S,A}^{S,A}(p)\) and \(\rho_{S,A}^{S,A}(p)\) are

\[
\begin{align*}
\lambda_S^\uparrow(p) &= \frac{1}{2\sqrt{E + m}} \begin{pmatrix} ip_l \\ p^+ + m \\ -p_t \\ p^- + m \end{pmatrix}, & \lambda_S^\downarrow(p) &= \frac{1}{2\sqrt{E + m}} \begin{pmatrix} -i(p^+ + m) \\ -ip_r \\ -p_t \\ (p^- + m) \end{pmatrix}, \tag{28}
\end{align*}
\]

\[
\begin{align*}
\lambda_A^\uparrow(p) &= \frac{1}{2\sqrt{E + m}} \begin{pmatrix} -ip_l \\ -i(p^- + m) \\ p^+ + m \\ -p_t \end{pmatrix}, & \lambda_A^\downarrow(p) &= \frac{1}{2\sqrt{E + m}} \begin{pmatrix} i(p^+ + m) \\ ip_r \\ p_t \\ (p^- + m) \end{pmatrix}. \tag{29}
\end{align*}
\]

\(^1\) Such definitions of 4-spinors differ, of course, from the original Majorana definition in x-representation:

\[
\nu(x) = \frac{1}{\sqrt{2}}(\Psi_D(x) + \Psi_c^D(x)), \tag{23}
\]

\(\nu(x)\) that represents the positive real \(C–\) parity field operator only. However, the momentum-space Majorana-like spinors open various possibilities for description of neutral particles (with experimental consequences, see [22]). For instance, “for imaginary \(C\) parities, the neutrino mass can drop out from the single \(\beta\) decay trace and reappear in \(0\nu\beta\beta\), a curious and in principle experimentally testable signature for a non-trivial impact of Majorana framework in experiments with polarized sources.”
\begin{align}
\rho_1^S(p) &= \frac{1}{2\sqrt{E + m}} \begin{pmatrix} p^+ + m \\ p_r \\ ip_l \\ -ip_r \end{pmatrix}, \\
\rho_1^A(p) &= \frac{1}{2\sqrt{E + m}} \begin{pmatrix} p^+ + m \\ p_r \\ -ip_l \\ i(p^+ + m) \end{pmatrix},
\end{align}
\begin{align}
\rho_1^S(p) &= \frac{1}{2\sqrt{E + m}} \begin{pmatrix} p_l \\ (p^- + m) \\ -ip_r \\ -ip_l \end{pmatrix}, \\
\rho_1^A(p) &= \frac{1}{2\sqrt{E + m}} \begin{pmatrix} p_l \\ (p^- + m) \\ -ip_r \\ -ip_l \end{pmatrix}.
\end{align}

As claimed in [18] \(\lambda^- \) and \(\rho^- \) 4-spinors are not the eigenspinors of the helicity.\(^2\) Moreover, the \(\lambda^- \) and \(\rho^- \) are not the eigenspinors of the parity, as opposed to the Dirac case (in this representation \(P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \), where \(\rho^i \rightarrow -\rho^i \)).

The normalizations of the spinors \(\lambda_{\alpha}^{SA}(p) \) and \(\rho_{\alpha}^{SA}(p) \) are the following ones:

\begin{align}
\lambda_{\alpha}^S(p)\lambda_{\alpha}^S(p) &= -im, \\
\lambda_{\alpha}^A(p)\lambda_{\alpha}^A(p) &= +im, \\
\rho_{\alpha}^S(p)\rho_{\alpha}^S(p) &= +im, \\
\rho_{\alpha}^A(p)\rho_{\alpha}^A(p) &= -im.
\end{align}

All other normalization conditions are equal to zero.

The dynamical coordinate-space equations are:\(^3\)
\begin{align}
i\gamma^\mu \partial_\mu \lambda^S(x) - m\rho^A(x) &= 0, \\
i\gamma^\mu \partial_\mu \rho^A(x) - m\lambda^S(x) &= 0, \\
i\gamma^\mu \partial_\mu \lambda^A(x) + m\rho^S(x) &= 0, \\
i\gamma^\mu \partial_\mu \rho^S(x) + m\lambda^A(x) &= 0.
\end{align}

Neither of them can be regarded as the Dirac equation. However, they can be written in the 8-component form as follows:
\begin{align}
[i\Gamma^\mu \partial_\mu - m] \Psi_{(+)}(x) &= 0, \\
[i\Gamma^\mu \partial_\mu + m] \Psi_{(-)}(x) &= 0.
\end{align}

\(^2\) See the next Sections for the discussion.

\(^3\) Of course, the signs at the mass terms depend on, how do we associate the positive- and negative- frequency solutions with \(\lambda^- \) and \(\rho^- \) spinors.
with

\[\Psi_+(x) = \left(\rho^A(x) \right), \ \Psi_-(x) = \left(\rho^S(x) \right), \]

and \(\Gamma^\mu = \left(\begin{array}{cc} 0 & \gamma^\mu \\ \gamma^\mu & 0 \end{array} \right). \) (46)

One can also re-write the equations into the two-component form. Thus, one obtains the Feynman-Gell-Mann equations [23]. The similar formulations have been presented in Ref. [24], and Ref. [17]. The group-theoretical basis for such doubling has been given in the papers by Gelfand, Tsetlin and Sokolik [25], who first presented the theory in the 2-dimensional representation of the inversion group in 1956 (later called as “the Bargmann-Wightman-Wigner-type quantum field theory” in 1993).

The Lagrangian is

\[\mathcal{L} = \frac{i}{2} \left[\bar{\lambda}^S \gamma^\mu \partial_\mu \lambda^S - (\partial_\mu \bar{\lambda}^S) \gamma^\mu \lambda^S + \bar{\rho}^A \gamma^\mu \partial_\mu \rho^A - (\partial_\mu \bar{\rho}^A) \gamma^\mu \rho^A + \bar{\lambda}^A \gamma^\mu \partial_\mu \lambda^A - (\partial_\mu \bar{\lambda}^A) \gamma^\mu \lambda^A + \bar{\rho}^S \gamma^\mu \partial_\mu \rho^S - (\partial_\mu \bar{\rho}^S) \gamma^\mu \rho^S - m(\bar{\lambda}^S \rho^A + \bar{\lambda}^A \rho^S - \bar{\lambda}^S \rho^A - \bar{\lambda}^A \rho^S) \right]. \] (47)

The connections with the Dirac spinors have been found [5, 22]. For instance,

\[\begin{pmatrix} \lambda^S(p) \\ \lambda^A(p) \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & i & -1 & i \\ -i & 1 & -i & -1 \end{pmatrix} \begin{pmatrix} u_{+1/2}(p) \\ u_{-1/2}(p) \\ v_{+1/2}(p) \\ v_{-1/2}(p) \end{pmatrix}. \] (48)

See also Refs. [25, 17] and the discussion below. Thus, we can see that the two 4-spinor sets are connected by the unitary transformations, and this represents itself the rotation of the spin-parity basis.

The sets of \(\lambda^- \) spinors and of \(\rho^- \) spinors are claimed to be the bi-orthonormal sets each in the mathematical sense [18], provided that overall phase factors of 2-spinors \(\theta_1 + \theta_2 = 0 \) or \(\pi \).

For instance, on the classical level \(\lambda^S \lambda^S = 2iN^2 \cos(\theta_1 + \theta_2) \).

Several remarks have been given in the previous works:

- While in the massive case there are four \(\lambda^- \) type spinors, two \(\lambda^S \) and two \(\lambda^A \) (the \(\rho^- \) spinors are connected by certain relations with the \(\lambda^- \) spinors for any spin case), in the massless case \(\lambda^S \) and \(\lambda^A \) may identically vanish, provided that one takes into account that \(\phi^{\pm 1/2}_L \) may be the eigenvalues of \((\sigma \cdot \hat{n})/2\), the \(2 \times 2 \) helicity operator.

- The possibility exists for generalizations of the concept of the Fock space, which lead to the “doubling” Fock space [25, 17].

The covariant derivative (and, hence, the interaction) was shown [5] to be introduced in this construct in the following way:

\[\partial_\mu \rightarrow \nabla_\mu = \partial_\mu - igL^5 A_\mu, \] (49)

where \(L^5 = \text{diag}(\gamma^5, -\gamma^5) \), the \(8 \times 8 \) matrix. In other words, with respect to the transformations

\[\lambda'(x) \rightarrow (\cos \alpha - i\gamma^5 \sin \alpha)\lambda(x), \] (50)

\[\bar{\lambda}'(x) \rightarrow \bar{\lambda}(x)(\cos \alpha + i\gamma^5 \sin \alpha), \] (51)

\[\rho'(x) \rightarrow (\cos \alpha + i\gamma^5 \sin \alpha)\rho(x), \] (52)

\[\bar{\rho}'(x) \rightarrow \bar{\rho}(x)(\cos \alpha + i\gamma^5 \sin \alpha). \] (53)

4 I also acknowledge personal communications from D. V. Ahluwalia on these matters.
5 We used above \(\theta_1 = \theta_2 = 0 \).
the spinors retain their properties to be self/anti-self charge conjugate spinors and the proposed Lagrangian \([5]\) remains to be invariant. This fact tells us that while the self/anti-self charge conjugate states have zero eigenvalues of the ordinary (scalar) charge operator but they can possess the axial charge (cf. with the discussion of \([17]\) and with the old idea of R. E. Marshak – they claimed the same).

In fact, from this consideration one can recover the Feynman-Gell-Mann equation (and its charge-conjugate equation). Our equations can be re-written in the two-component form \([23]\):

\[
\begin{align*}
\left[\pi^\mu_\mu - m^2 - \frac{g}{2} \sigma^{\mu\nu} F_{\mu\nu} \right] \chi(x) &= 0, \\
\left[\pi^{\mu}_{\mu} + m^2 + \frac{g}{2} \sigma^{\mu\nu} F_{\mu\nu} \right] \phi(x) &= 0,
\end{align*}
\]

where already one has \(\pi^\pm_\mu = i \partial_\mu \pm g A_\mu\), \(\sigma^{0i} = -\sigma^{0i} = i \sigma^i\), \(\sigma^{ij} = \sigma^{ij} = \epsilon_{ijk} \sigma^k\).

Next, because the transformations

\[
\begin{align*}
\lambda^S_A(p) &= \left(\begin{array}{cc} \Xi & 0 \\ 0 & -\Xi \end{array} \right) \lambda^A_S(p) \equiv \lambda^A_S(p), \\
\lambda^S_B(p) &= \left(\begin{array}{cc} i\Xi & 0 \\ 0 & -i\Xi \end{array} \right) \lambda^A_S(p) \equiv -i\lambda^A_S(p), \\
\lambda^S_C(p) &= \left(\begin{array}{cc} 0 & i\Xi \\ i\Xi & 0 \end{array} \right) \lambda^A_S(p) \equiv i\gamma^0 \lambda^A_S(p), \\
\lambda^S_D(p) &= \left(\begin{array}{cc} 0 & \Xi \\ -\Xi & 0 \end{array} \right) \lambda^A_S(p) \equiv \gamma^0 \lambda^A_S(p)
\end{align*}
\]

with the \(2 \times 2\) matrix \(\Xi\) defined as (\(\phi\) is the azimuthal angle related with \(p\))

\[
\Xi = \left(\begin{array}{cc} e^{i\phi} & 0 \\ 0 & e^{-i\phi} \end{array} \right), \quad \Xi \Lambda_{R,L}(p \leftarrow 0) \Xi^{-1} = \Lambda_{R,L}^*(p \leftarrow 0),
\]

and corresponding transformations for \(\lambda^A\), do not change the properties of bispinors to be in the self/anti-self charge-conjugate spaces, the Majorana-like field operator \((\bar{b}^\dagger \equiv a^\dagger)\) admits additional phase (and, in general, normalization) transformations:

\[
\nu^{ML} \Gamma(x^\mu) = [e_0 + i(\tau \cdot \mathbf{c})] \nu^{ML \dagger}(x^\mu),
\]

where \(e_\alpha\) are arbitrary parameters. The \(\tau\) matrices are defined over the field of \(2 \times 2\) matrices and the Hermitian conjugation operation is assumed to act on the \(c\)-numbers as the complex conjugation. One can parametrize \(e_0 = \cos \phi\) and \(\mathbf{c} = \mathbf{n} \sin \phi\) and, thus, define the \(SU(2)\) group of phase transformations. One can select the Lagrangian which is composed from the both field operators (with \(\lambda^{-}\) spinors and \(\rho^{-}\) spinors) and which remains to be invariant with respect to this kind of transformations. The conclusion is: it is permitted the non-Abelian construct which is based on the spinors of the Lorentz group only (cf. with the old ideas of T. W. Kibble and R. Utiyama). This is not surprising because both the \(SU(2)\) group and \(U(1)\) group are the sub-groups of the extended Poincaré group (cf. \([2]\)).

The Dirac-like and Majorana-like field operators can be built from both \(\lambda^{S,A}(p)\) and \(\rho^{S,A}(p)\), or their combinations. For instance,

\[
\nu(x^\mu) \equiv \int \frac{d^4p}{(2\pi)^3} \frac{1}{2E_p} \sum_\eta \left[\lambda^S_\eta(p) a_\eta(p) \exp(-ip \cdot x) + \lambda^A_\eta(p) b^*_\eta(p) \exp (+ip \cdot x) \right].
\]
The anticommutation relations are the following ones (due to the bi-orthonormality):

\[
[a_{\eta'}(p'), a^\dagger_\eta(p)]_+ = (2\pi)^3 2E_p \delta(p - p') \delta_{\eta,-\eta'},
\]
and

\[
[b_{\eta'}(p'), b^\dagger_\eta(p)]_+ = (2\pi)^3 2E_p \delta(p - p') \delta_{\eta,-\eta'}.
\]

Other anticommutators are equal to zero: \((a_{\eta'}(p'), b^\dagger_\eta(p)]_+ = 0\).

Finally, it is interesting to note that

\[
\left[\nu^{ML}(x^\mu) + \mathcal{C}^{M\mu}(x^\mu)\right]/2 = \int \frac{d^3p}{(2\pi)^3} \frac{1}{2E_p} \sum_{\eta} \left[\begin{array}{c} \phi^\dagger_L(p^\mu) \\ \mathbf{0} \end{array}\right] a_{\eta}(p^\mu) e^{-ipx} + \left(\begin{array}{c} \mathbf{0} \\ \phi^L(p^\mu) \end{array}\right) a_{\eta}^\dagger(p^\mu) e^{ipx},
\]

\[
\left[\nu^{ML}(x^\mu) - \mathcal{C}^{M\mu}(x^\mu)\right]/2 = \int \frac{d^3p}{(2\pi)^3} \frac{1}{2E_p} \sum_{\eta} \left[\begin{array}{c} \mathbf{0} \\ \phi^\dagger_L(p^\mu) \end{array}\right] a_{\eta}(p^\mu) e^{-ipx} + \left(\begin{array}{c} \phi^L(p^\mu) \\ e^{-ipx} \end{array}\right) a_{\eta}^\dagger(p^\mu) e^{ipx},
\]

thus naturally leading to the Ziino-Barut scheme of massive chiral fields, Ref. [17].

The content of this Section is mainly based on the previous works of the 90s by D. V. Ahluwalia and by me (V. V. Dvoeglazov) dedicated to the Majorana-like momentum-representation 4-spinors. However, recently, the interest to this model raised again [21].

3. Chirality and Helicity

3.1. History

- Ahluwalia in Ref. [18] claimed “Incompatibility of Self-Charge Conjugation with Helicity Eignestates and Gauge Interactions”. I showed that the gauge interactions of \(\lambda-\) and \(\rho-\) 4-spinors are different. As for the self/anti-self charge-conjugate states, and their relations to the helicity eigenstates, the question is much more difficult, see below. Either we should accept that the rotations would have physical significance, or, due to some reasons, we should not apply the equivalence transformation to the discrete symmetry operators. As far as I understood his paper [18], the latter standpoint is precisely his standpoint.

- Z.-Q. Shi and G. J. Ni promote a very extreme standpoint. Namely, “the spin states, the helicity states and the chirality states of fermions in Relativistic Quantum Mechanics are entirely different: a spin state is helicity degenerate; a helicity state can be expanded as a linear combination of the chirality states; the polarization of fermions in flight must be described by the helicity states” (see also the Conclusion Section of the second paper [27]). In fact, they showed experimental consequences of their statement: “the lifetime of RH polarized fermions is always greater than of LH ones with the same speed in flight”. However, we showed that the helicity, chiral helicity and chirality operators are connected by the unitary transformations. Do rotations have physical significance in their opinion?

He claimed [18]: “Just as the operator of parity in the \((j,0) \oplus (0,j)\) representation space is independent of which wave equation is under study, similarly the operations of charge conjugation and time reversal do not depend on a specific wave equation. Within the context of the logical framework of the present paper, without this being true we would not even know how to define self-/-anti self conjugate \((j,0) \oplus (0,j)\) spinors.”
• M. Markov wrote two Dirac equations with the opposite signs at the mass term \([24]\) long ago.

\[
\begin{align*}
[i\gamma^\mu \partial_\mu - m] \Psi_1(x) &= 0, \\
[i\gamma^\mu \partial_\mu + m] \Psi_2(x) &= 0.
\end{align*}
\]

(66) \hspace{1cm} (67)

In fact, he studied all properties of this relativistic quantum model (while he did not know yet the quantum field theory in 1937). Next, he added and subtracted these equations. What did he obtain?

\[
\begin{align*}
i\gamma^\mu \partial_\mu \phi(x) - m\chi(x) &= 0, \\
i\gamma^\mu \partial_\mu \chi(x) - m\phi(x) &= 0,
\end{align*}
\]

(68) \hspace{1cm} (69)

thus, \(\phi\) and \(\chi\) solutions can be presented as some superpositions of the Dirac 4-spinors \(u^-\) and \(v^-\). These equations, of course, can be identified with the equations for \(\lambda^-\) and \(\rho^-\) spinors we presented above. As he wrote himself, he was expecting “new physics” from these equations.

• Sen Gupta [14] and others claimed that the solutions of the equation (which follows from the general Sakurai method of the derivation of relativistic quantum equations)

\[
[i\gamma^\mu \partial_\mu - m_1 - m_2\gamma^5] \Psi = 0
\]

(70)

are not the eigenstates of chiral [helicity] operator \(\gamma_0(\gamma \cdot p)/p\) in the massless limit. The equation may describe both massive and massless \((m_1 = \pm m_2)\) states. However, in the massive case the equation (70) has been obtained by the equivalence transformation of \(\gamma\) matrices.

• Barut and Ziino [17] proposed yet another model. They considered \(\gamma^5\) operator as the operator of the charge conjugation. Thus, in their opinion, the charge-conjugated Dirac equation has the different sign comparing with the ordinary formulation:

\[
[i\gamma^\mu \partial_\mu + m]\Psi^c_{BZ} = 0,
\]

(71)

and the so-defined charge conjugation applies to the whole system, fermion+electromagnetic field, \(e \to -e\) in the covariant derivative. The concept of the doubling of the Fock space has been developed in the Ziino works (cf. \([25, 26]\)). In their case the charge conjugate states are, at the same time, the eigenstates of the chirality.

Let us discuss the above statements.

• The helicity operator is:

\[
h = \begin{pmatrix} (\sigma \cdot \hat{p}) & 0 \\ 0 & (\sigma \cdot p) \end{pmatrix}
\]

(72)

However, we can do the equivalence transformation of the helicity \(h\)-operator by the unitary matrix. It is well known \([28]\) that one can obtain

\[
U_1(\sigma \cdot \mathbf{a})U^{-1}_1 = \sigma_3|\mathbf{a}|.
\]

(73)

In the case of the momentum vector, one has

\[
U_1 = \begin{pmatrix} 1 \\ -p_r/(p + p_3) \end{pmatrix}
\]

(74)

\[
U_1 \begin{pmatrix} p_l/(p + p_3) \\ 1 \end{pmatrix}
\]
and
\[U_1 = \begin{pmatrix} U_1 & 0 \\ 0 & U_t \end{pmatrix}. \]
(75)

Thus, we obtain:
\[U_1 h U_1^{-1} = |n| \begin{pmatrix} \sigma_3 & 0 \\ 0 & \sigma_3 \end{pmatrix}. \]
(76)

Then, applying other unitary matrix \(U_3 \):
\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\sigma_3 & 0 \\
0 & \sigma_3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
= \gamma^5_{\text{chiral}}.
\]
(77)

we transform to the basis, where the helicity is equal to \(\gamma^5 \), the chirality operator.

- In Ref. [14] the chiral helicity \(\eta = -\gamma_5 h \) was introduced. It is equal (within the sign) to the well-known matrix \(\alpha \) multiplied by \(n \). Again,
\[U_1 (\alpha \cdot n) U_1^{-1} = |n| \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \alpha_3 |n|. \]
(78)

with the same matrix \(U_1 \). And, applying the second unitary transformation:
\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} \alpha_3 \begin{pmatrix}
1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1
\end{pmatrix}
= \gamma^5_{\text{chiral}},
\]
(79)

we again come to the \(\gamma^5 \) matrix. The determinants are: \(\text{Det}U_1 \neq 0 \), \(\text{Det}U_{2,3} = -1 \neq 0 \). Thus, the helicity, the chirality and the chiral helicity are connected by the unitary transformations.

- It is not surprising to have such a situation because the different helicity 2-spinors can be connected apart the anti-linear transformation [2, 18], \(\xi_h = (-1)^{1/2-h} e^{i\alpha_h} \Theta_{1/2} K \xi_{-h} \), by the unitary transformation too. For instance, when we parametrize the 2-spinors as in Ref. [19]:
\[
\xi_\uparrow = Ne^{i\alpha} \left(\begin{array}{c} \cos(\theta/2) \\ \sin(\theta/2) e^{i\phi} \end{array} \right),
\]
(80)
\[
\xi_\downarrow = Ne^{i\beta} \left(\begin{array}{c} \sin(\theta/2) \\ -\cos(\theta/2) e^{i\phi} \end{array} \right),
\]
(81)

we obtain
\[
\xi_\downarrow = U \xi_\uparrow = e^{i(\beta - \alpha)} \left(\begin{array}{c} 0 \\ -e^{i\phi} \end{array} \right) \xi_\uparrow,
\]
(82)

and
\[
\xi_\uparrow = U^\dagger \xi_\downarrow = e^{i(\alpha - \beta)} \left(\begin{array}{c} e^{i\phi} \\ 0 \end{array} \right) \xi_\downarrow.
\]
(83)

To say that the 4-spinor is the eigenspinor of the chiral helicity, and, at the same time, it is not (!) the eigenspinor of the helicity operator (and that the physical results would depend on this), signifies the same as to say that rotations have physical significance on the fundamental level.
3.2. Non-commutativity
I say also a couple of words on the unitarity transformations in the context of the "non-commutative" physics.

Recently, we discussed the Sakurai-van der Waerden method of the derivation of the Dirac equation (and, the derivation of the higher-spin equations as well), see Ref. [29]. We can start from
\[(EI^{(2)} - \sigma \cdot p)(EI^{(2)} + \sigma \cdot p)\Psi^{(2)} = m^2 \Psi^{(2)}, \] (84)
and we obtain
\[[\hat{\gamma}_\mu \partial^\mu - m_1 - m_2 \gamma_5] \Psi(x) = 0. \] (85)
Alternatively,
\[(EI^{(4)} + \alpha \cdot p + m\beta)(EI^{(4)} - \alpha \cdot p - m\beta)\Psi^{(4)} = 0. \] (86)
Of course, as in the original Dirac work, we have
\[\beta^2 = 1, \quad \alpha^i \beta + \beta \alpha^i = 0, \quad \alpha^i \alpha^j + \alpha^j \alpha^i = 2 \delta^{ij}. \] (87)
For instance, their explicit forms can be chosen
\[\alpha^i = \begin{pmatrix} \sigma^i \\ 0 \\ 0 \\ -\sigma^i \end{pmatrix}, \quad \beta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, \] (88)
where \(\sigma^i \) are the ordinary Pauli \(2 \times 2 \) matrices.

We can also postulate the non-commutativity for the sake of general consideration (as in Ref. [30])
\[[E, p^i]_- = \Theta^{0i} = \theta^i. \] (89)
Therefore, the equation (86) does not lead to the well-known equation \(E^2 - p^2 = m^2 \). Instead, we have
\[\{ E^2 - E(\alpha \cdot p) + (\alpha \cdot p)E - p^2 + m^2 - i\sigma \times I(2) | p \times p \} \Psi^{(4)} = 0. \] (90)
For the sake of simplicity, we may assume the last term to be zero. Thus, we come to
\[\{ E^2 - p^2 - m^2 - (\alpha \cdot \theta) \} \Psi^{(4)} = 0. \] (91)
However, let us perform the unitary transformation with \(U_1 \) matrix.\(^7\) For \(\alpha \) matrices we come to
\[U_1(\alpha \cdot \theta)U_1^{-1} = |\theta| \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \alpha_3 |\theta|. \] (92)
And, applying the second unitary transformation with \(U_2 \) matrix, as before, we have:
\[U_2\alpha_3 U_2^\dagger = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \alpha_3 \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}. \] (93)
The final equation is
\[[E^2 - p^2 - m^2 - \gamma_5 \text{chiral}] |\theta| \Psi^{(4)} = 0. \] (94)
In the physical sense this implies that the mass splitting exists for a Dirac particle over the non-commutative space. This procedure may be attractive for explanation of the mass creation and the mass splitting for fermions.

\(^7\) Of course, the certain relations for the components \(\theta \) should be assumed. Moreover, in our case \(\theta \) should not depend on \(E \) and \(p \). Otherwise, we must take the noncommutativity \([E, p^i]_- \) again.
4. Conclusions
We presented a pedagogical review of the formalism for the momentum-space Majorana-like particles in the $(1/2,0) \oplus (0,1/2)$ representation of the Lorentz Group. They satisfy the 8-component analogue of the Dirac equation. Apart, they have different gauge transformations comparing with the usual Dirac 4-spinors. Their helicity, chirality and chiral helicity properties have been investigated in detail. These operators are connected by the given unitary transformations. At the same time, we showed that the Majorana-like 4-spinors can be obtained by the rotation of the spin-parity basis. Meanwhile, several authors have claimed that the physical results would be different on using calculations with these Majorana-like spinors.

Thus, the $(S,0) \oplus (0,S)$ representation space (even in the case of $S = 1/2$) has additional mathematical structures leading to deep physical consequences, which have not yet been explored before.

However, several claims made by other researchers concerning with chirality, helicity, chiral helicity should not be considered to be true until the time when experiments confirm them. Usually, it is considered that the rotations (unitary transformations) have no any physical consequences on the level of the Lorentz-covariant theories.

References
[1] Sakurai J J 1967 Advanced Quantum Mechanics. (Addison-Wesley).
[2] Ryder L H 1985 Quantum Field Theory. (Cambridge: Cambridge University Press, Cambridge).
[3] Itzykson C and Zuber J. B. 1980 Quantum Field Theory. (McGraw-Hill Book Co.), p. 156.
[4] Bogoliubov N N and Shirkov D V 1976 Introduction to the Theory of Quantized Fields. 3rd Edition. (Moscow: Nauka).
[5] Dvoeglazov V V 1995 Int. J. Theor. Phys. 34 2467; 1995 Nuovo Cim. A 108 1467, 1997 Hadronic J. 20 435; 1998 Acta Phys. Polon. B29 619.
[6] Dvoeglazov V V 1997 Mod. Phys. Lett. A12 2741.
[7] Dvoeglazov V V 2004 Int. J. Theor. Phys. 43 1287.
[8] Berestetskiy B, Lifshitz E M and Pitaevskii L P 1982 Quantum Electrodynamics. The IV Volume of the Landau Course of Theoretical Physics. 2nd Edition (Butterworth-Heinemann).
[9] Barut A O 1978 Phys. Lett. B 73 310; 1979 Phys. Rev. Lett. 42 1251.
[10] Majorana E 1937 Nuovo Cimento 14 171.
[11] Bilenky S M and Pontekorvo B M 1978 Phys. Repts 42 224.
[12] Wigner E P 1939 Ann. Math. 40 149; Weinberg S 1964 Phys. Rev. 133 B1318.
[13] Faustov R N 1971 Relativistic Transformations... Preprint ITF-71-117P, Kiev.
[14] Sen Gupta N D 1967 Nucl. Phys. B14 177.
[15] Sen Gupta N D 1967 Nucl. Phys. B4 147.
[16] Sen Gupta N D 1967 Nucl. Phys. B5 781; ibid. 603.
[17] Raspi L 1995 Fizika 1599.
[18] Barut A and Zìsico G 1993 Mod. Phys. Lett. A8 1099; Zìsico G 1996 Int. J. Mod. Phys. A 11 2081.
[19] Ahiwula D V 1996 Int. J. Mod. Phys. A 11 1855, 1994 Incompatibility of Self-Charge Conjugation with Helicity Eigenstates and Gauge Interactions. Preprint LANL UR-94-1252, Los Alamos.
[20] Dvoeglazov V V 1997 Fizika B6 111.
[21] Lounesto P 2002 Clifford Algebras and Spinors. (Cambridge: Cambridge University Press), Ch. 11 and 12.
[22] Da Rocha R and Rodrigues, Jr. W 2006 Where are Elko Spinor Fields in Lounesto Spinor Field Classification? Mod. Phys. Lett. A 21 65 (Preprint mat-ph/0506075).
[23] Kirchbach M, Compean C and Noriega L 2004 Beta Decay with Momentum-Space Majorana Spinors. Eur. Phys. J. A 22 149.