ZnFe$_2$O$_4@$WO$_{3-x}$/Polypyrrole: An Efficient Ternary Photocatalytic System for Energy and Environmental Application

Kundan Kumar Das, Dipti Prava Sahoo, Sriram Mansingh, and Kulamani Parida*

ABSTRACT: Environmental protection and the necessity of green energy have become fundamental concerns for humankind. However, rapid recombination of photoexcitons in semiconductors often gets in the path of photocatalytic reactions and annoyingly suppresses the photocatalytic activity. In this study, a polypyrrole (PPY)-supported step-scheme (S-scheme) ZnFe$_2$O$_4@$WO$_{3-x}$ (PZFW15) ternary composite was fabricated by a multistep process: hydrothermal and calcination processes, followed by polymerization. During the formation of the heterojunction, the oxygen vacancy (OV) on WO$_{3-x}$ promotes effective separation and increases the redox power of the photogenerated excitons via the built-in internal electric field of S-scheme pathways between ZnF and WO$_{3-x}$. The successful construction of the S-scheme heterojunction was substantiated through X-ray photoelectron spectroscopy, experimental calculations, radical trapping experiment, and liquid electron spin resonance (ESR) characterization, whereas the existence of OVs was well confirmed by EPR and Raman analyses. Meanwhile, the PPY served as a supporter, and the polaron and bipolaron species of PPY acted as electron and hole acceptors, respectively, which further enhances the charge-carrier transmission and separation in the ternary PZFW15 photocatalyst. The designed ternary nanohybrid (PZFW15) displays outstanding gemifloxacin detoxification (95%, 60 min) and hydrogen generation (657 μmol h$^{-1}$), i.e., 1.5 and 2.2 times higher than the normal S-scheme ZFW15 heterostructure and pure ZnFe$_2$O$_4$ (ZnF), respectively, with an apparent conversion efficiency of 4.92%. The ESR and trapping experiments indicate that the generated $^\cdot$OH and $^\cdot$O$_2^-$ radicals from the PZFW15 photocatalyst are responsible for gemifloxacin degradation. This unique PPY-supported S-scheme heterojunction is also beneficial for the enhanced electron-transfer rate and provides abundant active sites for photocatalytic reactions.

INTRODUCTION

In the last two decades or so, the blue planet has seen vast growth in both human population and industrialization. To satisfy their growing energy needs, a large amount of nonrenewable energy sources, e.g., fossil fuels, is being extensively utilized, which ultimately leads to energy crises and environmental catastrophes. Thus, scientists have worked hard to develop/find a process that is economically viable and environmentally benign.$^{1-3}$ In this direction, the semiconductor-assisted artificial photocatalytic water-splitting reaction toward green fuel hydrogen generation from renewable feedstock (water and sunlight) is the foremost and robust strategy from a sustainability perspective.$^{4-6}$ Numerous photocatalytic materials have been fabricated and experimented with toward the hydrogen evolution reaction to reach the benchmark activity, but unfortunately, the yield is below par for many catalysts and the activity is confined to laboratory-scale production only. Interestingly, n-type spinel ZnFe$_2$O$_4$ (ZnF) shows noticeable photocatalytic activities in both the energy and environmental sectors due to its unique features such as low optical band gap, long-term durability, facial synthesis methods, being cheap, and having an easily tunable morphology.7,8 Having said that, faster photoexcited charge-carrier recombination, poor charge-diffusion rate, and low charge conductivity are some bottlenecks of ZnF that limit its widespread application.9 Therefore, it is hard to find all of the suitable parameters in a single material to achieve the benchmark activity in this field of photocatalytic water reduction reaction.10 Hence, constructing a promising ZnF-based photocatalytic system with optimum catalytic productivity is highly challenging and needful. To date, a variety of semiconductors with staggered-band structures have been employed to prepare ZnF-based heterojunction catalysts such
as ZnFe$_2$O$_4$/g-C$_3$N$_4$, ZnFe$_2$O$_4$/Au/WO$_3$, ZnFe$_2$O$_4$/TiO$_2$, SnFe$_2$O$_4$/ZnFe$_2$O$_4$, etc. At the interface of these staggered-heterojunction photocatalysts, the photoproduced e$^-$ migrates from the conduction band (CB) of the higher reduction potential material to the one with a lower potential and simultaneously photoinduced h$^+$ moves from the higher oxidation valence band (VB) to the lower one via a double charge-transfer pathway. Further, the Coulombic force of attraction does not allow the movement of electron–hole in an opposite/reverse manner. Although the type-II/staggered junction separates the electron–hole pairs effectively, it has some limitations from kinetic viewpoints. Therefore, the construction of a newly designed S-scheme-based heterojunction has been proposed to address the shortcomings of the conventional type-II junction. The step-scheme (S-scheme) heterojunction is a modified version of the Z-scheme orientation, typically composed of two n-type semiconducting materials, i.e., oxidation photocatalyst (OP) and reduction photocatalyst (RP). On interaction, because of the Fermi-level difference, the electron migrates from RP to OP, which further leads to the formation of a built-in electric field at the interface of OP and RP. Further, under illumination, the photoproduced electron at the OP could recombine with the photoinduced hole of the PBW. To date, very few works have fruitfully introduced defect engineering into the step-scheme heterojunction for photocatalysis. Therefore, the designing a vacancy-framed ZnF-WO$_3$-x mediator-free S-scheme-type heterointerface shows a significant increment in catalytic activities compared to its parent material. In the search of a perfect partner for ZnF to construct a propitious vacancy-framed mediator-free S-scheme-type heterojunction photocatalytic system, oxygen vacancy-induced nonstoichiometric tungsten trioxides (WO$_3$-x) were found to be a better option because of the following benefits: (i) desirable band position, (ii) easy to
prepare, (iii) steady physicochemical parameters, (iv) improved optoelectrical properties, (v) effective exciton separation, etc. However, the observed catalytic performance of the binary hybrid needs further improvement to compare its activity with other reported benchmark photocatalysts. In this respect, a carbonaceous conducting polymer containing \(\pi \)-conjugated frameworks like polyaniline (PANI), polypyrrole (PPY), and polystyrene (PTS) is integrated with various binary composites to uplift their photocatalytic activity. Among the three, PPY has a huge response and widespread applicability because of its high conductivity compared to its other competitors. This observed increase in conductivity is due to the formation of defects in the polymer skeleton, leading to the generation of polarons and bipolarons. Although the concept of bipolaron-based charge flowing PPY is indecisive yet and lots of debate still on. Moreover, PPY has been largely used for broad-spectrum absorption and efficient charge-carrier separation. Looking at these advantageous properties of PPY, the prepared oxygen-vacancy-mediated ZnF-WO\(_3\)-X binary heterojunction is integrated with PPY to develop a potential OV-mediated S-scheme-based photocatalytic system.

Herein, we have synthesized a ZnF/WO\(_{3-x}\) S-scheme heterojunction with an oxygen vacancy mediator and further supported by polypyrrole through a series of methods, i.e., hydrothermal, calcination, and polymerization. The effectiveness of the S-scheme heterojunction-based ternary photocatalytic was examined toward gemifloxacin (GMF) degradation and H\(_2\) evolution reaction under visible-light irradiation. The detailed GMF degradation pathways were investigated and confirmed by the LCMS and TOC studies. Further, our finding displays that coupling of the S-scheme junction, defect engineering, and radical cations of PPY can enhance the exciton separation, which ultimately improves the H\(_2\) production along with the pollutant degradation capacity of the photocatalyst. This work provides us with a deeper understanding of the development of the high-performance oxygen-vacancy-mediated S-scheme heterojunction photocatalyst for addressing the growing energy and environmental concerns.

Formation Insight of the Ternary Catalytic System (PZFW). The strategy to fabricate polypyrrole-supported ZnFe\(_2\)O\(_4\)/WO\(_{3-x}\) (ZFW) has been shown in Scheme 1. Initially, the hydrothermal and calcination route was adopted for the fabrication of single-domain ZnFe\(_2\)O\(_4\) nanoparticles/ flakes. Further, the nanocapsules of WO\(_{3-x}\) were prepared in an acidic medium through the coprecipitation method followed by calcination to produce oxygen-vacancy-oriented WO\(_3\) represented as WO\(_{3-x}\) nanocapsules. The thermal treatment leads to the breakage of a few W–O bonds, and as a result, oxygen atoms are removed from the surface, generating oxygen vacancies along with the formation of a W\(^{5+}\) oxidation state. Further, fumaric acid (organic linker) is used to prepare the binary composite of ZFW, which may have formed a bond between the vacant oxygen site of WO\(_3\) and the Fe 3d orbital of ZnF. Further, the integration of pyrrole with ZFW takes place through the polymerization method, where the \(\sigma-\pi\) interaction and the strong electrostatic interaction create a strong bonding between the binary hybrid ZFW and PPY, which hold them together firmly, forming the ZnFe\(_2\)O\(_4@\)WO\(_{3-x}/\)polypyrrole (PZFW) ternary composite. All of the above discussions and related chemistry are well justified via different characterization techniques described in the following sections.

RESULTS AND DISCUSSIONS

The crystallinity of the as-synthesized samples was unclogged by X-ray diffraction (XRD) measurements and is presented in Figure 1. Interestingly, all of the characteristic peaks of the prepared ZnF are perfectly indexed to the cubic crystal phase of the spinel ferrite according to JCPDS 01-077-0011, and for pure PPY, a stretched peak is obtained at 20 = 25.68° corresponding to the (002) plane, which suggests its amorphous nature. Further, the diffraction pattern of WO\(_3\) (Figure S2) was well matched to the standard monoclinic phase according to JCPDS file no. 20-1324. Diffraction peaks of the synthesized WO\(_{3-x}\) nanoparticles at 23.10, 23.6, and 24.33° are assigned to the (002), (020), and (200) lattice planes of the monoclinic WO\(_3\) respectively. It has been observed that the diffraction peaks of the WO\(_{3-x}\) nanoparticle are slightly shifted from the standard patterns, and this shift in...
the peak positions in the WO$_{3-x}$ suggests the formation of oxygen vacancies in the crystal structure of WO$_3$. Additionally, the binary composite ZnFe$_2$O$_4$@WO$_{3-x}$15% (ZFW15) elucidates the XRD pattern of both the combining specimens, i.e., cubic ZnF and monoclinic WO$_{3-x}$ nanocapsules, indicating the successful materialization of the binary heterostructure. However, after polymerization of the binary hybrid with pyrrole, the formed ternary system ZnFe$_2$O$_4$@WO$_{3-x}$15%/polypyrrole (PZFW15) shows a similar XRD sequence to that of ZFW15 with a slight reduction in the peak intensity, which is due to the loading of amorphous PPY. Further, a noticeably higher angle shift of the ZnF(311) plane was visualized in both ZFW15 and PZFW15 composites, respectively, which corroborates the existence of a synergistic interaction between the combining entities in the fabricated heterostructure (Figure 1b). Moreover, no signature peak of PPY was noticed in PZFW15, implying fine dispersal and spreading of the polymeric material in the ternary hybrid. Other than that, no unassigned/unidentified diffraction was obtained, indicating the purity of materials.

The internal and external morphological outlooks of the synthesized samples were characterized by SEM and TEM techniques. The SEM images of WO$_{3-x}$ and PZFW15 are illustrated in Figure S3. The WO$_{3-x}$ sample appears to be capsule-like (Figure S3a), and from the SEM of the PZFW15 ternary heterostructure, it can be observed that ZnF is well attached to the WO$_{3-x}$ along with an aggregated network of PPY (Figure S3b). Further, the color elemental mapping (Figure S3c–h) illustrates the perfect dispersion of Fe, Zn, W, C, O, and N elements in the PZFW15 ternary hybrid. Additionally, Figure 2 demonstrates the TEM micrographs of neat and ternary composite materials. The nanoplate and nanocapsule-like structures were observed from the TEM images of ZnF and WO$_{3-x}$ samples, respectively, as depicted in Figure 2a,b. Further, the average lengths of ZnF nanoplates and WO$_{3-x}$ nanocapsules were measured to be 36 and 85 nm, respectively. However, PPY seems to be in an agglomerated sphere or sheet form, as observed in Figure 2c. The TEM picture (Figure 2d) of the ternary hybrid gives a clear impression that ZnF, WO$_{3-x}$, and PPY are closely integrated, which is the main cause of the enhanced activity. Figure 2e displays the HR-TEM image taken from the yellow dotted area (Figure 2d), and the image represents two d-spacing values of 0.25 nm (denoted i) and 0.38 nm (denoted ii) corresponding to (311) and (220) lattice diffractions of ZnF and WO$_{3-x}$, respectively. The mutilated lattice with a small vacant area (denoted iii) was noticed for WO$_{3-x}$ in the ternary hybrid, suggesting the existence of OVs, which remain intact within the lattice after the composite formation. For better visualization, a highly enlarged image of Figure 2e has been provided in Figure S4a. Remarkably, a noteworthy interfacial contact was observed between ZnF and WO$_{3-x}$ (Figure 2e), suggesting the formation of the ZFW15 heterostructure. Figure S4b displays the HR-TEM image of PZFW15, where clear lattice fringes of ZnF can be clearly observed. Moreover, no fringes for PPY were observed, suggesting the amorphous nature of the material, which is well consistent with the XRD analysis. Besides, the obtained SAED pattern confirms the polycrystalline nature of the PZFW15 sample, along with the concentric rings representing the (311) plane for ZnF and (220), and
(002) crystal planes for WO$_{3-x}$, respectively (Figure 2f).
Similarly, an enlarged picture of the central area of Figure 2f has been provided in Figure S4c. The enlargement and rescaling of images have been done using advanced Image J software. Furthermore, the EDAX measurement (Figure S5) provides a sturdy confirmation regarding the copresence of Fe, Zn, W, C, O, and N elements in PZFW15, revealing the purity of the materials.

Figure 3a depicts the FTIR spectra of as-synthesized materials (ZnF, WO$_{3-x}$, PPY, ZFW15, and PZFW15) to ascertain the presence of different functional groups and verify the concept of polarons and bipolarons. The vibrational bands located at 462 and 559 cm$^{-1}$ confirm the existence of metallic groups of ZnF. As shown in the figure, the evident absorption bands at 755, 830, and 948 cm$^{-1}$ for WO$_{3-x}$ can be attributed to the bending, asymmetric, and terminal stretching vibrations of the W–O–W moiety, respectively. The IR bands of the solitary PPY positioned at 790 and 934 cm$^{-1}$ certify the complete polymerization of pyrrole, which is further confirmed by the appearance of trademark bands at 1475 and 1558 cm$^{-1}$, respectively. Moreover, a characteristic vibrational band is observed at 1672 cm$^{-1}$, which points out the formation of free charge carriers, i.e., polaron and bipolaron species. Kumar et al. also reported a similar type of explanation over PPY-modified g-C$_3$N$_4$. In comparison to the parent materials, the vibrational modes of ZnF and WO$_{3-x}$ with reduced intensity and slight shifting are found in the binary ZFW15 heterostructure, suggesting a close interaction between the two (Figure 3b). Further, the featuring peaks associated with PPY are detected in the PZFW15 hybrid, confirming the successful polymerization of pyrrole on the surface of the ZFW15 heterostructure. For a better comparison, the FTIR spectra of both WO$_3$ and WO$_{3-x}$ have been provided in Figure S6. Moreover, the existence of functional groups and the generation of polaron and bipolaron could also be established from Raman analysis. Raman polarization signals are intensely sensitive to subtle changes in bond vibrations that may be caused due to phase transition and defects. Figure 3c represents the Raman scattering of solitary ZnF, WO$_{3-x}$, and PPY along with ZFW15 and PZFW15 hybrid samples sequentially. The Raman signals of ZnF located at 350, 408, 494, and 610 cm$^{-1}$ can be attributed to the symmetrical vibrations of the cubic spinel ferrite. The highlighted Raman signals above and below 600 cm$^{-1}$ confirm the presence of
tetrahedral (AO₄) and octahedral (BO₆) species. Further, the Raman polarization mode of WO₃⁻ shows four active bands at 265, 324, 717, and 811 cm⁻¹ in the measured spectral range. Among them, the bands at 717 and 811 cm⁻¹ correspond to stretching and bending modes such as W−O stretching, W−O bending, and O−W−O deformation motion, respectively.

Figure 4. High-resolution deconvoluted XPS spectra of (a) Zn 2p, (b) Fe 2p, (c) W 4f, (d) C 1s, and (e) N 1s of ZnF, WO₃₋ₓ, PPY, ZFW15, and PZFW15.
while the peaks at a lower frequency explain the bending modes of $O^-\text{W}^-\text{O}$ with a bridging oxygen atom. Moreover, similar types of Raman modes were obtained for the WO$_3$ specimen with a slight shifting in the band position, as provided in Figure S7a. More interestingly, the appearance of an additional band at 440 cm$^{-1}$ for WO$_3$-X in comparison to neat WO$_3$ indicates the presence of defective oxygen species, which plays a vital role in the charge separation and transfer mechanism. Importantly, thermal treatment can remove the surface-adsorbed water species and may hamper the molecular structure in the form of lattice variation or oxygen defects, resulting in dipole moment variation and polarization, which further result in a Raman shift. The appearance of these two peaks justifies the generation of polarons and bipolarons within the ternary system, which is consistent with IR results. Additionally, two wide Raman humps visualized at 1320 and 1520 cm$^{-1}$ correspond to the C$=\text{C}$ backbone stretching and C$-\text{N}$ asymmetrical stretching, respectively. Further, the appearance of a Raman peak at 445 cm$^{-1}$ wavenumber confirms the existence of OVs in the ternary composite (PZFW15). The successful formation/creation of OVs in WO$_3$-X, ZFW15, and PZFW15 can be well-observed from the magnified Raman image shown in Figure 3d. The characteristic Raman bands of PPY are also detected in the PZFW15 heterostructure, confirming the successful formation of the ternary composite. Henceforth, a conclusion from Raman analysis is drawn that oxygen vacancies along with polarons and bipolarons have been introduced because of lattice deformation and polymerization process, respectively.

XPS measurements were executed to study the surface chemical status and the electronic environment and to gain insights into constituent elements’ bonding interaction. The wide survey spectra prominently confirm that the element contains a pure ZnF, ZFW15, and PZFW15 ternary hybrid, i.e., the presence of C, N, O, W, Fe, and Zn (Figure S8), and shows a good correlation with EDX data. The high-resolution XPS spectra of ZnF, ZFW15, and PZFW15 photocatalysts have been depicted in Figure 4. Figure 4a displays the Zn 2p deconvoluted XPS spectra of the ZF sample where peaks situated at 1021.6 and 1044.7 eV convey the existence of 2p$_{3/2}$ and 2p$_{1/2}$ spin states, respectively, with an oxidation state of $+2$, which further indicates the tetrahedral coordination of Zn in the ZnF material. It can be seen from Figure 4b that the deconvoluted 2p spectra can be classified into two groups of three peaks each arising from the spin–orbit coupling at the 2p$_{3/2}$ (711.4 eV) and 2p$_{1/2}$ (725.5 eV) states. In detail, the
three subpeaks of each group correspond to an octahedral structure, a tetrahedral structure, and a satellite peak, respectively. In comparison to pure ZnF, the Zn 2p and Fe 2p XPS peaks in the binary and ternary heterostructures show a negative drift in the binding energy of about 0.2–0.4 eV, suggesting an increase of the electron density within the composites. Further, Figure 4c displays the fitted W 4f spectrum, where the observed BEs at 35.4 (4f7/2) and 37.5 eV (4f5/2) represent the +6 oxidation state of W in WO3−x whereas the peaks positioned at 34.7 (4f7/2) and 36.6 eV (4f5/2) in the shoulder region of the spectra suggest the presence of W5+. The occurrence of W5+ with a small peak area further confirms the occurrence of nonstoichiometric oxygen vacancies in WO3-x. However, the BE of W 4f (4f7/2 and 4f5/2 spin states) in the PZFW15 specimen undergoes a higher energy shift, implying the reduction of electron concentration surrounding the tungsten element in the ternary hybrid photocatalyst. The relative concentration of W5+ to W6+ was approximately determined using the included area of every peak in the W 4f spectra. The increased concentration of W5+ in PZFW15 indicates that loading of PPY does not hamper the defects of WO3−x. Figure S9 illustrates the deconvoluted O 1s spectrum of ZnF, ZFW15, and PZFW15 catalysts, respectively. The O 1s plot of ZF bulges out two fitted peaks (O1 and OIII) located at 530.4 and 532.3 eV, respectively, representing the lattice oxygen associated with the metal oxide and surface-absorbed molecules. There was a slight negative shifting of both XPS peaks (O1 and OIII) in the binary and ternary systems, which explains the change in the electron environment around O 1s and also confirms the construction of the heterostructure. However, an additional peak denoted OII was found in ZFW15 (531.1 eV) and PZFW15 (531.2 eV) systems, which related to the presence of oxygen vacancy. The binding energy along with the peak intensity of O1 in ZFW15, and PZFW15 is high compared to that of WO3−x (Figure S9), referring to the higher amount of oxygen vacancy presence, which is well consistent with the Raman analysis. From the above XPS analysis, we observed a negative or lower binding energy shift for Zn and Fe and a positive or higher BE drift in W of the PZFW15 sample. Besides, Figure 4d represents the deconvoluted C 1s spectra with peaks located at binding energies of 284.8, 286.5, and 288.9 eV, which are ascribed to the sp2 C–C bonds or adventitious carbon, polaron (=C−N+), and bipolarons (=C=−N) bonds of pyrrole rings, respectively. Similarly, the N 1s spectra (Figure 4e) deconvoluted into three peaks observed at BE 398.4, 400.2, and 401.4 eV and represent the sp2 hybridized atoms (C=N=C) as well as stand for quinoid amines (=N−), polaron state (=NH−) followed by −NH of nitrogen in the pyrrole ring. These results completely confirm the presence of polarons and bipolarons in the PPY. In contrast, a negative binding energy shift of C 1s and N 1s spectra was observed for the PZFW15 composite, suggesting the larger electron density around PPY in the ternary heterostructure. The whole XPS results demonstrated that there were S-scheme charge-transfer phenomena occurring in between ZnF and WO3−x and the electron cloud transferred from both ZnF and WO3−x to the PPY surface and carried the photocatalytic reduction/oxidation reaction, respectively. In addition to XPS, the formation of OVVs and the generation of radical cations were perceived from EPR measurements. Figure S10 illustrates the EPR signals of WO3−x, ZFW15, and PZFW15 samples. All of these samples exhibit a strong paramagnetic signal at a g-value of 1.97, corresponding to the existence of unpaired electrons trapped in oxygen vacancy. In comparison to WO3−x an intense paramagnetic signal was found for ZFW15, which describes the increased amount of oxygen vacancies. More importantly, an enhancement in the EPR signal was encountered after polymerization, and this enhancement of the signal signifies the generation of free radicals during the synthesis of PPY, which further verifies the generation of polaron and bipolaron species.

The photophysical properties of the designed samples were determined using a UV–vis diffuse reflectance study, plotted in Figure 5a. Generally, the spinel ZnF exhibits strong absorption edge close to 700 nm, which is due to the shipment of photoexcitons from the valence band to the conduction band. The WO3 shows a strong absorption in the UV region with an absorption edge at 470 nm. However, the WO3−x specimen exhibits a significant bathochromic/red shift of the absorption edge from 470 to 490 nm due to oxygen vacancies resulting from the thermal treatment. It is well known that OVs create a defect energy level below the conduction band of WO3. Hence, the enhancement in light absorption and the shifting of the absorption edge toward the visible region suggest that the electron transition occurs between the valence bands and the energy level of oxygen vacancies, which have been created due to partial reduction of WO3 and formation of nonstoichiometric WO3−x. On the contrary, PPY displays absorption spectra covering the entire visible to near-IR region, owing to the black nature of the samples. The optical absorption of PPY in the visible region is attributed to the π–π* transition in benzenoid and quinoid units. In comparison to WO3−x a red shift in the photon absorption can be observed for the ZFW15 composite. Further, the ternary catalytic system (PZFW15 hybrid) ominously shows wide light-capturing, resulting in a large amount of photoproduced e−–h+ pairs and higher photocatalytic activities. The energy-gap values for WO3, WO3−x and ZnF samples were determined to be 3.0, 2.8, and 1.86 eV, respectively, from the Tau plot using the Kubelka formula, as shown in Figure 5b. The energy band of OVs is estimated to be 0.7 eV below the conduction band (CB) of WO3, which has been derived from the maximum absorption of 535 nm in the tailed region of WO3−x.

Thereafter, Mott–Schottky analyses (MS) were performed to gather more information regarding the nature of the semiconducting material, charge migration in the liquid/electrolyte solution, donor density, and band-edge potential (CB or VB), as it is a quite crucial parameter for depicting the reaction mechanism. A positive slope for both ZnF and WO3−x samples confirms the n-type nature of both the photocatalysts with flat band potentials of −0.76 and −0.23 eV vs Ag/AgCl, respectively (Figure 5c,d). Furthermore, the charge-carrier density (Nc) was obtained from the M–S plot, based on eq 1. where C represents the capacitance, ϵ is the dielectric constant, ε0 is the permittivity of a vacuum, ϵ is the elementary charge value, and Nd is the donor density. Consequently, the donor density of PZFW15 was found to be 8.5 × 1017 cm−3, which is greater than that of the corresponding ZnF (5.1 × 1016 cm−3) and ZFW15 (4.8 × 1017 cm−3) semiconductors. The observed high Nd of the ternary hybrid is associated with effective charge separation and migration, which can be attributed to the positive effect of free charge on the binary heterojunction.
photocatalyst (ZFW15). Further, an increase in donor density leads to the formation of a space-charge layer and builds an electrical field close to the electrode−electrolyte interface. As a consequence, there is improved charge isolation and shipment, thereby boosting the photocatalytic activities. To further support this conclusion, the Debye lengths (L_D) of ZnF, ZFW15, and PZFW15 were evaluated according to eq 2

$$L_D = (\frac{\epsilon_0 k_b T}{2e^2 N_f})^{1/2}$$

Generally, a smaller value of L_D indicates less transit time and a higher concentration of charge carriers, ultimately leading to better exciton separation. Further, the L_D value of PZFW15 is determined to be nm, which is much smaller than that of the other samples, i.e., ZnF (nm) and ZFW15 (nm), suggesting an enhanced separation efficiency of photoinduced charge carriers, leading to a significant improvement in photocatalytic performance.

Charge-Transfer Mode. The band-edge position of the materials is found to have a direct impact on its redox ability, which happens at the catalyst surface. The estimated band-gap energies for ZnF and WO$_3$−X were 1.86 and 2.82 eV, respectively. The valence band energies (E_v) of ZnF and WO$_3$−X were obtained using ultraviolet photoelectron spectroscopy (UPS). The E_v values for ZnF and WO$_3$−X were calculated to be 6.19 and 7.57 eV. Conduction band (CB) energy (E_c) values of 4.33 (ZnF) and 4.57 eV (WO$_3$−X) were elucidated from the difference between E_v and E_c. For further analysis of band-gap structures of ZnF and WO$_3$−X XPS-VB measurements were performed to determine their electronic structures. The D-value between the Fermi level (E_F) and the valence band maximum (E_{VBM}) of the as-synthesized ZnF and WO$_3$−X can be estimated from the VB-XPS spectrum as displayed, and the values were 1.62 and 2.65 eV for ZnF and WO$_3$−X, respectively. Combining the results of the band gap, UPS, and XPS-VB, the work functions (Φ) of ZnF and WO$_3$−X can be calculated as −4.44 and −4.92 eV, respectively. The Fermi level of ZnF is found to be exactly at 0.11 eV below the CB, while for WO$_3$−X, the Fermi level lies at 0.17 eV below the CB. As found from the UV−vis analysis, the OV energy state is situated at 0.7 eV lower than the actual CB position, so the OV energy band (vs the vacuum level) will be at −5.45 eV. Gathering the above-calculated data, the energy-level diagrams of ZnF and WO$_3$−X along with UPS and VB-XPS spectra are shown in Figure 6. Additionally, the detailed calculated values related to band-edge positions of ZnF and WO$_3$−X (vs NHE) are supplied in Table S1. More importantly, these calculated energy-level values will help in predicting the electron−hole separation and migration mechanism.

It is believed that the formation of the S-scheme heterojunction through OVs in between ZnF and WO$_3$−X plays a key role in reducing the recombination effect of photoproduced charge carriers, which was further enhanced by the addition of PPy. Henceforth, to provide more convincing evidence in support of the above statement, PL, TRPL, electrochemical impedance spectroscopy (EIS), and transient photocurrent were performed.

The effective separation of photoexcited charge carriers was again strongly supported by photoluminescence (PL) spectra, as it is a useful technique to explore the transfer and recombination properties of photoexcited charge carriers. Moreover, steady-state PL analysis was used to specify the effect of OVs and free charge carriers of PPy on the lifetime of photoproduced excitons. Figure 7a represents the PL spectra of
ZnF, WO$_3$–X, ZFW15, and PZFW15 at an excitation of 350 nm. In the WO$_3$–X PL spectrum, the intense shoulder peak (420 nm) is attributed to the indirect band-to-band transition and the introduction of surface OV-induced charge-carrier trapping states.21 It is easy to find that the luminescence spectrum of parent WO$_3$–X and ZnF displays the strongest magnitude among binary and ternary hybrids, which is induced by the fast recombination of photoproduced charge carriers. However, a reduction in fluorescence intensity is observed for ZFW15, which suggests that the incorporation of WO$_3$–X had sufficiently restricted the charge recombination process due to the existence of an oxygen vacancy layer at the interface. The OV s present in WO$_3$–X also play an important role in overpowering the recombination of charge carriers as the electrons in the OV energy band recombine with the holes of HOMO of ZnF, further separating the photoinduced electron–hole pairs. Moreover, an extremely low magnitude of fluorescence intensity (or quenching) was encountered after the introduction of PPY. The oxidative species (polaron and bipolaron) of PPY further traps the charge carriers and increases the lifetime of photoproduced excitons, leading to an increased photoactivity.

Furthermore, time-resolved photoluminescence (TRPL) decay was conducted for gaining in-depth information regarding the charge-carrier lifetime/recombination and reflects the transfer efficiency of the photogenerated charge carriers. Similarly, the TRPL measurement was also used to explore the effect of OVs and conjugated \textit{\Pi}-skeleton of PPY on the lifetime of photoproduced charge carriers. As demonstrated in Figure 7b, the spectra were modeled by a biexponential fitting curve consisting of shorter and longer lifetime components. As listed in Table S2, the mean lifetime of ZFW15 was 2.4 ns, which was higher than that of ZnF (1.8 ns) incontrovertibly. The enhanced lifetime of charge carriers in ZFW15 could be ascribed to the formation of an S-scheme-type charge-transfer mechanism between ZnF and WO$_3$–X, where OVs act as charge arbitrators. Specifically, the OVs play the role of arbitrators in establishing a charge-transfer bridge between WO$_3$–X and ZnF, which quickens the transmission and separation of photoproduced charge carriers at the interface of the S-scheme junction.17,44

Further, electrochemical impedance spectroscopy was carried out to investigate the interfacial faradic kinetics along with charge separation. Generally, the arc/diameter of the semicircle in the Nyquist plot informs about the charge-transfer process, and this corroborates with the charge-transfer resistance in the electrolyte solution. Figure 7c highlights the Nyquist plot of synthesized samples. As illustrated, the arc
radius of ZFW15 was smaller than that of the parent materials, signifying a better charge transfer and a reduced charge resistance. This result suggests that the formation of an S-scheme junction through OVs can reduce the resistance and promote productive interfacial-charge migration. The coexistence of W\(^{5+}\) and W\(^{6+}\) ions and the intervalence charge transfer between these ions increase the conductivity and decrease the charge-transfer resistance.\(^{45}\) Moreover, after polymerization, the PZFW15 ternary hybrid shows an extremely tripling semicircular arc, suggesting that low charge-transfer resistance and high conductance are taking place between the interface of PZFW15 and the electrolyte, which is attributed to the presence of polaron and bipolaron species. For a better comparison, the magnified image of the EIS semicircle at a higher frequency has been shown in the inset in Figure 7c. Thus, more active photogenerated electrons can be easily captured by protons to generate H\(_2\) gas.

To further probe the effects of OVs, polaron, and bipolaron species, the \(I-t\) curves were recorded at a bias of 0.2 V during irradiation and dark cycles (Figure 7d). Upon irradiation, the ZFW15 heterostructure shows a rise in the photocurrent followed by a transient decay. This may be caused by the formation of intrinsic defects (OVs) on the surface of WO\(_3\), which acts as an electron mediator to construct a junction between WO\(_{3-x}\) and ZnF.\(^{44}\) The existence of oxygen vacancies might change the flow direction of excitons, leading to a stronger redox potential for ZFW15, which is in accord with the electron migration path of the S-scheme photocatalytic system. However, a slightly higher photocurrent was noticed for the PZFW15 sample in comparison to other samples, which may be due to the synergistic impact of both OV-mediated S-schemes along with the presence of polaron and bipolaron populations. Further, effective electron–hole separation and the presence of free charge carriers in the polaron and bipolaron are also responsible for the higher photocurrent. The photoelectrons from the CB of ZnF were trapped by positively charged polaron species of PPY, which were further captured by protons, resulting in H\(_2\) production, whereas holes were captured by bipolaron species and were utilized by the sacrificial agent and the GMF pollutant. The effective photocurrent value of PZFW15 implies more generation, separation, and transfer of excitons.

The photocurrent profiles vs the potential of PZFW15 ternary hybrids along with other prepared photocatalysts showed that the specimens are quite subtle to light illumination and most of the photoproduced electrons travel

Figure 8. (a, b) Photodegradation of GMF and pseudo-first-order kinetics over all materials. (c) Spectral change of GMF concentration with time. (d) H\(_2\) generation by various photocatalysts.
swifly across the semiconductor interface. The solitary ZnF and WO$_{3-x}$ display inherent anodic polarization curves, further validating the n-type electronic behavior of counterparts, which is consistent with MS studies. Figure S11 shows the polarization curve of all synthesized photocatalysts under light irradiation at a potential bias of 1.3 V. Outstanding increments in current densities were noticed for the ZFW15 (0.352 mA/cm2) specimen, which were 2.8- and 32.2-fold higher than that of the pure ZnF and WO$_{3-x}$ materials, respectively. The enhancement of photocurrent can be ascribed to the formation of the S-scheme between WO$_{3-x}$ and ZnF via the oxygen vacancy state. The existence of a defect energy level in the form of oxygen vacancy in WO$_{3-x}$ results in the inter-band-gap state just below the CB, which increases the lifetime of the photoelectrons by trapping them. Moreover, the intervalence charge transfers between W$^{5+}$ and W$^{6+}$ ions are also responsible for the high photocurrent density and conductivity.22,45 Interestingly, a further enrichment in current densities was observed after the addition of PPY to ZFW15. The PZFW15 sample displays a maximum current density of 0.624 mA/cm2. The polaron and bipolaron species of PPY rapidly attract photogenerated charge carriers, thereby increasing the separation process of electron–hole pairs. It is well-accepted that the higher the magnitude of the photocurrent density response, the greater is the separation and transfer efficiency of photoproduced charge carriers, which ultimately leads to the high photocatalytic activity.

Photocatalytic Activity. Gemifloxacin (GMF) as the fluoroquinolone (FQ) was used to treat bacterial infections by killing the bacteria or hindering their growth. According to the report of the World Health Organization (WHO) published in 2014, continuous and excessive usage of GMF antibiotics leads to serious health and environmental problems such as genotoxicity and antibiotic resistance of bacteria.46,47 Before exposure to sunlight, the mixture of catalyst and pollutant was stirred in dark conditions to establish an adsorption–desorption equilibrium. However, minimum adsorption results were obtained, as depicted in Figure S12. The solar-light-driven GMF degradation was carried out for evaluating the photocatalytic abilities of the as-synthesized samples (Figure 8). Figure 8a displays the GMF detoxification ratio with respect to time over different photocatalysts. Blank experiments were conducted, where GMF was fairly stubborn, suggesting that direct photolysis of the antibiotic could be ignored. The degradation efficiency of GMF for solitary PPY, WO$_{3-x}$, and ZnF displays a moderate photocatalytic activity corresponding to removal efficiencies of 21, 32, and 60%, respectively. However, the ZFW15 specimen exhibits a handsome photocatalytic degradation activity of 79%, which could be attributed to the efficient charge separation between ZnF and WO$_{3-x}$. The introduction of OVs in WO$_{3-x}$ acts as a charge mediator to formulate the S-scheme heterojunction between ZnF and WO$_{3-x}$ of the binary system, which efficiently transports and expands the lifespan of photogenerated charge carriers along photon absorptivity. The intervalence charge transfer between the W$^{5+}$ and W$^{6+}$ ions was also responsible for the enhanced photoactivity.44,45 Encouragingly, the PZFW15 exhibits an optimal performance with 95% GMF degradation in 60 min of irradiation, which is higher than the others. We attribute this superior activity to the combined effect of the OV-induced S-scheme orientation and polaron and bipolaron species of PPY. Moreover, here we have used PPY as the electron and hole channeling medium in the proposed S-scheme mechanism, where the photoproduced e$^-$–h$^+$ pairs were readily available for pollutant degradation. Figure 8b displays that the amplified photocatalytic behavior over different photocatalytic materials was well-observed to follow a pseudo-first-order kinetic model and contended via employing eq 3.

$$\ln\left(\frac{C_f}{C}\right) = k_{app}t_{1/2}$$

Moreover, by utilizing the above equation, the $t_{1/2}$ was calculated. Generally, $t_{1/2}$ is the amount of time required to degrade GMF into half of its original concentration and can be represented as in eq 4
The rate constant \((k_{\text{app}}) \), correlation coefficient factor \((R^2) \), and half-life value \((t_{1/2}) \) of GMF degradation have been summarized in Table S3. The PZFW15 specimen displays the highest rate constant with the lowest half-life, which is more than the PPY, ZnF, WO\(_3\)-x, and ZFW15 photocatalysts. Nevertheless, the ternary heterostructure exhibits an elevated detoxification rate, which is found to be higher than that of the fabricated bare and binary S-scheme heterostructure. The quantitative measurements are well-attested by the drastic decline in absorption intensity of the respective characteristic peak signals near 270 and 343 nm (Figure 8c). Furthermore, the effects of different parameters (catalyst dosage, GMF concentration, cations, and anions) were optimized for the best photocatalyst, and the details have been discussed in the Supporting Information (Figure S13). Further, to identify the intermediate species generated during the photocatalytic degradation of GMF over the PZFW15 ternary heterostructure, LCMS analysis was carried out. The mass spectra of the intermediate during the reaction time (0–60 min) are depicted in Figure S14. A concentrated peak of \(m/z = 389 \) corresponds to the neat GMF concentration (Figure S14a). After 60 min of reaction, the strength of the peak decreases, as depicted in Figure S14b. The details of the main intermediate products produced from the GMF degradation and the proposed degradation pathway are shown in Figure 9. According to the detected compounds corresponding to their \(m/z \) values, three different pathways were proposed as described below. First, the GMF is deprotonated, to generate the fragmentation molecular ion at \(m/z = 389 \). It must be pointed out that there might be other compounds that resulted \((m/z = 372, 330, \text{and } 246) \) from the GMF dissociation before the formation of smaller fragments, which is narrated in brief as follows. (i) In degradation pathway I, the GMF dissociates into 1,8-naphthyridin-4-one having \(m/z = 146 \). After that, the oxidation reaction might have occurred and subsequently generated the first ring cleavage products (i.e., 3-(pyridin-2-ylamino) prop-2-enal, \(m/z = 119 \)). The attack of reactive species leads to the cleavage of the pyridine ring of 3-(pyridin-2-ylamino) prop-2-enal to produce N-(6-aminohexanoyl) glycine \((m/z = 86) \). (ii) In degradation pathway II, the GMF was converted into 2-amino-1-piperazin-1-ylethanone with \(m/z = 143 \). Then, N-[2-(dimethylamino) ethyl] glycaminid \((m/z = 86) \) was formed through ring-opening of 2-amino-1-piperazin-1-ylethanone. (iii) In pathway III, the DMF cleaved into 2-propen-1-ol \((m/z = 61) \) on the PZFW15 nanocomposite, and then, further oxidation of 2-propen-1-ol produced 1,2-propanediol \((m/z = 57) \).

Generally, organic pollutants on mineralization or degradation get converted into carbon dioxide, water, and some inorganic ions. However, nitrogen-containing aliphatic organic pollutants decompose into fragments like amides and carboxylic acids, which further degrade to CO\(_2\), H\(_2\)O, and inorganic ions. As is known, this mineralization ability of the material plays a vital role in scrutinizing the catalytic potential of a photocatalyst. Here, the mineralization of antibiotic gemifloxacin (GMF) was examined over the ternary hybrid PZFW15 at a periodic interval via total organic carbon (TOC) analysis. Further, the extent of degradation or mineralization in terms of TOC was calculated using the following equation (eq 5).

\[
\text{% of mineralization} = \frac{T_0 - T_f}{T_0}
\]

Here, \(T_0 \) and \(T_f \) stand for TOC of the model pollutant, i.e., GMF before and after photon irradiation, respectively. Figure S15 depicts the percentage of mineralization at different time gaps. It was found that in the present investigation the mineralization percentage is around 69% at the end of 120 min. This indicates that GMF has been mineralized to CO\(_2\), H\(_2\)O, and other fragmented/intermediate compounds, which are well detected and confirmed by the LCMS study.

Additionally, the modified version of Z-scheme catalytic systems was regarded as the most effective photocatalyst for photoredox reaction owing to the availability of highly reducing electrons and highly oxidizing holes for both oxidation and reduction processes. In particular, this type of S-scheme system shows promising \(\text{H}_2 \) evolution activity. In this work, photocatalytic hydrogen generations of the synthesized samples (PPY, ZnF, WO\(_3\)-x, ZFW15, and PZFW15) were investigated under visible-light illumination under ambient conditions. First, we optimized the experimental conditions involving catalyst concentrations \((5, 10, 15, 20, \text{and } 25 \text{ mg}) \) and the sacrificial reagent (TEOA, isopropanol, ethanol, and methanol) over the best catalyst that we screened from the GMF degradation test, i.e., PZFW15 (Figure S16). From the above optimization experiment, we conclude that the 15 mg sample dose and methanol as the sacrificial agent show the best hydrogen evolution reaction. Hence, by suspending 15 mg of catalysts in a methanol/water \((v/v: 1:9) \) solution, the water reduction experiment was carried out. Importantly, no \(\text{H}_2 \) gas was detected in the absence of light and the catalyst, which proves the pivotal role of the catalyst and light for the water-splitting reaction, as shown in Figure 8d. Because of the positive CB potential, WO\(_3\)-x does not show any \(\text{H}_2 \) production, while ZnF exhibits a low hydrogen activity of 296 \(\mu \text{mol h}^{-1} \) due to particle agglomeration and rapid recombination of photoproduced charge carriers. However, the binary hybrid of ZnF and WO\(_3\)-x (ZFW15 hybrid) depicts a hydrogen evolution rate of 449 \(\mu \text{mol h}^{-1} \), which was 1.51 times that of the pure ZnF. This escalation in the photocactivity could be ascribed to the formation of the OV-mediated S-scheme, which improves the charge separation efficiency and thereby increases the lifetime of electron–hole pairs. In the proposed S-scheme mechanism, the photoproduced electrons of WO\(_3\)-x get trapped in its OV energy level, which further combines with holes available at ZnF VB, promoting spatial charge separation. The coexistence of W\(^{5+}\) and W\(^{6+}\) states was confirmed from the XPS analysis, and the intervalence charge transfer between the W\(^{5+}\) and W\(^{6+}\) ions along with OVs was also responsible for the enhancement in photoactivity. Further elevation in the rate of hydrogen generation was perceived after the introduction of PPY to the ZFW15 junction specimen. The electron accumulated in the LUMO of ZnF was injected into the PPY to trigger the \(\text{H}_2 \) evolution reaction. Specifically, the PZFW15 ternary heterostructure exhibits a maximum of 657 \(\mu \text{mol h}^{-1} \) for \(\text{H}_2 \) production, which is 2.2-fold higher than that of the solitary ZnF. The solitary PPY also displays a hydrogen activity of 80 \(\mu \text{mol h}^{-1} \). Moreover, the energy conversion efficiency of the best photocatalyst, i.e., the 2BG/ZnF@20PPY ternary system, was found to be 4.92%. The lowest PL intensity, EIS, highest absorbance, photocurrent density, and the lifetime of PZFW15 corroborate with the photocatalytic activity. Further, the advanced photocatalytic
activity of our designed S-scheme photocatalyst has been compared with other S-scheme systems (displayed in Table S4).

The excellent photocatalytic activities exerted by the ternary heterojunction over H₂ evolution and GMF degradation compared to other synthesized specimens led to an interest in knowing about the importance of photoinduced charge carriers in photoactivity. For the sake of clarifying the photocatalytic mechanisms of GMF degradation, the generations and involvement of major active species are further investigated by tracing experiments. In this free radical experiment, ZnF, WO₃₋ₓ, ZFW15, and PZFW15 were studied for GMF degradation, as shown in Figure 10a. Citric acid (CA), p-benzoquinone (p-BQ), and isopropyl alcohol (IPA) were employed as quenchers for trapping the h⁺, O₂⁻, and OH species, respectively, and to investigate their influence on the photodegradation process. From the figure, it can be observed that in the absence of any scavenging agent, the degradation ratio of GMF reached 32, 60, 79, and 95% for WO₃₋ₓ, ZnF, ZFW15, and PZFW15, respectively. However, the degradation of GMF was restricted to a minimum in the presence of benzoquinone, while IPA has a minimal inhibitory effect. The holes have no impact on the degradation process; rather, quenching of holes results in improving the degradation efficiency, which explains that holes are not the active species in solitary ZnF and the increase in activity is because of the enhanced separation of photogenerated charge carriers. The quenching of holes leads to more electrons taking part in the reduction of O₂ to O₂⁻ radicals. Therefore, oxides are the principal species responsible for degradation in solitary ZnF, and the OH radical plays a minor role in the degradation activity. Similarly, for the WO₃₋ₓ component, the degradation efficiency was restricted in the presence of IPA, which suggests that OH is the active species involved in the degradation process. However, the holes show marginal restriction of the photodegradation activity, while O₂⁻ has no hand in the photocatalytic activity of GMF. Moreover, the photoactivity of the ZFW15 system was drastically reduced after the addition of IPA and p-BQ, which decrease almost 10 times and 8 times, respectively, compared to controlled studies. This outcome suggests that OH and O₂⁻ radicals are the chief active species that had the most pronounced influence on the GMF degradation process. The quenching test for OH and O₂⁻ radicals further confirms the formation of the S-scheme via OVs between WO₃₋ₓ and ZnF. This is because the CB of WO₃₋ₓ does not have the required potential to generate H₂ and also reduces O₂ to O₂⁻ radical; likewise, the VB of ZnF cannot oxidize H₂O to the hydroxyl radical, which occurs if the double charge-transfer mechanism is taken into consideration. Rather, the S-scheme-type charge migration process occurs, which strongly explains the charge-transfer and reaction mechanistic route (details described in the successive Figure 10. (a) Scavenger test, (b) TA test, and (c) NBT experiments by ZnF, WO₃₋ₓ, ZFW15, and PZFW15 samples.
in Figure S17, the featured DMPO-O2 adducts ESR characterization under visible-light illumination. As signals of ZnF and ZFW15, which suggests the formation of from solitary ZnF to the ternary system. The that the PL intensity at 423 nm gradually increases as we move explains the indirect formation of . However, a weak spectrum was observed for ZnF, which requirement was generated on the VB of ZnF as the minimum potential - the ternary hybrid exhibits the highest PL intensity, suggesting that - lower CB of WO3 aligning, the electrons move from the higher CB of ZnF to the fabrication of a binary or ternary heterostructure with band - the less positive VB potential of ZnF, resulting in more - radicals. Moreover, in the ZFW15 system, indicating that - OH and are key species involved in the photodegradation of GMF and further confirm that the charge migration pathway does not obey the traditional type-II process but rather follows an S-scheme tactic, which is in good agreement with the quenching results.

The practical implication of the fabricated ternary system entirely depends on its photodurability and reusability capability. As shown in Figure S18a,b, the designed ternary system displays consistency toward antibiotic detoxification and H2 evolution up to three successive cycles. However, the detoxification efficiency and H2 generation rate suffered a minimal decline in the 4th cycle, attributed to the wear and tear of the catalyst surface and inevitable catalyst loss during the intermittent recovery process. Further, XRD and TEM images of the ternary heterostructure after sequential reuses demonstrated a well-conserved crystal structure with a nominal decline in the peak intensity compared to the idle one (Figure S18c,d). This further validates the superior photostability of the PZFW15 heterostructure.

To date, it has been well understood that charge transfer in the ternary system occurs at a faster rate in comparison to binary and single systems. However, effective separation along with the shipment of photoproduced electrons and holes is considered as the two standing pillars upon which photocatalytic efficiency settles on. To establish the best possible charge-transfer pathways, we have considered the S-scheme charge-transfer mechanism. Thus, the charge-transfer dynamics and band-edge positions both should be considered in deciding the e-h transfer pathway for reduction and oxidation reactions.

On account of the unification of both semiconducting materials, the band-gap energy and band-edge positions have the utmost dynamics to explain the charge-transfer dynamics. As explained above, by the combination of UPS, VB-XPS, and
optical band-gap measurement results, the work functions of ZnF and WO3−x were estimated to be 4.44 and 4.92 eV, respectively. The above results and discussions permit an imaginable interface formation, i.e., the S-scheme heterojunction for the electron-transfer pathway between ZnF and WO3−x, as shown in Figure 11. However, it was found that ZnF was a reduction photocatalyst with a smaller work function (4.44 eV), whereas WO3−x was an oxidation photocatalyst with a higher work function (4.92 eV) (Figure 11a). As the work function of ZnF was lower than that of WO3−x, when both come in close contact, the electrons in ZnF spontaneously gush to WO3−x across their interface to attain the Fermi energy-level equilibration (Figure 11b). As a result, ZnF becomes positively charged on losing electrons, while WO3−x becomes negatively charged at the interface on receiving the electrons. This type of electron transition leads to the formation of an internal built-in electric field at the interfacial region of ZnF and WO3−x (forming the space-charge region).6 In the meantime, the band edge of ZnF bends upward with the shipment of the electron, whereas the band edge of WO3−x bends downward owing to the accumulation of electrons, as illustrated in Figure 11b. Under visible-light illumination, the electrons were excited from the valence band (VB) to the conduction band (CB) of the respective combining species, i.e., ZnF and WO3−x. However, in the case of WO3−x, the excited electrons migrate directly from the VB to the energy band of OVs as well as some electrons in the CB of WO3−x further get trapped in the OV sub-band. As the OV energy levels of WO3−x are near the VB of ZnF, the electrons in the OV level of WO3−x combine with the photogenerated holes in the VB of ZnF quite easily, making the highly reducing photoelectrons in the CB of ZnF and the highly oxidizing photoinduced holes in the VB of WO3−x freely available to carry out the catalytic reaction (Figure 11c). Further, W5+ ions produced because of OVs get oxidized to W6+ by the holes of ZnF, and simultaneously, the W6+ ions so produced on WO3−x are reduced to W5+ ions by the OV electrons back at the interface region, and all of this happens only under photon irradiation. In this way, OVs act as electron mediators to establish a charge-carrier migration bridge between the VB of ZnF and the CB of WO3−x, which accelerates the shipment and separation of photoproduced carriers at the S-scheme junction interface.16,49,50 The internal electric field, induced band-bending energy, Coulombic interaction, and OVs accelerate the union of the electron (CB of WO3−x) and hole (VB of ZnF) via the S-scheme pathway.6,14,16,49,50 This proposed S-scheme pathway has now achieved the required potential for the water reduction reaction and superoxide and hydroxyl radical generation.

The binary catalytic system was further modified with PPY, where PPY behaves as e−−h+ shrinkers producing the ternary heterostructure, i.e., PZFW15. Moreover, the separation of e−−h+ pairs was enhanced by the polaron and bipolaron species of PPY generated via the oxidative II-bond cleavage. As a result, electrons in the CB of ZnF migrate rapidly to positive polaron species, which reduces H2O, ensuring the higher production of H2 gas, and also reduces the dissolved O2 to *OH radicals, which are primarily responsible for GMF degradation (concluded by the scavenger experiment). On the other hand, the holes in the VB of WO3−x were further trapped by bipolaron species and then react with H2O to form the *OH radical, which later degrades GMF into oxidizing products (Figure 12). Hence, it can be concluded that the PZFW15 ternary heterostructure establishes a polaron- and bipolaron-induced S-scheme type of charge migration pathway, which not only fastens the shipment and isolation of photoproduced excitons but also maintains a stronger redox ability toward the degradation of antibiotic-GMF and the H2 generation reaction.

CONCLUSIONS

In summary, a multistep synthesis procedure of a PPY-supported innovative S-scheme heterostructure photocatalyst built from OV-induced WO3−x and ZnF was developed. In comparison to parent and binary materials, the ternary PZFW15 exhibits the highest catalytic activity toward 100 ppm of GMF degradation (95%, 60 min) and H2 evolution (657 μmol h−1). The presence of PPY having a polaron and bipolaron species plays a key role as electron and hole acceptor from the S-scheme-based ZFW15 nanohybrid, respectively, which promotes exciton separation and ultimately boosts the GMF degradation and H2 generation. The combined effect of the OV-mediated S-scheme junction and radical cations of PPY increases the lifetime of photoinduced charge carriers, which leads to enhanced photoreduction and oxidation activity over the ternary PZFW15 catalyst. The XPS and experimentally found work function confirm the formation of the S-scheme junction and its correctness in between ZnF and WO3−x. The outcome of this research opens a new
opportunity for rationally fabricating highly effective S-scheme systems supported on conducting polymers exhibiting polaron and bipolaron properties.

ASSOCIATED CONTENT

- **Supporting Information**
 The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.1c03705.

 Experimental procedures, figures, tables, detailed information about the effect of various parameters (dose, concentration, anions, and cations on the photo-degradation of GMF with PZFW15 along with stability test), ESR analysis, H2 evolution under different parameters (PDF)

AUTHOR INFORMATION

Corresponding Author
Kulaman Parida — Centre for Nanoscience and Nanotechnology, SOA (Deemed to be University), Bhubaneswar 751030 Odisha, India; orcid.org/0000-0001-7807-5561; Phone: +91-674-2379425; Email: parida.kulaman@yahoo.com, kulamaniparida@soa.ac.in; Fax: +91-674-2581637

Authors
Kundan Kumar Das — Centre for Nanoscience and Nanotechnology, SOA (Deemed to be University), Bhubaneswar 751030 Odisha, India
Dipti Prava Sahoo — Centre for Nanoscience and Nanotechnology, SOA (Deemed to be University), Bhubaneswar 751030 Odisha, India
Sriram Mansingh — Centre for Nanoscience and Nanotechnology, SOA (Deemed to be University), Bhubaneswar 751030 Odisha, India; orcid.org/0000-0002-7679-3663

Complete contact information is available at: https://pubs.acs.org/doi/10.1021/acsomega.1c03705

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
The authors are greatly obliged to the SOA (Deemed to be University) management for their encouragement and support in publishing the work.

REFERENCES
(1) Li, C.; Xu, Y.; Tu, W.; Chen, G.; Xu, R. Metal-free photocatalysts for various applications in energy conversion and environmental purification. *Green Chem.*, 2017, 19, 882—899.
(2) Liu, X.; Iocozzia, J.; Wang, Y.; Cui, X.; Chen, Y.; Zhao, S.; Li, Z.; Lin, Z. Noble metal—metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. *Energy Environ. Sci.*, 2017, 10, 402—434.
(3) Mansingh, S.; Sultana, S.; Acharya, R.; Ghosh, M. K.; Parida, K. M. Efficient Photon Conversion via Double Charge Dynamics CeO2–BiFeO3 p–n Heterojunction Photocatalyst Promising toward N2 Fixation and Phenol–Cr (VI) Detoxification. *Inorg. Chem.*, 2020, 59, 3856—3873.
(4) Dai, B.; Fang, J.; Yu, Y.; Sun, M.; Huang, H.; Lu, C.; Kou, J.; Zhao, Y.; Xu, Z. Construction of Infrared Light Responsive Photoinduced Carriers Driver for Enhanced Photocatalytic Hydrogen Evolution. *Adv. Mater.*, 2020, 32, No. 1906361.
(5) Zhao, F.; Yin, D.; Khaing, K. K.; Liu, B.; Chen, T.; Deng, L.; Li, L.; Guo, X.; Wang, J.; Xiao, S.; Ouyang, Y. Fabrication of hierarchical CoS2@ZnAglnS heterostructured cages for highly efficient photocatalytic hydrogen generation and pollutants degradation. *Inorg. Chem.*, 2020, 59, 7027—7038.
(6) Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. *Appl. Catal., B*, 2019, 243, 556—565.
(7) Das, K. K.; Patnaik, S.; Nanda, B.; Pradhan, A. C.; Parida, K. ZnFe2O4-Derived Mesoporous Al2O3 Modified MCM-41: A Solar-Light-Active Photocatalyst for the Effective Removal of Phenol and Cr (VI) from Water. *ChemistrySelect* 2019, 4, 1806—1819.
(8) Huang, Y.; Zhu, D.; Zhang, Q.; Zhang, Y.; Cao, J. J.; Shen, Z.; Ho, W.; Lee, S. C. Synthesis of a Bi2O3CO3/ZnFe2O4 heterojunction with enhanced photocatalytic activity for visible light irradiation-induced NO removal. *Appl. Catal., B*, 2018, 234, 70—78.
(9) Han, J.; Lan, Y.; Song, Q.; Yan, H.; Kang, J.; Guo, Y.; Liu, Z. Zinc ferrite-based p–n homojunction with multi-effect for efficient photoelectrochemical water splitting. *Chem. Commun.*, 2020, 56, 13205—13208.
(10) Tan, P.; Liu, Y.; Zhu, A.; Zeng, W.; Cui, H.; Pan, J. Rational design of Z-scheme system based on 3D hierarchical Cds supported 0D CeO9S8 nanoparticles for superior photocatalytic H2 generation. *ACS Sustainable Chem. Eng.*, 2018, 6, 10385—10394.
(11) Dai, Z.; Zhen, Y.; Sun, Y.; Li, L.; Ding, D. ZnFe2O4/g-C3N4 S-scheme photocatalyst with enhanced adsorption and photocatalytic activity for uranium (VI) removal. *Chem. Eng. J.*, 2021, 415, No. 129002.
(12) Rawal, S. B.; Kang, H. J.; Won, D. I.; Lee, W. I. Novel ZnFe2O4/WO3 a highly efficient visible-light photocatalytic system operated by a Z-scheme mechanism. *Appl. Catal., B*, 2019, 256, No. 117856.
(13) Rong, X.; Chen, H.; Rong, J.; Zhang, X.; Wei, J.; Liu, S.; Zhou, X.; Xu; Qu, F.; Wu, Z. An all-solid-state Z-scheme TiO2/ZnFe2O4 photocatalytic system for the N2 photofixation enhancement. *Chem. Eng. J.*, 2019, 371, 286—293.
(14) Wang, J.; Zhang, Q.; Deng, F.; Luo, X.; Dionysiou, D. D. Rapid toxicity elimination of organic pollutants by the photocatalysis of environment-friendly and magnetically recoverable step-scheme SnFeO4/ZnFe2O4 nano-heterojunctions. *Chem. Eng. J.*, 2020, 379, No. 122264.
(15) Meng, A.; Cheng, B.; Tan, H.; Fan, J.; Su, C.; Yu, J. TiO2/polydopamine S-scheme heterojunction photocatalyst with enhanced CO2-reduction selectivity. *Appl. Catal., B*, 2021, 289, No. 120039.
(16) Du, X.; Song, S.; Wang, Y.; Jiu, W.; Ding, T.; Tian, Y.; Li, X. Facile one-pot synthesis of defect-engineered step-scheme WO3/g-C3N4 heterojunctions for efficient photocatalytic hydrogen production. *Catal. Sci. Technol.*, 2021, 11, 2734.
(17) Xing, X.; Zhu, H.; Zhang, M.; Hou, L.; Li, Q.; Yang, J. Interfacial oxygen vacancy layer of a Z-scheme BCN–TiO2 heterostructure accelerating charge carrier transfer for visible light photocatalytic H2 evolution. *Catal. Sci. Technol.*, 2018, 8, 3629—3637.
(18) Wu, S.; Yu, X.; Zhang, J.; Zhang, Y.; Zhu, Y.; Zhu, M. Construction of BiOCl/CuBi2O4 S-scheme heterojunction with oxygen vacancy for enhanced photocatalytic diclofenac degradation and nitric oxide removal. *Chem. Eng. J.*, 2021, 411, No. 128555.
(19) Zhou, Z.; Niu, X.; Zhang, Y.; Wang, J. Janus MoS2/WSe2Te heterostructures: a direct Z-scheme photocatalyst for hydrogen evolution. *J. Mater. Chem. A*, 2019, 7, 21835—21842.
(20) Dou, L.; Jin, X.; Chen, J.; Zhong, J.; Li, J.; Zeng, Y.; Duan, R. One-pot solvothermal fabrication of S-scheme OV5-Bi2O3/Bi5SiO12 microsphere heterojunctions with enhanced photocatalytic performance toward decontamination of organic pollutants. *Appl. Surf. Sci.*, 2020, 527, No. 146775.
(21) Sahoo, D. P.; Patnaik, S.; Parida, K. Construction of a Z-scheme dictated WO3–X/Ag/ZnCr LDH synergistically visible light-induced
photocatalyst towards tetracycline degradation and H2 evolution. ACS Omega 2019, 4, 14721–14741.
(22) Huang, S.; Long, Y.; Ruan, S.; Zeng, Y. J. Enhanced Photocatalytic CO2 Reduction in Defect-Engineered Z-Scheme WO3-x/g-C3N4 Heterostructures. ACS Omega 2019, 4, 15593–15599.
(23) Xiao, Y.; Tao, X.; Qiu, G.; Dai, Z.; Gao, P.; Li, B. Optimal synthesis of a direct Z-scheme photocatalyst with ultrathin W18O49 nanowires on g-C3N4 nanosheets for solar-driven oxidation reactions. J. Colloid Interface Sci. 2019, 550, 99–109.
(24) Xiao, Y.; He, Z.; Wang, R.; Tao, X.; Li, B. Synthesis of WO3 nanofibers decorated with BiOCl nanosheets for photocatalytic degradation of organic pollutants under visible light. Colloids Surf., A 2019, 580, No. 123752.
(25) Wang, R.; Qiu, G.; Xiao, Y.; Tao, X.; Peng, W.; Li, B. 2019. Optimal construction of WO3–H2O/Pd/CDs ternary Z-scheme photocatalyst with remarkably enhanced performance for oxidative coupling of benzylamines. J. Catal. 2019, 374, 378–390.
(26) Das, K. K.; Patnaik, S.; Mansingh, S.; Behera, A.; Mohanty, A.; Acharya, C.; Parida, K. M. Enhanced photocatalytic activities of polypyrrole sensitized zinc ferrite/graphitic carbon nitride n-n heterojunction towards ciprofloxacin degradation, hydrogen evolution and antibacterial studies. J. Colloid Interface Sci. 2020, 561, 551–567.
(27) Kumar, T. N. R.; Karthik, P.; Neppolian, B. Polaron and bipolaron induced charge carrier transportation for enhanced photocatalytic H2 production. Nanoscale 2020, 12, 14213–14221.
(28) Wang, Y.; Cai, J.; Wu, M.; Chen, J.; Zhao, W.; Tian, Y.; Ding, T.; Zhang, J.; Jiang, Z.; Li, X. Rational construction of oxygen vacancies onto tungsten trioxide to improve visible light photocatalytic water oxidation reaction. Appl. Catal., B 2018, 239, 398–407.
(29) Boruah, P. J.; Khanikar, R. R.; Bailung, H. Synthesis and characterization of oxygen vacancy induced narrow bandgap tungsten oxide (WO3−x) nanoparticles by plasma discharge in liquid and its photocatalytic activity. Plasma Chem. Plasma Process. 2020, 40, 1019–1036.
(30) Lv, C.; Yan, C.; Chen, G.; Ding, Y.; Sun, J.; Zhou, Y.; Yu, G. Amorphous Noble-Metal-Free Electrocatalyst that Enables Nitrogen Fixation under Ambient Conditions. Angew. Chem. 2018, 130, 6181–6184.
(31) Patnaik, S.; Das, K. K.; Mohanty, A.; Parida, K. Enhanced photo catalytic reduction of Cr (VI) over polymer-sensitized g-C3N4/ZnFe2O4 and its synergism with phenol oxidation under visible light irradiation. Catal. Today 2018, 315, 52–66.
(32) Singh, J. P.; Srivastava, R. C.; Agrawal, H. M.; Kumar, R. Microraman investigation of nanosized zinc ferrite: effect of crystallite size and influence of irradiation. J. Raman Spectrosc. 2011, 42, 1510–1517.
(33) Ihikhar, M.; Ali, B.; Nisar, T.; Wagner, V.; Haider, A.; Hassain, S.; Bahadar, A.; Saleem, M.; Abbas, S. M. Improving Lithium-Ion Half-Cell Performance of WO3-Protected SnO2 Core-Shell Nanoarchitectures. ChemSusChem 2021, 14, 917–928.
(34) Shao, C.; Malik, A. S.; Han, J.; Li, D.; Dupuis, M.; Zong, X.; Li, C. Oxygen vacancy engineering with flame heating approach toward enhanced photoelecrrochemical water oxidation on WO3 photoanode. Nano Energy 2020, 77, No. 105190.
(35) Han, C.; Shi, R.; Zhou, D.; Li, H.; Xu, L.; Zhang, T.; Li, J.; Kang, F.; Wang, G.; Li, B. High-energy and high-power nonaqueous lithium-ion capacitors based on polypyrrole/carbon nanotube composites as pseudocapacitive cathodes. ACS Appl. Mater. Interfaces 2019, 11, 15646–15655.
(36) Pruna, A.; Shao, Q.; Kamruzzaman, M.; Li, Y. Y.; Zapien, J. A.; Pullini, D.; Mataix, D. B.; Ruotolo, A. Effect of ZnO core electrodeposition conditions on electrochemical and photocatalytic properties of polypyrrole-graphene oxide shells nanoarrays. Appl. Surf. Sci. 2017, 392, 801–809.
(37) Beji, Z.; Sun, M.; Smiri, L. S.; Herbst, F.; Mangeney, C.; Ammar, S. Polyol synthesis of non-stoichiometric Mn–Zn ferrite nanocrystals: structural/microstructural characterization and catalytic application. RSC Adv. 2015, 5, 65010–65022.
(38) Zhou, J.; An, X.; Tang, Q.; Lan, H.; Chen, Q.; Liu, H.; Qi, J. Dual channel construction of WO3 photocatalysts by solution plasma for the persulfate-enhanced photodegradation of bisphenol A. Appl. Catal., B 2020, 277, No. 119221.
(39) Yan, J.; Wang, T.; Wu, G.; Dai, W.; Guan, N.; Li, L.; Gong, J. Tungsten oxide single crystal nanosheets for enhanced multichannel solar light harvesting. Adv. Mater. 2015, 27, 1580–1586.
(40) Sultana, S.; Mansingh, S.; Parida, K.M. Rational design of light induced self healed Fe based oxygen vacancy rich CeO2 (CeO2 NS–FeOOH/Fe2O3) nanostructure materials for photocatalytic water oxidation and Cr (VI) reduction. J. Mater. Chem. A 2018, 6, 11377–11389.
(41) Xia, P.; Cao, S.; Zhu, B.; Liu, M.; Shi, M.; Yu, J.; Zhang, Y. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angew. Chem., Int. Ed. 2020, 59, 5218–5225.
(42) Liu, H.; Tian, K.; Ning, J.; Zhong, Y.; Zhang, Z.; Hu, Y. One-step solvothermal formation of Pt nanoparticles decorated Pt6-doped α-Fe2O3 nanoplates with enhanced photocatalytic O2 evolution. ACS Catal. 2019, 9, 1211–1219.
(43) Yang, L.; Lv, M.; Song, Y.; Yin, K.; Wang, X.; Cheng, X.; Cao, K.; Li, S.; Wang, C.; Yao, Y.; Luo, W. Porous SnO2 nanosheets on PPY hollow rod with photo-induced electrons-oriented migration for enhanced visible-light hydrogen production. Appl. Catal., B 2020, 279, No. 119341.
(44) Yang, B.; Cheng, J.; Li, W.; Wang, R.; Li, D.; Guo, X.; Rodriguez, R. D.; Jia, X. Engineering Z-scheme TiO2–OV–BiOCl via oxygen vacancy for enhanced photocatalytic degradation of imidacloprid. Dalton Trans. 2020, 49, 11010–11018.
(45) Jeong, I.; Jo, C.; Anthonysamy, A.; Kim, J. M.; Kang, E.; Hwang, J.; Ramasamy, E.; Rhee, S. W.; Kim, J. K.; Ha, K. S.; Jun, K. W. Ordered Mesoporous Tungsten Suboxide Counter Electrode for Highly Efficient Iodine-Free Electrolyte-Based Dye-Sensitized Solar Cells. ChemSusChem 2013, 6, 299–307.
(46) Gholami, P.; Khataee, A.; Soltani, R.D.C.; Dinpazhoh, L.; Bhatnagar, A. Photocatalytic degradation of gemifloxacin antibiotic using Zn-Co-LDH@ biochar nanocomposite. J. Hazard. Mater. 2020, 382, No. 121070.
(47) Gholami, P.; Dinpazhoh, L.; Khataee, A.; Oroojy, Y. Sonocatalytic activity of biochar-supported ZnO nanorods in degradation of gemifloxacin: synergy study, effect of parameters and phytotoxicity evaluation. Ultrason. Sonochem. 2019, 55, 44–56.
(48) Sahoo, D. P.; Das, K. K.; Patnaik, S.; Parida, K. Double charge carrier mechanism through 2D/2D interface-assisted ultrafast water reduction and antibiotic degradation over architectural S, P co-doped g-C3N4/ZnCr LDH photocatalyst. Inorg. Chem. Front. 2020, 7, 3695–3717.
(49) Ding, J.; Dai, Z.; Qin, F.; Zhao, H.; Zhao, S.; Chen, R. Z-scheme BiO0.5Br0.5Br2O3–CO3 photocatalyst with rich oxygen vacancy as electron mediator for highly efficient degradation of antibiotics. Appl. Catal., B 2017, 205, 281–291.
(50) Zhao, W.; Wang, W.; Shi, H. 2D/2D Z-scheme BiO3–Br/Bi2O3–CO3 photocatalyst with rich oxygen vacancies as electron mediator for enhanced visible-light degradation activity. Appl. Surf. Sci. 2020, 528, No. 146925.