IGLV3-21*01 is an inherited risk factor for CLL through the acquisition of a single-point mutation enabling autonomous BCR signaling

Palash C. Maitya, Mayas Bilala, Marvyn T. Koningb, Marc Younga, Cornelis A. M. van Bergenb,c, Valerio Rennaa, Antonella Nicolob, Moumita Dattaa, Eva Gentner-Göbelb, Rob S. Barendseb, Sebastiaan F. Somerb, Ruben A. L. de Groena, Joost S. P. Vermaatd, Daniela Steinbrechec, Christof Schneiderb, Eugen Tauscb, Tamara Bittolod, Riccardo Bombenb, Andrea Nicola Mazzarrelloa, Giovanni del Poetab, Wilma G. M. Kroeab, J. Tom van Wezela,b, Katharina Imkeller, Christian E. Busseb, Massimo Deganoa, Tamam Bakhoula, Axel Ronald Schulzb, Henrik Meia, Paolo Ghiaa, Konstantia Kotta, Costas Stamatoopoulosa, Hedda Wardemannb, Antonella Zucchettoa, Nicholas Chiorazzia, Valter Gatteid, Stephan Stilgenbauera,c,o,p,1, Hendrik Veelkenb,1, and Hassan Jumaa,1,2

*Institute of Immunology, Ulm University, 89081 Ulm, Germany; bDepartment of Hematology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; cDepartment of Internal Medicine III, Ulm University Hospital, 89081 Ulm, Germany; dClinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy; eKarches Center for Oncology Research, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030; fDivision of Hematology, S. Eugenio Hospital and University of Tor Vergata, 00144 Rome, Italy; gDepartment of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; hDepartment of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; iB Cell Immunology, German Cancer Research Center, 69120 Heidelberg, Germany; jBiocystallography Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; kTransfusion Medicine, Medical Faculty of Tübingen and Center for Clinical Transfusion Medicine, Universitätsklinikum Tübingen, 72076 Tübingen, Germany; lMass Cytometry Lab, German Rheumatism Research Center (DFRZ), a Leibniz Institute, 10117 Berlin, Germany; mDivision of Experimental Oncology, Università Vita-Salute San Raffaele, 20132 Milan, Italy; nInstitute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece; oDepartment of Hematology, Oncology, Clinical Immunology, and Hemotherapy, Saarland University Medical School, 66421 Homburg/Saar, Germany; and pJosé Carreras Institute for Immunology and Gene Therapy, Saarland University Medical School, 66421 Homburg/Saar, Germany

Edited by Michael Reth, University of Freiburg, Freiburg, Germany, and approved January 22, 2020 (received for review August 13, 2019)

The prognosis of chronic lymphocytic leukemia (CLL) depends on different markers, including cytogenetic aberrations, oncogenic mutations, and mutational status of the immunoglobulin (Ig) heavy-chain variable (IGHV) gene. The number of IGHV mutations distinguishes mutated (M) CLL with a markedly superior prognosis from unmutated (UM) CLL cases. In addition, B cell antigen receptor (BCR) stereotypes as defined by IGHV usage and complementarity-determining regions (CDRs) classify ∼30% of CLL cases into prognostically important subsets. Subset 2 expresses a BCR with the combination of IGHV3-21–derived heavy chains (HCs) with IGLV3-21–derived light chains (LCs), and is associated with an unfavorable prognosis. Importantly, the subset 2 LC carries a single-point mutation, termed R110, at the junction between the variable constant HC regions. By analyzing 4 independent clinical cohorts through BCR sequencing and by immunophenotyping with antibodies specifically recognizing wild-type IGLV3-21 and R110-mutated IGLV3-21 (IGLV3-21R110), we show that IGLV3-21R110-expressing CLL represents a distinct subset with poor prognosis independent of IGHV mutations. Compared with other alleles, only IGLV3-21*01 facilitates effective homotypic BCR–BCR interaction that results in autonomous, oncogenic BCR signaling after acquiring R110 as a single-point mutation. Presumably, this mutation acts as a standalone driver that transforms IGLV3-21*01-expressing B cells to develop CLL. Thus, we propose to expand the conventional definition of CLL subset 2 to 2L by including all IGLV3-21R110-expressing CLL cases regardless of IGHV mutational status. Moreover, the generation of monoclonal antibodies recognizing IGLV3-21 or mutated IGLV3-21R110 facilitates the recognition of B cells carrying this mutation in CLL patients or healthy donors.

Chronic lymphocytic leukemia (CLL) | B cell antigen receptor (BCR) | autonomous BCR signaling | immunoglobulin allele IGLV3-21*01

The most prevalent form of leukemia among adults in the Western world, namely chronic lymphocytic leukemia (CLL), originates from an indolent type of clonal expansion of B cells (1, 2). About 80% of all CLL cases are diagnosed in patients >60 y old (3). The clinical course of CLL varies widely and is associated with distinct recurrent cytogenetic aberrations, gene mutations, and sequence characteristics of the clonal B cell antigen receptor (BCR) expressed by CLL cells (4–12). Specifically, the sequence homology of the immunoglobulin (Ig) heavy-chain variable (IGHV) segment of the BCR heavy chain (HC) to its most closely related germline IGHV segment has been identified empirically as an important prognostic parameter. A categorical cutoff of 98%...
sequence homology of the CLL IGHV to its germline variant distinguishes the so-called unmutated (UM) and mutated (M) CLL cases. The UM-CLL cases have a strikingly inferior prognosis compared with M-CLL (4, 5). In addition, an important role for the BCR in CLL pathogenesis and aggressiveness is suggested by the observation that ~30% of all CLL cases, predominantly UM-CLL, can be grouped into so-called BCR stereotypes (13, 14). These stereotypes, also referred to as CLL subsets, are defined by similarities in the BCR HC sequence, specifically by particular IGHV and Ig heavy chain junctional (IGHJ) genes and the complementarity-determining region (CDR3) sequence created by variable, diversity, and junctional (VDJ) recombination (13, 15, 16). Moreover, each of these subsets is associated with a distinctive clinical course (13–15, 17). Thus, both M-UM-CLL and subset classifications serve as important markers for disease prognosis. However, this classification requires extensive sequence characterization after initial clinical identification. For example, CLL subset 2 is defined by a BCR HC composed of the IGHV3-21 segment and IGHV6 genes with a relatively short CDR3 of 9 amino acids (13). Even though CLL subset 2 cases are mostly identified as M-CLL, they are associated with a poor prognosis similar to UM-CLL cases (13, 17). Additionally, CLL subset 2 is also known to express a light chain (LC) of the lambda isotype that utilizes the IGLV3-21 (anti-wt) gene. Expression of IGLV3-21 has also been associated with poor prognosis of CLL (18), although no mechanistic explanation of this observation has been provided (14).

Our group has identified antigen-independent, autonomous BCR signaling as the mechanistic basis for the pathogenic role of the BCR in virtually all cases of CLL (19). Subsequently, exemplary structural crystallographic analyses for CLL subsets 2 and 4 have revealed homotypic interactions between BCR heterodimers as the mechanistic basis for this BCR activation (20). Most importantly, the indispensable R110 residue for this homotypic BCR–BCR interaction originates through nonsynonymous somatic hypermutation (SHM) of the germline G110 residue in the IGLJ segment, and reversion of R110 into G110 abrogates autonomous BCR signaling (20).

Here we report comprehensive characterization of CLL and healthy B cells expressing the R110-mutated IGLV3-21 LC (termed IGLV3-21R110) by extensive BCR sequencing, development of IGLV3-21- and IGLV3-21R110-specific antibodies, and mass cytometry analyses. We demonstrate the poor prognosis of IGLV3-21R110-expressing CLL and propose to replace the conventionally defined CLL subset 2 with this “subset 2L.” With 8 to 18% of CLL cases among different cohorts, subset 2L is a CLL subset defined by functional immunology and represents the largest CLL subset recognized so far. Finally, we identify the IGLV3-21*01 allele as an inherited risk factor to develop CLL subset 2L.

Results and Discussion

Monoclonal Antibodies Reveal a High Frequency of IGLV3-21R110. We generated 2 highly specific monoclonal antibodies to characterize wild-type (wt) IGLV3-21 and mutated IGLV3-21R110 LC expression in primary CLL samples (Fig. 1A and SI Appendix, Fig. S1 A and B). One recognizes IGLV3-21 variants irrespective of the R110 mutation and is referred to as anti-wt IGLV3-21 (anti-wt) while the other specifically recognizes the mutated IGLV3-21R110 and is referred to as anti-IGLV3-21R110 (anti-R110). Subsequently, we performed immunophenotyping and determined the frequency of the IGLV3-21R110 LC as compared with IGLV3-21 (Fig. 1A and SI Appendix, Fig. S1B) in analysis cohort (AC) I consisting of 154 CLL patients, of which complete informative follow-up data and mutational analyses were available for 122 cases (SI Appendix, Tables S1–S6). By analyzing the entire AC I (N = 154), we found 34 CLL samples (22.08%) that express IGLV3-21 (Fig. 1B). The majority (27 of 34, or 7.53%) of these IGLV3-21 CLL samples possessed an IGLV3-21R110 LC, whereas only 7 (4.55%) were negative for the anti-R110 staining (Fig. 1B).

In parallel, IGV gene sequencing of 147 cases (of 154 cases from AC I) confirmed the distribution of IGLV3-21 and IGLV3-21R110 as determined by immunophenotyping (Fig. 1C and SI Appendix, Fig. S1C). The sequence analysis also revealed that
only 6 (4.08%) of the 27 IGLV3-21R110–expressing cases belonged to stereotypical CLL subset 2 as defined by IGHV3-21 with a characteristic CDR3 sequence (Fig. 1 C and D) (13, 18, 20). Several other IGHV genes were found to be effectively pairing with the IGLV3-21 LC (SI Appendix, Table S2), indicating that CLL subset 2 represents a minor subgroup of IGLV3-21R110–expressing CLL, while the majority have hitherto not been recognized as an immunobiologically related CLL subset. The homology of all IGHV segments of the entire group of IGLV3-21R110–expressing cases to their respective germline sequences varied between 94.4 and 99.7% (Fig. 1D and SI Appendix, Table S2). In contrast, the unmutated IGLV3-21–expressing cases were mostly (3/4) the UM-CLL type based on a cutoff of 98% IGHV homology. Furthermore, the IGLV3-21R110–expressing cases predominantly expressed activation-induced cytidine deaminase (AID), an enzyme initiating SHM (Fig. 1E). Since a single IGLV3-21R110 mutation could theoretically represent the only mutation required to initiate CLL development, acquisition of additional Ig mutations is nonessential and could hence occur to a variable degree. This scenario explains why IGLV3-21R110–expressing CLL straddles the conventionally defined UM- and M-CLL categories, although the origin of IGLV3-21R110–expressing CLL biologically requires SHM (20). In contrast, the unmutated IGLV3-21–expressing cases were mostly (3/4) a UM-CLL type based on a cutoff of 98% IGHV homology (Fig. 1D and SI Appendix, Table S2). To reduce possible sampling bias, we extended our study and analyzed the additional AC II (SI Appendix, Table S7) consisting of 134 CLL patients, all expressing the lambda light chain (IgL). Immunophenotyping and sequencing analyses revealed that 23 and 10 CLL cases expressed mutated IGLV3-21R110 (17.16%) and unmutated IGLV3-21 (7.46%), respectively (SI Appendix, Fig. S1D). As expected, only 4 cases (4/23) were stereotypic CLL subset 2, confirming the fact that CLL subset 2 represents a minor subgroup of IGLV3-21R110–expressing CLL. The IGLV3-21R110–expressing cases remained uniformly distributed through M- and UM-CLL classification according to IGHV identity (SI Appendix, Fig. S1E and Table S8).

In contrast, the unmutated IGLV3-21–expressing cases were predominantly (7/10) the UM-CLL type. Similarly, AC III, AC IV, and AC V (SI Appendix, Tables S9–S12) confirmed the above findings that IGLV3-21R110 CLL is found within M- and UM-CLL and that IGLV3-21R110 is not restricted to CLL subset 2, as different IGHV-derived HCs can pair with IGLV3-21R110 in CLL pathogenesis. Intriguingly, AC V, originating from the US population, represents very high frequency IGLV3-21R110 (14 of 15) as well as CLL subset 2 (13 of 15) cases (SI Appendix, Table S12). In contrast, AC IV, originating from the Greek population, shows only 4 CLL subset 2 patients among 14 identified IGLV3-21R110 cases (SI Appendix, Table S11). Perhaps this difference is attributable to the prevalence of CLL subset 2 on different continents. Together, these data show that IGLV3-21 is overrepresented in CLL and that most cases present as mutated IGLV3-21R110 without belonging to CLL subset 2.

IGLV3-21 and IGLV3-21R110 CLls Are Uniform by Single-Cell Sequence Analysis Since every IGLV3-21R110–expressing case expresses AICDA independent of M-CLL or UM-CLL classification (Fig. 1E), it is conceivable that these CLL cases are heterogeneous by IGLV3-21 sequence and might possess both unmutated IGLV3-21 and mutated IGLV3-21R110 subpopulations. To exclude such subclonal variability, we performed single-cell HC and LC sequencing on exemplary IGLV3-21– and IGLV3-21R110–expressing cases (Fig. 2). CLL cell samples were sorted by fluorescence-activated cell sorting (FACS) (SI Appendix, Fig. S2A), and the sorted cells were confirmed for IGLV3-21 and IGLV3-21R110 expression by anti-wt and anti-R110 staining, respectively (SI Appendix, Fig. S2B) and plated as single cells. In the subset 2 case, clonal homogeneity was indicated by LC sequences that almost exclusively carried the predicted IGLV3-21R110 sequence, and by expression of identical pairs of HC and LC sequences. Similarly, the HC and LC identities of the IGLV3-21–expressing CLL case were found to be uniform at the single-cell level.

Thus, the comprehensive sequencing result of the IGLV3-21– and IGLV3-21R110–expressing cells within the respective CLL cases confirms the clonal distribution of the R110 mutation and emphasizes the specificities of the anti-wt and anti-R110 antibodies used for immunophenotyping.

IGLV3-21R110 Defines a Clinically Aggressive CLL Phenotype. Next, we investigated whether IGLV3-21R110 expression alone identified CLL cases with poor prognosis irrespective of IGHV mutational status or assignment to subset 2. Indeed, for those AC I cases with sufficient outcome information (n = 122), the IGLV3-21R110–expressing CLL patients required early treatment and had inferior overall survival (OS) than IGLV3-21R110–negative M-CLL patients (Fig. 3A and B). The required time to first treatment (TTFT) of IGLV3-21R110–expressing CLL patients was very similar to IGLV3-21R110–negative UM-CLL, and their OS was not significantly different. When IGLV3-21R110–expressing CLL patients were separated according to IGHV mutational status, both TTFT and OS (Fig. 3C and D) were virtually identical.

Despite the aggressive clinical course, the majority of IGLV3-21R110–expressing CLL cases from AC I carried the prognostically favorable del13q14 genetic abnormality (21, 22), whereas the unfavorable del17p or del11q22 genetic abnormality (j2, 23) occurred infrequently in CLL cases expressing IGLV3-21R110 (SI Appendix, Table S2). Multivariable analysis confirmed the adverse impact of IGLV3-21R110 on both clinical outcome parameters in comparison with the remaining M-CLL (SI Appendix, Tables S3 and S4). In contrast, del17p lost its impact on OS upon multivariable analysis. Moreover, IGHV mutational status had no prognostic relevance in IGLV3-21R110–expressing CLL since the prognostic influence of the R110 mutation remained significant when the IGLV3-21R110–expressing CLLs were split into IGHV mutated and unmuted cases (SI Appendix, Tables S5 and S6).

With respect to genes recurrently mutated in CLL, targeted sequencing of 100 B lymphoma-associated genes revealed NOTCH1 mutations in IGLV3-21R110–expressing CLL at an apparently similar frequency to published cases (Fisher’s exact test: P = 0.52) (11). However, TP53 (P = 0.016), ATM (P = 0.008), and SF3B1 (P < 0.0001) appeared to be more frequently mutated in IGLV3-21R110–expressing CLL (SI Appendix, Table S2). IGLV3-21R110–expressing CLL also carried mutations in genes encoding epigenetic modifiers such as CREBBP, KMT2D, and
Presumably due to the inclusion criteria with an emphasis on CLL with del17p and refractory TP53 mutation, only 7 cases expressed mutated IGLV3-21R110 (7.78%) while only 1 case expressed unmuted IGLV3-21 (SI Appendix, Fig. S4 and Table S10). Therefore, the total IGLV3-21 frequency in AC III was only 8.89%, but the IGLV3-21R110 CLL cases were distributed through M-CLL (3 cases) and UM-CLL (4 cases) classification (SI Appendix, Fig. S4) (18, 28). Similarly, different IGHV genes were found to be effectively pairing with the IGLV3-21R110 LC and only 2 of the 7 IGLV3-21R110 cases were annotated as conventional subset 2, confirming again that subset 2 represents only a minor subgroup of IGLV3-21R110-expressing CLL (SI Appendix, Table S10). Despite the low patient numbers, IGLV3-21R110 CLL patients may have progressed earlier after treatment and had inferior OS than IGLV3-21-negative M-CLL (n = 5) within the same cohort (Fig. 4). When restricting the analysis to patients not receiving allo-PB SCT, the outcome of the remaining 6 IGLV3-21R110 CLL cases was inferior compared with M-CLL in terms of progression-free survival (PFS), possibly inferior with respect to OS, and similar to UM-CLL (Fig. 4B).

Taken together, these results from a prospective multicenter trial confirm that IGLV3-21R110 CLL represents a clinically aggressive group even within a select high-risk CLL cohort (AC III), and it is solely defined by LC identity regardless of IGHV family, mutational status, and stereotypy.

EP300 (SI Appendix, Table S2) that are associated with oncogenesis of germinal center-type lymphomas (24–26).

Next, we analyzed another independent AC II consisting of 134 CLL patients expressing IGL (SI Appendix, Table S7) and assessed the prognostic severity of IGLV3-21R110-positive CLL patients compared with IGLV3-21-negative M-CLL and UM-CLL patients classified by IGHV identity. (B) Kaplan–Meier analysis for overall survival of IGLV3-21R110-positive CLL patients compared with IGLV3-21-negative M-CLL and UM-CLL patients. (C) Kaplan–Meier analysis for treatment-free survival from diagnosis of IGLV3-21R110-positive CLL patients according to IGHV mutational status. (D) Kaplan–Meier analysis for OS from diagnosis of IGLV3-21R110-positive CLL patients according to IGHV mutational status. All data are from AC I, and the depicted P values were obtained from log-rank (Mantel-Cox) analyses.

Fig. 3. IGLV3-21R110 is associated with decreased TTFT and OS (AC I; n = 122). (A) Kaplan–Meier analysis for treatment-free survival from diagnosis of IGLV3-21R110-positive CLL patients compared with IGLV3-21R110-negative M-CLL and UM-CLL patients classified by IGHV identity. (B) Kaplan–Meier analysis for overall survival of IGLV3-21R110-positive CLL patients compared with IGLV3-21-negative M-CLL and UM-CLL patients. (C) Kaplan–Meier analysis for treatment-free survival from diagnosis of IGLV3-21R110-positive CLL patients according to IGHV mutational status. (D) Kaplan–Meier analysis for OS from diagnosis of IGLV3-21R110-positive CLL patients according to IGHV mutational status. All data are from AC I, and the depicted P values were obtained from log-rank (Mantel-Cox) analyses.

As IGLV3-21 seems to be overrepresented in high-risk CLL patients, we analyzed 90 high-risk patients from AC III (CLL20 trial; SI Appendix, Table S9). The CLL20 sample cohort was a multicenter, prospective phase II trial to study the efficacy of alemtuzumab (anti-CD52 antibody) and optional allogeneic peripheral blood stem cell transplantation (allo-PB SCT) (10, 27).
IGLV3-21R110 Cellular Phenotype Resembles UM-CLL. Despite the clinical aggressiveness, IGLV3-21R110–expressing CLL cases are found within M-CLL as well as UM-CLL (Fig. 1D and SI Appendix, Fig. S1E). To further investigate the molecular mechanisms, we developed an extensive multiparametric mass cytometry phenotyping pipeline (SI Appendix, Methods and Materials), also known as CyTOF analyses, and investigated the cellular phenotype of IGLV3-21R110 CLL as compared with M- and UM-CLL (SI Appendix, Table S13). For each M- and UM-CLL subgroup, we analyzed 5 nonstereotypic CLL samples and analyzed B cells isolated from 5 healthy donors (HDs) as control. Of note, unlike standard cytometry analyses that measure each sample successively, we performed measurement on multiplexed samples bar-coded with isotope-labeled anti-β2-microglobulin (B2M) staining (29, 30). Indeed, the barcoding allowed robust comparative analyses between samples (SI Appendix, Fig. S5A–C). The inclusion of identical HD samples in each run allowed comparison between samples from different batches.

Upon computing and analyzing the CyTOF results using standard dimensionality reduction algorithms, we identified 17 (1 through 17) unique phenotypic clusters (Fig. 5A and SI Appendix, Fig. SSD). While the healthy B cell isolates were limited to 3 major phenotypically discrete clusters (1 through 3), CLL samples allocated 14 independent phenotypic clusters (4 through 17). Three HD clusters, 1 through 3, resemble major peripheral B cell subpopulations, namely mature naïve (CD23+, CD38+, IgM+, IgD+), immature (CD23+, CD38++, IgM++, IgD+), and memory-like (CD23−, CD38−, IgM++, IgD+) B cells, respectively (SI Appendix, Fig. SSD).

Expectedly, the M-CLL cells (clusters 4 through 10) were phenotypically different from UM-CLL cells (clusters 11 through 15) and shared only 1 phenotypic cluster (cluster 5; Fig. 5A and B). Interestingly, the IGLV3-21R110 CLL cells shared phenotypic clusters of both M- and UM-CLL samples (Fig. 5 B and C). Although sharing 3 clusters from each M- and UM-CLL sample, a closer inspection of individual IGLV3-21R110 samples revealed that the major proportion of cells was allocated in UM-CLL cluster 16 (Fig. 5E and F). In addition, both IGHV-mutated (3/5) and IGHV-unmutated (2/5) subgroups of IGLV3-21R110 cells were predominantly allocated in UM-CLL phenotypic clusters, suggesting the expected inclination of IGLV3-21R110 CLL toward nonstereotypic UM-CLL through shared cellular phenotype. Besides the shared phenotypic clusters, we also identified 2 unique phenotypic clusters (16, 17) of IGLV3-21R110 CLL cells. Phenotypically, these 2 clusters possessed elevated CD23 or CD43 combined with reduced CD22 expression, which correlates with proliferating CLL cells (31). Taken together, the phenotypic clustering analyses reveal that the IGLV3-21R110 CLL cells are predominantly allocated in UM-CLL classes, as expected from their similar clinical course.

IGLV3-21R110 Stimulates Autonomous Signaling. So far, the indispensible role of the IGLV3-21R110 mutation for autonomous BCR signaling through homotypic BCR–BCR has only been demonstrated for conventional CLL subset 2 (20). These crystallographic analyses suggested that the unique and short CDR3 in HCs (HCDR3) of subset 2 BCR reinforces correct positioning of LCs for mediating the BCR–BCR interaction (20). However, the variable length and composition of HCDR3 in all CLL cases expressing IGLV3-21R110 point to flexibility in the mutual BCR–BCR interaction of R110-positive CLL. Therefore, we examined the role of the R110 mutation in the BCRs derived from non-subset 2 CLL. To analyze autonomous signaling, we expressed BCRs derived from a non-subset 2 (sample ID: LS #83) and a subset 2 CLL (sample ID: LS #42) using retroviral transduction of a previously described cell line derived from RAG2, λ5, and SLP65 triple-knockout (TKO) mice (Fig. 6A and SI Appendix, Fig. S6A) (32, 33). In addition to BCR expression, TKO cells also expressed an ERT2-SLP65 fusion protein for 4-hydroxytamoxifen (4-OHT)–inducible activation of SLP65 function which allowed robust intracellular Ca2+ release as a readout for the BCR signaling cascade (19). While the autonomously active BCRs show rapid ligand-independent intracellular Ca2+ upon 4-OHT treatments, nonautonomous BCRs require additional ligands such as a cognate antigen or cross-linking antibodies (34). Using this assay, we show that the BCRs derived from both non-subset 2 (LS #83) and subset 2 CLL (LS #42) showed autonomous signaling capacity (Fig. 6B and SI Appendix, Fig. S6B). Expectedly, reverting IGLV3-21R110 into the IGLV3-21 LC resulted in defective autonomous signaling (SI Appendix, Fig. S6B). These data suggest that R110 mutation boosts autonomous BCR signaling and leads to the expansion of the respective B cells in CLL patients.

The Allele IGLV3-21*01 Is a Risk Factor for IGLV3-21R110 CLL. The crucial residues required for homotypic BCR–BCR interaction in CLL subset 2 include residues R110 and K16 in one BCR and D50 and D52 of the YDSD motif in a neighboring BCR (20). Notably, the IGLV3-21 gene has 3 major alleles in humans. Of these 3 ImMunoGeneTics (IMGT) annotated alleles of the IGLV3-21 locus, only allele IGLV3-21*01 possesses the prerequisite K16 and YDSD motifs (SI Appendix, Fig. S7A). Indeed, within AC1, 26 of the 27 IGLV3-21R110–positive CLL cases harbor the allele IGLV3-21*01, suggesting that allele IGLV3-21*01 is mechanistically required for the development of IGLV3-21R110 CLL (Fig. 7A and B). Similarly, all subset 2 cases (n = 4) and non-subset 2 IGLV3-21R110 CLL cases (n = 18) from AC II harbor the
Moreover, detailed analyses of pertaining subpopulations revealed that the frequencies of the IGLV3-21*01 allele among EUR communities are similar (Fig. 7G). In contrast, the frequencies of the IGLV3-21*01 allele among different communities and the Japanese population sampled from Tokyo (JPT) showed the highest prevalence (Fig. 7G). In agreement with the proposed association of the allele IGLV3-21*01 with CLL, the most frequently expressed light chain in Japanese CLL patients is IGLV3-21 (35).

To examine whether the allele IGLV3-21*01 is required for autonomous signaling, we engineered IGLV3-21*01R110 LC variants using IGLV3-21*02 and IGLV3-21*03. Indeed, BCR containing the IGLV3-21*110 LC matching allele IGLV3-21*02 or IGLV3-21*03 showed strikingly reduced autonomous signaling as compared with the original IGLV3-21*01 allele (Fig. 7H and SI Appendix, Fig. S7F). In summary, our data demonstrate that the allele IGLV3-21*01 represents a carrier, which enables efficient BCR–BCR interaction and autonomous signaling upon receiving the transforming R110 point mutation.

Taken together, our study shows that IGLV3-21*01R110 is frequently found in CLL because the allele IGLV3-21*01 of this gene is particularly prone toward acquiring autonomous signaling. Unique positioning of the K16 residue and the YDSD motif predetermine the allele IGLV3-21*01 for mediating homotypic BCR–BCR interaction upon acquiring the R110 residue. In contrast, the allelic variants IGLV3-21*02 and IGLV3-21*03 are underprivileged to accomplish homotypic BCR–BCR interaction due to the lack of the prerequisite K16 and the possession of a DDSD motif instead of the YDSD, respectively. To acquire BCR–BCR interaction, the IGLV3-21*02 and IGLV3-21*03 alleles require several additional mutations besides the crucial R110 (20). Consistently, the majority of the IGLV3-21*01R110 CLL cases express the allele IGLV3-21*01. CLL cases expressing either the allele IGLV3-21*02 or IGLV3-21*03 might utilize alternate mechanisms for autonomous BCR signaling independent of R110-mediated interaction. Interestingly, the R110 mutation in HDs associates with IGLV3-21*02 or IGLV3-21*03 but not the IGLV3-21*01 allele, suggesting that the signal-proficient, R110-mutated, IGLV3-21*01 allele might be counterselected.

In summary, by combining structural analyses with IGLV3-21 gene sequences and signaling studies, we identify an Ig allele that has an intrinsic potential for the generation of BCRs with homotypic interactions and that B cells expressing the IGLV3-21*01R110 variant might be counterselected in HDs.

In addition, we analyzed the occurrence of these 3 common alleles of the IGLV3-21 gene in healthy human populations worldwide by accessing 1000 Genomes Project data in the Ensembl GRCh37 browser and available tools. Remarkably, the highest frequency of the IGLV3-21*01 allele was recorded among East Asians (EAs) as compared with Africans (AFRs), Americans (AMRs), Europeans (EURs), and South Asians (SASs) (Fig. 7F).

Materials and Methods

Study Populations. Analysis cohort I: Cryopreserved CLL samples (n = 154) were obtained from the Biobank of the Department of Hematology of the Leiden University Medical Center (LUMC) and analyzed (SI Appendix, Tables S1–S6). Notably, complete informative follow-up data and mutational analyses were available for 122 patients out of 154 cases in AC I.

Maity et al.
AC II: Collection of CLL cases (n = 134) expressing iLC was obtained from the Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, IRCCS and analyzed (SI Appendix, Tables S7 and S8).

AC III: CLL samples from the CLL2O trial, a multicenter phase II study of alemtuzumab (anti-CD52 antibody) combined with dexamethasone followed by allogeneic stem cell transplantation or alemtuzumab for maintenance (10, 27), were analyzed (SI Appendix, Tables S9 and S10). The study was approved by institutional review boards, performed in accordance with the Declaration of Helsinki, and registered at ClinicalTrials.gov (Identifier NCT01392079).

AC IV: CLL samples (n = 22) expressing IGLV3-21 were obtained from the Institute of Applied Biosciences at the Centre for Research and Technology Hellas and analyzed (SI Appendix, Table S11).

AC V: CLL samples (n = 15) expressing IGLV3-21 were obtained from the Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Northwell Health and analyzed (SI Appendix, Table S12).

CyTOF analysis panel: CLL samples for mass cytometry (CyTOF) analyses were obtained from the Department of Internal Medicine III, University Hospital Ulm and analyzed (SI Appendix, Table S13).

All samples were obtained with informed consent and used in full compliance with institutional regulations. Peripheral blood mononuclear cells from healthy donors were obtained from the Institute for Clinical Transfusion Medicine and Immunogenetics at Ulm University Medical Center and the Center for Clinical Transfusion Medicine, University Medical Center Tübingen. For deep IGLV sequence analyses, HD samples were obtained from the Biobank, LUMC. Detailed protocols are described in SI Appendix.

Antibodies and Immunophenotyping. Detailed immunophenotyping protocols, reagents, and antibodies are described in SI Appendix. Briefly, 100 μL of thawed samples was washed, stained with antibody dilutions, and analyzed by flow cytometry (BD Fortessa).

IGV Sequencing and Annotation. Expressed IGV gene rearrangements from CLL samples and HDs were sequenced by ARTISAN (36) and analyzed by InMunoGeneTics HighV-QUEST (37). Details are in SI Appendix.

Single-Cell Sorting and IGV Sequencing. CLL- and HD-derived B cells were sorted as single cells into 384-well plates using a BD FACSAria III. After complementary (C)DNA generation, IGHV, Ig κ and Ig λ were amplified and IGLV transcripts were amplified by Matrix scPCR using the specific primers and...
Mass Cytometry. Detailed mass cytometry staining protocol, reagents, and antibodies including their origins, data acquisition, and analysis are described in SI Appendix. Briefly, 2 × 10⁶ cells were labeled with Pd and Pt isotope-conjugated B2M antibodies for barcoding prior to pooling (29, 30). Thereafter, the pooled samples were sequentially processed for surface staining, fixation, and permeabilization followed by intracellular staining. Finally, the stained cells were resuspended in MiM-II water supplemented with EQ-4 element calibration beads, filtered through a 35-μm mesh, and analyzed by the Helios CyTOF instrument. Data were debarcoded, filtered, and gated in FlowJo and analyzed by the open-source R-based integrated mass cytometry analysis platform cytofkit (Bioconductor).

Calcium Flux Measurement. Detailed protocols for cloning and expression of BCRs followed by calcium flux analysis were performed as described previously (34, 40). Briefly, the IgHV and IGLV sequences obtained from the CLL sample analyses were cloned into retroviral expression vectors for human μH and λLC flanked by an internal ribosomal entry sequence followed by split-green fluorescent protein (GFP) reporters. The resulting μH and λLC plasmids were transfected in retroviral packaging Phoenix cell lines and the culture medium containing the secreted virus was collected after 2 d of transfection. The supernatant was used to infect 2× 10⁵ transduced cells expressing ERT2-SLPE5 were transduced with virus supernatant by spin-infection method and GFP-expressing BCR-positive cells were analyzed after 2 to 5 d of transduction. Briefly, 2 × 10⁵ transduced cells preloaded with the calcium-sensitive dye Indo-1 (Invitrogen) were analyzed by flow cytometry (BD Fortessa) upon application of 2 μM 4-OHT as described (32).

1. Q. Chen et al., Economic burden of chronic lymphocytic leukemia in the era of oral targeted therapies in the United States. J. Clin. Oncol. 35, 166–174 (2017).
2. M. Hallek, Chronic lymphocytic leukemia: 2015 update on diagnosis, risk stratification, and treatment. Am. J. Hematol. 90, 446–460 (2015).
3. H. Brenner, A. Gondos, D. Pulte, Trends in long-term survival of patients with chronic lymphocytic leukemia from the 1980s to the early 21st century. Blood 111, 4916–4921 (2008).
4. R. N. Damele et al., Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94, 1840–1847 (1999).
5. T. J. Hamblin, Z. Davis, A. Gardiner, D. G. Osier, F. K. Stevenson, Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 94, 1848–1854 (1999).
6. L. Z. Rassenti et al., ZAP-70 compared with immunoglobulin heavy-chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia. N. Engl. J. Med. 351, 891–901 (2009).
7. R. N. Damele et al., CD38 expression labels an activated subset within chronic lymphocytic leukemia clones enriched in proliferating B cells. Blood 110, 3352–3359 (2007).
8. D. Rossi et al., Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood 121, 1403–1412 (2013).
9. N. Pifugl, Development of a comprehensive prognostic index for patients with chronic lymphocytic leukemia. Blood 124, 49–62 (2014).
10. S. Stilgenbauer et al., Alectzumabumur combined with dexmethylasone, followed by alectzumabumur maintenance or allo-SCT in “ultra-high-risk” CLL: Final results from the CLL20 phase II study. Blood 124, 1931 (2014).
11. X. S. Puente et al., Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature 526, 519–524 (2015).
12. International CLL-IPI Working Group, An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): A meta-analysis of individual patient data. Lancet Oncol. 17, 779–790 (2016).
13. A. Agathangelidis et al., Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia: A molecular classification with implications for targeted therapies. Blood 118, 4467–4476 (2011).
14. K. Stamatakopoulos, A. Agathangelidis, R. Rosenquist, P. Ghia, Antigen receptor stereotypy in chronic lymphocytic leukemia. Leukemia 31, 282–291 (2017).
15. K. Stamatakopoulos et al., Over 20% of patients with chronic lymphocytic leukemia carry stereotyped receptors: Pathogenetic implications and clinical correlations. Blood 109, 259–270 (2007).
16. F. Murray et al., Stereotyped patterns of somatic hypermutation in subsets of patients with chronic lymphocytic leukemia: Implications for the role of antigen selection in leukaemogenesis. Blood 111, 1524–1533 (2008).
17. P. Jaakola et al., Stereotypy of specific IgD B-cell receptor immunoglobulins in chronic lymphocytic leukemia: A retrospective multicentre study. Lancet Haematol. 1, e74–e84 (2014).
18. B. Stamatakopoulos et al., The light chain IglV3-21 defines a new poor prognostic subgroup in chronic lymphocytic leukemia: Results of a multicenter study. Clin. Cancer Res. 24, 5048–5057 (2018).
19. M. Dörren-von Minden et al., Chronic lymphocytic leukemia is driven by antigen-independent cell-autonomous signalling. Nature 489, 309–312 (2012).
20. C. Minici et al., Distinct homotypic B-cell receptor interaction shapes the fate of chronic lymphocytic leukemia. Nat. Commun. 8, 15746 (2017).
21. G. A. Calin et al., Frequent deletions and down-regulation of micro-RNA genes mir15 and mir16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. U.S.A. 99, 15524–15529 (2002).
22. P. Quilliette et al., The prognostic significance of various 13q14 deletions in chronic lymphocytic leukemia. Clin. Cancer Res. 17, 678–6790 (2011).
23. A. Kröber et al., (V)H mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood 100, 1410–1416 (2002).
24. L. Pasqualucci et al., Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature 471, 189–190 (2011).
25. J. Zhang et al., Disruption of KMT2D perturbs germinal center B cell development and promotes lymphomagenesis. Nat. Med. 21, 1190–1198 (2015).
26. Y. Avnir et al., Structural determination of the broadly reactive anti-IgHV1-69 anti-idiotypic antibody 6G and its idiotypic. Blood 119, 3243–3255 (2017).
27. D. Steinbrecher et al., Telomere length in poor-risk chronic lymphocytic leukemia: Associations with disease characteristics and outcome. Leuk. Lymphoma 59, 1614–1623 (2018).
28. J. K. Stamatakopoulos et al., Immunoglobulin light chain repertoire in chronic lymphocytic leukemia. Blood 106, 3575–3583 (2005).
29. H. E. Mei, M. D. Leipold, A. R. Schulz, H. T. Maeker, Barcoding of live human peripheral blood mononuclear cells for multiplexed mass cytometry. J. Immunol. 194, 2022–2031 (2015).
30. A. R. Schulz, H. E. Mei, Surface barcoding of live PBMC for multiplexed mass cytometry. Methods Mol. Biol. 1989, 93–108 (2019).
31. P. E. Patten et al., IgHV-unmutated and IgHV-mutated chronic lymphocytic leukemia cells produce activation-induced deaminate protein with a full range of biological functions. Blood 120, 4802–4811 (2012).
32. S. Meixlsperger et al., Conventional light chains inhibit the autonomous signaling capacity of the B cell receptor. Immunity 26, 323–333 (2007).
33. F. Köhler et al., Autoreactive B cells receptors mimick autonomous pre-B cell receptor signaling and induce proliferation of early B cells. Immunity 29, 912–921 (2008).
34. J. Lyte et al., Differences in self-recognition between secreted antibody and membrane-bound B cell antigen receptor. J. Immunol. 202, 1417–1427 (2019).
35. H. Nakahashi et al., Characterization of immunoglobulin heavy and light chain gene expression in chronic lymphocytic leukemia and related disorders. Cancer Sci. 100, 671–677 (2009).
36. M. T. Koning et al., ARTISAN PCR: Rapid identification of full-length immunoglobulin rearrangements without primer binding bias. Br. J. Haematol. 178, 983–986 (2017).
37. E. Almayar, P. Dourou, M. P. Lefranc, V. Giudicelli, IMGT(h) tools for the nucleotide analysis of immunoglobulin (IG) and T cell receptor (TR) V(D)J repertoires, polymorphy, and IG mutations: IMGT/V-QUEST and IMGT/HighV-QUEST for NGS. Methods Mol. Biol. 882, 569–604 (2018).
38. R. Mustafa, K. Imkeller, C. E. Busse, H. Wardemann, Direct high-throughput amplification and sequencing of immunoglobulin genes from single human B cells. Eur. J. Immunol. 45, 2698–2720 (2015).
39. K. Imkeller, P. F. Arndt, H. Wardemann, C. E. Busse, scIReptor: Analysis of single-cell immunoglobulin repertoire. BMC Bioinformatics 17, 67 (2016).
40. R. Übelhart et al., Responsiveness of B cells is regulated by the hinge region of IgD. Nat. Immunol. 16, 534–543 (2015).