Differential mechanisms underlying responses of soil bacterial and fungal communities to nitrogen and phosphorus inputs in a subtropical forest

Yong Li 1, Dashuan Tian 2, Jinsong Wang 2, Shuli Niu 2, Jing Tian 2, Denglong Ha 3, Yuxi Qu 3, Guangwei Jing 3, Xiaoming Kang 1, Bing Song 4

1 Institute of Wetland Research, Chinese Academy of Forestry, Beijing, China
2 Institute of Geographic Sciences and Natural Resources Research, Beijing, China
3 Jigongshan Natural Reserve, Xinyang, China
4 School of Resources and Environmental Engineering, Ludong University, Yantai, China

Corresponding Authors: Xiaoming Kang, Bing Song
Email address: xmkang@ucas.ac.cn, songbing@ludu.edu.cn

Atmospheric nitrogen (N) deposition and phosphorus (P) addition both can change soil bacterial and fungal community structure with a consequent impact on ecosystem functions. However, which factor plays an important role in regulating responses of bacterial and fungal community to N and P enrichments remains unclear. We conducted a manipulative experiment to simulate N and P inputs (10 g N·m⁻²·yr⁻¹ NH₄NO₃ or 10 g P·m⁻²·yr⁻¹ NaH₂PO₄) and compared their effects on soil bacterial and fungal species richness and community composition. The results showed that the addition of N significantly increased NH₄⁺ and Al³⁺ by 99.6% and 57.4%, respectively, and consequently led to a decline in soil pH from 4.18 to 3.75 after a five-year treatment. P addition increased Al³⁺ and available P by 27.0% and 10-fold, respectively, but had no effect on soil pH. N addition significantly decreased bacterial species richness and Shannon index and resulted in a substantial shift of bacterial community composition, whereas P addition did not. Neither N nor P addition changed fungal species richness, Shannon index, and fungal community composition. A structural equation model showed that the shift in bacterial community composition was related to an increase in soil acid cations. The principal component scores of soil nutrients showed a significantly positive relationship with fungal community composition. Our results suggest that N and P additions affect soil bacterial and fungal communities in different ways in subtropical forest. These findings highlight how the diversity of microbial communities of subtropical forest soil will depend on future scenarios of anthropogenic N deposition and P enrichment, with a particular sensitivity of bacterial community to N addition.
Differential mechanisms underlying responses of soil bacterial and fungal communities to nitrogen and phosphorus inputs in a subtropical forest

Yong Li, Dashuan Tian, Jinsong Wang, Shuli Niu, Jing Tian, Denglong Ha, Yuxi Qu,
Guangwei Jing, Xiaoming Kang, Bing Song

1 Beijing Key Laboratory of Wetland Services and Restoration, Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China
2 Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
3 Jigongshan Natural Reserve, Xinyang 464000, China
4 School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China

*Corresponding author:
Xiaoming Kang, Tel.: +86 10 6282 4153, Email: xmkang@ucas.ac.cn;
Bing Song, Tel.: +86 535 668 1043, Email: songbing@ldu.edu.cn
Abstract

Atmospheric nitrogen (N) deposition and phosphorus (P) addition both can change soil bacterial and fungal community structure with a consequent impact on ecosystem functions. However, which factor plays an important role in regulating responses of bacterial and fungal community to N and P enrichments remains unclear. We conducted a manipulative experiment to simulate N and P inputs (10 g N·m\(^{-2}\)·yr\(^{-1}\) NH\(_4\)NO\(_3\) or 10 g P·m\(^{-2}\)·yr\(^{-1}\) NaH\(_2\)PO\(_4\)) and compared their effects on soil bacterial and fungal species richness and community composition. The results showed that the addition of N significantly increased NH\(_4^+\) and Al\(^{3+}\) by 99.6% and 57.4%, respectively, and consequently led to a decline in soil pH from 4.18 to 3.75 after a five-year treatment. P addition increased Al\(^{3+}\) and available P by 27.0% and 10-fold, respectively, but had no effect on soil pH. N addition significantly decreased bacterial species richness and Shannon index and resulted in a substantial shift of bacterial community composition, whereas P addition did not. Neither N nor P addition changed fungal species richness, Shannon index, and fungal community composition. A structural equation model showed that the shift in bacterial community composition was related to an increase in soil acid cations. The principal component scores of soil nutrients showed a significantly positive relationship with fungal community composition. Our results suggest that N and P additions affect soil bacterial and fungal communities in different ways in subtropical forest. These findings highlight how the diversity of microbial communities of subtropical forest soil will depend on future scenarios of anthropogenic N deposition and P enrichment, with a particular sensitivity of bacterial community to N addition.
Keywords: Nitrogen deposition, phosphorus addition, microbial diversity, community composition, amplicon sequencing, subtropical forest, soil bacteria and fungi
Introduction

Nitrogen (N) and phosphorus (P) inputs to the ecosystem have greatly increased due to anthropogenic activities, mainly originating from fossil fuel combustion, agricultural fertilization, and dust or ash production (Galloway et al. 2008; Stevens 2019; Wang et al. 2014). Excessive N and P inputs could result in many adverse impacts, including soil acidification (Guo et al. 2010; Mao et al. 2017; Tian & Niu 2015) and nutrient imbalance (Peñuelas et al. 2013), although N and P have been considered as limiting factors for plant growth (Harpole et al. 2011). Moreover, elevated N availability may aggravate P limitation of ecosystem productivity (Li et al. 2016). A large body of research focusing on aboveground plant community responses have demonstrated multiple effects with nutrient additions, including biodiversity loss (Hooper et al. 2012), species composition, and associated ecosystem services, such as terrestrial carbon dynamics (Isbell et al. 2013; LeBauer & Treseder 2008). However, the responses of belowground microorganisms to nutrient additions, including general taxonomic traits and related function shifts, remain unclear (Leff et al. 2015; Ma et al. 2019; Ma et al. 2016; Wei et al. 2018). In particular, integrated field experimental investigations of both bacterial and fungal responses to N and P additions are needed to improve our understanding of how the soil microbial community structure shifts in response to nutrient addition and whether the bacterial and fungal responses are consistent.

Soil microbial communities are sensitive to N enrichment (Dai et al. 2018; Ramirez et al. 2012; Treseder 2008). On average and based on a global meta-analysis, across all of the studies
in agro-ecosystems, the abundances of *Proteobacteria* and *Actinobacteria* significantly increased by 2.2% and 1.1%, respectively, and the abundance of *Acidobacteria* decreased by 2.3% under N addition, which suggest differential sensitivity of bacterial phyla to N inputs (Dai et al. 2018). N addition could lead to elevated N availability (Chen et al. 2019), ammonium toxicity (Van Den Berg et al. 2005), acid cation toxicity (Chen et al. 2016; Tian & Niu 2015), and loss of base mineral cations (Bowman et al. 2008). Meanwhile, several potential driving factors were proposed to account for shifts in sensitive microbial communities in some ecosystems (Nie et al. 2018). First, soil pH has been reported as a strong predictor of soil bacterial community composition at the continental scale (Lauber et al. 2009; Rousk et al. 2010). A significantly positive correlation between diversity of bacteria and soil pH might be attributable to narrow pH ranges for optimal growth of bacteria (Rousk et al. 2010). However, fungal community composition is less affected by soil pH because fungi generally exhibit wider pH ranges for optimal growth (Rousk et al. 2010). Second, N addition could directly affect soil bacterial community composition through modified ammonium N concentration (Nie et al. 2018; Zeng et al. 2016; Zhou et al. 2017). Soil bacterial community composition is closely related to soil NH$_4^+$-N content in tropical forest soil under N enrichment due to a narrow pH decrease in severely acidic soil (pH < 4.5) (Nie et al. 2018). Finally, a positive relationship between plant and fungal beta diversity has been reported under N enrichment, soil properties including soil inorganic N, pH, and associated extractable cations being correlated with compositional changes in plant and fungal communities (Chen et al. 2018b). Although those mechanisms have previously been
investigated, comprehensive studies on different regulatory pathways of N addition on bacterial and fungal community structure in forest ecosystems are limited. P availability plays an important role in affecting microbial growth; however, our understanding of soil microbial community responses to elevated P inputs remains limited (Leff et al. 2015; Ma et al. 2019; Ma et al. 2016). Moreover, the effects of P input on bacterial and fungal community composition can differ (Cassman et al. 2016; Jorquera et al. 2014; Liu et al. 2013; Liu et al. 2012b). Previous studies have demonstrated that P enrichment induces shifts in microbial community composition by increasing P availability and altering soil and plant chemistry (DeForest & Scott 2010; Lagos et al. 2016; Leff et al. 2015; Liu et al. 2012a; Liu et al. 2013; Teng et al. 2018). Other studies have reported that only N enrichment influences bacterial abundance and community composition, whereas P input did not because soil pH decreases only with N addition (Jorquera et al. 2014; Wang et al. 2018) or because bacterial community was limited by other resources (Ma et al. 2019). The abovementioned pathways have largely been studied separately, and the relative contributions of these pathways to N- and P-induced changes in bacterial and fungal communities, however, have not been investigated using field experiments.

Subtropical forests in southern China undergo extensive N deposition with signs of N saturation, such as soil acidification (Zhu et al. 2015). Previous studies have demonstrated that forest productivity and soil respiration are sensitive to N and P enrichment, but little is known about how P addition affects microbial communities (Li et al. 2018a; Li et al. 2018b; Yu et al. 2017). To better understand the responses of bacterial and fungal communities to N and P
addition and the underlying mechanisms, we conducted a N and P addition experiment in this region. We specifically addressed the following questions: (1) How do bacterial / fungal taxa and community structures respond to N and P enrichment? (2) How do soil biotic and abiotic factors regulate the responses of bacterial / fungal taxa and community structures to N and P enrichment? Finally, (3) What are the mechanisms underlying shifts in bacterial / fungal taxa and community structures to N and P enrichment?

Materials & Methods

Site description

This nitrogen (N) and phosphorus (P) addition experiment was setup at the Jigongshan Nature Reserve, China (31°51'58''N, 114°5'12''E). The site is experiencing northern subtropical to warm temperate climates because it is located within a climate-transitional region. The mean annual surface air temperature and mean annual rainfall at the reserve is 15.2°C and 1,118 mm, respectively. The soil type is yellow-brown and soil thickness is about 0.3–0.6 m (Yan et al. 2014). The forest type is deciduous oak mixed forest. The predominant tree species in the canopy layer include *Quercus acutissima* and *Q. variabilis* and *Liquidambar formosana, Lindera glauca,* and *Viburnum dilatatum* dominates the understory arborous layer. The age of the stand is about 45–50 years and it is a secondary forest due to harvest in the late 1950s (Xu & Liang 1965). The total N deposition in this region is about 30 kg N ha⁻¹ yr⁻¹ (Zhu et al. 2015). The soil properties at the beginning of the experiment is listed in Table S1.
Experimental design

The detailed information of N and P addition experiment could be found in previous studies (Li et al. 2018a; Li et al. 2018b). Briefly, this N and P addition experiment was setup in July 2013 using a complete randomized block design. Each block had four treatments that were randomly assigned to 10 m × 10 m plots and four replicate blocks were established. Control (CK, without N and P addition), N addition (N, 10 g m⁻² yr⁻¹ NH₄NO₃), P addition (P, 10 g m⁻² yr⁻¹ NaH₂PO₄), and NP addition (NP, 10 g·m⁻²·yr⁻¹ NH₄NO₃ + 10 g·m⁻²·yr⁻¹ NaH₂PO₄) were included. Backpack sprayer were used to spray 50 L of water dissolved additions for each plot onto the forest floor monthly from May to October each year. The control plot received 50 L of water (equivalent to 0.5 mm precipitation) each time.

Soil properties

Six soil cores (0–10 cm depth) were randomly collected from each plot and mixed to obtain one composite sample in October 2017. The samples were passed through a 2-mm sieve and three parts were divided. One part of the soil was used for the analysis of ammonium (NH₄⁺), nitrate (NO₃⁻), microbial biomass carbon and nitrogen (MBC and MBN), and dissolved organic carbon (DOC). The second part of fresh soil was collected in a 50-mL centrifuge tube, which was stored at -80°C for soil DNA extraction. The remaining soil was air-dried for the determination of soil pH, total soil organic carbon (SOC), total nitrogen (TN), available phosphorus (AP), and extractable cations including Al³⁺, Ca²⁺, Mg²⁺, and Na⁺. The plant fine roots collected from 6 soil cores using the 2 mm-sieving were washed, dried, and then weighted. Soil ammonia and nitrate...
concentrations were determined by colorimetric analysis on a FIAstar 5000 Analyzer (FIAstar 5000 Analyzer, Foss Tecator, Hillerød, Denmark). Soil DOC was analyzed using a TOC analyzer (multi N/C 3100, Analytik Jena, Germany). Soil MBC and MBN were determined by a chloroform fumigation extraction method (Brookes et al. 1985). Soil pH was analyzed in a soil water solution (1:2.5 w/v). SOC and TN were analyzed by a C/N analyzer (vario EL III, CHNOS Elemental Analyzer, Elementar, Germany). Available P was determined following by molybdenum blue colorimetry (Jin et al. 2019). A modified extraction procedure was used to measure extractable cations including Al\(^{3+}\), Ca\(^{2+}\), Mg\(^{2+}\), and Na\(^+\) (Rauret et al. 2000).

Soil DNA extraction, PCR amplification, and sequencing

Soil DNA was extracted from each sample using a Fast DNA Stool Mini Kit (Tiangen Biotech Beijing Co., Ltd., Beijing, China) according to the manufacturer’s instructions. The quality of the purified DNA was assessed based on the 260/280 nm and 260/230 nm absorbance ratios obtained using a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies Inc., Wilmington, DE, USA).

Microbial community diversity and composition were assessed by amplification of the \(16S\) \(rRNA\) gene for the bacteria and the internal transcribed spacer (ITS) region of the fungi, as described in Prober et al. (2015). Marker genes in the isolated DNA were PCR-amplified and barcoded in triplicate reactions for both the \(16S\) \(rRNA\) gene (using the 515f/907r primer pair) and the ITS1 region (using the ITS1F/ITS2R primer pair). Sequencing was conducted on an Illumina Miseq platform at Majorbio Biopharm Technology Co., Ltd., Shanghai, China.
Sequencing data accession numbers

Raw sequences were trimmed of reads containing ambiguous bases and long homopolymers and merged using QIIME v 1.7.0 (Caporaso et al. 2012). All filtered sequences from 16S rRNA and ITS gene amplicons were clustered into OTUs at 97% similarity cutoff using UPARSE (version 7.1, http://drive5.com/uparse), followed by chimera filtering using the Ribosomal Database Project (RDP) (Tian et al. 2018) and UCHIME (Edgar et al. 2011). The bacterial and fungal OTU sequences were classified using the RDP classifier against Greengenes and UNITE reference database, respectively. All of the raw sequencing data (.fastq files) were submitted to the Sequence Read Archive (SRA) at the National Center for Biotechnology Information (NCBI) under accession number PRJNA531787 (https://www.ncbi.nlm.nih.gov/Traces/study/?acc=PRJNA531787).

Statistical analysis

The bacterial and fungal richness was determined by the number of OTUs, and alpha diversity was estimated using the Shannon index. Linear regressions were applied to assess the relationships between bacterial and fungal Shannon index and richness and environmental factors. Stepwise multiple regressions were used to identify the most influential environmental variables on bacterial and fungal Shannon index and richness due to collinearity among environmental factors. Differences in microbial species richness, Shannon index, soil properties and fine root biomass among different treatments were determined by one-way ANOVA with Duncan test. To determine the effect size of N, P and combined NP treatment on the relative abundances of the dominant bacterial and fungal taxa, the response ratio was calculated as ln.
where \(X_t \) is the mean value of experimental treatment and \(X_c \) is the mean value of the control treatment. One-sample t-test was used to estimate whether each response ratio was significantly different from zero (She et al. 2018).

Principal component analysis (PCA) and nonmetric multidimensional scaling (NMDS) were used to determine changes in the bacterial and fungal communities. Analyses, including Anosim, Adonis, and MRPP, were further performed to assess the significant differences in community among different treatments. The partial Mantel test was used to evaluate the linkages between the microbial community structure and the environmental variables. Pairwise taxonomic distance between microbial communities (Bray-Curtis) and Euclidean distance of environmental variables were chosen for partial Mantel. PCA, NMDS, and partial Mantel were conducted using the \textit{vegan} package with R v3.5.0 (R Core Team 2018).

Structural equation modelling (SEM) was performed to analyze the hypothetical pathways of N and P addition effects on bacterial and fungal diversity and community composition. Before the SEM analysis, soil N availability including \(\text{NH}_4^+ \) and \(\text{NO}_3^- \), soil acid cations including \(\text{H}^+ \) and \(\text{Al}^{3+} \), soil nutrients including SOC, TN, DOC, MBC and MBN, and microbial community composition (OTUs) were subjected to principal component analysis (PCA) (Chen et al. 2013). Soil N availability, soil acidity, soil nutrients, and microbial community composition were presented by the first principal components (PC1) in the following SEM analysis. Maximum likelihood estimation method was applied in the process of SEM. The goodness of the models was determined by \(\chi^2 \) tests, Akaike information criteria (AIC), and root square mean errors of approximation (RMSEA) (Li et al. 2018a).
Results

Fine root biomass and soil properties

Nitrogen (N), phosphorus (P), and combined NP additions significantly reduced fine root biomass (Table S2). Soil pH decreased with N addition, whereas P and NP additions did not have any effect compared to the control. Soil NH$_4^+$ was increased by 99.6% under N addition, whereas it did not change after P and NP additions (Table S2). P and NP additions resulted in a significant increase in soil available phosphorus (AP), but N addition did not (Table S2). Soil Al$^{3+}$ increased by 57.4%, 27.0% and 59.1%, respectively, under N, P and NP additions. Soil Ca$^{2+}$ decreased by 33.6% and 25.4%, respectively, under N and NP additions, but did not significantly change under P addition. N, P, and NP additions did not significantly change soil organic carbon (SOC), total nitrogen (TN), ratio of SOC to TN (C/N ratio), dissolved organic carbon (DOC), microbial biomass carbon, and nitrogen (MBC and MBN), NO$_3^-$, Mg$^{2+}$, and Na$^+$.

Relative abundance of dominant microbial taxa

16,573 to 26,745 (average: 21,019) and 46,414–70,354 (average: 64,655) valid sequences were consequently obtained per sample for bacterial and fungi, respectively. These sequences were grouped into 1,666 and 2,487 OTUs at the 97% similarity level for bacterial and fungi, respectively. All of the samples were compared at an equivalent sequencing depth of 16,573 and 46,414 per sample for bacteria and fungi, respectively.
The predominant bacterial phyla across all of the samples were *Proteobacteria*, *Acidobacteria*, and *Actinobacteria* (mean relative abundance > 5%), which accounted for more than 82% of the bacterial sequences on average (Fig. 1a). In addition, *Planctomycetes*, *Chloroflexi*, *Firmicutes*, *Bacteroidetes*, and *Gemmatimonadetes* were also present at relatively low abundance. The dominant fungal phyla across all of the samples were *Ascomycota*, *Basidiomycota*, *Zygomycota*, and *Rozellomycota* (Fig. 1b).

At the phylum level, *Omnitrophica*, *Chlorobi*, and *Nitrospirae* presented significant decrease and *Saccharibacteria* increased in relative abundance under N treatment (Fig. 2a). P addition significantly increased the relative abundances of *Elusimicrobia*, but N addition had no effect compared to the control plots (Fig. 2a). Only NP treatment increased the relative abundance of *Firmicutes* and decreased that of *Chloroflexi* (Fig. 2a). No significant differences were observed in the fungal relative abundance of *Ascomycota*, *Rozellomycota*, and *Chytridiomycota* at the phylum level among different treatments (Figs. 2b). *Basidiomycota* presented significant decrease in their relative abundance under N and NP additions and only NP addition decreased the relative abundance of *Zygomycota* (Fig. 2b). At the fungal genus level, *Chaetomium* and *Purpureocillium* presented significant decrease in their relative abundance under N and P treatments, and N and NP treatments decreased the relative abundance of *Mycoarthris* (Fig. 2b). The relative abundance of *Mortierella* significantly decreased only under NP addition (Fig. 2b).

Bacterial and fungal α diversity
N addition significantly decreased bacterial α diversity, including phylotype richness (OTU numbers) and Shannon diversity index, but did not change fungal α diversity (Fig. 3). P addition had no effect on both bacterial and fungal α diversity. NP addition only decreased fungal phylotype richness (Fig. 3). N addition decreased the number of unique phylotypes compared to the control (Table S3).

The bacterial richness exhibited the largest correlation with soil pH among all of the environmental factors (Table 1, \(r = 0.80, P < 0.01 \)). In addition to DOC (\(r = -0.72, P < 0.01 \)), soil pH was the best predictor of bacterial diversity (Table 1, \(r = 0.71, P < 0.01 \)). Bacterial richness and diversity also significantly correlated with fine root biomass, SOC, MBC, Al\(^{3+}\), and Ca\(^{2+}\) (Table 1). Soil Al\(^{3+}\) (\(r = -0.62, P < 0.05 \)) presented the largest correlation with fungal richness, followed by soil pH (\(r = 0.57, P < 0.05 \)). No significant correlations were noted between fungal diversity and any of the environmental variables (Table 1).

Stepwise regression showed that bacterial richness significantly correlated with pH (64.3%) and DOC (7.1%) (Table S4). Soil pH explained the largest part of the variation in bacterial diversity (50.1%), followed by TN (14.9%), DOC (13.4%), and MBC (9.7%). Soil pH explained 33.0% of the variation in fungal richness, whereas pH (17.0%), SOC (19.1%), and MBC (41.4%) collectively contributed to 65.2% of the variation in fungal diversity (Table S4).

Bacterial and fungal community structure and relationships with environmental factors

Significant differences in bacterial community structure between N and NP additions and the control were observed in NMDS and PCA plots (Figs. 4 and S1). However, only NP addition
exhibited significant differences in fungal community structure compared to the control (Fig. 4). The results of ANOSIM, ADONIS, and MRPP analyses further confirmed the significant differences among treatments (Table S5). This finding was confirmed by a cluster analysis based on a Bray-Curtis distance matrix of soil samples under different treatments (Fig. S2).

A partial Mantel test was performed to reveal the major environmental variables shaping microbial community structure. pH \((r_M = 0.57, P = 0.001) \), Al\(^{3+} \) \((r_M = 0.40, P = 0.002) \) and fine root biomass \((r_M = 0.36, P = 0.005) \) were the most important factors that independently contributed to variations in soil bacterial community structure (Table 2). TN, C:N ratio, DOC, and MBC showed weak but significant correlations \((r_M = 0.21, r_M = 0.22, r_M = 0.27, r_M = 0.24, \text{respectively, } P < 0.05) \) (Table 2). pH \((r_M = 0.57, P = 0.001) \) and MBC \((r_M = 0.40, P = 0.004) \) were the most important factors that independently contributed to variations in soil fungal community structure (Table 2). C:N ratio, DOC, Al\(^{3+} \), and Mg\(^{2+} \) showed weak but significant correlations \((r_M = 0.25, r_M = 0.26, r_M = 0.21, r_M = 0.27, \text{respectively, } P < 0.05) \) (Table 2).

Pathways determining the responses of bacterial and fungal diversity and community composition

The SEM explained 12% of the variations in soil N availability, 83% of the variation in soil acid cations (H\(^{+} \) and Al\(^{3+} \)), 5% of the variation in soil nutrients and 80% of the variation in soil available P (Fig. 5). The total variation in bacterial Shannon index was mainly explained (64%) by soil acid cations and soil available P (Fig. 5a), but the total variation in fungal Shannon index was mainly explained (39%) by soil available P (marginally significant, \(P = 0.08 \), Fig. 5b).
total variation in bacterial community composition was mainly explained (79%) by soil acid
cations (Fig. 5a), but the total variation in fungal community composition was mainly explained
(45%) by soil nutrients (Fig. 5b). Linear regression demonstrated that principal component (PC1)
scores of fungal community composition was significantly correlated with PC1 scores of soil
nutrients ($R^2 = 0.41, P = 0.008$, Fig. S3).

Standardized total effects from SEM demonstrated that N enrichment had stronger effects
on bacterial diversity and community composition compared to P addition (Fig. 6). Specifically,
acid cations showed the most powerful negative effect on bacterial diversity (Fig. 6a) and had a
stronger positive effect on bacterial community composition than soil N availability (Fig. 6b).
Both N and P enrichment had negative effects on fungal diversity, and soil nutrients exerted the
most powerful positive effect on fungal diversity (Fig. 6c). N enrichment had stronger positive
effects on fungal community composition, and soil nutrients exerted strongest negative effect on
fungal community composition (Fig. 6d).

Discussion

N but not P addition significantly influences bacterial communities

Our results showed that N addition significantly decreased bacterial OTU richness and Shannon
index and altered the bacterial community composition, with *Saccharibacteria* increasing, but
Chloroflex decreasing in terms of their relative abundances (Figs. 2–4, Table S5). These results
indicate that N addition tends to favor the copiotrophic phylum (*Saccharibacteria*) and
counterselects the oligotrophic phylum (*Chloroflex*) in bacterial communities, which is in line
with the copiotrophic hypothesis in previous reports (Fierer et al. 2007; Fierer et al. 2012; Leff et al. 2015). However, N addition did not change the relative abundance of dominant phylum of Proteobacteria, Acidobacteria, and Actinobacteria (Fig. 2). The results are in contrast with the findings of previous studies, which showed that added N stimulates and decreases the relative abundances of Proteobacteria (copiotrophic) and Acidobacteria (oligotrophic), respectively (Chen et al. 2019; Fierer et al. 2012; Leff et al. 2015). This discrepancy could be attributable to neutral effects of N enrichment on soil available C and N (including DOC and NO$_3^-$, Table S2) (Turlapati et al. 2013). It has been well documented that Proteobacteria contains N-fixing and N transforming genera (e.g., Bradyrhizobium, Burkholderia, Magnetospirillum, and Mesorhizobium) and thus are closely related to N cycling. However, in our study, added N only increased NH$_4^+$ and did not affect NO$_3^-$, indicating the N transformning-related bacterial phylum (Proteobacteria) may not be affected by the addition of N. Additionally, Acidobacteria has been reported to be negatively correlated with soil C availability (Fierer et al. 2007). The neutral effect of elevated N on DOC in our study may have contributed to the unaltered relative abundance of Acidobacteria, which is favored by low C availability (Fierer et al. 2007; Turlapati et al. 2013). Finally, the absence of a decrease in the abundance of Actinobacteria may be attributed to its relatively high tolerance to environmental stress such as low pH (Dai et al. 2018).

In contrast to most previous findings (Ling et al. 2017; Tan et al. 2013), neither the bacterial diversity nor the community composition was substantially influenced by P addition in our study (Figs. 3-4, Table S5), but this finding is consistent with a previous study reporting that most bacterial taxa were not limited by P in Tibetan meadow (Ma et al. 2019). Among all of the
bacterial phyla identified, only *Elusimicrobia* were negatively correlated with soil available P (Table S6). There are several potential explanations for the insensitive response to added P. First, it is well established that nutrient addition-induced pH decline is an important mechanism in shifting the bacterial community composition (Chen et al. 2015; Ling et al. 2017; Zeng et al. 2016). However, P addition did not change the soil pH in our study (Table S2). Additionally, P input could increase the P availability, and thus affect the bacterial richness and community structure, especially in P-limited ecosystems (Li et al. 2015; Liu et al. 2013). Our results showed that increased soil P availability did not change microbial biomass, suggesting that microbial growth is not limited to P in this subtropical forest. Finally, Liu et al. (2013) pointed out that a decrease in labile SOC is associated with alterations in soil microbial community structure under P addition. In our study, however, neither SOC or DOC was not significantly influenced by P addition (Table S2). Overall, our results suggest that only increased P availability may not be able to change the bacterial community composition in subtropical forest.

Neither N nor P addition significantly influenced fungal community

Our results demonstrated that fungal OTU richness is positively correlated to fine root biomass and soil pH and negatively related to MBC and soil Al$^{3+}$. However, fungal Shannon index was not significantly associated with soil parameters (Table 1). Fungal community structure was closely related to soil pH and MBC, followed by soil C:N ratio, DOC, Al$^{3+}$, and Mg$^{2+}$ (Table 2).

In contrast to the bacterial community, both N and P additions did not significantly change fungal richness and diversity (Fig. 3), which suggests that the tolerances of fungi to environmental changes are generally stronger than those of bacteria (Fierer et al. 2012; Rousk et
The responses of fungal diversity to N enrichment is not always consistent due to ecosystem type and nutrient dose (Chen et al. 2019; Mueller et al. 2014). Some studies have demonstrated that experimental N deposition results in increased fungal richness and diversity in a low fertility loblolly pine forest (Mueller et al. 2014; Weber et al. 2013), but other studies showed the opposite response partly due to variations in nutrient availability (Chen et al. 2019; Chen et al. 2018a). Previous studies have demonstrated that N enrichment increases the relative abundance of copiotrophic phylum *Ascomycota* and decreased that of oligotrophic phylum *Basidiomycota* according to the copiotroph-oligotroph concept (Chen et al. 2018b; Fierer et al. 2007; She et al. 2018; Yao et al. 2017). Although no significant effect of N enrichment on fungal community composition was observed (Fig. 4, Table S5), regression analysis also showed that the relative abundance of *Basidiomycota* was negatively correlated with soil N availability (NH$_4^+$ and NO$_3^-$, Table S6), indicating that N enrichment likely directly affects *Basidiomycota* via increasing N availability. Overall, the limited responses of fungal richness, diversity, and community composition under N enrichment in our study may be due to increased N loss from soil through denitrification and leaching (Niu et al. 2016).

Compared to many studies analyzing the response of soil microorganisms to N addition, relatively little research has been done on the effects of P enrichment on soil fungi in grasslands and forests (Li et al. 2015; Liu et al. 2013), and much fewer studies using high-resolution technology, such as 16S rRNA sequencing (Cassman et al. 2016; He et al. 2016). The understanding of fungal community responses to elevated P inputs remains limited (Leff et al. 2015). The effect of P addition on soil fungal community composition depends on ecosystem
type, soil properties, and nutrient type and dose (Bao et al. 2013; Beauregard et al. 2010; Li et al.
2015; Liu et al. 2013). Previous studies have demonstrated that experimental P fertilization
reduces the species richness of arbuscular mycorrhizal fungi, which could increase soil nutrient
capture of their hosts in return for plant C resource (Camenzind et al. 2014; Cheng et al. 2013;
Liu et al. 2013). However, elevated P input could alleviate P deficiency of soil microbes and
increase the fungal biomass, suggesting P availability is one of the limiting factors for fungal
growth in an old tropical forest (Liu et al. 2012a). Another explanation for the not significant
change of fungal community composition in response to P enrichment might be the relatively
short-term experimental duration of P addition (Cheng et al. 2013), and these detailed parameters
on fungal community composition warrant further investigation.

Mechanisms underlying responses of soil bacterial and fungal communities to N and P

Several mechanisms behind the observed shift of bacterial and fungal community composition
under N and P additions have been proposed, including increased N and P availability (Liu et al.
2012a; Liu et al. 2013; Nie et al. 2018; Zhou et al. 2017), a decline in soil pH (Chen et al. 2015;
Zeng et al. 2016), and increased soil acid cations availability (Chen et al. 2015). Contrary to the
N and P availability theory (Liu et al. 2012a; Nie et al. 2018), our results showed that N and P
availability (including NH$_4^+$, NO$_3^-$, and AP) had no significant relationship with bacterial and
fungal diversity and community structure (Table 1 and 2). Meanwhile, both partial Mantel test
and SEM results have demonstrated that N and P availability had no significant relationship with
bacterial and fungal community composition (Table 2, Fig. 5), suggesting that N and P
availability could not explain the shifts in bacterial and fungal community composition. The remaining possible reasons for the decline of bacterial diversity and shift of bacterial community composition include increased concentration of H^+ and Al^{3+} (Table S2). Furthermore, SEM results showed that soil acid cations (H^+ and Al^{3+}) induced a significant decrease in bacterial diversity and substantial change of bacterial community composition (Figs 5, 6). However, SEM results have demonstrated that soil nutrients are significantly correlated to fungal community composition (Fig. 5). Taken together, in this study, increase of soil acid cations and soil nutrients significantly contributed to the shift in bacterial and fungal community composition, respectively.

Conclusions

After a five-year N and P addition in subtropical forest, our results showed that N addition significantly decreased bacterial species richness and diversity, and resulted in a substantial shift of bacterial community composition, whereas P addition did not. Neither N nor P addition changed fungal species richness, diversity, and fungal community composition. A structural equation model showed that the shift in bacterial community composition is attributable to an increase in soil acid cations. The principal component scores of soil nutrients showed a significantly positive relationship with fungal community composition. Our results show how the diversity of microbial communities of subtropical forest soil will depend on future scenarios of anthropogenic N deposition and P enrichment, with a particular sensitivity of bacterial community to N addition.
Acknowledgements

The authors would like to thank the staffs from Jigongshan Natural Reserve for experimental site setup and data collection. Two reviewers and academic editor Xavier Le Roux are appreciated for their constructive comments and valuable inputs.

References

Bao Z, Matsushita Y, Morimoto S, Hoshino YT, Suzuki C, Nagaoka K, Takenaka M, Murakami H, Kuroyanagi Y, Urashima Y, Sekiguchi H, Kushida A, Toyota K, Saito M, and Tsushima S. 2013. Decrease in fungal biodiversity along an available phosphorous gradient in arable Andosol soils in Japan. Canadian Journal of Microbiology 59:368-373. 10.1139/cjm-2012-0612

Beauregard MS, Hamel C, Atul N, and St-Arnaud M. 2010. Long-term phosphorus fertilization impacts soil fungal and bacterial diversity but not AM fungal community in Alfalfa. Microbial Ecology 59:379-389. 10.1007/s00248-009-9583-z

Bowman WD, Cleveland CC, Halada L, Hresko J, and Baron JS. 2008. Negative impact of nitrogen deposition on soil buffering capacity. Nature Geoscience 1:767-770.

Brookes PC, Landman A, Pruden G, and Jenkinson DS. 1985. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry 17:837-842. http://dx.doi.org/10.1016/0038-0717(85)90144-0

Camenzind T, Hempel S, Homeier J, Horn S, Velescu A, Wilcke W, and Rillig MC. 2014. Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest. Global Change Biology 20:3646-3659. doi:10.1111/gcb.12618

Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, and Knight R. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621-1624. 10.1038/ismej.2012.8

Cassman NA, Leite MFA, Pan Y, de Hollander M, van Veen JA, and Kurmaee EE. 2016. Plant and soil fungal but not soil bacterial communities are linked in long-term fertilized grassland. Scientific Reports 6:23680. 10.1038/srep23680
Chen D, Lan Z, Bai X, Grace JB, and Bai Y. 2013. Evidence that acidification-induced declines in plant diversity and productivity are mediated by changes in below-ground communities and soil properties in a semi-arid steppe. *Journal of Ecology* 101:1322-1334. 10.1111/1365-2745.12119

Chen D, Lan Z, Hu S, and Bai Y. 2015. Effects of nitrogen enrichment on belowground communities in grassland: Relative role of soil nitrogen availability vs. soil acidification. *Soil Biology and Biochemistry* 89:99-108. http://dx.doi.org/10.1016/j.soilbio.2015.06.028

Chen D, Li J, Lan Z, Hu S, and Bai Y. 2016. Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment. *Functional Ecology* 30:658-669. 10.1111/1365-2435.12525

Chen D, Xing W, Lan Z, Saleem M, Wu Y, Hu S, and Bai Y. 2019. Direct and indirect effects of nitrogen enrichment on soil organisms and carbon and nitrogen mineralization in a semi-arid grassland. *Functional Ecology* 33:175-187. doi:10.1111/1365-2435.13226

Chen W, Xu R, Chen J, Yuan X, Zhou L, Tan T, Fan J, Zhang Y, and Hu T. 2018a. Consistent responses of surface- and subsurface soil fungal diversity to N enrichment are mediated differently by acidification and plant community in a semi-arid grassland. *Soil Biology and Biochemistry* 127:110-119. https://doi.org/10.1016/j.soilbio.2018.09.020

Chen W, Xu R, Wu Y, Chen J, Zhang Y, Hu T, Yuan X, Zhou L, Tan T, and Fan J. 2018b. Plant diversity is coupled with beta not alpha diversity of soil fungal communities following N enrichment in a semi-arid grassland. *Soil Biology and Biochemistry* 116:388-398. https://doi.org/10.1016/j.soilbio.2017.10.039

Cheng Y, Ishimoto K, Kuriyama Y, Osaki M, and Ezawa T. 2013. Ninety-year-, but not single, application of phosphorus fertilizer has a major impact on arbuscular mycorrhizal fungal communities. *Plant and Soil* 365:397-407. 10.1007/s11104-012-1398-x

Dai Z, Su W, Chen H, Barberán A, Zhao H, Yu M, Yu L, Brookes PC, Schadt CW, Chang SX, and Xu J. 2018. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of *Actinobacteria* and *Proteobacteria* in agro-ecosystems across the globe. *Global Change Biology* 24:3452-3461. doi:10.1111/gcb.14163

DeForest JL, and Scott LG. 2010. Available organic soil phosphorus has an important influence on microbial community composition. *Soil Science Society of America Journal* 74:2059-2066. 10.2136/sssaj2009.0426

Edgar RC, Haas BJ, Clemente JC, Quince C, and Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. *Bioinformatics (Oxford, England)* 27:2194-2200. 10.1093/bioinformatics/btr381

Fierer N, Bradford MA, and Jackson RB. 2007. Toward an ecological classification of soil bacteria. *Ecology* 88:1354-1364. 10.1890/05-1839

Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, and Knight R. 2012. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. *ISME J* 6:1007-1017. http://www.nature.com/ismej/journal/v6/n5/suppinfo/ismej2011159s1.html
Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, and Sutton MA. 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. *Science* 320:889-892. 10.1126/science.1136674

Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KWT, Vitousek PM, and Zhang FS. 2010. Significant acidification in major Chinese croplands. *Science* 327:1008-1010. 10.1126/science.1182570

Harpole WS, Ngai JT, Cleland EE, Seabloom EW, Borer ET, Bracken MES, Elser JJ, Gruner DS, Hillebrand H, Shurin JB, and Smith PE. 2011. Nutrient co-limitation of primary producer communities. *Ecology Letters* 14:852-862. 10.1111/j.1461-0248.2011.01651.x

He D, Xiang X, He J-S, Wang C, Cao G, Adams J, and Chu H. 2016. Composition of the soil fungal community is more sensitive to phosphorus than nitrogen addition in the alpine meadow on the Qinghai-Tibetan Plateau. *Biology and Fertility of Soils* 52:1059-1072. 10.1007/s00374-016-1142-4

Hooper DU, Adair EC, Cardinale BJ, Byrnes JEK, Hungate BA, Matulich KL, Gonzalez A, Duffy JE, Gamfeldt L, and O'Connor MI. 2012. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. *Nature* 486:105-108. http://www.nature.com/nature/journal/v486/n7401/abs/nature11118.html#supplementary-information

Isbell F, Reich PB, Tilman D, Hobbie SE, Polasky S, and Binder S. 2013. Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. *Proceedings of the National Academy of Sciences of the United States of America* 110:11911-11916. 10.1073/pnas.1310880110 %J Proceedings of the National Academy of Sciences

Jin Z, Chen C, Chen X, Hopkins I, Zhang X, Han Z, Jiang F, and Billy G. 2019. The crucial factors of soil fertility and rapeseed yield - A five year field trial with biochar addition in upland red soil, China. *Science of the Total Environment* 649:1467-1480. https://doi.org/10.1016/j.scitotenv.2018.08.412

Jorquera MA, Martínez OA, Marileo LG, Acuña JJ, Saggar S, and Mora ML. 2014. Effect of nitrogen and phosphorus fertilization on the composition of rhizobacterial communities of two Chilean Andisol pastures. *World Journal of Microbiology and Biotechnology* 30:99-107. 10.1007/s11274-013-1427-9

Lagos LM, Acuña JJ, Maruyama F, Ogram A, de la Luz Mora M, and Jorquera MA. 2016. Effect of phosphorus addition on total and alkaline phosphomonoesterase-harboring bacterial populations in ryegrass rhizosphere microsites. *Biology and Fertility of Soils* 52:1007-1019. 10.1007/s00374-016-1137-1

Lauber CL, Hamady M, Knight R, and Fierer N. 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. 75:5111-5120. 10.1128/AEM.00335-09 %J Applied and Environmental Microbiology

LeBauer DS, and Treseder KK. 2008. Nitrogen limitation of net primary productivity in terrestrial ecosystems in globally distributed. *Ecology* 89:371-379. 10.1890/06-2057.1

Leff JW, Jones SE, Prober SM, Barberan A, Borer ET, Finn JL, Harpole WS, Hobbie SE, Hofmockel KS, Knops JMH, McCulley RL, La Pierre K, Risch AC, Seabloom EW,
Schuetz M, Steenbock C, Stevens CJ, and Fierer N. 2015. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. *Proceedings of the National Academy of Sciences of the United States of America* 112:10967-10972. 10.1073/pnas.1508382112

Li J, Li Z, Wang F, Zou B, Chen Y, Zhao J, Mo Q, Li Y, Li X, and Xia H. 2015. Effects of nitrogen and phosphorus addition on soil microbial community in a secondary tropical forest of China. *Biology and Fertility of Soils* 51:207-215. 10.1007/s00374-014-0964-1

Li Y, Niu S, and Yu G. 2016. Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis. *Global Change Biology* 22:934-943. 10.1111/gcb.13125

Li Y, Sun J, Tian D, Wang J, Ha D, Qu Y, Jing G, and Niu S. 2018a. Soil acid cations induced reduction in soil respiration under nitrogen enrichment and soil acidification. *Science of the Total Environment* 615:1535-1546. https://doi.org/10.1016/j.scitotenv.2017.09.131

Li Y, Tian D, Yang H, and Niu S. 2018b. Size-dependent nutrient limitation of tree growth from subtropical to cold temperate forests. *Functional Ecology* 32:95-105. 10.1111/1365-2435.12975

Ling N, Chen D, Guo H, Wei J, Bai Y, Shen Q, and Hu S. 2017. Differential responses of soil bacterial communities to long-term N and P inputs in a semi-arid steppe. *Geoderma* 292:25-33. https://doi.org/10.1016/j.geoderma.2017.01.013

Liu L, Gundersen P, Zhang T, and Mo J. 2012a. Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China. *Soil Biology and Biochemistry* 44:31-38. http://dx.doi.org/10.1016/j.soilbio.2011.08.017

Liu L, Zhang T, Gilliam FS, Gundersen P, Zhang W, Chen H, and Mo JM. 2013. Interactive effects of nitrogen and phosphorus on soil microbial communities in a tropical forest. *PLoS One* 8. 10.1371/journal.pone.0061188

Liu Y, Shi G, Mao L, Cheng G, Jiang S, Ma X, An L, Du G, Johnson NC, and Feng H. 2012b. Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on *Glomeromycota* in an alpine meadow ecosystem. *New Phytologist* 194:523-535. doi:10.1111/j.1469-8137.2012.04050.x

Ma B, Zhou X, Zhang Q, Qin M, Hu L, Yang K, Xie Z, Ma W, Chen B, Feng H, Liu Y, Du G, Ma X, and Le Roux X. 2019. How do soil micro-organisms respond to N, P and NP additions? Application of the ecological framework of (co-)limitation by multiple resources. *Journal of Ecology*. 10.1111/1365-2745.13179

Ma W, Jiang S, Assemien F, Qin M, Ma B, Xie Z, Liu Y, Feng H, Du G, Ma X, and Le Roux X. 2016. Response of microbial functional groups involved in soil N cycle to N, P and NP fertilization in Tibetan alpine meadows. *Soil Biology and Biochemistry* 101:195-206. https://doi.org/10.1016/j.soilbio.2016.07.023

Mao Q, Lu X, Zhou K, Chen H, Zhu X, Mori T, and Mo J. 2017. Effects of long-term nitrogen and phosphorus additions on soil acidification in an N-rich tropical forest. *Geoderma* 285:57-63. https://doi.org/10.1016/j.geoderma.2016.09.017

Mueller RC, Balasch MM, and Kuske CR. 2014. Contrasting soil fungal community responses to
experimental nitrogen addition using the large subunit rRNA taxonomic marker and
cellobiohydrolase I functional marker. Molecular Ecology 23:4406-4417. doi:10.1111/mec.12858
Nie Y, Wang M, Zhang W, Ni Z, Hashidoko Y, and Shen W. 2018. Ammonium nitrogen content is
a dominant predictor of bacterial community composition in an acidic forest soil with
exogenous nitrogen enrichment. Science of the Total Environment 624:407-415. https://doi.org/10.1016/j.scitotenv.2017.12.142
Niu S, Classen AT, Dukes JS, Kardol P, Liu L, Luo Y, Rustad L, Sun J, Tang J, Templer PH,
Thomas RQ, Tian D, Vicca S, Wang Y-P, Xia J, and Zaehle S. 2016. Global patterns and
substrate-based mechanisms of the terrestrial nitrogen cycle. Ecology Letters 19:697-709. 10.1111/ele.12591
Peñuelas J, Poulter B, Sardans J, Ciais P, van der Velde M, Bopp L, Boucher O, Godderis Y,
Hinsinger P, Llusia J, Nardin E, Vicca S, Obersteiner M, and Janssens IA. 2013. Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across
the globe. Nature Communications 4:2934. 10.1038/ncomms3934
Prober SM, Leff JW, Bates ST, Borger ET, Firn J, Harpole WS, Lind EM, Seabloom EW, Adler PB,
Bakker JD, Cleland EE, DeCrappeo NM, DeLorenze E, Hagenah N, Hautier Y,
Hofmockel KS, Kirkman KP, Knops JMH, La Pierre KJ, MacDougall AS, McCulley RL,
Mitchell CE, Risch AC, Schuetz M, Stevens CJ, Williams RJ, and Fierer N. 2015. Plant
diversity predicts beta but not alpha diversity of soil microbes across grasslands
worldwide. Ecology Letters 18:85-95. 10.1111/ele.12381
R Core Team. 2018. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria URL https://www.R-project.org/
Ramirez KS, Craine JM, and Fierer N. 2012. Consistent effects of nitrogen amendments on soil
microbial communities and processes across biomes. Global Change Biology 18:1918-1927. 10.1111/j.1365-2486.2012.02639.x
Rauret G, Lopez-Sanchez JF, Sahuquillo A, Barahona E, Lachica M, Ure AM, Davidson CM,
Gomez A, Luck D, Bacon J, Yli-Halla M, Muntau H, and Quevauviller P. 2000. Application
of a modified BCR sequential extraction (three-step) procedure for the determination of
extractable trace metal contents in a sewage sludge amended soil reference material
(CRM 483), complemented by a three-year stability study of acetic acid and EDTA
extractable metal content. Journal of Environmental Monitoring 2:228-233. 10.1039/B001496F
Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, and Fierer N.
2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. The
Isme Journal 4:1340. 10.1038/ismej.2010.58
She W, Bai Y, Zhang Y, Qin S, Feng W, Sun Y, Zheng J, and Wu B. 2018. Resource availability
drives responses of soil microbial communities to short-term precipitation and nitrogen
addition in a desert shrubland. Frontiers in Microbiology 9. 10.3389/fmicb.2018.00186
Stevens CJ. 2019. Nitrogen in the environment. Science 363:578-580. 10.1126/science.aav8215

%J Science
Tan H, Barret M, Mooij MJ, Rice O, Morrissey JP, Dobson A, Griffiths B, O’Gara FJB, and Soils Fo. 2013. Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils. 49:661-672. 10.1007/s00374-012-0755-5

Teng Z, Cui J, Wang J, Fu X, and Xu X. 2018. Effect of exogenous nitrogen and phosphorus inputs on the microbe-soil interaction in the secondary Castanopsis sclerophylla forest in east China. *iForest - Biogeosciences and Forestry* 11:794-801. 10.3832/ifor2673-011

Tian D, and Niu S. 2015. A global analysis of soil acidification caused by nitrogen addition. *Environmental Research Letters* 10:024019.

Tian J, He N, Hale L, Niu S, Yu G, Liu Y, Blagodatskaya E, Kuzyakov Y, Gao Q, and Zhou J. 2018. Soil organic matter availability and climate drive latitudinal patterns in bacterial diversity from tropical to cold temperate forests. *Functional Ecology* 32:61-70. 10.1111/1365-2435.12952

Treseder KK. 2008. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. *Ecology Letters* 11:1111-1120. 10.1111/j.1461-0248.2008.01230.x

Turlapati SA, Minocha R, Bhiravarasa PS, Tisa LS, Thomas WK, and Minocha SC. 2013. Chronic N-amended soils exhibit an altered bacterial community structure in Harvard Forest, MA, USA. *FEMS Microbiology Ecology* 83:478-493. 10.1111/1574-6941.12009

Van Den Berg LJL, Dorland E, Vergeer P, Hart MAC, Bobbink R, and Roelofs JGM. 2005. Decline of acid-sensitive plant species in heathland can be attributed to ammonium toxicity in combination with low pH. *New Phytologist* 166:551-564. 10.1111/j.1469-8137.2005.01338.x

Wang Q, Wang C, Yu W, Turak A, Chen D, Huang Y, Ao J, Jiang Y, and Huang Z. 2018. Effects of nitrogen and phosphorus inputs on soil bacterial abundance, diversity, and community composition in Chinese fir plantations. *Frontiers in Microbiology* 9. 10.3389/fmicb.2018.01543

Wang R, Balkanski Y, Boucher O, Ciais P, Peñuelas J, and Tao S. 2014. Significant contribution of combustion-related emissions to the atmospheric phosphorus budget. *Nature Geoscience* 8:48. 10.1038/ngeo2324

Weber C, Vilgalys R, and Kuske C. 2013. Changes in fungal community composition in response to elevated atmospheric CO₂ and nitrogen fertilization varies with soil Horizon. *Frontiers in Microbiology* 4. 10.3389/fmicb.2013.00078

Wei H, Peng C, Yang B, Song H, Li Q, Jiang L, Wei G, Wang K, Wang H, Liu S, Liu X, Chen D, Li Y, and Wang M. 2018. Contrasting soil bacterial community, diversity, and function in two forests in China. *Frontiers in Microbiology* 9. 10.3389/fmicb.2018.01693

Xu G, and Liang C. 1965. Division and transformation of secondary forest in Jigongshan Forest Farm. *Practical Forestry Technology*:8-10 In Chinese. 10.13456/j.cnki.lykt.1965.06.005

Yan J, Zhang W, Wang K, Qin F, Wang W, Dai H, and Li P. 2014. Responses of CO₂, N₂O and CH₄ fluxes between atmosphere and forest soil to changes in multiple environmental
Yao F, Yang S, Wang Z, Wang X, Ye J, Wang X, DeBruyn JM, Feng X, Jiang Y, and Li H. 2017. Microbial taxa distribution is associated with ecological trophic cascades along an elevation gradient. *Global Change Biology* 20:300-312. 10.1111/gcb.12327

Yu L, Wang Y, Zhang X, Dörsch P, and Mulder J. 2017. Phosphorus addition mitigates N₂O and CH₄ emissions in N-saturated subtropical forest, SW China. *Biogeosciences* 14:3097-3109. 10.5194/bg-14-3097-2017

Zeng J, Liu X, Song L, Lin X, Zhang H, Shen C, and Chu H. 2016. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. *Soil Biology and Biochemistry* 92:41-49. https://doi.org/10.1016/j.soilbio.2015.09.018

Zhou Z, Wang C, Zheng M, Jiang L, and Luo Y. 2017. Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. *Soil Biology and Biochemistry* 115:433-441. https://doi.org/10.1016/j.soilbio.2017.09.015

Zhu J, He N, Wang Q, Yuan G, Wen D, Yu G, and Jia Y. 2015. The composition, spatial patterns, and influencing factors of atmospheric wet nitrogen deposition in Chinese terrestrial ecosystems. *Science of the Total Environment* 511:777-785. http://dx.doi.org/10.1016/j.scitotenv.2014.12.038
Table 1 (on next page)

Pearson correlations between bacterial and fungal richness and diversity and plant and soil characteristics.
Table 1 Pearson correlations between bacterial and fungal richness and diversity and plant and soil characteristics. * 0.01 < $P \leq 0.05$; ** 0.001 < $P \leq 0.01$

SOC:	Bacteria		Fungi		Soil
	r	Richness	Diversity	Richness	Diversity
Fine root biomass	0.59*	0.56*	0.51*	0.32	
pH	0.80**	0.71**	0.57*	0.41	
SOC	-0.52*	-0.40	-0.29	-0.47	
TN	-0.47	-0.35	-0.16	-0.33	
C:N ratio	-0.40	-0.35	-0.42	-0.47	
DOC	-0.75**	-0.72**	-0.32	-0.20	
NH$_4^+$	-0.48	-0.34	-0.23	-0.17	
NO$_3^-$	-0.40	-0.31	-0.15	-0.02	
AP	0.07	0.24	-0.34	-0.42	
MBC	-0.64**	-0.49	-0.54*	-0.48	
MBN	-0.41	-0.27	-0.40	-0.42	
Al$_3^+$	-0.54*	-0.58*	-0.62*	-0.33	
Ca$_2^+$	0.58*	0.54	0.40	0.33	
Mg$_2^+$	0.24	0.09	0.22	0.13	
Na$^+$	-0.06	-0.07	-0.33	-0.17	

organic carbon; TN: total nitrogen content; DOC: dissolved organic carbon; AP: available phosphorus; MBC: microbial biomass carbon; MBN: microbial biomass nitrogen.
Table 2 (on next page)

Partial mantel test of soil bacterial and fungal community structure with environmental characteristics.
Table 2 Partial mantel test of soil bacterial and fungal community structure with environmental characteristics. The correlation and significance were determined between bacterial and fungal community structure (Bray-Curtis distance) and environmental variables (Euclidean distance) based on 999 permutations.

	Bacteria			**Fungi**		
	r	**P**		**r**	**P**	
Fine root biomass	0.36	0.005		0.10	0.18	
pH	0.57	0.001		0.40	0.001	
SOC	0.16	0.10	0.19	0.07		
TN	0.21	0.04	0.12	0.14		
C:N ratio	0.22	0.04	0.25	0.02		
DOC	0.27	0.02	0.26	0.01		
NH$_4^+$	0.08	0.21	-0.09	0.49		
NO$_3^-$	0.07	0.26	0.02	0.45		
AP	-0.14	0.95	-0.13	0.92		
MBC	0.24	0.03	0.36	0.004		
MBN	0.10	0.15	0.17	0.06		
AI$_3^+$	0.40	0.002	0.21	0.03		
Ca$_2^+$	0.12	0.18	-0.06	0.66		
Mg$_2^+$	0.06	0.28	0.27	0.02		
Na$^+$	-0.15	0.91	-0.03	0.62		

SOC: soil organic carbon; TN: total nitrogen content; DOC: dissolved organic carbon; AP: available phosphorus; MBC: microbial biomass carbon; MBN: microbial biomass nitrogen.
Figure 1

Relative abundance of the dominant bacterial (a) and fungal (b) groups at phylum level under different treatments.
Figure 2

Responses ratio analysis of changes in the relative abundance of dominant bacterial phyla (a) and fungal phyla/genera (b) in response to N, P and NP treatment compared to the control treatment, at the 95% confidence interval.

Red points indicate significant changes compared with the control treatment.
Figure 3

Bacterial and fungal phylotype richness (a - b) and Shannon diversity index (c - d) under different treatments.

The error bars represent the SE of the mean (n = 4).
Figure 4

Non-metric multidimensional scaling (NMDS) ordination of the soil bacterial (a) and fungal (b) community structure under different treatments.

The Bray-Curtis distance matrix based on the abundance of OTUs was used to determine the compositional variation.
Figure 5

Structural equation model (SEM) analysis of the effects of N and P enrichment on soil bacterial (a) and fungal (b) community structure.

Results of model fitting: (a) $\chi^2 = 19.38$, df = 13, $P = 0.11$, RMSEA = 0.18, AIC = 65.38; (b) $\chi^2 = 18.39$, df = 13, $P = 0.14$, RMSEA = 0.17, AIC = 64.39. Black and blue arrows represent significant positive and negative pathways, respectively, and dashed arrows indicate nonsignificant pathways. Numbers at the arrows are standardized path coefficients and arrow width is proportional to the strength of the relationship. R^2 values on top of response variables indicate the proportion of variation explained by relationships with other variables.

Prior to SEM analysis, soil N availability (NH_4^+ and NO_3^-), soil acid cations (H^+ and Al^{3+}), soil nutrients (SOC, TN, DOC, MBC and MBN), bacterial and fungal community composition (OTUs) were subject to principal component analysis (PCA) procedure to reduce the number of variables.
Figure 6

SEM derived standardized total effects of N and P additions, and variables including N availability, acid cations, soil nutrients, and soil available P on bacterial diversity and community composition (a-b) and fungal diversity (c-d).
Standardized total effects from SEM

(a) Bacterial diversity
-0.53
(b) Fungal diversity
-0.23
(c) Fungal community
0.30

Variables:
N, P, N availability, Acid cations, Soil nutrients, Soil available P