Data driven discovery of conjugated polyelectrolytes for optoelectronic and photocatalytic applications

Yangyang Wan, Fernando Ramirez, Xu Zhang, Thuc-Quyen Nguyen, Guillermo C. Bazan and Gang Lu

Conjugated polyelectrolytes (CPEs), comprised of conjugated backbones and pendant ionic functionalities, are versatile organic materials with diverse applications. However, the myriad of possible molecular structures of CPEs render traditional, trial-and-error materials discovery strategy impractical. Here, we tackle this problem using a data-centric approach by incorporating machine learning with high-throughput first-principles calculations. We systematically examine how key materials properties depend on individual structural components of CPEs and from which the structure–property relationships are established. By means of machine learning, we uncover structural features crucial to the CPE properties, and these features are then used as descriptors in the machine learning to predict the properties of unknown CPEs. Lastly, we discover promising CPEs as hole transport materials in halide perovskite-based optoelectronic devices and as photocatalysts for water splitting. Our work could accelerate the discovery of CPEs for optoelectronic and photocatalytic applications.

INTRODUCTION

Conjugated polyelectrolytes (CPEs) are a class of macromolecules that contain \(\pi \)-conjugated backbones, ionic-functionalized alkyl side chains, and counter ions\(^1\)\(^-\)\(^4\). The delocalized \(\pi \)-electrons in the backbone endow CPEs with optical and charge transport properties of organic semiconductors, while the ionic functionalities render CPEs soluble in high dielectric constant media and in particular water\(^5\)\(^-\)\(^9\). As versatile optoelectronic materials, CPEs have been used in organic and perovskite photovoltaics\(^6\)\(^-\)\(^8\), light-emitting diodes\(^9\)\(^-\)\(^11\), thermoelectrics\(^12\), and photocatalysts\(^13\)\(^-\)\(^14\). Recently, narrow bandgap CPEs (NBCPEs) have attracted particular attention as their backbones comprise electron-rich and electron-poor fragments, leading to intramolecular charge-transfer states and facile oxidation and reduction\(^15\). Remarkably, when combined with anionic sulfonate side groups, the NBCPEs could be spontaneously self-doped in aqueous media\(^16\)\(^-\)\(^18\). In contrast, the self-doping is not present in cationic CPEs. This suggests that the interplay between the electrostatic force and the redox chemistry in the semiconducting backbone is key to the optoelectronic properties of NBCPEs, and particularly to stabilizing polaron states. Unfortunately, despite tantalizing potentials and significant interests in CPEs, systematic studies of CPEs remain scarce, especially from a theoretical and/or first-principles perspective. There is a critical lack of fundamental understanding on how electrostatic force may influence the optoelectronic properties of CPEs. It is unclear how structural components (backbone, side chain, ionic group, and counter ions) of CPEs may be individually and collectively tuned to optimize the optoelectronic properties. More importantly, it remains highly challenging to design CPEs for target applications.

In this work, we aim to tackle these challenges using a data-centric approach by combining machine learning with high-throughput first-principles calculations. Although the same strategy has been used in other types of materials\(^19\)\(^-\)\(^24\), no such effort has been attempted on CPEs. Our work is further motivated by the needs to establish structure–property relationships in CPEs.

Because all structural components, including the donor and acceptor units on the backbone, the ionic identity of the pendant groups, the length of the side chains and the choice of the counter ions can be individually tuned, a large number of structural variations could emerge, rendering the development of structure–property relationships challenging. On the other hand, the structural modularity of CPEs also makes them amenable to machine learning. Thus, it is of interest to explore whether machine learning can help navigate the high-dimensional space of the structural variations and uncover much needed structure–property relationships for designing/screening CPEs.

RESULTS AND DISCUSSION

Construction of a CPE database

Multiple structural components of CPEs can be tuned independently and Fig. 1a illustrates such structural and chemical variability with CPE-K\(^12\) as an example. The conjugated backbone of CPE-K consists of alternating electron-rich (D) and electron-poor (A) heterocycles; the intramolecular donor-acceptor interaction could yield lower bandgaps and charge-transfer states\(^25\). The ionic functionality attached to the backbone comprises of an
ionic group and an oppositely charged counter ion. The ionic group is responsible for CPE's solubility in polar solvents, including aqueous media. With a certain valence state, the size of the counter ion can also be adjusted\(^2\). Finally, the distance between the ionic functionality and the electronically delocalized backbone can be modulated by the length of the alkyl side chain. The electrostatic interaction between the ionic functionality and charge carriers (polarons) on the conjugated backbone is known to play a crucial role in various applications of CPEs. Therefore, a complete characterization of CPEs requires the spanning of a 5-dimensional space of structural variations (donor, acceptor, alkyl chain length, ionic group, and counter ion) as illustrated in Fig. 1b.

The structural modularity of CPEs enables us to construct a database by expanding the five-dimensional space via high-throughput computation. At present, the database contains over 2000 CPEs whose properties (e.g., structural, electronic, optical, and dielectric properties) have been obtained via first-principles calculations (Supplementary Notes and Methods). Here, we focus on anionic CPEs with their anionic groups consisted of COO, SO\(_3\), and PO\(_3\)H, and the counter cations being Li, Na, K, and Cs. Three donor units (CPDT, P, PDT) and nine acceptor units (BT, PT, BBT, FBT, Ph, PhF, Py, PhCN, Tp) are combined to form 27 distinct conjugated backbones for CPEs, as shown in Fig. 1b. The HOMO and LUMO levels of these donor and acceptor units are summarized in Supplementary Table 4. Four different lengths of the alkyl chain (C4, C6, C8, C10) are also included. In sum, 1296 \((=3 \times 4 \times 3 \times 9 \times 4)\) anionic CPEs are considered in the present work.

Establishing structure–property relationships

HOMO/LUMO levels and \(E_g\) are three most important properties of CPEs in photovoltaic and photocatalytic applications, thus are the focus of our attention. HOMO and LUMO levels are often used as proxies for ionization potential and electron affinity, which can be measured experimentally. Note, that \(E_g\) is the HOMO-LUMO gap (or transport gap), shown schematically in Fig. 2a. We have systematically examined the HOMO/LUMO levels and \(E_g\) for all 1296 anionic CPEs and their values are summarized in Fig. 2b. The HOMO/LUMO levels are shifted relative to the vacuum level so that they can be compared among the CPEs. The vacuum level is defined as the potential energy at the vacuum of the simulation box (Supplementary Fig. 3). PBE functional was used in these calculations to extract the general trends. The horizontal axis in Fig. 2b represents the backbone index ranging from 1 to 27.
The donor and acceptor units of the backbone. In Fig. 3b, the components can be tuned to modulate HOMO, LUMO, and E_g. Next, we will examine in detail how the various structural components can significantly modulate HOMO and LUMO for a given backbone. The second observation is that while many CPEs here have narrow bandgaps ($E_g < 2$ eV), some exhibit bandgaps wider than 2.5 eV. These wider gap CPEs all possess P as their donor unit (and Ph, PhF, and Py as their acceptor units) on the backbone. The lowest transport gap of these CPEs is 1.32 eV. Thus, in order to design NBCPEs, we need to discover donor/acceptor combinations in the backbone; tuning ionic functionality can significantly modulate HOMO and LUMO for a given backbone. The next experiment is to examine how the electrostatic force due to the ionic functionality of the CPEs can modulate HOMO and LUMO. However, the first observation drawn from Fig. 2d is that for each backbone, the variation (± 0.5 eV) in HOMO/LUMO level is much larger than that (± 0.1 eV) in E_g. This suggests that in contrast to HOMO and LUMO, E_g is primarily determined by the backbone. Dependence of HOMO, LUMO and E_g on structural components. a Comparisons for HOMO/LUMO levels and E_g between CPEs with C4 and C6 alkyl chains. b Charge density of HOMO and LUMO orbitals in CPE-K*. c HOMO level of CPE* as a function of HOMO level of the donor (HOMO_D). d LUMO level of CPE* as a function of LUMO level of the acceptor (LUMO_A). e E_g of CPE* as a function of LUMO_A–HOMO_D.

Representative 27 different CPE backbones, each labeled by a backbone index (see Supplementary Table 5). For each backbone, there are 48 ($=3 \times 4 \times 4$) different sets of HOMO, LUMO, and E_g values, one for each distinct CPE of the same backbone but different combinations of the ionic group (3), counter ion (4) and length of alkyl chain (4). The first observation drawn from Fig. 2b is that for each backbone, the variation (± 0.5 eV) in HOMO/LUMO level is much larger than that (± 0.1 eV) in E_g. This suggests that in contrast to HOMO and LUMO, E_g is primarily determined by the backbone. However, the electrostatic force due to the ionic functionality can significantly modulate HOMO and LUMO for a given backbone. The second observation is that while many CPEs here have narrow bandgaps ($E_g < 2$ eV), some exhibit bandgaps wider than 2.5 eV. These wider gap CPEs all possess P as their donor unit (and Ph, PhF, and Py as their acceptor units) on the backbone. The lowest transport gap of these CPEs is 1.32 eV. Thus, in order to design NBCPEs, we need to discover donor/acceptor combinations in the backbone; tuning ionic functionality alone would not reach the goal. However, one can span a wide range of HOMO (-5.77 to -4.17 eV) and LUMO (-3.71 to -1.77 eV) levels by tuning the ionic functionality of the CPEs. The next experiment is to examine how the electrostatic force due to the ionic functionality of the CPEs can modulate HOMO and LUMO for a given backbone. The second observation is that while many CPEs here have narrow bandgaps ($E_g < 2$ eV), some exhibit bandgaps wider than 2.5 eV. These wider gap CPEs all possess P as their donor unit (and Ph, PhF, and Py as their acceptor units) on the backbone. The lowest transport gap of these CPEs is 1.32 eV. Thus, in order to design NBCPEs, we need to discover donor/acceptor combinations in the backbone; tuning ionic functionality alone would not reach the goal. However, one can span a wide range of HOMO (-5.77 to -4.17 eV) and LUMO (-3.71 to -1.77 eV) levels by tuning the ionic functionality of the CPEs. The next experiment is to examine how the electrostatic force due to the ionic functionality of the CPEs can modulate HOMO and LUMO for a given backbone. The second observation is that while many CPEs here have narrow bandgaps ($E_g < 2$ eV), some exhibit bandgaps wider than 2.5 eV. These wider gap CPEs all possess P as their donor unit (and Ph, PhF, and Py as their acceptor units) on the backbone. The lowest transport gap of these CPEs is 1.32 eV. Thus, in order to design NBCPEs, we need to discover donor/acceptor combinations in the backbone; tuning ionic functionality alone would not reach the goal. However, one can span a wide range of HOMO (-5.77 to -4.17 eV) and LUMO (-3.71 to -1.77 eV) levels by tuning the ionic functionality of the CPEs. Next, we will examine in detail how the various structural components can be tuned to modulate HOMO, LUMO, and E_g.

To examine the effect of the alkyl chain length on HOMO/LUMO and E_g, we consider a neutral CPE (termed CPE*), which is a CPE stripped of its ionic functionality. Two sets of CPEs* are studied here, each comprised of 27 CPEs. One set has C4 chain length while the other has C6 chain length. We compare the values of HOMO/LUMO levels and E_g between the two sets, with each data point in Fig. 3a corresponding to a CPE* with the same backbone but different alkyl chain lengths (C6 vs. C4). Interestingly, there is a negligible energy difference between the two sets of CPEs*. The same results are also found between CPEs* with C8 and C10 alkyl chain lengths, suggesting that the chain length has a negligible effect on the energetics of the neutral CPEs. Next, we examine the dependence of HOMO, LUMO, and E_g on the donor and acceptor units of the backbone. In Fig. 3b, the HOMO and LUMO charge densities of CPE-K* are displayed with VESTA. It is observed that while the LUMO of CPE-K* resides primarily on the acceptor, the HOMO spreads on both the donor and the acceptor. Bader analysis was used to compute the charge distribution on the donor and acceptor units by removing or adding an electron to CPE-K*. With the removal of the electron, the positive charges on the donor and the acceptor are 0.63e and 0.37e, respectively, and when adding an electron, the negative charges on the donor and the acceptor are $-0.31e$ and $-0.69e$, respectively. Thus, it is reasonable (but not precise) to correlate the HOMO level of CPE* to the HOMO level of the donor (HOMO_D) and the LUMO level of CPE* to the LUMO level of the acceptor (LUMO_A). In Fig. 3c, we plot the HOMO level of CPE* as a function of HOMO_D for the three donors CPDT, P, PDT, and approximate linear relationships are found for all nine acceptor units. Thus, there exist a strong positive correlation between the HOMO level of a neutral CPE and the HOMO level of its donor unit. Similarly, as shown in Fig. 3d for each donor, there is a positive correlation between LUMO of CPE* and LUMO_A. As $E_g = \text{HOMO} - \text{LUMO}_A$, a positive but weaker correlation is also identified between E_g and LUMO_A–HOMO_D in Fig. 3e. While not further pursued in this paper, these correlations can provide valuable guidance in designing donor/acceptor combinations for targeted applications. For example, donors of low HOMO levels combined with acceptors of low LUMO levels would likely to form CPEs with low bandgaps.

Next, we explore how the electrostatic force may affect the HOMO/LUMO levels of CPEs. To this end, we focus on CPEs with a fixed backbone (CPDT-BT) and anionic group (COO), but with different alkyl chain lengths (C4, C6, C8, C10) and counter ions (Li, Na, K, Cs). The varied electronegativities of the counter ions and Coulomb interaction distances due to the chain lengths modulate the electrostatic force that the polaron in the conjugated backbone may experience. In Fig. 4a, we display the variation of the HOMO level as a function of the alkyl chain length and the counter ion. The dashed horizontal line represents the HOMO level of the neutral CPE* with the same CPDT-BT backbone and C4 alkyl chain. Three general trends are observed: (1) for a given chain length, the HOMO level decreases monotonically with the
electronegativity of the counter ion; the smaller the electronegativity, the higher the HOMO. (2) For a given counter ion or electronegativity, the HOMO level decreases monotonically with the chain length; the longer the alkyl chain, the lower the HOMO level. (3) The HOMO level of the neutral CPE* (HOMO*) represents an asymptotic limit of the HOMO level for all anionic CPEs; in the limit of an infinite alkyl chain length, HOMO = HOMO*. In this case, the electrostatic force vanishes.

All these trends can be rationalized from an electrostatic point of view. The electrostatic interaction between a charged ion (or ionic group) and a π-orbital on the backbone is illustrated in Fig. 4b. The π-orbital of the neutral CPE* is represented by the dashed contour. When a CPE is surrounded by charged ions, its π-electrons on the backbone are attracted by the positive ions and lower their energies, while the negative ions repel the π-electrons and increase their energies. This effect is purely electrostatic and becomes more pronounced as the ion-backbone distance decreases. While both the anionic group (COO −) and the counter ion (Li, Na, K, Cs) could polarize the π-orbital, the anionic group tends to have a stronger effect than the counter ion since it is closer to the backbone. The smaller the electronegativity of the counter ion, the more the charge transfer from the counter ion to the anionic group; thus, the anionic group is more negatively charged, leading to a higher HOMO level. In the same vein, the shorter the chain length, the stronger the polarization, and the higher the HOMO level. The polarization disappears in a neutral CPE, thus HOMO* < HOMO.

The same general trends also hold in CPEs with other backbones and ionic groups, as shown in Supplementary Fig. 7. But there are also notable exceptions. For example, with the smallest counter ion (Li) and SO3 group, the HOMO level is actually lower than HOMO*. Additionally, CPEs with the shortest chain length (C4) and smaller counter ions (Li and Na) exhibit lower HOMO level as shown in Supplementary Fig. 8. These anomalies arise because the counter ions are situated closer to the backbone than the ionic group. Since the smaller counter ions (Li and Na) are more mobile, it is easier for them to circumvent the anionic group and to come near the backbone. This scenario is more likely to occur when the chain length is short as the counter ion can bond with two adjacent anionic groups simultaneously, facilitating the counter ion to draw closer to the backbone. The LUMO level exhibits similar trends as the HOMO (Supplementary Fig. 9) which is expected since E_g shows weak dependence on the electrostatic force.

The preceding analysis has demonstrated that the frontier orbitals and E_g of CPEs can be modulated by the HOMO/LUMO levels of the donor and acceptor units in the backbone, the alkyl chain length, and the electronegativity of the ionic functionality. However, owing to complex correlations among these quantities, concrete structure–property relationships, necessary for the rational design of CPEs, are difficult to establish. Thus, in the following, we resort to machine learning to derive appropriate structure–property relationships for predicting CPE properties. Since each ionic group has an internal structure, the electronegativity alone would not be sufficient to represent characteristics of the ionic group. Hence, we also include its coordination number (CN) in the machine learning modeling. Specifically, the CN of each of the three ionic groups (COO, SO2 and PO2H) refers to the number of bonds on the C atom in COO (CN = 2, with bonds to 2 oxygen atoms), S atom in SO2 (CN = 3, with bonds to 3 oxygen atoms) and P atom in PO2H (CN = 3, with bonds to 2 oxygen atoms and 1 OH), respectively. We have thus incorporated eight features, including HOMO and LUMO of the donor and acceptor units (HOMOD, LUMOD, HOMOA, LUMOA), the alkyl chain length (L), the electronegativity of the anionic group (χ−) and the counter cation (χ+), and the coordination number of the anionic group (CN) in the machine learning analysis, and their values are summarized in Tables S4 and S6.

The Pearson correlation coefficient (ρ) is commonly employed to represent a linear relationship between a given feature and a property in machine learning analysis, and it is defined in the following:

$$
\rho = \frac{\sum_{i=1}^{n}(X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n}(X_i - \bar{X})^2 \sum_{i=1}^{n}(Y_i - \bar{Y})^2}}
$$

where \bar{X} and \bar{Y} are corresponding datasets for the feature and property, respectively, and n is the number of CPEs in the dataset. \bar{X} and \bar{Y} is the averaged value of the feature and property. A greater positive (or negative) ρ value indicates a stronger correlation (or anti-correlation) between the property Y and the feature X. While the Pearson correlation coefficient analysis is simple and transparent, it is not always accurate especially when nonlinear relationships between features and properties are important. To remedy this deficiency, we also perform Random Forest Regression (RFR) in our analysis to complement the Pearson coefficient. RFR is a supervised learning algorithm that utilizes ensemble learning method for regression, and thus is more reliable than the linear analysis. With RFR, we can rank the relative importance of each feature, represented by the feature importance variable Q (see Supplementary Methods). In Fig. 5, we summarize the Pearson correlation coefficients (ρ) and feature importance (Q) for the eight features on HOMO/LUMO levels and E_g. The one hand, the results in Fig. 5a confirm what we have already known, i.e., E_g depends primarily on the backbone, with HOMOD and LUMOA playing the most important roles. On the other hand, the machine learning analysis can also reveal more concrete and sometimes hidden correlations. For instance, LUMOA and to a less
shown in Fig. 5b. In fact, from the RFR analysis, HOMOA is revealed
Δ
the donor unit appears to have negligible in
LUMO of a CPE, as compared to the RFR analysis. To our surprise,
hydrogen atom in the donor and acceptor unit (Δb)
differential electronegativity between a substituent group and a
unsaturation (Δfi)
Table 6) in the machine learning analysis: the degree of
features to describe the donor and acceptor units (Supplementary
the feature list. For the
these CPEs, the feature list includes the degree of
unsaturation on the donor and acceptor units (DU D, D D U A), the differential
electronegativity of the substituent group (Δfi)
important to the HOMO/LUMO levels. In particular,
∧
χ− has negligible influence on them, thus is removed from the further
analysis. In contrast, the coordination number (CN) of the ionic
group outranks L, χ− and χ+ in importance, suggesting that the
design of the ionic group should not be taken lightly.

Predicting CPE properties via machine learning
Our goal in machine learning is to provide guidance for materials
design, i.e., to discover CPEs for target applications. To accomplish
this goal, we need to uncover material features that can be
directly linked to the molecular structures of CPEs. In addition, we
aim to predict materials properties (HOMO, LUMO and Eg) for
a given CPE structure. Progress is made on both tasks here. Since
the HOMO/LUMO of the donor and acceptor units are not directly
linked to the molecular structures of CPEs, they are removed from
the feature list. For the first task, we include the following revised
features to describe the donor and acceptor units (Supplementary
Table 6) in the machine learning analysis: the degree of
unsaturation (defined as the number of rings and π bonds) in
the donor and acceptor units (DU D, DUa), the differential
electronegativity between a non-carbon atom and a carbon atom
on the ring of the donor and acceptor unit (ΔD1, ΔA1) (i.e., ΔD1 and
ΔA1 are zero if all atoms on the ring are carbon), and the
differential electronegativity between a substituent group and a
hydrogen atom in the donor and acceptor unit (ΔD2, ΔA2) (i.e., ΔD2
and ΔA2 are zero if there is no substituent group). Since ΔD2 is the
same for the three donors in the database, this feature is removed in
the following analysis, but should be included in general. In
addition to the five features, the same ones used to represent the
ionic functionality (CN, L, χ− and χ+) are included in the analysis.
More information on the degree of unsaturation and differential
electronegativity can be found in Supplementary Methods.

In Fig. 6a–c, we present the Pearson correlation coefficient ρ
and the feature importance Q for Eg and HOMO/LUMO levels
using the revised features. As expected, the five features
characterizing the donor and acceptor units are all important to
Eg. While DU D is positively correlated to Eg, other features (DUa,
ΔD1, ΔA1 and ΔA2) are anti-correlated to Eg. Thus, in order to lower
Eg one needs to reduce the degree of unsaturation on the donor.
As shown in Supplementary Table 4, with the degree of
unsaturation (DU D) decreasing from P, to PDT and to CPDT,
the corresponding HOMOD increases. According to Fig. 5b, c, the
HOMO of CPEs is positively correlated to HOMOD while the LUMO
of CPEs has negligible dependence on HOMOD. Thus, the decrease
of DU D would result in a reduction of the bandgap. Other ways
can be used to reduce Eg are increasing the degree of
unsaturation on the acceptor, increasing the electronegativity of
the non-carbon atoms on the ring, and increasing the electro-
negativity of the substituent group. Most important features
for HOMO are DU D, ΔD1 and ΔA2. Thus, one can increase the
HOMO level by lowering the degree of unsaturation on the donor
and the electronegativity of the substituent and by increasing the electro-
negativity of non-carbon atoms on the ring. The most
important features to the LUMO level are all related to the
acceptor; and to increase LUMO, one can reduce the degree of
unsaturation, the electronegativity of non-carbon atoms on the
ring and the substituent group of the acceptor. These
structure–property relations can provide valuable guidance for
rational design of CPEs.

For the second task, we have used machine learning to predict
HOMO/LUMO levels for CPEs beyond the database. Here, the
Support Vector Regression (SVR) method as implemented in
“scikit-learn” was used for the regression of the HOMO and
LUMO levels (see Supplementary Methods). Specifically, a 10-fold
cross-validated SVR approach with the grid search was used and
its performance was evaluated by the mean-absolute-percent-
error (MAPE), the root-mean-square-error (RMSE) and the correla-
tion coefficient (R²) for the prediction of HOMO/LUMO levels, as
shown in Supplementary Fig. 10. We find that the performance of
the SVR regression model is stable and robust against different
randomizations. In Fig. 6d, e, we display the comparisons of
HOMO/LUMO levels between the machine learning predictions
and the first-principles results, with 1046 CPEs in the training set
and 250 CPEs in the test set. It is found that the machine learning
model performs well with MAPE less than 2.1%, RMSE less than
0.07 eV and R² larger than 0.97 (Table 1). To assess the ability of

Fig. 5 Feature analysis via machine learning. Correlation coefficients (ρ) and feature importance (Q) as a function of the structural features for Eg (a), HOMO (b) and LUMO (c) levels.
the machine learning model in predicting HOMO/LUMO levels beyond the database, we also constructed a verification dataset (Supplementary Tables 6 and 7, Supplementary Fig. 11), which has not been previously used in the training and test sets. With all known CPEs (1296) in the database as the training set, we can predict HOMO/LUMO levels of CPEs in the verification set and the results are summarized in Fig. 6d, e and Table 1. In general, we find that the machine learning model can provide reasonable estimate for the HOMO/LUMO levels, and the revised structural features can be used as descriptors in predicting the properties of unknown CPEs.

Screening CPEs for optoelectronic and photocatalytic applications

CPEs have found a wide range of applications from optoelectronics to photocatalysts. However, rational design of CPEs has yet to benefit from data-centric research. In this work, we use machine learning to screen/discover CPEs for two selective applications. For the first application, we focus on the design of hole transport materials (HTMs) in metal-halide perovskite based optoelectronic devices, such as photovoltaics and light-emitting diodes.5,7,10,32–34. For the second application, we aim to design photocatalysts for overall water splitting.13,14,35. Both applications require the design of CPEs with appropriate HOMO, LUMO, and E_g values, along with other relevant properties.

For the first application, the ideal HTMs should have appropriate energy levels so that the holes can be transferred from the active layer to the electrode efficiently while the electrons are blocked.32,36. The solution-processed pH-neutral CPEs have excellent compatibility and wetting property, which enables the formation of a stable, defect-suppressed and uniform interface with the perovskite active layer.37. Here, three design criteria are considered for the screening of CPEs: stability, energy level alignment and hole mobility. Specifically, the CPEs should have a higher energetic stability than CPE-K, which has been used as HTMs in conjunction with perovskites. We require the candidate to have an atomization energy lower than that (~ -0.239 eV) of CPE-K. Note that this is not a critical criterion and helps to reduce the number of candidates that we have to consider. Secondly, we require that the HOMO level of the candidate be slightly higher than the valence band maximum (VBM) of the perovskite, but lower than the VBM of the ITO (indium tin oxide) electrode (Fig. 7). Thus, photogenerated holes in the active layer can be efficiently extracted. At the same time, in order to block the electron transfer from the perovskite to the HTM, the LUMO of the candidate should be lower than that of the perovskite (~ 3.7 eV). Thirdly, we require that the candidate should have a lower reorganization energy than CPE-K (0.186 eV). This requirement derives from the consideration of charge-transfer rates (K) in HTMs, which can be

Table 1. Summary of MAPE (%), RMSE (eV) and R^2 for the training, test and verification datasets using the revised features.

	MAPE	RMSE	\(R^2\)						
	training	test	verification	training	test	verification	training	test	verification
HOMO	0.92	0.97	1.16	0.05	0.06	0.09	0.97	0.97	0.91
LUMO	2.07	2.07	3.63	0.06	0.07	0.14	0.97	0.98	0.90
estimated based on the Marcus theory. \(^{(38,39)}\)

\[
K = \left(\frac{V^2}{\hbar} \right) \left(\frac{\pi}{4k_BT} \right)^2 \exp(-\lambda/4k_BT)
\]

(2)

Here \(\hbar, T\) and \(k_B\) are reduced Planck constant, temperature and Boltzmann constant, respectively. \(\lambda\) is the reorganization energy and \(V\) is the electronic coupling. For polymers including CPEs, the reorganization energy is often the dominant factor on the charge-transfer rate, and the smaller the reorganization energy, the higher the charge-transfer rate\(^{(40)}\). The reorganization energy for the holes in CPEs can be estimated as follows:\(^{(40)}\)

\[
\lambda = (E_0^+ - E_0^-) + (E_p^0 - E_n^0)
\]

(3)

where \(E_0^+\) is the energy of the cation in the optimized neutral state structure; \(E_0^-\) is the energy of the cation in the optimized cationic structure; \(E_p^0\) is the energy of the neutral molecule in the optimized neutral state structure, and \(E_n^0\) is the energy of the neutral molecule in the optimized neutral state structure. Thus, the candidate should have \(\lambda\) less than that (0.186 eV) of CPE-K. Finally, the candidate should have polar functionality, which is a condition satisfied by all CPEs in the database. Among ~1300 anionic CPEs in the database, 72 candidates met the above criteria. Among them, 5 candidates with the lowest reorganization energies are included in Table 2. It is interesting to note that the CPE with a low reorganization energy generally has a longer alkyl chain length than CPE-K (C4). As shown in Supplementary Fig. 12, for a given backbone (CPDT-BT) and functionality (SO_3K), as the alkyl chain length increases, the hole reorganization energy decreases.

To serve as photocatalysts for overall water splitting, the HOMO and LUMO levels of CPEs should straddle across the redox potentials of water\(^{(41)}\). As the overpotential for an efficient hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) catalyst is about 0.2 eV\(^{(42)}\), we require that the candidate to have its HOMO level lower than \(-5.87\) eV and LUMO level higher than \(-4.24\) eV, respectively to ensure that the photo-induced hole and electron can overcome the overpotential\(^{(40)}\). In addition, the bandgap of the candidate should be less than 2.4 eV for efficient light absorption. Finally, we require the candidate to have an atomization energy lower than that of CPE-K. Based on these criteria, 17 candidates are identified for photocatalytic water splitting, and 5 of them with the lowest \(E_g\) are included in Table 2. We find that all promising candidates have "P" molecule as the donor unit. This observation is consistent with the fact that all CPE photocatalysts for water splitting reported so far contain "P" in their backbones. In addition, compared to the CPEs that can catalyze only HER (half-water splitting)\(^{(35)}\), our predicted candidates have deeper HOMO levels in the acceptors (e.g., FBT and PhCN), which enable overall water splitting and lower bandgaps. Thus, to improve the performance of CPEs as water splitting photocatalysts, one should focus on engineering acceptor units, such as by tuning their \(\Delta\alpha_1\) and \(\Delta\alpha_2\).

Although the machine learning and data driven approach presented here are powerful tools in discovering CPEs for target applications, one has to bear in mind their limitations too. More sophisticated theoretical models have to be developed to capture crucial physical/chemical processes, including charge transport, the role of solvent and defects, interfacial wettability, lifetime of charge carriers, etc. In conclusion, we have constructed a first-principles database on CPEs, which allows us to systematically examine how HOMO/LUMO levels and \(E_g\) depend on the structural components of CPEs, including the donor/acceptor units on the backbone, the alkyl chain length, the ionic group and the counter ion. General trends correlating HOMO/LUMO and \(E_g\) with the structural components are established and can be rationalized in terms of the electrostatic interaction between the ionic functionalities and polarons on the CPE backbone. By means of machine learning, we have uncovered material features important to frontier orbitals and \(E_g\) and the structure–property relations for rational design of CPEs. These features are then used as descriptors in the machine learning to predict HOMO/LUMO levels and \(E_g\) of "unknown" CPEs.

Table 2. Selected candidates for HTMs and water splitting photocatalysts. The values of HOMO, LUMO, reorganization energy (\(\lambda\)) and \(E_g\) are displayed (all in eV).

HTMs	HOMO	LUMO	\(\lambda\)	Photocatalysts	HOMO	LUMO	\(E_g\)	Photocatalysts	HOMO	LUMO	\(E_g\)
CPDT-PhF-C8-SO_3Na	-5.136	-2.845	0.131	P-FBT-C4-SO_3Li	-5.910	-3.881	2.029	P-FBT-C6-SO_3Li	-5.877	-3.841	2.036
P-DT-Ph-C6-SO_3Na	-5.515	-2.654	0.132	P-PhCN-C4-PHNa	-6.034	-3.781	2.253	P-PhCN-C4-PHNC	-6.016	-3.732	2.284
CPDT-PhF-C10-SO_3Na	-5.145	-2.851	0.134								
CPDT-FBT-C8-SO_3K	-5.184	-3.629	0.138								
CPDT-PhF-C10-SO_3K	-5.103	-2.808	0.140								
beyond the database. Finally, we propose relevant design criteria based on which promising CPEs are identified as the hole transport materials in halide perovskite optoelectronic devices and as photocatalysts for water splitting. Our work represents one of the data-centric research dedicated to CPEs and could accelerate the discovery and development of CPEs for optoelectronic and photocatalytic applications.

METHODS

Computational models and details

Our first-principles calculations are based on density functional theory (DFT) with planewave bases as implemented in Vienna Ab initio Simulation Package (VASP)37–39. The projector-augmented-wave method was used to describe the pseudopotentials. Both Perdew-Burke-Ernzerhof (PBE) and HSE06 hybrid functionals35,36 were considered, with the former used on the entire CPE database and the latter on a subset of the database (Supplementary Table 1). As conjugated polymers, CPEs could adopt various conjugation lengths. Obviously, we cannot include all possible conjugation lengths for all CPEs (~1300) in the database. Instead, we focus on CPE oligomers with a single repeating conjugation unit. However, we have also considered a subset of CPEs with infinite conjugation lengths. In particular, we have examined the variation of HOMO/LUMO/Eg as a function of the conjugation length for CPE-K (Supplementary Fig. 4). To model CPEs with a single unit of conjugation length, we included a vacuum of 15 Å in each direction of the computational cells and found it sufficient to isolate periodic images of CPE molecules. Due to the steric hindrance, a fully extended and trans-conformational alkyl chain is energetically more stable than other conformations, thus is adopted as the initial structure for each CPE molecule44. We then relax the initial molecular structure to obtain its equilibrium conformation at 0 K. For a few select CPEs, we have also performed ab initio molecular dynamics at 300 K to examine whether the relaxed equilibrium structures remain stable (i.e., whether there are drastic conformational changes to the equilibrium structures). All equilibrium structures examined are found to be thermodynamically stable and can be used as bases to understand the structure–property relationships. Although local minima exist in the molecular structures of CPEs, selective analysis finds them to have minor influence on the results. An energy cutoff was set as 500 eV and the convergence threshold for the energy and force were 10−5 eV and 0.02 eV/Å, respectively. The inclusion of van der Waals dispersion correction at the level of PBE-D347 is found to have negligible effect on the energetics and the structures of CPEs (Supplementary Fig. 5, Supplementary Table 2).

It is known that PBE functional generally underestimates Eg compared to HSE06 functional and experimental values. Interestingly, as shown in Supplementary Table 1, the ratios between the corresponding HSE06 and PBE values for CPEs are more or less constant; in particular, the ratio for Eg is ~1.4 and for HOMO level is ~1.1. Since the HSE06 calculation is much more expensive than PBE, one could save tremendous computational time by scaling the PBE values (of Eg and HOMO) by the constant ratios to approximate the corresponding HSE06 values without actually performing the HSE06 calculations on the entire set of CPEs in the database. On the other hand, it is also known and confirmed by our calculations that Eg for CPEs with infinite conjugation lengths is always lower than that for CPEs with a single conjugation unit as well as the experimental value. Actually, modeling CPEs with a single conjugation unit by PBE functional turns out to yield good agreements to the experimental values on Eg as shown in Supplementary Table 3. As for the HOMO level, we find that HSE06 functional with a single unit of conjugation length yields results consistent with the experiments. Therefore, when screening CPEs for target applications, PBE functional will be used for Eg while HSE06 functional will be used for HOMO level, both with a single unit of conjugation length.

DATA AVAILABILITY

The data that support this work are available in the article and Supplementary Information file. Further raw data can be found at the CPE database: https://cpegenome.com and are available from the corresponding author (GL) upon request.

CODE AVAILABILITY

Scripts for generating CPE molecular structures are available at: https://cpegenome.com.

Received: 8 January 2021; Accepted: 19 April 2021; Published online: 20 May 2021

REFERENCES

1. Patil, A. O., Ikenoue, Y., Wudl, F. & Heeger, A. J. Water soluble conducting polymers. J. Am. Chem. Soc. 109, 1858–1859 (1987).
2. Hoven, C. V., Garcia, A., Bazan, G. C. & Nguyen, T. Q. Recent applications of conjugated polyelectrolytes in optoelectronic devices. Adv. Mater. 20, 3793–3810 (2008).
3. Lee, W., Seo, J. H. & Woo, H. Y. Conjugated polyelectrolytes: a new class of semiconducting material for electronic devices. Polymer 54, 5104–5121 (2013).
4. Jiang, H., Tanaranek, P., Reynolds, J. R. & Schanze, K. S. Conjugated polyelectrolytes: synthesis, photophysics, and applications. Angew. Chem. Int. Ed. 48, 4300–4316 (2009).
5. Huang, F., Wu, H. & Cao, Y. Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices. Chem. Soc. Rev. 39, 2500–2521 (2010).
6. Zhou, H. et al. Solution-processed pH-neutral conjugated polyelectrolyte improves interfacial contact in organic solar cells. ACS Nano 9, 371–377 (2015).
7. Choi, H. et al. Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells. Nat. Commun. 6, 7348 (2015).
8. Han, Y. W. et al. Vertical phase separation for highly efficient organic solar cells incorporating conjugated-polyelectrolytes. Adv. Mater. Interfaces 6, 1801396 (2019).
9. Seo, J. H., Namdas, E. B., Gutacker, A., Heeger, A. J. & Bazan, G. C. Solution-processed organic light-emitting transistors incorporating conjugated polyelectrolytes. Adv. Funct. Mater. 21, 3667–3672 (2011).
10. Lee, B. R. et al. Conjugated polyelectrolytes as efficient hole transport layers in perovskite light-emitting diodes. ACS Nano 12, 5826–5833 (2018).
11. Hu, Z., Zhang, K., Huang, F. & Cao, Y. Water/alcohol soluble conjugated polymers for the interface engineering of highly efficient polymer light-emitting diodes and polymer solar cells. Chem. Commun. 51, 5572–5585 (2015).
12. Mai, C. K. et al. Side-chain effects on the conductivity, morphology, and thermo-electric properties of self-doped narrow-band-gap conjugated polyelectrolytes. J. Am. Chem. Soc. 136, 13478–13481 (2014).
13. Wu, Y. et al. Substituent regulation improves photocatalytic hydrogen evolution of conjugated polyelectrolytes. ACS Mater. Lett. 1, 620–627 (2019).
14. Yang, X. et al. Water-soluble conjugated molecule for solar-driven hydrogen evolution from salt water. Adv. Funct. Mater. 29, 1808156 (2019).
15. Cui, Q. & Bazan, G. C. Narrow band gap conjugated polyelectrolytes. Acc. Chem. Res. 51, 202–211 (2018).
16. Kirchofer, N. D., McCuskey, S. R., Mai, C. K. & Bazan, G. C. Anaerobic respiration on self-doped conjugated polyelectrolytes: impact of chemical structure. Angew. Chem. Int. Ed. 129, 6619–6622 (2017).
17. Mai, C. K. et al. Facile doping of anionic narrow-band-gap conjugated polyelectrolytes during dialysis. Angew. Chem. Int. Ed. 52, 12874–12878 (2013).
18. Mai, C. K. et al. Electrical properties of doped conjugated polyelectrolytes with modulated density of the ionic functionalities. Chem. Commun. 51, 17607–17610 (2015).
19. Ward, L., Agrawal, A., Choudhary, A. & Wolverton, C. A general-purpose machine learning framework for predicting properties of inorganic materials. NPJ Comput. Mater. 2, 1–7 (2016).
20. Oses, C., Toher, C. & Curtarolo, S. Data-driven design of inorganic materials with the automatic flow framework for materials discovery. MRS Bull. 43, 670–675 (2018).
21. Curtarolo, S. et al. The high-throughput highway to computational materials design. Nat. Mater. 12, 191–201 (2013).
22. Sendek, A. D. et al. Machine learning-assisted discovery of solid Li-ion conducting materials. Chem. Mater. 31, 342–352 (2018).
23. Kim, C., Chandrasekaran, A., Huan, T. D., Das, D. & Rampasrad, R. Polymer genome: a data-powered polymer informatics platform for property predictions. J. Phys. Chem. C 122, 17575–17585 (2018).
24. Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).
25. Mulliken, K. & Pisula, W. Donor-acceptor polymers. J. Am. Chem. Soc. 137, 9503–9505 (2015).
26. Cui, Y. et al. The critical role of anode work function in non-fullerene organic solar cells unveiled by counterion-size-controlled self-doping conjugated polymers. *Chem. Mater.* **30**, 1078–1084 (2018).

27. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. *J. Appl. Crystallogr.* **44**, 1272–1276 (2011).

28. Li, Z.; Zhang, X.; Lu, G. & Nguyen, T.-Q. First-principles study of electron mobility in cationic and anionic conjugated polyelectrolytes. *J. Phys. Chem. C* **116**, 1205–1210 (2012).

29. Pilania, G.; Wang, C.; Jiang, X.; Rajasekaran, S. & Ramprasad, R. Accelerating materials properties predictions using machine learning. *Sci. Rep.* **3**, 2810 (2013).

30. Genuer, R.; Poggi, J.-M. & Tuleau-Malot, C. Variable selection using random forests. *Pattern Recogn. Lett.* **31**, 2225–2236 (2010).

31. Pedregosa, F. et al. Scikit-learn: machine learning in Python. *J. Mach. Learn. Res.* **12**, 2825–2830 (2011).

32. Lee, J. et al. Achieving large-area planar perovskite solar cells by introducing an interfacial compatibilizer. *Adv. Mater.* **29**, 1606363 (2017).

33. Jung, E. D. et al. Multiply charged conjugated polyelectrolytes as a multifunctional interlayer for efficient and scalable perovskite solar cells. *Adv. Mater.* **32**, 10 (2020).

34. Rakstys, K.; Igić, C. & Nazeeruddin, M. K. Efficiency vs. stability: dopant-free hole transporting materials towards stabilized perovskite solar cells. *Chem. Sci.* **10**, 6748–6769 (2019).

35. Hu, Z. et al. Highly efficient photocatalytic hydrogen evolution from water-soluble conjugated polyelectrolytes. *Nano Energy* **60**, 775–783 (2019).

36. Urieta-Mora, J.; Garcia-Benito, I.; Molina-Ontoria, A. & Martin, N. Hole transporting materials for perovskite solar cells: a chemical approach. *Chem. Soc. Rev.* **47**, 8541–8571 (2018).

37. Lee, S. et al. Conjugated polyelectrolytes as multifunctional passivating and hole-transporting layers for efficient perovskite light-emitting diodes. *Adv. Mater.* **31**, e1900067 (2019).

38. Marcus, R. A. Electron transfer reactions in chemistry. Theory and experiment. *Rev. Mod. Phys.* **65**, S99 (1993).

39. Marcus, R. A. Chemical and electrochemical electron-transfer theory. *Annu. Rev. Phys. Chem.* **15**, 155–196 (1964).

40. Brédas, J.-L.; Beljonne, D.; Coropceanu, V. & Cornil, J. Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture. *Chem. Rev.* **104**, 4971–5004 (2004).

41. Bai, Y.; Hu, Z. C.; Jiang, J. X. & Huang, F. Hydrophilic conjugated materials for photocatalytic hydrogen evolution. *Chem. –Asian J.* **15**, 1780–1790 (2020).

42. Leem, G. et al. Photocathode chromophore–catalyst assembly via layer-by-layer deposition of a low band-gap isoindigo conjugated polyelectrolyte. *ACS Appl. Energy Mater.* **1**, 62–67 (2018).

43. Li, Y.; Li, Y.-L.; Sa, B. & Ahuja, R. Review of two-dimensional materials for photocatalytic water splitting from a theoretical perspective. *Catal. Sci. Technol.* **7**, 545–559 (2017).

44. Qiu, Z.; Tai, C.-W.; Niklasson, G. A. & Edvinsson, T. Direct observation of active catalyst surface phases and the effect of dynamic self-optimization in NiFe-layered double hydroxides for alkaline water splitting. *Energy Environ. Sci.* **12**, 572–581 (2019).

45. Suryanto, B. H. R.; Wang, Y.; Hocking, R. K.; Adamson, W. & Zhao, C. Overall electrochemical splitting of water at the heterogeneous interface of nickel and iron oxide. *Nat. Commun.* **10**, 5599 (2019).

46. Valdes, A. & Kroes, G.-J. First principles study of the photo-oxidation of water on tungsten trioxide (WO3). *J. Chem. Phys.* **130**, 114701 (2009).

47. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. *Phys. Rev. B* **49**, 14251–14269 (1994).

48. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. *Comp. Mater. Sci.* **6**, 15–50 (1996).

49. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. *Phys. Rev. B* **54**, 11169 (1996).

50. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. *Phys. Rev. B* **59**, 1758–1775 (1999).

51. Perdew, J. P.; Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* **77**, 3865–3868 (1996).

52. Blochl, P. E. Projector augmented-wave method. *Phys. Rev. B* **50**, 17953–17979 (1994).

53. Heyd, J.; Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. *J. Chem. Phys.* **118**, 8207–8215 (2003).

54. Strobl, G. (ed.) The Physics of Polymers Ch. 2, 13–15 (Springer, 2007).

55. Grimme, S.; Antony, J.; Ehrlich, S. & Krieg, H. A. consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* **132**, 154104 (2010).

ACKNOWLEDGEMENTS
The work was supported by the U.S. National Science Foundation (DMREF-1922042).

AUTHOR CONTRIBUTIONS
G.L. designed the project. Y.W. carried out the computation and data analysis with the assistance of X.Z. G.L. supervised the research and wrote the manuscript with Y.W. All authors discussed the results and were involved in the writing of the manuscript.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information
The online version contains supplementary material available at https://doi.org/10.1038/s41524-021-00541-5.

Correspondence and requests for materials should be addressed to G.L.

Reprints and permission information
is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021