Endocytosis is an essential cellular process required for multiple physiological functions, including communication with the extracellular environment, nutrient uptake, and signaling by the cell surface receptors. In a broad sense, endocytosis is accomplished through either constitutive or ligand-induced invagination of the plasma membrane, which results in the formation of the plasma membrane-retrieved endocytic vesicles, which can either be sent for degradation to the lysosomes or recycled back to the PM. This additional function of endocytosis in membrane retrieval has been adopted by excitable cells, such as neurons, for membrane equilibrium maintenance at synapses. The last two decades were especially productive with respect to the identification of brain-specific functions of the endocytic machinery, which additionally include but not limited to regulation of neuronal differentiation and migration, maintenance of neuron morphology and synaptic plasticity, and prevention of neurotoxic aggregates spreading. In this review, we highlight the current knowledge of brain-specific functions of endocytic machinery with a specific focus on three brain cell types, neuronal progenitor cells, neurons, and glial cells.
Introduction

Cells are isolated from their surrounding environment by the plasma membrane (PM), a structure composed of a lipid bilayer and proteins. To communicate with the extracellular environment and absorb nutrients that cannot pass through the PM, cells rely on a process called endocytosis (from Greek: endon – within; kytos – cell; and ois – process). In a broad sense, endocytosis is defined as the invagination (or the protrusion) of the PM, which can be coupled with the engulfing and internalization of bioactive molecules or genetic materials. The result of this process is an intracellular membrane vesicle, which is formed by the scission of the PM. Endocytic vesicles are key players of routine cellular life. Endocytosis is essential for several critical cellular processes, such as nutrient uptake, PM remodeling, and intracellular signaling [1,2].

Cells have evolved several distinct pathways to perform endocytosis. They include two simple modes, macropinocytosis and phagocytosis, in which PM protrusions mediate the bulk uptake of extracellular particles or large liquid volume in a highly energy-demanding fashion [3]. For the selective uptake of molecules, cells use receptor-mediated endocytosis, which allows an increase in the concentration of macromolecules at the PM by means of membrane-localized receptors and reduces the energy consumption necessary for their internalization. The formation of membrane vesicles during receptor-mediated endocytosis requires several key components, including scaffold protein clathrin and its accessory adaptor proteins [4,5]. In fact, when vesicles form by receptor-mediated endocytosis, they possess a characteristic lattice-like clathrin coat, a phenomenon, which defines this process as clathrin-mediated endocytosis (CME) [6]. Selective uptake of extracellular ligands and receptors from the PM can also occur by a mechanism that does not require clathrin. For this process, several cell types, including neurons, use clathrin-independent endocytosis (CIE), where the ruffling of the PM allows for membrane retrieval, coupled with endocytic uptake of ligands (growth factors or cytokines), bacterial toxins, and/or viruses [3,7].

It is likely that endocytosis has evolved in all known eukaryotic cells for two major reasons: (a) to bring nutrients into cells and (b) to sample the cell’s environment for growth and guidance cues. Both result in either constitutive or ligand-induced (e.g., epidermal growth factor, EGF) formation of PM-retrieved endocytic vesicles, which can either be sent for degradation to lysosomes or recycled back to the PM. This additional function of endocytosis in PM retrieval has been adopted by excitable cells, such as neurons, to maintain membrane equilibrium maintenance at synapses. Unlike constitutive or ligand-induced membrane retrieval in nonexcitable cells, CME and CIE in neurons can be additionally activated by electrical activity and used to recycle synaptic vesicles (SV) materials and maintain the SV pool. Apart from cycles of exo/endocytosis of SVs, brain-specific functions of endocytosis include the propagation of neurotrophin signaling from the distal axons toward the cell body [8–10], regulation of neural development by the orchestrated action of guidance receptors and adhesion molecules [11,12], and the maintenance of synaptic plasticity [13].

In this review, we first briefly outline basic mechanisms of endocytosis and then summarize the current state of knowledge with respect to the functions of endocytic machinery in the brain, focusing on three main types of brain cells: neuronal progenitor cells, neurons, and glial cells. We note that this review highlights endocytic pathways occurring at the PM (and/or noncanonical functions of ‘classical’ endocytosis proteins) and is not focused on the role of endosomes and/or endosome trafficking in the brain.

Basic mechanisms of endocytosis

Macropinocytosis

Macropinocytosis is a highly conserved actin-driven endocytic process for the nonspecific bulk internalization of extracellular fluid, membrane, and other particles into large vacuoles (> 0.2–8 µm) [14]. It is initiated by a variety of external stimuli (including growth factors, bacteria, and viruses) and is executed as membrane ruffling that can fold back on the PM, forming a macropinocytic cup. Subsequent closure of the macropinocytic cup forms a large vacuole, called the macropinosome [15]. Fission of the macropinosome from the PM and delivery of extracellular fluid to lysosomes is the culminating point of macropinocytosis. Macropinocytosis is a receptor (and cargo)-independent process, but how precisely the formation of macropinocytic cup is achieved is only emerging in understanding [16]. Key players of macropinocytosis include several small GTPases, cytoskeletal proteins (e.g., WASP, ARP2/3), and inositol phospholipids [17]. With respect to the role in macropinocytosis, the most characterized of these components are the RAS superfamily of GTPases (e.g., RAC1, CDC42, RAS, ARF6), which are known as master regulators of the actin cytoskeleton rearrangement [18–20], and three kinases, the phosphoinositol (PI) 3-kinase (PI3K), the PI 4-phosphate 5-kinase (PI(4)P5K), and the
phospholipase C-γ-kinase (PLCγ) [21]. PI3K and PI4P5K orchestrate the sequential transition of PIs (mainly PI(4,5)P2 and PI(3,4,5)P3) in membrane ruffles, which can then recruit and stimulate the activity of several actin-regulatory proteins, including RAC1 [22]. Hydrolysis of PI(4,5)P2 by PLCγ generates diacyl-glycerol (DAG) (together with inositol-1,4,5-trisphosphate (I(1,4,5)P3)), which remains associated with the membrane of the macropinocytic cup, where it then recruits and activates protein kinase Cα (PKCα) and PKCε. After association with the PM, PKC promotes ruffles and the formation of macropinosomes [23]. The activation of PLCγ and PI3K during macropinocytosis can be achieved via growth factor-bound receptors [24,25]. Cells can maintain high macropinocytosis rates for hours [26], and this ability is utilized extensively by cancer and immune cells using this pathway to obtain nutrients from the extracellular space [27] and to capture antigens for presentation to T cells [28], respectively. In comparison with non-neuronal cells, the function of this pathway in the brain is just emerging in understanding and is discussed below.

Clathrin-mediated endocytosis

Clathrin-mediated endocytosis involves the assembly of a coated pit on the PM, which induces the formation of a morphologically well-defined coated vesicle approximately 50 nm in size, and requires the involvement of clathrin, a triskelion-shaped scaffold protein [29–31]. Clathrin molecules polymerize around the cytoplasmic face of the coated pit and act as a reinforced cage for the formation of CME vesicle [2]. CME is initiated by the recruitment of cargo adaptors, such as FCHO [32], EPS15 [33], stonins [34], the assembly protein (AP) complex 2 (AP-2) [35], as well as membrane bending-inducing proteins (e.g., epsin, AP180, or CALM) to the PM [36–40]. These serve to link clathrin to the PM via their association with PIs, in particular with the PM-enriched PI(4,5)P2 [41]. AP-2 is the major clathrin adaptor protein for the CME [42,43]. It harbors several PI(4,5)P2-binding sites [44,45] and interacts with a cargo containing either tyrosine- or dileucine-based motifs [46–48]. AP-2 recruitment to the PM can be activated by phosphorylation of the µ2 subunit by the kinase AAK1 [49,50]. Due to the ability of AP-2 to simultaneously associate with the PM and the transmembrane cargo, it coordinates the concentration of proteins destined for the internalization in the coated pit [51]. A mature clathrin-coated vesicle is generated by the fission of an assembled coated pit from the PM [52], a process which requires the action of GTPase dynamin, and the involvement of bni/ampiphysin/RVS167 (BAR) domain protein family members (e.g., endophilin A1-3) and the actin cytoskeleton [2,53–60]. In conjunction with or shortly after the fission, released CME vesicles shed their coat by the coordinated action of the PI(4,5)P2-phosphatase synaptojanin-1 (SYNJ1) [61,62] and the clathrin disassembling chaperone heat-shock cognate 70 along with its cofactor auxilin [63,64]. The CME vesicle is subsequently targeted to the RAB5-positive early endosome, from where the cargo can either be recycled back to the PM (via the RAB11-positive recycling endosome) or sent to the lysosome for the degradation. CME constitutes the main entry route for majority of surface receptors and their ligands in various cell types [65] and is essential for nutrient acquisition, the composition of the PM, cell surface receptor signaling [66,67], as well as regulation of cellular ion homeostasis [68]. In the brain, CME additionally internalizes transmembrane receptors together with their extracellular ligands [9] and recycles SVs material during presynaptic endocytosis [69]. CME is also crucial for neurogenesis and neurodevelopment, as discussed in detail below.

Clathrin-independent endocytosis

The term CIE was initially used to describe the macro (or micro)–pinocytosis pathways, depending on the size of formed vesicles [70]. Today, CIE is defined as a form of endocytic uptake by membrane structures in the range of 50–200 nm, devoid of a clathrin coat. CIE pathways can be classified based on the key molecular component (e.g., fast endophilin-mediated endocytosis [71]), the speed of the process (ultrafast endocytosis [72]), or the PM marker (caveolin- or flotillin-associated endocytosis) [73–76]. It is worth mentioning that the involvement of flotillin micro-domains in endocytosis has been questioned in the recent literature [7]. CIE is not present constitutively in cells and can be activated by ligands (growth factors or cytokines), bacterial toxins, and/or viruses [76]. The precise molecular mechanisms of CIE are just emerging in understanding, and the core molecular machinery identified thus far involves actin-polymerization factors, BAR domain proteins, and dynamin [77–80]. Material carried by CIE vesicles includes EGF-, interleukin-2-, and insulin-bound receptors, and cholera toxin, among others [81]. Interestingly, Caveolins (the resulting bulb-shaped surface pits of caveolin-associated endocytosis), contrary to clathrin-coated pits, are described as very sparse in neuronal cells [82–85]. Nevertheless, neurons express Caveolin 1 (Cav1)
and/or Cav1-interacting proteins [86], suggesting a noncanonical function of Cav1 in neuronal signaling. Flotillin-associated endocytosis regulates neurodevelopment, synaptogenesis, and receptor tyrosine kinase (RTK) signaling in the brain. However, it is currently unclear if the regulation of these functions is due to the direct role of flotillin in CIE [76]. Contrary to this, the role of ultrafast endocytosis is well described in the brain, where its ability to act faster than the CME was exploited by synapses to perform compensatory PM retrieval following exocytosis of SVs [87].

Role of endocytosis in neuronal progenitor cells

Neural progenitor cells (NPCs) are the multipotent stem cells of the central nervous system (CNS) that give rise to all neuronal cell types populating the brain [88]. NPCs located within the ‘ventricular zone (VZ)’, which is the primary proliferative zone during brain development [89], are known as ‘radial glia’ (RG) cells [90]. During embryonic development, RG cells undergo extensive mitosis, whereby symmetric divisions generate two daughter cells that retain NPC properties. At the onset of cortical neurogenesis, RG cells start to undergo mitosis through asymmetric divisions, which produces a self-renewed RG cell and a neuronal daughter cell (or one RG cell and one basal progenitor, also called intermediate progenitor) [91,92]. Research during the last two decades provides strong evidence for endocytosis having a pivotal role in regulating RG cell asymmetric cell division, where it controls the asymmetrical partitioning of the PM-localized receptors and ligands (cell determinants) into two daughter cells, thus allowing a temporal and spatial regulation of neuronal differentiation (Fig. 1) [11]. This process, among others, is orchestrated by the endocytic protein NUMB [93]. NUMB is a PM-associated cell fate determinant, initially discovered in Drosophila, where when mutated it removes most of the peripheral sensory neurons [94]. Subsequently, it was discovered that NUMB via its direct association with the α-subunit of the AP-2 complex and endocytic protein EPS15, functions as an endocytosis adaptor [12,93,95]. NUMB endocytic activity can also be regulated by the kinase AAK1, which, when overexpressed, induces NUMB redistribution to perinuclear endosomes [96]. During the mitosis of RG cells, interaction with the Golgi component ACBD3 [97] allows for asymmetrical localization of NUMB to the apical membrane, leading to its subsequent segregation to only one daughter cell that remains a progenitor [98]. Its function in endocytosis during development includes the internalization of Notch [99], integrin [100], and RTK [101] receptors. For instance, NUMB mediates the internalization of Notch, which reduces Notch receptor levels at the PM, thereby diminishing Notch signaling. Reduced Notch signaling then promotes neural differentiation [102]. Of note, Notch signaling in non-neuronal cells can also be regulated by AAK1 [103]. Additionally, NUMB influences cell fate by mediating the asymmetric localization of the α subunit of the AP-2 complex [99]. NUMB knockout (KO) mice display premature neuronal differentiation in the brain, though this function might be brain region-specific [98,104]. Interestingly, NUMB-containing daughter cell will remain a progenitor at mouse embryonic day 10 (E10), while the cell inheriting NUMB during the corticogenesis at E13 will become a neuron [11,105,106], implying that NUMB functions to regulate the balance between symmetric proliferative, asymmetric neurogenic, and symmetric neurogenic NPC divisions.

Neural progenitor cells proliferation might also be regulated via formin-dependent CIE endocytosis [107]. In this pathway, the actin-nucleating protein formin 2 together with another actin-binding protein FlnA mediates the endocytosis of the Frizzled co-receptor LRP6, thereby regulating the GSK3β- and β-catenin-independent signaling to direct neuronal proliferation [108]. This pathway, known as canonical WNT signaling pathway, is crucial not only for establishing the telencephalon during development [109] but also for adult neurogenesis [110]. WNT signaling pathway is also regulated by the CME [111]. Clathrin and AP-2 have been proposed to regulate the assembly of LRP6 signalosomes, while the kinase AAK1 has been recently described to promote the clearance of LRP6 from the PM [112]. Whether this function of CME machinery is crucial for the WNT signaling in NPCs has not yet been tested.

Does endocytosis directly regulate the mitosis of NPCs? Although the activity of endocytic processes during mitosis is suggested to be inhibited during mitosis [113–116], an increasing number of endocytic proteins are described to be present at the centrosome, the mitotic spindle, or the mid-body. These include clathrin and epsin proteins, which localize to mitotic spindles and regulate the stability of kinetochore fibers and spindle morphology, independent of their canonical functions in CME [117–121]. The β-subunit of the AP-2 complex has been reported to interact with the mitotic checkpoint kinase BubR1 [122], while a CME adaptor protein the autosomal recessive hypercholesterolemia (ARH) [123,124] sorting the members of the LDL receptor superfamily regulates microtubule
nucleation at the centrosome via its interaction with components of γ-tubulin ring complex [125]. Similarly, dynamin 2, a GTPase known to mediate the fission of clathrin-coated vesicles from the PM, is described to localize at the centrosome where it is required for the completion of cytokinesis [126–128]. The fact that dynamin 2 might be indispensable for embryonic development is supported by the study describing a homozygous mutation in DNM2 in patients with a lethal congenital syndrome [129], as well as by early embryonic lethality of dynamin 2 KO mice [130]. Additionally, cytokinesis can be regulated by formins, as it has been shown for Drosophila diaphanous (dia) protein, where its complete loss causes lethality at the onset of pupation [131]. Clathrin- and caveolae-mediated endocytosis has also been shown to constitute an integral part of cytokinesis in zebrafish embryos [132]. Since the mitotic spindle and its orientation are both implicated in the regulation of symmetric and asymmetric cell division of NPCs [133], it is possible, if not likely, that the depletion of CME components will directly affect brain development by compromising NPC function. This hypothesis has not been directly tested, although recently, a 50% decrease in survival rate during the first postnatal week has been described for the mice lacking the clathrin light chain (CLC) a, but not the CLCb isoform [134,135]. In fact, decreased survival, embryonic and/or early postnatal lethality is a hallmark of most mouse models lacking the ‘classical’ CME components, including AP-2, endophilins, CALM, EPS15L1, Epsin, and dynamin 1 [59,136–142]. On the other hand, the defects in the differentiation of the sensory neurons have been described in patients carrying a loss-of-function mutation in the CLTCL1 gene, encoding clathrin heavy-chain isoform 22 [143,144]. Interestingly, this phenotype is independent of the mentioned above role of clathrin in the mitotic spindle organization and is a result of defective early precursor differentiation due to increased secretion of neuropeptide cargo.

Fig. 1. Schematic representation of the key endocytosis pathways and their functions in NPCs. Ligands are represented together with their receptors with a similar color code. Endocytosis is crucial for the generation of new neurons during development, and later in adulthood, CME ensures the distribution of cell determinants, hence balancing the production of neurons or NPCs. In contrast, CIE and macropinocytosis promote the differentiation into neurons.
Besides the CME, the components of macropinocytosis machinery are also crucial for the NPC proliferation and differentiation. RAC1-dependent signaling is required to promote the learning-induced increase in proliferation of neuronal precursors in the adult hippocampus [145], while the proliferation and the differentiation of subventricular zone (SVZ)-resident adult neural stem cells require CDC42 activation [146,147]. Several neurodevelopmental disorders, such as Costello or Noonan syndrome, are due to hyperactivation of RAS-mediated signaling pathway [148,149]. However, it is currently unknown whether this function of the RAS GTPase family in neurodevelopment involves their role in macropinocytosis. Finally, phospholipid kinases are equally crucial for neuronal development [150,151]. For example, PI3K and its downstream effectors (mTOR and AKT), when activated, promote neuronal differentiation [152] and, when downregulated, cause critical differentiation delays [153,154].

Endocytosis is also important to maintain the function of the primary cilium, a hair-like protrusion found in neuroepithelial cells and RG cells. By regulating multiple signaling pathways, such as RTK, hedgehog, WNT, Notch, TGF-β, and mTOR, the primary cilium detects physical and chemical cues from the environment, which is crucial for the establishment of polarity and neuronal differentiation during development [155–157]. The coordination of signaling pathways is achieved by the ciliary membrane, which in contrast to the rest of the PM lacks PI(4,5)P2 [158]. Low levels of PI(4,5)P2 in proximal regions of cilia are maintained among others by OCRL [159], which is an inositol polyphosphate 5-phosphatase acting on PI(4,5)P2 and crucial for clathrin-coated pits dynamics and uncoating [160]. Clathrin-coated vesicles are abundant at the ciliary pocket flanking the primary cilium. In fact, this region serves as a hotspot for exo- and endocytosis, and both processes are indispensable for the regulation of ciliary membrane delivery and retrieval, as well as for mediating the signaling via membrane-localized receptors [161]. In Caenorhabditis elegans, defects in CME-dependent endocytosis result in the expansion of ciliary (and/or preciliary) membrane [162], while endocytosis gain of function has been described to contribute to cilia shortening [163]. The internalization of key ciliary sonic hedgehog pathway receptors LRP2 (megalin), GPR161 and PTCH1, and TGF-β receptors has been reported to require clathrin. Besides clathrin-coated vesicles, caveolae have also been reported to be present at the ciliary pocket [164], while the internalization and lyosomal delivery of PTCH1 were described to be associated with Cave1-positive lipid rafts [165]. Despite this, the precise role caveolae and other forms of CIE at the primary cilium remain to be determined [159].

Endocytosis functions in developing and migrating neurons

After the RG cells have undergone asymmetric cell division, their committed to differentiate daughter cells migrate to the SVZ, where they divide symmetrically to produce a pair of neurons [92,166–168], further migrating to the cortical plate [88]. Such directional migration requires polarized membrane remodeling and concerted cycles of adhesions and deathadhesion events [169,170]. Endocytosis is indispensable for both of these processes (Fig. 2). For instance, it is involved in the internalization of surface guidance receptors (e.g., N-cadherin, β1-integrin) in migrating NPCs and neurons [171,172] and thus can physically disrupt contacts between cells, and/or between a cell and an extracellular matrix substrate. The fact that endocytosis, and especially CME, is crucial for the adhesion disassembly during cell migration in the brain is supported by the data showing that clathrin-coated pits are enriched at adhesive contacts with matrix substrates in migratory neurons, while inhibition of dynamin and clathrin impairs neuronal migration because of impaired sorting of adhesion proteins [173].

Endocytic adaptor NUMB is found in the complex with several adherent junction proteins (E-cadherin, N-cadherin, and β-catenin), and its inactivation in RG cells causes progenitor dispersion and disorganized cortical lamination [174]. Besides, NUMB regulates the brain-derived neurotrophic factor (BDNF)-driven migration of granule cell precursors in the cerebellum [175]. This polarized chemotaxis of cerebellar NPCs requires the endocytosis of BDNF-activated TRKB receptors at leading processes of the cell, a process which is mediated by NUMB [101]. Interestingly, in sympathetic neurons TRKB endocytosis is regulated by Pincher/RAC-dependent macropinocytosis [176], while in postnatal cortical neurons CME adaptor AP-2 mostly regulates postendocytic trafficking of BDNF-activated TRKB receptors independently of its canonical function in TRKB endocytosis (see below) [136].

Endocytic protein disabled-2 (DAB2, also known as DOC-2), which is known to directly associate with clathrin [177,178] and AP-2 [177–179], contributes to polarized neuronal morphology by regulating the neurite outgrowth via the NGF-mediated signaling [180]. DAB1, which is a close homologue of DAB2, also functions in migrating neurons as a key component of the reelin signaling pathway (via the reelin receptors ApoE receptor 2 (ApoER2)) and very-low-density
Fig. 2. Schematic representation of the key endocytic pathways and their functions in developing and migrating neurons, including their axonal growth cones (insert). Ligands are represented together with their receptors with a similar color code. During migration specifically, CME modulates the adhesion and/or deadhesion of the migrating immature neurons, and later, together with CIE and macropinocytosis, will regulate polarization of neurons (axonal growth and ramification of neuronal processes). In the growth cone, endocytosis pathways regulate local PM remodeling in response to attractive and repulsive signals, and the receptor trafficking upon the chemorepulsion.
lipoprotein receptor (VLDLR), which is a master regulator of neuroblast migration [181]. DAB1 is highly neuron-enriched [182,183], and spontaneous mutations of DAB1 in mice result in abnormal brain development [184,185], suggesting a role in the neural development similar to that of Drosophila DAB [186]. A DAB1 KO in mice causes aberrant cortical lamination and cerebellum development [182], a phenotype identical to that of mice lacking reelin and/or its receptors [181]. The mechanism of DAB1 regulation of reelin signaling involves its direct interaction with the reelin-bound ApoER2 and VLDLR, which increases DAB1 phosphorylation. Whether DAB1 functions in reelin signaling by directly influencing ApoER2 and VLDLR endocytosis is still up for debate, since mice lacking the C-terminal region of DAB1 (naturally occurring DAB1 p45 splice isoform), which bears clathrin adapter AP-2- and SH3-binding sites, are born normal with no severe defects in cortical lamination [187]. Interestingly, DAB1 p45 hemizygous mice reveal a distinct splitting in the stratum pyramidale (SP) in the CA1 region of the hippocampus (some pyramidal cells pass through the SP and form a second layer), suggesting a specific role for the endocytic machinery in regulating migration events of specific neuronal types. This hypothesis was recently proven in another study, where a component of CME machinery Intersectin 1 (ITSN1) [188–190] was identified to associate with the VLDLR and DAB1 and was shown to selectively regulate the splitting of the CA1 [191]. Interestingly, the role of I tsN1 in the VLDLR/DAB1 axis of reelin signaling does not involve its classical role in receptor endocytosis but requires its function as a molecular bridge facilitating the VLDLR/DAB1 association and co-clustering.

Endocytosis might also regulate the neuronal migration in the developing nervous system via the interaction of the µ subunit of AP-2 complex with the microtubule-binding protein doublecortin, which is genetically linked to the X-linked lissencephaly syndrome in humans [192–194]. Doublecortin is prominently expressed in newborn migrating neurons, where it is required for the regulation of microtubule dynamics, dynein-mediated nucleus centrosome coupling, and internalization of cell adhesion L1-CAM family member neurofascin [195,196]. The latter function of doublecortin in neurofascin endocytosis requires its interaction with AP-2, as it has been recently demonstrated by the AP-2 binding-deficient doublecortin mutant [197]. Besides, the CME can also regulate the growth cone motility and neurite outgrowth by directly regulating the AP-2-dependent endocytosis of cell adhesion molecules L1-CAM and N-cadherin [198,199]. Neurite outgrowth was also proposed to be regulated by clathrin assembly proteins AP180 and CALM [200], although the absence of neurodevelopmental defects in AP180 KO mice questions its role in the developing brain [201]. In contrary to this, CALM KO mice have been reported to show retarded growth and reveal significant atrophy of the cortex and ventral enlargement, but this phenotype was not analyzed any further [202]. Finally, a well-known role for the CME pathways in internalization and degradation of the EGF receptor [203] is also important for the developmental regulation of neuronal migration [204,205].

In addition to CME, several other endocytic pathways have been recently described to be required in migrating neurons. For instance, membrane remodeling during the migration of neural crest cells in chicken embryos has been shown to require the F-actin-driven macropinocytosis pathway [206]. This pathway generates macropinosomes, which transport F-actin along microtubules for the adjustment of membrane protrusions, that is, lamellipodia, at the leading edge. Other macropinocytosis players in neuronal migration include ARF6 [207], CDC42 [208], and actin-remodeling proteins [209–212]. In growing neurons, macropinocytosis-mediated massive retrieval of the PM is an important mechanism of growth cone collapse and axon growth inhibition [213,214]. The macropinocytosis-like pathway also mediates the endocytosis of CendR-bound transmembrane receptor Neurorpin1 [215], which is known among others to function in axon guidance via interaction with its ligand SEMA3A [216]. In tumor cells, this pathway is induced by nutrient deprivation, but whether similar is used by neurons remains to be determined. Cav1, the component of the caveolin-mediated endocytosis, promotes both immature neurite pruning and leading process elongation through the endocytosis of N-cadherin and L1 cell adhesion molecules [217], while its loss of function in Xenopus and/or iPSCs-derived human neurons results in altered axonal outgrowth [218,219]. Interestingly, a recent report suggests that axonal extensions of embryonic hippocampal neurons in a 3D environment are driven by microtubule polymerization and do not require adhesions and/or actin involvement [220].

Axon development and establishing of neuronal polarity also require endocytosis. Growing axons use extracellular guidance cues to navigate in the developing nervous system [221]. The mechanism regulating the bidirectional steering of axonal growth cones in response to attractive and repulsive signals requires local PM remodeling, which is achieved by exocytosis and endocytosis imbalance. This process has been
shown to involve the CME pathway, which is in the case of growth cone repulsion and attraction is negatively regulated by Ca^{2+} signals [222–224]. Interestingly, at early developmental stages, macropinocytosis-like bulk endocytosis functions as the primary endocytic pathway for rapid retrieval of PM at axonal growth cones. This form of endocytosis requires RAC1 and the pinocytic chaperone Pincher [225]. Additionally, axon guidance and growth cone turning rely upon endocytosis for receptor trafficking [226].

For instance, chemorepulsion in the growth cone is controlled by synaptobrevin 2-dependent CME pathway (likely involving clathrin adaptors CALM and/or AP180), which is required for the SEMA3A-dependent signaling [227–229]. CME has also been shown to regulate the asymmetric distribution of β1-integrin receptors in the growth cone upon myelin-associated glycoprotein (MAG)-induced chemorepulsion [230], whereas the localization of WNT receptor Frizzled 3 at filopodia tips of commissural axonal growth cones has been shown to require the rapid ARF6-mediated endocytosis [231]. WNT signaling pathway in growth cones can also be directly regulated by the AP-2-dependent CME, as it has been shown for the WNT receptor Frizzled 4, whose internalization depends on the interaction of AP-2µ subunit with WNT pathway component Dishevelled [232]. Endocytic adaptor NUMB via its interaction with CRM2 and AP-2 regulates the CME of L1 at axonal growth cones and promotes axonal growth [233]. Neuronal polarization during development is also regulated by endocytosis, which helps to sort and deliver proteins destined for the axon or the dendrite. For instance, polarized localization of Synaptobrevin 2/VAMP2 and NAV1.2 in axons is achieved following their selective endocytosis from dendrites [234,235], whereas dendritic retention of glutamate receptors is achieved by their selective retrieval from the axon [236]. Blocking endocytosis causes a loss of somatodendritic polarity, likely as a result of missorting of dendritic cargo to the axon due to their decreased retrieval from the axonal PM [236].

Endocytosis function in mature neurons

The research of the last two decades has been especially productive regarding the identification of endocytosis function during presynaptic neurotransmission in mature neurons, which has been described in detail in several recent reviews [69,237–241] (Fig. 3). In brief, during chemical neurotransmission, SVs elicit a postsynaptic response by fusing with the presynaptic PM and releasing their neurotransmitter content into the synaptic cleft. It is suggested that during this process, a SV undergoes a full collapse, consequently losing its molecular identity [242,243]. To maintain the constant availability of functional SVs, neurons capitalize on CME and CIE pathways, although the exact contribution of these two pathways to presynaptic neurotransmission is currently debated [87,244]. CME operates at synapses to allow selective internalization of PM-localized SV proteins, followed by their sorting and incorporation into a newly generated SV [237]. Neuronal activity is correlated with a transient rise in the number of clathrin-coated endocytic intermediates, while SV proteins, including vesicular glutamate transporter (VGLUT) 1 [245], synaptotagmin 1 [246–248], synaptobrevin 2/VAMP2 [201,249], and SV glycoprotein 2A (SV2a) [250], are the major cargo of clathrin-coated vesicles isolated from nerve terminals [251,252]. Since in non-neuronal cells, CME is a slow process with a lifetime of 60–90 s, clathrin coat assembly at synapses can occur either directly on the PM [43,238,253–255] or at PM-derived endosomes [79,256,257]. The initial retrieval of SV membranes can also occur via the CIE pathway, active during moderate synaptic activity [75,79,107,258] and, depending on the strength of stimulation, takes hundreds of milliseconds (e.g., ultrafast CIE endocytosis [72]) to several seconds for completion [75,107,258]. In highly active neurons, a CIE mode called activity-dependent bulk endocytosis (ADBE) becomes active. ADBE shares a similarity with macropinocytosis by retrieving larger pieces of the presynaptic membrane (> 80 nm) [259]. The fact that clathrin and clathrin-binding adaptors are crucial for the regulation of SV function in neurons is supported by multiple studies indicating defects in SV biogenesis at synapses lacking CLC [134], AP180 [201,260,261], CALM [262], DAB [263], Epsin 1 [264], EPS15 [265] AP-2 [136,254,266,267], and AP-3 [268]. Neurons also use endocytic proteins involved in CME for rapid clearance of SV release sites during the neurotransmission, as indicated by experiments performed in Drosophila DAB mutants and mice lacking ITSN1 and AP180 [188,263,269]. Loss of CME proteins typically results in altered synaptic responses during sustained activity, as it has been shown using murine KO models of SYNJ1 [270], endophilin [137], dynamin 1 [130], amphiphysin [271], and BIN1 [272]. Interestingly, during intense neuronal activity, synapses can also bypass the requirement of dynamin and clathrin for the SV formation [273], although the molecular mechanism behind this phenomenon remains elusive. Endocytosis in neurons closely intersects with the autophagy pathway, which is supported by the fact that neuronal autophagy is directly regulated by
several players of the endocytic machinery, whose localization is synapse-enriched. These include regulators of SV recycling, such as AP-2 [136], endophilin A [274,275], and SYNJ1 [274] (for review, see [237]).

Mature neurons, like all other cells, employ endocytosis to regulate the PM content and control the initiation of signaling cascades in time and space. For instance, CME is crucial for the insertion and internalization of neurotransmitter receptors, such as GLUA1, GLUA2, and GLUA3 subunits of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors (AMPARs) [276–280], and GABAA receptors [281–283], while caveolin-dependent CIE endocytosis has been suggested to regulate the turnover of dopamine D1 receptor [284] and the localization of N-methyl-D-aspartate (NMDA) receptors subunits GLUN1, GLUN2, and GLUN2B to postsynaptic lipid rafts [285]. CME is also believed to act as a predominant endocytic pathway for the internalization of BDNF-bound TRKB receptors in neurons [8,286–288], although the involvement of CIE and macropinocytosis has also been described [136,289,290]. Following the endocytosis at distal axons, activated TRK complexes are internalized into a so-called ‘signaling endosome’, an organelle of endosome/amphisome-like identity, which continues to signal moving in a microtubule-mediated manner to the cell body [288,291–295]. Via its noncanonical function, endocytosis contributes not only to the internalization of activated TRK complexes into signaling endosomes but can also regulate their intracellular trafficking (for more details please see [237]). For instance, in primary mouse neurons, BDNF/TRKB complexes are internalized independent of AP-2, but their transport in signaling endosomes requires the association of AP-2 α subunit with autophagy modifier LC3 and the Dynein/
Dynactin subunit p150Glued [136]. An additional function of AP-2 in neurons involves the postendocytic regulation of BACE1 trafficking and degradation to prevent amyloidogenic processing of APP [296].

The cellular basis of learning and memory requires endocytosis to maintain the long-term changes at synapses during long-term potentiation (LTP) and long-term depression (LTD) [297]. For instance, the activity-dependent reduction and enhancement of AMPARs during LTD and LTP at the synapse are regulated by the imbalance of CME and exocytosis, respectively [298]. Clathrin core machinery is abundant at dendritic spines, where it is proposed to regulate the endocytosis of AMPARs during the LTD [299,300]. During the LTP, clathrin-dependent endocytosis may also contribute to AMPAR recycling for their subsequent insertion into the postsynaptic membrane [301]. Additionally, dampening of synaptic responses in response to hormones, neurotransmitters, or sensory signals also requires CME to regulate a process known as homologous desensitization [302,303]. During homologous desensitization, β-arrestin recruitment to activated (continuously or repeatedly stimulated) G protein-coupled receptors (GPCRs) at the PM promotes the functional uncoupling of activated receptors from their heterotrimeric G proteins. Internalization of β-arrestin-bound GPCRs prevents further stimulation of G proteins and is mediated by β-arrestin interaction with clathrin and AP-2 [304–306].

In contrary to the well-studied role of the CME, and increasing evidence of CIE pathways operating in neurons, the neuronal role of macropinocytosis remains vaguely defined. Macropinocytosis-like uptake has been suggested to function during axonal injury in vitro and in vivo [307], as well as to be involved in the propagation of neurotrophic aggregates, such as amyloid-β or α-synuclein in the brain [308]. Neuronal macropinocytosis is also suggested being a primary route for the entry of several viruses infecting the brain [309,310]. A recent report shows that macropinocytosis regulates presynaptic BMP-dependent synaptic development in Drosophila [311], while an earlier study suggested that bulk membrane retrieval at retinal bipolar cells might occur by a mechanism similar to macropinocytosis [312]. Constitutive AMPAR endocytosis has also been described to be clathrin- and dynamin-independent and requires GTPase RAC1 [278,313]. The fact that macropinocytosis is pivotal for the neuronal function is supported by genetic screens, identifying mutations in RAC1-effector alsin2 (ALS2) [314] and γPKC (a neuron-specific member of the classical PKC) as causes for a number of juvenile recessive motor neuron diseases [315–317] and spinocerebellar ataxia 14 [318], respectively. Finally, a combination of calcineurin- and dynamin 1-dependent macropinocytosis and CME operates to main the neurotransmission at the neuromuscular junction, and these endocytic processes are disturbed in patients with spinal muscular atrophy [319,320].

Other functions of endocytosis machinery in mature neurons might include the regulation of the neuropathic pain response [321], control of dendrite growth, arborization and pruning [136,322–325], dendritic spine morphogenesis [326], establishing of axon-dendrite polarity [327], and synaptogenesis [328–330].

Endocytosis function in glial cells

Glia cells are non-neuronal cells in the CNS, which fulfill essential functions in regulating immune response [331], neurodegeneration [332], neurodevelopment [333] myelination [334], and synaptic plasticity [335,336]. Compared to neurons and neuronal precursors, we know significantly less about the roles of endocytosis in glia cells. Early ultrastructural work identified the presence of caveolae and clathrin-coated pits in developing rat astrocytes [337] and subsequent work implicated these pathways in the regulation of astrocyte physiology (Fig. 4). For instance, the endocytosis in astrocyte endfoot protrusions regulates the uptake of nutrients from blood endothelial cells. This process is independent of clathrin and dynamin and is regulated by intracellular Ca²⁺ concentration [338]. Endocytosis in astrocytes is also crucial for the recycling of glutamatergic synaptic-like microvesicles, proposed to mediate the interbrain communication upon Ca²⁺-triggered release [339]. Endocytosis could also directly contribute to the internalization of VGLUT 1–3 in a small set of astrocytes [340]. Clathrin-independent, Cav1-dependent endocytosis of megalin receptor regulates the astrocytic uptake of albumin, which promotes the synthesis of neurotrophic factor oleic acid [341]. In addition, CME-dependent endocytosis of the p75 receptor is used by astrocytes for the extracellular clearance of the BDNF precursor released upon the neuronal activity, thus regulating the BDNF spatial and temporal viability in the brain [342]. Endocytosis can also directly contribute to BDNF signaling in astrocytes by promoting the actin-mediated uptake of plasminogen [343]. CME- and actin-mediated uptake of amyloid-β might also be crucial in astrocytes to counteract the pathophysiology of Alzheimer’s disease [344,345]. The regulator of the innate immune response Toll-like receptor 3 also undergoes endocytosis in astrocytes; although the precise pathway remains to be investigated [346]. Finally, a new study highlights...
the role of CME in the maintenance of astrocytic intracellular ion homeostasis, where it regulates lysosome function and biogenesis [68].

Several reports are directed to the roles of macropinocytosis and phagocytosis in microglia cells, which are considered as ‘macrophages’ of the brain [347]. Microglia cells use these forms of endocytosis to engage in the noninflammatory clearance of apoptotic cells and cell debris [348], for the uptake of exosomes [349], and the clearance of amyloid-β [350,351] or SOD1 [352] aggregates. Microglial endocytosis of α-synuclein might also involve clathrin [353], although there are recent studies challenging this view by suggesting that microglia ingest and sequester α-synuclein into autophagosomes, independent of endocytosis or phagocytosis [354]. Interestingly, the astrocytic uptake of α-synuclein might be mediated by a different endocytosis pathway, involving dynamin 1 and the direct trafficking of α-synuclein in route to lysosomes [355]. To perform the aggregate removal, microglia cells also use a novel form of receptor-mediated endocytosis, termed LANDO (LC3-associated endocytosis) [356]. This pathway requires the association of autophagy modifier LC3 with amyloid-β containing RAB5- and clathrin-positive endosomes. Uptake of fibrillar amyloid-β 1–42 in microglia cells can also require the CME and the action of CD14 and Toll-like receptor 4 [357]. Endocytosis is also vital in oligodendrocytes, where it regulates the trafficking of myelin proteins, including proteolipid protein (PLP), MAG, and myelin-oligodendrocyte glycoprotein (MOG) [358,359]. Endocytosis of these proteins follows different routes, where MAG and MOG are internalized via CME, while PLP is taken up by a CIE cholesterol-dependent pathway. Interestingly, CIE-dependent PLP delivery to late endosomes/lysosomes is decreased upon brain maturation, where cAMP-dependent neuronal activity increases PLP levels on the PM, thus promoting axon myelination [360]. Finally, similar to newborn neurons, glial cells, including oligodendrocyte precursor cells (OPC) [361] and microglia [362], also migrate to reach their last destination, although relatively little is known about the mechanisms guiding these movements. A recent study shows that OPCs use receptor-
mediated endocytosis to regulate the levels of proteoglycan NG2, whose asymmetric localization is crucial for the OPC asymmetric cell division [363].

Concluding remarks

The last two decades were incredibly productive with respect to the identification of brain-specific functions of the endocytic machinery. Endocytic pathways function in the brain to regulate the differentiation and migration of neuronal cells during development and in adulthood, to maintain neuron morphology and sustain neurotransmission, as well as to direct the neurotoxic aggregates to lysosomes for degradation. Additionally, several noncanonical functions of endocytic machinery in the brain have been recently identified (Table 1). These include functions of endocytic proteins in the autophagy pathway [136,364], regulation of the degradation of amyloidogenic pathway components [296,365], and mitotic spindle organization [118–121]. Thus, it is not surprising that multiple associations between genes encoding endocytic proteins and a plethora of neurodevelopmental, neuropsychiatric, and/or neurodegenerative diseases have been reported (for review, please see [237,366–368]). How precisely dysfunctions in endocytosis machinery cause neurological defects in humans is a matter of further studies, which we believe are crucial to provide the groundwork for the identification of new therapeutic targets in neurological diseases.

Acknowledgements

The work of NLK is supported by grants from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence

Table 1. Noncanonical functions of endocytic proteins in the brain. Summary of currently identified noncanonical functions of endocytic proteins in different cell types in the brain. Cell types in which no functions have been reported are marked with an interrogation sign (?). Several noncanonical roles of endocytic proteins have been discovered in the last years, revealing a whole new array of different unexpected functions, especially in cell division and trafficking.

Protein	Brain cell type	Function
Dynamin 2	NPCs	Cytokinesis [126–128] ?
	Migrating neurons	?
	Mature neurons	?
	Glial cells	?
Clathrin	NPCs	Stability of kinetochore fibers and spindle morphology [117–121] ?
	Migrating neurons	?
	Mature neurons	?
	Glial cells	?
AP-2	NPCs	Interaction with mitotic checkpoint kinase BubR1 [122] ?
	Migrating neurons	?
	Mature neurons	?
	Glial cells	?
Endophilin A	NPCs	?
	Migrating neurons	?
	Mature neurons	?
	Glial cells	?
SYNJ1	NPCs	?
	Migrating Neurons	?
	Mature neurons	?
	Glial cells	?
CALM	NPCs	?
	Migrating Neurons	?
	Mature neurons	?
	Glial cells	?
ITSN1	NPCs	?
	Migrating Neurons	Reelin signaling and neuronal migration [191]
	Mature neurons	?
	Glial cells	?
Strategy—CECAD (EXC 2030–390661388) and Fritz Thyssen Foundation (Az. 10.18.1.036MN). SC-P is a member of the RTG2550 funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 411422114-GRK 2550. NLK is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 431549029–SFB 1451. We are indebted to Lotte Ickert and Ebru Ozer Yildiz for the valuable comments on the manuscript.

Conflict of interest
The authors declare no conflict of interest.

Author contributions
SC-P and NLK cowrote the manuscript and designed the figures.

References
1 Kaksonen M & Roux A (2018) Mechanisms of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 19, 313–326.
2 McMahon HT & Boucrot E (2011) Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12, 517–533.
3 Lim JP & Gleson PA (2011) Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol Cell Biol 89, 836–843.
4 Crowther RA, Finch JT & Pearse BM (1976) On the structure of coated vesicles. J Mol Biol 103, 785–798.
5 Kirchhausen T (2000) Clathrin. Annu Rev Biochem 69, 699–727.
6 Goldstein JL, Anderson RG & Brown MS (1979) Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature 279, 679–685.
7 Mayor S, Parton RG & Donaldson JG (2014) Clathrin-independent pathways of endocytosis. Cold Spring Harb Perspect Biol 6, a016758.
8 Cosker KE & Segal RA (2014) Neuronal signaling through endocytosis. Cold Spring Harb Perspect Biol 6, a020669.
9 Yamashita N & Kuruvilla R (2016) Neurotrophin signaling endosomes: biogenesis, regulation, and functions. Curr Opin Neurobiol 39, 139–145.
10 Harrington AW & Ginty DD (2013) Long-distance retrograde neurotrophic factor signalling in neurons. Nat Rev Neurosci 14, 177–187.
11 Yap CC & Winckler B (2015) Adapting for endocytosis: roles for endocytic sorting adaptors in directing neural development. Front Cell Neurosci 9, 119.
12 Yap CC & Winckler B (2012) Harnessing the power of the endosome to regulate neural development. Neuron 74, 440–451.
13 Wilkinson RS & Lin MY (2004) Endocytosis and synaptic plasticity: might the tail wag the dog? Trends Neurosci 27, 171–174.
14 Swanson JA & Yoshida S (2019) Macropinosomes as units of signal transduction. Philos Trans R Soc Lond B Biol Sci 374, 20180157.
15 Swanson JA (2008) Shaping cups into phagosomes and macropinosomes. Nat Rev Mol Cell Biol 9, 639–649.
16 Veltman DM, Williams TD, Bloomfield G, Chen BC, Betzig E, Insall RH & Kay RR (2016) A plasma membrane template for macropinocytic cups. eLife 5, e20085.
17 Buckley CM & King JS (2017) Drinking problems: mechanisms of macropinosome formation and maturation. FEBS J 284, 3778–3790.
18 West MA, Prescott AR, Eskelinen E-L, Ridley AJ & Watts C (2000) Rac is required for constitutive macropinoscytosis by dendritic cells but does not control its downregulation. Curr Biol 10, 839–848.
19 Fujii M, Kawai K, Egami Y & Araki N (2013) Dissecting the roles of Rac1 activation and deactivation in macropinoscytosis using microscopic photo-manipulation. Sci Rep 3, 2385.
20 Egami Y, Taguchi T, Maekawa M, Arai H & Araki N (2014) Small GTPases and phosphoinositides in the regulatory mechanisms of macropinosome formation and maturation. Front Physiol 5, 374.
21 Maekawa M, Terasaka S, Mochizuki Y, Kawai K, Ikeda Y, Araki N, Skolnik EY, Taguchi T & Arai H (2014) Sequential breakdown of 3-phosphorylated phosphoinositides is essential for the completion of macropinoscytosis. Proc Natl Acad Sci USA 111, E978–E987.
22 Yin HL & Janmey PA (2003) Phosphoinositide regulation of the actin cytoskeleton. Annu Rev Physiol 65, 761–789.
23 Mercer J & Helenius A (2009) Virus entry by macropinoscytosis. Nat Cell Biol 11, 510–520.
24 Gruner EM & Kazanjitz MG (2007) Protein kinase C and other diacylglycerol effectors in cancer. Nat Rev Cancer 7, 281–294.
25 Rosse C, Linch M, Kerrmorgant S, Cameron AJ, Boeckeler K & Parker PJ (2010) PKC and the control of localized signal dynamics. Nat Rev Mol Cell Biol 11, 103–112.
26 Donaldson JG (2019) Macropinosome formation, maturation and membrane recycling: lessons from clathrin-independent endosomal membrane systems. Philos Trans R Soc Lond B Biol Sci 374, 20180148.
27 Commissio C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S, Grabocka E, Nofal M, Drebin JA, Thompson CB et al. (2013) Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497, 633–637.
28 Liu Z & Roche PA (2015) Macropinocytosis in phagocytes: regulation of MHC class-II-restricted antigen presentation in dendritic cells. Front Physiol 6, 1.
29 Kirchhausen T (2000) Three ways to make a vesicle. Nat Rev Mol Cell Biol 1, 187–198.
30 Kirchhausen T (2009) Imaging endocytic clathrin structures in living cells. Trends Cell Biol 19, 596–605.
31 Edeling MA, Smith C & Owen D (2006) Life of a clathrin coat: insights from clathrin and AP structures. Nat Rev Mol Cell Biol 7, 32–44.
32 Henne WM, Boucrot E, Meinecke M, Evergren E, Vallis Y, Mittal R & McMahon HT (2010) FCHo proteins are nucleators of clathrin-mediated endocytosis. Science 328, 1281–1284.
33 Benmerah A, Lamaze C, Begue B, Schmid SL, Dautry-Varsat A & Cerf-Bensussan N (1998) AP-2/scaffolds in dynamin-mediated membrane fission. Cell 92, 929–939.
34 Walther K, Diril MK, Jung N & Haucke V (2004) Functional dissection of the interactions of stonin 2 with the adaptor complex AP-2 and synaptotagmin. Proc Natl Acad Sci USA 101, 964–969.
35 Conner SD & Schmid SL (2003) Differential requirements for AP-2 in clathrin-mediated endocytosis. J Cell Biol 162, 773–779.
36 Schmid EM & McMahon HT (2007) Integrating molecular and network biology to decode endocytosis. Nature 448, 883–888.
37 Chen H, Fre S, Slepniv VI, Capua MR, Takei K, Butler MH, Di Fiore PP & De Camilli P (1998) Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis. Nature 394, 793–797.
38 Miller SE, Sahlender DA, Graham SC, Honing S, Robinson MS, Peden AA & Owen DJ (2011) The molecular basis for the endocytosis of small R-SNAREs by the clathrin adapter CALM. Cell 147, 1118–1131.
39 Koo SJ, Markovic S, Puchkov D, Mahrenholz CC, Beceren-Braun F, Maritzen T, Dernedde J, Volkmer R, Oschkinat H & Haucke V (2011) SNARE motif-mediated sorting of synaptobrevin by the endocytic adaptors clathrin assembly lymphoid myeloid leukemia (CALM) and AP180 at synapses. Proc Natl Acad Sci USA 108, 13540–13545.
40 Ford MG, Mills IG, Peter BJ, Vallis Y, Praefcke GJ, Evans PR & McMahon HT (2002) Curvature of clathrin-coated pits driven by epsin. Nature 419, 361–366.
41 Owen DJ, Collins BM & Evans PR (2004) Adaptors for clathrin coats: structure and function. Annu Rev Cell Dev Biol 20, 153–191.
42 Robinson MS (2004) Adaptable adaptors for coated vesicles. Trends Cell Biol 14, 167–174.
43 Dittman J & Ryan TA (2009) Molecular circuitry of endocytosis at nerve terminals. Annu Rev Cell Dev Biol 25, 133–160.
44 Honing S, Ricotta D, Krauss M, Spate K, Spolaore B, Motley A, Robinson M, Robinson C, Haucke V & Owen DJ (2005) Phosphatidylinositol(4,5)-bisphosphate regulates sorting signal recognition by the clathrin-associated adaptor complex AP2. Mol Cell 18, 519–531.
45 Rohde G, Wenzel D & Haucke V (2002) A phosphatidylinositol (4,5)-bisphosphate binding site within mu2-adaptin regulates clathrin-mediated endocytosis. J Cell Biol 158, 209–214.
46 Kadlecová Z, Spielman SJ, Loerke D, Mohanakrishnan A, Reed DK & Schmid SL (2017) Regulation of clathrin-mediated endocytosis by hierarchical allosteric activation of AP2. J Cell Biol 216, 167–179.
47 Kelly BT, McCoy AJ, Spate K, Miller SE, Evans PR, Honing S & Owen DJ (2008) A structural explanation for the binding of endocytic dileucine motifs by the AP2 complex. Nature 456, 976–979.
48 Mattera R, Boehm M, Chaudhuri R, Prabh u Y & Bonifacino JS (2011) Conservation and diversification of dileucine signal recognition by adaptor protein (AP) complex variants. J Biol Chem 286, 2022–2030.
49 Ricotta D, Conner SD, Schmid SL, von Figura K & Honing S (2002) Phosphorylation of the AP2 mu subunit by AAK1 mediates high affinity binding to membrane protein sorting signals. J Cell Biol 156, 791–795.
50 Conner SD & Schmid SL (2002) Identification of an adaptor-associated kinase, AAK1, as a regulator of clathrin-mediated endocytosis. J Cell Biol 156, 921–929.
51 Brodsky FM, Chen CY, Knuell H, Towler MC & Wakeham DE (2001) Biological basket weaving: formation and function of clathrin-coated vesicles. Annu Rev Cell Dev Biol 17, 517–568.
52 Avinoam O, Schorb M, Beece CJ, Briggs JA & Kaksonen M (2015) Endocytic sites mature by continuous bending and remodeling of the clathrin coat. Science 348, 1369–1372.
53 Daumke O, Roux A & Haucke V (2014) BAR domain scaffolds in dynamin-mediated membrane fission. Cell 156, 882–892.
54 Meinecke M, Boucrot E, Camdere G, Hon WC, Mittal R & McMahon HT (2013) Cooperative recruitment of dynamin and BIN/amphiphysin/Rvs (BAR) domain-
containing proteins leads to GTP-dependent membrane scission. *J Biol Chem* **288**, 6651–6661.

55 Damke H, Baba T, Warnock DE & Schmid SL (1994) Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. *J Cell Biol* **127**, 915–934.

56 Gad H, Ringstad N, Low P, Kjaerulf O, Gustafsson J, Wenk M, Di Paolo G, Nemoto Y, Crun J, Ellisman MH et al. (2000) Fission and uncoating of synaptic clathrin-coated vesicles are perturbed by disruption of interactions with the SH3 domain of endophilin. *Neuron* **27**, 301–312.

57 Ringstad N, Gad H, Low P, Di Paolo G, Brodin L, Shupliakov O & De Camilli P (1999) Endophilin/SH3p4 is required for the transition from early to late stages in clathrin-mediated synaptic vesicle endocytosis. *Neuron* **24**, 143–154.

58 Schuske KR, Richmond JE, Matthies DS, Davis WS, Runz S, Rube DA, van der Bliek AM & Jorgensen EM (2003) Endophilin is required for synaptic vesicle endocytosis by localizing synaptojanin. *Neuron* **40**, 749–762.

59 Ferguson SM, Brasnjo G, Hayashi M, Wolfel M, Collesi C, Giovedi S, Raimondi A, Gong LW, Ariel P, Paradise S et al. (2007) A selective activity-dependent requirement for dynamin 1 in synaptic vesicle endocytosis. *Science* **316**, 570–574.

60 Takei K, Mundigl O, Daniell L & De Camilli P (1996) The synaptic vesicle cycle: a single vesicle budding step involving clathrin and dynamin. *J Cell Biol* **133**, 1237–1250.

61 Mani M, Lee SY, Lucast L, Cremona O, Di Paolo G, De Camilli P & Ryan TA (2007) The dual phosphatase activity of synaptojanin1 is required for both efficient synaptic vesicle endocytosis and reavailability at nerve terminals. *Neuron* **56**, 1004–1018.

62 Verstreken P, Koh TW, Schulze KL, Zhai RG, Hiesinger PR, Zhou Y, Mehta SQ, Cao Y, Roos J & Bellen HJ (2003) Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating. *Neuron* **40**, 733–748.

63 Ungewickell E, Ungewickell H, Holstein SE, Lindner R, Prasad K, Barouch W, Martin B, Greene LE & Eisenberg E (1995) Role of auxilin in uncoating clathrin-coated vesicles. *Nature* **378**, 632–635.

64 Prasad K, Barouch W, Greene L & Eisenberg E (1993) A protein cofactor is required for uncoating of clathrin baskets by uncoating ATPase. *J Biol Chem* **268**, 23758–23761.

65 Baschieri F, Porshneva K & Montagnac G (2020) Frustrated clathrin-mediated endocytosis – causes and possible functions. *J Cell Sci* **133**, 1–10.

66 Reider A & Wendland B (2011) Endocytic adaptors–social networking at the plasma membrane. *J Cell Sci* **124**, 1613–1622.

67 Polo S & Di Fiore PP (2006) Endocytosis conducts the cell signaling orchestra. *Cell* **124**, 897–900.

68 Lopez-Hernandez T, Puchkov D, Krause E, Maritzen T & Haucke V (2020) Endocytic regulation of cellular ion homeostasis controls lysosome biogenesis. *Nat Cell Biol* **22**, 815–827.

69 Kononenko NL & Haucke V (2015) Molecular mechanisms of presynaptic membrane retrieval and synaptic vesicle reformation. *Neuron* **85**, 484–496.

70 Doherty GJ & McMahon HT (2009) Mechanisms of endocytosis. *Annu Rev Biochem* **78**, 857–902.

71 Boucrot E, Ferreira AP, Almeida-Souza L, Debard S, Vallis Y, Howard G, Bertot L, Sauvonnet N & McMahon HT (2015) Endophilin marks and controls a clathrin-independent endocytic pathway. *Nature* **517**, 460–465.

72 Watanabe S, Rost BR, Camacho-Perez M, Davis MW, Sohl-Kieczynski B, Rosenmund C & Jorgensen EM (2013) Ultrafast endocytosis at mouse hippocampal synapses. *Nature* **504**, 242–247.

73 Kovtun O, Tillu VA, Ariotti N, Parton RG & Collins BM (2015) Cavin family proteins and the assembly of caveolae. *J Cell Sci* **128**, 1269–1278.

74 Glebov OO, Bright NA & Nichols BJ (2006) Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. *Nat Cell Biol* **8**, 46–54.

75 Watanabe S & Boucrot E (2017) Fast and ultrafast endocytosis. *Curr Opin Cell Biol* **47**, 64–71.

76 Ferreira APA & Boucrot E (2018) Mechanisms of carrier formation during clathrin-independent endocytosis. *Trends Cell Biol* **28**, 188–200.

77 Hinze C & Boucrot E (2018) Local actin polymerization during endocytic carrier formation. *Biochem Soc Trans* **46**, 565–576.

78 Renard HF, Simunovic M, Lemiere J, Boucrot E, Garcia-Castillo MD, Arumugam S, Chambon V, Lamaze C, Wunder C, Kenworthy AK et al. (2015) Endophilin-A2 functions in membrane scission in clathrin-independent endocytosis. *Nature* **517**, 493–496.

79 Watanabe S, Trimbuch T, Camacho-Perez M, Rost BR, Brokowski B, Sohl-Kieczynski B, Felies A, Davis MW, Rosenmund C & Jorgensen EM (2014) Clathrin regeneration of synaptic vesicles from endosomes. *Nature* **515**, 228–233.

80 Watanabe S, Mamer LE, Raychaudhuri S, Luvsanjav D, Eisen J, Trimbuch T, Sohl-Kieczynski B, Fenske P, Milosevic I, Rosenmund C et al. (2018) Synaptojanin and endophilin mediate neck formation during ultrafast endocytosis. *Neuron* **98**, 1184–1197 e6.

81 Mayor S & Pagano RE (2007) Pathways of clathrin-independent endocytosis. *Nat Rev Mol Cell Biol* **8**, 603–612.

82 Cheng JPX & Nichols BJ (2016) Caveolae: one function or many? *Trends Cell Biol* **26**, 177–189.
83 Parton RG & del Pozo MA (2013) Caveolae as plasma membrane sensors, protectors and organizers. Nat Rev Mol Cell Biol 14, 98–112.
84 Shyng SL, Heuser JE & Harris DA (1994) A glycolipid-anchored prion protein is endocytosed via clathrin-coated pits. J Cell Biol 125, 1239–1250.
85 Lang DM, Lommel S, Jung M, Ankerhold R, Petrasch B, Laessing U, Wiechers MF, Plattner H & Steurmer CA (1998) Identification of reggie-1 and reggie-2 as plasmamembrane-associated proteins which cocluster with activated GPI-anchored cell adhesion molecules in non-caveolar micropatches in neurons. J Neurobiol 37, 502–523.
86 Boulware MI, Kordasiewicz H & Mermelstein PG (2007) Caveolin proteins are essential for distinct effects of membrane estrogen receptors in neurons. J Neurobiol 37, 9941–9950.
87 Gan Q & Watanabe S (2018) Synaptic vesicle endocytosis in different model systems. Front Cell Neurosci 12, 171.
88 Martinez-Cerdeno V & Noctor SC (2018) Neural progenitor cell terminology. Front Neuroanat 12, 104.
89 Gal JS, Morozov YM, Ayoub AE, Chatterjee M, Rakic P & Haydar TF (2006) Molecular and morphological heterogeneity of neural precursors in the mouse neocortical proliferative zones. J Neurosci 26, 1045–1056.
90 Rakic P (1971) Guidance of neurons migrating to the fetal monkey neocortex. Brain Res 33, 471–476.
91 Caviness VS Jr, Goto T, Tarui T, Takahashi T, Bhide PG & Nowakowski RS (2003) Cell output, cell cycle duration and neuronal specification: a model of asymmetric division zones and migrate through specific phases. J Neurosci 23, 622–631.
92 Noctor SC, Martinez-Cerdeno V, Ilic L & Kriegstein AR (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7, 136–144.
93 Santolini E, Puri C, Salcini AE, Gagliani MC, Pellici PG, Tacchetti C & Di Fiore PP (2000) Numb is an endocytic protein. J Cell Biol 151, 1345–1352.
94 Uemura T, Shepherd S, Ackerman L, Jan LY & Jan YN (1989) numb, a gene required in determination of cell fate during sensory organ formation in Drosophila embryos. Cell 58, 349–360.
95 Salcini AE, Confalonieri S, Doria M, Santolini E, Tassi E, Minenkova O, Cesareni G, Pellici PG & Di Fiore PP (1997) Binding specificity and in vivo targets of the EH domain, a novel protein-protein interaction module. Genes Dev 11, 2239–2249.
96 Sorensen EB & Conner SD (2008) AAK1 regulates Numb function at an early step in clathrin-mediated endocytosis. Traffic 9, 1791–1800.
97 Zhou Y, Atkins JB, Rompani SB, Bancescu DL, Petersen PH, Tang H, Zou K, Stewart SB & Zhong W (2007) The mammalian Golgi regulates numb signaling in asymmetric cell division by releasing ACBD3 during mitosis. Cell 129, 163–178.
98 Shen Q, Zhong WM, Jan YN & Temple S (2002) Asymmetric Numb distribution is critical for asymmetric cell division of mouse cerebral cortical stem cells and neuroblasts. Development 129, 4843–4853.
99 Berndik D, Török T, González-Gaitán M & Knoblich JA (2002) The endocytic protein α-adaptin is required for numb-mediated asymmetric cell division in Drosophila. Dev Cell 3, 221–231.
100 Nishimura T & Kaibuchi K (2007) Numb controls integrin endocytosis for directional cell migration with αPKC and PAR-3. Dev Cell 13, 15–28.
101 Zhou P, Alfaro J, Chang EH, Zhao X, Porcionatto M & Segal RA (2011) Numb links extracellular cues to intracellular polarity machinery to promote chemotaxis. Dev Cell 20, 610–622.
102 Koch U, Lehal R & Radtke F (2013) Stem cells living with a Notch. Development 140, 689–704.
103 Gupta-Rossi N, Ortica S, Meas-Yedid V, Heuss S, Moretti J, Olivo-Marin JC & Israel A (2011) The adaptor-associated kinase 1, AAK1, is a positive regulator of the Notch pathway. J Biol Chem 286, 18720–18730.
104 Klein AL, Zilian O, Suter U & Taylor V (2004) Murine numb regulates granule cell maturation in the cerebellum. Dev Biol 266, 161–177.
105 Zilian O, Saner C, Hagedorn L, Lee HY, Sauberli E, Suter U, Sommer L & Aguët M (2001) Multiple roles of mouse Numb in tuning developmental cell fates. Curr Biol 11, 494–501.
106 Shen Q & Temple S (2002) Creating asymmetric cell divisions by skewing endocytosis. Sci STKE 2002, pe52.
107 Soykan T, Kaempf N, Sakaba T, Vollweiter D, Goerdeler F, Puchkov D, Kononenko NL & Haucke V (2017) Synaptic vesicle endocytosis occurs on multiple timescales and is mediated by formin-dependent actin assembly. Neuron 93, 854–866 e4.
108 Lian G, Dettenhofer M, Lu J, Downing M, Chenn A, Zhao X, Porcionatto M & Segal RA (2011) Numb links extracellular cues to intracellular polarity machinery to promote chemotaxis. Dev Cell 20, 610–622.
109 Koch U, Lehal R & Radtke F (2013) Stem cells living with a Notch. Development 140, 689–704.
110 Nishimura T & Kaibuchi K (2007) Numb controls integrin endocytosis for directional cell migration with αPKC and PAR-3. Dev Cell 13, 15–28.
Brain-specific functions of the endocytic machinery

S. Cambor-Perujo and N. L. Kononenko

111 Blitzer JT & Nusse R (2006) A critical role for endocytosis in Wnt signaling. BMC Cell Biol 7, 28.
112 Agajanian MJ, Walker MP, Axtman AD, Ruela-de-Sousa RR, Serafin DS, Rabinowitz AD, Graham DM, Ryan MB, Tamir T, Nakamichi Y et al. (2019) WNT activates the AAK1 kinase to promote clathrin-mediated endocytosis of LRP6 and establish a negative feedback loop. Cell Rep 26, 79–93 e8.
113 Raucher D & Sheetz MP (1999) Membrane expansion increases endocytosis rate during mitosis. J Cell Biol 144, 497–506.
114 Boucrot E & Kirchhausen T (2007) Endosomal negative feedback loop. Cell 129, 636–648.
115 Warren G (1993) Membrane partitioning during cell division. Annu Rev Biochem 62, 323–348.
116 Maro B, Johnson MH, Pickering SJ & Louvard D (1995) Changes in the distribution of membranous organelles during mouse early development. J Embryol Exp Morphol 90, 287–309.
117 Royle SJ, Bright NA & Lagnado L (2005) Clathrin is required for the function of the mitotic spindle. Nature 434, 1152–1157.
118 Royle SJ (2012) The role of clathrin in mitotic spindle organisation. J Cell Sci 125, 19–28.
119 Booth DG, Hood FE, Prior IA & Royle SJ (2011) A TACC3/ch-TOG/clathrin complex stabilises kinetochore fibres by inter-microtubule bridging. EMBO J 30, 906–919.
120 Liu Z & Zheng Y (2009) A requirement for epsin in mitotic membrane and spindle organization. J Cell Biol 186, 473–480.
121 Cayrol C, Cougoule C & Wright M (2002) The beta2-adaptin clathrin adaptor interacts with the mitotic checkpoint kinase BubR1. Biochem Biophys Res Commun 298, 720–730.
122 He G, Gupta S, Yi M, Michaely P, Hobbs IH & Cohen JC (2002) ARH is a modular adaptor protein that interacts with the LDL receptor, clathrin, and AP-2. J Biol Chem 277, 44044–44049.
123 Mishra SK, Watkins SC & Traub LM (2002) The autosomal recessive hypercholesterolemia (ARH) protein interfaces directly with the clathrin-coat machinery. Proc Natl Acad Sci USA 99, 16099–16104.
124 Lehtonen S, Shah M, Nielsen R, Iino N, Ryan JJ, Zhou H & Farquhar MG (2008) The endocytic adaptor protein ARH associates with motor and centrosomal proteins and is involved in centrosome assembly and cytokinesis. Mol Biol Cell 19, 2949–2961.
125 Thompson HM, Cao H, Chen J, Euteneuer U & McNiven MA (2004) Dynamin 2 binds gamma-tubulin and participates in centrosome cohesion. Nat Cell Biol 6, 335–342.
126 Konopka CA, Schleeje JB, Skop AR & Bednarek SY (2006) Dynamin and cytokinesis. Traffic 7, 239–247.
127 Joshi S, Perera S, Gilbert J, Smith CM, Mariana A, Gordon CP, Sakoff JA, McCluskey A, Robinson PJ, Braithwaite AW et al. (2010) The dynamin inhibitors MiTMAB and OcTMAB induce cytokinesis failure and inhibit cell proliferation in human cancer cells. Mol Cancer Ther 9, 1995–2006.
128 Koutsopoulos OS, Kretz C, Weller CM, Roux A, Možíšova H, Bohm J, Koch C, Toussaint A, Heckel E, Stemkens D et al. (2013) Dynamin 2 homozygous mutation in humans with a lethal congenital syndrome. Eur J Hum Genet 21, 637–642.
129 Ferguson SM, Raimondi A, Paradise S, Shen H, Mesaki K, Ferguson A, Destaing O, Ko G, Takasaki J, Cremona O et al. (2009) Coordinated actions of actin and BAR proteins upstream of dynamin at endocytic clathrin-coated pits. Dev Cell 17, 811–822.
130 Castrillon DH & Wasserman SA (1994) Diaphanos is required for cytokinesis in Drosophila and shares domains of similarity with the products of the limb deformity gene. Development 120, 3367.
131 Feng B, Schwarz H & Jesuthasan S (2002) Furrow-specific endocytosis during cytokinesis of zebrafish blastomeres. Exp Cell Res 279, 14–20.
132 Lancaster MA & Knoblich JA (2012) Spindle orientation in mammalian cerebral cortical development. Curr Opin Neurobiol 22, 737–746.
133 Redlingshofer L, McLeod F, Chen Y, Camus MD, Burden JJ, Palomer E, Briant K, Dannhauser PN, Salinas PC & Brodsky FM (2020) Clathrin light chain diversity regulates membrane deformation in vitro and synaptic vesicle formation in vivo. Proc Natl Acad Sci USA 117, 23527–23538.
134 Wu S, Majeed SR, Evans TM, Camus MD, Wong NM, Schollmeier Y, Park M, Muppidi JR, Reboldi A, Parham P et al. (2016) Clathrin light chains’ role in selective endocytosis influences antibody isotype switching. Proc Natl Acad Sci USA 113, 9816–9821.
135 Kononenko NL, Claessen GA, Kuijpers M, Puchkov D, Maritzen T, Tempes A, Malik AR, Skalecka A, Bera S, Jaworski J et al. (2017) Retrograde transport of TrkB-containing autophagosomes via the adaptor AP-2 mediates neuronal complexity and prevents neurodegeneration. Nat Commun 8, 14819.
136 Milosevic I, Giovedi S, Lou X, Raimondi A, Collesi C, Shen H, Paradise S, O'Toole E, Ferguson S, Cremona O et al. (2011) Recruitment of endophilin to clathrin-coated pit necks is required for efficient vesicle uncoating after fission. Neuron 72, 587–601.
138 Raimondi A, Ferguson SM, Lou X, Armbruster M, Paradise S, Giovedi S, Messa M, Kono N, Takasaki J, Cappello V et al. (2011) Overlapping role of dynamin isoforms in synaptic vesicle endocytosis. Neuron 70, 1100–1114.

139 Chen H, Ko G, Zatti A, Di Giacomo G, Liu L, Raiteri E, Perucco E, Collesi C, Min W, Zeiss C et al. (2009) Embryonic arrest at midgestation and disruption of Notch signaling produced by the absence of both epsin 1 and epsin 2 in mice. Proc Natl Acad Sci USA 106, 13838–13843.

140 Mitsunari T, Nakats D, Shioda N, Love PE, Ishikawa Y, Maeda M, Pasham M, Aguet F, Tacheva-Milesi C, Alberici P, Pozzi B, Oldani A, Beznoussenko Nahorski MS, Borner GHH, Shaikh SS, Davies AK, Nahorski MS, Al-Gazali L, Hertecant J, Owen DJ, Keung AJ, de Juan-Pardo EM, Schaffer DV & Kumar Chavali M, Klingener M, Kokkosis AG, Garkun Y, Bender RH, Haigis KM & Gutmann DH (2015) PICALM in normal hematopoiesis and polycythemia vera pathophysiology. Haematologica 100, 439–451.

141 Ishikawa Y, Maeda M, Pasham M, Aguet F, Tacheva-Milesi C, Alberici P, Pozzi B, Oldani A, Beznoussenko Nahorski MS, Borner GHH, Shaikh SS, Davies AK, Nahorski MS, Al-Gazali L, Hertecant J, Owen DJ, Keung AJ, de Juan-Pardo EM, Schaffer DV & Kumar Chavali M, Klingener M, Kokkosis AG, Garkun Y, Bender RH, Haigis KM & Gutmann DH (2015) PICALM in normal hematopoiesis and polycythemia vera pathophysiology. Haematologica 100, 439–451.

142 Milesi C, Alberici P, Pozzi B, Oldani A, Beznoussenko GV, Raimondi A, Soppo BE, Amodio S, Caldieri G, Malabarba MG et al. (2019) Redundant and nonredundant organisinal functions of EPS15 and EPS15L1. Life Sci Alliance 2, e201800273.

143 Nahorski MS, Borner GH, Shaikh SS, Davies AK, Al-Gazali L, Antrobus R & Woods CG (2018) Clathrin heavy chain 22 contributes to the control of neuropeptide degradation and secretion during neuronal development. Sci Rep 8, 2340.

144 Nahorski MS, Al-Gazali L, Hertecant J, Owen DJ, Borner GH, Chen YC, Benn CL, Carvalho OP, Shaikh SS, Phelan A et al. (2015) A novel disorder reveals clathrin heavy chain-22 is essential for human pain and touch development. Brain 138, 2147–2160.

145 Haditsch U, Anderson MP, Freewoman J, Cord B, Babu H, Brakebusch C & Palmer TD (2013) Neuronal Rac1 is required for learning-evoked neurogenesis. J Neurosci 33, 12229–12241.

146 Keung AJ, de Juan-Pardo EM, Schaffer DV & Kumar S (2011) Rho GTPases mediate the mechanosensitive lineage commitment of neural stem cells. Stem Cells 29, 1886–1897.

147 Chavali M, Klingener M, Kokkosis AG, Garkun Y, Felong S, Maffei A & Aguirre A (2018) Non-canonical Wnt signaling regulates neural stem cell quiescence during homeostasis and after demyelination. Nat Commun 9, 36.

148 Bender RH, Haigis KM & Gutmann DH (2015) Activated k-ras, but not h-ras or N-ras, regulates brain neural stem cell proliferation in a raf/rb-dependent manner. Stem Cells 33, 1998–2010.

149 Tidyman WE & Rauen KA (2009) The RASopathies: developmental syndromes of Ras/MAPK pathway dysregulation. Curr Opin Genet Dev 19, 230–236.

150 Cosker KE & Eickholt BJ (2007) Phosphoinositide 3-kinase signalling events controlling axonal morphogenesis. Biochem Soc Trans 35, 207–210.

151 Waite K & Eickholt BJ (2010) The neurodevelopmental implications of PI3K signaling. Curr Top Microbiol Immunol 346, 245–265.

152 Zhang X, He X, Li Q, Kong X, Ou Z, Zhang L, Gong Z, Long D, Li J, Zhang M et al. (2017) PI3K/ AKT/mTOR signaling mediates valproic acid-induced neuronal differentiation of neural stem cells through epigenetic modifications. Stem Cell Reports 8, 1243–1269.

153 Le Belle JE, Orozco NM, Paucar AA, Saxe JP, Mottahdeh J, Pyle AD, Wu H & Kornblum HI (2011) Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 8, 59–71.

154 Zucco AJ, Pozzo VD, Afinogenova A, Hart RP, Devinsky O & D’Arcangelo G (2018) Neural progenitors derived from tuberous sclerosis complex patients exhibit attenuated PI3K/AKT signaling and delayed neuronal differentiation. Mol Cell Neurosci 92, 149–163.

155 Paridaen JT, Wilsch-Bräuning M & Huttner WB (2013) Asymmetric inheritance of centrosome-associated primary cilium membrane directs ciliogenesis after cell division. Cell 155, 333–344.

156 Guemez-Gamboa A, Coufal NG & Gleeson JG (2014) Primary cilia in the developing and mature brain. Neuron 82, 511–521.

157 Youn YH & Han YG (2018) Primary cilia in brain development and diseases. Am J Pathol 188, 11–22.

158 Garcia-Gonzalo FR, Phua SC, Roberson EC, Garcia G III, Abedin M, Schurmans S, Inoue T & Reiter JF (2015) Phosphoinositides regulate ciliary protein trafficking to modulate Hedgehog signaling. Dev Cell 34, 400–409.

159 Prosseda PP, Luo N, Wang B, Alvarado JA, Hu Y & Sun Y (2017) Loss of OCRL increases ciliary P1(4,5) P2 in Lowe oculocerebrorenal syndrome. J Cell Sci 130, 3447–3454.

160 Nández R, Balkin DM, Messa M, Liang L, Paradise S, Czapla H, Hein MY, Duncan JS, Mann M & De Camilli P (2014) A role of OCRL in clathrin-coated pit dynamics and uncouating revealed by studies of Lowe syndrome cells. eLife 3, e02975.

161 Pedersen LB, Mogensen JB & Christensen ST (2016) Endocytic control of cellular signaling at the primary cilium. Trends Biochem Sci 41, 784–797.

162 Kaplan OI, Dorozquez DB, Cevik S, Bowie RV, Clarke L, Sanders AA, Kida K, Rappoort JZ, Sengupta P & Blacque OE (2012) Endocytosis genes facilitate protein and membrane transport in C. elegans sensory cilia. Curr Biol 22, 451–460.
van der Vaart A, Rademakers S & Jansen G (2015)
DLK-1/p38 MAP kinase signaling controls cilium length by regulating RAB-5 mediated endocytosis in Caenorhabditis elegans. *PLoS Genet* 11, e1005733.

Schreiber S, Fleischer J, Breer H & Boekhoff I (2000) A possible role for caveolin as a signaling organizer in olfactory sensory membranes. *J Biol Chem* 275, 24115–24123.

Yue S, Tang LY, Tang Y, Shen QH, Ding J, Chen Y, Zhang Z, Yu TT, Zhang YE *et al.* (2014) Requirement of Smurf-mediated endocytosis of Patched1 in sonic hedgehog signal reception. *eLife* 3, e02555.

Haubensak W, Attardo A, Denk W & Huttner WB (2004) Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. *Proc Natl Acad Sci USA* 101, 3196–3201.

Miyata T, Kawaguchi A, Saito K, Kawano M, Muto T & Ogawa M (2004) Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. *Development* 131, 3133–3145.

Noctor SC, Martinez-Cerdeno V & Kriegstein AR (2008) Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis. *J Comp Neurol* 508, 28–44.

Webb DJ, Parsons JT & Horwitz AF (2002) Adhesion assembly, disassembly and turnover in migrating cells – over and over and over again. *Nat Cell Biol* 4, E97–E100.

Vitriol EA & Zheng JQ (2012) Growth cone travel in space and time: the cellular ensemble of cytoskeleton, adhesion, and membrane. *Neuron* 73, 1068–1081.

Erzatty EJ, Bertaux C, Marcantonio EE & Gundersen GG (2009) Clathrin mediates integrin endocytosis for focal adhesion disassembly in migrating cells. *J Cell Biol* 187, 733–747.

Chao WT & Kunz J (2009) Focal adhesion disassembly requires clathrin-dependent endocytosis of integrins. *FEBS Lett* 583, 1337–1343.

Shieh JC, Schaar BT, Srinivasan K, Brodsky FM & McConnell SK (2011) Endocytosis regulates cell soma translocation and the distribution of adhesion proteins in migrating neurons. *PLoS One* 6, e17802.

Rasin MR, Gazula VR, Breunig JJ, Kwan KY, Johnson MB, Liu-Chen S, Li HS, Jan LY, Jan YN, Rakic P *et al.* (2007) Numb and Numbl are required for maintenance of cadherin-based adhesion and polarity of neural progenitors. *Nat Neurosci* 10, 819–827.

Zhou P, Porcianatto M, Pilapil M, Chen Y, Choi Y, Tolias KF, Bikoff JB, Hong EJ, Greenberg ME & Segal RA (2007) Polarized signaling endosomes coordinate BDNF-induced chemotaxis of cerebellar precursors. *Neuron* 55, 53–68.
synaptic development and vesicle endocytosis. Neuron 43, 193–205.

190 Pechstein A, Gerth F, Milosevic I, Japel M, Eichhorn-Grunig M, Vorontsova O, Baczec J, Maritzen T, Shupliakov O, Freund C et al. (2015) Vesicle uncoating regulated by SH3-SH3 domain-mediated complex formation between endophilin and intersectin at synapses. EMBO Rep 16, 232–239.

191 Jakob B, Kochlamazashvili G, Japel M, Gauhar A, Bock HH, Maritzen T & Haucke V (2017) Intersectin 1 is a component of the Reelin pathway to regulate neuronal migration and synaptic plasticity in the hippocampus. Proc Natl Acad Sci USA 114, 5533–5538.

192 Friocourt G, Chafey P, Billuart P, Koulakoff A, Vinet MC, Schaar BT, McConnell SK, Francis F & Chelly J (2001) Doublecortin interacts with mu subunits of clathrin adaptor complexes in the developing nervous system. Mol Cell Neurosci 18, 307–319.

193 des Portes V, Pinard JM, Billuart P, Vinet MC, Koulakoff A, Carrie A, Gelot A, Dupuis E, Motte J, Berwald-Netter Y et al. (1998) A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell 92, 51–61.

194 Taylor KR, Holzer AK, Bazan JF, Walsh CA & Gleeson JG (2000) Patient mutations in doublecortin define a repeated tubulin-binding domain. J Biol Chem 275, 34442–34450.

195 Tanaka T, Serneo FF, Higgins C, Gambello MJ, Wynshaw-Boris A & Gleeson JG (2004) Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration. J Cell Biol 165, 709–721.

196 Yap CC, Vakulenko M, Kruczek K, Motamed M, Digilio L, Liu JS & Winckler B (2012) Doublecortin (DCX) mediates endocytosis of neurofascin independently of microtubule binding. J Neurosci 32, 7439–7453.

197 Yap CC, Digilio L, Kruczek K, Roszkowska M, Fu XQ, Liu JS & Winckler B (2018) A dominant dendrite phenotype caused by the disease-associated G253D mutation in doublecortin (DCX) is not due to its endocytosis defect. J Biol Chem 293, 18890–18902.

198 Kamiguchi H, Long KE, Pendergast M, Schaefer AW, Rapoport I, Kirkhausen T & Lemmon V (1998) The neural cell adhesion molecule L1 interacts with the AP-2 adaptor and is endocytosed via the clathrin-mediated pathway. J Neurosci 18, 5311–5321.

199 Chen YT & Tai CY (2017) mu2-Dependent endocytosis of N-cadherin is regulated by beta-catenin to facilitate neurite outgrowth. Traffic 18, 287–303.

200 Schwartz CM, Cheng A, Mughal MR, Mattson MP & Yao PJ (2010) Clathrin assembly proteins AP180 and CALM in the embryonic rat brain. J Comp Neurol 518, 3803–3818.

201 Koo SJ, Kochlamazashvili G, Rost B, Puchkov D, Gimber N, Lehmann M, Tadeus G, Schmoranzer J, Rosenmund C, Hauke V et al. (2015) Visceral synaptobrevin/VAMP2 levels guarded by AP180 control efficient neurotransmission. Neuron 88, 330–344.

202 Suzuki M, Tanaka H, Tanimura A, Tanabe K, Oe N, Rai S, Kon S, Fukumoto M, Takei K, Abe T et al. (2012) The clathrin assembly protein PICALM is required for erythroid maturation and transferrin internalization in mice. PLoS One 7, e31854.

203 Le Roy C & Wrana JL (2005) Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol 6, 112–126.

204 Burrows RC, Lillien L & Levitt P (2000) Mechanisms of progenitor maturation are conserved in the striatum and cortex. Dev Neurosci 22, 7–15.

205 Puchinger D, Orel N, Luningschror P, Subramanian N, Herrmann T, Chao MV & Sendtner M (2013) EGF transactivation of Trk receptors regulates the migration of newborn cortical neurons. Nat Neurosci 16, 407–415.

206 Li Y, Gonzalez WG, Andreev A, Tang W, Gandhi S, Cunha A, Prober D, Lois C & Bronner ME (2020) Macropinocytosis-mediated membrane recycling drives neural crest migration by delivering F-actin to the lamellipodium. Proc Natl Acad Sci USA 117, 27400–27411.

207 Hara Y, Fukaya M, Hayashi K, Kawauchi T, Nakajima K & Sakagami H (2016) ADP-ribosylation factor 6 regulates neuronal migration in the developing cerebral cortex through FIP3/Arfophilin-1-dependent endosomal trafficking of N-cadherin. eNeuro 3, 1–20.

208 Govek EE, Wu Z, Acehan D, Molina H, Rivera K, Zha X, Fang Y, Tessier-Lavigne M & Hatten ME (2018) Cdc42 regulates neuronal polarity during cerebellar axon formation and glial-guided migration. iScience 1, 35–48.

209 He M, Zhang ZH, Guan CB, Xia D & Yuan XB (2010) Leading tip drives soma translocation via forward F-actin flow during neuronal migration. J Neurosci 30, 10885–10898.

210 Wang PS, Chou FS, Ramachandran S, Xia S, Chen HY, Guo F, Suraneni P, Maher BJ & Li R (2016) Crucial roles of the Arp2/3 complex during mammalian corticogenesis. Development 143, 2741–2752.

211 Tahirovic S, Hellal F, Neukirchen D, Hindges R, Garvalov BK, Flynn KC, Stradal TE, Chrostek-Grashoff A, Brakebusch C & Bradke F (2010) Rac1 regulates neuronal polarization through the WAVE complex. J Neurosci 30, 6930–6943.
Brain-specific functions of the endocytic machinery

S. Cambor-Perujo and N. L. Kononenko

212 Govek EE, Hatten ME & Van Aelst L (2011) The role of Rho GTPase proteins in CNS neuronal migration. *Dev Neurobiol* 71, 528–553.

213 Kabayama H, Takeuchi M, Taniguchi M, Tokushige N, Kozaki S, Mizutani A, Nakamura T & Mikoshiba K (2011) Syntaxin 1B suppresses macropinocytosis and semaphorin 3A-induced growth cone collapse. *J Neurosci* 31, 7357–7364.

214 Kabayama H, Nakamura T, Takeuchi M, Iwasaki H, Taniguchi M, Tokushige N & Mikoshiba K (2009) Ca2+ induces macropinocytosis via F-actin depolymerization during growth cone collapse. *Mol Cell Neurosci* 40, 27–38.

215 Pang HB, Braun GB, Friman T, Aza-Blanc P, Ruidiaz ME, Sugahara KN, Teesalu T & Ruoslahti E (2014) An endocytosis pathway initiated through neuropilin-1 and regulated by nutrient availability. *Nat Commun* 5, 4904.

216 Schwarz Q, Vieira JM, Howard B, Eickholt BJ & Ruhrberg C (2008) Neuropilin 1 and 2 control cranial gangliogenesis and axon guidance through neural crest cells. *Development* 135, 1605–1613.

217 Shikanai M, Nishimura YV, Sakurai M, Nabeshima YI, Yuzuki M & Kawauchi T (2018) Caveolin-1 promotes early neuronal maturation via caveolae-independent trafficking of N-cadherin and L1. *iScience* 7, 53–67.

218 Breuer M, Berger H & Borchers A (2020) Caveolin 1 is required for axonal outgrowth of motor neurons and affects *Xenopus* neuromuscular development. *Sci Rep* 10, 16446.

219 Wang S, Zhang Z, Almenar-Queralt A, Leen J, DerMardirossian C, Roth DM, Patel PM, Patel HH & Head BP (2019) Caveolin-1 phosphorylation is essential for axonal growth of human neurons derived from iPSCs. *Front Cell Neurosci* 13, 324.

220 Santos TE, Schaffran B, Broguiere N, Meyn L, Zenobi-Wong M & Bradke F (2020) Axon growth of CNS neurons in three dimensions is amoeboid and independent of adhesions. *Cell Rep* 32, 107907.

221 Stoeckli ET (2018) Understanding axon guidance: are we nearly there yet? *Development* 145, 1–10.

222 Tojima T, Itofusa R & Kamiguchi H (2010) Asymmetric clathrin-mediated endocytosis drives repulsive growth cone guidance. *Neuron* 66, 370–377.

223 Tojima T, Hines JH, Henley JR & Kamiguchi H (2011) Second messengers and membrane trafficking direct and organize growth cone steering. *Nat Rev Neurosci* 12, 191–203.

224 Tojima T, Itofusa R & Kamiguchi H (2014) Steering neuronal growth cones by shifting the imbalance between exocytosis and endocytosis. *J Neurosci* 34, 7165–7178.

225 Bonanomi D, Fornasiero EF, Valdez G, Halegoua S, Benfenati F, Menegon A & Valtorta F (2008) Identification of a developmentally regulated pathway of membrane retrieval in neuronal growth cones. *J Cell Sci* 121, 3757.

226 O’Donnell M, Chance RK & Bashaw GJ (2009) Axon growth and guidance: receptor regulation and signal transduction. *Annu Rev Neurosci* 32, 383–412.

227 Zylbersztejn K, Petkovic M, Burgo A, Deck M, Garel S, Marcos S, Bloch-Gallego E, Nothias F, Serini G, Bagnard D et al. (2012) The vesicular SNARE Synaptobrevin is required for Semaphorin 3A axonal repulsion. *J Cell Biol* 196, 37–46.

228 Wojnacki J & Galli T (2016) Membrane traffic during axon development. *Dev Neurobiol* 76, 1185–1200.

229 Zylbersztejn K & Galli T (2011) Vesicular traffic in cell navigation. *FEBS J* 278, 4497–4505.

230 Hines JH, Abu-Rub M & Henley JR (2010) Asymmetric endocytosis and remodeling of β1-integrin adhesions during growth cone chemorepulsion by MAG. *Nat Neurosci* 13, 829–837.

231 Onishi K, Shafer B, Lo C, Tissir F, Goffinet AM & Zou Y (2013) Antagonistic functions of Dishevelleds regulate Frizzled3 endocytosis via filopodia tips in Wnt-mediated growth cone guidance. *J Neurosci* 33, 19071–19085.

232 Yu A, Rual JF, Tamai K, Harada Y, Vidal M, He X & Kirchhausen T (2007) Association of Dishevelled with the clathrin AP-2 adaptor is required for Frizzled endocytosis and planar cell polarity signaling. *Dev Cell* 12, 129–141.

233 Nishimura T, Fukuta Y, Kato K, Yamaguchi T, Matsuura Y, Kamiguchi H & Kaibuchi K (2003) CRMP-2 regulates polarized Numb-mediated endocytosis for axon growth. *Nat Cell Biol* 5, 819–826.

234 Sampo B, Kaech S, Kunz S & Banker G (2003) Two distinct mechanisms target membrane proteins to the axonal surface. *Neuron* 37, 611–624.

235 Garrido JJ, Fernandes F, Giraud E, Mouret I, Pasqualini E, Fache MP, Jullien F & Dargent B (2001) Identification of an axonal determinant in the C-terminus of the sodium channel Na(v)1.2. *EMBO J* 20, 5950–5961.

236 Guo X, Farias GG, Mattera R & Bonifacino JS (2016) Rab5 and its effector FHF contribute to neuronal polarity through dynin-dependent retrieval of somatodendritic proteins from the axon. *Proc Natl Acad Sci USA* 113, E5318–E5327.

237 Overhoff M, De Bruyckere E & Kononenko NL (2021) Mechanisms of neuronal survival safeguarded by endocytosis and autophagy. *J Neurochem* 157, 263–296.

238 Saheki Y & De Camilli P (2012) Synaptic vesicle endocytosis. *Cold Spring Harb Perspect Biol* 4, a005645.

239 Soykan T, Maritzen T & Haucke V (2016) Modes and mechanisms of synaptic vesicle recycling. *Curr Opin Neurobiol* 39, 17–23.
240 Rizzoli SO (2014) Synaptic vesicle recycling: steps and principles. *EMBO J* **33**, 788–822.

241 Kaempf N & Maritzen T (2017) Safeguards of neurotransmission: endocytic adaptors as regulators of synaptic vesicle composition and function. *Front Cell Neurosci* **11**, 320.

242 Wienisch M & Klingauf J (2006) Vesicular proteins exocytosed and subsequently retrieved by compensatory endocytosis are nonidentical. *Nat Neurosci* **9**, 1019–1027.

243 Fernandez-Alfonso T, Kwan R & Ryan TA (2006) Sorting adaptor for synaptotagmin internalization and vesicular proteins required for activity-dependent bulk endocytosis in synaptic vesicle recycling. *Neuron* **51**, 79–86.

244 Milosevic I (2018) Revisiting the role of clathrin-mediated endocytosis in synaptic vesicle recycling. *Front Cell Neurosci* **12**, 27.

245 Voglmaier SM, Kam K, Yang H, Fortin DL, Hua Z, Nicoll RA & Edwards RH (2006) Distinct endocytic pathways control the rate and extent of synaptic vesicle protein recycling. *Neuron* **51**, 71–84.

246 Diril MK, Wienisch M, Jung N, Klingauf J & Haucke V (2006) Sttonin 2 is an AP-2-dependent endocytic sorting adaptor for synaptotagmin internalization and recycling. *Dev Cell* **10**, 233–244.

247 Jung N, Wienisch M, Gu M, Rand JB, Muller SL, Krause G, Jorgensen EM, Klingauf J & Haucke V (2007) Molecular basis of vesicle synaptic cargo recognition by the endocytic sorting adaptor stonin 2. *J Cell Biol* **179**, 1497–1510.

248 Kononenko NL, Diril MK, Puchkov D, Kintscher M, Koo SJ, Pfuhl G, Winter Y, Wienisch M, Klingauf J, Breustedt J et al. (2013) Compromised fidelity of endocytic synaptic vesicle protein sorting in the absence of stonin 2. *Proc Natl Acad Sci USA* **110**, E526–E535.

249 Maritzen T, Koo SJ & Haucke V (2012) Turning CALM into excitement: AP180 and CALM in endocytosis and disease. *Biol Cell* **104**, 588–602.

250 Kaempf N, Kochlamazashvili G, Puchkov D, Maritzen T, Bajajaleh SM, Kononenko NL & Haucke V (2015) Overlapping functions of stonin 2 and SV2 in sorting of the calcium sensor synaptotagmin 1 to synaptic vesicles. *Proc Natl Acad Sci USA* **112**, 7297–7302.

251 Blondeau F, Ritter B, Allaire PD, Wasiak S, Girard M, Hussain NK, Angers A, Legendre-Guillemin V, Roy L, Boisnou D et al. (2004) Tandem MS analysis of brain clathrin-coated vesicles reveals their critical involvement in synaptic vesicle recycling. *Proc Natl Acad Sci USA* **101**, 3833–3838.

252 Maycox PR, Link E, Reetz A, Morris SA & Jahn R (1992) Clathrin-coated vesicles in nervous tissue are involved primarily in synaptic vesicle recycling. *J Cell Biol* **118**, 1379–1388.

253 Granseth B, Odermatt B, Royle SJ & Lagnado L (2006) Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. *Neuron* **51**, 773–786.

254 Kim SH & Ryan TA (2009) Synaptic vesicle recycling at CNS synapses without AP-2. *J Neurosci* **29**, 3865–3874.

255 Nicholson-Fish JC, Kokotos AC, Gillingwater TH, Smillie KJ & Cousin MA (2015) VAMP4 is an essential cargo molecule for activity-dependent bulk endocytosis. *Neuron* **88**, 973–984.

256 Heerssen H, Fetter RD & Davis GW (2008) Clathrin dependence of synaptic-vesicle formation at the Drosophila neuromuscular junction. *Curr Biol* **18**, 401–409.

257 Kononenko NL, Puchkov D, Classen GA, Walter AM, Pechstein A, Sawade L, Kaempf N, Trimbuch T, Lorenz D, Rosenmund C et al. (2014) Clathrin/AP-2 mediate synaptic vesicle reformation from endosome-like vacuoles but are not essential for membrane retrieval at central synapses. *Neuron* **82**, 981–988.

258 Delvendahl I, Vyleta NP, von Gersdorff H & Hallermann S (2016) Fast, temperature-sensitive and clathrin-independent endocytosis at central synapses. *Neuron* **90**, 492–498.

259 Clayton EL & Cousin MA (2009) The molecular physiology of activity-dependent bulk endocytosis of synaptic vesicles. *J Neurochem* **111**, 901–914.

260 Zhang B, Koh YH, Beckstead RB, Budnik V, Ganetzky B & Bellen HJ (1998) Synaptic vesicle size and number are regulated by a clathrin adaptot protein required for endocytosis. *Neuron* **21**, 1465–1475.

261 Nonet ML, Holgado AM, Brewer F, Serpe CJ, Noberck BA, Hollera J, Wei L, Hartwig E, Jorgensen EM & Alfonso A (1999) UNC-11, a Caenorhabditis elegans homologue, regulates the size and protein composition of synaptic vesicles. *Mol Biol Cell* **10**, 2343–2360.

262 Petralia RS, Wang YX, Indig FE, Bushlin I, Wu F, Mattson MP & Yao PJ (2013) Reduction of AP180 and CALM produces defects in synaptic vesicle size and density. *Neuromolecular Med* **15**, 49–60.

263 Kawasaki F, Iyer J, Posey LL, Sun CE, Mammen SE, Yan H & Ordway RW (2011) The DISABLED protein functions in CLATHRIN-mediated synaptic vesicle endocytosis and exocytotic coupling at the active zone. *Proc Natl Acad Sci USA* **108**, E222–E229.

264 Kyung JW, Bae JR, Kim DH, Song WK & Kim SH (2016) Eps15 modulates synaptic vesicle retrieval capacity at CNS synapses. *Sci Rep* **6**, 31997.

265 Koh TW, Korolchuk VI, Wairkar YP, Jiao W, Evergren E, Pan H, Zhou Y, Venken KJ, Shupliakov O, Robinson IM et al. (2007) Eps15 and Dap160
control synaptic vesicle membrane retrieval and synapse development. *J Cell Biol* **178**, 309–322.

266 Gu M, Schulke K, Watanabe S, Liu Q, Baum P, Garriga G & Jorgensen EM (2008) Mu2 adaptin facilitates but is not essential for synaptic vesicle recycling in *Caenorhabditis elegans*. *J Cell Biol* **183**, 881–892.

267 Gu M, Liu Q, Watanabe S, Sun L, Hollopeter G, Grant BD & Jorgensen EM (2013) AP2 hemicomplexes contribute independently to synaptic vesicle endocytosis. *eLife* **2**, e00190.

268 Nakatsu F, Okada M, Mori F, Kumazawa N, Iwasa H, Zhu G, Kasagi Y, Kamiya H, Harada A, Nishimura K *et al.* (2004) Defective function of GABA-containing synaptic vesicles in mice lacking the AP-3B clathrin adaptor. *J Cell Biol* **167**, 293–302.

269 Kroll J, Ozcete OD, Jung S, Maritzen T, Milosevic I, Soukup SF, Kuenen S, Vanhauwaert R, Manetsberger W, O'Toole ET, Girard M, Ritter B, Messa M, De Rossi P, Nomura T, Andrew RJ, Masse NY, Cremona O, Di Paolo G, Wenk MR, Lüthi A, Kim WT, Takei K, Daniell L, Nemoto Y, Shears SB, Flavell RA *et al.* (1999) Essential role of phosphoinositide metabolism in synaptic vesicle recycling. *Cell* **99**, 179–188.

270 Di Paolo G, Sankaranarayanan S, Wenk MR, Daniell L, Perucco E, Culdarore BJ, Flavell R, Picciotto MR, Ryan TA, Cremona O *et al.* (2002) Decreased synaptic vesicle recycling efficiency and cognitive deficits in amphiphysin 1 knockout mice. *Neuron* **33**, 789–804.

271 De Rossi P, Nomura T, Andrew RJ, Masse NY, Sampathkumar V, Musial TF, Sudwarts A, Recupero AJ, Le Metayer T, Hansen MT *et al.* (2020) Neuronal BIN1 regulates presynaptic neurotransmitter release and memory consolidation. *Cell Rep* **30**, 3520–3535 e7.

272 Wu Y, O'Toole ET, Girard M, Ritter B, Messa M, Liu X, McPherson PS, Ferguson SM & De Camilli P (2014) A dynamin 1-, dynamin 3- and clathrin-independent pathway of synaptic vesicle recycling mediated by bulk endocytosis. *Elife* **3**, e01621.

273 Soukup SF, Kuenen S, Vanhauwaert R, Manetsberger J, Hernandez-Diaz S, Swerts J, Schoovaerts N, Vilain S, Gounko NV, Vints K *et al.* (2016) A LRRK2-dependent endophilinA phosphoswitch is critical for macroautophagy at presynaptic terminals. *Neuron* **92**, 829–844.

274 Murdoch JD, Rostosky CM, Gowrisankaran S, Arora AS, Soukup SF, Vidal R, Capceve V, Freytag S, Fischer A, Verstreken P *et al.* (2016) Endophilin-A deficiency induces the Foxo3a-Fbxo32 network in the brain and causes dysregulation of autophagy and the ubiquitin-proteasome system. *Cell Rep* **17**, 1071–1086.

275 Lee SH, Liu L, Wang YT & Sheng M (2002) Clathrin adaptor AP2 and NSF interact with overlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking and hippocampal LTD. *Neuron* **36**, 661–674.

276 Kastning K, Kukhtina V, Kittler JT, Chen G, Pechstein A, Enders S, Lee SH, Sheng M, Yan Z & Haucke V (2007) Molecular determinants for the interaction between AMPA receptors and the clathrin adaptor complex AP-2. *Proc Natl Acad Sci USA* **104**, 2991–2996.

277 Hanley JG (2018) The regulation of AMPA receptor endocytosis by dynamic protein-protein interactions. *Front Cell Neurosci* **12**, 362.

278 Lu J, Helton TD, Blanpied TA, Racz B, Newpher TM, Weinberg RJ & Ehlers MD (2007) Postsynaptic positioning of endocytic zones and AMPA receptor recycling by physical coupling of dynamin-3 to Homer. *Neuron* **55**, 874–889.

279 Schurmann B, Bermingham DP, Kopeikina KJ, Myczek K, Yoon S, Horan KE, Kelly CJ, Martin-de-Saavedra MD, Forrest MP, Fawcett-Patel JM *et al.* (2020) A novel role for the late-onset Alzheimer’s disease (LOAD)-associated protein Bin1 in regulating postsynaptic trafficking and glutamatergic signaling. *Mol Psychiatry* **25**, 2000–2016.

280 Kittler JT, Chen G, Honing S, Bogdanov Y, McAlinsh K, Arancibia-Carcamo IL, Jovanovic JN, Pangalos MN, Haucke V, Yan Z *et al.* (2005) Phospho-dependent binding of the clathrin AP2 adaptor complex to GABA(A) receptors regulates the efficacy of inhibitory synaptic transmission. *Proc Natl Acad Sci USA* **102**, 14871–14876.

281 Kittler JT, Chen G, Kukhtina V, Vahedi-Faridi A, Gu Z, Tretter V, Smith KR, McAlinsh K, Arancibia-Carcamo IL, Saenger W *et al.* (2008) Regulation of synaptic inhibition by phospho-dependent binding of the AP2 complex to a YECL motif in the GABA(A) receptor gamma2 subunit. *Proc Natl Acad Sci USA* **105**, 3616–3621.

282 Smith KR, Muir J, Rao Y, Browarski M, Gruenig MC, Sheehan DF, Haucke V & Kittler JT (2012) Stabilization of GABA(A) receptors at endocytic zones is mediated by an AP2 binding motif within the GABA(A) receptor beta3 subunit. *J Neurosci* **32**, 2485–2498.

283 Kong MM, Hasbi A, Mattocks M, Fan T, O'Dowd BF & George SR (2007) Regulation of D1 dopamine receptor trafficking and signaling by caveolin-1. *Mol Pharmacol* **72**, 1157–1170.

284 Egawa J, Zemljic-Harpf A, Mandyam CD, Niessen IR, Lysenko LV, Kleschevnikov AM, Roth DM, Patel HH, Patel PM & Head BP (2018) Neuron-targeted caveolin-1 promotes ultrastructural and functional hippocampal synaptic plasticity. *Cereb Cortex* **28**, 3255–3266.

285 Zheng J, Shen WH, Lu TJ, Zhou Y, Chen Q, Wang Z, Xiang T, Zhu YC, Zhang C, Duan S *et al.* (2008)
Clathrin-dependent endocytosis is required for TrkB-dependent Akt-mediated neuronal protection and dendritic growth. *J Biol Chem* **283**, 13280–13288.

287 Beattie EC, Howe CL, Wilde A, Brodsky FM & Mobley WC (2000) NGF signals through TrkA to increase clathrin at the plasma membrane and enhance clathrin-mediated membrane trafficking. *J Neurosci* **20**, 7325–7333.

288 Howe CL, Valletta JS, Rusnak AS & Mobley WC (2001) NGF signaling from clathrin-coated vesicles: evidence that signaling endosomes serve as a platform for the Ras-MAPK pathway. *Neuron* **32**, 801–814.

289 Valdez G, Philippidou P, Rosenbaum J, Akmentin W, Suo D, Park J, Harrington AW, Zweifel LS, Mihalas B, Delcroix JD, Valletta JS, Wu CB, Hunt SJ, Kowal AS & Mobley WC (2002) Pincher, a pinocytic chaperone for nerve growth factor/TrkA signaling endosomes. *J Cell Biol* **157**, 679–691.

290 Shao Y, Akmentin W, Toledo-Aral JJ, Rosenbaum J, Valdez G, Cabot JB, Hilbush BS & Hagleou S (2002) Pincher, a pinocytic chaperone for nerve growth factor/TrkA signaling endosomes. *J Cell Biol* **157**, 679–691.

291 Valdez G, Cabot JB, Hilbush BS & Halegoua S (2002) Trk-signaling endosomes are generated by Rac-dependent macroendocytosis. *Proc Natl Acad Sci USA* **104**, 12270–12275.

292 Shao Y, Akmentin W, Toledo-Aral JJ, Rosenbaum J, Valdez G, Cabot JB, Hilbush BS & Hagleou S (2002) Pincher, a pinocytic chaperone for nerve growth factor/TrkA signaling endosomes. *J Cell Biol* **157**, 679–691.

293 Ye M, Lehigh KM & Ginty DD (2018) Multivesicular bodies mediate long-range retrograde NGF-TrkA signaling. *Elife* **7**, e33012.

294 Zhou B, Cai Q, Xie Y & Sheng ZH (2012) Snapin recruits dynein to BDNF-TrkB signaling endosomes for retrograde axonal transport and is essential for dendrite growth of cortical neurons. *Cell Rep* **2**, 42–51.

295 Andres-Alonso M, Ammar MR, Buttnar I, Gomes GM, Acuna Sanhueza G, Raman R, Yuanxian P, Bortmeyer M, Lopez-Rojas J, Raza SA et al. (2019) SIPA1L2 controls trafficking and local signaling of TrkB-containing amphiphosomes at presynaptic terminals. *Nat Common* **10**, 5448.

296 Bera S, Camblor-Perujo S, Calleja Barca E, Negrete-Hurtado A, Racho J, De Bruiyckere E, Wittich C, Ellrich N, Martins S, Adjaye J et al. (2020) AP-2 reduces amyloidogenesis by promoting BACE1 trafficking and degradation in neurons. *EMBO Rep* **21**, 1–21.

297 Huganir RL & Nicoll RA (2013) AMPARs and synaptic plasticity: the last 25 years. *Neuron* **80**, 704–717.

298 Anggono V & Huganir RL (2012) Regulation of AMPA receptor trafficking and synaptic plasticity. *Curr Opin Neurobiol* **22**, 461–469.

299 Zheng N, Jeyifous O, Munro C, Montgomery JM & Green WN (2015) Synaptic activity regulates AMPA receptor trafficking through different recycling pathways. *Elife* **4**, e06878.

300 Parkinson GT & Hanley JG (2018) Mechanisms of AMPA receptor endosomal sorting. *Front Mol Neurosci* **11**, 440.

301 Park M, Salgado JM, Ostrow L, Helton TD, Robinson CG, Harris KM & Ehlers MD (2006) Plasticity-induced growth of dendritic spines by exocytic trafficking from recycling endosomes. *Neuron* **52**, 817–830.

302 Jong YI, Harmon SK & O’Malley KL (2018) Intracellular GPCRs play key roles in synaptic plasticity. *ACS Chem Neurosci* **9**, 2162–2172.

303 Gainetdinov RR, Premont RT, Bohn LM, Lefkowitz RJ & Caron MG (2004) Desensitization of G protein-coupled receptors and neuronal functions. *Annu Rev Neurosci* **27**, 107–144.

304 Laporte SA, Oakley RH, Zhang J, Holt JA, Ferguson SS, Caron MG & Barak LS (1999) The beta2-adrenergic receptor/betaarrestin complex recruits the clathrin adaptor AP-2 during endocytosis. *Proc Natl Acad Sci USA* **96**, 3712–3717.

305 Goodman OB Jr, Krupnick GC, Santini F, Gurevich VV, Penn RB, Gagnon AW, Keen JH & Benovic JL (1996) Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. *Nature* **383**, 447–450.

306 Ferguson SS, Downey WE III, Colapietro AM, Barak LS, Menard L & Caron MG (1996) Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. *Science* **271**, 363–366.

307 Tom VJ, Steinmetz MP, Miller JH, Doller CM & Silver J (2004) Studies on the development and behavior of the dystrophic growth cone, the hallmark of regeneration failure, in an in vitro model of the glial scar and after spinal cord injury. *J Neurosci* **24**, 6531–6539.

308 Zeineddine R & Yerbury JI (2015) The role of macropinocytosis in the propagation of protein aggregation associated with neurodegenerative diseases. *Front Physiol* **6**, 277.

309 Kalia M, Khasa R, Sharma M, Nain M & Vrati S (2013) Japanese encephalitis virus infects neuronal cells through a clathrin-independent endocytic mechanism. *J Virol* **87**, 148–162.

310 Talekar A, Pessi A & Porotto M (2011) Infection of primary neurons mediated by nipah virus envelope proteins: role of host target cells in antiviral action. *J Virol* **85**, 8422–8426.

311 Kim N, Kim S, Nahm M, Kopke D, Kim J, Cho E, Lee MJ, Lee M, Kim SH, Brodie K et al. (2019) BMP-dependent synaptic development requires Abi-
Abl-Rac signaling of BMP receptor macropinocytosis. *Nat Commun* **10**, 684.

312 Holt M, Cooke A, Wu MM & Lagnado L (2003) Bulk membrane retrieval in the synaptic terminal of retinal bipolar cells. *J Neurosci* **23**, 1329–1339.

313 Glebov OO, Tigaret CM, Mellor JR & Henley JM (2015) Clathrin-independent trafficking of AMPA receptors. *J Neurosci* **35**, 4830–4836.

314 Kunita R, Otomo A, Mizumura H, Suzuki-Utsumo K, Hadano S & Ikeda JE (2007) The Rab5 activator ALS2/alsin acts as a novel Rac1 effector through Rac1-activated endocytosis. *J Biol Chem* **282**, 16599–16611.

315 Ben Hamida M, Bentati F & Ben Hamida C (1990) Hereditary motor system diseases (chronic juvenile amyotrophic lateral sclerosis). Conditions combining a bilateral pyramidal syndrome with limb and bulbar amyotrophy. *Brain* **113**(Pt 2), 347–363.

316 Lerman-Sagie T, Filiiano J, Smith DW & Korson M (1996) Infantile onset of hereditary ascending spastic paralysis with bulbar involvement. *J Child Neurol* **11**, 54–57.

317 Eymard-Pierre E, Lesca G, Dollet S, Santorelli FM, di Capua M, Bertini E & Boespflug-Tanguy O (2002) Infantile-onset hereditary ascending spastic paralysis is associated with mutations in the alsin gene. *Am J Hum Genet* **71**, 518–527.

318 Chen D-H, Raskind WH & Bird TD (2012) Spinocerebellar ataxia type 14. In Handbook of Clinical Neurology (Subramony SH & Dürr A, eds), pp. 555–559. Elsevier, Amsterdam.

319 Janzen E, Mendoza-Ferreira N, Hosseini-Barkooie S, Schneider S, Hupperich K, Tschanz T, Gysko V, Riessland M, Hammerschmidt M, Rigo F et al. (2018) CHPl reduction ameliorates spinal muscular atrophy pathology by restoring calcineurin activity and endocytosis. *Brain* **141**, 2343–2361.

320 Riessland M, Kaczmarek A, Schneider S, Swoboda KJ, Lohr H, Bradler C, Gysko V, Dimitriad M, Hosseini-Barkooie S, Torres-Benito L et al. (2017) Neurocalcin delta suppression protects against spinal muscular atrophy in humans and across species by restoring impaired endocytosis. *Am J Hum Genet* **100**, 297–315.

321 Kostich W, Hamman BD, LiYW, Naidu S, Dandapani K, Feng J, Easton A, Bourin C, Baker K, Allen J et al. (2016) Inhibition of AAK1 kinase as a novel therapeutic approach to treat neuropathic pain. *J Pharmacol Exp Ther* **358**, 371–386.

322 Zong W, Wang Y, Tang Q, Zhang H & Yu F (2018) Prd1 associates with the clathrin adaptor alpha-Adaptin and the kinesin-3 Imac/Unc-104 to govern dendrite pruning in Drosophila. *PLoS Biol* **16**, e2004506.

323 Head BP, Hu Y, Finley JC, Saldana MD, Bonds JA, Miyahara A, Niesman IR, Ali SS, Murray F, Insel PA et al. (2011) Neuron-targeted caveolin-1 protein enhances signaling and promotes arborization of primary neurons. *J Biol Chem* **286**, 33310–33321.

324 Kanamori T, Yoshino J, Yasunaga K, Dairyo Y & Emoto K (2015) Local endocytosis triggers dendritic thinning and pruning in Drosophila sensory neurons. *Nat Commun* **6**, 6515.

325 Yang WK, Peng YH, Li H, Lin HC, Lin YC, Lai TT, Suo H, Wang CH, Lin WH, Ou CY et al. (2011) Nak regulates localization of clathrin sites in higher-order dendrites to promote local dendrite growth. *Neuron* **72**, 285–299.

326 Nishimura T, Yamaguchi T, Tokunaga A, Hara A, Hamaguchi T, Kato K, Iwamatsu A, Okano H & Kaibuchi K (2006) Role of numb in dendritic spine development with a Cdc42 GEF intersectin and EphB2. *Mol Biol Cell* **17**, 1273–1285.

327 Li P, Merrill SA, Jorgensen EM & Shen K (2016) Two clathrin adaptor protein complexes instruct axon–dendrite polarity. *Neuron* **90**, 564–580.

328 Swanwick CC, Shapiro ME, Vicini S & Wenthold RJ (2010) Flotillin-1 promotes formation of glutamatergic synapses in hippocampal neurons. *Dev Neurobiol* **70**, 875–883.

329 Fan F, Funk L & Lou X (2016) Dynamin 1- and 3-mediated endocytosis is essential for the development of a large central synapse in vivo. *J Neurosci* **36**, 6097–6115.

330 Kurshan PT, Merril SA, Dong Y, Ding C, Hammarlund M, Bai J, Jorgensen EM & Shen K (2018) Gamma-Neurexin and frizzled intermediate parallel synapse assembly pathways antagonized by receptor endocytosis. *Neuron* **100**, 150–166 e4.

331 Norris GT & Kipnis J (2019) Immune cells and CNS physiology: microglia and beyond. *J Exp Med* **216**, 60–70.

332 Booth HDE, Hirst WD & Wade-Martins R (2017) The role of astrocyte dysfunction in Parkinson’s disease pathogenesis. *Trends Neurosci* **40**, 358–370.

333 Zuchero JB & Barres BA (2015) Glia in mammalian development and disease. *Development* **142**, 3805–3809.

334 Stadelmann C, Timmler S, Barrantes-Freer A & Simons M (2019) Myelin in the central nervous system: structure, function, and pathology. *Physiol Rev* **99**, 1381–1431.

335 Bar E & Barak B (2019) Microglia roles in synaptic plasticity and myelination in homeostatic conditions and neurodevelopmental disorders. *Glia* **67**, 2125–2141.

336 Singh A & Abraham WC (2017) Astrocytes and synaptic plasticity in health and disease. *Exp Brain Res* **235**, 1645–1655.
337 Megias L, Guerrı́ C, Fornas E, Azorin I, Bendala E, Sancho-Tello M, Durán JM, Tomáš G, Gomez-Lechon MJ & Renau-Piqueras J (2000) Endocytosis and transcytosis in growing astrocytes in primary culture. Possible implications in neural development. Int J Dev Biol 44, 209–221.

338 Jiang M & Chen G (2009) Ca2+ regulation of dynamin-independent endocytosis in cortical astrocytes. J Neurosci 29, 8063–8074.

339 Marchaland J, Cali C, Voglmaier SM, Li H, Regazzi R, Edwards RH & Bezzi P (2008) Fast subplasma membrane Ca2+ transients control exo-endocytosis of synaptic-like microvesicles in astrocytes. J Neurosci 28, 9122–9132.

340 Seal RP & Edwards RH (2006) The diverse roles of vesicular glutamate transporter 3. Handb Exp Pharmacol 175, 137–150.

341 Bento-Abreu A, Velasco A, Polo-Hernandez E, Lillo C, Kozyraki R, Taberner A & Medina JM (2009) Albumin endocytosis via megalin in astrocytes is caveola- and Dab-1 dependent and is required for the synthesis of the neurotrophic factor oleic acid. J Neurochem 111, 49–60.

342 Bergami M, Santi S, Formaggio E, Cagnoli C, Verderio C, Blum R, Berninger B, Matteoli M & Canossa M (2008) Uptake and recycling of pro-BDNF for transmitter-induced secretion by cortical astrocytes. J Cell Biol 183, 213–221.

343 Briens A, Bardou I, Lebas H, Miles LA, Parme RJ, Vivien D & Docagne F (2017) Astrocytes regulate the balance between plasminogen activation and plasmin clearance via cell-surface actin. Cell Discov 3, 17001.

344 Lee SJ, Seo BR & Koh JY (2015) Metallothionein-3 modulates the amyloid beta endocytosis of astrocytes through its effects on actin polymerization. Mol Brain 8, 84.

345 Dominguez-Prieto M, Velasco A, Taberner A & Medina JM (2018) Endocytosis and transcytosis of amyloid-beta peptides by astrocytes: a possible mechanism for amyloid-beta clearance in Alzheimer’s disease. J Alzheimers Dis 65, 1109–1124.

346 Mierczaska MB, Gregorczyk-Zboroch KP, Szule-Dabrowska L, Bosowska-Nowicka M, Wyzewski Z, Cymerys J, Chodkowski M, Kielbik P, Godlewski MM, Gierynska M et al. (2020) Participation of endosomes in toll-like receptor 3 transportation pathway in murine astrocytes. Front Cell Neurosci 14, 544612.

347 Doodnauth SA, Grinstein S & Maxson ME (2019) Constitutive and stimulated macrophagocytosis in macrophages: roles in immunity and in the pathogenesis of atherosclerosis. Philos Trans R Soc Lond B Biol Sci 374, 20180147.

348 Sierra A, Abiega O, Shahraz A & Neumann H (2013) Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 7, 6.

349 Fitzer D, Schnaars M, van Rossum D, Krishnamoorthy G, Dibaj P, Bakhti M, Regen T, Hanisch UK & Simons M (2011) Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J Cell Sci 124, 447–458.

350 Mandrekar S, Jiang Q, Lee CY, Koenigsknecht-Talboo J, Holtzman DM & Landreth GE (2009) Microglia mediate the clearance of soluble Abeta through fluid phase macropinocytosis. J Neurosci 29, 4252–4262.

351 Podlesny-Drabinio ak, Marcera E & Goate AM (2020) Microglial phagocytosis: a disease-associated process emerging from Alzheimer’s disease genetics. Trends Neurosci 43, 965–979.

352 Roberts K, Zeineddine R, Corcoran L, Li W, Campbell IL & Yerbury JJ (2013) Extracellular aggregated Cu/Zn superoxide dismutase activates microglia to give a cytotoxic phenotype. Glia 61, 409–419.

353 Liu J, Zhou Y, Wang Y, Fong H, Murray TM & Zhang J (2007) Identification of proteins involved in microglial endocytosis of alpha-synuclein. J Proteome Res 6, 3614–3627.

354 Choi I, Zhang Y, Seegobin SP, Pruvost M, Wang Q, Purtek K, Zhang B & Yue Z (2020) Microglia clear neuron-released alpha-synuclein via selective autophagy and prevent neurodegeneration. Nat Commun 11, 1386.

355 Lee HJ, Suk JE, Patrick C, Bae EJ, Cho JH, Rho S, Hwang D, Masliha E & Lee SJ (2010) Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem 285, 9262–9272.

356 Heckmann BL, Teubner BJW, Tummers B, Boada-Romero E, Harris L, Yang M, Guy CS, Zakihrenko SS & Green DR (2019) LC3-associated endocytosis facilitates beta-amyloid clearance and mitigates neurodegeneration in murine Alzheimer’s disease. Cell 178, 536–551 e14.

357 Fujikura M, Iwashara N, Hisahara S, Kawamata J, Matsumura A, Yokokawa K, Saito T, Manabe T, Matsushita T, Suzuki S et al. (2019) CD14 and toll-like receptor 4 promote fibrillar Abeta42 uptake by microglia through a clathrin-mediated pathway. J Alzheimers Dis 68, 323–337.

358 Winterstein C, Trotter J & Kramer-Albers EM (2008) Distinct endocytic recycling of myelin proteins promotes oligodendroglial membrane remodeling. J Cell Sci 121, 834–842.

359 Anitei M & Pfeiffer SE (2006) Myelin biogenesis: sorting out protein trafficking. Curr Biol 16, R418–R421.
360 Trajkovic K, Dhaunchak AS, Goncalves JT, Wenzel D, Schneider A, Bunt G, Nave KA & Simons M (2006) Neuron to glia signaling triggers myelin membrane exocytosis from endosomal storage sites. J Cell Biol 172, 937–948.

361 Choe Y, Huynh T & Pleasure SJ (2014) Migration of oligodendrocyte progenitor cells is controlled by transforming growth factor beta family proteins during corticogenesis. J Neurosci 34, 14973–14983.

362 Arno B, Grassivaro F, Rossi C, Bergamaschi A, Castiglioni V, Furlan R, Greter M, Favaro R, Comi G, Becher B et al. (2014) Neural progenitor cells orchestrate microglia migration and positioning into the developing cortex. Nat Commun 5, 5611.

363 Daynac M, Chouchane M, Collins HY, Murphy NE, Andor N, Niu J, Fancy SPJ, Stallcup WB & Petritsch CK (2018) Lgl1 controls NG2 endocytic pathway to regulate oligodendrocyte differentiation and asymmetric cell division and gliomagenesis. Nat Commun 9, 2862.

364 Moreau K, Fleming A, Imarisio S, Lopez Ramirez A, Mercer JL, Jimenez-Sanchez M, Bento CF, Puri C, Zavodszky E, Siddiqi F et al. (2014) PICALM modulates autophagy activity and tau accumulation. Nat Commun 5, 4998.

365 Tian Y, Chang JC, Fan EY, Flajolet M & Greengard P (2013) Adaptor complex AP2/PICALM, through interaction with LC3, targets Alzheimer’s APP-CTF for terminal degradation via autophagy. Proc Natl Acad Sci USA 110, 17071–17076.

366 Schubert KO, Focking M, Prehn JH & Cotter DR (2012) Hypothesis review: are clathrin-mediated endocytosis and clathrin-dependent membrane and protein trafficking core pathophysiological processes in schizophrenia and bipolar disorder? Mol Psychiatry 17, 669–681.

367 Bonncastle K, Davenport EC & Cousin MA (2021) Presynaptic dysfunction in neurodevelopmental disorders: Insights from the synaptic vesicle life cycle. J Neurochem 26, 179–207.

368 John A, Ng-Cordell E, Hanna N, Brkic D & Baker K (2021) The neurodevelopmental spectrum of synaptic vesicle cycling disorders. J Neurochem 157, 208–228.