Predicted Mutual Solubilities in Water + C₅-C₁₂ Hydrocarbon Systems. Results at 298 K

Marian Góral¹ and Paweł Oracz²,*

¹ Institute of Physical Chemistry, Polish Academy of Sciences (Emeritus), 44/52 Kasprzaka Street, 01-224 Warsaw, Poland; mgorald@gmail.com
² Faculty of Chemistry, University of Warsaw, 1 Pasteura Street, 02-093 Warsaw, Poland
* Correspondence: poracz@chem.uw.edu.pl

Abstract: Mutual solubilities of water with n-alkanes, cycloalkanes, iso-alkanes (branched alkanes), alkenes, alkynes, alkadienes, and alkylbenzenes were calculated at 298 K for 153 systems not yet measured. Recommended data for 64 systems reported in the literature were compared with the predicted values. The solubility of the hydrocarbons in water was calculated with a thermodynamically based equation, which depends on specific properties of the hydrocarbon. The concentration in the second coexisting liquid phase (water in hydrocarbon) was calculated using liquid-liquid equilibrium with an equation of state, which takes into account the self-association of water and co-association of water with π-bonds of the hydrocarbons.

Keywords: binary systems; liquid–liquid equilibria; reference data; hydrocarbon; water; aqueous solubility of hydrocarbon

1. Introduction

An example of liquid-liquid equilibrium, LLE, in a hydrocarbon + water system is shown in Figure 1.

Figure 1. Liquid-liquid equilibrium in benzene (1) + water (2) system under saturated vapor pressure; experimental mole fractions of benzene at various temperatures taken from different literature sources. Dashed line corresponds to the three-phase critical temperature.

Figure 1 is typical for systems investigated in this paper. The two liquids and vapor exist up to the three-phase critical temperature, T₃c. At T₃c, hydrocarbon-rich phase disappears, but water saturated with the hydrocarbon and the vapor still exists. The solubilities
in the coexisting phases are strongly asymmetric. The solubility of the hydrocarbon in the water-rich phase is very low. It exhibits a minimum at room temperature, which is shown in Figure 2. The water in hydrocarbon solubility is rapidly increasing, as a monotonic function of temperature. Unlike the benzene + water system, shown in Figure 1, many other systems are represented only by a few and often scattered experimental points.

![Figure 2. Solubility of benzene (1) in water (2), natural logarithm of mole fraction of benzene (1) in water (2), ln x₁, vs. temperature, T.](image)

Since these systems are of significant importance for chemical and related industry and environment protection, much effort has been made to develop suitable correlation and prediction methods. Among the correlation methods, the work of Tsonopoulos [1,2] results in suitable correlation equations. However, this excellent method has two disadvantages. First, both branches are correlated independently by different equations that are not thermodynamically interrelated. The second disadvantage is that these equations cannot be extended for systems for which no experimental data exist. Various attempts have been made to develop predictive methods. Among others, group contribution methods and equations of state incorporated with an association term were tested. The UNIFAC and the ASOG methods are the best-known group-contribution methods. We have calculated LLE in the representative group of selected water + hydrocarbon systems with below mentioned versions of the UNIFAC method and the ASOG method [3]. The original UNIFAC method and its modifications (Dortmund and Lyngby) are mostly intended to represent primarily VLE data and are not suitable for the quantitative prediction of LLE in hydrocarbon + water systems. Magnussen et al. [4] developed the UNIFAC-LLE method. This version was examined by Gupte and Danner [5] but reported results for hydrocarbon + water systems are rather ambiguous (the number of systems examined is small, and the precision of the reported deviations is insufficient for interpretation). According to our calculations, this method is also not suitable for the quantitative prediction of LLE in hydrocarbon + water systems. Hooper et al. [6] developed the modified UNIFAC method aimed at the prediction of liquid-liquid equilibria for water-organic liquid systems over a wide temperature range. This modified UNIFAC successfully represents the hydrocarbon-rich phase but cannot correctly predict the minimum solubility of hydrocarbons in water. Voutsas and Tassios [7] examined and modified this version of the UNIFAC method. They introduced the Flory–Huggins combinatorial contribution with adjusted r and q structural parameters for water and developed new interaction parameters for the H2O-CH2 and
H2O-ACH groups. This is probably the best attempt. However, while this is the first time this method predicted the minima fairly well, it still does not reproduce all the features of aqueous solutions of hydrocarbons. The main disadvantage is the inability to model alkene, alkyne, and alkylbenzene groups. The method was originally tested only for five systems with relatively low hydrocarbons, from \(n\)-pentane to \(n\)-octane, cyclohexane, and benzene. When we performed calculations for higher hydrocarbons, increased positive deviations in both solubilities were observed. We proposed [3] new and improved interaction parameters for water with the main groups CH2 and ACH.

In 2015, Kang et al. [8,9] published a comprehensive, newly modified UNIFAC parameter matrix, based on the same formulations as those used for the modified UNIFAC (Dortmund). In most cases, the authors used the same main- and subgroups and van der Waals properties as in modified UNIFAC (Dortmund). Parameters were fitted using critically evaluated phase equilibrium data stored in the NIST databank (including selected data for LLE). Critical evaluation of selected data was performed with the use of algorithms developed at NIST. Unfortunately, for the interaction parameters of the H2O group with the main-groups CH2, ACH, and ACCH2, the values are the same as previously in the modified UNIFAC (Dortmund) [10]. New interaction parameters have been proposed only for the interaction between the main-groups C=C and H2O.

Among the equations of state, the CPA [11–13], SAFT [12,14–16] APACT [14], PHCT [14], and Peng–Robinson [14,17] equations were applied to these systems. According to authors of these papers, these highly complex equations are not able to satisfactorily represent the experimental data and are not superior to the simple cubic Peng–Robinson equation with the simple van der Waals-type mixing rules. Since in all above equations of state some adjustable parameters must be fitted to experimental data, none of these equations can be considered as purely predictive as UNIFAC. Results of application are far from a satisfactory representation of data, particularly concerning the solubility of hydrocarbons in water. Vega et al. [15] obtained the solubility minima of \(n\)-alkanes in water using Soft-SAFT. However, these predicted minima did not quantitatively agree with recommended values, the representation of the other data points was not satisfactory, and these predictions cannot be regarded as qualitative. An exception is the successful application of the PC-SAFT to binary mixtures of \(n\)-alkanes and water as reported by Haarmann et al. [18].

A brief overview of the different methods (e.g., different versions of the SAFT equation) can be found in the works of Gupte and Danner [5], Vega et al. [15], Oracz and Góral [3], Safamirzaei and Modarress [19], Oliveira et al. [13], or Haarmann et al. [18] cited above. Other noteworthy methods are: the COSMO-RS method used by Klamt [20], the use of artificial neural networks by Safamirzaei and Modarress [19] (as an example of using ANNs for these problems), or the use of molecular dynamics methods by Morgado et al. [21].

The conclusion is that the reported predictive methods are of very limited value. Some of them fairly well predict the solubility of water in hydrocarbons, but they are usually unsatisfactory for predicting the solubility of hydrocarbons in water.

In our work, we analyzed all available binary solubility data for systems of water with \(n\)-alkanes, cycloalkanes, iso-alkanes (branched alkanes), alkenes, alkynes, alkadienes and alkylbenzenes. The resulting method of the LLE prediction was described in papers [22–25]. In this method, the calculation of such solubilities as those shown in Figure 1 consists of two steps:

1. Solubilities of hydrocarbons in water are approximated with a thermodynamically based equation described in the next section. The two coefficients of this equation are linearly dependent on the excluded volume of the hydrocarbon molecule, which enables prediction.

2. Solubilities of water in hydrocarbons are calculated using liquid–liquid equilibrium calculations. The input data for these calculations are concentrations in the second liquid phase predicted by the previously mentioned smoothing equation.

In these two steps, an extensive body of experimental data is described with a few adjustable parameters, providing a framework for the comparison of experimental data and
supporting the recognition of systematic error. During the adjustment of the parameters to a large number of experimental points, the experimental errors partially compensate each other, which makes the calculated solubilities more reliable than individual experimental points. Error analysis is given in papers [22–25]. The method approximates numerical experimental values with analytical equations, allowing for temperature interpolation and extrapolation, which is important for engineering practice. It is also possible to make extrapolations to other systems not investigated experimentally.

The calculated solubilities were used as the reference values for the evaluation of experimental data in volume 81 of the IUPAC Solubility Data Series [26–37]. Based on all available literature data, the experimental recommended data for the mutual solubility of water with hydrocarbons for 64 systems were proposed. In this paper, this set of recommended data is appended with mutual solubilities at 298.15 K for 153 systems, which were not investigated experimentally. The prediction can also be applied at other temperatures and for other hydrocarbons using programs and databases described in this paper. We believe that our work reduces the necessity for further measurements in this field. (However, some independent measurements would be useful for testing our predictions).

2. Solubility of Hydrocarbons in Water

To show more detail, the left part of Figure 1 is plotted in Figure 2 using other coordinates. The shape of the curve shown in Figure 2 is typical for \(n \)-alkanes, cycloalkanes, iso-alkanes (branched alkanes), alkenes, alkynes, alkadienes, and alkylbenzenes, but their solubilities are quite different. The reference data in [23,25] show that, for example, the mole fraction of benzene in water at 298.15 K is \(4 \times 10^{-4} \), whereas for decane it decreases to \(3 \times 10^{-9} \).

The mole fraction of the hydrocarbon in water, \(x_h \), at temperature \(T \) along the three-phase equilibrium line is described by a thermodynamic equation:

\[
[\partial \ln x_h / \partial (1/T)]_P \cong -\Delta_{sln} h_h / R,
\]

where \(\Delta_{sln} h_h \) is the partial molar enthalpy of solution of the hydrocarbon. The calorimetric measurements suggest that \(\Delta_{sln} h_h \) is a linearly increasing function of temperature going through zero at a temperature \(T_{min} \). In this case, \(\Delta_{sln} h_h \) can be approximated with the equation:

\[
\Delta_{sln} h_h / R = C_h \cdot (T - T_{min}).
\]

Integration of Equation (1) with \(\Delta_{sln} h_h \) as expressed with Equation (2) yields Equation (3):

\[
\ln x_h = \ln x_{h,min} + C_h \cdot f(T/T_{min}),
\]

where \(x_{h,min} \) is the minimum value of \(x_h \) at \(T = T_{min} \). The function \(f(T/T_{min}) \) results from the integration of Equation (2):

\[
f(T/T_{min}) = T_{min}/T - \ln(T_{min}/T) - 1.
\]

For alkylbenzenes, instead of Equation (2), a logarithmic function was assumed, which leads to Equation (5):

\[
g(T/T_{min}) = (T_{min}/T) \ln(T_{min}/T) - (T_{min}/T) + 1.
\]

Equation (3) was used for approximation of experimental solubility data of the hydrocarbons. An example is shown in Figure 2, where the approximating curve is calculated with Equations (3) and (5). At the beginning of the investigation, \(\ln x_{h,min}, T_{min} \) and \(C_h \) in Equation (3) were treated as adjustable parameters. After the analysis of experimental data, it was found (see papers [22–25]) that \(T_{min} \) is constant for a given class of hydrocarbons, whereas \(\ln x_{h,min} \) and \(C_h \) depend linearly on the excluded volume, \(b_h \), of the hydrocar-
bon. The excluded volume is used in equations of state of van der Waals type. Here, the Redlich–Kwong Equation of state (RK EoS) is used, where \(b \) is calculated with:

\[
b = 0.08664 \cdot \frac{RT_c}{P_c}.
\]

In the above equation \(T_c \) is the critical temperature and \(P_c \) is the critical pressure of the corresponding substance.

An example of the mentioned linear dependence is shown in Figure 3 (Others are given in papers [22–25].)

![Figure 3](image_url)

Figure 3. \(ln x_{min} \) used in Equation (3) vs. excluded volume of the corresponding alkane, \(b \left(b_h \right) \). Where symbols represent: □, \(n \)-alkanes; ○, cycloalkanes; Δ, isoalkanes. The alkanes are listed below in increasing order of \(h \)-bonds in the hydrocarbon, e.g., \(L_h = 1 \) for alkenes, \(L_h = 2 \) for alkadienes and alkynes, and \(L_h = 4 \) for alkadiynes. If \(L_h = 0 \), then Equation (7) describes the solubility of \(n \)-alkanes, iso-alkanes, and cycloalkanes.

The linear dependences introduced into Equation (3) give a general formula for \(n \)-alkanes, branched alkanes, and cycloalkanes as well as unsaturated hydrocarbons:

\[
ln x_h = c_1 + c_2 b_h + c_3 L_h + c_5 b_h f(T/T_{min}),
\]

where \(L_h \) is the number of \(\pi \)-bonds in the hydrocarbon, e.g., \(L_h = 1 \) for alkenes, \(L_h = 2 \) for alkadienes and alkynes, and \(L_h = 4 \) for alkadiynes. If \(L_h = 0 \), then Equation (7) describes the solubility of \(n \)-alkanes, iso-alkanes, and cycloalkanes.

The analogous linear relations for \(ln x_h, min \) hold for alkylbenzenes, introduced into Equation (3) give:

\[
ln x_h = (c_4 + c_5 b_h) + (c_6 + c_7 b_h) g(T/T_{min}),
\]

where \(c_\pi \) and \(c_1 \sim c_7 \) in Equations (7) and (8) as well as the corresponding values of \(T_{min} \) were obtained from simultaneous regression of all experimental solubility data reported in literature for given class of hydrocarbons. Prior to regression, the plots of the solubility data were inspected in order to remove evidently outlying experimental points. After the regression, the most outlying point was removed and the remaining points were regressed once more, yielding new a estimation of the standard deviation. This
procedure was repeated until the deviation of the most outlying point in the remaining
data set did not exceed three times the estimated standard deviation.

The following values of the parameters in Equation (7) were obtained: \(c_1 = -4.08 \),
\(c_2 / \text{mol} \cdot \text{cm}^{-3} = -0.073; c_3 / \text{mol} \cdot \text{cm}^{-3} = 0.376; c_T = 1.10 \), or \(c_T = 0.79 \) for conjugated \(\pi \)-bonds;
\(T_{\text{min}} / K = 298 \) (cycloalkanes); \(T_{\text{min}} / K = 306 \) (other hydrocarbons).

The values of the coefficients in Equation (8) are as follows \(c_4 = -2.605 \);
\(c_5 / \text{mol} \cdot \text{cm}^{-3} = -0.063; c_6 = 7.98; c_7 / \text{mol} \cdot \text{cm}^{-3} = 0.267; T_{\text{min}} / K = 290 \).

Equations (7) and (8) with the obtained coefficients \(c_1 \text{--} c_7 \) are valid at least up to
\(T_{3c} \). Error analysis is given in papers [22–25]. It shows that standard deviation of the
calculated \(x_h \) depends on \(T \) and \(b_h \), but in all cases it is below 10% of the calculated \(x_h \).
Equations (7) and (8) approximate together almost 1000 experimental points for 64 systems
using a relatively small number of adjustable parameters. The analysis of the deviations
shows that they are randomly distributed and can be ascribed mainly to error of
the experimental data. No trends were observed. In such a situation, the experimental
random errors compensate each other during the regression, which makes the resulting
Equations (7) and (8) more accurate than individual experimental points. Linear dependences
such as that shown in Figure 3 were very useful for disclosing systematic errors of
hydrocarbon solubility data.

There were no cases when measurements from different laboratories agreed with each
other but not did not agree with the calculated values. As a rule, discrepancies occurred in
systems represented by a few experimental points measured by one laboratory. Based on
tests described in papers [22–25], we conclude that the observed discrepancies between
experimental and calculated values result mainly from errors in the experimental data.
Additionally, the accuracy of the prediction also depends on the accuracy of the
excluded volume, \(b \), used as the input data in the Equations (7) or (8). The influence of \(b \)
can be easily estimated from these equations. To estimate this, we calculated values of \(b \)
from experimental \(T_c \) and \(P_c \) for \(n \)-alkanes from pentane to hexadecane. These values of \(b \)
were plotted vs. the number of carbon atoms. From this plot, we estimated the standard
deviation of \(b \) for this series is below 1 cm\(^3\) mol\(^{-1}\). This corresponds to a standard deviation
of \(x_h \) at room temperature equal to about 7% whereas the estimated standard deviation
of the experimental mole fractions is about 30%. However, for some hydrocarbons, error
in \(b \) can be much greater, so values of \(b \) calculated from experimental or predicted critical
parameters must be selected with care before using them in the Equations (7) or (8).

The above parameters, and estimates of accuracy, are for mixtures with of \(n \)-alkanes,
cycloalkanes, iso-alkanes, alkenes, alkadienes, alkynes, and alkylbenzenes having the
number of carbon atoms between five and eleven. This limit is particularly important for
alkanes. For heavier alkanes, the observed linearity shown in Figure 3 changes rapidly.

3. Solubility of Water in Hydrocarbons

Component concentrations in two coexisting liquid phases are related to each other by
thermodynamic constraints of phase equilibrium. Hence, the solubility in one phase can be
calculated using the concentration of the second liquid phase as the input data. To make
such calculations, Economou and Tsonopoulos [14] applied equations of state SAFT and
APACT for water + alkane systems. They started from the experimental solubility of water
in hydrocarbons and tried to calculate the solubility curve of the alkanes in analogy to that
shown in Figure 2. In conclusion, the authors wrote: “We have tested several models of
hydrogen bonding for water as well as different mixing rules and found that none of these
theories provide a quantitative estimate of the \(n \)-alkane solubility in water nor do they predict the \(n \)-alkane solubility minimum”.

In this work, the solubility of water in hydrocarbons was calculated by a method
developed by Göral [38]. The method of correlation is called EoSC (Equation of State +
Chemical term). In this method, a pure liquid is described by the cubic equation of state
(EoS) with properly adjusted “effective” parameters. This approach is widely used in
methods, which extends cubic EoS to associating mixtures using complicated mixing rules
Calculated mutual solubilities in hydrocarbon + water systems at 298.00 K, Table 1. It should be noted that these data were not critically evaluated. The input information for the LLE correlation is the solubility of a hydrocarbon in water, \(x_h \), calculated with Equation (7) or Equation (8). The output is the solubility of water, \(x_w \), in the hydrocarbon as a function of temperature. It is calculated from the constraints of chemical potentials at equilibrium:

\[
\mu_h^{(1)}(x_h, \Theta) = \mu_h^{(2)}(x_w, \Theta), \tag{9a}
\]

\[
\mu_w^{(1)}(x_h, \Theta) = \mu_w^{(2)}(x_w, \Theta), \tag{9b}
\]

where \(\mu_h^{(1)} \), \(\mu_h^{(2)} \), \(\mu_w^{(1)} \), and \(\mu_w^{(2)} \) are the chemical potentials of hydrocarbon and water in the first and the second phase, respectively. Equations (9a) and (9b) contain one adjustable binary parameter, \(\Theta \), in the physical part of the EoSC. Otherwise, the chemical potentials are based on a model of association. Once the parameters of the model are fixed, Equations (9a) and (9b) at given temperature and under the saturated vapor pressure contain three variables, \(x_h \), \(x_w \), and \(\Theta \), where the hydrocarbon solubility, \(x_h \), is known from the smoothing equations (Equations (7) or (8)) described in the previous section. Thus, two unknown quantities, \(\Theta \) and \(x_w \)-mole fractions of water in the hydrocarbon, can be found by solving Equations (9a) and (9b). Such treatment ensures internal thermodynamic consistency between both branches of the solubility curve. Additional comments are presented in Appendix A.

The standard deviation of the calculated mole fraction of water in hydrocarbon does not exceed 5% at room temperatures and increases to about 10% at elevated temperatures, say sixty degrees below \(T_{3c} \).

4. Calculated Solubility Values

The calculated values for 217 systems at 298 K are listed below in Table 1. In the same table, the experimental values are given for 64 systems. This set of recommended data was selected from all available data reported in the literature. For 153 other systems, only the predicted solubilities given in Table 1 are available. In this paper, prediction is limited to these hydrocarbons, for which critical parameters have been measured. The prediction of the mutual solubility in other hydrocarbon + water systems is also possible, but one has to estimate values of the critical constants using one of the methods published in literature.

Table 1. Calculated mutual solubilities in hydrocarbon + water systems at 298.00 K, \(x_h \)-mole fraction of hydrocarbon in water, \(x_w \)-mole fraction of water in the hydrocarbon. Whenever possible the recommended experimental data taken from [23–25] and/or [26–37] are reported in the second row. Aqueous solubilities for six hydrocarbons at 298.15 K measured by Dohányosová et al. [39] are included for comparison. For five of them, there was no prior experimental data. It should be noted that these data were not critically evaluated.

Formula	Name	CAS RN	\(x_h \)	\(x_w \)
\(\text{C}_5\text{H}_6 \)	1,3-Cyclopentadiene	542-92-7	1.50 \(\times \) 10^{-4}	1.93 \(\times \) 10^{-3}
\(\text{C}_5\text{H}_8 \)	Cyclopentene	142-29-0	1.89 \(\times \) 10^{-4}	1.33 \(\times \) 10^{-3}
\(\text{C}_5\text{H}_8 \)	2-Methyl-1,3-butadiene	78-79-5	1.38 \(\times \) 10^{-4}	1.98 \(\times \) 10^{-3}
\(\text{C}_5\text{H}_8 \)	3-Methyl-1,2-butadiene	598-25-4	3.63 \(\times \) 10^{-4}	3.44 \(\times \) 10^{-3}
\(\text{C}_5\text{H}_8 \)	3-Methyl-1-butyne	598-23-2	4.69 \(\times \) 10^{-4}	3.47 \(\times \) 10^{-3}
\(\text{C}_5\text{H}_8 \)	1,2-Pentadiene	591-95-7	2.42 \(\times \) 10^{-4}	3.39 \(\times \) 10^{-3}
\(\text{C}_5\text{H}_8 \)	cis-1,3-Pentadiene	1574-41-0	1.07 \(\times \) 10^{-4}	1.95 \(\times \) 10^{-3}
Table 1. Cont.

Formula	Name	CAS RN	x_h	x_w
C₅H₆	trans-1,3-Pentadiene	2004-70-8	1.02×10^{-4}	1.97×10^{-3}
C₅H₆	1,4-Pentadiene	591-93-5	2.54×10^{-4}	3.50×10^{-3}
C₅H₆	2,3-Pentadiene	591-96-8	2.92×10^{-4}	3.41×10^{-3}
C₅H₈	1-Pentyne	627-19-0	3.58×10^{-4}	3.43×10^{-3}
C₅H₈	2-Pentyne	627-21-4	2.60×10^{-4}	3.40×10^{-3}
C₅H₁₀	Cyclopentane	287-92-3	4.31×10^{-5}	3.86×10^{-4}
C₅H₁₀	2-Methyl-1-butene	563-46-2	7.42×10^{-5}	1.55×10^{-3}
C₅H₁₀	2-Methyl-2-butene	513-35-9	7.31×10^{-5}	1.50×10^{-3}
C₅H₁₀	3-Methyl-1-butene	563-45-1	6.23×10^{-5}	1.68×10^{-3}
C₅H₁₀	1-Pentene	109-67-1	4.90×10^{-5}	1.63×10^{-3}
C₅H₁₀	cis-2-Pentene	627-20-3	5.38×10^{-5}	1.55×10^{-3}
C₅H₁₀	trans-2-Pentene	646-04-8	5.67×10^{-5}	1.55×10^{-3}
C₅H₁₂	2-Methylbutane	78-78-4	1.33×10^{-5}	6.61×10^{-4}
C₆H₁₂	Pentane	109-66-0	1.12×10^{-5}	6.26×10^{-4}
C₆H₆	Benzene	71-43-2	4.09×10^{-4}	2.94×10^{-3}
C₆H₆	1,4-Cyclohexadiene	628-41-1	2.19×10^{-4}	3.43×10^{-3}
C₆H₁₀	Cyclohexene	110-83-8	5.35×10^{-5}	1.34×10^{-3}
C₆H₁₀	1,5-Hexadiene	592-42-7	6.46×10^{-5}	3.34×10^{-3}
C₆H₁₀	1-Hexyne	693-02-7	8.58×10^{-5}	3.32×10^{-3}
C₆H₁₂	Cyclohexane	110-82-7	1.33×10^{-5}	4.00×10^{-4}
C₆H₁₂	2,3-Dimethyl-1-butene	563-78-0	2.98×10^{-5}	1.51×10^{-3}
C₆H₁₂	2,3-Dimethyl-2-butene	563-79-1	1.34×10^{-5}	1.49×10^{-3}
C₆H₁₂	3,3-Dimethyl-1-butene	558-37-2	2.75×10^{-5}	1.62×10^{-3}
C₆H₁₂	2-Ethyl-1-butene	760-21-4	2.42×10^{-5}	1.48×10^{-3}
C₆H₁₂	1-Hexene	592-41-6	1.12×10^{-5}	1.57×10^{-3}
C₆H₁₂	cis-2-Hexene	7688-21-3	1.47×10^{-5}	1.89×10^{-3}
C₆H₁₂	trans-2-Hexene	4050-45-7	9.37×10^{-6}	1.56×10^{-3}
C₆H₁₂	cis-3-Hexene	7642-09-3	1.57×10^{-5}	1.51×10^{-3}
C₆H₁₂	trans-3-Hexene	13269-52-8	9.51×10^{-6}	1.56×10^{-3}
C₆H₁₂	Methylcyclopentane	96-37-7	1.03×10^{-5}	4.52×10^{-4}
C₆H₁₂	2-Methyl-1-pentene	763-29-1	2.12×10^{-5}	1.51×10^{-3}
Formula	Name	CAS RN	x_h	x_w
---------	-------------------------------	---------	-------------	-----------
C₆H₁₂	2-Methyl-2-pentene	625-27-4	1.87×10^{-5}	1.49×10^{-3}
C₆H₁₂	3-Methyl-1-pentene	760-20-3	2.56×10^{-5}	1.53×10^{-3}
C₆H₁₂	cis-3-Methyl-2-pentene	922-62-3	1.87×10^{-5}	1.49×10^{-3}
C₆H₁₂	trans-3-Methyl-2-pentene	616-12-6	1.11×10^{-5}	1.53×10^{-3}
C₆H₁₂	4-Methyl-1-pentene	691-37-2	2.13×10^{-5}	1.56×10^{-3}
C₆H₁₂	cis-4-Methyl-2-pentene	691-38-3	2.00×10^{-5}	1.55×10^{-3}
C₆H₁₂	trans-4-Methyl-2-pentene	674-76-0	1.18×10^{-5}	1.59×10^{-3}
C₆H₁₄	2,2-Dimethylbutane	75-83-2	4.08×10^{-6}	6.70×10^{-4}
C₆H₁₄	2,3-Dimethylbutane	79-29-8	3.85×10^{-6}	6.25×10^{-4}
C₆H₁₄	Hexane	110-54-3	2.43×10^{-6}	6.09×10^{-4}
C₆H₁₄	2-Methylpentane	107-83-5	2.88×10^{-6}	6.41×10^{-4}
C₆H₁₄	3-Methylpentane	96-14-0	3.48×10^{-6}	6.04×10^{-4}
C₇H₈	1,3,5-Cycloheptatriene	544-25-2	1.13×10^{-4}	3.37×10^{-3}
C₇H₈	Methylbenzene	108-88-3	1.09×10^{-4}	2.81×10^{-3}
C₇H₁₂	1-Heptyne	628-71-7	1.98×10^{-5}	3.21×10^{-3}
C₇H₁₂	1-Methylcyclohexene	591-49-1	1.23×10^{-5}	1.37×10^{-3}
C₇H₁₄	Cycloheptane	291-64-5	4.30×10^{-6}	3.88×10^{-4}
C₇H₁₄	1,1-Dimethylcyclopentane	1638-26-2	3.58×10^{-6}	4.90×10^{-4}
C₇H₁₄	cis-1,2-Dimethylcyclopentane	1192-18-3	2.71×10^{-6}	4.73×10^{-4}
C₇H₁₄	trans-1,2-Dimethylcyclopentane	822-50-4	3.25×10^{-6}	4.84×10^{-4}
C₇H₁₄	cis-1,3-Dimethylcyclopentane	2532-58-3	3.38×10^{-6}	4.85×10^{-4}
C₇H₁₄	trans-1,3-Dimethylcyclopentane	1759-58-6	3.25×10^{-6}	4.85×10^{-4}
C₇H₁₄	Ethylcyclopentane	1640-89-7	2.50×10^{-6}	4.65×10^{-4}
C₇H₁₄	1-Heptene	592-76-7	2.43×10^{-6}	1.54×10^{-3}
C₇H₁₄	2-Heptene	592-77-8	3.63×10^{-6}	1.51×10^{-3}
C₇H₁₄	Methylcyclohexane	108-87-2	2.90×10^{-6}	4.66×10^{-4}
C₇H₁₄	2,3,3-Trimethyl-1-butene	594-56-9	3.16×10^{-6}	1.62×10^{-3}
C₇H₁₆	3-Ethylpentane	617-78-7	9.24×10^{-7}	5.82×10^{-4}
C₇H₁₆	2,2-Dimethylpentane	590-35-2	8.84×10^{-7}	6.60×10^{-4}
Table 1. Cont.

Formula	Name	CAS RN	\(x_h\)	\(x_w\)
\(\text{C}_7\text{H}_{16}\)	2,3-Dimethylpentane	565-59-3	1.05 \times 10^{-6}	5.90 \times 10^{-4}
\(\text{C}_7\text{H}_{16}\)	2,4-Dimethylpentane	108-08-7	8.04 \times 10^{-7}	6.58 \times 10^{-4}
\(\text{C}_7\text{H}_{16}\)	3,3-Dimethylpentane	562-49-2	1.21 \times 10^{-6}	5.99 \times 10^{-4}
\(\text{C}_7\text{H}_{16}\)	Heptane	142-82-5	5.31 \times 10^{-7}	6.00 \times 10^{-4}
\(\text{C}_7\text{H}_{16}\)	2-Methylhexane	591-76-4	6.32 \times 10^{-7}	6.23 \times 10^{-4}
\(\text{C}_7\text{H}_{16}\)	3-Methylhexane	589-34-4	7.69 \times 10^{-7}	6.02 \times 10^{-4}
\(\text{C}_7\text{H}_{16}\)	2,2,3-Trimethylbutane	464-06-2	1.33 \times 10^{-6}	7.51 \times 10^{-4}
\(\text{C}_8\text{H}_{10}\)	1,2-Dimethylbenzene	95-47-6	3.55 \times 10^{-5}	2.62 \times 10^{-3}
\(\text{C}_8\text{H}_{10}\)	1,3-Dimethylbenzene	108-38-3	2.74 \times 10^{-5}	2.68 \times 10^{-3}
\(\text{C}_8\text{H}_{10}\)	1,4-Dimethylbenzene	106-42-3	2.63 \times 10^{-5}	2.68 \times 10^{-3}
\(\text{C}_8\text{H}_{10}\)	Ethylbenzene	100-41-4	3.19 \times 10^{-5}	2.67 \times 10^{-3}
\(\text{C}_8\text{H}_{14}\)	1,7-Octadiene	3710-30-3	2.92 \times 10^{-6}	3.11 \times 10^{-3}
\(\text{C}_8\text{H}_{14}\)	1-Octyne	629-05-0	4.36 \times 10^{-6}	3.12 \times 10^{-3}
\(\text{C}_8\text{H}_{16}\)	Cyclooctane	292-64-8	1.22 \times 10^{-6}	3.97 \times 10^{-4}
\(\text{C}_8\text{H}_{16}\)	1,1-Dimethylcyclohexane	590-66-9	1.02 \times 10^{-6}	4.83 \times 10^{-4}
\(\text{C}_8\text{H}_{16}\)	\textit{cis}-1,2-Dimethylcyclohexane	2207-01-4	7.89 \times 10^{-7}	4.69 \times 10^{-4}
\(\text{C}_8\text{H}_{16}\)	\textit{trans}-1,2-Dimethylcyclohexane	6876-23-9	9.27 \times 10^{-7}	4.78 \times 10^{-4}
\(\text{C}_8\text{H}_{16}\)	\textit{cis}-1,3-Dimethylcyclohexane	638-04-0	1.00 \times 10^{-6}	4.80 \times 10^{-4}
\(\text{C}_8\text{H}_{16}\)	\textit{trans}-1,3-Dimethylcyclohexane	2207-03-6	9.01 \times 10^{-7}	4.76 \times 10^{-4}
\(\text{C}_8\text{H}_{16}\)	\textit{cis}-1,4-Dimethylcyclohexane	624-29-3	9.01 \times 10^{-7}	4.76 \times 10^{-4}
\(\text{C}_8\text{H}_{16}\)	\textit{trans}-1,4-Dimethylcyclohexane	2207-04-7	1.02 \times 10^{-6}	4.83 \times 10^{-4}
\(\text{C}_8\text{H}_{16}\)	Ethylcyclohexane	1678-91-7	7.72 \times 10^{-7}	4.63 \times 10^{-4}
\(\text{C}_8\text{H}_{16}\)	1-Ethyl-1-methylcyclopentane	16747-50-5	5.3410^{-7}	5.27 \times 10^{-4}
\(\text{C}_8\text{H}_{16}\)	1-Octene	111-66-0	4.72 \times 10^{-7}	1.52 \times 10^{-3}
\(\text{C}_8\text{H}_{16}\)	\textit{trans}-2-Octene	13389-42-9	8.59 \times 10^{-7}	1.47 \times 10^{-3}
\(\text{C}_8\text{H}_{16}\)	Propylcyclopentane	2040-96-2	5.24 \times 10^{-7}	4.87 \times 10^{-4}
\(\text{C}_8\text{H}_{16}\)	1,1,2-Trimethylcyclopentane	4259-00-1	5.42 \times 10^{-7}	5.54 \times 10^{-4}
Formula	Name	CAS	x_h	x_w
----------	-----------------------------------	--------	-----------------	-----------------
C₈H₁₈	1,1,3-Trimethylcyclopentane	4516-69-2	4.28×10^{-7}	6.06×10^{-4}
C₈H₁₈	2,2-Dimethylhexane	590-73-8	1.88×10^{-7}	2.01×10^{-7} [39]
C₈H₁₈	2,3-Dimethylhexane	584-94-1	2.21×10^{-7}	5.98×10^{-4}
C₈H₁₈	2,4-Dimethylhexane	589-43-5	2.00×10^{-7}	6.32×10^{-4}
C₈H₁₈	3,3-Dimethylhexane	563-16-6	2.47×10^{-7}	6.11×10^{-4}
C₈H₁₈	2,5-Dimethylhexane	592-13-2	1.56×10^{-7}	1.79×10^{-7} [39]
C₈H₁₈	3-ethylhexane	619-99-8	1.94×10^{-7}	5.94×10^{-4}
C₈H₁₈	3-Ethyl-2-methylpentane	609-26-7	2.75×10^{-7}	5.86×10^{-4}
C₈H₁₈	3-Ethyl-3-methylpentane	1067-08-9	3.56×10^{-7}	5.63×10^{-4}
C₈H₁₈	2-Methylheptane	592-27-8	1.22×10^{-7}	6.28×10^{-4}
C₈H₁₈	3-Methylheptane	589-81-1	1.55×10^{-7}	1.25×10^{-7} [23]
C₈H₁₈	4-Methylheptane	589-53-7	1.54×10^{-7}	6.12×10^{-4}
C₈H₁₈	Octane	111-65-9	1.03×10^{-7}	1.04×10^{-7} [23]
C₈H₁₈	2,2,3,3-Tetramethylbutane	594-82-1	5.23×10^{-7}	5.21×10^{-4}
C₈H₁₈	2,2,3-Trimethylpentane	564-02-3	3.33×10^{-7}	6.00×10^{-4}
C₈H₁₈	2,2,4-Trimethylpentane	540-84-1	2.53×10^{-7}	6.69×10^{-4}
C₈H₁₈	2,3,3-Trimethylpentane	560-21-4	3.91×10^{-7}	5.71×10^{-4}
C₈H₁₂	1-Ethyl-2-methylbenzene	611-14-3	1.00×10^{-5}	1.12×10^{-5} [25]
C₈H₁₂	1-Ethyl-3-methylbenzene	620-14-4	7.81×10^{-6}	2.57×10^{-3}
C₈H₁₂	1-Ethyl-4-methylbenzene	622-96-8	6.63×10^{-6}	2.56×10^{-3}
C₈H₁₂	(1-Methylethyl)benzene	98-82-8	1.00×10^{-5}	1.09×10^{-5} [25]
C₈H₁₂	Propylbenzene	103-65-1	8.85×10^{-6}	8.23×10^{-6} [25]
C₉H₁₆	1-Nonyne	3452-09-3	0.92×10^{-6}	1.00×10^{-6} [24]
C₉H₁₈	Butylcyclopentane	2040-95-1	9.86×10^{-8}	5.08×10^{-4}
C₉H₁₈	(1-Methylethyl)cyclohexane	696-29-7	1.18×10^{-7}	5.26×10^{-4}
C₉H₁₈	1-Nonen	124-11-8	7.98×10^{-8}	1.51×10^{-3}
C₉H₁₈	Propylcyclohexane	1678-92-8	9.03×10^{-8}	5.19×10^{-4}
C₉H₂₀	3,3-Diethylpentane	1067-20-5	1.54×10^{-7}	5.22×10^{-4}
C₉H₂₀	2,2-Dimethylheptane	1071-26-7	4.20×10^{-8}	6.38×10^{-4}
C₉H₂₀	2,3-Dimethylheptane	3074-71-3	4.08×10^{-8}	6.11×10^{-4}
C₉H₂₀	2,4-Dimethylheptane	2213-23-2	5.10×10^{-8}	6.22×10^{-4}
C₉H₂₀	2,5-Dimethylheptane	2216-30-0	4.69×10^{-8}	6.17×10^{-4}
C₉H₂₀	2,6-Dimethylheptane	1072-05-5	3.63×10^{-8}	6.36×10^{-4}
C₉H₂₀	3,3-Dimethylheptane	4032-86-4	6.66×10^{-8}	5.97×10^{-4}
Formula	Name	CAS RN	x_h	x_w
----------	----------------------------------	----------	-------------	-------------
C₆H₁₆	3,4-Dimethylheptane	922-28-1	5.35·10⁻⁸	5.96·10⁻⁴
C₆H₁₆	3,5-Dimethylheptane	926-82-9	6.14·10⁻⁸	6.02·10⁻⁴
C₆H₁₆	4,4-Dimethylheptane	1068-19-5	7.00·10⁻⁸	6.04·10⁻⁴
C₆H₁₆	3-Ethyl-1,2,2-dimethylpentane	16747-32-3	1.00·10⁻⁷	5.88·10⁻⁴
C₆H₁₆	3-Ethyl-1,3-dimethylpentane	16747-33-4	1.37·10⁻⁷	5.32·10⁻⁴
C₆H₁₆	3-Ethyl-2-methylhexane	16789-46-1	5.79·10⁻⁸	5.99·10⁻⁴
C₆H₁₆	3-Ethyl-3-methylhexane	3074-76-8	1.02·10⁻⁷	5.60·10⁻⁴
C₆H₁₆	3-Ethyl-4-methylhexane	3074-77-9	7.31·10⁻⁸	5.77·10⁻⁴
C₆H₁₆	3-Ethyl-2,4-dimethylpentane	1068-87-7	6.60·10⁻⁸	6.00·10⁻⁴
C₆H₁₆	4-Ethylheptane	2216-32-2	4.86·10⁻⁸	5.94·10⁻⁴
C₆H₁₆	3-Ethylheptane	15869-80-4	4.59·10⁻⁸	5.92·10⁻⁴
C₆H₁₆	2-Methyloctane	3221-61-2	2.72·10⁻⁸	6.18·10⁻⁴
C₆H₁₆	4-Methyloctane	2216-34-4	3.53·10⁻⁸	6.07·10⁻⁴
C₆H₁₆	Nonane	111-84-2	1.91·10⁻⁸	6.08·10⁻⁴
			1.71·10⁻⁸	5.60·10⁻⁴
C₆H₁₆	2,2,3,3-Tetramethylpentane	7154-79-2	1.49·10⁻⁷	5.49·10⁻⁴
C₆H₁₆	2,2,3,4-Tetramethylpentane	1186-53-4	7.70·10⁻⁸	6.16·10⁻⁴
C₆H₁₆	2,2,4,4-Tetramethylpentane	1070-87-7	9.23·10⁻⁸	6.45·10⁻⁴
C₆H₁₆	2,3,3,4-Tetramethylpentane	16747-38-9	1.11·10⁻⁷	5.62·10⁻⁴
C₆H₁₆	2,2,3-Trimethylhexane	16747-25-4	7.53·10⁻⁸	6.14·10⁻⁴
C₆H₁₆	2,2,4-Trimethylhexane	16747-26-5	7.21·10⁻⁸	6.34·10⁻⁴
C₆H₁₆	2,2,5-Trimethylhexane	3522-94-9	5.67·10⁻⁸	6.60·10⁻⁴
			5.34·10⁻⁴	23
C₆H₁₆	2,3,3-Trimethylhexane	16747-28-7	8.91·10⁻⁸	5.83·10⁻⁴
C₆H₁₆	2,3,4-Trimethylhexane	921-47-1	6.05·10⁻⁸	5.99·10⁻⁴
C₆H₁₆	2,3,5-Trimethylhexane	1069-53-0	5.58·10⁻⁸	6.29·10⁻⁴
C₆H₁₆	2,4,4-Trimethylhexane	16747-30-1	8.22·10⁻⁸	6.12·10⁻⁴
C₆H₁₆	3,3,4-Trimethylhexane	16747-31-2	1.08·10⁻⁷	5.62·10⁻⁴
C₁₀H₁₄	Butylbenzene	104-51-8	2.35·10⁻⁶	2.46·10⁻³
			2.40·10⁻⁶	[25
C₁₀H₁₄	sec-Butylbenzene	135-98-8	2.84·10⁻⁶	2.51·10⁻³
			2.63·10⁻⁶	[25
C₁₀H₁₄	tert-Butylbenzene	98-06-6	2.19·10⁻⁶	2.53·10⁻³
C₁₀H₁₄	1,2-Diethylbenzene	135-01-3	2.19·10⁻⁶	2.47·10⁻³
C₁₀H₁₄	1,3-Diethylbenzene	141-93-5	2.32·10⁻⁶	2.48·10⁻³
C₁₀H₁₄	1,4-Diethylbenzene	105-05-5	1.75·10⁻⁶	2.47·10⁻³
C₁₀H₁₄	1-Ethyl-2,3-dimethylbenzene	933-98-2	1.73·10⁻⁶	2.40·10⁻³
C₁₀H₁₄	1-Ethyl-2,4-dimethylbenzene	874-41-9	1.97·10⁻⁶	2.44·10⁻³
C₁₀H₁₄	1-Ethyl-3,5-dimethylbenzene	934-74-7	2.19·10⁻⁶	2.47·10⁻³
C₁₀H₁₄	2-Ethyl-1,3-dimethylbenzene	2870-04-4	1.89·10⁻⁶	2.43·10⁻³
C₁₀H₁₄	2-Ethyl-1,4-dimethylbenzene	1758-88-9	2.03·10⁻⁶	2.45·10⁻³
Formula	Name	CAS RN	x_h	x_w
----------	---	----------	-----------	-----------
C$_{10}$H$_{14}$	4-Ethyl-1,2-dimethylbenzene	934-80-5	1.91·10^{-6}	2.43·10^{-3}
C$_{10}$H$_{14}$	Isobutylbenzene	538-93-2	4.78·10^{-6}	2.51·10^{-3}
C$_{10}$H$_{14}$	1-Methyl-2-(1-methylethyl)benzene	527-84-4	2.38·10^{-6}	2.49·10^{-3}
C$_{10}$H$_{14}$	1-Methyl-3-(1-methylethyl)benzene	535-77-3	2.55·10^{-6}	2.51·10^{-3}
C$_{10}$H$_{14}$	1-Methyl-4-(1-methylethyl)benzene	99-87-6	2.03·10^{-6}	2.50·10^{-3} [25]
C$_{10}$H$_{14}$	1-Methyl-2-propylbenzene	1074-17-5	2.12·10^{-6}	2.46·10^{-3}
C$_{10}$H$_{14}$	1-Methyl-3-propylbenzene	1074-43-7	2.28·10^{-6}	2.48·10^{-3}
C$_{10}$H$_{14}$	1-Methyl-4-propylbenzene	1074-55-1	2.19·10^{-6}	2.47·10^{-3}
C$_{10}$H$_{14}$	1,2,3,4-Tetramethylbenzene	488-23-3	1.34·10^{-6}	2.34·10^{-3}
C$_{10}$H$_{14}$	1,2,3,5-Tetramethylbenzene	527-53-7	1.59·10^{-6}	2.38·10^{-3}
C$_{10}$H$_{14}$	1,2,4,5-Tetramethylbenzene	95-93-2	2.26·10^{-6}	2.40·10^{-3}
C$_{10}$H$_{16}$	d-Limonene	5989-27-5	7.64·10^{-7}	3.07·10^{-3}
C$_{10}$H$_{20}$	1-Butylcyclohexane	1678-93-9	1.53·10^{-8}	5.40·10^{-4}
C$_{10}$H$_{20}$	1-Decene	872-05-9	1.27·10^{-8}	1.50·10^{-3}
C$_{10}$H$_{20}$	Pentylcyclopentane	3741-00-2	1.68·10^{-8}	5.29·10^{-4}
C$_{10}$H$_{22}$	2,4-Dimethyl-3-(1-methylethyl)pentane	13475-79-1	1.47·10^{-8}	6.23·10^{-4}
C$_{10}$H$_{22}$	2,3-Dimethyloctane	7146-60-3	7.58·10^{-9}	6.16·10^{-4}
C$_{10}$H$_{22}$	2,4-Dimethyloctane	4032-94-4	1.01·10^{-8}	6.27·10^{-4}
C$_{10}$H$_{22}$	2,5-Dimethyloctane	15699-89-3	9.23·10^{-9}	5.87·10^{-4}
C$_{10}$H$_{22}$	2,6-Dimethyloctane	2051-30-1	8.65·10^{-9}	6.20·10^{-4}
C$_{10}$H$_{22}$	3,3-Dimethyloctane	4110-44-5	1.21·10^{-8}	6.07·10^{-4}
C$_{10}$H$_{22}$	3,5-Dimethyloctane	15699-93-9	1.18·10^{-8}	6.10·10^{-4}
C$_{10}$H$_{22}$	4,5-Dimethyloctane	15699-96-2	1.08·10^{-8}	6.07·10^{-4}
C$_{10}$H$_{22}$	4-Ethyl-2,2-dimethylhexane	52896-99-8	8.34·10^{-8}	5.31·10^{-4}
C$_{10}$H$_{22}$	3-Ethyl-2,2,4-trimethylpentane	52897-18-4	2.28·10^{-8}	6.03·10^{-4}
C$_{10}$H$_{22}$	3-Ethyl-2,3,4-trimethylpentane	52897-19-5	3.35·10^{-8}	5.45·10^{-4}
C$_{10}$H$_{22}$	2-Methylnonane	871-83-0	3.82·10^{-9}	6.52·10^{-4}
C$_{10}$H$_{22}$	3-Methylnonane	5911-04-6	6.37·10^{-9}	6.08·10^{-4}
C$_{10}$H$_{22}$	4-Methylnonane	17301-94-9	6.90·10^{-9}	6.10·10^{-4}
C$_{10}$H$_{22}$	5-Methylnonane	15869-85-9	7.00·10^{-9}	6.12·10^{-4}
C$_{10}$H$_{22}$	2,2,3,3,4-Pentamethylpentane	16747-44-7	3.23·10^{-8}	5.63·10^{-4}
C$_{10}$H$_{22}$	2,2,3,4,4-Pentamethylpentane	16747-45-8	2.18·10^{-8}	5.93·10^{-4}
C$_{10}$H$_{22}$	4-Propylheptane	3178-29-8	1.20·10^{-8}	6.09·10^{-4}
C$_{10}$H$_{22}$	2,2,3,3-Tetramethylhexane	13475-81-5	3.72·10^{-8}	5.60·10^{-4}
C$_{10}$H$_{22}$	2,2,3,5-Tetramethylhexane	52897-09-3	2.09·10^{-8}	6.27·10^{-4}
C$_{10}$H$_{22}$	2,2,5,5-Tetramethylhexane	1071-81-4	1.50·10^{-8}	6.88·10^{-4}
Table 1. Cont.

Formula	Name	CAS RN	x_h	x_w	
C\textsubscript{10}H\textsubscript{22}	2,3,3,4-Tetramethylhexane	52897-10-6	2.99·10^{-8}	5.62·10^{-4}	
C\textsubscript{10}H\textsubscript{22}	2,3,3,5-Tetramethylhexane	52897-11-7	4.23·10^{-8}	5.75·10^{-4}	
C\textsubscript{10}H\textsubscript{22}	2,3,4,4-Tetramethylhexane	52897-12-8	2.35·10^{-8}	5.83·10^{-4}	
C\textsubscript{10}H\textsubscript{22}	2,3,4,5-Tetramethylhexane	52897-15-1	1.52·10^{-8}	6.17·10^{-4}	
C\textsubscript{10}H\textsubscript{22}	3,3,4,4-Tetramethylhexane	5171-84-6	4.90·10^{-8}	5.56·10^{-4}	
C\textsubscript{10}H\textsubscript{22}	2,2,4-Trimethylheptane	14720-74-2	1.47·10^{-8}	6.43·10^{-4}	
C\textsubscript{10}H\textsubscript{22}	2,2,6-Trimethylheptane	1190-83-6	1.10·10^{-8}	6.55·10^{-4}	
C\textsubscript{10}H\textsubscript{22}	2,4,6-Trimethylheptane	2613-61-8	1.39·10^{-8}	6.44·10^{-4}	
C\textsubscript{10}H\textsubscript{22}	2,5,5-Trimethylheptane	1189-99-7	9.65·10^{-9}	6.50·10^{-4}	
C\textsubscript{10}H\textsubscript{22}	3,3,5-Trimethylheptane	7154-80-5	1.73·10^{-8}	6.11·10^{-4}	
C\textsubscript{10}H\textsubscript{22}	Decane	124-18-5	3.33·10^{-9}	6.15·10^{-4}	
			2.50·10^{-9}	5.70·10^{-4}	[23]
C\textsubscript{11}H\textsubscript{16}	Pentylbenzene	538-68-1	5.20·10^{-7}	2.38·10^{-3}	
			4.68·10^{-7}	[25]	
C\textsubscript{11}H\textsubscript{22}	1-Undecene	821-95-4	1.94·10^{-9}	1.50·10^{-3}	
C\textsubscript{11}H\textsubscript{24}	Undecane	1120-21-4	4.79·10^{-10}	6.29·10^{-4}	
			5.07·10^{-10}	[23]	
C\textsubscript{12}H\textsubscript{18}	1,4-Diisopropylbenzene	100-18-5	1.81·10^{-7}	2.40·10^{-3}	
C\textsubscript{12}H\textsubscript{18}	Hexylbenzene	1077-16-3	0.98·10^{-7}	2.31·10^{-3}	
			1.01·10^{-7}	[25]	

The estimated standard deviation of x_h or x_w resulting from accuracy of the method is estimated to within 5% of the calculated mole fraction.

Author Contributions: Conceptualization, M.G. and P.O.; methodology, M.G. and P.O.; software, M.G. and P.O.; writing—original draft preparation, M.G. and P.O.; writing—review and editing, P.O.; visualization, M.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The model of association takes into account auto-association of water and weak co-association between water and π-bonds in the unsaturated and aromatic hydrocarbons. The model of the association assumes that each active site of the donor type can interact with any active site of the acceptor type and that the equilibrium constant depends only on the type of the interacting sites. This assumption leads to a mixture of various pure and mixed associates. The kind and concentration of the hydrogen-bonded clusters depends on the chemical equilibrium in the mixture. Activities of the reacting species, in equations of the chemical equilibrium, were approximated with an expression resulting from the equation of state, which replaced molar concentration widely used in literature. The chemical equilibrium in water + alkane systems is described by equilibrium constant of auto-association of water (K_{22}). The temperature dependency of K_{22} is described by three parameters: the equilibrium constant at the reference temperature, the enthalpy of hydrogen bond formation, and the corresponding heat capacity. Additionally, the excluded...
volume of water used in the chemical part is shifted by $-6.5 \text{ cm}^3 \cdot \text{mol}^{-1}$ with respect to value calculated with Equation (6) and used in the physical part. Altogether, this model of auto-association of water contains four parameters, which were kept constant for all the investigated systems. With these four parameters, LLE calculations were performed for water + hydrocarbon systems, including n-alkanes, iso-alkanes (branched alkanes), as well as cycloalkanes, in the temperature range from 273.15 K up to about 60 K below T_{3c}. The calculated solubility of water as a function of temperature was compared with experimental points for 21 systems reported in literature.

Water is more soluble in unsaturated hydrocarbons than in alkanes. This shift of water solubility depends on the number of π-bonds in the hydrocarbon molecule. To account for this phenomenon, it was assumed that each π-bond can co-associate with free hydrogen atom of water. Each hydrogen bond of this kind was described with the same equilibrium constant. Altogether, the model of the co-association uses two additional parameters in addition to the previously used parameters of water, which remained unchanged. These parameters were used for the calculation of solubility curves of water in unsaturated hydrocarbons. The calculated values were compared with experimental data for all 24 systems available in the literature.

For alkylbenzene, it was assumed that each aromatic ring can co-associate with the free hydrogen atom of water. The hydrogen bond of this kind was described by a temperature dependent equilibrium constant of the co-association, which was described with three parameters. Solubility of water in the alkylbenzenes was used only at the beginning of this investigation to fix these three parameters. They were kept constant for all investigated mixtures. The parameters of the auto-association of water were unchanged. The solubility of water in alkylbenzenes was reported in literature for 15 systems consisting of 405 experimental points. The most outlying 36 points were rejected from further investigations. The remaining 369 points were compared with the calculated values.

Altogether, the model of association for all types of systems investigated here uses nine physically meaningful constants. With these constants, the solubility of water in 60 hydrocarbons in large temperature intervals was calculated and compared with experimental data. These comparisons and additional tests show good agreement between experimental and predicted data. They are described in papers [22–25]. Within the same class of mixtures, both positive and negative deviations are observed. Calculations of the water solubility were performed with physically meaningful values of the equilibrium constants of association common to the given class of systems, which reveals systems with deviation. We conclude that these deviations result mainly from errors in the experimental data. For more details, refer to [22–25].

References
1. Tsonopoulos, C. Thermodynamic analysis of the mutual solubilities of normal alkanes and water. Fluid Phase Equilibria 1999, 156, 21–33. [CrossRef]
2. Tsonopoulos, C. Thermodynamic analysis of the mutual solubilities of normal alkanes and water. Fluid Phase Equilibria 2001, 186, 185–206. [CrossRef]
3. Oracz, P.; Góralska, M. Application of the Unified Functional Activity Coefficient (UNIFAC) and Analytical Solution of Groups (ASOG) for the Calculation of Mutual Solubilities in Water Systems of Alkanes, Arenes, and Alkanols. J. Chem. Eng. Data 2011, 56, 4853–4861. [CrossRef]
4. Magnussen, T.; Rasmussen, P.; Fredenslund, A. UNIFAC parameter table for prediction of liquid-liquid equilibria. Ind. Eng. Chem. Process Des. Dev. 1981, 20, 331–339. [CrossRef]
5. Gupte, P.A.; Danner, R.P. Prediction of Liquid-Liquid Equilibria with UNIFAC: A Critical Evaluation. Ind. Eng. Chem. Res. 1987, 26, 2036–2042. [CrossRef]
6. Hooper, H.; Michel, S.; Prausnitz, J.M. Correlation of liquid-liquid equilibria for some water-organic liquid systems in the region 20–250 °C. Ind. Eng. Chem. Res. 1988, 27, 2182–2187. [CrossRef]
7. Voutsas, E.C.; Tassios, D.P. An Analysis of the UNIFAC-Type Group-Contribuition Models at the Highly Dilute Region. 2. Empirical Improvements with Application to Water/Hydrocarbon Mixtures. Ind. Eng. Chem. Res. 1997, 36, 4973–4976. [CrossRef]
8. Kang, J.W.; Diky, V.; Frenkel, M. New modified UNIFAC parameters using critically evaluated phase equilibrium data. Fluid Phase Equilibria 2015, 388, 128–141. [CrossRef]
9. Kang, J.W.; Diky, V.; Frenkel, M. Corrigendum to “New modified UNIFAC parameters using critically evaluated phase equilibrium data” [Fluid Phase Equilib. 388 (2015) 128-141]. Fluid Phase Equilibria 2017, 440, 122–123. [CrossRef]

10. Gmehting, J.; Li, J.; Schiller, M. A Modified UNIFAC Model. 2. Present Parameter Matrix and Results. Ind. Eng. Chem. Res. 1993, 32, 178–193. [CrossRef]

11. Yakoumis, I.V.; Kontogeorgis, G.M.; Voutsas, E.C.; Hendriks, E.M.; Tassios, D.P. Prediction of Phase Equilibria in Binary Aqueous Systems Containing Alkanes, Cycloalkanes, and Alkenes with the Cubic-plus-Association Equation of State. Ind. Eng. Chem. Res. 1998, 37, 4175–4182. [CrossRef]

12. Voutsas, E.C.; Boulougouris, G.C.; Economou, I.G.; Tassios, D.P. Water/Hydrocarbon Phase Equilibria Using the Thermodynamic Perturbation Theory. Ind. Eng. Chem. Res. 2000, 39, 797–804. [CrossRef]

13. Oliveira, M.B.; Coutinho, J.A.P.; Queimad, A.J. Mutual solubilities of hydrocarbons and water with the CPA EoS. Fluid Phase Equilibria 2007, 258, 58–66. [CrossRef]

14. Economou, I.G.; Tsounopoulos, C. Association models and mixing rules in equations of state for water/hydrocarbon mixtures. Chem. Eng. Sci. 1997, 52, 511–525. [CrossRef]

15. Vega, L.F.; Llovet, F.; Blas, F.J. Capturing the Solubility Minima of n-Alkanes in Water by Soft-SAFT. J. Phys. Chem. B 2009, 113, 7621–7630. [CrossRef]

16. Ahmed, S.; Ferrando, N.; de Hemptinne, J.-C.; Simonin, J.-P.; Bernard, O.; Baudouin, O. A New PC-SAFT Model for Pure Water, Water–Hydrocarbons, and Water–Oxygenates Systems and Subsequent Modeling of VLE, VLL, and LLE. J. Chem. Eng. Data 2016, 61, 4178–4190. [CrossRef]

17. Landra, C.; Satyro, M.A. Mutual Solubility of Water and Hydrocarbons. J. Chem. Eng. Data 2016, 61, 525–534. [CrossRef]

18. Haarmann, N.; Enders, S.; Sadowski, G. Modeling binary mixtures of n-alkanes and water using PC-SAFT. Fluid Phase Equilibria 2018, 470, 203–211. [CrossRef]

19. Salamirzaei, M.; Modarress, H. Modeling and predicting solubility of n-alkanes in water. Fluid Phase Equilibria 2011, 309, 53–61. [CrossRef]

20. Klamt, A. Prediction of the mutual solubilities of hydrocarbons and water with COSMO-RS. Fluid Phase Equilibria 2003, 206, 223–235. [CrossRef]

21. Morgado, P.; Barras, J.; Duarte, P.; Filipe, E.J.M. Solubility of water in n-alkanes: New experimental measurements and molecular dynamics simulations. Fluid Phase Equilibria 2020, 503, 112322. [CrossRef]

22. Macziyński, A.; Góral, M.; Wisniewska–Gocłowska, B.; Skrzecz, A.; Shaw, D. Mutual Solubilities of Water and Alkanes. Mon. Chem. 2003, 134, 633–653. [CrossRef]

23. Maczynski, A.; Wisniewska-Gocłowska, B.; Goral, M. Recommended Liquid-Liquid Equilibrium Data, Part 1: Binary C5-C11 Alkane—Water Systems. J. Phys. Chem. Ref. Data 2003, 33, 549–577. [CrossRef]

24. Goral, M.; Wisniewska-Gocłowska, B.; Maczynski, A. Recommended Liquid-Liquid Equilibrium Data, Part 2: Binary Unsaturated Hydrocarbon—Water Systems. J. Phys. Chem. Ref. Data 2004, 33, 579–591. [CrossRef]

25. Goral, M.; Wisniewska-Gocłowska, B.; Maczynski, A. Recommended Liquid-Liquid Equilibrium Data, Part 3: Binary Alkylbenzenes—Water Systems. J. Phys. Chem. Ref. Data 2004, 33, 1159–1190. [CrossRef]

26. Maczynski, A.; Shaw, D.; Goral, M.; Wisniewska–Gocłowska, B.; Skrzecz, A.; Owczarek, I.; Blazek, K.; Haulait–Pirson, M.-C.; Kapuku, F.; Hefter, G.T.; et al. IUPAC-NIST Solubility Data Series, Hydrocarbons with Water and Seawater—Revised and Updated, Part 1. Cg Hydrocarbons with Water. J. Phys. Chem. Ref. Data 2005, 34, 441–476. [CrossRef]

27. Maczynski, A.; Shaw, D.; Goral, M.; Wisniewska–Gocłowska, B.; Skrzecz, A.; Owczarek, I.; Blazek, K.; Haulait–Pirson, M.-C.; Hefter, G.T.; Szafranski, A.; et al. IUPAC-NIST Solubility Data Series, Hydrocarbons with Water and Seawater—Revised and Updated, Part 2. Benzene with Water and Heavy Water. J. Phys. Chem. Ref. Data 2005, 34, 477–552. [CrossRef]

28. Maczynski, A.; Shaw, D.; Goral, M.; Wisniewska–Gocłowska, B.; Skrzecz, A.; Owczarek, I.; Blazek, K.; Haulait–Pirson, M.-C.; Hefter, G.T.; Maczynska, Z.; et al. IUPAC-NIST Solubility Data Series, Hydrocarbons with Water and Seawater—Revised and Updated, Part 3. C6H8–C6H12 Hydrocarbons with Water and Heavy Water. J. Phys. Chem. Ref. Data 2005, 34, 657–708. [CrossRef]

29. Maczynski, A.; Shaw, D.; Wisniewska–Gocłowska, B.; Skrzecz, A.; Owczarek, I.; Blazek, K.; Haulait–Pirson, M.-C.; Hefter, G.T.; Kapuku, F.; et al. IUPAC-NIST Solubility Data Series, Hydrocarbons with Water and Seawater—Revised and Updated, Part 4. CgH14 Hydrocarbons with Water. J. Phys. Chem. Ref. Data 2005, 34, 709–753. [CrossRef]

30. Maczynski, A.; Shaw, D.; Goral, M.; Wisniewska–Gocłowska, B.; Skrzecz, A.; Owczarek, I.; Blazek, K.; Haulait–Pirson, M.-C.; Hefter, G.T.; Kapuku, F.; et al. IUPAC-NIST Solubility Data Series, Hydrocarbons with Water and Seawater—Revised and Updated, Part 5. Cg Hydrocarbons with Water and Heavy Water. J. Phys. Chem. Ref. Data 2005, 34, 1399–1488. [CrossRef]

31. Shaw, D.; Maczynski, A.; Goral, M.; Wisniewska–Gocłowska, B.; Skrzecz, A.; Owczarek, I.; Blazek, K.; Haulait–Pirson, M.-C.; Hefter, G.T.; Maczynska, Z.; et al. IUPAC-NIST Solubility Data Series, Hydrocarbons with Water and Seawater—Revised and Updated, Part 6. C8H8–C8H10 Hydrocarbons with Water. J. Phys. Chem. Ref. Data 2005, 34, 1489–1553. [CrossRef]

32. Shaw, D.; Maczynski, A.; Goral, M.; Wisniewska–Gocłowska, B.; Skrzecz, A.; Owczarek, I.; Blazek, K.; Haulait–Pirson, M.-C.; Hefter, G.T.; Kapuku, F.; et al. IUPAC-NIST Solubility Data Series, Hydrocarbons with Water and Seawater—Revised and Updated, Part 7. C8H12–C8H18 Hydrocarbons with Water. J. Phys. Chem. Ref. Data 2005, 34, 2261–2298. [CrossRef]

33. Shaw, D.; Maczynski, A. Erratum: IUPAC-NIST Solubility Data Series. 81. Hydrocarbons with Water and Seawater Revised and Updated. Part 7. C8H12–C8H18 Hydrocarbons with Water. J. Phys. Chem. Ref. Data 2005, 34, 2261. [CrossRef]
34. Shaw, D.; Maczynski, A.; Goral, M.; Wisniewska–Goclowska, B.; Skrzecz, A.; Owczarek, I.; Blazej, K.; Haulait–Pirson, M.-C.; Hefter, G.T.; Kapuku, F.; et al. IUPAC-NIST Solubility Data Series, Hydrocarbons with Water and Seawater–Revised and Updated, Part 8. C_9 Hydrocarbons with Water. *J. Phys. Chem. Ref. Data* **2005**, *34*, 2299–2345. [CrossRef]

35. Shaw, D.; Maczynski, A.; Goral, M.; Wisniewska–Goclowska, B.; Skrzecz, A.; Owczarek, I.; Blazej, K.; Haulait–Pirson, M.-C.; Hefter, G.T.; Kapuku, F.; et al. IUPAC-NIST Solubility Data Series, Hydrocarbons with Water and Seawater–Revised and Updated, Part 9. C_10 Hydrocarbons with Water. *J. Phys. Chem. Ref. Data* **2006**, *35*, 93–151. [CrossRef]

36. Shaw, D.; Maczynski, A.; Goral, M.; Wisniewska–Goclowska, B.; Skrzecz, A.; Owczarek, I.; Blazej, K.; Haulait–Pirson, M.-C.; Hefter, G.T.; Kapuku, F.; et al. IUPAC-NIST Solubility Data Series, Hydrocarbons with Water and Seawater–Revised and Updated, Part 10. C_11 and C_12 Hydrocarbons with Water and Heavy Water. *J. Phys. Chem. Ref. Data* **2006**, *35*, 153–203. [CrossRef]

37. Shaw, D.; Maczynski, A.; Goral, M.; Wisniewska–Goclowska, B.; Skrzecz, A.; Owczarek, I.; Blazej, K.; Haulait–Pirson, M.-C.; Hefter, G.T.; Kapuku, F.; et al. IUPAC-NIST Solubility Data Series, Hydrocarbons with Water and Seawater–Revised and Updated, Part 11. C_13–C_36 Hydrocarbons with Water. *J. Phys. Chem. Ref. Data* **2006**, *35*, 687–784. [CrossRef]

38. Góral, M. Cubic equation of state for calculation of phase equilibria in association systems. *Fluid Phase Equilibria* **1996**, *118*, 27–59. [CrossRef]

39. Dohányosová, P.; Sarraute, S.; Dohnal, V.; Majer, V.; Gomes, M.C. Aqueous Solubility and Related Thermodynamic Functions of Nonaromatic Hydrocarbons as a Function of Molecular Structure. *Ind. Eng. Chem. Res.* **2004**, *43*, 2805–2815. [CrossRef]