A signal of competitive dominance in mid-latitude herbaceous plant communities

José A. Capitán Sara Cuenda, Alejandro Ordóñez and David Alonso

Article citation details
R. Soc. open sci. 8: 201361.
http://dx.doi.org/10.1098/rsos.201361

Review timeline
Original submission: 11 August 2020
Revised submission: 8 February 2021
Revised submission: 9 August 2021
Final acceptance: 18 August 2021

Note: This manuscript was transferred from another Royal Society journal without peer review.

Review History
RSOS-201361.R0 (Original submission)

Review form: Reviewer 1

Is the manuscript scientifically sound in its present form?
No

Are the interpretations and conclusions justified by the results?
No

Is the language acceptable?
Yes

Do you have any ethical concerns with this paper?
No

Have you any concerns about statistical analyses in this paper?
Yes
Recommendation?
Major revision is needed (please make suggestions in comments)

Comments to the Author(s)
As noted in my emails to the editor, I reviewed this paper in February at Ecology Letters. Because the paper has not been substantively changed since that review, I am re-submitting the same review text that I provided at Ecology Letters.

Summary:
The study uses a competition model, in which competitive hierarchy is related to maximum plant height, to explain variation in the fraction of regional diversity which is found at smaller scales across a large number of sites in and around Europe. These results are used to support the hypothesis that joint impacts of temperature and water availability on species trait syndromes and competitive hierarchies are primary drivers of local diversity in the region.

General Comments:
First off, let me say that I think that this is wonderfully elegant, simple, and tractable model. I also applaud you for applying mechanistic insight about the underlying traits in your model to structure how species are assumed to interact – i.e. by focusing on asymmetrical effects of height differences, rather than just average trait distance, as is often done in other trait-based studies. Additionally, I think that the overall pattern that you identify – i.e. significant increases in trait-based clustering at mid-latitudes – is quite interesting and convincing. Taken together, I think that this paper demonstrates some very interesting patterns, and includes a plausible, semi-mechanistic explanation of why that pattern might exist.

Nevertheless, I have a number of major concerns about how the model is presented and interpreted. In particular, I think that there are a number of very strong assumptions in this model that are either not tested or well-supported, or for which the ramifications of breaking those assumptions are not explored. And, indeed, in many cases, I think there is quite a bit of evidence suggesting that these assumptions are not met in real-world systems (including many papers that you cite). Although you note some of these potential problems near the end of the discussion, as far as I can tell, there is not much included in this paper to demonstrate that your results are robust to these concerns, nor is it clear what kinds of biases might appear as a result of these confounding processes. In order for the paper to be more convincing to me, I think that it would require a major restructuring that more closely focused on identifying and quantitatively testing these assumptions.

1. Maximum height as the primary competitive indicator
First and foremost, I think that focusing on height as the primary (and only?) indicator of competitive hierarchy is not well supported by existing literature on herbaceous plant competition. In my detailed comments below, I include a number of specific citations that discuss other putative influential processes and traits that are potentially independent of height – e.g. herbivore resistance, mineral resource requirements, and eco-evolutionary history. Although I am not generally opposed to applying a simplified model with a small number of traits (and, as I said above, although I very much appreciate the simplicity of your model, and the mechanistic insight that it uses to model height-based interactions), I think that a lot more text and analyses would need to be devoted to justifying and testing this strong, central assumption.

Additionally, I worry that using “maximum height” taken from a general database of plant traits is potentially problematic. First, maximum values are strongly influenced by sample size – thus, plants that have been sampled many times (e.g. common species) will almost always have greater maximum height values than those that have only been sampled a few times (e.g. rare species).
Thus, I would generally suggest using a quantile-based metric (e.g. 95th percentile height), as this value tends to be a bit more robust to sample size.

Moreover, as you note in the text, height is an enormously plastic trait. At the very least, the fact that different species in the database are likely to have been measured under different conditions will add substantial observation error to the analyses. Moreover, it is very likely to also add bias. For example, in my own work with these databases, I have found that because weedy species tend to occur and be measured disproportionally in ruderal areas, they also tend to have significantly higher reported heights than non-weedy species – despite the fact that the relationship is typically reversed at the site level. Ideally, height data should be standardised based on differences in measurement conditions among sites – although this is rarely possible in practice. At the very least, I would strongly urge an analysis of some subset of the data where heights have been measured under standardised conditions, in order to demonstrate that your reported results remain unchanged.

2. Effects of the regional species pool
As far as I understand it, the regional species pool is taken directly from observations (i.e. it is not an emergent result of the model, but rather is an input that is subsequently used to model local diversity). At the very least, I think it would be worth discussing in a bit more detail what kind of limitations this might have for your results – e.g. much of the literature on evolutionary biogeography would argue that once the regional pool has been assembled, the local composition is more or less pre-ordained, and local interactions have very impact on outcomes. Again, you note some of these concerns briefly in the end of the discussion, but as far as I can tell, you do not include justifications that would explain why these concerns do not apply to your model. If possible, I would suggest trying to test the effects of the regional pool on your results. For example, to what extent do the clustering patterns that you identify arise as a general response to the climate gradients you are studying, regardless of the size and composition of the regional pool? Apologies if I am missing a part of the analysis that does this already – I know that the randomization routine that you apply does a good job of identifying significant trait clustering, but I’m not sure that this quite gets at the question that I am asking here.

3. Concepts of “ideal” growth conditions
I would suggest being a bit more careful about how you discuss “ideal” conditions for plants. It is true that many herbaceous plants grow “best” when water availability is high, and temperatures do not drop too low. But, these patterns are by no means unimodal, nor are they universal. For example, environments that are too wet can lead plants to drown if their roots are saturated, and can cause early mortality and fast turnover due to, e.g. fungal infections. Likewise, high night time temperatures can lead to increases in respiration rates, thereby reducing overall growth. A good source that discusses many of these relationships is Lambers & Oliveira (2020), or other earlier additions. I think it would be a good idea to discuss your results in light of these more nuanced effects of climate on plant growth, rather than focusing on the “optima” that you discuss currently.

4. Discussion of Chesson’s theory
Lastly – a minor point, but much of the abstract and introduction focuses on Chesson’s coexistence theory. But, I am not sure that your analyses draw very heavily on this literature or concept – rather, it tests a much or common hypothesis related to how functional traits and competitive forcing are related. As I discuss below, these concepts has been explored using Chesson’s theory, but it by no means a major component of it (his theory, rather, focuses on partitioning different kinds of impacts on species invasion rates when rare). Moreover, I think that the empirical evidence supporting the link between his theory and the functional trait literature are weak at best. I would suggest either removing this discussion from your manuscript, or making the link with Chesson’s theoretical models clearer.
Specific Comments:
17-20: I am not so sure that there is strong evidence that functional trait clustering corresponds to fitness differences (or for that matter, to niche differences, or to coexistence in general). It is true that Kraft et al. (2015) demonstrate such a relationship in one system, but their model is also unable to explain realised local coexistence at their site – although they attribute this to spatial heterogeneity, an equally good explanation is that their model simply didn’t fit the data very well, and that the realised values for niche and fitness differences are therefore not very meaningful. I know of very little evidence for the correlation between trait clustering and Chesson’s metrics outside of this paper (or other papers that directly use the same dataset and model) – and, several papers (e.g. Letten et al. 2017) seem to suggest that no such relationship should be expected at all. And, to the best of my understanding, the Mayfield & Levine paper is primarily a perspectives piece, and does not offer much empirical proof for the hypothesised relationship. Do you have any more general evidence to support this statement, and this general framework?

20-22: I agree with this statement – although I suspect many macroecologists would disagree. E.g. the Ricklefs (2008) paper you cite in the discussion rather energetically argues that large-scale diversity is driven by geography and evolutionary history, and that local species interactions are largely irrelevant. I think that this perspective might be worth discussing here in more detail.

31-32: “within the limits of structural stability”: What do you mean by this? I.e. does this refer to physical stability of the plant (e.g. tree vs. grass growth forms), or to “structural stability” in the mathematical sense?

35-43: How much evidence is there in these sites that competitive hierarchy is determined primarily via traits related to height, rather than, e.g. competition for soil mineral resources? Is there a strong reason to believe that height is a better indicator of competitive interactions than any other trait in these systems?

53-58: Based on your other papers, my understanding is that in this model, competitive interactions are highly asymmetrical and follow a strict competitive hierarchy. While I agree that this structure will generally lead to a decline in local coexistence with stronger average competitive interaction strength, I do not believe that this result must be general – e.g. if the strict competitive hierarchy is removed, or if a trade-off is present (e.g. if species with lower competitive hierarchy also tend to have higher carrying capacity). This isn’t necessarily a problem, nor does it mean that your model isn’t useful, but I would be careful to point out that the negative relationship between realised coexistence and average competitive intensity is largely a tautological result of the model structure, rather than a general relationship that must appear in all systems.

113-115: Can you explain this a bit more ecologically? I.e. is there a biological reason that the log differences are more meaningful than differences in linear space?

127-128: “Larger plants capture more resources”: Again, I don’t think that this is necessarily true. For example, in a system that is nitrogen limited, smaller plants often have much higher tissue nitrogen concentrations, and ultimate take up more total nitrogen, than do larger plants (e.g. small herbs vs. tall grasses). Similarly, competitive ability for water can be inversely related to size, specifically because larger plants with larger leaves often lose more water to transpiration, and therefore require higher soil water concentrations to persist. In both of these cases, I think that the problem is exacerbated because you use height (e.g. rather that total above- + below-ground biomass) as your size index. Your argument is potentially a bit more correct for light competition, though again, it will depend on how biomass is distributed as a function of height.
In any case, I don’t think that one can axiomatically use this statement to justify that evolution should favour taller plants as the primary mechanism of resource competitive ability.

151-155: Does the model consider the possibility of variable immigration rates, and variable carrying capacities, among species? If not, how would fitting the model to data with variables rates and capacities influence the parameter estimates?

161-167: A minor point, but it seems like this is a 2-tailed test? In this case, I think that the “classic” way of testing at alpha = 0.05 would be to use the 2.5% and 97.5% quartiles as the reference states, such that the combined probability of the lower plus upper tails equals 5%. Apologies if I am missing something.

184-185; 194-198: Again, I am not sure that it is correct to state that evapotranspiration is known to be the primary indicator of environmental constraints on plant growth at large scales. Others have posited, e.g. herbivore-based controls (Borer et al. 2014), soil chemistry-based controls (Laliberte et al. 2014), or biogeographic/evolutionary controls (Ricklefs 2008; McKenna et al. 2009).

I think you are probably correct that a rough correlation between growth rate and evapotranspiration rates exists, and that this correlation is a good general indicator for growth rate, all else being equal. But, there is a huge amount of residual variance that isn’t captured by these trends, which makes it difficult to label certain conditions as being “optimal” for plant growth. For example, even “optimal” radiation, water availability, and temperatures can lead to declines in growth – e.g. due to high covariance with herbivore or fungal abundance.

242-243: I’m not sure I agree with this statement – Given, as you say, that one of the defining aspects of a community is that species can interact, it seems important that they should be studied at scales within which interactions are possible. E.g. if a study fails to find significant evidence for species interactions at a 50x50 km2 scale, that hardly means that species interactions are irrelevant to community structure – it just means that if there are significant effects, they occur at scales that are too small to be captured within the grain used by the study.

Just as a simple example: Both Typha and Arrhenatherum can easily exist in the same 50x50km2 grid cell, but they will almost certainly never interact at local scales, simply because they cannot grow under the same conditions. In other words, co-occurrence at one scale cannot necessarily be taken as evidence of co-occurrence at smaller scales.

257-258: This seems to be the first section where you suggest that the correspondence between height and competitive ability that you assume may not hold – But, you don’t discuss how breaking this assumption might alter your results. At the very least, I would suggest including a somewhat longer justification of why you think that your results demonstrate that height does indeed universally correspond with competitive hierarchy, and discuss what your results would have looked like had this assumption not been met.

274-276: I’m not totally sure that this is correct – e.g. the Tilman results that you cite generally suggest the existence of some kind of limiting similarity in competitive abilities, which would lead to disaggregation of traits.

Fig. 5: Apologies if I am missing something – but I think there is either a typo in the legend or in the figure? The legend says that panel (d) shows “Correlation between mean gross primary productivity (GPP) and mean annual ET”, but the figure shows ET on both axes.
238: “concept of ecological community” --> “concept of ecological communities”, or “ecological community concept”?

References:

Lambers, H, and Rafael S Oliveira. Plant Physiological Ecology. Cham: Springer, 2020.
Letten, Andrew D., Po-Ju Ke, and Tadashi Fukami. “Linking Modern Coexistence Theory and Contemporary Niche Theory.” Ecological Monographs 87, no. 2 (May 2017): 161–77.
Borer, Elizabeth T., Eric W. Seabloom, Daniel S. Gruner, W. Stanley Harpole, Helmut Hillebrand, Eric M. Lind, Peter B. Adler, et al. “Herbivores and Nutrients Control Grassland Plant Diversity via Light Limitation.” Nature 508, no. 7497 (April 2014): 517–20.
Laliberte, E., G. Zemunik, and B. L. Turner. “Environmental Filtering Explains Variation in Plant Diversity along Resource Gradients.” Science 345, no. 6204 (September 26, 2014).

McKenna, Duane D., Andrea S. Sequeira, Adriana E. Marvaldi, and Brian D. Farrell. “Temporal Lags and Overlap in the Diversification of Weevils and Flowering Plants.” Proceedings of the National Academy of Sciences 106, no. 17 (April 28, 2009): 7083–88.

Decision letter (RSOS-201361.R0)

The editorial office reopened on 4 January 2021. We are working hard to catch up after the festive break. If you need advice or an extension to a deadline, please do not hesitate to let us know -- we will continue to be as flexible as possible to accommodate the changing COVID situation. We wish you a happy New Year, and hope 2021 proves to be a better year for everyone.

Dear Dr Capitan

The Editors assigned to your paper RSOS-201361 "A signal of competitive dominance in mid-latitude herbaceous plant communities" have now received comments from reviewers and would like you to revise the paper in accordance with the reviewer comments and any comments from the Editors. Please note this decision does not guarantee eventual acceptance.

We invite you to respond to the comments supplied below and revise your manuscript. Below the referees' and Editors' comments (where applicable) we provide additional requirements. Final acceptance of your manuscript is dependent on these requirements being met. We provide guidance below to help you prepare your revision.

We do not generally allow multiple rounds of revision so we urge you to make every effort to fully address all of the comments at this stage. If deemed necessary by the Editors, your manuscript will be sent back to one or more of the original reviewers for assessment. If the original reviewers are not available, we may invite new reviewers.

Please submit your revised manuscript and required files (see below) no later than 21 days from today's (ie 06-Jan-2021) date. Note: the ScholarOne system will 'lock' if submission of the revision is attempted 21 or more days after the deadline. If you do not think you will be able to meet this deadline please contact the editorial office immediately.

Please note article processing charges apply to papers accepted for publication in Royal Society Open Science (https://royalsocietypublishing.org/rsos/charges). Charges will also apply to papers transferred to the journal from other Royal Society Publishing journals, as well as papers submitted as part of our collaboration with the Royal Society of Chemistry.
(https://royalsocietypublishing.org/rsos/chemistry). Fee waivers are available but must be requested when you submit your revision (https://royalsocietypublishing.org/rsos/waivers).

Thank you for submitting your manuscript to Royal Society Open Science and we look forward to receiving your revision. If you have any questions at all, please do not hesitate to get in touch.

Kind regards,
Royal Society Open Science Editorial Office
Royal Society Open Science
openscience@royalsociety.org

on behalf of Professor Brian Reid (Associate Editor) and Pete Smith (Subject Editor)
openscience@royalsociety.org

Reviewer comments to Author:
Reviewer: 1

Comments to the Author(s)
As noted in my emails to the editor, I reviewed this paper in February at Ecology Letters. Because the paper has not been substantively changed since that review, I am re-submitting the same review text that I provided at Ecology Letters.

Summary:
The study uses a competition model, in which competitive hierarchy is related to maximum plant height, to explain variation in the fraction of regional diversity which is found at smaller scales across a large number of sites in and around Europe. These results are used to support the hypothesis that joint impacts of temperature and water availability on species trait syndromes and competitive hierarchies are primary drivers of local diversity in the region.

General Comments:
First off, let me say that I think that this is wonderfully elegant, simple, and tractable model. I also applaud you for applying mechanistic insight about the underlying traits in your model to structure how species are assumed to interact – i.e. by focusing on asymmetrical effects of height differences, rather than just average trait distance, as is often done in other trait-based studies. Additionally, I think that the overall pattern that you identify – i.e. significant increases in trait-based clustering at mid-latitudes – is quite interesting and convincing. Taken together, I think that this paper demonstrates some very interesting patterns, and includes a plausible, semi-mechanistic explanation of why that pattern might exist.

Nevertheless, I have a number of major concerns about how the model is presented and interpreted. In particular, I think that there are a number of very strong assumptions in this model that are either not tested or well-supported, or for which the ramifications of breaking those assumptions are not explored. And, indeed, in many cases, I think there is quite a bit of evidence suggesting that these assumptions are not met in real-world systems (including many papers that you cite). Although you note some of these potential problems near the end of the discussion, as far as I can tell, there is not much included in this paper to demonstrate that your results are robust to these concerns, nor is it clear what kinds of biases might appear as a result of these confounding processes. In order for the paper to be more convincing to me, I think that it would require a major restructuring that more closely focused on identifying and quantitatively testing these assumptions.

1. Maximum height as the primary competitive indicator
First and foremost, I think that focusing on height as the primary (and only?) indicator of competitive hierarchy is not well supported by existing literature on herbaceous plant competition. In my detailed comments below, I include a number of specific citations that discuss other putative influential processes and traits that are potentially independent of height – e.g. herbivore resistance, mineral resource requirements, and eco-evolutionary history. Although I am not generally opposed to applying a simplified model with a small number of traits (and, as I said above, although I very much appreciate the simplicity of your model, and the mechanistic insight that it uses to model height-based interactions), I think that a lot more text and analyses would need to be devoted to justifying and testing this strong, central assumption.

Additionally, I worry that using “maximum height” taken from a general database of plant traits is potentially problematic. First, maximum values are strongly influenced by sample size – thus, plants that have been sampled many times (e.g. common species) will almost always have greater maximum height values than those that have only been sampled a few times (e.g. rare species). Thus, I would generally suggest using a quantile-based metric (e.g. 95th percentile height), as this value tends to be a bit more robust to sample size.

Moreover, as you note in the text, height is an enormously plastic trait. At the very least, the fact that different species in the database are likely to have been measured under different conditions will add substantial observation error to the analyses. Moreover, it is very likely to also add bias. For example, in my own work with these databases, I have found that because weedy species tend to occur and be measured disproportionally in ruderal areas, they also tend to have significantly higher reported heights than non-weedy species – despite the fact that the relationship is typically reversed at the site level. Ideally, height data should be standardised based on differences in measurement conditions among sites – although this is rarely possible in practice. At the very least, I would strongly urge an analysis of some subset of the data where heights have been measured under standardised conditions, in order to demonstrate that your reported results remain unchanged.

2. Effects of the regional species pool
As far as I understand it, the regional species pool is taken directly from observations (i.e. it is not an emergent result of the model, but rather is an input that is subsequently used to model local diversity). At the very least, I think it would be worth discussing in a bit more detail what kind of limitations this might have for your results – e.g. much of the literature on evolutionary biogeography would argue that once the regional pool has been assembled, the local composition is more or less pre-ordained, and local interactions have very impact on outcomes. Again, you note some of these concerns briefly in the end of the discussion, but as far as I can tell, you do not include justifications that would explain why these concerns do not apply to your model. If possible, I would suggest trying to test the effects of the regional pool on your results. For example, to what extent do the clustering patterns that you identify arise as a general response to the climate gradients you are studying, regardless of the size and composition of the regional pool? Apologies if I am missing a part of the analysis that does this already – I know that the randomization routine that you apply does a good job of identifying significant trait clustering, but I’m not sure that this quite gets at the question that I am asking here.

3. Concepts of “ideal” growth conditions
I would suggest being a bit more careful about how you discuss “ideal” conditions for plants. It is true that many herbaceous plants grow “best” when water availability is high, and temperatures do not drop too low. But, these patterns are by no means unimodal, nor are they universal. For example, environments that are too wet can lead plants to drown if their roots are saturated, and can cause early mortality and fast turnover due to, e.g. fungal infections. Likewise, high night time temperatures can lead to increases in respiration rates, thereby reducing overall growth. A good source that discusses many of these relationships is Lambers & Oliveira (2020), or other
earlier additions. I think it would be a good idea to discuss your results in light of these more nuanced effects of climate on plant growth, rather than focusing on the “optima” that you discuss currently.

4. Discussion of Chesson’s theory
Lastly – a minor point, but much of the abstract and introduction focuses on Chesson’s coexistence theory. But, I am not sure that your analyses draw very heavily on this literature or concept – rather, it tests a much or common hypothesis related to how functional traits and competitive forcing are related. As I discuss below, these concepts has been explored using Chesson’s theory, but it is by no means a major component of it (his theory, rather, focuses on partitioning different kinds of impacts on species invasion rates when rare). Moreover, I think that the empirical evidence supporting the link between his theory and the functional trait literature are weak at best. I would suggest either removing this discussion from your manuscript, or making the link with Chesson’s theoretical models clearer.

Specific Comments:
17-20: I am not so sure that there is strong evidence that functional trait clustering corresponds to fitness differences (or for that matter, to niche differences, or to coexistence in general). It is true that Kraft et al. (2015) demonstrate such a relationship in one system, but their model is also unable to explain realised local coexistence at their site – Although they attribute this to spatial heterogeneity, an equally good explanation is that their model simply didn’t fit the data very well, and that that the realised values for niche and fitness differences are therefore not very meaningful. I know of very little evidence for the correlation between trait clustering and Chesson’s metrics outside of this paper (or other papers that directly use the same dataset and model) – and, several papers (e.g. Letten et al. 2017) seem to suggest that no such relationship should be expected at all. And, to the best of my understanding, the Mayfield & Levine paper is primarily a perspectives piece, and does not offer much empirical proof for the hypothesized relationship. Do you have any more general evidence to support this statement, and this general framework?

20-22: I agree with this statement – although I suspect many macroecologists would disagree. E.g. the Ricklefs (2008) paper you cite in the discussion rather energetically argues that large-scale diversity is driven by geography and evolutionary history, and that local species interactions are largely irrelevant. I think that this perspective might be worth discussing here in more detail.

31-32: “within the limits of structural stability”: What do you mean by this? I.e. does this refer to physical stability of the plant (e.g. tree vs. grass growth forms), or to “structural stability” in the mathematical sense?

35-43: How much evidence is there in these sites that competitive hierarchy is determined primarily via traits related to height, rather than, e.g. competition for soil mineral resources? Is there a strong reason to believe that height is a better indicator of competitive interactions than any other trait in these systems?

53-58: Based on your other papers, my understanding is that in this model, competitive interactions are highly asymmetrical and follow a strict competitive hierarchy. While I agree that this structure will generally lead to a decline in local coexistence with stronger average competitive interaction strength, I do not believe that this result must be general – e.g. if the strict competitive hierarchy is removed, or if a trade-off is present (e.g. if species with lower competitive hierarchy also tend to have higher carrying capacity). This isn’t necessarily a problem, nor does it mean that your model isn’t useful, but I would be careful to point out that the negative relationship between realised coexistence and average competitive intensity is
largely a tautological result of the model structure, rather than a general relationship that must appear in all systems.

113-115: Can you explain this a bit more ecologically? I.e. is there a biological reason that the log differences are more meaningful than differences in linear space?

127-128: “Larger plants capture more resources”: Again, I don’t think that this is necessarily true. For example, in a system that is nitrogen limited, smaller plants often have much higher tissue nitrogen concentrations, and ultimate take up more total nitrogen, than do larger plants (e.g. small herbs vs. tall grasses). Similarly, competitive ability for water can be inversely related to size, specifically because larger plants with larger leaves often lose more water to transpiration, and therefore require higher soil water concentrations to persist. In both of these cases, I think that the problem is exacerbated because you use height (e.g. rather than total above- + below-ground biomass) as your size index. Your argument is potentially a bit more correct for light competition, though again, it will depend on how biomass is distributed as a function of height. In any case, I don’t think that one can axiomatically use this statement to justify that evolution should favour taller plants as the primary mechanism of resource competitive ability.

151-155: Does the model consider the possibility of variable immigration rates, and variable carrying capacities, among species? If not, how would fitting the model to data with variables rates and capacities influence the parameter estimates?

161-167: A minor point, but it seems like this is a 2-tailed test? In this case, I think that the “classic” way of testing at alpha = 0.05 would be to use the 2.5% and 97.5% quartiles as the reference states, such that the combined probability of the lower plus upper tails equals 5%. Apologies if I am missing something.

184-185; 194-198: Again, I am not sure that it is correct to state that evapotranspiration is known to be the primary indicator of environmental constraints on plant growth at large scales. Others have posited, e.g. herbivore-based controls (Borer et al. 2014), soil chemistry-based controls (Laliberte et al. 2014), or biogeographic/evolutionary controls (Ricklefs 2008; McKenna et al. 2009).

I think you are probably correct that a rough correlation between growth rate and evapotranspiration rates exists, and that this correlation is a good general indicator for growth rate, all else being equal. But, there is a huge amount of residual variance that isn’t captured by these trends, which makes it difficult to label certain conditions as being “optimal” for plant growth. For example, even “optimal” radiation, water availability, and temperatures can lead to declines in growth – e.g. due to high covariance with herbivore or fungal abundance.

242-243: I’m not sure I agree with this statement – Given, as you say, that one of the defining aspects of a community is that species can interact, it seems important that they should be studied at scales within which interactions are possible. E.g. if a study fails to find significant evidence for species interactions at a 50x50 km² scale, that hardly means that species interactions are irrelevant to community structure – it just means that if there are significant effects, they occur at scales that are too small to be captured within the grain used by the study.

Just as a simple example: Both Typha and Arrhenatherum can easily exist in the same 50x50km² grid cell, but they will almost certainly never interact at local scales, simply because they cannot grow under the same conditions. In other words, co-occurrence at one scale cannot necessarily be taken as evidence of co-occurrence at smaller scales.
257-258: This seems to be the first section where you suggest that the correspondence between height and competitive ability that you assume may not hold – But, you don’t discuss how breaking this assumption might alter your results. At the very least, I would suggest including a somewhat longer justification of why you think that your results demonstrate that height does indeed universally correspond with competitive hierarchy, and discuss what your results would have looked like had this assumption not been met.

274-276: I’m not totally sure that this is correct – e.g. the Tilman results that you cite generally suggest the existence of some kind of limiting similarity in competitive abilities, which would lead to disaggregation of traits.

Fig. 5: Apologies if I am missing something – but I think there is either a typo in the legend or in the figure? The legend says that panel (d) shows “Correlation between mean gross primary productivity (GPP) and mean annual ET”, but the figure shows ET on both axes.

Spelling and Grammar:
238: “concept of ecological community” -> “concept of ecological communities”, or “ecological community concept”?

References:
Lambers, H, and Rafael S Oliveira. Plant Physiological Ecology. Cham: Springer, 2020.
Letten, Andrew D., Po-Ju Ke, and Tadashi Fukami. “Linking Modern Coexistence Theory and Contemporary Niche Theory.” Ecological Monographs 87, no. 2 (May 2017): 161–77.
Borer, Elizabeth T., Eric W. Seabloom, Daniel S. Gruner, W. Stanley Harpole, Helmut Hillebrand, Eric M. Lind, Peter B. Adler, et al. “Herbivores and Nutrients Control Grassland Plant Diversity via Light Limitation.” Nature 508, no. 7497 (April 2014): 517–20.
Laliberte, E., G. Zemunik, and B. L. Turner. “Environmental Filtering Explains Variation in Plant Diversity along Resource Gradients.” Science 345, no. 6204 (September 26, 2014).

McKenna, Duane D., Andrea S. Sequeira, Adriana E. Marvaldi, and Brian D. Farrell. “Temporal Lags and Overlap in the Diversification of Weevils and Flowering Plants.” Proceedings of the National Academy of Sciences 106, no. 17 (April 28, 2009): 7083–88.

Your revised paper should include the changes requested by the referees and Editors of your manuscript. You should provide two versions of this manuscript and both versions must be provided in an editable format:
one version identifying all the changes that have been made (for instance, in coloured highlight, in bold text, or tracked changes);
a ‘clean’ version of the new manuscript that incorporates the changes made, but does not highlight them. This version will be used for typesetting if your manuscript is accepted.
Please ensure that any equations included in the paper are editable text and not embedded images.

Please ensure that you include an acknowledgements' section before your reference list/bibliography. This should acknowledge anyone who assisted with your work, but does not qualify as an author per the guidelines at https://royalsociety.org/journals/ethics-policies/openness/.

While not essential, it will speed up the preparation of your manuscript proof if accepted if you format your references/bibliography in Vancouver style (please see
https://royalsociety.org/journals/authors/author-guidelines/#formatting). You should include DOIs for as many of the references as possible.

If you have been asked to revise the written English in your submission as a condition of publication, you must do so, and you are expected to provide evidence that you have received language editing support. The journal would prefer that you use a professional language editing service and provide a certificate of editing, but a signed letter from a colleague who is a native speaker of English is acceptable. Note the journal has arranged a number of discounts for authors using professional language editing services (https://royalsociety.org/journals/authors/benefits/language-editing/).

== PREPARING YOUR REVISION IN SCHOLARONE ==

To revise your manuscript, log into https://mc.manuscriptcentral.com/rsos and enter your Author Centre - this may be accessed by clicking on "Author" in the dark toolbar at the top of the page (just below the journal name). You will find your manuscript listed under "Manuscripts with Decisions". Under "Actions", click on "Create a Revision".

Attach your point-by-point response to referees and Editors at Step 1 'View and respond to decision letter'. This document should be uploaded in an editable file type (.doc or .docx are preferred). This is essential.

Please ensure that you include a summary of your paper at Step 2 'Type, Title, & Abstract'. This should be no more than 100 words to explain to a non-scientific audience the key findings of your research. This will be included in a weekly highlights email circulated by the Royal Society press office to national UK, international, and scientific news outlets to promote your work.

At Step 3 'File upload' you should include the following files:
-- Your revised manuscript in editable file format (.doc, .docx, or .tex preferred). You should upload two versions:
 1) One version identifying all the changes that have been made (for instance, in coloured highlight, in bold text, or tracked changes);
 2) A 'clean' version of the new manuscript that incorporates the changes made, but does not highlight them.
-- An individual file of each figure (EPS or print-quality PDF preferred [either format should be produced directly from original creation package], or original software format).
-- An editable file of each table (.doc, .docx, .xls, .xlsx, or .csv).
-- An editable file of all figure and table captions.
Note: you may upload the figure, table, and caption files in a single Zip folder.
-- Any electronic supplementary material (ESM).
-- If you are requesting a discretionary waiver for the article processing charge, the waiver form must be included at this step.
-- If you are providing image files for potential cover images, please upload these at this step, and inform the editorial office you have done so. You must hold the copyright to any image provided.
-- A copy of your point-by-point response to referees and Editors. This will expedite the preparation of your proof.

At Step 6 'Details & comments', you should review and respond to the queries on the electronic submission form. In particular, we would ask that you do the following:
-- Ensure that your data access statement meets the requirements at https://royalsociety.org/journals/authors/author-guidelines/#data. You should ensure that you cite the dataset in your reference list. If you have deposited data etc in the Dryad repository, please include both the 'For publication' link and 'For review' link at this stage.
-- If you are requesting an article processing charge waiver, you must select the relevant waiver option (if requesting a discretionary waiver, the form should have been uploaded at Step 3 'File upload' above).

-- If you have uploaded ESM files, please ensure you follow the guidance at https://royalsociety.org/journals/authors/author-guidelines/#supplementary-material to include a suitable title and informative caption. An example of appropriate titling and captioning may be found at https://figshare.com/articles/Table_S2_from_Is_there_a_trade-off_between_peak_performance_and_performance_breadth_across_temperatures_for_aerobic_scope_in_teleost_fishes_/3843624.

At Step 7 'Review & submit', you must view the PDF proof of the manuscript before you will be able to submit the revision. Note: if any parts of the electronic submission form have not been completed, these will be noted by red message boxes.

Author's Response to Decision Letter for (RSOS-201361.R0)

See Appendix A.

RSOS-201361.R1 (Revision)

Review form: Reviewer 2 (Ilya Maclean)

Is the manuscript scientifically sound in its present form?
No

Are the interpretations and conclusions justified by the results?
No

Is the language acceptable?
Yes

Do you have any ethical concerns with this paper?
No

Have you any concerns about statistical analyses in this paper?
No

Recommendation?
Major revision is needed (please make suggestions in comments)

Comments to the Author(s)
The authors present a model of competitive dominance that predicts some interesting macroecological patterns, which are then tested against empirical data. The model is elegant in its simplicity and quite compelling. In essence the authors assume vegetation height to be the key indicator of competitive strength and show that, at macro scales, this is related to light and evapotranspiration and find that plant height clustering is most evident in mid-latitude ecoregions, where they assume conditions for growth (reflected in actual evapotranspiration rates
and gross primary productivities) are optimal. In effect they build a simple model and show that the pattern predicted by the model is the same as that observed. This is potentially really neat, but I don’t think this is really the same as truly validating the model – it just so happens that the patterns are broadly similar, which could be coincidental, or could be that the model is good. The pattern could be explained by other things: e.g. abiotic rather than biotic controls or cause rather than effect. The authors assume mean annual evapotranspiration is a reliable measure of environmental constraints on plant growth. However, while partially related to leaf temperature (and hence net radiation and climate), evapotranspiration is strongly controlled by stomatal conductance (and hence photosynthetic rates) and foliage density (and hence canopy height). It could instead be argued that evapotranspiration rates are predictable from vegetation growth rather than the other way around.

Beyond that it is quite hard to get a sense of this paper. This is partly as it is really hard to follow as most of theoretical grounding presented in another paper, the methods themselves are not detailed enough and don’t list all of the datasets used, and the results are a confusing blend of theory, method and actual results. Other potential limitations are that (i) vegetation height is assumed the key (only) indicator of competitive strength, when quite clearly this may not be the case and (ii) it is not clear whether the latitudinal patterns of potential light and water availability presented in Fig 1 come from. Is this PAR or some other measure of light availability, and is it constrained to seasons of plant growth (potentially revealing much higher light levels in the Arctic owing to 24 daylight)?

Most of the above could be handled with a convincing rebuttal, some more nuanced presentation of concepts and with a significant restructuring of the manuscript. I’d suggest restructuring the middle bit as follows: (1) outline the theory, (2) detail patterns predicted by the theory, (3) list the data obtained to test the theory (including all the environmental data) and (4) present the results (i.e. extent to which data support theory). (2) and (3) could potentially swap order, but really needs to know about the theory before finding out about the data.

In summary, this could be quite a neat paper, but it could also be quite flawed, and I would really need to see a more sensibly structured manuscript before fully passing judgement.

Decision letter (RSOS-201361.R1)

We hope you are keeping well at this difficult and unusual time. We continue to value your support of the journal in these challenging circumstances. If Royal Society Open Science can assist you at all, please don’t hesitate to let us know at the email address below.

Dear Dr Capitan

The Editors assigned to your paper RSOS-201361.R1 "A signal of competitive dominance in mid-latitude herbaceous plant communities" have now received comments from reviewers and would like you to revise the paper in accordance with the reviewer comments and any comments from the Editors. Please note this decision does not guarantee eventual acceptance.

We invite you to respond to the comments supplied below and revise your manuscript. Below the referees’ and Editors’ comments (where applicable) we provide additional requirements. Final acceptance of your manuscript is dependent on these requirements being met. We provide guidance below to help you prepare your revision.
We do not generally allow multiple rounds of revision so we urge you to make every effort to fully address all of the comments at this stage. If deemed necessary by the Editors, your manuscript will be sent back to one or more of the original reviewers for assessment. If the original reviewers are not available, we may invite new reviewers.

Please submit your revised manuscript and required files (see below) no later than 21 days from today’s (ie 14-Jun-2021) date. Note: the ScholarOne system will ‘lock’ if submission of the revision is attempted 21 or more days after the deadline. If you do not think you will be able to meet this deadline please contact the editorial office immediately.

Please note article processing charges apply to papers accepted for publication in Royal Society Open Science (https://royalsocietypublishing.org/rsos/charges). Charges will also apply to papers transferred to the journal from other Royal Society Publishing journals, as well as papers submitted as part of our collaboration with the Royal Society of Chemistry (https://royalsocietypublishing.org/rsos/chemistry). Fee waivers are available but must be requested when you submit your revision (https://royalsocietypublishing.org/rsos/waivers).

Thank you for submitting your manuscript to Royal Society Open Science and we look forward to receiving your revision. If you have any questions at all, please do not hesitate to get in touch.

Best regards,
Lianne Parkhouse
Editorial Coordinator
Royal Society Open Science
openscience@royalsociety.org

on behalf of Professor Pete Smith (Subject Editor)
openscience@royalsociety.org

Associate Editor Comments to Author:

Thank you for your further patience with the review of your work - it has unfortunately been very difficult to find referees for the paper: indeed, the original reviewer of your paper was unavailable to assess the revision, and we've struggled until recently to find a replacement. The new reviewer has provided thoughtful commentary on your work, and - though we don't generally permit multiple rounds of revision - we would like you to revise your paper. This will, however, be the last chance you receive to get the paper to a publishable standard. If you can persuade the reviewer that the promise they see in your work has been realised, great! If they continue to express similar concerns after revision, we may not be able to consider the paper further. With this in mind, please be careful in preparing your revision to clearly identify the changes you make (both in a tracked changes version of the paper and a point-by-point rebuttal). Good luck and we'll look forward to receiving the review in the near future.

Reviewer comments to Author:

Reviewer: 2
Comments to the Author(s)
The authors present a model of competitive dominance that predicts some interesting macroecological patterns, which are then tested against empirical data. The model is elegant in its simplicity and quite compelling. In essence the authors assume vegetation height to be the key indicator of competitive strength and show that, at macro scales, this is related to light and evapotranspiration and find that plant height clustering is most evident in mid-latitude ecoregions, where they assume conditions for growth (reflected in actual evapotranspiration rates and gross primary productivities) are optimal. In effect they build a simple model and show that
the pattern predicted by the model is the same as that observed. This is potentially really neat, but I don’t think this is really the same as truly validating the model – it just so happens that the patterns are broadly similar, which could be coincidental, or could be that the model is good. The pattern could be explained by other things: e.g. abiotic rather than biotic controls or cause rather than effect. The authors assume mean annual evapotranspiration is a reliable measure of environmental constraints on plant growth. However, while partially related to leaf temperature (and hence net radiation and climate), evapotranspiration is strongly controlled by stomatal conductance (and hence photosynthetic rates) and foliage density (and hence canopy height). It could instead be argued that evapotranspiration rates are predictable from vegetation growth rather than the other way around.

Beyond that it is quite hard to get a sense of this paper. This is partly as it is really hard to follow as most of theoretical grounding presented in another paper, the methods themselves are not detailed enough and don’t list all of the datasets used, and the results are a confusing blend of theory, method and actual results. Other potential limitations are that (i) vegetation height is assumed the key (only) indicator of competitive strength, when quite clearly this may not be the case and (ii) it is not clear whether the latitudinal patterns of potential light and water availability presented in Fig 1 come from. Is this PAR or some other measure of light availability, and is it constrained to seasons of plant growth (potentially revealing much higher light levels in the Arctic owing to 24 daylight)?

Most of the above could be handled with a convincing rebuttal, some more nuanced presentation of concepts and with a significant restructuring of the manuscript. I’d suggest restructuring the middle bit as follows: (1) outline the theory, (2) detail patterns predicted by the theory, (3) list the data obtained to test the theory (including all the environmental data) and (4) present the results (i.e. extent to which data support theory). (2) and (3) could potentially swap order, but really needs to know about the theory before finding out about the data.

In summary, this could be quite a neat paper, but it could also be quite flawed, and I would really need to see a more sensibly structured manuscript before fully passing judgement.

===PREPARING YOUR MANUSCRIPT===

Your revised paper should include the changes requested by the referees and Editors of your manuscript. You should provide two versions of this manuscript and both versions must be provided in an editable format:

one version identifying all the changes that have been made (for instance, in coloured highlight, in bold text, or tracked changes);
a 'clean' version of the new manuscript that incorporates the changes made, but does not highlight them. This version will be used for typesetting if your manuscript is accepted.

Please ensure that any equations included in the paper are editable text and not embedded images.

Please ensure that you include an acknowledgements' section before your reference list/bibliography. This should acknowledge anyone who assisted with your work, but does not qualify as an author per the guidelines at https://royalsociety.org/journals/ethics-policies/openness/.

While not essential, it will speed up the preparation of your manuscript proof if accepted if you format your references/bibliography in Vancouver style (please see https://royalsociety.org/journals/authors/author-guidelines/#formatting). You should include DOIs for as many of the references as possible.
If you have been asked to revise the written English in your submission as a condition of publication, you must do so, and you are expected to provide evidence that you have received language editing support. The journal would prefer that you use a professional language editing service and provide a certificate of editing, but a signed letter from a colleague who is a native speaker of English is acceptable. Note the journal has arranged a number of discounts for authors using professional language editing services (https://royalsociety.org/journals/authors/benefits/language-editing/).

===PREPARING YOUR REVISION IN SCHOLARONE===

To revise your manuscript, log into https://mc.manuscriptcentral.com/rsos and enter your Author Centre - this may be accessed by clicking on "Author" in the dark toolbar at the top of the page (just below the journal name). You will find your manuscript listed under "Manuscripts with Decisions". Under "Actions", click on "Create a Revision".

Attach your point-by-point response to referees and Editors at Step 1 'View and respond to decision letter'. This document should be uploaded in an editable file type (.doc or .docx are preferred). This is essential.

Please ensure that you include a summary of your paper at Step 2 'Type, Title, & Abstract'. This should be no more than 100 words to explain to a non-scientific audience the key findings of your research. This will be included in a weekly highlights email circulated by the Royal Society press office to national UK, international, and scientific news outlets to promote your work.

At Step 3 'File upload' you should include the following files:
-- Your revised manuscript in editable file format (.doc, .docx, or .tex preferred). You should upload two versions:
 1) One version identifying all the changes that have been made (for instance, in coloured highlight, in bold text, or tracked changes);
 2) A 'clean' version of the new manuscript that incorporates the changes made, but does not highlight them.
-- An individual file of each figure (EPS or print-quality PDF preferred [either format should be produced directly from original creation package], or original software format).
-- An editable file of each table (.doc, .docx, .xls, .xlsx, or .csv).
-- An editable file of all figure and table captions.

Note: you may upload the figure, table, and caption files in a single Zip folder.
-- Any electronic supplementary material (ESM).
-- If you are requesting a discretionary waiver for the article processing charge, the waiver form must be included at this step.
-- If you are providing image files for potential cover images, please upload these at this step, and inform the editorial office you have done so. You must hold the copyright to any image provided.
-- A copy of your point-by-point response to referees and Editors. This will expedite the preparation of your proof.

At Step 6 'Details & comments', you should review and respond to the queries on the electronic submission form. In particular, we would ask that you do the following:
-- Ensure that your data access statement meets the requirements at https://royalsociety.org/journals/authors/author-guidelines/#data. You should ensure that you cite the dataset in your reference list. If you have deposited data etc in the Dryad repository, please include both the 'For publication' link and 'For review' link at this stage.
If you are requesting an article processing charge waiver, you must select the relevant waiver option (if requesting a discretionary waiver, the form should have been uploaded at Step 3 'File upload' above).

If you have uploaded ESM files, please ensure you follow the guidance at https://royalsociety.org/journals/authors/author-guidelines/#supplementary-material to include a suitable title and informative caption. An example of appropriate titling and captioning may be found at https://figshare.com/articles/Table_S2_from_Is_there_a_trade-off_between_peak_performance_and_performance_breadth_across_temperatures_for_aerobic_scope_in_teleost_fishes_/3843624.

At Step 7 'Review & submit', you must view the PDF proof of the manuscript before you will be able to submit the revision. Note: if any parts of the electronic submission form have not been completed, these will be noted by red message boxes.

Author's Response to Decision Letter for (RSOS-201361.R1)

See Appendix B.

Decision letter (RSOS-201361.R2)

We hope you are keeping well at this difficult and unusual time. We continue to value your support of the journal in these challenging circumstances. If Royal Society Open Science can assist you at all, please don’t hesitate to let us know at the email address below.

Dear Dr Capitan,

It is a pleasure to accept your manuscript entitled "A signal of competitive dominance in mid-latitude herbaceous plant communities" in its current form for publication in Royal Society Open Science. The comments from the Editors are included at the foot of this letter.

Please ensure that you send to the editorial office an editable version of your accepted manuscript, and individual files for each figure and table included in your manuscript. You can send these in a zip folder if more convenient. Failure to provide these files may delay the processing of your proof.

You can expect to receive a proof of your article in the near future. Please contact the editorial office (openscience@royalsociety.org) and the production office (openscience_proofs@royalsociety.org) to let us know if you are likely to be away from e-mail contact -- if you are going to be away, please nominate a co-author (if available) to manage the proofing process, and ensure they are copied into your email to the journal.

Due to rapid publication and an extremely tight schedule, if comments are not received, your paper may experience a delay in publication.

Please see the Royal Society Publishing guidance on how you may share your accepted author manuscript at https://royalsociety.org/journals/ethics-policies/media-embargo/. After publication, some additional ways to effectively promote your article can also be found here.
https://royalsociety.org/blog/2020/07/promoting-your-latest-paper-and-tracking-your-results/.

Thank you for your fine contribution. On behalf of the Editors of Royal Society Open Science, we look forward to your continued contributions to the Journal.

Kind regards,
Royal Society Open Science Editorial Office
Royal Society Open Science
openscience@royalsociety.org

on behalf of Professor Leslie Brown (Associate Editor) and Pete Smith (Subject Editor)
openscience@royalsociety.org

Associate Editor Comments to Author (Professor Leslie Brown):

Dear authors, thank you for the detailed comments/explanations to each of the reviewers comments/suggestions and the positive way in which you addressed it. I am of the opinion that the changes affected improves the manuscript and its value considerably. I have made my recommendation and sent it to the editor for final decision. All of the best with your research and this interesting manuscript.

Follow Royal Society Publishing on Twitter: @RSocPublishing
Follow Royal Society Publishing on Facebook:
https://www.facebook.com/RoyalSocietyPublishing.FanPage/
Read Royal Society Publishing’s blog:
https://royalsociety.org/blog/blogsearchpage/?category=Publishing
Understanding the main determinants of species coexistence across space and time is a central question in ecology. However, ecologists still know little about the scales and conditions at which biotic interactions matter and how these interact with the environment to structure species assemblages. Here we use recent theory developments to analyze plant distribution and trait data across Europe and find that plant height clustering is related to both evapotranspiration and gross primary productivity. This clustering is a signal of interspecies competition between plants, which is most evident in mid-latitude ecoregions, where conditions for growth (reflected in actual evapotranspiration rates and gross primary productivities) are optimal. Away from this optimum, climate severity likely overrides the effect of competition, or other interactions become increasingly important. Our approach bridges the gap between modern coexistence theory and large-scale species distribution data analysis.

Keywords: Ecological community dynamics Plant diversity Species coexistence Biogeographic patterns Null hypotheses testing Stochastic Markov processes in continuous time.
Introduction

Modern coexistence theory (Chesson, 2000, HilleRisLambers et al., 2011, Mayfield & Levine, 2010) is based on species difference and their interplay to determine effective competitive (biotic) interactions among species in natural communities. The balance between stabilizing trait differences and species dominance among competitors is crucial to understand species coexistence under this framework. In communities driven by fitness differences, species turn out to be clustered around similar trait values selected through competitive dominance. Trait clustering may arise through two radically different mechanisms. One possible explanation is that it would arise through independent adaptation of non-interacting species to the same environmental conditions. The alternative explanation would say that competitive interactions leading to fitness equalization end up producing more similar species, with, therefore, more similar traits. Therefore, trait clustering may be interpreted as a fingerprint of competition even in the absence of environmental filtering (Kraft et al., 2015, Mayfield & Levine, 2010). Although the role of local interactions at determining large-scale diversity patterns is still controversial (Ricklefs, 2008), community ecology, however, still needs a comprehensive theoretical framework able to describe quantitatively the role of biotic, species-to-species interactions that are relevant to determine species composition and diversity across large spatial scales. Empirical studies, while they may be able to independently assess environmental stress and species competitive abilities, are often limited to small community sizes (Violle et al., 2011) or restricted to single habitats (Kunstler et al., 2012). Very few studies have explored the idea of competition as a driver of community assembly across biogeographic regions (Kunstler et al., 2016, Swenson et al., 2012). Here we attempted a continent-wide macro-ecological study of species assemblage patterns based on theoretical predictions from modern coexistence theory (Capitán et al., 2020, Chesson, 2000, Mayfield & Levine, 2010) at large geographical scales.

Light and water availability (Fig. 1) impose significant limitations on gross primary productivity which is reflected in actual evapotranspiration rates (Garbulsky et al., 2010). These two resources vary at regional scales, placing strong, sometimes opposing constraints on how tall a plant can grow within the limits of structural stability. Plant height is a fundamental trait that reflects the ability of the individual to optimize its own growth within its local biotic environment and regional physical constraints (see Falster & Westoby (2003), Holmgren et al. (1997) and references therein). How plant height adapts to these opposing constraints has been studied in trees (King, 1990, Law et al., 1997, Midgley, 2003) and herbaceous plants (Givnish, 1995, 1982). Here we analyzed presence-absence matrices of floral herbaceous taxa across different European ecoregions to determine if competitive ability (reflected in maximum stem height) could help explain assemblage patterns at local scales across gradients of relevant environmental factors such as evapotranspiration. We examined how well observed plant assemblages at macro-ecological scales match theoretical predictions generated by a synthetic, stochastic framework of community assembly (Capitán et al., 2015, 2017, Haegeman & Loreau, 2011, McKane et al., 2000), which we described in full detail in Capitán et al. (2020). By assuming that competition between hetero-specifics is driven by signed
height differences, we found a significant positive correlation between the degree of clustering and actual evapo-
transpiration rates. Across Europe, actual evapotranspiration is lower at more southern latitudes (due to reduced
precipitation levels) as well as at more northern latitudes (due to colder temperatures and low levels of sunlight).
Herbaceous plant height clustering is significant only over a latitudinal band where environmental constraints to
plant growth are weaker, which suggests that the signature of competitive dominance can only be detected in the
assemblage patterns of mid-latitude ecoregions.

Theoretical predictions

In order to make this contribution self-contained, we first provide a summary of the main predictions
derived by our suite of models. Recent theoretical approaches have focused on predicting analytically the ex-
pected fraction of species that survive in competitive scenarios (Serván et al., 2018). A spatially-implicit model
of Lotka-Volterra type (Capitán et al., 2020) allowed us to predict on average how many species are expected to
survive as a function of mean competitive strengths. We observed that the fraction of extant species \(p_c \), which we
called “coexistence probability”, decays with the average competitive strength \(\langle \rho \rangle \) as a power law above a certain
threshold in competition, and curves for different pool sizes \(S \) can be collapsed into the same curve following the
mathematical dependence,

\[
p_c \sim (\langle \rho \rangle S)^{-\gamma},
\]

which was observed numerically and justified analytically (see Capitán et al. (2020)). We showed that the exponent
\(\gamma \) is controlled by the immigration rate \(\mu \). This is the first prediction of the spatially implicit model.

In order to explore the significance of competitive dominance in empirical communities, we applied first ran-
donization tests to model communities. In this way, we established a second prediction for this model. Null models
for community assembly (Chase et al., 2011, Gotelli et al., 2010, Webb et al., 2002) compare the properties of
actual communities against random samples of the same size extracted from a species pool (observed diversity
at the ecoregion level). This approach assumes that realized communities are built up through the independent
arrival of equivalent species from the pool (Alonso et al., 2015, MacArthur & Wilson, 1967) regardless of species
preferences for particular environments or species interactions. Our randomization tests were based on a single
statistic, the competitive strength averaged over species present in realized model communities, which were then
compared to random samples of the same size drawn from the species pool. The null hypothesis (i.e., empirical
communities are built as random assemblages from the ecoregion) can be rejected in both sides of the distribution,
implying signals of ‘significant trait overdispersion’ (‘clustering’) if average trait differences are larger (smaller)
than expected at random. In the low immigration regime, the model predicts a significant signal of clustering. This
regime is characterized by a low non-dimensional immigration rate \(\lambda = \mu/(\alpha K) \) much lower than 0 —here \(\alpha \)
stands for the average species growth rate in isolation, and \(K \) is the carrying capacity of the environment.
The spatially-explicit model incorporates a trade-off between potential growth and alternative mechanisms other than growth that allow shorter individuals to overcome being out-competed by taller plants (see Capitán et al. (2020)). While the latter are better competitors for light, the former allocate more energy in allelopathic compounds (Fig. 1). Height hierarchies alone, as assumed in our spatially-implicit model, lead to the selection of taller plants in species assemblages. In the more realistic spatially-explicit model, species processes take place on a lattice where locally taller plants grow faster than neighbors because they are less shaded, but in the presence of heterospecific neighbors, they are also more prone to die. Computer simulations show that the balance of these two mechanisms can end up selecting plant sizes characterized by an optimal potential height that can be either shifted toward lower or higher values depending on the choice of model parameters. This is the first prediction of the spatially-explicit model: species abundance distributions are not necessarily biased towards taller individuals, and they can peak at species at intermediate or even shorter heights. In any case, and consistently, in this more complex scenario, a balance between the gains of potential growth and the gains of energy allocation in allelopathy (as an example of a non-size-related, alternative mechanism) may result in a selection for plants exhibiting significant height clustering at stationarity.

A second result that can be derived from the spatially-explicit model is related to the persistence of trait clustering when species are aggregated over spatial scales larger than local interaction distances. Our spatially-explicit model can help explain why clustering patterns persist over large scales. The distributions of species within a region may reveal more information about the underlying assembly processes than the co-occurrence of species at any given location (Ricklefs, 2008). As species are aggregated over lattice cells of increasing size, clustering patterns hold even at scales much larger than local interaction distances. The model predicts consistent clustering patterns regardless of the aggregation scale used to define species communities. This was the second prediction, derived and carefully analyzed in Capitán et al. (2020), from our spatially-explicit model.

Materials and methods

Plant community data were drawn from Atlas Florae Europaeae (Jalas & Suominen, 1964–1999). The distribution of flora is geographically described using equally-sized grid cells (∼ 50 × 50 km) based on the Universal Transverse Mercator projection and the Military Grid Reference System, see Fig. 2. Each cell was assigned to a dominant habitat type based on the WWF Biomes of the World classification (Olson et al., 2001), which defines different ecoregions, i.e., geographically distinct assemblages of species subject to similar environmental conditions. We consider each cell in an ecoregion to represent a species aggregation.

Each herbaceous species in an ecoregion was characterized by its maximum stem height \(H\), an eco-morphological trait that relates to several critical functional strategies among plants (Díaz et al., 2015). It represents an optimal trade-off between the gains of accessing light (King, 1990, Law et al., 1997), water and nutrient transport from soil (Midgley, 2003, Ryan & Yoder, 1997), and additional constraints posed by the local biotic environment of
each individual plant, such as competition, facilitation, or herbivory.

Mean height values were obtained from the LEDA database (Kleyer et al., 2008) for as many species as there were available in the database. Missing values were taken from (Ordóñez et al., 2010) or inferred using a MICE (Multivariate Imputation by Chained Equations) approach (Buuren & Groothuis-Oudshoorn, 2011) together with a predictive mean matching algorithm based on other available traits (leaf and seed traits), genus, and growth forms as predictors. Based on plant growth forms, 2610 herbaceous species (aquatic, herbs, or graminoid) were considered in this work.

Maximum stem height values spanned several orders of magnitude, so we used a log-transformed variable \(\log H \) to measure species differences (using non-transformed heights yielded comparable results, here not shown). The values of \(h \) were standardized within ecoregions as \(t = \frac{h - h_{\text{min}}}{h_{\text{max}} - h_{\text{min}}} \) so that \(0 \leq t \leq 1 \).

Results

For all the species reported in an ecoregion, we formed an empirical competition matrix with pairwise \(\rho_{ij} \) signed height differences \(\rho_{ij} = \hat{\rho}(t_j - t_i) \), where \(t_i \) are height values standardized across ecoregions and sorted in increasing order. The advantage of having these values represent trait differences between pairs of species is that any trend in competitive strengths can be immediately translated into patterns of functional clustering or overdispersion. As in Capitán et al. (2020), we calculated the average competitive strength as \(\langle \rho \rangle = \frac{2}{S(S-1)} \sum_{i=1}^{S} \sum_{j=i+1}^{S} |\rho_{ij}| \), \(S \) standing for ecoregion richness.

In an ecoregion with richness \(S \), a number \(s_k \leq S \) of species will form a species assemblage at cell \(k \). The coexistence probability was calculated from data as the average fraction of species that survive per cell,

\[
p_c = \frac{\langle s \rangle}{S} = \frac{1}{SN_C} \sum_{k=1}^{N_C} s_k,
\]

with \(N_C \) representing the number of cells in the ecoregion. This quantity, together with the distribution of trait differences in cells, was used to compare model predictions with real data.

Larger plants capture more resources. Therefore, evolution should favor investment in potential growth (maximum height) as a competitive mechanism. However, investment in alternative mechanisms, such as allelopathy, may help smaller plants stave off competitors, reducing local heterospecific plant cover and giving them a competitive advantage over potentially taller plant species. As a consequence, the maximum species stem height can be regarded as the outcome of an evolutionary game (Givnish, 1982) that balances opposing constraints, both physical (Craine & Dybzinski, 2013, Falster & Westoby, 2003) and biotic (King, 1990, Law et al., 1997). To explore these opposing constraints, we analyzed plant data in the light of the two community assembly models. The first one is a spatially-implicit model of Lotka-Volterra type, and the second one is a straightforward spatially-explicit extension including height-driven competition and allelopathic effects. Both have been carefully defined.
Two predictions from the implicit model tested against data

The collapse of curves predicted by Eq. (1) helps eliminate the variability in S, so that empirical coexistence probabilities, which arise from different ecoregion sizes, can be fitted together (Fig. 3). Confirming the first prediction of the spatially-implicit model, we found a significant correlation between the probability of coexistence and the scaled competitive overlap based on empirical data (Fig. 3), indicating that a model driven solely by dominant competitive interactions reliably predicts the average richness of plant communities across ecoregions.

In addition, this theoretical prediction allowed an indirect estimation of the relative importance of average inter- vs. intraspecific effects: the average ratio of inter- to intraspecific competition strength is about 5% (see Supporting Information, section A for details on the estimation procedure).

As a second prediction, the implicit model implies high levels of trait clustering for low immigration rates and high carrying capacity values. Importantly, this parameter regime precisely emerges from the data. In Capitán et al. (2020) we derived a deterministic prediction for the exponent, $\gamma = 1$, which does not match the one obtained from data ($\gamma = 0.61$). As shown in that paper, it is a non-zero (but small) value of the immigration rate that determines the power-law exponent γ being lower than 1. Indeed, for a realistic fit in Fig. 3, the exponent of the empirical power law is obtained for $\mu/\alpha \sim 0.1$ individuals per generation. Since plant communities operate in a low-immigration regime, the non-dimensional immigration rate $\lambda = \mu/(\alpha K)$ must satisfy $\lambda = 0.1/K \ll 1$, hence the carrying capacity must be large. In a regime of low immigration rate and high carrying capacity, which best fits empirical coexistence probabilities, the implicit model predicts a significant degree of species clustering [see Fig. 3 in Capitán et al. (2020)].

Following Triadó-Margarit et al. (2019), our randomization tests applied to empirical communities were based on the average competitive strength observed in a cell C formed by s species,

$$\langle \rho \rangle_C = \frac{2}{s(s-1)} \sum_{i=1}^{s} \sum_{j=i+1}^{s} |\rho_{ij}^C|,$$

(3)

where $\langle \rho_{ij}^C \rangle$ is the submatrix of the ecoregion competition matrix restricted to the species present in the cell. Compared to ecoregion samples, the lower (higher) the empirical community average $\langle \rho \rangle_C$ is, the higher (lower) is the degree of species clustering in the cell. For each cell we calculated the probability $p = \Pr(\langle \rho \rangle_Q \leq \langle \rho \rangle_C)$ that the competition average $\langle \rho \rangle_Q$ randomly-sampled from the pool is smaller than the empirical average. At a 5% significance level, if $p > 0.95$ the empirical competition average is significantly larger than the average measured for random pool samples, which implies that average trait differences in realized communities are larger than would be expected at random. On the other hand, if $p < 0.05$, observed trait differences are significantly smaller than would be expected at random. Therefore, if $p > 0.95$, the community exhibits ‘significant trait overdispersion’, whereas if $p < 0.05$, there is evidence for ‘significant trait clustering’ in the observed species.
Testing the second prediction against empirical observations yields a mixed picture. We calculated p-values for randomization tests applied to every cell in each ecoregion, which represent the empirical distribution of p-values (Fig. 4). At the parameter values that make plant data consistent with the first prediction, the spatially-implicit model predicts significant trait clustering. We observe that some ecoregions are consistent with this theoretical expectation. However, other ecoregions clearly do not comply with this prediction. In addition, no ecoregion is consistent with trait overdispersion (Fig. 4). Selecting species in randomization tests according to species dispersal abilities portrays the same picture (results not shown).

Ecoregion clustering and actual evapotranspiration rates

In order to better quantify the propensity of an ecoregion to exhibit clustering in maximum stem height, we defined a clustering index q for an ecoregion as the fraction of its cells that lie within the 5% range of significant clustering (randomization tests yield p-values smaller than 0.05 for those cells). An ecoregion for which significant clustering is found in most of its cells will tend to score high in the q index. We examined how the clustering index varied across the continent in terms of the geographical location of ecoregion centroids as well as with actual evapotranspiration (Fig. 5). Evapotranspiration maps were obtained from data estimated through remote sensing (Mu et al., 2011).

Water availability acts as a factor limiting plant growth at geographical scales (Fig. 1a), and correlates with gross primary productivity (Garbulsky et al., 2010), see Fig. 5d. Therefore, for a given region, mean annual evapotranspiration is a reliable measure of environmental constraints on plant growth (Garbulsky et al., 2010). Panels a and b of Fig. 5 show a clear latitudinal trend: there is an intermediate range of ecoregion latitudes where both clustering indices and evapotranspiration are large, indicating that evapotranspiration measures can robustly predict clustering indices (Fig. 5c). The same pattern can also be seen in the relation between mean relative height differences and actual evapotranspiration across individual grid cells. The intensity of the clustering pattern increases with actual evapotranspiration rates across Europe, not only at the ecoregional level (Fig. 5c), but also at the lower spatial scale of grid cells (see Fig. C1, Supporting Information). More importantly, since evapotranspiration is a powerful proxy of environmental constraints on plant growth, this clustering in maximum stem height appears to be stronger at ecoregions less limited by environmental conditions. As environments become harsher and less optimal for plant growth, these clustering patterns disappear. This is particularly true for the severe climatic conditions characteristic in the Mediterranean (with erratic rainfall, limited water availability and drought), as well as of boreal zones (with low radiation incidence and cold temperatures). According to model predictions, the overall clustering patterns found at middle-range latitudes are consistent with species competitive dominance controlling species height differences.
Two predictions from the explicit model tested against data

The spatially-explicit model allows for either the dominance of tall, mid-sized or short plants, as a consequence of the trade-off between investment in either potential growth or alternative mechanisms other than growth (see Fig. 5 in Capitán et al. (2020)). We have tested whether taller or shorter plants are most commonly represented in ecoregions via the correlation of cell-averaged heights and evapotranspiration (Fig. 6a), which shows a mixed picture. With few exceptions, mid-latitude ecoregions exhibit positive correlation (taller plants are selected in regions favoring plant growth), whereas negative dependencies are often observed in latitudinal extremes (Fig. 6b). Correlations are significant but, in some cases, very weak. These results are consistent with our interpretation in terms of a signal of competitive dominance in mid-latitude ecoregions.

Our spatially-explicit model predicts the persistence of trait clustering as species are aggregated at larger spatial scales (much larger than the typical range of species interactions). This is important because real individual plants interact at much lower spatial scales (1 to 1000ha) compared to the spatial resolution of our dataset (grid cell sizes about 50 km). To assess the robustness of our results, we further investigated the effect of aggregation scales on clustering patterns using plant data. In line with the spatially-implicit spatially-explicit model, the analysis of herbaceous plant communities from mid-latitude ecoregions reveals that our results are robust to both up- and down-scaling community sizes (see Fig 6c). Height clustering remains significant in a range of aggregated scales, and extrapolates to smaller areas (under a random placement hypothesis, communities of smaller sizes were built by randomly selecting a number of species as predicted by the empirical species-area relation, see Supporting Information, section B). We conclude that clustering patterns at large scales is an emerging pattern that can be interpreted as a signature of competitive dominance operating at much smaller spatial scales.

Discussion

In this work we have tested predictions from a model of species-rich interacting communities under dominant competition (Capitán et al., 2020). Our work is generally framed in modern coexistence theory (Chesson, 2000) and inspired by the competition-similarity paradigm (Mayfield & Levine, 2010). We used macro-ecological trait data at large spatial scales (Kunstler et al., 2016). While to show that, while potential evapotranspiration decreases with latitude, actual evapotranspiration peaks at intermediate latitudes, and is strongly associated with higher levels of trait clustering. Critically, actual evapotranspiration is positively correlated with gross primary productivity (GPP) across terrestrial ecosystems [see Fig. 5d and Garbulsky et al. (2010)], which also peaks at intermediate latitudes across Europe. Consistently, our results were reproduced using GPP instead of ET, although both variables yield similar results. The agreement of model predictions with plant community data can be interpreted as a signature of competitive dominance in empirical communities in the environmentally conducive middle-range latitudes. Significant height clustering would be the trace that competition leaves on community assembly pattern by filtering out subdominant species. This result does not necessarily mean that competition is
the main driver of community assembly. It rather highlights the potential role of competitive dominance, along with other processes, in the assembly of herbaceous communities at intermediate latitudes. On the contrary, as environmental conditions get increasingly extreme, no significant clustering in plant height is observed. Although the interplay between facilitation and competition is far from simple (Hart & Marshall, 2013), the harshness of extreme conditions likely override the effects of competition, and other processes such as species tolerances and facilitation (Maestre et al., 2009, Valiente-Banuet & Verdú, 2007) may be critical community drivers at climatic extremes.

Although we introduced our conceptual framework based on “ideal plant growth conditions” (see Fig. 1a), the patterns presented for light and water availability are not necessarily unimodal nor universal for all plant species. In general, many herbaceous plants grow efficiently when water availability is high, and temperatures are not extremely low. We acknowledge that there are exceptions to this rule. For example, environments that are too wet can lead plants to drown if their roots are saturated, which can cause early mortality and fast turnover (due to fungal infections, for instance). Likewise, high night time temperatures can lead to increases in respiration rates, thereby reducing overall growth. Many of these relationships are discussed in Lambers & Oliveira (2019). Climatic drivers can induce a variety of effects on plant growth different from the generic trend we used here to frame our contribution.

Throughout this work, species assemblages within each grid cell (~ 50 × 50 km) have been defined as distinct communities. Current consensus about the concept of ecological community emphasizes the importance of biotic interactions. An ecological community is defined as a set of species that live in the same area and can potentially interact (Stroud et al., 2015). In spite of the size and heterogeneity within each grid cell at the 50 × 50 km spatial scale, cells are much smaller than the ecoregion they belong to, and are, of course, much more homogeneous, both in species composition and in environment, than the the ecoregion itself. Therefore, in principle, grid cells could be regarded as communities in an operational and relative sense. In addition, we assumed that the European Flora database represents species composition at a steady state, this is, we examined the stationary patterns resulting from eco-evolutionary processes associated to long time scales. Although real individual plants interact at much lower spatial scales, two species from the same ecoregion will eventually interact within a grid cell given enough time. The larger the temporal scale, the larger is the area where two species will have a chance to interact through generations and repeated dispersal events. The scale at which a set of local communities reveal information about underlying assembly processes is very often the regional scale (Diniz-Filho et al., 2009, Olalla-Tárraga & Rodríguez, 2007, Ricklefs, 2015), which has led to the “regional community concept” (Ricklefs, 2008, 2011).

It is important to make a clear distinction between actual plant size and the species-level trait, “maximum stem height”. While a species-level trait is shaped by evolutionary constraints at longer temporal scales, actual plant size is determined by a host of contingent ecological constraints operating over shorter temporal scales. Although there is a large body of theory and experiments positively co-relating actual plant size and individual plant competition ability (Gaudet & Keddy, 1988, Weiner, 1993), there has been considerably less attention paid
to the evolutionary establishment of functional trade-offs between different species-level traits (Adler et al., 2014, Stearns, 1989). The common wisdom that competition favors taller plants may not always hold [for instance, in low-nutrient, competition-intensive, undisturbed habitats, see Tilman & Wedin (1991)]. Our analysis shows that height clustering (and not height per se) at middle-range latitudes is a fingerprint of a balance between energy invested in either potential growth or other mechanisms that may help plants overcome competitors. For instance, when competitors are close relatives in dense herbaceous communities, selection may favor the evolution of a low leaf height. In these situations, “for short conspecific herbs to exclude competitors from a highly productive site, they must possess alternative mechanisms to overcome competition, such as root competition or allelochemics” (Givnish, 1982). More generally, we argue that functional trade-offs tend to evolve in regions of higher primary productivity, where the relative role of biological interactions (competition, parasitism, herbivory) is expected to be higher.

Competitive hierarchies have been theoretically investigated (Tilman, 1982, 2004), and empirically demonstrated in herbaceous plant communities at much smaller spatial scales (Stanley Harpole & Tilman, 2006, Tilman, 1994, Tilman & Wedin, 1991). Other hierarchies have been also investigated in tree communities (Muller-Landau, 2010). In these studies, a trade-off between competitive and colonization abilities has particular trade-offs have been shown to maintain plant diversity, although other hierarchies have been also suggested (Muller-Landau, 2010), and limit similarity, which involves that competitive dominance may also lead to trait over-dispersion. However, these theoretical results arise as a consequence of a particular tradeoff definition. We believe our theoretical models are more general (Capitán et al., 2020), and, in their diverse formations, invariably lead to the opposite pattern: trait clustering. Interestingly, the relevant role of competitive dominance driven by species trait hierarchies has been also reported at much smaller spatial scales for forest trees along an altitudinal gradient in the French Alps (Kunstler et al., 2012). Moreover, a recent study of the assembly of forest communities across East Asia shows that a phylogenetic-based species similarity index tends to be smaller the higher the minimum temperature of the coldest month is (Feng et al., 2015). Although traits are not generally related to competitive abilities, and they are diverse in their functionality and in their response to environmental stress, these studies, together with our results, suggest that trait clustering is generally likely to occur where conditions for plant growth are less restrictive. Our models indicate that the process underlying this pattern is competitive dominance rather than Darwin’s competition-similarity hypothesis, although it is likely that community assembly for other taxa may be driven by other biotic or environmental filters. For instance, phytoplankton communities from estuarine ecosystems (Segura et al., 2012) are more consistent with Darwin’s seminal hypothesis since they appear to be driven by limiting similarity creating clumpy species coexistence (Pigolotti et al., 2007, Scheffer & van Nes, 2006). Competitive hierarchies are, of course, not hard-wired in nature. Intransitivities may still play a key role in maintaining diversity in some systems (Allesina & Levine, 2011, Soliveres et al., 2015, Zhang & Lamb, 2012).

In Capitán et al. (2020) we demonstrated how different coexistence vs. competition curves can be collapsed into a single curve. Here we showed that model predictions were quantitatively consistent with the observed
decaying behavior of the probability of local coexistence as overall competition intensity increases. This general scaling behavior is typical for stochastic community models in the presence of both symmetrical (Capitán et al., 2015, 2017) and asymmetrical competition, as presented here. The scaling allowed us to give a rough estimate of \(\hat{\rho} \), an average ratio of inter- vs. intraspecific competition (see Fig 3a). Our indirect method is only able to estimate an average \(\hat{\rho} \) across ecoregions. Whenever direct empirical estimates of the ratio of inter- vs. intra-competition are obtained, a few similar species are typically studied using small-scale field experiments (Goldberg & Barton, 1992, Schoener, 1983). It is, therefore, unsurprising that empirical estimations of this parameter tend to be higher than ours (Kraft et al., 2015), but see also Volkov et al. (2009) and Wang et al. (2016). Being able to provide rough estimates of this parameter at regional scales is also a novel result from our analysis. Our results are in agreement with a recent study of trees across six forest biomes where the authors found that trait variation is mostly related to competitive imbalances tending to drive inferior competitors to extinction (Kunstler et al., 2016). Further work is required to better relate the average ratio of inter- vs. intraspecific competition, which stabilizes species co-existence, to plant traits, and analyze how this aggregated parameter changes at increasing spatial scales and across taxa.

In this paper we have explored several predictions from theoretical models aimed at describing plant dynamics, which have been derived and carefully studied in Capitán et al. (2020). In total, we have contrasted four model predictions against reported herbaceous plant diversity across Europe. As usual, our theoretical models represent a strong over-simplification of real plant community dynamics. However, in spite of disregarding the true complexity of these communities, our theory approach is useful, not only because it can reproduce macro-ecological, observational patterns with a small number of meaningful aggregated variables, but also because it provides new quantitative or qualitative predictions than may lead to new both empirical and observational studies. Finding a theoretically robust and ecologically meaningful rapprochement between theory and data at relevant scales remains a challenge for ecology, and we trust that our work will inspire new contributions in this direction.

Acknowledgments

The authors thank Mercedes Pascual for her insightful comments, and are indebted to Rohan Arthur, Han Olff, Joaquín Hortal, and Fernando Valladares for their constructive criticism on earlier versions of this manuscript. This work was funded by the Spanish ‘Ministerio de Economía y Competitividad’ under the projects CGL2012-39964 and CGL2015-69043-P (DA, JAC), by the Spanish ‘Ministerio de Ciencia, Innovación y Universidades’ under the project PGC2018-096577-B-I00 (DA, JAC), and the Ramón y Cajal Fellowship program (RYC-2010-06545, DA). JAC acknowledges partial financial support from the Department of Applied Mathematics (Universidad Politécnica de Madrid). SC acknowledges financial support from Banco Santander through grant PR87/19-22582.
References

1. Adler, P. B., Salguero-gómez, R., Compagnoni, A., Hsu, J. S., Ray-mukherjee, J., Adler, P. B., Salguero-gómez, R., Compagnoni, A., Hsu, J. S. & Ray-mukherjee, J. (2014). Correction for Adler et al., Functional traits explain variation in plant life history strategies. Proceedings of the National Academy of Sciences, 111, 10019–10019.

2. Allesina, S. & Levine, J. M. (2011). A competitive network theory of species diversity. Proc. Nat. Acad. Sci. USA, 108, 5638–5642.

3. Alonso, D., Pinyol-Gallemí, A., Alcoverro, T. & Arthur, R. (2015). Fish community reassembly after coral mass mortality: higher trophic groups are subject to increased rates of extinction. Ecol. Lett., 18, 451–461.

4. Buuren, S. & Groothuis-Oudshoorn, K. (2011). MICE: Multivariate imputation by chained equations in r. J. Stat. Softw., 45(3).

5. Capitán, J. A., Cuenda, S. & Alonso, D. (2015). How similar can co-occurring species be in the presence of competition and ecological drift? J. R. Soc. Interface, 12, 20150604.

6. Capitán, J. A., Cuenda, S. & Alonso, D. (2017). Stochastic competitive exclusion leads to a cascade of species extinctions. J. Theor. Biol., 419, 137–151.

7. Capitán, J. A., Cuenda, S. & Alonso, D. (2020). Competitive dominance in ecological communities: Modeling approaches and theoretical predictions. J. Theor. Biol., 502, 110349.

8. Chase, J. M., Kraft, N. J. B., Smith, K. G., Vellend, M. & Inouye, B. D. (2011). Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere, 2, 24.

9. Chesson, P. L. (2000). Mechanisms of maintenance of species diversity. Ann. Rev. Ecol. Syst., 31, 343–366.

10. Craine, J. R. & Dybzinski, R. (2013). Mechanisms of plant competition for nutrients, water and light. Funct. Ecol., 27, 833–840.
Díaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Prentice, I. C., Garnier, E., Bönisch, G., Westoby, M., Poorter, H., Reich, P. B., Moles, A. T., Dickie, J., Gillison, A. N., Zanne, A. E., Chave, J., Wright, S. J., Sheremet’ev, S. N., Jactel, H., Christopher, B., Cerabolini, B., Pierce, S., Shipley, B., Kirkup, D., Casanoves, F., Joswig, J. S., Günther, A., Falcuzk, V., Rüger, N., Mahecha, M. D. & Gorné, L. D. (2015). The global spectrum of plant form and function. *Nature*, 529, 1–17.

Diniz-Filho, J. A. F., Rodríguez, M. Á., Bini, L. M., Olalla-Tarraga, M. Á., Cardillo, M., Nabout, J. C., Hortal, J. & Hawkins, B. A. (2009). Climate history, human impacts and global body size of Carnivora (Mammalia: Eutheria) at multiple evolutionary scales. *Journal of Biogeography*, 36, 2222–2236.

Falster, D. S. & Westoby, M. (2003). Plant height and evolutionary games. *Trends. Ecol. Evol.*, 18, 337–343.

Feng, G., Mi, X., Eiserhardt, W. L., Jin, G., Sang, W., Lu, Z., Wang, X., and B. Li, X. L., Sun, I., Ma, K. & Svenning, J.-C. (2015). Assembly of forest communities across East-Asia. Insights from phylogenetic community structure and species pool scaling. *Scientific Reports*, 5, 9337.

Garbulsky, M. F., Peñuelas, J., Papale, D., Ardö, J., Goulden, M. L., Kiely, G., Richardson, A. D., Rotenberg, E., Veenendaal, E. M. & Filella, I. (2010). Patterns and controls of the variability of radiation use efficiency and primary productivity across terrestrial ecosystems. *Global Ecology and Biogeography*, 19, 253–267.

Gaudet, C. L. & Keddy, P. A. (1988). A comparative approach to predicting competitive ability from plants trait. *Nature*, 334, 242–243.

Givnish, T. (1995). Plant stems: biomechanical adaptation for energy capture and influence on species distributions. In: *Plant stems: Physiology and Functional Morphology* (ed. Gartner, B.). Academic Press, Cambridge, Massachusetts, pp. 3–49.

Givnish, T. J. (1982). Adaptive significance of leaf height in forest herbs. *Am. Nat.*, 112, 279–298.

Goldberg, D. E. & Barton, A. M. (1992). Patterns and Consequences of Interspecific Competition in Natural Communities : A Review of Field Experiments with Plants. *The American naturalist*, 139, 771–801.
20. Gotelli, N. J., Graves, G. R. & Rahbek, C. (2010). Macroecological signals of species interactions in the danish avifauna. *Proc. Nat. Acad. Sci. USA*, 107, 5030–5035.

21. Haegeman, B. & Loreau, M. (2011). A mathematical synthesis of niche and neutral theories in community ecology. *J. Theor. Biol.*, 4, 263–271.

22. Hart, S. P. & Marshall, D. J. (2013). Environmental stress, facilitation, competition, and coexistence. *Ecology*, 94, 2719–2731.

23. HilleRisLambers, J., Adler, P., Harpole, W., Levine, J. & Mayfield, M. M. (2011). Rethinking Community Assembly Through the Lens of Coexistence Theory. *Annual Review of Ecology, Evolution, and Systematics*, 43, 120830113150004.

24. Holmgren, M., Scheffer, M. & Huston, M. A. (1997). The interplay of facilitation and competition in plant communities. *Ecology*, 78, 1966–1975.

25. Jalas, J. & Suominen, J. (1964–1999). *Atlas Florae Europaeae. Distribution of vascular plants in Europe*, Vol. 1–12. Societas Biologica Fennica Vanamo, Helsinki.

26. King, D. A. (1990). The adaptive significance of tree height. *Am. Nat.*, 135, 809–828.

27. Kleyer, M., Bekker, R. M., Knevel, I. C., Bakker, J. P., Thompson, K., Sonnenschein, M., Poschlod, P., Groenendael, J. M. V., Klimes, L., Klimesová, J., Klotz, S., Rusch, G. M., Hermy, M., Adriaens, D., Boedeltje, G., Bossuyt, B., Dannemann, A., Endels, P., Götzenberger, L., Hodgson, J. G., Jackel, A.-K., Kühn, I., Kunzmann, D., Ozinga, W. A., Römermann, C., Stadler, M., Schlegelmilch, J., Steendam, H. J., Tackenberg, O., Wilmann, B., Cornelissen, J. H. C., Eriksson, O., Garnier, E. & Peco, B. I. (2008). The leda traitbase: a database of life-history traits of the northwest european flora. *Journal of Ecology*, 96, 1266–1274.

28. Kraft, N. J. B., Godoy, O. & Levine, J. M. (2015). Plant functional traits and the multidimensional nature of species coexistence. *Proceedings of the National Academy of Sciences*, 112, 797–802.
29. Kunstler, G., Falster, D., Coomes, D. A., Hui, F., Kooyman, R. M., Laughlin, D. C., Poorter, L., Vanderwel, M., Vieilledent, G., Wright, S. J., Aiba, M., Baraloto, C., Caspersen, J., Cornelissen, J. H. C., Gourlet-Fleury, S., Hanewinkel, M., Herault, B., Kattge, J., Kurokawa, H., Onoda, Y., Peñuelas, J., Poorter, H., Uriarte, M., Richardson, S., Ruiz-Benito, P., Sun, I.-F., Stahl, G., Swenson, N. G., Thompson, J., Westerlund, B., and M. A. Zavala, C. W., Zeng, H., Zimmerman, J. K., Zimmermann, N. E. & Westoby, M. (2016). Plant functional traits have globally consistent effects on competition. Nature, 529, 204–207.

30. Kunstler, G., Lavergne, S., Courbaud, B., and G. Vieilledent, W. T., Zimmermann, N. E., Kattge, J. & Coomes, D. A. (2012). Competitive interactions between forest trees are driven by species’ trait hierarchy, not phylogenetic or functional similarity: implications for forest community assembly. Ecol. Lett., 15, 831–840.

31. Lambers, H. & Oliveira, R. S. (2020). Plant Physiological Ecology. Springer, Cham.

32. Law, R., Marrow, P. & Dieckmann, U. (1997). On evolution under asymmetric competition. Evol. Ecol., 11, 485–501.

33. MacArthur, R. H. & Wilson, E. O. (1967). The theory of island biogeography. Princeton University Press, Princeton.

34. Maestre, F. T., Callaway, R. M., Valladares, F. & Lortie, C. J. (2009). Refining the stress-gradient hypothesis for competition and facilitation in plant communities. Journal of Ecology, 97, 199–205.

35. Mayfield, M. M. & Levine, J. M. (2010). Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett., 13, 1085–1093.

36. McKane, A. J., Alonso, D. & Solé, R. V. (2000). A mean field stochastic theory for species rich assembled communities. Phys. Rev. E, 62, 8466–8484.

37. Midgley, J. J. (2003). Is bigger better in plants? The hydraulic costs of increasing size in trees. Trends. Ecol. Evol., 18, 5–6.
38. Mu, Q., Zhao, M. & Running, S. W. (2011). Improvements to a MODIS global terrestrial evapotranspiration algorithm. *Remote Sens. Environ.*, 115, 1781–1800.

39. Muller-Landau, H. (2010). The tolerance-fecundity trade-off and the maintenance of diversity in seed size. *Proc. Nat. Acad. Sci. USA*, 107, 4242–4247.

40. Olalla-Tárraga, M. Á. & Rodríguez, M. Á. (2007). Energy and interspecific body size patterns of amphibian faunas in Europe and North America: Anurans follow Bergmann’s rule, urodeles its converse. *Global Ecology and Biogeography*, 16, 606–617.

41. Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D’amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P. & Kassem, K. R. (2001). Terrestrial ecoregions of the world: A new map of life on Earth. *BioScience*, 51, 993–938.

42. Ordonez, A., Wright, I. J. & Olff, H. (2010). Functional differences between native and alien species: A global-scale comparison. *Fun. Ecol.*, 24, 1353–1361.

43. Pigolotti, S., López, C. & Hernández-García, E. (2007). Species clustering in competitive Lotka-Volterra models. *Phys. Rev. Lett.*, 98, 1–4.

44. Ricklefs, R. E. (2008). Disintegration of the ecological community. *Am. Nat.*, 172, 741–750.

45. Ricklefs, R. E. (2011). Applying a regional community concept to forest birds of eastern North America. *Proceedings of the National Academy of Sciences of the United States of America*, 108, 2300–2305.

46. Ricklefs, R. E. (2015). Intrinsic dynamics of the regional community. *Ecology Letters*, 18, 497–503.

47. Ryan, M. G. & Yoder, B. J. (1997). Hydraulic limits to tree height and tree growth. *Bioscience*, 47, 235–242.
48. Scheffer, M. & van Nes, E. H. (2006). Self-organized similarity, the evolutionary emergence of groups of similar species. *Proceedings of the National Academy of Sciences of the United States of America*, 103, 6230–6235.

49. Schoener, T. W. (1983). Field Experiments on Interspecific Competition. *The American naturalist*, 122, 240–285.

50. Segura, A. M., Kruk, C., Calliari, D., García-Rodríguez, F., Conde, D., Widdicombe, C. E. & Fort, H. (2012). Competition drives clumpy species coexistence in estuarine phytoplankton. *Scientific Reports*, 3, 1037.

51. Serván, C. A., Capitán, J. A., Grilli, J., Morrison, K. E. & Allesina, S. (2018). Coexistence of many species in random ecosystems. *Nature Ecology and Evolution*, 2, 1237.

52. Soliveres, S., Maestre, F. T., Ulrich, W., Manning, P., Boch, S., Bowker, M. A., Prati, D., Delgado-Baquerizo, M., Quero, J. L., Schöning, I., Gallardo, A., Weisser, W., Müller, J., Socher, S. A., García-Gómez, M., Ochoa, V., Schulzle, E. D., Fischer, M. & Allan, E. (2015). Intransitive competition is widespread in plant communities and maintains their species richness. *Ecology Letters*, 18, 790–798.

53. Stanley Harpole, W. & Tilman, D. (2006). Non-neutral patterns of species abundance in grassland communities. *Ecology Letters*, 9, 15–23.

54. Stearns, S. C. (1989). Evolution in life-history Trade-offs. *Functional Ecology*, 3, 259–268.

55. Stroud, J. T., Bush, M. R., Ladd, M. C., Nowicki, R. J., Shantz, A. A. & Sweatman, J. (2015). Is a community still a community? Reviewing definitions of key terms in community ecology. *Ecology and Evolution*, 5, 4757–4765.

56. Swenson, N. G., Enquist, B. J., Pither, J., Kerkhoff, A. J., Boyle, B., Weiser, M. D., Elser, J. J., Fagan, W. F., Forero-Montaña, J., Fyllas, N., Kraft, N. J. B., Lake, J. K., Moles, A. T., Patiño, S., Phillips, O. L., Price, C. A., Reich, P. B., Quesada, C. A., Stegen, J. C., Valencia, R., Wright, I. J., Wright, S. J., Andelman, S., Jorgensen, P. M., Lacher, T. E., Monteagudo, A., Núñez-Vargas, M. P., Vasquez-Martínez, R. & Nolting, K. M. (2012). The biogeography and filtering of woody plant functional diversity in North and South America. *Global Ecology and Biogeography*, 21, 798–808.
57. Tilman, D. (1982). *Resource Competition and Community Structure*. Princeton University Press, Princeton, NJ.

58. Tilman, D. (1994). Competition and Biodiversity in Spatially Structured Habitats. *Ecology*, 75, 2–16.

59. Tilman, D. (2004). Niche tradeoffs, neutrality, and community structure: A stochastic theory of resource competition, invasion, and community assembly. *Proc. Nat. Acad. Sci. USA*, 101, 10854–10861.

60. Tilman, D. & Wedin, D. (1991). Plant Traits and Resource Reduction For Five Grasses Growing on a Nitrogen Gradient. *Ecology*, 72, 685–700.

61. Triadó-Margarit, X., Capitán, J. A., Menéndez-Serra, M., Ortiz-Álvarez, R., Ontiveros, V. J., Casamayor, E. O. & Alonso, D. (2019). A Randomized Trait Community Clustering approach to unveil consistent environmental thresholds in community assembly. *The ISME Journal*, 13.

62. Valiente-Banuet, A. & Verdú, M. (2007). Assembly through facilitation can increase the phylogenetic diversity of plant communities. *Ecol. Lett.*, 10, 1029–1036.

63. Violle, C., Nemegut, D. R., Pu, Z. & Jiang, L. (2011). Phylogenetic limiting similarity and competitive exclusion. *Ecol. Lett.*, 14, 782–787.

64. Volkov, I., Banavar, J. R., Hubbell, S. P. & Maritan, A. (2009). Inferring species interactions in tropical forests. *Proc. Nat. Acad. Sci. USA*, 106, 13854–13859.

65. Wang, X. G., Wiegand, T., Kraft, N. J. B., Swenson, N. G., Davies, S. J., Hao, Z. Q., Howe, R., Lin, Y. C., Ma, K. P., Mi, X. C., Su, S. H., Sun, I. F. & Wolf, A. (2016). Stochastic dilution effects weaken deterministic effects of niche-based processes in species rich forests. *Ecology*, 97, 347–360.

66. Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. (2002). Phylogenies and community ecology. *Ann. Rev. Ecol. Syst.*, 33, 475–505.
67. Weiner, J. (1993). Competition among plants. *Treballs de la Societat Catalana de Biologia*, 44, 99–109.

68. Zhang, S. & Lamb, E. G. (2012). Plant competitive ability and the transitivity of competitive hierarchies change with plant age. *Plant Ecology*, 213, 15–23.
Figure captions

Figure 1. Conceptual framework for maximum height resulting from a trade-off between investing energy either in potential growth, or in any other alternative, non-size-related strategy. In panel a, we illustrate latitudinal patterns of potential light and water availability. The latitudinal gradient of actual evapotranspiration (ET) is also shown along with the expected role of biotic interactions in determining community dynamics. At middle-range latitudes, we expect competitive hierarchies to be at their maximum due to a greater relative role of species interactions. Panel b shows how the trade-off between potential growth and any alternative mechanism not related to size can be included in a spatially-explicit model: species that are either good at growing taller or in investing energy in allelopathy remain short, but cause incremental death of their heterospecific neighbors. As an outcome of this trade-off, the model predicts the dominance of taller, mid-sized, or shorter plants at stationarity (panel c).

Figure 2. Geographical description of plant data across European ecoregions. a, 25 different habitats covering most of Europe are shown in the map and listed below. Ecoregions are regarded as a pool comprising all plant species observed in that region. b, The Military Grid Reference System divides ecoregions in grid cells, each one considered as an assemblage formed by a species sample of the pool.

Figure 3. The implicit model predicts a power-law decay regardless of the ecoregion size S, which permits fitting a power law to data ($r^2 = 0.51$, $p < 10^{-3}$, 95% confidence lines are shown). In order to match the empirical exponent γ we need to choose the immigration rate $\mu = 5$, the net growth rate $\alpha = 50$ and the carrying capacity $K = 1000$. To match the starting point of the decay we need to set $\hat{\rho} = 0.04$ in the calculation of ρ_{ij}. For completeness, we have reproduced here model expectations (triangles) for different pool sizes. Data colors match ecoregion codes in Fig. 2.
Figure 4. Empirical randomization tests. The majority of the ecoregions are consistent with model predictions as the distributions (Tukey boxplots) lie in the 5% range of significant clustering (Methods). We present here distributions of p-values across local communities in every ecoregion. Shaded areas would represent threshold p-values for two one-tailed tests where the hypothesis of trait clustering and over-dispersion, in blue and pink, respectively, are represented on the same plot. Data colors in panels a and c match codes in Fig. 2.

Figure 5. Linking height clustering to geographical and environmental variables. a. Variation in the clustering index \((q)\) with latitude \((\varphi)\). Quadratic fit: \(r^2 = 0.63, p < 10^{-3}\). b. Latitudinal variation in mean annual actual evapotranspiration (ET) data. Quadratic weighted regression: \(r^2 = 0.63, p < 10^{-3}\). The shaded areas in panels a and b represent the latitudinal range for which the adjusted dependence \(q(\varphi) \geq 0.7\), where both height clustering and evapotranspiration are maximal. c. Linear weighted regression for ET as a function of the clustering index; \(r^2 = 0.49, p < 10^{-3}\). d. Correlation between mean gross primary productivity (GPP) and mean annual ET; linear weighted fit: \(r^2 = 0.73, p < 10^{-3}\). In the first four panels, the radius of each circle is proportional to the clustering index. Symbol colors refer to ecoregions (Fig. 2). All the fits show the 95% confidence bands. e, Geographical distribution of clustering indices for ecoregions across Europe.

Figure 6. Two predictions of the explicit model tested against data. a. Correlation of cell-averaged height (relative to ecoregion means) and mean annual ET by ecoregion (colors used for data match codes in Fig. 2). b, Correlation coefficient obtained in a vs. latitude. Circle radii are proportional to clustering indices. Observe that positive correlations tend to associate with high clustering index (with some exceptions) and middle-range latitude (quadratic fit: \(r^2 = 0.44, p = 0.001\)). c, Clustering patterns of an ecoregion characterized by high clustering index (Atlantic mixed forests) were analyzed at increasing aggregation scales. Communities were defined by increasingly aggregating contiguous 50 \(\times\) 50 km cells. Below a critical aggregation scale (eleventh log-area bin, which corresponds to \(10^5\) km\(^2\)), randomization tests show strong signals of clustering. The inset in c represents a down-scaling of randomization tests. Clustering patterns robustly persist at smaller spatial scales.
Figures

Figure 1

(a) Latitude
(b) Potential growth (height) vs. Species
(c) Alt. mechanism (allellopathy) vs. Species
(d) Relative abundance

Species

0 5 10 15 20 25 30

Light
Water
ET
Sp.
Figure 3

Coexistence probability, p_c vs. Scaled competitive overlap, $\langle \rho \rangle S$ for different values of S (100, 250, 500). The data points are shown with error bars. The line $\gamma \sim 0.61$ indicates a scaling behavior of the system.
Figure 4

Significant overdispersion

Significant clustering
Figure 5
Abstract

Understanding the main determinants of species coexistence across space and time is a central question in ecology. However, ecologists still know little about the scales and conditions at which biotic interactions matter and how these interact with the environment to structure species assemblages. Here we use recent theory developments to analyze plant distribution and trait data across Europe and find that plant height clustering is related to both evapotranspiration and gross primary productivity. This clustering is a signal of interspecies competition between plants, which is most evident in mid-latitude ecoregions, where conditions for growth (reflected in actual evapotranspiration rates and gross primary productivities) are optimal. Away from this optimum, climate severity likely overrides the effect of competition, or other interactions become increasingly important. Our approach bridges the gap between modern coexistence theory and large-scale species distribution data analysis.

Keywords: Ecological community dynamics Plant diversity Species coexistence Biogeographic patterns Null hypotheses testing Stochastic Markov processes in continuous time.
Modern coexistence theory (Chesson, 2000, HilleRisLambers et al., 2011, Mayfield & Levine, 2010) is based on species difference. Biodiversity theory in community ecology heavily relies on the pioneering work of Volterra (1926) and Lotka (1925). These authors provided a general framework to mathematically describe the interacting dynamics of natural populations. These seminal ideas have been extensively developed mostly focusing on the analysis of simple ecological communities. For instance, Chesson and colleagues (Chesson, 2000, Ellner et al., 2019, HilleRisLambers et al. 2011) introduce a general framework—the modern coexistence theory for competitive communities—to understand species coexistence in natural communities based on pair-wise species differences and their interplay to determine effective competitive (biotic) interactions among species in natural communities. According to this framework, the balance between stabilizing trait differences and species dominance among competitors is crucial to understand species coexistence under this framework. In communities driven by fitness differences, species turn out to be clustered around similar trait values selected through competitive dominance. However, trait clustering may arise through two radically different mechanisms. Independent adaptation of non-interacting species to the same environmental conditions can lead to trait clustering. The alternative explanation would say that competitive interactions leading to fitness equalization end up producing more similar species, with, therefore, more similar traits. Therefore, trait clustering may be interpreted as a fingerprint of competition even in the absence of environmental filtering (Kraft et al., 2015, Mayfield & Levine, 2010). Community ecology, however, still needs These ideas have been proved challenging to apply to large ecological communities. Rather than focusing on whether (or not) and why ecological similarity among species should arise (or not) in natural communities, Hubbell and colleagues assumed ecological equivalence as a first principle and studied the consequences of this assumption for species coexistence and community-level patterns in species-rich systems (Alonso et al., 2006, Hubbell, 2001, Rosindell et al. 2013). Other authors, building on the May’s seminal work (1972), have used a random matrix approach to advance understanding on species coexistence in large communities through mathematical analysis (Allesina & Grilli, 2020, Allesina & Tang, 2012, Serván et al., 2019). Statistical physics has also helped to understand how pair-wise species interactions scale up to determine the type of dynamic stability and potential species coexistence in species-rich large systems (Bunin, 2017).

Although the role of local interactions at determining large-scale diversity patterns is still controversial (Ricklefs, 2008), community ecology lacks a comprehensive theoretical framework able to describe quantitatively explore quantitatively to what extent the role of biotic, species-to-species interactions that are is relevant to determine species composition and diversity across large spatial scales. Empirical studies, while they may be able to independently assess environmental stress and species competitive abilities, are often limited to small community sizes (Violle et al., 2011) or restricted to single habitats (Kunstler et al., 2012). Very few studies have explored the idea of competition as a driver of community assembly across biogeographic regions (Kunstler et al., 2016, Swenson et al., 2012). Here we attempted a continent-wide macro-ecological study of species assemblage patterns based on theoretical predictions from modern coexistence theory (Capitán et al., 2020, Chesson, 2000, Mayfield & Levine, 2010).
a trait-driven theory of competitive dominance, based on extensions of a type of Lotka-Voleterra models. Our theory applies to large ecological communities at large geographical scales — where species can be ranked in their competitive ability according to certain species trait values (Capitán et al., 2020).

Light and water availability (Fig. 1) impose significant limitations on gross primary productivity which is reflected in actual evapotranspiration rates (Garbulsky et al., 2010). These two resources vary at regional scales, placing strong, sometimes opposing constraints on how tall a plant can grow within the limits of structural stability. Plant height is a fundamental trait that reflects the ability of the individual to optimize its own growth within its local biotic environment and regional physical constraints (see Falster & Westoby (2003), Holmgren et al. (1997) and references therein). How plant height adapts to these opposing constraints has been studied in trees (King, 1990, Law et al., 1997, Midgley, 2003) and herbaceous plants (Givnish, 1995, 1982). Here we analyzed presence-absence matrices of floral herbaceous taxa across different European ecoregions to determine if competitive ability (reflected in maximum stem height) could help explain assemblage patterns at local scales across gradients of relevant environmental factors such as evapotranspiration. We examined how well observed plant assemblages at macro-ecological scales match theoretical predictions generated by a synthetic, stochastic framework of community assembly (Capitán et al., 2015, 2017, Haegeman & Loreau, 2011, McKane et al., 2000), which we described in full detail in Capitán et al. (2020). By assuming that competition between hetero-specifics is driven by signed height differences, we found a significant positive correlation between the degree of clustering and actual evapotranspiration rates (or gross primary productivity, GPP). Across Europe, actual evapotranspiration (and GPP) is lower at more southern latitudes (due to reduced precipitation levels) as well as at more northern latitudes (due to colder temperatures and low levels of sunlight). Herbaceous plant height clustering is significant only over a latitudinal band where environmental constraints to plant growth are weaker, which suggests that the signature of competitive dominance can only be detected in the assemblage patterns of mid-latitude ecoregions.

Theoretical predictions

Recently, we presented a stochastic framework of community assembly (Capitán et al., 2020). This framework provides a stochastic extension of Lotka-Voleterra competition models. While other extensions consider only symmetric competition on theoretical grounds (Haegeman & Loreau, 2011), our approach relates specifically measurable species traits and competitive dominance. In order to make this contribution self-contained, we first provide a summary of the main predictions derived by our suite of models — from our theory (Capitán et al., 2020). We developed first a single-trait driven, spatially-implicit species-competition model. Then, we extended this model into space and incorporated a second trait controlling species competition. Both models together provided us with rich predictions that can be tested with appropriate species assembly data. Below we summarize these predictions.
Recent theoretical approaches have focused on predicting analytically the expected fraction of species that survive in competitive scenarios (Serván et al., 2018). A spatially-implicit model of Lotka-Volterra type (Capitán et al., 2020) allowed us to predict on average how many species are expected to survive as a function of mean competitive strengths. We observed that the fraction of extant species p_c, which we called “coexistence probability”, decays with the average competitive strength $\langle \rho \rangle$ as a power law above a certain threshold in competition, and curves for different pool sizes S can be collapsed into the same curve following the mathematical dependence,

$$p_c \sim (\langle \rho \rangle S)^{-\gamma},$$

which was observed numerically and justified analytically (see Capitán et al. (2020)). We showed that the exponent γ is controlled by the immigration rate μ. This is the first prediction of the spatially implicit model.

Species clustering under competitive dominance

In order to explore the significance of competitive dominance in empirical communities, we applied first randomization tests to model communities. In this way, we established a second prediction for this model. Null models for community assembly (Chase et al., 2011, Gotelli et al., 2010, Webb et al., 2002) compare the properties of actual communities against random samples of the same size extracted from a species pool (observed diversity at the ecoregion level). This approach assumes that realized communities are built up through the independent arrival of equivalent species from the pool (Alonso et al., 2015, MacArthur & Wilson, 1967) regardless of species preferences for particular environments or species interactions. Our randomization tests were based on a single statistic, the competitive strength averaged over species present in realized model communities, which were then compared to random samples of the same size drawn from the species pool. The null hypothesis (i.e., empirical communities are built as random assemblages from the ecoregion) can be rejected in both sides of the distribution, implying signals of ‘significant trait overdispersion’ (‘clustering’) if average trait differences are larger (smaller) than expected at random. In the low immigration regime, the model predicts a significant signal of clustering. This regime is characterized by a low non-dimensional immigration rate ($\lambda = \mu/(\alpha K)$ much lower than 0) —here α stands for the average species growth rate in isolation, and K is the carrying capacity of the environment.

Two predictions from the explicit model

The spatially-explicit model incorporates a trade-off between potential growth and alternative mechanisms other than growth that the production of allelopathic compounds. This alternative mechanism would allow shorter
individuals to overcome being out-competed by taller plants (see Capitán et al. (2020)). While the latter models explores how taller species, which are better competitors for light, the former and shorter ones, which allocate more energy in allelopathic compounds, coexist in a single interacting community on a given area (Fig. 1).

Competitive dominance may select for shorter plants

Height hierarchies alone, as assumed in our spatially-implicit model, lead to the selection of taller plants in species assemblages. In the more realistic spatially-explicit model, species processes take place on a lattice where locally taller plants grow faster than neighbors because they are less shaded, but in the presence of heterospecific neighbors, they are also more prone to die. Computer simulations show that the balance of these two mechanisms can end up selecting plant sizes characterized by an optimal potential height that can be either shifted toward lower or higher values depending on the choice of model parameters. This is the first prediction of the spatially-explicit model: species abundance distributions are not necessarily biased towards taller individuals, and they can peak at species at intermediate or even shorter heights. In any case, and consistently, in this more complex scenario, a balance between the gains of potential growth and the gains of energy allocation in allelopathy (as an example of a non-size-related, alternative mechanism) may result in a selection for plants exhibiting significant height clustering at stationarity.

Clustering patterns hold across aggregation scales

A second result that can be derived from the spatially-explicit model is related to the persistence of trait clustering when species are aggregated over spatial scales larger than local interaction distances. Our spatially-explicit model can help explain why clustering patterns persist over large scales. The distributions of species within a region may reveal more information about the underlying assembly processes than the co-occurrence of species at any given location (Ricklefs, 2008). As species are aggregated over lattice cells of increasing size, clustering patterns hold even at scales much larger than local interaction distances. The model predicts consistent clustering patterns regardless of the aggregation scale used to define species communities. This was the second prediction, derived and carefully analyzed in Capitán et al. (2020), from our spatially-explicit model.

Materials and methods

Plant community data were drawn from Atlas Florae Europaeae (Jalas & Suominen, 1964–1999). The distribution of flora is geographically described using equally-sized grid cells (∼ 50×50 km) based on the Universal Transverse Mercator projection and the Military Grid Reference System, see Fig. 2. Each cell was assigned to a dominant habitat type based on the WWF Biomes of the World classification (Olson et al., 2001), which defines different ecoregions, i.e., geographically distinct assemblages of species subject to similar environmental conditions. We consider each cell in an ecoregion to represent a species aggregation.
Each herbaceous species in an ecoregion was characterized by its maximum stem height H, an eco-morphological trait that relates to several critical functional strategies among plants (Díaz et al., 2015). It represents an optimal trade-off between the gains of accessing light (King, 1990, Law et al., 1997), water and nutrient transport from soil (Midgley, 2003, Ryan & Yoder, 1997), and additional constraints posed by the local biotic environment of each individual plant, such as competition, facilitation, or herbivory.

Mean height values were obtained from the LEDA database (Kleyer et al., 2008) for as many species as there were available in the database. Missing values were taken from (Ordonez et al., 2010) or inferred using a MICE (Multivariate Imputation by Chained Equations) approach (Buuren & Groothuis-Oudshoorn, 2011) together with a predictive mean matching algorithm based on other available traits (leaf and seed traits), genus, and growth forms as predictors. Based on plant growth forms, 2610 herbaceous species (aquatic, herbs, or graminoid) were considered in this work.

Maximum stem height values spanned several orders of magnitude, so we used a log-transformed variable ($h = \log H$) to measure species differences (using non-transformed heights yielded comparable results, here not shown). The values of h were standardized within ecoregions as $t = (h - h_{\text{min}})/(h_{\text{max}} - h_{\text{min}})$ so that $0 \leq t \leq 1$.

Results

For all the species reported in an ecoregion, we formed an empirical competition matrix with pairwise ρ_{ij} signed height differences $\rho_{ij} = \hat{\rho}(t_j - t_i)$, where t_i are height values standardized across ecoregions and sorted in increasing order. The advantage of having these values represent trait differences between pairs of species is that any trend in competitive strengths can be immediately translated into patterns of functional trait clustering or overdispersion. As suggested in Capitán et al. (2020), we calculated the average pairwise competitive strength as

$$
\langle \rho \rangle = \frac{2}{S(S-1)} \sum_{i=1}^{S} \sum_{j=i+1}^{S} |\rho_{ij}|,
$$

where S stands for ecoregion richness.

In an ecoregion with richness S, a number $s_k \leq S$ of species will form a species assemblage at cell k. The coexistence probability was calculated from data as the average fraction of species that survive per cell,

$$
p_c = \langle s \rangle / S = \frac{1}{SN_C} \sum_{k=1}^{N_C} s_k,
$$

with N_C representing the number of cells in the ecoregion. This quantity, together with the distribution of trait differences in cells, was used to compare model predictions with real data.

Larger Evapotranspiration maps were obtained from data estimated through remote sensing. Evapotranspiration data at different spatial and temporal resolutions were taken from the MODIS Global Evapotranspiration Project.
(MOD17), a part of the NASA/EOS project to estimate terrestrial ET from land masses by using satellite remote
sensing information (http://www.ntsg.umt.edu/project/modis/mod17.php). Available datasets estimate ET using the
improved algorithm by Mu et al. (2011).

Randomization tests

Following Triadó-Margarit et al. (2019), our randomization tests applied to empirical communities were based on
the average competitive strength observed in a cell \(C \) formed by \(s \) species.

\[
\langle \rho \rangle_C = \frac{2}{s(s-1)} \sum_{i=1}^{s} \sum_{j=i+1}^{s} |\rho_{ij}^C|,
\]

where \((\rho_{ij}^C) \) is the submatrix of the ecoregion competition matrix restricted to the species present in the cell.

Compared to ecoregion samples, the lower (higher) the empirical community average \(\langle \rho \rangle_C \) is, the higher (lower) is
the degree of species clustering in the cell. For each cell we calculated the probability \(p = \Pr(\langle \rho \rangle_Q \leq \langle \rho \rangle_C) \) that
the the competition average \(\langle \rho \rangle_Q \) randomly-sampled from the pool is smaller than the empirical average. At a 5% significance level, if \(p > 0.95 \) the empirical competition average is significantly larger than the average measured
for random pool samples, which implies that average trait differences in realized communities are larger than would
be expected at random. On the other hand, if \(p < 0.05 \), observed trait differences are significantly smaller than
would be expected at random. Therefore, if \(p > 0.95 \), the community exhibits ‘significant trait overdispersion’,
whereas if \(p < 0.05 \), there is evidence for ‘significant trait clustering’ in the observed species assemblage.

Results

If larger plants capture more resources—Therefore, evolution should favor investment in potential growth (maxi-
mum height) as a competitive mechanism. However, investment in alternative mechanisms, such as allelopathy,
may help smaller plants stave off competitors, reducing local heterospecific plant cover and giving them a com-
petitive advantage over potentially taller plant species. As a consequence, the maximum species stem height can
be regarded as the outcome of an evolutionary game (Givnish, 1982) that balances opposing constraints, both
physical (Craine & Dybzinski, 2013, Falster & Westoby, 2003) and biotic (King, 1990, Law et al., 1997). To
explore these opposing constraints, we analyzed plant data in the light of the two community assembly models.
The first one is a spatially-implicit model of Lotka-Volterra type, and the second one is a straightforward spatially-
explicit extension including height-driven competition and allelopathic effects. Both have been carefully defined
and studied in Capitán et al. (2020).
Two predictions from the implicit model tested against data

Species coexistence decays with competition intensity

The collapse of curves predicted by Eq. (1) helps eliminate the variability in S, so that empirical coexistence probabilities, which arise from different ecoregion sizes, can be fitted together (Fig. 3). Confirming the first prediction of the spatially-implicit model, we found a significant correlation between the probability of coexistence and the scaled competitive overlap based on empirical data (Fig. 3), indicating that a model driven solely by dominant competitive interactions reliably predicts the average richness of plant communities across ecoregions.

In addition, this theoretical prediction allowed an indirect estimation of the relative importance vs. intraspecific effects: the average ratio of inter- to intraspecific competition strength is about 5% (see Supporting Information, section A for details on the estimation procedure).

Species clustering under competitive dominance

As a second prediction, the implicit model implies high predicts species clustering under competitive dominance under certain parameter regime. High levels of trait clustering are only found for low immigration rates and high carrying capacity values. Importantly, this parameter regime is the parameter regime that seems to precisely emerges from the data. In Capitán et al. (2020) we derived a deterministic prediction for the exponent, $\gamma = 1$, under no immigration, which does not match the one obtained from data ($\gamma = 0.61$). As shown in that paper we showed (Capitán et al., 2020), it is a non-zero (but small) value of the immigration rate that determines the value of the power-law exponent γ being lower than 1, that becomes lower than 1 in the case of non-zero immigration.

Indeed, for a realistic fit in Fig. 3, the exponent of the empirical power law is obtained for $\mu/\alpha \sim 0.1$ individuals per generation. Since plant communities operate in a low-immigration regime, the non-dimensional immigration rate $\lambda = \mu/(\alpha K)$ must satisfy $\lambda = 0.1/K \ll 1$, hence the carrying capacity must be large. In a regime in the same parameter regime where empirical coexistence probabilities are best predicted, this is, low immigration rate and high carrying capacity, which best fits empirical coexistence probabilities, the implicit model predicts a significant degree of species clustering [see Fig. 3 in Capitán et al. (2020)].

Following Triadó-Margarit et al. (2019), our randomization tests applied to empirical communities were based on the average competitive strength observed in a cell C formed by s species,

$$
\langle \rho \rangle_C = \frac{2}{s(s-1)} \sum_{i=1}^{s} \sum_{j=i+1}^{s} |\rho_{ij}|,
$$

where $(\rho_{ij})_C$ is the submatrix of the ecoregion competition matrix restricted to the species present in the cell.

Compared to ecoregion samples, the lower (higher) the empirical community average $\langle \rho \rangle_C$ is, the higher (lower) is the degree of species clustering in the cell. For each cell we calculated the probability $p = Pr((\rho)_Q \leq \langle \rho \rangle_C)$ that the competition average $(\rho)_Q$ randomly sampled from the pool is smaller than the empirical average. At a 5%
significance level, if $p > 0.05$ the empirical competition average is significantly larger than the average measured for random pool samples, which implies that average trait differences in realized communities are larger than would be expected at random. On the other hand, if $p < 0.05$, observed trait differences are significantly smaller than would be expected at random. Therefore, if $p > 0.05$, the community exhibits ‘significant trait overdispersion’; whereas if $p < 0.05$, there is evidence for ‘significant trait clustering’ in the observed species assemblage.

Testing the this second prediction against empirical observations yields a mixed picture. We calculated p-values for randomization tests applied to every cell in each ecoregion, which represent the empirical distribution of p-values (Fig. 4). At the parameter values that make plant data consistent with the first prediction, the spatially-implicit model predicts significant trait clustering. We observe that some ecoregions are consistent with this theoretical expectation. However, other ecoregions clearly do not comply with this prediction. In addition, no ecoregion is consistent with trait overdispersion (Fig. 4). Selecting species in randomization tests according to species dispersal abilities portrays the same picture (results not shown).

Ecoregion clustering and actual evapotranspiration rates

In order to better quantify We explored whether there is a geographic signal in the propensity of an ecoregion to exhibit clustering in maximum stem height. For a better quantification, we defined a clustering index q for an ecoregion as the fraction of its cells that lie within the 5% range of significant clustering (randomization tests yield p-values smaller than 0.05 for those cells). An ecoregion for which significant clustering is found in most of its cells will tend to score high in the q index. We examined how the clustering index varied across the continent in terms of the geographical location of ecoregion centroids as well as with actual evapotranspiration (Fig. 5). Evapotranspiration maps were obtained from data estimated through remote sensing (Mu et al., 2011).

Water availability acts as a factor limiting plant growth at geographical scales (Fig. 1a) and correlates with gross primary productivity. However, water has to be channeled up through stems and leaves for effective growth to take place. Therefore, at large geographic scales, growth primary productivity positively correlates with evapotranspiration (Garbulsky et al., 2010), see Fig. 5d. Therefore, for a given region, mean annual evapotranspiration is a reliable measure of environmental constraints on plant growth (Garbulsky et al., 2010). Panels a and b of Fig. 5 show a clear latitudinal trend: there is an intermediate range of ecoregion latitudes where both clustering indices and evapotranspiration are large, indicating that evapotranspiration measures can robustly predict clustering indices (Fig. 5c). The same pattern can also be seen in the relation between mean relative height differences and actual evapotranspiration across individual grid cells. The intensity of the clustering pattern increases with actual evapotranspiration rates across Europe, not only at the ecoregional level (Fig. 5c), but also at the lower spatial scale of grid cells (see Fig. C1, Supporting Information). More importantly, since evapotranspiration is a powerful proxy of environmental constraints on plant growth, this clustering in maximum stem height appears to be stronger at ecoregions less limited by environmental conditions. As environments become harsher and less
optimal for plant growth, these clustering patterns disappear. This is particularly true for the severe climatic conditions characteristic in the Mediterranean (with erratic rainfall, limited water availability and drought), as well as of boreal zones (with low radiation incidence and cold temperatures). According to model predictions, the overall clustering patterns found at middle-range latitudes appear to be consistent with species competitive dominance controlling species height differences.

Two predictions from the explicit model tested against data

Competitive dominance may select for shorter plants

The spatially-explicit model allows for either the dominance of tall, mid-sized or short plants, as a consequence of the trade-off between investment in either potential growth or alternative mechanisms other than growth (see Fig. 5 in Capitán et al. (2020)). We have tested whether taller or shorter plants are most commonly represented in ecoregions via the correlation of cell-averaged heights and evapotranspiration (Fig. 6a), which shows a mixed picture. With few exceptions, mid-latitude ecoregions exhibit positive correlation (taller plants are selected in regions favoring plant growth), whereas negative dependencies are often observed in latitudinal extremes (Fig. 6b). Correlations are significant but, in some cases, very weak. These results are consistent with our interpretation in terms of a signal of competitive dominance in mid-latitude ecoregions.

Clustering patterns hold across aggregation scales

Our spatially-explicit model predicts the persistence of trait clustering as species are aggregated at larger spatial scales (much larger than the typical range of species interactions). This is important because real individual plants interact at much lower spatial scales (1 to 1000ha) compared to the spatial resolution of our dataset (grid cell sizes about 50 km). To assess the robustness of our results, we further investigated the effect of aggregation scales on clustering patterns using plant data. In line with the spatially-implicit spatially-explicit model, the analysis of herbaceous plant communities from mid-latitude ecoregions reveals that our results are robust to both up- and down-scaling community sizes (see Fig 6c). Height clustering remains significant in a range of aggregated scales, and extrapolates to smaller areas (under a random placement hypothesis, communities of smaller sizes were built by randomly selecting a number of species as predicted by the empirical species-area relation, see Supporting Information, section B). We conclude that clustering patterns at large scales is an emerging pattern that can be interpreted as a signature of competitive dominance operating at much smaller spatial scales.

Discussion

In this work we have tested predictions from modern coexistence theory (Chesson, 2000) and a model of species-rich interacting communities under competitive dominance (Capitán et al., 2020). Our work is based on spatial and stochastic extensions of a type of Lotka-Volterra models where competitive dominance is linked to species traits.
This piece of theory was initially inspired by the competition-similarity paradigm (May-field & Levine, 2010) using macro-ecological trait data at large spatial scales (Kunstler et al., 2016). While to show that, while potential evapotranspiration decreases with latitude, actual evapotranspiration peaks at intermediate latitudes, and is strongly associated with higher levels of trait clustering. Critically, actual evapotranspiration is positively correlated with gross primary productivity (GPP) across terrestrial ecosystems [see Fig. 5d and Garbulsky et al. (2010)], which also peaks at intermediate latitudes across Europe. Consistently, our results were reproduced using GPP instead of ET, although both variables yield similar results. The agreement of model predictions with plant community data can be interpreted as a signature of competitive dominance in empirical communities in the environmentally conducive middle-range latitudes. Significant height clustering would be the trace that competition leaves on community assembly pattern by filtering out subdominant species. This If species tend to be similar in maximum stem heights at mid-latitudes, we suggest that this height equalization is a signature of competitive dominance. This mechanism would have played a key role in shaping local species assemblages through years and year of common eco-evolutionary history. This result does not necessarily mean that competition is the main driver of community assembly. It rather highlights the potential role of competitive dominance, along with other processes, in the assembly of herbaceous communities at intermediate latitudes. On the contrary, as environmental conditions get increasingly extreme, no significant clustering in plant height is observed. Although the interplay between facilitation and competition is far from simple (Hart & Marshall, 2013), the harshness of extreme conditions likely override the effects of competition, and other processes such as species tolerances and facilitation (Maestre et al., 2009, Valiente-Banuet & Verdú, 2007) may be critical community drivers at climatic extremes.

Although we introduced our conceptual framework based on “ideal plant growth conditions” (see Fig. 1a), the patterns presented for light and water availability are not necessarily unimodal nor universal for all plant species. In general, many herbaceous plants grow efficiently when water availability is high, and temperatures are not extremely low. We acknowledge that there are exceptions to this rule. For example, environments that are too wet can lead plants to drown if their roots are saturated, which can cause early mortality and fast turnover (due to fungal infections, for instance). Likewise, high night time temperatures can lead to increases in respiration rates, thereby reducing overall growth. Many of these relationships are discussed in Lambers & Oliveira (2019). Climatic drivers can induce a variety of effects on plant growth different from the generic trend we used here to frame our contribution.

Throughout this work, species assemblages within each grid cell (~ 50 × 50 km) have been defined as distinct communities. Current consensus about the concept of ecological community emphasizes the importance of biotic interactions. An ecological community is defined as a set of species that live in the same area and can potentially interact (Stroud et al., 2015). In spite of the size and heterogeneity within each grid cell at the 50 × 50 km spatial scale, cells are much smaller than the ecoregion they belong to, and are, of course, much more homogeneous, both.
in species composition and in environment, than the the ecoregion itself. Therefore, in principle, grid cells could be regarded as communities in an operational and relative sense. In addition, we assumed that the European Flora database represents species composition at a steady state, this is, we examined the stationary patterns resulting from eco-evolutionary processes associated to long time scales. Although real individual plants interact at much lower spatial scales, two species from the same ecoregion will eventually interact within a grid cell given enough time. The larger the temporal scale, the larger is the area where two species will have a chance to interact through generations and repeated dispersal events. The scale at which a set of local communities reveal information about underlying assembly processes is very often the regional scale (Diniz-Filho et al., 2009, Olalla-Tárraga & Rodríguez, 2007, Ricklefs, 2015), which has led to the “regional community concept” (Ricklefs, 2008, 2011).

It is important to make a clear distinction between actual plant size and the species-level trait, “maximum stem height”. While a species-level trait is shaped by evolutionary constraints at longer temporal scales, actual plant size is determined by a host of contingent ecological constraints operating over shorter temporal scales. Although there is a large body of theory and experiments positively co-relating actual plant size and individual plant competition ability (Gaudet & Keddy, 1988, Weiner, 1993), there has been considerably less attention paid to the evolutionary establishment of functional trade-offs between different species-level traits (Adler et al., 2014, Stearns, 1989). The common wisdom that competition favors taller plants may not always hold [for instance, in low-nutrient, competition-intensive, undisturbed habitats, see Tilman & Wedin (1991)]. Our analysis shows that height clustering (and not height per se) at middle-range latitudes is a fingerprint of a balance between energy invested in either potential growth or other mechanisms that may help plants overcome competitors. For instance, when competitors are close relatives in dense herbaceous communities, selection may favor the evolution of a low leaf height. In these situations, “for short conspecific herbs to exclude competitors from a highly productive site, they must possess alternative mechanisms to overcome competition, such as root competition or allelochemics” (Givnish, 1982). More generally, we would argue that functional trade-offs tend to evolve in regions of higher primary productivity, where the relative role of biological interactions (competition, parasitism, herbivory) is expected to be higher.

Competitive hierarchies have been theoretically investigated (Tilman, 1982, 2004), and empirically demonstrated in herbaceous plant communities at much smaller spatial scales (Stanley Harpole & Tilman, 2006, Tilman, 1994, Tilman & Wedin, 1991). Other hierarchies have been also investigated in tree communities (Muller-Landau, 2010). In some of these studies, a trade-off between competitive and colonization abilities has particular trade-offs have been shown to maintain plant diversity, although other hierarchies have been also suggested (Muller-Landau, 2010) and limiting similarity, which involves that competitive dominance may also lead to trait over-dispersion. However, these theoretical results arise as a consequence of a particular tradeoff definition. We believe our theoretical models are more general (Capitán et al., 2020), and, in their diverse formulations, invariably lead to the opposite pattern: trait clustering. Interestingly, the relevant role of competitive dominance driven by species
trait hierarchies has been also reported at much smaller spatial scales for forest trees along an altitudinal gradient in the French Alps (Kunstler et al., 2012). Moreover, a recent study of the assembly of forest communities across East Asia shows that a phylogenetic-based species similarity index tends to be smaller the higher the minimum temperature of the coldest month is (Feng et al., 2015). Although traits are not generally related to competitive abilities, and they are diverse in their functionality and in their response to environmental stress, these studies, together with our results, suggest that trait clustering is generally likely to occur where conditions for plant growth are less restrictive. Our models indicate that the process underlying this pattern is competitive dominance rather than Darwin’s competition-similarity hypothesis, although it is likely that community assembly for other taxa may be driven by other biotic or environmental filters. For instance, phytoplankton communities from estuarine ecosystems (Segura et al., 2012) are more consistent with Darwin’s seminal hypothesis since they appear to be driven by limiting similarity creating clumpy species coexistence (Pigolotti et al., 2007, Scheffer & van Nes, 2006). Competitive hierarchies are, of course, not hard-wired in nature. Intransitivities may still play a key role in maintaining diversity in some systems (Allesina & Levine, 2011, Soliveres et al., 2015, Zhang & Lamb, 2012).

In Capitán et al. (2020) we demonstrated how different coexistence vs. competition curves can be collapsed into a single curve. Here we showed that model predictions were quantitatively consistent with the observed decaying behavior of the probability of local coexistence as overall competition intensity increases. This general scaling behavior is typical for stochastic community models in the presence of both symmetrical (Capitán et al., 2015, 2017) and asymmetrical competition, as presented here— we showed in our previous publication (Capitán et al., 2020). Here we tested this pattern at large geographical scales. The scaling allowed us to give a rough estimate of $\hat{\rho}$, an average ratio of inter- vs. intraspecific competition (see Fig 3a). Our indirect method is only able to estimate an average $\hat{\rho}$ across ecoregions. This average estimate is a highly aggregated parameter calculated from the whole data set, and therefore, characterizing European herbaceous plant communities. Although we expect high variability in its value between ecoregions, in a given ecoregion, the ratio of inter- vs. intra-competition is expected to be, on average, about 0.05. Whenever direct empirical estimates of the ratio of inter- vs. intra-competition are obtained, a few similar species are typically studied using small-scale field experiments (Goldberg & Barton, 1992, Schoener, 1983). It is, therefore, unsurprising that empirical estimations of this parameter tend to be higher than ours (Kraft et al., 2015), but see also Volkov et al. (2009) and Wang et al. (2016). Being able to provide rough estimates of this parameter at regional scales is also a novel result from our analysis. Our results are in agreement with a recent study of trees across six forest biomes where the authors found that trait variation is mostly related to competitive imbalances tending to drive inferior competitors to extinction (Kunstler et al., 2016). Further work is required to better relate the average ratio of inter- vs. intraspecific competition, which stabilizes species co-existence, to plant traits, and analyze how this aggregated parameter changes at increasing spatial scales and across taxa.

In this paper we have explored several predictions from theoretical models aimed at describing plant dynamics, which have been derived and carefully studied in Capitán et al. (2020). In total, we have contrasted four
model predictions against reported herbaceous plant diversity across Europe. As usual, our theoretical models represent a strong over-simplification of real plant community dynamics. However, in spite of disregarding the true complexity of these communities, our theory approach is useful, not only because it can reproduce macro-ecological, observational patterns with a small number of meaningful aggregated variables, but also because it provides new quantitative or qualitative predictions than may lead to new both empirical and observational studies. We look forward to seeing our simple trait-driven theory of competitive dominance being falsified (or not) in other ecological contexts. We humbly believe our message should be discussed within the context of the full scientific community interested in biodiversity research. Finding a theoretically robust and ecologically meaningful rapprochement between theory and data at relevant scales remains a challenge for ecology, and we trust that our work will inspire new contributions in this direction.

Acknowledgments

The authors thank Mercedes Pascual for her insightful comments, and are indebted to Rohan Arthur, Han Olff, Joaquín Hortal, and Fernando Valladares for their constructive criticism on earlier versions of this manuscript. This work was funded by the Spanish ‘Ministerio de Economía y Competitividad’ under the projects CGL2012-39964 and CGL2015-69043-P (DA, JAC), by the Spanish ‘Ministerio de Ciencia, Innovación y Universidades’ under the project PGC2018-096577-B-I00 (DA, JAC), and the Ramón y Cajal Fellowship program (RYC-2010-06545, DA). JAC acknowledges partial financial support from the Department of Applied Mathematics (Universidad Politécnica de Madrid). SC acknowledges financial support from Banco Santander through grant PR87/19-22582.

References

1. Adler, P. B., Salguero-gómez, R., Compagnoni, A., Hsu, J. S., Ray-mukherjee, J., Adler, P. B., Salguero-gómez, R., Compagnoni, A., Hsu, J. S. & Ray-mukherjee, J. (2014). Correction for Adler et al., Functional traits explain variation in plant life history strategies. Proceedings of the National Academy of Sciences, 111, 10019–10019.

2. Allesina, S. & Grilli, J. (2020). Models for large ecological communities-a random matrix approach. In: Theoretical Ecology: Concepts and Applications (ed. McCann, KS and Gellner, G). Oxford University Press, USA. ISBN 978-0-19-882428-2; 978-0-19-882429-9, pp. 74–92.

3. Allesina, S. & Levine, J. M. (2011). A competitive network theory of species diversity. Proc. Nat. Acad. Sci. USA, 108, 5638–5642.
4. Allesina, S. & Tang, S. (2012). Stability criteria for complex ecosystems. *Nature*, 483, 205–208.

5. Allesina, S. & Tang, S. (2015). The stability-complexity relationship at age 40: a random matrix perspective. *Population Ecology*, 57, 63–75.

6. Alonso, D., Etienne, R. S. & McKane, A. J. (2006). The merits of neutral theory. *Trends Ecol. Evol.*, 21, 451–457.

7. Alonso, D., Pinyol-Gallemí, A., Alcoverro, T. & Arthur, R. (2015). Fish community reassembly after coral mass mortality: higher trophic groups are subject to increased rates of extinction. *Ecol. Lett.*, 18, 451–461.

8. Bunin, G. (2017). Ecological communities with Lotka-Volterra dynamics. *PHYSICAL REVIEW E*, 95.

9. Buuren, S. & Groothuis-Oudshoorn, K. (2011). MICE: Multivariate imputation by chained equations in r. *J. Stat. Softw.*, 45(3).

10. Capitán, J. A., Cuenda, S. & Alonso, D. (2015). How similar can co-occurring species be in the presence of competition and ecological drift? *J. R. Soc. Interface*, 12, 20150604.

11. Capitán, J. A., Cuenda, S. & Alonso, D. (2017). Stochastic competitive exclusion leads to a cascade of species extinctions. *J. Theor. Biol.*, 419, 137–151.

12. Capitán, J. A., Cuenda, S. & Alonso, D. (2020). Competitive dominance in ecological communities: Modeling approaches and theoretical predictions. *J. Theor. Biol.*, 502, 110349.

13. Chase, J. M., Kraft, N. J. B., Smith, K. G., Vellend, M. & Inouye, B. D. (2011). Using null models to disentangle variation in community dissimilarity from variation in α-diversity. *Ecosphere*, 2, 24.

14. Chesson, P. L. (2000). Mechanisms of maintenance of species diversity. *Ann. Rev. Ecol. Syst.*, 31, 343–366.
15. Craine, J. R. & Dybzinski, R. (2013). Mechanisms of plant competition for nutrients, water and light. *Funct. Ecol.*, 27, 833–840.

16. Díaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Prentice, I. C., Garnier, E., Bönisch, G., Westoby, M., Poorter, H., Reich, P. B., Moles, A. T., Dickie, J., Gillison, A. N., Zanne, A. E., Chave, J., Wright, S. J., Sheremet’ev, S. N., Jactel, H., Christopher, B., Cerabolini, B., Pierce, S., Shipley, B., Kirkup, D., Casanoves, F., Joswig, J. S., Günther, A., Falczuk, V., Rüger, N., Mahecha, M. D. & Gorné, L. D. (2015). The global spectrum of plant form and function. *Nature*, 529, 1–17.

17. Diniz-Filho, J. A. F., Rodríguez, M. Á., Bini, L. M., Olalla-Tarraga, M. Á., Cardillo, M., Nabout, J. C., Hortal, J. & Hawkins, B. A. (2009). Climate history, human impacts and global body size of Carnivora (Mammalia: Eutheria) at multiple evolutionary scales. *Journal of Biogeography*, 36, 2222–2236.

18. Ellner, S. P., Snyder, R. E., Adler, P. B. & Hooker, G. (2019). An expanded modern coexistence theory for empirical applications. *Ecology Letters*, 22, 3–18.

19. Falster, D. S. & Westoby, M. (2003). Plant height and evolutionary games. *Trends. Ecol. Evol.*, 18, 337–343.

20. Feng, G., Mi, X., Eiserhardt, W. L., Jin, G., Sang, W., Lu, Z., Wang, X., amd B. Li, X. L., Sun, I., Ma, K. & Svenning, J.-C. (2015). Assembly of forest communities across East-Asia. Insights from phylogenetic community structure and species pool scaling. *Scientific Reports*, 5, 9337.

21. Garbulsky, M. F., Peñuelas, J., Papale, D., Arnd, J., Goulden, M. L., Kiely, G., Richardson, A. D., Rotenberg, E., Veenendaal, E. M. & Filella, I. (2010). Patterns and controls of the variability of radiation use efficiency and primary productivity across terrestrial ecosystems. *Global Ecology and Biogeography*, 19, 253–267.

22. Gaudet, C. L. & Keddy, P. A. (1988). A comparative approach to predicting competitive ability from plants trait. *Nature*, 334, 242–243.

23. Givnish, T. (1995). Plant stems: biomechanical adaptation for energy capture and influence on species distribu-
tions. In: Plant stems: Physiology and Functional Morphology (ed. Gartner, B.). Academic Press, Cambridge, Massachusetts, pp. 3–49.

24.

Givnish, T. J. (1982). Adaptive significance of leaf height in forest herbs. Am. Nat., 112, 279–298.

25.

Goldberg, D. E. & Barton, A. M. (1992). Patterns and Consequences of Interspecific Competition in Natural Communities : A Review of Field Experiments with Plants. The American naturalist, 139, 771–801.

26.

Gotelli, N. J., Graves, G. R. & Rahbek, C. (2010). Macroecological signals of species interactions in the danish avifauna. Proc. Nat. Acad. Sci. USA, 107, 5030–5035.

27.

Haegeman, B. & Loreau, M. (2011). A mathematical synthesis of niche and neutral theories in community ecology. J. Theor. Biol., 4, 263–271.

28.

Hart, S. P. & Marshall, D. J. (2013). Environmental stress, facilitation, competition, and coexsitence. Ecology, 94, 2719–2731.

29.

HilleRisLambers, J., Adler, P., Harpole, W., Levine, J. & Mayfield, M. M. (2011). Rethinking Community Assembly Through the Lens of Coexistence Theory. Annual Review of Ecology, Evolution, and Systematics, 43, 120830113150004.

30.

Holmgren, M., Scheffer, M. & Huston, M. A. (1997). The interplay of facilitation and competition in plant communities. Ecology, 78, 1966–1975.

31.

Hubbell, S. P. (2001). The Unified Theory of Biodiversity and Biogeography. Princeton University Press, Princeton.

32.

Jalas, J. & Suominen, J. (1964–1999). Atlas Florae Europaeae. Distribution of vascular plants in Europe, Vol. 1–12. Societas Biologica Fennica Vanamo, Helsinki.

33.

King, D. A. (1990). The adaptive significance of tree height. Am. Nat., 135, 809–828.
34. Kleyer, M., Bekker, R. M., Knevel, I. C., Bakker, J. P., Thompson, K., Sonnenschein, M., Poschlod, P., Groenendael, J. M. V., Klimes, L., Klimesová, J., Klotz, S., Rusch, G. M., Hermy, M., Adriaens, D., Boedeltje, G., Bossuyt, B., Dannemann, A., Endels, P., Götzenberger, L., Hodgson, J. G., Jackel, A.-K., Kühn, I., Kunzmann, D., Ozinga, W. A., Römermann, C., Stadler, M., Schlegelmilch, J., Steendam, H. J., Tackenberg, O., Wilmann, B., Cornelissen, J. H. C., Eriksson, O., Garnier, E. & Peco, B. I. (2008). The leda traitbase: a database of life-history traits of the northwest european flora. *Journal of Ecology*, 96, 1266–1274.

35. Kraft, N. J. B., Godoy, O. & Levine, J. M. (2015). Plant functional traits and the multidimensional nature of species coexistence. *Proceedings of the National Academy of Sciences*, 112, 797–802.

36. Kunstler, G., Falster, D., Coomes, D. A., Hui, F., Kooyman, R. M., Laughlin, D. C., Poorter, L., Vanderwel, M., Vieilledent, G., Wright, S. J., Aiba, M., Baraloto, C., Caspersen, J., Cornelissen, J. H. C., Gourlet-Fleury, S., Hanewinkel, M., Herault, B., Kattge, J., Kurokawa, H., Onoda, Y., Peñuelas, J., Poorter, H., Uriarte, M., Richardson, S., Ruiz-Benito, P., Sun, I.-F., Stahl, G., Swenson, N. G., Thompson, J., Westerlund, B., amd M. A. Zavala, C. W., Zeng, H., Zimmerman, J. K., Zimmermann, N. E. & Westoby, M. (2016). Plant functional traits have globally consistent effects on competition. *Nature*, 529, 204–207.

37. Kunstler, G., Lavergne, S., Courbaud, B., amd G. Vieilledent, W. T., Zimmermann, N. E., Kattge, J. & Coomes, D. A. (2012). Competitive interactions between forest trees are driven by species' trait hierarchy, not phylogenetic or functional similarity: implications for forest community assembly. *Ecol. Lett.*, 15, 831–840.

38. Lambers, H. & Oliveira, R. S. (2019). *Plant physiological ecology*. Springer.

39. Law, R., Marrow, P. & Dieckmann, U. (1997). On evolution under asymmetric competition. *Evol. Ecol.*, 11, 485–501.

40. Lotka, A. J. (1925). *Elements of Physical Biology*. Williams and Wilkins, Maryland, USA.

41. MacArthur, R. H. & Wilson, E. O. (1967). *The theory of island biogeography*. Princeton University Press, Princeton.
Maestre, F. T., Callaway, R. M., Valladares, F. & Lortie, C. J. (2009). Refining the stress-gradient hypothesis for competition and facilitation in plant communities. *Journal of Ecology*, 97, 199–205.

May, R. M. (1972). Will a large complex system be stable? *Nature*, 238, 413–414.

Mayfield, M. M. & Levine, J. M. (2010). Opposing effects of competitive exclusion on the phylogenetic structure of communities. *Ecol. Lett.*, 13, 1085–1093.

McKane, A. J., Alonso, D. & Solé, R. V. (2000). A mean field stochastic theory for species rich assembled communities. *Phys. Rev. E*, 62, 8466–8484.

Midgley, J. J. (2003). Is bigger better in plants? The hydraulic costs of increasing size in trees. *Trends. Ecol. Evol.*, 18, 5–6.

Mu, Q., Zhao, M. & Running, S. W. (2011). Improvements to a MODIS global terrestrial evapotranspiration algorithm. *Remote Sens. Environ.*, 115, 1781–1800.

Muller-Landau, H. (2010). The tolerance-fecundity trade-off and the maintenance of diversity in seed size. *Proc. Nat. Acad. Sci. USA*, 107, 4242–4247.

Olalla-Tárraga, M. Á. & Rodríguez, M. Á. (2007). Energy and interspecific body size patterns of amphibian faunas in Europe and North America: Anurans follow Bergmann’s rule, urodeles its converse. *Global Ecology and Biogeography*, 16, 606–617.

Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D’amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P. & Kassem, K. R. (2001). Terrestrial ecoregions of the world: A new map of life on Earth. *BioScience*, 51, 993–938.

Ontiveros, V. J., Capitán, J. A., Arthur, R., Casamayor, E. O. & Alonso, D. (2019). Colonization and extinction
rates estimated from temporal dynamics of ecological communities: The island r package. *Methods in Ecology and Evolution*, 10, 1108–1117.

52. Ordonez, A., Wright, I. J. & Olff, H. (2010). Functional differences between native and alien species: A global-scale comparison. *Fun. Ecol.*, 24, 1353–1361.

53. Pigolotti, S., López, C. & Hernández-García, E. (2007). Species clustering in competitive Lotka-Volterra models. *Phys. Rev. Lett.*, 98, 1–4.

54. Ricklefs, R. E. (2008). Disintegration of the ecological community. *Am. Nat.*, 172, 741–750.

55. Ricklefs, R. E. (2011). Applying a regional community concept to forest birds of eastern North America. *Proceedings of the National Academy of Sciences of the United States of America*, 108, 2300–2305.

56. Ricklefs, R. E. (2015). Intrinsic dynamics of the regional community. *Ecology Letters*, 18, 497–503.

57. Rosindell, J., Hubbell, S. P. & Etienne, R. S. (2011). The unified neutral theory of biodiversity and biogeography at age ten. *Trends Ecol. Evol.*, 26, 451–457.

58. Ryan, M. G. & Yoder, B. J. (1997). Hydraulic limits to tree height and tree growth. *Bioscience*, 47, 235–242.

59. Scheffer, M. & van Nes, E. H. (2006). Self-organized similarity, the evolutionary emergence of groups of similar species. *Proceedings of the National Academy of Sciences of the United States of America*, 103, 6230–6235.

60. Schoener, T. W. (1983). Field Experiments on Interspecific Competition. *The American naturalist*, 122, 240–285.

61. Segura, A. M., Kruk, C., Calliari, D., García-Rodríguez, F., Conde, D., Widdicombe, C. E. & Fort, H. (2012). Competition drives clumpy species coexistence in estuarine phytoplankton. *Scientific Reports*, 3, 1037.

62. Serván, C. A., Capitán, J. A., Grilli, J., Morrison, K. E. & Allesina, S. (2018). Coexistence of many species in random ecosystems. *Nature Ecology and Evolution*, 2, 1237.
63. Solé, R. V., Alonso, D. & McKane, A. J. (2000). Scaling in a network model of multispecies communities. *Physica A*, 286, 337–344.

64. Soliveres, S., Maestre, F. T., Ulrich, W., Manning, P., Boch, S., Bowker, M. A., Prati, D., Delgada-Baquerizo, M., Quero, J. L., Schöning, I., Gallardo, A., Weisser, W., Müller, J., Socher, S. A., García-Gómez, M., Ochoa, V., Schulze, E. D., Fischer, M. & Allan, E. (2015). Intransitive competition is widespread in plant communities and maintains their species richness. *Ecology Letters*, 18, 790–798.

65. Stanley Harpole, W. & Tilman, D. (2006). Non-neutral patterns of species abundance in grassland communities. *Ecology Letters*, 9, 15–23.

66. Stearns, S. C. (1989). Evolution in life-history Trade-offs. *Functional Ecology*, 3, 259–268.

67. Stroud, J. T., Bush, M. R., Ladd, M. C., Nowicki, R. J., Shantz, A. A. & Sweatman, J. (2015). Is a community still a community? Reviewing definitions of key terms in community ecology. *Ecology and Evolution*, 5, 4757–4765.

68. Swenson, N. G., Enquist, B. J., Pither, J., Kerkhoff, A. J., Boyle, B., Weiser, M. D., Elser, J. J., Fagan, W. F., Forero-Montaña, J., Fyllas, N., Kraft, N. J. B., Lake, J. K., Moles, A. T., Patiño, S., Phillips, O. L., Price, C. A., Reich, P. B., Quesada, C. A., Stegen, J. C., Valencia, R., Wright, I. J., Wright, S. J., Andelman, S., Jorgensen, P. M., Lacher, T. E., Monteagudo, A., Núñez-Vargas, M. P., Vasquez-Martínez, R. & Nolting, K. M. (2012). The biogeography and filtering of woody plant functional diversity in North and South America. *Global Ecology and Biogeography*, 21, 798–808.

69. Tilman, D. (1982). *Resource Competition and Community Structure*. Princeton University Press, Princeton, NJ.

70. Tilman, D. (1994). Competition and Biodiversity in Spatially Structured Habitats. *Ecology*, 75, 2–16.

71. Tilman, D. (2004). Niche tradeoffs, neutrality, and community structure: A stochastic theory of resource competition, invasion, and community assembly. *Proc. Nat. Acad. Sci. USA*, 101, 10854–10861.
72. Tilman, D. & Wedin, D. (1991). Plant Traits and Resource Reduction For Five Grasses Growing on a Nitrogen Gradient. *Ecology*, 72, 685–700.

73. Triadó-Margarit, X., Capitán, J. A., Menéndez-Serra, M., Ortíz-Álvarez, R., Ontiveros, V. J., Casamayor, E. O. & Alonso, D. (2019). A Randomized Trait Community Clustering approach to unveil consistent environmental thresholds in community assembly. *The ISME Journal*, 13.

74. Valiente-Banuet, A. & Verdú, M. (2007). Assembly through facilitation can increase the phylogenetic diversity of plant communities. *Ecol. Lett.*, 10, 1029–1036.

75. Violle, C., Nemegut, D. R., Pu, Z. & Jiang, L. (2011). Phylogenetic limiting similarity and competitive exclusion. *Ecol. Lett.*, 14, 782–787.

76. Volkov, I., Banavar, J. R., Hubbell, S. P. & Maritan, A. (2009). Inferring species interactions in tropical forests. *Proc. Nat. Acad. Sci. USA*, 106, 13854–13859.

77. Volterra, V. (1926). Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. *Mem. Acad. Naz. Lincei*, 2, 31–113.

78. Wang, X. G., Wiegand, T., Kraft, N. J. B., Swenson, N. G., Davies, S. J., Hao, Z. Q., Howe, R., Lin, Y. C., Ma, K. P., Mi, X. C., Su, S. H., Sun, I. F. & Wolf, A. (2016). Stochastic dilution effects weaken deterministic effects of niche-based processes in species rich forests. *Ecology*, 97, 347–360.

79. Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. (2002). Phylogenies and community ecology. *Ann. Rev. Ecol. Syst.*, 33, 475–505.

80. Weiner, J. (1993). Competition among plants. *Treballs de la Societat Catalana de Biologia*, 44, 99–109.

81. Zhang, S. & Lamb, E. G. (2012). Plant competitive ability and the transitivity of competitive hierarchies change with plant age. *Plant Ecology*, 213, 15–23.
Figure captions

Figure 1. Conceptual framework for maximum height resulting from a trade-off between investing energy either in potential growth, or in any other alternative, non-size-related strategy. In panel a, we illustrate latitudinal patterns of potential light and water availability. The latitudinal gradient of actual evapotranspiration (ET) is also shown along with the expected role of biotic interactions in determining community dynamics. At middle-range latitudes, we expect competitive hierarchies to be at their maximum due to a greater relative role of species interactions. Panel b shows how the trade-off between potential growth and any alternative mechanism not related to size can be included in a spatially-explicit model: species that are either good at growing taller or in investing energy in allelopathy remain short, but cause incremental death of their heterospecific neighbors. As an outcome of this trade-off, the model predicts the dominance of taller, mid-sized, or shorter plants at stationarity (panel c).

Figure 2. Geographical description of plant data across European ecoregions. a, 25 different habitats covering most of Europe are shown in the map and listed below. Ecoregions are regarded as a pool comprising all plant species observed in that region. b, The Military Grid Reference System divides ecoregions in grid cells, each one considered as an assemblage formed by a species sample of the pool.

Figure 3. The implicit model predicts a power-law decay regardless of the ecoregion size S, which permits fitting a power law to data ($r^2 = 0.51$, $p < 10^{-3}$, 95% confidence lines are shown). In order to match the empirical exponent γ we need to choose the immigration rate $\mu = 5$, the net growth rate $\alpha = 50$ and the carrying capacity $K = 1000$. To match the starting point of the decay we need to set $\hat{\rho} = 0.04$ in the calculation of ρ_{ij}. For completeness, we have reproduced here model expectations (triangles) for different pool sizes. Data colors match ecoregion codes in Fig. 2.
Figure 4. Empirical randomization tests. The majority of ecoregions are consistent with model predictions as the distributions (Tukey boxplots) lie in the 5% range of significant clustering (Methods). We present here distributions of p-values across local communities in every ecoregion. Shaded areas would represent threshold p-values for two one-tailed tests where the hypothesis of trait clustering and over-dispersion, in blue and pink, respectively, are represented on the same plot. Data colors in panels a and c match codes in Fig. 2.

Figure 5. Linking height clustering to geographical and environmental variables. a. Variation in the clustering index (q) with latitude (φ). Quadratic fit: $r^2 = 0.63, p < 10^{-3}$. b. Latitudinal variation in mean annual actual evapotranspiration (ET) data. Quadratic weighted regression: $r^2 = 0.63, p < 10^{-3}$. The shaded areas in panels a and b represent the latitudinal range for which the adjusted dependence $q(\varphi) \geq 0.7$, where both height clustering and evapotranspiration are maximal. c. Linear weighted regression for ET as a function of the clustering index; $r^2 = 0.49, p < 10^{-3}$. d. Correlation between mean gross primary productivity (GPP) and mean annual ET; linear weighted fit: $r^2 = 0.73, p < 10^{-3}$. In the first four panels, the radius of each circle is proportional to the clustering index. Symbol colors refer to ecoregions (Fig. 2). All the fits show the 95% confidence bands. e. Geographical distribution of clustering indices for ecoregions across Europe.

Figure 6. Two predictions of the explicit model tested against data. a. Correlation of cell-averaged height (relative to ecoregion means) and mean annual ET by ecoregion (colors used for data match codes in Fig. 2). b. Correlation coefficient obtained in a vs. latitude. Circle radii are proportional to clustering indices. Observe that positive correlations tend to associate with high clustering index (with some exceptions) and middle-range latitude (quadratic fit: $r^2 = 0.44, p = 0.001$). c. Clustering patterns of an ecoregion characterized by high clustering index (Atlantic mixed forests) were analyzed at increasing aggregation scales. Communities were defined by increasingly aggregating contiguous 50×50 km cells. Below a critical aggregation scale (eleventh log-area bin, which corresponds to 10^5 km2), randomization tests show strong signals of clustering. The inset in c represents a down-scaling of randomization tests. Clustering patterns robustly persist at smaller spatial scales.
Figures

Figure 1

(a) Latitude
 Light Water ET Sp.

(b) Species
 Potential growth (height)
 Alt. mechanism (allelopathy)

(c) Relative abundance
 Species

0 5 10 15 20 25 30
Figure 3

Scaled competitive overlap, \(\langle \rho \rangle S \)

Coexistence probability, \(p_c \)

\(S = 100 \)
\(S = 250 \)
\(S = 500 \)

\(\gamma \approx 0.61 \)
Figure 4

Significant overdispersion
Significant clustering
Figure 5

- Clustering index vs. Centroid latitude
- Mean annual ET vs. Centroid latitude
- Mean GPP vs. Clustering index
- Map of Europe showing Clustering index distribution

![Diagram showing various data relationships and geographical distribution](image-url)
Figure 6

(a) Scatter plots showing the relationship between mean annual ET (mm/year) and mean relative height, with correlation coefficients indicated. Each plot contains data points grouped by different latitude ranges, with correlation coefficients ranging from $r^2 = 0.00$ to $r^2 = 0.43$.

(b) Graph depicting the correlation coefficient against latitude. The correlation coefficient values range from -0.75 to 0.75.

(c) Bar chart showing the distribution of p-values for area (km²) across different log-area classes. The p-values range from 0.01 to 1.00.