Evidence for the impact of the 8.2-kyBP climate event on Near Eastern early farmers.

Roffet-Salque, M

http://hdl.handle.net/10026.1/12720

10.1073/pnas.1803607115
Proc Natl Acad Sci U S A

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Evidence for the impact of the 8.2-kyBP climate event on Near Eastern early farmers

Mélanie Roffet-Salque¹, Arkadiusz Marciniak², Paul J. Valdes¹, Kamilla Pawłowska¹, Joanna Pyzel¹, Lech Czerniak¹, Marta Krüger³, C. Neil Roberts¹, Sharmini Pitter¹, and Richard P. Evershed⁴

¹Organic Geochemistry Unit, School of Chemistry, University of Bristol, BS8 1TS Bristol, United Kingdom; ²Institute of Archaeology, Adam Mickiewicz University, 61-614 Poznań, Poland; ³School of Geographical Sciences, University of Bristol, BS8 1SS Bristol, United Kingdom; ⁴Institute of Geology, Adam Mickiewicz University, 61-680 Poznań, Poland; ⁵Institute of Archaeology and Ethnology, University of Gdańsk, 80-851 Gdańsk, Poland; ⁶School of Geography, Earth and Environmental Sciences, Plymouth University, PL4 8AA Plymouth, United Kingdom; and ⁷Department of Environmental Earth System Science, Stanford University, Stanford, CA 94305

Edited by Ofir Bar-Yosef, Harvard University, Cambridge, MA, and approved July 6, 2018 (received for review March 5, 2018)

The 8.2-thousand years B.P. event is evident in multiple proxy records across the globe, showing generally dry and cold conditions for ca. 160 years. Environmental changes around the event are mainly detected using geochemical or palynological analyses of ice cores, lacustrine, marine, and other sediments often distant from human settlements. The Late Neolithic excavated area of the archaeological site of Çatalhöyük East (team Poznian [TP] area) was occupied for four centuries in the ninth and eighth millennia B.P., thus encompassing the 8.2-thousand years B.P. climatic event. A Bayesian analysis of 56 radiocarbon dates yielded a high-resolution chronological model comprising six building phases, with dates ranging from before 8325–8205 to 7925–7815 calibrated years (cal) B.P. Here, we correlate an onsite paleoclimate record constructed from δ18O values of lipid biomarkers preserved in pottery vessels recovered from these buildings with changes in architectural, archaeozoological, and consumption records from well-documented archaeological contexts. The overall sequence shows major changes in husbandry and consumption practices at ca. 8.2 thousand years B.P., synchronous with variations in the δ18O values of the animal fat residues. Changes in paleoclimate and archaeological records seem connected with the patterns of atmospheric precipitation during the occupation of the TP area predicted by climate modeling. Our multiproxy approach uses records derived directly from documented archaeological contexts. Through this, we provide compelling evidence for the specific impacts of the 8.2-thousand years B.P. climatic event on the economic and domestic activities of pioneer Neolithic farmers, influencing decisions relating to settlement planning and food procurement strategies.

Significance

This study reveals that animal fats preserved in pottery vessels from the United Nations Educational, Scientific and Cultural Organization (UNESCO) World Heritage site of Çatalhöyük recorded the abrupt 8.2-thousand years B.P. climatic event in their hydrogen isotopic compositions. In addition, significant changes are observed in the archaeology and faunal assemblage of the site, showing how the early farming community at Çatalhöyük had to adapt to climate change. Significantly, this contribution shows that individual biomolecules preserved in ancient animal fats can be used to reconstruct paleoclimate records and thus, provides a powerful tool for the detection of climatic events at well-dated onsite terrestrial locations (i.e., at the very settlements where human populations lived).

Author contributions: M.R.-S., A.M., S.P., and R.P.E. designed research; M.R.-S., A.M., P.I.V., K.P., J.P., L.C., M.K., C.N.R., S.P., and R.P.E. performed research; M.R.-S., P.I.V., K.P., and R.P.E. analyzed data; M.R.-S. undertook lipid residue analytical work and data analysis; A.M. and L.C. directed excavations at Çatalhöyük East; P.I.V. undertook climate modelling simulations; K.P. undertook archaeozoological analyses; J.P. and M.K. undertook sampling of pottery sherd; C.N.R. provided expertise in relation to climate; and M.R.-S. and R.P.E. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

To whom correspondence should be addressed. Email: melanie.salque@bristol.ac.uk.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1803607115/-/DCSupplemental.

Published online August 13, 2018.
over 37 ha on the Southern Anatolian Plateau occupied between 9050 and 7150 calibrated years (cal) B.P. (14, 15). Excavations (2001–2008) in the Team Poznań (TP) area of the East Mound exposed a long sequence of vertical stratigraphy, including domestic buildings with floors, walls, and hearths (14); abundant ceramics; stone tools; and human, faunal, and botanical remains. Bayesian modeling of 56 radiocarbon dates (14) revealed six building phases named TP-M to TP-R spanning from ca. 8325–8205 cal B.P. (end of TP-M) to 7925–7815 cal B.P. (end of TP-R). The phase TP-O was occupied between 8295–8190 cal B.P. (95% probability) and 8180–8110 cal B.P. [95% probability (Fig. 1); i.e., from the beginnings of the “central event” within the 8.2-kyBP event (6)].

More than 13,000 fragments of pottery were excavated from the TP area, with an increased number of sherds in TP-P. Holesmouth vessels dominated the assemblage before the TP-P level, with dense ware groups increasing from the TP-P level, indicating a later intensification of cooking activities. Potsherds (n = 87) from primary contexts from phases TP-M to TP-R were selected and analyzed for organic residues, allowing lipids from foodstuffs processed in the ceramic containers to be characterized (12). The dominant C_{16:0} and C_{18:0} fatty acids indicate the residues are degraded animal fats (16). The low abundance of C_{18:1} fatty acids, the main fatty acid in fresh animal fats, shows that the fats extracted are indeed archaeological. Δ^{13}C (= δ^{13}C_{lip} – δ^{13}C_{car}) values range from −3.3 to −0.4‰ (n = 43), of which 41 are consistent with ruminant carcass fats and 2 are very close to being consistent with ruminant carcass fats. The Δ^{13}C and δ^{13}C_{lip} values of archaeological animal fats are stable through time (Mann–Whitney test; P = 0.342 and P = 0.713, respectively), showing that both the origin of fats (Δ^{13}C values) and the animal’s diet (as reflected by the δ^{13}C_{lip} values) (17) are similar across all phases (Fig. 2). Thus, the carbon isotopic compositions of animal lipids do not seem to have recorded significant environmental change(s) between 8325 and 7815 cal B.P. However, the hydrogen isotopic composition (δ^2H) of the fatty acids provides a unique opportunity to detect local climatic signals, especially since the ceramic containers in which animal products were processed integrate hundreds of cooking events involving tissues from tens to hundreds of animals. Furthermore, the animals themselves integrate δ^2H signals from both drinking water and diet (18), each animal having consumed tens to hundreds of millions individual plants (19) and experiencing hundreds to thousands of drinking events during its lifetime, with carcass fats integrating an all-year round δ^2H signal (13). Crucially, the

![Diagram](https://example.com/diagram.png)

**Fig. 1.** Archaeozoological and lipid residue evidence for changes in levels M–R of the TP area in Çatalhöyük. TP-P was excluded from the archaeozoological analysis due to the small number of animal remains, which represented only floor deposits. (A) Posterior density estimate start (white) and end (gray) dates for the phases M–R (represented by buildings 81, 74, 72, 73, 62, and 61) (14). Note that building 81 is at the bottom of the dated sequence, and thus, only an end date is available for phase M. Durations of the levels (95% probability) are 1–30 y (N), 30–115 y (O), 5–65 y (P), 1–30 y (Q), and 20–110 y (R) (14). (B) Percentage of bones from which <1/4 is preserved. (C) Completeness index (CI%) of carpals and tarsals for caprine and cattle together. (D) δ^2H values for the C_{16:0} fatty acids prepared from animal fat residues extracted from pottery sherds. Each gray data point represents an individual vessel; mean ± 1 SD for each level is in black. Mean SD on measurements (triplicated) is 3‰, ranging from 0 to 10‰. Data in B–D are arbitrarily plotted in the middle of the posterior density estimates (start/end). (E) Water δ^{18}O values for Greenland ice cores GRIP (red), GISP2 (black), and Dye3 (green). Outer dashed lines indicate onset and termination of the 8.2-kyBP event, and inner dashed lines indicate onset and termination of the central event (6). Adapted from ref. 6, with permission from Elsevier.
Our climate modeling studies of the 8.2-kyBP event show a complex pattern of change in the region. An intercomparison of models (22) suggests that the region around Çatalhöyük experienced annually drier (~4% reduction) but only very weak cooling. However, the magnitude of responses varies significantly depending on the model, estimated strength of freshwater input, and the initial ocean state (23, 24). We, therefore, examined the range of responses from a set of 10 existing model simulations using the isotope-enabled version of the Hadley Centre Climate model, HadCM3, with a variety of inputs and initial conditions (24) (Fig. 3 shows one ensemble member). The simulation predicts modest cooling of 1 °C to 2 °C (Fig. 3A) and relatively little seasonal temperature change. By contrast, the change of the precipitation is seasonal; in winter, little change in precipitation over Greece and Turkey is predicted (Fig. 3B), but in summer, a widespread decline of 10–15% is expected (Fig. 3C). These responses are typical of the majority of ensemble members, which all show cooling over the region, with the majority of models (8 of 10) showing a decrease in summer rainfall. Critically, two models predict a general increase in δ18O values of ~1–2‰ of precipitation on average throughout Greece and Turkey, equivalent to 8–16‰ for deuterium, which agrees with δ2H values recorded directly from animal fats discussed above. These models explain the changes in the δ18O and δ2H values that result from an increase in low pressure over Europe, such that air over Greece and Turkey increasingly comes from the eastern Mediterranean (21).

Our dated precipitation record can now be used to explore the impact of the climatic crisis on the activities of the inhabitants of Çatalhöyük. Of particular interest are the ungulate herds, with osteological studies of animal remains showing (i) a reduction in cattle herd sizes accompanied by an increase in caprine herd sizes in TP-O and (ii) an increase in the degree of bone fragmentation for small and large ungulate grease and marrow-bearing parts from TP-O onward (Fig. 1B and C), which is linked to food scarcity/dietary stress (25). An increased number of slice marks associated with each butchering incidence was revealed in TP-O for both cattle and caprines, showing a marked increase in butchering efficiency and meat processing (26). This suggests more extensive utilization of resources and/or increase

Fig. 2. Fatty acid carbon isotope compositions of lipids extracted from ceramic vessels from Çatalhöyük (TP area). (A–F) δ13C values for the C16:0 and C18:0 fatty acids prepared from animal fat residues extracted from sherds from Çatalhöyük (TP area) from phases M–R, respectively. The three fields correspond to the P = 0.684 confidence ellipses for animals raised on a strict C3 diet in Britain (20). The analytical error (±0.3‰) is approximately the size of the points on the graph. (G–L) δ18O values from the same potsherds. Ranges show the mean ± 1 SD for a global database comprising modern reference animal fats from United Kingdom (animals raised on a pure C3 diet), Africa, Kazakhstan, Switzerland, and the Near East (17). Each data point represents an individual vessel. Samples from which δ2H values of C16:0 and C18:0 fatty acids were obtained (Fig. 1D) are in black.
in butchering skills in the period of crisis. Skeletal evidence for
malnutrition has also been observed in domesticated cattle from
this level (27). The consequences of cooler temperatures in
winter are an increase in livestock nutritional requirements, with
up to twice as many calories needed to maintain normal body
temperature and functions, making foddering throughout winter
challenging (28), while low summer rainfall could lead to a loss
of agricultural productivity (29). Remarkably, human responses
are reflected in changes in the site building architecture at this
time. Multiroomed large houses with a suite of in-built structures
and intramural burials at the bottom of the settlement occupa-
tional sequence shift to light shelters with large open spaces in
TP-O and TP-P and then, multiroomed dwelling structures with
central “living rooms” devoid of major in-built features sur-
rounded by small, cell-like spaces, probably used as storage and
working areas (30). These architectural and spatial changes at the
site of Çatalhöyük provide evidence for deeper economic and
social changes taking place at ca. 8.2 kyBP and in subsequent
centuries. Smaller, more independent, and more self-sufficient
households emerged, replacing the previously dominant commu-
nal organization. They proved to be unsustainable and the pre-
viously flourishing settlement rapidly shrunk, unavoidably leading
to its relatively abrupt and sudden collapse and ultimate aban-
donment in 7925–7815 cal BC (14).

In summary, the local climate proxy obtained through the δ18O
analyses of fatty acids from animal fats preserved in pottery vessels
from the Neolithic site of Çatalhöyük indicates a teleconnection to
the North Atlantic abrupt climate event at 8.2 kyBP. Although our
local climatic proxy shows only a modest signal for the event, this
is entirely consistent with our climate model predications and
other isotopic and pollen records from the region. Notwithstand-
ing the apparent weakness of the climate signal, profound human
responses are clearly visible in the archaeological record, which
perhaps suggest more extreme regional climate impacts than
anticipated. Livestock was severely impacted at Çatalhöyük, and
the early farming community had to show resilience and adapt-
ability in a period of abrupt climate change.

Finally, the impacts of climate change on human populations
are commonly inferred from proxy records obtained remote
from archaeological sites. In the Mediterranean, this type of
approach has postulated relationships between the 8.2-kyBP
event based on ocean, lake, and peat records and broad-scale
sociocultural reorganizations (31). Our multiproxy approach,
based on climate records derived directly from δ18O of fatty acids
in organic residues in archaeological pottery, links 14C-dated de-
posits to co-occurring artifacts, ecofacts, and house structures.
Through this, we provide evidence for site-specific impacts of the
8.2-kyBP climatic event on the economic and domestic activities of
pioneer Neolithic farmers of Çatalhöyük, which clearly influenced
their local decisions related to food procurement strategies and
settlement planning.

Materials and Methods

Sampling of Potsherds. A total of 87 sherds from the TP area of Çatalhöyük
East were selected and sampled for lipid residue analyses. Rimsherds were
sampled preferentially as cooking experiments, and analyses of archaeo-
logical potsherds have shown that rimsherds contain higher concentrations
of lipids than bases and body sherds (32). Potsherds from phases M \( n = 16 \), N \( n = 14 \), O \( n = 18 \), P \( n = 18 \), Q \( n = 8 \), and R \( n = 13 \) were selected for lipid residue
analyses. Only sherds from secure contexts (middens and floor deposits) were
selected to allow their dates to be established through association with articu-
lated animal bones submitted to radiocarbon dating and Bayesian modeling (14).

Lipid Residue Analyses. Lipid residue analyses and interpretations were based
on established protocols (33, 34) (SI Appendix, SI Text). A subsample (1–3 g)
from archaeological potsherds was cleaned with a modeling drill to remove
any exogenous lipids (from the soil and handling) and crushed, and an in-
ternal standard (n-tetradriacontane) and an acidified methanol solution
were added. Aliquots of the total lipid extract were derivatized with N,O-bis
(trimethylsilyl)trifluoroacetamide containing 1% trimethylchlorosilane and

Fig. 3. Modeled 8.2-kyBP climate response. (A) Changes in annual (ANN) mean temperature (in degrees Celsius). (B) Changes in winter (December, January, February; DJF) precipitation (as percentage change from the control run). C is the same as B but for summer (June, July, August; JJA) precipitation. (D) Summer (JJA) δ18O values of precipitation (in per mil; ‰). The results are from the ensemble member that shows the response that is most consistent with the isotopic observations (Fig. 1D).
submitted to analysis by GC and GC/MS to identify the major compounds present; δ¹³C analyses of the extracts identified as animal fats (n = 43) were carried out to specify GC/combustion/IRMS ratio MS (IRMS) to identify the fats to their animal source (17, 20). Selected ruminant adipose fats (n = 32) were then analyzed by GC/thermal conversion/IRMS to determine the δ¹³H values of the C₁₆₀ and C₁₈₀ fatty acids (35).

Archaeozoological Analyses. A total of >220,000 animal bone fragments were excavated in the TP area, of which >100,000 were studied and >6,800 were identified to species. The animal remains were excavated in different contexts; mostly infts of houses and middens but also, floors, clusters, and special deposits. The faunal remains are stored in a depot at Çatalhöyük. Raw data are available online in the Çatalhöyük database (www.catalhoyuk.com/researchdatabase). Level TP-P was excluded from the analysis due to the small number of remains. Specimens were identified to taxon and skeletal element using a reference collection available onsite, and the number of identified specimens (NISP) was determined. The minimum number of elements (MNE) refers to the number of a minimum particular skeletal portion of a taxon. The degree of fragmentation was measured using the NISP:MNE ratio and the completeness index (C1%) using only carpals and tarsals. Specimens that were burnt, digested, heavily gnawed, or weathered were not included in the calculation of C1% to exclude factors altering the completeness of bones.

Climate Modeling. The climate modeling simulations have already been described (24), and we only give a brief description of the key elements here. The simulations used the iso-evaluated version of the Hadley Centre model, HadCM3. The control run uses boundary conditions appropriate to the whole North Atlantic region from 50° to 70° N, whereas a second set spread it even more. Approved climate model simulations for determining the use of ancient pottery vessels: The behaviour of epigraphic.

Acknowledgments. We thank Ian Hodder and members of the Çatalhöyük Research Project for the opportunity to work on material from Çatalhöyük. Helen Grant of the Natural Environment Research Council (NERC) Life Sciences Mass Spectrometry Facility (Lancaster node) is thanked for stable isotopic characterization of reference standards and derivatizing agents. MSCI student Grant Houser is thanked for the preparation of the 8.2 kyr δ¹³C values for carbonates from the Nar Lake. Research was funded by European Research Council Advanced Grant “NeoMilk” FP7-IDEAS-ERC/324202 (to R.P.E.). We thank the NERC for partial funding of the MS facilities at Bristol (Contract RB/H10163; www.chm.bris.ac.uk/fermit/).

1. Alley RB, Ágústsdóttir AM (2005) The 8k event: Cause and consequences of a major Holocene abrupt climate change. Quat Sci Rev 24:1123–1149.
2. Berger JL, Gide D (2009) The 8200 cal BP abrupt environmental change and the Neolithic transition: A Mediterranean perspective. Quat Int 200:31–49.
3. Weninger B, et al. (2006) Climate forcing due to the 8200 cal yr BP event observed at Early Neolithic sites in the Eastern Mediterranean. Quat Res 66:401–420.
4. Johansen SJ, et al. (1992) Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359:311–313.
5. Daley TJ, et al. (2011) The 8200 yr BP cold event in stable isotope records from the North Atlantic region. Glob Planet Change 79:288–302.
6. Thomas ER, et al. (2007) The 8.2 ka event from Greenland ice cores. Quat Sci Rev 26: 70–81.
7. Roberts N, et al. (2008) Stable isotope records of Late Quaternary climate and hydrology from Mediterranean lakes: The ISOMED synthesis. Quat Sci Rev 27:2426–2441.
8. Dutkiewicz S, et al. (2015) Eastern Mediterranean hydroclimate over the late glacial and Holocene, reconstructed from the sediments of Nar Lake, central Turkey, using stable isotopes and carbonate mineralogy. Quat Sci Rev 124:162–174.
9. Flohr P, Fleitmann D, Matthews R, Matthews W, Black S (2016) Evidence of resilience and past climate change during the 8.2 kyr B.P. interval in the North Atlantic. Climatic Change 133:162–181.
10. Pross J, et al. (2009) Massive perturbation in terrestrial ecosystems of the Eastern Mediterranean region associated with the 8.2 kyr B.P. climatic event. Clim Past 5:97–101.
11. Brami M, Heyd V (2011) The origins of Europe and is purely a statistical construct. We, therefore, analyzed all of the ensemble members and identified the range of the results. All models showed a cooling over the region with relatively little seasonality. Similarly, the majority of models showed a summer drying and should be viewed as a robust result from the modeling. However, relatively few of the ensemble members showed an increase in the isotopic ratios. It was related to changes in atmospheric circulation, which were not robust and have a high degree of natural variability. Therefore, this aspect of our simulations should not be viewed as conclusive but does show that atmospheric circulation changes are a vital aspect of the far-field response changes in the North Atlantic.

ACKNOWLEDGMENTS. We thank Ian Hodder and members of the Çatalhöyük Research Project for the opportunity to work on material from Çatalhöyük. Helen Grant of the Natural Environment Research Council (NERC) Life Sciences Mass Spectrometry Facility (Lancaster node) is thanked for stable isotopic characterization of reference standards and derivatizing agents. MSCI student Grant Houser is thanked for the preparation of the 8.2 kyr δ¹³C values for carbonates from the Nar Lake. Research was funded by European Research Council Advanced Grant “NeoMilk” FP7-IDEAS-ERC/324202 (to R.P.E.). We thank the NERC for partial funding of the MS facilities at Bristol (Contract RB/H10163; www.chm.bris.ac.uk/fermit/).

1. Alley RB, Ágústsdóttir AM (2005) The 8k event: Cause and consequences of a major Holocene abrupt climate change. Quat Sci Rev 24:1123–1149.
2. Berger JL, Gide D (2009) The 8200 cal BP abrupt environmental change and the Neolithic transition: A Mediterranean perspective. Quat Int 200:31–49.
3. Weninger B, et al. (2006) Climate forcing due to the 8200 cal yr BP event observed at Early Neolithic sites in the Eastern Mediterranean. Quat Res 66:401–420.
4. Johansen SJ, et al. (1992) Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359:311–313.
5. Daley TJ, et al. (2011) The 8200 yr BP cold event in stable isotope records from the North Atlantic region. Glob Planet Change 79:288–302.
6. Thomas ER, et al. (2007) The 8.2 ka event from Greenland ice cores. Quat Sci Rev 26: 70–81.
7. Roberts N, et al. (2008) Stable isotope records of Late Quaternary climate and hydrology from Mediterranean lakes: The ISOMED synthesis. Quat Sci Rev 27:2426–2441.
8. Dutkiewicz S, et al. (2015) Eastern Mediterranean hydroclimate over the late glacial and Holocene, reconstructed from the sediments of Nar Lake, central Turkey, using stable isotopes and carbonate mineralogy. Quat Sci Rev 124:162–174.
9. Flohr P, Fleitmann D, Matthews R, Matthews W, Black S (2016) Evidence of resilience and past climate change during the 8.2 kyr B.P. interval in the North Atlantic. Climatic Change 133:162–181.
10. Pross J, et al. (2009) Massive perturbation in terrestrial ecosystems of the Eastern Mediterranean region associated with the 8.2 kyr B.P. climatic event. Clim Past 5:97–101.
11. Brami M, Heyd V (2011) The origins of Europe and is purely a statistical construct. We, therefore, analyzed all of the ensemble members and identified the range of the results. All models showed a cooling over the region with relatively little seasonality. Similarly, the majority of models showed a summer drying and should be viewed as a robust result from the modeling. However, relatively few of the ensemble members showed an increase in the isotopic ratios. It was related to changes in atmospheric circulation, which were not robust and have a high degree of natural variability. Therefore, this aspect of our simulations should not be viewed as conclusive but does show that atmospheric circulation changes are a vital aspect of the far-field response changes in the North Atlantic.

ACKNOWLEDGMENTS. We thank Ian Hodder and members of the Çatalhöyük Research Project for the opportunity to work on material from Çatalhöyük. Helen Grant of the Natural Environment Research Council (NERC) Life Sciences Mass Spectrometry Facility (Lancaster node) is thanked for stable isotopic characterization of reference standards and derivatizing agents. MSCI student Grant Houser is thanked for the preparation of the 8.2 kyr δ¹³C values for carbonates from the Nar Lake. Research was funded by European Research Council Advanced Grant “NeoMilk” FP7-IDEAS-ERC/324202 (to R.P.E.). We thank the NERC for partial funding of the MS facilities at Bristol (Contract RB/H10163; www.chm.bris.ac.uk/fermit/).