INTRODUCTION

Ocimum sanctum (Tulsi) is well known for its religious, medicinal, and culinary usefulness. It is routinely used in Ayurveda for diseases such as diabetes, bronchitis, dental conditions, and arthritis [1]. Although the effectiveness of tulsi in all these ailments has been extensively investigated, its role in routine oral hygiene is less studied. There are only limited studies done in this aspect [1–4]. Hence, against this background, the antimicrobial activity of the tulsi extract could have a potential to be used as a part of routine dental hygiene.

METHODS [5]

Preparation of ethanolic extract [6]

Institutional Ethics Committee clearance was obtained before the start of the study. Study duration was of 1 year. Leaves of *O. sanctum* were collected and then validated by a botanist. The leaves were then carefully cleaned with distilled water and then air dried for 5 days. It was then powdered using an electric blender. Sohlet apparatus was used for the extraction process using 250 mL of absolute ethanol. 50 g of the powder was put into the apparatus. The filtrate was concentrated with the help of a rotary evaporator. The extract obtained was stored at 4°C in air tight containers till further use. 50 g of dried leaves gave a yield of 9.3 g. Then, the extract was dissolved in dimethyl sulphoxide (DMSO) to prepare a concentration of 400 µg/ml which was used for the study.

Antimicrobial property assessment

Test organisms’ collection and isolation

The microbes for the study were obtained from patients who had come to the Yenepoya Dental College outpatient department for treatment. The patients gave their informed consent before the start of the procedure. Cariogenic organisms were collected from tooth caries scrapings while the periodontal organisms were obtained from periodontal pockets. The organisms were transported in Brain heart infusion (BHI) broth.

The samples were then placed in an anaerobic chamber/incubator and kept for incubation for 48 h. Then, manually plating on different media such as chocolate agar, sheep blood agar, and sabouraud dextrose agar was done. Strict aseptic precautions were maintained, and the process was carried out in a laminar airflow chamber. These plates were incubated for 24 h. After incubation, the culture plates were observed to look for the formation of any microbial colonies. The colonies were identified by standard microbiological tests.

The organisms were preserved in BHI and Robertson’s Cooked Meat broth. Subcultures were done serially for every 72 h for the entire study period. A check on the purity of broth cultures was maintained from time to time using standard techniques [5]. Organisms studied were *Streptococcus mutans*, *Lactobacillus acidophilus*, *Streptococcus mitis*, and *Peptostreptococcus* using agar well diffusion and broth dilution method. Chlorhexidine was a positive control. To compare and correlate the results, Mann–Whitney U-test was applied.

Results:
The ethanolic extract at a concentration of 400 µg/ml showed an inhibitory effect against *Streptococcus* and *Peptostreptococcus* with an inhibitory zone of 7.33 mm each. The extract was found to be effective against *P. intermedea* and *Peptostreptococcus*. It was also effective against *candida* (zone of inhibition was 10.67 mm). However, no inhibitory effect was seen on *Lactobacillus*.

Conclusion: *O. sanctum* extract was found to have inhibitory effects on oral microbes, and hence, pharmaceutical formulations prepared from tulsi extracts could have a potential to be used as a part of routine dental hygiene.

Keywords: Pharmacognosy, Plant extracts, Antimicrobial, Basil, Herbal remedies.
was swabbed on the Mueller Hinton agar plate with the help of a sterile cotton swab. With the help of a cork borer, five wells were made on the media. Each well was 6 mm in diameter. Three of these labeled wells were then filled with 50 µl of the tulsi extract. The other two wells were filled with same volumes of positive (chlorhexidine) and negative control (DMSO), respectively. The contents were allowed to diffuse into the media, and then the plates were incubated (37°C for 24 h). Then, the zone of inhibition was noted.

Different dilutions of the extract which showed antimicrobial activity in the agar well diffusion were taken, and the minimum inhibitory concentration (MIC) noted. Minimum bactericidal concentration (MBC) was determined by the standard procedures [5].

Statistical analysis
Mann-Whitney U-test was performed on the results obtained. Statistical analysis was completed using SPSS software version 15. Level of significance was set at P < 0.05.

RESULTS
The current study evaluated the antimicrobial properties of ethanolic extract of O. sanctum. The zone of inhibition, produced by 400 µg/L ethanolic extract of O. sanctum was analyzed and compared with chlorhexidine, the positive control.

The extract showed a zone of inhibition of 6 mm and 7.33 mm against Prevotella and S. mitis, respectively. It was also seen to be active against C. albicans (10.67 mm), Peptostreptococcus (8.67 mm), and S. mitis (7.33 mm). However, no antibacterial activity was seen against Lactobacillus. The zone of inhibition with Chlorhexidine was 21.33 mm for all of the above organisms except Prevotella (10 mm). The zone of inhibition for Peptostreptococcus was statistically similar for tulsi and chlorhexidine.

In this study, the range of MIC was from 25 µg/ml to 400 µg/ml. MIC and MBC of the O. sanctum extract against various pathogens are depicted in Table 1.

DISCUSSION
Tulsi plant has been extensively harnessed by the practitioners of traditional medicine for its immense usefulness in various ailments. It holds a plethora of medicinally important compounds. Different parts of the tulsi plant have been put to use in treating patients. It is found to be effective for diseases ranging from simple diarrhea to complicated conditions like arthritis. It is believed to have protective effects on heart and liver and also found to have anticancer properties [9]. The exact chemical that is responsible for the beneficial effects of tulsi is still elusive. It is probably the complex interaction between the numerous chemicals present in the herb that finally determines its biological activity. The proportions of the composition of these active compounds in tulsi vary from plant to plant and are not constant. The active principles may also be affected by the harvesting, processing, and storage conditions of the plant products. A large number of phytochemicals has been isolated from the tulsi leaves which include eugenol, eugnal, urosolic acid, and carvacrol.

Variety of other compounds including saponins, phenols, tannins, and flavonoids has also been isolated [9]. Among all of these active principles, eugenol (chemically known as 1-hydroxy-2-methoxy-4-allylbenzene), are believed to be responsible for the antimicrobial effects [10]. Some authors also suggest that the antimicrobial effect is due to linoleic acid which was seen to be effective against Bacillus pumilus, Staphylococcus aureus, and Pseudomonas aeruginosa [11]. However, because of the chemical complexity of the constituents of tulsi, it is difficult to standardize tulsi extract and duplicate its effects in the laboratory.

After a thorough search in the literary, only a few studies could be identified in which the efficacy ethanolic extract of tulsi leaves as an antimicrobial agent on the oral pathogens was evaluated. In one of such studies by Agarwal et al., 15 different concentrations of O. sanctum extracts were tested, and they noted a zone of inhibition of 22 mm against Staphylococcus aureus at a concentration of 4% w/v of the ethanolic extract [1]. In another study, 10% of alcoholic extract showed an inhibitory effect against Staphylococcus aureus, Streptococcus mutis, S. sanguis, and Lactobacillus. Although this study showed the efficacy of tulsi against Lactobacillus, we did not find any inhibitory effects. In a similar study by Mallikarjun et al., 5% w/v and 10% w/v of a concentration of alcoholic extract of tulsi was found to have inhibitory action against the periodontal pathogen, Aggregatibacter actinomycetemcomitans but ineffective against Porphyromonas gingivalis and P. intermedia [4]. However, in contrast, we found the extract to be effective against P. intermedia. These differences in the result could be due to the variations in the concentration of the extract used. The other reason could be due to change in the chemical composition of the active principle because of the variations in the strains of the plants as mentioned earlier. Antimicrobial activity of 6% w/v alcoholic extract of tulsi extract against Actinobacillus actinomycetemcomitans was also seen in a study conducted by Eswar et al. None of these studies have observed the effect of tulsi extract on Candida whereas we found tulsi to have an effective antimicrobial activity on Candida.

Sometimes, the zone of inhibition observed in the agar medium may not be an actual reflection of the antimicrobial activity of the compound. This is because numerous factors affect the antimicrobial activity of the plant extracts. Variations in the diffusion of the active principle through the agar media could be one of the reasons [8]. Hence, determination of the MIC and MBC was also taken into consideration in our study.

Limitation of the study
The major limitation is that we have performed the study on crude extract and isolation of the active principle was not within the scope of our study. Further, the exact mechanism by which tulsi exerts its antibacterial effects cannot be commented based on our study.

CONCLUSION
In our study, we found that the alcoholic extract of O. sanctum has antimicrobial activity against oral microbes and may be useful as an adjunct to other products involved in the maintenance of oral hygiene. However, further studies to find out the adverse effects and long-term toxicities are required before this extract can be put to daily use. The antimicrobial activity against other microorganisms and synergistic action along with various antimicrobials should also be investigated.

ACKNOWLEDGMENT
We would like to thank Dr. Vidya Pai, Professor, and Head, Department of Microbiology, Yenepoya University, Mangalore, Karnataka, for her support and guidance during the study.

AUTHOR’S CONTRIBUTIONS
All the four authors were involved in the execution of research, analysis of data, writing, and editing of the manuscript.

CONFLICTS OF INTEREST
None.

Table 1: The MIC and MBC of the alcoholic extract of O. sanctum against different microbes

Test organisms	MIC	MBC
S. mutans	25	25
S. mitis	400	800
Lactobacillus	00	00
C. albicans	00	00
Peptostreptococcus	25	25
Prevotella	400	800

MIC: Minimum inhibitory concentration, MBC: Minimum bactericidal concentration, S. mutans: Streptococcus mutans, S. mitis: Streptococcus mitis, C. albicans: Candida albicans
REFERENCES

1. Agarwal P, Nagesh L, Murlikrishnan. Evaluation of the antimicrobial activity of various concentrations of Tulsi (Ocimum sanctum) extracts against Streptococcus mutans: An in vitro study. Indian J Dent Res 2010;21:357-9.

2. Pai RK, Bhat SS, Salman A, Chandra J. Use of an extract of Indian sacred plant Ocimum sanctum as an anticariogenic agent: An in vitro study. Int J Clin Pediatr Dent 2015;8:99-101.

3. Eswar P, Devaraj CG, Agarwal P. Anti-microbial activity of tulsi (Ocimum sanctum [Linn.]) extract on a periodontal pathogen in human dental plaque: An in vitro study. J Clin Diagn Res 2016;10:53-6.

4. Mallikarjun S, Rao A, Rajesh G, Shenoy R, Pai M. Antimicrobial efficacy of Tulsi leaf (Ocimum sanctum) extract on periodontal pathogens: An in vitro study. J Indian Soc Periodontol 2016;20:145-50.

5. Siddeeq S, Parida A, Jose M, Pai V. Estimation of antimicrobial properties of aqueous and alcoholic extracts of Salvadora persica (miswak) on oral microbial pathogens-an in vitro study. J Clin Diagn Res 2016;10:13-6.

6. Al-Bayati FA, Sulaiman KD. In the vitro antimicrobial activity of Salvadora persica L. extracts against some isolated oral pathogens in Iraq. Turkish J Biol 2008;32:57-62.

7. Koneman EW, Allen SD, Janda WM, Schreckenberger PC. Color Atlas and Textbook of Diagnostic Microbiology. Philadelphia: Lippicott Williams & Wilkins; 1997. p. 491-537.

8. Cyriac MB, Pai V, Varghese I, Shantaram MJ. Antimicrobial properties of Areca catechu (areca nut) husk extracts against common oral pathogens. JRAP 2012;3:81-4.

9. Pattanayak P, Behera P, Das D, Panda SK. Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview. Pharmacogn Res 2010;4:95-105.

10. Prakash P, Gupta N. Therapeutic uses of Ocimum sanctum Linn. (Tulsi) with a note on eugenol and its pharmacological actions: A short review. Indian J Physiol Pharmacol 2005;49:125-31.

11. Singh S, Malhotra M, Majumdar DK. Antibacterial activity of Ocimum sanctum L. fixed oil. Indian J Exp Biol 2005;43:835-7.