Population pharmacokinetics of riociguat and its metabolite in patients with chronic thromboembolic pulmonary hypertension from routine clinical practice

Danica Michaličková1,*, Pavel Jansa2,*, Miroslava Bursová3, Tomáš Hložek3,4, Radomír Čabala3,4, Jan Miroslav Hartinger1, David Ambrož2, Michael Aschermann2, Jaroslav Lindner5, Aleš Linhart2, Onõřej Slaňař1 and Elke H.J. Krekels6

1Institute of Pharmacology, First Faculty of Medicine & General University Hospital, Charles University, Prague, Czech Republic; 22nd Department of Medicine – Department of Cardiovascular Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; 3Institute of Forensic Medicine and Toxicology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; 4Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic; 52nd Department of Surgery – Department of Cardiovascular Surgery, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; 6Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands

Abstract
Pharmacokinetic data for riociguat in patients with chronic thromboembolic pulmonary hypertension (CTEPH) have previously been reported from randomized clinical trials, which may not fully reflect the population encountered in routine practice. The aim of the current study was to characterize the pharmacokinetic of riociguat and its metabolite M1 in the patients from routine clinical practice. A population pharmacokinetic model was developed in NONMEM 7.3, based on riociguat and its metabolite plasma concentrations from 49 patients with CTEPH. One sample with riociguat and M1 concentrations was available from each patient obtained at different time points after last dose. Age, bodyweight, sex, smoking status, concomitant medications, kidney and liver function markers were tested as potential covariates of pharmacokinetic of riociguat and its metabolite. Riociguat and M1 disposition was best described with one-compartment models. Apparent volume of distribution (Vd/F) for riociguat and M1 were assumed to be the same. Total bilirubin and creatinine clearance were the most predictive covariates for apparent riociguat metabolic clearance to M1 (CLf,M1/F) and for apparent riociguat clearance through remaining pathways (CLe,r/F), respectively. CLf,M1/F, CLe,r/F, Vd/F of riociguat and M1, and clearance of M1 (CLe,M1/F) for a typical individual with 70 mL/min creatinine clearance and 0.69 mg/dL total bilirubin were 0.665 L/h (relative standard error = 17%), 0.66 (18%) L/h, 3.63 (15%) L and 1.47 (19%) L/h, respectively. Upon visual identification of six outlying individuals, an absorption lag-time of 2.95 (6%) h was estimated for these patients. In conclusion, the only clinical characteristics related to riociguat exposure in patients with CTEPH from routine clinical practice are total bilirubin and creatinine clearance. This confirms the findings of the previous population pharmacokinetic studies based on data from randomized clinical trials.

Keywords
desmethylriociguat, NONMEM, creatinine clearance, total bilirubin

Date received: 21 October 2019; accepted: 9 December 2019
Pulmonary Circulation 2020; 10(1) 1–11
DOI: 10.1177/2045894019898031

Chronic thromboembolic pulmonary hypertension (CTEPH) is a pulmonary vascular disease caused by the chronic thrombotic obstruction of pulmonary arteries and peripheral vascular remodeling.1 The disease is characterized by elevation of pulmonary artery mean pressure...
Patients were included in the study if they were diagnosed with inoperable CTEPH or persistent/recurrent pulmonary hypertension after PEA and received a stable riociguat dose for at least three months before the enrolment. Inoperability status was previously assessed by an interdisciplinary CTEPH team, consisting of a pulmonary hypertension specialist, a PEA surgeon, an anesthesiologist, and a radiologist. Persistent/recurrent pulmonary hypertension was diagnosed invasively by the right heart catheterization at least six months after PEA and defined as persistent elevation of mPAP ≥ 25 mmHg and PVR > 3 Wood unit.

The following data were collected from the outpatient check-up visit: time of the last dose and sampling, demographics, medical history, concomitant medications, vital signs, functional capacity, and 6-minute walking distance (6MWD). Blood samples were collected for determination of N-terminal pro b-type natriuretic peptide (NT-proBNP), laboratory biochemical parameters, and riociguat and M1 concentrations. Retrospective data from the last right heart catheterization performed before initiation of riociguat treatment were used for the description of hemodynamics.

Riociguat dosing

Riociguat was prescribed according to Adempas® Summary of Product Characteristics (SmPC) and 2015 European Respiratory Society/European Society of Cardiology (ERS/ESC) treatment guidelines including required initial dose adjustments. Riociguat was adjusted from a starting dose of 1 mg three times daily according to systolic systemic arterial pressure and signs or symptoms of hypotension (final range: from 1.5 mg to 2.5 mg three times daily).

Bioanalytical assay

After collection, blood samples were allowed to clot for 30 min at room temperature, and serum was separated by centrifugation ($1500 \times g$, 15 min, 4°C) and stored frozen at $-80°C$ until analysis. Riociguat and M1 serum concentrations were measured using liquid chromatography with tandem mass spectrometric detection in positive ESI mode (LC-MS/MS); penta-deuterated perampanel was used as internal standard (IS). Internal standard solution ($10 \mu\text{L}$, 5000 ng mL^{-1} in methanol) and 300 μL acetonitrile were added to 100 μL of the serum sample in a 1.5 mL Eppendorf tube. The solution was vortexed for 30 s and centrifuged ($9600 \times g$, 3 min) and the supernatant (100 μL) was transferred to an autosampler vial. The method was developed using Nexera X2 Shimadzu HPLC (Nakayoku, Kyoto, Japan) coupled with AB Sciex QTRAP 5500 (MA, USA). Mobile phase A consisted of 0.1% formic acid in water and mobile phase B consisted of acetonitrile. The analysis was performed on a Zorbax Eclipse XDB-C18 column (1.8 μm, 50 x 4.6 mm). The initial LC conditions had a flow rate of 0.5 $\text{mL} \text{min}^{-1}$ at a mobile phase composition of 50:50 (A: B). At 30 s the mobile phase composition was
ramped to 10:90 (A: B) within 60 s and held for 90 s and then
returned to initial LC conditions. Quantitation was done
using multiple reaction monitoring (MRM) mode to moni-
tor protonated precursor → product ion transition of m/z
423.022 → 109.100 for riociguat, 409.027 → 109.000 for M1
and 355.029 → 220.000 for penta-deuterated perampanel.
Method performance was evaluated for riociguat and M1
following the recommendations of the Scientific Working
Group for Forensic Toxicology. The test range of the
assay was 5–1000 μg/L. Coefficient of variation of intra-
assay was less than 11%.

Population PK analysis
The data analysis was performed using NONMEM version
7.3.0 (ICON Development Solutions, Ellicott City, MD)
and PsN v3.4.2 both running under Pirana 2.9.0. The first-
order estimation algorithm with interaction (FOCE-I) was
used. R 3.3.2 was used for the visualization of the data and
model diagnostics.

Model development was performed in three steps:

(1) Development of the structural and statistical model. For
the structural model, one and two compartment models
were tested to describe the distribution of riociguat and
M1. Assumptions for the structural model were neces-
sary to ascertain mathematical identifiability of the par-
parameter values. The same values of volume of
distribution (Vd) of riociguat and its metabolite were
assumed. For the metabolic formation clearance of
M1 (CLf,M1), the elimination clearance of M1 (CLe,M1)
and the remaining riociguat elimination clearance trough

![Figure 1. Serum concentrations plotted against time after the last dose. ID numbers from observations from individuals with outlying riociguat concentrations are indicated. (a) Riociguat; (b) Desmethylirociguat.](image)
alternative pathways (CL_{e,r}) (Figure 2) standard first-order processes were assumed. Since sufficiently dense data in the absorption phase were lacking, the absorption rate constant (k_a) was fixed to a value of 3 h^{-1} obtained from the literature. Since only one sample per patient was available, it was not possible to separately estimate intra-individual variability (IIV) and residual unexplained variability (RUV). Therefore, proportional, additive, and combination error models were tested to represent both IIV and RUV. In the absence of observations upon intravenous administration all parameters represent apparent values.

Based on visual inspection of raw data, six patients had unexpectedly high riociguat concentrations at relatively late times after their last dose (Figure 1). These patients’ data were initially excluded from model development. After the covariate analysis, these patients were reintroduced and analyzed together with the other individuals.

For model selection, a decrease in objective function of more than 6.63 points between nested models (p < 0.01) was considered statistically significant, assuming a χ²-distribution. Additional criteria for model selection were relative standard error (RSE) of the estimates of structural model parameters <50%, condition number calculated by dividing the largest and smallest eigenvalue from the model fit of <1000, physiological plausibility of the obtained parameter values, and absence of bias in goodness-of-fit (GOF) plots.

Table 1. Clinical characteristics of the study population.

Parameter (unit)	Value^a
Age (years)	74 (66–78)
Sex, female/male, n (%)	24/25 (49/51%)
Weight (kg)	80 (67–95)
Ideal bodyweight (kg)	61 (55–74)
Body mass index (kg/m²)	27.8 (23.8–30.8)
Riociguat dose (mg/day)	7.5 (6.75–7.5)
Duration of the treatment (months)	21 (15–27)

Diagnosis
- Inoperable CTEPH, n (%) | 37 (74%)
- Residual CTEPH, n (%) | 13 (26%)

Hemodynamics
- Mean PAP (mm Hg), mean ± SD | 43 ± 12
- RAP (mm Hg), mean ± SD | 7.6 ± 3.9
- Cardiac output (L/min), mean ± SD | 4.5 ± 1.0
- PVR (WU), mean ± SD | 7.8 ± 3.2
- Systolic BP (mm Hg), mean ± SD | 138 ± 20
- Diastolic BP (mm Hg), mean ± SD | 77 ± 12
- Heart Rate (BPM), mean ± SD | 75 ± 11

Exercise capacity
- 6MWD (m), mean ± SD | 387 ± 119

Functional class
- NYHA I/II/III/IV, n (%) | 0/21/28/0 (0/42.8/57.2/0%)

Laboratory markers
- Creatinine (μmol/L) | 87 (70.5–102.5)
- Total bilirubin (mg/dL) | 0.69 (0.53–0.98)
- Creatinine clearance (mL/min) | 70 (59–79)
- NT-proBNP (ng/L) | 493 (235–1460)
- Aspartate transferase (IU/L) | 0.40 (0.31–0.46)
- Alanine transferase (IU/L) | 0.28 (0.21–0.39)
- Alkaline phosphatase (IU/L) | 1.23 (0.96–1.65)
- Gamma-glutamyl-transferase (μIU/L) | 0.52 (0.32–0.92)

Concomitant medication
- Diuretics, n (%) | 35 (71%)
- Inhibitors of proton pump, n (%) | 35 (71%)
- Digoxin, n (%) | 3 (6.1%)
- Warfarin, n (%) | 41 (84%)
- ACE inhibitors, n (%) | 11 (22.4%)
- ARBs, n (%) | 4 (8.2%)
- H₂ antihistamines, n (%) | 2 (4%)

Smoking status
- Smoker, n (%) | 1 (2%)

^aValues are presented as median (inter-quartile range), unless noted otherwise. CTEPH: chronic thromboembolic pulmonary hypertension; PAP: pulmonary artery pressure; RAP: right atrial pressure; PVR: pulmonary vascular resistance; BP: blood pressure; 6MWD: 6-minute walking distance; NYHA: New York Heart Association; NT-proBNP: N-terminal pro b-type natriuretic peptide; ACE: angiotensin converting enzyme; ARBs: angiotensin II receptor blockers.
Covariate analysis. In the systematic covariate analysis, the following continuous covariates were tested in linear and exponential equations: age, body weight (BW), ideal body weight (IBW), body mass index (BMI), creatinine clearance (calculated by CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) equation), total bilirubin, aspartate transaminase (AST) and alanine transaminase (ALT), alkaline phosphatase (ALP), gamma-glutamyl-transferase (GGT), and NT-proBNP levels in plasma. The following categorical covariates were tested by estimating the parameter value for one category as a fraction of the parameter value for the other category: concomitant therapy (inhibitors of proton pump, diuretics, digoxin, and angiotensin converting enzyme (ACE) inhibitors), sex, smoking status. All continuous and categorical covariates were tested on the following parameters: CL\textsubscript{f(M1/F), CL\textsubscript{e,F}, Vd/F of riociguat and M1, and CL\textsubscript{e,M1/F}. The criteria used for model selection were the same as those described above.

After the final covariate model was developed, the patients with outlying observations were reintroduced into the analysis. As previous reports suggested that food delays riociguat absorption for 3 h,7,18 it was investigated whether riociguat absorption in these patients was delayed. For this, both different k\textsubscript{a} values and a delayed onset of absorption as characterized by a lag-time (Tlag) were tested based on the

Figure 3. Relationships between (a) total bilirubin and apparent riociguat metabolic formation clearance to M1 and (b) creatinine clearance and apparent riociguat clearance remaining after accounting for M1 formation in patients with CTEPH.
criteria defined above. When it was observed that this procedure did not yield large differences in the obtained parameter values, the results from the fit which included all individuals were retained.

(3) Validation of the final model. To evaluate the robustness of the final model and the precision of the parameter estimates, a bootstrap analysis was performed on the final model. Two hundred and fifty bootstrap datasets were generated by random sampling with replacement. The final model was rerun with the new datasets and median parameter values, 2.5th and 97.5th percentiles of parameter distribution and standard error of the estimates were generated and compared to the parameters of the final model.

The predictive properties of the structural and statistical model were evaluated using normalized prediction distribution errors (NPDEs), a simulation-based diagnostics. For this, the dataset was simulated 500 times, after which the observed concentrations were compared to the range of simulated values using the NPDE package developed for R.19

Results

Study population and data

In total, 49 (24 female, 25 male) patients ((median (interquartile range) age: 74 (66–78) years, BW: 74 (66–78) kg) with CTEPH receiving long-term riociguat treatment were included in our analysis. Characteristics of the patient population are summarized in Table 1. One sample with riociguat and M1 concentrations was available from each patient obtained at different time points after last dose, ranging from 1.25 to 6.75 h. Riociguat and its metabolite levels ranged between 44 and 749 \(\text{mg/L} \), and 17 and 314 \(\text{mg/L} \), respectively. Figure 1 shows the riociguat and M1 concentrations plotted against time after the last dose. Six outlying riociguat concentrations for ID \(\text{ID} = 6, 10, 11, 19, 25, 28 \) were visually identified.

Population PK analysis

Observed riociguat and M1 serum concentrations were best described with one-compartment models and the same distribution volume was estimated for both compounds to achieve mathematical identifiability. Proportional residual error models provided the best description of the residual variability for both riociguat and M1 concentrations.

Figure 2 depicts a schematic representation of the obtained PK model. Creatinine clearance in a linear equation was found to be the most predictive covariate for \(\text{CL}_{e,r}/F \), was found to increase 0.009 L/h per unit (mL/min) creatinine clearance, as depicted in Figure 3(a). For \(\text{CL}_{f,M1}/F \), the most predictive covariate relationship was total bilirubin in an exponential equation with an estimated exponent of \(-0.463 \) (20%), as shown in Figure 3(b). After the inclusion of these covariate relationships, no other statistically significant covariates could be identified. \(\text{CL}_{e,M1}/F \), \(\text{CL}_{e,r}/F \), \(\text{Vd}/F \) of riociguat and M1, and \(\text{CL}_{e,M1}/F \) for a typical individual of creatinine clearance (70 mL/min) and total bilirubin level (0.69 mg/dL) were 0.665 L/h (17%), 0.66 (18%) L/h, 3.63 L (15%) and 1.47 (19%) L/h, respectively. Figure 1 shows the riociguat and M1 concentrations plotted against time after the last dose. Six outlying riociguat concentrations for ID = 6, 10, 11, 19, 25, 28 were visually identified.

Population PK analysis

Observed riociguat and M1 serum concentrations were best described with one-compartment models and the same distribution volume was estimated for both compounds to achieve mathematical identifiability. Proportional residual error models provided the best description of the residual variability for both riociguat and M1 concentrations. The predictive properties of the structural and statistical model were evaluated using normalized prediction distribution errors (NPDEs), a simulation-based diagnostics. For this, the dataset was simulated 500 times, after which the observed concentrations were compared to the range of simulated values using the NPDE package developed for R.19

Table 2. Parameter estimates of the final model and their corresponding bootstrap estimates.

Parameter (unit)	Final model (% RSE)	Bootstrap (95% CI)	
Fixed effects			
\(k_{a}/F \) (h\(^{-1}\))	3 FIX		
\(\text{CL}_{e,r}/F \) (L/h)	= \(\text{CL}_{e,r,TV} \times (\text{CREACL}/70) \)	0.66 (17%)	0.655 (0.198–0.959)
\(\text{CL}_{e,M1}/F \) (L/h)	= \(\text{CL}_{e,M1,TV} \times (\text{BILTOT}/0.69)^{\text{y} BILTOT} \)	0.665 (17%)	0.671 (0.446–1.130)
\(\text{Vr}/F \) = \(\text{Vp}/F \) (L)		3.63 (15%)	3.78 (2.81–5.60)
\(\text{CL}_{e,M1}/F \) (L/h)	= \(\text{CL}_{e,M1,TV} \)	1.47 (19%)	1.44 (0.90–2.43)
\(\text{Tag} \) (ID = 6,10,11,19,25,28) (h)	2.95 (6%)	2.98 (2.68–3.81)	

Variance of residual variability

| Riociguat, proportional | 0.152 (21%) | 0.141 (0.086–0.217) |
| M1, proportional | 0.268 (18%) | 0.254 (0.165–0.362) |

Pharmacokinetic parameters represent apparent values.

\(k_{a}/F \): apparent absorption rate constant; CL: apparent clearance of the designated pathway (see Figure 2 for the explanation of the symbols);
CREACL: creatinine clearance in mL/min; BILTOT: total bilirubin level in mg/dL; \(\text{y} \) BILTOT: exponent for the covariate relationships between total bilirubin levels and \(\text{CL}_{f,M1}/F \); \(\text{Vr}/F \): apparent volume of distribution of the parent compound; \(\text{Vp}/F \): apparent volume of distribution of the M1 metabolite; TV: typical value of a parameter; \(\text{Tag} \): lag-time.
respectively. Additionally, the analysis showed that the riociguat absorption in the six patients exhibiting high concentrations was delayed with a lag-time of 2.95 h (6%). The parameter values obtained in the final model fit as well as the median parameter values obtained in the bootstrap procedure are presented in Table 2.

RSE values for the structural parameters were all below 30% in the final model, indicating good precision of the estimated parameters. All median parameter values in the bootstrap procedure were within 10% of the values obtained in the final model fit indicating that the model is robust. Figures 4 and 5 present the GOF plots for riociguat and M1. Absence of bias in these plots indicates that the final model describes the observed data accurately. Finally, there was no bias in NPDE, neither over time nor over concentration range, indicating that the predictive properties of this model are also accurate (Supplementary Figures 1S and 2S).

Discussion

This study used a population modelling approach to describe the PK of riociguat and its metabolite M1 in patients with CTEPH from routine clinical practice. The
results of the study showed that riociguat metabolic clearance to M1 depends on the liver function, as characterized by the total bilirubin level. Creatinine clearance, a marker for kidney function, was found to be a predictive covariate for riociguat clearance remaining after accounting for M1 formation. These results indicate that impaired renal and hepatic function leads to reduced riociguat clearance and increased riociguat exposure.

Previous PK studies analyzed data obtained during RCTs, which are constrained only to patients that meet strict inclusion and exclusion criteria and may therefore not accurately reflect the population treated in the routine practice.11,12 The current analysis included data collected in everyday practice and may therefore provide more relevant clinical information. However, this type of data are usually not as “clean” as those from RCTs. In this study for example, six patients had unexpectedly high riociguat concentrations at the time of the observation that could not be explained (Figure 1(a)). Because of the inclusion of one sample per patient in the analysis, it was not possible to distinguish whether these patients or the particular observations were outliers. As previous reports however suggested that food might delay riociguat absorption for 3 h,18 we investigated whether the observations could be explained.
Table 3. Overview of population pharmacokinetic studies evaluating pharmacokinetic parameters of riociguat and its metabolite.

Population	Distribution Model	V_p/F (L)a	V_m/F (L)a	CL_{ex}/F (L/h)a	CL_{fM1}/F (L/h)a	SC for V_p/F	SC for V_m/F	SC for CL_{ex}/F	SC for CL_{fM1}/F	Reference		
49 CTEPH patients	1-CPT	3.63	3.63	0.66	0.665	1.47	–	–	CREACL	BILTOT	–	Current analysis
BW: 80 (2.8–3.5) kg												
BILTOT: 0.69 (0.53–0.98) mg/dL												
CREACL: 70 (59–79.5) mL/min												
Single dosing study	2-CPT	17.2	8.6	0.712	1.23	1.76	BW, %PB	BW	%PB	–	CREACL	17
64 patients with renal impairment												
BW: 83.3 (56–108.3) kg	+	+										
BILTOT: 0.5 (0.2–7.2) mg/dL	10.6b	34.2b										
CREACL: 75.1 (17.4–125.5) mL/min												
72 patients with hepatic impairment												
BW: 86.5 (54.2–117) kg												
BILTOT: 0.4 (0.1–6.1) mg/dL												
CREACL: 72.7 (7.0–129.3) mL/min												
Multiple dosing study	1-CPT	34.7	133	1.76	8.424c	3.07	BW	BW	CREACL, BILTOT, SMOK, BOS	–	CREACL, BILTOT, SMOK, BOS	9
260 CTEPH patients												
BW: 74 (36–158.3) kg												
BILTOT: 0.6 (0.1–5.0) mg/dL												
CREACL: 74.4 (15.4–233) mL/min												
438 PAH patients												
BW: 65.3 (37.7–141 kg												
BILTOT: 0.5 (0.1–4.6) mg/dL												
CREACL: 86.9 (15.9–264) mL/min												

CPT: compartment; CL/F: clearance of the designated pathway (see Figure 2 for the explanation of the symbols); SC: significant covariate; CREACL: creatinine clearance; BILTOT: total bilirubin level; V_p/F: parent volume of distribution; V_m/F: metabolite volume of distribution; CTEPH: chronic thromboembolic pulmonary hypertension; PAH: pulmonary arterial hypertension; BW: body weight; %PB: protein binding; SMOK: smoking; BOS: Bosentan co-medication.

aValues for V_d/F and CL/F are calculated for the typical individual in this study (CREACL = 70 mL/min, BILTOT = 0.69 mg/dL, BW = 80 kg).

bValue for the central compartment + value for the peripheral compartment.

cCalculated from the relationship $k_23 = CL_{ex}/V_p$.

Pulmonary Circulation
Volume 10 Number 1 | 9
by delayed riociguat absorption in these patients as characterized by a Tlag, or slowed down, as characterized by a different \(k_{a/F} \) value. The analysis showed that data from these patients were best described with a delayed riociguat absorption with a Tlag of 2.95 h, which might be due to food impact, but the design of our study does not allow for conclusions to be drawn on this matter. An important clinical question is whether this delay in absorption would result in different riociguat exposure. If these patients indeed had a delayed riociguat absorption due to food, then changes in area under curve (AUC) would not be expected. However, if there is another reason for these concentrations to be so high, AUC could in fact be impacted. To make a final conclusion, we would need to have multiple observations per patient.

Although only one sample per patient was included in the analysis, samples were obtained within a wide range of time points after the last dose (Figure 1), which allowed us to develop a structural model and identify the predictive covariates for riociguat and M1 PK. PK parameter values could be obtained with acceptable precision, as reflected in low RSE (<30%) of the parameter estimates. In addition, extensive model validation showed that the model not only described the obtained data well (Figures 4 and 5), but also predicted the data well (Supplementary Figures 1S and 2S), meaning that the conclusions regarding parameter values and covariate effects in this model are well supported by the data.

An important advantage of the current analysis is the wide range of sampling time points after the last dose of riociguat in CTEPH patients, which covers a wide range than the previous multiple-dose population PK study, which included only trough samples from the PAH and CTEPH patients and additionally samples obtained 2–3 h after the first and second dose of drug only.9

Direct comparison of findings between studies is difficult due to differences in parameterization and covariate relationships. Still, it is possible to make comparisons between parameter values for typical individuals. There are two studies using a population modelling approach to describe PK of riociguat and its metabolite.9,17 One study described the PK of a single dose riociguat, whereas the other addressed PK of riociguat upon multiple dosing at steady state.9 To allow comparison of PK parameters, we calculated parameter values for the typical individual from our study with bodyweight of 80 kg, creatinine clearance of 70 mL/min and total bilirubin of 0.69 mg/dL, using the provided equations in the respective publications (Table 3). Interestingly, estimated values for Vd/F of riociguat and M1 dramatically varied between all three studies, probably due to the heterogeneity in clinical features of the patients in the studies, such as drug-protein binding, co-medication and hemodynamic characteristics, or due to differences in assumptions regarding the distribution volume. On the other hand, values for the elimination clearance of riociguat (CL_{e,r}/F) and M1 (CL_{e,M1}/F) are similar to the previously reported values, but the CL_{e,M1}/F value estimated in the multiple dosing study deviated significantly from the values obtained in our analysis and in the single dose study, possibly due to differences in assumptions. We found total bilirubin levels to be a significant covariate for CL_{e,M1}/F, contrary to previous studies, which reported high IIV of CL_{e,M1}/F, independently of renal or hepatic status. Creatinine clearance was found to be a predictive covariate of CL_{e,r}/F, which is in accordance with the previous multiple dose study. These results indicate that impaired renal and hepatic function result in reduced riociguat clearance and increased riociguat exposure. As similar findings were reported in the previous studies,9,17 our study confirms that kidney and liver functions are the main clinical characteristics related to riociguat exposure in patients with CTEPH. Therefore, particular care should be taken in patients with renal and hepatic impairment.

It is important to note that not all PK parameters for M1 could be estimated without making assumptions. As data obtained after intravenous administration of the M1 metabolite, or data on the recovery of M1 in urine were not available, the value of Vd/F for M1 was assumed to be the same as the parent compound. The model validation confirmed that the model can accurately describe and predict the concentrations of riociguat and M1, but as a result of the assumption the absolute values of the parameters related to the metabolite should be considered in the context of the assumptions made in the current analysis. The conclusions regarding the impact of the covariates are not impacted by the assumptions.

In conclusion, we report on the PK of riociguat and its pharmacologically active metabolite desmethylriociguat in a cohort of CTEPH patients encountered in routine clinical practice. Our study confirms the findings from previous population PK studies based on data from RCTs, that the only clinical characteristics related to riociguat exposure in patients with CTEPH are total bilirubin levels and creatinine clearance.

Acknowledgments

The authors would like to thank all the patients, nurses and physicians who were part of this study. The authors also thank Dr. Parth Upadhyay for code review.

Funding

This study was supported by the Charles University projects Progres Q25 and Q38 and by the project “International Mobility of Researchers at Charles University” CZ.02.2.69/0.0/0.0/16_027/0008495.

Availability of data and materials

The data are not available in any public repository. The model codes will be made available through the model repository of DDMoRe available through: http://repository.ddmore.foundation/.

Ethical approval

The approval of retrospective data collection was provided by ethics committee of the General University Hospital in Prague.
Written informed consent was obtained from all participants.

Guarantor
Not applicable.

Contributorship
D.M. analyzed the data and wrote the manuscript; P.J. conceived and designed the study, performed the clinical trial, and wrote the manuscript; M.A., J.L. and A.L. performed the clinical trial; O.S. wrote the manuscript; M.B., T.H., R.C., and D.A. developed the analytical method and performed laboratory analyses; J.M.H. wrote the manuscript; E.H.J.K. supervised the data analysis and wrote the manuscript.

Conflict of interest
P.J. has received fees and grants from Actelion Pharmaceuticals Ltd, AOP Orphan, and MSD.

Supplemental material
Supplemental material for this article is available online.

References
1. Galie N, Humbert M, Vachiery J, et al. ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). *Eur Heart J* 2016; 37: 67–119.
2. Hoeper MM, Bogaard HJ, Condliffe R, et al. Definitions and diagnosis of pulmonary hypertension. *J Am Coll Cardiol* 2013; 62: D42–D50.
3. Pepke-Zaba J, Delcroix M, Lang I, et al. Chronic thromboembolic pulmonary hypertension (CTEPH) results from an international prospective registry. *Circulation* 2011; 124: 1973–1981.
4. McLaughlin VV, Jansa P, Nielsen-Kudsk JE, et al. Riociguat in patients with chronic thromboembolic pulmonary hypertension: results from an early access study. *BMC Pulm Med* 2017; 17: 216.
5. Schermuly RT, Janssen W, Weissmann N, et al. Riociguat for the treatment of pulmonary hypertension. *Expert Opin Inv Drug* 2011; 20: 567–576.
6. Khaybullina D, Patel A and Zerilli T. Riociguat (adempas): a novel agent for the treatment of pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. *Pharm Ther* 2014; 39: 749.
7. Frey R, Becker C, Saleh S, et al. Clinical pharmacokinetic and pharmacodynamic profile of riociguat. *Clin Pharmacokinet* 2018; 57: 647–661.
8. Ghofrani H-A, D’armini AM, Grimminger F, et al. Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. *N Engl J Med* 2013; 369: 319–329.
9. Saleh S, Becker C, Frey R, et al. Population pharmacokinetics and the pharmacokinetic/pharmacodynamic relationship of riociguat in patients with pulmonary arterial hypertension or chronic thromboembolic pulmonary hypertension. *Palm Circ* 2016; 6: S86–S96.
10. Ghofrani H-A, Galie N, Grimminger F, et al. Riociguat for the treatment of pulmonary arterial hypertension. *N Engl J Med* 2013; 369: 330–340.
11. Grapow MT, von Wattenwyl R, Guller U, et al. Randomized controlled trials do not reflect reality: real-world analyses are critical for treatment guidelines! *J Thorac Cardiovasc Surg* 2006; 132: 5–7.
12. Wang D-d, Chen X, Fu M, et al. Model extrapolation to a real-world dataset: evaluation of tacrolimus population pharmacokinetics and drug interaction in pediatric liver transplantation patients. *Xenobiotica* 2019; 3: 1–9.
13. Toxicology SWGfF. Scientific Working Group for Forensic Toxicology (SWGTOX) standard practices for method validation in forensic toxicology. *J Anal Toxicol* 2013; 37: 452–474.
14. Krekels EH, van Ham S, Allegraert K, et al. Developmental changes rather than repeated administration drive paracetamol glucuronidation in neonates and infants. *Eur J Clin Pharmacol* 2015; 71: 1075–1082.
15. Shivva V, Korell J, Tucker I, et al. An approach for identifiability of population pharmacokinetic–pharmacodynamic models. *CPT Pharmacometrics Syst Pharmacol* 2013; 2: 1–9.
16. Bertrand J, Laffont CM, Mentre F, et al. Development of a complex parent-metabolite joint population pharmacokinetic model. *AAPS J* 2011; 13: 390–404.
17. Saleh S, Becker C, Frey R, et al. Population pharmacokinetics of single-dose riociguat in patients with renal or hepatic impairment. *Palm Circ* 2016; 6: S75–S85.
18. Becker C, Frey R, Hesse C, et al. Absorption of riociguat (BAY 63-2521): bioavailability, food effects, and dose proportionality. *Palm Circ* 2016; 6: S27–S34.