ABSTRACT

For digitizing or indexing physical documents, Optical Character Recognition (OCR), the process of extracting textual information from scanned documents, is a vital technology. When a document is visually damaged or contains non-textual elements, existing technologies can yield poor results, as erroneous detection results can greatly affect the quality of OCR.

In this paper we present a detection network dubbed BusiNet aimed at OCR of business documents. Business documents often include sensitive information and as such they cannot be uploaded to a cloud service for OCR. BusiNet was designed to be fast and light so it could run locally preventing privacy issues. Furthermore, BusiNet is built to handle scanned document corruption and noise using a specialized synthetic dataset. The model is made robust to unseen noise by employing adversarial training strategies. We perform an evaluation on publicly available datasets demonstrating the usefulness and broad applicability of our model.

CCS CONCEPTS

• Information systems → Document structure; • Applied computing → Document analysis; Optical character recognition; • Computing methodologies → Object detection.

KEYWORDS

Text Detection, Document Analysis, adversarial training, synthetic data, Unet, Segmentation

1 INTRODUCTION

Documents have always been, and continue to be, a significant data source for any business or corporation. For physical documents, the ability to scan and digitize them is crucial in order to extract their information and represent them in a way that allows for further analysis. To this day, the capability to automatically ingest and read scanned IDs, invoices, itineraries, statements, and spreadsheets remains an enormously important technology.

In many instances these documents are scanned or digitally acquired under non-ideal conditions. These include incorrect scanner settings, insufficient resolution, bad lighting, loss of focus, unaligned pages, and added artifacts from badly printed documents. Thus a high quality version of the document is unattainable while manual annotation or error correction is costly.

Besides this, a major limitation for many corporations when analyzing documents is the need to protect sensitive or proprietary information contained in the documents. Using popular cloud services is often undesirable or impossible, as exporting documents to external technologies to be analysed can often seem like a compromising and daunting endeavour. On the other hand, many businesses lack the infrastructure to run popular document analysis technologies at the necessary quantity and speed.

To perform the digitization of documents, Optical Character Recognition (OCR) is utilized. OCR is composed of a detection stage where the various words in the document are localized, and a recognition stage to identify the comprising characters.

In this work we present BusiNet - a lightweight detection network for document OCR. Our minimalist U-Net architecture promotes fast and accurate detection trained specifically for the document domain. Extending the CRAFT [1] methodology of multiple output channels, and utilizing adversarial training, we can create a powerful and robust detector.

Powering the trained detection network is our composition of new data synthesis components. Extending the work from [21], we generate specific elements that characterise documents and their expected noise and artifacts. This includes elements such as separators, lines, special characters, and punctuation. For document-wide alterations we apply a host of spatial distortions, augmentations, and backgrounds. Our main contributions are as follows: We...
natural images such as billboards or street signs. EAST [31] features a contracting and expanding network similar to the U-Net, and performs regression on the quadrilaterals based on the feature which is also used to generate the score map. CRAFT [1] also use a U-Net architecture as a backbone. In CRAFT, the output is split between character detection and spaces between characters detection. PAN++ [26] which is an improvement over PAN [27] adopts a Feature Pyramid Enhancement Module which is similar to a concatenation between two U-Nets. Detection networks for OCR are less popular in recent academic studies, and even more so when attempting to find recent methods for comparison.

2.2 Data/Document Synthesis

It is interesting to note that, despite the importance of document OCR, the available datasets for training document OCR are limited.

FUNSD [12] contains 199 documents with annotated text of roughly 31k words. With the FUNSD dataset, the main tasks and goals are form understanding and spatial layout analysis. Due to its size, this dataset can be useful for training and evaluating tasks that require semantic understanding. For the detection of text, however, it is necessary to have a much larger collection of data in order to account for low-level variability when separating text shapes from non-ideal backgrounds.

SROIE [9] consists of scanned receipts for OCR and key information extraction. Although these receipts include a large number of samples, the word count per document is not sufficient to train text detectors from scratch. We do, however, use the FUNSD and SROIE datasets for evaluation in Section 4.

Additional datasets include Brno [15], which is primarily composed of spatial and lighting variations, quality assessment [16, 18], which examines motion and focus blur, SmartDoc [3], which is composed of only 10 documents and videos, and others [2, 5, 19, 23]. Unfortunately, none of these contain enough data to train a robust text detection model.

DDI-100 is an exception to the above[30]. A total of 7000 documents are included in this dataset, which then undergo various transformations. However, despite the strength of using real documents, as was shown in [21] that the variability and distortions in the dataset are not diverse enough to train a powerful text detector that is truly robust to noise.

STR datasets, on the other hand, have increased in popularity greatly in recent years [4, 7, 13, 14, 17, 25, 28, 29]. These datasets do not represent the types of situations a document text detector should be able to cope with. The text in documents is usually much denser, it contains irregular fonts, artistic text shapes, and layouts. For this reason, datasets for STR are not well suited for the training of state of the art document text detectors.

However, in [21] the authors describe a carefully designed synthetic dataset which increases the detection quality significantly. In this work we build on the results in [21] by using the proposed generator and improving it by adding advanced capabilities (see below). This makes the generator more flexible and more compatible for adjustments for even more challenging documents.

3 METHOD

Our goal is to provide a text detection model which is best suited for business documents. This means that the model should be lightweight so it can run on-premise and also be accurate on low quality scans and faxes. In this section we present the BusiNet model architecture designed to achieve these goals. BusiNet is built around a lightweight U-Net [20] architecture with custom output channels and a custom-made specialized dataset. This makes the model suitable for the task of OCR of business documents done on-premise. It is then trained using an adversarial training strategy to make it more robust against unseen noise patterns and to attain accuracy on a wide variety of document types. A figure of the full detection pipeline of BusiNet is shown in Figure 1.

3.1 Data Synthesis

The fact that we use synthesized data enables us to tweak it and to add data that will help the model to perform better on a specific domain or type of noise. Business documents often contain graphical lines and special fonts. We added these types of text to our generator. We also add noise patterns which are characteristic to scanned business documents such as small lines and dots. An example of some of the new capabilities added to the generator are shown in Figure 2.

3.2 Lightweight backbone

U-Net [20] models have been shown to have good performance on semantic segmentation tasks. Hence, we adopt a U-Net architecture as our backbone. We use four layers of convolution, and then up-convolutions are performed with the first layer having 16 channels and the rest of the layers having 32 channels. In the up-convolution process, skip-connections are employed by concatenating the output feature of the up-convolution with the feature of the regular convolution at the same level.

3.3 Dealing with special characters

It is quite common in business documents for special characters to be used as separators. Depending on the context, these characters should be detected in some cases and ignored in others.

To address this, we leverage the architecture from CRAFT [1]. When dealing with detecting words, they suggested to separate the output into two channels, a channel that detects characters and a channel that detects spaces between adjacent characters. The reasoning behind this is that a character is better defined than a word, and this definition differentiates much more clearly between a word and a line. For this reason separating characters and spaces between characters yields better detection accuracy.

Following this methodology, we also separate the detection of characters from the detection of spaces between characters. However, we extend this method to mitigate the special character problem. As noted before, special characters are characters that need special treatment because of their dual purpose. To correctly deal with special characters, we add a third output channel in addition to the existing two dedicated to detecting special characters. After the detection is made, the special characters are combined with the other channels only if they are close to regular characters. This way we prevent special characters which are used as separators to be
Figure 1: BusiNet pipeline: First, the text image goes through a U-Net with three output channels, a channel for character segmentation, a channel for spaces segmentation, and a channel for special character segmentation. A threshold is applied for each channel separately. Then the channels are combined while taking into account the special characters, and the word-level bounding boxes are constructed.

Figure 2: New styles added to the generator

detected as text. This approach could be further extended to other types of texts or characters that require special attention. We leave this extension for a future work. An example for the effectiveness of the special character channel is shown in Figure 3.

3.4 Adversarial training

Our goal is for the text detection model to be as accurate as possible in the broadest range of scenarios as possible. In other words, the detection model should be able to detect corruption and noise that it has not been trained on. To make our model more robust against unknown image noise distributions and corruptions we trained our model using an adversarial training strategy in addition to the noise added during data synthesis.

Adversarial training is a method where during training, in addition to the original samples, the model is also trained with perturbed images. These samples are designed such that they pose the hardest task for the current state of the model.

As was shown in [24], neural networks are sensitive to adversarial attacks. Adversarial attacks are a small, carefully engineered perturbation to the image that causes the model to incorrectly classify it. Originally, adversarial training was used to make a model more robust to these adversarial attacks. A simple way to make the model more robust to adversarial attacks is to train it using samples that were perturbed in an adversarial approach.

We use Projected Gradient Descent (PGD) with the L_2 norm to create the adversarial examples. In this work, the use of adversarial examples during training is done for a different reason than in other works. Adversarial examples force the network to train on samples which are harder for the current model weights. If a model is robust to adversarial attacks with energy less than some threshold ε it implies that it is also robust to any perturbation of the image which is smaller than ε. The reason for this is because the adversarial example is the worst case scenario for the model weights.
Also, as shown in [6], adversarial training tends to align the model features with the human perception making the model more interpretable. In Figure 4 we show an example to the influence of adversarial attack on a model that was not trained adversarially. The mild perturbation to the image results in a complete failure of the regular model while the adversarially trained model still preforms well.

Figure 4: Comparison between detection results between regular training and adversarial training. The network that was trained in a standard approach completely fails while the adversarially trained network is almost unaffected by the perturbation.

As shown in Table 1, BusiNet achieves a much higher F1 score compared to PAN++ and EAST. The performance is comparable to CRAFT while being almost 3 times faster than CRAFT. The difference becomes more apparent when comparing the OCR results between the methods. In Table 2 we compare the recognition accuracy of the Tesseract OCR engine on the detected text. The difference is even more pronounced where BusiNet is still comparable to CRAFT but greatly outperforms EAST, and PAN++.

These results demonstrate the usefulness of our method. It achieves accuracy comparable to much larger architectures yet runs much faster which means it can give fast and accurate results while running on-premise.

5 CONCLUSIONS
In this work, we presented a lightweight text detection model suited for noisy business documents. We try to address the main requirements of business documents customers. The light backbone makes

Table 1: Results . Detection measured by F1-score

Method	FUNSD F1	SROIE F1	Time (sec.)
PAN++ [26]	90.5	89.1	4.8
EAST [31]	82	79	2.8
CRAFT [1]	97.6	95.3	13.3
BusiNet - Ours	96.4	95.9	4.8

Table 2: Results . Recognition measured by average case-insensitive Edit Score (ES). 'Recognition' indicates using the method’s detection for word-level recognition.

Method	FUNSD ED (Normalized)	SROIE ED (Normalized)
PAN++ [26]	69.5	43.8
EAST [31]	50.6	22.9
CRAFT [1]	81.6	52
BusiNet - Ours	79.2	56.9
the inference time faster than other methods and allows for the model to run on-premise. The synthetic data and special characters improve the model robustness to common characteristics.

We compare our results to popular and established text detection methods while being much lighter and faster.

REFERENCES

[1] Youngmin Baek, Bado Lee, Dongyoon Han, Sangdoo Yun, and Hwansuk Lee. 2019. Character region awareness for text detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 9365–9374.

[2] Konstantin Bulatov, Daniil Matalov, and Vladimir V. Atrashkov. 2020. MIDV-2019: challenges of the modern mobile-based document OCR. In Twelfth International Conference on Machine Vision (ICMV 2019), Vol. 11433. International Society for Optics and Photonics, 114332N.

[3] Jean-Christophe Burie, Joseph Chazalon, Mickael Coustaty, Sebastien Eskenazi, Muhammad Muzzamil Luqman, Maroua Mehri, Nibal Nayef, Jean-Marc Ogier, Sofia Prum, and Marçal Rusiñol. 2015. ICdar2015 competition on smartphone document capture and OCR (SmartDoc). In 2015 13th International Conference on Document Analysis and Recognition (ICDAR). IEEE, 1161–1165.

[4] Chun-Keng Chng and Chee Seng Chan. 2017. Total-text: A comprehensive dataset for scene text detection and recognition. In 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), Vol. 1. IEEE, 955–942.

[5] Iyad Abu Doush, Faisal AlKhateeb, and Anwar Hamdi Gharibeh. 2018. Yarmouk arabic OCR dataset. In 2018 8th International Conference on Computer Science and Information Technology (CSIT). IEEE, 150–154.

[6] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Brandon Tran, and Aleksander Madry. 2019. Adversarial robustness as a prior for learned representations. arXiv preprint arXiv:1906.00945 (2019).

[7] Ankush Gupta, Andrea Vedaldi, and Andrew Zisserman. 2016. Synthetic data for text localisation in natural images. In Proceedings of the IEEE conference on computer vision and pattern recognition. 2515–2524.

[8] Le Han, Xuelong Li, and Yongsheng Dong. 2019. Convolutional edge constraint-based U-net for salient object detection. IEEE Access 7 (2019), 48890–48900.

[9] Zheng Huang, Kai Chen, Jianhua He, Xiang Bai, Dimosthenis Karatzas, Shijian Lu, and CV Jawahar. 2019. Icdr2019 competition on scene text recognition and information extraction. In 2019 International Conference on Document Analysis and Recognition (ICDAR). IEEE, 1516–1520.

[10] Nabil Ibtehaz and M Sohel Rahman. 2020. MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Networks 121 (2020), 74–87.

[11] Fabian Isensee, Jens Petersen, Andre Klein, David Zimmerer, Paul F Jaeger, Simon Kohl, Jakob Waserthal, Gregor Koehler, Tobias Norajitra, Sebastian Wirkert, et al. 2018. nnu-net: Self-adapting framework for u-net-based medical image segmentation. arXiv preprint arXiv:1809.10486 (2018).

[12] Guillaume Jaume, Hazim Keshel Ekenel, and Jean-Philippe Thiran. 2019. Fundis: A dataset for form understanding in noisy scanned documents. In 2019 International Conference on Document Analysis and Recognition Workshops (ICDARW), Vol. 2. IEEE, 1–6.

[13] Dimosthenis Karatzas, Lluis Gomez-Bigorda, Angelou Nicolaou, Suman Ghosh, Andrew Bagdanov, Masakazu Iwamura, Jiri Matas, Lukas Neumann, Vijay Ramasaran Chandrasekhar, Shijian Lu, et al. 2015. ICdar-2015 competition on robust reading. In 2015 13th International Conference on Document Analysis and Recognition (ICDAR). IEEE, 1156–1160.

[14] Dimosthenis Karatzas, Faisal Shafait, Seiichi Uchida, Masakazu Iwamura, Lluis Gomez i Bigorda, Sergi Robles Mestre, Joan Mas, David Fernandez Mota, Jon Almazan Almazan, and Lluis Per De Las Heras. 2013. Icdar 2013 robust reading competition. In 2013 12th International Conference on Document Analysis and Recognition. IEEE, 1484–1493.

[15] Martin Kitt, Michal Hiradá, and Oldřich Kodym. 2019. Brno mobile OCR dataset. In 2019 International Conference on Document Analysis and Recognition (ICDAR). IEEE, 1352–1357.

[16] Jayant Kumar, Peng Ye, and David Doermann. 2013. A dataset for quality assessment of camera captured document images. In International Workshop on Camera-Based Document Analysis and Recognition. Springer, 113–125.

[17] Robert Nagy, Anders Dicker, and Klaus Meyer-Wiegener. 2011. NOOCR: A configurable dataset for natural image text recognition. In International Workshop on Camera-Based Document Analysis and Recognition. Springer, 150–163.

[18] Nibal Nayef, Muhammad Muzzamil Luqman, Sofia Prum, Sebastien Eskenazi, Joseph Chazalon, and Jean-Marc Ogier. 2015. SmartDoc-QA: A dataset for quality assessment of smartphone captured document images—single and multiple distortions. In 2015 13th International Conference on Document Analysis and Recognition (ICDAR). IEEE, 1231–1235.

[19] Wataru Ohyama, Masakazu Suzuki, and Seiichi Uchida. 2019. Detecting mathematical expressions in scientific document images using a u-net trained on a diverse dataset. IEEE Access 7 (2019), 144030–144042.

[20] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention. Springer, 234–241.

[21] Daniel Rotman, Ophir Amalai, Inbar Shapira, Yevgeny Burstein, and Udi Barzilay. 2022. Detection Masking for Improved OCR on Noisy Documents. arXiv preprint arXiv:2205.08257 (2022).

[22] Edgar Schönfeld, Bernt Schiele, and Anna Khoreva. 2020. A u-net based discriminator for generative adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 8207–8216.

[23] Uwe Springmann, Christian Reul, Stefanie Dipper, and Johannes Bailer. 2018. Ground Truth for training OCR engines on historical documents in German Fraktur and Early Modern Latin. arXiv preprint arXiv:1809.05501 (2018).

[24] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013).

[25] Andreas Veit, Tomas Matera, Lukas Neumann, Jiri Matas, and Serge Belongie. 2016. Coco-text: Dataset and benchmark for text detection and recognition in natural images. arXiv preprint arXiv:1601.07140 (2016).

[26] Wenhai Wang, Enze Xie, Xiang Li, Yueluo Liu, Ding Liang, Yang Zhiho, Tong Lu, and Chunhua Shen. 2019. PAN++: towards efficient and accurate End-to-End spotting of arbitrarily-shaped text. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021).

[27] Wenhai Wang, Enze Xie, Xiaoguo Song, Yuhang Zang, Wenjia Wang, Tong Lu, Gang Yu, and Chunhua Shen. 2019. Efficient and accurate arbitrary-shaped text detection with pixel aggregation network. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 8440–8449.

[28] Sonia Youssi, Sid-Alhmed Berriani, and Christophe Garcia. 2015. ALIP: A dataset for Arabic embedded text recognition in TV broadcast. In 2015 13th International Conference on Document Analysis and Recognition (ICDAR). IEEE, 1221–1225.

[29] Yang Zhang, Lionel Gueguen, Ilya Zharkov, Peter Zhang, Keith Seifert, and Ben Kadlec. 2017. Uber-text: A large-scale dataset for optical character recognition from street-level imagery. In SuNw: Scene Understanding Workshop-CVPR, Vol. 2017.

[30] Iia Zharkov, Philipp Nikitin, Iliia Vasilev, and Vladimir Dokholyan. 2020. DDI-2020: Dataset for Text Detection and Recognition. In Proceedings of the 2020 4th International Conference on Document Analysis and Recognition (ICDAR), Vol. 2017.

[31] Xinyu Zhou, Cong Yao, He Wen, Yuzhi Wang, Shuchang Zhou, Weiran He, and Jiajun Liang. 2017. East: an efficient and accurate scene text detector. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 5551–5560.

[32] Zengwei Zhou, Md Mahfuzur Rahman Siddique, Nima Tajbakhsh, and Jianming Liang. 2018. Une-t++: A nested u-net architecture for medical image segmentation. In Deep learning in medical image analysis and multimodal learning for clinical decision support. Springer, 3–11.