Characterisation and cross-amplification of polymorphic microsatellite loci in ant-associated root-aphids

Ivens, A.B.F.; Kronauer, Daniel Jan Christoph; Boomsma, J.J.

Published in:
Conservation Genetics Resources

DOI:
10.1007/s12686-010-9293-3

Publication date:
2011

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Ivens, A. B. F., Kronauer, D. J. C., & Boomsma, J. J. (2011). Characterisation and cross-amplification of polymorphic microsatellite loci in ant-associated root-aphids. Conservation Genetics Resources, 3(1), 73-77. https://doi.org/10.1007/s12686-010-9293-3
Characterisation and cross-amplification of polymorphic microsatellite loci in ant-associated root-aphids

A. B. F. Ivens · D. J. C. Kronauer · J. J. Boomsma

Received: 28 June 2010 / Accepted: 20 July 2010 / Published online: 1 August 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract Twenty-six polymorphic microsatellite loci were developed for four species of ant-associated root-aphids: Geoica utricularia, Forda marginata, Tetraneura ulmi and Anoecia corni. We found up to 9 alleles per locus, with an average of 4.8. We also report polymorphic cross-amplification of eleven of these markers between different pairs of study species. Furthermore, we tested previously published aphid microsatellites and found one locus developed for Pemphigus bursarius to be polymorphic in G. utricularia. These microsatellite markers will be useful to study the population structure of aphids associated with the ant Lasius flavus and possibly other ants. Such studies are relevant because: 1. L. flavus mounds and their associated flora and fauna are often key components in protected temperate grasslands, and 2. L. flavus and its diverse community of root-aphids provide an interesting model system for studying the long-term stability of mutualistic interactions.

Keywords Microsatellites · Root-aphids · Mutualism · Aphidoidea (Hemiptera) · Pemphigidae · Anoeciidae

Mutualistic interactions between species are widespread and play key roles in ecosystem stability and diversity (Stachowicz 2001; Bastolla et al. 2009). In Northwest Europe, the yellow meadow ant Lasius flavus keeps up to fourteen species of mutualistic root-aphids in its nests (Pontin 1978; Heie 1980; Godske 1991). The ants actively tend the aphids, which provide them with honeydew (Pontin 1978). The nest mounds are markers of high grassland biodiversity and long-term habitat stability (Dean et al. 1997; Blomqvist et al. 2000; Lenoir 2009). However, despite the decline of European temperate grasslands in recent decades and the associated losses in plant and invertebrate biodiversity (WallisDeVries et al. 2002), neither the sociobiology of the ants (but see Boomsma et al. 1993) nor the biology of the root-aphids (Pontin 1978; Godske 1991, 1992) have been extensively studied. To facilitate molecular ecological approaches in the study of this mutualism, we developed DNA microsatellite markers for the four commonest species: Forda marginata, Tetraneura ulmi, Geoica utricularia and Anoecia corni.

Samples for genomic library construction for Forda marginata, Tetraneura ulmi, and Anoecia corni were collected in 2007 from an ant-nest on the Dutch island of Schiermonnikoog (53°29′03.5″N; 6°13′46.1″E) whereas Geoica utricularia was collected near Dejret, Denmark (56°12′54.2″N; 10°24′48.2″E). All samples for molecular analysis were preserved in 96% ethanol.

Genomic DNA was extracted using the QIAGEN DNeasy Blood & Tissue kit and enriched for poly-CA and poly-CT microsatellite containing fragments using the protocol by Rütten et al. (2001). We designed PCR primers for the flanking regions of repetitive motifs using the web-based software Primer 3 (Rozen et al. 2000).

Primers were tested on Schiermonnikoog samples collected in 2007, 2008 and 2009 and on samples collected...
Locus	Species	Primer sequence (5′–3′) (F: forward, R: reverse)	Repeat motif	Size range (bp)	N	Ne	Ho	Ta (°C)	Nr. of cycles x	Primer concentration (µM)	Multiplex mix	Genbank accession number	
Gu1	Geoica utricularia	F: ATCAAACGAACGAAACCGAAT R: GCGAAAGTTATGGCCTTTG	(GT)₈	113–118	5	4	0.740	1.000	50	40	0.35	Gu-3	HM582813
Gu2	Geoica utricularia	F: CGCGATTAGATTCGGGAAAT G: GCGAAAGTTATGGCCTTTG	(GT)₁₁	158–177	227	5	0.613	0.361	50	40	0.15	Gu-2	HM582814
Gu3	Geoica utricularia	F: TATCTGCGGGACACGACAT R: CGGGCTATACCCGATACACT	(TA)₉	192–208	169	7	0.665	1.000	50	40	0.15	Gu-1	HM582815
Gu4	Geoica utricularia	F: CTGCTGCTGTCGAGACTTA R: GCAGATTCACGTTAGCTTGA	(TG)₆ C (AT)₁₂	206–222	8	4	0.602	0.125	50	35	0.35	Gu-3	HM582816
Gu5	Geoica utricularia	F: CACAGGACGGGATACTTAATAG R: AACTTTTCGGGACATCCTTGA	(GT)₁₅	164–214	214	6	0.569	0.145	50	40	0.15	Gu-2	HM582817
Gu6	Geoica utricularia	F: ATCAAACGGTGGCATGTA R: CAATATCTCATCTGCAGCAA	(TG)₁₃ CG (GT)₈	151–200	199	7	0.539	0.337	50	40	0.15	Gu-2	HM582818
Gu7	Geoica utricularia	F: GITAAGGAAAATGCTTACGCTTACTGGC R: CATATAAAATGATCCGTTAGGC	(CA)₉ TA (CA)₉	87–103	13	4	0.698	0.000	50	40	0.35	Gu-3	HM582819
Gu8	Geoica utricularia	F: TATAACGTCGCGACAGAT R: GTTCGTTGCTCGTGCATCTT	(AC)₁₀	233–237	199	3	0.479	0.060	50	40	0.15	Gu-1	HM582820
Gu9	Geoica utricularia	F: CCGCGGATATGAAAAATGTA R: CTCGCTGTGTTGTGACACCTTT	(CA)₁₃	223–250	184	8	0.800	0.799	50	40	0.15	Gu-1	HM582821
Gu10	Geoica utricularia	F: CGCGCTAAAGAAGGTTTCA R: TTACGTTAAAACGACGAGGTAA	(GT)₁₉	228–261	14	8	0.763	0.786	50	40	0.35	Gu-1	HM582822
Gu11	Geoica utricularia	F: CGGTACCGGTTAAGGGCTTTA R: AATCCTGGAGTGCTCGATCGG	(CA)₁₁	145–153	223	6	0.729	0.677	50	40	0.15	Gu-2	HM582823
Gu12	Geoica utricularia	F: GAGCCTAGCTGGCTTTAG R: CGGGTTTATTTAATGGCTCAGA	(GT)₁₂ GC (GT)₂₅ A (GT)₄	106–138	10	3	0.460	0.000	60	45	0.15	HM582824	
Gu13	Geoica utricularia	F: TCGCCGGACTATTTTACA R: AGTGACGTCGCGGGAGAAAT	(CAG)₁₃ (N)₂₁ (TC)₁₀	202–218	188	7	0.754	1.000	50	40	0.15	Gu-1	HM582825
Gu15	Geoica utricularia	F: TTTTTACGGGCTAACCCTATTTT R: CCACAGGATCCACCAACTTTT	(GA)₁₅ (A₁₄ (GA)₃ (A)₉	165–167	10	2	0.180	0.200	50	40	0.25	HM582826	
Fm1	Forda marginata	F: CCTCCAATTACGTTACCAAC R: GAGAACGTTGCAACGCGGATA	(TG)₂₂ CG (TG)₈	182–259	154	9	0.458	0.253	53	37	0.15	HM582827	
Fm3	Forda marginata	F: TCTGATTATTCGGACACCTCA R: CGGGCTGTATCTACTTTA	(AT)₁₀	225–349	138	6	0.494	0.246	50	40	0.15	HM582828	
Fm4	Forda marginata	F: CATTACGGTGTAGTGTAAATATAGTTTT R: TGTTTTAACACGACGTTCCTT	(AC)₁₄	178–200	162	7	0.465	0.167	50	35	0.15	HM582829	
Locus	Species	Primer sequence (5'–3')	Repeat motif	Size range (bp)	N	N_a	H_E	H_O	T_a (°C)	Nr. of cycles	Primer concentration (μM)	Genbank accession number	
-------	----------------	---	--	----------------	----	--------------	-------------	-------------	------------------	---------------	--------------------------	------------------------	
Fm6	Forda marginata	F: TCACCTCGCTAGCGGTTCCTTC (T)₁₁ ATGA (T)₂₃	(T)₁₁ ATGA (T)₂₃	250–280	125	4	0.709	0.920	50	45	0.15	HM582830	
		R: GTGGCCGTAGCATGTCACTA											
Tu1	Tetraneura ulmi	F: CGGGTGCCTGGGTACCTTAT (GT)₃ GAT(AG)₅ T- (GA)₁₀ (A)₆ (N)₉(T)₁₇	(GT)₃ GAT(AG)₅ T- (GA)₁₀ (A)₆ (N)₉(T)₁₇	218–241	89	2	0.164	0.000	50	35	0.25	HM582831	
		R: ATACGTGACCTGGCTACCTACTA											
Tu2	Tetraneura ulmi	F: TCCGACCTACCTTAAACACAAA (TA)₇ (TG)₈	(TA)₇ (TG)₈	157–159	60	2	0.180	0.000	50	40	0.25	Tu-1 HM582832	
		R: ATGCACCCCCCTGCCACTATC											
Tu3	Tetraneura ulmi	F: CGCCGTAAATAATAAATAACCAACA (A)₁₁ (AT)₆ (TA)₂ (C)₃ (GT)₉	(A)₁₁ (AT)₆ (TA)₂ (C)₃ (GT)₉	234–264	89	5	0.702	0.921	50	35	0.25	HM582833	
		R: CACGAGCCTAGGATAAGGAAA											
Tu4	Tetraneura ulmi	F: TTATTCGCAACACACCTTGG (GT)₂₆ G (GT)₃	(GT)₂₆ G (GT)₃	182–203	94	6	0.636	0.904	50	40	0.25	Tu-1 HM582834	
		R: ACGGACACGAGAGAATACG											
Tu10	Tetraneura ulmi	F: AGTATACGGCTCTGCAAC (TAA)₃ TGA (TAA)₇	(TAA)₃ TGA (TAA)₇	233–248	87	3	0.226	0.253	50	40	0.25	HM582835	
		R: GGAGACATTCCCAGCTTAT											
Tu11	Tetraneura ulmi	F: CGGAGAGGGCTATTGTTT (GT)₉ (TA)₅	(GT)₉ (TA)₅	194–200	89	4	0.396	0.393	50	35	0.25	HM582836	
		R: CGTGGCGCGTGAATGAT											
Ac6	Anoecia corni	F: CGAGGCATATCTAAAGTGTTAGA (AT)₃ G (TA)₉ C (AT)₂	(AT)₃ G (TA)₉ C (AT)₂	148–164	6	2	–	–	45	45	0.25	HM582837	
		R: CAGCATTTTACAGGAATGCA											
Ac8	Anoecia corni	F: AATTAATATTTGCGGCCGTGC (ATT)₁₀	(ATT)₁₀	160	4	1	–	–	45	45	0.25	HM582838	
		R: CGCGTGAAGCAAATAATATC											

N number of tested samples, N_a number of alleles, H_E expected heterozygosity, H_O observed heterozygosity, T_a annealing temperature
near Dejret in 2007 (Anoecia spp.), DNA for microsatellite screening was extracted using 200 µl 20%-Chelex® 100 resin (Fluka) (Walsh et al. 1991). PCR-cocktails had a total volume of 10 µl, consisting of 0.8 mM dNTPs, 2 mM MgCl₂, 1× PCR buffer, 0.25 U AmpliTaq Gold® DNA Polymerase (Applied Biosystems), 1 µl of DNA template and a varying concentration of primers (Table 1). Several primer pairs were multiplexed in PCR (Table 1). The amplification conditions were 95°C for 5 min, x number of cycles of 95°C for 30 s, Tₐ for 30 s and 72°C for 30 s (1 min for Gu3, Gu8, Gu9, Gu10 and Gu13) and a final extension of 15 min at 72°C. The respective x and Tₐ for each primer are listed in Tables 1 and 2.

Amplified fluorescent labeled PCR-products were run on an ABI-PRISM 3130XL (Applied Biosystems) sequencer and chromatograms were analyzed in Genemapper an ABI-PRISM 3130XL (Applied Biosystems). The respective x and Tₐ for each primer are listed in Tables 1 and 2.

Cross-amplification was tested for all markers except Gu12 and Fm5 (Table 2), yielding eleven markers that amplified in one or more additional species. Moreover, most markers used (species specific and cross-amplified) for Forda marginata were also suitable for the sibling species Forda formicaria. The loci Fm3, Fm4, Fm6 and Gu13 proved to be diagnostic for distinguishing between Forda marginata and Forda formicaria (Table 2). Three markers from Pemphigus bursarius (Pb02 (Miller et al. 2000)) and P. sypothecae (97PS12 and 98PS8 (Johnson et al. 2000)) were tested for cross-amplification in our focal species, but only Pb02 reliably cross-amplified in Geoica utricularia (Table 2).

Although we enriched specifically for (CA)ₙ and (CT)ₙ repeats, the aphid DNA appeared to be especially AT-rich, including repeats that were suitable for microsatellite

Table 2 Cross-amplifications of microsatellite markers in different species of ant-associated root-aphids

Locus	Cross-amplified species	Size range (bp)	N	Nₐ	Hₑ	Hₒ	Tₐ (°C)	Nr. of cycles	Primer concentration (µM)	Genbank accession number
Gu6	Forda marginata	151–176	159	5	0 681	0 672	49	40	0 15	HM582818
Gu11	Forda marginata	135–147	162	6	0 489	0 234	49	40	0 15	HM582823
Gu13	Forda marginata	143–178	159	5	0 430	0 000	45	45	0 15	HM582825
Tu11	Forda marginata	–	2	–	–	–	49	40	0 15	HM582836
Fm3	Forda formicaria	121	18	1	0 000	0 000	50	40	0 15	HM582828
Fm4	Forda formicaria	174–178	18	3	0 495	0 777	50	35	0 15	HM582829
Fm6	Forda formicaria	206–291	18	2	0 500	1 000	50	45	0 15	HM582830
Gu6	Forda formicaria	151–152	17	2	0 110	0 000	49	40	0 15	HM582818
Gu11	Forda formicaria	142–146	18	3	0 439	0 277	49	40	0 15	HM582823
Gu13	Forda formicaria	156	19	1	0 000	0 000	45	45	0 15	HM582825
Fm1	Anoecia corni, A. zirnitsi	110–134	7	3	–	–	45	45	0 25	HM582827
Tu2	Anoecia corni, A. zirnitsi	137–148	3	2	–	–	45	45	0 25	HM582832
Tu11	Anoecia corni, A. zirnitsi	69–126	7	5	–	–	45	45	0 25	HM582836
Ac 8	Anoecia zirnitsi, A. major	130–146	2	2	–	–	45	45	0 25	HM582838
Pb02a	Geoica utricularia	118–124	8	2	–	–	50	40	0 20	AF267192

N number of tested samples, Nₐ number of alleles, Hₑ expected heterozygosity, Hₒ observed heterozygosity, Tₐ annealing temperature

*a Developed by Miller et al. 2000 for the lettuce root-aphid Pemphigus bursarius
design. This observation is in accordance with earlier findings (Weng et al. 2007).

In conclusion, the 26 newly developed microsatellite markers presented here cover a large proportion of the known root-aphid fauna associated with L. flavus and other ant species (Heie 1980), and will be useful for detailed studies of the ecology and evolution of this mutualistic association.

Acknowledgments This study was supported by a PhD-Grant from the Centre for Ecological and Evolutionary Studies, University of Groningen and grants from the Pieter Langerhuizen Fund and the Nicolaas Mulerius Foundation, awarded to A.B.F.I., as well as a grant from the Danish National Research Foundation to J.J.B. that funded D.J.C.K.’s postdoctoral work in Copenhagen. The authors would like to thank Sylvia Mathiasen, Thijs Janzen and Elzemiek Geuverink for help in the laboratory and in the field, Ole E. Heie and Maurice Jansen for help with aphid taxonomy and Franz J. Weissing and Ido Pen for discussion.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

Bastolla U, Fortuna MA, Pascual-Garcia A, Ferrera A, Luque B, Bascompte J (2009) The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458(7241):1018–1091. doi:10.1038/nature07950

Blomqvist MM, Olff H, Blaauw MB, Bongers T, Van der Putten WH (2000) Interactions between above- and belowground biota: importance for small-scale vegetation mosaics in a grassland ecosystem. Oikos 90(3):582–598

Boomsma JJ, Wright PJ, Brouwer AH (1993) Social structure in the ant Lasius flavus—multi-queen nests or multi-nest mounds. Ecol Entomol 18(1):47–53

Dean WRJ, Milton SJ, Klotz S (1997) The role of ant nest-mounds in maintaining small-scale patchiness in dry grasslands in central Germany. Biodivers Conserv 6(9):1293–1307

Godske L (1991) Aphids in nests of Lasius flavus F. in Denmark I: faunistic description. Entomol Meddr 59(3):85–89

Godske L (1992) Aphids in nests of Lasius flavus F. in Denmark II: population dynamics. Entomol Meddr 60(1):21–26

Heie OE (1980) The Aphidoidea (Hemiptera) of Fennoscandia and Denmark. I. Fauna Entomol Scand 9:1–236

Johnson PCD, Llewellyn KS, Amos W (2000) Microsatellite loci for studying clonal mixing, population structure and inbreeding in a social aphid, Pemphigus spirothecae (Hemiptera: Pemphigidae). Mol Ecol 9(9):1445–1446

Lenoir L (2009) Effects of ants on plant diversity in semi-natural grasslands. Arthropod Plant Interact 3(3):163–172. doi:10.1007/s11829-009-9066-7

Miller NJ, Birley AJ, Tatchell GM (2000) Polymorphic microsatellite loci from the lettuce root aphid, Pemphigus bursarius. Mol Ecol 9(11):1951–1952

Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295. doi:10.1111/j.1471-8286.2005.01155.x

Pontin AJ (1978) Numbers and distribution of subterranean aphids and their exploitation by the ant Lasius flavus (Fabr.). Ecol Entomol 3(3):203–207

Rousset F (2008) GENEPOP ‘007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Res 8:103–106

Rozen S, Skaltsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, NJ, pp 365–386

Rütten K, Schubl I, Olek K, Uhl G (2001) Polymorphic microsatellite markers in the spider Pholcus phalangioides isolated from a library enriched for CA repeats. Mol Ecol Notes 1(4):255–257

Stachowicz JJ (2001) Mutualism, facilitation, and the structure of ecological communities. Bioscience 51(3):235–246

WallisDeVries MF, Poschlod P, Willems JH (2002) Challenges for the conservation of calcareous grasslands in Northwestern Europe: integrating the requirements of flora and fauna. Biol Conserv 104(3):265–273

Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10(4):506–513

Weng Y, Azhaguvel P, Michels GJ, Rudd JC (2007) Cross-species transferability of microsatellite markers from six aphid (Hemiptera: Aphididae) species and their use for evaluating biotypic diversity in two cereal aphids. Insect Mol Biol 16(5):613–622. doi:10.1111/j.1365-2583.2007.00757.x