Infrequent microsatellite instability in oesophageal cancers

F Muzeau¹, J-F Fléjou¹-², J Belghiti³, G Thomas⁴ and R Hamelin⁴

¹Inserm U410, Faculté Bichat, Paris; ²Service d’Anatomie Pathologique, Hôpital Beaujon, Clichy; ³Service de Chirurgie Digestive, Hôpital Beaujon, Clichy; ⁴Inserm U434, Institut Curie, Paris, France

Summary Alterations of microsatellites have been found at relatively high frequency in hereditary and sporadic colorectal cancer and gastric and pancreatic cancers and at lower frequency in some other cancers. We determined the frequency of instability at 39 poly-CA microsatellite loci in 20 squamous cell carcinomas and 26 Barrett’s adenocarcinomas of the oesophagus. None of the tumours presented instability for a high percentage of the tested loci. Four squamous cell carcinomas and six Barrett’s adenocarcinomas showed microsatellite instability at one locus, and three Barrett’s adenocarcinomas showed microsatellite instability at two loci. The presence of few loci showing microsatellite instability could be due to an instability background. We conclude that genetic defects in the DNA mismatch repair system do not play an important role in oesophageal cancers.

Keywords: microsatellite instability; cancer of the oesophagus; squamous cell carcinoma of the oesophagus; Barrett’s adenocarcinoma; DNA mismatch repair system

Recently a new class of genetic alterations in human tumours has been described (Aaltonen et al, 1993; Thibodeau et al, 1993). These appear at microsatellite loci that are short, repeated nucleotide sequences distributed within the normal genome. Alterations of microsatellites consist of the loss or gain of one or more repeat units in tumours compared with matched normal DNA and have been termed microsatellite instability (MI). MI was first described in colorectal cancer, in both hereditary non-polyposis colorectal cancer (HNPCC) and sporadic colorectal cancer cases (Aaltonen et al, 1993; Thibodeau et al, 1993), as a result of a deficient DNA mismatch repair system (Fisher et al, 1993; Leach et al, 1993; Parsons et al, 1993; Bronner et al, 1994; Nicolaides et al, 1994; Papadopoulos et al, 1994). MI has also been observed in a variety of sporadic cancers, such as endometrium, stomach, kidney, ovary and pancreas cancers, belonging to the HNPPC tumour spectrum (Han et al, 1993; Peltomäki et al, 1993; Risinger et al, 1993). In bladder, breast and lung cancers, MI has been reported with variable frequency (Gonzalez-Zulueta et al, 1993; Merlo et al, 1994; Schridar et al, 1994). There are conflicting reports concerning the presence of MI in oesophageal cancers (Meltzer et al, 1994; Keller et al, 1995; Mironov et al, 1995; Nakashima et al, 1995; Gleeson et al, 1996). Cancer of the oesophagus is among the most common and severe malignant neoplasms in the world (Muller et al, 1990; Parkin et al, 1993). There are two main histological types of oesophageal cancer, squamous cell carcinoma (SCC) and Barrett’s adenocarcinoma (BA). SCC is more frequent and is associated with alcohol and tobacco consumption in Western countries (Tomatis et al, 1990). BA develops in Barrett’s oesophagus (Spechler and Goyal, 1986), an acquired metaplastic process resulting from chronic gastro-oesophageal reflux (Potet and Duchatelle, 1990). The mechanisms of carcinogenesis of the oesophageal mucosa are not entirely established.

In this study, we compared the incidence of MI in the two main types of oesophageal cancer and compared our results with those obtained in other series.

MATERIALS AND METHODS

Tumours and DNA

Fresh resected specimens were collected during surgery at Beaujon Hospital (Clichy, France) from 1988 to 1994. Twenty SCCs and 26 BAs were included in the study. The patients had received neither radiation therapy nor chemotherapy before surgery. In all cases part of the tumour and part of the normal gastric mucosa were snap frozen and stored at −80°C until use. The surgical specimen was embedded in paraffin for histopathological analysis. The group of patients with SCC demonstrated a male–female ratio of 17:3 and a median age at diagnosis of 58 years (range, 44–72 years). In the patients with BA, the male–female ratio was 24:2 and the median age at diagnosis was 65 years (range 42–80 years). Consumption of alcohol and tobacco was known for 18 patients with SCC and 24 patients with BA; 15 patients with SCC (83%) and four with BA (17%) were chronic alcoholics; 14 patients with SCC (78%) and 15 with BA (58%) were smokers.

Genomic DNA was extracted from primary tumours and adjacent normal gastric mucosa by proteinase K digestion and phenol–chloroform extraction as described previously (Sambrook et al, 1989). p53 alterations had been searched previously in all tumours studied (Muzeau et al, 1996).
Microsatellite instability

A total of 39 poly-CA microsatellite loci selected from among the published list from Genethon (Gyapay et al, 1994) were analysed. Four were located on chromosome 1 (D1S225, D1S229, D1S239, D1S306), two on chromosome 3 (D3S1282, D3S1297), one on chromosome 4 (D4S414), two on chromosome 5 (D5S393, D5S430), three on chromosome 6 (D6S309, D6S271, D6S277), three on chromosome 8 (D8S272, D8S277, D8S283), 14 on chromosome 9 (D9S152, D9S153, D9S156, D9S157, D9S158, D9S159, D9S161, D9S165, D9S168, D9S169, D9S171, D9S175, D9S197, D9S259), two on chromosome 10 (D10S199, D10S226), one on chromosome 13 (D13S175), one on chromosome 14 (D14S250), one on chromosome 15 (D15S128), one on chromosome 16 (D16S172), two on chromosome 17 (D17S784, D17S790), one on chromosome 18 (D18S53) and one on chromosome 20 (D20S107).

Primers specific for each locus were used to amplify the repeat and short flanking sequences from template DNA using multiplex polymerase chain reaction (PCR). Amplification was carried out in a 9600 Perkin Elmer Cetus thermal cycler, using an AmpliTaq kit (Perkin Elmer Cetus, Emeryville, CA, USA) in a final volume of 20 μl containing 25 ng of genomic DNA, 0.25 U of Taq polymerase, 0.3 μmol l⁻¹ of each primer, 20 μmol l⁻¹ of each dNTP, 1.5 mmol l⁻¹ magnesium chloride and 1 × buffer. PCR was performed for 35 cycles, each comprising 30 s at 94°C, 30 s at 55°C and 60 s at 72°C. Aliquots of amplified DNA were electrophoresed on a 6% polyacrylamide, 32% formamide, 7 mol l⁻¹ urea denaturing gel and transferred onto Hybond nylon membranes. Filters were hybridized with a 32P-labelled (CA)12 probe and autoradiographed.

RESULTS AND DISCUSSION

In this study, none of the tumours showed a high MI index. Four of 20 SCCs showed MI at one locus (2.5% of 39 loci tested). Among 26 BAs, six and three tumours showed MI at one (2.5% of loci tested) and two loci (5% of loci tested) respectively. Representative examples of MI are shown in Figure 1. The instability affected different loci on chromosome 3, 4, 6, 9, 17 and 18. No MI was demonstrated in any of the remaining cases.

Table 1 Main clinical and morphological features of oesophageal carcinomas included in the study

Squamous cell carcinoma (n = 20)	Barrett’s adenocarcinoma (n = 26)
With no MI or two loci (n = 16)	With MI at one or two loci (n = 4)
Mean age (years) 58	59
Male–female 3:13	0:4
Alcoholic 12 (44%)	3 (44%)
Smokers 11 (14%)	10 (16%)
p53 15	16
UICC grade	
I	6
IIa	4
IIb	1
III	3
IV	1

Table 2 Microsatellite instability in oesophageal cancers

Authors	No. of tumours tested	No. of loci tested	No. of tumours with MI at x% loci tested			
Meltzer et al (1994) (USA)	36 BA	5	≤ 10%	0	6	2
Keller et al (1995) (Germany)	15 BA	8	0	0	0	0
Mironov et al (1995) (France)	18 SCC	17	2	0	0	
Nakashima et al (1995) (Japan)	29 SCC	5	0	4	2	
Gleeson et al (1996) (Northern Ireland)	17 BA	139	16	0	1	
Present series (France)	26 BA	39	8	0	0	
(France)	20 SCC	4	0	0	0	
Total	94 BA	109 SCC	24 (25%)	8 (8%)	3 (3%)	
			6 (6%)	5 (5%)	2 (2%)	

MI, microsatellite instability; BA, Barrett’s adenocarcinoma; SCC, squamous cell carcinoma.
The characteristics of the 13 (28%) tumours that showed MI at one or two microsatellite loci compared with tumours without MI are presented in Table 1.

An association between the presence of MI and certain clinicopathological features has been reported in sporadic colorectal cancer (Lothe et al, 1993; Kim et al, 1994) and gastric cancer (Dos Santos et al, 1996). However, for both types of tumours, only those carcinomas with multiple replication error positive (RER+) loci were significantly associated with poor differentiation, rare nodal metastases and prolonged survival, whereas carcinomas with one or two loci stable were similar to RER− carcinomas (Lothe et al, 1993; Dos Santos et al, 1996). In our study, we also observed no differences between tumours with MI at one or two loci and those without instability, regarding their clinicopathological characteristics (Table 1).

Moreover, in colon cancer, tumours with instability at multiple loci were frequently diploid (Aaltonen et al, 1993). Although we did not study the DNA ploidy in our tumours, it has been reported that most oesophageal cancers have a DNA-aneuploid pattern (Robaszekiewicz et al, 1991; Nakamura et al, 1994), a feature that again suggests that those tumours do not behave as RER+ carcinomas. Altogether, it appears that our finding of MI in a single or in two loci does not imply a mutator phenotype for those tumours and that multiple alterations at microsatellite loci as described in RER+ cancers is very unusual in both types of oesophageal carcinomas.

We have found five series reporting MI in oesophageal cancer in the literature (Table 2). Together with our study, they included a total of 109 SCCs and 94 BAs (Meltzer et al, 1994; Keller et al, 1995; Mironov et al, 1995; Nakashima et al, 1995; Gleeson et al, 1996). Only the study by Meltzer et al (1994) and our series included both types of oesophageal cancer: SCC and BA.

Criteria for identifying RER+ tumours have not been precisely defined. Hamelin et al (1994a), analysing a series of colon cancers with more than 100 poly-CA microsatellite loci, found two types of tumours. A first group of tumours located predominantly in the right colon showed MI at more than 50% of loci tested and were considered as RER+. A second group showed MI between 0% and 10% of loci tested and were considered as RER−. It could be hypothesized that the presence of rare loci showing MI is explained by the existence of a background of instability (<10%), independent of genetic defects in the mismatch repair system. Therefore, it is necessary to examine numerous loci to categorize a tumour as RER+.

It is noteworthy from Table 2 that oesophageal tumours with an instability index between 10% and 40% were detected only in series analysed with a small number of microsatellites (Meltzer et al, 1994; Keller et al, 1995; Nakashima et al, 1995) whereas, in series analysed with at least 17 microsatellites (Mironov et al, 1995; Gleeson et al, 1996; present series), tumours had an instability index either below 10% or above 40%. This observation suggests that there is also a background of MI in oesophageal cancers and that only 3 out of 94 (3%) BA and 2 out of 109 (2%) SCC are really RER+ tumours in the literature.

A number of genetic changes have been demonstrated in both types of oesophageal cancer, including loss of heterozygosity involving the loci for several tumour-suppressor genes, such as Rb, p53, APC and DCC (Huang et al, 1992; Boyton et al, 1993). Mutation of the p53 tumour-suppressor gene has been reported as extremely frequent in BA (Hamelin et al, 1994b; Gleeson et al, 1995) and SCC (Audrezet et al, 1993; Muzeau et al, 1996). In colorectal cancer, it appears that there is an inverse relationship between the presence of p53 gene mutation and the RER+ phenotype (Kim et al, 1994; Cottu et al, 1996). If the same phenomenon occurs in oesophageal carcinogenesis, a high percentage of p53 mutation may make it unlikely to find tumours that are characteristic of the RER+ phenotype.

We conclude that genetic defects in the DNA mismatch repair system, responsible for the RER+ phenotype, do not play an important role in oesophageal cancers.

ACKNOWLEDGEMENTS

This work was supported by grants from the Ligue Nationale contre le Cancer and the Association Charles Debray. The authors thank Paula Clark for her assistance in the manuscript preparation.

REFERENCES

Aaltonen LA, Peltonak P, Leach FS, Sistonen P, Pylkkänen L, Mecklin JP, Jarvinen H, Powell SM, Jen J, Hamilton SR, Petersen GM, Kinzler KB, Vogelstein B and De La Chapelle A (1993) Clues to the pathogenesis of familial colorectal cancer. Science 260: 1142–1146

Audrezet MP, Robaszekiewicz M, Mercier B, Nousbaum JB, Bail JP, Hardy E, Volant A, Lozac’h P, Charles JF, Goureau H and Ferret C (1993) TP53 Gene mutation profile in esophageal squamous cell carcinomas. Cancer Res 53: 5745–5749

Boyrton R, Blount P, Yijun M, Brown V, Huang Y, Tong Y, McDaniel T, Newkirk C, Reesue JH, Raskind WH, Haggitt RC, Reid BJ and Melterz SJ (1993) Loss of heterozygosity involving the APC and MCC genetic loci occurs in the majority of human esophageal cancers. Proc Natl Acad Sci USA 90: 3382–3386

Bonne CE, Baker SM, Morrison PT, Warren G, Smith LG, Lescoe MK, Kane M, Earabino C, Lipford J, Lindblom A, Tannenberg P, Bollag RJ, Godwin AR, Ward DC, Nordenskjold M, Fisher R, Kolodner R and Liskay RM (1994) Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary nonpolyposis colon cancer. Nature 368: 258–261

Cottu PH, Muzeau F, Estreicher A, Plejou J-F, Iggo R, Thomas G and Hamelin R (1996) Inverse correlation between RER+ status and p53 mutation in colorectal cancer cell lines. Oncogene 13: 2727–2731

Dos Santos NR, Seruca R, Constancia M, Seixas M and Sobrinho-Simoes M (1993) Microsatellite instability at multiple loci in gastric carcinoma: clinicopathologic implications and prognosis. Gastroenterology 105: 38–44

Fishel R, Lescoe MK, Rao MRS, Copeland NG, Jenkins NA, Garber J, Kane M and Kolodner R (1993) The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75: 1027–1038

Gleeson CM, Sloan JM, McCuigan JA, Ritchie AJ, Weber JL and Russell SEH (1996) Ubiquitous somatic alterations at microsatellite alleles occur infrequently in Barrett’s-associated esophageal adenocarcinoma. Cancer Res 56: 259–263

Gonzalez-Zuleta M, Ruppert JM, Tokiko K, Tsai YC, Spruck CH, Miyao N, Nicholls PW, Hermann GG, Horn T, Steven K, Summerhayes IC, Sidrinsky D and Jones PA (1993) Microsatellite instability in bladder cancer. Cancer Res 53: 5620–5623

Gyapay G, Morisseau J, Vignal A, Dib C, Fizames C, Million J, Marsault P, Marc S, Bernardi G, Lathrop M and Weissenbach J (1994) The 1993–1994 Genethon human genetic linkage map. Nature Genet 7: 246–339

Hamelin R, Laurent-Puig P, Olschwang S, Salmon RJ and Thomas G (1994a). Genetic instability of microsatellite in human colon cancer. Gastroenterology 106 (suppl. 4): A390

Hamelin R, Plejou J-F, Muzeau F, Petez F, Laurent-Puig P, Ferec C and Thomas G (1994b) TP53 gene mutations and p53 protein immunoreactivity in malignant and premalignant Barrett’s esophagus. Gastroenterology 107: 1012–1018

Han HS, Yangisawa A, Kato Y, Park JG and Nakamura Y (1993) Genetic instability in pancreatic cancer and poorly differentiated type of gastric cancer. Cancer Res 53: 5087–5089

Huang Y, Boyrton R, Blount P, Silverstein R, Yijun M, Ting Y, McDaniel T, Newkirk C, Reesue JH, Sridhara R, Reid BJ and Melterz SJ (1993) Loss of heterozygosity involves multiple tumor suppressor genes in human esophageal cancers. Cancer Res 53: 6525–6530

Ionov Y, Peinado MA, Malkhosyan S, Shibata D and Perou M (1993) Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363: 558–561

© Cancer Research Campaign 1997

British Journal of Cancer (1997) 75(9), 1336–1339
Keller G, Rotter M, Vogelsang H, Bischoff P, Becker K-F, Mueller J, Brauch H, Siewert JR and Hofer H (1995) Microsatellite instability in adenocarcinomas of upper gastrointestinal tract. Am J Pathol 147: 593–600

Kim H, Jen J, Vogelstein B and Hamilton SR (1994) Clinical and pathological characteristics of colorectal carcinomas with DNA replication errors in microsatellite sequences. Am J Pathol 145: 148–156

Leach JS, Nakaiwa NC, Papadopoulos N, Liu B, Jen J, Parson R, Pelomaki P, Sistonen P, Aaltonen LA, Nystrom-Ladh M, Guan X-Y, Zhang J, Meltzer SJ, Yu J-W, Kao F-T, Chen D, Cerasaletti KM, Fournier REK, Todd S, Lewis T, Leach RJ, Naylor SL, Weinsbach J, Mecklin JP, Jarvinen H, Petersen GM, Hamilton SR, Green J, Jass J, Watson P, Lynch HT, Trent JM, De La Chapelle A, Kinzler KW and Vogelstein B (1993) Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75: 1215–1226

Lothe RA, Pelomaki P, Meling GI, Aaltonen LA, Nystrom-Ladh M, Pylkkonen L, Heimdal K, Andersen TI, Moller P, Rognum TO, Fossa SD, Haldorsen T, Langmark F, Brogger A, De La Chapelle A and Borresen AL (1993) Genomic instability in colorectal cancer: relationship to clinicopathological variables and family history. Cancer Res 53: 5849–5852

Meltzer SJ, Jin J, Manin B, Rhyu MG, Cottrell J, Hudson E, Redd JL, Krasna MJ, Abraham JM and Reid BJ (1994) Microsatellite instability occurs frequently and in both diploid and aneuploid cell populations of Barrett’s-associated esophageal adenocarcinomas. Cancer Res 54: 3379–3382

Merlo A, Malbye M, Gabrielsson E, Vollmer R, Baylin SB and Sidransky D (1994) Frequent microsatellite instability in primary small cell lung cancer. Cancer Res 54: 2098–2101

Mironov N, Aguelon MAM, Hollams E, Lorzano JC and Yamashki H (1995) Microsatellite alterations in human and rat esophageal tumors at selective loci. Mol Carcinogenesis 13: 1–5

Muller JM, Erasmi H, Stelzer M, Zieren U and Pichlmaier H (1990) Surgical therapy of esophageal carcinoma. Br J Surg 77: 845–857

Muscat F, Pélou J-F, Piot P, Belghiti J, Thomas G and Hamelin R (1996) Profil des mutations du gène p53 et expression anormale de la protéine p53 dans les deux formes de cancer de l’esophage. Gastroenterol Clin Biol 20: 430–437

Nakamura T, Nekarda H, Hoelscher AH, Bollschweiler E, Harbec N, Becker K and Siewert JR (1994) Prognostic value of DNA ploidy and c-erbB-2 oncoprotein overexpression in adenocarcinoma of Barrett’s esophagus. Cancer 73: 1785–1794

Nakamura H, Mori M, Mimori K, Inoue H, Shibutu K, Baba K, Mafune KI and Akiyoshi (1995) Microsatellite instability in Japanese esophageal carcinoma. Int J Cancer 64: 286–289

Nakaiwa NC, Papadopoulos N, Liu B, Wei Y-F, Carter JK, Ruben SM, Rosen CA, Haselinite WA, Fleischmann RD, Fraser CM, Adams MD, Venter JC, Dunlop MG, Hamilton SR, Petersen GM, De La Chapelle A, Vogelstein B and Kinzler KW (1994) Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature 371: 75–80

Papadopoulos N, Nakaiwa NC, Wey Y-F, Ruben SM, Carter JK, Haselinite CA, Fleischmann RD, Fraser CM, Adams MD, Venter JC, Hamilton SR, Petersen GM, Watson P, Lynch HT, Pelomaki P, Mecklin JP, De La Chapelle A, Kinzler KW and Vogelstein B (1994) Mutations of a mutS homolog in hereditary colon cancer. Science 263: 1625–1629

Parkin DM, Pisani P and Ferlay J (1993) Estimates of the worldwide incidence of eighteen major cancers in 1985. Int J Cancer 5: 594–606

Parsons R, Li GL, Longley MJ, Fang WH, Papadopoulos N, Jen J, De La Chapelle A, Kinzler KW, Vogelstein B and Modrich P (1993) Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell 75: 1227–1236

Pelomaki P, Lothe RA, Aaltonen LA, Pylkkainen L, Petersen GM, Nystrom-Ladh M, Seraca R, David L, Holm R, Ryberg D, Haugen A, Brogger A, Borresen AL and De La Chapelle A (1993) Microsatellite instability is associated with tumors that characterize the hereditary non-polyposis colorectal carcinoma syndrome. Cancer Res 53: 5853–5855

Potel F and Duchatelle V (1990) Barrett’s esophagus. Curr Top Pathol 81: 43–60

Risinger JI, Berchuck A, Koehler MF, Watson T, Linch HT and Boyd J (1993) Genetic instability of microsatellites in endometrial carcinoma. Cancer Res 53: 5100–5103

Robaszkiewicz M, Reid BJ, Volant A, Cuvin JM, Rabinovitch PS and Goueron H (1993) Flow-cytometric DNA content analysis of esophageal squamous cell carcinomas. Gastroenterology 101: 1588–1593

Sambrook J, Fritsch EF and Maniatis T (1989) Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory: Cold Spring Harbor, NY

Shridar V, Siegrist J, Hunt J, Del Mar Alonso M and Smith DI (1994) Genetic instability microsatellite sequences in many non-small cell lung carcinomas. Cancer Res 54: 2084–2087

Spechler SJ and Goyal RJ (1986) Barrett’s esophagus. N Engl J Med 315: 362–371

Thibodeau SN, Bren G and Schaid D (1993) Microsatellite instability in cancer of proximal colon. Science 260: 816–819

Tomatis L, Aitio A, Day NE, Heselinite NE, Kaldor J, Miller AM, Parkin DM and Riboli E (eds) (1990) Cancer: causes, occurrence and control. IARC Publ 70: 5–56

Yee CJ, Roord N, Verrier CS and Parr FF (1994) Microsatellite instability and loss of heterozygosity in breast cancer. Cancer Res 54: 1641–1644