ENUMERATION OF CARLITZ MULTIPERMUTATIONS

HENRIK ERIKSSON AND ALEXIS MARTIN

Abstract. A multipermutation with \(k \) copies each of \(1 \ldots n \) is Carlitz if neighbours are different. We enumerate these objects for \(k = 2, 3, 4 \) and derive recurrences. In particular, we prove and improve a conjectured recurrence for \(k = 3 \), stated in OEIS, the Online Encyclopedia of Integer Sequences.

1. Introduction

Leonard Carlitz [1] enumerated compositions with adjacent parts being different. We will count multipermutations of \(1^k, 2^k, \ldots, n^k \) with the same condition.

Definition 1.1. A multipermutation is Carlitz if adjacent elements are different.

For \(k = 1 \), these are just the \(n! \) ordinary permutations, but for \(k > 1 \) there are few results. OEIS has entries A114938 for \(k = 2 \), where an expression and a three-term recurrence is given, and A193638 for \(k = 3 \), but with no formula and only a conjectured recurrence.

Let \(A_k(n) \) be the set of Carlitz multipermutations of \(1^k, 2^k, \ldots, n^k \) and let \(a_k(n) = |A_k(n)| \). The simplest examples are

\[
\begin{align*}
A_2(2) &= \{1212, 2121\}, \quad a_2(2) = 2 \\
A_2(3) &= \{12132, 12312, 12321, 12323, 12332, \ldots\}, \quad a_2(3) = 30
\end{align*}
\]

Table 1. Number of Carlitz multipermutations

\(a_k(n) \)	\(n = 0 \)	\(n = 1 \)	\(n = 2 \)	\(n = 3 \)	\(n = 4 \)	\(n = 5 \)	\(n = 6 \)
\(k = 1 \)	1	1	2	6	24	120	720
\(k = 2 \)	1	0	2	30	864	39 480	2 631 600
\(k = 3 \)	1	0	2	174	41 304	19 606 320	16 438 575 600

Date: 2016-11-28.

2010 Mathematics Subject Classification. 05A05.

Key words and phrases. Carlitz, word, multipermutation.
The numbers grow very fast. An upper bound is of course $(kn)!/(k!)^n$, the number of all multipermutations.

We see that $A_2(2)$ has two elements, but only one pattern, $xyxy$. If we identify elements with the same pattern, we get a smaller set $A'_k(n)$. Every pattern may be realized in $n!$ ways as a multipermutation, so $a'_k(n) = a_k(n)/n!$ as the examples show.

$A'_2(2) = \{1212\}$, $a'_2(2) = 1$

$A'_2(3) = \{121323, 123123, 123132, 123213, 123231\}$, $a'_2(3) = 5$

As representative we choose the ordered multipermutation, where the elements appear in order. For any pattern, such as $zyzxyxyxz$, the order condition determines what numeral each letter represents, in this case 121323231.

Sometimes, it seems more natural to work with $a'_k(n)$, sometimes $a_k(n)$ is more convenient. OEIS has entries A278990 for $a'_2(n)$, with formula and a three-term recurrence, and A190826 for $a'_3(n)$ with no formula and an only conjectured recurrence.

$a'_k(n)$	$n = 0$	$n = 1$	$n = 2$	$n = 3$	$n = 4$	$n = 5$	$n = 6$
$k = 1$	1	1	1	1	1	1	1
$k = 2$	1	0	1	5	36	329	3 655
$k = 3$	1	0	1	29	1 721	163 386	22 831 355

2. Inclusion-exclusion formulas

Computing $a_2(n)$ by inclusion-exclusion is Example 2.2.3 in [3]. We show the method for $a_2(3) = 30$.

To begin with, there are $6!/2^3 = 90$ multipermutations of $1 1 2 2 3 3$. We subtract all containing the subpattern 11, i.e. multipermutations of the five symbols $11 2 2 3 3$. These are $5!/2^2$. The same goes for 22 and 33 so we subtract $\binom{3}{1}5!/2^2 = 90$. Patterns with both 11 and 22 were subtracted twice, so we add $4!/2^1$ for every such pair, totalling $\binom{3}{2}4!/2^1 = 36$. Finally, patterns with all three 11, 22, 33 must be subtracted, that is $\binom{3}{3}3!/2^0 = 6$.

The general formula looks like this.

Proposition 2.1.

$$a_2(n) = \sum_{s+t=n} \left(\frac{(-1)^t}{s} \binom{n}{s} \frac{(2s + t)!}{(2!)^s} \right)$$
The sum is to be taken over nonnegative s, t that add up to n. Here s counts symbols that are separate, like $..x..x..$, and t counts symbols that appear together, like $..xx..$, so there are $2s + t$ blocks to permute and s indistinguishable pairs.

The case $k = 3$ is trickier as we now have three subpatterns to consider. If s of the symbols appear separated, like $..x..x..$, t of the symbols appear two-plus-one, like $..xx..$, and u of the symbols appear united, like $..xxx..$, inclusion-exclusion will produce a surprisingly simple formula. A more thorough treatment is given in Martin's thesis [7].

Theorem 2.2.

$$a_3(n) = \sum_{s + t + u = n} \left[(-1)^t \binom{n}{s, t, u} \frac{(3s + 2t + u)!}{(3!)^s (2!)^t} \right]$$

Proof. A direct application of inclusion-exclusion would be possible if we knew how many multipermutations contain 11, how many contain 12 etc. The $t = 2, u = 0$ counts permutations of blocks, some of length 1 and some of length 2, for example 11 and 22. This will produce all desired multipermutations, but some of them will be counted twice, for 111 is the same sequence as 111. So we must subtract permutations where the ones are united, and this explains the term $t = 1, u = 1$. But now again we must add permutations with both 111 and 222 and this explains the term $t = 0, u = 2$. □

Let us try to compute $a_3(3) = 174$ with the formula.

$$1 \cdot \frac{9!}{6^3} - 3 \cdot \frac{8!}{6^2} + 3 \cdot \frac{7!}{6} - 6 \cdot \frac{6!}{6} + 3 \cdot \frac{5!}{6} - 1 \cdot \frac{6!}{1} + 3 \cdot \frac{5!}{1} - 3 \cdot \frac{4!}{1} + 1 \cdot \frac{3!}{1} = 174$$

It is easy to write down similar formulas for $k \geq 4$. We just give $k = 4$ as an example. The proof has no new twists, so we omit it. Just note that v and w count $xx..xx$ resp. $xxxx$.

Theorem 2.3.

$$a_4(n) = \sum_{s + t + u + v + w = n} \left[(-1)^t+w \binom{n}{s, t, u, v, w} \frac{(4s + 3t + 2u + 2v + w)!}{(4!)^s(2!)^{v+t}} \right]$$

We were able to give each term a combinatorial interpretation but the formulas are not new. Ira Gessel [2] used rook polynomials to derive more general expressions than these and Jair Taylor [4] proved the same formulas directly from the generating function. Their elegant version of Th[2,3] is

$$a_4(n) = \Phi((\frac{t^3}{6} - t^2 + t)^n)$$
where \(\Phi(t^n) = n! \), so after expansion each power of \(t \) is replaced with a factorial.

3. Recurrences

For many purposes, recurrences are superior to the explicit formulas of last section. We will show how to get recurrences for \(a'_{k}(n) \), the number of ordered Carlitz multipermutations. Recall that \(a'_{k}(n) = a_{k}(n)/n! \).

The OEIS \([5]\) gives conjectural three-term recurrences for \(a'_{2}(n) \) and \(a'_{2}(n) \), a four-term recurrence for \(a_{3}(n) \) and a five-term recurrence for \(a'_{3}(n) \). All these conjectures will be proved below.

Theorem 3.1. The sequence \(p_{n} \), recursively defined by

\[
p_{n+1} = (2n + 1)p_{n} + p_{n-1}, \quad p_{0} = 1, \quad p_{1} = 0,
\]

counts ordered Carlitz words of \(1^2, \ldots, n^2 \).

Proof. As \(p_{n} = a'_{2}(n) \), \(p_{2} = 1 \) counts the word 1212 and \(p_{3} = 5 \) counts the words 010212, 012012, 012102, 012120, 012021, using symbols 012. The first four words are of the type \(0..\hat{0}. \), that is the zero may be removed without violating the Carlitz property, but the fifth word is of the type \(0..x0x.. \).

Now, we count words in \(0^2, 1^2, \ldots, n^2 \). according to type.

- \(0..\hat{0}. \) is counted by \(2np_{n} \) (insert \(\hat{0} \) anywhere).
- \(0..x0x \) for \(x > 1 \) is counted by \(p_{n} \) (transform \(1..1 \rightarrow 0..x0x \)).
- \(0101.. \) is counted by \(p_{n-1} \) (prefix 0101).

In our example, 1212 \(\rightarrow \) 02x0x2, which is the same pattern as 012021.

Theorem 3.2. The sequences \(p_{n}, q_{n} \), recursively defined by

\[
2p_{n+1} = (3n + 3)q_{n} - 2(3n + 1)p_{n} + 2p_{n-1}, \quad p_{0} = 1, \quad p_{1} = 0,
\]

\[
q_{n} = (3n + 2)p_{n} + 2q_{n-1}, \quad q_{0} = 0,
\]

count ordered Carlitz words of \(1^3, \ldots, n^3 \) resp. of \(0^2, 1^3, \ldots, n^3 \).

Proof. \(p_{2} = 1 \) counts the word 121212 and \(q_{2} = 8 \) counts the words 01\(\hat{0} \)21212, \ldots, 0121212\(\hat{0} \), 01202121, 01212021. The first six words of the type \(0..\hat{0}. \) are counted by \(3np_{n} \), the last two \(0..x0x..x. \) and \(0..x..x0x. \) with \(x > 1 \) by \(2p_{n} \). Finally, \(0101..1. \) and \(01..101. \) are counted by \(2q_{n-1} \). This proves the recurrence for \(q_{n} \).

We now count \(p_{n+1} \) by cases according to type of \(0. \) As there are two noninitial zeros, the cases will sum to \(2p_{n+1} \).

- \(0..0..\hat{0}. \) is counted by \((3n - 1)q_{n} \) (insert \(\hat{0} \) in empty slot).
0..0..x..x0x. for \(x > 1 \) is counted by \(2(q_n - p_n - q_{n-1}) \), for our transformation 1..0..1..1. \(\rightarrow 0..0..x..x0x. \) does not work for 101..1. (counted by \(p_n \)) or for 10..1..1. (counted by \(q_{n-1} \)).

0101..1.0 and the equinumerous 011..011..0 split into subcases depending on the position of the other zero.

010101.. is counted by \(p_{n-1} \).

0101..1., 0101..01. and 0101..10. are counted by \(3q_{n-1} \).

0101..0..1. and 0101..1..0. are counted by \(2p_n \).

Collecting terms and replacing \(2q_{n-1} \) with \(q_n - (3n + 2)p_n \) we get the recurrence for \(p_{n+1} \).

\[p_{n+1} = \lambda p_n + \mu p_{n-1} + \nu p_{n-2}, \quad p_0 = 1, \quad p_1 = 0, \quad p_2 = 1 \]

where \(\lambda = (9n^2 + 9n + 8)/2 + 2/n, \mu = (6n + 3) - 4/n, \nu = -2 - 2/n \) counts ordered Carlitz words of \(1^3, \ldots, n^3 \)

Proof. Lowering indices in Th 3.2 we get

\[2p_n = 3nq_{n-1} - 2(3n - 2)p_{n-1} + 2p_{n-2} \]

Adding \(-2 - \frac{2}{n}\) times this to the \(2p_{n+1}\)-recurrence and then using the \(q_n\)-recurrence, we get the desired four-term recurrence. \(\square \)

The five-term recurrence in OEIS entry A190826 was found by Richard J. Mathar using an ansatz with twenty unknown coefficients [6]. It is of course easily derived by adding two versions of our four-term recurrence, one of them with lowered indices.

The four-term recurrence in OEIS entry A193638 was found by Alois P. Heintz. It is now a corollary obtained by multiplication with \((n+1)!\). Recurrences for \(a'_k(n) \) with \(k > 3 \) may be derived in exactly the same way. We state the result for \(k = 4 \) here and leave the details to the reader.

Theorem 3.4. The sequences \(p_n, q_n, r_n \), recursively defined by

\[
egin{align*}
3p_{n+1} &= (4n + 1)q_n + 3(10q_{n-1} - r_n + 4r_{n-1} + (6n + 7)p_n + p_{n-1}) \\
2q_n &= (4n + 6)r_n + 6r_{n-1} - (16n + 6)p_n \\
r_n &= (4n + 3)p_n + 3q_{n-1}, \quad p_0 = 1, \quad p_1 = 0, \quad q_0 = 0, \quad r_0 = 0
\end{align*}
\]

count ordered Carlitz words of \(1^4, \ldots, n^4 \) resp. of \(0^3, 1^4, \ldots, n^4 \), and of \(0^2, 1^4, \ldots, n^4 \).
References

[1] L. Carlitz, Restricted compositions, *Fibonacci Quart.* **14** (1976), 254–264.
[2] Ira M. Gessel, Generalized rook polynomials and orthogonal polynomials. In D. Stanton, editor, *q-Series and Partitions*, pages 159-176. Springer-Verlag, New York, 1989.
[3] R. Stanley, *Enumerative Combinatorics*, vol. 1, Cambridge University Press, Cambridge, 1997.
[4] Jair Taylor, Counting words with Laguerre series, *Electron. J. Comb.* **21(2)**, 2014
[5] The On-Line Encyclopedia of Integer Sequences, published electronically at https://oeis.org
[6] R. J. Mathar, personal communication, 2015-10-30.
[7] Alexis Martin, Sequences without equal adjacent elements, Bachelor thesis, 2015.

CSC, KTH, SE-100 44 Stockholm, Sweden
E-mail address: he@kth.se

MA, EPFL, CH-1015 Lausanne, Switzerland
E-mail address: alexis.martin@epfl.ch