Blue Stragglers as Tracers of Globular Cluster Evolution

Piet Hut
Institute for Advanced Study, Princeton, NJ 08540, U.S.A.

December 7, 2021

Abstract

Blue stragglers are natural phenomena in star clusters. They originate through mass transfer in isolated binaries, as well as through encounters between two or more stars, in a complex interplay between stellar dynamics and stellar evolution. While this interplay cannot be modeled quantitatively at present, we will be able to do so in one or two years time. With this prospect, the present paper is written largely as a preview.

Star clusters with a high central density contain an ecological network of evolving binaries, affected by interactions with passing stars, while in turn affecting the energy budget of the cluster as a whole by giving off binding energy. The energy liberated can balance the losses from the central regions by escaping stars as well as the energy lost by a heat flow toward the relatively colder cluster halo.

The ‘gravitational fusion’ of single stars into binaries, triples, and collisional merger products proceeds via a complex reaction network. Although we are beginning to chart the activity in some of the major channels, there are still major uncertainties, and consequently our present knowledge of blue straggler formation and evolution is largely qualitative.

Quantitative progress is contingent on advances in the following four areas: 1) observations of fundamental cluster parameters, such as the mass spectrum and the abundance of blue stragglers in the central regions; 2) availability of faster computers to model clusters...
on a star-by-star basis, with a Teraflops speed being desirable; 3) further improvement in N-body codes to make full use of such speeds; and 4) the development of consistent ‘evolutionary recipes’ to treat the interplay between stellar evolution and stellar dynamics. These requirements can be met in the next couple years.

1 Introduction

Halfway between the study of individual stars (by now a relatively well-understood area) and that of galactic nuclei (still not very well understood) lies the study of star clusters. If we could not reach a detailed understanding of the basic structure and evolution of galactic and globular clusters, a quantitative modeling of active galactic nuclei would be even more remote.

With this motivation, it is rewarding to focus our attention on the densest and richest clusters available near our galaxy, the globular clusters, and especially their central areas where close encounters and even physical collisions between stars are not infrequent. Some of these encounters can produce exotic objects such as X-ray binaries and millisecond pulsars, but most encounters will involve garden-variety main-sequence stars. Judging from the numbers of exotic objects, as well as from back-of-the-envelope estimates, globular clusters must have formed a stage for thousands of stellar collisions, as first shown by Hills & Day (1976). What did these collisions produce?

When two main-sequence stars collide in a low-velocity-dispersion environment provided by a globular cluster, very little mass can escape, since the specific kinetic energy at infinity is typically three orders of magnitude smaller than the escape energy at the surface of a star. Therefore, the merger remnant will consist of a simple addition of the masses of the two stars, albeit in a rather excited stage at first. After the initial oscillations have damped out on a dynamical time scale, and the thermal excess has been radiated away on a thermal time scale, the resultant star is expected to resume a rather normal appearance.

Depending on the details of the collision and the prior evolutionary state of the stars, the merger product may have an excess rotation and unusual abundances (Bailyn 1992), but by and large we will find ourselves simply with an overweight star, possibly of a type we don’t expect to encounter any more at the present evolutionary state of the cluster – in this case we will
have produced a blue straggler.

Star-by-Star Modeling of Star Clusters

To summarize: if want to probe the collisional history of dense stellar systems, and if we want to obtain optimal statistics, we should look for the products of collisions between ordinary stars. They come in two varieties. Those merger remnants that are less massive than the main sequence turn-off are buried in the HR diagram like needles in a haystack. But those that are more massive do stand out as ‘blue stragglers’ – that is, if we can resolve the region of interest down to the level of the main sequence. Now that this is possible, with the Hubble Space Telescope in even the densest cluster cores, it is time to roll up our sleeves and get serious with our modeling efforts.

Not that we have not been serious so far. The evolution of star clusters has approached a state of maturity comparable to that of stellar evolution three decades ago. We have begun to understand the physics driving core collapse and post-collapse evolution, and we are on the brink of building detailed models necessary for comparisons with observations. Since we have just published an extensive review of recent modeling efforts (Hut et al. 1992, section 3), we can limit ourselves to a brief summary-style review in §§2,3. From §4 onwards, the paper is presented as a preview.

Another reason to look at the future, rather than the past, is that our present modeling efforts are simply not yet capable to meet the challenges posed by the state-of-the-art observations. As discussed by Hut et al., Fokker-Planck simulations cannot handle binaries adequately, while \(N \)-body methods still lack the necessary computational speed. In fact, at present three barriers still separate us from the goal of reaching parity with observational advances, as discussed below in §§4-6. What is most exciting, and what forms the central theme of this preview, is that we now have a firm time table for scaling these barriers, namely during the next one or two years.

Overview

Rolling up our sleeves is literally an appropriate expression for theorists who want to follow the evolution of globular clusters. Since we need a Teraflops-month to do so, we can either wait till the next millennium when that type of compute has become affordable, or we can build our own star-cluster machine. Fortunately, some enthusiastic astronomers in Tokyo have
started to do just that, and are expected to produce the necessary cycles in one or two years, as will be discussed in §4.

However, speed alone won’t do, and we also need to extend our present software, to be able to handle the extreme problems of disparate length scales and time scales (by relative factors of up to 10^{20}). Current efforts in that directions are described in §5.

Handling 10^5 point masses, although a good start towards globular cluster modeling, by itself will not enable meaningful comparisons with observations. We really need to take into account the intricate interplay between stellar evolution and stellar dynamics. A review of the general problem is given in §3, and a preview of our current modeling efforts is presented in §6.

With proper speed, integration algorithms, and stellar evolution recipes all in hand, a year or so from now, we will have to sort out the processes of interests from among the terabytes of data generated in star-by-star cluster simulations. This is the topic of §7. §8 sums up.

Before reviewing and previewing the various cluster evolution modeling efforts, we first summarize in §2 the physical principles underlying our understanding of the dynamics of dense star clusters, and in §3 their application to globular clusters.

2 Gravitational Fusion

During the last ten years, enormous progress has been achieved in globular cluster dynamics. We now understand the phenomena of core collapse and post-collapse gravothermal oscillations, as well as the important role that primordial binaries play. Since there are various recent reviews that cover these topics (e.g. Goodman 1992, Hut 1992, Hut et al. 1992), I will simply outline the basic physical principles of cluster stellar dynamics here, before discussing the connections with stellar evolution.

Double stars play a central role in cluster dynamics. If their orbital speed exceeds that of the velocity dispersion of the single stars, the tendency toward energy equipartition during encounters will transfer some of the internal kinetic energy to passing stars. Doing so, energy conservation causes them to shrink, while the negative heat capacity of self-gravitating systems causes them to heat up further, to higher orbital speeds (Lynden-Bell’s ‘donkey effect’: trying to slow down particles in a Kepler orbit speeds them up, and
vice versa).

The ‘gravitational fusion’ of single stars into double stars is thus one mechanism that can heat a cluster, in order to balance the energy losses due to the evaporation of stars and the heat flow through the cluster toward the colder halo. Some of the analogies with nuclear fusion in stars, as well as a derivation of binary distribution functions as the classical limit of the hydrogen atom, are reviewed by Hut (1985). Some of the most detailed studies of gravitational scattering, the mechanism of gravitational fusion, can be found in Heggie & Hut (1993) and Goodman & Hut (1993) and references therein.

Energy Generation and Energy Budgets

Other mechanisms can play a role as well in fueling the central heat engine needed to balance the heat flow from the core to the cluster halo. Mass loss through stellar evolution (especially the much more rapid stellar evolution of merger remnants) can indirectly heat a cluster through the paradoxical effect of carrying off kinetic energy – simply because the potential energy carried off per unit mass is much larger, and tilts the balance towards an effective heating. Similarly, the formation of a modest black hole can also cause a heating of the cluster, through the selective eating of stars on low-energy orbits near the hole (for both mechanisms, see the review by Goodman 1992).

It is far from clear to what extent these various heating mechanisms compete with each other in actual globular cluster cores. Order-of-magnitude estimates indicate that they all can be significant, depending on the precise conditions in the cores, as well as on the nature of the stars. For example, white dwarfs, neutron stars and stellar-mass black holes are likely to produce energy by dynamical binary formation and hardening, while main-sequence stars and giants are likely to suffer physical collisions while attempting to do so.

Whatever the detailed mix of energy sources in individual clusters may turn out to be, binaries play a central role in the energy budget of a globular cluster. For example, observations of primordial binaries in globular clusters indicate that the binary abundance in globular clusters is not much smaller than that in the Galactic disk and halo (as reviewed recently by Hut et al. 1992; see also Kaluzny & Krzeminski 1993 for additional binary detections in NGC 4372). This suggests that \(\gtrsim 10\% \) of the stellar objects in a cluster...
may be binaries with an orbit of $\lesssim 1$A.U., which implies an average binding energy per binary of $\gtrsim 10$ times that of the average kinetic energy of single cluster stars.

This simple reasoning leads to the astonishing conclusion that the internal energy reservoir in binary binding energies may well exceed the total amount of kinetic energy in the cluster as a whole (in the form of center-of-mass motion of single stars and binaries).

The dominant role played by the internal degrees of freedom of binaries in the overall energy budget already suggests that we’d better provide an accurate treatment of binary star evolution, if we want our overall cluster evolution to be believable. This is the topic of the next section.

3 Ecological Reaction Networks

With binary stars having locked up the bulk of the energy content of a typical globular cluster, we cannot afford to neglect the transformations in binary properties that take place in the course of normal stellar evolution. The reason is that stellar encounters do not have a monopoly on changing the energy and angular momentum of binaries; isolated binaries, too, have plenty of ways of changing their appearance in complicated ways (for a fascinating account of an ensemble simulation of these processes, see the contribution by Onno Pols in these proceedings).

Even a partial list of some of the processes involved in isolated binary evolution gives an idea of the complexity of the physics, such as there are: tidal capture, magnetic breaking, gravitational radiation, run-away mass transfer, and common envelope evolution. Take into account the manifold perturbations and disruptions that can occur when passing stars or binaries thicken the plot, and you see what we are up against. Clearly, the feed-back mechanisms between stellar dynamics and stellar evolution in globular clusters play a major role in the evolution of the cluster as a whole. The term ‘ecology’, used by Douglas Heggie in his recent ‘news and views’ article in Nature (Heggie 1992), indeed captures the essence of this interplay.

Blue Stragglers

In those clusters that have a relatively low central star density, as well as in the outer areas of all clusters, blue stragglers can be formed by mass
overflow from an evolving star in a tight binary to the (initially) less massive
star (Pols, this volume). In addition, physical collisions between initially un-
related single stars must produce blue stragglers as well, in the denser cluster
cores, as was first realized by Hills & Day (1976). Furthermore, encounters
between single stars and binaries are even more efficient in inducing physical
collisions between stars, as was pointed out by Hut & Verbunt (1983).

More detailed estimates by Krolik (1983), Krolik, Meiksin & Joss (1984),
and Hut & Inagaki (1985) confirmed the fact that many thousands of stellar
collisions must have taken place throughout the history of our globular cluster
system. The feedback of these merger remnants on the dynamical evolu-
tion of the cluster itself was first taken into account by Lee & Ostriker (1986) and
Lee (1987).

Unfortunately, the present state of cluster modeling still does not allow
us to make significant improvements over the order-of-magnitude estimates
in the papers quoted above. As discussed by Hut et al. (1992), Fokker-
Planck models have two intrinsic handicaps that make them unsuitable for a
quantitative modeling of the evolution of a blue straggler population. First,
they are not set up to deal with the separate evolution of internal and external
degrees of freedom of the binaries that play an important role in the formation
and evolution of blue stragglers.

The second problem stems from an introduction of a mass spectrum, as
well as a distinction between stars of different radii, such as dwarfs, main-
sequence stars, and giants. The root of the problem here is that a Fokker-
Planck approach does not follow individual stars, but rather distribution
functions. When the number of independent parameters characterizing the
distribution functions becomes too large, there will be less than one star left
in a typical cell in parameter space — something that clearly invalidates the
statistical hypothesis on which the Fokker-Planck approach is based.

The only solution seems to be to drop the statistical assumption, and to
revert to a star-by-star modeling of a globular cluster, through direct N-body
calculations. Unfortunately, such calculations are extremely expensive.
4 The Hardware Barrier: Toward a Teraflops Speed

Progress in increasing the number of particles in N-body simulations of star clusters has been slow. In the sixties, N was measured in the tens; in the seventies in the hundreds; and in the eighties in the thousands. Peanuts indeed, compared to cosmological simulations with $10^6 \sim 10^7$ and more particles! Why are these numbers so different?

The main reason is the fact that star clusters evolve on the time scale of the two-body relaxation time at the half-mass radius, t_{rh}. In terms of the half-mass crossing time t_{ch}, $t_{rh} \propto N t_{ch}$. In addition, the use of tree codes or other codes based on potential solvers is not practical, given the high accuracy required. This follows from the fact that an evolving star cluster is nearly always close to thermal equilibrium. Therefore, small errors in the orbits of individual particles can give rise to relatively much larger errors in the heat flux through the system.

As a result, the cost of a simulation of star cluster evolution scales roughly $\propto N^3$, since N crossing times are needed for each relaxation time, and all N^2 gravitational interactions between the stars have to be evaluated many times per crossing time. In contrast, most simulations in galactic dynamics span a fixed number of crossing times, and can employ an algorithm with a computational cost scaling $\propto N \log N$. It is this difference, of roughly a factor N^2, which has kept cluster modeling stuck in such a modest range of N-values.

What it Takes

The above rough estimates, although suggestive, are not very reliable. In an evolving star cluster, large density gradients will be formed, and sophisticated integration schemes can employ individual time steps and various regularization mechanisms to make the codes vastly more efficient (see the next section). One might have hoped that the above scaling estimates might have turned out to be too pessimistic. Indeed, empirical evidence based on

1The 1993 record is a run with 10,000 particles, which reached core collapse after spending a CRAY YMP month of CPU time spread out over about a year (Spurzem & Aarseth 1993).
runs in the range $100 < N < 1000$ seemed to indicate a scaling of the computational cost $\propto N^{1.6}$, rather than N^2, per crossing time (Aarseth 1985).

However, a detailed analysis of the scaling behavior of various integration schemes (Makino & Hut 1988) showed that the relatively more mild empirical scaling must have been an artifact of the still rather small N values it was based on. Instead, the best asymptotic scaling reported by Makino & Hut, based on a lengthy analysis of two-timescale methods, resulted in a computational cost $\propto N^{25/12}$ per crossing time in a homogeneous system, as well as in an isothermal density distribution. For steeper density distributions, with the velocity dispersion increasing towards the center, they found even slightly higher cost estimates.

With this staggering scaling of the computational cost, slightly worse than $\propto N^3$, it would seem worthwhile to look for some type of approximate method, in which part of the star cluster is modeled in a statistical fashion. Indeed, such a hybrid approach, using a combination of Fokker-Planck methods and direct N-body integration, was carried out by McMillan and Lightman (1984ab) and McMillan (1985, 1986). This approach proved to be successful in modeling a star cluster around the moment of core-collapse. However, these simulations could not be extended significantly beyond core collapse, for lack of computer time.

When Hut, Makino & McMillan (1988) applied the analysis by Makino & Hut to McMillan’s hybrid code, as well as to a variety of other algorithms, they reached a pessimistic conclusion. In order to model even a modest globular cluster with 10^5 stars, even with the theoretically most efficient integration scheme, would carry a cost of several Teraflops-days (a Teraflops equals 10^{12} floating point operations per second, and a Teraflops-day therefore corresponds to 10^{17} floating point operations). More realistically, they concluded, for a relatively simple and vectorizable or parallelizable algorithm, the computational cost would lie in the range of Teraflops-months.

How to Get There

Available computer speed increases by a factor of nearly two each year, or a factor of $300 \sim 1000$ per decade. Ten years ago, the speed of personal computers (or a per-person-averaged speed of a VAX), was measured in kflops, while current workstations are measured in terms of Mflops. Extrapolating, by the year 2013 we can expect each of us to have a multi-Teraflop machine on our desk, enabling us to core-collapse a globular cluster in a week or so.
If we look at the speed of the fastest supercomputers available, a similar scaling holds. Ten years ago, astrophysicists could have occasional access to a supercomputer, but when averaged to a sustained speed, it would boil down to only a fraction of a Mflops speed. And indeed, by now the best one can hope to obtain from a NSF supercomputer center is an average speed of a fraction of a Gflops. It would seem that the evolution of even a modest globular cluster would not be possible until some time around the year 2003.

Fortunately, we do not have to wait that long. Following the rather pessimistic conclusions of Hut et al. (1988), a project was started to construct special-purpose hardware for \(N\)-body calculations, by a small group of astrophysicists at Tokyo University (Sugimoto et al. 1990). This GRAPE project (from ‘GRAvity PipE’) centers on the development of parallel Newtonian-force-accelerators, in analogy to the idea of using floating-point accelerators to speed up workstations. During the last three years, a variety of GRAPE versions has been completed (and some of them distributed to other locations outside Japan), and used successfully for several astrophysical calculations (see, e.g., Funato, Makino & Ebisuzaki 1992).

The next major step in this project will be the development of a Teraflops speed high-accuracy special-purpose computer (the HARP, for ‘Hermite AcceleratoR Pipeline’; Makino, Kokubo & Taiji 1993), in the form of a set of a few thousand specially designed chips, each with a speed of several hundred Mflops. This machine is expected to be available some time next year.

5 The Software Barrier: Recursive Transformations

The shortest length and time scales of interest in globular cluster evolution are posed by the closest encounters of the most compact types of stars. This leads us to a near-grazing encounter of two neutron stars, an event with a duration of order of a few milliseconds. Compared with the age of a globular cluster, \(10^{10}\) years, we have a discrepancy in time scales of no less than 20 orders of magnitude!

A similar problem shows up when we compare length scales. The diameter of a neutron star, expressed in units of the tidal radius of a globular cluster, is of order \(10^{-15}\). At first sight, modeling a globular cluster on a
star-by-star basis would seem pretty hopeless. The fact that we are able
to contemplate such an enterprise at all is largely due to the ingenuity and
Persistence of Sverre Aarseth, who has provided a framework in which to
tackle these seemingly unsurmountable problems (together with efficient im-
plemetations). The key words for facing up to the length scale and time
scale problems are individual timesteps and local coordinate transformations.

Time Scale Problem

In the course of the sixties, it was gradually realized how important bina-
ries are in determining the dynamics of star systems large or small – and at
the same time how devastating their presence was for one’s computer budget.
Even in a modest 10-body simulation, the formation of a single hard binary
is guaranteed to slow down the speed of the whole simulation by orders of
magnitude, when using one of the standard integration schemes for coupled
differential equations.

The reason is that even with variable time steps, these standard schemes
force all stars to share the same time step size. As a result, a typical timestep
size of a few hundred years in a loose association of ten stars can be reduced
to a month or less with the first moderately tight binary appearing on the
scene.

The answer to this problem, provided by Aarseth (cf. Aarseth 1985),
was the introduction of individual time steps. Instead of viewing a star
cluster with three-dimensional eyes, as made up of a set of mass points in
space, Aarseth took a four-dimensional view, in which each star was replaced
by an orbit segment. Whenever the time had come for a particular star to
move, it could determine the gravitational acceleration by all its neighbors by
asking them to slide along their orbit segments (implemented as polynomial
approximations) to the desired point in time, even though each of them in
turn had computed its own positions, velocities, and accelerations only at
earlier times.

This single algorithmic improvement did more to speed up star cluster
calculations than decades worth of hardware speed improvement. Even on
today’s fastest machines, it would be difficult to reproduce Aarseth’s calcu-
lations of twenty years ago without using individual timesteps.

Length Scale Problem
The large range in length scales, although somewhat smaller than the range in time scales, has turned out to pose a more significant problem for simulations of star cluster evolution. In contrast to the time scale problem, which simply slows things down to a crawl, the length scale problem can easily make a whole calculation meaningless.

The main problem lies in round-off errors. When we take a binary consisting of two neutron stars, moving in the outskirts of a globular cluster, there is no need to follow its internal orbit as long as other perturbers are far away (another significant software improvement provided by Aarseth). However, in the rare case that a third star would interact with that type of binary, we would have to follow all three point-particles numerically, during the time of the interaction.

And here the problem shows up most clearly: for the position vectors of the two neutron stars, with respect to the center of mass of the cluster, the first fifteen digits could turn out to be the same, as we saw above. Alas, even a double precision (64-bit) representation of floating point numbers typically carries a mantissa of only fifteen significant digits. So much for integrating equations of motion.

Admittedly, this is an extreme case, but it makes a point: loss of accuracy due to round-off when subtracting large numbers is a very serious worry in \(N\)-body calculations. Aarseth’s answer was to implement a series of ever more intricate treatments of two-body, three-body and more complex multiple encounters. These treatments are largely based on Kustaanheimo-Stiefel regularization procedures, in which the three-dimensional Kepler singularity is ‘unfolded’ by a coordinate transformation to four dimensions, mapping the three-dimensional Kepler problem into that of a four-dimensional harmonic oscillator through the inverse of one of the Hopf maps from \(S^3\) to \(S^2\) (cf. Stiefel & Scheifele 1971), introducing a \(U(1)\) gauge symmetry in the process.

Code Development

Aarseth has implemented various other algorithmic improvements as well, most notably the Ahmad-Cohen neighbor scheme, in which the individual time step scheme is further refined to a two-time-scale approach (by a more frequent calculation of nearby interactions, compared to remote interactions). The resulting code, NBODY5, that includes all these improvements, has been the tool of choice for any type of detailed star cluster \(N\)-body simulation, for well over a decade. The community owes a debt of gratitude to the generosity
and dedication of Sverre Aarseth, who not only has made his codes widely available, but has made himself available as well – for friendly advice as much as for code repair and maintenance.

All these developments notwithstanding, there are still some major problems facing us, if we want to carry out a star-by-star N-body simulation of globular cluster evolution. First of all, if the past can offer any guidance, increasing the number of particles by a significant factor is guaranteed to uncover new algorithmic bottlenecks, requiring new solutions and fine-tuning. The present state of Aarseth’s codes is the outcome of an evolutionary process of successive attempts to deal with increasingly harder problems, posed by the increase in complexity of the systems to which it has been applied. This process is likely to continue for quite a while.

Secondly, the large set of heuristic improvements, valuable as they have been in making calculations possible in the first place, pose a formidable problem to the implementation of stellar evolution recipes. Even simple questions such as the value of the distances between various particles at a given time becomes less straightforward as it may seem at first, when one realizes that one has to trace these distances in the guise of their four-dimensional transformations in which time itself is an extra coordinate, given as a function of the independent integration parameter. Add to this the veritable complexities in the Ahmad-Cohen bookkeeping of the two time scales used (separately for each individual particle, introducing a multiplicity of orbit segment representations), and the outline of the daunting task one is facing begins to appear.

Thirdly, and equally important, it would seem less than ideal if all simulations in an entire field of astrophysics would be continued with a single code, without any independent form of comparison or calibration. In a sense, winning the star cluster N-body space race hands-down, twenty years ago, has been a mixed blessing for Sverre Aarseth. He has gained a lot of friends, but at the same time has lacked any significant form of competition. It would seem high time for someone to explore alternative approaches to N-body code writing.

A Recursive Approach

For all these reasons, it has been clear for many years that an independent approach was called for. With the prospect of teraflops speeds becoming available in the near future, Jun Makino, Steve McMillan and I decided that
the time had come to take on the somewhat daunting task of engaging Sverre Aarseth in an amicable competition. Apart from the advised to ‘stay tuned’, I briefly sketch what lies at the core of our approach (Hut et al. 1993).

The central idea we have introduced is that of recursive coordinate transformations. The underlying notion is that of hierarchical simplicity. Rather than giving a special treatment to each of a number of different closely interacting groups (binaries, triples, binary-binary encounters, etc.), we use a recursive approach to split up an interacting group of stars in subgroups, down to the level of individual stars. The advantage is twofold: we can now handle arbitrary k-body subsystems, with $k > 4$ as well; and we can treat especially tight subgroups that may appear deep inside an already tight group (or even tighter sub-subgroups).

Most stars are unaffected by these special treatments, and are simply represented as leaves of a flat top-level tree. The stars that take part in close encounters or are members of multiple star systems, however, play a crucial role in cluster simulations. The bulk of NBODY5, for example, is concerned with special treatments of closely interacting groups of ≤ 4 stars. In addition, in most simulations so far most of the computer time has been taken up by the integration of the equations of motion of this stellar minority.

In our treatment of such groups of closely interacting stars, the center of mass of the group is represented by a node in the top-level tree. This node in turn serves as the local root node for a binary tree (a tree with two branches per node), in which each star forms a leaf. The structure of this tree is changed dynamically, to guarantee that the tree structure closely reflects, at any time, the configuration of the (sub)groups of the stars. Our approach somewhat resembles that taken by Jernigan and Porter (1989), the major differences being that we limit ourselves to small subsets of stars, and at least for the time being forgo any fancy regularization technique.

Whether we can get away with a bare-bones set of recursive coordinate transformations, rather than four-dimensional regularizations, remains to be seen. But in any case, our recursive approach to a dynamical maintenance of a tree configuration is likely to alleviate our task of providing a clean interface between the stellar dynamics and the stellar evolution parts of our code.

Clearly, the art of N-body modeling is a vast subject that still leaves room for many novel approaches. Extending its realm of application to the dynamics of 10^5 stars with, say, 10^4 primordial binaries, is a sure-fire way to stimulate further exploration.
6 The Physics Barrier: Recipes for Stellar Evolution

What will happen when a W Uma contact binary encounters another double star, say a red giant in orbit around a black hole (‘Bambi meets Godzilla’), after the four stars begin a chaotic four-body dance? It is not inconceivable, in the dense environment of a post-collapse cluster core, that an unrelated triple system will saunter by, say in the form of a white dwarf closely orbiting a neutron star, having just captured a main-sequence star in a wide elliptic orbit.

Farfetched, such a scenario, of a tightly-interacting seven-body system? Not really. With \(\sim 10^3 \) stars in a globular cluster core, during a post-collapse period of \(\sim 10^9 \) years, and a core crossing time of \(\lesssim 10^4 \) years, occasional traffic jams like the one sketched above are bound to happen.

A glance at the number of free parameters involved in such a complex encounter will dispel any thought of an approach based on some type of table lookup. Tabulating (or giving functional fits to) equal-mass three-body encounters in the point-mass limit is certainly doable (Heggie & Hut 1993), but in the much more complex cases such as the one sketched above such an approach simply won’t work. To avoid our computer code giving up in despair, we are aiming at constructing a hierarchical set of recipes, which hopefully will handle encounters of the type sketched above.

But, one cannot help wondering, do we really need to model a globular cluster on this level of detail? The answer is simple: we do. The reason is that there is no simpler simulation worth doing, because of the large gap between an equal-mass point-particle simulation of cluster evolution (unrealistic, but at least consistent), and a more realistic simulation. This is an important point, not generally appreciated. Let me be more specific.

Consistency

As soon as we introduce a mass spectrum in a star cluster simulation, we will see that the heavier stars start sinking toward the center, on the dynamical friction time scale, shorter than the two-body relaxation time by a factor proportional to the mass of individual heavy stars. The reason is that relaxation tends toward equipartition of energy, which implies that heavier stars will move more slowly and therefore gather at the bottom of the cluster
potential well.

If stars would live forever, there would be a large overconcentration of heavy stars in the core of a star cluster. However, in reality there is an important counter-effect: heavy stars burn up much faster than lighter ones. They may or may not leave degenerate remnants, that may or may not be heavier than the average stellar mass in the cluster (a quantity that also decreases in time). Clearly, it would be grossly unrealistic to introduce a mass spectrum without removing most of the mass of the heaviest stars on the time scale of their evolution off the main sequence and past the giant branches.

Another reason for introducing finite life times for stars comes from abandoning the very restrictive point mass model for stars. As soon as we do that, giving our stars a finite radius will give rise to stellar collisions. The heavier stars produced in the collision of two turn-off stars will burn up in one or two billion years. Again, we have to take this into account to be consistent, especially since the merger products themselves are prime candidates for further merging collisions.

The need to let many stars shed most of their mass, together with the fact that most of the energy in a globular cluster is locked up in binaries, poses a formidable consistency problem. Since binaries play a central role in cluster dynamics, consistency requires that we follow their complex stellar evolution, which involves mass overflow (which can be stable or unstable, and take place on dynamical or thermal or nuclear time scales) and the possibility of a phase of common-envelope evolution. On top of all that, we will have to find simple recipes for the hydrodynamic effects occurring in three-body and four-body reactions, and in occasional $N > 4$ reactions, as indicated above.

To sum up: there does not seem to be a half-way stopping point, at which we can expect to carry out consistent cluster evolution simulations. Either we study the interesting but unrealistic mathematical-physics problem of an equal-mass point particle model, or we opt for the realistic model with some set of stellar-evolution bells and whistles. The only question is: what is the simplest set that is still consistent?

Getting Started

Another way of posing the question is: how to mimic some form of stellar evolution that is utterly simple but not totally silly. We would be more than happy with a simple toy-model for starters, something which makes
errors of factors-of-a-few in many places, without being altogether ridiculous (no order-of-magnitude errors). From there on, we can then make further progress through a series of closely placed stepping stones, by further improving each of the many ingredients in the recipes hinted at above.

However, to build a not-altogether-silly toy model is far from trivial. The main problem is that a simulation with 100,000 stars will give rise to so many different types of interactions that human intervention will become impractical. The code will have to contain some rudimentary knowledge about each foreseeable (and probably as yet unforeseen!) encounter.

Once a minimum treatment of stellar evolution effects is included in future simulations, we have to face the question of the extent to which the initial rudimentary modeling can be improved. Here the prospects may well be limited, due to fundamental uncertainties posed by such processes as common-envelope evolution. Until detailed three-dimensional hydrodynamical modeling (including a full radiative treatment!) becomes available for such cases, there seems to be little reason to extend our treatment much beyond the simplest type of consistent implementation.

The scope for stellar evolution modeling thus seems well-determined by limitations to the allowed complexity on either end of the scale. I am confident that in a couple years time we will succeed in an implementation of this rather well-determined set of recipes. By then, the full wealth of observations of X-ray binaries, millisecond pulsars and blue stragglers can be brought in, and compared with our simulations. This will finally allow us to obtain a coherent picture of the so-far-elusive quantitative aspects of the structure and evolution of globular clusters.

7 Kilobyte Needles in Terabyte Haystacks

Generating data is only half the job in any simulation. The other half of the work of a computational theorist parallels that of an observer, and lies in the job of data reduction. As in the observational case, here too a good set of tools is essential. And not only that: unless the tools can be used in a flexible and coherent software environment, their usefulness will still be limited.

Three requirements are central in handling the data flow from a full-scale globular cluster simulation: modularity, flexibility, and compatibility. We have started to put together a software environment, Starlab (Hut et al.
that incorporates these three requirements. To some extent, Starlab is modeled on NEMO, a stellar dynamics software environment developed six years ago at the Institute for Advanced Study, for a large part by Josh Barnes with input from Peter Teuben and me, and has subsequently been maintained and extended by Peter Teuben.

Starlab is different from NEMO mainly in the following areas: it emphasizes the use of UNIX pipes, rather than temporary files; its use of tree structures rather than arrays to represent \(N \)-body systems; and its guarantee of data conservation – data which are not understood by a given module are simply passed on rather than filtered out.

Modularity: A Toolbox Approach

We have followed the UNIX model of combining a large number of small and relatively simple tools through pipes. This allows a quick and compact way of running small test simulations. For example, a study of relaxation effects in a cold collapse could be done as follows:

```
mkplummer -n 100 | freeze | leapfrog -t 2 -d 0.02 -e 0.05 | lagrad
```

Here \texttt{mkplummer} creates initial conditions for a 100-body system, according to a Plummer model distribution. The resulting data are piped into the next module, \texttt{freeze}, which simply sets all velocities to zero, while preserving the positions. Following that, the data are read in by the \texttt{leapfrog} integrator, which is asked to evolve the system for a period of 2 time units, with a stepsize of 0.02 time units, and a softening length of 0.05 length units. Finally, the resulting data are piped into a module that makes a plot of the Lagrangian radii of various percentiles of the system.

Flexibility: Structured Data Representation

Each snapshot of a \(N \)-body simulation can be stored in a file in a standard format, with a header indicating the nature of the snapshot. In addition, a list of all the commands used to create the data is stored at the top of the file, together with the time at which the commands were issued, so as to minimize the uncertainty about the exact procedures used. Each individual body is presented as a node in a tree, constructed so as to reflect the presence of closely interacting subsystems and their internal structure.

Each body has several unstructured ‘scratch pads’, in which each application program can write diagnostics or other comments describing particular
occurrences during the integration. This has proved to be extremely useful, by allowing various forms of data reduction to take place already during the run. Especially during complicated interactions involving stellar dynamics, stellar hydrodynamics, and stellar evolution effects, a free-format reporting system, tied to the individual interacting objects, will be very helpful in allowing a reconstruction of episodes of greatest interest.

Compatibility: Unfiltered Piping

The internal data representation of each module is such that unrecognized quantities or comments are stored internally, in the form of character strings. They are reproduced at the time of output, at the correct position, preserving their correspondence with the initial bodies they were associated with (some of which may have collided and merged). This allows the use of an arbitrary combination of pipes with the guarantee that no data or comments will be lost.

For example, in the commands

\[\text{evolve} \mid \text{mark_core} \mid \text{HR_plot} \mid \text{evolve} \]

the first module evolves the system, integrating the equations of motion, while also following the way the individual stars age and interact hydrodynamically. The second program computes the location and size of the core of the star cluster, and marks those particles that are within one core radius from the center. The third module plots a Hertzsprung-Russell diagram of the star cluster (perhaps using special symbols for the core stars), before passing on the data once more to the module that evolves the whole system. For this to work, the \text{mark_core} program needs to preserve the stellar evolution information, even though it only 'knows' about the stellar dynamical part of the data. Similarly, the \text{HR_plot} program needs to preserve the dynamical data.

8 Summary and Outlook

The study of star cluster evolution has seen steady progress throughout the last several decades. Analytic estimates dating back from the late thirties, together with numerical simulations in the late sixties and seventies, have provided the stage for the break-through in our understanding in the early
eighties, when the evolution through core collapse and beyond began to be understood.

In the ten years following this break-through, the various modeling techniques have been pushed to the limit of their applicability. We are now facing three barriers separating us from our goal of an adequate treatment of star cluster evolution: a star-by-star N-body modeling, including stellar evolution as well as stellar dynamics.

Two of the three barriers are related to the stellar dynamics part of the problem: getting the raw speed to do the simulations, and developing the algorithms necessary to utilize that speed. The third barrier is related to the implementation of an utterly simple (but not too simple) treatment of the various stellar evolution effects mingling with stellar dynamics.

The identification and initial exploration of these barriers begun in earnest five years ago, with a detailed analysis of the requirements of a star-by-star simulation (Makino & Hut 1988; Hut, Makino & McMillan 1988). The resulting specification of the necessity of a computer speed of order a Teraflops at the time made our goal seem remote. And indeed, it is unreasonable to expect full-time access to a Teraflops computer before some time early in the next century.

Fortunately, we do not have to wait a decade. Thanks to the hardware development of the Tokyo group (Makino et al. 1993), we now have a definite time table for our first star-by-star globular cluster simulations, with a number of stars in the range of 50,000 – 100,000: this is expected to take place some time in 1994.

9 Acknowledgments

I thank Sverre Aarseth, Jun Makino, and Steve McMillan for comments on the manuscript.

References

[1] Aarseth, S.J. 1985, in Multiple Time Scales, eds. J. U. Brackbill and B. I. Cohen (Orlando: Academic), p. 377

[2] Bailyn 1992, ApJ, 392, 519
[3] Funato, Y., Makino, J. & Ebisuzaki, T. 1992, PASJ, 44, 291

[4] Goodman, J. 1992, in Structure and Dynamics of Globular Clusters, eds. G. Meylan and S. Djorgovski, (San Francisco: Astron. Soc. Pac.)

[5] Goodman, J. & Hut, P. 1993, ApJ, 403, 271

[6] Heggie, D.C. & Hut, P. 1993, ApJS, in print.

[7] Heggie, D.C. 1992, Nature, 359, 772

[8] Hills, J.G. & Day, C.A. 1976, Astr. L., 17, 87

[9] Hut, P. 1985, in Dynamics of Star Clusters, I.A.U. Symp. 113, eds. J. Goodman and P. Hut (Dordrecht: Reidel), p. 231

[10] Hut, P. 1992, in X-ray Binaries and Recycled Pulsars, eds. E.P.J. van den Heuvel & S.A.Rappaport (Dordrecht: Kluwer Acad. Publ.), p. 317

[11] Hut, P., Makino, J. & McMillan, S. 1988, Nature, 336, 31

[12] Hut, P. & Inagaki, S. 1985, ApJ, 298, 502

[13] Hut, P., McMillan, S., Goodman, J., Mateo, M., Phinney, S., Pryor, T., Richer, H., Verbunt, F. & Weinberg, M. 1992, Binaries in Globular Clusters, PASP, 104, 981

[14] Hut, P., Makino, M., McMillan, S., 1993, in preparation

[15] Hut, P. & Verbunt, F. 1983, Nature, 301, 587

[16] Jernigan, J.G. & Porter, D.H. 1989, ApJS, 71, 871

[17] Kaluzny, J. & Krzeminski, W. 1993, submitted to MNRAS

[18] Krolik, J.H. 1983, Nature, 305, 506

[19] Krolik, J.H., Meiksins, A. & Joss, P.C. 1984, ApJ, 282, 466

[20] McMillan, S.L.W. 1985, in Dynamics of Star Clusters, I.A.U. Symp. 113, eds. J. Goodman and P. Hut (Dordrecht: Reidel), p. 331

[21] McMillan, S.L.W. 1986, ApJ, 307, 126
[22] McMillan, S.L.W. & Lightman, A.P. 1984a, ApJ, 283, 801
[23] McMillan, S.L.W. & Lightman, A.P. 1984b, ApJ, 283, 813
[24] Makino, J. & Hut, P. 1988, ApJS, 68, 833
[25] Makino, J., Kokubo, E. & Taiji, M. 1993, to appear in PASJ.
[26] Lee, H.M. & Ostriker 1986, ApJ, 310, 176
[27] Lee, H.M. 1987, ApJ, 319, 801
[28] Spitzer, L., 1987 Dynamical Evolution of Globular Clusters, Princeton University Press
[29] Spurzem, R. & Aarseth, S.J. 1993, private communication
[30] Stiefel, E.L. & Scheifele, G., Linear and Regular Celestial Mechanics, (Berlin: Springer).
[31] Sugimoto, D., Chikada, Y., Makino, J., Ito, T., Ebisuzaki, T. & Umemura, M. 1990, Nature 345, 33