The causal link between circular economy and economic growth in EU-25

Chun-Chih Chen1,2 · Hsiao-Tien Pao3

Received: 10 February 2022 / Accepted: 18 May 2022 / Published online: 6 June 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Actively promoting circular economy (CE) is one of the key means of global sustainable development. The purpose of this study is to analyze the causal relationship between CE and economic growth using data from EU-25 countries from 2010 to 2018. The selected CE indicators included municipal waste recycling rate, CE-related investment, municipal waste generation per capita, circularity rate, and trade in recyclable raw materials. Panel cointegration techniques affirmed the long-term equilibrium relationship between CE indicators and GDP. Panel vector error correction model results confirmed that in terms of short-run causality, an increase in material recycling led to a decrease in waste generation, an increase in waste generation led to an increase in CE-related investment, and economic growth led to circular economy growth, but not vice versa. This implies that encouraging CE-related innovation investments and promoting material recycling to stimulate the secondary raw material market can help achieve zero waste goals. Looking at the long-term causality, the GDP and CE indicators constituted a causal loop, which implies that there is co-evolution between them, although the circular economy is still in its infancy. This co-evolutionary sustainable economic growth can bring welfare to future generations.

Keywords Recycling · Circular economy · Economic growth · Causality · Panel model

Abbreviations
ARDL Autoregressive distributed lag model
CE Circular economy
CUR Circularity rate
C2C Cradle to cradle
EC Energy consumption
EE Environmental employment
ELEC Electricity consumption
ETax Environmental taxes
GDP Gross domestic product
GDPp Gross domestic product per capita
GMM Generalized method of moments
GMWp Municipal waste generation per capita
GPP National Green Procurement Plans
HE Heating energy
INV CE-related investment
LF Labor force–related variables
LU Luxembourg
MSWG Municipal solid waste generation
PAT Recycling-related patents
REC Renewable energy consumption
R&D The expenditure of R&D
RbW Recycling of bio-waste
ReP Recycling rate of e-products
RecyFact Recycling factor
ResoFacts Resource consumption factors
ReW Recycling rate of e-waste
RMW Recycling rate of municipal waste
RP Resource productivity
RpW Recycling rate of packaging waste
S_Innov Market share of environment-related innovative products
S_REC Share of renewable energy in electricity
TMR Trade in recyclable raw materials

Responsible Editor: Nicholas Apergis

Hsiao-Tien Pao
htpao123@gmail.com; htpao@nycu.edu.tw
Chun-Chih Chen
elvischen.ms04g@nctu.edu.tw

1 Department of International Business, National Taichung University of Science and Technology, Taichung City, Taiwan, Republic of China
2 Office of Research and Development, Tunghai University, Taichung City, Taiwan, Republic of China
3 Department of Management Science, National Yang Ming Chiao Tung University, Hsinchu, Republic of China
Introduction

The 2021 Circularity Gap Report (CGR 2021) has shown that our world is getting less circular. The world economy Circular Gap wilted from 9.1% in 2018 to 8.6% in 2020. The Report signals that large-scale unsustainable influences, processes, and behaviors have occurred in our ongoing linear economy. This results in the production of greenhouse gases (GHGs) from resources extraction to final use accounting for about 70% of the total GHGs. If the circular strategy proposed in the Report is adopted, it is expected to reduce global GHG emissions and raw material usage by 39% and 28%, respectively. In 2021, the European Commission released its new Circular Economy Action Plan (CEAP 2021). It fits in a list of EU strategic documents that have a significant impact on standardization, including the new biodiversity, farm-to-table, industrial, sustainable chemicals, and sustainable product initiative strategies. The Commission’s vice president, Frans Timmemans, pointed out that the European economy is still largely linear, with only 12% of materials being recycled and returned to the economy. He said “To achieve climate-neutrality by 2050, to preserve our natural environment, and to strengthen our economic competitiveness, requires a fully circular economy.” Understanding how a circular economy affects economic growth is an important issue in moving towards more circularity.

Promoting a circular economy requires an innovative business model that closes the loop throughout the life cycle of products, materials, and resources to achieve sustainability and profitability, while being attractive to customers and suppliers. Therefore, strengthening the CE can achieve mutual benefits in three aspects, that is, increasing company profits, reducing customer costs, and environmental sustainability (Korhonen et al. 2018). McKinsey calculated that by 2030, in Europe alone, the circular economy would create a net benefit of 1.8 trillion Euros due to the technology revolution (McKinsey and Company 2015). The social outcomes created by this economic model are expected to improve the lives of Europeans, such as improving the quality of life and the environment, creating local green jobs, and increasing household income by almost €3000 (Ellen MacArthur Foundation 2015).

To understand the current state of the EU’s promotion of a circular economy, we collected six CE-related data for preliminary analysis, including municipal waste recycling rate (RMW), CE-related investment (INV), municipal waste generation per capita (GMWp), circularity rate (CUR), trade in recyclable raw materials (TRM), and real GDP. The second row of Table 1 is the average value of each variable in the EU-27 as a whole from 2010 to 2017; the next row is the value of each variable in 2018 (Eurostat 2021; World Bank 2021). The last row of Table 1 shows the percentage increased for each variable in 2018. Of them, CE-related investment and waste recycling rate increased the most, materials recycling volume and its recycling rate increased slightly, and waste generation increased the least. The growth of circular economy indicators and GDP imply that European countries were making efforts to promote efficient resource management and sustainable economic growth.

Most recent studies indicate that a circular economy is conducive to economic development. However, there are few quantitative articles that comprehensively explore the nexus between circular economy and economic growth. To fill this gap, this study uses a panel vector error-correcting econometric model (VECM) to examine whether the causal relationship between the circular economy and economic growth is beneficial, inhibitory, neutral, or feedback. Given the short annual data cycles of circular economy indicators, analysis using cross-country panel data can improve the validity of the model.

After introducing the literature gap and the objectives of this paper in the first section, the literature review in the second section discusses topics that are critical to this study. The third section proposes the research framework and research methods. The next section contains descriptive statistics of the connected data, empirical evidence, and discussion. The last section proposes conclusions, policy implications, and research limitations.

Table 1 The comparison between the average value of each indicator from 2010 to 2017 and the corresponding value in 2018 for the EU-27 as a whole	GMWp	TRM	CUR	RMW	INV	GDP
	kg	Million tonne	%	%	Billion euro	Billion US dollar
Eurostat 2021					World Bank 2021	
2010–2017	489	80.15	11.03	42.63	114.17	13360.35
2018	496	84.10	11.50	47.20	130.80	4500.41
Growth %	1.43	4.93	4.31	10.73	14.56	8.53
Literature review

The “take-make-waste” approach in the global production and consumption sectors contributed to around half of global carbon dioxide emissions in 2019, and the resulting waste is causing damage to the environment and human health. And a circular economy that promotes waste elimination and the continued safe use of natural resources could generate economic benefits of up to $4.5 trillion by 2030 (World Economic Forum 2019). CE aims to model human industrial following natural processes through a Cradle-to-Cradle (C2C) design philosophy. This way, there will be no waste as all materials are considered recyclable and useful nutrients. Therefore, the CE strategy is seen as a key way to achieve both resource decoupling and impact decoupling. These two types of decoupling are one of the necessary conditions for sustainability.

In 2018, the European Commission proposed using four aspects of production and consumption, waste management, secondary raw materials, and competitiveness and innovation to measure progress in resource use and circular economy. Each aspect contains some quantitative indicators of circular economy, such as resource productivity (RP), recycling rate of e-products (ReP), municipal solid waste generation (MSWG), and municipal waste generation per capita (GMWp) in the production and consumption aspect; the recycling rate from municipal waste, bio-waste, e-waste, and packaging waste (RMW, RbW, ReW, and RpW) in the waste management aspect; and CE-related private investment (INV) and recycling-related patents (PAT) in the competitiveness and innovation aspect; as well as trade volume of recyclable raw materials (TRM) and circularity rate (CUR) in secondary raw materials aspect. Table 2 panel A shows the literature that uses these indicators and GDP-related variables to construct a linear econometric model to study the impact of circular economy on economic growth, namely the CE–growth nexus study. The empirical results presented that indicators GMWp, RMW (including ReW, RpW, and RbW), GMWp, CUR, TRM, INV, PAT, ReP, RP, and WEEE had a positive impact on the growth/growth rate of GDP per capita (Vujčić et al. 2018; Georgescu et al. 2022; Busu and Trica 2019; Busu 2019; Trica et al. 2019; Hysa et al. 2020; Sverko Grdic et al. 2020; and Boubellouta and Kusch-Brandt 2020), and indicators CUR, RP, TRM, and GMWp positively influenced RMW (Tantau et al. 2018; Georgescu et al. 2022), as well as recycling factor (RecyFact), resource consumption factor (ResoFact), RpW, RMW, or PAT positively influenced RP (Pineiro-Villaverde and García-Alvarez 2020; Vujčić et al. 2018). In addition to the above research, there are some literatures discussing this issue from different angles. Simionescu et al. (2020) pointed out that the implementation of the “National Green Procurement Plan” had a positive impact on the EU economy. Sulich and Solodouko-Pelc (2022) studied the creation of Green Jobs market in the circular economy. They found RbW, INV, and PAT can enhance a number of Green Jobs in the EU-28. About causality, Magazzino et al. (2020) found a bidirectional Granger causality between MSWG and economic growth in Switzerland. Gardiner and Hajek (2020) revealed bidirectional causalities between GMWp and economic growth and between GMWp, heating energy, and R&D intensity indicators using panel VECM in EU countries. Georgescu et al. (2022) showed bidirectional causality for RMW-GDP and RMW-GMWp and unidirectional causality from GDP to GMWp using the Dumitrescu–Hurlin causality test. Based on the findings, they propose policies, such as fees, incentives, and eco-innovations, to strengthen the circular economy and reduce waste generation.

Regarding energy resources and economic growth nexus, many historical literatures use panel VECM to analyze the causal relationship between them (i.e., energy–growth causality). One of its extensions is the study of CE–growth causality, because CE is highly related to resource consumption, efficiency, and conservation. Panel B of Table 2 shows the literature on the energy growth. In order to understand the impact of the effective use of energy resources in the EU on the economy in recent years, we only selected literature whose research data period exceeds 2015. For the Central and Eastern European countries, Bercu et al. (2019) found a long-run bidirectional causality between electricity consumption and economic growth and Manta et al. (2020) found no causality between total energy consumption and growth. For clean energy, Smolović et al. (2020) found long-run bidirectional causality between renewable energy consumption and growth in new EU-13 and long-run unidirectional causality from growth to renewable in traditional EU-15. Simionescu et al. (2019) found no causality between share of renewable energy in electricity and growth in EU-27. Busu (2020) found long-run unidirectional causality from renewable energy consumption to growth and bidirectional causality between resource productivity and growth in EU-28. One of the possible reasons for the inconsistent research results is that the proxy variables used for energy in the literature are different.

To the best of our knowledge, there are few articles using quantitative indicators of the four aspects of circular economy to construct an econometric model to comprehensively analyze their causal relationship with economic growth. That is, whether the growth of circular economy will lead to economic growth, reverse growth, co-evolution, or neutrality. Our study aims to fill this gap, using a panel VECM to
Table 2 Literature survey

Panel A: GDP-CE nexus

Author	Period	Country/region	Methodology	Depend var.	Independent var. and results
Busu and Trica et al. (2019)	2010–2017	EU-27	Pooled regression	YCG	CUR, RMW, TRM, ETax, and LF (All≈YCG)
Busu (2019)	2008–2017	EU-27	Pooled regression	YCG	RMW, S_INNOV, REC, and LF (All≈YCG)
Trica et al. (2019)	2007–2016	EU-27	Pooled regression	YCG	RP, EE, ReP, S_Innov (All≈YCG)
Hysa et al. (2020)	2000–2017	EU-28	Panel regression	GDPp	ETax, RMW, and INV≈GDPp; TRM≠GDPp
Sverko Grdic et al. (2020)	2008–2016	EU-28	Pooled regression	GDPp	INV, GMWp, RMW, RpW, RbW, and ReW≈GDPp
Tantau et al. (2018)	2010–2014	EU-28	Panel regression	RMW	CUR, RP, TRM, ETax, and R&D (All=RMW except ETax≈RMW)
Georgescu et al. (2022)	2000–2018	EU-25	Poled OLS	RMW, GDPp	RMW, GMWp, and R&D (All=GMWp); GDPp, GMWp, and R&D (All=RMW); RMW→GMWp; GMWp→R&D; GDPp→GMWp, R&D; R&D→GMWp
Pineiro-Villaverde and García-Alvarez (2020)	2001–2018	EU-28	Panel causality test	RMW	RecyFact, ResoFacts≈RP
Vută et al. (2018)	2005–2016	EU-28	Panel regression	YCG	RpW, RMW, PAT and R&D (All=RP); RpW, PAT, PAT≈YCG
Boubellouta and Kusch-Brandt (2020)	2000–2016	EU28+2	GMM	WEEE	GDPp≈WEEE
Siminică et al. (2020)	2007–2018	EU-28	Panel unrestricted VAR	GDPp, CE, CO₂	GPP (GPP≠CO₂; GPP≈GDPp,CE)
Sulich and Soloduch-Pelec (2022)	2009–2019	EU-28	Pooled regression	Green Jobs	RpW, PAT, and INV≈Green Jobs
Magazzino et al. (2020)	1990–2017	Switzerland	Granger test	GDPp, MSWG	GDPp≈MSWG
Gardiner and Hajek (2020)	2000–2018	EU-28	Panel VECM	GDPp, GMWp, HE, R&D intensity	GMWp→GDPp, GMWp→HE→R&D intensity

Panel B: Energy–GDP causality

Author	Period	Country/region	Methodology	Results
Bercu et al. (2019)	1995–2017	14 Central and Eastern European countries	Panel VECM	ELEC→GDP
Manta et al. (2020)	2000–2017	10 Central and Eastern European Countries	Panel VECM	EC→GDP
Smolovč et al. (2020)	2004–2018	New EU-13 and traditional EU-15	Panel ARDL	REC→GDP (EU-13); GDP→REC (EU-15)
Simionescu et al. (2019)	2007–2017	European Union (EU-28, except LU)	Panel Granger causality	S_REC→GDPp
Busu (2020)	2004–2017	European Union (EU-28)	Panel VECM	5-type REC→GDP; RP→GDP

The abbreviations are in the abbreviation section.
investigate the causal relationship between CE and economic growth in EU countries.

Model and methodology

CE strategies are seen as a key way to decouple resource use and environmental impacts from economic growth. We selected five key quantitative indicators from four aspects of CE as a benchmark for comprehensively measuring the progress of circular economy in the EU. They are municipal waste generation per capita (GMWp) in the production and consumption aspect, municipal waste recycling rate (RMW) in the waste management aspect, trade in recyclable raw materials (TRM) and circularity rate (CUR) in the aspect of secondary raw materials, and CE-related private investments (INV) in the aspect of competitiveness and innovation. Using these indicators, we constructed econometric models to analyze the causal relationship between CE and economic growth (i.e., CE–growth causality). In recent years, the use of panel econometric models to study the causal relationship between energy resources and economic growth has achieved fruitful results in the EU (i.e., energy resources–growth causality), see Table 1 panel B. Following previous studies and Pao and Chen (2021), this study uses panel VECM to investigate CE–growth causality through the following framework

\[
LGDP_{it} = \omega_0 + \omega_1 RMW_{it} + \omega_2 LTRM_{it} + \omega_3 LINV_{it} + \omega_4 LGMW_{it} + \omega_5 CUR_{it} + \epsilon_{it} \tag{1}
\]

where the subscript \(i = 1, \ldots, 25 \) denotes an individual of European Union countries, \(t \) represents the timeline from 2010 to 2018, and \(\epsilon_{it} \) is the error term. The variables LGDP, LINV, LGMWp, and LTRM are the natural logarithms of GDP, CE-related investments, generation of municipal waste per capita, and trade volume of recyclable raw materials, respectively. Two percentage-based variables, RMW and CUR, are not converted. The parameter \(\omega_i \) is the CE-related indicator \(i \) elasticity of GDP.

We constructed the following equation to examine whether the three explanatory variables CUR, LTRM, and RMW belonging to the resource recycling system in Eq. (1) have multicollinearity.

\[
CUR_{it} = \rho_0 + \rho_1 LTRM_{it} + \rho_2 RMW_{it} + \epsilon_{it} \tag{2}
\]

If Eq. (2) is a goodness-of-fit model, then multicollinearity occurs in Eq. (1) and CUR should be removed from Eq. (1) as follows:

\[
LGDP_{it} = \omega_0 + \omega_1 RMW_{it} + \omega_2 LTRM_{it} + \omega_3 LINV_{it} + \omega_4 LGMW_{it} + \epsilon_{it} \tag{3}
\]

In order to evaluate causality between time series variables in Eq. (3), three steps are required. First, the panel unit root test is used to assess for stationary in a time series. The null hypothesis is that there is a unit root and the alternative is stationary. Time series with unit root is nonstationary and is called integrated of order 1 or \(I(1) \). A stationary time series is called integrated of order 0 or \(I(0) \). An \(I(1) \) series can be changed to \(I(0) \) through first-order difference. Three panel unit tests, namely Fisher-type ADF (Augmented Dickey–Fuller), PP (Phillips–Perron) (Maddala and Wu 1999; Choi 2001), and LLC (Levin et al. 2002) are used to find the order of integration of LGDP, LINV, LGMWp, LTRM, RMW, and CUR.

In the second step, if the five series of LGDP, LINV, LGMWp, LTRM, and RMW in Eq. (3) are \(I(1) \), then the panel cointegration analysis is performed. If there exists a linear combination of the five variables that is \(I(0) \), then these five variables are said to be cointegrated and Eq. (3) is a cointegration equation. Cointegration equation has super-consistent OLS estimator \(\hat{\omega}_i \), which means that it is very close to the true parameter (Kao 1999). Two panel cointegration tests, Pedroni (1999) and Kao (1999), were employed. They have a common null hypothesis assumes of no cointegration. Pedroni (1999) derived seven cointegration statistics, four of which are based on the assumption of homogeneous panels, and the other three are in heterogeneous panels. Kao (1999) introduced an ADF t-statistics based on homogeneous panels. Briefly, based on Eq. (3), if (LGDP, RMW, LTRM, LINV, LGMWp) are \(I(1) \) and there exist \(\omega_i \) i=0,\ldots,4 such that residual \(\hat{\epsilon}_{it} \) is \(I(0) \), then Eq. (3) is a cointegration equation. If a cointegration equation exists between the variables, then there is long-run equilibrium relationship between them and there is causality between them in at least one direction (Engle and Granger 1987).

When panel cointegration is present, the final step is to extract causal relationships between the variables in Eq. (3) using panel VECM as follows:

\[
\begin{bmatrix}
\Delta LGDP_{it} \\
\Delta RMW_{it} \\
\Delta LTRM_{it} \\
\Delta LINV_{it} \\
\Delta LGMW_{it}
\end{bmatrix} = \begin{bmatrix}
\alpha_0 \\
\alpha_1 \\
\alpha_2 \\
\alpha_3 \\
\alpha_4
\end{bmatrix} + \sum_{d=1}^{r} \begin{bmatrix}
\alpha_{1d} & \alpha_{12d} & \alpha_{13d} & \alpha_{14d} & \alpha_{15d} \\
\alpha_{21d} & \alpha_{23d} & \alpha_{24d} & \alpha_{25d} \\
\alpha_{31d} & \alpha_{32d} & \alpha_{34d} & \alpha_{35d} \\
\alpha_{41d} & \alpha_{42d} & \alpha_{43d} & \alpha_{45d} \\
\alpha_{51d} & \alpha_{52d} & \alpha_{53d} & \alpha_{54d}
\end{bmatrix} \begin{bmatrix}
\Delta LGDP_{it-d} \\
\Delta RMW_{it-d} \\
\Delta LTRM_{it-d} \\
\Delta LINV_{it-d} \\
\Delta LGMW_{it-d}
\end{bmatrix} + \begin{bmatrix}
\lambda_1 \\
\lambda_2 \\
\lambda_3 \\
\lambda_4 \\
\lambda_5
\end{bmatrix} ECT_{it-1} + \begin{bmatrix}
u_{1t} \\
u_{2t} \\
u_{3t} \\
u_{4t} \\
u_{5t}
\end{bmatrix} \tag{4}
\]

where \(\Delta \) is the first-order difference operator, \(d \) is the lag length, and \(u \) is the error term. The first-order difference after taking the logarithm of a series (e.g., \(\Delta LGDP \)) approximates its growth rate. The joint-Wald test for the lag periods
of the first-order difference of each explanatory series is to find the short-run causality from the independent variable to the dependent variable. The error correction term (ECT or e_{it}) is the residual resulting from the cointegration Eq. (3) as follows:

$$ECT_{it} = LGDP_{it} - \delta_0 - \omega_1RMW_{it} - \omega_2LTRM_{it} - \omega_3LINV_{it} - \omega_4LGWP_{it}$$

A t-test of the coefficient λ_j of the lagged ECT term is used to find long-run unidirectional causality from the independent variables to the dependent variable. The λ_j is expected to be between -1 and 0, indicating the degree of correction to the previous imbalance.

Results and discussions

Descriptive statistics

The annual data in our study from 2010 to 2018 were obtained from Eurostat 2021 and the World Development Indicators 2021 (WDI 2021) for the EU 25 countries (except for Malta and Ireland due to insufficient data) (EU-25). Five CE indicators, namely per-capita municipal waste generation (GMWP; measured in kg), municipal waste recycling rate (%) (RMW), trade in recyclable raw materials (TRM; measured in ton), circularity rate (%) (CUR), and CE-related investment (INV; measured in million euro) are all in Eurostat database. Real GDP (measured in million Constant 2015 US$) is in the WDI database.

The summary statistics of the above 6 variables in the EU-25 data set from 2010 to 2018 are presented in Table 3.

Variable	Mean	SD	%CV	8-year %CAGR	5-year %CAGR
GDP (US$)	528.639	818.394	154.812	1.377	1.992
INV (Million Euro)	5058.239	7643.364	151.107	5.678	2.593
TRM (Million ton)	3.189	125.137	3.189	0.284	1.695
CUR (%)	8.756	71.687	125.137	1.264	0.738
RMW (%)	34.109	45.698	45.698	4.808	4.350
GMWP (kg)	471.866	127.364	26.991	471.866	471.866

SD is the standard deviations, %CV is the coefficient of variation. The 5-year %CAGR and 8-year %CAGR are the percentage-based compound annual growth rate for 2013–2018 and 2010–2018, respectively.
circular economy is to use C2C design concepts to overcome the obstacles to creating a secondary raw materials market.

Long-run estimates

In order to avoid spurious regression occurring in Eqs. (1–3), first, the integration order of each series must be determined by panel unit root test. Three panel unit tests, ADF, PP, and LLC, were used. Their results shown in Table 4 revealed that all the series L_{GDP}, L_{INV}, L_{GMWp}, L_{TRM}, and RMW and CUR in Eq. (1) were integrated of order one or $I(1)$.

In the second step, we performed panel cointegration test using Pedroni and Kao procedures. Table 5 shows that CUR, L_{TRM}, and RMW in Eq. (2) and L_{GDP}, L_{INV}, L_{GMWp}, L_{TRM}, and RMW in Eq. (3) were panel cointegrated. It indicated that there was long-run equilibrium relationship between CUR, TRM, and RMW and between GDP, INV, GMWp, TRM, and RMW, and their respective OLS estimators were considered to be super-consistent.

The two panel cointegration equations (Eqs. 6–8) shown in Table 6 have R^2 values greater than 98% and normally distributed errors based on the Jarque-Bera test statistics (JB, 1980). Through the unit root test, we get that their...
Fig. 2 Dot plots of LGDP versus the CE indicators for EU-25 (2010–2018)
residual series are integrated of order zero. Therefore, all OLS estimators in Eqs. (6–8) are super-consistent and there is multicollinearity in Eq. (7) because of its best fit. Remove the CUR series from Eq. (6) to get Eq. (8). Equation (8) was used to construct VECM as shown in Eq. (4) to find the causal relationship between economic growth and circular economy. The error correction term (ECT) in VECM is the residual series of Eq. (8).

The estimated coefficients of Eq. (7) provided that for every 1 percentage point increase in RMW and 1% increase in TRM, the average CUR increased by about 0.058 and 0.009 (=0.869/100) percentage points, respectively. The positive influence of waste recycling rate (RMW) and material recycling volumes (TRM) on CUR is similar to that of Tantau et al. (2018) for EU-28. The estimated coefficients in Eq. (8) provided that for every 1% increase in INV and GMWp, the average GDP increased by 0.280% and 0.126%, respectively; a 1 percentage point increase in RMW increased average GDP by 0.200%; and a 1% increase in TRM resulted in a decrease in average GDP by 0.039%. The negative influence of TRM on GDP can be understood from the annual average trend of TRM in Fig. 1.

In summary, a 1 percentage point increase in the waste recycling rate and a 1% increase in CE-related investment corresponded to 0.200% and 0.280% increase in GDP, respectively. This revealed that waste recycling and investment played a key role in economic growth. In fact, Table 3 also shows that the 8-year and 5-year average growth rates of RMW and INV were the two highest. In addition, a 1% increase in materials recycling corresponded to 0.039% decrease in GDP. The negative influence of materials recycling on GDP can be understood from the annual average trend of TRM in Fig 1. Based on the fact that the 8-year average growth rates of both materials recycling and materials recycling rate were the lowest, and their 5-year average growth rates were relatively low, the EU should actively understand the main obstacles hindering the efficiency of the secondary raw materials market, which will make the circular economy

Table 4 Unit root test for EU-25 panel data, 2010–2018

Var.	Individual unit root	Common unit root	
	ADF	PP	LLC
LGDP	22.428	21.997	4.689
RMW	59.795	60.597	-3.366***
LTRM	21.592	24.668	2.021
LINV	34.741	44.673	0.323
LGMWp	38.180	46.384	-0.150
CUR	62.688	57.093	-7.394***
ALGDP	70.340*	71.714*	-8.260***
ARMW	145.028***	179.826***	-14.617***
ALTRM	226.215***	228.751***	-14.188***
ALINV	90.004***	119.480***	-9.314***
ALGMWp	188.118***	196.412***	-13.451***
ACUR	106.882***	127.775***	-11.594***

*p<0.1; **p<0.05; ***p<0.01

Table 5 Panel cointegration tests results for Eqs. (2–3), 2010–2018

Pedroni test

Within dimensions	Between dimensions
Panel ν – statistic	Group ρ – statistic
-1.421 (2)	4.094 (2)
-1.368 (3)	5.280 (3)
Panel ρ – statistic	Group PP – statistic
2.129 (2)	-4.347*** (2)
3.322 (3)	-8.678*** (3)
Panel PP – statistic	Group ADF – statistic
-2.878*** (2)	-3.481*** (2)
-6.771*** (3)	-5.917*** (3)
Panel ADF – stat.	Group Kao test
-2.747** (2)	-2.742** (3)
-4.656*** (3)	-2.803** (2)

p<0.05; *p<0.01. The (2) and (3) represent Eq. (2) and Eq. (3), respectively.

Kao test

| ADF – stat. |
| -2.803** (2) |
| -2.742** (3) |

p<0.05; *p<0.01. The (2) and (3) represent Eq. (2) and Eq. (3), respectively.

Table 6 Panel cointegration equations (Eqs. 6–8), 2010–2018

Equation	%R²	JB-Stat.
(6) LGDP = 23.537+0.002RMW−0.039LTRM+0.279LINV+0.158LGMWp+0.003CUR	99.992	2.378
(7) CUR = -5.586+0.058RMW +0.869LTRM	98.006	3.503
(8) LGDP = 23.743+0.002RMW−0.039LTRM+0.280LINV+0.126LGMWp	99.993	2.120

JB-stat. is the Jarque-Bera test statistic. The standard error and p-value are placed in parentheses and brackets, respectively. *p<0.1; **p<0.05; ***p<0.01
more effective. Increasing the use of recycled materials can not only enhance economic resilience, but is also one of the main goals of the EU Circular Economy Action Plan (CEAP 2021), which makes goods sold on the EU market clean, circular, and sustainable.

Results and discussion of causality

Table 7 provides the estimated results of the panel VECM shown in Eq. (4). The ECT series are the residuals of Eq. (8). The short-run causality and long-run causality were tested using Wald F-statistics and Student’s t-statistics, respectively.

Regarding short-run causality, Eq. (9a) reveals that no CE indicator had a statistically significant effect on economic growth. According to the results of Eqs. (9b–9c), LGDP had a significant positive statistical effect on RMW and LTRM, but the CE-related indicators in the independent variables were insignificant. In Eq. (9d) with the dependent variable INV, LGDP and LGMDP were positive statistically significant, while RMW and LTRM were insignificant. In Eq. (9e) with the dependent variable LGMWP, LGDP and LTRM were positive and negative statistically significant, respectively, while LINV and RMW were insignificant.

The estimated coefficients \(\lambda_j \) of lagged error correction term (ECT\(_{t-1}\)) in Eqs. (9a–9e) were negatively statistically significant at the 1% level, revealing the long-run bidirectional causality between GDP, RMW, TRM, INV, and GMWP, and each series responded to previous period’s deviation from the long-run equilibrium. The adjustment coefficient \(\lambda_j \) measures the mean reversion speed of series \(j \) over a period of 1 year. The 62.2% and 44.3% adjustment speeds of INV and GMWP towards equilibrium were quite fast, while GDP, RMW, and TRM were relatively slow.

Table 7 Panel causality test results, 2010–2018

Dependent var.	Independent variable	Short – run F – stat.	Long – run t – stat.	\%R\(^2\)		
	\(\Delta \text{LGDP} \)	\(\Delta \text{RMW} \)	\(\Delta \text{LTRM} \)	\(\Delta \text{LINV} \)	\(\Delta \text{LGMWP} \)	ECT\(_{t-1}\) [Coeff. \(\lambda_j \)]
(9a)\(\Delta \text{LGDP} \)	0.823 (+)	2.354 (−)	0.334 (+)	0.538 (+)	−4.824 [−0.205]***	75.779
(9b)\(\Delta \text{RMW} \)	4.577 (+)**	0.635 (+)	----	1.674 (−)	−3.799 [−0.189]***	45.079
(9c)\(\Delta \text{LTRM} \)	8.661 (+)**	0.027 (+)	----	0.431 (+)	−4.236 [−0.225]***	58.264
(9d)\(\Delta \text{INV} \)	7.015 (+)**	0.111 (−)	1.236 (−)	15.127 (+)**	−7.284 [−0.622]***	62.685
(9e)\(\Delta \text{LGMWP} \)	9.531 (+)**	0.008 (−)	7.868 (−)**	1.724 (+)	−7.228 [−0.443]***	57.923

\(+/−\): the sign of the sum of the coefficients of each lagged explanatory variable. The coefficients of lagged ECT are in brackets. **\(p<0.05 \); ***\(p<0.01 \)

Fig. 3 Causal relationships between CE indicators and economic growth
In summary, from a long-run perspective, there was a causal loop between any two of the five variables (including GDP and four CE indicators) shown in Fig. 3, indicating that there was a close and stable causal relationship between CE and economic growth. In the short-run, (1) the existence of a negative unidirectional causality from TRM to GMWP implied that increased material recycling helped reduce waste generation; (2) the existence of a positive unidirectional causality from GMWP to INV implied that the increase in waste generation stimulated CE-related investments in order to effectively convert waste into gold for more sustainable development; and (3) the existence of a unidirectional causality from GDP to CE indicators without feedback indicated that economic growth promoted circular economy, but not vice versa. This may be because the circular economy is still in its infancy. A recent ABI research report estimated that with sustainability efforts and upcoming legislation taking effect, by 2030, the world will achieve circularity of more than 10.5% (ABIresearch 2021).

Conclusions, policy implications, and research limitations

This research uses panel data from the 25 EU countries from 2010 to 2018 to innovatively explore the causality between circular economy and economic growth (CE–growth causality). The purpose is to introduce policies to achieve a comprehensive decoupling of resources environment as a whole from economic growth. It is actually an extension of the research on the nexus between energy consumption and economic growth nexus (energy–growth causality). The summary statistics of this study showed that the 8-year and 5-year average growth rates of the waste recycling rate and CE-related investment were the highest, while the material recycling volumes and its rate were very low. The result of the long-term equilibrium relationship between the CE indicators and GDP revealed that the two indicators of waste recycling rate and CE-related investment had a positive effect on GDP, while the material recycling indicator had a negative effect. The comprehensive results reveal that it is imperative to introduce policies to encourage CE-related investment and stimulate the secondary raw materials markets. The EU should actively understand the main obstacles hindering the efficiency of the secondary raw materials market, which will make the circular economy more effective. Increasing the use of secondary raw materials is also one of the important goals of the EU’s CEAP, which makes goods sold on the EU market clean, circular, and sustainable.

Regarding causality, the estimated results of the panel VECM showed that in the short run, the increased in material recycling led to a decrease in waste generation and the increase in waste generation led to an increase in CE-related investment, indicating that EU countries are committed to achieving zero waste environmental benefits through investment in resource efficiency, which should be the effect of the EU’s active implementation of its waste policy. The key target of EU waste policy is to improve waste management and stimulate innovation in recycling (European Commission website). Furthermore, economic growth promoted a circular economy in the short run, but not vice versa. In the long run, GDP and CE indicators constituted a causal loop. The findings revealed that the active and effective use of resources had no significant impact on economic growth in the short term, but there was a close feedback relationship in the long term, even though the circular economy is still in its infancy. A recent ABI research report pointed out that with sustainability efforts and upcoming legislation taking effect, by 2030, the world will achieve circularity of more than 10.5% (ABI research, 2021).

The research results imply that multilateral policies that promote economic growth while expanding the circular economy should be introduced. Based on the Cradle-to-Cradle design concept, the two key elements of the policy should include encouraging CE-related research and innovation investment to stimulate the secondary raw materials market and improve materials recycling efficiency, as well as formulating laws to implement the EU Waste Policy and the European Green Deal. This can improve resource efficiency, achieve zero waste, and use fewer natural resources to create more value. Such sustainable economic growth can bring welfare to future generations.

The limitations of this study in terms of sample size and research methods can be resolved in future studies. Regarding the sample size, due to the short sample period of the CE indicators series (2010–2018), this study uses country-based panel data to meet the sample required for the study. The future will be better, because the general rule of quantitative research is that “the larger the sample, the more accurate the results.” In addition, if the sample size is large enough, more quantitative CE indicators, such as patents or environmental tax rates, can be included in the research model to strengthen the research results. For individual countries with different attributes, individual-based VECM can also be used to explore the impact of a circular economy on economic growth. Furthermore, the dynamic interaction between energy intensity or resource productivity and circular economy can be studied in the future. These efforts can strengthen the development of circular economy policies to achieve sustainability goals.

Availability of data and material Data and materials are available upon request.

Author contribution Chen and Pao provided conceptualization and first draft preparation; Chen and Pao completed methods, data, and analysis development; Chen and Pao reviewed and edited.
Declarations

Ethical approval Not applicable.

Consent to participate Not applicable.

Consent for publish Not applicable.

Competing interests The authors declare no competing interests.

References

ABiresearch (2021) Sustainability in action: by 2030 10.5% of the world will have achieved circularity. https://www.abiresearch.com/ Accessed 1 December 2021.

Bercu AM, Paraschiv G, Lupu D (2019) Investigating the energy-economic growth-governance nexus: evidence from central and eastern European countries. Sustainability. 11:3355. https://doi.org/10.3390/su11233355

Bourellouta B, Kusch-Brandt S (2020) Testing the environmental Kuznets curve hypothesis for E-waste in the EU28+ 2 countries. J Clean Prod 277:123371. https://doi.org/10.1016/j.jclepro.2020.123371

Busu M (2019) Adopting circular economy at the European union level and its impact on economic growth. Social Sciences 8:159. https://doi.org/10.3390/socsci8050159

Busu M (2020) Analyzing the impact of the renewable energy sources on economic growth at the EU level using an ARDL model. Mathematics 8:1367. https://doi.org/10.3390/math8081367

Busu M, Trica CL (2019) Sustainability of circular economy indicators and their impact on economic growth of the European union. Sustainability 11:5481. https://doi.org/10.3390/su11115481

CEAP (2021) The EU’s circular economy action plan. https://www.cenceleu.eu/news-and-events/news/2021/briefnews/2021-02-03-eu-circular-economy-action-plan/ Accessed 1 June 2021.

CRG (2021) New Circular Gap 2021 World Report. https://www.interregeurope.eu/smartwaste/news/article/1109/new-circularity-gap-2021-world-report/ Accessed 20 June 2021.

Choi M (2001) Threat effect of foreign direct investment on labor union wage premium. 10.2139/ssrn.335480 Accessed 15 May 2021.

Ellen MacArthur Foundation (2015) Growth within: a circular economy vision for a competitive Europe. https://ellenmacarthurfoundation.org/growth-within-a-circular-economy-vision-for-a-competitive-europe. Accessed 20 April 2021

Engle RF, Granger CW (1987) Co-integration and error correction: representation, estimation, and testing. J. Econometric Soc 251–276. https://doi.org/10.2307/1913236

Eurostat (2021) https://ec.europa.eu/eurostat/home? Accessed 10 December 2021

Gardiner R, Hajek P (2020) Municipal waste generation, R&D intensity, and economic growth nexus–A case of EU regions. Waste Manage 114:124–135. https://doi.org/10.1016/j.wasman.2020.06.038

Georgeescu I, Kinnunen J, Androniceana AM (2022) Empirical evidence on circular economy and economic development in Europe: a panel approach. J Bus Econ Manag 23:199–217. https://doi.org/10.3846/jbem.2022.16050

Houten FV, Ishii N (2019) It’s time for the circular economy to go global - and you can help. https://www.weforum.org/agenda/2019/01/its-time-for-the-circular-economy-to-go-global-and-you-can-help/. Accessed 15 March 2020

Hysa E, Kruja A, Rehman NU, Laurenti R (2020) Circular economy innovation and environmental sustainability impact on economic growth: an integrated model for sustainable development. Sustainability 12:4831. https://doi.org/10.3390/su12124831

Kao C, (1999) Spurious regression and residual-based tests for cointegration in panel data. J. Econom 90:1–44. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.81.4924&rep=rep1&type=pdf. Accessed 15 March 2020

Korhonen J, Naur C, Feldmann A, Birkie SE (2018) Circular economy as an essentially contested concept. J. Clean Prod 175:544–552. https://doi.org/10.1016/j.jclepro.2017.12.111

Levin A, Lin CF, Chu CSJ (2002) Unit root tests in panel data: asymptotic and finite-sample properties. J. Econometrics 108:1–24. https://doi.org/10.1016/S0304-4076(01)00098-7

Maddala GS, Wu S (1999) A comparative study of unit root tests with panel data and a new simple test. Oxford B. Econ. Stat 61:631–652. https://doi.org/10.1111/1468-0084.00161

Manta AG, Florea NM, Bădărcă RM, Popescu J, Circiu maru D, Doran MD (2020) The nexus between carbon emissions, energy use, economic growth and financial development: evidence from central and Eastern European Countries. Sustainability 12:7747. https://doi.org/10.3390/su12187747

Magazzino C, Mele M, Schneider N (2020) The relationship between municipal solid waste and greenhouse gas emissions: Evidence from Switzerland. Waste Manage 113:508–520. https://doi.org/10.1016/j.wasman.2020.05.033

McKinsey & Company (2015) Europe’s circular-economy opportunity. https://www.mckinsey.com/business-functions/sustainability/our-insights/europes-circular-economy-opportunity Accessed 10 July 2020

Pao HT, Chen CC (2021) The dynamic interaction between circular economy and the environment: evidence on EU countries. Waste Manag & Research 0734242X211057015. https://doi.org/10.1177/0734242X211057015

Pedroni P (1999) Critical values for cointegration tests in heterogeneous panels with multiple regressors. Oxford B. Econ. Stat 61:653–670. https://doi.org/10.1111/1468-0084.00165

Pineiro-Villaverde G, García-Alvarez MT (2020) Sustainable Consumption and Production: Exploring the Links with Resources Productivity in the EU-28. Sustainability 12:8760. https://doi.org/10.3390/su12218760

Siminica M, Avram M, Roxana LP, Avram L (2020) The adoption of National Green Procurement Plans from the perspective of circular economy. Amiteatra Econ 22:15–27. https://doi.org/10.24818/EA/2020/53/15

Simionescu M, Bilan Y, Krajičákova E, Streimikiene D, Gędek S (2019) Renewable energy in the electricity sector and GDP per capita in the European Union. Energies 11:3433. https://doi.org/10.3390/en12132520

Smolović JC, Muhadinović M, Radonjić M, Durušković J (2020) How does renewable energy consumption affect economic growth in the traditional and new member states of the European Union? Energy Rep 6:505–513. https://doi.org/10.1016/j.egyrep.2020.09.028

Sulich A, Solodoucho-Pelc L (2022) The circular economy and the Green Jobs creation. Environ. Sci. Pollut. Res 29:14231–14247 https://doi-org.ezproxy.lib.nctu.edu.tw/10.1007/s11356-021-16562-y
Sverko Grdlic Z, Krstinic Nizic M, Rudan E (2020) Circular economy concept in the context of economic development in EU countries. Sustainability 12:3060. https://doi.org/10.3390/su12073060

Tantau AD, Maassen MA, Fratila L (2018) Models for analyzing the dependencies between indicators for a circular economy in the European Union. Sustainability 10:2141. https://doi.org/10.3390/su10072141

The World Bank (2021) "World Development Indicators." URL: http://data.worldbank.org/data-catalog/world-development-indicators
Accessed 10 December 2021

Trica CL, Banacu CS, Busu M (2019) Environmental factors and sustainability of the circular economy model at the European Union level. Sustainability 11:1114. https://doi.org/10.3390/su11041114

Vuţă M, Vuţă M, Enciu A, Cioacă SI (2018) Assessment of the circular economy's impact in the EU economic growth. Amfiteatru Econ 20: 248-261. 10.24818/EA/2018/48/248

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.