Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Brief Report

Methylene blue in combination with sunlight as a low cost and effective disinfection method for coronavirus-contaminated PPE

Kevin A. Vos PhD a, Paul M.K. Gordon PhD b, Belinda Heyne PhD a,*

a Chemistry Department, University of Calgary, Calgary, Alberta, Canada
b CSM Centre for Health Genomics and Informatics, University of Calgary, Calgary, Alberta, Canada

ABSTRACT

Using the Murine Hepatitis Virus (MHV) A59 coronavirus as a SARS-CoV-2 animal surrogate, we validated that methylene blue (MB) in combination with sunlight exposure is a robust, fast, and low-cost decontamination method for PPE that should be added to the toolbox of practical pandemic preparedness.

INTRODUCTION

COVID-19 has not only highlighted the unpreparedness of the world to handle a global pandemic, but it has also unmasked the inequity of resources available.1-3 A major issue from the beginning of the pandemic has been the availability of personal protective equipment (PPE), including surgical masks and respirators,1-3 which still remains problematic in the same areas of the world where vaccines are not readily available to the general public.2 Consequently, efforts have been made to sanitize and re-use PPE.4-5 Published sanitization techniques are on the hours’ time scale and often require equipment that is not readily available to low-resource settings.4-5 Therefore, there is a need for cost-effective and time-efficient methods for the safe decontamination of PPE.

A recent global collaboration, which included our group, participated in a study on the Development and Methods for N95 Respirators and Mask Decontamination (DeMaND) and validated methylene blue (MB) in combination with visible indoor light to efficiently disinfect PPE contaminated with infectious SARS-CoV-2 or surrogate animal viruses.6 Herein, we undertake a follow-up study and demonstrate the efficacy of MB in combination with sunlight to decontaminate surgical masks, solidifying the position of MB as a robust decontamination method for all settings.

MATERIALS AND METHODS

Virus and cell

The murine hepatitis coronavirus (MHV) strain A59 and the delayed brain tumor (DBT) cells were kindly supplied by Dr Alain Lamarre, INRS, Quebec, Canada. All cultures were grown at 37 °C in a humidified incubator with 5% CO₂ according to literature protocols.7 The infectious activity of the viral cultures was determined in 6-well plates (VWR) by plaque counting assays.8 MHV stocks with titers ranging from 5.18 ±0.22 log₁₀ pfu/mL to 6.28 ±0.23 log₁₀ pfu/mL were used in subsequent steps.

Surgical masks

Razor Medical Surgical Disposable Face Masks: ASTM F2100 Level 1 were purchased from IDA pharmacy at the University of Calgary.

Simulated sunlight

Sunlight was simulated with a SolSim 2 photoreactor (Luzchem, Canada) that matches the air mass AM1.5 solar spectrum to within 1% total power difference between 300-800 nm, equivalent to the yearly average irradiance measure at mid-latitude (41.81° above the horizon) on an inclined plane at 37° tilt towards the equator, with a
solar zenith angle of z=48.2°. The AM1.5 spectrum has an integrated power of 1000W/m² (280-4000 nm).

Methylene blue treatment in solution

Solutions of MHV were made at a 10⁻² dilution in MEM without phenol red (Quality Biological) in the absence (control) and in the presence of 10 μM MB (treated). The solutions, with and without MB, were irradiated under simulated sunlight for various times, except for the solution referred to as time 0 min, which was kept in the dark. Virus inactivation at different irradiation time points was quantified via a plaque counting assay.8 Integrity of the genetic material was assessed by next generation sequencing (Illumina MiSeq, 300 cycle nano flowcell, paired-end). Viral RNA was extracted from selected samples using a QIAamp Viral RNA kit (Qiagen) according to manufacturer protocol on triplicate samples. Library input was evaluated using D1000 ScreenTape (Agilent). The raw sequences for the RNA sequencing experiment have been deposited in the NCBI SRA under accession PRJNA806985, while mapping and mutation statistics were generated using scripts and reference datasets available at http://github.com/nodrogluap/damage.

Virus inoculation and elution on a surgical mask

Surgical masks were cut into 1 cm² square coupons. A 10 μM aqueous MB solution was sprayed onto several mask cut-outs (treated). Each coupon was placed down on a bench and sprayed 3 times (1 mL/spray) from 10 cm above to ensure full identical coverage of the coupons treated with MB. The coupons were then allowed to dry overnight in the dark, while control coupons were left untreated. To all coupons, 20 μL of the virus was inoculated. After sunlight exposure, the virus was eluted from the mask according to previously developed protocols.6 Virus inactivation was quantified via plaque counting assay.8

Data analysis

All data were computed and analyzed using GraphPad Prism 9 (Graph-Pad Software).

RESULTS

As shown in Figure 1A, complete viral inactivation was observed within 5 minutes of sunlight exposure for solutions treated with 10 μM MB, while it required at least 3 hours of sunlight exposure to reach a 50% reduction in MHV log pfu in the absence of MB. The chemical integrity of the viral RNA was assessed via next generation sequencing on triplicate samples. Viral RNA for samples treated with 10 μM MB in combination with 15 minutes of sunlight exposure showed a decreased sequencing library prep yield and poorer adapter ligation efficiency (Mann-Whitney test P<.0091 for both). Furthermore, as shown in Figure 1B, in an equimolar pooling of all libraries, only the sample treated with MB plus sunlight showed a significantly smaller mean fragment size (~239nt vs ~128nt) and much lower percentage mapping to the MHV genome (0.05% for samples treated with MB plus sunlight vs 15.3% for other samples). This is consistent with MB plus sunlight treatment causing severe damage to all RNA backbones, and especially depleting intact viral RNA. Interestingly, no treatment (sunlight exposure and/or presence of MB) consistently caused a significant change in the observation of T mutations in the most common UV-lesion (YCY, n=1375) and 8-oxoG (CGG, n=163) contexts of the MHV reference genome vs corresponding background mutation rates.

Fig 1. (A) Antiviral activity of MB and/or sunlight exposure against MHV expressed as relative log pfu (%) to that for the untreated virus-infected control cells, which was defined as 100%. The data shown are the mean ± SD from three replicated experiments. P-value<.0001 (****). (B) Next generation sequencing statistical data for the median virus mapped fragment size (nucleotide, nt – top), and reads mapping to MHV-A59 genome (percentage, % - bottom). MHV is an untreated viral sample kept in the dark (control); MHV + sun corresponds to the viral sample irradiated for 180 minutes under simulated sunlight exposure; MHV + MB represents the viral sample treated with 10 μM MB kept in the dark; MHV + MB + sun is the viral sample treated with 10 μM MB in combination with 15 minutes of simulated sunlight exposure.
Importantly, pre-treatment with 10 \(\mu M \) MB resulted in the complete viral inactivation on surgical masks after only 5 minutes of sunlight exposure (Fig 2).

DISCUSSION

As demonstrated in our previous study, methylene blue in combination with bright indoor light (50,000 lux) generated by a white LED lamp consistently inactivates SARS-CoV-2, and other animal surrogates, including MHV, in 30 minutes or less. While this decontamination method is time and cost-effective, it still requires the light source to be powered, and thus it relies on the need for electricity, which remains unavailable to nearly 16% of the world population. Therefore, we set to validate that sunlight can be used to activate MB and disinfect masks contaminated with MHV, a SARS-CoV-2 animal surrogate. Sunlight itself has already been reported to inactivate and disinfect masks contaminated with MHV, a SARS-CoV-2 animal surrogate, which remains unavailable to nearly 16% of the world population. Importantly, we demonstrated that surgical masks’ material contaminated with MHV can be fully decontaminated within 5 minutes of sunlight exposure when treated with 10 \(\mu M \) MB, while significant infectious titers remain on the masks’ material exposed solely to sunlight (Fig 2).

CONCLUSION

This brief report validates the use of methylene blue in a combination of sunlight, as a robust decontamination method for PPE, such as surgical masks, that can be deployed in any setting, especially in remote areas where electricity is not readily available.

Acknowledgment

The authors would like to thank Drs D. H. Evans and Y-C. Lin (University of Alberta) for fruitful discussions regarding experimental protocols.

References

1. Burki T. Global shortage of personal protective equipment. Lancet Infect Dis. 2020;20:785–786.
2. McMahon DE, Peters GA, Ivers LC, Freeman EE. Global resource shortages during COVID-19: Bad news for low-income countries. PLOS Neglect Trop Dis. 2020;14: e0008412.
3. Ranney ML, Griffith V, Jha AK. Critical Supply Shortages — The need for ventilators and personal protective equipment during the covid-19 pandemic. N Engl J Med. 2020;382:e41.
4. Ludwig-Begali LF, Wielick C, Dams L, et al. The use of germicidal ultraviolet light, vaporized hydrogen peroxide and dry heat to decontaminate face masks and filtering respirators contaminated with a SARS-CoV-2 surrogate virus. J Hosp Infect. 2020;106:577–584.
5. Schwartz A, Stiegel M, Greeson N, et al. Decontamination and Reuse of N95 respirators with hydrogen peroxide vapor to address worldwide personal protective equipment shortages during the SARS-CoV-2 (COVID-19) pandemic. Appl Biosaf. 2020;25:153567602091993.
6. Sendlay TS, Chen J, Harcourt BH, et al. Addressing personal protective equipment (PPE) decontamination: Methylene blue and light inactivates severe acute respiratory coronavirus virus 2 (SARS-CoV-2) on N95 respirators and medical masks with maintenance of integrity and fit. Infect Control Hosp Epidemiol. 2021;1–10.
7. Daniel C, Lamarre A, Talbot PJ. Increased viral titers and enhanced reactivity of antibodies to the spike glycoprotein of murine coronavirus produced by infection at pH 6. J Virol Methods. 1994;50:237–244.
8. Hirano N, Fujiwara K, Hino S, Matumoto M. Replication and plaque formation of mouse hepatitis virus (MHV-2) in mouse cell line DBT culture. Archiv für die gesamte Virusforschung. 1974;44:298–302.
9. Köroer RW, Majjouti M, Alcazar MAA, Mahabir E. Of Mice and Men: The coronavirus MHV and mouse models as a translational approach to understand SARS-CoV-2. Viruses. 2020;12:880.
10. Raijmakers RC, Eschlimann M, Marangon A, et al. Inactivation of SARS-CoV-2 by simulated sunlight on contaminated surfaces. Microbiol Spectr. 2021;9:e003321.
11. Schuit M, Ratnesar-Shumate S, Yolitz J, et al. Airborne SARS-CoV-2 is rapidly inactivated by simulated sunlight. J Infect Dis. 2020;222:564–571.
12. Sloan A, Cutts T, Griffin BD, et al. Simulated sunlight decreases the viability of SARS-CoV-2 in mucus. PLOS ONE. 2021;16: e0253068.