CHARACTERIZATION OF γ-FACTORS: THE ASAI CASE

GUY HENNIART AND LUIS LOMELÍ

Abstract. Let E be a separable quadratic algebra over a locally compact field F of positive characteristic. The Langlands-Shahidi method can be used to define the Asai γ-factors for a smooth irreducible generic representation π of $\text{GL}_n(E)$. If σ is the Weil-Deligne representation of W_E corresponding to π under the local Langlands correspondence, then it is shown that the Asai γ-factor is the same as the γ-factor on the Galois side corresponding to the representation of W_E obtained from σ under tensor induction. This is achieved by proving that Asai γ-factors are characterized by their local properties together with their role in global functional equations for L-functions. An immediate application concerns the stability of γ-factors under twists by highly ramified characters.

1. Introduction

Let F be a locally compact field of positive characteristic p. Let ψ be a non-trivial character of F and π a smooth irreducible generic representation of $\text{GL}_n(F)$, where n is a positive integer. If ρ_n denotes the standard representation of $\text{GL}_n(C)$, let τ be either $\text{Sym}^2 \rho_n$ or $\wedge^2 \rho_n$. In [7] the authors establish the equality of γ-factors:

$$\gamma(s, \pi, r, \psi) = \gamma(s, r \circ \sigma, \psi),$$

where the factor on the left is defined via the Langlands-Shahidi method [14, 15], and σ on the right is the the Weil-Deligne representation corresponding to π under the local Langlands correspondence [13]. The same question in characteristic zero remains open, although much progress has been made [6].

In this paper, we address the case of Asai γ-factors and related L- and ε-factors. These factors can be seen as a generalization of those studied in [1] by T. Asai. Let E/F be a separable quadratic extension of locally compact fields of positive characteristic and let E be a separable algebraic closure containing F. Let π be a smooth irreducible representation of $\text{GL}_n(E)$. The L-group of $\text{Res}_{E/F} \text{GL}_n$ is $GL_n(C) \times GL_n(C) \rtimes W_F$, where the Weil group W_F acts via the Galois group $\text{Gal}(E/F) = \{1, \theta\}$. The Asai representation $r_A = r_{A_n}$ can be defined by

$$r_A : GL_n(C) \times GL_n(C) \times \text{Gal}(E/F) \to GL_{n^2}(C),$$

$$r_A(x, y, 1) = (x \otimes y) \text{ and } r_A(x, y, \theta) = (y \otimes x).$$

The Langlands-Shahidi method is used in [15] to define Asai γ-factors $\gamma_{E/F}(s, \pi, r_A, \psi)$ in characteristic p; we rely on that construction in the current paper. Writing σ as
the Weil-Deligne representation of \mathcal{W}_E corresponding to π under local Langlands, we prove that

$$\gamma_{E/F}(s, \pi, r_A, \psi) = \gamma_{F}^{\text{Gal}}(s, I(\sigma), \psi),$$

where $I(\sigma)$ denotes the representation of \mathcal{W}_F obtained from σ by tensor induction (see Theorem 3.3). In the case of characteristic zero, equation (1.1) for $n = 2$ is known [11, 17] (see [6] for progress in the general case).

Theorem 3.3 is proved via a characterization of Asai γ-factors involving local properties together with their connection with the global theory by means of a functional equation described below (1.2). More precisely, the local properties of $\gamma_{E/F}(s, \pi, r_A, \psi)$ include: a naturality property with respect to isomorphisms of quadratic extensions E/F; an isomorphism property pertaining to π; a dependence on the additive character ψ, which can be made explicit; a crucial multiplicativity property with respect to parabolic induction, which reflects the influence of taking tensor induction on a direct sum of Weil-Deligne representations; and finally, (1.1) is needed whenever the representation π is the generic component of an unramified principal series.

Let K/k be a quadratic separable extension of global function fields of characteristic p, and for a split place v of K we have $K \otimes k_v \cong k_v \times k_v$. Thus, in the local theory, the case of a separable quadratic algebra E/F is treated simultaneously. The connection with the global theory is now given by the global functional equation:

$$L^S(s, \Pi, r_A) = \prod_{v \in S} \gamma_{K_v/k_v}(s, \Pi_v, r_A, \Psi_v) L^S(1 - s, \Pi, r_A),$$

where

$$L^S(s, \Pi, r_A) = \prod_{v \not\in S} L(s, \Pi_v, r_A).$$

In the course of proving our main results, we directly establish a local-to-global argument for the case of a cuspidal, tamely ramified representation π of $\text{GL}_n(E)$ (hence π of level zero) via the Grundwald-Wang theorem. Then the general problem is reduced to the case of a tamely ramified representation π. This is done by using a local-to-global result due to Gabber and Katz for ℓ-adic representations of the Galois group [10], and translating it via the global Langlands correspondence [12]. We note that care must be taken, since we are considering a quadratic extension E/F.

In the Langlands-Shahidi method, π is assumed to be generic. But, using the Langlands-Zelevinsky classification together with multiplicativity, the definition of γ-factors can be extended to the general case (see §4.1). Also, we show that the local L- and ε-factors are the same as the corresponding Galois factors. In §4.2 we take the opportunity to write down a stability property of γ-factors that is not known in characteristic zero. Finally, in §5 we give a short proof of the equality of local factors studied in [19] for Rankin-Selberg products of GL_{m} and GL_{n}.

The second author kindly thanks F. Shahidi for his help and encouragement; he also thanks M. Krishnamurthy and P. Kutzko for useful discussions.
2. Asai γ-factors and tensor induction

2.1. Fix a prime number p and consider the class $\mathcal{L}_{\text{quad}}(p)$ of triples $(E/F, \pi, \psi)$ consisting of:

- F a locally compact field of characteristic p;
- E a separable quadratic algebra over F, i.e., either E/F is a separable quadratic extension of local fields or $E \simeq F \times F$;
- π a smooth irreducible representation of $\text{GL}_n(E)$, $n \geq 1$;
- ψ a non-trivial character of F.

Given a triple $(E/F, \pi, \psi) \in \mathcal{L}_{\text{quad}}(p)$, we say it is of degree n if π is a representation of $\text{GL}_n(E)$. Let $x \mapsto \bar{x}$ denote conjugation in E/F, i.e., the non-trivial automorphism of E/F. Let q be the cardinality of its residue field and let p be its maximal ideal. Given a representation σ, let σ^{conj} denote the representation obtained from σ by conjugation.

Let $G = U(2n)$ be the quasi-split unitary group with respect to E/F. This group can be obtained via the hermitian form $h(x, y) = \sum_{i=1}^{2n} \bar{x}_i y_{2n+1-i}$.

Asai γ-factors in characteristic p are defined in [15] via the Langlands-Shahidi method. They arise from generic representations π of $M = \text{Res}_{E/F} \text{GL}_n$ is the Siegel Levi subgroup of G (for general π we refer to §4.1 below). Asai γ-factors give a rule which, to a triple $(E/F, \pi, \psi) \in \mathcal{L}_{\text{quad}}(p)$, associates a rational function $\gamma_{E/F}(s, \pi, r_A, \psi)$ of $\mathcal{C}(q^{-s})$.

2.2. Given a representation σ of \mathcal{W}_E, we consider $I(\sigma)$ to be tensor induction from \mathcal{W}_E to \mathcal{W}_F. (See §13 of [3]). Given $(E/F, \psi, \pi) \in \mathcal{L}_{\text{quad}}(p)$, let $\sigma = \pi(\sigma)$ be the representation of \mathcal{W}_E corresponding to π via the local Langlands correspondence. The Galois γ-factors arising in connection with the Asai γ-factors will be written: $\gamma_{E/F}^{\text{Gal}}(s, I(\sigma), \psi)$.

These factors satisfy a number of easily established properties, including a multiplicativity property reflecting the decomposition rule:

$$I(\sigma \oplus \tau) \simeq I(\sigma) \oplus I(\tau) \oplus \text{Ind}^F_E(\sigma \otimes \tau^{\text{conj}}).$$

The Asai γ-factors satisfy the corresponding properties, which we list in the next section.

3. Characterization of Asai factors

3.1. We first give the local properties of Asai γ-factors:

(i) (Naturality). Let $(E/F, \psi, \pi) \in \mathcal{L}_{\text{quad}}(p)$ be of degree n, and let η be an isomorphism $\eta : E'/F' \simeq E/F$. Then $\psi' = \psi \circ \eta|_{E'}$ is a non-trivial additive character of F'. Also, via η, π defines a smooth irreducible generic representation π' of $\text{GL}_n(E')$. Then

$$\gamma_{E/F}(s, \pi, r_A, \psi) = \gamma_{E'/F'}(s, \pi', r_A, \psi').$$

(ii) (Isomorphism). Let \((E/F, \psi, \pi) \in \mathcal{L}_{\text{quad}}(p)\) be of degree \(n\), and let \(\pi'\) be a smooth irreducible generic representation of \(\text{GL}_n(E)\) isomorphic to \(\pi\). Then
\[
\gamma_{E/F}(s, \pi', r_A, \psi) = \gamma_{E/F}(s, \pi, r_A, \psi).
\]
For the relationship with Artin factors, see § 5 of [15]. In the case \(n = 1\), \(\pi\) can be viewed as a character \(\chi\) of \(E^\times\). Then \(\gamma_{E/F}(s, \chi, r_A, \psi)\) is equal to the abelian \(\gamma\)-factor \(\gamma_F(s, \chi|_{F^\times}, \psi)\).

(iii) (Relation with Artin factors). Let \((E/F, \psi, \pi) \in \mathcal{L}_{\text{quad}}(p)\) be of degree \(n\), and assume that \(n = 1\) or that \(\pi\) is the generic component of a principal series. Let \(\sigma = \sigma(\pi)\) be the Weil-Deligne representation of \(W_F\) associated to \(\pi\) via the local Langlands correspondence. Let \(I(\sigma)\) be the representation of \(W_F\) obtained from \(\sigma\) by tensor induction. Then
\[
\gamma_{E/F}(s, \pi, r_A, \psi) = \gamma_F^\text{Gal}(s, I(\sigma), \psi).
\]
We write this as the next property of Asai \(\gamma\)-factors.

(iv) (Dependence on \(\psi\)). Let \((E/F, \psi, \pi) \in \mathcal{L}_{\text{quad}}(p)\) be of degree \(n\), and let \(a \in F^\times\). Then \(\psi^a : x \mapsto \psi(ax)\) is a non-trivial additive character of \(F\) and we have
\[
\gamma_{E/F}(s, \pi, r_A, \psi^a) = \omega_\pi(a)^n|a|_F^{n^2(s-\frac{1}{2})} \gamma_{E/F}(s, \pi, r_A, \psi).
\]
Let us give a short proof of (iv), it relies on the definition given in § 5.1 of [15], which we refer to for any unexplained notation. Consider \(\pi\) as a representation of \(M \cong \text{GL}_n(E)\) and assume it is \(\chi_0\)-generic, where \(\chi_0\) is obtained from \(\psi\). Let
\[
t = \text{diag}(a^{-(n-1)}, a^{-(n-2)}, \ldots, a^{(n-2)}, a^{(n-1)}, a^{n-2}, a^{n-1}, a^n) \in T(E),
\]
where \(a^n = a^{n-1} = a \in F^\times\). Then \(w_0(t)t^{-1}\) lies in the center of \(M\). Let \(\pi_t\) be given by \(\pi_t(x) = \pi(t^{-1}xt)\). The character \(\chi_{0,t}\) given by \(\chi_{0,t}(u) = \chi_0(t^{-1}ut)\) is then obtained from \(\psi^a\) and \(\pi_t\) is \(\chi_{0,t}\) generic. Using the definition and a direct computation we get
\[
\gamma_{E/F}(s, \pi, r_A, \psi^a) = \lambda(\psi, w_0) C_{\mathbb{T}_0}(s, \pi_t, w_0)
= \omega_\pi(a)^n|a|_F^{n^2(s-\frac{1}{2})} \lambda(\psi, w_0) C_{\mathbb{T}_0}(s, \pi, w_0)
= \omega_\pi(a)^n|a|_F^{n^2(s-\frac{1}{2})} \gamma_{E/F}(s, \pi, r_A, \psi).
\]

The following can be found in § 5 of [15]:

(v) (Multiplicativity of \(\gamma\)-factors). For \(i = 1, \ldots, d\), let \((E/F, \psi, \pi_i) \in \mathcal{L}_{\text{quad}}(p)\) be of degree \(n_i\). Let \(n = n_1 + \cdots + n_d\) and let \(\pi\) be the unique generic component of the representation of \(\text{GL}_n(E)\) parabolically induced from \(\pi_1 \otimes \cdots \otimes \pi_d\). Then
\[
\gamma_{E/F}(s, \pi, r_A, \psi) = \prod_{i=1}^d \gamma_{E/F}(s, \pi_i, r_{A_{\pi_i}}, \psi) \prod_{1 \leq j < 2} \gamma_{E}(s, \pi_i \otimes \pi_j^{\text{conj}}; \psi \circ \text{Tr}_{E/F}).
\]
(Here, each \(\gamma_{E}(s, \pi_i \otimes \pi_j^{\text{conj}}; \psi \circ \text{Tr}_{E/F})\) is a Rankin-Selberg factor; see § 5). Notice that (v) and the case \(n = 1\) give (iii).
(vi) (Split case). Let $(E/F, \psi, \pi) \in \mathcal{L}_{\text{quad.}}(p)$ be of degree n and assume $E \simeq F \times F$. Then $\pi \simeq \pi_1 \otimes \pi_2$, where π_1 and π_2 are smooth irreducible representations of $\text{GL}_n(F)$ and

$$\gamma_{E/F}(s, \pi, r, \psi) = \gamma_F(s, \pi_1 \times \pi_2, \psi),$$

(Again, $\gamma_F(s, \pi_1 \times \pi_2, \psi)$ is a Rankin-Selberg factor; see §5).

3.2. The link between the local and global theory is provided by the following property (see §5 of [15]):

(v) (Global functional equation). Let K/k be a quadratic separable extension of global function fields of characteristic p. Let Ψ be a non-trivial character of \mathbf{A}_k/k and let $\Pi = \otimes_{v} \Pi_v$ be an automorphic cuspidal representation of $(\text{Res}_{K/k} \text{GL}_n)(\mathbf{A}_k) \simeq \text{GL}_n(\mathbf{A}_K)$. Given a place v of k, let $K_v = K \otimes k_v$. Let S be a finite set of places such that K/k, Π and Ψ are unramified outside of S. Then

$$L^S(s, \Pi, r, \Lambda) = \prod_{v \in S} \gamma_{K_v/k_v}(s, \Pi_v, r, \Lambda_v) L^S(1 - s, \Pi, r, \Lambda),$$

where

$$L^S(s, \Pi, r, \Lambda) = \prod_{v \not\in S} L(s, \Pi_v, r, \Lambda).$$

3.3. Theorem. There is only one rule on $\mathcal{L}_{\text{quad.}}(p)$ satisfying properties (i)–(v). In particular, for $(E/F, \psi, \pi) \in \mathcal{L}_{\text{quad.}}(p)$ of degree n, we have

$$\gamma_{E/F}(s, \pi, r, \psi) = \gamma^\text{Gal}_F(s, \chi),$$

where $\sigma = \sigma(\pi)$ is associated to π via the local Langlands correspondence. Moreover, Asai γ-factors also satisfy:

(vii) (Twisting by unramified characters). Let $(E/F, \psi, \pi) \in \mathcal{L}_{\text{quad.}}(p)$. Then

$$\gamma_{E/F}(s, \pi \otimes |\det|_{E}^{1/n}, r, \psi) = \gamma_{E/F}(s + s_0, \pi, r, \psi).$$

(ix) (Local functional equation).

$$\gamma_{E/F}(s, \pi, r, \psi) \gamma_{E/F}(1 - s, \pi, r, \psi) = 1.$$

3.4. Proof of Theorem. Property (vii) can be shown directly, and the local functional equation is a property of γ^Gal_F that can be immediately translated to $\gamma_{E/F}$. To prove the main result, we can assume, by multiplicativity, that π is cuspidal; as the case $E \cong F \times F$ is given by (vi), we may assume E/F is a quadratic extension. We proceed by induction on $n \geq 1$, where $n = 1$ is given by property (iii). Thus, we consider $(E/F, \psi, \pi) \in \mathcal{L}_{\text{quad.}}(p)$ of degree $n > 1$.

Case 1: $n > 1$, E/F tame, π cuspidal and tame. (Thus π is of level zero). Let σ be the corresponding Galois representation under local Langlands. Then σ is irreducible and is given by

$$\sigma = \text{Ind}_{W_{E'}}^{W_{E'}}(\chi),$$

where E'/E is an unramified extension of degree n and $\chi : W_{E'} \to \mathbb{C}^\times$ is a tame character. By class field theory, χ is the same as a character $\chi : E'/\mathbb{C}^\times \to \mathbb{C}^\times$. Moreover, χ restricted to $U_{E'}$ is obtained from a regular character of $k_{E'}^\times$. (Notation: given a local field F, its residue field is denoted by k_F; given a global function field k, its field of constants is denoted by k_k).
Let $k = k_F(t)$ and let K/k be a separable quadratic extension with $K_0/k_0 \simeq E/F$ and such that $k_K = k_E$. Let k_n be a degree n extension of k_K, then the constant field extension $K' = k_n \cdot K$ is a cyclic extension of degree n, unramified everywhere. Then $K'/K_0 \simeq E'/E$. Let w be a place of K that splits completely in K'/K. (Notice that a place of K splits completely in K'/K if n divides the degree of w). Let $S = \{0, w_1', \ldots, w_n'\}$, where $w_i'|w$. We can now proceed as in § 2.3 of \cite{17} and construct a character
\[\xi : \prod U_{K'_w} \to \mathbb{C}^\times, \]
where the product ranges over all places w' of K', such that:

- $\xi_0 = \chi|_{U_{K'_0}}$;
- $\xi_{w'} = 1$ if $w' \notin S$, and
- $\xi_{|_{k_{K'}}} = 1$.

Then ξ further extends to a gr"ossencharacter
\[\tilde{\xi} : K'^\times \backslash A_{K'}^\times \to \mathbb{C}^\times. \]

After globally twisting by an unramified character, we can assume that $\tilde{\xi}_0 = \chi$. Also, $\tilde{\xi}_{w'}$ will be unramified for $w' \notin S$.

A gr"ossencharacter ξ as above is the same as a character of \mathcal{W}_K, via global class field theory. Then
\[R = \text{Ind}_{\mathcal{W}_K}^{\mathcal{W}_{K'}} \tilde{\xi} \]
will have $R_0 = \rho$ and R_v will be reducible for all places v of K, with $v \neq 0$. Indeed, R_v is unramified for $v \notin \{0, w\}$, and R_w is a sum of characters because w is split in K'/K.

Let $\ell, \ell \neq p$, be a fixed prime number, and let $\iota : \overline{\mathbb{Q}}_\ell \to \mathbb{C}$ be a fixed field isomorphism. Then, R gives rise to a continuous degree n $\overline{\mathbb{Q}}_\ell$-representation Σ of \mathcal{W}_K. The global Langlands correspondence, proved in \cite{12}, gives a cuspidal automorphic representation $\Pi = \Pi(\Sigma)$. By the local Langlands correspondence of \cite{13}, Π_v corresponds to Σ_v.

By construction: π corresponds to Π_0, Π_v is unramified for $v \notin \{0, w\}$, and Π_w is a principal series representation. (If the place u of k lying below w splits in K/k, then we can use property (vi) instead).

By properties (i) and (ii), we can assume $F = K_0$ and $\pi = \Pi_0$. By property (iv), we can also assume $\psi = \Psi_0$. The global functional equation then gives
\begin{equation}
\prod_{v \in S} \gamma_{K_v/k_v}(s, \Pi_v, r_A, \Psi_v) = \prod_{v \in S} \gamma_{k_v}^{\text{Gal}}(s, I(\Pi_v), \Psi_v),
\end{equation}
where S is a finite set of places of k containing 0 and u, $w|u$. But, for v distinct from 0 and u, Π_v is an unramified principal series. Also, Π_v is a (possibly ramified) principal series. Hence, property (vii) (and property (vi) if u splits) gives
\begin{equation}
\gamma_{K_v/k_v}(s, \Pi_v, r_A, \Psi_v) = \gamma_{k_v}^{\text{Gal}}(s, I(\Pi_v), \Psi_v), \ v \in S - \{0\}. \tag{3.2}
\end{equation}
Then \ref{3.1} and \ref{3.2} give equality at 0.

CASE 2. $n > 1$, E/F general and π cuspidal, but not necessarily of level zero. Let $\sigma = \sigma(\pi)$ be the corresponding irreducible Weil-Deligne representation. Also, twisting by an unramified character if necessary, we can assume σ is a representation of the Galois group. Then σ factors through some Galois group $\text{Gal}(E'/E)$. Let \tilde{E} be the Galois closure of E'/F. Consider $k = k_F(t)$ and find a Galois extension \tilde{K}.
of \(k \), such that \(\tilde{K} \) is \(\tilde{E} \) at 0, tame at \(\infty \) and unramified elsewhere. This is possible by the results of Gabber-Katz [11]; moreover, notice that \(\text{Gal}(\tilde{E}/F) \) is the same as \(\text{Gal}(\tilde{K}/k) \) in Katz’s construction. Then, if we let \(K/k \) be the quadratic extension corresponding to \(E/F, \sigma \) gives a representation \(\Sigma \) of \(\text{Gal}(\tilde{K}/k) \). The representation \(\Sigma \) will be \(\sigma \) at 0, tame at \(\infty \) and unramified elsewhere.

By the global Langlands correspondence of [12], there exists an irreducible cuspidal automorphic representation \(\Pi = \Pi(\Sigma) \). The local components \(\Pi_v \) of \(\Pi \) are obtained from \(\Sigma \) globally by an unramified character to ensure that \(\Pi_0 = \pi \), but this does not affect the properties of \(\Pi \). Then we can apply (3.1) and (3.2) to \(\Pi \), with \(S = \{0, \infty\} \), in order to complete the proof. The equality at \(\infty \) is given by Case 1 treated above and by the fact that if \(\Sigma_\infty \) is tame, then so are all its irreducible components. \(\square \)

4. LOCAL \(L \)-FUNCTIONS, ROOT NUMBERS AND STABILITY

4.1. Equality of local factors. Let us recall the definition of local \(L \)-functions and \(\varepsilon \)-factors via the Langlands-Shahidi method. Since the local factors we are studying arise from \(\text{GL}_n \), they can be defined for \((E/F, \psi, \pi) \in \mathcal{L}_{\text{quad.}}(p) \) where \(\pi \) is any smooth irreducible representation of \(\text{GL}_n(E) \). We note that the following discussion can be used to extend the results of [7], related to \(\wedge^2 \rho_n \) and \(\text{Sym}^2 \rho_n \), to representations that are not necessarily generic.

Let \((E/F, \psi, \pi) \in \mathcal{L}_{\text{quad.}}(p) \). Let us first assume that \(\pi \) is tempered, then \(\pi \) is generic [22]. Let \(P_\pi(t) \) be the unique polynomial satisfying \(P_\pi(0) = 1 \) and such that \(P_\pi(q^{-s}) \) is the numerator of \(\gamma_{E/F}(s, \pi, r_A, \psi) \). Then
\[
L(s, \pi, r_A) := P_\pi(q^{-s})^{-1}.
\]
Because \(\pi \) is tempered, \(L(s, \pi, r_A) \) is holomorphic for \(\text{Re}(s) > 0 \). If \(\pi \) is parabolically induced from \(\pi_1 \otimes \cdots \otimes \pi_d \), where each \(\pi_i \) is tempered, then multiplicativity of \(\gamma \)-factors gives multiplicativity for the \(L \)-functions:
\[
L(s, \pi, r_A) = \prod_{i=1}^d L(s, \pi_i, r_{A_i}) \prod_{i<j} L(s, \pi_i \times \pi_j^{\text{conj}}).
\]
The local \(\varepsilon \)-factor is defined to satisfy the relation:
\[
\gamma_{E/F}(s, \pi, r_A, \psi) = \varepsilon_{E/F}(s, \pi, r_A, \psi) \frac{L(1-s, \bar{\pi}, r_A)}{L(s, \pi, r_A)}.
\]
Given \((E/F, \psi, \pi) \in \mathcal{L}_{\text{quad.}}(p) \) in general, we can use Langlands classification to write \(\pi \) as parabolically induced from \(\pi_{\nu,1} \otimes \cdots \otimes \pi_{\nu,d} \), where each \(\pi_{\nu,i} \) is quasi-tempered with a negative Langlands parameter \(\nu \). Each \(\pi_{0,i} \) is tempered, and the \(L \)-functions \(L(s, \pi_{\nu,i}, r_A) \) and \(L(s, \pi_{\nu,i} \times \pi_{\nu,j}) \) are defined by analytic continuation on \(\nu \). Then
\[
L(s, \pi, r_A) := \prod_{i=1}^d L(s, \pi_{\nu,i}, r_{A_i}) \prod_{i<j} L(s, \pi_{\nu,i} \times \pi_{\nu,j}^{\text{conj}}),
\]
and the root numbers are defined to satisfy (4.1).

This is in accordance with the way local \(L \)-functions and \(\varepsilon \)-factors are defined for Weil-Deligne representations. Equality of local factors follows first for tempered representations from Theorem 3.3. Then in general by the above discussion.
4.2. Stability of γ-factors. Let us briefly recall the stability property of local factors for Weil-Deligne representations \[14 \hspace{1pt} 5\]. Let σ be a Weil-Deligne representation. Let η be a character of F^\times of level k, for k sufficiently large (depending on σ). Take an element $c = c(\eta, \psi) \in F^\times$ such that $\psi(cx) = \eta(1 + x)$ for $x \in p^{k/2} + 1$. Then

$$
\varepsilon(s, \sigma \otimes \eta, \psi) = \det(\sigma(c))^{-1} \varepsilon(s, \eta, \psi)^{\dim \sigma},
$$

$$
L(s, \sigma \otimes \eta) = L(s, \sigma \otimes \eta^{-1}) = 1.
$$

Because of this, the next property is now a corollary to Theorem 3.3. We phrase it in terms of γ-factors.

Corollary (Stability). Let $(E/F, \psi, \pi_i) \in \mathcal{L}_{\text{quad.}}(p)$, $i = 1, 2$, both of the same degree. Assume that π_1 and π_2 have the same central character. Then, for every sufficiently highly ramified character η of F^\times, we have

$$
\gamma_{E/F}(s, \eta \cdot \pi_1, \rho_A, \psi) = \gamma_{E/F}(s, \eta \cdot \pi_2, \rho_A, \psi).
$$

Remark 1. It is clear that the same result holds for local factors corresponding to exterior and symmetric square L-functions. To be more precise, we use the notation of \[7\]: Let $(F, \psi, \pi) \in \mathcal{L}(p)$, $i = 1, 2$, both of degree n. Assume that π_1 and π_2 have the same central character. Then, for every sufficiently highly ramified character η of F^\times, we have

$$
\gamma_F(s, \eta \cdot \pi_1, \rho_n, \psi) = \gamma_F(s, \eta \cdot \pi_2, \rho_n, \psi).
$$

Notice that, by the discussion in §\[4.1\], the representations π_i need not be generic.

5. Rankin Selberg products for representations of GL_m and GL_n

5.1. Let $(F, \psi, \pi_i) \in \mathcal{L}_{\text{quad.}}(p)$, $i = 1, 2$. The Rankin-Selberg γ-factor

$$
\gamma(s, \pi_1 \times \pi_2, \psi) = \varepsilon(s, \pi_1 \times \pi_2, \psi) \frac{L(1 - s, \pi_1 \times \pi_2)}{L(s, \pi_1 \times \pi_2)}
$$

is defined in \[8\]. Consider $M = GL_m \times GL_n$ as a maximal Levi subgroup of $G = GL_{m+n}$ and let $P = MN$ be the maximal standard parabolic subgroup with Levi M and unipotent radical N. The adjoint action of LM on L^1 is $r \simeq \rho_m \otimes \rho_n$. For this r, the γ-factors $\gamma(s, \pi_1 \otimes \pi_2, r, \psi)$ are defined in \[14 \hspace{1pt} 15\] via the Langlands-Shahidi method. The aim of \[19\] is to establish the equality

$$
\gamma(s, \pi_1 \times \pi_2, \psi) = \gamma(s, \pi_1 \otimes \pi_2, r, \psi)
$$

using completely local methods. What we now provide is a short proof of this result by means of a characterization of γ-factors.

5.2. **Proof of equation \[5.1\].** Let $B = TU$, be the Borel subgroup of GL_{m+n} consisting of upper triangular matrices. Let χ_0 be the character of $U(F)$ obtained from ψ and, abusing notation, we also write χ_0 for the restriction of χ_0 to $U_M = M(F) \cap U(F)$; they will be w_0-compatible in the notation of \[15\]. Consider $\sigma = \pi_1 \otimes \pi_2$ as a representation of the Levi M. We may assume σ is χ_0-generic.

Both $\gamma(s, \pi_1 \times \pi_2, \psi)$ and $\gamma(s, \pi_1 \otimes \pi_2, r, \psi)$ satisfy naturality and isomorphism properties. The multiplicativity property of the local coefficient implies multiplicativity for $\gamma(s, \pi_1 \otimes \pi_2, r, \psi)$. For $\gamma(s, \pi_1 \times \pi_2, \psi)$, multiplicativity can be found in Theorem 3.1 of \[8\]. The relation with Artin factors when π_1 and π_2 are principal series is reduced via multiplicativity to establishing the relation in the case of GL_2, which is well known.
For $a \in F^\times$, let $t = \text{diag}(a^{-(m+n-1)}, a^{-(m+n-2)}, \ldots, a, 1)$. Let $\sigma = \pi_1 \otimes \pi_2$ and let σ_ℓ be given by $\sigma_\ell(x) = \sigma(t^{-1}xt)$. The character $\chi_{0,t}$ given by $\chi_{0,t}(u) = \chi_0(t^{-1}ut)$ is then obtained from ψ^a and σ_ℓ is $\chi_{0,t}$ generic. Using the definition and a direct computation to compare both local coefficients we obtain:

$$
\gamma(s, \pi_1 \otimes \pi_2, r, \psi) = C_{\chi_{0,t}}(s, \sigma, w_0) = \frac{\omega_{\chi_{0,t}}(\sigma)}{\omega_{\chi_{0,t}}(\pi_1 \otimes \pi_2)} C_{\chi_{0,t}}(s, \sigma_\ell, w_0) = \omega_{\pi_1}(a)^m \omega_{\pi_2}(a)^n |a_F|^{mn(s-\frac{1}{2})} \gamma(s, \pi_1 \otimes \pi_2, r, \psi).
$$

The same relationship holds for $\gamma(s, \pi_1 \times \pi_2, \psi)$.

Finally, we have a global functional equation: Let K be a global function field of characteristic p, let $\Psi = \otimes_v \Psi_v$ be a non-trivial character of $K \setminus \mathbb{A}_K$, and let Π_1 and Π_2 be cuspidal automorphic representations of $GL_n(\mathbb{A}_K)$ and $GL_n(\mathbb{A}_K)$, respectively. Let S be a finite set of places of K such that Ψ and Π_i, for $i = 1, 2$, are unramified outside of S. Then, Theorem 5.14 of [14] gives

$$
L^S(s, \Pi_1 \times \Pi_2) = \prod_{v \in S} \gamma(s, \Pi_1 \times \Pi_2, \psi_v) L^S(1 - s, \Pi_1 \times \Pi_2).
$$

The functional equation for $\gamma(s, \Pi_1 \times \Pi_2, \psi)$ can be found in [2] [16].

Given local representations π_1 and π_2, we use the local-global argument in the proof of Theorem 5.3 to prove (5.11). A brief outline should suffice: by multiplicativity, assume π_1 and π_2 are cuspidal. Use Proposition 2.2 of [7] to deal with the case when π_1 and π_2 are both cuspidal of level zero. Then, use Proposition 3.1 of [7] for general cuspidal representations.

Remark 2. The above argument should also hold in characteristic zero by using Proposition 5.1 of [20] as the link between the local and the global theory, relying on the global functional equation [2] [18]. The theory for archimedean local fields is studied in [9] [21].

Remark 3. The local properties of $\gamma(s, \pi_1 \times \pi_2, \psi)$ used above can also be obtained via the local Langlands correspondence in any characteristic.

References

[1] T. Asai, *On certain Dirichlet series associated with Hilbert modular forms and Rankin’s method*, Math. Ann. 226 (1977), 81-94.

[2] J. Cogdell, *Notes on L-functions for GL_n*, ICTP Lecture Notes, 2000.

[3] C. W. Curtis and I. Reiner, *Methods of representation theory I*, John Wiley & Sons, New York, 1981.

[4] P. Deligne, *Les constantes des équations fonctionnelles des fonctions L*, Modular functions of one variable II, LNM 349, Springer Verlag, 1973.

[5] P. Deligne and G. Henniart, *Sur la variation, par torsion, des constantes locales d’équations fonctionnelles des fonctions L*, Invent. Math. 64 (1981), 89-118.

[6] G. Henniart, *Correspondance de Langlands et fonctions L des carrés extérieur et symétrique*, preprint.

[7] G. Henniart and L. Lomelí, *Local-to-global extensions for GL_n in non-zero characteristic: a characterization of $\gamma(s, \pi, (\pi^\vee)^\vee, \psi_F)$ and $\gamma(s, \pi, \Lambda^2, \psi_F)$*, preprint.

[8] H. Jacquet, I. I. Piatetski-Shapiro and J. A. Shalika, *Rankin-Selberg convolutions*, Am. J. Math. 105 (1983), 367-464.

[9] H. Jacquet and J. Shalika, *Rankin-Selberg convolutions: archimedean theory*, in *Festschrift in Honor of I.I. Piatetski-Shapiro*, Part I, Weizmann Science Press, 1990, 125-207.

[10] N. M. Katz, *Local-to-global extensions of representations of fundamental groups*, Ann. Inst. Fourier 36 (1986), 69-106.
[11] M. Krishnamurthy, The Asai transfer to GL_4 via the Langlands-Shahidi method, IMRN 2003, no. 41 (2003), 2221-2254.
[12] L. Lafforgue, Chretoucs de Drinfeld et correspondance de Langlands, Invent. Math. 147 (2002), 1-241.
[13] G. Laumon, M. Rapoport and U. Stuhler, \mathcal{D}-elliptic sheaves and the Langlands correspondence, Invent. Math. 113 (1993), 217-338.
[14] L. Lomelí, Functoriality for the classical groups over function fields, International Mathematics Research Notices 2009; Vol. 2009: article ID rnp089, 65 pages, doi:10.1093/imrn/rnp089
[15] L. Lomelí, On the Langlands-Shahidi Method for the classical groups in non-zero characteristic and applications, preprint.
[16] I. I. Piatetski-Shapiro, Zeta functions for $GL(n)$, preprint of the University of Maryland, 1976.
[17] D. Ramakrishnan, Modularity of solvable Artin representations of $GO(4)$-type, IMRN 2002, no. 1 (2002), 1-54.
[18] F. Shahidi, On certain L-Functions, Amer. J. Math. 106 (1981), 297-355.
[19] F. Shahidi, Fourier transforms of intertwining operators and Plancherel measures for $GL(n)$, Amer. J. Math. 106 (1984), 67-111.
[20] ______, A proof of Langlands’ conjecture on Plancherel measures; complementary series of p-adic groups, Ann. Math. 132 (1990), 273-330.
[21] ______, Local coefficients as Artin factors for real groups, Duke Math. J. 52 (1985), 973-1007.
[22] A. V. Zelevinsky, Induced representations of reductive p-adic groups II. On irreducible representations of GL_n, Ann. scient. Éc. Norm. Sup., 4e série, 13 (1980), 165-210.

Guy Henniart, Univ. Paris-Sud, Laboratoire de Mathématiques d’Orsay, CNRS, Orsay cedex F-91405, France
E-mail address: Guy.Henniart@math.u-psud.fr

Luis Lomelí, Department of Mathematics, The University of Iowa, 15 MacLean Hall, Iowa City, IA 52242, USA
E-mail address: llomeli@math.uiowa.edu