Investigation of a new C_{24} cluster for obtaining diamond-like phases: first-principle calculations

Vladimir A Greshnyakov1 and Evgeny A Belenkov1

1Physics Department, Chelyabinsk State University, Chelyabinsk 454001, Russia

E-mail: greshnyakov@csu.ru

Abstract. In this work, first-principle calculations of the structure of a new fullerene-like C_{24} cluster are carried out. The surface of this cluster is formed of four- and six-membered atomic rings. It is established that these clusters should be stable under normal conditions. A simple cubic fullerite based on the C_{24} clusters can be used to synthesize the diamond-like CA4 phase under bulk compression up to 4.8 GPa. In addition, X-ray diffraction patterns of the «fullerite $C_{24} \rightarrow$ CA4 phase» structural transition are calculated.

1. Introduction
Carbon nanostructures are used as catalysts, adsorbents, structural elements of nanoelectronic devices and nanocomposites. They can also be used as precursors for new diamond-like and hybrid materials. Such precursors include graphene [1-3], carbon nanotubes [4-6], fullerenes [7-9], and a large number of hypothetical graphite-like nanostructures [10, 11]. One of the promising hypothetical nanostructures is a cubic cluster C_{24} similar to a truncated octahedron [11-13]. Various porous diamond-like phases with equivalent atomic positions can be obtained from these clusters [12-14]. The theoretical analysis, which was carried out in [11], showed that the most likely to obtain the porous diamond-like CA4 phase from a fullerite C_{24}. Therefore, first-principle calculations of the thermal stability of the C_{24} cluster and the process of obtaining the diamond-like CA4 phase from the fullerite C_{24} are performed in this work.

2. Methods
Geometric optimization of the structures and calculations of the total energy of carbon clusters and phases are carried out in the Quantum ESPRESSO program package [15] using the density functional theory (DFT) method [16] in the generalized gradient approximation (GGA) [17]. Modelling of the direct structural transitions of graphite-like C_{24} phase into diamond-like CA4 phase under uniform bulk compression of fullerite was performed using the technique described in [18, 19]. The norm-conserving pseudopotentials and the $10 \times 10 \times 10$ grids of k-points were used for the calculations. The cutoff energy for the basis of plane waves was 60 Rydberg.

The thermal stability of the C_{24} cluster was investigated using the molecular dynamics method with the time step of 0.5 fs and the $6 \times 6 \times 6$ k-point grid. The X-ray diffraction patterns of the «fullerite $C_{24} \rightarrow$ diamond-like CA4 phase » structural transition were calculated by the standard technique for the characteristic $K_{\alpha1}$ copper radiation.
3. Results
As a result of DFT calculations, it is found that the optimized structure of the C_{24} cluster has the shape of a truncated octahedron (the point symmetry group is $m3m$) (figure 1a). The Cartesian coordinates of the atomic positions of this cluster are given in table 1. Each atomic position is characterized by three lengths of interatomic bonds ($L_1 = 1.395 \text{ Å}, L_2 = L_3 = 1.505 \text{ Å}$) and three angles between bonds ($\beta_{12} = \beta_{13} = 120^\circ, \beta_{23} = 90^\circ$).

![Figure 1](image1.png)

Figure 1. The structures of carbon compounds: (a) simple cubic fullerite C_{24}; (b) diamond-like CA4 phase.

Atomic number	X (Å)	Y (Å)	Z (Å)	Atomic number	X (Å)	Y (Å)	Z (Å)
1	0.987	2.051	0.000	13	0.000	2.051	0.987
2	3.116	0.000	2.051	14	2.051	0.000	3.116
3	0.987	2.051	4.102	15	4.103	2.051	0.986
4	3.116	4.102	2.051	16	2.051	4.102	3.115
5	2.051	0.987	0.000	17	0.987	0.000	2.051
6	0.000	3.116	2.051	18	3.116	2.051	0.000
7	2.051	0.987	4.102	19	0.987	4.103	2.051
8	4.102	3.116	2.051	20	3.116	2.051	4.102
9	0.000	0.987	2.051	21	2.051	0.000	0.987
10	2.051	3.116	0.000	22	0.000	2.051	3.116
11	4.103	0.987	2.051	23	2.051	4.103	0.986
12	2.051	3.116	4.102	24	4.102	2.051	3.115

The calculated cohesive energy of the C_{24} cluster is 6.70 eV/atom, which is 14.8 % less than the corresponding value for cubic diamond calculated in [11, 19]. To assess the thermal stability of the new fullerene-like cluster, its structure was annealed at 300 K using the molecular dynamics method. The graph of the total energy change (E_{total}) versus the annealing time is shown in figure 2. As a result of the annealing over 7 ps, neither destruction nor strong deformation of the structure is observed, which indicates the stability of the C_{24} cluster under normal conditions. Only the C_{24} cluster rotation
relative to the equilibrium position in the simple cubic lattice is observed; therefore, the graph characterizing this process differs significantly from the standard relaxation graph.

![Figure 2. Dependence of the total energy on the annealing time for the cluster C_{24} at 300 K.](image2)

At the next stage of the study, the simulation of the direct phase transition of a simple cubic (sc) fullerite C_{24} (figure 1a) to the low-density diamond-like CA4 (figure 1b) phase is performed. The crystal lattices of the initial fullerite C_{24} and final CA4 phase belong to the space group Pm3m. In the process of bulk compression of the fullerite C_{24}, the formation of the CA4 phase occurs when the energy barrier of 0.36 eV/atom is overcome and the pressure reaches 4.8 GPa (figure 3). For this phase transition, X-ray diffraction patterns were calculated during compressing the fullerite and decompression of the formed CA4 phase. This first-order phase transition is accompanied by a significant change in the diffraction pattern, in which many of the original low-intensity maxima disappear, and many new maxima appear (figure 4). The theoretical X-ray diffraction pattern of the new diamond-like CA4 phase can be used for its experimental identification.

![Figure 3. Dependence of the total energy difference on the atomic volume for the simple cubic fullerite C_{24} and diamond-like CA4 phase.](image3)
4. Conclusions

Thus, theoretical calculations of the stability and the possible method of applying the new fullerene-like C_{24} cluster, the surface of which is formed from four- and six-membered atomic rings, are carried out. The DFT calculations showed that these clusters should be stable at room temperature. It is also found that the simple cubic fullerite from C_{24} clusters can be used to synthesize the porous diamond-like CA4 phase during bulk compression up to 4.8 GPa. For experimental identification of the sc fullerite C_{24} and CA4 phase, the calculated X-ray diffraction patterns can be used.

Acknowledgments

The authors thank Foundation of Perspective Scientific Research of Chelyabinsk State University for the financial support.

References

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Galashev A E and Rakhamanova O R 2014 Phys. Usp. 57 970
[3] Baimova J A and Rysaeva L Kh 2018 J. Struct. Chem. 59 884
[4] Iijima S and Ichihashi T 1993 Nature 363 603
[5] Dresselhaus M S, Dresselhaus G and Avouris Ph 2001 Carbon nanotubes: Synthesis, structure, properties, and applications (Berlin: Springer-Verlag) 453 p
[6] Prudkovskiy V S, Iacovella F, Katin K P, Maslov M M and Cherkashin N 2018 Nanotechnology 29 365304
[7] Kroto H W, Heath J R, O’Brien S C, Curl R F and Smalley R E 1985 Nature 318 162
[8] Sheka E 2011 Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nanophotonics (Boca Raton: CRC Press) 312 p
[9] Rysaeva L Kh, Lobzenko I P, Baimova J A, Dmitriev S V and Zhou K 2018 Rev. Adv. Mater. Sci. 57 143

Figure 4. Theoretical powder X-ray diffraction patterns for the «simple cubic fullerite C_{24} → diamond-like CA4 phase» structural transition.
[10] Belenkov E A and Greshnyakov V A 2013 Phys. Solid State 55 1754
[11] Belenkov E A and Greshnyakov V A 2016 Phys. Solid State 58 2145
[12] Belenkov E A and Greshnyakov V A 2014 J Struct. Chem. 55 409
[13] Belenkov E A and Greshnyakov V A 2015 Phys. Solid State 57 2331
[14] Greshnyakov V A and Belenkov E A 2018 IOP Conf. Ser.: Mater. Sci. Eng. 447 012018
[15] Giannozzi P, Baroni S, Bonini N et al. 2009 J. Phys.: Condens. Matter. 21 395502
[16] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864
[17] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[18] Greshnyakov V A and Belenkov E A 2017 Letters on Materials 7 318
[19] Belenkov E A and Greshnyakov V A 2018 Phys. Solid State 60 1294