CHARACTERIZATIONS OF REGULAR LOCAL RINGS IN POSITIVE CHARACTERISTICS

JINJIA LI

ABSTRACT. In this note, we provide several characterizations of regular local rings in positive characteristics, in terms of the Hilbert-Kunz multiplicity and its higher Tor counterparts $t_i = \lim_{n \to \infty} \ell(\mathcal{Tor}_i(R/I, f^n R))/p^{nd}$. We also apply the characterizations to improve a recent result by Bridgeland and Iyengar in the characteristic p case. Our proof avoids using the existence of big Cohen-Macaulay modules, which is the major tool in the proof of Bridgeland and Iyengar.

1. INTRODUCTION

Let (R, \mathfrak{m}, k) be a d-dimensional local ring of characteristic $p > 0$. The Frobenius endomorphism $f_R : R \to R$ is defined by $f_R(r) = r^p$ for $r \in R$. Each iteration f^n_R defines a new R-module structure on R, denoted f^n_R, for which $a \cdot b = a^{p^n} b$. For any R-module M, $F^n_M(M)$ stands for $M \otimes_R f^n R$, the R-module structure of which is given by the base change along the Frobenius endomorphism. When M is a cyclic module R/I, it is easy to show that $F^n_R(R/I) \cong R/I[p^n]$, where $I[p^n]$ denotes the ideal generated by the p^n-th power of the generators of I.

In what follows, $\ell(-)$ denotes the length function.

For any \mathfrak{m}-primary ideal I, the Hilbert-Kunz multiplicity of R with respect to I was first introduced by Monsky in [Mo]:

$$e_{HK}(I, R) = \lim_{n \to \infty} \ell(F^n(R/I))/p^{nd}.$$

The Hilbert-Kunz multiplicity of R is $e_{HK}(R) = e_{HK}(\mathfrak{m}, R)$. We also frequently write $e_{HK}(I) = e_{HK}(I, R)$. It has been shown by many authors that the Hilbert-Kunz multiplicity encodes subtle information about the singularity of R. One such example is the following characterization of the regularity due to Watanabe and Yoshida; see [W-Y], [H-Y].

Theorem 1.1. If R is unmixed, then it is regular if and only if $e_{HK}(R) = 1$.

It is natural to ask whether the higher Tor counterparts of the Hilbert-Kunz multiplicity, which are defined below, can encode similar information on the singularity of the ring.

Definition. Let R be a d-dimensional local ring of characteristic $p > 0$. Let I be any \mathfrak{m}-primary ideal. Define

$$t_i(I, R) = \lim_{n \to \infty} \ell(\mathcal{Tor}_i(R/I, f^n R))/p^{nd}.$$
Seibert has shown that such limits always exist [Se]. In the sequel, we also write $t_i(R) = t_i(m, R)$. The main result of this note is the following theorem in Section 2:

Main Theorem (Theorem 2.2). Let (R, m, k) be a d-dimensional local ring of characteristic $p > 0$. Then the following are equivalent:

(i) R is regular,
(ii) $t_1(R) = 0$,
(iii) $t_2(R) = 0$,
(iv) $e_{HK}(R) - 1 = t_1(R)$.

The proof of this theorem is inspired by the work of Huneke and Yao [H-Y] 2.1 and Blickle and Enescu [B-E].

In Section 3, we apply our main theorem to slightly generalize the positive characteristic case of a recent result by Bridgeland and Iyengar [B-I] 1.1. The result of Bridgeland and Iyengar states that if R contains a field and if k is a direct summand of $H^0(C_\bullet)$, where C_\bullet is a perfect complex of length exactly d such that $\ell(H_i(C_\bullet)) < \infty$ for all positive i, then R must be regular. Using Theorem 2.2, we are able to show that in the positive characteristic case, not only k, but also the first syzygy of k cannot be a direct summand of $H^0(C_\bullet)$ for such C_\bullet unless R is regular.

Our proof of this result is quite different from that of Bridgeland and Iyengar. In particular, we avoid using the existence of big Cohen-Macaulay modules.

2. The Main Result

The following fact plays a crucial role in this paper. It is contained in [D] 1.1. We provide a sketch of the proof here for the completeness of this paper.

Lemma 2.1. Let (R, m, k) be a d-dimensional local ring of characteristic $p > 0$. Let $I = (x)$ be an ideal generated by a system of parameters $x = x_1, \ldots, x_d$. Then $t_1(I, R) = 0$.

Proof. There is a surjection

$$H_1(x^{[p^n]}; R) \twoheadrightarrow \text{Tor}_1(R/I, f^\infty R)$$

and it is well known (see [R] 7.3.5 or [D] 1.1) that

$$\lim_{n \to \infty} \ell(H_i(x^{[p^n]}; R)) / p^{nd} = 0, \text{ for } i > 0.$$

The following is the main theorem of this paper.

Theorem 2.2. Let (R, m, k) be a d-dimensional local ring of characteristic $p > 0$. Then

(a) $e_{HK}(R) - 1 \leq t_1(R)$;
(b) $t_1(R) - e_{HK}(R) + 1 \leq t_2(R)$.

Moreover, the following are equivalent:

(i) R is regular,
(ii) $t_1(R) = 0$,
(iii) $t_2(R) = 0$,
(iv) $e_{HK}(R) - 1 = t_1(R)$.
Proof. We first prove (a) and (b). Let q be a power of p. Let I be an m-primary ideal generated by a system of parameters of R. Consider the following filtration:

$$0 \to Q_1 \to R/I[q] \to k \to 0,$$

$$0 \to Q_2 \to Q_1 \to k \to 0,$$

$$\vdots$$

$$0 \to k \to Q_t \to k \to 0.$$

Applying $- \otimes f^pR$ to the above short exact sequences, we obtain the long exact sequences

$$\cdots \to \text{Tor}_2(k, f^pR) \to \text{Tor}_1(Q_1, f^pR) \to \text{Tor}_1(R/I[q], f^pR) \to \text{Tor}_1(k, f^pR) \to F^n(Q_1) \to F^n(R/I[q]) \to F^n(k) \to 0,$$

$$\cdots \to \text{Tor}_2(k, f^pR) \to \text{Tor}_1(Q_2, f^pR) \to \text{Tor}_1(Q_1, f^pR) \to \text{Tor}_1(k, f^pR) \to F^n(Q_2) \to F^n(Q_1) \to F^n(k) \to 0,$$

$$\vdots$$

$$\cdots \to \text{Tor}_2(k, f^pR) \to \text{Tor}_1(k, f^pR) \to \text{Tor}_1(Q_t, f^pR) \to \text{Tor}_1(k, f^pR) \to F^n(k) \to F^n(Q_t) \to F^n(k) \to 0.$$

It follows that

1. $(\ell(R/I[q]) - 1) \cdot \ell(\text{Tor}_1(k, f^pR)) + \ell(F^n(R/I[q])) \geq \ell(R/I[q]) \cdot \ell(F^n(k))$

and

2. $(\ell(R/I[q]) - 1) \cdot \ell(\text{Tor}_2(k, f^pR)) + \ell(\text{Tor}_1(R/I[q], f^pR)) + \ell(R/I[q]) \cdot \ell(F^n(k))$

$\geq \ell(R/I[q]) \cdot \ell(\text{Tor}_1(k, f^pR)) + \ell(F^n(R/I[q])).$

Divide both sides of (1) by p^{nd} and let $n \to \infty$ to obtain

3. $(\ell(R/I[q]) - 1) \cdot t_1(R) + q^d \cdot e_{HK}(I) \geq \ell(R/I[q])e_{HK}(R).$

Dividing (3) by q^d and letting $q \to \infty$ then yields

$$e_{HK}(I) \cdot t_1(R) + e_{HK}(I) \geq e_{HK}(I) \cdot e_{HK}(R).$$

Hence

$$e_{HK}(R) \leq 1 + t_1(R).$$

Similarly, from inequality (2) we can get (we need to apply Lemma 2.1 here)

4. $(\ell(R/I[q]) - 1) \cdot t_2(R) + \ell(R/I[q])e_{HK}(R) \geq \ell(R/I[q]) \cdot t_1(R) + q^d \cdot e_{HK}(I).$

Therefore

$$t_1(R) - e_{HK}(R) + 1 \leq t_2(R).$$
For the second part of the theorem, it is clear that (i) ⇒ (ii), (iii) and (iv) due to the exactness of Frobenius. We now prove (ii) ⇒ (i) and (iii) ⇒ (iv) ⇒ (ii).

(ii)⇒(i). Note that inequality (3) is valid for any \(m \)-primary ideal \(I \) (not just for ideals generated by a system of parameters). Since \(t_1(R) = 0 \), inequality (3) becomes the equality

\[
q^d \cdot e_{HK}(I) = \ell(R/I^{[q]})e_{HK}(R).
\]

Taking \(I = m \) immediately gives \(q^d = \ell(R/m^{[q]}) \), which forces \(R \) to be regular by Kunz’s Theorem [K].

(iii)⇒(iv). Since \(t_2(R) = 0 \), inequality (4) becomes the equality

\[
\ell(R/I^{[q]})e_{HK}(R) = \ell(R/I^{[q]}) \cdot t_1(R) + q^d \cdot e_{HK}(I).
\]

We therefore obtain (iv) by dividing both sides by \(q^d \) and taking the limits.

(iv)⇒(ii). We can make a flat extension of \(R \) to assume that \(k \) is infinite without changing any of the relevant lengths. Let \(I \) be a minimal reduction of \(m \) which is generated by a system of parameters of \(R \). In this case, it is well known (see, for instance, [Ma 14.12]) that the Hilbert-Kunz multiplicity \(e_{HK}(I) \) coincides with the Hilbert-Samuel multiplicity \(e(R) \). Taking \(q = 1 \) in (3), we have

\[
(\ell(R/I) - 1) \cdot t_1(R) + e_{HK}(I) \geq \ell(R/I)e_{HK}(R).
\]

Replacing \(e_{HK}(R) \) by \(1 + t_1(R) \) in (5), we get

\[
e(R) \geq \ell(R/I) + t_1(R) \geq \ell(R/I).
\]

On the other hand, since \(I \) is a minimal reduction of \(m \), \(e(R) \leq \ell(R/I) \). This forces all the inequalities in (6) to be equalities. Therefore \(t_1(R) = 0 \). \(\Box \)

The inequalities (a) and (b) in Theorem 2.2 are far from being the best possible bounds for the Hilbert-Kunz multiplicity. For example, the following corollary gives better bounds when \(R \) is Cohen-Macaulay.

Corollary. Let \((R, m)\) be a Cohen-Macaulay local ring of characteristic \(p > 0 \) and let \(e = e(R) \) be the Hilbert-Samuel multiplicity of \(R \). Then

\[
e_{HK}(R) - 1 \leq \left(\frac{e - 1}{e} \right)t_1(R).
\]

This follows easily from inequality (3) in the proof of Theorem 2.2. One can again assume the residue field of \(R \) is infinite so that there is a minimal reduction \(I \) of \(m \) which is generated by a system of parameters. Since \(R \) is Cohen-Macaulay, we have

\[
e = \ell(R/I) = e_{HK}(I).
\]

Take \(q = 1 \) in (3) and then replace \(\ell(R/I) \) and \(e_{HK}(I) \) in (3) by \(e \). We obtain

\[
(e - 1) \cdot t_1(R) + e \geq e \cdot e_{HK}(R),
\]

which gives the desired inequality.

Remark. When \(R \) is Cohen-Macaulay, we can argue exactly the same way as in the proof of Theorem 2.2 to trivially generalize Theorem 2.2 to cases of higher Tor. Namely, we have

\[
t_i(R) - t_{i-1}(R) + \cdots + (-1)^{i-1}t_1(R) + (-1)^it_{HK}(R) + (-1)^{i+1} \geq 0 \text{ for all } i \geq 1
\]
and R being regular can be characterized by either the above inequalities taking “$=$” for some $i \geq 1$, or $t_i(R)$ being zero for some $i \geq 1$. However, the author does not know if this generality can be true without the Cohen-Macaulay assumption. The main obstruction here is, when R is not Cohen-Macaulay, we no longer have the higher Tor (for $i \geq 2$) analog of Lemma 2.1.

3. An improvement of Bridgeland-Iyengar’s Result

Recently, Bridgeland and Iyengar \[B-I, 1.1\] proved the following characterization for regular local rings.

Theorem 3.1 (Bridgeland-Iyengar). Let (R, \mathfrak{m}, k) be a d-dimensional local ring containing a field or of dimension ≤ 3. Assume C_\bullet is a complex of free R-modules with $C_i = 0$ for $i \notin [0, d]$, the R-module $H_0(C_\bullet)$ is finitely generated, and $\ell(H_i(C_\bullet)) < \infty$ for $i > 0$. If k is a direct summand of $H_0(C_\bullet)$, then R is regular.

Their proof of Theorem 3.1 uses the existence of balanced big Cohen-Macaulay modules. Here we can apply Theorem 2.2 to give a more direct proof in the positive characteristic case that avoids using the existence of big Cohen-Macaulay modules. Moreover, our proof also yields the same conclusion if (instead of k) the first syzygy module of k is a direct summand of $H_0(C_\bullet)$.

Theorem 3.2. Let (R, \mathfrak{m}, k) be a d-dimensional local ring of characteristic $p > 0$, C_\bullet a complex of free R-modules with $C_i = 0$ for $i \notin [0, d]$, the R-module $H_0(C_\bullet)$ finitely generated, and $\ell(H_i(C_\bullet)) < \infty$ for $i > 0$. If either k or the first syzygy of k is a direct summand of $H_0(C_\bullet)$, then R is regular.

Proof. By the same argument as in \[B-I, Lemma 2.2\], we have a surjection

$$H_1(F^n(C_\bullet)) \twoheadrightarrow \operatorname{Tor}_1(H_0(C_\bullet), f^pR)$$

It is well known that $\lim_{n \to \infty} \ell(H_1(F^n(C_\bullet)))/p^n = 0$; see \[D, 1.7\]. So we are done by Theorem 2.2.

\[\square\]

Remark. Theorem 3.2 is still valid for rings containing a field or of dimension ≤ 3 (the exact same hypothesis on R as in Theorem 3.1) although the proof requires the use of big Cohen-Macaulay modules. To see this, one needs to use a result of Schoutens \[Sc, Proposition 2.5\] to modify the original proof of Bridgeland and Iyengar (their proof of \[B-I, Theorem 2.4\]) slightly. We leave the details here to the readers.

It seems that the mixed characteristic case of the above result remains unknown.

ACKNOWLEDGEMENT

I wish to thank Graham Leuschke and Claudia Miller for introducing the paper of Bridgeland and Iyengar to me and useful discussions, and to thank C-Y. Jean Chan, who had carefully read an earlier version of this paper and suggested many improvements.
References

[B-E] M. Blickle and F. Enescu, On rings with small Hilbert-Kunz multiplicity, Proc. Amer. Math. Soc., 132, 2004, no. 9, 2505–2509.

[B-I] T. Bridgeland and S. Iyengar, A criterion for regularity of local rings, C. R. Math. Acad. Sci. Paris, 342, 2006, no. 10, 723–726.

[D] S. P. Dutta, Ext and Frobenius, J. Algebra, 127, 1989, 163–177.

[H-Y] C. Huneke and Y. Yao, Unmixed local rings with minimal Hilbert-Kunz multiplicity are regular, Proc. Amer. Math. Soc., 130, 2002, no. 3, 661–665.

[K] E. Kunz, Characterization of regular local rings for characteristic p, Amer. J. Math., 91 1969, 772–784.

[Ma] H. Matsumura, Commutative Ring Theory, Cambridge Stud. Adv. Math. 8, Cambridge Univ. Press, Cambridge, 1986.

[Mo] P. Monsky, The Hilbert-Kunz function, Math. Ann., 263, 1983, 43–49.

[R] P. Roberts, Multiplicities and Chern Classes in Local Algebra, Cambridge University Press, 1998.

[Sc] H. Schoutens, On the vanishing of Tor of the absolute integral closure, J. Algebra, 275, 2004, 567–574.

[Se] G. Seibert, Complexes with homology of finite length and Frobenius functors, J. Algebra, 125, 1989, 278–287.

[W-Y] K.-I. Watanabe and K. Yoshida, Hilbert-Kunz multiplicity and an inequality between multiplicity and colength, J. Algebra, 230, 2000, 295-317.

Department of Mathematics, Syracuse University, 215 Carnegie, Syracuse, NY 13244
E-mail address: j1132@syrs.edu