The role of the $bla_{KPC}$ gene in antimicrobial resistance of *Klebsiella pneumoniae*

Atossa Ghasemnejad 1, Monir Doudi 2*, Nour Amirmozafari 3

1Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
2Department of Microbiology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
3Department of Microbiology, Iran University of Medical Sciences, Tehran, Iran

Received: December 2018, Accepted: May 2019

ABSTRACT

Background and Objectives: *Klebsiella pneumoniae* isolates that produce *K. pneumoniae* carbapenemase (KPC) have become a grave concern for the treatment of infections. KPC-producing strains are not only able to hydrolyze carbapenems but are also resistant to a variety of β-lactam and non-β-lactam antibiotics. The present study evaluated the prevalence of $bla_{KPC}$ in *K. pneumoniae* infections and determined the antimicrobial susceptibility of the isolates.

Materials and Methods: The *K. pneumoniae* isolates were identified by biochemical tests and confirmed by genotyping. The modified Hodge test (MHT) was performed to detect carbapenemases, and antimicrobial susceptibility was determined for all isolates by the disc diffusion method. Also, for MHT-positive isolates, supposed to carbapenemases isolates, broth microdilution method was used to measure the minimum inhibitory concentrations (MICs) of meropenem and colistin.

Results: The $bla_{KPC}$ genotypic evaluation revealed that only 5 of 96 isolates carried $bla_{KPC}$ genes. Antimicrobial pattern showed that isolates carrying $bla_{KPC}$ were resistant to cefepime, ticarcillin/tazobactam, and aztreonam discs. Also, results of broth microdilution method showed that KPC-producing *K. pneumoniae* was resistant to meropenem and colistin, according to the CLSI and EUCAST.

Conclusion: In this study nearly half the isolates showed carbapenemase activity as shown by MHT results, but only few of them were carrying $bla_{KPC}$. Thus $bla_{KPC}$ gene is not the main cause of resistance spread to carbapenems in Isfahan, Iran.

Keywords: $bla_{KPC}$; *Klebsiella pneumoniae*; Infectious disease; Carbapenemase; Colistin

INTRODUCTION

*Klebsiella pneumoniae* can infect the urinary tract, respiratory tract, surgical sites, and bloodstream, causing severe diseases such as pneumonia, sepsis, and bacteremia (1). *K. pneumoniae* with multiple drug resistant (MDR) pattern has a high prev-
alence, and the global emergence and dissemination of *K. pneumoniae* strains resistant to carbapenems has increased (2-5). Carbapenems as another β-lactam structure are recommended as first-line therapy for *Enterobacteriaceae* infections, such as *K. pneumoniae*. Also, carbapenems are increasingly used as the first-line antibiotics for unidentified microorganisms and last-line antibiotics for the treatment of infections (1). Resistance to carbapenems is characterized by one or several mechanisms, including carbapenemase production. Carbapenemases exhibit the highest antibiotic resistance, as they can hydrolyze carbapenem antibiotics and other β-lactam antibiotics (6).

*Klebsiella pneumoniae* carbapenemase (KPC) is one of the main cause of resistance to carbapenems in *K. pneumoniae*, and it can widely spread due to its location on various plasmids (7-10). KPC enzymes constitute a major family of class A serine carbapenemases, which are mainly produced by *K. pneumoniae*. KPC is, in fact, the most common cause of carbapenem resistance in *Enterobacteriaceae* (7, 11, 12). KPC producing *K. pneumoniae* (KPC-Kp) has affected many countries, especially Greece and Italy, and has rapidly become endemic in some countries, such as China, Colombia, and Puerto Rico (13-18). Dissemination of KPC around the world highlights the role of *bla*<sub>KPC</sub> gene in the spread of antimicrobial resistance; Thus, strains harboring *bla*<sub>KPC</sub> gene are a major cause of concern for healthcare systems around the world (19). Therefore, in this study, we aimed to evaluate the prevalence and antimicrobial susceptibility of KPC-producing *K. pneumoniae* among patients in Isfahan, Iran.

**MATERIALS AND METHODS**

**Bacterial collection.** *K. pneumoniae* isolates were collected from Al-Zahra hospital, Isfahan, Iran between February and June 2016. The clinical specimens included urine samples, wound swabs, peritoneal fluid sample, blood samples, respiratory secretions, and others (20).

**PCR detection of Klebsiella pneumoniae.** After biochemical test for detection of isolates, polymerase chain reaction (PCR) based on 16S-23S rDNA internal transcribed spacer (ITS) was performed for the identification of *K. pneumoniae* isolates using specific primers (forward, ATTTGAAGAGGTTGCAACGAT; reverse, TTCACTCTGAAGTTTTCTTGTGTTC). The procedure was performed as follows. Five colonies from the overnight culture in tryptic soy agar (TSA) medium were suspended in 100 μl distilled water. For DNA extraction, boiling lysis method was used. Cell debris was centrifuged at 13684 RCF for 3 minutes. Supernatants were used as the source of template DNA for amplification. The cycling conditions were as follows; 10 min at 94°C, followed by 35 cycles of 30 s at 94°C, 20 s at 57°C, and 20 s at 72°C, then 10 min hold at 72°C. Ten microliter of the product was detected by 1% (w/v) agarose gel electrophoresis in 1X TAE buffer (20, 21).

**Phenotypic confirmation of KPC.** According to the CLSI guidelines, MHT was performed for the detection of carbapenemases. Due to the low specificity of MHT method, both meropenem and ertapenem discs were used separately as the substrates for MHT (20, 22).

**Genotypic confirmation of KPC.** PCR was run for MHT-positive strains to screen the presence of *bla*<sub>KPC</sub> gene. *K. pneumoniae* ATCC BAA 1705 and *K. pneumoniae* ATCC BAA 1706 were used as the quality control strains. The forward and reverse primers were KPC-F: ATGTCACTGTATCGCCGTCT and KPC-R: GCTGTGCTTGTCATCCTTGT, respectively. The primers were used at a concentration of 1 µM. PCR was performed as follows. Initial denaturation at 95°C for 5 min, followed by 35 cycles of denaturation at 95°C for 60 s, annealing at 53°C for 30 s, elongation at 72°C for 90 s, and a final extension at 72°C for 10 min. The amplification product was approximately 819 bp in length (20).

**Antimicrobial susceptibility testing.** The susceptibility test was performed based on the disc diffusion method, using β-lactam and non-β-lactam antimicrobial discs (i.e., cefepime 30 µg, ciprofloxacin 5 µg, imipenem 10 µg, meropenem 10 µg, ertapenem 10 µg, ceftazidime 30 µg, gentamicin 10 µg, and trimethoprim-sulfamethoxazole 1.23/25.75 µg), according to CLSI guidelines (22). The quality control strains for the susceptibility test included *Escherichia coli* ATCC 25922, *K. pneumoniae* ATCC 700603, and *Pseudomonas aeruginosa* ATCC 27853. In addition, the minimum inhibitory concentrations (MICS) of meropenem and colistin were determined via
broth microdilution for the positive modified Hodge test (MHT) strains as potential carbapenemase producing isolates. The results were interpreted based on the CLSI and European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines (22-24).

**RESULTS**

**Isolate distribution.** Ninety-six *K. pneumoniae* isolates were isolated from the following departments: intensive care unit (34.38%), emergency ward (17.71%), outpatient unit (15.63%), surgery ward (9.38%), rheumatology and nephrology unit (5.21%), neonatal intensive care unit (4.17%), neurology unit (3.13%), gynecology ward (3.13%), neonatal unit (2.08%), orthopedics (1.04%), laparoscopy unit (1.04%), ear-throat-nose unit (1.04%), Radiology (1.04%), and unknown units (1.04%). Overall, 59 (61.5%) patients were male, and 37 (38.5%) patients were female (20).

**KPC isolates.** A total of 54 isolates showed positive results, 37 isolates were classified as carbapenem-resistant using MHT with the meropenem disc, and 47 with the ertapenem disc (some isolates showed positive result with the use of both discs) (20). Five out of 54 Carbapenemase-producing isolates harbored *bla*KPC genes, as detected by PCR (20).

**Antimicrobial resistance patterns.** The antimicrobial susceptibility test using the disc diffusion method showed that 69 (71.88%) isolates were resistant to cefepime, ciprofloxacin, and imipenem. On the other hand, 60 (62.5%) isolates were resistant to meropenem, 49 (51%) isolates were resistant to ertapenem, 68 (70.83%) isolates were resistant to ceftazidime, 61 (63.54%) isolates were resistant to gentamicin, and 52 (54.17%) isolates were resistant to trimethoprim-sulfamethoxazole.

Disc diffusion assay of MHT-positive isolates showed that the non-producing KPC isolates were highly resistant to carbapenems (Table 1) (20). Also, MHT-positive isolates micro broth dilution for meropenem showed that 7 (13%) isolates were sensitive and 47 (87%) isolates were resistant (Table 2); micro broth dilution for colistin showed that 1 (1.85%) isolate was sensitive and 53 (98.15%) were resistant (Table 3).

**Table 1. Antimicrobial susceptibility of MHT-positive isolates to Carbapenem discs.**

| Carbapenem discs | KPC          |
|------------------|--------------|
|                  | Negative     | Positive |
| Imipenem         | Resistant    | 67.7%    | 4.2%    |
|                  | Intermediate | 15.6%    | 0.0%    |
|                  | Sensitive    | 11.5%    | 1.0%    |
| Meropenem        | Resistant    | 58.3%    | 4.2%    |
|                  | Intermediate | 15.6%    | 1.0%    |
|                  | Sensitive    | 20.8%    | 0.0%    |
| Ertapenem        | Resistant    | 46.9%    | 4.2%    |
|                  | Intermediate | 11.5%    | 0.0%    |
|                  | Sensitive    | 36.5%    | 1.0%    |

**Antimicrobial resistance patterns of KPC-Kp.**

The MICs of meropenem for all 5 KPC-Kp were as follows: 1 isolate (16 mg/l), 1 isolate (32 mg/l), 2 isolates (64 mg/l), and 1 isolate (>64 mg/l). Also MICs of colistin against 5 KPC-Kp isolates showed resistant, 2 isolates (128 mg/l), 2 isolates (64 mg/l), and 1 isolate (16 mg/l).

Disc diffusion assay for KPC-Kp isolates showed that 4 out of 5 isolates were resistant to imipenem, ceftazidime, ciprofloxacin, and gentamicin. All KPC-producing isolates (5 isolates) were resistant to cefepime, ticarcillin-tazobactam, and aztreonam. On the other hand, 3 out of 5 KPC-Kp isolates were sensitive to trimethoprim-sulfamethoxazole. One out of 5 KPC-Kp isolates was sensitive to gentamicin, whereas 1 out of 5 KPC-Kp isolates showed intermediate to ciprofloxacin.

**DISCUSSION**

The prevalence of infection with KPC-producing *K. pneumoniae* has generally increased worldwide. Sporadic, epidemic, or endemic isolation of KPC-Kp has been reported. While sporadic outbreaks occurred in France, Spain, Germany, Ireland, and Puerto Rico, endemic cases were reported in USA, Colombia, Greece, and Italy (13, 25-28). In fact, KPC-Kp strains have become the major MDR pathogens, causing nosocomial infections (27). In this study, molecular epidemiology of *bla*KPC gene in *K. pneumoniae* indicated a low prevalence in Iran.

One study indicated that two of the most effective antibiotic groups for KPC-Kp are polymyxins,
and aminoglycosides (28). Previous reports indicated that KPC-producing isolates are commonly resistant to many antibiotics such as colistin, and carbapenems (29-31). Also, some studies demonstrated that KPC-producing isolates are susceptible to gentamicin and colistin and intermediate or sensitive to tigecycline (29, 30, 32). However, the present findings showed that all KPC-Kp isolates were resistant to colistin and that most of the isolates were resistant to gentamicin. Also, KPC-Kp showed resistance to imipenem, ceftazidime, ciprofloxacin, gentamicin, cefepime, ticarcillin-tazobactam, and aztreonam discs.

In this study, the disc diffusion assay of all isolates showed that the highest antibiotic resistance was related to imipenem, ciprofloxacin, and cefepime, whereas highest antibiotic susceptibility was related to trimethoprim-sulfamethoxazole. Most of the MHT positive isolates were resistant to colistin. Whereas the MIC of meropenem against 28 MHT positive isolates (non-KPC-producing) exceeded 64 mg/l.

## CONCLUSION

The present study revealed sporadic outbreaks of KPC-producing *K. pneumoniae*. It is important to control the spread of this infection by investigation specific mechanisms of carbapenem resistance and employing effective methods such as active surveillance in health centers (for decreasing health associated infections). Also, the results confirmed the importance of implementing infection control programs to identify and prevent the prevalence of other carbapenemase-producing *K. pneumoniae* rather than only KPC-Kp. Due to the antimicrobial patterns of isolates, it is important to find effective options like new antibiotics or antibiotics combinations.

## ACKNOWLEDGEMENTS

We would like to show our gratitude to Isfahan Science and Technology town for authorizing to use laboratory services. No funds have been provided for this study.

## REFERENCES

1. Diaz A, Ortiz DC, Trujillo M, Garces C, Jaime FRe-strepo AV. Clinical characteristics of carbapenem-re-istant *Klebsiella pneumoniae* infections in Ill and col-
onized children in Colombia. *Pediatr Infect Dis J* 2016; 35: 237-241.
2. Ferreira RL, da Silva BCM, Rezende GS, Nakamu-
ra-Silva R, Pitondo-Silva A, Campanini EB, et al. High prevalence of multidrug-resistant *Klebsiella pneumo-
niae* harboring several virulence and beta-lactamase encoding genes in a Brazilian intensive care unit. *Front Microbiol* 2019; 9: 3198.
3. Pereira PS, de Araujo CF, Seki LM, Zahner V, Car-
valho-Assef AP, Asensi MD. Update of the molecular epidemiology of KPC-2-producing *Klebsiella pneumo-
niae* in Brazil: spread of clonal complex 11 (ST11, ST437 and ST340). *J Antimicrob Chemother* 2013; 68: 312-316.
4. Wasfi R, Elkhatib WFAshour HM. Molecular typing

### Table 2. MIC of Meropenem for all MHT-positive isolates. All five isolates that carrying *bla*<sub>KPC</sub> were resistant to meropenem.

| MIC colistin | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | &gt;64 |
|-------------|-------|------|-----|---|---|----|----|----|----|----|-------|
| KPC         |       |      |     |   |   | 2  | 2  | 2  | 1  | 0   | 0     |
| Positive    | 0     | 0    | 0   | 0 | 0 | 0   | 0  | 0  | 0  | 1   | 2     |

### Table 3. MIC of Colistin for all MHT-positive isolates. All five isolates that carrying *bla*<sub>KPC</sub> were resistant to colistin.

| MIC colistin | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | &gt;256 |
|-------------|------|-----|---|---|---|----|----|----|----|-----|-----|-------|
| KPC         |      |     |   |   |   | 0  | 1  | 0  | 0  | 1   | 2   | 10    |
| Positive    | 0    | 0   | 0 | 0 | 0 | 0  | 0  | 1  | 0  | 2   | 2   | 0     |

http://ijm.tums.ac.ir
and virulence analysis of multidrug resistant *Klebsiella pneumoniae* clinical isolates recovered from Egyptian hospitals. Sci Rep 2016; 6: 38929.

5. Bellich B, Ravenscroft N, Rizzo R, Lagatolla C, D’Andrea MM, Rossolini GM, et al. Structure of the capsular polysaccharide of the KPC-2-producing *Klebsiella pneumoniae* strain KK207-2 and assignment of the glycosyltransferase functions. *Int J Biol Macromol* 2019; 130: 536-544.

6. Essayagh T, Karimou AElhamzaoui S. Carbapenemases among *Klebsiella pneumoniae*: sensitivity, E-test and Hodge test. *Ann Biol Clin (Paris)* 2012; 70: 299-304.

7. Nordmann P, Cuzon GNaas T. The real threat of *Klebsiella pneumoniae* carbapenemase-producing bacteria. *Lancet Infect Dis* 2009; 9: 228-236.

8. Nordmann P, Poirel L. Emerging carbapenemases in Gram-negative aerobes. *Clin Microbiol Infect* 2002; 8: 321-331.

9. Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. *Clin Microbiol Rev* 2007; 20: 440-458.

10. Cuzon G, Naas T, Nordmann P. Functional characterization of Tn4401, a Tn3-based transposon involved in bla*KPC* gene mobilization. *Antimicrob Agents Chemother* 2011; 55: 5370-5373.

11. Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, et al. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of *Klebsiella pneumoniae*. *Antimicrob Agents Chemother* 2001; 45: 1151-1161.

12. Scavuzzi AML, Maciel MAV, de Melo HRL, Alves LC, Brayner FA, Lopes ACS. Occurrence of *qnrB1* and *qnrB12* genes, mutation in gyrA and ramK, and expression of efflux pumps in isolates of *Klebsiella pneumoniae* carriers of bla*KPC*. *J Med Microbiol* 2017; 66: 477-484.

13. Rojas LJ, Weinstock GM, De La Cadena E, Díaz L, Rios R, Hanson BM, et al. An Analysis of the epidemiology of KPC-producing *Klebsiella pneumoniae*: Convergence of two evolutionary mechanisms creates the "Perfect Storm". *J Infect Dis* 2017; 217:82-92.

14. Chen L, Mathema B, Chavda KD, DeLeo FR, Bonomo RA, Kreiswirth BN. Carbapenemase-producing *Klebsiella pneumoniae*: molecular and genetic decoding. *Trends Microbiol* 2014; 22: 686-696.

15. Wolter DI, Karpil PM, Woodford N, Palepou MF, Goering RV, Hanson ND. Phenotypic and enzymatic comparative analysis of the novel KPC variant KPC-5 and its evolutionary variants, KPC-2 and KPC-4. *Antimicrob Agents Chemother* 2009; 53: 557-562.

16. Cai JC, Zhou HW, Zhang R, Chen GX. Emergence of serrata marcescens, *Klebsiella pneumoniae*, and *Escherichia coli* isolates possessing the plasmid-mediated carbapenem-hydrolyzing beta-lactamase KPC-2 in intensive care units of a Chinese hospital. *Antimicrob Agents Chemother* 2008; 52: 2014-2018.

17. Doi Y, Paterson DL. Carbapenemase-producing *Enterobacteriaceae*. *Semin Respir Crit Care Med* 2015; 36: 74-84.

18. Zhang Y, Wang Q, Yin Y, Chen H, Jin L, Gu B, et al. Epidemiology of carbapenem-resistant *Enterobacteriaceae* infections: Report from the China CRE Network. *Antimicrob Agents Chemother* 2018; 62(2): e01882-17.

19. Cornaglia G, Rossolini GM. The emerging threat of acquired carbapenemases in Gram-negative bacteria. *Clin Microbiol Infect* 2010; 16: 99-101.

20. Ghasemnejad A, Doudi MA, Mirmozafari N. Evaluation of modified hodge test as a non-molecular assay for accurate detection of KPC-producing *Klebsiella pneumoniae*. *Pol J Microbiol* 2018; 67: 291-295.

21. Liu Y, Liu C, Zheng W, Zhang X, Yu J, Gao Q, et al. PCR detection of *Klebsiella pneumoniae* in infant formula based on 16S-23S internal transcribed spacer. *Int J Food Microbiol* 2008; 125: 230-235.

22. CLSI CaLSI, Performance standards for antimicrobial susceptibility testing; Twenty-sixth informational supplement, M100-S25 2016, Wayne, PA.

23. EUCAST Ecoast, Breakpoint tables for interpretation for MICs and zone diameters. 2016, Basel, Switzerland.

24. CLSI CaLSI, Methods for dilution Antimicrobial susceptibility test for bacteria that grow aerobically, M07-A9. 2012, Wayne, PA.

25. Papadimitriou-Olivegeris M, Fligou F, Bartzavali C, Zotou A, Spyropoulou A, Koutsilieu K, et al. Carbapenemase-producing *Klebsiella pneumoniae* blood-stream infection in critically ill patients: risk factors and predictors of mortality. *Eur J Clin Microbiol Infect Dis* 2017; 36: 1125-1131.

26. Castanheira M, Farrell SE, Krause KM, Jones RN, Sader HS. Contemporary diversity of beta-lactamases among *Enterobacteriaceae* in the nine U.S. census regions and ceftazidime-avibactam activity tested against isolates producing the most prevalent beta-lactamase groups. *Antimicrob Agents Chemother* 2014; 58: 833-838.

27. Ageeets VA, Partina IV, Lisitsyna ES, Ilina EN, Lobzin YY, Shlyapnikov SA, et al. Emergence of carbapenemase-producing Gram-negative bacteria in Saint Petersburg, Russia. *Int J Clin Microbiol Infect* 2017; 36: 1125-1131.

28. Campos AC, Albiero J, Ecker AB, Kuroda CM, Meirelles LE, Polato A, et al. Outbreak of *Klebsiella pneumoniae* carbapenemase-producing *K. pneumoniae*: A systematic review. *Am J Infect Control* 2016; 44: 1374-1380.
Klebsiella pneumoniae coproducing KPC and VIM Carbapenemases in Neonates at a Tunisian University Hospital. Microb Drug Resist 2017; 23: 468-472.

30. Woodford N, Zhang J, Warner M, Kaufmann ME, Matos J, Macdonald A, et al. Arrival of Klebsiella pneumoniae producing KPC carbapenemase in the United Kingdom. J Antimicrob Chemother 2008; 62: 1261-1264.

31. Jelic M, Butic I, Plecko V, Cipris I, Jajic I, Bejuk D, et al. KPC-producing Klebsiella pneumoniae isolates in Croatia: A nationwide survey. Microb Drug Resist 2016; 22: 662-667.

32. Perilli M, Bottoni C, Grimaldi A, Segatore B, Celenza G, Mariani M, et al. Carbapenem-resistant Klebsiella pneumoniae harbouring blaKPC-3 and blaVIM-2 from central Italy. Diagn Microbiol Infect Dis 2013; 75: 218-221.