THE REALIZATION PROBLEM FOR JØRGENSEN NUMBERS

YASUSHI YAMASHITA AND RYOSUKE YAMAZAKI

Abstract. Let G be a two generator subgroup of $\text{PSL}(2, \mathbb{C})$. The Jørgensen number $J(G)$ of G is defined by

$$J(G) = \inf \{ |\text{tr}^2 A - 4| + |\text{tr}[A, B] - 2| : G = \langle A, B \rangle \}.$$

If G is a non-elementary Kleinian group, then $J(G) \geq 1$. This inequality is called Jørgensen’s inequality. In this paper, we show that, for any $r \geq 1$, there exists a non-elementary Kleinian group whose Jørgensen number is equal to r. This answers a question posed by Oichi and Sato. We also present our computer generated picture which estimates Jørgensen numbers from above in the diagonal slice of Schottky space.

1. Introduction

Let G be a two generator subgroup of $\text{PSL}(2, \mathbb{C})$. Determining whether or not G is discrete is an important problem in Kleinian group theory. In 1976, Jørgensen[7] showed that if $G = \langle X, Y \rangle$ is a rank two non-elementary discrete subgroup of $\text{PSL}(2, \mathbb{C})$ (Kleinian group), then

$$|\text{tr}^2 X - 4| + |\text{tr}[X, Y] - 2| \geq 1,$$

(1)

where $[X, Y] = XYX^{-1}Y^{-1}$. The Jørgensen number of an ordered pair (X, Y) is defined as

$$J(X, Y) := |\text{tr}^2 X - 4| + |\text{tr}[X, Y] - 2|$$

and the Jørgensen number of a rank two non-elementary Kleinian group G is defined as

$$J(G) := \inf \{ J(X, Y) | \langle X, Y \rangle = G \}.$$

By (1), we have $J(G) \geq 1$. We can think of Jørgensen number as measuring how far from being indiscrete. Jørgensen’s inequality is sharp, and if $J(G) = 1$, G is called a Jørgensen group. There are many results on Jørgensen groups in the literature[8, 10, 12, 15, 18, 19, 23]. Also, calculating Jørgensen numbers can be difficult and interesting challenge[3, 6, 20]. Oichi-Sato[16] asked the following natural question:

Question 1.1 (The realization problem). Let r be a real number with $r \geq 1$. When is there a non-elementary Kleinian group whose Jørgensen number is equal to r?

Oichi-Sato[16] claimed that if $r = 1, 2, 3$ or $r \geq 4$, then there is a non-elementary Kleinian group whose Jørgensen number is equal to r. (See also[3, 23, 24].) Though Jørgensen’s inequality is sharp, constructing a Kleinian group with small Jørgensen

2010 Mathematics Subject Classification. 30F40, 57M50.

Key words and phrases. Jørgensen’s inequality, Jørgensen number, Kleinian groups.

This work was supported by JSPS KAKENHI Grant Number 26400088.
number (in particular, less than 4) is not easy. To the best of our knowledge, there is no known example of a classical Schottky group whose Jørgensen number is less than 4. In this paper, we solve this realization problem.

Theorem 1.2. For any real number \(r \geq 1 \), there is a rank two non-elementary discrete subgroup of \(\text{PSL}(2, \mathbb{C}) \) whose Jørgensen number is \(r \).

The Jørgensen numbers can be studied by computer experiments. We will present a computer generated picture of the estimates of Jørgensen numbers from above in the diagonal slice of Schottky space. At the end of the paper, we present some Jørgensen groups, and we conjecture that they are counter examples of Li-Oichi-Sato’s conjecture.

In section 2, we give a proof of Theorem 1.2 for the case \(1 \leq r \leq 4 \). In section 3, we give a proof for the case \(4 \leq r \). In section 4, we present our computer generated picture, and describe our calculation.

2. The proof for the case \(1 \leq r \leq 4 \)

In this section, we give a proof for the case \(1 \leq r \leq 4 \). For simplicity, we use the same notation for a matrix in \(\text{SL}(2, \mathbb{C}) \) and its equivalence class in \(\text{PSL}(2, \mathbb{C}) \).

2.1. The basic configuration. Let \(z, z' \in \mathbb{C} \), and \([z, z']\) be the oriented line from \(z \) to \(z' \) in \(\mathbb{H}^3 \). Following [4], we define the line matrix associated with \([z, z']\) as

\[
M([z, z']) := \frac{i}{z' - z} \begin{pmatrix} z + z' & -2zz' \\ 2 & -z - z' \end{pmatrix}.
\]

See [4], p. 64, equation (1). It is the order two rotation about \([z, z']\).

For \(a \geq 1 \), set

\[
P_a := M([a, -3a]), \quad Q := M([1, -1]), \quad R := M([0, \infty]).
\]

Let \(G_a \) be a subgroup of \(\text{PSL}(2, \mathbb{C}) \) generated by \(P_a, Q \) and \(R \). The axes of the generators are contained in the vertical plane \(\{(x, 0, z) | z > 0\} \cong \mathbb{H}^2 \). Since we assumed that \(a \geq 1 \), \([a, -3a]\) and \([1, -1]\) do not intersect in \(\mathbb{H}^3 \). The angle between \([1, -1]\) and \([0, \infty]\) is \(\pi/2 \), and the angle between \([0, \infty]\) and \([a, -3a]\) is \(\pi/3 \). See Figure 1. Hence, as an abstract group, \(G_a \) has a presentation

\[
\langle P_a, Q, R \mid P_a^2 = Q^2 = R^2 = (QR)^2 = (RP_a)^3 = id \rangle
\]

for any \(a \geq 1 \) and is isomorphic to a hyperbolic (full) triangle group in \(\mathbb{H}^2 \). (Note that hyperbolic (full) triangle groups are defined as groups generated by reflections,
but G_a is generated by rotations in \mathbb{H}^3. Hence, G_a is non-elementary and discrete. For later purpose, we classify non-trivial elements of G_a into three types:

(i) elliptic elements
(ii) loxodromic elements which can be conjugated into $\langle P_a, Q \rangle$
(iii) loxodromic elements which cannot be conjugated into $\langle P_a, Q \rangle$

When $a = 1$, we define that the parabolic elements are of type (ii).

Remark 2.1. Groups similar to $\langle P_a, Q, R \rangle$ were studied by C. Series, S. P. Tan and the first author in \cite{21}.

Lemma 2.2. Let E_a be an element of type (iii) in G_a. Then, we have

$$\text{tr} E_a \in \{\pm x \mid x \in \mathbb{R}, x \geq 3\} \cup \{\pm yi \mid y \in \mathbb{R}, y \geq 1\}.$$

Proof. We begin by considering the case $a = 1$. Set

$$M = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \sqrt{2} \end{pmatrix}.$$

Then, we have

$$MP_1M^{-1} = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}, MQM^{-1} = \begin{pmatrix} -i & 0 \\ -2i & i \end{pmatrix}, MRM^{-1} = \begin{pmatrix} i & -i \\ 0 & -i \end{pmatrix}.$$

Hence, for any element $N \in G_1$, $\text{tr} N = \pm n$ or $\pm n i$ for some integer n. Let E_1 be an element of type (iii) in G_1. Since E_1 is loxodromic,

$$\text{tr} E_1 \in \{\pm 3, \pm 4, \pm 5, \ldots\} \cup \{\pm i, \pm 2i, \pm 3i, \ldots\}.$$

Now, we consider the general case. For $a > 1$, let E_a be a type (iii) element of G_a. Since E_a is loxodromic and preserves the vertical plane $\{(x, 0, z)\mid x > 0\} \cong \mathbb{H}^2$, E_a or E_a^{-1} is conjugate to

$$\begin{pmatrix} \sqrt{l_a} & 0 \\ 0 & 1/\sqrt{l_a} \end{pmatrix} \text{ or } \begin{pmatrix} \sqrt{l_a}i & 0 \\ 0 & 1/\sqrt{l_a}i \end{pmatrix},$$

where l_a is the translation length of E_a. Thus, we have

$$\text{tr} E_a = \pm (\sqrt{l_a} + 1/\sqrt{l_a}) \text{ or } \pm (\sqrt{l_a} - 1/\sqrt{l_a})i.$$

Note that the region F_a in the vertical plane \mathbb{H}^2 bounded by the axes of P_a, Q, R is a fundamental region for G_a in \mathbb{H}^2. Since F_a is monotonically increasing in a, l_a is also monotonically increasing in a. Combining \cite{2}, we see that

$$\text{tr} E_a \in \{\pm x \mid x \in \mathbb{R}, x \geq 3\} \cup \{\pm yi \mid y \in \mathbb{R}, y \geq 1\},$$

and the lemma is proved. \hfill \Box

Remark 2.3. By this proof, we see that G_1 is a conjugate of a subgroup of Picard group. Sato \cite{20} showed that Picard group is a Jørgensen group. González-Acuña and Ramírez \cite{6} described all Jørgensen subgroups of Picard group.
2.2. The singular solid torus. We define
\[A_a := P_aQ = \begin{pmatrix} -3a/2 & 1/2 \\ -1/2 & -1/2a \end{pmatrix}, \quad B := R = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}. \]
Since \(Q = A_aBA_a^{-1}B^{-1}A_aB \), the rank of \(G_a \) is two and \((A_a, B) \) is a generating pair of \(G_a \). As an abstract group, by Tietze transformation, we have
\[
G_a = \langle P_a, Q, B, A_a \mid P_a^2 = Q^2 = B^2 = (QB)^2 = (BP_a)^3 = id, A_a = P_aQ \rangle
\]
\[= \langle A_a, B \mid (A_aBA_a^{-1}BA_a^{-1}A_aB)^2 = (A_aBA_a^{-1}B^{-1}A_aB)^2 = B^2 \]
\[= (A_aBA_a^{-1}B^{-1}A_aB)^2 = (B \cdot A_aBA_a^{-1}BA_aBA_a^{-1})^3 = id \rangle \]
(3) \[= \langle A_a, B \mid (A_aBA_a^{-1}B^{-1}A_aB)^2 = B^2 = (A_aBA_a^{-1}B^{-1}A_aB)^2 = id \rangle. \]

Remark 2.4. Generating pairs similar to \(A_a \) and \(B \) were studied in \([1]\), and called the singular solid torus.

Lemma 2.5. In \(G_a \), any element of order three can not be a part of minimal generating system.

Proof. Let \(\tau \) be the natural projection from the free group \(F_2 = \langle A_a, B \rangle \) of rank two to \(\langle A_a \mid A_a^2 \rangle \oplus \langle B \mid B^2 \rangle \cong \{(i, j) \mid i, j \in \{0, 1\}\}. \) Since
\[
\tau((A_aBA_a^{-1}B^{-1}A_aB)^2) = \tau(B^2) = \tau((A_aBA_a^{-1}B^{-1}A_aB)^2) = (0, 0),
\]
\(\tau \) is well-defined on \(G_a \). We denote the set \(\{X \in G_a \mid \tau(X) = (i, j)\} \) by \(G(i,j) \). \(G(i,j) \)
is not empty set for \((i,j) = (0,0), (0,1), (1,0), (1,1). \)
Let \(X \) be an element of \(G \) such that \(X^3 = id \). Then, \(\tau(X) = (0,0) \). (Otherwise, we have \(\tau(X^3) \equiv \tau(X^2) + \tau(X) \not\equiv (0,0) \equiv \tau(id) \) (mod 2), which is a contradiction.) Hence, for any \(Y \in G \), we have
\[
\langle X, Y \rangle \subset G(0,0) \cup G_1 \neq G(0,0) \cup G(0,1) \cup G(1,0) \cup G(1,1) = G
\]
and the lemma is proved. \(\Box \)

2.3. The Jørgensen number. Finally, we calculate the Jørgensen number.

Proposition 2.6. For any \(1 \leq a \leq a_0 \), where \(a_0 = (\sqrt{7} + 2)/3 \), we have
\[
J(G_a) = J(A_a, B) = \frac{(3a^2 - 1)^2}{4a^2}.
\]
In particular, \(J(G_1) = 1 \) and \(J(G_{a_0}) = 4 \). For any \(1 \leq r \leq 4 \), the Jørgensen number is realized.

Proof. Since \(\text{tr}^2 A = (3a^2 + 1)^2/4a^2 \) and \(\text{tr}[A_a, B] = 1 \), for \(a \geq 1 \), we have
\[
J(A_a, B) = \left| \frac{(3a^2 + 1)^2}{4a^2} - 1 \right| + 1 = \frac{(3a^2 - 1)^2}{4a^2}.
\]
Since \(a_0 \) satisfies the equation \((3a_0^2 - 1)^2/4a_0^2 \) is \(4 \), if \(1 \leq a \leq a_0 \), we have \(1 \leq J(A_a, B) \leq 4 \). To prove this proposition by contradiction, suppose that there exist \(C, D \in G_a \) such that \(J(C, D) < J(A_a, B) \) and \(G_a = \langle C, D \rangle \). Since \(G_a \) is non-elementary, \(|\text{tr}[C, D] - 2| > 0. \) (See p.68 in \([1]\).)

Case 1 \(C \) is of type (i). If \(C \) is an elliptic element of order two, then \(\text{tr} C = 0 \) and \(J(C, D) = \|C^2 - 4| + |\text{tr}[C, D] - 2| > 4 \geq J(A_a, B) \), and this can not happen. If \(C \) is an elliptic element of order three, since \(C \) can not be a part of minimal generating system by Lemma 2.5, this can not happen.
Case 2 C is of type (ii). Let C' be an element of $\langle P_a, Q \rangle$ which is conjugate to C. Since $\langle P_a, Q \rangle$ is isomorphic to the infinite dihedral group, C' can be written as $C' = P_aQP_aQ \cdots$ or $C' = QP_aQP_a \cdots$. If the word length is odd, then C' is conjugate to P_a or Q and C' is not loxodromic. Thus, the word length is even, and $C' = (P_aQ)^n$ or $C' = (QP_a)^{-n} = (P_aQ)^n$ for some $n \in \mathbb{Z}$.

Case 2-1 $|n| > 1$. We claim that $G_a \neq \langle C, D \rangle$. To see this, consider the Coxeter group

$$H_n := \langle P, Q, R \mid P^2 = Q^2 = R^2 = (PR)^3 = (QR)^2 = (PQ)^n = id \rangle$$

and let $\pi : G_a \to H_n$ be the natural surjection. Since $\pi(C) = id$, we have

$$\pi(\langle C, D \rangle) = \langle \pi(D) \rangle \neq H_n,$$

because H_n is not cyclic when $|n| > 1$. It follows that $G_a \neq \langle C, D \rangle$ and the claim is proved.

Case 2-2 $|n| = 1$. In this case, $\text{tr}^2 C = \text{tr}^2 A_a$.

Case 2-2-1 $[C, D]$ is of type (i). If $[C, D]$ is elliptic of order two, then

$$J(C, D) = |\text{tr}^2 A_a - 4| + |0 - 2| > |\text{tr}^2 A_a - 4| + |1 - 2| = J(A_a, B).$$

If $[C, D]$ is elliptic of order three, then $\text{tr}[C, D] = \pm 1$, and

$$J(C, D) = |\text{tr}^2 C - 4| + |\text{tr}[C, D] - 2| = |\text{tr}^2 A_a - 4| + |\pm 1 - 2| \geq J(A_a, B).$$

Case 2-2-2 $[C, D]$ is of type (ii). Let E'_b be an element of $\langle P_a, Q \rangle$ which is conjugate to $[C, D]$. Then, $E'_b = A'^m_a$ for some $m \neq 0$. (Recall the first paragraph of Case 2.) We have $\lim_{a \to -1} \text{tr} E'_a = \lim_{a \to -a} \text{tr} A'^m_a = 2$ or -2. For $1 \leq b \leq a$, we denote the elements in G_b which corresponds to C and D by C_b and D_b.

If $\lim_{a \to -1} \text{tr} E'_a = 2$, then $J(C_b, D_b)$ is close to 0 when b is close to 1, which contradicts Jørgensen’s inequality, because G_b is non-elementary and discrete.

If $\lim_{a \to -1} \text{tr} E'_a = -2$, then $\text{tr}[C, D] \leq -2$ and

$$J(C, D) \geq |\text{tr}^2 A - 4| + |-2 - 2| > J(A_a, B).$$

Case 2-2-3 $[C, D]$ is of type (iii). By Lemma 2.2 we have

$$J(C, D) = |\text{tr}^2 C - 4| + |\text{tr}[C, D] - 2| \geq |\text{tr}^2 A_a - 4| + 1 = J(A_a, B).$$

Case 3 C is of type (iii). By lemma 2.2 we have

$$J(C, D) = |\text{tr}^2 C - 4| + |\text{tr}[C, D] - 2| \geq |\text{tr}^2 C - 4| \geq 5 \geq J(A_a, B).$$

Hence, $J(G_a) = J(A_a, B)$ for $1 \leq a \leq a_0$, and the proposition is proved. \hfill \Box

3. The proof for the case $r \geq 4$

Oichi and Sato [10] claimed that, for every real number $r \geq 4$, there is a subgroup G of $\text{PSL}(2, \mathbb{C})$ such that $J(G) = r$. But the proof was not written. For completeness, we give a proof of this fact by calculating the Jørgensen number of some Kleinian groups.
3.1. Markoff maps. First, we recall Bowditch, Tan-Wong-Zhang theory [2, 22] on Markoff maps very briefly. See section 3 in [22] for detail.

We denote the set $\mathbb{Q} \cup \{1/0\}$ by $\hat{\mathbb{Q}}$. Let \mathcal{F} be the Farey triangulation of the upper half plane \mathbb{H}^2. Recall that the vertex set of \mathcal{F} is $\hat{\mathbb{Q}}$, and two vertices p/q and r/s are connected by a geodesic in \mathbb{H}^2 if $ps - qr = \pm 1$. Let Σ be the binary tree dual to \mathcal{F}. See Figure 2. A complementary region of Σ is the closure of a connected component of the complement of Σ. The set of complementary regions of Σ is denoted by Ω. Since each complementary region corresponds to a vertex in \mathcal{F}, we can identify Ω with $\hat{\mathbb{Q}}$, and we denote the complementary region which corresponds to $p/q \in \mathbb{Q}$ by $X_{p/q}$. Let e be an edge of Σ with end points u and v. Then, there exist $X,Y,U,V \in \Omega$ such that $e = X \cap Y$, $u = X \cap Y \cap U$ and $v = X \cap Y \cap V$. See Figure 3. We write $e = (X,Y;U,V)$ to indicate these regions. A Markoff map is a map ψ from Ω to \mathbb{C} such that, for every edge $e = (X,Y;U,V)$ in Σ, we have

$$\psi(U) + \psi(V) = \psi(X)\psi(Y).$$

This condition is called the edge relation. Given $k \geq 0$, the set $\Omega_\psi(k)$ is defined by $\Omega_\psi(k) = \{X \in \Omega | |\psi(X)| \leq k\}$. We will need the following lemma.

Lemma 3.1 (Theorem 3.1 (2), [22]). Let ψ be a Markoff map. For any $k \geq 2$, the union $\cup_{X \in \Omega_\psi(k)} X$ is connected as a subset of \mathbb{H}^2.

Let $F_2 = \langle A, B \rangle$ be the free group on A and B. An element W of F_2 is called primitive if there exists an element V such that $F_2 = \langle W, V \rangle$, and W and V are called associated primitives. Let α be the abelianization homomorphism from F_2 onto F_2/F_2' ($\cong \mathbb{Z}^2$). Let ρ be an SL(2, \mathbb{C}) representation of F_2. Then, the next map $\psi_\rho : \Omega \rightarrow \mathbb{C}$ is well-defined:

$$\psi_\rho(X_{n/m}) = \text{tr} \rho(W_{n/m}),$$
where \(W_{n/m} \) is a primitive element such that \(\alpha(W_{n/m}) = A^m B^n \). See Corollary 3.2, [17]. For example, we have

\[
\psi(X_0/1) = \text{tr}_\rho(A), \quad \psi(X_1/0) = \text{tr}_\rho(B), \quad \psi(X_{1/1}) = \text{tr}_\rho(AB).
\]

By Theorem 1.2 and 1.3 in [17] and the trace identity in \(\text{SL}(2, \mathbb{C}) \)

\[
(4) \quad \text{tr} AB + \text{tr} AB^{-1} = \text{tr} A \text{tr} B,
\]

we have the next lemma. (See Section 3, Natural correspondence \(X_{\mu-2} = \psi_\mu \).

Lemma 3.2. \(\psi_\mu \) is a Markoff map.

For any associated primitives \(\{A, B\} \) and \(\{C, D\} \) of \(F_2 \), the commutator \([C, D] \) is conjugate to \([A, B] \) or \([A, B]^{-1} \). (See Theorem 3.9 in [13].) Thus, we have \(\text{tr}_\rho[A, B] = \text{tr}_\rho[C, D] \). It follows that

Lemma 3.3. If \(G \) is a subgroup of \(\text{PSL}(2, \mathbb{C}) \) isomorphic to \(F_2 \), then the trace of the commutator of associated primitives of \(G \) does not depend on the choice of associated primitives.

Recall that, if \(G \) is in the Maskit slice \([9, 14] \), then it is discrete and isomorphic to \(F_2 \) and can be normalized as \(G_\mu = \langle A, B_\mu \rangle \), where

\[
A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \quad B_\mu = \begin{pmatrix} -i\mu & -i \\ -i & 0 \end{pmatrix} \text{ for some } \mu \in \mathbb{C}.
\]

Corollary 3.4. If \(G_\mu \) is in the Maskit slice, then \(J(G_\mu) = 4 \).

Proof. Since \(|\text{tr}^2 A - 4| = 0 \), by Lemma 3.3 we have \(J(G_\mu) = J(A, B_\mu) = 4 \). \(\square \)

3.2. Kissing Schottky groups

We consider kissing Schottky groups studied in [14]. For a positive real number \(k \), let \(\rho_k \) be the \(\text{SL}(2, \mathbb{C}) \) representation of \(F_2 = \langle A, B \rangle \) given by

\[
\rho_k(A) = \begin{pmatrix} x & ik \cdot y \\ y/(ik) & x \end{pmatrix}, \quad \rho_k(B) = \begin{pmatrix} x & y \\ y & x \end{pmatrix},
\]

where \(x, y \) are positive real numbers with \(x^2 = y^2 + 1 \) and \(y^2 = 2/(k + 1/k) \). (See chapter 6, p.170 [14].) The first condition guarantees that \(A \) and \(B \) have determinant 1. The second condition guarantees that \(\text{tr}[A, B] = -2 \). See Figure 6.8 in [14]. For the sake of simplicity, we denote the Markoff map \(\psi_{\rho_k} \) of the representation \(\rho_k \) by \(\psi \).

Lemma 3.5. We have \(\Omega_\psi(2x) = \{X_{0/1}, X_{1/0}\} \).

Proof. Since \(\psi(X_{0/1}) = \text{tr} \rho_k(A) = 2x \) and \(\psi(X_{1/0}) = \text{tr} \rho_k(B) = 2x \), by definition, we have \(\{X_{0/1}, X_{1/0}\} \subset \Omega_\psi(2x) \).

Complementary regions which meet \(X_{1/0} \) are

\[
\ldots, X_{-3/1}, X_{-2/1}, X_{-1/1}, X_{0/1}, X_{1/1}, X_{2/1}, X_{3/1}, \ldots
\]

See Figure 2. Put \(x_n = \psi(X_{n/1}) \) for \(n \in \mathbb{Z} \). Then, we have

\[
x_{-1} = \psi(X_{-1/1}) = \text{tr} \rho_k(AB^{-1}) = \frac{2(k + 1)^2}{k^2 + 1} - \frac{2k^2 - 2}{k^2 + 1} i,
\]

\[
x_0 = \psi(X_{0/1}) = \text{tr} \rho_k(A) = \frac{2(k + 1)}{\sqrt{k^2 + 1}},
\]

\[
x_1 = \psi(X_{1/1}) = \text{tr} \rho_k(AB) = \frac{2(k + 1)^2}{k^2 + 1} + \frac{2k^2 - 2}{k^2 + 1} i.
\]
By the edge relation, we have
\[x_{n+1} = 2x \cdot x_n - x_{n-1} = \frac{2(k+1)}{\sqrt{k^2 + 1}} \cdot x_n - x_{n-1} \]
for any \(n \in \mathbb{Z} \). Observe that \(|x_{n+1}| > |x_n| \) for any \(n \geq 0 \). First, direct calculation shows that \(|x_1| > |x_0| \). Then, since \(2(k+1)/\sqrt{k^2 + 1} > 2 \), the edge relation implies that \(|x_{n+1}| > |x_n| \). We also see that \(|x_{n-1}| > |x_n| \) for any \(n \leq 0 \). (In fact, \(|x_n| = |x_{-n}| \).) Hence, \(X_0/1 \) is the only region in \(\Omega_{\psi}(2x) \) which meets 1/0.

Complementary regions which meet \(X_0/1 \) are
\[\ldots, X_{-1/3}, X_{-1/2}, X_{-1/1}, X_{1/0}, X_{1/1}, X_{1/2}, X_{1/3}, \ldots \]
By the edge relation, we have \(\psi(X_{1/0}) = \psi(X_{1/1}) \). Hence, \(X_{1/0} \) is the only region in \(\Omega_{\psi}(2x) \) which meets \(X_{0/1} \).

Since \(2x = 2(k+1)/\sqrt{k^2 + 1} > 2 \), by Lemma 3.1, \(\Omega_{\psi}(2x) \) is connected. Hence, \(\Omega_{\psi}(2x) = \{ X_{0/1}, X_{1/0} \} \), and the lemma is proved. \(\square \)

By this lemma, we have \(|\tr \rho_k(C)| \geq |\tr \rho_k(A)| \) for any primitive element \(C \in F_2 \).

Since \(\tr \rho_k(A) \) is real and greater than 2, we have \(|\tr^2 \rho_k(C) - 4| \geq |\tr^2 \rho_k(A) - 4| \).

Since \(\rho_k(F_2) \) is isomorphic to \(F_2 \), by Lemma 3.3 we have the following.

Proposition 3.6. For any kissing Schottky group (representation) \(\rho_k \), we have
\[J(\rho_k(F_2)) = J(\rho_k(A), \rho_k(B)) = \frac{4(k+1)^2}{k^2 + 1}. \]

In particular, we have \(J(p_1(F_2)) = 8 \), and \(\lim_{k \to \infty} J(\rho_k(F_2)) = 4 \). For any real \(r \) with \(4 < r \leq 8 \), the Jørgensen number is realized by a kissing Schottky group.

3.3. \(\theta \)-Schottky groups

Here, we consider Fuchsian Schottky groups described in Project 4.2, p.118 in [14]. For \(0 < \theta \leq \pi/4 \), let \(\rho_{\theta} \) be the \(\SL(2, \mathbb{C}) \) representation of \(F_2 = \langle A, B \rangle \) given by
\[\rho_{\theta} = \begin{pmatrix} 1 & i \cos \theta \\ -i \cos \theta & 1 \end{pmatrix}, \quad \rho_{\theta}(B) = \begin{pmatrix} 1 & \cos \theta \\ \cos \theta & 1 \end{pmatrix}. \]

See Figure 4.10 in [14]. We denote the Markoff map \(\psi_{\rho_{\theta}} \) by \(\psi \).

Lemma 3.7. We have \(\Omega_{\psi}(2/\sin \theta) = \{ X_{0/1}, X_{1/0} \} \).

Proof. Note that
\[\psi(X_{-1/1}) = \frac{2}{\sin^2 \theta} \cdot \psi(X_{0/1}) = \psi(X_{1/0} = \frac{2}{\sin \theta}, \quad \psi(X_{1/1}) = \frac{2}{\sin \theta}, \quad \psi(X_{1/1}) = \frac{2}{\sin \theta}. \]

Then, the rest of the proof is the same as for Lemma 3.3 \(\square \)

Hence, \(|\tr^2 \rho_{\theta}(C) - 4| \geq |\tr^2 \rho_{\theta}(A) - 4| \) for any primitive \(C \in F_2 \). Since \(\rho_{\theta}(F_2) \) is isomorphic to \(F_2 \), by Lemma 3.3 we have

Proposition 3.8. For any \(\theta \)-Schottky group (representation) \(\rho_{\theta} \), we have
\[J(\rho_{\theta}(F_2)) = J(\rho_{\theta}(A), \rho_{\theta}(B)) = \frac{4 \cos^2 \theta}{\sin^4 \theta}. \]

In particular, we have \(J(p_{\pi/4}(F_2)) = 8 \), and \(\lim_{\theta \to 0} J(\rho_{\theta}(F_2)) = \infty \). For any real \(r \) with \(r \geq 8 \), the Jørgensen number is realized by a \(\theta \)-Schottky group.
Figure 4. The diagonal slice and Jørgensen number: $-7 \leq \Re x \leq 8, -5 \leq \Im x \leq 5$. The color indicates estimates of Jørgensen number from above.

Remark 3.9. $\rho_{\pi/4}$ ($\theta = \pi/4$) in this subsection and ρ_1 ($k = 1$) in the last subsection are the same representation.

4. The diagonal slice of Schottky space

Jørgensen numbers can be studied by computer experiments. In this section, we present a computer generated picture (Figure 4) which estimates Jørgensen numbers in the diagonal slice of Schottky space.

4.1. The diagonal slice of Schottky space. Let us go back to the singular solid torus in section 2. Recall that

$$A_a = \begin{pmatrix} -3a/2 & 1/2 \\ -1/2 & -1/2a \end{pmatrix}, \quad B = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}. $$

In this section, we consider that $A_a, B \in \mathrm{SL}(2, \mathbb{C})$. We denote $\langle A_a, B \rangle$ by G_a. Set

$$x = -\tr A_a^2 = -\frac{9a^2}{4} - \frac{1}{4a^2} + \frac{1}{2}.$$

Then, by the trace identity (4), we have

$$\tr A_a = \sqrt{-x + 2}, \quad \tr B = 0, \quad \tr A_a B = \sqrt{x + 1}, \quad \tr[A_a, B] = 1.$$

See section 5.0.2 (in particular, Remark 5.4 for the sign of the square roots) in [21]. From now on, we consider that x is a complex parameter. The locus D in the x-plane of discrete and faithful representations was fully determined by computing Keen-Series pleating rays [21]. (Here, “faithful” means that $\langle A_a, B \rangle$ is isomorphic to $\langle A_1, B \rangle$ as an abstract group.) D is called the diagonal slice of Schottky space. See Figure 4. The outside of the center black eye corresponds to D. D is foliated by pleating rays. We will describe pleating rays briefly in the next subsection.
Let a be a complex number such that $x = -\text{tr} A^2 \in D$. We denote the representation from $F_2 = \langle A, B \rangle$ to $\text{SL}(2, \mathbb{C})$ which sends A to A_a and B to B by ρ_x. Let $\psi_x : \hat{Q} \to C$ be the Markoff map associated with $\langle A_a, B \rangle$:

$$\psi_x(0/1) = \text{tr} A_a, \quad \psi_x(1/0) = \text{tr} B, \quad \psi_x(1/1) = \text{tr} A_a B.$$

If W and V are associated primitives of F_2, then their images in G_a generate G_a. By Lemma 3.3 and equation (7), $\text{tr} \rho_x([W, V]) = \text{tr}[A_a, B] = 1$. Hence,

$$J(\rho_x(W), \rho_x(V)) = |\psi_x^2(n/m)| - 4 + 1 \geq J(G_a),$$

where n/m is determined by the abelianization $\alpha(W) = A^m B^n$. Hence,

$$\Psi(x) := \inf_{q \in \hat{Q}} |\psi_x^2(q) - 4| + 1$$

gives an estimate of $J(G_a)$ from above. We calculate $\Psi(x)$ by computer for $\{x \in \mathbb{C} \mid -7 \leq \Re(x) \leq 8, -5 \leq \Im(x) \leq 5\}$. The color outside the black eye in Figure 4 indicates the values of $\Psi(x)$. Since these groups are discrete and faithful (in particular non-elementary), $\Psi(x) \geq 1$. Since $|\psi_x^2(1/0)| - 4 = 1$, we have $\Psi(x) \leq 5$. Figure 4 suggests that for each $1 \leq r \leq 5$, there are many non-elementary Kleinian groups in the diagonal slice with Jørgensen number r.

Remark 4.1. In practice, we can not calculate $\psi_x^2(q)$ for all $q \in \hat{Q}$, and Figure 4 is an approximation of $\Psi(x)$ by calculating $\psi_x^2(q)$ for many $q \in \hat{Q}$. But, if x is in the Bowditch set, in principle, we can calculate $\Psi(x)$. The key is Lemma 3.24 in [22]. The diagonal slice of Schottky space seems to coincide with the Bowditch set. See Section 2, [21].

Question 4.2. Does the equation $J(G_a) = \Psi(x)$ hold for each $x \in D$? Note that, since G_a is not free, there might be generating pairs of G_a which do not come from associated primitives in F_2.

4.2. Jørgensen groups on the boundary of the diagonal slice

We consider the case $\Psi(x) = 1$ on ∂D. We begin by describing pleating rays very briefly. See [21] for detail.

For $p/q \in \hat{Q}$, the real trace locus $\mathbb{R}_{p/q}$ of p/q is $\{x \in \mathbb{C} \mid \psi_x(p/q) \in (-\infty, -2) \cup [2, \infty)\}$. The rational pleating ray $\mathcal{P}_{p/q}$ is a union of connected non-singular branches of $\mathbb{R}_{p/q}$ (Corollary 4.11 [21]). The rational pleating rays are indexed by \hat{Q}/ \sim, where $p/q \sim p'/q'$ if and only if $p'/q' = \pm p/q + 2k, k \in \mathbb{Z}$ (Proposition 4.8, [21]). (If $p/q \sim p'/q'$, then we have $\psi_x(p/q) = \pm \psi_x(p'/q')$.) For example, the condition $a \in \mathbb{R}, 1 \leq a \leq (\sqrt{7} + 2)/3$ in subsection 2.3 corresponds to $\{x \in \mathbb{R} \mid -5 \leq x \leq -2\} \subset \mathcal{P}_{p/q}$.

If p/q is not an integer, $\mathcal{P}_{p/q}$ consists of two components (branches). One is in the upper-half plane, and the other in the lower-half plane. Let $e_{p/q}$ be the end point of $\mathcal{P}_{p/q}$ in the upper-half plane, or on the real axis if p/q is an integer. By construction, we have $\psi_x^2(e_{p/q}) = 4 = 0$. Hence, $\Psi(e_{p/q}) = 1$, and the corresponding representation is a Jørgensen group of parabolic type.

In order to describe these groups, we recall the Li-Oichi-Sato normalization:

Lemma 4.3 (Lemma 3.1 [11]). Let M and N be elements of $\text{PSL}(2, \mathbb{C})$ such that M is parabolic and N is elliptic or loxodromic. Then, M, N can be normalized as

$$M = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad N_{\sigma, \mu} = \begin{pmatrix} \mu \sigma & \mu^2 \sigma - 1/\sigma \\ \mu \sigma & \mu \end{pmatrix},$$
where \(\sigma \in \mathbb{C} \setminus \{0\} \) and \(\mu \in \mathbb{C} \).

Remark 4.4. Li-Oichi-Sato [11] [10] [12] considered the case \(\mu = \imath k, k \in \mathbb{R} \). They conjectured that, for any Jørgensen group \(G \) of parabolic type, there exists a marked group \(G_{\sigma,ik} = \langle M, N_{\sigma,ik} \rangle, \sigma \in \mathbb{C} \setminus \{0\}, k \in \mathbb{R} \), such that \(G_{\sigma,ik} \) is conjugate to \(G \). Later, Callahan [3] found counter examples for this conjecture.

Now, we compute some examples. We begin by calculating some Markoff maps and the end point of pleating rays:

\[
\psi_x(0/1) - 4 = (-x + 2) - 4, \quad e_{0/1} = -2
\]

\[
\psi_x(1/3) - 4 = (-x + 1)^2(x + 1) - 4, \quad e_{1/3} \approx -0.5652 + 1.0434i,
\]

\[
\psi_x(3/8) - 4 = (-x + 2)(x + 1)(x^3 - x^2 - 1)^2 - 4, \quad e_{3/8} \approx -0.2992 + 1.0726i,
\]

\[
\psi_x(2/5) - 4 = x^4(-x + 2) - 4, \quad e_{2/5} \approx -0.1372 + 1.1260i,
\]

\[
\psi_x(1/2) - 4 = (-x + 2)(x + 1) - 4, \quad e_{1/2} = (1 + \sqrt{7}i)/2.
\]

(Note that the equation \(\psi_x(p/q) = 4 \) have many roots, and in order to make the right choice for \(e_{p/q} \), we need [21].) Let \(A_{p/q} \) denote the matrix in [5] such that \(e_{p/q} = -\text{tr} A_{p/q}^2 \).

\[
(A_{0/1}, B), (A_{1/3}^3 B, A_{1/3}), (A_{3/8}^3 B A_{3/8}^3 B A_{3/8}^3 B, A_{3/8}^3 B), \quad (A_{3/5}^3 B A_{3/5}^3 B, A_{3/5}^3 B), (A_{1/2}^3 B, A_{1/2})
\]

generate Jørgensen groups of parabolic type. The Li-Oichi-Sato parameters for these groups are as follows:

\[
(\sigma, \mu) = (\imath, 0) \quad \text{for} \quad (A_{0/1}, B)
\]

\[
(\sigma, \mu) = (-\imath, 0.1597 + 0.8166i) \quad \text{for} \quad (A_{1/3}^3 B, A_{1/3})
\]

\[
(\sigma, \mu) = (\imath, 0.1839 + 0.9356i) \quad \text{for} \quad (A_{3/8}^3 B A_{3/8}^3 B A_{3/8}^3 B, A_{3/8}^3 B)
\]

\[
(\sigma, \mu) = (\imath, 0.3016 + 0.9041i) \quad \text{for} \quad (A_{3/5}^3 B A_{3/5}^3 B, A_{3/5}^3 B)
\]

\[
(\sigma, \mu) = (\imath, (1 + \sqrt{7}i)/4) \quad \text{for} \quad (A_{1/2}^3 B, A_{1/2})
\]

We conjecture that groups which correspond to the end points of the rational pleating rays (except \(-2\) and \(3\) on the real axis) are counter examples for Li-Oichi-Sato’s conjecture in Remark 4.4.

Remark 4.5. Let \(y \) be an element of \(\mathcal{D} \) such that \(\psi_y \) has a sequence \(\{q_n\}_{n \in \mathbb{Z}} \) of distinct elements of \(\bar{\mathbb{Q}}/\sim \) with \(\lim_{n \to \infty} \psi_y^n(q_n) = 4 \). Then \(\Psi(y) = 1 \) and \(y \) corresponds to a geometrically infinite group with unbounded geometry.

Remark 4.6. The limit set of \(\langle M, N_{\sigma,\mu} \rangle \) with \((\sigma, \mu) = (\imath, 0) \) is the real line. The limit sets of other examples are complicated and beautiful. For example, see Figure 5 for the limit set of the third case \((\sigma, \mu) \approx (\imath, 0.1839 + 0.9356i) \).

References

[1] Alan F. Beardon. *The geometry of discrete groups*. Springer-Verlag, New York, 1983.

[2] B. H. Bowditch. Markoff triples and quasi-Fuchsian groups. *Proc. London Math. Soc. (3)*, 77(3):697–736, 1998.

[3] Jason Callahan. Jørgensen number and arithmeticity. *Conform. Geom. Dyn.*, 13:160–186, 2009.
Figure 5. The limit set of $\langle M, N_{\sigma, \mu} \rangle$ with $(\sigma, \mu) \approx (i, 0.1839 + 0.9356i)$

[4] Werner Fenchel. *Elementary geometry in hyperbolic space*, volume 11 of *de Gruyter Studies in Mathematics*. Walter de Gruyter & Co., Berlin, 1989. With an editorial by Heinz Bauer.

[5] F. W. Gehring and G. J. Martin. Stability and extremality in Jørgensen’s inequality. *Complex Variables Theory Appl.*, 12(1-4):277–282, 1989.

[6] Francisco González-Acuña and Arturo Ramírez. Jørgensen subgroups of the Picard group. *Osaka J. Math.*, 44(2):471–482, 2007.

[7] Troels Jørgensen. On discrete groups of Möbius transformations. *Amer. J. Math.*, 98(3):739–749, 1976.

[8] Troels Jørgensen and Maire Kikka. Some extreme discrete groups. *Ann. Acad. Sci. Fenn. Ser. A I Math.*, 1(2):245–248, 1975.

[9] Linda Keen and Caroline Series. Pleating coordinates for the Maskit embedding of the Teichmüller space of punctured tori. *Topology*, 32(4):719–749, 1993.

[10] Changjun Li, Makito Oichi, and Hiroki Sato. Jørgensen groups of parabolic type II (countably infinite case). *Osaka J. Math.*, 41(3):491–506, 2004.

[11] Changjun Li, Makito Oichi, and Hiroki Sato. Jørgensen groups of parabolic type I (finite case). *Comput. Methods Funct. Theory*, 5(2):409–430, 2005.

[12] Changjun Li, Makito Oichi, and Hiroki Sato. Jørgensen groups of parabolic type III (uncountably infinite case). *Kodai Math. J.*, 28(2):248–264, 2005.

[13] Wilhelm Magnus, Abraham Karrass, and Donald Solitar. *Combinatorial group theory*. Dover Publications, Inc., New York, revised edition, 1976. Presentations of groups in terms of generators and relations.

[14] David Mumford, Caroline Series, and David Wright. *Indra’s pearls*. Cambridge University Press, New York, 2002. The vision of Felix Klein.

[15] Makito Oichi. A fundamental polyhedron for the figure-eight knot group. *Topology Appl.*, 146/147:15–19, 2005.

[16] Makito Oichi and Hiroki Sato. Jørgensen numbers of discrete groups. *Sūrikaisekikenkyūshò Kokyūroku*, 1519:105–118, 2006.

[17] R. P. Osborne and H. Zieschang. Primitives in the free group on two generators. *Invent. Math.*, 63(1):17–24, 1981.

[18] Hiroki Sato. One-parameter families of extreme discrete groups for Jørgensen’s inequality. In *In the tradition of Ahlfors and Bers (Stony Brook, NY, 1998)*, volume 256 of *Contemp. Math.*., pages 271–287. Amer. Math. Soc., Providence, RI, 2000.

[19] Hiroki Sato. The Picard group, the Whitehead link and Jørgensen groups. In *Progress in analysis, Vol. I, II (Berlin, 2001)*, pages 149–158. World Sci. Publ., River Edge, NJ, 2003.
[20] Hiroki Sato. The Jørgensen number of the Whitehead link group. *Bol. Soc. Mat. Mexicana (3)*, 10(Special Issue):495–502, 2004.

[21] Caroline Series, Ser Peow Tan, and Yasushi Yamashita. The diagonal slice of schottky space. to appear in Algebr. Geom. Topol., arXiv:1409.6863.

[22] Ser Peow Tan, Yan Loi Wong, and Ying Zhang. Generalized Markoff maps and McShane’s identity. *Adv. Math.*, 217(2):761–813, 2008.

[23] A. Yu. Vesnin and A. V. Masle˘ı. On Jørgensen numbers and their analogs for groups of figure-eight orbifolds. *Sibirsk. Mat. Zh.*, 55(5):989–1000, 2014.

[24] Ryosuke Yamazaki. Jørgensen numbers on the Riley slice. in preparation.

Nara Women’s University, Kitaouyanishi-machi, Nara-shi, Nara 630-8506, Japan
E-mail address: yamasita@ics.nara-wu.ac.jp

Gakushuin Boys’ Senior High School, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 Japan
E-mail address: rsk.yamazaki.ms@gmail.com