Hyperparameter selection for the Discrete Mumford-Shah functional

Charles-Gérard Lucas∗ Barbara Pascal† Nelly Pustelnik∗ Patrice Abry∗

September 29, 2021

Abstract

This work focuses on joint piecewise smooth image reconstruction and contour detection, formulated as the minimization of a discrete Mumford-Shah functional, performed via a theoretically grounded alternating minimization scheme. The bottleneck of such variational approaches lies in the need to fine-tune their hyperparameters, while not having access to ground truth data. To that aim, a Stein-like strategy providing optimal hyperparameters is designed, based on the minimization of an unbiased estimate of the quadratic risk. Efficient and automated minimization of the estimate of the risk crucially relies on an unbiased estimate of the gradient of the risk with respect to hyperparameters, whose practical implementation is performed thanks to a forward differentiation of the alternating scheme minimizing the Mumford-Shah functional, requiring exact differentiation of the proximity operators involved. Intensive numerical experiments are performed on synthetic images with different geometries and noise levels, assessing the accuracy and the robustness of the proposed procedure. The resulting parameter-free piecewise-smooth reconstruction and contour detection procedure, not requiring prior image processing expertise, is thus amenable to real-world applications.

1 Introduction

Context – Image processing is characterized by several key tasks such as image recovery (e.g., deblurring and/or denoising), feature extraction, segmentation, and contour detection, to name a few. To provide the user with the requested information, it is standard to perform successively a certain number of these tasks. A first major drawback of cascading tasks, is that important information might be thrown away at each stage. A second key issue is that each task might introduce estimation variance and/or regularization bias, which may accumulate and lead to subsequent errors on the target quantity. Finally, the selection of hyperparameters, e.g., regularization parameters, needs to be performed for

∗C.-G. Lucas, N. Pustelnik, and P. Abry are with CNRS, ENS de Lyon, Laboratoire de Physique, Lyon, France (e-mail: firstname.lastname@ens-lyon.fr).
†B. Pascal is with Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRISTAL, F-59000 Lille, France (e-mail: barbara.pascal@univ-lille.fr).
each task independently, which might turn sub-optimal overall in minimizing
the final error on the output estimate.

The benefit of performing jointly several steps has been illustrated in the con-
text of texture segmentation [30], providing a comparison between a two-step
procedure (extract relevant local texture features followed by segmentation)
against an original single-step procedure intertwining the estimation of rele-
vant features and the segmentation procedure. Both strategies lead to strongly
convex optimization schemes and fair comparisons can be provided by having
recourse to an automatic hyperparameters selection procedure relying on Stein
Unbiased Risk Estimator [37].

Following this line, recent contributions in the image processing literature
have been dedicated to joint image denoising/restoration and contour detection
[25, 39, 43]. However, the automatic tuning of hyperparameters in this context
has not been dealt with yet and this is the object of the present contribution.

Contour detection in image processing – This work focuses on performing
jointly piecewise smooth denoising and contour detection on images. In many
classical approaches, image reconstruction is embedded in to a variational for-
malism [22, 40], which amounts to find a minimizer of a functio
nal consisting of
the sum of a data fidelity term and a prior penalization, i.e.,

\[
\min_{\mathbf{u}} \frac{1}{2} \|\mathbf{u} - \mathbf{z}\|^2_2 + \gamma p(\nabla \mathbf{u})
\]

where \(\gamma > 0\), \(\mathbf{z} \in \mathbb{R}^{\Omega}\) denotes the observed degraded image, defined on a grid
of pixels \(\Omega\), and \(\nabla : \mathbb{R}^{\Omega} \rightarrow \mathbb{R}^{|E|}\) is a discrete difference operator such that \(\nabla \mathbf{u}\)
lives on a lattice of contours \(E\). Appropriate choice of the penalization term
\(p\), yield e.g. the Potts functional, when \(p = \|\cdot\|_0\), or the Blake and Zisser-
man functional [6, 9], corresponding to \(p(\nabla \mathbf{u}) = \sum_b \min\{\|\nabla_b \mathbf{u}\|_q^q, s^q\}\), for some
\(q \in [1, \infty)\), with \(\nabla_b\) being associated with several rows of \(\nabla\). In the same vein,
considering a convex relaxation of Potts functional, contour detection can be ob-
tained from the minimization of the Rudin-Osher-Fatemi functional [35], which
favors piecewise constant estimate when considering \(p(\nabla \mathbf{u}) = \sum_b \|\nabla_b \mathbf{u}\|_2^2\). An
alternative solution relies on a bi-convex formulation that can trace back to
the Mumford-Shah [28] or Geman and Geman functionals [20], which may be
written in the discrete variational formulation setting as:

\[
\min_{\mathbf{u} \in \mathbb{R}^{\Omega}, \mathbf{e} \in \mathbb{R}^{|E|}} \frac{1}{2} \|\mathbf{u} - \mathbf{z}\|^2_2 + \beta \|1 - \mathbf{e}\|_2 \odot \|\nabla \mathbf{u}\|_2^2 + \lambda h(\mathbf{e}),
\]

where \(\odot\) denotes the component-wise product, \(h\) denotes a convex function en-
forcing sparsity and \(\beta > 0\) and \(\lambda > 0\) are regularization parameters. This
Discrete Mumford-Shah (D-MS) functional provides a piecewise-smooth recon-
structed image \(\hat{\mathbf{u}}\) as well as a sparse estimated contours \(\hat{\mathbf{e}}\). To achieve segmen-
tation into \(K\) regions, Cai and Steidl designed an iterated thresolding stra-
egy [8] applied as a post-processing onto the minimizer of Rudin Osher Fatemi
(ROF) functional. The resulting state-of-the-art two-step procedure, referred
as Threshold ROF (T-ROF), was proven to be equivalent to minimizing the
\(K\)-region piecewise constant Mumford-Shah functional. From this thresholded
solution, it is then straightforward to identify the contours of the image. How-
ever, such an indirect contour extraction procedure restricts to closed contours.
Fig. 1 shows a comparison between D-MS and T-ROF methods on a piecewise
smooth image. The Mumford-Shah estimate is piecewise smooth preserving the discontinuities of the image while the ROF estimate is piecewise constant, leading to staircasing effects. We observe that T-ROF erroneously detects interfaces in areas on which the image is piecewise smooth, as opposed to the D-MS whose estimated contour variable is approximately zero everywhere except at the location of the original signal’s discontinuity.

Figure 1: Comparison of state-of-the-art convex variational formulation T-ROF and the studied non-convex D-MS performing image denoising and contour extraction. From left to right: (a) Original noise-free piecewise smooth image, (b) Observations \(z \) corrupted by an additive Gaussian noise, (c) State-of-the-art ROF piecewise constant estimate and contours derived from thresholding into \(K = 3 \) regions (displayed in red), and (d) Studied D-MS piecewise smooth approximation and estimated contours (displayed in red).

Hyperparameter selection – All aforementioned procedures for image denoising and contour detection involve hyperparameters, \(\beta \) and \(\lambda \) in (2). To reach satisfactory performance, the fine-tuning of these parameters is crucial. Although central in signal and image processing, this difficult task is still an ongoing challenge, particularly for variational methods.

A first class of methods relying on hierarchical Bayesian approaches and has been widely used, both in signal and image processing [4, 14, 27, 41]. The drawbacks of Bayesian methods are that they rapidly become computationally heavy as the model for observed data gets more complicated, and their computational cost increases with the number of hyperparameters to be tuned. For specific 1D denoising problems, efficient hybrid variational/Bayesian strategies can be designed [19].

Several other classes of methods, such as cross-validation or Stein Unbiased Risk Estimate (SURE) formulation, can be formulated as a bilevel optimization problem. Cross-validation relies on a given labeled data set composed of noisy samples with their associated ground truth [23, 48]. However, in several real world applications, such as medical imaging [26] or nonlinear physics prob-
lems [31], obtaining a large enough labeled dataset is very challenging, if not impossible. Hence, SURE, initially proposed in [37], has long been favored for its combined simplicity and efficiency. Stein-based hyperparameter strategies rely on an additive Gaussian noise model to design an estimate of the inaccessible true risk, defined as the quadratic error between the estimate and ground truth. The major advantage of these approaches is that they do not require to access ground truth. Then, the selection of optimal hyperparameters is done by minimizing SURE and by making use of Finite Difference strategies [36,42] or/and Monte Carlo averaging [13,21,34], to yield tractable and fast implementation of Stein-based risk estimates.

However, the strategy to find the optimal hyperparameters for a specific criterion has a huge impact on the solution both in terms of quality assessment and in terms of computational load. The most standard approach consists in computing a chosen error criterion over a grid of parameters [16,17,34], and to select the parameter of the grid for which the error is minimal. Such a grid search procedure suffers from a high computation cost, especially when dealing with $L \geq 2$ regularization parameters. To circumvent this difficulty, efficient automated minimization methods are required. It was early envisioned by Chaux et al. [10], who proposed and assessed numerically an empirical descent algorithm for automatic choice of regularization parameters, but with no convergence guarantee. A deeper theoretical analysis was then provided by Deledalle et al. [13], evidencing sufficient conditions so that Stein Unbiased Risk Estimate is differentiable with respect to hyperparameters, thus enabling to define the Stein Unbiased GrAdient of the Risk (SUGAR) estimator and to provide a practical implementation based on an iterative differentiation strategy. Combining SUGAR with a quasi-Newton descent procedure, a fast algorithm was designed to achieve optimal hyperparameters selection for objective functions of the form (1). This strategy, later extended in [17,32] for correlated noise, proved its efficiency for texture segmentation [32], piecewise linear signal denoising [31], and in spatial-spectral deconvolution for large multispectral data [1].

Contributions – This work focuses on the D-MS functional (2) for joint image denoising and contour detection, whose optimization is performed with SL-PAM, a nonconvex alternated minimization scheme, with descent parameters genuinely chosen to ensure fast convergence. The difficult problem of the selection of the regularization parameters of the D-MS functional is addressed considering a Stein Unbiased Risk Estimate (SURE), combined with a Finite Difference Monte Carlo (FDMC) strategy making its practical computation tractable. Intensive numerical experiments demonstrate that FDMC SURE approximates very accurately the true quadratic error on the denoised image.

Further, the optimal regularization parameters obtained by minimizing FDMC SURE via exhaustive grid search are shown to lead to denoised estimates with high signal-to-noise ratio and relevant contours. Then, to provide a fast procedure selecting the regularization parameters, a Stein Unbiased GrAdient Risk estimate (SUGAR) adapted to D-MS functional (2) is designed, involving the Jacobian of the parametric estimator obtained from (2). Practical implementation of SUGAR requires iterative differentiation of the SL-PAM minimization scheme, for which closed-form formulas are provided. An averaging Monte Carlo strategy is discussed, providing a robust FDMC SUGAR estimator. The resulting procedure compares favorably against exhaustive grid search in terms of signal-to-noise ratio, while requiring a significantly smaller computational cost.
To the best of our knowledge, the proposed automated D-MS bi-level scheme constitutes a first automated, prior-free and fast discrete Mumford-Shah-like formalism with automated selection of regularization parameters.

Outline — Section 2 recalls the nonconvex alternated minimization scheme SL-PAM minimizing the D-MS functional (2), as well as the main results existing in the literature presenting fast hyperparameters search strategies relying on both SURE and SUGAR. The proposed automated and fast procedure is described in Section 3. Numerical experiments are provided in Section 4.

Notations — Let H a real Hilbert space, and $f : H \rightarrow (-\infty, +\infty]$ a function which is proper, convex, and lower-semicontinuous and $\tau > 0$ a real parameter, the proximity operator of τf at point $v \in H$ is uniquely defined by

$$\text{prox}_{\tau f}(v) = \arg\min_{u \in H} \frac{1}{2}\|u - v\|^2_2 + \tau f(v).$$

Additionally, let G be a real Hilbert space and let $A : H \rightarrow G$ a Lipschitzian map, we denote by $L_A > 0$ the Lipschitz modulus of A, such that, for every $(x, y) \in H \times H$, $\|A(x) - A(y)\| \leq L_A\|x - y\|$. Further, for every $(x, y) \in \mathbb{R} \times \mathbb{R}$, we denote $I_{x>y} = 1$ if $x>y$ and 0 otherwise. Finally, I_N denotes the identity matrix acting on \mathbb{R}^N, and 1_N (resp. 0_N) is the vector of \mathbb{R}^N containing only ones (resp. zeros).

2 Algorithm and parameter estimations

2.1 Minimization of the discrete Mumford-Shah functional

The D-MS functional introduced in Eq. (2) being nonconvex, standard proximal algorithms [5, 11, 29] cannot be used directly for its minimization. However, the fact that the functional is separately convex with respect to each variable advocates the use of alternating schemes. Among the vast variety of existing alternating algorithms benefiting from convergence guarantees [3, 7, 18], a numerically efficient procedure for the minimization of D-MS like functionals appears to be the Semi-Linearized Proximal Alternating Minimization (SL-PAM) scheme proposed in [18], whose iterations in the general setting of Problem 1 are recalled in Algorithm 1.

Problem 1 (Nonconvex and nonsmooth minimization). $f : \mathbb{R}^{|\Omega|} \rightarrow (-\infty, +\infty]$, $h : \mathbb{R}^{|E|} \rightarrow (-\infty, +\infty]$ two proper lower semi-continuous functions and $g : \mathbb{R}^{|\Omega|} \times \mathbb{R}^{|E|} \rightarrow (-\infty, +\infty]$ a C^1 function. We aim to estimate:

$$\hat{u}, \hat{e} \in \arg\min_{u \in \mathbb{R}^{|\Omega|}, e \in \mathbb{R}^{|E|}} \Psi(u, e) := f(u) + g(u, e) + h(e).$$

(3)

The algorithmic scheme SL-PAM (Algorithm 1) is an hybrid version between PAM [3] and PALM [7]. The key ingredient for the efficiency of SL-PAM consists in avoiding the linearization with respect to the variable $e^{[k]}$, enabling to choose larger descent steps. Under some technical assumptions, such as the existence of a closed-form expressions of the involved proximity operators, the sequence $(u^{[k]}, e^{[k]})_{k \in \mathbb{N}}$ converges toward a critical point of $\Psi(u, e)$.

The piecewise smooth image denoising and contour detection strategy defined by (2) and on which this paper focuses corresponds to a particularization of Problem 1. The three terms of the objective function Ψ of Eq. (3) are par-
of the descent steps γ_i where, for all i,

Algorithm 1 SL-PAM

Initialization: $u^0 = z$, $e^0 = 1_{|\mathcal{E}|}$, $\gamma > 1$ and $\xi > 0$.

While $|\Psi(u^{[k+1]}, e^{[k+1]}) - \Psi(u^{[k]}, e^{[k]})| > \xi$

Set $c_k = \gamma L \nabla \Psi(u^{[k]}, e^{[k]})$ and $d_k > 0$

$\tilde{u}^{[k]} = u^{[k]} - \frac{1}{c_k} \nabla u g(u^{[k]}, e^{[k]})$

$u^{[k+1]} = \text{prox}_{c_k f}(u^{[k]})$

$e^{[k+1]} = \text{prox}_{d_k g(u^{[k]})} (e^{[k]})$

Algorithm 2 SL-PAM to solve D-MS

Initialization: $u^0 = z$, $e^0 = 1_{|\mathcal{E}|}$, $\gamma > 1$ and $\xi > 0$.

Set $\gamma > 1$ and $\xi > 0$.

While $|\Psi(u^{[k+1]}, e^{[k+1]}) - \Psi(u^{[k]}, e^{[k]})| > \xi$

Set $c_k = \gamma \beta \|\mathbf{D}\|^2$ and $d_k > 0$.

$\tilde{u}^{[k]} = u^{[k]} - \frac{1}{c_k} \nabla u g(u^{[k]}, e^{[k]})$

$u^{[k+1]} = \text{prox}_{\frac{c_k}{d_k} f}(u^{[k]})$

For all $i \in \{1, \ldots, |\mathcal{E}|\}$

$e_i^{[k]} = \frac{\beta (\mathbf{D}_i u^{[k+1]})^2 + d_k e_i^{[k]} }{\beta (\mathbf{D}_i u^{[k+1]})^2 + d_k}$

$e_i^{[k+1]} = \text{prox}_{\frac{c_k}{d_k} \lambda} (e_i^{[k]})$

2.2 Stein Unbiased Risk Estimator

As previously discussed in introduction, many variational approaches for image restoration and contour detection consist in designing a parametric estimator...
\(\hat{u}(z; \Theta)\), e.g. defined as a minimizer of (1) or (2), which aims at providing the best possible estimate of a quantity of interest \(\overline{u}\) from noisy observations \(z\). By construction, the quality of this estimate crucially relies on the precise selection of the hyperparameters \(\Theta\), which can be for instance the regularization parameters \(\beta\) and \(\lambda\) in D-MS functional (2).

2.2.1 Quadratic risk based parameter selection

The hyperparameters tuning task is commonly formulated as the minimization of the following quadratic risk:

\[
Q[\hat{u}](\Theta) = \mathbb{E}[\|\hat{u}(z; \Theta) - \overline{u}\|_2^2],
\]

measuring the expected reconstruction error made when estimating ground truth \(\overline{u}\) by \(\hat{u}(z; \Theta)\). The expectation in Eq. (5) runs over the realizations of the noise corrupting \(z\).

In practice, \(\overline{u}\) being unknown and the number of observed samples \(z\) being limited, if not reduced to one, the exact quadratic risk \(Q[\hat{u}](\Theta)\) of Eq. (5) is not accessible. Thus, the minimization of the quadratic risk \(Q[\hat{u}](\Theta)\) is replaced by the minimization of some estimate \(\hat{Q}(z; \Theta|\sigma^2)\) computed from a single noisy sample \(z\), not requiring the knowledge of ground truth but only some prior knowledge \(\sigma^2\) about the noise:

\[
\hat{\Theta} \in \text{Argmin}_{\Theta} \hat{Q}(z; \Theta|\sigma^2).
\]

Then, the design of a fast gradient-based hyperparameter selection strategy providing optimal hyperparameter from the minimization of (6) requires an unbiased estimate \(\partial_{\Theta} \hat{Q}(z; \Theta|\sigma^2)\) of the gradient of the quadratic risk with respect to hyperparameters \(\Theta\). Such a general procedure is sketched in Algorithm 3.

Algorithm 3 Automatted selection of hyperparameters.

| Input: Data \(z\) |
| Parameters: prior knowledge about the noise \(\sigma^2\). |
| Initialization: Set \(\Theta[0] \in \mathbb{R}^L\). |
| for \(t = 0\) to \(T_{\text{max}} - 1\) do |
| Compute \(\hat{Q}(z; \Theta[t]|\sigma^2)\) |
| Compute \(\partial_{\Theta} \hat{Q}(z; \Theta[t]|\sigma^2)\) |
| Update \(\Theta[t]\) to \(\Theta[t+1]\) via a gradient descent step |
| end for |
| Output: \(\Theta^* = \Theta[T_{\text{max}}]\) |

2.2.2 Stein Unbiased Risk Estimate

To address the fact that the ground truth \(\overline{u}\) is unknown, the pioneer work of Stein [37] proposed an unbiased estimate of the quadratic risk, based on an i.i.d. Gaussian noise additive model in which the observations are supposed to write

\[
z = \overline{u} + \sigma \zeta, \quad \zeta \sim \mathcal{N}(0_N, I_N)
\]

(7)
with $N = |\Omega|$ is the number of pixels and σ^2 the known variance of the noise. Then, under integrability and regularity assumptions, together with the observation model, the so-called Stein Unbiased Risk Estimator (SURE) was derived in [37], and has then been intensively used in signal and image processing [2,10,28,31,33]. In most applications, the original Stein estimator is not usable directly and further strategies are necessary to yield a practical estimator. The present work focuses on a strategy combining Finite Difference approximated differentiation and Monte Carlo averaging, which was first described by [34]. Making use of a Finite Difference step $\epsilon > 0$ and a Monte Carlo vector $\delta \in \mathbb{R}^N$ drawn from $\mathcal{N}(0_N, I_N)$, Finite Difference Monte Carlo (FDMC) SURE is defined as:

$$
\text{SURE}_{\epsilon, \delta}(z; \Theta | \sigma^2) := \| (\hat{u}(z; \Theta) - z) \|^2_2 + \frac{2}{\epsilon} (\hat{u}(z + \epsilon \delta; \Theta) - \hat{u}(z; \Theta), \sigma^2 \delta) - \sigma^2 N \tag{8}
$$

Under the Lipschitzianity with respect to z of $\hat{u}(z; \Theta)$ and the natural unambiguity property $\hat{u}(0_N, \Theta) = 0_N$, the true inaccessible quadratic risk estimator (5) satisfies the following asymptotic unbiasedness property:

$$
\lim_{\epsilon \to 0} \mathbb{E}[\text{SURE}_{\epsilon, \delta}(z; \Theta | \sigma^2)] = Q(\hat{u})(\Theta), \tag{9}
$$

where the expectation is to be understood on both the realizations of the observation noise ζ appearing in Eq. (7), and the realizations of the Monte Carlo vector δ. Eq. (9) ensures that, for small enough Finite Difference step ϵ, and provided that N is large enough so that the Monte Carlo strategy is relevant, a minimizer of $\text{SURE}_{\epsilon, \delta}(z; \Theta | \sigma^2)$ is an approximately optimal set of hyperparameters in terms of quadratic risk.

2.2.3 Risk estimate minimization

The gradient-based strategy sketched at Algorithm 3 when

$$
\hat{Q}(z; \Theta | \sigma^2) = \text{SURE}_{\epsilon, \delta}(z; \Theta | \sigma^2) \tag{10}
$$

relies on the FDMC Stein Unbiased GrAdient Risk (SUGAR) estimate defined as:

$$
\text{SUGAR}_{\epsilon, \delta}(z; \Theta | \sigma^2) = 2\partial_\Theta \hat{u}(z; \Theta)^*(\hat{u}(z; \Theta) - z)
+ \frac{2}{\epsilon} (\partial_{\Theta} \hat{u}(z + \epsilon \delta; \Theta) - \partial_{\Theta} \hat{u}(z; \Theta))^* \sigma^2 \delta, \tag{11}
$$

where $\partial_{\Theta} \hat{u}(z; \Theta)$ denotes the Jacobian of the parametric estimator $\hat{u}(z; \Theta)$ with respect to the hyperparameters Θ. The first proposal of such Stein Unbiased GrAdient Risk (SUGAR) estimate was formulated by [13] for i.i.d. Gaussian noise, and then extended in [32] for correlated noise. The main difficulty when it comes to practical implementation is to evaluate the Jacobian matrices. In [13, 32], the authors proposed an efficient implementation when $\hat{u}(z; \Theta)$ is estimated from the resolution of a convex minimization problem of the form (11) while in this contribution we extend it in the context of interface detection involving a minimization problem such as (2) solved with SL-PAM described in Section 2.1.
Under technical assumptions such as Lipschitzianity of \(\hat{u}(z; \Theta) \) with respect to \(\Theta \) and \(z \), it has been proved in [13] that the quadratic risk estimator (8) is weakly differentiable with respect to \(\Theta \) and its gradient is exactly the gradient estimator recalled in (11), i.e.,

\[
\partial_{\Theta} \text{SURE}_{\epsilon, \delta}(z; \Theta|\sigma^2) = \text{SUGAR}_{\epsilon, \delta}(z; \Theta|\sigma^2).
\] (12)

Eq. (12) ensures that the gradient estimate \(\text{SUGAR}_{\epsilon, \delta}(z; \Theta|\sigma^2) \) is indeed the gradient of the quadratic risk estimate \(\text{SURE}_{\epsilon, \delta}(z; \Theta|\sigma^2) \) with respect to hyperparameters \(\Theta \), justifying the use of the gradient descent approach of Algorithm 3 to solve a particular instance of Problem (6) when \(\hat{Q}(z; \Theta|\sigma^2) \) is defined by (10).

Additionally, FDMC SUGAR estimator introduced in (11) is an asymptotically unbiased estimator of the gradient of the true quadratic risk, i.e.

\[
\lim_{\epsilon \to 0} E[\text{SUGAR}_{\epsilon, \delta}(z; \Theta|\sigma^2)] = \partial_{\Theta} Q(\hat{u}(\Theta)),
\] (13)

where \(\partial_{\Theta} Q(\hat{u})(\Theta) \) is the true inaccessible gradient of quadratic risk with respect to hyperparameters \(\Theta \), and the expectation is to be understood on both the realizations of the observation noise \(\zeta \) appearing in Eq. (14) and the realizations of the Monte Carlo vector \(\delta \). The asymptotic unbiasedness of the gradient estimate ensures that the risk profile around its minimum is well enough reproduced by Stein-like estimates so that Algorithm 3 can be reasonably supposed to output a good approximation of the true optimal hyperparameters.

3 Hyperparameter selection for D-MS

The regularization parameters \(\beta \) and \(\lambda \) involved in the definition of the D-MS functional in Eq. (2) have intricated influence on the obtained reconstructed image and estimated contours, mainly due to the nonconvex coupling term \(\|(1 - e) \circ D u\|^2_2 \). This makes the selection of optimal parameters a tedious task, which we propose to handle by particularizing the Stein-based automated hyperparameter selection procedure reminded in detail in Section 2.2 to the D-MS functional when minimized via an SL-PAM scheme as described in Section 2.1.

3.1 Specificities of D-MS

The minimization of the D-MS functional of Eq. (2) provides both a piecewise smooth image reconstruction, denoted \(\hat{u}(z; \beta, \lambda) \) and a set of detected contours, encapsulated into \(\hat{e}(z; \beta, \lambda) \), depending on the choice of hyperparameters \(\Theta = (\beta, \lambda) \in \mathbb{R}_+ \times \mathbb{R}_+ \). In such a context, we should ideally minimize a global error criterion

\[
\hat{\Theta} \in \text{Argmin}_{\Theta} d(\hat{x}(z; \Theta), \Phi),
\] (14)

measuring the ability of the piecewise-smooth image and contour estimates \(\hat{x}(z; \Theta) = (\hat{u}(z; \beta, \lambda), \hat{e}(z; \beta, \lambda)) \) to approximate the original data \(\Phi = (\Phi, \Phi) \), using a measure of similarity \(d \). If \(d \) is chosen to be a quadratic risk, it reads:

\[
d(\hat{x}(z; \Theta), \Phi) = E[\|\hat{u}(z; \Theta) - \Phi\|^2_2] + \zeta E[\|\hat{e}(z; \Theta) - \Phi\|^2_2],
\] (15)
where $\zeta \geq 0$. However, the degradation model only described how the observed image z relates to the ground truth image \overline{z}, no prior knowledge about how the ground truth contours \overline{z} are affected by the observation noise being assumed. Further, measuring the accuracy of the contours is a tedious task, involving complicated criteria, such as the Jaccard index [24]. For these reasons, in the present work, the quadratic error on which the choice of hyperparameter relies is chosen to be the quadratic estimation error on the reconstructed image (i.e. $\zeta = 0$). Hence, the particularized FDM SURE of Eq. (8) only involves the denoised image $\hat{u}(z; \beta, \lambda)$, obtained from Algorithm [2] applied to the noisy image z, with regularization parameters set to given values β and λ.

3.2 Differentiated SL-PAM

Practical evaluation of the risk and gradient of the risk estimates from Eq. (8) and (11), requires to compute the Jacobian of the D-MS estimator. No closed-form expression being available for $\hat{u}(z; \beta, \lambda)$, the derivatives are obtained from the iterative differentiation of the recursive scheme of Algorithm [2]. This strategy raises several technical issues. Indeed, following [13] and [32], the Jacobian matrices $\partial_\Theta \hat{u}(z; \beta, \lambda)$ and $\partial_\Theta \hat{u}(z + \epsilon \delta; \beta, \lambda)$ are computed iteratively from a differentiated recursive scheme. Particularized to the case of D-MS estimates, the chain differentiation of the SL-PAM scheme of Algorithm [2] is derived in Algorithm [4]. For ease of computation, a specific choice of $d_k = \eta \beta \|D\|^2$ is considered, without inducing any loss of generality.

Algorithm 4 Iterative differentiation of SL-PAM

1. **Input**: Data $\tilde{z} = \{z, z + \epsilon \delta\}$. Set $\Theta = (\beta, \lambda) \in \mathbb{R}_+ \times \mathbb{R}_+$.
2. **Initialization**: $u^{[0]} = \tilde{z}$, $e^{[0]} = 1_\epsilon$.
3. $\partial_\Theta \hat{u}^{[0]} = \partial_\Theta u^{[0]} = 0_N$, $\partial_\Theta \hat{e}^{[0]} = \partial_\Theta e^{[0]} = 0_\epsilon$.
4. Set $\gamma > 1$ and $\eta > 0$.
5. **While** $|\Psi(u^{[k+1]}, e^{[k+1]}) - \Psi(u^{[k]}, e^{[k]})| > \xi$:
 1. Set $c_k = \gamma \beta \|D\|^2$ and $d_k = \eta \beta \|D\|^2$.
 2. $u^{[k+1]} = u^{[k]} - \frac{\gamma}{c_k} \nabla_u \varphi(u^{[k]}, e^{[k]})$.
 3. $e^{[k+1]} = \text{prox}_{\frac{\gamma}{c_k} \varphi} (\hat{u}^{[k+1]})$.
 4. Compute $\partial_\Theta u^{[k+1]}$ from Eq. (14).
 5. Compute $\partial_\Theta u^{[k+1]}$ from Eq. (18).
 6. For all $i \in \{1, \ldots, |E|\}$:
 1. $e_i^{[k]} = \frac{\beta (D_i u^{[k+1]})^2 + d_i e_i^{[k]}}{2 \beta (D_i u^{[k+1]})^2 + d_i}$.
 2. $e_i^{[k+1]} = \text{prox}_{\frac{\gamma}{c_k} \varphi} (\hat{e}_i^{[k]})$.
 3. Compute $\partial_\Theta e_i^{[k+1]}$ from Eq. (19).
 4. Compute $\partial_\Theta e_i^{[k+1]}$ from Eq. (20).
3.2.1 General procedure

The purpose is to differentiate the mapping \(\Theta \mapsto (\hat{u}(z; \Theta), \hat{e}(z; \Theta)) \), where the estimates \((\hat{u}(z; \Theta), \hat{e}(z; \Theta))\) are obtained solving (2) for fixed \(z \).

The recursive chain differentiation consists in differentiating step by step Algorithm 2, each update of which can be written as \(v(z; \Theta) = \Gamma(u(z; \Theta), e(z; \Theta), \tau(\Theta)) \), where \(u: \mathbb{R}^N \times \mathbb{R}^L \rightarrow \mathbb{R}^N, e: \mathbb{R}^N \times \mathbb{R}^L \rightarrow \mathbb{R}^{|E|} \) and \(\tau: \mathbb{R}^L \rightarrow \mathbb{R} \) are functions of the observed noisy image \(z \) and of the hyperparameters \(\Theta \), with respect to which the differentiation is to be performed and \(v(z; \Theta) \in \mathbb{K} \), where \(\mathbb{K} = \mathbb{R}^N \) when updating \(u \) or \(\hat{u} \), and \(\mathbb{K} = \mathbb{R}^{|E|} \) when updating \(e \) or \(\hat{e} \).

Then, applying the chain rule differentiation principle yields the following partial derivative expression, for every component \(\theta \) of the hyperparameter vector \(\Theta \) and for every index \(j \in \{1, \ldots, \text{dim}(\mathbb{K})\} \):

\[
\partial \theta v_j = \sum_{\ell=1}^{N} (\partial \theta \Gamma_j) (\partial \theta u_\ell) + \sum_{m=1}^{|E|} (\partial \theta m \Gamma_j) (\partial \theta e_m) + (\partial \theta \tau_j) (\partial \theta \tau)
\]

leading to the following closed form expression for \(\partial \theta \hat{u}^{[k+1]} \), \(\partial \theta u^{[k+1]} \), \(\partial \theta \hat{e}_i^{[k+1]} \) and \(\partial \theta e_i^{[k+1]} \), for \(i \in \{1, \ldots, |E|\} \).

3.2.2 Iterative differentiation of SL-PAM for D-MS

Applying Formula (16) to each step of Algorithm 2 leads to Algorithm 4. Proposition 1 provides closed-form expressions of the Jacobian matrices of the iterates involved in the minimization of a D-MS functional with \(h = \| \cdot \|_1 \), thus allowing an easy and direct implementation of FDMC SURE and FDMC SUGAR estimates of Eq. (8) and (11).

Proposition 1. Considering the D-MS functional (2), when \(h = \| \cdot \|_1 \) and its minimization via SL-PAM Algorithm 2 with \(d_k = \beta d, \quad d = \eta \| D \|_2 \), for every \(\theta \in \{\beta, \lambda\} \):

\[
\partial \theta \hat{u}^{[k]} = \partial \theta u^{[k]} - \frac{2 \beta}{c_k} \sum_{i=1}^{|E|} (1 - e_i^{[k]})^2 D_i^* D_i \partial \theta u^{[k]}
\]

\[
+ \frac{4 \beta}{c_k} \sum_{i=1}^{|E|} (1 - c_i^{[k]}) \partial \theta e_i^{[k]} D_i^* D_i u^{[k]},
\]

\[
\partial \theta u^{[k+1]} = \frac{c_k}{c_k + 1} \partial \theta u^{[k]} + \frac{\hat{u}^{[k]} - z}{(\beta \tau + 1)^2} \partial \theta c_k,
\]

where \(\partial \theta c_k = \gamma \| D \|^2 \) and \(\partial \lambda c_k = 0 \), and for every \(i \in \{1, \ldots, |E|\} \):

\[
\partial \theta \hat{e}_i^{[k]} = \frac{2D_i u^{[k+1]} \partial \theta u^{[k+1]} \frac{2}{z} (1 - e_i^{[k]})}{\left(D_i u^{[k+1]} \right)^2 + \frac{2}{\tau}} + \frac{2}{\tau} \partial \theta e_i^{[k]},
\]

\[
\partial \theta e_i^{[k+1]} = \partial \theta \phi_i^{[k+1]} \partial \theta u^{[k+1]} \frac{e_i^{[k]}}{c_i^{[k]}} \mathcal{L}_{|e_i^{[k]}| > \phi_i^{[k]}}
\]

\[
+ \partial \theta \hat{e}_i^{[k]} \mathcal{L}_{|e_i^{[k]}| > \phi_i^{[k]}} - \frac{\partial \theta \phi_i^{[k+1]} \partial \theta \tau}{c_i^{[k]}} \mathcal{L}_{|e_i^{[k]}| > \phi_i^{[k]}}
\]

\[
+ \mathcal{L}_{|e_i^{[k]}| > \phi_i^{[k]}}.
\]
where
\[
\begin{align*}
\partial u^{[k+1]}_i \partial \theta^{[k+1]}_i &= -\frac{4\pi D_i u^{[k+1]} D_i \partial \theta^{[k+1]}_i}{2(D_i u^{[k+1]})^2 + d}, \\
\partial \theta^{[k+1]}_i &= \frac{1}{2(D_i u^{[k+1]})^2 + d}, \\
\partial \beta \tau &= -\lambda \beta^2, \\
\partial \lambda \tau &= \frac{1}{\beta},
\end{align*}
\]
(21)

Proof. The proof is given in Appendix A. □

3.3 Monte Carlo averaging strategy

Following [32], the risk and gradient of the risk FDMC Stein estimators, introduced in Eq. (8) and (11), are defined from one realization of the Monte Carlo vector \(\delta\). Yet, in the context of a parametric estimator \(\hat{u}(z; \Theta)\) obtained from the minimization of a nonconvex objective functional, such as (2), it can be necessary to go further, and to consider Monte Carlo averaging strategies to get more robust risk and gradient of the risk estimates.

The Monte Carlo averaging strategy consists in averaging the FDMC Stein estimators of Eq. (8) and (11) over a certain number \(R\) of random Monte Carlo vectors \(\delta^{(r)} \in \mathbb{R}^N\), independently sampled from the standard Gaussian distribution as stated properly in Definition 1.

Definition 1 (Monte Carlo averaged Stein estimators). Let \(z \in \mathcal{H}\) following the observation model of Eq. (7) and let \(\hat{u}(z; \Theta)\) a parametric estimator of the underlying ground truth \(u\), depending on some hyperparameters stored in \(\Theta \in \mathbb{R}^L\). For \(\epsilon > 0\) a Finite Difference step and \(\Delta = [\delta^{(1)}, \ldots, \delta^{(R)}]\) a concatenation of independent Monte Carlo vectors sampled from the standard Gaussian distribution, the Monte Carlo averaged SURE is defined as

\[
\text{SURE}_{\epsilon, \Delta}^R(z; \Theta) := \frac{1}{R} \sum_{r=1}^R \text{SURE}_{\epsilon, \delta^{(r)}}(z; \Theta),
\]
(22)

where \(\text{SURE}_{\epsilon, \delta^{(r)}}(z; \Theta)\) is the FDMC SURE (8). Similarly, the Monte Carlo averaged SUGAR estimator writes

\[
\text{SUGAR}_{\epsilon, \Delta}^R(z; \Theta) := \frac{1}{R} \sum_{r=1}^R \text{SUGAR}_{\epsilon, \delta^{(r)}}(z; \Theta),
\]
(23)

involving \(\text{SUGAR}_{\epsilon, \delta^{(r)}}(z; \Theta)\), the FDMC SUGAR estimate (11).

Proposition 2. Let \(\tilde{u}(z; \Theta)\) an estimator being uniformly Lipschitz w.r.t the observations \(z\) and w.r.t the hyperparameters \(\Theta\), with a Lipschitz modulus \(L_{\tilde{u}}(z; \cdot)\) independent of \(z\), and satisfying the univocity condition \(\tilde{u}(0_N; \Theta) = 0_N\). For \(\epsilon\) a infinitesimal positive Finite Difference step and \(\Delta = [\delta^{(1)}, \ldots, \delta^{(R)}]\) a collection of independent standard Gaussian Monte Carlo vectors, the Monte Carlo averaged estimates \(\text{SURE}_{\epsilon, \Delta}^R(z; \Theta)\) and \(\text{SUGAR}_{\epsilon, \Delta}^R(z; \Theta)\) are asymptotically unbiased estimates of respectively the risk and of the gradient of the risk with respect to hyperparameters

\[
\lim_{\epsilon \to 0} \mathbb{E}[\text{SURE}_{\epsilon, \Delta}^R(z; \Theta)] = Q[\tilde{u}](\Theta)
\]
(24)
\[\lim_{\epsilon \to 0} \mathbb{E}_{\epsilon}^{\text{SURE}_{R\Delta}(z;\Theta|\sigma^2)} = \partial_{\Theta} Q[\hat{u}](\Theta). \]

Moreover, \(\text{SURE}_{R\Delta}(z;\Theta|\sigma^2) \) is exactly the gradient of \(\text{SURE}_{R\Delta}(z;\Theta|\sigma^2) \) with respect to the hyperparameters \(\Theta \).

Proof. For each Monte Carlo vector \(\delta(r) \), the FDMC \(\text{SURE}_{\epsilon\delta(r)} \) and \(\text{SURE}_{\epsilon\delta(r)} \), is the derivative of \(\text{SURE}_{\epsilon\delta(r)} \), w.r.t. \(\Theta \), as reminded in Section 2.2. Then, by linearity of both the limit \(\lim_{\epsilon \to 0} \) and the summation over the \(R \) Monte Carlo vectors, the Monte Carlo averaged estimates \(\text{SURE}_{R\Delta}(z;\Theta|\sigma^2) \) and \(\text{SURE}_{R\Delta}(z;\Theta|\sigma^2) \), defined respectively in Eq. (22) and (23), whose practical implementation is based on Algorithm 4, provides the optimal hyperparameters. The overall procedure is referred to as Averaged SUGAR D-MS. Note that, for \(R = 1 \), \(\Delta = \{\delta^{(1)}\} \), and one retrieves the standard SURE and SUGAR estimates presented in Section 2.2. In the case when \(R = 1 \), the automated hyperparameter strategy is hence referred to as Standard SUGAR D-MS.

3.4 Averaged SUGAR D-MS

The framework presented in Section 2.2 combined with Proposition 2 enable us to design an automated strategy to select the D-MS regularization parameters described below and assessed in Section 4. First, \(R \) independent Monte Carlo vectors \(\delta^{(r)} \) are sampled. The set \(\Delta = \{\delta^{(1)},\ldots,\delta^{(R)}\} \) is kept fixed throughout the procedure. Then, Algorithm 3 with the averaged estimates \(\hat{Q}(z;\Theta|\sigma^2) = \text{SURE}_{R\Delta}(z;\Theta|\sigma^2) \) and \(\partial_{\Theta} \hat{Q}(z,\Theta|\sigma^2) = \text{SURE}_{R\Delta}(z;\Theta|\sigma^2) \), defined respectively in Eq. (22) and (23), whose practical implementation is based on Algorithm 4, provides the optimal hyperparameters. The overall procedure is referred to as Averaged SUGAR D-MS. Note that, for \(R = 1 \), \(\Delta = \{\delta^{(1)}\} \), and one retrieves the standard SURE and SUGAR estimates presented in Section 2.2. In the case when \(R = 1 \), the automated hyperparameter strategy is hence referred to as Standard SUGAR D-MS.

4 Performance assessment

4.1 Settings

4.1.1 Data

To assess the relevance of SURE in the context of interface detection, as well as the efficiency of the proposed automated minimization making use of the SUGAR proposed in Section 3, systematic experiments are performed on test data. Two geometries are considered, i.e., two noise-free piecewise smooth grey level images, depicted in the first column of Fig. 2. While the first ground truth image, at the top left of Fig. 2, presents rectilinear contours, the second one, bottom left of Fig. 2, also contains an elliptic shape with curved contours. The test set is then composed of degraded versions of these two original images, obtained by adding an independent identically distributed Gaussian noise of variance \(\sigma^2 \). Several noise levels are explored, corresponding to \(\sigma \in \{0.01, 0.05, 0.1, 0.2, 0.3\} \). Realizations of the noisy images for each geometry and each noise level are displayed in Fig. 2, the signal-to-noise ratio decreasing progressively from the second to the sixth column.
4.1.2 Algorithmic setup

SL-PAM – The minimization of the D-MS functional \(2\) providing estimates of both the piecewise smooth image and its salient contours, is performed running Algorithm 2. The stopping criterion, based on the objective function increments, is set to \(\xi = 10^{-4}\), while the descent steps are tuned manually so as to obtain the fastest convergence, leading to \(\gamma = 1.01\) and \(d_k = \eta \beta \|D\|_2^2\) with \(\eta = 1.01 \times 10^{-3}\) following [18].

Stein estimators – FDMCSURE (8) is computed with a Finite Difference step \(\epsilon = 2 \sigma N^\alpha, \quad 0 < \alpha < 1\) (26) where \(\sigma\) is the standard deviation of the noise on the observed image \(z \in \mathbb{R}^N\). Formula (26) derives from a heuristic reasoning developed in [13], in the context of \(\ell_1\)-norm penalization. The dependency of the Finite Difference step on the size of the data is controlled via the exponent \(\alpha\), which is fixed at \(\alpha = 0.3\) for all the numerical simulations. In the systematic numerical experiments, four values of the number \(R\) of realizations of the Monte Carlo vector \(\delta^{(r)}\) are envisioned and systematically compared: \(R \in \{1, 5, 10, 20\}\).

BFGS algorithm – To perform the risk minimization described in Algorithm 3 for different choices of \(Q(z; \Theta | \sigma^2)\) and \(\partial_\Theta Q(z; \Theta | \sigma^2)\), as presented in Section 3.4, we used the GRAdient-based Algorithm for Non-Smooth Optimization, implemented in GRANSO toolbox, consisting of the low memory BFGS quasi-Newton algorithm proposed in [12] with box constraints, enabling to enforce positivity of \(\beta\) and \(\lambda\). The maximal number of iterations of BFGS Algorithm 3 is set to \(T_{\text{max}} = 20\), while the stopping criterion on the gradient norm is set to \(10^{-8}\). Further, it is well-documented that the initialization of quasi-Newton algorithms might drastically impact their convergence. Hence, we propose a model-based strategy for initializing Algorithm 3. Inspired from the initialization strategies proposed in [13, 52], hyperparameters \(\Theta = (\beta, \lambda)\) are initialized

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image.png}
\caption{Piecewise smooth grey level images \((\sigma = 0)\) corrupted by i.i.d. Gaussian noise with level \(\sigma \in \{0.01, 0.05, 0.1, 0.2, 0.3\}\).}
\end{figure}
\[\beta^{(0)} = \frac{N\sigma \|Dz\|^2}{4} \quad \text{and} \quad \lambda^{(0)} = \frac{\beta^{(0)} \|Dz\|^2}{2N}, \]
(27)

while, for \(\kappa = 0.9 \), the initial approximated inverse Hessian involved in the BFGS strategy is set to

\[H^{(0)} = \text{diag} \left(\left| \frac{\kappa \beta^{(0)}}{\partial_{\beta} Q(z; \Theta^{(0)} | \sigma^2)} \right|, \left| \frac{\kappa \lambda^{(0)}}{\partial_{\lambda} Q(z; \Theta^{(0)} | \sigma^2)} \right| \right). \]
(28)

4.1.3 Performance criteria

In practice, standard and averaged SURE are compared to the following quadratic error:

\[Q(\hat{u} | u) := \|\hat{u} - u\|^2. \]
(29)

To assess the performance of D-MS denoising with automatically selected hyperparameters, the quality of the reconstruction is quantified by the peak signal-to-noise ratio defined as:

\[\text{PSNR}(\hat{u} | u) = 20\log_{10} \left(\frac{\|u\|}{\|\hat{u} - u\|} \right). \]
(30)

4.2 SURE for D-MS

We first illustrate in Fig. 3 the asymptotic unbiasedness of the standard and averaged SURE (respectively Eq. (9) and Eq. (24)) on the example \(z \) displayed in Fig. 2 (top-c) with noise level \(\sigma = 0.05 \). To better locate and compare the minima, three level sets of SURE are displayed by the MATLAB function \texttt{contour}.

Even though the overall shape of the standard SURE maps are similar to the quadratic error profile, Fig. 3(a-c) shows that the location of the minimum varies significantly with the Monte Carlo vector \(\delta(r) \). Averaged SURE also well reproduces the quadratic error map while being more robust to achieve the minimum (cf. Fig. 4).

This first set of experiments illustrate that the proposed averaged SURE reproduces accurately the quadratic risk.

4.3 Automatic tuning of \(\Theta = (\beta, \lambda) \) for D-MS

Although efficiently reaching the optimal hyperparameters, the grid search minimization of averaged SURE suffers from prohibitive computational time increasing with the resolution of the grid. The necessary trade-off between accuracy and computational time motivates the introduction of the automated gradient-based methods proposed in Section 3.

4.3.1 Comparison between Standard and Averaged SUGAR D-MS

Fig. 4 investigates the ability of the hyperparameter selection strategies proposed in Section 3.4 for different numbers \(R \in \{5, 10, 20\} \) of Monte Carlo vector \(\delta(r) \) to achieve the optimal hyperparameters minimizing the quadratic error \(Q(\hat{u} | u) \).
SURE_{\epsilon, \Delta(1)} \quad SURE_{\epsilon, \Delta(5)} \quad SURE_{\epsilon, \Delta(7)} \quad SURE_{\epsilon, \Delta} \quad Q(\hat{u}(z; \Theta)|\mathbf{U})

(a) \quad (b) \quad (c) \quad (d) \quad (e)

(f) \quad (g) \quad (h) \quad (i) \quad (j)

Figure 3: Comparison between the quadratic error, standard and averaged SURE estimates for D-MS denoising of the image displayed in Fig. 2 (top-c).

1st row – Map on a logarithmic grid of 40×40 hyperparameters $\Theta = (\beta, \lambda)$: (a-c) SURE$_{\epsilon, \Delta(r)}(z; \Theta|\sigma^2)$ values for some realizations of the Monte Carlo vector, (d) SURE$_{\epsilon, \Delta}(z; \Theta|\sigma^2)$ values for $R = 5$ realizations of the Monte Carlo vector and (e) quadratic error $Q(\hat{u}(z; \Theta)|\mathbf{U})$ values with level sets (black lines).

2nd row – Optimal solutions $(\hat{u}(z; \Theta^{\text{Grid}}), \hat{e}(z; \Theta^{\text{Grid}}))$ obtained from a grid search over each map. The red (resp. yellow and green) cross corresponds to the solution displayed in (j) (resp. (f)-(h) and (i)) associated with the minimum of the quadratic error grid (e) (resp. SURE estimate grids (a)-(c) and (d)).

The optimal hyperparameters $\Theta^{\star(r)} = (\beta^{\star(r)}, \lambda^{\star(r)})$ reached by the Standard SUGAR D-MS are scattered (Fig. 5 left), probably due to a lack of accuracy of the estimator SURE$_{\epsilon, \Delta(r)}$ and thus of SUGAR$_{\epsilon, \Delta(r)}$. A first approach to alleviate the variability of the result is to carry out an averaging of R hyperparameters $(\beta^{\star(r)}, \lambda^{\star(r)})$ obtained by the Standard SUGAR D-MS method:

$$\overline{\Theta}^R = (\overline{\beta}^R, \overline{\lambda}^R) = \frac{1}{R} \sum_{r=1}^{R} (\beta^{\star(r)}, \lambda^{\star(r)}).$$ (31)

As it can be observed in Fig. 4 left, this improvement of the method remains unsatisfactory, compared to Averaged SUGAR D-MS which reaches more accurate hyperparameters.

The conclusions reached with this set of experiments are twofold: first, we highlight that $R = 5$ realizations are sufficient to achieve a good estimation of the optimal hyperparameters, second, we note that the proposed automated procedure is 20 times faster compared to exhaustive search, a grid search on averaged SURE requiring 60 minutes of calculation, while Averaged SUGAR D-MS requires 3 minutes, when using MATLAB R2018a and an Intel Core i5 processor.

4.3.2 Performance w.r.t noise level

We now focus on the Averaged SUGAR D-MS for $R = 5$ and assess its performance for the different geometries and noise levels displayed in Fig. 2. Averaged PSNR for 10 realizations of the noise are reported in Table 4 denoised images
Figure 4: Impact of the number of realizations R of the Monte Carlo vectors when selecting the hyperparameters with the methods described in Section 3.4 (left) $R = 5$, (middle) $R = 10$ and (right) $R = 20$. (yellow) Standard SUGAR D-MS for different $\delta^{(r)}$ leading to $\Theta^*(r)$. (pink) Mean over the R realizations of Standard SUGAR D-MS leading to Θ^*_R, (green) Averaged SUGAR D-MS, (red) optimum obtained by performing a grid search minimization of the quadratic error. For the 3 maps, the background displays the logarithmic grid of 40×40 hyperparameters $\Theta = (\beta, \lambda)$ of quadratic error $Q(\hat{u}(z; \Theta)|\theta)$ values with level sets (black lines).

Table 1: PSNR values with 95% confidence interval for true noise level σ and for estimated noise level $\hat{\sigma}$.

σ	Losange		Ellipse	
	True σ	Estimated $\hat{\sigma}$	True σ	Estimated $\hat{\sigma}$
0.01	58.82 ± 0.04	57.46 ± 0.06	55.34 ± 0.03	46.03 ± 0.30
0.05	34.64 ± 0.14	34.20 ± 0.67	27.84 ± 2.95	25.10 ± 2.31
0.1	27.42 ± 0.93	24.49 ± 2.27	23.64 ± 2.60	21.75 ± 2.61
0.2	20.51 ± 2.40	19.83 ± 2.53	20.25 ± 2.37	18.64 ± 2.78
0.3	19.77 ± 2.16	17.39 ± 2.59	16.19 ± 3.00	15.41 ± 3.17

and detected contours are displayed in Fig. 5 (1st and 3rd rows) for one realization of the noise.

As expected, the PSNR decreases as the noise level increases. Further, large error bars are observed mainly due to the variability of the gradient descent scheme in Algorithm 3 the realizations of the Monte Carlo vector, or the SL-PAM non-convex minimization procedure.

4.3.3 Impact of the estimation of σ

On real data, the noise level σ needed to implement Averaged SUGAR D-MS is unknown. The most usual method to estimate the noise standard deviation is the median absolute deviation (MAD) of 2D discrete wavelet coefficients [13]:

$$\hat{\sigma} = \text{MAD} \left(\{ |\psi_{H,k}|, |\psi_{V,k}|, |\psi_{D,k}| \mid k \in \{1, \ldots, \frac{N}{4}\} \} \right),$$

where $\psi_{H,k}, \psi_{V,k}, \psi_{D,k}$ are the three wavelets coefficients (horizontal, vertical and diagonal) at the finest scale. Table 1 presents the PSNR values with the estimated noise level $\hat{\sigma}$. In addition, some estimates are depicted in Fig. 5 (2nd and 4th rows).
The results with either estimated or true noise level attesting the robustness of \textit{Averaged SUGAR D-MS} to the estimation of the noise level.

5 Conclusion

This work devises a procedure to automatically select the hyperparameters of the D-MS functional allowing to perform simultaneously image denoising and contour detection. To this end, the Finite Difference Monte Carlo SURE was particularized to the nonconvex D-MS functional under an additive i.i.d. Gaussian degradation and a Monte Carlo averaged extension was proposed. The gradients of both standard and averaged SURE are derived leading to standard and averaged SUGAR estimates, whose practical implementations are performed based on an iterative differentiation of the nonconvex SL-PAM scheme. Two fast gradient-based procedures minimizing standard and averaged SURE take advantage of the standard and averaged gradient estimates to yield \textit{Standard SUGAR D-MS} or \textit{Averaged SUGAR D-MS} automated hyperparameters selection strategies.

The validity of SURE as a risk estimator in this setting has been practically assessed and the behavior of the proposed gradient-based minimization scheme has been compared to a grid search minimization. Numerical experiments on
synthetic images show that the proposed automated strategy yields satisfactory hyperparameters while being robust to noise, even for low signal-to-noise ratio, and requiring low computational effort. Further, the proposed procedure achieves high quality reconstruction and accurate contour detection, both in rectilinear geometries and in more complex elliptic geometries, evidencing contours with strong curvature.

Future work will extend the D-MS formalism to handle more generic data fidelity or penalization terms by, first, customizing Algorithm 1, and second, designing a generalized Averaged SUGAR D-MS procedure for hyperparameter selection, enabling to consider richer observation models, including a linear degradation operator and possibly correlated noise, following the general framework developed in [32].

A MATLAB toolbox implementing the proposed automated image denoising and contour detection procedure will be publicly available.

A Iterative differentiation of SL-PAM for D-MS

A.1 Update of \(\partial_\theta \tilde{u}^{[k]} \)

For the function \(g \) given in Eq. (4), the update rule of \(\tilde{u}^{[k]} \) reads:

\[
\tilde{u}^{[k]} = u^{[k]} - \frac{1}{c_k} \nabla_u g(u^{[k]}, e^{[k]}) = u^{[k]} - \frac{2\beta}{c_k} \sum_{i=1}^{|E|} (1 - e_{i}^{[k]})^2 D_i^* D_i u^{[k]}.
\]

(33)

The update of \(\tilde{u}^{[k]} \) can be written:

\[
\tilde{u}^{[k]} = \Gamma(u^{[k]}, e^{[k]}, \tau^{[k]}),
\]

(34)

where

\[
\Gamma(u, e, \tau) = u - \tau \sum_{i=1}^{|E|} (1 - e_i)^2 D_i^* D_i u,
\]

(35)

\[
\tau^{[k]} = \frac{2\beta}{c_k}.
\]

The derivative \(\partial_\theta v \) of \(v = \Gamma(u, e, \tau) \), for \(\theta \in \{\beta, \lambda\} \), is:

\[
\partial_\theta v = \partial_\theta u - \tau \sum_{i=1}^{|E|} (1 - e_i)^2 D_i^* D_i \partial_\theta u + 2\tau \sum_{i=1}^{|E|} (1 - e_i) \partial_\theta e_i D_i^* D_i u
\]

\[
- \partial_\theta \tau^{[k]} = \partial_\theta \left(\frac{2\beta}{c_k} \right) = \partial_\theta \left(\frac{2\gamma \|D\|^2}{c_k} \right) = 0.
\]

(36)

(37)
A.2 Update of $\partial_\theta u^{[k]}$

The function f given in Eq. (4) has a proximal operator with a closed form expression. Thus the update rule of $u^{[k]}$ can be explicitly expressed as follows:

$$u^{[k+1]} = \text{prox}_{\frac{1}{c_k}f}(\tilde{u}^{[k]}) = \frac{c_k\tilde{u}^{[k]} + z}{ck + 1}. \quad (38)$$

For the update of $u^{[k+1]}$, we thus have:

$$u^{[k+1]} = \Gamma(\tilde{u}^{[k]}, 0|E|, \tau^{[k]}), \quad (39)$$

where

$$\Gamma(u, e, \tau) = \frac{ru + ze}{\tau + 1}, \quad \tau^{[k]} = c_k. \quad (40)$$

The derivative $\partial_\theta v$ of $v = \Gamma(u, e, \tau)$, for $\theta \in \{\beta, \lambda\}$, is:

$$\partial_\theta v = \frac{\tau}{\tau + 1} \partial_\theta u + \frac{u - z}{(\tau + 1)^2} \partial_\theta \tau, \quad (41)$$

and $\partial_\beta \tau^{[k]} = \gamma\|\mathbf{D}\|^2$ and $\partial_\lambda \tau^{[k]} = 0$.

A.3 Update of $\partial_\theta \tilde{e}^{[k]}$

In Algorithm 2, the parameter for the update of $e^{(k+1)}$ is set to $d_k = \beta d$ where $d = \eta\|\mathbf{D}\|^2$. This choice is discussed in [18] and gives good numerical results for some values of η. This setting simplifies the computation of the derivatives due to the linear dependence of d_k with β. Indeed, the update rule of $\tilde{e}_i^{[k]}$, for every $i \in \{1, \ldots, |E|\}$, can be rewritten as follows:

$$\tilde{e}_i^{[k]} = \frac{(\mathbf{D}_i u^{[k+1]} + \frac{\tau e_i^{[k]}}{\tau + 1})^2 + \frac{d}{2}}{\|\mathbf{D}_i u^{[k+1]}\|^2 + \frac{d}{2}}. \quad (42)$$

Thus, for every $i \in \{1, \ldots, |E|\}$,

$$e_i^{[k]} = \Gamma_i(u^{[k+1]}, e^{[k]}, \tau^{[k]}), \quad (43)$$

where

$$\Gamma_i(u, e, \tau) = \frac{(\mathbf{D}_i u)^2 + \frac{\tau e_i}{\tau + 1}}{(\mathbf{D}_i u)^2 + \frac{\tau}{2}}, \quad \tau^{[k]} = \frac{d}{\tau}. \quad (44)$$

The derivative $\partial_\theta v$ of $v = \Gamma(u, e, \tau)$, for $\theta \in \{\beta, \lambda\}$ and for $i \in \{1, \ldots, |E|\}$, is:

$$\partial_\theta v_i = \frac{2\mathbf{D}_i u \partial_\theta u}{(\mathbf{D}_i u)^2 + \frac{\tau}{2}} - \frac{2\mathbf{D}_i u \partial_\theta u [\mathbf{D}_i u]^2 + \frac{\tau e_i}{\tau + 1}}{[\mathbf{D}_i u]^2 + \frac{\tau}{2}} \quad + \frac{\frac{\tau e_i \partial_\theta e_i}{(\mathbf{D}_i u)^2 + \frac{\tau}{2}} + \frac{(\mathbf{D}_i u)^2 + \frac{\tau e_i}{\tau + 1}}{[\mathbf{D}_i u]^2 + \frac{\tau}{2}}}{[\mathbf{D}_i u]^2 + \frac{\tau}{2}}, \quad (45)$$

and $\partial_\theta \tau^{[k]} = 0$, which yields to the result in Proposition 1.
A.4 Update of $\partial \theta e^{[k]}$

For the update of $e^{[k+1]}_i$, for every $i \in \{1, \ldots, |E|\}$, the function h in Eq. (4) is chosen with $\mu_i = |.|$. This latter function corresponds to the common ℓ_1-norm penalization of the contour. The setting $d_k = \beta \bar{d}$ simplifies this update which now reads:

$$e^{[k+1]}_i = \text{prox}_{\phi^{[k+1]}_i \cdot |.|}(\tilde{e}^{[k]}_i), \quad \phi^{[k+1]}_i = \phi_i(u^{[k+1]}; \tau),$$

(46)

where

$$\begin{cases}
\phi_i(u, \tau) = \frac{\tau}{2(D_i u)^2 + d}, \quad \tau = \frac{\lambda}{\beta}, \\
\text{prox}_{\phi_i(u, \tau) \cdot |.|}(e_i) = \max(0, 1 - \frac{\phi_i(u, \tau)}{|e_i|})e_i.
\end{cases}$$

(47)

For every $i \in \{1, \ldots, |E|\}$,

$$e^{[k+1]}_i = \Gamma_i(u^{[k+1]}, \tilde{e}^{[k]}, \tau^{[k]}),$$

(48)

where

$$\begin{cases}
\Gamma_i(u, e, \tau) = \text{prox}_{\phi_i(u, \tau) \cdot |.|}(e_i), \\
\tau^{[k]} = \frac{\lambda}{\beta}.
\end{cases}$$

(49)

The derivative $\partial \theta v$ of $v = \Gamma(u, e, \tau)$, for $\theta \in \{\beta, \lambda\}$ and for $i \in \{1, \ldots, |E|\}$, is:

$$\begin{align*}
\partial \theta v_i &= -\partial_u \phi_i \partial \theta u e_i |e_i| > \phi_i(u, \tau) + \partial \theta e_i |e_i| > \phi_i(u, \tau) \\
&- \frac{\partial \theta \tau}{2(D_i u)^2 + d} |e_i| |e_i| > \phi_i(u, \tau),
\end{align*}$$

(50)

with Jacobian matrices product

$$\partial_u \phi_i \partial \theta u = -\frac{\tau}{2(D_i u)^2 + d} (4D_i u D_i \partial \theta u),$$

(51)

and $\partial \beta \tau^{[k]} = \frac{1}{\beta}$ and $\partial \lambda \tau^{[k]} = -\frac{1}{\beta \tau^2}$.

References

[1] R. Ammanouil, A. Ferrari, D. Mary, C. Ferrari, and F. Loi. A parallel and automatically tuned algorithm for multispectral image deconvolution. Monthly Notices of the Royal Astronomical Society, 490(1):37–49, 2019.

[2] R. Ammanouil and C. Ferrari, A and Richard. ADA-PT: An adaptive parameter tuning strategy based on the weighted stein unbiased risk estimator. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 4449–4453. IEEE, 2018.

[3] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran. Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Łojasiewicz inequality. Mathematics of operations research, 35(2):438–457, 2010.
[4] S. D. Babacan, R. Molina, and A. K. Katsaggelos. Variational Bayesian blind deconvolution using a total variation prior. *IEEE Trans. Image Process.*, 18(1):12–26, Jan. 2009.

[5] H. H. Bauschke and P. L. Combettes. *Convex Analysis and Monotone Operator Theory in Hilbert Spaces*. Springer, New York, 2017.

[6] A. Blake and A. Zisserman. *Visual reconstruction*. MIT press, 1987.

[7] J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized minimization for nonconvex and nonsmooth problems. *Mathematical Programming*, 146(1):459–494, 2014.

[8] X. Cai and G. Steidl. Multiclass segmentation by iterated ROF thresholding. In *International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition*, pages 237–250. Springer, 2013.

[9] A. Chambolle. Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations. *SIAM Journal on Applied Mathematics*, 55(3):827–863, 1995.

[10] C. Chaux, L. Duval, A. Benazza-Benyahia, and J.-C. Pesquet. A nonlinear Stein-based estimator for multichannel image denoising. *IEEE Trans. Signal Process.*, 56(8):3855–3870, 2008.

[11] Patrick L Combettes and J.-C. Pesquet. Proximal splitting methods in signal processing. In *Fixed-point algorithms for inverse problems in science and engineering*, pages 185–212. Springer, New York, 2011.

[12] F. E. Curtis, T. Mitchell, and M. L. Overton. A BFGS-SQP method for nonsmooth, nonconvex, constrained optimization and its evaluation using relative minimization profiles. *Optim. Methods Softw.*, 32(1):148–181, 2017.

[13] C.-A. Deledalle, S. Vaiter, J. Fadili, and G. Peyré. Stein Unbiased GrAdient estimator of the Risk (SUGAR) for multiple parameter selection. 7(4):2448–2487, 2014.

[14] N. Dobigeon, J.-Y. Tourneret, and M. Davy. Joint segmentation of piecewise constant autoregressive processes by using a hierarchical model and a Bayesian sampling approach. *IEEE Trans. Signal Process.*, 55(4):1251–1263, April 2007.

[15] D. L. Donoho. Denoising by soft-thresholding. *IEEE Trans. Inform. Theory*, 41(3):613–627, May 1995.

[16] D. L. Donoho and J. M. Johnstone. Ideal spatial adaptation by wavelet shrinkage. *Biometrika*, 81(3):425–455, 1994.

[17] Y. C. Eldar. Generalized SURE for exponential families: Applications to regularization. *IEEE Trans. Signal Process.*, 57(2):471–481, 2008.

[18] M. Foare, N. Pustelnik, and L. Condat. Semi-linearized proximal alternating minimization for a discrete Mumford–Shah model. *IEEE Trans. Image Process.*, 29(1):2176–2189, 2019.
[19] J. Frecon, N. Pustelnik, N. Dobigeon, H. Wendt, and P. Abry. Bayesian Selection for the ℓ_2-Potts Model Regularization Parameter: Constant Signal Denoising. *IEEE Trans. Signal Process.*, 65(25):5215–5224, 2017.

[20] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. *IEEE Trans. Pattern Anal. Mach. Int.*, (6):721–741, 1984.

[21] A. Girard. A fast ‘Monte-Carlo cross-validation’ procedure for large least squares problems with noisy data. *Numerische Mathematik*, 56(1):1–23, 1989.

[22] G. H. Golub, Per C. Hansen, and D. P. O’Leary. Tikhonov regularization and total least squares. *SIAM journal on matrix analysis and applications*, 21(1):185–194, 1999.

[23] G. H. Golub, M. Heath, and G. Wahba. Generalized cross-validation as a method for choosing a good ridge parameter. *Technometrics*, 21(2):215–223, 1979.

[24] P. Jaccard. Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines. *Bull Soc Vaudoise Sci Nat*, 37:241–272, 1901.

[25] L. Kiefer, M. Storath, and A. Weinmann. PALMS Image Partitioning—A New Parallel Algorithm for the Piecewise Affine-Linear Mumford-Shah Model. *Image Processing On Line*, 10:124–149, 2020.

[26] Z. Marin, K. A. Batchelder, B. C. Toner, L. Guimond, E. Gerasimova-Chechkina, A. R. Harrow, A. Arneodo, and A. Khalil. Mammographic evidence of microenvironment changes in tumorous breasts. *Medical Physics*, 44(4):1324–1336, 2017.

[27] R. Molina, J. Nunez, F. J. Cortijo, and J. Mateos. Image restoration in astronomy: A Bayesian perspective. *IEEE Signal Proc. Mag.*, 18(2):11–29, March 2001.

[28] D. B. Mumford and J. Shah. Optimal approximations by piecewise smooth functions and associated variational problems. *Commun. Pure Appl. Math*, 42(5):577 – 685, 1989.

[29] N. Parikh and S. Boyd. Proximal algorithms. *Foundations and Trends® in Optimization*, 1(3):127–239, 2014.

[30] B. Pascal, N. Pustelnik, and P. Abry. Strongly convex optimization for joint fractal feature estimation and texture segmentation. *Appl. Comp. Harm. Analysis*, 54:303–322, 2021.

[31] B. Pascal, N. Pustelnik, P. Abry, Géminard J.-C., and V. Vidal. Parameter-free and fast nonlinear piecewise filtering: application to experimental physics. 75(11):655–671.

[32] B. Pascal, S. Vaïter, N. Pustelnik, and P. Abry. Automated data-driven selection of the hyperparameters for Total-Variation based texture segmentation. *J. Math. Imaging Vis.*, pages 1–30, 2021.
[33] J.-C. Pesquet, A. Benazza-Benyahia, and C. Chaux. A SURE approach for
digital signal/image deconvolution problems. IEEE Trans. Signal Process.,
57(12):4616–4632, 2009.

[34] S. Ramani, T. Blu, and M. Unser. Monte-carlo SURE: A black-box op-
timization of regularization parameters for general denoising algorithms.
IEEE Trans. Image Process., 17(9):1540–1554, 2008.

[35] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise
removal algorithms. Physica D: Nonlinear Phenomena, 60(1-4):259–268,
1992.

[36] X. Shen and J. Ye. Adaptive model selection. J. Am. Stat. Assoc.,
97(457):210–221, 2002.

[37] C. Stein. Estimation of the mean of a multivariate normal distribution.
Ann. Stat., 9(6):1135–1151, 1981.

[38] M. Stone. Cross-validation: A review. Statistics: A Journal of Theoretical
and Applied Statistics, 9(1):127–139, 1978.

[39] M. Storath, A. Weinmann, and L. Demaret. Jump-sparse and sparse re-
covery using Potts functionals. IEEE Trans. Signal Process., 62(14):3654–
3666, July 2014.

[40] A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov, and A. G. Yagola. Nu-
merical methods for the solution of ill-posed problems, volume 328. Springer
Science & Business Media, 2013.

[41] C. Vacar and J.-F. Giovannelli. Unsupervised joint deconvolution and seg-
mentation method for textured images: a Bayesian approach and an ad-
vanced sampling algorithm. EURASIP J. Adv. Signal Process., 2019(1):17,
2019.

[42] J. Ye. On measuring and correcting the effects of data mining and model
selection. J Am. Stat. Assoc., 93(441):120–131, 1998.

[43] C. Zach and C. Häne. Discretized convex relaxations for the piecewise
smooth Mumford-Shah model. In Proc. Energy Minimization Methods in
Computer Vision and Pattern Recognition, pages 548–563, 2017.