Measurement of $D^+ \to K_S^0 K^+$ and $D^+_s \to K_S^0 \pi^+$ branching ratios

E. Won, B. R. Ko, H. Aihara, K. Arinstein, V. Aulchenko, T. Aushev, A. M. Bakich, V. Balaguro, E. Barberio, A. Bay, K. Belous, V. Bhardwaj, M. Bischofberger, A. Bondar, A. Bozek, M. Bračko, T. E. Browder, P. Chang, A. Chen, P. Chen, B. G. Cheon, C.-C. Chiang, I.-S. Cho, Y. Choi, J. Dalseno, A. Das, S. Eidelman, D. Epifanov, E. Epifanov, S. Esen, N. Gabyshev, A. Garmash, B. Golob, H. Ha, J. Haba, B.-Y. Han, Y. Hasegawa, K. Hayasaka, H. Hayashii, Y. Hoshi, W.-S. Hou, C. C. Zhang, V. Balagura, E. Won, C. H. Wang, M. Bračko, L. E. Piilonen, S. Uno, H. Nakazawa, N. J. Joshi, Y.-J. Kwon, B. R. Ko, S. Stanič, J. H. Kang, H. O. Kim, J. H. Kim, S. K. Kim, Y. I. Kim, Y. J. Kim, S. McOnie, T. E. Browder, H. Aihara, M. Starič, T. Julius, C. W. Park, J. H. Kang, N. Katayama, T. Kawasaki, C. Kiesling, H. J. Kim, H. O. Kim, J. H. Kim, S. K. Kim, Y. I. Kim, Y. J. Kim, S. Korpar, P. Krokovny, T. Kumita, A. Kuzmin, Y.-J. Kwon, S.-H. Kyeong, J. S. Lange, M. J. Lee, S.-H. Lee, J. Li, C. Liu, Y. Liu, D. Liventsev, R. Louvat, F. Mandl, S. McOnie, H. Miyata, Y. Miyazaki, T. Mori, E. Nakano, M. Nakao, H. Nakazawa, Z. Natkaniec, S. Nishida, O. Nitoh, T. Olshina, S. Okuno, P. Pakhlova, G. Pakhlova, H. Palka, C. W. Park, H. Park, K. H. Park, K. S. Park, L. S. Peak, R. Pestotnik, M. Petrič, L. E. Piilonen, A. Poluektov, S. Ryu, H. Sahoo, Y. Sakai, O. Schneider, C. Schwanda, M. E. Sevior, M. Shapkin, V. Shebalin, J.-G. Shin, B. Schwartz, P. Smerkol, S. Sokolov, E. Solovieva, S. Stanič, T. Sumiyoshi, G. N. Taylor, Y. Teramoto, K. Trabelsi, S. Uehara, Y. Unno, S. Uno, P. Urquijo, Y. Usov, G. Varner, K. E. Varvell, K. Vervink, A. Vinokurova, C. H. Wang, P. Wang, Y. Watanabe, R. Wedd, B. D. Yabsley, Y. Yamashita, M. Yamauchi, C. C. Zhang, Z. P. Zhang, V. Zhilich, V. Zhulunov, T. Zivko, A. Zupanc, and O. Zyukova

(The Belle Collaboration)

1 Budker Institute of Nuclear Physics, Novosibirsk
2 University of Cincinnati, Cincinnati, Ohio 45221
3 Justus-Liebig-Universität Gießen, Gießen
4 The Graduate University for Advanced Studies, Hayama
5 Hangang University, Seoul
6 University of Hawaii, Honolulu, Hawaii 96822
7 High Energy Accelerator Research Organization (KEK), Tsukuba
8 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing
9 Institute of High Energy Physics, Vienna
10 Institute of High Energy Physics, Protvino
11 Institute for Theoretical and Experimental Physics, Moscow
12 J. Stefan Institute, Ljubljana
13 Kanagawa University, Yokohama
14 Korea University, Seoul
15 Kyungpook National University, Taegu
16 École Polytechnique Fédérale de Lausanne (EPFL), Lausanne
17 Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana
18 University of Maribor, Maribor
19 Max-Planck-Institut für Physik, München
20 University of Melbourne, School of Physics, Victoria 3010
21 Nagoya University, Nagoya
22 Nara Women’s University, Nara
23 National Central University, Chung-li
24 National United University, Miaoli
25 Department of Physics, National Taiwan University, Taipei
26 H. Niewodniczanski Institute of Nuclear Physics, Krakow
27 Nippon Dental University, Niigata
28 Niigata University, Niigata
29 University of Nova Gorica, Nova Gorica
30 Novosibirsk State University, Novosibirsk
31 Osaka City University, Osaka
32 Panjab University, Chandigarh
33 University of Science and Technology of China, Hefei
34 Seoul National University, Seoul
Decays of charmed mesons play an important role in understanding the sources of SU(3) flavor symmetry breaking. Such a breaking can originate from strong final-state interactions or interference between amplitudes with the same final state. In particular, $D^+ \to K^0\bar{K}^+$ and $D^+_s \to K^0\pi^+$ are Cabibbo-suppressed (CS) decays that involve color-favored tree, annihilation, and penguin diagrams. For D^+ decays, the branching ratio $B(D^+ \to K^0\bar{K}^+)/B(D^+ \to K^0\pi^+)$ deviates from the naive $\tan^2\theta_C$ expectation due to the destructive interference between color-favored and color-suppressed amplitudes in $D^+ \to K^0\pi^+$. However, converting experimental measurements of D decays that include K^0_S branching ratios to those involving K^0 or \bar{K}^0 is not straightforward due to the interference between the doubly Cabibbo-suppressed (DCS) and Cabibbo-favored (CF) decay modes where the interference phase is unknown. In D^+_s decays to $K^0\pi^+$ and $K^0\pi^+$ final states, the ratio of the CS decay to the corresponding CF decay may be larger than $\tan^2\theta_C$, since the tree diagram for $D^+_s \to K^0\pi^+$ is CF but color-suppressed. Precise measurements of branching ratios for CS and CF charmed meson decay modes can thus improve the understanding of the underlying dynamics of these decays. In this paper, we report improved measurements of the $D^+ \to K^0_S K^+$ and $D^+_s \to K^0_S \pi^+$ branching ratios with respect to the corresponding CF modes, $D^+ \to K^0_S \pi^+$ and $D^+_s \to K^0_S K^+$, respectively.

The results are based on a data sample of 605 fb$^{-1}$ recorded at the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB asymmetric-energy e^+e^- collider. An additional data sample with about 10% of this integrated luminosity recorded 60 MeV below the $\Upsilon(4S)$ was used for the optimization of the selection criteria (off-resonance sample). The Belle detector is a large-solid-angle magnetic spectrometer that consists of a silicon vertex detector (SVD), a 50-layer central drift chamber (CDC), an array of aerogel threshold Cherenkov counters (ACC), a barrel-like arrangement of time-of-flight scintillation counters (TOF), and an electromagnetic calorimeter comprised of CsI(Tl) crystals located inside a superconducting solenoid coil that provides a 1.5 T magnetic field. An iron flux return located outside the coil is instrumented to detect K^0_S mesons and to identify muons. The detector is described in detail elsewhere.

We report an improved measurement of $D^+ \to K^0_S K^+$ and $D^+_s \to K^0_S \pi^+$ branching ratios using 605 fb$^{-1}$ of data collected with the Belle detector at the KEKB asymmetric-energy e^+e^- collider. The measured branching ratios with respect to the Cabibbo-favored modes are $B(D^+ \to K^0_S K^+)/B(D^+ \to K^0_S \pi^+) = 0.1899\pm0.0011\pm0.0022$ and $B(D^+_s \to K^0_S \pi^+)/B(D^+_s \to K^0_S K^+) = 0.0803\pm0.0024\pm0.0019$ where the first uncertainties are statistical and the second are systematic.

PACS numbers: 13.25.Ft, 14.40.Lb, 11.30.Hv
0.1 rad for the remaining candidates.

These two sets of criteria in two different momentum ranges are implemented to maximize \(N_S / \sqrt{N_S + N_B} \), where \(N_S \) and \(N_B \) are the number of signal \(K_S^0 \)'s and the number of combinatorial background events, respectively. Finally, the \(\pi^+\pi^- \) pair forming a \(K_S^0 \) candidate is required to have an invariant mass within \(\pm 9 \text{ MeV}/c^2 \) of the nominal \(K_S^0 \) mass \cite{3}.

\(D^+ \) and \(D_s^+ \) candidates are reconstructed using a \(K_S^0 \) candidate and either a charged pion or kaon candidate. The decay vertex is formed by fitting the \(K_S^0 \) and the track to a common vertex and requiring a confidence level greater than 0.1%. In order to remove peaking backgrounds from the \(D_{s}^{+}(s) \to \pi^{+}\pi^{+}\pi^{-} \) and \(K^{0}\pi^{+}\pi^{-} \) decay modes, we compute the reduced \(\chi^2 \) of the vertex assuming that two pions from the \(K_S^0 \) and the charm daughter track arise from a single vertex. We require the reduced \(\chi^2 \) to be greater than 10.

To remove \(D^+ \) and \(D_s^+ \) mesons produced in \(B \) meson decays, we require the charmed meson momentum calculated in the center-of-mass frame to be greater than 2.6 GeV/c. At this stage, reconstruction efficiencies are 16.6% for the \(D^+ \) and 18.0% for the \(D_s^+ \) in the \(K_S^0 K^+ \) final state, and 20.6% for the \(D^+ \) and 22.4% for the \(D_s^+ \) in the \(K_S^0 \pi^+ \) final state.

Highly asymmetrical \(K_S^0 h^+ \) pairs that have invariant mass close to the \(D_{s}^{+}(s) \) mass region are more likely to be background than signal. The asymmetry, \(A \equiv |p_{K_S^0} - p_{h^+}| / |p_{K_S^0} + p_{h^+}| \), where each momenta is calculated in the laboratory frame and \(h^+ \) refers to either a \(K^+ \) or \(\pi^+ \), is used to reject background candidates. The \(A \) requirement is optimized in both CS modes by maximizing \(N_S / \sigma_N \), where \(N_S \) is the signal yield and \(\sigma_N \) is the statistical uncertainty in \(N_S \) from the fit to the off-resonance data sample. The asymmetry is required to be less than 0.6 for both decay modes. After this final requirement, we find 10% and 35% improvements in \(N_S / \sigma_N \) for CS decay modes of the \(D^+ \) and \(D_s^+ \), respectively.

Since there are differences in the mass distributions between the data and Monte Carlo (MC) simulated samples, we tune the large MC samples of generic continuum and \(B \bar{B} \) decays, intended mainly for the accurate parameterization of the peaking background under the signal. This background is a consequence of particle misidentification and will be discussed in more detail later. The tuning procedure is as follows: the \(\pi^+ \) \((K^+)\) momentum scale and resolution are tuned with the \(D^0 \to \pi^+\pi^- \) data sample. For the \(K_S^0 \) momentum scale and resolution tuning, the \(D^+ \to K_S^0 \pi^+ \) data sample is used. The tuning method is validated by comparing simulated and real data in the \(K_S^0 K^+ \) final state. The four signal decay modes are simulated and results of the tuning are also applied to them.

In the branching ratio measurements, there is a peaking background due to particle misidentification. In the \(D_{s}^{+}(s) \to K_S^0 K^+ \) mass region, there is a peaking structure from \(D^+ \to K_S^0 \pi^+ \) decays when a \(\pi^+ \) is misidentified as a \(K^+ \). A similar peaking structure in the \(D^+ \to K_S^0 \pi^+ \) mass region appears due to misidentification in \(D_s^+ \to K_S^0 K^+ \) decays. The shapes and the yields of these peaking backgrounds are obtained from the tuned simulation samples and are used as the probability density functions (PDF) for the peaking backgrounds. The simulated shape and normalization of the peaking backgrounds are checked by comparing the invariant mass distributions of selected \(K_S^0 K^+ \) \((K_S^0 \pi^+)\) pairs with the \(K^+ \) \((\pi^+)\) mass assignment changed to a \(\pi^+ \) \((K^+)\) mass assignment. The comparison shows that the simulated peaking background of the tuned sample correctly describes these components and that misidentification is indeed the only contribution above the structureless combinatorial background. Uncertainties in the misidentification probabilities are considered as a source of systematic uncertainty.

The \(\Delta \) between \(K_S^0 K^+ \) and \(K_S^0 \pi^+ \) invariant mass distributions after the final selections are shown in Figs. 1 and 2 together with the signal and background parameterizations. Clear signals for CF and CS decays are observed in both distributions. The \(\Delta \) invariant mass distributions are fitted using a binned maximum likelihood method. In all cases the signal PDF is parameterized using two Gaussians with a common mean value. For \(D_{s}^{+}(s) \to K_S^0 \pi^+ \), we fix the ratio of widths and the fractional yields in the two Gaussians because of the low statistics. The values of the ratio and the fraction of the broader Gaussian are obtained from the fit to the \(D^+ \to K_S^0 \pi^+ \) mode and are consistent with the results of fits to MC simulated signal. The reduced \(\chi^2 \) values of the fits are 1.8 and 2.3 for the \(K_S^0 K^+ \) and \(K_S^0 \pi^+ \) final states, respectively. The normalization of the mass distributions of the misidentified \(K/\pi \) backgrounds are fixed to the values obtained from tuned simulation samples. Combinatorial background PDFs are parameterized using second and first-order polynomials for the \(K_S^0 K^+ \) and \(K_S^0 \pi^+ \) final states, respectively. All the fit parameters are allowed to float except for the \(D_s^+ \to K_S^0 \pi^+ \) signal PDF parameters and the yield and the normalization of the misidentified backgrounds. Table II summarizes the extracted signal yields from the fits to data and corresponding signal efficiencies from the simulated signal samples where final-state radiation has been included \cite{10}.

Decay modes	Yields	\(\epsilon \) (%)
\(D^+ \to K_S^0 K^+ \)	100855±561	12.59±0.01
\(D_s^+ \to K_S^0 K^+ \)	204093±768	13.53±0.01
\(D^+ \to K_S^0 \pi^+ \)	566285±1162	14.19±0.01
\(D_s^+ \to K_S^0 \pi^+ \)	17583±481	15.35±0.01

Various contributions to the systematic uncertainties for the branching ratio measurements are summarized in Table II. Several sources of systematic uncertainty are re-
Results of the fits described in the text. Signal, background, and random combinatorial background components are also shown.

FIG. 2: Invariant mass distribution of selected $K^0_S K^+$ pairs. Points with error bars show the data and histograms show the results of the fits described in the text. Signal, $D^+ \rightarrow K^0_S \pi^+$ background, and random combinatorial background components are also shown. The inset is an enlarged view of the D^+_s region.

With the signal efficiencies and the corrections due to particle identification efficiency differences, we find the

Source	$\sigma_R(D^+)$ (%)	$\sigma_R(D^+_s)$ (%)
PID	0.90	0.90
Fit methods	0.74	2.00
Peaking background	0.16	0.62
D^+_s signal PDF	-	0.37
Total	1.18	2.31
branching ratios to be

\[
R(D^+) = \frac{B(D^+ \to K_S^0 K^+)}{B(D^+ \to K_S^0 \pi^+)} = 0.1899 \pm 0.0011 \pm 0.0022,
\]

\[
R(D_s^+) = \frac{B(D_s^+ \to K_S^0 K^+)}{B(D_s^+ \to K_S^0 \pi^+)} = 0.0803 \pm 0.0024 \pm 0.0019
\]

where the first uncertainties are statistical and the second are systematic. These are the most precise measurements to date and are compared to the present world average values in Table III. Our measurement of \(R(D^+)\) is in good agreement with previous measurements \(^3\) and is larger than the naive expectation of \(\tan^2 \theta_C\), consistent with the expected destructive interference effect mentioned earlier. For \(D_s^+\) decays, there is no such interference and \(R(D_s^+)\) is found to be greater than \(\tan^2 \theta_C\) by more than eight standard deviations, consistent with previous measurements \(^3\). This large deviation may be due to the color-suppression of the main \(D_s^+ \to K_S^0 K^+\) amplitude.

Branching ratio	Belle exp.	World-average \(^3\)
\(R(D^+)\)	(19.0±0.2)%	(20.6±1.4)%
\(R(D_s^+)\)	(8.0±0.3)%	(8.4±0.9)%

To conclude, using 605 fb\(^{-1}\) of data collected with the Belle detector at the KEKB asymmetric-energy \(e^+e^-\) collider we have measured the \(D^+ \to K_S^0 K^+\) and \(D_s^+ \to K_S^0 \pi^+\) branching ratios with respect to the corresponding Cabibbo-favored modes. The results are \(B(D^+ \to K_S^0 K^+)/B(D^+ \to K_S^0 \pi^+) = 0.1899\pm0.0011\pm0.0022\) and \(B(D_s^+ \to K_S^0 \pi^+)/B(D_s^+ \to K_S^0 K^+) = 0.0803\pm0.0024\pm0.0019\), where the first uncertainties are statistical and the second are systematic. Using the world average values of CF decay rates \(^3\), we obtain the branching fractions \(B(D^+ \to K_S^0 K^+) = (2.75\pm0.08)\times\times 10^{-3}\) and \(B(D_s^+ \to K_S^0 \pi^+) = (1.20\pm0.09)\times\times 10^{-3}\) where the uncertainties are the sum in quadrature of statistical and systematic errors. These are consistent with the present world averages \(^3\) and are the most precise measurements to date. The ratio \(B(D^+ \to K_S^0 K^+)/B(D_s^+ \to K_S^0 \pi^+) = 2.29\pm0.18\) may be due to SU(3) flavor breaking and/or different final-state interactions in \(D^+\) and \(D_s^+\) decays.

We thank the KEKB group for the excellent operation of the accelerator, the KEK cryogenics group for the efficient operation of the solenoid, and the KEK computer group and the National Institute of Informatics for valuable computing and SINET3 network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council and the Australian Department of Industry, Innovation, Science and Research; the National Natural Science Foundation of China under contract No. 10575109, 10775142, 10875115 and 10825524; the Department of Science and Technology of India; the BK21 and WCU program of the Ministry Education Science and Technology, the CHEP SRC program and Basic Research program (grant No. R01-2008-000-10477-0) of the Korea Science and Engineering Foundation, Korea Research Foundation (KRF-2008-313-C00177), and the Korea Institute of Science and Technology Information; the Polish Ministry of Science and Higher Education; the Ministry of Education and Science of the Russian Federation and the Russian Federal Agency for Atomic Energy; the Slovenian Research Agency; the Swiss National Science Foundation; the National Science Council and the Ministry of Education of Taiwan; and the U.S. Department of Energy. This work is supported by a Grant-in-Aid from MEXT for Science Research in a Priority Area (“New Development of Flavor Physics”), and from JSPS for Creative Scientific Research (“Evolution of Tau-lepton Physics”).

[1] B. Bhattacharya and J. L. Rosner, Phys. Rev. D 77, 114020 (2008).
[2] Throughout this paper, the inclusion of the charge-conjugate decay mode is implied unless otherwise stated.
[3] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008).
[4] B. Guberina, S. Nussinov, R. D. Peccei and R. Rückl, Phys. Lett. 89B, 111 (1979).
[5] I. I. Bigi and H. Yamamoto, Phys. Lett. B 349, 363 (1995).
[6] M. Bishai et al., (CLEO Collab.), Phys. Rev. Lett. 78, 3261 (1997).
[7] S. Kurokawa and E. Kikutani, Nucl. Instr. and Meth. A 499, 1 (2003), and other papers included in this volume.
[8] A. Abashian et al. (Belle Collab.), Nucl. Instr. and Meth. A 479, 117 (2002).
[9] \(e^+e^- \to \pi^+\pi^-\) events are generated with PYTHIA (T. Sjöstrand et al., Comput. Phys. Commun. 135, 238 (2001)) and decay with EvtGen [http://www.slac.stanford.edu/~lange/EvtGen] the detector response is simulated with GEANT 3.21 (R. Brun et al., CERN Report No. DD/EE/84-1, (1984)).
[10] E. Richter-Was, Phys. Lett. B 303, 163 (1993).