Indomethacin Suppresses the Growth of Colon 26, Meth-A and FM3A Tumors in Mice by Reducing the Prostaglandin E2 Content and Telomerase Activity in Tumor Tissues

Mitsuharu Ogino,1, 2 Hisashi Hisatomi,3 Minoru Murata4 and Makoto Hanazono2

1Department of Obstetrics and Gynecology, 2The Clinical Research Center, Teikyo University School of Medicine, Ichihara Hospital, 3426-3 Anesaki, Ichihara, Chiba 299-0111, 3Center for Molecular Biology and Cytogenetics, SRL, Inc., 5-6-50 Shinmachi, Hino, Tokyo 191-0002 and 4Tsukuba ARL, 888 Nakonodai, Koke, Amimachi, Inashiki-gun, Ibaraki 300-1157

The antitumor effect of indomethacin on Colon 26, Meth-A and FM3A tumors was investigated in mice. The prostaglandin E2 content in tumor tissues was assayed to find out if indomethacin acts on tumors, and the telomerase activity in tumors and somatic tissues (testis, liver, spleen and colon) was also monitored during indomethacin treatment. Growth of Colon 26, Meth-A and FM3A tumors was significantly (P<<<< 0.001–0.05) suppressed by indomethacin compared to the untreated controls. The prostaglandin E2 content in the three tumors was markedly (P<<<< 0.001) reduced by indomethacin. Telomerase activity in Colon 26 and FM3A tumors was significantly (P<<<< 0.001) lower than that of untreated tumors (80% and 45% decrease versus the controls, respectively), and the activity in Meth-A tumor was slightly decreased (10% decrease versus the control) by indomethacin. Telomerase activity in the somatic tissues was not significantly affected by indomethacin. In summary, this study shows the effectiveness of indomethacin as an antitumor agent against three types of tumors, and suggests that indomethacin affects telomerase activity in tumors in vivo.

Key words: Indomethacin — Prostaglandin E2 — Telomerase activity — Fluorescence-based telomeric repeat amplification protocol

The antitumor effect of indomethacin on tumors in cancer patients1, 2) and in animals3, 4) has been described. We previously showed that indomethacin suppresses the growth of Colon 26 tumor in mice by enhancing the cellular immune function and improving cancer cachexia.5) Indomethacin does not have a cytotoxic effect on Colon 26 tumor cells in vitro,5) but it may have an antitumor effect via immunological pathways. We previously reported that indomethacin treatment of tumors reduces tumor size less in nude mice (deficient in T-lymphocytes) than in normal mice, compared with untreated tumors.6) Although these results indicate that the effectiveness of indomethacin as an antitumor agent is, at least in part, due to its modulation of T-cell-mediated immune functions, the precise mechanism of tumor growth suppression by indomethacin remains unknown.

Recent studies have shown that many proliferating tumor cells retain a certain level of telomerase activity.7–9) We previously reported that tumor growth in Colon 26-bearing mice is significantly suppressed by indomethacin treatment compared with the untreated controls, and that the telomerase activity declines preferentially in tumor tissues, while telomerase activity in somatic tissues is not significantly affected by indomethacin treatment.10) More recently, Kido et al.11) reported that tumor size reduction by cisplatin treatment correlates with a decline in telomerase activity in tumor tissues.

In this study, we transplanted Colon 26, Meth-A and FM3A tumors into normal mice to assess if the effect of indomethacin is independent of tumor cell type. Prostaglandin E2 synthesis is inhibited by indomethacin, and therefore we measured the prostaglandin E2 content in tumors to confirm the effect of indomethacin on the tumor tissues. We examined the relationship between tumor growth and telomerase activity in tumor tissues, and whether the extent of tumor growth suppression correlates with a decline in telomerase activity in the tumors examined.

MATERIALS AND METHODS

Cell lines, host and tumor transplantation Colon 26 (murine colon tumor), Meth-A (murine fibrosarcoma) and FM3A (murine breast tumor) cell lines were kindly donated by Kyowa Hakko, Tokyo. A cell suspension containing 2.5×10⁶ cells of each line in physiological saline (0.025 ml) was transplanted into the right hind foot pads (day 0) of experimental mice. Colon 26 tumor was transplanted into 6-week-old male CDF₁ mice (Charles River,
Effect of Indomethacin on Tumor Growth

Kanagawa); Meth-A tumor was transplanted into 6-week-old male BALB/c mice (Charles River); and FM3A tumor was transplanted into 6-week-old male C3H/He mice (Charles River). All the mice were cared for according to international standards (EU and NIH criteria).

Drug preparation and administration Indomethacin crystals (Sigma, St. Louis, MO) were mixed with a 0.5% carboxymethylcellulose (CMC; Sigma) solution and the mixture was adjusted to 1.0 mg/kg body weight/0.2 ml of 0.5% CMC. The mice were divided into two groups for each tumor cell line: an untreated control group and a group treated with indomethacin. Indomethacin in CMC solution was given by oral gavage for two weeks from day 7 to the tumor-bearing mice at a dose of 1.0 mg/kg body weight twice a day (total dose: 2.0 mg/kg body weight per day), and 0.2 ml of 0.5% CMC solution without indomethacin was given by oral gavage to the untreated control tumor-bearing mice in the same way. Both untreated control and indomethacin-treated groups consisted of seven randomly assigned mice for each tumor. All mice were given a standard diet and tap water freely.

In vitro cytotoxicity of indomethacin on three tumor cell lines In an *in vitro* study, we evaluated the IC₅₀ of indomethacin in the three tumor cell lines using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT; Sigma) assay, as reported by Ogino and Hanazono,¹² using a slight modification of the method reported by Mosmann.¹³

Measurement of tumor weight In a preliminary study, we first assessed the correlation between tumor weight and estimated tumor volume (TV). Tumor weight (a: cm) and tumor width (b: cm) were measured externally at random times after tumor transplantation, and the TV was calculated as \(a^2b/2\). Then, the mice were deeply anesthetized with an excessive dose of pentobarbital and killed. Both right (A: with a tumor) and left (B: tumor-free) hind foot pads were dissected and weighed. The difference between the right (A: with a tumor) and left (B: tumor-free) hind foot pads was weighed and recorded. The difference between A and B was taken as the tumor weight (TW), which was calculated by the formula: \(TW = 0.8266 TV + 0.4135 (g)\), as reported by Ogino et al.⁵ In this way, tumor weight was measured at 2- or 3-day intervals from day 7 in both untreated and indomethacin-treated mice for each tumor. The results were expressed as the mean ± SEM. The experiment was stopped on day 21, when the mean tumor weight in the untreated control mice reached approximately 15% of the body weight of normal mice of the same age. On day 21 (9 weeks of age), all mice in each group were killed by cervical dislocation, and the tumors, testes, liver, spleen, colon and other somatic tissues were dissected. Similarly, tumor-free 9-week-old male CDF₁ mice (n=5), BALB/c mice (n=5) and C3H/He mice (n=5) were killed by cervical dislocation, and the testes, liver, spleen, colon and other somatic tissues were dissected. The tumor tissues and somatic tissues obtained were immediately frozen in liquid nitrogen, and were stored at −85°C until required for analysis of the telomerase activity.

Measurement of prostaglandin E₂ content in the tumor tissues Some fragments of the tumor tissues were cut from the whole tumor and were thoroughly rinsed in physiological saline containing ethylenediaminetetraacetic acid (Sigma, 10 mM) and indomethacin (Sigma, 0.1 mM). Then they were immediately frozen in liquid nitrogen, and stored at −85°C until required for measurement of the prostaglandin E₂ content in the tumor tissues. The tumor tissues were homogenized in ethanol, and mixed by vortexing, then the prostaglandins were extracted. The extract was subjected to silicic acid column chromatography (0.6 g, 100 mesh; Mallinkrodt Baker, Phillipsburg, NJ) to separate prostaglandin E₂, as reported by Ogino et al.¹⁰ An aliquot of eluates in the prostaglandin E₂ fraction was used to measure prostaglandin E₂, using a standard radioimmunoassay kit (DuPont-New England Nuclear, Boston, MA). The results were expressed both as the mean pg/mg wet weight±SEM and the mean pg/mg protein±SEM (n=5). The tissue protein was determined by Lowry’s method.¹⁴

Detection and measurement of telomerase activity The telomerase activity was detected and measured using a semi-quantitative, fluorescence-based telomeric repeat amplification protocol method (F-TRAP) with a “TRAP-eze” Telomerase Detection Kit (ONCOR®, Gaithersburg, MD), as reported by Hisatomi et al.¹⁶ The tumor tissues and other somatic tissues (50 mg wet weight of each tissue) and the testes (the whole tissues) were briefly homogenized in 200 µl of ice-chilled CHAPS Lysis Buffer (TRAP-eze) and incubated for 30 min on ice. After incubation, the lysates were centrifuged at 12,000g for 20 min at 4°C. The supernatants were rapidly frozen and kept at −85°C. The protein concentration in the tissue samples was determined using “Coomassie” Protein Assay Reagent (Pierce, Rockford, IL), and an aliquot of extract containing 1.0 µg of protein was used as an enzyme source for each TRAP assay according to the manufacturer’s instructions. Aliquots of the extract were incubated with 0.1 ng of Cy-5 labeled TS primer (5’-AATCCGTCGAGCAGAGTT-3’) in Master Mix (TRAP-eze). After a 30 min incubation at 30°C, polymerase chain reaction (PCR) was run at 94°C/30 s, 60°C/30 s and 72°C/45 s for 30 cycles. An external control (TSR8: TRAP-eze) was used as a positive control and CHAPS Lysis Buffer (TRAP-eze) was used as a negative control. The products were diluted with an equal volume of formamide dye solution and heated for 5 min at 94°C. Then they were applied (5 µl/lane) to a 10% denaturing gel containing 6 M urea in an automated DNA sequencer (ALF red DNA sequencer: Amersham Pharmacia Biotech, Buckinghamshire, UK). During electrophoresis at 45 W, the temperature of the gel was kept at 45°C.
The data obtained from the sequencer were collected and automatically analyzed using Allele Links software (Amersham Pharmacia Biotech). The area of the peak of each hexanucleotide pattern was quantified. The telomerase activity was calculated by using the following formula according to the manufacturer’s instructions:

\[\text{TPG (total product generated) units} = \frac{A \times B - 1}{C - D - 1} \times 100 \]

where,
- \(A \): measured total area of telomerase activity (50, 56, 62, 68 bp...)
- \(B \): measured area of the internal control (36 bp)
- \(C \): measured total area of telomerase activity (50, 56, 62, 68 bp...) in the external control
- \(D \): measured area of the internal control (36 bp) in the external control

The results were expressed as the mean TPG units/µg protein ± SEM.

Statistical analysis
Statistical analysis was made using a two-tailed \(t \)-test. A difference was considered statistically significant when the \(P \) value was less than 0.05.

RESULTS

Tumor growth
Tumor growth of Colon 26 in CDF1 mice treated with indomethacin was significantly reduced from day 15 \((P<0.001–0.01 \text{ vs. controls; Fig. 1A})\). The mean tumor weight was suppressed by indomethacin treatment, i.e. a maximal 55% reduction versus the control. Tumor growth of Meth-A in BALB/c mice treated with indomethacin was significantly reduced from day 10 \((P<0.001–0.05 \text{ vs. controls; Fig. 1B})\). The mean tumor weight was suppressed by indomethacin treatment, i.e. a maximal 35% reduction versus the control. Tumor growth of FM3A in C3H/He mice treated with indomethacin was significantly reduced from day 10 \((P<0.001–0.01 \text{ vs. control; Fig. 1C})\). The mean tumor weight was suppressed by indomethacin treatment, i.e. a maximal 40% reduction versus the control.

IC\(_{50}\) of indomethacin in three tumor cell lines
The \(\text{IC}_{50} \) of indomethacin in Colon 26 tumor was 93.4 ± 1.6 (the mean µg/ml ± SEM of five different experiments each done in duplicate), but the \(\text{IC}_{50} \) of indomethacin in Meth-A and FM3A tumors was higher than 100 µg/ml.

Prostaglandin E\(_2\) content in the tumor tissues
The tissue content of prostaglandin E\(_2\) was markedly and significantly \((P<0.001 \text{ vs. controls})\) reduced in Colon 26, Meth-A and FM3A tumors treated with indomethacin, i.e. an approximately 90% reduction versus the untreated controls (Table I).

Telomerase activity
The telomerase activity in Colon 26 tumor tissues was significantly decreased \((P<0.001 \text{ vs. control})\) by indomethacin treatment compared with the untreated controls (Table II), i.e., an approximately 80% decrease. The number and peak area of TRAP products in a typical electrophoresis pattern were decreased by indomethacin treatment (lane 2 in Fig. 2a) compared with the untreated control (lane 1 in Fig. 2a). Meth-A tumor tissues expressed less telomerase activity than the cancer.
Table I. Prostaglandin E\(_2\) Content in the Tumor Tissues

Tumor Type	Untreated Control	Indomethacin-Treated
Colon 26	48.1±2.6 pg/mg wet weight	456.6±21.1 pg/mg protein
Meth-A	259.3±12.8 pg/mg wet weight	1853.8±39.8 pg/mg protein
FM3A	662.7±21.4 pg/mg wet weight	4465.0±159.1 pg/mg protein

Data are the mean pg/mg wet weight and pg/mg protein±SEM values. Prostaglandin E\(_2\) content in the tumor tissues was significantly (\(P<0.001\)) reduced by indomethacin treatment compared with the untreated controls.

Table II. Telomerase Activity in the Tumor Tissues

Tumor Type	Untreated Control	Indomethacin-Treated
Colon 26	176.58±2.31\(a\)	98.14±10.66\(b\)
Meth-A	34.21±0.95\(c\)	88.04±7.53\(b\)
FM3A	114.56±8.86\(c\)	114.56±8.86\(b\)

Data are the mean TPG units/µg protein±SEM values.
\(a\) \(P<0.001\), \(b\) no significant difference: telomerase activity in the untreated control tumors vs. the indomethacin-treated tumors.

Fig. 2. Typical electrophoresis pattern of TRAP products scanned by an ALF red DNA sequencer in (a) Colon 26 tumor in CDF\(_1\) mice; (b) Meth-A tumor in BALB/c mice; and (c) FM3A tumor in C3H/He mice. The first peak is a Cy-5 labeled TS primer. The second peak is an internal control (IC: 36 bp ITAS). The PCR products of the telomerase extension yielded successive hexanucleotide peaks (50, 56, 62, 68, 74 bp ...) from the third peak (50 bp), which is the first amplifiable product. From the top downwards: positive control (TSR 8); negative control (CHAPS Lysis buffer); lane 1, tumor in the untreated control mice; lane 2, tumor treated with indomethacin.

In both CDF\(_1\) and BALB/c mice, telomerase activity was detected in the testis, liver and colon (Table III), but not in the spleen. However, telomerase activity was detected in the spleen in C3H/He mice (Table III). In both the tumor-free group and the group with tumors of the three mouse strains, telomerase activity was also detected in other somatic tissues, but at much lower levels (data not shown). Although the basal levels of telomerase activity in the somatic tissues varied among the mouse strains, the
telomerase activity in the somatic tissues of the untreated control mice with tumor, mice with tumor treated with indomethacin and mice without tumor showed no significant differences.

DISCUSSION

In this study, we observed that indomethacin treatment suppressed the growth of all tumors examined. We compared the inhibitory effect of indomethacin on tumor growth with the reported inhibitory effects of other chemotherapeutic agents: the maximal reduction of 55% in Colon-26 tumor size of our study is comparable with the antitumor effect of cisplatin, as well as the antitumor effect of 5-fluorouracil alone in Meth-A tumor-bearing mice, and the maximal tumor size reduction of 40% in the FM3A tumor in our study is comparable with the antitumor effect of cisplatin, as well as the antitumor effect of bleomycin or UFT (a fluorouracil compound) alone. However, in our *in vitro* study, the concentration equivalent to the achievable maximal plasma concentration (MPC), which is a little higher than 1.0 µg/ml, did not show a cytotoxic effect on Colon 26, Meth-A and FM3A tumor cells, as judged from the IC₅₀ values of indomethacin in these tumor cells using MTT assay. The IC₅₀ values of indomethacin in the three types of tumor cells were about 100-fold higher than the MPC *in vivo*. Maca reported a similar disparity of the effect of indomethacin between *in vitro* and *in vivo* studies on Lewis lung carcinoma transplanted into normal, nude and beige mice. We conclude that indomethacin treatment *in vitro* does not directly inhibit tumor growth, irrespective of the tumor type or mouse strain used.

Prostaglandin E₂, which was produced by all tumors examined, regulates cytokine production in inflammatory cells and modifies cellular immune responses, an exogenously added prostaglandin E₂ analogue (16,16-dimethylprostaglandin E₂ methyl ester) is a general immunosuppressant *in vivo*. Therefore, the effect of indomethacin on the tumor tissues is, at least in part, due to the inhibition of the increased formation of immunosuppressing prostaglandin E₂. We also showed that prolonged treatment with indomethacin resulted in a marked reduction of prostaglandin E₂ production in the three types of tumors. This study suggests the involvement of prostaglandin E₂ in enhancing tumor cell proliferation as a bioactive modulator in addition to its immunosuppressing effect, as suggested in previous reports.

Telomerase activity is an *in vitro* marker of the cytotoxicity of chemotherapeutic agents, and telomerase activity positively correlates with the growth of tumors treated by cisplatin *in vivo*. In this study, we showed that a decline in telomerase activity might correlate with tumor size reduction by indomethacin treatment *in vivo*, because the order of the maximal tumor size reduction (Colon 26 (55%) > FM3A (40%) > Meth-A (35%)) agreed with the order of mean inhibition of telomerase activity (Colon 26 (80%) > FM3A (45%) > Meth-A (10%)). However, indomethacin treatment did not significantly decrease the telomerase activity in Meth-A tumor despite its significant suppressive effect on tumor growth. This effect of indomethacin treatment on telomerase activity in tumor tissues *in vivo* has not been reported before. In addition, the fact that telomerase activity in the testis, liver, spleen and colon was not significantly affected by indomethacin treatment is of great interest. These results suggest that indomethacin does not directly inhibit telomerase activity.

From these findings, we hypothesize that the decline in telomerase activity in tumors treated with indomethacin *in vivo* involves the following mechanisms: a decrease of vascular permeability by inhibition of the local production

| Table III. Telomerase Activity in the Somatic Tissues for Each Mouse Strain |

Tumor Type	Testis	Liver	Spleen	Colon	
Colon 26	Indomethacin-treated mice (n=7)	91.97±3.24	49.16±0.75	ND	31.00±1.28
	Tumor non-bearing mice (CDF; n=5)	84.93±1.15	48.15±0.56	ND	32.76±1.38
Meth-A	Untreated control mice (n=7)	132.75±4.19	48.53±2.90	ND	33.68±3.41
	Indomethacin-treated mice (n=7)	122.75±9.26	47.84±3.86	ND	34.18±3.38
FM3A	Untreated control mice (n=7)	35.17±3.10	56.46±1.50	39.23±5.54	31.00±1.82
	Indomethacin-treated mice (n=7)	29.33±2.50	53.68±1.15	41.36±3.96	28.71±3.97
	Tumor non-bearing mice (C3H/He; n=5)	33.94±4.18	56.40±3.96	42.80±5.62	32.67±1.83
	Data are the mean TPG units/µg protein±SEM values. ND; not detected. No significant differences among the untreated control mice, indomethacin-treated mice and mice without tumors in the somatic tissues for each mouse strain.				
of prostaglandin E₂, which is generated in tumors and in inflammatory cells, leading to suppression of tumor growth through a decrease of nutrition; secondly, an enhancement of immune response via inhibition of increased formation of immunosuppressing prostaglandin E₂.

Although we did not find a definite relationship between the extent of tumor growth reduction and the preferential decline in telomerase activity in tumor tissues by indomethacin treatment, we confirmed the effectiveness of indomethacin as an antitumor agent for three types of murine malignant tumors. Indomethacin also reduces the formation of immunosuppressing prostaglandin E₂. We preferential decline in telomerase activity in tumor tissues between the extent of tumor growth reduction and the presence of prostaglandin E₂, which is generated in tumors and in inflammatory cells, leading to suppression of tumor growth through a decrease of nutrition; secondly, an enhancement of immune response via inhibition of increased formation of immunosuppressing prostaglandin E₂.

REFERENCES

1) Cross, D. S., Platt, J. L., Juhn, S. K., Bach, F. H. and Adams, G. L. Administration of a prostaglandin synthetase inhibitor associated with an increased immune cell infiltrate in squamous cell carcinoma of the head and neck. Arch. Otolaryngol. Head Neck Surg., 118, 526–528 (1992).

2) Maca, R. D., Burford, J. G. and Taylor, R. T. The effects of indomethacin and interleukin-2 on the proliferation of lymphocytes from patients with lung cancer. J. Clin. Immunol., 5, 158–165 (1985).

3) Blitzer, A. and Huang, C. C. The effect of indomethacin on the growth of epidermoid carcinoma of the palate in rats. Arch. Otolaryngol., 109, 719–723 (1983).

4) Sato, M., Narisawa, T., Sano, T., Takahashi, T. and Goto, A. Growth inhibition of transplantable murine colon adenocarcinoma 38 by indomethacin. J. Cancer Res. Clin. Oncol., 106, 21–26 (1983).

5) Ogino, M. and Hanazono, M. Indomethacin acts as an antitumor and anticachexic agent in Colon 26 bearing CDF₁ mice. Int. J. Clin. Oncol., 3, 176–181 (1998).

6) Ogino, M., Hisatomi, H. and Hanazono, M. Effectiveness of indomethacin as an antitumor agent in Colon 26-bearing conventional and nude mice, and telomerase activity in the tumors. Exp. Anim., 48, 15–21 (1999).

7) Mozyris, R. K., Buckingham, J. M., Cram, L. S., Dani, M., Deaven, J. L., Jones, M. D., Meyne, J., Ratliff, R. L. and Wu, J. R. A highly conserved repetitive DNA sequence, (TTAGGG)ₙ, present at the telomeres of human chromosomes. Proc. Natl. Acad. Sci. USA, 85, 6622–6626 (1988).

8) Counter, C. M., Avillion, A. A., LeFeuvre, C. E., Stewart, N. G., Greider, C. W., Harley, C. B. and Bacchetti, S. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J., 11, 1921–1929 (1992).

9) Hiyama, E., Yokoyama, T., Tatsutomo, N., Hiyama, K., Imamura, Y., Murakami, Y., Kodama, T., Piatyszek, M. A., Shay, J. W. and Matsuura, Y. Telomerase activity in gastric cancer. Cancer Res., 55, 3258–3262 (1995).

10) Ogino, M., Hisatomi, H. and Hanazono, M. Antitumor effect of indomethacin and telomerase activity in the tumor in Colon 26 bearing CDF₁ mice. Proc. Jpn. Acad., 73(Ser. B), 150–153 (1997).

11) Kido, A., Tsujiuchi, T., Morishita, T., Tsutsui, M., Takahama, M., Miyauchi, Y., Mii, Y., Tamai, S. and Konishi, Y. Telomerase activity correlates with growth of transplantable osteosarcomas in rats treated with cis-diammine dichloroplatinum or the angiogenesis inhibitor AGM-1470. Jpn. J. Cancer Res., 89, 1074–1081 (1998).

12) Ogino, M. and Hanazono, M. Indomethacin preferentially augments 5-fluorouracil cytotoxicity in Colon 26 tumors by increasing the intracellular inflow of 5-fluorouracil. Int. J. Clin. Oncol., 4, 22–25 (1999).

13) Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 65, 55–63 (1984).

14) Ogino, M., Abe, Y., Okahara, T. and Jimbo, T. Comparison of plasma prostanoid levels in the human cord artery in normal and fetal distressed deliveries. Endocrinol. Jpn., 33, 75–80 (1986).

15) Lowry, O. H., Rosebrough, N. H., Farr, A. L. and Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193, 265–275 (1951).

16) Hisatomi, H., Nagao, K. and Komatsu, H. Quantification of telomerase activity in human liver tissues by fluorescence-based TRAP analysis. Hepatol. Res., 7, 36–42 (1997).

17) Van Laar, J. A., Rustum, Y. M., Van der Wilt, C. L., Smid, K., Kuiper, C. M., Pinedo, H. M. and Peters, G. J. Tumor size and origin determine the antitumor activity of cisplatin or 5-fluorouracil in murine colon carcinoma. Cancer Chemother. Pharmacol., 39, 79–89 (1996).
18) Ogino, M. Indomethacin augmented antitumor activity of 5-fluorouracil in Meth-A induced mice. *Int. J. Clin. Oncol.*, 1, 75–79 (1996).

19) Yamashita, Y., Hirai, T., Mukaida, H., Iwata, T., Tetsuya, Y. and Hoon, H. J. A new experimental trial using heating every 24 hours for local hyperthermia therapy with bleomycin in vivo. *Jpn. J. Surg.*, 20, 671–676 (1990).

20) Ohkubo, M. Changes of 31P-MR spectroscopy in experimental tumors following radiotherapy combined with 5-fluorouracil compound (UFT). *Tohoku J. Exp. Med.*, 169, 215–223 (1993).

21) Alván, G., Orme, M., Bertilsson, L., Ekstrand, R. and Palmer, L. Pharmacokinetics of indomethacin. *Clin. Pharmacol. Ther.*, 18, 364–373 (1975).

22) Maca, R. D. Inhibition of the growth of Lewis lung carcinoma by indomethacin in conventional, nude, and beige mice. *J. Biol. Response Mod.*, 7, 568–580 (1988).

23) Chouaib, S., Chatenoud, L., Klatzmann, D. and Fradelizi, D. The mechanism of inhibition of human IL-2 production. II. PGE2 induction of suppressor T lymphocytes. *J. Immunol.*, 132, 1851–1857 (1984).

24) Mori, H., Hanabayashi, T., Yamada, Y. and Tamaya, T. Decrease in interferone-γ production by peripheral blood mononuclear cells in patients with uterine cervical cancer. *J. Clin. Immunol.*, 10, 45–51 (1990).

25) Baxevanis, C. N., Recols, G. J., Gritzapis, A. D., Zedouiss, G. V. Z., Missitzis, I. and Papamichail, M. Elevated prostaglandin E2 production by monocytes is responsible for the depressed levels of natural killer and lymphokine-activated killer cell function in patients with breast cancer. *Cancer*, 72, 491–501 (1993).

26) Lala, P. K., Parhar, R. S. and Singh, P. Indomethacin therapy abrogates the prostaglandin-mediated suppression of natural killer activity in tumor bearing mice and prevents tumor metastasis. *Cell Immunol.*, 99, 108–118 (1986).

27) Bennet, A., Carrol, M. A., Melish, P. B. and Stamford, I. F. Treatment of mouse carcinoma in vivo with a prostaglandin E1 analogue and indomethacin. *Br. J. Cancer*, 52, 245–249 (1985).

28) Tanaka, T., Kojima, T., Okumura, A., Sugie, S. and Mori, H. Inhibitory effect of the non-steroidal anti-inflammatory drugs, indomethacin and piroxicam on 2-acetylaminofluorene-induced hepatocarcinogenesis in male ACI/N rats. *Cancer Lett.*, 68, 111–118 (1993).

29) Hida, T., Leyton, J., Makheja, A. N., Ben-Av, P., Hla, T., Martinez, A., Mulshine, J., Malkani, S., Chung, P. and Moody, T. Non-small cell lung cancer cyclooxygenase activity and proliferation are inhibited by non-steroidal anti-inflammatory drugs. *Anticancer Res.*, 18, 775–782 (1998).

30) Park, K. H., Rha, S. Y., Kim, C. H., Kim, T. S., Yoo, N. C., Kim, J. H., Roh, J. K., Noh, S. H., Min, J. S., Lee, K. S., Kim, B. S. and Chung, H. C. Telomerase activity and telomere lengths in various cell lines: changes of telomerase activity can be another method for chemosensitivity evaluation. *Int. J. Oncol.*, 13, 489–495 (1998).

31) Ferreri, N. R., Millet, I., Paliwal, V., Herzog, W., Solomon, D., Ramabhadran, R. and Askenase, P. W. Induction of macrophage TNF alpha, IL-1, IL-6, and PGE2 production by DTH-initiating factors. *Cell Immunol.*, 137, 389–405 (1994).

32) Wu, J., Akaike, T. and Maeda, H. Modulation of enhanced vascular permeability in tumors by a bradykinin agonist, a cyclooxygenase inhibitor, and a nitric oxide scavenger. *Cancer Res.*, 58, 159–165 (1998).

33) Narnisawa, T., Henneman, P., Habs, M. and Schmael, D. Reduction of acetoxymethyl-methylnitrosamine-induced large bowel cancer in rats by indomethacin. *Tohoku J. Exp. Med.*, 144, 237–243 (1984).

34) Rao, A. R. and Hussain, S. P. Modulation of methylanthracene-induced carcinogenesis in the uterine cervix of mouse by indomethacin. *Cancer Lett.*, 43, 15–19 (1988).

35) Lala, P. K., Al-Mutter, N. and Orucevic, A. Effects of chronic indomethacin therapy on the development and progression of spontaneous mammary tumors in C3H/HeJ mice. *Int. J. Cancer*, 73, 371–380 (1997).