TENSOR FIELDS AND CONNECTIONS ON HOLOMORPHIC ORBIT SPACES OF FINITE GROUPS

ANDREAS KRIEGL, MARK LOSIK, AND PETER W. MICHOR

ABSTRACT. For a representation of a finite group \(G \) on a complex vector space \(V \) we determine when a holomorphic \((p,q) \)-tensor field on the principal stratum of the orbit space \(V/G \) can be lifted to a holomorphic \(G \)-invariant tensor field on \(V \). This extends also to connections. As a consequence we determine those holomorphic diffeomorphisms on \(V/G \) which can be lifted to orbit preserving holomorphic diffeomorphisms on \(V \). This in turn is applied to characterize complex orbifolds.

1. Introduction

Locally, an orbifold \(Z \) can be identified with the orbit space \(B/G \), where \(B \) is a \(G \)-invariant neighborhood of the origin in a vector space \(V \) with a finite group \(G \subset GL(V) \) and, using this identification, one can easily define local (and then global) tensor fields and other differential geometrical objects in \(Z \) as appropriate \(G \)-invariant tensor fields and objects on \(B \subset V \). In particular, one can naturally define Riemannian orbifolds, Einstein orbifolds, symplectic orbifolds, Kähler-Einstein orbifolds etc.

We study complex orbifolds, that is, orbifolds modeled on orbit spaces \(V/G \), where \(G \) is a finite subgroup of \(GL(V) \) for a complex vector space \(V \). In particular, the orbit spaces \(Z = M/G \) of a discrete proper group \(G \) of holomorphic transformations of a complex manifold \(M \) are complex orbifolds.

An orbifold \(X \) has a structure defined by the sheaf \(\mathcal{S}_X \) of local invariant holomorphic functions in a local uniformizing system. \(X \) has also a stratification by strata \(S \) which are glued from local isotropy type strata of local uniformizing systems. In particular, the regular stratum \(X_0 \) is an open dense complex manifold in \(X \).

Holomorphic geometric objects on \(X \) (e.g. tensor fields and connections) are locally defined as invariant objects on the uniformizing system. Their restrictions to the regular stratum \(X_0 \) are usual holomorphic geometric objects on the complex manifold \(X_0 \).

A natural question is to characterize these restrictions, i.e. to describe tensor fields and connections on \(X_0 \) which are extendible to \(X \). We look at the lifting problem for connections because this allows a very elegant approach to the lifting problem for holomorphic diffeomorphisms. And the last problem has immediate consequences for characterizing complex orbifolds, i.e., for answering the following

1991 Mathematics Subject Classification. 32M17.

Key words and phrases. complex orbifolds, orbit spaces of complex finite group actions.

M.L. and P.W.M. were supported by ‘Fonds zur Förderung der wissenschaftlichen Forschung, Projekt P 14195 MAT’.
question: Which data does one need besides \mathfrak{F}_X and X_0 to characterize a complex orbifold X? The main goal of the paper is to answer these questions.

We have first to investigate the local situation, thus we consider a finite subgroup $G \subset GL(V)$ and the orbit space $Z = V/G$ with the structure given by the sheaf $\mathfrak{F}_{V/G}$ of invariant holomorphic functions on V, and the orbit type stratification. The prime role is played by strata of codimension 1 with the order s of the reflection divisor corresponding stabilizer groups, which are arranged in the reflection divisor $D_{V/G}$ which keeps track of all complex reflections in G. It turns out that the union Z_1 of Z_0 and of all codimension 1 strata is a complex manifold, see 3.5. We characterize all G-invariant holomorphic tensor fields and connections on V in terms of the reflection divisor of the corresponding meromorphic tensor field and connection on Z_1, see 3.7 and 4.2. Our result gives a generalization 3.9 of Solomon’s theorem [10], see 3.10. Using the lifting property of connections we are able to prove that a holomorphic diffeomorphism $Z = V/G \to V/G' = Z'$ between two orbit spaces has a holomorphic lift to V which is equivariant over an isomorphism $G \to G'$ if and only if f respects the regular strata and the reflection divisors, i.e. $f(Z_0) \subset Z'_0$ and $f_* (D_Z) \subset D_Z'$. In fact we give two proofs of this result, which in [4] is carried over to the algebraic geometry setting for algebraically closed ground fields of characteristic 0. The related problem of lifting (smooth) homotopies from (general) orbit spaces has been treated in [1] and [9].

Applying the local results we prove that a complex orbifold X is uniquely determined by the sheaf \mathfrak{F}_X, the regular stratum X_0, and the reflection divisor D_X alone, see 6.6.

2. Preliminaries

2.1. The orbit type stratification. Let V be an n-dimensional complex vector space, G a finite subgroup of $GL(V)$, and $\pi : V \to V/G$ the quotient projection. The ring $\mathbb{C}[V]^G$ has a minimal system of homogeneous generators $\sigma^1, \ldots, \sigma^m$. We will use the map $\sigma = (\sigma^1, \ldots, \sigma^m) : V \to \mathbb{C}^m$. Denote by Z the affine algebraic variety in \mathbb{C}^m defined by the relations between $\sigma^1, \ldots, \sigma^m$. It is known that $\sigma(V) = Z$.

We consider the orbit space V/G endowed with the quotient topology as a local ringed space defined by the following sheaf of rings $\mathfrak{F}_{V/G}$: if U is an open subset of V/G, $\mathfrak{F}_{V/G}(U)$ is equal to the space of G-invariant holomorphic functions on $\pi^{-1}(U)$. Clearly one may consider sections of $\mathfrak{F}_{V/G}$ on U as functions on U. We call these functions holomorphic functions on U. It is known that the map of the orbit space V/G to Z induced by the map σ is a homeomorphism. Moreover, this homeomorphism induces an isomorphism of the sheaf $\mathfrak{F}_{V/G}(U)$ and the structure sheaf of the complex algebraic variety Z (see [7]). Via the above isomorphism we identify the local ringed spaces V/G and Z. Under this identification the projection π is identified with the map σ. Let G and G' be finite subgroups of $GL(V)$ and let $Z = V/G$ and $Z' = V/G'$ be the corresponding orbit spaces. By definition a holomorphic diffeomorphism of the orbit space Z to the orbit space Z' is an isomorphism of Z to Z' as local ringed spaces.

Let K be a subgroup of G, (K) the conjugacy class of K. Denote by $V_{(K)}$ the set of points of V whose isotropy groups belong to (K) and put $Z_{(K)} = \pi(V_{(K)})$. It is known that $\{ Z_{(K)} \}$ is a finite stratification of Z, called the isotropy type stratification, into locally closed irreducible smooth algebraic subvarieties (see [1]). Denote by Z_i the union of the strata of codimension greater than i and put $Z_i =$
Z \setminus Z^i$. Then Z_0 is the principal stratum of Z, i.e. $Z_0 = Z_{(K)}$ for $K = \{\text{id}\}$. It is known that Z_0 is a Zariski open subset of Z and a complex manifold. It is clear that the restriction of the map σ to the set V_{reg} of regular points of V is an tale map onto Z_0.

In this paper we consider the orbit space $Z = V/G$ with the above structure of local ringed space and the stratification $\{Z_{(K)}\}$.

2.2. The divisor of a tensor field. We shall use divisors of meromorphic functions on a complex manifold X. For technical reasons (see e.g. the last formula of this section) we define $\text{div}(0) = \sum S \propto S$, where the sum runs over all complex subspaces of X of codimension 1.

Let f and g be two meromorphic functions on X. Then we have $\text{div}(f + g) \geq \min\{\text{div}(f), \text{div}(g)\}$, where $\text{div}(f)$ denote the divisor of f. Taking the minimum means: For each irreducible complex subspace S of X of codimension 1 belonging to the support of f or g take the minimum of the coefficients in Z of S in $\text{div}(f)$ and $\text{div}(g)$.

Let P be a meromorphic tensor field (i.e., with meromorphic coefficient functions in local coordinates) on X. In local holomorphic coordinates y^1, \ldots, y^n on an open subset $U \subset X$ the tensor field P can be written as

$$P|_U = \sum_{i_1, \ldots, i_p, j_1, \ldots, j_q} P_{i_1, \ldots, i_p}^{j_1, \ldots, j_q} \frac{\partial}{\partial y^{i_1}} \otimes \cdots \otimes \frac{\partial}{\partial y^{i_p}} \otimes dy^{j_1} \otimes dy^{j_q},$$

and we define the divisor of P on U as the minimum of all divisors $\text{div}(P_{i_1, \ldots, i_p}^{j_1, \ldots, j_q}) \in \text{Div}(U)$ for all coefficient functions of P. The resulting coefficient of the complex subspace S of codimension 1 in $\text{div}(P) \in \text{Div}(U)$ does not depend on the choice of the holomorphic coordinate system; e.g., for a vector field $\sum_i X^i \frac{\partial}{\partial y^i}$ we have

$$\text{div}\left(\sum_i X^i \frac{\partial u^k}{\partial y^i}\right) \geq \min_i \text{div}\left(X^i \frac{\partial u^k}{\partial y^i}\right) = \min_i \left(\text{div}(X^i) + \text{div}\left(\frac{\partial u^k}{\partial y^i}\right)\right) \geq \min_i \text{div}(X^i).$$

Finally we define the divisor of P on X by gluing the local divisors for any holomorphic atlas of X. Note that a tensor field P is holomorphic if and only if $\text{div}(P) \geq 0$.

3. Invariant tensor fields

3.1. Let P be a G-invariant holomorphic tensor field of type (p, q) on V. Since σ is an tale map on V_{reg}, there is a unique holomorphic tensor field Q on Z_0 of type (p, q) such that the pullback $\sigma^*(Q)$ coincides with the restriction of P to V_{reg}. It is clear that the tensor field P is uniquely defined by Q.

Consider a holomorphic tensor field Q of type (p, q) on Z_0 and its pullback $\sigma^*(Q)$ which is a G-invariant holomorphic tensor field on V_{reg}. Then by the Hartogs extension theorem, $\sigma^*(Q)$ has a G-invariant holomorphic extension to V iff it has a holomorphic extension to $\sigma^{-1}(Z_1)$.

Denote by \mathcal{H} the set of all reflection hyperplanes corresponding to all complex reflections in G and, for each $H \in \mathcal{H}$, by e_H the order of the cyclic subgroup of G fixing H. It is clear that $\sigma(\cup_{H \in \mathcal{H}} H)$ contains all strata of codimension 1. This implies immediately the following
3.2. Proposition. If $\mathfrak{H} = \emptyset$, for each holomorphic tensor field P_0 on Z_0 the pullback $\sigma^*(P_0)$ has a G-invariant holomorphic extension to V. □

3.3. The reflection divisor of the orbit space. Consider the set R_Z of all hyper surfaces $\sigma(H)$ in Z, where H runs through all reflection hyperplanes in V. Note that $\sigma(H)$ is a complex subspace of Z_1 of codimension 1. We endow each $S = \sigma(H) \in R_Z$ with the label $e_{\mathcal{H}}$ of the hyperplane H. It is easily seen that this label does not depend on the choice of H, we denote it by e_S and we consider $e_S \cdot S$ as an effective divisor on Z and we consider the effective divisor in Z_1

$$D = D_{V/G} = D = \sum_{S \in R_Z} e_S \cdot S,$$

which we call the reflection divisor.

3.4. Basic example. Let the cyclic group $\mathbb{Z}_r = \mathbb{Z}/r\mathbb{Z}$ with generator $\zeta_r = e^{2\pi i/r}$ act on \mathbb{C} by $z \mapsto e^{2\pi ik/r}z$ for $r \geq 2$. The generating invariant is $\tau(z) = z^r$.

We consider first a holomorphic tensor field $P = f(z)(dz)^{\sigma q} \otimes (\frac{\partial}{\partial y})^{\sigma p}$ on \mathbb{C}. It is invariant, $\zeta_r^* P = P$, if and only if $f(\zeta_r z) = \zeta_r^{-q} f(z)$, so that in the expansion $f(z) = \sum_{k \geq 0} f_k z^k$ at 0 of f the coefficient $f_k \neq 0$ at most when $k \equiv p - q \mod r$. Writing $p - q = rs + t$ with $s \in \mathbb{Z}$ and $0 \leq t < r$ we see that P is invariant if and only if $f(z) = z^t g(z^r)$ for holomorphic g.

We use the coordinate $y = \tau(z) = z^r$ on $\mathbb{C}/\mathbb{Z}_r = \mathbb{C}$, $\tau^* dy = rz^{r-1}dz$ and $\tau^*(\frac{\partial}{\partial y}|_{\mathbb{C}\setminus 0}) = \frac{dz}{rz^{r-1}} \frac{\partial}{\partial |_{\mathbb{C}\setminus 0}}$, and we write

$$P|_{\mathbb{C}\setminus 0} = g(z^r) z^t (dz)^{\sigma q} \otimes \left(\frac{\partial}{\partial y}\right)^{\sigma p}$$

$$= g(y) z^{r-t s} (r z^{r-1})^{p-q} (dy)^{\sigma q} \otimes \left(\frac{\partial}{\partial y}\right)^{\sigma p}$$

$$= g(y) y^{s-t p} (r y)^{-s} (dy)^{\sigma q} \otimes \left(\frac{\partial}{\partial y}\right)^{\sigma p}$$

(we omitted τ). Thus a holomorphic tensor field P of type $({\sigma q \over p q})$ on \mathbb{C} is \mathbb{Z}_r-invariant if and only if $P|_{\mathbb{C}\setminus 0} = \tau^* Q$ for a meromorphic tensor field

$$Q = g(y) y^m (dy)^{\sigma q} \otimes \left(\frac{\partial}{\partial y}\right)^{\sigma p}$$

on \mathbb{C} with g holomorphic with $g(0) \neq 0$ and with

$$m \geq p - q - s.$$

It is easily checked that the above inequality is equivalent to the following one

$$mr + (p - q)(r - 1) \geq 0.$$

3.5. Suppose $\mathfrak{H} \neq \emptyset$. Let $z \in Z_1 \setminus Z_0$ and $v \in \sigma^{-1}(z)$. Then there is a unique hyperplane $H \in \mathfrak{H}$ such that $v \in H$ and the isotropy group G_v is isomorphic to a cyclic group. It is evident that the order $r_z = e_H$ of G_v depends only on $z = \sigma(v)$ and is locally constant on $Z_1 \setminus Z_0$.

By the holomorphic slice theorem (see [3], [6]) there is a G_v-invariant open neighborhood U_v of v in V such that the induced map $U_v/G_v \to V/G$ is a local biholomorphic map at v.

Choose orthonormal coordinates z^1, \ldots, z^n in V with respect to a G-invariant Hermitian inner product on V, so that $H = \{z^n = 0\}$. Then the ring $\mathbb{C}[V]^G$ is generated by $z^1, \ldots, z^{n-1}, (z^n)^r$, where $r = r_z$.
Put \(\tau^1 = z^1, \ldots, \tau^{n-1} = z^{n-1}, \tau^n = (z^n)^r \), and \(\tau = (\tau^1, \ldots, \tau^n) : U_0 \to \mathbb{C}^n \). Then there are holomorphic functions \(f^i \) \((i = 1, \ldots, n)\) in an open neighborhood \(W_z \) of \(z \in \mathbb{C}^n \) such that \(\tau^a = f^a \sigma |_{U_0} \). On the other hand, we know that in an open neighborhood of \(v \) all \(\sigma^a \) for \(a = 1, \ldots, m \) are holomorphic functions of the \(\tau^i \). We denote by \(y^i \) the holomorphic function on \(Z \) such that \(\tau^i = y^i \sigma \). Then we can use \(y^i \) as coordinates of \(Z \) defined in the open neighborhood \(W_z \subseteq \mathbb{C}^n \) of \(z \). Note that we found holomorphic coordinates near each point of \(Z_1 \), so we have:

Corollary. The union \(Z_1 \) of all codimension \(\leq 1 \) strata, with the restriction of the sheaf \(\mathfrak{F}_{V/G} \), is a complex manifold.

3.6. The reflection divisor of a meromorphic tensor field on \(Z_1 \)

Let \(\Gamma_M(T^\mu_1(Z_1)) \) be the space of meromorphic tensor fields (i.e. with meromorphic coefficient functions in local holomorphic coordinates on the complex manifold \(Z_1 \)), and let \(P \in \Gamma_M(T^\mu_1(Z_1)) \).

Let \(S \) be an irreducible component of \(Z_1 \setminus Z_0 \) and let \(z \in S \). Local coordinates \(y^1, \ldots, y^n \) on \(U \subseteq Z_1 \), centered at \(z \), are called adapted to the stratification of \(Z_1 \) if \(S = \{ y^n = 0 \} \) near \(z \). By definition the coordinates \(y^1, \ldots, y^n \) from 3.5 have this property. Denote by \(O_Z \) the ring of germs of holomorphic functions and by \(M_z \) the field of germs of meromorphic functions, both at \(z \in Z_1 \).

Let \(y^1, \ldots, y^n \) be local coordinates on \(U \subseteq Z_1 \), centered at \(z \), adapted to the stratification of \(Z_1 \). Then on \(U \) the meromorphic tensor field \(P \) is given by:

\[
P|_U = \sum_{i_1, \ldots, i_p, j_1, \ldots, j_q} P_{j_1 \ldots j_q}^{i_1 \ldots i_p} \frac{\partial}{\partial y^{i_1}} \otimes \cdots \otimes \frac{\partial}{\partial y^{i_p}} \otimes dy^{j_1} \otimes dy^{j_q},
\]

where the \(P_{j_1 \ldots j_q}^{i_1 \ldots i_p} \) are meromorphic on \(U \). Let us fix one nonzero summand of the right hand side: for the coefficient function we have \(P_{j_1 \ldots j_q}^{i_1 \ldots i_p} = (y^n)^m f \) for some integer \(m \) such that the germs at \(z \) of \(y^n \), \(g \), and \(h \) are pairwise relatively prime in \(O_z \) where \(f = g/h \in M_z \). Suppose that the factor \(\frac{\partial}{\partial y^n} \) appears exactly \(q' \) times and the factor \(dy^n \) appears exactly \(q' \) times in this summand. The integer

\[
\mu = mr + (q'-p')(r-1),
\]

a priori depending on \(z \), is constant along an open dense subset of \(S \) and it is called the reflection residua of the summand at \(S \). Finally let \(\mu_S(P) \) be the minimum of the reflection residua at \(S \) of all summands of \(P \) in the representation of \(P \).

Let \(\tilde{y}^1, \ldots, \tilde{y}^n \) be arbitrary local coordinates on \(U \subseteq Z_1 \), centered at \(z \), adapted to the stratification of \(Z_1 \). In a neighborhood of \(z \) we have \(\tilde{y}^n = f \tilde{y}^n \), where \(f \) is a holomorphic function such that \(f(z) \neq 0 \). Remark that \(\tilde{y}^n \) divides \(\frac{\partial}{\partial y^n} \) and \(\frac{\partial}{\partial y^i} \) \((i = 1, \ldots, n)\) in \(O_z \). A straightforward calculation using the above remark shows that the values of \(\mu_S(P) \) calculated in the coordinates \(\tilde{y}^i \) and in the coordinates \(y^i \) are the same. Then \(\mu_S(P) \) does not depend on the choice of the system of local coordinates adapted to the stratification of \(Z_1 \). For details see [R]: there we checked this in the algebraic geometry setting where the use of tensor fields is less familiar.

We now can define the reflection divisor

\[
\text{div}_P(P) = \text{div}_{U/G}(P) \in \text{Div}(U)
\]
as follows: take the divisor \(\text{div}(P) \), and for each irreducible component \(S \) of \(Z_1 \setminus Z_0 \) do the following: if \(S \) appears in the support of \(\text{div}(P) \in \text{Div}(U) \), replace its
coefficient by $\mu_S(P)$; if it does not appear, add $\mu_S(P)S$ to it. If S is not contained in $Z_1 \setminus Z_0$, we keep its coefficient in $\text{div}(P)$.

Finally we glue the global reflection divisor $\text{div}_D(P) \in \text{Div}(Z_1)$ from the local ones, using a holomorphic atlas for Z_1.

3.7. Theorem. Let $G \subset GL(V)$ be a finite group, with reflection divisor $D = D_{V/G} = D_Z$. Then we have:

- Let P be a holomorphic G-invariant tensor field on V. Then the reflection divisor $\text{div}_D(\pi_* P) \geq 0$.
- Let $Q \in \Gamma_M(T^p_q(Z_1))$ be a meromorphic tensor field on Z_1. Then the G-invariant meromorphic tensor field $\pi^* Q$ extends to a holomorphic G-

The above remains true for G-invariant holomorphic tensor fields defined in a G-stable open subset of V.

Proof. This follows directly from Hartogs’ extension theorem, the basic example 3.4 using y^1, \ldots, y^{n-1} as dummy variables, and the definition of the reflection divisor $\text{div}_D(P)$ as explained in 3.6.

3.9. Corollary. The mapping σ establishes an injective correspondence between the space of holomorphic G-invariant tensor fields of type (p^q) on V which are skew-symmetric with respect to the covariant entries, and the space of holomorphic tensor fields on Z_1 of the same type and the same skew-symmetry condition. If $p = 0$ the correspondence is bijective.

The above remains true for G-invariant holomorphic tensor fields defined in a G-stable open subset of V.

Proof. Let P be a holomorphic G-invariant tensor field on V satisfying the conditions of the corollary. For each nonzero decomposable summand of $\pi_* P$ take the integers m, p', q' defined in 3.6. By skew symmetry of P we have $q' \leq 1$. By Theorem 3.7 we get $\text{div}_D(\pi_* P) \geq 0$ and thus $mr \geq (p' - q')(r - 1) > -r$. So $m \geq 0$ and the summand is holomorphic on Z_1.

If Q is a holomorphic differential form on Z_1 its pullback $\sigma^* Q$ is a G-invariant holomorphic form on $\sigma^{-1}(Z_1)$ and then has a holomorphic extension to the whole of V.

3.10. Remarks. Note that Corollary 3.9 is a generalization of Solomon’s theorem (see [10]): If $G \subset GL(V)$ is a finite complex reflection group then every G-invariant polynomial exterior q-form ω on V can be written as $\omega = \sigma^* \varphi$ for a polynomial q-form φ on \mathbb{C}^n, where $\sigma = (\sigma^1, \ldots, \sigma^m) : V \to \mathbb{C}^n$ is the mapping consisting of G-

Actually, in the case of a reflection group $Z = \mathbb{C}^n$ and each holomorphic (p^q)-

tensor field Q on Z_1 has a holomorphic extension to Z by Hartogs’ extension theorem.

4. INVARIANT COMPLEX CONNECTIONS

4.1. Let Γ be a holomorphic G-invariant complex connection on V. Then the image σ_Γ of Γ under the map σ defines a holomorphic complex connection on Z_0.

Let $z \in Z_1 \setminus Z_0$, $v \in \sigma^{-1}(z)$, and r the order of G_v. Consider the coordinates z^i in V defined in 3.5. Denote by Γ_{ijk} the components of the connection Γ with respect to
these coordinates. By assumption, the Γ_{jk}^i are holomorphic functions on V. Recall the standard formula for the image γ of Γ under a holomorphic diffeomorphism $f = (y^a(x^i))$

$$\gamma_a^i \circ f = \frac{\partial y^a}{\partial x^j} \frac{\partial x^j}{\partial y^i} \Gamma_{jk}^i(x^i) - \frac{\partial^2 y^a}{\partial x^j \partial x^k} \frac{\partial x^j}{\partial y^i} \frac{\partial x^k}{\partial y^i}.$$

Remark that the similar formula is true for the transformation of the components of connection under the change of coordinates.

Consider the generator g of the cyclic group G_v given by 3.5. Since g acts linearly, the connection reacts to it like a $\left(\begin{smallmatrix} 1 \\ 1 \end{smallmatrix}\right)$-tensor field. Thus by the considerations of 3.4 we get in the notation of 3.5, where $i,j,k = 1, \ldots, n-1$:

$$\Gamma_{jk}^i = \tilde{\Gamma}_{jk}^i \circ \sigma, \quad \Gamma_{nk}^i = \frac{1}{r} z^n \tilde{\Gamma}_{jk}^i \circ \sigma, \quad \Gamma_{jn}^i = r(z^n)^{r-1} \tilde{\Gamma}_{jn}^i \circ \sigma, \quad \Gamma_{nk}^n = \tilde{\Gamma}_{nk}^n \circ \sigma,$$

$$\Gamma_{nn}^n = r(z^n)^{r-2} \tilde{\Gamma}_{nn}^n \circ \sigma, \quad \Gamma_{nn}^n = r(z^n)^{r-1} \tilde{\Gamma}_{nn}^n \circ \sigma,$$

where the $\tilde{\Gamma}_{bc}^a$ are holomorphic functions of the coordinates $y^a (a = 1, \ldots, n)$ introduced in 3.5.

Using the transformation formula for connections, we get the following formulas for the components γ_{bc}^a of the meromorphic connection $\sigma_1 \Gamma$ with respect to the coordinates y^a.

$$\gamma_{jk}^i = \tilde{\Gamma}_{jk}^i, \quad \gamma_{nk}^i = y^n \tilde{\Gamma}_{jk}^i, \quad \gamma_{jn}^i = \tilde{\Gamma}_{jn}^i, \quad \gamma_{nk}^n = \tilde{\Gamma}_{nk}^n,$$

$$\gamma_{nn}^n = \tilde{\Gamma}_{nn}^n, \quad \gamma_{nk}^n = \tilde{\Gamma}_{nk}^n, \quad \gamma_{nn}^i = \frac{1}{y^n} \tilde{\Gamma}_{nn}^i, \quad \gamma_{nn}^n = \tilde{\Gamma}_{nn}^n - \frac{r-1}{ry^a}.$$

Let \tilde{y}^a for $a = 1, \ldots, n$ be other local coordinates centered at z and adapted to the stratification of Z_1. Then in a neighborhood of z we have

$$y^a = f \tilde{y}^a, \quad \tilde{y}^a = \tilde{f} y^a,$$

where f and \tilde{f} are holomorphic functions in a neighborhood of z and $\tilde{f} f = 1$. Then we have

$$\frac{\partial y^a}{\partial \tilde{y}^i} = \frac{\partial f}{\partial \tilde{y}^i} \tilde{y}^a, \quad \frac{\partial \tilde{y}^a}{\partial y^i} = \frac{\partial f}{\partial y^i} y^a \quad (i = 1, \ldots, n-1)$$

and on $S = \{y^n = 0\}$

$$\frac{\partial y^n}{\partial \tilde{y}^n} = f, \quad \frac{\partial \tilde{y}^n}{\partial y^n} = \tilde{f}.$$

Using these formulas one can check that in the coordinates \tilde{y}^a the formulas 4.1.1 have the same form as in the coordinates y^a. For example, for the new component $\tilde{\gamma}_{nn}^a$ we have

$$\tilde{\gamma}_{nn}^a + \frac{r-1}{r \tilde{y}^n} \left(1 - \tilde{f} \frac{\partial \tilde{y}^n}{\partial \tilde{y}^n} \left(\frac{\partial y^n}{\partial \tilde{y}^n} \right)^2 \right) \frac{\partial \tilde{y}^n}{\partial y^n} f = h,$$

where h is a holomorphic function near z. Since on $S = \{y^n = 0\}$ we have

$$1 - \tilde{f} \frac{\partial \tilde{y}^n}{\partial \tilde{y}^n} \left(\frac{\partial y^n}{\partial \tilde{y}^n} \right)^2 = 1 - \tilde{f}^2 f^2 = 0,$$
4.1.1 where \(\tilde{\Gamma} \) for each \(z \).

4.2. Theorem. Let \(\gamma \) be a holomorphic complex linear connection on \(Z_0 \) such that for each \(z \in Z_1 \setminus Z_0 \) it has an extension to a neighborhood of \(z \) whose components in the coordinates adapted to the stratification of \(Z_1 \) are defined by the formulas 4.1.1 where \(\Gamma_{bc}^a \) are holomorphic. Then there is a unique \(G \)-invariant holomorphic complex linear connection \(\Gamma \) on \(V \) such that \(\sigma_* \Gamma \) coincides with \(\gamma \) on \(Z_0 \). This remains true if we replace \(V \) by a \(G \)-open subset of \(G \).

Proof. Since \(\sigma \) is tale on the principal stratum, there is a unique \(G \)-invariant complex linear connection \(\Gamma_0 \) on \(\sigma^{-1}(Z_0) \) such that \(\sigma_* \Gamma_0 = \gamma \). The condition of the theorem implies that the connection \(\Gamma_0 \) has a holomorphic extension to \(\sigma^{-1}(Z_1) \). Then by Hartogs’ extension theorem the connection \(\Gamma_0 \) has a unique holomorphic extension \(\Gamma \) to the whole of \(V \).

5. Lifts of diffeomorphisms of orbit spaces

5.1. Let \(G \) and \(G' \) be finite subgroups of \(GL(V) \) and \(GL(V') \) and let \(F \) be a holomorphic diffeomorphism \(V \to V' \) which maps \(G \)-orbits to \(G' \)-orbits bijectively.

Then the map \(F \) induces an isomorphism \(f \) of the sheaves \(\mathfrak{F}_{V/G} \to \mathfrak{F}_{V'/G'} \), i.e. a holomorphic diffeomorphism of orbit spaces \(V/G \) and \(V'/G' \).

Lemma. There is a unique isomorphism \(a : G \to G' \) such that \(F \circ a = a \circ F \) for every \(g \in G \).

Note that \(a \) and its inverse \(a^{-1} \) map complex reflections to complex reflections.

Proof. The cardinalities of the two groups are the same since \(F \) maps a generic regular orbit to a regular orbit. Consequently, it maps regular points to regular points and we have \(\sigma' \circ F = f \circ \sigma : V \to V'/G' \) for a holomorphic diffeomorphism \(f : V/G \to V'/G' \), where \(\sigma : V \to V/G \) and \(\sigma' : V' \to V'/G' \) are the quotient projections.

Fix some \(G \)-regular \(v \in V \). Then \(F(v) \) and \(F(gv) \) for \(g \in G \) are regular points of \(V' \) of the same orbit. Therefore, there is a unique \(a(g) \in G \) such that \(F(gv) = a(g)(F(v)) \). We have \(\sigma' \circ F \circ g = f \circ \sigma \circ g = f \circ \sigma = \sigma' \circ \sigma a(g) \circ F \). Since \(\sigma' \) is tale on \(V'_{\text{reg}} \) we see that \(F \circ g = a(g) \circ F \) locally near \(v \) and thus globally. By uniqueness, the map \(g \to a(g) \) is an isomorphism of \(G \) onto \(G' \).

In this section we study when a diffeomorphism \(f \) of the orbit spaces \(Z \to Z' \) has a holomorphic lift \(F \).

5.2. Corollary. Let \(F : V \to V \) be a holomorphic diffeomorphism which maps \(G \)-orbits onto \(G' \)-orbits, and \(f : Z \to Z' \) the corresponding holomorphic diffeomorphism of the orbit spaces. Then \(f \) maps the isotropy type stratification of \(Z \) onto that of \(Z' \) and, moreover, it maps \(D_Z \) to \(D_{Z'} \).

Proof. This follows from Lemma 5.1 and the definition 3.3 of the reflection divisor.
5.3. Theorem. Let G and G' be two finite subgroups of $GL(V)$ and let $f : Z \rightarrow Z'$ be a holomorphic diffeomorphism of the corresponding orbit spaces such that $f(Z_0) = Z'_0$ and $f_*(D_Z) = D_{Z'}$. If Q is a holomorphic tensor field of type (^p_q) on Z_0 which satisfies the conditions of Theorem 3.7, then $f_*(Q)$ also satisfies these conditions on Z'_0 and thus there exists a unique G'-invariant holomorphic tensor field Q' of type (^p_q) such that $\sigma'_* Q'$ coincides with $f_* Q$ on Z'_0.

This is also true for holomorphic connections if we replace Theorem 3.7 by Theorem 4.2. The theorem remains true if we replace V by invariant open subsets of V.

Proof. Since $f(Z_0) = Z'_0$ the tensor field $f_* Q$ is also holomorphic on Z'_0. Let $z \in Z_1 \setminus Z_0$. Then there is a complex space $S \in R_Z$ of codimension 1 such that $z \in S$. By assumption $f(z) \in Z'_1 \setminus Z'_0$ and $f(z) \in f(S) \in R_{Z'}$ and $r_z = e_S = e_{f(S)} = r_{f(z)}$.

Now, obviously $f_*(Q)$ satisfies the conditions of Theorem 3.7 at $f(x)$. Thus there exists a G'-invariant holomorphic tensor field Q' on V with $\sigma'_* Q' = f_* Q$.

A similar argument applies to connections.

5.4 Theorem. Let G and G' be two finite subgroups of $GL(V)$. Let $f : Z \rightarrow Z'$ be a holomorphic diffeomorphism of the orbit spaces such that $f(Z_0) = Z'_0$ and $f_*(D_Z) = D_{Z'}$.

Then f lifts to a holomorphic diffeomorphism $F : V \rightarrow V$, i.e. $\sigma' \circ F = f \circ \sigma$.

The local version is also true. Namely, if B is a ball in the vector space V centered at 0 (for an invariant Hermitian metric), $U = \sigma(B)$, and $f : U \rightarrow Z'$ is a local holomorphic diffeomorphism of U onto a neighborhood U' of $\sigma'(0)$ such that $f(U \cap Z_0) = U' \cap Z'_0$ and f maps $D_Z \cap U$ to $D_{Z'} \cap U'$, then there is a holomorphic lift $F : B \rightarrow V$.

Proof. Let Γ be the natural flat connection on V. Then Γ is uniquely defined by the holomorphic connection $\sigma_* \Gamma$ on Z_0 which satisfies the conditions of Theorem 4.2. By Theorem 5.3 there is a unique G-invariant holomorphic complex linear connection Γ' on V such that $\sigma'_* \Gamma'$ coincides with $f_*(\sigma_* \Gamma)$ on Z'_0. It is evident that Γ' is a torsion free flat connection, since Γ is it and Γ' is locally isomorphic to Γ on an open dense subset.

Let $v \in V$ be G-regular and let $v' \in V$ be G'-regular, such that $(f \circ \sigma)(v) = \sigma'(v')$. Then there is a biholomorphic map F of a neighborhood W of v onto a neighborhood of v' such that $\sigma' \circ F = f \circ \sigma$ on W and $F(v) = v'$. Moreover by construction F is a locally affine map of the affine space (V, Γ) into (V, Γ') equipped with the above structures of locally affine spaces, thus we have

$$ (1) \quad F = \exp_{v'} T_v F \circ \exp_v^\Gamma $$

where $\exp_v^\Gamma : T_v V \rightarrow V$ is the holomorphic geodesic exponential mapping centered at v given by the connection Γ and its induced spray. It is globally defined, thus complete and a holomorphic diffeomorphism since Γ is the standard flat connection. Likewise $\exp_{v'}^{\Gamma'}$ is the holomorphic exponential mapping of the flat connection Γ'.

The formula above extends F to a globally defined holomorphic mapping if $\exp_{v'}^{\Gamma'} : T_v V \rightarrow V$ is also globally defined (complete). Assume for contradiction that this is not the case. Let F be maximally extended by equation (1); it still projects to $f : Z \rightarrow Z'$. We consider \exp_v^Γ as a real exponential mapping, and then there is a real geodesic which reaches infinity in finite time and this is the image under F of a finite part $\exp_v^\Gamma((0, t_0)w)$ of a real geodesic of Γ emanating at v. The sequence
The groups \(\sigma \) complex reflections. Put

Next we prove Theorem 5.4 in the case when the group 5.6.

\[
\text{Proof.} \quad \text{Consider the restriction} \quad f \to G \quad \text{there is a holomorphic lift} \quad F \quad \text{of} \quad f^{-1}. \quad \text{Evidently the map} \quad F \circ F' \quad \text{preserves each} \quad G\text{-orbit.} \quad \text{Then, for a} \quad G\text{-regular point} \quad v \in V, \quad \text{there is a} \quad g \in G \quad \text{such that} \quad F' \circ F = g \quad \text{in a neighborhood of} \quad v \quad \text{and, then, on the whole of} \quad V. \quad \text{Similarly} \quad F \circ F' = g' \in G'. \quad \text{This implies that} \quad F \quad \text{is a holomorphic diffeomorphism of} \quad V. \quad \text{By definition the lift} \quad F \quad \text{respects the partitions of} \quad V \quad \text{into orbits.} \quad \Box
\]

We give a second proof of Theorem 5.4 based on the known results about the fundamental groups of \(V_{\text{reg}} \) and \(Z_0 \) for finite complex reflection groups. It is an extension of the proof of 5.3, using results of 5.2.

5.5. Lemma. Let \(G \) and \(G' \) be two finite subgroups of \(GL(V) \) and let \(f : Z \to Z' \) be a holomorphic diffeomorphism of the corresponding orbit spaces. Suppose \(v_0 \in V_{\text{reg}}, \quad v'_0 \in V'_{\text{reg}}, \) and \(f \circ \sigma(v_0) = \sigma'(v'_0). \) If the image of the fundamental group \(\pi_1(V_{\text{reg}}, v_0) \) under \(f \circ \sigma \) is contained in the subgroup \(\sigma'_* \circ \pi_1(V_{\text{reg}}, v'_0) \) of \(\pi_1(Z_0, \sigma'(v'_0)) \), the holomorphic lift of \(f \circ \sigma \) mapping \(v_0 \) to \(v'_0 \) exists.

\textbf{Proof.} Consider the restriction \(\varphi \) of the map \(f \circ \sigma \) to \(V_{\text{reg}} \). Since the restriction of \(\sigma \) to \(V_{\text{reg}} \) is a covering map onto \(Z_0 \), the condition of the lemma implies that there is a holomorphic lift \(F_0 \) of the map \(\varphi \) to \(V_{\text{reg}} \). The map \(F_0 \) is bounded on \(B \cap V_{\text{reg}} \) for each compact ball \(B \) in \(V \) since its image is contained in the compact set \((\sigma'_{-1}) (f(\sigma(B))) \). Then by the Riemann extension theorem \(F_0 \) has a holomorphic extension \(F \) to \(V \) which is the required holomorphic lift of \(f \). \Box

5.6. Next we prove Theorem 5.4 in the case when the group \(G \) is generated by complex reflections. Put

\[
B := \pi_1(Z_0) \quad \text{and} \quad P := \pi_1(V_{\text{reg}}).
\]

The groups \(B \) and \(P \) are called the braid group and the pure braid group associated to \(G \), respectively. It is clear that the map \(\sigma \) induces an isomorphism of \(P \) onto a subgroup of \(B \).

The following results about the groups \(B \) and \(P \) are well known (see, for example, 2). The braid group \(B \) is generated by those elements which are represented by loops around the hypersurfaces \(\sigma(H) \) for \(H \in \mathcal{H} \). The pure braid group \(P \) is generated by the elements of \(B \) of the type \(s^e H \), where \(s \) is any of the above generators of \(B \) represented by a loop around the hypersurface \(\sigma(H) \). This implies the following

\textbf{Proposition.} Suppose the group \(G \) is generated by complex reflections. Let \(f \) be a holomorphic diffeomorphism of the orbit space \(Z = \mathbb{C}^n \) with \(f(Z_0) = Z_0 \) which also preserves \(D_2 \). Then \(f|_{Z_0} \) preserves the subgroup \(P \) of \(B \). \Box

The following proposition is an immediate consequence of Lemma 5.5 and Proposition 5.6.

5.7. Proposition. Suppose the groups \(G \) and \(G' \) are generated by complex reflections. Let \(f : Z \to Z' \) be a holomorphic diffeomorphism between the corresponding orbit spaces, such that \(f(Z_0) = Z_0' \) and \(f_*(D_2) = D_2' \).
Then f has a holomorphic lift F to V. □

Second proof of 5.4. Now let $G \subset GL(V)$ be a finite group and let G_1 be the subgroup generated by all complex reflections in G. Clearly G_1 is a normal subgroup of G. Let $G_2 = G/G_1$. Let $\sigma_1^1, \ldots, \sigma_1^n$ be a system of homogeneous generators of $C[V]^{G_1}$ and $\sigma_1 : V \to C^n$ the corresponding orbit map. Then the action of G on V induces the action of the group G_2 on $V_1 := C^n = \sigma_1(V)$. Since each representation of the group G_2 is completely reducible, by standard arguments of invariant theory, we may assume that the generators σ_i^j’s are chosen in such a way that the above action of G_2 on $V_1 = C^n$ is linear. Then the representation of G_2 on V_1 contains no complex reflections. Let $\sigma_2^1, \ldots, \sigma_2^m$ be a system of homogeneous generators of $C[V_1]^{G_2}$ and $\sigma_2 : V_1 \to C^m$ the corresponding orbit map. Then $\sigma_i^j = \sigma_2^i \sigma_1^j$ $(i = 1, \ldots, m)$ is a system of generators of $C[V]^{G}$ with orbit map $\sigma = \sigma_2 \sigma_1$. Similarly for G'.

Let $f : Z \to Z'$ be a holomorphic diffeomorphism, such that $f(Z_0) = Z'_0$ and $f_*(DZ) = DZ'$. Since the group G_2 contains no complex reflections the set $V_{1,reg}$ of regular points of the action of G_2 on V_1 is obtained from V_1 by removing some subsets of codimension ≥ 2. And similarly for G'. Then the fundamental group $\pi_1(V_{1,reg}) = \pi_1(V_1) = 0$ is trivial and by lemma 5.5 the diffeomorphism f has a holomorphic lift $F_1 : V_1 \to V'_1$ which is a holomorphic diffeomorphism mapping the principal stratum to the principal stratum, and the reflection divisor to the reflection divisor, since G_2 contains no complex reflections on V_1. Thus the diffeomorphism F_1 has a holomorphic lift to V by Proposition 5.7, which is a holomorphic lift of f. □

6. An intrinsic characterization of a complex orbifold

We recall the definition of orbifold.

6.1. Definition. Let X be a Hausdorff space. An atlas of a smooth n-dimensional orbifold on X is a family $\{U_i\}_{i \in I}$ of open sets that satisfy:

1. $\{U_i\}_{i \in I}$ is an open cover of X.
2. For each $i \in I$ we have a local uniformizing system consisting of a triple $(\tilde{U}_i, G_i, \varphi_i)$, where \tilde{U}_i is a connected open subset of \mathbb{R}^n containing the origin, G_i is a finite group of diffeomorphisms acting effectively and properly on \tilde{U}_i, and $\varphi_i : \tilde{U}_i \to U_i$ is a continuous map of \tilde{U}_i onto U_i such that $\varphi_i \circ g = \varphi_i$ for all $g \in G_i$ and the induced map of \tilde{U}_i/G_i onto U_i is a homeomorphism. The finite group G_i is called a local uniformizing group.
3. Given $\tilde{x}_i \in \tilde{U}_i$ and $\tilde{x}_j \in \tilde{U}_j$ such that $\varphi_i(\tilde{x}_i) = \varphi_j(\tilde{x}_j)$, there is a diffeomorphism $g_{ij} : V_j \to V_i$ from a neighborhood $V_j \subseteq U_j$ of \tilde{x}_j onto a neighborhood $V_i \subseteq U_i$ of \tilde{x}_i such that $\varphi_j = \varphi_i \circ g_{ij}$.

Two atlases are equivalent if their union is again an atlas of a smooth orbifold on X. An orbifold is the space X with an equivalence class of atlases of smooth orbifolds on X.

If we take in the definition of orbifold \mathbb{C}^n instead of \mathbb{R}^n and require that G_i is a finite group of holomorphic diffeomorphisms acting effectively and properly on \tilde{U}_i and the maps g_{ij} are biholomorphic, we get the definition of complex analytic n-dimensional orbifold.
6.2. Theorem. [1] Let M be a smooth manifold and G a proper discontinuous group of diffeomorphisms of M. Then the orbit space M/G has a natural structure of smooth n-dimensional orbifold. If M is a complex n-dimensional manifold and G is a group of holomorphic diffeomorphisms of M, the orbit space M/G is a complex n-dimensional orbifold.

6.3 Definitions. In the definition of atlas of a complex orbifold on X we can always take \tilde{U}_i to be balls of the space \mathbb{C}^n (with respect to some Hermitian metric) centered at the origin and the finite subgroups G_i to be subgroups of the $GL(n)$ acting naturally on \mathbb{C}^n. In the sequel we consider atlases of complex orbifolds satisfying these conditions.

Let X be a complex orbifold with an atlas $(\tilde{U}_i, G_i, \varphi_i)$. A function $f : U_i \to \mathbb{C}$ is called holomorphic if $f \circ \varphi_i$ is a holomorphic function on \tilde{U}_i. The germs of holomorphic functions on X define a sheaf \mathcal{F}_X on X. It is evident that the sheaf \mathcal{F}_X depends only on the structure of complex orbifold on X.

Consider a uniformizing system $(\tilde{U}_i, G_i, \varphi_i)$ of the above atlas and the corresponding action of G_i on \mathbb{C}^n. Then we have the isotropy type stratification of the orbit space \mathbb{C}^n/G_i, the induced stratification of U_i, and the divisor D_i.

By corollary 5.2 we get the stratification on X by gluing the strata on the U_i's. Denote by X_0 the principal stratum of this stratification. By definition, for each $x \in X_0$, for each uniformizing system (U_i, G_i, φ_i), and for each $y \in \tilde{U}_i$ such that $\varphi_i(y) = x$, the isotropy group G_y of y is trivial. Note that X_0 is a complex manifold. Note that X_1 is also a complex manifold since this holds locally as noted in 3.5.

Denote by R_X the set of all strata of codimension 1 of X. Since the pullbacks of the reflection divisors D_{U_i} to $U_i \cap U_j$ agree by 5.2 we may glue them into the reflection divisor D_X on X_1.

6.4. Definition. Let X and \tilde{X} be two smooth orbifolds. The orbifold \tilde{X} is called a covering orbifold for X with a projection $p : \tilde{X} \to X$ if p is a continuous map of underlying topological spaces and each point $x \in X$ has a neighborhood $U = \tilde{U}/G$ (where U is an open subset of \mathbb{R}^n) for which each component V_i of $p^{-1}(U)$ is isomorphic to \tilde{U}/G_i, where $G_i \subseteq G$ is some subgroup. The above isomorphisms $U = \tilde{U}/G$ and $V_i = U/G_i$ must respect the projections.

Note that the projection p in the above definition is not necessarily a covering of the underlying topological spaces. It is clear that a covering orbifold for a complex orbifold is a complex orbifold. Hereafter we suppose that all orbifolds and their covering orbifolds are connected.

6.5. Theorem. [1] An orbifold X has a universal covering orbifold $p : \tilde{X} \to X$. More precisely, if $x \in X_0$, $\tilde{x} \in \tilde{X}_0$ and $p(\tilde{x}) = x$, for any other covering orbifold $p' : \tilde{X}' \to X$ and $\tilde{x}' \in \tilde{X}'$ such that $p'(\tilde{x}') = x$ there is a cover $q : \tilde{X} \to \tilde{X}'$ such that $p = p' \circ q$ and $q(\tilde{x}) = \tilde{x}'$. For any points $\tilde{x}, \tilde{x}' \in p^{-1}(x)$ there is a deck transformation of \tilde{X} taking \tilde{x} to \tilde{x}'.

Now we prove the main theorem of this section.

6.6. Theorem. An n-dimensional complex orbifold X is uniquely determined by the sheaf of holomorphic functions \mathcal{F}_X, the principal stratum X_0, and the reflection divisor D_X.

Proof. For each $x \in X$, there exists $V = \mathbb{C}^m$, a finite group $G \subset GL(m)$, a ball B in V centered at 0, an open subset U of X containing x, and an isomorphism $\psi : \pi(B) \to U$ between the sheaves $\mathcal{F}|_{\pi(B)}$ and $\mathcal{F}|_U$. Consider the map $\pi : V \to Z = V/G$, the stratum Z_0 and the reflection divisor D_Z. We suppose also that $\psi(Z_0 \cap B/G) \subseteq X_0$ and $\psi_\pi(D_{\pi(B)}) = D_U$. It suffices to prove that the germ of the uniformizing system $\{B, G, \psi \circ \pi|B\}$ at x is the germ of some uniformizing system of the orbifold X.

Let $y \in V_{\text{reg}} \cap B$. Then the ring $\mathcal{F}_Z(\pi(y))$ of germs of \mathcal{F}_Z at $\pi(y)$ is isomorphic to the ring of germs of holomorphic functions on \mathbb{C}^n at 0 and thus we have $m = n$.

Consider the uniformizing system $(\tilde{U}_i, G_i, \varphi_i)$ of the orbifold X, where \tilde{U}_i is a ball in \mathbb{C}^n centered at the origin, G_i is a finite subgroup of the group $GL(n)$ acting naturally on $V = \mathbb{C}^n$, and where $\varphi_i(0) = x$. Consider the map $\pi_i : V \to V/G_i$ given by some system of generators of $\mathbb{C}[V]^{G_i}$. We may assume that $\varphi_i = \psi_i \circ \pi_i|_{\tilde{U}_i}$, where $\psi_i : \mathcal{F}_{\tilde{U}_i}/G_i \to \mathcal{F}_{\tilde{U}_i}$ is an isomorphism of sheaves.

Then the maps ψ and ψ_i define a map (germ) f of a holomorphic diffeomorphism B/G to U_i/G_i at $0 := \pi(0)$ such that $f(0) = 0 := \pi_i(0)$. Then f induces an isomorphism $\mathcal{F}_{V/G}(0) \to \mathcal{F}_{V/G}(0)$, it maps $(B/G)_0$ to $(U_i/G_i)_0$ and $f_* (D_{B/G}) = D_{U_i/G_i}$. Thus by theorem 5.4 there is a germ of a holomorphic diffeomorphism $F : B \to \tilde{U}_i$ which is equivariant for a suitable isomorphism $G \to G_i$. □

6.7. Corollary. Let M be a complex simply connected manifold, G a proper discontinuous group of holomorphic diffeomorphisms of M, and \mathcal{F}_X the corresponding sheaf on the orbifold $X = M/G$. The G-manifold M is a universal covering orbifold for the orbifold X and it is defined uniquely up to a natural isomorphism of universal coverings by the sheaf \mathcal{F}_X, the principal stratum X_0, and by the reflection divisor D_X.

Proof. Evidently the manifold M is a covering orbifold for X. If \tilde{X} is a universal covering orbifold for X, by definition 6.4 there is a cover $\tilde{q} : \tilde{X} \to M$. By definition X should be a manifold and q a cover of manifolds. Therefore, q is a diffeomorphism. Then the statement of the corollary follows from theorem 6.6. □

An automorphism of the sheaf \mathcal{F}_X is called a holomorphic diffeomorphism of the orbit space X. Theorem 6.5 and corollary 6.7 imply the following analogue of Theorem 5.4.

6.8. Theorem. Let M be a complex simply connected manifold, G a proper discontinuous group of holomorphic diffeomorphisms of M, and \mathcal{F}_X the corresponding sheaf on the orbifold $X = M/G$. Each holomorphic diffeomorphism f of the orbit space X preserving X_0 and D_X has a holomorphic lift F to M, which is G-equivariant with respect to an automorphism of G. The lift F is unique up to composition by an element of G.

Proof. By theorem 6.6 and corollary 6.7 the manifold M with the map $f_{op} : M \to X$, where $p : M \to X$ is the projection, is a universal covering orbifold for X. Then there is a holomorphic diffeomorphism $F : M \to M$ such that $pF = f_{op}$. The equivariance property holds locally by 5.1, thus globally. The lift is uniquely given by choosing $F(x)$ for a regular point x in the orbit $f(p(x))$. \qed

6.9. Let V be a complex vector space with a linear action of a finite group G. The group C^* acts on V by homotheties and induces an action on $Z = V/G$.

Corollary. In this situation, the G-module V is uniquely defined up to a linear isomorphism by the sheaf $\mathfrak{F}_{V/G}$ with the action of C^*, by Z_0, and the reflection divisor D_Z. \qed

Proof. Consider the orbit space $Z = V/G$ of a G-module V with the sheaf $\mathfrak{F}_{V/G}$, regular stratum Z_0, reflection divisor D_Z, and the action of C^* induced by the action of C^* on V by homotheties. Suppose that we have another G'-module V' with the same data on $Z' = V'/G'$ such that there is a biholomorphic map $f : Z \to Z'$ preserving these data. By Theorem 4.5 there is a biholomorphic lift $F : V \to V'$, and by lemma 5.1 there is an isomorphism $a : G \to G'$ such that $F \circ g = a(g) \circ F$. Thus we may assume that $G = G'$, $V = V'$, $Z = Z'$, and a is the identity map. By definition the pullback A of the vector field on the orbit space V/G defined by the action of the group C^* on V/G coincides with the vector field on V defined by the above action of the group C^* on V. By construction $F^* A = A$ and then the map F commutes with the action of C^* on V, i.e. for each $t \in C^*$ and $v \in V$ we have $F(tv) = tF(v)$. Since F is biholomorphic it is a linear automorphism of the vector space V. By definition F is then an automorphism of the G-module V. \qed

6.10. Tensor fields and connections on orbifolds. The local results in section 3 show that the correct definition of a $\left(\frac{p}{q}\right)$-tensor field Q on an orbifold X is as follows: Q is a meromorphic $\left(\frac{p}{q}\right)$-tensor field on X_1 such that $\text{div}_{D_X}(Q) \geq 0$.

Likewise, we can define connections on orbifolds by requiring the local conditions of section 4.

References

[1] E. Bierstone, Lifting isotopies from orbit spaces, Topology 14 (1975), 245-252.
[2] M. Broué, G. Malle, R. Rouquier, Complex reflection groups, braid groups, Hecke algebras, J. reine angew. Math 500 (1998) 127-190.
[3] M. Losik, Lifts of diffeomorphisms of orbit spaces for representations of compact Lie groups, Geom. Dedicata, 88 (2001), 21-36.
[4] M. Losik, P.W. Michor, V.L. Popov, Invariant tensor fields and orbit varieties for finite algebraic transformation groups, arXiv:math.AG/0206005.
[5] D. Luna, Staces étalés, Bull. Soc. Math. France, Mémoire 33 (1973), 81-105.
[6] D. Luna, Sur certaines opérations différentiables des groupes de Lie, Amer. J. Math. 97 (1975), 172-181.
[7] D. Luna, Fonctions différentiables invariantes sous l’opération d’une groupe réductif, Ann. Inst. Fourier 26 (1976), 33-49.
[8] O. V. Lyashko, Geometry of bifurcation diagrams, J. Soviet Math. 27 (1984), 2736-2759.
[9] G.W. Schwarz, Lifting smooth homotopies of orbit spaces, Publ. Math. IHES 51 (1980), 37-136.
[10] L. Solomon, Invariants of finite reflection groups, Nagoya J. Math. 22 (1963), 57-64.
[11] W.P. Thurston, The geometry and topology of three-manifolds, Lect. Notes Princeton Univ. Press Princeton (1978)
A. Kriegl: Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria
E-mail address: Andreas.Kriegl@univie.ac.at

P. W. Michor: Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria; and: Erwin Schrödinger Institut für Mathematische Physik, Boltzmanngasse 9, A-1090 Wien, Austria
E-mail address: Peter.Michor@esi.ac.at

M. Losik: Saratov State University, ul. Astrakhanskaya, 83, 410026 Saratov, Russia
E-mail address: LosikMV@info.sgu.ru