Inflammatory conditions mediated by activated microglia lead to chronic neuro-degenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s diseases. This study was conducted to determine the effect of floridoside isolated from marine red algae Laurencia undulata on LPS (100 ng/ml) activated inflammatory responses in BV-2 microglia cells. The results show that floridoside has the ability to suppress pro-inflammatory responses in microglia by markedly inhibiting the production of nitric oxide (NO) and reactive oxygen species (ROS). Moreover, floridoside down-regulated the protein and gene expression levels of iNOS and COX-2 by significantly blocking the phosphorylation of p38 and ERK in BV-2 cells. Collectively, these results indicate that floridoside has the potential to be developed as an active agent for the treatment of neuro-inflammation. [BMB Reports 2013; 46(8): 398-403]

INTRODUCTION

Microglia, a resident macrophage cell in the CNS, comprises about 10% of the total glial cells of the brain (1). Upon activation, microglia change their morphology from ramified to amoeboid shape, and secrete inflammatory cytokines and neurotoxic factors (2). However, the excessive production of inflammatory mediators such as interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), nitric oxide (NO), prostaglandin E2 (PGE2), and reactive oxygen species (ROS) could lead to the breakdown of CNS balance (3). Previous reports indicated that excessive activation of microglia caused chronic neuro-degeneration in patients with Alzheimer’s, Parkinson’s, and Huntington’s diseases (4).

Chronic neuro-degeneration could be mimicked by a wide variety of stimulators, such as lipopolysaccharide (LPS), phorbol 12-myristate 13-acetate (PMA), and hydrogen peroxide (H2O2). Exposure to LPS particularly activates microglia through TLR4 receptor, and induces the secretion of pro-inflammatory mediators, eventually causing neuron injury (5). NO and PGE2 are secreted by activated microglia have been reported as crucial factors for the progression of neuro-inflammation (6-8). NO is generated through nitric oxide synthases enzyme (iNOS), while PGE2 is produced by cyclooxygenase-2 enzyme (COX-2) (9). The expression of iNOS and COX-2 are regulated via mitogen activated protein kinase (MAPK) signaling pathways (10-12).

Recently, more attention has been given to explore natural metabolites as potential therapeutic agents against toxicities associated with chronically activated microglia (13). For example, heptaiondil, panfuril, styptotriol trisacetate, and paeonol are natural marine substances that have been reported as potent neuro-protective agents (14, 15). Marine organisms are a source of plentiful bioactive metabolites, and marine red algae are an especially well-known source of anti-bacterial and anti-oxidant metabolites (16, 17). Floridoside, a natural glycerol oxidant metabolites, asinitially isolated in 1930 from the red algae, Laurencia undulata, by Colin and Gueguen (18). The molecular formula of floridoside is C10H18O8, and it contains six carbon rings with 4 hydroxyl groups and one galactopyranosyl residue with 2 hydroxyl groups (19). In a previous study, the ROS scavenging ability of floridoside was identified (19). The present study was planned to investigate the protective effects of floridoside against neuro-inflammation in LPS-activated BV-2 microglia cells.

RESULTS

Selection of the stimulator

Microglia cells are activated by the stimulation of LPS, PMA, and H2O2 (20, 21). These three stimulators were used to investigate the influence of different stimulators on NO production. BV-2 cells were treated with different concentrations (10, 50 and 100 ng/ml) of each stimulator for 24 h. As shown in Fig. 1B, LPS-treated BV-2 cells produced more NO over other stimulators. Therefore, LPS (100 ng/ml) was selected as the stimulator for this study.
To examine the effect of LPS with incubation time, the release levels of NO were tested in BV-2 cells treated with LPS (100 ng/ml) and incubated at different time intervals (3, 6, 18 and 24 h). As shown in Fig. 1C, NO secretion was significantly increased after 18 h. 24 h of incubation with LPS (100 ng/ml) was selected for BV-2 cell activation.

**NO inhibitory effect of floridoside in activated BV-2 cells**

Activated microglia cells lead to the generation of NO (22). Before the investigation of the NO inhibitory effect of floridoside on LPS-stimulated BV-2 cells, the cytotoxicity of floridoside was confirmed by MTT assay. BV-2 cells were treated with different concentrations of floridoside (1, 10 and 50 μM) for 24 h. As shown in Fig. 2A, all groups tested showed more than 90% cell viability. These results indicated that floridoside (1-50 μM) has no significant cytotoxicity on BV-2 cells (23-25).

As shown in Fig. 2B, LPS-induced NO production (% of control) of BV-2 cells was significantly decreased by floridoside was confirmed by MTT assay. BV-2 cells were treated with different concentrations of floridoside (1, 10 and 50 μM) for 24 h. As shown in Fig. 2A, all groups tested showed more than 90% cell viability. These results indicated that floridoside (1-50 μM) has no significant cytotoxicity on BV-2 cells (23-25).

As shown in Fig. 2B, LPS-induced NO production (% of control) of BV-2 cells was significantly decreased by floridoside was confirmed by MTT assay. BV-2 cells were treated with different concentrations of floridoside (1, 10 and 50 μM) for 24 h. As shown in Fig. 2A, all groups tested showed more than 90% cell viability. These results indicated that floridoside (1-50 μM) has no significant cytotoxicity on BV-2 cells (23-25).
Floridoside attenuate microglia via MAPK pathway
MinJeong Kim, et al.

Intracellular ROS scavenging effect of floridoside in activated BV-2 cells
To analyze the intracellular ROS scavenging effect of floridoside, BV-2 cells were activated with \( \text{H}_2\text{O}_2 \) (500 \( \mu \)M). Intracellular ROS levels were measured by detecting the fluorescence intensity of the oxidant-sensitive probe DCFH-DA. BV-2 cells were treated with different concentrations of floridoside (1, 10 and 50 \( \mu \)M) for 1 h, followed by stimulation with \( \text{H}_2\text{O}_2 \) (500 \( \mu \)M). As shown in Fig. 3, floridoside dose-dependently reduced intracellular ROS levels. The ROS scavenging effect was dose dependent, and 50 \( \mu \)M of floridoside decreased the fluorescence intensity by up to 59.89% compared to the control group untreated with floridoside.

Inhibitory effect of floridoside on iNOS and COX-2 expression in activated BV-2 cells
Activated microglia induces the expression of inflammatory enzymes such as iNOS and COX-2. Western blot and RT-PCR analysis were used to measure the protein and gene expression levels of iNOS and COX-2. To determine whether floridoside inhibits LPS-induced iNOS and COX-2 expression in BV-2 cells, cells were treated with LPS in the presence or absence of floridoside. As shown in Fig. 4A, mRNA and protein expression of iNOS and COX-2 have increased in LPS-treated BV-2 cells. However, the cell groups treated with floridoside showed dose-dependent inhibition of iNOS and COX-2 expression. Moreover, the cells treated with 50 \( \mu \)M of floridoside showed significantly lower iNOS and COX-2 expressions.

The floridoside-induced reduction in iNOS expression exhibits a similar pattern to that of the floridoside-mediated inhibition of NO production (Fig. 2B, 2C). These results indicate that floridoside has probably suppressed the NO production by reducing the protein and gene expression levels of iNOS.

DISCUSSION
Microglia residing in the CNS is involved in regulating im-
mune responses. However, the uncontrolled activation of microglia leads to progressive neurodegenerative disorders. Microglia are activated due to various stress factors. Upon activation, both immediate protein kinase responses and subsequent changes in the expression of hundreds of target genes lead to a neuro-inflammatory response (26). A number of reports have shown that activated microglia release excessive inflammatory mediators such as NO, ROS, and cytokines (27). Therefore, regulating microglia activation is considered a major target in the treatment of neuro-degenerative diseases.

In the current study, the effect of floridoside isolated from marine red algae Laurencia undulata against LPS-mediated BV-2 microglia activation was analyzed. Our results indicated that LPS stimulation elevates NO production via up-regulating iNOS expression more efficiently than other stimulators such as H_{2}O_{2} and PAA (Fig. 1B). Moreover, it was observed that NO production was highest at 24 hours of LPS (100 ng/ml) stimulation compared with non-stimulated microglial cells (Fig. 1C). From these results, it was identified that microglia cells activate and generate NO effectively by LPS (100 ng/ml) treatment for 24 hours.

Recently, many reports have focused on the identification of preventive agents from marine sources for neuro-inflammatory diseases (14, 15). In a previous study, it was found that floridoside shows a significant ROS scavenging effect on macrophage cells (19). Therefore, in this study, focus was centered on evaluating whether floridoside has the ability to control inflammatory responses in activated microglia. Under inflammatory conditions generated by 100 ng/ml of LPS, floridoside inhibited the NO and ROS production levels, dose- and time-dependently (Fig. 2B, 2C, 3). The unregulated production of NO and ROS by activated microglia cells could damage or mediate the death of nearby neurons, by inhibiting mitochondrial respiration in neuron cells (28). In addition, COX-2 also plays an important role in mediating PGE_{2} production, which is related to the neuro-inflammmatory response (29). Our results showed that floridoside significantly attenuated both the LPS-induced up-regulation of iNOS, COX-2 mRNA, and protein expressions, and thereby inhibited NO and PGE_{2} production levels.

Recent studies have revealed that marine compounds can attenuate signalling pathways, such as MAPK pathways - - JNK, p38, and ERK1/2 - - which are connected to the regulation of the neuro-inflammatory activity (13, 30). In this study, it was shown that the LPS-activated phosphorylation of p38 and ERK1/2 were inhibited by floridoside. However, the expression level of phospho-JNK did not inhibit by floridoside treatment (Fig. 4B). The p38 and ERK1/2 signalling pathways are known to regulate the transcription of pro-inflammatory enzymes like iNOS and COX-2. Moreover, recent research has also shown that NO production in microglia cell is suppressed via blocking ERK and p38 signalling pathways (31). Therefore, it could be suggested that the neuro-inflammatory response in activated microglia and the subsequent production of ROS and NO via overexpressed iNOS and COX-2 were inhibited by floridoside treatment, most probably through the suppression of p38 and ERK1/2 signalling pathways. Collectively, it can be suggested that floridoside has the potential to act against progressive neuron damage via regulating microglia activation.

The active focus of floridoside is ascribed to the six carbon rings with 4 hydroxyl groups and one galactopyranosyl residue with 2 hydroxyl groups (Fig. 1A). Most of the bioactive compounds show strong antioxidative activity by reacting as hydrogen- or electron-donating agents, and metal ion chelating properties of their phenolic groups. The results presented suggest that the floridoside with hydroxyl groups has higher protection against inflammation and oxidative stress. In conclusion, this study has revealed that floridoside effectively attenuates the inflammatory response in LPS-activated microglia cells via blocking p38 and ERK MAPK signalling pathways. Therefore, it could be suggested that floridoside could be developed as a candidate therapeutic agent against neuro-inflammation-mediated neuro-degeneration.

**MATERIALS AND METHODS**

**Chemicals and preparation**

Floridoside isolated from the red seaweed *L. undulata* was obtained from our previous study (19). BV-2 mouse microglia cells were purchased from Gibco BRL, Life Technologies (Grand Island, NY). Cell culture medium [DMEM], penicillin/streptomycin, FBS, and other materials required for culturing cells were purchased from Gibco BRL, Life Technologies (Grand Island, NY). *LPS of Escherichia coli* 026:B6, Griess reagent, and MTT were acquired from Sigma (St. Louis, US). Specific antibodies used for western blot analysis were purchased from Santa Cruz Biotechnology Inc. and Amersham Pharmacia Biosciences (Piscataway, US). Other chemicals and reagents used in this study were analytical grade.

**Cell culture and viability assay**

BV-2 cells were maintained in a 5% CO_{2} humidified atmosphere at 37°C in DMEM supplemented with 5% heat-inactivated FBS, 100 μg/ml of streptomycin, and 100 U/ml of penicillin. The cells were cultured via two to three passages per week. Before the experiment, the cells were conditioned at least 1 h in serum-free medium.

Cell viability was determined by MTT reduction assay, as described by Hansen et al. (32). In brief, the cells were pre-incubated overnight in 96-well plates and pre-treated with 100 ng/ml concentrations of LPS for 1 h. Then, the cells were treated with different concentrations (1, 10 and 50 μM) of floridoside and incubated at 37°C for 24 h. After the culture supernatants were removed, the resulting purple formazan were dissolved with DMSO (33). Absorbance values were read at 540 nm on a GENios microplate reader (Tecan Austria GmbH). Relative cell viability was calculated relative to the absorbance of the LPS untreated group.

http://bmbreports.org
ROS assay
Intracellular ROS levels were measured by detecting the fluo-
rescence intensity of the oxidant-sensitive DCFH-DA. In brief, DCFH-DA is diffused into the cells, and is de-acetylated by
acellular esterase to non-fluorescent 2'-7'-Dichlorodihydrofluor-
rescin (DCFH), which is rapidly oxidized to highly fluorescent
2', 7'-Dichlorodihydrofluorescin (DCF) by ROS. BV-2 cells
grown in fluorescence microtiter 96-well black plates were la-
beled with 20 μM DCFH-DA in HBSS, and incubated for 30
min in the dark at 37°C. Then, the cells were treated with dif-
ferent concentrations of floridoside and incubated for an addi-
tional 1 h. After the cells were washed with PBS 4 times, 500
μM H2O2 (100 μl) was added. The intensity of the fluo-
rescence signal was detected time-dependently with an ex-
citation wavelength of 485 nm and emission wavelength of
535 nm using a GENios microplate reader. The dose-depend-
ent and time-dependent effects of treatment groups were plot-
ted and compared with the fluorescence intensity of the con-
trol (H2O2 treated) and blank (H2O2 untreated) groups.

NO assay
NO production of the culture supernatants were measured by
the Griess reaction, as described earlier by Coker and Laurent
(34). In brief, nitrite is detected and analyzed by the formation
of red pink color upon mixing NO2- containing conditioned
media with Griess reagent. The cells were pre-treated with 100
ng/ml concentrations of LPS for 1 h. The cells were treated
with different concentrations of floridoside (1, 10, and 50 μM)
and incubated at 37°C for 24 h. Then, 50 μl of culture superna-
tants from each sample were mixed with the same volume
tin, and primer sequences were used to amplify the desired
cDNA fragment as follows: iNOS forward and reverse primers:
5'-CCCTTCCGAAGTGTTCCTGGAACAGC-3' and 5'-GGCTGTGCT
AGAGCTCCTGGCCTTGGG-3'; COX-2 forward and reverse
primers: 5'-GGGGTACCTTCACGGCTGCTCAAATCTC-3' and 5'-
GAAGATCTGGCAGGTAACCTGACC-3'; β-actin forward and
reverse primers: 5'-CCACAGCTGAGAGGAAATC-3' and 5'-
AAGGAAGGCTGAAAGACGTG-3'. The following PCR con-
titions were applied for all amplifications: 30 cycles of denatu-
ration at 94°C for 30 s, annealing at 57 oC for 30 s, and ex-
tended at 72°C for 30 s. The resulting cDNA was separated by
electrophoresis on 1% agarose gel for 15 min at 100 V, fol-
lowed by visualization under UV light after ethidium bromide
staining. Band intensities were quantified with Multi gauge
software (Fujifilm Life Science, Tokyo, Japan), and the bands of
dsiferent genes were normalized using β-actin as references.

Western blot analysis
Standard procedures were used for the Western blotting. In brief,
BV-2 cells pre-treated with LPS (100 ng/ml) for 1 h and
treated with different concentrations of floridoside (1, 10 and
50 μM) for 24 h in 37°C incubator were lysed in RIPA buffer
(sigma aldrich, USA), for 1 min. The remaining cell debris was
removed by centrifugation. The protein concentrations of the
cell lysates were determined using BCA method. Cell lysates
containing equal amounts of proteins (≈ 20 μg of total protein)
were separated by SDS-PAGE gel electrophoresis and elec-
tro-blotted onto a nitrocellulose membrane. The membranes
were blocked with 5% BSA and then incubated with desired
primary and secondary antibodies (primary antibodies; ERK,
pERK, JNK, p-JNK, p38, p-p38, COX-2, iNOS, β-actin, β-tubu-
lin (Santa Cruz)). The protein expressions were detected by
chemiluminescent ECL assay kit (Amersham Pharmacia Biosciences), according to the manufacturer’s instructions. Blots were visualized using an LAS3000® Luminescent image
analyzer, and the protein expression levels were quantified by
Multi Gauge V3.0 software (Fujifilm Life Science, Tokyo,
Japan).

RNA extraction and Reverse transcription (RT)-PCR analysis
Total RNA was extracted from BV-2 cells treated with LPS in
the presence or absence of floridoside using TRizol® reagent,
as reported in the manufacturer’s manual. The cDNA synthe-
sized from mRNA was then incubated for a further 1 h at
42°C. PCR was carried out in an automatic Whatman thermo-
cycler (Biometra, Kent, UK). Single-stranded cDNA was ampli-
ified by PCR with specific primers for iNOS, COX-2, and β-ac-
tin, and primer sequences were used to amplify the desired
cDNA fragment as follows: iNOS forward and reverse primers:
5'-CCCTTCCGAAGTGTTCCTGGAACAGC-3' and 5'-GGCTGTGCT
AGAGCTCCTGGCCTTGGG-3'; COX-2 forward and reverse
primers: 5'-GGGGTACCTTCACGGCTGCTCAAATCTC-3' and 5'-
GAAGATCTGGCAGGTAACCTGACC-3'; β-actin forward and
reverse primers: 5'-CCACAGCTGAGAGGAAATC-3' and 5'-
AAGGAAGGCTGAAAGACGTG-3'. The following PCR con-
titions were applied for all amplifications: 30 cycles of denatu-
ration at 94°C for 30 s, annealing at 57°C for 30 s, and ex-
tended at 72°C for 30 s. The resulting cDNA was separated by
electrophoresis on 1% agarose gel for 15 min at 100 V, fol-
lowed by visualization under UV light after ethidium bromide
staining. Band intensities were quantified with Multi gauge
software (Fujifilm Life Science, Tokyo, Japan), and the bands of
specific genes were normalized using β-actin as references.

Statistical analysis
All data are presented as means ± standard deviation (SD).
The mean values were calculated based on data from at least
three independent experiments that were conducted on sepa-
rate days using freshly prepared reagents. Data were analyzed
using the analysis of variance (ANOVA) test of the statistical
package for the social sciences (SPSS). Significance differences
between treatment groups were determined using Tukey b
multiple range tests. The significance of differences was de-
fined at the P < 0.05 level.

Acknowledgements
This research was supported by a Grant from the Marine
Bioprocess Research Center of the Marine Biotechnology
Program, funded by the Ministry of Land, Transport, and
Maritime Affairs, Republic of Korea.

REFERENCES
1. Yokoyama, A., Yang, L., Itoh, S., Mori, K. and Tanaka, J. (2004)
Microglia, a potential source of neurons, astrocytes, and
oligodendrocytes. Glia. 45, 96-104.
2. Vilhardt, F. (2005) Microglia: phagocyte and glia cell. Int. J.
Biochem. Cell Biol. 37, 17-21.
3. Matyszak, M. K. (1998) Inflammation in the CNS: balance
between immunological privilege and immune responses.
Prog. Neurobiol. 56, 19-33.
4. Lull, M. E. and Block, M. L. (2010) Microglial activation and
chronic neurodegeneration. Neurotherapeutics 7, 354-365.
5. Lehndrt, S., Massillon, L., Follett, P., Jensen, F. E., Ratan, R., Rosenberg, P. A., Volpe, J. J. and Vartanian, T. (2003) Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc. Natl. Acad. Sci. U. S. A. 100, 8514-8519.
6. Corbett, J. A., Sweetland, M. A., Wang, J. L., Lancaster, J. R., Jr. and McDaniel, M. L. (1993) Nitric oxide mediates cytokine-induced inhibition of insulin secretion by human islets of Langerhans. Proc. Natl. Acad. Sci. U. S. A. 90, 1730-1733.
7. Salvemini, D., Seibert, K., Masferrer, J. L., Misko, T. P., Currie, M. G. and Needleman, P. (1994) Endogenous nitric oxide enhances prostaglandin production in a model of renal inflammation. J. Clin. Invest. 93, 1940-1947.
8. Vane, J. R., Mitchell, J. A., Appleton, I., Tomlinson, A., Bishop-Bailey, D., Croxtall, J. and Willoughby, D. A. (1994) Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation. Proc. Natl. Acad. Sci. 91, 2046-2050.
9. Bae, D. S., Kim, Y. H., Pan, C. H., Nho, C. W., Samdan, J., Yansan, J. and Lee, J. K. (2011) Protepine reduces the inflammatory activity of lipopolysaccharide-stimulated murine macrophages. BMB Rep. 45, 108-113.
10. Thalhamer, T., McGrath, M. A. and Harnett, M. M. (2008) MAPKs and their relevance to arthritis and inflammation. Rheumatology 47, 409-414.
11. Takebe, K., Nishiyama, T., Hayashi, S., Hashimoto, S., Fujishiro, T., Kanzaki, N., Kawakita, K., Iwasa, K., Kuroda, R. and Kurosaka, M. (2011) Regulation of p38 MAPK phosphorylation inhibits chondrocyte apoptosis in response to heat stress or mechanical stress. Int. J. Mol. Med. 27, 329-335.
12. Kim, S. B., Jung, E. S., Shin, S. W., Kim, M. H., Kim, Y. S., Lee, J. S. and Park, D. H. (2012) Anti-inflammatory activity of Camellia Japonica oil. BMB Rep. 45, 177-182.
13. Park, H. Y., Han, M. H., Park, C., Jin, C. Y., Kim, G. Y., Choi, I. W., Kim, N. D., Narri, T. J., Kwon, T. K. and Choi, Y. H. (2011) Anti-inflammatory effects of fucoidan through inhibition of NF-kappaB, MAPK and Akt activation in lipopolysaccharide-induced BV2 microglia cells. Food Chem. Toxicol. 49, 1745-1752.
14. Gil, B., Ferrandiz, M. L., Sanz, M. J., Terencio, M. C., Ubeda, A., Rovira, J., San-Martín, A., Alcaraz, M. J. and Paya, M. (1995) Inhibition of inflammatory responses by epitaoidol and other marine natural products. Life Sci. 57, 25-30.
15. Hiraya, S. W., Ryu, B., Qian, Z. J., Li, Y. and Kim, S. K. (2011) 1-(5-bromo-2-hydroxy-4-methoxyphenyl) ethanone [SE1] suppresses pro-inflammatory responses by blocking NF-kappaB and MAPK signaling pathways in activated microglia. Eur. J. Pharmacol. 670, 608-616.
16. Kelman, D., Posner, E. K., Mcdermid, K. J., Tabanera, N. K., Wright, P. R. and Wright, A. D. (2012) Antioxidant activity of Hawaiian marine algae. Mar. Drugs 10, 403-416.
17. Xu, N., Fan, X., Yan, X., Li, X., Niu, R. and Tseng, C. K. (2003) Antibacterial bromophenols from the marine red alga Rhodomela confervoides. Phytochemistry 62, 1221-1224.
18. Colin, H. and Guéguen, E. (1930) The constitution of the principle sugar of Rhodymenia palmata. Cr Hebd. Seances Acad. Sci. 191, 163-164.
19. Li, Y. X., Li, Y., Lee, S. H., Qian, Z. J. and Kim, S. K. (2010) Inhibitors of oxidation and matrix metallopeptinases, floridoside, and D-isofloridoside from marine red alga Laurencia undulata. J. Agric. Food Chem. 58, 578-586.
20. Smith, M. E., van der Maesen, K. and Somera, F. P. (1998) Macrophage and microglial responses to cytokines in vitro: phagocytic activity, proteolytic enzyme release, and free radical production. J. Neurosci. Res. 54, 68-78.
21. Brown, G. C. and Neher, J. J. (2010) Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol. Neurobiol. 41, 242-247.
22. Nakanishi, H., Zhang, J., Koike, M., Nishioku, T., Okamoto, Y., Kominami, E., von Figura, K., Peters, C., Yamamoto, K., Saftig, P. and Uchiyama, Y. (2001) Involvement of nitric oxide released from microglia-macrophages in pathological changes of the retina in diabetic mice. J. Neurosci. 21, 7526-7533.
23. Lee, Y. Y., Hung, S. L., Pai, S. F., Lee, Y. H. and Yang, S. F. (2007) Eugenol suppressed the expression of lipopolysaccharide-induced proinflammatory mediators in human macrophages. J. Endod. 33, 698-702.
24. Krissanapiboon, A., Buranapanitkit, B. and Oungbhoo, K. (2006) Biocompatibility of hydroxyapatite composite as a local drug delivery system. J. Orthop. Surg. 14, 315-318.
25. Li, Q. and Verma, I. M. (2002) NF-kappaB regulation in the immune system. Nat. Rev. Immunol. 2, 725-734.
26. Ekdahl, C. T., Kokaia, Z. and Lindvall, O. (2009) Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 158, 1021-1029.
27. Petersen, L. J. and Flood, P. M. (2012) Oxidative stress and microglial cells in Parkinson’s disease. Mediators Inflamm. 2012, 1-12.
28. Beal, M. F. (1998) Excitotoxicity and nitric oxide in Parkinson’s disease pathogenesis. Ann. Neurol. 44, S10-S14.
29. Clara, J. (2003) Cyclooxygenase-2 biology. Curr. Pharm. Des. 9, 2177-2190.
30. Hirama, S. W. A., Ryu, B., Qian, Z. J. and Kim, S. K. (2012) Paenol from Hippocampus kuda Bleeler suppressed the neuro-inflammatory responses in vitro via NF-kB and MAPK signaling pathways. Toxicology in Vitro. 26, 878-887.
31. Zhang, G., HE, J. L., Xie, X. Y. and Yu, C., (2012) LPS-induced iNOS expression in N9 microglial cells is suppressed by geniposide via ERK, p38 and nuclear factor-kB signaling pathways. Int. J. Mol. Med. 30, 561-568.
32. Hansen, M. B., Nielson, S. E. and Berg, K. (1989) Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods. 119, 203-210.
33. Rajapakse, N., Kim, M. M., Mendis, E. and Kim, S. K. (2008) Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 in lipopolysaccharide-stimulated RAW264.7 cells by carboxybutyrylated glucosamine takes place via down-regulation of mitogen-activated protein kinase-mediated nuclear factor-kappaB signaling. Immunochemistry 123, 348-357.