Multi-gene Phylogenetic Analysis and Genetic Diversity of Discrete Elytral Color Phenotypes in *Menochilus sexmaculatus* (Coleoptera: Coccinellidae)

Weidong Huang1,2,3, Xinyue Liang1,2,3, Xiufeng Xie4, Xingmin Wang2,3 and Xiaosheng Chen1,2,3 *

1Department of Forest Protection, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510640, China.
2Key Laboratory of Bio-Pesticide Innovation and Application, Guangdong Province, Guangzhou 510642, China
3Engineering Research Center of Biocontrol, Ministry of Education and Guangdong Province, Guangzhou 510640, China.
4Guangdong Agriculture Industry Business Polytechnic College, Guangzhou 510507, China.

ABSTRACT

The phenotype variations of elytral color patterns are common in ladybird beetles. However, phylogenetic relationships and genetic diversity of discrete color patterns in coccinellids is still poorly known. Here, we present a comprehensive genetic diversity analyses and phylogenetic relationships within seventeen different phenotypes of elytral color patterns in *Menochilus sexmaculatus* based on two mitochondrial genes, cytochrome oxidase subunit I (COI) and II (COII), and two nuclear genes, carbamoyl phosphate synthetase (CAD) and histone subunit 3 (H3). Results indicated the average genetic distance was 0.005 among the different elytral forms of *M. sexmaculatus* based on combined dataset, which shows very close genetic relationships among them. Results also showed a high level of haplotype diversity (H Hancock = 0.902) and the low level of nucleotide diversity (Pi = 0.004). In addition, the number of haplotypes was 17 and the same elytral color patterns of *M. sexmaculatus* didn’t share the same haplotype. Furthermore, phylogenetic analyses showed all *M. sexmaculatus* samples formed a single clade, but the identical elytral pattern individuals do not cluster together as no special relationships among different phenotypes individuals. Our systematic analyses illustrated the same elytral forms of *M. sexmaculatus* do not possess closely-related phylogenetic relationships. However, these clear photographs of different elytral color patterns of *M. sexmaculatus* and the results of our analyses may prevent our incorrect identification for this species.

INTRODUCTION

Insect body coloration often shows genetically different forms even within a population, which may be important for intra- and interspecific communication and adaption to the local environment (Noriyuki and Osawa, 2015). Color polymorphisms provide some of the best characterized examples of functionally and ecologically important polymorphism. Insect melanism describes the occurrence of varied pigment patterns both within and between closely linked species making them polymorphic (True, 2003). During the past two decades, the genetics underlying variation in melanism have been unraveled for several species of insects (Lommen et al., 2012). These variations result either from genetic polymorphism or phenotypic plasticity (Schilthuizen and Kellermann, 2014).

The family Coccinellidae (ladybird beetles) belonging to the superfamily Coccinelloidea within the suborder Polyphaga of the order Coleoptera (Hunt et al., 2007; Robertson et al., 2015), are well known biological control agents. Ladybird beetles have long been studied by geneticists and evolutionary biologists to investigate the origin and maintenance of discrete color pattern forms in natural population (Majerus, 1994). Variations of elytral color patterns are widespread within different coccinellid species, such as *Harmonia axyridis* (Pallas, 1773), *Phrynocaria unicolor* (Fabricius, 1792), *Calvia quatuordecimguttata* (Linnaeus, 1758), *Propylea japonica* (Thunberg, 1781), *Menochilus sexmaculatus* (Fabricius, 1781) and others (Yu, 2008). In particular, the harlequin
ladybird *H. axyridis* is an emblematic species of elytral color pattern polymorphism, with more than 200 distinct color patterns described around the world (Ando et al., 2018; Gautier et al., 2018), and have brought difficulties in their identification or nomenclature. Intraspecific variation in color patterns of ladybird beetles has been studied for many decades (Millar et al., 1999). Recently, the phylogenetic relationships of different color patterns within *H. axyridis* was investigated based on 12S rRNA and 16S rRNA genes (Yao et al., 2011). The color polymorphism of this species was controlled by the transcription factor *pannier* (Gautier et al., 2018).

Menochilus sexmaculatus is a polymorphic aphidophagous ladybird with wide prey range and distribution (Kawakami et al., 2013). However, the broad distribution and multiple color forms in *M. sexmaculatus* were usually confused for their identification (Fig. 1). This species is known to have 20 phenotypes of elytral polymorphs according to the ratios of elytral red and black areas (Kawakami et al., 2013, 2018). Meanwhile, the phylogenetic relationships and genetic diversity of different color patterns within *M. sexmaculatus* is still poorly known.

Recently, polymorphism has become the focus of attention in population ecology as well as evolutionary biology as it can contribute to population productivity, stability and persistence (Wennersten and Forsman, 2012; Forsman, 2013; Takahashi et al., 2014). Here we investigate the molecular phylogenetic analyses and genetic diversity of different elytral color forms in *M. sexmaculatus* based on two mitochondrial genes (cytochrome oxidase subunit I (COI) and II (COII)) and two nuclear genes (carbamoyl phosphate synthetase (CAD) and histone subunit 3 (H3)). The aim of this study is testing the different color patterns of *M. sexmaculatus* whether possess phylogenetically specific relationships.

MATERIALS AND METHODS

Sampling

Multiple elytral color forms in *M. sexmaculatus* (Fig. 1) were collected from Guangdong Province, China during September 2017. Each phenotype was sampled by two individuals. After collection, the specimens were preserved in absolute ethanol. Detailed sample information is shown in Table I.

DNA extraction and PCR

Total genomic DNA was extracted using the TIANGEN DNA extracting kit (TianGen Biochemistry, Beijing, China) following the manufacturer’s instructions. Four gene regions (two mitochondrial genes COI, COII, and two nuclear genes CAD, H3) were amplified and sequenced. The primers information was listed in Table II. Polymerase chain reactions (PCR) were performed in 25 μL volumes containing 12 μL 2 × EasyTaq PCR SuperMix (TransGen Biotech, Beijing, China), 10 μL ultrapure water, 1 μL of each primer and 1 μL DNA template. PCR cycling conditions consisted of initial denaturation at 94 ℃ for 3 min, 35 cycles of 94 ℃ for 30 s, 50 ℃ for 30 s, 72 ℃ for 1 min, and ending with a final extension at 72 ℃ for 5 min. For COI and CAD, we used a semi-nested approach. We performed an initial PCR reaction using following primer pairs: CD806F3/CD1098R2 for CAD, COIIF-leu/COIIR-lys for COII. One microliter of product from initial reaction was used as template for the semi-nested reaction using primers CD821F/CD1098R2 for CAD, COIIF-leu/COIIR-9b for COII. Successful amplification was assessed using gel electrophoresis on 1% agarose gels by adding 5 μL PCR product. All obtained sequences were compared using BLAST against GenBank to ensure that the target sequences were amplified.

Alignment and sequence analyses

Target sequences were manually cleared, trimmed and
Table I. All samples number and code information.

Number	Code	Specimen	Haplotype	Number	Code	Specimen	Haplotype
1	A1	*M. sexmaculatus*	H1	18	I2	*M. sexmaculatus*	H4
2	A2	*M. sexmaculatus*	H2	19	J1	*M. sexmaculatus*	H4
3	B1	*M. sexmaculatus*	H3	20	J2	*M. sexmaculatus*	H13
4	B2	*M. sexmaculatus*	H4	21	K1	*M. sexmaculatus*	H14
5	C1	*M. sexmaculatus*	H5	22	K2	*M. sexmaculatus*	H7
6	C2	*M. sexmaculatus*	H6	23	L1	*M. sexmaculatus*	H15
7	D1	*M. sexmaculatus*	H4	24	L2	*M. sexmaculatus*	H16
8	D2	*M. sexmaculatus*	H7	25	M1	*M. sexmaculatus*	H11
9	E1	*M. sexmaculatus*	H4	26	M2	*M. sexmaculatus*	H4
10	E2	*M. sexmaculatus*	H8	27	N1	*M. sexmaculatus*	H7
11	F1	*M. sexmaculatus*	H7	28	N2	*M. sexmaculatus*	H7
12	F2	*M. sexmaculatus*	H9	29	O1	*M. sexmaculatus*	H11
13	G1	*M. sexmaculatus*	H4	30	O2	*M. sexmaculatus*	H13
14	G2	*M. sexmaculatus*	H10	31	P1	*M. sexmaculatus*	H4
15	H1	*M. sexmaculatus*	H11	32	P2	*M. sexmaculatus*	H7
16	H2	*M. sexmaculatus*	H12	33	Q1	*M. sexmaculatus*	H13
17	H1	*M. sexmaculatus*	H7	34	Q2	*M. sexmaculatus*	H17

Table II. Information on the primer sequences and corresponding genes information.

Marker	Primer name	Primer sequence (5’-3’)	Reference
COI	Jerry F	CAACATTTAATTTGATTTTTT	Timmermans *et al*., 2010
	Spat R	GCACATTCTGATGATATTAG	
COII	COIIIF-leu	TCTAAATGGGAGATTAGTC	Robertson *et al*., 2013
	COIIIR-lys	GAGACCAGTACTTGCTTTCAGTC	
	COIIIR-9b	GTACTTGCTTTCAGTCATCATWAG	
CAD	CD806F3	TTAATGTTTTGATGATAGG	Wild and Maddison, 2008
	CD821F	AGACCAAAATGCGAGATGAA	
	CD1098R2	GCTAATGTTGGATGGATGGAT	
	H3F	ATGCCATGCAACAGATGAG	Robertson *et al*., 2013
	H3R	ATATCCTGCTGACATATGAG	

Phylogenetic analyses

Both methods of maximus likelihood (ML) and Bayesian inference (BI) were employed to explore the phylogenetic relationships within different elytra color forms in *M. sexmaculatus*. Three datasets were assembled for phylogenetic analyses: (1) the P1 matrix, including only mtDNA; (2) the P2 matrix, including only nuclear genes; (3) the P3 matrix, including both mtDNA and nuclear genes. *Psyllobora vigintiduopunctata* (Linnaeus, 1758) and *Halyzia straminea* (Hope, 1831) were chosen as outgroups. Together with *M. sexmaculatus* they belong
to the tribe Coccinellini according to previous studies (Escalona et al., 2017).

Partition Finder 1.1.1 (Lanfear et al., 2012) was used to infer the optimal partition schemes and models of molecular evolution for the concatenated data sets, applying an all search approach with branch lengths unlinked across partitions and the Bayesian information criterion (BIC). The ML analyses were conducted with the program RAxML 8.0 (Stamatakis, 2006). Since it is not currently possible to specify different models of substitution for different partitions in RAxML, we used GAMMA model for each ML analysis. Branch support was estimated with 500 replicates using a rapid bootstrapping algorithm (Stamatakis et al., 2008). The BI analyses were calculated in MrBayes 3.2 (Ronquist et al., 2012). Two Markov Chain Monte Carlo (MCMC) runs were performed with one cold and three heated chains for 30 million generations and sampled every 1000 generations. The consensus tree was estimated after a burn-in of 25% of the sampled trees. The chain stationarity was visualized by plotting likelihoods against the generation number using the program Tracer 1.6 (Rambaut et al., 2014).

RESULTS

Genetic diversity and structure

To gain insight into the genetic diversity of the different elytral forms of *M. sexmaculatus*, we analyzed the genetic variation of 34 individuals standing for 17 phenotypes of elytral forms, based on 759 bp for CAD, 829 bp for COI, 722 bp for COII and 328 bp for H3, 2638 bp in total. These sequences were deposited in GenBank under the accession number MH589128-MH589261 (Supplementary Table S1). The average nucleotide contents of A, T, G and C were 35.1%, 25.9%, 22.4% and 16.6% for CAD, 33.7%, 37.9%, 13.8% and 14.6% for COI, 35.3%, 38.9%, 11.2% and 14.6% for COII, 27.7%, 20.8%, 23.8% and 27.7% for H3, and 33.8%, 32.6%, 16.8% and 16.8% for combined dataset, respectively. The nucleotide compositions of CAD, COI and COII were similar, having high A + T content, but H3 gene G + C content were slightly higher than A + T content. In four gene regions, there were 15 variable sites for CAD gene sequences, 9 of which were parsimony informative, 17 variable sites for COI gene sequences, 11 of which were parsimony informative, 11 variable sites for COII gene sequences, 9 of which were parsimony informative, 2 variable sites for H3 gene sequences, 2 of which were parsimony informative, whilst 45 variable sites for combined dataset sequences, 31 of which were parsimony informative.

Based on single gene, the genetic structure of 17 different phenotypes of color forms in *M. sexmaculatus* was also analyzed. The number of CAD haplotypes was higher, with 13 haplotypes, whilst the number of haplotypes for H3 was least, only 3 haplotypes were found. The haplotype diversity (*h*) was remarkably high (0.731) for CAD, and the nucleotide diversity (*π*) of COI was highest (0.007) (Table III). Besides, the combined dataset was used to analyse the genetic structure of the different phenotypes of elytral forms in *M. sexmaculatus*. Results show that the number of haplotypes was 17, the haplotype diversity was 0.902 and the nucleotide diversity was 0.004. For the haplotypes of the combined dataset, eight individuals shared the H4 haplotype and seven individuals shared the H7 haplotype, H1-H3, H5-H6, H8-H10, H12, H14-H17 were represented by only one individual (Table I). However, the same elytral color patterns in *M. sexmaculatus* did not shared the same haplotype.

The estimated intra-specific genetic distance based on combined dataset among the different elytral forms in *M. sexmaculatus* ranged from 0 to 0.011 (Supplementary Table S2). The average genetic distance was 0.005, and the maximum genetic distance between *M. sexmaculatus*-C2 and *M. sexmaculatus*-H1 was 0.011.

Table III. Genetic structure of different elytral forms in *M. sexmaculatus* been revealed by CAD, COI, COII and H3 gene.

Gene	Nh	Hₜ	Pᵢ
CAD	13	0.731	0.003
COI	6	0.693	0.007
COII	5	0.624	0.005
H3	3	0.324	0.002
Combined	17	0.902	0.004

Nh, number of haplotypes; *Hₜ*, haplotype diversity; *Pᵢ*, nucleotide diversity

Table IV. Partitions and evolutionary substitution models of different datasets.

Dataset	Composition	Partition scheme	Evolutionary substitution models
P1	mtDNA gene	COI + COII	TIM + I
P2	Nuclear gene	CAD + H3	TRN + G
P3	mtDNA and	COI + COII +	GTR + G
	nuclear gene	CAD + H3	

Phylogenetic analyses

The best-fit partition scheme with corresponding substitution models for each dataset was shown in Table IV. Based on P1 and P3 datasets, the ML and BI topologies respectively resulting from RAxML and MrBayes analyses
were largely congruent except for several specimens showing the different placement (Figs. 2 and 4). We recover the thirty-four specimens of *M. sexmaculatus* forming monophyletic clade with strong support in both ML and BI analyses (P1: BS/PP = 100/1; P3: BS/PP = 88/1). Two major clade groups were recognized one clade includes 16 individuals, the second clade includes 18 individuals. However, when P2 dataset was used the resulted topology was different that the tree topologies inferred from P1 and P3 datasets (Fig. 3). This difference is mainly manifested in incongruent basal branching.

DISCUSSION

Morphological polymorphisms are well studied and provide evidence of natural variation and micro evolutionary processes occurring in nature (Ford, 1964). Ladybird beetles are one of the classical groups in studying the mechanisms that determine local and temporal trends in color polymorphism. Hence among the frequently studied polymorphic taxa ladybird beetles occupy the main position, especially the results of studies on the polymorphism in the pattern and color of their head (Rogers *et al*., 1971), pronotum (Blehman, 2007) and elytra (Yao *et al*., 2011).
mitochondrial (COI and COII) and two nuclear (CAD and H3) genes, we analyzed the phylogenetic relationships and genetic diversity of seventeen different phenotypes of elytral forms in *M. sexmaculatus*. Base composition analyses indicated the *M. sexmaculatus* of mitochondria genes COI and COII with A + T content apparently higher than G + C content, according with the feature of A + T high content in insect mitochondrial genes (Simon *et al.*, 1994) and the average genetic distance based on combined dataset was 0.005 and shows their close relationships. Either single gene or combined data sets consistently revealed the lower levels of nucleotide diversity in different phenotypes in *M. sexmaculatus*. In phylogenetic analyses of molecular sequence data, choosing an appropriate partitioning scheme is an important step in most analyses due to it can affect the accuracy of phylogenetic reconstruction (Lanfear *et al.*, 2012). Based different datasets resulted in molecular phylogenies analyses showed thirty-four individuals of 17 different elytral forms in *M. sexmaculatus* formed a clade with high support value, and the two individuals of the same elytral forms do not cluster together indicated the different color patterns of *M. sexmculatus* do not possess specific relationship phylogenetically. Similar research has been reported by Yao *et al.* (2011) who conducted phylogenetic analyses based on mitochondrial genes among different elytral forms of *H. axyridis*. In most cases the occurrence of morphs appears to be associated with climatic factors such as temperature, visual predation (Brakefield, 1985) and industrial pollution (Zakharov, 2003). Dubey *et al.* (2016) used different temperature regimes to assess the mate choice, reproductive success and offspring coloration of typical and melanic morphs of the *M. sexmaculatus*. Their findings on offspring phenotype variation indicated that the degree of melanism in morphs is a result of environmentally regulated expression of the parental genotype.

In addition to these factors have mentioned above, understanding the genetic mechanisms generating and maintaining such phenotypic variation within species is essential to comprehending morphological diversity. Indeed the genetic and ecological mechanism for the maintenance of elytral color polymorphism in ladybirds is not fully understood (Noriyuki and Osawa, 2015). However, Gautier *et al.* (2018) combined whole-genome sequencing, population genomic, gene expression and functional analyses, showed that the gene *pannier* controls melanic pattern polymorphism in *H. axyridis*. They also pointed out that *pannier*, which encodes an evolutionary conserved transcription factor, is necessary for the formation of melanic elements on the elytra. Allelic variation in *pannier* leads to protein expression in distinct domains on the elytra, and thus determines the distinct color patterns in *H. axyridis*. Meanwhile, Ando *et al.* (2018) through loss-of-function analyses, genetic association studies, de novo genome assemblies, and gene expression data revealed that repeated inversions within a *pannier* intron drive diversification of intraspecific color patterns of *H. axyridis*. These findings provide a reference for our understanding the genetic mechanisms of the elytral color polymorphism in *M. sexmaculatus*. Therefore, in order to definitely unravel specific causes result in phenotype diversity for *M. sexmaculatus*, combine genetic data and environmental data is needed in further research.

Fig. 4. Phylogenetic tree of the different elytral forms of *Menochilus sexmaculatus* based on mitochondrial genes (COI and COII) and nuclear genes (CAD and H3) obtained from RAxML and MrBayes. All *M. sexmaculatus* samples are labeled by steel-blue, the codes following sample name in this figure correspond to the code in Table I. Bootstrap support and posterior probabilities are shown near the nodes.

ACKNOWLEDGEMENTS

We are grateful to Xiaoshuang Wang for her guidance on molecular experiments. We are deeply indebted to Dr.
Shaukat Ali (SCAU), who helped to check the English text. We also would like to express our great appreciation to the anonymous reviewers for their valuable suggestions and comments on our manuscript, which improved this article surely. The present study was supported by the Natural Science Foundation of Guangdong Province (2017A030313212), the National Natural Science Foundation of China (31601878, 31970441), the Science and Technology Program of Guangzhou (201804020070), and the Biodiversity Survey and Assessment Project of the Ministry of Ecology and Environment, China (2019HJ2096001006). This work is also supported in part by the scholarship from China Scholarship Council (CSC) under the Grant No. 201908440171.

Supplementary material
There is supplementary material associated with this article. Access the material online at: https://dx.doi.org/10.17582/journal.pjz/20210128120158

Statement of conflict of interest
The authors declare no conflict of interest.

REFERENCES

Ando, T., Matsuda, T., Goto, K., Hara, K., Ito, A., Hirata, J., Yatomi, J., Kajitani, R., Okuno, M., Yamaguchi, K., Kobayashi, M., Takano, T., Minakuchi, Y., Seki, M., Suzuki, Y., Yano, K., Itoh, T., Shigenobu, S., Toyoda, A. and Nimm, T., 2018. Repeated inversions within a pannier intron drive diversification of intraspecific colour patterns of ladybird beetles. Nat. Commun., 9: 3843–3855. https://doi.org/10.1038/s41467-018-06116-1

Blehmian, A.V., 2007. Variability of pronotum patterns in ladybird beetle Harmonia axyridis Pallas (Coleoptera, Coccinellidae). Ecol. Genet., 5: 25–36. https://doi.org/10.17816/ecogen5225-36

Brakefield, P.M., 1985. Polymorphic Müllerian mimicry and interactions with thermal melanism in ladybirds and a soldier beetle: A hypothesis. Biol. J. Linn. Soc., 26: 243–267. https://doi.org/10.1111/j.1095-8312.1985.tb01635.x

Dubey, A., Omkar and Mishra, G., 2016. Influence of temperature on reproductive biology and phenotype of a ladybird, Menochilus sexmaculatus (Fabricius) (Coleoptera: Coccinellidae). J. therm. Biol., 58: 35–42. https://doi.org/10.1016/j.jtherbio.2016.03.011

Escalona, H.E., Zwick, A., Li, H.S., Li, J.H., Wang, X.M., Pang, H., Hartley, D., Jermin, L.S., Nedvéd, O., Misof, B., Niehuis, O., Slipiński, A. and Tomaszewska, W., 2017. Molecular phylogeny reveals food plasticity in the evolution of true ladybird beetles (Coleoptera: Coccinellidae: Coccinellini). BMC Evol. Biol., 17: 151–161. https://doi.org/10.1186/s12862-017-1002-3

Ford, E.B., 1964. Ecological genetics. Adv. Sci., 25: 227–235.

Forsman, A., 2013. Effects of genotypic and phenotypic variation on establishment are important for conservation, invasion and infection biology. Proc. natl. Acad. Sci. USA, 111: 302–307. https://doi.org/10.1073/pnas.1317745111

Gautier, M., Yamaguchi, J., Foucaud, J., Loiseau, A., Ausset, A., Facon, B., Gschloessl, B., Lagnel, J., Loire, E., Pannello, H., Severac, D., Lopez-Roques, C., Donnadieu, C., Manno, M., Berges, H., Gharbi, K., Lawson-Handley, L., Zang, L.S., Vogel, H., Estoup, A. and Prudhomme, B., 2018. The genomic basis of color pattern polymorphism in the harlequin ladybird. Curr. Biol., 28: 3296–3302. https://doi.org/10.1016/j.cub.2018.08.023

Hunt, T., Bergsten, J., Levkanicova, Z., Papadopoulou, A., John, O.S., Wild, R., Hammond, P.M., Ahrens, D., Balke, M., Caterino, M.S., Jesus, G.Z., Ribera, I., Barracough, T.G., Bocakova, M., Bocak, L. and Vogler, A.P., 2007. A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science, 318: 1913–1916. https://doi.org/10.1126/science.1146954

Kawakami, Y., Yamazaki, K. and Ohashi, K., 2013. Geographical variations of elytral color polymorphism in Cheilomenes sexmaculata (Fabricius) (Coleoptera: Coccinellidae). Ent. Sci., 16: 235–242. https://doi.org/10.1111/ens.12005

Kawakami, Y., Yamazaki, K. and Ohashi, K., 2018. Effects of temperature on the expression of elytral colour polymorphism in the ladybird beetle, Menochilus sexmaculatus (Coleoptera: Coccinellidae). J. Asia-Pac. Ent., 21: 663–666. https://doi.org/10.1016/j.aspen.2018.04.008

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thiere, T., Ashton, B., Meintjes, P. and Drummond, A., 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28: 1647–1649. https://doi.org/10.1093/bioinformatics/bts199

Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. mol. Evol. 16: 111–120. https://doi.org/10.1007/BF01731581
Kumar, S., Stecher, G. and Tamura, K., 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol., 33: 1870–1874. https://doi.org/10.1093/molbev/msw054

Lanfear, R., Calcott, B., Ho, S.Y.W. and Guindon, S., 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29: 1695–1701. https://doi.org/10.1093/molbev/mss020

Librado, P. and Rozas, J., 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25: 1451–1452. https://doi.org/10.1093/bioinformatics/btp187

Lommen, S.T.E., de-Jong, P.W., Koops, K.G. and Brakefield, P.M., 2012. Genetic linkage between melanism and winglessness in the ladybird beetle Adalia bipunctata. Genetica, 140: 229–233. https://doi.org/10.1007/s10709-012-9674-5

Lowe, A., Harris, S. and Ashton, P., 2004. Ecological genetics: design, analysis, and application. Blackwell Publishing, Oxford

Majerus, M.E.N., 1994. Ladybird. Collins New Naturalist, Glasgow

Millar, C., Lambert, D. and Majerus, M.E.N., 1999. Melanism: evolution in action. BioScience, 49: 1021–1023. https://doi.org/10.1525/bio.1999.49.12.1021

Noriyuki, S. and Osawa, N., 2015. Geographic variation of color polymorphism in two sibling ladybird species, Harmonia yedoensis and H. axyridis (Coleoptera: Coccinellidae). Ent. Sci., 18: 502–508. https://doi.org/10.1111/ens.12147

Rambaut, A., Suchard, M.A., Xie, D. and Drummond, A.J., 2014. Tracer v1.6. Available at http://beast.bio.ed.ac.uk/Tracer.

Robertson, J.A., Ślipiński, A., Hiatt, K., Miller, K.B., Whiting, M.F. and McHugh, J.V., 2013. Molecules, morphology and minute hooded beetles: a phylogenetic study with implications for the evolution and classification of Coryphidae (Coleoptera: Cucujoidae). Syst. Ent., 38: 209–232. https://doi.org/10.1111/j.1365-3113.2012.00655.x

Robertson, J.A., Ślipiński, A., Moulton, M., Shockley, F.W., Giorgi, A., Lord, N.P., McKenna, D., Tomaszewksa, W., Forrester, J., Miller, K.B., Whiting, M.F. and McHugh, J.V., 2015. Phylogeny and classification of Cucujoidae and the recognition of a new superfamily Coccinelloidea (Coleoptera: Cucujiformia). Syst. Ent., 40: 745–778. https://doi.org/10.1111/syen.12138

Rogers, C.E., Jackson, H.B., Eikenary, R.D. and Starks, K.J., 1971. Sex determination in Propylea 14-punctata (Coleoptera: Coccinellidae), an imported predator of aphids. Annls entomol. Soc. Am., 64: 957–959. https://doi.org/10.1093/aeas/64.4.957

Ronquist, F., Teslenk, M., Mark, P.V.D., Ayres, D.L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M.A. and Huelsenbeck, J., 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol., 61: 539–542. https://doi.org/10.1093/sysbio/sys029

Schilthuizen, M. and Kellermann, V., 2014. Contemporary climate change and terrestrial invertebrates: Evolutionary versus plastic changes. Evol. Appl., 7: 56–67. https://doi.org/10.1111/eva.12116

Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H. and Flook, P., 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annls entomol. Soc. Am., 87: 651–701. https://doi.org/10.1093/asa/87.6.651

Stamatakis, A., Hoover, P. and Rougemont, J., 2008. A rapid bootstrap algorithm for the RAxML web servers. Syst. Biol., 57: 758–771. https://doi.org/10.1080/10635150802429642

Stamatakis, A., 2006. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22: 2688–2690. https://doi.org/10.1093/bioinformatics/btj125

Takahashi, Y., Kagawa, K., Svensson, E.I. and Kawata, M., 2014. Evolution of increased phenotypic diversity enhances population performance by reducing sexual harassment in damselflies. Nat. Commun., 5: 4468–4474. https://doi.org/10.1038/ncomms5468

Timmermans, M.J.T.N., Dodsworth, S., Culverwell, C.L., Bocak, L., Ahrens, D., Littlewood, D.T.J., Pons, J. and Vogler, A.P., 2010. Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics. Nucl. Acids Res., 38: e197–e197. https://doi.org/10.1093/nar/gkq807

True, J.R., 2003. Insect melanism: The molecules matter. Trends Ecol. Evol., 18: 640–647. https://doi.org/10.1016/j.tree.2003.09.006

Vaidya, G., Lohman, D.J. and Meier, R., 2011. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics, 27: 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x

Wennersten, L. and Forsman, A., 2012. Population-level consequences of polymorphism, plasticity and randomized phenotype switching: A review of
predictions. *Biol. Rev.*, 87: 756–767. https://doi.org/10.1111/j.1469-185X.2012.00231.x

Wild, A.L. and Maddison, D.R., 2008. Evaluating nuclear protein-coding genes for phylogenetic utility in beetles. *Mol. phylogenet. Evol.*, 48: 877–891. https://doi.org/10.1016/j.ympev.2008.05.023

Yao, D.B., Chi, D.F, Wu, Q.Y., Li, X.C. and Yu, J., 2011. Molecular phylogenetic relationships of different color forms within *Harmonia axyridis* Pallas (Coleoptera: Coccinellidae) based on sequences of 12S rRNA and 16S rRNA gene. *Adv. Mater. Resear.*, 183: 757–767. https://doi.org/10.4028/www.scientific.net/AMR.183-185.757

Yu, G.Y., 2008. *Ladybird*. Chemical Industry Press, Beijing

Zakharov, I.A., 2003. Industrial melanism and its dynamics in populations of the two-spot ladybird *Adalia bipunctata* L. *Usp. Sovr. Biol.*, 123: 3–15.
Supplementary Material

Multi-gene Phylogenetic Analysis and Genetic Diversity of Discrete Elytral Color Phenotypes in *Menochilus sexmaculatus* (Coleoptera: Coccinellidae)

Weidong Huang1,2,3, Xinyue Liang1,2,3, Xiufeng Xie4, Xingmin Wang2,3 and Xiaosheng Chen1,2,3*

1Department of Forest Protection, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510640, China.

2Key Laboratory of Bio-Pesticide Innovation and Application, Guangdong Province, Guangzhou 510642, China

3Engineering Research Center of Biocontrol, Ministry of Education and Guangdong Province, Guangzhou 510640, China.

4Guangdong Agriculture Industry Business Polytechnic College, Guangzhou 510507, China.

Supplementary Table S1. GenBank accession numbers.

Specimen	Code	COI	COI I	CAD	H3
M. sexmaculatus A1	MH89162	MH89194	MH89228	MH89128	
M. sexmaculatus A2	MH89163	MH89195	MH89229	MH89129	
M. sexmaculatus B1	MH89164	MH89196	MH89230	MH89130	
M. sexmaculatus B2	MH89165	MH89197	MH89231	MH89131	
M. sexmaculatus C1	MH89166	MH89198	MH89232	MH89132	
M. sexmaculatus C2	MH89167	MH89199	MH89233	MH89133	
M. sexmaculatus D1	MH89168	MH89200	MH89234	MH89134	
M. sexmaculatus D2	MH89169	MH89201	MH89235	MH89135	
M. sexmaculatus E1	MH89170	MH89202	MH89236	MH89136	
M. sexmaculatus E2	MH89171	MH89203	MH89237	MH89137	
M. sexmaculatus F1	MH89172	MH89204	MH89238	MH89138	
M. sexmaculatus F2	MH89173	MH89205	MH89239	MH89139	
M. sexmaculatus G1	MH89174	MH89206	MH89240	MH89140	
M. sexmaculatus G2	MH89175	MH89207	MH89241	MH89141	
M. sexmaculatus H1	MH89176	MH89208	MH89242	MH89142	
M. sexmaculatus H2	MH89177	MH89209	MH89243	MH89143	
M. sexmaculatus I1	MH89178	MH89210	MH89244	MH89144	
M. sexmaculatus I2	MH89179	MH89211	MH89245	MH89145	
M. sexmaculatus J1	MH89180	MH89212	MH89246	MH89146	
M. sexmaculatus J2	MH89181	MH89213	MH89247	MH89147	
M. sexmaculatus K1	MH89182	MH89214	MH89248	MH89148	
M. sexmaculatus K2	MH89183	MH89215	MH89249	MH89149	
M. sexmaculatus L1	MH89184	MH89216	MH89250	MH89150	
M. sexmaculatus L2	MH89185	MH89217	MH89251	MH89151	
M. sexmaculatus M1	MH89186	MH89218	MH89252	MH89152	
M. sexmaculatus M2	MH89187	MH89219	MH89253	MH89153	
M. sexmaculatus N1	MH89188	MH89220	MH89254	MH89154	
M. sexmaculatus N2	MH89189	MH89221	MH89255	MH89155	
M. sexmaculatus O1	MH89190	MH89222	MH89256	MH89156	
M. sexmaculatus O2	MH89191	MH89223	MH89257	MH89157	
M. sexmaculatus P1	MH89192	MH89224	MH89258	MH89158	
M. sexmaculatus P2	MH89193	MH89225	MH89259	MH89159	
M. sexmaculatus Q1	MH89194	MH89226	MH89260	MH89160	

* Corresponding author: xshchen@scau.edu.cn

Copyright 2021 Zoological Society of Pakistan
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Supplementary Table S2: The genetic distance of the different elytra forms in M. sexmaculatus based on combined dataset.