The mean curvature flow for equifocal submanifolds

Naoyuki Koike

Tokyo University of Science
koike@ma.kagu.tus.ac.jp

December 19, 2013
14. The mean curvature flow for an isoparametric submanifold (Liu-Terng’s result)
15. The outline of the proof of Liu-Terng’s result
16. The mean curvature flow for an equifocal submanifold
17. An isoparametric submanifold in a Hilbert space
18. The mean curvature flow for a regularizable proper Fredholm submanifold
19. The outline of the proof of the results
14. The mean curvature flow for an isoparametric submanifold (Liu-Terng’s result)
The mean curvature flow for an isoparametric submanifold (Liu-Terng’s result)

The mean curvature flow for an isoparametric submanifold

\(M \): an \(n \)-dimensional manifold

\(f : M \hookrightarrow \mathbb{R}^{n+r} \): an embedding

We identify \(M \) with \(f(M) \).

Definition

\(M \): an isoparametric submanifold

\(\iff \)

- the normal holonomy group of \(M \) is trivial
- for any parallel normal vec. fd. \(v \) of \(M \),
 the principal curvatures for \(v_x \) are independent of \(x \in M \)
The mean curvature flow for an isoparametric submanifold (Liu-Terng’s result)

The mean curvature flow for an isoparametric submanifold

\(M \) : an isoparametric submanifold

\[\text{Fix } x_0 \in M. \]

The focal set of \(M \) at \(x_0 \) consists of finite pieces of hyperplanes \(\{l_1, \cdots, l_k\} \) in \(T_{x_0}^\perp M \).

The reflections w.r.t. \(l_i \)'s generate a Weyl group. Fundamental domains of this group are called the \textbf{Weyl domain} of \(M \).
The mean curvature flow for an isoparametric submanifold (Liu-Terng’s result)

The mean curvature flow for an isoparametric submanifold

$T_{x_0}^\perp M$

Weyl domain
The mean curvature flow for an isoparametric submanifold (Liu-Terng’s result)

The mean curvature flow for an isoparametric submanifold

\[M : \text{a compact isoparametric submanifold in } \mathbb{R}^{n+r} \]

\[M_t (0 \leq t < T) : \text{the mean curvature flow for } M \]
The mean curvature flow for an isoparametric submanifold

Theorem 14.1 (Liu-Terng (Duke M.J.-2009)).

(i) $M_t (0 \leq t < T)$ are parallel submanifolds of M
(ii) $T < \infty$
(iii) $F := \lim_{{t \to T}} M_t$ is a focal submanifold of M
(iv) If the natural fibration $pr : M \to F$ is spherical, then $M_t (0 \leq t < T)$ is of type I singularity

\[
\begin{align*}
\left(\text{i.e., } \sup_{{t \in [0,T)}} \left((T - t) \max_{{v \in S^\perp M_t}} ||A^t_v||^2 \right) < \infty \right) \\
\left(A^t : \text{the shape tensor of } M_t \right) \\
\left(S^\perp M_t : \text{the unit normal bd of } M_t \right)
\end{align*}
\]

Remark

\[pr : M \to F \iff pr(f(x)) := \lim_{{t \to T}} f_t(x) \ (x \in M) \]
The mean curvature flow for an isoparametric submanifold (Liu-Terng’s result)

The mean curvature flow for an isoparametric submanifold

\[\text{pr} : M \rightarrow F : \text{spherical} \]
The mean curvature flow for an isoparametric submanifold (Liu-Terng’s result)

The mean curvature flow for an isoparametric submanifold

\[T_{x_0}^\perp M \]

\[pr : M \to F \quad : \text{not spherical} \]
Question 2.

How does the m.c. flow for F collapse in the case where F is not minimal?
The mean curvature flow for an isoparametric submanifold (Liu-Terng’s result)

The mean curvature flow for an isoparametric submanifold

\[\tilde{C} \subset T_{x_0}^\perp M \] : a Weyl domain
\[C := \exp^\perp(\tilde{C}) (= x_0 + \tilde{C}) \]
\[\sigma : \text{a simplex of } \partial C \ (\dim \sigma \geq 1) \]
\[F : \text{a focal submanifold of } M \text{ through } \tilde{\sigma} \]
\[F_t (0 \leq t < T) : \text{the mean curvature flow for } F \]
The mean curvature flow for an isoparametric submanifold (Liu-Terng’s result)

The mean curvature flow for an isoparametric submanifold

Theorem 14.2 (Liu-Terng (Duke M.J.-2009)).

(i) \(F_t (0 \leq t < T) \) are focal submanifolds of \(M \) thr. \(\dot{\sigma} \)

(ii) \(T < \infty \)

(iii) \(F' := \lim_{t \to T} F_t \) is a focal submanifold of \(M \) thr. \(\partial \sigma \)

(iv) If the natural fibration \(\text{pr} : F \to F' \) is spherical

then \(F_t (0 \leq t < T) \) is of type I singularity.
The mean curvature flow for an isoparametric submanifold (Liu-Terng’s result)

The mean curvature flow for an isoparametric submanifold

\[M_t \xrightarrow{(t \to T_1)} F^1 \]
\[F^1_t \xrightarrow{(t \to T_2)} F^2 \]

\[\vdots \]

\[F^{k-1}_t \xrightarrow{(t \to T_k)} \{ \text{pt} \} \]

\[
\begin{pmatrix}
F^1 : \text{a focal submanifold of } M \\
F^i : \text{a focal submanifold of } F^{i-1} (i = 2, \cdots, k - 1)
\end{pmatrix}
\]
15. The outline of the proof of Liu-Terng’s result
M : an isoparametric submanifold in \mathbb{R}^{n+r}

$M_t \ (0 \leq t < T) :$ the mean curvature flow for M
The outline of the proof of Liu-Terng’s result

$x_0 \in M$

$\tilde{C} (\subset T_{x_0}^\perp M)$: the fundamental domain of the Weyl group of M containing x_0

Definition

\[
\begin{align*}
X : & \text{ a tangent vector field on } \tilde{C} \\
X_w := & \left(H^w \right)_{x_0+w} (w \in \tilde{C}) \\
H^w : & \text{ the mean curvature vector of } \eta_{\tilde{w}}(M) \\
\eta_{\tilde{w}} : & \text{ the end-point map for a p. n. v. f. } \tilde{w} \text{ s.t. } \tilde{w}x_0 = w
\end{align*}
\]
The outline of the proof of Liu-Terng’s result

\[\eta(w)(M) \]

\[H^w \]

\[x_0 + w \]

\[X_w \]

\[\tilde{C} \]
The outline of the proof of Liu-Terng’s result

\{ \psi_t \} : a local one-parameter transf. gr. of \(X \)

\(\xi(t) := \psi_t(0) \quad (0 : \text{the zero vector of } T_{x_0}^\perp M) \)

\(\widetilde{\xi(t)} : \text{the parallel n.v.f. of } M \text{ s.t. } \widetilde{\xi(t)}_{x_0} = \xi(t) \)

Lemma 15.1.

\[M_t = \eta_{\widetilde{\xi(t)}}(M) \]

Thus the statement (i) of Theorem 14.1 is shown.
The outline of the proof of Liu-Terng’s result

\[M \]

\[\eta_{\xi(t)}(M) \]

\[x_0(=0) \]

\[\xi(t) \]

\[\tilde{C} \]
Thus we suffice to analyze X in order to analyze the mean curvature flow M_t.

$$X \underbrace{\longrightarrow}_{\text{Lem 15.1}} \xi(t) \underbrace{\longrightarrow}_{\text{Lem 15.1}} M_t$$
The outline of the proof of Liu-Terng’s result

A: the shape tensor of M

$T_x M = \bigoplus_{i \in I_x} E^x_i \ (\text{common eigensp. decomp. of } A_v\text{'s})$

$(v \in T^\perp_x M))$

$\lambda^x_i : T^\perp_x M \to \mathbb{R} \overset{\text{def}}{\leftrightarrow} A_v|_{E^x_i} = \lambda^x_i(v) \text{id} \ (v \in T^\perp_x M)$

Fact 1.

$\lambda^x_i \in (T^\perp_x M)^*$
By ordering E_i^x’s ($x \in M$) suitably, we may assume that

\[\forall i \in I(\equiv I_x), \]

\[E_i : x \mapsto E_i^x (x \in M) : C^\infty \text{-distribution} \]

curvature distribution

\[\lambda_i \in \Gamma((T^\perp M)^*) \iff (\lambda_i)_x := \lambda_i^x (x \in M) \]

principal curvature

\[n_i \in \Gamma(T^\perp M) \iff \lambda_i = \langle n_i, \cdot \rangle \quad (i \in I) \]

curvature normal
Fact 2.

\[\bigcup_{i \in I} (\lambda_i)_{x}^{-1}(1) = \text{"the focal set of } M \text{ at } x\text{"} \]

Fact 3.

\[\tilde{C} = \{ w \in T_{x_0}^\perp M \mid (\lambda_i)_{x_0}(w) < 1 \ (i \in I) \} \]
The outline of the proof of Liu-Terng’s result

\[m_i := \dim E_i \ (i \in I) \]

Lemma 15.2.

\[X_w = \sum_{i \in I} \frac{m_i}{1 - (\lambda_i)x_0(w)(n_i)x_0} \]

Remark.

\[X_w = 0 \iff \eta_{\tilde{w}}(M) \text{ : minimal} \]
Proof of (ii) of Theorem 14.1

\[\xi_0 \in \bigcap_{i \in I} (\lambda_i)^{-1}(x_0)(1) \]

From Lemma 15.2, we have

\[\frac{d}{dt} ||\xi(t) - \xi_0||^2 = 2\langle \xi'(t), \xi(t) - \xi_0 \rangle \]
\[= 2\langle X_{\xi(t)}, \xi(t) - \xi_0 \rangle = -2n \quad (n := \dim M) \]

On the other hand, we can show the following fact:

∃Φ : a polynomial map of \(T_{x_0}^\perp M \) onto \(\mathbb{R}^r \) (r := codim M)

s.t. \(\Phi|_{\widetilde{C}} : (\widetilde{C} \to \mathbb{R}^r) : \text{into homeomorphism} \)

\(\Phi_*X : \text{a polynomial vec. fd.} \)
The outline of the proof of Liu-Terng’s result

$\Phi(T_{x_0}^\perp M)$

$(\Phi|_{\overline{C}})^{-1}$

Flows of $X|_{\overline{C}}$

Y

(The extension of $\Phi_*(X)$)
From these facts, it is shown that

$$\xi(t)$$ converges to a point w_1 of $\partial \tilde{C}$
as $t \to T(< \infty)$.

Since $M_t = \eta_{\tilde{\xi}(t)}(M)$ by Lemma 15.1,

M_t collapses to the focal submanifold $\eta_{\tilde{w}_1}(M)$
as $t \to T(< \infty)$.

q.e.d.
16. The mean curvature flow for an equifocal submanifold
The mean curvature flow for an equifocal submanifold

\[(N, \langle , \rangle) : \text{a Riemannian manifold}\]

\[M : \text{an embedded submanifold in } N\]

\[\exp^\perp : \text{the normal exponential map of } M\]

\[v_0 \in T^\perp_{x_0} M\]

Definition

\[s_0 : \text{a focal radius along } \gamma_{v_0}\]

\[\overset{\text{def}}{\iff} \gamma_{v_0}(s_0) : \text{a focal point of } M \text{ along } \gamma_{v_0}\]

\[\overset{\iff}{(\text{Ker } \exp^\perp_{s_0 v}) \cap (T_{s_0 v}(T^\perp M) \setminus V_{s_0 v}) \neq \{0\})\]

\[(V_{s_0 v} : \text{the vertical space of } T^\perp M \text{ at } s_0 v)\]
The mean curvature flow for an equifocal submanifold

\[G/K : \text{a symmetric space of compact type} \]
\[M : \text{an embedded submanifold in } G/K \]

Definition (Terng-Thorbergsson (JDG-1995))

\[M : \text{an equifocal submanifold} \]

\[\begin{align*}
&\exists \text{ M is compact} \\
&\exists \text{ the normal holonomy group of } M \text{ is trivial} \\
&\exists \text{ M has flat section} \\
&\exists \text{ for any parallel normal vec. fd. } v \text{ of } M, \\
&\text{the focal radii along } \gamma_{vx} \text{ are indep. of } x \in M
\end{align*} \]
M has flat section

\[\iff \text{def} \quad \forall x \in M, \quad \Sigma_x := \exp_{x}^{-1}(T_{x}^\perp M) \text{ is totally geodesic and flat.} \]
\(M \): an equifocal submanifold in \(G/K \)

\(x_0 \in M \)

The focal set of \(M \) at \(x_0 \) consists of the images of finite pieces of infinite parallel families of hyperplanes \((\mathcal{L}_a := \{l_{ai} \mid i \in \mathbb{Z}\} \ (a = 1, \cdots, k))\) in \(T_{x_0} M \) by the normal exponential map.

The reflections w.r.t. \(l_{ai} \)'s generate a discrete group, that is, a Coxeter group.

This group is called the Coxeter group of \(M \).
The mean curvature flow for an equifocal submanifold
The mean curvature flow for an equifocal submanifold

G/K : a symmetric space of compact type

M : a non-minimal equifocal submanifold in G/K

$M_t (0 \leq t < T)$: the mean curvature flow for M
The mean curvature flow for an equifocal submanifold

The mean curvature flow for an equifocal submanifold

Theorem 16.1(K. (Asian J.M.-2011)).

(i) $M_t (0 \leq t < T)$ are parallel submanifolds of M
(ii) $T < \infty$
(iii) $F := \lim_{t \to T} M_t$ is a focal submanifold of M
(iv) If M is irreducible, if $\text{codim } M \geq 2$, and if the natural fibration $\text{pr} : M \to F$ is spherical, then $M_t (0 \leq t < T)$ is of type I singularity.
The mean curvature flow for an equifocal submanifold.

Question.

How does the mean curvature flow for F collapse?
The mean curvature flow for an equifocal submanifold

\(\tilde{C}(\subset T^\perp_{x_0} M) \) : a fundamental domain (s.t. \(0 \in \tilde{C} \)) of the Coxeter group of \(M \)

\(C := \exp^\perp(\tilde{C}) \)

\(\sigma \) : a stratum of \(\partial C \) (\(\dim \sigma \geq 1 \))

\(F \) : a non-minimal focal submanifold through \(\tilde{\sigma} \)

\(F_t (0 \leq t < T) \) : the mean curvature flow for \(F \)
The mean curvature flow for an equifocal submanifold

Theorem 16.2 (K. (Asian J.M.-2011)).

(i) $F_t (0 \leq t < T)$ are focal submanifolds of M through σ
(ii) $T < \infty$
(iii) $F' := \lim_{t \to T} F_t$ is a focal submanifold of M through $\partial \sigma$
(iv) If M is irreducible, if codim $M \geq 2$
and if the natural fibration $\text{pr} : F \to F'$ is spherical,
then $F_t (0 \leq t < T)$ is of type I singularity.
The mean curvature flow for an equifocal submanifold

\[M_t \underset{(t \rightarrow T_1)}{\longrightarrow} F^1 \text{ non-min.} \]
\[F^1_t \underset{(t \rightarrow T_2)}{\longrightarrow} F^2 \text{ non-min.} \]
\[\cdots \]
\[F^{k-1}_t \underset{(t \rightarrow T_k)}{\longrightarrow} F^k \text{ min.} \]

\(F^1 : \text{a focal submanifold of } M \)

\(F^i : \text{a focal submanifold of } F^{i-1} \) \((i = 2, \cdots, k)\)
The mean curvature flow for an equifocal submanifold

\[\tilde{M} := (\pi \circ \phi)^{-1}(M) \hookrightarrow H^0([0, 1], g) \]

\[\downarrow \phi \]

\[\downarrow G \]

\[\downarrow \pi \]

\[M \leftrightarrow G/K \]

\[M : \text{equifocal} \iff \tilde{M} : \text{isoparametric} \]
17. Isoparametric submanifolds in a Hilbert space
Isoparametric submanifolds in a Hilbert space

\[V : \text{an } \infty\text{-dimensional (separable) Hilbert space} \]

\[f : M \hookrightarrow V : \text{an immersion of finite codimension} \]

Definition (Terng (JDG-1989)).

\[f : M \hookrightarrow V : \text{a proper Fredholm submanifold} \]

\[\iff \quad \begin{cases}
\exp_{\perp}|_{B_{-1}(M)} : \text{proper map} \\
\exp_{\ast v} : \text{Fredholm op. } (\forall v \in T_{-1}^\perp M) \\
\exp_{\perp} : \text{the normal exponential map of } M \\
B_{-1}(M) : \text{the unit normal bundle map of } M
\end{cases} \]
Fact

The shape operator of a proper Fredholm submanifold is compact operator.

Definition (Terng (JDG-1989)).

\(f : M \leftrightarrow V \) : an isoparametric submanifold

\[\begin{align*}
\text{def} & \quad \text{the normal holonomy group of } M \text{ is trivial} \\
& \quad \text{For any parallel normal vec. fd. } v \text{ of } M, \\
& \quad \text{the principal curvature}'s for } v_x \\
& \quad \text{are independent of } x \in M
\end{align*}\]
$f : M \hookrightarrow V$: an isoparametric submanifold

$x_0 \in M$

The focal set of M at x_0 consists of finite pieces of infinite parallel families of hyperplanes in $T_{x_0} M$.

$(\mathcal{L}_a := \{l_{ai} \mid i \in \mathbb{Z}\} \ (a = 1, \cdots, k))$

The reflections w.r.t. l_{ai}’s generate a discrete group, that is, a Coxeter group.
This group is called the Coxeter group of M.
Isoparametric submanifolds in a Hilbert space
Isoparametric submanifolds in a Hilbert space

\[f : M \hookrightarrow V : \text{a proper Fredholm submanifold} \]

Definition (Heintze-Liu-Olmos (2006)).

\[f : M \hookrightarrow V : \text{a regularizable submanifold} \]

\[\left\{ \begin{array}{l}
\forall v \in T^\perp M, \\
\exists \text{Tr}_r A_v (< \infty), \quad \exists \text{Tr}(A_v^2) (< \infty) \\
\text{Tr}_r A_v := \sum_{i=1}^{\infty} (\lambda_i + \mu_i) \\
(Spec A_v = \{ \mu_1 \leq \mu_2 \leq \cdots \leq 0 \leq \cdots \leq \lambda_2 \leq \lambda_1 \}) \\
\text{Tr}(A_v^2) := \sum_{i=1}^{\infty} \nu_i \\
(Spec A_v^2 = \{ \nu_1 \geq \nu_2 \geq \cdots > 0 \})
\end{array} \right. \]
18. The mean curvature flows for a regularizable submanifold
The mean curvature flows for a regularizable submanifold

$V : \text{an } \infty\text{-dimensional (separable) Hilbert space}$

$f : M \hookrightarrow V : \text{a regularizable submanifold}$

Definition (Heintze-Liu-Olmos (2006)).

$H \overset{\text{def}}{\leftrightarrow} \langle H, v \rangle = \text{Tr}_r A_v \quad (\forall v \in T^\perp M)$

This normal vector field H is called

a regularized mean curvature vector.
$f_t : M \hookrightarrow V \ (0 \leq t < T) : \text{a } C^\infty\text{-family of regularizable submanifolds}$

$\tilde{f} : M \times [0, T) \to V$

$\overset{\text{def}}{\iff} \tilde{f}(x, t) := f_t(x) \ ((x, t) \in M \times [0, T))$
The mean curvature flows for a regularizable submanifold

Definition (K. (Asian J.M.-2011))

\[f_t \quad (0 \leq t < T) \quad : \text{the (regularized) mean curvature flow} \]

\[\frac{\partial f}{\partial t} \quad \overset{\text{def}}{=} \quad H_t \quad (0 \leq t < T) \]

\[(H_t \quad : \text{the regularized mean curv. vec. of } f_t) \]

Question.

For any regularizable submanifold \(f \), does the mean curvature flow for \(f \) uniquely exist in short time?
In order to solve this question affirmatively, we must show the Hilbert vector bundle version of the Hamilton’s theorem for the evolution of a section of a (finite dim.) vector bundle. However, since a regularizable submanifold can be not compact, we must assume a certain kind of compactness for the submanifold.
The mean curvature flows for a regularizable submanifold

\(G/K \) : a symmetric space of compact type

\(M \) : a compact submanifold in \(G/K \)

\(\phi : H^0([0, 1], g) \rightarrow G \) : the parallel transport map for \(G \)

\[
\begin{align*}
\phi(u) &:= g_u(1) \quad (u \in H^0([0, 1], g)), \\
\text{where } g_u &\text{ is the element of } H^1([0, 1], G) \text{ s.t.} \\
g_u(0) &= e \text{ and } (R_{g_u(t)})^{-1}(g_u'(t)) = u(t) \quad (\forall t \in [0, 1])
\end{align*}
\]

\pi : G \rightarrow G/K : the natural projection

Set \(\tilde{\phi} := \pi \circ \phi \).

\(\tilde{M} := \tilde{\phi}^{-1}(M) \) (\(\leftarrow \) \(H^0([0, 1], g) \))
The mean curvature flows for a regularizable submanifold

Fact.

- \(\widetilde{M} \) is a regularizable submanifold.
- There uniquely exists the mean curvature flow \(\widetilde{M}_t \) for \(\widetilde{M} \) in short time.
19. The outline of the proof of Theorems 16.1 and 16.2
M : a non-minimal equifocal submanifold in G/K

$M_t \ (0 \leq t < T) :$ the mean curvature flow for M
Theorem 16.1(K. (Asian J.M.-2011)).

(i) $M_t (0 \leq t < T)$ are parallel submanifolds of M
(ii) $T < \infty$
(iii) $F := \lim_{t \to T} M_t$ is a focal submanifold of M
(iv) If M is irreducible, if $\operatorname{codim} M \geq 2$, and if the natural fibration $\operatorname{pr} : M \to F$ is spherical, then $M_t (0 \leq t < T)$ is of type I singularity.
\[\tilde{M} := (\pi \circ \phi)^{-1}(M) \hookrightarrow H^0([0, 1], g) \]
\[\downarrow \phi \]
\[\downarrow G \]
\[\downarrow \pi \]
\[M \hookrightarrow G/K \]

\[M : \text{equifocal} \quad \rightarrow \quad \tilde{M} : \text{regularizable isoparametric} \]

\[M_t : \text{the mean curvature flow for } M \]
\[\tilde{M}_t : \text{the mean curvature flow for } \tilde{M} \]
Lemma 19.1.

\[\widetilde{M}_t = (\pi \circ \phi)^{-1}(M_t) \]

According to this fact, the investigation of the flow \(M_t \) is reduced to that of the flow \(\widetilde{M}_t \).
The outline of the proof of Theorems 16.1 and 16.2

\[x_0 \in M \]

\[u_0 \in (\pi \circ \phi)^{-1}(x_0) \subset \widetilde{M} \]

\[\tilde{C} \subset T_{u_0} \widetilde{M} : \text{the fund. domain of the Coxeter group of } \widetilde{M} \text{ containing } u_0 \]

Definition

\[X : \text{a vector field on } \tilde{C} \]

\[
\begin{align*}
X_w := (\tilde{H}^w)_{u_0 + w} (w \in \tilde{C}) \\
\quad \tilde{H}^w : \text{the reg. mean curv. vec. of } \eta_{\tilde{w}}(\widetilde{M}) \\
\quad \eta_{\tilde{w}} : \text{the end – point map for a p. n. v. f. } \tilde{w} \text{ s.t. } \tilde{w}_{u_0} = w
\end{align*}
\]

\[\iff \text{def} \]

\[\begin{cases}
X_w := (\tilde{H}^w)_{u_0 + w} (w \in \tilde{C}) \\
\quad \tilde{H}^w : \text{the reg. mean curv. vec. of } \eta_{\tilde{w}}(\widetilde{M}) \\
\quad \eta_{\tilde{w}} : \text{the end – point map for a p. n. v. f. } \tilde{w} \text{ s.t. } \tilde{w}_{u_0} = w
\end{cases} \]
The outline of the proof of Theorems 16.1 and 16.2

\[u_0 + w \]

\[\eta_{\tilde{w}}(\tilde{M}) \quad \tilde{M} \]

\[\tilde{H}^w \]

\[T_{u_0} \tilde{M} \]
The outline of the proof of Theorems 16.1 and 16.2

\{\psi_t\} : a local one-parameter transformation gr. of X

\xi(t) \equiv \psi_t(0) \quad (0 : the zero vector of T_{u_0} \overline{M})

\overline{\xi(t)} : the parallel normal vec. fd. of \overline{M} s.t. \overline{\xi(t)}_{u_0} = \xi(t)

Lemma 19.2.

\overline{M_t} = \eta_{\overline{\xi(t)}}(\overline{M})

Proof of (i) of Theorem 16.1.

\[M_t = (\pi \circ \phi)(\overline{M_t}) = (\pi \circ \phi)(\eta_{\overline{\xi(t)}}(\overline{M})) \]

\[= \eta_{(\pi \circ \phi)_*(\overline{\xi(t)}}}(M) \]

q.e.d.
The outline of the proof of Theorems 16.1 and 16.2

\[\eta_{\xi(t)}(\widetilde{M}) \]

\[T_{u_0} \widetilde{M} \]
The outline of the proof of Theorems 16.1 and 16.2

\[X \rightarrow \xi \rightarrow \tilde{M}_t \rightarrow M_t \]

\(M : \text{equifocal} \rightarrow \tilde{M} : \text{reg. isoparametric} \)
\(\tilde{A} : \text{the shape tensor of } \tilde{M} \)
\[T_u \tilde{M} = \bigoplus_{i \in I_u} E_i^u \quad (\text{common eigensp. decomp. of } \tilde{A}_v \text{'s}) \]
\[(v \in T_u^{\perp} \tilde{M}) \]
\[\lambda_i^u : T_u^{\perp} \tilde{M} \rightarrow \mathbb{R} \quad \overset{\text{def}}{\leftrightarrow} \quad \tilde{A}_v | E_i^u = \lambda_i^u(v) \text{id} \quad (v \in T_u^{\perp} \tilde{M}) \]

Fact.
\[\lambda_i^u \in (T_u^{\perp} \tilde{M})^* \]
By choosing E_i^u's ($u \in \tilde{M}$) suitably, we may assume that

$$\forall i \in I(:= I_u),$$

$$E_i : u \mapsto E_i^u (u \in \tilde{M}) : C^\infty \text{-distribution}$$

curvature distribution

$$\lambda_i \in \Gamma((T^\perp \tilde{M})^*) \iff (\lambda_i)_u := \lambda_i^u (u \in \tilde{M})$$

principal curvature

$$n_i \in \Gamma(T^\perp \tilde{M}) \iff \lambda_i = \langle n_i, \cdot \rangle \quad (i \in I)$$

curvature normal
The set of all principal curvatures of f_M.

Fact: \[\bigcup_{\lambda \in \Lambda} \lambda_u^{-1}(1) = "\text{the focal set of } \tilde{M} \text{ at } u" \]

The focal set of \tilde{M} at u consists of finite pieces of infinite families of parallel hyperplanes in $T_u \perp \tilde{M}$.
The outline of the proof of Theorems 16.1 and 16.2

Fact

The set Λ is described as

$$\Lambda = \bigcup_{a=1}^{\bar{r}} \left\{ \frac{\lambda_a}{1 + b_a j} \mid j \in \mathbb{Z} \right\}$$

for some $\lambda_a \in \Gamma((T^\perp \widetilde{M})^*)$ and some constant $b_a > 1$ ($a = 1, \ldots, \bar{r}$).

Fact

$$\tilde{C} = \{ w \in T_{u_0}^\perp \tilde{M} \mid (\lambda_a)_{u_0}(w) < 1 \ (a = 1, \ldots, \bar{r}) \}$$

$$E_{a,j} := \text{Ker} \left(\tilde{A} - \frac{\lambda_a(\cdot)}{1 + b_a j} \text{id} \right)$$

$$m^e_a := \dim E_{a,2j}, \quad m^o_a := \dim E_{a,2j+1}$$
The outline of the proof of Theorems 16.1 and 16.2

\[(a)^1 u_0 (1 + b a)\]
The outline of the proof of Theorems 16.1 and 16.2

Lemma 19.3.

\[X_w = \sum_{a=1}^{\bar{r}} \left(m_a^e \cot \frac{\pi}{b_a} (1 - (\lambda_a)u_0(w)) \right) \left(-m_a^o \tan \frac{\pi}{b_a} (1 - (\lambda_a)u_0(w)) \right) \frac{\pi}{2b_a} (n_a)u_0 \]

\[\left(n_a \overset{\text{def}}{\equiv} \langle n_a, \cdot \rangle = \lambda_a(\cdot) \right) \]

Remark.

\[X_w = 0 \iff \eta_{\bar{w}}(\bar{M}) : \text{minimal} \]
The outline of the proof of Theorems 16.1 and 16.2

Proof of (ii) and (iii) of Theorem 16.1

\[\rho \in C^\infty(\tilde{C}) \]

\[\rho(w) := - \sum_{a=1}^{\tilde{r}} \left(m_a^e \log \sin \frac{\pi}{b_a} (1 - (\lambda_a)_{u_0}(w)) \right) + m_a^o \log \cos \frac{\pi}{b_a} (1 - (\lambda_a)_{u_0}(w)) \quad (w \in \tilde{C}) \]

Then we have

\[\text{grad} \rho = X \quad \text{and} \quad \rho : \text{downward convex} \]

Also we have

\[\rho(w) \to \infty \quad (w \to \partial\tilde{C}) \]
The outline of the proof of Theorems 16.1 and 16.2
Hence we see that
\[\rho \text{ has the only minimal point.} \]

Denote by \(w_0 \) this point. Clearly we have \(X_{w_0} = 0 \)

On the other hand, we can show the following fact:

\[\exists \Phi : \text{a } C^\infty \text{ map of } T_{u_0}^\perp \tilde{M} \text{ onto } \mathbb{R}^r \quad (r := \text{codim } M) \]

s.t. \(\left\{ \Phi|_{\tilde{C}} : \tilde{C} \to \mathbb{R}^r \right\} : \text{into homeomorphism} \)

\[\Phi_* X : \text{a } C^\infty \text{ vec. fd.} \]
From these facts, we see that

- the flow of X starting from a point other than w_0 converges to a point of $\partial \tilde{C}$ in finite time.

Since \tilde{M} is not minimal, we can show

- $0 \neq w_0$ and the flow $\xi(t)$ of X starting from 0 converges to a point w_1 of $\partial \tilde{C}$ in finite time T.

Since $M_t = \eta_{(\pi \circ \phi)_* (\xi(t))}(M)$,

M_t collapses to the focal submanifold $\eta_{(\pi \circ \phi)_* (\tilde{w}_1)}(M)$ in the time T.

q.e.d.
The outline of the proof of Theorems 16.1 and 16.2

\[F := \eta(\pi \circ \phi)_*(\tilde{w}_1)(M) \]

(iv) of Theorem 16.1.

If \(M \) is irreducible, if \(\text{codim} \ M \geq 2 \), and if the natural fibration \(\text{pr} : M \to F \) is spherical, then \(M_t \ (0 \leq t < T) \) is of type I singularity.

\[
\left(\begin{array}{c}
\text{i.e., } \sup_{t \in [0,T)} \left((T - t) \max_{v \in S^\perp M_t} \|A^t_v\|^2 \right) < \infty \\
A^t : \text{the shape tensor of } M_t \\
S^\perp M_t : \text{the unit normal bd of } M_t
\end{array} \right)
\]
Proof of (iv) of Theorem 16.1.

\[\tilde{F} = \eta \tilde{w}_1(\tilde{M}) \]

\[A^t \text{ (resp. } \tilde{A}^t \text{): the shape tensor of } M_t \text{ (resp. } \tilde{M}_t \text{)} \]

Since \(pr : M \to F \) is spherical,

\[\exists 1 \ a_0 \in \{1, \ldots, r\} \text{ s.t. } w_1 \in ((\lambda_{a_0})_{u_0}^{-1}(1) \cap \partial \tilde{C})^\circ \]

Hence

\[\lim_{t \to T^0} \| \tilde{A}^t_v \|_\infty^2 (T - t) = \lim_{t \to T^0} \frac{(\lambda_{a_0})_{u_0}(v)^2}{(1 - (\lambda_{a_0})_{u_0}(\xi(t)))^2} (T - t) \]

\[= \frac{(\lambda_{a_0})_{u_0}(v)^2}{2m_{a_0} \|(n_{a_0})_{u_0}\|^2} \cdots \cdots \ (1) \]
The outline of the proof of Theorems 16.1 and 16.2

\[M : \text{irr.} \& \text{codim } M \geq 2 \]

\[\rightarrow M : \text{curvature-adapted} \]

\[\lim_{t \to T - 0} \| \tilde{A}_v^t \|^2_{\infty} (T - t) = \lim_{t \to T - 0} \| A^t_{(\pi\circ\phi)^*} (v) \|^2_{\infty} (T - t) \]

\[\cdots \cdots \text{(2)} \]

From (1) and (2), we have

\[\lim_{t \to T - 0} \max_{v \in S^\perp_{\exp\perp (\xi(t))} M_t} \| A^t_{(\pi\circ\phi)^*} (v) \|^2_{\infty} (T - t) = \frac{1}{2m_{a_0}^e} < \infty \]

Thus \(M_t \) is of type I singularity.

q.e.d.
\[\sigma : \text{a stratum of } \partial C \text{ s.t. } \dim \sigma \geq 1 \]

\[F : \text{a non-minimal focal submanifold of } M \text{ thr. } \overset{\circ}{\sigma} \]

\[F_t : \text{the mean curvature flow for } F \]
Theorem 16.2.

(i) $F_t (0 \leq t < T)$ are focal submanifolds of M through $\partial \sigma$

(ii) $T < \infty$

(iii) $F' := \lim_{t \to T} F_t$ is a focal submanifold of M through $\partial \sigma$

(iv) If M is irreducible, if $\text{codim } M \geq 2$

and if the natural fibration $\text{pr} : F \to F'$ is spherical,
then $F_t (0 \leq t < T)$ is of type I singularity.
The outline of the proof of Theorems 16.1 and 16.2

\[\tilde{\sigma} : \text{the simplex of } \partial \tilde{C} \text{ s.t. } \exp_{\tilde{\sigma}}(\tilde{\sigma}) = \sigma \]

\[w \in (\tilde{\sigma})^\circ \]

\[\tilde{F}_w : \text{the focal submanifold of } \tilde{M} \text{ through } w \]

\[(\text{i.e., } \tilde{F}_w := \eta_{\tilde{w}}(\tilde{M})) \]

\[\tilde{H}^w : \text{the mean curvature vector of } \tilde{F}_w \]

Fact.

\[(\tilde{H}^w)_{u_0+w} : \text{tangent to } \tilde{\sigma} \]
The outline of the proof of Theorems 16.1 and 16.2

Definition

\[X_{\sigma} \text{ : a tangent vector field on } \sigma \]

\[X_{w}^{\sigma} := (H^w_{u0})_u + w (w \in \sigma) \]

By analyzing \(X^{\sigma} \), we can show the statements of Theorem 16.2.