Survey of Wolbachia Frequency in Nashville, Tennessee Reveals Novel Infections

Sangam Pugazenthi, Phoebe White, Aakash Banu, Anoop Chandrashekar, & J. Dylan Shropshire

Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA

https://doi.org/10.33697/ajur.2020.013

Students: sangamithra.pugazenthi@vanderbilt.edu, phoebe.a.white@vanderbilt.edu, aakash.basu@vanderbilt.edu, anoop.chandrashekar@vanderbilt.edu

Mentor: shropxp@gmail.com

ABSTRACT

Wolbachia (Rickettsiales: Anaplasmataceae) are maternally transmitted intracellular bacteria that infect approximately half of all insect species. These bacteria commonly act as reproductive parasites or mutualists to enhance their transmission from mother to offspring, resulting in high prevalence among some species. Despite decades of research on Wolbachia's global frequency, there are many arthropod families and geographic regions that have not been tested for Wolbachia. Here, arthropods were collected on the Vanderbilt University campus in Nashville, Tennessee, where Wolbachia frequency has not been previously studied. The dataset consists of 220 samples spanning 34 unique arthropod families collected on the Vanderbilt University campus. The majority of our samples were from the families Blattidae (Blattodea), Pulicidae (Siphonaptera), Dryinidae (Hymenoptera), Aphididae (Hemiptera), Paronellidae (Entomobryomorpha), Formicidae (Hymenoptera), Pseudococcidae (Hemiptera), Sphaeroceridae (Diptera), and Coccinellidae (Coleoptera). PCR-based techniques were used to assign infection states and, from these data, the first cases of Wolbachia in the Paronellidae springtails, Lithobiidae (Lithobiomorpha) centipedes, Lonchopteridae (Diptera) spear-winged flies, Sepsidae (Diptera) black scavenger flies, Cryptocercidae (Blattodea) wood roaches, and Lauxaniidae (Diptera) acaulyptrate flies were identified. Within-family infection frequencies ranged from 17-100% when Wolbachia was observed; however, numerous families tested did not reveal evidence of infection. These results expand on the field's understanding of Wolbachia's frequency in Nashville, Tennessee, and among arthropod families broadly, and is the first report of Wolbachia in centipedes.

KEYWORDS

Wolbachia; Infection Frequency; Endosymbiont; Tennessee; Centipede; Arthropod; Polymerase Chain Reaction; Nashville

INTRODUCTION

Wolbachia is a genus of obligate intracellular bacteria that commonly infect arthropods and nematodes. They often reside in reproductive tissue cells, are vertically inherited from ova to offspring and are occasionally transferred horizontally between arthropods. Wolbachia frequently interact with their hosts as mutualists and/or reproductive parasites to encourage their proliferation through host populations. Wolbachia can increase or decrease host longevity, suppress pathogen replication, provide essential nutrients to their host, and cause reproductive parasitism phenotypes such as cytoplasmic incompatibility, male-killing, feminization, and parthenogenesis.

Studies agree that Wolbachia are common among arthropod species. However, estimates for the percentage of infected species range from 16.9% to as high as 66%, with other estimates reporting 40% and 52%. The variance in these estimates can be attributed to differences in testing methodologies and data sets used in these analyses. Each analysis leverages PCR-based screens for bacterial symbionts, but each differ in how they handle species that have small or large sample sizes since high sample sizes are more likely to reveal infections. Intra-species infection frequencies can be below 10% to as high as 100%, and these frequencies can vary based on geography.

Despite decades of research aimed at elucidating Wolbachia’s frequency among arthropods, estimates remain variable partly due to the lack of sampling of some arthropod families and in various geographic regions. Here, we aim to characterize Wolbachia infection frequency in arthropod families collected in Nashville, Tennessee, which, to our knowledge, has not been studied in the context of Wolbachia frequency. We collect arthropods, extract DNA, and use PCR-based techniques to describe infection states. We report that 73% of the families we collected are infected, identify Wolbachia in six families previously not reported with an infection, and describe infection frequencies ranging from 17-100% within infected families. These results expand our knowledge of the infection frequency of Wolbachia in a variety of arthropods in Nashville, Tennessee.
METHODS AND PROCEDURES
Arthropod collection and identification.
As part of an Introduction to Biology Laboratory course at Vanderbilt University, arthropods were collected from January to March 2018 on the Vanderbilt University campus in Nashville, Tennessee (Fig. 1A). Samples were collected inside buildings, outside buildings on the campus grounds, and in the Vanderbilt University greenhouse (Fig. 1B). Each sample represents a single arthropod. A variety of collection methods were used, including Berlesse funnels, food and chemical attractants, pitfall traps, color traps, sticky traps, and active collection. Arthropods were removed from traps within 24 h and were individually frozen at -20°C in sterile 1.5 mL Eppendorf tubes (Eppendorf, Hamburg, Germany), 15 mL conical tubes, or 50 mL conical tubes. The family of each arthropod was determined using dichotomous keys and pictorial guides. Sub-family level identification was not conducted due to time restrictions of the class, and all specimens were destroyed during downstream processing.

Determining Arthropod Infection Status.
DNA was extracted from all arthropod samples using the Gentra Puregene Tissue Kit (QIAGEN, Hilden, Germany) slightly modified from the manufacturer's protocol. For larger samples, the posterior end of the arthropod was dissected for DNA extraction since Wolbachia are transmitted maternally and are likely to be present in these tissues. To determine infection state, PCR was conducted using WSpec-forward (5'-CAT ACC TAT TCG AAG GGA TAG-3') and WSpec-reverse (5'-AGC TTC GAG TGA GAG TAG-3') primers targeting the Wolbachia 16S rRNA gene, using the following cycling conditions: 94°C for 2 m, 30 cycles at 94°C for 30 s, 49°C for 45 s and 72°C for 1 min, and a final extension at 72°C for 10 m. Positive controls and negative controls were Wolbachia-infected and uninfected Drosophila melanogaster respectively from laboratory stocks generously donated by the Bordenstein lab at Vanderbilt University. PCR products were run on a 1% agarose gel and visualized under UV light after treatment with GelRed (Biotium, Fremont, CA). A sample was considered infected if it produced a 436 bp-long fragment as expected for the WSpec amplicon.

Analyses, and figure creation.
All analyses were conducted and graphs generated in GraphPad Prism 8 (GraphPad Software, San Diego, CA), maps were generated in ArcGIS Online (Esri, Redlands, CA), and figure aesthetics were edited in Affinity Designer 1.7 (Serif, Nottingham, United Kingdom).

RESULTS
Arthropods (n=220) were collected on the Vanderbilt University campus in Nashville, Tennessee (Fig. 1A). Samples were collected in three clearly different environments, either inside buildings, not including the Vanderbilt University greenhouse (n=21), outside buildings (n=84), or in the Vanderbilt University greenhouse (n=115), and most families collected were only found in one location type. The Psychodidae (Diptera) and Sphecidae (Hymenoptera) were only collected inside campus buildings; the Aphididae, Armadillidiidae (Isopoda), Cryptocercidae, Paronellidae, Pholcidae (Araneae), Pseudococcidae, and Thripidae (Thysanoptera) were only found in the greenhouse. The Acrididae (Orthoptera), Anthomyzidae (Diptera), Ceratopogonidae (Diptera), Dryinidae, Latridiidae (Coleoptera), Lauxaniidae, Lithobiidae, Lonchopteridae, Pulicidae (Siphonaptera), Salticidae (Araneae), Sarcophagidae (Diptera), Scaridae (Diptera), Sepsidae, Sphaeroceridae (Diptera), Tetranychidae (Trombidiformes), Tipulidae (Diptera), and Vespidae (Hymenoptera) were only found on campus grounds (Fig. 1B). Additionally, Blattidae specimens were found in the greenhouse and non-greenhouse buildings, and Coccinellidae, Drosophilidae (Diptera), Formicidae, Muscidae (Diptera), Pentatomidae (Hemiptera), and Theridiidae (Araneae) specimens were found in both indoor and outdoor locations (Fig. 1B). The Phoridae (Diptera) were the only family found both in the greenhouse and on campus grounds (Fig. 1B).
Figure 1. Samples representing 34 arthropod families were collected outdoors, indoors, and in a greenhouse on the Vanderbilt University campus in Nashville, TN. (A) Dark grey dots represent sampling locations. “I” indicates that samples were collected from inside buildings (excluding the greenhouse). “O” indicates that samples were collected outside and around campus buildings. The sample size is shown beside each sampling location. (B) Venn diagram shows arthropod families found in each sampling location. 17 families were only sampled from outdoor locations, two families only from indoor locations, and seven families only from the greenhouse. Some families are found both outside and inside, and some are found both inside and in the greenhouse. Only the Phoridae (denoted with an *) was found in both the greenhouse and outdoors. The number of samples collected for each family are shown to the right of the family name.

To characterize *Wolbachia* infection states, DNA was extracted from samples and PCR was used to amplify for a segment of the *Wolbachia* 16S rRNA gene using the WSpec primer set. We identified *Wolbachia* 16S rRNA fragments in 49% of specimens and in 73% of families. *Wolbachia* was not detected in the families Latridiidae (n=1), Pentatomidae (n=1), Salticidae (n=1), Tipulidae (n=1), Vespidae (n=1), Antheromyzidae (n=2), Sphecidae (n=2), Theridiidae (n=2), and Thripidae (n=4) (Fig. 2). However, aside from the Thripidae, all of the uninfected families in our study had two or fewer samples each, making it impossible to conclude whether these infection states can be generalized to the family as a whole. Additionally, *Wolbachia* was found in the families Acrididae (n=1, 100% infected), Armadillidiidae (n=1, 100%), Cryptocercidae (n=1, 100%), Lithobiidae (n=1, 100%), Liochopteridae (n=1, 100%), Pholcidae (n=1, 100%), Sarcophagidae (n=1, 100%), Sciaridae (n=1, 100%), Tetranychidae (n=1, 100%), Muscidae (n=2, 50%), Psychodidae (n=2, 50%), Pseudococcidae (n=9, 100%), Formicidae (n=13, 31%), Aphididae (n=20, 20%), Dryinidae (n=20, 70%), Pulicidae (n=22, 32%), Blattidae (n=61, 52%) (Fig. 2). Among infected families, the infection frequency was as low as 17% in the Coccinellidae to as high as 100% in the families Acrididae, Armadillidiidae, Cryptocercidae, Lithobiidae, Liochopteridae, Pholcidae, Sarcophagidae, Sciaridae, Tetranychidae, Lithobiidae, and Pseudococcidae (Fig. 2). Notably, we do not claim that *Wolbachia* has reached fixation in any of these families since all families with 100% infection frequency had low sample sizes.
DISCUSSION

We report *Wolbachia* infection states for 220 arthropod samples spanning 34 families, of which 25 are infected. To our knowledge, six of these infected families did not have prior reports of infection in the literature (Table 1): Paronellidae elongate springtails, Lithobiidae stone centipedes, Lonchopteridae spear-winged flies, Sepsidae black scavenger flies, Cryptocercidae wood roaches, and Lauxaniidae acalyptrate flies. We found the infection frequency for these families to be 78% in the Paronellidae (n=18), 50% in the Sepsidae, and 100% in the Lithobiidae (n=1), Lonchopteridae (n=1), Cryptocercidae (n=1), and Lauxaniidae (n=4). Conclusions about infection frequencies can only be drawn from the Paronellidae, which had a relatively robust sample size. While not reported in the Paronellidae, *Wolbachia* has been reported in seven other springtail families spanning four orders including the order Entomobryomorpha, which contains the Paronellidae.\(^{44-46}\) These results suggest that *Wolbachia* might be more common among this subclass than it would seem from literature.

The infection in Lithobiidae centipedes is of particular interest since, to our knowledge, *Wolbachia* has not been previously reported in centipedes. In fact, two prior surveys have proposed negative infection states for centipedes in the family Lithobiidae \(^{47}\) and in the order Scolopendromorpha.\(^{48}\) However, it remains possible that our positive infection state is the result of a false-positive infection. For instance, the carnivorous lifestyle of centipedes may increase the rate of false-positives since they may feed on *Wolbachia*-infected insects whose DNA would then contaminate the sample. Future studies that collect more samples and dissect specific tissue for *Wolbachia*-infection assays will help confirm the frequency of infection among this arthropod order. Additionally, while *Wolbachia* are common among Diptera and Blattodea,\(^{12, 36, 48-50}\) we report the first cases of infection in the Lonchopteridae, Sepsidae, Lauzaniidae, and Cryptocercidae, which have been mostly overlooked. These results validate the premise that additional sampling and *Wolbachia* infection testing is necessary to identify *Wolbachia* in arthropod groups that are under sampled.

Finally, while there are reports of infection in the Pentatomidae,\(^{51}\) Salticidae,\(^{52}\) Theridiidae,\(^{53, 54}\) Thripidae,\(^{55-57}\) Tipulidae,\(^{58}\) and Vespidae\(^{59}\) in the literature (Table 1), we did not find evidence of infection in these families in Nashville. However, we are cautious to make firm conclusions on these data due to low sample sizes and numerous alternative explanations for negative results. For example, PCR-based techniques can miss low-density *Wolbachia* infections if they are below a detection threshold,\(^{60}\) failures in DNA extraction and/or PCR can result in false-negatives due to insufficient or low quality DNA, and since the WSpec primers used here were designed for Supergroup A and B *Wolbachia* it is plausible that our techniques would not detect highly divergent *Wolbachia* strains.\(^{36, 43}\) Further work is necessary to confirm that *Wolbachia* do not reside in these families in Nashville, but if these results hold
to larger sampling it may suggest differences in Wolbachia’s frequency in Nashville relative to other regions that have been sampled. However, since we only identified samples to family, it is possible that our samples belong to different species than have been reported in other studies.

Family	Infected?	Literature reports of infection?	Reference
Acrididae	Yes	Yes	45
Aphididae	Yes	Yes	62-64
Armadillididae	Yes	Yes	65
Blattidae	Yes	Yes	48, 49
Ceratopogonidae	Yes	Yes	66, 67
Coccinellidae	Yes	Yes	50
Drosophilidae	Yes	Yes	52, 53, 75
Dryinidae	Yes	Yes	71
Formicidae	Yes	Yes	72-74
Muscidae	Yes	Yes	75
Pholcidae	Yes	Yes	54
Phorididae	Yes	Yes	76
Pseudococcidae	Yes	Yes	77
Psychodidae	Yes	Yes	78-80
Pulicidae	Yes	Yes	81
Sarcophagidae	Yes	Yes	82
Sciaridae	Yes	Yes	83
Sphaeroceridae	Yes	Yes	91
Tetranychidae	Yes	Yes	84
Lithobiidae	Yes	No	50
Sepsidae	Yes	No	95
Cryptocercidae	Yes	---	N/A
Lauxaniidae	Yes	---	N/A
Lonchophoridae	Yes	---	N/A
Paravasistidae	Yes	N/A	36
Pentatomomidae	No	Yes	81
Salticidae	No	Yes	82
Therididae	No	Yes	83, 84
Thripidae	No	Yes	85-87
Tipulidae	No	Yes	88
Vespidae	No	Yes	89
Sphecidae	No	No	90
Anthomyzidae	No	---	N/A
Latrididae	No	---	N/A

Table 1. Family level Wolbachia infection status compared to the literature. Bold family names represent families for which the infection status in the literature disagrees with those reported in this study. Bold and underlined families had not been previously screened for Wolbachia infection.

In summary, we describe Wolbachia’s frequency among arthropods in Nashville, Tennessee and report the first instance of Wolbachia in several arthropod families, including in the Lithobiidae centipedes. Additionally, we provide data for infection frequency within numerous other families, often overlooked by the current literature. This research will inform studies aimed at understanding Wolbachia’s global spread and distribution, by adding Nashville, Tennessee, to the Wolbachia pandemic map.

ACKNOWLEDGMENTS
This work was conducted as part of a Vanderbilt University Introduction to Biology Laboratory course administrated by Dr. Steve Baskauf and was supported by a National Science Foundation Graduate Research Fellowship DGE-1445197 to JDS and the Department of Biological Sciences at Vanderbilt University. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors(s) and do not necessarily reflect the views of the National Science Foundation or Vanderbilt University. The authors thank Steve Baskauf and Charles Sissom for assistance at various stages of data collection, Jonathan Ertelt for assistance with collections in the Vanderbilt Greenhouse, Seth Bordenstein for control samples, Brittany Leigh and Sarah Bordenstein for helpful comments on an earlier draft of the manuscript, and two anonymous reviewers for their helpful feedback during revision.

Author contributions
JDS designed research; SP, PW, AB, AC, and JDS performed research and analyzed data; SP, PW, AB, and JDS wrote the paper.

REFERENCES
1. Werren JH, Windsor D, Guo LR. (1995) Distribution of Wolbachia among neotropical arthropods. Proc R Soc Lond B Biol Sci.; 262(1364):197-204. https://doi:10.1098/rspb.1995.0196
2. Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH. (2008) How many species are infected with \textit{Wolbachia} – a statistical analysis of current data. \textit{Femt Microbiol Lett.}; 281(2):215-220. https://doi.org/10.1111/j.1574-6968.2008.01110.x

3. Zug R, Hammerstein P. (2012) Still a Host of Hosts for \textit{Wolbachia}: Analysis of Recent Data Suggests That 40\% of Terrestrial Arthropod Species Are Infected. \textit{PLOS One}; 7(6). https://doi.org/10.1371/journal.pone.0038544

4. Weinert LA, Araujo-Jnr EV, Ahmed MZ, Welch JJ. (2015) The incidence of bacterial endosymbionts in terrestrial arthropods. \textit{Proc Biol Sia.}; 282(1807):20150249. https://doi.org/10.1111/pbps.2015.0249

5. Serbus LR, Casper-Lindley C, Landmann F, Sullivan W. (2008) The genetics and cell biology of \textit{Wolbachia}-host interactions. \textit{Ann Rev Genet.}; 42:683-707. https://doi.org/10.1146/annurev.genet.41.110306.130354

6. Boyle L, O'Neill SL, Robertson HM, Karr TL. (1993) Interspecific and intraspecific horizontal transfer of \textit{Wolbachia} in \textit{Drosophila}. \textit{Science.}; 260(5155):1796-1799. https://doi.org/10.1126/science.8511587

7. Gerth M, Röthe J, Bleidorn C. (2013) Tracing horizontal \textit{Wolbachia} movements among bees (Anthophila): a combined approach using multilocus sequence typing data and host phylogeny. \textit{Mol Ecol.}; 22(24):6149-6162. https://doi.org/10.1111/mec.12549

8. Wang N, Jia S, Xu H, Liu Y, Huang D. (2016) Multiple Horizontal Transfers of Bacteriophage \textit{WO} and Host \textit{Wolbachia} in Fig Wasps in a Closed Community. \textit{Front Microbiol.}; 7. https://doi.org/10.3389/fmicb.2016.00136

9. Tolley SJ, Nonacs P, Sapountzis P. (2019) \textit{Wolbachia} Horizontal Transmission Events in Ants: What Do We Know and What Can We Learn? \textit{Front Microbiol.}; 10. https://doi.org/10.3389/fmicb.2019.00296

10. Zug R, Hammerstein P. (2015) Bad guys turned nice? A critical assessment of \textit{Wolbachia} mutualisms in arthropod hosts. \textit{Biol Rev Camb Philos Soc.}; 90(1):89-111. https://doi.org/10.1111/brv.121098

11. Werren JH, Baldo L, Clark ME. (2008) \textit{Wolbachia}. master manipulators of invertebrate biology. \textit{Nat Rev Microbiol.}; 6(10):741-751. https://doi.org/10.1038/nrmicro1969

12. Clark ME, Anderson CL, Cande J, Karr TL. (2005) Widespread Prevalence of \textit{Wolbachia} in Laboratory Stocks and the Implications for \textit{Drosophila} Research. \textit{Genetics.};170(4):1667-1675. https://doi.org/10.1534/genetics.104.038901

13. Hancock PA, Sinkins SP, Godfray HCJ. (2011) Population dynamic models of the spread of \textit{Wolbachia}. \textit{Am Nat.};177(3):323-333. https://doi.org/10.1086/658211

14. Cordaux R, Pichon S, Hatira HBA, et al. (2012) Widespread \textit{Wolbachia} infection in terrestrial isopods and other crustaceans. \textit{ZooKeys.};(176):123-131. https://doi.org/10.3897/zookeys.176.2284

15. Jiggins FM. (2017) The spread of \textit{Wolbachia} through mosquito populations. \textit{PLOS Biol.};15(6):e2002780. https://doi.org/10.1371/journal.pbio.2002780

16. Bakovic V, Schebeck M, Telschow A, Stauffer C, Schuler H. (2018) Spatial spread of \textit{Wolbachia} in \textit{Rhagoletis cerasi} populations. \textit{Biol Lett.};14(5). https://doi.org/10.1098/rlfb.2018.0161

17. Turelli M, Cooper BS, Richardson KM, et al. (2018) Rapid Global Spread of \textit{w}Ri-like \textit{Wolbachia} across Multiple \textit{Drosophila}. \textit{Curr Biol CB.};28(6):963-971.e8. https://doi.org/10.1016/j.cub.2018.02.015

18. Min K-T, Benzer S. (1997) \textit{Wolbachia}, normally a symbiont of \textit{Drosophila}, can be virulent, causing degeneration and early death. \textit{Proc Natl Acad Sci U S A.};94(20):10792-10796.

19. Fry AJ, Palmer MR, Rand DM. (2004) Variable fitness effects of \textit{Wolbachia} infection in \textit{Drosophila} melanogaster. \textit{Heredity.};93(4):379-389. https://doi.org/10.1038/sj.hdy.6800514

20. Alexandrov ID, Alexandrova MV, Goryacheva II, Rochina NV, Shaikevich EV, Zakharov IA. (2007) Removing endosymbiotic \textit{Wolbachia} specifically decreases lifespan of females and competitiveness in a laboratory strain of \textit{Drosophila melanogaster.} \textit{Russ J Genet.};43(10):1147-1152. https://doi.org/10.1134/S1022795407100080

21. Vašman NI, Ilinskii II, Golubovskii MD. (2009) Population genetic analysis of \textit{Drosophila melanogaster} longevity: similar effects of endosymbiont \textit{Wolbachia} and tumor suppressor \textit{lgl} under conditions of temperature stress. \textit{Zb Oshchub Biol.};70(5):438-447.

22. Maistrenko OM, Serga SV, Vaiserman AM, Kozeretska IA. (2016) Longevity-modulating effects of symbiosis: insights from \textit{Drosophila–Wolbachia} interaction. \textit{Bioterrorism}.;17(5):785-803. https://doi.org/10.1007/s10522-016-9653-9

23. Moreira LA, Iuribe-Ormaetxe I, Jeffery JA, et al. (2009) A \textit{Wolbachia} symbiont in \textit{Aedes aegypti} limits infection with dengue, Chikungunya, and Plasmodium. \textit{Cell.};139(7):1268-1278. https://doi.org/10.1016/j.cell.2009.11.042

24. Hoffmann AA, Montgomery BL, Popovicj I, et al. (2011) Successful establishment of \textit{Wolbachia} in \textit{Aedes} populations to suppress dengue transmission. \textit{Nature};476(7361):454-457. https://doi.org/10.1038/nature10356

25. Hughes GL, Koga R, Xue P, Fukatsu T, Ranson JL. (2011) \textit{Wolbachia} infections are virulent and inhibit the human malaria parasite \textit{Plasmodium falciparum} in \textit{Anopheles gambiae}. \textit{PLoS Pathog.};7(5):e1002043. https://doi.org/10.1371/journal.ppat.1002043

26. Caragata EP, Dutra HLC, Moreira LA. (2016) Exploiting Intimate Relationships: Controlling Mosquito-Transmitted Disease with \textit{Wolbachia}. \textit{Trends Parasitol.};32(3):207-218. https://doi.org/10.1016/j.pt.2015.10.011

27. Ant TH, Herd CS, Geoghegan V, Hoffmann AA, Sinkins SP. (2018) The \textit{Wolbachia} strain \textit{w}Au provides highly efficient virus transmission blocking in \textit{Aedes aegypti}. \textit{PLoS Pathog.};14(1):e1006815. https://doi.org/10.1371/journal.ppat.1006815

28. Hosokawa T, Koga R, Kikuchi Y, Meng X-Y, Fukatsu T. (2010) \textit{Wolbachia} as a bacteriocye-associated nutritional mutualist. \textit{Proc Natl Acad Sci.};107(2):769-774. https://doi.org/10.1073/pnas.0911476107
29. Moriyama M, Nikoh N, Hosokawa T, Fukatsu T. (2015) Riboflavin Provisioning Underlies Wolbachia’s Fitness Contribution to Its Insect Host. mBio, 6(6):e01732-01715. https://doi.org/10.1128/mBio.01732-15

30. Yen JH, Barr AR. (1973) The etiological agent of cytoplasmic incompatibility in Culex pipiens. J Invertebr Pathol., 22(2):242-250. doi:10.1016/0022-2011(73)90141-9

31. Rousset F, Bouchon D, Pintureau B, Juchault P, Solignac M. (1992) Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proc Biol Sci., 250(1328):91-98. https://doi.org/10.1098/rspb.1992.0135

32. Stouthamer R, Breeuwer JA, Luck RF, Werren JH. (1993) Molecular identification of microorganisms associated with parthenogenesis. Nature, 361(6407):66-68. https://doi.org/10.1038/361066a0

33. Hurst GDD, Jiggins FM, Schuolung JHG von der, et al. (1999) Male-killing Wolbachia in two species of insect. Proc R Soc B Biol Sci., 266(1420):735. https://doi.org/10.1098/rspb.1999.0698

34. LePage D, Bordenstein SR. (2013) Wolbachia: Can we save lives with a great pandemic? Trends Parasitol., 29(8):385-393. https://doi.org/10.1016/j.pt.2013.06.003

35. Sazama EJ, Ouellette SP, Wesner JS. (2019) Bacterial Endosymbionts Are Common Among, but not Necessarily Within, Insect Species. Environ Entomol., 48(1):127-133. https://doi.org/10.1093/ree/myy188

36. Werren JH, Windsor DM. (2000) Wolbachia infection frequencies in insects: evidence of a global equilibrium? Proc R Soc B Biol Sci., 267(1450):1277-1285.

37. Duplouy A, Coughoux C, Hanski I, van Nouhuys S. (2015) Wolbachia Infection in a Natural Parasitoid Wasp Population. https://doi.org/10.1371/journal.pone.0134843

38. Schuler H, Köppler K, Daxböck-Horvath S, et al. (2016) The hitchhiker’s guide to Europe: the infection dynamics of an ongoing Wolbachia invasion and mitochondrial selective sweep in Rhagoletis erasi. Mol Ecol., 25(7):1595-1609. https://doi.org/10.1111/mec.13571

39. Schuler H, Egan SP, Hood GR, Busbec RW, Driscoc AL, Ott JR. (2018) Diversity and distribution of Wolbachia in relation to geography, host plant affiliation and life cycle of a heterogonic gall wasp. BMC Evol Biol., 18(1):37. https://doi.org/10.1186/s12862-018-1151-z

40. American Museum of Natural History. Biodiversity Counts. https://www.amnh.org/learn/biodiversity_counts/ident_help/Text_Keys/text_keys_index.htm (Accessed March 8, 2019)

41. BugGuide.Net. https://bugguide.net/node/view/15740 (Accessed March 8, 2019)

42. Zurqui All-Diptera Biodiversity Inventory. Zurqui All-Diptera Biodiversity Inventory. http://phorid.net/zadbi/ (Accessed March 8, 2019)

43. Rousset F, Bouchon D, Pintureau B, Juchault P, Solignac M. (1992) Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proc Biol Sci., 250(1328):91-98. https://doi.org/10.1098/rspb.1992.0135

44. Yen JH, Barr AR. (1973) The etiological agent of cytoplasmic incompatibility in Culex pipiens. J Invertebr Pathol., 22(2):242-250. doi:10.1016/0022-2011(73)90141-9

45. Sazama EJ, Ouellette SP, Wesner JS. (2019) Bacterial Endosymbionts Are Common Among, but not Necessarily Within, Insect Species. Environ Entomol., 48(1):127-133. https://doi.org/10.1093/ree/myy188

46. Schuler H, Egan SP, Hood GR, Busbec RW, Driscoc AL, Ott JR. (2018) Diversity and distribution of Wolbachia in relation to geography, host plant affiliation and life cycle of a heterogonic gall wasp. BMC Evol Biol., 18(1):37. https://doi.org/10.1186/s12862-018-1151-z

47. American Museum of Natural History. Biodiversity Counts. https://www.amnh.org/learn/biodiversity_counts/ident_help/Text_Keys/text_keys_index.htm (Accessed March 8, 2019)

48. BugGuide.Net. https://bugguide.net/node/view/15740 (Accessed March 8, 2019)

49. Zurqui All-Diptera Biodiversity Inventory. Zurqui All-Diptera Biodiversity Inventory. http://phorid.net/zadbi/ (Accessed March 8, 2019)

50. Sakamoto JM, Feinstein J, Rasgon JL. (2006) Wolbachia Infections in the Cimicidae: Museum Specimens as an Untapped Resource for Endosymbiont Surveys. Appl Environ Microbiol., 72(5):3161-3167. https://doi.org/10.1128/AEM.72.5.3161-3167.2006

51. Vandekerkhove TTM, Watteyne S, Willems J, Mertens J, Gillis M. (1999) Phylogenetic analysis of the 16S rDNA of the cytoplasmic bacterium Wolbachia from the novel host Folsomia candida (Hexapoda, Collembola) and its implications for wobachial taxonomy. FEMS Microbiol Lett., 180(2):279-286. https://doi.org/10.1111/j.1574-6968.1999.tb08807.x

52. Ma Y, Chen W, Li Z, Zhang F, Gao Y, Luan Y. (2017) Revisiting the phylogeny of Wolbachia in Collembola. Ecol Evol., 7(7):2009-2017. https://doi.org/10.1002/eevo.23738

53. Czarnecki AB, Tebbe CC. (2004) Detection and phylogenetic analysis of Wolbachia in Collembola. Environ Microbiol., 6(1):35-44. https://doi.org/10.1046/j.1462-2920.2003.00337.x

54. Simões PM. (2012) Diversity and dynamics of Wolbachia-host associations in arthropods from the Society archipelago, French Polynesia. Doctoral dissertation. France: University of Lyon.

55. Vaishampayan PA, Dhotre DP, Gupta RP, et al. (2007) Molecular evidence and phylogenetic affiliations of Wolbachia in cockroaches. Mol Phylogenet Evol., 44(3):1346-1351. http://doi:10.1016/j.ympev.2007.01.003

56. Gibson CM, Hunter MS. (2009) Inherited Fungal and Bacterial Endosymbionts of a Parasitic Wasp and Its Cockroach Host. Mol Ecol., 18(3):542-549. https://doi.org/10.1111/j.1365-294X.2008.04116.x

57. Prezotto LF, Perondini ALP, Hernández-Ortiz V, Marino CL, Selivon D. (2017) Wolbachia strains in cryptic species of the Anastrepha fraterculus complex (Diptera, Tephritidae) along the Neotropical Region. Syst Appl Microbiol., 40(1):59-67. https://doi.org/10.1016/j.syapm.2016.11.002

58. Kikuchi Y, Fukatsu T. (2003) Diversity of Wolbachia Endosymbionts in Heteropteran Bugs. Appl Environ Microbiol., 69(10):6082-6090. https://doi.org/10.1128/AEM.69.10.6082-6090.2003

59. Zhang L, Zhang G, Yun Y, Peng Y. (2017) Bacterial community of a spider, Martiix magister (Salticidae). 3 Biotechs, 7(6):371. https://doi.org/10.1007/s12955-017-9940-0

60. Rowley SM, Raven RJ, McGraw EA. (2004) Wolbachia pipiensii in Australian Spiders. ResearchGate.;49(3):208-214. doi:10.1017/s00284-004-4346-z

61. Goodacre SL, Martin OY, Thomas CFP, Hewitt GM. (2006) Wolbachia and other endosymbiont infections in spiders. Mol Ecol., 15(2):517-527. https://doi.org/10.1111/j.1365-294X.2005.02802.x
55. Kumm S, Moritz G. (2008) First detection of \textit{Wolbachia} in arthropotous populations of thrips species (Thysanoptera: Thripidae and Phlaeothripidae) and its role in reproduction. \textit{Environ Entomol.}, 37(6):1422-1428. https://doi:10.1603/0046-225x-37.6.1422

56. Rugman-Jones PF, Seybold SJ, Graves AD, Stouthamer R. (2015) Phylogeography of the Walnut Twig Beetle, \textit{Pityophthorus juglandis}, the Vector of Thousand Cankers Disease in North American Walnut Trees. \textit{PLOS ONE.}, 10(2):e0118264. https://doi:10.1371/journal.pone.0118264

57. Saurav GK, Daimei G, Rana VS, Popli S, Rajagopal R. (2016) Detection and Localization of \textit{Wolbachia} in \textit{Thrissa palmi} Karny (Thysanoptera: Thripidae). \textit{Indian J Microbiol.}, 56(2):167-171. https://doi:10.1007/s12088-016-0567-7

58. de Oliveira CD, Gonçalves DS, Batom LA, Shimabukuro PHF, Carvalho FD, Moreira LA. (2015) Broader prevalence of \textit{Wolbachia} in insects including potential human disease vectors. \textit{Bull Entomol Res.}, 105(3):305-315. doi:10.1017/S0007485315000085

59. Stahlhut JK, Desjardins CA, Clark ME, et al. (2010) The mushroom habitat as an ecological arena for global exchange of \textit{Wolbachia}. \textit{Mol Ecol.}, 19(9):1940-1952. https://doi:10.1111/j.1365-294X.2010.04372.x

60. Wang Z, Su X-M, Wen J, Jiang L-Y, Qiao G-X. (2014) Widespread infection and diverse infection patterns of \textit{Wolbachia} in Chinese aphids. \textit{Insect Sci.}, 21(3):313-325. https://doi:10.1111/j.1744-7917.2012.12102

61. Zabul-Aguirre M, Arroyo F, Bella JL. (2010) Distribution of \textit{Wolbachia} infection in \textit{Chortippus parallelus} populations within and beyond a Pyrenean hybrid zone. \textit{Heredit.}, 104(2):174-184. https://doi:10.1038/hdy.2009.106

62. Cordero R, Michel-Salzat A, Frelon-Raimond M, Rigaud T, Bouchon D. (2004) Evidence for a new feminizing \textit{Wolbachia} strain in the isopod \textit{Armadillidium vulgare}. \textit{Heredity.}, 93(1):78-84. https://doi:10.1038/sj.hdy.6800482

63. Cordaux R, Michel-Salzat A, Frelon-Raimond M, Rigaud T, Bouchon D. (2004) Evidence for a new feminizing \textit{Wolbachia} strain in the isopod \textit{Armadillidium vulgare}. \textit{Heredity.}, 93(1):78-84. https://doi:10.1038/sj.hdy.6800482

64. Mee PT, Weeks AR, Walker PJ, Hoffmann AA, Duchemin J-B. (2015) Detection of Low-Level \textit{Cardinium} and \textit{Wolbachia} Infections in Culicoides. \textit{Appl Environ Microbiol.}, 81(18):6177-6188. https://doi:10.1128/AEM.01239-15

65. Pages N, Muñoz-Muñoz F, Verdú M, Pujo N, Talavera S. (2017) First detection of \textit{Wolbachia}-infected \textit{Calicodes} (Diptera: Ceratopogonidae) in Europe: \textit{Wolbachia} and \textit{Cardinium} infection across \textit{Culicoides} communities revealed in Spain. \textit{Parasit Vectors.}, 10(1):582. https://doi:10.1186/s13071-017-2486-9

66. Sokolova MI, Zinkevich NS, Zakharov IA. (2002) Bacteria in ovarioles of females from maleless families of ladybird beetles \textit{Adalia bipunctata} L. (Coleoptera: Coccinellidae) naturally infected with \textit{Rocksettia}, \textit{Wolbachia}, and \textit{Spiroplasma}. \textit{J Invertebr Pathol.}, 79(2):72-79. https://doi:10.1016/S0022-2011(02)00012-5

67. Hamm CA, Begun DJ, Vo A, et al. (2014) \textit{Wolbachia} do not live by reproductive manipulation alone: infection polymorphism in \textit{Drosophila suzukii} and \textit{D. subpulchrella}. \textit{Mol Ecol.}, 23(19):4871-4885. https://doi:10.1111/mec.12901

68. Bykov RA, Yudina MA, Gruntenko NE, et al. (2019) Prevalence and genetic diversity of \textit{Wolbachia} endosymbiont and mtDNA in Palearctic populations of \textit{Drosophila melanogaster}. \textit{BMC Evol Biol.}, 19(5):1543-1548. doi:10.1111/j.1365-294X.2005.02499.x

69. Reuter M, Keller L. (2003) High levels of multiple \textit{Wolbachia} infection and recombination in the ant \textit{Formica exsecta}. \textit{Mol Biol Evol.}, 20(5):748-755. https://doi:10.1093/molbev/msg082

70. Ramalho MO, Bueno OC, Moreau CS. (2017) Microbial composition of spiny ants (Hymenoptera: Formicidae: Polyrhachis) across their geographic range. \textit{BMC Evol Biol.}, 17(1):96. https://doi:10.1186/s12862-017-0945-8

71. Ramalho MO, Vieira AS, Pereira MC, Moreau CS, Bueno OC. (2018) Transovarian Transmission of \textit{Blochmannia} and \textit{Wolbachia} Endosymbionts in the Neotropical Weaver Ant \textit{Camponotus tectorius} (Hymenoptera, Formicidae). \textit{Curr Microbiol.}, 75(7):866-873. https://doi:10.1007/s00284-018-1459-3

72. Zhang B, McGraw E, Floate KD, James P, Jorgensen W, Rothwell J. (2009) \textit{Wolbachia} infection in Australasian and North American populations of \textit{Haematobia irritans} (Diptera: Muscidae). \textit{J Invertebr Pathol.}, 162(3-4):350-353. https://doi:10.1016/j.jip.2009.03.012

73. Dedeine F, Ahrens M, Calcaterra L, Shoemaker DD. (2005) Social parasitism in fire ants (\textit{Solenopsis} spp.); a potential mechanism for interspecies transfer of \textit{Wolbachia}. \textit{Mol Ecol.}, 14(5):1543-1548. doi:10.1111/j.1365-294X.2005.02499.x

74. Tang Y, Wang C, Lu YY. (2013) First discovery of \textit{Wolbachia} infection of cotton mealybug \textit{Phenacoccus solenopsis} Tinsley. \textit{J Environ Entomol.}, 2013;1.
78. Cui L, Chang SH, Strickman D, Rowton E. (1999) Frequency of *Wolbachia* infection in laboratory and field sand fly (Diptera: Psychodidae) populations. *J Am Mosq Control Assoc.*;15(4):571-572.

79. Li K, Chen H, Jiang J, Li X, Xu J, Ma Y. (2016) Diversity of bacteriome associated with *Phlebotomus chinensis* (Diptera: Psychodidae) sand flies in two wild populations from China. *Sci Rep.*;6:36406. https://doi:10.1038/srep36406

80. Karimian F, Vatandoost H, Rassi Y, et al. (2018) *wsp*-based analysis of *Wolbachia* strains associated with *Phlebotomus papatasi* and *P. sergenti* (Diptera: Psychodidae) main cutaneous leishmaniasis vectors, introduction of a new subgroup *wSerg*. *Pathog Glob Health.*;112(3):152-160. https://doi:10.1080/20477724.2018.1471438

81. Zurita A, Gutiérrez SG, Cutillas C. (2016) Infection Rates of *Wolbachia* sp. and *Bartonella* sp. in Different Populations of Fleas. *Curr Microbiol.*;73(5):704-713. https://doi:10.1007/s00284-016-1119-4

82. Mingchay P, Sai-Ngam A, Phumee A, et al. (2014) *Wolbachia* supergroups A and B in natural populations of medically important filth flies (diptera: muscidae, calliphoridae, and sarcophagidae) in Thailand. *Southeast Asian J Trop Med Public Health.*;45(2):309-318.

83. Tao Y, Guo Y, Wang J, Li L, Yu Y, Chu D. (2001) Detection and identification of *Wolbachia* in *Bradyia odoriphaga* (Diptera: Sciaridae) populations from Shandong Province, China. *Acta Entomol Sin.* 5;58(4):454-459.

84. Tsagkarakou A, Guillemaud T, Rousset F, Navajas M. (1996) Molecular identification of a *Wolbachia* endosymbiont in a *Tetranychus urticae* strain (Acari: Tetranychidae). *Insect Mol Biol.*;5(3):217-221. https://doi:10.1111/j.1365-2583.1996.tb00057.x

85. Floate KD, Kyei-Poku GK, Coghlin PC. (2006) Overview and relevance of *Wolbachia* bacteria in biocontrol research. *Biocontrol Sci Technol.*;16(8):767-788. https://doi:10.1080/09583150600699606

ABOUT STUDENT AUTHORS
Sangami Pugazenthi, Phoebe White, Aakash Basu, and Anoop Chandrashekar are undergraduate students at Vanderbilt University. Sangami and Aakash graduated in May 2020, while Phoebe and Anoop expect to graduate May 2021.

PRESS SUMMARY
Wolbachia are intracellular and maternally inherited bacteria that infect roughly half of all arthropod species. Since arthropods account for approximately 85% of all animals, *Wolbachia* is thought to be the world’s most common animal-associated bacterial infection. However, estimates of *Wolbachia* infection frequency range from as low as 17% to as high as 66% of species. Additionally, strong arthropod family-biases and geographical-biases exist in the current literature. It is thus important to survey new species and different geographic regions to better understand *Wolbachia*’s global frequency. Here, we report a dataset of 220 arthropod samples, spanning 34 families, that have been tested for *Wolbachia* using PCR-based techniques. These samples were collected by undergraduate students as part of an Introduction to Biology Laboratory at Vanderbilt University in Nashville, Tennessee. We confirm literature reports of infections in 25 arthropod families and novel infections in six, and put Nashville on the map of locations tested for *Wolbachia* frequency.