Correlation between Non-Alcoholic Fatty Liver Disease and Carotid Intima-Media Thickness in Patient with Type II Diabetes

Mohammad Ghasem Hanafi, Masoud Cina, Mehrnoush Zakerkish, Fakher Rahim, Amal Saki-Malehi and Qasem Nissi

ABSTRACT

Non-Alcoholic Fatty Liver Disease (NAFLD) is a very prevalent condition determined by the infiltration of fat of liver cells. This study was conducted to evaluate the correlation between NAFLD and Carotid Intima-Media Thickness (CIMT) in patient with type II diabetes. This case-control study included three groups, including those with type II diabetes without NAFLD (n = 85), those with type II diabetes and NAFLD (n = 85) and non-diabetic individuals with only NAFLD (n = 85). The CIMT and the grading of the NAFLD were determined using an ultrasound B-mode. There was no significant difference between the case and control groups in term of overall mean of age (57±10 years vs. 56.9±8 years, respectively). Considering the two factors (diabetes and NAFLD) effect, with adjustment for age and gender as a confounding effect of diabetes (p = 0.01) and NAFLD (p = 0.022) on CIMT was significant. The mean right CIMT, left CIMT and overall CIMT in three different study groups of diabetic patients, according to various NAFLD grading showed no significant difference. Our findings showed a considerable association between NAFLD and increased CIMT, in which this association is not affected by the severity of fatty liver. So, immediate ultrasound screening and treatment for the patients with NAFLD are recommended to prevent CVD complications such as atherosclerosis considering early stages of fatty liver disease.

Key words: Atherosclerosis, carotid Arteries, diabetes mellitus, fatty liver

INTRODUCTION

Non-Alcoholic Fatty Liver Disease (NAFLD) is a very prevalent condition determined by the infiltration of fat of liver cells (Babb, 2002; Marignani and Angeletti, 2002). NAFLD occurs in patients who do not abuse alcohol (Ables, 2012; Lewis and Mohanty, 2010; Liu et al., 2013; McCullough, 2002; Tilg and Moschen, 2010). The prevalence of fatty liver ranges from 14-23% of the population that reaches to 70-90% in obese and type 2 diabetic populations. The spectrum of NAFLD varies from a histological appearance similar to alcoholic hepatitis includes fatty liver alone to steatohepatitis and may progress to end-stage liver disease and cirrhosis (Younossi et al.,
Liver biopsy is the best diagnostic test for NAFLD but medical and ethical considerations limit its use in patients (Leite et al., 2014). Laboratory tests results such as elevated liver enzymes are commonly found in patients with NAFLD but these tests usually have low specificity. It was reported that sonographic features unique to NAFLD are existed and used to aid in diagnosis, which made ultrasound as an accurate technique with acceptable diagnostic accuracy (Khov et al., 2014; Lin et al., 2014; Mishra and Younossi, 2007; Noureddin et al., 2014). Thus, NAFLD medical assessment is therefore a combination of ultrasound findings and laboratory tests.

The NAFLD is associated with several characteristics of metabolic syndrome such as obesity, type II diabetes and dyslipidemia that are known as conventional risk factors increasing Cardio-Vascular Diseases (CVD) (Ballestri et al., 2014; Bhatia et al., 2012; Brea and Puzo, 2013; Guleria et al., 2013; Hurjui et al., 2012; Mikolasevic et al., 2014). Besides, NAFLD are associated with risk factors known to cause atherosclerosis (National Cholesterol Education Program, 2001). Carotid Intima-Media Thickness (CIMT) has been shown to be a reliable parameter for sub-clinical atherosclerosis, a predictor of myocardial infarction and stroke (Coll and Alonso-Villaverde, 2005). Moreover, CIMT is currently a connection between NAFLD and atherosclerosis in healthy people, which reflects the contradictory effects of insulin resistance and metabolic syndrome, especially visceral fat (Aygun et al., 2008; Caserta et al., 2010; Demircioglu et al., 2008; Fracanzani et al., 2008; Pacifico et al., 2014).

The B-mode ultrasonography enables direct and non-invasive evaluation of atherosclerotic arterial wall. So that CIMT measured with this technique is considered as a reliable marker of atherosclerosis and shows the greater sensitivity in the early detection of atherosclerosis compared with angiography (Bots and Grobbee, 2002).

This study was conducted to evaluate the correlation between NAFLD and CIMT in patient with type II diabetes.

MATERIALS AND METHODS

Study design and population: In this case-control study, the mean CIMT in 200 patients with type II diabetes and moderate to severe NAFLD were studied by ultrasound. Patients were included three groups, including those with type II diabetes without NAFLD (n = 85), those with type II diabetes and NAFLD (n = 85) and non-diabetic individuals with only NAFLD (n = 85). This study was approved by Ahvaz Jundishapur University of Medical Sciences Ethical Committee and all participants signed informed consent prior the enrollment.

Inclusion criteria: All patients with type II diabetes and underlying liver disease (primary or secondary liver cancer, cirrhosis, hepatitis, etc.), hypertension, cardiovascular disease, treated with corticosteroids, chemotherapy and consumers of alcohol.

Exclusion conditions: Patients who have problems for abdominal ultrasonography, use steroid in diseases such as bronchial asthma, rheumatoid arthritis and Intestinal Bowel Disease (IBD) and are being treated with drugs affecting laboratory results, for example, aspirin, statins, fibrates and metformin, those who have a history of liver disorders such as HBV or HCV, infection or alcohol were excluded.

Method: Ultrasound B-mode was performed using a 7 MHz transducer device GE in the common carotid artery, internal carotid and carotid bulb in each group. Demographic characteristics, including age, gender, ethnicity, marital status, smoking or passive smoking and alcohol consumption were also collected. Blood pressure was measured in two stages, with an interval of
half an hour by a mercury sphygmomanometer. Height and weight, Waist-to-Hip Ratio (WHR) were measured, as well as a series of laboratory tests, including blood samples for glucose and liver enzymes, HDL, LDL, fasting triglycerides, total cholesterol, ALP, ALT and AST was done. The diagnosis of NAFLD was based on two criteria: (1) The existence of NAFLD or steatohepatitis and (2) The non-alcoholic nature of the illness.

Liver echogenicity and size were evaluated using a 3.5 MHz transducer to determine the presence of fatty liver. The grading was done according to these criteria: grade 1 (mild), which is a slight increase in ultrasound liver echogenicity, while diaphragm and intrahepatic vessels are well visible, grade 2 (moderate), a moderate increase in liver echogenicity on ultrasound, with impaired visualization in the diaphragm and intrahepatic vessels, grade 3 (severe) a considerable increase in liver echogenicity on ultrasound, while the diaphragm, the marginal artery and the posterior portion of the right lobe of the intrahepatic vessels difficult to see or not visible at all. To measure the mean CIMT a 7.5 MHZ probe in the right common carotid artery, proximal to the bulb, on the posterior wall, was used.

Statistical analysis: After collecting the data, SPSS 15.0 statistical software was used for descriptive statistics (mean, standard deviation). Analysis of Variance (ANOVA), Chi-square test and t-test (independent t-test), were used.

RESULTS
There was no significant difference between the case and control groups in term of overall mean of age (57±10 years vs. 56.9±8 years, respectively). Baseline characteristics of four study groups are presented in Table 1.

Considering the two factors (diabetes and NAFLD) effect, with adjustment for age and gender as a confounding effect of diabetes (p = 0.01) and NAFLD (p = 0.022) on CIMT was significant. Based on the results people who have both diabetes and NAFLD had higher mean CIMT (Fig. 1).

There was no significant difference in right CIMT, left CIMT and CIMT of both groups of diabetic patients with NAFLD and without NAFLD (Table 2).

Table 1: Baseline characteristics of four study groups

Parameters	Diabetes	Diabetes and fatty liver	Normal	Fatty liver	Total	Chi-square	p-value
Sex							
Female	40 (47.1)	62 (72.9)	30 (54.5)	14 (46.7)	146 (57.3)	13.70	0.003
Male	45 (52.9)	23 (27.1)	25 (45.5)	16 (53.3)	109 (42.7)		
Age							
20-29	0 (0)	1 (1.2)	8 (14.5)	2 (6.7)	11 (4.3)	155.32	<0.001
30-39	7 (8.2)	3 (3.5)	26 (47.3)	12 (40)	48 (18.8)		
30-49	9 (10.6)	16 (18.8)	21 (38.2)	16 (53.3)	62 (24.3)		
>50	69 (81.2)	65 (76.5)	0 (0)	0 (0)	134 (52.5)		
Plaque							
yes	73 (85.9)	79 (92.9)	55 (100)	30 (100)	237 (92.9)	12.91	0.005
No	12 (14.1)	6 (7.1)	0 (0)	0 (0)	18 (7.1)		

Table 2: Relationship between NAFLD with right CIMT, left CIMT and CIMT in patients with type II diabetes by adjusting the effects of gender and weight

Groups	RIMT	LIMT	IMT	
Case	Mean	0.60060	0.64350	0.62190
	Std. Deviation	0.13104	0.14939	0.12650
Control	Mean	0.59530	0.62000	0.60760
	Std. Deviation	0.12715	0.14541	0.12308
	p-value	0.15100	0.12940	0.13000
The mean right CIMT, left CIMT and overall CIMT in three different study groups of diabetic patients according to various NAFLD grading showed no significant difference, so none of the indicators are related to the severity of liver disease in patients with type II diabetes (Table 3).

There was a significant association between gender and only left CIMT and overall CIMT in type II diabetic patients with NAFLD (p<0.05), but, no significant association was observed in type II diabetic subjects without NAFLD (p>0.05) (Table 4).
DISCUSSION

In this study, CIMT in type II diabetic patients with NAFLD was compared with control, which showed that mean CIMT was significantly much more than the control group. The results of our study are consistent with results of previous studies that are considered CIMT was associated with an increase in NAFLD and suggested it as the marker of early diagnosis of generalized atherosclerosis (Chiang et al., 2010; Guleria et al., 2013; Targher and Arcaro, 2007; Targher et al., 2008). This actually means that type II diabetic patients with NAFLD are at greater risk of premature atherosclerosis and Coronary Vessels Disease (CVD). As we stated before ultrasound screening method is a cheap and readily available. NAFLD estimates for up to one third of the total population and in the majority of patients with cardiovascular, metabolic and abdominal obesity, type II diabetes risk factors, can be seen.

Our findings revealed that the diabetes and NAFLD effect, with adjustment for age and gender, on CIMT was significant. In agreement with this finding, De Andrade et al. (2014) measured CIMT in a cross-sectional study on diabetes patients and showed that CIMD and CVD risk may be higher in those with a family history of type II diabetes. Besides, Nahandi et al. (2014) evaluated the effect of NAFLD on CIMT as a risk factor for atherosclerosis in patients with type II diabetes and reported that there is a significant association between the presence of NAFLD and CIMT and its related atherosclerosis.

Also we noticed that, there was a significant association between gender and only left CIMT and overall CIMT in type II diabetic patients with NAFLD. Similarly, Mohammadi et al. (2011) examined patients with confirmed NAFLD for determination of CIMT and presence of carotid atherosclerotic plaque and reported that NAFLD with type II diabetes can be associated with increased CIMT and increased risk of atherosclerosis. Moreover, Han et al. (2013) studied gender differences in the association between CIMT in healthy individuals and age-related increases in CIMT were correlated with a reduction in cardiac function only in women.

Our findings showed a considerable association between NAFLD and increased CIMT, in which this association is not affected by the severity of fatty liver. So, immediate ultrasound screening and treatment for the patients with NAFLD are recommended to prevent CVD complications such as atherosclerosis considering early stages of fatty liver disease.

ACKNOWLEDGMENT

This study was issued from the thesis of Qasem Nissi. We thank deputy of research affaires of Ahvaz Jundishapur University of Medical Sciences for giving such opportunity to us.

REFERENCES

Ables, G.P., 2012. Update on Ppar and nonalcoholic fatty liver disease. PPAR Res. 10.1155/2012/912351.
Aygun, C., O. Kocaman, T. Sahin, S. Uraz and A.T. Eminler et al., 2008. Evaluation of metabolic syndrome frequency and carotid artery intima-media thickness as risk factors for atherosclerosis in patients with nonalcoholic fatty liver disease. Digestive Dis. Sci., 53: 1352-1357.
Babb, R.R., 2002. Nonalcoholic fatty liver disease. N. Engl. J. Med., 346: 1221-1231.
Ballestri, S., A. Lonardo, S. Bonapace, C.D. Byrne, P. Loria and G. Targher, 2014. Risk of cardiovascular, cardiac and arrhythmic complications in patients with non-alcoholic fatty liver disease. World J. Gastroenterol., 20: 1724-1745.
Bhatia, L.S., N.P. Curzen, P.C. Calder and C.D. Byrne, 2012. Non-alcoholic fatty liver disease: A new and important cardiovascular risk factor? Eur. Heart J., 33: 1190-1200.

Bots, M.L. and D.E. Grobbee, 2002. Intima media thickness as a surrogate marker for generalised atherosclerosis. Cardiovasc. Drugs Ther., 16: 341-351.

Brea, A. and J. Puzo, 2013. Non-alcoholic fatty liver disease and cardiovascular risk. Int. J. Cardiol., 167: 1109-1117.

Caserta, C.A., G.M. Pendino, A. Amante, C. Vacalebre and M.T. Fiorillo et al., 2010. Cardiovascular risk factors, nonalcoholic fatty liver disease and carotid artery intima-media thickness in an adolescent population in Southern Italy. Am. J. Epidemiol., 171: 1195-1202.

Chiang, C.H., C.C. Huang, W.L. Chan, J.W. Chen and H.B. Leu, 2010. The severity of non-alcoholic fatty liver disease correlates with high sensitivity C-reactive protein value and is independently associated with increased cardiovascular risk in healthy population. Clin. Biochem., 43: 1399-1404.

Coll, B. and C. Alonso-Villaverde, 2005. Carotid intima-media thickness: Assessment of sub-clinical atherosclerosis in HIV-infected patients. AIDS, 19: 1936-1937.

De Andrade, Jr. C.R., E.L. Silva, M.F.B. da Matta, M.B. Castier, M.L.G. Rosa, M.B. Gomes, 2014. Influence of a family history of type 2 diabetes, demographic and clinical data on carotid intima-media thickness in patients with type 1 diabetes: A cross-sectional study. Cardiovasc. Diabetol., Vol. 13.

Demircioglu, F., A. Kocyigit, N. Arslan, C. Cakmakci, S. Hzl and A.T. Sedat, 2008. Intima-media thickness of carotid artery and susceptibility to atherosclerosis in obese children with nonalcoholic fatty liver disease. J. Pediatr. Gastroenterol. Nutr., 47: 68-75.

Fracanzani, A., L. Burdick, L. Raselli, P. Pedotti and L. Grigore et al., 2008. Carotid artery intima-media thickness in nonalcoholic fatty liver disease. Am. J. Med., 121: 72-78.

Guleria, A., A. Duseja, N. Kalra, A. Das, R. Dhimani, Y. Chawla and A. Bhansali, 2013. Patients with Non-Alcoholic Fatty Liver Disease (NAFLD) have an increased risk of atherosclerosis and cardiovascular disease. Trop. Gastroenterol., 34: 74-82.

Han, L., X. Bai, H. Lin, X. Sun and X. Chen, 2013. Gender differences in the relationship between age-related carotid intima-media thickness and cardiac diastolic function in a healthy Chinese population. J. Cardiac Failure, 19: 325-332.

Hurjui, D.M., O. Nita, L.I. Graur, L. Mihalache and D.S. Popescu et al., 2012. Non-alcoholic fatty liver disease is associated with cardiovascular risk factors of metabolic syndrome. Rev. Med. Chir. Soc. Med. Nat. Iasi., 116: 692-699.

Khov, N., A. Sharma and T.R. Riley, 2014. Bedside ultrasound in the diagnosis of nonalcoholic fatty liver disease. World J. Gastroenterol., 20: 6821-6825.

Leite, N.C., C.A. Villela-Nogueira, C.R. Cardoso and G.F. Salles, 2014. Non-alcoholic fatty liver disease and diabetes: From physiopathological interplay to diagnosis and treatment. World J. Gastroenterol., 20: 8377-8392.

Lewis, J.R. and S.R. Mohanty, 2010. Nonalcoholic fatty liver disease: A review and update. Digestive Dis. Sci., 55: 560-578.

Lin, S.C., E. Heba, T. Wolfson, B. Ang and A. Gamst et al., 2014. Noninvasive diagnosis of nonalcoholic fatty liver disease and quantification of liver fat using a new quantitative ultrasound technique. Clin. Gastroenterol. Hepatol. 10.1016/j.cgh.2014.11.027.

Liu, Y., L. Zhang, H. Song and G. Ji, 2013. Update on berberine in nonalcoholic fatty liver disease. Evidence-Based Complementary Altern. Med. 10.1155/2013/308134.
Marignani, M. and S. Angeletti, 2002. Nonalcoholic fatty liver disease. N. Engl. J. Med., 347: 768-769.
McCullough, A.J., 2002. Update on nonalcoholic fatty liver disease. J. Clin. Gastroenterol., 34: 255-262.
Mikolasevic, I., L. Orlic, S. Milic, L. Zaputovic, V. Lukenda and S. Racki, 2014. Non-alcoholic fatty liver disease proven by transient elastography in hemodialysis patients: Is it a new risk factor for adverse cardiovascular events? Blood Purif., 37: 259-265.
Mishra, P. and Z.M. Younossi, 2007. Abdominal ultrasound for diagnosis of Nonalcoholic Fatty Liver Disease (NAFLD). Am. J. Gastroenterol., 102: 2716-2717.
Mohammadi, A., A. Bazazi and M. Ghasemi-Rad, 2011. Evaluation of atherosclerotic findings in patients with nonalcoholic fatty liver disease. Int. J. General Med., 4: 717-722.
Nahandi, M.Z., M. Khoshbaten, E. Ramazanzadeh, L. Abbaszadeh, R. Javadrashid, K.M. Shirazi and N. Gholami, 2014. Effect of non-alcoholic fatty liver disease on carotid artery intima-media thickness as a risk factor for atherosclerosis. Gastroenterol. Hepatol. Bed Bench, 7: 55-62.
National Cholesterol Education Program, 2001. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation and treatment of high blood cholesterol in adults (Adult treatment panel III). JAMA., 285: 2486-2497.
Noureddin, M., C. Khoyilar and S.L. Palmer, 2014. MRI, CT scan and ultrasound in the diagnosis of nonalcoholic fatty liver disease. J. Clin. Gastroenterol., 49: 351-352.
Pacifico, L., E. Bonci, G. Andreoli, S. Romaggioli, R. Di Miscio, C.V. Lombardo and C. Chiesa, 2014. Association of serum triglyceride-to-HDL cholesterol ratio with carotid artery intima-media thickness, insulin resistance and nonalcoholic fatty liver disease in children and adolescents. Nutr. Metab. Cardiovasc. Dis., 24: 737-743.
Targher, G. and G. Arcaro, 2007. Non-alcoholic fatty liver disease and increased risk of cardiovascular disease. Atherosclerosis, 191: 235-240.
Targher, G., F. Marra and G. Marchesini, 2008. Increased risk of cardiovascular disease in non-alcoholic fatty liver disease: Causal effect or epiphenomenon? Diabetologia, 51: 1947-1953.
Tilg, H. and A. Moschen, 2010. Update on nonalcoholic fatty liver disease: Genes involved in nonalcoholic fatty liver disease and associated inflammation. Curr. Opin. Clin. Nutr. Metab. Care, 13: 391-396.
Younossi, Z.M., A.M. Diehl and J.P. Ong, 2002. Nonalcoholic fatty liver disease: An agenda for clinical research. Hepatology, 35: 746-752.