DERIVATIVE OPERATOR
AND HARMONIC NUMBER IDENTITIES

A CHUANAN WEI AND B DIANXUAN GONG

ADepartment of Information Technology
Hainan Medical College, Haikou 571101, China
BCollege of Sciences
Hebei Polytechnic University, Tangshan 063009, China

ABSTRACT. By applying the derivative operator to the corresponding hypergeometric form of a \(q\)-series transformation due to Andrews [1, Theorem 4], we establish a general harmonic number identity. As the special cases of it, several interesting Chu-Donno type identities and Paule-Schneider type identities are displayed.

1. Introduction

For a nonnegative integer \(n\), define the harmonic numbers by

\[H_0 = 0 \quad \text{and} \quad H_n = \sum_{k=1}^{n} \frac{1}{k} \quad \text{when} \quad n = 1, 2, \ldots. \]

For a differentiable function \(f(x)\), the derivative operator \(\mathcal{D}\) can be defined by

\[\mathcal{D}f(x) = \left. \frac{d}{dx} f(x) \right|_{x=0}. \]

Then it is not difficult to show the following two derivatives of binomial coefficients:

\[
\mathcal{D} \binom{n+x}{r} = \binom{n}{r} \{H_n - H_{n-r}\}, \quad \mathcal{D} \binom{n-x}{r} = \binom{n}{r} \{H_{n-r} - H_n\},
\]

where \(r \leq n\) with \(r = 0, 1, \ldots\).

For a complex number \(x\), define the shifted factorial by

\[(x)_0 = 1 \quad \text{and} \quad (x)_n = \prod_{k=0}^{n-1} (x + k) \quad \text{when} \quad n = 1, 2, \ldots. \]

The fractional form of it reads as

\[
\left[\begin{array}{c} a, b, \ldots, c \\ \alpha, \beta, \ldots, \gamma \end{array} \right]_n = \frac{(a)_n(b)_n \cdots (c)_n}{(\alpha)_n(\beta)_n \cdots (\gamma)_n}.
\]

Then the hypergeometric series (cf. Bailey [3]) can be defined by

\[
1 + F_a \left[\begin{array}{c} a_0, a_1, \ldots, a_r \\ b_1, \ldots, b_s \end{array} \right]_z = \sum_{k=0}^{\infty} \left[\begin{array}{c} a_0, a_1, \ldots, a_r \\ 1, b_1, \ldots, b_s \end{array} \right]_k z^k,
\]

where \(\{a_i\}_{i \geq 0}\) and \(\{b_j\}_{j \geq 1}\) are complex parameters such that no zero factors appear in the denominators of the summand on the right hand side.

For a complex sequence \(\{A_k\}_{k \geq 0}\) and two nonnegative integers \(i\) and \(j\), define the product by

\[
\prod_{k=i}^{j} A_k = \left\{ \begin{array}{ll} A_1A_{i+1} \cdots A_j, & \text{for} \quad j \geq i, \\
1, & \text{for} \quad j = i - 1. \end{array} \right.
\]

2010 Mathematics Subject Classification: Primary 33C20 and Secondary 05A10

Key words and phrases. Hypergeometric series; Derivative operator; Harmonic number identity.

Email addresses: weichuanan@yahoo.com.cn (C. Wei), dxgong@heut.edu.cn (D. Gong).
In 1975, Andrews [1, Theorem 4] gave a beautiful q-series transformation. The corresponding hypergeometric form of it (cf. Krattenthaler et al. [3, Theorem 8] and [5, Equation 4.2]) can be stated as

\[
2m+5 F_{2m+4} \left[\begin{array}{c}
2m+2, 1+a+a/2, a/2, \\
1 + a - a T_{2m+1}, 1 + a + n \end{array} \right] = \left[\begin{array}{c}
1 + a, 1 + a - P_{2m+1} - P_{2m+2} \\
1 + a - P_{2m+1}, 1 + a - P_{2m+2} \end{array} \right]_n
\]

\times \sum_{0 \leq i_1 \leq \ldots \leq i_m \leq n} \prod_{r=1}^m \left[\begin{array}{c}
1, P_{2r+1}, P_{2r+2} - a - i_r, 1 + a - P_{2r-1}, 1 + a - P_{2r} \end{array} \right]_{i_r}, \tag{1}

where \(i_{m+1} = n \) and \(m \in \mathbb{N} \). When \(m = 1 \), the last equation reduces to the famous Whipple’s transformation (cf. Bailey [3, p. 25]):

\[
{7}F{6} \left[\begin{array}{c}
a, 1 + a/2, P_1, 1 + a - P_1, 1 + a - P_2, 1 + a - P_3, 1 + a - P_4, 1 + a + n \end{array} \right] = \left[\begin{array}{c}
1 + a, 1 + a - P_3 - P_4 \\
1 + a - P_3, 1 + a - P_1 - P_2, 1 + a - P_1, 1 + a - P_2 \end{array} \right]_n
\]

By applying the derivative operator \(D \) to (1), we shall establish a general harmonic number identity in the next section. As the special cases of it, several interesting Chu-Donno type identities and Paul-Schneider type identities will be displayed.

2. Harmonic number identities

§2.1. A general harmonic number identity.

Let \(v \) be a nonnegative integer with \(0 \leq v \leq 2m + 2 \). For two finite sets \(\{\alpha_s\}_{s=1}^v \) and \(\{\alpha_s\}_{s=v+1}^{2m+2} \), the case \(v = 0 \) corresponds to the former is empty and the latter is \(\{\alpha_s\}_{s=1}^{2m+2} \), and the case \(v = 2m + 2 \) corresponds to the former is \(\{\alpha_s\}_{s=1}^v \) and the latter is empty.

Performing the replacements \(a \rightarrow -x - n, P_s \rightarrow 1 + P_s \) with \(1 \leq s \leq v \) and \(P_s \rightarrow -n - P_s \) with \(v + 1 \leq s \leq 2m + 2 \) for (1), we obtain the following expression:

\[
\sum_{0 \leq i_1 \leq \ldots \leq i_m \leq n} \prod_{r=1}^m \left[\begin{array}{c}
1 - i_r, T_{2r+1}, T_{2r+2}, 1 - x - n - T_{2r-1} - T_{2r} \end{array} \right]_{i_r},
\]

where \(T_s = 1 + P_s \) with \(1 \leq s \leq v \) and \(T_s = -n - P_s \) with \(v + 1 \leq s \leq 2m + 2 \).

Applying the derivative operator \(D \) to both sides of the last equation, we establish the following theorem.

Theorem 1. For \(2m+2 \) nonnegative integers \(\{P_s\}_{s=1}^{2m+2} \) with \(i_{m+1} = n \) and \(m \in \mathbb{N} \), there holds the general harmonic number identity:

\[
\sum_{k=0}^n \binom{n}{k} \prod_{s=1}^v \frac{(k+P_s)}{k} \prod_{s=v+1}^{2m+2} \frac{(k+P_s)}{k} \left(1 + (n-2k) \left(2H_k - \sum_{s=1}^v \frac{2m+2}{s} \right) \right) = \left[\begin{array}{c}
-n, 1 - n - T_{2m+1} - T_{2m+2} \\
1 - n - T_{2m+1}, 1 - n - T_{2m+2} \end{array} \right]_n
\]

\times \sum_{0 \leq i_1 \leq \ldots \leq i_m \leq n} \prod_{r=1}^m \left[\begin{array}{c}
1 - i_r, T_{2r+1}, T_{2r+2}, 1 - n - T_{2r-1} - T_{2r} \end{array} \right]_{i_r},
\]

where \(T_s = 1 + P_s \) with \(1 \leq s \leq v \) and \(T_s = -n - P_s \) with \(v + 1 \leq s \leq 2m + 2 \).

§2.2. Special cases: harmonic number identities of Chu-Donno type.

Setting \(m = 1 \) in Theorem 1 we get the following equation.
Proposition 2. For four nonnegative integers \(\{P_s\}_{s=1}^{\infty} \), there holds the harmonic number identity:

\[
\sum_{k=0}^{n} \binom{n}{k}^2 \sum_{s=1}^{v} \binom{k+P_s}{k}^{4} \sum_{s=1}^{v} \binom{n+P_s}{n} \left\{ 1 + (n - 2k) \left(2H_k - \sum_{s=1}^{v} H_{k+P_s} + \sum_{s=1}^{v} H_{k+P_s} \right) \right\}
\]

\[
= \left[-n, 1 - n - T_3 - T_4, 1 - n - T_3, 1 - n - T_4 \right] \times \left[-n, T_3, T_4, 1 - n - T_3 - T_2, T_3 + T_4, 1 - n - T_1, 1 - n - T_2 \right],
\]

where \(T_s = 1 + P_s \) with \(1 \leq s \leq v \) and \(T_s = -n - P_s \) with \(v + 1 \leq s \leq 4 \).

Letting \(P_s \to nP_s \) with \(1 \leq s \leq 4 \) in Proposition 2 we get the following result.

Corollary 3. For four nonnegative integers \(\{P_s\}_{s=1}^{\infty} \), there holds the harmonic number identity:

\[
\sum_{k=0}^{n} \binom{n}{k}^2 \prod_{s=1}^{v} \binom{k+P_s}{k}^{4} \prod_{s=1}^{v} \binom{n+P_s}{n} \left\{ 1 + (n - 2k) \left(2H_k - \sum_{s=1}^{v} H_{k+nP_s} + \sum_{s=1}^{v} H_{k+nP_s} \right) \right\}
\]

\[
= \left[-n, 1 - n - T_3 - T_4, 1 - n - T_3, 1 - n - T_4 \right] \times \left[-n, T_3, T_4, 1 - n - T_1 - T_2, T_3 + T_4, 1 - n - T_1, 1 - n - T_2 \right],
\]

where \(T_s = 1 + nP_s \) with \(1 \leq s \leq v \) and \(T_s = -n - nP_s \) with \(v + 1 \leq s \leq 4 \).

The importance of Corollary 3 lies in that it implies eight important theorems due to Chu and Donno. The details are laid out as follows.

Taking respectively \(v = 2, 1, 0 \) in Corollary 3 and then letting \(P_1 \to b, P_2 \to c, P_3 \to \infty, P_4 \to \infty \), we gain the following three known harmonic number identities.

Example 1 (Chu and Donno [4] Theorem 5]). For two nonnegative integers \(\{b, c\} \), there holds

\[
\sum_{k=0}^{n} \binom{n}{k}^2 \prod_{s=1}^{v} \binom{k+b+c}{k}^{4} \prod_{s=1}^{v} \binom{n+c}{n} \left\{ 1 + (n - 2k) \left(2H_k - H_{bn+k} - H_{cn+k} \right) \right\} = \left(\frac{1+bn+cn+n}{n+bn+cn} \right) \quad \text{for } n \geq 0.
\]

Example 2 (Chu and Donno [4] Theorem 6]). For two nonnegative integers \(\{b, c\} \), there holds

\[
\sum_{k=0}^{n} \binom{n}{k}^2 \prod_{s=1}^{v} \binom{k+b+c}{k}^{4} \prod_{s=1}^{v} \binom{n+c}{n} \left\{ 1 + (n - 2k) \left(2H_k - H_{bn+k} + H_{cn+k} \right) \right\} = \left(\frac{1+bn-cn}{n+bn+cn} \right) \quad \text{for } n \geq 0.
\]

Example 3 (Chu and Donno [4] Theorem 7]). For two nonnegative integers \(\{b, c\} \), there holds

\[
\sum_{k=0}^{n} \binom{n}{k}^2 \prod_{s=1}^{v} \binom{k+b+c}{k}^{4} \prod_{s=1}^{v} \binom{n+c}{n} \left\{ 1 + (n - 2k) \left(2H_k + H_{bn+k} + H_{cn+k} \right) \right\} = \left(\frac{1+2n+bn-cn}{n+bn+cn} \right) \quad \text{for } n \geq 0.
\]

Taking respectively \(v = 4, 3, 2, 1, 0 \) in Corollary 3 and then letting \(P_1 \to b, P_2 \to c, P_3 \to d, P_4 \to e \), we achieve the following five known harmonic number identities.

Example 4 (Chu and Donno [4] Theorem 8]). For four nonnegative integers \(\{b, c, d, e\} \), there holds

\[
\sum_{k=0}^{n} \binom{n}{k}^2 \prod_{s=1}^{v} \binom{k+b+c+d+e}{k}^{4} \prod_{s=1}^{v} \binom{n+c+d+e}{n} \left\{ 1 + (n - 2k) \left(2H_k - H_{bn+k} - H_{cn+k} - H_{dn+k} - H_{en+k} \right) \right\} = \left(\frac{1+bn+cn+dn+en+n}{n+bn+cn+dn+en} \right) \quad \text{for } n \geq 0.
\]

Example 5 (Chu and Donno [4] Theorem 9]). For four nonnegative integers \(\{b, c, d, e\} \), there holds

\[
\sum_{k=0}^{n} \binom{n}{k}^2 \prod_{s=1}^{v} \binom{k+b+c+d+e}{k}^{4} \prod_{s=1}^{v} \binom{n+c+d+e}{n} \left\{ 1 + (n - 2k) \left(2H_k - H_{bn+k} - H_{cn+k} - H_{dn+k} + H_{en+k} \right) \right\} = \left(\frac{1+bn+cn+dn+en+n}{n+bn+cn+dn+en} \right) \quad \text{for } n \geq 0.
\]
Example 6 (Chu and Donno [4] Theorem 10]). For four nonnegative integers \(\{b, c, d, e\}\), there holds
\[
\sum_{k=0}^{n} \binom{n}{k}^2 \frac{\binom{k}{b}}{\binom{k}{b}} \frac{\binom{k}{c}}{\binom{k}{c}} \frac{\binom{n+dn}{n+cn}}{\binom{k}{k}} \frac{\binom{n+en}{n+en}}{\binom{k}{k}} \times \left\{ 1 + (n - 2k)(2H_k - H_{bn+k} - H_{cn+k} + H_{dn+k} + H_{en+k}) \right\}
\]
\[
= \left(-1 \right)^n \sum_{i=0}^{n} (-1)^i \binom{n+bn+i}{n+i} \binom{n+cn+i}{i} \binom{n+dn+i}{i} \binom{n+en+i}{n+en-n}.
\]

Example 7 (Chu and Donno [4] Theorem 11]). For four nonnegative integers \(\{b, c, d, e\}\), there holds
\[
\sum_{k=0}^{n} \binom{n}{k}^2 \frac{\binom{k}{b}}{\binom{k}{b}} \frac{\binom{k}{c}}{\binom{k}{c}} \frac{\binom{n+dn}{n+cn}}{\binom{k}{k}} \frac{\binom{n+en}{n+en}}{\binom{k}{k}} \times \left\{ 1 + (n - 2k)(2H_k - H_{bn+k} + H_{cn+k} + H_{dn+k} + H_{en+k}) \right\}
\]
\[
= \left(-1 \right)^n \sum_{i=0}^{n} (-1)^i \binom{n+bn+i}{n+i} \binom{n+cn+i}{i} \binom{n+dn+i}{i} \binom{n+en+i}{n+en-n}.
\]

Example 8 (Chu and Donno [4] Theorem 12]). For four nonnegative integers \(\{b, c, d, e\}\), there holds
\[
\sum_{k=0}^{n} \binom{n}{k}^2 \frac{\binom{k}{b}}{\binom{k}{b}} \frac{\binom{k}{c}}{\binom{k}{c}} \frac{\binom{n+dn}{n+cn}}{\binom{k}{k}} \frac{\binom{n+en}{n+en}}{\binom{k}{k}} \times \left\{ 1 + (n - 2k)(2H_k + H_{bn+k} + H_{cn+k} + H_{dn+k} + H_{en+k}) \right\}
\]
\[
= \left(-1 \right)^n \sum_{i=0}^{n} (-1)^i \binom{n+bn+i}{n+i} \binom{n+cn+i}{i} \binom{n+dn+i}{i} \binom{n+en+i}{n+en-n}.
\]

Setting \(m = 2\) in Theorem 1 we attain the following equation.

Proposition 4. For six nonnegative integers \(\{P_s\}_{s=1}^{6}\), there holds the harmonic number identity:
\[
\sum_{k=0}^{n} \binom{n}{k}^2 \frac{\binom{k}{b}}{\binom{k}{b}} \frac{\binom{k}{c}}{\binom{k}{c}} \frac{\binom{n+dn}{n+cn}}{\binom{k}{k}} \frac{\binom{n+en}{n+en}}{\binom{k}{k}} \times \left\{ 1 + (n - 2k)(2H_k - \sum_{s=1}^{v} H_{k+P_s} + \sum_{s=v+1}^{6} H_{k+P_s}) \right\}
\]
\[
= \left[\begin{array}{c} -n, 1 - n - T_5 - T_6, 1 - n - T_3 - T_4, 1 - n - T_5 - T_6, 1 - n - T_3 - T_4, 1 - n - T_3, 1 - n - T_4, 1 - n - T_2, 1 - n - T_1. \end{array} \right]
\times 4 F_3 \left[\begin{array}{c} -i, -n, T_3, T_4, 1 - n - T_1 - T_2, T_3 + T_4 + n - i, 1 - n - T_1, 1 - n - T_2, 1 - n - T_1. \end{array} \right],
\]
where \(T_s = 1 + P_s\) with \(1 \leq s \leq v\) and \(T_s = -n - P_s\) with \(v + 1 \leq s \leq 6\).

Taking respectively \(v = 6, 5, 4, 3, 2, 1, 0\) in Proposition 4 and then letting \(P_1 = b, P_2 = c, P_3 = d, P_4 = e, P_5 = f, P_6 = g\), we derive the following seven harmonic number identities of Chu-Donno type.

Example 9. For six nonnegative integers \(\{b, c, d, e, f, g\}\), there holds
\[
\sum_{k=0}^{n} \binom{n}{k}^2 \frac{\binom{k}{b}}{\binom{k}{b}} \frac{\binom{k}{c}}{\binom{k}{c}} \frac{\binom{k}{d}}{\binom{k}{d}} \frac{\binom{k}{e}}{\binom{k}{e}} \frac{\binom{k}{f}}{\binom{k}{f}} \frac{\binom{n+en}{n+en}}{\binom{k}{k}} \times \left\{ 1 + (n - 2k)(2H_k - H_{bn+k} - H_{cn+k} - H_{dn+k} - H_{en+k} - H_g) \right\}
\]
\[
= \frac{\left(-1 \right)^n \sum_{i=0}^{n} (-1)^i \binom{n+bn+i}{n+i} \binom{n+cn+i}{i} \binom{n+dn+i}{i} \binom{n+en+i}{n+en-n}}{\binom{n+bn+i}{n+i} \binom{n+cn+i}{i} \binom{n+dn+i}{i} \binom{n+en+i}{n+en-n}}.
\]

Example 10. For six nonnegative integers \(\{b, c, d, e, f, g\}\), there holds
\[
\sum_{k=0}^{n} \binom{n}{k}^2 \frac{\binom{k}{b}}{\binom{k}{b}} \frac{\binom{k}{c}}{\binom{k}{c}} \frac{\binom{k}{d}}{\binom{k}{d}} \frac{\binom{k}{e}}{\binom{k}{e}} \frac{\binom{k}{f}}{\binom{k}{f}} \frac{\binom{n+en}{n+en}}{\binom{k}{k}} \times \left\{ 1 + (n - 2k)(2H_k - H_{bn+k} - H_{cn+k} - H_{dn+k} - H_{en+k} - H_{ef}) \right\}
\]
\[
= \frac{\left(-1 \right)^n \sum_{i=0}^{n} (-1)^i \binom{n+bn+i}{n+i} \binom{n+cn+i}{i} \binom{n+dn+i}{i} \binom{n+en+i}{n+en-n}}{\binom{n+bn+i}{n+i} \binom{n+cn+i}{i} \binom{n+dn+i}{i} \binom{n+en+i}{n+en-n}}.
\]
Example 11. For six nonnegative integers \{b, c, d, e, f, g\}, there holds

\[
\sum_{k=0}^{n} \binom{n}{k} 2^{\binom{n+b}{k} \binom{n+c}{k} \binom{n+d}{k} \binom{n+e}{k} \binom{n+f}{k} \binom{n+g}{k}} \times \left\{1 + (n - 2k)(2H_k - H_{b+k} - H_{c+k} - H_{d+k} - H_{e+k} - H_{f+k} + H_{g+k})\right\} = \frac{\binom{1+b+c+n}{n} \sum_{i=0}^{n} (-1)^i \binom{n}{i} \binom{i+b}{i} \binom{i+c}{i} \binom{i+d+c+n}{i} \sum_{j=0}^{i} \binom{i}{j} \binom{i+d+j}{i} \binom{i+f+j}{i} \binom{n+g+j}{i}}{\binom{n+b+c+n}{n} \sum_{i=0}^{n} \binom{i+b+c+n}{i} \binom{i+b+c+n}{i} \binom{i+b+c+n}{i} \binom{i+b+c+n}{i}}.
\]

Example 12. For six nonnegative integers \{b, c, d, e, f, g\}, there holds

\[
\sum_{k=0}^{n} \binom{n}{k} 2^{\binom{n+b}{k} \binom{n+c}{k} \binom{n+d}{k} \binom{n+e}{k} \binom{n+f}{k} \binom{n+g}{k}} \times \left\{1 + (n - 2k)(2H_k - H_{b+k} - H_{c+k} - H_{d+k} - H_{e+k} - H_{f+k} + H_{g+k})\right\} = \frac{\binom{1+b+c+n}{n} \sum_{i=0}^{n} (-1)^i \binom{n}{i} \binom{i+b}{i} \binom{i+c}{i} \binom{i+d+c+n}{i} \sum_{j=0}^{i} \binom{i}{j} \binom{i+d+j}{i} \binom{i+f+j}{i} \binom{n+g+j}{i}}{\binom{n+b+c+n}{n} \sum_{i=0}^{n} \binom{i+b+c+n}{i} \binom{i+b+c+n}{i} \binom{i+b+c+n}{i} \binom{i+b+c+n}{i}}.
\]

Example 13. For six nonnegative integers \{b, c, d, e, f, g\}, there holds

\[
\sum_{k=0}^{n} \binom{n}{k} 2^{\binom{n+b}{k} \binom{n+c}{k} \binom{n+d}{k} \binom{n+e}{k} \binom{n+f}{k} \binom{n+g}{k}} \times \left\{1 + (n - 2k)(2H_k - H_{b+k} - H_{c+k} - H_{d+k} - H_{e+k} - H_{f+k} + H_{g+k})\right\} = \frac{\binom{1+b+c+n}{n} \sum_{i=0}^{n} (-1)^i \binom{n}{i} \binom{i+b}{i} \binom{i+c}{i} \binom{i+d+c+n}{i} \sum_{j=0}^{i} \binom{i}{j} \binom{i+d+j}{i} \binom{i+f+j}{i} \binom{n+g+j}{i}}{\binom{n+b+c+n}{n} \sum_{i=0}^{n} \binom{i+b+c+n}{i} \binom{i+b+c+n}{i} \binom{i+b+c+n}{i} \binom{i+b+c+n}{i}}.
\]

Example 14. For six nonnegative integers \{b, c, d, e, f, g\}, there holds

\[
\sum_{k=0}^{n} \binom{n}{k} 2^{\binom{n+b}{k} \binom{n+c}{k} \binom{n+d}{k} \binom{n+e}{k} \binom{n+f}{k} \binom{n+g}{k}} \times \left\{1 + (n - 2k)(2H_k - H_{b+k} + H_{c+k} + H_{d+k} + H_{e+k} + H_{f+k} + H_{g+k})\right\} = (-1)^n \frac{n-b}{n} \sum_{i=0}^{n} \binom{n}{i} \binom{i+b+c+n}{i} \binom{i+b+c+n}{i} \sum_{j=0}^{i} \binom{i}{j} \binom{i+j}{i} \binom{i+j}{i} \binom{n+g+j}{i}.
\]

Example 15. For six nonnegative integers \{b, c, d, e, f, g\}, there holds

\[
\sum_{k=0}^{n} \binom{n}{k} 2^{\binom{n+b}{k} \binom{n+c}{k} \binom{n+d}{k} \binom{n+e}{k} \binom{n+f}{k} \binom{n+g}{k}} \times \left\{1 + (n - 2k)(2H_k + H_{b+k} + H_{c+k} + H_{d+k} + H_{e+k} + H_{f+k} + H_{g+k})\right\} = (-1)^n \frac{n+b}{n} \sum_{i=0}^{n} \binom{n}{i} \binom{i+b+c+n}{i} \binom{i+b+c+n}{i} \binom{i+b+c+n}{i} \sum_{j=0}^{i} \binom{i}{j} \binom{i+j}{i} \binom{i+j}{i} \binom{n+g+j}{i}.
\]

It should be pointed out that Examples 11tr are only the suitable limiting cases of Examples 14tr. Although the latter are also crossed one another as the former, they can create numerous beautiful harmonic number identities with doubt. Further, Theorem 1 may produce more harmonic number identities of Chu-Donno type with the change of \(m\). The interested reader may write several ones of them down as exercises.

\[\text{§2.3. Special cases: harmonic number identities of Paule-Schneider type.}\]

For an integer \(u\) with \(u \neq 0\), define \(T_n^{(u)}\) by

\[
T_n^{(u)} = \sum_{k=0}^{n} \binom{n}{k} u^{k} \{1 + u(n - 2k)H_k\}.\]
Then eight known harmonic number identities can be stated as follows:

\[T_n^{(-2)} = \frac{2(1+n)^2}{(2+n)} H_{n+1}, \]
\[T_n^{(-1)} = (1+n) H_{n+1}, \]
\[T_n^{(1)} = 1, \]
\[T_n^{(2)} = 0, \]
\[T_n^{(3)} = (-1)^n, \]
\[T_n^{(4)} = (-1)^n \left(\frac{2n}{n} \right), \]
\[T_n^{(5)} = (-1)^n \sum_{i=0}^{n} \binom{n}{i}^2 \left(\frac{n+i}{n} \right), \]
\[T_n^{(6)} = (-1)^n \sum_{i=0}^{n} \binom{n}{i}^2 \left(\frac{n+i}{n} \right) \left(\frac{2n-i}{n} \right). \]

\[\text{Eq. (1)} \] - [3] appeared first in Paule and Schneider [8]. Chu and Donno [4] offered other three ones and showed that these eight harmonic number identities just displayed can be derived by specifying the parameters in Examples [1] [3] [4] and [8]. Now, we shall bend ourselves to display the remaining results of the same type by specifying the parameters in Theorem [1].

Letting \(P_{2m+2} \to \infty, v \to 0 \) and \(P_s \to 0 \) with \(1 \leq s \leq 2m+1 \) in Theorem [1] we obtain the equivalent form of the first equation of Krattenthaler and Rivoal [5] Proposition 1.

Proposition 5. For \(m \in \mathbb{N} \), there holds the harmonic number identity:

\[T_n^{(2m+3)} = (-1)^n \sum_{0 \leq i_1 \leq i_2 \leq \cdots \leq i_m \leq n} \binom{n}{i_m}^2 \left(\frac{n+i_1}{n} \right) \prod_{r=1}^{m-1} \binom{n}{i_r}^2 \left(\frac{n+i_{r+1} - i_r}{n} \right). \]

Setting \(v = 0 \) and \(P_s = 0 \) with \(1 \leq s \leq 2m+2 \) in Theorem [1] we get the following equation.

Proposition 6. For \(i_{m+1} = n \) with \(m \in \mathbb{N} \), there holds the harmonic number identity:

\[T_n^{(2m+4)} = (-1)^n \sum_{0 \leq i_1 \leq i_2 \leq \cdots \leq i_m \leq n} \binom{n}{i_1} \prod_{r=1}^{m} \binom{n}{i_r}^2 \left(\frac{n+i_{r+1} - i_r}{n} \right). \]

Proposition [6] and the second equation of Krattenthaler and Rivoal [5] Proposition 1] have different versions although that the purpose of them are the same. Proposition [6] reduces to [9] exactly when \(m = 1 \). Other two results are laid out as follows.

Example 16 (Harmonic number identity of Paule-Schneider type: \(m = 2 \) in Proposition [5].)

\[T_n^{(8)} = (-1)^n \sum_{i=0}^{n} \binom{n}{i}^2 \left(\frac{2n-i}{n} \right) \sum_{j=0}^{i} \binom{n}{j} \left(\frac{n+j}{n} \right) \left(\frac{n+i-j}{n} \right). \]

Example 17 (Harmonic number identity of Paule-Schneider type: \(m = 3 \) in Proposition [5].)

\[T_n^{(10)} = (-1)^n \sum_{i=0}^{n} \binom{n}{i}^2 \left(\frac{2n-i}{n} \right) \sum_{j=0}^{i} \binom{n}{j} \left(\frac{n+i-j}{n} \right) \sum_{k=0}^{j} \binom{n}{k} \left(\frac{n+k}{n} \right) \left(\frac{n+j-k}{n} \right). \]

The open problem posed at the end of Paule and Schneider [8] states that whether \(T_n^{(u)} \) can be expressed as a definite hypergeometric single-sum for all \(u \geq 3 \). Although the equations on \(T_n^{(u)} \) with \(u \geq 3 \) have been given in Krattenthaler and Rivoal [5] Proposition 1] and this subsection, we can’t still judge that whether \(T_n^{(u)} \) can be expressed as a definite hypergeometric single-sum for all \(u \geq 6 \).

Letting \(v \to 2m+2, P_{2m+2} \to \infty \) and \(P_s \to 0 \) with \(1 \leq s \leq 2m+1 \) in Theorem [1] we attain the following equation.

Proposition 7. For \(m \in \mathbb{N} \), there holds the harmonic number identity:

\[T_n^{(1-2m)} = (1+n)^m \sum_{0 \leq i_1 \leq i_2 \leq \cdots \leq i_m \leq n} \frac{1}{1+n-i_1} \prod_{r=1}^{m-1} \frac{(1)_{i_r} (i_{r+1})_{i_{r+1}}}{(-n)_{i_r} (1+n-i_{r+1})_{i_{r+1}}}. \]

Proposition [7] leads to [3] exactly when \(m = 1 \). Other two results are displayed as follows.
Example 18 (Harmonic number identity of Paule-Schneider type: \(m = 2 \) in Proposition 7).

\[
T_n^{(-3)} = (1 + n)^2 \sum_{i=0}^{n} \sum_{j=0}^{i} \frac{(1)_j (-i)_j}{(-n)_j (1 + n - i)_{j+1}} \frac{1}{1 + n - j}.
\]

Example 19 (Harmonic number identity of Paule-Schneider type: \(m = 3 \) in Proposition 7).

\[
T_n^{(-5)} = (1 + n)^3 \sum_{i=0}^{n} \sum_{j=0}^{i} \frac{(1)_j (-i)_j}{(-n)_j (1 + n - i)_{j+1}} \sum_{t=0}^{j} \frac{(1)_t (-j)_t}{(-n)_t (1 + n - j)_{t+1}} \frac{1}{1 + n - t}.
\]

Taking \(v = 2m + 2 \) and \(P_s = 0 \) with \(1 \leq s \leq 2m + 2 \) in Theorem 1, we achieve the following equation.

Proposition 8. For \(i_{m+1} = n \) with \(m \in \mathbb{N} \), there holds the harmonic number identity:

\[
T_n^{(-2m)} = (1 + n)^{m+1} \sum_{0 \leq i_1 \leq i_2 \leq \cdots \leq i_m \leq n} \prod_{r=1}^{m} \frac{1}{1 + n - i_r} \begin{bmatrix} 1, & -i_{r+1} \\ -n, & 2 + n - i_{r+1} \end{bmatrix}_{i_r}.
\]

Proposition 8 reduces to (9) exactly when \(m = 1 \). Other two results are laid out as follows.

Example 20 (Harmonic number identity of Paule-Schneider type: \(m = 2 \) in Proposition 8).

\[
T_n^{(-4)} = (1 + n)^3 \sum_{i=0}^{n} \frac{1}{1 + i} \sum_{j=0}^{i} \frac{(1)_j (-i)_j}{(-n)_j (1 + n - i)_{j+1}} \frac{1}{1 + n - j}.
\]

Example 21 (Harmonic number identity of Paule-Schneider type: \(m = 3 \) in Proposition 8).

\[
T_n^{(-6)} = (1 + n)^4 \sum_{i=0}^{n} \frac{1}{1 + i} \sum_{j=0}^{i} \frac{(1)_j (-i)_j}{(-n)_j (1 + n - i)_{j+1}} \sum_{t=0}^{j} \frac{(1)_t (-j)_t}{(-n)_t (1 + n - j)_{t+1}} \frac{1}{1 + n - t}.
\]

References

[1] G. E. Andrews, Problems and prospects for basic hypergeometric functions, Theory and application for basic hypergeometric functions, R. A. Askey, ed., Math. Res. Center, Univ. Wisconsin, Publ. No. 35, Academic Press, New York, 1975, pp. 191-224.

[2] G. E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge University Press, Cambridge, 2000.

[3] W. N. Bailey, Generalized Hypergeometric Series, Cambridge University Press, Cambridge, 1935.

[4] W. Chu, L. D. Donno, Hypergeometric series and harmonic number identities, Adv. in Appl. Math. 34 (2005) 123-137.

[5] C. Krattenthaler, T. Rivoal, Hypergéométrie et fonction Zêta de Riemann, arXiv: math. NT/0311.114.

[6] C. Krattenthaler, T. Rivoal, An identity of Andrews, muptiple integrals, and very-well-poised hypergeometric series, arXiv: math. CA/0312.148.

[7] C. Krattenthaler, T. Rivoal, On a Linear form for Catalan’s constant, arXiv: math. NT/0810.1927.

[8] P. Paule, C. Schneider, Computer proofs of a new family of harmonic number identities, Adv. in Appl. Math. 31 (2003) 359-378.