Pascal’s triangle, Hoggatt matrices, and analogous constructions
Johann Cigler

Abstract
We give an overview about some elementary properties of Hoggatt matrices, which are generalizations of Pascal’s triangle, and study q–analogs and Fibonacci analogs and derive a common generalization.

1. Introduction
In [4] Daniel C. Fielder and Cecil O. Alford defined generalizations of Pascal’s triangle which they called Hoggatt triangles. We give an overview about some elementary properties of these triangles and their q–analogs and give a common generalization with Fibonacci polynomials. I want to thank Christian Krattenthaler for help with some determinants and hypergeometric identities.

Let us first introduce some notations which emphasize the analogy with Pascal’s triangle. Let d be a positive integer. We write

$$\langle n \rangle_d = \binom{n + d - 1}{d} = \frac{(d + 1)(d + 2) \cdots (d + n - 1)}{(n - 1)!}$$

and

$$\langle n \rangle_d! = \prod_{j=1}^{n} \langle j \rangle_d$$

and define

$$\langle n \rangle_d \langle k \rangle_d = \frac{\langle n \rangle_d \langle n-1 \rangle_d}{\langle k \rangle_d \langle k-1 \rangle_d} = \prod_{j=0}^{k-1} \frac{\langle n-j \rangle_d}{\langle k-j \rangle_d} = \frac{\langle n \rangle_d!}{\langle k \rangle_d! \langle n-k \rangle_d!}$$

for $0 \leq k \leq n$ and $\langle n \rangle_d \langle k \rangle_d = 0$ for $k > n$.

Following [4] we call the matrix

$$H_d = \left(\begin{array}{c} \langle n \rangle_d \\ \langle k \rangle_d \end{array} \right)_{n,k \geq 0}$$

the Hoggatt matrix or Hoggatt triangle of order d.

Email: johann.cigler@univie.ac.at

Key words and phrases: Pascal’s triangle, q–analog, Narayana numbers, semistandard Young tableaux, Fibonomial coefficients, Fibonacci polynomials
All entries of these matrices are nonnegative integers. This is of course true for Pascal’s triangle $H_1 = \binom{n}{k}_{n,k \geq 0}$ because of the recursion $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$.

For $d = 2$ the numbers $\binom{n+1}{2} = T_n$ are the triangle numbers $1, 3, 6, 10, \ldots$ and
\[
\binom{n}{2} = \frac{n!(n+1)!}{2^n}, \text{ because } \binom{1}{2} = 1 \text{ and by induction } \\
\binom{n}{2} = \binom{n-1}{2} \binom{n}{2} = \frac{(n-1)! n(n+1)}{2^{n-1}} = \frac{n!(n+1)!}{2^n}.
\]

The entries
\[
\binom{n}{k} = \frac{n!(n+1)!}{2^n} \cdot \frac{2^{n-k}}{k!(k+1)! (n-k)!(n-k+1)!} = \frac{1}{k+1} \binom{n}{k} \binom{n+1}{k}
\]
are Narayana numbers and H_2 is the well-known Narayana triangle (cf. e.g. [9] and OEIS [8], A001263)

\[
\begin{array}{ccccccc}
1 & & & & & & \\
1 & 1 & & & & & \\
1 & 3 & 1 & & & & \\
1 & 6 & 6 & 1 & & & \\
1 & 10 & 20 & 10 & 1 & & \\
1 & 15 & 50 & 50 & 15 & 1 \\
\end{array}
\]

For $3 \leq d \leq 9$ the corresponding triangles appear in OEIS [8], A056939, A056940, A056941, A142465, A142467, A142468, A174109.

From $\binom{n}{k} = \frac{(d+n-k) \cdots (d+n-1)}{(n-k) \cdots (n-1)} \binom{n-1}{k}$ we see that the first terms of H_d are

\[
\begin{pmatrix}
1 \\
1 & 1 \\
1 & d+1 \\
\frac{1}{2} & \frac{(d+1)(d+2)}{2} \\
\frac{1}{6} & \frac{(d+1)(d+2)(d+3)}{6} \\
\frac{1}{24} & \frac{(d+1)(d+2)(d+3)(d+4)}{24} \\
\end{pmatrix}
\]
It is also well-known and easy to verify that
\[
\left\langle \frac{n}{k} \right\rangle_2 = \det \begin{pmatrix} \binom{n}{k} & \binom{n+1}{k+1} \\ \binom{n+1}{k} & \binom{n+2}{k+1} \end{pmatrix} = \det \begin{pmatrix} \binom{n}{k} & \binom{n}{k-1} \\ \binom{n}{k+1} & \binom{n}{k} \end{pmatrix}
\] (4)

These determinants show that all elements \(\left\langle \frac{n}{k} \right\rangle_2 \) are integers.

2. Main properties

For each \(n \) the entries \(\left\langle \frac{n}{k} \right\rangle_d \) are palindromic with center of symmetry at \(\frac{n}{2} \) since
\[
\left\langle \frac{n}{k} \right\rangle_d = \left\langle \frac{n}{n-k} \right\rangle_d.
\] (5)

They are also unimodal with center of symmetry at \(\frac{n}{2} \), which means that
\[
\left\langle \frac{n}{0} \right\rangle_d \leq \left\langle \frac{n}{1} \right\rangle_d \leq \cdots \leq \left\langle \frac{n}{\frac{n}{2}} \right\rangle_d \leq \left\langle \frac{n}{n-1} \right\rangle_d \geq \left\langle \frac{n}{n} \right\rangle_d.
\]

Due to symmetry it suffices to show that we have \(\left\langle \frac{n}{k} \right\rangle_d \leq \left\langle \frac{n}{k+1} \right\rangle_d \) or equivalently
\[
\left\langle \frac{k+1}{d} \right\rangle_d \leq \left\langle \frac{n-k}{d} \right\rangle_d \text{ for } k < \left\lfloor \frac{n}{2} \right\rfloor.
\]

This is true because for each \(j \) we have \(k+1+j \leq n-k+j \).

Let us also mention some alternative formulas.

Proposition 1

\[
\left\langle n \right\rangle_d! = \prod_{j=0}^{d-1} \frac{(n+j)!}{(d-j)^{n+j}}.
\] (6)

and
\[
\left\langle \frac{n}{k} \right\rangle_d = \prod_{j=0}^{k-1} \left\langle \frac{n-j}{k-j} \right\rangle_d = \prod_{j=0}^{d-1} \binom{k}{k+j} = \prod_{j=0}^{d-1} \binom{n+d-1}{n+d-1-j}.
\] (7)
Proof

Let \(f(n) \) denote the right-hand side of (6). Then

\[
 f(1) = \prod_{j=0}^{d-1} (1 + j)! = 1 = \binom{1}{d}!
\]

and by induction

\[
 f(n) = \prod_{j=0}^{d-1} \frac{(n + j)!}{(d - j)^{\sum_{j}^d} (n + d - 1)!} = \prod_{j=0}^{d-1} \frac{(n + j - 1)!}{(d - j)^{\sum_{j}^d} (n + d - 1)!} = \left(\frac{n + d - 1}{d} \right) f(n - 1) = \binom{n}{d} \binom{n - 1}{d}!.
\]

Identities (7) follow from

\[
 \prod_{j=0}^{d-1} \binom{n + j}{k} = \prod_{j=0}^{d-1} \frac{n + j - 1}{k - j} = \binom{n - 1}{d} \prod_{j=0}^{d-1} \frac{n + j}{k + j - 1} = \binom{n - 1}{d} \prod_{j=0}^{d-1} \frac{n + j - 1}{k + j - 1} = \binom{n}{d} \prod_{j=0}^{d-1} \frac{n + j}{k + j}.
\]

An analog of (4) is

Theorem 2

\[
 \binom{n}{k}_d = \det \left(\begin{array}{c} n + j + i \\ k + j \end{array} \right)_{i,j=0}^{d-1} = \det \left(\begin{array}{c} n - j \\ k - j \end{array} \right)_{i,j=0}^{d-1}.
\]

These determinants show that all \(\binom{n}{k}_d \) are integers.

Proof

Let us first prove the left-hand side.

\[
 \binom{n + i + j}{k + j} = \frac{(n + i + j)!}{(k + j)!(n + i - k)!} = \frac{j!(n + i)!}{(k + j)!(n + i - k)!} = \frac{j!(n + i)!}{(k + j)!(n + i - k)!} = \binom{n + i + j}{k + j}
\]

implies

\[
 \det \left(\begin{array}{c} n + i + j \\ k + j \end{array} \right)_{i,j=0}^{d-1} = \prod_{j=0}^{d-1} \frac{j!(n + j)!}{(k + j)!(n + j - k)!} \det \left(\begin{array}{c} n + j \\ j \end{array} \right)_{i,j=0}^{d-1}
\]

with

\[
 \prod_{j=0}^{d-1} \frac{j!(n + j)!}{(k + j)!(n + j - k)!} = \prod_{j=0}^{d-1} \frac{n + j}{k + j} = \binom{n}{k}_d.
\]
It remains to prove that
\[
\det\left(\begin{pmatrix} n + i + j \end{pmatrix}_{i,j=0}^{d-1}\right) = 1. \tag{9}
\]

To this end let \(\Delta \) be the difference operator on the polynomials defined by
\[
\Delta f(x) = f(x + 1) - f(x). \]

It satisfies \(\Delta \left(\begin{pmatrix} x \\ n \end{pmatrix}\right) = \left(\begin{pmatrix} x+1 \\ n \end{pmatrix} - \begin{pmatrix} x \\ n \end{pmatrix}\right) = \begin{pmatrix} x \\ n-1 \end{pmatrix} \) and therefore
\[
\Delta^k \left(\begin{pmatrix} x \\ n \end{pmatrix}\right) = \begin{pmatrix} x \\ n-k \end{pmatrix}. \]

Writing \(\Delta = E - 1 \) with \(Ef(x) = f(x+1) \) we get
\[
\Delta^k = (E - 1)^k = \sum_{j=0}^{k} (-1)^j \begin{pmatrix} k \\ j \end{pmatrix} E^{k-j} \]
and thus \(\sum_{j=0}^{k} (-1)^j \begin{pmatrix} k \\ j \end{pmatrix} \begin{pmatrix} x + k - j \\ n \end{pmatrix} = \begin{pmatrix} x \\ n-k \end{pmatrix} \).

Since \(\begin{pmatrix} x \\ n-k \end{pmatrix} = 0 \) for \(k > n \) and \(\begin{pmatrix} x \\ n-n \end{pmatrix} = 1 \) the matrix \(\left(\begin{pmatrix} x \end{pmatrix}_{i,j=0}^{d-1} \right) \) is upper triangular with all entries 1 in the main diagonal. This implies
\[
\det\left(\begin{pmatrix} n + i + j \end{pmatrix}_{i,j=0}^{d-1}\right) = \det\left(\begin{pmatrix} x \end{pmatrix}_{i,j=0}^{d-1} \right) = 1.
\]

To compute the determinant \(\det\left(\begin{pmatrix} n \\ k + j - i \end{pmatrix}_{i,j=0}^{d-1}\right) = \det\left(\begin{pmatrix} n \\ k + j - i \end{pmatrix}_{i,j=0}^{d}\right) \)
we use formula (3.12) in [6] for \(q = 1 \):
\[
\det\left(\begin{pmatrix} A \\ L + j \end{pmatrix}_{i,j=1}^{d}\right) = \prod_{1 \leq i < j \leq n} \left(L_i - L_j \right) \prod_{i=1}^{n} (A + i - 1)! \over \prod_{i=1}^{n} (L_i + n)! \prod_{i=1}^{n} (A - L_i - 1)!
\]
Choosing \(A = n, \ L_i = k - i \) and \(n = d \) this gives
\[
\det\left(\begin{pmatrix} n \\ k + j - i \end{pmatrix}_{i,j=1}^{d}\right) = \prod_{j=0}^{d-1} \frac{\prod_{j=0}^{n} (n + j)!}{\prod_{j=0}^{n} (k + j)! \prod_{j=0}^{n} (n - k + j)!} = \prod_{j=0}^{d-1} \binom{n + j}{k} = \binom{n}{k}_{d} \tag{10}
\]
Another determinant representation has been given in [7]:

Corollary 3

\[
\binom{n}{k}_{d} = \det\left(\begin{pmatrix} n + i \\ k + j \end{pmatrix}_{i,j=0}^{d-1}\right). \tag{11}
\]
Proof

If we subtract row $i-1$ from row i in
\[
\binom{n+i}{k+j}_{i,j=0}^{d-1}
\]
the new row i has the entries
\[
\binom{n+i-1}{k+j-1}.
\]
If we do this for $i=d-1,d-2,\ldots,1$ the new matrix has the first row unchanged
and the rest is the matrix
\[
\binom{n+i-1}{k+j-1}_{i=1}^{d-1}.
\]
If we iterate this we arrive at
\[
\binom{n}{k+i}_{i,j=0}^{d-1}.
\]

Remark

In [14] and [7] these “MacMahon determinants” have been proved with the condensation
method (cf. [6], Proposition 10). We will use this method in Theorem 8 for the proof of a q–
analog.

There is a nice generalization of the formula
\[
\sum_{n \geq 0} \binom{n+k}{k} x^n = \frac{1}{(1-x)^{k+1}}.
\]

In [12] Robert A. Sulanke introduced Narayana numbers $N(d,n,k)$ of dimension d. His
results imply Theorem 4 which we state without proof.

Theorem 4

\[
(1-x)^{dk+1} \sum_{n \geq 0} \binom{n+k}{k} x^n = \sum_{j=0}^{(d-1)(k-1)} N(d,k,j)x^j.
\]

For $d=3$ the polynomials
\[
\sum_{j=0}^{2(k-1)} N(3,k,j)x^j
\]
are
\[
1, 1+3x+x^2, 1+10x+20x^2+10x^3+x^4,
\]
\[
1+22x+113x^2+119x^3+113x^4+22x^5+x^6, \ldots.
\]

For $d=2$ we get the Narayana numbers $N(2,n,k) = \frac{1}{k+1} \binom{n}{k} \binom{n-1}{k} = N_{n,k}$ in the usual
notation. In our notation $N_{n,k} = \binom{n-1}{k-2}$.

Let us give a direct proof for this case.

Theorem 5

\[
\sum_{j=0}^{k-1} j \binom{k-1}{j} x^j = \sum_{n \geq 0} \binom{n+k}{k} x^n.
\]
Proof

Since \(\binom{k+1}{j+1} = \frac{k+1}{j+1} \binom{k}{j} \) (14) is equivalent with

\[
(1-x)^{2k+1} \sum_{n=0}^{k} \binom{n+k}{k} \left(\binom{n+k+1}{k} x^n \right) = \sum_{j=0}^{k-1} \binom{k-1}{j} \left(\binom{k+1}{j+1} x^j \right).
\] (15)

If \(D = \frac{d}{dx} \) denotes the differentiation operator we get

\[
\sum_{n=0}^{k} \binom{n+k}{k} \left(\binom{n+k+1}{k} x^n \right) = \frac{D^k}{k!} \sum_{n=0}^{k} \binom{n+k}{k} x^{n+k+1} = \frac{D^k}{k! \ (1-x)^{k+1}} \frac{x^{k+1}}{k!} = \frac{D^k \ (1-(1-x))^{k+1}}{k! \ (1-x)^{k+1}}
\]

\[
= \frac{D^k}{k!} \sum_{j=0}^{k-1} (-1)^j \binom{k+1}{j} (1-x)^{j-k} = \sum_{j=0}^{k-1} (-1)^j \binom{k+1}{j} \left(\binom{j-k-1}{k} \right) (1-x)^{j-k}.
\]

It remains to show that

\[
\sum_{j=0}^{k-1} (-1)^j \binom{k+1}{j} \left(\binom{2k-j}{k} \right) (1-x)^j = \sum_{j=0}^{k-1} \binom{k-1}{j} \left(\binom{k+1}{j+1} \right) x^j.
\] (16)

Comparing the coefficient of \(z^k \) in

\[
\sum_{j=\ell}^{k-1} \binom{k-1}{j} \binom{k+1}{\ell} x^j z^{\ell+k+1} = (1+z)^{k-\ell} (x+z)^{k+1} = (1+z)^{k-\ell} (x-1+z)^{k+1} = \sum_{j=\ell}^{k+1} \binom{k+1}{j} (x-1)^j (1+z)^{2k-j}
\]

\[
= \sum_{j=\ell}^{k+1} \binom{k+1}{j} (x-1)^j \left(\binom{2k-j}{\ell} \right) z^j
\]
gives (16) and thus (15).

3. A combinatorial interpretation

There is an interesting combinatorial interpretation which I owe to Qiaochu Yuan [13]:

\[
\binom{n}{k} \text{ is the number of semistandard Young tableaux with shape } d^k \ (a \ box \ with \ d \ columns \ and \ k \ rows) \ and \ entries \ in \ \{1, \cdots, n\}. \ This \ is \ equivalent \ with \ all \ k \times d - matrices } (a_{i,j}) \ with \ entries \ in \ \{1, \cdots, n\}, \ such \ that \ a_{i,j} \leq a_{i,j+1} \ and \ a_{i,j} < a_{i+1,j} \ for \ all \ i, j.
\]

For \(d = 1 \) this is equivalent with choosing \(k \) different numbers from \(\{1, \cdots, n\} \).

In general the number of such matrices is given by the semistandard hook length formula (cf. [11]) which gives
$$\prod_{i=1}^{k} \prod_{j=1}^{d} \frac{n-i+j}{(k-i)+(d-j)+1} = \prod_{i=1}^{k} \frac{(n-i+1)(n-i+2)\cdots(n-i+d)}{(k-i+1)(k-i+2)\cdots(k-i+d)}$$

$$= \prod_{i=0}^{k-1} \frac{(n-i)(n-i+1)\cdots(n-i+d-1)}{(k-i)(k-i+1)\cdots(k-i+d-1)} = \prod_{i=0}^{k-1} \frac{d}{k-i+d-1} = \prod_{i=0}^{k-1} \frac{k-i}{d} = \frac{n}{k}. $$

The Jacobi-Trudi identities (cf. [11]) give

Theorem 6

$$\langle n \rangle = \det\left(\begin{array}{c} n+d+j-1 \\ \vdots \\ n \end{array}\right)_{i,j=0}^{k-1}. \quad (17)$$

We now give an elementary

Proof

We consider more generally $\det\left(\begin{array}{c} x_i+j \\ \vdots \\ n-1 \end{array}\right)_{i,j=0}^{k-1}$. This is a polynomial in the indeterminates x_0, \ldots, x_{k-1} of degree $\leq n-1$ in each variable. It vanishes for $x_i = x_j$ which gives the factor $\prod_{0 \leq i < j \leq k-1} (x_j-x_i)$. Since all entries of row i have the factor $x_i(x_i-1)\cdots(x_i-n+k+1)$

the determinant has the factor $\prod_{0 \leq i < j \leq k-1} (x_j-x_i)\prod_{i=0}^{k-1} x_i(x_i-1)\cdots(x_i-n+k+1)$.

This also is a polynomial of degree n in each variable. Therefore, there exists a constant c such that

$$\det\left(\begin{array}{c} x_i+j \\ \vdots \\ n-1 \end{array}\right)_{i,j=0}^{k-1} = c \prod_{0 \leq i < j \leq k-1} (x_j-x_i)\prod_{i=0}^{k-1} x_i(n-k). \quad (18)$$

To compute c we choose $x_i = n-1-i$. Then $\left(\begin{array}{c} x_i+j \\ \vdots \\ n-1 \end{array}\right)_{i,j=0}^{k-1}$ is a right triangle matrix with

$$\left(\begin{array}{c} x_i+i \\ \vdots \\ n-1 \end{array}\right)_{i,j=0}^{k-1} = 1 \text{ und therefore } \det\left(\begin{array}{c} x_i+j \\ \vdots \\ n-1 \end{array}\right)_{i,j=0}^{k-1} = 1.$$

On the right-hand side of (18) we get

$$c \prod_{0 \leq i < j \leq k-1} (x_j-x_i)\prod_{i=0}^{k-1} x_i(n-k) = c \prod_{0 \leq i < j \leq k-1} (i-j)\prod_{i=0}^{k-1} x_i(n-k)$$

$$= c(-1)^{\binom{k}{2}} \prod_{i=0}^{k-1} \frac{n-1-i}{k-1-i}$$
Setting $f(k) = \frac{\prod_{i=0}^{k-1} i!(n-1-i)(k-1-i)}{k!}$ we get

$$
\frac{f(k)}{f(k-1)} = \frac{\prod_{i=0}^{k-1} i!(n-1-i)(k-1-i)}{\prod_{i=0}^{k-2} i!(n-1-i)(k-2-i)} = (k-1)! \prod_{i=0}^{k-2} \frac{(k-2-i)!}{(k-1-i)!} = (n-k+1)^k
$$

and therefore $f(k) = \prod_{j=0}^{k-1} (n-j)^i$.

Thus

$$
\det\left(\begin{pmatrix} x_i + j \\ n-1 \end{pmatrix}\right)_{i,j=0}^{k-1} = (-1)^\binom{k}{2} \frac{1}{\prod_{j=0}^{k-1} (n-j)^j} \prod_{0 \leq i \leq j \leq k-1} (x_j - x_i) \prod_{i=0}^{k-1} \left(x_i \right)_{n-k} \right). \quad (19)
$$

To compute $\det\left(\begin{pmatrix} d - i + n - 1 + j \\ n-1 \end{pmatrix}\right)_{i,j=1}$ we choose $x_i = d - i + n - 1$ and get

$$
(-1)^\binom{k}{2} \frac{1}{\prod_{j=0}^{k-1} (n-j)^j} \prod_{0 \leq i \leq j \leq k-1} \left(\begin{pmatrix} d - i + n - 1 \\ n-1 \end{pmatrix}\right)^j = \prod_{i=0}^{k-1} \left(\begin{pmatrix} d - i + n - 1 \\ n-1 \end{pmatrix}\right)^j (n-j)(n-k)! = \frac{(d - i + n - 1)!}{(n-i-1)!} (n-k)! (n-k+1)!...
$$

because

$$
\prod_{i=0}^{k-1} \frac{(n-i-1)!}{(n-i)!(n-k)!} = \prod_{i=0}^{k-1} \frac{(n-i-1)!}{(n-i)!(n-k)!} = (n-1)!(n-2)!\cdots(n-k)! (n-k+1)!^{k-1} (n-k)!^{k-1} = 1.
$$

4. q-analogs

The above constructions have straightforward q-analogs. For a real number q with $|q| < 1$

$$
[n]_q = 1 + q + \cdots + q^{n-1}, \quad [n]_q! = \prod_{j=1}^{n} [j]_q \quad \text{and} \quad \left[\begin{pmatrix} n \\ k \end{pmatrix}\right]_q = \frac{[n]_q!}{[k]_q! [n-k]_q!} = \prod_{j=0}^{k-1} \frac{1 - q^{n-j}}{1 - q^{k-j}}.
$$
As is well known the q–binomial coefficients $\binom{n}{k}_q$ satisfy
\begin{align}
\binom{n}{k}_q &= q^k \binom{n-1}{k}_q + \binom{n-1}{k-1}_q + q^{n-k} \binom{n-1}{k-1}_q,
\end{align}
and are therefore polynomials in q with nonnegative integer coefficients.

For later use let us mention the following q–analog of the binomial theorem (cf. e.g. [1])
\begin{align}
\prod_{j=0}^{n-1} (1 - q^j x) &= \sum_{j=0}^{n} (-1)^j q^{\binom{j}{2}} \binom{n}{j}_q x^j.
\end{align}

We define $\binom{n}{d}_q = \binom{n+d-1}{d}_q$, $\binom{n}{d}_q = \binom{n}{d}_q$ and get
\begin{align}
\binom{n}{k}_d &= \frac{\binom{n}{d}_q}{\binom{k}{d}_q \binom{n-k}{d}_q} = \prod_{j=0}^{k-1} \binom{n-j}{d}_q = \prod_{j=0}^{d-1} \binom{n+j}{k}_q = \prod_{j=0}^{d-1} \binom{n+d-1}{k+j}_q.
\end{align}

From Theorem 7 we see that these are also polynomials in q with integer coefficients.

For $d = 2$ we get
\begin{align}
\binom{n}{k}_{2,q} &= \frac{1}{[k+1]_q} \binom{n}{k}_q \binom{n+1}{k}_q.
\end{align}

This gives the triangle
\begin{align}
\begin{pmatrix}
1 \\
1 \\
1 + q + q^2 \\
(1+q^2)(1+q+q^2) \\
(1+q^2)(1+q+q^2)(1+q^2+q^4)
\end{pmatrix}
\end{align}

As analog of (8) we get
\begin{align}
\binom{n}{k}_{d,q} &= \det\left(\binom{n+i+j}{k+j}_q\right)_{i,j=0}^{d-1} = \det\left(q^{\binom{i+j}{2}} \binom{n}_{k-i+j}_q\right)_{i,j=0}^{d-1}.
\end{align}
Proof

From
\[\begin{bmatrix} n+i+j \\ k+j \end{bmatrix}_q = \frac{[n+i+j]_q!}{[k+j]_q ![n-k+i]_q!} = \frac{[j]_q ![n+i]_q!}{[k+j]_q ![n-k+i]_q!} \begin{bmatrix} n+i+j \\ j \end{bmatrix}_q \] we get

\[\det \left(\begin{bmatrix} n+i+j \\ k+j \end{bmatrix}_q \right)_{i,j=0}^{d-1} = \prod_{i=0}^{d-1} \frac{[j]_q ![n+i]_q!}{[k+j]_q ![n-k+i]_q!} \det \left(\begin{bmatrix} n+i+j \\ j \end{bmatrix}_q \right)_{i,j=0}^{d-1} \]

with
\[\prod_{j=0}^{d-1} \frac{[j]_q ![n+j]_q!}{[k+j]_q ![n-k+j]_q!} = \prod_{j=0}^{d-1} \begin{bmatrix} n+j \\ k+j \end{bmatrix}_q = \begin{bmatrix} n \\ k \end{bmatrix}_{d,q}. \]

It remains to compute \(\det \left(\begin{bmatrix} n+i+j \\ j \end{bmatrix}_q \right)_{i,j=0}^{d-1}. \)

Using the identity
\[\sum_{i=0}^{j} (-1)^{i-j} \begin{bmatrix} i \\ \ell \end{bmatrix}_q q^{(i-j)/2} \begin{bmatrix} n+\ell+j \\ n-j \end{bmatrix}_q = q^{j(n+i)} \begin{bmatrix} n+j \\ j-i \end{bmatrix}_q \] (24)

we see that \(\left((-1)^{i-j} q^{-j/2} \begin{bmatrix} i \\ \ell \end{bmatrix}_q \right)_{i,j=0}^{d-1} \left(\begin{bmatrix} n+i+j \\ j \end{bmatrix}_q \right)_{i,j=0}^{d-1} \) is an upper triangular matrix with entries \(q^{i+j^2} \) in the main diagonal. This implies

\[\det \left(\begin{bmatrix} n+i+j \\ j \end{bmatrix}_q \right)_{i,j=0}^{d-1} = q^{d^2/2} \sum_{j=0}^{d} j^2. \] (25)

To prove (24) we consider
\[\begin{bmatrix} x \\ k \end{bmatrix}_q = \prod_{j=0}^{k-1} \frac{[x-j]_q}{[k-j]_q} = \prod_{j=0}^{k-1} \frac{q^x-q^j}{q^k-q^j} \] as a polynomial in \(q^x \) with coefficients in \(Q(q) \). If we define the operator \(E \) on these polynomials by

\[Ef(q^x) = f \left(q^{x+1} \right) \]

then we get \(E \begin{bmatrix} x \\ n \end{bmatrix}_q = \begin{bmatrix} x+1 \\ n \end{bmatrix}_q \). Let now \(\Delta = E - 1 \) be the difference operator.

We have
\[\Delta \begin{bmatrix} x \\ n \end{bmatrix}_q = \begin{bmatrix} x+1 \\ n \end{bmatrix}_q - \begin{bmatrix} x \\ n \end{bmatrix}_q = q^{x+1} \begin{bmatrix} x \\ n-1 \end{bmatrix}_q. \]

More generally we get by induction
\[(E-1)(E-q) \cdots (E-q^{k-1}) \begin{bmatrix} x \\ n \end{bmatrix}_q = q^{k(n+k-\ell)} \begin{bmatrix} x \\ n-k \end{bmatrix}_q, \]
because

\[
\begin{align*}
\left(E - q^{k-1} \right) q^{(k-1)(x+k-1-n)} & \left[\begin{array}{c} x \\ n - k + 1 \end{array} \right]_q = q^{(k-1)(x+k-n)} \left[\begin{array}{c} x + 1 \\ n - k + 1 \end{array} \right]_q - q^{(k-1)(x+k-n)} \left[\begin{array}{c} x \\ n - k + 1 \end{array} \right]_q \\
& = q^{(k-1)(x+k-n)} q^{x+k-n} \left[\begin{array}{c} x \\ n - k \end{array} \right]_q = q^{x+k-n} \left[\begin{array}{c} x \\ n - k \end{array} \right]_q.
\end{align*}
\]

Finally by (21) we have \((E - 1)(E - q)\cdots (E - q^{k-1}) = \sum_{j=0}^{k} (-1)^j q^{(j+1)\left[k \right]_q} E^{k-j}. \)

For the computation of \(\det \left(q^{j\left(\begin{array}{c} 0 \\ k-j \end{array} \right)_q} \left[\begin{array}{c} n \\ k-j+i \end{array} \right]_q \right)_{i,j=0}^{d-1} = \det \left(q^{j\left(\begin{array}{c} 0 \\ k-j \end{array} \right)_q} \left[\begin{array}{c} n \\ k-j+i \end{array} \right]_q \right)_{i,j=1}^{d} \) we use [6], formula (3.12):

\[
\det \left(q^{j\left[n \right]_q} \left[\begin{array}{c} A \\ L_i + j \end{array} \right]_q \right)_{i,j=1}^{n} = q^{j\left[n \right]_q} \prod_{1 \leq i < j \leq n} \left[L_i - L_j \right]_q \prod_{i=1}^{n} \left[A + i - 1 \right]_q \prod_{i=1}^{n} \left[A - L_i - 1 \right]_q.
\]

First we write

\[
\det \left(q^{j\left(\begin{array}{c} 0 \\ k-j \end{array} \right)_q} \left[\begin{array}{c} n \\ k-j+i \end{array} \right]_q \right)_{i,j=1}^{d-1} = \det \left(q^{j\left(\begin{array}{c} 0 \\ k-j \end{array} \right)_q} \left[\begin{array}{c} n \\ k-j+i \end{array} \right]_q \right)_{i,j=1}^{d} = \sum_{j=1}^{d} \det \left(q^{j\left[n \right]_q} \left[\begin{array}{c} n \\ k-j \end{array} \right]_q \right)_{i,j=1}^{d}.
\]

Then we choose \(A = n, \ L_i = k-i, \ n = d \) and get

\[
\sum_{j=1}^{d} -k\left(\begin{array}{c} d+1 \\ 2 \end{array} \right)_q \det \left(q^{(k-1)\left[\begin{array}{c} n \\ k-i \end{array} \right]_q} \right)_{i,j=1}^{d} = \sum_{j=1}^{d} -k\left(\begin{array}{c} d+1 \\ 2 \end{array} \right)_q \sum_{i=0}^{d-k} \left[\prod_{j=0}^{d-1} \left[j \right]_q \prod_{j=0}^{d-1} \left[n+j \right]_q \right] \prod_{j=0}^{d-1} \left[j \right]_q \prod_{j=0}^{d-1} \left[n+k+j \right]_q \\
= \prod_{j=0}^{d-1} \left[k+j \right]_q \prod_{j=0}^{d-1} \left[n+k+j \right]_q = \prod_{j=0}^{d-1} \left[k+j \right]_q \prod_{j=0}^{d-1} \left[n+k+j \right]_q = \binom{n}{k}_d.
Theorem 8
\[
\langle n \rangle_{d,q} = q^{-\binom{d}{2}} \left[\begin{array}{c} n+i \\ k+j \end{array} \right]_{i,j=0}^{d-1} \det \left(\begin{array}{c} n+i \\ k+j \end{array} \right)_{i,j=0}^{d-1}.
\] (26)

Proof
We use Dodgson’s condensation method (cf. [6], Proposition 10, and [14]). Let
\[
X(d,n,k) = \det \left(\begin{array}{c} n+i \\ k+j \end{array} \right)_{i,j=0}^{d-1}.
\]
By condensation we get
\[
X(d,n,k) = X(d-1,n,k)X(d-1,n+1,k+1) - X(d-1,n+1,k)X(d-1,n,k+1) \quad \frac{X(d-2,n+1,k+1)}{X(d-2,n+1,k+1)}.
\]
The same identity holds for \(X(d,n,k) = q^{-\binom{d}{2}} \left[\begin{array}{c} n \langle n \rangle_{d,q} \\ k \langle k \rangle_{d,q} \end{array} \right] \). For we have
\[
\frac{q^{-\binom{d-1}{2}} \langle n \rangle_{d-1,q}^{n} \langle n+1 \rangle_{d-1,q}^{n+1}}{q^{-\binom{d}{2}} \langle n \rangle_{d,q}^{n} \langle n+1 \rangle_{d,q}^{n+1}} = 1 \quad \frac{[n-k+d-1]_q}{[d-1]_q}
\]
and
\[
\frac{q^{-\binom{d-2}{2}} \langle n+1 \rangle_{d-2,q}^{n+1} \langle n \rangle_{d-1,q}^{n}}{q^{-\binom{d}{2}} \langle n \rangle_{d,q}^{n} \langle n+1 \rangle_{d-2,q}^{n+1}} = 1 \quad \frac{[n-k]_q}{q^{-\binom{d}{2}} [d-1]_q},
\]
which implies
\[
\frac{X(d-1,n,k)X(d-1,n+1,k+1) - X(d-1,n+1,k)X(d-1,n,k+1)}{X(d,n,k)X(d-2,n+1,k+1)} = \frac{[n-k+d-1]_q - [n-k]_q}{q^{-\binom{d}{2}} [d-1]_q} = 1.
\]
Identity (26) holds for \(d = 0 \) and \(d = 1 \) and therefore (26) holds for all \(d \) by induction.

A \(q \)-analog of (17) is

Theorem 9
\[
\det \left(\begin{array}{c} n+d+j-i-1 \\ n-1 \end{array} \right)_{i,j=0}^{k-1} = q^{-\binom{k}{2}} \langle n \rangle_{d,q}. \] (27)
Proof

Here we use [6], formula (3.11):

\[
\det\left(\begin{array}{c} L_i + A + j \\ L_i + j \end{array} \right)_{i,j=1}^n = \sum_{i=1}^n \prod_{i<j<\infty} \frac{\prod_{i}^{n} [L_i - L_j]_q}{\prod_{i}^{n} [L_i + n]_q} \prod_{i}^{n} [L_i + A + 1]_q \prod_{i}^{n} [A + 1 - i]_q.
\]

We choose \(L_i = d - i \), \(A = n - 1 \) and \(n = k \) and get

\[
\det\left(\begin{array}{c} n + d + j - i - 1 \\ n - 1 \end{array} \right)_{j,i=0}^{k-1} = q^{\binom{k}{2}} \prod_{j=0}^{k-1} \frac{n - j + d - 1}{d - k + j - 1} = q^{\binom{k}{2}} \prod_{j=0}^{k-1} \frac{n + j}{k + j} = q^{\binom{k}{2}} \binom{n}{k}.
\]

Remark

Since the determinant (27) is closely related to semistandard Young Tableaux it would make sense from this point of view to define \(q \)–Hoggatt matrices with entries \(q^{\binom{k}{2}} \binom{n}{k} \) instead of \(\binom{n}{k} \). For \(d = 1 \) this means to replace the \(q \)–binomial coefficients \(\binom{n}{k} \) by their companion form \(q^{\binom{k}{2}} \binom{n}{k} \). This would give the nice generating function

\[
\sum_{k=0}^n q^{\binom{k}{2}} \binom{n}{k} x^k = (1 + x)(1 + qx)\cdots(1 + q^{n-1}x) \text{ for row } n \text{ of the matrix.}
\]

For \(d = 2 \) we would get

\[
\sum_{k=0}^n q^{k(n+1)} \binom{n}{k} = C_{n+1}(q) = \frac{1}{[n+2]} \binom{2n+2}{n+1},
\]

which is a nice \(q \)–analogue of the fact that the sum of the Narayana numbers \(\binom{n}{k} \) are the Catalan numbers \(C_{n+1} \).

As \(q \)–analogue of (13) we state
Conjecture 10

For positive integers d, k we have

\[
(1 - x)(1 - qx) \cdots (1 - q^{dk} x) \sum_{n \geq 0} \binom{n+k}{k} x^n = \sum_{j=0}^{(d-1)(k-1)} N(d, k, j, q)x^j. \tag{28}
\]

where the coefficients $N(d, k, j, q)$ are palindromic polynomials in q with nonnegative coefficients.

For $d = 2$ this reduces to

\[
(1 - x)(1 - qx) \cdots (1 - q^{2k} x) \sum_{n \geq 0} \binom{n+k}{k} x^n = \sum_{j=0}^{k-1} q^{(j+1)} \binom{k-1}{j} x^j. \tag{29}
\]

The sums $\sum_{j=0}^{(d-1)(k-1)} N(d, k, j, q) = C^{(d)}_n (q) = \left[dn \right]_q ! \prod_{j=0}^{d-1} \left[n+j \right]_q !$ are the d–dimensional q–Catalan numbers.

5. Fibonacci-Hoggatt triangles

Let $F_n = \sum_{j=0}^{\lfloor n/2 \rfloor} \left(\binom{n-1-j}{j} \right)$ denote the Fibonacci numbers which satisfy $F_n = F_{n-1} + F_{n-2}$ with initial values $F_0 = 0$ and $F_1 = 1$ and $F_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$ with $\alpha = \frac{1+\sqrt{5}}{2}$ and $\beta = \frac{1-\sqrt{5}}{2}$.

Let us write $(n)_F = F_n, (n)_F! = F_n F_{n-1} \cdots F_1$ and define the Fibonomial coefficients by

\[
\binom{n}{k}_F = \frac{F_n F_{n-1} \cdots F_{n-k+1}}{F_k F_{k-1} \cdots F_1} \frac{(n)_F !}{(k)_F ! (n-k)_F !}.
\]

The first terms are (cf. OEIS [8], A010048)

\[
\begin{pmatrix}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{pmatrix},
\]

The Fibonacci numbers satisfy

\[
\begin{pmatrix}
0 & 1 \\
1 & 1
\end{pmatrix}^n = \begin{pmatrix}
F_{n+1} & F_n \\
F_n & F_{n+1}
\end{pmatrix}.
From \[\left(\begin{array}{cc} F_{n-1} & F_n \\ F_n & F_{n+1} \end{array} \right) = \left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array} \right)^{n-k} \left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array} \right)^k = \left(\begin{array}{cc} F_{n-k-1} & F_{n-k} \\ F_{n-k} & F_{n-k+1} \end{array} \right) \left(\begin{array}{cc} F_{k-1} & F_k \\ F_k & F_{k+1} \end{array} \right) \]
we get by comparing the top right elements
\[F_n = F_{k+1}F_{n-k} + F_{n-k-1}F_k. \]
This is equivalent with
\[
\binom{n}{k} = F_{k+1}\binom{n-1}{k} + F_{n-k-1}\binom{n-1}{k-1},
\]
which shows that the Fibonomials \(\binom{n}{k} \) are nonnegative integers.

L. Carlitz [3] found the analog of (21)
\[
h_n(x) = \sum_{j=0}^{n} (-1)^{j+1/2} \binom{n}{j} x^j = \prod_{j=0}^{n} \left(1 - \alpha^{n-j-1} \beta^j x\right).
\]
Let us reproduce his proof. In formula (21) we set \(q = \beta/\alpha \) and get
\[
\prod_{j=0}^{n-1} \left(1 - \frac{\beta^j}{\alpha^j} x\right) = \sum_{j=0}^{n} (-1)^j \left(\frac{\beta}{\alpha}\right)^{j/2} \binom{n}{j} \alpha^{j-n} x^j
\]
with
\[
\binom{n}{j} = \frac{(1-q^n)\cdots(1-q^{n-j+1})}{(1-q^j)\cdots(1-q)} = \frac{1}{\alpha^{(n-j)j}} \left(\alpha^n - \beta^n\right)\cdots\left(\alpha^{n-j+1} - \beta^{n-j+1}\right) = \alpha^{j-n} \binom{n}{j}.
\]
This gives
\[
\prod_{j=0}^{n-1} \left(1 - \alpha^{-j} \beta^j x\right) = \sum_{j=0}^{n} (-1)^j \alpha^{j/2} \beta^{j-n} \binom{n}{j} \alpha^{j-n} x^j.
\]
Replacing \(x \to \alpha^{-1} x \) we get
\[
\prod_{j=0}^{n-1} \left(1 - \alpha^{-n-j} \beta^j x\right) = \prod_{j=0}^{n} (-1)^j \alpha^{j/2} \beta^{j-n} \binom{n}{j} x^j = \prod_{j=0}^{n} (-1)^j \binom{n}{j} x^j.
\]
Since \(\alpha^n + \beta^n = L_n \) are the Lucas numbers \(2, 1, 3, 4, 7, 11, 18, \cdots \), we see that
\[
h_n(x) = \prod_{j=0}^{n-1} \left(1 - \alpha^{-n-j} \beta^j x\right) = (1-x^n) \left(1 - \beta^{-1} x\right) \prod_{j=0}^{n-2} \left(1 + \alpha^{n-2-j} \beta^{-1} x\right)
\]
\[
= (1-x^n) \left(1 - \beta^{-1} x\right) \prod_{j=0}^{n-3} \left(1 + \alpha^{n-3-j} \beta^j x\right) = (1-L_{n-1} x + (-1)^{n-1} x^2) p_{n-2}(-x).
\]
This gives
\[h_k(x) = \sum_{j=0}^{k} (-1)^j \binom{j+1}{2} \binom{k}{j} x^j = \prod_{j=0}^{k} u_{k-j} \binom{(-1)^j x}{j} \] (32)

with
\[u_k(x) = 1 - L_{k-1} x + (-1)^{k-1} x^2, \]
\[u_0(x) = 1 - x, \quad u_1(x) = 1. \] (33)

As analog of (12) we get
\[\frac{1}{h_{k+1}(x)} = \frac{1}{\sum_{j=0}^{k+1} (-1)^j \binom{j+1}{2} \binom{k+1}{j} x^j} = \sum_{n \geq 0} \binom{n+k}{k} x^n. \] (34)

Proof

Since \(h_1(x) = 1 - x \) and \(h_2(x) = 1 - x - x^2 \) identity (34) is true for \(k = 0 \) and \(k = 1 \).

By (32) identity (34) is equivalent with \(u_{k+1}(x) \sum_{n \geq 0} \binom{n+k}{k} x^n = \sum_{n \geq 0} \binom{n+k-2}{k-2} (-x)^n \), i.e.
\[(1 - L_k x + (-1)^k x^2) \sum_{n \geq 0} \frac{F_{n+1} \cdots F_{n+k}}{F_1 \cdots F_k} x^n = \sum_{n \geq 0} \frac{F_{n+1} \cdots F_{n+k-2}}{F_1 \cdots F_{k-2}} (-x)^n. \]

This is equivalent with
\[F_{n+k-1} F_{n+k} - L_k F_n F_{n+k-1} + (-1)^k F_{n+1} F_n = (-1)^n F_{k-1} F_k, \]

which is easily verified.

In [5] the authors studied Fibo-Narayana numbers defined by
\[\left\langle \frac{n}{k} \right\rangle = \frac{1}{F_{k+1}} \binom{n}{k} \binom{n+1}{k} = \frac{1}{F_{n+1}} \binom{n+1}{k} \binom{n+1}{k+1}. \]

Let us more generally define Fibo-Hoggatt numbers
\[\left\langle \frac{n}{k} \right\rangle = \prod_{j=0}^{k-1} \frac{n-j}{k-j}. \] (35)
with \(\langle n \rangle_{d,F} = \binom{n+d-1}{d} \) and consider the corresponding Fibonacci-Hoggatt matrices

\[
H_{d,F} = \begin{pmatrix}
\langle n \rangle \\
\langle k \rangle_{d,F}
\end{pmatrix}_{n,k \geq 0}.
\]

As in (7) we get

\[
\langle n \rangle_{d,F} = \prod_{j=0}^{d-1} \binom{n+j}{k+j}_F = \prod_{j=0}^{d-1} \binom{n+d-1}{k+j}_F.
\] (36)

For example for \(d = 3 \) we get

\[
\begin{pmatrix}
\langle n \rangle \\
\langle k \rangle_{3,F}
\end{pmatrix}_{i,j=0} = \begin{pmatrix}
1 & 1 & 1 \\
1 & 3 & 1 \\
1 & 15 & 1 \\
1 & 60 & 60 & 1 \\
1 & 260 & 5200 & 260 & 1
\end{pmatrix}.
\]

As an analog of the first identity (8) we get

Theorem 11

\[
\langle n \rangle_{d,F} = \frac{\det\left(\binom{n+i+j}{k+j}_F\right)_{i,j=0}^{d-1}}{\det\left(\binom{n+i+j}{j}_F\right)_{i,j=0}^{d-1}}.
\] (37)

Proof

This follows from

\[
\det\left(\binom{n+i+j}{k+j}_F\right)_{i,j=0}^{d-1} = \det\left(\binom{n+i+j}{j}_F\right)_{i,j=0}^{d-1}
\]

\[
= \prod_{j=0}^{d-1} \frac{(j)_F!(n+j)_F!}{(k+j)_F!(n-k+j)_F!}
\]

\[
= \prod_{j=0}^{d-1} \frac{(j)_F!(n+j)_F!}{(k+j)_F!(n-k+j)_F!} \det\left(\binom{n+i+j}{j}_F\right)_{i,j=0}^{d-1}
\]

if we observe that
\[\prod_{j=0}^{d-1} \frac{(j)_F! (n+j)_F!}{(k+j)_F! (n-k+j)_F!} = \prod_{j=0}^{d-1} \frac{n+j}{k+j} \left(\begin{array}{c} n \\ k \end{array} \right)_F = \left(\begin{array}{c} n \\ k \end{array} \right)_{d,F}. \]

If we set \(a(d,n) = \det \left(\begin{array}{c} n+i+j \\ j \end{array} \right)_F \right)_{i,j=0}^{d-1} \) then we get \(a(2,n) = F_n \), but for \(n > 3 \) no other interpretation seems to be known. For example for \(d = 3 \) we get \(1,5,7,53,187,853, \ldots \).

As analog of (10) we get as special case of Theorem 15

Theorem 12

\[\det \left(-1 \right)^{\frac{d-1}{2}} \left(\begin{array}{c} n \\ k-i+j \end{array} \right)_F \right)_{i,j=0}^{d-1} = \left(\begin{array}{c} n \\ k \end{array} \right)_{d,F}. \]

(38)

This shows that all \(\left(\begin{array}{c} n \\ k \end{array} \right)_{d,F} \) are positive integers.

There is also a nice analog of (17):

Theorem 13

\[\left(\begin{array}{c} n \\ k \end{array} \right)_{d,F} = \left(-1 \right)^{d(\frac{k}{2})} \det \left(\begin{array}{c} n+d+j-i-1 \\ n-1 \end{array} \right)_F \right)_{i,j=0}^{k-1}. \]

(39)

Proof

By Binet’s formula we have \(F_n = \alpha^{n-1} \) with \(\alpha = \frac{3+\sqrt{5}}{2} = \frac{1}{\alpha^2} \). If we set \(\alpha = q \), then we get

\[F_n = (-q)^{\frac{1}{2} \frac{n}{2}} \frac{1-q^n}{1-q}. \]

(40)

This implies

\[\left(\begin{array}{c} n \\ k \end{array} \right)_F = (-q)^{\frac{k^2-nk}{2}} \left[\begin{array}{c} n \\ k \end{array} \right]_q. \]

(41)
We can now formulate $\det\left(\begin{array}{ccc} n+d+j-i-1 \\ n-1 \end{array}\right)_{F, j=0}^{k-1}$ in terms of $q -$ binomial coefficients as

$$\det\left(\begin{array}{ccc} n+d+j-i-1 \\ n-1 \end{array}\right)_{F, j=0}^{k-1} = \det\left((-q)\frac{(1-q)(d+j-i)}{2}\right)^{k-1} \det\left(\begin{array}{ccc} n+d+j-i-1 \\ d+j-i \end{array}\right)_{i,j=0}^{k-1}.$$

Using the above result we get by (41)

$$\det\left(\begin{array}{ccc} n+d+j-i-1 \\ n-1 \end{array}\right)_{F, j=0}^{k-1} = (-q)\frac{(1-q)d}{2} \prod_{j=0}^{k-1} \left(\begin{array}{ccc} n+j+d-1 \\ d \end{array}\right)_{F}^{k-j} \prod_{j=0}^{k-1} \left(\begin{array}{ccc} n+j+d-1 \\ d \end{array}\right)_{F}^{k-j} = (-1)^{\binom{k}{2}} \prod_{j=0}^{k-1} \left(\begin{array}{ccc} n+j+d-1 \\ d \end{array}\right)_{F}^{k-j} \prod_{j=0}^{k-1} \left(\begin{array}{ccc} n+j+d-1 \\ d \end{array}\right)_{F}^{k-j} = (-1)^{\binom{k}{2}} \binom{n}{k}_{d,F}^{k,j}.$$
6. A common generalization

A generalization which contains all above cases is given by the Fibonacci polynomials

\[F_n(s, t) = \sum_{j=0}^{n-1} \binom{n-1-j}{j} s^{n-2j}. \tag{42} \]

They satisfy \(F_n(s, t) = s F_{n-1}(s, t) + t F_{n-2}(s, t) \) with initial values \(F_0(s, t) = 0 \) and \(F_1(s, t) = 1 \).

For \(s = 2 \) and \(t = -1 \) we have \(F_n(2,-1) = n \) which gives the original Hoggatt matrices, for \(s = 1 + q \) and \(t = -q \) we get \(F_n(1+q,-q) = [n]_q \) which gives the \(q \)– analogs and for \(s = t = 1 \) we get the Fibonacci analogs.

Binet’s formulae give

\[F_n(s, t) = \frac{\alpha^n - \beta^n}{\alpha - \beta} \]

with \(\alpha = \frac{s + \sqrt{s^2 + 4t}}{2} \) and \(\beta = \frac{s - \sqrt{s^2 + 4t}}{2} \).

We also have

\[
\begin{pmatrix}
0 & 1 \\
t & s
\end{pmatrix}^n = \begin{pmatrix}
t F_{n-1}(s, t) & F_n(s, t) \\
t F_n(s, t) & F_{n+1}(s, t)
\end{pmatrix}.
\]

From

\[
\begin{pmatrix}
t F_{n-1}(s, t) & F_n(s, t) \\
t F_n(s, t) & F_{n+1}(s, t)
\end{pmatrix} = \begin{pmatrix}
0 & 1 \\
t & s
\end{pmatrix}^{-k} \begin{pmatrix}
0 & 1 \\
t & s
\end{pmatrix}^k = \begin{pmatrix}
t F_{n-k-1}(s, t) & F_{n-k}(s, t) \\
t F_{n-k}(s, t) & F_{n-k+1}(s, t)
\end{pmatrix} \begin{pmatrix}
t F_{k-1}(s, t) & F_k(s, t) \\
t F_k(s, t) & F_{k+1}(s, t)
\end{pmatrix}
\]

we get by comparing the top right elements

\[F_n(s, t) = F_{k+1}(s, t) F_{n-k}(s, t) + t F_{n-k-1}(s, t) F_k(s, t). \]

This is equivalent with

\[
\binom{n}{k}_{F(s,t)} = F_{k+1}(s, t) \binom{n-1}{k}_{F(s,t)} + t F_{n-k-1}(s, t) \binom{n-1}{k-1}_{F(s,t)}, \tag{43}
\]

which shows that the Fibonomials

\[
\binom{n}{k}_{F(s,t)} = \prod_{j=0}^{k-1} \frac{F_{n-j}(s, t)}{F_{k-j}(s, t)} \tag{44}
\]

are polynomials in \(s,t \) with nonnegative integer coefficients.

A combinatorial proof of this fact has been given in [2] and an arithmetic one in [10].
The first terms of the Fibonomial triangle are

\[
\begin{pmatrix}
1 \\
1 & 1 \\
1 & s & 1 \\
1 & s^2 + t & s^2 + t & 1 \\
1 & s(s^2 + 2t) & (s^2 + t)(s^2 + 2t) & s(s^2 + 2t) & 1 \\
1 & s^2 + 3s^2t + t^2 & (s^2 + 2t)(s^4 + 3s^2t + t^2) & (s^2 + 2t)(s^4 + 3s^2t + t^2) & s^4 + 3s^2t + t^2 & 1
\end{pmatrix}
\]

As above we get

\[h_k(x,s,t) = \sum_{j=0}^{k} (-1)^{j+1} \binom{j+1}{2} \binom{j}{k} x^j F(x,t) = \prod_{j=0}^{k} u_{k-j}(x,s,t)\]

with \(u_0(x,s,t) = 1 - L_{n-1}(s,t) x + (-t)^{n-1} x^2 \) for \(n > 1 \) and \(u_0(x,s,t) = 1 \) and \(u_1(x,s,t) = 1 - x \), where the Lucas polynomials \(L_n(s,t) \) satisfy \(L_n(s,t) = sL_{n-1}(s,t) + tL_{n-2}(s,t) \) with initial values \(L_0(s,t) = 2 \) and \(L_1(s,t) = s \).

This implies as before that

\[
\frac{1}{h_{k+1}(x,s,t)} = \frac{1}{\sum_{j=0}^{k+1} (-1)^{j+1} \binom{j+1}{2} \binom{j}{k+1} x^j F(x,t)} = \sum_{n=0}^{k} \binom{n+k}{k} x^n. \tag{46}
\]

The Hoggatt coefficients can be defined by

\[
\binom{n}{k}_{d,F(x,t)} = \prod_{j=0}^{k-1} \binom{n-j+d-1}{d}_{F(x,t)} \binom{k-j+d-1}{d}_{F(x,t)}. \tag{47}
\]

An extension of a result which in [5] has been obtained for \(d = 2 \) is

Theorem 15

\[
\det \left\{ (-t)^{i+j} \binom{n}{k-j+i}_{F(x,t)} \right\}_{i,j=0}^{d-1} = \binom{n}{k}_{d,F(x,t)}. \tag{48}
\]

This implies that all Hoggatt coefficients are polynomials in \(s,t \) with integer coefficients.
Proof

By Binet’s formula we have \(F_n(s,t) = \alpha^{n-1} \left(\frac{\beta}{\alpha} \right)^n \) with \(\frac{\beta}{\alpha} = -\frac{t}{\alpha^2} \). If we set \(\frac{\beta}{\alpha} = q \), then we get

\[
F_n = \left(-\frac{q}{t} \right)^{1-n} \frac{1-q^n}{1-q}.
\] (49)

This implies

\[
\binom{n}{k}_{F(s,t)} = \left(-\frac{q}{t} \right)^{\frac{k^2-nk}{2}} \binom{n}{k}.
\] (50)

We can now formulate \(\det \left((-t)^{\binom{i-j}{2}} \binom{n}{k-j+i}_{F(s,t)} \right)_{i,j=0}^{d-1} \) in terms of \(q \)-binomial coefficients as

\[
\det \left((-t)^{\binom{i-j}{2}} \binom{n}{k-j+i}_{F(s,t)} \right)_{i,j=0}^{d-1} = \det \left((-t)^{\binom{i-j}{2}} \left(-\frac{q}{t} \right)^{\frac{(k-j+i)(k-j+i-n)}{2}} \binom{n}{k-j+i} \right)_{i,j=0}^{d-1} = (-1)^{\frac{k(k-n)d}{2}} t^2 q^{\frac{k(k-n)d}{4}} \det \left(q^{\binom{i-j}{2}} \binom{n}{k-j+i} \right)_{i,j=0}^{d-1}.
\]

The last determinant has been computed above as

\[
\left\langle \frac{n}{k} \right\rangle_{d,q} = \prod_{j=0}^{d-1} \frac{\binom{n+j}{k}}{\binom{k+j}{k}\binom{k+n+j}{k}} = \prod_{j=0}^{d-1} \frac{-\frac{t}{q}}{\frac{k^2-(n+j)k}{2}} \prod_{j=0}^{d-1} \frac{\binom{n+j}{k}_{F(s,t)}}{\binom{k+n+j}{k}_{F(s,t)}} = \left(-\frac{t}{q} \right)^{\frac{k(n-k)d}{2}} \left\langle \frac{n}{k} \right\rangle_{d,F(s,t)}.
\]

This gives

\[
\det \left((-t)^{\binom{i-j}{2}} \binom{n}{k-j+i}_{F(s,t)} \right)_{i,j=0}^{d-1} = (-1)^{\frac{k(k-n)d}{2}} t^2 q^{\frac{k(k-n)d}{4}} \left(-\frac{t}{q} \right)^{\frac{k(n-k)d}{2}} = \left\langle \frac{n}{k} \right\rangle_{d,F(s,t)}.
\]

The same proof as above gives
Theorem 16

\[
\det \left(\begin{array}{c}
 n + d + j - i - 1 \\
 n - 1 \\
\end{array} \right)_{F(s,t)}^{k-1}
= (-1)^{\frac{k}{2}} \binom{n}{k}_{d,F(s,t)}.
\]
(51)

Let us also mention

Theorem 17

\[
\frac{\det \left(\begin{array}{c}
 n + i + j \\
 k + j \\
\end{array} \right)_{F(s,t)}^{d-1}}{\det \left(\begin{array}{c}
 n + i + j \\
 j \\
\end{array} \right)_{F(s,t)}^{d-1}} = \binom{n}{k}_{d,F(s,t)}.
\]
(52)

and

\[
\frac{\det \left(\begin{array}{c}
 n + i + k \\
 k + j \\
\end{array} \right)_{F(s,t)}^{d-1}}{\det \left(\begin{array}{c}
 n + i \\
 j \\
\end{array} \right)_{F(s,t)}^{d-1}} = \binom{n+k}{k}_{d,F(s,t)}.
\]
(53)

The proof follows in the same way as in Theorem 11.

Let us consider two extreme special cases.

Taking limits for \(t \to 0 \) we get \(F_n(s,0) = s^{n-1} \) for \(n \geq 1 \) and \(F_0(s,0) = 0 \).

For the Fibonomials we get \(\binom{n}{k}_{F(s,0)} = s^{k(n-k)} \) for \(0 \leq k \leq n \).

This follows by induction from (43). From (47) we get that the entries of the Hoggatt matrices are

\[
\binom{n}{k}_{F(s,0)} = s^{dk(n-k)}.
\]

Taking limits for \(s \to 0 \) gives more interesting results.

\(F_{2n}(0,t) = 0 \) and \(F_{2n+1}(0,t) = t^n \) by the definition of the Fibonacci polynomials.

The Lucas polynomials reduce to \(L_{2n}(0,t) = 2t^n \) and \(L_{2n+1}(0,t) = 0 \).
Therefore we get

\[h_{2n}(x,0,t) = \left(t^{2n-1} x^2 - 1 \right)^n \]

and

\[h_{2n+1}(x,0,t) = (1 - t^n x) \left(1 + t^n x \right)^n. \]

Comparing with (45) we get

\[
\binom{2n}{2j}_{F(0,j)} = \binom{n}{j} t^{2j(n-j)}, \quad \binom{2n}{2j+1}_{F(0,j)} = 0, \\
\binom{2n+1}{2j}_{F(0,j)} = \binom{n}{j} t^{2j(n+1-2j)}, \quad \binom{2n+1}{2j+1}_{F(0,j)} = \binom{n}{j} t^{2j(2n+1-2j)/n}.
\]

For example

\[
\left(\frac{n}{k} \right)_{F(0,j)} \bigg|_{n,k=0}^7 = \begin{pmatrix} 1 & 1 \\ 1 & 0 & 1 \\ 1 & t & t & 1 \\ 1 & 0 & 2t^2 & 0 & 1 \\ 1 & t^2 & 2t^3 & 2t^3 & t^2 & 1 \\ 1 & 0 & 3t^4 & 0 & 3t^4 & 0 & 1 \end{pmatrix}.
\]

Let us also mention the Hoggatt triangle \(H_{2,F(0,j)}. \)

Here we get by (56)

\[
\left\langle \frac{n}{k} \right\rangle_{2,F(0,j)} = \prod_{j=0}^{k-1} \frac{\left(\frac{n+1-j}{2} \right)_{F(0,j)}}{\left(\frac{k+1-j}{2} \right)_{F(0,j)}} = \prod_{j=0}^{k-1} \frac{n+1-j}{2} t^{n-j} \left(\frac{n}{2} \right) \left(\frac{n+1}{2} \right) \left(\frac{k}{2} \right) \left(\frac{k+1}{2} \right).
\]

for \(0 \leq k \leq n \) and \(= 0 \) else.

The first terms are

\[
\left(\frac{n}{k} \right)_{2,F(0,j)} \bigg|_{n,k=0}^7 = \begin{pmatrix} 1 & 1 \\ 1 & t & 1 \\ 1 & 2t^2 & 2t^2 & 1 \\ 1 & 2t^3 & 4t^3 & 2t^3 & 1 \\ 1 & 3t^4 & 6t^6 & 6t^6 & 3t^4 & 1 \\ 1 & 3t^5 & 9t^8 & 9t^8 & 9t^8 & 3t^5 & 1 \end{pmatrix}.
\]
For $t = 1$ this is OEIS [8], A088855. For $t = 1$ the row sums are \(\binom{n+1}{\frac{n+1}{2}} \) and for $t = -1$ the sum of row $2n$ is the Catalan number C_n and the sum of row $2n - 1$ is the central binomial coefficient $\binom{2n}{n}$.

A companion to Conjecture 13 is

Conjecture 18

\[
\left(\sum_{j=0}^{dk+1} (-1)^{\frac{j+1}{2}} \binom{dk+1}{j} t^j \right) \sum_{n=0}^{\infty} \binom{n+k}{k} x^n = N(d,k,s,t,x) \tag{60}
\]

is a polynomial of degree $(d - 1)(k - 1)$.

For $d = 2$ we get more precisely

\[
\sum_{j=0}^{2k+1} (-1)^{\frac{j+1}{2}} \binom{2k+1}{j} t^j \sum_{n=0}^{\infty} \binom{n+k}{k} x^n = \sum_{j=0}^{k-1} \binom{k-1}{j} t^{j+1} x^j \tag{61}
\]

For $s \to 0$ identity (61) reduces to

\[
(1-t^k x)^{k+1} (1+t^k x)^k \sum_{n=0}^{\infty} \binom{n+k}{\frac{k}{2}} \binom{n+k+1}{\frac{k+1}{2}} x^n = \sum_{j=0}^{k} \binom{k-1}{\frac{j}{2}} \binom{k}{\frac{j}{2}} t^j x^j \tag{62}
\]

Let us prove this identity. It suffices to consider $t = 1$.

Let $k = 2\ell$. Then

\[
\sum_{n=0}^{\infty} \binom{2n+k}{\frac{k}{2}} \binom{2n+k+1}{\frac{k+1}{2}} x^{2n} = \sum_{n=0}^{\infty} \binom{n+\ell}{\ell}^2 x^{2n},
\]

\[
\sum_{n=0}^{\infty} \binom{2n+1+k}{\frac{k}{2}} \binom{2n+1+k+1}{\frac{k+1}{2}} x^{2n+1} = \sum_{n=0}^{\infty} \binom{n+\ell}{\ell} \binom{n+1+\ell}{\ell} x^{2n+1}.
\]

Thus the left-hand side is
\[(1-x)(1-x^2)^{2^t}\left(\sum_{n=0}^{\ell} \binom{n+\ell}{\ell} x^{2n} + \sum_{n=0}^{\ell} \binom{n+1+\ell}{\ell} x^{2n+1}\right)\]

\[= (1-x)(1-x^2)^{2^t}\left(\sum_{n=0}^{\ell+1} \frac{\ell+1}{1 \cdot 1+1} x^n + (\ell+1)x \sum_{n=0}^{\ell+1} \frac{\ell+1+2}{2} x^n\right).\]

The right-hand side reduces in an analogous way to \(\sum_{n=0}^{\ell+1} \frac{-\ell, -\ell+1}{1} x^n + \ell x \sum_{n=0}^{\ell+1} \frac{-\ell+1, -\ell+1}{2} x^n.\)

Euler’s transformation formula (cf. [1], (2.2.7))

\[\sum_{n=0}^{\ell} \frac{a_n}{c} ; z = (1-z)^{-a-b} \sum_{n=0}^{\ell} \frac{a-a, c-b}{c} ; z\]

gives

\[\sum_{n=0}^{\ell} \frac{\ell+1, \ell}{1 \cdot 1; x^2} (1-x^2)^{2^t} = \sum_{n=0}^{\ell} \frac{-\ell, 1-\ell}{1 \cdot 1; x^2},\]

\[\sum_{n=0}^{\ell} \frac{\ell+1, \ell+1}{2 \cdot 1; x^2} (1-x^2)^{2^t} = \sum_{n=0}^{\ell} \frac{1-\ell, 1-\ell}{2 \cdot 1; x^2}.\]

By comparing coefficients we get

\[\sum_{n=0}^{\ell} \frac{\ell+1, \ell}{1 \cdot 1; x^2} + \ell x \sum_{n=0}^{\ell} \frac{\ell+1, \ell+1}{2 \cdot 1; x^2} = (1-x) \sum_{n=0}^{\ell} \frac{\ell+1, \ell+1}{1 \cdot 1; x^2} + (\ell+1)x(1-x) \sum_{n=0}^{\ell} \frac{\ell+1, \ell+2}{2 \cdot 1; x^2}\]

which proves (62) for even \(k.\) In a similar way the formula is proved for odd \(k.\)

References

[1] George E. Andrews, Richard Askey and Ranjan Roy, Special Functions, Encyclopedia of Mathematics and its Applications 71
[2] Curtis Bennett, Juan Carrillo, John Machacek and Bruce E. Sagan, Combinatorial Interpretations of Lucas Analogues of Binomial Coefficients and Catalan Numbers, Ann.Comb. 24 (2020), 503-530
[3] Leonard Carlitz, The characteristic polynomial of a certain matrix of binomial coefficients, Fibonacci Quarterly 3(2) (1965), 81-89
[4] Daniel C. Fielder and Cecil O. Alford, On a conjecture by Hoggatt with extensions to Hoggatt sums and Hoggatt triangles, The Fibonacci Quarterly, 27(2):160–168, May 1989.
[5] Kristina Garrett and Kendra Killpatrick, A recursion for the Fibonarayana and the generalized Naryana numbers, arXiv:1910.08855
[6] Christian Krattenthaler, Advanced Determinant Calculus, Séminaire Lotharingien Combin. 42 (1999), Article B42q
[7] Ana Luzón, Manuel A. Morón and José L. Ramírez, On Ward’s differential calculus, Riordan matrices and Sheffer polynomials, Linear Algebra Appl. 610 (2021), 440-473
[8] OEIS, The Online Encyclopedia of Integer Sequences, http://oeis.org/
[9] T. Kyle Petersen, Eulerian numbers, Birkhäuser 2015
[10] Bruce E. Sagan and Jordan Tirrell, Lucas atoms, Advances in Mathematics 374 (2020), 107387
[11] Richard P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Studies in Advanced Mathematics 62, 1999
[12] Robert A. Sulanke, Generalizing Narayana and Schröder numbers to higher dimensions, Electr. J. Comb. 11 (2004), R 54
[13] Qiaochu Yuan, Answer to https://math.stackexchange.com/questions/3990327/
[14] Doron Zeilberger, Reverend Charles to the aid of Major Percy and Fields Medalist Enrico, Amer. Math. Monthly 103 (6) (1996), 501-502