Systematic review of studies examining contribution of oral health variables to risk prediction models for undiagnosed Type 2 diabetes and prediabetes

Ingrid Glurich1 | Neel Shimpi1 | Barb Bartkowiak2 | Richard L. Berg3 | Amit Acharya1,4

1Center for Oral and Systemic Health, Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
2Marshfield Clinic GE Magnin Medical Library, Marshfield Clinic Health System, Marshfield, Wisconsin, USA
3Office of Research Computing and Analytics, Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
4Advocate Aurora Research Institute, Advocate Aurora Health, Downers Grove, Illinois, USA

Correspondence
Amit Acharya, Advocate Aurora Health, 3075 Highland Parkway, Suite 600, Downers Grove, IL 60515, USA.
Email: amit.acharya@aah.org

Funding information
Delta Dental Foundation

Abstract

Objective: To conduct systematic review applying “preferred reporting items for systematic reviews and meta-analyses statement” and “prediction model risk of assessment bias tool” to studies examining the performance of predictive models incorporating oral health-related variables as candidate predictors for projecting undiagnosed diabetes mellitus (Type 2)/prediabetes risk.

Materials and Methods: Literature searches undertaken in PubMed, Web of Science, and Gray literature identified eligible studies published between January 1, 1980 and July 31, 2018. Systematically reviewed studies met inclusion criteria if studies applied multivariable regression modeling or informatics approaches to risk prediction for undiagnosed diabetes/prediabetes, and included dental/oral health-related variables modeled either independently, or in combination with other risk variables.

Results: Eligibility for systematic review was determined for seven of the 71 studies screened. Nineteen dental/oral health-related variables were examined across studies. “Periodontal pocket depth” and/or “missing teeth” were oral health variables consistently retained as predictive variables in models across all systematically reviewed studies. Strong performance metrics were reported for derived models by all systematically reviewed studies. The predictive power of independently modeled oral health variables was marginally amplified when modeled with point-of-care biological glycemic measures in dental settings. Meta-analysis was precluded due to high inter-study variability in study design and population diversity.

Conclusions: Predictive modeling consistently supported “periodontal measures” and “missing teeth” as candidate variables for predicting undiagnosed diabetes/prediabetes. Validation of predictive risk modeling for undiagnosed diabetes/prediabetes across diverse populations will test the feasibility of translating such models into clinical practice settings as noninvasive screening tools for identifying at-risk individuals following demonstration of model validity within the defined population.

KEYWORDS
diabetes mellitus, oral health, risk assessment, systematic review

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2021 The Authors. Clinical and Experimental Dental Research published by John Wiley & Sons Ltd.
1 | INTRODUCTION

More than 30 million adults (over 9% of the US population) have diabetes, and nearly one in three (approximately 84 million individuals) are prediabetic. The 2020 national statistics report on diabetic disease burden in the United States estimated that 10.5% of the population has diabetes with 21.4% of individuals with diabetes unaware of their status, while 34.5% of the population has prediabetes (Centers for Disease Control and Prevention, 2020). Like diabetes, periodontitis has also achieved epidemic status in the United States based on recently updated estimates of periodontitis prevalence projected by Eke et al. (2000) following examination of the National Health and Nutrition Examination Survey (NHANES) population data. Applying three case definitions, the authors defined a prevalence rate of 42%, a sixfold increase over diabetes prevalence. Among those with periodontitis, 7.8% met definitions aligning with severe periodontitis (Eke et al., 2000). A growing evidence base reinforced by both systematic review (Borgnakke et al., 2013) and meta-analysis (Corbella et al., 2013; Wang et al., 2014) provides evidence of an adverse impact of periodontitis on glycemic control. The escalating prevalence of undiagnosed Type 2 diabetes mellitus and prediabetes (T2DM/prediabetes) and periodontitis in the global population are noteworthy in light of these biological interactions.

Bidirectional interaction and exacerbation between T2DM and periodontitis has been proposed (Casanova et al., 2014; Llambés et al., 2015; Sgolastra et al., 2013). Interaction between periodontitis and T2DM is supported by multiple reports of heightened periodontitis severity in association with uncontrolled T2DM and improved glycemic control following periodontitis treatment (Borgnakke et al., 2013; Casanova et al., 2014; Corbella et al., 2013; Demmer et al., 2010; Eke et al., 2000; Glurich et al., 2013; Llambés et al., 2015; Sgolastra et al., 2013; Wang et al., 2014). A study that conducted longitudinal monitoring of normoglycemic individuals with and without periodontitis noted an incremental fivefold increase in HbA1c levels overtime only in individuals with periodontitis (Demmer et al., 2010). This observation suggests a potential role for periodontitis in the pathogenesis of T2DM.

Underlying inflammatory processes are posited to contribute to the mutual exacerbation of T2DM and periodontitis (Glurich et al., 2013). Clinical challenges are faced by both medical and dental providers in managing patients with periodontitis and T2DM/prediabetes. Chronic local and systemic inflammation impedes efforts by medical providers to control hyperglycemia in diabetic patients with comorbid periodontitis, while dentists face challenges in preventing or resolving periodontitis in patients with uncontrolled blood sugar levels.

Importantly, both periodontitis and T2DM represent potentially modifiable conditions if detected and managed prior to becoming chronically established. Ideal clinical management strategies include an integrated medical-dental care delivery approach that targets patient education and activation, lifestyle and behavioral interventions, early clinical intervention, and longitudinal monitoring for disease recurrence or progression (Glurich et al., 2017; Glurich, Schweil, et al., 2018; Shimpi et al., 2016; Shimpi et al., 2020). The Center for Disease Control and Prevention’s National Prevention Program estimates that such interventions can lower the risk of developing T2DM by nearly 60% (70% after age 60 years) (Centers for Disease Control and Prevention, 2018). However, traditional silo-ed medical and dental healthcare delivery models in the United States pose substantial barriers to holistic care delivery for the management of cumulative health risks associated with these conditions.

Following the review of 14 studies that collectively enrolled >32,000 patients, a 2018 consensus report by the International Diabetes Federation and European Federation of Periodontology concluded that a solid evidence base supported links between periodontitis and T2DM and its complications (Sanz et al., 2018). Moreover, a recent systematic review of 10 field trials exploring chairside screening of undiagnosed T2DM/prediabetes in the dental setting consistently demonstrated high levels of prediabetes across diverse dental primary care practices (Glurich, Bartkowiak, et al., 2018). These findings collectively promote the adoption of an alternative integrated health care delivery paradigm with focus on early detection and management of undiagnosed T2DM/prediabetes. Such an integrated care model would include cross-disciplinary screening in both medical and dental settings with appropriate triage across the medical and dental domains.

Assessing patient risk for a diabetes involves noninvasive screening of patients by assessing their status with respect to informative candidate variables. Patient status for defined risk variables is assessed by risk prediction modeling applying statistical approaches including multiple regression modeling. Analysis of data available in medical electronic health records (EHR) that predict relative risk for diabetes include family history, clinical, pharmaceutical, demographic, and environmental factors. Data modeling holds promise for noninvasive detection of undiagnosed disease based on information already available in the EHR.

Historically, over 80 publications have reported on the evaluation of the performance of diabetes risk prediction models in various populations. However, few models have included oral health variables. Over the past 10 years as the evidence base suggesting a bidirectional association between T2DM and periodontitis progression increased, researchers began exploring the application of diabetes risk modeling in dental settings as a noninvasive approach to risk assessment. Such studies also tested risk prediction model performance incorporating dental variables and compared performance of these models to biological determination of glycemic levels as the gold standard (Borrell et al., 2007; Holm et al., 2016; Lalla et al., 2011, 2013; Li et al., 2011; Strauss et al., 2010).

A systematic review conducted by Collins et al. (2011) evaluated methodology used in studies that developed multivariable diabetes risk prediction models from 1980 to 2011, and included studies that had evaluated oral health factors. While search terms used by Collins et al. (2011) and our study varied somewhat, both search strategies identified the same articles within the temporal window of their study that had applied multivariable analysis. The current study included those studies also reviewed by Collins et al. (2011) that had applied rigorous modeling approaches and also met the eligibility criteria of the current study. However, the temporal frame of the current study
was extended to include eligible studies published through July 31, 2018. The rationale for inclusion of later studies was to identify additional models that met inclusion criteria of the current study with the same stringency criteria applied by Collins et al. (2011) and further explored inclusion of oral health variables in predictive models examining risk for undiagnosed Type II diabetes/prediabetes. The systematic review was conducted on eligible studies that applied multivariable regression modeling or bioinformatics approaches with a requirement for inclusion of oral health/dental variables.

2 | MATERIALS AND METHODS

2.1 | Systematic review

The current study met exemption criteria of the Institutional Review Board in those research activities were limited only to the review of historically published literature and included no research activities involving human subjects or animals. The systematic review was conducted and reported in accordance with “preferred reporting items for systematic reviews and meta-analyses” (PRISMA) statement (Moher et al., 2009). The research question in the current study was defined within the patients—intervention/exposure/prognostic factor—comparison group—outcome (PICO) framework as follows:

-P = persons at risk for undiagnosed T2DM or prediabetes;
-I = prognostic factor: oral health variable(s) alone or in combination with other risk variables;
-C = comparison group: comparisons with a nondiabetic population; and
-O = outcome: predictive capacity defined by the derived predictive model.

2.2 | Literature identification selection and review

Articles published from January 1, 1980 through July 31, 2018 including those meeting a statistical rigor previously defined in the systematic review by Collins et al. (2011) were identified by systematic searches conducted in PubMed, Web of Science databases, and Gray Literature with last search conducted in August, 2018. Literature was retrieved using the search strategy defined in Figure 1. Literature searches were conducted by a medical librarian with extensive expertise and experience in the conduct of systematic reviews.

Articles qualifying for inclusion were required to meet the following eligibility criteria.

2.2.1 | Inclusion criteria

Original articles were required to:

1. specify the creation of T2DM/prediabetes risk prediction models in undiagnosed individuals by modeling oral/dental and other candidate risk variables applying multivariable regression modeling or biomedical informatics approaches such as machine learning or classification and regression trees (CART) analysis;
2. include oral/dental health-related variables;
3. be published between January 1, 1980 and July 31, 2018; and
4. report on model performance relative to predicting risk for T2DM/prediabetes. Articles that compared the performance of models that included oral and other candidate risk factors with and without biological screening outcomes were also retained and systematically reviewed.

2.2.2 | Exclusion criteria

Articles were excluded if they were a publication type other than an original article, predicted risk for other diabetes types, fell outside of the defined date range, were in a language other than English, did not include at least one oral health-related variable, and did not evaluate predictive capacity of the models.

2.3 | Template development, data collection, inter-rater reliability, and quality assessment

A review protocol (Figure 2) was created to ensure systematic abstraction and data capture across each manuscript. The template was pilot tested by three reviewers to ensure cohesive understanding of the definition of all abstraction terminology among reviewers. Title and abstract review were first conducted to identify articles requiring further review. Following the initial review of n = 8 articles by two reviewers (N.S. and I.G.), inter-rater assessment as done to evaluate the interpretation of defined abstraction terms and inform finalization of the research electronic data capture (REDCap) (Harris et al., 2009) template used for full-text review of remaining articles. A second inter-rater assessment of an additional three articles tested agreement between data collected via the REDCap-based template used by each reviewer. Quality assessment was further conducted following abstraction of the same articles by a third reviewer (G.J.) to replicate good inter-rater agreement using the template. The final inter-rater assessment was conducted to confirm high inter-rater agreement (n = 7) between the reviewers (N.S. and I.G.), and was reported as the percentage agreement between reviewers. Summary measures assessed included outcomes of predictive modeling. The most frequent analyses presented included area under the curve (AUC), and/or assessment of sensitivity, specificity, and positive and negative predictive values.

2.4 | Bias assessment

The risk of bias was assessed by two reviewers (I.G. and R.B.). The prediction model risk of assessment bias tool (PROBAST) (Wolff et al., 2019) was applied. The PROBAST tool was published in 2019 specifically to address the absence of a bias assessment tool for studies developing or validating predictive models.
3 | OUTCOMES OF SYSTEMATIC REVIEW

Search terms and outcomes of the systematic search strategy summarized in the PRISMA flow chart are shown in Figure 1. Among 141 articles retrieved, 95 articles defined candidate variables for predicting risk for undiagnosed T2DM/prediabetes, and 71 studies met eligibility for full review. Among the 71 articles, 10 studies were identified that included oral health or dental

FIGURE 1 Search terms and PRISMA flow diagram. This figure summarizes the search terms used to identify potentially eligible publications and the outcome of the PRISMA review process denoting numbers of publications initially identified and screened for eligibility and the final number of publications meeting criteria for full systematic review. PRISMA, preferred reporting items for systematic reviews and meta-analyses (Moher et al., 2009)
variables. However, three were found to be review articles or commentaries and were excluded. Thus, seven publications met the criteria and were systematically reviewed. Inter-rater agreement across data elements abstracted during final assessment achieved 99%.

Table 1 summarizes an overview of the outcomes of the systematic review. Collectively, the studies demonstrated that oral variables contribute to models that predict the presence of undiagnosed T2DM/prediabetes identified by biological testing, both independently and in combination with other candidate risk factors. At the conclusion of systematic review, it was determined that further meta-analysis was not feasible based on detection of high variability across study design of the seven reviewed studies, goal and outcomes, study population characteristics, and settings in which these studies were performed. Oral/Dental variables (n = 19) modeled in the systematically reviewed publications, and the number of publications that modeled each variable are cataloged in Figure 3. Variables most consistently retained in the final models included the number of missing teeth, periodontal probing depth (PPD), and/or clinical attachment loss (CAL) measures that indicated the presence of severe periodontitis.

Results of bias assessment applying the PROBAST are shown in Table 2. Potential sources of bias associated with most studies included the use of self-reported data and incomplete reporting of analytical detail. The risk of bias or applicability consistently ranged from “low” to “unclear” across studies systematically reviewed.

4 | DISCUSSION

The current study undertook a systematic review of the application of predictive modeling for detection of undiagnosed T2DM/prediabetes applying oral health variables as candidate predictors. This study builds upon an earlier study by Collins et al. (2011), which had systematically examined the methodological rigor of studies published through 2010 whose goal was the prediction of undiagnosed T2DM/prediabetes. Guided by the outcomes of their analysis, only studies that applied multivariable regression modeling to define predictive variables were considered for inclusion.

Most multivariable regression modeling across studies systematically reviewed was generally undertaken as “proof of concept” to test...
TABLE 1: Undiagnosed T2DM/prediabetes prediction models incorporating both clinical and oral health-related variables

Author	Study Objective	Periodontitis definition	Type & # models	Variables retained, other measures	Performance metrics	Other notes
Borell (2007)	Modeled conditional T2DM/prediabetes prediction	(defined as FPG >126mg/dL) using NHANES III data for subjects <20 yrs.	2 definitions were tested: 1) >2 sites w/ CAL <6 mm + 1 site w/ PPD >5 mm + at least 14 teeth with >2 sites of CAL & >1 site of PD at 2 sites/tooth (mid & mesiobuccal), (2) >2 sites w/ PPD >5 mm or 1 site w/ PPD >4.5 mm, or 7 mm	LRA used to estimate conditional probability of undiagnosed DM.	Age >45 yrs, sex, ethnicity/race, family hx of DM (parents/sibs), hypertension, hypercholesterolemia. Two models were created using two distinct periodontitis definitions.	Sensitivity: mean AUC=0.76. 101 analyses were adjusted for # of teeth
Holm (2016)	Identify previously undiagnosed patients with probable DM or preDM in dental setting with POC screening for HbA1C >39.47 mmol/mol for prediabetes or >48 mmol/mol for T2DM, and refer for diagnostic testing to confirm status (n=291)	Based on full-mouth exam and radiographic bone loss measure: Periodontitis definition: 2 interproximal sites with CAL >5 mm, and 1 interproximal site with PD >5 mm.	LRA to predict DM: 3 models: HbA1C measure in combination with: Model 1: One interproximal site PPD >5 mm + BMI (overweight, obese), Model 2: Two interproximal sites + AL >5 mm + 1 site with PPD >5 mm + BMI (overweight, obese); Model 3: 3 site with PPD >5 mm + waist circumference (high risk)	Variables assessed: (Hispanic subject: >30 years; white subject: >40 yrs) + %PPD >5 mm + BOP + Fam hx of DM + BMI (overweight, obese)	Performance of models #1&2 on combined data for T2DM/prediabetes defined by FPG or HbA1C (AUC=0.83; CI 0.80-0.85; p<0.0001)	Other notes

Table 1 continued...
TABLE 1 (Continued)

Author	Study Objective	Periodontitis definition	Type# models	Variables retained, other measures	Performance metrics	Other notes
Herman (2015)	Derive a screening model for detecting undiagnosed T2DM/prediabetes at POC screening for HbA1c > 5.7% in the dental setting in patients with no previously detected risk factor analysis and test referral for diagnostic validation (n=1000)	Criteria: pain, periodontitis, dx, mobility, >1 missing tooth, or applying clinical classification scoring using a scale of 1 to 5 where a score of 3 = mild, 4 = moderate, 5 = severe	LRA testing potentially predictive variables including age, sex, race/ethnicity, education, income, self-reported height, weight, physical activity, hx of DM, insurance coverage, access to medical care, self-reported periodontitis/symptology, hx of tooth loss, capillary glucose measure >110mg/dL, Subset of patients with capillary glucose >110mg/dL or assessment of periodontitis, (defined as: mild moderate, severe) also had HbA1C test, HbA1C interpretation; >5.7-6.4= prediabetes; >6.4-DM	Apply age and BMI as continuous variables, final model included: sex, HTN, dyslipidemia, >1 missing tooth, capillary glucose >110mg/dL. Significant association noted between HTN & sex. Model explained 20% of undiagnosed DM/prediabetes: periodontitis, oral health status, DMFT, race/ethnicity, age, poverty income ratio, educational level, time since last medical visit, time since last dental visit, physical activity, BMI, weight, height, WC (self-reported), CHF, HTN, serum cholesterol, triglycerides, HDL, CRP.	A cut point of specificity=80% was set to reduce number of false positives. The undiagnosed T2DM/prediabetes predictive models included: Model 1: risk factors with inclusion of cap gluc >110mg/dL: AUC=0.83 (sensitivity=60%); Model 2: with risk factor and without inclusion of cap gluc >110mg/dL: AUC=0.79 (sensitivity=50%)	A cut point of -0.087 was calculated from the logistic regression model (corresponding to a probability of 0.45), to achieve a specificity of 80% (sensitivity=50%)

Herman (2011) | Propose clinical practice guideline to help assess undiagnosed dental patient risk for DM following screening for FPG > 126mg/dL by modeling predictive variables of subjects in NHANES III (n=15,090) | NHANES III definitions [25]: assessment of two or more sites with CAL > 3mm, and >1 site with PPD>4mm, gingival recession assessing two quadrants (maxillary and mandibular) at two sites/molar (buccal and mesio-buccal) | 55 potentially predictive variables were evaluated by applying CART non-parametric statistical analysis to 50% of data set to develop the diabetes model and conduct of internal validation in the other 50% of data | Retained predictive variables of undiagnosed T2DM/prediabetes: periodontitis, oral health status, DRAFT; race/ethnicity, age, poverty income ratio, educational level, time since last medical visit, time since last dental visit, physical activity, BMI, weight, height, WC (self-reported), CHF, HTN, serum cholesterol, triglycerides, HDL, CRP. | Training 10X X-valid | Int Valid | Ext Valid |
					91.2	82.4	79.8	824
					52.2	51.8	52.1	528
					0.74	0.68	0.70	0.72

Liljestrand (2015) | Evaluate # of missing teeth as a predictive variable for incident DM in a cohort (n=7198) with 13 years of follow-up. DM dx was based on questionnaire reporting MD-diagnosed DM and querying the diabetes-associated drug use | Number of missing teeth | Cox regression modeling to evaluate significance (calculated by Mann Whitney U or X²) surrounding selected variables and disease incidence over a 13-year temporal frame | Adjusted covariates retained in compliance with DM risk score [27]: age (≥45 years), waist circumference (≥94cm, ≥101cm) BMI (overweight, obese), hx med hs, hx of elevated blood glucose; sedentary life style (<4hrs/week of activity), daily fruit and vegetable intake | Looked at HR for mortality based on # of missing teeth: Between 9 to 33 missing teeth: HR=1.37 (p=0.040); Edentulous: HR=1.56 (p=0.0012) | Increased risk for DM was observed beginning at >5 missing teeth | Developed a flow chart to determine relative risk and if patient should be screened or triaged using the following pivotal variables: 1) waist circumference (≥35 inches [90cm]; self-reported); 2) age ≥45 years (≥36yrs for Hispanic ethnicity); 3) self-reported weight (≥68kg) 4) self-reported black race or Hispanic ethnicity; 5) poor oral health |
TABLE 1

Author	Study Objective	Periodontitis definition	Variables retained, other notes	Type, # models	Performance metrics	Other notes

Variables retained, other notes:
- Model discriminatory capacity was tested by including/excluding measures Performance metrics Other notes
- Significant linear relationship with # of missing teeth was associated with: age, education (inverse to # of reimbursement records for BMI; sedentary lifestyle; family hx of DM (parents); male sex, existing DM, the Social Insurance trend in a one-way analysis of variance was also performed.
- Parental hx of DM or MI.
- Institution of Finland
- Abbreviations: LRA: Logistic regression analysis; hx: history of; yrs: years; POC: point of care, DM: diabetes mellitus, PD: periodontitis, PPD: periodontal probing depth; CAL: clinical attachment loss, RBL: radiographic bone loss; BOP: bleeding on probing, DMFT: decayed, missing or filled teeth; CHF: congestive heart failure; FPG: fasting plasma glucose, WC: waist circumference; fat%: fat percentage; sens: sensitivity; spec: specificity; PPV: positive predictive value; NPV: negative predictive value; dx: diagnosis; 10X-X-valid: ten-fold cross validation; Ext Valid: external validity; HR: hazard ratio; MI: myocardial infarction; RX: prescription medication

Notably, periodontitis-associated measures modeled as risk factors were consistently retained in the predictive models, thus further reinforcing the evidence base supporting bidirectional interaction between undiagnosed T2DM/prediabetes and the infectious/inflammatory processes associated with periodontitis. Two variables: “PPD” and/or “number of missing teeth” were retained in all seven models as predictors in all populations in which they were tested. Apart from trauma, or tooth loss associated with extractions associated with either oral oncology-related treatment or caries, periodontitis represents the most likely cause of missing teeth and is, therefore, a surrogate for prior history of periodontitis. Periodontitis-associated tooth loss is attributable to loss of structural support due to damage of surrounding gums and underlying bone caused by chronic periodontal infection and host immune response to the local infectious processes in the gingival tissue. Consistent retention of these two related periodontal variables suggests high generalizability since they were identified by all seven articles across highly variable study populations and dental care settings.

Further, studies that modeled oral variables independently as the main predictors of risk for undiagnosed T2DM/prediabetes found these variables to be highly associated with biological outcomes.
TABLE 2 PROBAST bias assessment results table

Study	ROB Participants	Predictors	Outcome	Analysis	APP Participants	Predictors	Outcome	Analysis	Overall	ROB	APP	Observations
Borrell et al. (2007)	+	?	+	?	+	?	+	?	?	?	?	Discovery only; Low event rate/group; Low predictive power to detect the probability of T2DM (27%–53%); Algorithm was published
Li et al. (2011)	+	?	+	?	+	?	+	?	?	?	?	Discovery-used NHANES III cohort data CPG development was goal; model was internally and externally validated; rates of Type I/Type II error not reported. Set predictive cutoff was arbitrary; clinical utility unclear
Lalla et al. (2011)	+	?	+	+	+	?	+	?	+	+	?	Discovery only; Modeling assumptions and criteria not specified; predictor weights and regression coefficient were not reported; model can discriminate across three outcomes; holds probable clinical utility
Lalla et al. (2013)	+	?	+	+	+	?	+	+	+	+	?	Validation; combined new data with data from Lalla et al. (2011) study. High AUC; supports clinical utility; model not published; no validation of DM diagnosis reported.
Herman et al. (2015)	+	+	+	+	+	?	+	+	?	?	?	Discovery only; model predicted risk for DM by 10 years age group and sex; Increased AUC of biological measure alone; specificity was 80%, sensitivity 60%; low response to follow-up biological testing to validate DM; model not validated or published
Liljestrand et al. (2015)	+	+	+	+	+	+	+	+	?	?	?	Discovery only; Modeled candidate predictors with longitudinal data; demonstrated # of missing teeth as predictor of DM in Finnish population; No model was published
Holm et al. (2016)	?	+	+	?	?	+	+	?	?	?	?	Discovery only; Self-reported data not modeled; modeling assumptions and testing/outcomes were not reported; Biological measure was not modeled to assess the impact of performance

Note: Scoring code.

Abbreviations: APP, applicability; AUC, area under the curve; CPG, clinical practice guideline; PROBAST, prediction model risk of bias assessment tool (Wolff et al., 2019); ROB, risk of bias; +, low risk of bias or probable applicability; -, high risk of bias or low applicability; ?, unclear risk of bias and uncertain applicability.
Analyses of combined data sets from two studies by Lalla et al. (2011, 2013), reported high sensitivity (0.87) and area under the receiver operating curve (AUC) (0.83) with use of an algorithm including only two optimally defined oral variables: ≥26% of teeth with deep pockets (defined as ≥5 mm and ≥four missing teeth) and glycemic measure (HbA1C) collected at the POC.

As shown in Table 1, the performance of models incorporating oral health-related variables achieved AUC measures of up to 0.92. Model performance was further enhanced following the inclusion of biological glycemic screening measures as predictive variables during modeling. These results suggest that such predictive models merit further investigation and evaluation as potential tools for diabetic risk prediction in the dental setting.

Because predictive modeling holds potential for the creation of noninvasive tools for identifying individuals at risk for diabetes/prediabetes, which has achieved epidemic status, future studies should aim to follow a standardized study design to support testing of portability of predictive models with inherent potential for translation into clinical practice settings. Notably, among all studies systematically reviewed, only Borrell et al. (2007) published their final algorithm, thereby limiting further validation of these models in other populations. Among studies that also propose the inclusion of biological glycemic screening measures in predictive modeling standardization of screening protocols at POC is further required as identified by a previous systematic review (Glurich, Bartkowski, et al., 2018). Thus, confirmation of accuracy of positive and negative predictive value of screening measures remains to be validated by longitudinal glycemic assessment.

Predictive modeling approaches reviewed herein identified variables that potentially contribute to risk for detecting the presence of undiagnosed disease. Monitoring of these variables at POC may have clinical applicability particularly in the dental setting. These findings further emphasize the value of monitoring oral health in both the dental and medical setting with appropriate triage for cross-disciplinary care. Applicability of informatics to create clinical decision support tools with capacity for monitoring predictive clinical and demographic variables standardly collected in the EHR in the course of care delivery may be leveraged to facilitate identification of undiagnosed individuals requiring follow up and clinical management. Implementation of such tools in clinical and dental settings has recently been reported (Acharya et al., 2018; Hegde et al., 2019). While risk prediction modeling is data-driven and noninvasive, studies by Lalla et al. (2011, 2013) further demonstrated enhanced predictive power (increase in AUC) when oral predictive variables were modeled in conjunction with biological measures of glycemic status as compared to models that did not use oral health variables.

4.1 | Limitations

Limitations of the current study included the inability to conduct meta-analysis based on high degree of variability across study populations, outcomes, and study designs. Further, the ability to conduct literature searches in other databases and languages may have resulted in lack of capture and inclusion of all articles meeting inclusion criteria for this review.

5 | CONCLUSION

This systematic review defined oral health variables with attributable risk for undiagnosed T2DM/prediabetes. Notably, some studies
demonstrated that oral health variables contributed to models predicting risk undiagnosed T2DM and prediabetes both independently and in combination with biological glycemic measures. The most consistently informative variables across studies included number of missing teeth and demonstration of periodontitis, defined by PPD and CAL. Findings of the current systematic review reflect those of a recently published systematic review of field trials that undertook screening for undiagnosed T2DM/prediabetes at POC in dental settings (Glurich, Bartkowiak, et al., 2018) that collectively reported high prevalence of undiagnosed T2DM/prediabetes across various populations applying POC testing alone or in combination with predictive modeling.

The outcomes of this systematic review supports that the application of noninvasive informatics approaches that model available data in the EHR and/or other administrative databases inclusive of oral health-related variables could have value in identifying individuals with undiagnosed diabetes/prediabetes in the dental setting. Whereas all studies demonstrated the ability to model risk status, studies varied broadly in their design and purpose. Future studies using informative variables identified by these studies applied to different populations utilizing a standardized study design to support future meta-analysis would be required to determine whether broadly applicable algorithms with high portability could be defined for more generalizable translation to clinical settings where determination of validity to the population has been demonstrated. Once validated, such models could be incorporated into EHRs in the form of clinical decision support tools if data on the required variables included in the models is available in the captured EHR data to support the performance of screening and predictive modeling.

ACKNOWLEDGMENTS
This study was supported by funding from Delta Dental of Wisconsin. We would like to thank Gaurav Jain DDS, from the Family Health Center of Marshfield, Inc. Dental Clinic for serving as the third reviewer to conduct the quality assessment for scoring of inter-rater reliability. The authors would also like to acknowledge the assistance of Deb Knipple (Reference Librarian at Marshfield Clinic Medical Library) for assistance with rerunning the search strategy originally run through May 2016 in PubMed and Web of Science through July 31, 2018 to update the systematic review. The authors would like to thank Yvonne Cerne from the Center for Oral and Systemic Health, Marshfield Clinic Research Institute for assisting with the formatting of figures.

CONFLICT OF INTEREST
The authors declare no potential conflict of interest.

DATA AVAILABILITY STATEMENT
Data sharing not applicable - no new data generated.

ORCID
Ingrid Glurich https://orcid.org/0000-0001-5988-569X
Amit Acharya https://orcid.org/0000-0003-2806-3524

REFERENCES
Acharya, A., Cheng, B., Koralkar, R., Olson, B., Lamster, I. B., Kunzel, C., & Lalla, E. (2018). Screening for diabetes risk using integrated dental and medical electronic health record data. JDR Clinical and Translational Research, 3(2), 188–194. https://doi.org/10.1177/2380084418759496
Borgnakke, W. S., Ylästalo, P. V., Taylor, G. W., & Genco, R. J. (2013). Effect of periodontal disease on diabetes: Systematic review of epidemiologic observational evidence. Journal of Periodontology, 84(4 Suppl), S135–S152. https://doi.org/10.1902/jop.2013.1340013
Borrell, L. N., Kunzel, C., Lamster, I., & Lalla, E. (2007). Diabetes in the dental office: Using NHANES III to estimate the probability of undiagnosed disease. Journal of Periodontal Research, 42(6), 559–565. https://doi.org/10.1111/j.1600-0765.2007.00983.x
Casanova, L., Hughes, F. J., & Preshaw, P. M. (2014). Diabetes and periodontal disease: A two-way relationship. British Dental Journal, 217(8), 433–437. https://doi.org/10.1038/sj.bdj.2014.907
Centers for Disease Control and Prevention. (2018). Diabetes - your chance to prevent Type 2 diabetes/Centers of Disease Control and Prevention. https://www.cdc.gov/diabetes/basics/prediabetes.html
Centers for Disease Control and Prevention. (2020). National diabetes statistics report. https://www.cdc.gov/diabetes/data/statistics-report/index.html
Collins, G. S., Mallett, S., Omar, O., & Yu, L. M. (2011). Developing risk prediction models for type 2 diabetes: A systematic review of methodology and reporting. BMC Medicine, 9(1), 103. https://doi.org/10.1186/1741-7015-9-103
Corbella, S., Francetti, L., Taschieri, S., De Siena, F., & Fabbro, M. D. (2013). Effect of periodontal treatment on glycemic control of patients with diabetes: A systematic review and meta-analysis. Journal of Diabetes Investigation, 4(5), 502–509. https://doi.org/10.1111/jdi.12088
Demmer, R. T., Desvarieux, M., Holtfreter, B., Jacobs, D. R., Jr., Wallasechofski, H., Nauck, M., Völzke, H., & Kocher, T. (2010). Periodontal status and A1C change: Longitudinal results from the study of health in pomerania (SHIP). Diabetes Care, 33(9), 1037–1043. https://doi.org/10.2337/dc09-1778
Eke, P. I., Borgnakke, W. S., & Genco, R. J. (2020). Recent epidemiologic trends in periodontitis in the USA. Periodontology 2000, 82(1), 257–267. https://doi.org/10.1111/prd.12323
Eke, P. I., Thornton-Evans, G. O., Wei, L., Borgnakke, W. S., & Dye, B. A. (2010). Accuracy of NHANES periodontal examination protocols. Journal of Dental Research, 89(11), 1208–1213. https://doi.org/10.1177/0022034510377793
Glurich, I., Acharya, A., Shukla, S., Nycz, G., & Brilliant, M. (2013). The oral-systemic personalized medicine model at Marshfield clinic. Oral Diseases, 19(1), 1–17.
Glurich, I., Bartkowiak, B., Berg, R. L., & Acharya, A. (2018). Screening for dysglycaemia in dental primary care practice settings: Systematic review of the evidence. International Dental Journal, 68(6), 369–377. https://doi.org/10.1111/idj.12405
Glurich, I., Nycz, G., & Acharya, A. (2017). Status update on translation of integrated primary dental-medical care delivery for Management of Diabetic Patients. Clinical Medicine and Research, 15(1–2), 21–32. https://doi.org/10.3121/cmr.2017.1348
Glurich, I., Schwei, K. M., Lindberg, S., Shimp, N., & Acharya, A. (2018). Integrating medical-dental care for diabetic patients: Qualitative assessment of provider perspectives. Health Promotion Practice, 19(4), 531–541. https://doi.org/10.1177/1524839917737552
Harris, P. A., Taylor, R., Thielke, R., Payne, J., Gonzalez, N., & Conde, J. G. (2009). Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. Journal of Biomedical Informatics, 42(2), 377–381. https://doi.org/10.1016/j.jbi.2008.08.010
Hegde, H., Shimp, N., Panny, A., Glurich, I., Christie, P., & Acharya, A. (2019). Development of non-invasive risk prediction models as
decision support tools designed for application in the dental clinical environment. Informatics in Medicine Unlocked, 17, 100254. https://doi.org/10.1016/j.imu.2019.100254
Herman, W. H., Taylor, G. W., Jacobson, J. J., Burke, R., & Brown, M. B. (2015). Screening for prediabetes and type 2 diabetes in dental offices. Journal of Public Health Dentistry, 75(3), 175–182. https://doi.org/10.1111/j.1229-9021.2008.e12082
Holm, N.-C. R., Belstrom, D., Ostergaard, J. A., Schou, S., Holmstrup, P., & Grauballe, M. B. (2016). Identification of individuals with undiagnosed diabetes and pre-diabetes in a Danish cohort attending dental treatment. Journal of Periodontology, 87(4), 395–402. https://doi.org/10.1002/1902/jop.2016.150266
Lalla, E., Zheng, B., Kunzel, C., Burkett, S., & Lamster, I. B. (2013). Dental findings and identification of undiagnosed hyperglycemia. Journal of Dental Research, 92(10), 888–892. https://doi.org/10.1177/0022034513502791
Lalla, E., Kunzel, C., Burkett, S., Cheng, B., & Lamster, I. B. (2011). Identification of unrecognized diabetes and pre-diabetes in a dental setting. Journal of Dental Research, 90(7), 855–860. https://doi.org/10.1177/0022034511407069
Li, S., Williams, P. L., & Douglass, C. W. (2011). Development of a clinical guideline to predict undiagnosed diabetes in dental patients. Journal of the American Dental Association, 142(1), 28–37. https://doi.org/10.14219/jada.archive.2011.0025
Liljestrand, J. M., Havulinna, A. S., Paju, S., Männistö, S., Salomaa, V., & Pussinen, P. J. (2015). Missing teeth predict incident cardiovascular events, diabetes, and death. Journal of Dental Research, 94(8), 1055–1062. https://doi.org/10.1177/0022034515586352
Llambés, F., Arias-Herrera, S., & Caffesse, R. (2015). Relationship between diabetes and periodontal infection. World Journal of Diabetes, 6(7), 927–935. https://doi.org/10.4239/wjd.v6.7.927
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097
Sanz, M., Ceriello, A., Buysschaert, M., Chappel, I., Demmer, R., Graziani, F., Herrera, D., Jepsen, S., Lione, L., Madianos, P., Mathur, M., Montanya, E., Shapira, L., Tonetti, M., & Vegg, D. (2018). Scientific evidence on the links between periodontal diseases and diabetes: Consensus report and guidelines of the joint workshop on periodontal diseases and diabetes by the International Diabetes Federation and the European Federation of Periodontology. Journal of Clinical Periodontology, 45(2), 138–149. https://doi.org/10.1111/jcpe.12808
Sgolastra, F., Severino, M., Petropodi, D., Gatto, R., & Monaco, A. (2013). Effectiveness of periodontal treatment to improve metabolic control in patients with chronic periodontitis and type 2 diabetes: A meta-analysis of randomized clinical trials. Journal of Periodontology, 84(7), 958–973. https://doi.org/10.1902/jop.2012.120377
Shimpi, N., Glurich, I., Schroeder, D., Katrak, C., Chyou, P. H., & Acharya, A. (2020). Patient awareness of Association of Diabetes and Periodontal Disease. Health Promotion Practice, 21(3), 464–472. https://doi.org/10.1177/1524839918801909
Shimpi, N., Schroeder, D., Kilsdonk, J., Chyou, P. H., Glurich, I., Penniman, E., & Acharya, A. (2016). Medical providers’ oral health knowledgability, attitudes, and practice behaviors: An opportunity for interprofessional collaboration. Journal of Evidence Based Dental Practice, 16(1), 19–29. https://doi.org/10.1016/j.jebdp.2016.01.002
Strauss, S. M., Russell, S., Wheeler, A., Norman, R., Borrell, L. N., & Rindskopf, D. (2010). The dental office visit as a potential opportunity for diabetes screening: An analysis using NHANES 2003-2004 data. Journal of Public Health Dentistry, 70(2), 156–162. https://doi.org/10.1111/j.1752-7325.2009.00157.x
Wang, T. F., Jen, I. A., Chou, C., & Lei, Y. P. (2014). Effects of periodontal therapy on metabolic control in patients with type 2 diabetes mellitus and periodontal disease: A meta-analysis. Medicine, 93(28), e292. https://doi.org/10.1097/MD.0000000000000292
Wolff, R. F., Moons, K. G. M., Riley, R. D., Whiting, P. F., Westwood, M., Collins, G. S., Reitma, J. B., Kleijen, J., Mallet, S., & Probst Group. (2019). PROBAST: A tool to assess the risk of bias and applicability of prediction model studies. Annals Internal Medicine, 170(1), 51–58. https://doi.org/10.7326/M18-1376

How to cite this article: Glurich, I., Shimpi, N., Bartkowiak, B., Berg, R. L., & Acharya, A. (2022). Systematic review of studies examining contribution of oral health variables to risk prediction models for undiagnosed Type 2 diabetes and prediabetes. Clinical and Experimental Dental Research, 8, 96–107. https://doi.org/10.1002/cre2.515