Repurposing Anti-Malaria Phytomedicine Artemisinin as a COVID-19 Drug

Fatih M. Uckun1*, Saran Saund2, Hitesh Windlass3 and Vuong Trieu2

1Ares Pharmaceuticals, LLC, St. Paul, MN, United States, 2Oncotelic Inc., Agoura Hills, CA, United States, 3Windlas Biotech Pvt. Ltd., Dehradun, India

Artemisinin is an anti-inflammatory phytomedicine with broad-spectrum antiviral activity. Artemisinin and its antimalarial properties were discovered by the Chinese scientist Tu Youyou, who became one of the laureates of the 2015 Nobel Prize in Physiology or Medicine for this breakthrough in tropical medicine. It is a commonly used anti-malaria drug. Artemisinin has recently been repurposed as a potential COVID-19 drug. Its documented anti-SARS-CoV-2 activity has been attributed to its ability to inhibit spike-protein mediated and TGF-β-dependent early steps in the infection process as well as its ability to disrupt the post-entry intracellular events of the SARS-CoV-2 infection cycle required for viral replication. In addition, Artemisinin has anti-inflammatory activity and reduces the systemic levels of inflammatory cytokines that contribute to cytokine storm and inflammatory organ injury in high-risk COVID-19 patients. We postulate that Artemisinin may prevent the worsening of the health condition of patients with mild-moderate COVID-19 when administered early in the course of their disease.

Keywords: COVID-19, ARDS, TGF — Transforming growth factor, malaria, anti-inflammatory

INTRODUCTION

New effective drugs are needed to prevent the potentially deadly complications of COVID-19 (Woolf et al., 2020; Faust et al., 2021; Woolf et al., 2021) and thereby reduce its fatality rate (Uckun, 2020a; Uckun, 2020b; Uckun et al., 2020a; Zheng et al., 2020; Zhou et al., 2020). The goal of this mini-review is to discuss the emerging evidence regarding the clinical potential of Artemisinin for the treatment of COVID-19.

Due to their favorable safety profiles, natural products and phytomedicines are being explored as potential therapeutic or prophylactic agents with different mechanisms of action against COVID-19 (Huang et al., 2020). Some natural products have the potential to impair the attachment of SARS-CoV-2 spike glycoprotein to its receptors on human cells, including the Heat Shock Protein A5 (HSPA5) substrate-binding domain β (SBDβ) and angiotensin-converting enzyme 2 (ACE2) receptor (Elfiky, 2020; Kumar et al., 2020). Others have been proposed as inhibitors of viral replication, such as the recently reported compounds derived from Alpinia of cinarum and ginger that may affect SARS-CoV-2 replication by blocking the SARS-CoV-2 papain-like protease (PLpro) (Goswami et al., 2020), compounds derived from African plants that may inhibit the 3-chymotrypsin-like protease (3CLpro) (Gyebi et al., 2020), or natural polyphenols such as quercetin that may inhibit the RNA-dependent RNA polymerase (RdRp) (El-Aziz Abd et al., 2020). In addition, several natural products have immunomodulatory activities that may have
clinically beneficial anti-inflammatory effects, including Chinese herb prescriptions (Huang et al., 2020; Xu and Zhang, 2020).

Artemisia species contain bioactive substances with pleiotropic biological effects (Li et al., 2018). For example, Artemisia annua contains anti-inflammatory sesquiterpenoids, including Artemisinin (viz.: artemesia). Artemisinin and its antimalarial properties were discovered by the Chinese scientist Tu Youyu, who became one of the laureates of the 2015 Nobel Prize in Physiology or Medicine for this discovery (Li et al., 2018).

Artemisinin and some of its derivatives exhibit in vitro antiviral activity against a number of pathogenic human viruses, such as human cytomegalovirus (HCMV), Epstein Barr virus (EBV), human herpes simplex virus-6 (HHV-6) (Effert et al., 2008; D’alessandro et al., 2020). Case reports of clinical response have been reported in a child with HHV-6 myocarditis and a patient with ganciclovir-resistant, foscarnet-resistant HCMV (Effert et al., 2008; D’alessandro et al., 2020). In vivo antiviral activity was observed in the rat CMV model and a murine model of herpes simplex encephalitis (HSE) as well (Effert et al., 2008). Studies by Cao et al. (2020) and Gilmore et al. (2020) confirmed the antiviral activity of Artemisinin and its derivatives against SARS-2-CoV-2 at micromolar concentrations. Recent docking studies indicated that Artemisinin and its derivative Artesunate could bind the SARS-CoV-2 spike protein in a way that would interfere with its docking onto the human ACE2 receptor protein, which is the required first step in the host infection process of the coronavirus disease 2019 (COVID-19) (Sehailia and Chemat, 2020; Yan et al., 2020).

Importantly, recent research by Cao et al. revealed that Artemisinin-related compounds Artenannu B and Lumefantrine disrupted the post-entry intracellular events of the SARS-CoV-2 infection cycle required for viral replication (Cao et al., 2020). Therefore, when these artemisinins were added at clinically achievable micromolar concentrations throughout the infection process or post-entry (but not when added before or during virus entry), SARS-CoV-2 replication was effectively inhibited, as measured by quantitative RT-PCR or viral RNA and protein assays (Cao et al., 2020).

Clinical Safety Profile and Pharmacokinetics of Artemisinin

Orally administered Artemisinin and Artemisinin derivatives are generally well-tolerated, especially when used for a short treatment course (Duc et al., 1994; De Vries et al., 1997; Ashton et al., 1998; Gordi et al., 2002; Hien et al., 2011; Li et al., 2018; Wang et al., 2020; Li et al., 2021). Except for the rare occurrence of hepatotoxicity and mild-moderate headache, nausea, vomiting, fatigue, and anorexia, Artemisinin was found to be clinically safe in healthy volunteers as well as malaria patients (Duc et al., 1994; De Vries et al., 1997; Ashton et al., 1998; Gordi et al., 2002; Hien et al., 2011; Li et al., 2018; Wang et al., 2020; Li et al., 2021). Severe hemolytic anemia requiring transfusion is a well-documented complication encountered within 28 days of therapy initiation by 20–25% of malaria patients treated with parenterally administered Artusenate and it necessitates close clinical monitoring for risk mitigation (Jaureguibery et al., 2014; Savargaonkar et al., 2020). Likewise, severe hemolytic anemia requiring blood transfusions after oral artemisinin therapy has been observed as a rare complication in malaria patients with high parasite loads (Conlon et al., 2020). Based on its overall favorable safety profile, the World Health Organization (WHO) recommends parenteral artesunate for the treatment of severe malaria (WHO, 2010).

Clinical Activity of Artemisinin and Chemical Derivatives of Artemisinin in COVID-19 Patients

Some clinical trials also suggested that Artemisinin may contribute to a faster recovery of COVID-19. Li et al. reported the results from an open-label non-randomized study in which 41 COVID-19 patients received either standard of care (SOC) therapy (control) or SOC combined with Artemisinin plus piperaquine (AP) (Li et al., 2021). The average time to reach undetectable viral RNA was significantly shorter for the AP group (Li et al., 2021). Patients in the AP group showed a faster clearance of SARS-CoV-2 than control patients. Liver enzyme elevations, as well as QTc interval prolongations on ECGs were observed in the AP arm, consistent with hepatotoxicity and cardiac toxicity.

ArtemiC is a medical spray containing Artemisinin, curcumin, Frankincense resin from the Boswellia sacra tree and Vitamin C. In the controlled Phase II trial NCT04382040, patients with COVID-19 received ArtemiC spray in addition to standard care. Study data have not been published in a peer-review article, but a press release of the preliminary data suggested that ArtemiC may be more active than placebo in contributing to the improvement of the patients’ condition (Health Care, 2020). Likewise, the efficacy signal for the Artemisinin derivative Artesunate during a recently completed prospective, controlled clinical COVID-19 study was promising. In Artesunate treatment group, time to significant improvement of the symptoms, time to conversion to negativity of SARS-CoV-2 tests, and length of hospital stay was shorter than in the control group (Lin et al., 2020).

There are several Phase II/III studies currently underway in which pharmaceutical compositions or supplements containing Artemisinin and/or its derivatives are being evaluated as adjuncts to the standard of care in COVID-19 patients, including but not limited to Artesunate plus Artemisinin (NCT04387240), Artesunate plus amodiaquine (NCT04502342); Artesunate plus pyronaridine (NCT04475107), Artusunate as well as Artemisia annua (NCT04374019). In the CTRI/2020/09/028044 randomized Phase 4 trial, the efficacy of ARTiVeda (Artemisinin) is being studied in COVID-19 patients with mild-moderate disease. The product, ArtiVeda™ (License # UKAY-401/2018, Ministry of AYUSH, India), is a novel gelatin capsule formulation of the Artemisia extract Ayurveda for oral delivery of the active ingredient Artemisinin for treatment of COVID-19. Pending the comparative evaluation of the pending data, it would be helpful to evaluate the clinical
potential of specific artemisinin compounds in well-designed randomized clinical trials will be required for the identification of the most promising treatment regimens (Uckun, 2020b).

DISCUSSION

The pharmacokinetics of Artemisinin after a single oral dose was examined in multiple small clinical studies employing Artemisinin most often at the clinically active 500 mg dose level alone or in combination with other antimalarial drugs, such as piperaquine, and showed a rapid elimination within 2–3 h (Duc et al., 1994; De Vries et al., 1997; Ashton et al., 1998; Gordini et al., 2002; Hien et al., 2011; Wang et al., 2020; Li et al., 2021). Due to its time-dependent enzymatic metabolism in the liver by the liver microsomal enzymes CYP2B6 and CYP3A4, the daily systemic exposure level rapidly declines in 5–7 days treatment cycles. This time-dependent pharmacokinetics of Artemisinin and its derivatives have been implicated in the observed high recrudescence rates in malaria patients within 2–3 weeks after monotherapy (Gordini et al., 2002). Therefore, treatment schedules need to be rationally designed for optimal efficacy by taking into consideration both the pathophysiology of target disease, concomitant medications and the pharmacokinetics characteristics of Artemisinin.

High-risk COVID-19 patients have a higher probability of developing a potentially life-threatening multi-system inflammation caused by a cytokine release syndrome (CRS) (Uckun, 2020a; Uckun 2020b; Uckun et al., 2020a; Wu et al., 2020; Zheng et al., 2020; Zhou et al., 2020). Several pro-inflammatory cytokines, including interleukin-6 (IL6), tumor necrosis factor-alpha (TNF-α), and transforming growth factor-beta (TGF-β), contribute to the inflammatory injury of lungs in COVID-19 patients during the CRS (Uckun, 2020b; Uckun et al., 2020b). Notably, infection with SARS-CoV increases the expression of TGF-β and potentiates the TGF-β-regulated MAPK-mediated inflammatory signals (He et al., 2006; Zhao et al., 2008; Li et al., 2016; Wang et al., 2017). These cytokines also contribute to the potentially fatal severe systemic inflammation and multi-organ dysfunction during the viral sepsis of high-risk COVID-19 patients (Uckun, 2020a; Uckun 2020b; Uckun et al., 2020a; Wu et al., 2020; Zheng et al., 2020; Zhou et al., 2020). The reported anti-inflammatory and immunomodulatory effects of Artemisinin and its derivatives have been attributed to their ability to inhibit the pro-inflammatory nuclear factor kappa B (NF-kB) signaling pathway leading to reduced TNF-α and IL-6 levels as well as the Smad2/3-dependent TGF-β signaling pathway (Aldieri et al., 2003; Xu et al., 2007; Wu et al., 2010; He et al., 2011; Mo et al., 2012; Li et al., 2013; Jiang et al., 2016; Zhang et al., 2020). Artemisinin is hoped to mitigate the cytokine-mediated inflammatory injury associated with the cytokine storm and viral sepsis in critically ill COVID-19 patients (Aldieri et al., 2003; Xu et al., 2007; Wu et al., 2010; He et al., 2011; Mo et al., 2012; Li et al., 2013; Jiang et al., 2016; Alhelfawi, 2020; Zhang et al., 2020), in part owing to its ability to block the TGF-β surge which contributes to the development of lung injury and ARDS (Pittet et al., 2001; Budinger et al., 2005; Bossman and Ward, 2014; Frank and Matthay, 2014; Hu and Huang, 2019; Chen, 2020; Zuo et al., 2020). Due to the pivotal role of TGF-β in the pathophysiology of lung fibrosis that develops after an inflammatory injury to the lungs (Xu et al., 2007; Wu et al., 2010; Mo et al., 2012; Wang, 2019; Zhang et al., 2020), the TGF-β pathway inhibitory effect of Artemisinin has the clinical potential to prevent pulmonary fibrosis in COVID-19 patients. It may also help prevent the development of TGF-β triggered serious coagulopathy (Lev et al., 2007; Fox et al., 2020; Stafford et al., 2020). In this regard, data from an ongoing randomized Phase 2 clinical trial of the intravenously administered RNA therapeutic OT101 targeting the TGF-β mRNA that is being conducted in Peru (REPEC (Registro Peruano de Ensayos Clinicos):EC INS # PER-067-20) and Argentina (ReNIS (Registro Nacional de Investigaciones en Salud): IS003024) (Uckun et al., 2020b, Uckun and Trieu, 2020). Uzun et al. recently reported that artemisinins might also help reduce the risk of neurologic complications that are encountered in COVID-19 patients (Uzun et al., 2020).

CONCLUSION

Artemisinin has a clinical impact potential in the treatment of COVID-19 because it can prevent the progression of the disease and accelerate the recovery of patients before they develop potentially life-threatening complications (Uzun and Toptas, 2020; Krishna et al., 2021). This dual-function COVID-19 drug candidate is hoped to mitigate the cytokine-mediated inflammatory injury associated with the cytokine storm and viral sepsis in critically ill COVID-19 patients.

AUTHOR CONTRIBUTIONS

Each author (VT, SS, HW., FU) has made significant and substantive contributions to the study, reviewed and revised the manuscript, provided final approval for submission of the final version. No medical writer was involved. VT and FU conceived the study, designed the evaluations reported in this paper, directed the data compilation and analysis, analyzed the data, and prepared the initial draft of the manuscript. Each author had access to the source data used in the analyses.

FUNDING

This study was funded by Oncotelic, Inc., a wholly-owned subsidiary of Mateon Therapeutics. The funder was not involved in the study design, collection, analysis, interpretation of data, the writing of this article or the decision to submit it for publication.
El Chen, W. (2020). A potential treatment of COVID-19 with TGF-β.

Cao, R., Hu, H., Li, Y., Wang, X., Xu, M., Liu, J., et al. (2020). Anti-SARS-CoV-2 like protease inhibitors. *chemRxiv*. doi:10.26434/chemrxiv.12071997

Goswami, D., Kumar, M., Ghosh, S. K., and Das, A. (2020). Natural product compounds in Alpinia officinarum and ginger are potent SARS-CoV-2 papain-like protease inhibitors. *chemRxiv*. doi:10.26434/chemrxiv.12071997

SYNOPSIS

A potential treatment of COVID-19 with TGF-β.

Costamagna, C., Bosia, A., et al. (2003). Artemisinin inhibits inducible nitric oxide synthase and nuclear factor NF-κB activation. *FEBS Lett.* 552, 141–144. doi:10.1016/j.febslet.2003.09.0905-0

Alhelfawi, M. (2020). Potential approach for treating COVID-19.

ASJET S. 66, 127–144.

Ashton, M., Gordi, T., Trinh, N. H., Nguyen, V. H., Nguyen, D. S., Nguyen, T. N., et al. (1998). Artemisinin pharmacokinetics in healthy adults after 250, 500 and 1000 mg single oral doses. *Biopharm. Drug Dispos.* 19(4), 245–250. doi:10.1002/(SICI)1099-081X(199805)19:4245.aid-bdd899+3.0.co;2-x

Bossman, M., and Ward, P. A. (2014). Protein-based therapies for acute lung injury: targeting neutrophil extracellular traps. *Expert Opin. Ther. Targets* 18(6), 703–714. doi:10.1517/14728222.2014.902938

Budinger, G. R., Chandel, N. S., Donnelly, H. K., Eisenbart, J., Oberoi, M., and Jain, M. (2005). Active transforming growth factor-beta1 activates the procoagulant I promoter in patients with acute lung injury. *Intensive Care Med.* 31, 121–128. doi:10.1007/s00134-004-2503-2

Cao, R., Hu, H., Li, Y., Wang, X., Xu, M., Liu, J., et al. (2020). Anti-SARS-CoV-2 potential of artemisinins in vitro. *ACS Infectious Dis.* 6(9), 2524–2531. doi:10.1021/acsinfecdis.0c00522

Chen, W. (2020). A potential treatment of COVID-19 with TGF-β blockade. *International Journal of Biological Sciences* 16(11),1954–1955. doi:10.7150/ijbs.46891

Conlon, C. C., Stein, A., Colombo, R. E., and Schofeld, C. (2020). Post-artemisinin delayed hemolysis after oral therapy for *P. falciparum* infection. *IDCases* 20, e00741. doi:10.1016/j.idcr.2020.e00741

D’alessandro, S., Scaccabarozzi, D., Signorini, L., Perego, F., Ibboudo, D., Ferrante, P., et al. (2020). The use of antimalarial drugs against viral infection. *Microorganisms* 8, 85. doi:10.3390/microorganisms8010085

Duc, D. D., de Vries, P. J., Nguyen, X. K., Le Nguyen, B., Kager, P. A., and van den Brule, A. J. G. M. (2021). Repurposing antimalarials to tackle the COVID-19 pandemic. *Phytomedicine* 88, 85. doi:10.1016/j.phymed.2021.06.004

El-Aziz Abd, N. M., Mohamed, G. S., Awad, O. M. E., and El-Sohaimy, S. A. (2020). The use of antimalarial drugs against viral infection. *Am. J. Trop. Med. Hyg.* 75(4), 644–654. doi:10.1645/clinthera.01.04.017

Enx, H., and Huang, X. (2019). Alleviation of inflammatory response of pulmonary fibrosis in acute respiratory distress syndrome by puerarin via transforming growth factor (TGF-β1). *Med. Sci. Monit.* 25, 6523–6531. doi:10.12659/MSM.951570

Hu, Y., Fan, J., Lin, H., Yang, X., Ye, Y., Liang, L., et al. (2011). The anti-malaria agent artemisinin inhibits expression of vascular endothelial growth factor and hypoxia-inducible factor-1α in human rheumatoid arthritis fibroblast-like synoviocyte. *Rheumatol. Int.* 31, 53–60. doi:10.1007/s00292-009-1218-7

Hien, T. T., Hanphithakpong, W., Truong, N. T., Dung, N. T., Toi, P. V., Farrar, J., et al. (2011). Orally formulated artemisinin in healthy fasting Vietnamese male subjects: a randomized, four-sequence, open-label, pharmacokinetic crossover study. *Clin. Ther.* 33(5), 644–654. doi:10.1016/j.clinthera.2011.04.017

Huang, J., Tao, G., Liu, J., Cai, J., Huang, Z., and Chen, J. X. (2020). Current prevention of COVID-19: natural products and herbal medicine. *Front Pharmacol.* 11, 588508. doi:10.3389/fphar.2020.588508

Krishna, S., Augustin, Y., Wang, J., Xu, C., Staines, H. M., Platteeuw, H., et al. (2021). Repurposing antimalarials to tackle the COVID-19 pandemic. *Trends Parasitol.* 37(1), 8–11. doi:10.1016/j.pt.2020.10.003

Lev, P. R., Salim, J. P., Marta, R. F., Osorio, M. J., Goette, N. P., and Molinas, F. C. (2020). Artesunate attenuated progression of atherosclerosis lesion formation alone or combined with rosvastatin through inhibition of pro-inflammatory cytokines and pro-inflammatory chemokines. *Phymyphermed.2016.06.004

Lin, Y., Wu, F., Xie, Z., Song, X., Zhu, Q., Wei, J., et al. (2020). [Clinical study of Artemisinin pharmacokinetics and ef-ficacy of Artemisinin-based treatments against SARS-CoV-2. *Blood* 140(20), 106216. doi:10.1182/blood.2020-06.100216

Li, C., Li, Y., Li, Z., and Zeng, M. (2018). “Chapter 6: artemisinin and derivatives: clinical studies,” in *Artemisinin-based and other Antimalarials: detailed account of studies by Chinese scientists who discovered and developed them*. Cambridge, MA: Academic Press, 353–413.

Li, G., Yuan, M., Li, H., Deng, C., Wang, Q., Tang, Y., et al. (2021). Safety and efficacy of artemisinin-piperazine for treatment of COVID-19: an open-label, non-randomised and controlled trial. *Int. J. Antimicrob. Agents* 57, 106216. doi:10.1016/j.ijantimicag.2020.106216

Li, S. W., Wang, C. Y., Jou, Y. J., Yang, T. C., Huang, S. H., Wan, L., et al. (2016). SARS coronavirus papain-like protease induces Egfr-1 dependent up-regulation of TGF-β1 via ROS/p38 MAPK/STAT3 pathway. *Sci. Rep.* 6, 25754. doi:10.1038/srep2067

Li, T., Chen, H., Yang, Z., Liu, X. G., Zhang, L. M., and Wang, H. (2013). Evaluation of the immunomodulatory activity of artemisin in vitro and in vivo. *Int. Immunopharmacol.* 16, 306–312. doi:10.1016/j.intimp.2013.03.011

Lin, Y., Wu, F., Xie, Z., Song, X., Zhu, Q., Wei, J., et al. (2020). [Clinical study of artemisinate in the treatment of coronavirus disease 2019], Zonghua Wei Zhong Bing Ji Jia Yi Xue 32(4), 417–420. doi:10.3760/cma.j.cn121430-20200312-00412

Refbacks

- None
Mo, H. Y., Wang, L. F., and Zhang, L. H. (2012). [Effects of artesunate on tumor necrosis factor alpha and chemotactic factors in the serum and the synovioctye culture supernate of collagen-induced arthritis rats]. Zhongguo Zhong Xi Yi Jie He Za Zhi 32, 253–256.

Pittet, J. F., Griffiths, M. J., Geiser, T., Kaminski, N., Dalton, S. L., Huang, X., et al. (2001). TGF-beta is a critical mediator of acute lung injury. J. Clin. Invest. 107, 1537–1544. doi:10.1172/JCI11963

Savargaonkar, D., Das, M. K., Verma, A., Mitra, J. K., Yadav, C. P., Srivastava, B., et al. (2020). Delayed haemolysis after treatment with intravenous artesunate in patients with severe malaria in India. Malar. J. 19 (1), 39. doi:10.1186/s12936-020-3120-4

Schaillia, M., and Chemat, S. (2020). In-silico studies of antimalarial-agent artemisinin and derivatives portay more potent binding to Lys353 and Lys31-binding hotspots of SARS-CoV-2 spike protein than hydroxychloroquine: potential repurposing of artemisinol for COVID-19. ChemRxiv. 10.26434/chemrxiv.12098652.v1

Stafford, N., Arnold, A., Jebakumar, S., Manglam, V., Sangwaiya, A., and Arnold, J. (2020). Therapeutic strategies for COVID-19: new insights into the value of transforming growth factor beta (TGFβ) antagonists such as imatinib and other kinase inhibitors. BMJ 369, m1610. doi:10.1136/bmj.m1610

Uckun, F. M. (2020a). Prognostic factors associated with high-risk for fatal ARDS in COVID-19 and potential role for precision Medicines as part of COVID-19 supportive care algorithms. Ann. Pulm. Crit. Care Med. 3 (2), 1–4.

Uckun, F. M. (2020b). Reducing the fatality rate of COVID-19 by applying clinical insights from immuno-oncology and lung transplantation. Front. Pharmacol. 11, 796. doi:10.3389/fphar.2020.00796

Uckun, F. M., Carlson, J., Orhan, C., Powell, J., Pizzimenti, N. M., Van Wyk, H., et al. (2020). Rejuvenexi show a favorable clinical safety profile in human subjects and exhibits potent preclinical protective activity in the Lipopolysaccharide-galactosamine Mouse model of acute respiratory distress syndrome and multi-organ failure. Front. Pharmacol. 11, 594321. doi:10.3389/fphar.2020.594321

Uckun, F. M., Huang, L., and Trieu, V. (2020b). Selectively targeting TGF-β with Trabedersen/OT-101 in treatment of evolving and mild ards in COVID-19. Clin. Invest. (Lond.) 10 (2), 35–44.

Uckun, F. M., and Trieu, V. N. (2020). Medical-scientific rationale for a randomized, placebo-controlled, Phase 2 study of trabedersen/OT-101 in COVID-19 patients with hypoxic respiratory failure. Ann. Pulm. Crit. Care Med. 3 (1), 1–9.

Uzu, T., Toptas, O., and Aydn Türkdoğan, Ş. (2020). Could artemesite have a positive effect on the Neurological complications related to infection when it is used in the treatment of COVID-19? ACS Chem. Neurosci. 11 (24), 4001–4006. doi:10.1021/acschemneuro.0c00801

Uzu, T., and Toptas, O. (2020). Artesunate: could be an alternative drug to chloroquine in COVID-19 treatment?. Chin Med. 15, 54. doi:10.1186/s13020-020-00356-8

Wang, C. Y., Lu, C. Y., Li, S. W., Lai, C. C., Hua, C. H., Huang, S. H., et al. (2017). SARS coronavirus papain-like protease up-regulates the collagen expression through non-Samd TGF-β1 signaling. Virus Research 235, 58–66. doi:10.1016/j.viruses.2017.04.008

Wang, L., Liu, J., Xie, W., Li, G., Yao, L., Zhang, R., et al. (2019). miR-425 reduction alleviates inflammation and collagen synthesis in the culture supernate of collagen-induced arthritis rats. Biophys. Sin (Shanghai) 42 (12), 916–923. doi:10.939/abhs/gmq101

Xu, H., He, Y., Yang, X., Liang, Z., Zhan, Z., Ye, Y., et al. (2007). Anti-malarial agent artesunate inhibits TNF-alpha-induced production of proinflammatory cytokines via inhibition of NF-kappaB and PI3 kinase/Akt signal pathway in human rheumatoid arthritis fibroblast-like synoviocytes. Rheumatology (Oxford) 46, 920–926. doi:10.1093/rheumatology/ken014

Xu, J., and Zhang, Y. (2020). Traditional Chinese medicine treatment of COVID-19. Complement Ther. Clin. Pract. 39, 101165. doi:10.1016/j.ctcp.2020.101165

Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., and Zhou, Q. (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367, 1444–1448. doi:10.1126/science.abb2762

Zhang, H., Qi, S., Song, Y., and Ling, C. (2020). Artemisinin attenuates early renal damage on diabetic nephropathy rats through suppressing TGF-β1 regulator and activating the Nrf2 signaling pathway. Life Sci. 256, 117966. doi:10.1016/j.lfs.2020.117966

Zhao, X., Nicholls, J. M., and Chen, Y. G. (2008). Severe acute respiratory syndrome-associated coronavirus nucleocapsid protein interacts with Smad3 and modulates transforming growth factor-beta signalling. J. Biol. Chem. 283 (6), 3272–3280. doi:10.1074/jbc.M70803200

Zheng, Z., Peng, F., Xu, B., Zhao, J., Liu, H., Peng, J., et al. (2020). Risk factors of critical and mortal COVID-19 cases: a systematic literature review and meta-analysis. J. Infect. 81 (2), e16–e25. doi:10.1126/jinfect.2020.04.021

Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., et al. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395, 1045–1062. doi:10.1016/S0140-6736(20)30566-3

Zuo, Y., Valavarthi, S., Shi, H., Gockman, K., Zuo, M., Madison, J. A., et al. (2020). Neutrophil extracellular traps in COVID-19. JCI Insight 5, e138999. doi:10.1172/jci.insight.138999

Conflict of Interest: VT and SS were employed by the company OncoNetic, Inc. HW was employed by Windlas Biotech Pvt. Ltd. FU was employed by Ares Pharmaceuticals, LLC. These financial relationships could be construed as a potential conflict of interest. The authors declare that this study received funding from OncoNetic, Inc. The funder had the following involvement with the study: It provided the salaries of authors Vuong Trieu and Saran Saund. It is currently sponsoring a clinical study that is mentioned in this mini-review.

Copyright © 2021 Uckun, Saund, Windlass and Trieu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.