ICR処理による面外ガセット溶接継手に発生した疲労き裂の寿命向上効果

石川 敏之1・山田 健太郎2・柿市 拓巳3・李 薈4

1 正会員 京都大学助教 工学研究科都市社会工学専攻 (〒615-8540 京都府京都市西京区京都大学)
E-mail:ishikawa.toshiyuki.2e@kyoto-u.ac.jp
2 正会員 名古屋大学名誉教授 (〒464-8603 愛知県名古屋市千種区不老町)
E-mail:yamada@civil.nagoya-u.ac.jp
3 正会員 JFEエンジニアリング株式会社 (前名古屋大学) (〒230-8611 神奈川県横浜市鶴見区広末町2-1)
E-mail:kakichi.takumi@d.mbox.nagoya-u.ac.jp
4 学生会員 東京大学修士課程 工学系研究科 (前名古屋大学) (〒113-0033 東京都文京区本郷7-3-1)

著者らは、疲労き裂の近傍の母材を叩いて疲労き裂の表面を閉口することによって疲労寿命を向上させる工法(衝撃き裂閉口処理：ICR処理)を開発した。この工法を、鋼床版デッキプレートと垂直補剛材の接合部に発生する疲労き裂へ適用することを考え、その効果を明らかにするために、デッキプレートと垂直補剛材の接合部と同じ構造ディテールである面外ガセット溶接継手試験体を製作し、板曲げ振動疲労試験を行った。予め面外ガセット溶接継手試験体に大きさの異なる疲労き裂を発生させ、その疲労き裂をICR処理により閉口し、再度疲労試験を行うことによって、ICR処理による面外ガセット溶接継手に発生した疲労き裂の寿命の向上効果を明らかにする。

Key Words: ICR treatment, out-of-plane gusset plate, plate bending, fatigue strength improvement

1. はじめに

一般に、溶接継手の溶接止端部には、形状の変化に伴う応力集中が存在し、その部位から疲労き裂が発生やすい。また、応力集中には、溶接止端形状に起因する応力集中と、構造的な応力集中がある。継手の形状における疲労強度、すなわちSA線図、応力集中の影響を評価したものと考えることができる。

疲労き裂が応力集中の高いところから発生するため、応力集中の低減、圧縮残留応力の導入、さらにはバイパス部材を取り付けて応力を軽減させることで、疲労強度を向上させることができる。

応力集中的低減は、溶接止端形状を改善すること、および構造の急激な断面変化を防止する二つに分けることができる。溶接止端形状の改善には、例えば、グラインダ仕上げ、TIGドレッシングなどの方法が用いられる。構造の急激な断面変化を防止する方法としては、例えば、円孔等を設けて断面変化を滑らかにして、応力集中を緩和させる方法がある。

圧縮残留応力の導入としては、昔からショットビニング、ハンマー・ピーニングなどの方法が用いられている。最近では、超音波衝撃処理(UIT処理)も試験的に取り入れられるようになってきた。

バイパス部材で応力を低減する方法は、高力ボルト摩擦接合による添接板を取り付ける方法が一般的である。

これらの方法は、バイパス部材を設ける方法を除いて、一般的に、疲労き裂がないものか、疲労き裂が非常に小さい初期段階のものに適用する方法である。疲労き裂がある程度進展した場合には、樹脂注入によって疲労き裂の開口量を抑制する方法や、バイパス材としてのCFRP板接着を疲労き裂の開口抑制に用いる方法の検討も行われている。これらの工法は、一般に作業に時間を要し、施工が複雑であることから、高コストになる。

著者らは、既往の補修法と比べて、低コストで比較的容易に施工が可能である衝撃き裂閉口処理(Impact Crack Closure Retrofit Treatment、以下、ICR処理と呼ぶ)を開発した。この方法は、疲労き裂がある程度大きくても、疲労き裂を閉じさせ、作用荷重によっても疲労き裂が開かないようにする、そうすることで、発生した疲労き裂を停留させるか疲労き裂進展速度を遅くさせて延命化を
図る方法である。

本研究では, ICR処理を,鋼床版デッキプレートと垂直補剛材の接合部の疲労き裂へ適用することを考え,その構造と同じ構造ディテールの面外ガセット溶接継手試験体の板曲げ疲労試験を行い, ICR処理による疲労寿命の向上効果を明らかにする。疲労寿命が向上すれば,実橋での補修・補強方法として適用できる。

2. ICR処理

(1) ICR処理の方法

疲労き裂を閉口させる手順を図－1に示す。溶接止端に発生した疲労き裂に対しては,図－1(a)に示すように疲労き裂の前面の母材部分を叩いて疲労き裂を閉口させる。場合によっては,図－1(a)の下段に示すように,IIの順序で2段叩くことによってき裂を閉口させる。これまでに,溶接止端に発生した比較的小さな疲労き裂をビニングする研究が行われているが,ICR処理のように,き裂に沿ってき裂前面の母材部分を叩くのではなく,溶接止端のき裂を直接叩いて閉口させる。

さらに, ICR処理では, 溶接止端から離れて母材へ進展した疲労き裂に対して, 図－1(b)に示すようにき裂の両側を叩き, その後, き裂の直上を叩くことによってき裂を閉口させる。

(2) ICR処理ツール

本研究では, 図－2(a)に示す汎用のエアツール(フラックスチッパ)を用いてICR処理を行った。市販のタガネの先端を, 角が丸みを帯びた4×5mm程度の平坦な面になるように加工している。フラックスチッパの性能は, 打撃数90Hz, ピンストローク16mm, 消費空気量0.14Nm³/minである。エアの供給には, 図－2(b)に示すタンク容量10リットルの小型エアコンプレッサを用いた。図－2のフラックスチッパとコンプレッサを用いた場合, ICR処理中の空気圧力は0.5〜0.6MPaになる。

3. 試験体と疲労試験方法

(1) 試験体

鋼床版デッキプレートと垂直補剛材の接合部と同じ構造ディテールである面外ガセット溶接継手試験体を図－3に示す。板厚12mm, 幅300mmの平板に, 板厚12mm, 高さ100mmあるいは300mmのガセットプレートが, 下向き塗料CO₂ガスシールドアーク溶接電流200〜220A, 電圧25V)されている。溶接は等脚長6mmとし, 溶接材料にはSE-50T (JIS Z3312 YGW12)を用いた。まわし溶接部には, 溶接の継ぎを設けていない。幾つかの試験体で実測したまわし溶接部の脚長は, 母材側で8〜10mm, 面外ガセット側で5〜8mm程度であり, 母材側の溶接止端半径は0.2mm, 止端角は140度程度であった。試験に用いた平板およびガセットプレートの鋼材検査証明書(ミルシート)による材料定数および化学成分を表－1に示す。

(a) フラックスチッパ
(b) エアコンプレッサ

図－2 ICR処理に用いたツール
疲労試験

疲労試験には、板曲げ振動疲労試験機を用いた。図4に示すように、架台に片持ち状態になるようにセットされた試験体の先端に偏心錘を有するモータを固定し、偏心錘が回転することによって、試験体に繰返し板曲げを与えている。モータの回転振動のみでは、応力比R = -1の疲労試験になるが、この試験機では、試験体の先端にコイルバネを設け、コイルばねで試験体を押し下げる状態（あるいは押し上げた状態）のまま疲労試験を行うことにより、応力比Rを制御することができる。

本疲労試験では、文献11）を参照して繰返し板曲げを与えたときのひずみを図3に示すひずみゲージBとCでモニタした。その平均値から求まる応力範囲を公称応力範囲と定義してデータを整理した11）。また、疲労き裂が発生し、溶接止端を離れて平板を進展すると、ガセットプレートの先端近傍で、平板の曲げを保持する効果が小さくなり、試験体の固有振動数が変化する。したがって、試験機の回転数が一定であっても、試験体に生じる応力範囲が変化する。そこで、計測した公称応力範囲を用いて、次式により等価応力範囲を算出し疲労試験のデータを整理した11）。

\[
\Delta \sigma_{eq} = \left(\frac{1}{n} \sum \Delta \sigma_i \right) / \Delta \sigma_i^{1/2}
\] (1)

ここで、\(\Delta \sigma_{eq}\) : 等価応力範囲(MPa)
\(\Delta \sigma_i\) : 一定時間毎に計測したBとCの応力範囲の平均値(MPa)
\(n_i\) : 一定時間内の\(\Delta \sigma_i\)の繰返し回数

なお、疲労試験中に、10〜20分間隔で2秒程度（サンプリング速度2kHz）ひずみ波形を計測した。本試験体において、疲労き裂が発生する前の応力範囲に対する等価応力範囲\(\Delta \sigma_{eq}\)は、溶接止端から母材に疲労き裂が進展する段階で10倍程度、溶接止端から平板に疲労き裂が10mm進展した段階で11倍程度であった。

疲労き裂の定義

溶接止端から発生した疲労き裂の大きさは、その大きさに達したときの繰返し回数を図5に示すように定義した。すなわち、図5(a)は、溶接止端に貼付けたφ0.04mmの被覆銅線が、疲労き裂の発生あるいは進展によって切断された状態を示し、図5(b)は、溶接止端から母材に疲労き裂が進展する段階を示す。図5(c)は、溶接止端から母材に疲労き裂が進展する段階を示す。図5(d)は、溶接止端から母材に疲労き裂が進展する段階を示す。図5(e)は、溶接止端から母材に疲労き裂が進展する段階を示す。図5(f)は、溶接止端から母材に疲労き裂が進展する段階を示す。図5(g)は、溶接止端から母材に疲労き裂が進展する段階を示す。図5(h)は、溶接止端から母材に疲労き裂が進展する段階を示す。図5(i)は、溶接止端から母材に疲労き裂が進展する段階を示す。図5(j)は、溶接止端から母材に疲労き裂が進展する段階を示す。図5(k)は、溶接止端から母材に疲労き裂が進展する段階を示す。図5(l)は、溶接止端から母材に疲労き裂が進展する段階を示す。図5(m)は、溶接止端から母材に疲労き裂が進展する段階を示す。図5(n)は、溶接止端から母材に疲労き裂が進展する段階を示す。図5(o)は、溶接止端から母材に疲労き裂が進展する段階を示す。図5(p)は、溶接止端から母材に疲労き裂が進展する段階を示す。図5(q)は、溶接止端から母材に疲労き裂が進展する段階を示す。図5(r)は、溶接止端から母材に疲労き裂が進展する段階を示す。図5(s)は、溶接止端から母材に疲労き裂が進展する段階を示す。図5(t)は、溶接止端から母材に疲労き裂が進展する段階を示す。図5(u)は、溶接止端から母材に疲労き裂が進展する段階を示す。図5(v)は、溶接止端から母材に疲労き裂が進展する段階を示す。図5(w)は、溶接止端から母材に疲労き裂が進展する段階を示す。図5(x)は、溶接止端から母材に疲労き裂が進展する段階を示す。図5(y)は、溶接止端から母材に疲労き裂が進展する段階を示す。図5(z)は、溶接止端から母材に疲労き裂が進展する段階を示す。
端から平板に疲労き裂が10mm進展した段階を示し、き裂が鋼線を切断したときの繰返し回数をN₀と定義する。図-5(d)は、溶接止端から平板に疲労き裂が20mm進展した段階(N₁₀)を示し、N₀の場合と同様に鋼線を用いて検出した。

溶接止端から平板にき裂が30mm進展した段階(N₂₀)であるか試験体の裏面に疲労き裂が発生した段階をNₚと定義した。試験体の裏面の疲労き裂を検出するために、試験体の裏面に20mm程度の間隔で鋼線を貼付けていた。

本試験では、Nₚに対して、図-6(a)に示すようにまわし溶接止端に沿ってICR処理を行った。N₁₀、N₂₀の場合に、疲労き裂が溶接止端から離れて平板に進展した場合には、図-6(b)に示すように、まず平板のき裂とその進展方向へ10mm程度の範囲をI-IIIの順序でICR処理し、その後、まわし溶接止端のき裂を図-6(a)の場合と同様にしてICR処理を行った。

疲労き裂がN₁₀の段階でICR処理を行った状態および切断面を図-7、8にそれぞれ示す。これらの図から、ICR処理を施した範囲が若干凹んでおり、表面に光沢がある。レーザー変位計で計測した凹みの量は0.2〜0.5mm程度であった。図-8から、まわし溶接部の深さ7.4mm程度のき裂が、ICR処理により表面から1.2mm程度が閉口していることがわかる。さらに、平板に進展したき裂(溶接止端から5mmの位置)は、ICR処理によって深さ方向に渡って完全に閉口していることが分かる。

(4) 試験シリーズ

本試験で行う試験シリーズを以下に示す。
1) as-welded試験体(R=-1)
溶接のまま、すなわちICR処理を行っていない基準の試験体。
2) N₀+ICR試験体(R=-1)
疲労き裂がN₀まで進展した段階でICR処理を行った試験体。
3) N₁₀+ICR試験体(R=-1)
疲労き裂がN₁₀まで進展した段階でICR処理を行った試験体。
4) preloading+N₁₀(N₂₀)+ICR試験体(R≧0)
予めコイルばねで試験体の表面に引張応力を与え(プレローディングと呼ぶ)。その状態で疲労試験(応力比R≧0)を行い、疲労き裂がN₀あるいはNₚまで進展した段階でプレローディングを与えた状態。すなわち試験体表面に引張応力が作用した状態でICR処理を行った試験体。鋼床版デッキプレートと垂直補剛材の接合部では、応力比はR≧0になることが考えられるが、基礎的なデータとして、応力比を変化させて疲労き裂を発生させ、その後ICR処理した試験体の疲労試験を行った。
5) N₁₀(R)+ICR試験体(R=-1)
溶接止端の応力集中を低減させたり、圧縮の残留応力を導入する場合、溶接ルート部から疲労き裂が発生する場合がある。そこで、as-weldedの状態で溶接止端前面の母
材料を図-6(a)の場合と同様にしてICR処理した試験体の疲労試験を行い、疲労き裂を溶接のルート部あるいはガセットプレート側止端から発生させ、N_{10}まで進展した段階でICR処理を行った試験体。

4. 疲労試験結果

(1) 疲労き裂近傍に生じる応力

ICR処理を行った後、疲労試験を再開し、溶接止端から12mmの位置（図-9参照）と試験体中央から幅方向に75mmの位置B、Cの応力を計測した。図-9に、B、Cの位置のひずみの平均値から算出した応力とAの位置のひずみから算出した応力の関係を示す。この図には、ICR処理を行うために疲労き裂を発生させる際の試験で計測したB、Cの位置の平均応力とAの位置の応力の関係も示している。き裂がない場合（as-welded）、Aの位置の応力は、ガセットプレートによる応力集中を受けるので、B、Cの位置の平均応力の範囲よりも大きくなるため、図中の直線の傾きが小さい。

疲労き裂がN_0やN_{10}に達すると、試験体に生じるAの応力が小さくなり、直線の傾きが大きくなる。しかし、図9(a)に示す、き裂がN_0の段階でICR処理を行った場合、Aの位置の応力がき裂がない場合と同程度まで回復している。図9(b)に示す、き裂がN_0の段階でICR処理を行った場合、B、Cの位置の平均応力とAの位置の応力の関係は圧縮領域ではき裂がない場合とほぼ重なっている。

疲労試験結果

- まわし溶接の直近の溶接部に生じたき裂は、平板部よりも小さな作用応力で閉口する。したがって、ICR処理によって閉じたまわし溶接部のき裂が、作用応力によって部分的に開い

図9 BとCの平均応力とAの位置の応力の関係

図10 as-welded試験体の疲労試験結果
たためであると考えられる。

(2) S-N線図

1) as-welded試験体(R=−1)の試験結果

本試験と過去のas-welded試験体のNₙ₁、Nₙ₀およびNbの結果のS-N線図を図10に示す。この図には、日本鋼構造協会JSSCの鋼構造物の疲労設計指針・同解説の疲労強度等級も示している。この図から、Nb、Nₙ₀およびNₙ₁に対して、本試験体の結果と過去の試験の結果に違いがないことがわかる。

2) Nb+ICR試験体(R=−1)

疲労き裂がNₙ₁に達した段階でICR処理を行った試験体について、ICR処理後の繰返し回数に対するS-N線図を図11に示す。この図には、as-welded試験体のNₙ₁とNₙ₀に対する平均±2σのS-N線図（σ：標準偏差）も示している。Nb+ICR-2試験体では、ICR処理後、Δσₙ₁=84MPaで2.59×10⁸回の繰返し回数で、Nₙ₀の鋼線が断線した。その後、1.26×10⁹回の繰返し回数に達しても疲労き裂の進展を見られなかったためnon-outとし、Δσₙ₁を116MPaまで上げて再度疲労試験を行った。その結果、試験体の裏面から疲労き裂が発生した。実験値は、JSSCのC等級程度となっている。

3) Nb+ICR試験体(R=−1)

疲労き裂がNₙ₀に達した段階でICR処理を行った試験体について、ICR処理後の繰返し回数に対するS-N線図を図12に示す。Nₙ₁+ICR-1試験体では、Δσₙ₁=87MPaで1.5×10⁹回、1.7×10⁹回の繰返しを与えても疲労き裂が再進展しなかった。最終的にΔσₙ₁=155MPaで疲労試験を行った結果、ICR処理で閉口した端部き裂が再進展しNₙ₀に至った。

Nₙ₁+ICR-2試験体も、ICR処理で閉口した端部き裂が再進展しNₙ₀に至ったが、Nₙ₁+ICR-3試験体では、ICR処理で閉口した端部のき裂は再進展せず、新たに溶接ルート部から疲労き裂が発生、進展し破断に至った。溶接止端の疲労強度を改善された場合、溶接ルート部から疲労き裂が発生することはよく知られているが、ICR処理によって、端部き裂の進展が抑制され疲労強度が向上したため、同様な現象が生じた。

図13から、Nₙ₀に達した段階でICR処理を行った場合、溶接止端のき裂が再進展する場合の疲労強度はJSSCのC等級程度である。
プレローディング（R≧0）を与えて疲労き裂を発生させ、その状態でICR処理を行った試験体について、ICR処理後の繰返し回数に対するS-N線図を図-13に示す。preloading+N₀+ICR-1試験体では、Δσ=115MPaで、3×10⁷回の繰返し数を載荷しても変状が見られなかったので、応力範囲を上げて疲労試験を行った結果。Δσ=168MPaで1.28×10⁷回繰返し載荷したところで、ICR処理で閉口した疲労き裂が再進展してNfに至った。

preloading+N₀+ICR-2試験体では、σ∆=100MPaで10⁷回繰返し載荷しても変状が見られなかったので、応力範囲を152MPaまで上げて疲労試験を行った結果、1.02×10⁷回繰返し載荷したところで、ICR処理で閉口した疲労き裂が再進展してNfに至った。これらの結果はすべて、JSSCのC等級を満足しており、試験シリーズ3)のN₀+ICR試験の結果と同様である。したがって、プレローディングを与えた状態でICR処理によって疲労き裂を閉口した場合の疲労強度の向上効果は、プレローディングを与えない場合と同程度である。

プレローディングを与えてN₀の段階まで疲労き裂を発生させた後、プレローディングを与えたままICR処理を行ったpreloading+N₀+ICR-3試験体では、き裂が平板の裏面から発生しN₀に至った。この結果は、JSSCのC等級を若干下回っているが、as-welded試験体のN₀よりも高い疲労強度であった。溶接したままの試験体では、応力範囲が170MPaのN₀(R)+ICR-2試験体（溶接ルートから疲労き裂が発生）では、裏面にき裂が発生する前に表面のき裂がN₀に達した。その結果の疲労強度は、as-welded試験体のN₀の上限程度であり、JSSCのD等級以上であった。このように、溶接ルートあるいはガセットプレート側の溶接止端から発生した疲労き裂に対して、平板のき裂部分のみをICR処理で閉口した場合、母材側の溶接止端から発生したN₀およびN₀の疲労き裂へのICR処理の場合と比べて、疲労強度の向上効果は小さくなるが、as-welded試験体のN₀以上の疲労強度を有していた。

5. 疲労破面

ICR処理後の内部に残った疲労き裂の進展挙動を確認するために、疲労試験終了後に疲労破面を観察した。

まず、比較のためにas-welded試験体の疲労破面を図-15に示す。ダイマーキング（D.M.）とビーチマーキング（B.M.）の跡からわかるように、疲労き裂は溶接止端部で発生し、半だ円形状で進展している。今回の試験は板曲げであるため、板厚の8割程度で板厚方向のき裂の進展は残留しているが、幅方向に進展していることがわかる。また、板厚方向へ進展しながら、ガセットの下にもれ込むようにして、試験体の長手方向へ3次元的にき裂が進展した。この疲労き裂発生と進展挙動は、過去の面外ガセット継手の疲労き裂の進展挙動⑨と類似している。

疲労き裂がN₀に達した段階でICR処理を行ったN₀+ICR-2試験体の疲労破面を図-16に示す。写真の平板の裏面近くで黒く変色している部分は、ICR処理を施した範囲で、溶接ルートあるいはガセットプレート側の溶接止端から発生したN₀のき裂に対しても、B.M. B.M. D.M. 試験体の疲労破面

応力範囲が170MPaのN₀(R)+ICR-1試験体（ガセットプレート側の溶接止端から疲労き裂が発生）では、疲労き裂が平板の裏面から発生しN₀に至った。その結果の疲労強度は、JSSCのF等級であった。一方、応力範囲が110MPaのN₀(R)+ICR-2試験体（溶接ルートから疲労き裂が発生）では、裏面にき裂が発生する前に表面のき裂がN₀に達した。その結果の疲労強度は、as-welded試験体のN₀の上限程度であり、JSSCのD等級以上であった。このように、溶接ルートあるいはガセットプレート側の溶接止端から発生した疲労き裂に対して、平板のき裂部分のみをICR処理で閉口した場合、母材側の溶接止端から発生したN₀およびN₀の疲労き裂へのICR処理の場合と比べて、疲労強度の向上効果は小さくなるが、as-welded試験体のN₀以上の疲労強度を有していた。
と一致しているため、塑性変形が起きた領域であると考えられる。この試験体では、Δσ =84MPaで2.59×10^6回の繰返し回数で、N_0の鋼線が断線したが、その後、繰返し回数が10^7回を超えても、き裂の進展が見られなかった。しかし、図-16の破面からN_0および破面の左側でN_0より少し疲労き裂が進んだ位置でビーチマークが見られるため、Δσ =84MPaの段階でN_0程度までき裂が成長し、停留したと考えられる。応力範囲を上げてN_0に達したときの最終的な破断面は、as-welded試験体の場合と同様であった。

疲労き裂がN_0に達した段階でICR処理を行ったN_0+ICR-1試験体の疲労破面を図-17に示す。この試験体では、N_0の段階でダイマークを行っている。

1) 疲労き裂をICR処理によって閉口させることにより、き裂近傍の応力状態がき裂が発生する前の応力に近い状態まで回復した。
2) 疲労き裂がN_0、N_0の段階に対して、ICR処理を行うことにより、as-welded試験体の場合と比べて、疲労寿命が大幅に改善された。面外ガセット試験体にICR処理を行った場合、ルートき裂が発生したケースもあったが、疲労強度はas-welded試験体のそれよりも高かった。
3) 作用する応力範囲が大きくなると、疲労き裂にICR処理を施した場合でも、内部で疲労き裂が進展した。
4) 引張の予荷重を与えて疲労試験を行い発生した疲労き裂のICR処理による疲労強度向上効果は、予荷重を与えずに発生させた疲労き裂へのICR処理の場合と同等であった。
5) 溶接ルートあるいはガセットプレート側の溶接止端から疲労き裂が発生したケースに対して、平板のき裂部分のみを閉口したICR処理した場合、母材側の溶接止端から発生した疲労き裂へのICR処理と比べて、疲労強度の向上効果は小さくなるが、as-welded試験体のN_0~N_f相当の疲労強度を有していた。
謝辞：本研究は、名古屋高速道路公社の委託研究で行った内容をまとめたものである。研究を進めるにあたり、エアツールの改良に対して瀧上工業（株）織田博孝氏に、疲労試験体の製作においてトピー工業（株）山田聡氏に、多大なるご協力を頂きました。ここに記して感謝の意を表します。

参考文献
1) 日本道路協会：鋼橋の疲労、丸善、1997.
2) Anami, K., Miki, C., Tani, H. and Yamamoto, H.: Improving Fatigue Strength of Welded Joints by Hammer Peening and Tig-dressing, Structural Eng./Earthquake Eng. JSCE, Vol.17, No.1, pp.57-68, 2000.
3) 三木千壽, 杉本一朗, 鍛冶秀樹, 根岸裕, 伊藤裕一：既設鋼鉄道橋のフランジガセット取付け部の疲労強度向上に関する研究, 土木学会論文集, No.584/I-42, pp.67-77, 1998.
4) 長谷川正義, 竹田仁, 鈴木浩昭：ショットビニングによる鋼材溶接継手の疲労強度改善, 溶接学会全国大会講演要集第69集, pp.476-477, 2001.
5) 山田健太郎, 小塚達也, 烏居修, 白杉, 佐々木裕, 山田聡：面外ガセット溶接継手の曲げ疲労強度に及ぼすショットブラストの影響, 構造工学論文集, Vol.54A, pp.522-529, 2008.
6) 野瀬哲郎, 鳥貫正彦：重ね継手の疲労寿命に及ぼす超音波ピーニングの影響に関する実験および解析, 日本機械学会論文集(A編), 74巻 737号, pp.166-168, 2008.
7) 飯田和雄, 北原一喜, 稲葉尚文, 富田芳男：局部加熱を併用した硬化材注入手法による鋼材の疲労き裂進展抑制, 土木学会論文集 A, Vol.62, No.1, pp.126-131, 2006.
8) 中村一史, 菅井敬嘉, 鈴木博之, 前田研一, 宮部孝夫：溶接継手に発生した疲労き裂の積層 CFRP 板による補修効果, 鋼構造年次論文報告集, Vol.13, pp.89-96, 2005.
9) 山田健太郎, 石川敏之, 柿市拓巳, 李薫：疲労き裂を閉口させて寿命を向上させる技術の開発, 平成20年度土木学会中部支部研究発表会講演概要集, I-5, pp.9-10, 2009.
10) 山田健太郎, 石川敏之, 柿市拓巳：疲労き裂を閉口させて寿命を向上させる試み, 土木学会論文集, Vol.65, No.4, pp.961-965, 2009.
11) 山田健太郎, 小倉江朋亮, 小塚達也：垂直補剛材と鋼床版デッキプレートのすみ肉溶接の曲げ疲労試験, 鋼構造論文集, Vol.14, No.55, pp.1-8, 2007.
12) 日本鋼構造協会：鋼構造物の疲労設計指針・同解説, 技報堂出版, 1993.

（2009.4.10 受付）

EXTENDING FATIGUE LIFE OF CRACKED OUT-OF-PLANE GUSSET BY ICR TREATMENT

Toshiyuki ISHIKAWA, Kentaro YAMADA, Takumi KAKIICHI and Hui LI

Numerous fatigue cracks have been found in steel bridges. To maintain steel bridges, repair and retrofit methods of such fatigue cracks have been developed. One technique we developed was to produce plastic deformation of the steel surface near the crack in order to close crack opening by using air tool. This method is called Impact Crack Closure Retrofit treatment (ICR treatment). We carried out plate bending fatigue tests of out-of-plane gusset specimens. Fatigue cracks at turn-around welds and those which propagated 10mm were ICR-treated. Fatigue test results of specimens after ICR treatment showed significant improvement of the remaining fatigue life.