Modulation of $K_{\text{Ca}3.1}$ Channels by Eicosanoids, Omega-3 Fatty Acids, and Molecular Determinants

Michael Kacik¹, Aida Oliva´n-Viguera², Ralf Köhler²,³*

¹Faculty of Medicine, Philippus-University Marburg & Medical Center I, Clemenshospital/University Hospital of University Münster, 48153 Münster, Germany, ²Aragon Institute of Health Sciences ICS/IIS, 50009 Zaragoza, Spain, ³Fundación Agencia Aragonesa para la Investigación y Desarrollo (ARAID), 50018 Zaragoza, Spain

Abstract

Background: Cytochrome P450- and α-hydroxylase products (epoxyeicosatrienoic acids (EETs), hydroxyeicosatetraenoic acid (20-HETE)), natural omega-3 fatty acids (ω3), and pentacyclic triterpenes have been proposed to contribute to a wide range of vaso-protective and anti-fibrotic/anti-cancer signaling pathways including the modula-tion of membrane ion channels. Here we studied the modulation of intermediate-conductance Ca$^{2+}$/calmodulin-regulated K^+ channels ($K_{\text{Ca}3.1}$) by EETs, 20-HETE, ω3, and pentacyclic triterpenes and the structural requirements of these fatty acids to exert channel blockade.

Methodology/Principal Findings: We studied modulation of cloned human $hK_{\text{Ca}3.1}$ and the mutant $hK_{\text{Ca}3.1V275A}$ in HEK-293 cells, of $rK_{\text{Ca}3.1}$ in aortic endothelial cells, and of $mK_{\text{Ca}3.1}$ in 3T3-fibroblasts by inside-out and whole-cell patch-clamp experiments, respectively. In inside-out patches, Ca$^{2+}$-activated $hK_{\text{Ca}3.1}$ were inhibited by the ω3, DHA, and ω6-LA, and the ω6 AA, in the lower μmolar range and with similar potencies. 5,6-EET, 8,9-EET, 5,6-DiHETE, and saturated arachidic acid, had no appreciable effects. In contrast, 14,15-EET, its stable derivative, 14,15-EEZE, and 20-HETE produced channel inhibition. 11,12-EET displayed less inhibitory activity. The $K_{\text{Ca}3.1V275A}$ mutant channel was insensitive to any of the blocking EETs. Non-blocking 5,6-EET antagonized the inhibition caused by AA and augmented cloned $hK_{\text{Ca}3.1}$ and $rK_{\text{Ca}3.1}$ whole-cell currents. Pentacyclic triterpenes did not modulate $K_{\text{Ca}3.1}$ currents.

Conclusions/Significance: Inhibition of $K_{\text{Ca}3.1}$ by EETs (14,15-EET, 20-HETE), and ω3 critically depended on the presence of electron double bonds and hydrophobicity within the 10 carbons preceding the carboxy-head of the molecules. From the physiological perspective, metabolism of AA to non-blocking 5,6- and 8,9-EET may cause AA-de-blockade and contribute to cellular signal transduction processes influenced by these fatty acids.

Introduction

The intermediate-conductance Ca$^{2+}$/calmodulin-activated K$^+$ channel, $K_{\text{Ca}3.1}$ (encoded by the KCNN4 gene) produces K$^+$-efflux and cell membrane hyperpolarization to mobilization of intracellular Ca$^{2+}$ [1,2,3]. The channel is mainly expressed in red and white blood cells [4,5,6], secretory epithelia of salivary glands [7], intestine [8], bronchioles [9], vascular endothelium [10], proliferating smooth muscle [11,12,13,14] and fibroblasts [15,16], and malignant brain cancers [17,18], for review see [19,20]. In these tissues, the channel contributes to the regulation of cell volume [4], anion and water secretion [8], cytokine production [21], endothelial vasodilator responses [10], Ca$^{2+}$-dependent cell cycle progression, cell migration, and mitogenesis [14,22,23], respectively.

At the molecular level, the most important determinant of channel activation is an increase of intracellular Ca$^{2+}$ that causes conformational changes of constitutively bound calmodulin [1,2], leading to channel gating. Besides this principal mechanism, c-terminal phosphorylation of the channel by cAMP/PKA-dependent mechanisms [24] has been proposed to cause endogenous positive-regulation of channel activity. The omega-6 fatty acid (ω6), arachidonic acid (AA), was identified by Dan Devor and coworkers as the first negative endogenous regulator of $K_{\text{Ca}3.1}$ [25]. Moreover, their seminal work revealed also major mechanisms of membrane trafficking and internalization/recycling/degradation of $hK_{\text{Ca}3.1}$ [26,27]. AA-inhibition of the channel is presumably caused by AA-interaction with lipophilic residues (T250/V275) lining the channel cavity below the selectivity filter and presumed gate of $K_{\text{Ca}3.1}$ [25]. Yet, the structural requirements of the fatty acid itself for $K_{\text{Ca}3.1}$-blockade are unknown.

Here, we hypothesized that structurally related omega-3 fatty acids (ω3), docosahexaenoic acid (DHA) and ω-linolenic acid (ω-LA), the cytochrome-P450-epoxygenase (CYP)-generated metabolites of AA, epoxyeicosatrienoic acids (5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET) as well as the ω-hydroxylase product, 20-

Citation: Kacik M, Oliva´n-Viguera A, Köhler R (2014) Modulation of $K_{\text{Ca}3.1}$ Channels by Eicosanoids, Omega-3 Fatty Acids, and Molecular Determinants. PLoS ONE 9(11): e112081. doi:10.1371/journal.pone.0112081

Copyright: © 2014 Kacik et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The study was supported by grants of the Deutsche Forschungsgemeinschaft (DFG): KO1899/10-1 and 11-1 to RK (www.dfg.de). European Community FP7-PEOPLE Project 321721, and the Fondo de Investigación Sanitaria (Red HERACLES RD12/0042/0014). MK and RK were supported by intramural funding of the University Hospital Marburg & Giessen. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: rkohler.iacs@aragon.es
Lipid Modulators of KCa3.1 Channels

hydroxyeicosatetraenoic acid (20-HETE), are additional lipid
modulators of KCa3.1. Moreover, epoxigenation of AA to 5,6-
EET, 8,9-EET, 11,12-EET, or 14,15-EET may shed light on the
structural requirements for channel modulation. In addition, a
potential KCa3.1-regulation by EETs, 20-HETE, and o3 could be
of help to understand the physiological actions of these fatty acids
in physiological systems like the vascular endothelium and arteries,
in which they have been shown to exert vasodilator or
vasoconstrictor actions, respectively (for review see [28,29,30]).
Moreover, EETs and KCa3.1-functions have overlapping
potentials, whether these actions are related to - at least in part - KCa3.1-
modulatory actions have been proposed to have anti-
-inflammatory and anti-atherosclerotic activity and to modulate
angiogenesis, cardiac fibrosis and cancer growth [31,32,33,34,35].
In this respect, EETs and KCa3.1-functions have overlapping
potential binding/interaction sites within the KCa3.1 channel, we
screened for lipid analogues, and other related fatty acids with structural differences
and similarities (for structures see Figure 1). To further study
potential blocking/interaction sites within the KCa3.1 channel, we
investigated blocking efficacy of the fatty acids on the AA-
insensitive KCa3.1-mutant V275A [25]. Moreover, we studied the
interactivity of EETs with its precursor, AA. In murine fibroblasts,
we tested the modulation of mKCa3.1 by DHA and by pentacyclic
triterpenes.

Our major findings were that the 14,15-EET, 20-HETE, DHA,
and LA were negative modulators of KCa3.1 while non-
blocking 5,6-EET antagonized AA-mediated inactivation. KCa3.1
blockade critically depended on hydrophobicity of the 10 carbons
preceding the carboxyl head and the presence of at least one
electron double bond in this part of the carbon chain.

Materials and Methods

Cells, channel clones, and cell culture

HEK-293 cells stably expressing hKCa3.1 were a kind gift from
Dr. Khaled Houamed, University of Chicago and Dr. Heike
Wulff, Department of Pharmacology, University of California,
Davis. Stably expressing cells were selected with puromycin (1 µg/
ml; Sigma, Deisenhofen, Germany). The hKCa3.1V275A, hKCa3.1
T5208, and hKCa3.1T5208/T5275A mutants were kind gifts from
Dr. Dan Devor, University of Pittsburgh, Department of Cell
Biology. The clones were stably expressed in HEK-293 using
FuGENE 6 Transfection kit (Roche, Basel, Switzerland) and
manufacturer’s protocols. Stably expressing HEK-293 cells were
selected using geneticin (G418, 100 µl/10 ml; Sigma, Deisenhofen,
Germany). Rat aortic endothelial cells with endogenous
rKCa3.1 were provided by the BMFZ of the Philippus-University
Marburg [39]. Murine 3T3 fibroblasts were obtained from ATCC
(3T3-L1, ref# CL-173, ATCC, Rockville, MD). As usual cell
culture medium, we used Dulbecco’s Modified Eagle Medium
(DMEM) supplemented with 10% calf serum and 1% penicillin/
streptomycin (all from Biochrom KG, Berlin, Germany). Before
patch-clamp, cells were trypsinized and seeded on cover slips for
4–2 hrs.

Patch-clamp electrophysiology

Membrane currents in excised inside-out patches and whole-cell
currents were recorded with an EPC-9 patch-clamp amplifier
(HEKA, Lambrecht Pfalz, Germany) using borosilicate glass
pipettes with a tip resistance of 2–3 MOhm. Seal resistance was
above 1 GOhm. In inside-out experiments, we continuously
monitored outward currents at a holding potential of 0 mV prior
to patch excision and thereafter. Activation of KCa3.1-mediated
currents occurred immediately after excision of the patch and
exposure of the intracellular side of the patch to the Ca2+-
containing bath solution (“intracellular” solution see below). For
conventional whole-cell current recordings, we used voltage
ramps (voltage range for recording: −120 mV to +100 mV;
duration, 1 sec; applied every 3 sec; voltage range evaluated: −
110 to +30 mV). Series resistance was between 7–15 MegaOhms
and membrane resistance was >1 GigaOhm. In such experiments,
the “intracellular” Ca2+-containing solution was “infused” into
the cell via the patch-pipette after seal rupture activating KCa3.1-
currents usually within 2–10 sec. Current amplitudes remained stable
thereafter over 5 min and longer in some. The solution was
composed of (mM): 140 KCl, 1 MgCl2, 1 Na3ATP, 2 EGTA, 1.92
CaCl2 (3 µM [Ca2+]0, intracellular) and 5 HEPES (adjusted to pH 7.2
with KOH). In a subset of experiments, [Ca2+]0 was buffered to 0.1,
0.3, 0.5 µM [Ca2+]0 (0.07, 0.72, 1.25, and 1.48 mM CaCl2, each
combined with 2 mM EGTA). The “extracellular” solution was
composed of (mM): 137 NaCl, 4.5 Na2HPO4, 5 KCl, 1.5
KH2PO4, 1 MgCl2, 1 CaCl2, 10 EGTA (10 mM [Ca2+]0), 10
glucose and 10 HEPES (adjusted to pH 7.4 with NaOH). For
additional details, see [16]. In inside-out experiments, the high
Na+ solution served as pipette solution and the high K+ solution
as bath solution; in whole-cell experiments, vice versa. For
measurements of rKCa3.1 currents in RAEC, we performed the
experiments in the presence of the KCa2 blocker UCL-1684
(250 nM) [40] to eliminate rKCa2.3 currents in these cells.

Chemical and drugs

Standard chemicals were obtained from Sigma-Aldrich (Deisenho-
fen, Germany). 5,6-EET (4-[3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-
yl]oxyan-2-yl]butanoic acid), 8,9-EET (5Z-7-{[(2Z,5Z,undeca-
deca-2,5-dien-1-yl]oxyan-2-yl]hept-5-enoic acid), 11,12-EET (5Z,8Z)-10-
3[(2E)-oct-2-en-1-yl]oxyan-2-yl]deca-5,8-dienoic acid), 14,15-EET
(5Z,8Z,11Z,13-([3-pentylxyno-2-yl]trideca-5,8,11-trienoic acid), 5,6-
DiHETE (5Z,11Z,14Z)-5,6-dihydroxy-8,11,14-icosatetraenioic acid),
14,15-EEZE (5Z,13-[29,3R,5-pentyl-2-oxiran-2-yl]tridecenoic acid),
and 20-HETE (5Z,8Z,11Z,14Z)-20-hydroxy-5,8,11-icosatetraenioic acid)
were purchased from Cayman Chemicals (Michigan, IL, USA). Arachidonic acid (5Z,8Z,11Z,14Z)-5,8,11,14-icosatetraenoic acid),
arachidyl alcohol (1,3-dihydroxy-2-propanol
(5Z,8Z,11Z,14Z)-5,8,11,14-icosatetraenoic acid), arachidonic acid
(icosanoic acid), charybdocecin, docusaehexanoic acid
(4Z,7Z,10Z,13Z,16Z,19Z)-4,7,10,13,16,19-docosahexanoic acid),
7-iso-linoleic acid (9Z,12Z,15Z), 9,12,15-icosatetraenioic acid),
dimethyl sulfoxide (DMSO) and
aconitine were obtained from Sigma-Aldrich. Arachidonic trifluor-omethyl ketone (AACOCF3; (6Z,9Z,12Z)-1,1,1-trifluoro-
15Z)-9,12,15-octadecatrienoic acid), anandamide (5Z,8Z,11Z,14Z)-
Skeleton of the above figure is adapted from the University of California, San Francisco. The main figure is a schematic representation of the KCa3.1 channel, highlighting the activation and inactivation mechanisms. The figure also illustrates the binding sites for various lipid modulators, including EETs and other fatty acids. The channel’s glyph representation emphasizes the complex structure and the interactions with modulators.
Figure 1. Chemical structures of eicosanoids, ω3, and pentacyclic triterpenes and schematic overview of blocking efficacy (decreasing from top to bottom) or non-blocking efficacy.

doi:10.1371/journal.pone.0112081.g001
(Germany). Uvaol ([3β]-Urs-12-1ene-3,28-diol), erythrodial ([3β]-Olean-12-1ene-3,28-diol), oleanolic acid ([3β]-3-Hydroxylean-12-en-28-oic acid), and maslinic acid ([2α,3β]-2,3-Dihydroxylean-12-en-28-oic acid) were kind gifts from Dr. Jesús Osada, Department of Biochemistry and Molecular and Cellular Biology, Veterinary School, Health Research Institute of Aragon, CIBEROBN, Zaragoza, Spain. EETs were delivered as ethanol stock solutions. Ethanol was evaporated under nitrogen stream and the EETs were reconstituted in DMSO at a concentration of 10 mM. Stocks were stored at −20°C until use. Stock solutions of the other fatty acids (10 mM) were also prepared with DMSO. Ahead of use stock solutions were diluted 1:10 with the bath buffer and the final DMSO concentration did not exceed 0.2%. Since unsaturated fatty acids are sensitive to oxidative degradation, we minimized exposure times in aqueous solutions and to air and prepared the aqueous pre-dilutions of the compounds immediately before starting the experiments. Bath solutions were not gassed with oxygen.

Statistics

Data are given as mean ± SEM. For statistical comparison of multiple data sets we used one-way ANOVA and the Tukey post hoc and p-values of <0.05 were considered significant.

Results

In inside-out experiments on HEK-293 expressing cloned hKCa3.1, excision of the patch into the 3 μM Ca2+-containing bath solution caused immediate activation of K+ -outward currents that were stable over several minutes (Figure 2A). Non-transfected cells did not display these currents. In hKCa3.1-HEK-293, K+ -outward currents were virtually absent in the continuing presence of the classical KCa3.1-blocking toxin, charybdotoxin, in the outward currents were virtually absent in the continuing presence of the selective small molecule blocker of KCa3.1, TRAM-34 [6], in the bath solution prevented K+ -outward currents, although we observed an initial spike-like outward current (Figure 2A) after excision of the patch.

In the continuing presence of 1 or 10 μM of the ω3, docosahexaenoic acid (DHA), arachidonic acid (AA), and ω-linolenic acid (ω-LA), hKCa3.1 currents could still be activated by patch-excision but the currents did not last and were inhibited after 30 sec (Figure 2B and C). The inhibition by 1 μM was less pronounced than inhibition by 10 μM for all ω3 tested here (Figure 2C). However, potencies and kinetics of current inhibition differed between the ω3 with the following order of potency and time to full inhibition: DHA>AA>ω-LA (Figure 2D). In contrast, the saturated fatty acid, arachidic acid (ArA), did not produce channel inhibition (Figure 2B and C).

With respect to the four EETs, 5,6-EET, 8,9-EET, 11,12-EET, 14,15-EET (Figure 3A for current traces and B for summary data), we found that only 14,15-EET displayed substantial inhibition with potency and kinetics similar to those observed with ω-LA. 11,12-EET produced less inhibition. 5,6-EET, 8,9-EET, and 5,6-DiHETE produced virtually no inhibition. The stable analogue of 14,15-EET, 14,15-EEZE, produced an inhibition similar to that caused by 14,15-EET. The ω9-hydroxyxide product, 20-HETE that was hydroxylated at C20 (end) of the carbon chain, inhibited the current with kinetics and potency similar to other blocking fatty acids (Figure 3A and B). In contrast, molecules that differed from EETs and ω3 because of a major modification of the carboxyl group to hydroxyethylamide like in arachidonoyl ethanolamide (AEA), also known as anandamide, to a 1,3-dihydroxy-2-propanyl as in 2-arachidonoylglycerol (2-AG), and to trifluoromethyl ketone as in arachidonyl trifluoromethyl ketone (AACOCF3) did not produce inhibition (Figure 3C).

The single mutants, hKCa3.1V275A and hKCa3.1T250S, and the double mutant, hKCa3.1V275A/T250S, were largely insensitive to AA and TRAM-34 (data shown for hKCa3.1V275A), although the hKCa3.1V275A/T250S mutant appeared to have a smaller impact compared to the virtually complete insensitivity of the hKCa3.1V275A mutant to AA (Figure 4A and B). With respect to the other hKCa3.1-blocking fatty acids, hKCa3.1V275A mutant was also insensitive to 11,12-EET, 14,15-EEZE, and 20-HETE as examples of fully (14,15-EEZE, 20-HETE) or partially (11,12-EET) hKCa3.1-blocking fatty acids (Figure 4A and B).

We next tested the idea whether the 5,6-EET as a non-blocking EET antagonizes AA-mediated channel blockade. These experiments showed that in the presence of both fatty acids, 1 μM 5,6-EET did not significantly prevent channel inhibition by 10 μM AA although the time period to achieve channel inhibition appeared to be increased (Figure 5A and B). At 1 μM AA we observed a significant antagonism of channel blockade by 1 μM 5,6-EET at a later time point (Figure 5A and B).

An increase of intracellular Ca2+ stimulates Ca2+-dependent PLA2 activity and AA-release. In our fast-whole cell experiments using a pipette solution with 0.3 μM Ca2+-free, we expected Ca2+-dependent activation of hKCa3.1 and also Ca2+-dependent PLA2-mediated AA-release. In keeping with the idea that 5,6-EET antagonizes endogenous AA effects, we hypothesized that 5,6-EET augments total hKCa3.1-currents in the HEK-293 cells and tested this in a small series of fast-whole cell experiments (Figure 6). We found that 5,6-EET (at 1 μM) produced significant potentiation by ≈twofold of the KCa3.1 current that was pre-activated by 0.5 μM intracellular Ca2+ (Figure 6A). A high concentration of AA (10 μM) abolished these 5,6-EET-potentiated currents. Whole-cell currents produced by the hKCa3.1V275A mutant did not show potentiation by 5,6-EET (Figure 6A, right panel).

We performed another series of whole-cell experiments on rat aortic endothelial cells (RAEC) as an established and physiologically relevant cell system involving Ca2+-dependent AA and CYP/EETs signaling as well as KCa3.1-dependent hyperpolarization as two mechanisms for endothelium-dependent vasodilation besides the nitric oxide pathway [29]. We tested specifically whether 1) AA and 14,15-EET produced a similar inhibition of endogenous rKCa3.1 channels in RAEC, 2) rKCa3.1 currents displayed a similar sensitivity to inhibition by AA, and 3) 5,6-EET produced potentiation of the current. As shown in figure 6B, these experiments revealed that 14,15-EET at 1 μM abolished calcium-activated rKCa3.1 currents in these RAEC, in this regard similar to the findings in hKCa3.1-overexpressing HEK-293. With respect to 5,6-EET-potentiation we found that 5,6-EET at 1 μM potentiated by ≈2.5-fold these endothelial calcium-activated rKCa3.1 currents being pre-activated by 0.5 μM and 3 μM intracellular Ca2+ but not at 0.1 μM, a Ca2+-concentration that did not allow channel pre-activation (Figure 6B). AA at a concentration of 10 μM substantially blocked this 5,6-EET-potentiated current. Similar to the inside-out experiments, we did not see appreciable antagonistic effects at this lower concentration (1 μM) of 5,6-EET in these whole-cell experiments.

The ω3, DHA, and pentacyclic triterpenes as c.g. uvaol have been demonstrated experimentally to protect against cardiac fibrosis [35,36], in addition to their documented vaso-protective and anti-inflammatory actions [37,38]. Recently, we reported membrane expression of KCa3.1 channels in proliferating murine 3T3-fibroblasts [16]. In the present study, we performed a series of whole-cell experiments and tested whether DHA and pentacyclic triterpenes inhibited mKCa3.1 in murine fibroblasts. We found
Figure 2. Membrane expression of cloned human K_{Ca3.1} in HEK-293 in inside-out patches and basic pharmacological characterization. A) From left to right: Exemplary traces of immediate activation of hK_{Ca3.1}-outward currents upon excision of the patch into 3 μM Ca²⁺-containing bath solution (as indicated by arrow). K_{Ca}-outward currents are absent in non-transfected HEK-293. Inhibition of hK_{Ca3.1}-outward currents by charybdotoxin (100 nM, in the pipette solution) and TRAM-34 (1 μM, in the bath solution). B) Inhibition of hK_{Ca3.1} by α3 and arachidonic acid. From left to right: Time course of inactivation of hK_{Ca3.1} by docosahexaenoic acid (DHA, 10 μM), arachidonic acid (AA, 10 μM), α-linolenic acid (α-LA, μM) over time. Saturated arachidic acid (ArA, 10 μM) did not affect channel activity. C) Concentration-dependence of inhibition. Note that half of the current was inhibited by AA, DHA, and α-LA at approx. 1 μM. D) Time course of channel inactivation by two concentrations of AA, DHA, and α-LA over time. Data are means ± SEM (% inhibition of K_{Ca3.1}-current normalized to initial peak amplitude after patch-excision); numbers in the graphs indicate the number of inside-out experiments; *P<0.05 vs. vehicle (Ve); One-way ANOVA and Tukey post hoc test. doi:10.1371/journal.pone.0112081.g002
Figure 3. Heterogeneous sensitivity of hKCa3.1 to the four EETs, stable 14,15-EEZE, 20-HETE and 5,6-DiHETE. A) Representative traces of hKCa3.1 outward-currents in inside-out patches overtime in the continuing presence of the fatty acids at 10 μM. B) Summary data of maximal change of current (% of control) at two concentrations (1 and 10 μM). 5,6 DiHETE was tested at 10 μM (0±10%, n=4). C) No KCa3.1-blockade in the presence of anandamide (AEA; 10 μM), arachidonoylglycerol (2-AG; 10 μM), arachidonyl trifluoromethyl ketone (AACOCF3; 10 μM). Numbers in the graphs indicate the number of inside-out experiments. Data are means ± SEM (% inhibition of KCa3.1-current normalized to initial peak amplitude after patch-excision); *P<0.05 vs. vehicle (Ve); One-way ANOVA and Tukey post hoc test.

doi:10.1371/journal.pone.0112081.g003
that DHA at 1–10 μM abolished virtually mKCa3.1 (Figure 6C). In contrast, the pentacyclic triterpenes, uvaol, erythrodiol, maslinic acid, and oelanic acid, did not modulate mKCa3.1-currents at 1 μM (Figure 6D).

Discussion

Here we studied modulation of KCa3.1 channel by CYP-products, 5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET, the ω-hydrolase product, 20-HETE, and the ω3, DHA, and ω-LA, and identified structural requirements of these fatty acids for KCa3.1-modulation. Our major findings were that 14,15-EET and 20-HETE as well as DHA and ω-LA produced KCa3.1 inhibition with potencies in the lower μmolar range. 11,12-EET was less potent and 5,6-EET and 8,9-EET did not cause inhibition. However, 5,6-EET was able to antagonize AA-induced inhibition. The observation that 14,15-EET and 20-HETE were efficient inhibitors while 5,6 and 8,9-EET not, identified the hydrophobic carbon stretch from C1–10 of the carboxyl head of the molecule as structural requirement for channel inhibition (for schematic overview of structural features of KCa3.1-blocking and non-blocking fatty acids see Figure 1).

Several down-stream targets and receptors for propagation of intracellular or paracrine actions of EETs and ω3 have been proposed and, particularly, ion channel modulation by these fatty acid emerged as an additional mechanistic step. Yet, a plethora of channels have been shown to be directly activated by EET or to be a downstream target of EETs [41,42,43,44,45,46,47]. For instance, the TRPV4 channel, a member of the transient receptor potential gene family of cation channels, have been proposed to be
activated by 5,6-EET and 8,9-EET and the resulting Ca\(^{2+}\)-influx into the vascular endothelium caused vasorelaxation [43,44]. TRPA1 channels in afferent neurons were activated by 5,6-EET leading to an increase in nociception in mice [48]. Yet, another TRP channel, the TRPC6 channel, has been shown to be translocated in a PKA-dependent manner to the cell membrane that required 11,12-EET binding to Gs-receptors in endothelial cells [49]. Moreover, 11,12-EET has been proposed to induce hypoxic vasoconstriction in the lung involving TRPC6 mechanism [50]. Other studies showed that 14,15-EET mediates phosphorylation of epithelial sodium channel (ENAC) activity in an ERK1/2 dependent mechanism [51].

With respect to K\(^{+}\) channels, 8,9-EET, 11,12-EET, and 14,15-EET have been reported to activate ATP-sensitive K\(^{+}\)-channels by allosteric interaction with the ATP-binding site of the channel [52]. Two-pore tandem K\(^{+}\) channels (K2P) and large-conductance KCa1.1 channels were known since long to be activated by \(\omega 3\) and \(\omega 6\) [45,46,53,54,55]. Moreover, 11,12-EET activation of KCa1.1 channels was considered a main mechanism in smooth muscle, by which EET produced vasorelaxation [56]. In contrast, 20-HETE has been shown recently to enhance angiotensin-II-induced vasoconstriction of KCa1.1 channels in the endothelium and could thereby influence the KCa1.1-dependent endothelium-derived hyperpolarization (EDH)-mediated type of arterial vasodilation [28,59]. However, this has not been further clarified by the present study. Interestingly, our inside-out experiments showed that KCa3.1 could still be activated in the continuous presence of the AA but inactivated rapidly following Ca\(^{2+}\)-dependent activation (Figure 2). This suggested a major impact of AA on KCa3.1-gating unlike charybdotoxin (Figure 2) that obstructs simply the pore and ion flow by binding to the outer vestibule of the channel, independently of gating. However, we cannot exclude that this transient activation seen in the presence of AA reflected a delay of inhibition caused by diffusion of AA and the other compounds from the bath solution towards the excised membrane patch in the patch pipette.

With respect to eicosanoid-modulation of KCa3.1, our study demonstrated that 14,15-EET, the stable analogue, 14,15-EEZE, and 20-HETE were KCa3.1-inhibitors with potencies slightly below that of AA. Structurally, this inhibition required apparently hydrophobicity and 2 double electron bonds within the first 10 carbons of the carboxyl head of the molecules. This was concluded
from the lack of inhibitory activity of 5,6-EET and 8,9-EET, in which this part of the fatty acid chain was epoxygenated. The partial inhibition caused by 11,12-EET could be explained by the conserved hydrophobicity within carbons 1–10 although 11,12-epoxygenation appeared to have efficacy-reducing impact. In respect to channel-eicosanoids interactions, it was likely that epoxygenation as in 5,6,-EET and 8,9-EET did not allow the proper interactions of these molecules with hydrophobic residues of the cavity below the selectivity filter as they have been postulated for AA [25]. The intactness of carboxyl head of the molecule was another structural need since major alterations as in anandamide and 2-arachidonoylglycerol let to a loss of inhibitory

Figure 6. 5,6-EET-potentiation of KCa3.1 currents. A) Whole-cell current traces; from left to right: potentiation of Ca²⁺-pre-activated hKCa3.1 by 5,6-EET (1 μM) followed by inhibition of the current by AA (10 μM), insensitivity of the hKCa3.1T250S/V275A mutant to 5,6-EET, and insensitivity of the hKCa3.1T250S/V275A mutant to AA (10 μM) and TRAM-34 (1 μM). The hKCa3.1 currents were pre-activated by 250 nM Ca²⁺. Panel on the right: summary data. B) From left to right: Ca²⁺-pre-activation of rat endothelial rKCa3.1 by 3 μM Ca²⁺ and current inhibition by 14,15-EET (1 μM), larger currents in the presence of 5,6-EET (1 μM) and inhibition by AA (10 μM). Panel on right: Summary data: dependence of 5,6-EET-potentiation on the intracellular Ca²⁺. Note that at a low intracellular Ca²⁺ (0.1 μM) that is below/near the threshold for KCa3.1 activation, 5,6-EET did not potentiate the current. In contrast, potentiation occurred at an intracellular Ca²⁺ concentration that is near the EC₅₀ for Ca²⁺-activation of KCa3.1 as well as at a saturating Ca²⁺ concentration. C) DHA (1 μM) blocked Ca²⁺-pre-activated mKCa3.1 in murine fibroblasts. D) Pentacyclic triterpenes did not modulate murine fibroblast mKCa3.1 at a concentration of 1 μM. Data are means ± SEM (% inhibition of KCa3.1-current normalized to initial peak amplitude after establishing electrical access (by seal rupture) and stable Ca²⁺-activation of KCa3.1-outward currents); Numbers in the graphs indicate the number of whole-cell experiments; *P<0.05 vs. control (peak amplitude of the KCa3.1-current in the respective cell); One-way ANOVA and Tukey post hoc test. doi:10.1371/journal.pone.0112081.g006
Lipid Modulators of KCa3.1 Channels

efficacy (see figure 1 for structures and scheme of blocking efficacy of the fatty acids). However, detailed structural analysis on yet not available crystal structures of the open and closed KCa3.1 channel and mapping of AA and EET's interaction/binding will be needed to provide more definite insight into this lipid modulation of KCa3.1 channels. In contrast to cations and Ω3, the pentacyclic triterpenes studied here did not modulate mKCa3.1 channel, which might be explained by their more "rigid" and larger structures that may not fit into the internal cavity of the channel.

From the physiological and pharmacological perspective, micromolar EETs, stable EET-analogues, and 20-HETE have been used to study mechanisms of vasodilation or vasoconstriction. Since KCa3.1 has been demonstrated a major component in the EDH-mediated type of endothelium-dependent vasodilation [59] and considering that this channel modulates also functions in EDH-mediated type of endothelium-dependent vasodilation [59] and considering that this channel modulates also functions in it was tempting to speculate that 5,6-EET antagonized the (at least partial - channel inhibition caused by endogenous Ca2+-dependent PL-A2-mediated AA-release. This view was fostered by the insensitivity of the hKCa3.1V275A to 5,6-EET-potentiation (Figure 6). Such a mechanism may represent a novel mechanism of endogenous K Ca3.1-modulation beyond Ca2+-regulation of the channel. Moreover, the 5,6-EET-mediated de-blockade of KCa3.1 could be a thus far unrecognized mechanism underlying EDH-mediated vasodilation, in which both EETs and KCa3.1 have been implicated to play major roles.

It is worth to mention that KCa3.1 channels contribute to a variety of pathologies such as acute and chronic inflammation [60,61], vascular-occlusive disease (neointima formation) [12], atherosclerosis [62], angiogenesis [22], poly cyclic kidney disease [63], ulcerative colitis [21,64], tumor growth and metastasis (e.g. glioblastoma [17]), transplant vasculopathy [65,66], and organ fibrosis [67]. EETs, Ω3, and pentacyclic triterpenes have also been reported to mechanistically contribute to/influence such disease states [31,32,33,34,35,36,37,38]. In this respect, some of the reported anti-inflammatory, vaso-protective, and anti-cancerogenic actions of EETs and Ω3 as well as anti-hypotensive actions of 20-HETE, but possibly not that of pentacyclic triterpenes, could be explained by inhibition of pro-prolif erative KCa3.1 functions. This also raised the possibility to use stable 14,15-EET or 20-HETE mimetics [60] to target KCa3.1 in disease states, to which this channel adds patho-mechanistically.

In conclusion, the present electrophysiological and structure-activity-relationship study demonstrated modulation of cloned and endogenous KCa3.1 channels by selective EETs, 20-HETE, and Ω3 and revealed major structural determinants of the molecules for channel interaction.

Author Contributions

Conceived and designed the experiments: RK MK AOV. Performed the experiments: RK MK AOV. Analyzed the data: RK MK AOV. Contributed reagents/materials/analysis tools: RK MK AOV. Contributed to the writing of the manuscript: RK MK AOV.

References

1. Ishii TM, Silvia C, Hirschberg B, Bond CT, Adelman JP, et al. (1997) A human intermediate conductance calcium-activated potassium channel. Proc Natl Acad Sci U S A 94: 11651–11656.
2. Wei AD, Gutman GA, Aldrich R, Chandy KG, Grissmer S, et al. (2005) International Union of Pharmacology. LII. Nomenclature and molecular relationships of calcium-activated potassium channels. Pharmacol Rev 57: 463–472.
3. Logendon NJ, Kang J, Togo JA, Christian EP, Aiyar J (1997) A novel gene, hKCaV1, encodes the calcium-activated potassium channel in human T lymphocytes. J Biol Chem 272: 32723–32726.
4. Grigie I, Kaitha BP, Pashen S, Kaitha A, Busch C, et al. (2009) Disruption of the Gardos channel KCa3.1 in mice causes subtle erythrocyte macrocytosis and progressive splenomegaly. Plu gers Arch 459: 291–302.
5. Vandorpe DH, Shmukler BE, Jiang L, Lim R, Mayle J, et al. (1998) cDNA cloning and functional characterization of the mouse Ca2+-gated K channel, mK1. Roles in regulatory volume decrease and erythropoiesis. J Biol Chem 273: 21342–21353.
6. Wulff H, Miller MJ, Hassel W, Grissmer S, Cahalan MD, et al. (2000) Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K channel, 20-HETE mimetics to target KCa3.1 in disease states, to which this channel adds patho-mechanistically.
7. Pena TL, Rane SG (1999) The fibroblast intermediate conductance KCa channel, IKc, as a prototype for the cell growth regulatory function of the IK channel family. J Membr Biol 172: 249–257.
8. Oli van-Vignera, Valero MS, Martin JD, Garcia-Otin AL, et al. (2013) Novel phenolic inhibitors of small/intermediate-conductance Ca(2+)/activated K(+) channels, KCa3.1 and KCa3.2. PLoS One 8: e56814.
9. D’Alessandro G, Catalano M, Sciaccaluga M, Chege G, Cipriani R, et al. (2013) KCa3.1 channels are involved in the infiltrative behavior of glioblastoma in vivo. Cell Death Dis 4: e773.
10. Lambertsen KL, Gramberg JB, Sitasaravananparan, Ditzel N, Sevelsted-Moller IM, et al. (2012) Genetic KCa3.1-Deficiency Produces Locomotor Hyperactivity and Alterations in Cerebral Monoamine Levels. PLoS One 7: e17744.
11. Pardo LA, Stuhlm W (2014) The roles of K(+) channels in cancer. Nat Rev Cancer 14: 39–48.
12. Wulff H, Kolb-Andraco A, Sankaranarayanan A, Sabatier JM, Shakkottai V (2007) Modulators of small- and intermediate-conductance calcium-activated potassium channels and their therapeutic indications. Curr Med Chem 14: 1457–1457.
13. Bi D, Toyama K, Nunai V, Takai J, Fan F, et al. (2013) The intermediate conductance calcium-activated potassium channel KCa3.1 regulates vascular smooth muscle cell proliferation via controlling calcium-dependent signaling. J Biol Chem 288: 15843–15853.
14. Pena TL, Rane SG (1999) The fibroblast intermediate conductance KCa channel, IKc, as a prototype for the cell growth regulatory function of the IK channel family. J Membr Biol 172: 249–257.
41. Xiao YF (2007) Cyclic AMP-dependent modulation of cardiac L-type Ca2+
+ channels: a novel target for anti-hypertrophic agents? PLoS One 2: e624.

42. Gerlach AC, Gangopadhyay NN, Devor DC, Devor DC (2000) Kinase-dependent modulation of the intermediate-conductance, calcium-dependent potassium channel. J Biol Chem 275: 583–598.

43. Hamilton KL, Syme CA, Devor DC (2003) Molecular localization of the inhibitory arachidonic acid binding site to the pore of hIK1. J Biol Chem 278: 16980–16989.

44. Bertuccio CA, Lee SL, Wu G, Butterworth MB, Hamilton KL, et al. (2014) Anterograde trafficking of KCa3.1 in polarized epithelia is Rab11- and Rab5-dependent and recycling endosome-independent. PLoS One 9: e92013.

45. Balut CM, Hamilton KL, Devor DC (2012) Trafficking of intermediate (KCa3.1) and small (KCa2.2) conductance, Ca2+-activated K(+) channels: a novel target for medicinal chemistry efforts? ChemMedChem 7: 1744–1755.

46. Feletou M, Kohler R, Vanhoutte PM (2010) Endothelium-derived vasoactive factors and hypotension: possible roles in pathogenesis and as treatment targets. Curr Hypertens Rep 12: 267–275.

47. Feletou M, Kohler R, Vanhoutte PM (2011) Nitric oxide: orchestrator of endothelial-dependent responses. Ann Med 44: 694–716.

48. Campbell WB, Fleming I (2010) Epoxygenase-dependent and endothelium-dependent responses. Phleger Arch 458: 881–895.

49. Plisier SL, Gauthier KM, Campbell WB (2010) Vascular pharmacology of epoxygenase-dependent actions. Adv Pharmacol 60: 27–59.

50. Fleming I (2011) The cytochrome P450 pathway in angiogenesis and endothelial cell biology. Cancer Metastasis Rev 30: 541–553.

51. Zhang G, Kodani S, Hammock BD (2014) Stabilized epoxygenated fatty acids regulate inflammation, pain, angiogenesis and cancer. Prog Lipid Res 53: 108–123.

52. Shen C, Wei X, Rao X, Wu J, Yang S, et al. (2011) Cytochrome P450 2J2 is highly expressed in hematologic malignant diseases and promotes tumor cell growth. J Pharmacol Exp Ther 336: 344–355.

53. Siddessa JM, Valente AJ, Yoshida T, Sakamuri SS, Delfontaine P, et al. (2014) Docosahexaenoic acid reverses angiotensin II-induced RECK suppression and cardiomyocyte fibrosis migration. Cell Signal 26: 935–941.

54. Martin R, Miana M, Jurado-Lopez R, Martinez-Martinez E, Gomez-Hurtado N, et al. (2012) DHOL trimeres block proinflammatory effects of angiotensin II and protect from cardiac hypertrophy. PLoS One 7: e11455.

55. Lou-Bonafonte JM, Arnal C, Navarro MA, Osada J (2012) Efficacy of bioactive compounds from extra virgin olive oil to modulate atherosclerosis development. Mol Nutr Food Res 56: 1043–1057.

56. Marquez-Martin A, De La Puerta R, Fernandez-Arche A, Ruiz-Gutierrez V, Aranda M, et al. (2012) DIOL triterpenes block profibrotic effects of angiotensin II and RAS-activated K(+) channels in vascular smooth muscle cells. FEBS Lett 297: 24–28.

57. Blouzou N, Petaaal O, Manta S, Giordano V, Goumon P, et al. (2007) Polyunsaturated fatty acids are cerebral vasodilators via the TREK-1 potassium channel. Curr Res 101: 176–184.

58. Mainent F, Patel AJ, Lesage F, Ludesinski M, Horenc E (1999) Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J Biol Chem 274: 26691–26696.

59. Zou AP, Fleming JT, Falck JR, Jacobs ER, Gebremedhin D, et al. (1996) Stereospecific effects of epoxygenase products on renal vascular tone and K(+)- channel activity. Am J Physiol 272: F822–F832.

60. Fan F, Sun CW, Maier KG, Williams JM, Pabbihi MR, et al. (2013) 20-Hydroxyeicosatetraenoic acid contributes to the inhibition of K(+) channel activity and vasoconstrictor response to angiotensin II in rat renal microvessels. PLoS One 8: e28428.

61. Serkelky A, Kitajka K, Parvy G, Mariani T, Gaspar G, et al. (2007) Nutrition and immune system: certain fatty acids differently modify membrane composition and consequently kinetics of KV1.3 channels of human peripheral lymphocytes. Immunobiology 212: 213–227.

62. Wulff H, Kohler R (2013) Endothelial small-conductance and intermediate-conductance KCa channels: an update on their pharmacology and usefulness as cardiovascular targets. J Cardiovasc Pharmacol. 61: 102–112.

63. Wulff H, Castle NA (2010) Therapeutic potential of KCa3.1 blockers: recent advances and promising trends. Expert Rev Clin Pharmacol. 3: 385–396.

64. Gregor I, Wulff H, Eichler I, Flothmann G, Kohler R, et al. (2009) Blockade of T(lymphocyte) KCa3.1 and KCa1.3 channels as novel immunosuppression strategy to prevent kidney allograft rejection. Transplant Proc 41: 2601–2606.

65. Toyama K, Wulff H, Chandy KG, Azam P, Raman G, et al. (2008) The intermediate-conductance calcium-activated potassium channel KCa3.1 contributes to atherogenesis in mice and humans. J Clin Invest 118: 3025–3037.

66. Alharbomi M, Srivastava S, Li Z, Zhodnna O, Wulff H, et al. (2008) KCa3.1 potassium channels are critical for cAMP-dependent chloride secretion and cyst growth in autosomal-dominant polycystic kidney disease. Kidney Int 74: 740–749.

67. Koch Hansen I, Sevelsted-Moller L, Rahjer B, Marsen D, Hansen TP, et al. (2014) Expression of T-cell K1.3 potassium channel correlates with pro-inflammatory cytokines and disease activity in ulcerative colitis. J Crohns Colitis.

68. Xu H, Deuse T, Chen YJ, Wulff H, Stubbendorff M, et al. (2013) The potassium channel KCa3.3 as a novel therapeutic target for the prevention of obliterative airway disease. Transplantation 95: 285–292.

69. Chen YJ, Lam J, Gregory CR, Schraper S, Wulff H (2013) The Ca(2+)/Ca(2+)- activated K(+) channel KCa3.1 as a potential new target for the prevention of allograft vasculopathy. PLoS One 8: e10006.

70. Gregor I, Kies E, Kaitha BP, Busch C, Kloss M, et al. (2009) Renal fibrosis is attenuated by targeted disruption of KCa3.1 potassium channels. Proc Natl Acad Sci U S A 106: 14518–14523.

71. Turcato B, Kowmaz B, Satay, A, Kacar S, Umdal S, et al. (2013) Contribution of iNOS/AGC/PKG pathway, COX-2, CYP1A1, and gp91phox to the protective effect of 5,12-HEDOE, a 20-HETE mimetic, against vasodilation, hypotension, tachycardia, and inflammation in a rat model of septic shock. Nitric Oxide 33: 18–41.