Zantedeschia aethiopica is an evergreen monocotyledonous herb widely used as herbal medicine and ornamental plant. The current study is aimed at reviewing the medicinal uses, phytochemistry, and biological activities of *Z. aethiopica*. Information on biological activities, medicinal uses, and phytochemistry of *Z. aethiopica* was gathered from several internet sources which included Scopus, Google Scholar, Elsevier, Science Direct, Web of Science, PubMed, SciFinder, and BMC. Additional information on these aspects was sourced from pre-electronic sources such as journal articles, scientific reports, theses, books, and book chapters obtained from the University Library. The current study revealed that *Z. aethiopica* is mainly used as herbal medicine for boils, burns, gout, inflammation, insect bites, rheumatism, sores, and wounds. Phytochemical and pharmacological studies showed that *Z. aethiopica* extracts and compounds isolated from the species have antibacterial, antifungal, antioxidant, anti-inflammatory, analgesic, antithrombotic, and anticoagulant activities. This research showed that *Z. aethiopica* is an integral part of the traditional pharmacopeia in several countries where the species is indigenous or naturalized, but there is the lack of alignment between the known medicinal applications, phytochemistry, and biological activities of the species. Therefore, future research should focus on evaluating the chemical and pharmacological properties of *Z. aethiopica* extracts and compounds associated with the species.

Keywords: Araceae, Ethnopharmacology, Herbal medicine, Southern Africa, Zantedeschia aethiopica.

© 2019 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open-access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). DOI: http://dx.doi.org/10.22159/ajpcr.2019.v12i8.34353

INTRODUCTION

Zantedeschia aethiopica (L.) Spreng, is an evergreen herb which is a member of a monocotyledonous flowering plants Araceae family also known as arum lily family. *Z. aethiopica* is an important food, medicinal and ornamental plant in Africa, Asia, Australia, Europe, and the United States of America, and recently playing an important role in cleaning up contaminated soils and water [1-6]. Research by Halligan et al. [7] and Wei et al. [8] showed that *Z. aethiopica* is sold worldwide as an ornamental plant and the species is cultivated commercially as an ornamental flower. [9-12] with the foliage and flowers employed principally for coronas and other funeral decorations on altars and shrines and as cut flowers. In South Africa, *Z. aethiopica* is one of the valuable medicinal plant species in the country and the species is included in the book “medicinal plants of South Africa,” a photographic guide to the most commonly used herbal medicines in the country, including its botany, major medicinal applications active phytochemical compounds [13]. Similarly, research by Reinsten et al. [12] showed that *Z. aethiopica* has commercial potential for the cut flower trade as potted flowers and foliage in South Africa. The tuberous rootstock of *Z. aethiopica* is said to have been a food source in early days in South Africa after extensive boiling to counteract the burning effect of the raphide crystals [14,15]. The leaves and stems of *Z. aethiopica* are cooked as potherbs and leafy vegetables in Lesotho, Zimbabwe, the Eastern Cape, Free State, and KwaZulu-Natal Provinces in South Africa [14-26]. However, the leaves of *Z. aethiopica* are among the top 10 culprits of plant species responsible for about 6.5% of all poisoning cases (about 500 cases and inquiries per year) in the Johannesburg municipal area in South Africa [27]. Although *Z. aethiopica* is not indigenous to New Zealand, the species is the second most common poisonous plant in the country [28]. Research by Botha and Penrith [29], Wink and Van Wyk [30], and Ndhlala et al. [31] showed that the cardiac glycosides which have been identified from the species and known to induce paralysis on the central nervous system are probably responsible for the toxic properties of the species. However, Van Wyk et al. [27] argued that *Z. aethiopica* is not toxic, but the oxalate crystals associated with the species may cause distress if fresh leaves are eaten. Similarly, Van Wyk et al. [13] argued that *Z. aethiopica* should not be eaten fresh as the needle-shaped calcium oxalate crystals cause mechanical irritation of the mucous membranes, causing swelling of the tongue and throat, salivation, nausea, vomiting, and diarrhea. However, *Z. aethiopica* is a valuable medicinal plant, as its rhizomes and roots are sold as herbal medicines in the Limpopo Province in South Africa [32,33] and Brazil [34,35]. It is within this context that the current study was undertaken aimed at providing a comprehensive review of the medicinal value, phytochemistry and biological activities of the compounds isolated from the species, including *Z. aethiopica* crude extracts.

BOTANICAL DESCRIPTION OF Z. AETHIOPICA

Z. aethiopica is a perennial, robust, evergreen or deciduous, erect and clump-forming herbaceous plant with a thick rhizome and white fleshy roots. *Z. aethiopica* grows up to 150 cm in height with large, fleshy leaves developing from the tuberous rhizome [36-39]. The leaves are dark glossy green in color, lack a persistent basal meristem, are large, leathery and hairless, ovate in shape with parallel-pinnate veins, characterized by a thick and spongy leaf stalk. The minute yellow or cream-colored flowers are borne in a dense group on a finger-like structure (the spathe) [13]. A dense mass of small, fleshy, soft, berry-like yellow fruits develops at the base of the spadix. *Z. aethiopica* is native to Lesotho, South Africa, and Swaziland [14,17,36,37,40-42]. In Southern Africa, *Z. aethiopica* has been recorded in sandy or rocky places, along the coast, mountain grasslands, usually seasonally damp depressions and permanent springs at an altitude ranging from 20 m to 2250 m above sea level [38,39,41]. *Z. aethiopica* is also naturalized in Australia, Brazil, Hawaii, India, Italy, Kenya, Malawi, New Zealand, Philippines, Portugal, Réunion, South America, Spain, Tanzania, Tunisia, the United Kingdom, and Zambia [42-50].

The genus *Zantedeschia* Spreng, consists of seven species, namely, *Z. aethiopica* (L) Spreng., *Zantedeschia albomaculata* (Hook.) Baill,
Zantedeschia rehmannii Engl., Zantedeschia pentlandii (Watson) Wittm., Zantedeschia elliotiana (Watson) Engl., Zantedeschia jacunda Letty, and Zantedeschia odorata P.L.Perry. Z. aethiopica is named after Prof Giovanni Zantedeschi (1773–1846), an Italian botanist and physician [14,51,52]. The species name “aethiopica” is indirectly related to Ethiopia as in classical times, the name was used in reference to “south of the known world,” that is, South of Libya and Egypt, now known as Southern Africa [14,52]. Z. aethiopica is commonly referred to as “arum lily,” “calla lily,” “cape white alum lily,” “Egyptian lily,” “florist’s calla,” and “garden calla” in English [13,14,23]. The synonyms associated with Z. aethiopica include Calla aethiopica L., Richardia aethiopica (L.) Spreng., Richardia Africana Kunth, and Z. aethiopica (L.) Spreng. var. minor Engl. [37,40-42,48].

MEDICINAL USES OF Z. AETHIOPICA

The leaves, rhizomes, roots, stems, and the whole plant parts of Z. aethiopica are used as herbal medicines against 33 human diseases in tropical Africa, Asia, and North America (Table 1). Z. aethiopica is mainly used as herbal medicine for boils, burns, gout, inflammation, insect bites, rheumatism, sores, and wounds (Fig. 1). Other medicinal applications recorded in at least two literature sources include asthma, colds, flu, headache, heartburn, infections, infertility, respiratory problems, sore throat, and as a protective charm (Table 1). Such wide usage of Z. aethiopica as herbal medicine implies that the species is a valuable source of therapeutic agents required for plant-derived natural products or their derivatives.

CHEMICAL AND PHYTOCHEMISTRY OF Z. AETHIOPICA

Carneiro et al. [89] and Pelo [90] quantified mineral elements in flower stalks, leaves, rhizomes, and roots of Z. aethiopica including heavy metals such as cadmium, copper, chromium, iron, lead, manganese, and mercury (Table 2). The concentrations of the heavy metals in Z. aethiopica are below the permissible FAO or the WHO limits set by Codex Alimentarius Commission [91], and therefore, the use of the species as food or its extracts as herbal medicines may not result in heavy metal toxicity. Medicinal plants growing in different geographical areas usually accumulate different levels of heavy metals [92,93]. Phytochemical compounds that have been identified from flowers, fruits, leaves, and regreened sphates, and stems of Z. aethiopica include alkaloids, anthraquinones, cardiac glycosides, flavonoids, glucose, saponins, soluble starch, steroids, sucrose, tannins, and terpenoids [90,94-96]. Other phytochemical compounds that have been

Medicinal use	Parts of the plant used	Country	References
Arthritis	Roots	South Africa	[53]
Asthma	Roots and rhizome mixed with honey	South Africa	[13,54-56]
Augment labor	Whole plant	South Africa	[30]
Backache	Leaves	South Africa	[57]
Boils	Leaves	India, Lesotho, Malawi, South Africa and Swaziland	[13-17,23,48,53,55,58-68]
Bronchitis	Leaves	South Africa	[13]
Burns	Leaves and rhizomes	India, Mexico, and South Africa	[10,48,55,67-71]
Chlamydia	Roots	South Africa	[33]
Colds	Roots	South Africa	[32,72]
Cough	Whole plant	South Africa	[31]
Fever	Whole plant	Tanzania	[73]
Flu	Roots	South Africa	[32,72]
Gastrointestinal problems	Whole plant	South Africa	[31]
Gout	Leaves, roots, and stems	India, Lesotho, Malawi, and South Africa	[13-17,23,48,53,55,58-60,62,63,66-68]
Headache	Leaves and rhizomes	South Africa	[57,74]
Heartburn	Rhizome mixed with honey	South Africa	[13,54]
Infections	Leaves and roots	South Africa	[57,75]
Infertility	Roots	South Africa	[76-78]
Inflammation	Leaves	India and South Africa	[57,79]
Injuries	Leaves	India	[80]
Insect bites	Leaves and stems	India, Malawi, and South Africa	[14,48,55,58-60,63,67]
Lung ailments	Roots	South Africa	[53]
Measles	Roots	South Africa	[33]
Pain	Leaves	South Africa	[57]
Protective charm	Leaves	Lesotho	[16,17,20,23,48,62,66,68]
Respiratory problems	Leaves	Lesotho	[16,17,20,62,66,68]
Rheumatism	Leaves, stems, and rhizome mixed with honey	India, Lesotho, Malawi, and South Africa	[13-17,20,23,48,55,57-60,62,63,66-68]
Snakebite	Roots mixed with petroleum jelly	South Africa	[76]
Sores	Leaves and roots	India, Lesotho, Malawi, South Africa and Swaziland	[13-17,20,23,48,53,55,58-68,70,81-83]
Sore throat	Leaves, rhizomes, and rhizome mixed with honey	South Africa	[13,54,55,71,84,85]
Venereal diseases	Roots	South Africa	[75]
Vomiting	Roots	South Africa	[53]
Wounds	Leaves, rhizomes, and roots	India, Lesotho, South Africa, and Swaziland	[13,15-17,20,23,48,55,57,58,61-68,70,81-83,85-87]
Ethnoveterinary medicine	Rhizome	South Africa	[88]

Table 1: Medicinal applications of Zantedeschia aethiopica
identified from fruits, leaves, and regreened shoots of *Z. aethiopica* include cytokinin, cycloartenol triterpenes, fatty acids, galactolipids, galactosyldiacylglycerols, phytosterols, and sterols [90,95,97-101] (Table 3).

BIOLOGICAL ACTIVITIES OF Z. AETHIOPICA

The following biological activities have been reported from the leaf and root extracts and compounds isolated from *Z. aethiopica*: antibacterial [54,63-65,90,96], antifungal [54,63-65,102,103], antitumor and anticoagulant [104], antioxidant [105], antihistaminic [54], and antialgal [95] activities.

Antibacterial activities

Nielsen et al [63] evaluated antibacterial activities of methanol leaf and stem extracts of *Z. aethiopica* against *Citrobacter, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa*, and *Mycobacteria smegmatis* using the microbroth dilution method with gentamicin and ciprofloxacin as positive controls. The extracts exhibited weak activities with minimum inhibitory concentration (MIC) values ranging from 6.25 mg/ml to >2500 µg/ml which were much higher than MIC values of 0.3 µg/ml to 19.5 µg/ml exhibited by the controls [63]. Pratush et al [96] evaluated antibacterial activities of ethanolic and aqueous extracts of the rhizomes of *Z. aethiopica* against *S. aureus, P. aeruginosa, E. coli, Bacillus subtilis, K. pneumoniae, Serratia marcescens, Shigella spp.*, and *Salmonella typhi* using disk diffusion method. The extracts exhibited activities against all the tested pathogens with the exception of *S. marcescens* and *Shigella* spp. with zone of inhibition ranging from 2.3 mm to 4.1 mm [96]. De Almeida et al [106] evaluated antibacterial activities of floral protein extracts of *Z. aethiopica* against *E. coli, K. pneumoniae, Proteus mirabilis, Salmonella typhimurium, Shigella flexneri, Streptococcus pyogenes*, and *S. aureus* using microdilution method. *E. coli* was the only pathogen that inhibited the extract by 96.3% [106]. Mabona [64] and Mabona et al [65] evaluated antibacterial activities of aqueous and dichloromethane:methanol (1:1) leaf extracts of *Z. aethiopica* using the microtiter plate assay against dermatologically relevant pathogens such as *Brevibacillus agri, Propionibacterium acnes, P. aeruginosa*, *S. aureus*, and *Staphylococcus epidermidis* with ciprofloxacin as a positive control. The extracts exhibited activities with MIC values ranging from 0.5 mg/ml to >16.00 mg/ml [64,65]. Mothlatega II [54] evaluated the antibacterial activities of aqueous, dichloromethane, 80% ethanol and petroleum ether leaf, rhizome, root, and stem extracts of *Z. aethiopica* against *S. pyogenes, K. pneumoniae*, and *S. aureus* using microdilution technique with neomycin as a positive control and *Haeomophilus parainfluenzae* using disk diffusion method with ampicillin and penicillin as positive controls. The extracts exhibited activities with MIC values ranging from 0.8 mg/ml to >12.5 mg/ml and zone of inhibition of 21.1 mm which was comparable to 18.9 mm to 21.6 mm exhibited by ampicillin and penicillin [54]. Pelo [90] evaluated antibacterial activities of chloroform: methanol, ethyl acetate, hexane, and waterleaf extracts of *Z. aethiopica* against *Citrobacter, Bacillus subtilis, Enterobacter cloacae, Enterobacter aerogenes, Enterococcus faecalis, K. pneumoniae, M. smegmatis, R. mirabilis, Proteus vulgaris, P. aeruginosa*, and *S. aureus* using disk diffusion method and microdilution method. Only chloroform:methanol extract exhibited activities against *M. smegmatis* with zone of inhibition ranging from 7 mm to 11 mm. The MIC susceptible assay revealed that organic extracts were active against the tested pathogens with MIC values ranging from 0.3 mg/ml to 6.0 mg/ml [90].

Antifungal activities

Motsei [102] and Motsei et al [103] evaluated antifungal activities of aqueous, ethanol, ethyl acetate, and hexane leaf extracts of *Z. aethiopica* against *Candida albicans* standard strain ATCC 10231 and two clinical isolates from a 5-month-old baby and an adult using the broth microdilution method with amphotericin B as a positive control. The extracts exhibited weak activities with MIC values ranging from >0.4 mg/ml to >250 mg/ml [102,103]. Nielsen et al [63] evaluated antifungal activities of methanol leaf and stem extracts of *Z. aethiopica* against *C. albicans* and *Microsporum audouinii* using the microbroth dilution method with nystatin as a positive control. The extracts exhibited moderate activities with MIC value of 312.5 µg/ml against both fungi in comparison to MIC value of 19.5 µg/ml exhibited by the control [63]. Mabona [64] and Mabona and Van Vuuren [65] evaluated the antifungal activities of aqueous and dichloromethane:methanol extract of leaves of *Z. aethiopica* using the microbroth dilution method and **Table 2: Mineral element composition of Zantedeschia aethiopica**

Element	Value (mg/kg)	FAO/WHO permissible limit	Plant part Description	References
Cadmium	0.002	0.02	Leaves	[90]
Calcium	1.2-7.7	-	Flower stalks, leaves, rhizomes, and roots	[89,90]
Chromium	0.003	1.3	Leaves	[90]
Copper	<0.001	10.0	Leaves	[90]
Iron	0.04	20.0	Leaves	[90]
Lead	0.03	2.0	Leaves	[90]
Magnesium	2.8	5.5	Leaves	[90]
Manganese	0.003	0.6	Leaves	[90]
Mercury	0.06	0.6	Flower stalks, leaves, rhizomes, and roots	[89]
Nitrogen	25.9	-	Flower stalks, leaves, rhizomes, and roots	[90]
Phosphorus	6.2	-	Flower stalks, leaves, rhizomes, and roots	[89]
Potassium	0.09-0.37	-	Flower stalks, leaves, rhizomes, and roots	[89,90]
Sodium	0.005	-	Leaves	[90]
Strontium	0.003	-	Leaves	[89]
Sulfur	0.07	-	Flower stalks, leaves, rhizomes, and roots	[90]
Zinc	<0.001	50.0	Leaves	[90]

Fig 1: Medicinal applications of Zantedeschia aethiopica

![Fig 1: Medicinal applications of Zantedeschia aethiopica](image-url)

![Table 2: Mineral element composition of Zantedeschia aethiopica](table-url)
Table 3: Phytochemical composition of Zantedeschia aethiopica

Phytochemical	Value	Plant parts	References
Galactolipids	-	Leaves and regreened sphates	[99]
Galactosylglycerols	-	Leaves and regreened sphates	[99]
α-linolenic acid	-	Leaves and regreened sphates	[95,99]
13-hydroxy-α-linolenic acid	-	Leaves	[95]
Linoleic acid	-	Leaves and regreened sphates	[95,99]
9-hydroxy-linoleic acid	-	Leaves	[95]
12-hydroxy-linoleic acid	-	Leaves	[95]
Myristic acid	0.003	Leaves	[95]
Oleic acid	0.01	Leaves	[95]
14:1-trans-9-hexadecenoic acid	1.4	Leaves and regreened sphates	[99,100]
Cycloartenol	-	Leaves	[95]
24-methylene-cycloartenol	-	Leaves	[95]
(24R)-24-Ethyl-cholest-5-en-3β-ol (%)	93.1	Leaves	[95]
(24R)-24-Methyl-cholest-5-en-3β-ol (%)	3.0	Leaves	[95]
(24S)-24-Ethyl-cholest-5,22-dien-3β-ol (%)	0.7	Leaves	[95]
4α-Methyl-24-methylene-cholest-7-en-3β-ol (%)	0.2	Leaves	[95]
(24R)-24-Ethyl-cholest-4-en-6β-ol-3-one (%)	0.7	Leaves	[95]
(24R)-24-Methyl-5α,8-epidioxy-cholest-6,22-dien-3β-ol (%)	1.4	Leaves	[95]
(24R)-24-Ethyl-cholest-5-en-3β-diol (%)	0.7	Leaves	[95]
(24R)-24-Cholesterol-5-en-3β-diol (%)	0.2	Leaves	[95]
(24R)-24-Ethyl-cholest-5-en-3β-ol-7-one (%)	1.6	Leaves	[95]
Pinocembrin	-	Leaves	[95]
3-(4-hydroxy-3-methoxy)-phenyl-1,2-propandiol	-	Leaves	[95]
3-(4-hydroxy-3-methoxy-phenyl)-1,2,3-propantrol	-	Leaves	[95]
2-(4,4-dihydroxy)-phenyl-ethyl-β-D-glucopyranoside	-	Leaves	[95]
Isooswertalin	-	Leaves	[95]
Isooswertisin	-	Leaves	[95]
3-(4β-D-glucopyranosyl-3-methoxy)-phenyl-2E-propenol	-	Leaves	[95]
3-(4-hydroxy-3-methoxy)-phenyl-2E-propenyl-1β-D-glucopyranoside	-	Leaves	[95]
3-(4β-D-glucopyranosyl-3,5-dimethoxy)-phenyl-2E-propenol	-	Leaves	[95]
3-(4-hydroxy-3,5-dimethoxy)-phenyl-2E-propenyl-1β-D-glucopyranoside	-	Leaves	[95]
1-(4-hydroxy-3-methoxy)-phenyl-2-[4-(1,2,3-tri-hydroxypropyl)-2-methoxy]	-	Leaves	[95]
-phenoxy-1,3-propandiol	-	Leaves	[95]
1-(4-hydroxy-3-methoxy)-phenyl-2-[4-(2,3-dihydroxypropyl)-2-methoxy]	-	Leaves	[95]
-phenoxy-1,3-propandiol	-	Leaves	[95]
6-(o-hydrobenzylamino)-9-β-D-ribofuranosylpurine	-	Fruits	[98]
6-(o-hydrobenzylamino)-2-methylthio-9-β-D-glucosylpurine	-	Fruits	[97]
Allyl decanoate (%)	0.02	Leaves	[90]
2-Azido-2-methylpentane (%)	0.01	Leaves	[90]
Aziridine, 2,2-dimethyl (%)	0.2	Leaves	[90]
Benzene, 1,2,3-trimethyl (%)	0.003	Leaves	[90]
Docosanoic acid, methyl ester (%)	0.01	Leaves	[90]
E-1,8-decadiene (%)	0.1	Leaves	[90]
11-Dodecen-1-ol (%)	0.02	Leaves	[90]
1-Dodecane (%)	0.1	Leaves	[90]
Undecane (%)	0.006	Leaves	[90]
2 (3H)-Furanone, dihydro-4-methyl (%)	0.1	Leaves	[90]
9-Octadecenoic acid (Z) (%)	0.1	Leaves	[90]
17-Octadecynoic acid (%)	0.3	Leaves	[90]
9,12-Octadecadien %	0.3	Leaves	[90]
9,12-Octadeadoxy chloride, (Z, Z)	0.2	Leaves	[90]
2-Oxetanone, 3,3-dimethyl (%)	0.5	Leaves	[90]
Phenol, 2-methyl-5-(1-methylthyl) (%)	0.004	Leaves	[90]
Phenol, 4,4'-[1-methylethyl]e) bis (%)	0.003	Leaves	[90]
Phenol, 5-methyl-2-(1-methylthyl) (%)	0.008	Leaves	[90]
Stigmasteran, 3,5-diene (%)	0.1	Leaves	[90]
Stigmasteran-6,22-dien, 3,5-dedihydro (%)	0.06	Leaves	[90]
d1-α-Tocopherol (%)	0.004	Leaves	[90]
Campesterol	-	Leaves	[101]
β-Sitosterol	-	Leaves	[101]
Stigmasterol	-	Leaves	[101]
amphotericin B as a positive control. The extracts exhibited activities with MIC and minimum fungidal concentration (MFC) values ranging from 1.6 mg/ml to >12.5 mg/ml which was comparable to MIC and MFC values of 0.008 mg/ml and 0.01 mg/ml, respectively, which were exhibited by the controls [54].

Antithrombotic and anticoagulant activities

Kee et al. [104] evaluated antithrombotic and/or anticoagulant activities of methanol and aqueous leaf extracts of *Z. aethiopica* using the thrombin and clotting time (thrombin induced and CaCl₂ induced) assays. The extract displayed anticoagulant activities with half maximal inhibitory concentration (IC₅₀) value of 3.1 mg/ml [104].

Antioxidant activities

Li et al. [105] evaluated the antioxidant activities of the flower extracts of *Z. aethiopica* using the ferric-reducing antioxidant power (FRAP) and Trolox equivalent antioxidant capacity (TEAC) assays. The extracts exhibited FRAP value of 22.1 ± 0.6 μmol Fe(II)/g wet weight while the TEAC value was 9.2±0.4 μmol Trolox/g wet weight and the total phenolic content was 3.1±0.01 mg GAE/g wet weight. The main phenolic compounds were epicatechin (37.9 mg/100 g), gallic acid (30.8 mg/100 g), and protocathechuic acid (42.6 mg/100 g). Li et al. [105] also evaluated the insoluble-bound components of the residue using the NaOH hydrolysis and FRAP value was 0.7±0.08 μmol Fe(II)/g wet weight, TEAC (0.3±0.04 μmol Trolox/g wet weight), and the total phenolic content was 0.3±0.01 mg GAE/g wet weight.

Antihistaminic activities

Motheiletso [54] evaluated the antihistaminic activities of the ethanolic leaf, rhizome, root, and stem extracts of *Z. aethiopica* using antihistamine assay. The leaf extracts exhibited histamine receptor binding of 88% at both concentrations of 400 μg/ml and 800 μg/ml [54].

Antialgal activities

Greca et al. [95] evaluated antialgal activities of ethyl acetate contains potentially toxic compounds. −3

References

REFERENCES

1. Snijder RC, Lindhout P, Tuyt JM. Genetic control of resistance to soft rot caused by *Erwinia carotovora* subsp. *carotovora* in *Zantedeschia* spp. (Araceae), section Aestivae. Euphytica 2004;136:319-25.

2. Wright PJ, Triggs CM, Barge GK. Control of bacterial soft rot of *calla* (*Zantedeschia* spp.) by pathogen exclusion, elimination and removal. N Z J Crop HortSci 2005;33:117-23.

3. Li L, Li X, Custers JB, Zhang K, Zhang L. Response of arum lily calli to culture filtrate of *Pectobacterium carotovorum* subsp. *carotovorum*. Afr J Biotechnol 2009;8:5362-6.

4. Rizzo D, Lazzereschi S, Nesi B, Stefani L, Paoli M, Della BM, et al. *Zantedeschia aethiopica* L. serious damages by INSV Colture Prot using the ferric-reducing antioxidant power. −5

5. Schmitz MO. Wild Flowers of Lesotho. Roma: ESSA; 1982.

6. Maroyi et al. 2011;77:934-46.

7. Halligan EA, Brooking IR, Funnell KA, Catley JL. Vegetative and floral shoot development of *Zantedeschia aethiopica*. Afr J Biotechnol 2009;8:5362-6.

8. Wei ZZ, Luo LB, Zhang HL, Xiong M, Wang X, Zhou D, et al. Identification and characterization of 43 novel polymorphic EST-SSR markers for arum lily, *Zantedeschia aethiopica* (*Araceae*). Am J Bot 2012;99:493-7.

9. Standley PC, Steyermark JA. Flora of Guatemala. Fieldiana Bot 1958;24:304-63.

10. Plowman T. Folk uses of new world aroids. Econ Bot 1969;23:97-122.

11. Lorenzi H, de Souza HM. Plantas ornamentais no Brasil: Arbustivas, Herbáceas e Trepadeiras. São Paulo: Plantarum, Nova Odessa; 1995.

12. Reinten EY, Coetzee JH, Van Wyk BE. The potential of South African indigenous plants for the international cut flower trade. S Afr J Bot 2011;77:934-46.

13. Van Wyk BE, Van Oudtshoorn B, Gericke N. Medicinal plants of South Africa. Pretoria: Briza Publications; 2007.

14. Van Wyk BE, Gericke N. Plants of wetland plants and use of ornamental flowering plants in constructed wetlands for wastewater treatment: A review. Appl Sci 2019;9:685.

15. Halligan EA, Brookings IR, Funnell KA, Catley JL. Vegetative and floral shoot development of *Zantedeschia aethiopica* black magic. Sci Hortic 2004;99:55-65.

16. Van Wyk BE, Van Oudshoorn B, Gericke N. Medicinal plants of South Africa. Pretoria: Briza Publications; 2013.

17. Jackson WP. The Cape white arum lily, *Zantedeschia aethiopica*. Veld Fl 1986;72:44-5.

18. Van Wyk BE, Gericke N. Medicinal plants of South Africa. Pretoria: Briza Publications; 2007.

19. Guillarmod A. A contribution towards the economic botany of *Zantedeschia* subsp. *aethiopica* in the Transkeian peoples. S Afr Med J 1974;48:1688-90.

20. Fox FW, Young ME. Food from the Veld: Edible Wild Plants of Southern Africa. Johannesburg: Delta Books, 1982.

21. Schmitz MO. Wild Flowers of Lesotho. Roma: ESSA; 1982.
Arum lily. In: Non-native flora of Italy: Species distribution and
50. Weber E. Invasive Plant Species of the World: A Reference
48. Khare CP. Indian Medicinal Plants: An Illustrated Dictionary. Berlin:
47. Tassin J, Riviere JN. Invasive plants on Réunion. Courrier Nat
46. Scott JK, Neser S. Prospects for the Biological Control of the
45. Hansen A, Sunding P. Flora of Macaronesia: Checklist of vascular
44. Scott JK, Delfosse ES. Southern African plants naturalized in Australia:
42. El Mokni R, El Aouni MH.
40. Arnold Th, De Wet BC. Plants of Southern Africa: Names and
39. Semenya SS, Maroyi A. Plants used by Bapedi traditional healers to
38. Manning JC, Goldblatt P. Plants of the Greater Cape Floristic Region 1:
37. Levy T. The genus Zantedeschia. Bothalia 1973;11:5-26.
36. Singh Y, Van Wyk AE, Bijnath H. Floral biology of Zantedeschia aethiopica (L.) Spreng. (Araceae). S Afr J Bot 1996;62:146-50.
35. Mabona U. Antimicrobial Activity of Southern African Medicinal Plants with Dermatological Relevance. MSc Dissertation. Johannesburg: University of the Witwatersrand; 2013.
34. Parson W, Cuthbertson EG. Noxious Weeds of Australia. Melbourne: CSIRO Publishing; 1992.
33. Rasethe MT, Semenya SS, Maroyi A. Medicinal plants traded in informal herbal medicine markets in the Limpopo province, South Africa. MSc Dissertation. Sovenga: University of Limpopo; 2010.
32. Bothalia 2007;37:75-7.
31. Parsons WT, Cuthbertson EG. Noxious Weeds of Australia. Melbourne: CSIRO Publishing; 1992.
30. Scott JK, Delfosse ES. Southern African plants naturalized in Australia: A review of weed status and biological control potential. Plant Prot Q 1992;7:70-80.
29, South African National
28. Moteetee A, Van Wyk BE. The concept of musa-pelo and the medicinal activity of selected plants used for skin care in South Africa fully explored? J Ethnopharmacol 2013;143:61-84.
27. Van Wyk BE, Van Heerden FR, Van Oudtshoorn B. Poisonous Plants of South Africa. Pretoria: Briza Publications; 2009.
26. Ntlali NR, Zobolo AM, Siebert SJ, Madakadze RM. Traditional medicinal plants of Northern KwaZulu-Natal, South Africa: Has indigenous knowledge expanded the menu? Afr J Agric Res 2012;7:6027-34.
25. Jaca TP, Kambizi L. Antibacterial properties of some wild leafy vegetables of the Eastern Cape province, South Africa. J Med Plants Res 2011;5:2624-8.
24. Dweha P, Mearns MA. Conserving indigenous knowledge as the key to the current and future use of traditional vegetables. Int J Inf Manag 2011;31:564-71.
23. Ntuli NR, Zobolo AM, Siebert SJ, Madakadze RM. Traditional medicinal plants of Northern KwaZulu-Natal, South Africa: Has indigenous knowledge expanded the menu? Afr J Agric Res 2012;7:6027-34.
22. Soper R. The Terrace Builders of Nyanga. Harare: Weaver Press; 2006.
21. Peters CR, O'Brien EM, Drummond RB. Edible wild plants of Sub-Saharan Africa. London, Kew: Royal Botanic Gardens; 1992.
20. Soper R. The Terrace Builders of Nyanga. Harare: Weaver Press; 2006.
19. Scott JK, Delfosse ES. Southern African plants naturalized in Australia:
18. Mabona U. Antimicrobial Activity of Southern African Medicinal Plants with Dermatological Relevance. MSc Dissertation. Johannesburg: University of the Witwatersrand; 2013.
17. Morris B. Spring flowers of Burkina Faso: Arums and gingers. Soc Malawi J 1987;40:39-48.
16. North American Weeds. Sommerfeltia 1993;17:1-295.
15. Scott JK, Delfosse ES. Southern African plants naturalized in Australia:
14. Scott JK, Delfosse ES. Southern African plants naturalized in Australia:
13. Ndhlala AR, Ncube B, Okem A, Mulaudzi RB, Van Staden J. Toxicology of some important medicinal plants in southern Africa. Food Chem Toxicol 2013;62:609-21.
12. Moteetee A, Van Wyk BE. The concept of musa-pelo and the medicinal activity of selected plants used for skin care in South Africa fully explored? J Ethnopharmacol 2013;143:61-84.
11. Long C. Swaziland’s Flora: Swati Names and Uses. Mbambane, Swaziland: Swaziland National Trust Commission; 2005. Available from: http://www.sntc.org.sz/index.asp. [Last accessed on 2019 Apr 14].
10. Soper R. The Terrace Builders of Nyanga. Harare: Weaver Press; 2006.
9. Scott JK, Delfosse ES. Southern African plants naturalized in Australia:
8. Moteetee A, Van Wyk BE. The concept of musa-pelo and the medicinal activity of selected plants used for skin care in South Africa fully explored? J Ethnopharmacol 2013;143:61-84.
7. Long C. Swaziland’s Flora: Swati Names and Uses. Mbambane, Swaziland: Swaziland National Trust Commission; 2005. Available from: http://www.sntc.org.sz/index.asp. [Last accessed on 2019 Apr 14].
6. Moteetee A, Van Wyk BE. The concept of musa-pelo and the medicinal activity of selected plants used for skin care in South Africa fully explored? J Ethnopharmacol 2013;143:61-84.
5. Scott JK, Delfosse ES. Southern African plants naturalized in Australia:
4. Scott JK, Delfosse ES. Southern African plants naturalized in Australia:
3. Scott JK, Delfosse ES. Southern African plants naturalized in Australia:
2. Scott JK, Delfosse ES. Southern African plants naturalized in Australia:
1. Scott JK, Delfosse ES. Southern African plants naturalized in Australia:
Manikandan PN. Ethnomedical botanical studies of Badaga population in the Nilgiri district of Tamil Nadu, South India. Anc Sci Life 2008;27:50-9.
87. Maroyi A. Diversity of use and local knowledge of wild and cultivated plants in the Eastern Cape province, South Africa. J Ethnobiol Ethnomed 2017;13:43.
92. Maroyi A. Laneea schimperi: Review of its botany, medicinal uses, phytochemistry and biological activities. Asian J Pharm Clin Res 2019;12:31-6.
93. Willaman JJ, Schubert BG. Alkaloid-bearing Plants and their Contained Alkaloids. Washington DC: US Department of Agriculture; 1961.
94. Greca MD, Ferrara M, Fiorentino A, Monaco P, Previtera L. Antialgal compounds from Zantedeschia aethiopica. Phytochemistry 1998;49:1299-304.
95. Pratash A, Dogra S, Gupta A. Antimicrobial and phytochemical screening of rhizome extracts of some native medicinal plant of Himachal Pradesh (India). Appl Biol Res 2013;15:1-5.
96. Chaves das Neves HJ, Pais MS. Identification of a spate regreening factor in Zantedeschia aethiopica. Biochem Biophys Res Commun 1980;95:1387-92.
97. Chaves das Neves HJ, Pais MS. A new cytokinin from the fruits of Zantedeschia aethiopica. Tetrahedron Lett 1980;21:4387-90.
98. Melo N, Tavares RM, Morais F, Barroso JG, Pais MS. Lipid composition of thylakoid membranes from leaves and regreened spathes of Zantedeschia aethiopica. Phytochemistry 1995;40:1367-71.
99. Motsei ML, Lindsey KL, van Staden J, Jäger AK. Screening of traditionally used South African plants for antifungal activity against Candida albicans. J Ethnopharmacol 2003;86:235-41.
100. Kee NL, Mnonopi N, Davids H, Naudé RJ, Frost CL. Antithrombotic/anticoagulant and anticancer activities of selected medicinal plants from South Africa. Afr J Biotechnol 2008;7:217-23.
101. Li AN, Li S, Li HB, Xu DP, Xu XR, Chen F. Total phenolic contents and antioxidant capacities of 51 edible and wild flowers. J Funct Foods 2014;6:319-30.
102. de Almeida RG, Silva ON, Cândido ES, Moreira JS, Jojosa DE, Gomes DG, et al. Screening and isolation of antibacterial proteinaceous compounds from flower tissues: Alternatives for treatment of healthcare-associated infections. Tang 2014;4:e5.