Primordial argon isotope fractionation in the atmosphere of Mars measured by the SAM instrument on Curiosity and implications for atmospheric loss

Sushil K. Atreya, Melissa G. Trainer, Heather B. Franz, Michael H. Wong, Heidi L. K. Manning, Charles A. Malespin, Paul R. Mahaffy, Pamela G. Conrad, Anna E. Brunner, Laurie A. Leshin, John H. Jones, Christopher R. Webster, Tobias C. Owen, Robert O. Pepin, and R. Navarro-González

Received 4 September 2013; revised 3 October 2013; accepted 7 October 2013; published 6 November 2013.

The quadrupole mass spectrometer of the Sample Analysis at Mars (SAM) instrument on Curiosity rover has made the first high-precision measurement of the nonradiogenic argon isotope ratio in the atmosphere of Mars. The resulting value of $^{36}\text{Ar}/^{38}\text{Ar} = 4.2 \pm 0.1$ is highly significant for it provides excellent evidence that “Mars” meteorites are indeed of Martian origin, and it points to a significant loss of argon of at least 50% and perhaps as high as 85–95% from the atmosphere of Mars in the past 4 billion years. Taken together with the isotopic fractionations in N, C, H, and O measured by SAM, these results imply a substantial loss of atmosphere from Mars in the posthydrodynamic escape phase. Citation: Atreya, S. K., et al. (2013), Primordial argon isotope fractionation in the atmosphere of Mars measured by the SAM instrument on Curiosity and implications for atmospheric loss, Geophys. Res. Lett., 40, 5605–5609, doi:10.1002/2013GL057763.

1. Introduction

[2] A relatively high-precision direct measurement of the $^{36}\text{Ar}/^{38}\text{Ar}$ ratio in the Martian atmosphere has previously been postulated to be the most compelling datum to definitively tie the so-called “Martian meteorites” (shergottites, nakhlites, and chassignites, i.e., SNC) to Mars [e.g., Owen, 1992]. This is because previous estimates of the (supposed) Martian atmospheric $^{36}\text{Ar}/^{38}\text{Ar}$ values derived from trapped gases in these meteorites suggested a value near 4 [e.g., Wiens et al., 1986; Bogard et al., 2001], highly distinct from the relatively uniform $^{36}\text{Ar}/^{38}\text{Ar}$ values of 5.3–5.5 found in a wide variety of other solar system objects ranging from the Sun to Jupiter to Earth (see Table 1). The earliest analyses of shock glasses from shergottite EET79001 noted the presence of Ar trapped on ejection, with a $^{36}\text{Ar}/^{38}\text{Ar}$ value considerably less than the terrestrial value of 5.3. Wiens et al. [1986] deduced a Martian “atmospheric” ratio of 4.1 ± 0.2 from EETA79001. Swindle et al. [1986] derived a value of 3.60 ± 0.44. Bogard [1997] considered all shergottite data available up to that time and gave a range of 3.5–4.6 for $^{36}\text{Ar}/^{38}\text{Ar}$ in the meteorites and concluded that the Martian atmospheric ratio of $^{36}\text{Ar}/^{38}\text{Ar}$ in these meteorites is less than 3.9. However, deriving a precise value for Martian atmospheric $^{36}\text{Ar}/^{38}\text{Ar}$ from Martian meteorites is made difficult because of the presence of significant amounts of Ar produced by galactic cosmic ray reactions during transit from Mars to Earth. The most accurate determinations derive from the EET79001 impact glass, as EET79001 has a relatively low-exposure age of 0.6 Myr [Bogard et al., 2001].

[3] Previous attempts to measure the argon isotopes in the atmosphere of Mars have met with limited success. Although radiogenic argon (^{40}Ar) and the primordial argon isotopes (^{36}Ar and ^{38}Ar) were measured by the mass spectrometer on the Viking Lander [Biemann et al. 1976; Owen and Biemann, 1976], an accurate determination of the $^{36}\text{Ar}/^{38}\text{Ar}$ ratio could not be achieved because of large background levels in the mass 38 region and instrumental effects, and hence, only a range of 4–7 for the $^{36}\text{Ar}/^{38}\text{Ar}$ ratio was reported [Biemann et al., 1976].

[4] The quadrupole mass spectrometer (QMS) of the Sample Analysis at Mars (SAM) instrument on Curiosity rover has carried out several direct atmospheric composition measurements on Mars including argon [Mahaffy et al., 2013]. Although all argon isotopes were detected, the direct ingestion of Mars air could not yield a precise value for $^{36}\text{Ar}/^{38}\text{Ar}$ ratio due to insufficient signal to background ratio (or S/BG, defined as the total signal level divided by the background level) at m/z 36. Enrichment experiments were therefore conducted to enhance the signal both at m/z 36 and 38. The result is the first high-precision data on the value of $^{36}\text{Ar}/^{38}\text{Ar}$ ratio in the Martian atmosphere. These data provide definite proof that the “Martian” rocks came from Mars (section 4). Additionally, considering that argon must have been completely or nearly completely removed from the atmosphere of Mars during hydrogen-led hydrodynamic escape and early intense sputtering loss, the argon isotopes in the present atmosphere provide arguably the most stringent constraints on posthydrodynamic loss, especially since argon...
Table 1. Argon Isotope Ratio ($^{36}\text{Ar}/^{38}\text{Ar}$) in the Atmosphere of Mars Compared to the Meteorites, Sun, Jupiter, and Earth

Object	$^{36}\text{Ar}/^{38}\text{Ar}$ Ratio
Mars atmosphere (MSL/SAM 2013)a	4.2 ± 0.1
Mars atmosphere (Viking/GCMS 1976)b,c	4–7
Mars meteoritesd	3.5–4.6
Sune	5.5 ± 0.01
Jupiterf	5.6 ± 0.25
Earthg	5.305 ± 0.008

aThis paper.
bBiemann et al. [1976].
cOwen [1992].
dBogard [1997].
eVogel et al. [2011].
fPepe et al. [2012].
gMahaffy et al. [2000].
hLee et al. [2006].

is chemically inert and it does not interact or exchange with the Martian surface or interior. The argon isotope fractionation is thus a key piece of the Mars habitability puzzle, which the Mars Science Laboratory (MSL) Mission is designed to address [Grotzinger et al., 2012]. This paper describes the argon isotope enrichment experiments (section 2) and their results (section 3) and significance in the context of Martian meteorites and atmospheric loss (section 4).

2. Measurement Technique—The Enrichment Experiments

[5] For optimal precision in measurements of noble gas abundances and isotope ratios, these species must be concentrated in the atmospheric sample through removal of active gases with components of SAM’s gas-processing system [Mahaffy et al., 2012]. Three modes of the enrichment experiment have been devised to achieve this goal: dynamic mode, semistatic mode, and static mode. Results presented in this manuscript were obtained with dynamic and semistatic mode experiments, summarized below (the reader is referred to Mahaffy et al. [2012] for a detailed description of the enrichment experiment modes). For the dynamic mode enrichment experiment, the atmospheric sample in the SAM manifold is exposed to chemical scrubbers to remove H_2O, CO_2, and other chemically active gases while the QMS is continuously pumped by the wide range turbomolecular pump (WRP1). The process of ingestion of an atmospheric sample, followed by scrubbing, is repeated multiple times, gradually enriching the sample in noble gases. This results in increased density of the noble gases needed to achieve high signal-to-noise (S/N) and S/BG for the low-abundance isotopeologues. Semistatic mode experiments follow the same procedure as described for dynamic mode but allow greater source pressures of noble gases by adding passive pumping by the getter in the QMS and only partially opening the high-conductance valve to the turbomolecular pump (WRP1). The higher pressure of noble gases inside the instrument thus gives enhanced signal over the dynamic enrichment mode. The first atmospheric enrichment experiment that was performed by SAM on Mars was a dynamic mode version of the noble gas enrichment experiment on sol 231 (Figure 1). A second, semistatic enrichment experiment was run on sol 341 (Figure 2). The $^{36}\text{Ar}/^{38}\text{Ar}$ ratio is stable across successive enrichment cycles at all m/z 36 count rates higher than $\sim 10^4$ counts/s (lower panel of each figure), so there is no instrumental fractionation effect due to the enrichment process. Preflight and test bed experiments show that the SAM-QMS accurately reproduces the $^{36}\text{Ar}/^{38}\text{Ar}$ ratio in calibration gas samples.

3. Data Analysis and Results

[6] As discussed in Mahaffy et al. [2013], the removal of the contribution of the QMS and manifold background signal to the mass channels of interest must be carefully done for each experiment. In both enrichment experiments, background scans of the evacuated instrument and manifold were performed prior to the first atmospheric sample ingestion. However, unlike direct atmospheric measurements, these background scans spanned a small time window relative to the length of the enrichment experiment, making it difficult to characterize evolution of the background signal using the background scans alone. To model background evolution for the argon isotopes of interest (m/z 36 and 38), we used m/z 39 as a tracer mass to measure the exponential decay of background signals due to loss through continuous operation of WRP1 and the getters (m/z 39 contains actual signal from fragments of trace hydrocarbon species produced in the SAM system). The data at m/z 39 were normalized to match the signal levels of m/z 36 and 38 in these background scan intervals, and the normalized background signals were subtracted from the enriched sample data to derive the background-corrected signals. We estimate uncertainties in the $^{36}\text{Ar}/^{38}\text{Ar}$ ratio due to background corrections are 1.7% for sol 231 and 3.4% for sol 341, based on the difference in behavior of separate tracers at m/z 19 and 39.

[7] The ratio of $^{36}\text{Ar}/^{38}\text{Ar}$ was calculated at each time point, then averaged and binned per enrichment cycle as shown in Figure 1b for the dynamic experiment and Figure 2b for the semistatic experiment. In both cases, the ratio converges to a stable value of just over 4 as S/BG increases in later enrichment cycles. The two experiments give consistent measurements of the $^{36}\text{Ar}/^{38}\text{Ar}$ ratio: 4.26 ± 0.08 for sol 231 and 4.16 ± 0.14 for sol 341. The uncertainty in the reported $^{36}\text{Ar}/^{38}\text{Ar}$ ratio is the standard error of the mean of the ratio determined from each mass scan, combined with the uncertainty introduced through the background correction.

[8] Within the range of uncertainty, the $^{36}\text{Ar}/^{38}\text{Ar}$ ratios determined by the dynamic and semistatic enrichment experiments are in excellent agreement. We report a value of 4.2 ± 0.1 for the final $^{36}\text{Ar}/^{38}\text{Ar}$ ratio in the atmosphere of Mars, based on data from the two enrichment experiments.

4. Rocks from Mars and Loss of Atmosphere to Space

[9] The $^{36}\text{Ar}/^{38}\text{Ar}$ value of 4.2 ± 0.1 measured by the SAM-QMS is in excellent agreement with those inferred for the Mars atmosphere through analysis of the SNC meteorites and thus provides extremely strong evidence that these meteorites are in fact samples of the red planet. The atmospheric $^{36}\text{Ar}/^{38}\text{Ar}$ derived from EETA79001 [Wiens et al., 1986] is indeed nearly identical to that determined by SAM in situ from the surface of Mars.

[10] The argon isotope ratio is also an exceptionally good indicator of atmospheric loss to space. Planetesimals forming...
Figure 1. Results from the dynamic enrichment of argon 36 and 38 on Mars by the SAM instrument on MSL on sol 231. (a) The successive ingestion of samples and enrichment cycles of the Mars atmosphere increases the counts per second (cps) and S/N of the argon isotopologues (symbols, top left axis), while the major ion m/z 44 of atmospheric CO2 is scrubbed down to background levels (black trace, top right axis) via adsorption onto the SAM scrubbers. During a normal atmospheric ingestion, the m/z 44 peak would saturate the detector. The data shown for m/z 36 and 38 have been corrected for background signal as described in the text. Enrichment cycles 1a and 1b reference measurements of the same samples of atmosphere as transferred into the QMS through two different valves. Cycle 1a used a low-conductance valve; cycles 1b through 10 used the same higher-conductance valve. Cycle 1b is thus the first true sample in this series. (b) The average ratio for each enrichment cycle is given as a function of argon 36 counts, with error bars representing the uncertainties introduced by scatter in the data and the multiple background subtraction methods used. All data from the final six enrichment cycles, where the 38Ar S/N > 3, are averaged to determine a 36Ar/38Ar ratio of 4.26 ± 0.08 for the dynamic enrichment run. Sol 0 is referenced to Curiosity’s landing at Gale Crater (4.5895°S, 137.4417°E) on Mars at 15:03 local mean solar time or 05:17 UTC on 6 August 2012, in Mars Year 31.

Figure 2. Same as Figure 1 but for the semistatic enrichment experiment on sol 341. All data from the final six enrichment cycles, where the 38Ar S/BG > 5, are averaged to determine a 36Ar/38Ar ratio of 4.16 ± 0.14 for the semistatic enrichment run. The uncertainty estimate includes statistical noise and the background correction.
this mechanism, atmospheric ions such as O+ are picked up by the solar wind and accelerated ant Sunward as they move down the magnetotail. A fraction of these energetic ions or neutrals produced by their charge transfer impacts the exobase, thus providing sufficient energy of ~1 keV to atmospheric species such as argon to escape by sputtering. As diffusive separation above the homopause results in the lighter isotope to be distributed to higher elevations than the heavier isotope, 36Ar is lost preferentially to space from the exobase, leading to an enrichment of the heavier isotope in the atmosphere. Modeling of early atmospheric processing prior to ~4 Ga [e.g., Pepin, 1994] suggests that it was probably dominated by a combination of hydrodynamic escape, intense sputtering loss, and large-scale impact erosion which would have depleted atmospheric Ar to levels well below its current abundance. The current 36Ar/38Ar value of 4.2 ± 0.1 must then have been set by largely the balancing of atmospheric loss through solar wind erosion with the outgassing of mantle Ar with a solar 36Ar/38Ar ratio of 5.5 (e.g., trapped interior component of Chassigny with 36Ar/38Ar ≥ 5.26) [Matthew and Marti, 2001] since about 4 Ga. The specific history of the atmospheric 36Ar/38Ar value depends on the details of the rates of outgassing from volcanoes, additions or loss from impacts, and atmospheric erosion with time. Previous models [Jakosky et al., 1994; Pepin, 1994; Hutchins and Jakosky, 1996; Hutchins et al., 1997] indicate that loss of at least 50% of the original atmospheric argon is required and probably as much as 85–95% if other sources of chondritic 36Ar/38Ar contribute (e.g., late chondritic impacts or later-than-anticipated outgassing) to achieve the 36Ar/38Ar value determined by SAM and reported in this paper.

[12] The low 36Ar/38Ar ratio measured by SAM at Mars is not likely the result of spallogenic nuclear processes, which would require very low chlorine concentrations of <0.1 wt.% in upper layers of rocks. Although the mean chlorine content of all surface rocks on Mars is unknown, chlorine has been found to be ubiquitous in every soil ever analyzed in situ [e.g., Clark et al. [1982] from Viking Landers] or from Mars orbit (Keller et al. [2007] from Mars Odyssey). Moreover, C1 concentrations are found to be relatively large, in the 0.3–1.2 wt.% range. If these large Cl abundances are representative also of global values in top layers of rocks, then, depending on the rate of diffusion

Figure 3. Comparison of the 36Ar/38Ar ratio measured in the atmosphere of Mars by Curiosity’s SAM-QMS in 2013 with the Viking GCMS result in 1976, Mars meteorites, Earth, Jupiter and the Sun. See Table 1 for the values and references.

Table 2. Isotope Fractionations in the Atmosphere of Mars Measured by the QMS and TLS Instruments of the SAM Suite on MSL

Isotopes	Mars Value	SAM Instrument
36Ar/38Ar	4.2 ± 0.1	QMS
40Ar/38Ar	(0.4 ± 0.2) × 10^3	QMS
13C/12C	173 ± 9	QMS
13C/12C	45 ± 12%	TLS
13C/12C	46 ± 4%	QMS
13C/12C	48 ± 5%	TLS

*This paper.
*Mahaffy et al. [2013].
*Wong et al. [2013].
*Webster et al. [2013].
*Clark et al. [1982].
*Pepin et al. [1994].
*Hutchins et al. [1997].
*Webster et al. [2013].
*Mars Odyssey.
*H2O(D/HSMOW = 1.5575 × 10^{-3}).
of (spallogenically generated) argon out of rocks up to the exobase, the $^{36}\text{Ar}/^{38}\text{Ar}$ ratio in the Martian atmosphere would be larger, not smaller, than the solar value of 5.5, contrary to the value reported in this paper (4.2). This would imply even greater loss of argon from the atmosphere than discussed above.

5. Summary

The $^{36}\text{Ar}/^{38}\text{Ar}$ ratio of 4.2 \pm 0.1 determined by the SAM-QMS in the Martian atmosphere is the lowest $^{36}\text{Ar}/^{38}\text{Ar}$ yet measured on any object in the solar system, except certain SNCs. This measurement implies loss of atmosphere to space in the past 4 billion years. It also provides a definitive proof that SNCs came from Mars. The argon measurements provide one key element of the suite of measurements that can help unravel the history of loss of the Martian atmosphere. SAM atmospheric measurements are underway to (i) refine the precision of the measurement of the abundance and fractionation in the heavy noble gases, Kr and Xe, and (ii) compare the atmospheric isotope composition of C, O, and H in carbon dioxide and water with those in gases evolved from solid samples [Leshin et al., 2013] that may retain the isotopic signatures from the distant past. The surface-atmospheric measurements also provide ground truth for future upper atmospheric measurements such as those anticipated from the Mars Atmosphere and Volatile Evolution (MAVEN) mission where the spacecraft will only venture occasionally low enough to sample the well-mixed atmosphere. The combination of measurements of the current atmospheric isotopic composition and current atmospheric loss rates provided by data from instruments on Curiosity and MAVEN, respectively, may lead to improved models of conditions on Mars in the distant past that might have been more suitable habitats for microbial life.

[11] Acknowledgments. We thank John Grotzinger, Alexander Pavlov, Richard Becker, Andrew Steele, Paul Niles, and Susanne Schwenzer for comments on the manuscript and the MSL Team for successful operation of the mission. This research was supported by the NASA Mars Science Laboratory Project.

[15] The Editor thanks Roger Wiens and an anonymous reviewer for their assistance in evaluating this manuscript.

References

Biemann, K., T. Owen, D. R. Rushneck, A. L. Lafleur, and D. W. Howarth (1976), The atmosphere of Mars near the surface: Isotope ratios and upper limits on noble gases, Science, 194, 76–78.

Bogard, D. D. (1997), A reappraisal of the Martian $^{36}\text{Ar}/^{38}\text{Ar}$ ratio, J. Geophys. Res., 102, 1653–1661.

Bogard, D. D., R. N. Clayton, K. Marti, T. Owen, and G. Turner (2001), Martian volatiles: Isotopic composition origin, and evolution, Chronol. Evol. Mars, 96, 425–458.

Clark, B. C., A. K. Baird, R. J. Weldon, D. M. Tsusuki, L. Schnabel, and M. P. Candelaria (1982), Chemical composition of Martian fines, J. Geophys. Res., 1982, 10,059–10,067.

Grotzinger, J. P., et al. (2012), Mars science laboratory mission and science investigation, Space Sci. Rev., 170, doi:10.1007/s11214-012-9892-2.

Hutchins, K. S., and B. M. Jakosky (1996), Evolution of Martian atmospheric argon: Implications for sources of volatiles, J. Geophys. Res., 101, 14,933–14,949.

Hutchins, K. S., B. M. Jakosky, and J. G. Luhmann (1997), Impact of a paleomagnetic field on sputtering loss of Martian atmospheric argon and neon, J. Geophys. Res., 102, 9183–9189.

Jakosky, B. M., R. O. Pepin, R. E. Johnson, and J. L. Fox (1994), Mars atmospheric loss and isotopic fractionation by solar-wind-induced sputtering and photochemical escape, Icarus, 111, 271–288.

Keller, J. M., et al. (2007). Equatorial and midlatitude distribution of chlorine measured by Mars Odyssey GRS, J. Geophys. Res., 112, E03S08, doi:10.1029/2006JE002679.

Lee, J. Y., K. Marti, J. P. Severinghaus, K. Kawamura, H. S. Yoo, J. B. Lee, and J. S. Kim (2006), A redermination of the isotopic abundances of atmospheric Ar, Geochim. Cosmochim. Acta, 70, 4507–4512.

Leshin, L. A., et al. (2013), Volatile, isotopic and organic analysis of solid samples of Martian fines with the Mars curiosity rover, Science, 341, doi:10.1126/science.1238937.

Luhmann, J. G., R. E. Johnson, and M. H. G. Zhang (1992), Evolutionary impact of sputtering of the Martian atmosphere by O+ pickup ions, Geophys. Res. Lett., 19, 2151–2154.

Mahaffy, P. R., H. B. Niemann, A. Alpert, S. K. Atreya, J. Demick, T. M. Donahue, D. N. Harpold, and T. C. Owen (2000), Noble gas abundances and isotopic ratios in the atmosphere of Jupiter from the Galileo Probe Mass Spectrometer, J. Geophys. Res., 105, 15,061–15,071.

Mahaffy, P. R., et al. (2012), The sample analysis at Mars investigation and instrument suite, Space Sci. Rev., 170(1–4), 401–478, doi:10.1007/s11214-012-9879-z.

Mahaffy, P. R., et al. (2013), Abundance and isotopic composition of gases in the Martian atmosphere: First results from the mars curiosity rover, Science, 341(6413), 263–266, doi:10.1126/science.1237966.

Mathew, K. J., and K. Marti (2001), Early evolution of Martian volatiles: Nitrogen and noble gas components in ALH84001 and Chassigny, J. Geophys. Res., 106, 1400–1422.

Nier, A. O., and M. B. McElroy (1977), Composition and structure of Mars’ upper atmosphere: Results from the neutral mass spectrometers on Viking 1 and 2, J. Geophys. Res., 82, 4341–4349.

Owen, T. (1992), The composition and early history of the atmosphere of Mars, in Mars, edited by H. H. Kieffer et al., pp. 818–834, Univ. of Arizona Press, Tucson, Ariz.

Owen, T., and K. Biemann (1976), Composition of the atmosphere at the surface of Mars: Detection of argon-36 and preliminary analysis, Science, 193, 801–803.

Owen, T., K. Biemann, D. R. Rushneck, J. E. Biller, D. W. Howarth, and A. L. Lafleur (1977), The composition of the atmosphere at the surface of Mars, J. Geophys. Res., 82, 4635–4638.

Pepin, R. O. (1994), Evolution of the Martian atmosphere, Icarus, 111, 289–304.

Pepin, R. O., D. J. Schlutter, R. H. Becker, and D. B. Reisenfeld (2012), Helium, neon, and argon composition of the solar wind as recorded in gold and other Genesis collector materials, Geochim. Cosmochim. Acta, 89, 62–80.

Swindle, T. D., M. W. Carfee, and C. M. Hohenberg (1986), Xenon and other noble gases in shergottites, Geochim. Cosmochim. Acta, 50, 1001–1015.

Vogel, N., V. S. Heber, H. Baur, D. S. Burnett, and R. Wieler (2011), Argon, krypton, and xenon in the bulk solar wind as collected by the Genesis mission, Geochim. Cosmochim. Acta, 75, 3057–3071.

Webster, C. R., et al. (2013), Isotope ratios of H, C, and O in Martian atmospheric carbon dioxide and water measured by the Curiosity rover, Science, 341(6413), 260–263, doi:10.1126/science.1237961.

Wiens, R. C., R. H. Becker, and R. O. Pepin (1986), The case for a Martian origin of the shergottites, II. Trapped and indigenous gas components in EETA 79001 glass, Earth Planet. Sci. Lett., 77, 149–158.

Wong, M. H., et al. (2013), MSL/SAM measurements of nitrogen and argon isotopes in the Mars atmosphere, LPI Contrib., 1719, 1722.

5609