Additive Eigenvalue Problems of the Laplace Operator with the Prescribed Contact Angle Boundary Condition

Hongmei Li and Peihe Wang

School of Math. Sci., Qufu Normal University, 273165 Qufu, Shandong, China

Correspondence should be addressed to Peihe Wang; peihewang@hotmail.com

Received 30 November 2019; Revised 12 January 2020; Accepted 21 January 2020; Published 28 April 2020

1. Introduction

Additive eigenvalue problem appears in ergodic optimal control or the homogenization of Hamilton–Jacobi equations. In ergodic optimal control, the additive eigenvalue corresponds to averaged long-run optimal costs, while it determines the effective Hamiltonian in the homogenization of Hamilton–Jacobi equations. It is usually applied to study the large time behavior of the Cauchy problem of Hamilton–Jacobi equations. As a character of large time behavior, it also appears in the fields of computer science, big data-driven cloud service recommendation, etc. One can refer to the related references such as [1–15]. In pure mathematics, it has been studied by so many mathematicians, such as Lions [16] and Ishii [17]. More introduction can be found in [17] and the references therein.

The Poisson equation is a kind of simple but interesting and important object in the field of partial differential equations, and it appears in lots of mathematical modelling related to the real world. Also, it is always submitted with several kinds of boundary conditions. Among various boundary conditions, Gilbarg and Trudinger boundary and Neumann boundary conditions are already included in the classical theory, and one can refer to the study [18]. For the capillary-type boundary conditions, there are relatively less results. In [19], Xu derived the gradient estimate for Poisson equations with the prescribed contact angle boundary condition. In this paper, we consider the Poisson equations with the prescribed contact angle boundary condition and finally derive the existence and the uniqueness of the solution to the additive problem of the Laplace operator with the prescribed contact angle boundary condition.

Theorem 1. Let \( \Omega \) be a bounded domain in \( \mathbb{R}^n \) with a smooth boundary, \( n \geq 2 \), then \( \nu \) is the inner normal vector of \( \partial \Omega \). For any \( \theta \in C^{\infty}(\overline{\Omega}) \), and \( |\cos \theta| \leq b < 1 \), there exist a unique \( \tau \in \mathbb{R} \) and a smooth function \( w \in C^{\infty}(\overline{\Omega}) \) solving

\[
\begin{align*}
\Delta u &= \tau, & \text{in } \Omega, \\
\frac{\partial u}{\partial \nu} &= -\cos \theta \sqrt{1 + |Du|^2}, & \text{on } \partial \Omega.
\end{align*}
\]

Moreover, the solution to (1) is unique up to a constant.

Our work is motivated by studies [20–22]. In [20], Arisawa got the classical solution to a kind of fully nonlinear uniformly elliptic equation with oblique derivative boundary conditions which comes from the stochastic control fields. In [21], Francesca studied the large time behavior as \( t \to + \infty \) of the viscosity solution \( \chi \) to a Neumann boundary value problem.
\[
\begin{aligned}
\chi_t + F(x, \nabla \chi, \nabla^2 \chi) &= \lambda, & \text{in } \Omega \times (0, \infty), \\
\chi(x, 0) &= \chi_0(x), & \text{on } \partial \Omega \times [0], \\
L (x, \nabla \chi) &= \mu, & \text{on } \partial \Omega \times (0, \infty), 
\end{aligned}
\]

where \( F \) and \( L \) are at least continuous functions defined, respectively, on \( \Omega \times \mathbb{R}^n \times \mathbb{R}^n \) and \( \overline{\Omega} \times \mathbb{R}^n \) and get a convergence result \( \chi \to u_{\text{sc}} \) as \( t \to +\infty \) uniformly in \( \Omega \), where \( u_{\text{sc}} \) is a solution to

\[
\begin{aligned}
F(x, Du , D^2u) &= \lambda, & \text{in } \Omega \times (0, \infty), \\
L (x, Du) &= \mu, & \text{on } \partial \Omega \times (0, \infty), 
\end{aligned}
\]

under the assumption that \( F \) and \( L \) satisfy several structure conditions. Especially, we remark that the condition

\[
L(x, p + sv(x)) - L(x, p) \geq \delta, 
\]

is obviously not satisfied by the prescribed contact angle boundary value. Also, it is a bit of regret that the study [21] only discussed the viscosity solution and one may expect for the classical solution even if some more strong conditions are imposed on \( F \). In [22], Gao et al. adopted a blow-up technique to conclude the a priori estimate to

\[
\begin{aligned}
u_t - F(\nabla^2 u) &= 0, & \text{in } \Omega \times [0, \infty), \\
u(x, 0) &= u_\Omega(x), & \text{on } \partial \Omega \times [0], \\
\frac{\partial \nu}{\partial \nu} &= \varphi(x), & \text{on } \partial \Omega \times (0, \infty), 
\end{aligned}
\]

and then in [23], Huang and Ye concluded the large time behavior of the solution in the classical senses. They proved that the solution will converge to one of the following additive eigenvalue problems with the Neumann boundary condition as the time goes to infinity:

\[
\begin{aligned}
F(\nabla^2 u) &= \lambda, & \text{in } \Omega, \\
\frac{\partial u}{\partial \nu} &= \varphi(x), & \text{on } \partial \Omega.
\end{aligned}
\]

A similar convergence result was obtained by Ma et al. [24] for the graphic mean curvature flow with the Neumann boundary condition:

\[
\begin{aligned}
u_t = \sum_{i,j=1}^n \left( \delta_{ij} - \frac{u_t u_{ij}}{1 + |\nabla u|^2} \right) u_{ij}, & \text{in } \Omega \times (0, \infty), \\
u(x) &= \varphi(x), & \text{on } \partial \Omega \times (0, \infty), \\
u(x, 0) &= u_\Omega(x), & \text{on } \partial \Omega,
\end{aligned}
\]

where \( \Omega \) is a strictly convex bounded domain in \( \mathbb{R}^n \) with the smooth boundary for \( n \geq 2 \) and \( u_\Omega(x) \) and \( \varphi(x) \) are smooth functions satisfying \( u_\Omega(x) = \varphi(x) \) on \( \partial \Omega \). They proved that, up to a constant, the solutions converge to a translating solution \( \lambda t + w \). In other words, \( (w, \lambda) \) is a solution to

\[
\begin{aligned}
\Delta u &= \epsilon u, & \text{in } \Omega, \\
\frac{\partial u}{\partial \nu} &= -\cos \theta \sqrt{1 + |Du|^2}, & \text{on } \partial \Omega,
\end{aligned}
\]

In fact, the result in [24] arose from the prescribed contact angle boundary condition for mean curvature-type equations which is the more complicated case, and till now, it is an open problem to get the translating soliton for the graphic mean curvature flow with the prescribed contact angle boundary condition except for the two-dimension case and for the free boundary case. For more details, one can refer to studies [25, 26], etc.

When we try to prove Theorem 1, we actually can follow the procedure in [24] to get the uniform gradient estimate without the \( C^0 \) a priori estimate. But for the Laplace case, it seems to be unnatural to require the strict convexity condition of the domain and we have to follow the blow-up technique adopted in [20, 22].

We firstly give some notations.

Suppose \( \Omega \) is a bounded domain in \( \mathbb{R}^n, n \geq 2, \partial \Omega \in C^3 \). Set

\[
\Omega_{\sigma} = \{x \in \Omega : d(x) < \sigma\},
\]

Then, there exists a positive constant \( \sigma_1 > 0 \) such that \( \forall \sigma \leq \sigma_1, d(x) \in C^3(\overline{\Omega}_{\sigma}) \). As mentioned by Lieberman [27] or Simon and Spruck [28], we can extend \( v \) as \( Dd \) in \( \Omega_{\sigma} \) which is a \( C^2 \) vector field. We also have the following formulas:

\[
\begin{aligned}
|\nabla v| + |\nabla^2 v| &\leq C(n, \Omega), & \text{in } \Omega_{\sigma}, \\
|v| &= 1, & \text{in } \Omega_{\sigma}.
\end{aligned}
\]

Also, in this paper, in order to simplify the proof of the theorems, we write \( O(\varepsilon) \) as an expression that there exists a uniform constant \( C > 0 \) such that \( |O(\varepsilon)| \leq C\varepsilon \).

2. Additive Eigenvalue Problem of the Laplace Operator with the Prescribed Contact Angle Boundary Value

In this section, we study the additive eigenvalue problem of the Poisson equation with the prescribed contact angle boundary value and prove Theorem 1.

To prove Theorem 1, one can find that we cannot get the \( C^0 \) estimate of the solutions to (1) since the solutions can differ from each other at least by a constant; thus, we cannot use the classical methods in partial differential equations to conclude the existence of the solutions. And we would like to settle the following perturbed equations and finally let the parameter \( \varepsilon \) go to zero:

\[
\begin{aligned}
\Delta u &= \epsilon u, & \text{in } \Omega, \\
\frac{\partial u}{\partial \nu} &= -\cos \theta \sqrt{1 + |Du|^2}, & \text{on } \partial \Omega,
\end{aligned}
\]
where $v$ is the inner unit normal vector field along $\partial \Omega$. For this equation with fixed $\epsilon$, the gradient estimate is already derived in [19], and the $C^0$ estimate

$$|\nu'\nu| \leq M$$  \hspace{1cm} (12)

for some uniform constant $M > 0$ can also be deduced by following the same method in [25]. So for fixed $\epsilon$, we can conclude the existence of the solution to (11) by Schauder theory, and we denote by $\nu'(x)$ the solution to (11).

Let $\nu' (x) = \nu'(x) - \nu'(x_0)$ with some fixed $x_0 \in \Omega$. In the following, we follow [20, 22] to adopt a blow-up technique to give the uniform $C^0$ estimate of $\nu'$.

**Lemma 1.** Let $\Omega$ be a bounded domain in $\mathbb{R}^n$ with a smooth boundary, $n \geq 2$. If $\nu'(x)$ is the smooth solution to (11), $\nu'(x)$ is defined as above, and then there is a constant $A_0 > 0$, independent of $\epsilon$, such that

$$|\nu'|_{C^0(\Omega)} \leq A_0. \hspace{1cm} (13)$$

**Proof.** If this is not the case, without loss of generality, we assume that

$$A_\epsilon = |\nu'|_{C^0(\Omega)} \to +\infty \text{ as } \epsilon \to 0^+. \hspace{1cm} (14)$$

Let $w^\epsilon = \nu'/A_\epsilon$, then

$$w^\epsilon (x_0) = 0, \hspace{1cm} |w'|_{C^0(\Omega)} = 1, \hspace{1cm} (15)$$

and $w^\epsilon$ satisfies the following equation:

$$\begin{cases} \Delta w = \epsilon (w + b_\epsilon \nu'(x_0)), \\ w_\nu = -\sqrt{b_\epsilon^2 + |Dw|^2} \cos \theta, \end{cases} \hspace{1cm} (16)$$

where $b_\epsilon = A_\epsilon^{-1}$ for simplicity.

To proceed with the proof, we need the following interior gradient estimate for the Poisson equation. The conclusion is known, and we omit the proof.

**Lemma 2.** Let $\Omega \subset \mathbb{R}^n$ be a bounded domain, $n \geq 2$. If $w$ satisfying $|w| \leq M$ for some positive constant $M$ is the smooth solution to

$$\Delta w = f (x, w), \quad \text{in } \Omega, \hspace{1cm} (17)$$

we then have for any $\Omega' \subset \subset \Omega$

$$\sup_{\Omega'} |Dw| \leq C(M, \text{diam}(\Omega), |f|_{C^0(\Omega \setminus \{-M, M\})}). \hspace{1cm} (18)$$

The following lemma concludes the gradient estimate near the boundary.

**Lemma 3.** Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with a smooth boundary and $\nu$ be the inner unit normal vector field along $\partial \Omega$, $n \geq 2$. If $w$ satisfying $|w| \leq M$ for some positive constant $M$ is the smooth solution to

$$\begin{cases} \Delta w = \epsilon (w + b \nu'(x_0)), \\ w_\nu = -\sqrt{b^2 + |Dw|^2} \cos \theta, \end{cases} \hspace{1cm} (19)$$

where $0 < b \leq 1$ is a constant, we then have for $\sigma \leq \sigma_i$

$$\sup_{\Omega_{\sigma_i}} |Dw| \leq C(M, \Omega, |\theta|_{C^0(\Omega)}). \hspace{1cm} (20)$$

**Proof.** Denote by $v = \sqrt{b^2 + |Dw|^2}$ $\eta = \nu + \nu_\epsilon \cos \theta = \nu + \sum_{i=1}^n w_i d_i \cos \theta$. Let $\Phi = \log \eta + h(w) + a d$, where $h$ and $a$ are to be determined later.

We may assume the maximum of $\Phi$ on $\overline{\Omega}_{\sigma_i}$ occurs at some point $y_0$ for some $\sigma_0 \leq \sigma_i$.

**Case 1** ($y_0 \in \partial \Omega_{\sigma_i} \cap \Omega$). The estimate follows from the interior gradient estimate stated in Lemma 2.

**Case 2** ($y_0 \in \partial \Omega$). Choose a proper coordinate at $y_0$; let $n$ denote the unit inner normal derivative and $1 \leq i \leq n$ denote the tangential derivative. Then at $y_0$,

$$d_n = 1, d_i = 0, \quad i = 1, \ldots, n - 1. \hspace{1cm} (21)$$

Hence,

$$0 = \Phi_i = \frac{n_i}{\eta} + h' w_i + ad_i = \frac{n_i}{\eta} + h' w_i, \quad i = 1, 2, \ldots, n - 1,$$

$$0 \geq \Phi_n = \frac{n_n}{\eta} + h' w_n + ad_n = \frac{n_n}{\eta} + h' w_n + a. \hspace{1cm} (22)$$

By a direct computation, we have

$$\eta_n = \nu_n + w_{n \nu} \cos \theta + \nu_n \cos \theta, \hspace{1cm} (23)$$

$$\eta_i = \nu_i + w_{i \nu} \cos \theta + \nu_i \cos \theta, \hspace{1cm} (24)$$

where we denote by $k_{ij}$ the Weingarten matrix.

Differentiating $w_{\nu}$ along $\partial \Omega$, we obtain for $i = 1, 2, \ldots, n - 1$

$$w_{\nu} = (-\nu \cos \theta)_{i} = -\nu_i \cos \theta - \nu (\cos \theta), \hspace{1cm} (25)$$

$$=-\left(\eta_{n} - w_{n \nu} \cos \theta - \nu_{n} \cos \theta \right)_{i} \cos \theta - \nu (\cos \theta), \hspace{1cm} (26)$$

Furthermore, using

$$0 = \Phi_i = \frac{n_i}{\eta} + h' w_i, \hspace{1cm} (27)$$

we get
\[ w_{ii} = \frac{\eta h' \cos \theta - v(1 + \cos^2 \theta) (\cos \theta)}{\sin^2 \theta}. \]  

Plugging (26) into (23), we have

\[
\eta_n = \frac{\sum_{i=1}^{n-1} w_i w_{ii}}{\nu} + \frac{\sum_{i,j=1}^{n-1} w_i k_{ij} w_{jj}}{\nu} + w_n (\cos \theta)_n
\]

\[ + \sum_{i,j=1}^{n-1} w_i k_{ij} w_{jj} + w_n (\cos \theta)_n. \tag{27} \]

Then,

\[
0 \geq \Phi_n = \frac{\sum_{i=1}^{n-1} w_i [\eta h' \cos \theta - v(1 + \cos^2 \theta) (\cos \theta)_i]}{\eta \nu \sin^2 \theta}
\]

\[ + \frac{\sum_{i,j=1}^{n-1} w_i k_{ij} w_{jj}}{\eta \nu} + w_n (\cos \theta)_n + h' w_n + \alpha \]

\[ = h' \cos \theta \sum_{i=1}^{n-1} w_i^2 + \frac{1}{\eta \nu} \sum_{i,j=1}^{n-1} w_i k_{ij} w_{jj} + \frac{1}{\eta} w_n (\cos \theta)_n + h' w_n + \alpha. \]

\[
= h' \cos \theta (\nu \sin^2 \theta - b^2) + \frac{1}{\eta \nu} (1 + \cos^2 \theta) \sum_{i=1}^{n-1} w_i (\cos \theta)_i
\]

\[ + \frac{1}{\eta} w_n (\cos \theta)_n + h' w_n + \alpha \]

\[ = h' \nu \cos \theta - h' b^2 \cos \theta + \frac{1}{\eta \nu} (1 + \cos^2 \theta) \sum_{i=1}^{n-1} w_i (\cos \theta)_i
\]

\[ + \frac{1}{\eta} w_n (\cos \theta)_n + h' w_n + \alpha \]

\[ = \frac{h' b^2 \cos \theta}{\nu \sin^2 \theta} - \frac{1}{\eta \nu} (1 + \cos^2 \theta) \sum_{i=1}^{n-1} w_i (\cos \theta)_i
\]

\[ + \frac{1}{\eta} w_n (\cos \theta)_n + \alpha. \tag{28} \]

Case 3. \((y_0 \in \Omega_{\alpha_0}).\) We take a special coordinate around \(y_0\) such that \(w_i = |\mathcal{D}w_i|, w_0 = 0 (i = 2, 3, \ldots, n),\) and \(w_{ij}\) is diagonal for \(i, j \geq 2.\) By the assumption, we have

\[
0 = \Phi_i = \frac{\eta h' \nu}{\eta} w_i + \alpha d_i,
\]

\[
0 \geq \Phi_{ij} = \frac{\eta h' \nu}{\eta} w_i + \alpha d_i + h' w_{ij} + \alpha d_j + \alpha d_i.
\]

Therefore,

\[
0 \geq \Delta \Phi = \sum_{i=1}^{n} (|h' \nu w_{ij} + \alpha d_i|^2 + \alpha \Delta d + h' \Delta w)
\]

\[ + \sum_{i=1}^{n} (|h' \nu w_{ij} + \alpha d_i|^2 + \alpha \Delta d + h' \Delta w)
\]

\[ = 1 + II + III + IV + V. \]

From the first-order condition (29), we get

\[
\eta_i = -\eta (h' \nu w_i + \alpha d_i). \tag{32} \]

On the contrary,

\[
\eta_i = v_i + (\nu \cos \theta)_i = v_i + \left( \sum_{l=1}^{n} w_l d_l \cos \theta \right)_i
\]

\[ = \sum_{l=1}^{n} w_l d_l \cos \theta + \sum_{l=1}^{n} w_l (d_l \cos \theta)_i \tag{33} \]

\[ = \sum_{l=1}^{n} (w_l + d_l \cos \theta) w_{li} + \sum_{l=1}^{n} w_l (d_l \cos \theta) w_{li}. \]

Therefore, for \(i > 1,\) we get

\[
(d \cos \theta)_i w_{li} \left( \frac{w_l}{\nu} + d_l \cos \theta \right) w_{li} + w_1 (d_l \cos \theta)_i = -\alpha d_i. \tag{34} \]

Denote

\[
T_1 = \frac{w_{li}}{\nu} + d_l \cos \theta, \tag{35} \]

without loss of generality, then we may assume that \(|\mathcal{D}w|\)

is large such that \(T_1\) is larger than 0 due to the assumption that \(|\cos \theta| \leq b < 1.\) Therefore,

\[
w_{li} \left( \frac{(d \cos \theta)_i w_{li} - \alpha d_i}{T_1} \left( \frac{d \cos \theta)_i w_{li}}{T_1} \right. \tag{36} \]

\[ = -\left( \frac{(d \cos \theta)_i w_{li}}{T_1} + O(\nu) \right. \]

And for \(i = 1,\) we get
\[
\begin{align*}
\eta_{ij} &= \sum_{i=1}^{n} \left( \frac{w_i}{v} + d_i \cos \theta \right) w_{ij} + \sum_{i=1}^{n} \left( \frac{w_i}{v} + d_i \cos \theta \right) \eta_{ij} \\
&\quad + \sum_{i=1}^{n} \left( d_i \cos \theta \right) w_{ij} + \sum_{i=1}^{n} \left( d_i \cos \theta \right) \eta_{ij} \\
&= \sum_{i=1}^{n} \left( \frac{w_i}{v} + d_i \cos \theta \right) w_{ij} + \sum_{i=1}^{n} \left[ w_{ij} - \frac{w_i v_j}{v^2} + \left( d_i \cos \theta \right) \right] \eta_{ij} \\
&\quad + \sum_{i=1}^{n} \left( d_i \cos \theta \right) w_{ij} + \sum_{i=1}^{n} \left( d_i \cos \theta \right) \eta_{ij},
\end{align*}
\]
and thus by equation (19),
\[
\Delta \eta = \sum_{i=1}^{n} \left( \frac{w_i}{v} + d_i \cos \theta \right) (\Delta w)_j + \sum_{i=1}^{n} \frac{w_i^2}{v^3} - \sum_{i=1}^{n} \frac{w_i^2 w_{j}}{v^3} \\
&\quad + 2 \sum_{i=1}^{n} \left( d_i \cos \theta \right) \eta_{ij} + \frac{w_1}{v} \Delta (d_i \cos \theta) \\
&\quad \geq \sum_{i=1}^{n} \frac{w_i^2}{v} - \sum_{i=1}^{n} \frac{w_i^2 w_{j}}{v^3} + 2 \sum_{i=1}^{n} \left( d_i \cos \theta \right) \eta_{ij} \\
&\quad + \left[ w_1 \Delta (d_i \cos \theta) + \frac{w_1}{v} \Delta (d_i \cos \theta) \right] \\
&= I_1 + I_2 + I_3.
\]
For the term \(I_1\),
\[
I_1 = \sum_{i=1}^{n} \frac{w_i^2}{v^3} - \sum_{i=1}^{n} \frac{w_i^2 w_{j}}{v^3} = \frac{b^2 w_{j}^2}{v^3}. \tag{39}
\]
\[
\begin{align*}
I_2 &= 2 (d_i \cos \theta) \eta_{ij} + 2 \sum_{i=1}^{n} \left[ (d_i \cos \theta) + (d_i \cos \theta) \right] \eta_{ij} \\
&\quad + 2 \sum_{i=1}^{n} (d_i \cos \theta) \eta_{ij} \\
&= 2 (d_i \cos \theta) \left\{ \sum_{i=1}^{n} \left( d_i \cos \theta \right)^2 \eta_{ij} + O(v^2) \right\} \\
&\quad + 2 \sum_{i=1}^{n} (d_i \cos \theta) \eta_{ij} - 2 \sum_{i=1}^{n} \left[ (d_i \cos \theta) + (d_i \cos \theta) \right] \\
&\quad \cdot \left[ \frac{(d_i \cos \theta) \eta_{ij} + O(v)}{T_1} \right] \\
&= \sum_{i=1}^{n} O(1) \eta_{ij} + O(v^2), \tag{40}
\end{align*}
\]
and for the last term \(I_3\),
\[
I_3 = O(v). \tag{41}
\]
Combining the results of \(I_1\), \(I_2\), and \(I_3\), we have
\[
I = I_1 + I_2 + I_3 \geq \sum_{i=1}^{n} \left( \frac{w_i^2}{v} + O(1) \right) \eta_{ij} + O(v^2) \geq O(v^2). \tag{42}
\]
Then, we have
\[
\Delta \eta = O(v^2). \tag{43}
\]
Let \(h(w) = -\ln \cos(w/M)\), then
\[
\|\Delta \| = |\Delta u| = O(1), \tag{44}
\]
\[
|\Delta w| = \left( h'' - h'^2 \right) |Dw|^2 = \frac{1}{M^2} |Dw|^2, \tag{45}
\]
\[
|\Delta \| = |2h' a d_i w_i| = |2h' a d_i Dw| \leq \frac{1}{2M^2} |Dw|^2 + O(1), \tag{46}
\]
\[
|\Delta \| = |a \Delta d - a^2 | |Dd|^2 = O(1). \tag{47}
\]
Therefore, we have at \(y_0\)
\[
0 \geq \Delta \Phi \geq O(v) + \frac{1}{2M^2} |Dw|^2 + O(1), \tag{48}
\]
which shows that
\[
|Dw|^2 \leq C. \tag{49}
\]
Then by a standard discussion, we have
\[
|Dw|^2 (x) \leq C, \quad \forall x \in \Omega_{\varepsilon_0}. \tag{50}
\]
And this finishes the proof of Lemma 3.
Now we can proceed with the proof of Lemma 1.
Proof of Lemma 1. Based on the estimates in Lemma 2 and Lemma 3, we can use Schauder theory to consider the limit behavior of problem (16) and finally get that
\[
\begin{aligned}
\Delta w &= 0, \quad \text{in } \Omega, \\
\tau w &= -|Dw|\cos \theta, \quad \text{on } \partial \Omega.
\end{aligned}
\]  
(49)

It shows that the maximum of \(w\) only occurs on the boundary, denoted by \(\tau\). Then at this point, the tangential part of \(Dw\) is zero and \(\tau w \neq 0\). It follows that
\[|\cos \theta| = 1.\]  
(50)

But this contradicts the condition \(|\cos \theta| < b < 1\), and thus, the proof of Lemma 1 is finished.

Proof of Theorem 1. Since \(\nu^e(x) = u^e(x) - u^e(x_0)\), the equation \(\nu^e\) satisfies
\[
\begin{aligned}
\Delta \nu^e &= e(\nu^e + u^e(x_0)), \\
\nu^e_\tau &= -\sqrt{1 + |D\nu^e|^2}\cos \theta.
\end{aligned}
\]  
(51)

To consider this equation, because of (12), we can apply Lemma 2 and Lemma 3 to conclude the uniform gradient estimate of \(\nu^e\). Combined with Lemma 1, we immediately derive the uniform \(C^1\) bound of \(\nu^e\) independent of \(e\). And then follows the uniform \(C^{k,a}\) bound of \(\nu^e\), for \(k \in \mathbb{Z}^+, a \in (0, 1)\). Now we come to think about the process as \(e\) goes to zero. Obviously, we can assume that \(\nu^e\) will converge to a smooth function \(\nu\) in the \(C^{k,a}\) sense for \(k \in \mathbb{Z}^+, a \in (0, 1)\).

For the function \(e(\nu^e + u^e(x_0)) = eu^e(x)\) with the parameter \(e\), we know by (12) that they are uniformly bounded with their gradient; thus by the Arzela–Ascoli theorem, there is a subsequence, denoted also by \(\nu^e\), converging to a \(C^1\) function \(\nu(x_0)\) satisfying \(D\nu_0(x) = \lim_{e \to 0} D(\nu^e + u^e(x_0)) = 0\), where we used the fact that \(|D\nu^e|\) is uniformly bounded. Thus, \(\nu(x_0)\) is a constant function \(\tau\). That is to say, we have solved the following additive eigenvalue problem:
\[
\begin{aligned}
\Delta \nu &= \tau, \quad \text{in } \Omega, \\
\frac{\partial \nu}{\partial \nu} &= -\sqrt{1 + |D\nu|^2}\cos \theta, \quad \text{on } \partial \Omega.
\end{aligned}
\]  
(52)

For the uniqueness, we can assume that \((\nu, \tau)\) is also a solution to (1), we may suppose that \(\tau \leq \tau\), and then we have
\[
\begin{aligned}
\Delta (\nu - \nu) &= \tau - \tau \leq 0, \quad \text{in } \Omega, \\
\frac{\partial (\nu - \nu)}{\partial \nu} &= -\sqrt{1 + |D(\nu - \nu)|^2}\cos \theta, \quad \text{on } \partial \Omega,
\end{aligned}
\]  
(53)

where \(\overrightarrow{b} = \int_0^1 (D(tv + (1 - t)\overrightarrow{\nu}) \sqrt{1 + |D(tv + (1 - t)\overrightarrow{\nu})|^2} \)dt is a vector with \(|\overrightarrow{b}| < 1\). We then can follow the discussion of (49) to discuss the minimum point of \(\nu - \nu\) and finally deduce that \(\nu - \nu\) must be a constant and \(\tau = \tau\). This finishes the proof of Theorem 1.

Remark. From Introduction, we can know that the additive eigenvalue problem is usually related to the large time behavior of the corresponding parabolic equation with the same kind of boundary value. Actually, we will come to consider this problem in the forthcoming paper.

Data Availability
No data were used to support this study.

Conflicts of Interest
The authors declare that they have no conflicts of interest.

Acknowledgments
This work was supported financially by the National Natural Science Foundation of China (11471188) and STPF of Shandong Province (No. J17KA161).

References
[1] X. Wang, L. T. Yang, X. Xie, J. Jin, and M. J. Deen, “A cloud-edge computing framework for cyber-physical-social services,” IEEE Communications Magazine, vol. 55, no. 11, pp. 80–85, 2017.
[2] X. Wang, L. T. Yang, L. Kuang, X. Liu, Q. Zhang, and M. J. Deen, “A tensor-based big-data-driven routing recommendation approach for heterogeneous networks,” IEEE Network, vol. 33, no. 1, pp. 64–69, 2019.
[3] X. Wang, L. T. Yang, H. Li, M. Lin, J. Han, and B. O. Apduhan, “NQA: a nested anti-collision algorithm for RFID systems,” ACM Transactions on Embedded Computing Systems, vol. 18, no. 4, pp. 1–21, 2019.
[4] X. Wang, L. T. Yang, Y. Wang, X. Liu, Q. Zhang, and M. J. Deen, “A distributed tensor-train decomposition method for cyber-physical-social services,” ACM Transactions on Cyber-Physical Systems, vol. 3, no. 4, pp. 1–15, 2019.
[5] L. Qi, Q. He, F. Chen et al., “Finding all you need: web APIs recommendation in web of things through keywords search,” IEEE Transactions on Computational Social Systems, vol. 6, no. 5, pp. 1063–1072, 2019.
[6] H. Liu, H. Kou, C. Yan, and L. Qi, “Link prediction in paper citation network to construct paper correlation graph,” EURASIP Journal on Wireless Communications and Networking, vol. 2019, no. 1, 2019.
[7] L. Qi, X. Zhang, W. Dou, C. Hu, C. Yang, and J. Chen, “A two-stage locality-sensitive hashing based approach for privacy-preserving mobile Service recommendation in cross-platform edge environment,” Future Generation Computer Systems, vol. 88, pp. 636–643, 2018.
[8] L. Qi, X. Zhang, W. Dou, and Q. Ni, “A distributed locality-sensitive hashing-based approach for Cloud Service recommendation from multi-source data,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 11, pp. 2616–2624, 2017.
[9] W. Gong, L. Qi, and Y. Xu, “Privacy-aware multidimensional mobile Service quality prediction and recommendation in distributed fog environment,” Wireless Communications and Mobile Computing, vol. 2018, Article ID 3075849, 8 pages, 2018.
[10] L. Qi, Y. Chen, Y. Yuan, S. Fu, X. Zhang, and X. Xu, “A QoS-aware virtual machine scheduling method for energy
conservation in cloud-based cyber-physical systems,” *World Wide Web*, vol. 23, no. 2, pp. 1275–1297, 2020.

[11] X. Xiaolong, H. Chengxun, X. Zhanyang, Q. Jianyong, W. Shaohua, and M. Z. A. Bhuiyan, “Joint optimization of offloading utility and privacy for edge computing enabled IoT,” *IEEE Internet of Things Journal*, vol. 7, no. 4, pp. 2622–2629, 2020.

[12] Xu Xiaolong, Z. Xuyun, G. Honghao, X. Yuan, Qi Lianyong, and D. Wanchun, “BeCome: blockchain-enabled computation offloading for IoT in mobile edge computing,” *IEEE Transactions on Industrial Informatics*, vol. 16, no. 6, pp. 4187–4195, 2020.

[13] X. Xiaolong, C. Yi, Z. Xuyun, L. Qingxiang, L. Xihua, and Q. Lianyong, “A blockchain-based computation offloading method for edge computing in 5g networks,” *Software: Practice and Experience*, 2019.

[14] X. Xu, Y. Xue, L. Qi et al., “An edge computing-enabled computation offloading method with privacy preservation for internet of connected vehicles,” *Future Generation Computer Systems*, vol. 96, pp. 89–100, 2019.

[15] X. Xu, Q. Liu, X. Zhang, J. Zhang, L. Qi, and W. Dou, “A blockchain-powered crowdsourcing method with privacy preservation in mobile environment,” *IEEE Transactions on Computational Social Systems*, vol. 6, no. 6, pp. 1407–1419, 2019.

[16] P.-L. Lions, “Neumann type boundary conditions for Hamilton-Jacobi equations,” *Duke Mathematical Journal*, vol. 52, no. 4, pp. 793–820, 1985.

[17] H. Ishii, “Introduction to viscosity solutions and the large time behavior of solutions: approximations, numerical analysis and applications,” *Lecture Notes in Mathematics*, pp. 111–249, Springer, Berlin, Germany, 2013.

[18] D. Gilbarg and N. S. Trudinger, *Elliptic Partial Differential Equations of Second Order*, Springer-Verlag, Berlin, Germany, 2nd edition, 1983.

[19] J. Xu, “Gradient estimates for semi-linear elliptic equations with prescribed contact angle problem,” *Journal of Mathematical Analysis and Applications*, vol. 455, no. 1, pp. 361–369, 2017.

[20] M. Arisawa, “Long time averaged reflection force and homogenization of oscillating Neumann boundary conditions,” *Annales de l’Institut Henri Poincare (C) Non Linear Analysis*, vol. 20, no. 2, pp. 293–332, 2003.

[21] F. Da Lio and Francesca, “Large time behavior of solutions to parabolic equations with Neumann boundary conditions,” *Journal of Mathematical Analysis and Applications*, vol. 339, no. 1, pp. 384–398, 2008.

[22] Z. Gao, X. Ma, and P. Wang, “Large time behavior of smooth solutions to uniformly parabolic equations with Neumann boundary condition,” In press.

[23] R. Huang and Y. Ye, “A convergence result on the second boundary value problem for parabolic equations,” 2018, https://arxiv.org/abs/1806.00431.

[24] X.-N. Ma, P.-H. Wang, and W. Wei, “Constant mean curvature surfaces and mean curvature flow with non-zero Neumann boundary conditions on strictly convex domains,” *Journal of Functional Analysis*, vol. 274, no. 1, pp. 252–277, 2018.

[25] S. J. Altschuler and L. F. Wu, “Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle,” *Calculus of Variations and Partial Differential Equations*, vol. 2, no. 1, pp. 101–111, 1994.