Capture Hi-C reveals the influence on dynamic three-dimensional chromosome organization perturbed by genetic variation or vanillin stress in *Saccharomyces cerevisiae*

Xinning Wang13†, Bolun Yang1†, Weiquan Zhao1, Wenyan Cao2, Yu Shen2, Zailu Li1 and Xiaoming Bao1*

1State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China, 2State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China, 3Shandong University Library, Jinan, China

Studying the mechanisms of resistance to vanillin in microorganisms, which is derived from lignin and blocks a major pathway of DNA double-strand break repair in yeast, will benefit the design of robust cell factories that produce biofuels and chemicals using lignocellulosic materials. A high vanillin-tolerant *Saccharomyces cerevisiae* strain EMV-8 carrying site mutations compared to its parent strain NAN-27 was selected for the analyses. The dynamics of the chromatin structure of eukaryotic cells play a critical role in transcription and the regulation of gene expression and thus the phenotype. Consequently, Hi-C and transcriptome analyses were conducted in EMV-8 and NAN-27 in the log phase with or without vanillin stress to determine the effects of mutations and vanillin disturbance on the dynamics of three-dimensional chromosome organization and the influence of the organization on the transcriptome. The outcomes indicated that the chromosome interaction pattern disturbed by vanillin stress or genetic mutations in the log phase was similar to that in mouse cells. The short chromosomes contact the short chromosomes, and the long chromosomes contact the long chromosomes. In response to vanillin stress, the boundaries of the topologically associating domain (TAD) in the vanillin-tolerant strain EMV-8 were more stable than those in its parent strain NAN-27. The motifs of *SFL1*, *STB3*, and *NHP6A/B* were enriched at TAD boundaries in both EMV-8 and NAN-27 with or without vanillin, indicating that these four genes were probably related to...
TAD formation. The Indel mutation of \textit{YRR1}, whose absence was confirmed to benefit vanillin tolerance in EMV-8, caused two new interaction sites that contained three genes, \textit{WTM2}, \textit{PUP1}, and \textit{ALE1}, whose overexpression did not affect vanillin resistance in yeast. Overall, our results revealed that in the log phase, genetic mutations and vanillin disturbance have a negligible effect on three-dimensional chromosome organization, and the reformation or disappearance of TAD boundaries did not show an association with gene expression, which provides an example for studying yeast chromatin structure during stress tolerance using Hi-C technology.

KEYWORDS
vanillin, Hi-C, topologically associating domain, \textit{Saccharomyces cerevisiae}, stress resistance, mutation

Introduction

As a plentiful and renewable biomass resource, lignocellulosic materials are widely studied for the production of biofuels and other valuable chemicals. Pretreatment of lignocellulosic materials to destroy the complex structure of lignocellulose and release monosaccharides is crucial for the efficient utilization of lignocellulose (Maurya et al., 2015; Ramos and Duque, 2019). However, this process can generate a series of inhibitors, such as organic acids, furans, and phenolics, which inhibit the growth and metabolism of microorganisms (Saini et al., 2015; Sindhu et al., 2016).

Vanillin, a typical guaiacyl phenol generated by lignin degradation during pretreatment, is considered an important inhibitor of lignocellulose hydrolysates because it inhibits the viability of many microorganisms at very low concentrations (Klinke et al., 2004). The concentrations of vanillin range from 1 to 26 mM according to the types of biomass materials and the method of pretreatment (Almeida et al., 2007; Heer and Sauer, 2008). In addition, as a natural product with a unique scent, vanillin is the second most demanded flavoring agent after saffron and is used in food products, perfumery, beverages, and the pharmaceutical industry due to its biological activities, such as its scent and its antioxidant, antitumorigenic, tranquilizer, and antidepressant activities (Walton et al., 2000; Tai et al., 2008). It is also a good model for the understanding fundamental cellular processes of corresponding higher eukaryotic organisms, is widely used in traditional ethanol production cell factories because of its easy genetic manipulation and robustness to exposure to ethanol and low pH (Galao et al., 2007; Gibson et al., 2007; Liu et al., 2009; Hong and Nielsen, 2012). It is also a good model for the three-dimensional organization of eukaryotic genomes (Kim et al., 2017). In our previous study, EMV-8, a prominently higher vanillin-tolerant \textit{S. cerevisiae} strain than its parent strain NAN-27, which is an ethanol-producing strain used by Henan Tianguan Group Co., Ltd. (China), was obtained.
through ethyl methanesulfonate (EMS) mutation and adaptive evolution in lignocellulosic hydrolysates (Shen et al., 2014). To obtain a global view of the dynamics of three-dimensional chromosome organization affected by vanillin stress and mutations of EMV-8, as well as the influence of 3D chromosome organization on the transcriptome, we conducted an evaluation using a high-throughput chromosome conformation capture technology, Hi-C, and transcriptomic analysis between NAN-27 and EMV-8 with or without vanillin stress.

Materials and methods

Strains, plasmids, and culture conditions

The Hi-C assay captured the chromosome conformations of the *S. cerevisiae* industry strain NAN-27 (Zhang et al., 2010) and its derivative strain EMV-8, a vanillin-tolerant strain (Shen et al., 2014). The genes for overexpression were amplified from EMV-8 and expressed in laboratory strain BY4741 (MATa, his3Δ leu2Δ met5Δ ura3Δ, EUROSCARF, Germany). pJFE3 (Shen et al., 2012), a 2 μ plasmid with a *TEF1* promoter, a *PGK1* terminator, and *URA3* as the selection marker, was used as a vector for gene overexpression.

Yeast extract peptone dextrose (YPD) medium (10 g L\(^{-1}\) yeast extract, 20 g L\(^{-1}\) tryptone, 20 g L\(^{-1}\) glucose) and SD medium (1.7 g L\(^{-1}\) yeast nitrogen base, Sangon, China, 5 g L\(^{-1}\) ammonium sulfate, Sangon, China, CSM, MP Biomedicals, Solon, OH, USA, 20 g L\(^{-1}\) glucose) were used for the activation and culture of the NAN-27 and EMV-8 strain and the host strain BY4741. Sc-URA medium using CSM-URA (uracil single dropout of complete supplement mixture) instead of the CSM of SD medium was used for the activation and batch fermentation of *S. cerevisiae* strains carrying plasmids. Vanillin was added to the medium as indicated. All of the cultures were incubated at 30°C.

Fermentation

A single colony was cultured in 3 ml of SD or SC-URA for 24 h. Next, the cultures were shifted into 20 ml of fresh medium with an OD\(_{600}\) of 0.2 overnight culture. Then, the overnight suspension cultures were inoculated into 100 ml flasks with 40 ml of fermentation medium at an initial OD\(_{600}\) of 0.2. Then, the batch fermentation was cultured at 30°C and 200 rpm.

Analysis of extracellular vanillin

The concentrations of extracellular vanillin and vanillyl alcohol were measured by an HPLC Waters system e2695 (Waters, USA) prepared with an XbridgeTM.C18 column (Waters, USA). The peaks were detected at room temperature by an ultraviolet detector (PDA-2998) at 210 nm with a mobile phase of 40% absolute methanol (Chromatographic grade, Fisher Chemical, USA) supplied at a flow rate of 0.6 ml min\(^{-1}\).

Transcriptome analysis

The precultured NAN-27 and EMV-8 cells in the SD medium were transferred into fresh SD or SD medium containing 8 mM vanillin with an initial OD\(_{600}\) of 0.2. The cells were harvested during the log phase (OD\(_{600}\) = 1.0) and quenched using liquid nitrogen. The UNIQ-10 TRizol RNA Purification Kit (Sangon Biotech, China) was used to extract total RNA, from which mRNA was isolated, fragmented, and used as a template to synthesize cDNA. The short fragments were connected with adapters to obtain suitable fragments for PCR amplification. Ultimately, the libraries were sequenced by the Illumina HiSeqTM 4000 (ANNOROAD Genome Beijing, China). The differentially expressed genes were screened out according to the following criteria: fold change ≥ 2 and FDR ≤ 0.001. All of the analyses were performed in biological triplicates. The transcriptome data were deposited in the NCBI Sequence Read Archive (SRA accession number: PRJNA856062).

Hi-C analysis

EMV-8 and NAN-27 were cultured in SD with 8 mM vanillin or without vanillin. When the OD\(_{600}\) reached 1.0, the cells were collected for Hi-C. Hi-C libraries were constructed according to previous studies (Belton and Dekker, 2015). The collected cells were cross-linked for 20 min with 3% formaldehyde at room temperature and quenched with 0.375 M glycine for 5 min. The cross-linked cells were homogenized by grinding them to a fine powder in liquid nitrogen to lyse the cell walls. Endogenous nuclease was inactivated with 0.1% SDS, and then chromatin DNA was digested by 100 U *MboI* (NEB), marked with biotin-14-dCTP (Invitrogen), and ligated by 50 U T4 DNA ligase (NEB). After reversing the cross-links, the ligated DNA was extracted using a QIAamp DNA Mini Kit (Qiagen) following the manufacturers’ instructions. Purified DNA was sheared into 300–500-bp fragments and further blunt-end repaired, A-tailed, and adaptor-added, followed by purification through biotin–streptavidin-mediated pull-down and PCR amplification. Finally, the Hi-C libraries were quantified and sequenced on the Illumina NovaSeq platform (San Diego, CA, USA) or the MGI-seq platform (BGI, China). The Hi-C data were deposited in the NCBI Sequence Read Archive (SRA accession number: PRJNA855494).
Results

Vanillin disturbance or genetic disturbance does not affect the interaction pattern between chromosomes when strains are grown to an OD$_{600}$ of 1.0

We focused on the mechanism of detoxification other than the stress response. Thus, the Hi-C and transcriptome samples were cultured with 8 mM vanillin at the initiation of culture. We chose to collect samples when the OD$_{600}$ reached 1.0 and the concentrations of vanillin were approximately 7.2 mM (EMV-8) to 7.8 mM (NAN-27). The differences between EMV-8 and NAN-27 were obvious at that OD$_{600}$. As the different resistant strains took different times to reach the same phase, EMV-8 and NAN-27 were collected after 12 and 20 h of culture, respectively (Figure 1).

Each chromosome occupies a separate area (chromosome territories) in the nucleus, forming a chromatin domain. However, due to the small nuclear space, there will still be contacts between adjacent chromosomes. In human and mouse cells, longer chromosomes tend to be closer to long chromosomes, while chromosomes with smaller lengths tend to contact spatially with small chromosomes (Zhang et al., 2012). We standardize the interaction between the chromosomes to obtain the standardized interaction matrix. The higher the interaction value between two chromosomes, the closer the two chromosomes are in space. A similar interaction pattern exists in both EMV-8 and NAN-27 with or without vanillin, even though there were a total of 450 CDSs with non-synonymous SNPs and 44 CDSs with InDels in strain EMV-8 compared to its parent strain NAN-27 (Wang et al., 2017). The S. cerevisiae genome is approximately 12.2 Mb, with 6,275 genes compactly organized on 16 chromosomes. The genome of NAN-27 is approximately 12.02 Mb, with 5,700 genes according to the de novo sequencing of NAN-27 (Wang et al., 2017). There were frequent contacts between Chr3 (155,425 bp), Chr7 (370,497 bp), Chr8 (106,760 bp), Chr9 (297,348 bp), and Chr15 (301,727 bp) (Figure 2). These five chromosomes were obviously much shorter than the other chromosomes. Chr13, the longest chromosome in S. cerevisiae (1,735,585 bp), has more frequent interactions with Chr1 (771,560 bp), Chr4 (957,666 bp), and Chr14 (1,025,210 bp). In the whole genome, in the log phase, the interaction pattern between chromosomes disturbed by vanillin or genetic mutations was similar to that in mouse cells, in which the longest chromosomes interact with each other more frequently than with the shortest chromosomes and vice versa.

Topologically associating domain analysis

The nuclear organization of TADs is vital for transcription. Chromatin contacts preferentially occur between loci inside the same TAD rather than between TADs. The regions separating one TAD from another are referred to as boundaries (Eser et al., 2017). Gene expression on the border of a TAD is more active, while gene expression inside a TAD is less active. The TAD boundary is the region enriched with highly expressed genes. There are two types of TAD boundary changes: (a) split refers to a TAD split into two TADs, and a new boundary appears; (b) merge refers to two adjacent TADs that merge into one TAD, and the boundary between the two adjacent TADs disappears. We performed a comparative analysis of TADs between different samples at 2-kb resolution. The TAD boundary changes and relevant gene differential expression are listed in Table 1. We found that 85 TAD borders disappeared in the parent strain NAN-27 after vanillin stress, and 31 TAD borders were newly formed. However, the vanillin-tolerant
strain EMV-8 had only 51 TAD borders that disappeared, and 11 TAD boundaries were newly formed after vanillin stress. This finding indicates that in response to vanillin stress, the TAD structure of the vanillin-tolerant strain EMV-8 was more stable than that of the control strain NAN-27. When NAN-27 responded to vanillin stress, the TAD boundaries of 740 genes split or merged, of which 68 genes were differentially expressed. When EMV-8 was stressed by vanillin, the TAD boundaries of 619 genes split or merged, and only 11 genes were differentially expressed. In the comparable group between EMV-8 and NAN-27, only 20 of 670 genes whose TAD boundaries changed exhibited differential expression. However, the style of TAD boundary shifting exhibited no connections with gene expression changes (Table 2). This phenomenon was also observed in other samples (data not shown). In the comparison between EMV-8 and its parent strain NAN-27 under 8 mM vanillin stress, 44 of 830 genes whose TAD boundaries changed exhibited differential expression. The shifting TAD boundaries do not necessarily lead to differential gene expression.
Analysis of motifs enriched at topologically associating domain boundaries

The borders of TADs are rich in transcription factors related to promoters, transcription initiation sites, housekeeping genes, and tRNA genes, which are important for maintaining the stability of TAD structure and stability (Dixon et al., 2012). Thus, the enrichment analysis of the TAD boundary motifs was performed in four samples of EMV-8 and NAN-27 with or without vanillin stress (Table 3). The outcomes indicated that all the samples had TAD enrichment motifs of SFL1, STB3, and NHP6A/B. Sfl1p is a transcriptional repressor of flocculation-related genes, and its deletion enhances pseudohyphal and invasive growth (Fujita et al., 1989; Robertson and Fink, 1998). Stb3p is a ribosomal RNA processing element (RRPE)-binding protein and participates in the glucose-induced transition from quiescence to growth (Kasten and Stillman, 1997; Liko et al., 2007, 2010). NHP6A and its paralog NHP6B were reported to bind to and remodel nucleosomes, recruit facilitates chromatin transcription (FACT) and other chromatin remodeling complexes to chromosomes, and ensure transcriptional initiation fidelity of some tRNA genes (Ruone et al., 2003; Kassavetis and Steiner, 2006; Stillman, 2010). The above four proteins bound to these common motifs may play vital roles in TAD formation in S. cerevisiae. NANA-27 has its own specific motif, AZF1, with or without vanillin stress. Azf1p is a zinc-finger transcription factor that activates the transcription of genes involved in carbon metabolism and energy production from glucose (Newcomb et al., 2002). EMV-8 with no stress enriches the SUM1 motif at its TAD boundary, which encodes a transcriptional repressor that regulates middle-sporulation genes and is involved in telomere maintenance...
TABLE 3 The top five motifs enriched at TAD boundaries in EMV-8 and NAN-27 with or without vanillin.

Motif	EMV-8	EMV-8 under vanillin stress	NAN-27	NAN-27 under vanillin stress
SFL1	281/303	267/297	276/309	285/309
STB3	278/303	274/297	284/309	285/309
NHK6A	269/303	266/297	274/309	276/309
NHK6B	268/303	271/297	276/309	278/309
SUM1	268/303	NA	NA	NA
SFP1	NA	263/297	NA	NA
AZF1	NA	281/309	279/309	279/309

Number 1/number 2 indicated border number containing motif/total border number. NA, indicated not found.

(Lempiäinen et al., 2000; Edmonds et al., 2004). At the TAD borders of EMV-8 under vanillin stress, there are a large number of SFP1 binding sites. Sfp1p can regulate the transcription of ribosomal proteins and ribosomal synthesis genes, as well as regulate the response to nutrients and stress (Lempiäinen et al., 2000; Marion et al., 2004). Although the expression level of SFP1 did not change significantly in EMV-8, under vanillin stress, some translation elongation factors in EMV-8, such as ANB1 and ribosome synthesis factor RLI1, were significantly upregulated. This may have a positive effect on the improvement of EMV-8 vanillin resistance because our previous proteomic analysis showed that ribosomal proteins and rRNA processing-related proteins in S. cerevisiae BY4741 were significantly decreased in response to vanillin stress (Cao et al., 2021). However, the overexpression of ANB1, RLI1, and SFL1 in the laboratory strain BY4741 did not improve S. cerevisiae (Figure 3).

Differences in genes interacting with YRR1 caused by the InDel mutation of YRR1

Yrr1 has an InDel mutation in the vanillin-resistant strain EMV-8; the 409th adenylate deoxyribonucleotide of its ORF is deleted, and a frameshift mutation occurs, which causes the translation to stop prematurely at the 141st amino acid. Compared with NAN-27, YRR1 in EMV-8 had 14 specific interaction sites (Table 4). Two of the 14 sites also interacted with YRR1 when EMV-8 was under vanillin stress. These two sites were EMV-8 specific, probably caused by the mutation of YRR1. This mutation causes YRR1 to produce new interaction sites for three genes, namely, WTM2, PUP1, and ALE1. WTM2 encodes a transcriptional regulator that regulates meiosis and the expression of nucleotide reductase, which can respond to DNA replication pressure (Pemberton and Blobel, 1997; Tringe et al., 2006). PUP1 encodes the 20S proteasome subunit (Haffter and Fox, 1991), and ALE1 encodes lysophospholipid acylase (Riekhof et al., 2007). However, these three genes did not show differential expression at the transcriptional level, and the biological significance of this is not clear. The overexpression of three genes in the laboratory strain BY4741 did not improve the vanillin resistance of S. cerevisiae (Figure 4).

Discussion

A high vanillin stress-tolerant strain, EMV-8, was derived from NAN-27 by EMS mutation and adaptive evolution in lignocellulosic hydrolysates. Even though EMV-8 has a total of 450 CDSs with non-synonymous SNPs and 44 CDSs with InDels compared to its parent strain NAN-27, the chromosome interaction patterns were similar in both strains when they were collected in the log phase with an OD600 of 1.0. Similarly, the interaction of chromosomes disturbed by vanillin stress in the log phases of EMV-8 and NAN-27 exhibited the same pattern: short chromosomes interact more frequently with short chromosomes, and long chromosomes interact more
frequently with long chromosomes. After the lag phase of adaptation, the differences in chromosome interactions in the log phase were probably not as obvious as the initiation of vanillin addition. The interactions of chromosomes perhaps exhibited significant differences in the lag phase. However, these differences were likely due to stress responses other than detoxification or adaptation.

A similar interaction pattern also appeared in mouse cells (Zhang et al., 2012). Shao et al. (2018) found that the local chromatin interactions of BY4742 and the synthetic single-chromosome yeast strain SY14, at least at the level of gene loci, were very similar. It was presumed that the interaction patterns of chromosomes were not affected by the structures of the chromosomes and that an arithmetic model of calculating interactions by Hi-C was perhaps not suitable.

In response to vanillin stress, the TAD boundary changes in EMV-8 were less than those in its parent strain NAN-27. The TAD structure of EMV-8 was more stable after long-term evolution in lignocellulosic hydrolysates than NAN-27. The differences in TAD boundaries between the two strains did not result in the corresponding theoretical differential expression. In Shao et al. (2018) research, a single-chromosome yeast SY14 was artificially synthesized by chromosomal fusions involving 16 chromosomes, and its overall chromosomal 3D structure was changed markedly compared to its parent strain BY4742. However, the transcriptome of the single-chromosome cells was nearly identical to that of the parental cells (Shao et al., 2018). This outcome was inconsistent with studies by Spilianakis et al. (2005) and Meaburn and Misteli (2007) who found that the localization of a chromosome in the nucleus and interchromosome interactions affect gene expression. Our outcome also confirmed that transcriptomic expression showed a negligible relationship with chromosomal 3D structure or TAD boundaries shifting in the log phase. The samples should be further checked at other time points of growth, such as the lag phase, or checked with higher concentrations of vanillin stress. The other possibility is that the precision of Hi-C is not sufficient for _S. cerevisiae_, whose genome is only 12.2 Mb.

There were four motifs enriched at the TAD boundaries in four samples (EMV-8 and NAN-27 with or without vanillin): _SFL1_, _STB3_, and _NHP6A/B_. These genes were probably related to the formation of TAD boundaries. Their functions in TAD boundary formation need to be further studied. In response to the inactivation of the TOR pathway, cell stress, or nutrient limitation, Sfp1p relocates to the cytoplasm and inhibits ribosomal protein (RP) gene expression. Sfp1p plays a crucial role in modulating cell growth and RP gene expression in response to environmental cues (Marion et al., 2004). The resistance to vanillin of the _SFP1_-deleted BY4741 strain decreased significantly (data not shown). The motif of _SFP1_ was enriched only in TAD boundaries of EMV-8 with vanillin stress. This result indicated that EMV-8 could probably regulate the expression of RP genes promptly to adapt to vanillin stress, as Cao et al. (2021) found that _S. cerevisiae_ adapted to vanillin stress by repressing ribosomal protein abundance to save energy.

YRR1 in EMV-8 had an InDel mutation and lost its function, and its absence was confirmed to benefit vanillin tolerance. The InDel mutation caused two new interaction sites for three genes, _WTM2_, _PUP1_, and _ALE1_. However, the expression levels of the three genes exhibited no differences. There were no obvious regulatory relationships between mutated _YRR1_ and the three genes. Du et al. (2017) found that some long-distance chromosomal interactions can affect gene expression in yeast by inserting the _MET3_ promoter into genomic loci and building an assay to screen for functional long-distance interactions that affect the average expression level of a reporter gene.

TABLE 4 The specific interaction sites of YRR1 in EMV-8, compared to NAN-27.

Chromosome number	Site
14	421,500
14	299,500
14	435,500
14	309,500
12	249,500
14	398,500
14	418,500
10	406,500
14	405,500
14	405,500
14	352,500
14	352,500
6	142,500
14	429,500
Perhaps more attention should be paid to promoters rather than functional genes. This assay could be used in EMV-8 and NAN-27 to screen the differences in long-distance chromosomal interactions.

Conclusion

We performed a conjoint analysis of Hi-C and compared transcriptomes in the vanillin-resistant strain EMV-8 and its parent strain NAN-27 with or without vanillin. In the log phases of EMV-8 and NAN-27, the chromosome contact patterns disturbed by vanillin or genetic mutations were similar to those in mouse cells. Short chromosomes tend to contact short chromosomes, and long chromosomes tend to contact long chromosomes. In response to vanillin stress, the TAD structure of the vanillin-tolerant strain EMV-8 was more stable than that of its parent strain NAN-27. TAD boundary changes have a negligible effect on gene transcription in yeast. The overexpression of genes whose motifs were enriched in the TAD boundaries of EMV-8 and NAN-27 did not affect vanillin resistance in yeast. The InDel mutation of YRR1 in EMV-8 resulted in the formation of two new interaction sites for three related genes. The overexpression of these three genes did not affect the vanillin resistance of yeast. This research explored the effects of genetic mutations and vanillin disturbance on three-dimensional chromosome organization and dynamic changes in TADs in the log phase of growth.

Data availability statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/supplementary material.

Author contributions

XW and XB conceived and designed the study. XW and BY participated in the design of experiments and data collection, analyzed the data, and drafted the manuscript. XW performed genome sequencing and RNA-seq data analysis. BY conducted the fermentation and the construction of recombinant strain. WZ and WC conducted the samples for Hi-C and transcriptome. YS, ZL, and XB supervised and coordinated the overall study. All authors read and approved the final manuscript.

Funding

This study was supported by the National Key R&D Program of China (No. 2018YFB1501401), the National Natural Science Foundation of China (No. 31870063), the Shandong Provincial Natural Science Foundation (No. ZR2019BC080), the Key R&D Project of Shandong Province (No. 2019JZZY010906), the Major Program of Shandong Provincial Natural Science Foundation (No. ZR2018ZB0209), the Major Innovation Project of Science, Education and Industry Integration Pilot Project (No. 2022RZ01-06), the Special Foundation for International Cooperation Research (No. QLUTGJHZ2018009), the Foundation (No. ZZZ20190106) of State Key Laboratory of Biobased Material and Green Papermaking of Qilu University of Technology (Shandong Academy of Sciences), and Foundation (No. 202015), ESI Cultivation Discipline of Biology and Biochemistry, and Qilu University of Technology.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Almeida, J. R. M., Modig, T., Petersson, A., Hühn-Hägerdal, B., Lidén, G., and Gorwa-Grauslund, M. F. (2007). Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by *Saccharomyces cerevisiae*. *J. Chem. Technol. Biotechnol.* 82, 340–349. doi: 10.1002/jctb.1676

Banerjee, G., and Chattopadhyay, P. (2019). Vanillin biotechnology: the perspectives and future. *J. Sci. Food Agric.* 99, 499–506. doi: 10.1002/jsfa.9303

Belton, J. M., and Dekker, J. (2015). Hi-C in budding yeast. *Cold Spring Harb. Protoc.* 2015, 649–661. doi: 10.1101/pdb.prot085209

Bettin, G., Zardo, L. C., Rosa, C. A., and Ayub, M. A. Z. (2021). Bioconversion of ferulic acid into aroma compounds by newly isolated yeast strains of the Latin American biodiversity. *Biotechnol. Prog.* 37:e3067. doi: 10.1002/btpr.3067
Biotechnol. the S-adenosylmethionine biosynthesis and regeneration improves methylation in Saccharomyces cerevisiae in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. J. Biol. treatment of biomass. 6:e23623. doi: 10.7554/eLife.23623 (2017). The dynamic three-dimensional organization of the diploid yeast genome. 10.1186/s12934-016-0459-x 256, 376–386. doi: 10.1007/s004380050581 Endo, A., Nakamura, T., Ando, A., Tokuyama, K., and Shima, J. (2008). Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae. Biotechnol. Biofuels 1.3. doi: 10.1186/1475-2859-1-3 Eex, U., Chandler-Brown, D., Ay, F., Straight, A. F., Duan, Z., Noble, W. S., et al. (2017). Form and function of topologically associating genomic domains in budding yeast. Proc. Natl. Acad. Sci. U.S.A. 114, E3061–E3070. doi: 10.1073/pnas.1612256114 Gallo, R. P., Scheller, N., Alves-Rodrigues, I., Breitling, R., Meyerhans, A., and Diaz, J. (2007). Saccharomyces cerevisiae: a versatile eukaryotic system in virology. Microb. Cell Fact. 6:32. doi: 10.1186/1475-2859-6-32 Gibson, B. R., Lawrence, S. J., Leclaire, J. P., Powell, C. D., and Smart, K. A. (2004). Sfp1 is a stress- and nutrient-sensitive regulator of ribosomal protein gene expression. Mol. Gen. Genet. 31, 5501–5512. doi: 10.1007/s00438-003-8040-8 Heer, D., and Sauer, U. (2008). Identification of furfural as a key toxin in Saccharomyces cerevisiae. J. Biosci. Bioeng. 97, 321–328. doi: 10.1262/jb.98-0684 Haffter, P., and Fox, T. D. (1991). Nucleotide sequence of PUP1 encoding a putative proteasome subunit in Saccharomyces cerevisiae. Nucleic Acids Res. 19:5075. doi: 10.1093/nar/19.18.5075 Hansen, E. H., Müller, B. L., Kock, G. H., Bünner, C. M., Kristensen, C., Oer, R. L., et al. (2009). De Novo biosynthesis of vanillin in fission yeast Schizosaccharomyces pombe and baker’s yeast Saccharomyces cerevisiae. Appl. Environ. Microb. 75, 2765–2774. doi: 10.1128/Aem.0681-08 Heer, D., and Sauer, U. (2008). Identification of furfural as a key toxin in Saccharomyces cerevisiae. J. Biosci. Bioeng. 97, 321–328. doi: 10.1262/jb.98-0684 Hong, K. K., and Nielsen, J. (2012). Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biofineries. Cell Mol. Life Sci. 69, 2671–2690. doi: 10.1007/s00018-012-0945-1 Iwaki, A., Ohnuki, S., Suga, Y., Iizawa, S., and Ohya, Y. (2013). Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae. J. Biosci. Bioeng. 117, 33–38. doi: 10.1016/j.jbiosc.2013.06.008 Pemberton, L. F., and Blobel, G. (1997). Characterization of the Wtm proteins, a novel family of Saccharomyces cerevisiae transcriptional modulators with roles in meiotic regulation and silencing. Mol. Cell. Biol. 17, 4830–4841. doi: 10.1128/MCB.17.8.4830 Ramos, J. L., and Duque, E. (2019). Twenty-first-century chemical odyssey: fuels versus commodities and cell factories versus chemical plants. Microb. Biotechnol. 12, 200–209. doi: 10.1111/1751-7915.13379 Rietkötter, W., Kacz, J., Gionton, M. A., Zarnini, S., Murphy, R. C., and Voelker, D. R. (2007). Lysophosphatidylcholine metabolism in Saccharomyces cerevisiae: the role of P-type ATPases in transport and a broad specificity acyltransferase in acylation. J. Biol. Chem. 282, 36853–36861. doi: 10.1074/jbc.M706178200 Robertson, L., and Flink, G. (1998). The three yeast A kinases have specific signaling functions in pseudohyphal growth. Proc. Natl. Acad. Sci. U.S.A. 95, 13783–13787. doi: 10.1073/pnas.95.23.13783 Ruome, S., Rhoades, A. R., and Formosa, T. (2003). Multiple Nhp6 molecules are required to recruit Sp16-Pob3 to form yFACT complexes and to reorganize nucleosomes. J. Biol. Chem. 278, 45288–45295. doi: 10.1074/jbc.M307927200 Saini, J. K., Saini, R., and Tewari, L. (2015). Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. J. Biotechnol. 199, 76–82. doi: 10.1016/j.jbiotec.2015.08.030 Spiliakakis, C. G., Lalioti, M. D., Town, T., Lee, G. R., and Flavell, R. A. (2005). Interchromosomal associations between alternatively expressed loci. Nature 435, 637–645. doi: 10.1038/nature03574 Stillman, D. J. (2010). Nhp6: a small but powerful effector of chromatin structure in Saccharomyces cerevisiae. Biochem. Biophys. Acta 1799, 175–180. doi: 10.1016/j.abb.2009.11.010
Tai, A., Sawano, T., Yazama, F., and Ito, H. (2011). Evaluation of antioxidant activity of vanillin by using multiple antioxidant assays. Biochim. Biophys. Acta 1810, 170–177. doi: 10.1016/j.bbagen.2010.11.004

Tringe, S. G., Willis, J., Liberatore, K. L., and Ruby, S. W. (2006). The WTM genes in budding yeast amplify expression of the stress-inducible gene RNR3. Genetics 174, 1215–1228. doi: 10.1534/genetics.106.062042

Walton, N. J., Narbad, A., Faulds, C., and Williamson, G. (2000). Novel approaches to the biosynthesis of vanillin. Curr. Opin. Biotechnol. 11, 490–496. doi: 10.1016/s0958-1669(00)00125-7

Wang, X., Liang, Z., Hou, J., Shen, Y., and Bao, X. (2017). The absence of the transcription factor Yrr1p, identified from comparative genome profiling, increased vanillin tolerance due to enhancements of ABC transporters expressing, rRNA processing and ribosome biogenesis in Saccharomyces cerevisiae. Front. Microbiol. 8:367. doi: 10.3389/fmicb.2017.00367

Zhang, X., He, Y., Wu, Z., Liu, G., Tao, Y., Jin, J. M., et al. (2021). Whole-cell biosensors aid exploration of vanillin transmembrane transport. J. Agric. Food Chem. 69, 3114–3123. doi: 10.1021/acs.jafc.0c07886

Zhang, X., Shen, Y., Shi, W., and Bao, X. (2010). Ethanolic cofermentation with glucose and xylose by the recombinant industrial strain Saccharomyces cerevisiae NAN-127 and the effect of furfural on xylitol production. Bioresour. Technol. 101, 7104–7110. doi: 10.1016/j.biortech.2010.03.129

Zhang, Y., McCord, R. P., Ho, Y. J., Lajoie, B. R., Hildebrand, D. G., Simon, A. C., et al. (2012). Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell 148, 908–921. doi: 10.1016/j.cell.2012.02.002