Individual human genomes frequently contain variants that have epistatic interactions

Henry J Martell, Darren K Griffin, Mark N Wass*

School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ

*to whom correspondence should be addressed: m.n.wass@kent.ac.uk
Abstract

The availability of thousands of individual genomes provides many opportunities to understand genetic variation and the relationship to phenotype, particularly disease. However, this remains challenging as it is often difficult to identify if a non-synonymous variant alters protein structure and function. Many computational methods have been developed but they typically interpret individual variants in isolation, despite the possibility of variant-variant interactions. Here, we combine the genetic variation data present in the 1000 genome project with protein structural data to identify variant-variant interactions within individual human genomes. We find more than 4,000 combinations of variants that located close in 3D dimensional structure and more than 1,200 in protein-protein interfaces. Many variant combinations include amino acid changes that are compensatory such as maintaining charges or functional groups, thus supporting that these are coevolutionary events. This highlights the need for variant interpretation and precision medicine to consider the gestalt effects of variants.
Introduction

Proteins structures are delicately balanced between functional and non-functional. The effect of a single amino acid change can be the difference between health and disease. In recent years, due to advances in sequencing technologies, extensive human genetic variation data set have become available (Sherry 2001; Auton et al. 2015; Lek et al. 2016; Pagani et al. 2016; Telenti et al. 2016; Karczewski et al. 2017; Maretty et al. 2017; Landrum et al. 2018). Distinguishing between variants that are benign and those that cause disease is crucial, but experimental characterisation of the effects of each variant is impractical, and so a large number of computational tools have been developed to tackle this problem (Pappalardo & Wass 2014; Adzhubei et al. 2010; González-Pérez & López-Bigas 2011; Kumar et al. 2009; Kircher et al. 2014; Reva et al. 2011; Ng & Henikoff 2003). These tools primarily rely on first principles: using information about protein function, structure, evolutionary conservation, and the physiochemical properties of the wild type and variant amino acids. For simple cases, this approach has had some success, with many tools able to distinguish damaging from neutral variants with reasonable accuracy (Daneshjou et al. 2017; Hoskins et al. 2017).

These tools typically consider variants in isolation without considering the context in which they occur, i.e. the effect of a variant may be altered depending on other variants present within the same protein or in interaction partners. This context dependence has long been observed between species, as Compensated Pathogenic Deviations (CPDs) (Kimura 1985), where missense variants that cause disease in humans are wild type in other species. In other species, these changes typically occur with other amino acid changes that compensate for each other (Kimura 1985). For example, in human β-haemoglobin p.Val20Glu (rs33918474) causes erythrocytosis, whereas p.Glu20 is wild type in horse β-haemoglobin. A second difference at position 69 is likely to compensate for this, with the horse sequence containing His and the human Gly (Kondrashov et al. 2002). In horse β-haemoglobin Glu20 and His69 form a hydrogen bond, while Val20 and Gly69 have van der Waals interactions in human β-haemoglobin.

There a many possible mechanisms of such compensations, but the outcome is the same – a variant in one individual may have different effects compared to the same variant in another individual. It has been estimated that between 3-12% of disease associated variants in HumVar (Adzhubei et al. 2013) and ClinVar (Landrum et al. 2018) are observed in orthologs in vertebrates representing possible CPDs (Jordan et al. 2015). Experimental
analysis of the potential CPDs identified in the genes BBS4, RPGRIP1L, and BTG2 showed that CPDs were able to rescue pathogenic variants and restore wild type function (Jordan et al. 2015). Other studies identified mutually compensatory variants in human p53 that preserve protein stability (Mateu & Fersht 1999), and compensatory variants that preserve dimerization stability of the HIV capsid protein (Del Álamo & Mateu 2005). In these examples, there are combinations of variants where the destabilising or damaging effects of individual variants are non-additive and the full variant combination better preserves the properties of the wild type protein.

The concept of CPDs has also been applied between individuals of the same species, and is often referred to as “genetic buffering” or “genetic compensation”. A recent study of a large population identified individuals carrying variants for severe childhood Mendelian diseases who have reached adulthood with no clinical manifestation of the disease (Chen et al. 2016). Other studies have shown that variants thought to cause specific Mendelian diseases are far more common in human populations than would be expected based on the prevalence of the disease (Minikel et al. 2016; Xue et al. 2012; Piton et al. 2013; Bell et al. 2011). This suggests that some individuals with these variants are protected from the diseases by other variants, or that these variants have been previously misclassified as disease causing.

Multiple studies have investigated the prevalence of CPDs between species (Kondrashov et al. 2002; Gao & Zhang 2003; Rhesus Macaque Genome Sequencing and Analysis Consortium 2007; Azevedo et al. 2009; Jordan et al. 2015), and incorporation of CPD information algorithms used to predict variant effects has been suggested as a way of improving the predictive power of such tools (Azevedo et al. 2017). While some work has been done to predict the combined effects of multiple variants (Hopf et al. 2017), no study to our knowledge has looked at the extent of possible compensation events within individual human genomes.

Here we quantify the extent of possible epistatic variant interactions within protein coding regions of the human genome. We utilise data from the 1,000 Genomes Project, generating individual variant sets for each of the 2,504 genomes. We analyse the extent of co-occurring variants within individual proteins, how co-occurring variants are distributed within the 3-dimensional structures of the proteins, and how co-occurring variants affect protein-protein interface sites. The analysis of the combined effects of variant combinations will be
essential in the future better to understand complex genotypes, and deliver the promise of precision medicine.
Methods

Protein Sequence Data

The UniProt human proteome set (UP000005640) was used, version last modified on 22/11/2015 (Bateman et al. 2015), and for human Ensembl protein sequences, Ensembl version 84 was used (Yates et al. 2016).

Variation Data

The 1,000 Genomes Project phase 3 call set (02/05/2013 release) (Auton et al. 2015) was filtered to contain only single nucleotide variants using VCFtools, version 0.1.13 (Danecek et al. 2011). Variant calls were annotated using ANNOVAR, version 12/11/2014 (Wang et al. 2010), and GRCh37/hg19. For each protein a single isoform was used. Canonical protein isoforms, as identified by UniProt (Bateman et al. 2015), were used where possible. If the canonical isoform was unknown, isoforms present in the Interactome3D data set were chosen first, otherwise the isoform was chosen numerically by its ensembl protein identifier.

ANNOVAR was used to add functional annotation to variants. Corresponding UniProt and ensembl protein sequences were aligned using NEEDLE, version 6.6.0 (Rice et al. 2000). All protein sequence positions given in this study are in reference to the UniProt sequence, and variants that could not be mapped to UniProt sequence positions were excluded. ANNOVAR annotates each variant individually and does not consider multinucleotide variants. For each genome, we considered multiple variants in the same codon as a single change instead of two individual changes.

The gnomAD exome VCF dataset was downloaded on 26/04/2017, and the gnomAD allele frequencies of all variants from the 1,000 Genomes Project genomes were extracted (Lek et al. 2016; Karczewski et al. 2017).

Protein Structure Data

All experimental protein structures were downloaded from the Protein Data Bank (PDB), and the Structure Integration with Function, Taxonomy and Sequence (SIFTS) database was used to map the residues in the protein structures to the residues in the protein sequences in the UniProt human proteome set (Berman et al. 2000; Velankar et al. 2013). Corresponding UniProt proteins and PDB structures were then aligned using MUSCLE (Edgar 2004). Structures were selected for each protein, first prioritising resolution, and if
two structures for overlapping sequence regions both had resolutions <3.5 Å the structure with the largest sequence coverage was selected. After this step, all sequence positions covered by an experimental structure have been assigned to the highest quality structure available. For the remaining proteins without experimental structures, and for proteins with partial experimental structures where there are contiguous regions of ≥50 residues without a corresponding experimental structure, structural modelling was performed.

For structural modelling, template structures were identified from a 70% identity representative set of the PDB using hhblits, selecting only high-confidence templates with an hhblits probability ≥80 (Berman et al. 2000; Remmert et al. 2012). Models were selected to cover as many sequence positions as possible in a non-redundant manner, starting from the highest confidence model and selecting additional models that cover ≥50 sequence positions not already covered. Models were then generated for each sequence using the identified template and a protocol based on Phyre2 (Kelly et al. 2015), with pulchra used to add and optimise the side chains (Rotkiewicz & Skolnick 2008).

For the set of 20,791 proteins analysed, 16,653 had >0% coverage either by experimental structures, models, or a combination of both. The remaining 4,138 proteins had no experimental structures available and no structural models were identified of adequate quality (Figure S1). There are 1,609 proteins for which experimental structures cover the entire protein with no sequence gaps ≥50 contiguous residues (average coverage 88.97% with 1.1 structures per protein - multiple structures correspond to different regions of the protein and are not overlapping). There are 2,777 proteins with experimental structures, but with gaps ≥50 contiguous residues (mean coverage 38.79%, with 1.19 structures per protein). Of these, high-quality templates were identified for 1,653 proteins, and structural modelling was used to increase structure coverage for these proteins (mean coverage 56.43%, with 2.91 structures per protein). For the remaining 16,405 proteins without experimental structures, a high-quality template for structural modelling was identified for 12,267 proteins (mean coverage 56.33%, with 1.51 structures per protein). Overall, combining multiple non-overlapping structures per protein and combining structural modelling with experimental structures greatly increased protein sequence coverage (Figure S1).
Identification of Variant Combinations Within Proteins

Combinations of variants were identified within proteins for each of the 2,504 individual genomes, with each sample having between zero and two variant combinations per protein (one combination per allele). These variant combinations therefore consist of all of the variants that each sample has per copy of the protein, and they can be distributed anywhere within the 3-dimensional structure of the protein - termed Global Combinations (Figure 1.A). A second set of combinations was created for variants close in 3-dimensional space within structures - termed Proximal Combinations (Figure 1.A). All variants in Global Combinations were mapped to structures, and the distances between variants mapped to the same structures were calculated. Variants within 5Å of one another were grouped in to new combinations (Figure 1.A). For combinations containing >2 variants, 1 or more variants may be >5Å apart, providing each variant is within 5Å of another variant, and the maximum distance within the combination is <15Å (Figure 1.A). The vast majority of Proximal Combinations have a maximum distance between any two variants in the combination of 0-1Å (68.8% for non-synonymous variants). PyMOL (https://pymol.org/2/) was used to visualise variant combinations mapped to structures. Where described, variant combinations are given as a comma-separated list of variants, in ascending order by protein sequence position.

Generation of Random Proximal Combinations

The positions of variants mapped to structures from Global Combinations were randomly assigned to different positions in the proteins, with the total number of variants in each protein kept the same, and Proximal Combinations were then redefined. For both non-synonymous and synonymous Global Combinations, 1,000 iterations were performed, creating 1,000 sets of Proximal Combinations for variants assigned to random sequence positions.

Variant Property Compensations

Amino acid properties were assigned using the definitions of Innis et al., shown in Table S1 (Innis et al. 2004). The sum changes in amino acid properties within variant combinations were then calculated to identify compensation of amino acid, charge, or functional group. Charge and functional group compensations were not counted if they were caused by a direct amino acid compensation, e.g. a direct compensation of an arginine residue is also a positive charge compensation, but would be counted only as a direct amino acid compensation. Foldx (Schymkowitz et al. 2005) was used to predict protein structure.
stability changes for variant combinations. The Foldx RepairPDB function was run for each protein structure with default parameters, and stability predictions were made using the BuildModel command on the repaired structures with default parameters.

Interactome3D Data Processing

Protein-protein interaction data was taken from the Interactome3D database, *Homo sapiens* representative dataset version 2017_01 (Mosca et al. 2013). Experimental structures and global templates were included, with domain-domain models excluded. The final set contained 9,642 distinct complexes (2,987 homomeric interactions, 6,655 heteromeric interactions, and 5,500 distinct proteins).

For each protein-protein complex, any residue in one partner within 5Å of a residue in the other partner of the complex was classed as being an interface residue (Lensink et al. 2016). Positions in structures were mapped to positions in UniProt sequences using MUSCLE (Edgar 2004).

Identification of Interface Variant Combinations

Using the processed Interactome3D data, variants were classified into three different groups: interface, non-interface, and variants without interaction data. For each of the 2,504 genomes, interface variants were further classified in to one of four variant combination categories: Homomeric Combinations, Heteromeric Combinations, Uni-Partner Combinations, and Singletons (Figure 5.A). Where described, combinations of variants in interfaces use the following notation: <Protein A UniProt ID>:<Comma-Separated List of Variants in Protein A>_<Protein B UniProt ID>:<Comma-Separated List of Variants in Protein B>, e.g. PA:G21S,R43K_PB:P100H,H403P meaning that, for the interaction PA:PB, G21S and R43K variants both occur in the interface site of PA, and P100H and H403P both occur in the interface site of PB.
Results

Global combinations of variants are common, while proximal combination are rare

Initially, combinations of both non-synonymous and synonymous variants in the 1000 genomes data were identified from the 531,560 non-synonymous and 345,334 synonymous variants present across the 2,504 genomes (see methods). For Global Combinations (multiple variants occurring in the same copy of a gene in an individual) a total of 280,329 non-synonymous Global combinations across 10,753 proteins and 224,541 synonymous Global Combinations across 11,131 different proteins were identified. The remaining variants occurred on their own without any further missense variants present in the same gene (342,031 nonsynonymous variants and 215,576 synonymous variants).

When searching for variants that may exhibit epistatic interactions or coevolve, proximity in 3-dimensional protein structure can be used to identify candidate combinations. This has been demonstrated by protein contact and structure prediction methods that use coevolution to identify residues that are close in space (Buslje et al. 2009; Marks et al. 2011; Morcos et al. 2011; Jeong & Kim 2012; Kamisetty et al. 2013; Ekeberg et al. 2013; Schneider & Brock 2014; Seemayer et al. 2014; Kaján et al. 2013; Jones et al. 2015; Adhikari & Cheng 2016; Ovchinnikov et al. 2017). Variants that are distant in space may also coevolve via allosteric effects (Del Álamo & Mateu 2005), but it is more difficult to identify such variants.

Global Combinations were filtered to identify Proximal Combinations, where variants occur close in space (see Methods). Proximal combinations were found to be much less common than Global Combinations, with 4,365 unique non-synonymous Proximal Combinations (across 1,562 proteins) and 2,558 unique synonymous Proximal Combinations (across 1,678 proteins; Figure 1.B). Global Combinations of non-synonymous and synonymous variants on average contain more variants than Proximal Combinations (4.8 vs 3.4 variants for non-synonymous combinations, and 4.1 vs 2.1 for synonymous combinations). The numbers of variants in Global Combinations can be very high, with as many as 75 variants in a single combination, whereas the largest observed proximal combination contained 14 variants (Figure 1.C).
Figure 1: Global and Proximal Variant Combinations. The following abbreviations are used in the figure: nsGC – nonsynonymous Global combinations, sGC – synonymous Global Combinations, nsPC – nonsynonymous Proximal Combinations, sPC – synonymous Proximal Combinations.

A) Overview of Global and Proximal Combinations. B) Numbers of unique variant combinations. C) Numbers of variants within combinations. D) Comparison of observed Proximal Combinations to random iterations. Bars represent the distributions of numbers of combinations for random iterations and the dashed lines represent the observed numbers of Proximal Combinations. Shown in Red for non-synonymous Proximal Combinations and blue for synonymous Proximal Combinations. E) Unique variant combinations per protein. F) Numbers of occurrences of each variant combination: i) Global Combinations. ii) Proximal Combinations.
Proximal Combinations Occur More Frequently than Expected by Chance

If Proximal Combinations are the result of coevolution between residues, one would expect to see more Proximal Combinations than if variants were randomly distributed throughout the protein. To test this, all variant positions were randomised on the protein structures 1,000 times and the number of random Proximal Combinations were calculated (see Methods). For non-synonymous variants, the number of Proximal Combinations observed in the sample data is far greater than those obtained for random positioning of variants (42.4% more than the average from random positioning; 4,365 observed combinations, 3,064.61 mean random combinations and 3,429 maximum). This may suggest that there is a selective pressure for the variants in Proximal Combinations to be close in space (Figure 1.D).

For synonymous variants, the number of Proximal Combinations falls within the distribution of the random positions (Figure 1.D), although the observed number is at the high-end of the distribution (2,558 observed combinations, 2,415.93 mean random combinations and 2,576 maximum). This may reflect that synonymous variants are unable to functionally compensate each other in the protein structure, but could be clustered in space due to sequence proximity, where any selection pressure is likely related to binding motifs in the DNA/RNA or selection of codons for translation speed related to protein folding (Tsai et al. 2008; Zhang et al. 2009; Tuller et al. 2010; Saunders & Deane 2010; Plotkin & Kudla 2011; Gingold & Pilpel 2011; Pechmann & Frydman 2013; Supek et al. 2014).

The Proximal Combinations from the random iterations of non-synonymous variants also contained fewer variants on average compared to those from the sample data (mean 2.2 variants per combination vs 3.4). The maximum sizes of combinations from random iterations were also smaller, with an average value of 7.9, almost half the size of the maximum combination size from the variant data (14).

Variant Combinations Per Protein

The unique variant combinations for each of the 20,791 proteins in the UniProt human proteome were considered (see Methods). Each protein has a distinct pattern of Global and Proximal Combinations, with some proteins having a large number of different combinations, and some having none or very few (Figure 1.E). The number of Combinations per protein is correlated with the length of the protein ($r=0.54$, Pearson’s
product-moment correlation coefficient), but there is no correlation between Proximal Combinations per protein and protein length \((r=-0.01)\), structural coverage \((r=0.01)\), or numbers of residues within 5Å \((r=0.01\); Figure S2).

For non-synonymous variants, the average number of Global Combinations per protein was 26.07, and 20.17 for synonymous variants (Table 1), reducing to 2.79 and 1.52 for Proximal Combinations respectively (Figure 1.E). There are some proteins with a large number of Proximal Combinations, but these are rarer (Figure 1.E, Table 1), with the largest number observed in HLA class I histocompatibility antigen, B-81 alpha chain (684 unique non-synonymous proximal combinations; UniProt accession: Q31610). This protein functions in the immune system and many of the Proximal Combinations occur in the peptide-binding groove (Figure S3), a region of the protein recently reported to contain multiple pairs of residues that have coevolved in vertebrate evolution (Dib et al. 2018).

Table 1: Unique variant combinations observed per protein.

Combination Category	Mean Number of Combinations	Median Number of Combinations	Maximum Number of Combinations
Non-Synonymous Global Combinations Per Protein	26.07	8	3,402
Non-Synonymous Proximal Combinations Per Protein	2.79	1	684
Synonymous Global Combinations Per Protein	20.17	7	3,143
Synonymous Proximal Combinations Per Protein	1.52	1	15

Many of the observed variant combinations in proteins are rare, with 173,707 Global Combinations and 2,370 Proximal Combinations of non-synonymous variants only occurring in one heterozygous sample within the 2,504 genomes (Figure 1.F). In contrast some combinations are common, with 1,484 Global Combinations and 64 Proximal Combinations of non-synonymous variants with ≥1,000 occurrences (Figure 1.F). Some of these very common combinations reflect positions in the reference genome that do not represent the most common allele observed in human populations. An example of this is the combination ‘P47944:Y30C,W31R’ in protein Metallothionein-4, which occurs 4,398 times in the 1000 genomes data (Figure 2.I), while the allele counts in gnomAD are 230,457 and 230,953 respectively.
gnomAD was used to investigate the frequency of the variants occurring in combinations identified in the 1,000 genomes dataset. While gnomAD contains 123,136 exomes, far more individuals than the 2,504 individuals in the 1,000 Genomes Project, the data is aggregated making it impossible to identify variant combinations within individual genomes. However, this larger dataset was useful for looking at similarities in the overall frequencies of variants. For each Proximal Combination, the maximum allele count in gnomAD (i.e. most common variant in a combination) was compared to the mean allele count for the combination (Figure 2.A). The closer the allele count for the different variants in a combination, the smaller the difference between the maximum count and the mean count.

A clear set of combinations have similar mean and maximum allele counts (points close to the x=y line in Figure 2.A) showing that there are variant combinations where the frequencies of all the variants are similar. There are 149 Proximal Combinations of non-synonymous variants where the mean allele count is identical to the maximum allele count, rising to 225, 352 and 476 where the mean count is >99%, >90% and >80% of the maximum count respectively. These are predominantly combinations containing two variants (blue points in Figure 2.A), although some larger combinations have similar mean and maximum allele counts. At lower maximum allele counts (below 50,000) there are combinations containing three or four variants (six combinations with mean count ≥90% of maximum count and 22 combinations ≥80%) where the mean is close to the maximum allele count (Figure 2.G&H). An off-diagonal line of points (gradient ~0.5) is also observed, caused by pair combinations where one variant is common but the other variant is rare, resulting in a mean allele count approximately half of the maximum allele count (Figure 2.A&B).
Figure 2: Allele counts of variants in gnomAD for the observed Proximal Combinations. In A,C,E,G&H each point corresponds to a variant combination, coloured by the number of variants in the combination, see legend. A) Maximum vs mean allele count within combinations. B) Distribution of the mean allele count as a percentage of the maximum allele count within combinations. C) Maximum vs median allele count per combination. D) Distribution of the median allele count as a percentage of the maximum allele count within combinations. E) Maximum vs minimum allele count per combination. F) Distribution of the minimum allele count as a percentage of the maximum allele count within combinations. G) Maximum vs mean allele count per combination, where maximum count <50,000. H) Maximum vs mean allele count per combination, where maximum count <10,000. I) Combination ‘P47944:Y30C,W31R’. J) Combination ‘A0A087WSZ9:K76M,G77R’. K) Combination ‘Q15109:W271R,C301S’. L) Combination ‘P17066:N153S,D154N’. Note - x-axes differ in their scales between the subplots.

Comparison of the maximum and median allele counts (Figure 2.C&D) identified a set of combinations (mainly containing three or four variants; red points in Figure 2.A), where the median allele count is much closer to the maximum allele count than the mean allele count. These represent combinations where a subset of the variants have similar frequencies but the remaining variants occur rarely (e.g. a combination containing three variants where two
have similar frequencies and a third variant that occurs in a single individual). This could represent scenarios where these two positions in a combination have coevolved but a third variant is occasionally also present. There are 157 Proximal Combinations of non-synonymous variants where the median allele count is identical to the maximum allele count, rising to 267, 452 and 638 Proximal Combinations where the median count is >99%, >90% and >80% of the maximum count respectively. These numbers are greater than when compared to the mean allele count (see above) suggesting that some subsets of variants occur frequently together, while the remaining variants in the combination do not.

Further, this is supported by the minimum allele counts, for combinations with greater than two variants the minimum allele count is almost always much lower than the maximum allele count (Figure 2.E&F). This indicates that for most of these combinations containing >2 variants it is rare for all variants to have similar frequencies. There are 149 Proximal Combinations of non-synonymous variants where the minimum allele count is identical to the maximum allele count, rising to 207 where the minimum count is >99% of the maximum count. This further demonstrates proximal combinations where variants are nearly always observed together.

Despite the gnomAD data being aggregated, in combination with the 1,000 Genomes Project data it provides additional support for variants with a likely coevolutionary relationship.

For 153 of the observed Proximal Combinations the allele counts of the constituent variants are identical in gnomAD (with 30 of these having allele counts ≥25), and it is more likely for these variants to have a strong coevolutionary relationship. For example, in Heat shock 70 kDa protein 6 (UniProt accession: P17066), the combination ‘P17066:N153S,D154N’ (a potential direct amino acid compensation of asparagine) occurs 63 times (Figure 2.K), and both variants have allele counts of 561 in gnomAD. In other proximal combinations the allele frequencies are very close, such as for the combination ‘A0A087WSZ9:K76M,G77R’ in the protein T cell receptor alpha variable 30, which occurs 283 times in the 1000 genomes data set (Figure 2.J), and the variants have allele counts in gnomAD of 7,479 and 7,477 respectively. This example represents variants where we see charge compensation (loss of lysine and gain of arginine – see below).
Figure 3. Comparison of most common variant combinations in gnomAD. Occurrences of the most common variant combinations vs all variant combinations in individual proteins. Each point is a protein, the colour is determined by the number of combinations observed in the protein, see legend. The x-axis position is determined by the number of occurrences of any combination within the protein, and the y-axis position is determined by the percentage of total occurrences accounted for by the most common variant combination. If the most common variant combination accounts for all of the variant combinations in the protein (black points) the point will lie at the very top of the y-axis (100% of combination occurrences are the most common combination). The bottom sections show the distributions of proportions of variant combination occurrences from the most common variant combination per protein. i) Non-Synonymous Global Combinations. ii) Non-Synonymous Proximal Combinations. Note - x-axes differ in their scales between the subplots.

Proteins have a Predominant Proximal Combination

Protein can have multiple different variant combinations present in individuals, sometimes with overlapping variants. However, for Proximal Combinations, most proteins have a predominant variant combination, that accounts for the majority of variant combinations
observed (Figure 3.ii; i.e. the most common Proximal Combination accounts for more than 50% of the variants observed), even for proteins where there are a large number of genomes with variant combinations in the protein (points on the right of the x-axis in Figure 3.ii). Of the 1,562 proteins with non-synonymous Proximal Combinations, 1,098 (70.3%) have a combination that accounts for ≥90% of all combinations, however 544 of these only occur once in the 2,504 individuals. In contrast, only 26.9% of proteins with non-synonymous Global Combinations have a combination that accounts for ≥90% of all combinations (Figure 3.i).

While some combinations are spread relatively evenly across the super populations (Figure S4 - light blue boxes across the super populations), others are concentrated in a subset of super populations (Figure S4 - dark blue boxes in specific super populations). For example, the Proximal Combination ‘G3V1Y8:C95R,L96V’ is most common in the African super population (AFR; 43.6%), whereas ‘Q8N423:H300Y,C306W’ is most common in the European super population (36.4%; Figure S4).

Larger differences in the population distributions of proximal combinations are seen for less frequent combinations (as common combinations are present in many individuals and therefore are likely to be present in multiple populations). We considered the 50 most common Proximal Combinations where the total number of combination occurrences is <500, many of these combinations are most common in the AFR super population (Figure S4), such as ‘A0A0B4J1V5:A91T,K93E’, and ‘Q8WXQ8:L336S,S378G’ - a potential variant compensation of serine. The combination ‘Q9H339:T78K,R88G’ occurs 486 times in total, with 82.7% of these in the AFR super population, and is another example of a potential variant effect compensation (compensation of a positive charge, with loss of arginine and gain of lysine). There are also examples of combinations that are more common in one or more of the other four super populations, such as A6NGD5:G108S,V109M’, for which 57.6% of occurrences are from the South Asian (SAS) super population (Figure S4).

Variant combinations that are evenly distributed between the super populations are likely to have first occurred longer ago in human evolution. Population-specific variant combinations are likely to have occurred more recently, and there are individual combinations that are more common within each of the super populations. For each super population there are thousands of combinations where >90% of the total occurrences are from that super
population, but the AFR super population clearly has many more of these combinations than the other four super populations (Figure S5.A).

Variant combinations frequently show compensation of properties

Coevolution occurs when a subsequent variant arises that compensates for a variant that is already present. To further identify possible coevolution of the Proximal Combinations of variants, we considered if the variants could compensate for each other. Direct amino acid compensations are the simplest and most complete type of compensation event. For example, in a pair of variants one position changes from alanine to serine and the second position changes from serine to alanine, such that the same amino acids are present but in different positions in the structure. This is the case for the Proximal Combination ‘A6NLU0:S276A,A277S’ in the protein Ret finger protein-like 4A. This combination occurs predominantly in the African and South Asian super populations and 1,186 times in total, while these variants are rarely observed on their own (S276A twice and A277S once). For the 4,365 Non-Synonymous Proximal Combinations, 571 unique direct amino acid compensations were observed (Figure 4.A). Some individual amino acids are compensated for more often than others, with arginine compensations occurring most frequently (85, 14.8% of total) (Figure 4.B), followed by serine (64 - 11.2%). The level of direct amino acid compensation is correlated with the number of codons per amino acid ($r=0.77$; Figure S2.i).

Potential compensation of charge (474) and amino acid side chain functional groups (717) were also identified (Figure 4.A; see Methods). Functional group compensations were the most common type of compensation observed, followed by direct amino acid compensations, while charge compensations were the least common (Figure 4.A). When considering compensation of charge, hydrophobic compensations were the most common (262 - 55.27% of all charge compensations; Figure 4.C), likely reflecting the larger number of hydrophobic sidechains.

Charge compensation is observed in the previously discussed combination ‘Q9H339:T78K,R88G’ (82.7% of the 486 occurrences within the AFR super population), where a positive charge is lost in the R88G variant, but a positive charge is gained in the T78K variant, which maintains a positively charged residue in this region of the protein structure (Figure 4.I). Q9H339 corresponds to the protein Olfactory receptor 51B5, which is
Figure 4: Compensatory effects within Proximal Combinations. A) Unique occurrences of functional group compensations. B) Unique occurrences of direct amino acid compensations. C) Unique occurrences of charge compensations. D) Numbers of property compensations. E) Foldx stability change prediction distributions for combinations containing two variants. i) Single variants within the combinations. ii) Both variants together. F) Foldx stability change prediction distributions for combinations containing >2 variants. i) Single variants within combinations. ii) All sub-combinations for the observed variant combinations. iii) Full variant combinations. G) Absolute stability change prediction values for full combinations vs sub-combinations with the largest predicted change in stability. i) All combinations. ii) Combinations containing >2 variants. H) The combination ‘Q31610:S35A,V36M,S48A,A93T,Q94N,A95T,D98Y,S101N,L105A,L119W,S121T,Y140F’. I) Total mass changes for combinations. i) Distribution of mass changes. ii) Total mass change vs
occurrences of each combination. **J** Potential direct amino acid compensation in ‘A6NLU0:S276A,A277S’. **K** Potential positive charge compensation in ‘Q9H339:T78K,R88G’. **L** Potential functional group compensation in ‘Q8NGA0:S249F,Y252C’. **M** Potential direct amino acid and potential charge/functional group compensation in ‘Q8WXQ8:L336S,S378G’.

involved in the sensory perception of smell. Both T78K and R88G occur in an extracellular domain of the protein (Bateman et al. 2015), therefore these residues may be involved with ligand binding necessary for olfactory perception, and loss of the positively charged arginine residue without compensation by the gain of the positively charged lysine residue could result in altered ligand binding. Across the data set, there is only one occurrence of T78K without R88G, and only 42 occurrences of R88G without T78K.

For functional group compensations (positive, carboxylate, amido, hydroxyl, phenyl, and hydrophobic), hydroxyl (250 unique; 34.86% of total) and hydrophobic (244 unique; 34.03% of total) are most frequently observed (Figure 4.D). In the protein Olfactory receptor 7G1 (UniProt accession: Q8NGA0), the combination ‘Q8NGA0:S249F,Y252C’ occurs 139 times (Figure 4.J), and is an example of a potential functional group compensation – with one phenyl group lost with the variant Y252C potentially compensated for by the gain of another phenyl group with S249F. Interestingly, in this example two hydroxyl groups are lost within close spatial proximity without replacement.

Variant combinations can involve multiple compensation types. The previously discussed combination ‘Q8WXQ8:L336S,S378G’ in the protein Carboxypeptidase A5 is an example of a potential direct amino acid compensation and a charge/functional group compensation (Figure 4.K). In this example, serine is lost and replaced and a small hydrophobic sidechain is also retained. This combination occurs 273 times, and predominantly occurs in the AFR super population (88.64% in AFR).

Overall, a potential functional compensation involving direct compensation of one or more amino acids, compensation of one or more charge types, or compensation of one or more functional groups was identified for 1,875 Proximal Combinations across 542 proteins. This corresponds to potential compensatory effects of variants in 42.96% of the 4,365 total Proximal Combinations identified (Figure 4.A).
Full Variant Combinations Are More Stable Than Sub-Combinations

Foldx (Schymkowitz et al. 2005) was used to analyse the effect of variant combinations on protein stability as compensation may occur to maintain protein stability (see methods). This considered if the full combination of variants was predicted to have a smaller effect on protein stability than a sub-combination. For example, in Q31610 (Figure S3) the combination ‘Q31610:S35A,V36M, S48A,A93T,Q94N,A95T,D98Y,S101N,L105A,L119W,S121T,Y140F’ was predicted to destabilise the protein (+4.53 kcal/mol; Figure 4.F), while sub-combinations were predicted to be far more destabilising e.g. (‘Q31610:S11A,A69T, Q70N,A71T,D74Y ,S77N,L95W’ +19.21 kcal/mol) and thus the full combination may compensate for this.

Overall, the majority (2,684; 61.5%) of full combinations were predicted to be closer to the wild type stability of the protein than one or more sub-combination of variants, rising to 86.9% for Proximal Combinations containing more than two variants (Figure 4.E). Therefore, for the majority of Proximal Combinations there are sub-combinations of variants that are predicted to cause a larger change in structural stability (stabilising or destabilising), indicating possible selection of combinations of variants that preserve the wild type protein stability, which is more pronounced for combinations with >2 variants, (Figure 4.E.ii).

Variant compensation can also account for changes in the size and shape of amino acid sidechains. Amino acid mass was used as a proxy to consider these properties (it captures the size of the sidechain but not the structure). The majority of combinations have an atomic mass change between +/-50 (58.4%), rising to 84.8% within +/-100 (Figure 4.G), suggesting that many combinations compensate for mass. Some combinations show large reductions (greatest reduction -228.3) or increases (+345.4 greatest increase) in atomic mass, however, such combinations occur rarely in individuals (Figure 4.G), while combinations that occur frequently in the 1,000 genomes data set largely have a mass change within +/-50 (Figure 4.G).

Compensating Combinations Also Occur in Protein-Protein Interfaces

Protein-Protein interactions are essential for cellular function, a key component of cellular complexity, and their interface sites are enriched in disease associated variants (David et al. 2012; Wang et al. 2012). We therefore expanded our analysis to identify variant
combinations occurring within interface sites. Using interaction data for 9,642 protein-protein interactions with residue-level structural characterisation from Interactome3D (Mosca et al. 2013) we identified 6,824 unique non-synonymous variants present in interface sites, 592 of which form at least one variant combination. Spread across 233 proteins and 272 complexes there were 147 Homomeric, 364 Heteromeric, and 735 Uni-Partner combinations (where there were multiple variants in the interface of a single protein within a heteromeric complex; Figure 5.A), reflecting that the majority of complexes in Interactome3D are heteromeric (Figure 5.B; see methods).

As with Proximal Combinations, where individual proteins had distinct patterns, different protein complexes were observed to have different patterns of interface variant combinations. The majority of the interface variant combinations contain only a few variants, with 525 combinations containing only two variants, but some are much larger, containing as many as 12 variants (Figure 5.C). For example, there are 209 occurrences in the homodimer of Tyrosine-protein phosphatase non-receptor type substrate 1 protein (SIRP-α; P78324) of an interface variant combination of the same six variants in both copies of the protein (Figure 5.D). SIRP-α is a cognate receptor for CD47, and the interaction of the two is involved in regulation of Interleukin-12 levels, possibly as a homeostatic mechanism to prevent escalation of the inflammatory immune response (Latour et al. 2001). Multiple potentially compensatory effects are present in this set of variants. This includes R54H and N100K which results in a large positively charged sidechain being retained. While T52I and L96S retain a hydroxyl group and a hydrophobic sidechain. Finally, the variants D95E and A57V are both conservative changes, one maintaining a negative charge (D95E) and the other a small hydrophobic amino acid (A57V). Therefore, despite the occurrence of six different variants, the overall properties of the positions in the interface are largely maintained.
Figure 5: Interface variant combinations. A) Overview of Interface Variant Combinations. B) Numbers of interface variant combinations observed. C) Numbers of variants within combinations. D) Combination ‘P78324:T52I,R54H,A57V,D95E,L96S,N100K_P78324:T52I,R54H,A57V,D95E,L96S,N100K’. Chain A - grey, B - cyan, and positions of variants - red. E) Occurrences of each combination. F) Combination ‘P01764:S73G,G75S’. Chain A - grey, chain B - cyan, positions of variants - red, and the hydrogen bond between the hydroxyl group of S73 and the backbone of G75 - dashed black line.
G) Numbers of potential property compensations within combinations. H) Occurrences of potential direct amino acid compensations. I) Occurrences of potential charge compensations. J) Occurrences of potential functional group compensations. K) Total mass changes for combinations. i) Distribution of mass changes. ii) Total mass change vs occurrences of each combination.

Overall, many of the interface combinations observed are rare (Figure 5.E) and for most complexes there is a predominant variant combination accounting for the majority of the total combinations in the interface (Figure S6), which for the majority of combinations accounts for >90% of all combinations in the complex. This holds across the three combination types; 64% of Heteromeric, 60% of Homomeric, and 73% of Uni-Partner Combinations.

The protein Immunoglobulin heavy variable 3-23 (UniProt accession: P01764) plays a role in antigen recognition, and forms a homomeric complex. In this complex the variant combination ‘P01764:S73G,G75S’ occurs 154 times (Figure 5.F). This is a clear example where the combination of variants could be compensatory. In both chains of the complex, serine is lost at position 73 and a glycine is gained, and then at position 75 a glycine is lost and a serine is gained. The wild type and variant type amino acids are balanced, with no net change in the number of serine or glycine residues. Neither of these variants were observed on their own in any of the 2,504 genomes, they only occur together. One possible advantage of the two variants occurring together, and neither alone, is maintaining the hydroxyl group of serine. In the wild type structure S73 acts as a hydrogen bond donor, forming a hydrogen bond with the backbone of G75 (Figure 5.F), which is likely stabilising the tight turn in the structure.

As with combinations of variants within individual proteins (Figures S4&S5.A), some of the interface variant combinations that are rare across the dataset are common within specific populations (Figure S5.B). Many combinations occur almost exclusively in the African super population for all three types of interface variant combination, with 267 combinations where >90% of the occurrences are in the African super population (72 for AMR, 66 for EUR, 108 for EAS, 96 for SAS). Many of these combinations are rare, and when filtering for combinations with ≥25 total occurrences this number falls to 22 for the AFR super population (0 for AMR, 0 for EUR, 3 for EAS, 0 for SAS). This likely reflects that the human reference genome is least representative of the AFR super population (1000 Genomes Project Consortium 2015). The previously discussed combination ‘P01764:S73G,G75S’ in
P01764:P01764 (Figure 5.F), occurs in 149 individuals, 38.26% from AFR, 10.74% from AMR, 46.98% from EAS, 4.03% from SAS, and 0.00% from EUR.

In total, 595 combinations with compensations were observed across 101 unique interfaces (there may be multiple combinations per interface), representing 47.8% of interface combinations. These were comprised of 127 amino acid compensations, 96 charge compensations and 125 functional group compensations (Figure 5.G). Similar patterns of compensations were observed (as for those in individual protein structures – Figure 4.A) with arginine being the most commonly compensated amino acid (19% of direct amino acid compensations; Figure 5.H), and this shows some correlation with the number of codons per amino acid ($r=0.62$; Figure S2), but less so with the amino acid composition of interfaces ($r=0.41$; Figure S2). Compensation of hydrophobic sidechains were the most common charge and functional group compensations (Figure 5.I&J). For charge compensations, this is followed by compensation of positive charge, while hydroxyl group compensations were the second most common type of functional group compensation (24%). Total mass changes of interface variant combinations are on average fairly conservative (mean -11.0, median -12.1, min -244.4, max $+224.176$, 86.6% between -100 and $+100$ total mass change; Figure 5.K), similar to proximal combinations within structures (Figure 4.G).

Variant Combinations Present in Individual Genomes

The combinations present in each individual genome were considered to identify the number of compensations present in a typical individual. Individuals have an average of 2,430 global combinations (range 2,115 - 2,882), 122 proximal combinations (range 69-177), and 25 interface variant combinations (range 4-64; Figure 6). Given that these genomes have between 10,000-12,000 non-synonymous variants and the human genome has approximately 20,000 genes, this puts the number of global combinations into context. Although genomes have a large number of proteins with multiple variants in them (Global Combinations) they have relatively few proteins with multiple variants close in space (Proximal Combinations). For interface variant combination categories, individuals have averages of 4.4 Homomeric Combinations (range 0-17), 2.8 Heteromeric Combinations (range 0-14), and 18.0 Uni-Partner Combinations (range 3-43; Figure 6.C).
Figure 6: Variant combinations per genome. A) Variant combinations within structures. B) Variant combinations within structures per super population. C) Interface variant combinations. D) Interface variant combinations per super population. AFR – African super population, AMR – American super population, EAS – East Asian super population, EUR – European super population, SAS – South Asian super population.

The number of non-synonymous Global Combinations per individual exhibit a bimodal distribution (Figure 6.A.i), which is not observed for the Proximal Combinations (Figure 6.A.ii). This is caused by population-specific differences between the genomes, with those from the African (AFR) super population having more non-synonymous Global Combinations compared to the other four super populations (Figure 6.B.i), which results in the bimodal distribution of Global Combinations per sample observed (Figure 6.A.i). AFR
genomes have on average the most Proximal combinations, but the difference between the super populations is much smaller than for the Global Combinations (Figure 6.B.ii). Genomes from the AFR super population also have on average more interface variant combinations than genomes from the other four super populations (Figure 6.D). This trend is observed for Heteromeric and Uni-Partner interface variant combinations, but not for Homomeric combinations (where genomes have similar numbers between the five super populations; Figure 6.D).

Discussion

In this study we quantified variant combinations in individual human genomes at three different levels: variant combinations across protein sequences (280,329 non-synonymous), variant combinations in close proximity within the 3-dimensional space of protein structure (4,365 non-synonymous), and variant combinations within protein-protein interface sites (1,246 non-synonymous). These combinations show considerable variability in their distributions between populations, with some combinations distributed evenly across populations and others heavily skewed towards individual populations. At the protein level most proteins have one predominant combination of variants, especially for variant combinations in close spatial proximity.

We propose that a subset of the variant combinations that we identified examples of coevolution. Coevolution is typically observed by comparison between species (Kondrashov et al. 2002; Gao & Zhang 2003; Rhesus Macaque Genome Sequencing and Analysis Consortium 2007; Azevedo et al. 2009; Jordan et al. 2015), however given the increasing number of available genome sequences for individuals, it should be possible to identify coevolution within the human genome. It is well established that coevolution often occurs between residues in proteins that are in close proximity, as demonstrated by the ability to model protein structure using coevolutionary information (Buslje et al. 2009; Marks et al. 2011; Morcos et al. 2011; Jeong & Kim 2012; Kamisetty et al. 2013; Ekeberg et al. 2013; Schneider & Brock 2014; Seemayer et al. 2014; Kaján et al. 2014; Jones et al. 2015; Adhikari & Cheng 2016; Ovchinnikov et al. 2017), we therefore focussed on identifying variants that are proximal within protein structure (although some global combinations may still be coevolving they are much more difficult to identify). Further, coevolution has been demonstrated across protein-protein interfaces (Hopf et al. 2014) and we identified additional examples of variant combinations that occurred in interfaces.
Our analysis demonstrated that Proximal Combinations occur much more frequently than expected by chance (Figure 1.D), indicating that such variants are not being observed by coincidence. However, proximity in space does not infer that variants are coevolving. Our analysis shows that for 72.1% (3,145 of the 4,365) Proximal Combinations there are compensations that result in direct change of amino acid, conserve charge or functional groups, or are predicted to preserve structural stability. This suggests that the majority of Proximal Combinations are likely to represent examples of coevolution. For 47.8% of interface combinations (595 of 1,246) potential compensations were also observed. This value is lower as it does not consider predicted stability changes but still shows that a significant proportion of interface combinations represent examples of coevolution.

The comparison with gnomAD provides an supports our findings by identifying variants that occur with similar frequencies in a much larger dataset (123,136 exomes), unfortunately as the gnomAD data is aggregated it was not possible to use gnomAD for the main analysis that we have performed. However, we did identify a set of proximal combinations where the variants in gnomAD have identical or very similar allele counts.

The variant combinations that we have identified in this study are likely a fraction of the true number that co-occur within human genomes. Firstly, we have only considered protein coding changes (and only single amino acid variants), and there are undoubtedly combinations involving non-coding variants with compensatory effects. Secondly, for simplicity we only considered the canonical isoform of each protein. There will be variant combinations that only occur within non-canonical isoforms, although recent work has suggested that for most proteins there is only one functionally relevant isoform at the protein level (Tress et al. 2017). Finally, Proximal Combinations can only be identified for proteins with an experimental or modelled structure. For the 20,791 proteins in the human proteome set used in this study, 4,138 have no structural data available, with the remaining proteins having an average coverage of 59.5% of their sequence (see Methods). Similarly, a structure for each protein-protein complex is required in order to determine interface variant combinations. The release of Interactome3D (Mosca et al. 2013) used in this study contains 9,642 unique protein-protein complexes (see Methods), a small fraction of the >1,000,000 (Ranea et al. 2010) protein-protein interactions predicted to constitute the human interactome.
Nevertheless, this study provides an important first, to our knowledge, analysis of coevolution that has occurred within the human genome. Our findings highlight the necessity for programs that predict the effect of single nucleotide variants (Adzhubei et al. 2010; González-Pérez & López-Bigas 2011; Kumar et al. 2009; Kircher et al. 2014; Reva et al. 2011; Ng & Henikoff 2003) to consider the context in which these variants occur. Individually programs may predict such variants to be deleterious, however given that we observe many compensations for possible functional effects, such predictions would be incorrect. Therefore, it is essential that the next generation of methods consider variant effect prediction in a much broader sense, considering other variants in the genome, rather than each one individually. Combinations of variants in individual human genomes will determine resilience or susceptibility to a host of selection pressures, from inherited disease, to drug response, to pathogenic infection. The interpretation of gestalt effects of variant combinations will be a key challenge in the future of precision medicine.
References

1000 Genomes Project Consortium, 2015. A global reference for human genetic variation. *Nature*, 526, pp.68–74.

Adhikari, B. & Cheng, J., 2016. Protein Residue Contacts and Prediction Methods. *Methods Mol Biol.*, 1415, pp.463–476.

Adzhubei, I., Jordan, D.M. & Sunyaev, S.R., 2013. *Predicting functional effect of human missense mutations using PolyPhen-2*, Adzhubei, I.A. et al., 2010. A method and server for predicting damaging missense mutations. *Nature Methods*, 7(4), pp.248–249.

Del Álamo, M. & Mateu, M.G., 2005. Electrostatic repulsion, compensatory mutations, and long-range non-additive effects at the dimerization interface of the HIV capsid protein. *Journal of Molecular Biology*, 345(4), pp.893–906.

Auton, A. et al., 2015. A global reference for human genetic variation. *Nature*, 526(7571), pp.68–74.

Azevedo, L. et al., 2009. Epistatic interactions modulate the evolution of mammalian mitochondrial respiratory complex components. *Genome Research*, 19, pp.1–12.

Azevedo, L. et al., 2017. Improving the in silico assessment of pathogenicity for compensated variants. *European journal of human genetics : EJHG*, 25(1), pp.2–7.

Bateman, A. et al., 2015. UniProt: A hub for protein information. *Nucleic Acids Research*, 43(D1), pp.D204–D212.

Bell, C.J. et al., 2011. Carrier Testing for Severe Childhood Recessive Diseases by Next-Generation Sequencing. *Science Translational Medicine*, 3(65), pp.1–26.

Berman, H.M. et al., 2000. The protein data bank. *Nucleic acids research*, 28(1), pp.235–242.

Buslje, C.M. et al., 2009. Correction for phylogeny, small number of observations and data redundancy improves the identification of coevolving amino acid pairs using mutual information. *Bioinformatics*, 25(9), pp.1125–1131.

Chen, R. et al., 2016. Analysis of 589,306 genomes identifies individuals resilient to severe Mendelian childhood diseases. *Nature Biotechnology*, 34, pp.531–38.

Danecek, P. et al., 2011. The variant call format and VCFtools. *Bioinformatics*, 27(15), pp.2156–2158.

Daneshjou, R. et al., 2017. Working toward precision medicine: Predicting phenotypes from exomes in the Critical Assessment of Genome Interpretation (CAGI) challenges. *Human Mutation*, 38(9), pp.1182–1192.

David, A. et al., 2012. Protein-protein interaction sites are hot spots for disease-associated
nonsynonymous SNPs. *Human Mutation*, 33(2), pp.359–363.

Dib, L., Salamin, N. & Gfeller, D., 2018. Polymorphic sites preferentially avoid co-evolving residues in MHC class I proteins. *PLoS Computational Biology*, 14(5), pp.1–19.

Edgar, R.C., 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Research*, 32(5), pp.1792–1797.

Ekeberg, M. et al., 2013. Improved contact prediction in proteins: Using pseudolikelihoods to infer Potts models. *Physical Review E - Statistical, Nonlinear, and Soft Matter Physics*, 87(1), pp.1–19.

Gao, L. & Zhang, J., 2003. Why are some human disease-associated mutations fixed in mice?, 19(12), pp.678–681.

Gingold, H. & Pilpel, Y., 2011. Determinants of translation efficiency and accuracy. *Molecular Systems Biology*, 7(481), pp.1–13.

González-Pérez, A. & López-Bigas, N., 2011. Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel. *American Journal of Human Genetics*, 88(4), pp.440–449.

Hopf, T.A. et al., 2017. Mutation effects predicted from sequence co-variation. *Nature Biotechnology*, 35(2), pp.128–135.

Hopf, T.A. et al., 2014. Sequence co-evolution gives 3D contacts and structures of protein complexes. *eLife*, 3, pp.1–45.

Hoskins, R.A. et al., 2017. Reports from CAGI: The Critical Assessment of Genome Interpretation. *Human Mutation*, 38(9), pp.1039–1041.

Innis, C.A., Anand, A.P. & Sowdhamini, R., 2004. Prediction of functional sites in proteins using conserved functional group analysis. *Journal of Molecular Biology*, 337(4), pp.1053–1068.

Jeong, C.S. & Kim, D., 2012. Reliable and robust detection of coevolving protein residues. *Protein Engineering, Design and Selection*, 25(11), pp.705–713.

Jones, D.T. et al., 2015. MetaPSICOV: Combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins. *Bioinformatics*, 31(7), pp.999–1006.

Jordan, D.M. et al., 2015. Identification of cis-suppression of human disease mutations by comparative genomics. *Nature*, 524(7564), pp.225–230.

Kaján, L. et al., 2014. FreeContact: Fast and free software for protein contact prediction from residue co-evolution. *BMC Bioinformatics*, 15(1), pp.1–6.

Kamisetty, H., Ovchinnikov, S. & Baker, D., 2013. Assessing the utility of coevolution-based residue-residue contact predictions in a sequence- and structure-rich era. *Proceedings
of the National Academy of Sciences, 110(39), pp.15674–15679.

Karczewski, K.J. et al., 2017. The ExAC browser: Displaying reference data information from over 60 000 exomes. Nucleic Acids Research, 45(D1), pp.D840–D845.

Kelly, L.A. et al., 2015. The Phyre2 web portal for protein modelling, prediction, and analysis. Nature Protocols, 10(6), pp.845–858.

Kimura, M., 1985. The role of compensatory neutral mutations in molecular evolution. Journal of Genetics, 64(1), pp.7–19.

Kircher, M. et al., 2014. A general framework for estimating the relative pathogenicity of human genetic variants. Nature genetics, 46(3), pp.310–315.

Kondrashov, A.S., Sunyaev, S. & Kondrashov, F.A., 2002. Dobzhansky-Muller incompatibilities in protein evolution. Proc Natl Acad Sci U S A, 99(23), pp.14878–14883.

Kumar, P., Henikoff, S. & Ng, P.C., 2009. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nature protocols, 4(8), pp.1073–1081.

Landrum, M.J. et al., 2018. ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Research, 46(D1), pp.D1062–D1067.

Latour, S. et al., 2001. Bidirectional Negative Regulation of Human T and Dendritic Cells by CD47 and Its Cognate Receptor Signal-Regulator Protein- : Down-Regulation of IL-12 Responsiveness and Inhibition of Dendritic Cell Activation. The Journal of Immunology, 167(5), pp.2547–2554.

Lek, M. et al., 2016. Analysis of protein-coding genetic variation in 60,706 humans. Nature, 536(7616), pp.285–291.

Lensink, M.F. et al., 2016. Prediction of homoprotein and heteroprotein complexes by protein docking and template-based modeling: A CASP-CAPRI experiment. Proteins: Structure, Function and Bioinformatics, (April), pp.323–348.

Maretty, L. et al., 2017. Sequencing and de novo assembly of 150 genomes from Denmark as a population reference. Nature, 548(7665), pp.87–91.

Marks, D.S. et al., 2011. Protein 3D structure computed from evolutionary sequence variation. PLoS ONE, 6(12).

Mateu, M.G. & Fersht, a R., 1999. Mutually compensatory mutations during evolution of the tetramerization domain of tumor suppressor p53 lead to impaired heterooligomerization. Proceedings of the National Academy of Sciences of the United States of America, 96(7), pp.3595–3599.

Minikel, E.V. et al., 2016. Quantifying prion disease penetrance using large population
control cohorts. *Science Translational Medicine*, 8(322), p.322ra9-322ra9.

Morcos, F. et al., 2011. Direct-coupling analysis of residue coevolution captures native contacts across many protein families. *Proceedings of the National Academy of Sciences*, 108(49), pp.E1293–E1301.

Mosca, R., Céol, A. & Aloy, P., 2013. Interactome3D: adding structural details to protein networks. *Nature Methods*, 10(1), pp.47–53.

Ng, P.C. & Henikoff, S., 2003. SIFT: predicting amino acid changes that affect protein function. *Nucleic Acids Res*, 31.

Ovchinnikov, S. et al., 2017. Protein structure determination using metagenome sequence data. *Science*, 355(6322), pp.294–298.

Pagani, L. et al., 2016. Genomic analyses inform on migration events during the peopling of Eurasia. *Nature*, 538(7624), pp.238–242.

Pappalardo, M. & Wass, M.N., 2014. VarMod: Modelling the functional effects of non-synonymous variants. *Nucleic Acids Research*, 42(W1), pp.1–6.

Pechmann, S. & Frydman, J., 2013. Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding. *Nature structural & molecular biology*, 20(2), pp.237–43.

Piton, A., Redin, C. & Mandel, J.L., 2013. XLID-causing mutations and associated genes challenged in light of data from large-scale human exome sequencing. *American Journal of Human Genetics*, 93(2), pp.368–383.

Plotkin, J.B. & Kudla, G., 2011. Synonymous but not the same: the causes and consequences of codon bias. *Nature Reviews*, 12(1), pp.32–42.

Ranea, J.A.G. et al., 2010. Finding the ‘dark matter’ in human and yeast protein network prediction and modelling. *PLoS Computational Biology*, 6(9).

Remmert, M. et al., 2012. HHblits: Lightning-fast iterative protein sequence searching by HMM-HMM alignment. *Nature Methods*, 9(2), pp.173–175.

Reva, B., Antipin, Y. & Sander, C., 2011. Predicting the functional impact of protein mutations: Application to cancer genomics. *Nucleic Acids Research*, 39(17), pp.37–43.

Rhesus Macaque Genome Sequencing and Analysis Consortium, 2007. Evolutionary and Biomedical Insights from the Rhesus Macaque Genome. *Science*, 316.

Rice, P., Longden, I. & Bleasby, A., 2000. EMBOSS: The European Molecular Biology Open Software Suite. *Trends in Genetics*, 16(1), pp.276–277.

Rotkiewicz, P. & Skolnick, J., 2008. Fast procedure for reconstruction of full-atom protein models from reduced representations. *Journal of Computational Chemistry*, 29(9), pp.1460–1465.
Saunders, R. & Deane, C.M., 2010. Synonymous codon usage influences the local protein structure observed. *Nucleic Acids Research*, 38(19), pp.6719–6728.

Schneider, M. & Brock, O., 2014. Combining physicochemical and evolutionary information for protein contact prediction. *PLoS ONE*, 9(10).

Schymkowitz, J. et al., 2005. The FoldX web server: An online force field. *Nucleic Acids Research*, 33(SUPPL. 2), pp.382–388.

Seemayer, S., Gruber, M. & Soding, J., 2014. CCMpred - Fast and precise prediction of protein residue-residue contacts from correlated mutations. *Bioinformatics*, 30(21), pp.3128–3130.

Sherry, S.T., 2001. dbSNP: the NCBI database of genetic variation. *Nucleic Acids Research*, 29(1), pp.308–311.

Supek, F. et al., 2014. Synonymous mutations frequently act as driver mutations in human cancers. *Cell*, 156(6), pp.1324–1335.

Telenti, A. et al., 2016. Deep sequencing of 10,000 human genomes. *Proceedings of the National Academy of Sciences of the United States of America*, 113(42), pp.11901–11906.

Tress, M.L., Abascal, F. & Valencia, A., 2017. Alternative Splicing May Not Be the Key to Proteome Complexity. *Trends in Biochemical Sciences*, 42(2), pp.98–110.

Tsai, C.-J. et al., 2008. Synonymous mutations and ribosome stalling can lead to altered folding pathways and distinct minima. *Journal of molecular biology*, 383(2), pp.281–91.

Tuller, T. et al., 2010. An Evolutionarily Conserved Mechanism for Controlling the Efficiency of Protein Translation. *Cell*, 141(2), pp.344–354.

Velankar, S. et al., 2013. SIFTS: Structure Integration with Function, Taxonomy and Sequences resource. *Nucleic Acids Research*, 41(D1), pp.483–489.

Wang, K., Li, M. & Hakonarson, H., 2010. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. *Nucleic Acids Research*, 38(16), pp.1–7.

Wang, X. et al., 2012. Three-dimensional reconstruction of protein networks provides insight into human genetic disease. *Nature Biotechnology*, 30(2), pp.159–164.

Xue, Y. et al., 2012. Deleterious- and disease-allele prevalence in healthy individuals: Insights from current predictions, mutation databases, and population-scale resequencing. *American Journal of Human Genetics*, 91(6), pp.1022–1032.

Yates, A. et al., 2016. Ensembl 2016. *Nucleic Acids Research*, 44(D1), pp.D710–D716.

Zhang, G., Hubalewska, M. & Ignatova, Z., 2009. Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. *Nature structural &
molecular biology, 16(3), pp.274–280.
