Development of Substituted Benzo[c]quinolizinium Compounds as Novel Activators of the Cystic Fibrosis Chloride Channel*

(Received for publication, May 12, 1999, and in revised form, June 14, 1999)

Frédéric Becq a,b,c,d, Yvette Mettey e,c, Mike A. Gray f,c, Luis J. V. Galietta c,d, Robert L. Dormer c,h, Marc Merten c,f, Thierry Métaye b,c, Valérie Chappe a,c, Cécile Marvingt-Mourin a,e, Olga Zegarra-Moran c,d, Robert Tarran a, Laurence Bul те ku b,c, Renaud Dérand b,c, Malcombe M. C. Pereira e,c, Margaret A. McPherson c,h, Christian Rogier b,c, Michel Joffre b,c, Barry E. Argent c,f, Denis Surrouilhe b, Wafa Kammoun i, Catherine Figarella c,i, Bernard Verrier a,c, Maurice Gola c,e, and Jean-Michel Vierfond c,e

From the “Laboratoire de neurobiologie UPR-9024 CNRS, 31 ch. J. Aiguier F-13402 Marseille cedex 20, France, bLaboratoire de chimie organique, Faculté de médecine et de pharmacie de Poitiers, 34 rue du jardin des plantes, 86005, Poitiers, France, cDepartment of Physiological Sciences, University Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom, dLaboratorio di genetica molecolare, Istituto Giannina Gaslini, 16148 Genova, Italy, eDepartment of Medical Biochemistry, University of Wales College of Medicine, Heath Park, Cardiff, CF4 4XN, United Kingdom, fGRGE, Faculté de médecine, 27 bld. Jean Moulin, 13385 Marseille, France, gLaboratoire de biologie cellulaire, Faculté de médecine et de pharmacie de Poitiers, 34 rue du jardin des plantes, 86005, Poitiers, France, and hLaboratoire de physiologie des régulations cellulaires, UMR 6558, Université de Poitiers, 40 avenue du recteur Pineau, 86022 Poitiers, France

Chloride channels play an important role in the physiology and pathophysiology of epithelia, but their pharmacology is still poorly developed. We have chemically synthesized a series of substituted benzo[c]quinolizinum (MPB) compounds. Among them, 6-hydroxy-7-chlorobenzo[c]quinolizinum (MPB-27) and 6-hydroxy-10-chlorobenzo[c]quinolizinum (MPB-07), which we show to be potent and selective activators of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. We examined the effect of MPB compounds on the activity of CFTR channels in a variety of established epithelial and nonepithelial cell systems. Using the iodide efflux technique, we show that MPB compounds activate CFTR chloride channels in Chinese hamster ovary (CHO) cells stably expressing CFTR but not in CHO cells lacking CFTR. Single and whole cell patch clamp recordings from CHO cells confirm that CFTR is the only channel activated by the drugs. Ussing chamber experiments reveal that the apical addition of MPB to human nasal epithelial cells produces a large increase of the short circuit current. This current can be totally inhibited by glibenclamide. Whole cell experiments performed on native respiratory cells isolated from wild type and CF null mice also show that MPB compounds specifically activate CFTR channels. The activation of CFTR by MPB compounds was glibenclamide-sensitive and 4,4'-disothiocyanostilbene-2,2'-disulfonic acid-insensitive. In the human tracheal gland cell line MM39, MPB drugs activate CFTR channels and stimulate the secretion of the antibacterial secretory leukoproteinase inhibitor. In submucosal acinar cells, MPB compounds slightly stimulate CFTR-mediated submucosal mucin secretion without changing intracellular cAMP and ATP levels. Similarly, in CHO cells MPB compounds have no effect on the intracellular levels of cAMP and ATP or on the activity of various protein phosphatases (PP1, PP2A, PP2C, or alkaline phosphatase). Our results provide evidence that substituted benzo[c]quinolizinum compounds are a novel family of activators of CFTR and of CFTR-mediated protein secretion and therefore represent a new tool to study CFTR-mediated chloride and secretory functions in epithelial tissues.

Cystic fibrosis (CF),¹, the most common fatal genetic disease is characterized by defective chloride transport across epithelia of the airways, exocrine ducts, and intestine as well as viscous epithelial mucous secretions (1–3). The mutated gene that causes CF encodes the cystic fibrosis transmembrane conductance regulator (CFTR) (3). CFTR, which belongs to the ABC (ATP binding cassette) family of transporters (3), is a regulated chloride channel that plays a key role in the hormone-dependent ion transport across epithelia in a variety of different species and organs (reviewed in Ref. 4). CFTR also regulates secretion of mucins and serous proteins in epithelial cells (5, 6). Under normal physiological conditions, opening of the CFTR channel is triggered by secretagogues that elevate intracellular cAMP (4, 7), resulting in protein kinase A-mediated phosphorylation at multiple sites on the R domain (8). In CF, mutations in the gene produce proteins that are not correctly processed

¹ The abbreviations used are: CF, cystic fibrosis; CFTR, cystic fibrosis transmembrane conductance regulator; CHO, Chinese hamster ovary; MPB, benzo[c]quinolizinum compounds; MPB-02, 6-amino-10-chlorobenzo[c]quinolizinum chloride; MPB-04, 6-amino-7-chlorobenzo[c]quinolizinum chloride; MPB-07, 6-hydroxy-10-chlorobenzo[c]quinolizinum chloride; MPB-27, 6-hydroxy-7-chlorobenzo[c]quinolizinum; I_0, short circuit current; DIDS, 4,4'-disothiocyanostilbene-2,2'-disulfonic acid; SLP1, secretory leukoproteinase inhibitor; TES, 2-(2-hydroxyethyl)1-bis(hydroxymethyl)ethyl]aminoethanesulfonic acid; WT, wild type; pF, picofarads; cpt-CAMP, 8-(4-chlorophenylthio)-adenosine 3′,5′-cyclic monophosphate.
and fail to traffic to the plasma membrane, have a reduced conductance, or are incorrectly regulated by physiological stimuli (4, 9–11). This disrupts the normal transport of salt, water, and proteins across epithelial tissues, which leads to the production of thickened secretory product and to progressive obstruction of secretory ducts leading to organ dysfunction (1, 2).

Great effort has been made during the past 5 years to identify suitable CFTR chemical activators. Such substances would benefit patients by increasing the fluidity of secretions. These chemicals include those which can affect CFTR indirectly by interacting with parts of the cAMP signaling mechanism such as phosphodiesterase inhibitors (5, 11) and phosphatase inhibitors (12–15). Direct activation of CFTR has been postulated when using the tyrosine kinase inhibitor flavonoid drug ginseng (16, 17), xanthine derivatives (15, 18) including the adenine receptor antagonist CPX (19), and the K⁺ channel activators benzimidazolone compounds NS004 (20, 21) and 1-EBIO (21). However, the mode of action and the specificity of these latter activators is still debated.

The goal of our study was to design new activators of CFTR channels. We have chemically synthesized molecules and tested them using an iodide efflux assay adapted for the study of CFTR channels in stably transfected Chinese hamster ovary (CHO) cells. Selected compounds were then evaluated for actions on chloride transport, secretion of serous proteins, and mucins within a consortium of seven laboratories, and results were collected and compared. Here we report on the development of chemicals belonging to the benzo[c]quinolizinium family (named MPB) (22), which we show are selective activators of CFTR channels. To our knowledge, this strategy is the first to be reported in the field of the pharmacology of chloride channels.

EXPERIMENTAL PROCEDURES

Chemical Synthesis (Fig. 1A)

6-Amino-10-chlorobenzo[c]quinolizinium chloride (MPB-02; Fig. 1B)— After stirring during 30 min at 0 °C, a mixture of 2.23 g (0.022 mol) of diisopropylamine in tetrahydrofuran (30 ml) and 13.75 ml of a 1.6 M solution of BuLi in diethyl ether (70/30) was added to the mixture (0.02 mol) of 2-methylpyridine. After 30 min, 3.44 g (0.02 mol) of 2,3-dichlorobenzenitrile in 20 ml of tetrahydrofuran was added. After stirring for 1 h at -40 °C, the solution was further stirred for 20 h at 20 °C and hydrolyzed with 10 ml of water. The organic layer was dried over Na₂SO₄, concentrated under vacuum, and warmed to 200 °C under N₂ for 15 min. The residue was washed with propanone and purified by flash chromatography on Al₂O₃ using ethyl acetate-ethanol (70/30) as eluent to give 1.10 g (20%) of a yellow powder; melting point (decomposition). Anal. C₁₃H₁₀Cl₂N₂O·0.5H₂O: C, 56.96; H, 3.66; N, 5.09.

6-Hydroxy-7-chlorobenzo[c]quinolizinium chloride (MPB-04, Fig. 1B)— MPB-04 was synthesized using the procedure described for the formation of MPB-02 but starting from 2,6-dichlorobenzoquinone. Yellow powder, melting point > 260 °C; yield: 42%. Anal. C₁₃H₁₀Cl₂N₂O·2H₂O·C₁₃H₁₀Cl₂N₂O: C, 51.84; H, 4.68; N, 9.30. Found: C, 51.75; H, 4.27; N, 8.95. IR (KBr): 3417, 3176, 1643, 1596, 1451. ¹H NMR (MeSO-d₆): δ 9.6 (d, J = 7 Hz, 1H, H1), 8.4–7.3 (m, 7H + OH). Mass spectrum (EI, m/z): 229 (91) (M-HCl), 201 (100), 166 (82), 139 (67).

6-Amino-7-chlorobenzo[c]quinolizinium chloride (MPB-27, Fig. 1B)— MPB-27 was synthesized using the procedure described for the formation of MPB-07 but starting from 2,6-dichlorobenzoquinone. Cream powder, melting point > 240–250 °C (decomposition), yield: 31%. Anal. C₁₃H₁₀Cl₂N₂O·0.5H₂O: C, 58.67; H, 3.41; N, 9.26. Found: C, 58.68; H, 3.51; N, 9.24. IR (KBr): 3097, 3045, 2386, 1641, 1608, 1943, 1453. ¹H NMR (MeSO-d₆): δ 9.7 (d, J = 7 Hz, 1H, H1), 9.0–8.7 (m, 1H, H2 + OH). Mass spectrum (EI, m/z): 229 (91) (M-HCl), 201 (100), 166 (21), 139 (14).

Iodide Efflux Experiments

Chinese hamster ovary (CHO-K1) cells stably transfected with either pNuT vector alone (CFTR⁺ CHO cells) or pNuT containing wild type CFTR (CFTR⁺ CHO cells) were provided by J. R. Riordan and X.-B. Chang (Mayo Clinic, Scottsdale, Azl) (15, 23, 24). Cells cultured at 37 °C in 5% CO₂ were maintained in a minimal essential medium containing 7% fetal bovine serum, antibiotics (50 IU of penicillin/ml and 50 µg/ml streptomycin), and 100 µg/ml Geneticin (all from Sigma). CFTR chloride channel activity was assayed by measuring iodide (¹²⁵I) efflux from transfected CHO cells as described previously (12, 18). All experiments were performed at 37 °C. Cells grown for 4 days in 12-well plates were washed twice with 2 ml of modified Earle’s salt solution (solution B) containing 137 mM NaCl, 5.36 mM KCl, 0.4 mM Na₂HPO₄, 0.8 mM MgCl₂, 5 mM glucose, and 10 mM HEPES, pH 7.4. Cells were then incubated in B medium containing 1 µCi Ki (1 µCi of Na¹²⁵I/mLENM Life Science Products) for 30 min at 37 °C. After washing, cells were incubated with 1 ml of solution B. After 1 min, the medium was removed to be counted and was quickly replaced by 1 ml of the same medium. This procedure was repeated every 1 min for 11 min. The first two aliquots were used to establish a stable base line of iodide efflux buffer alone. Iodide efflux from the appropriate drug was used for the remaining aliquots. At the end of the incubation, the medium was recovered, and cells were solubilized in 1 NaOH. The radioactivity was determined using a γ-counter (LKB). The total amount of ¹²⁵I (in cpm) at time 0 was calculated as the sum of cpm counted in each 1-min sample plus the cpm in the NaOH fraction. The fraction of initial intracellular ¹²⁵I lost during each time point was determined, and time-dependent rates of ¹²⁵I efflux were calculated according to Venglarik et al. (25) from ln(¹²⁵I) / [¹²⁵I]₀ for (tₗ₋ₜ₂). ¹²⁵I⁻ is the intracellular ¹²⁵I at time t, and t₁ and t₂ are successive time points (25). Curves were constructed by plotting rate of ¹²⁵I efflux versus time. Data are presented as the mean ± S.E. of n separate experiments. Differences were considered statistically significant using the Student’s t test when the p value was < 0.05.

Patch Clamp Recordings from CHO and MM39 Cells

CHO or MM39 cells were plated on 35-mm Petri dishes and cultured at 37 °C in 5% CO₂ for 1–4 days before use. Single channel currents were recorded from cell-attached patches with a List EPC-7 patch-clamp amplifier (List Electronic, Darmstadt, Germany). Experiments were performed at room temperature. Results were displayed conventionally with inward currents (outward flow of anions) indicated by downward deflections. Potentials were expressed as the bath potential minus the patch electrode potential. The pipette solution contained 150 mM choline-Cl, 2 mM MgCl₂, and 10 mM TES (pH 7.4); the bath contained 145 mM NaCl, 4 mM KCl, 2 mM MgCl₂, and 10 mM TES (pH 7.4). Other details appeared elsewhere (18). Data are presented as the mean ± S.E. of n separate experiments.

Whole cell currents were recorded with an RK300 patch-clamp amplifier (Biologic, France). The current-voltage relationships were determined from step voltage protocols. The membrane potential was first held at −40 mV and then voltage-clamped over the range ±80 mV in steps of 20 mV. Currents were slow low-pass filtered at 3.3 kHz, digitized on-line at 4 kHz, and stored on the computer hard disk. They were analyzed off-line with the pCLAMP 5.1 software package (pCLAMP, Axon Instruments). Pipettes with resistance of 2–5 MΩ were tested using a two-step vertical puller (Narishige, Japan). They were connected to the head stage of the amplifiers through an Ag/AgCl pellet. Seal resistance ranging from 3 to 30 MΩ were obtained. The pipette solution contained 145 mM CsCl, 5 mM NaCl, 2 mM MgCl₂, 10 mM EGTA, 10 mM HEPES (pH 7.2). The external solution consisted of 150 mM NaCl, 2 mM CaCl₂, 2 mM...
MgCl₂, 10 mM HEPES (pH 7.4). All experiments were performed at room temperature.

Cells were stimulated with forskolin or an appropriate compound (dissolved in Me₂SO; final Me₂SO concentration 0.1%) at the concentration indicated under “Results.” In control experiments, the currents were not altered by Me₂SO.

Whole Cell Recordings from Isolated Murine Ciliated Nasal Cells

Mice of either sex from a Balb/c breeding colony at the University of Newcastle upon Tyne or transgenic CF null mice (26) were used for these experiments (three wild type and two CF null animals). Ciliated respiratory cells were obtained using an isolation technique that has been fully described previously (27). In brief, nasal epithelium was treated with 0.05% protease XIV (Sigma) for 24–30 h at 4 °C, and single ciliated respiratory cells were teased from the epithelium (27). Our criteria for cell viability were (i) a clear, bright, phase-contrast image and (ii) beating cilia (27).

Patch clamp recordings were made at room temperature either from single cells or small groups of cells (≤7). Whole cell currents were recorded with an EPC-7 patch-clamp amplifier (List Electronic, Darmstadt, Germany). To obtain I/V relationships, the membrane potential was held at 0 mV and then voltage-clamped over the range −80 to +80 mV in steps of 20 mV with each voltage step lasting 500 ms. Data were filtered at 1 kHz and sampled at 2 kHz with a Cambridge Electronic Design 1401 interface (CED, Cambridge, UK) and stored on the computer hard disk. The input capacitance of the cells was measured using the analogue circuitry of the amplifier and used to calculate current density which was expressed as μA/F. Junction potentials were measured, and the appropriate corrections were applied to Vm.

The pipette solution contained 120 mM N-methyl-D-glutamine-Cl, 2 mM MgCl₂, 2 mM EGTA, 1 mM ATP, 10 mM HEPES, pH 7.2 (calculated free Ca²⁺ concentration <1 nM). The standard bath solution contained 149.5 mM N-methyl-D-glutamine-Cl, 2 mM CaCl₂, 1 mM MgCl₂, 5 mM glucose, 10 mM HEPES, pH 7.4. As we have previously found for murine pancreatic duct cells (25), in order to obtain CFTR currents, airway cells had to be pretreated with forskolin (1 μM), dibutyryl cAMP (100 μM), and 3-isobutyl-1-methylxanthine (100 μM) before whole cell recording was established. Preliminary experiments showed that CFTR currents were only detected if the cAMP stimulants were included in the protease solution used to isolate the respiratory cells (24–30 h at 4 °C). An identical protocol was employed for the MPB compounds. Cells remained viable after exposure to the MPB compound as judged by the presence of mAbF. Junctional potentials were measured, and the appropriate corrections were applied to Vm.

The pipette solution contained 120 mM N-methyl-D-glutamine-Cl, 2 mM MgCl₂, 2 mM EGTA, 1 mM ATP, 10 mM HEPES, pH 7.2 (calculated free Ca²⁺ concentration <1 nM). The standard bath solution contained 149.5 mM N-methyl-D-glutamine-Cl, 2 mM CaCl₂, 1 mM MgCl₂, 5 mM glucose, 10 mM HEPES, pH 7.4. As we have previously found for murine pancreatic duct cells (25), in order to obtain CFTR currents, airway cells had to be pretreated with forskolin (1 μM), dibutyryl cAMP (100 μM), and 3-isobutyl-1-methylxanthine (100 μM) before whole cell recording was established. Preliminary experiments showed that CFTR currents were only detected if the cAMP stimulants were included in the protease solution used to isolate the respiratory cells (24–30 h at 4 °C). An identical protocol was employed for the MPB compounds. Cells remained viable after exposure to the MPB compound as judged by the presence of mAbF. Junctional potentials were measured, and the appropriate corrections were applied to Vm.

Significance of difference between means was determined using analysis of variance followed by Dunn’s multiple comparison test. The significance of difference between the number of cells responding to a particular maneuver was assessed using the χ² test. The level of significance was set at p ≤ 0.05. All values are expressed as mean ± S.E. (number of observations).

Short Circuit (Iₛ) Measurements of Human Nasal Epithelial Cells

The method for the primary culture of nasal epithelial cells has been described elsewhere (29, 30). Briefly, nasal polyps were digested overnight in a solution containing protease XIV. Detached epithelial cells were seeded at high density (3 × 10⁶ cells/cm²) on Snapwell (Costar) permeable supports. Culture medium was Dulbecco’s modified Eagle’s medium/Ham’s F-12 (1:1) plus 5% fetal calf serum, 2 mM l-glutamine, 100 units/ml penicillin, and 100 μg/ml streptomycin for the first 24 h. Subsequently, this medium was replaced with one containing 2% Ultratose G (Life Technologies, Inc.) instead of fetal calf serum.

Ussing chamber experiments were performed 4–5 days after cell seeding. At this time, cell monolayers displayed a transepithelial potential difference of −52.4 ± 1.7 mV and an electrical resistance of 1007 ± 36 ohms·cm². The Snapwell cups were mounted in a modified Ussing chamber (Costar) filled on both sides with 5 ml of a Krebs bicarbonate solution containing 126 mM NaCl, 0.38 mM KH₂PO₄, 2.13 mM K₂HPO₄, 1 mM MgSO₄, 1 mM CaCl₂, 24 mM NaHCO₃, 10 mM glucose, and 0.04 mM phenol red. During the experiments, this solution was continuously bubbled with 5% CO₂/95% air and kept at 37 °C. The epithelium was short-circuited with a voltage clamp (558-C5, Bioengineering, The University of Iowa) connected to apical and basolateral chambers with Ag/AgCl electrodes. The potential difference and the fluid resistance between potential sensing electrodes was compensated. The short circuit current (Iₛ) was recorded simultaneously on a chart recorder (L6512, Linseis) and a computer Power Macintosh equipped with a MacLab/200 converter.

Measurement of Mucin Secretion, Cellular cAMP, and ATP in Rat Submandibular Acini

Methods for isolating preparations of rat submandibular acini and for measurement of mucin secretion have been described elsewhere (6, 31). Briefly, acini were pulse-chase-labeled with [¹⁴C]glucosamine (5 μCi/ml), suspended in KHB containing 20 mg/ml bovine serum albumin, and incubated under experimental conditions at 37 °C. [¹⁴C]glucosamine-labeled mucins, released into the medium at zero time and after 60 min, were acid-precipitated using a combination of 10% trichloroacetic acid and 0.5% phosphotungstic acid. The precipitates were washed, and their radioactivity was measured as described. The majority of the radioactivity in the trichloroacetic acid/phosphotungstic acid precipitate has characteristics of mucin in both basal and stimulated rat submandibular acinar cell secretions (31). The protein content of mucins was determined using the Bio-Rad kit, and mucin release is expressed as a percentage of basal secretion to take account of variation in unstimulated mucin release between experiments.

For cAMP and ATP measurement, acini were incubated for 5 and 60 min, respectively, at 37 °C in the presence or absence of test compounds. Aliquots of acini suspensions (0.25 ml) were added to an equal volume of ice-cold trichloroacetic acid (20%), extracted and assayed using a specific radioimmunoassay kit for cAMP (Amersham Pharmacia Biotech) and a luminescent assay using firefly-luciferin-luciferase for ATP, as described previously (6).

Assay for SLPI Secretion in MM39 Cells

Confluent cultures of the human tracheal gland MM39 cell line (32, 33) grown on 24-well plates were rinsed four times for 1 h with serum-free culture medium and then exposed for 30 min to nucleosides or agents. 40 μl of the culture medium was harvested, and the secretion of the secretory leukoprotease inhibitor SLPI was directly measured by enzyme-linked immunosorbent assay (34). The polyclonal antibodies used were highly specific and able to recognize the molecule even complexed to mucins or to proteases, allowing accurate detection of SLPI in the culture medium. The SLPI secretory rate determined from quadruplicate assays, was expressed as the ratio of SLPI secreted in the presence of agonists to that secreted in control wells to which only vehicle solutions were added. Vehicle additions were shown to be ineffective on SLPI secretion by MM39 cells.

Measurement of CHO Cellular cAMP and ATP

CHO cells grown for 4 days in 12-well plates were incubated in the presence or absence of test compounds. After a 5-min incubation period, the reaction was stopped by adding 50 μl of 1 N perchloric acid. A radioimmunoassay kit (RIANEN kit, NEN Life Science Products) was used to determine CAMP levels. ATP was measured (in triplicate) using the luciferin-luciferase method with a bioluminescent kit (CLS Test Combination from Roche Molecular Biochemicals). In order to compare the effect of different drugs, test data are expressed as percentage of ATP content of cells incubated in the absence of drugs.

Assay for Protein Phosphatase Activities

PP1, PP2A, and PP2C were assayed from a transfected CHO extract obtained after centrifugation of cell homogenate at 20,000 × g. PP1 and PP2A activities were determined by measuring the release of [³²P]orthophosphate from [³²P]phosphorylase a, according to Cohen et al. (35), in the presence of 2 mM okadaic acid and 0.2 mM inhibitor 2, respectively (35). The PP2C activities were measured in the absence of okadaic acid and inhibitor 2 inhibited more than 95% of protein phosphatase activities when assayed on purified enzymes. PP2C activity was determined with [³²P]-labeled casein as substrate (36) in the presence of 1 mM okadaic acid. Only 6% of initial PP2C activity was observed in Mg²⁺-free buffer. PP2B (Promega, Madison, WI) activity was assayed spectrophotometrically at 410 nm with p-nitrophenyl phosphate as substrate (37). Protein phosphatase activity of all four phosphatase activities was determined at pH 7.5 by measuring the release of [³²P]orthophosphate from phosphorylated casein in 50 mM Tris buffer containing 20 mM magnesium acetate. ALP activity was inhibited by 68% in the presence of 2 mM levamisole. All activities were expressed as pmol of phosphate release/min.

RESULTS

Discovery of Novel CFTR Activators—During the search for potential activators of the CFTR chloride channel (12, 13, 15, 18), we found a novel family of tricyclic compounds (Fig. 1A,
Activation of CFTR by Benzoquinolizinium Drugs

Fig. 1. Benzo[c]quinolizinium compounds, synthesis, and structure. A, scheme showing the experimental procedure for the synthesis of benzo[c]quinolizinium compounds. The condensation of 2-picolyllithium (1) and ortho-halogenobenzonitrile (2) gives the product 3. Then thermocyclization at 200 °C generates two series of compounds depending on the presence of NH₂ (4) or OH (5). Other details are given under “Experimental Procedures.” B, chemical structure for MPB-07 (6-hydroxy-10-chlorobenzo[c]quinolizinium chloride), MPB-27 (6-hydroxy-7-chlorobenzo[c]quinolizinium chloride), MPB-02 (6-amino-10-chlorobenzo[c]quinolizinium chloride), and MPB-04 (6-amino-7-chlorobenzo[c]quinolizinium chloride). Note the substitution at C-6 by OH (MPB-07 and MPB-27) or by NH₂ (MPB-02 and MPB-04).

The results suggest that the nature of the group at the C-6 position of the MPB structure affects the potency of activation of these compounds. The stimulation of the iodide efflux in CFTR(+) CHO cells by forskolin (5 μM), MPB-07 (250 μM), or MPB-27 (250 μM) was inhibited by ~90% using 100 μM glibenclamide (Table I) but not affected by 500 μM DIDS (Table I), indicating that CFTR was indeed the only chloride channel activated by these compounds. In CFTR(−) CHO cells, no stimulation of iodide efflux was observed in the presence of forskolin, cAMP, or MPB compounds (Table I).

To confirm whole cell and iodide efflux data, we also performed cell-attached patch clamp experiments. In control experiments using CFTR(+) CHO cells (i.e., in the absence of cAMP agonists), no spontaneous cell-attached CFTR channel activity was recorded (n = 40). As shown in Fig. 5, A and B, the addition to the bath of MPB-27 (250 μM) to a previously silent cell-attached patch caused progressive opening of multiple CFTR channels within 2 min. The analogue MPB-04 was found unable to activate CFTR (500 μM, n = 4, Fig. 5C). Fig. 6A shows the effect of MPB-07 (250 μM, n = 6) in the bath on cell-attached patches using CFTR(+) CHO cells. The activity of multiple CFTR chloride channel was again consistently observed in the presence of this derivative. MPB-02 again failed to open CFTR channels in cell-attached patch clamp experiments (Fig. 6B, 500 μM, n = 4). The linear current-voltage relationship and unitary conductance (6.9 ± 0.25 picosiemens, n = 12) were similar for both MPB-07 and MPB-27 compounds.

Effect of MPB on Murine Nasal Respiratory Cells—In contrast to CHO cells and human nasal cells (see below), prolonged exposure of murine respiratory cells to cAMP stimulants was necessary in order to observe CFTR currents. Fig. 7 shows examples of whole cell currents and associated I/V plots under the conditions (6.9 ± 0.25 picosiemens, n = 12) were similar for both MPB-07 and MPB-27 compounds.
murine respiratory cells responded to cAMP, suggesting that not all cells in the mouse nasal epithelium express CFTR. That these currents are Cl\(^{-}\)-selective is further supported by the fact that Cl\(^{-}\) is the only permeant ion under the conditions used in these experiments. The Cl\(^{-}\) conductance had a current density of 10.2 ± 1.7 pA/pF and −10.2 ± 1.3 pA/pF when measured at the reversal potential ± 60 mV. Using 100 μM MPB-27, similar Cl\(^{-}\) currents were seen in 6 of 13 cells from two mice. These currents had a reversal potential of −4.5 ± 1.9 mV and a current density of 6.7 ± 2.6 pA/pF and −5.9 ± 1.4 pA/pF, data that are not significantly different to the cAMP-activated currents (either current density or frequency). Currents with similar properties were not present in nasal cells from transgenic CF null mice pre-exposed to either cAMP or MPB-27 (Fig. 7D), confirming that they are carried by CFTR channels. Overall, our experiments show that MPB-27 activates a chloride conductance with CFTR-like kinetics (time- and voltage-independent, linear I/V relationship) in nasal respiratory cells. Moreover, the respiratory cells remained viable after prolonged exposure to 100 μM MPB-27, and compared with stimulation with cAMP, a similar proportion of cells exhibited CFTR currents.

Effect of MPB on Short Circuit Current in Human Nasal Cells—The MPB-07 compound was tested on polarized preparations of human nasal epithelial cells after blocking the epithelial Na\(^{+}\) channel with amiloride (10 μM). These cells express CFTR as indicated by the presence of a glibenclamide-sensitive cAMP-dependent current. Indeed, the stimulation with cpt-cAMP (100 μM) increased the short circuit current by 22.4 ± 3.4 μA/cm\(^2\), n = 3 (Fig. 8A). This current was completely blocked by 500 μM glibenclamide (Fig. 8A). MPB-07 was applied in the apical solution at increasing concentrations (from 1 to 200 μM). This compound elicited stable increases of the short circuit current in a dose-dependent fashion (Fig. 8B). At 200 109 μM, the current induced by MPB-07 was 12.9 ± 0.9 109 μA/cm\(^2\) (n = 4). Glibenclamide completely blocked this current (Fig. 8B).

Effect of MPB on Mucin Secretion, cAMP, and ATP Levels in Rat Submandibular Acinar Cells—MPB-07 was tested on secretion of mucins in a polarized preparation of rat submandibular acini, which express CFTR (6, 31). The actions of MPB-07 have been compared with that of physiological stimulation evoked by the β-adrenergic agonist, isoproterenol. Table II shows that the compound MPB-07 significantly stimulated mucin secretion from rat submandibular acini, although to a much lesser extent than a maximally effective concentration (10 μM) of the β-adrenergic agonist, isoproterenol. In the presence of isoproterenol, MPB-07 did not further increase mucin secretion (MPB-07 [100 μM] plus isoproterenol [10 μM]: 107.4 ± 9.3%, n = 4 of isoproterenol alone; MPB-07 [500 μM] plus isoproterenol [10 μM]: 104.8 and 96.9%, n = 2 of isoproterenol alone), indicating that MPB-07 was increasing mucin secretion by the same final common mediator as isoproterenol, which we have shown to be CFTR (6, 31). MPB-07 did not increase intracellular cAMP, suggesting a direct action on CFTR. MPB-07 did not change cellular ATP levels over a 60-min incubation period, nor did it increase lactate dehydrogenase release (data not shown).
indicating that it had no effect on cell viability or leakage of cytoplasmic contents.

Effect of MPB on CFTR Chloride Channel Activity of, and on the Secretion of Protein by, the Human Tracheal Gland Cell Line MM39—We characterized the activation of CFTR chloride channels by cAMP agonists in the human tracheal gland cell line MM39 (33). Fig. 9 shows that MPB-07 (250 μM, n = 3) in cell-attached patch-clamp experiments, caused the activation of multiple CFTR chloride channels (Fig. 9A) with an average unitary conductance of 9 ± 2.1 picosiemens, n = 3 (Fig. 9B), consistent with previous data obtained using cAMP agonists (33).

It is known that the secretagogue agent ATP, proposed for CF therapy, acts on the human tracheal gland cell line MM39 by increasing protein secretion (32). This effect is mediated by cAMP generation and through calcium mobilization (32). We examined the effect of MPB-07 on the secretion of the SLPI by MM39. The results are expressed as the percentage of the SLPI secreted by the assay to the SLPI secreted in control experiments. Fig. 9C shows that ATP (100 μM, n = 8) or MPB-07 (100 μM, n = 8) has a similar stimulatory effect on secretion of SLPI. The combination of MPB-07 and ATP (both at 100 μM, n = 8) showed additive effects. The responses were similar to that predicted by summation of the effects of each agent added independently. The response to MPB-07, ATP, or ATP plus MPB-07 was 59 ± 11 (p < 0.01), 52 ± 15 (p < 0.01) and 93 ± 15% (p < 0.01) above control, respectively. Thus, in human tracheal gland cells, MPB compounds are able not only to activate CFTR but are also able to stimulate the secretion of a protein involved in the antiproteolytic (39) and antibacterial (40) defense of the airway.

Effect of MPB on cAMP and ATP Levels in CHO Cells—We tested the possibility that activation by MPB might be due to elevation of cAMP. In resting CFTR(+) CHO cells, the cellular cAMP content was 18.3 ± 2.08 pmol of cAMP/mg of protein, n = 9 (Table III). As expected, forskolin (5 μM, n = 9) increased the cAMP level measured after 5 min (Table III). In contrast, the corresponding cAMP level determined in the presence of MPB-07, MPB-27, MPB-02, and MPB-04 (500 μM) was not increased compared with the basal level (Table III). These results argue against a role of cAMP in mediating the effect of MPB compounds on CFTR. In addition, these results are comparable with that observed in submandibular acinar cells. We also measured the effect of MPB compounds on the ATP content of CFTR(+) CHO cells. In resting cells, the
The level of ATP was 51 ± 5 nmol/mg of protein (n = 6). At a concentration of 500 μM, MPB-07 and MPB-27 have no effect on the ATP content of CHO cells. These data also suggest that MPB drugs did not stimulate CFTR channels through modulation of cellular ATP.

Effect of MPB on Protein Phosphatase Activities—Protein phosphatase inhibition has been shown to activate CFTR channels in a variety of cells including CHO cells (12, 15, 41–43). To test whether our compounds might activate CFTR through the inhibition of endogenous phosphatases, we measured in CFTR(+) CHO cells the activity of the principal protein phosphatases (Table IV) previously described to regulate CFTR (12, 15).

Fig. 5. Single CFTR chloride channel activation by MPB-27 but not by MPB-04 in CFTR(+) CHO cells. A, continuous cell-attached recording obtained on a CHO cell stably expressing CFTR showing the activation of CFTR chloride channels by 250 μM MPB-27 in the bath. The compound was added at the beginning of the recording (top trace). Note the progressive opening of up to seven channels. The levels of channel currents are noted to the right of each trace (C, closed state; O, open state). B and C, representative recordings at various patch potentials as indicated, in the presence of MPB-27 (B) or MPB-04 (C), both at 250 μM in the bath. For clarity, the chemical structure of the respective compound used is shown. Note that with MPB-04 no channel activity was observed.

Fig. 6. Single CFTR chloride channel activation by MPB-07 but not by MPB-02 in CFTR(+) CHO cells. A and B, representative recordings in cell-attached configuration at various patch potential of CFTR chloride channels in the presence of MPB-07 (A) or MPB-02 (B), both at 250 μM in the bath. Note that with MPB-02 no channel activity was observed. C, the chemical structure of the respective compound used is shown.
Table IV shows that MPB-07 had no effect on the endogenous PP1, PP2A, PP2C, and alkaline phosphatase activities. Similarly, the PP2B phosphatase was not affected by the compound (Table IV).

DISCUSSION

Pharmacology of CFTR is still poor, and only a few compounds with low specificity have been shown to modulate its activity. Therefore, to test new products, we have developed a collaboration with several European laboratories. Selected compounds that arose from our screening strategy were evaluated independently in these laboratories, and results are presented in this report.

Novel Activators of CFTR Chloride Channels—We have generated by chemical methods a series of substituted MPB compounds, among them MPB-27 and MPB-07, which we show to be potent and selective activators of the CFTR chloride channel in all of the cell models tested in this study (i.e. in CHO cells stably expressing wild type CFTR, in human tracheal gland MM39 cell lines, in native respiratory cells isolated from wild type mice, in rat submandibular acinar cells, and in human nasal epithelial cells). Activation of CFTR by MPB compounds is shown to be cAMP- and ATP-independent, glibenclamide-sensitive and DIDS-insensitive, two well established properties of CFTR (4, 44), indicating the specificity of these drugs for CFTR. The successful activation of CFTR chloride current in murine and human respiratory cells is of particular interest, since it proves that MPB compounds are good candidates for the pharmacological activation of CFTR in airways.

MPB Drugs Stimulate the Antibacterial Function of Human Tracheobronchial Gland Cells—Interestingly, we have demonstrated in this study that beside their effect on CFTR chloride channels, MPB drugs may stimulate the defense protein secretion of human tracheobronchial gland cells. Human tracheal glands are considered as the main secretory structure in the bronchotracheal tree and are among the human airway cells that highly express CFTR (45). We studied the human tracheal
gland cell line MM39 because it has retained the physiological characteristics of the genuine cells, namely CFTR expression, high capacity of ionic transport (33), and constitutive and stimulated secretion of proteins highly involved in the defense mechanism of the bronchotracheal tree (32). These are SLPI, lactoferrin, and lysozyme participating in the antibacterial activity of the lung. SLPI is the major antiprotease of the epithelium of the upper respiratory tract providing protection against neutrophil elastase (39). The effects of drugs, active on CFTR, on the secretion of proteins involved in lung defense is therefore of primary importance. We have shown here that MPB compounds are able to activate CFTR and to stimulate SLPI secretion, suggesting that CFTR is involved in the secretory process. Indeed, a defect in protein secretory mechanisms is a hallmark of CF gland cells (5, 46). We may speculate that MPB stimulates the secretion of SLPI by a mechanism different from that of ATP and possibly through the direct activation of CFTR, which in turn promotes this secretory pathway.

MPB Compounds and Mucin Secretion—In keeping with these data, we have shown that MPB-07 increased CFTR-mediated mucin secretion in rat submandibular acinar cells and that this effect does not involve cAMP. These results are in line with the preceding data of Lloyd Mills et al. (6) on these same cells, showing that the incorporation of anti-CFTR antibodies into the cells inhibited β-adrenergic-stimulated mucin secretion (6). Moreover, it has been shown that the transfection of cDNA for wild type CFTR into CFPAC-1 cells, which conferred cAMP-dependent regulation of a Cl− conductance (47), restored the defective ATP-induced mucin secretion observed in CF cells (48). Similarly, adenovirus-mediated gene transfer of CFTR to immortalized CF human tracheal epithelial cells restored defective CAMP-dependent secretory activity not only of chloride but also of glycoconjugates (49). Taken together, these observations suggest that the presence of a functional CFTR protein is necessary for the regulation of macromolecule secretion. This also suggests that the MPB compounds are useful not only as CFTR Cl− channel activators but also as stimulators of CFTR-mediated protein secretion. It also strengthens the hypothesis that CFTR controls the secretion of proteins and/or mucins in epithelial cells.

Structure-Activity of MPB Compounds—To complement these studies, we also began a structure-activity analysis of the MPB family to gain information on the structural components important for CFTR opening. In a first approach, we have studied the effect of chemical modification of the OH group at the C-6 position and generated two different series of compounds with OH or NH₂ at C-6. Replacement of OH by NH₂ abolishes the ability of MPB to activate CFTR, since compounds substituted at C-6 by OH (MPB-07 and MPB-27) but not by NH₂ (MPB-02 and MPB-04) open CFTR. Within the OH-substituted series, the position of the chlorine atom at C-7 (MPB-27) or C-10 (MPB-07) generated two apparent equivalent activators of CFTR. These data strongly indicate that MPB activation of CFTR depends not only on the position, but also on the nature of the substituent group. We are now further investigating the structure-activity relationship of these chemicals to determine the structural basis for specificity and potency of MPB derivatives as activators of CFTR.

In conclusion, we report the discovery of a family of substituted benzo[c]quinolizinium compounds as novel activators of the CFTR chloride channel and of CFTR-mediated protein secretion. These compounds activate CFTR in a variety of cell models, including recombinant and epithelial cells from humans, rats, and mice, without affecting the intracellular levels of cAMP and ATP or the activity of various phosphatases. These drugs are easy tools to use in laboratories, since we show that all of the classical techniques commonly used to study CFTR channel function (whole cell and single patch clamp recordings, iodide efflux, short circuit measurement) are suitable. Moreover, several lines of evidence suggest that these drugs specifically activate CFTR without an effect on other chloride channels. For example, in a comparison of CF null and wild type mice, CFTR appears to be the only chloride conductance activated by MPB compounds. Similarly, in MM39 and human nasal cells, no other chloride conductance appeared to be activated by MPB. The specificity of MPB compounds as CFTR activators is also strengthened because they have no apparent effect on intracellular cAMP and ATP. Finally, MPB
Fig. 9. Stimulation of single CFTR chloride channel activity and SLPI secretion by MPB-07 on human tracheal gland cells. A, typical current traces at the indicated patch potentials from a cell-attached recording from MM39 cells activated by 250 μM MPB-07 in the bath solution. Dashed lines indicate the closed state of the channels. B, plots of current-voltage data displayed in A. C, secretion of the secretory leukoproteinase inhibitor SLPI by MM39 cells in the presence of ATP (100 μM), MPB-07 (100 μM), or ATP + MPB-07 (both at 100 μM) versus control (no drugs added). The results are expressed as the percentage of the SLPI secreted in the assays above that secreted in control experiments, n = 8 for each condition.

Table III

Addition	Cyclic AMP pmol/mg protein
None	18.3 ± 2.1
Forskolin	762 ± 198
MPB-07	17.6 ± 6.3
MPB-27	27.6 ± 4.1
MPB-02	27.4 ± 5.1
MPB-04	59.7 ± 16

Table IV

Phosphatase	Activity
Control	MPB-07 (500 μM)
PM2A	2.39 ± 0.08 2.64 ± 0.04
PM2B	1.39 ± 0.35 1.67 ± 0.35
PM2C	1.78 ± 0.15 1.70 ± 0.21
AMP	0.42 ± 0.02 0.44 ± 0.05
ALP*	0.16 ± 0.01 0.16 ± 0.03

“Alkaline phosphatase.”

Acknowledgments—We thank J. W. Hanrahan, J. R. Riordan, and X.-B. Chang for providing the CHO cell lines, helpful discussion, and support; W. Colledge and M. Evans for providing transgenic CF mice; C. Jougla, J. Habrioux, C. Guichard, and S. Mairesse-Lebrun for technical assistance; and Prof. M. Baudry for encouragement and discussion.

References
1. Quinton, P. M. (1990) FASEB J. 4, 2709–2717
2. Tsui, L.-C., and Buchwald, M. (1991) Adv. Hum. Genet. 20, 153–266
3. Riordan, J. R., Rommens, J. M., Kerem, B.-S., Alon, N., Rozmahel, R., Grzelczak, Z., Zielenski, J., Lok, S., Plavevski, N., Chou, J.-L., Drumm, M. L., Iannuzzi, M. C., Collins, F. S., and Tsui, L.-C. (1989) Science 245, 1056–1072
4. Hanrahan, J. W., Tabcharani, J. A., Beec, F., Mathews, C. J., Augustinas, O., Jensen, T. J., Chang, X.-B., and Riordan, J. R. (1995) Soc. Gen. Physiol. Ser. 50, 125–137
5. McPherson, M. A., Dormer, R. L., Bradbury, N. A., Dodge, J. A., and Goodchild, M. C. (1986) Lancet 1007–1008
6. Lloyd Mills, C., Pereira, M. M. C., Dormer, R. L., and McPherson, M. A. (1992) Biochem. Biophys. Res. Commun. 188, 1141–1146
7. Gray, M. A., Greenwell, J. R., and Argent, B. E. (1988) J. Membr. Biol. 105, 131–142
8. Cheng, S. H., Rich, D. P., Marshall, J., Gregory, R. J., Welsh, M. J., and Smith, A. E. (1991) Cell 66, 1027–1036
9. Cheng, S. H., Gregory, R. J., Marshall, J., Paul, S., Souza, D. W., White, G. A., O’Riordan, C. R., and Smith, A. E. (1990) Cell 63, 827–834
10. Denning, G. M., Anderson, M. P., Amara, J. F., Marshall, J. S., and Welsh, M. J. (1992) Nature 350, 761–764
11. Drumm, M. L., Wilkinson, D. J., Smit, L. S., Worrell, R. T., Strong, T. V., Frizzell, R. A., Dawson, D. C., and Collins, F. S. (1991) Science 254, 1797–1799
12. Beec, F., Verrier, B., Chang, X.-B., Riordan, J. R., and Hanrahan, J. W. (1996) J. Biol. Chem. 271, 16171–16179
13. Beec, F., Fanjul, M., Merten, M. D., Figarella, C., Hollande, E., and Gola, M. (1993) FEBS Lett. 327, 337–342
14. Hwang, T.-C., Horie, M., and Gadsby, D. C. (1993) J. Gen. Physiol. 101, 629–650
15. Beec, F., Jensen, T. J., Chang, X.-B., Savoia, A., Rommens, J. M., Tsui, L.-C., Buchwald, M. R., and Hanrahan, J. W. (1996) Proc. Natl. Acad. Sci. U. S. A. 91, 9160–9164
16. Illek, B., Fischer, H., Santos, G. F., Widicombe, J. H., Machen, T. E., and Reenstra, W. W. (1995) Am. J. Physiol. 268, C886–C893
17. Reenstra, W. W., Yurko-Mauro, K., Dam, A., Raman, S., and Shorten, S. (1996) Am. J. Physiol. 271, C650–C657
18. Chappe, V., Mettey, Y., Vierfond, J. M., Hanrahan, J. W., Gola, M., and Verrier, B. (1996) Br. J. Pharmacol. 123, 683–690
19. Kielman, O., Guay-Broder, C., Van Gellen, P. J. M., Jacobson, K. A., Fox, C., Turner, B. J., Cabantchik, Z. I., and Pollard, H. B. (1992) Proc. Natl. Acad. Sci. U. S. A. 89, 5562–5566
20. Grishkoff, V. K., Champigny, G., Barby, P., Dworetzky, S. I., Meanwell, N. A., and Lazdunski, M. (1994) J. Biol. Chem. 269, 10983–10986
21. Devor, D. C., Singh, A. K., Bridges, R. J., and Frizzell, R. A. (1996) Am. J. Physiol. 271, L785–L789
22. Beec, F., Mettey, Y., Vierfond, J. M., Verrier, B., and Beec, F. (1996) Br. J. Pharmacol. 123, 683–690
23. Tabcharani, J. A., Chang, X.-B., Riordan, J. R., and Hanrahan, J. W. (1991) Nature 351, 628–631
24. Chang, X.-B., Tabcharani, J. A., Hou, Y.-X., Jensen, T. J., Kartner, N., Alon, N., Hanrahan, J. W., and Riordan, J. R. (1993) J. Biol. Chem. 268, 11304–11311
25. Venglarik, C. J., Bridges, R. J. and Frizzell, R. A. (1990) Am. J. Physiol. 259, C358–C364
26. Ratcliffe, R. M., Evans, M. J., Cuthbert, A. W., MacVinich, L. J., Foster, D., Anderson, J. R., and Collinge, W. H. (1990) Nat. Genet. 4, 35–41
27. Tarran, R., Gray, M. A., Evans, M. J., Collinge, W. H., Ratcliffe, R., and Argent, B. E. (1998) Am. J. Physiol. 274, C904–C913
28. Gray, M. A., Wimpenny, J. P., Forteza, D. J., Dorin, J. R., and Argent, B. E. (1994) Am. J. Physiol. 266, C213–C231
29. Yamaya, M., Finkbeiner, W. E., Chun, S. Y., and Widdicombe, J. H. (1992) Am. J. Physiol. 262, L713–L724
30. Galietta, L. J. V., Musante, L., Romio, L., Caruso, U., Fantasia, A., Gazzolo, A.
Activation of CFTR by Benzoquinolizinium Drugs

Romano, L., Sacco, O., Rossi, G. A., Varesio, L., and Zegarra-Moran, O. (1998) Am. J. Physiol. 275, L917–L923
31. Pereira, M. M. C., Lloyd Mills, C., Darmer, R. L., and McPherson, M. A. (1998) Br. J. Pharmacol. 125, 697–704
32. Merten, M., Kammouni, W., Renaud, W., Birg, F., Mattei, M. G., and Figarella, C. (1996) Am. J. Respir. Cell. Mol. Biol. 15, 520–528
33. Kammouni, W., Moreau, B., Saleh, A., Pavirani, A., Figarella, C., and Merten, M. D. (1999) Am. J. Resp. Cell Mol. Biol. 20, 684–691
34. Tournier, J. M., Jacquot, J., Sadoul, P., and Bieth, J. G. (1983) Anal. Biochem. 131, 345–350
35. Cohen, P., Alemany, S., Hemmings, B. A., Resink, T. J., Straifors, P., and Lin Tung, H. (1988) Methods Enzymol. 159, 390–408
36. McGowan C. H., and Cohen, P. (1988) Methods Enzymol. 159, 416–426
37. MacKintosh, C. (1993) in Protein Phosphorylation: A Practical Approach (Hardie G. D., ed) pp. 197–230, Oxford University Press, Oxford
38. Jia, Y, Mathews, C. J., and Hanrahan, J. W. (1996) J. Biol. Chem 272, 4978–4984
39. Piccioni, P. D., Kramps, J. A., Rudolphus, A., and Luisetti, M. (1992) Chest 102, 1470–1476
40. Hiemstra, P. S. (1996) Infect. Immunol. 64, 4520–4524
41. Luo, J., Pato, M. D., Riordan, J. R., and Hanrahan, J. W. (1998) Am. J. Physiol. 274, C1397–C1410
42. Travis, S. M., Berger H. A., and Welsh, M. J. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 11055–11060
43. Yang, I. C., Cheng, T. H., Wang, F., Price, E. M., and Hwang, T. C. (1997) Am. J. Physiol. 272, C142–C155
44. Sheppard, D. N., and Welsh, M. J. (1992) J. Gen. Physiol. 100, 573–591
45. Engelhardt, J. F., Yankaskas, J. R., Ernst, S. A., Yang, Y. P., Marino, C. R., Boucher, R. C., Cohn J. A., and Wilson J. M. (1992) Nat. Genet. 2, 240–246
46. Merten, M., and Figarella, C. (1999) Am. J. Physiol. 264, L93–L99
47. Cliff, W. H., Schoumacher, R. A., and Frizzell, R. A. (1992) Am. J. Physiol. 262, C1154–C1160
48. Monserrat, C., Merten, M., and Figarella, C. (1996) FEBS Lett. 393, 264–268
49. Mergey, M., Lemnouar, M., Veissiere, D., Perricaulet, M., Gruenert, D. C., Picard, J., Capeau, J., Brahim-Horn, M. C., and Paul, A. (1995) Am. J. Physiol. 269, L855–L864