Living on soup: macropinocytic feeding in amoebae

ROBERT R. KAY*, THOMAS D. WILLIAMS*, JAMES D. MANTON, DAVID TRAYNOR** and PEGGY PASCHKE***

MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK

ABSTRACT Macropinocytosis is used by a variety of amoebae for feeding on liquid medium. The amoebae project cups and ruffles from their plasma membrane, driven by actin polymerization, and eventually fuse these back to the membrane, entrapping droplets of medium into internal vesicles. These vesicles are of up to several microns in diameter and are processed through the lysosomal digestive system to extract nutrients. Recognizably the same process is used in metazoan cells for a number of medically important purposes, including the pathological growth of cancer cells. We describe the discovery of macropinocytosis in Dictyostelium amoebae, its genetic regulation by the NF1 RasGAP, and the tools available for its investigation. Work on Dictyostelium over the last 30 years has identified many genes that may be important for macropinocytosis, which are listed at dictyBase, and give a basis for mechanistic studies. We argue that the actin cytoskeleton is organized for macropinocytosis by a signalling patch of PIP3 and active Ras and Rac, together with their regulatory proteins and effectors, including the protein kinases Akt and SGK. The Scar/WAVE complex is recruited to the periphery of this patch, triggering the formation of a hollow ring of protrusive actin polymerization, and eventually a macropinocytic cup. Major problems to be addressed include: the dynamics sustaining macropinocytic patches and the mechanism of Scar/WAVE recruitment; the mechanisms of cup closure and of membrane fusion; the ecological situations where amoebae feed by macropinocytosis; and the evolutionary relationship between macropinocytosis and growth factor signalling.

KEY WORDS: macropinocytosis, Dictyostelium, NF1, PI3-kinase, Ras

Introduction

Macropinocytosis is a process of large-scale, non-selective fluid uptake (Swanson, 2008, Buckley and King, 2017, Swanson and Yoshida, 2019). Cells extend thin sheets and cups (circular ruffles) from their plasma membrane into the medium, and eventually close them to entrap a droplet of fluid inside an internal vesicle as shown in Fig. 1A. This macropinosome can be several microns in diameter and is trafficked through the endolysosomal system so that its contents are digested and nutrients and other useful molecules extracted. Undigested remnants can be eventually exocytosed back into the medium (Fig. 2A).

Macropinocytosis is a conserved process that probably evolved for feeding in early single cells (King and Kay, 2019). Dictyostelium cells still use macropinocytosis to feed on liquid media, but in metazoan cells it now serves a number of purposes, some of great medical significance (Bloomfield and Kay, 2016). Many cancer cells have retained (or regained) the original ability to feed by macropinocytosis, and consume the surrounding protein-rich bodily fluids to help meet their metabolic demands (Commissio et al., 2013). In the immune system, dendritic cells and macrophages use macropinocytosis for sampling antigens from the medium (Sallusto et al., 1995). It is also an entry route for both pathogens (Mercer and Helenius, 2008) and drugs (Desai et al., 2019); and more speculatively uptake of disease agents by macropinocytosis may underlie the spread of neural degeneration in the brain.

Abbreviations used in this paper: GAP, GTPase activating protein; GEF, GTPase exchange factor PI3P, PI3,4,5P3 (Dictyostelium PI3P is a plasmanyl, not phosphatidyl lipid); NF1, neurofibromatosis 1; PI3-kinase, phosphorylates inositol of PIs on 3 position.

*Address correspondence to: Robert R. Kay, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK. E-mail: rrk@mrc-lmb.cam.ac.uk

Present addresses: *MRC Protein Phosphorylation and Ubiquitylation Unit, Dow Street, University of Dundee, Dundee DD1 5EH, UK. **Cambridge Institute for Medical Research, Hills Rd, Cambridge CB2 0XY, UK. ***Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD.

Supplementary Material (one movie) for this paper is available at: https://doi.org/10.1387/ijdb.190220rk

Submitted: 17 June, 2019; Accepted: 9 July, 2019.
The extension and closure of macropinocytic cups is driven by the actin cytoskeleton, which forms protrusive rings of F-actin under the plasma membrane. How such rings are shaped is a mystery, but the process requires an intimate cooperation between force-producing and structural proteins of the actin cytoskeleton and a group of signalling proteins, which help coordinate their activity in space and time. Key among these organizers is the signalling cascade of Ras, PI3-kinase (Ras-activated) and the protein kinases Akt and SGK. This cascade is better known for mediating growth factor signalling in metazoa, but it can function cell-autonomously in Dictyostelium, possibly reflecting an ancestral function in organizing the actin cytoskeleton.

In this review, we describe the discovery of macropinocytosis in Dictyostelium and other amoebae, how it is regulated and can be investigated, the genes and proteins involved and progress towards understanding how macropinocytic cups are shaped. For the equally important question of how macropinocytic vesicles are processed, see (Maniak, 2003) and Vines and King (this issue).

Discovery of macropinocytic feeding in Dictyostelium amoebae

Warren Lewis described macropinocytosis in macrophages and tumour cells from time-lapse movies of early tissue cultures made in the 1930s (Lewis, 1931, Lewis, 1937), thus considerably predating the discovery of clathrin-mediated endocytosis. Macropinocytosis was also described in giant amoebae at about the same time as Lewis, or perhaps even earlier (Edwards, 1925, Mast and Doyle, 1934). However discovery in Dictyostelium amoebae was greatly delayed as these avid phagocytes prefer to feed on bacteria and concealed their macropinocytic capacity for many decades.

The first step in the recognition of macropinocytosis in Dictyostelium was the isolation in the 1960s of a mutant strain that could grow in liquid medium without bacteria (axenically) (Sussman and Sussman, 1967). To do this, Raquel and Maurice Sussman gradually adapted cells from rich medium containing serum, to simplified media. Though the original axenic strain, Ax1, is now lost, the standard axenic strains Ax2 and probably Ax3/4 were isolated from it (Watts and Ashworth, 1970, Loomis, 1971). These strains can grow in a liquid medium based on glucose, peptone and yeast extract, without further enrichment, and even on defined medium.

Keith Williams and co-workers explored the genetic basis of axenic growth using parasexual genetics (Williams et al., 1974, North and Williams, 1978). It is a recessive trait, implying that it is due to loss-of-function of at least one key gene, and they were able to distinguish three genes that contributed, with axeB on chromosome 3 the most important, while mutation of axeA and axeC improve the growth rate of cells, provided the axeB mutation is also present. Williams also confirmed the genetic simplicity of axenic growth by showing that new axenic strains could be obtained from wild-type cells by direct selection for growth in standard axenic medium (Williams, 1976), without the prolonged passing in rich medium used by the Sussmans.

In principle, axenic cells could take up nutrients from their medium either using specific transporters in the plasma membrane, or by large-scale endocytosis followed by intracellular processing to extract nutrients. No evidence for plasma membrane nutrient transporters came from uptake experiments, though this possibility has not been totally excluded. Dictyostelium amoebae take

Fig. 1. Images of macropinocytosis in vegetative Dictyostelium amoebae. (A) Paired DIC and confocal fluorescent images at successive time points (about 5 sec apart) of a cell bathed in FITC-dextran and showing the closure of a macropinocytic cup to form a macropinosome (arrowed). (B) Light sheet microscopy images of a single cell expressing reporters for PIP3 – green and F-actin – purple. The closure of a macropinocytic cup is arrowed; once the cup has closed, the F-actin coat is removed, leaving a macropinosome with only the green PIP3 reporter. Microscopy used a custom-built light sheet microscope, taking a full volume every 1.5 sec (JM, unpublished). Images were de-skewed and deconvolved and are given as maximum intensity projections from the top. Ax2 cells expressing pPI304 (PH-pkgE-GFP; lifeAct-mCherry) (Paschke et al., 2018) were incubated in SUM overnight before microscopy (Williams and Kay, 2018b). See also movie 1. (C) Rings of the SCAR/WAVE complex (green) surround PIP3 patches (red) in macropinosomes. A 3D reconstruction of an Ax2 cell expressing reporters for the Scar/WAVE complex and PIP3 (HSPC-GFP and PH-CRAC-mRFPmars; pDM767). Imaged using spinning-disc microscopy. Taken from (Veltman et al., 2016).
up non-physiological substrates such as inulin or FITC-dextran as efficiently as physiological ones and uptake does not saturate at higher concentrations as would be expected if it depended on specific transporters (Lee, 1972, North and Williams, 1978, Thilo and Vogel, 1980, North, 1983). Rather, the medium is taken up in bulk, along with any solutes or small particles that it may contain.

By following an in vitro tracer such as fluorescent FITC-dextran, the transit of solute through the cell can be tracked to its eventual release back into the medium after 60-90 minutes. Reporters sensitive to pH show that vesicles are acidified to around pH 4.5 starting within minutes of uptake, and then partially neutralized to around pH 6.0 (Brenot et al., 1992, Aubry et al., 1993, Padh et al., 1993, Aubry et al., 1997). Lysosomal enzymes are delivered to these endocytic vesicles (Souza et al., 1997) and endocytosed proteins digested (Padh et al., 1993, Bloomfield et al., 2015). Individual small molecules, such as amino acids and sugars, are presumably extracted from the lysosomes after digestion and used to fuel the cell, though to date the relevant transporters have not been identified, apart from the iron transporter Nramp1 (Buracco et al., 2015) and the FcsA enzyme, which is required for fatty acid utilization (von Lohneysen et al., 2003).

The rate of fluid uptake is around 8 fl/cell/minute in growth medium (Aubry et al., 1997), though less in buffer, which with a cell volume of about 600 fl equates to nearly a cell volume per hour — a remarkable feat, if scaled to a human. With cells about 14 % dry weight (RRK, unpublished) and nutrients in the medium 3.8 % dry weight, the rate of fluid uptake should be sufficient to support the doubling time of 8-9 hours observed in HL5 medium. Wild-type cells take up medium at a much lower rate than axenic cells (Maeda, 1983, Clarke and Kayman, 1987), explaining why they cannot grow in standard liquid medium, and suggesting that the axenic mutations stimulate endocytosis. Thus, the axenic phenotype can be explained as being due to a greatly increased, non-specific uptake of nutrient medium by axenic cells and its subsequent processing in a membrane-bound digestive system.

Meanwhile, work on the actin cytoskeleton in the Gerisch laboratory identified an actin binding protein – coronin – that, together with F-actin, formed curious circular ‘crowns’ on the dorsal surface of growing cells (de Hostos et al., 1991). These crowns are in fact macropinocytic cups, and using a GFP-fusion reporter for coronin and TRITC-dextran as a fluid tracer, Maniak and co-workers pulled the different strands of the story together by describing the morphological process of macropinocytosis in *Dictyostelium* for the first time (Hacker et al., 1997). They could observe droplets of fluid being taken into cells by cups extending from the plasma membrane. The sensitivity to actin inhibitors argued that uptake is driven by actin dynamics, which could be observed with an F-actin reporter (Pang et al., 1998). In fact, macropinocytic cups dominate the actin cytoskeleton of vegetative axenic cells, which produce several macropinosomes a minute. Calculations of the volume of fluid taken up by these macropinosomes suggest that they account for around 90% of the fluid uptake of axenic cells, with the tiny vesicles produced by clathrin-mediated endocytosis presumably contributing the residue. However due to surface to volume considerations, clathrin-mediated endocytosis probably accounts for most of the membrane taken up (Aguado-Velasco and Bretscher, 1999).

Finally, to complete the link back to the original axenic strains, Bloomfield and co-workers used genomic sequencing of new axenic strains to identify *axeB*, the primary gene enabling macropinocytic growth (Bloomfield et al., 2015). As expected, disruption of *axeB* massively up-regulates macropinocytosis and fluid uptake in wild-type cells. Unexpectedly, *axeB* encodes the *Dictyostelium* homologue of the RasGAP, NF1, which is a major tumour suppressor and underlies neurofibromatosis, one of the commonest human genetic diseases (Ratner and Miller, 2015). Biochemically, inactivating NF1 would be expected to increase Ras activity, thus providing a strong mechanistic link between Ras signalling and macropinocytosis (see later). Since disruption of *axeB* increases fluid uptake in wild-type cells to the same level as in Ax2, without conferring a similar growth rate in liquid medium, the *axeA* and *axeC* mutations are presumably required for this fluid to be effectively utilized. They remain to be identified.

Also unexpected but confirming an earlier suggestion (North and Williams, 1978), Ax2 and Ax3/4 have the identical NF1 mutation. This shows that they gained their primary axenic mutation from a common ancestor, not independently as originally supposed. As Ax2 is derived from Ax1 (Watts and Ashworth, 1970), it is likely that Ax3 also came from this source, perhaps by cross contamination.

The toolkit for macropinocytosis research in *Dictyostelium*

Work with *Dictyostelium* has made important contributions to our understanding of macropinocytosis and the organism offers biological advantages for tackling this problem, as well as providing a unique evolutionary standpoint, from which universal features can be discerned. To realize the potential of the *Dictyostelium* model requires several things: good assays for macropinocytosis; physiological control of the process; genetic manipulation; inhibitors for acute perturbation and good microscopy, all of which are now in place.

Assays of macropinocytosis

Since macropinocytosis by axenically growing cells accounts for most of their fluid uptake, it can be simply and reliably assayed by measuring the uptake of various tracers from the bathing medium, as already discussed (Thilo and Vogel, 1980, Aubry et al., 1997, Hacker et al., 1997, Rivera and Maniak, 2006). This is not true in most mammalian cells, where only a small fraction of fluid uptake is by macropinocytosis, and microscopic assays have to be used instead (Commissio et al., 2014). The standard assay, in which fluorescent dextran uptake is measured by fluorimetry, has been adapted to high-throughput flow cytometry, allowing hundreds of samples to be assayed per day (Williams and Kay, 2018b, Williams and Kay, 2018a).

Tracers can give much additional information: fluorescent ones allow macropinosomes to be tracked and their pH measured; quenched proteins that become fluorescent on proteolysis show digestion; radioactive or NMR probes can be used (North, 1983, Brenot et al., 1992); and magnetic particles allow macropinosome isolation from cell lysates for biochemical study (Journet et al., 2012).

Physiological regulation

Axenic cells in liquid medium perform macropinocytosis constitutively. Even isolated amoebae continue macropinocytosis at a high rate (Williams and Kay, 2018b). However, it is not unregulated. Cells grown on bacteria largely shut down macropinocytosis.
(although macropinocytic cells retain their ability to phagocytose bacteria) and it is only regained when the cells are transferred to liquid medium free of bacteria (Kayman and Clarke, 1983, Williams and Kay, 2018b). Upregulation takes 6-12 hours and involves extensive changes in gene expression, many of which seem likely to adapt cells to their new, sugar-rich axenic diet (Sillo et al., 2008).

A minimal medium of three amino acids and glucose suffices to up-regulate macropinocytosis in most strains, and since upregulation depends on macropinocytosis itself, it is likely that the nutrients are sensed within the macropinocytic pathway, probably at the lysosomes (Williams and Kay, 2018b). Wild-type cells, with intact NF1, can grow in a very rich medium, such as HL5 with added 10% foetal calf serum (Maeda, 1983, Bloomfield et al., 2015), and in these conditions will also upregulate macropinocytosis. Thus, strains with low macropinocytic levels can be maintained on bacteria and then macropinocytosis studied after switching to up-regulation medium for 12-24 hours.

When cells are removed from axenic medium to bacteria, macropinocytosis is shut down over a number of hours. If instead they are transferred to non-nutrient conditions, which initiate development, macropinocytosis is again shut down over a few hours, but persists to some extent into the stages where chemotaxis to cyclic-AMP is studied. In this case the residual macropinocytic cups, which contain intense patches of PIP3, have frequently been mistaken for pseudopods.

If cells are starved at low cell density, which attenuates intercellular signalling, macropinocytosis continues at a high rate for at least 24 hours: shutdown requires an unidentified signal released by cells. The need for this signal can be bypassed by activating PKA either with 8-Br-cyclic-AMP (a cell-permeant cyclic-AMP analogue) or genetically (Williams and Kay, 2018b).

Molecular genetics

The powerful molecular genetic methods available in Dictyostelium were developed for cells growing axenically (Kupsa and Loomis, 1992, Veltman et al., 2009, Sekine et al., 2018). They have limitations when applied to macropinocytosis, since mutants with impaired macropinocytosis are difficult to maintain axenically, and their poor growth may allow them to be overgrown by suppressors.

To meet this problem, improved methods have been developed for transfecting cells grown on bacteria instead of liquid medium (Paschke et al., 2018, Paschke et al., 2019). As an added bonus these methods are faster and allow wild-type (non-axenic) strains to be manipulated as well.

Inhibitors of macropinocytosis

Suitable inhibitors allow acute inhibition of biological processes such as macropinocytosis (including through essential proteins) without allowing time for extensive compensatory changes; but off-target effects and incomplete inhibition are always a consideration. A limited screen for inhibitors of macropinocytosis is reported in (Williams and Kay, 2018b).

Macropinocytosis is suppressed or significantly impaired by inhibitors of actin dynamics (cytochalasin A, latrunculin B), Arp2/3 (CK666), WASP (wiskostatin), formins (SMIFH2), PI3-kinase (LY294002, TGX221), TORC1/TORC2 (torin 1), Rac (EHT1864) and microtubules (thiabendazole). Blebbistatin and dynasore, which inhibit myosin-II and dynamin respectively, have little effect (Williams and Kay, 2018b, Hacker et al., 1997, Rupper et al., 2001).

The closest to diagnostic inhibitors for macropinocytosis in mammalian cells are amiloride and EIPA (West et al., 1989), which block the plasma membrane Na+/H+ exchanger, but these are without effect in Dictyostelium. EGTA also has no effect, ruling out an essential role for extra-cellular calcium (Williams and Kay, 2018b).

Unexpectedly both caffeine (Gonzalez et al., 1990) and cycloheximide (Gonzalez and Satre, 1991, Clotworthy and Traynor, 2006) rapidly inhibit macropinocytosis. The effect of caffeine is probably due to its inhibition of both PI3-kinase and TORC2 (Tariqul Islam et al., 2019). We speculate that the suppression of macropinocytosis by cycloheximide and other inhibitors of protein synthesis may be a defense mechanism designed to limit the uptake of environmental toxins.

Microscopy

Microscopy is fundamental to the study of macropinocytosis and many aspects can be appreciated in detail using confocal, spinning disc and TIRF microscopy. In our experience, the integrated process is difficult to follow in this way because it involves large, dynamic structures (ruffles and cups) that move over a good proportion of the cell surface and require tracking for several minutes. However, lattice light sheet microscopy with its rapid acquisition of cell volumes and reduced photoxicity, is ideally suited to the job and allows macropinocytic cups to be followed in three-dimensional glory from birth to closure (Fig. 1B and movie 1) (Chen et al., 2014, Veltman et al., 2016). The macropinocytic vesicles can then be tracked as they move around the cell. Similar approaches in mammalian cells suggest novel ways of forming and closing macropinocytic cups (Condon et al., 2018).

Genetics of macropinocytosis

Genetic screens have been key to the dissection of cell-biological processes such as the cell cycle and membrane trafficking. While direct genetic analysis of macropinocytosis in Dictyostelium is quite limited, gene knock-out strains have been accumulated for over 30 years and their phenotypes curated in dictyBase (Fey et al., 2013). This database can easily be searched for candidate macropinocytosis genes providing an in silico genetic screen: for instance, searching mutant phenotypes for ‘decreased growth rate’ yields 244 strains and the more specific ‘decreased pinocytosis’ yields 46, as of May 2019.

To focus on genes likely to have a mechanistic role in macropinocytosis two further criteria are useful: location of the protein to macropinocytic cups or vesicles, or more rarely, exclusion from these (as for PTEN), implying a direct function within macropinocytosis; and normal (or near-normal) growth of mutants on bacteria, showing that there is not a generalized growth defect. A list of genes likely to be involved in macropinocytosis is given in Table 1, together with information on fluid uptake by mutants and location of the protein.

The genes largely fall into two groups: classical signalling genes, including Ras and PI3-kinase; and the actin cytoskeleton and its proximal regulators, such as Scar/WAVE and formins. Membrane trafficking proteins are not included as beyond the scope of this article, though clathrin is an interesting example. Clathrin mutants are severely impaired in fluid uptake (O’Halloran and Anderson, 1992), which historically led to the suggestion that fluid uptake by axenic cells is via coated pits. However, as it is now clear that the bulk of fluid uptake in axenic cells is through macropinosomes...
and since no direct role for clathrin in macropinocytosis has been discovered, it is likely that the mutant defect is due to an indirect effect on membrane trafficking.

The genetics reveals a surprising distinction between the one hand macrophagocytosis and phagocytosis of large particles (yeast sized), and on the other, phagocytosis of small particles (bacteria sized). Wild-type cells with intact NF1 are poor at phagocytosing yeast sized particles, just as they are poor at macropinocytosis (Bloomfield et al., 2018). However, since no direct role for clathrin in macropinocytosis has been discovered, it is likely that the mutant defect is due to an indirect effect on membrane trafficking.

The macrophagocytosis signalling patch

The most striking set of macrophagocytic genes are those encoding proteins of the signalling axis of Ras, PI3-kinase and the protein kinases Akt and SGK, together with their associated regulatory proteins, including RasGEFs and RasGAPs, PTEN, PDK1 and TORC2 (Fig. 2B). These proteins cooperate to form a 'signalling patch' in the plasma membrane that appears to play a key role in organizing the actin cytoskeleton to form macrophagocytic cups.

PI3-kinase (Ras-activated)

The first observations suggesting the existence of a signalling patch in macrophagocytic cups came serendipitously from work on chemotaxis in the Devreotes laboratory (Parent et al., 1998), and were followed up in detail by later workers (Rupper et al., 2001, Dormann et al., 2004). A reporter using the PH domain of CRAC revealed intense patches of PIP3 in the plasma membrane of vegetative axenic cells. These lie at the heart of macrophagocytic cups and are present from the birth of a cup right through to when it closes. PIP3 lingers for a short period in newly closed vesicles and then is lost once the F-actin coat has been removed, as F-actin is lost.

Table 1

Protein Class & Dicty name	Location	Strain genotype	Fluid Uptake	Growth in HL5	Ref
RasGAP: NF1 (in DdB)	MP	aktB (NF1+)	+++ rel DdB	+++ rel DdB	(Bloomfield et al., 2015)
Ras: RasG, RasS (in DdB)	MP (GTP)	rasG or rasS activated	++ rel DdB	(Williams et al., 2019a)	
Ras: RasB, RasG, RasS	MP (GTP)	rasG; rasS--	--	--	(Chubb et al., 2000, Kosola et al., 2000, Williams et al., 2019a)
RasGEF: GefI	MP	gefI; GefP	--	--	(Williams et al., 2019a)
RasGAP: IgG/C	MP	igG/C	+	(Marinovic et al., 1999)	
RasGAP: RasGAP2	MP base	null	--	--	(Li et al., 2018)
PI3-kinase: PI3K1, PI3K2	MP	pikA; pikB--	--	--	(Hoeller et al., 2013, Buczynski et al., 1997)
PI3-kinase: PI3K4	PM	pikA--	--	--	(Hoeller et al., 2013)
PI3-phosphatase: PTEN	PM not MP	ptenA--	--	--	(Veitman et al., 2016)
PI4P5-kinase (makes PI4P2): PikI	PM	pikI--	--	--	(Fets et al., 2014)
PI5-phosphatase (OCR1L): DdSiP4	C	DdSiP4--	--	yeast	(Loovers et al., 2007)
AKT protein kinase: PkB	MP	pkbA-- , pkbB--	--	--	(Williams et al., 2019b)
SGK protein kinase: PKBR1	MP inc MP	pkbA-- , pkbB--	--	--	(Williams et al., 2019b)
TORC2 protein kinase: various subunits	PM inc MP	ptkA--	--	--	(Kamimura and Devreotes, 2010, Williams et al., 2019b)
POD1 protein kinase: PtkA	MP inc MP	ptkA--	--	--	(Kamimura and Devreotes, 2010, Williams et al., 2019b)
Rap: RapA	MP	rapA (antisense)	--	--	(Kang et al., 2002)
RapGAP: RapGAP3	MP base	null	--	--	(Li et al., 2018)
Rac: various	MP (GTP)	racC-- , racE--	--	--	(Wang et al., 2013)
RacGEF: GscT	MP	gxt--	--	--	(Wang et al., 2013)
RhoGAP: GacG	ND	gacG--	--	--	(Williams et al., 2019b, 2019b)
ScanWAVE: Scar complex	MP ring	scarA--	--	--	(Seastone et al., 2001, Veitman et al., 2016)
WASP: WASP	MP ring	wasA--	--	--	(Williams, 2017)
Formin: ForG	MP	forG--	--	--	(Jenemann et al., 2016)
Myosin 1: Myo1B,C	MP ring	myoD-- , C--D--E--F--	--	--	(Chen et al., 2012)
Myosin 1: Myo1D,E,F	MP	myoD-- , C--D--E--F--	--	--	PP
Carmin	MP	carmin--	--	--	(Jung et al., 2001)
Coronin: CorA	MP	corA--	--	--	(de Hostos et al, 1991, Ishikawa-Ankerhold et al, 2010, PP)
Actin interacting protein: Aip1	MP	aip--	--	--	(Ishikawa-Ankerhold et al, 2010)

Genes are selected based on their mutant phenotype (reduced or increased fluid uptake or growth in liquid medium) and specific location of the protein to macropinocytic cups (or in the case of PTEN, exclusion). All parental strains are axenic with NF1 deleted, except for the wild-type DdB, which has intact NF1 and therefore very little fluid uptake, and no ability to grow in HL5. MP, macropinocytic cups.

- Small reduction (75-100% of parental): -- moderate reduction (25-50%); ---- severe (<25%)
- Increased growth (relative to DdB): +++
- Growth in HL5 relative to parental strain (MGT ~ 9hr): - small reduction (MGT 9-15 hr); -- moderate (MGT 15-25 h); --- severe (MGT >25 h). Increased growth (relative to DdB): +++
Fig. 2. Organization of macropinocytic feeding. (A) The pathway of nutrient acquisition. Macropinocytosis starts with the formation of a macropinocytic cup (also known as a circular ruffle or crown) whose extension is driven by actin polymerization and which is organized by a ‘patch’ of PIP3, active Ras, Rap and Rac. This cup seals to form a macropinosome, which loses its Factin coat and whose identity is altered by the loss of PIP3 and active Ras, gain of PI3,4P2 and changes in other effectors not discussed here. The macropinosome is then trafficked through the endo-lysosomal digestive system to digest and extract nutrients and sustain cell growth. (B) Signalling within the macropinocytic cup. The cup contains a localized domain, or ‘patch’ of signaling along the Ras, PI3-kinase and Akt/SGK axis, which is shown together with key regulators. All proteins named are genetically important for macropinocytosis. This axis does not require receptor activation, but is sustained by positive feedback, including a proposed Ras auto-activation loop, and limited by a linked inhibitory process. Effectors of this axis include targets of the protein kinases Akt and SGK, but also proteins directly regulated by the small G-proteins and additional PIP3-binding proteins.

required for cup closure (Loovers et al., 2007).

At around the same time, the first Dictyostelium ‘class-1’ PI3-kinases were cloned in the Firtel laboratory. Like mammalian Class 1 enzymes they have a Ras-binding domain (RBD) allowing activation by Ras, but differ in that no regulatory subunit has been described (Funamoto et al., 2002). PI3K1, and possibly the other PI3-kinases, can be targeted to plasma membrane by the Ras-binding domain and also by sequences of the N-terminus that appear to bind F-actin (Hoeller et al., 2013).

A double mutant of PI3K1 and PI3K2 grows poorly in axenic medium and when investigated in detail was found to be defective in macropinocytosis (Buczynski et al., 1997). A full analysis of the five ‘Class 1’ PI3-kinases confirms their importance, and suggests that PI3K4 may have an additional unique role (Hoeller et al., 2013). Excessive production of PIP3 caused by deletion of the PI3K3 phosphatase, PTEN, is very deleterious for macropinocytosis (Veltman et al., 2016), indicating that PIP3 levels have to be closely controlled.

Similarly in mammalian cells work with PI3-kinase inhibitors and PIP3 reportoms shows that PIP3 is concentrated in macropinocytic cups and is essential for their closure (Swanson, 2008). Although mammalian and Dictyostelium phosphoinositides differ in chemical detail - Dictyostelium phosphoinositides are ether lipids (Clark et al., 2014) - their function in macropinocytosis is conserved.

With the importance of PIP3 in macropinocytosis established, attention turned to the upstream regulators of PI3-kinase and the downstream effectors.

Upstream of PIP3: Ras and its regulators

In mammalian cells, Ras was implicated in macropinocytosis in early studies of growth factor signalling, where introduction of activated (oncogenic) Ras protein caused cell ruffling and macropinocytosis (Bar-Sagi and Feramisco, 1986). These gain of function experiments do not replicate in axenic Dictyostelium cells, presumably because Ras is already partially activated by loss of NF1. However, expression of activated Ras in wild-type cells, with intact NF1, does stimulate macropinocytosis (Williams et al., 2019a). Active Ras forms patches in macropinosomes coincident with PIP3 (Sasaki et al., 2007, Veltman et al., 2016).

Dictyostelium has a plethora of Ras genes but the key Ras proteins for macropinocytosis appear to be RasG and RasS (Chubb et al., 2000, Bolourani et al., 2006, Williams et al., 2019a). However, a double mutant still takes up fluid at about 35% of the parental rate, indicating that at least one more Ras protein is involved, which is likely RasB (Junemann et al., 2016).

Ras is activated by GEF and inactivated by GAP proteins. The genome encodes more than 20 RasGEFs of which GefB is implicated in macropinocytosis by null mutants having a severe defect in fluid uptake in the Ax3 genetic background (Wilkins et al., 2000) and a lesser one in Ax2 (Williams et al., 2019a). GefF is implicated in macropinocytosis by an insertional mutant that also has strongly reduced fluid uptake, though the gene has not so far been knocked out (Williams et al., 2019a).

As already described, the RasGAP NF1 controls overall Ras patch size and number (Bloomfield et al., 2015). NF1 is recruited to macropinocytic cups and leaves macropinosomes shortly after they are sealed, but even in its absence Ras activity remains closely regulated, implying that other RasGAPs have important roles. IqgC is an active RasGAP, related to IQGAPs and is strongly recruited to macropinosomes. However, null mutants have a surprisingly mild phenotype: the rate of fluid uptake is unchanged, but more fluid accumulates on longer incubation, suggesting that subsequent trafficking of macropinosomes is somehow affected (Marinovic et al., 2019). It may be that the full phenotype will only be revealed
by a knock-out in non-axenic cells, with intact NF. RasGAP2 (DDB_G0282055) is recruited towards the base of macroinocytic cups as they close and on the newly formed vesicles; it binds PI3,4P2 as well as PIP3. Mutants have impaired fluid uptake and axenic growth (Li et al., 2018).

Rap proteins are closely related to Ras proteins and RapA is an essential protein in *Dictyostelium* whose depletion by anti-sense inhibition causes a strong macroinocytic defect (Kang et al., 2002). Mutants of GefB, a GEF for RapA form arrested and extended macroinocytic cups, and so have a severe macroinocytic defect (Inaba et al., 2017). The RapGAP, RapGAP3, like RasGAP2, is recruited to macroinocytic cups as they close, binds PI3,4P2 as well as PIP3 and is required for efficient fluid uptake (Li et al., 2018). These proteins link Rap into macroinocytosis, and though it is likely that active Rap forms patches in macroinocytic cups, this has not yet been investigated in detail.

Downstream of PIP3: Akt and SGK protein kinases

PIP3 produced by PI3-kinases serves as a recruitment platform in the plasma membrane for proteins with PIP3-binding domains, of which the genome encodes a considerable number. The classic PIP3 effector is the protein kinase Akt (PKB in *Dictyostelium* (Meili et al., 1999)). Full activation of this enzyme requires binding to PIP3 and phosphorylation by two further protein kinases: TORC2 and PDK1 (Pearce et al., 2010, Kamimura and Devreotes, 2010, Liao et al., 2010). PDK1 is itself a PIP3-binding protein, thus conferring PIP3-dependence on Akt through two routes.

PKBR1 has a similar substrate specificity and activation mechanism (by TORC2 and PDK1) to PKB, but lacks a PH-domain and is instead constitutively targeted to the plasma membrane by myristoylation (Meili et al., 2000). PKBR1 is often described as a variant Akt, but is actually more closely related to the SGK group of protein kinases (Goldberg et al., 2006, Pearce et al., 2010) and we will treat it as such.

Single mutants of PKB or PKBR1 have relatively minor defects in fluid uptake, but this is nearly abolished in a double mutant (Williams et al., 2019b). The PIP3-dependent PDK1, PdkA, is similarly important with very little fluid uptake when it is knocked out, while TORC2 mutants also have severe defects in fluid uptake. Thus the Akt and SGK protein kinases are central, though redundant players in macroinocytosis. The situation is less clear in mammalian cells, where Akt inhibitors affect macroinocytosis in some cells but not others, and the role of SGK remains to be tested (King et al., 2019).

PKB/PKBR1 targets have been identified through phosphoproteomics (Kamimura et al., 2008, Williams et al., 2019b) and include the PI4P5-kinase, Pikl and the RhGAP, GacG. Pikl makes most of the cellular PI4,5P2 and is required for efficient growth in liquid medium and phagocytosis of yeast, a proxy measure of macroinocytosis (Fets et al., 2014). GacG is required for virtually all fluid uptake, and mutant cells make excessive pseudopods instead of macroinocytosmes, moving nearly twice as fast as their parent (Williams et al., 2019b, Nichols et al., 2019). It is thus possible that GacG controls the deployment of the actin cytoskeleton between macroinocytic cups and pseudopods, which are considered to be in competition, both in *Dictyostelium* (Veltman et al., 2014) and dendritic cells.

Rac is also presumably downstream of Ras and PIP3 in this system. Active Rac forms patches roughly coincident with active Ras and PIP3, and inhibition with EHT1864 nearly abolishes fluid uptake (Veltman et al., 2016, Williams and Kay, 2018b), while expression of constitutively active forms of Rac1 causes excessive macroinocytic cup formation but decreased fluid uptake, presumably because closure of the cups requires Rac inactivation (Dumontier et al., 2000), as in macrophages (Fuji et al., 2013). The multiple genes in the Rac/Rho family, and their multiple GEFs and GAPs make genetic dissection of their functions difficult. However, single knock-out mutants of RacC and RacE and the GEF GxCT have severe growth defects in liquid medium, but whether this is due to a macroinocytosis defect is not known (Wang et al., 2013).

Cytoskeletal proteins

The cytoskeleton provides the building blocks for macroinocytosis, but may be under-represented in genetic screens, either because the proteins have highly redundant functions such as actin binding proteins and defects are only seen in multiple knock-outs (Rivero et al., 1999), or are genetically essential, like the Arp2/3 complex (Langridge and Kay, 2007).

Initiators of actin polymerization

The most important initiators of actin polymerization in macroinocytic cups are the Arp2/3 complex and certain formins. The Arp2/3 complex initiates the formation of dendritic F-actin and localizes to cups (Insall et al., 2001). It is activated by the Scar/WAVE complex, which is required for efficient macroinocytosis (Seastone et al., 2001, Veltman et al., 2016). WASP, an alternative activator of the Arp2/3 complex, is also required for efficient macroinocytosis (Williams, 2017), and seems able to substitute for Scar/WAVE when this is deleted (Davidson et al., 2018).

Formins trigger the formation of linear F-actin polymers and may be responsible for the F-actin spikes often found in macroinocytic cups. ForG has a Ras-binding domain and is strongly recruited to macroinocytic cups and in its absence fluid uptake is much reduced (Junemann et al., 2016). Mutant cells make abundant F-actin projections of uncertain provenance, instead of fruitful macroinocytic cups.

Myosins

Macroinocytic cups viewed by lattice light-sheet microscopy sometimes appear to close by a purse-string contraction of the rim of the cup. This behaviour might indicate the presence of a contractile ring of myosin-II. However, such a ring has not been reported with GFP fusions and myosin-II null mutants grow in axenic medium, showing only a modest defect in fluid uptake (Williams, 2017); nor does the myosin-II inhibitor blebbistatin inhibit fluid uptake (Williams and Kay, 2018b). The role of myosin-II is not clear, and requires further investigation.

In contrast, myosin-1 proteins are recruited to macroinocytic cups. One group bind PIP3 (myosin 1D, 1E and 1F) and are strongly recruited to the body of macroinocytic cups, whereas myosin 1B is recruited towards the edge, so that together they form a striking bull’s eye pattern (Chen et al., 2012, Brzeska et al., 2016). Deletion of the PIP3-binding myosin-1 proteins or myosin 1B singly has only a minor effect on growth in liquid medium or fluid uptake (Jung et al., 1996, Chen et al., 2012), whereas multiple knock-outs have a progressively more severe effect on fluid uptake, culminating in a quintuple knock-out (of myosin 1B, C, D, E, F; PP, unpublished).
where fluid uptake reduced to 25% of the parental Ax2 in HL5. Thus myosin-1 proteins have a significant collective role in macropinocytosis, though exactly what this is remains to be discerned.

Actin binding proteins

Coronin and Aip are actin-binding proteins that promote F-actin turnover and are strikingly recruited to macropinocytic cups. Deletion impairs fluid uptake, perhaps due to a delay in removing the F-actin coat from newly-formed macropinosomes (de Hostos et al., 1991, Konzok et al., 1999, Ishikawa-Ankerhold et al., 2010).

Carml is a multi-domain protein that binds to capping protein and also myosin 1B and the Arp2/3 complex. It is recruited to macropinocytic cups, and its deletion was originally reported to impair fluid uptake by about 50% (Jung et al., 2001). However, a fresh mutant in the Ax2 background is without an uptake defect in our hands (Williams, 2017).

Ras/PIP3 signalling patches as templates for circular ruffles

In the canonical form of macropinocytosis in both Dictyostelium and macrophages, a circular ruffle forms in the plasma membrane, extends outwards forming a cup and then closes producing a macropinosome. To produce the circular ruffle, actin needs to be persuaded to polymerize in a hollow ring of up to several microns in diameter. How can this spatial organisation be achieved?

A possible mechanism is suggested by the observation that PIP3 patches are surrounded by a necklace of the Scar/WAVE complex (Fig. 1C). Since Scar/WAVE activates the Arp2/3 complex, which triggers actin polymerization, this ringed recruitment could trigger a hollow ring of actin polymerization and act as a template for a circular ruffle. Ringed recruitment of Scar/WAVE to PIP3 patches also occurs in phagosomal cups, basal waves and at cell-cell contacts in streams: it seems to be an empirical rule of cytoskeletal organization in Dictyostelium (Veltman et al., 2016). In each case the PIP3 patch should specify a ring of actin polymerization and the formation of a cupped structure, though this is frustrated by the substratum in basal waves.

Since both Ras and PIP3 diffuse freely in the plasma membrane, unusual kinetics must be required to sustain patches. Most likely, these involve both positive feedback and a restraining, inhibitory process to limit its extent, as has been studied theoretically in reaction-diffusion schemes. Genetics can provide information about the logic of this process.

When Ras is activated by deletion of NF1, the Ras patches become larger as do the PIP3 patches and the spatial correspondence between them is maintained (Bloomingfield et al., 2015). However, when PIP3 patches are abolished by deletion of PI3-kinases, Ras patches persist, though they are smaller than in control cells. Similarly, they persist but are smaller in PKB-/PKBR1- double mutant cells (Williams et al., 2019b). When PTEN is deleted, though PIP3 patches greatly expand to occupy much of the plasma membrane, the Ras patches remain smaller and more discrete (Veltman et al., 2016). To a first approximation, it appears that active Ras patches can exist independently of PIP3, while PIP3 patches slavishly follow Ras patches. This suggests that the postulated positive feedback loop does not require PIP3 and is centered on Ras, but there is a secondary loop through which PIP3 and Akt/SGK can produce larger active Ras patches.

Another factor maintaining patches may be a diffusion barrier around them, as reported in mammalian cells (Welliver et al., 2011). The edges of PIP3 patches will also be sharpened by exclusion of the PTEN phosphatase, whose activity outside patches reduces PIP3 levels in the rest of the plasma membrane.

In summary, we propose that Ras/PIP3 patches trigger actin polymerization around their periphery and so template rings of protrusive actin under the plasma membrane, forming circular ruffles. Patches are sustained by at least one positive feedback loop centered on Ras. The recruitment process that attracts Scar/WAVE to the edge of patches remains to be discovered.

Macropinocytosis in other amoebae

Macropinocytosis appears widespread among amoebae (Edwards, 1925, Mast and Doyle, 1934, King and Kay, 2019). Some of the earliest descriptions were from giant amoebae and included a form where the amoebae make tubular invaginations from which macropinosomes pinch off (Chapman-Andresen, 1977). The dictyostelids, Dictyostelium purpureum and Polysphondylium pallidum can both grow axenically in liquid medium and are therefore assumed to be macropinocytic. Macropinocytosis has been clearly demonstrated in Acanthamoeba castellanii (Ostap et al., 2003) and the pathogenic Entamoeba histolytica, which may use it to feed on host cell debris (Meza and Clarke, 2004).

Questions and prospects

We currently know enough about macropinocytosis to speculate about underlying mechanisms and relationships, but not so much that these speculations are redundant. Questions and speculations include the following.

The attraction of Scar/WAVE to the edge of active Ras/PIP3 patches suggests a mechanism for organizing actin polymerization into hollow rings and thus to form the walls of macropinocytic cups. Does this recruitment reflect a ‘Goldilocks zone’ for Scar/WAVE binding, perhaps due to the interplay between an activator of binding and an inhibitor? How does the patch maintain itself against the tendency of the components to diffuse away in the plasma membrane?

All PIP3 patches examined seem to have the same organization of Scar/WAVE recruitment to their periphery (Veltman et al., 2016). Does this rule have exceptions or do all patches tend to make circular ruffles? Pseudopods generally do not have PIP3 patches and are not hollow centered: they appear to be distinct structures. Are the PIP3 patches described in much of the Dictyostelium chemotaxis literature in fact abortive macropinocytic cups, not pseudopods?

How do macropinocytic cups close and the membranes fuse? Is there a purse-string mechanism to constrict the rim of the cup, or can large flaps of membrane fuse together due to the action of a fusogenic protein? If so, what is this protein?

Wild-type cells, with intact NF1 can only grow on liquid medium if it is reinforced with additional proteins and even then their fluid uptake is less than axenic cells (Williams and Kay, 2018b). Where in Nature would they encounter such a rich medium, and are there circumstances where they can increase fluid uptake to higher levels?

What is the evolutionary relationship between macropinocytosis and growth factor signalling implied by their common usage of the Ras/PIP3 signalling axis? It has been speculated that the
evolutionary origin of this axis lies in the organization of feeding structures in single celled organisms, and only later, with the evolution of multicellular organisms, did these feeding structures fall under the control of growth factors (King and Kay, 2019). What, therefore, is the evolutionary history of macropinocytosis and growth factor signalling?

Macropinocytosis research has a long history. For much of the time it has been quietly pursued by just a handful of pioneers. This is changing, as the medical importance of macropinocytosis in cancer, immunology, drug delivery and neurodegeneration is appreciated, along with the intrinsic fascination of the cell biology. With the first dedicated conference held only in 2018, the field is poised for exciting progress, to which work with amoeba can continue to make an important contribution.

Acknowledgements

We should like to thank Gareth Bloomfield for discussions and the Medical Research Council for core funding (MC_U105115237) and AstraZeneca for Blue Sky funding.

References

AGUADO-VELASCO, C. and BRETSCHER, M.S. (1999). Circulation of the plasma membrane in Dictyostelium. Mol Biol Cell 10: 4419-4427.

AUBRY, L., KLEIN, G., MARTIEL, J.L. and SATRE, M. (1993). Kinetics of endosomal pH evolution in Dictyostelium discoideum amoebae - study by fluorescence spectroscopy. J Cell Sci 105: 861-866.

AUBRY, L., KLEIN, G., MARTIEL, J.L. and SATRE, M. (1997). Fluid-phase endocytosis in the amoebae of the cellular slime mould Dictyostelium discoideum: Mathematical modelling of kinetics and pH evolution. J Theor Biol 184: 89-98.

BAR-SAGI, D. and FERAMISCO, J.R. (1986). Induction of membrane ruffling and fluid-phase pinocytosis in quiescent fibroblasts by ras proteins. Science 233: 1061-1068.

BLOOMFIELD, G. and KAY, R.R. (2016). Uses and abuses of macropinocytosis. Cytoskeleton (Hoboken) 73: 68-82.

BUCZYNSKI, G., GROVE, B., NOMURA, A., KLEVE, M., BUSH, J., FIRTEL, R.A. and CARDELLI, J. (1997). Inactivation of two Dictyostelium discoideum genes, DdPhK1 and DdPhK2, encoding proteins related to mammalian phosphatidylinositol 3-kinases, results in defects in endocytosis, lysosome to postlysosome transport, and actin cytoskeleton organization. J Cell Biol 136: 1271-1286.

BURACCO, S., PERACINO, B., CINQUETTI, R., SIGNORETTI, E., VOLIERO, A., IMPERIALI, F., CASTAGNA, M., BOSSI, E. and BOZZARO, S. (2015). Dictyostelium Nramp1, which is structurally and functionally similar to mammalian DMT1 transporter, mediates phagiosomal iron efflux. J Cell Sci 128: 3304-3316.

CHAPMAN-ANDRESEN, C. (1977). Endocytosis in freshwater amebae. Physiological reviews 57: 371-385.

CHEN, B.C., LEGANT, W.R., WANG, K., SHAO, L., MILKIE, D.E., DAVIDSON, M.W., JANETOPoulos, C., WU, X.S., HAMMER, J.A., 3RD, LIU, Z. et al., (2014). Lat-tice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346: 1257998.

CHEN, C.L., WANG, Y., SESAKI, H. and IIJIMA, M. (2012). Myosin I links PI3-kinase signaling to remodeling of the actin cytoskeleton in chemotaxis. Science signaling 5: ra10.

CHUBB, J.R., WILKINS, A., THOMAS, G.M. and INSALL, R.H. (2000). The Dictyostelium RasS protein is required for macropinocytosis, phagocytosis and the control of cell movement. J Cell Sci 113: 709-719.

CLARK, J., KAY, R.R., KIELKOWSKA, A., NIEWCZAS, I., FETS, L., OXLEY, D., STEPHENS, L.R. and HAWKINS, P.T. (2014). Dictyostelium uses ether-linked inositol phospholipids for intracellular signalling. Embo J 33: 2188-2200.

CLARKE, M. and KAYMAN, S.C. (1987). The axenic mutants and endocytosis in Dictyostelium. Meth. Cell Biol. 28: 157-176.

CLOTWORTHY, M. and TRAYNOR, D. (2006). On the effects of cycloheximide on cell motility and polarisation in Dictyostelium discoideum. BMC Cell Biol 7: 5.

COMMISSO, C., DAVIDSON, S.M., SOYDANER-AZEOGLU, R.G., PARKER, S.J., KAMPHORST, J.J., HACKETT, S., GRABOCCA, E., NOFAL, M., DREBIN, J.A., THOMPSON, C.B. et al., (2013). Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497: 633-637.

COMMISSO, C., FLINN, R.J. and BAR-SAGI, D. (2014). Determining the macropinocytic index of cells through a quantitative image-based assay. Nat. Protoc. 9: 182-192.

CONDON, N.D., HEDDELESTON, J.M., CHEW, T.L., LUO, L., MCPHERSON, P.S., IOANNOU, M.S., HODGSON, L., STOW, J.L. and WALL, A.A. (2018). Macropinocytosis formation by tent pole ruffling in macrophages. J Cell Biol 217: 3873-3885.

DAVIDSON, A., AMATO, C., THOMASON, P.A. and INSALL, R.H. (2018). WASP family proteins and formins compete in pseudopod- and bleb-based migration. J Cell Biol 217: 701-714.

DE HOSTOS, E.L., BRADTKE, B., LOTTSPICHE, F., GUGGENHEIM, R. and GERISCH, G. (1991). Coronin, an actin binding protein of Dictyostelium discoideum localized to cell surface projections, has sequence similarities to G-protein beta-subunits. EMBO J 10: 4097-4104.

DESAI, A.S., HUNTER, M.R. and KAPUSTIN, A.N. (2019). Using macropinocytosis for intracellular delivery of therapeutic nucleic acids to tumour cells. Philos Trans R Soc Lond B Biol Sci 374: 20180156.

DORMANN, D., WEIJER, G., DOWLER, S. and WEIJER, C.J. (2004). In vivo analysis of 3-phosphoinositide dynamics during Dictyostelium phagocytosis and chemotaxis. J Cell Biol 167: 6497-6509.

DUMONTIER, M., HOCHT, P., MINTERT, U. and FAIX, J. (2000). Rac1 GTPases control filopodia formation, cell motility, endocytosis, cytokinesis and development in Dictyostelium. J Cell Sci 113: 2253-2265.

EDWARDS, J.G. (1925). Formation of food-cups in amoeba induced by chemicals. Biol Bull 48: 236-239.

FETS, L., NICHOLS, J.M. and KAY, R.R. (2014). A PI3k kinase essential for efficient chemotactic signaling. Curr Biol 24: 415-421.

FEY, P., DODSON, R.J., BASU, S. and CHISHOLM, R.L. (2013). One stop shop for 3-phosphoinositides. Mol Biol Cell 24: 3787-3798.

FIRTEL, R.A. (2002). Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 109: 611-623.

GOLDBERG, J.M., MANNING, G., LIU, A., FEY, P., PILCHER, K.E., XU, Y. and SMITH, J.L. (2006). The Dictyostelium kinosome - analysis of the protein kinases from a simple model organism. PLoS Genet 2: e38.

GONZALEZ, C., KLEIN, G. and SATRE, M. (1990). Caffeine, an inhibitor of endocytosis from a simple model organism. J Cell Biol 117: 6497-6509.

GONZALEZ, C., KLEIN, G. and SATRE, M. (1990). Caffeine, an inhibitor of endocytosis from a simple model organism. J Cell Biol 117: 6497-6509.

GONZALEZ, C. and SATRE, M. (1991). Endocytosis in Dictyostelium discoideum amoebae - inhibition by cycloheximide and other inhibitors of protein synthesis. J Cell Sci 99: 535-543.

HACKER, U., ALBRECHT, R. and MANIKA, M. (1997). Fluid-phase uptake by macropinocytosis in Dictyostelium. J Cell Sci 110: 105-112.

HOELLER, O., BOLOURANI, P., CLARK, J., STEPHENS, L.R., HAWKINS, P.T., WEINER, O.D., WEEKS, G. and KAY, R.R. (2013). Two distinct functions for PI3-kinases in macropinocytosis. J Cell Sci 126: 4296-4307.

INABA, H., YODA, K. and ADACHI, H. (2017). The F-actin-binding RapGEF GIf8 is required for efficient macropinocytosis in Dictyostelium. J Cell Sci 130: 3159-3172.
INSALL, R., MULLER-TAUBENBERGER, A., MACHESKY, L., KOHLER, J., SIM-METH, E., ATKINSON, S.J., WEBER, I. and GERISCH, G. (2001). Dynamics of the Dictyostelium Arp2/3 complex in endocytosis, cytokinesis, and chemotaxis. Cell Motil. Cytoskeleton 50: 115-128.

ISHIKAWA-ANKERHOLD, H.C., GERISCH, G. and MULLER-TAUBENBERGER, A. (2010). Genetic evidence for concerted control of actin dynamics in cytokinesis, endocytic traffic, and cell motility by corin and Aip1. Cytoskeleton 67: 442-455.

JOURNET, A., KLEIN, G., BRUGIERE, S., VandenBroucke, Y., CHAPEL, A., KIEFFER, S., BRULEY, C., MASSELON, C. and AUBRY, L. (2012). Investigating the macropinocytic proteome of Dictyostelium amoebae by high-resolution mass spectrometry. Proteomics 12: 241-245.

JUNEMANN, A., FILIC, V., WINTERHOF, M., NORDHOLZ, B., LITSCHKO, C., SCHWELLENBACH, H., STEPHAN, T., WEBER, I. and FAIX, J. (2016). A Diaphanous-related formin links Ras signaling directly to actin assembly in macropinocytosis and phagocytosis. Proc Natl Acad Sci USA 113: E7464-E7473.

JUNG, G., REMMERT, K., WI, X.F., VOLOSKY, J.M. and HAMMER, J.A. (2001). The Dictyostelium CARML protein links capping protein and the Arp2/3 complex to type I myosins through their SH3 domains. J Cell Biol 153: 1479-1497.

JUNG, G., WU, X.F. and HAMMER, J.A. (1996). Dictyostelium mutants lacking multiple classic myosin I isoforms reveal combinations of shared and distinct functions. J Cell Biol 133: 305-323.

KAMIMURA, Y. and DEVREOTES, P.N. (2010). Phosphoinositide-dependent protein kinase (PDK) activity regulates phosphatidylinositol 3,4,5-trisphosphate-dependent and -independent protein kinase B activation and chemotaxis. J Biol Chem 285: 7938-7946.

KAMIMURA, Y., XIONG, Y., IGLESIAS, P.A., HOELLER, O., BOLOURANI, P. and DEVREOTES, P.N. (2008). PIP3-independent activation of TorC2 and PKB at the cell’s leading edge mediates chemotaxis. Curr Biol 18: 1034-1043.

KANG, R.J., KAE, H., IP, H., SPIEGELMAN, G.B. and WEEKS, G. (2002). Evidence for a role in the Dictyostelium Rap1p in cell viability and the response to osmotic stress. J Cell Sci 115: 3675-3682.

KAYMAN, S.C. and CLARKE, M. (1983). Relationship between axenic growth of Dictyostelium discoideum strains and their track morphology on substrates coated with gold particles. J Cell Biol 97: 1001-1010.

KHOSLA, M., SPIEGELMAN, G.B., INSALL, R. and WEEKS, G. (2000). Functional overlap of the Dictyostelium RasG, RasD and RasB proteins. J Cell Sci 113: 1427-1434.

KING, J.S. and KAY, R.R. (2019). The origins and evolution of macropinocytosis. Philos Trans R Soc Lond B Biol Sci 374: 20180158.

KONZOK, A., WEBER, I., SIMMET, E., HACKER, U., MANIACI, M. and MULLER-TAUBENBERGER, A. (1999). DiAIP1, a Dictyostelium homologue of the yeast actin-interacting protein 1, is involved in endocytosis, cytokinesis, and motility. J Cell Biol 146: 453-464.

KUSPA, A. and LOOMIS, W.F. (1992). Tagging developmental genes in Dictyostelium. EMBO J 11: 215-226.

MERCER, J. and HELENIUS, A. (2008). Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320: 531-535.

MEZA, I. and CLARKE, M. (2004). Dynamics of endocytic traffic of Entamoeba histolytica revealed by confocal microscopy and flow cytometry. Cell Motil Cytoskeleton 59: 215-226.

MUNCH, C., O’BRIEN, J. and BERTOLOTTI, A. (2011). Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc Natl Acad Sci USA 108: 3548-3553.

NICHOLS, J.M.E., PASCHKE, P., PEAK-CHEW, S., WILLIAMS, T.D., TWEDDY, L., SKEHEL, M., STEPHENS, E., CHUBB, J.R. and KAY, R.R. (2019). The atypical MAP kinase ErkB transmits distinct chemotactic signals through a core signaling module. Dev Cell 48: 491-505.

NORTH, M.J. (2003). Solute uptake by Dictyostelium discoideum and its inhibition. J Gen Microbiol 129: 1381-1386.

NORTH, M.J. and WILLIAMS, K.L. (1978). Relationship between the axenic phenotype and sensitivity to L-aminoarboxylatic acids in Dictyostelium discoideum. J Gen Microbiol 107: 223-230.

O’HALLORAN, T.J. and ANDERSON, R.G.W. (1992). Clathrin heavy chain is required for pinoctytosis, the presence of large vacuoles, and development in Dictyostelium. J Cell Biol 118: 1371-1377.

OSTAP, E.M., MAUPIN, P., DOBERSTEIN, S.K., BAINES, I., KORN, E.D. and POLLARD, T.D. (2003). Dynamic localization of myosin-I to endocytic structures in Acanthamoeba. Cell Motil Cytoskeleton 54: 29-40.

PADH, H., HA, J.H., LAVASA, M. and STECK, T.L. (1993). A post-lysosomal compartment in Dictyostelium discoideum. J Biol Chem 268: 6742-6747.

PANG, K.M., LEE, E. and KNECHT, D.A. (1998). Use of a fusion protein between GFP and an actin-binding domain to visualize transient filamentous-actin structures. Curr Biol 8: 405-408.

PARENT, C.A., BLACKLOCK, B.J., FROELICH, W.M., MURPHY, D.B. and DEVREOTES, P.N. (1998). G Protein signaling events are activated at the leading edge of chemotactic cells. Cell 95: 81-91.

PASCHKE, P., KNECHT, D.A., SIASEL, A., TRAYNOR, D., WILLIAMS, T.D., THOMASON, P.A., INSALL, R.H., CHUBB, J.R., KAY, R.R. and VELTMAN, D.M. (2016). Rapid and efficient genetic engineering of both wild type and axenic strains of Dictyostelium discoideum. PLoS One 13: e0196809.

PASCHKE, P., KNECHT, D.A., WILLIAMS, T.D., THOMASON, P.A., INSALL, R.H., CHUBB, J.R., KAY, R.R. and VELTMAN, D.M. (2019). Genetic Engineering of Dictyostelium discoideum Cells Based on Selection and Growth on Bacteria. Journal of visualized experiments. JoVE 143: e58981, doi:10.3791/58981

PEARCE, L.R., KOMANDER, D. and ALESSI, D.R. (2010). The nuts and bolts of AGC protein kinases. Nat Rev Mol Cell Biol 11: 9-22.

RATNER, N. and MILLER, S.J. (2015). ARASopathy gene commonly mutated in cancer: the neurofibromatosis type 1 tumour suppressor. Nature Rev Cancer 15: 290-301.

RIVERO, F., FURUKAWA, R., FECHHEIMER, M. and NOEGEL, A.A. (1999). Three actin-cross-linking proteins, the 34 kDa actin-bundling protein, alpha-actinin and gelation factor (ABP-120), have both unique and redundant roles in the growth and development of Dictyostelium. J Cell Sci 112: 2737-2751.

RIVERO, F. and MANIACI, M. (2006). Quantitative and microscopic methods for studying the endocytic pathway. Methods Mol Biol 346: 423-438.
Macropinocytosis in amoebae
Further Related Reading, published previously in the *Int. J. Dev. Biol.*

Dictyostelium discoideum Sir2D modulates cell-type specific gene expression and is involved in autophagy
Rakhee Lohia, Punita Jain, Mukul Jain, Pradeep Kumar Burma, Anju Shrivastava and Shweta Saran
Int. J. Dev. Biol. (2017) 61: 95-104
https://doi.org/10.1387/jdb.160038ss

Bimodal distribution of motility and cell fate in Dictyostelium discoideum
Pavana Goury-Sistla, Vidyanand Nanjundiah and Gopal Pande
Int. J. Dev. Biol. (2012) 56: 263-272
https://doi.org/10.1387/jdb.113384ps

Pattern formation mechanisms in reaction-diffusion systems
Vladimir K. Vanag and Irving R. Epstein
Int. J. Dev. Biol. (2009) 53: 673-681
https://doi.org/10.1387/jdb.072484vv

Dictyostelium discoideum: a model system for differentiation and patterning
R Escalante and J J Vicente
Int. J. Dev. Biol. (2000) 44: 819-835
http://www.intjdevbiol.com/web/paper/11206323

Cell-cell signaling and adhesion in phagocytosis and early development of Dictyostelium
E Bracco, B Pergolizzi, B Peracino, E Ponte, A Balbo, A Mai, A Ceccarelli and S Bozzaro
Int. J. Dev. Biol. (2000) 44: 733-742
http://www.intjdevbiol.com/web/paper/11061438