GEOMETRIC CRYSTALS ON UNIPOTENT GROUPS AND GENERALIZED YOUNG TABLEAUX

NAKASHIMA Toshiki *
Department of Mathematics,
Sophia University, Tokyo 102-8554, Japan
e-mail: toshiki@mm.sophia.ac.jp

Abstract
We define geometric/unipotent crystal structure on unipotent subgroups of semi-simple algebraic groups. We shall show that in A_n-case, their ultra-discretizations coincide with crystals obtained by generalizing Young tableaux.

Key words: Geometric crystal, Unipotent groups, Generalized Young tableaux

1 Introduction

The notion of crystals is initiated by Kashiwara ([3],[4],[5]), which influences over many areas in mathematics, in particular, combinatorics and representation theory, e.g., combinatorics of Young tableaux (= semi-standard tableaux), piece-wise linear combinatorics, etc. Indeed, in [7], we succeed in describing the crystal bases for classical quantum algebras by using Young tableaux. One feature of crystal theory is that it produces many piece-wise linear formulae ([5],[11],[12],[13]).

Theory of geometric crystals is introduced by Berenstein and Kazhdan [1] in semi-simple setting and is extended to Kac-Moody setting in [10], which is a kind of geometric analogue of Kashiwara’s crystal theory. More precisely, let G be a Kac-Moody group over \mathbb{C}, T be its maximal torus and I be a finite index set of its simple roots. For an ind-(algebraic)variety X, morphisms $e_i: \mathbb{C}^\times \times X \to X$ ($i \in I$) and $\gamma: X \to T$, the triplet $(X, \gamma, \{e_i\}_{i \in I})$ is called a geometric crystal if they satisfy the conditions as in Definition 2.2. Geometric crystals are not only analogy of crystals, but also has certain categorical correspondence to crystals, which is called a tropicalization/ultra-discretization. It is so remarkable that this correspondence reproduces several piece-wise linear formulae in the theory of crystals from subtraction free(=positive) rational formulae in geometric crystals ([10]) as follows:

\[
\begin{array}{cccc}
\text{(Geometric Crystals)} & \overset{\text{ultra-discretization}}{\longrightarrow} & \text{(Crystals)} \\
\times \times y, \ x/y, \ x + y & \overset{\text{tropicalization}}{\longrightarrow} & x + y, \ x - y, \ \max(x, y)
\end{array}
\]

Furthermore, this correspondence reproduces the tensor product structure of crystals from the product structure of geometric crystals ([11]).

Let B be a Borel subgroup of G and W be the Weyl group associated with G. Any finite Schubert variety $X_w \subset X := G/B$ has a natural geometric crystal structure([11],[10]). Then, in semi-simple setting we know that the whole flag variety $X := G/B$ holds a geometric crystal structure. But, in general Kac-Moody setting, we do not have any natural geometric crystal structure on the flag variety X. The opposite unipotent subgroup U^- can be seen as

*supported in part by JSPS Grants in Aid for Scientific Research
an open dense subset of X. In this paper, we present some sufficient condition for existence of geometric(unipotent) crystal structure on U^- and then on X, which is described as follows: if there exists a morphism $T : U^- \to T$ satisfying the condition as in Lemma then we obtain U-morphism $F : U^- \to B^-$ and then the associated unipotent crystal structure, which means the existence of a geometric crystal structure on U^-. In semi-simple cases, there exists such morphism which is given by matrix coefficients. In particular, for $G = SL_{n+1}(\mathbb{C})$ case, we present its geometric crystal structure explicitly and reveal that it corresponds to the crystals called generalized Young tableaux, which is a sort of “limit” of usual Young tableaux and forms a free \mathbb{Z}-lattice of rank $\frac{n(n+1)}{2}$. In more general cases, e.g., affine cases, the existence of such morphisms is not yet known, which is our further problem.

The article is organized as follows: in Sect.2, we review the notion of geometric crystals, unipotent crystals and the tropicalization/ultra-discretization correspondence. In Sect.3, we consider geometric crystal on a unipotent subgroup $U^- \subset G$ and in Sect.4, the explicit geometric crystal structure on $U^- \subset SL_{n+1}(\mathbb{C})$ is described. In the final section, we give a tropicalization/ultra-discretization correspondence between geometric crystals on U^- and generalized Young tableaux.

The author would acknowledge M.Kashiwara for valuable discussions and comments.

2 Geometric Crystals and Unipotent Crystals

2.1 Kac-Moody algebras and Kac-Moody groups

Fix a symmetrizable generalized Cartan matrix $A = (a_{ij})_{i,j \in I}$, where I be a finite index set. Let $(t, \{a_i\}_{i \in I}, \{h_i\}_{i \in I})$ be the associated root data, where t be the vector space over \mathbb{C} with dimension $|I| + \text{corank}(A)$, and the set of simple roots $\{a_i\}_{i \in I} \subset t^*$ and the set of simple co-roots $\{h_i\}_{i \in I} \subset t$ are linearly independent indexed sets satisfying $a_i(h_j) = a_{ij}$.

The Kac-Moody Lie algebra $g = g(A)$ associated with A is the Lie algebra over \mathbb{C} generated by t, the Chevalley generators e_i and f_i ($i \in I$) with the usual defining relations (\mathbb{R}, \mathbb{R}). There is the root space decomposition $g = \bigoplus_{\alpha \in \Delta} g_\alpha$. Denote the set of roots by $\Delta := \{\alpha \in t^* | \alpha \neq 0, g_\alpha \neq (0)\}$. Set $Q := \sum_i \mathbb{Z}a_i$, $Q^+ := \sum_i \mathbb{Z}_{\geq 0}a_i$ and $\Delta_+ := \Delta \cap Q^+$. An element of Δ_+ is called a positive root. Let ω be the Chevalley involution of g defined by $\omega(e_i) = -f_i, \omega(f_i) = -e_i$ and $\omega(h) = -h$ for $h \in t$. Let $L(\Lambda) (\Lambda \in P_+: \text{set of dominant weights})$ be an irreducible integrable highest weight module with highest weight Λ and $\pi_\Lambda : g \to \text{End}(L(\Lambda))$ be the g-action. The action $\pi_\Lambda^* : = \pi_\Lambda \circ \omega$ defines a g-module structure on $L(\Lambda)$, which is called the contragredient module of $L(\Lambda)$ and denoted $L^*(\Lambda)$. Let us fix a highest weight vector $u_\Lambda \in L(\Lambda)$ and denote it by u_Λ^* in $L^*(\Lambda)$. We obtain a unique g-invariant bilinear form $\langle \ , \ \rangle$ on $L(\Lambda) \times L^*(\Lambda)$ such that $\langle u_\Lambda, u_\Lambda^* \rangle = 1$.

Define simple reflections $s_i \in \text{Aut}(t)$ ($i \in I$) by $s_i(h) := h - a_i(h)h_i$, which generate the Weyl group W. We also define the action of W on t by $s_i(\lambda) := \lambda - a_i(h_i)\alpha_i$. Set $\Delta^\text{re} := \{|w(\alpha)| \in W, i \in I\}$, whose element is called a real root.

Let G be the Kac-Moody group associated with the derived Lie algebra g' defined in $[\mathbb{R}]$. Set $U_\alpha := \exp g_\alpha (\alpha \in \Delta^\text{re})$, which is an one-parameter subgroup of G and G is generated by $U_\alpha (\alpha \in \Delta^\text{re})$. Let $U_{\pm \alpha}$ be the subgroups generated by $U_{\pm \alpha} (\alpha \in \Delta^\text{re} = \Delta^\text{re} \cap Q^+)$, i.e., $U_{\pm} := \langle U_{\pm \alpha} (\alpha \in \Delta^\text{re}) \rangle$, which is called the unipotent subgroup of G. Here note that if g is a semi-simple Lie algebra, then G is a usual semi-simple algebraic group over \mathbb{C}.

For any $i \in I$, there exists a unique homomorphism; $\phi_i : SL_2(\mathbb{C}) \to G$ such that

$$x_i(t) := \phi_i \left(\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \right) = \exp t e_i, \ y_i(t) := \phi_i \left(\begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix} \right) = \exp t f_i \ (t \in \mathbb{C}).$$

Set $G_i := \phi_i(SL_2(\mathbb{C})), T_i := \phi_i(\{\text{diag}(t, t^{-1}) | t \in \mathbb{C}\})$ and $N_i := N_{G_i}(T_i)$. Let T (resp. N) be the subgroup of G generated by T_i (resp. N_i), which is called a maximal torus in G.

2
and $B^\pm := U^\pm T$ be the Borel subgroup of G. We have the isomorphism $\phi : W \to N/T$ defined by $\phi(s_i) = N_iT/T$. An element $s_i := x_i(-1)y_i(1)x_i(-1)$ is in $N_G(T)$, which is a representative of $s_i \in W = N_G(T)/T$. Define $R(w)$ for $w \in W$ by

$$R(w) := \{(i_1, i_2, \ldots, i_l) \in I| w = s_{i_1}s_{i_2}\cdots s_{i_l}\},$$

where l is the length of w. We associate to each $w \in W$ its standard representative $\bar{w} \in N_G(T)$ by $\bar{w} = s_{i_1}s_{i_2}\cdots s_{i_l}$ for any $(i_1, i_2, \ldots, i_l) \in R(w)$.

We have the following (as for ind-variety and ind-group, see [3]):

Proposition 2.1 ([3]). (i) Let G be a Kac-Moody group and U^\pm, B^\pm be its subgroups as above. Then G is an ind-group and U^\pm, B^\pm are its closed ind-subgroups.

(ii) The multiplication maps

$$T \times U \to B \quad U^- \times T \to B^-$$

are isomorphisms of ind-varieties.

2.2 Geometric Crystals

In this subsection, we review the notion of geometric crystals ([1], [10]).

Let $(a_{ij})_{i, j \in I}$ be a symmetrizable generalized Cartan matrix and G be the associated Kac-Moody group with the maximal torus T. An element in $\text{Hom}(T, C^\times)$ (resp. $\text{Hom}(C^\times, T)$) is called a character (resp. co-character) of T. We define a simple co-root $\alpha_i^\vee \in \text{Hom}(C^\times, T)$ ($i \in I$) by $\alpha_i^\vee(t) := T_i$. We have a pairing $(\alpha_i^\vee, \alpha_j) = a_{ij}$.

Let X be an ind-variety over C, $\gamma : X \to T$ be a rational morphism and a family of rational morphisms $e_i : C^\times \times X \to X$ ($i \in I$);

$$e_i^\gamma : C^\times \times X \to X$$

$$(c, x) \mapsto e_i^\gamma(x).$$

For a word $i = (i_1, i_2, \ldots, i_l) \in R(w)$ ($w \in W$), set $\alpha^{(l)} := \alpha_{i_l}, \alpha^{(l-1)} := s_{i_l}(\alpha_{i_{l-1}}), \ldots, \alpha^{(1)} := s_{i_1}\cdots s_{i_l}(\alpha_{i_1})$. Now for a word $i = (i_1, i_2, \ldots, i_l) \in R(w)$ we define a rational morphism $\epsilon_i : T \times X \to X$ by

$$(t, x) \mapsto e_i^\gamma(x) := e_{i_1}^{\alpha^{(1)}(t)}e_{i_2}^{\alpha^{(2)}(t)}\cdots e_{i_l}^{\alpha^{(l)}(t)}(x).$$

Definition 2.2. (i) The triplet $\chi = (X, \gamma, \{e_i\}_{i \in I})$ is a geometric crystal if it satisfies

$$e_1^\gamma(x) = x$$

and

$$\gamma(e_i^\gamma(x)) = \alpha_i^\gamma(c)\gamma(x),$$

for any $x \in W$, and any $i, i' \in R(w).$ (2.1)

(ii) Let $(X, \gamma_X, \{e_i^X\}_{i \in I})$ and $(Y, \gamma_Y, \{e_i^Y\}_{i \in I})$ be geometric crystals. A rational morphism $f : X \to Y$ is a morphism of geometric crystals if f satisfies that

$$f \circ e_i^X = e_i^Y \circ f, \quad \gamma_X = \gamma_Y \circ f.$$

In particular, if a morphism f is a birational isomorphism of ind-varieties, it is called an isomorphism of geometric crystals.

The following lemma is a direct result from [1] [Lemma 2.1] and the fact that the Weyl group of any Kac-Moody Lie algebra is a Coxeter group [2] [Proposition 3.13].
Lemma 2.3. The relations (2.2) are equivalent to the following relations:

\[
\begin{align*}
\epsilon_i^1 e_j^1 &= \epsilon_j^1 e_i^1 & \text{if } \langle \alpha_j^\vee, \alpha_i \rangle = 0, \\
\epsilon_i^1 e_j^2 e_i^1 &= \epsilon_j^2 e_i^1 e_j^1 & \text{if } \langle \alpha_j^\vee, \alpha_i \rangle = \langle \alpha_j, \alpha_i \rangle = -1, \\
\epsilon_i^1 e_j^1 e_i^1 &= e_j^1 e_i^1 e_j^1 & \text{if } \langle \alpha_j, \alpha_i \rangle = -2, \langle \alpha_j^\vee, \alpha_i \rangle = -1, \\
\epsilon_i^1 e_j^1 e_i^1 e_j^1 &= e_j^1 e_i^1 e_j^1 e_i^1 & \text{if } \langle \alpha_j^\vee, \alpha_j \rangle = -3, \langle \alpha_j^\vee, \alpha_i \rangle = -1,
\end{align*}
\]

Remark. If \(\langle \alpha_j^\vee, \alpha_j \rangle, \langle \alpha_j^\vee, \alpha_i \rangle \geq 4 \), there is no relation between \(e_i \) and \(e_j \).

2.3 Unipotent Crystals

In the sequel, we denote the unipotent subgroup \(U^+ \) by \(U \). We define unipotent crystals (see [1]) associated to Kac-Moody groups. The definitions below follow [1], [10].

Definition 2.4. Let \(X \) be an ind-variety over \(\mathbb{C} \) and \(\alpha : U \times X \rightarrow X \) be a rational \(U \)-action such that \(\alpha \) is defined on \(\{ e \} \times X \). Then, the pair \(X = (X, \alpha) \) is called a \(U \)-variety. For \(U \)-varieties \(X = (X, \alpha_X) \) and \(Y = (Y, \alpha_Y) \), a rational morphism \(f : X \rightarrow Y \) is called a \(U \)-morphism if it commutes with the action of \(U \).

Now, we define the \(U \)-variety structure on \(B^- = U^{-1}T \). By Proposition 2.1, \(B^- \) is an ind-subgroup of \(G \) and then is an ind-variety over \(\mathbb{C} \). The multiplication map in \(G \) induces the open embedding: \(B^- \times U \hookrightarrow G \); this is a birational isomorphism. Let us denote the inverse birational isomorphism by \(g \):

\[
g : G \rightarrow B^- \times U.
\]

Then we define the rational morphisms \(\pi^- : G \rightarrow B^- \) and \(\pi : G \rightarrow U \) by \(\pi^- : = \text{proj}_{B^-} \circ g \) and \(\pi : = \text{proj}_U \circ g \). Now we define the rational \(U \)-action \(\alpha_{B^-} \) on \(B^- \) by

\[
\alpha_{B^-} := \pi^- \circ m : U \times B^- \rightarrow B^-,
\]

where \(m \) is the multiplication map in \(G \). Then we obtain \(U \)-variety \(B^- = (B^-; \alpha_{B^-}) \).

Definition 2.5. (i) Let \(X = (X, \alpha) \) be a \(U \)-variety and \(f : X \rightarrow B^- \) be a \(U \)-morphism. The pair \((X, f) \) is called a unipotent \(G \)-crystal or, for short, unipotent crystal.

(ii) Let \((X, f_X) \) and \((Y, f_Y) \) be unipotent crystals. A \(U \)-morphism \(g : X \rightarrow Y \) is called a morphism of unipotent crystals if \(f_X = f_Y \circ g \). In particular, if \(g \) is a birational isomorphism of ind-varieties, it is called an isomorphism of unipotent crystals.

We define a product of unipotent crystals following [1]. For unipotent crystals \((X, f_X) \), \((Y, f_Y) \), define a morphism \(\alpha_{X \times Y} : U \times X \times Y \rightarrow X \times Y \) by

\[
\alpha_{X \times Y}(u, x, y) := (\alpha_X(u, x), \alpha_Y(\pi(u \cdot f_X(x)), y)).
\]

(2.3)

If there is no confusion, we use abbreviated notation \(u(x, y) \) for \(\alpha_{X \times Y}(u, x, y) \).

Theorem 2.6 ([1]). (i) The morphism \(\alpha_{X \times Y} \) defined above is a rational \(U \)-morphism on \(X \times Y \).

(ii) Let \(m : B^- \times B^- \rightarrow B^- \) be a multiplication morphism and \(f = f_{X \times Y} : X \times Y \rightarrow B^- \) be the rational morphism defined by

\[
f_{X \times Y} := m \circ (f_X \times f_Y).
\]

Then \(f_{X \times Y} \) is a \(U \)-morphism and then, \((X \times Y, f_{X \times Y}) \) is a unipotent crystal, which we call a product of unipotent crystals \((X, f_X) \) and \((Y, f_Y) \).

(iii) Product of unipotent crystals is associative.
2.4 From unipotent crystals to geometric crystals

We have the canonical projection \(\xi_i : U^- \to U_{-\alpha_i} \) \((i \in I) \) (see [11]). Now, we define the function on \(U^- \) by

\[
\chi_i := y_i^{-1} \circ \xi_i : U^- \to U_{-\alpha_i} \to \mathbb{C},
\]

and extend this to the function on \(B^- \) by \(\chi_i(u \cdot t) := \chi_i(u) \) for \(u \in U^- \) and \(t \in T \). For a unipotent \(G \)-crystal \((X, f_X)\), we define a function \(\varphi_i := \varphi_{iX} : X \to \mathbb{C} \) by

\[
\varphi_i := \chi_i \circ f_X,
\]

and a rational morphism \(\gamma_X : X \to T \) by

\[
\gamma_X := \text{proj}_T \circ f_X : X \to B^- \to T,
\]

where \(\text{proj}_T \) is the canonical projection. Suppose that the function \(\varphi_i \) is not identically zero on \(X \). We define a rational morphism \(e_i : \mathbb{C}^x \times X \to X \)

\[
e_i(x) := x_i \left(\frac{e-1}{\varphi_i(x)} \right)(x).
\]

Theorem 2.7 ([1]). For a unipotent \(G \)-crystal \((X, f_X)\), suppose that the function \(\varphi_i \) is not identically zero for any \(i \in I \). Then the rational morphisms \(\gamma_X : X \to T \) and \(e_i : \mathbb{C}^x \times X \to X \) as above define a geometric \(G \)-crystal \((X, \gamma_X, \{e_i\}_{i \in I})\), which is called the induced geometric \(G \)-crystals by unipotent \(G \)-crystal \((X, f_X)\).

Due to the product structure of unipotent crystals, we can deduce a product structure of geometric crystals derived from unipotent crystals, which is a counterpart of tensor product structure of Kashiwara’s crystals. We omit the explicit statement here (see [1],[10]).

2.5 Crystals

The notion “crystal” is introduced as a combinatorial object by abstracting the properties of “crystal bases”, which has, in general, no corresponding \(U_q(\mathfrak{g}) \)-module.

Definition 2.8. A crystal \(B \) is a set endowed with the following maps:

\[
\begin{align*}
wt : B & \to P, \\
\varepsilon_i : B & \to \mathbb{Z} \sqcup \{ -\infty \}, \\
\varphi_i : B & \to \mathbb{Z} \sqcup \{ -\infty \} \quad \text{for} \quad i \in I, \\
\hat{e}_i : B \sqcup \{ 0 \} & \to B \sqcup \{ 0 \}, \\
\hat{f}_i : B \sqcup \{ 0 \} & \to B \sqcup \{ 0 \} \quad \text{for} \quad i \in I, \\
\hat{e}_i(0) & = \hat{f}_i(0) = 0,
\end{align*}
\]

those maps satisfy the following axioms: for all \(b, b_1, b_2 \in B \), we have

\[
\begin{align*}
\varphi_i(b) & = \varepsilon_i(b) + \langle h_i, wt(b) \rangle, \\
wt(\hat{e}_i b) & = wt(b) + \alpha_i \quad \text{if} \quad \hat{e}_i b \in B, \\
wt(\hat{f}_i b) & = wt(b) - \alpha_i \quad \text{if} \quad \hat{f}_i b \in B, \\
\hat{e}_i b_2 = b_1 & \iff \hat{f}_i b_1 = b_2 \quad (b_1, b_2 \in B), \\
\varepsilon_i(b) & = -\infty \implies \hat{e}_i b = \hat{f}_i b = 0.
\end{align*}
\]

The operators \(\hat{e}_i \) and \(\hat{f}_i \) are called the Kashiwara operators. Indeed, if \((L, B)\) is a crystal base, then \(B \) is a crystal.

Remark. A pre-crystal is an object satisfying the conditions (2.6)–(2.8).
Let us define \(\hat{s}_i : B \to B \) \((i \in I)\) by

\[
\hat{s}_i(b) = \begin{cases}
 e^{-\langle wt(b), h_i \rangle}(b) & \text{if } \langle wt(b), h_i \rangle < 0, \\
 e^{\langle wt(b), h_i \rangle}(b) & \text{if } \langle wt(b), h_i \rangle \geq 0.
\end{cases}
\]

Here note that we have \(\hat{s}_i^2 = id_B \).

Definition 2.9. Let \(B \) be a crystal.

(i) If the actions by \(\{s_i\}_{i \in I} \) define the action of the Weyl group \(W \) on \(B \), we call \(B \) a \textit{W-crystal}.

(ii) If \(\hat{e}_i \) or \(\hat{f}_i \) is bijective, then we call \(B \) a \textit{free crystal}.

Note that if \(B \) is a free crystal, then \(\hat{f}_i = \hat{e}_i^{-1} \). We frequently denote a free crystal \(B \) by \((B, \text{wt}, \{\hat{e}_i\}_{i \in I})\).

2.6 Positive structure and Ultra-discretizations/Tropicalizations

Let us recall the notions of positive structure and ultra-discretization/tropicalization.

The setting below is simpler than the ones in \([11,10]\), since it is sufficient for our purpose. Let \(T = (\mathbb{C}^\times)^l \) be an algebraic torus over \(\mathbb{C} \) and \(X^*(T) \cong \mathbb{Z}^l \) (resp. \(X_*(T) \cong \mathbb{Z}^l \)) be the lattice of characters (resp. co-characters) of \(T \). Set \(R := \mathbb{C}(c) \) and define

\[
v : R \setminus \{0\} \to \mathbb{Z} \quad f(c) \mapsto \deg(f(c)).
\]

Here note that for \(f_1, f_2 \in R \setminus \{0\} \), we have

\[
v(f_1 f_2) = v(f_1) + v(f_2), \quad v\left(\frac{f_1}{f_2}\right) = v(f_1) - v(f_2)
\]

(2.11)

Let \(f = (f_1, \cdots, f_n) : T \to T' \) be a rational morphism between two algebraic tori \(T = (\mathbb{C}^\times)^m \) and \(T' = (\mathbb{C}^\times)^n \). We define a map \(\hat{f} : X_*(T) \to X_*(T') \) by

\[
(\hat{f}(\xi))(c) := (e^{v(f_1(\xi(c)))}, \cdots, e^{v(f_n(\xi(c)))}),
\]

where \(\xi \in X_*(T) \). Since \(v \) satisfies (2.11), the map \(\hat{f} \) is an additive group homomorphism. If we identify \(X_*(T) \) (resp. \(X_*(T') \)) with \(\mathbb{Z}^m \) (resp. \(\mathbb{Z}^n \)) by \(\xi(c) = (c^1, \cdots, c^m) \leftrightarrow (l_1, \cdots, l_m) \in \mathbb{Z}^m \), we write

\[
\hat{f}(l_1, \cdots, l_m) := (v(f_1(\xi(c))), \cdots, v(f_n(\xi(c)))).
\]

A rational function \(f(c) \in \mathbb{C}(c) \) \((f \neq 0)\) is \textit{positive} if \(f \) can be expressed as a ratio of polynomials with positive coefficients.

Remark. A rational function \(f(c) \in \mathbb{C}(c) \) is positive if and only if \(f(a) > 0 \) for any \(a > 0 \) (pointed out by M. Kashiwara).

If \(f_1, f_2 \in R \) are positive, then we have (2.11) and

\[
v(f_1 + f_2) = \max(v(f_1), v(f_2)).
\]

(2.12)

Definition 2.10 \([11]\). Let \(f = (f_1, \cdots, f_n) : T \to T' \) between two algebraic tori \(T, T' \) be a rational morphism as above. It is called \textit{positive} if the following two conditions are satisfied:

(i) For any co-character \(\xi : \mathbb{C}^\times \to T \), the image of \(\xi \) is contained in \(\text{dom}(f) \).
(ii) For any co-character $\xi : \mathbb{C}^* \to T$, any $f_i(\xi(c)) \ (i \in I)$ is a positive rational function.

Denote by $\text{Mor}^+(T, T')$ the set of positive rational morphisms from T to T'.

Lemma 2.11 ([1]). For any positive rational morphisms $f \in \text{Mor}^+(T_1, T_2)$ and $g \in \text{Mor}^+(T_2, T_3)$, the composition $g \circ f$ is in $\text{Mor}^+(T_1, T_3)$.

By Lemma 2.11 we can define a category \mathcal{T}_+ whose objects are algebraic tori over \mathbb{C} and arrows are positive rational morphisms.

Lemma 2.12 ([1]). For any algebraic tori T_1, T_2, T_3, and positive rational morphisms $f \in \text{Mor}^+(T_1, T_2)$, $g \in \text{Mor}^+(T_2, T_3)$, we have $g \circ f = \hat{g} \circ \hat{f}$.

By this lemma, we obtain a functor $\mathcal{U}D : \mathcal{T}_+ \to \text{Set}$ defined by $f : T \to T'$, $$f \mapsto (f : X_*(T) \to X_*(T')).$$

Definition 2.13 ([1]). Let $\chi = (X, \gamma, \{e_i\}_{i \in I})$ be a geometric crystal, T' be an algebraic torus and $\theta : T' \to X$ be a birational isomorphism. The isomorphism θ is called positive structure on χ if it satisfies

(i) the rational morphism $\gamma \circ \theta : T' \to T$ is positive.

(ii) For any $i \in I$, the rational morphism $e_i,\theta : \mathbb{C}^* \times T' \to T'$ defined by $e_i,\theta(c, t) := \theta^{-1} \circ e_i \circ \theta(t)$ is positive.

Let $\theta : T \to X$ be a positive structure on a geometric crystal $\chi = (X, \gamma, \{e_i\}_{i \in I})$. Applying the functor $\mathcal{U}D$ to positive rational morphisms $e_i,\theta : \mathbb{C}^* \times T' \to T'$ and $\gamma \circ \theta : T' \to T$ (the notations are as above), we obtain

$\hat{e}_i := \mathcal{U}D(e_i,\theta) : \mathbb{Z} \times X_*(T) \to X_*(T)$
$\hat{\gamma} := \mathcal{U}D(\gamma \circ \theta) : X_*(T') \to X_*(T)$.

Now, for given positive structure $\theta : T' \to X$ on a geometric crystal $\chi = (X, \gamma, \{e_i\}_{i \in I})$, we associate the triplet $(X_*(T'), \hat{\gamma}, \{\hat{e}_i\}_{i \in I})$ with a free pre-crystal structure (see [1 2.2]) and denote it by $\mathcal{U}D_{\theta, T}(\chi)$. By Lemma 2.12, we have the following theorem:

Theorem 2.14. For any geometric crystal $\chi = (X, \gamma, \{e_i\}_{i \in I})$ and positive structure $\theta : T' \to X$, the associated pre-crystal $\mathcal{U}D_{\theta, T}(\chi) = (X_*(T'), \hat{\gamma}, \{\hat{e}_i\}_{i \in I})$ is a free W-crystal (see [1 2.2]).

We call the functor $\mathcal{U}D$ “ultra-discretization” instead of “tropicalization” unlike in [1]. And for a crystal B, if there exists a geometric crystal χ, an algebraic torus T in \mathcal{T}_+, and a positive structure θ on χ such that $\mathcal{U}D_{\theta, T}(\chi) \cong B$ as crystals, we call χ a tropicalization of B.

3 Geometric crystals on unipotent groups

In this section, we associate a geometric/unipotent crystal structure with unipotent subgroup U^- of semi-simple algebraic group G. In particular, for $G = SL_n(\mathbb{C})$ we describe it explicitly.
3.1 U-variety structure on U^-

In this subsection, suppose that G is a Kac-Moody group as in Sect.2. As mentioned in, the Borel subgroup B^- has a U^--variety structure. By the similar manner, we define U^--variety structure on U^-. As in 2.3, the multiplication map m in G induces an open embedding: $m : U^- \times B \hookrightarrow G$, then this is a birational isomorphism. Let us denote the inverse birational isomorphism by h:

$$h : G \rightarrow U^- \times B.$$

Then we define the rational morphisms $\pi^- : G \rightarrow B^-$ and $\pi^+ : G \rightarrow B$ by $\pi^- := \text{proj}_{U^-} \circ h$ and $\pi^+ := \text{proj}_B \circ h$. Now we define the rational U^--action α_{U^-} on U^- by

$$\alpha_{U^-} := \pi^- \circ m : U \times U^- \rightarrow U^-,$$

Then we obtain

Lemma 3.1. A pair $U^- = (U^-, \alpha_{U^-})$ is a U^--variety on a unipotent subgroup $U^- \subset G$.

3.2 Unipotent/Geometric crystal structure on U^-

In order to define a unipotent crystal structure on U^-, let us construct a U^--morphism $F : U^- \rightarrow B^-$. The multiplication map m in G induces an open embedding: $m : U^- \times T \times U \hookrightarrow G$, which is a birational isomorphism. Thus, by the similar way as above, we obtain the rational morphism $\pi^0 : G \rightarrow T$. Here note that we have

$$\pi^-(x) = \pi^-(x)\pi^0(x) \quad (x \in G).$$ (3.1)

Now, we give a sufficient condition for existence of U^--morphism F.

Lemma 3.2. Let $T : U^- \rightarrow T$ be a rational morphism satisfying:

$$T(\pi^-(xu)) = \pi^0(xu)T(u), \quad \text{for } x \in U \text{ and } u \in U^-.$$ (3.2)

Defining a morphism $F : U^- \rightarrow B^-$ by

$$F : U^- \rightarrow B^- \quad \begin{array}{c}
\text{u} \\
\mapsto
\end{array} uT(u),$$ (3.3)

then the morphism F is a U^--morphism $U^- \rightarrow B^-$.

Proof. We may show

$$F(\alpha_{U^-}(x, u)) = \alpha_B^-(x, F(u)), \quad \text{for } x \in U \text{ and } u \in U^-.$$ (3.4)

As for the left-hand side of (3.4), we have

$$F(\alpha_{U^-}(x, u)) = \pi^-((xu)T(u)) = \pi^-(xu)\pi^0(xu)T(u),$$

where the last equality is due to (3.2). On the other hand, the right-hand side of (3.4) is written by:

$$\alpha_B^-(x, F(u)) = \pi^-(xuT(u)) = \pi^-(xuT(u))\pi^0(xuT(u)) = \pi^-(xu)\pi^0(xu)T(u)$$

where the second equality is due to (3.1) and the third equality is obtained by the fact that $T(u) \in T \subset B$. Now we get (3.4).

Let us verify that there exists such U^--morphism F or rational morphism T for semisimple cases. Suppose that G is semisimple in the rest of this section.
Let \(\Lambda_i \in P_+ \) (\(i = 1, \cdots, n \)) be a fundamental weight and \(L(\Lambda_i) \) be a corresponding irreducible highest weight \(g \)-module, where \(g \) is a complex semi-simple Lie algebra associated with \(G \). Let \(L^*(\Lambda_i) \) be a contragredient module of \(L(\Lambda_i) \) as in Sect.2 and fix a highest (resp. lowest) weight vector \(u_{\Lambda_i} \) (resp. \(v^{\ast}_{\Lambda_i} \)) and \(v^*_i \in L^*(\Lambda_i) \) be the same vector as \(v_{\Lambda_i} \) such that \(\langle v_{\Lambda_i}, v^*_i \rangle = 1 \). Now, let us define a function \(f_i : U^- \to \mathbb{C} \) (\(i \in I \)) as a matrix coefficient:

\[
f_i(g) = \langle g \cdot u_{\Lambda_i}, v^*_i \rangle.
\]

We define a rational morphism \(\mathcal{T} : U^- \to T \) by

\[
\mathcal{T}(u) := \prod_{i \in I} \alpha^\vee_i (f_i(u)^{-1}).
\]

and define a morphism \(F : U^- \to B^- \) by

\[
F(u) := u \cdot \prod_{i \in I} \alpha^\vee_i (f_i(u)^{-1}).
\]

Lemma 3.3. The morphism \(F : U^- \to B^- \) is a \(U \)-morphism.

Proof. Let us verify that \(\mathcal{T} \) satisfies \(\mathcal{T} \). For \(x \in U \) and \(u \in U^- \) such that \(xu \in \text{Im}(U^- \times T \times U \hookrightarrow G) \), let \(u^- \in U^- \), \(u^0 \in T \) and \(u^+ \in U \) be the unique elements satisfying \(u^- u^+ = xu \), i.e., \(\pi^- (xu) = u^- \), \(\pi^0 (xu) = u^0 \) and \(\pi (xu) = u^+ \). Since \(\langle \ , \ \rangle \) is a contragredient bilinear form and the fact that \(g \cdot v^*_i = v^*_i \) for any \(g \in U^- \), we have

\[
\langle xu \cdot u_{\Lambda_i}, v^*_i \rangle = \langle u \cdot u_{\Lambda_i}, \omega(x) \cdot v^*_i \rangle = \langle u \cdot u_{\Lambda_i}, v^*_i \rangle.
\]

On the other hand, since \(g \cdot u_{\Lambda_i} = u_{\Lambda_i} \) for \(g \in U \), we have

\[
\langle xu \cdot u_{\Lambda_i}, v^*_i \rangle = \langle \pi^0 (xu) \cdot u_{\Lambda_i}, v^*_i \rangle = \Lambda_i (\pi^0 (xu)) \langle \pi^- (xu) \cdot u_{\Lambda_i}, v^*_i \rangle,
\]

where \(\Lambda_i \in X^*(T) \) such that \(\Lambda_i (\alpha^\vee_j (c)) = e^{h_j} \cdot j \). Hence, by (3.8), (3.9), we have

\[
f_i(\pi^- (xu)) = \Lambda_i (\pi^0 (xu))^{-1} \langle uu_{\Lambda_i}, v^*_i \rangle = \Lambda_i (\pi^0 (xu))^{-1} f_i(u).
\]

By the formula

\[
\prod_{i} \alpha^\vee_i (\Lambda_i (t)) = t, \quad (t \in T),
\]

and the definitions of \(\mathcal{T} \) and \(F \), we obtained (3.2).

Corollary 3.4. Suppose that \(G \) is semi-simple. Then \((U^-, F) \) is a unipotent crystal.

As we have seen in (2.1) we can associate geometric crystal structure with the unipotent subgroup \(U^- \) since it has a unipotent crystal structure.

It is trivial that the function \(\varphi_i : U^- \to \mathbb{C} \) is not identically zero. Thus, defining the morphisms \(e_i : \mathbb{C}^\times \times U^- \to U^- \) and \(\gamma_{U^-} : U^- \to T \) by

\[
e_i(c, u) := e_i(u) := x_i(\frac{c - 1}{\varphi_i(u)})(u), \quad \gamma_{U^-}(u) := \mathcal{T}(u), \quad (u \in U^- \text{ and } c \in \mathbb{C}^\times),
\]

It follows from Theorem (2.7)

Theorem 3.5. If \(G \) is semi-simple, then the triplet \(\chi_{U^-} := (U^-, \gamma_{U^-}, \{e_i\}_{i \in I}) \) is a geometric crystal.
4 \textit{SL}_{n+1}(\mathbb{C})\text{-case}

We see the result of the previous section in the $\text{SL}_{n+1}(\mathbb{C})$-case more explicitly.

We identify unipotent subgroup U^- with the set of lower triangular matrices whose diagonal part is an identity matrix.

First, let us describe the morphism $\mathcal{T} : U^- \to \mathcal{T}$. For $i \in I := \{1, \cdots, n\}$ and $u = (a_{ij})_{1 \leq i, j \leq n+1} \in U^-$, let $u^{(i)}$ be the submatrix with size i as:

$$u^{(i)} := (a_{ij})_{1 \leq i+2 \leq n+1, 1 \leq j \leq i},$$

i.e.,

$$u = \begin{pmatrix} 1 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 1 \\ u^{(i)} \\ 1 \end{pmatrix} \in U^-$$

and set $m_i(u) := \det(u^{(i)})$.

Let $V = \mathbb{C}^{n+1}$ be the $n + 1$-dimensional vector space with the basis $\{u_1, u_2, \cdots, u_{n+1}\}$. We can identify V with the vector representation $L(\Lambda_1)$ of \mathfrak{sl}_{n+1} by the standard way. Indeed, the explicit actions are given by:

$$e_i(u) = \delta_{i+1, j} u_{i-1} \quad f_i(u) = \delta_{i, j} u_{i+1},$$

where $e_i = E_{i, i+1}$ and $f_i = E_{i+1, i}$ (matrix unit), and we set $e_i(u_1) = 0$ and $f_i(u_{n+1}) = 0$ for all $i \in I$, which implies that u_1 is the highest weight vector and u_{n+1} is the lowest weight vector. Then we have the isomorphism between the fundamental representation $L(\Lambda_k) \ (1 \leq k \leq n)$ and the k-th anti-symmetric tensor module $\Lambda^k(V)$. Let us fix

$$u_{\Lambda_k} := u_1 \wedge u_2 \wedge \cdots \wedge u_k \quad (\text{resp. } v_{\Lambda_k} := u_{n-k+2} \wedge u_{n-k+3} \wedge \cdots \wedge u_{n+1}) \quad (4.1)$$

the highest (resp. lowest) weight vector in $L(\Lambda_k) \cong \Lambda^k(V)$. In this setting, we have

\begin{lemma}
$f_i \equiv m_i$ on U^- for all $i = 1, \cdots, n$.
\end{lemma}

\textbf{Proof.} For $g = (g_{ij}) \in U^-$, we have

$$g \cdot u_i = u_i + \sum_{i < j} g_{ij} u_j.$$

Let us see the coefficient of the vector $v_{\Lambda_k} := u_{n-k+2} \wedge u_{n-k+3} \wedge \cdots \wedge u_{n+1}$ in $g \cdot u_{\Lambda_k}$. We have

$$g \cdot u_{\Lambda_k} = g \cdot u_1 \wedge g \cdot u_2 \wedge \cdots \wedge g \cdot u_k = (u_1 + \sum_{1 < j} g_{j1} u_j) \wedge \cdots \wedge (u_k + \sum_{k < j} g_{jk} u_j).$$

Thus, the coefficient of the vector $u_{j_1} \wedge \cdots \wedge u_{j_k}$ is $g_{j_1} \cdots g_{j_k}$. Hence, we obtain the coefficient of v_{Λ_k} as

$$\sum_{\sigma \in S_k} \text{sgn}(\sigma) g_{n-\sigma(1)+2} \cdots g_{n-\sigma(k)+2} = m_i(u),$$

by using $v_{\sigma(1)} \wedge v_{\sigma(2)} \wedge \cdots \wedge v_{\sigma(k)} = \text{sgn}(\sigma) v_1 \wedge v_2 \wedge \cdots \wedge v_k$. On the other hand, the coefficient of the lowest weight vector gives the function $f_i(u)$. Then we get the desired result. \qed
Next, let us see the action of e_i^α on U^-. Indeed, the action of e_i^α is described simply by:

$$e_i^\alpha(u) = x_i\left(\frac{\phi_i(u)}{\alpha - 1}\right) \cdot u \cdot x_i\left(\frac{1 - \alpha}{\alpha \phi_i(u)}\right) \cdot \alpha_i^{-1}(\alpha).$$

Here, for the later purpose, we consider the following subset B^u of U^- and describe the action of e_i^α on it:

$$B^u := \left\{ Y(a) = \begin{array}{c}
\times y_n(a_{1,n})y_{n-1}(a_{1,n-1})\cdots y_1(a_{1,1}) \\
\times y_n(a_{2,n})\cdots y_2(a_{2,2}) \\
\times y_n(a_{n,n})
\end{array} : a_{i,j} \in C^\times \right\} \subset U^-. \quad (4.2)$$

It is easy to see that B^u is an open dense subset in U^- and isomorphic to the algebraic torus $T_0 := (C^\times)^{n(n+1)/2}$ by:

$$T_0 = (C^\times)^{n(n+1)/2} \xrightarrow{\sim} B^u, \quad a = (a_{i,j})_{1 \leq i \leq j \leq n} \mapsto Y(a),$$

which gives a birational isomorphism $\theta : T_0 = (C^\times)^{n(n+1)/2} \to B^u \hookrightarrow U^-$. Furthermore, we have

Lemma 4.2. $\varphi_i(Y(a)) = \sum_{i=1}^k a_{k,i}$, $f_i(Y(a)) = \prod_{k=1}^n a_{n+k,i}.$

Proof. Since for $u \in U^-$, $\phi_i(u)$ is given as a $(i+1,i)$-entry and the $(i+1,i)$-entry of $Y(a)$ is $\sum_{k=1}^k a_{k,i}$, we obtained the first result.

For a word $\omega = i_1, \cdots, i_m$, we set $f_\omega := f_1 \cdots f_{i_m}$. For a fixed reduced longest word $\omega_0 = n, \cdots, 1, n-1, n-2, \cdots, 2, 1$, there exists the unique subword

$$\omega_i := n-i+1, \cdots, 1, n-i+2, \cdots, 2, \cdots, n-1, \cdots, i, \cdots, i,$$

such that

$$f_{\omega_i}u_{\Lambda_i} = v_{\Lambda_i}, \quad (4.3)$$

where u_{Λ_i} (resp. v_{Λ_i}) is the highest (resp. lowest) weight vector of $L(\Lambda_i)$ as in [4.1]. Since $f_{\omega_i}^2(L(\Lambda_k)) = \{0\}$, we have $\varphi_i(a) = 1 + a_{i+1}$ on $L(\Lambda_k)$ and then

$$Y(a) = (1 + a_{1,n}f_n) \cdots (1 + a_{1,1}f_1) \cdots (1 + a_{n,n}f_n)$$

$$= \sum_{\text{subword } \omega_0} a_{\omega} f_\omega,$$

where a_{ω} is a coefficient of f_ω and $a_{i+1} = 1$ if ω is empty. Hence by (4.3), we have

$$f_{\omega_i}(Y(a)) = \langle Y(a)u_{\Lambda_i}, v_{\Lambda_i}^\alpha \rangle = a_{\omega_i} = \prod_{k=1}^n a_{k,i}.$$

Let us see the rational action $e_i^\alpha : B^u \to B^u$.

Proposition 4.3. We have $e_i^\alpha Y((a_{k,j})_{1 \leq k \leq j \leq n}) = Y((a_{k,j}^\prime)_{1 \leq k \leq j \leq n}).$

$$a_{k,j}^\prime := \begin{cases}
C_k^{(i)} a_{k,i-1} & \text{if } j = i - 1, \\
C_k^{(i)} a_{k,i} & \text{if } j = i, \\
C_k^{(i)} C_k^{(i)} & \text{if } j = i + 1, \\
a_{k,j} & \text{otherwise},
\end{cases} \quad (4.4)$$

11
where
\[C_k^{(i)} := \frac{\alpha(a_{1,i} + \cdots + a_{k,i}) + a_{k+1,i} + \cdots + a_{i,i}}{a_{1,i} + \cdots + a_{i,i}} \quad (1 \leq k \leq i \leq n). \]

Proof. We recall the formula:
\[x_i(a)y_j(b) = \begin{cases} y_j(b)x_i(a) & \text{if } i = j, \\ \frac{b}{x_i(a)} \alpha_i^\gamma(1 + ab)x_i(\frac{a}{1 + ab}) & \text{if } i \neq j, \end{cases} \]
(4.5)
\[\alpha_i^\gamma(a)x_j(b) = x_j(a^\gamma b)\alpha_i^\gamma(a), \quad \alpha_i^\gamma(a)y_j(b) = y_j(a^\gamma b)\alpha_i^\gamma(a). \] (4.6)

Using these formula repeatedly, we have
\[x_i(c) \cdot Y(a) = Y(a') \cdot \alpha_i^\gamma(1 + c\varphi_i(Y(a))) \cdot x_i(\frac{c}{1 + c\varphi_i(Y(a))}), \]
where \(c = (\alpha - 1)/(a_{1,i} + \cdots + a_{i,i}) \) and \(\varphi_i(Y(a)) = a_{1,i} + \cdots + a_{i,i} \).

Now, we consider the following birational isomorphism:
\[\xi : T_0 = (\mathbb{C}^\times)^{\frac{n(n+1)}{2}} \rightarrow T_0 = (\mathbb{C}^\times)^{\frac{n(n+1)}{2}}, \]
\[(a_{i,j})_{1 \leq i \leq j \leq n} \rightarrow (A_{i,j})_{1 \leq i \leq j \leq n}, \]
where
\[A_{i,j} := \frac{a_{i,j}a_{i-1,j-1} \cdots a_{1,j-i+1}}{a_{i-1,j}a_{i-2,j-1} \cdots a_{1,j-i+2}} \quad (1 \leq i \leq j \leq n). \]
The inverse morphism is given by
\[a_{i,j} := \frac{A_{i,j}A_{i-1,j} \cdots A_{1,j}}{A_{i-1,j-1}A_{i-2,j-1} \cdots A_{1,j-1}} \quad (1 \leq i \leq j \leq n). \] (4.7)

We can describe explicitly
\[\xi \circ e_i^\alpha \circ \xi^{-1} : (\mathbb{C}^\times)^{\frac{n(n+1)}{2}} \rightarrow (\mathbb{C}^\times)^{\frac{n(n+1)}{2}}, \]
\[(A_{k,j})_{1 \leq k \leq j \leq n} \mapsto (A'_{k,j})_{1 \leq k \leq j \leq n}, \]
where
\[A'_{k,j} = \begin{cases} A_{k,j} & \text{if } j \neq i, i - 1, \\ \alpha_{k,j}^{(i)} \cdot A_{k,i-1} & \text{if } j = i - 1, \\ (\alpha_{k,j}^{(i)})^{-1} \cdot A_{k,i} & \text{if } j = i, \end{cases} \]
(4.8)
\[\alpha_{k,j}^{(i)} = \alpha \sum_{1 \leq j \leq k} \frac{\prod_{l=1}^{j} A_{l,i}}{\prod_{l=1}^{j} A_{l,i-1}} + \sum_{k < j \leq i} \frac{\prod_{l=1}^{j} A_{l,i}}{\prod_{l=1}^{j} A_{l,i-1}}. \]
Set \(\hat{\theta} := \theta \circ \xi^{-1} : (\mathbb{C}^\times)^{\frac{n(n+1)}{2}} \rightarrow (\mathbb{C}^\times)^{\frac{n(n+1)}{2}} \rightarrow U^-. \)

Theorem 4.4. The morphism \(\hat{\theta} \) gives a positive structure on the geometric crystal \(\chi_{U^-} \).

Proof. The explicit form of
\[\hat{\theta}^{-1} \circ e_i^\alpha \circ \hat{\theta} : (\mathbb{C}^\times)^{\frac{n(n+1)}{2}} \times (\mathbb{C}^\times)^{\frac{n(n+1)}{2}} \rightarrow (\mathbb{C}^\times)^{\frac{n(n+1)}{2}}, \]
\[(A_{k,j})_{1 \leq k \leq j \leq n} \mapsto (A'_{k,j})_{1 \leq k \leq j \leq n}. \]
is given as (4.8), which is trivially positive. Then let us show the positivity of $\gamma_{U^-} \circ \hat{\theta}$. For $Y(a) \in B^n$, we have $\gamma_{U^-}(Y(a)) = \prod_i \alpha_i^y(f_i(Y(a))^{-1})$ and by Lemma 4.2, the explicit form of $f_i(Y(a))$ is given. Substituting (4.7) in it, we obtain

$$\gamma_{U^-} \circ \hat{\theta}((A_{k,j})_{1 \leq k \leq j \leq n}) = \gamma_{U^-} \circ \hat{\theta} \circ \xi^{-1}((A_{k,j})_{1 \leq k \leq j \leq n}) = \prod_{i=1}^{n} \alpha_i^y(\prod_{1 \leq k \leq i \leq j \leq n} A_{k,j})^{-1},$$

which implies that $\gamma \circ \hat{\theta}$ is positive.

5 Tropicalization of Geometric Crystals on U^- and generalized Young Tableaux

5.1 Crystal structure on Young tableaux

Let us recall the crystal structure on Young tableaux where the terminology “Young tableaux” means “semi-standard tableaux” in [7]. For a partition $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_n)$, set

$$B(\lambda) = \{ \text{Young tableau of shape } \lambda \text{ with contents } 1, 2, \cdots, n+1 \},$$

which gives an A_n-crystal of irreducible highest weight $U_q(sl_{n+1})$-module $V(\lambda)$[7].

In order to describe the action of $\tilde{e}_i(b)$ ($\beta \geq 0$) explicitly, let us recall how to construct $B(\lambda)$ following [7],[5].

Let $V := V(\Lambda_1)$ be the vector representation of $U_q(sl_{n+1})$, which is the irreducible highest weight module with the highest weight Λ_1 and let

$$B := \{ 1, 2, \cdots, n+1 \}$$

be the crystal of V. The explicit actions of \tilde{e}_i and \tilde{f}_i are given as follows(7):

$$\tilde{e}_i(j) = \delta_{i+1,j} - 1, \quad \tilde{f}_i(j) = \delta_{i,j+1} + 1.$$

We realize $B(\lambda)$ by embedding into $B^N (N = |\lambda|)$, which follows the way of embedding $V(\lambda) \hookrightarrow V^N$. In [7], the “Japanese reading” is introduced, which gives the embedding by reading entries in a Young tableau column by column. But here we take so-called “arabic reading”[5], which gives the embedding by reading entries in a Young tableau row by row from right to left since it matches what we do below.

Example 5.1. (i) Japanese reading

$$[a \ b \ c \ d] \otimes [e] \otimes [f] \otimes [g] \in B^\otimes 7$$

(ii) Arabic reading

$$[a \ b \ c \ d] \otimes [e] \otimes [f] \otimes [g] \in B^\otimes 7$$
The description of the actions of \tilde{e}_i and \tilde{f}_i on $B(\lambda)$ in [7] is as follows: Let $\{(+),(0)\}$ (resp. $\{(0)\}$) be the crystal of the irreducible $U_q(sl_2)$-module \mathcal{V} (resp. $\mathcal{V}(0)$). If we consider the actions of \tilde{e}_i and \tilde{f}_i on a tensor product B_N, we can identify (7.2.1.),

$$i = (+), \quad i+1 = (-), \quad j = (0) \quad (j \neq i, i+1). \quad (5.1)$$

Let $b \in B(\lambda)$ be in the following form:

$$b = v_1 \otimes \cdots \otimes v_{i+1}, \quad (5.2)$$

where $B_i, j := \mathcal{V}(j$ in the i-th row $).$ If we consider the actions of \tilde{e}_i and \tilde{f}_i, by the “arabic reading” and (5.1) we can identify:

$$b = v_1 \otimes \cdots \otimes v_{i+1}, \quad \text{where} \quad \beta = \sum_{1 \leq k \leq i+1} \beta_k^{(i)}.$$

For any $i \in I$ and $\beta \in \mathbb{Z}_{\geq 0}$ there exist unique $\beta_k^{(i)} \in \mathbb{Z}_{\geq 0} (1 \leq k \leq i+1)$ such that

$$\tilde{e}_i^\beta(v_1 \otimes \cdots \otimes v_{i+1}) = \tilde{e}_i^{\beta_1^{(i)}}(v_1) \otimes \cdots \otimes \tilde{e}_i^{\beta_{i+1}^{(i)}}(v_{i+1}), \quad (5.4)$$

and $\beta = \sum_{1 \leq k \leq i+1} \beta_k^{(i)}$. Note that on each component, we have

$$\tilde{e}_i^{\beta_k^{(i)}}(v_k) := (-)^{\otimes (B_{k,i+1} - \beta_k^{(i)})} \otimes (+)^{\otimes (B_{k,i} + \beta_k^{(i)})}. \quad (5.5)$$

Let us see the explicit form of $\beta_k^{(i)}$, in order to describe the action of \tilde{e}_i^β on b. For the purpose, we prepare the following formula:

Lemma 5.2 (5). Let B_1, B_2, \cdots, B_l be crystals. For $v_k \in B_k$ and $i \in I$, set $b_k := \varepsilon_i(v_k) - \sum_{1 \leq j < k} \langle h_i, \text{wt}(v_j) \rangle$. Then, we have

$$\tilde{e}_i^\beta (v_1 \otimes \cdots \otimes v_l) = \tilde{e}_i^{c_1}(v_1) \otimes \cdots \otimes \tilde{e}_i^{c_l}(v_l),$$

where

$$c_k = \max(c + \max_{1 \leq j \leq k} (b_j), \max_{k < j \leq l} (b_j)) - \max(c + \max_{1 \leq j \leq k} (b_j), \max_{k \leq j \leq l} (b_j)). \quad (5.5)$$
Applying this lemma to (5.4), we have

Proposition 5.3. Under the setting (5.3) and (5.4),

\[
\beta_k^{(i)} = \max \left(\beta + \max_{1 \leq j \leq k} \left(\sum_{l=1}^{j} B_{l,i+1} - \sum_{l=1}^{j-1} B_{l,i} \right), \max_{k < j \leq i} \left(\sum_{l=1}^{j} B_{l,i+1} - \sum_{l=1}^{j-1} B_{l,i} \right) \right) - \max \left(\beta + \max_{1 \leq j < k} \left(\sum_{l=1}^{j} B_{l,i+1} - \sum_{l=1}^{j-1} B_{l,i} \right), \max_{k \leq j \leq i} \left(\sum_{l=1}^{j} B_{l,i+1} - \sum_{l=1}^{j-1} B_{l,i} \right) \right) \quad (1 \leq k \leq i),
\]

\[
\beta_{i+1}^{(i+1)} = 0
\]

Proof. By Lemma 5.2, we have \(\varepsilon_i(v_k) = B_{k,i+1}, \langle h_i, wt(v_j) \rangle = B_{j,i} - B_{j,i+1} \). Applying this to Lemma 5.2, we obtain

\[
\beta_k^{(i)} = \max \left(\beta + \max_{1 \leq j \leq k} \left(\sum_{l=1}^{j} B_{l,i+1} - \sum_{l=1}^{j-1} B_{l,i} \right), \max_{k < j \leq i} \left(\sum_{l=1}^{j} B_{l,i+1} - \sum_{l=1}^{j-1} B_{l,i} \right) \right) - \max \left(\beta + \max_{1 \leq j < k} \left(\sum_{l=1}^{j} B_{l,i+1} - \sum_{l=1}^{j-1} B_{l,i} \right), \max_{k \leq j \leq i} \left(\sum_{l=1}^{j} B_{l,i+1} - \sum_{l=1}^{j-1} B_{l,i} \right) \right). \quad (5.6)
\]

Since \(B_{i+1,i+1} \leq B_{i,i} \), we have

\[
\sum_{l=1}^{i} B_{l,i+1} - \sum_{l=1}^{i-1} B_{l,i} \geq \sum_{l=1}^{i+1} B_{l,i+1} - \sum_{l=1}^{i} B_{l,i}.
\]

Hence, we can neglect \(j = i + 1 \) in the formula above. \(\square \)

Remark. The formula \(\beta_k^{(i)} \) does not depend on \(B_{i,i} \) or \(B_{i+1,i+1} \).

5.2 Generalized Young tableaux and its crystal structure

Let \(B \in B(\lambda) \) be a Young tableau as in (5.2). The \(B_{i,j} \)'s have several constraints, e.g.,

\[
B_{i,j} \geq 0, \quad \sum_{i \leq j \leq k} B_{i,j} \geq \sum_{i+1 \leq j \leq k+1} B_{i+1,j},
\]

which come from the conditions for being Young tableaux.

Now, forgetting such constraints on \(B_{i,j} \)'s, we obtain a free \(\mathbb{Z} \)-lattice \(B^\dagger \):

\[
B^\dagger := \{(B_{i,j})_{1 \leq i \leq j \leq n+1} \mid B_{i,j} \in \mathbb{Z}\} = \mathbb{Z}^n(n+1),
\]

Now, we define the action of \(\varepsilon_i^\beta \ (\beta \geq 0) \) on \(B^\dagger \) by

\[
\varepsilon_i^\beta ((B_{k,j})_{1 \leq k < j \leq n+1}) = ((B_{k,j} + \beta_{k,j})_{1 \leq k < j \leq n+1}), \quad \beta_{k,j} := \begin{cases} \beta_k^{(i)} & \text{if } j = i, \\ -\beta_k^{(i+1)} & \text{if } j = i + 1, \\ 0 & \text{otherwise} \end{cases}
\]

(5.7)

Here note that in the definition of \(B^\dagger \), \(B_{i,i} \)'s do not appear since the formula \(\beta_k^{(i)} \) does not depend on \(B_{i,i} \)'s as mentioned in the remark of the last subsection.

The explicit action of the Kashiwara operator \(\tilde{e}_i \) (resp. \(\tilde{f}_i \)) on \(B^\dagger \) is given by (5.7) taking \(\beta = 1 \) (resp. \(\beta = -1 \)). Indeed, the crystal structure of \(B^\dagger \) is described as follows:
Theorem 5.4. By the setting (5.8), (5.9) and (5.10), we obtain a free crystal B^\sharp.

Proof. It suffices to check the axioms (2.6)-(2.10) in Definition 2.8 and the bijectivity of \tilde{e}_i or \tilde{f}_i. Indeed, (2.6)-(2.8) are trivial from (5.8), (5.9) and (5.10). The assumption of (2.10) never occurs. Thus, we may show that $\tilde{e}_i\tilde{f}_i = \text{id} = \tilde{f}_i\tilde{e}_i$. For $v = (B_{i,j})$, set $p := M_i(v)$, which implies

$$b_k^{(i)}(v) := \sum_{1 \leq l \leq k} B_{i,l+1} - \sum_{1 \leq l \leq k} B_{i,l},$$

$$\varepsilon_i(v) := \max_{1 \leq k \leq n} \{ b_k^{(i)}(v) \},$$

$$w_t(v) := - \sum_{i=1}^{k} \left(\sum_{i+1 \leq l \leq k+1} B_{k,j} \right) \alpha_i,$$

$$\varphi_i(v) := \langle h_i, wt(v) \rangle + \varepsilon_i(v),$$

(5.8)

$$m_i = m_i(v) := \min \{ k | 1 \leq k \leq i, b_k^{(i)}(v) = \varepsilon_i(v) \}$$

$$M_i = M_i(v) := \max \{ k | 1 \leq k \leq i, b_k^{(i)}(v) = \varepsilon_i(v) \}.$$

The actions of \tilde{e}_i and \tilde{f}_i on $v = (B_{i,j})$ are given by

$$\tilde{f}_i : \begin{cases} B_{k,j} \to B_{k,i} & \text{if } (k,j) \neq (M_i,i), (M_i,i+1) \\ B_{M_{i,i}} \to B_{M_{i,i}} - 1 & \text{if } (k,j) = (M_i,i) \\ B_{M_{i,i+1}} \to B_{M_{i,i+1}} + 1 & \text{if } (k,j) = (M_i,i+1) \end{cases}$$

(5.9)

$$\tilde{e}_i : \begin{cases} B_{k,j} \to B_{k,i} & \text{if } (k,j) \neq (m_i,i), (m_i,i+1), \\ B_{m_{i,i}} \to B_{m_{i,i}} + 1 & \text{if } (k,j) = (m_i,i) \\ B_{m_{i,i+1}} \to B_{m_{i,i+1}} - 1 & \text{if } (k,j) = (m_i,i+1) \end{cases}$$

(5.10)

Theorem 5.4. By the setting (5.8), (5.9) and (5.10), we obtain a free crystal B^\sharp.

Remark. It is unknown whether the crystal graph of B^\sharp is connected or not.
Applying the following correspondence to \(x \cdot y \leftrightarrow x + y \)
\(x/y \leftrightarrow x - y \)
\(x + y \leftrightarrow \max(x, y) \)
\(i \leftrightarrow i + 1 \)
we obtain \(\alpha^{(i)}_k \leftrightarrow \beta^{(i)}_k \) and then

\[
\mathcal{U}D_{\theta,T_0}(e_i^c) = \tilde{e}_i^c, \quad \mathcal{U}D_{\theta,T_0}(\gamma) = wt,
\]

(5.11)

(\(T_0 := (\mathbb{C}^\times)^{n(n+1)/2} \)), which implies the following theorem:

Theorem 5.5. We have \(\mathcal{U}D_{\theta,T_0}(\chi_U^-) = (B^t, wt, \{\tilde{e}_i\}_{i \in I}) \), i.e., the geometric crystal \(\chi_U^- \)
on \(U^- \subset SL_{n+1}(\mathbb{C}) \) defined in Sect 4 is a tropicalization of the crystal \(B^t = (B^t, wt, \{\tilde{e}_i\}_{i \in I}) \).

References

[1] Berenstein A. and Kazhdan D., Geometric crystals and Unipotent crystals, math.QA/9912105.

[2] Kac V.G., Infinite dimensional Lie algebras 3rd ed., Cambridge University Press.

[3] Kashiwara M. On crystal bases of the \(q \)-analogue of universal enveloping algebras, Duke Math. J., 63 (1991) 465–516.

[4] Kashiwara M., Crystal base and Littelmann’s refined Demazure character formula. Duke Math. J. 71 (3), (1993), 839–858.

[5] Kashiwara M., Bases cristallines des groupes quantiques, Cours Spécialisés 9, SMF 2002.

[6] Kumar S., Kac-Moody groups, their Flag varieties and Representation Theory, Progress in Mathematics 204, Birkhauser Boston, 2002.

[7] Kashiwara M. and Nakashima T., Crystal graphs for representations of the \(q \)-analogue of classical Lie algebra, J.Algebra, 165, No.2, (1994), 295–345.

[8] Kac V.G. and Peterson D.H., Regular functions on certain infinite-dimensional groups; in “Arithmetic and Geometry”(Artin M.,Tate J.,eds), 141–166, Birkhäuser, Boston-Basel-Stuttgart, (1983).

[9] Peterson D.H., and Kac V.G., Infinite flag varieties and conjugacy theorems, Proc.Nat.Acad.Sci.USA, 80, (1983), 1778–1782.

[10] Nakashima T., Geometric crystals on Schubert varieties, math.QA/0303087.

[11] Nakashima T. Polyhedral Realizations of Crystal Bases for Integrable Highest Weight Modules, J.Algebra 1999, 219, 571–597.

[12] Nakashima T., Polyhedral Realizations of Crystal Bases and Braid-type Isomorphisms. Contemporary Mathematics 248, (1999), 419–435.

[13] Nakashima T and Zelevinsky A. Polyhedral Realization of Crystal Bases for Quantized Kac-Moody Algebras, Advances in Mathematics, 131, No.1, (1997), 253–278.