On the application of “$Z^0 + jet$” events for determining the gluon distribution in a proton at the LHC.

D.V. Bandurin¹, N.B. Skachkov²

Joint Institute for Nuclear Research, Dubna, Russia
E-mail: (1) dmv@cv.jinr.ru, (2) skachkov@cv.jinr.ru

Abstract

It is shown that the samples of “$Z^0 + jet$” events, collected at the LHC with the integrated luminosity $L_{\text{int}} = 20$ fb$^{-1}$, may have enough statistics for determining the gluon distribution inside a proton in the region of $2 \cdot 10^{-4} \leq x \leq 1.0$ at Q^2 values in the interval of $0.9 \cdot 10^3 \leq Q^2 \leq 4 \cdot 10^4$ (GeV/c)2. A possibility of the background events suppression by use of the “$Z^0 + jet$” events selection criteria is also demonstrated.

Key-words: proton, gluon distribution function, Z^0-boson

1. Introduction.

Many important predictions for the production processes of new particles at the LHC require a good knowledge of the gluon distribution function in a proton $f_{p g}(x, Q^2)$. Thus, determining the proton gluon density directly in the LHC experiments, especially in the region of small x and high Q^2, would be very useful.

One of promising channels that can be used for measuring $f_{p g}(x, Q^2)$ is the direct photon production process in association with one jet $pp \rightarrow \gamma_{\text{dir}} + 1 \text{ jet} + X$. It was studied in detail in [1, 2, 3]¹.

Here for the same aim we consider the “$Z^0 + jet$” production process (see also [4, 5]), analogous to the “$\gamma_{\text{dir}} + jet$” process above:

$$pp \rightarrow Z^0 + 1 \text{ jet} + X.$$ (1)

The process (1) is caused at the parton level by two subprocesses: Compton-like scattering

$$qg \rightarrow q + Z^0$$ (2a)

and the annihilation process

$$q\bar{q} \rightarrow g + Z^0.$$ (2b)

Here we suppose that Z^0 boson decays in the following via leptonic channels $Z^0 \rightarrow \mu^+\mu^-$, e^+e^-, the signals from which can be well reconstructed by using electromagnetic calorimeter, tracker and muon system [7, 8, 9, 10]².

In the case of $pp \rightarrow Z^0/\gamma_{\text{dir}} + 1 \text{ jet} + X$ in the region of $P_{t,Z/\gamma} \geq 30$ GeV/c (where k_T smearing effects are not important [6]) the cross section of “$Z^0 + jet$” production is expressed directly ³ in terms of parton distribution functions $f_{p a}(x_a, Q^2)$ and the cross sections of the elementary scattering subprocesses (e.g. see [11]):

¹see also [4]
²The estimations done here are based on the geometry of the CMS detector [7].
³In contrast to, for instance, the cross section of the inclusive photon production process, also used for the extraction of data on $f_{p g}(x, Q^2)$, that is expressed as integral over the proton momentum fractions x_a multiplied by $f_{p a}(x, Q^2)$.
\[
\frac{d\sigma}{d\eta_1 d\eta_2 dP_t^2} = \sum_{a,b} x_a f_a^p(x_a, Q^2) x_b f_b^p(x_b, Q^2) \frac{d\sigma}{d\hat{t}}(a b \to 1 2)
\]
(3)

where the incident parton momentum fractions \(x_{a,b}\) can be found from the \(Z^0\) and jet parameters via

\[
x_{a,b} = P_t / \sqrt{s} \cdot (\exp(\pm \eta_1) + \exp(\pm \eta_2)).
\]
(4)

We also used the following designations above: \(\eta_1 = \eta^Z\), \(\eta_2 = \eta^{jet}\); \(P_t = P_t^Z\); \(a, b = q, \bar{q}, g\); \(1, 2 = q, \bar{q}, g, Z^0\). Formula (3) and the knowledge of the results of independent measurements of \(q, \bar{q}\) distributions [4] allow the gluon distribution \(f_g^p(x, Q^2)\) to be determined in different \(x\) and \(Q^2\) intervals after a suppression of the background events contribution.

2. Definition of selection rules.

1. We shall select the events with \(Z^0\) boson\(^4\) and one jet with \(P_t^Z \geq 30\) GeV/c and \(P_t^{jet} \geq 25\) GeV/c.

\(\)
(5)

The jet is defined according to the PYTHIA [15] jetfinding algorithm LUCELL having the cone radius counted from the jet initiator cell \((\Delta \eta^2 + (\Delta \phi)^2)^{1/2} = 0.7\). A jet pseudorapidity \(|\eta^{jet}|:\) is limited by 5.0 according to the CMS detector geometry.

2. To guarantee a clear track identification of a lepton from the decays of \(Z^0 \to \mu^+ \mu^-, e^+ e^-\) in the tracker and muon systems and most precise determination of its parameters we put the following restrictions on leptons\(^5\):

(a) on the transverse momentum value \(P_t^l\) of any considered lepton:

\[
P_t^l \geq 10\) GeV/c;
\]
(6)

(b) on the \(P_t\) value of the most energetic lepton in a pair:

\[
P_t^{l_{max}} \geq P_{t_{CUT}}^l
\]
(7)

This cut depends on the energy scale\(^[10]\). So, we have taken \(P_{t_{CUT}}^l = 20\) GeV/c for events with \(P_t^Z \geq 40\) GeV/c and \(P_{t_{CUT}}^l = 50\) GeV/c for events with \(P_t^Z \geq 100\) GeV/c.

(c) on the value of the ratio of \(P_t^{isol}\), i.e. the scalar sum of \(P_t\) of all particles surrounding a lepton, to \(P_t^l\) (\(P_t^{isol}/P_t^l\)) in the cone of radius \(R = 0.3\) and on the value of maximal \(P_t\) of a charged particle surrounding a lepton in this cone:

\[
P_t^{isol}/P_t^l \leq 0.10, \quad P_t^{ch} \leq 2\) GeV/c.
\]
(8)

The isolated high-\(P_t\) tracks (what takes place in case of the leptonic \(Z^0\) decays) should be reconstructed with a higher efficiency and with generation of a lower number of fake and ghost tracks\(^[8,9]\).

3. A lepton is selected in the acceptance region\(^[8,9]\):

\[
|\eta^l| < 2.4.
\]
(9)

\(^4\)Here and below in the paper speaking about \(Z^0\) boson we imply a signal reconstructed from the lepton pair with leptons selected by the criteria 2 – 4 of this section.

\(^5\)Most of the \(e, \mu\) selection cuts are taken from\(^[8,9]\).
4. To select lepton pairs only from Z^0 decay we limit the value of the lepton pair invariant mass M_{inv}^{ll} by:

$$|M^Z - M_{inv}^{ll}| \leq 5 \text{ GeV/c}^2.$$ (10)

with M^Z taken to be 91.2 GeV/c2.

5. We select the events with the vector $\vec{P}_{t\,\text{jet}}$ being “back-to-back” to the vector \vec{P}_t^{Z} (in the plane transverse to the beam line) within the azimuthal angle interval $\Delta \phi$ defined by the equation:

$$\phi_{(Z,\text{jet})} = 180^\circ \pm \Delta \phi$$ (11)

where $\phi_{(Z,\text{jet})}$ is the angle between the \vec{P}_t^{Z} and $\vec{P}_{t\,\text{jet}}$ vectors: $\vec{P}_t^{Z} \vec{P}_{t\,\text{jet}} = P_t^Z P_{t\,\text{jet}} \cos(\phi_{(Z,\text{jet})})$, with $P_t^Z = |\vec{P}_t^{Z}|$, $P_{t\,\text{jet}} = |\vec{P}_{t\,\text{jet}}|$. Here we limit $\Delta \phi$ values by 15$^\circ$.

6. The initial and final state radiations manifest themselves most clearly as some final state mini-jets or clusters activity \[10, 13, 14\]. To suppress it, we impose a new cut condition that was not formulated in an evident form in previous experiments: we select the “$Z^0 + \text{jet}$” events that do not have any other jet-like or cluster high P_t activity by taking values of $P_{t\,\text{clust}}$ value, i.e. we select the events with

$$P_{t\,\text{clust}} \leq P_{t\,\text{clust,CUT}}.$$ (12)

7. We limit the value of the modulus of the vector sum of \vec{P}_t of all particles that do not belong to the “$Z^0 + \text{jet}$” system but fit into the region $|\eta| < 5$ covered by the calorimeter system, i.e., we limit the signal in the cells “beyond the jet and Z^0” regions by the following cut:

$$\left| \sum_{i \notin \text{jet}, Z^0} \vec{P}_t^i \right| \equiv P_{t\,\text{out}} \leq P_{t\,\text{out,CUT}}, \ |\eta_i| < 5.$$ (13)

The importance of $P_{t\,\text{out,CUT}}$ and $P_{t\,\text{clust,CUT}}$ for selection of events with a good balance of P_t^Z and $P_{t\,\text{jet}}$ was already shown in \[10, 13, 14\]. In this paper they are fixed as $P_{t\,\text{out,CUT}} = 10 \text{ GeV/c}$ and $P_{t\,\text{clust,CUT}} = 10 \text{ GeV/c}$.

As we show below the presented selection criteria guarantee practically a complete suppression of the background events.

3. The study of background suppression.

In principle, there is a probability, that some combination of $\mu^+\mu^-$ or e^+e^- pairs in the events, based on the QCD subprocesses with much larger cross sections (by about 5 orders of magnitude) than ones of the signal subprocesses (2a) and (2b), can be registered as the Z^0 signal. Firstly, to study a rejection possibility of such type of events by about 40 million events with a mixture of all QCD and SM subprocesses with large cross sections existing in PYTHIA \[7\] including also the signal subprocesses \[8\] were generated with the only Z^0 decay mode allowed: $Z^0 \rightarrow \mu^+\mu^-$. Three generations were performed with different minimal P_t of the hard $2 \rightarrow 2$ subprocess \[9\] values: $\hat{p}_{\min}^2 = 40$, 70 and 100 GeV/c. The cross sections of different subprocesses serve in simulation as weight factors and, thus, determine the final statistics of the corresponding

\[6\] A narrower mass window can be used with the statistics growth.

\[7\] Namely, having ISUB=11–20, 28–31, 53, 68 in PYTHIA \[15\].

\[8\] ISUB=15 and 30 in PYTHIA \[15\].

\[9\] i.e. CKIN(3) parameter in PYTHIA \[15\].
physical events. The generated events were analyzed by use of the cuts given in Table 1 (see also Section 2).

Selection	Signal	Bkgd	$E_{ff}S(\%)$	$E_{ff}B(\%)$	S/B
0	401	850821	100.00±0.00	100.00±0.000	0.02
1	226	15842	92.24±8.51	2.948±0.138	0.5
2	99	467	40.41±4.81	0.076±0.022	8.3
3	81	12	33.00±4.24	0.063±0.020	8.1
4	72	10	29.39±3.94	0.025±0.013	18.0
5	62	0	25.31±3.60	0.000±0.000	–

We see from Table 2 that initial ratio of $\mu^+\mu^-$ pairs in signal and background events is very small (5 · 10$^{-4}$). A weak restriction of the muon transverse momentum and pseudorapidity in the first selection increase S/B by about 2 order (as 5 · 10$^{-4}$ → 2 · 10$^{-2}$). The invariant mass criterion and one-jet events selection make $S/B = 18.0$ and the last criterion on the azimuthal angle between Z^0 and jet ($\Delta\phi < 15^\circ$) suppresses the background events completely.

The information on other intervals (i.e. on the event generations with $\hat{p}_\perp^{\text{min}} = 40$ and $\hat{p}_\perp^{\text{min}} = 100$ GeV/c) is presented in Table 3. Line “Preselection (1)” corresponds to the first cuts in Table 1 ($P^\mu_1 > 10$ GeV/c, $|\eta^\mu| < 2.4$) while line “Main (1 - 5)” corresponds to the result of application of criteria from 1 to 5 of Table 1. After application of all six criteria of Table 1 we

10 Notice, that the cuts used in Table 1 are weak enough. For instance, they do not limit (directly) P^Z_t, P^out of the most energetic lepton in the pair (as well as they do not include $P^\text{cut}_{Z}\text{cut}$ and $P^\text{cut}_{\text{out}}$).

11 The number of events after the first cuts is taken as 100%.

12 That is mainly due to the huge difference in the cross sections of “$Z^0 + \text{jet}$” events (from subprocesses (2a), (2b)) and the QCD events.
have observed no background events in all of the P_t^Z intervals with the signal events selection efficiency of 25 − 33%.

Analogous simulations in PYTHIA were done to estimate a background to the “$Z^0 + jet$” events with the subsequent Z^0 decay via e^+e^- channel. By about 20 million events were generated at $\hat{p}_\perp^{min}= 40, 70$ and 100 GeV/c with a mixture of all QCD and SM subprocesses. The results are given in Table 3. As in the case of $Z^0 \rightarrow \mu^+\mu^-$, no background events were found after application of all criteria of Table 1.

\hat{p}_\perp^{min} (GeV/c)	Selections	Signal	Bkgd	Eff_S(%)	Eff_B(%)	S/B
40	Preselected (1)	48	1404	100.00±0.00	100.00±0.00	0.03
	Main (1−5)	20	3	41.67±11.09	0.214±0.123	6.7
70	Preselected (1)	95	5396	100.00±0.00	100.00±0.00	0.02
	Main (1−5)	35	2	36.32±7.32	0.037±0.026	17.5
100	Preselected (1)	191	18158	100.00±0.00	100.00±0.00	0.01
	Main (1−5)	61	2	31.68±4.67	0.008±0.007	30.5

The practical absence of a background to the “$Z^0 + jet$” events allow to use them for an extraction of the gluon distribution in a proton $f^p_g(x, Q^2)$.

4. Estimation of rates for gluon distribution determination.

In Table 3 we present the distribution of the number of the events, based on the subprocesses $qq \rightarrow Z^0 + q$ and $q\bar{q} \rightarrow g + Z^0$ (with the decays $Z^0 \rightarrow \mu^+\mu^-, e^+e^-$), at integrated luminosity $L_{int} = 20 fb^{-1}$ in different x (defined by (4)) and $Q^2(\equiv (P_t^Z)^2)$ intervals. These events satisfy the cuts (5)−(13) of Section 2. We see that at $L_{int} = 20 fb^{-1}$ one can collect about half a million of “$Z^0 + jet$” events in the interval of $30 \leq P_t^Z \leq 200$ GeV/c.

The contributions (in %) of the events originated from the subprocesses (2a) and (2b) as functions of P_t^Z are presented in Fig. 1. From this figure one can see that the fraction of the “gluonic” events originated from the Compton scattering (2a) noticeably dominates over all considered P_t^Z interval and varies from about 60% at $P_t^Z \approx 30$ GeV/c to about 85% at $P_t^Z \geq 100$ GeV/c.

13 and passed selection cuts (5)−(13)
Table 5: Numbers of “$Z^0 + jet$” events (with $Z^0 \to \mu^+\mu^-$, e^+e^-) in Q^2 and x intervals for $L_{int} = 20 \, fb^{-1}$.

Q^2 (GeV/c2)	x values of a parton	All x	P_{tZ} (GeV/c)
20000-40000	0	0	0
14000-20000	0	0	0
10000-14400	38	1816	1438
6400-8100	341	8476	10860
2500-3600	4957	33148	38029
3600-5000	2195	20812	25882
5000-6400	454	11693	13887
6400-8100	341	8476	10860
8100-10000	38	5979	8098
10000-14400	38	5638	9157
14400-20000	0	2800	5562
900-1600	36818	91689	94905
1600-2500	14833	56722	57403
2500-3600	4957	33148	38029
3600-5000	2195	20812	25882
5000-6400	454	11693	13887

The $x - Q^2$ kinematic area in which one can study the gluon distribution $f^p_g(x, Q^2)$ by selecting “$Z^0 + jet$” events (with the leptonic decay modes of Z^0) is also shown in Fig. 2. From this figure (and Tables 5) it is seen that during first two years of LHC running at low luminosity ($L = 10^{33} \, cm^{-2}s^{-1}$) it would be possible to extract an information for determination of $f^p_g(x, Q^2)$ in the region of $0.9 \cdot 10^3 \leq Q^2 \leq 4 \cdot 10^4 \, (GeV/c)^2$ with as small x values as accessible at HERA but at higher Q^2 values (by 1–2 orders of magnitude). It is also worth emphasizing that the sample of the “$Z^0 + jet$” events selected for this aim can be used to perform a cross-check of $f^p_g(x, Q^2)$ determination by using “$\gamma + jet$” events [1, 2, 3]. It is especially important in the region of lower Q^2 where we have quite a sufficient statistics of “$Z^0 + jet$” events, on the one hand, and a higher background contribution to the “$\gamma + jet$” events, on the other hand. The area that can be covered with “$\gamma + jet$” events is also shown in Fig. 2 by dashed lines.

Fig. 1: The contributions of the events originated from the subprocesses (2a) and (2b) as a function of P_{tZ}. Full line corresponds to the “$qg \rightarrow q + Z^0$” events, dashed line – to the “$q\bar{q} \rightarrow g + Z^0$” events.
Fig. 2: LHC \((x, Q^2)\) kinematic region for the process \(pp \to Z^0 + \text{jet} + X\) (with \(Z^0 \to \mu^+\mu^-, e^+e^-\)).

5. Summary.

It is shown that the samples of \(Z^0 + \text{jet}\) events with a clean topology, most suitable for the absolute jet energy scale setting \(^\text{14}\) \cite{10} and with the suppressed combinatorial background contribution from the QCD events, can provide an useful information for the gluon density determination inside a proton. The corresponding measurements can be done in a new kinematic region, not covered in any previous experiments, of \(2 \times 10^{-4} \leq x \leq 1.0\) with \(0.9 \times 10^3 \leq Q^2 \leq 4 \times 10^4 (\text{GeV}/c)^2\). The study of gluon distribution \(f_p^g(x, Q^2)\) obtained from the analysis of \(Z^0 + \text{jet}\) events can be used as the independent cross-check of the \(f_p^g(x, Q^2)\) determination from the \(\gamma^{\text{dir}} + \text{jet}\) events \(^\text{1, 2, 3}\) as well as from the analytical solutions of the DGLAP equations describing the \(Q^2\) evolution of parton distributions at small \(x\) \cite{16}.

Acknowledgments

We thank P. Aurenche, D. Denegri, M. Dittmar, M. Fontannaz, J. Ph. Guillet, M. L. Mangano, E. Pilon and S. Tapprogge for helpful discussions.

References

\(^\text{14}\) As was shown in \cite{10}, the chosen cut conditions noticeably suppress initial and final state radiations, i.e. the contributions from the events caused by next-to-leading order diagrams.

\[1\] D. V. Bandurin, V. F. Konoplyanikov, N. B. Skachkov, “
\[\text{“}\gamma^{\text{dir}} + \text{jet}\text{” events rate estimation for gluon distribution determination at LHC”}, Part.Nucl.Lett.\textbf{103}:34-43,2000, hep-ex/0011015.

\[2\] D. V. Bandurin, V. F. Konoplyanikov, N. B. Skachkov, “Events rate estimation for gluon distribution determination at LHC”, hep-ex/0207028. Proc. of the XV ISHEP “Relativistic Nuclear Physics and Quantum Chromodynamics”, Dubna 2000. Eds. A. M. Baldin, V. V. Burov, A. I. Malakhov. Dubna, 2001, v.I, pp.375-383.
[3] D.V. Bandurin, N.B. Skachkov, “On the possibility of measuring the gluon distribution in proton with “$\gamma + \text{jet}$” events at LHC”, hep-ex/0210004 (To appear as CMS Note).

[4] M. Dittmar, F. Pauss, D. Zurcher, Phys.Rev. D56 (1997)7284.

[5] J. Womersley, A talk at CMS Week meeting, Aachen, 1997.

[6] J. Huston ATLAS Note ATL-Phys-99-008, CERN,1999.

[7] CMS, Technical proposal, CERN/LHCC 94-38.

[8] The CMS Tracker Project, CERN/LHCC 98–6, CMS TDR 5, CERN, 1999.

[9] The CMS Muon Project, CERN/LHCC 97–32, CMS TDR 3, CERN, 1997.

[10] D.V. Bandurin, N.B. Skachkov “On the application of “$Z^0 + \text{jet}$” events for setting the absolute jet energy scale and determining the gluon distribution in a proton at the LHC”, hep-ex/0209039.

[11] J.F. Owens, Rev.Mod.Phys. 59 (1987)465.

[12] S. Abdullin, A. Khanov, N. Stepanov, CMS Note CMS TN/94–180 “CMSJET”.

[13] D.V. Bandurin, V.F. Konoplyanikov, N.B. Skachkov. “Jet energy scale setting with “$\gamma^{\text{dir}} + \text{jet}$” events at LHC energies. JINR Preprints E2-2000-251 – E2-2000-255, JINR, Dubna.

[14] D.V. Bandurin, N.B. Skachkov. ““$\gamma^{\text{dir}} + \text{jet}$” process application for setting the absolute scale of jet energy and determining the gluon distribution at the Tevatron Run II.” D0 Note 3948, 2002.

[15] T. Sjostrand, Comp.Phys.Comm. 82 (1994)74.

[16] A.V. Kotikov and G. Parente, Nucl.Phys. B549 (1999)242.