Hot-phonon effects in photo-excited wide-bandgap semiconductors

O Herrfurth1,∗, E Krüger1, S Blaurock2, H Krautscheid2 and M Grundmann1

1 Felix Bloch Institute for Solid State Physics, Universität Leipzig, Leipzig, Germany
2 Institute of Inorganic Chemistry, Universität Leipzig, Leipzig, Germany

E-mail: oliver.herrfurth@physik.uni-leipzig.de

Received 18 December 2020, revised 24 February 2021
Accepted for publication 24 March 2021
Published 27 April 2021

Abstract
Carrier and lattice relaxation after optical excitation is simulated for the prototypical wide-bandgap semiconductors CuI and ZnO. Transient temperature dynamics of electrons, holes as well as longitudinal-optic (LO), transverse-optic (TO) and acoustic phonons are distinguished. Carrier-LO-phonon interaction constitutes the dominant energy-loss channel as expected for polar semiconductors and hot-phonon effects are observed for strong optical excitation. Our results support the findings of recent time-resolved optical spectroscopy experiments.

Keywords: semiconductors, hot carriers, carrier relaxation, hot-phonon effect, time-resolved optical spectroscopy

Supplementary material for this article is available online
(Some figures may appear in colour only in the online journal)

1. Introduction

The investigation of charge carrier dynamics on ultrashort time scales in photo-excited semiconductors is often complicated due to several competing processes [1]. Then, numerical simulations can provide deeper insights in the underlying physical mechanisms and improve our understanding of time-resolved experiments. Various models describing the transient relaxation of charge carriers via different scattering processes to the lattice were reported in the last decades [2–9]. In general, above-bandgap optical excitation of semiconductors creates electron–hole pairs with excess energy according to their effective mass [10]. The excess energy is transferred via various scattering processes to the lattice (phonons) [11]. This transient relaxation is characterized by quasi-temperatures T and chemical potentials μ that determine the corresponding Fermi–Dirac (carriers) and Bose–Einstein distributions (phonons), respectively [3, 12]. Often, only two temperatures (carriers and phonons) are employed which neglects their spectral dispersion, but consideration of different phonon branches is mandatory for a useful physical description [8, 9]. Modeling electrons and holes with a common temperature effectively underestimates (overestimates) the carrier type of the lower (higher) effective mass [13]. A physics-based, analytical description of the transient relaxation processes—in contrast to Monte-Carlo solutions of Boltzmann-transport equations [14, 15]—is provided by the non-equilibrium statistical operator approach (NSO) [5, 16].

In this work, we will employ an NSO-based relaxation model from the literature to simulate the transient carrier and lattice relaxation in the prototypical wide-bandgap semiconductors CuI [17] and ZnO [18] after pulsed optical excitation for various excitation conditions. We will compare our results to recent experimental findings of time-resolved photoluminescence spectroscopy and spectroscopic ellipsometry measurements on the aforementioned materials.

∗ Author to whom any correspondence should be addressed. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
2. Computational model

Description. The relaxation model reported by Maia et al [13] is an NSO-based method, which distinguishes between electrons and holes and contains longitudinal-optic (LO), transverse-optic (TO) and acoustic phonon branches. The greatest benefit of this model is its mathematical simplicity: only first-order ordinary differential equations (ODE) and no integrals are involved while still distinguishing between electrons and holes as well as three different phonon branches. The model equations are given below where we use SI units throughout the manuscript. We corrected a few typographical errors mostly found by dimensional analysis. The original model equations and the description of our corrections are described in the supplementary material (https://stacks.iop.org/JPCM/33/205701/mmedia). Chemical potentials are neglected such that changes of the carrier density by recombination and alike processes cannot be taken into account [19]. Carrier and phonons are coupled to a thermal bath at constant temperature T_b. All temperatures T_i are connected to corresponding coldness functions $\beta_i = 1/(k_B T_i)$.

\[
\frac{d\beta}{dr} = -\frac{2}{3} \varepsilon_\text{sc}^\text{DP} \left[E_{\text{e},\text{AC}}(t) + E_{\text{LO}}(t) + E_{\text{AC}}^\text{DP}(t) \right],
\]

\[
\frac{d\beta}{dr} = -\frac{2}{3} \varepsilon_\text{sc}^\text{PP} \left[E_{\text{h},\text{AC}}(t) + E_{\text{LO}}(t) + E_{\text{AC}}^\text{PP}(t) \right]
+ E_{\text{h},\text{LO}}^\text{DP}(t) + E_{\text{h},\text{AC}}^\text{PP}(t),
\]

\[
\frac{d\beta_{\text{AC}}}{dr} = n V_c \varepsilon_\text{AC}^\text{DP} \left[E_{\text{e},\text{AC}}(t) + E_{\text{h},\text{AC}}^\text{PP}(t) + E_{\text{AC}}^\text{DP}(t) \right]
+ E_{\text{AC},\text{LO}}^\text{AN}(t) + E_{\text{AC},\text{TO}}^\text{AN}(t)
- E_{\text{AC},\text{lat}}^\text{AN}(t),
\]

\[
\frac{d\beta_{\text{TO}}}{dr} = 2 n V_c \left[\varepsilon_\text{TO} \left(E_{\text{TO}}(t) \right)^2 \right]^\frac{1}{2} \left[E_{\text{TO}}(t) - E_{\text{AC},\text{TO}}^\text{AN}(t) \right].
\]

We define, n the excited carrier density, V_c the unit cell volume, E_{α} the phonon energies corresponding to $\gamma = \text{LO, TO, } E_{\text{ac},\text{AC}(t)}$ and $E_{\text{ac},\text{PP}(t)}$ are dissipation terms due to the scattering of carriers α (α = electron, hole, acoustic phonons (AC) via the deformation potential (DP) and the piezoelectric potential (PZ) [20] defined as

\[
E_{\text{AC},\text{AC}}^\text{PP}(t) = \theta_{\text{AC}} \left(\frac{2^{7/2}(C_{\text{AC}}^\text{DP})^2 m_{\text{ac}}^{3/2}}{\pi^3/2 \hbar^2 \rho} \right) \beta_{\alpha}^{3/2} \left[\frac{\beta_{\alpha}}{\beta_{\text{AC}}} - 1 \right],
\]

\[
E_{\text{AC},\text{AC}}^\text{PP}(t) = \theta_{\text{AC}} \left(\frac{2^{1/2}(C_{\text{AC}}^\text{PZ})^2 m_{\text{ac}}^{3/2}}{\pi^3/2 \hbar^2 \varepsilon_\text{pp}^2 \rho} \right) \beta_{\alpha}^{1/2} \left[\frac{\beta_{\alpha}}{\beta_{\text{AC}}} - 1 \right].
\]

θ_{AC} is the degeneracy of the AC-phonon mode, $C_{\text{AC}}^\text{DP}(C_{\text{AC}}^\text{PZ})$ are the DP (PZ) coupling constant, ε_pp is the static dielectric constant, e is the base unit of charge, ρ mass density and m_{α} effective carrier mass.

The dissipation terms $E_{\text{LO}}^\text{AC,TO}(t)$ and $E_{\text{LO}}^\text{AC,TO}(t)$ result from carrier-longitudinal-optical-phonon (Fröhlich FR [21]) interaction and the electron–optical-phonon deformation-potential interaction (DP) [20] defined as

\[
E_{\text{LO}}^\text{AC,TO}(t) = \theta_{\text{LO}} \left(\frac{\varepsilon_\text{LO}^2 E_{\text{LO}}(t)^2}{(2\pi)^3/2 \hbar^2 \rho} \right) \left[\frac{1}{\varepsilon_\infty} - \frac{1}{\varepsilon_1} \right]
\times \beta_{\alpha}^{1/2} \exp(-x_{\alpha,\text{LO}}) \left[\frac{\nu_{\text{LO}}}{\nu_{\text{LO},\text{TO}}} - 1 \right] K_0(x_{\alpha,\text{LO}}),
\]

\[
E_{\text{LO}}^\text{AC,TO}(t) = \theta_{\text{LO,TO}} \left(\frac{\hbar \nu_{\text{LO,TO}} E_{\text{LO}}^\text{DP}(t)^2 m_{\alpha}^{3/2}}{2^{1/2}(2\pi)^3/2 \hbar^2 \rho} \right)
\times \beta_{\alpha}^{1/2} \exp(-x_{\alpha,\text{LO,TO}}) \left[\frac{\nu_{\text{LO}}}{\nu_{\text{LO,TO}}} - 1 \right] K_1(x_{\alpha,\text{LO,TO}}).
\]

$\theta_{\text{LO,TO}}$ is the degeneracy of the longitudinal LO (transversal TO) optic phonon-mode whose energy $\hbar \omega_{\text{LO,TO}}$ is assumed to be constant. $C_{\text{LO,TO}}^\text{AC,TO}$ is the electron–optical-phonon deformation-potential coupling constant, K_i are modified Bessel functions of second type and order i [22] and ε_∞ is the usual dielectric constant above phonon and below band-gap absorption.

Additional definitions comprise

\[
\nu_{\gamma} = \left[\exp(\beta_{\gamma} \hbar \omega_{\gamma}) - 1 \right]^{-1},
\]

\[
\nu_{\gamma,\text{LO,TO}} = \left[\exp(\beta_{\gamma} \hbar \omega_{\text{LO,TO}}) - 1 \right]^{-1},
\]

\[
\nu_{\text{AC,LO,TO}} = \left[\exp(\beta_{\alpha} \hbar \omega_{\text{LO,TO}}) - 1 \right]^{-1},
\]

\[
x_{\alpha,\text{LO,TO}} = \frac{1}{2} \beta_{\alpha} \hbar \omega_{\text{LO,TO}},
\]

where η stands for LO, TO and AC phonons. Anharmonic interactions (AN) of acoustic and optical phonons $E_{\text{AN,AN,TO}}^\text{AC,TO}$ and the final dissipation of energy to the thermal bath $E_{\text{AN,AN,TO}}^\text{AC,TO}$ are defined in the relaxation-time approximation

\[
E_{\text{AN,AN,TO}}^\text{AC,TO} = \frac{n V_c}{n V_c} \left(\frac{\nu_{\text{AC}} - \nu_{\text{AC,TO}}}{\tau_{\text{TO}}} \right),
\]

\[
E_{\text{AN,AN,TO}}^\text{AC,TO} = \frac{1}{n V_c} \left(\beta_{\text{AC}}^{-1} - \beta_{\text{AC}}^{-1} \right) .
\]

The phenomenological relaxation times τ_{TO} can be estimated from Raman linewidths, whereas τ_{AC} comprises ambipolar diffusion and the surface dimensions of the system. We set empirically $\tau_{\text{AC}} = 1$ ns for all simulations in accordance with the literature [1, 13].

This model assumes thermalization among electrons and holes individually, which means that previous scattering events led to Fermi–Dirac distribution of the carriers in the conduction and valence band, respectively [11]. This thermalization is completed after approximately few 100 fs after optical excitation [1, 11].
The system of coupled ODE is implemented and solved in ‘MATLAB®’ using the ode15s solver [23]. The initial conditions for the model validation are tabulated in table 1 and the material constants are provided in table 2. The relative error of each β, which is a constraint passed to the ODE solver, is 10⁻⁶.

Validation. The computer implementation of the relaxation model is validated using the simulation data of reference [13], which models hot-carrier relaxation experiments from the literature [24–26]. We digitize the plots with the reference simulation data and compare them to our model data. The initial conditions are provided in table 1, the material constants in table 2. We find excellent agreement with the data corresponding to the experiments of Shank et al [24, 25] shown in the top and middle row of figure 1 employing the modifications to the original formulas as discussed before. Only qualitative agreement is found with the experiment of Seymour et al [26] (figure 1 bottom row). Especially the transient hole temperature is not reproduced, which is likely related to the wrong initial LO-phonon temperature $T_{LO}^{AC} = 300$ K in reference [13]. It should rather be $T_{LO}^{AC} = 650$ K as given in references [3, 27]. Furthermore, we set the relaxation time τ_{AC} is 1 ps. However, such a small value for the final energy dissipation to the lattice is not expected [1]. We assume our model implementation to be still valid for our calculations for CuI and ZnO where the initial LO-phonon temperature is approximately equal to the thermal bath.

Table 1. Initial conditions used in the model validation for the experiments on GaAs [24–26] for the solution of the system of coupled ODE (1) to (5).

Parameter	Shank et al [24]	Shank et al [25]	Seymour et al [26]
Carrier density n (m⁻³)	1×10^{25}	2×10^{24}	1×10^{26}
Electron temperature T_{el} (K)	9800	6700	1300
Hole temperature T_{h} (K)	1333	911	300 [13] 650 [3, 27]
LO temperature T_{LO} (K)	303	303	303
TO temperature T_{TO} (K)	303	303	303
AC temperature T_{AC} (K)	300	300	300
Bath temperature T_{bath} (K)	300	300	300
Relaxation time τ_{AC} (ns)	1	1	10^{-3}
Relaxation time $\tau_{LO,TO}$ (ps)	10	10	7

Table 2. Material parameters for GaAs, CuI and ZnO. Furthermore, we used the basic unit of electric charge $e = 1.602 \times 10^{-19}$ As, Boltzmann constant $k_B = 1.38 \times 10^{-23}$ J K⁻¹, reduced Planck constant $\hbar = 1.054 \times 10^{-34}$ J s, electron rest mass $m_0 = 9.109 \times 10^{-31}$ kg and vacuum permittivity $\varepsilon_0 = 8.854 \times 10^{-12}$ As Vm⁻¹.

Parameter	Unit	GaAs	CuI	ZnO
Mass density ρ	kg m⁻³	5310	5670	5606
Volume unit cell V_{cell}	10⁻²⁸ m³	1.8	2.2	17
Effective electron mass m_e	μm	0.068	0.30	0.24
Effective hole mass m_h	μm	0.50	3.4a	0.30
High-frequency dielectric constant ε_∞	12	5	31	3.70
Static dielectric constant ε_s	11	7.8b	7.77	
LO-phonon energy E_{LO}	meV	37	20	33
TO-phonon energy E_{TO}	meV	33	16c	33
Relaxation time to thermal bath τ_{AC}	ps	1	13c	18a
LO-phonon anharmonic-decay time τ_{LO}	ps	$10/10^{7}e$	$10^{7}e$	$10^{7}e$
TO-phonon anharmonic-decay time τ_{TO}	ps	$10^{7}e$	$10^{7}e$	$10^{7}e$
Electron–acoustic-phonon def. pot. $C_{DP,AC}^{\infty}$	eV	7	36	6
Hole–acoustic-phonon def. pot. $C_{DP,bAC}^{\infty}$	eV	3.5	36	37
Piezoelectric pot. C_{DP}^{∞}	C m⁻²	0.16	0.127	0.85f
Hole–LO-phonon def. pot. $C_{DP,LO,TO}^{\infty}$	10¹⁰eV m⁻¹	0.6	40	10

*We consider only the heavy hole here, because the ratio of the oscillator strengths between heavy hole and light hole is 3:1 [43].

*obtained via Lyddane–Sachs–Teller relation [20].

*Similar values where obtained from temperature-dependent Raman spectroscopy measurements on the CuI microwires, which will be part of a future publication.

*No literature values of τ_{AC} are available for CuI and ZnO. Therefore, we set it equal to the value of GaAs.

*Corresponding to the experiments [24][25][26].

*average of estimated values $\tilde{e}_{14} = -\sqrt{3}e_{14} = -\sqrt{3}e_{14}$ and $\tilde{e}_{14} = \sqrt{3}e_{14}$ [44] using $e_{15} = -0.37$, $e_{11} = -0.62$ and $e_{13} = 0.96$ (all values in C m⁻²) [45].
Figure 1. Validation of the implementation of the computational model by comparison to the results of Maia et al. [13] for the experiments of Shank et al. [24, 25] (top and middle row) and Seymour et al. [26] (bottom row). Effective carrier and phonon temperatures T_i in linear (left column) and logarithmic (middle column) time scale are shown along with a zoomed-in view (right column). Reference data points taken from Maia et al. [13] are shown as symbols. [13] John Wiley & Sons. [Copyright © 1993 WILEY-VCH Verlag GmbH & Co. KGaA].

spectroscopy measurements on CuI microwires. For ZnO, we use the results of time-resolved spectroscopic ellipsometry measurements on a ZnO thin film [46].

Time-resolved photoluminescence spectroscopy on CuI microwires. CuI microwires were prepared by vapor-phase transport growth as reported earlier [47, 48]. Single microwires were transferred onto a clean SiO$_2$/Si substrate using an acupuncture needle (dry-imprint technique). The substrate with the microwire samples was mounted in a helium-flow cryostat for micro-photoluminescence measurements at 10 K nominal temperature. A frequency-tripled titanium-sapphire (Ti:sapphire) laser (266 nm wavelength, 200 fs pulse duration, 76 MHz repetition rate) was used as excitation source. The laser beam was focused by a long-working-distance $\times 50$ NUV microscope objective (NA = 0.44) to a spot size of about 2 μm radius ($1/e^2$) for the non-resonant excitation of single microwires. The emitted photoluminescence was collected by the same objective, dispersed by a spectrometer (320 mm focal length, 600 grooves/mm grating) and guided to a streak camera (Hamamatsu C5680 with M5675 Synchroscan unit) with a timeresolution of about 10 ps in the time range of the measurements. Further details on the experimental setup can be found in reference [49]. The latter experiments were almost identical to our work, but they employed 364 nm/3.41 eV excitation energy. We choose a larger photon energy (266 nm/4.65 eV) for better comparison with our calculations for ZnO.

We show the transient photoluminescence spectra in figure 2(a) along with selected spectra in panel (b). The dashed line indicates the position of the free, longitudinal exciton resonance at around 3.06 eV [48]. The streak camera image was corrected for the temporal and spectral resolution given by the instrument [51]. We extract the transient carrier temperature T from exponential fits $I(E) \propto \exp \left(-E/k_B T\right)$ (Eagles distribution [50]) to the line shape of the high-energy wing of the free, longitudinal exciton peak in the micro-photoluminescence spectrum of CuI microwires. Exemplary line shape fits are depicted in figure 2(b). The free-exciton emission is rather weak compared to the bound-exciton luminescence at lower energies due to trapping of free excitons by impurities [52, 53] as well as due to larger oscillator strength of bound excitons [54]. Thus, in order to get a meaningful line shape fit, we limit the fit range to 100 ps.

We find 35 K as the lowest carrier temperature after 100 ps which is still well above the nominal temperature of the helium cryostate. This seems to be a contradiction, however, a similar value is obtained from line-shape fits of time-integrated photoluminescence spectra of other CuI microwires. Furthermore, this value is in line with similar investigations on GaN nanowires [55]. We speculate that the insufficient thermal coupling of the SiO$_2$/Si substrate to the wires balances the heat input (laser excitation) and output (helium cryostate) above the cryostate temperature. Therefore, we set the temperature of the thermal bath $T_{\text{bath}} = 35$ K for the CuI simulations.

Time-resolved spectroscopic ellipsometry on a ZnO thin film. A 30 nm c-plane-oriented ZnO thin film was grown by means of pulsed laser deposition. Its transient optical properties, i.e. the complex dielectric function, after pulsed UV excitation were determined by means of femtosecond-time-resolved spectroscopic ellipsometry [56] at room temperature. The sample preparation, experimental details as well as the data analysis are detailed in reference [46]. The strong electron–phonon interaction present in ZnO has a drastic influence on the dielectric function [57, 58]. From the transient dielectric function, one can obtain an effective phonon energy E_{ph} [46] which we correlate with our results of the transient carrier and lattice temperatures.
Figure 2. (a) Time-resolved photoluminescence (PL) of CuI microwires at 10 K nominal helium cryostate temperature for 266 nm fs-pulsed laser excitation measured with a streak camera. (b) Individual PL spectra at selected times in logarithmic scale (points) along with the line-shape analysis [50] (lines) that was conducted near the position of the free longitudinal exciton peak in CuI (dashed line). The spectra are successively multiplied by powers of ten for a clear separation on the logarithmic scale.

Table 3. Excitation energies in eV used for the simulation. TH stands for the third harmonic of the fundamental mode of the laser.

	CuI	ZnO
3.12	Fundamental band gap	3.37
3.50	TH of Nd:YAG laser	3.45
3.76	Split-off band gap	4.00
4.65	TH of Ti:sapphire laser	4.65

*We set the excitation energy 10 meV above the band gap to simulate quasi-resonant excitation with negligible excess energy ΔE_a.

4. Results

We apply the relaxation model reported by Maia et al [13] to calculate the carrier and lattice cooling after optical excitation in the prototypical wide-gap semiconductors CuI [17] and ZnO [18]. The initial carrier excess energies ΔE_a and thus carrier temperatures $\Delta T_a = 3/2k_B T_a$ depend on the energy of the initial excitation $h\omega_0$, the band gap E_g as well as the carrier effective masses m_a and is calculated via [59]

$$\Delta E_a = \frac{h\omega_0 - E_g}{1 + \frac{m_e}{m_h}},$$

$$\Delta E_b = \frac{h\omega_0 - E_g}{1 + \frac{m_h}{m_e}} = (h\omega_0 - E_g) - \Delta E_a.

We choose representative excitation energies $h\omega_0$ provided in table 3 to determine the initial temperatures of the carriers T_a and the lattice T_r [60]. The initial phonon temperatures $T_{LO,TO}$ are estimated from an energy conservation argument [3] and are typically close to T_{bath}.

The transient carrier and phonon temperatures after optical excitation of CuI (left column) and ZnO (right column) are depicted in figure 3. The colored curves correspond to the different excitation energies (table 3) and the corresponding transient dissipation terms \dot{E}_i are provided in the supplementary material. The case of the maximal excitation energy (266 nm/4.65 eV) is shown in figure 4. In general, carrier and lattice relaxation in CuI and ZnO proceeds similarly. The phonon systems remain initially in equilibrium with the bath (see supplementary material). For quasi-resonant optical excitation ($E_g + 10$ meV), carriers heat up to the bath temperature for ZnO at $T_{bath} = 300$ K ($\equiv 25$ meV) within less than 100 fs while they cool down on the same time scale for CuI at $T_{bath} = 35$ K ($\equiv 3$ meV). For non-negligible excess energies, electrons are heated up to several thousand Kelvin while the initial hole temperature is lower because of their higher effective mass. Electrons cool down faster to the phonon temperatures for ZnO, because of their stronger Fröhlich interaction related to the larger LO-phonon energy and the larger LO–TO mode-splitting in ZnO [18, 33]. Cooling of holes to the phonon temperatures appears even quicker for both materials, because of the stronger interaction with the lattice. In particular, holes are additionally subject to electron–optical-phonon deformation-potential interaction $\dot{E}_{i,LO,TO} \equiv DP$ (equation (2)) in this model and thus have more energy-loss channels compared to electrons [62].
Carrier relaxation is mainly dominated by the Fröhlich interaction (figure 4 and supplementary material) for high carrier temperature in accordance with earlier results \[13, 64\] and as generally expected for polar semiconductors \[10, 65\]. Most of the other dissipation source defined in equations (1)–(5) can be neglected for our chosen initial conditions. Thus, most energy is transferred to the LO phonons which heat up to 45 K in the calculation for CuI (370 K for ZnO) after about 3 ps (100 fs) for the largest excitation energy (figure 4). We find the maximal transient phonon temperature is proportional to the excess energy \(\Delta E\). In turn, the LO phonons re-heat both electrons and holes as well as AC and TO phonons by about 5 K for CuI (50 K for ZnO) on the time scale 1 ps...1 ns. In particular, as seen in figure 4 the carrier temperatures (blue and red curves) would decrease directly to \(T_{\text{bath}}\) following the initial temperature loss-rate, but scattering with phonons keeps their temperature above \(T_{\text{bath}}\). On this time scale, optical-phonon deformation-potential interaction of holes is of the same order of magnitude as the Fröhlich interaction. Thus, re-absorption of phonons delays the carrier relaxation by a few picoseconds, which is a manifestation of ‘hot-phonon effects’ \[10, 11, 59\]. This emphasizes once more the importance of the phonon properties for the carrier relaxation of wide-bandgap semiconductors. Thermal equilibrium with the bath is only reached after about 10 ns for both ZnO and CuI, which is mainly determined by the relaxation time \(\tau_{\text{AC}}\).

We compare our results for the highest excitation energy (266 nm/4.65 eV) to experimental results in figure 4 along with the dissipation terms. For CuI, we extract the transient exciton temperature from exponential fits \[50\] to the line shape of the free, longitudinal exciton peak in the microphotoluminescence spectrum of CuI microwires. We find the onset of the temperature decay and the final temperature in very good agreement with our simulated values in the time range 5 ps–100 ps when carriers and phonons equilibrate with each other. Earlier time-resolved photoluminescence measurements employed picosecond pulses on CuI single crystals \[66\]. They fitted the line shape of the first LO-phonon replica of the free exciton with the relation \(I(E) \propto E^{3/2} \exp \left(-E/k_{\text{B}}T\right)\) assuming parabolic and isotropic excitonic dispersion relation as well as low excited carrier density (ca 10\(^{18}\) m\(^{-3}\)) \[67\]. Their temperature dynamics show the same qualitative behavior. However, the relaxation model does not account for various different scattering processes. Similar measurements on CuI thin films suggest also the Fröhlich interaction as the dominant energy-loss channel \[68\]. More recent investigations \[64, 69\] for higher excitation densities on CuI thin films by the optical-Kerr-gating method are focused on the excitation-energy dependence of the photoluminescence originating from...
Figure 4. Effective carrier and phonon temperatures T_i of CuI (left column) and ZnO (right column) for 266 nm (4.65 eV) optical excitation along with the corresponding dissipation terms E_i. Dissipation terms that are negligible small on this scale are not shown. Black symbols represent experimental data: for CuI, we show the transient carrier temperature extracted from exponential fits [50] to the line shape of the free, longitudinal exciton peak in the micro-photoluminescence spectrum of CuI microwires. For ZnO, we show the transient effective phonon energy E_{Ph} obtained by femtosecond-time-resolved spectroscopic ellipsometry taken from [46].

Exciton–exciton scattering (P-band [70]). The relaxation of excitons can take longer, because their bosonic nature and the vanishing total electric charge leads to smaller interaction strengths with defects and phonons compared to electrons and holes [71]. An empirical bi-exponential relaxation model was applied to transient photoluminescence curves reported by Das et al [72]. Note that for extremely pure samples, line-shape fits of the second LO-phonon replica of the free exciton yield the temperature of the entire exciton population and not only the subset which recombines at the center of the Brillouin zone [73].

In the case of ZnO, we correlate the calculated kinetics with the transient effective phonon energy E_{Ph} taken from femtosecond spectroscopic ellipsometry measurements [46]. The effective phonon energy increases upon optical excitation, because of the creation of (high-energy) LO phonons as the most efficient energy-loss channel [74]. Furthermore, it seems that E_{Ph} is correlated with the simulated phonon temperatures. This can be explained by the increased optical-phonon temperature after about 100 fs that leads to higher occupation of the LO and TO phonon modes assuming Bose–Einstein distribution of the phonon subsystems. Hence, the effective phonon energy of the crystal increases. The acoustic phonon subsystem equilibrates with the carriers and optical phonons until about 10 ps thereby increasing the occupation of AC phonons and consequently decreasing E_{Ph} again. Generally, we find good agreement between the transient recovery of E_{Ph} and the equilibrated carrier and lattice temperatures between 10 ps and 10 ns. As in the case of CuI, re-absorption of phonons delays the carrier relaxation by a few ps in agreement with the findings of Richter et al [46].

In summary, we employed the model reported by Maia et al to describe carrier and lattice relaxation after optical excitation to the prototypical wide-gap semiconductors CuI and ZnO. The computer implementation of the model was validated against the results of the original report. This model is useful because of its mathematical simplicity while still distinguishing electrons and holes as well as LO, TO and acoustic phonon branches. Thereby, our calculations yield additional physical understanding to recent time-resolved optical spectroscopy experiments. We find the relaxation dominated by carrier-LO-phonon (Fröhlich) interaction while re-absorption of phonons with temperatures larger than the thermal bath (hot-phonon effect) delays the relaxation process by few picoseconds. We expect this model to be adaptable to other wide-bandgap semiconductors such as oxides, nitrides and alike.

Acknowledgments

We would like to thank Bernd Rheinländer, Chris Sturm and Lukas Trefflich (all Universität Leipzig) for fruitful discussions. OH and EK acknowledge the Leipzig School of Natural Sciences BuildMoNa. This work was funded by the Deutsche
Forschungsgemeinschaft (DFG) within the research unit FOR 2857 within projects P02 (KR 1675/15-1) and P06 (STU 647/3-1).

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

ORCID iDs

O Herrfurth https://orcid.org/0000-0002-7777-0885
E Krüger https://orcid.org/0000-0002-6929-6095
H Krautscheid https://orcid.org/0000-0002-5931-5440
M Grundmann https://orcid.org/0000-0001-7554-182X

References

[1] Sundaram S K and Mazur E 2002 Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses Nat. Mater. 1 217–24
[2] von der Linde D and Lambrich R 1979 Direct measurement of hot-electron relaxation by picosecond spectroscopy Phys. Rev. Lett. 42 1090–3
[3] Luzzi R and Vasconcellos A R 1984 Relaxation processes in nonequilibrium semiconductor plasma Semiconductors Probed by Ultrafast Laser Spectroscopy Pt I, ed R R Alfano (Amsterdam: Elsevier), pp 135–69
[4] van Driel H M 1987 Kinetics of high-density plasmas generated in si by 1.06- and 0.53 μm picosecond laser pulses Phys. Rev. B 35 8166–76
[5] Algarte A C, Vasconcellos A R and Luzzi R 1992 Kinetics of hot elementary excitations in photoexcited polar semiconductors Phys. Status Solidi b 173 487–514
[6] Versteegh M A M, Kuis T, Stoof H T C and Dijkhuis J I 2011 Ultrafast screening and carrier dynamics in ZnO: theory and experiment Phys. Rev. B 84 389
[7] Ivanov D S, Lipp V P, Veiko V P, Yakovlev E, Rethfeld B and Garcia M E 2014 Molecular dynamics study of the short laser pulse ablation: quality and efficiency in production Appl. Phys. A 117 2133–41
[8] Waldecker L, Roman B, Ernstorfer R and Jan V 2016 Electron–phonon coupling and energy flow in a simple metal beyond the two-temperature approximation Phys. Rev. X 6 021003
[9] Sadasivam S, Maria K, Chan Y and Darancet P 2017 Theory of thermal relaxation of electrons in semiconductors Phys. Rev. Lett. 119 136602
[10] Othonos A 1998 Probing ultrafast carrier and phonon dynamics in semiconductors J. Appl. Phys. 83 1789–830
[11] Shah J 1999 Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer Series in Solid-State Sciences vol 115) 2nd enlarged edn (Berlin: Springer)
[12] Rodrigues C G, Vasconcellos Á R and Luzzi R 2015 Topics in present-day science technology and innovation: ultrafast relaxation processes in semiconductors Mater. Res. 18 453–67
[13] Maia A E P, Pires Filho A P C, Sampaio A J C and Freire V N 1993 The thermalization process of photoexcited electrons and holes in the second kinetic stage of relaxation Phys. Status Solidi b 180 213–22
[14] Jacoboni C and Lugli P 1989 The Monte Carlo Method for Semiconductor Device Simulation (Computational Microelectronics) (Berlin: Springer)
[15] Shah J 2012 Hot Carriers in Semiconductor Nanostructures (Amsterdam: Elsevier)
[16] Luzzi R and Vasconcellos A R 1990 On the nonequilibrium statistical operator method Fortschr. Phys. 38 887–922
[17] Grundmann M, Schein F-L, Lorenz M, Böntgen T, Lenzer J and von Wenckstern H 2013 Cuprous iodide: a p-type transparent semiconductor, history, and novel applications Phys. Status Solidi a 333 1671–703
[18] Klingshirn C F 2010 Zinc Oxide: From Fundamental Properties towards Novel Applications (Springer Series in Materials Science vol 120) (Heidelberg: Springer)
[19] The model is still useful to describe the physical processes in semiconductors on the time scale of several hundred picoseconds, because the characteristic time scales for recombination are sufficiently long in Cu [48] and ZnO [52, 53].
[20] Yu P Y and Cardona M 2010 Fundamentals of Semiconductors (Berlin: Springer)
[21] Fröhlich H 1954 Electrons in lattice fields Adv. Phys. 3 325–61
[22] Oliver F W J et al (ed) 2020 NIST digital library of mathematical functions https://dlmf.nist.gov/10.25
[23] Shank C V, Auston D H, Lenn P and Teshke O 1978 Picosecond time resolved reflectivity of direct gap semiconductors Solid State Commun. 26 567–70
[24] Shank C V, Fork R L, Greene B I, Reinhart F K and Logan R A 1981 Picosecond nonequilibrium carrier transport in GaAs Appl. Phys. Lett. 38 104–5
[25] Seymour R J, Jumarkar M R and Alfano R R 1982 Slowed picosecond kinetics of hot photogenerated carriers in GaAs Solid State Commun. 41 657–60
[26] Sampaio A J C and Luzzi R 1983 Relaxation kinetics in polar semiconductors J. Phys. Chem. Solids 44 479–88
[27] Madelung O, Rössler U and Schulz M 1999 Numerical Data and Functional Relationships in Science and Technology: New Series vol 41B (Berlin: Springer)
[28] Grundmann M 2016 The Physics of Semiconductors: an Introduction Including Nanophysics and Applications (Graduate Texts in Physics) 3rd edn (Heidelberg: Springer)
[29] Hönerlage B, Klingshirn C and Grun J B 1976 Spontaneous emission due to exciton—electron scattering in semiconductors Phys. Status Solidi b 78 599–608
[30] Krüger E, Zvaigin V, Chang Y, Sturm C, Schmidt-Grund R and Grundmann M 2018 Temperature dependence of the dielectric function of thin film CuI in the spectral range (0.6–8.3) eV Appl. Phys. Lett. 113 172102
[31] Ashkenov N et al 2003 Infrared dielectric functions and phonon modes of high-quality ZnO films J. Appl. Phys. 93 126–33
[32] Hennion B, Moussa F, Prevot B, Carabatos C and Schawb C 1972 Normal modes of vibrations in CuL Phys. Rev. Lett. 28 964–6
[33] Seranno J, Cardona M, Ritter T M, Weinstein B A, Rubio A and Lin C T 2002 Pressure and temperature dependence of the Raman phonons in isotopic γ-Cul Phys. Rev. B 66 528
[34] Cuscó R, Alarcón-Lladó E, Ibáñez J, Arút L, Jiménez J, Wang B and Callahan M J 2007 Temperature dependence of Raman scattering in ZnO Phys. Rev. B 75 165502
[35] Jacoboni C and Reggiani L 1979 Bulk hot-electron properties of cubic semiconductors Adv. Phys. 28 493–553
[36] Anthony J B, Brothers A D and Lynch D W 1972 Deformation potentials for excitons in cuprous halides Phys. Rev. B 5 3189–93
[38] Segura A, Sans J A, Manjón F J, Muñoz A and Herrera-Cabrera M J 2003 Optical properties and electronic structure of rock-salt ZnO under pressure Appl. Phys. Lett. 83 278–80

[39] Boese A, Mohler E and Pitka R 1974 Diliomemetric determination of piezoelectric constants: application to Cu(I)-halides J. Mater. Sci. 9 1754–8

[40] Zollner S, Gopalan S and Cardona M 1989 Intervalley deformation potentials and scattering rates in zinc blende semiconductors Appl. Phys. Lett. 54 614–6

[41] Sekkal W and Zaoui A 2002 Monte Carlo study of transport Curr. Opin. Solid State Mater. Sci. 7 33

[42] Bykhovski A, Gelmont B, Shur M and Khan A 1995 Curvature of heavy-hole and light-hole excitons in a CuI microcrystallite Phys. Rev. B 51 235325

[43] Bykovskii A, Gelmont B, Shur M and Khan A 1995 Current–voltage characteristics of strained piezoelectric structures J. Appl. Phys. 77 1616–20

[44] Adachi S 2005 Properties of Group-IV, III–V and II–VI Semiconductors (Wiley Series in Materials for Electronic and Optoelectronic Applications) (New York: Wiley)

[45] Richter S et al 2020 Ultrafast dynamics of hot charge carriers in an oxide semiconductor probed by femtosecond spectroscopic ellipsometry New J. Phys. 22 083066

[46] Goto T, Takahashi T and Ueta M 1968 Exciton luminescence of CuCl, CuBr and CuI single crystals J. Phys. Soc. Japan 24 314–27

[47] Wille M et al 2017 Lasing in cuprous iodide microwires Appl. Phys. Lett. 111 031105

[48] Wille M 2017 ZnO- and CuI-nano- and Mikrostrukturen: Laseremission und Komplexer Brechungindex PhD Thesis Universität Leipzig https://nbn-resolving.org/urn:nbn:de:bvs:15-qcosa2-172673

[49] Eagles D M 1960 Optical absorption and recombination radiation in semiconductors due to transitions between hydrogen-like acceptor impurity levels and the conduction band J. Phys. Chem. Solids 16 76–83

[50] We employ the Richardson–Lucy [74, 75] deconvolution algorithm deconvlucy as implemented in MATLAB®. The point-spread function used for the deconvolution equals a multivariate normal distribution with variances corresponding to the temporal and spectral distribution of the streak camera. The spectral resolution of the streak camera was obtained from the emission pattern of a calibration lamp, the temporal resolution from a femtosecond-pulsed laser.

[51] Wagner M R et al 2011 Bound excitons in ZnO: structural defect complexes versus shallow impurity centers Appl. Phys. Lett. 90 041917

[52] Rashba E I 1962 Edge absorption theory in semiconductors Sov. Phys. Solid State 4 759

[53] Corfdir P, Lefebvre P, Ristić J, Valvin P, Calleja E, Trampert A, Ganière I-D and Deveau-Pledran B 2009 Time-resolved spectroscopy on GaN nanocolumns grown by plasma assisted molecular beam epitaxy on Si substrates J. Appl. Phys. 105 013113

[54] Richter S, Mateusz R, Herrfurth O, Espinoza S, Schmidt-Grund R and Andreaasson J 2021 Broadband femtosecond spectroscopic ellipsometry Rev. Sci. Instrum. 92 033104

[55] Shokhovets S, Gobsch G and Ambacher O 2006 Conduction band parameters of ZnO Superlattices Microstruct. 39 299–305

[56] Neumann M D, Cobet C, Esser N, Laumer B, Wassner T A, Eickhoff M, Feneberg M and Goldhahn R 2011 Optical properties of MgZnO alloys: excitons and exciton–phonon complexes J. Appl. Phys. 110 013520

[57] Shah J 1978 Hot electrons and phonons under high intensity photoexcitation of semiconductors Solid-State Electron. 21 43–50

[58] For simplicity, we assume $T_N = T_{\text{inj}}$ initially.

[59] Herrfurth O et al 2021 Transient birefringence and dichroism in ZnO studied with fs-time-resolved spectroscopic ellipsometry Phys. Rev. Res. 3 013246

[60] Ichida H, Kanematsu Y, Mizoguchi K, Kim D and Nakayama M 2007 Energy-relaxation dynamics of photogenerated excitons observed from time-resolved photoluminescence of exciton–exciton scattering in CuIn thin films Phys. Rev. B 76 085417

[61] Hess S, Taylor R A, O’Sullivan E D, Ryan J F, Cain N J, Roberts V and Roberts J S 1999 Hot carrier relaxation by extreme electron-LO phonon scattering in GaN Phys. Status Solidi b 216 51–5

[62] Amund T, Cornet A, Pugnet M, Collet J, Brousseau M and Razbirin B S 1983 Picosecond study of the exciton gas cooling Phys. Status Solidi b 118 113–9

[63] Abramov V A, Permogorov S A, Razbirin B S and Ekimov A I 1970 Phonon-assisted exciton annihilation in CdSe crystals Phys. Status Solidi b 42 627–35

[64] Kojima O, Mizoguchi K and Nakayama M 2005 Intense coherent longitudinal optical phonons in CuIn thin films under exciton–excitation conditions J. Lumin. 112 80–3

[65] Ichida H, Kanematsu Y, Shimomura T, Mizoguchi K, Kim D and Nakayama M 2005 Photoluminescence dynamics of exciton–exciton scattering processes in cuit thin films Phys. Rev. B 72 085420

[66] Ringsherr C F 2005 Semiconductor Optics (Advanced Texts in Physics) (Berlin: Springer)

[67] Korona K P 2002 Dynamics of excitonic recombination and interactions in homoepitaxial GaN Phys. Rev. B 65 205312

[68] Das S, Saha S, Sen D, Ghori A U and Chattopadhyay K K 2014 Tailored defect-induced sharp excitonic emission from microcrystalline cuit and its ab initio validation J. Mater. Chem. C 2 6592–600

[69] Beck M, Hübner J, Oestreich M, Bieker S, Henn T, Kiessling O and Herrfurth O 2016 Thermodynamic origin of the low free exciton photoluminescence rise in GaAs Phys. Rev. B 93 081204

[70] Oki K and Ishiyama Y 2019 Influence of LO and LA phonon processes on thermal-nonequilibrium excitation and deexcitation dynamics of excitons in GaN, AlN, and ZnO J. Appl. Phys. 125 205705

[71] Richardson W H 1972 Bayesian-based iterative method of image restoration J. Opt. Soc. Am. 62 55

[72] Lucy L B 1974 An iterative technique for the rectification of observed distributions Astron. J. 79 745