Electrical and Magnetic Properties of the Ni based Ternary Compounds R_2NiGe_3 ($R =$ Rare Earth Ions)

J. W. Chen1, S. Y. Guan, C. H. Wang
Department of Physics, National Taiwan University, Taipei, Taiwan, R. O. C.

E-mail: jwchen@phys.ntu.edu.tw

Abstract. The crystal structure, electrical, and magnetic properties of the Ni based ternary compounds R_2NiGe_3 ($R =$ rare earth ions) have been investigated using powder X-ray diffraction, electrical resistivity, and magnetic susceptibility measurements. X-ray diffraction patterns reveal that all the samples studied crystallize in the AlB$_2$-derived hexagonal structure with space P6/mmm and the obtained values of the lattice constants a and c are $a = 0.4188(1)$ nm and $c = 0.4339(3)$ nm for La$_2NiGe_3$ and the lattice constants are found to decrease monotonically with increasing atomic number of R. A sudden drop to zero value in the $\rho(T)$ curve reveals that La$_2NiGe_3$ becomes superconducting with a midpoint transition temperature T_C of ~ 0.45 K. The $\chi(T)$ curves for all samples studied follow the Curie-Weiss behavior for $T > 100$ K, with the obtained value of effective moment μ_{eff} close to the moment of the corresponding R^{3+} ions. The occurrence of peak in the $\chi(T)$ curve and a drop off in the $\rho(T)$ curve at the corresponding temperatures indicate that antiferromagnetic transition occurs below 10 K in Gd$_2NiGe_3$ and Dy$_2NiGe_3$. In addition, Pr$_2NiGe_3$ and Ho$_2NiGe_3$ also become magnetically ordered at low temperatures as inferred from the drop off in the $\rho(T)$ curve and the anomaly in the $\chi(T)$ curves in these compounds. The existence of minimum at 18 K followed by a $-\ln T$ dependence below 18 K in the $\rho(T)$ curve and a $T^{1/2}$ dependence in the $\chi(T)$ curve observed for Ce$_2NiGe_3$ reveal characteristic of a Kondo lattice in this compound.

1 To whom any correspondence should be addressed.
1. Introduction
The ternary rare-earth (R) and actinide compounds crystallizing in AlB₂-derived hexagonal structure have attracted a lot of interest in the recent years because of their interesting properties [1]. For example, the Y₂PdGe₃ is a superconductor with a superconducting transition temperature (T_c) of 3 K [1,2], the Nd₂PdGe₃ compound exhibits magnetic ordering of a ferromagnetic type below 6 K [2], and Gd₂PdGe₃ orders antiferromagnetically below 10 K [3]. Recent report revealed that the AlB₂-derived hexagonal type ternary compound Ce₂NiGe₃ is a Kondo lattice compound that exhibits spin-glass behaviour due to the frustration and random distribution of Ni and Ge atoms on the crystallographic sites low temperatures [4, 5]. Recently, compounds with AlB₂-derived hexagonal structure and the Ni-based compounds have attracted a lot of research interest due to the observation of superconductivity in these systems. In this report, we present our results of the crystal structure, electrical, and magnetic properties of the R₂NiGe₃ (R = rare earth ions) compounds.

2. Experimental details
The polycrystalline samples of R₂NiGe₃ (R = rare earth ions) were prepared by arc-melting the stoichiometric amount of high purity elements (R: 99.99 %, Ni: 99.99 %, Ge: 99.999 %) together in a water cooled copper hearth in a Zr-gettered argon atmosphere. The alloy buttons were flipped over and re-melted carefully several times. A two-stage procedure was utilized with negligible weight loss (< 0.5 %). To improve the sample homogeneity, the as melted samples were subsequently wrapped in Ta foils, sealed in the evacuated quartz tubes and annealed at 800 °C for one week. The crystallographic data for all samples were obtained with powder X-ray diffractometer utilizing Cu Kα radiation. Ac electrical resistivity of the bar-shaped samples has been measured between 4.2 K and 300 K in a He⁴ cryostat using a four probe technique. De magnetic susceptibility measurements were performed in a commercial superconducting quantum interference device (SQUID) from 2 K to 300 K in an applied magnetic of 5000 Oe. In addition, a He³ refrigerator was used for measuring the resistivity data of La₂NiGe₃ for 0.3 K < T < 4 K.

3. Results and discussion
Powder X-ray diffraction patterns reveal that all the samples studied are of the of the hexagonal AlB₂-derived type structure. This is shown in Fig. 1(a), where the X-ray diffraction pattern and the Miller indices of the diffraction peaks for La₂NiGe₃ are plotted. Except for a small extra peak at 2θ = 33.691° (indicated by the star symbol) due to the existence of a tiny amount of the 122 phase, the X-ray pattern can be indexed with the AlB₂-derived hexagonal structure and the obtained values of the lattice parameters are $a = 4.188(1)$ Å and $c = 4.339(3)$ Å for La₂NiGe₃. In Fig. 1(b), the lattice parameters a and c, and the unit cell volume V for the R₂NiGe₃ compounds are plotted with respect to the rare earths.
The values of \(a \), \(c \) and \(V \) are found to decrease monotonically with increasing atomic number \(R \). The lanthanum contraction (monotonic decrease of \(a \) and \(c \)) observed here indicates that the rare earth ions in the \(R_2NiGe_3 \) compounds are trivalent at room temperature.

The normalized electrical resistance \(R(T)/R(300 \text{ K}) \) versus \(T \) curves for the \(R_2NiGe_3 \) (\(R = \text{La, Pr, Nd, and Gd} \)) compounds are plotted in Fig. 2(a) for \(0 \text{ K} \leq T \leq 300 \text{ K} \). The \(R(T)/R(300 \text{ K}) \) curves for these compounds exhibit typical characteristics of a common metal and decrease monotonically with decreasing temperature \(T \). In addition, a change of the slope in the \(R(T)/R(300 \text{ K}) \) curve is observed at \(\sim 12 \text{ K} \) and \(5.5 \text{ K} \) for \(\text{Pr}_2\text{NiGe}_3 \) and \(\text{Gd}_2\text{NiGe}_3 \), respectively (Fig. 2(b)), indicating the occurrence of magnetic ordering in these compounds. The low temperature \(\rho(T) \) curve for \(\text{La}_2\text{NiGe}_3 \) is plotted in the inset of Fig. 2(a). A sudden drop of the \(\rho(T) \) to zero value at \(T = 0.55 \text{ K} \) indicates that \(\text{La}_2\text{NiGe}_3 \) becomes superconducting with a mid-point transition temperature of \(0.4 \text{ K} \). The drop off in the \(R(T)/R(300 \text{ K}) \) curve reveals that \(\text{Ho}_2\text{NiGe}_3 \) become magnetically ordered at \(\sim 8 \text{ K} \) (the \(\chi(T) \) curve is not shown here).

![Figure 2(a)](image1.png) ![Figure 2(b)](image2.png)

Figure 2(a). \(R(T)/R(300 \text{ K}) \) versus \(T \) curves for \(R_2NiGe_3 \) (\(R = \text{La, Pr, Nd, and Gd} \)). The inset depicts the \(\rho(T) \) curve for \(\text{La}_2\text{NiGe}_3 \) for \(T < 5 \text{ K} \).

Figure 2(b). Low temperature \(R(T)/R(300 \text{ K}) \) versus \(T \) curves for \(\text{Ho}_2\text{NiGe}_3 \), \(\text{Pr}_2\text{NiGe}_3 \) and \(\text{Gd}_2\text{NiGe}_3 \).

The magnetic susceptibility \(\chi \) and inverse susceptibility \(\chi^{-1} \) as a function of temperature \(T \) curves for \(R_2NiGe_3 \) (\(R = \text{Pr, Nd, Gd and Dy} \)) measured in an applied field of \(5 \text{ kOe} \) for \(0 \text{ K} \leq T \leq 300 \text{ K} \) are

![Figure 3(a)](image3.png) ![Figure 3(b)](image4.png)

Figure 3(a). \(\chi \) vs \(T \) and \(1/\chi \) vs \(T \) of \(\text{Pr}_2\text{NiGe}_3 \) and \(\text{Nd}_2\text{NiGe}_3 \) measured in an applied field of \(5 \text{ kOe} \). The inset depicts the \(d\chi/dT \) of \(\text{Pr}_2\text{NiGe}_3 \).

Figure 3(b). \(\chi \) vs \(T \) and \(1/\chi \) vs \(T \) of \(\text{Gd}_2\text{NiGe}_3 \) and \(\text{Dy}_2\text{NiGe}_3 \) measured in an applied field of \(5 \text{ kOe} \).
plotted in Fig. 3. The susceptibility data reveal that Nd$_2$NiGe$_3$ are nonmagnetic down to 2 K. The χ vs T curve (inset of Fig.3(a)) for Pr$_2$NiGe$_3$ reveals the occurrence of two magnetic transitions at 12 K and 6.9 K, respectively. For $T > 50$ K, χ follows a Curie-Weiss behavior $\chi = C/(T - \Theta_p)$, with $\Theta_p = -0.61$ K and -0.58 K for Pr$_2$NiGe$_3$ and Nd$_2$NiGe$_3$, respectively. The effective moment obtained from the Curie constant $C = N\mu_{\text{eff}}^2/3k_B$ yield the values of $\mu_{\text{eff}} = 3.59$ μ_B per Pr ion and $\mu_{\text{eff}} = 3.65$ μ_B per Nd ion. The obtained values are close to that of the Pr$^{3+}$ ($\mu_{\text{eff}} = 3.58$ μ_B) and Nd$^{3+}$ ($\mu_{\text{eff}} = 3.62$ μ_B) ions. The $\chi(T)$ curve for Gd$_2$NiGe$_3$ reveals the occurrence of an antiferromagnetic transition at 8 K, near the temperature at which a change of the slope in the $R(T)/R(300$ K) curve was observed for this compound. The magnetic susceptibility curve for Dy$_2$NiGe$_3$ exhibits a peak at $T = 4.2$ K, which indicates the occurrence of antiferromagnetic ordering in this compound. The $\chi(T)$ curves for both compounds can also be described with the Curie-Weiss law for $T > 100$ K and the obtained values of the effective moment are $\mu_{\text{eff}} = 8.00$ μ_B per Gd ion and $\mu_{\text{eff}} = 10.68$ μ_B per Dy ion, respectively.

The susceptibility data (Fig. 4) reveal that Ce$_2$NiGe$_3$ are nonmagnetic down to 2 K and the susceptibility saturates gradually at low temperatures. The $\chi(T)$ curve for Ce$_2$NiGe$_3$ can be fitted with the Curie-Weiss law for $T > 100$ K and the obtained values of the effective moment are $\mu_{\text{eff}} = 2.57$ μ_B per Ce ion, a value that is close to the theoretical value of Ce$^{3+}$ ion (2.54 μ_B). The $\rho(T)$ curve for Ce$_2$NiGe$_3$ reveals characteristics of a Kondo system. As shown in the inset of fig. 4, where the low temperature $\rho(T)$ curve for Ce$_2$NiGe$_3$ is plotted. The $\rho(T)$ curve exhibit a minimum at 18 K and followed by a $-\ln T$ dependence from 18 K to 6 K and drop off rapidly below 6 K. Such behaviour is typical of a Kondo lattice in the presence of crystal field effects [6, 7].

Figure 4. χ vs T and $1/\chi$ vs T of Ce$_2$NiGe$_3$ measured in an applied field of 5 kOe. The inset depicts the $\rho(T)$ curve for Ce$_2$NiGe$_3$ for $T < 50$ K.

In summary, we have studied the crystal structure, electrical, and magnetic properties of the R$_2$NiGe$_3$ (R = rare earth ions) compounds. We found that all the samples studied are of the AlB$_2$-derived hexagonal structure and the lattice constants a and c decrease monotonically with increasing atomic number of R. La$_2$NiGe$_3$ becomes superconducting with $T_C = 0.4$ K, Ce$_2$NiGe$_3$ is a Kondo lattice as inferred from the $\rho(T)$ data. Both $\chi(T)$ and $\rho(T)$ data indicate that antiferromagnetic transition occurs in Gd$_2$NiGe$_3$ and Dy$_2$NiGe$_3$, with transition temperature T_N of 8 K and 4.2 K, respectively. In addition, Ho$_2$NiGe$_3$ also become magnetically ordered at ~ 8 K and Pr$_2$NiGe$_3$ exhibits two magnetic transitions at ~ 12 K and 5.5 K, respectively.

Acknowledgements

This work was supported by the ROC National Science Council under Grant No. NSC 98-2112-M-002-017-MY2.
References:

[1] Majumdar S and Sampathathkumaran E V 2001 Phys. Rev. B 63 3360
[2] Sampathathkumaran E V, Majumdar S, Schneider W, Molodtsov S L and Laubschat C 2002 Physica B 312-313 61
[3] Majumdar S, Kumar M, Sampathathkumaran E V, 1999 J. of Alloys and comp., 61-64, 288
[4] Contardi V, Ferro R, Marazza R and Rossi D 1972 J. Less-Common Met. 51, 277
[5] Huo D, Sakurai J, Kuwai T, Isikawa Y and Lu Q 2001 Phys. Rev. B 64, 224405
[6] Hossain Z, Gupta L C and Geibel C 2002 J. Phys. : Condens. Matter 14 9687
[7] Hossain Z, Hamashima S, Umeo K, Takabatake T, Geibel C and Steglich F 2000 Phys. Rev. B 62 8905