Learning Probabilistic Hierarchical Task Networks to Capture User Preferences

Nan Li

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15218 USA

William Cushing, Subbarao Kambhampati, and Sungwook Yoon

Department of Computer Science, Arizona State University, Tempe, AZ 85281 USA

Abstract

We propose automatically learning probabilistic Hierarchical Task Networks (pHTNs) in order to capture a user’s preferences on plans, by observing only the user’s behavior. HTNs are a common choice of representation for a variety of purposes in planning, including work on learning in planning. Our contributions are (a) learning structure and (b) representing preferences. In contrast, prior work employing HTNs considers learning method preconditions (instead of structure) and representing domain physics or search control knowledge (rather than preferences). Initially we will assume that the observed distribution of plans is an accurate representation of user preference, and then generalize to the situation where feasibility constraints frequently prevent the execution of preferred plans. In order to learn a distribution on plans we adapt an Expectation-Maximization (EM) technique from the discipline of (probabilistic) grammar induction, taking the perspective of task reductions as productions in a context-free grammar over primitive actions. To account for the difference between the distributions of possible and preferred plans we subsequently modify this core EM technique, in short, by rescaling its input.

Email addresses: nlil@cs.cmu.edu (Nan Li), wcushing@asu.edu, rao@asu.edu, Sungwook.Yoon@asu.edu (William Cushing, Subbarao Kambhampati, and Sungwook Yoon)
1. Introduction

Application of learning techniques to planning is an area of long standing research interest. Most work in this area to-date has, however, only considered learning domain physics or search control. The relatively neglected alternative, and the focus of this work, is learning preferences. It has long been understood that users may have complex preferences on plans (c.f. [1]). An effective representation for preferences (among other possible purposes) is a Hierarchical Task Network (HTN). In addition to domain physics (in terms of primitive actions and their preconditions and effects), the planner is provided with a set of tasks (non-primitives) and methods (schemas) for reducing each into a combination of primitives and sub-tasks (which must then be reduced in turn). A plan (sequence of primitive actions) is considered valid if and only if it (a) is executable and achieves every specified goal, and (b) can be produced by recursively reducing a specified task (the top-level task).

For the example in Figure 1 the top level task is to travel (and the goal is to arrive at some particular destination); acceptable methods reduce the travel task to either *Gobytrain* or *Gobybus*. In contrast, the plan of hitch-hiking (modeled as a single action), while executable and goal achieving, is not considered valid — the user in question loathes that mode of travel. In this way we can separately model physics and (boolean) preferences; to accommodate degree of preference (i.e., more than just accept/loathe) we attach probabilities to the methods reducing tasks (and equate probable with preferred), arriving at probabilistic Hierarchical Task Networks (pHTNs).

While pHTNs can effectively model preferences, manual construction (i.e.,
preference elicitation) is complex, error prone, and costly. In this paper, we focus on automatically learning, i.e. by observing only user behavior, pHTNs capturing user preferences. Our approach takes off from the view of task networks as grammars \[2, 3\]. First, as mentioned, we generalize by considering pHTNs rather than HTNs (to accommodate degree of preference)\[\] So each task is associated with a distribution over its possible reduction schemas, and probable plans are interpreted as preferred plans. Then we exploit the connection between task reduction schemas and production rules (in grammars) by adapting the considerable work on grammar induction \[4, 5, 6\]. Specifically, we view plans as sentences (primitive actions are seen as words) generated by a target grammar, adapt an expectation-maximization (EM) algorithm for learning that grammar (given a set of example plans/sentences), and interpret the result as a pHTN modeling user preference.

Note that in the foregoing we have assumed that the distribution of example plans directly reflects user preference. Certainly preferred plans will be executed more often than non-preferred plans, but with equal certainty, reality often forces compromise. For example, a (poor) graduate student may very well prefer, in general, to travel by car, but will nonetheless be far more frequently observed traveling by foot. In other words, by observing the plans executed by the user we can relatively easily learn what the user usually does\[2\] and so can predict their behavior as long as feasibility constraints remain the same. It is a much trickier matter to infer what the user truly prefers to do, and it is this piece of knowledge that would allow predicting what the user will do in a novel (and improved) situation. Towards this end, in the second part of the paper, we describe a novel, but intuitive, extension of the core EM learning technique that rescales the input distribution in order to undo possible filtering due to feasibility constraints. The idea is to automatically generate (presumably less preferred) alternatives (e.g. by an automated planner) to the user’s observed behavior and use this additional information to appropriately reweight the distribution on observed plans.

In the following sections, we start by formally stating the problem of learning probabilistic hierarchical task networks (pHTNs). Next, we discuss the relations between probabilistic grammar induction and pHTN learning, and present an algorithm that acquires pHTNs from example plan traces. The algorithm works in two phases. The first phase hypothesizes a set of schemas that can cover the

1 Of course pHTNs can be trivially converted to HTNs if desired, by simply ignoring the learned weights (and if desired, to prevent overfitting perhaps, removing particularly unlikely reductions by setting some threshold).

2 A useful piece of knowledge in the plan recognition scenario \[2\].
training examples, and the second is an expectation maximization phase that refines the probabilities associated with the schemas. We then evaluate our approach against models of users, by comparing the distributions of observed and predicted plans. Subsequently we consider possible obfuscation from feasibility constraints and describe our rescaling technique in detail. We go on to demonstrate its effectiveness against randomized models of feasibility constraints. Finally we discuss related work and summarize our contributions.

2. Probabilistic Hierarchical Task Networks

Definitions. A pHTN domain \(H \) is a 3-tuple, \(H = \langle A, T, M \rangle \), where \(A \) is a set of primitive actions, \(T \) is a set of tasks (non-primitives), and \(M \) is a set of methods (reduction schemas). A pHTN problem \(R \) is a 3-tuple, \(R = \langle I, G, T \rangle \), with \(I \) the initial state, \(G \) the goal, and \(T \in T \) the top level task to be reduced. Each method \(m \in M \) is a \((k + 2)\)-tuple, \(\langle Z, \theta, m_1, m_2, \ldots, m_k \rangle \), where each \(m_i \) is a task or primitive and \(\theta \) is the probability of reducing \(Z \) by \(m \): let \(M(Z) \) denote all methods that can reduce \(Z \), then \(\sum_{m \in M(Z)} \theta(m) = 1 \). Without loss of generality,\(^3\) we restrict our attention to Chomsky normal form: each method decomposes a task into either two tasks or one primitive. So for any method \(m \), either \(m = \langle Z, \theta, X, Y \rangle \) (also written \(Z \to XY, \theta \)), with \(X, Y \in T \), or \(m = \langle Z, \theta, a \rangle \) (also written \(Z \to a, \theta \)) with \(a \in A \). Table 1 provides an example of a pHTN domain in Chomsky normal form modeling the Travel domain (see Figure 1), in the hypothesis space of our learner (hence the meaningless task names). According to the table, the user prefers traveling by train (80%) to traveling by bus (20%).

For primitives, we follow STRIPS semantics: Each primitive action defines a transition function on states, and from an initial state \(I \) executing some sequence \(a_1, a_2, \ldots, a_k \) of primitives produces a sequence of states \(s_0 = I, s_1 = a_1(s_0), s_2 = a_2(s_1), \ldots, s_k = a_k(s_{k-1}) \), provided each \(a_i \) has its preconditions satisfied in \(s_{i-1} \). Such a sequence is goal-achieving if the goal \(G \) is satisfied in the final state, \(s_k \) (goals take the same form as preconditions).

Concerning tasks, a primitive sequence \(\phi \) is a preferred solution if there exists a parse of \(\phi \) by the methods of \(H \) with root \(T \) (preferred), and \(\phi \) is executable from \(I \) and achieves \(G \) (solution). A parse \(\mathcal{N} \) of \(\phi \) by \(M \) with root \(T \) is a tree, more specifically a rooted almost-binary directed ordered labeled tree, with (a)

\(^3\)Any CFG can be put in Chomsky normal form by introducing sufficiently many auxiliary non-primitives. This remains true for probabilistic context-free grammars.
root labeled by T, (b) leaves labeled by ϕ (in order), and (c) each internal vertex is decomposed into its children (in order) by some $m \in M$. For such internal vertices, say v, let $T(v)$, $m(v)$, and $\theta(v)$ be the associated task, reducing method, and prior probability of that reduction. The prior probability of an entire parse tree is the product of $\theta(v)$ over every internal vertex v. Given a fixed root, the prior probability of a primitive sequence is the sum of prior probabilities of every parse of that sequence with the fixed root:

$$P(\phi \mid H, T) = \sum_{\text{parse } \mathcal{X}} P(\mathcal{X} \mid T, H)$$ \hspace{0.5cm} (1)$$

$$= \sum_{\text{parse } \mathcal{X}} \prod_{\text{internal } v} \theta(v);$$ \hspace{0.5cm} (2)

note that the prior probability of a primitive sequence has nothing to do with whether or not the sequence is goal-achieving or even executable. Enumerating all parses could, however, become expensive, so in the remainder we approximate by considering only the most probable parse of ϕ — define:

$$\mathcal{X}^*(\phi) = \arg\max_{\text{parse } \mathcal{X} \text{ of } \phi} \prod_{\text{internal } v} \theta(v).$$ \hspace{0.5cm} (3)

Learning pHTNs. We can now state the pHTN learning problem formally. Fix the total number of task symbols, k, and fix the first task symbol as the top level task T. Given a set Φ of observed training plans (so each is executable and (presumably) goal-achieving), find the most likely pHTN domain, H^*. We assume a uniform prior distribution on domains with k task symbols, so it is equivalent to maximizing the likelihood of the observation:

$$H^* = \arg\max_H P(H \mid \Phi, T)$$ \hspace{0.5cm} (4)$$

$$= \arg\max_H P(\Phi \mid H, T) \cdot \frac{P(H \mid T)}{P(\Phi \mid T)}$$

$$= \arg\max_H P(\Phi \mid H, T) \left(\frac{P(H \mid T)}{P(\Phi \mid T)} = \frac{\text{uniform prior}}{\text{constant}} \right)$$

$$= \arg\max_H \prod_{\phi \in \Phi} P(\phi \mid H, T).$$ \hspace{0.5cm} (5)

Remark. The preceding incorporates several simplifying assumptions, most importantly we are making the connection to context-free grammars as strong as
Possible. In particular our definitions do not permit conditions in the statement of methods, so preferences such as “If in Europe, prefer trains to planes.” are not directly expressible (and so not learnable) in general. Our definitions nominally permit parameterized actions, tasks, and methods, but, there is no mechanism for conditioning on parameters (e.g., varying the probability of a reduction based on the value of a parameter), so it would seem that even indirectly modeling conditional preference is impossible. This is both true and false; if one is willing to entertain somewhat large values of k, then the learning problem can work with a ground representation of a parameterized domain, thereby gaining the ability to learn subtly different — or wildly different — sub-grammars for distinct groundings of a parameterized task. Of course, the difficulty of the learning task depends very strongly on k: in the following we map terms such as “(buy ?customer ?vendor ?object ?location ?amount ?currency)” to symbols by truncation (“buy”) rather than grounding (“buy mike joe bat walmart 3 dollars”) for just this reason. Future work should consider parameters, and contextual dependencies in general, in greater depth — perhaps by taking the perspective of feature selection (truncation and grounding can be seen as extremes of feature selection) [7, 8].

3. Learning pHTNs from User Generated Plans

Our formalization of Hierarchical Task Networks is isomorphic, not just analogous, to formal definitions of Context Free Grammars (tasks ↔ non-primitives, actions ↔ words, methods/schemas ↔ production rules); this comes at a price, but, the advantage is that grammar induction techniques are more or less directly applicable. The technique of choice for learning probabilistic grammars, and so the choice we adapt to learning pHTNs, is Expectation-Maximization [6].

Despite formal equivalence, casting the problem as learning pHTNs (rather than pCFGs) does make a difference in what assumptions are appropriate. For example, we do not allow annotations on the primitives of input sequences giving
hints concerning non-primitives; for language learning it is reasonable to assume that such annotations are available, because the non-primitives involved are agreed upon by multiple users (or there is no communication). In particular information sources such as dictionaries and informal grammars can be mined relatively cheaply. In the case of preference learning for plans, the non-primitives of interest are user-specific mental constructs (preferences), and so it is far less reasonable to assume that appropriate annotations could be obtained cheaply. So, unlike learning pCFGs, our system must invent all of its own non-primitive symbols without any hints.

Our learner operates in two phases. First a structure hypothesizer (SH) invents non-primitive symbols and associated reduction schemas (tasks and methods), as needed, in a greedy fashion, to cover all the training examples. In the second phase, the probabilities of the reduction schemas are iteratively improved by an Expectation-Maximization (EM) approach. The result is a local optima in the space of pHTN domains (instead of $H^* = \arg\max_H P(H | \Phi, T)$, the global maximum).

3.1. Structure Hypothesizer (SH)

We develop a (greedy) structure hypothesizer (SH) in order to generate a set of methods that can, at least, parse all plan examples, but more than that, parse all the plan examples without resorting to various kinds of trivial grammars (for example, parsing each plan example with a disjoint set of methods). The basic idea is to iteratively factor out frequent common subsequences, in particular frequent common pairs since we work in Chomsky normal form. We describe the details in the following; Algorithm 1 summarizes in pseudocode.

SH learns reduction schemas in a bottom-up fashion. It starts by initializing H with a separate reduction for each primitive (from distinct non-primitives); this is a minor technical requirement of Chomsky normal form. Then all plan examples are rewritten using this initial set of rules: so far not much of import has occurred.

Next the algorithm enters its main loop: hypothesizing additional schemas until all plan examples can be parsed to an instance of the top level task, T. In short, SH hypothesizes a schema, rewrites the plan examples using the new

4It is not necessary to use a distinct non-primitive for each reduction to a primitive, but it does not really hurt either, as synonymous primitives can be identified one level higher up in the grammar at a small cost in number of rules.

5The implementation in fact allows the single rule $T \rightarrow Z$ instead of the set in line 1 but for the sake of notation (elsewhere) we assume a strict representation here.
Algorithm 1: SH(plan examples Φ) returns pHTN \mathcal{H}

1. $\mathcal{H} := \{ Z_a \rightarrow a \mid a \in \mathcal{A} \}$; // primitive action schemas
2. $\text{rewrite-plans}(\Phi, \mathcal{H})$;
3. while not empty(Φ) do
4. case $|\phi| := \text{shortest-plan}(\Phi)| \leq 2$
5. if $|\phi| = 2$ then $\mathcal{H} := \mathcal{H} + (T \rightarrow \phi)$;
6. else $\mathcal{H} := \mathcal{H} \cup \{ T \rightarrow \alpha \mid Z \rightarrow \alpha \in \mathcal{H} \}$ // $\phi = Z$ for some Z
7. case $(Z, X, d) := \text{best-simple-recursion}(\Phi)$ is good enough
8. if $d = \text{left}$ then $\mathcal{H} := \mathcal{H} + (Z \rightarrow Z X)$;
9. if $d = \text{right}$ then $\mathcal{H} := \mathcal{H} + (Z \rightarrow X Z)$;
10. case otherwise
11. $(X, Y) := \text{most-frequent-pair}(\Phi)$;
12. $\mathcal{H} := \mathcal{H} + (Z_{XY} \rightarrow X Y)$; // Z_{XY} is a new task
13. $\text{rewrite-plans}(\Phi, \mathcal{H})$; // Plans rewritten to T are removed
14. end
15. $\text{initialize-probabilities}(\mathcal{H})$;
16. return \mathcal{H}

schema as much as possible and repeats until done. At that point probabilities are initialized randomly, that is, by assigning uniformly distributed numbers to each schema and normalizing by task (so that $\sum_{m \in M(Z)} \theta(m)$ becomes 1 for each task Z) — the EM phase is responsible for fitting the probabilities to the observed distribution of plans.

In order to hypothesize a schema, SH first searches for evidence of a recursive schema: subsequences of symbols in the form $\{sz, ssz, sssz\}$ or $\{zs, zss, zsss\}$ (simple repetitions). Certainly patterns such as $zababab$ have recursive structure, but these are identified at a later stage of the iteration. The frequency of such simple repetitions in the entire plan set is measured, as is their average length. If both meet minimum thresholds, then the appropriate recursive schema is added to \mathcal{H}. The thresholds themselves are functions of the average length and total number of (rewritten, remaining) plan examples in Φ.

If not (i.e., one or both thresholds are not met), then the frequency count of every pair of symbols is computed, and the maximum pair is added as a reduction from a distinct (i.e., new) non-primitive. In the prior example of a symbol sequence $zababab$, eventually ab might win the frequency count, and be replaced with some symbol, say s. After rewriting the example sequence then becomes $zsss$, lending evidence in future iterations, of the kind SH recognizes, to the ex-
istence of a recursive schema (of the form \(z \rightarrow zs \)); if such a recursive schema is added, then eventually the sequence gets rewritten to just \(z \).

Example. Consider a variant of the Travel domain (Figure 1) allowing the traveler to purchase a day pass (instead of a single-trip ticket) for the train. Two training plans are shown in Figure 2. First SH builds the primitive action schemas: \(A_1 \rightarrow \text{Buyticket}, A_2 \rightarrow \text{Getin}, \) and \(A_3 \rightarrow \text{Getout} \); the updated plan examples are shown as level 2 in the Figure. Next, since \(A_2A_3 \) is the most frequent pair in the plans (and there is insufficiently obvious evidence of recursion), SH constructs a rule \(S_1 \rightarrow A_2A_3 \). After updating the plans with the new rule, the plans become \(A_1S_1 \) and \(A_1S_1S_1 \), depicted as level 3 in the Figure. At this point SH realizes the recursive structure (the simple repetition \(A_1S_1S_1S_1 \)), and so adds the rule \(A_1 \rightarrow A_1S_1 \). After rewriting all plans are parsable to the symbol \(A_1 \) (let \(T = A_1 \)), so SH is done: the final set of schemas is at the bottom left of Figure 2.

3.2. Refining Schema Probabilities: EM Phase

We take an Expectation-Maximization (EM) approach in order to learn appropriate parameters for the set of schemas returned by SH. EM is a gradient-ascent method with two phases to each iteration: first the current model is used to compute expected values for the hidden variables (E-step: induces a well-behaved lower bound on the true gradient), and then the model is updated to maximize the likelihood of those particular values (M-step: ascends to the maximum of the lower bound). Doing so will normally change the expected values of the hidden variables, so the process is repeated until convergence, and convergence does in fact occur [9]. For our problem, standard (soft-assignment) EM would compute an entire distribution over all possible parses (of each plan, at each iteration); as the grammars are automatically generated, there may very well be a huge number of such parses. So instead we focus on computing just the parse considered most
likely by the current parameters, that is, we are employing the hard-assignment variation of EM. One beneficial side-effect is that this introduces bias in favor of less ambiguous grammars — for in-depth analysis of the tradeoffs involved in choosing between hard and soft assignment see [10, 11]. In the following we describe the details of our specialization of (hard-assignment) EM.

In the E-step, the current model H_ℓ is used to compute the most probable parse tree, $X^*_\ell(\phi)$, of each example ϕ (from the fixed start symbol T): $X^*_\ell(\phi) = \text{argmax}_{\text{parse } X} P(X | \phi, T, H_\ell)$. This computation can be implemented reasonably efficiently in a bottom-up fashion since any subtree of a most probable parse is also a most probable parse (of the subsequence it covers, given its root, etc.). The first level is particularly simple since we associated every primitive, a, with a distinct non-primitive, Z_a (so its most probable, indeed only, parse is just $Z_a \rightarrow a$). The remainder of the parsing computes:

$$P(a_i, \ldots, a_j | Z, H_\ell) = \max_{k; Z \rightarrow XY, \theta \in H_\ell} \theta \cdot P(a_i, \ldots, a_k | X, H_\ell) \cdot P(a_{k+1}, \ldots, a_j | Y, H_\ell),$$

(6)

for all indices $i < j \in [n]$ and tasks (non-terminals) Z (so the parsing computes $O(n^2m)$ maximizations, each in $O(nr/m)$ steps, for a worst-case runtime of $O(n^3r)$ on a plan of length n with m tasks and r rules in the pHTN). Conceivably one of the reduction schemas might exist with 0 probability: the implementation prunes such schemas rather than waste computation. By recording the rule and midpoint (k) winning each maximization, the most probable parse of ϕ, $X^*_\ell(\phi)$, can be easily extracted (beginning at $P(a_1, \ldots, a_n | T, H_\ell)$).

After getting the most probable parse trees for all plan examples, the learner moves on to the M-step. In this step, the probabilities associated with each reduction schema are updated by maximizing the likelihood of generating those particular parse trees; let $X = \{X^*_\ell(\phi) | \phi \in \Phi\}$ and let $M[\text{event}]$ count how many times the specified event happens in X (for example, $M[Z]$, for some task Z, is the total number of times Z appears in the parses X). Then:

$$H_{\ell+1} = \text{argmax}_{H'} \prod_{X^* \in X} P(X^* | T, H'),$$

$$= \text{argmax}_{H'} \prod_{X^* \in X} \prod_{Z \rightarrow XY \in X^*} P(Z \rightarrow XY | H'),$$

$$= \text{argmax}_{H'} \prod_{Z} \prod_{Z \rightarrow XY, \theta_{ZXY} \in H'} \theta_{ZXY}^{M[Z \rightarrow XY]},$$

(7)
where the maximization is only over different parameterizations (not over all pH-TNs). Each task Z enjoys independent parameters, and from above the likelihood expression is a multinomial in those parameters ($\theta_{ZXY} = P(Z \rightarrow XY \mid \mathcal{H}')$), and so can be maximized simply by setting:

$$P(Z \rightarrow XY \mid \mathcal{H}_{\ell+1}) := \frac{M[Z \rightarrow XY]}{M[Z]}.$$ \hspace{1cm} (8)

That is, the E-step completes the input data Φ by computing the parses of Φ expected by \mathcal{H}_ℓ; subsequently the M-step treats those parses as ground truth, and sets the new reduction probabilities to the ‘observed’ frequency of such reductions in the completed data. This improves the likelihood of the model, and the process is repeated until convergence.

Discussion: Although the EM phase of learning does not introduce new reduction schemas, it does participate in structure learning in the sense that it effectively deletes reduction schemas by assigning zero probability to them. For this reason SH does not attempt to find a completely minimal grammar before running EM. Nonetheless it is important that SH generates small grammars, as otherwise overfitting could become a serious problem. Worst choices of a hypothetical structure learner would include the trivial grammar that produces all and only the training plans; if this occurs the EM algorithm above would happily drive the probability of all other rules to 0 as the included trivial grammar would allow the perfect reproduction of training data.

3.3. Evaluation

To evaluate our pHTN learning approach, we designed and carried out experiments in both synthetic and benchmark domains. All the experiments were run on a 2.13 GHz Windows PC with 1.98GB of RAM. Although we focus on accuracy (rather than CPU time), we should clarify up-front that the runtime for learning is quite reasonable — between (almost) 0ms to 44ms per training plan. We take an oracle-based experimental strategy, that is, we generate an oracle pHTN \mathcal{H}^* (to represent a possible user) and then subsequently use it to generate behavior Φ (a set of preferred plans). Our learner then induces a pHTN \mathcal{H} from only Φ; so then we can assess the effectiveness of the learning in terms of the differences between the original and learned models. In some settings (e.g., knowledge discovery) it is very interesting to directly compare the syntax of learned models against ground truth, but for our purposes such comparisons are much less interesting: we can be certain that, syntactically, \mathcal{H} will look nothing like a real user’s preferences (as
expressed in pHTN form) for the trivial reason (among others) that \mathcal{H} will be in Chomsky normal form. For our purposes it is enough for \mathcal{H} to generate an approximately correct distribution on plans. So the ideal evaluation is some measure of the distance between distributions (on plans), for example Kullback-Leibler (KL) divergence:

$$D_{KL}(\mathcal{P}_H^* \parallel \mathcal{P}_H) = \sum_{\phi} \mathcal{P}_H^*(\phi) \cdot \log \frac{\mathcal{P}_H^*(\phi)}{\mathcal{P}_H(\phi)},$$

(9)

where \mathcal{P}_H and \mathcal{P}_H^* are the distributions of plans generated by \mathcal{H} and \mathcal{H}^* respectively. This measure is 0 for equal distributions, and otherwise goes to infinity.

However, as given the summation is over the infinite set of all plans, so instead we approximate by sampling, but this exacerbates a deeper problem: the measure is trivially infinite if \mathcal{P}_H gives 0 probability to any plan (that \mathcal{P}_H^* does not). So in the following we take measurements by sampling X plans from \mathcal{H}^* and \mathcal{H}, obtaining sample distributions $\hat{\mathcal{P}}_{H^*}$ and $\hat{\mathcal{P}}_H$, and then we prune any plans not in $\hat{\mathcal{P}}_{H^*} \cap \hat{\mathcal{P}}_H$, renormalize, obtaining $\hat{\mathcal{P}}_{H^*}'$ (say P_1) and $\hat{\mathcal{P}}_H'$ (say P_2), and finally compute:

$$\hat{D}(\mathcal{H}^* \parallel \mathcal{H}) = D_{KL}(P_1 \parallel P_2) = \sum_{\phi} P_1(\phi) \cdot \log \frac{P_1(\phi)}{P_2(\phi)}.$$

(10)

This is not a good approach if the intersection is small, but in our experiments $|\hat{\mathcal{P}}_{H^*} \cap \hat{\mathcal{P}}_H|/|\hat{\mathcal{P}}_{H^*} \cup \hat{\mathcal{P}}_H|$ is close to 1. This modification also imposes an upper bound on the measure, of about $O(\log X)$.

3.4. Experiments in Randomly Generated Domains

In these experiments, we randomly generate the oracle pHTN \mathcal{H}^*, by randomly generating a set of recursive and non-recursive schemas on n non-primitives. In non-recursive domains, the randomly generated schemas form a binary and-or tree with the goal as the root. The probabilities are also assigned randomly. Generating recursive domains is similar with the only difference being that 10% of the schemas generated are recursive. For measuring overall performance we provide $10n$ training plans and take $100n$ samples for testing; for any given n we repeat the experiment 100 times and plot the mean. The results are shown in Figure 3(a). We also discuss two additional, more specialized, evaluations.

Rate of Learning: In order to test the learning speed, we first measured KL divergence values with 15 non-primitives given different numbers of training plans.
Figure 3: Experimental results in synthetic domains (a) KL Divergence values with different number of training plans. (b) Measuring conciseness in terms of the ratio between the number of actions in the learned and original schemas.

The results are shown in Figure 3(a). We can see that even with a relatively small number of training examples, our learning mechanism can still construct pHTN schemas with divergence no more than 0.2; as expected the learning performance further improves given many training examples. As briefly discussed in the setup our measure is not interesting unless the learned pHTN can reproduce most testing plans with non-zero probability, since any 0 probability plans are ignored in the measurement — so we do not report results given only a very small number of training examples (the value would be artificially close to 0). Here ‘very small’ means too small to give at least one example of every/most reductions in the oracle schema; without at least one example the structure hypothesizer will (rightly) prevent the generation of plans with such structure.

Effectiveness of the EM Phase: To examine the effect of the EM phase, we carried out experiments comparing the divergence (to the oracle) before and after running the EM phase. Figures 3(a) and 3(b) plot results in the non-recursive and recursive cases respectively. Overall the EM phase is quite effective, for example, with 50 non-primitives in the non-recursive setting the EM phase is able to improve the divergence from 0.818 (the divergence of the model produced by SH) to the much smaller divergence of 0.066.

Conciseness: The conciseness of the learned model is also an important factor measuring the quality of the approach (despite being a syntactic rather than semantic notion), since allowing huge pHTNs will overfit (with enough available symbols the learner could, in theory, just memorize the training data). A simple
measure of conciseness, the one we employ, is the ratio of non-primitives in the learned model to non-primitives in the oracle \((n) \) — the learner is not told how many symbols were used to generate the training data. Figure 3(b) plots results. For small domains (around \(n = 10 \)) the learner uses between 10 and 20% more non-primitives, a fairly positive result. However, for larger domains this result degrades to 60% more non-primitives, a somewhat negative result. Albeit the divergence measure improves — on the hidden test set — so while there is some evidence of possible overfitting the result is not alarming. Future work in structure learning should nonetheless examine this issue (conciseness and overfitting) in greater depth.

Note: Divergence in the recursive case is consistently larger than in the non-recursive case across all experiments: this is expected. In the recursive case the plan space is actually infinite; in the non-recursive case there are only finitely many plans that can be generated. So, for example, in the non-recursive case, it is actually possible for a finite sample set to perfectly represent the true distribution (simply memorizing the training data will produce 0 divergence eventually).

3.5. Benchmark Domains

In addition to the experiments with synthetic domains, we also picked two of the well known benchmark planning domains and simulated possible users (in the form of hand-constructed pHTNs).

Logistics Planning: The domain we used in the first experiment is a variant of
Primitives: load, fly, drive, unload;
Tasks: movePackage, $S_0, S_1, S_2, S_3, S_4, S_5$;

Move Package	Probability
$\text{movePackage} \rightarrow \text{movePackage}$	0.17
$\text{movePackage} \rightarrow S_0 S_5$	0.25
$\text{movePackage} \rightarrow S_0 S_4$	0.58
$S_0 \rightarrow \text{load}$	1.0
$S_2 \rightarrow \text{unload}$	1.0

The Logistics Planning domain, inside which both planes and trucks are available to move packages, and every location is reachable from every other. There are 4 primitives in the domain: load, fly, drive and unload; we use 11 tasks to express, in the form of an oracle pHTN H^* (in Chomsky normal form, hence 11 tasks), our preferences concerning logistics planning. We presented 100 training plans to the learning system; these demonstrate our preference for moving packages by planes rather than trucks and for using overall fewer vehicles.

The divergence of the learned model is 0.04 (against a hidden test set, on a single run). While we are generally unconcerned with the syntax of the learned model, it is interesting to consider in this case: Table 2 shows the learned model. With some effort one can verify that the learned schemas do capture our preferences: the second and third schemas for ‘movePackage’ encode delivering a package by truck and by plane respectively (and delivering by plane has significantly higher probability), and the first schema permits repeatedly moving packages, but with relatively low probability. That is, it is possible to recursively expand ‘movePackage’ so that one package ends up transferring vehicles, but, the plan that uses only one instance of the first schema per package is significantly more probable (by 0.17^{-k} for k transfers between vehicles).

Gold Miner: The second domain we used is Gold Miner, introduced in the learning track of the 2008 International Planning Competition. The setup is a (futuristic) robot tasked with retrieving gold (blocked by rocks) within a mine; the robot can employ bombs and/or a laser cannon. The laser cannon can destroy both hard and soft rocks, while bombs only destroy soft rocks, however, the laser cannon will also destroy any gold immediately behind its target. The desired strategy, which we encode in pHTN form using 12 tasks (H^*), for this domain is: 1) get the laser cannon, 2) shoot the rock until reaching the cell next to the gold, 3) get
Table 3: Learned schemas in Gold Miner

Primitives:	getLaserGun, shoot, getBomb, getGold;
Tasks:	goal, S₀, S₁, S₂, S₃, S₄, S₅, S₆;
goal → S₀ goal	0.78
S₀ → move, 1.0	goal → S₁ S₆, 0.22
S₁ → getLaserGun, 0.22	S₅ → S₂ S₀, 1.0
S₂ → shoot, 1.0	S₁ → S₁ S₅, 0.78
S₃ → getBomb, 0.29	S₆ → S₃ S₄, 1.0
S₄ → getGold, 1.0	S₃ → S₃ S₀, 0.71

a bomb, 4) use the bomb to get gold.

We gave the system 100 training plans of various lengths (generated by H*); the learner achieved a divergence of 0.52. This is a significantly larger divergence than in the case of Logistics above, which can be explained by the significantly greater use of recursion (one can think of Logistics as less recursive and Gold Miner as more recursive, and as noted in the random experiments, recursive domains are much more challenging). Nonetheless the learner did succeed in qualitatively capturing our preferences, which can be seen by inspection of the learned model in Table 3. Specifically, the learned model only permits plans in the order given above: get the laser cannon, shoot, get and then use the bomb, and finally get the gold.

4. Preferences Constrained by Feasibility

In general, users will not be so all-powerful that behavior and desire coincide. Instead a user must settle for one (presumably the most desirable) of the feasible possibilities. Supposing those possibilities remain constant then there is little point in distinguishing desire and behavior; indeed, the philosophy of behaviorism defines preference by considering such controlled experiments. Supposing instead that feasible possibilities vary over time, then the distinction becomes very important. One example we have already considered is that of a poor grad student: in the rare situation that such a student’s travel is funded, then it would be desirable to realize the preference for planes over cars. In addition to that example, consider the requirement to go to work on weekdays (so the constraint does not hold on weekends). Clearly the weekend activities are the preferred activities. However, the learning approach developed so far would be biased — by a factor of \(\frac{5}{2} \) — in
favor of the weekday activities. In the following we consider how to account for this effect: the effect of feasibility constraints upon learning preferences.

Recall that we assume that we can directly observe a user’s behavior, for example by building upon the work in plan recognition. In this section we additionally assume that we have access to the set of feasible alternatives to the observed behavior — for example by assuming access to the planning problem the user faced and building upon the work in automated planning \[12\]. For our purposes it is not a large sacrifice to exclude any number of feasible alternatives that have never been chosen by the user (in some other situation), in particular we are not concerned about the potentially enormous number of feasible alternatives (because we can restrict our attention to a subset on the order of the number of observed plans)\[7\]. So, in this section, the input to the learning problem becomes:

Input. The \(i\)th observation, \((\phi_i, F_i) \in \Phi\), consists of a set of feasible possibilities, \(F_i\), along with the chosen solution: \(\phi_i \in F_i\).

In the rest of the section we consider how to exploit this additional training information (and how to appropriately define the new learning task). The main idea is to rescale the input (i.e., attach weights to the observed plans \(\phi_i\)) so that rare situations are not penalized with respect to common situations. We approach this from the perspective that preferences should be transitively closed, and as a side-effect we might end up with disjoint sets of incomparable plans. Subsequently we apply the base learner to each, rescaled, component of comparable plans to obtain a set of pHTNs capturing user preferences. Note that the result of the system can now be ‘unknown’ in response to ‘is A preferred to B?’, in the case that A and B are not simultaneously parsable by any of the learned pHTNs. This additional capability somewhat complicates evaluation (as the base system can only answer ‘yes’ or ‘no’ to such queries).

\[6\] Since we already assume plan recognition, it is not a significant stretch to assume knowledge of the planning problem itself. Indeed, planning problems are often recast as a broken plan on two dummy actions (initial and terminal), and solutions as insertions that fix the problem-as-plan. In particular recognizing plans subsumes, in general, recognizing problems.

\[7\] Work in diverse planning \[13, 14\] is, then, quite relevant (to picking a subset of feasible alternatives of manageable size).
4.1. Analysis

Previously we assumed the training data (observed plans) Φ was sampled (i.i.d.) directly from the user’s true preference distribution (say U):

$$P(\Phi \mid U) = \prod_{\phi \in \Phi} P(\phi \mid U).$$

But now we assume that varying feasibility constraints intervene. For the sake of notation, imagine that such variation is in the form of a distribution, say F, over planning problems (but all that is actually required is that the variation is independent of preferences, as assumed below). Note that a planning problem is logically equivalent to its solution set. Then we can write $P(F \mid F)$ to denote the prior probability of any particular set of solutions F. Since the user chooses among such solutions, we have that chosen plans are sampled from the posterior, over solutions, of the preference distribution:

$$P(\Phi \mid U, F) = \prod_{(\phi, F) \in \Phi} P(\phi \mid U, F) \cdot P(F \mid F).$$

We assume that preferences and feasibility constraints are mutually independent: what is possible does not depend upon desire, and desire does not depend upon what is possible. One can certainly imagine either dependence — respectively Murphy’s Law (or its complement) and the fox in Aesop’s fable of Sour Grapes (or envy) — but it seems to us more reasonable to assume independence. Then we can rewrite the posterior of the preference distribution:

$$P(\Phi \mid U, F) = \prod_{(\phi, F) \in \Phi} \frac{P(\phi \mid U)}{\sum_{\phi' \in F} P(\phi' \mid U)} \cdot P(F \mid F) \quad \text{(by assumption)}. $$

Anyways assuming independence is important, because it makes the preference learning problem attackable. In particular, the posteriors preserve relative preferences — for all $\phi, \phi' \in F$, the odds of selecting ϕ over ϕ' are:

$$O(\phi, \phi') := \frac{P(\phi \mid U, F)}{P(\phi' \mid U, F)} = \frac{P(\phi \mid U)}{\sum_{\phi'' \in F} P(\phi'' \mid U)} \cdot \frac{P(\phi' \mid U)}{\sum_{\phi'' \in F} P(\phi'' \mid U)}.$$
Therefore we can, given sufficiently many of the posteriors, reconstruct the prior by transitive closure; consider ϕ, ϕ', ϕ'' with $\phi, \phi' \in F$ and $\phi', \phi'' \in F'$:

\[
O(\phi, \phi'') = O(\phi, \phi') \cdot O(\phi', \phi'') = \frac{P(\phi \mid U, F)}{P(\phi' \mid U, F') \cdot P(\phi'' \mid U, F')},
\]

So then the prior can be had by normalization:

\[
P(\phi \mid U) = \frac{1}{1 + \sum_{\phi' \neq \phi} O(\phi', \phi)}.
\]

Of course none of the above distributions are accessible; the learning problem is only given Φ. Let $M_F[\phi] = \{|i \mid (\phi, F) = (\phi_i, F_i) \in \Phi\}$, $M_F = \sum_{\phi} M_F[\phi]$, and $M = \sum_F M_F = |\Phi|$. Then Φ defines a sampling distribution:

\[
\hat{P}(\phi, F \mid \Phi) = \frac{M_F[\phi]}{M},
\]

so,

\[
\hat{P}(\phi \mid F, \Phi) = \frac{M_F[\phi]}{M_F},
\]

\[
\approx P(\phi \mid U, F) \quad \text{(in the limit)},
\]

in particular:

\[
\hat{O}_F(\phi, \phi') := \frac{M_F[\phi]}{M_F[\phi'] \cdot M} \approx \frac{P(\phi \mid U)}{P(\phi' \mid U)} \quad \text{(in the limit)}
\]

for any F — but for anything less than an enormous amount of data one expects \hat{O}_F and $\hat{O}_{F'}$ to differ considerably for $F \neq F'$, therein lying one of the subtle aspects of the following rescaling algorithm. The intuition is, however, simple enough: pick some base plan ϕ and set its weight to an appropriately large value w, and then set every other weight, for example that of ϕ', to $w \cdot \hat{O}(\phi', \phi)$ (where \hat{O} is some kind of aggregation of the differing estimates \hat{O}_F); finally give the weighted set of observed plans to the base learner. From the preceding analysis, in the limit of infinite data, this setup will learn the (closest approximation, within the base learner’s hypothesis space, to the) prior distribution on preferences.

To address the issue that different situations will give different estimates (due to sampling error) for the relative preference of one plan to another (\hat{O}_F and $\hat{O}_{F'}$ will differ) we employ a merging process on such overlapping situations. Consider
two weighted sets of plans, c and d, and interpret the weight of a plan as the number of times it ‘occurs’, e.g., $w_c(\phi) = M_c[\phi]$. In the simple case that there is only a single plan in the intersection, $\{ \alpha \} = c \cap d$, there is only one way to take a transitive closure — for all ϕ in c and $\phi' \in d \setminus c$:

$$
\hat{O}_{cd}(\phi, \phi') = \hat{O}_c(\phi, \alpha) \cdot \hat{O}_d(\alpha, \phi'),
= \frac{M_c[\phi]}{M_c[\alpha]} \cdot \frac{M_d[\alpha]}{M_d[\phi']},
= \frac{M_c[\phi]}{s \cdot M_d[\phi']},
$$

with $s = \frac{M_c[\alpha]}{M_d[\alpha]}$.

so in particular we can merge d into c by first rescaling d:

$$
M_{cd}[\phi] = \begin{cases}
M_c[\phi] & \text{if } \phi \in c \\
\frac{s \cdot M_d[\phi]}{M_c[\alpha]} & \text{otherwise}
\end{cases}.
$$

In general let $s^{\alpha}_{cd} = \frac{M_c[\alpha]}{M_d[\alpha]}$ for any $\alpha \in c \cap d$ be the scale factor of c and d w.r.t. α. Then in the case that there are multiple plans in the intersection we are faced with multiple ways of performing a transitive closure, i.e., a set of scale factors. These will normally be different from one another, but, in the limit of data, assuming preferences and feasibility constraints are actually independent of one another, every scale factor between two clusters will be equal. So, then, we take the average:

$$
s^{cd} = \frac{1}{|c \cap d|} \sum_{\alpha \in c \cap d} s^{\alpha}_{cd}, \quad \text{and}, \quad M_{cd}[\phi] := \begin{cases}
M_c[\phi] & \text{if } \phi \in c \\
\frac{s^{cd}}{s} \cdot M_d[\phi] & \text{otherwise}
\end{cases}.
$$

In short, if all the assumptions are met, and enough data is given, the described process will reproduce the correct prior distribution on preferences. Algorithm 2 provides the remaining details in pseudocode, and in the following we discuss these details and the result of the rescaling process operating in the Travel domain.

8The scaling calculations could produce non-integer weights.
4.2. Rescaling

Output. The result of rescaling is a set of clusters of weighted plans, \(C = \{c_1, c_2, \ldots, c_n\} \). Each cluster, \(c \in C \), consists of a set of plans with associated weights; we write \(p \in c \) for membership and \(w_c(p) \) for the associated weight.

Clustering. First we collapse all of the input records from the same or similar situations into single weighted clusters, with one count going towards each instance of an observed plan participating in the collapse. For example, suppose we observe 3 instances of *Gobyplane* chosen in preference to *Gobytrain* and 1 instance of the reverse in similar or identical situations. Then we will end up with a cluster with weights 3 and 1 for *Gobyplane* and *Gobytrain* respectively. In other words \(w_c(p) \) is the number of times \(p \) was chosen by the user in the set of situations collapsing to \(c \) (or \(\epsilon \) if \(p \) was never chosen). This happens in lines 2–2 of Algorithm 2, which also defines ‘similar’ (as set inclusion). Future work should consider more sophisticated clustering methods.

Transitive Closure. Next we make indirect inferences between clusters; this happens by iteratively merging clusters with non-empty intersections. Consider two clusters, \(c \) and \(d \), in the Travel domain. Say \(d \) contains *Gobyplane* and *Gobytrain* with counts 3 and 1 respectively, and \(c \) contains *Gobytrain* and *Gobybike* with counts 5 and 1 respectively. From this we infer that *Gobyplane* would be executed 15 times more frequently than *Gobybike* in a situation where all 3 plans (*Gobyplane*, *Gobytrain*, and *Gobybike*) are possible, since it is executed 3 times more frequently than *Gobytrain* which is in turn executed 5 times more frequently than *Gobybike*. We represent this inference by scaling one of the clusters so that the shared plan has the same weight, and then take the union. In the example, supposing we merge \(d \) into \(c \), then we scale \(d \) so that \(c \cap d = \{\text{Gobytrain}\} \) has the same weight in both \(c \) and \(d \), i.e. we scale \(d \) by \(5 = \frac{w_c(\text{Gobytrain})}{w_d(\text{Gobytrain})} \). For pairs of clusters with more than one shared plan we scale \(d \setminus c \) by the average of \(\frac{w_c(\cdot)}{w_d(\cdot)} \) for each plan in the intersection, but we leave the weights of \(c \cap d \) as in \(c \) (one could consider several alternative strategies for plans in the intersection). Computing the scaling factor happens in lines 2–2 and the entire merging process happens in lines 2–2 of Algorithm 2.

4.3. Learning

We learn a set of pHTNs for \(C \) by applying the base learner (with the obvious generalization to weighted input) to each \(c \in C \):

\[
H = \{H_c = \text{EM}(\text{SH}(c)) \mid c \in C\}.
\]
Algorithm 2: Rescaling

Input: Training records Φ.

Output: Clusters C.

1. initialize C to empty
2. forall $(\phi, F) \in \Phi$ do
3. if $\exists c \in C$ such that $F \subseteq c$ or $F \supseteq c$ then
4. forall $p \in F \setminus c$ do
5. add p to c with $w_c(p) := \epsilon$
6. end
7. if $w_c(\phi) \geq 1$ then
8. increment $w_c(\phi)$
9. else
10. $w_c(\phi) := 1$
11. end
12. else
13. initialize c to empty
14. add c to C
15. forall $p \in F$ do
16. add p to c with $w_c(p) := \epsilon$
17. end
18. $w_c(\phi) := 1$
19. end
20. end
21. while $\exists c, d \in C$ such that $c \cap d \neq \emptyset$ do
22. sum_ratios := 0
23. forall $p \in c \cap d$ do
24. sum_ratios += $w_c(p) / w_d(p)$
25. end
26. scale := $\frac{\text{sum_ratios}}{|c \cap d|}$
27. forall $p \in d \setminus c$ do
28. add p to c with $w_c(p) := w_d(p) \cdot \text{scale}$
29. end
30. remove d from C
31. end
32. return C
While the input clusters will be disjoint, the base learner may very well generalize its input such that various pairs of plans become comparable in multiple pHTNs within H. Any disagreement is resolved by voting; recall that, given a pHTN H and a plan p, we can efficiently compute the most probable parse of p by H and its (a priori) likelihood, say $\ell_H(p)$. Given two plans p and q we let \prec_H order p and q by $\ell_H(\cdot)$, i.e., $p \prec_H q \iff \ell_H(p) < \ell_H(q)$; if either is not parsable (or tied) then they are incomparable by H. Given a set of pHTNs $H = \{H_1, H_2, \ldots\}$, we take a simple majority vote to decide $p \prec_H q$ (ties are incomparable):

$$p \prec_H q \iff |\{H \in H \mid q \prec_H p\}| < |\{H \in H \mid p \prec_H q\}|. \tag{15}$$

So, each pHTN votes, based on likelihood, for $p \prec q$ (meaning p is preferred to q), or $q \prec p$ (q is preferred to p), or abstains (the preference is unknown). Summarizing, the input Φ is 1) clustered and 2) transitively closed, producing clusters C, 3) each of which is given to the base learner, resulting in a set of pHTNs H modeling the user’s preferences via the relation \prec_H.

4.4. Evaluation

In this part we are primarily interested in evaluating the rescaling extension of the learning technique, i.e., the ability to learn preferences despite feasibility constraints. We design a simple experiment to demonstrate that learning purely from observations is easily confounded by constraints placed in the way of user pref-
4.4.1. Setup

Performance. We again take an oracle-based experimental strategy, that is, we imagine a user with a particular ideal pHTN, H^*, representing that user’s preferences, and then test the efficacy of the learner at recovering knowledge of preferences based on observations of the imaginary user. More specifically we test the learner’s performance in the following game. After training the learner produces H_r; to evaluate the effectiveness of H_r we pick random plan pairs and ask both H^* and H_r to pick the preferred plan. There are three possibilities: H_r agrees with H^* (+1 point), H_r disagrees with H^* (-1 point), and H_r declines to choose (0 points).\footnote{This gives rescaling a potentially significant advantage, as learning alone always chooses. We also tested scoring “no choice” at -1 point; the results did not (significantly) differ.}

The distribution on testing plans is not uniform and will be described below. The number of plan pairs used for testing is scaled by the size of H^*; 100t pairs are generated, where t is the number of non-primitives. The final performance for one instance of the game is the average number of points earned per testing pair. Pure guessing, then, would get (in the long-term) 0 performance.

User. As in the prior evaluation we evaluate on 1) randomly generated pHTNs modeling possible users, and on 2) hand-crafted pHTNs modeling our preferences in Logistics and Gold Miner.

Training Data. For both randomly generated and hand-crafted users we use the same framework for generating training data. We generate random problems by generating random solution sets in a particular fashion, that is, we model feasibility constraints using a particular random distribution on solution sets. We describe this process in detail below, but note that the details are unimportant (we did not try any alternatives to the choices given); what matters is whether or not the process is a reasonable model of the effect of feasibility constraints (insofar as they affect the learning problem).

We begin by constructing a list of plans, P, from 100t samples of H^*, removing duplicates (so $|P| \leq 100t$). Due to duplicate removal, less preferred plans occur later than more preferred plans (on average). We reverse that order, and associate P with (a discrete approximation to) a power-law distribution. Both training and test plans are drawn from this distribution. Then, for each training
record (ϕ_i, F_i), we take a random number of samples from \mathcal{P} as F_i. We sample the observed plan, ϕ_i, from F_i by ℓ, that is, the probability of a particular choice $\phi_i = p$ is $\ell(p) \sum_{q \in F} \ell(q)$.

Note, then, that the random solution sets model the “worst case” of feasibility constraints, in the sense that it is the least preferred plans that are most often feasible — much of the time the hypothetical user will be forced to pick the least evil rather than the greatest good.

Baseline. The baseline for our experiments will be the original approach: the base learner without rescaling. That is, we take a single cluster, where the weight of each plan is the number of times it is observed $w(\phi) = |\{i \mid \phi = \phi_i\}|$, and apply the base learner, obtaining a single pHTN, $H_b = \{H\}$, and score it in the same manner that the extended approach is scored by.

4.4.2. Results: Random \mathcal{H}^*

Rate of Learning. Figure 5(a) presents the results of a learning-rate experiment against randomly selected \mathcal{H}^*. For these experiments the number of non-primitives is fixed at 5 while the amount of training data is varied; we plot the average performance, over 100 samples of \mathcal{H}^*, at each training set size.

We can see that with a large number of training records, rescaling before learning is able to capture nearly full user preferences, whereas learning alone performs slightly worse than random chance. This is expected since without rescaling the learning is attempting to reproduce its input distribution, which was the distribution on observed plans — and “feasibility” is inversely related to preference by construction. That is, given the question “Is A preferred to B?” the learning alone approach instead answers the question “Is A executed more often than B?”.

Size Dependence. We also tested the performance of the two approaches under varying number of non-primitives (using 50t training records); the results are shown in Figure 5(b). For technical reasons, the base learner is much more effective at recovering user preferences when these take the form of recursive schemas, so there is less room for improvement. Nonetheless the rescaling approach improves upon learning alone in both experiments.

10The number of samples taken is selected from $|\mathcal{P}| \cdot |\mathcal{N}(t, \infty)|/2$, subject to minimum 2 and maximum $|\mathcal{P}|$, where $\mathcal{N}(.)$ is the normal distribution. Larger solution sets model ‘easier’ planning problems.
4.4.3. Results: Hand-crafted \mathcal{H}^*

We re-use the same pHTNs encoding our preferences in Logistics and Gold Miner from the first set of evaluations. As mentioned we use the same setup as in the random experiments, so it continues to be the case that the distribution on random ‘solutions’ is biased against the encoded preferences. Moreover, due to the level of abstraction used (truncating to action names), as well as the nature of the pHTNs and domains in question, the randomly generated sets of alternatives, F_i, are in fact sets of solutions to some problem expressed in the normal fashion (i.e., as an initial state and goal).

Logistics. After training with 550 training records ($50t$, for 11 non-primitives) the baseline system scored only 0.342 (0 is the performance of random guessing) whereas rescaling before learning performed significantly better with a score of 0.847 (0.153 away from perfect performance).

Gold Miner: After training with 600 examples ($50t$ for 12 non-primitives) learning alone scored a respectable 0.605, still, rescaling before learning performed better with a score of 0.706. Note that the greater recursion in Gold Miner, as compared to Logistics, is both hurting and helping. On the one hand the full approach scores worse (0.706 vs. 0.847), on the other hand, the baseline’s performance is hugely improved (0.605 vs. 0.342). As discussed previously, the presence of recursion in the preference model makes the learning problem much harder (since the space of acceptable plans is then actually infinite), which continues to be a reasonable explanation of the first effect (degrading performance).

The latter effect is more subtle. The experimental setup, roughly speaking, inverts the probability of selecting a plan, so that using a recursive method many times in an observed plan is more likely than using the same method only a few times. Then the baseline approach is attempting to learn a distribution skewed towards greater use of recursion overall, and in particular, a distribution that prefers more recursion to less recursion all else being equal. However, there is no pHTN that prefers more recursion to less recursion all else being equal; fewer uses of a recursive method always increases the probability of a plan. So the baseline will fit an inappropriately large probability to any recursive method, but, it will still make the correct decision between two plans differing only in the depth of their recursion over that method. Naive Bayes Classifiers exhibit a similar effect [9, Box 17.A].
5. Discussion and Related Work

In the planning community, HTN planning has for a long time been given two distinct and sometimes conflicting interpretations (c.f. [3]): it can be interpreted either in terms of domain abstraction or in terms of expressing complex (not first order Markov) constraints on plans. The original HTN planners were motivated by the former view (improving efficiency via abstraction). In this view, only top-down HTN planning makes sense as the HTN is supposed to express effective search control. Paradoxically, w.r.t. that motivation, the complexity of HTN planning is substantially worse than planning with just primitive actions [15]. The latter view explains the seeming paradox easily — finding a solution should be easier, in general, than finding one that also satisfies additional complex constraints. From this perspective both top-down and bottom-up approaches to HTN planning are appropriate (the former if one is pessimistic concerning the satisfiability of the complex constraints, and the latter if one is optimistic). Indeed, this perspective lead to the development of bottom-up approaches [16].

Despite this dichotomy, most prior work on learning HTN models (e.g. [17, 18, 19, 20]) has focused only on the domain abstraction angle. Typical approaches here require the structure of the reduction schemas to be given as input, and focus on learning applicability conditions for the non-primitives. In contrast, our work focuses on learning HTNs as a way to capture user preferences, given only successful plan traces. The difference in focus also explains the difference in evaluation techniques. While most previous HTN learning efforts are evaluated in terms of how close the learned schemas and applicability conditions are, syntactically, to the actual model, we evaluate in terms of how close the distribution of plans generated by the learned model is to the distribution generated by the actual model.

An intriguing question is whether pHTNs learned to capture user preferences can, in the long run, be over-loaded with domain semantics. In particular, it would be interesting to combine the two HTN learning strands by sending our learned pHTNs as input to the method applicability condition learners. Presuming the user’s preferences are amenable, the applicability conditions thus learned might then allow efficient top-down interpretation (of course, the user’s preferences could, in light of the complexity results for HTN planning, be so antithetical to the nature of the domain that efficient top-down interpretation is impossible).

11 Non-primitives are seen as abstract actions, mediating access to the concrete actions.
12 Non-primitives are seen as standing for complex preferences (or even physical constraints).
As discussed in [1] there are other representations for expressing user preferences, such as trajectory constraints expressed in linear temporal logic. It will be interesting to explore methods for learning preferences in those representations too, and to see to what extent typical user preferences are naturally expressible in (p)HTNs or such alternatives.

6. Conclusion

Despite significant interest in learning in the context of planning, most prior work focused only on learning domain physics or search control. In this paper, we expanded this scope by learning user preferences concerning plans. We developed a framework for learning probabilistic HTNs from a set of example plans, drawing from the literature on probabilistic grammar induction. Assuming the input distribution is in fact sampled from a pHTN, we demonstrated that the approach finds a pHTN generating a similar distribution. It is, however, a stretch to imagine that we can sample directly from such a distribution — chiefly because observed behavior arises from a complex interaction between preferences and physics.

We demonstrate a technique overcoming the effect of such feasibility constraints, by reasoning about the available alternatives to the observed user behavior. The technique is to rescale the distribution to fit the assumptions of the baseline pHTN learner. We evaluate the approach, and demonstrate both that the original learner is easily confounded by constraints placed upon the preference distribution, and that rescaling is effective at reversing this effect. We discuss several remaining important directions for future work to address. Of these, the most directly relevant technical pursuit is learning parameterized pHTNs, or more generally, learning conditional preferences. Fully integrating an automated planner with the learner, thereby using the learned knowledge, and running (costly...) user studies are also very important pursuits. In the end, we describe an effective approach to automatically learning a model of a user’s preferences from observations of only their behavior.

Acknowledgments: Kambhampati’s research is supported in part by ONR grants N00014-09-1-0017 and N00014-07-1-1049, and the DARPA Integrated Learning Program (through a sub-contract from Lockheed Martin).

[1] J. A. Baier, S. A. McIlraith, Planning with preferences, AI Magazine 29 (4) (2008) 25–36.

[2] C. W. Geib, M. Steedman, On natural language processing and plan recognition, in: Veloso [21], pp. 1612–1617.
[3] S. Kambhampati, A. Mali, B. Srivastava, Hybrid planning for partially hierarchical domains, in: Proceedings of the 15th National Conference on Artificial Intelligence and the 10th Conference on Innovative Applications of Artificial Intelligence (AAAI-98/IAAI-98), AAAI Press, Menlo Park, CA, 1998, pp. 882–888.

[4] M. Collins, Three generative, lexicalised models for statistical parsing, in: ACL-35: Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and Eighth Conference of the European Chapter of the Association for Computational Linguistics, Association for Computational Linguistics, Morristown, NJ, USA, 1997, pp. 16–23. doi:http://dx.doi.org/10.3115/979617.979620.

[5] E. Charniak, A maximum-entropy-inspired parser, in: Proceedings of the first conference on North American chapter of the Association for Computational Linguistics, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2000, pp. 132–139.

[6] K. Lari, S. J. Young, The estimation of stochastic context-free grammars using the inside-outside algorithm, Computer Speech and Language 4 (1990) 35–56.

[7] I. Guyon, A. Elisseeff, An introduction to variable and feature selection, J. Mach. Learn. Res. 3 (2003) 1157–1182.

[8] H. Liu, L. Yu, Toward integrating feature selection algorithms for classification and clustering, IEEE Trans. Knowl. Data Eng. 17 (4) (2005) 491–502.

[9] D. Koller, N. Friedman, Probabilistic Graphical Models: Principles and Techniques, MIT Press, 2009.

[10] M. Kearns, Y. Mansour, A. Y. Ng, An information-theoretic analysis of hard and soft assignment methods for clustering, in: UAI, Morgan Kaufmann, 1997, pp. 282–293.

[11] V. Kandylas, L. H. Ungar, D. P. Foster, Winner-take-all em clustering, in: NESCAI, 2007.

[12] D. Nau, M. Ghallab, P. Traverso, Automated Planning: Theory & Practice, Morgan Kaufmann, San Francisco, 2004.
[13] B. Srivastava, T. A. Nguyen, A. Gerevini, S. Kambhampati, M. B. Do, I. Serina, Domain independent approaches for finding diverse plans, in: Veloso [21], pp. 2016–2022.

[14] T. A. Nguyen, M. B. Do, S. Kambhampati, B. Srivastava, Planning with partial preference models, in: C. Boutilier (Ed.), IJCAI, 2009, pp. 1772–1777.

[15] K. Erol, J. A. Hendler, D. S. Nau, Complexity results for htn planning, Ann. Math. Artif. Intell. 18 (1) (1996) 69–93.

[16] A. Barrett, D. S. Weld, Task-decomposition via plan parsing, in: Proceedings of the 12th National Conference on Artificial Intelligence (AAAI-94), AAAI Press, Menlo Park, CA, 1994, pp. 1117–1122.

[17] O. Ilghami, D. S. Nau, H. Muñoz Avila, D. W. Aha, Camel: Learning method preconditions for HTN planning, in: Proceedings of the Sixth International Conference on AI Planning and Scheduling (AIPS-02), AAAI Press, Toulouse, France, 2002, pp. 131–141.

[18] P. Langley, D. Choi, A unified cognitive architecture for physical agents, in: AAAI-06, AAAI Press, Boston, 2006.

[19] Q. Yang, R. Pan, S. J. Pan, Learning recursive htn-method structures for planning, in: Proceedings of the ICAPS-07 Workshop on AI Planning and Learning, Providence, Rhode Island, USA, 2007.

[20] C. Hogg, H. Muñoz-Avila, U. Kuter, Htn-maker: Learning htns with minimal additional knowledge engineering required, in: D. Fox, C. P. Gomes (Eds.), Proceedings of the 23rd AAAI Conference (AAAI-08), AAAI Press, 2008, pp. 950–956.

[21] M. Veloso (Ed.), Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI-07), Hyderabad, India, 2007.
Number of Non-primitive Actions

Score

OA+
EA+
Number of Non-primitive Actions vs Score

OA+
EA+
log (Number of Training Records / Domain Size)

Average Score

- OA++
- EA++
- OA+
- EA+