Unified Explanation of the Anomalies in Semi-Leptonic B decays and the W Mass

Marcel Alguero† and Joaquim Matias‡

Grup de Física Teòrica (Departament de Física), Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona) and Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona)

Andreas Crivellin† and Claudio Andrea Manzari†

Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH–8057 Zürich, Switzerland and Paul Scherrer Institut, CH–5232 Villigen PSI, Switzerland

The discrepancies between the measurements of rare (semi-)leptonic B decays and the corresponding Standard Model predictions point convincingly towards the existence of new physics for which a heavy neutral gauge boson (Z') is a prime candidate. However, the effect of the mixing of the Z' with the SM Z, even though it cannot be avoided by any symmetry, is usually assumed to be small and thus neglected in phenomenological analyses. In this letter we point out that a mixing of the naturally expected size leads to lepton flavour universal contributions, providing a very good fit to B data. Furthermore, the global electroweak fit is affected by $Z − Z'$ mixing where the tension in the W mass, recently confirmed and strengthened by the CDF measurement, prefers a non-zero value of it. We find that a Z' boson with a mass between $\approx 1 − 5$TeV can provide a unified explanations of the B anomalies and the W mass. This strongly suggests that the breaking of the new gauge symmetry giving raise to the Z' boson is linked to electroweak symmetry breaking with intriguing consequences for model building.

I. INTRODUCTION

Even though the LHC has not discovered any particles beyond the ones of the Standard Model (SM) yet, in the last years intriguing hints for the violation of lepton flavour universality (LFU) have been accumulated (see e.g. Refs. [1–3] for recent reviews). Among them, the updated measurement of the ratios of semi-leptonic rare B meson decay $R_{K^{\mu}} = \mathcal{B}(B^+ \rightarrow K^+ \mu^+ \mu^-)/\mathcal{B}(B^+ \rightarrow K^+\ell^+\ell^-)$ [4] by LHCb [5] is particularly prominent since it provides first evidence for LFU violation (LFUV) in a single observable. Furthermore, when combining all tests of LFUV (like $R_{K^{\mu}}$) [6–9] with B decays involving muon pairs (most prominently P_{τ}) [10, 11] and $B_{s} \rightarrow \phi \mu^+ \mu^-$ [12, 13], one finds a preference for new physics (NP) hypotheses of more than 7σ [14] compared to the SM [15]. Note that such a high significance is only possible since all measurements are compatible with each other, i.e. they form a coherent picture.

Simple patterns where NP couples solely to muons can in fact explain the discrepancies between the SM and experiment in rare semi-leptonic B decays very well. However, it turns out that structures with additional LFU contributions can describe data even better [22, 23]. This means that allowing simultaneously for presence of LFUV and LFU NP effects, one can further improve the goodness of the global fits. Indeed, some of these hypotheses exhibit the highest significance among all studied scenarios [14, 16, 24, 25].

In this letter, we point out that, extending the SM by a new heavy neutral gauge boson (Z'), one has, in addition to the usually considered direct LFUV effect in $b \rightarrow s\ell^+\ell^-$ [31–34], also a LFU effect, which is generated via $Z − Z'$ mixing. In fact, because both bosons have the same quantum numbers, this mixing cannot be avoided by any symmetry. Furthermore, in the case that electroweak (EW) symmetry breaking and the breaking of the symmetry giving rise to the Z' mass are connected, one even expects a mixing of the order of $m_Z/m_{Z'}$. Importantly, $Z − Z'$ mixing has also an impact on the global EW fit, in particular on $Z\ell^+\ell^-$ and $Z\nu\nu$ couplings and if the Z' is an $SU(2)_L$ singlet (i.e. not the neutral component of an $SU(2)_L$ multiplet), in addition the prediction of the W mass is altered compared to the SM. The latter is very important since the global EW fit displayed a tension of 1.8σ [35] in this observable. This discrepancy was recently confirmed and strengthened by the CDF measurement [36] whose central value is 7σ above the SM prediction [37]. Combining this new measurement with the existing ones from the LHC [38–41], one finds $m_{W} = (80.413 \pm 0.0080)\text{GeV}$ and $m_{W} = (80.413 \pm 0.015)\text{GeV}$, where in the second
the goal of this letter is to assess the size and impact of mixing has usually been assumed to be negligibly small if the Z_b respectively.

Therefore, in Z' models an interesting interplay between $b \to s \ell^+\ell^-$ processes and the global EW fit arises if the $Z - Z'$ mixing angle is non-zero [31]. While this mixing has usually been assumed to be negligibly small [4] the goal of this letter is to assess the size and impact of $Z - Z'$ mixing via a combined analysis of flavour and EW data, providing a unified explanation of both anomalies.

II. SETUP

We extend the SM by adding a heavy neutral $SU(2)_L$ singlet gauge boson. Following the notation of Ref. [93] [94] the kinetic term and the mass term of this new boson, before EW symmetry breaking, are

$$L_{Z'} = -\frac{1}{4} Z'_{\mu\nu} Z'^{\mu\nu} + \frac{\mu^2}{2} Z_{\mu0} Z'^{\mu0} + g Z' Z_0 Z'^\mu Z^{\mu0} + \frac{\phi^2}{2} Z^\mu Z_{\mu0} \phi + \frac{\phi^2}{2} D_\mu \phi,$$

where $Z'_{\mu\nu} \equiv \partial_\mu Z'_{\nu0} - \partial_\nu Z'_{\mu0}$ is the field strength tensor, $D_\mu = \partial_\mu - (D_\mu)_i$, ϕ is the SM Higgs $SU(2)_L$ doublet and we use $D_\mu = \partial_\mu + ig_2 W^{\mu T} + ig_1 Y B_\mu$ as the definition of the SM part of the covariant derivative and $g_{Z'}^2$ is real by hermicity. The physical Z and Z' masses are obtained from diagonalizing the mass matrix

$$\mathcal{M}^2 = \left(\begin{array}{cc} m_{Z_0}^2 & \frac{\mu}{2} \frac{\phi^2}{2} \\ \frac{\mu}{2} \frac{\phi^2}{2} & m_{Z'}^2 \end{array} \right), \quad y = \frac{\mu}{2} g_2 g_{Z'}^\phi,$$

in the Z_0, Z_0' basis, where Z_0 coincides with the the SM Z for $g_{Z'}^2 = 0$ with $m_{Z_0}^2 = \frac{1}{2} (g_1^2 + g_2^2), \frac{\mu}{2} \approx 174$ GeV and c_{W}^2 is the cosine of the Weinberg angle. At leading order in v/m_{Z_0} we have

$$m_{Z'}^2 \simeq m_{Z_0}^2 - \frac{\mu^2}{c_W^2 m_{Z_0}^2} \equiv m_{Z_0}^2 (1 + \delta m_{Z}^2).$$

Note that the corrections to the mass of the Z with respect to the SM value m_{Z_0} can only be negative. The

TABLE I

C_{μ}^V	Best-fit point	1 σ CI	2 σ CI
C_{10}^U	-0.96	$[-1.11, -0.80]$	$[-1.25, -0.64]$
C_{10}^U	$+0.30$	$[+0.15, +0.45]$	$[+0.00, +0.61]$

mass eigenstates $Z^{(i)}$ can then be expressed as

$$\left(\begin{array}{c} Z \cr Z' \end{array} \right) \rightarrow \left(\begin{array}{c} Z_0 \sin \xi + Z_0 \cos \xi \\ Z_0 \cos \xi - Z_0 \sin \xi \end{array} \right),$$

where $sin \xi \equiv \frac{y}{c_W m_{Z_0}^2}$ describes the $Z - Z'$ mixing.

The interactions with the SM fields are given by

$$L_{\text{fermions}} = u_j \gamma_\mu (g_{3L}^{ijL} P_L + g_{3R}^{ijR} P_R) u_i Z_{\mu}^n + d_j \gamma_\mu (g_{3L}^{ijL} P_L + g_{3R}^{ijR} P_R) d_i Z_{\mu}^n + g_{3L}^{ijL} (i \gamma_\mu P_L \nu_i) Z_{\mu}^n + \dot{\epsilon}_j \gamma_\mu (g_{3L}^{ijL} P_L + g_{3R}^{ijR} P_R) \ell_i Z_{\mu}^n,$$

where, in the down basis, $g_{3L}^{ijL} = V_{jk} g_{3LL}^{jkL} V_{kj}$. Note that the couplings to left-handed charged leptons and neutrinos (up and down quarks) are the same (up to a CKM rotation), due to $SU(2)_L$ invariance and that only the relative phase between $sin \xi$ and g_{L}^{jL} is physical, such that one can assume $sin \xi$ to be positive without loss of generality. In the following, we will assume flavour diagonal coupling to leptons and in the quark sector disregard all couplings except left-handed $b \to s$ couplings.

III. OBSERVABLES

A. $b \to s \ell^+\ell^-$

In Z' models without $Z - Z'$ mixing, the simple one dimensional scenario with the best fit to data is obtained from a left-handed $b \to s$ coupling and a vectorial muon coupling, i.e. the C_{μ}^V scenario [43]. Allowing in addition for $Z - Z'$ mixing we have

$$c_{\mu}^V = -\frac{\pi^2}{e^2} \frac{4 \sqrt{2} g_{3L}^{ijL} g_{3L}^{ijL}}{G_F m_{Z'}^2 V_{tb} V_{ts}^*},$$

$$c_{10}^U = -k c_{10}^U = \frac{\sqrt{2} \pi^2}{e^2} \frac{g_{3L}^{ijL} g_{3R}^{ijR}}{c_W G_F m_{Z'}^2 V_{tb} V_{ts}^*},$$

using the effective Hamiltonian of Ref. [95, 96] where $g_{3L}^{ijL} = (g_{L}^{jL} + g_{L}^{jR})/2$. This corresponds to the scenario

$$\left\{ c_{\mu}^V, c_{10}^U \right\} = -k c_{10}^U,$$

with $k = 1/(1 - 4 e_w^2)$ (see the appendix for the definitions of the operators). The superscript V (U) in the Wilson coefficient stands for a LFUV (LFU) contribution.

We perform the most recent fit [13] to the scenario in Eq. (7), including 254 observables and the latest measurements by LHCb of LFUV observables, namely, $R_{K_S}^{III}$ [9]
is given by

g_{A} = -kC_{s}^{V}

and $R_{K^{*+}}$ as well as the new branching ratio and angular distribution of $B_{s} \rightarrow \phi \mu^{+}\mu^{-}$ [12] [13]. We obtain the best fit point and confidence level regions in Table I. The results of the global fit in our scenario are shown in Fig. 1.

FIG. 1. Preferred 1σ, 2σ and 3σ regions in the $(C_{s}^{V}, C_{10}^{V} = -kC_{s}^{V})$ plane for the scenario discussed in the paper, including all available $b \rightarrow s \ell^{+}\ell^{-}$ data and using the most updated version of ACDMN code [14]. Note that the SM case corresponds to the (0,0) point.

B. $B_{s} - \bar{B}_{s}$ Mixing

The most important constraint on $Z' - b - s$ couplings, i.e. $g_{Z'}^{LL}$, comes from $B_{s} - \bar{B}_{s}$ mixing where the contribution to the Hamiltonian $H_{\text{eff}} = C_{1} \mathcal{O}_{1}$, with

$$
\mathcal{O}_{1} = (\bar{b}\gamma_{\mu}P_{L}s) \times (\bar{b}\gamma_{\mu}P_{L}s),
$$

is given by

$$
C_{1} = 2 \frac{g_{Z'}^{LL}}{m_{Z'}}^{2} \left(1 + \frac{\alpha_{s}}{4\pi} \frac{11}{3}\right),
$$

including the NLO matching corrections of Ref. [97]. Note that the effect of the mixing induced $Z - b - s$ couplings can be neglected as it corresponds to a dimension 8 contribution. Employing the 2-loop renormalization group evolution [98] [99], this leads to an effect, normalized to the SM one, of

$$
\left(\frac{g_{Z'}^{LL}}{0.52}\right)^{2} \left(\frac{10\text{TeV}}{m_{Z'}}\right)^{2} = 0.110 \pm 0.090
$$

using the bag factor of Ref. [100] and the global fit to NP in $\Delta F = 2$ observables of Ref. [101].

C. LFUV in tau decays

Assuming lepton flavour conservation, $Z' - W$ boxes contribute to $\tau \rightarrow \mu \nu_{\tau} \bar{\nu}_{\tau}$ as [35]:

$$
\mathcal{A}(\tau \rightarrow \mu \nu_{\tau} \bar{\nu}_{\tau}) = 1 - 3 \frac{g_{Z'}^{LL}}{8\pi^{2}} g_{Z}^{LL} \ln \left(\frac{m_{Z'}}{m_{W}}\right) \left(1 - \frac{m_{Z}^{2}}{m_{W}^{2}}\right),
$$

and analogously for $\tau \rightarrow e \nu_{\tau} \bar{\nu}_{\tau}$ and $\mu \rightarrow e \nu_{\mu} \bar{\nu}_{\mu}$. Note that at vanishing momentum transfer the Z' induced correction to the W-ℓ-ν vertex vanishes as $SU(2)_{L}$ gauge invariance is not broken. This we compared to the experimental results [102] (see Ref. [103] for an overview on LFUV):

$$
\frac{\mathcal{A}_{\tau \rightarrow \mu \nu_{\tau}}}{\mathcal{A}_{\tau \rightarrow e \nu_{\tau}}} = 1.0029 \pm 0.0014,
$$

$$
\frac{\mathcal{A}_{\tau \rightarrow \mu \nu_{\tau}}}{\mathcal{A}_{\tau \rightarrow e \nu_{\tau}}} = 1.0018 \pm 0.0014,
$$

$$
\frac{\mathcal{A}_{\tau \rightarrow \mu \nu_{\tau}}}{\mathcal{A}_{\tau \rightarrow e \nu_{\tau}}} = 1.0010 \pm 0.0014,
$$

with the correlation matrix given in Ref. [102].

D. Electroweak fit

The EW sector of the SM has been tested with a very high precision at LEP [104] [105] but also at the Tevatron [106] and the LHC [88] [90]. Since it can be parametrized by only three Lagrangian parameters, we choose as usual the set with the smallest experimental error consisting of the Fermi constant ($G_{F} = 1.1663787(6) \times 10^{-5}$ GeV$^{-2}$ [107]), the mass of the Z boson ($m_{Z} = 91.1875(21)$ GeV [105]) and the fine structure constant ($\alpha_{em} = 7.297525664(17) \times 10^{-3}$ [107] [110]).

In our model, the relation between the Lagrangian values and the measurements of G_{F} and m_{Z} is shifted with respect to the SM. While the effect in $\mu \rightarrow e \nu_{\tau}$ is analogous to the one in $\tau \rightarrow \mu \nu_{\tau}$ discussed above we have

$$
\frac{m_{W}^{2}}{m_{Z}^{2}} \approx 1 - \sin^{2} \frac{m_{Z}^{2}}{m_{W}^{2}}. \quad \text{However, since the Z mass is used as an input, this translates into a shift in the W mass prediction of approximately}
$$

$$
\frac{m_{W}^{2}}{m_{Z}^{2}} \approx 1 + \sin^{2} \frac{m_{Z}^{2}}{m_{W}^{2}}.
$$

Note that this shift is positive definite such that the corresponding tension can be explained.

5 Here we neglected semi-leptonic tau decays as well as other probes of LFUV in the charged current which are not affected in the absence of quark coupling (see Ref. [103] for a recent review).
FIG. 2. Global fit to EW data, neutrino trident production, LEP bounds on 4-lepton contact interactions and \(\tau \to \mu \nu \nu \) data with vectorial flavour diagonal couplings \(g_{li} = g_{ri} = g_{vi} \). Here we marginalized over the \(Z - Z' \) mixing angle \(\xi \). The 68\% and 95\% confidence level regions are shown for a \(Z' \) mass of 2 TeV. Note that a preference for the \(L_\mu - L_\tau \) scenario emerges.

This modification of the \(W \) mass as well as \(Z_{\ell\ell} \) and \(Z_{\nu\nu} \) are implemented in HEPfit [111] (including the \(Z' \) vertex corrections [35, 112]). In addition, the Higgs mass \(m_H = 125.16 \pm 0.13 \) GeV [113, 114], the top mass \(m_t = 172.80 \pm 0.40 \) GeV [115–117], the strong coupling constant \(\alpha_s(m_Z) = 0.1181 \pm 0.0011 \) [107] and the hadronic contribution to the running of \(\alpha_\text{em} \) \((\Delta \alpha_\text{had} = 276.1(11) \times 10^{-4}) \) [107] have been used as input parameters, since they enter EW observables indirectly via loop effects. The complete set of observables used are listed in the appendix.

E. Neutrino Trident Production

The production of a \(\mu^+ \mu^- \) pair from the scattering of a muon-neutrino off the Coulomb field of a nucleus, known as neutrino trident production, constitutes a sensitive probe of new neutral current interactions in the lepton sector [35, 118]. Generalizing the formula of Ref. [118] we find

\[
\frac{\sigma_{\text{SM}+\text{NP}}}{\sigma_{\text{SM}}} = 1 + 8 \frac{g_{LL}^2 m_W^2}{g_2^2 m_Z'^2} \left(1 + 4s_W^2 \right) \left(g_{LL}^R + g_{RR}^R \right) + \frac{g_{LL}^L - g_{RR}^R}{(1 + 4s_W^2)^2 + 1}.
\]

This ratio is bounded by the weighted average \(\sigma_{\text{exp}}/\sigma_{\text{SM}} = 0.83 \pm 0.18 \) obtained from averaging the CHARM-II [119], CCFR [120] and NuTeV results [121].

F. Direct searches

LEP-II sets stringent bounds on 4-lepton contact interactions and \(\tau \to \mu \nu \nu \) data (orange) and \(b \to s \ell^+ \ell^- \) data (blue) in the \(g' - \sin \xi \) plane for \(m_{Z'} = 2 \) TeV and \(m_{Z'} = 3 \) TeV. One can see that both regions overlap nicely and that a non-zero value of the mixing angle is preferred.
TABLE II. Predictions for some of the most relevant observables in the \(b \to s \ell^+ \ell^- \) fit within the scenario of Eq. (6). The pulls are given in units of standard deviations.

Observable	Scenario 1	Experiment	Pull
\(R_{K^0} \)	+0.79 ± 0.01	+0.85 ± 0.04	-1.3
\(R_{K^+} \)	+0.79 ± 0.01	+0.66 ± 0.20	+0.7
\(R_{K^0}^{D^*} \)	+0.87 ± 0.08	+0.69 ± 0.12	+1.3
\(R_{K^{(*)}}^{D_0} \)	+0.84 ± 0.04	+0.70 ± 0.18	+0.8
\(Q_3^{[1.6]} \)	+0.28 ± 0.02	+0.66 ± 0.50	-0.8
\(\langle p_{1/2} \rangle^{[1.6]}_3 \)	-0.57 ± 0.11	-0.44 ± 0.12	-0.8
\(\langle p_{1/2} \rangle^{[1.6]}_9 \)	-0.79 ± 0.11	-0.58 ± 0.09	-1.4
\(10^3 \times B_{B_s \to g_{23}^L} \)	+0.78 ± 0.15	+0.62 ± 0.06	+1.0
\(10^9 \times B_{B_s \to g_{23}^L} - p_{1/2} \)	+3.08 ± 0.14	+2.85 ± 0.34	+0.6

IV. PHENOMENOLOGY

Let us now study the combined phenomenological consequences of \(Z - Z' \) mixing in rare semi-leptonic \(B \) decays and the global EW fit with the aim of obtaining a combined explanation. For this purpose we will focus on an illustrative simplified scenario with an \(SU(2)_L \) singlet \(Z' \), such that \(Z - Z' \) mixing can account for the discrepancy in the \(W \) mass. Furthermore, \(b \to s \ell^+ \ell^- \) data motivates vectorial couplings to leptons, i.e. \(g_{13}^{LL} = g_{13}^{RR} = g_{13}^{VV} \) which also allow for simple configurations without gauge anomalies such as \(L_\mu - L_\tau \) [25, 44] or \(B_2 - L_2 \) [27]. In addition, \(g_{13}^{LL} = 0 \) and \(g_{13}^{RR} = -g_{13}^{VV} = g' \), i.e. a \(L_\mu - L_\tau \) symmetry [124, 125], is motivated by the EW fit since the effect of \(Z - Z' \) mixing in \(Z \to \nu \nu \) will cancel to leading order. Therefore, larger lepton couplings are possible (see Fig. 2) and \(\tau \to \mu \nu \nu \) receives the desired constructive contribution via \(W - Z' \) box diagrams. In addition to these couplings to leptons, we assume only the presence of left-handed \(Z' - b \to s \) couplings [1].

Importantly, as discussed in the introduction, the current experimental average for the mass of the \(W \) boson, shows at least a 3.7 \(\sigma \) discrepancy with the value predicted from the EW fit within the SM [92]. This prediction is changed in our model according to Eq. (11) such that one accounts for data with a non-zero mixing angle of \(\sin \xi \approx 3.5 \times 10^{-3} \times 1 \text{TeV}/m_{Z'} \). Moving to the complete EW fit (including also LFUV in tau decays, LEP bounds on 4-lepton operators and neutrino trident production) we have \(m_{Z'}, g' \) and \(\sin \xi \) as free parameters. However, since all expressions depend on \(g'^2/m_{Z'}^2 \), despite logarithmic terms we set \(m_{Z'} = 2 \text{TeV} \). The resulting preferred regions from the EW fit and LFUV in tau decays are shown in Fig. 8 for \(m_{Z'} = 2 \) and 3 TeV. Including \(b \to s \ell^+ \ell^- \) as well as \(B_s - \bar{B}_s \) mixing, in addition \(g_{23}^{LL} \) enters as a free parameter. Marginalizing over \(g_{23}^{LL} \) we find the 1 \(\sigma \) and 2 \(\sigma \) regions shown in blue in Fig. 3. Note that all 2\(\sigma \) regions nicely overlap, showing that both the EW fit and \(b \to s \ell^+ \ell^- \) data prefer a non-zero \(Z - Z' \) mixing angle such that the \(W \) mass can be explained.

V. CONCLUSIONS AND OUTLOOK

In this article we systematically studied the impact of \(Z - Z' \) mixing on the global fit to \(b \to s \ell^+ \ell^- \) data and EW precision observables. Concerning the former, we observe that a LFU effect is generated while in the latter the mixing leads to modified \(Z \) couplings and to an enhancement in the predicted \(W \) mass w.r.t. the SM, which accommodates the new experimental average (including the recent one from CDF). Therefore, while in previous analyses in the literature the effect of \(Z - Z' \) mixing was usually assumed to be small and was therefore mostly neglected, we stress that both \(b \to s \ell^+ \ell^- \) data and the EW fit even prefers a small but non-zero value of the order of \(10^{-3} \) for \(m_{Z'} \approx 1 \text{TeV} - 5 \text{TeV} \). Note that this is in agreement with the expectation \(\sin \xi \approx g_2 g_{23}^L m_{Z'}^2/m_{Z}^2 \). A TeV scale \(Z' \) with order one couplings in case \(U(1)' \) and EW symmetry breaking are related.

If \(b \to s \ell^+ \ell^- \) data is in fact explained by a \(Z' \) with non-vanishing \(Z - Z' \) mixing, one predicts a pattern for the main observables driving the anomaly as shown in Table 1. We observe that all tensions with experiment reduce significantly below the 1.5 \(\sigma \) level in the scenario analyzed. Because \(b \to s \ell^+ \ell^- \) ratios testing LFUV depend naturally (and almost entirely) on \(g_{23}^L \) and thus do not carry information on \(\sin \xi \), angular observables are necessary for a distinctive study of \(Z' \) models. It will therefore be important to verify with more precise LHCb data together with future Belle II analysis if this scenario gets reinforced.

Furthermore, forthcoming LHC measurements of the \(W \) mass may reinforce the current tension and any improvement in the global EW fit (e.g. in the top mass or in \(Z \) decays) would lead to a more precise \(W \) mass predictions which could be very precisely measured with future lepton colliders such as FCC-ee [27], ILC [28], CEPC [29] or CLIC [30]. Importantly, if a non-zero \(Z - Z' \) mixing is established in the future, like e.g. predicted in the model of Ref. 27, this would imply that \(SU(2)_L \) and \(U(1)' \) are broken by a field charged under both symmetries with important consequences for model building.

ACKNOWLEDGMENTS

We thank Joe Davighi for bringing a missing factor 1/2 in Eq. (6) to our attention. The work of A.C. and C.A.M. is supported by a Professorship Grant (PP00P2_176884) of the Swiss National Science Foundation.

6 Note that our analysis would to a good approximation also apply to other scenarios, such as \(B_3 - L_2 \).

7 Note that such a scenario could be generated in models with vector-like quarks [20, 25], where absence of \(Z' \) couplings to light quarks avoids problems with direct LHC searches as well as larger effects in the total \(W \) width from mixing.
APPENDIX

We write the interactions of the SM Z with fermions as:

\[\mathcal{L}_{Zff} = \bar{f}_i \gamma_\mu (\Delta_{ij} \mathcal{L}_{PL} + \Delta_{ij}^{R} \mathcal{L}_{PR}) f_j Z^\mu + \bar{f}_i g_{ij} \Delta^{\nu \mu} \mathcal{L}_{P L} v_i Z^\mu \]

\[+ \bar{f}_j \gamma_\mu (\Delta_{ij} \mathcal{L}_{PL} + \Delta_{ij}^{R} \mathcal{L}_{PR}) u_i Z^\mu \]

\[+ \bar{f}_j \gamma_\mu (\Delta_{ij} \mathcal{L}_{PL} + \Delta_{ij}^{R} \mathcal{L}_{PR}) d_i Z^\mu , \]

with \(i, j = 1, 2, 3 \) and

\[\Delta_{ij}^{LL(R)} = \sin \xi \left(g_{ij}^{LL(R)} + g_{SM}^{LL(R)} \delta_{ij} \right) , \]

\[\Delta_{ij}^{\nu L} = \sin \xi \left(g_{ij}^{\nu L} + g_{SM}^{\nu L} \delta_{ij} \right) , \]

\[\Delta_{ij}^{W L} = \sin \xi \left(V_{jk} g_{ik}^{W} V_{i\nu} + g_{SM}^{W} \delta_{ij} \right) , \]

\[\Delta_{ij}^{W R} = \sin \xi \left(g_{ij}^{W R} + g_{SM}^{W R} \delta_{ij} \right) , \]

\[\Delta_{ij}^{dL(R)} = \sin \xi \left(\bar{g}_{ij}^{dL(R)} + g_{SM}^{dL(R)} \delta_{ij} \right) , \]

where \(g_{SM}^{L(R)} \) are the SM couplings given by

\[g_{SM}^{L} = - \frac{e}{2 s_{W} c_{W}}, \]

\[g_{SM}^{\nu L} = \frac{e}{2 s_{W} c_{W}} \left(1 - 2 s_{\nu}^2 \right) , \quad g_{SM}^{R} = - \frac{e}{2 s_{W} c_{W}}, \]

\[g_{SM}^{W L} = - \frac{e}{2 s_{W} c_{W}} \left(\frac{1}{3} - \frac{2}{3} s_{W}^2 \right) , \quad g_{SM}^{W R} = - \frac{1}{3} s_{W}. \]

with \(e = g_{1} g_{2} / \sqrt{g_{1}^{2} + g_{2}^{2}} = g_{1} c_{W} = g_{2} s_{W} \) being the electric charge. Moreover, taking into account the \(Z - Z' \) mixing in Eq. (14) and the vertex corrections \([35, 112] \), we have the following modified \(Z \) couplings to leptons

\[\Delta_{ij}^{LL} = \frac{\bar{f}_{SM}^{LL}}{s_{W} c_{W}} \left(\delta_{ij} + \sin \xi \frac{g_{ij}^{LL} + \sum_{k} g_{ik}^{LL, \nu L} K_{F} \left(\frac{m_{Z}^{2}}{m_{Z'}^{2}} \right)}{(4 \pi)^{2}} \right) , \]

\[\Delta_{ij}^{\nu L} = \frac{g_{SM}^{\nu L}}{s_{W} c_{W}} \left(\delta_{ij} + \sin \xi \frac{g_{ij}^{\nu L} + \sum_{k} g_{ik}^{LL, \nu L} K_{F} \left(\frac{m_{Z}^{2}}{m_{Z'}^{2}} \right)}{(4 \pi)^{2}} \right) , \]

\[\Delta_{ij}^{W L} = \frac{g_{SM}^{W L}}{s_{W} c_{W}} \left(\delta_{ij} + \sin \xi \frac{g_{ij}^{W L} + \sum_{k} g_{ik}^{W L, \nu L} K_{F} \left(\frac{m_{Z}^{2}}{m_{Z'}^{2}} \right)}{(4 \pi)^{2}} \right) , \]

at the \(Z \) pole with

\[K_{F}(x) = - \frac{2(x + 1)^{2}(L_{12}(-x) + \ln(x) \ln(x + 1))}{x^{2}} \]

\[- \frac{7x + 4}{2x} \left(3x^{2} + 2x \right) \ln(x). \]

The effective Hamiltonian \([35, 98] \) in which heavy degrees of freedom have been integrated out is given by

\[\mathcal{H}_{\text{eff}} = - \frac{4 G_{F}}{\sqrt{2}} V_{ib} V_{ic}^{*} \sum_{i} C_{i} O_{i} \]

The relevant operators for this paper are:

\[O_{9r} = \frac{e^{2}}{16 \pi^{2}} (\bar{\nu}_{\gamma} P_{L} \nu_{L} \bar{\nu}_{\gamma} \nu_{L} \ell), \]

\[O_{9} = \frac{e^{2}}{16 \pi^{2}} (\bar{\nu}_{\gamma} P_{R} \nu_{L} \bar{\nu}_{\gamma} \nu_{L} \ell), \]

\[O_{10} = \frac{e^{2}}{16 \pi^{2}} (\bar{\nu}_{\beta} P_{R} \nu_{L} \bar{\nu}_{\gamma} \nu_{L} \ell), \]

\[O_{10} = \frac{e^{2}}{16 \pi^{2}} (\bar{\nu}_{\gamma} P_{R} \nu_{L} \bar{\nu}_{\gamma} \nu_{L} \ell), \]

where \(P_{L, R} = (1 \mp \gamma_{5}) / 2 \).

The set of observables used in the EW fit are given in Table III.
and Joaquim Matias, “Beyond the Standard Model with Lepton Flavor Universality Violation,” in 1st Pan-African Astro-Particle and Collider Physics Workshop (2022) [arXiv:2204.12175 [hep-ph]].

[4] Gudrun Hiller and Frank Kruger, “More model-independent analysis of $b \to s$ processes,” Phys. Rev. D 69, 074020 (2004) [arXiv:hep-ph/0310219].

[5] Roel Aaij et al. (LHCb), “Test of lepton universality in beauty-quark decays,” (2021) [arXiv:2103.11769 [hep-ex]].

[6] R. Aaij et al. (LHCb), “Test of lepton universality with $B^0 \to K^{(*)\ell^+\ell^-}$ decays,” JHEP 08, 055 (2017) [arXiv:1705.05802 [hep-ex]].

[7] Bernat Capdevila, Sebastien Descotes-Genon, Joaquim Matias, and Javier Virto, “Assessing lepton-flavour non-universality from $B \to K^{(*)}\ell\ell$ angular analyses,” JHEP 10, 075 (2016) [arXiv:1605.03156 [hep-ph]].

[8] S. Wehle et al. (Belle), “Lepton-Flavor-Dependent Angular Analysis of $B \to K^{(*)}\ell\ell$,” Phys. Rev. Lett. 118, 111801 (2017) [arXiv:1612.05014 [hep-ex]].

[9] Roel Aaij et al. (LHCb), “Tests of lepton universality using $B^0 \to K(2\ell^+\ell^-)$ and $B^+ \to K^{(*)}\ell^+\ell^-$ decays,” (2021) [arXiv:2110.09501 [hep-ex]].

[10] Sebastien Descotes-Genon, Joaquim Matias, Marc Ramon, and Javier Virto, “Implications from clean observables for the binned analysis of $B \to K^{(*)}\mu^+\mu^-$ at large recoil,” JHEP 01, 048 (2013) [arXiv:1207.2753 [hep-ph]].

[11] Roel Aaij et al. (LHCb), “Measurement of CP-Averaged Observables in the $B^0 \to K^{(*)}\mu^+\mu^-$ Decay,” Phys. Rev. Lett. 125, 011802 (2020) [arXiv:2003.04831 [hep-ex]].

[12] Roel Aaij et al. (LHCb), “Angular analysis of the rare decay $B^0 \to \phi\mu^+\mu^-$,” JHEP 11, 043 (2021) [arXiv:2107.13428 [hep-ex]].

[13] Roel Aaij et al. (LHCb), “Branching Fraction Measurements of the Rare $B^0_\ell \to \phi\mu^+\mu^-$ and $B^0_\ell \to f_2(1525)\mu^+\mu^-$ Decays,” Phys. Rev. Lett. 127, 151801 (2021) [arXiv:2105.14007 [hep-ex]].

[14] Marcel Alguéro, Bernat Capdevila, Sébastien Descotes-Genon, Joaquim Matias, and Martin Novoa-Brulet, “$b \to s\ell\ell$ Global Fits after $R_{K\ell}$ and $R_{K\ell^+\ell^-}$,” (2021) [arXiv:2104.08921 [hep-ph]].

[15] T. Hurth, F. Mahmoudi, D. Martinez Santos, and S. Neshatpour, “More Indications for Lepton Nonuniversality in $b \to s\ell^+\ell^-$,” Phys. Lett. B 824, 136838 (2022) [arXiv:2104.10058 [hep-ph]].

[16] Wolfgang Altmannshofer and Peter Stangl, “New physics in rare b decays after Moriond 2021,” Eur. Phys. J. C 81, 952 (2021) [arXiv:2103.13370 [hep-ph]].

[17] Kamila Kowalska, Dinesh Kumar, and Enrico Maria Sessolo, “Implications for new physics in $b \to s\mu\mu$ transitions after recent measurements by Belle and LHCb,” Eur. Phys. J. C 79, 840 (2019) [arXiv:1903.10932 [hep-ph]].

[18] Thomas Blake, Stefan Meinel, and Danny van Dyk, “Bayesian Analysis of $b \to s\mu\mu$ Wilson Coefficients using the Full Angular Distribution of $\Delta_3 \to \Lambda(\to p\pi^-\mu^+\mu^-)$ Decays,” Phys. Rev. D 101, 035023 (2020) [arXiv:1912.05811 [hep-ph]].

[19] Li-Sheng Gong, Benjamin Grinstein, Sebastian Jäger, Shuang-Yi Li, Jorge Martin Camalich, and Rui-Xiang Shi, “Implications of new evidence for lepton-universality violation in $b \to s\ell^+\ell^-$ decays,” Phys. Rev. D 104, 035029 (2021) [arXiv:2103.12738 [hep-ph]].

[20] Marco Ciuchini, António M. Coutinho, Marco Fedele, Enrico Franco, Ayan Paul, Luca Silvestrini, and Marco Valli, “New Physics in $b \to s\ell^+\ell^-$ confronts new data on Lepton Universality,” Eur. Phys. J. C 79, 719 (2019) [arXiv:1903.09632 [hep-ph]].

[21] David London and Joaquim Matias, “B Flavour Anomalies: 2021 Theoretical Status Report,” (2021), 10.1146/annurev-nucl-102020-090209 [arXiv:2110.13270 [hep-ph]].

[22] Marcel Algueró, Bernat Capdevila, Sébastien Descotes-Genon, Pere Masjuan, and Joaquim Matias, “Are we overlooking lepton flavour universal new physics in $b \to s\ell\ell$?” Phys. Rev. D 99, 075017 (2019) [arXiv:1809.08447 [hep-ph]].

[23] Marcel Algueró, Bernat Capdevila, Andreas Crivellin, and Joaquim Matias, “Disentangling lepton flavour universal and lepton flavour universality violating effects in $b \to s\ell\ell$ transitions,” Phys. Rev. D 105, 113007 (2022) [arXiv:2205.15212 [hep-ph]].

[24] Bernat Capdevila, Andreas Crivellin, Sébastien Descotes-Genon, Joaquim Matias, and Javier Virto, “Patterns of New Physics in $b \to s\ell^+\ell^-$ transitions in the light of recent data,” JHEP 01, 093 (2018) [arXiv:1704.05340 [hep-ph]].

[25] Marcel Algueró, Bernat Capdevila, Andreas Crivellin, Sébastien Descotes-Genon, Pere Masjuan, Joaquim Matias, Mart’ in Novoa Brunet, and Javier Virto, “Emerging patterns of New Physics with $b \to s\ell^+\ell^-$ transitions and without Lepton Flavour Universal contributions,” Eur. Phys. J. C 79, 714 (2019) [Addendum: Eur. Phys. J. C 80, 511 (2020)] [arXiv:1903.09578 [hep-ph]].

[26] Andreas Crivellin, Dario Müller, and Christoph Wiegand, “$b \to s\ell^+\ell^-$ transitions in two-Higgs-doublet models,” JHEP 06, 119 (2019) [arXiv:1903.10440 [hep-ph]].

[27] Andreas Crivellin, Christoph Greub, Dario Müller, and Francesco Saturnino, “Importance of Loop Effects in Explaining the Accumulated Evidence for New Physics in B Decays with a Vector Leptoquark,” Phys. Rev. Lett. 122, 011805 (2019) [arXiv:1807.02608 [hep-ph]].

[28] Andreas Crivellin, Dario Müller, and Francesco Saturnino, “Flavor Phenomenology of the Leptoquark Singlet-Triplet Model,” JHEP 06, 020 (2020) [arXiv:1912.04224 [hep-ph]].

[29] Bernat Capdevila, Andreas Crivellin, Claudio Andrea Manzari, and Marc Montull, “Explaining $b \to s\ell^+\ell^-$ and the Cabibbo angle anomaly with a vector triplet,” Phys. Rev. D 103, 015032 (2021) [arXiv:2005.13542 [hep-ph]].

[30] Christoph Bobeth, Andrzej J. Buras, Alejandro Celis, and Martin Jung, “Patterns of Flavour Violation in Models with Vector-Like Quarks,” JHEP 04, 079 (2017) [arXiv:1609.04783 [hep-ph]].
[31] Andreas Crivellin, Claudio Andrea Manzari, Marcel Alguero, and Joaquin Matias, “Combined Explanation of the $Z \to b\bar{b}$ Forward-Backward Asymmetry, the Cabibbo Angle Anomaly, and $\tau \to \mu\nu$ and $b \to s(\ell^-\nu)$ Data,” Phys. Rev. Lett. 127, 011801 (2021) arXiv:2010.14504 [hep-ph]

[32] Andrzej J. Buras and Jennifer Girrbach, “Left-handed Z' and Z and FCNC quark couplings facing new $b \to s\mu^+\mu^-$ data,” JHEP 12, 009 (2013) arXiv:1309.2466 [hep-ph]

[33] Rhorry Gauld, Florian Goertz, and Ulrich Haisch, “On minimal Z' explanations of the $B \to K^{\mu+\mu^-}$ anomaly,” Phys. Rev. D 89, 015005 (2014) arXiv:1308.1959 [hep-ph]

[34] Rhorry Gauld, Florian Goertz, and Ulrich Haisch, “An explicit Z'-boson explanation of the $B \to K^{\mu+\mu^-}$ anomaly,” JHEP 01, 060 (2014) arXiv:1310.1082 [hep-ph]

[35] Wolfgang Altmannshofer, Stefania Gori, Maxim Pospelov, and Itay Yavin, “Quark flavor transitions in $L_\mu - L_\tau$ models,” Phys. Rev. D 89, 095033 (2014) arXiv:1403.1269 [hep-ph]

[36] Andreas Crivellin, Giancarlo D’Ambrosio, and Julian Heeck, “Explaining $h \to \mu^+\mu^-$, $B \to K^{\mu+\mu^-}$ and $B \to K\mu^+\mu^-/B \to K\ell^+\ell^-$ in a two-Higgs-doublet model with gauged $L_\mu - L_\tau$,” Phys. Rev. Lett. 114, 151801 (2015) arXiv:1501.00993 [hep-ph]

[37] Andreas Crivellin, Giancarlo D’Ambrosio, and Julian Heeck, “Addressing the LHC flavor anomalies with horizontal gauge symmetries,” Phys. Rev. D 91, 054006 (2015) arXiv:1503.03477 [hep-ph]

[38] Christoph Niehoff, Peter Stangl, and David M. Straub, “Violation of lepton universality in composite Higgs models,” Phys. Lett. B 747, 182-186 (2015) arXiv:1503.03865 [hep-ph]

[39] D. Aristizabal Sierra, Florian Staub, and Avelino Vicente, “Shedding light on the $b \to s$ anomalies with a dark sector,” Phys. Rev. D 92, 015001 (2015) arXiv:1503.06077 [hep-ph]

[40] Adrian Carmona and Florian Goertz, “Lepton Flavor and Nonuniversality from Minimal Composite Higgs Setups,” Phys. Rev. Lett. 116, 251801 (2016) arXiv:1510.07688 [hep-ph]

[41] Adam Falkowski, Marco Nardecchia, and Robert Ziegler, “Leptonic Flavor Non-Universality in B-meson Decays from a U(2) Flavor Model,” JHEP 11, 173 (2015) arXiv:1509.01249 [hep-ph]

[42] Alejandro Celis, Wan-Zhe Feng, and Dieter Lüst, “Stringy explanation of $b \to s(\ell^-\nu)$ anomalies,” JHEP 02, 007 (2016) arXiv:1512.02218 [hep-ph]

[43] Alejandro Celis, Javier Fuentes-Martín, Martí in Jung, and Hugo Serodio, “Family nonuniversal Z' models with protected flavor-changing interactions,” Phys. Rev. D 92, 015007 (2015) arXiv:1505.03079 [hep-ph]

[44] Andreas Crivellin, Lars Hofer, Joaquim Matias, Ulrich Nierste, Stefan Pokorski, and Janusz Rosiek, “Lepton-flavour violating B decays in generic Z' models,” Phys. Rev. D 92, 054013 (2015) arXiv:1504.07928 [hep-ph]

[45] Sofiane M. Boucenna, Alejandro Celis, Javier Fuentes-Martín, Avelino Vicente, and Javier Virto, “Nonabelian gauge extensions for B-decay anomalies,” Phys. Lett. B 760, 214–219 (2016) arXiv:1604.03088 [hep-ph]

[46] Wolfgang Altmannshofer, Marcela Carena, and Andreas Crivellin, “$L_\mu - L_\tau$ theory of Higgs flavor violation and $(g-2)_\mu$,” Phys. Rev. D 94, 095026 (2016) arXiv:1604.08221 [hep-ph]

[47] Sofiane M. Boucenna, Alejandro Celis, Javier Fuentes-Martín, Avelino Vicente, and Javier Virto, “Phenomenology of an $SU(2) \times SU(2) \times U(1)$ model with lepton-flavour non-universality,” JHEP 12, 059 (2016) arXiv:1608.01349 [hep-ph]

[48] Andreas Crivellin, Javier Fuentes-Martín, Adam Falkowski, Marco Nardecchia, and Robert Lüst, “Lepton Flavor Non-Universality in B decays from Dynamical Yukawas,” Phys. Lett. B 766, 77–85 (2017) arXiv:1611.02703 [hep-ph]

[49] Isabel Garcia Garcia, “LHCb anomalies from a natural perspective,” JHEP 03, 040 (2017) arXiv:1611.03550 [hep-ph]

[50] Gaber Faisel and Jusak Tandean, “Connecting $b \to s(\ell^-\nu)$ anomalies to enhanced rare nonleptonic B^0 decays in Z' model,” JHEP 02, 074 (2018) arXiv:1710.11102 [hep-ph]

[51] Stephen F. King, “Flavourful Z' models,” JHEP 08, 019 (2017) arXiv:1706.06100 [hep-ph]

[52] Cheng-Wei Chang, Xiao-Gang He, Jusak Tandean, and Xing-Bo Yuan, “$R_{K^{(*)}}$, and related $b \to s(\ell^-\nu)$ anomalies in minimal flavor violation framework with Z' boson,” Phys. Rev. D 96, 115022 (2017) arXiv:1706.02696 [hep-ph]

[53] Stefano Di Chiara, Andrew Fowlie, Sean Fraser, Carlo Marzo, Luca Marzola, Martti Raidal, and Christian Spethmann, “Minimal flavor-changing Z' models and muon $g-2$ after the R_{K^+} measurement,” Nucl. Phys. B 923, 245–257 (2017) arXiv:1704.06200 [hep-ph]

[54] P. Ko, Yujin Oh, Yoshihiro Shigekami, and Che-hyun Yu, “LHCb anomaly and B physics in flavored Z' models with flavored Higgs doublets,” Phys. Rev. D 95, 115040 (2017) arXiv:1702.08666 [hep-ph]

[55] Francesco Sannino, Peter Stangl, David M. Straub, and Anders Eller Thomsen, “Flavor Physics and Flavor Anomalies in Minimal Fundamental Partial Compositeness,” Phys. Rev. D 97, 115046 (2018) arXiv:1712.07646 [hep-ph]

[56] Adrián Carmona and Florian Goertz, “Recent B physics anomalies: a first hint for compositeness?” Eur. Phys. J. C 78, 979 (2018) arXiv:1712.02536 [hep-ph]

[57] Stuart Rabay and Andreas Trautner, “Vectorlike chiral fourth family to explain muon anomalies,” Phys. Rev. D 97, 054006 (2018) arXiv:1712.09360 [hep-ph]

[58] Adam Falkowski, Stephen F. King, Elena Perdomo, and Mathias Pierre, “Flavourful Z' portal for vectorlike neutrino Dark Matter and $R_{K^{(*)}}$,” JHEP 08, 061 (2018) arXiv:1803.04430 [hep-ph]

[59] Richard H. Benavides, Luis Muñoz, William A. Ponce, Oscar Rodriguez, and Eduardo Rojas, “Minimal Z' models for flavor anomalies,” J. Phys. G 47, 075003 (2020) arXiv:1812.05077 [hep-ph]

[60] P. Maji, P. Nayak, and S. Sahoo, “Implication of family non-universal Z' model to rare exclusive $b \to s(\ell^-\ell^\nu)$ transitions,” PTEP 2019, 033B06 (2019) arXiv:1811.03869 [hep-ph]

[61] Shivaramakrishna Singirala, Suchismita Sahoo, and Rukmani Mohanta, “Exploring dark matter, neutrino mass and $R_{K^{(*)}}$ anomalies in $L_\mu - L_\tau$ model,” Phys. Rev. D 99, 035042 (2019) arXiv:1809.03213 [hep-ph]

[62] Diego Guadagnoli, Mérim Rebud, and Olyc Sunners, “A gauged horizontal $SU(2)$ symmetry and $R_{K^{(*)}}$,”
Stephen F. King,

Patrick Foldenauer,

B. C. Allanach and Joe Davighi, “Third family hypercharge model for R_{K_s}, and aspects of the fermion mass problem,” JHEP 12, 079 (2019), arXiv:1809.01158 [hep-ph]

Masaya Kohda, Tanmoy Modak, and Abner Soffer, “Identifying a Z' behind $b \rightarrow sll$ anomalies at the LHC,” Phys. Rev. D 97, 115019 (2018), arXiv:1803.07492 [hep-ph]

Stephen F. King, “R_{K_s}, and the origin of Yukawa couplings,” JHEP 09, 069 (2018), arXiv:1806.06780 [hep-ph]

Guang Hua Duan, Xiang Fan, Mariana Frank, Chengcheng Han, and Jin Min Yang, “A minimal $U(1)'$ extension of MSSM in light of the B decay anomaly,” Phys. Lett. B 769, 54-58 (2019), arXiv:1809.04116 [hep-ph]

Paulina Rocha-Moran and Avelino Vicente, “Lepton flavor violation in a Z' model for the $b \rightarrow s$ anomalies,” Phys. Rev. D 99, 035016 (2019), arXiv:1810.02135 [hep-ph]

Siddharth Dwivedi, Dilip Kumar Ghosh, Adam Falkowski, and Nivedita Ghosh, “Associated $s\tau\tau$ production in the flavorful $U(1)'$ scenario for R_{K_s},” Eur. Phys. J. C 80, 263 (2020), arXiv:1908.03031 [hep-ph]

Patrick Foldenauer, Phenomenology of Extra Abelian Gauge Symmetries, Ph.D. thesis, U. Heidelberg (main) (2019).

P. Ko, Takaki Nomura, and Chaehyun Yu, “$b \rightarrow s\mu^+\mu^-$ anomalies and related phenomenology in $U(1)_B\rightarrow_{\nu L\mu L}^{-\nu L\mu L}$ flavor gauge models,” JHEP 04, 102 (2019), arXiv:1902.06107 [hep-ph]

B. C. Allanach and Joe Davighi, “Naturalising the third family hypercharge model for neutral current B-anomalies,” Eur. Phys. J. C 79, 908 (2019), arXiv:1905.10327 [hep-ph]

Junichiro Kawamura, Stuart Raby, and Andreas Trautner, “Complete vectorlike fourth family and new $U(1)'$ for muon anomalies,” Phys. Rev. D 100, 055030 (2019), arXiv:1906.11297 [hep-ph]

Wolfgang Altmannshofer, Joe Davighi, and Marco Nardaccia, “Gauging the accidental symmetries of the standard model, and implications for the flavorful anomalies,” Phys. Rev. D 101, 015004 (2020), arXiv:1909.02021 [hep-ph]

Lorenzo Calibbi, Andrea Crivellin, Fiona Kirk, Claudio Andrea Manzari, and Leonardo Vernazza, “Z' models with less-minimal flavour violation,” Phys. Rev. D 101, 095003 (2020), arXiv:1910.00014 [hep-ph]

Jason Aebischer, Andrzej J. Buras, Maria Cerdá-Sevilla, and Fulvia De Fazio, “Quark-lepton connections in Z' mediated FCNC processes: gauge anomaly cancellations at work,” JHEP 02, 183 (2020), arXiv:1912.09308 [hep-ph]

Junichiro Kawamura, Stuart Raby, and Andreas Trautner, “Complete vectorlike fourth family with $U(1)'$: A global analysis,” Phys. Rev. D 101, 035026 (2020), arXiv:1911.11075 [hep-ph]

B. C. Allanach, “$U(1)'_{\nu L\mu L}$ explanation of the neutral current B-anomalies,” Eur. Phys. J. C 81, 56 (2021), Erratum: Eur. Phys. J. C 81, 321 (2021), arXiv:2009.02197 [hep-ph]

Admir Grejlo, Peter Stangl, and Anders Eller Thomsen, “A model of muon anomalies,” Phys. Lett. B 820, 136554 (2021), arXiv:2103.13991 [hep-ph]

Joe Davighi, “Anomalous Z' bosons for anomalous B decays,” JHEP 08, 101 (2021), arXiv:2105.06918 [hep-ph]

Rigo Bause, Gudrun Hiller, Tim Höhne, Daniel F. Litim, and Tom Steudtner, “B-anomalies from flavorful $U(1)'$ extensions, safely,” Eur. Phys. J. C 82, 42 (2022), arXiv:2109.06201 [hep-ph]

B. C. Allanach, J. Eliei Camargo-Molina, and Joe Davighi, “Global fits of third family hypercharge models to neutral current B-anomalies and electroweak precision observables,” Eur. Phys. J. C 81, 721 (2021), arXiv:2103.12056 [hep-ph]

Mario Fernández Navarro and Stephen F. King, “Fermiophobic Z' model for simultaneously explaining the muon anomalies R_{K_s} and $(g-2)_\mu$,” arXiv:2109.05729 [hep-ph]

P. Ko, Takaki Nomura, and Hiroshi Okada, “Muon $g-2$, $B \rightarrow K^{(*)}\mu^+\mu^-$ anomalies, and leptophilic dark matter in $U(1)_{\nu L\mu L}$ gauge symmetry,” (2021), arXiv:2110.10513 [hep-ph]

B. C. Allanach, J. M. Butterworth, and Tyler Corbett, “Large hadron collider constraints on some simple Z' models for $b \rightarrow s\mu^+\mu^-$ anomalies,” Eur. Phys. J. C 81, 1126 (2021), arXiv:2110.13518 [hep-ph]

J. de Blas, M. Ciuchini, E. Franco, A. Goncalves, S. Mishima, M. Pierini, L. Reina, and L. Silvestrini, “Global analysis of electroweak data in the Standard Model,” (2021), arXiv:2112.07274 [hep-ph]

T. Aaltonen et al. (CDF), “High-precision measurement of the W boson mass with the CDF II detector,” Science 376, 170–176 (2022)

P. A. Zyla et al. (Particle Data Group), “Review of Particle Physics,” PTEP 2020, 083C01 (2020)

Morad Aaboud et al. (ATLAS), “Measurement of the W-boson mass in pp collisions at $\sqrt{s}=7$ TeV with the ATLAS detector,” Eur. Phys. J. C 78, 110 (2018), Erratum: Eur.Phys.J.C 78, 898 (2018), arXiv:1701.07240 [hep-ex]

Sergei Chatrchyan et al. (CMS), “Measurement of the weak mixing angle with the Drell-Yan process in proton-proton collisions at the LHC,” Phys. Rev. D 84, 112002 (2011), arXiv:1110.2602 [hep-ex]

Roel Aaij et al. (LHCb), “Measurement of the forward-backward asymmetry in $Z/\gamma^* \rightarrow \mu^+\mu^- $ decays and determination of the effective weak mixing angle,” JHEP 11, 190 (2015), arXiv:1509.07645 [hep-ex]

Roel Aaij et al. (LHCb), “Measurement of the W boson mass,” JHEP 01, 036 (2022), arXiv:2109.01113 [hep-ex]

J. de Blas, M. Pierini, L. Reina, and L. Silvestrini, “Impact of the recent measurements of the top-quark and W-boson masses on electroweak precision fits,” (2022), arXiv:2204.04204 [hep-ph]

F. del Aguila, J. de Blas, and M. Perez-Victoria, “Electroweak Limits on General New Vector Bosons,” JHEP 09, 033 (2010), arXiv:1005.3998 [hep-ph]

J. de Blas, J. M. Lizana, and M. Perez-Victoria, “Combining searches of Z' and W' bosons,” JHEP 01, 166 (2013), arXiv:1211.2229 [hep-ph]

Benjamin Grinstein, Roxanne P. Springer, and Mark B. Wise, “Effective Hamiltonian for Weak Radiative B-Meson Decay,” Phys. Lett. B 202, 138–144 (1988)

Gerhard Buchalla, Andrzej J. Buras, and Markus E.
Lautenbacher, “Weak decays beyond leading logarithms,” Rev. Mod. Phys. 68, 1125–1144 (1996) [arXiv:hep-ph/9612389].

Andrzej J. Buras and Jennifer Girrbach, “Complete NLO QCD Corrections for Tree Level Delta F = 2 FCNC Processes,” JHEP 03, 052 (2012) [arXiv:1201.1302 [hep-ph]].

Marco Ciuchini, E. Franco, V. Lubicz, G. Martinelli, I. Scimemi, and L. Silvestrini, “Next-to-leading order QCD corrections to Delta F = 2 effective Hamiltonians,” Nucl. Phys. B 523, 501–525 (1998) [arXiv:hep-ph/9711402].

Andrzej J. Buras, Mikolaj Misiak, and Jorg Urban, “Two loop QCD anomalous dimensions of flavor changing four quark operators within and beyond the standard model,” Nucl. Phys. B 586, 397–426 (2000) [arXiv:hep-ph/0005183].

S. Aoki et al. (Flavour Lattice Averaging Group), “FLAG Review 2019: Flavour Lattice Averaging Group (FLAG),” Eur. Phys. J. C 80, 113 (2020) [arXiv:1902.08191 [hep-lat]].

M. Bona et al. (UTfit), “Model-independent constraints on $A_F = 2$ operators and the scale of new physics,” JHEP 03, 049 (2008) [arXiv:0707.0636 [hep-ph]].

Yasmine Sara Amhis et al. (HFLAV), “Averages of b-hadron, c-hadron, and $τ$-lepton properties as of 2018,” Eur. Phys. J. C 81, 226 (2021) [arXiv:1908.12354 [hep-ex]].

Douglas Bryman, Vincenzo Cirigliano, Andreas Crivellin, and Gianluca Inguglia, “Testing Lepton Flavor Universality with Pion, Kaon, Tau, and Beta Decays,” (2021), arXiv:2111.05338 [hep-ph].

S. Schael et al. (ALEPH, DELPHI, L3, OPAL, LEP Electrowork), “Electroweak Measurements in Electron-Positron Collisions at W-Boson-Pair Energies at LEP,” Phys. Rept. 532, 119–244 (2013) [arXiv:1302.3415 [hep-ex]].

S. Schael et al. (ALEPH, DELPHI, L3, OPAL, SLD, LEP Electrowork Group, SLD Electrowork Group, SLD Heavy Flavour Group), “Precision electroweak measurements on the Z resonance,” Phys. Rept. 427, 257–454 (2006) [arXiv:hep-ex/0509008].

Timo Antero Aaitonen et al. (CDF, D0), “Combination of CDF and D0 W-Boson Mass Measurements,” Phys. Rev. D 88, 052018 (2013) [arXiv:1307.6727 [hep-ex]].

P. A. Zyla et al. (Particle Data Group), “Review of Particle Physics,” PTEP 2020, 083C01 (2020).

Peter J. Mohr, David B. Newell, and Barry N. Taylor, “CODATA Recommended Values of the Fundamental Physical Constants: 2014,” Rev. Mod. Phys. 88, 035009 (2016) [arXiv:1507.07956 [physics.atom-ph]].

Rym Bouchendira, Pierre Clade, Saiida Guellati-Khelifa, Francois Nez, and Francois Biraben, “New determination of the fine structure constant and test of the quantum electrodynamics,” Phys. Rev. Lett. 106, 080801 (2011) [arXiv:1012.3627 [physics.atom-ph]].

Richard H. Parker, Chenghui Yu, Weicheng Zhong, Brian Estey, and Holger Müller, “Measurement of the fine-structure constant as a test of the Standard Model,” Science 360, 191 (2018) [arXiv:1812.04130 [physics.atom-ph]].

J. De Blas et al., “HEPfit: a code for the combination of indirect and direct constraints on high energy physics models,” Eur. Phys. J. C 80, 456 (2020) [arXiv:1910.14012 [hep-ph]].

Ulrich Haisch and Susanne Westhoff, “Massive Color-Octet Bosons: Bounds on Effects in Top-Quark Pair Production,” JHEP 08, 088 (2011) [arXiv:1106.0529 [hep-ph]].

Morad Anboud et al. (ATLAS), “Measurement of the Higgs boson mass in the $H \rightarrow ZZ \rightarrow 4\ell$ and $H \rightarrow \gamma \gamma$ channels with $\sqrt{s} = 13$ TeV pp collisions using the ATLAS detector,” Phys. Lett. B 784, 345–366 (2018) [arXiv:1806.00242 [hep-ex]].

Albert M Sirunyan et al. (CMS), “A measurement of the Higgs boson mass in the diphoton decay channel,” Phys. Lett. B 805, 135425 (2020) [arXiv:2002.06398 [hep-ex]].

“Combination of CDF and D0 results on the mass of the top quark using up 9.7 fb$^{-1}$ at the Tevatron,” (2010), arXiv:1608.01881 [hep-ex].

Morad Anboud et al. (ATLAS), “Measurement of the top quark mass in the $t\bar{t} \rightarrow \text{lepton+jets}$ channel from $\sqrt{s} = 8$ TeV ATLAS data and combination with previous results,” Eur. Phys. J. C 79, 290 (2019) [arXiv:1810.01772 [hep-ex]].

Albert M Sirunyan et al. (CMS), “Measurement of the top quark mass in the all-jets final state at $\sqrt{s} = 13$ TeV and combination with the lepton+jets channel,” Eur. Phys. J. C 79, 313 (2019) [arXiv:1812.10534 [hep-ex]].

Wolfgang Altmannshofer, Stefania Gori, Maxim Pospelov, and Itay Yavin, “Neutrino Trident Production: A Powerful Probe of New Physics with Neutrino Beams,” Phys. Rev. Lett. 113, 091801 (2014) [arXiv:1406.2332 [hep-ph]].

D. Geiregat et al. (CHARM-II), “First observation of neutrino trident production,” Phys. Lett. B 245, 271–275 (1990).

S. R. Mishra et al. (CCFR), “Neutrino tridents and W$^-$Z$^+$ interference,” Phys. Rev. Lett. 66, 3117–3120 (1991).

T. Adams et al. (NuTeV), “Neutrino trident production from NuTeV,” in 29th International Conference on High-Energy Physics (1998) pp. 631–634, arXiv:hep-ex/9811012.

Adam Falkowski and Kin Mimouni, “Model independent constraints on four-lepton operators,” JHEP 02, 086 (2016) [arXiv:1511.07434 [hep-ph]].

Andrzej J. Buras, Andreas Crivellin, Fiona Kirk, Claudio Andrea Manzari, and Marc Montull, “Global analysis of leptophilic Higgs bosons,” JHEP 02, 086 (2016), arXiv:1511.07434 [hep-ph].

X. G. He, Girish C. Joshi, H. Lew, and R. R. Volkas, “New Z' phenomenology,” Phys. Rev. D 43, 22–24 (1991).

Robert Foot, “New Physics From Electric Charge Quantization?” Mod. Phys. Lett. A 6, 527–530 (1991).

Xiao-Gang He, Girish C. Joshi, H. Lew, and R. R. Volkas, “Simplest Z'-prime model,” Phys. Rev. D 44, 2118–2132 (1991).

Abad et al. (FCC), “FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2,” Eur. Phys. J. ST 228, 261–623 (2019).

“The International Linear Collider Technical Design Report - Volume 2: Physics,” (2013), arXiv:1306.6352 [hep-ph].
[130] “A Multi-TeV Linear Collider Based on CLIC Technology: CLIC Conceptual Design Report,” (2012), 10.5170/CERN-2012-007.