On n-maximal subgroups of finite groups

Vika A. Kovaleva
Department of Mathematics, Francisk Skorina Gomel State University,
Gomel 246019, Belarus
E-mail: vika.kovalyova@rambler.ru

Alexander N. Skiba
Department of Mathematics, Francisk Skorina Gomel State University,
Gomel 246019, Belarus
E-mail: alexander.skiba49@gmail.com

Abstract

We describe finite soluble groups in which every n-maximal subgroup is F-subnormal for some saturated formation F.

1 Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. We use \mathcal{U}, \mathcal{N} and \mathcal{N}^r to denote the class of all supersoluble groups, the class of all nilpotent groups and the class of soluble groups of nilpotent length at most r ($r \geq 1$). The symbol \mathbb{P} denotes the set of all primes, $\pi(G)$ denotes the set of prime divisors of the order of G. If p is a prime, then we use \mathcal{S}_p to denote the class of all p-groups.

Let \mathcal{F} be a class of groups. If $1 \in \mathcal{F}$, then we write $G^\mathcal{F}$ to denote the intersection of all normal subgroups N of G with $G/N \in \mathcal{F}$. The class \mathcal{F} is said to be a formation if either $\mathcal{F} = \emptyset$ or $1 \in \mathcal{F}$ and every homomorphic image of $G/G^\mathcal{F}$ belongs to \mathcal{F} for any group G. The formation \mathcal{F} is said to be: saturated if $G \in \mathcal{F}$ whenever $G/\Phi(G) \in \mathcal{F}$ for any group G; hereditary if $H \in \mathcal{F}$ whenever $G \in \mathcal{F}$ and H is a subgroup of G. A group G is called \mathcal{F}-critical provided G does not belong to \mathcal{F} but every proper subgroup of G belongs to \mathcal{F}.

For any formation function $f : \mathbb{P} \to \{\text{group formation}\}$, the symbol $LF(f)$ denotes the collection of all groups G such that either $G = 1$ or $G \neq 1$ and $G/C_G(H/K) \in f(p)$ for every chief factor H/K of G and every $p \in \pi(H/K)$. It is well-known that for any non-empty saturated formation \mathcal{F}, there

Keywords: n-maximal subgroup, soluble group, supersoluble group, n-multiply saturated formation, \mathcal{F}-critical group, \mathcal{F}-subnormal subgroup.

Mathematics Subject Classification (2000): 20D10, 20D15
is a unique formation function \(F \) such that \(\mathcal{F} = LF(F) \) and \(F(p) = \mathcal{S}_pF(p) \subseteq \mathcal{F} \) for all primes \(p \), where \(\mathcal{S}_pF(p) \) is the set of all groups \(G \) such that \(G^{F(p)} \in \mathcal{S}_p \) (see Proposition 3.8 in [1, Chapter IV]). The formation function \(F \) is called the \textit{canonical local satellite} of \(\mathcal{F} \). A chief factor \(H/K \) of \(G \) is called \(\mathcal{F} \)-central in \(G \) provided \(G/C_{G}(H/K) \in F(p) \) for all primes \(p \) dividing \(|H/K| \), otherwise it is called \(\mathcal{F} \)-eccentric.

Fix some ordering \(\phi \) of \(\mathbb{P} \). The record \(p \phi q \) means that \(p \) precedes \(q \) in \(\phi \) and \(p \neq q \). Recall that a group \(G \) of order \(p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}}\ldots p_{n}^{\alpha_{n}} \) is called \(\phi \)-dispersive whenever \(p_{1}\phi p_{2}\phi \ldots \phi p_{n} \) and for every \(i \) there is a normal subgroup of \(G \) of order \(p_{1}^{\alpha_{1}}p_{2}^{\alpha_{2}}\ldots p_{i}^{\alpha_{i}} \). Furthermore, if \(\phi \) is such that \(p \phi q \) always implies \(p > q \), then every \(\phi \)-dispersive group is called \(\textit{Ore dispersive} \).

By definition, every formation is \(0 \)-multiply saturated and for \(n \geq 1 \) a formation \(\mathcal{F} \) is called \(n \)-multiply saturated if \(\mathcal{F} = LF(f) \), where every non-empty value of the function \(f \) is an \((n-1)\)-multiply saturated formation (see [2] and [3]). In fact, almost saturated formations met in mathematical practice are \(n \)-multiply saturated for every natural \(n \). For example, the formations of all soluble groups, all nilpotent groups, all \(p \)-soluble groups, all \(p \)-nilpotent groups, all \(p \)-closed groups, all \(p \)-decomposable groups, all Ore dispersive groups, all metanilpotent groups are \(n \)-multiply saturated for all \(n \geq 1 \). Nevertheless, the formations of all supersoluble groups and all \(p \)-supersoluble groups are saturated, but they are not \(2 \)-multiply saturated formations.

Recall that a subgroup \(H \) of \(G \) is called a \(2 \)-maximal (second maximal) subgroup of \(G \) whenever \(H \) is a maximal subgroup of some maximal subgroup \(M \) of \(G \). Similarly we can define \(3 \)-maximal subgroups, and so on.

The interesting and substantial direction in finite group theory consists in studying the relations between the structure of the group and its \(n \)-maximal subgroups. One of the earliest publications in this direction is the article of Huppert [4] who established the supersolubility of a group \(G \) whose all second maximal subgroups are normal. In the same article Huppert proved that if all \(3 \)-maximal subgroups of \(G \) are normal in \(G \), then the commutator subgroup \(G' \) of \(G \) is nilpotent and the chief rank of \(G \) is at most 2. These two results were developed by many authors. Among the recent results on \(n \)-maximal subgroups we can mention [5], where the solubility of groups is established in which all \(2 \)-maximal subgroups enjoy the cover-avoidance property, and [6, 7, 8], where new characterizations of supersoluble groups in terms of \(2 \)-maximal subgroups were obtained. The classification of non-nilpotent groups whose all \(2 \)-maximal subgroups are \(TI \)-subgroups appeared in [9]. Description was obtained in [10] of groups whose every \(3 \)-maximal subgroup permutes with all maximal subgroups. The non-nilpotent groups are described in [11] in which every two \(3 \)-maximal subgroups are permutable. The groups are described in [12] whose all \(3 \)-maximal subgroups are \(S \)-quasinormal, that is, permute with all Sylow subgroups. Subsequently this result was strengthened in [13] to provide a description of the groups whose all \(3 \)-maximal subgroups are subnormal.

Despite of all these and many other known results about \(n \)-maximal subgroups, the fundamental work of Mann [14] still retains its value. It studied the structure of groups whose \(n \)-maximal
subgroups are subnormal. Mann proved that if all n-maximal subgroups of a soluble group G are subnormal and $|\pi(G)| \geq n+1$, then G is nilpotent; but if $|\pi(G)| \geq n-1$, then G is ϕ-dispersive for some ordering ϕ of P. Finally, in the case $|\pi(G)| = n$ Mann described G completely.

Let \mathcal{F} be a non-empty formation. Recall that a subgroup H of a group G is said to be \mathcal{F}-subnormal in G if either $H = G$ or there exists a chain of subgroups $H = H_0 < H_1 < \ldots < H_n = G$ such that H_{i-1} is a maximal subgroup of H_i and $H_i/(H_{i-1})H_i \in \mathcal{F}$, for $i = 1, \ldots, n$.

The main goal of this article is to prove the following formation analogs of Mann’s theorems.

Theorem A. Let \mathcal{F} be an r-multiply saturated formation such that $N \subseteq \mathcal{F} \subseteq N^{r+1}$ for some $r \geq 0$. If every n-maximal subgroup of a soluble group G is \mathcal{F}-subnormal in G and $|\pi(G)| \geq n+r+1$, then $G \in \mathcal{F}$.

Theorem B. Let $\mathcal{F} = LF(F)$ be a saturated formation such that $N \subseteq \mathcal{F} \subseteq \mathcal{U}$, where F is the canonical local satellite of \mathcal{F}. Let G be a soluble group with $|\pi(G)| \geq n + 1$. Then all n-maximal subgroups of G are \mathcal{F}-subnormal in G if and only if G is a group of one of the following types:

I. $G \in \mathcal{F}$.

II. $G = A \rtimes B$, where $A = G^\mathcal{F}$ and B are Hall subgroups of G, while G is Ore dispersive and satisfies the following:

1. A is either of the form $N_1 \times \ldots \times N_t$, where each N_i is a minimal normal subgroup of G, which is a Sylow subgroup of G, for $i = 1, \ldots, t$, or a Sylow p-subgroup of G of exponent p for some prime p and the commutator subgroup, the Frattini subgroup, and the center of A coincide, while $A/\Phi(A)$ is an \mathcal{F}-eccentric chief factor of G;

2. every n-maximal subgroup of G belongs to \mathcal{F} and induces on the Sylow p-subgroup of A an automorphism group which is contained in $F(p)$ for every prime divisor p of $|A|$.

In the proof of Theorem B we often use Theorem A and the following useful fact.

Theorem C. Let \mathcal{F} be a hereditary saturated formation such that every \mathcal{F}-critical group is soluble and it has a normal Sylow p-subgroup $G_p \neq 1$ for some prime p. Then every 2-maximal subgroup of G is \mathcal{F}-subnormal in G if and only if either $G \in \mathcal{F}$ or G is an \mathcal{F}-critical group and $G^\mathcal{F}$ is a minimal normal subgroup of G.

Theorem D. Let \mathcal{F} be a saturated formation such that $N \subseteq \mathcal{F} \subseteq \mathcal{U}$. If every n-maximal subgroup of a soluble group G is \mathcal{F}-subnormal in G and $|\pi(G)| \geq n$, then G is ϕ-dispersive for some ordering ϕ of P.

All unexplained notation and terminology are standard. The reader is referred to [11] or [15] if necessary.
2 Preliminary Results

Let \mathcal{F} be a non-empty formation. Recall that a maximal subgroup H of G is said to be \mathcal{F}-normal in G if $G/H \in \mathcal{F}$, otherwise it is said to be \mathcal{F}-abnormal in G.

We use the following results.

Lemma 2.1. Let \mathcal{F} be a formation and H an \mathcal{F}-subnormal subgroup of G.

1. If \mathcal{F} is hereditary and $K \leq G$, then $H \cap K$ is an \mathcal{F}-subnormal subgroup in K [15, Lemma 6.1.7(2)].

2. If N is a normal subgroup in G, then HN/N is an \mathcal{F}-subnormal subgroup in G/N [15, Lemma 6.1.6(3)].

3. If K is a subgroup of G such that K is \mathcal{F}-subnormal in H, then K is \mathcal{F}-subnormal in G [15, Lemma 6.1.6(1)].

4. If \mathcal{F} is hereditary and K is a subgroup of G such that $G^F \leq K$, then K is \mathcal{F}-subnormal in G [15, Lemma 6.1.7(1)].

The following lemma is evident.

Lemma 2.2. Let \mathcal{F} be a hereditary formation. If $G \in \mathcal{F}$, then every subgroup of G is \mathcal{F}-subnormal in G.

Lemma 2.3. Let \mathcal{F} be a hereditary saturated formation. If every n-maximal subgroup of G is \mathcal{F}-subnormal in G, then every $(n-1)$-maximal subgroup of G belongs to \mathcal{F} and every $(n+1)$-maximal subgroup of G is \mathcal{F}-subnormal in G.

Proof. We first show that every $(n-1)$-maximal subgroup of G belongs to \mathcal{F}. Let H be an $(n-1)$-maximal subgroup of G and K a maximal subgroup of H. Then K is an n-maximal subgroup of G and so, by hypothesis, K is \mathcal{F}-subnormal in G. Hence K is \mathcal{F}-subnormal in H by Lemma 2.1(1). Thus all maximal subgroups of H are \mathcal{F}-normal in H. Therefore $H \in \mathcal{F}$ since \mathcal{F} is saturated.

Now, let E be an $(n+1)$-maximal subgroup of G, and let E_1 and E_2 be an n-maximal and an $(n-1)$-maximal subgroup of G, respectively, such that $E \leq E_1 \leq E_2$. Then, by the above, $E_2 \in \mathcal{F}$, so $E_1 \in \mathcal{F}$. Hence E is \mathcal{F}-subnormal in E_1 by Lemma 2.2. By hypothesis, E_1 is \mathcal{F}-subnormal in G. Therefore E is \mathcal{F}-subnormal in G. The lemma is proved.

Lemma 2.4 (See [16] Chapter VI, Theorem 24.2]). Let \mathcal{F} be a saturated formation and G a soluble group. If $G^F \neq 1$ and every \mathcal{F}-abnormal maximal subgroup of G belongs to \mathcal{F}, then the following hold:

1. G^F is a p-group for some prime p;

2. $G^F/\Phi(G^F)$ is an \mathcal{F}-eccentric chief factor of G;

3. if G^F is a non-abelian group, then the center, commutator subgroup, and Frattini subgroup of G coincide and are of exponent p;
(4) if G^F is abelian, then G^F is elementary;

(5) if $p > 2$, then G^F is of exponent p; for $p = 2$ the exponent of G^F is at most 4;

(6) every pair of \mathcal{F}-abnormal maximal subgroups of G are conjugate in G.

Lemma 2.5 (See [16, Chapter VI, Theorem 24.5]). Let \mathcal{F} be a saturated formation. Let G be an \mathcal{F}-critical group and G has a normal Sylow p-subgroup $G_p \neq 1$ for some prime p. Then:

1. $G_p = G^F$;
2. $F(G) = G_p\Phi(G)$;
3. $G_{p'} \cap C_G(G_p/\Phi(G_p)) = \Phi(G) \cap G_{p'}$, where $G_{p'}$ is some complement of G_p in G.

Lemma 2.6 (See [16, Chapter VI, Theorems 26.3 and 26.5]). Let G be an U-critical group. Then:

1. G is soluble and $|\pi(G)| \leq 3$;
2. if G is not a Schmidt group, then G is Ore dispersive;
3. G^U is the unique normal Sylow subgroup of G;
4. if S is a complement of G^U in G, then $S/S \cap \Phi(G)$ is either a primary cyclic group or a Miller-Moreno group.

Recall that the product of all normal subgroups of a group G whose G-chief factors are \mathcal{F}-central in G is called \mathcal{F}-hypercentre of G and denoted by $Z_\mathcal{F}(G)$ [11 p. 389].

Lemma 2.7 (See [17, Lemma 2.14]). Let \mathcal{F} be a saturated formation and F the canonical local satellite of \mathcal{F}. Let E be a normal p-subgroup of a group G. Then $E \leq Z_\mathcal{F}(G)$ if and only if $G/C_G(E) \in F(p)$.

The product \mathcal{MH} of the formations \mathcal{M} and \mathcal{H} is the class of all groups G such that $G^\mathcal{H} \in \mathcal{M}$.

Lemma 2.8 (See [3, Corollary 7.14]). The product of any two n-multiply saturated formations is an n-multiply saturated formation.

We shall also need the following evident lemma.

Lemma 2.9. If $G = AB$, then $G = AB^x$ for all $x \in G$.

Let \mathcal{F} be a class of groups and t a natural number with $t \geq 2$. Recall that \mathcal{F} is called Σ_t-closed if \mathcal{F} contains all such groups G that G has subgroups H_1, \ldots, H_t whose indices are pairwise coprime and $H_i \in \mathcal{F}$, for $i = 1, \ldots, t$.

Lemma 2.10 (See [16, Chapter I, Lemma 4.11]). Every formation of nilpotent groups is Σ_3-closed.

If $\mathcal{F} = LF(f)$ and $f(p) \subseteq \mathcal{F}$ for all primes p, then f is called an integrated local satellite of \mathcal{F}. Let \mathcal{X} be a set of groups. The symbol $l_n\text{form}\mathcal{X}$ denotes the intersection of all n-multiply saturated formations \mathcal{F} such that $\mathcal{X} \subseteq \mathcal{F}$. In view of [15 Remak 3.1.7], $l_n\text{form}\mathcal{X}$ is an n-multiply saturated
Lemma 2.11 (See [8] Theorem 8.3). Let \mathcal{F} be an n-multiply saturated formation. Then \mathcal{F} has an integrated local satellite f such that $f(p) = l_{n-1}\text{form}(G/O_{p',p}(G)|G \in \mathcal{F})$ for all primes p.

Lemma 2.12 (See [18] Section 1.4). Every r-multiply saturated formation contained in \mathcal{N}^{r+1} is hereditary.

Lemma 2.13 (See [16] p. 35). For any ordering ϕ of \mathbb{P} the class of all ϕ-dispersive groups is a saturated formation.

Lemma 2.14 (See [17] Corollary 1.6). Let \mathcal{F} be a saturated formation containing all nilpotent groups and E a normal subgroup of G. If $E/E \cap \Phi(G) \in \mathcal{F}$, then $E \in \mathcal{F}$.

Lemma 2.15 (See [16] Theorem 15.10). Let \mathcal{F} be a saturated formation and G a group such that G^{3} is nilpotent. Let H and M be subgroups of G, $H \in \mathcal{F}$, $H \leq M$ and $HF(G) = G$. If H is \mathcal{F}-subnormal in M, then $M \in \mathcal{F}$.

3 Proof of Theorem A

First we give two propositions which may be independently interesting since they generalize some known results.

Proposition 3.1. Suppose that $G = A_{1}A_{2} = A_{2}A_{3} = A_{1}A_{3}$, where A_{1}, A_{2} and A_{3} are soluble subgroups of G. If the indices $|G : N_{G}(A_{1})|$, $|G : N_{G}(A_{2})|$, $|G : N_{G}(A_{3})|$ are pairwise coprime, then G is soluble.

Corollary 3.2. Suppose that $G = A_{1}A_{2} = A_{2}A_{3} = A_{1}A_{3}$, where A_{1}, A_{2} and A_{3} are soluble subgroups of G. If the indices $|G : N_{G}(A_{1})|$, $|G : N_{G}(A_{2})|$, $|G : N_{G}(A_{3})|$ are pairwise coprime, then G is soluble.

Corollary 3.3 (H. Wielandt). If G has three soluble subgroups A_{1}, A_{2} and A_{3} whose indices $|G : A_{1}|$, $|G : A_{2}|$, $|G : A_{3}|$ are pairwise coprime, then G is itself soluble.

Proposition 3.4. Let \mathcal{M} be an r-multiply saturated formation and $N \subseteq \mathcal{M} \subseteq \mathcal{N}^{r+1}$ for some $r \geq 0$. Then, for any prime p, both formations \mathcal{M} and $\exists_{p}\mathcal{M}$ are Σ_{r+3}-closed.

Proof. Let M be the canonical local satellite of \mathcal{M}. Let \mathcal{F} be one of the formations \mathcal{M} or $\exists_{p}\mathcal{M}$. Let G be any group such that for some subgroups H_{1}, \ldots, H_{r+3} of G whose indices $|G : H_{1}|, \ldots, |G : H_{r+3}|$ are pairwise coprime we have $H_{1}, \ldots, H_{r+3} \in \mathcal{F}$. We shall prove $G \in \mathcal{F}$. Suppose that this is false and let G be a counterexample with $r + |G|$ minimal. Let N be a minimal normal subgroup of G.

(1) $N = G^{3}$ is the only minimal normal subgroup of G and $N \leq O_{q}(G)$ for some prime q. Hence if $\mathcal{F} = \exists_{p}\mathcal{M}$, then $q \neq p$.

It is clear that the hypothesis holds for G/N, so $G/N \in \mathcal{F}$ by the choice of G. Hence $N = G^{3}$ since $G \notin \mathcal{F}$. Moreover, N is a q-group for some prime q since G is soluble by Proposition 3.1.
Finally, if \(\mathcal{F} = \mathcal{S}_p \mathcal{M} \) and \(p = q \), then

\[
G \in \mathcal{S}_p(\mathcal{S}_p \mathcal{M}) = \mathcal{S}_p \mathcal{F} = \mathcal{F},
\]
a contradiction. Hence we have (1).

Since the indices \(|G : H_1|, \ldots, |G : H_{r+3}| \) are pairwise coprime, in view of (1) we may assume without loss of generality that \(N \leq H_i \) for all \(i = 2, \ldots, r + 3 \).

(2) \(C_G(N) = N \).

First we show that \(N \not\subseteq \Phi(G) \). Suppose that \(N \leq \Phi(G) \). If \(r > 0 \), then \(\mathcal{F} \) is saturated by Lemma 2.8, so \(G \in \mathcal{F} \). This contradiction shows that \(r = 0 \) and so \(\mathcal{F} = \mathcal{S}_p \mathcal{M} \) by Lemma 2.10 and the choice of \(G \). Hence \(q \neq p \) by (1). Let \(O/N = O_p(G/N) \) and \(P \) be a Sylow \(p \)-subgroup of \(O \). Then \(G = ON_G(P) = NPN_G(P) = NN_G(P) = N_G(P) \) by the Frattini Argument since \(N \leq \Phi(G) \). Hence in view of (1), \(O_p(G/N) = 1 \) and so \(G/N \in \mathcal{M} \) since \(G/N \in \mathcal{F} = \mathcal{S}_p \mathcal{M} \). But then \(G \) is a \(p' \)-group. Hence \(H_1, H_2, H_3 \in \mathcal{M} \). Thus \(G \in \mathcal{M} \subseteq \mathcal{F} \) by Lemma 2.10. This contradiction shows that \(N \not\subseteq \Phi(G) \). But then \(C_G(N) = N \) by (1) and \(\mathcal{M} \), Theorem 15.2).

(3) \(r > 0 \).

Suppose that \(r = 0 \). Then \(\mathcal{F} = \mathcal{S}_p \mathcal{M} \), where \(\mathcal{M} \) is a formation of nilpotent groups. Since \(N \leq H_2 \in \mathcal{F} \) and, by (2), \(C_G(N) = N \), \(O_p(H_2) = 1 \). Hence \(H_2 \) is a \(p' \)-group. Similarly, \(H_3 \) is a \(p' \)-group. Hence \(G = H_1H_2 \) is a \(p' \)-group. But then \(H_1 \in \mathcal{M} \), so \(G \in \mathcal{F} \) by Lemma 2.10. This contradiction shows that we have (3).

(4) \(H_i/N \in M(q) \) for all \(i = 2, \ldots, r + 3 \).

Let \(i \in \{2, \ldots, r+3\} \). Then \(H_i \in \mathcal{M} \). Indeed, if \(\mathcal{F} = \mathcal{S}_p \mathcal{M} \), then \(q \neq p \) by (1). On the other hand, in view of (2), \(C_G(N) = N \). Hence \(O_p(H_i) = 1 \), which implies that \(H_i \in \mathcal{M} \). But then, by (2) and Lemma 2.7, \(H_i/N = H_i/C_{H_i}(N) \in M(q) \).

(5) \(G/N \in M(q) \).

By Lemma 2.11 and [11], Chapter IV, Proposition 3.8], \(M(q) = S_q \mathcal{M}_0 \), where \(\mathcal{M}_0 = l_{r-1} \)-form \((G/O_{q',q}(G))/G \in \mathcal{M} \). Since \(\mathcal{M} \subseteq N^{r+1} \), \(G/O_{q',q}(G) \in N^r \), so \(\mathcal{M}_0 \subseteq N^r \) since \(\mathcal{M}_0 \) is an \((r-1) \)-multiply saturated formation. Therefore, the minimality of \(r + |G| \) and Claim (4) imply that \(G/N \in M(q) \).

Final contradiction. Since \(N \) is a \(q \)-group by (1), from (5) it follows that \(G \in \mathcal{S}_q \mathcal{M}(q) = M(q) \subseteq \mathcal{M} \subseteq \mathcal{S}_p \mathcal{M} \). This contradiction completes the proof of the proposition.

Corollary 3.5 (See [20], Satz 1.3]. Every saturated formation contained in \(N^2 \) is \(\Sigma_4 \)-closed.

Corollary 3.6. The class of all soluble groups of nilpotent length at most \(r \) (\(r \geq 2 \)) is \(\Sigma_{r+2} \)-closed.

Proof. It is clear that \(N^r \) is hereditary formation. Moreover, in view of Lemma 2.8, \(N^r \) is an \((r-1) \)-multiply saturated formation. So \(N^r \) is \(\Sigma_{r+2} \)-closed by Proposition 3.4.

Proof of Theorem A. Suppose that the theorem is false and consider some counterexample
G of minimal order. Take a maximal subgroup M of G. Then by hypothesis all \((n - 1)\)-maximal subgroups of M are \(\mathcal{F}\)-subnormal in G, and so they are \(\mathcal{F}\)-subnormal in M by Lemmas 2.1(1) and 2.12. The solubility of G implies that either \(|\pi(M)| = |\pi(G)|\) or \(|\pi(M)| = |\pi(G)| - 1\), so \(M \in \mathcal{F}\) by the choice of G. Hence G is an \(\mathcal{F}\)-critical group.

Since G is soluble, G has a maximal subgroup T with \(|G : T| = p^a\) for any prime p dividing \(|G|\). On the other hand, \(\mathcal{F}\) is \(\Sigma_{r+3}\)-closed by Proposition 3.4. Hence \(|\pi(G)| \leq r + 2\). Moreover, by hypothesis, \(|\pi(G)| \geq n + r + 1\). Therefore \(n = 1\). Thus all maximal subgroups of G are \(\mathcal{F}\)-normal, so \(G/\Phi(G) \in \mathcal{F}\). But \(\mathcal{F}\) is a saturated formation and hence \(G \in \mathcal{F}\). This contradiction completes the proof of the result.

Corollary 3.7 (See [11, Theorem 6]). If each \(n\)-maximal subgroup of a soluble group G is subnormal, and if \(|\pi(G)| \geq n + 1\), then G is nilpotent.

Corollary 3.8 (See [21, Theorem A]). If every \(n\)-maximal subgroup of a soluble group G is \(\mathcal{U}\)-subnormal in G and \(|\pi(G)| \geq n + 2\), then G is supersoluble.

Corollary 3.9. Let \(\mathcal{F}\) be the class of all groups G with \(G' \leq F(G)\). If every \(n\)-maximal subgroup of a soluble group G is \(\mathcal{F}\)-subnormal in G and \(|\pi(G)| \geq n + 2\), then G \(\in \mathcal{F}\).

Corollary 3.10. If every \(n\)-maximal subgroup of a soluble group G is \(\mathcal{N}\)-subnormal in G \((r \geq 1)\) and \(|\pi(G)| \geq n + r\), then G \(\in \mathcal{N}\).

4 Proofs of Theorems B, C, and D

Proof of Theorem C. First suppose that every 2-maximal subgroup of G is \(\mathcal{F}\)-subnormal in G. Assume that \(G \notin \mathcal{F}\). We shall show that G is an \(\mathcal{F}\)-critical group and \(G^{\mathcal{F}}\) is a minimal normal subgroup of G. Let M be a maximal subgroup of G and T a maximal subgroup of M. By hypothesis, T is \(\mathcal{F}\)-subnormal in G. Therefore T is \(\mathcal{F}\)-normal in M by Lemma 2.1(1), so \(M/T_M \in \mathcal{F}\). Since T is arbitrary and \(\mathcal{F}\) is saturated, \(M \in \mathcal{F}\). Consequently, all maximal subgroups of G belong to \(\mathcal{F}\). Hence G is an \(\mathcal{F}\)-critical group. Then by hypothesis, G is soluble and it has a normal Sylow p-subgroup \(G_p \neq 1\) for some prime p. Thus \(G_p = G^{\mathcal{F}}\) by Lemma 2.5. On the other hand, by Lemma 2.4, \(G_p/\Phi(G_p)\) is a chief factor of G.

Let M be an \(\mathcal{F}\)-abnormal maximal subgroup of G. Then \(G_p \notin M\), so \(G = G_pM\) and \(M = (G_p \cap M)G_{p'} = \Phi(G_p)G_{p'}\), where \(G_{p'}\) is a Hall \(p'\)-subgroup of G. Assume that \(\Phi(G_p) \neq 1\). It is clear that \(\Phi(G_p) \notin \Phi(M)\). Let T be a maximal subgroup of M such that \(\Phi(G_p) \notin T\). Then \(M = \Phi(G_p)T\). Since T is \(\mathcal{F}\)-subnormal in G, there is a maximal subgroup L of G such that \(T \leq L\) and \(G/L_G \in \mathcal{F}\). Then \(G_p \leq LG\), so \(G = G_pM = G_p\Phi(G_p)T = G_pT \leq L\), a contradiction. Hence \(\Phi(G_p) = 1\). Therefore \(G_p = G^{\mathcal{F}}\) is a minimal normal subgroup of G by Lemma 2.4.

Now suppose that G is an \(\mathcal{F}\)-critical group and \(G^{\mathcal{F}}\) is a minimal normal subgroup of G. Let T be a 2-maximal subgroup of G and M a maximal subgroup of G such that T is a maximal subgroup
of \(M \). Since \(M \in \mathcal{F} \), \(T \) is \(\mathcal{F} \)-subnormal in \(M \) by Lemma 2.2. Therefore, if \(M \) is \(\mathcal{F} \)-normal in \(G \), then \(T \) is \(\mathcal{F} \)-subnormal in \(G \) by Lemma 2.1(3). Assume that \(M \) is \(\mathcal{F} \)-abnormal in \(G \). Then \(G^\mathcal{F} \not\leq M \). Therefore, since \(G^\mathcal{F} \) is a minimal normal subgroup of \(G \) by hypothesis, \(G = G^\mathcal{F} \rtimes M \) and \(G^\mathcal{F}T \) is a maximal \(\mathcal{F} \)-normal subgroup of \(G \). Moreover, since \(G \) is an \(\mathcal{F} \)-critical group, \(G^\mathcal{F}T \in \mathcal{F} \) and hence \(T \) is \(\mathcal{F} \)-subnormal in \(G^\mathcal{F}T \) by Lemma 2.2. Hence, \(T \) is \(\mathcal{F} \)-subnormal in \(G \). The theorem is proved.

From Theorem C and Lemma 2.6 we get

Corollary 4.1 (See [21, Theorem 3.1]). Every 2-maximal subgroup of \(G \) is \(\mathcal{U} \)-subnormal in \(G \) if and only if \(G \) is an \(\mathcal{U} \)-critical group and \(G^{\mathcal{U}l} \) is a minimal normal subgroup of \(G \).

Proof of Theorem B. First suppose that all \(n \)-maximal subgroups of \(G \) are \(\mathcal{F} \)-subnormal in \(G \). We shall show, in this case, that either \(G \in \mathcal{F} \) or \(G \) is a group of the type II. Assume that this is false and consider a counterexample \(G \) for which \(|G| + n \) is minimal. Therefore \(A = G^\mathcal{F} \not= 1 \). Then:

(a) The hypothesis holds for every maximal subgroup of \(G \).

Let \(M \) be a maximal subgroup of \(G \). Then by hypothesis, all \((n - 1)\)-maximal subgroups of \(M \) are \(\mathcal{F} \)-subnormal in \(G \), and so they are \(\mathcal{F} \)-subnormal in \(M \) by Lemmas 2.1(1) and 2.12. Moreover, the solubility of \(G \) implies that either \(|\pi(M)| = |\pi(G)| \) or \(|\pi(M)| = |\pi(G)| - 1 \).

(b) If \(M \) is a maximal subgroup of \(G \) and \(|\pi(M)| = |\pi(G)| \), then \(M \in \mathcal{F} \).

In view of hypothesis and Lemmas 2.1(1) and 2.12, all \((n - 1)\)-maximal subgroups of \(M \) are \(\mathcal{F} \)-subnormal in \(M \). Since \(|\pi(M)| = |\pi(G)| \geq n + 1 = n - 1 + 2 \), \(M \in \mathcal{F} \) by Theorem A.

(c) If \(W \) is a Hall \(q' \)-subgroup of \(G \) for some \(q \in \pi(G) \), then either \(W \in \mathcal{F} \) or \(W \) is a group of the type II.

If \(W \) is not a maximal subgroup of \(G \), then there is a maximal subgroup \(V \) of \(G \) such that \(W \leq V \) and \(|\pi(V)| = |\pi(G)| \). By (b), \(V \in \mathcal{F} \). Hence \(W \in \mathcal{F} \) by Lemma 2.12. Suppose that \(W \) is a maximal subgroup of \(G \). Then by (a), the hypothesis holds for \(W \), so either \(W \in \mathcal{F} \) or \(W \) is a group of the type II by the choice of \(G \).

(d) The hypothesis holds for \(G/N \), where \(N \) is a minimal normal subgroup of \(G \).

If \(N \) is not a Sylow subgroup of \(G \), then \(|\pi(G/N)| = |\pi(G)| \). Moreover, if \(H/N \) is an \(n \)-maximal subgroup of \(G/N \), then \(H \) is an \(n \)-maximal subgroup of \(G \). Therefore \(H \) is \(\mathcal{F} \)-subnormal in \(G \). Consequently, \(H/N \) is \(\mathcal{F} \)-subnormal in \(G/N \) by Lemma 2.1(2). But if \(G/N \) has no \(n \)-maximal subgroups, then by the solubility of \(G \), the identity subgroup of \(G/N \) is \(\mathcal{F} \)-subnormal in \(G/N \) and it is the unique \(i \)-maximal subgroup of \(G/N \) for some \(i < n \) with \(i < |\pi(G/N)| \). Finally, consider the case that \(N \) is a Sylow \(p' \)-subgroup of \(G \). Let \(E \) be a Hall \(p' \)-subgroup of \(G \). It is clear that \(|\pi(E)| = |\pi(G)| - 1 \) and \(E \) is a maximal subgroup of \(G \).

Let \(H/N \) be an \((n - 1)\)-maximal subgroup of \(G/N \). Then \(H \) is an \((n - 1)\)-maximal subgroup of \(G \) and \(H = H \cap NE = N(H \cap E) \). There is a chain of subgroups \(H = H_0 < H_1 < \ldots < H_{n-1} = G \) of \(G \), where \(H_{i-1} \) is a maximal subgroup of \(H_i \) \((i = 1, \ldots, n - 1) \). Then \(H_{i-1} \cap E \) is a maximal
subgroup of $H_i \cap E$, for $i = 1, \ldots, n - 1$. Indeed, suppose that for some i there is a subgroup K of $H_i \cap E$ such that $H_{i-1} \cap E \leq K \leq H_i \cap E$. Then $(H_{i-1} \cap E)N \leq KN \leq (H_i \cap E)N$, so $H_{i-1} = H_{i-1} \cap EN \leq KN \leq H_i \cap EN = H_i$. Whence either $KN = H_{i-1}$ or $KN = H_i$. If $KN = H_{i-1}$, then $H_{i-1} \cap E = KN \cap E = K(\cap N \cap E) = K$. In the second case we have $H_{i-1} \cap E = KN \cap E = K(\cap N \cap E) = K$. Therefore $H_{i-1} \cap E$ is a maximal subgroup of $H_i \cap E$, so $H \cap E$ is an $(n-1)$-maximal subgroup of E. Since E is a maximal subgroup of G, $H \cap E$ is an n-maximal subgroup of G. Hence $H \cap E$ is \mathcal{F}-subnormal in G by hypothesis. Therefore $H/N = (H \cap E)N/N$ is \mathcal{F}-subnormal in G/N by Lemma 2.1(2).

(e) $|\pi(G)| > 2$.

If $|\pi(G)| = 2$, then $n = 1$ and so all maximal subgroups of G are \mathcal{F}-normal by hypothesis. Hence $G \in \mathcal{F}$ since \mathcal{F} is a saturated formation, a contradiction.

(f) G is an Ore dispersive group.

Suppose that this is false. Take a minimal normal subgroup N of G. Then by (d), the hypothesis holds for G/N, so either $G/N \in \mathcal{F}$ or G/N is a group of the type II. Thus, in view of $\mathcal{F} \subseteq \mathcal{U}$ and the choice of G, G/N is an Ore dispersive group. By Lemma 2.13, the class of all Ore dispersive groups is a saturated formation. Therefore N is the unique minimal normal subgroup of G and $N \not\subseteq \Phi(G)$. Hence $\Phi(G) = 1$ and there is a maximal subgroup L of G such that $G = N \times L$ and $L_G = 1$. Thus $C_G(N) = N$ by [I, A, Theorem 15.2].

Since G is soluble, G has a normal maximal subgroup M with $|G : M| = p$ for some prime p and either $|\pi(M)| = |\pi(G)|$ or $|\pi(M)| = |\pi(G)| - 1$. By (a), the hypothesis holds for M. Therefore, in view of $\mathcal{F} \subseteq \mathcal{U}$ and the choice of G, M is an Ore dispersive group. Denote by q the greatest number in $\pi(M)$. Take a Sylow q-subgroup M_q of M. Since M_q is a characteristic subgroup of M, M_q is normal in G. Consider the case $|\pi(M)| = |\pi(G)|$ first. Then q is the greatest prime divisor of the order of G and $M_q \neq 1$. Hence G/M_q is an Ore dispersive group, and by the maximality of q, so is G. Suppose now that $|\pi(M)| = |\pi(G)| - 1$. If $q > p$, then, as above, we conclude that G is an Ore dispersive group as well. Let $p > q$. Then p is the greatest prime divisor of $|G|$. Since $M_q \neq 1$, it follows that $N \leq M_q$, so N is a q-group. In addition, since $|\pi(G)| > 2$ by (e), there is a prime divisor r of the order of G such that $q \neq r \neq p$. Take a Hall r'-subgroup W of G. Then $PN \leq W$ for some Sylow p-subgroup P of G. Moreover, by (c), W is an Ore dispersive group. Hence P is normal in W, and so $P \leq C_G(N) = N$. The resulting contradiction shows that G is an Ore dispersive group.

(g) A is a nilpotent group.

Suppose that this is false. Let N be a minimal normal subgroup of G. Then by (d), $(G/N)^{\mathcal{F}} = G^{\mathcal{F}} N/N \simeq G^{\mathcal{F}} / G^{\mathcal{F}} \cap N$ is a nilpotent group. It is known that the class of all nilpotent groups is a saturated formation. Hence in the case when G has a minimal normal subgroup $R \neq N$ we have $G^{\mathcal{F}} / (G^{\mathcal{F}} \cap N) \cap (G^{\mathcal{F}} \cap R) \simeq G^{\mathcal{F}}$ is nilpotent. Thus N is the unique minimal normal subgroup of G and $N \leq G^{\mathcal{F}}$. If $N \leq \Phi(G)$, then $G^{\mathcal{F}} / G^{\mathcal{F}} \cap \Phi(G) \simeq (G^{\mathcal{F}} / N) / ((G^{\mathcal{F}} \cap \Phi(G)) / N)$ is nilpotent, so $G^{\mathcal{F}}$ is nilpotent by Lemma 2.14. Therefore $N \not\subseteq \Phi(G)$. Hence $\Phi(G) = 1$ and there is a maximal subgroup
of G such that $G = N \times L$ and $L_G = 1$. Thus $C_G(N) = N$ by [1], A, Theorem 15.2 and $N \neq A$.

Case 1: $|\pi(G)| = 3$. By hypothesis, either all maximal subgroups of G or all its 2-maximal subgroups are \mathcal{F}-subnormal in G. In the first case we infer that $G \in \mathcal{F}$, which contradicts the choice of G. Hence all 2-maximal subgroups of G are \mathcal{F}-subnormal. Since $\mathcal{F} \subseteq \mathcal{U}$, in view of Lemma 2.6, every \mathcal{F}-critical group has a normal Sylow subgroup. Whence Theorem C implies that G is an \mathcal{F}-critical group and $A = G^\mathcal{F}$ is a minimal normal subgroup of G. Therefore $A = N$, a contradiction.

Case 2: $|\pi(G)| \geq 4$. Assume that N is a p-group, and take a Sylow subgroup P of G such that $N \leq P$. Observe that if $N \neq P$, then $L \in \mathcal{F}$ by (b), and so $A = N$, a contradiction. Hence $N = P$.

Case 2.1: $|\pi(G)| = 4$.

(1) All 3-maximal subgroups of G are \mathcal{F}-subnormal in G and L is an \mathcal{F}-critical group.

Since $G \notin \mathcal{F}$ and $|\pi(G)| = 4$, either all 2-maximal subgroups of G or all its 3-maximal subgroups are \mathcal{F}-subnormal in G. In the first case G is an \mathcal{F}-critical group and $A = G^\mathcal{F}$ is a minimal normal subgroup of G by Theorem C. Hence $A = N$, a contradiction. Therefore all 3-maximal subgroups of G are \mathcal{F}-subnormal in G. Thus all second maximal subgroups of G belong to \mathcal{F} by Lemma 2.3. Consequently, either $L \in \mathcal{F}$ or L is an \mathcal{F}-critical group. But in the first case $N = A$, a contradiction. Therefore L is an \mathcal{F}-critical group.

(2) $L = Q \times (R \times T)$, where Q, R, T are Sylow subgroups of G, $Q = L^\mathcal{F}$ is a minimal normal subgroup of L, and $G^\mathcal{F} = PQ$.

Since $N = P$ is a Sylow p-subgroup of G and $|\pi(G)| = 4$, $|\pi(L)| = 3$. Hence in view of (f), $L = Q \times (R \times T)$, where Q, R, T are Sylow subgroups of G. Moreover, $Q = L^\mathcal{F}$ by Lemma 2.5 and Q is a minimal normal subgroup of L by Theorem C since every 2-maximal subgroup of L is \mathcal{F}-subnormal in L by (1) and Lemmas 2.1(1) and 2.12. Finally, since $G/N \notin \mathcal{F}$ and $G/PQ \simeq L/Q \in \mathcal{F}$, we have $G^\mathcal{F} = PQ$.

(3) $V = PQR$ is not supersoluble. Hence $V \notin \mathcal{F}$.

Assume that V is a supersoluble group. Since $F(V)$ is a characteristic subgroup of V and V is a normal subgroup of G, $F(V)$ is normal in G. Hence every Sylow subgroup of $F(V)$ is normal in G. But N is the unique minimal normal subgroup of G. Therefore $F(V) = N = P$. Thus $V/P \simeq QR$ is an abelian group. Hence R is normal in L and so $R \leq F(L)$. In view of Lemma 2.5, $F(L) = Q\Phi(L)$. Whence $R \leq \Phi(L)$. This contradiction shows that V is not supersoluble. Thus $V \notin \mathcal{F}$ since $\mathcal{F} \subseteq \mathcal{U}$ by hypothesis.

(4) V is a maximal subgroup of G. Hence $|T| = t$ is a prime.

If V is not a maximal subgroup of G, then there is a maximal subgroup U of G such that $V \leq U$ and $|\pi(U)| = |\pi(G)|$. Hence $U \in \mathcal{F}$ by (b), so $V \in \mathcal{F}$ by Lemma 2.12, a contradiction. Therefore V is a normal maximal subgroup of G. Whence $|T|$ is a prime.

(5) $|Q| = q$ is a prime and $R = \langle x \rangle$ is a cyclic group.
Since V is a maximal subgroup of G by (4), all 2-maximal subgroups of V are \mathcal{F}-subnormal in V by (1) and Lemmas 2.1(1) and 2.12. Hence, in view of (3), V is an \mathcal{F}-critical group by Theorem C. Therefore, in fact, V is an \mathcal{U}-critical group by (3) since $\mathcal{F} \subseteq \mathcal{U}$. Hence QR is supersoluble. Since V is normal in G and $\Phi(G) = 1$, $\Phi(V) = 1$. Therefore QR is a Schmidt group by Lemma 2.6. Hence R is cyclic and Q is a minimal normal subgroup of QR by Lemma 2.4. Whence $|Q|$ is a prime.

(6) $|R| = r$ is a prime and $C_{\ell}(Q) = Q$.

By (4) and (5), L is a supersoluble group. Suppose that $|R| = r^b$ is not a prime and let M be a maximal subgroup of L such that $|L : M| = r$. Let $W = PM$. Then $\pi(W) = \pi(G)$, so $W \in \mathcal{F}$ by (b) and hence W is supersoluble. Since $C_{\ell}(N) = N$, $F(W) = P$. Hence $W/P \simeq M$ is abelian. It is clear that $Q \leq M$, so $M \leq C_{\ell}(Q)$. Hence $T \leq F(L)$. On the other hand, $F(L) = Q\Phi(L)$ by Lemma 2.5. Therefore $T \not\leq F(L)$. This contradiction shows that $|R| = r$ and so $C_{\ell}(Q) = Q$ by Lemma 2.5.

(7) $1 \neq C_{\ell}(x) \cap PQ = P_1 \leq P$.

Suppose that $C_{\ell}(x) \cap PQ = 1$. Then by the Thompson’s theorem [22, Theorem 10.5.4], PQ is a nilpotent group, so $Q \leq C_{\ell}(P) = P$, a contradiction. Thus $C_{\ell}(x) \cap PQ \neq 1$. Suppose that q divides $|C_{\ell}(x) \cap PQ|$. Then, by (5), for some $a \in P$ we have $Q^a \leq C_{\ell}(x) \cap PQ$, so $\langle Q^a, RT \rangle \leq N_{\ell}(R)$. Hence if E is a Hall p'-subgroup of $N_{\ell}(R)$, then $E \simeq L$. Therefore L has a normal r-subgroup, so $C_{\ell}(Q) \neq Q$, a contradiction. Thus $C_{\ell}(x) \cap PQ = P_1 \leq P$.

Final contradiction for Case 2.1. Let $D = \langle P_1, RT \rangle$. Then $D \leq N_{\ell}(R)$. If q divides $|D|$, then, as above, we have $C_{\ell}(Q) \neq Q$. Thus $D \cap Q^a = 1$ for all $a \in P$. Moreover, if $P \leq D$, then $PR = P \times R$ and $R \leq C_{\ell}(P) = P$. Therefore $P \not\leq D$ and D is not a maximal subgroup of G. Hence D is a k-maximal subgroup of G for some $k \geq 2$. Then there is a 3-maximal subgroup S of G such that $RT \leq S \leq D$. By hypothesis, S is \mathcal{F}-subnormal in G. Hence at least one of the maximal subgroups L or PRT is \mathcal{F}-normal in G, contrary to (2).

Case 2.2: $|\pi(G)| > 4$. If $\pi(L) = \{p_1, \ldots, p_t\}$, then $t > 3$. Let E_i be a Hall p_i'-subgroup of L and $X_i = P_Ei$. We shall show that $E_i \in \mathcal{F}$ for all $i = 1, \ldots, t$. By (c), either $X_i \in \mathcal{F}$ or X_i is a group of the type II, for $i = 1, \ldots, t$. In the former case we have $E_i \simeq X_i/P \in \mathcal{F}$. Assume that X_i be a group of the type II. Then $X_i^\mathcal{F}$ is nilpotent, so $X_i^\mathcal{F} \leq F(X_i)$. But since P is normal in X_i and $C_{\ell}(P) = P$, $F(X_i) = P$. Hence $X_i^\mathcal{F} = P$, so $E_i \in \mathcal{F}$. Since $t > 3$, Proposition 3.4 implies that then $L \in \mathcal{F}$. Therefore $A = N$, a contradiction. Hence we have (g).

(h) A is a Hall subgroup of G.

Suppose that this is false. Since G is Ore dispersive by (f), for the greatest prime divisor p of $|G|$ the Sylow p-subgroup P is normal in G. Assume that P is not a minimal normal subgroup of G. Then there is a maximal subgroup M of G such that $G = PM$ and $P \cap M \neq 1$. Since $|\pi(M)| = |\pi(G)|$, $M \in \mathcal{F}$ by (b). Hence $G/P \simeq M/M \cap P \in \mathcal{F}$, so $A = C_{\mathcal{F}} \leq P$. Suppose that $\Phi(P) \neq 1$. Let N be a minimal normal subgroup of G such that $N \leq \Phi(P)$. By (d), the hypothesis holds for G/N, so either $G/N \in \mathcal{F}$ or G/N is a group of the type II by the choice of G. If $G/N \in \mathcal{F}$,
then $A = N \leq \Phi(P)$. Since P is normal in G, $\Phi(P) \leq \Phi(G)$. Thus $A \leq \Phi(G)$ and so $G \in \mathcal{F}$, a contradiction. Hence G/N is a group of the type II. Therefore $AN/N = G^\mathcal{F}N/N = (G/N)^\mathcal{F}$ is a Hall subgroup of G/N. Consequently, $AN = P$. Hence $A\Phi(P) = P$, so $A = P$, a contradiction. Thus $\Phi(P) = 1$. By Maschke’s theorem, $P = N_1 \times \ldots \times N_k$ is the direct product of some minimal normal subgroups of G. If $N_1 \neq P$, then $G/N_1 \in \mathcal{F}$ and $G/N_2 \in \mathcal{F}$ by Theorem A. Consequently, so is G. This contradiction shows that P is a minimal normal subgroup of G.

By (d), the hypothesis holds for G/P, so either $G/P \in \mathcal{F}$ or G/P is a group of the type II by the choice of G. If $G/P \in \mathcal{F}$, then $A = P$, a contradiction. Hence G/P is a group of the type II. Therefore $AP/P = G^\mathcal{F}P/P = (G/P)^\mathcal{F}$ is a Hall subgroup of G/P. If $P \leq A$, then $A = P \rtimes A_{p'}$, where $A_{p'}$ is a Hall p'-subgroup of A. But since $A_{p'} \simeq A/P$ and AP/PA is a Hall subgroup of G/P, A is a Hall subgroup of G. Therefore $P \cap A = 1$, so A is a Hall subgroup of G since $AP/P \simeq A/A \cap P \simeq A$.

(i) A is either of the form $N_1 \times \ldots \times N_t$, where each N_i is a minimal normal subgroup of G, which is a Sylow subgroup of G, for $i = 1, \ldots, t$, or a Sylow p-subgroup of G of exponent p for some prime p and the commutator subgroup, the Frattini subgroup, and the center of A coincide, while $A/\Phi(A)$ is an \mathcal{F}-eccentric chief factor of G.

Suppose that A is not a minimal normal subgroup of G. Take a Sylow p-subgroup P of A, where p divides $|A|$. Claims (g) and (h) imply that P is a normal Sylow subgroup of G. Let N be a minimal normal subgroup of G with $N \leq P$. First suppose that $N \leq \Phi(G)$, and take a maximal subgroup M of G with $P \nsubseteq M$. Then $M \in \mathcal{F}$ by (b). Therefore $G/P \cong M/M \cap P \in \mathcal{F}$. In this case $A = P$. Moreover, if S is a maximal subgroup of G such that $P \nsubseteq S$, then $S \in \mathcal{F}$. Observe also that for every maximal subgroup X of G with $P \leq X$ we have X is \mathcal{F}-subnormal in G. Thus, by Lemma 2.4, $A = G^\mathcal{F}$ satisfies condition II(1).

Suppose that for every minimal normal subgroup R of G such that $R \leq A$ we have $R \nsubseteq \Phi(G)$. Then there is a maximal subgroup L of G such that $G = N \rtimes L$. If $N \neq P$, then $L \in \mathcal{F}$ by (b). Therefore $A = N$, a contradiction. Consequently, all Sylow subgroups of A are minimal normal subgroups of G. Therefore $A = N_1 \times \ldots \times N_t$, where N_i is a minimal normal subgroup of G, for $i = 1, \ldots, t$.

(j) Every n-maximal subgroup of G belongs to \mathcal{F} and induces on the Sylow p-subgroup of A the automorphism group which is contained in $F(p)$ for every prime divisor p of $|A|$.

Let H be any n-maximal subgroup of G. Suppose that H is a maximal subgroup of V, where V is an $(n - 1)$-maximal subgroup of G. Since $V \in \mathcal{F}$ by Lemmas 2.3 and 2.12, $H \in \mathcal{F}$.

Let $E = AH$. Since A is normal in E and A is nilpotent by (g), $A \leq F(E)$. Whence $E = F(E)H$. Since H is \mathcal{F}-subnormal in G, H is \mathcal{F}-subnormal in E by Lemmas 2.1(1) and 2.12. Moreover, $H \in \mathcal{F}$. Therefore $E \in \mathcal{F}$ by Lemma 2.15. Let P be a Sylow p-subgroup of A and K/L a chief factor of E such that $1 \leq L < K \leq P$. Since $E \in \mathcal{F}$, $E/C_E(K/L) \leq F(p)$. Hence $P \leq Z_\mathcal{F}(E)$, so $E/C_E(P) \in F(p)$ by Lemma 2.7. Then $H/C_H(P) = H/C_E(P) \cap H \cong HC_E(P)/C_E(P) \in F(p)$.

13
Now suppose that either \(G \in \mathcal{F} \) or \(G \) is a group of type II. If \(G \in \mathcal{F} \), then every subgroup of \(G \) is \(\mathcal{F} \)-subnormal in \(G \) by Lemma 2.2. Let \(\mathcal{F} \) be a group of type II. Take an \(n \)-maximal subgroup \(H \) of \(G \). Put \(E = G^\mathcal{F}H \). Let \(P \) be a Sylow \(p \)-subgroup of \(G^\mathcal{F} \) and \(K/L \) a chief factor of \(E \) such that \(1 \leq L < K \leq P \). By hypothesis, \(H/C_H(P) \in F(p) \), so \(H/C_H(K/L) \simeq (H/C_H(P))/(C_H(K/L)/C_H(P)) \in F(p) \). Since \(G^\mathcal{F} \) is normal in \(E \) and \(G^\mathcal{F} \) is nilpotent, \(G^\mathcal{F} \leq F(E) \leq C_E(K/L) \). Hence

\[
E/C_E(K/L) = E/C_E(K/L) \cap E = E/C_E(K/L) \cap G^\mathcal{F}H = E/G^\mathcal{F}(C_E(K/L) \cap H) = \]

\[
= G^\mathcal{F}H/G^\mathcal{F}C_H(K/L) \simeq H/G^\mathcal{F}C_H(K/L) \cap H = H/C_H(K/L)(G^\mathcal{F} \cap H) = H/C_H(K/L),
\]

so \(E/C_E(K/L) \in F(p) \) since \(F(p) \) is hereditary by Lemma 2.12 and \([15, \text{Proposition 3.1.40}] \). Then \(P \leq Z_\mathcal{F}(E) \), whence \(G^\mathcal{F} \leq Z_\mathcal{F}(E) \). Thus \(E/Z_\mathcal{F}(G) \in \mathcal{F} \). Hence \(E \in \mathcal{F} \), so \(H \) is an \(\mathcal{F} \)-subnormal subgroup of \(G^\mathcal{F} = E \). Since \(G^\mathcal{F} \leq G^\mathcal{F}H \), \(G^\mathcal{F}H \) is \(\mathcal{F} \)-subnormal in \(G \) by Lemma 2.1(4). Consequently, in view of Lemma 2.1(3), \(H \) is \(\mathcal{F} \)-subnormal in \(G \). The theorem is proved.

Corollary 4.2 (See [21 Theorem B]). Given a soluble group \(G \) with \(|\pi(G)| \geq n+1 \), all \(n \)-maximal subgroups of \(G \) are \(\mathcal{U} \)-subnormal in \(G \) if and only if \(G \) is a group of one of the following types:

I. \(G \) is supersoluble.

II. \(G = A \rtimes B \), where \(A = G^\mathcal{U} \) and \(B \) are Hall subgroups of \(G \), while \(G \) is Ore dispersive and satisfies the following:

(1) \(\mathcal{F} \) is either of the form \(N_1 \times \ldots \times N_t \), where each \(N_i \) is a minimal normal subgroup of \(G \), which is a Sylow subgroup of \(G \), for \(i = 1, \ldots, t \), or a Sylow \(p \)-subgroup of \(G \) of exponent \(p \) for some prime \(p \) and the commutator subgroup, the Frattini subgroup, and the center of \(A \) coincide, every chief factor of \(G \) below \(\Phi(G) \) is cyclic, while \(A/\Phi(A) \) is a noncyclic chief factor of \(G \);

(2) for every prime divisor \(p \) of the order of \(A \) every \(n \)-maximal subgroup \(H \) of \(G \) is supersoluble and induces on the Sylow \(p \)-subgroup of \(A \) an automorphism group which is an extension of some \(p \)-group by abelian group of exponent dividing \(p-1 \).

Proof of Theorem D. Assume that this is false and consider a counterexample \(G \) for which \(|G| + n \) is minimal.

(a) \(G \) has a unique minimal normal subgroup \(N \) such that \(C_G(N) = N \) and \(N \) is not a Sylow subgroup of \(G \).

Let \(N \) be a minimal normal subgroup of \(G \). Then the hypothesis holds for \(G/N \) (see Claim (d) in the proof of Theorem B). Consequently, \(G/N \) is \(\phi \)-dispersive for some ordering \(\phi \) of \(\mathbb{P} \) by the choice of \(G \). Therefore \(N \) is not a Sylow subgroup of \(G \). Moreover, by Lemma 2.13, \(N \not\subseteq \Phi(G) \). Therefore \(G \) has a maximal subgroup \(M \) such that \(G = N \rtimes M \). By Lemmas 2.1(1) and 2.12 all \((n-1)\)-maximal subgroups of \(M \) are \(\mathcal{F} \)-subnormal in \(M \). Moreover, \(|\pi(M)| = |\pi(G)| \). Therefore Theorem B implies that \(G/N \simeq M \) is an Ore dispersive group. Hence in the case when \(G \) has a minimal normal subgroup \(R \neq N \) we have \(G/N \cap R \simeq G \) is an Ore dispersive group. Thus \(N \) is the unique minimal normal subgroup of \(G \), and so \(C_G(N) = N \) by [1, A, Theorem 15.2].
(b) If W is a Hall q'-subgroup of G for some $q \in \pi(G)$, then W is ϕ-dispersive for some ordering ϕ of \mathbb{P}.

If W is not a maximal subgroup of G, then there is a maximal subgroup V of G such that $W \leq V$ and $|\pi(W)| = |\pi(G)|$. By hypothesis, every $(n - 1)$-maximal subgroup of V is \mathcal{F}-subnormal in G, so it is \mathcal{F}-subnormal in V by Lemmas 2.1(1) and 2.12. Then, in view of Theorem B, V is Ore dispersive. Hence W is Ore dispersive. Suppose that W is a maximal subgroup of G. Then $|\pi(W)| = |\pi(G)| - 1$ and every $(n - 1)$-maximal subgroup of W is \mathcal{F}-subnormal in W in view of hypothesis and Lemmas 2.1(1) and 2.12. Therefore W is ϕ-dispersive for some ordering ϕ of \mathbb{P} by the choice of G.

(c) $|\pi(G)| > 2$.

Suppose that $|\pi(G)| = 2$. Then by hypothesis, either all maximal subgroups of G or all its 2-maximal subgroups are \mathcal{F}-subnormal in G. Therefore every maximal subgroup of G belongs to \mathcal{F} in view of Lemmas 2.3 and 2.12. Consequently, either $G \in \mathcal{F}$ or G is an \mathcal{F}-critical group. Since $\mathcal{F} \subseteq \mathcal{U}$, G is either a supersoluble group or an \mathcal{U}-critical group. Therefore, in view of Lemma 2.6, G is ϕ-dispersive for some ordering ϕ of \mathbb{P}, a contradiction.

Final contradiction. Suppose that N is a p-group, and take a prime divisor q of $|G|$ such that $q \neq p$. Take a Hall q'-subgroup E of G. Then $N \leq E$. By (b), E is ϕ-dispersive for some ordering ϕ of \mathbb{P}. Consequently, some Sylow subgroup R of E is normal in E. Furthermore, if $N \nleq R$, then $R \leq C_G(N) = N$. Hence R is a Sylow p-subgroup of E. It is clear also that R is a Sylow p-subgroup of G and $(|G : N_G(R)|, r) = 1$ for every prime $r \neq q$. Since $|\pi(G)| > 2$ by (c), R is normal in G. Hence G is ϕ-dispersive for some ordering ϕ of \mathbb{P}, a contradiction. The theorem is proved.

Corollary 4.3 (See [21, Theorem C]). If every n-maximal subgroup of a soluble group G is \mathcal{U}-subnormal in G and $|\pi(G)| \geq n$, then G is ϕ-dispersive for some ordering ϕ of the set of all primes.

Finally, note that there are examples which show that the restrictions on $|\pi(G)|$ in Theorems A, B, and D cannot be weakened.

References

[1] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin-New York, 1992.

[2] A.N. Skiba, A Characterization of Finite Soluble Groups of Given Nilpotent Length, in: Problems in Algebra, Minsk, University Press 3 (1987) 21–31.

[3] L.A. Shemetkov, A.N. Skiba, Formations of Algebraic Systems, Nauka, Moscow, 1989.

[4] B. Huppert, Normalteiler and Maximal Untergruppen Endlicher Gruppen, Math. Z. 60 (1954) 409–434.
[5] X.Y. Guo, K.P. Shum, Cover-avoidance properties and the structure of finite groups, J. Pure Appl. Algebra 181 (2003) 297–308.

[6] W. Guo, K.P. Shum, A.N. Skiba, X-Semipermutable subgroups of finite groups, J. Algebra 315 (2007) 31–41.

[7] Baojun Li, A.N. Skiba, New characterizations of finite supersoluble groups, Sci. China Ser. A: Math. 50 (1) (2008) 827–841.

[8] W. Guo, A.N. Skiba, Finite groups with given s-embedded and n-embedded subgroups, J. Algebra 321 (2009) 2843–2860.

[9] Shirong Li, Finite non-nilpotent groups all of whose second maximal subgroups are TI-groups, Math. Proc. of the Royal Irish Academy 100A (1) (2000) 65–71.

[10] W. Guo, H.V. Legchekova, A.N. Skiba, Finite groups in which every 3-maximal subgroup permutes with all maximal subgroups, Math. Notes 86 (3) (2009) 325–332.

[11] W. Guo, Yu.V. Lutsenko, A.N. Skiba, On nonnilpotent groups with every two 3-maximal subgroups permutable, Siberian Math. J. 50 (6) (2009) 988–997.

[12] Yu.V. Lutsenko, A.N. Skiba, Structure of finite groups with S-quasinormal third maximal subgroups, Ukrainian Math. J. 61 (12) (2009) 1915–1922.

[13] Yu.V. Lutsenko, A.N. Skiba, Finite groups with subnormal second and third maximal subgroups, Math. Notes 91 (5) (2012) 680–688.

[14] A. Mann, Finite groups whose n-maximal subgroups are subnormal, Trans. Amer. Math. Soc. 132 (1968) 395–409.

[15] A. Ballester-Bolinches, L.M. Ezquerro, Classes of Finite Groups, Springer-Verlag, Dordrecht, 2006.

[16] L.A. Shemetkov, Formations of Finite Groups, Nauka, Moscow, 1978.

[17] W. Guo, A.N. Skiba, On \mathcal{F}_n-hypercentral subgroups of finite groups, J. of Algebra 372 (2012) 275–292.

[18] A.N. Skiba, Algebra of formation, Belaruskaya Navuka, Minsk, 1997.

[19] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin-Heidelberg-New York, 1967.

[20] Otto-Uwe Kramer, Endliche Gruppen mit paarweise teilerfremden Indizes, Math. Z. 139 (1) (1974) 63–68.

[21] V.A. Kovaleva, A.N. Skiba, Finite solvable groups with all n-maximal subgroups \mathcal{U}-subnormal, Sib. Math. J. 54 (1) (2013) 65–73.
[22] D.J.S. Robinson, A course in the Theory of Groups, Springer, New York, 1982.