Annotations For Sparse Data Streams

Justin Thaler, Simons Institute, UC Berkeley
Joint Work with:
Amit Chakrabarti, Dartmouth
Graham Cormode, University of Warwick
Navin Goyal, Microsoft Research India
Outsourcing

- Many applications require outsourcing computation to untrusted service providers.
 - Main motivation: commercial cloud computing services.
 - Also, weak peripheral devices; fast but faulty co-processors.
 - Volunteer Computing (SETI@home, World Community Grid, etc.)

- User requires a guarantee that the cloud performed the computation correctly.
AWS Customer Agreement

WE… MAKE NO REPRESENTATIONS OF ANY KIND … THAT THE SERVICE OR THIRD PARTY CONTENT WILL BE UNINTERRUPTED, ERROR FREE OR FREE OF HARMFUL COMPONENTS, OR THAT ANY CONTENT … WILL BE SECURE OR NOT OTHERWISE LOST OR DAMAGED.
Goals of Verifiable Computation

- Goal 1: Provide user with a correctness guarantee.
- Goal 2: User must operate within the restrictive **data streaming paradigm** (models a user who lacks the resources to store the input locally).
Annotated Data Stream (ADS) Model

- **Problem**: Given stream \(S \), want to compute \(f(S) \).

\[
S = [x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, \ldots, x_m]
\]

- **Prover \(P \)**: Augments \(S \) with \(h \)-bit annotation.

\[
(S, a) = [a_0, x_1, x_2, x_3, a_1, x_4, x_5, x_6, x_7, a_2, x_8, x_9, \ldots, x_m, a_h]
\]

Annotation is a function of previous stream elements

- **Verifier \(V \)**: Process annotated data stream. Output an answer, or reject annotation as invalid.

- Captures “Merlin-Arthur protocols with a streaming verifier”. Introduced in [CCM09/CCMT14].

- All algorithms in this talk apply to **strict turnstile** streaming model.
Annotated Data Streams

• Requirements:
 1. Completeness: honest P will convince verifier to output correct answer.
 2. Soundness: no P can convince V to output an incorrect answer, except with tiny probability.

• Goal: Minimize annotation length and size of V’s working memory.
Prior Work

- [CCM09/CCMT14] introduced ADS model, gave optimal (annotation length, space) tradeoffs for INDEX, frequency moments, some graph problems, etc.
- [CMT10] gave optimal ADS protocols for still more problems.
- [CMT12] gave efficient implementations of protocols from [CCM09/CCMT14, CMT10].
- [KP13, GR13, CTY12, CCMTV14] study variants of the ADS model.
This Work: “Sparse” Streams

- Many streams are over enormous domain sizes (e.g. IPv6 flows).
 - Existing results have costs that depend on domain size n.
 - E.g. [CCM09] gives (\sqrt{n} annotation, \sqrt{n} space)-protocol for F_2.
 - This is optimal for “dense” streams (with length $m = \Omega(n)$).
- We want costs to depend only on the stream length m.
- Bottom line: we give near-optimal tradeoffs in terms of m for frequency moments, graph problems, etc.
| Problem | Our Costs (ann. length, space) | Previous Best (ann. length, space) [CCM09/CCMT14, CMT10] | Lower Bound |
|--|--------------------------------|--|-------------|
| INDEX, MEDIAN | $(x, y) : x \cdot y \geq m$ | $(x, y) : x \cdot y \geq n.$ | $x \cdot y = \Omega(m).$ |
| E.g. (\sqrt{m}, \sqrt{m}) | E.g. (\sqrt{n}, \sqrt{n}) | | |
| F$_2$, PERFECT MATCHING, CONNECTIVITY, BIPARTITENESS | $(x, y) : x \cdot \sqrt{y} \geq m$ | $(x, y) : x \cdot y \geq n.$ | $x \cdot y = \Omega(m).$ |
| E.g. $(m^{2/3}, m^{2/3})$ | E.g. (\sqrt{n}, \sqrt{n}) | | |
| Problem | Our Costs | Previous Best | Lower Bound |
|---------------------------------|------------|---------------|-------------|
| | (ann. length, space) | [CCM09/CCMT14, CMT10] | |
| INDEX, MEDIAN | $(x, y) : x \cdot y \geq m$ | $(x, y) : x \cdot y \geq n.$ | $x \cdot y = \Omega(m).$ |
| | E.g. (\sqrt{m}, \sqrt{m}) | E.g. (\sqrt{n}, \sqrt{n}) | |
| F_2, PERFECT MATCHING, | $(x, y) : x \cdot \sqrt{y} \geq m$ | $(x, y) : x \cdot y \geq n.$ | $x \cdot y = \Omega(m).$ |
| CONNECTIVITY, BIPARTITENESS | E.g. $(m^{2/3}, m^{2/3})$ | E.g. (\sqrt{n}, \sqrt{n}) | |

Other Results:

- Give the first explicit f for which any ADS protocol must have
 $\max\{\text{ann. length, space cost}\} = \tilde{\Omega}(C(f))$, where $C(f)$ is
 space complexity of f in standard streaming model.
- Improved protocol for counting triangles in sparse graphs.
- Extensions to general turnstile stream update model.
Second Frequency Moment (F_2)

- F_2 is a central streaming problem.
 - Captures sample variance, Euclidean norm, data similarity.

- Definition:
 - Let X be the frequency vector of the stream.
 - $F_2(X) = \sum_{i=1}^{n} X_i^2$

Raw data stream over universe $\{a, b, c, d\}$

\[
\text{Frequency Vector } X = \begin{bmatrix} 3 & 2 & 1 & 0 \end{bmatrix}
\]

\[
F_2(X) = 3^2 + 2^2 + 1^2 = 14
\]
Prior Work

- [CCM09]: (\sqrt{n} annotation, \sqrt{n} space)-protocol for F_2.
- Protocol is more general: applies to any function $H(X) = \sum_{i=1}^{n} p(X_i)$, where p is a polynomial of constant degree.
\[F_2 \] Protocol for Sparse Streams
Protocol Overview

- Basic idea: Domain reduction.
 - At start of S, P gives hash function g mapping huge domain $[n]$ to small domain $[r]$. Then P and V run “dense” F_2 protocol on $[r]$. Many challenges!
 - Ensuring P does not introduce collisions in remapping to cause errors (need a way for V to ‘detect’ collisions under g).
 - P does not know g in advance, because g depends on the stream.
 - To achieve general (annotation length, space) tradeoffs, need a way for V to avoid storing complete description of $[n]$. [r] g
Protocol Overview

- Basic idea: Domain reduction.
 - At start of S, P gives hash function g mapping huge domain $[n]$ to small domain $[r]$. Then P and V run “dense” F_2 protocol on $[r]$.
- Many challenges!
 - Ensuring P does not introduce collisions in remapping to cause errors (need a way for V to ‘detect’ collisions under g).
 - P does not know g in advance, because g depends on the stream.
 - To achieve general (annotation length, space) tradeoffs, need a way for V to avoid storing complete description of g.
Basic Idea: Domain Reduction

- At start of S, P gives hash function g mapping huge domain $[n]$ to small domain $[r]$. Then P and V run “dense” F_2 protocol on “mapped-down” stream over $[r]$.
- P claims g is injective on all items with non-zero frequency in S.
- The larger r, the smaller g's description length.
- But the larger r, the more expensive the dense F_2 protocol.
- We choose r to balance these costs.
Challenge 1: How Can V Check Injectivity?

- Suppose we have r buckets, and a stream S' of updates of the form $(i, b) \in [n] \times [r]$, indicating that item i is inserted into bucket b.
- Call S' an **INJECTION** if no bucket b receives two distinct elements $i \neq j$.
- If V can solve the **INJECTION** problem, V can determine whether g is injective on S.
An Optimal INJECTION Protocol

- **Solution:** Let \(X_{(i,b)} \) denote the number of times item \(i \) is inserted into bucket \(b \).
- Define three \(r \)-dimensional vectors \(u, v, w \) via:

 \[
 u_b = \sum_{j \in [n]} X_{(j,b)},
 \]

 \[
 v_b = \sum_{j \in [n]} X_{(j,b)} \cdot j,
 \]

 \[
 w_b = \sum_{j \in [n]} X_{(j,b)} \cdot j^2.
 \]

- **Lemma:** \(\sum_{b \in [r]} v_b^2 = \sum_{b \in [r]} u_b \cdot w_b \) iff the stream is an injection.
- We extend “dense” \(F_2 \) protocol to check this equality with \((\sqrt{r} \text{ annotation}, \sqrt{r} \text{ space}) \).
Challenge 2: P Does Not Know g In Advance

• How does one construct a hash function \(g \) that is injective on a set \(T \) with \(|T| \leq m\)? (cf. [FK84]).

• Step 1: Choose \(g_1 : [n] \rightarrow [r] \) at random from a pairwise independent hash family (\(g_1 \) requires \(O(\log n) \) bits to specify).

• Step 2: Append to \(g_1 \) a list \(L \) of all items in \(T \) that collide with any other item, with a special hash value for each.

• In expectation, at most \(m^2 / r \) items are involved in a collision, so total description length of \(g \) is \(O(m^2 \log n / r) \).
“Complete” F₂ Protocol

• P sends only g_1 at start of S.

• While processing S, V runs “dense” F₂ protocol on the “mapped-down” stream, using g_1 as the hash function.

• At end of S, P gives list L of items involved in a collision under g_1, along with their frequencies.

• Assuming L is honestly specified, V can compute these items’ contribution to F₂ and remove them from the stream.

• g_1 is (claimed to be) injective on the remaining items. V checks this using the INJECTION protocol.

• It remains for V to check that the list L was honestly specified.
MULTI-INDEX Protocol

- Given: A stream S, followed by a list L of items and their claimed frequencies X_i^*.
- Goal: Check whether $X_i = X_i^*$ for all $i \in L$ with cost equal to that of a single INDEX query.
- Basic Idea: Let z be the n-dimensional vector such that $z_i = 1$ for all $i \in L$ and $z_i = 0$ otherwise. Enough to check that

$$0 = \sum_{i \in [n]} z_i \cdot (X_i - X_i^*)^2.$$
MULTI-INDEX Protocol

- Enough to check that \(0 = \sum_{i \in [n]} z_i \cdot (X_i - X_i^*)^2 \).
- Protocol proceeds in “stages”. Stage \(j \) makes use of a separate pair-wise independent hash function \(h_j : [n] \rightarrow [r] \).
- Stage \(j \) used to check that \(0 = \sum_i z_i \cdot (X_i - X_i^*)^2 \), where the sum is only over items \(i \) “isolated” under \(h_j \), but not under \(h_j \), for \(j' < j \).
- W.h.p., only \(O(1) \) stages needed w.h.p. before all \(i \in L \) have been isolated.
- Inductive soundness proof: \(V \) can “trust” the results of Stage \(j \) as long as she can also trust the results of Stage \(j+1 \). Final stage can be trusted directly.
Open Questions

- We gave F_2 protocol with ann. length x and space y for any $x \cdot \sqrt{y} \geq m$. Best lower bound says $x \cdot y = \Omega(m)$. Close this gap.
- Give any explicit function for which any ADS protocol must have $\max\{\text{ann. length, space cost}\} = \Omega(N^{1/2+\delta})$, where N is input size.
- Understand the power of interaction in streaming verification.
 - [CTY10]: A logarithmic cost protocol for F_2 with $\log n$ rounds of interaction between P and V.
 - [CCMTV14]: A logarithmic cost protocol for INDEX with 2 rounds of interaction between P and V.
- Is there a logarithmic cost protocol for F_2 with $O(1)$ rounds of interaction? Lower bounds of [CCMTV14] give evidence for “NO”.
- Closely related to long-open questions in communication complexity.
Thank you!