Review
Scand J Work Environ Health 1995;21(2):85-95
doi:10.5271/sjweh.15

Heart rate variability in health and disease
by Kristal-Boneh E, Raifel M, Froom P, Ribak J

The following article refers to this text: 2011;37(4):259-358

This article in PubMed: www.ncbi.nlm.nih.gov/pubmed/7618063
Heart rate variability in health and disease

by Estela Kristal-Boneh, PhD, Mark Raifel, BSc, Paul Froom, MD, Joseph Ribak, MD

Kristal-Boneh E, Raifel M, Froom P, Ribak J. Heart rate variability in health and disease. Scand J Work Environ Health 1995;21:85—95.

For a long time the study of heart rate variability (HRV) was confined to the laboratory. However, thanks to recent advances in microprocessor technology, the analysis of beat-to-beat variation has become possible also to the clinician. The increasing number of HRV investigations in the clinical and physiological literature emphasizes the value of HRV measures as a prognostic tool for the rapid and noninvasive assessment of the autonomic nervous function of the heart. Provided herein is an update of the current knowledge on HRV, in health and disease.

Heart rate variability — definition and causes

HRV is defined as spontaneous fluctuations in sinus rate due to internal and external body processes. It is usually measured as the standard (or average) deviation from the mean R-R intervals of all cardiac cycle lengths (R-R intervals for normal sinus beats) over a given period, most commonly 5 min. Beat-to-beat fluctuations in heart rate are mainly determined by the activity of the cardiac sympathetic and parasympathetic systems. Physiological experiments have demonstrated a correlation between cardiac nervous activity and immediate R-R interval changes (1—4). These studies form the basis for the examination of autonomic cardiac activity by HRV. The rate and variation of heart beats are the result of a complex interaction between sympathetic and parasympathetic efferent impulse activity in addition to the influence of sinus node pacemaker properties (5—7). The sinoatrial (S-A) node is directly and richly innervated by both sympathetic and parasympathetic (vagus) nerve fibers, which are continually active; the atrioventricular (A-V) node is less affected. Parasympathetic stimulation hyperpolarizes the S-A node, decreasing the rate of spontaneous firing and the cardiac rate. Sympathetic nerve endings, on the other hand, release norepinephrine, and the adrenal medulla releases epinephrine, stimulating the spontaneous firing rate of the S-A node and increasing cardiac rates. Due to the high turnover of acetylcholine, the S-A node responds faster to parasympathetic than sympathetic stimulation, enabling beat-to-beat parasympathetic regulation. The respiratory cycle has a major effect on the heart rate. The variation in blood pressure during each cycle of respiration stimulates and inhibits the baroreceptor alternately, causing a reflexive slowing and speeding up of the heart. During each respiratory cycle, the negative intrapleural pressure increases and decreases and therefore leads to changes in the effective pressure in the veins of the chest. This process elicits a
waxing and waning Bainbridge reflex and leads to a variable cardiac rate. Furthermore, the respiratory center of the medulla is excited during each respiratory cycle, and some of the impulses “slip over” from the respiratory center into the vasomotor center, causing an alternating increase and decrease in the number of impulses transmitted to the heart through the sympathetic and vagus nerves. There are however other factors which influence sinus rhythm, including a series of feedback loops which strive to maintain a homeostatic condition within the body: tonic and phasic baroreceptor and chemoreceptor reflexes, thermoregulatory and blood pressure control reflexes, and vasomotor reflexes.

Indices of heart rate variability

Originally, HRV was assessed manually from calculations of the mean R-R interval and its standard deviation measured on short-term electrocardiograms (figure 1). Recently, however, the advances in recording techniques, the availability of increased computing power, and innovative microprocessor technology have enabled the analysis of long-term records. Autonomic function during the day and night (8—10) can now be assessed by measuring HRV on 24-h Holter recordings. This is important since HRV undergoes circadian changes similar to the heart rate to which it has been shown to be inversely correlated (10, 11). In fact Rich et al (11) found that a reduced 5-min HRV span was correlated only with mortality; however, when HRV was computed over the entire 24-h span, it correlated also with other Holter variables (10). It is important, therefore, when studies are compared, to specify the time period over which HRV was assessed.

There are various indices of HRV measures available; Opmeer (12) reported finding 26 different measures in the literature. Kleiger et al (10) used the standard deviation of all R-R intervals over 24 h, whereas Magid et al (13) used the mean of the standard deviations of the R-R intervals obtained from successive 5-min periods over 24-h. Others measured the standard deviations of the normal mean R-R interval obtained from successive 5-min periods over 24-h, called the SDANN index (14). This measure basically shows how much the heart rate differs during each 5-min period from the overall day-long mean heart rate. Yet others have used the SD index, that is, the mean of the standard deviations computed for each successive 5-min period over 24-h (15), a measure of the variation that occurs within 5-min periods rather than the variation that occurs over longer time intervals; the pNN50 index — instances per hour in which two consecutive normal R-R intervals differ by more than 50 ms over 24-h (8); the base of the triangular area under the main peak of the R-R interval frequency distribution diagram obtained from 24-h recording (16); or the rMSSD index, the root-mean square of the difference of successive R-R intervals.

Spectral analysis of heart rate variability

Although it is generally accepted that the various methods measuring peak-to-peak variation in cardiac cycle lengths can be used as an index of parasympathetic activity (3, 8), information on the changes in both sympathetic and parasympathetic activity of the heart may be obtained only by using spectral analysis. The peak-to-peak variation is usually represented as a tachogram (figure 2) in which the y-axis is the time between beats and the x-axis is the number of beats. It may also be represented as a sequence of impulses, with unit amplitude on the y-axis and time on the x-axis, which synchronize
with the QRS complexes of the electrocardiogram (17). Both methods basically measure a random signal. Spectral analysis of the HRV provides information on the different statistical components of the signal (18). It transforms the signal from time to frequency on the x-axis (19) by representing it as a combination of sine and cosine waves, with different amplitudes and frequencies, which are used to describe its spectral components. This is the classic nonparametric approach for determining rhythmic components and is known as the Fourier transform (FT) (20).

The HRV spectrum (figure 3) contains two major components. The first is a high-frequency (0.18—0.4 Hz) component which is known to be synchronous with respiration and has been considered a quantitative evaluation of respiratory sinus arrhythmia (RSA) (21). The RSA is mediated solely by the vagus nerve (21—26). Because it disappears after atropine, its magnitude may represent a clinically useful index of vagal activity (21). The second is a low-frequency (0.04 to 0.15 Hz) component that can be altered by interventions that functionally increase or pharmacologically block the sympathetic drive to the heart. Thus the low-frequency component is mediated by both the vagus and the cardiac sympathetic nerves, and its activity reflects sympathetic activity with vagal modulation (21, 24, 27).

The power of spectral components is the area below the relevant frequencies, presented in absolute units (square milliseconds) (figure 3). According to Parseval's theorem, the total power of a signal, integrated over all frequencies, is equal to the variance of the entire signal. The total power of the R-R interval spectrum within a given frequency band is therefore a measure of the amount of total R-R interval variance contributed by fluctuations within that frequency range. The power of a relevant frequency band may also be given as the percentage of the total spectrum power, which is a convenient way to quantify the magnitude of each relevant spectral component. Accordingly, a low-to-high frequency ratio could be a useful index of the parasympathetic-sympathetic balance (28, 29). Although only low- and high-frequency components are widely accepted as measures of sympathetic and parasympathetic heart modulation (24, 28, 30—35), there is an ultralow-frequency component (< 0.03 Hz) that may represent humoral and thermoregulatory factors (36). However, since very slow rhythms are correctly assessed only over long periods (hours), this component is not always analyzed (35).

To obtain a correct spectral analysis (and, by definition, a correct FT), the signal must show some characteristics of stationarity; that is, its statistical properties must not change over time. Clearly no "real-life" signal possesses stationary properties in the strict sense. In practical applications, the most that can be hoped for is that the signal does not depart "too far" from stationarity over the observed time interval (37). This is the reason for using different methods for time-variant spectrum estimation. The correct estimation can be obtained by dividing the nonstationary signal into quasistationary overlapping segments. Thus the analysis by means of FT is generally limited to temporal windows a few minutes long, containing 265—512 consecutive heart cycles. During such time intervals, the variability signals are supposed to maintain a certain level of stationarity under normal conditions, if no external or internal perturbations are present (38, 39). Alternatively, one can assume that the time series is the output of a given mathematical model with the spectrum calculated as a function of model parameters (40—42). The relative advantages of the various methods of spectral analysis are unclear and deserve further study.

Heart rate variability in health and disease

A high degree of HRV is found in healthy subjects with normal hearts (43). However, several physiological and disease states produce alterations in autonomic function which attenuate the change in heart rate occurring both at rest and under stress (44—49).

Age

Although resting heart rate does not change significantly with increasing age, there is a decrease in HRV (21), which may be therefore a biological marker of the aging process. The effect of age on HRV has been attributed to a decline in efferent vagal cardiac tone and decreased beta-adrenergic responsiveness (8, 9, 24, 50). Autonomic derailments have also been reported to augment cardiovascular degeneration in the aging population, shifting the autonomic balance toward sympathetic dominance (51—53).
Heart rate variability in health and disease

Exercise
Sinus arrhythmia may be marked in conditioned athletes and has been generally regarded as indicative of cardiovascular fitness (9, 54). Recent exercise training studies have revealed significant elevations in HRV after significant improvements in aerobic capacity (55–57). De Meersman (57) found that habitual aerobic exercise appears to play a role in the maintenance of augmented HRV in active men when compared with age- and weight-matched sedentary references. This phenomenon suggests the beneficial role of long-term aerobic exercise in mitigating the age-dependent loss of HRV in physically active persons. The mechanisms responsible for increasing HRV are unclear, although there is some evidence that low-pressure cardiopulmonary and high-pressure baroreceptor reflexes are involved (58–60).

Coronary artery disease
Low HRV can be found in patients with severe coronary artery disease and congestive heart failure (8, 43, 61). Several lines of evidence indicate that low HRV may be associated with increased cardiovascular disease-related morbidity and mortality. Decreased HRV has been found to be a potent predictor of cardiac mortality after acute myocardial infarction, independent of ventricular function, ventricular ectopic activity, heart rate, and other previously identified prognostic indicators (10, 62–68). Bigger et al (69) found that power spectral measures of HRV were predictors of all-cause, cardiac, and arrhythmic mortality and sudden death. Patients with low values were two to four times more likely to die over an average follow-up of 31 months as were patients with high values. Patients after myocardial infarction with low HRV (<50 ms), defined as the standard deviation of all normal R-R intervals over 24 h, had a 5.3 times higher relative risk of death than patients with the HRV of >50 ms (67). Others have confirmed the increased risk of sudden death for subjects with lower HRV (70, 71). Odemuyiwa et al (72) compared HRV and left ventricular ejection fraction for the prediction of all-cause mortality, arrhythmic events, and sudden death in 385 survivors of acute myocardial infarction. They found that HRV is a better predictor of important postinfarction arrhythmic complications than left ventricular ejection fraction, but both indices perform equally well in predicting all-cause mortality. Decreased HRV has also been found to be an independent predictor of mortality in the 12 months following elective coronary angiography in patients without recent myocardial infarction (11). Recent clinical studies have found that low total HRV and low measures of various frequency domain components of HRV can identify patients who are at increased risk of arrhythmic events, especially after myocardial infarction (10, 14, 71, 73, 74). The decrease in HRV due predominantly to a reduction in underlying vagal tone (11, 24, 28, 34, 43, 48, 49, 75–80) may be either a direct or indirect result of coronary artery disease. Decreased vagal activity may result from damage to intrinsic cardiac nerves (denervation or stimulation of mechanosensitive and chemosensitive nerve endings) by myocardial ischemia or infarction (81–85) or may reflect increased sympathetic activity or decreased parasympathetic activity as a result of impaired left ventricular function (28, 86). An increased sympathetic efferent tone may be a manifestation of a prevailing excitatory sympathetic reflex elicited by sustained activation of sympathetic cardiac afferent fibers stemming from an abnormal mechanical or chemical stimulus located in the heart. In addition, changes in the sympatovagal balance may reflect a reduction in baroreceptor mechanisms or may be the result of a change in what is generally referred to as "central command" with a consequent increase in the sympathetic discharge. It is possible, however, that a decreased vagal activity may be involved in the cause of coronary artery disease rather than being the result of heart damage due to coronary artery disease (87). Hayano et al (87) studied patients referred for coronary angiography and found that the decrease in HRV was related only to the number of major coronary arteries with significant stenosis regardless of a history of myocardial infarction or a decrease in left ventricular function. A further study showed that the correlation with HRV was higher with the extent of coronary atheromatosis rather than the degree of coronary stenosis (88).

The mechanism underlying the increased mortality among patients with low HRV is not known. It has been suggested that alterations in cardiac autonomic tone, reflected in aberrant HRV, could predispose patients to the development of lethal arrhythmias (89, 90). In experimental studies, attenuation of vagal activity predisposed subjects to malignant ventricular arrhythmias (91–94), while vagal stimulation was found to be protective (95, 96). Huikuri and his co-workers (74) studied the temporal relation between change in HRV and onset of spontaneous episodes of ventricular tachycardia in patients at high risk of life-threatening arrhythmias. They found that all power spectral components of HRV were significantly lower before the onset of sustained ventricular tachycardia (VT) episodes than before the nonsustained VT runs. In contrast, HRV tended to increase before the onset of nonsustained VT runs compared with the 24-h average HRV. Fluctuations in HRV at the onset of VT episodes may, therefore, reflect changes in factors that can lead to electrical instability and facilitate the initiation or perpetuation of arrhythmias. It is known that an abnormal ventricular repolarization duration may be associated with an increased propensity for fatal arrhythmias (97). Merri and his co-workers (98) found that, in
normal persons, the autonomic nervous system directly influences ventricular repolarization duration (acting in the ventricle). The interaction between abnormal regulatory events (7, 99) and arrhythmias appears to be a major pathophysiological determinant of sudden death in the early period after an acute myocardial infarction.

HRV is also associated with known risk factors for coronary artery disease. Kupari et al (100) studied the effects of risk factors of coronary artery disease on short-term HRV and found independent inverse relations between short-term HRV and low-density lipoprotein (LDL) cholesterol and between the total R-R interval power and LDL cholesterol and smoking, and a direct relation to alcohol use among women. These findings may partially explain the HRV impairment in chronic coronary artery disease. The association of smoking with a reduction in HRV has been reported consistently (9, 34, 87, 101).

Mitrval valve disease

In a 9.2-year follow-up study of 38 patients with chronic severe mitral regurgitation from nonischemic causes (102), a low HRV (the standard deviation of 5-min mean R-R intervals) correlated with poor right and left ventricular performance and the predicted development of atrial fibrillation, mortality, and progression to valve surgery (3.1 relative risk).

Syncopy

Regarding neurally mediated syncope, there is evidence to suggest both withdrawal of sympathetic tone and increased vagal activity. The latter is manifested by bradycardia and increased high-frequency spectral HRV power (103). Despite the contribution of vagal activity to the bradycardia, chronic vagal tone and arterial baroreceptor sensitivity are not related to either the propensity to syncope (104) or the heart rate response during hypotension (104—106), although some authors have reported augmented heart rate response and variability in tilt-positive subjects (107—109).

Other conditions

Among diabetic subjects, a reduction in HRV during rest or during exposure to various reflex stimuli, even in the early stage of autonomic involvement, has been described (61, 110—112). Sleep apnea is another condition recently linked to abnormal HRV (113) with swings in HRV attributed to hypoxia. Controversial results have been published regarding HRV in hypertensive subjects, with the authors reporting normal (114—116) or low (117, 118) values. However, it has been found that, among hypertensives, a more stable heart rate resulting from an ineffective baroreflex is associated with a more variable systolic blood pressure (119). Low HRV was found in treated hypertensive patients free of coronary artery disease (120). However, among hypertensive patients, a poor correlation between HRV and ventricular arrhythmias has been reported (114).

Intervention programs

Various intervention programs have been found to increase HRV. As was already mentioned, exercise training may increase cardiac vagal tone and hence HRV (56, 57, 121, 122). Biofeedback and relaxation tasks have also been found to be beneficial (123—126). Pharmacological intervention may affect the autonomic tone of the heart. The effects of beta-blockers were reviewed by Yusuf et al (127). Beta-adrenergic blockade seems to increase HRV, as reflected by augmented vagal activity (14, 128, 129). Vagomimetic drugs such as scopolamine have also been found to increase HRV (130, 131). Zuanetti et al (132) studied the effects of antiarrhythmic drugs on HRV. Amiodarone caused no changes, whereas flecainide and propafenone significantly reduced HRV. This effect may be related to the increased mortality reported for some of these agents (133) — further study is warranted.

Circadian variations in heart rate variability

HRV operates according to a circadian rhythm. The lowest HRV is observed in the morning (9), corresponding to the period of highest incidence of ventricular tachycardia and sudden death (31, 134, 135). A larger variability is found around awakening when heart rate changes rather abruptly from the nightly low to the much higher daily values. The actual transition usually starts earlier, but any anticipatory rise preceding awakening and the transition in the evening is smoother and slower. Lombardi et al (35) studied 24-h HRV spectrums in healthy subjects and in patients after a myocardial infarction. Healthy subjects were characterized by a predominant low-frequency component (sympathetic) during the day and high frequency (parasympathetic) at night. Patients after myocardial infarction had a significantly smaller high-frequency component during the night and a higher low-frequency component during the day. Symptomatic congestive heart failure was found to eliminate circadian variation in the various measures of HRV (136). Hypertension has also been found to reduce or eliminate HRV circadian variation (31, 136—139). Rizzini and his co-workers (139) found that long-term antihypertensive treatment with nifedipine or enalapril restored daytime-nighttime sympathovagal modulation in hypertensive pa-
Heat exposure caused significant deterioration in simple reaction time and accuracy in a serial-choice reaction-time task. The effects of heat on response times and on HRV were correlated. HRV is affected by ambient temperatures. Parsons et al (158) analyzed the effects of environmental temperature (17 versus 27°C) on the resting HRV of healthy and diabetic subjects. HRV was greater in both groups at 27°C. Because cold wind on the face has been found to produce bradycardia via vagus nerve action (159), it is possible that cold wind exposure also results in increased HRV. In a study by Kunitake & Ishiko (160) a significant increase in power for the low (sympathetic) and high (parasympathetic) components of HRV accompanying bradycardia occurred by cooling the face to 0 and 10°C, whereas cooling the foot to 0°C yielded a significant increase in the sympathetic power component and a decrease in the parasympathetic component, without changing heart rate. In another study, by Lindqvist et al (148), thermal skin stimulation at 0.01—0.10 Hz (sympathetic frequency) increased both the sitting and standing power of the sympathetic component of HRV and decreased HRV. Exposure of patients with Raynaud’s vibration syndrome and referents to cold demonstrated a cold-induced hyperresponse of the parasympathetic nervous system and the alpha-2 adrenergic mechanism in the patients with Raynaud’s vibration syndrome. This effect resulted from the activation of the sympathetic nervous system, which reduced HRV in the patients more than in the referents and resulted in their much lower HRV (161).

There are few studies of HRV in the workplace, and in general they have attempted to assess the effect of strain induced by various acute stresses on HRV. In Polish State Railway dispatchers it was found that the HRV coefficient fell during complicated and risky decisions (162). Professional bus drivers with higher absenteeism rates had higher levels of adrenaline and reduced HRV after 3.5 h of work compared with the HRV of those with lower absenteeism rates (163). In radio broadcasters, during direct broadcasting, HRV decreased (164). For parachute jumpers no difference in HRV between experienced and inexperienced jumpers was found during the jump (165). During flight the standard deviation of the heart rate tended to increase during medium interpretative actions and mental stress, and it decreased during high interpretative and emotional stress situations such as during takeoff and landing (166). Finally, for air traffic controllers a correlation was found between heart rate but not between HRV and the number of planes controlled (167). We could find only one study of chemical exposure and HRV. In a cross-sectional survey on 172 male workers exposed to lead, a significant dose-related decrease of HRV was observed (168). The authors concluded that an effect on the autonomic nervous system expressed as decreased HRV during deep breathing might be one of the earliest signs of lead toxicity.
Concluding remarks

Measuring HRV may provide valuable information for the occupational physician. HRV and its spectral components can be easily and noninvasively assessed. Despite the need for standardization in methodology to facilitate the interpretation and comparison of results, it is clear that there are individual differences in HRV which partly reflect differences in the degree of parasympathetic and sympathetic stimulation of the heart (or the heart responsiveness to stimulation). These differences are also reflected in the circadian variation of the spectral components of HRV. Measurements of HRV and the quantification of its spectral components are apparently a powerful predictor of cardiovascular morbidity and mortality.

Therefore it may have a role in assessing the return to work of patients with ischemic heart disease. Studies in the workplace may also give an indication of the effects of various stresses of the work environment on such patients and, in fact, on asymptomatic workers. Various stresses leading to fatigue and decrements in performance have been associated with decreases in HRV. Therefore, analysis of the variation of R-R intervals may also be of value in defining the stresses present in various work stations and in identifying workers who are perhaps at increased risk for adverse consequences from such stress. Finally, a single study found that lead exposure was associated with a dose-related decrease in HRV. Further studies are warranted to support such findings and perhaps to extend them to other neurotoxic exposures found in the workplace.

References

1. Rosenbluth A, Sineeze FA. The interrelations of vagal and accelerometer effects on the cardiac rate. Am J Physiol 1934; 110:42—55.
2. Eckberg DL. Human sinus arrhythmia as an index of vagal cardiac outflow. J Appl Physiol 1983; 54:961—96.
3. Fouad FM, Tarazi RC, Ferrario CM, Fighaly S, Alikandri C. Assessment of parasympathetic control of heart rate by a non-invasive method. Am J Physiol 1984; 246:H838—62.
4. Katona PG, Felix JIH. Respiratory sinus arrhythmia: noninvasive measure of parasympathetic cardiac control. J Appl Physiol 1975; 39:801—5.
5. Guyton AC. The heart. In: Guyton AC, ed. Textbook of medical physiology. Philadelphia, PA: WB Saunders, 1981: 158—75.
6. Levy MN. Cardiac sympathetic-parasympathetic interactions. Fed Proc 1984; 43:2598—602.
7. Loffelholz K, Pappano AJ. The parasympathetic neuroeffector junction of the heart. Pharmacol Rev 1985; 37:1—24.
8. Ewing DJ, Neilson JMM, Travis P. New methods for assessing cardiac parasympathetic activity using 24-hour electrocardiograms. Br Heart J 1984; 52:396—402.
9. Molgaard H, Sorensen KE, Bjerringraad P. Circadian variation and influence of risk factors on heart rate variability in healthy subjects. Am J Cardiol 1991; 68:777—84.
10. Kleiger RE, Miller JP, Bigger JT, Moss AF. Multicenter Post-Infarction Research Group. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 1987; 59:256—62.
11. Rich MW, Saini JS, Kleiger RE, Carney RM, te Velde A, Freedland KE. Correlation of heart rate variability with clinical and angiographic variables and late mortality after coronary angiography. Am J Cardiol 1988; 62:714—7.
12. Opmeer CHJM. The information content of successive RR interval times in the ECG: preliminary results using factor analysis and frequency analyses. Ergonomics 1973; 16:105—12.
13. Magid NM, Martin GJ, Kohoe RF, Zheutlin TA, Eckberg DL, Myers GA, et al. Diminished heart rate variability in sudden cardiac death [abstract]. Circulation 1985; 72:III241.
14. Farrell TG, Bashir Y, Cripps T, Malik M, Poloniecki J, Bennett ED, et al. Risk stratification for arrhythmic event in postinfarction patients based on heart rate variability, ambulatory electrocardiographic variables and the signal-averaged electrocardiogram. J Am Coll Cardiol 1991; 18:687—97.
15. Kleiger RE, Miller JP, Bigger JT Jr, Moss AL, the Multicenter Post-Infarction Research Group. Heart rate variability: a variable predicting mortality following acute myocardial infarction [abstract]. J Am Coll Cardiol 1984; 3:547.
16. Malik M, Farell T, Cripps TR, Camm AJ. Heart rate variability in relation to prognosis after myocardial infarction: selection of optimal processing techniques. Eur Heart J 1989; 10:1060—74.
17. DelBoe RW, Karemaker JM, Stracke J. Comparing spectra of a series of point events particularly for heart rate variability data. IEEE Trans Bio Med Eng 1984; 31(4):384—7.
18. Marple L. Digital spectral analysis with applications. Englewood Cliffs, NJ: Prentice Hall, 1987: 264—5.
19. Priestley MB. Spectral analysis and time series: probability and mathematical statistics. London: Academic Press Inc Ltd, 1984.
20. Jenkins GM, Watts DG. Spectral analysis and its applications. San Francisco, CA: Holden-Day, 1968.
21. Pomerantz B, Macanulay RB, Coudill MA, Katz L, Adams D, Gordon D, et al. Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol 1985; 248:H151—H153.
22. Akselrod S, Gordon D, Ubel FA, Shannon DC, Barger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 1981; 213:220—2.
23. Akselrod S, Gordon D, Madwed JB, Snidman NC, Shannon DC, Cohen RJ. Hemodynamic regulation: investigation by spectral analysis. Am J Physiol 1985; 249:H867—75.
24. Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlani R, Pizzinelli P, et al. Power spectral analysis heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res 1986; 59:178—93.
25. Hayano J. Quantitative assessment of autonomic function by autoregressive spectral analysis of heart rate variability: effect of posture, respiratory frequency, and age. J Auton Nerv Syst 1988; 25:334—44.
26. Chess GF, Tam RMK, Calaresu PR. Influence of cardiac neural inputs on rhythmic variations of heart period in the cat. Am J Physiol 1975; 228:775—80.
27. Saul JP, Rea RF, Berger RD, Eckberg DL, Cohen RJ. Spec-
Heart rate variability in health and disease

28. Lombardi F, Sandrone G, Pempunuru S, Sala R, Garinolodi M, Cerutti S, et al. Heart rate variability as an index of sympathovagal interaction after acute myocardial infarction. Am J Cardiol 1987;60:1239–45.
29. Baselli C, Cerutti S, Civardi S, Lombardi F, Malliani A, Merri M, et al. Heart rate variability signal processing: a quantitative approach as an aid to diagnosis in cardiovascular pathologies. Int J Biomed Comput 1987;20:51–70.
30. Brovelli M, Baselli G, Cerutti S, Gazzetti S, Liberati D, Lombardi F, et al. Computerized analysis for an experimental validation of neurophysiological models of heart rate control. In: NIH and IEEE Computer Society, Proceedings of computers in cardiology. Silver Spring, MD: IEEE Computer Society Press, 1983:205–8.
31. Furlan R, Gazzetti S, Crivellaro W, Dassi S, Tinelli M, Baselli G, et al. Continuous 24-hour assessment of the neural regulation of systemic arterial pressure and RR variabilities in ambulant subjects. Circulation 1990;81:537–47.
32. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation 1991;84:482–92.
33. Follen EL, Kamath MV, Ghista DN, Fitchett D. Spectral analysis of heart rate variability following human heart transplantation: evidence for functional reinnervation. J Auton Nerv Syst 1988:23:199–206.
34. Hayano J, Sakakibara Y, Yamada M, Ohne T, Fujimini T, Yokoyama K, et al. Decreased magnitude of heart rate spectral components in coronary artery disease: its relation to autonomic nervous function. Int J Biomed Comput 1987;21:1217–24.
35. Lombardi F, Sandrone G, Mortara A, La Rovere MT, Colombro E, Gazzetti S, et al. Circadian variation of spectral indices of heart rate variability after myocardial infarction. Am Heart J 1992;123(6):1521–9.
36. Kinney RL, Rompelman OA. Analysis of interaction of the human blood pressure and thermal system. In: Perkins J, editor. Biomedical computing. Pitman Medical, 1977:49–54.
37. Weber EJM, Molenaa PCM, van der Molen MW. A nonstatistical test for the spectral analysis of physiological time series with an application to respiratory sinus arrhythmia. Psychophysiology 1992;29(1):55–65.
38. Hyndman BW, Kinney RL, Sayers BM. Spontaneous rhythms in physiological control systems. Nature 1971;233:339–40.
39. Sayers BM. Analysis of heart rate variability. Ergonomics 1973;16:85–97.
40. Bianchi AM, Mainardi L, Peruzzo E, Signorini MG, Mainardi M, Cerutti S. Time variant power spectrum analysis for the detection of transient episodes in HRV signal. IEEE Trans Bio Med 1993;40(2):136–44.
41. Macerata A, Pola S, Marchesi C, Emidio M, Carpeggiani C. Spectral analysis: time dependent approach. J Ambulatory Monit 1992;52(2–3):123–30.
42. Bianchi AM, Mainardi L, Cerutti S. Batch and time-variant parametric spectral analysis for respiratory component estimation in heart rate variability signal. J Ambulatory Monit 1992;52(2–3):107–22.
43. Bigger JT, Kleiger RE, Fleiss JL, Rointzky LM, Steinman RC, Miller JP, Multicenter Post-Infarction Research Group. Components of heart rate variability measured during healing of acute myocardial infarction. Am J Cardiol 1988;61:208–15.
44. Eckberg DL, Drabinsky M, Braunwald E. Defective cardiac parasympathetic control in patients with heart disease. N Engl J Med 1971;285:877–83.
45. Schwartz PJ, Zaza A, Pala M, Grussi G, Mancia G, Stone HL, et al. Transient impairment in baroreceptor reflexes in the first year post myocardial infarction: a prospective study [abstract]. Circulation 1984;70 suppl II:874.
46. LaRovere MT, Specchia G, Mazzoleni C, Mortara A, Schwartz PJ. Baroreflex sensitivity in post-myocardial infarction patients: correlation with physical training and progression [abstract]. Circulation 1986;74 suppl II:514.
47. Ryan C, Hollenberg M, Harvey DB, Gwynn R. Impaired parasympathetic responses in patients after myocardial infarction. Am J Cardiol 1976;37:1013–8.
48. Eckberg DW. Parasympathetic cardiovascular control in human disease: a critical review of methods and results. Am J Physiol 1980;239:H581–593.
49. Higgins CB, Vatrner SF, Eckberg DL, Braunwald E. Alterations in the baroreceptor reflex in conscious dogs with heart failure. J Clin Invest 1972;51:715–24.
50. O’Brien IAD, O’Hare P, Corrall RJM. Heart rate variability in healthy subjects: effect of age and the derivation of normal ranges for tests of autonomic function. Br Heart J 1986;55:348–54.
51. White NK, Edward JE, Dry TJ. The relationship of the degree of coronary atherosclerosis with age in men. Circulation 1950;1:645–54.
52. Port S, Cobb FR, Coleman RE, Jones RH. Effect of age on the response of the left ventricular fraction to exercise. N Engl J Med 1982;3:1137.
53. Nixon JV, Hallmark H, Page K, Raven PR, Mitchell JH. Ventricular performance in human hearts aged 61 to 73 years. Am J Cardiol 1985;56:932–37.
54. Jennett S, Lamb JF, Travis P. Sudden large and periodic changes in heart rate in healthy young men after short periods of exercise. Br Med J 1982;285:1154–6.
55. De Meersman R. Respiratory sinus arrhythmia alteration following training in endurance athletes. Eur J Appl Physiol 1992;64:434–6.
56. Smith ML, Hudson DL, Gratzer HM, Raven PB. Exercise training bradycardia: the role of autonomic balance. Med Sci Sports Exerc 1989;21:410–4.
57. De Meersman RE. Heart rate variability and aerobic fitness. Am Heart J 1993;125:726.
58. Giannattasio C, Seravalle G, Bolla GB, Cattaneo BM, Cleroux J, Cuspidi C, et al. Cardiopulmonary receptor reflexes in normotensive athletes with cardiac hypertrophy. Circulation 1990;82:1222–9.
59. Sowers JR, Mohanty P. Effect of advancing age on cardiopulmonary baroreceptor function in hypertensive men. Hypertension 1987;10:274–9.
60. Barrey J, Ebert TJ, Groban L, Farrell P, Hughes VC, Smith HJ. Carotid baroreflex responsiveness in high fit and sedentary young men. J Appl Physiol 1998;85:2190–4.
61. Kinney RL, Byrne S, Edmonds ME, Watkins PJ, Roberts VC. Heart rate variability in the assessment of autonomic diabetic neuropathy. Automedica 1982;4:155–67.
62. Pipilis A, Flather M, Ormerod O, Sleight P. Heart rate variability in acute myocardial infarction and its association with infarct size and clinical course. Am J Cardiol 1991;67:1137–9.
63. Lantin MH, Sapoiznikov D, Gilon D, Zahger D, Weinstein JM, Weiss AT, et al. Early heart rate variability alterations after acute myocardial infarction. Am J Cardiol 1993;125:676–81.
64. McAreavey D, Neilson JMM, Ewing DJ, Russell DC. Cardiac parasympathetic activity during the early hours of acute myocardial infarction. Br Heart J 1989;62(1):165–70.

65. Webb SW, Adgey AAJ, Pantridge JF. Autonomic disturbance at onset of acute myocardial infarction. Br Med J 1972;3:89–92.

66. Schneider RA, Costiloe JP. Relationship of sinus arrhythmia to age and its prognostic significance in ischemic heart disease. Clin Res 1965;13:219.

67. Wolf MM, Vargos GA, Hunt D, Sloman JG. Sinus arrhythmia in acute myocardial infarction. Med J Aust 1978;2:52–3.

68. Dougherty CM, Burt RL. Comparison of heart rate variability in survivors and nonsurvivors of sudden cardiac arrest. Am J Cardiol 1992;70:441–8.

69. Bigger TJ Jr, Fleiss JL, Rolnitzky LM, Steinman RC. The ability of several short-term measures of RR variability to predict mortality after myocardial infarction. Circulation 1993;88:927–34.

70. Billman GE, Schwartz PJ, Stone HL. Baroreceptor reflex control of heart rate: a predictor of sudden cardiac death. Circulation 1982;66:784–80.

71. Martin GJ, Magid NM, Myers G, Baenett PS, Schaad JW, Weiss JS, et al. Heart rate variability and sudden death secondary to coronary artery disease during ambulatory electrocardiographic monitoring. Am J Cardiol 1987;60:86–9.

72. Odemuyiwa O, Malik M, Farrell T, Bashir Y, Poloniocki J, Cann J. Comparison of the predictive characteristics of heart rate variability index and left ventricular ejection fraction for all-cause mortality, arrhythmic events and sudden death after acute myocardial infarction. Am J Cardiol 1991;68:434–9.

73. Bigger JT Jr, Fleiss JL, Kleiger RE, Rottman JN. Frequency domain measures of heart period variability and mortality after myocardial infarction. Circulation 1992;85:164–72.

74. Huikuri HV, Valkama JO, Airaksinen J, Seppanen T, Kessler KM, Takkkunen JT, et al. Frequency domain measures of heart rate variability before the onset of nonsustained and sustained ventricular tachycardia in patients with coronary artery disease. Circulation 1993;87:1220–8.

75. Millar-Craig MW, Bishop CN, Railby EB. Circadian variation of blood pressure. Lancet 1978;1:795–7.

76. Tristani FE, Kamper DG, McDermott DJ, Peters BJ, Smith JJ. Alterations of postural and valsalva responses in coronary heart disease. Am J Physiol 1977;233:H694–H699.

77. Bennett T, Wilcox RG, Hampton JR. Cardiovascular reflexes in patients after myocardial infarction. Br Heart J 1980;44:265–70.

78. Airaksinen KEJ, Iikaiheimo MJ, Takkunen JT, et al. Impaired vagal control of heart rate in coronary heart disease. Br Heart J 1987;58:592–7.

79. LaRovere MT, Specchia G, Mortara A, Schwartz PJ. Baroreflex sensitivity, clinical correlates, and cardiovascular mortality among patients with a first myocardial infarction: a prospective study. Circulation 1988;78:816–24.

80. McAreavey D, Neilson JMM, Ewing DJ, Russell DC. Cardiac parasympathetic activity during the early hours of acute myocardial infarction. Br Heart J 1989;62:165–70.

81. Barber MJ, Mueller TM, Henry DP, Felten SY, Zipes DP. Transmural myocardial infarction in the dog produces sympathoexcitation in noninfarcted myocardium. Circulation 1983;67:787–96.

82. Robertson D, Hollister AS, Forman MB, Robertson RM. Reflexes unique to myocardial ischemia and infarction. J Am Coll Cardiol 1985;5:99B–104B.

83. Kjellgren O, Gomes AJ. Heart rate variability and baroreflex sensitivity in myocardial infarction. Am Heart J 1993;125(1):204–15.

84. Minasi AJ, Thanes MD. Effect of chronic myocardial infarction on vagal cardiopulmonary baroreflexes. Circ Res 1989;65:396–405.

85. Airaksinen KEJ, Niemel M, Iikaiheimo MJ, Huikuri HV, Linanahuto MK, Takkkunen JT. Effect of coronary arterial occlusion on vagal control of heart rate. Int J Cardiol 1991;30:269–74.

86. Saal JP, Arai Y, Berger RD, Liklly LS, Colucci WS, Cohen RJ. Assessment of autonomic regulation in chronic congestive heart failure by heart rate spectral analysis. Am J Cardiol 1988;61:1292–9.

87. Hayano J, Yamada M, Sakakibara Y, Fujinami T, Yokoyama K, Watanabe Y, et al. Short- and long-term effects of cigarette smoking on heart rate variability. Am J Cardiol 1990;65:84–8.

88. Hayano J, Yamada A, Muki S, Sakakibara Y, Yamada M, Othe N, et al. Severity of coronary atherosclerosis correlates with the respiratory component of heart rate variability. Am Heart J 1991;121:1070–9.

89. Kent KM, Smith ER, Redwood DR, Epstein SE. Electrical stability of acutely ischemic myocardium: influence of heart rate and vagal stimulation. Circulation 1973;47:291–8.

90. Myerburg RJ, Kessler KM, Bassett AL, Castellanos A. A biological approach to sudden cardiac death: structure, function and cause. Am J Cardiol 1989:63:1512–6.

91. Lown B, Verrier RL. Neural activity and ventricular fibrillation. N Engl J Med 1976;294:1165–76.

92. Schwartz PJ, Vanoli E, Stanis-Badiale M, De Ferrari GM, Billman GE, Foreman RD. Autonomic mechanisms and sudden death: new insights from analysis of baroreflex responses in conscious dogs with and without a myocardial infarction. Circulation 1988;78:969–79.

93. Billman GE, Hoskins RS. Time series analysis of heart rate variability during submaximal exercise: evidence for reduced cardiac vagal tone in animals susceptible to ventricular fibrillation. Circulation 1989;80:46–57.

94. Hall SS Jr, Evans AR, Vanoli E, Adamson PB, Stramba-Badiale M, Albert DE, et al. Heart rate variability before and after myocardial infarction in conscious dogs at high and low risk of sudden death. J Am Coll Cardiol 1990;16:987–5.

95. Myers RW, Pearlman AS, Hyman RM, Goldstein RA, Kent KM, Goldstein RE, et al. Beneficial effects of vagal stimulation and bradycardia during experimental acute myocardial ischemia. Circulation 1974;49:943–7.

96. Kolman B, Verrier RL, Lown B. The effects of vagus nerve stimulation upon vulnerability of the canine ventricle: role of sympathetic-parasympathetic interactions. Am J Cardiol 1976;37:1041–5.

97. Moss AJ, Schwartz PJ. Delayed repolarization (QT or QTU prolongation) and malignant ventricular arrhythmias. Mod Concepts Cardiovasc Dis 1982;51:85–90.

98. Merri M, Alberti M, Ross A. Dynamic analysis of ventricular repolarization duration from 24-hour Holter recordings. IEEE Trans Biomed Eng 1993;40(12):1219–25.

99. Malliani A, Schwartz P, Zanchetti A. Neural mechanisms in life-threatening arrhythmias. Am Heart J 1980;100:705–15.

100. Kupari M, Virolainen J, Koskinen P, Tikkanen MJ. Short-
Heart rate variability in health and disease

term heart rate variability and factors modifying the risk of coronary artery disease in a population sample. Am J Cardiol 1993;72:897—903.

101. Niedermaier ON, Smith ML, Beightol LA, Zulowska-Grojec Z, Goldstein DS, Eckberg DL. Influence of cigarette smoking on human autonomic function. Circulation 1993;88:562—71.

102. Stein KM, Borser JS, Hochreiter C, Oskin PM, Herrold EM, Dervereux RB, et al. Prognostic value and physiological correlates of heart rate variability in chronic severe mitral regurgitation. Circulation 1993;88:127—35.

103. Niesoza SD, Stanley M, Love CJ, Coyne KS, Schual SP. The autonomic and hemodynamic effects of oral theophylline in patients with vasodepressor syncope. Arch Intern Med 1991;151:2425—9.

104. Sneddon JF, Bashir Y, Murgatroyd FD, Ward DE, Camp AJ, Malik M. Do patients with neurally mediated syncope have augmented vagal tone? Am J Cardiol 1993;72:1314—5.

105. Simone F, Baoomo C, Nozolli C, Grossi D, Roca ME, Santostasi R. Vasovagal reactions induced by head-up tilt and tests of vagal cardiac function. J Auton Nerv Syst 1990;30:S145-8.

106. Sheldon RS, Wilson W. Heart rate variability analysis of autonomic tone in patients with neur mediated syncope [abstract]. Circulation 1991;84 suppl II:233.

107. Abi-Samra F, Malody JF, Foud-Trazi FM, Castle LW. The usefulness of head-up tilt testing and hemodynamic investigations in the workup of syncope of unknown origin. PACE 1988:11:1202—14.

108. Lipsitz LA, Mietus J, Moody GB, Goldberger AL. Spectral characterization of heart rate variability before and during postural tilt: relations to aging and risk of syncope. Circulation 1991;83:100—10.

109. Wahbha MMAE, Morley CA, Al-Shamma YM, Hainsworth R. Cardiovascular reflex responses in patients with unexplained syncope. Clin Sci 1989;77:547—53.

110. Bernardi L, Leuzzi S, Radaelli A, Soldia PL, Calciati A, Grossi D, Nozzoli C, Simone F, Buonomo C, Grossi D, Calciati A, et al. Impairment of cardiac modulation of sympatho-vagal activity in diabetes: a possible explanation for altered temporal onset of cardiovascular disease. Circulation 1992;86:1443—52.

111. Zwillieh C, Devlin T, White D, Douglas N, Weil J, Martin R. Bradycardia during sleep apnea. J Clin Invest 1982;6.

112. Cardillo C, Masuveci V, Morea S, Guerrer G, Melina, Foll G. Heart rate variability and ventricular ectopic activity in hypertensive patients. J Hypertens Suppl (England) 1989;7(6):S34—5.

113. Vannucchi PL, Cipriani M, Montigiani A, Lagi A. Blood pressure and heart rate relationship in normotensive and hypertensive subjects. Angiology 1993;44(2):146—51.

114. Muneta S, Marakami E, Sumimoto T, Iwata T, Hiwada K, Sato Y, et al. Blood pressure and heart rate variability in elderly patients with isolated systolic hypertension. J Hum Hypertens 1991;5(5):393—8.

115. Pagani M, Lombardi F, Guzzetti S, Sandrone G, Rimoldi O, Malfatto G, et al. Power spectral density of heart rate variability as an index of sympathovagal interaction in normal and hypertensive subjects. J Hypertens Suppl 1984;2(3):383—S85.

116. Gazzetti S, Dassi S, Pecis M, et al. Altered pattern of circadian neural control of heart period in mild hypertension. J Hypertens 1991;9:831—8.

117. Coats AJ, Conway J, Sleigh P, Meyer TE, Somers VK, Floras JS, et al. Interdependence of blood pressure and heart period regulation in mild hypertension. Am J Hypertens 1991;4(3 Pt 1):234—8.

118. Chakko S, Mulingtang RF, Huiuri H, Kessler KM, Matusen BJ, Myerburg RJ. Alterations in heart rate variability and its circadian rhythm in hypertensive patients with left ventricular hypertrophy free of coronary artery disease. Am Heart J 1993;126:1364—72.

119. Seals DR, Chase PB. Influence of physical training on heart rate variability and baroreflex circulatory control. J Appl Physiol 1989;66:1889—95.

120. LaRovere MT, Mortara A, Cobelli F, Specchio G, Schwartz PJ. Baroreflex sensitivity improvement after physical training in post myocardial infarction patients [abstract]. Eur Heart J 1989:10:126.

121. Cowan MJ, Kogan H, Burr R, Hendershot S, Buchman L. Power spectral analysis of heart rate variability after biofeedback training. J Electrocardiol 1990;23 suppl:85—94.

122. Toivonen H, Liinisimies E, Jokela V, Hänninen O. Impact of regular relaxation training on the cardiac autonomous nervous system of hospital cleaners and bank employees. Scand J Work Environ Health 1993;19:319—25.

123. Vaitl D, Stark R, Gruppe H. Biofeedback: a methodology for changing cardiorespiratory coupling. J Ambulatory Monit 1992;5:2—3):175—86.

124. Santacangelo EL, Enomoto M, Picano E, Raciti M, Macerata A, Michelassi C, et al. Can hypnosis modify the sympathetic-parasympathetic balance at heart level? J Ambulatory Monit 1992;5(3):191—6.

125. Yusaf S, Peto R, Lewis J, Collins R, Sleigh P. Beta-blockade during and after myocardial infarction: an overview of the randomized trials. Prog Cardiovasc Dis 1985;27:335—71.

126. Zipes D. Changes in innervation patterns and autonomic responsiveness in myocardial infarction. In: Rosen MR, Janse MJ, Wit AL, editors. Cardiovascular electrophysiology: a textbook. Mount Kisco, NY: Futura Publishing Company Inc, 1990:915—31.

127. Bittiner SB, Smith SE. Beta-adrenoceptor antagonists increases sinus arrhythmia, a vagotonic effect. Br J Clin Pharmacol 1986:22:691—95.

128. Dibner-Dunlap ME, Eckberg DL, Magid NM, Clinton-Trevino NM. The long-term increase of baseline and reflex augmented levels of human vagal-cardiac nervous activity induced by scopolamine. Circulation 1985;71:797—804.

129. Vyzinal B, Treg RJ, Maddens MF, Bhasin SS, Cronon S, Boden WE, et al. Effects of transdermal scopolamine on heart rate variability in normal subjects. Am J Cardiol 1990;65:604—8.

130. Zannetti G, Latini R, Neilson JMM, Schwartz PJ, Ewing DJ, Antiiarythmic Drug Evaluation Group. Heart rate variability in patients with ventricular arrhythmias: effect of antiarrhythmic drugs. J Am Coll Cardiol 1991;7:604—12.

131. Echt DS, Liebson PR, Mitchell LB, the CAST Investigators. Mortality and morbidity in patients receiving encainide, flecainide, or placebo: the Caridac Arrhythmia Suppression Trial. N Engl J Med 1991;324:781—8.
raluoto MK, Myerburg RJ. Reproducibility and circadian rhythm of heart rate variability in healthy subjects. Am J Cardiol 1990;65:391–3.

135. Huikuri HV, Linaluoto MK, Seppänen T, Airoskinseni KEI, Kesler KM, Takkanen JT, et al. Heart rate variability and its circadian rhythm in survivors of cardiac arrest. Am J Cardiol 1992;70:610–5.

136. Casolo C, Balli E, Fazi A, Gori C, Freni A, Gensini G. Twenty-four-hour spectral analysis of heart rate variability in congestive heart failure secondary to coronary artery disease. Am J Cardiol 1991;67:1154–8.

137. Dassi S, Balsamo M, Guzzetti S, Posti MG, Magli O, Pagani M, et al. Twenty-four-hour power spectral analysis of heart rate variability and of arterial pressure values in normotensive and hypertensive subjects. J Hypertens 1991; 9(suppl 6):S72–S73.

138. Guzzetti S, Piccaluga E, Casati R, Cerutti S, Lombardi F, Pagani M, et al. Sympathetic predominance in essential hypertension: a study employing spectral analysis of heart rate variability. J Hypertens 1988;6(9):711–7.

139. Rizzini D, Muneanu ML, Zuli F, Castellano M, Bettini G, Porteri E, et al. Effect of antihypertensive treatment on daytime and nighttime power spectral analysis of heart rate. Am J Hypertens 1993;6:204–8.

140. Lauri W, Luccaz H, Philipp U. Ermittlung der Pulsfrequenzzerrhythmie bei körperlicher Arbeit. Int Z Angew Physiol 1971;30:40–51.

141. Furlan R, Piazza S, Dell’Orto S, Gentile E, Safati M, Lombardi F, et al. Effects of respiratory activity on heart rate and blood pressure variabilities during physical exercise. J Ambulatory Monit 1992;5(2–3):87–94.

142. Wiersma ED. Der einflub von bewubtseinszustanden auf den puls und auf die atmung. Z Neurolog Psychiatr 1913;1:19–25.

143. Schломka G. Untersuchungen über die physiologische Unregelmäßigkeit des Herzschlags. Z Kreislaufforsch 1936;26:473–92.

144. Kalbeek JHW. Mentale belasting. Assen: Van Gorcum & Comp, 1967.

145. Luccaz H. Fractionated heart rate variability Part 1: analysis in a model of the cardiovascular and cardiopulmonary system. Ergonomics 1990;33:1895–911.

146. Gutzwiller F. Epidemiology of hypertension: knowledge today and open questions. Arbeitsmed Sozialmed Praventivmed 1985;May:101–5.

147. Mascord DJ, Heath RA. Behavioral and physiological indices of fatigue in a visual tracking task. J Safety Res 1992;23:19–25.

148. Razmjou S, Kjellberg A. Sustained attention and serial responding in heat: mental effort in the control performance. Aviat Space Environ Med 1992;63(7):594–601.

149. Garzon S, Scott AR, McDonald IA. The effect of posture and environmental temperature on cardiovascular reflexes in normal subjects and diabetes mellitus. Clin Auton Res (Engl) 1992;2(3):147–51.

150. LeBlanc J, Mercier I. Cold wind stimulation reflex. J Appl Physiol 1992;73(5):1704–7.

151. Kunitake T, Ishiko N. Power spectrum analysis of heart rate fluctuations and respiratory movements associated with cooling the human skin. J Auton Nerv Syst 1992;47(4):263–8.

152. Hatae JP, Borcherdng S, Noritsuka Y. Cardiopulmonary adjustments during operant heart rate control. Psychophysiology 1990;27:641–8.

153. Porges SW, Bohrer RE, Keren G, Cheung MN, Franks GI, Draskow F. The influence of methylphenidate on spontaneous autonomic activity and behavior in children diagnosed as hyperactive. Psychophysiology 1981;18:42–8.

154. Richards JF. Heart rate offset responses to visual stimuli in patients with vibration syndrome using heart rate variation and plasma cyclic nucleotides. Br J Ind Med 1990;47(4):263–8.

155. Kristal-Boneh et al

Received for publication: 1 July 1994