The Neurobiological Mechanisms and Treatments of REM Sleep Disturbances in Depression

Yi-Qun Wang¹, Rui Li¹, Meng-Qi Zhang¹, Ze Zhang¹,², Wei-Min Qu¹,²,* and Zhi-Li Huang¹,²,*

¹Department of Pharmacology, Shanghai Key Laboratory of Bioactive Small Molecules, and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences; ²Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China

Abstract: Most depressed patients suffer from sleep abnormalities, which are one of the critical symptoms of depression. They are robust risk factors for the initiation and development of depression. Studies about sleep electroencephalograms have shown characteristic changes in depression such as reductions in non-rapid eye movement sleep production, disruptions of sleep continuity and disinhibition of rapid eye movement (REM) sleep. REM sleep alterations include a decrease in REM sleep latency, an increase in REM sleep duration and REM sleep density with respect to depressive episodes. Emotional brain processing dependent on the normal sleep-wake regulation seems to be failed in depression, which also promotes the development of clinical depression. Also, REM sleep alterations have been considered as biomarkers of depression. The disturbances of norepinephrine and serotonin systems may contribute to REM sleep abnormalities in depression. Lastly, this review also discusses the effects of different antidepressants on REM sleep disturbances in depression.

Keywords: Antidepressants, depression, mood disorders, norepinephrine, serotonin, sleep disorders.

1. INTRODUCTION

Currently, depression is a common disease and has become increasingly prevalent in the world [1]. Most depressed people show evidence of one or more changes in sleep neurophysiology; i.e., some complain of insomnia and the others suffer from hypersomnia [2, 3]; therefore, impaired sleep is a critical symptom of depressed patients. Gresham SC et al. [4] found there were more REM sleep alterations in the first third of the night in depressed patients, which was the first study on depression and sleep [5]. Later quantitative electroencephalogram (EEG) studies showed that there were characteristic changes in depression consisting of disturbed sleep continuity, inductions of rapid eye movement (REM) sleep; that is, reductions of REM sleep latency, increases in REM sleep time and REM sleep density, and decreases of non-REM (NREM) sleep [3, 6-8]. All of the changes, REM sleep abnormalities are key involvements of EEG changes in depression, and they implicate the severity of disease and indicate the effect of individualized antidepressant therapy [8].

To truly understand depression, knowledge of REM sleep is required. Therefore, we reviewed the data on REM sleep disturbances in depression from different aspects. Furthermore, treatments of REM sleep disturbances in depression are also reviewed.

2. OVERVIEW OF REM SLEEP ABNORMALITIES IN DEPRESSION

Although symptoms of depression vary from patient to patient and can overlap through different subtypes [9], sleep disturbances are always one of the most common complaints of depressed patients. Sleep EEG recordings in depression are often characterized by the following [3, 8, 10-13]: decreased sleep efficiency, for example, the time before falling asleep is prolonged and more awakening episodes after falling asleep [14-16]; reduced NREM sleep, disturbed distribution of delta activity, sleep cycle, and a reduced delta ratio (ratio between delta activity in the first and second NREM periods); longer time of REM sleep, such as reduced REM sleep latency and deeper REM sleep density, especially during the first REM sleep period [11, 16-25].

REM sleep disturbances have been considered to be more specific for depression since other sleep disturbances are common in many mental disorders. In 1966, Hartmann E and Green WJ et al. found that the latency of REM sleep was reduced at sleep onset and its percentage was increased [26, 27]. So the latency of REM sleep has been viewed as a marker of depression [28].

Animal models of depression also show changes in sleep. Interestingly, animal models show similar changes of REM sleep, but the other insomnia changes including prolonged wakefulness and shortened NREM sleep are not obvious [29, 30]. REM sleep increased significantly in the light period, especially in the afternoon, in olfactory bulbectomized rats, which is thought to be a classic depressive model [31]. Prenatally stressed rats showed an increased REM sleep, and
the change of REM sleep was correlated positively with the increase of corticosterone levels in the plasma [32]. In the other depressive animal models, elevated REM sleep was a landmark [32, 33]. All these studies have suggested that increased REM sleep is supposed to be the characteristic change in depressive animal models.

Therefore, from these studies, we concluded that abnormalities in REM sleep are potential biomarker of depression.

3. THE NEUROBIOLOGICAL BASIS OF REM SLEEP ABNORMALITIES IN DEPRESSION

3.1. The Regulation of REM Sleep

There was the first description about REM sleep more than 60 years ago [34-36]. In both humans and other mammals, REM sleep is used to describe sleep accompanied by REM, fast and desynchronized rhythm in cortical EEG, an activation in autonomic activity and a loss of muscle tone [37]. REM sleep was shown to be regulated through the interplays of cholinergic and monoaminergic neurons in the brainstem, which activate or inactivate during REM sleep [38-43].

Noradrenergic (NE) neurons in the locus coeruleus (LC) have shown a negative regulation to REM sleep [44]. These neurons in the LC exhibit an increased activity during wakefulness, a decreased discharge rate during NREM sleep and a vanished firing during REM sleep [45]. However, others have suggested that cholinergic neurons in LCalpha, peri-LCalpha, laterodorsal tegmental (LDT) and pedunculopontine tegmental (PPT) tegmental nuclei may be responsible for REM sleep generation [46, 47]. Nucleus points oralis (NPO) has been emphasized to be involved in the coordination of the generation of REM sleep. It had been shown earlier that lesion of the ventral part of the NPO (vNPO) causes a decrease in REM sleep. Injection of carbachol into it could induce REM sleep with a shorter latency [48-51]. The vNPO receives cholinergic afferent fibers from the rostral peri-LCalpha, LDT, PPT and parabrachial nuclei (PB) and γ-aminobutyric acid (GABA)-ergic nuclei from the postero-lateral hypothalamus [52]. So the interactions between those two systems play an important role in the regulation of REM sleep [53, 54].

With the development of the techniques to record the activity of single neurons in freely moving animals, it has been possible to assess the effect of pontine nuclei at the neuronal level. The concept of REM-on and REM-off neurons has come into being, and the former means neurons that start firing or increase firing rate significantly during REM sleep, while the latter indicates those stopping firing or decreasing firing rate significantly at the same time [55, 56]. Almost all the REM-off neurons are monoaminergic in the LC as NE-ergic neurons [43, 57, 58], in the dorsal raphe as the serotoninergic (5-HT) neurons [59] and in the tuberomammillary nucleus (TMN) within the hypothalamic region as the histaminergic neurons [60]. However, some non-monoaminergic neurons in the medulla have been demonstrated to be REM-off neurons [61]. The REM-on neurons are chiefly cholinergic and are distributed in the LDT [62, 63] and PPT [64]. Nevertheless, some non-cholinergic REM-on neurons have also been found in the brain [61, 65]. Both the generation and regulation of REM sleep directly depend on the interaction between those two neurons. It is still not clear how REM-off neurons stop firing during REM sleep, which is necessary to generate REM sleep. GABA has been supposed to inhibit REM-off neurons [66]. Lu J et al. proposed a flip–flop switch in brainstem, which involved a mutual inhibition between REM-on and REM-off regions in the mesopontine tegmentum [67]. There were GABAergic neurons in each side that heavily innervated the others. The REM-on and REM-off neurons are summarized in Fig. 1.

3.2. The Basis of REM Sleep Dysregulation in Depression

Clinical antidepressant drugs selectively increase the function of monoaminergic systems such as the norepinephrine and serotonin systems. Dysfunction of the monoaminergic system has been demonstrated to have a close relationship

Fig. (1). The REM-on and REM-off neurons in REM sleep flip-flop circuit model. DRN: dorsal raphe nucleus; LC: locus coeruleus; LDT: laterodorsal tegmentum; PPT: pedunculopontine tegmentum; TMN: tuberomammillary nucleus; vLPG: ventrolateral periaqueductal grey.
REM Sleep Disturbances in Depression

Current Neuropharmacology, 2015, Vol. 13, No 4 545

...with the morbidity of depression [68]. It was found that the depletion of monoamine reserpine was associated with serious depression. Moreover, the inhibitors of monoamine oxidase, which inhibit the degradation of NE and 5-HT, could improve depressive emotions, suggesting that the NE and 5-HT systems play a critical role in the generation process of depression.

Increasing extracellular levels of NE and 5-HT via the use of monoamine reuptake inhibitors could inhibit REM sleep, which could also be helpful for treating depression [69]. However, selective lesions of either the cholinergic or monoaminergic nucleus in the brainstem did not have much influence on REM sleep [70-72]. Furthermore, some evidence showed no causality between REM sleep abnormalities and depressive behaviors [31]. Therefore, there may be two parallel pathways for the regulation of REM sleep and depression, which have a close relationship with the monoaminergic system.

In addition to monoaminergic system, cholinergic system also plays a critical role in REM sleep abnormalities in depression. Cholinergic agonists such as arecoline and phystostigmine shortened REM sleep latency and reduced REM sleep interval times preferentially in patients with depression [73]. Moreover, Prathiba J et al. found that REM sleep deprivation could reverse the sensitivity of central cholinergic receptors in rats given clomipramine neonatally, and the mechanism may be involved in mediating the antidepressant effects of REM sleep deprivation treatment in clomipramine model of depression [74].

Recently, it was found that depression may be related to the dysfunction of a network of structures that also regulate REM sleep, such as the limbic system including the hippocampus, amygdala and medial prefrontal cortex. Posttraumatic stress disorder and major depressive disorder (MDD) are two stress-related disorders that are associated with the disruption of REM sleep [75-79]. In MDD, REM sleep is characterized by activation of limbic and paralimbic brain regions compared to wakefulness. Posttraumatic stress disorder is associated with increased REM sleep limbic and paralimbic metabolism, whereas MDD is associated with wake and REM sleep hypermetabolism in these areas [80]. The hippocampus of the depressed patients was 12%-15% smaller than that of the non-depressed patients [81]. Hegde P et al. reported the effect of chronic immobilization stress on theta oscillations in the hippocampus and amygdala during REM sleep [82]. These studies demonstrated that chronic immobilization stress caused synchronized amygdalo-hippocampal theta activity and enhanced REM sleep duration. Mizuseki K et al. found that theta oscillations, which are the characteristics of REM sleep, decreased spike synchrony in the hippocampus and entorhinal cortex [83]. In addition, others found that stress affected theta activity in limbic networks including the hippocampus [84]. Apart from that, stress could also reduce long-term potentiation and facilitate long term depression, which has extensive effects on anxiety, depression and cognition [68, 85-87]. Therefore, the hippocampus is an important region in regulating REM sleep disturbances in the development of depression. Furthermore, the subregions of the medial prefrontal cortex (mPFC) showed great changes in neural activity in depressed patients. Lesions of the ventral mPFC enhanced REM sleep, reduced REM sleep latency and shortened the immobility time in a forced swimming test. Anatomic tracing studies showed that mPFC projected to the pontine REM-off neurons in the ventrolateral periaqueductal gray and adjacent lateral pontine tegmentum, which interacted with REM-on neurons in the dorsal pons. Therefore, the ventral mPFC may be a critical area for regulating both depression and sleep and it has been suggested to be a critical site for REM sleep abnormalities and other behaviors in depression [88].

The lateral habenula (LHb) is a nucleus that negatively regulates the monoaminergic system in the brain, since activation of LHb inhibits the firing activity of serotonergic neurons in the brainstem [89]. Aizawa H et al. found that the synchronous activity in the LHb was essential for the maintenance of REM sleep via regulation of serotonergic activity, which is also important for the development of depression [90]. The results suggested that the LHb regulates REM sleep abnormalities in depression via serotonergic neurons in the median raphe [91].

4. PHARMACOLOGICAL TREATMENTS FOR DEPRESSION AND REM SLEEP DISTURBANCES

4.1. Effects of Different Antidepressants on REM Sleep

Most antidepressants show suppressive effects on REM sleep, including prolonged REM sleep latency, decreased total duration of REM sleep, and reduced REM sleep density and the number of REM sleep episodes. These drugs include tricyclic antidepressants (TCAs) such as amitriptyline, imipramine and clomipramine [92-99]; tetracyclic antidepressants such as mianserin and maprotiline [98]; monoamine-oxidase inhibitors (MAOIs) such as phenelzine, tranylcypromine, clorgyline [100-103]; selective NE reuptake inhibitors (NARIs) such as desipramine and reboxetine [104, 105]; selective 5-HT reuptake inhibitors (SSRIs) such as fluoxetine, paroxetine, zimelidine [106-108]; 5-HT/NE reuptake inhibitors (SNRIs) such as venlafaxine and duloxetine and 5-HT2 receptor antagonists/reuptake inhibitor trazodone [98, 105, 109, 110].

The specific effects of different antidepressants on REM sleep are various. For example, duloxetine, amitriptyline, phenelzine and desipramine could significantly reduce REM sleep time and prolong the onset latency of REM sleep and phenelzine could completely suppress REM sleep after a few weeks of treatment [93, 98, 101, 102, 104, 110]. Clomipramine, imipramine and vilazodone showed profound REM sleep-suppressive effects, and venlafaxine may be the strongest REM sleep inhibitor among all SNRIs [96-98, 107]. Milnacipran, at a therapeutic dose, induced small effects on REM sleep compared with imipramine, paroxetine, and venlafaxine [95]. Moclobemide, a reversible MAOI, showed a less suppressive REM sleep effect than other traditional MAOIs [94]. Mianserin reduced REM sleep only in rats, but not in MDD patients [98]. The suppressive effect of trazodone was also relatively slight [109] and, therefore, this drug was included in the class of antidepressants that could not suppress REM sleep [111].

A REM sleep rebound is very common after a few weeks following withdrawal of most antidepressants, such as
Table 1. The comparisons of the effects of different antidepressants on REM sleep.

Antidepressants	Design	Subjects	n	Doses (per day)	Duration	Reference	Changes of Polysomnography
TCAs							
Amitriptyline	EEG recording before, during and after treatment	Depressed inpatients	6	100-225 mg	370 nights	Placebo	Suppressed REM sleep
[93, 131]	Double-blind randomized trial	Patients with MDD	30	75-200 mg	6 weeks	Alprazolam 4-9 mg	A REM sleep rebound after withdrawal
Clomipramine	EEG recording before and after treatment	Healthy man	1	Up to 100 mg	1 month	Placebo	Suppressed REM sleep
[96, 97]	EEG recording after total sleep deprivation and treatment afterwards	Patients with MDD	19	100-250 mg	6 weeks	Placebo	Increased wakefulness
Imipramine	Double-blind trial	Unipolar and bipolar patients hospitalized for MDD	79	100-250 mg	6 weeks	Imipramine 100-250 mg	Increased NREM sleep
[132]							
Trimipramine	Double-blind trial	Depressed patients with insomnia and anxiety	30	50-250 mg	4 weeks	Imipramine 75-200 mg	Increased REM sleep
[113, 133]	Double-blind trial	Male patients with MDD	20	50-250 mg	4 weeks	Imipramine 50-200 mg	Increased REM sleep
MAOI							
Phenelzine	Open-label trial	Patients with MDD	11	30-90 mg	5 weeks	Placebo	Increased stage 2 NREM sleep
[100, 118]	EEG recording before and after treatment	Depressed patients	3	75-100 mg	18 months	Placebo	Increased stage 2 NREM sleep
Tranylcypromine	EEG recording before and after treatment	Patients with anergic bipolar depression	23	37 mg (average)	4 weeks	Placebo	Increased stage 2 NREM sleep and REM sleep
[101]	Double-blind trial	Depressed patients	12	450 mg	6 weeks	Placebo	REM sleep habituation
Moclobemide	Double-blind trial	Patients with MDD	34	60 mg	42 days for treatment	Placebo	A slight REM sleep rebound after withdrawal
[134, 135]							
SSRIs							
Paroxetine	Double-blind randomized trial	Patients with MDD	40	30 mg for treatment	4 weeks	Amitriptyline 150 mg	Suppressed REM sleep
[92]							
Fluoxetine	Double-blind trial	Patients with MDD	34	60 mg	42 days for treatment	Amitriptyline 150 mg	Suppressed REM sleep
[136]							Disrupted sleep continuity
demonstrated that trimipramine did not show a REM sleep effect on REM sleep, some antidepressants did not have this effect. Moreover, no rebound of REM sleep also occurred after the withdrawal, in inhibition of REM sleep, such as increased REM sleep latency and decreased REM sleep time, but after withdrawal, REM sleep rebound even higher than before. Moreover, no rebound of REM sleep also occurred after the withdrawal of antidepressants milnacipran, imipramine and paroxetine.

Although most antidepressants showed a suppressive effect on REM sleep, some antidepressants did not have this effect, or even had the opposite effect. Many studies have demonstrated that trimipramine did not show a REM sleep suppressive effect at lower doses [103, 112], and even one study drew the conclusion that trimipramine could enhance REM sleep [113], which was a typical exception among TCAs. In addition, iprindole, viloxazine, nefazodone and tianeptine also did not have significant suppressive effect on REM sleep [98, 99]. In some studies, nefazodone even could increase the total time and percentage of REM sleep and decrease the latency of REM sleep [98, 108]. The same conclusion was reached for the SNRI bupropion, with which REM sleep latency was reduced, while the REM sleep increase the total time and percentage of REM sleep and decrease the latency of REM sleep [98, 108].

Table 1. contd….

Antidepressants	Design	Subjects	n	Doses (per day)	Duration	Reference Treatment	Changes of Polysomnography
SSRIs							
Fluvoxamine [137]	Double-blind crossover study	Normal volunteers	12	100 mg	6 weeks	Dothiepin 100 mg Placebo	Suppressed REM sleep
Clomipramine [138]	Double-blind, randomized, multicenter trial	Depressed patients	52	25-150 mg	6 weeks	Maprotiline 50-150 mg	Improvement in sleep disturbances
Zimelidine [107]	Double-blind trial	Depressed inpatients	27	28 days	Amitriptyline	No improvement, even worsening in sleep continuity Suppressed REM sleep	
Nefazodone [108]	Multisite, randomized double-blind trial	Patients with MDD	125	8 weeks	Fluoxetine	Increased sleep efficiency Decreased awakenings Suppressed REM sleep	
Citalopram [139]	EEG recording before and after treatment	Depressed patients	16	8 weeks	Placebo	Suppressed REM sleep A REM sleep rebound after withdrawal	
SNRIs							
Venlafaxine [109]	Double-blind trial	Depressed patients	24	Up to 225 mg	29 days	Placebo	Decreased sleep continuity Suppressed REM sleep
Mirtazapin [140]	EEG recording before, during and after treatment	Patients with MDD	16	15-30 mg	2 weeks	Duloxetine [110]	Increased stage 3 NREM sleep Suppressed REM sleep
Milnacipran [141]	EEG recording before and after treatment	Depressed patients	8	100 mg	1 month	Increased total sleep time and sleep efficiency No change of REM sleep	
Duloxetine [110]	EEG recording before and after treatment	Patients with MDD	10	60 mg	14 days	Placebo	Worsened sleep continuity Suppressed REM sleep
NARIs							
Desipramine [104]	Double-blind trial	Depressed patients	17	150 mg	28 days	Placebo	Increased stage 2 NREM sleep Decreased sleep latency and intrasleep awakenings Suppressed REM sleep
Trazodone [142]	EEG recording before, during and after treatment	Depressed patients	400-600 mg	1 month			
on changing sleep structures in depressed patients, and some studies concluded that it could suppress REM sleep modestly [94]; however, more data showed there was no significant effect on REM sleep when patients were treated with mirtazapine [98, 99, 107, 110]. Escitalopram appeared to be an exception to other SSRIs. It was the only agent that did not show a suppressive effect on REM sleep among all the SSRIs [99]. The reversible MAOI moclobemide showed contradictory results. One study revealed it to be associated with enhanced REM sleep and shorter REM sleep latency, but another study showed an almost opposite result [98].

Interestingly, most antidepressants that showed suppressive effects on REM sleep were also associated with changing the sleep architecture and decreasing restorative sleep, while others that did not elicit this effect tended to improve sleep and return the sleep structure to a restorative function. However, it should be noted that there are also some exceptions. In general, the rebound effect varies for different categories and may be relative to the mechanisms underlying these drugs.

4.2. Effects of Different Antidepressants on other Sleep Architectures

TCAs such as clomipramine, desipramine, amitriptyline and protriptyline, almost all SSRIs (e.g., fluoxetine, paroxetine, venlafaxine, duloxetine and sertraline) except for escitalopram, SNRIs such as venlafaxine, duloxetine and ziprasidone, and NARIs such as reboxetine, suppressed REM sleep but elongated sleep latency, increased wake times, and decreased total sleep time and sleep continuity at the same time [94, 98, 99, 104, 105, 107, 108, 115]. Almost all MAOIs could inhibit REM sleep time, reduce sleep efficiency, increase sleep latency, and induce nocturnal disturbance and other negative influences on sleep efficiency [99, 102]. The SNRI bupropion and SARI nefazodone, which could increase REM sleep, have been revealed to improve overall sleep efficiency and decrease the number and duration of awakenings, similar to mirtazapine, which has not been associated with the changes in REM sleep [98, 99, 108, 116]. A novel antidepressant; i.e., agomelatine, was thought to have a unique mechanism of action. The melatonin MT1 and MT2 receptor agonists and 5-HT2C receptor antagonist were also found to increase sleep efficiency, the duration of NREM and normalize sleep structure, but had no significant influence on REM sleep [95, 117].

Note that not all antidepressants abide by this principle. For example, both amitriptyline and doxepin could suppress REM sleep, but they also improved sleep structure with a shorter sleep latency and increased total sleep time, as well as a decreased awakening after sleep onset [99]. Another example was trazodone, which could slightly reduce REM sleep in depressed patients. Trazodone was shown to improve sleep quality and provide restorative sleep with enhanced NREM sleep and increased sleep time [98, 99]. Phenergan was shown to suppress REM sleep strongly but did not change total sleep time and EEG slow-wave activity in NREM sleep [118]. It was also found with milnacipran and imipramine [95]. Various pathways responsible for different antidepressants taking effect may be the reason for the different relationship between REM sleep suppression and changes in sleep architecture.

4.3. The Relationship between the Effects of Antidepressants on REM Sleep and Depressive Behavior Abnormalities

In terms of REM sleep, suppressive effects appeared with most antidepressants several decades ago and many scientists believed that there must be some inherent association between the suppressive and therapeutic effects of antidepressants. Studies have shown that REM sleep deprivation can improve endogenous depression, measured on Hamilton and Global scales, and the extent of the improvement correlated positively and significantly with REM sleep pressure [110, 119]. Later, scientists proposed that REM sleep deprivation is the mechanism of antidepressant action or the mechanism of the drugs resided in their REM sleep suppressive effects [118, 120]. REM sleep latency can be a psychobiologic marker for depression [121]. These reports indicated that REM sleep suppression at the outset of antidepressant treatment could predict therapeutic effects for a time.

In recent years, more new antidepressants such as nefazodone, bupropion, mirtazapine and escitalopram, which do not suppress REM sleep, appear to be working well in treating depression, and more doubts are put on the hypotheses regarding REM sleep and depression [94, 99]. In one study on the effects of tranylcypromine on sleep in depressed patients, correlation analyses indicated that the antidepressant response was only weakly associated with changes in REM sleep [101]. A study on phenergan and clomipramine also showed that their use did not rely on the cease of REM sleep or inhibition of NREM sleep [97, 100]. A common current viewpoint is that none of the hypotheses alone on NREM sleep, REM sleep or another sleep index is likely to predict therapeutic responses [122].

REM sleep suppression must be relative to the therapeutic effects of antidepressants more or less, and it should be considered combination with the mechanisms of these medications. Whether REM sleep suppression brought on by antidepressants is simply an epiphenomenon of drug actions or it participates positively in the therapeutic process of antidepressants is unclear and needs more investigation.

4.4. Mechanisms of the Suppressive Effects of Antidepressants on REM Sleep

The mechanisms of antidepressants differ in different classes of antidepressants and with specific medications. In general, the mechanism is associated with 5-HT and NE reuptake inhibition, the affinity or and number of 5-HT1A and 5-HT2 receptors, α1-, α2-adrenoceptors, and histamine H1 receptors. Most TCAs can inhibit the reuptake of both NE and 5-HT and block histamine H1 receptors (except for lofexidine) and α1-adrenoceptors (except for desipramine) [94]. MAOIs increase the availability of monoamines. NARIs, SSRIs and SNRIs are generally associated with 5-HT and/or NE reuptake inhibition, and some of them also have effects on receptor sites. The SARI trazodone and nefazodone can block 5-HT reuptake weakly and are α1-adrenoceptor, 5-HT1A and 5-HT2 receptor antagonists. The
NE and 5-HT antidepressant mirtazapine also acts as an antagonist of α2-adrenoceptors, 5-HT2 receptors and H1 receptors [111, 123, 124].

The common point of different antidepressant action is to positively modulate the 5-HT and NE systems in the central nervous system. Both of these neurotransmitters, mostly derived from the dorsal raphe and LC, respectively, can inhibit cholinergic REM-on neurons in the LDT/PPT and lead to REM-off and arousal [125]. It may, to some extent, explain the REM sleep suppressive effect, sleep disturbances and fragmentation caused by most antidepressants. This part is also supported by the fact that most antidepressants, which cannot suppress REM sleep, having no potent or direct effects on NE or 5-HT neurotransmission. Others proposed that 5-HT1A stimulation is linked to antidepressant suppression of REM sleep, while 5-HT2 agonism is related to sleep disturbances. Blockade of α1 and α2-adrenoceptors is responsible for sleep promotion and fragmentation of sleep, respectively. Blockage of the histamine H1 receptor is also regarded to have nonspecific sedative effects and may promote sleep [111]. Different subtypes of receptors that antidepressants act on may partially account for their various therapeutic effects.

5. DISCUSSION

As a result, impaired sleep could be common in patients with depression, while it also could be an independent cause to this psychiatric disorder. EEG studies proved that REM sleep disinhibition is the main and key performance of disorder in patients suffering from different depressive disorders.

REM sleep could be modulated by complex neurobiological process. Cholinergic and monoaminergic neurons in the brainstem are the earliest targets noticed by researchers. Cholinergic neurons in LCalpha, peri-LCalpha, LDT, PPT and NPO tend to induce and sustain REM sleep, while monoaminergic neurons in LC regulating REM sleep negatively. Antidepressants which increase the level of 5-HT and NE, or the affinity of their receptors in synapses are found to influence REM sleep strongly, while those that do not suppress REM sleep or decrease REM sleep moderately have no direct effects on monoaminergic system. GABAergic and histaminergic neurons are also important to regulate REM sleep. Besides, as one of the most important incentives of depression, stress could disturb the function of other REM sleep modulating regions including corticobulbar system such as hippocampus, amygdala and mPFC, and LHB.

This paper discusses the neurobiological basis of REM sleep regulation and REM sleep abnormalities in depressed patients, and explores the mechanisms of antidepressants in regulating REM sleep. It should be noted that most researches in the paper which explore the effect of antidepressants on REM sleep are studies on patients with MDD. In fact, there are still some studies on animals, healthy volunteers or patients with other types of depression that could draw a similar conclusion. An interesting fact is that most antidepressants which suppress REM sleep could weaken sleep efficiency (elongated sleep latency, increased awakenings, decreased total sleep and sleep continuity) while those which do not influence REM sleep or alter it moderately tend to improve overall sleep efficiency. It means there may be relative opposite neurobiological foundation to modulate REM sleep and sleep efficiency, and even antidepressants in same group act in some different ways.

Among other treatments of depression, brain stimulation such as electroconvulsive therapy (ECT) and repetitive magnetic stimulation (rTMS), combined with partial sleep deprivation, are reported to be effective among drug-resistant patients [126, 127]. It is suggested that EEG may be employed to monitor longitudinally the electrophysiological effects of ECT and rTMS [128]. Patients with MDD accepting dorsolateral prefrontal rTMS displayed decreases of the alpha activity during REM sleep and increases of slow-wave activity, which is proportion by clinical outcome, possibly reflecting locally enhanced synaptic plasticity [129, 130].

However, it is still not completely understood how REM sleep is induced and regulated. Some depressed patients, especially patients with atypical depression, do not suffer from REM sleep disturbances. And more and more researches proved that there is no direct and necessary causality between the effects of antidepressants on REM sleep and the prognosis of disease. It still needs more discussion about how important REM sleep abnormalities in depressed patients are and whether they could be an auxiliary index to diagnose disease or evaluate the effect of pharmacological treatments.

CONCLUSIONS

Although current studies have confirmed a strong relationship between the disturbances of REM sleep and depression, the role of REM sleep abnormalities should be better elucidated for understanding psychiatric consequences and treatments of depression.

SPECIFIC AUTHOR CONTRIBUTIONS

Y.Q.W., R.L., M.Q. Z. and Z.Z. wrote most of the sections; and Z.L.H. and W.M.Q. revised the entire manuscript.

CONFLICT OF INTEREST

The authors confirm that this article content has no conflict of interest.

ACKNOWLEDGEMENTS

This study was supported in part by grants-in-aid for scientific research from the National Basic Research Program of China (2011CB711000, 2015CB856401), the National Natural Science Foundation of China (81420108015, 31471064, 81471344, 31171010, 31121061, 31271164, J11210041), the Fundamental Research Funds for the Central Universities (10FX041), a Key Laboratory program of the Education Commission of Shanghai Municipality (ZDSYS14005), the Shanghai Committee of Science and Technology (14JC1400900, 13dz2260700, 13140903100), the Shanghai Leading Academic Discipline Project (B119), and the Ph.D. Programs Foundation of Ministry of Education of China (20110071110033).
REM Sleep Disturbances in Depression

Sherin, J.E.; Elmqquist, J.K.; Torrealba, F.; Saper, C.B. Inervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. *J. Neurosci.*, 1998, 18, 4705-4721.

Sakai, K.; Kanamori, N. Are there non-monoaminergic paradoxical sleep-off neurons in the brainstem? *Sleep Res. Online*, 1999, 2, 57-63.

El Mansari, M.; Sakai, K. Jouvet, M. Unitary characteristics of presumptive cholinergic tegmental neurons during the sleepwaking cycle in freely moving cats. *Exp. Brain Res.*, 1989, 76, 519-529. http://dx.doi.org/10.1007/BF00248908

Sakai, K. Executive mechanisms of paradoxical sleep. *Arch. Ital. Biol.*, 1988, 126, 239-257.

Duarte, S.; Siwek, D.F. Single cell activity patterns of pedunculopontine tegmentum neurons across the sleep-wake cycle in the freely moving rats. *J. Neurosci.*, 2002, 7(4), 611-621. http://dx.doi.org/10.1523/JNEUROSCI.1987-01.2000

Suarez, F. Projections from the cat posterior lateral hypothalamus to the sleep paradoxical sleep induction site in the cat ventral pontine tegmental field. *Arch. Ital. Biol.*, 1978, 116, 397-415. http://dx.doi.org/10.1002/jnr.10405

Montoya, J.; Reinoso-Suarez, F.; De Andres, I.; Gomez-Mena, J.; Sanchez-Valle, M.E.; Reinoso-Suarez, F. Unitary characteristics of neurons in the ventrolateral preoptic nucleus of the rat. *Prog. Neurobiol.*, 2000, 60(1), 77-90. http://dx.doi.org/10.1016/S0301-0005(00)00003-9

Mouret, J.; Coindet, J. Polygraphic evidence against a critical role of serotonin receptors in psychiatric disorders. *Hum. Psychopharmacol.*, 2000, 15(6), 397-415. http://dx.doi.org/10.1002/1099-1077(20000811)15:6<397::AID-HUP212>3.0.CO;2-L

Wilson, S.; Argyropoulos, S. Antidepressants and sleep - A qualitative review of the literature. *Drugs*, 2005, 65(7), 927-947. http://dx.doi.org/10.2165/00003495-200565070-00003

Jones, B.E.; Harper, S.T.; Halaris, A.E. Effects of locus coeruleus lesions upon cerebral monoamine content, sleep-wakefulness states and the response to amphetamine in the cat. *Brain Res.*, 1977, 124(3), 473-496. http://dx.doi.org/10.1016/0006-8993(77)90048-9

Mourat, J.; Coindet, J. Polygraphic evidence against a critical role of the raphé nuclei in the cat. *Brain Res.*, 1980, 186(2), 273-287. http://dx.doi.org/10.1016/0006-8993(80)90975-0

Shouse, M.N.; Siegel, J.M. Pontine regulation of REM sleep components in cats: integrity of the pedunculopontine tegmentum (PPT) is important for phasic events but unnecessary for atonia during REM sleep. *Brain Res.*, 1992, 571(1), 50-63. http://dx.doi.org/10.1016/0006-8993(92)90508-7

Perlis, M.L.; Smith, M.T.; Orfit, H.J.; Andrews, P.J.; Gillin, J.C.; Giles, D.E. The effects of an orally administered cholinergic agonist on REM sleep in major depression. *Biol. Psychiatry*, 2002, 51(6), 457-462. http://dx.doi.org/10.1016/S0006-3223(01)01287-2

Prabhia, J.; Kumar, B.B.; Karanth, K.S. Effects of REM sleep deprivation on cholinergic receptor sensitivity and passive avoidance behavior in clozapine model of depression. *Brain Res.*, 2000, 867(1-2), 243-245. http://dx.doi.org/10.1016/S0006-8993(00)02248-4

Benca, R.M.; Obermeyer, W.H.; Thisted, R.A.; Gillin, J.C. Sleep and psychiatric disorders. A meta-analysis. *Arch. Gen. Psychiatry*, 1992, 49(8), 651-668. http://dx.doi.org/10.1001/archpsyc.1992.0301008005010

Ross, R.J.; Ball, W.A.; Sullivan, K.A.; Caroff, S.N. Sleep deprivation on cholinergic receptor sensitivity and passive avoidance behavior in clozapine model of depression. *Brain Res.*, 2000, 867(1-2), 243-245. http://dx.doi.org/10.1016/S0006-8993(00)02248-4

Perlis, M.L.; Smith, M.T.; Orfit, H.J.; Andrews, P.J.; Gillin, J.C.; Giles, D.E. The effects of an orally administered cholinergic agonist on REM sleep in major depression. *Biol. Psychiatry*, 2002, 51(6), 457-462. http://dx.doi.org/10.1016/S0006-3223(01)01287-2

Prabhia, J.; Kumar, B.B.; Karanth, K.S. Effects of REM sleep deprivation on cholinergic receptor sensitivity and passive avoidance behavior in clozapine model of depression. *Brain Res.*, 2000, 867(1-2), 243-245. http://dx.doi.org/10.1016/S0006-8993(00)02248-4

Benca, R.M.; Obermeyer, W.H.; Thisted, R.A.; Gillin, J.C. Sleep and psychiatric disorders. A meta-analysis. *Arch. Gen. Psychiatry*, 1992, 49(8), 651-668. http://dx.doi.org/10.1001/archpsyc.1992.0301008005010

Ross, R.J.; Ball, W.A.; Sullivan, K.A.; Caroff, S.N. Sleep disturbance as the hallmark of posttraumatic stress disorder. *Am. J. Psychiatry*, 1989, 146(6), 697-707. http://dx.doi.org/10.1176/ajp.146.6.697

Vollmer, A.B.; Spiecker, C.F.; Enright, P.; Lefkowitz, D.; Manolio, T.; Reynolds, C.F.; Robbins, J. Daytime sleepiness predicts mortality and cardiovascular disease in older adults. The Cardiovascular Health Study Research Group. *J Am Geriatr Soc.*, 2000, 48(2), 115-123. http://dx.doi.org/10.1111/j.1532-5415.2000.tb03910.x

Carpenter, R.J.; Reynolds, C.F. Depression and insomnia: questions of cause and effect. *Sleep Med. Rev.*, 2000, 4(3), 253-262. http://dx.doi.org/10.1016/S1098-2795(00)00007-7

Adrien, J. Neurobiological bases for the relation between sleep and depression. *Sleep Med. Rev.*, 2002, 6(5), 341-351. http://dx.doi.org/10.1016/S1098-2795(01)90200-X
and sleep electroencephalography in patients with major depressive disorder. Acta Psychiatr. Scand., 1990, 81(1), 24-31. http://dx.doi.org/10.1111/j.1600-0477.1990.tb06444.x

Le Bon, O. Contribution of sleep research to the development of new antidepressants. Dialogues Clin Neurosci, 2005, 7(4), 305-313.

Holshoe, J.M. Antidepressants and sleep, a review. Perspect. Psychopharmacol. Care, 2009, 45(3), 191-197. http://dx.doi.org/10.1097/j.ppt.0b013e31818e0521

Landolt, H.P.; Raimo, E.B.; Schnierow, B.J.; Kelsoe, J.R.; Rapaport, M.H.; Gillin, J.C. Sleep and sleep electroencephalogram in depressed patients treated with phenelzine. Arch. Gen. Psychiatry, 2001, 58(3), 268-276. http://dx.doi.org/10.1001/archpsyc.58.3.268

Jindal, R.D.; Fasiczka, A.L.; Himmelboch, J.M.; Mallinger, A.G.; Thase, M.E. Effects of tranylcypromine on the sleep of patients with anergic bipolar depression. Psychopharmacol. Bull., 2003, 37(3), 118-126.

Sharpley, A.L.; Attenburrow, M.E.; Hafizi, S.; Cowen, P.J. Olanzapine increases slow wave sleep and sleep continuity in SSRI-resistant depressed patients. J Clin Psychiatry, 2005, 66(4), 450-454. http://dx.doi.org/10.4088/jcpp.v66n0407

Steiger, A.; von Bardeleben, U.; Guldner, J.; Lauer, C.; Rothe, B.; Holbofer, S. The sleep EEG and nocturnal hormone secretion studies on changes during the course of depression and on effects of CNS-active drugs. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2006, 30(4), 717-723. http://dx.doi.org/10.1016/j.pnpbp.2006.07.004

Sanchez, C.; Brennum, L.T.; Storustova, S.L.; Krellgard, M.; Mork, A. Depression and poor sleep: the effect of monoaminergic antidepressants in a pre-clinical model in rats. Pharmacol. Biochem. Behav., 2007, 86(3), 468-476. http://dx.doi.org/10.1016/j.pbb.2007.01.006

von Bardeleben, U.; Steiger, A.; Gerken, A.; Holbofer, S. Effects of oxcarbazepine on the sleep parameters in major depression. Int. Clin. Psychopharmacol., 1998, 4(Suppl 1), 1-5.

Shlomie, J.; Kupfer, D.J.; Griffin, S.J.; Dealy, R.S.; Cole, P.A.; McEachran, A.B.; Grochowskii, V.J.; Ulrich, R.; Perel, J.M. Comparison of effects of desipramine and amitriptyline on EEG sleep of depressed patients. Psychopharmacology (Berl), 1985, 85(1), 14-22. http://dx.doi.org/10.1007/BF00427316

Sanchez, C.; Brennum, L.T.; Storustova, S.L.; Krellgard, M.; Mork, A. Depression and poor sleep: the effect of monoaminergic antidepressants in a pre-clinical model in rats. Pharmacol. Biochem. Behav., 2007, 86(3), 468-476. http://dx.doi.org/10.1016/j.pbb.2007.01.006

von Bardeleben, U.; Steiger, A.; Gerken, A.; Holbofer, S. Effects of oxcarbazepine on the sleep parameters in major depression. Int. Clin. Psychopharmacol., 1998, 4(Suppl 1), 1-5.

Shlomie, J.; Kupfer, D.J.; Griffin, S.J.; Dealy, R.S.; Cole, P.A.; McEachran, A.B.; Grochowskii, V.J.; Ulrich, R.; Perel, J.M. Comparison of effects of desipramine and amitriptyline on EEG sleep of depressed patients. Psychopharmacology (Berl), 1985, 85(1), 14-22. http://dx.doi.org/10.1007/BF00427316

Sanchez, C.; Brennum, L.T.; Storustova, S.L.; Krellgard, M.; Mork, A. Depression and poor sleep: the effect of monoaminergic antidepressants in a pre-clinical model in rats. Pharmacol. Biochem. Behav., 2007, 86(3), 468-476. http://dx.doi.org/10.1016/j.pbb.2007.01.006

von Bardeleben, U.; Steiger, A.; Gerken, A.; Holbofer, S. Effects of oxcarbazepine on the sleep parameters in major depression. Int. Clin. Psychopharmacol., 1998, 4(Suppl 1), 1-5.

Shlomie, J.; Kupfer, D.J.; Griffin, S.J.; Dealy, R.S.; Cole, P.A.; McEachran, A.B.; Grochowskii, V.J.; Ulrich, R.; Perel, J.M. Comparison of effects of desipramine and amitriptyline on EEG sleep of depressed patients. Psychopharmacology (Berl), 1985, 85(1), 14-22. http://dx.doi.org/10.1007/BF00427316

Sanchez, C.; Brennum, L.T.; Storustova, S.L.; Krellgard, M.; Mork, A. Depression and poor sleep: the effect of monoaminergic antidepressants in a pre-clinical model in rats. Pharmacol. Biochem. Behav., 2007, 86(3), 468-476. http://dx.doi.org/10.1016/j.pbb.2007.01.006

von Bardeleben, U.; Steiger, A.; Gerken, A.; Holbofer, S. Effects of oxcarbazepine on the sleep parameters in major depression. Int. Clin. Psychopharmacol., 1998, 4(Suppl 1), 1-5.

Shlomie, J.; Kupfer, D.J.; Griffin, S.J.; Dealy, R.S.; Cole, P.A.; McEachran, A.B.; Grochowskii, V.J.; Ulrich, R.; Perel, J.M. Comparison of effects of desipramine and amitriptyline on EEG sleep of depressed patients. Psychopharmacology (Berl), 1985, 85(1), 14-22. http://dx.doi.org/10.1007/BF00427316

Sanchez, C.; Brennum, L.T.; Storustova, S.L.; Krellgard, M.; Mork, A. Depression and poor sleep: the effect of monoaminergic antidepressants in a pre-clinical model in rats. Pharmacol. Biochem. Behav., 2007, 86(3), 468-476. http://dx.doi.org/10.1016/j.pbb.2007.01.006

von Bardeleben, U.; Steiger, A.; Gerken, A.; Holbofer, S. Effects of oxcarbazepine on the sleep parameters in major depression. Int. Clin. Psychopharmacol., 1998, 4(Suppl 1), 1-5.

Shlomie, J.; Kupfer, D.J.; Griffin, S.J.; Dealy, R.S.; Cole, P.A.; McEachran, A.B.; Grochowskii, V.J.; Ulrich, R.; Perel, J.M. Comparison of effects of desipramine and amitriptyline on EEG sleep of depressed patients. Psychopharmacology (Berl), 1985, 85(1), 14-22. http://dx.doi.org/10.1007/BF00427316

Sanchez, C.; Brennum, L.T.; Storustova, S.L.; Krellgard, M.; Mork, A. Depression and poor sleep: the effect of monoaminergic antidepressants in a pre-clinical model in rats. Pharmacol. Biochem. Behav., 2007, 86(3), 468-476. http://dx.doi.org/10.1016/j.pbb.2007.01.006

von Bardeleben, U.; Steiger, A.; Gerken, A.; Holbofer, S. Effects of oxcarbazepine on the sleep parameters in major depression. Int. Clin. Psychopharmacol., 1998, 4(Suppl 1), 1-5.

Shlomie, J.; Kupfer, D.J.; Griffin, S.J.; Dealy, R.S.; Cole, P.A.; McEachran, A.B.; Grochowskii, V.J.; Ulrich, R.; Perel, J.M. Comparison of effects of desipramine and amitriptyline on EEG sleep of depressed patients. Psychopharmacology (Berl), 1985, 85(1), 14-22. http://dx.doi.org/10.1007/BF00427316

Sanchez, C.; Brennum, L.T.; Storustova, S.L.; Krellgard, M.; Mork, A. Depression and poor sleep: the effect of monoaminergic antidepressants in a pre-clinical model in rats. Pharmacol. Biochem. Behav., 2007, 86(3), 468-476. http://dx.doi.org/10.1016/j.pbb.2007.01.006

von Bardeleben, U.; Steiger, A.; Gerken, A.; Holbofer, S. Effects of oxcarbazepine on the sleep parameters in major depression. Int. Clin. Psychopharmacol., 1998, 4(Suppl 1), 1-5.
REM Sleep Disturbances in Depression

Assessing the effects of electroconvulsive therapy on cortical excitability by means of transcranial magnetic stimulation and
electroencephalography. Brain Topogr., 2013, 26(2), 326-337.
http://dx.doi.org/10.1007/s10548-012-0256-8

Pellecchiari, M.C.; Cordone, S.; Marzano, C.; Bignotti, S.;
Gazzoli, A.; Minussi, C.; De Gennaro, L. Dorsolateral prefrontal
transcranial magnetic stimulation in patients with major depression
tocally affects alpha power of REM sleep. Front. Hum. Neurosci.,
2013, 7, 433.

Saeki, T.; Nakamura, M.; Hirai, N.; Noda, Y.; Hayasaka, S.;
Iwanari, H.; Hirayasu, Y. Localized potentization of sleep slow-
wave activity induced by prefrontal repetitive transcranial magnetic
stimulation in patients with a major depressive episode. Brain
Stimul., 2013, 6(3), 390-396. http://dx.doi.org/10.1016/j.brs.2012.
08.004.

Hubain, P.P.; Castro, P.; Mesters, P.; De Maertelaer, V.;
Mendlewicz, J. Alprazolam and amitriptyline in the treatment of
major depressive disorder: a double-blind clinical and sleep EEG
study. J. Affect. Disord., 1990, 18(1), 67-73. http://dx.doi.org/10.
1016/0165-0327(90)90118-R

Casper, R.C.; Katz, M.M.; Bowden, C.L.; Davis, J.M.; Koslow,
S.H.; Hanin, I. The pattern of physical symptom changes in major
depressive disorder following treatment with amitriptyline or
imipramine. J. Affect. Disord., 1994, 31(3), 151-164. http://dx.
doi.org/10.1016/0165-0327(94)90024-8

Wace, J.C.; Brown, F.W.; Moorad, P.J.; Jr.; Pittard, J.T.; Cobert, B.
Effects on sleep: a double-blind study comparing trimipramine
with imipramine in depressed insomniac patients. Sleep, 1989,
12(6), 537-549.

Monti, J.M. Effect of a reversible monoamine oxidase-A inhibitor
(moclobemide) on sleep of depressed patients. Br. J. Psychiatry
Suppl., 1989(6), 61-65.

Minot, R.; Luthringer, R.; Macher, J.P. Effect of moclobemide on
the psychophysiology of sleep/wake cycles: a neuroelectro-
physiological study of depressed patients administered with
moclobemide. Int. Clin. Psychopharmacol., 1993, 7(3-4), 181-189.
http://dx.doi.org/10.1007/BF00278580

Wilson, S.J.; Bailey, J.E.; Alford, C.; Nutt, D.J. Sleep and daytime
sleepiness the next day following single night-time dose of
fluvoxamine, dothiepin and placebo in normal volunteers. J.
Clin. Psychopharmacol., 2000, 14(4), 378-386. http://dx.doi.org/10.
1177/026988110001400420

Eberhard, G.; von Knorring, L.; Nilsson, H.L.; Sundquist, U.;
Björling, G.; Linder, H.; Svard, K.O.; Tysk, L. A double-blind
randomized study of clomipramine versus maprotiline in patients
with idiopathic pain syndromes. Neuropsychobiology, 1988, 19(1),
25-34. http://dx.doi.org/10.1007/BF00278580

Van Bemmel, A.L.; Beersma, D.G.; Van Den Hoofdakker, R.H.
Changes in EEG power density of NREM sleep in depressed
patients during treatment with citalopram. J. Sleep Res., 1993,
2(3), 156-162. http://dx.doi.org/10.1111/j.1365-2869.1993.tb00080.x

Winokur, A.; Sateia, M.J.; Hayes, J.B.; Bayles, D.G.;
MacDonald, M.M.; Winokur, A.; Sateia, M.J.; Hayes, J.B.; Bayles,
Van Bemmel, A.L.; Beersma, D.G.; Van Den Hoofdakker, R.H.
Changes in EEG power density of NREM sleep in depressed
patients during treatment with citalopram. J. Sleep Res., 1993,
2(3), 156-162. http://dx.doi.org/10.1111/j.1365-2869.1993.tb00080.x

Winokur, A.; Sateia, M.J.; Hayes, J.B.; Bayles, D.G.;
MacDonald, M.M.; Winokur, A.; Sateia, M.J.; Hayes, J.B.; Bayles,