LIFTING DIVISORS WITH IMPOSED RAMIFICATIONS
ON A GENERIC CHAIN OF LOOPS

XIANG HE

ABSTRACT. Let C be a curve over an algebraically closed non-archimedean field with non-trivial valuation. Suppose C has totally split reduction and the skeleton Γ is a chain of loops with generic edge lengths. Let P be the rightmost vertex of Γ and $P \in C$ be a point that specializes to P. We prove that any divisor class on Γ with imposed ramification at P that is rational over the value group of the base field lifts to a divisor class on C that satisfies the same ramification at P, which extends the result in [CJP13].

1. INTRODUCTION

A metric graph which is a generic chain of loops (Definition 2.2) plays a crucial role in connecting classic and tropical Brill-Noether theory. Many properties of these graphs, such as Brill-Noether generality, can be transferred to certain curves with minimal skeleton isometric to them. Related approaches can be found in [CDPR12, JP14, JP16].

Let Γ be a generic chain of loops with or without bridges. Let K be an algebraically closed non-archimedean field with nontrivial value group G and valuation ring R. Let C be a smooth projective curve of genus g over K which has totally split reduction (by which we mean C admits a split semistable \overline{K}-model as in [BR14 §5] whose special fiber only has rational components) and the skeleton is isometric to Γ. The tropicalization map from $\text{Pic}^d(C)$ to $\text{Pic}^d(\Gamma)$ given by linear expansion of the retraction from C^an to Γ maps $\text{Pic}^d(C)^\text{an}$ to $\text{Pic}^d(\Gamma)$ [Bak08], where $\text{Pic}^d(\Gamma)$ (resp. $\text{Pic}^d(\Gamma)$) parametrizes divisor classes on C (resp. Γ) with degree d and rank at least r. It is then proved in [CJP15] that $\text{Trop}(\text{Pic}^d(C)) = \text{Pic}^d(\Gamma)$ via the classification of divisors in $\text{Pic}^d(\Gamma)$, given in [CDPR12]. In other words, every G-rational divisor class on Γ of rank r can be lifted to a divisor class on C of the same rank.

On the other hand, let $\alpha = (\alpha_0, \ldots, \alpha_r)$ be a Schubert index of type (r, d), which is a non-decreasing sequence of non-negative numbers bounded by $d - r$. For an arbitrary chain of loops Γ, Pflueger [Pfl17] provides a straightforward expression for the locus of divisors on Γ with ramification at least α at the rightmost vertex P of Γ:

$$W^r_\alpha(\Gamma, P) = \{ D \in \text{Pic}^d(\Gamma) : r(D - (\alpha_i + i)P) \geq r - i \text{ for } i = 0, 1, \ldots, r \},$$

which is locally a union of translates of coordinate planes possibly of different dimensions in \mathbb{R}^g. It follows that $W^r_\alpha(\Gamma, P)$ contains the tropicalization of the corresponding locus on C:

$$W^r_\alpha(C, P) = \{ D \in \text{Pic}^d(C) : h^0(\mathcal{O}_C(D - (\alpha_i + i)P)) \geq r + 1 - i \text{ for } i = 0, 1, \ldots, r \}. $$

When Γ is a generic chain of loops, [Pfl17] shows that $W^r_\alpha(\Gamma, P)$ has dimension equal to that of $W^r_\alpha(C, P)$, and both of pure dimensions $\rho(g, r, d) - \sum_{0 \leq i \leq r} \alpha_i$ as expected. We prove an analogue of the lifting result of [CJP15]:

Theorem 1.1. Let Γ be a generic chain of loops, possibly with bridges, and C a smooth projective curve over K which has totally split reduction and skeleton isometric to Γ. Let P be a point on C.
that tropicalize to the rightmost vertex P of Γ. Let α be a Schubert index of type (r, d). Then every G-rational divisor class on Γ with ramification at least α at P lifts to a divisor class on C with ramification at least α at P.

We now explain the general strategy used in the proof of Theorem 1.1. Let

$$\alpha^j = (\alpha_0, \ldots, \alpha_j, \alpha_j, \ldots, \alpha_j)$$

be a Schubert index of type (r, d) whose last $r - j + 1$ coordinates are all α_js. Denote $W_j(C) = W_{d-\alpha^j}(C, P)$ and $W_j(\Gamma) = W_{d-\alpha^j}(\Gamma, P)$. Denote also

$$X_j(C) = (\alpha_j + j) P + W_{d-\alpha_j-j}^{-j}(C)$$

and

$$X_j(\Gamma) = (\alpha_j + j) P + W_{d-\alpha_j-j}^{-j}(\Gamma)$$

Note that $W_j(C) = W_{j-1}(C) \cap X_j(C)$ and that

$$W_j(\Gamma) = W_{j-1}(\Gamma) \cap X_j(\Gamma) = W_{j-1}(\Gamma) \cap \text{Trop}(X_j(C)).$$

We proceed by induction. At each step, assuming $\text{Trop}(W_{j-1}(C)) = W_{j-1}(\Gamma)$, it suffices to show that

$$\text{Trop}(W_{j-1}(C) \cap X_j(C)) = \text{Trop}(W_{j-1}(C)) \cap \text{Trop}(X_j(C)). \quad (1)$$

Note that $Y_j-1(C)$ is locally isomorphic to a polytopal domain, which is the preimage of an integral G-affine polytope in \mathbb{R}^n of some n, at points in the relative interior of maximal faces of $Y_j-1(\Gamma) = \text{Trop}(Y_{j-1}(C))$. Since $W_{j-1}(\Gamma)$ and $X_j(\Gamma) = \text{Trop}(X_j(C))$ intersect properly in $Y_j-1(\Gamma)$, namely intersect in expected dimension, the problem boils down to lifting proper tropical intersections within a polytopal domain:

Theorem 1.2. Let $\mathcal{U}_\Delta \subset (\mathbb{G}_m^n)_{\text{an}}$ be the preimage of an integral G-affine polytope Δ in \mathbb{R}^n of dimension n and \mathcal{X} and \mathcal{X}' be two Zariski closed analytic subspaces of \mathcal{U}_Δ of pure dimension. Suppose $\text{Trop}(\mathcal{X})$ and $\text{Trop}(\mathcal{X}')$ intersect properly in Δ. Then we have

$$\text{Trop}(\mathcal{X}) \cap \text{Trop}(\mathcal{X}') \cap \Delta^0 = \text{Trop}(\mathcal{X} \cap \mathcal{X}') \cap \Delta^0.$$

This theorem is proved in Section 4. See also [OP13] for an algebraic counterpart, where the authors proved a lifting theorem for subschemes of an algebraic torus whose tropicalizations intersect properly. See Section 3 for the discussion of local property of $Y_{j-1}(C)$, which works for all Brill-Noether loci $W_{d-\alpha^j}(C)$ on C. The proof of (1) is in Section 5, where we use the notation of ramification imposed by a partition instead of a Schubert index (Section 2).

Conventions. Throughout this paper K will be an algebraically closed non-archimedean field K with nontrivial value group G. For a lattice N we denote T_N the algebraic torus over K whose lattice of characters, denoted by M, is dual to N. Denote also $N_K = N \otimes K$. All polytopes in N_K are assumed integral G-affine.

Acknowledgements. I would like to thank Brian Osserman for helpful conversations and Sam Payne for suggesting that the analytic continuity theorem of intersection numbers ([OP11] Proposition 5.8) may lead to a proof of Theorem 1.2.

2. PRELIMINARIES

In this section we recall some notions and techniques which are useful for later arguments.
2.1. Special divisors on a generic chain of loops. Let Γ be a metric graph that is a chain of g loops with or without bridges, let $\{v_i\}_{1 \leq i \leq g}$ and $\{w_i\}_{1 \leq i \leq g}$ be vertices of Γ as in Figure 1 (with the possibility that $w_i = v_{i+1}$). Let l_i (resp. n_i) be the length of the top (resp. bottom) segment of the ith loop connecting the vertices v_i and w_i. The divisors on Γ with imposed ramification is classified in [Pfl17], we recall some related concepts from loc.cit..

![Figure 1. A chain of g loops with bridges.](image)

Definition 2.1. The torsion profile of Γ is a sequence $m = (m_2, \ldots, m_g)$ of $g - 1$ integers. If l_i/n_i is a rational number, then m_i is the minimum positive integer such that $m_i \cdot l_i$ is an integer multiple of $l_i + n_i$, otherwise $m_i = 0$.

Note that we omit m_1 because it is immaterial to the properties of the divisors of interest. The following notion of a generic chain of loops was introduced in [CDPR12] for constructing Brill-Noether general curves:

Definition 2.2. We say that Γ is generic if none of the ratios l_i/n_i is equal to the ratio of two positive integers whose sum does not exceed $2g - 2$, or equivalently if for each i either $m_i > 2g - 2$ or $m_i = 0$.

Let λ be a partition, which is a finite, non-increasing sequence of non-negative integers. As in [Pfl17], we will identify partitions with their Young diagrams in French notation.

![Figure 2. The partition as in [Pfl17] Figure 1](image)

Definition 2.3. Let P be a point on Γ. The Brill-Noether locus corresponding to a partition λ and the marked graph (Γ, P) is

$$W^\lambda(\Gamma, P) = \{D \in \text{Pic}^0(\Gamma) : r(D + d'P) \geq r' \text{ whenever } (g - d' + r', r' + 1) \in \lambda\}.$$
Let $\alpha = (\alpha_0, ..., \alpha_r)$ be a Schubert index of type (r, d) and $\lambda = (\lambda_0, ..., \lambda_r)$ be the induced partition where $\lambda_i = (g - d + r) + \alpha_{r-i}$. Then the locus $W^\lambda(\Gamma, P)$ is isomorphic to $W^\mu(\Gamma, P)$ under the Abel-Jacobi map with respect to dP. In particular if λ is a $(r+1) \times (g-d+r)$ diagram then $W^\lambda(\Gamma, P)$ is isomorphic to $W_d^\lambda(\Gamma)$.

We next describe the Brill-Noether locus of a partition when $P = w_g$ is the rightmost vertex of Γ. As in [Pfl17] we identify $\lambda = (\lambda_0, ..., \lambda_r)$ with the set

$$\{(x, y) \in \mathbb{Z}_{\geq 0}^2 | 1 \leq x \leq \lambda_{y-1}, 1 \leq y \leq r + 1\}.$$

Definition 2.4. Let λ be a partition, and let $\underline{m} = (m_2, ..., m_g)$ be a $(g - 1)$-tuple of nonnegative integers. An \underline{m}-displacement tableaux on λ is a function $t: \lambda \to \{1, 2, ..., g\}$ satisfying the following properties:

1. t is strictly increasing in any given row or column of λ.
2. For any two distinct boxes (x, y) and (x', y') in λ, if $t(x, y) = t(x', y')$ then $x - y \equiv x' - y' \pmod{m_{t(x, y)}}$.

We denote by $t \vdash \underline{m}$ if t is a \underline{m}-displacement tableaux on λ.

According to [Pfl17, Theorem 1.3 and Corollary 3.8] if Γ is a generic chain of loops and \underline{m} is its torsion profile, then every \underline{m}-displacement tableaux on λ is injective.

Definition 2.5. Let \underline{m} be the torsion profile of Γ. Let t be a \underline{m}-displacement tableau on a partition λ. Denote by $\Upsilon(t)$ the set of divisor classes on Γ of the form

$$\sum_{i=1}^{g} \langle \xi_i \rangle_i - g\omega,$$

where $\{\xi_i\}_i$ are real numbers such that $\xi_{t(x, y)} \equiv x - y \pmod{m_{t(x, y)}}$ and the symbol $\langle z \rangle_i$ denotes the point on the i-th loop that is located $z \cdot l_i$ units clockwise from w_i.

It follows that $\Upsilon(t)$ is a real torus of dimension $d_t = g - |t(\lambda)|$. Moreover, under the identification $\text{Pic}^0(\Gamma) = \prod_{1 \leq i \leq g} \mathbb{R}/(m_i + l_i)\mathbb{Z}$ induced by the Abel-Jacobi map [M105, §6], the torus $\Upsilon(t)$ is the image of a translate of a coordinate d_t-plane in \mathbb{R}^g. The following is the description of the Brill-Noether locus of λ ([Pfl17, Theorem 1.4]).

Proposition 2.6. We have

$$W^\lambda(\Gamma, w_g) = \bigcup_{t \vdash \underline{m}} \Upsilon(t).$$

In particular, if Γ is generic then $W^\lambda(\Gamma, w_g)$ is of pure dimension $g - |\lambda|$.

2.2. **Curves with special skeletons and their tropicalizations.** Let C be a smooth projective curve of genus g over K which has totally split reduction and the skeleton is isometric to Γ. Let $\tau: C^\text{an} \to \Gamma$ be the retraction map. The Jacobian variety of C is totally degenerate in the sense of [Gub07, §6]. In other words, $\text{Pic}^0(C)^\text{an}$ is isomorphic to $(T_N)^\text{an}/L$ where N is a lattice of rank g and L is a discrete subgroup of $T_N(\mathbb{K})$ which maps isomorphically onto a complete lattice of $N_{\mathbb{R}}$ under the tropicalization map. Moreover, the induced tropicalization map on $\text{Pic}^0(C)^\text{an}$ is compatible with the retraction to its skeleton, which is canonically identified with $\text{Pic}^0(\Gamma)$ ([BR14, §6]):

$$\begin{align*}
C^\text{an} \xrightarrow{\alpha_p} \text{Pic}^0(C)^\text{an} & \xrightarrow{\tau} (T_N)^\text{an} \\
\Gamma \xrightarrow{\alpha_p} \text{Pic}^0(\Gamma) & \xrightarrow{Trop} N_{\mathbb{R}}.
\end{align*}$$

4
where α_P and α_P' are the Abel-Jacobi maps associated to $P \in C$ and $P \in \Gamma$ with $\tau(P) = P$.

Definition 2.7. Let P be a point in C. As in Definition 2.3, the **Brill-Noether locus** corresponding to a partition λ and the marked curve (C, \mathcal{P}) is

$$W^\lambda(C, \mathcal{P}) = \{D \in \text{Pic}^0(C) : h^0(\mathcal{O}_C(D + d'P)) \geq r' + 1 \text{ whenever } (g - d' + r', r' + 1) \in \lambda\}.$$

Let $\alpha = (\alpha_0, ..., \alpha_r)$ be a Schubert index of type (r, d) and $\lambda = (\lambda_0, ..., \lambda_r)$ be the induced partition as above. Then as in the graph case the locus $W^\lambda(C, \mathcal{P})$ is isomorphic to $W^\lambda_d(C, \mathcal{P})$ under the Abel-Jacobi map with respect to $d\mathcal{P}$. In particular if λ is a $(r + 1) \times (g - d + r)$ diagram then $W^\lambda(C, \mathcal{P})$ is isomorphic to $W^\lambda_d(C)$.

The following theorem is a (partial) summary of [Pfl17, Theorem 1.13 and Theorem 5.1] and [CJPT15, Theorem 1.1].

Theorem 2.8. Let C be as above and Γ is a generic chain of loops, let \mathcal{P} be a point of C that tropicalize to $P = w_\mathcal{P}$. Then $\text{Trop}(W^\lambda(C, \mathcal{P})) \subset W^\lambda(\mathcal{P}, \Gamma)$ and $W^\lambda(C, \mathcal{P})$ is of pure dimension $g - |\lambda|$. Moreover, if λ is an $(r + 1) \times (g - d + r)$ diagram then $\text{Trop}(W^\lambda(C, \mathcal{P})) = W^\lambda(\mathcal{P}, \Gamma)$.

As the tropicalization preserves dimension [Gub07, §6], in the theorem above, if λ is induced by α then the dimension of $W^\lambda(\mathcal{P}, \Gamma)$ is equal to the (expected) dimension of $W^\lambda(C, \mathcal{P})$ (or $W^\lambda_d(C, \mathcal{P})$).

2.3. Intersection multiplicities in a polytopal domain

Let N be a lattice of rank n. Let $\Delta \subset N_\mathbb{R}$ be a polytope. We denote U_Δ the preimage of Δ in $(T_N)_{\text{an}}$ under the tropicalization map, then U_Δ is an affinoid domain in $(T_N)_{\text{an}}$ by [Gub07] and called a **polytopal domain**. Denote $K\langle U_\Delta \rangle$ the corresponding affinoid algebra, whose basic properties can be found in [Rab12, Proposition 6.9].

Definition 2.9. Let $f_1, ..., f_k \in K\langle U_\Delta \rangle$. Let Y be a Zariski-closed analytic subspace of U_Δ of dimension $n - k$. Denote $Y_i = V(f_i)$ and $Z = Y \cap (\cap_{1 \leq i \leq k} Y_i)$. The **intersection multiplicity** of Y and Y_i at an isolated point ξ of Z is

$$i(\xi, Y \cdot Y_1 \cdot Y_k; U_\Delta) = \dim_K(\mathcal{O}_{Z, \xi}).$$

If Z is finite we define the **intersection number** of Y and $Y_1, ..., Y_k$ as:

$$i(Y \cdot Y_1 \cdot Y_k; U_\Delta) = \sum_{\xi \in Z} \dim_K(\mathcal{O}_{Z, \xi}).$$

This definition agrees with [Rab12, Definition 11.4] and is also compatible with the intersection multiplicities of algebraic varieties. We refer to [Rab12, §11] about intersection multiplicities of tropical hypersurfaces in Δ when Δ is of maximal dimension, which is compatible with the stable intersection of tropical cycles in $N_\mathbb{R}$.

Theorem 2.10. ([Rab12, Theorem 11.7]) Let Δ be a polytope in $N_\mathbb{R}$ and $f_1, ..., f_n \in K\langle U_\Delta \rangle$. Let $Y_i = V(f_i)$ for all i and $w \in \cap_{1 \leq i \leq n} \text{Trop}(Y_i)$ be an isolated point contained in the interior of Δ. Let $Z = \cap_{1 \leq i \leq n} Y_i$. Then:

$$\sum_{\xi \in Z, \text{Trop}(\xi) = w} i(\xi, Y_1 \cdot Y_n; U_\Delta) = i(w, \text{Trop}(Y_1) \cdot \text{Trop}(Y_n); \Delta)$$

On the other hand, for two Zariski closed subspace \mathcal{X} and \mathcal{X}' of U_Δ and an isolated point ξ of $\mathcal{X} \cap \mathcal{X}'$, the **intersection multiplicity** of \mathcal{X} and \mathcal{X}' at ξ is defined to be:

$$i(\xi, \mathcal{X} \cdot \mathcal{X}'; U_\Delta) = \sum_{i \geq 0} (-1)^i \dim_K \text{Tor}_i^{U_\Delta, \xi} (\mathcal{O}_{\mathcal{X}, \xi}, \mathcal{O}_{\mathcal{X}', \xi})$$

...
If $X \cap X'$ is finite, the intersection number of X and X' is

$$i(X \cdot X'; U_\Delta) = \sum_{\xi \in X \cap X'} i(\xi, X \cdot X'; U_\Delta).$$

3. LOCAL PROPERTIES OF $W^r_d(C)^{an}$

Let C and Γ and T_N be as in §2.2 and suppose Γ is generic. We prove in this section that $W^r_d(C)$ is locally analytically isomorphic to a polytopal domain at a “tropically general” point of $W^r_d(\Gamma)$. Before we start, we specify the following notation:

Notation 3.1. Let P be the rightmost vertex of Γ and fix $P \in C$ that tropicalizes to P. Let $e_1, ..., e_g \in N$ be the standard basis of N and $e'_1, ..., e'_g \in M$ the dual basis. For each partition λ we write $W^\lambda(C)$ (resp. $W^\lambda(\Gamma)$) instead of $W^\lambda(C, P)$ (resp. $W^\lambda(\Gamma, P)$). For a polytope $\Delta \subset N_\mathbb{R}$, if Δ maps to $\text{Pic}^0(\Gamma)$ isomorphically with image Δ in $\text{Pic}^0(C)^{an}$ under the tropicalization map. Let $N_\Delta = N \cap L_\Delta$. For a given projection $\pi: N \rightarrow N_\Delta$ we denote \tilde{U}_Δ the preimage of $\pi(\Delta)$ in $(T_{N_\Delta})^{an}$. For a pure polyhedral complex γ in $N_\mathbb{R}$ denote $\text{relint}(\gamma)$ the union of relative interior of all maximal faces of γ.

Now let λ be the $(r + 1) \times (g - d + r)$ diagram. As discussed in Section 2 we have $W^\lambda(C)$ isomorphic to $W^r_d(C)$ and $\text{Trop}(W^\lambda(C)) = W^\lambda(\Gamma)$, and $W^\lambda(\Gamma)$ is a union of translates of the images of the coordinate ρ-planes in $N_\mathbb{R}$, where $\rho = \rho(g, r, d)$.

Let δ be a maximal face of $W^\lambda(\Gamma)$. Take a polytope Λ such that $\Lambda \subset \text{relint}(\delta)$. Let $\Delta = \Lambda \times I \subset N_\mathbb{R}$ where $I = [-\epsilon, \epsilon]^{g-\rho}$ such that Δ maps to $\text{Pic}^0(\Gamma)$ isomorphically. We then have that U_Δ is isomorphic to \tilde{U}_Δ. Hence we may consider $W^\lambda(C)^{an}$ as a Zariski-closed analytic subspace of the polytopal domain U_Δ. We may assume that L_{Λ} is generated by $e_1, ..., e_\rho$. The canonical projection from N to N_{Λ} gives rise to a projection $\pi_{\Lambda}: (T_{N})^{an} \rightarrow (T_{N_{\Lambda}})^{an}$ which is compatible with the tropicalization map. Denote $W_{\Lambda} = W^\lambda(C)^{an} \cap U_\Lambda$. The argument in [BPR12, Theorem 4.31] shows that $\pi_{\Lambda}: W_{\Lambda} \rightarrow U_\Lambda$ is finite, and maps every irreducible component of W_{Λ} surjectively onto \tilde{U}_{Λ}.

Proposition 3.2. The map $\pi_\Lambda: W_\Lambda \to \tilde{U}_\Lambda$ is an isomorphism.

Proof. We first show that π_Λ is of degree one in the sense of [BPR12, §3.27]. Take ρ general translates of theta divisors $\Theta^1 = \text{Trop}(\Theta^1_1), ..., \Theta^\rho = \text{Trop}(\Theta^\rho_1)$ on $\text{Pic}^0(\Gamma)$ such that $\Lambda \cap (\cap_i \Theta^1_i)$ is nonempty and consists of finitely many points, where Θ^i_1 are theta divisors on $\text{Pic}^0(\Gamma)$. According to [CJP15, §2] we may also assume that $\cap_i \Theta^1_i$ intersects $W^\lambda(\Gamma)$ transversally at m points, where $m = g! \prod_{i=0}^r \frac{i!}{(g-d+r+i)!} = i(W^\lambda(\Gamma) \cdot \Theta^1_1 \cdots \Theta^\rho; \text{Pic}^0(\Gamma))$.

Since the degree of π_Λ is preserved under flat base change, we may shrink Λ so that $\Lambda \cap (\cap_i \Theta^1_i)$ consists of exactly one point. Also, take ϵ small enough such that $\Theta^1_1 \cap \Delta$ is of the form $\tilde{\Theta}^1_1 \times I_\epsilon$ where $\tilde{\Theta}^1_1$ is a codimension one polyhedral complex in Λ. Note that by [Wil09, §6] we know that $K(\tilde{U}_\Lambda)$ is a UFD, hence we can take $f_i \in K(\tilde{U}_\Lambda)$ to be the function that defines $(\Theta^1_1)_{an}$ in U_Δ.

According to [Rab12, §8] there is a Laurent polynomial f'_i which is a sum of monomials in f_i such that $\text{Trop}(V(f'_i)) \cap \Delta = \text{Trop}(V(f_i)) = \tilde{\Theta}^1_1 \times I_\epsilon$. Moreover for all $w \in \Delta$ the monomials in f'_i which obtains minimal w-weight is the same as those in f'_i. Let $A = \{ u_1, ..., u_k \} \subset M$ be the set of vertices of the Newton complex of f'_i corresponding to the maximal faces of Δ, whose polyhedral complex structure is induced by $\tilde{\Theta}^1_1 \times I_\epsilon$. We must have that A is contained in a ρ dimensional plane in $M_\mathbb{R}$ that is parallel to the one generated by $e'_1, ..., e'_\rho$. We may assume that A is contained in the sublattice generated by $e'_1, ..., e'_\rho$. Consequently, if $g_i = \sum x^{u_i}$ and $h_i = f_i - g_i$, then for every $a \in K$ with $\text{val}(a) \geq 0$ we have $\text{Trop}(V(g_i + ah_i)) = \text{Trop}(V(f_i))$ (with the same multiplicities, which are all ones by [CJP15, Theorem 3.1]). Moreover, g_i is contained in $K(\tilde{U}_\Lambda)$.

We next denote by B^1_K the unit ball in $(G_m)^an$ with coordinate ring $K(t)$, and prove the following lemma:

Lemma 3.3. Let W be a Cohen-Macaulay Zariski-closed analytic subspace of U_Δ of pure codimension k. Let $l_1, ..., l_k \in K(\tilde{U}_\Lambda) \times K(t)$ be global sections on $U_\Delta \times B^1_K$. Let Y_i be the subspace of $U_\Delta \times B^1_K$ defined by l_i. For $t \in B^1_K$ let $Y_i(t) = \pi^{-1}(t) \cap Y_i$ where π is the projection from $U_\Delta \times B^1_K$ to B^1_K. Suppose $\text{Trop}(W \cap (\cap_i \text{Trop}(Y_i(t))))$ is finite and contained in Δ° for all i and $t \in B^1_K$. Then the intersection number $\Lambda(W \cdot Y_1(t) \cdots Y_k(t); U_\Delta)$ is constant on B^1_K.

Proof. We proceed by showing that the analytic space $\tilde{W} = (W \times B^1_K) \cap (\cap_i Y_i)$ is finite and flat over B^1_K, hence every fiber has the same length.

It is obvious that \tilde{W} has finite fiber. To show it is proper over B^1_K, we use the ideas in [OR11, §4.9]. Since all analytic space appeared are affinoid, hence compact Hausdorff, we have that π is compact on \tilde{W} and separated. On the other hand, let $\pi': U_\Delta \times B^1_K \to U_\Delta$ be the other projection. By [OR11, Lemma 4.14] we have

$$\tilde{W} \subset (\text{Trop} \circ \pi')^{-1}(\Delta^\circ) \subset \text{Int}(U_\Delta \times B^1_K/B^1_K).$$

According to the sequence of morphisms $\tilde{W} \to U_\Delta \times B^1_K \to B^1_K$ we have

$$\text{Int}(\tilde{W}/B^1_K) = \text{Int}(\tilde{W}/U_\Delta \times B^1_K) \cap \text{Int}(U_\Delta \times B^1_K/B^1_K) = \text{Int}(\tilde{W}/U_\Delta \times B^1_K) = \tilde{W}.$$

Hence π is boundaryless on \tilde{W}. Consequently π is proper, and hence finite on \tilde{W}.

Now the flatness of π follows from [Liu02, Exercise 1.2.12] and induction. Note that the finiteness of fibers of π and the Cohen-Macaulay-ness of W ensures that each l_i is not a zero divisor on $W \cap Y_1(t) \cap \cdots \cap Y_{i-1}(t)$ for all t. \qed
We return to the proof of Proposition 3.2. In Lemma 3.3 let $W = W_\Lambda$ and $l_i = g_i + th_i$. It follows that (set $t = 0$)

$$i(W_\Lambda \cdot \prod_{i=1}^{\rho} (\Theta_C)^{an}; \mathcal{U}_\Delta) = i(W_\Lambda \cdot \prod_{i=1}^{\rho} V(f_i); \mathcal{U}_\Delta) = i(W_\Lambda \cdot \prod_{i=1}^{\rho} V(g_i); \mathcal{U}_\Delta) = m_\Lambda \cdot i(\prod_{i=1}^{\rho} V(g_i); \tilde{\mathcal{U}}_\Lambda)$$

where the last equation is the projection formula in [Gub98, Proposition 2.10] and m_Λ is the degree of π_Λ. By Theorem 2.10 we have

$$i(\prod_{i=1}^{\rho} V(g_i); \tilde{\mathcal{U}}_\Lambda) = i(\prod_{i=1}^{\rho} \text{Trop}(V(g_i)); \Lambda) = 1,$$

therefore $i(W_\Lambda \cdot \prod_{i=1}^{\rho} (\Theta_C)^{an}; \mathcal{U}_\Delta) = m_\Lambda$.

Now for all $w_j \in W^\lambda(\Gamma) \cap (\cap_i \Theta_C^i)$ where $1 \leq j \leq m$ we pick a polytope Λ_j as above and get a degree m_{Λ_j} of the corresponding projection map, which yields

$$\sum_{j=1}^{m} m_{\Lambda_j} = i(W^\lambda(C) \cdot \Theta_C^1 \cdots \Theta_C^\rho; \text{Pic}^0(C)) = m.$$

Note that the first equality follows from the fact that the K-dimension of the local ring of $W^\lambda(C) \cap (\cap_i \Theta_C^i)$ at a point is equal to that of $W^\lambda(C)^{an} \cap (\cap_i (\Theta_C^i)^{an})$. Hence we must have $m_{\Lambda_j} = 1$ for all j. Therefore π_Λ is of degree one.

It follows that W_Λ is irreducible and generically reduced. However, W_Λ is Cohen-Macaulay since $W^\lambda(C)$ is, so it is everywhere reduced, hence integral. Now π_Λ induces a finite morphism of degree one between integral domains whose source $K(\tilde{\mathcal{U}}_\Lambda)$ is normal, it must be an isomorphism.

\[\square\]

Remark 3.4. An algebraic analogue of Proposition 3.2 is that a reduced (or Cohen-Macaulay) closed subscheme Z of T_N is local analytically isomorphic to a torus at a point that tropicalize to the relative interior of a maximal face of $\text{Trop}(Z)$ of multiplicity one, see for example [He16, Lemma 6.2].

4. LIFTING TROPICAL INTERSECTIONS IN A POLYHEDRAL DOMAIN.

Let N be an arbitrary lattice of rank n as in Theorem 1.2 and T_N the induced torus. Let Δ be a polytope of maximal dimension in $N_\mathbb{R}$. In this section we use Osserman and Rabinoff’s continuity theorem [ORT, §5] of analytic intersection numbers to prove Theorem 1.2. Let $\mathcal{U}_0 \subset T_N^{an}$ be the preimage of the origin in $N_\mathbb{R}$. Then \mathcal{U}_0 acts on \mathcal{U}_Δ. Denote the action by $\mu: \mathcal{U}_0 \times \mathcal{U}_\Delta \to \mathcal{U}_\Delta$ and let $\pi: \mathcal{U}_0 \times \mathcal{U}_\Delta \to \mathcal{U}_0$ be the projection. This gives an isomorphism:

$$(\pi, \mu): \mathcal{U}_0 \times \mathcal{U}_\Delta \to \mathcal{U}_0 \times \mathcal{U}_\Delta.$$

The following lemma is a consequence of [ORT, Proposition 5.8]:

Lemma 4.1. Let π be as above. Let $\mathcal{Y}, \mathcal{Y}' \subset \mathcal{U}_0 \times \mathcal{U}_\Delta$ be Zariski-closed subspaces, flat over \mathcal{U}_0, such that $\mathcal{Y} \cap \mathcal{Y}'$ is finite over \mathcal{U}_0. Then the map

$$s \mapsto i(\mathcal{Y}_s \cdot \mathcal{Y}'_s; \mathcal{U}_\Delta): |\mathcal{U}_0| \to \mathbb{Z}$$

is constant on \mathcal{U}_0, where \mathcal{Y}_s and \mathcal{Y}'_s are fibers of π.

We refer to [Duc11] or [ORT, §5] about the notion of flatness for analytic spaces, which is preserved under composition and change of base. Any analytic space is flat over K. We now prove Theorem 1.2.

8
Proof of Theorem 1.2: Let $\mathcal{X}, \mathcal{X}' \subset \mathcal{U}_\Delta$ be Zariski closed analytic subspaces of \mathcal{U}_Δ of pure dimension. We first assume that $\dim(\mathcal{X}) + \dim(\mathcal{X}') = n$, hence $\mathcal{X} \cap \mathcal{X}'$ is finite. As the statement is local, we may also assume that $\Trop(\mathcal{X}) \cap \Trop(\mathcal{X}')$ contains only one point w that lies in Δ°. It suffices to show that $\mathcal{X} \cap \mathcal{X}'$ is nonempty.

In Lemma 4.1 let $\mathcal{Y} = (\pi, \mu)(\mathcal{U}_0 \times \mathcal{X})$ and $\mathcal{Y}' = \mathcal{U}_0 \times \mathcal{X}'$ where π and μ are as above. Then both \mathcal{Y} and \mathcal{Y}' are flat over \mathcal{U}_0. On the other hand, the argument in Lemma 3.1 shows that $\mathcal{Y} \cap \mathcal{Y}'$ is finite over \mathcal{U}_0, as $\Trop(\mathcal{Y}_s) \cap \Trop(\mathcal{Y}'_s) = \Trop(\mathcal{X}') \cap \Trop(\mathcal{X}')$ is finite for every $s \in |\mathcal{U}_0|$. Therefore $\iota(\mathcal{Y}_s \cdot \mathcal{Y}'_s; \mathcal{U}_\Delta)$ is constant on $|\mathcal{U}_0|$ by Lemma 4.1. Take $\xi \in |\mathcal{X}|$ and $\xi' \in |\mathcal{X}'|$ such that $\Trop(\xi) = \Trop(\xi') = w$. Take also $t \in |\mathcal{U}_0|$ such that $t(\xi) = \xi'$. Then $\mathcal{Y}_t \cap \mathcal{Y}'_t = \mathcal{Y} \cap \mathcal{X}'$ contains ξ', hence $\iota(\mathcal{Y}_t \cdot \mathcal{Y}'_t; \mathcal{U}_\Delta) > 0$. Thus $\iota(\mathcal{Y}_s \cdot \mathcal{Y}'_s; \mathcal{U}_\Delta) > 0$ for all $s \in |\mathcal{U}_0|$. Taking s to be the identity in \mathcal{U}_0 implies that $\mathcal{X} \cap \mathcal{X}' = \mathcal{Y}_s \cap \mathcal{Y}_s'$ is nonempty. Thus $w \in \Trop(\mathcal{X}) \cap \Trop(\mathcal{X}')$.

This situation easily generalizes to intersections of three or more subschemes as in [OP13, §5.2]. Namely, we have the following lemma:

Lemma 4.2. Let $\mathcal{X}_1, \ldots, \mathcal{X}_m$ be Zariski-closed subspaces of \mathcal{U}_Δ of (pure) codimension d_1, \ldots, d_m respectively, where $d_1 + \cdots + d_m = n$. Suppose $\Trop(\mathcal{X}_1) \cap \cdots \cap \Trop(\mathcal{X}_m)$ is finite and contained in Δ°. Then

$$\Trop(\mathcal{X}_1) \cap \cdots \cap \Trop(\mathcal{X}_m) = \Trop(\mathcal{X}_1 \cap \cdots \cap \mathcal{X}_m).$$

Now suppose $\Trop(\mathcal{X}) \cap \Trop(\mathcal{X}')$ has dimension $l > 0$. For any G-rational point $v \in \Trop(\mathcal{X}) \cap \Trop(\mathcal{X}') \cap \Delta^\circ$ we can find a Zariski-closed subspace \mathcal{Z} of \mathcal{U}_Δ of codimension l such that $\Trop(\mathcal{Z})$ contains v and intersect properly with $\Trop(\mathcal{X}) \cap \Trop(\mathcal{X}')$ near v. Hence Lemma 4.2 implies that

$$v \in \Trop(\mathcal{Z} \cap \mathcal{X} \cap \mathcal{X}') \subset \Trop(\mathcal{X} \cap \mathcal{X}').$$

As G-rational points are dense in $\Trop(\mathcal{X}) \cap \Trop(\mathcal{X}')$ this implies that $\Trop(\mathcal{X}) \cap \Trop(\mathcal{X}') \cap \Delta^\circ = \Trop(\mathcal{X} \cap \mathcal{X}') \cap \Delta^\circ$. □

As mentioned in the proof above, we can also state Theorem 1.2 for the intersection of more than two analytic subspaces of \mathcal{U}_Δ:

Corollary 4.3. Let $\mathcal{X}_1, \ldots, \mathcal{X}_m$ be Zariski-closed subspaces of \mathcal{U}_Δ of pure dimensions whose tropicalizations intersect properly. Then

$$\Trop(\mathcal{X}_1) \cap \cdots \cap \Trop(\mathcal{X}_m) \cap \Delta^\circ = \Trop(\mathcal{X}_1 \cap \cdots \cap \mathcal{X}_m) \cap \Delta^\circ.$$

Remark 4.4. As the statement in Corollary 4.3 is local, it is still true if we replace Δ by the support of a polyhedral complex with integral G-affine faces. In particular, we have

$$\Trop(\mathcal{X}_1) \cap \cdots \cap \Trop(\mathcal{X}_m) = \Trop(\mathcal{X}_1 \cap \cdots \cap \mathcal{X}_m)$$

if $\mathcal{X}_1, \ldots, \mathcal{X}_m$ are Zariski-closed analytic subspaces of T^G_N with proper tropical intersections.

It is necessary to only consider the interior of Δ in Theorem 1.2 or Corollary 4.3. See the example below.
Example 4.5.

Let \mathcal{X} and \mathcal{X}' be two curves in $(K^*)^2$ defined by $x + y + 1 = 0$ and $x + y = 0$ respectively. Let $\Delta = [0, 1]^2$. Then $\text{Trop}(\mathcal{X}) \cap \text{Trop}(\mathcal{X}') \cap \Delta$ is the origin, hence $\text{Trop}(\mathcal{X})$ and $\text{Trop}(\mathcal{X}')$ intersect properly in Δ. But $\mathcal{X} \cap \mathcal{X}' \cap U_\Delta$ is empty.

5. LIFTING DIVISORS WITH IMPOSED RAMIFICATION

In this section we prove Theorem 1.1. We will use the notations in Notation 3.1. Let $\alpha = (\alpha_0, ..., \alpha_r)$ be a Schubert index of type (d, r). Let $\lambda = (\lambda_0, ..., \lambda_r)$ be the induced partition. Hence $\lambda_i = g - d + r + \alpha_{r-i} - 1$.

After translating every divisor class on C (resp. Γ) of degree d to its image in $\text{Pic}^0(C)$ (resp. $\text{Pic}^0(\Gamma)$) under the Abel-Jacobi map induced by dP (resp. dP) we may assume that the ramification is imposed by λ (instead of α). Hence it remains to prove the following:

Theorem 5.1. We have $\text{Trop}(W^\lambda(C)) = W^\lambda(\Gamma)$.

Let λ_j be the partition corresponding to the $(r+1-j) \times (g-d+r+\alpha_j)$ diagram. Then $W^\lambda_j(C)$ is isomorphic to $W^{r-j}_{d-\alpha_j-j}(C)$, and $W^\lambda(C) = \bigcap_{0 \leq i \leq r} W^\lambda_i(C)$, while $W^\lambda(\Gamma)$ is isomorphic to $W^{r-j}_{d-\alpha_j-j}(\Gamma)$, and $W^\lambda(\Gamma) = \bigcap_{0 \leq i \leq r} W^\lambda_i(\Gamma)$. Let λ^j be the union of $\lambda_1, ..., \lambda_j$ and $W_j(C) = \bigcap_{0 \leq i \leq j} W^\lambda_i(C)$ and $W_j(\Gamma) = \bigcap_{0 \leq i \leq j} W^\lambda_i(\Gamma)$ for $0 \leq j \leq r$.

Let also μ_j be the partition corresponding to the $(r-j) \times (g-d+r+\alpha_j)$ diagram (this is the intersection of λ^j and λ_{j+1}). As above we have $W^\mu_j(C)$ isomorphic to $W^{r-j-1}_{d-\alpha_j-j-1}(C)$, and $W^\mu_j(\Gamma)$ isomorphic to $W^{r-j-1}_{d-\alpha_j-j-1}(\Gamma)$. Moreover, we have $W_j(C) \subset W^\mu_j(C)$ and $W^{\lambda_{j+1}}(C) \subset W^\mu_j(C)$ and $W_j(\Gamma) \subset W^\mu_j(\Gamma)$ and $W^{\lambda_{j+1}}(\Gamma) \subset W^\mu_j(\Gamma)$.

10
In order to prove the Theorem above, we first show the following lemma:

Lemma 5.2. $W_j(\Gamma)$ and $W^{\lambda_{j+1}}(\Gamma)$ intersect properly in $W^{\mu_j}(\Gamma)$, and there is an open dense subset U_j of $W_j(\Gamma) \cap W^{\lambda_{j+1}}(\Gamma) = W_{j+1}(\Gamma)$ which is contained in $\text{relint}(W^{\mu_j}(\Gamma))$.

Proof. The properness follows directly from dimension counting (Proposition 2.6), as $\lambda^i + 1$ is the union of λ^i and λ^i_{j+1} while μ_j is the intersection of λ^i and λ^i_{j+1}.

For the second conclusion it suffices to show that every real torus in $W_{j+1}(\Gamma)$ is contained in exactly one torus in $W^{\mu_j}(\Gamma)$. Take two tori $T(t) \subset W_{j+1}(\Gamma)$ and $T(t') \subset W^{\mu_j}(\Gamma)$, where t and t' are m_t-displacement tableux on $\lambda^i + 1$ and μ_j respectively, such that $T(t) \subset T(t')$. We claim that $t' = t|_{\mu_j}$.

It is easy to see that $t'|(\mu_j) \subset t(\lambda^i + 1)$. On the other hand, let $S_k = \{(x, y) | x - y = k\}$ for all $k \in \mathbb{Z}$. If $t(x, y) = t'(x', y')$, then $x - y \equiv x' - y' \pmod{m_{t(x,y)}}$, hence $x - y = x' - y'$ by the generality of Γ. It follows that $t(\mu_j \cap S_k) \subset t'(\lambda^i + 1 \cap S_k)$ for all k. In particular, let $k_j = g - d + \alpha_j + j$, we have

$$t(\mu_j \cap S_{k_j}) = t'(\lambda^i + 1 \cap S_{k_j})$$

since $\mu_j \cap S_{k_j} = \lambda^i + 1 \cap S_{k_j}$. Therefore $t|_{\mu_j \cap S_{k_j}} = t'|_{\mu_j \cap S_{k_j}}$ as both t and t' are strictly increasing along rows and columns.

It follows that $t'(r - j + k_j, r - j + 1) \not\subset t(\mu_j \cap S_{k_j-1})$, since this number is bigger than all numbers in $t'(\lambda^i + 1 \cap S_{k_j}) = t(\mu_j \cap S_{k_j})$, thus greater that numbers in $t(\mu_j \cap S_{k_j-1})$. It then follows that $t(\mu_j \cap S_{k_j-1}) = t'(\mu_j \cap S_{k_j-1})$, therefore $t|_{\mu_j \cap S_{k_j-1}} = t'|_{\mu_j \cap S_{k_j-1}}$. Now one can check by induction that $t|_{\mu_j \cap S_k} = t'|_{\mu_j \cap S_k}$ for all $k \leq k_j$. Same argument shows that $t|_{\mu_j \cap S_k} = t'|_{\mu_j \cap S_k}$ for all $k \geq k_j$. \hfill \Box

Proof of Theorem 5.3 We prove by induction that $Trop(W_{k}(C)) = W_{k}(\Gamma)$ for all $0 \leq k \leq r$. The $k = 0$ case is in Theorem 2.8. Now assume $Trop(W_{j}(C)) = W_{j}(\Gamma)$, we need to show that $Trop(W_{j}(C) \cap W^{\lambda_{j+1}}(C)) = Trop(W_{j+1}(C)) = W_{j+1}(\Gamma)$. \hfill (2)

Let U_j be as in Lemma 5.2 and fix $w \in U_j$. As we only care about the local geometry near w, we may assume all Brill-Noether loci corresponding to (C, P) (resp. (Γ, P)) are contained in a polytopal domain (resp. polytope) in T_{N} (resp. N_{R}). We may also assume that w is the origin. Take a polytope $\Lambda \subset \text{relint}(W^{\mu_j}(\Gamma))$ such that $w \in \text{relint}(\Lambda)$. According to Proposition 3.2 we
have the following commutative diagram:

$$
\begin{array}{c}
W^{\mu_j}(C)^{an} \cap \mathcal{U}_\Lambda \xrightarrow{T\text{rop}} \Lambda \\
\downarrow \pi_\Lambda \\
\tilde{U}_\Lambda \xrightarrow{T\text{rop}} \pi(\Lambda)
\end{array}
$$

where both vertical arrows are isomorphisms induced by the natural projection from N to N_Λ as in loc.cit..

Denote

$$W^{\lambda_j+1}_\Lambda = W^{\lambda_j+1}(C)^{an} \cap \mathcal{U}_\Lambda$$

and

$$W^{\lambda_j}_\Lambda, j = W_j(C)^{an} \cap \mathcal{U}_\Lambda.$$

According to Lemma 5.2 $T\text{rop}(\pi_\Lambda(W^{\lambda_j+1}_\Lambda))$ and $T\text{rop}(\pi_\Lambda(W^{\lambda_j}_\Lambda))$ intersect properly in $\pi(\Lambda)$, which is a polytope of maximal dimensional in $(N_\Lambda)_R$ that contains $\pi(w)$ as an interior point.

Hence Theorem 1.2 implies that $\pi(w) \in T\text{rop}(\pi_\Lambda(W^{\lambda_j+1}_\Lambda) \cap \pi_\Lambda(W^{\lambda_j}_\Lambda))$, and that

$$w \in T\text{rop}(W^{\lambda_j+1}_\Lambda \cap W^{\lambda_j}_\Lambda) \subset T\text{rop}(W_j(C) \cap W^{\lambda_j+1}(C)).$$

As U_j is dense in $W^{\lambda_j+1}(\Gamma)$ and $U_j \subset T\text{rop}(W_j(C) \cap W^{\lambda_j+1}(C))$, we have $W^{\lambda_j+1}(\Gamma) \subset T\text{rop}(W_j(C) \cap W^{\lambda_j+1}(C))$. This proves (2), as the other direction of containment is trivial. □

REFERENCES

[Bak08] Matthew Baker, Specialization of linear systems from curves to graphs, Algebra & Number Theory 2 (2008), no. 6, 613–653.

[BPR12] Matthew Baker, Sam Payne, and Joseph Rabinoff, Nonarchimedean geometry, tropicalization, and metrics on curves, arXiv preprint arXiv:1104.0320 (2012).

[BR14] Matthew Baker and Joseph Rabinoff, The skeleton of the jacobian, the jacobian of the skeleton, and lifting meromorphic functions from tropical to algebraic curves, International Mathematics Research Notices 2015 (2014), no. 16, 7436–7472.

[CDPR12] Filip Cools, Jan Draisma, Sam Payne, and Elina Robeva, A tropical proof of the brill–noether theorem, Advances in Mathematics 230 (2012), no. 2, 759–776.

[CJP15] Dustin Cartwright, David Jensen, and Sam Payne, Lifting divisors on a generic chain of loops, Canad. Math. Bull. 58 (2015), no. 2, 250–262.

[Duc11] Antoine Ducros, Flatness in non-archimedean analytic geometry, Preprint (2011).

[Gub98] Walter Gubler, Local heights of subvarieties over non-archimedean fields, 61–113.

[Gub07] Walter Gubler, Tropical varieties for non-archimedean analytic spaces, Inventiones mathematicae 169 (2007), no. 2, 321–376.

[He16] Xiang He, A generalization of lifting non-proper tropical intersections, arXiv preprint arXiv:1606.04455 (2016).

[JP14] David Jensen and Sam Payne, Tropical independence I: shapes of divisors and a proof of the Gieseker-Petri theorem, Algebra & Number Theory 8 (2014), no. 9, 2043–2066.

[JP16] David Jensen and Sam Payne, Tropical independence II: The maximal rank conjecture for quadrics, Algebra & Number Theory 10 (2016), no. 8, 1601–1640.

[Liu02] Qing Liu, Algebraic geometry and arithmetic curves, vol. 6, Oxford University Press on Demand, 2002.

[Mi08] Grigory Mikhalkin and Zharkov Ilia, Tropical curves, their Jacobians and theta functions, In: Curves and abelian varieties, Contemp. Math. 465 (2008), 203–230.

[OP13] Brian Osserman and Sam Payne, Lifting tropical intersections, Documenta Mathematica 18 (2013), 121–175.

[OR11] Brian Osserman and Joseph Rabinoff, Lifting non-proper tropical intersections, Tropical and Non-Archimedean Geometry 605 (2011), 15–44.

[Pfl17] Nathan Pflueger, Special divisors on marked chains of cycles, Journal of Combinatorial Theory, Series A 150 (2017), 182–207.

[Rab12] Joseph Rabinoff, Tropical analytic geometry, Newton polygons, and tropical intersections, Advances in Mathematics 229 (2012), no. 6, 3192–3255.
[Wil09] Rolf Stefan Wilke, *Totally degenerated formal schemes*, Ph.D. thesis, Universität Ulm, 2009.