Abstract: Osseointegrated dental implants are now a well-established treatment option in the ar-manent of restorative dentistry. These technologically advanced devices are designed to functionally and esthetically replace missing teeth. Despite the revolutionary advances that implants have incurred, they have also provided the oral cavity with new artificial surfaces prone to the formation of oral biofilms, similarly to the hard tissue surfaces of natural teeth. Biofilm formation on the implant surface can trigger the inflammatory destruction of the peri-implant tissue, in what is known as peri-implantitis. The mixed microbial flora of peri-implant infections resembles that of periodontal infections, with some notable differences. These are likely to expand with the ever increasing application of metagenomics and metatrascriptomics in the analysis of oral ecology. This review presents the wealth of knowledge we have gained from microbiological methods used in the characterization of peri-implant microflora and sheds light over potential new benefits, as well as limitations, of the new sequencing technology in our understanding of peri-implant disease pathogenesis.

DOI: https://doi.org/10.4161/21505594.2014.980661

Originally published at:
Charalampakis, Georgios; Belibasakis, Georgios N (2015). Microbiome of peri-implant infections: lessons from conventional, molecular and metagenomic analyses. Virulence, 6(3):183-187.
DOI: https://doi.org/10.4161/21505594.2014.980661
Microbiome of peri-implant infections: lessons from conventional, molecular and metagenomic analyses

Georgios Charalampakis¹, Georgios N. Belibasakis²*

1. Department of Oral Microbiology and Immunology, Institute of Odontology, Gothenburg University, The Sahlgrenska Academy at University of Gothenburg, Box 450 Gothenburg 405 30, Sweden.
2. Section of Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Plattenstrasse 11, 8032 Zürich, Switzerland

* Corresponding author

Prof. Georgios N. Belibasakis
Oral Microbiology and Immunology
Institute of Oral Biology
Center of Dental Medicine
University of Zürich
Plattenstrasse 11
8032 Zürich, Switzerland
Tel: +41-44-634-3306
Fax: +41-44-634-3090
e-mail: george.belibasakis@zzm.uzh.ch
Abstract
Osseointegrated dental implants are now a well-established treatment option in the armament of restorative dentistry. These technologically advanced devices are designed to functionally and esthetically replace missing teeth. Despite the revolutionary advances that implants have incurred, they have also provided the oral cavity with new artificial surfaces prone to the formation of oral biofilms, similarly to the hard tissue surfaces of natural teeth. Biofilm formation on the implant surface can trigger the inflammatory destruction of the peri-implant tissue, in what is known as peri-implantitis. The mixed microbial flora of peri-implant infections resembles that of periodontal infections, with some notable differences. These are likely to expand with the ever increasing application of metagenomics and metatranscriptomics in the analysis of oral ecology. This review presents the wealth of knowledge we have gained from microbiological methods used in the characterization of peri-implant microflora and sheds light over potential new benefits, as well as limitations, of the new sequencing technology in our understanding of peri-implant disease pathogenesis.

Keywords: dental implants; peri-implantitis; peri-implant mucositis; oral microbiota; molecular diagnostics; metagenomics; biofilms
Dental implants and peri-implant infections

Dental implants have been in the market for more than 40 years. They are artificial devices made of titanium, introduced in order to replace one or more missing natural teeth. They are anchored to the bone, based on the concept of ‘osseointegration’, which ensures direct structural and functional bone to implant contact ¹. Nevertheless, the anchorage to the bone is different between dental implants and natural teeth. For teeth, the anchorage is established via the periodontal ligament its Sharpey’s fiber extremities, anatomical elements that are absent at implants ². Despite these dissimilarities between dental implants and natural teeth, soft tissues around teeth and implants are of similar dimensions. Gingiva and peri-implant mucosa include a junctional/barrier epithelium about 2 mm long in the apico-coronal direction and one zone of supracrestal connective tissue attachment just above 1 mm. In addition, the hard non-shedding surface of the implant behaves similar to that of the tooth, colonized by microbiota in the form of a biofilm ³. The colonization pattern on implants appears to be initially slower than on natural teeth ⁴, given the pristine surfaces of the implant and the lack of the desired indigenous microbiota. However, once the biofilm is established, it acts as an orchestrated microbial challenge causing, in many respects, similar soft and hard tissue reactions around teeth and implants. Thus, long-term biological complications, biofilm-mediated, do occur around dental implants, despite the prior successful osseointegration.

More than two decades, we have witnessed the emergence of two contemporary diseases, peri-implant mucositis and peri-implantitis. Peri-implant mucositis is characterized by inflammation restricted to the peri-implant mucosa of an implant in function, presenting no distinct bone loss. Peri-implantitis is defined as a more profound inflammatory lesion, characterized by a deepened bleeding peri-implant pocket and progressive loss of supporting
bone around a functional implant. These two forms of peri-implant infections are analogous to
diseases occurring on natural teeth. Peri-implant mucositis corresponds to gingivitis and peri-
implantitis to periodontitis. The prevalence of these two infections may differ according to
various reports. Peri-implant mucositis affects approximately 80% of patients baring dental
implants, and 50% of the total implants installed. In the case of peri-implantitis, this prevalence
can be 28%-56% and 12%-43%, respectively. These numbers however can vary depending on
the years that an implant has been in function.

The diagnosis of peri-implant infections is largely based on clinical and radiographic
criteria. Peri-implant mucositis may not always be revealed by mere inspection of the tissue,
because of the lack of light transmission through the metal device. Bleeding of the affected site
during examination by use of a periodontal probe is far more reliable. Peri-implantitis lesions in
addition to bleeding on probing may present suppuration and exhibit an apical migration of the
barrier epithelium as well as bone loss, which is often depicted on radiographs as a characteristic
crater-shaped circumferential bony defect around the implant. The progression of peri-
implantitis may be more aggressive in some cases, and if not arrested, the developing bone loss
may render the implant dysfunctional, eventually leading to complete implant loss.

Microbial etiology of peri-implant infections

Given the infectious nature of peri-implantitis, by the accumulation of a complex biofilm
community along the implant surface, it makes sense to try to map out the microbial profile of
this disease. However, up to date any hopes to associate specific microorganisms with peri-
implantitis in a way that would imply causation have been shattered. This has happened far
earlier for periodontitis, and a lot of common lessons apply for both pathological entities. Thus,
the fundamental principle for periodontitis applies equally well for peri-implantitis, i.e. it is an endogenous, polymicrobial, opportunistic infection. This implies that species associated with the destructive disease are part of the normal oral microbiota but under certain ecological shifts, become pathogens, never alone but always acting in concert. It is not the mere presence of specific bacteria instigating the disease rather than the interplay of divergent abundant bacteria from different phyla.

Over the years different methods have been applied to characterize the peri-implant microbiota. Culture-dependent methods have traditionally been the gold standard, but molecular methods have also been introduced to avoid conventional time-consuming laboratory work. As technology improves, sequencing methods, including the latest next-generation sequencing, have emerged to reveal in more detail differences between healthy and diseased oral microbiomes.

This review aims to present the wealth of knowledge we have gained from microbiological methods to characterize peri-implant microbiology and to shed light over potential new benefits as well as limitations of the new sequencing technology in our understanding of peri-implant disease pathogenesis.

Lessons from conventional methods

The development of agar-containing solid culture media for the growth of bacteria more than a century ago was the first and invaluable source of information for elucidating the bacterial etiology of infectious diseases. Regarding peri-implant infections, the earliest studies to reveal the healthy and diseased microbiome around dental implants used culture techniques and phase-contrast microscopy. The peri-implant microflora in health consists mainly of Gram-
positive cocci and non-motile bacilli, and a limited number Gram-negative anaerobic species13,16. Microbial composition of biofilms on healthy implants may be similar to that on the surfaces of periodontally healthy teeth in the adolescent. Early reports favor this aspect, i.e. microbiota at well-maintained implants resembles the microbiota associated with healthy conditions at teeth14,17-20. The switch to peri-implant mucositis is associated with increased presence of cocci, motile bacilli and spirochetes, a trend which is comparable to gingivitis21. The transition to peri-implantitis is the result of a deepened peri-implant pocket and this change of habitat with low oxygen conditions does not favor the growth of aerobic bacteria any more. Culture-based techniques demonstrated the emergence of Gram-negative, black-pigmented, motile, and anaerobic species that are also commonly found in deepened periodontal pockets13,22. Phase-contrast microscopy revealed the presence of spirochetes and motile rods11,13,23,24. In another study25, by use of latex agglutination test, up to 39% of the peri-implantitis sites were shown to host black-pigmented species whereas up to 17% of the sites hosted \textit{Aggregatibacter actinomycetemcomitans}. This facultative anaerobic species was also detected by culture at peri-implantitis sites26. Other studies detected aerobic Gram negative bacilli (AGNB) at peri-implantitis sites19,27,28, as well as \textit{Candida} spp.19,24,27 and staphylococci19,28.

\textbf{Lessons from molecular methods}

Molecular methods have been adopted around 20-30 years ago in an attempt to speed up microbiological analyses and avoid time-consuming biochemical and physiological tests, as well as the culture of fastidious microbiota.

Polymerase chain reaction (PCR) was the first molecular technique developed in the mid-80s29 enabling the enzymatic replication of DNA without the use of a living organism. PCR
analysis offers great sensitivity as it allows a small amount of DNA of the microbial sample to be amplified many times in an exponential manner. It has been used for the analysis of microbial samples from dental implants for the detection of *A. actinomycetemcomitans* \(^\text{30}\), *Porphyromonas gingivalis* \(^\text{30,31}\), *Prevotella intermedia* \(^\text{30,32}\), *Fusobacterium* spp \(^\text{32}\).

The DNA-DNA hybridization (‘checkerboard’) technique belongs to molecular techniques, developed by Socransky and co-workers \(^\text{33}\). It allows for the assessment of large amounts of plaque samples and multitude of species by hybridizing DNA samples against whole genomic DNA probes on a single support membrane. The sensitivity of the ‘checkerboard’ DNA-DNA hybridization assay is usually set to \(10^4\) cells of a bacterial species by adjusting the concentration of each DNA probe in the hybridization buffer. Whole-genomic probes can display cross-reactivity with even heterologous species, which may compromise the validity of the results due to false-positive outcomes (low specificity). Hence, probe quality and stringency of the hybridization conditions are critical for the successful diagnostic performance of the method. The ‘checkerboard’ format has been widely used for peri-implantitis cases, as it is ideal for the analysis of a large number of samples. Various species have been targeted in the relevant studies; from just three \(^\text{34}\), five \(^\text{35}\), eight \(^\text{36}\) and 12 \(^\text{28,37}\) up to 23 \(^\text{38,39}\), 36 \(^\text{40,40-42}\) and 78 \(^\text{43}\).

Notably, the wealth of knowledge on the microbiological profile of peri-implantitis derives from periodontitis, given the fact that the target microbiota for peri-implantitis ‘checkerboard’ studies were based on the traditional cultural studies performed at periodontitis sites. The majority of the latter studies were able to confirm that the peri-implant pocket shares commonalities in its microbial profile with the periodontal pocket. The cluster of the so-called ‘red complex’ (*P. gingivalis*, *Tannerella forsythia*, *Treponema denticola*) was found at higher counts at peri-implantitis sites compared to healthy ones \(^\text{37,39}\). The only distinct microbiological
difference between dental implants and teeth emerging from ‘checkerboard’ analysis is the higher count of *S. aureus* at implants than at teeth 41. In addition, *S. aureus* was found at higher counts at implants with peri-implantitis than at healthy implants 43.

Importantly, the obvious disadvantage of the DNA-based method is the need to preselect DNA probes for the specific bacterial taxa investigated. This pre-selection inevitably creates a form of bias but more importantly does not leave any chance to investigate the ‘unexpected’ microbiota. In addition, low specificity of the whole-genomic probes, often used in the checkerboard format cannot be neglected due to unavoidable cross-reactivity with uncultivable phylotypes.

Lessons from metagenomics

Metagenomics, mainly including 16S rRNA and shotgun sequencing, is a revolutionary approach to characterize the microbiome as it overcomes serious limitations of conventional and previous molecular DNA-based methods. The time-consuming and costly process for isolation and lab culture of individual species is essentially bypassed 44. The whole field has its roots in the culture-independent retrieval of 16S rRNA genes, pioneered by Pace and co-workers around twenty years ago 45. The basic approach was to identify microbes in a complex community by exploiting universal and conserved targets, and in this respect, the bacterial 16S rRNA gene was proven to conceal a wealth of phylogenetic information. Sanger sequencing of 16S rRNA has, nevertheless, the limitation of low-depth coverage. Although able to detect the predominant members of the microbial community, it may not detect the rare members with divergent target sequences. It is highly likely that the distinction between microbiomes in health and disease lies primarily at the strain level, while genes encoding for virulence factors may only be found in a
subset of strains. The relevance of species-level identification is therefore questionable and 16S rRNA sequence has essentially no power at a deeper taxonomic level. Such disadvantages of single gene-based amplicon sequencing can be supplanted by whole-genome shotgun sequencing, offering comprehensive coverage by high throughput, parallel DNA-sequencing platforms. Two studies have applied metagenomic sequencing at a small number of subgingival samples in order to characterize the microbiome in periodontitis. Compared to a 16S-based study, the deep sequencing approach identified, as expected, additional low-abundance genera associated with periodontitis, including *Alistipes*, *Bulleidia*, *Butyrivibrio* and *Parabacteroides*. In addition, screening for functional genes potentially associated with periodontal health and disease was also feasible to perform. A recent systematic review compiling data from culture-independent diagnostic methods concluded that there is literature evidence to support the association of periodontal disease with 17 species or phylotypes from the phyla *Bacteroidetes*, *Candidatus Saccharibacteria*, *Firmicutes*, *Proteobacteria*, *Spirochaetes*, *Synergistetes*, as well as the *Archaea* domain.

It is of interest that culture-independent methods have been recently used to characterize the subgingival microbiota of the “classical” cohort of Sri Lankan tea workers naïve to oral hygiene practices, which has been monitored for over 40 years for their periodontal health status. This study identified that the subgingival microbiota of this population was dominated by *Firmicutes*, *Proteobacteria*, and *Fusobacteria*. Distinctive differences in the overall microbial composition were identified between shallow and deep sites. However, there was no obvious microbial clustering of the subjects according to their respective clinical progression groups, confirming the important role of the individual host response in the progression of the disease.
There are relatively few studies that have employed culture-free techniques to study peri-implantitis-associated flora 51-54. These have all applied 16S-based methodology and to date no deep metagenomic sequencing analyses of peri-implantitis samples are available. However, emerging evidence from the above-mentioned studies suggests the peri-implant microbiome could be distinct from the periodontal microbiome. It may sound logical that implants and neighboring teeth share similar microbiota since they share a similar ecological niche i.e. interdental space. However, the distinct topography and immunological characteristics of the peri-implant tissues may explain why tooth- or implant-associated biofilms may harbor diverse bacterial lineages.

Further projections on metagenomics

The science of metagenomics is currently in its pioneering stages of development as a field, and current tools and technologies are undergoing rapid evolution. We appreciate the breadth of microbial diversity in oral biofilms, as demonstrated by this technology. Next generation sequencing has revealed an unexpectedly high diversity of the human oral microbiome, reaching up to 19,000 different phylotypes 55-57. This order of magnitude is much higher than the previously reported 700 to 1000 oral microbial phylotypes, as identified by cultivation or traditional cloning and sequencing 58, 59. A new era is open for uncultivable bacteria, as for example members of the TM7 phylum, which were previously unknown and their role in the disease process is yet to be understood. Such powerful culture-independent molecular analysis is expected to lengthen the list of bacterial species associated with peri-implantitis and tackle phylogenomic diversity of highly complex microbial populations. Nevertheless, taxonomic
enrichment with different microbial consortia neither necessarily relates to the disease process, nor does it explain the etiopathogenesis of peri-implantitis in a better way.

Beyond the taxonomic details, metagenomics offer functional characterization of bacterial genes at different levels of resolution, identifying a major systemic change between healthy and diseased microbiomes \(^{46}\). Disease samples harbor a more diverse microbial community, but they are more similar to each other compared to health samples. Thus, although disease-associated microbiomes are more complex in terms of community structure, this structure is quite similar across different patients. In contrast, the health-associated microbiome exhibits lower taxonomic diversity, but its exact composition varies significantly across patients. This knowledge refers to periodontitis, but it could similarly apply to peri-implantitis. An important technical issue that we still cannot accurately define, is how much plaque sample is needed to obtain a sufficient amount of DNA for sequence coverage and depth. A recommendation is that pooled plaque samples from each individual would be required, especially from patients with periodontal/peri-implant health.

Another great future challenge is the problem of analyzing large amounts of data, stemming from these high-throughput methods. A descriptive presentation of the data at gene level may be informative for other bacterial communities in the soil and other environments but not for the oral cavity. From a phylogenetic aspect, closely related species might have completely different relationships in oral health and disease (i.e. \(T.\ forsythia\) associated with disease and the uncultivable \(Tannerella\) BU063 associated with health) and presentation of such results at genus level would seem obscure. Sufficient computational power and computing infrastructure involving bioinformaticians would be needed in the near future to accommodate the large volumes of data acquired, and explore them at species or even strain level.
An additional consideration in gene finding with metagenomics is that we do not expect all genes to be found in all members of the species. This implies that genes encoding virulence factors may be associated with specific strains of the species. Therefore, for investigations of virulence, cultivable organisms are required. The results of metagenomics need the function verification based on the culture. Metagenomics may provide the target, but the culture-based methods still provide the proof.

Conclusions

The complex microbial composition of implant-associated biofilms is endogenous, part of the resident oral microbiota, including the neighboring teeth. Bacterial culture has been the most studied conventional laboratory method for microbial sample analysis and demonstrated that healthy dental implants are populated by aerobic Gram positive cocci, whereas the transition to disease is associated with Gram negative anaerobic rods. Molecular methods based on PCR and ‘checkerboard’ facilitated the analysis of large number of samples in a cost-effective way, confirming the results derived from conventional methods. Metagenomics revealed that peri-implant microbiota is far more diverse than previously thought and uncultivated species have also been associated with the disease. In addition, we are now aware of the fact that the number of oral commensal taxa hosted on healthy dental implants is expected to further increase in the future. Large efforts are still needed to understand the role of microbial communities in health and disease by use of these contemporary microbial methods.
References

1. Branemark PI. Osseointegration and its experimental background. J Prosthet Dent 1983; 50:399-410.

2. Heitz-Mayfield LJ, Lang NP. Comparative biology of chronic and aggressive periodontitis vs. peri-implantitis. Periodontol 2000 2010; 53:167-81.

3. Listgarten MA. Clinical trials of endosseous implants: issues in analysis and interpretation. Annals of periodontology / the American Academy of Periodontology 1997; 2:299-313.

4. Quirynen M, Vogels R, Pauwels M, Haffajee AD, Socransky SS, Uzel NG, et al. Initial subgingival colonization of 'pristine' pockets. J Dent Res 2005; 84:340-4.

5. Zitzmann NU, Berglundh T. Definition and prevalence of peri-implant diseases. J Clin Periodontol 2008; 35:286-91.

6. Mombelli A, Lang NP. The diagnosis and treatment of peri-implantitis. Periodontol 2000 1998; 17:63-76.

7. Kao RT, Curtis DA, Murray PA. Diagnosis and management of peri-implant disease. J Calif Dent Assoc 1997; 25:872-80.

8. Heitz-Mayfield LJ. Peri-implant diseases: diagnosis and risk indicators. J Clin Periodontol 2008; 35:292-304.

9. Lindhe J, Meyle J. Peri-implant diseases: Consensus Report of the Sixth European Workshop on Periodontology. J Clin Periodontol 2008; 35:282-5.

10. Dahlen G. Microbiological diagnostics in oral diseases. Acta Odontol Scand 2006; 64:164-8.
11. Rams TE. Susceptibility of spirochetes and motile rods colonizing human dental implants to inorganic salts: therapeutic implications. J Oral Implantol 1984; 11:341-7.

12. Rams TE, Link CC, Jr. Microbiology of failing dental implants in humans: electron microscopic observations. J Oral Implantol 1983; 11:93-100.

13. Mombelli A, van Oosten MA, Schurch E, Jr., Land NP. The microbiota associated with successful or failing osseointegrated titanium implants. Oral Microbiol Immunol 1987; 2:145-51.

14. Mombelli A, Mericske-Stern R. Microbiological features of stable osseointegrated implants used as abutments for overdentures. Clin Oral Implants Res 1990; 1:1-7.

15. Sanz M, Newman MG, Nachnani S, Holt R, Stewart R, Flemmig T. Characterization of the subgingival microbial flora around endosteal sapphire dental implants in partially edentulous patients. Int J Oral Maxillofac Implants 1990; 5:247-53.

16. Bower RC, Radny NR, Wall CD, Henry PJ. Clinical and microscopic findings in edentulous patients 3 years after incorporation of osseointegrated implant-supported bridgework. J Clin Periodontol 1989; 16:580-7.

17. Apse P, Ellen RP, Overall CM, Zarb GA. Microbiota and crevicular fluid collagenase activity in the osseointegrated dental implant sulcus: a comparison of sites in edentulous and partially edentulous patients. J Periodontal Res 1989; 24:96-105.

18. Leonhardt A, Berglundh T, Ericsson I, Dahlen G. Putative periodontal pathogens on titanium implants and teeth in experimental gingivitis and periodontitis in beagle dogs. Clin Oral Implants Res 1992; 3:112-9.

19. Leonhardt A, Renvert S, Dahlen G. Microbial findings at failing implants. Clin Oral Implants Res 1999; 10:339-45.
20. Quirynen M, Listgarten MA. Distribution of bacterial morphotypes around natural teeth and titanium implants ad modum Branemark. Clin Oral Implants Res 1990; 1:8-12.

21. Pontoriero R, Tonelli MP, Carnevale G, Mombelli A, Nyman SR, Lang NP. Experimentally induced peri-implant mucositis. A clinical study in humans. Clin Oral Implants Res 1994; 5:254-9.

22. Mombelli A, Decaillet F. The characteristics of biofilms in peri-implant disease. J Clin Periodontol 2011; 38 Suppl 11:203-13.

23. Rams TE, Roberts TW, Feik D, Molzan AK, Slots J. Clinical and microbiological findings on newly inserted hydroxyapatite-coated and pure titanium human dental implants. Clin Oral Implants Res 1991; 2:121-7.

24. Rosenberg ES, Torosian JP, Slots J. Microbial differences in 2 clinically distinct types of failures of osseointegrated implants. Clin Oral Implants Res 1991; 2:135-44.

25. Kalykakis GK, Mojon P, Nisengard R, Spiekermann H, Zafiropoulos GG. Clinical and microbial findings on osseo-integrated implants; comparisons between partially dentate and edentulous subjects. Eur J Prosthodont Restor Dent 1998; 6:155-9.

26. Augthun M, Conrads G. Microbial findings of deep peri-implant bone defects. Int J Oral Maxillofac Implants 1997; 12:106-12.

27. Alcoforado GA, Rams TE, Feik D, Slots J. Microbial aspects of failing osseointegrated dental implants in humans. J Parodontol 1991; 10:11-8.

28. Charalampakis G, Leonhardt A, Rabe P, Dahlen G. Clinical and microbiological characteristics of peri-implantitis cases: a retrospective multicentre study. Clin Oral Implants Res 2012; 23:1045-54.
29. Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 1986; 51 Pt 1:263-73.

30. Devides SL, Franco AT. Evaluation of peri-implant microbiota using the polymerase chain reaction in completely edentulous patients before and after placement of implant-supported prostheses submitted to immediate load. Int J Oral Maxillofac Implants 2006; 21:262-9.

31. Galassi F, Kaman WE, Anssari Moin D, van der Horst J, Wismeijer D, Crielaard W, et al. Comparing culture, real-time PCR and fluorescence resonance energy transfer technology for detection of Porphyromonas gingivalis in patients with or without peri-implant infections. J Periodontal Res 2012; 47:616-25.

32. Al-Radha AS, Pal A, Pettemerides AP, Jenkinson HF. Molecular analysis of microbiota associated with peri-implant diseases. J Dent 2012; 40:989-98.

33. Socransky SS, Smith C, Martin L, Paster BJ, Dewhirst FE, Levin AE. "Checkerboard" DNA-DNA hybridization. Biotechniques 1994; 17:788-92.

34. Mengel R, Flores-de-Jacoby L. Implants in patients treated for generalized aggressive and chronic periodontitis: a 3-year prospective longitudinal study. J Periodontol 2005; 76:534-43.

35. De Boever AL, De Boever JA. Early colonization of non-submerged dental implants in patients with a history of advanced aggressive periodontitis. Clin Oral Implants Res 2006; 17:8-17.

36. Tanner A, Maiden MF, Lee K, Shulman LB, Weber HP. Dental implant infections. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America 1997; 25 Suppl 2:S213-7.
37. Hultin M, Gustafsson A, Hallstrom H, Johansson LA, Ekfeldt A, Klinge B. Microbiological findings and host response in patients with peri-implantitis. Clin Oral Implants Res 2002; 13:349-58.

38. Lee KH, Tanner AC, Maiden MF, Weber HP. Pre- and post-implantation microbiota of the tongue, teeth, and newly placed implants. J Clin Periodontol 1999; 26:822-32.

39. Shibli JA, Melo L, Ferrari DS, Figueiredo LC, Faveri M, Feres M. Composition of supra- and subgingival biofilm of subjects with healthy and diseased implants. Clin Oral Implants Res 2008; 19:975-82.

40. Renvert S, Roos-Jansaker AM, Lindahl C, Renvert H, Rutger Persson G. Infection at titanium implants with or without a clinical diagnosis of inflammation. Clin Oral Implants Res 2007; 18:509-16.

41. Renvert S, Lindahl C, Renvert H, Persson GR. Clinical and microbiological analysis of subjects treated with Branemark or AstraTech implants: a 7-year follow-up study. Clin Oral Implants Res 2008; 19:342-7.

42. Salvi GE, Furst MM, Lang NP, Persson GR. One-year bacterial colonization patterns of Staphylococcus aureus and other bacteria at implants and adjacent teeth. Clin Oral Implants Res 2008; 19:242-8.

43. Persson GR, Renvert S. Cluster of Bacteria Associated with Peri-Implantitis. Clin Implant Dent Relat Res 2013.

44. Chen K, Pachter L. Bioinformatics for whole-genome shotgun sequencing of microbial communities. PLoS Comput Biol 2005; 1:106-12.

45. Olsen GJ, Lane DJ, Giovannoni SJ, Pace NR, Stahl DA. Microbial ecology and evolution: a ribosomal RNA approach. Annu Rev Microbiol 1986; 40:337-65.
46. Liu B, Faller LL, Klitgord N, Mazumdar V, Ghodsi M, Sommer DD, et al. Deep sequencing of the oral microbiome reveals signatures of periodontal disease. PloS one 2012; 7:e37919.

47. Wang J, Qi J, Zhao H, He S, Zhang Y, Wei S, et al. Metagenomic sequencing reveals microbiota and its functional potential associated with periodontal disease. Sci Rep 2013; 3:1843.

48. Griffen AL, Beall CJ, Campbell JH, Firestone ND, Kumar PS, Yang ZK, et al. Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. Isme J 2012; 6:1176-85.

49. Perez-Chaparro PJ, Goncalves C, Figueiredo LC, Faveri M, Lobao E, Tamashiro N, et al. Newly identified pathogens associated with periodontitis: a systematic review. J Dent Res 2014; 93:846-58.

50. Zhuang LF, Watt RM, Steiner S, Lang-Hua BH, Wang R, Ramseier CA, et al. Subgingival microbiota of Sri Lankan tea labourers naive to oral hygiene measures. J Clin Periodontol 2014; 41:433-41.

51. Koyanagi T, Sakamoto M, Takeuchi Y, Ohkuma M, Izumi Y. Analysis of microbiota associated with peri-implantitis using 16S rRNA gene clone library. J Oral Microbiol 2010; 2.

52. Heuer W, Kettenring A, Stumpp SN, Eberhard J, Gellermann E, Winkel A, et al. Metagenomic analysis of the peri-implant and periodontal microflora in patients with clinical signs of gingivitis or mucositis. Clinical oral investigations 2012; 16:843-50.

53. Kumar PS, Mason MR, Brooker MR, O'Brien K. Pyrosequencing reveals unique microbial signatures associated with healthy and failing dental implants. J Clin Periodontol 2012; 39:425-33.
54. Dabdoub SM, Tsigarida AA, Kumar PS. Patient-specific analysis of periodontal and peri-implant microbiomes. J Dent Res 2013; 92:168S-75S.

55. Keijser BJ, Zaura E, Huse SM, van der Vossen JM, Schuren FH, Montijn RC, et al. Pyrosequencing analysis of the oral microflora of healthy adults. J Dent Res 2008; 87:1016-20.

56. Lazarevic V, Whiteson K, Huse S, Hernandez D, Farinelli L, Osteras M, et al. Metagenomic study of the oral microbiota by Illumina high-throughput sequencing. J Microbiol Methods 2009; 79:266-71.

57. Zaura E, Keijser BJ, Huse SM, Crielaard W. Defining the healthy "core microbiome" of oral microbial communities. BMC Microbiol 2009; 9:259.

58. Paster BJ, Olsen I, Aas JA, Dewhirst FE. The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol 2000 2006; 42:80-7.

59. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, et al. The human oral microbiome. J Bacteriol 2010; 192:5002-17.