Supporting Information
“Changes in environmental impacts of major crops in the U.S.”

Yi Yang and Sangwon Suh*
Bren School of Environmental Science and Management, University of California, Santa Barbara,
CA 93106-5131

* The author to whom correspondence should be made
Email: suh@bren.ucsb.edu
Office Phone: (805) 893-7185
Fax: (805) 893-7612

Table 21
Page 21
1. Impact categories selected from TRACI 2.0 for analysis

Impact category	Media	Unit	Explanation
Acidification	air	moles of H+ eq	Increases in hydrogen ion (H+) within a local environment
Eutrophication	water	kg N eq	Nutrient buildup in aquatic ecosystems that stimulates excessive biological productivity such as algal growth
Smog formation	air	kg O₃ eq	Photochemical reactions between nitrogen oxides (NOₓ) and volatile organic compounds (VOCs), resulting in a range of respiratory issues
Freshwater ecotoxicity	multimedia	CTUe	Estimates of the potentially affected fraction of species (PAF), expressed in comparative toxic units (CTUe)
Human health respiratory	air	kg PM₁₀ eq	Criteria pollutants such as particulate matter that cause respiratory illness and death.
Human health cancer	multimedia	CTUh	Increases in morbidity in the total human population, expressed in comparative toxic units (CTUe)
Human health noncancer	multimedia	CTUh	Increases in morbidity (e.g., reproductive, developmental, and neurotoxic effects) in the total human population, expressed in comparative toxic units (CTUe)
2. Numerical information on inputs applied to major crops in the U.S.

Tables S2-S5 present inputs data that were used for LCA calculation in this study. It is worth noting that a large number of pesticides were applied to the four crops in the years investigated: 84 for corn, 113 for cotton, 81 for soybean, and 65 for wheat. But these are not the complete list of pesticides applied because USDA, the department that collects such data, often withholds information on certain pesticides to avoid disclosing data from individual farms. The pesticides unpublished are usually applied in a small number of states and in small amounts, which get lumped in the total amount of herbicides, insecticides, fungicides, or other chemicals disclosed for all the states surveyed. The amount of pesticides published and specified in general accounts for 95% of the total applied.

There are a few pesticides not consistently published for the years investigated; they are denoted “NA” in Tables S2-S5. The inconsistency reflects, in most cases, changes in the number of states applying the pesticides and, as a result, changes in the amount applied. For example, bromoxynil was published for corn production in years 2001 and 2005 but not for that in 2010. A closer examination of the state-level pesticide data shows that the pesticide was applied in 12 states in 2001 and 9 states in 2005 but only in 1 state in 2010.

It was hypothesized that given their small amounts, the unpublished pesticides (i.e., NAs) would have little effect on the overall freshwater ecotoxicity impact. To rigorously test this hypothesis, we run the following analysis. First, we replaced all the NAs for given years with maximal rates (kg ha\(^{-1}\)) identified from other years. In the case of bromoxynil applied to corn, for example, we replaced the NA for 2010 with 0.005773 from 2001. This would be considered a worst-case, unlikely scenario given the number of states dropped significantly that applied this pesticide.

Next, we recalculated the freshwater ecotoxicity impact and compared how much it had changed for each crop. The results generally confirmed our hypothesis. The new ecotoxicity impact per ha corn produced would increase by <2% for all years; the same goes for soybean. The new impact per ha wheat produced would increase by <6% for all years. And the new impact per ha cotton produced would increase by <2% for 2000 and 2003 but by around 13% for 2007. This is because the unpublished pesticides are generally in small amounts relative to other pesticides and their freshwater ecotoxicity potentials as assigned by TRACI 2.0 are also relatively small. The results also identified several pesticides worth of further analysis.

For 2007 cotton, we identified cyanazine, fenpropathrin, and profenofos as the major contributor to the large difference (i.e., 13% increase) if their NAs (kg ha\(^{-1}\)) were replaced with maximal rates. We took a further look into the state-level data and estimated their 2007 application rates (kg ha\(^{-1}\)) based on the number of states that applied these pesticides in that year relative to the number of state that applied the pesticides in 2003 given no further information available. All other pesticides with NAs were treated as 0s in our LCA analysis considering their insignificant contributions as demonstrated above.
Table S2. Inputs use in U.S. corn production (ha⁻¹)

Energy	2001	2005	2010	
diesel	kg	49	45	46
gasoline	kg	12	13	13
lpg	kg	22	16	17
electricity	kwh	103	60	64
natural gas	mj	982	902	1052

Nutrient	2001	2005	2010	
nitrogen	kg	155	159	161
phosphate	kg	54	56	56
potash	kg	66	65	58
sulfur	kg	0	2	2

Pesticide	2001	2005	2010	
2,4-d	kg	0.039607	NA	NA
2,4-d, 2-ehe	kg	0.008282	0.018215	0.021629
2,4-d, bee	kg	0.000584	0.001979	0.004182
2,4-d, dieth. salt	kg	0	0.000393	0
2,4-d, dimeth. salt	kg	NA	0.012546	0.016774
2,4-d, isoprop. salt	kg	0	0.000597	0.000351
acetochlor	kg	0.548841	0.467966	0.408313
acifluorfen, sodium	kg	0	0	0.000307
alachlor	kg	0.05404	0.024527	0.006025
ametryn	kg	0.001426	0.000283	0
atrazine	kg	1.069847	0.901167	0.747703
azoxystrobin	kg	0	NA	0.001492
bentazon	kg	0.004364	NA	0
bifenthrin	kg	0.001151	0.001131	0.000994
bromoxynil	kg	0.005773	0.003125	NA
bromoxynil heptan.	kg	0	0.000879	NA
bromoxynil octanoate	kg	NA	0.001335	NA
carbofuran	kg	0.008179	0.001774	NA
carfentrazone-ethyl	kg	0.0001137	7.85E-05	5.85E-05
chlorpyrifos	kg	0.062941	0.032143	0.00699
clopyralid	kg	0.012406	0.00705	0.004797
cyanazine	kg	0.009433	0.006108	0
cyfluthrin	kg	0.000275	0.000597	0.000219
dicamba	kg	0.029572	0.002418	0.000336
dicamba, digly salt	kg	0	0.00592	0.00196
dicamba, dimet. salt	kg	0.00555	0.004742	0.007019
dicamba, pot. salt	kg	0.020121	0.008746	0.001696
dicamba, sodium salt	kg	0.000344	0.00548	0.003838
diflufenzopyr-sodium	kg	0.002337	0.001931	0.001155
dimethenamid	kg	0.131278	0.010756	0.007604
dimethenamid-p	kg	NA	0.037246	0.038066
dimethoate	kg	0.002818	0.001068	0.00076
epc	kg	0.054247	NA	NA
esfenvalerate	kg	1.72E-05	0.000126	NA
fipronil	kg	0.00445	0.001382	NA
flufenacet	kg	0.015344	0.011384	0.004095
Name	Unit	Value 1	Value 2	Value 3
------------------------------	------	-----------	-----------	-----------
flumetsulam	kg	0.005189	0.003141	0.001828
foramsulfuron	kg	0	0.000502	0.000132
glufosinate-ammonium	kg	0.007268	0.021795	0.007531
glyphosate	kg	0.118013	0.015027	0.076848
glyphosate amm. salt	kg	0	3.14E-05	0.000673
glyphosate iso. salt	kg	0	0.36064	0.841398
glyphosate pot. salt	kg	0	0	0.022258
halosulfuron	kg	0.000292	0.000345	4.39E-05
imazapyr	kg	6.87E-05	0.00022	NA
imazethapyr	kg	0.000326	0.000675	NA
isoxaflutole	kg	0.007543	0.003659	0.005835
lambda-cyhalothrin	kg	0.000395	0.000393	0.000351
linuron	kg	NA	0.01727	0.003013
mcpa	kg	0.000739	0	0
mcpa, sodium salt	kg	0	0.004051	0.00253
mesotrine	kg	0.00012	0.029097	0.024758
methyl parathion	kg	0.006633	0.001288	0
metolachlor	kg	0.127996	0.030353	0.007985
metribuzin	kg	0.00201	0.000471	NA
nicosulfuron	kg	0.002784	0.00256	0.000424
paraquat	kg	0.008781	0.006187	0.006844
pendimethalin	kg	0.045122	0.020555	0.020254
permethrin	kg	0.004055	0.001821	0.001053
petroleum distillate	kg	0.000962	NA	0
phorate	kg	0.001254	0	0
primisulfuron	kg	0.001718	0.000597	7.31E-05
propargite	kg	0.002681	0.004538	0.001594
propiconazole	kg	NA	NA	0.002545
prosulfuron	kg	0.000309	0.00126	1.46E-05
pyraclostrobin	kg	0	0	0.005586
pyridate	kg	0.001735	NA	0
rimsulfuron	kg	0.0011	0.001696	0.000702
saflufenacil	kg	0	0	0.000585
simazine	kg	0.028489	0.038063	0.032114
s-metolachlor	kg	0.305771	0.371396	0.319253
spiroxamine	kg	0	0	0.000863
sulfosate	kg	0.013265	0.008432	0
tebupirimphos	kg	0.006375	0.008998	0.002852
tefluthrin	kg	0.008007	0.010003	0.003539
tembotrione	kg	0	0	0.001506
terbufos	kg	0.042803	0.005198	0.002003
thiencarbazone-methy	kg	0	0	0.0006
thifensulfuron	kg	3.44E-05	0.00033	0.000161
topramezone	kg	0	0	0.000132
trifloxystrobin	kg	0	0	0.001024
trifluralin	kg	NA	0.005951	0.003758
vernolate	kg	0.005241	0.005245	0
zeta-cypermethrin	kg	0	0.000173	2.92E-05
unspecified	kg	0.137344	0.130566	0.139643
Table S3. Inputs use in U.S. cotton production (ha⁻¹)

	2000	2003	2007	
Energy				
diesel	kg	172	146	121
gasoline	kg	32	27	22
lpg	kg	0	0	0
electricity	kwh	139	118	97
natural gas	mj	496	422	347
Nutrient				
nitrogen	kg	97	95	97
phosphate	kg	39	39	34
photash	kg	53	53	42
sulfur	kg	0	0	6
Pesticide				
2,4-D	kg	0.0158	0.037292	NA
2,4-D, 2-ehe	kg	0	0	0.014339
2,4-D, dimeth. salt	kg	0	NA	0.039292
abamectin	kg	0.000277	0.000296	0.000226
acephate	kg	0.119005	0.250294	0.267368
acetamiprid	kg	0	0.002269	0.002936
aldicarb	kg	0.229417	0.197907	0.14012
amitraz	kg	0.002125	0	0
arsenic acid	kg	0	0.003453	0
azinphos-methyl	kg	0.013213	NA	0
azoxystrobin	kg	0	0.002072	0.000452
barban	kg	0	0	0.000565
bifenthrin	kg	0.001756	0.000592	0.004065
bromoxynil	kg	0.046013	0.001381	0
buprofezin	kg	0.000832	0.001184	NA
cacodylic acid	kg	0.009979	NA	0.002936
carbofuran	kg	0.015892	0.002072	NA
carboxin	kg	0	9.87E-05	NA
carfentrazone-ethyl	kg	0	0.002664	0.002145
chlorpyrifos	kg	0.060888	0.024171	0.002032
clethodim	kg	0.005913	0.001381	0.000452
clomazone	kg	0.008778	0.001579	0.000226
cyanazine	kg	0.100803	0.00513	**0.002565**
cyclanilide	kg	0.017647	0.017068	0.01863
cyfluthrin	kg	0.011272	0.006413	0.004065
cypermethrin	kg	0.007299	0.008189	0.005871
deltamethrin	kg	0.003234	0.000493	NA
dicamba	kg	NA	0.001776	0.001581
dicamba, digly. salt	kg	0	0	0.010388
Chemical Name	Unit	Value 1	Value 2	Value 3
-------------------------------	------	---------	---------	---------
dicamba, dimet. salt	kg	0	0	0.005758
dicamba, sodium salt	kg	0	0	0.00079
dichloropropene	kg	0.118266	NA	NA
dicrotofos	kg	0.01774	0.009274	0.004968
dicofol	kg	0.033632	0.080603	0.140233
diflubenzuron	kg	0.000277	NA	NA
dimethipin	kg	0.008223	0.002466	NA
dimethoate	kg	0.006745	0.003354	0.004178
disulfoton	kg	0.013028	0.004341	0
diuron	kg	0.105146	0.171466	0.149604
dsma	kg	0.03086	0.001776	0
emamectin benzoate	kg	0.000185	NA	NA
endosulfan	kg	0.019865	0.009964	NA
endothall	kg	0.00647	0.00197	0.000565
esfenvalerate	kg	0.000462	0.000592	0.001242
ethephon	kg	0.495146	0.696521	0.998452
etoxazole	kg	0	0	0.000452
etridiazole	kg	0.005451	0.004045	0.000903
fenoxaprop	kg	0.000185	0	0
fenpropathrin	kg	0.001294	0.001085	0.001085
flonicamid	kg	0	0	0.00079
fluazifop-p-butyl	kg	0.002587	NA	NA
flumiclorac-pentyl	kg	0	NA	0.000226
flumioxazin	kg	0	NA	0.004629
fluometuron	kg	0.182573	0.074486	0.031276
fomesafen	kg	NA	0	0.00542
glufosinate-ammonium	kg	0	0	0.008694
glyphosate	kg	0.880433	1.246535	0.085924
glyphosate amm. salt	kg	0	0	0.009597
glyphosate dia. salt	kg	0	0.023184	0
glyphosate iso. salt	kg	0	0	1.859043
imidacloprid	kg	0.001571	0.001973	0.004629
indoxacarb	kg	0.004158	0.003256	0.001468
iprodione	kg	0.001016	0.001776	NA
lactofen	kg	0.000832	0.000592	NA
lambda-cyhalothrin	kg	0.00425	0.003552	0.002371
linuron	kg	0.001571	0.007005	0.0035
malathion	kg	2.94953	0.611774	0.213398
mefenoxam	kg	0.001016	0.001973	0.000113
mepiquat chloride	kg	0.013582	0.039562	0.023485
mepiquat pentaborate	kg	0	0	0.004855
metalaxyl	kg	0.000554	0.000592	NA
methamidophos	kg	0.007761	0.000395	0.000452
Chemical	Unit	ppp	ccc	ccc
---------------------	------	-----	-----	----------------------------
methomyl	kg	0.00425	0.002368	NA
methoxyfenozide	kg	0	0.000493	0
methyl parathion	kg	0.075302	0.014503	0.0035
metolachlor	kg	0.023376	0.026539	0.024953
monocarbaamide dihyd.	kg	0.219069	0.238553	0.214753
msma	kg	0.221933	0.114146	0.042905
naled	kg	0.00462	0.007498	NA
norflurazon	kg	0.031692	0.002861	0.002371
novaluron	kg	0	0	0.002936
oxamyl	kg	0.066709	0.013121	0.01513
oxyfluorfen	kg	0.005359	0.001085	0.001807
paraquat	kg	0.055529	0.063141	0.086601
pcnb	kg	0.048785	0.023678	0.004968
pendimethalin	kg	0.229879	0.178866	0.163831
permethrin	kg	9.24E-05	0.000296	0.000113
petroleum distillate	kg	NA	0.02466	0.37599
phorate	kg	0.040561	0.030485	0.005081
profenofos	kg	0.011457	0.014305	**0.004087**
prometryn	kg	0.125935	0.115922	0.072262
propargite	kg	0.005451	0.012727	NA
pyraflufen-ethyl	kg	0	0	0.000339
pyridate	kg	0.00231	NA	0
pyriproxyfen	kg	0.000277	0.000493	0.000226
pyrithiobac-sodium	kg	0.009701	0.012234	0.006436
quizalofop-ethyl	kg	9.24E-05	0	0
sethoxydim	kg	0.001478	NA	0.000452
s-metolachlor	kg	0.006745	0.031768	0.069778
sodium chlorate	kg	0.142473	0.121644	0.157621
spinosad	kg	0.008316	0.002072	0.000113
spirodicifen	kg	0	0	0.000452
sulfosate	kg	NA	0.045876	0.016598
tebufenozide	kg	0.002864	0.000691	0
thiamethoxam	kg	0	0.004341	0.005081
thidiazuron	kg	0.039083	0.033839	0.03105
thifensulfuron	kg	NA	0.000592	0
thiodicarb	kg	0.001016	NA	0
tralomethrin	kg	0.000554	0.000592	0
tribufos	kg	0.336965	0.2351	0.251448
trifloxysulfuron-sod	kg	0	0	0.000226
trifluralin	kg	0.406446	0.41002	0.311967
zeta-cypermethrin	kg	0.001848	0.003749	0.001016
unspecified	kg	0.069758	0.079024	0.283966
Table S4. Inputs use in U.S. soybean production (ha⁻¹)

Energy	2002	2006	2012	
diesel	kg	32	27	22
gasoline	kg	9	8	6
lp gas	kg	2	2	1
electricity	kwh	19	16	13
natural gas	mj	135	114	94

Nutrient	2002	2006	2012	
nitrogen	kg	5	3	5
phosphate	kg	14	12	20
potash	kg	29	23	34
sulfur	kg	0	0	1
biofixed N		187	185	183

Pesticide	2002	2006	2012		
2,4-d	kg	0.021374	NA	0.000383	
2,4-d, 2-ehe	kg	0.005216	0.038899	0.062745	
2,4-d, bee	kg	0	0.001056	0.001041	
2,4-d, dimeth. salt	kg	0	0.014799	0.028019	
2,4-db, dimeth. salt	kg	4.77E-05	NA	NA	
acephate	kg	NA	0.008479	0.015143	
acetochlor	kg	0	NA	0.009723	
acifluorfen, sodium	kg	0.005168	0.00073	0.003215	
alachlor	kg	0.012754	0.007531	NA	
azoxystrobin	kg	0.000398	0.001568	0.005696	
bentazon	kg	0.018098	0.001087	NA	
beta-cyfluthrin	kg	0	0	6.12E-05	
bifenthrin	kg	0	0	0.002343	
carbaryl	kg	0.001161	0.001413	NA	
carfentrazozone-ethyl	kg	1.59E-05	0.000155	1.53E-05	
chlorimuron-ethyl	kg	0.001209	0.000807	0.002863	
chlorpyrifos	kg	0.002974	0.025824	0.032	
clethodim	kg	0.002306	0.00295	0.008023	
clomazone	kg	0.001686	0	NA	
cloransulam-methyl	kg	0.001129	0.000264	0.001271	
cyfluthrin	kg	0	0.000155	0.000674	
cypermethrin	kg	NA	NA	0.00153	
dicamba, digly. salt	kg	0	0.000248	0.000276	
dicamba, dimet. salt	kg	0	NA	0.001056	
diflubenzuron	kg	7.95E-05	0.000155	9.19E-05	
dimethenamid-p	kg	0	NA	0.003598	
dimethoate	kg	0.000747	0	0.004226	
esfenvalerate	kg	0.000175	0.001087	0.000153	
Chemical Name	Unit	Amount 1	Amount 2	Amount 3	Amount 4
-----------------------	--------	----------	----------	----------	----------
ethalfuralin	kg	0.001097	NA	0	
fenoxaprop	kg	0.003419	0.00014	0	
fenoxaprop-p-ethyl	kg	0	0	0.000107	
fluazifop-p-butyl	kg	0.001702	0.000668	0.002986	
flubendiamide	kg	0	0	0.000322	
flufenacet	kg	0.00035	0.001242	NA	
flumetsulam	kg	0.000191	0.000124	0.000214	
flumiclorac-pentyl	kg	0.000254	0.000264	0.000536	
flumioxazin	kg	0	0	0.000153	
fluthiacet-methyl	kg	0.008683	0.005124	0.020624	
gamma-cyhalothrin	kg	0	4.66E-05	9.19E-05	
glufosinate-ammonium	kg	0	NA	0.019185	
glyphosate	kg	0.953578	0.044116	0.100119	
glyphosate amm. salt	kg	0	0.002205	NA	
glyphosate dia. salt	kg	0.06129	0	0	
glyphosate dim. salt	kg	0	0	0.037068	
glyphosate iso. salt	kg	0	1.380528	0.452442	
glyphosate pot. salt	kg	0	0	1.084421	
imazamox	kg	0.000747	0.00014	9.19E-05	
imazaquin	kg	0.001304	0.001025	0.000352	
imazaquin, mon. salt	kg	0	0	0.000168	
imazaquin, sod. salt	kg	3.18E-05	0	0	
imazethapyr	kg	0.005423	0.001553	0.003139	
imazethapyr, ammon.	kg	0	7.76E-05	0.000245	
imidacloprid	kg	0	0	0.000199	
lactofen	kg	0.000954	0.000357	0.002944	
lambda-cyhalothrin	kg	0.000493	0.001506	0.002159	
methoxyfenozide	kg	0.000207	0.00014	0.001999	
methyl parathion	kg	0.006075	0.001025	NA	
metolachlor	kg	0.009112	0	0.004471	
metribuzin	kg	0.006997	0.006786	0.010335	
paraquat	kg	0.009733	0.005202	0.012448	
pendimethalin	kg	0.097517	0.029411	0.02387	
permethrin	kg	0.000859	0.000186	NA	
propiconazole	kg	0	0.000435	0.001914	
pyraclostrobin	kg	0	0.002919	0.006078	
quizalofop-p-ethyl	kg	0.000398	0.000217	0.001807	
rimsulfuron	kg	0	NA	6.12E-05	
saflufenacil	kg	0	0	0.001225	
sethoxydim	kg	0.007315	0.000155	0.000965	
s-metolachlor	kg	0.021549	0.012997	0.082542	
sulfentrazone	kg	0.008445	0.001087	0.016505	
Chemical	Unit	2000	2004	2009	
----------------	------	----------	----------	--------	
sulfosate	kg	0.025047	0.015063	0	
tebuconazole	kg	0	0.000559	NA	
tetraconazole	kg	0	NA	0.00026	
thiamethoxam	kg	0	0	0.000291	
thifensulfuron	kg	6.36E-05	4.66E-05	0.000475	
thiodicarb	kg	0.001081	0.000606	NA	
tribenuron-methyl	kg	3.18E-05	7.76E-05	0.000153	
trifloxystrobin	kg	0	0.000109	0.001118	
trifluralin	kg	0.069735	0.022578	0.019996	
zeta-cypermethrin	kg	0.00027	0.000217	6.12E-05	
unspecified	kg	0.019529	0.007531	0.011652	

Table S5. Inputs use in U.S. wheat production (ha⁻¹)

Energy	2000	2004	2009
diesel	34	29	25
gasoline	7	6	5
lp gas	1	1	1
electricity	37	32	27
natural gas	0	0	0

Nutrient	2000	2004	2009
nitrogen	81	103	75
phosphate	27	37	25
potash	10	11	7
sulfur	0	0	2

Pesticide	2000	2004	2009
2,4-d	0.124277	0.097425	NA
2,4-d, 2-ehe	0	0.012619	0.121297
2,4-d, bee	0	0.012169	NA
2,4-d, dieth. salt	0	0	0.000402
2,4-d, dimeth. salt	NA	0.005233	0.069916
2,4-d, isoprop. salt	0	0	0.000981
2,4-dp, dimeth. salt	NA	0.026791	0
atrazine	NA	0.005584	NA
azoxystrobin	0	0.000325	0.000704
beta-cyfluthrin	0	0	7.54E-05
bromoxynil	0.024448	0.017402	0.000151
bromoxynil heptan.	0	0	0.021704
bromoxynil octanoate	0	0.024738	0.047633
carfentrazone-ethyl	0	2.5E-05	5.03E-05
chlorpyrifos	0.012248	0.011192	0.014511
chlorsulfuron	0.000946	0.000801	0.000679
Chemical	Unit 1	Unit 2	Unit 3
--------------------------	----------	----------	----------
clodinafop-propargil	NA	0.003856	0.00161
clopyralid	0.004341	0.001953	0.007972
cyfluthrin	0	0	5.03E-05
dicamba	0.014383	0.012669	0.000553
dicamba, dimet. salt	NA	NA	0.011971
dicamba, sodium salt	0	0.0002	0.002465
diclofop-methyl	0.004123	0.002228	NA
dimethoate	0.000582	0.000701	0.002163
diuron	0.000437	0.000501	0
ethyl parathion	0	0.00333	0
fenoxaprop	0.007713	0.010191	0
fenoxaprop-p-ethyl	0.000146	0	0.007972
flucarbazone-sodium	0	0.000501	0.000629
flufenacet	0	0.000225	NA
fluroxypyr	0.001965	0.003731	0.001811
fluroxypyr 1-mhe	0	0.002404	0.011619
glyphosate	0.086635	0.154412	0.017932
glyphosate iso. salt	0	0	0.420578
glyphosate pot. salt	0	0	0.006514
imazamethabenz	0.002159	0.0001	NA
imazamox	0	0.000225	0.000428
lambda-cyhalothrin	4.85E-05	0.00015	0.000201
mcpa	0.066334	0.07474	0.000679
mcpa, 2-ethylhexyl	0	0.002629	0.044993
mcpa, dimethyl. salt	0	0.004181	0.007067
mcpa, isooctyl ester	0	0	0.006539
mesosulfuron-methyl	2.43E-05	7.51E-05	0.000176
methyl parathion	NA	NA	0.002238
methanone	0	0	0.002364
metribuzin	0.001868	0.00338	0.000629
metsulfuron-methyl	0.000315	0.000325	0.000428
picloram, k salt	0.000146	7.51E-05	NA
pinoxaden	0	0	0.003295
propiconazole	0.000606	0.000876	0.007721
propoxycarbazone-sod	0	0	0.000679
prosulfuron	7.28E-05	5.01E-05	0.000101
prothioconazole	0	0.002178	0.002842
pyraclostrobin	0	0.001753	0.003622
pyroxsulam	0	0	0.000327
sulfosulfuron	0.000121	0.000826	0.000226
tebuconazole	0.001746	0.004432	0.005508
thifensulfuron	0.001019	0.001402	0.001937
tralkoxydim	0.005627	0.000476	NA
Compound	2002	2007	2012
------------------------	--------	--------	--------
triallate	0.049332	0.006159	NA
triasulfuron	0.000873	0.000676	0.000503
tribenuron-methyl	0.011188	0.000776	0.000931
trifloxystrobin	0	0.000225	0.00083
trifluralin	0.019549	0.005834	0.000377
zeta-cypermethrin	0	0.00025	NA
unspecified	0.012806	0.016626	0.016121

Table S6. Average irrigation water use per ha crop produced in the U.S.

Year	Corn	Cotton	Soybean	Wheat
2002	514	1400	180	326
2007	422	1180	234	344
2012	510	1256	267	280

Noted: Results are calculated based on \((\text{irrigation intensity for irrigated area} \times \text{area irrigated}) / \text{total area harvested}\).
3. Data on emission factors

Table S7. Nitrogen (N) and Phosphorus (P) runoff and leaching rates (% of the amount applied)

	Corn		Soybean		Wheat	
	N	P		N	P	
CO	13	9	AR	17	33	
GA	47	13	IL	9	43	
IL	21	15	IN	9	43	
IN	21	15	IA	9	43	
IA	21	15	KS	11	35	
KS	18	12	KY	23	20	
KY	38	17	LA	17	33	
MI	21	15	MI	9	43	
MN	21	15	MN	9	43	
MO	25	18	MS	17	33	
NE	13	9	MO	17	33	
NY	33	22	NE	8	29	
NC	47	13	NC	30	8	
ND	13	9	ND	8	29	
OH	27	18	OH	13	28	
PA	33	22	SD	8	29	
SD	13	9	TN	17	33	
TX	19	13	VA	30	8	
WI	21	15	WI	9	43	

Note: Nutrient loss rates for each state are derived from regional (multistate) nutrient loss rates according to the location of the state relative to that of the region, mostly multi-states, modeled in the reference. If a state occupies parts of several regions, the average of the regional rates is used.
Table S8. Speciated VOC emissions from natural gas- and diesel-engine farm machinery

Substances	Natural Gas (kg/Mj)	Diesel kg/kg		
	2-stroke lean-burn	4-stroke lean-burn	4-stroke rich-burn	
1,1,2,2-Tetrachloroethane	2.9E-08	1.7E-08	1.1E-08	0.0E+00
1,1,2-Trichloroethane	2.3E-08	1.4E-08	6.6E-09	0.0E+00
1,1-Dichloroethane	1.7E-08	1.0E-08	4.9E-09	0.0E+00
1,2,3-Trimethylbenzene	1.5E-08	9.9E-09	0.0E+00	0.0E+00
1,2,4-Trimethylbenzene	4.8E-08	6.2E-09	0.0E+00	0.0E+00
1,2-Dichloroethane	1.8E-08	1.0E-08	4.9E-09	0.0E+00
1,2-Dichloropropane	1.9E-08	1.2E-08	5.6E-09	0.0E+00
1,3,5-Trimethylbenzene	7.7E-09	1.5E-08	0.0E+00	0.0E+00
1,3-Butadiene	3.5E-07	1.2E-07	2.9E-07	7.2E-07
1,3-Dichloropropene	1.9E-08	1.1E-08	5.5E-09	0.0E+00
2,2,4-Trimethylpentane	3.6E-07	1.1E-07	0.0E+00	0.0E+00
2-Methylnaphthalene	9.2E-09	1.4E-08	0.0E+00	0.0E+00
Acenaphthene	5.7E-10	5.4E-10	0.0E+00	2.6E-08
Acenaphthylene	1.4E-09	2.4E-09	0.0E+00	9.3E-08
Acetaldehyde	3.3E-06	3.6E-06	1.2E-06	1.4E-05
Acrolein	3.3E-06	2.2E-06	1.1E-06	1.7E-06
Anthracene	3.1E-10	0.0E+00	0.0E+00	3.4E-08
Benz(a)anthracene	1.4E-10	0.0E+00	0.0E+00	3.1E-08
Benzene	8.3E-07	1.9E-07	6.8E-07	1.7E-05
Benzo(a)pyrene	2.4E-12	0.0E+00	0.0E+00	0.0E+00
Benzo(b)fluoranthene	3.7E-12	7.1E-11	0.0E+00	1.8E-09
Benzo(e)pyrene	1.0E-11	1.8E-10	0.0E+00	3.5E-09
Benzo(g,h,i)pyrrole	1.1E-11	1.8E-10	0.0E+00	9.0E-09
Benzo(k)fluoranthene	1.8E-12	0.0E+00	0.0E+00	2.9E-09
Biphenyl	1.7E-09	9.1E-08	0.0E+00	0.0E+00
Butane	2.0E-06	2.3E-07	0.0E+00	0.0E+00
Butyraldehyde	1.9E-07	4.3E-08	2.1E-08	0.0E+00
Carbon Tetrachloride	2.6E-08	1.6E-08	7.6E-09	0.0E+00
Chlorobenzene	1.9E-08	1.3E-08	5.6E-09	0.0E+00
Chloroethane	0.0E+00	8.0E-10	0.0E+00	0.0E+00
Chloroform	2.0E-08	1.2E-08	5.9E-09	0.0E+00
Chrysene	2.9E-10	3.0E-10	0.0E+00	6.5E-09
Cyclohexane	1.3E-07	9.8E-08	0.0E+00	0.0E+00
Cyclopentane	4.1E-08	0.0E+00	0.0E+00	0.0E+00
Dibenz(a,h)anthracene	0.0E+00	0.0E+00	0.0E+00	1.1E-08
Ethane	3.1E-05	4.5E-05	3.0E-05	0.0E+00
Ethylbenzene	4.6E-08	1.7E-08	1.1E-08	0.0E+00
Ethylene Dibromide	3.2E-08	1.9E-08	9.2E-09	0.0E+00
Compound	Diesel	Gasoline	LPG	NG
---------------------------	---------------	---------------	---------------	----------------
	Farming Tractor	Farming Tractor	Commercial Boiler	Stationary Reciprocating Engine
Fluoranthene	1.6E-10	4.8E-10	0.0E+00	1.4E-07
Fluorene	7.3E-10	2.4E-09	0.0E+00	5.4E-07
Formaldehyde	2.4E-05	2.3E-05	8.8E-06	2.2E-05
Indeno(1,2,3-c,d)pyrene	4.3E-12	0.0E+00	0.0E+00	6.9E-09
Isobutane	1.6E-06	0.0E+00	0.0E+00	0.0E+00
Methanol	1.1E-06	1.1E-06	1.3E-06	0.0E+00
Methylcyclohexane	1.5E-07	5.3E-07	0.0E+00	0.0E+00
Methylene Chloride	6.3E-08	8.6E-09	1.8E-08	0.0E+00
n-Hexane	1.9E-07	4.8E-07	0.0E+00	0.0E+00
n-Nonane	1.3E-08	4.7E-08	0.0E+00	0.0E+00
n-Octane	3.2E-08	1.5E-07	0.0E+00	0.0E+00
n-Pentane	6.6E-07	1.1E-06	0.0E+00	0.0E+00
Naphthalene	4.1E-08	3.2E-08	4.2E-08	1.6E-06
Perylene	2.1E-12	0.0E+00	0.0E+00	0.0E+00
Phenanthrene	1.5E-09	4.5E-09	0.0E+00	5.4E-07
Phenol	1.8E-08	1.0E-08	0.0E+00	0.0E+00
Propane	1.2E-05	1.8E-05	0.0E+00	0.0E+00
Propylene	0.0E+00	0.0E+00	0.0E+00	4.8E-05
Pyrene	2.5E-10	5.9E-10	0.0E+00	8.8E-08
Styrene	2.4E-08	1.0E-08	5.1E-09	0.0E+00
Tetrachloroethane	0.0E+00	1.1E-09	0.0E+00	0.0E+00
Toluene	4.1E-07	1.8E-07	2.4E-07	7.5E-06
Vinyl Chloride	1.1E-08	6.4E-09	3.1E-09	0.0E+00
Xylene	1.2E-07	7.9E-08	8.4E-08	5.2E-06

Note: For natural gas, average emission factors for different modes are used for analysis in this study.

Table S9. Emission factors for fuel combustion (mg MJ⁻¹)

Compound	Diesel Farming Tractor	Diesel Farming Tractor	Diesel Commercial Boiler	Diesel Stationary Reciprocating Engine
CO	344.2	516.4	10.2	324
NOx	649.3	454	80.6	1137
PM10	58.8	23.7	2.3	5.2
PM2.5	52.8	21.7	2.3	5.2
SOx	7.6	1.1	0	0.3
Table S10. Estimation of pesticide releases into different compartments

Compartment	Fraction	Note
Air	95%	p(vapor pressure) >10 (mPa)
	50%	1<p<10
	15%	0.1<p<1
	5%	0.01<p<0.1
	1%	p<0.01
Water	0.5%	Generic runoff and leaching rate
Soil	1-air-water	Capped at 85%

Table S11. Average heavy metal concentrations in U.S. phosphate rock and fertilizer

	As	Cd	Cr^b	Pb	Hg	Ni	V
Phosphate rock	12	11	109	12	0.05	37	82
P2O5 fertilizers	34	32	310	35	0.1	105	235

Note: Cr is assumed to exist in the form of Cr (III) in agricultural soil, because Cr (VI), being a strong oxidizing agent, is likely to be reduced to Cr (III) through reaction with soil organic matter or other reducing agents. For 1 kg As emitted, 0.5 kg is assumed to exist in As (III) and the other half in As (V) due to a lack of more precise insights into the issue.

Table S12. Emission factors for NH₃ and NO_X from nitrogen

	NH₃	NO_X
Emission factor	3.5%	2.5%
4. Estimation of biological nitrogen fixation for soybean

Nitrogen input through biological nitrogen fixation (BNF), due to nitrogen-fixing bacteria hosted symbiotically by the legume crops, can also be a source of nitrogen pollution\(^1\). Here, we estimated the total amount of BNF for soybean production in the major states covered, based on a USDA study that quantified nutrient inputs from multiple sources to major U.S. crops in a single year.\(^1\) Their estimates of BNF ranged from 91 to 243 kg ha\(^{-1}\) for 7 geographic regions into which the study classified the continental United States. We first derived state-level estimates from the regional estimates based on the location of the state relative to the regions classified in the USDA study. We assumed that the rates remained unchanged over the period investigated given that there is no strong evidence that the environmental factors\(^2\) affecting BNF changed significantly in the past decade or. Based on the state rates, we further calculated the average rate for per ha soybean in the U.S., which is about 185 kg ha\(^{-1}\). The total amount of BNF calculated for the 19 to 20 states major soybean-producing states covered in this study is around 5.4 Tg yr\(^{-1}\), which is close to a recent estimate of 5.7 Tg calculated for the entire country.\(^3\)

5. Results

Table S13. Life-cycle, cradle-to-gate impact per ha crop produced (TRACI 2.0)

	Corn			Cotton			
	2001	2005	2010	2000	2003	2007	
ACD	moles of H+ eq	1584	1602	1630	1262	1185	1155
EUT	kg N eq	64.4	66.7	66.3	72.8	71.9	68.4
SF	kg O3 eq	416	417	427	383	352	332
HHR	kg PM10 eq	2.7	2.7	2.7	3.3	2.9	2.6
FET	CTUe	32844	24219	17331	72935	48146	28830
HHC	CTUh	5.3E-05	5.3E-05	5.3E-05	4.1E-05	3.8E-05	3.6E-05
HHNC	CTUh	4.4E-04	4.4E-04	4.4E-04	3.8E-04	4.1E-04	3.8E-04

	Soybean			Wheat			
	2002	2006	2012	2000	2004	2009	
ACD	moles of H+ eq	1307	1270	1280	802	995	728
EUT	kg N eq	41.6	38.1	48.6	20.7	27.5	18.7
SF	kg O3 eq	298	287	285	205	248	182
HHR	kg PM10 eq	0.9	0.8	0.9	1.4	1.6	1.2
FET	CTUe	2154	5281	8790	2153	2958	3050
HHC	CTUh	6.7E-06	5.4E-06	7.8E-06	2.5E-05	3.1E-05	2.3E-05
HHNC	CTUh	1.0E-04	8.8E-05	1.5E-04	2.1E-04	2.8E-04	2.0E-04
6. Comparison between TRACI 2.0, IMPACT 2002+, and CML 2001

To test the robustness of our result on freshwater ecotoxicity impact, we applied two additional characterization models, IMPACT 2002+ and CML 2001, to evaluating the inventory data compiled. Because pesticide releases were identified as the major contributor to freshwater ecotoxicity (see figure 3 in the manuscript), the other two models were used to characterize pesticide releases only. The impact categories in IMPACT 2002+ and CML 2001 that correspond to freshwater ecotoxicity in TRACI 2.0 are aquatic ecotoxicity. Estimation of pesticide releases to different compartments was kept the same for all three methods (see section 2.4. in the manuscript).

Results are presented below. Two factors lead to the differences in the magnitude of change calculated by the three characterization models (see also figure 5 in the manuscript). First, different models cover different numbers of pesticides. TRACI 2.0, whose freshwater ecotoxicity impact category is adopted from USEtox,4 covers the largest number of pesticides, with 63/84 for corn, 89/113 for cotton, 55/81 for soybean, and 48/65 for wheat. Compare this with CML 2001 (19/84 for corn, 23/113 for cotton, 16/81 for soybean, and 13/65 for wheat) and IMPACT 2002+ (63/84 for corn, 89/113 for cotton, 55/81 for soybean, and 48/65 for wheat). Second, different characterization models give different ecotoxicity potentials to different pesticides. In TRACI 2.0, for example, cyfluthrin shows the largest freshwater ecotoxicity potential, which is 300 times that of atrazine. In IMPACT 2002+, however, lambda-cyhalothrin shows the largest aquatic ecotoxicity potential, and that of cyfluthrin is only 17 times that of atrazine.

Tables S14-S17 present impact results based on CML 2001 and contributions of key pesticides identified.

Table S14. Aquatic ecotoxicity impact per ha corn produced and contributions of key pesticides (unit: kg 1,4-dichlorobenzene eq.)

	2001	2005	2010
atrazine	22%	22%	25%
chlorpyrifos	14%	9%	3%
metolachlor	15%	4%	1%
permethrin	7%	4%	3%
simazine	4%	6%	7%
s-metolachlor	36%	51%	60%
other pesticides	2%	4%	1%
total	**1599**	**1348**	**993**

Table S15. Aquatic ecotoxicity impact per ha cotton produced and contributions of key pesticides (unit: kg 1,4-dichlorobenzene eq.)

	2000	2003	2007
aldicarb	66%	78%	83%
cypermethrin	6%	9%	10%
malathion	23%	7%	3%
other pesticides	5%	6%	4%
total	**25935**	**19058**	**12729**
Table S16. Aquatic ecotoxicity impact per ha cotton produced and contributions of key pesticides (unit: kg 1,4-dichlorobenzene eq.)

	2002	2006	2012
chlorpyrifos	11%	71%	50%
metolachlor	10%	0%	2%
permethrin	7%	1%	0%
s-metolachlor	23%	10%	38%
trifluralin	25%	6%	3%
zeta-cypermethrin	16%	10%	2%
other pesticides	9%	1%	6%
total	**347**	**456**	**804**

Table S17. Aquatic ecotoxicity impact per ha cotton produced and contributions of key pesticides (unit: kg 1,4-dichlorobenzene eq.)

	2002	2006	2012
chlorpyrifos	66%	33%	68%
ethyl parathion	0%	18%	0%
methanone	0%	0%	8%
triallate	22%	1%	1%
trifluralin	5%	1%	0%
zeta-cypermethrin	0%	42%	23%
other pesticides	7%	5%	0%
total	**67**	**125**	**78**

Tables S18-21 present impact results based on IMPACT 2002 + and contributions of key pesticides identified.

Table S18. Aquatic ecotoxicity impact per ha corn produced and contributions of key pesticides (unit: kg triethylene glycol. eq.)

	2001	2005	2010
atrazine	98%	98%	99%
other pesticides	2%	2%	1%
total	**962290**	**808538**	**667197**
Table S19. Aquatic ecotoxicity impact per ha cotton produced and contributions of key pesticides (unit: kg triethylene glycol. eq.)

	2000	2003	2007
aldicarb	18%	21%	21%
chlorpyrifos	5%	2%	0%
cyanazine	4%	0%	0%
cyfluthrin	4%	3%	3%
diuron	5%	10%	13%
lambda-cyhalothrin	4%	4%	4%
malathion	3%	1%	0%
methomyl	4%	3%	0%
prometryn	17%	21%	19%
tribufos	17%	16%	24%
trifluralin	4%	5%	5%
other pesticides	16%	13%	10%
total	69240	51911	36533

Table S20. Aquatic ecotoxicity impact per ha soybean produced and contributions of key pesticides (unit: kg triethylene glycol. eq.)

	2002	2006	2012
chlorpyrifos	5%	42%	30%
glyphosate	32%	1%	2%
lambda-cyhalothrin	9%	28%	23%
metribuzin	13%	13%	11%
pendimethalin	7%	2%	1%
s-metolachlor	9%	5%	19%
trifluralin	13%	4%	2%
other pesticides	13%	4%	12%
total	3273	3250	5658

Table S21. Aquatic ecotoxicity impact per ha wheat produced and contributions of key pesticides (unit: kg triethylene glycol. eq.)

	2002	2006	2012
atrazine	47%	71%	60%
bromoxynil	19%	8%	0%
chlorpyrifos	16%	9%	23%
triallate	7%	1%	0%
other inputs	12%	11%	17%
total	4173	6890	3307
References

1. USDA. Model Simulation of Soil Loss, Nutrient Loss, and Change in Soil Organic Carbon Associated with Crop Production. Natural Resource Conservation Service, US Department of Agriculture; 2006.

2. Zahran HH. Rhizobium-Legume Symbiosis and Nitrogen Fixation under Severe Conditions and in an Arid Climate. Microbiol Mol Biol Rev. 1999 Dec 1;63(4):968–89.

3. Herridge DF, Peoples MB, Boddey RM. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil. 2008;311(1-2):1–18.

4. Rosenbaum RK, Bachmann TM, Gold LS, Huijbregts MAJ, Jolliet O, Juraske R, et al. USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess. 2008 Nov 1;13(7):532–46.