Summation formula for solutions of Riccati-Abel equation

Robert M. Yamaleev
Joint Institute for Nuclear Research, LIT, Dubna, Russia.
Universidad Nacional Autonoma de Mexico, Mexico.
Email: yamaleev@jinr.ru

May 3, 2014

Abstract

The Riccati-Abel equation defined as an equation between first order derivative and cubic polynomial is explored. In the case of constant coefficients this equation is reduced into algebraic equation. The method of derivation of a summation formula for solutions of Riccati-Abel equation elaborated. Interrelation with general complex algebra of third order is established.

1 Introduction

Consider the first order differential equation

$$f(u, x) = \frac{du}{dx}. \quad (1.1)$$

If we approximate $f(u, x)$, while x is kept constant, we will get

$$Q_0(x) + Q_1(x)u + Q_2(x)u^2 + Q_3(x)u^3 + \cdots = \frac{du}{dx}. \quad (1.2)$$

When the series in the left-hand side is restricted with second order polynomial the equation is the Riccati equation [1].

The Riccati equation is one of the widely used equations of mathematical physics. The ordinary Riccati equations are closely related with second order linear differential equations. For the solutions of the ordinary Riccati equations with constant coefficients a summation formula can be derived. These solutions are presented by trigonometric functions induced by general complex algebra.

If, in particular, $f(u, x)$ is a cubic polynomial, then the equation is called Riccati-Abel equation. Abel’s original equation was written in the form

$$(y + s) \frac{dy}{dx} + p + qy + ry^2 = 0. \quad (1.3)$$

This equation is converted into Riccati-Abel equation by transformation $y + s = 1/z$, which yields

$$\frac{dz}{dx} = rz + (q - s' - 2rs)z^2 + (p - qs + rs^2)z^3. \quad (1.4)$$
It is seen that the case $Q_0(u, \phi) = 0$ was actually considered by Abel [2].

When the series in the left-hand side of equation (1.2) is given by n-order polynomial we deal with the generalized Riccati equations. The solution of the generalized Riccati equation with constant coefficients can be denominated as generalized tangent function. The generalized Riccati equations are used, for example, in various problems of renorm-group theory [3]. The mean field free energy concept and the perturbation renormalization group theory deal with differential equations of first order with polynomial non-linearity.

The aim of this paper is to explore solutions of the Riccati-Abel equation with constant coefficients and to derive some kind of summation formula for them. Summation (addition) formulae for solutions of linear differential equations are considered as important features of these functions. Let us mention, for example, summation formulae for the trigonometric sine-cosine functions, the Bessel functions, the hypergeometric functions and their various generalizations. Whereas solutions of the linear differential equations with constant coefficients admit universal methods of obtaining of summation formulas (see, for instance, [4], [5]), the solutions of nonlinear equations require special investigations. In this context let us mention the addition formulae for Jacobi and Weierstrass elliptic functions [6].

The solutions of the generalized Riccati equations with cubic and higher polynomials, in general, do not admit any summation formula. Nevertheless, by careful analysis we found a new summation law according to which in order to obtain a summation formula for the solutions of the third order Riccati equation is necessary to use two independent variables. We will show that the summation formula can be derived also by using interconnection between solutions of Riccati-Abel equation and the characteristic functions of generalized complex algebra of third order.

The paper is presented by the following sections. Section 2 committed to solution of ordinary Riccati equation with constant coefficients. Summation formula for the solutions are derived and interrelation with solutions of the linear differential equations is underlined. In Section 3, the Riccati-Abel equation is integrated, the corresponding algebraic equation for solutions is derived, a summation formula for solutions is established. In Section 4, the solutions of Riccati-Abel equation are constructed within generalized complex algebra of third order.

2 Ordinary Riccati equation, summation formula and general complex algebra

2.1 The ordinary Riccati equation.

Consider the Riccati equation with constant coefficients

$$u^2 - a_1 u + a_0 = \frac{du}{d\phi}. \quad (2.1)$$

If coefficients a_0, a_1 are constants then a great simplification results because it is possible to obtain the complete solution by means of quadratures. Thus, equation (2.1) admits direct integration

$$\int \frac{dx}{x^2 - a_1 x + a_0} = \int d\phi. \quad (2.2)$$

Let $x_1, x_2 \in C$ be roots of the polynomial equation

$$x^2 - a_1 x + a_0 = 0. \quad (2.3)$$
In order to calculate the integral (2.2) the following formula expansion is used

\[
\frac{1}{x^2 - a_1 x + a_0} = \frac{1}{2x_1 - a_1 x - x_1} + \frac{1}{2x_2 - a_1 x - x_2},
\]

(2.4)

where,

\[
2x_1 - a_1 = (x_1 - x_2), \quad 2x_2 - a_1 = (x_2 - x_1).
\]

Then the integral (2.2) is easily calculated and the result is given by the logarithmic functions

\[
\int_u^w \frac{dx}{x^2 - a_1 x + a_0} = \frac{1}{m_{12}} \left(\log \frac{u - x_1}{u - x_2} - \log \frac{w - x_1}{w - x_2} \right) = \phi(u) - \phi(w),
\]

(2.5)

where \(m_{12} = x_1 - x_2\). Now, let us keep the first logarithm of (2.5) depending of the initial limit of the integral, that is

\[
\frac{1}{m_{12}} \log \frac{u - x_1}{u - x_2} = \phi(u).
\]

By inverting the logarithm function we come to the algebraic equation for solution of (2.1),

\[
\exp(m_{12} \phi) = \frac{u - x_1}{u - x_2}.
\]

(2.6)

Let \(u(\phi_0) = 0\), then

\[
\exp(m_{12} \phi_0) = \frac{x_1}{x_2}.
\]

(2.7)

As soon as the point \(\phi = \phi_0\) is determined, one may calculate the function \(u(\phi)\) by making use of algebraic equation (2.6). Since \(a_1 = x_1 + x_2\), from (2.7) it follows that

\[
a_1 = m_{12} \coth(m_{12} \phi_0 / 2).
\]

Consequently, from (2.6) we obtain

\[
u(\phi, \phi_0) = \frac{1}{2} m_{12} \coth(m_{12} \phi_0 / 2) - \frac{1}{2} m_{12} \coth(m_{12} \phi / 2).
\]

2.2 Summation (addition) formula for function \(u = u(\phi, \phi_0)\).
Consider the following integral equation

\[
\int_u^v \frac{dx}{x^2 - a_1 x + a_0} + \int_v^w \frac{dx}{x^2 - a_1 x + a_0} = \int_u^w \frac{dx}{x^2 - a_1 x + a_0}.
\]

(2.8)

The quantity \(w\) is a function of \(u\) and \(v\), if the function \(w = f(u, v)\) is an algebraic function then this function can be considered as the summation formula. Write (2.8) in the following notations \(\phi_u + \phi_v = \phi_w\). Then, \(w(\phi_w) = w(\phi_u + \phi_v) = f(u(\phi_u), v(\phi_v))\).

Calculating the integrals in (2.8) we come to the following algebraic equation

\[
\frac{1}{2m} \log \frac{u - x_1 v - x_1}{u - x_2 v - x_2} = \frac{1}{2m} \log \frac{w - x_1}{w - x_2},
\]

(2.9)

Thus, the function \(w(u, v)\) has to satisfy the equation

\[
\frac{u - x_1 v - x_1}{u - x_2 v - x_2} = \frac{w - x_1}{w - x_2}.
\]

(2.10)
Multiplying fractions and taking into account the fact that x_1, x_2 obey (2.3), we get

$$
\frac{uv - x_1(u + v) + a_1x_1 - a_0}{uv - x_2(u + v) + a_1x_2 - a_0} = \frac{uv - a_0}{u + v - a_1} - x_1 = \frac{w - x_1}{w - x_2},
$$

$$
w = \frac{uv - a_0}{u + v - a_1}.
$$

(2.11)

This is the summation formula for function $u(\phi; a_1, a_0)$.

2.3 Relationship with General complex algebra.

Like the (co)tangent function can be defined as a ratio of cosine and sine functions, the solution of the Riccati equation $u(\phi; a_1, a_0)$ also can be represented as a ratio of modified cosine and sine functions. Firstly, let us construct these functions.

Consider general complex algebra generated by the (2×2) matrix

$$
E = \begin{pmatrix}
0 & -a_0 \\
1 & a_1/2
\end{pmatrix}
$$

(2.12)

obeying the quadratic equation (2.3):

$$
E^2 - a_1 E + a_0 I = 0,
$$

(2.13)

with I- unit matrix. Expansion with respect to E of the exponential function $\exp(E\phi)$ leads to the Euler formula

$$
\exp(E\phi) = g_1(\phi; a_0, a_1)E + g_0(\phi; a_0, a_1).
$$

(2.14)

In terms of the roots x_1, x_2 this matrix equation is separated into two equations

$$
\exp(x_2\phi) = x_2 g_1(\phi; a_0, a_1) + g_0(\phi; a_0, a_1), \quad \exp(x_1\phi) = x_1 g_1(\phi; a_0, a_1) + g_0(\phi; a_0, a_1),
$$

(2.15)

from which an explicit form of g-functions can be obtained. Apparently, g_0 and g_1 are modified (generalized) cosine-sine functions with the following formulas of differentiation

$$
\frac{d}{d\phi} g_1(\phi; a_0, a_1) = g_0(\phi; a_0, a_1) + a_1 \ g_1(\phi; a_0, a_1), \quad \frac{d}{d\phi} g_0(\phi; a_0, a_1) = -a_0 \ g_1(\phi; a_0, a_1).
$$

(2.16)

Form a ratio of two equations of (2.15) as follows

$$
\exp(m_{21}\phi) = \frac{x_2 g_1(\phi; a_0, a_1) + g_0(\phi; a_0, a_1)}{x_1 g_1(\phi; a_0, a_1) + g_0(\phi; a_0, a_1)}.
$$

(2.17)

Let $g_1(s; a_0, a_1) \neq 0$. Then,

$$
\exp(m_{21}\phi) = \frac{x_2 + D}{x_1 + D},
$$

(2.18)

where

$$
D = \frac{g_0(\phi; a_0, a_1)}{g_1(\phi; a_0, a_1)}.
$$
Differential equation for function $D(\phi)$ is obtained by using (2.16):

$$D^2 + a_1 D + a_0 = -\frac{dD}{d\phi}. \quad (2.19)$$

Thus, we have proved that the function

$$u(\phi; a_0, a_1) = -D = -\frac{g_0(\phi; a_0, a_1)}{g_1(\phi; a_0, a_1)} \quad (2.20)$$

obeys the Riccati equation.

The summation formulae for g-functions are well defined [7]. They are

$$g_0(a + b) = g_0(a)g_0(b) - a_0g_1(a)g_1(b);$$
$$g_1(a + b) = g_1(a)g_0(b) + g_0(a)g_1(b) + a_1g_1(a)g_1(b).$$

$$\frac{g_0(a + b)}{g_1(a + b)} = \frac{g_0(a)g_0(b) - a_0g_1(a)g_1(b)}{g_1(a)g_0(b) + g_0(a)g_1(b) + a_1g_1(a)g_1(b)}. \quad (2.21)$$

By taking into account (2.20) we get

$$u(a + b) = -\frac{g_0(a + b)}{g_1(a + b)} = \frac{u(a)u(b) - a_0}{u(a) + u(b) - a_1}. \quad (2.22)$$

which coincides with (2.11).

3 Generalized Riccati equation with cubic order polynomial

3.1 The Riccati-Abel equation.

Consider the following non-linear differential equation with constant coefficients

$$u^3 - a_2u^2 + a_1u - a_0 = \frac{du}{d\phi}, \quad (3.1)$$

which admits direct integration by

$$\int_w^u \frac{dx}{x^3 - a_2x^2 + a_1x - a_0} = \phi(w) - \phi(u). \quad (3.2)$$

This integral is calculated by making use of well-known method of partial fractional decomposition [9]

$$\frac{1}{x^3 - a_2x^2 + a_1x - a_0} = \frac{1}{(x - x_3)(x - x_2)(x - x_1)} =$$

$$\frac{(x_3 - x_2)}{V} \frac{1}{x - x_1} + \frac{(x_1 - x_3)}{V} \frac{1}{x - x_2} + \frac{(x_2 - x_1)}{V} \frac{1}{x - x_3}, \quad (3.3)$$

where V is the Vandermonde’s determinant [10]

$$V = (x_1 - x_2)(x_2 - x_3)(x_3 - x_1). \quad (3.4)$$
and the distinct constants \(x_1, x_2, x_3 \in C\) are roots of the cubic polynomial
\[
 f(x) = x^3 - a_2 x^2 + a_1 x - a_0 = 0.
\] (3.5)

By using expansion (3.3) the integral (3.2) is easily calculated
\[
 \int_{u}^{w} \frac{dx}{x^3 - a_2 x^2 + a_1 x - a_0} = \frac{(x_3 - x_2)}{V} \log \frac{u - x_1}{w - x_1} + \frac{(x_1 - x_3)}{V} \log \frac{u - x_2}{w - x_2} + \frac{(x_2 - x_1)}{V} \log \frac{u - x_3}{w - x_3} = \phi(u) - \phi(w).
\] (3.6)

Introduce the following notations
\[
m_{ij} = (x_i - x_j), \ i, j = 1, 2, 3, \text{ with } m_{21} + m_{32} + m_{13} = 0.
\] (3.7)

Equation (3.6) re-write as follows
\[
 \int_{u}^{w} \frac{dx}{x^3 - a_2 x^2 + a_1 x - a_0} = \log (u - x_1)^{m_{32}} (u - x_2)^{m_{13}} (u - x_3)^{m_{21}} = V \phi(u)
\] (3.8)

and invert the logarithm, this leads to the following algebraic equation
\[
[u - x_1]^{m_{32}} [u - x_2]^{m_{13}} [u - x_3]^{m_{21}} = \exp(V \phi).
\] (3.9)

This equation can be written also in the fractional form
\[
\left(\frac{u - x_1}{u - x_3}\right)^{m_{32}} \left(\frac{u - x_2}{u - x_3}\right)^{m_{13}} = \exp(V \phi).
\] (3.10)

Thus, the problem of solution of differential (3.1) is reduced to the problem of solution of the algebraic equation (3.10). Notice, if the roots of cubic equation and function \(u\) are defined in the field of real numbers then this equation is meaningful only for certain domain of definition of \(u(\phi)\).

3.2 Semigroup property of fractions of \(n\)-order monic polynomials on the set of roots of \(n + 1\)-order polynomial.

In this section let us recall semigroup property of the fractions of \(n\)-order polynomials defined on the set of roots of \(n + 1\)-order polynomial. Let \(F(x, n + 1)\) be \((n + 1)\) order polynomial with \((n + 1)\) distinct roots \(x_i, i = 1, \ldots, n + 1\). Denote this set of roots by \(FX(n + 1)\).

Lemma 3.1

Let \(P_a(x_i, n)\) be \(n\)-order polynomial on \(x_i \in FX(n + 1)\). The product of two \(n\)-order polynomials
\[
P_a(x_i, n) * P_b(x_i, n)
\]
is also \(n\)-order polynomial \(P_c(x_i, n)\).

Proof.

The product \(P_{ab}(x_i, 2n) := P_a(x_i, n) * P_b(x_i, n)\) is polynomial of \(2n\)-degree with respect to variable \(x_i\). Since \(x_i\) obeys \(n + 1\)-order polynomial equation all degrees of the variable \(x_i\) from \((n + 1)\) up till \(2n\) degree can be expressed via \(n\)-degree polynomial. In this way the polynomial \(P_{ab}(x_i, 2n)\) is reduced till \(n\) degree polynomial with respect to variable \(x_i \in FX(n + 1)\).

End of proof.

are \(n\)-order monic polynomials defined on the set of the roots of polynomial \(F(x, n + 1)\).
Consider two monic polynomials of \(n \)-degree \(P_a(x, n) \), \(P_b(x, n) \) with \(x_i \neq x_k \in FX(n+1) \). Form a rational algebraic fraction
\[
\frac{P_a(x_i, n)}{P_a(x_k, n)}.
\]

The following **Corollary 3.2** holds true:
The product of two fractions formed by two \(n \)-order monic polynomials on the roots of \((n+1) \)-order polynomial is a fraction of the same order monic polynomials on the variables,
\[
\frac{P_a(x_i, n)}{P_a(x_k, n)} \frac{P_b(x_i, n)}{P_b(x_k, n)} = \frac{P_c(x_i, n)}{P_c(x_k, n)}.
\]

3.3 Addition formula for \(u(\phi) \)

Let \(\phi = \phi_0 \) be a point where \(u(\phi_0) = 0 \). Then, (3.10) is reduced to
\[
\left[\frac{x_1}{x_3} \right]^{m_{32}} \left[\frac{x_2}{x_3} \right]^{m_{13}} = \exp(V\phi_0).
\]

If we make simultaneous translations of the roots \(x_k, k = 1, 2, 3 \) by some value \(u \) in the left-hand side of (3.11), then in the right-hand side of the equation \(V \) does not change, hence \(\phi_0 \) will undergo some translation by \(\phi = \phi_0 + \delta \). In this way one may construct the solution of Riccati-Abel equation (3.1) with initial condition \(u(\phi_0) = 0 \).

Now, let \(u, v, w \) be solutions of equation (3.1) calculated for tree variables \(\phi_u, \phi_v, \phi_w \), which obey the equation \(\phi_w = \phi_u + \phi_v \). Then, in accordance with (3.10) we write
\[
\exp(V\phi_u)\exp(V\phi_v) = \left\{ \left[\frac{u - x_1}{u - x_3} \right]^{m_{32}} \left[\frac{v - x_1}{v - x_3} \right]^{m_{13}} \right\} = \exp(V(\phi_u + \phi_v)).
\]

The problem is to find some rational function expressing \(w \) via the pair \((u, v) \), i.e., the function \(w = w(u, v) \) has to be a rational function.

Evidently, the method used in the previous section for the ordinary Riccati equation now is not applicable. According to Lemma we are able to transform a product of ratios of \(n \)-order polynomials into the ratio of \(n \)-order polynomials if these polynomials are defined on roots of \(n + 1 \)-order polynomial. Thus, we have to seek another way of construction of a summation formula.

The problem we suggest to resolve as follows.

Let us to present the integral (3.8) as a sum of two integrals by
\[
\int^w \frac{dx}{x^3 - a_2 x^2 + a_1 x - a_0} = \int^u \frac{dx}{x^3 - a_2 x^2 + a_1 x - a_0} + \int^v \frac{dx}{x^3 - a_2 x^2 + a_1 x - a_0} = \phi = V \log(\left[\frac{u - x_1}{u - x_3} \right]^{m_{32}} \left[\frac{v - x_1}{v - x_3} \right]^{m_{13}})
\]

In this way we arrive to the following algebraic equation
\[
\left(\frac{u - x_1}{u - x_3} \frac{v - x_1}{v - x_3} \right)^{m_{32}} \left(\frac{u - x_2}{u - x_3} \frac{v - x_2}{v - x_3} \right)^{m_{13}} = \exp(V\phi(u, v)) = \exp(V\phi_u)\exp(V\phi_v).
\]

Let \(u, v \) be solutions of the quadratic equation
\[
x^2 + tx + s = 0, \quad t = -(u + v), \quad s = uv.
\]
Then, equation (3.14) is written as

\[
\begin{bmatrix}
 x_1^2 + tx_1 + s \\
 x_2^3 + tx_3 + s
\end{bmatrix}^{m_3} \ast \left(\begin{bmatrix}
 x_2^2 + tx_2 + s \\
 x_3^3 + tx_3 + s
\end{bmatrix}^{m_1} \right) = \exp(V\phi(t, s)).
\]

(3.16)

Thus from the pair of functions \((u, v)\) we come to another pair \((t, s)\). This pair of functions, in fact, admits a summation rule because the problem is reduced to the task of transformation four-degree polynomial into quadratic polynomial at the solutions of the cubic equation. Evidently, this task can be easily performed by simple algebraic operations.

Theorem 3.3.

The following summation formula for solutions of Riccati-Abel equation holds true

\[
(t, s) \bigoplus (v, u) = (r, w),
\]

where

\[
\begin{align*}
 r &= \frac{(a_0 - 2a_2a_1) - a_1(v + t) + (tu + sv)}{(3a_2^2 - a_1) + a_2(v + t) + (s + u + tv)} \quad w = \frac{a_2a_0 + (v + t)a_0 + su}{(3a_2^2 - a_1) + a_2(v + t) + (s + u + tv)}.
\end{align*}
\]

(3.17)

Proof.

Consider product of two monic polynomials

\[
(x^2 + tx + s)(x^2 + vx + u) = x^4 + x^3(v + t) + x^2(s + u + tv) + x(tu + vs) + su,
\]

where \(x\) is one of roots of cubic equation

\[
x^3 - a_2x^2 + a_1x - a_0 = 0.
\]

(3.18)

From the cubic equation (3.18) we are able to express \(x^3\) and \(x^4\) as polynomials of second order as follows

\[
x^3 = a_2x^2 - a_1x + a_0, \quad x^4 = (3a_2^2 - a_1)x^2 + (a_0 - a_1a_2)x + a_2a_0.
\]

Then, four-degree polynomial on roots of the cubic polynomial is reduced into polynomial of second order

\[
x^4 + x^3(v + t) + x^2(s + u + tv) + x(tu + vs) + su = Ax^2 + Bx + C,
\]

(3.19)

where

\[
A = (3a_2^2 - a_1) + a_2(v+t)+(s+u+tv), \quad B = (a_0-2a_2a_1) - a_1(v+t)+(tu+sv), \quad C = a_2a_0+(v+t)a_0+su.
\]

(3.20)

Since we deal with the ratios of polynomials the coefficients of the quadratic polynomial in (3.19) and polynomials in denominator and in numerator have the same leading coefficient, we are able return to the ratio of monic polynomials. In this way we come to the relations

\[
r = \frac{B}{A}, \quad w = \frac{C}{A}.
\]

(3.21)

End of proof.
4 Generalized complex algebra of third order and solutions of Riccati-Abel equation

In this section we will establish a relationship between characteristic functions of general complex algebra of third order and solutions Riccati-Abel equation.

The unique generator E of general complex algebra of third-order, CG_3, is defined by cubic equation [11]

$$E^3 - a_2E^2 + a_1E - a_0 = 0. \quad (4.1)$$

The companion matrix E of the cubic equation (4.1) is given by (3×3) matrix

$$E := \begin{pmatrix} 0 & 0 & a_0 \\ 1 & 0 & -a_1 \\ 0 & 1 & a_2 \end{pmatrix}. \quad (4.2)$$

Consider the expansion

$$\exp(E\phi_1 + E^2\phi_2) = g_0(\phi_1, \phi_2) + E g_1(\phi_1, \phi_2) + E^2 g_2(\phi_1, \phi_2). \quad (4.3)$$

This is an analogue of the Euler formula for exponential function, the function $g_0(\phi_1, \phi_2)$ is an analogue of cosine function, and $g_k(\phi_1, \phi_2), k = 0, 1, 2$ are extensions of the sine function. It is seen, the characteristic functions of GC_3 algebra depend of pair of ”angles”. Correspondingly, for each of them we have formulae of differentiation.

$$\frac{\partial}{\partial \phi_1} \begin{pmatrix} g_0 \\ g_1 \\ g_2 \end{pmatrix} = \begin{pmatrix} 0 & 0 & a_0 \\ 1 & 0 & -a_1 \\ 0 & 1 & a_2 \end{pmatrix} \begin{pmatrix} g_0 \\ g_1 \\ g_2 \end{pmatrix}, \quad (4.4)$$

$$\frac{\partial}{\partial \phi_2} \begin{pmatrix} g_0 \\ g_1 \\ g_2 \end{pmatrix} = \begin{pmatrix} 0 & a_0 & a_0a_2 \\ 0 & -a_1 & a_0 - a_1a_2 \\ 1 & a_2 & -a_1 + a_2^2 \end{pmatrix} \begin{pmatrix} g_0 \\ g_1 \\ g_2 \end{pmatrix}. \quad (4.5)$$

The semigroup of multiplications of the exponential functions leads to the following the addition formulae for g-functions[12]

$$\begin{pmatrix} g_0 \\ g_1 \\ g_2 \end{pmatrix}_{(\psi_c=\psi_a+\psi_b)} = \begin{pmatrix} g_0 & g_2a_0 & g_1a_0 + g_2a_0a_2 \\ g_1 & g_0 - g_2a_1 & -g_1a_1 + g_2(a_0 - a_1a_2) \\ g_2 & g_1 + g_2a_2 & g_0 + g_1a_2 + g_2(-a_1 + a_2^2) \end{pmatrix}_{(\psi_c=\psi_a+\psi_b)} \begin{pmatrix} g_0 \\ g_1 \\ g_2 \end{pmatrix}_{\psi_a \psi_b}, \quad (4.6)$$

where the sub-indices of the brackets indicate dependence of the g-functions of the pair of variables $\psi_i = (\phi_{1i}, \phi_{2i}), i = a, b, c$.

Introduce two fractions of g-functions by

$$tg = \frac{g_1}{g_2}, \quad sg = \frac{g_0}{g_2}. \quad (4.7)$$

It is seen, these functions are analogues of tangent-cotangent functions. From addition formulae for g-functions (4.6) the following summation formulae for the general tangent functions are derived.

$$t_0 = \frac{g_0}{g_2}, \quad r_0 = \frac{f_0}{r_2}. \quad (4.8)$$

$$T_0 = \frac{t_0r_0 + a_0(t_1 + t_1) + a_0a_2}{r_0 + (t_1 + a_2)r_1 + t_0 + t_1a_2 + (-a_1 + a_2^2)}, \quad (4.9)$$
\[T_1 = \frac{t_1 r_0 + t_0 r_1 - a_1 (r_1 + t_1) + (a_0 - a_1 a_2)}{r_0 + t_0 + a_2 (t_1 + r_1) + t_1 r_1 + (-a_1 + a_2^2)}. \] (4.10)

Here the following notations are used

\[
T_0(\psi_c) = \frac{g_0(\psi_c)}{g_2(\psi_c)}, \quad T_1(\psi_c) = \frac{g_1(\psi_c)}{g_2(\psi_c)},
\]

\[
t_0(\psi_a) = \frac{g_0(\psi_a)}{g_2(\psi_a)}, \quad r_0(\psi_b) = \frac{g_0(\psi_b)}{g_2(\psi_b)},
\]

\[
t_1(\psi_a) = \frac{g_1(\psi_a)}{g_2(\psi_a)}, \quad r_1(\psi_b) = \frac{g_1(\psi_b)}{g_2(\psi_b)}.
\]

and \(\psi_i = (\phi_{1i}, \phi_{2i}), i = a, b, \psi_c = (\phi_{1c} = \phi_{1a} + \phi_{1b}, \phi_{2c} = \phi_{2a} + \phi_{2b}). \)

Let \(x_1, x_2, x_3 \in C \) be eigenvalues of \(E \) given by distinct values. Then, the matrix equation (4.3) is represented by three separated series \((k = 1, 2, 3): \)

\[
\exp(x_k \phi_1 + x_k^2 \phi_2) = g_0(\phi_1, \phi_2) + x_k g_1(\phi_1, \phi_2) + x_k^2 g_2(\phi_1, \phi_2),
\] (4.11)

Form the following ratios \(i \neq k: \)

\[
\exp((x_i - x_k) \phi_1 + (x_i^2 - x_k^2) \phi_2) = \frac{g_0(\phi_1, \phi_2) + x_i g_1(\phi_1, \phi_2) + x_i^2 g_2(\phi_1, \phi_2)}{g_0(\phi_1, \phi_2) + x_k g_1(\phi_1, \phi_2) + x_k^2 g_2(\phi_1, \phi_2)}.
\] (4.12)

Consider two of these ratios, namely,

\[
\exp(m_{13} \phi_1 + (x_1^2 - x_3^2) \phi_2) = \frac{g_2 x_2^2 + g_1 x_1 + g_0}{g_2 x_3^2 + g_1 x_3 + g_0},
\] (4.13a)

\[
\exp(m_{23} \phi_1 + (x_2^2 - x_3^2) \phi_2) = \frac{g_2 x_2^2 + g_1 x_2 + g_0}{g_2 x_3^2 + g_1 x_3 + g_0}.
\] (4.13b)

where \(m_{ij} = x_i - x_j \). The both sides of equation (4.13a) raise to power \(m_{32} \) and the both sides of equation (4.13b) raise to power \(m_{13} \) and multiply left and right sides of the obtained equations, correspondingly. And, by taking into account that \(m_{13} m_{32} + m_{23} m_{13} = 0 \), we arrive to the following equation

\[
\exp(m_{13} m_{32} \phi_1 + (x_1 + x_3) m_{13} m_{32} \phi_2) \exp(m_{23} m_{13} \phi_1 + (x_2 + x_3) m_{13} \phi_2)
\]

\[= \left[\frac{g_2 x_2^2 + g_1 x_2 + g_0}{g_2 x_3^2 + g_1 x_3 + g_0} \right]^{m_{13}} \left[\frac{g_2 x_1^2 + g_1 x_1 + g_0}{g_2 x_3^2 + g_1 x_3 + g_0} \right]^{m_{32}}. \] (4.14)

The left hand side of this equation is equal to \(\exp(V \phi_2) \), that is,

\[
\exp(V \phi_2) = \left[\frac{g_2 x_2^2 + g_1 x_2 + g_0}{g_2 x_3^2 + g_1 x_3 + g_0} \right]^{m_{13}} \left[\frac{g_2 x_1^2 + g_1 x_1 + g_0}{g_2 x_3^2 + g_1 x_3 + g_0} \right]^{m_{32}}.
\] (4.15)

Let \(g_2 \neq 0 \), then by dividing numerator and denominator by \(g_2 \) we obtain

\[
\exp(V \phi_2) = \left[\frac{x_2^2 + t g x_2 + s g}{x_3^2 + t g x_3 + s g} \right]^{m_{13}} \left[\frac{x_1^2 + t g x_1 + s g}{x_3^2 + t g x_3 + s g} \right]^{m_{32}},
\] (4.16)

where

\[
t g = \frac{g_1}{g_2}, \quad s g = \frac{g_0}{g_2}.
\]

10
Let u, v be roots of the quadratic equation

$$g_0(\phi_1, \phi_2) + y g_1(\phi_1, \phi_2) + y^2 g_2(\phi_1, \phi_2) = 0.$$ \hspace{1cm} (4.17)

Then the ratios (4.13a,b) can be re-written as follows

$$\exp((x_k - x_l)\phi_1 + (x_k^2 - x_l^2)\phi_2) = \frac{(u - x_k)(v - x_k)}{(u - x_l)(v - x_l)}. \hspace{1cm} (4.18)$$

This equation is true for any $k, l = 1, 2, 3$, $k \neq l$. This is to say, for any index we have same ϕ_1, ϕ_2 and same u, v. Here u, v depend of two parameters ϕ_1, ϕ_2.

Inversely, If we have $u = u(\varphi_u)$, $v = v(\varphi_v)$, then we can find corresponding g by

$$\frac{g_0}{g_2} = uv, \quad \frac{g_1}{g_2} = u + v.$$

From this two equations we find ϕ_1 and ϕ_2. We expect that

$$\exp(V(\varphi_u + \varphi_v)) = \exp(V\phi_2),$$

or,

$$\varphi_u + \varphi_v = \phi_2.$$

In this way we have established connection between characteristics of general complex algebra and solutions of Riccati-Abel equation.

The next task is to prove that the ratio $u = -g_0/g_1|_{g_2=0}$, in fact, satisfies the Riccati-Abel equation.

Now, let us calculate derivatives of g_1, g_0 under the following condition

$$g_2(\phi_1, \phi_2) = 0.$$ \hspace{1cm} (4.19)

From this equation it follows that ϕ_1 is a function of ϕ_2, $\phi_1 = \phi_1(\phi_2)$. Thus, we have to prove that the function

$$u(\phi_2) = -\frac{g_0(\phi_1(\phi_2), \phi_2)}{g_1(\phi_1(\phi_2), \phi_2)},$$ \hspace{1cm} (4.20)

obeys the Riccati-Abel equation.

Differentiating equation (4.19) we obtain

$$\frac{dg_2}{d\phi_2} + \frac{dg_2}{d\phi_1} \frac{d\phi_1}{d\phi_2} = 0.$$ \hspace{1cm} (4.21)

From this equation taking into account constraint (4.21) we get

$$\frac{d\phi_1}{d\phi_2} = -\frac{1}{g_1}(g_0 + a_2 g_1).$$ \hspace{1cm} (4.22)

Now we have to use the following formulæ

$$\frac{dg_0}{d\phi_2} = a_0 g_1 + \frac{dg_0}{d\phi_1} \frac{d\phi_1}{d\phi_2} = a_0 g_1 - a_0 \frac{g_2}{g_1}(g_0 + a_2 g_1)|_{g_2=0} = a_0 g_1.$$

$$\frac{dg_1}{d\phi_2} = -a_1 g_1 - \frac{dg_1}{d\phi_1} \frac{d\phi_1}{d\phi_2} = -a_1 g_1 - \frac{g_0}{g_1}(g_0 + a_2 g_1).$$
By using these formulae we are able to calculate derivative of the fraction:

\[
\frac{d}{d\phi} \frac{g_0}{g_1} = \frac{g_0'g_1 - g_0g_1'}{g_1^2} = \frac{1}{g_1^2}(a_0g_1^3 + a_1g_1^2g_0 + g_0^3 + a_2g_1g_0^2).
\]

(4.23)

Coming back to definition (4.20) transform (4.23) into Riccati-Abel equation:

\[
\frac{du}{d\phi} = -a_0 + a_1u^2 + u^3 - a_2u^2.
\]

(4.24)

Concluding remarks.

As the ordinary Riccati equation, also the Riccati-Abel equation has a relationship with linear differential equation. Seeking a summation formula for solutions of Riccati-Abel equation we established a certain interrelation between these solutions with multi-trigonometric functions of third order. We have elaborated some rule according to which in order to build a summation formula for solutions of Riccati-Abel equations it is necessary to consider the pair of solutions, which can be achieved by using an auxiliary variable. This idea can be successfully used for the solutions of generalized Riccati equations of any order with constant coefficients. By increasing the order of the non-linearity the number of auxiliary variables also will increase. For example, from solutions of generalized Riccati equations of fourth order we have to compose the triplet of solutions with two auxiliary variables, and for \(n\)-order generalized Riccati equations it is necessary to compose \((n-1)\)-pulet of solutions with \((n-1)\) auxiliary variables.

References

[1] Davis H.T. Introduction to nonlinear differential and integral equations. United States Atomic Energy Commission. U.S.Goverment Printing Office, washington D.C.Reprinted Dover, New York 1960.

[2] N.H.Abel, Oeuvres completes du Niels Henrik Abel.-Christiana, 1881.

[3] Yeomans J.M. Statistical mechanics of phase transitions. Clarendon Press, Oxford. (1992). John Cardy. Scaling and renormalization in statistical physics. Cambridge lecture notes in physics. Eds. P.Goddard, J.Yeomans. Cambridge university press 1996. ISBN 052149959 3.

[4] A.Ungar, Addition theorems inordinary differential equations. *Amer.Math.Monthly* 94 (1987) 872-875.

[5] A.Ungar, Addition theorems for solutions to linear homogeneous constant coefficient differential equations. *Aequatios Math.* 26 (1983), 104-112.

[6] N. I. Akhiezer, Elements of the Theory of Elliptic Functions, (1970) Moscow, translated into English as AMS Translations of Mathematical Monographs Volume 79 (1990) AMS, Rhode Island ISBN 0-8218-4532-2

[7] R.M.Yamaleev, Geometrical and physical interpretation of evolution governed by general complex algebra *Journal of Mathematical Analysis and Applications* doi:10.1016/j.jmaa. (2007)09.018; 340(2008) 1046-1057

[8] Babusci D.,Dattoli G.,Di Palma E.,Sabia E., Complex-type numbers and generalization of the Euler identity. *Adv.Appl.Clifford Al.* 22 (2012) 271.
[9] Vedic Mathematics: Sixteen Simple Mathematical Formulae from the Vedas, by Swami Sankaracarya (1884-1960), Motilal Banarsidass Indological Publishers and Booksellers, Varanasi, India, 1965; Stapel, Elizabeth. "Partial-Fraction Decomposition: General Techniques." Purplemath. Available from http://www.purplemath.com/modules/partfrac.htm.

[10] Vein R., Dale P., "Determinants and their applications in mathematical physics", Springer-Verlag, New York, Inc., 1999. ISBN 0-387-98558-1.

[11] R.M.Yamaleev Multicomplex algebras on polynomials and generalized Hamilton dynamics Journal of Mathematical Analysis and Applications 322 (2006) 815-824.

[12] R.M.Yamaleev Complex algebras on n-order polynomials and generalizations of trigonometry, oscillator model and Hamilton dynamics J. Adv. Appl. Clifford Al. 15 No.2 (2005) 123-150.