Human organic cation transporter 3 (OCT3 and SLC22A3) mediates the uptake of many important endogenous amines and basic drugs in a variety of tissues. OCT3 is identified as one of the important risk loci for prostate cancer, and is markedly underexpressed in aggressive prostate cancers. The goal of this study was to identify genetic and epigenetic factors in the promoter region that influence the expression level of OCT3. Haplotypes that contained the common variants, g./C0_81G_4 delGA (rs60515630) (minor allele frequency 11.5% in African American) and g./C0_2G_4 A (rs555754) (minor allele frequency >30% in all ethnic groups) showed significant increases in luciferase reporter activities and exhibited stronger transcription factor-binding affinity than the haplotypes that contained the major alleles. Consistent with the reporter assays, OCT3 messenger RNA expression levels were significantly higher in Asian (P<0.001) and Caucasian (P<0.05) liver samples from individuals who were homozygous for g./2A/A in comparison with those homozygous for the g./2G/G allele. Studies revealed that the methylation level in the basal promoter region of OCT3 was associated with OCT3 expression level and tumorigenesis capability in various prostate cancer cell lines. The methylation level of the OCT3 promoter was higher in 62% of prostate tumor samples compared with matched normal samples. Our studies demonstrate that genetic polymorphisms in the proximal promoter region of OCT3 alter the transcription rate of the gene and may be associated with altered expression levels of OCT3 in human liver. Aberrant methylation contributes to the reduced expression of OCT3 in prostate cancer.

Keywords: methylation; polymorphism; prostate cancer; SLC22A3

Introduction

The organic cation transporter 3, OCT3 (SLC22A3) is increasingly being recognized as an important modulator of human disease and drug response. Recent genome-wide association studies have linked OCT3 to risk loci for prostate cancer, colorectal cancer as well as for other diseases. In prostate cancer, OCT3, which is markedly underexpressed in high Gleason-grade tumors, has been found to be among the lowest expressed genes; in addition, OCT3 expression is associated with progression of prostate cancer. For example, studies have suggested that OCT3 may serve as an important biomarker for Gleason grade. As it transports many important monoamines including serotonin, histamine and norepinephrine, OCT3 appears to have a pleiotropic role in human physiology and pathophysiology.

Although the expression of its paralogs, OCT1 (SLC22A1) and OCT2 (SLC22A2), is restricted mainly to excretory organs such as the liver and kidney,
OCT3 (SLC22A3) exhibits a much broader tissue distribution,7,8,11 Expressed in heart, brain, liver, skeletal muscle, prostate and placenta, OCT3 has a role in the disposition of a variety of cationic substances including endogenous amines and therapeutic and illicit drugs.7,11–13 Important single nucleotide polymorphisms (SNPs) of OCT3 have been identified and associated with its messenger RNA (mRNA) level or risk for prostate cancer, colorectal cancer, coronary artery disease and other human disease.1–3,6,11,14,15 Though several recent studies have investigated the effects of promoter region variants in transporter genes on transcription rates, gene expression and drug response,16–19 there has been no systematic examination of the genetic variants in the promoter region of OCT3.

Epigenetic gene silencing through DNA methylation is one of the important steps in tumorigenesis.20–26 Of the various epigenetic modifications, hypermethylation of the promoter regions of tumor suppressor genes, which represses transcription, has been most extensively studied.21,22,27 DNA methylation has a central role in the tissue-specific expression of transporters and regulates the expression of certain transporters in cancer cell lines.28–32 OCT3 shows significantly lower expression levels in several types of cancers, especially in high Gleason-grade prostate cancer.4,5,13 However, the mechanisms responsible for the reduced expression levels of OCT3 are not understood. The basal promoter of OCT3 is located within a large CpG island extending into exon 1 (Supplementary Figure S1); aberrant methylation of this region could reduce the expression of OCT3.

In this investigation, we examined polymorphisms in the basal promoter region of OCT3 using data from direct sequencing of a large DNA sample set (n = 272) from four racial/ethnic populations to identify OCT3 variants. The functional significance of OCT3 promoter variants in luciferase reporter assays was assessed. Further, several prostate cancer cell lines and primary cancer tissues were screened to determine whether methylation in the OCT3 promoter region results in the underexpression of OCT3 in prostate cancer. Our results demonstrate that a common variant g.489>488A (rs555754) increases the transcription of OCT3 in luciferase reporter assays and is associated with high expression levels of OCT3 in primary human liver tissues. In addition, our results show that epigenetic silencing in the OCT3 promoter region is an important mechanism to suppress the expression of OCT3 in several prostate cancer cell lines and tissues. These observations strongly suggest that both genetic and epigenetic factors critically mediate the expression level of OCT3, and may be important in tumorigenesis and drug responses.

Materials and methods

Tissue and cell lines
Primary human prostate healthy and tumor samples were from Caucasian individuals and obtained from the Comprehensive Cancer Institute Tissue Center at the University of California at San Francisco. The Gleason grade of the prostate cancer tissue varies from 6 to 7 as examined by the Center. Normal Caucasian liver samples were purchased from Asteraed (Detroit, MI, USA) and Capital Biosciences (Rockville, MD, USA). The age of the donors of the liver samples ranges from 36 to 83 years. All the Asian tumor and non-tumor liver samples were collected from liver resections at the University of Hong Kong. The age of the Asian donors for liver tissues ranges from 38 to 82 years. All samples were obtained with informed consent, and the usage was approved by both the Committee on Human Research at the University of California at San Francisco and the Ethics Committee of the University of Hong Kong. Information concerning the tissue donors is listed in the Supplementary Table S2. For determination of OCT3 expression levels, we used 40 samples from Asians and 29 from Caucasians. In methylation studies, 12 liver samples and 16 prostate samples were used. Five and seven cell lines were used for luciferase assay and methylation studies, respectively. All the cell lines were purchased from American Type Culture Collection and (Manassas, VA, USA) validated by the University of California San Fransisco Cell Culture Facility.

Genetic analysis
Genomic DNA samples were collected from unrelated healthy individuals from four major ethnic groups (68 each from European Americans, African Americans, Chinese Americans, and Mexican Americans) as a part of the Study Of PHarmacogenetics In Ethnically Diverse Populations (SOPHIE). To identify polymorphisms in the promoter region of OCT3, a PCR fragment (~706 to +223bp from the translational start site) was amplified and directly sequenced by an automated genetic analyzer using the primers listed in Supplementary Table S1.17 OCT3 genetic variants and their frequencies are listed in Table 1a. Haplotype assembly was performed using the Haplovlew 4.1 program (Broad Institute, Cambridge, MA, USA), based on a standard expectation–maximization algorithm, to reconstruct individual haplotypes from population genotype data. The haplotypes and their frequencies are listed in Table 1b. Nucleotide location number was assigned from the translational start site according to the OCT3 mRNA sequence (GenBank accession number: NM_021977.2). For genotyping the liver samples from Caucasian and Asian donors, the same primers for cloning the OCT3 with luciferase (Supplementary Table S1) were used to amplify the PCR products. The PCR products were processed with ExoSAP-IT (Affymetrix, Santa Clara, CA, USA) for clean-up and then were directly sequenced with the forward primer.

Construction of various reporter plasmids containing OCT3 promoter region variants
To construct the reporter plasmids containing the OCT3 promoter region, the OCT3 promoter region was amplified from genomic DNA samples from individuals having each haplotype listed in Table 1b. The amplified products were inserted into the pGL4.11 (luc2) vectors using the primers containing the restriction endonuclease sites, Nhel and
HindIII (Supplementary Table S1) (Promega Corporation, Madison, WI, USA) and DNA sequences were confirmed by direct sequencing. Hardy-Weinberg equilibrium probabilities were calculated at each SNP position of each ethnic population in this resequencing study of the OCT3 promoter region.

Measurement and analysis of OCT3 promoter activity

Reporter plasmids containing the reference OCT3 promoter (H1) or its variants were transfected into HCT116 (human colon carcinoma), HepG2 (human liver carcinoma), DU145 and PC3 (prostate cancer cell lines), A460, A549 and H838 (human lung carcinoma) cell lines using Lipofectamine 2000 reagents (Invitrogen, Carsland, CA, USA) according to the manufacturer's protocol. The relative luciferase activity was measured as described in previous studies.16,17 Using TFSEARCH: Searching Transcription Factor Binding Sites (ver 1.3) (Computational Biology Research Center, AIST, Japan),33 the possible transcriptional factors (TFs) in this region were predicted using a threshold score ≥ 75. The four TFs with high scores with single or multiple binding sites in the region were specific protein 1 (Sp1), myeloid zinc finger-1 (MZF1), activating enhancer-binding protein 4 (Ap-4) and E1A-binding protein (p300) (Supplementary Figure S2). To examine the effect of Sp1, MZF1, Ap-4 and p300 (Origene, Rockville, MD, USA) on the promoter activity of OCT3, reference (H1) reporter plasmids were co-transfected with increasing amounts of transfection-ready plasmid containing the above TFs (50, 100, 200 and 400 ng). After 24 h, the same measurement as above was used to detect the luciferase activity. The detection of various TFs with western blotting is described in a previous study,7 and the specific antibodies against the TFs were obtained from Santa Cruz Biotechnology (Santa Cruz, CA, USA).

Electrophoretic mobility shift assay

Nuclear protein extracts were prepared from HepG2 cells using the Thermo Scientific NE-PER Nuclear and Cytoplasmic Extraction Kit (Thermo Fisher Scientific, Rockford, IL, USA). Briefly, the cells were pelleted from the experimental conditions by centrifugation at 1000 × g for 5 min, 4 °C. Following the manufacturer's protocol, the nuclear protein was extracted by removing the cytoplasmic protein and freshly prepared for the next step of the electrophoretic mobility shift assay.

The digoxigenin Gel Shift Kit for 3'-end labeling of oligonucleotides (Roche Applied Science, Indianapolis, IN, USA) was used for protein-DNA binding assays. The oligomers used (Supplementary Table S1) contained the studied region with or without variants in the OCT3 promoter region. The oligomers were annealed, labeled, and used in the gel shift reactions according to the manufacturer's instructions (Roche). For supershift experiments, 1 μg of antibodies against Sp1, MZF1, Ap4 and p300

Table 1a Allele frequencies of OCT3 variants in the proximal promoter and 5'-UTR

dbSNP ID	Genomic position (hg18)	Transcription position	Nucleotide change	Allele frequency			
				AA (n = 136)	EA (n = 136)	AS (n = 136)	ME (n = 136)
rs58601841	160689269	–146	C>G	0.028	0.000	0.009	0.000
rs59711975	160689291	–124	C>G	0.019	0.000	0.000	0.000
rs60515630	160689334	–81	G>delGA	0.115	0.007	0.000	0.015
rs5557554	160689413	–2	G>A	0.554	0.500000	0.323	0.385
N/A	160689416	2	T→insGCGGGCC	0.000	0.000	0.077	0.000

Table 1b Frequencies of the common haplotypes in the OCT3 promoter region

ID	g.−146	g.−124	g.−81	g.−2	g.+2 % Haplotypes
	AA	EA	AS	ME	
H1	C	C	G	G	44.6 50 59.2 61.5
H2	G	C	G	G	0 0 0.8 0
H3	G	C	G	A	2.3 0 0 0
H4	C	G	G	T	1.5 0 0 0
H5	C	G	delGA	A	11.5 0.7 0 1.5
H6	C	C	G	A	40 49.3 32.3 36.9
H7	C	C	G	G	0 0 7.7 0

Abbreviations: AA, African American; AS, Asian American; EA, European American; ME, Mexican; n, number of chromosomes; UTR, untranslated region.

Data were obtained from DNA samples from 272 unrelated individuals including 68 from each of four major ethnic groups. Position of the variant is based upon the translational start site.
were added to the reaction mixture, respectively. Reactions were analyzed by electrophoresis through Novex 6% DNA retardation gels (Invitrogen). After electrophoresis and a positively charged nylon membrane (Roche), bands were detected non-isotopically with a Dig Gel Shift Kit, 2nd Generation. ²⁸

Quantification of OCT3 gene expression using quantitative real-time reverse transcription PCR
Using the Allprep DNA-RNA Isolation Kit (Qiagen, Valencia, CA, USA), total RNA was isolated from liver samples. Single-stranded cDNAs were synthesized using a Superscript III first-strand synthesis system for RT-PCR (Invitrogen). Quantitative real-time reverse transcription was performed using a 7500 Fast RT-PCR system (Applied Biosystems, Foster City, CA, USA) with Taqman gene expression assays as described in the previous study. ⁷ To compare the expression in the normal tissue samples to cancerous tissue samples and cell lines, the lowest expressed sample was assigned a value of 1.0 in each group. The relative expression level of the samples was normalized to the expression of human glyceraldehyde 3-phosphate dehydrogenase (hGAPDH) (Supplementary Figure S3 for representative cell lines and tissues).

Methylation and demethylation studies
For the in vitro methylation study, reporter construct (H1) containing the OCT3 promoter was methylated in vitro with S U of SsI methylase (New England Biolabs, Beverly, MA, USA) for each microgram of DNA in the presence of 160 µM S-adenosylmethionine at 37 °C for 3 h, following the manufacturer’s protocol. ²⁸ The methylated reporter constructs were then used for the luciferase assays.

For the demethylation study with 5-aza-2′-deoxycytidine (DNA methylation inhibitor) (Sigma, St Louis, MO, USA), HCT116 cells were precultured to 50% confluence and then cultured for 72 h in medium containing 0, 1, 10 or 100 µM 5-aza-2′-deoxycytidine. ²⁸ Total RNA was prepared from cells using a total RNA Kit (Qiagen). The RNA was then reverse-transcribed using a first-strand DNA Synthesis Kit (Invitrogen). PCR was performed with the forward and reverse primers listed in Supplementary Table S1. The specific RT-PCR for OCT3 primers is listed in the Supplementary Table S1 to detect the fragment cDNA.

Bisulfite sequencing analysis
DNA was treated with sodium bisulfite as described with modifications. ³⁴ DNA (2 µg) was first digested with EcoRV, phenol/chloroform extracted, ethanol precipitated and resuspended in water. DNA was treated with bisulfite at 55 °C for 4 h. After purification, DNA was dissolved in 50 µl, and 1 µl was used for PCR. Touchdown PCR was done for a total of 35 cycles starting at initial annealing temperature of 68 °C and decreasing by 2 °C every two cycles to a final annealing temperature of 58 °C for the final 25 cycles. The product was cloned into the TOPO TA cloning/pCR2.1 vector (Invitrogen). Individual bacterial colonies were subjected to PCR and the products were sequenced. The primers used for the human OCT3 CpG island are listed in the Supplementary Table S1.

Linkage disequilibrium analysis of promoter variant rs555754
Many studies have described significant associations of genetic variants in SLC22A3 with SLC22A3 mRNA expression levels and with human diseases (Supplementary Table S2). Pairwise linkage disequilibrium of rs555754 with the SNPs listed in Supplementary Table S2 was determined using the available information from SNAP (SNP Annotation and Proxy Search Version 2.2, Broad Institute, http://www.broadinstitute.org/mpg/snap/ldsearch.php). This linkage disequilibrium was determined using the population panel CEU (Caucasians from Utah, USA) and CHB + JPT (Chinese from Beijing plus Japanese from Tokyo) from the 1000 Genomes Pilot 1 SNP data set (low-coverage sequencing pilot). The genotype information of rs555754 is not available in the YRI (Yoruba in Ibadan, Nigeria) population panel and thus, linkage disequilibrium could not be determined for the YRI population.

Statistical analysis
The results of the luciferase assays are presented as the mean ± s.d. from two to three independent experiments. Functional differences between reference and variant haplotypes were evaluated using one-way analysis of variance followed by Dunnett’s multiple comparison test. A P < 0.05 was considered significant. A D’Agostino and Pearson’s omnibus normality test (GraphPad Prism 5, GraphPad Software, La Jolla, CA, USA) was used to determine whether the expression levels of OCT3 in liver samples were normally distributed. One-way analysis of variance or unpaired t-test was used to compare the OCT3 mRNA levels among the three or two genotype groups, respectively, using GraphPad Prism version 5.00 (GraphPad Software, San Diego, CA, USA). A P < 0.05 was considered significant.

Results
Genetic polymorphism and haplotype analysis of the OCT3 basal promoter region
A total of five polymorphisms in the OCT3 basal promoter and 5′-untranslated region were identified in samples from 272 unrelated individuals from four major ethnic groups (Table 1a). The five polymorphisms are: g. +2T>insGCGGGCG (N/A); g.–2G>A (rs555754); g.–81G>delGA (rs60515630); g.–124 C>G (rs59711975) and g.–146 C>G (rs58601841) (the numbers are the nucleotide position relative to the transcription start site). The allele frequencies of each polymorphism in each ethnic group are presented in Table 1a. The common SNP, g.–2G>A, was found in all four ethnic groups with high frequency. Seven unambiguous basal promoter haplotypes were identified (Table 1b). In the African American samples, the two common promoter variants, rs60515630 and rs555754, showed linkage disequilibrium with $r^2 = 0.11$ and $D' = 1.0$. Among the five promoter variants discovered in the Pharmacogenomics of Membrane Transporters (PMT)
HepG2 H3, H5 and H6. H1, H2, H4 and H7 have the g./C0 luciferase activities than the rest of the cell lines. (b) The basal promoter region (−384 to +25) showed a higher luciferase activity than the longer counterparts (−1000 to +24 and −2000 to +25). The reason to include a small fragment of coding region (0–25) is to facilitate the cloning because of the high GC percentage in the promoter region. The starting codon in the basal promoter region was compared with that of empty vector (pGL4.11). Data shown represent mean ± s.d. from triplicate wells in a representative experiment.

The reason to include a small fragment of coding region (0–25) is to facilitate the cloning because of the high GC percentage in the promoter region. The starting codon in the basal promoter region was compared with that of empty vector (pGL4.11). Data shown represent mean ± s.d. from triplicate wells in a representative experiment. (a) Effect of promoter segment on luciferase activity. Three segments from the promoter region were cloned into the pGL4.11 vector. The basal promoter region (−384 to +25) showed a higher luciferase activity than the longer counterparts (−1000 to +24 and −2000 to +25). The reason to include a small fragment of coding region (0–25) is to facilitate the cloning because of the high GC percentage in the promoter region. The starting codon in the basal promoter region was compared with that of empty vector (pGL4.11). Data shown represent mean ± s.d. from triplicate wells in a representative experiment. (b) The luciferase activity of basal promoter reporter construct in different cell lines. The human colon carcinoma (HCT116) and human liver carcinoma (HepG2) had higher luciferase activities than the rest of the cell lines. (c) The luciferase activity of seven Haplotypes (H1–H7) from Table 1b. The g.−2A is contained in H3, H5 and H6. H1, H2, H4 and H7 have the g.−2G at the −2 position. **P<0.01 compared with H1.

Figure 1 Luciferase activities in cell lines expressing reporter constructs containing the basal promoter of OCT3. The reporter activity of each construct was compared with that of empty vector (pGL4.11). Data shown represent mean ± s.d. from triplicate wells in a representative experiment. (a) Effect of promoter segment on luciferase activity. Three segments from the promoter region were cloned into the pGL4.11 vector. The basal promoter region (−384 to +25) showed a higher luciferase activity than the longer counterparts (−1000 to +24 and −2000 to +25). The reason to include a small fragment of coding region (0–25) is to facilitate the cloning because of the high GC percentage in the promoter region. The starting codon in the basal promoter region was compared with that of empty vector (pGL4.11). Data shown represent mean ± s.d. from triplicate wells in a representative experiment. (b) The luciferase activity of basal promoter reporter construct in different cell lines. The human colon carcinoma (HCT116) and human liver carcinoma (HepG2) had higher luciferase activities than the rest of the cell lines. (c) The luciferase activity of seven Haplotypes (H1–H7) from Table 1b. The g.−2A is contained in H3, H5 and H6. H1, H2, H4 and H7 have the g.−2G at the −2 position. **P<0.01 compared with H1.

Identification of TFs in the OCT3 basal promoter region and effect of genetic variants on transcription factor binding

Consistent with its broad expression pattern, the OCT3 promoter region exhibited a wide spectrum of predicted TFs (Supplementary Figure S2). Several SNPs fell into predicted TF-binding regions including g.−146C>G, which was within a potential-binding region of MZF1, and g.−81G>delGA, which was in the predicted p300-binding region (Supplementary Figure S2). The common polymorphism, g.−2G>A, was predicted to interact with Sp1. We co-transfected predicted TFs with the OCT3 promoter-driven luciferase constructs (Figure 2a). As a control, the empty vector showed no significant increase in luciferase assay when co-transfected with four TFs (Sp1, MZF1, p300 and Ap4) (data not shown). Among the TFs tested, MZF1 (200 ng) strongly stimulated OCT3 promoter-driven luciferase activity, which resulted in a 3.2-fold increase in luciferase activity (*P<0.05). Higher doses of TFs did not produce higher transcriptional activities, which may reflect lower transcription efficiencies or saturation in the binding of the TFs to their regulatory regions. Sp1 showed modest transcriptional activity and increased luciferase activity from 1.2-fold to 2.4-fold with dosing from 50 to 200 ng (*P<0.05). Both p300 and Ap4 had a weak transcriptional activity. The expression levels of four TFs were also tested before and after co-transfection. MZF1 exhibited the highest expression level among the four TFs in HCT116. After co-transfection of the OCT3 promoter with the TF expression vectors, the four TFs reached similar expression levels, suggesting that MZF1 had a higher transcriptional activity in the OCT3 promoter. All four TFs were expressed in HepG2, and HCT116 showed highest expression of MZF1, consistent with its higher luciferase assay in comparison with the other cell lines (Figure 2c).

The Pharmacogenomics Journal
Using the nuclear protein extract from HepG2, which expressed all four major predicted TFs, three common genetic variants (g.−2G>A, g.−81G>delGA and g.−146C>G) were assayed for their binding affinity to the transcription factors. The oligo-nucleotide containing g.−146G/G showed more nuclear protein binding in band 1 than the oligo-nucleotide with g.−146C/C (Figure 3a). For g.−81G>delGA, the deletion of GA greatly increased the density of band 1, suggesting that there was stronger interactions with the enhancer element (Figure 3a). The density of band 1 was slightly increased by variant g.−2G>A (Figure 3a). Bands 1 and 2 were inhibited after adding unlabeled probes in the electrophoretic mobility shift assay assays (Figure 3b). The stronger interactions of these three variants, as reflected by increased density of band 1, are consistent with the higher luciferase activities of these variants (Figure 1c).

To further define the TFs that bind to the OCT3 promoter region, specific antibodies against the four predicted TFs were applied to electrophoretic mobility shift assay. The specific antibodies resulted in the supershift of band 1 to a higher position (band 4) after forming a DNA–TF antibody complex (Figure 3b). These results confirmed that MZF1, Sp1, Ap4 and p300 were TFs that interact with the promoter region of OCT3 with different transcriptional activity. The primers used for the g.−2G>A covered a predicted SP1 site, but only partially covered a predicted p300 site. The supershift results showed that SP1 was well-shifted and p300 was only shifted partly, likely resulting from the poor binding of the primer to p300. The lower luciferase activity of g.2T>insGCGGGCG in 5′-untranslated region may be because of the interruption of the secondary structure of mRNA (Figure 3c), which results in a higher minimum free energy −18.8 kcal mol−1 than the g.2T with −34.6 kcal mol−1 predicted by the RNAfold web server (http://www.rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi).

Association of promoter region variants of OCT3 g.−2G>A (rs555275) with expression levels in liver

In 29 Caucasian and 40 Asian (Chinese) normal liver samples, the OCT3 mRNA level was significantly higher in Caucasian than Asian samples (Figure 4a), suggesting that there may be different transcription rates of OCT3 in Asian versus Caucasian liver. The relative expression level of representative liver samples from Caucasian and Asian are listed in Supplementary Figure S4. Consistent with the higher luciferase activities of H6 (which contains g.−2A/A), the mRNA levels of OCT3 in liver samples from Chinese with g.−2A/A were significantly higher than liver samples from Chinese with either g.−2G/A or g.−2G/G (n = 40; Figure 4b). Similar results were obtained in 29 liver samples from individuals with European ancestries (Figure 4c).
Figure 3 Electrophoretic mobility shift analysis of OCT3 reference and variant oligonucleotides and prediction of secondary structure of mRNA.
(a) Three paired oligonucleotide probes corresponding to the references and genetic variants (g.–146C and g.–146C>G, g.–81G and g.–81G>delGA, g.–2G and g.–G>A) were used to compared the nuclear protein-binding affinity between the references and variants. DIG-labeled probes (Supplementary Table S1) were incubated with nuclear extracts from HepG2 in the presence or absence of a 25-fold excess of unlabeled competitor as indicated. Band 1 is the nuclear protein–DNA complex. Band 2 and 3 are non-specific band and free probe, respectively. (b) Supershift analysis with transcription factor-specific antibodies. Supershifts were detected for all four transcription factors. The probe was incubated with nuclear extracts from HepG2 cells in the presence or absence of a specific antibody against Sp1, MZF1, Ap-4 and p300 as indicated. Band 1, 2 and 3 are the same annotation as panel c. Band 4 represents the antibody-nuclear protein–DNA complex as supershift band. (c) Prediction of secondary structure of mRNA (1–300) of OCT3 without g. +2T (left panel) or with insertion g. +2T>insGCGGGCG (right panel). Minimum free energy (MFE) is listed below the structure.
distribution of the OCT3 gene expression levels in the liver samples, based on the D’Agostino and Pearson omnibus normality test, was not significantly different from normal ($P > 0.05$). The mean expression values were 13.0 ± 1.7 for Caucasian and 8.1 ± 0.74 for Asian. Post-translational modification often affects the protein expression level—the final product of the mRNA. To validate whether the OCT3 mRNA levels detected in the liver samples correlated with OCT3 proteins level, western blotting was used in four representative liver samples that varied from the lowest (set as 1.0), to modest (6.5 and 12.8) to highest (17.2) mRNA levels. Consistent with the mRNA level, OCT3 protein levels showed a similar trend with their mRNA levels (Figure 4d).

Promoter methylation and OCT3 expression in cell lines and primary tumor tissues

The analysis of the OCT3 basal promoter region showed that it has a very high CG rate, with $>85\%$ of the CG bases. It contains 66 CpG sites in the examined region (Supplementary Figure S1) and a predicted CpG island in the promoter region extending to exon 1 (Figure 5a). These features suggest that methylation can be a major factor influencing its transcription. To test this hypothesis, we first performed bisulfite sequencing analysis encompassing the transcription site in four prostate cancer cell lines with differential tumorigenicity and metastatic capability (LNCaP, DU145, C4-2B and PC3),5,6 plus the colon cancer cell line (HCT116). As shown in Figure 5b, the methylation level varied from low methylation in LNCaP, moderate methylation in DU 145 and C4-2B to heavy methylation in PC3 and HCT116. The methylation mainly occurred at the 5’-end.

Following quantitative real-time reverse transcription, we observed that cell lines with less methylation had higher levels of OCT3 mRNA transcripts and low metastatic capability generally (Figure 5b). Methylated constructs in vitro, using SsII CpG methylase, had dramatic reductions in luciferase activities from 12-fold to 2-fold of empty vector in HCT116 cells (Figure 5c). In OCT3-negative HCT116, OCT3 mRNA levels clearly reactivated with increasing treatment doses of 5-aza-2’-deoxycytidine, a demethylation agent (Figure 5d). Collectively, the data demonstrate that methylation of the promoter region has an important role in expression of OCT3.

To determine whether methylation may explain the reduced expression level of OCT3 in prostate cancer tissues,4 we examined the methylation in eight paired samples of normal and cancerous prostate with high Gleason grade. In prostate cancer samples that had the high Gleason grade from 4 to 5, OCT3 showed a significantly lower expression than paired normal tissue (Figures 6a and b), consistent with previous observations.4 In paired normal tissues, the basal promoter had a low level of methylation ranging from 0.13 to 1.81% (Figure 6c). In contrast, five of eight prostate cancer samples (TP) showed aberrant high methylation levels as TP2 (32.5%), TP3 (18.9%), TP4 (22.4%), TP6 (15.6%) and TP8 (12.7%). The cancerous samples showed much higher methylation levels, primarily at the 5’-end of the promoter (Figure 6c). These data demonstrate that methylation of the OCT3 promoter region may explain the low expression levels of OCT3 in prostate cancer with high Gleason grades, which might be associated with progression of prostate cancer. In contrast to prostate cancer tissue samples, the

Figure 4 The effect of genotype, g.–2G>A (rs555754) on OCT3 expression levels in human liver samples from Asian and Caucasian subjects. Expression of OCT3 in the human liver tissues was determined by a quantitative real-time RT-PCR and western blotting. The horizontal bar for each genotype represents the mean value. The P value is calculated using Student’s t-test. (a) Caucasian liver samples (29) had a significantly higher OCT3 mRNA level ($P = 0.005$) than that of Asian (40). The lowest expression sample from one of the Asian sample is set as 1 and the rest of the samples were normalized to it. The mean values are 13.0 ± 1.7 for Caucasian and 8.1 ± 0.74 for Asian. (b) The effect of genotype, g.–2G>A on OCT3 expression levels in human liver tissues from Asian (Chinese). The individuals with homozygous g.–2A/A had a significantly higher OCT3 mRNA level than those with g.–2G/G and g.–2G/A. (c) The effect of genotype, g.–2G>A on OCT3 expression levels in human liver tissues from Caucasian, which showed the similar trend as those of Asian. (d) Validation of the protein expression level of OCT3 with western blotting from four Asian liver samples with the lowest one (set as 1.0), two modest ones (6.5 and 12.8) and highest (17.2).
liver tumor tissue samples showed similar methylation rates to the paired non-tumor tissues in the OCT3 promoter region (Supplementary Figure S5).

Discussion

Increasingly, OCT3 has been recognized as an important antidiabetes and cancer drug transporter. Genomewide association studies have suggested that SNPs in OCT3 are important risk factors for prostate cancer and that expression of the gene is dramatically reduced in prostate cancer, particularly in cases of high Gleason grade. These studies have led to speculation that OCT3 may serve as a tumor suppressor gene in prostate cancer. Thus, understanding the mechanisms by which OCT3 expression is regulated is important in elucidating the occurrence and pathogenesis of prostate cancer. In this investigation, we describe both novel genetic and epigenetic factors in the basal promoter of OCT3 that regulate its expression levels in healthy and cancerous tissues. These factors may significantly influence its role in drug uptake efficacy and tumorigenesis.

One of the key findings of the study was that a common promoter region variant, g.2G>A (rs555754), found in all ethnic groups at high allele frequencies >32%, enhanced transcription rates in reporter assays and was associated with a higher expression levels of OCT3 in liver samples obtained from individuals with ancestries in Asia and Europe. In a previous study, SNPs associating with low OCT3 expression levels in the liver were found; however, the causative SNP was not identified. In a large sample of human livers, Schadt et al. showed that an intronic SNP (rs518295), which is 6155 bp downstream of rs555754 had a significantly positive association with OCT3 mRNA levels. The rs518295 is in linkage disequilibrium with rs555754 (r² = 0.7).

The significant and consistent underexpression of OCT3 in prostate cancer makes it a candidate tumor suppressor gene. The current investigation suggests that the underlying mechanism for reduced expression of the transporter in prostate cancer involves aberrant methylation of the promoter region of OCT3. As methylation may occur early in prostate cancer and can be detected in body fluids, it may be of potential use in early detection of tumors and for determining prognosis. Further, the level of methylation of the OCT3 promoter may be applied to tumor samples from prostate cancer patients to determine aggressiveness, which might serve as biomarkers for the Gleason scores of prostate cancer. As shown in Figure 5, low expression of OCT3 can be reversed by adding demethylating reagents. If OCT3 is truly a tumor suppressor in prostate cancer or has a biological role in tumor progression, potentially, demethylating drugs such as 5'-azacytidine and decitabine could be used to treat patients with metastatic prostate cancer, combined with other anti-prostate cancer drugs to enhance their length of survival. Although hypermethylation of the promoter region of OCT3 accounts for the low expression level of OCT3 in prostate cancer and cell lines, it is not the only event that suppresses the expression of OCT3 as some of the prostate tumor samples did not show the high methylation level. Other elements in the pre- or post-transcriptional process could also affect the OCT3 expression like mRNA stability involving microRNA and its long 3'-untranslated region. Three genetic variants (g.146C>G, g.124C>G and g.81G>delGA) are located in the potential methylation sites (CpG) (Supplementary Figure S1). Though speculative, these variants, for example g.81G>delGA, could be associated with changes in the methylation status in and around these positions and potentially influence the
expression of OCT3, leading to an increased risk for prostate cancer. Similar to prostate tissue samples, large variation in the expression level of OCT3 in human liver samples was observed. However, in contrast to prostate tumors, the degree of promoter methylation in the paired liver tumor samples was not appreciably higher than in the normal tissues (Supplementary Figure S5). It is likely that the methylation of the OCT3 promoter occurs in a tissue-specific manner, with a high degree of methylation in prostate cancer. The promoters of several other transporters also show tissue-specific methylation pattern.28–32 The variation of OCT3 expression in liver tissue may be due to other regulatory elements of gene expression, for example, in the extra long 3'-untranslated region of the gene.

In summary, the present investigation demonstrates that the common variant, g.-2G>A (rs555754), is associated with a greater transcription rate and higher expression levels of OCT3 in the liver. Hypermethylation of the OCT3 promoter region in prostate cancer is revealed as one of the important mechanisms for its reduced expression. These findings add to the growing body of work on the pharmacogenetic and biological role of OCT3.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgments

The project was supported by NIH grant GM61390. Eugene Chen was supported in part by NIH training grant T32 GM007175. We highly appreciate Dr Suet-Tim Cheung at the University of Hong Kong to provide human liver samples, and Dr Peter Carroll and Dr Hubert Stoppler in the Cancer Tissue Center in UCSF for the prostate cancer tissues. Lu Xu is a visiting graduate student from University of the Pacific.
References

1. Tregouet DA, Konig IR, Erdmann J, Munteanu A, Braund PS, Hall AS et al. Genome-wide haplotype association study identifies the SLC22A3-LPAL2-LPA gene cluster as a risk locus for coronary artery disease. *Nat Genet* 2009; 41: 283–285.

2. Lazar A, Walitza S, Jetter A, Gerlach M, Warkne A, Herpertz-Dahlmann B et al. Novel mutations of the extraneural monovalent transporter gene in children and adolescents with obsessive-compulsive disorder. *Int J Neuropsychopharmacol* 2008; 11: 35–48.

3. Eelles RA, Kote-Jarai Z, Giles GC, Al Olama AA, Guy M, Jugurnauth SK et al. Multiple newly identified loci associated with prostate cancer susceptibility. *Nature Genet* 2008; 40: 316–321.

4. Tomlins SA, Mehra R, Rhodes DR, Cao X, Wang L, Kobayashi Y et al. Integrative molecular concept modeling of prostate cancer progression. *Nat Genet* 2007; 39: 41–51.

5. Cui R, Okada Y, Jang SG, Ku JL, Park JG, Kamatani Y et al. Common variant in 6q26-q27 is associated with distal colon cancer in an Asian population. *Gut* 2011; 60(6): 799–805 [Epub ahead of print].

6. True L, Coleman I, Havley S, Huang CY, Gilford D, Coleman R et al. A molecular correlate to the Gleason grading system for prostate adenocarcinoma. *Proc Natl Acad Sci USA* 2006; 103: 10991–10996.

7. Chen I, Pawlikowski B, Schlesinger A, More S, Stryke D, Johns SJ et al. Role of organic cation transporter 3 (SLC22A3) and its missense variants in the pharmacologic action of metformin. *Pharmacogenet Genom* 2010; 20: 687–699.

8. Baganz NL, Horton RE, Calderon AS, Owens WA, Munn JL, Watts LT et al. Organic cation transporter 3: keeping the brake on extracellular serotonin in serotonin-transporter-deficient mice. *Proc Natl Acad Sci USA* 2008; 105: 18976–18981.

9. Koepsell H, Lips K, Volk P. Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. *Pharm Res* 2007; 24: 1227–1251.

10. Ogasawara M, Yamauchi K, Satoh Y, Yarnaji R, Inui K et al. Recent advances in molecular pharmacology of the histamine systems: organic cation transporters as a histamine transporter and histamine metabolism. *J Pharmacol Sci* 2006; 101: 24–30.

11. Nies AT, Koepsell H, Winter S, Burk O, Klein K, Kerb R et al. Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholesterol in human liver. *Hepatol* 2009; 50: 1227–1240.

12. Yonezawa A, Inui K. Organic cation transporter OCT/SLC22A and H+-organic cation antipporter MATE/SLC47A are key molecules for nephrotoxicity of platinum agents. *Biochem Pharmacol* 2011; 81: 563–568.

13. Yokoo S, Masuda S, Yonezawa A, Terada T, Katsura T, Inui K. Significance of organic cation transporter 3 (SLC22A3) expression for the cytotoxic effect of oxaliplatin in colorectal cancer. *Drug Metab Dispos* 2008; 36: 2299–2306.

14. Waters KM, Le Marchand L, Kolonel LN, Monroe KR, Strom DO, Henderson BE et al. Generalizability of associations from prostate cancer genome-wide association studies in multiple populations. *Cancer Epidemi Biomarkers* 2009; 18: 1285–1289.

15. Kader AK, Sun JL, Isaacs SD, Wiley KE, Yan GF, Kim ST et al. Individual and cumulative effect of prostate cancer risk-associated variants on clinicopathologic variables in 5,895 prostate cancer patients. *Prostate* 2009; 69: 1195–1205.

16. Yee SW, Shima JE, Hesselson S, Nguyen L, De Val S, LaFond RJ et al. Identification and characterization of proximal promoter polymorphisms in the human concentrative nucleoside transporter 2 (SLC28A2). *J Pharmacol Exp Ther* 2009; 328: 699–707.

17. Choi JH, Yee SW, Kim MJ, Nguyen L, Lee JH, Kang JO et al. Identification and characterization of novel polymorphisms in the basal promoter of the human transporters, MATE1. *Pharmacogenet Genom* 2009; 19: 770–780.

18. Hesselson SE, Matsson P, Shima JE, Fukushima H, Yee SW, Kobayashi Y et al. Genetic variation in the proximal promoter of ABC and SLC superfamilies: liver and kidney specific expression and promoter activity predict variation. *PLoS One* 2009; 4: 1–12.

19. Tahara H, Yee SW, Urban TJ, Hesselson S, Castro RA, Kawamoto M et al. Functional genetic variation in the basal promoter of the organic cation/ carnitine transporters OCTN1 (SLC22A4) and OCTN2 (SLC22A5). *J Pharmacol Exp Ther* 2009; 329: 262–271.

20. Brena RM, Costello JF. Genome-epigenome interactions in cancer. *Hum Mol Genet* 2007; 16: R96–105.

21. Das PM, Singal R. DNA methylation and cancer. *J Clin Oncol* 2004; 22: 4632–4642.

22. Rodríguez-Paredes M, Esteller M. Cancer epigenetics reaches mainstream oncology. *Nat Med* 2011; 17: 310–339.

23. Ezzeldin HH, Lee AM, Mattison LK, Diasio RB. Methylation of the DPDY promoter: an alternative mechanism for dihydropyrimidine dehydrogenase deficiency in cancer patients. *Clin Cancer Res* 2005; 11: 8699–8705.

24. Yu JS, Freimuth RR, Culverhouse R, Marsh S, Watson MA, McLeod HL. DNA methylotype analysis in colorectal cancer. *Oncl Rep* 2008; 20: 921–927.

25. Yu JS, McLeod HL. Methylation of the DPDY promoter and dihydropyrimidine dehydrogenase deficiency. *Clin Cancer Res* 2006; 12: 3864.

26. Teodoridis JM, Hall J, Marsh S, Kannan HD, Smyth C, Curto J et al. CpG island methylation of DNA damage response genes in advanced ovarian cancer. *Cancer Res* 2005; 65: 8961–8967.

27. Zhang X, Soong R, Wang K, Li L, Davie JR, Guarcello V et al. Suppression of DPDY expression in RKO Cells via DNA methylation in the regulatory region of the DPDY promoter: a potentially important epigenetic mechanism regulating DPDY expression. *Biochem Cell Biol* 2007; 85: 337–346.

28. Kikuchi R, Kusuhara H, Hattori N, Shiotai K, Kim I, Gonzalez FJ et al. Regulation of the expression of human organic anion transporter 3 by hepatocyte nuclear factor 1α/β and DNA methylation. *Mol Pharmacol* 2006; 70: 887–896.

29. Ichihara S, Kikuchi R, Kusuhara H, Imai S, Maeda K, Sugiyama Y. DNA methylation profiles of organic anion transportating polypeptide B3 in cancer cell lines. *Pharm Res* 2010; 27: 510–516.

30. Kikuchi R, Yagi S, Kusuhara H, Imai S, Sugiyama Y, Shiotai K. Genome-wide analysis of epigenetic signatures for kidney-specific transporters. *Kidney Int* 2010; 78: 569–577.

31. Imai S, Kikuchi R, Kusuhara H, Yagi S, Shiotai K, Sugiyama Y. Analysis of DNA methylation and histone modification profiles of liver-specific transporters. *Mol Pharmacol* 2009; 75: 568–576.

32. Terada T, Inui K. Gene expression and regulation of drug transporters in the intestine and kidney. *Biochem Pharmacol* 2007; 73: 440–449.

33. Tokuzawa Y, Kaho E, Maruyama M, Takahashi K, Mitsui K, Maeda M et al. Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell-self-renewal and mouse development. *Mol Cell Biol* 2003; 23: 2699–2708.

34. Hong CB, Moorefield KS, Jun P, Aldape KD, Kharbanda S, Phillips HS et al. Epigenome scans and cancer genome sequencing converge on WNK2, a kinase-independent suppressor of cell growth. *Proc Natl Acad Sci USA* 2009; 104: 10974–10979.

35. Koeneman KS, Yeung F, Chung LW. Osteomimetic properties of prostate cancer cells: a hypothesis supporting the predilection of prostate cancer genome-wide association studies in multiple populations. *Cancer Epidemi Biomarkers* 2009; 18: 1285–1289.

36. L Chen

37. Schadt EE, Molony C, Chudin E, Hao K, Lum PY et al. DNA methylotype analysis in colorectal cancer. *Oncl Rep* 2008; 20: 921–927.

38. Brosemke W, Plass C, Costello JF. Mining methylation for early detection of common cancers. *PLoS Med* 2006; 3: 2184–2185.

Supplementary Information accompanies the paper on the *The Pharmacogenomics Journal* website (http://www.nature.com/tpj)