Rezumat

Tratamentul chirurgical al pericarditelor maligne – rezultate post-operatorii imediate în 76 de cazuri consecutive

Introducere: Epansamentul pericardic, acumularea de lichid în sacul pericardic, se poate dezvolta în orice tip de cancer. A fost constatat la până la 20% din pacienții oncologici.

Metodă: Am efectuat un studiu retrospectiv a pacienților cu pericardita, internați în clinica noastră în anii 2010-2015. Am inclus în studiu 76 de pacienți consecutivi care au avut indicație de drenaj pericardic: pericardocenteza, fereastra pericardică subxifoidiană, fereastra pericardică paraxifoidiană stângă, chirurgie toracică video-asistată (CTVA) sau chirurgie toracică clasică. Am avut pacienți cu vârste cuprinse între 28 și 83 de ani, dintre care 23 pacienți au fost admisă cu tamponadă cardiacă.

Rezultate: Supraviețuirea postoperatorie imediată a fost 97.3%. Supraviețuirea postoperatorie la 30 de zile – 81.5 %.

Concluzii: Prognozul imediat al pacienților cu pericardită neoplazică este influențat de sindromul debitului cardiac scăzut postoperator (Low-Cardiac-Output-Syndrome – LCOS), care rămâne principală cauză de mortalitate. Prognozul pe termen lung este legat de tipul neoplaziei. Cea mai eficientă tehnică chirurgicală, cu cea mai mică rată de recurență, este fereastra pericardopleurală efectuată toracoscopic sau CTVA. Pericardocenteza are raza de recurență cea mai ridicată – 90% și este asociată cu rate crescute de complicații cardiace și de mortalitate

Cuvinte cheie: efuziune pericardică, pericardită neoplazică,
tamponadă cardiacă, chirurgie toracică video-asistată, (CTVA), fenestrare pericardică, fereastră pericardică subxifoidiană, fereastră pericardică paraxifoidiană

Abstract

Introduction: Pericardial effusion, accumulation of fluid in the pericardial sac, may develop in any type of cancer. It was revealed in up to 20% of oncological patients.

Method: We made a retrospective study of patients with pericardial effusion presented in our clinic between 2010 and 2015. We included 76 consecutive patients with indication for pericardial drainage: we performed on them 80 surgical procedures: pericardocentesis, subxiphoid pericardial window, left paraxiphoidian pericardial window, intercostal video-assisted thoracic surgery (VATS) pericardial fenestration, and classical thoracic surgery (fenestration or partial pericardiectomy). We had patients with ages between 28 and 83 years. 23 patients were admitted with cardiac tamponade.

Results: The immediate postoperative survival is 97.3% and the 30-days-postoperative survival is 81.5%. The immediate postoperative mortality is 2.7% and the 30-days-postoperative mortality is 8.5%.

Conclusions: The immediate prognosis of the patient with malignant pericardial effusion is influenced by the risk of postoperative Low-Cardiac-Output-Syndrome (LCOS), or pericardial decompression syndrome (PDS), which remains the main cause of mortality. The long-term prognosis is related to the type of malignant tumor. The most effective technique with the lowest rate of recurrence is pericardio-pleural window done thoracoscopically by VATS; pericardocentesis has the highest rate of recurrence – 90% and is associated with high rates of cardiac complications and mortality.

Key words: pericardial effusion, neoplastic pericarditis, cardiac tamponade, video-assisted thoracic surgery (VATS) pericardial fenestration, subxiphoidian pericardial fenestration, paraxiphoidian pericardial fenestration

Introduction

Pericardial effusion is an accumulation of fluid in the pericardial sac. It has been determined that the normal quantity of fluid is less than 50 ml (1).

Patients may develop pericardial effusion in any type of cancer, but most frequently in lung cancer, breast cancer and lymphoma (2-4); the long-term prognosis of those patients depends on their type of malignancy and is not influenced by age, sex, surgical technique of pericardial drainage, or direct interest of the pericardium by the malignant process. Metastatic tumors of the pericardium are 40 times more frequent than primary tumors (5). The incidence of abnormal pericardial fluid in patients with malignancy has been revealed in 1-21% of patients (6,7).

The rate of fluid accumulation in the pericardium is very important: fast accumulation of small amounts can cause tamponade; slow accumulations of large quantities of fluid in a long period of time can be surprisingly well tolerated (8).

Echocardiography is the main method for pericardial effusion assessment, detecting effusion, location and hemodynamic effect, concomitant heart or pericardial disease (5,9). The CT scan visualizes the presence, topography and thickness of the pericardial effusion, allowing the surgeon to choose the best surgical approach (3,10).
Materials and Methods

We studied retrospectively all the patients with pericardial effusion presented in our clinic between 2010 and 2015. We included in the study 76 patients who had indication for pericardial drainage. All patients had an underlying malignancy. There were 3 patients who had recurrence, and had to be submitted to another procedure to evacuate the pericardial fluid.

The surgical procedures were chosen according with the clinical state of the patient, using local or general anesthesia: pericardocentesis, subxiphoid pericardial window, left paraxifoidian pericardial window, intercostal video-assisted thoracic surgery VATS, or classical thoracic surgery.

Results

The 76 patients were 43 men (55%) and 34 women (45%), with ages between 28 and 83 years. We observed an increased percentage of smokers (61%) in patients with pericardial effusion.

Thirty percent of the patients (23 cases) presented with cardiac tamponade and we performed pericardial drainage in emergency; some of them needed correction of coagulation status, severely altered after chemotherapy or by the treatment of associated diseases.

Beside the pericardial drainage there were performed associated surgical procedures in 26 patients. We had 23 cases with pericardial drainage and chest tube drainage of the pleural fluid; in 3 cases we performed a pericardopleural window together with a pulmonary resections: 2 wedge-resections and one lobectomy.

Three patients developed recurrence of the pericardial fluid and needed reintervention: two patients had one recurrence, and one patient had 2 recurrences. The rate of recurrence was 3.89%.

Regarding the underlying malignancy, the largest number of patients have developed pericardial effusion during the evolution of lung cancer – 54, followed by breast cancer – 16, and 7 patients had another type of cancer: uterin cervical cancer – 3, Hodgkin lymphoma – 1, colon – 1, lip – 1, ovary – 1 (Fig. 2).

Patients underwent different types of surgery, according to clinical status, topography of the fluid and presence of pleural fluid (Fig. 3). There was one female patient, known with stage IV cervix cancer, with right pleural and pericardial effusion at admission, which refused the pericardial drainage and accepted only the right chest tube drainage, along with the extensive medical treatment. Unfortunately

![Figure 1](image1.png)
Figure 1. Distribution of cases with pericardial effusion according to the presence of cardiac tamponade at admission

![Figure 2](image2.png)
Figure 2. Underlying malignancies in patients with pericardial effusion from the lot of study
The immediate postoperative survival is 97.3%. We had two patients (with stage IV cancers) who developed severe bradycardia and cardiac arrest at pericardiocentesis, during the evacuation of the pericardial fluid. Specific resuscitation measures were performed; both patients died within next 24 hours. The immediate postoperative mortality is 2.7%.

At one month survival is 81.5% (Table 1). The 30-days postoperative mortality is 8.5%.

Table 1. Immediate survival of oncologic patients with pericardial drainage, according to various variables

Variables	Patients (n)	Rate of survival (%)	Value p	
		48 h	1 month	
Gender				
Masculin	43	95.5	79.5	0.09
Feminin	34	100	88.8	
Age				
>65 Years	10	100	70	0.61
<65 Years	67	97.1	85.7	
Underlying malignancy				
Pulmonary	53	98.2	87.5	0.34
Breast	16	94.1	82.3	
Others	7	100	57.1	
Aspect of pericardial fluid				
Hemoragic	38	95	85	0.05
Serous	31	100	83.8	
Serohematic	7	100	87.5	
Smoking status				
Smoker	46	97.9	79.1	0.06
Nonsmoker	30	96.8	87.5	
Cardiac tamponade				
Present	23	91.3	78.2	0.11
Not present	57	100	2.4	

Figure 3. Type of surgical procedure performed for pericardial drainage in the lot of study. VATS = Video-Assisted-Thoracic-Surgery
Discussions

Pericardial effusion may appear frequently in patients with malignancies. Heart and pericardium metastases can be detected in autopsy in 15-20% of cancer patients (11) and nonmalignant pericardial effusion in 7% of patients (12). In our study, as we found in the literature (3, 10, 13), the most frequent type of cancer in patients with pericardial effusion was lung cancer, perhaps because lung cancer is the most frequent malignancy that we encounter in our daily practice and in which we have expertise (14-18). Most of those patients are severely affected by the evolution and complications of their malignancy (which may be multiple), by oncological treatments and their side effects, by their disfunctional immunological status and associated diseases (cardiac, renal, hepatic etc.).

Currently there is no standard effective treatment for malignant pleural effusion (19).

If the measured pericardial effusion is less than 1 cm, it usually does not progress (12). Patients without clinical symptoms should be kept under close observation, and treated for the underlying cancer. This does not affect mortality (12).

For pericardial drainage the following procedures can be used: pericardiocentesis, balloon pericardiectomy, subxiphoid or para-xiphoid window (Fig. 4), video-assisted thoracic surgery (VATS) pericardo-pleural fenestration (Fig. 5), thoracotomy pericardial window (Fig. 6), pericardial-peritoneal window, and pericardectomy via sternotomy or thoracotomy (20). The goals of the pericardial drainage in oncological patients are to relieve symptoms, to obtain fluid and tissue for diagnosis, and to insure a low recurrence (2,20). In our study we performed almost all of those surgical procedures (Fig. 4).

In 32 cases we performed the para-xiphoidian approach (Fig. 5) developed and published by us in 2010 (11). The para-xiphoidian pericardial drainage can be performed under local anesthesia, knowing that in tamponade the blood pressure is...
maintained by increased sympathetic
tonus, which is interrupted at the induction
of the general anesthesia, leading to hemo-
dynamic collapse (11).

In 4 cases we performed transthoracic left
intercostal pericardial needle drainage using
ultrasound guidance because no other point of
access was available (subxiphoidian or
parasternal left or right), due to the anatomy
modification caused by the underlying disease.
Three of those 4 patients were in tamponade
and the transthoracic pericardiocentesis was
performed in emergency. Such difficult cases
emphasize the need to perform a thoracic CT-
scan in addition to echocardiography in order
to assess correctly the anatomical modifica-
tions and the intrathoracic lesions due to
malignancy and oncological treatment (espe-
cially radiotherapy).

Malignancy is a predictive factor of post-
operative Low-Cardiac-Output-Syndrome
(LCOS) after pericardial drainage (21). To
prevent this potential lethal complication, it
is mandatory to evacuate very slowly the
pericardial fluid, to closely monitor the heart
and to administrate intravenous inotropic
support as soon as needed (3).

Immediate postoperative mortality in our
study was 2.7% and 30-days postoperative
mortality was 8.5% - the values are very good
compared to some published: 36% operative
mortality and 32% at 30 days in malignant
patients (22).

Studies have shown that the most effective
technique with the lowest rate of recurrence is
pericardopleural window done thoracoscopically by video-assisted thoracic surgery
(VATS); the pericardial drainage done by
thoracotomy and pericardoperitoneal window
have a 10% rate of recurrence. Pericar-
docentesis has the highest rate of recurrence –
90% - and is associated with high rates of
mortality and cardiac complications (2).

In our study we had 3 patients with 4
recurrences: 2 recurrences after left paraxi-
foidian drainage (solved by subxifo-
dian drainage, and by VATS pericardopleural
fenestration, respectively), 1 case after sub-
xifoian drainage (solved by open partial peri-

cardiectomy) and 1 case after pericardop-
pleural window (solved by paraxiphoidian
drainage). All 3 patients were stage IV malig-
nancy (lung and breast. The rate of recurrence
was 3.89 %. In the literature we found
published a recurence rate of 13.6% (22) and of
19% (23) in patients with malignancy.

Conclusions

Pericardial effusion in neoplastic patients
should be evaluated by cardiac ultrasound
and, whenever possible, by thoracic CT-scan,
in order to evaluate correctly the intra-
thoracic modifications due to malignancy
and oncological treatment, and to choose the
best pericardial approach in every case.

The immediate prognosis of the patient
with malignant pericardial effusion is
influenced by the risk of postoperative Low-
Cardiac-Output Syndrome (LCOS), which
remains the main cause of mortality. Slow
evacuation, heart monitoring and inotropic
support lower the risk of the LCOS
and improve the immediate postoperative
survival.

The long-term prognosis overlaps the
prognosis of the underlying malignancy.

Conflict of Interest

None to declare.

References

1. Horvat T, Fudulu D. Fiziologia pericardului. In “Pericardul”. Bucuresti: Editura Academiei Romane; 2015. p. 55-63.
2. Singh D, Katic MR. Malignant Pericardial Effusions. In “General Thoracic Surgery” 7th Edition, sub red. Shields TW. Philadelphia: Lippincott Williams & Wilkins; 2009. p. 885-890.
3. Horvat T, Ciuche A. Pericarditele Maligne. In “Tratat de Chirurgie” sub red. Popescu I. volumul IV “Chirurgie Toracica” sub red. Horvat T. Bucuresti: Editura Academiei Române; 2008. p. 347-357.
4. Imazio M, Colopi M, De Ferrari GM. Pericardial diseases in patients with cancer: contemporary prevalence, management and outcomes. Heart. 2020;106(8):569-574.
5. Maisch B, Seferović PM, Ristić AD, Erbel R, Riemmüller R, Adler Y, et al. Guidelines on the Diagnosis and Management of Pericardial Diseases Executive Summary: The Task Force on the Diagnosis and Management of Pericardial Diseases of the European Society of Cardiology. European Heart Journal. 2004;25(7):587-610.
6. Kazantzis T, Bibas BJ, Dela-Vega AJ, Nabuco P, Lauricell LL, Pego-
Fernandes PM, Terra RM. Predictors of hospital discharge in cancer patients with pericardial effusion undergoing surgical peri-
Immediate Postoperative Results in the Surgical Treatment of Neoplastic Pericarditis – 76 Consecutive Cases

1. Cullinane CA, Paz IB, Smith D, Carter N, Grannis FW. Prognostic factors in the surgical management of pericardial effusion in the patient with concurrent malignancy. Chest. 2004;125(4):1328-1334.

2. Roberts JR, Kaiser LR. Pericardial Procedures. In “Mastery of Cardiothoracic Surgery” 2nd edition. Philadelphia: Lippincott Williams & Wilkins; 2007, p. 254-261.

3. Cullinane CA, Paz IB, Smith D, Carter N, Grannis FW. Prognostic Factors in the Surgical Management of Pericardial Effusion in the Patient With Concurrent Malignancy. Chest. 2004;125(4):143–147.

4. Refaat MM, Katz WE. Neoplastic Pericardial Effusion. Clin Cardiol. 2011;34(10):593–598.

5. Cuche A, Nistor C, Motas C, Horvat T. Chirurgia Miniinvația în Tratamentul Pleuro-Pericarditelor Maligne. Chirurgia (Buc). 2012;107(2):206-212.

6. Motas C, Motas N, Rus O, Horvat T. Left ParaXifoidian Aproach For Drainage Of Pericardial Effusions. Interact Cardiovasc Thorac Surg. 2010;10(1):4-6.

7. Laham RJ, Cohen DJ, Kuntz RE, Baim DS, Lorell BH, Simons M. Pericardial Effusion In Patients With Cancer: Outcome With Contemporary Management Strategies. Heart. 1996;75:67-71.

8. Oshima Y, Tabata T, Nonomura R, Sasaki T, Mitomo H, Ishibashi N, et al. Pericardial Fenestration and Multidisciplinary Treatment to Improve the Prognosis of the Malignant Pericarditis Due to Lung Cancer. Kyobu Geka. 2020;73(1):63-67. Japanese

9. Motas N, Motas C, Davideascu M, Blosus C, Rus O, Bobocea A, et al. Solitary pulmonary nodule-150 resected cases. Chirurgia (Buc), 2010;105(5):195-201.

10. Nistor C, Motas N, Motas C, Davideascu M, Tetu M, Vasiliiu C, et al. Surgical procedures in broncho-pulmonary carcinoid - our experience of 92 consecutive cases. Acta Endo (Buc). 2009;5(3):359-370.

11. Zhang J, Zhang Q, Chen X, Zhang N. Management of neoplastic pericardial disease. Herz. 2019 Jul 11. doi: 10.1007/s00059-019-4833-4. (Epub ahead of print).

12. Dediu M, Ion O, Ion R, Alexandru A, Median D, Gal C, et al. Impact of adjuvant chemotherapy in stage IB non-small-cell lung cancer: An analysis of 112 consecutively treated patients. J BUON. 2012;17(2):317-22.

13. Rus D, Motas N, Achim D, Horvat T. Bronchoanastomotic and bronchoplastical resections in pulmonary malignancy retrospective study 2000 - 2009. Chirurgia(Buc). 2014;109(4):455-60.

14. Motas N, Davideascu M, Manolache V, Burelca A, Horvat T. Null 30-Days Mortality After 72 Consecutive Left Open Pneumonectomies for Lung Cancer. J Thorac Oncol. 2017;12(11):S2:S2350-S2350.

15. Jianu E, Motas N, Nicolae R, Dumitrascu O, Horvat T. The surgical management of pericardial effusions in cancer patients. Proc.Rom.Acad., Series B. 2015;Supplement 1:112-115.

16. Sabzi F, Faraji R. Predictors of Post Pericardiotomy Low Cardiac Output Syndrome in Patients With Pericardial Effusion. J Cardiovasc Thorac Res. 2015;7(1):18-23.

17. Balla S, Zea-Vera R, Kaplan RA, Rosengart TK, Wall MJ, Ghatra RK. Mid-Term Efficacy of Subxiphoid Versus Transpleural Pericardial Window for Pericardial Effusion. J Surg Res. 2020;252:9-15. Available online 23 March 2020.

18. Di Liso E, Menichetti A, Dieci MV, Ghiotto C, Banzato A, Bianchi A, et al. Neoplastic Pericardial Effusion: A Monocentric Retrospective Study. J Palliat Med. 2019;22(6):691-695.