Diabetes and Daytime Sleeping: Systematic Review

Yasser Wadi Alanazi a*

a Family Medicine Physician, Ministry of Defense, Tabuk, Saudi Arabia.

Author’s contribution

The sole author designed, analyzed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/JPRI/2022/v34i49B36427

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here:

https://www.sdiarticle5.com/review-history/91344

ABSTRACT

Background: The relationship between sleep disturbance and diabetes is dual-sided. Chronic sleep disturbance increases the chance of developing insulin resistance, while diabetes reduces sleep quality.

Objective: To address the aspects of insufficient sleep, diabetes mellitus, and their mutual interactions and interlinkages. The main objectives is to address the role and effect of diabetes on sleep. Methods: systematic review. A systematic search was done in PubMed, MEDLINE through Clarivate, Web of Science through Clarivate, and EBSCO. Studies retrieved were managed in Rayyan–Intelligent systematic reviews website for duplicate removal and screening.

Results: DM is one of the most widespread illnesses in the world. In addition to directly disrupting sleep due to nocturia, polyuria, diabetic neuropathy, and neuropathy pain, DM has also been linked to a number of chronic illnesses, including obstructive sleep apnea, cardiovascular issues, hypertension, cerebrovascular accidents, and depression, all of which can lower quality of life and negatively affect sleep. The patient may not bring the sleep issues during their visit to healthcare providers, with acute issues taking precedence during their visit.

Conclusion: DM causes night sleep disturbances which eventually lead to daytime sleeping. Sleep education should be considered an essential part in the diabetic management armamentarium.

Keywords: Diabetes mellitus; sleep quality; quality of life; sleep disturbance; nocturnal hypoglycemia.
1. INTRODUCTION

“Diabetes mellitus is defined by chronic hyperglycemia caused by a malfunction in carbohydrate, lipid, and protein metabolism” [1]. “Type 2 diabetes mellitus (T2DM) is the most common type of diabetes, accounting for 90% of cases and impacting over 460 million people worldwide, with forecasts predicting an increase to over 700 million in only 25 years. T2DM is primarily caused by insulin resistance in skeletal muscle, liver, and adipose tissue, which finally leads to pancreatic cell dysfunction and failure” [2]. “These deficiencies lead to a chronic hyperglycemic condition, which, if addressed, can lead to significant consequences such as macrovascular and microvascular illness. Over the last century, there has been an inverse fall in sleep duration, mirroring the secular rise in T2DM” [3].

“Sleep is important for regulating many physiologic functions that relate to metabolism. Because of this, there is substantial evidence to suggest that sleep habits and sleep disorders are related to diabetes risk” [4].

“Sleep deprivation and diabetes have a two-way link. Chronic sleep disruption increases the risk of developing insulin resistance, while diabetes reduces sleep quality. Sleep disruptions, both qualitative and quantitative, considerably increase the chance of acquiring diabetes. When considering the quantitative element, it should be noted that both short and long durations of sleep are related with a higher prevalence of diabetes, with 7-8 h per day posing the lowest risk, albeit the underlying mechanisms and causes in both scenarios may differ” [5].

“Sleep disturbances are substantially more common in diabetics than in individuals without diabetes. Multiple factors may contribute to insomnia in diabetics, including peripheral neuropathy-related discomfort or pain, restless legs syndrome, periodic limb movements, and rapid changes in blood glucose levels during the night, resulting in hypoglycemic and hyperglycemic episodes, nocturia, and associated depression” [6]. “Diabetes patients have a considerably higher chance of developing depression than their nondiabetic counterparts, and depression is one of the major causes contributing to poor sleep in this population. Furthermore, diabetes has numerous effects on the central nervous system, including changes in neurobehavioral and neurotransmitter functioning, as well as autonomic activities, and can negatively affect endocrine functions, causing sleep problems” [7].

1.1 Aim

The purpose of this paper is to discuss the issues of insufficient sleep, diabetes mellitus, and their mutual interactions and interconnections. The primary goal is to investigate the role and impact of diabetes on sleep.

2. MATERIALS AND METHODS

2.1 Sample and Study Groups

PubMed and EBSCO Information Services were chosen as the search databases for the publications used within the study, as they are high-quality sources. PubMed is one of the biggest digital libraries on the internet, created by the National Center for Biotechnology Information (NCBI), which is part of the United States National Library of Medicine. Topics concerning the aspects of insufficient sleep, diabetes mellitus, and their mutual interactions and interlinkages. The main objectives is to address the role and effect of diabetes on sleep were used in the making of the article. The founded articles were screened by titles, and reviewing the abstracts.

Inclusion criteria: the articles were selected based on the relevance to the project which should include one of the following topics; ‘Diabetes mellitus, Sleep quality, Quality of life, Sleep disturbance, Nocturnal hypoglycemia’.

Exclusion criteria: all other articles which do not have one of these topics as their primary end, or repeated studies, and reviews studies were excluded.

2.2 Statistical Analysis

The data will be analysed without the use of any software. The data was extracted using a specified form that included (publication title, author's name, objective, summary, results, and outcomes). To ensure validity and minimise errors, each member’s results were double-revised.

During the article selection process, studies and their results were double-reviewed to ensure that we enrol research related to the purpose of our study and to avoid or reduce inaccuracies in the findings.
3. RESULTS

Diabetes is one of the most common diseases worldwide. Diabetes, in addition to causing direct sleep disturbances due to nocturia, polyuria, diabetic neuropathy, and neuropathy pain, has been linked to a number of chronic illnesses such as obstructive sleep apnea, cardiovascular complications, hypertension, cerebrovascular accidents, and depression, all of which can affect sleep and quality of life. The patient may not bring up the sleep concerns during their visit to healthcare providers, as urgent issues may take precedence.

Table 1. Relationship between diabetes and sleep disturbances (daytime sleep)

Author and publishing year	Study area	Methodology	Outcome
Safa Barakat et al. 2019 [8]	Amman, Jordan	A cross-sectional study was carried out at the National Center for Diabetes, Endocrinology and Genetics (NCDEG) in Amman, Jordan. A total of 1,211 (540 male and 671 female) patients with T2DM were recruited. Data were collected using the Pittsburgh sleep quality index (PSQI) to assess the sleep quality with a cutoff point of PSQI > 8. Participants’ demographic background data were also recorded. Statistical analysis was conducted using SPSS version 22.	Poor sleep quality was reported in 81% of participants. Multivariate logistic regression analysis revealed that poor sleep quality was significantly associated with high HbA1c.
Abdulaziz Darraj et al. 2018 [9]	Jazan, Saudi Arabia	In 2018, an analytical cross-sectional study of 307 diabetes patients was undertaken in Jazan, Saudi Arabia. The study participants were chosen using a multistage cluster random selection method. The Pittsburgh Sleep Quality Index was used to assess sleep quality (PSQI). Data on patient characteristics were gathered through patient interviews, while medical data was gathered from patients’ files. The determinants of poor sleep quality were identified using logistic regression analysis.	Poor sleep quality among diabetic patients is a prevalent health problem. The prevalence of poor sleep quality was 55.4% (95% CI 49.7-60.8).
Seyed Morteza Shamshirgaran et al. 2017 [10]	Iran	A cross-sectional study of diabetic patients sent to the Ardabil diabetes clinic in the northwest of Iran. The study participants were chosen using a questionnaire. Data on sociodemographic lifestyle characteristics and psychological discomfort were gathered using a questionnaire.	According to the results of the present study, age, duration of disease, psychological distress and high level of cholesterol were independently associated with poor sleep quality.
Samantha B. J. Schipper et al. 2021 [11]	Multinational	A literature search was performed in PubMed from inception until January 2021, using MeSH and tiab search terms indicating sleep disorders and type 2 diabetes mellitus.	Sleep disorders are highly prevalent in people with type 2 diabetes, negatively affecting health outcomes.
Amarabalan Rajendran et al. 2012 [12]	India	The study included 120 type 2 diabetes patients who attended an endocrinology clinic at a tertiary-care hospital. The Pittsburgh Sleep Quality Index was used to assess the sleep quality of all patients (PSQI). A Global Sleep Quality score of 5 can tell the difference between good and bad sleepers.	Patients with type 2 diabetes have a significant prevalence of sleep disruption. The mean global PSQI score in this population was 7.08 (standard deviation, 3.89), indicating poor sleep quality. Sixty-nine percent of patients received a global PSQI score of 5, suggesting that they slept poorly. The global PSQI score was favourably connected to the duration of diabetes and was also unaffected by age, gender, body mass index, HbA1c, or medicines.
Tadeg Jemere et al. 2019 [13]	Ethiopia	From April 5 to May 5, 2018, Jimma University Medical Center (JUMC) conducted an institution-based comparative cross-sectional study. During the time of data collection, the Hospital served a total of 2594 persons with type 2 diabetes. The source groups were all adult Type 2 DM patients enrolled at JUMC and healthy persons who came to the hospital for regular reasons.	The prevalence of poor sleep quality was 55.6% among people with type 2 diabetes mellitus and 32.3% among controls.
4. DISCUSSION

Clinical studies have revealed that up to one-third of diabetic patients had concomitant sleep problems, compared to 8.2% of non-diabetic controls [16]. “According to a research poll done at the University of Pittsburgh, more than half of type 2 DM patients are likely to report being “bad sleepers.” Patients with type 2 diabetes had a higher risk of having a low Pittsburgh Sleep Quality Index (PSQI)” [17]. “(The PSQI is a validated tool for assessing sleep quality and pattern in older persons.) It distinguishes poor sleepers from normal sleepers by examining seven aspects of sleep over a one-month period)” [17]. Common insomnia characteristics, such as sleep latency and efficiency, are included as measurements in these indexes. The same study discovered that sleep quality was highly linked with other diabetic quality of life measures [18]. Patients with other chronic medical disorders are more likely to develop sleeplessness in general.

Poor sleep and insomnia have been linked to a drop in gamma-aminobutyric acid levels in studies (GABA). Patients with depression had reduced GABA levels as well [19]. “GABA is produced in substantial quantities in the pancreas. It has also been demonstrated to prevent apoptosis in rodent beta cells. The principal enzyme (GAD) involved in the manufacture of GABA, glutamate decarboxylase, has been associated to type 1 diabetes” [20]. When GABA levels are low, it is possible that GABA is one of the neurotransmitters implicated in sleep quality in diabetics.

A Taiwanese study discovered that a lack of sleep was linked to a higher prevalence of diabetes [21]. Another study conducted “in Taiwan discovered that both short and long sleep durations were independently linked with newly diagnosed diabetes” [22]. “A meta-analysis of the dose-response connection between sleep length and the risk of type 2 diabetes showed that those who obtain 7-8 hours of sleep per day have the lowest risk of T2DM, whereas short and long sleep duration are associated with a higher risk of T2DM” [23].

“Subjective sleep disruptions have been recorded in more than one-third of type 2 diabetes patients, which may be due to anxiety about poor blood glucose control and diabetic consequences” [24]. Previous research, however, found an inconsistent connection between perceived sleep disruptions and blood glucose levels. Some studies have found an inverse relationship between subjective sleep disruptions and poor glycemic management in type 2 diabetes patients [25], “while others have found no relationship between subjective sleep disturbances and serum haemoglobin A1c (HbA1c) level as an indicator of glucose status” [26]. Nevertheless, studies that found a link between HbA1c level and poor sleep quality did not properly eliminate or control for major risk factors associated with poor sleep quality [27]. Shankar et al. discovered that “perceived insufficient rest/sleep is independently linked with CVDs, diabetes mellitus, and obesity in a study on perceived insufficient rest included in the Behavioral Risk Factor Surveillance System (BRFSS) of the United States” [28].

5. CONCLUSION AND RECOMMENDATIONS

DM causes night sleep disturbances which eventually leads to daytime sleeping. It is critical
for health care providers treating diabetic patients to address their sleep disorders and the reduced quality of life caused by insufficient and fragmented sleep, since this can have a negative impact on their recovery, diabetes control, and quality of life. Sleep education should also be regarded an important component of the diabetic control armament.

CONSENT AND ETHICAL APPROVAL

It is not applicable.

COMPETING INTERESTS

Author has declared that no competing interests exist.

REFERENCES

1. DeFronzo RA, Ferrannini E, Groop L, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015; 1:15019. DOI:10.1038/nrdp.2015.19
2. Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843. DOI:10.1016/j.diabres.2019.107843
3. DeFronzo RA. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58:773–795. DOI:10.2337/db09-0908
4. Shan Z, Ma H, Xie M, Yan P, Guo Y, Bao W, Rong Y, Jackson CL, Hu FB, Liu L. Sleep duration and risk of type 2 diabetes: A meta-analysis of prospective studies. Diabetes Care. 2015;38:529–537. DOI:10.2337/dc14-2073. [PubMed] [CrossRef] [Google Scholar]
5. Mallon L, Broman JE, Hetta J. High incidence of diabetes in men with sleep complaints or short sleep duration: A 12-year follow-up study of a middle-aged population. Diabetes Care. 2005;28:2762–2767. DOI:10.2337/diacare.28.11.2762. [PubMed] [CrossRef] [Google Scholar]
6. Gangwisch JE, Heymsfield SB, Boden-Albala B, Buys RM, Kreier F, Pickering TG, Rundle AG, Zammit GK, Malaspina D. Sleep duration as a risk factor for diabetes incidence in a large U.S. sample. Sleep. 2007;30:1667–1673. DOI: 10.1093/sleep/30.12.1667. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
7. Resnick HE, Redline S, Shahar E, Gilpin A, Newman A, Walter R, et al. Diabetes and sleep disturbances: Findings from the Sleep Heart Health Study. Diabetes Care. 2003;26:702–9. [PubMed] [CrossRef] [Google Scholar]
8. Barakat S, AbuJbara M, Banimustafa R, Batieha A, Ajlouni K. Sleep Quality in Patients With Type 2 Diabetes Mellitus. J Clin Med Res. 2019;11(4):217-222. Epub 2019 Apr 18. PMID: 30937116; PMCID: PMC6436571.
9. Darraj A, Mahfouz MS, Alsaabaani A, Sani M, Alameer A. Assessment of sleep quality and its predictors among patients with diabetes in Jazan, Saudi Arabia. Diabetes Metab Syndr Obes. 2018;11:523-531. DOI: 10.2147/DMSO.S178674. PMID: 30288072; PMCID: PMC6163002.
10. Shamshirgaran SM, Ataei J, Malek A, Iranparvar-Alamdari M, Aminisani N. Quality of sleep and its determinants among people with type 2 diabetes mellitus in Northwest of Iran. World J Diabetes. 2017;8(7):358-364. DOI:10.4239/wjd.v8.i7.358. PMID: 28751959; PMCID: PMC5507833.
11. Schipper SBJ, Van Veen MM, Elders PJM, van Straten A, Van Der Werf YD, Knutson KL, Rutters F. Sleep disorders in people with type 2 diabetes and associated health outcomes: a review of the literature. Diabetologia. 2021;64(11):2367-2377. DOI:10.1007/s00125-021-05541-0. Epub 2021 Aug 16. PMID: 34401953; PMCID: PMC8494668.
12. Rajendran A, Parthsarathy S, Tamilselvan B, Seshadri KG, Shuaib M. Prevalence and correlates of disordered sleep in southeastasian indians with type 2 diabetes. Diabetes Metab J. 2012;36(1):70-6.
13. Jemere T, Mossie A, Berhanu H, Yeshaw Y. Poor sleep quality and its predictors among type 2 diabetes mellitus patients attending Jimma University Medical Center, Jimma, Ethiopia. BMC Res Notes. 2019 Aug 6;12(1):488. DOI: 10.1186/s13104-019-4531-6. PMID: 31387638; PMCID: PMC6685256.

14. Jin QH, Chen HH, Yu HL, Li TL. [The relationship between sleep quality and glucose level, diabetic complications in elderly type 2 diabetes mellitus]. Zhonghua Nei Ke Za Zhi. Chinese. 2012;51(5):357-61. PMID: 22883333.

15. Koopman ADM, Beulens JW, Dijkstra T, Pouwer F, Bremmer MA, van Straten A, Rutters F. Prevalence of Insomnia (Symptoms) in T2D and Association With Metabolic Parameters and Glycemic Control: Meta-Analysis. J Clin Endocrinol Metab. 2020;105(3):614–43. DOI: 10.1210/clinem/dgz065. PMID: 31603475; PMCID: PMC7110921.

16. Sridhar GR, Madhu K. Prevalence of sleep disturbances in diabetes mellitus. Diabetes Res Clin Pract. 1994;23:183–186. [PubMed] [Google Scholar]

17. Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28:193–213. [PubMed] [Google Scholar]

18. Luyster FS, Dunbar-Jacob J. Sleep quality and quality of life in adults with type 2 diabetes. Diabetes Educ. 2011;37:347–355. [PMC free article] [PubMed] [Google Scholar]

19. Budhiraja R, Roth T, Hudgel DW, Budhiraja P, Drake CL. Prevalence and polysomnographic correlates of insomnia comorbid with medical disorders. Sleep. 2011;34:859–867. [PMC free article] [PubMed] [Google Scholar]

20. Amihiæsei IC, Mungiu OC. Main neuroendocrine features and therapy in primary sleep troubles. Rev Med Chir Soc Med Nat Iasi. 2012;116:862–866. [PubMed] [Google Scholar]

21. Tian J, Dang H, Chen Z, Guan A, Jin Y, Atkinson MA, Kaufman DL. γ-Aminobutyric acid regulates both the survival and replication of human β-cells. Diabetes. 2013;62:3760–3765. [PMC free article] [PubMed] [Google Scholar]

22. Adeghate E. Orexins: tissue localization, functions, and its relation to insulin secretion and diabetes mellitus. Vitam Horm. 2012;89:111–133. [PubMed] [Google Scholar]

23. Rao MN, Neylan TC, Grunfeld C, Mulligan K, Schambelan M, Schwarz JM. Subchronic sleep restriction causes tissue-specific insulin resistance. J Clin Endocrinol Metab. 2015;100:1664–1671. [PMC free article] [PubMed] [Google Scholar]

24. Shan Z, Ma H, Xie M, Yan P, Guo Y, Bao W, Rong Y, Jackson CL, Hu FB, Liu L. Sleep duration and risk of type 2 diabetes: A meta-analysis of prospective studies. Diabetes Care. 2015;38:529–537. DOI: 10.2337/dc14-2073. [PubMed] [CrossRef] [Google Scholar]

25. Knutson KL, Ryden AM, Mander BA, Van Cauter E. Role of Sleep Duration and Quality in the Risk and Severity of Type 2 Diabetes Mellitus. Arch Intern Med. 2006;166(16):1768–74. DOI: 10.1001/archinte.166.16.1768. [PubMed] [CrossRef] [Google Scholar]

26. Lecube A, et al. Global assessment of the impact of type 2 diabetes on sleep through specific questionnaires: A case-control study. PLoS One. 2016;11:e0157579. DOI: 10.1371/journal.pone.0157579. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Cho EH, Lee H, Ryu OH, Choi MG, Kim SW. Sleep disturbances and glucoregulation in patients with type 2 diabetes. J Korean Med Sci. 2014;29(2):243–7. DOI: 10.3346/jkms.2014.29.2.243. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Shankar A, Syamala S, Kalidindi S. Insufficient rest or sleep and its relation to

29. Cho C, Lee J, Lee J, Song J, Jang J, Park JH, Shin HS. The association between sleep disturbance and metabolic parameters and glycemic control in type 2 diabetes mellitus. J Korean Med Sci. 2015;30(4):849–54. DOI: 10.3346/jkms.2015.30.4.849. [PubMed] [CrossRef] [Google Scholar]
cardiovascular disease, diabetes and obesity in a national, multiethnic sample. PLoS ONE. 2010;5:e14189.

DOI: 10.1371/journal.pone.0014189.

[PMC free article] [Pub Med] [Cross Ref] [Google Scholar].

© 2022 Alanazi; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/91344