Supplementary material

Comparative Efficacy of Umeclidinium/Vilanterol versus Other Bronchodilators for the Treatment of Chronic Obstructive Pulmonary Disease: A Network Meta-analysis

Authors: Afisi S. Ismaila,1,2 Katrin Haeussler,3 Alexandrosz Czira,4 Vanita Tongbram,5 Mia Malmenäs,6 Jatin Agarwal,7 Maria Nassim,3 Marija Živković-Gojović,8 Yunrong Shen,9 Xinze Dong,10 Maria Duarte,4 Chris Compton,4 Claus F. Vogelmeier,11 David M.G. Halpin12

Affiliations: 1GlaxoSmithKline, R&D Global Medical, Collegeville, PA, USA; 2Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada; 3ICON plc, München, Germany; 4GlaxoSmithKline, R&D Global Medical, Brentford, Middlesex, UK; 5ICON plc, North Wales, PA, USA; 6ICON plc, Stockholm, Sweden; 7ICON plc, Bengaluru, Karnataka, India; 8ICON plc, Burlington, ON, Canada; 9ICON plc, Cambridge, MA, USA; 10ICON plc, Vancouver, BC, Canada; 11Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-Universität Marburg, Member of the German Center for Lung Research (DZL), Germany; 12University of Exeter Medical School, College of Medicine and Health, University of Exeter, Exeter, UK

Corresponding author: Dr Afisi S. Ismaila

Address: Value Evidence and Outcomes, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, PA, 19426-0989, USA
Tel: +1 919 315 8229
Email: afisi.s.ismaila@gsk.com

Running Title: LAMA/LABA dual therapy in COPD: network meta-analysis
Supplementary Methods

Frequentist NMA is based on weighted least squares (LS) regression. In an ordinary LS regression, equal variances are assumed for all observations. In a weighted LS regression, a study with a large variance contributes less than a study with smaller variance. A frequentist NMA considers the geometry of the corresponding network and p-scores can be calculated to rank the treatments.

The residuals e_i of a study i are weighted by the study weight w_i, which is again the inverse of the corresponding within-studies variance v_i in a FE model or the sum of within-studies variance v_i and the between studies variance τ^2 in a RE model. The analyses were based on Rücker [1] and performed with the R package netmeta [2].

The model based on weighted LS regression is given as:

$$\hat{\theta} = X\theta^{trt} + \epsilon, \quad \epsilon \sim N(0, \Sigma),$$

where θ represents a vector of m observed pairwise comparisons with known standard errors $s = (s_1, s_2, ..., s_m)$, X is them $\times n$ design matrix defining the network structure, θ^{trt} is a vector of length n including the number of treatments, and Σ is a diagonal matrix whose i^{th} entry is s_i^2.

In a fictional example network with $n = 4$ treatments including $k = 5$ studies each providing a single pairwise treatment comparison (Supplementary Methods Figure), we would have $m = 5$ pairwise treatment comparisons and the model would be defined as

$$\begin{pmatrix}
\hat{\theta}_A^{AB} \\
\hat{\theta}_B^{BC} \\
\hat{\theta}_C^{CD} \\
\hat{\theta}_D^{AD} \\
\hat{\theta}_A^{BD}
\end{pmatrix} =
\begin{pmatrix}
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & -1 \\
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -1
\end{pmatrix}
\begin{pmatrix}
\theta_A \\
\theta_B \\
\theta_C \\
\theta_D \\
\theta_A
\end{pmatrix} +
\begin{pmatrix}
\epsilon_1 \\
\epsilon_2 \\
\epsilon_3 \\
\epsilon_4 \\
\epsilon_5
\end{pmatrix}$$
Supplementary Methods Figure. Fictional example network of four treatments (letters) connected by five studies (lines).

Under the FE model, the diagonal matrix of dimension $m \times m$ is represented by $W = \text{diag}\left(\frac{1}{s_1^2}, \ldots, \frac{1}{s_m^2}\right)$ including the inverse variance weights. The network estimates are given by $\bar{\theta}^{nma} = H\bar{\theta}$, where

$$H = X(X^T W X)^+ X^T W$$

is the hat matrix in regression. Thus, the network estimates are weighted sums of the observed estimates with weights obtained through the rows of H. The corresponding standard errors are calculated from the variance-covariance matrix

$$\text{COV}(\bar{\theta}^{nma}) = X(X^T W X)^+ X^T.$$

In addition, heterogeneity and inconsistency are measured by the generalised statistic

$$Q_{total} = (\bar{\theta} - \bar{\theta}^{nma})^T W(\bar{\theta} - \bar{\theta}^{nma}).$$

When a RE model is used rather than a FE model, the variance-covariance matrix changes. On the diagonal, τ^2 has to be added to the variance terms for the individual arms but also to the off-diagonal elements. The off-diagonal elements correspond to the covariances between different arms of the same trial. Estimation of τ^2 is often difficult as it cannot be directly observed. The corresponding degrees of freedom are a function of the number of studies and usually much fewer than those used to estimate the within trial variances.[3] The netmeta package also includes the
possibility to run RE models based on a graph theory approach to NMA. The additional between-
study variance is estimated as

$$
\tau^2 = \max \left(\frac{Q - df}{\text{tr}(\mathbf{U} - \mathbf{H})\mathbf{W}} \right),
$$

with

$$
df = \sum_k (k - 1)n_k - (n - 1)
$$

representing the degrees of freedom. These are summed over the study arms \(k \) over the number of
studies with \(k \) arms \(n_k \). The \(m \times m \mathbf{U} \) matrix includes the number of comparisons \(m \), and the
identity matrix \(\mathbf{I} \) is derived as \(\mathbf{H}\mathbf{H}^{T/2} \).

In this study, for all analyses, both the FE and RE models were used in order to obtain more and less
conservative estimates.

For continuous outcomes (difference in change from baseline [DCFB]), if the standard error (SE) was
reported directly, it was used in the analysis. Otherwise, it was calculated from the standard
deviation (SD) as

$$
SE(\text{DCFB}) = SD \sqrt{\frac{1}{N_T} + \frac{1}{N_C}},
$$

where \(N_T \) and \(N_C \) represent the sample size in active treatment and comparator arms, respectively.
If SD was not reported, SE was estimated from a 95% confidence interval (CI) as

$$
SE(\text{DCFB}) = \frac{(UCL - LCL)}{3.92},
$$

where \(UCL \) and \(LCL \) represent upper and lower bounds of the 95% CI, and a Normal approximation
was conducted.

If neither SD nor a 95% CI were reported, the SE was estimated from the SE of the change from
baseline \(SE_{\text{CFB}} \) per arm as

$$
SE(\text{DCFB}) = \sqrt{SE_{\text{CFB,T}}^2 + SE_{\text{CFB,C}}^2},
$$

where \(SE_{\text{CFB,T}}^2 \) and \(SE_{\text{CFB,C}}^2 \) represent SE of change from baseline in active treatment and
comparator arms, respectively.
If none of the above were reported, the SE was imputed from the average SD \bar{SD} of the CFB per study arm, averaging over all reported and estimated SD in the corresponding networks of evidence as

$$SE(DCFB) = \bar{SD} \sqrt{\frac{1}{N_T} + \frac{1}{N_C}}.$$

For multi-arm studies, if not all differences in CFB with corresponding SE for all pairwise comparisons were reported directly, these were estimated through the `pairwise` function of the R package `netmeta`; the function input was the CFB with corresponding SE per arm.

For time-to-event and count outcomes, if the hazard ratios (HRs) or rate ratios (RaR) with corresponding 95% CIs were reported directly, the corresponding SE was estimated from the CI as

$$SE(ln(HR)) = (ln(UCL) - ln(LCL))/3.92,$$

where UCL and LCL refer to the upper and lower bounds of the corresponding 95% CI. For RaR, the equation is the same.

For count outcomes, if no RaR with 95% CI was reported directly, the SE of the RaR on the log scale was estimated as

$$SE(ln(RaR)) = \sqrt{\frac{1}{\hat{r}_T} + \frac{1}{\hat{r}_C}},$$

where \hat{r}_T and \hat{r}_C refer to the number of events in active treatment and comparator arms, respectively. For multi-arm studies, the same approach was followed as for continuous outcome.

For binary outcomes, the number of events r_T and r_C as well as sample size N_T and N_C in active treatment and comparator arms, respectively, inform the estimation of the SE of an odds ratio (OR) on the log scale as

$$SE(ln(OR)) = \sqrt{\frac{1}{\hat{r}_T + N_T - \hat{r}_T} + \frac{1}{\hat{r}_C + N_C - \hat{r}_C}}.$$
Supplementary Methods References

1. Rucker G. Network meta-analysis, electrical networks and graph theory. Res Synth Methods 2012;3(4):312-24. doi: 10.1002/jrsm.1058.

2. Rucker G, Krahn U, König J, Efthimiou O, Schwarzer G.: Package 'netmeta’. Network Meta-Analysis using Frequentist Methods. Available from: https://cran.r-project.org/web/packages/netmeta/netmeta.pdf

3. Senn S, Gavini F, Magrez D, Scheen A. Issues in performing a network meta-analysis. Stat Methods Med Res. 2013;22(2):169-89.
Supplementary Table S1. Random effects model of outcomes of interest with UMEC/VI versus dual and monotherapies at 24 weeks

	Trough FEV₁, mean CFB, mL (95% CI)	SGRQ total score, mean CFB (95% CI)	SGRQ responders, OR (95% CI)	TDI focal score, mean CFB (95% CI)	TDI responders, OR (95% CI)	Rescue medication use, mean CFB, puffs/day (95% CI)	Annualised moderate/severe exacerbations, incidence rate ratio (95% CI)	Time to first exacerbation, HR (95% CI)
UMEC/VI vs dual therapies								
ACL/FOR 400/6	101.94 (65.92, 137.96) p≤0.0001	0.23 (-2.01, 2.46) p=0.8434	1.08 (0.75, 1.55) p=0.6689	-0.19 (-0.57, 0.2) p=0.3414	0.71 (0.48, 1.05) p=0.0825	-0.31 (-0.79, 0.18) p=0.2160	0.43 (0.18, 0.99) p=0.0486	NR
ACL/FOR 400/12	87.57 (56.98, 118.17) p≤0.0001	-0.37 (-2.25, 1.51) p=0.7008	1.02 (0.75, 1.38) p=0.9096	-0.22 (-0.58, 0.14) p=0.2355	0.78 (0.53, 1.15) p=0.2121	-0.51 (-0.94, -0.09) p=0.0173	0.45 (0.21, 0.94) p=0.0348	NR
GLY/FOR 18/9.6	71.79 (47.23, 96.35) p≤0.0001	-0.45 (-2.17, 1.27) p=0.6087	1.17 (0.88, 1.54) p=0.2804	**0.33 (0.13, 0.52) p=0.0013**	0.82 (0.51, 1.31) p=0.4038	**-0.14 (-0.55, 0.28) p=0.5246**	1.02 (0.72, 1.47) p=0.8944	1.03 (0.68, 1.56) p=0.8857
GLY/FOR (MDI) 18/9.6	NR	1.19 (0.85, 1.68) p=0.3056	NR	NR	NR	NR	NR	NR
IND/GLY 110/50	24.93 (-3.3, 53.16) p=0.0835	1.04 (-0.60, 2.69) p=0.2129	0.93 (0.71, 1.21) p=0.5906	-0.18 (-0.51, 0.15) p=0.2908	0.95 (0.64, 1.14) p=0.7873	-0.18 (-0.75, 0.39) p=0.5434	0.60 (0.29, 1.23) p=0.1653	0.89 (0.48, 1.63) p=0.6980
TIO 18 + FOR 10	NR	-0.28 (-2.97, 2.42) p=0.8393	NR	NR	NR	NR	NR	NR
TIO 18 + FOR 12	**92.93 (43.81, 142.06) p≤0.0002**	NR	0.20 (-0.34, 0.75) p=0.4639	1.27 (0.74, 1.61) p=0.5370	NR	NR	0.72 (0.34, 1.50) p=0.3778	
UMEC/VI vs LAMA monotherapies								
UMEC 62.5	64.38 (36.44, 92.33) p≤0.0001	0.03 (-1.32, 1.38) p=0.9639	1.19 (0.98, 1.45) p=0.0825	**0.32 (0.08, 0.57) p=0.0090**	**1.31 (1.04, 1.65) p=0.0202**	**-0.33 (-0.70, 0.04) p=0.0833**	0.82 (0.58, 1.18) p=0.2848	0.80 (0.58, 1.09) p=0.1615
UMEC 125	**47.89 (14.49, 81.28) p=0.0049**	**-1.88 (-3.67, -0.08) p=0.041**	1.26 (0.96, 1.65) p=0.094	**0.55 (0.16, 0.93) p=0.0053**	1.18 (0.87, 1.60) p=0.2934	**-0.42 (-0.93, 0.08) p=0.1027**	NR	**1.05 (0.65, 1.70) p=0.8497**
	Placebo	UMEC/VI	Laba	Placebo	UMEC/VI	Laba		
----------------	-------------	-------------	------------	-------------	-------------	------------		
ACL 400	101.4 (69.01, 133.8)	-0.99 (-2.94, 0.97)	1.08 (0.81, 1.45)	0.18 (-0.21, 0.57)	0.99 (0.67, 1.47)	-0.56 (-1.01, -0.10)		
	p≤0.0001	p=0.3234	p=0.5986	p=0.3570	p=0.9798	p=0.0166		
GLY 18	127.53 (99.31, 155.75)	-2.01 (-3.76, -0.27)	1.52 (1.16, 1.99)	0.68 (0.32, 1.04)	1.22 (0.76, 1.98)	-0.66 (-1.08, -0.24)		
	p≤0.0001	p=0.0235	p=0.0024	p=0.0003	p=0.4099	p=0.0021		
GLY 50	97.67 (68.4, 126.93)	-1.26 (-2.95, 0.42)	1.16 (0.89, 1.51)	0.06 (-0.29, 0.41)	1.15 (0.77, 1.71)	-0.84 (-1.41, -0.27)		
	p≤0.0001	p=0.1413	p=0.2717	p=0.7386	p=0.4852	p=0.0040		
TIO 18	87.22 (65.35, 109.09)	-1.29 (-2.52, -0.07)	1.17 (0.97, 1.41)	0.34 (0.03, 0.64)	1.23 (0.93, 1.62)	-0.55 (-0.83, -0.27)		
	p≤0.0001	p=0.0386	p=0.1097	p=0.0310	p=0.1438	p=0.0001		
UMEC/VI vs LABA monotherapies								
VI 25	95.76 (68.86, 122.66)	-0.37 (-1.85, 1.11)	1.10 (0.89, 1.36)	0.42 (0.13, 0.71)	1.37 (1.07, 1.75)	-0.33 (-0.84, 0.17)		
	p≤0.0001	p=0.625	p=0.3996	p=0.0045	p=0.0111	p=0.1904		
FOR 9.6	134.16 (105.93, 162.38)	-0.76 (-2.5, 0.98)	1.35 (1.03, 1.76)	0.48 (0.11, 0.84)	0.94 (0.58, 1.52)	-0.34 (-0.76, 0.08)		
	p≤0.0001	p=0.3912	p=0.0294	p=0.0104	p=0.7961	p=0.1115		
FOR 10	NR	-0.33 (-3.02, 2.37)	NR	NR	NR	NR		
FOR 12	138.21 (106.21, 170.22)	-1.23 (-3.24, 0.78)	1.11 (0.82, 1.5)	0.22 (-0.17, 0.61)	0.95 (0.64, 1.41)	-0.45 (-0.92, 0.02)		
	p≤0.0001	p=0.2304	p=0.4852	p=0.2605	p=0.8131	p=0.0579		
SAL 50	140.19 (105.66, 174.72)	-1.80 (-3.44, -0.15)	1.47 (1.15, 1.88)	0.43 (0.14, 0.72)	1.40 (1.04, 1.87)	-0.28 (-0.65, 0.09)		
	p≤0.0001	p=0.0322	p=0.0024	p=0.0040	p=0.0248	p=0.1417		
IND 150	81.69 (41.23, 122.14)	-0.92 (-3.68, 1.85)	1.01 (0.73, 1.39)	0.11 (-0.23, 0.45)	1.11 (0.74, 1.65)	-0.49 (-1.06, 0.08)		
	p≤0.0001	p=0.5155	p=0.9492	p=0.5259	p=0.6413	p=0.0943		
UMEC/VI vs placebo	207.78 (184.88, 230.67)	-3.21 (-4.59, -1.84)	1.71 (1.39, 2.11)	1.08 (0.82, 1.35)	1.82 (1.39, 2.37)	-1.20 (-1.57, -0.83)		
	p≤0.0001	p=0.0001	p=0.0001	p=0.0001	p=0.0001	p=0.0004		
ACL, aclidinium; CAT, COPD Assessment Test, CFB, change from baseline; CI, confidence interval; COPD, chronic obstructive pulmonary disease; FEV₁, forced expiratory volume in 1 second; HR, hazard ratio; LABA, long-acting β₂-agonist; LAMA, long-acting muscarinic antagonist; NR, not reported; OR, odds ratio; SGRQ, St George’s Respiratory Questionnaire; TDI, Transitional Dyspnoea Index; TIO, tiotropium; UMEC, umeclidinium; VI, vilanterol.
Supplementary Table S2. Fixed and random effects models of outcomes of interest with UMEC/VI versus dual and monotherapies at 12 weeks

	SGRQ total score, mean CFB (95% CI)	SGRQ responders, OR (95% CI)	TDI focal score, mean CFB (95% CI)	TDI responders, OR (95% CI)	Rescue medication use, mean CFB, puffs/day (95% CI)																			
	FE	RE																						
UMEC/VI vs dual therapies																								
ACL/FOR 400/6	NR	NR	1.06 (0.74, 1.53) p=0.7505	1.06 (0.74, 1.53) p=0.7505	NR	NR	0.82 (0.55, 1.22) p=0.3351	0.82 (0.55, 1.22) p=0.3351	NR	NR														
ACL/FOR 400/12	NR	NR	0.94 (0.65, 1.36) p=0.7484	0.94 (0.65, 1.36) p=0.7484	0.22 (-0.23, 0.66) p=0.3367	0.21 (-0.33, 0.75) p=0.4416	0.85 (0.57, 1.26) p=0.4180	0.85 (0.57, 1.26) p=0.4180	NR	NR														
IND/GLY 27.5/15.6	1.04 (-0.87, 2.96) p=0.2862	1.07 (-1.06, 3.20) p=0.3246	0.74 (0.53, 1.02) p=0.0647	0.74 (0.53, 1.02) p=0.0647	-0.51 (-0.93, -0.08) p=0.0196	-0.51 (-1.00, -0.01) p=0.0439	0.95 (0.67, 1.34) p=0.7621	0.95 (0.67, 1.34) p=0.7621	0.50 (0.06, 0.93) p=0.0256	0.49 (-0.25, 1.24) p=0.1942														
IND/GLY 110/50	1.13 (0.02, 2.24) p=0.0458	1.24 (-0.08, 2.57) p=0.0662	0.88 (0.67, 1.14) p=0.3306	0.88 (0.67, 1.14) p=0.3306	-0.16 (-0.38, 0.06) p=0.1529	-0.18 (-0.46, 0.10) p=0.2182	NR	NR	NR	NR														
IND/GLY 150/50	NR																							
TIO/OLO 2.5/5	-0.04 (-1.92, 1.84) p=0.9665	-0.03 (-2.13, 2.06) p=0.9744	0.87 (0.61, 1.24) p=0.4456	0.87 (0.61, 1.24) p=0.4456	-0.50 (-0.94, -0.05) p=0.0278	-0.50 (-1.01, 0.01) p=0.0562	NR	NR	NR	NR														
TIO/OLO 5/5	0.79 (-1.09, 2.67) p=0.4083	0.80 (-1.29, 2.89) p=0.9770	0.71 (0.50, 1.01) p=0.0547	0.71 (0.50, 1.01) p=0.0547	-0.51 (-0.96, -0.07) p=0.0231	0.51 (-1.02, 0.01) p=0.0487	NR	NR	-0.25 (-0.37, -0.13) p<0.0001	-0.25 (-0.76, 0.26) p=0.3325														
TIO 18 + FOR 12	-0.52 (-3.63, 2.59) p=0.7425	-0.49 (-3.80, 2.81) p=0.7707	NR	NR	0.40 (-0.40, 1.19) p=0.3246	0.39 (-0.46, 1.24) p=0.3713	NR	NR	0.31 (-0.20, 0.83) p=0.2351	0.05 (-0.73, 0.83) p=0.9030														
TIO 18 + IND 150	1.38 (0.04, 2.73) p=0.0440	1.48 (-0.08, 3.05) p=0.0627	1.08 (0.84, 1.40) p=0.5437	1.08 (0.84, 1.40) p=0.5437	-0.30 (-0.65, 0.05) p=0.0956	-0.30 (-0.74, 0.14) p=0.1837	0.89 (0.69, 1.17) p=0.4089	0.89 (0.69, 1.17) p=0.4089	0.35 (0.19, 0.50) p<0.0001	0.31 (-0.08, 0.69) p=0.1151														
UMEC/VI vs LAMA monotherapies																								
UMEC 62.5	-0.90 (-1.90, 0.10) p=0.0764	-0.89 (-2.11, 0.34) p=0.1556	1.31 (1.12, 1.53) p=0.0009	1.31 (1.12, 1.53) p=0.0009	0.53 (0.30, 0.76) p=0.0001	0.53 (0.22, 0.80) p=0.0006	1.43 (1.22, 1.68) p<0.0001	1.43 (1.22, 1.68) p<0.0001	-0.31 (-0.47, -0.15) p<0.0001	-0.31 (-0.83, 0.21) p=0.2399														
----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------	----------
UMEC 125																								
ACL 400																								
GLY 15.6																								
GLY 50																								
TIO 5																								
TIO 18																								
IND 27.5																								
IND 150																								
UMEC/VI vs LABA monotherapies																								
VI 25																								
FOR 12																								
SAL 50																								
IND 27.5																								
IND 150																								
UMEC/VI vs placebo																								

Data on Weeks 1–12 were used throughout.
ACL, aclidinium; CAT, COPD Assessment Test, CFB, change from baseline; CI, confidence interval; COPD, chronic obstructive pulmonary disease; FEV$_1$, forced expiratory volume in 1 second; LABA, long-acting β$_2$-agonist; LAMA, long-acting muscarinic antagonist; NR, not reported; OLO, olodaterol; OR, odds ratio; SGRQ, St George's Respiratory Questionnaire; TDI, Transitional Dyspnoea Index; TIO, tiotropium; UMEC, umeclidinium; VI, vilanterol.
Supplementary Table S3. Fixed and random effects models of outcomes of interest with dual and mono-therapies versus placebo at 24 weeks

Dual therapies	SGRQ total score, mean CFB (95% CI)	SGRQ responders, OR (95% CI)	TDI focal score, mean CFB (95% CI)	TDI responders, OR (95% CI)	Rescue medication use, mean CFB, puffs/day (95% CI)	Annualised moderate/severe exacerbations, incidence rate ratio (95% CI)	Time to first exacerbation, HR (95% CI)									
Active comparator	FE	RE														
Dual therapies																
UMEC/VI 62.5/25																
UMEC/VI 62.5/25																
ACL/ FOR 400/6																
ACL/ FOR 400/12																
GLY/ FOR 18/9.6																
GLY/ FOR (MDI) 18/9.6																
IND/ GLY 110/50																
TIO 18 + FOR 10																
TIO 18 + FOR 12																
LAMA monotherapies	1.38) p=0.0005	1.38) p=0.0005	2.14) p=0.0614	2.38) p=0.1619	1.30) p=0.2287	1.49) p=0.2986										
-----------------------------	----------------	----------------	----------------	----------------	----------------	----------------										
UMEC 62.5																
-3.34 (-4.81, -1.86)	-3.24 (-4.97, -1.52)	1.45 (1.17, 1.8)	1.44 (1.12, 1.85)	0.76 (0.44, 1.08)	0.76 (0.44, 1.08)	1.37 (1.02, 1.74)	1.39 (1.06, 1.88)	-0.83 (-1.39, -0.34)	0.049 (0.23, 0.102)	0.58 (0.40, 0.85)	0.57 (0.36, 0.91)					
p=0.0001	p=0.0002	p=0.0007	p=0.0001	p=0.0001	p=0.0078	p=0.0087	p=0.0345	p=0.0001	p=0.0551	p=0.1013	p=0.0001	p=0.0187				
UMEC 125																
-1.41 (-2.96, 0.15)	-1.34 (-3.09, 0.41)	1.37 (1.09, 1.74)	1.36 (1.04, 1.77)	0.54 (0.17, 0.9)	0.54 (0.17, 0.9)	1.54 (1.12, 1.98)	1.54 (1.14, 2.09)	-0.80 (-1.21, -0.44)	0.0001	0.0001	0.43 (0.29, 0.64)					
p=0.0763	p=0.1336	p=0.0081	p=0.0227	p=0.0044	p=0.0044	p=0.0006	p=0.0051	p=0.0001			p=0.0005					
ACL 400																
-2.26 (-3.74, -0.77)	-2.23 (-3.87, -0.59)	1.57 (1.27, 1.95)	1.58 (1.23, 2.03)	0.90 (0.61, 1.19)	0.90 (0.61, 1.19)	1.83 (1.37, 2.43)	1.83 (1.37, 2.43)	-0.79 (-0.96, -0.32)	0.0001	0.0001	0.44 (0.27, 0.70)					
p=0.0029	p=0.0078	p=0.0001	p=0.0003	p=0.0001	p=0.0001	p=0.0001	p=0.0001									
GLY 18																
-1.18 (-2.30, 0.07)	-1.20 (-2.48, 0.08)	1.13 (0.94, 1.35)	1.13 (0.92, 1.38)	0.60 (0.40, 0.87)	0.60 (0.40, 0.87)	0.48 (1.08, 2.21)	0.48 (1.08, 2.21)	0.57 (-0.77, -0.37)	0.0001	0.0001	NR					
p=0.0371	p=0.0668	p=0.1907	p=02422	p=0.029	p=0.029	p=0.0523	p=0.0523	p=0.54 (-0.82, -0.26)	0.0001	0.0001	NR					
GLY 50																
-1.87 (-2.99, 0.76)	-1.95 (-3.44, -0.45)	1.49 (1.22, 1.81)	1.48 (1.17, 1.87)	0.75 (0.51, 0.98)	0.75 (0.51, 0.98)	1.58 (1.10, 2.11)	1.58 (1.10, 2.11)	-0.30 (-0.63, -0.03)	0.75 (0.53, 0.11)	0.76 (0.68, 0.85)	0.65 (0.31, 1.36)					
p=0.0010	p=0.0106	p=0.0011	p=0.0012	p=0.0013	p=0.0013	p=0.0013	p=0.0013									
TIO 18																
-1.93 (-2.86, 1.00)	-1.92 (-2.97, 0.87)	1.47 (1.27, 1.70)	1.47 (1.24, 1.73)	0.75 (0.51, 0.98)	0.75 (0.51, 0.98)	1.46 (1.12, 1.83)	1.46 (1.12, 1.83)	-0.66 (-0.83, -0.40)	0.74 (0.54, 0.49)	0.47 (0.25, 0.83)	0.46 (0.25, 0.83)					
p=0.0001	p=0.0003	p=0.0001	p=0.0001	p=0.0011	p=0.0011	p=0.0054	p=0.0054									
LABA monotherapies																
VI 25																
-2.86 (-4.20, 1.51)	-2.84 (-4.35, 1.34)	1.57 (1.29, 1.91)	1.56 (1.25, 1.95)	0.66 (0.37, 0.96)	0.66 (0.37, 0.96)	1.33 (1.07, 1.71)	1.33 (1.07, 1.71)	-0.87 (-1.21, -0.52)	0.0001	0.0001	NR					
p=0.0001	p=0.0002	p=0.0001	p=0.0001	p=0.0001	p=0.0001	p=0.0085	p=0.0085									
FOR 9.6																
-2.44 (-3.56, 1.13)	-2.45 (-3.73, 1.17)	1.27 (1.06, 1.52)	1.27 (1.04, 1.55)	0.61 (0.24, 0.97)	0.61 (0.24, 0.97)	1.94 (1.41, 2.66)	1.94 (1.41, 2.66)	-0.88 (-1.14, -0.58)	0.0001	0.0001	NR					
p=0.0001	p=0.0002	p=0.0019	p=0.0010	p=0.0010	p=0.0010	p=0.0085	p=0.0085									
FOR 10																
-2.89 -2.88	NR															
	FOR 12	SAL 50	IND 150													
-------	--------------	------------	-------------													
	(-5.14, -0.63)	(-3.58, -0.48)	(-4.68, 0.10)	p=0.012												
	p=0.0223	p=0.0102	p=0.0605													
	1.53 (1.22, 1.91)	1.18 (0.91, 1.52)	1.72 (1.34, 2.20)	p≤0.0001												
	p=0.0002	p=0.2043	p=0.0001													
	1.54 (1.19, 1.99)	1.17 (0.85, 1.59)	1.69 (1.26, 2.20)	p≤0.0001												
	0.86 (0.57, 1.15)	0.66 (0.28, 1.03)	0.97 (0.72, 1.23)	p≤0.0001												
	p=0.0011	p=0.0006	p=0.0004													
	0.86 (0.57, 1.15)	0.66 (0.28, 1.03)	0.97 (0.72, 1.23)	p≤0.0001												
	1.92 (1.52, 2.42)	1.3 (0.99, 1.71)	1.66 (1.25, 2.20)	p=0.0005												
	p≤0.0001	p=0.0613	p=0.0001													
p=0.0223	1.9 (1.43, 2.54)	1.3 (0.89, 1.89)	1.64 (1.15, 2.35)	p=0.0069												
	p=0.0001	p=0.1682	p=0.0001													
	-0.89 (-1.1, -0.67)	-0.88 (-1.11, -0.65)	-0.65 (-0.98, -0.32)	p≤0.0001												
	p=0.0011	p=0.0001	p=0.0001													
	-0.75 (-1.08, -0.41)	-0.92 (-1.44, -0.39)	-0.71 (-1.18, -0.24)	p=0.791												
	p=0.0001	p=0.0001	p=0.0001													
	0.94 (0.76, 1.16)	0.59 (0.29, 1.23)	0.59 (0.25, 1.39)	p=0.553												
	p=0.791	p=0.2304	p=0.1426													
	0.96 (0.71, 1.30)	0.73 (0.48, 1.11)	0.72 (0.42, 1.24)	p=0.236												
	p=0.791	p=0.1426	p=0.236													

ACL, aclidinium; CAT, COPD Assessment Test, CFB, change from baseline; CI, confidence interval; COPD, chronic obstructive pulmonary disease; FEV₁, forced expiratory volume in 1 second; HR, hazard ratio; LABA, long-acting β₂-agonist; LAMA, long-acting muscarinic antagonist; NR, not reported; OR, odds ratio; SGRQ, St George’s Respiratory Questionnaire; TDI, Transitional Dyspnoea Index; TIO, tiotropium; UMEC, umeclidinium; VI, vilanterol.
Supplementary Table S4. Fixed and random effects models on outcomes of interest with dual and mono-therapies versus placebo at 12 weeks

Active comparator	SGRQ total score, mean CFB (95% CI)	SGRQ responders, OR (95% CI)	TDI focal score, mean CFB (95% CI)	TDI responders, OR (95% CI)	Rescue medication use, mean CFB, puffs/day (95% CI)				
	FE	RE	FE	RE	FE	RE			
Dual therapies									
UMEC/VI 62.5/25	-3.92 [-5.31, -2.54]	-3.92 [-5.31, -2.54]	1.78 (1.45, 2.18)	1.78 (1.45, 2.18)	1.11 (0.87, 1.40)	1.11 (0.82, 1.40)	2.39 (1.88, 3.04)	2.39 (1.88, 3.04)	-0.7 (-1.31, 0.09)
	p=0.0001	p=0.0001	p=0.0001	p=0.0001	p=0.0001	p=0.0001	p=0.0001	p=0.0001	p=0.0234
ACL/FOR 400/12	NR	NR	1.89 (1.39, 2.57)	1.89 (1.39, 2.57)	0.89 (0.41, 1.38)	0.90 (0.31, 1.49)	2.82 (2.06, 3.85)	2.82 (2.06, 3.85)	NR
			p=0.0001	p=0.0001	p=0.0003	p=0.0003			
ACL/FOR 400/6	NR	NR	1.68 (1.23, 2.28)	1.68 (1.23, 2.28)	NR	NR	2.91 (2.12, 3.98)	2.91 (2.12, 3.98)	NR
			p=0.0001	p=0.0001			p=0.0001	p=0.0001	
IND/GLY 27.5/15.6	-4.99 [-6.61, -3.38]	-4.99 [-6.61, -3.38]	2.41 (1.87, 3.10)	2.41 (1.87, 3.10)	1.62 (1.26, 2.02)	1.62 (1.22, 2.02)	2.52 (1.96, 3.25)	2.52 (1.96, 3.25)	-1.20 (-1.45, -0.94)
	p=0.0001	p=0.0001	p=0.0001	p=0.0001	p=0.0001	p=0.0001	p=0.0001	p=0.0001	p=0.0001
IND/GLY 110/50	-5.17 [-6.81, -3.52]	-5.17 [-6.81, -3.52]	2.03 (1.47, 2.81)	2.03 (1.47, 2.81)	1.27 (1.04, 1.5)	1.29 (0.98, 1.59)			
	p=0.0001	p=0.0001	p=0.0001	p=0.0001	p=0.0001	p=0.0001			
IND/GLY 150/50	NR	NR	NR	NR	NR	NR	NR	NR	NR
TIO/OLO 2.5/5	-3.89 [-5.46, -2.33]	-3.89 [-5.46, -2.33]	2.04 (1.53, 2.73)	2.04 (1.53, 2.73)	1.61 (1.23, 2.03)	1.61 (1.19, 2.03)			
	p=0.0001	p=0.0001	p=0.0001	p=0.0001	p=0.0001	p=0.0001			
TIO/OLO 5/5	-4.72 [-6.29, -3.16]	-4.72 [-6.29, -3.16]	2.51 (1.88, 3.36)	2.51 (1.88, 3.36)	1.62 (1.25, 2.00)	1.62 (1.2, 2.04)			
	p=0.0001	p=0.0001	p=0.0001	p=0.0001	p=0.0001	p=0.0001			
TIO/18 + FOR 12	-3.41 [-6.95, -0.48]	-3.41 [-6.95, -0.48]	0.71 (-0.09, 1.51)	0.71 (-0.09, 1.51)	0.72 (-0.14, 1.58)	0.72 (-0.14, 1.58)			
	p=0.0554	p=0.0554	p=0.0802	p=0.0802					
TIO/18 + IND 150	-5.41 [-7.50, -3.32]	-5.41 [-7.50, -3.32]	1.64 (1.19, 2.28)	1.64 (1.19, 2.28)	1.41 (0.98, 1.94)	1.41 (0.88, 1.94)	2.67 (1.87, 3.82)	2.67 (1.87, 3.82)	-1.05 (-1.43, -0.66)
	p=0.0001	p=0.0001	p=0.0028	p=0.0028	p=0.0001	p=0.0001	p=0.0001	p=0.0001	p=0.0058

LAMA monotherapies
LABA monotherapies	UMEC 62.5	UMEC 125	ACL 400	GLY 15.6	GLY 50	TIO 5	TIO 18	VI 25	FOR 12	SAL 50	IND 27.5	IND 150
	-3.03 (-4.50, -1.55) p=0.0001	-1.90 (-4.36, -0.57) p=0.1313	1.21 (0.89, 1.65) p=0.2161	-3.41 (-5.43, -1.39) p=0.0009	-2.72 (-4.43, -1.02) p=0.0018	-2.63 (-4.03, -1.24) p=0.0002	-2.40 (-3.8, -1.00) p=0.0008	-2.76 (-4.38, -1.14) p=0.0009	NR	-2.67 (-4.35, -1.00) p=0.0017	-3.25 (-5.27, -1.24) p=0.0016	NR
	-3.04 (-4.72, -1.36) p=0.0004	-1.91 (-4.58, -0.77) p=0.1623	1.21 (0.89, 1.65) p=0.2161	-3.42 (-5.57, -1.28) p=0.0017	-2.72 (-4.62, -0.83) p=0.0048	-2.63 (-4.20, -1.06) p=0.0001	-2.42 (-3.96, -0.88) p=0.0021	-2.77 (-4.56, -0.98) p=0.0025	NR	-2.68 (-4.66, -0.70) p=0.0081	-3.27 (-5.41, -1.13) p=0.0028	NR
	1.36 (1.08, 1.71) p=0.0082	1.59 (1.23, 2.06) p=0.0004	1.64 (1.28, 2.10) p=0.0001	1.64 (1.28, 2.10) p=0.0001	1.59 (1.15, 2.20) p=0.0001	1.56 (1.17, 2.10) p=0.0027	1.53 (1.19, 1.96) p=0.0009	1.50 (1.21, 1.86) p=0.0002	1.29 (0.95, 1.76) p=0.1007	1.28 (0.98, 1.66) p=0.0700	1.88 (1.47, 2.42) p=0.0001	1.00 (0.75, 1.24) ps=0.0001
	1.36 (1.08, 1.71) p=0.0082	1.59 (1.23, 2.06) p=0.0004	1.64 (1.28, 2.10) p=0.0001	0.89 (0.65, 1.14) ps=0.0001	1.59 (1.15, 2.20) p=0.0001	1.56 (1.17, 2.10) p=0.0027	1.53 (1.19, 1.96) p=0.0009	1.50 (1.21, 1.86) p=0.0002	1.29 (0.95, 1.76) p=0.1007	1.28 (0.98, 1.66) p=0.0700	1.88 (1.47, 2.42) p=0.0001	1.00 (0.75, 1.24) ps=0.0001
	0.58 (0.28, 0.87) p=0.0001	0.77 (0.44, 1.10) ps=0.0001	0.89 (0.65, 1.14) ps=0.0001	0.90 (0.59, 1.21) ps=0.0001	0.86 (0.61, 1.10) ps=0.0001	1.03 (0.65, 1.40) ps=0.0001	0.64 (0.42, 0.86) ps=0.0001	1.50 (1.21, 1.86) p=0.0002	1.29 (0.95, 1.76) p=0.1007	1.28 (0.98, 1.66) p=0.0700	1.88 (1.47, 2.42) p=0.0001	1.00 (0.75, 1.24) ps=0.0001
	0.6 (0.24, 0.97) p=0.0001	0.77 (0.39, 1.16) ps=0.0001	0.90 (0.59, 1.21) ps=0.0001	0.90 (0.59, 1.21) ps=0.0001	0.86 (0.52, 1.21) ps=0.0001	1.03 (0.61, 1.45) ps=0.0001	0.65 (0.36, 0.94) ps=0.0001	1.50 (1.21, 1.86) p=0.0002	1.29 (0.95, 1.76) p=0.1007	1.28 (0.98, 1.66) p=0.0700	1.88 (1.47, 2.42) p=0.0001	1.00 (0.75, 1.24) ps=0.0001
	1.67 (1.29, 2.15) p=0.0001	1.96 (1.5, 2.56) ps=0.0001	1.53 (1.2, 1.96) p=0.0007	1.52 (1.13, 2.04) p=0.0062	1.52 (1.13, 2.04) p=0.0062	1.99 (1.46, 2.71) ps=0.0001	1.7 (1.27, 2.27) p=0.0004	1.92 (1.49, 2.46) p=0.0001	1.92 (1.49, 2.46) p=0.0001			
	1.67 (1.29, 2.15) p=0.0001	1.96 (1.5, 2.56) ps=0.0001	1.53 (1.2, 1.96) p=0.0007	1.52 (1.13, 2.04) p=0.0062	1.52 (1.13, 2.04) p=0.0062	1.99 (1.46, 2.71) ps=0.0001	1.7 (1.27, 2.27) p=0.0004	1.92 (1.49, 2.46) p=0.0001	1.92 (1.49, 2.46) p=0.0001			
	-0.39 (-0.78, 0) p=0.0483	-0.40 (-1.13, -0.33) p=0.2798	2.08 (1.52, 2.84) ps=0.0001	2.08 (1.52, 2.84) ps=0.0001	NR							
	-0.39 (-1.19, 0.41) p=0.3369	-0.12 (-1.15, 0.9) p=0.8107	NR									

p-values:
- p<0.001: **p=0.0001**
- p<0.005: **p=0.001**
- p<0.01: **p=0.01**
- p<0.05: **p=0.05**
- p<0.1: **p=0.1**
- p<1: **p=1**

Note:
- NR: Not reported.
Data on Weeks 1–12 were used throughout.

ACL, aclidinium; CAT, COPD Assessment Test, CFB, change from baseline; CI, confidence interval; COPD, chronic obstructive pulmonary disease; FEV₁, forced expiratory volume in 1 second; LABA, long-acting β₂-agonist; LAMA, long-acting muscarinic antagonist; NR, not reported; OLO, olodaterol; OR, odds ratio; SGRQ, St George’s Respiratory Questionnaire; TDI, Transitional Dyspnoea Index; TIO, tiotropium; UMEC, umeclidinium; VI, vilanterol.
Supplementary Table S5. Effects of UMEC/VI versus dual and monotherapy on AEs

Author & Year, Study duration, Treatment	Patients with ≥1 AE	Patients with ≥1 SAE	Pneumonia	Withdrawals due to AEs	Total withdrawals	On-treatment mortality										
	N	n	%	N	n	%	N	n	%	N	n	%	N	n	%	
Lipworth, 2018[30] 24 weeks	GLY/FOR (MDI) 18/9.6	551	306	55.5	551	53	9.6	551	9	16.0	551	27	4.9	555	61	11.0
	GLY 18	474	250	52.7	474	34	7.2	474	5	1.1	474	25	5.3	480	63	13.1
	FOR 9.6	480	256	53.3	480	40	8.3	480	5	1.0	480	24	5.0	483	66	13.7
	PBO	235	131	55.7	235	19	8.1	235	6	2.6	235	10	4.3	238	38	16.0
Singh, 2015[31] (OTEMTO 1) 12 weeks	TIO+OLO 5/5	203	91	44.8	203	10	4.9	NR	NR	NR	202	3	1.5	NR	NR	NR
	TIO+OLO 2.5/5	202	86	42.6	202	4	2.0	NR	NR	NR	202	4	2.0	NR	NR	NR
	TIO 5	203	90	44.3	203	6	3.0	NR	NR	NR	203	3	1.5	NR	NR	NR
	PBO	204	105	51.5	204	11	5.4	NR	NR	NR	204	13	6.4	NR	NR	NR
Singh, 2015[31] (OTEMTO 2) 12 weeks	TIO+OLO 5/5	202	87	43.1	202	6	3.0	NR	NR	NR	202	1	0.5	NR	NR	NR
	TIO+OLO 2.5/5	202	92	45.5	202	4	2.0	NR	NR	NR	202	4	2.0	NR	NR	NR
	TIO 5	203	93	45.8	203	12	5.9	NR	NR	NR	203	7	3.4	NR	NR	NR
	PBO	202	93	46	202	4	2.0	NR	NR	NR	202	10	5.0	NR	NR	NR
Vogelmeier, 2008[32] 24 weeks	FOR 10	210	72	34.3	NR	NR	NR	NR	NR	NR	210	25	11.9	210	0	0.0
	TIO 18	221	79	35.7	NR	NR	NR	NR	NR	NR	221	13	5.9	NR	NR	NR
	TIO 18 + FOR 10	207	70	33.8	NR	NR	NR	NR	NR	NR	207	25	12.1	207	0	0.0
	PBO	209	82	39.2	NR	NR	NR	NR	NR	NR	209	30	15.0	209	1	0.5
Maleki-Yazdi, 2014[33] 24 weeks	UMEC/VI 62.5/25	454	202	44	454	16	4.0	454	1	0.2	454	18	4.0	454	53	12.0
	TIO 18	451	190	42	451	17	4.0	451	1	0.2	451	14	3.0	451	63	14.0
Calverley, 2018[34] 52 weeks	TIO/OLO 5/5	3939	2920	74	3939	810	21.0	NR	NR	NR	3939	219	6.0	3939	219	6.0
	TIO 5	3941	2937	75	3941	822	22.0	NR	NR	NR	3941	302	8.0	3941	302	8.0
Kerwin, 2017[49] (A2349) 12 weeks	IND/GLY 27.5/15.6 BID	341	141	41.3	341	13.0	3.8	NR	NR	NR	341.0	10.0	2.9	357	45	12.6
	UMEC/VI 62.5/25	340	150	44.1	340	21	6.2	NR	NR	NR	340	11	3.2	-	-	-
	IND/GLY 27.5/15.6 BID	337	118	35	337	17	5.0	NR	NR	NR	337	4	1.2	355	37	10.4
	IND/GLY 27.5/15.6 BID	337	118	35	337	17	5.0	NR	NR	NR	337	4	1.2	355	37	10.4
Study	Treatment 1	Treatment 2	Treatment 3	Treatment 4												
-------------------------------	-------------	-------------	-------------	-------------												
Kerwin, 2017 (A2350)	UMEC/VI 62.5/25	UMEC/VI 62.5/25	UMEC 62.5	SAL 50												
Maltais, 2019 (22)	24	24	8	12												
Feldman, 2017 (25)	8	8	8	12												
Kalberg, 2016 (36)	12	12	12	12												
Riley, 2018 (37)	12	12	12	12												
Treatment Period 1:	Treatment Period 2:	Duration wash out:	3.0 Duration wash out:													
-------------------	-------------------	-------------------	----------------------													
18	18	4	2.0													

Treatment	Perio 1:	Perio 2:	NR	570	20	3.5	570	39	6.8	570	2	<1.0						
TIO 18	561	230.0	41	564	NR	NR	NR	NR	NR	564	10	1.8	564	35	6.2	564	0	0.0

Treatment	Perio 1:	Perio 2:	NR	570	14	2.5	570	37	6.5	570	2	<1.0						
TIO 18	570	229.1	40.2	570	NR	NR	NR	NR	NR	570	14	2.5	570	37	6.5	570	2	<1.0

Treatment	Perio 1:	Perio 2:	NR	226	3	1.3	226	14	6.2	226	0	0.0						
IND 150	221	75	33.9	221	5	2.2	NR	NR	NR	221	4	1.8	221	13	5.8	223	0	0.0

Treatment	Perio 1:	Perio 2:	NR	729	93	167	729	33	5.0	741	59	8.0						
IND/GLY 110/50	729	678	93	729	167	23.0	729	33	5.0	741	59	8.0	741	171	23.1	729	23	3.0
GLY 50	740	694	94	740	179	24.0	740	36	5.0	741	67	9.0	741	203	27.4	740	22	3.0
TIO 18	737	686	93	737	165	22.0	737	34	5.0	742	47	6.3	742	183	24.7	737	25	3.0

Treatment	Perio 1:	Perio 2:	NR	217	20	9.0	217	54	25.0	217	1	0.5						
UMEC/VI 62.5/25	217	127	59	217	22	10.0	217	3	1.0	217	20	9.0	217	54	25.0	217	1	0.5
TIO 18	215	133	62	215	15	7.0	215	4	2.0	215	15	7.0	215	49	23.0	215	1	0.5

Treatment	Perio 1:	Perio 2:	NR	214	5	2.0	214	1	<1.0	214	15	7.0								
UMEC/VI 125/25	214	94	44	214	5	2.0	214	1	<1.0	214	15	7.0	214	41	19.0	208	0	0.0		
Study	Treatment 1	Treatment 2	Treatment 3	Treatment 4	Treatment 5	Treatment 6	Treatment 7	Treatment 8	Treatment 9	Treatment 10	Treatment 11	Treatment 12	Treatment 13	Treatment 14	Treatment 15	Treatment 16				
------------------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------				
GSK CSR* (DB21133 60)	UMEC/VI 62.5/25	212 108 51 212 7 3.0 212 0 0.0 212 10 5.0 212 31 15.0 207 1 0.5	VI 25	209 99 47 209 15 7.0 209 1 <1.0 209 10 5.0 209 44 21.0 205 1 0.5	TIO 18	208 82 39 208 13 6.0 208 2 <1.0 208 9 4.0 208 31 15.0 203 0 0.0														
GSK CSR* (DB21133 73)	UMEC 62.5	418 216 52 418 27 6.0 418 6 1.0 418 34 8.0 418 94 22.0 418 1 <1.0	VI 25	421 212 51 421 24 6.0 421 4 <1.0 421 24 6.0 421 103 24.0 421 3 <1.0	UMEC/VI 62.5/25	413 204 48 413 21 5.0 413 8 2.0 413 23 6.0 413 81 20.0 413 2 <1.0	PBO	280 130 46 280 9 3.0 280 2 <1.0 280 90 3.0 280 76 27.0 280 0 0.0												
Vogelmeier, 2016[41]	ACL/FOR 400/12	467 235 50.3 467 35 7.5 NR NR NR 467 26 5.6 467 66 14.1 467 3 0.6	ACL/FOR 400/12	466 265 56.9 466 33 7.1 NR NR NR 466 34 7.3 466 79 17.0 466 1 0.2	SAL/FP 50/500	466 265 56.9 466 33 7.1 NR NR NR 466 34 7.3 466 79 17.0 466 1 0.2														
Wedzicha, 2016[42]	IND/GLY 110/50	1678 1459 86.9 1678 308 18.4 1678 45 3.2 1678 126 7.5 1680 278 16.5 1678 24 1.4	SAL/FF 50/500	1680 1498 89.2 1680 334 19.9 1680 80 4.8 1680 143 8.5 1682 320 19.0 1680 24 1.4																
Maltais 2019[24]	GLY/FOR 18/9.6	552 226 40.9 552 32 5.8 552 4 0.7 552 22 4.0 552 60 10.9 552 3 0.5	UMEC/VI 62.5/25	552 248 44.9 552 40 7.2 552 4 0.7 552 20 3.6 552 43 7.8 552 3 0.5																
Sethi, 2019[43]	ACL/FOR 400/12	314 183 58.3 314 23 7.3 NR NR NR 314 17 5.4 314 1 0.3 314 1 0.3	ACL 400	475 289 60.8 475 41 8.6 NR NR NR 475 37 7.8 475 1 0.2 475 1 0.2	ACL/FOR 400/12	314 183 58.3 314 23 7.3 NR NR NR 314 17 5.4 314 1 0.3 314 1 0.3														
D'Urzo, 2014[44]	FOR 12	319 210 65.8 319 22 6.9 NR NR NR 319 27 8.5 319 4 1.3 319 4 1.3	TIO 18	475 285 60 475 37 7.8 NR NR NR 475 32 6.7 475 2 0.4 475 2 0.4																
D'Urzo, 2017[45]	ACL/FOR 400/12	335 215 64.2 335 19.09 5 5.7 335 2 0.6 338 21 6.3 338 66 20.0 335 1 0.3	ACL/FOR 400/12	335 215 64.2 335 19.09 5 5.7 335 2 0.6 338 21 6.3 338 66 20.0 335 1 0.3	ACL/FOR 400/6	333 203 61 333 17.98 2 5.4 333 1 0.3 338 22 6.6 338 62 18.0 333 0 0.0														
	ACL 400	337 210 62.3 337 16.85 5 5.0 337 1 0.3 340 16 4.7 340 72 21.0 337 3 0.9	ACL 400	337 210 62.3 337 16.85 5 5.0 337 1 0.3 340 16 4.7 340 72 21.0 337 3 0.9	FOR 12	332 189 56.9 332 14.94 4.5 332 3 0.9 339 14 4.2 339 69 20.0 332 1 0.3														
	FOR 12	332 189 56.9 332 14.94 4.5 332 3 0.9 339 14 4.2 339 69 20.0 332 1 0.3	PBO	332 181 54.5 332 11.95 2 3.6 332 3 0.9 337 21 6.3 337 101 30.0 332 0 0.0																
	ACL 400	194 131 67.5 194 15 7.7 194 2 1.0 194 6 3.1 194 29 14.9 194 1 0.5	ACL 400	194 131 67.5 194 15 7.7 194 2 1.0 194 6 3.1 194 29 14.9 194 1 0.5																
Study	Drug 1	Drug 2	Drug 3	Drug 4	Drug 5	Drug 6	Drug 7	Drug 8	Drug 9	Drug 10										
-------------------------------	--------	--------	--------	--------	--------	--------	--------	--------	--------	---------										
Ferguson, 2016[46]																				
FLIGHT 1																				
2016																				
2017																				
2017																				
GLY 16																				
TIO 18																				
PBO																				
Mahler, 2015[47] (FLIGHT 1 & FLIGHT 2, pooled)	52																			
2015																				
2016																				
GLY 16																				
TIO 18																				
PBO																				
Mahler, 2015[47] (FLIGHT 1)	12																			
2015																				
2016																				
GLY 16																				
TIO 18																				
PBO																				
Mahler, 2015[47] (FLIGHT 2)	12																			
2015																				
2016																				
GLY 16																				
TIO 18																				
PBO																				
Siler, 2016[48]																				
FLIGHT 1																				
2016																				
2017																				
UMECTIVI 62.5/25																				
TIO 18																				
PBO																				
Kerwin, 2017[49]																				
FLIGHT 1																				
2016																				
2017																				
UMECTIVI 62.5/25																				
TIO 18																				
PBO																				
Donohue, 2016[50]																				
FLIGHT 1																				
2016																				
2017																				
ACL/FOR 400/12																				
FOR 12																				
PBO																				
Martinez, 2017[51] (PINAACL E-1)	24																			
2017																				
2018																				
GLY/FOR 18/9.6																				
TIO 18																				
PBO																				
Study	Treatment Description	510	286	56.1	510	36	7.1	510	7	1.4	510	25	4.9	510	80	15.7	510	1	0.2	
--------------------------	----------------------------	-----	-----	------	-----	----	-----	-----	---	-----	-----	----	-----	-----	----	------	-----	---	----	
Donohue, 2017[51]	GLY 18	439	235	53.5	439	37	8.4	439	9	2.1	439	21	4.8	439	75	17.1	439	0	0.0	
	FOR 9.6	438	237	54.1	438	37	8.4	438	6	1.4	438	25	5.7	438	93	21.2	438	1	0.2	
	PBO	223	117	52.5	223	15	6.7	223	6	2.7	223	19	8.5	223	59	26.5	223	1	0.4	
Bateman, 2013[18]	IND/GLY 110/50	474	261	55.1	474	22	4.6	NR	NR	NR	NR	474	6	1.3	474	38	8.0	474	1	0.2
	IND 150	476	291	61.1	476	26	5.5	NR	NR	NR	NR	476	24	5.0	476	56	11.7	476	2	0.4
	GLY 50	473	290	61.3	473	29	6.1	NR	NR	NR	NR	473	14	3.0	473	53	11.2	473	1	0.2
	TIO 18	480	275	57.3	480	19	4.0	NR	NR	NR	NR	480	10	2.1	480	42	8.7	480	3	0.6
	PBO	232	134	57.8	232	13	5.6	NR	NR	NR	NR	232	10	4.3	232	45	19.2	232	0	0.0
Buhl, 2015[52]	IND/GLY 110/50	476	208	43.7	476	30	6.3	NR	NR	NR	NR	476	36	7.6	476	61	12.8	476	3	0.6
	TIO 18 + FOR 12	458	195	42.6	458	24	5.2	NR	NR	NR	NR	458	27	5.9	458	52	11.4	458	3	0.7
Tashkin, 2009[53]	TIO 18 + FOR 12	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	124	6	5.0	124	18	15.0	NR	NR	NR
Frichth, 2018[54]	IND/GLY 110/50	248	62	25	248	9	9	NR	NR	NR	NR	248	2	0.8	248	16	6.5	248	1	<1.0
	SAL/FF 50/500	250	72	28.8	250	9	9	NR	NR	NR	NR	250	3	1.2	250	13	5.2	250	1	<1.0
Celli, 2014[55]	PBO	275	134	49	275	17	6.0	275	6	2.0	275	17	6.0	275	92	33.0	275	2	<1.0	
	UMEC 125	407	217	53	407	22	5.0	407	12	3.0	407	24	6.0	407	95	23.0	407	2	<1.0	
	VI 25	404	215	53	404	20	5.0	404	7	2.0	404	25	6.0	404	106	26.0	404	1	<1.0	
	UMEC/VI 125/25	403	211	52	403	23	6.0	403	8	2.0	403	19	5.0	403	78	19.0	403	0	0.0	
Singh, 2015[56]	UMEC/VI 62.5/25	358	99	28	358	7	2.0	NR	NR	NR	NR	358	6	2.0	358	24	6.7	358	7	2.0
	SAL/FP 50/500	358	105	29	358	2	0.6	NR	NR	NR	NR	358	5	1.0	358	18	5.0	358	2	0.6
Donohue, 2015[57]	UMEC/VI 62.5/25	353	93	26	353	6	2.0	353	1	0.3	353	7	2.0	353	34	9.6	353	0	0.0	
	SAL/FP 50/250	353	96	27	353	10	3.0	353	4	1.0	353	10	2.8	353	38	10.8	353	1	0.3	
Donohue, 2015[57]	UMEC/VI 62.5/25	349	104	30	349	11	3.0	349	2	0.6	349	9	2.6	349	23	6.6	349	2	0.6	
	SAL/FP 50/250	348	108	31	348	13	4.0	348	4	1.1	348	14	4.0	348	36	10.3	348	3	0.9	
Vogelmeier, 2013[58]	26	IND/GLY 110/50	258	143	55.4	258	13	5.0	258	0	0.0	258	22	8.5	258	44	17.1	258	0	0.0
		SAL/FF 50/500	264	159	60.2	264	14	5.3	264	4	1.5	264	27	10.2	264	47	17.8	264	1	0.4
Zhong, 2015[59]	26	IND/GLY 110/50	372	149	40.1	372	20	5.4	372	3	0.8	372	12	3.2	372	29	7.8	372	2	0.5
		SAL/FF 50/500	369	175	47.4	369	35	9.5	369	10	2.7	369	17	4.6	372	39	10.5	369	0	0.0
Hoshino, 2015 [60]		TIO 18 + IND 150	NR																	
		SAL/FF 50/250	NR																	
Singh, 2014[61]	24	ACL/FOR 400/12	385	194	50.4	385	23	6.0	385	3	0.8	385	16	4.2	385	34	8.8	385	1	0.3
		ACL/FOR 400/6	381	193	50.7	381	18	4.7	381	4	1.0	381	12	3.1	381	40	10.5	381	2	0.5
		ACL 400	385	190	49.4	385	16	4.2	385	0	0.0	385	17	4.4	385	50	13.0	385	0	0.0
		PBO	194	103	53.1	194	12	6.2	194	1	0.5	194	8	4.1	194	34	17.5	194	0	0.0
		FOR 12	384	217	56.5	384	14	3.6	384	0	0.0	384	14	3.6	384	45	11.7	384	1	0.3
ZuWallac, 2014[62] (ANHELT O 1)	12	TIO 18	565	242	42.8	565	26	4.6	NR	NR	NR	565	16	2.8	569	40	7.1	565	1	0.2
		TIO 18 + OLO 5	567	257	45.3	567	40	7.1	NR	NR	NR	567	18	3.2	566	40	7.1	567	7	1.2
ZuWallac, 2014[62] (ANHELT O 2)	12	TIO 18	569	246	43.2	569	27	4.7	NR	NR	NR	569	11	1.9	569	31	5.5	569	2	0.4
		TIO 18 + OLO 5	566	227	40.1	566	24	4.2	NR	NR	NR	566	21	3.7	566	43	7.6	566	3	0.6
Dahl, 2013[63]	52	IND/GLY 110/50	225	130	57.8	225	37	16.4	225	8	3.6	225	13	5.8	226	32	14.2	225	4	1.8
		PBO	113	64	56.6	113	12	10.6	113	0	0.0	113	7	6.2	113	24	21.2	113	1	0.9
Buhl, 2015b[19] (TOMANO 1)	52	OLO 5	528	390	73.9	528	75	14.2	528	22	4.2	528	49	9.3	528	97	18.4	NR	NR	NR
		TIO 2.5	525	374	71.2	525	66	12.6	525	11	2.1	525	37	7.0	525	77	14.7	NR	NR	NR
		TIO 5	527	381	72.3	527	79	15.0	527	19	3.6	527	42	8.0	527	72	13.7	NR	NR	NR
		TIO/OLO 2.5/5	522	395	75.7	522	81	15.5	522	20	3.8	522	29	5.6	522	60	11.5	NR	NR	NR
		TIO/OLO 5/5	522	387	74.1	522	87	16.6	522	19	3.6	522	37	7.1	522	56	10.7	NR	NR	NR
Buhl, 2015b[19]	52	OLO 5	510	405	79.4	510	106	20.8	510	14	2.7	510	54	10.6	510	98	19.2	NR	NR	NR
		TIO 2.5	507	384	75.7	507	90	17.8	507	13	2.6	507	53	10.5	507	98	19.3	NR	NR	NR
	TIO 5	TIO/OLO 2.5/5	TIO/OLO 5/5																	
---------------	-------	---------------	-------------																	
506	376	74.3	506																	
93	18.4	506	7																	
1.4	506	51	10.1																	
506	96	19.0	NR																	
NR	NR	NR	NR																	

ACL, aclidinium; AE, adverse event; BID, twice daily; FF, fluticasone furoate; FOR, formoterol; FP, fluticasone propionate; GLY, glycopyrronium; IND, indacaterol; MDI, metered dose inhaler; NR, not reported; OLO, olodaterol; PBO, placebo; SAE, serious AE; SAL, salmeterol; TIO, tiotropium; UMEC, umeclidinium; VI, vilanterol.

Available from clinicalstudydatarequest.com.
Supplementary Figure S1. Network of evidence informing trough FEV\textsubscript{1} analysis at (A) 24 and (B) 12 weeks.

A) 24 weeks

B) 12 weeks
ACL, aclidinium; FEV₁, forced expiratory volume in 1 second; FOR, formoterol fumarate; FP, fluticasone propionate; GLY, glycopyrronium; IND, indacaterol; OLO, olodaterol; PBO, placebo; SAL, salmeterol; TIO, tiotropium; UMEC, umeclidinium; VI, vilanterol.
Supplementary Figure S2. Fixed effects model of mean difference in change from baseline in trough FEV₁ with UMEC/VI versus (A) dual therapy and (B) monotherapy at 12 weeks

Assessment of heterogeneity/inconsistency: I²=38.64%; Q=81.48; p=0.0033.

ACL, aclidinium; CFB, change from baseline; CI, confidence interval; FEV₁, forced expiratory volume in 1 second; FOR, formoterol fumarate; FP, fluticasone propionate; GLY, glycopyrronium; IND, indacaterol; OLO, olodaterol; PBO, placebo; SAL, salmeterol; TIO, tiotropium; UMEC, umeclidinium; VI, vilanterol.
Supplementary Figure S3. Fixed effects model of mean difference in change from baseline in trough FEV$_1$ with (A) dual and (B) monotherapy versus placebo at 24 weeks

Assessment of heterogeneity/inconsistency: $I^2=35.33\%$; $Q=44.84$; $p=0.0305$.

ACL, aclidinium; CFB, change from baseline; CI, confidence interval; FEV$_1$, forced expiratory volume in 1 second; FOR, formoterol fumarate; FP, fluticasone propionate; GLY, glycopyrronium; IND, indacaterol; OLO, olodaterol; SAL, salmeterol; TIO, tiotropium; UMEC, umeclidinium; VI, vilanterol.
Supplementary Figure S4. Fixed effects model of mean difference in change from baseline in trough FEV₁ of (A) dual and (B) monotherapy versus placebo at 12 weeks.

Assessment of heterogeneity/inconsistency: $I^2=38.64\%$; $Q=81.48$, $p=0.0033$.

ACL, aclidinium; CFB, change from baseline; CI, confidence interval; FEV₁, forced expiratory volume in 1 second; FOR, formoterol fumarate; FP, fluticasone propionate; GLY, glycopyrronium; IND, indacaterol; OLO, olodaterol; SAL, salmeterol; SGRQ, St George’s Respiratory Questionnaire; TIO, tiotropium; UMEC, umeclidinium; VI, vilanterol.
Supplementary Figure S5. Networks of evidence informing SGRQ total score analysis at 24 weeks

ACL, aclidinium; FOR, formoterol fumarate; FP, fluticasone propionate; GLY, glycopyrronium; IND, indacaterol; OLO, olodaterol; PBO, placebo; SAL, salmeterol; SGRQ, St George’s Respiratory Questionnaire; TIO, tiotropium; UMEC, umeclidinium; VI, vilanterol.
Supplementary Figure S6. Networks of evidence informing SGRQ responder analysis at 24 weeks

ACL, aclidinium; FOR, formoterol fumarate; FP, fluticasone propionate; GLY, glycopyrronium; IND, indacaterol; OLO, olodaterol; PBO, placebo; SAL, salmeterol; SGRQ, St George’s Respiratory Questionnaire; TIO, tiotropium; UMEC, umeclidinium; VI, vilanterol.
Supplementary Figure S7. Fixed effects model of SGRQ responders OR of UMEC/VI versus (A) dual and (B) monotherapy at 24 weeks

Assessment of heterogeneity/inconsistency: $I^2=25.20\%$; $Q=24.07$; $p=0.1529$.

ACL, aclidinium; CI, confidence interval; FOR, formoterol fumarate; FP, fluticasone propionate; GLY, glycopyrronium; IND, indacaterol; OLO, olodaterol; OR, odds ratio; PBO, placebo; SAL, salmeterol; SGRQ, St George’s Respiratory Questionnaire; TIO, tiotropium; UMEC, umeclidinium; VI, vilanterol.
Supplementary Figure S8. Networks of evidence informing TDI focal score analysis at 24 weeks

ACL, aclidinium; FOR, formoterol fumarate; FP, fluticasone propionate; GLY, glycopyrronium; IND, indacaterol; OLO, olodaterol; PBO, placebo; SAL, salmeterol; TDI, transitional dyspnoea index; TIO, tiotropium; UMEC, umeclidinium; VI, vilanterol.
Supplementary Figure S9. Networks of evidence informing TDI responder analysis at 24 weeks

ACL, aclidinium; FOR, formoterol fumarate; FP, fluticasone propionate; GLY, glycopyrronium; IND, indacaterol; OLO, olodaterol; PBO, placebo; SAL, salmeterol; TDI, transitional dyspnoea index; TIO, tiotropium; UMEC, umeclidinium; VI, vilanterol.
Supplementary Figure S10. Fixed effects model of TDI responders OR with UMEC/VI versus (A) dual and (B) monotherapy at 24 weeks

Assessment of heterogeneity/inconsistency: $I^2=36.01\%$; $Q=15.63$; $p=0.1108$.

ACL, aclidinium; CI, confidence interval; FOR, formoterol fumarate; FP, fluticasone propionate; GLY, glycopyrronium; IND, indacaterol; OLO, olodaterol; OR, odds ratio; PBO, placebo; SAL, salmeterol; TDI, transitional dyspnoea index; TIO, tiotropium; UMEC, umeclidinium; VI, vilanterol.
Supplementary Figure S11. Networks of evidence informing rescue medication use analysis at 24 weeks

ACL, aclidinium; FOR, formoterol fumarate; FP, fluticasone propionate; GLY, glycopyrronium; IND, indacaterol; OLO, olodaterol; PBO, placebo; SAL, salmeterol; TDI, transitional dyspnoea index; TIO, tiotropium; UMEC, umeclidinium; VI, vilanterol.
Supplementary Figure S12. Networks of evidence informing annualised moderate/severe exacerbation analysis

ACL, aclidinium; FOR, formoterol fumarate; FP, fluticasone propionate; GLY, glycopyrronium; IND, indacaterol; OLO, olodaterol; PBO, placebo; SAL, salmeterol; TIO, tiotropium; UMEC, umeclidinium; VI, vilanterol.
Supplementary Figure S13. Networks of evidence informing time to first exacerbation analysis

ACL, aclidinium; FOR, formoterol fumarate; FP, fluticasone propionate; GLY, glycopyrronium; IND, indacaterol; OLO, olodaterol; PBO, placebo; SAL, salmeterol; TIO, tiotropium; UMEC, umeclidinium; VI, vilanterol.