Mathematical model, the solution of boundary value problems for alloys with shape memory effect by analytical, numerical-analytical and numerical methods

G V Malinin¹, V G Malinin¹, N A Malinina¹, O A Malukhina²

¹ Orel state agricultural institute, 69, General Rodin ul., Orel, 302019, Russia
² Yaroslav-the-Wise Novgorod State University, 41, ul. B. St. Petersburgskaya, 41, 173003 Veliky Novgorod, Russia

malinina2006@yandex.ru

Abstract. In this paper we consider the application of analytical, numerical-analytical and numerical methods for solving boundary value problems for structures made from alloys with shape memory. As the defining relations, the equations of structural-analytic mesomechanics were applied.

Introduction

Materials with the shape memory effect (SME) have unique properties that are absent in most traditional materials used in engineering applications. They are called intellectual materials of the XXI century, as well as smart materials. Accordingly, their use provides new design capabilities, which makes it possible both to improve the characteristics of devices and to offer innovative solutions. Alloys with shape memory (ASM) are widely used in medicine, engineering, aircraft building, construction, etc. To calculate the stress-strain state and the engineering solution of problems, it is necessary to develop an appropriate mathematical apparatus that allows to reflect the real mechanical properties of ASM. The development of a mathematical model of ASM that takes into account the features of their behavior in simple and complex deformations, as well as the creation of methods for the analytical and numerical solution of boundary value problems for structures and products from SPF are relevant.

The basic equations of structural-analytic mesomechanics are given in [1-3]. They make it possible to perform a forecast of the basic deformation phenomena in alloys possessing shape memory effects. In this paper, the defining relations of the deformation type are presented, and therefore it becomes possible to apply the mathematical apparatus of the theory of plasticity for solving boundary value problems with elements made of ASM. Within the framework of this approach, some boundary-value problems that admit an analytical solution are solved - the problem of deformation of a long thick-walled tube under internal pressure; numerical-analytical solution by the method of boundary elements - calculation of the truss structure; numerical methods - rod system, bending of the beam, and also plates with different support of the ends. Only isothermal martensitic transformations are considered.

A detailed derivation of the defining relations is given in [3].

1. Determined relations for an alloy with shape memory effect

1. Determined relations for an alloy with shape memory effect

at the load stage:

\[ \epsilon^\gamma_i = \frac{\sigma_i}{E} + \left( \frac{2}{3} B_\theta \sigma_i \frac{k(\sigma_i - \sigma_{u,M}^{M\rightarrow A})}{M_u - M_k} \right) H(\sigma_i - \sigma_{u,M}^{M\rightarrow A}) H(\sigma_{u,M}^{A\rightarrow M} - \sigma_i) H(\sigma_i) \]  

(1)

At the unloading stage:
\[
\varepsilon_i = \frac{\sigma_i}{E} + \frac{2}{3} B_\phi \sigma_i^0 \frac{k(\sigma_i + \sigma_{II} - \sigma_{A+M})}{M_u - M_k} H(\sigma_i - \sigma_{A+M}) H(\sigma_{A+M} - \sigma_i) H(\sigma_i)
\]

where \(\sigma_i\) – voltage intensity; \(E\) – elastic modulus; \(B_\phi\) – material constant; \(\sigma_i^0\) – intensity of voltage accumulated during the loading phase; \(k = \frac{T_0}{q_0}\); \(T_0\) – thermodynamic equilibrium temperature; \(q_0\) – thermal reaction effect; \(D_1\) – distortion of phase transformation; \(\sigma_{A+M} = \frac{T_D - M_k}{k}\) – the voltage of the onset of direct martensitic transformation; \(T_D\) – deformation start temperature; \(M_k, M_u\) – the temperature of the beginning and the end of the direct martensitic transformation, respectively; \(\sigma_{A+M} = \frac{T_D - M_k}{k}\) – endurance of martensitic transformation; \(\sigma_{II} = \frac{\Delta}{k}\) – limit of pseudoelasticity at unloading; \(\Delta\) – width of hysteresis of the martensitic transformation; \(\dot{\sigma}_i = \frac{d\sigma_i}{dt}\); \(H(\ldots)\) – Heaviside function.

The diagram at the stage of loading in the regime of austenitic pseudoelasticity (ferroelasticity), obtained by the formula (1) is shown in Fig. 1.

![Deformation diagram](image)

**Figure 1.** Deformation diagram \(\sigma - \varepsilon\) under active loading.

2. **Boundary value problems for ASM**

Initial data for the alloy TiNi are presented in Table 1.

| Name                                                                 | Formula                           |
|---------------------------------------------------------------------|-----------------------------------|
| Characteristic temperatures of forward and reverse martensitic      | \(M_k = 330\text{K}, M_u = 320\text{K}\) |
| transformation                                                      |                                   |
| Crystallographic constant \(k\)                                     | \(k = 0.29\ \text{KMPa}^{-1}\)    |
| Constant \(B_\phi\)                                                 | \(B_\phi = 0.06 \cdot 10^{-2}\ \text{MPa}^{-1}\) |
| Elastic modulus \(E\)                                               | \(E = 7.42 \cdot 10^{1}\ \text{MPa}\) |
Deformation temperature $T_{D1}$

Deformation temperature $T_{D2}$

Voltage of the beginning of a direct martensitic transformation at deformation temperature $T_{D1}$

Voltage of the beginning of a direct martensitic transformation at deformation temperature $T_{D2}$

Voltage of the end of a direct martensitic transformation at deformation temperature $T_{D1}$

Voltage of the end of a direct martensitic transformation at deformation temperature $T_{D2}$

The module of ferroelasticity $E_{\gamma 1} = E_{\alpha 1}$ (tangent module) at the deformation temperature $T_{D1}$

The module of ferroelasticity $E_{\gamma 2} = E_{\alpha 2}$ (tangent module) at the deformation temperature $T_{D2}$

2.1. Analytical calculation of a thick-walled pipe from ASm under internal pressure, under conditions of direct martensitic transformation

Formulation of the problem. Determine the voltage distribution in the cross section of a thick-walled pipe $r_1 = 10 \text{ mm}$, $r_2 = 20 \text{ mm}$ under internal pressure, made of alloy TiNi, having a shape memory effect, under conditions of direct martensitic transformation.

Assumptions:
1) the material characteristics are calculated at different but constant temperatures;
2) the material undergoes elastic and inelastic (phase) deformations;
3) we take a bilinear model of material deformation.

The results of the calculation for the deformation temperature $T_D = A_e$ are presented in table 2.

| $N$ | Yield radius $r_1$, mm | Load $p$, MPa |
|-----|------------------------|--------------|
| 1   | 10                     | 75           |
| 2   | 13                     | 110          |
| 3   | 15                     | 125          |
| 4   | 18                     | 137          |
| 5   | 20                     | 139          |

Graphs of voltage distribution normalized to $\sigma_{\alpha 1}^{A\rightarrow M}$ for different pressure values are shown in the figure 2.
2.2. Core systems
Calculation of a statically indeterminate rod system.

Formulation of the problem. The rod system consists of two rods made of ASM with different mechanical characteristics (Figure 3). Both materials have the same elastic moduli $E$. Tangent modules and voltage of the onset of direct martensitic transformation $\sigma_{nA}^{A\rightarrow M}$ are different. The external horizontal force is $F = 2 \cdot A \cdot \sigma_{nA}^{A\rightarrow M}$ and is applied at the junction of two rods, where $A$ is the cross-sectional area of both rods. Deformation temperature of the first rod $T_{D1}$, of the second $T_{D2}$. It is required to determine the stresses in the rods by the finite element method, using the iterative Newton-Raphson algorithm with the following initial data:

| Table 3. Initial data. |
|-------------------------|
| Cross-sectional areas of rods $A$ | $A = 314,159 \text{ mm}^2$ |
| Length of each rod $L$ | $L = 50 \text{ mm}$ |
| Load | $R = 2 \cdot A \cdot \sigma_{T1} = 1,083 \cdot 10^5 \text{ H}$ |
Figure 3. The calculation scheme. Deformation diagrams.

Table 4. Results of the calculation of the rod system.

| Voltage in the first rod | Voltage in the second rod |
|-------------------------|--------------------------|
| \( \sigma_1 = \sigma_{T1} + E_{k1}(\Delta_1 \cdot \varepsilon_{T1}) = 180 \text{MPa} \) | \( \sigma_2 = -\sigma_{T2} - E_{k2}(\Delta_2 \cdot \varepsilon_{T2}) = -164 \text{MPa} \) |

Stresses in the first rod are tensile, in the second - compressive.

2.3. Calculation of a statically indeterminate farm

For calculation, the numerical-analytical method of boundary elements [4] is used in conjunction with the methods of elastic solutions and variable elasticity parameters.

Formulation of the problem. Determine the internal forces in the rods of a statically indeterminate shape made from ASM, figure 4.

Table 5. Initial data.

| Name                                      | Formula                        |
|-------------------------------------------|--------------------------------|
| Tangent module, Pa                        | \( E_e = \frac{15d_0}{T_D \cdot D_{31}} (M_u - M_s) = 2.469 \cdot 10^{11} \) |
| Phase yield strength, Pa                  | \( \sigma_T = 6 \cdot 10^6 \) |
| Deformation temperature, K                | \( T_D = 300 \) |
| Cross-sectional areas of rods             | \( A = 3.142 \cdot 10^{-4} \text{ m}^2 \) |
| Load                                      | \( F = EA \cdot 0.002 \) |
| Geometric parameter                       | \( a = 1 \text{ m} \) |
2.4. Calculation of a beam on two supports loaded with a distributed load

A single-span beam of square cross-section, made of ASM with the following parameters, presented in Table 7, was calculated.

Table 7. Initial data.

| Parameter                        | Value |
|----------------------------------|-------|
| Load, MPa                        | q = 10 |
| Deformation temperature, K       | $T_D = T_k = 380$ |
| Length, mm                       | a = 10 |
| Thickness, mm                    | h = 1 |
| Width, mm                        | b = 1 |
| The axial moment of inertia, mm$^4$ | $J_z = b \cdot h^3 / 12 = 0.083$ |

The calculation was carried out by three methods: Ritz, elastic solutions, variable elastic moduli. For approximation of the deformed beam axis, the Vlasov method was used. The problem was solved with two boundary conditions: 1) both edges are hinged-supported, 2) both edges are rigidly embedded.

Table 8. Results of the calculation of the beam by the Ritz method.

| The bending moment diagram $M(x)$ |
|-----------------------------------|
| **Hinged-supported beam** | **Rigged beam** |
| ![Diagram](image1.png) | ![Diagram](image2.png) |
Table 9. Maximum voltage.

| Method of Analysis | Voltage Intensity, MPa |
|--------------------|-----------------------|
| Hinged-supported beam cross-section $\sigma(a/2;h/2)$ | 177 | 176 | 176 |
| Rigged beam cross-section $\sigma(0;h/2)$ and $\sigma(a;h/2)$, MPa | 178 | 174 | 174 |

2.5. Plates

Formulation of the problem. A square plate of ASM loaded with a distributed load with two anchors along the contour: articulated and rigidly fixed. The calculation was carried out by three methods: Ritz, Vlasov-Kantorovich together with the method of elastic solutions and the finite difference method together with the method of elastic solutions.

Table 10. Initial data.

| Parameter | Value |
|-----------|-------|
| Load, MPa | $q = 10$ |
| Deformation temperature, K | $T_D = A_k = 380$ |
| Length, mm | $a = 10$ |
| Thickness, mm | $h = 1$ |

Table 11. The results of calculating the plate by the Ritz method.

| Voltage intensity $\sigma_i$, MPa |
|----------------------------------|
| Hinged-supported plate | Rigged plate |
| In the center of the plate $\sigma_{i,0} = 179$ | In the center of the plate and in the middle of the sides $\sigma_{i,0} = \sigma_{i,C} = 173$ |

Table 12. Results of calculating the maximum voltage intensity for a hinged-supported plate by various methods, MPa

| Method of Analysis | Maximum Voltage Intensity, MPa |
|--------------------|-------------------------------|
| The Ritz method    | 178                           |
| The Vlasov – Kantorovich method together with the method of elastic solutions | 173 |
| The finite difference method together with the method of elastic solutions | 174 |

References

[1] Malinin G.V. Strukturno-analiticheskaja mezomekhanika nanostrukturnych sostojanii sredy s obratnymi martensitnymi prevrashcheniami [Structural analytic mesomechanics of nanostructured conditions of the medium with reversible martensitic transformations]. Nanoinzheneriia, 2012, no. 5, pp. 22-29.
[2] Malinin V.G., Malinina N.A., Malinin G.V., Perelygin A.I. Method of forecasting the conversion plasticity effect in complex stress state on the basis of structural-analytical mesomechanics. Fundamental'nye i prikladnye problemy tekhniki i tekhnologii – Fundamental and Applied Problems of Engineering and Technology, 2012, no. 2(292), pp. 18-23.

[3] Malinin G.V., Malinina N.A. Finding the constitutive relations for the shape memory material. X Vserossiiskaia nauchno-prakticheskaia konferentsiia s mezhdunarodnym uchastiem «Sovremennye problemy gorno-metallurgicheskogo kompleksa. Energosberezenie. Ekologiya. Novye tehnologii» [Proc. 10th All-Russian Sci. & Pract. Conf. with Int. Participation “Current Issues of Mining and Metals Sector. Energy conservation. Ecology. Innovative technologies”]. Stary Oskol, 2013, pp. 57-61.

[4] Bazhenov V.A., Dashchenko A.F., Orobei V.F., Sur'ianinov N.G. Numerical methods in mechanics. Moscow, “Mir” Publ., 2004. 564 p.