Video Object Segmentation with Episodic Graph Memory Networks

Supplemental Material

Xiankai Lu1, Wenguan Wang2, Martin Danelljan2
Tianfei Zhou1, Jianbing Shen1, and Luc Van Gool2

1 Inception Institute of Artificial Intelligence \hspace{1cm} 2 ETH Zurich

In the supplementary file, we provide more details of the proposed \textit{graph memory network}. We further report additional material including detailed experiment results. Specifically,

- in §1, we present more implementation details of the proposed \textit{graph memory network}, including its overall structure and the memory module.
- in §2, we provide quantitative experimental results on one-shot video object segmentation (O-VOS) setting (\textit{i.e.}, DAVIS\textsubscript{17} \texttt{val} set \cite{DAVIS17} and Youtube-VOS \cite{YoutubeVOS}).
- in §3, we provide quantitative experimental results on zero-shot video object segmentation (Z-VOS) setting (\textit{i.e.}, DAVIS\textsubscript{16} \texttt{val} set \cite{DAVIS16} and Youtube-objects dataset \cite{Youtube-objects}).
- in §4, we report more visualization results.

1 More Implementation Details of Graph Memory Network

Here, we present more details of the proposed graph memory network which consist the encoder-decoder segmentation network and the episodic memory network.

\textbf{Segmentation network.} The segmentation network is built based on Encoder-Decoder architecture. Among them, the encoder is initialized of pre-trained ResNet50 \cite{ResNet50} on ImageNet. The input tensor of encoder is 4-channel by implanting additional single channel filters at the first convolution layer. The first three channels are used for RGB input and the last channel is for mask input. During the pre-training on the synthesis videos from the static images, the input frame size is 384 × 384. The feature map size of the fourth block of encoder is 24 × 24 × 512. During the main training on the video, the input frame size is 384 × 640, the corresponding feature map size is 24 × 40 × 512. As shown in Fig. 1, similar to RGMP \cite{RGMP}, the decoder is consists of three blocks that each block contains a refinement module. To efficiently merge features in different scales, we employ the refinement module to take both the previous block feature as well as the features from the encoder with same scale as input. Each refinement module produces a feature map with 256 channels and the last one produces a two-channel mask map.

\textbf{Episodic Graph memory module.} Graph memory is a fully connected graph structure \(\mathcal{G} = (\mathcal{V}, \mathcal{E}) \) where each node \(v_i \in \mathcal{V} \) is represented by a feature map \(\mathbf{m}_i^k \) from the encoder. \(k \) means the \(k \)-th step in the episodic graph memory. The edge function \(e_{i,j} \in \mathcal{E} \) which is used for message passing is implemented by a matrix inner-product:

\[
e_{i,j} = f_s(\mathbf{m}_i^k, \mathbf{m}_j^k) = softmax(\mathbf{m}_i^{k\top} \cdot \mathbf{m}_j^k),
\]

where \(softmax \) denotes the softmax normalization.
Fig. 1: The detailed architecture of decoder in our graph memory network. The refinement module takes two features as input. One feature comes from the previous block (solid line), another feature comes from encoder layer with skip connection (dashed line).

2 Additional Quantitative Results of O-VOS

DAVIS\textsubscript{17} Dataset. We mainly compare our method with representative O-VOS methods including OSMN [16], OSVOS [1], RVOS [12], RGMP [14], AGAME [3] and STM [5]. Table 1 reports the per-sequence evaluation results in terms of region similarity J and boundary accuracy F.

3 Additional Quantitative Results of Z-VOS

DAVIS\textsubscript{16} Dataset. We compare our MuG with representative Z-VOS methods including PDB [10], MotAdapt [9], LSMO [11], AGS [13], COSNet [4], and AnDiff [17]. Table 2 gives per-sequence evaluation in terms of region similarity J and boundary accuracy F. As shown in Table 2, our model outperforms previous methods across the vast majority of sequences and on average.

4 Additional Qualitative Results

In this section, we present a qualitative evaluation of the proposed graph memory network on the sequences of O-VOS datasets: DAVIS\textsubscript{17} [7], Youtube-VOS [15] and Z-VOS datasets: DAVIS\textsubscript{16} [6], Youtube-objects [8]. Specifically, Fig. 2 shows the visualization results of O-VOS while Fig. 3 shows the visualization results of Z-VOS.
Dataset	Video	OSMN [16]	OSVOS [1]	RVOS [12]	RGMP [14]	AGAME [3]	STM [5]	Ours
		J ↑	F ↑	J ↑	F ↑	J ↑	F ↑	J ↑
bike-packing		51.5	48.8	62.1	70.0	55.5	58.5	48.6
blackswan		89.9	92.7	94.3	97.4	93.9	96.5	96.0
bmx-tress		43.0	60.0	47.6	73.0	30.8	56.8	44.4
breakdance		71.1	68.2	72.7	75.6	42.2	45.5	59.2
camel		88.4	92.2	85.9	89.1	73.3	80.0	74.7
car-roundabout		93.4	92.0	89.0	82.7	92.6	87.2	95.0
car-shadow		90.5	92.2	92.8	91.7	93.3	98.8	96.3
cow		87.2	86.5	95.2	95.7	91.2	92.5	93.7
dance-twirl		75.8	72.9	64.1	71.6	62.3	61.5	83.8
dog		87.7	84.6	71.1	69.1	93.3	94.6	95.5
dogs-jump		38.8	45.2	58.8	68.5	69.5	69.4	68.4
drift-chicane		4.9	8.4	77.4	82.9	57.0	67.6	79.5
drift-straight		66.4	57.7	66.5	70.7	89.4	85.4	91.3
goat		80.4	74.7	86.9	87.6	84.4	83.2	86.4
gold-fish		50.3	49.5	53.7	56.6	60.6	62.5	69.2
horsejump-high		39.5	49.5	70.0	83.7	29.2	40.0	78.5
india		59.4	55.1	28.8	31.5	34.5	43.6	41.1
judo		46.0	52.2	44.1	55.0	74.3	62.5	64.0
kite-surf		23.6	46.3	43.1	61.1	27.7	49.4	32.0
lab-coat		41.3	38.1	21.1	29.0	63.4	48.0	51.3
libby		44.7	63.6	62.3	75.1	56.5	75.4	43.9
loading		60.4	66.2	57.8	59.3	56.3	57.1	60.1
mbike-trick		72.5	76.6	64.7	72.1	35.3	57.4	69.6
motorcross-jump		39.4	39.0	57.9	56.8	73.7	75.4	33.0
paragliding-launch		38.0	58.1	47.8	67.9	29.0	34.7	42.3
parkour		86.2	93.2	77.3	74.1	87.5	90.4	91.8
pigs		64.4	63.7	52.7	58.5	76.5	76.4	67.3
scooter-black		62.2	63.2	38.4	50.5	37.8	43.6	45.6
shooting		42.3	53.7	61.3	65.7	46.6	55.2	61.6
soapbox		45.8	50.3	44.7	58.5	48.9	56.7	70.6
Average		52.5	57.1	56.7	63.9	68.5	73.6	70.5

Table 1: Evaluation of O-VOS on DAVIS17 val set [7], with the region similarity J and boundary accuracy F. For both two measure metrics, higher values are better.
Table 2: Evaluation of object-level Z-VOS on DAVIS_16 val set [6], with region similarity J and boundary accuracy F. For both two measure metrics, higher values are better.

Dataset	Video	PDB [10]	MotAdapt [9]	LSMO [11]	AGS [13]	COSNet [4]	AnDiff [17]	Ours							
		J^\uparrow	F^\uparrow	J^\uparrow	F^\uparrow	J^\uparrow	F^\uparrow	J^\uparrow	F^\uparrow						
Blackswan		90.8	93.2	93.9	91.9	92.9	93.9	94.4	96.7	88.0	89.9	94.4	96.2	94.5	95.5
Bmx-Trees		94.9	61.3	46.2	45.8	49.9	66.8	51.4	66.4	46.5	63.3	56.6	77.1	50.2	67.1
Breakdance		59.0	55.1	35.2	36.2	45.9	43.6	60.7	58.1	68.3	63.8	41.9	35.6	73.1	71.5
Camel		82.4	84.7	84.6	82.9	88.6	89.4	85.7	85.1	89.4	90.8	89.6	91.9	90.5	90.6
Car-R-about		85.9	79.7	87.1	67.8	85.9	79.3	94.9	91.7	94.7	92.7	94.3	90.7	95.1	98.1
Car-Shadow		91.8	92.8	75.9	94.9	88.0	85.8	91.8	95.5	93.5	97.7	95.8	98.7	95.7	98.3
Cows		91.8	90.2	97.5	94.4	90.9	90.0	92.2	93.7	91.4	93.6	94.7	96.3	91.8	93.0
Dance-Twirl		65.8	60.3	68.1	67.0	83.1	81.7	78.7	76.2	77.7	77.2	71.6	69.3	79.9	79.8
Dog		92.4	91.1	96.0	93.9	92.9	94.5	93.5	93.4	93.7	95.5	95.6	97.6	92.9	93.8
Drift-Chicane		60.7	65.4	85.1	70.0	69.6	79.1	69.9	77.1	77.7	77.1	71.1	80.4	82.5	91.3
DAVIS-17		86.8	79.9	90.9	90.0	82.6	67.0	90.0	88.6	93.7	95.5	90.7	87.1	91.4	89.3
Drift-Straight		83.7	80.8	88.4	88.3	84.4	82.3	84.7	82.8	70.5	78.8	88.8	90.4	84.7	81.8
Goat		85.7	91.6	93.9	87.8	86.2	92.6	73.4	74.9	91.7	93.5	88.5	95.3	84.9	90.9
Horsejump-H		67.4	49.8	52.4	68.9	50.3	45.4	68.7	49.3	67.5	55.1	67.6	52.5	66.7	53.0
Kite-Surf		73.1	82.6	93.3	83.3	78.0	87.3	66.5	78.1	68.9	81.9	85.9	95.1	75.6	84.2
Libby		85.4	74.1	77.5	85.1	82.3	70.9	81.8	69.0	82.5	72.5	86.7	79.2	72.3	66.6
Motocross-I		63.5	23.2	28.5	64.1	63.3	23.2	63.1	21.6	61.2	19.9	63.4	23.5	63.1	21.8
Paragliding-L		90.1	92.9	93.6	90.6	89.2	93.4	90.8	93.7	87.7	92.1	93.3	96.3	91.5	93.6
Parkour		68.5	63.1	58.8	53.7	70.9	65.1	75.1	66.1	83.8	75.6	81.2	73.6	85.8	79.1
Scooter-Black		73.4	73.0	76.2	71.6	88.1	87.5	76.2	75.8	87.3	86.7	82.5	82.6	89.6	86.3
Soapbox		73.4	73.0	76.2	71.6	88.1	87.5	76.2	75.8	87.3	86.7	82.5	82.6	89.6	86.3
Average		77.2	77.4	77.2	74.5	78.2	75.9	79.7	77.3	80.5	79.5	81.7	80.4	82.5	81.2

Fig. 2: Qualitative results on O-VOS datasets. From top to bottom are bikepacking, dogjump, india from DAVIS_17 and 0788b4033d, 2caa2b45c7, 03deb7ad95 from Youtube-VOS.
Fig. 3: Qualitative results on Z-VOS datasets. From top to bottom are breakdance, car-roundabout, scooter from DAVIS_{16} and bird, dog, motorbike from Youtube-objects.
References

1. Caelles, S., Maninis, K.K., Pont-Tuset, J., Leal-Taixé, L., Cremers, D., Van Gool, L.: One-shot video object segmentation. In: CVPR (2017)
2. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
3. Johnander, J., Danelljan, M., Brissman, E., Khan, F.S., Felsberg, M.: A generative appearance model for end-to-end video object segmentation. In: CVPR (2019)
4. Lu, X., Wang, W., Ma, C., Shen, J., Shao, L., Porikli, F.: See more, know more: Unsupervised video object segmentation with co-attention siamese networks. In: CVPR (2019)
5. Oh, S.W., Lee, J.Y., Xu, N., Kim, S.J.: Video object segmentation using space-time memory networks. In: ICCV (2019)
6. Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: CVPR (2016)
7. Pont-Tuset, J., Perazzi, F., Caelles, S., Arbeláez, P., Sorkine-Hornung, A., Van Gool, L.: The 2017 davis challenge on video object segmentation. arXiv preprint arXiv:1704.00675 (2017)
8. Prest, A., Leistner, C., Civera, J., Schmid, C., Ferrari, V.: Learning object class detectors from weakly annotated video. In: CVPR (2012)
9. Siam, M., Jiang, C., Lu, S., Petrich, L., Gamal, M., Elhoseiny, M., Jagersand, M.: Video segmentation using teacher-student adaptation in a human robot interaction (hri) setting. In: ICRA (2019)
10. Song, H., Wang, W., Zhao, S., Shen, J., Lam, K.M.: Pyramid dilated deeper convlstm for video salient object detection. In: ECCV (2018)
11. Tokmakov, P., Schmid, C., Alahari, K.: Learning to segment moving objects. IJCV 127(3), 282–301 (2019)
12. Ventura, C., Bellver, M., Girbau, A., Salvador, A., Marques, F., Giro-i Nieto, X.: Rvos: End-to-end recurrent network for video object segmentation. In: CVPR (2019)
13. Wang, W., Song, H., Zhao, S., Shen, J., Zhao, S., Hoi, S.C., Ling, H.: Learning unsupervised video object segmentation through visual attention. In: CVPR (2019)
14. Wug Oh, S., Lee, J.Y., Sunkavalli, K., Joo Kim, S.: Fast video object segmentation by reference-guided mask propagation. In: CVPR (2018)
15. Xu, N., Yang, L., Fan, Y., Yang, J., Yue, D., Liang, Y., Price, B., Cohen, S., Huang, T.: Youtube-vos: Sequence-to-sequence video object segmentation. In: ECCV (2018)
16. Yang, L., Wang, Y., Xiong, X., Yang, J., Katsaggelos, A.K.: Efficient video object segmentation via network modulation. In: CVPR (2018)
17. Yang, Z., Wang, Q., Bertinetto, L., Bai, S., Hu, W., Torr, P.H.: Anchor diffusion for unsupervised video object segmentation. In: ICCV (2019)