Thermal Injury and Recovery of Bacillus subtilis

L. LENKART MILLER and Z. JOHN ORDAL

Departments of Food Science and Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

Received for publication 16 August 1972

Exposure of Bacillus subtilis NCTC 8236 to sublethal temperatures produced a change in the sensitivity of the organism to salt and polymyxin. After 30 min at 47 C, 90% of the population was unable to grow on a modified sulfite polymyxin sulfadiazine agar containing an added 1% NaCl, 1% glucose, and 1% asparagine. The data presented demonstrate that thermal injury results in degradation of both 16S and 23S ribonucleic acid (RNA) and in damage to the cell membrane, suggested by leakage into the heating mestrurum of material absorbing at 260 nm. When the cells were placed in a recovery medium (Trypticase soy broth), complete recovery, indicated by a returned tolerance to salt and polymyxin, occurred within 2 hr. The presence of a protein inhibitor (chlamaphenicol) and cell wall inhibitors (vancomycin and penicillin) during recovery had no effect, whereas the presence of an RNA inhibitor (actinomycin D) effectively inhibited recovery. Further data demonstrated that the injured cells were able to resynthesize both species of ribosomal RNA during recovery by using the fragments which resulted from the injury process. Also, precursor 16S and precursor 23S particles accumulated during recovery. The maturation of the precursor particles during recovery was not affected by the presence of chlamaphenicol in the recovery medium.

The effects of sublethal heating on nonsporulating organisms, both gram-positive and gram-negative, have been characterized (2, 6, 7, 10, 12, 15, 19). A partial list of these effects includes ribonucleic acid (RNA) degradation, alteration of enzyme activity (4, 24), and damage to the cellular membrane. RNA degradation has been detected by leakage of nucleotides from the cell (1, 9) and by an absence or decrease of a ribosomal RNA (rRNA) species (17, 20, 23). Cellular membrane damage was suggested by loss of cellular material into the heating menstrum (2, 12, 19) and by an increased sensitivity to harsh environments, e.g., a high concentration of salt (5, 6, 12).

Although the nonsporing microorganisms tested characterized exhibited these effects, the types of macromolecular synthesis necessary for recovery were found to depend on the organism injured. In particular, Staphylococcus aureus and Streptococcus faecalis required RNA synthesis for recovery (7, 12, 20), whereas Salmonella typhimurium needed both protein and RNA synthesis (22).

This report describes sublethal thermal injury and its effects on Bacillus subtilis NCTC 8236, a gram-positive sporformer. It also includes a description of the RNA synthesis occurring and the cellular processes involved in recovery.

MATERIALS AND METHODS

Injury procedure. Cultures of B. subtilis NCTC 8236 were grown in Trypticase soy broth (TSB, BBL). Frozen stock cultures for regular use were prepared by first growing the organism in TSB to an optical density at 540 nm of 0.5. A 40-ml amount of this culture was then transferred to 200 ml of TSB and incubated for 3 hr. All incubations were at 37 C on a rotary shaker. Portions (10 ml) of the 3-hr culture were put into sterile test tubes and frozen at -20 C. When cells were needed for an experiment, a frozen tube was thawed and added to 200 ml of TSB. After incubation for 16 to 18 hr, 40 ml of this culture was inoculated into a second 200 ml of TSB. This transfer was done to preclude the presence of spores in the culture when it was harvested and injured. After a 3-hr incubation, these cells were harvested by centrifugation for 10 min at 8,000 × g at 0 to 2 C. The supernatant fluid was decanted, and the cells were washed once in 100 mM potassium phosphate buffer (pH 6.0), centrifuged, and suspended in 10 ml of the same buffer. These cells were heated at 47 C for 30 min by adding the suspension to 190 ml of 100 mM potassium phosphate buffer (pH 6.0), pretempered under constant agitation.
Recovery procedure. After heating, the cells were harvested by centrifugation for 10 min at 8,000 × g at 0 to 2 °C. The supernatant fluid was discarded; the cells were resuspended in 200 ml of 100 mM potassium phosphate buffer (pH 6.0), and 0.5 ml of this suspension was inoculated into 50 ml of TSB and incubated at 37 °C.

Assay procedure. Assays of injury and recovery were done by using a differential plate counting system. Samples (1 ml) were withdrawn at various intervals from the injury vessel, or from the recovery flask, and were diluted in 0.1% peptone-distilled water blanks. The samples were taken from common dilution bottles and poured-plated on Trypticase soy agar (TSA; BBL) and modified sulfomycin sulfdiazine (SPS) agar (BBL) containing an added 1% NaCl, 1% glucose, and 1% asparagine. A series of exploratory experiments demonstrated that this medium would serve the desired purpose. The plates were incubated at 37 °C for 48 hr. The TSA counts gave a measure of all viable cells, both injured and uninjured. The modified SPS (m-SPS) agar count gave an estimation of the uninjured cells.

The suspension from the injury vessel was also tested for the release of material absorbing at 260 nm. The cells were removed by filtration through membrane filters (pore size, 0.22 μm; Millipore Corp., Bedford, Mass.). The resulting supernatant fluid was cooled in an ice-water bath and analyzed for material absorbing at 260 nm (Beckman model DU spectrophotometer with a dual lamp source and modified with a Gilford 22 photometer). Uninoculated buffer was used as the control.

Inhibitors. Metabolic inhibitors were added to the TSB recovery vessel during recovery from heat injury at the following concentrations: chloramphenicol (CAP; Calbiochem, Los Angeles, Calif.), 1.5 μg/ml; vancomycin (Vancocin HCl; Eli Lilly & Co., Indianapolis, Ind.), 10 μg/ml; penicillin G (Calbiochem), 1,585 units/mg (5 μg/ml); actinomycin D (Calbiochem), 1.5 μg/ml; and nalidixic acid (Calbiochem), 5 μg/ml.

Direct count. Direct counts of bacterial suspensions in a Petroff-Hausser counting chamber were made by use of phase-contrast microscopy. The original suspension was diluted with 10% glycerol-90% water, thereby limiting Brownian movement. At least two counts were made at each dilution, and at least two dilutions of each suspension were counted.

Incorporation of radioactive RNA. To prepare 4C-labeled RNA, 0.2 ml of uracil-2-4C (0.1 mCi/ml) and 40 ml of a 16- to 18-hr culture of B. subtilis were added simultaneously to 200 ml of TSB. After 3 hr of incubation at 37 °C, the cells were harvested and the control RNA was extracted.

To prepare 3H-labeled cells, 0.2 ml of uracil-6-3H (1.0 mCi/ml) was added to the culture either 3 hr prior to thermal shock or simultaneously with the addition of the injured cells to the recovery flask. After various lengths of incubation (depending on the experiment), the cells were harvested and the RNA was extracted.

RNA extraction and analysis. RNA was extracted from normal, heat-injured, and recovered cells by the phenol method originally described by Kirby (14), was separated by polyacrylamide-gel (PAGE) electrophoresis, and was assayed by methods previously described (23).

RESULTS

Procedures to estimate injury and recovery. When cells of B. subtilis NCTC 8236 were placed in 100 mM potassium phosphate buffer (pH 6.0) at 47 °C, an increasing sensitivity to m-SPS agar was noted with an increase in time (Fig. 1). As the heating time continued, the count on the m-SPS agar decreased, whereas the count on TSA remained relatively stable. The difference between the TSA and the m-SPS count provided a measure of the injured cell population. In this system, after 30 min of heating, significant injury was observed. Some death was evident, as seen by the decrease in TSA counts. Corresponding to the degree of injury, as indicated by the change in sensitivity to m-SPS agar, was a continuous increase with time of the amount of material absorbing at 260 nm present in the heating menstruum.

These data indicate that the thermal stress placed on the cell was adequate to permit a detailed study of the changes in the treated cells. When the thermally stressed cells were transferred to a recovery medium (TSB), they demonstrated an extended lag period (Fig. 2), a response characteristic of heat-stressed cells (12, 13, 22). During the extended lag period,

![Fig. 1. Survivor curves for B. subtilis NCTC 8236 heated in 100 mM phosphate buffer, pH 6.0, at 47 °C. Trypticase soy agar (O) was used as the control, and modified sulfite polypeptide sulfadiazine agar (●) was used to show uninjured cells.](http://aem.asm.org/Downloaded from)
recovery from the heat treatment was demonstrated by a restored tolerance to the m-SPS agar.

Growth versus recovery. To substantiate that recovery of injured cells had occurred during the extended lag phase and that multiplication of the uninjured cells was not involved in the change of numbers with the m-SPS agar, direct counts were made during the extended lag phase. In all cases, the direct counts corresponded to the TSA counts (±10%). This demonstrated that the change in count on the m-SPS agar during the extended lag phase was due to repair of injured cells and not to the multiplication of uninjured organisms.

Further evidence that recovery and not growth had occurred was achieved by monitoring recovery in the presence of the deoxyribonucleic acid (DNA) inhibitor nalidixic acid (26). This inhibitor at low concentrations does not affect RNA or protein synthesis (8). In the presence of nalidixic acid (5 μg/ml), recovery occurred at a rate comparable to the control, but subsequent multiplication was completely arrested. Hence, DNA synthesis is not involved in the recovery of thermally stressed cells of *B. subtilis*.

Effect of metabolic inhibitors during recovery. Metabolic inhibitors were used to characterize further cellular events involved in the recovery process. CAP, vancomycin, penicillin, and actinomycin D were added to four separate recovery flasks simultaneously with the introduction of the thermally stressed *B. subtilis* cells to the recovery media (TSB). CAP inhibits protein synthesis without affecting RNA synthesis (25). Penicillin and vancomycin inhibit cell wall and mucopeptide synthesis (3, 21). Actinomycin D blocks synthesis of RNA on a DNA template (16).

As is evident in Fig. 3, vancomycin and penicillin did not affect recovery but did dramatically inhibit subsequent multiplication,
and in fact caused death of the multiplying cells. It is interesting to note that the recovered cells again showed a sensitivity to the m-SPS agar, whereas these two inhibitors exerted their effect on the multiplying cells. CAP permitted a significant amount of recovery, and the subsequent inhibition of growth was effective but less dramatic (data not presented). In contrast to the above-mentioned inhibitors, a low concentration of actinomycin D not only arrested recovery but also initiated a definite loss in viability of cells (Fig. 4). These inhibitor data indicate that neither protein nor cell wall synthesis was required but rather that RNA synthesis was necessary for injured cells to recover and to regain their tolerance to the m-SPS agar. These results suggested that a characterization of the RNA changes occurring during injury and recovery would be informative.

rRNA degradation during thermal injury. To determine the nature and extent of the rRNA degradation occurring during heating, four cultures of 3H-labeled cells were thermally injured for 5, 10, 20, and 30 min; the RNA was extracted and was subjected to co-electrophoresis on PAG with control RNA extracted from cells steady-state-labeled with 14C-uracil. Typical results are presented in Fig. 5.

This procedure distinctly separates the 16S and 23S RNA peaks, as evidenced by the rRNA profile for the normal cells (Fig. 5, open circles). When the RNA profiles were determined on cells which had been held at 47 C for 5, 10, 20, and 30 min, it was noted that there were pronounced changes in the two rRNA peaks. The 16S peak was undetectable after 5 min of heating, but the 23S peak degraded more slowly. This peak was detectable after 20 min of heating, but appeared to be gone after 30 min of heating (Fig. 5). Even after this dramatic loss of both rRNA species resulting from 30 min at 47 C, these cells were still able to recover as demonstrated in Fig. 2.

The degradation of the 23S RNA is in contrast to what has been previously reported for rRNA changes in thermally stressed cells. In S. aureus, the 16S RNA is extensively degraded, whereas the 23S is retained except for some possible changes in secondary structure (17, 20). Similarly with S. typhimurium, a sublethal thermal treatment caused a pronounced loss of the 16S RNA but only a slight degradation of the 23S RNA (23).

Characterization of the rRNA synthesized during recovery. The demonstration that a low concentration of actinomycin D inhibited recovery and that both the 16S and the 23S RNA were degraded during the heat treatment emphasized that RNA synthesis would be required for recovery. To follow the de novo rRNA synthesis, RNA was extracted from cells recovered in the presence of 14C-RNA and subjected to co-electrophoresis on PAG with 14C-RNA from an untreated culture. Cells were analyzed after 30, 60, 90, or 120 min in the recovery medium. In each profile, the 14C-RNA (control) clearly separated into two peaks corresponding to the 23S and 16S RNA. The profiles from the recovering cells showed a sequential change with recovery time in the synthesis of the typical 23S and 16S RNA. The 3H-RNA from cells recovered for 30, 60, or 90 min exhibited four peaks corresponding to 24S, 23S, 17S, and 16S RNA (Fig. 6). The 24S and the 17S peaks represent an accumulation of precursor 23S RNA and precursor 16S RNA (11). This is similar to the accumulation of precursor particles seen in recovering cells of thermally injured S. typhimurium (23). After a recovery time of 120 min, both the 23S and 16S RNA

![Fig. 4. Recovery and growth of heat-injured B. subtilis NCTC 8236 in Trypticase soy broth plus 1 µg of actinomycin D per ml. The cells were heated in 100 mM phosphate buffer, pH 6.0, at 47 C for 30 min. For recovery, the cells were transferred to the recovery medium alone (C), plated on Trypticase soy agar; O, plated on modified sulfite polysulfate sulfadiazine agar) or the recovery medium plus actinomycin D (C), plated on Trypticase soy agar; □, plated on modified sulfite polysulfate sulfadiazine agar). All incubations were at 37 C.](http://aem.asm.org/Downloaded from http://aem.asm.org/ on May 8, 2020 by guest)
peaks closely resembled the RNA peaks of the untreated cells (Fig. 6).

To determine whether the degraded RNA was usable for RNA synthesis during recovery, 3H-labeled cells were heat-injured, and were allowed to recover without an additional label. After 30, 60, 90, or 120 min in the recovery medium, the cells were harvested; the RNA was extracted and subjected to co-electrophoresis with 14C-labeled control RNA. The RNA extracted (data not presented) contained the 3H-label and had RNA profiles on PAG which were similar to RNA profiles from cells recovered in the presence of 3H-uracil for comparable lengths of time (Fig. 6). Since the precursors contained 3H-label, it was concluded that the degraded material could be resynthesized into RNA.

rRNA synthesized during CAP-inhibited recovery. Since the recovery of thermally injured cells of B. subtilis was demonstrated to be independent of protein synthesis, as measured by the increased viability on m-SPS agar of cells recovered in the presence of CAP, the synthesis and maturation of RNA should not be affected by the presence of CAP during recovery. To verify this relationship, RNA was extracted from injured cells which had been permitted to recover for 90 min in the presence of CAP (1.5 μg/ml) and 3H-uracil. The PAG profile of this RNA (Fig. 7) was almost identical to PAG profile for cells recovered in the absence of CAP (Fig. 6).

DISCUSSION

The data presented in this report demonstrate similarities as well as differences when the effects of thermal stress on B. subtilis are compared with those reported for other bacteria. Injury as well as recovery could be followed by the use of a selective medium. The m-SPS agar allowed a reasonable indication of the extent of injury and also provided a means to indicate when recovery was complete. The loss of material absorbing at 260 nm during heating implied membrane damage. This type of lesion was not further characterized, as the recovery experiments implied that it was quickly repaired. The use of selective inhibitors during recovery demonstrated that the cell wall inhibitors (penicillin and vancomycin) and the protein inhibitor (CAP) were without effect, whereas the RNA inhibitor (actinomycin D) effectively stopped recovery of the thermally injured cells. Previous thermal injury studies with S. aureus indicated that protein synthesis was not necessary for recovery (12), and likewise that ribosomal particles were reassembled in the presence of CAP (18). In contrast, thermally injured cells of S. typhimurium were unable to recover in the presence of CAP (22). It was further demonstrated that CAP inhibited the maturation of the precursor 16S RNA (23).

The detailed studies on the fate of the RNA during injury and recovery demonstrated that both 23S and 16S RNA were degraded during the heat treatment, but the injured cells had the
ability to resynthesize both species of rRNA by using the fragments which resulted from the injury process. The data further demonstrated that 24S and 17.5S RNA particles accumulated during recovery, and that the maturation of these particles during recovery was not affected by the presence of CAP in the medium.

The events discussed above suggest certain
effects attributable to heat. Thermal injury produced a weakening of the cell membrane, resulting in a loss of material absorbing at 260 nm and in an increased sensitivity to the salt and the polymyxin in the SPS agar. Also, complete loss of both 23S and 16S RNA species occurred after 30 min of heating. Recovery from thermal stress occurred within 2 hr and resulted in a repair of the weakened membrane and resynthesis of both rRNA species.

ACKNOWLEDGMENTS

This investigation was supported by Public Health Service grant 2-R01-FD-00093 from the U.S. Food and Drug Administration, Department of Health, Education and Welfare. We are very grateful to Richard I. Tomlins for his help and advice in connection with this work.

LITERATURE CITED

1. Allwood, M. C., and A. D. Russell. 1968. Thermally induced ribonucleic acid degradation and leakage of substances from the metabolic pool in *Staphylococcus aureus*. J. Bacteriol. 95:345-349.

2. Allwood, M. C., and A. D. Russell. 1969. Thermally induced changes in the physical properties of *Staphylococcus aureus*. J. Appl. Bacteriol. 32:69-78.

3. Best, G. K., and N. N. Surham. 1964. Effect of vancomycin on *Bacillus subtilis*. Arch. Biochem. Biophys. 105:120-125.

4. Bluhm, L., and Z. J. Ordal. 1969. Effect of sublethal heat on the metabolic activity of *Staphylococcus aureus*. J. Bacteriol. 97:140-150.

5. Busta, F. F., and J. J. Jekeski. 1963. Effect of sodium chloride concentration in an agar medium on growth of heat-shocked *Staphylococcus aureus*. Appl. Microbiol. 11:404-407.

6. Clark, C. W., and Z. J. Ordal. 1969. Thermal injury and recovery of *Salmonella typhimurium* and its effect on enumeration procedures. Appl. Microbiol. 18:332-336.

7. Clark, C. W., L. D. Witter, and Z. J. Ordal. 1968. Thermal injury and recovery of *Streptococcus faecalis*. Appl. Microbiol. 16:1764-1796.

8. Cook, T. M., K. G. Brown, J. V. Boyle, and W. A. Gass. 1966. Bacteriocidal action of nalidixic acid on *Bacillus subtilis*. J. Bacteriol. 92:1510-1514.

9. Haight, R. D., and Z. J. Ordal. 1969. Thermally induced degradation of staphylococcal ribosomes. Can. J. Microbiol. 15:15-19.

10. Heather, C. D., and W. C. Van der Zant. 1957. Effect of the plating medium on the survival of heat-treated cells of *Pseudomonas fluorescens*. Food Res. 22:164-169.

11. Hecht, W. B., and C. R. Woese. 1968. Separation of bacterial ribosome ribonucleic acid from its macromolecular precursors by polyacrylamide gels. J. Bacteriol. 95:986-990.

12. Iandolo, J. J., and Z. J. Ordal. 1966. Repair of thermal injury of *Staphylococcus aureus*. J. Bacteriol. 91:134-142.

13. Jackson, H., and M. Woodbine. 1963. The effect of sublethal heat treatment on the growth of *Staphylococcus aureus*. J. Appl. Bacteriol. 24:152-158.

14. Kirby, K. S. 1956. A new method of isolation of ribonucleic acids from mammalian tissues. Biochem. J. 64:405-407.

15. Mukherjee, P., and S. B. Bhattacharjee. 1970. Recovery of bacteria from damages induced by heat. J. Gen. Microbiol. 66:233-238.

16. Reich, E. 1966. Binding to DNA and inhibition of DNA functions by actinomycins. Symp. Soc. Gen. Microbiol. 16:266-279.

17. Rosenthal, L. J., and J. J. Iandolo. 1970. Thermally induced intracellular alteration of ribosomal ribonucleic acid. J. Bacteriol. 103:833-835.

18. Rosenthal, L. J., S. E. Martin, M. W. Pariza, and J. J. Iandolo. 1972. Ribosome synthesis in thermally shocked cells of *Staphylococcus aureus*. J. Bacteriol. 109:243-249.

19. Russell, A. D., and D. Harries. 1968. Damage to *Escherichia coli* on exposure to moist heat. Appl. Microbiol. 16:1394-1399.

20. Sugin, S. J., and Z. J. Ordal. 1967. Regeneration of ribosomes and ribosomal ribonucleic acid during repair of thermal injury to *Staphylococcus aureus*. J. Bacteriol. 95:986-990.

21. Strominger, J. L., K. Izaki, M. Matsubashi, and D. J. Tippe. 1967. Peptidoglycan and transpeptidase and D-alanine carboxypeptidase penicillin sensitive enzyme reaction. Fed. Proc. 26:9-22.

22. Tomlins, R. I., and Z. J. Ordal. 1971. Requirements of *Salmonella typhimurium* for recovery from thermal injury. J. Bacteriol. 105:512-518.

23. Tomlins, R. I., and Z. J. Ordal. 1971. Precursor ribosomal ribonucleic acid and ribosome accumulation in vivo during the recovery of *Salmonella typhimurium* from thermal injury. J. Bacteriol. 107:134-142.

24. Tomlins, R. I., M. D. Pierson, and Z. J. Ordal. 1971. Effect of thermal injury on the TCA cycle enzymes of *Staphylococcus aureus* MF 31 and *Salmonella typhimurium* 7130. Can. J. Microbiol. 17:759-765.

25. Weber, M. J., and J. A. DeMoss. 1969. Inhibition of the peptide bond synthesizing cycle by chloramphenicol. J. Bacteriol. 97:1099-1105.

26. Wensel, E. B., and H. S. Rosenkranz. 1970. Nalidixic acid and the metabolism of *Escherichia coli*. J. Bacteriol. 104:1168-1175.