"Mediman" – Smartphone als Plattform zum Lernen?

Zusammenfassung

Mobile Endgeräte mit Internetzugang (Smartphones) sind seit Apples revolutionärer iPhone-Markteinführung nicht mehr aus dem Alltag wegzudenken und erfreuen sich ausgesprochener Beliebtheit. Ihr Marktanteil wächst stetig und Seitenbetreiber kommen nicht umher, ihre Seiten an die neuen kleinen Displaygrößen und Bedienungstechniken anzupassen – häufig als „Responsive Webdesign“ beschrieben. Anwendungen, die nicht für die Anzeige auf kleinen Bildschirmen optimiert sind, schränken den Bedienkomfort ein. Auch bei Studierenden sind Smartphones sehr verbreitet und so stellt sich die Frage, ob sie nicht auch als Plattform für Lernanwendungen dienen können.

„Mediman“, eine Portierung des klassischen Spielprinzips von Galgenmännchen, wurde für Smartphones entwickelt. Testbenutzer wurden dann gebeten, einen Onlinefragebogen auszufüllen. Zur Zeit scheinen nur wenige Lernanwendungen für Smartphones zu existieren, was sich in der eingeschränkten Benutzerfreundlichkeit widerspiegelt. Vor allem die Tatsache, dass Smartphone-Besitzer ihre Geräte meist bei sich tragen, wird als ideale Voraussetzung gesehen, die Geräte für Lernanwendungen einzusetzen. Hier scheint vor allem das Lernen in kurzen Sitzungen von Interesse.

Mediman wurde von der Mehrzahl der 11 Testbenutzer als gut umgesetzte Beispielanwendung bewertet. Die zentrale Frage der Umsetzbarkeit einer Smartphone-Lernanwendung wurde damit erreicht – die notwendige Akzeptanz scheint vorhanden.

Für die Zukunft ist mit einer zunehmenden Verbreitung von Smartphones zu rechnen, sodass Lernanwendungen und -szenarien für Endgeräte mit kleinen Bildschirmen optimiert werden sollten. Aufgrund der geringen Fallzahl in der Onlineumfrage sollten weitere Untersuchungen ange schlossen werden.

Schlüsselwörter: eLearning, Medizinstudium, Mobile Endgeräte, Smartphones

Einleitung

Mobile Endgeräte mit Internetzugang (Smartphones) sind aus dem Alltag nicht mehr wegzudenken und ihr Marktanteil wächst stetig [http://www.w3schools.com/browsers/browsers_mobile.asp]. Für Deutschland wird für die nächsten fünf Jahre ein Zuwachs des mobilen Datenaufkommens um das 15-fache und eine Verdreifachung der Endgeräte mit mobilen Internetzugang vorausgesagt [1]. Besonders der Markteinführung von Apples revolutionären iPhone im Jahr 2007 ist dieser Hype zu verdanken, denn Apple verband erstmals eine ausgesprochene einfache Bedienung mit umfangreichen Funktionen und wurde dafür mehrfach ausgezeichnet [http://www.jdpower.com/consumer-ratings/electronics/ratings/909201396/2012-Wireless+Consumer+Smartphone+Customer+Satisfaction+Study/index.htm]. Apple teilt sich den Smartphone-Markt im Wesentlichen mit Samsung und Nokia [2], [3].

Durch die zunehmende Verbreitung von Smartphones und deren Möglichkeit jederzeit und -orts auf Internetsei-
Abbildung 1: Mediman als Favorit auf dem Home-Bildschirm

Besonders unter jungen Menschen und Studierenden sind Smartphones verbreitet [4]. Davies et al [5] haben das Lernverhalten Studierender hinsichtlich der Verwendung von mobilen Geräten untersucht und dabei festgestellt, dass die Geräte meist unmittelbar auf eine konkrete aufgeworfene Frage hin eingesetzt werden („timely access to key facts – learning in context“). Eine weitere Feststellung war, dass die Studierenden die Geräte zum Festigen und Wiederholen von bereits Gelerntem nutzten. Es stellt sich die Frage, ob sich Smartphones über ein simples Nachschlagewerkzeug hinaus als eine ergänzende Plattform für studentische Lernanwendungen anbieten. Aus Interesse an der Plattform Smartphone als Lernumgebung und der Faszination für die Entwicklung eigener (Internet-)Anwendungen entstand eine Beispielanwendung mit dem Namen „Mediman“ mit der Kernfrage der Umsetzbarkeit. Konkrete Ziele waren: Entwicklung einer Lernanwendung für das Smartphone und Evaluation verschiedener Möglichkeiten in der Umsetzung. Ist eine Realisierung als Webanwendung möglich? Gibt es Beschränkungen bei der Auswahl dieser Herangehensweise? Im Anschluss an die Projektumsetzung wurde um eine Onlineumfrage ergänzt, um einen Eindruck zu bekommen, wie die Sicht Medizinstudierender gegenüber der Lernplattform sind.

Methoden

Beim Spiel Galgenmännchen [https://de.wikipedia.org/wiki/Galgenm%C3%A4nchen] muss klassischer Weise ein Wort, das sich ein Mitspieler ausgedacht hat, erraten werden, indem der Mitspieler im Wort enthaltene Buchstaben nennt. Überschreitet man die Anzahl der Fehlversuche, ist das Spiel verloren. Dieses Spielprinzip wurde insofern angepasst, als dass nun ein medizinischer Begriff erraten werden muss. Der Begriff wird am Ende der Spielrunde definiert und erläutert, um einen zusätzlichen Lerneffekt zu generieren (siehe Abbildung 2).

Bei der Entwicklung der Beispielanwendung „Mediman“ wurde auf das Framework jQuery mobile [http://jquerymobile.com/] zurückgegriffen, weil es zum einen den optischen Eindruck einer nativen Apple-Anwendung nahezu vollständig nachbilden kann und zum anderen eine breite Palette an Endgeräten von Haus aus unterstützt [http://jquerymobile.com/]. So können kurze Entwicklungszeit garantiert und mögliche Fehler bei der Darstellung minimiert werden. Alternativen zu dem eingesetzten Framework sind zum Beispiel JTouch oder Sencha Touch.

Mediman baut im Weiteren auf HTML, CSS und JavaScript auf. Eine MySQL-Datenbank wird zur Speicherung der zu erratenden Begriffe und deren Erläuterungen verwendet. Um den Benutzerkomfort zu erhöhen und ein Neuladen der kompletten Seite zu vermeiden werden Inhalte mittels AJAX („Asynchronous JavaScript and XML“) im Hintergrund geladen (Beispiel: Klick auf „Neuer Versuch“). Der Entwicklungs- und Testprozess wird durch sogenannte Simulationsprogramme unterstützt. Auf dem Entwicklungsrechner können so die verschiedenen Smartphonegeräte und ihr Verhalten simuliert werden, ohne dass diese tatsächlich im Besitz des Entwicklers sein müssen.

Zum Starten der Anwendung reicht das Eingeben der Internetadresse im Browser des Smartphones - eine Installation ist nicht notwendig. Die Unterschiede zu einer native Anwendung (App) verschwinden weiter, wenn man die Internetseite zum Startbildschirm hinzufügt. Das Anklicken des definierten Icons (siehe Abbildung 1) reicht so für den zukünftigen Start aus.

Abbildung 2: Screenshots von Mediman

Es wurde ein Onlinefragebogen mit neun Frageitems erstellt. Sofern nicht anders angegeben erfolgte die Erhebung der Daten in Form einer Likert-Skala. Anschließend wurden Testbenutzer im Zeitraum vom Juni 2012 bis zum Juli 2012 via Email eingeladen den Fragebogen auszufüllen. Die Gruppe der Testbenutzer rekrutierte sich aus Medizinstudenten im klinischen Abschnitt an der Universität München (n=20). Die Teilnahme war freiwillig, eine
Zulassungsbeschränkung gab es nicht. Die Auswertung der Daten erfolgte mit Hilfe von Microsoft Excel.

Ergebnisse

Insgesamt füllten 11 Testbenutzer die Onlineumfrage vollständig aus, was einer Rückläuferquote von 55% entspricht. Die Testbenutzer waren im Durchschnitt 25 Jahre alt und im überwiegenden Teil männlich (63,6%). Am häufigsten nutzten sie Produkte der Apple iPhone-Familie, gefolgt von Geräten des Herstellers Samsung. Während zwei Testnutzer die Auswahl über Sonstiges mit Nokia N8 (Symbian) bzw. ein Apple iPod touch 2G ergänzten war unter den Testnutzer keiner, der ein Smartphone nutzte, das mit Windows Phone betrieben wurde (siehe Abbildung 3).

Bei der Frage nach der Nutzungshäufigkeit von Smartphones zum Lernen gab die Mehrheit an, das Gerät häufig oder zumindest manchmal zu nutzen. Der kleinere Teil nutzt sie selten oder nie (siehe Abbildung 4).

Diskussion

Smartphones sind mittlerweile weit verbreitet und bieten über die Anbindung das Internet vielfältige Möglichkeiten. Die medizinische Fakultät der Universität Stanford beispielsweise hat den Trend hin zum Einsatz mobiler Endgeräte erkannt und stattet seit 2010 alle neuen Medizinstudierenden mit einem Apple iPad aus [6]. Die Fakultät etabliert parallel dazu ein passendes Portal mit speziell aufbereiteten Unterrichtsmaterialien (Vorlesungsfolien, Videos, Anleitungen und sonstige Downloads), auf welches die Studierenden mit einer kostenlosen App aus dem Apple App Store zugreifen können [7]. Die Studierenden können so über den Zeitpunkt, zu dem sie das Lehrangebot in Anspruch nehmen möchten und auch über die Häufigkeit selbst entscheiden.

Bekannte Lernanwendungen für das Internet (eLearning-Angebote), wie zum Beispiel CASUS, sind in der Regel browserbasiert. Diese sind jedoch traditionell für die Anzeige auf großen Bildschirmen – wie sie zum Beispiel am Arbeitsplatz oder zu Hause in der Wohnung zu finden sind – und einer Maus als Eingabegerät konzipiert. Besucht man diese Internetangebote mit dem Smartphone muss man häufig Kompromisse in Bezug auf die Bedien- und Lesbarkeit eingehen. Auf Grund der zunehmenden Verbreitung werden die existierenden Angebote damit dem Anspruch der Benutzer nicht mehr gerecht. Im Rahmen der durchgeführten Umfrage gab der Großteil der Testnutzer an, dass es sich bei Smartphones um eine ideale Lernplattform handele, da sie meist ein solches Gerät mit sich tragen. Weil im vergangenen Jahr erstmals mehr Smartphones als Desktop PCs verkauft wurden, ist dies gut nachvollziehbar [http://www.canalys.com/newsroom/].
Das Angebot spezieller Smartphone-Lernanwendungen scheint aber gering zu sein (siehe Abbildung 5), der Wunsch danach ist hoch (siehe Tabelle 2). Daraus lässt sich jedoch nicht schließen, dass existierende Lernanwendungen deshalb ohne weiteres für die Anzeige auf kleinen Geräten (Smartphones und Tablet PCs) angepasst werden sollten. Die Anforderungen scheinen differenzierter zu sein. Den Ergebnissen der Umfrage kann man entnehmen, dass auf kurze Lerneinheiten Wert gelegt wird. Diese wird in der Freitextantwort zur Frage nach den Anforderungen an Smartphone-Lernanwendungen als Lückenfüller für die Zeit in der U-Bahn von der Wohnung in den Vorlesungssaal oder für den Transfer zwischen zwei Standorten beschrieben. Kurze Lerntexte...
bzw. optimierte Falldarstellungen zur Wissensüberprüfung scheinen hier langen Fließtexten überlegen zu sein. Anwendungen für Smartphones können als native Anwendungen entwickelt und dann im Online/Shop des jeweiligen Herstellers angeboten werden. Die Hersteller unterstützen die Entwicklung in Form einer Entwicklungsumgebung und -inhalten (SDK). Diese werden meist kostenfrei zur Verfügung gestellt. Apple zum Beispiel behält sich jedoch eine Prüfung der Anwendung und ggf. sogar einen Auschluss vor. Vor der Freigabe von Updates muss damit gerechnet werden, dass die Anwendung einer erneuten Prüfung unterzogen wird.

Die entwickelte Anwendung Mediman nutzt einen anderen Lösungsansatz. Statt Anwendungen für einzelne Gerätefamilien zu entwickeln, wurden in der Entwicklung von Internetseiten verbreitete Programmiersprachen (HTML, CSS, JavaScript) mit einem Framework für mobile Anwendungen (jQuery mobile) verbunden. Die Entwicklungszeit ist kürzer, weil das Einarbeiten in Spezifika der jeweiligen Entwicklungssprache und -umgebung entfällt. Die Liste der unterstützten Geräte ist dafür lang und etwaige Überprüfungen durch die Hersteller entfallen. Auf diesem Weg kann eine neue Version mit Updates und Fehlerbe- reinigungen schnell an die Benutzer verteilt werden, denn diese werden ohne Zutun bereits beim nächsten Aufruf des Programms automatisch übernommen. Als eine Art „Hybridlösung“ scheint einzig Phonegap (http://phonegap.com) eine Kombination beider Technologien anzustreben, welche aber auf Grund der notwendigen Einarbeitungszeit in diesem Fall nicht in Betracht gezogen wurde.

Die Ergebnisse der Umfrage zeigen, dass der Weg eine Lernanwendung auf dem Smartphone als Webanwendung mit nahezu nahtloser Einbindung (Handhabung und Optik) auf eine hohe Akzeptanz trifft. Die Portierung eines einfachen Spielprinzips mit dem Charakter einer Wissensüberprüfung erschien den meisten Testnutzern interessant, die Idee als gut umgesetzt. Technisch gesehen könnte das Projekt mit Hilfe der zur Verfügung stehenden Frameworks schnell umgesetzt werden. Für uns gäbe es nur vernachlässigbare Nachteile, da insbesondere keine gerätespezifischen Funktionen wie z.B. der Bewegungssensor des Apple iPhone verwendet wurde. Diese speziellen Funktionen sind meinst nur nutzbar, wenn man das Hersteller-SDK verwendet.

Den Umfrageergebnissen kann man entnehmen, dass bei den Testbenutzern Unsicherheit darüber besteht, ob eine Internetverbindung für die Funktionstüchtigkeit der Anwendung als Voraussetzung zu gelten hat (siehe Tabelle 2). Die Sorge, dass Anwendungen, welche mit den oben genannten Programmiersprachen entwickelt wurden (ausschlaggebend ist hier vornehmlich die Anbindung an eine Datenbank) nur bei bestehender Internetverbindung funktionieren, sind allerdings seit Einführung von HTML5 zu relativieren, denn es besteht die Möglichkeit (geringe) Datenmengen auch lokal im Browser zu speichern [http://diveintohtml5.info/storage.html] oder Anwendungen von Grund auf explizit als Offline-Anwendung zu programmieren – das ist unserer Auffassung nach bei den ohnehin weit verbreiteten Internettarifen für Smartphones allerdings oftmals unnötig.

Smartphones spielen immer häufiger eine relevante Rolle in Bezug auf das Lernen. Zur Zeit scheinen nur wenige Lernanwendungen für Smartphones zu existieren, was sich auch in der Benutzungshäufigkeit widerspiegelt. Existierende Lernanwendungen für die Anzeige auf kleinen Displays zu optimieren, scheint nicht notwendig, so die richtige Reaktion auf die zunehmende Verbreitung zu sein, weil die Erwartungen an die Lernanwendung von einander abweichen. Für die Zukunft scheint die Auseinandersetzung mit Lernanwendungen für diese Geräte jedoch ein relevantes Thema zu sein. Ob sich Smartphones und die verwandten Tablets über das bekannte Einsatzszenario eines stichwortartigen Nachschlages von Stichwörtern hinaus als Lernplatzform etablieren können, wird sich zeigen müssen. Die Ergebnisse der mit der Entwicklung der Beispielenwendung Mediman verbundenen Umfrage sind positiv zu bewerten. Das vornehmliche Ziel, die Überprüfung der Umsetzbarkeit einer Lernanwendung für Smartphones mit optimierter Integration in die Funktionsweise des Smartphones, scheint unserer Auffassung nach erfüllt und gibt Anlass, über die Umsetzung weiterer Lernanwendungen nachzudenken. Auf Grund der geringen Teilnehmeranzahl an der Umfrage ist nicht auf eine generelle Repräsentativität der Umfrageauswertung zu schließen, sondern, mit Hinblick auf die scheinbare Relevanz der neuen Lernmedien, eine erneute Befragung mit einer größeren Teilnehmeranzahl anzustreben.

Interessenkonflikt

Der Autor erklärt, dass er keine Interessenkonflikte im Zusammenhang mit diesem Artikel hat.

Literatur

1. Sier M, Kalleder S, Pauly A. Mobile data growth: how operators can handle the traffic explosion. München: Solon Management Consulting GmbH & Co. KG; 2012. Zugänglich unter/available from: http://www.solonstrategy.com/uploads/bx_soloncm003/2012_05_10_Solon_White_Paper_Telecoms_-_How_to_Handle_Mobile_Data_Explosion_01.pdf
2. heise online. Samsung überholt Apple und Nokia bei Smartphone-Verbreitung in Deutschland. Hannover: Heise Zeitschriften Verlag GmbH & Co. KG; 2012. Zugänglich unter/available at: http://www.heise.de/newsticker/meldung/Samsung-ueberhoelt-Apple-und-Nokia-bei-Smartphone-Verbreitung-in-Deutschland-1568927.htm
3. heise mobil. US-Smartphone-Markt: Nutzergleichstand bei iPhone, Blackberry und Android. Hannover: Heise Zeitschriften Verlag GmbH & Co. KG; 2012. Zugänglich unter/available at: http://www.heise.de/mobil/meldung/US-Smartphone-Markt-Nutzer gleichstand-bei-iPhone-Blackberry-und-Android-1182042.html
4. OfCom. 8th Annual Communications Market Report 2011. London: OfCom; 2011. Zugänglich unter/available at: http://stakeholders.ofcom.org.uk/market-data-research/market-data-communications-market-reports/cmrr11/
5. Davies BS, Rafique J, Vincent TR, Fairclough J, Packer MH, Vincent R, Hag I. Mobile Medical Education (MoMED) - how mobile information resources contribute to learning for undergraduate clinical students - a mixed methods study. BMC Med Educ. 2012;12:1. DOI: 10.1186/1472-6920-12-1

6. Stanford medical school. iPads to be distributed to incoming class by Stanford medical school. Stanford, CA: Stanford University School of Medicine; 2010. Zugänglich unter/available at: http://med.stanford.edu/isn/2010/august/ipad.html

7. Stanford medical school. AIM Lab Announces: Stanford StanMed m-learning App for iPad. Stanford, CA: Stanford University School of Medicine; 2012; Zugänglich unter/available at: http://aim.stanford.edu/medpad.html

Korrespondenzadresse:
Niklas Boeder
Ludwig-Maximilians-Universität München, München, Deutschland
nboeder@gmail.com

Bitte zitieren als
Boeder N. “Mediman” – Smartphone als Plattform zum Lernen? GMS Z Med Ausbild. 2013;30(1):Doc5. DOI: 10.3205/zma000848, URN: urn:nbn:de:0183-zma0008484

Artikel online frei zugänglich unter
http://www.e-gms.de/en/journals/zma/2013-30/zma000848.shtml

Eingereicht: 06.07.2012
Überarbeitet: 06.11.2012
Angenommen: 13.11.2012
Veröffentlicht: 21.02.2013

Copyright
©2013 Boeder. Dieser Artikel ist ein Open Access-Artikel und steht unter den Creative Commons Lizenzbedingungen (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.de). Er darf vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden, vorausgesetzt dass Autor und Quelle genannt werden.
"Mediman" – The smartphone as a learning platform?

Abstract

Mobile devices with a connection to the internet – smartphones – are seen all over the place since the popular introduction of the Apple iPhone. Similar products existed but no company managed to combine simplicity and functionality so seamlessly. Their market share increases constantly and websites get optimised for the small display sizes (often referred to as „responsive webdesign”) otherwise the usability lacks. Students seem to like smartphones as well and a good question is if and to what extend those devices can play a role in e-learning.

„Mediman“, an adaptation of the common game Hangman has been developed for smartphones. Test users asked to complete an online questionnaire.

So far, only few e-learning applications for smartphones seem to exist. This is reflected in the low usage frequency. Especially the fact that most of the test users wear a smartphone with them all the time makes it an ideal learning platform. Short learning sessions were rated more important than continuous text.

The majority of the 11 test users rated Mediman as well developed. The foremost question whether a smartphone e-learning application is feasible must be answered positive – acceptance in the test user group was shown. E-learning applications on smartphones will be an important topic in the future as market shares increase constantly. Further studies are required due to the small number of participants in our survey.

Keywords: eLearning, Medical Study, Mobile equipment, Smartphone

Introduction

Mobile devices that allow accessing the internet – smartphones – are widely-used and their market share increases constantly [http://www.w3schools.com/browsers/browsers_mobile.asp]. An increase of traffic by 15 and a triplcation of the devices within the next five years is forcasted for Germany [1]. Apple’s presentation of the revolutionary iPhone in 2007 contributed largely to this as it combined a simple handling with a huge variety of function for the first time and has been awarded therefore many times [http://www.jdpower.com/consumer-ratings/electronics/ratings/909201396/2012-Wireless+Consumer+Smartphone+Customer+Satisfaction+Study/index.htm]. Apple shares the market leadership in the smartphone market with Samsung and Nokia [2], [3].

The increasing market share of smartphones and the ability to access websites mobile easily change the requirements of the users. Up until today websites have been displayed on laptops and desktops only and optimisation focused on those two formats. Recent upgrowth of smartphones demand a change with respect to the optimisation of content for much smaller display sizes – this is often referred to as „responsive webdesign” [https://en.wikipedia.org/wiki/Responsive_Web_Design].

Figure 1: Mediman App added to the home screen
Especially young people seem to be fascinated by smartphones [4]. Davies and his colleagues investigated the learning and study habits of students and questioned how smartphones are used [5]. They found out that smartphones are mostly used to answer a question right on the spot (“timely access to key facts – learning in context”) and that students would use smartphones to repeat learned topics. Due to the author’s interest in smartphones as a learning platform and his fascination for the development of own applications a prototype was designed to find out if a smartphone can be more than a reference book. The leading question was whether and how the application can be realised and if there are any limitations? An questionnaire was designed to get an insight into the student’s thoughts about mobile learning.

Methods

Hangman [https://de.wikipedia.org/wiki/Galgenm%C3%A4nchen] is a classical game for two or more players in which one player thinks of a word and the other tries to guess it by suggesting letters. The game is over if the player needs more guesses than allowed. The idea of this game has been adapted within the project „Mediman“ so that medical terms must be guessed. At the end of each game the term is defined and explained to produce a benefit for the student (see figure 2).

Before starting the actual development of the application a decision regarding the programming language had to be reached. The author decided to program a native HTML website in combination with the JavaScript framework jQuery mobile [http://jquerymobile.com/] as it can be used to build native looking applications on one hand but also supports many mobile devices out of the box [http://jquerymobile.com/]. This ensures a quick development and reduces errors on the different devices. jQuery mobile is widely spread, possible alternatives with similar features are jQTouch and Sencha Touch.

Mediman uses a MySQL database to store the data and AJAX („Asynchronous JavaScript and XML“) to increase usability, e.g. no page reload is necessary to start a new game round as data is loaded in the background. During the development simulation programs where used that emulate the smartphones on the development PC. The benefit is that the developer does not actually has to own all the devices to run tests with them. To start the application the user needs to type in the internet adress (URL) – no installation is required. If the website is additionally added to the home screen a defined icon appears and the difference between a native application and a web site simulating it vanishes even more (see figure 1 and figure 2).

Subsequent to the development process a questionnaire with nine items was desigend. If not declared otherwise a Likert scaling was used. Test users (n=20) were asked to submit the online forms between June and July 2012 after they received an invitation via e-mail. All test users are students (third year or above) attending Faculty of Medicine of the University of Munich and took part voluntarily. The data analysis was performed with Microsoft Excel.

Results

Eleven test users (55%) completed the survey completely. They aged 25 years in average and most of them were male (63,6%). The majority of the users used products of the Apple iPhone family, followed by devices by Samsung. One user used a Nokia N8, an other a Apple iPod touch 2G (category „other“). Nobody used a smartphone that runs Windows Phone (see figure 3).

When it comes to usage frequency of the devices for learning the majority of the users stated that they use it more than once a week or at least at times (<5/month). Only three of the test users use it rarely (<1/month) or never (see figure 4).

Figure 2: Screenshots of Mediman

Figure 4: Usage Frequency of smartphones when learning, bar chart

Figure 5 indicates that only few test users think that many learning applications for smartphones exist. In contrast most of the users stated that smartphones are an ideal
Which device did you use for the test? (n=11)

Table 1: Smartphones as a learning environment and the evaluation of Mediman
Learning using smartphones is ideal because... (n=11)

Statement	Do not agree at all	Totally agree	No answer
... I can use it even in short breaks.	0	0	5
... I learn a lot.	0	0	5
... it is widely spread.	0	3	3
... it is modern.	0	1	2
... using it is easy.	0	0	3
... I have one with me almost all the time.	1	0	3

Answer the following statements regarding Mediman (n=11)

Statement	Do not agree at all	Totally agree	No answer
It is easy to use.	0	1	3
The idea is interesting.	0	1	4
Realisation is good.	0	0	8
Using Mediman is fun.	0	2	8
I learned something new.	0	4	5

platform – they are modern, widely spread and easy to use (see figure 6 and table 1).

Figure 6: Question if Smartphones are an ideal platform for learning (bar chart)

The evaluation of the developed application is dominated by the impression that the idea is interesting and well realised. Usability feels comfortable, a learning progress is not distinctive (see table 1).

Regarding the requirements a learning application should have the test users were allowed to submit free text.
Buzzwords were „fast, easy“, „easy usability“ („One should not need to write or type in too much – that won’t work for smartphones very well“) and „Aim must be to reach goal with a few clicks“.

Discussion

Smartphones are widely spread devices with plenty of possible applications due to their connection to the internet. The Faculty of Medicine of the University of Stanford for example picked up this trend and equip every new medical student with an Apple iPad since 2010 [6]. Parallel to the introduction the faculty established a portal with learning material (presentations, videos, manuals and more) which can be accessed by the students for free using a app [7]. This allows the students to access the needed material when they want and how often they want.

So far, available e-learning programs, e.g. CASUS, work within a desktop environment – and they do their job mostly fine. Those programs are therefore designed and optimised for desktop computers (with internet browsers), big screens and a computer mouse for interaction. The e-learning programs can be used with modern smartphones as well but they are always suboptimal with respect to usability and legibility. The growing role smartphones play in our daily life due to their increasing market share demands an adaptation to the changed needs of the users. The analysis of the questionnaire shows that the test users think that smartphones are an ideal learning environment because most of them carry one with them all the time. This is comprehensible as for the first time ever more smartphones than desktop computers have been sold last year [http://www.canalys.com/newsroom/smart-phones-overtake-client-pcs-2011]. The survey showed as well that not enough learning applications were specially designed for smartphones exist (see figure 2), the desire for them though is high (see table 2).

In our opinion the results however do not allow the conclusion that existing learning applications should simply be optimised for the smaller display sizes. The demands of the users seem to be more differentiated as they seem to look for short sessions explicitly. A test user submited the free item covering the needs of the users with the comment that he or she would like to start sessions while travelling between two university locations or even when sitting in the train. Short texts and optimised cases for the repetition of knowledge seem the be more important than continuous text.

Applications – generally speaking – can be produced as native applications for a chosen manufacturer or operating system (e.g. Apple iOS, Android) and can then advertised and sold through the manufacturer’s online store. The manufacturers support the developers by providing developmental environments and content (SDK). Apple, for example, will check each version before deploying it to the online store and can even refuse to publish it. Mediman uses a different way. Instead of developing the application for the various operating systems individually the author used programming languages that are normally used to program websites (HTML, CSS, Javascript) in combination with a JavaScript framework called jQuery mobile. This framework simulates a native application optically and because the necessary skills already existed no further involvement familiarisation with SDKs was necessary. This ensured a short development time, the list of supported devices of the framework is long and checks by the manufacturers prior to the approval of an application to their online store does not exist. As a sort of hybrid technique Phonegap (http://phonegap.com) must be mentioned (web sites will be transformed and compiled into native apps) but was not chosen for the development of Mediman as it would have required training. Offering applications through the online stores means automatic advertising but web applications allow faster publication due to no certification process.

The results of the survey show that learning applications designed as a web site with an ideal integration into the smartphone – simulating a native application – seems to work for the test users. The users liked the adaptation of the game Hangman into a medical learning program. The used JavaScript framework ensured fast developing and publishing. We did not find any relevant limitations using web site programming languages as no device specific function, e.g. motion sensor, was used. Those functions can normally only be used if the SDK is used. Uncertainty exists insofar as the analysis of the submitted data of the test users did not show a clear trend if an active internet connection may be a requirement for running the learning application (see table 2). The anxiety that this is explicitly a problem of the used programming languages used in the example project Mediman can be qualified as version 5 of HTML supports storing data locally [http://diveintohtml5.info/storage.html]. Apart from the technical aspect the author thinks that mobile plans with unlimited traffic are common.

The importance of smartphones increases in learning environments. Today, only few learning applications designed to work seamlessly on smartphones exist – this is reflected in the usage frequency. It does not seem to be the one and only solution to adapt existing e-learning programs to fit into the small screen sizes because the needs of users is different. The survey showed that dealing with learning applications for smartphones will be an important topic in the future.

Mediman, the example project that was used mainly to demonstrate the potential and feasibility of the realisation of a small and simple learning application for smartphones was rated well within the questionnaire. As this was one of the main aims the project succeeded in our opinion and further developments should be considered. Due to the small number of participants we should not draw a general conclusion out of the given data but as a high relevance can be derived further research on this topic must be sought.
Table 2: Requirements of learning applications users have

Requirement	Do not agree at all	Totally agree	No answer
Learning applications for smartphones must work without an active internet	3	2	3
connection.			
Learning applications for smartphones must only have short sessions.	1	5	0
There should be more learning applications for smartphones.	0	6	0

Competing interests

The author declares that he has no competing interests.

References

1. Sier M, Kalleder S, Pauly A. Mobile data growth: how operators can handle the traffic explosion. München: Solon Management Consulting GmbH & Co. KG; 2012. Zugänglich unter/available from: http://www.solonstrategy.com/uploads/tx_soloncm003/2012_05_10_Solon_White_Paper_Telecoms_-_How_to_Handle_Mobile_Data_Explosion_01.pdf

2. heise online. Samsung überholt Apple und Nokia bei Smartphone-Verbreitung in Deutschland. Hannover: Heise Zeitschriften Verlag GmbH & Co.KG; 2012. Zugänglich unter/available at: http://www.heise.de/newsticker/meldung/Samsung-uerholt-Apple-und-Nokia-bei-Smartphone-Verbreitung-in-Deutschland-1568927.htm

3. heise mobil. US-Smartphone-Markt: Nutzergleichstand bei iPhone, Blackberry und Android. Hannover: Heise Zeitschriften Verlag GmbH & Co.KG; 2012. Zugänglich unter/available at: http://www.heise.de/mobli/meldung/US-Smartphone-Markt-Nutzergleichstand-bei-iPhone-Blackberry-und-Android-1182042.html

4. OfCom. 8th Annual Communications Market Report 2011. London: OfCom; 2011. Zugänglich unter/available at: http://stakeholders.ofcom.org.uk/market-data/communications-market-reports/cmr11/

5. Davies BS, Rafique J, Vincent TR, Fairclough J, Packer MH, Vincent R, Hagi I. Mobile Medical Education (MoMEd) - how mobile information resources contribute to learning for undergraduate clinical students - a mixed methods study. BMC Med Educ. 2012;12:1. DOI: 10.1186/1472-6920-12-1

6. Stanford medical school. iPads to be distributed to incoming class by Stanford medical school. Stanford, CA: Stanford University School of Medicine; 2010. Zugänglich unter/available at: http://med.stanford.edu/ism/2010/august/ipad.html

7. Stanford medical school. AIM Lab Announces: Stanford StanMed m-learning App for iPad. Stanford, CA: Stanford University School of Medicine; 2012; Zugänglich unter/available at: http://aim.stanford.edu/medpad.html

Corresponding author:
Niklas Boeder
Ludwig-Maximilians-Universität München, München, Deutschland
nboeder@gmail.com

Please cite as
Boeder N. “Mediman” – Smartphone als Plattform zum Lernen? GMS Z Med Ausbild. 2013;30(1):Doc5.
DOI: 10.3205/zma000848, URN: urn:nbn:de:0183-zma0008484

This article is freely available from
http://www.e-gms.de/en/journals/zma/2013-30/zma000848.shtml

Received: 2012-07-06
Revised: 2012-11-06
Accepted: 2012-11-13
Published: 2013-02-21

Copyright
©2013 Boeder. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en). You are free: to Share – to copy, distribute and transmit the work, provided the original author and source are credited.