ABSTRACT

Tapiscia sinensis, belong to Tapiaceae, is endangered tree endemic to China. Here, we provide the complete plastid genomic data of T. sinensis with the aim of providing data for future conservation efforts research and revealing its phylogenetic position. The complete chloroplast sequence is 161,093 bp, including a large single-copy (LSC) region of 87,782 bp, a small single-copy (SSC) region of 18,517 bp, a pair of inverted repeats (IR) regions of 27,387 bp. Plastid genome contains 131 genes, 85 protein-coding genes, 38 tRNA genes, and eight rRNA genes. Phylogenetic analysis based on 19 plastid genomes indicates that T. sinensis located Malvids branch, and is more closely related to the species of the order Sapindales than those of the order Malvales.
has been submitted to GenBank with the accession number MT492024.

The complete plastid genome sequence of *T. sinensis* was 161,093 bp in length, with a large single-copy (LSC) region of 87,782 bp, a small single-copy (SSC) region of 18,517 bp, and a pair of inverted repeats (IR) regions of 27,387 bp. This result was basically consistent with the results reported by Zhang et al. (Zhang, Wang, et al. 2018). The complete plastid genome encodes 131 genes, containing 85 protein-coding genes, 38 transfer RNA (tRNA) genes, and eight ribosomal (rRNA) genes. The complete genome GC content was 37.2%. To reveal the phylogenetic position of *T. sinensis*, a phylogenetic tree was conducted based on complete plastid genomes of 18 species, including two Buxales species (*Pachysandra terminalis* and *Buxus microphylla*), one Proteales species (*Sabia yunnanensis*), three Fabids species (*Kandelia obovata*, *Maytenus guangxiensis*, and *Euonymus schensianus*), six Malvids species (two *T. sinensis*, *Euscaphis japonica*, *S. trifolia*, *Acer catalplifolium*, and *A. buergerianum*), four Asterids species (*Euryodendron excelsum*, *lodes cirrhosa*, *ilex cornuta*, and *I. asprella*), and two monocots species (*Dendrobium chrysanthum* and *D. brymerianum*) as outgroups. These genome data were downloaded from NCBI GenBank (Li et al. 2019). The sequences were aligned by MAFFT v7.307 with 1000 bootstrap replicates (Katoh and Standley 2013), and the phylogenetic tree constructed by RAxML (Stamatakis 2014). The phylogenetic tree showed that the Proteales and Buxales are located at the base of the eudicots branch, the remaining eudicots are divided into the Rosids branch and the Asterids branch. In addition, *T. sinensis* located Malvids branch, and is more closely related to the species of the order Sapindales than those of the order Malvales (Figure 1). The completed plastid genome sequence of *T. sinensis* can help reveal its phylogenetic position, and provide data for future conservation efforts and biological research.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the Special Funds for Leading Scientific and Technological Innovation Talents of Fujian Province [118/KRC16006A] and the Key Technology Research of Fujian Efficient Cultivation [CXZX2017116] and the Euscaphis koniii Hayata Breeding and Cultivation Technology Promotion Demonstration [Min [2018] No. TG14].

Data availability statement

The data that support the findings of this study are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov, reference number MT492024.

References

APG IV. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc. 181:1–20.

Cai S, Zhang F. 2017. Study on cutting propagation technology of *Tapiscia sinensis*. Hubei Forestry Sci Technol. 46 (6):84–85.

Chen DQ, Xiang S, Liu ZJ, Zou SQ. 2019. The complete chloroplast genome sequence of *Kandelia obovata* (Rhizophoraceae). Mitochondrial DNA B. 4(2):3494–3495.

Di WZ, Yu ZY. 1989. The first countries to protect rare and endangered plants in Shaanxi province. Xi’an: Northwest University Press.

Fu LK. 1992. China plant red data book: rare and endangered plants. Beijing: Science Press.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772–780.

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, et al. 2012. Geneious basic: an integrated and extendable desktop software platform for the
organization and analysis of sequence data. Bioinformatics. 28(12): 1647–1649.
Li J-W, Wang N, Yang Y, Wu X, Zou XX. 2019. The complete chloroplast genome sequence of *Eranthis stellata* (Ranunculaceae). Mitochondrial DNA B. 4(2):4025–4026.
Lohse M, Drechsel O, Kahlau S, Bock R. 2013. OrganellarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 41:W575–W581.
Ma AM. 2013. Seedling raising and afforestation technology of *Tapiscia sinensis*. Anhui Forestry Sci Technol. 39(1):73–74.
Qi M-Y, Yang Y, Wang N, Wu X, Hu Y-L, Zou X-X. 2020. The re-sequencing of complete chloroplast genome of *Cinnamomum camphora* (Lauraceae) from Quanzhou, China. Mitochondrial DNA B. 5(1): 520–521.
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30(9): 1312–1313.
Wang N, Qi M-Y, Yang Y, Li J-W, Zou X-X. 2019. Complete chloroplast genome sequence of *Bougainvillea Spectabilis* (Nyctaginaceae). Mitochondrial DNA B. 4(2):4010–4011.
Wei HY, Liang HW, Zhang B, Li ZL. 2016. Establishment of embryogenic cell suspension system and plant regeneration of rare and endangered plant *Tapiscia sinensis*. Mol Plant Breed. 14(3):756–759.
Wick RR, Schultz MB, Zobel J, Holt KE. 2015. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics. 31(20): 3350–3352.
Xiang S, Liu X-D, Sun W-H, Lan S-R, Liu Z-J, Zou S-Q. 2019. The complete chloroplast genome sequence of *Euscaphis japonica* (Staphyleaceae). Mitochondrial DNA B. 4(2):3484–3485.
Xie CP. 2006. A review of research advances in rare and endangered plant *Tapiscia sinensis*. Subtrop Plant Sci. 35:71–74.
Yang Y, Li J-W, Wang N, Zou X-X, Zou S-Q. 2019. The complete chloroplast genome sequence of *Brasenia schreberi* (Cabombaceae). Mitochondrial DNA B. 4(2):3842–3843.
Zhang JX. 1989. Discovery of *Tapiscia sinensis* in Henan Province. Plant Journal. 1989(02):12–13.
Zhang L, Han YZ, Liu ZQ, Meng YN, Liu YP, Kong DZ. 2018. Study on the growth rhythm of *Tapiscia sinensis* seedlings. Guangdong Agric Sci. 45 (02):47–51.
Zhang PF, WangZW, Liu YL, Tian H, Yao XH, Zhang JL. 2018. Development and characterization of 11 polymorphic microsatellite markers in *Tapiscia sinensis* (Staphyleaceae). Application in plant sciences. Conserv Genet Resour. 10:765–768.
Zhou XJ, Wang YY, Xu YN, Yan RS, Zhao P, Liu WZ. 2015. De novo characterization of flower bud transcriptomes and the development of EST-SSR markers for the endangered tree *Tapiscia sinensis*. Int J Mol Sci. 16(6):12855–12870.