Polysulfone thin film composite nanofiltration membranes for removal of textile dyes wastewater

Andrew Sutedja1, Claresta Aileen Josephine1, Dave Mangindaan2,*
1Department of Chemical Engineering, Parahyangan Catholic University, Jalan Ciumbuleuit 94 Bandung, West Java, Indonesia
2 Food Technology Department, Faculty of Engineering, Bina Nusantara University, Jakarta, Indonesia 11480
*dmanindaan@binus.edu

Abstract. This research was conducted to produce nanofiltration (NF) membranes, which have good performance in terms of removal of textile dye (Reactive Red 120, RR120) from simulated wastewater as one of several eco-engineering developments for sustainable water resource management. Phase inversion technique was utilized to fabricate the membrane with polysulfone (PSF) support, dissolved in N-methyl-2 pyrollidone (NMP) solvent, and diethylene glycol (DEG) as non-solvent additive. The fabricated membrane then modified with the additional of dopamine coating and further modified by interfacial polymerization (IP) to form a thin film composite (TFC)-NF membrane with PSF substrate. TFC was formed from interaction between amine monomer (2 %-weight of m-phenylenediamine (MPD) in deionized water) and acyl chloride (0.2 %-weight of trimesoyl chloride (TMC) in hexane). From this study, the fabricated PSF-TFC membrane could remove dyestuff from RR120 wastewater by 88% rejection at 120 psi. The result of this study is promising to be applied in Indonesia where researches on removal of dyes from textile wastewater by using membranes are still quite rare. Therefore, this paper may open new avenues for development of eco-engineering development in Indonesia.

Keywords: membrane, nanofiltration, textile, interfacial polymerization, polysulfone

1. Introduction
In textile industry, generally 10-15% dyes were lost during the dyeing process, where about 200-350 m³ waters required per 1 ton of finished products [1]. Some counties already strict their environmental regulation, disposing the wastewater directly will becomes more complicated [2]. In order to follow such stringent regulation, one of the important process is at least to decolorize the wastewater by some methods, such as destruction of dyes molecules and separation of dyes from waters [3]. To destruct or transform the dyes, conventional process is usually applied, such as chemical oxidation, photocatalysis and biodegradation [4]. However, this methods were found to be inadequate and required enormous energy to broke the dyes molecules which are stable to light, oxidizing agent, and microbiological degradation [5-7].

The overcome the limitation from the dyes molecules destruction method, separation process such as adsorption, coagulation, flocculation and membrane separation begins to develop [3]. Adsorption separation process using activated carbon is quite common, but not economically efficient since the
price of activated carbon is quite expensive and the performance decreases after several times of usage/regeneration [1, 8, 9].

On the other hand, coagulation and flocculation were commonly used due to process efficiency [9-11]. In this process, the dyestuff solution is destabilized to agglomerate and flock to form heavy and large molecules, which makes the clumps easily separated [12, 13]. However, either coagulation or flocculation process were found infective for some soluble dyes in water. Thus there will always be a challenge to determine the right coagulant to overcome the pollution caused by various dyestuff [1].

Besides conventional processes like coagulation and flocculation, there are also membrane technologies such as, ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) [5]. UF has been proven successful in separating insoluble dyes and large molecule dyes. However, UF unable to remove dissolved dyes with small molecule [5, 14]. Although perfect separation can be achieved using RO, but its required very high pressure (>50 bar) makes this separation unattractive due to high operational cost. With the limitation from UF and RO, NF has a promising performance to remove dyes from textile wastewater [3] and low operational cost [15]. NF membrane nominal molecular weight cut-off (MWCO) range between 100 until 1000 Da with 0.5-2.0 nm pore size [15, 16], with the right modification method, NF can remove as good as RO without requiring high pressure.

In the separations using membrane, there is a tendency of a membrane to form a fouling that may reduce the flux or the productivity of the membrane. This phenomenon could be reduced by applying surface modification, where one of the modification processes is interfacial polymerization (IP). It is a method for depositing a thin layer upon a porous membrane support, where a polymerization reaction occurs between two very reactive monomers at the interface of two immiscible solvents. The common precursors for IP are: (1) a reactive aqueous of amine solution (in this paper, we use m-phenylenediamine (MPD)) and (2) water-immiscible solvent solution consisting of acyl chloride (we use trimesoyl chloride (TMC)) that are reactive at the interface of the two immiscible solutions to form a thin film composite (TFC) membrane [17, 18]. The illustration of IP using TMC and MPD is to form TFC is shown in Figure 1a.

Figure 1. Interfacial polymerization between trimesoyl chloride (TMC) and m-phenylenediamine (MPD)
Today almost all NF membrane for textile dyes wastewater treatment in Asia are dominated by China or Singapore [16, 19-23], whereas in Indonesian literature about dyestuff degradation were still using bioreactor [24-28]. It is quite ironic as Indonesia have many textile industries around 2500 companies with total investment of more than 100 trillion dollars, and capacity of 6 million ton of textile products per year [29], but with limited number of research in this field. By assuming 200 m3 of wastewater is produced per 1 ton textile product, then there is more than 100 trillion m3 wastewater discharged to environment without adequate treatment. If Indonesia could master the membrane technology and eco-engineering development to treat the textile wastewater effluents, then it would be very beneficial for the national environmental sustainability. In this study, m-phenylenediamine (MPD) and trimesoyl chloride (TMC) was utilized to form TFC membrane on top of common polysulfone (PSF) membrane to treat simulated textile wastewater, and tested in laboratory scale using permeation scale illustrated in Figure 1b.

2. Methodology
This research was conducted to produce selective and productive membrane, which are capable to reducing the color concentration from textile wastewater. The membrane material used in this research was polysulfone (PSF) that can only be dissolved in a dipolar aprotic solvent, i.e. N-methyl pyrroldone (NMP) in this paper, and with diethylene glycol (DEG) as the non-solvent additive. The formulation of PSF/NMP/DEG 14/72/14, 16/70/14, and 18/68/14 %-weight were varied, with detailed membrane fabrication procedures and decision of membrane composition was taken according to the literatures [30, 31].

The various dope solutions obtained are then casted using flat sheet casting method, illustrated in Figure 2.

![Figure 2. Flat sheet membrane fabrication process](image)

Casted membrane was coated using dopamine then with MPD and TMC, with the molecular form listed in Figure 1 [30], and hereafter referred as PSF-TFC. Dopamine solution was made with a concentration of 0.02 grams in a 10 mM tris-HCl solution of 100 mL. The PSF membrane immersed in dopamine for 3 h. Dopamine-coated PSF membrane was immersed in 2 wt% MPD dissolved in deionized for 1 min and subsequently in 0.2 wt% TMC in hexane also for 1 min. The membrane is then heat treated in 70°C hot water for 2 min, and kept immersed in water until testing.

The permeation cell shown in Figure 1b was utilized to test PSF-TFC membrane performance by removing Reactive Red 120 (RR120), with the feed concentration of 100 ppm [32]. All condition for nanofiltration performance test will be maintained at room temperature. Pressure variation will be explained in the section of Result and Discussion. All chemicals are used as is without further purification.

The membrane productivity parameter (flux) of the membrane calculated using the following equation:
\[J = \frac{V}{AtP} \]

with \(J \) = flux (L m\(^{-2}\) s\(^{-1}\) psi\(^{-1}\)), \(V \) = permeate volume (L), \(A \) = membrane active surface area, \(t \) = time required to contain the permeate (s), and \(P \) = pressure input (atm). On the other hand, we also test the membrane quality parameter (Rejection) calculated using this following equation:

\[\%R = \left(1 - \frac{C_p}{C_f} \right) \times 100\% \]

With \(\%R \) = Rejection, \(C_p \) = permeate concentration (ppm), \(C_f \) = feed concentration (ppm). The feed concentration and the permeate concentration was measured by using spectrophotometer to construct a standard curve for RR120 measured at maximum wavelength \(\lambda_{max} \) 515 nm.

3. Results and Discussion
In this section, we will discuss the effect of the PSF concentration in the dope solution towards the membrane performance. Modification of PSF with IP to form PSF-TFC and its performance in dye removal from wastewater will also be discussed.

3.1. Effect of PSF concentration towards the permeate flux (without dyes)
Flux of the pure water without textile dyes (pure water permeability, PWP) testing using permeation cell is shown in Table 1. It could be observed that PSF 18/68/14 is not sufficient since its flux is very slow, due to the tight PSF polymer content in the membrane, as well as sacrificing the economic value of a membrane. Therefore PSF 14/72/14 and 16/70/14 were continued for further testing.

PSF membranes	PWP (L m\(^{-2}\) s\(^{-1}\) atm\(^{-1}\))
14/72/14	0.358
16/70/14	0.042
18/68/14	0.012

3.2. Effect of PSF concentration towards the permeate flux (with RR120 dye)
Two PSF membranes (without modification), PSF 14/72/14 and 16/70/14, were utilized to remove RR120 dye from simulated wastewater (100 ppm, various operating pressures). The filtration result is shown in Figure 3a. It could be seen that each membrane has tight pores where pressure <50 psi was not enough to pass through any liquid from the permeation cell. The pore radius of the fabricated PSF membrane is estimated by using the Laplace equation [17]

\[r_{pore} = \frac{2\gamma}{\Delta P} \cos \theta \]

Pore radius \(r_{pore} \) of a membrane pore with a shape of capillary tube, that is completely wetted (contact angle \(\theta = 0^\circ \)) by water (surface tension \(\gamma = 72.3 \) mN/m), with operating pressure of 50 psi (~3.5 bar= 350000 Pa) is around 400 nm. Thus it is confirmed that the fabricated PSF membrane is in the nanometer range.

The PSF 14/72/14 could bring permeate with pressure of 40 psi only, but with upsetting quality (dye concentration in the output is still 100 ppm, similar to that of the input, \(\% \) rejection = 0%). Different to PSF 14/72/14, the PSF 16/70/14 is able to maintain quality at around 50 ppm (pressure >70 psi). This result delivered the PSF 16/70/14 to be further modified with IP to get PSF-TFC membrane. The performance of PSF-TFC compared to that of PSF 16/70/14 is shown in Figure 3b. It could be obviously seen that the performance of PSF-TFC (permeate concentration ~12 ppm, \(\% \) rejection = 88%) is much better that PSF 16/70/14 (permeate concentration 50%), although PSF-TFC 16/70/14 required much higher operation pressure (>80 psi), compared to that of unmodified PSF 16/70/14 (starts from 50 psi).
Figure 3. Dye concentration in the permeate (ppm) as the function of operating pressure (psi) for (a) unmodified PSF membranes, and (b) PSF-TFC membrane.

3.3. Membrane morphology

To describe how the membrane performance is delivered in such nature, we characterized the physical morphology of the membrane by using scanning electron microscopy (SEM). The structures of the membranes are shown in Figure 4 and 5. From these images, it can be judged that this membrane configuration was asymmetric membrane due to its pore distribution from the top until bottom layer; where the pores were bigger as it were closer to the bottom surface. However, the thin layer of TFC could not be detected from both the cross-sectional view and the top view (Figure 4) since it is too thin.

Figure 4. SEM images of membrane substrate cross-section; (a) PSF, (b) PSF-dopamine, (c) PSF-TFC ×500, and (d) PSF-TFC ×1000
4. Conclusions
In this study, we have successfully fabricated a PSF-based membrane that was modified with interfacial polymerization technique to produce PSF-TFC membrane that was able to remove 88% of RR120 dye, require pressure of 120 psi.

5. Acknowledgement
The authors would like to thanks Indonesia Toray Science Foundation who has awarded the research grand at 21st Science and Technology Research Grant 2014 to lead researcher (Dave Mangindaan, PhD) for carry out this research.

References
[1] A.K. Verma, R.R. Dash and P. Bhunia, (2012), "A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters", J. Environ. Manage. Vol. 93 pp. 154-168
[2] C. Hessel, C. Alloire, M.M.F. Charbit and P. Moulin, (2007), "Guidelines and legislation for dye house effluents", J. Environ. Manage Vol. 83 pp. 171-180
[3] A.Y. Zahirin and N. Hila, (2013), "Treatment of highly concentrated dye solution by coagulation/flocculation–sand filtration and nanofiltration", Water Resour. Ind. Vol. 3 pp. 23-34
[4] O.J. Hao, H. Kim and P.C. Chiang, (2000), "Decolorization of Wastewater", Crit. Rev. Env. Sci. Technol. Vol. 30 pp. 449-505
[5] A. Akbari, J.C. Remigy and P. Apte, (2002), "Treatment of textile dye effluent using a polyamide-based nanofiltration membrane", Chem. Eng. Process. Vol. 41 pp. 601-609
[6] E. Forgacs, T. Cserhati and G. Oros, (2004), "Removal of synthetic dyes from wastewaters: a review", Environ. Int. Vol. 30 pp. 953-971
[7] O. Tünay, I. Kabdasli, G. Erememktar and D. Orhon, (1996), "Color removal from textile wastewaters", Water Sci. Technol. Vol. 34 pp. 9-16
[8] T. Robinson, G. McMullan, R. Marchant and P. Nigam, (2001), "Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative", Bioresour. Technol. Vol. pp. 247-255
[9] M. Riera-Torres, C. Gutiérrez-Bouzán and M. Crespi, (2010), "Combination of coagulation–flocculation and nanofiltration techniques for dye removal and water reuse in textile effluents", Desalination Vol. 252 pp. 53-59
[10] A. Bes-Piá, M.I. Iborra-Clar, A. Iborra-Clar, J.A. Mendoza-Roca, B. Cuartas-Uribe and M.I. Alcaina-Miranda, (2005), "Nanofiltration of textile industry wastewater using a physicochemical process as a pre-treatment", Desalination Vol. 178 pp. 343-349

[11] T. Chen, B. Gao and Q. Yue, (2010), "Effect of dosing method and pH on color removal performance and floc aggregation of polyferric chloride–polyamine dual-coagulant in synthetic dyeing wastewater treatment", Colloid Surf. A-Physicochem. Eng. Asp. Vol. 355 pp. 121-129

[12] A.Y. Zahrim, C. Tizaoui and N. Hilal, (2011), "Coagulation with polymers for nanofiltration pretreatment of highly concentrated dyes: A review", Desalination Vol. 203 pp. 370-386

[13] K.E. Lee, N. Morad, T.T. Teng and B.T. Poh, (2012), "Development, characterization and the application of hybrid materials in coagulation/flocculation of wastewater: A review", Chem. Eng. J. Vol. 203 pp. 370-386

[14] K. Majewska-Nowak, (1989), "Synthesis and properties of polysulfone membranes", Desalination Vol. 71 pp. 83-95

[15] S. Cheng, D.L. Oatley, P.M. Williams and C.J. Wright, (2011), "Positively charged nanofiltration membranes: review of current fabrication methods and introduction of a novel approach", Adv. Coll. Interf. Sci. Vol. 164 pp. 12-20

[16] S.P. Sun, T.A. Hatton and T.S. Chung, (2011), "Hyperbranched polyethyleneimine induced cross-linking of polyamide-imide nanofiltration hollow fiber membranes for effective removal of ciprofloxacin", Environ. Sci. Technol. Vol. 45 pp. 4003-4009

[17] M. Mukder ed 1992 Basic Principles of Membrane Technology: Springer-Science+Business Media, B.v.)

[18] K.C. Khulbe, C. Feng and T. Matsuura, (2010), "The Art of Surface Modification of Synthetic Membranes", Journal of Applied Polymer Science Vol. 115 pp. 855-895

[19] S.P. Sun, T.A. Hatton, S.Y. Chan and T.S. Chung, (2012), "Novel thin-film composite nanofiltration hollow fiber membranes with double repulsion for effective removal of emerging organic matters from water", J. Membr. Sci. Vol. 401-402 pp. 152-162

[20] J. Gao, S.P. Sun, W.P. Zhu and T.S. Chung, (2014), "Polyethyleneimine (PEI) cross-linked P84 nanofiltration (NF) hollow fiber membranes for Pb2+ removal", J. Membr. Sci. Vol. 452 pp. 300-310

[21] W.P. Zhu, S.P. Sun, J. Gao, F.J. Fu and T.S. Chung, (2014), "Dual-layer polybenzimidazole/polyethersulfone (PBI/PES) nanofiltration (NF) hollow fiber membranes for heavy metals removal from wastewater", J. Membr. Sci. Vol. 456 pp. 117-237

[22] P.S. Zhong, N. Widjojo, T.S. Chung, M. Weber and C. Maletzko, (2012), "Positively charged nanofiltration (NF) membranes via UV grafting on sulfonated polyphenylenesulfone (sPPSU) for effective removal of textile dyes from wastewater", J. Membr. Sci. Vol. 52-60

[23] L. Wang, S. Ji, N. Wang, R. Zhang, G. Zhang and J.R. Li, (2014), "One-step self-assembly fabrication of amphiphilic hyperbranched polymer composite membranes from aqueous emulsion for dye desalination", J. Membr. Sci. Vol. 452 pp. 143-151

[24] P.S. Komala, N.A.J. Effendi, I. Wenten and Wisjnuprapto, (2008), "Pengaruh variasi waktu retensi hidrolik reaktor anoksik terhadap biodegradasi zat warna azo reaktif menggunakan bioreaktor membran aerob-anoksik", Jurnal Teknologi Lingkungan Vol. 4 pp.

[25] W. Komarawidjaja, (2007), "Degradasi BOD dan COD pada sistem lumpur aktif pengolahan limbah cair tekstil", Jurnal Teknologi Lingkungan Vol. 8 pp. 22-28

[26] T. Prayudi and J.P. Susanto, (2001), "Pengaruh ukuran partikel chitosan pada proses degradasi limbah cair tekstil", Jurnal Teknologi Lingkungan Vol. 2 pp. 296-299

[27] A.K.K. Ramadhana, S. Wardhani and D. Purwonugroho, (2013), "Fotodegradasi zat warna methyl orange menggunakan TiO2-zoëlit dengan penambahan ion persulfat", Kimia: Student Journal. Univ. Brawijaya Malang Vol. 1 pp. 168-174

[28] R.S. Dewi and S. Lestari, (2010), "Dekolorisasi limbah batik tulis menggunakan jamur indigenous hasil isolasi pada konsentrasi limbah yang berbeda", Molekul Vol. 5 pp. 75-82
[29] E. Miranti 2007 Mencermati kinerja tekstil indonesia: Antara potensi dan peluang. http://digilib.itb.ac.id/gdl.php?mod=browse&op=read&id=jbpttbpp-gdl-erminamira-31285. Accessed August 2014.

[30] G. Han, S. Zhang, X. Li, N. Widjojo and T.S. Chung, (2012), "Thin film composite forward osmosis membranes based on polydopamine modified polysulfone substrates with enhancements in both water flux and salt rejection", Chem. Eng. Sci. Vol. 80 pp. 219-231

[31] D.W. Mangindaan, G.M. Shi and T.S. Chung, (2014), "Pervaporation dehydration of acetone using P84 co-polyimide flat sheet membranes modified by vapor phase crosslinking", J. Membr. Sci. Vol. 458 pp. 76-85

[32] Y.P. Tang, N. Widjojo, G.M. Shi, T.S. Chung, M. Weber and C. Maletzko, (2012), "Development of flat-sheet membranes for C1–C4 alcohols dehydration via pervaporation from sulfonated polyphenylsulfone (sPPSU)", J. Membr. Sci. Vol. 415–416 pp. 686-695