Diversity oriented one-pot three-component sequential synthesis of annulated benzothiazoloquinazolines

Mahendra Kumar*, Kailash Sharma and Dinesh Kumar Sharma

Abstract
Annulated benzothiazoloquinazolines have been synthesized by a diversity oriented simple and convenient synthesis involving one-pot three-component reaction of substituted 2-aminobenzothiazoles with α-tetralone and aromatic/heteroaromatic aldehydes in ethanol in the presence of catalytic amount of triethylamine. The synthesized compounds have been characterized by their elemental analyses and spectral data.

Keywords: benzothiazoloquinazolines, one-pot, 2-aminobenzothiazoles, cyclic ketones, thiophene-2-carbaldehyde.

Background
The synthesis of fused heterocycles has attracted considerable interest in heterocyclic chemistry as the fusion of biodynamic heterosystems has proved to be a very attractive and useful for the design of new molecular framework of potential drugs with varying pharmacological activities. A major challenge of modern drug discovery is to design highly efficient chemical reaction sequences which provide molecules containing maximum complexity and structural diversity with interesting bioactivities in minimum number of synthetic steps. Recently, multicomponent reactions have attracted attention of chemical and pharmaceutical research and emerged as highly efficient and synthetically useful reactions for the preparation of structurally diverse drug-like heterocyclic compounds.

There has been an increasing interest in the chemistry of quinazolines [1-5] because of being present quinazoline heterocyclic system as a building block in many natural and synthetic products capable of exhibiting a wide variety of biological and pharmacological activities [6]. Quinazolines have been reported to exhibit anti-inflammatory [7], antihypertensive [8], anticancer [9], antitumor [10] and antibacterial [11] activities. Quinazoline and its derivatives have recently been evaluated as antagonist of various biological receptors such as 5-HT5A [12] related disease calcitonin gene - related peptide [13] and vasopressin V3 receptors [14]. Benzothiazole has also been an interesting heterocyclic system in drug research on account of significant biological activities of its fused derivatives [15-17]. Thiazoloquinazolines, have shown significant activity against cancer [18]. Thiazoloquinazolines have also been identified as cyclin dependent kinase (CDK) and glycogen synthase kinase (GSK-3) inhibitors [19,20].

Result and discussion
The syntheses of heterocycles with fused heterosystems involve, in most of the cases, multistep synthetic methods which require a large number of synthetic operations including extraction and purification of each individual step. The multistep synthetic methodologies, therefore, led to the synthetic inefficiency with the generation of large amounts of waste. The methods reported in the literature [21,22] for the synthesis of thiazoloquinazolines irrespective of positions of attachment of both the heterocyclic systems involved multisteps in which the formation of thiazole ring before the quinazoline ring induced low subsequent reactivity. Thiazoloquinazolines prepared by reaction of 2-aminobenzylamine with aromatic amine and then with 2-mercaptobenzoic acid also involved multistep reaction. However, after detailed literature survey it was observed that there were only limited publications devoted to the synthesis of especially benzothiazoloquinazolines which involved cyclocondensation of 2-aminobenzothiazoles.
with Mannich bases obtained in the first step as a result of Mannich reaction [23]. The multistep synthesis of benzothiazoloquinazolines suffered from some flaws including low yields, side products and tedious workup. In continuation of our research programme on the synthesis of nitrogen and sulphur containing novel heterocycles [24-31] of pharmaceutical interest and in view of the operational simplicity and intrinsic convergence (atom economy) of multicomponent reactions [32-36] in addition to their potential to introduce considerable structural diversity, we have synthesized annulated benzothiazoloquinazolines incorporating three biodynamic privileged heterosystems by a simple and convenient method involving multicomponent reaction of substituted 2-aminobenzothiazoles with α-tetralone and aromatic/heteroaromatic aldehydes in ethanol in the presence of catalytic amount of triethylamine, wherein 2-aminobenzothiazoles with both endocyclic nitrogen and exocyclic amino group participate as 1,3-binucleophile synthones in the formation of annulated benzothiazoloquinazolines (Scheme 1).

The reaction is believed to proceed to involve Knoevenagel condensation between α-tetralone and aromatic/heteroaromatic aldehyde in the initial step to form α,β-unsaturated ketone which undergoes Michael type addition with the nucleophilic endocyclic nitrogen of 2-aminobenzothiazole under the reaction conditions. The adduct formed is then cyclised intramolecularly with the lose of water molecule to provide annulated benzothiazolo[2,3-b]quinazolines. These reactions have taken place in one-flask domino manner and the enone system generated in situ immediately undergoes Michael type addition with 2-aminobenzothiazoles and subsequent cyclization. The possibility of formation of isomeric product involving nucleophilic attack of exocyclic amino group has been completely discarded on the basis of spectral characteristics. Annulated benzothiazoloquinazolines have also been synthesized by a multistep synthesis involving the reaction of substituted 2-aminobenzothiazoles with chalcones obtained by the reaction of α-tetralone with thiophene-2-carbaldehyde/p-methoxybenzaldehyde in the presence of catalytic amount of triethylamine. It has been observed that with the use of chalcones the reaction occurs in two steps relatively in longer time (6-8 h) with the moderate yields (50-60%) of annulated benzothiazoloquinazolines. But when the chalcones are replaced by their synthetic precursors, α-tetralone and thiophene-2-carbaldehyde/p-methoxybenzaldehyde, annulated benzothiazoloquinazolines are obtained with excellent yields (75-85%). The synthesized annulated benzothiazoloquinazolines are presented in table 1.

The structures of the synthesized compounds were confirmed by their elemental analyses and spectral data. Infrared spectra of all the synthesized compounds exhibit an intense unsaturation absorption band in the region 1605-1610 cm⁻¹ (C = C). The absorption band in the region 1620-1654 cm⁻¹ in the IR spectra of all the compounds indicated the presence of C = N bond. Two absorption bands corresponding to asymmetric and symmetric stretching vibrations of -NH₂ group, which were present in the IR spectra of 2-aminobenzothiazoles, are absent in the IR spectra of the synthesized compounds. ¹H NMR spectra of the synthesized compounds showed a multiplet in the region δ 7.01-8.08 ppm due to aromatic protons. The singlet appeared in the region δ 5.90-6.80 was assigned to the aliphatic proton (C₇-H). The singlet observed in the region δ 3.69-3.84 ppm was attributed to the methoxy protons, whereas the methyl protons resonate as a singlet in the region δ 2.34-2.36 ppm in the ¹H NMR spectra of annulated benzothiazoloquinazolines containing -OCH₃ and -CH₃ groups respectively. The multiplets observed in the region δ 2.74-3.23 ppm were assigned to the methylene protons at C-5 and C-6. In the ¹³C NMR spectra of the synthesized annulated benzothiazoloquinazolines, the δ values of most of the carbon atoms of CH₃, CH₂, CH, C = C, C = N, C-N, C-O, C-S, C-F and aromatic system could be determined by distinct resonance signals and were found to be in agreement with the proposed structures.

Conclusion

In conclusion, we have developed a simple and convenient diversity oriented one-pot three-component sequential synthesis for the synthesis of structurally diverse heterocycles, annulated benzothiazoloquinazolines, incorporating medicinally privileged heterosystems.

The present method with its mild reaction conditions and operational simplicity enables the sequential combination of three reactive components; α-tetralone, thiophene-2-carbaldehyde/p-methoxybenzaldehyde and 2-aminobenzothiazole in one-pot and efficiently incorporates structural diversity simply by varying the substituents or by slight structural modification in the components involved in the reaction. This new method has the advantages of higher yields, mild reaction conditions, shorter reaction time, and convenient procedure and can be extended to prepare a library of structurally diverse drug like small heterocyclic molecules.
Table 1 Reaction of 2-aminobenzothiazoles with α-tetralone and aromatic/heteroaromatic aldehydes.

2-aminobenzothiazole	α-tetralone	Aldehydes	product	m.p. °C	% yield
H$_3$C-\(\text{S} \quad \text{N} \quad \text{NH}_2\)				210-212	76
\(\text{H}_3\text{CO-}\text{S} \quad \text{N} \quad \text{NH}_2\)				220-222	80
Cl-\(\text{S} \quad \text{N} \quad \text{NH}_2\)				205-207	77
F-\(\text{S} \quad \text{N} \quad \text{NH}_2\)				190-192	75
H$_3$C-\(\text{S} \quad \text{S} \quad \text{N} \quad \text{NH}_2\)				215-217	80
\(\text{H}_3\text{CO-}\text{S} \quad \text{S} \quad \text{N} \quad \text{NH}_2\)				227-229	80
Experimental
Melting points were determined on an electric melting point apparatus and are uncorrected. The purity of all the compounds was checked by thin layer chromatography using various non-aqueous solvents. IR spectra (KBr pellets) were recorded on Shimadzu-8400S FT-IR Spectrophotometer. The 1H NMR and 13C NMR spectra were scanned on Jeol AL 300 FT NMR in CDCl$_3$ using TMS as an internal standard. The chemical shifts are expressed as δ ppm.

Methods
Procedure for the preparation of 7-thien-2-yl/4'-methoxyphenyl-5,6-dihydro-7H-benzo[h] benzothiazolo [2, 3-b] quinazolines
To a magnetically stirred solution of thiophene-2-carboxaldehyde/p-methoxy benzaldehyde (0.01 mole) and α-tetralone (0.01 mole) in ethanol (20 ml), a catalytic amount of (C$_2$H$_5$)$_3$N was added slowly and further stirred for 30 min. Then 2-aminobenzothiazole (0.01 mole) was added to the reaction mixture with stirring for 2 h and then refluxed for 60-90 min in a round bottom flask fitted with reflux condenser. The progress of the reaction was monitored by TLC. The precipitate formed after the completion of reaction was isolated by filtration. The solid separated out was washed well with ethanol, dried and finally crystallized from ethanol.

11-Methyl-7-(thien-2-yl)-5,6-dihydro-7H-benzo[h] benzothiazolo [2, 3-b]quinazoline (4a)

m.p. 210-212°C; yield: 76%; IR (KBr, cm$^{-1}$): 3010-3080, 2975, 1620, 1615; 1H NMR (300 MHz, CDCl$_3$) δ ppm: 7.09-7.84 (m, 9H, Ar-H), 5.96 (s, 1H, C$_7$), δ 3.12-3.24 (m, 2H, CH$_2$) 2.94-2.96 (m, 2H, CH$_2$); 13C NMR (75 MHz, CDCl$_3$) δ ppm: 26.98, 28.10, 58.32, 119.4, 122.13, 125.34, 125.53, 126.23, 126.56, 126.85, 127.8, 127.32, 127.54, 128.26, 130.2, 130.14, 133.65, 134.12, 137.34, 139.14, 143.15, 167.35; Anal. Calcd. for C$_{23}$H$_{18}$N$_2$S$_2$: C, 71.47; H, 4.69; N, 7.25; Found: C, 73.65; H, 4.99; N, 7.19.

9,10-Dichloro-7-(thien-2-yl)-5,6-dihydro-7H-benzo[h] benzothiazolo [2, 3-b]quinazoline (4c)
m.p. 205-207°C; yield: 77%, IR (KBr, cm$^{-1}$): 3060, 2972, 1622, 1615; 1H NMR (300 MHz, CDCl$_3$) δ ppm: 7.08-7.45 (m, 9H, Ar-H), 5.96 (s, 1H, C$_7$), δ 3.12-3.24 (m, 2H, CH$_2$) 2.94-2.96 (m, 2H, CH$_2$); 13C NMR (75 MHz, CDCl$_3$) δ ppm: 26.96, 28.16, 57.23, 119.9, 120.32, 123.46, 125.13, 125.24, 126.23, 126.52, 127.2, 127.58, 127.69, 128.08, 129.44, 130.68, 133.12, 133.28, 134.6, 137.2, 139.04, 142.98, 155.61, 167.19; Anal. Calcd. for C$_{22}$H$_{14}$Cl$_2$N$_2$: C, 59.86; H, 3.20; N, 6.35; Found: C, 62.09; H, 3.10; N, 6.45.

Table 1 Reaction of 2-aminobenzothiazoles with α-tetralone and aromatic/heteroaromatic aldehydes. (Continued)

Compound	m.p.	Yield	IR (KBr, cm$^{-1}$)	1H NMR (300 MHz, CDCl$_3$) δ ppm	13C NMR (75 MHz, CDCl$_3$) δ ppm	Anal. Calcd.	Found
(4b)	192-194	74					
(4g)	189-191	75					

11-Flouro-7-(thien-2-yl)-5,6-dihydro-7H-benzo[h] benzothiazolo [2, 3-b]quinazoline (4d)
m.p. 190-192°C; yield: 75%; IR (KBr, cm$^{-1}$): 3075, 2978, 1620, 1610; 1H NMR (300 MHz, CDCl$_3$) δ ppm:
11-Methyl-7-(4-methoxyphenyl)-5,6-dihydro-7H-benzo[\nbenzothiazolo-[2,3-b]quinazoline (4e) m.p. 215-217°C; yield: 80%, IR (KBr, cm-1): 3045, 2977, 1650, 1275 1H NMR (300 MHz, CDCl3) δ ppm: 7.20-7.54 (m, 11H, Ar-H), 5.90 (s, 1H, C7-H), 3.76 (s, 3H, OCH3), 3.69 (s, 3H, OCH3), 2.94-3.00 (m, 2H, CH2), 2.26-2.32 (m, 2H, CH2); 13CN M R(7 5M H z ,CDCl3) δ ppm: 167.38; Anal. Calcd. for C25H18Cl2N2O5S: C, 64.49; H, 5.15; N, 6.92.

11-Methoxy-7-(4-methoxyphenyl)-5,6-dihydro-7H-benzo[\nbenzothiazolo-[2,3-b]quinazoline (4f) m.p. 227-229°C; yield: 75%, IR (KBr, cm-1): 3100, 2977, 1650, 1275 1H NMR (300 MHz, CDCl3) δ ppm: 7.15-7.52 (m, 11H, Ar-H), 5.95 (s, 1H, C7-H), δ 3.69 (s, 3H, OCH3), 2.82-2.96 (m, 4H, CH2 at C5 and C6); 13C NMR (75 MHz, CDCl3) δ ppm: 26.98, 28.56, 55.63, 57.39, 115.47, 118.78, 119.12, 121.45, 125.73, 126.63, 127.32, 127.58, 128.16, 128.73, 129.87, 131.43, 133.26, 133.89, 134.38, 142.19, 153.76, 170.43; Anal. Calcd. for C26H15FN2OS: C, 72.44; H, 4.60; N, 6.72; Found: C, 72.44; H, 4.62; N, 6.76.

Acknowledgements
The authors were thankful to the Head, Department of Chemistry, University of Rajasthan, Jaipur for providing laboratory and instrumentation facilities. RSIC, CDRI, Lucknow is also acknowledged for providing analytical and spectral data of the compounds. One of the authors (KS) thanks University of Rajasthan Jaipur (India) for the research fellowship.

Competing interests
The authors declare that they have no competing interests.

Received: 29 September 2011 Accepted: 2 March 2012
Published: 2 March 2012

References
1. Witt A, Bergman J (2003) Recent Developments in the field of quinazoline chemistry. Curr Org Chem 7:659-677. doi:10.2174/1385272033486736
2. Connelly DJ, Cusack D, O'Sullivan TP, Gury PJ (2003) Synthesis of quinazolines and quinazolones. Tetrahedron 61:10153–10162. doi:10.1016/j.tet.2005.07.010.
3. Michael JP (2003) Quinoline, quinazoline and acridone alkaloids. Nat Prod Rep 16:697–709. doi:10.1039/a009408.
4. Michael JP (2002) Quinoline, quinazoline and acridone alkaloids. Nat Prod Rep 19:742–760. doi:10.1039/b104971m.
5. Michael JP (2003) Quinoline, quinazoline and acridone alkaloids. Nat Prod Rep 20:476–493. doi:10.1039/b208140g.
6. Martinei-Viturro CM, Dominguez D (2001) Synthesis of the antitumoural agents batracylon and related isocyclon[1,2-b]quinazoline-11(10H)-ones. Tetrahedron Lett 42:1023–1026.
7. Alagarsamy V, Raja SV, Dhanabal K (2007) Synthesis and pharmacological evaluation of some 3-phenyl-2-substituted-3H-quinazolin-4-one as analgesic, anti-inflammatory agents. Bioorg Med Chem 15:235–241. doi:10.1016/j.bmc.2006.09.065.
8. Alagarsamy V, Pathak US (2007) Synthesis and antihypertensive activity of novel 3-benzyl-2-substituted-3H-[1,2,4]triazolo[5,1-b]quinazolin-9-ones. Bioorg Med Chem 15:3457–3462. doi:10.1016/j.bmc.2007.05.007.
9. Murugan V, Kulkarni M, Anand RM, Kumar EP, Suresh B, Reddy VM (2006) Synthesis of 2-(bis[2-chloroethyl]amino)methyl-6,8-dinitro-1-(4-substituted phenyl)-1H-quinazolin-4-one derivatives as possible antineoplastic agents. Asian J Chem 18:900–906.
10. Godfrey AAA (2005) Preparation of Quinazolin-4ones via Cyclization of N-cyanophenyl acetamide Derivatives. PCT Int Appl WO 2005012260 A2. Chem Abstr. 147,118256. 28 Jun 2007
11. Selvam P, Girja K, Nagarajan G, De Clerco E (2005) Synthesis, antibacterial and anti-HIV activities of 3-(5-amino-6-(2,3-dichlorophenyl)-1H-quinazolin-3-y1)-6-bromo-2-substituted-3H-quinazolin-4-one. Indian J Pharm Sci 67:484–487.
12. Alajmi A, Gobbii LC, Koczewski S, Luebbers T, Peters JU, Steward L (2006) Preparation of 2-(Alkoxycycloalkyl)alkyl-3,4-dihydro-quinazolines and quinazolinones and quinazolines. Tetrahedron 61:10202. doi:10.1016/j.tet.2005.07.010.
13. Alajmi A, Gobbii LC, Koczewski S, Luebbers T, Peters JU, Steward L (2006) Preparation of 2-(Alkoxycycloalkyl)alkyl-3,4-dihydro-quinazolines and quinazolinones and quinazolines. Tetrahedron 61:10202. doi:10.1016/j.tet.2005.07.010.
15. Molinski TF (1993) Marine pyridocadrine alkaloid: Structure, synthesis and biological chemistry. Chem Rev 93:1825–1838. doi:10.1021/cr00021a009.

16. Robin M, Fature R, Perichaud A, Galy JP (2000) Synthesis of new thiazolo[5,4-b]acridine derivatives. Heterocycles 53:387–395. doi:10.3987/COM-99-8794.

17. Khan RH, Rastogi RC (1991) Condensed heterocycles: synthesis and antifungal activities of pi-deficient pyrimidines linked with pi-rich heterocycles. J Agric Food Chem 39:2300–2303. doi:10.1021/jf00012a042.

18. Grasso S, Micale N, Anna-aria Monforte, Monforte P, Polimeni S, Zappala M (2000) Synthesis and in vitro antitumour activity evaluation of 1-aryl-1H-thiazolo[4,3-b]quinazolines. Eur J Med Chem 35:115–1119

19. Testard A, Picot L, Lozach O, Blainvaux, Monforte P, Polimeni S, Zappala M, Thierry V, Besson T (2005) Synthesis and evaluation of the antiproliferative activity of novel thiazoloquinazoline kinase inhibitors. J Enzyme Inhib Med Chem 20:557–568. doi:10.1080/14756360500212399.

20. Testard A, Loge C, Leger B, Robert JM, Lozach O, Blainvaux, Monforte P, Polimeni S, Zappala M, Thierry V, Besson T (2006) Thiazolo[5,4-b]quinazolin-9-ones, inhibitors of glycogen synthase kinase-3. Bioorg Med Chem Lett 16:3419–3423. doi:10.1016/j.bmcl.2006.04.006.

21. Alexandre FR, berecibar A, Wigglesworth R, Besson T (2003) Efficient synthesis of thiazoloquinazoline derivatives. Tetrahedron Lett 44:4455–4458. doi:10.1016/S0040-4039(03)01026-8.

22. Besson T, Guillard J, Rees CW (2000) Multistep synthesis of thiazoloquinazolines under microwave irradiation in solution. Tetrahedron Lett 41:1027–1030. doi:10.1016/S0040-4039(99)02221-2.

23. Quiroga J, Hernández P, Insauty B, Abonia R, Gobo J, Sánchez A, Nogueiras, Low NL (2002) Control of the reaction between 2-aminothiazoles and Mannich bases. Synthesis of pyrido[2,1-b][1,3]benzothiazoles versus [1,3]benzothiazol[2,3-b]quinazolines. J Chem Soc Perkin Trans 1:555–559.

24. Rathore BS, Kumar M (2006) Synthesis of 7-chloro-5-trifluoromethyl/7-fluoro/7-trifluoromethyl-4H-1,4-benzothiazines as antimicrobial agents. Bioorg Med Chem 14:5678–5682. doi:10.1016/j.bmc.2006.04.009.

25. Rathore BS, Gupta V, Gupta RR, Kumar M (2007) Synthesis of 7-chloro-5-trifluoromethyl/7-fluoro/7-trifluoromethyl-4H-1,4-phenothiazines. Heteroatom Chem 18:81–86. doi:10.1021/hc20235x.

26. Kumar M, Sharma K, Samarth RM, Kumar A (2010) Synthesis and antioxidant activity of quinolinobenzothiazines. Eur J Med Chem 45:4467–4472. doi:10.1016/j.ejmech.2010.07.006.

27. Arya AK, Kumar M (2011) An efficient green chemical approach for the synthesis of structurally diverse spiroheterocycles with fused heterosystems. Green Chem 13:1332–1338. doi:10.1039/c1gc00008q.

28. Arya AK, Kumar M (2011) Base catalyzed multicomponent synthesis of spiroheterocycles with fused heterosystems. Mol Divers 15:781–789. doi:10.1007/s11030-011-9309-2.

29. Dandia A, Anya K, Khaturia S, Jain AK (2010) Microwave-induced preparation of biologically important benzothiazol[2,3-b]quinazolines, and comparison with ultrasonic and classical heating. Monatsh Chem 141:979–985. doi:10.1007/s00706-010-0361-x.

30. Sharma BK, Sharma PK, Kumar M (2010) One-Pot, Multicomponent Sequential Synthesis of Benzothiazoloquinazolines. Synth Commun 40:2347–2352. doi:10.1080/00945710903243807.

31. Dandia A, Khaturia S, Jain AK, Anya K (2008) Statement of a methodology for the microwave-induced preparation of biologically important benzothiazol[2,3-b] quinazolines and its comparison with ultrasonic and classical heating. 12th International Electronic Conference on Synthetic Organic Chemistry ECSOC-12 http://www.usc.es/congresos/ecsoc/11/ ECSOC11.htm. 1-30 November 2008

32. Nefzi A, Ostresh JM (1997) The Current status of heterocyclic combinatorial libraries. Chem Rev 97:449. doi:10.1021/cr960108b.

33. Roth HJ, Kleemann A (1988) In pharmaceutical chemistry. In Drug Synthesis, vol 1. New York: Wiley

34. Zhu J (2003) Recent developments in the isonitrile-based multicomponent synthesis of heterocycles. Eur J Org Chem 7:1133–1144

35. Otm RVA, de Greef M (2003) Recent advances in solution phase multicomponent methodology for the synthesis of heterocyclic compounds. Synthesis 10:1471–1499

36. Domling A, Ugi I (2000) Multicomponent reaction with isonitriles. Angew Chem Int Ed 39:3168–3210. doi:10.1002/1521-3773(20000915)39:18<3168::AID-CJOC2-U.3.0.CO;2-U. doi:10.1186/2191-2858-2-10

Cite this article as: Kumar et al; Diversity oriented one-pot three-component sequential synthesis of annulated benzothiazoloquinazolines. Organic and Medicinal Chemistry Letters 2012 2:10.