Decreased fetal cardiac output in pregnant women with severe SARS-Cov-2 infection

Ezgi Turgut MD | Bedri Sakcak MD | Derya Uyan Hendem MD | Deniz Oluklu MD | Sule Goncu Ayhan MD | Dilek Sahin

Division of Perinatology, Department of Obstetrics and Gynecology, Ministry of Health, Ankara City Hospital, ANKARA, Turkey

Correspondence
Division of Perinatology, Department of Obstetrics and Gynecology, Ministry of Health, Ankara City Hospital, Ankara, Turkey.
Email: ezgi_sariakcali@hotmail.com

Abstract
Aim: We aimed to examine fetal cardiac output (CO) in patients who recovered from severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) infection.

Materials: This prospective study included 48 pregnant women recovered from SARS-CoV-2 infection and 50 control cases. SARS-CoV-2 infection was diagnosed by polymerase chain reaction (PCR) test in patients. Fetal echocardiographic evaluations were performed at 24–37 weeks of gestation in pregnant women who recovered from the infection and control group.

Results: The median value of ultrasound evaluation was 34 (2.6) weeks of gestation in the recovery from the SARS-CoV-2 infection (RSI) group, and 32 (7.6) weeks in the control group (p = .565). Left cardiac output (LCO) z score was significantly lower in the RSI group than the control group (p = .041). LCO and combine cardiac output (CCO) z score were significantly lower in the severe disease group than mild, moderate disease groups, and controls (p = .019 and p = .013). CCO (ml/min/kg) was decreased in the severe disease group when compared with control and mild disease groups (p = .044).

Conclusion: In the present study, fetal cardiac output in pregnant women who recovered from SARS-CoV-2 infection was found to be significantly reduced in those with severe disease, while there was no significant difference in mild and moderate cases. Placental dysfunction and inflammatory cytokines might cause fetal cardiac changes. Further studies could be clarified on the impact of SARS-CoV-2 infection on fetal cardiac function.

Keywords
fetal cardiac output, fetal echocardiography, severe acute respiratory syndrome coronavirus

1 | INTRODUCTION

Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) infection is a major public health problem, with hospitalizations, admissions to the intensive care unit (ICU), and even deaths.1 Compared with non-pregnant women of childbearing age with SARS-CoV-2 infection, pregnant women are more likely to be needed for respiratory support and admitted to an ICU.2 Pregnant women with SARS-CoV-2 infection are at high risk for adverse perinatal outcomes such as early pregnancy loss, fetal growth retardation, and preterm delivery.3 4 Impaired placental function, hypoperfusion, and inflammation might lead to fetal decompensation that increased risk of perinatal mortality and morbidity.5 6 Cardiac output depends on heart rate, preload, afterload, and myocardial contractility.7 An increase in afterload or a decrease in preload causes a decrease in cardiac output.8 Changes in cardiac...
output have been demonstrated in hydrops fetalis, fetal growth retardation (FGR), anemia, and various pathological conditions. In this present study, we aimed to evaluate changes of fetal cardiac output in pregnant women who recovered from SARS-CoV-2 infection.

2 | MATERIALS AND METHODS

This prospective study included 48 pregnant women with recovered from SARS-CoV-2 infection and 50 control cases. The study was conducted in Ankara City Hospital between June 30, 2021 and January 1, 2022. Approval for the study was obtained from Ankara City Hospital Ethics Committee with the decision number E2-21-639. Written consent was obtained from patients. SARS-CoV-2 infection was diagnosed by polymerase chain reaction (PCR) test in patients. Twin pregnancy, maternal systemic disease, fetal anomaly, aneuploidy, and obstetric complications such as oligohydramnios, fetal growth restriction were excluded from the study. Fetal echocardiographic evaluations were performed between 24 and 37 weeks of gestation by the same maternal-fetal medicine specialist using C1-5-RS convex probe (1.75–4.95 Mhz) GE Voluson S10 and E8 Ultrasound. The study group and control group were matched for maternal and gestational age. Control group were consecutive cases matched with study group. The control group consists of pregnant women who were followed up in the same time interval as the patients in the study group in our department. A two-dimensional assessment of the great vessels and Doppler flow interrogation was obtained according to the guidelines of the International Society of Ultrasound in Obstetrics and Gynecology. Aortic (AV) (Figure 1) and pulmonary artery valve (PV) (Figure 2) diameters were measured in systole. Power Doppler cursor was located in parallel to the long axis of the aorta or pulmonary artery immediately distal to the valves. The angle between the ultrasound cursor and the direction of blood flow was <10°. The pulmonary and aortic valves flow velocity waveforms were obtained from the left and right ventricular outflow tract views (Figure 3). Velocity time integral (VTI) and heart rate (HR) were measured and averaged over the three best cardiac cycles. Cardiac outputs for the left and right ventricle (LCO and RCO) were calculated separately as VTI × \(\pi \) (AV or PV diameter/2) × HR. Gestational age was determined using first-trimester head-rump length. LCO and RCO z scores were calculated according to the gestational week. Estimated fetal weight (EFW) was calculated with the method of Hadlock et al. Combined cardiac output (CCO = RCO + LCO) was calculated, z score was obtained according to the gestational week. Also, CCO was normalized by estimated fetal weight. Demographic and echocardiographic data were compared between recovery from the SARS-CoV-2 infection (RSI) and control groups. Patients in the study group were divided into subgroups according to the World Health Organization (WHO)’s disease severity classification. Presence of any sign and symptom (e.g., fever, cough, sore throat, muscle pain) for COVID-19 without lower respiratory system involvement was defined as mild disease. Evidence of lower respiratory disease by clinical assessment or imaging and a saturation of oxygen (\(\text{SaO}_2 \)) \(\geq \) 94% on room air at sea level was defined as moderate disease. Evidence of lower respiratory disease by clinical assessment or imaging and a saturation of oxygen (\(\text{SaO}_2 \)) \(< \) 94% on room air at sea level, ratio of arterial partial pressure of oxygen to fraction of inspired oxygen (\(\text{PaO}_2/\text{FiO}_2 \)) \(< \) 300, or lung infiltrates...
FIGURE 2 Pulmonary valve annulus diameter. Ao, aorta; LPA, left pulmonary artery; PV annulus, pulmonary valve annulus; RA, right atrium; RPA, right pulmonary artery; RV, right ventricle; Zs-GA, Z score for gestational age.

FIGURE 3 The aortic valves flow velocity waveforms and velocity time integral (VTI) were obtained from the left ventricular outflow tract (LVOT) views. Cardiac outputs was calculated as VTI × π (Aortic valve diameter/2)² × heart rate. LV, left ventricle; RV, right ventricle.
>50% was defined as severe disease. Presence of respiratory failure, septic shock, and/or multiple organ dysfunction was defined as critical disease.19 Echocardiographic and perinatal outcomes were compared between these subgroups.

Descriptive statistics including the mean, standard deviation or median, and minimum-maximum values for numerical measures were calculated for all patients. The normality of the variables was tested with both Shapiro – Wilk and Kolmogorov – Smirnov tests. Two groups were compared with the Student’s t-test and Mann–Whitney U test. One Way ANOVA analysis (and post hoc test to compare groups in case of significant difference) and Kruskal Wallis test, Mann–Whitney U-test with Bonferroni correction were used to compare the groups. For categorical variables, a comparison of variables was performed by Pearson Chi-square test and Fisher’s exact test. The alpha significance level of .05 was used to assess statistical significance. Statistical analysis was done with IBM SPSS Statistics 17.0 (IBM Corporation, Armonk, NY, USA).

3 RESULTS

The demographic data of the study population was shown in Table 1 and the maternal baseline characteristics were similar in both groups ($p > .05$). In Table 2, the clinical points of SARS-CoV-2 infection were shown and the gestational age of the SARS-CoV-2 infection diagnosis was 20 (8–34). In the RSI group, 18 (37.5%) patient had mild disease, 20 (41.6%) patient had moderate disease, and 10 (20.8%) patient had severe disease. There was no critical patient in this group. Thirty (62.5%) of the study patients were hospitalized and 10 (20.8%) of them needed respiratory support. The echocardiographic findings were given in Table 3. All fetuses had normal cardiac morphology. The median value of ultrasound evaluation was 34 (2.6) weeks of gestation in the RSI group, and 32 (7.6) weeks in the control group ($p = .565$). LCO z score was found significantly lower in the RSI group than the control group ($p = .041$). Table 4 shows the relation between SARS-CoV-2 infection severity and fetal echocardiographic findings. LCO and CCO z scores were significantly lower in the severe disease group than mild disease, moderate disease, and control groups ($p = .019$ and $p = .013$). CCO (ml/min/kg) was found to be decreased in the severe disease group than mild disease and control groups ($p = .044$). Perinatal outcomes were given in Table 5. Gestational age at birth and birth weight were significantly lower in the severe disease group compared to mild disease, moderate disease, and control groups ($p < .001$ and $p = .020$). Fetal distress, preterm delivery rate, and neonatal intensive care unit (NICU) admission were higher in the severe disease group than controls ($p = .010$, $p = .009$, and $p < .001$, respectively).
TABLE 4 SARS-CoV-2 infection severity and fetal echocardiographic findings

	Control (n = 50)	Mild infection (n = 18)	Moderate infection (n = 20)	Severe infection (n = 10)	p-value
LCO (ml/min)	282.2 ± 114.4	268.6 ± 102.4	248.1 ± 111.5	204.9 ± 114.5	.122
LCO z score	-.4 ± 1	-.6 ± .6	-.7 ± .8	-1.5 ± 1.3***	.019
RCO (ml/min)	385.6 ± 185.2	368.0 ± 147.7	320.9 ± 123.5	330.2 ± 151.2	.324
RCO z score	-.9 ± 1.2	-1.1 ± .7	-1.2 ± 1.3	-1.8 ± .9	.157
CCO (ml/min)	668.7 ± 280.8	637.0 ± 240.9	568.6 ± 208.5	528.7 ± 234.4	.230
CCO z score	-.7 ± .7	-.8 ± .4	-.9 ± .6	-1.5 ± .7***	.013
CCO (ml/min/kg)	361.3 ± 115.3	366.1 ± 105	331.3 ± 96.1	257.3 ± 111.9**	.044

Note: Data given as mean ± SD.
Abbreviations: CCO, combined cardiac output; LCO, left cardiac output; RCO, right cardiac output.
**Severe disease was significantly different with control and mild disease.
***Severe disease was significantly different with control, mild and moderate disease.

TABLE 5 Perinatal outcomes in mild, moderate, severe disease, and control groups

	Control (n = 50)	Mild infection (n = 18)	Moderate infection (n = 20)	Severe infection (n = 10)	p-value
Gestational age at birth (week)	37.3 ± 2.2	36.1 ± 4.5	37.2 ± 2.6	33.6 ± 4.3***	<.001
Birth weight (g)	3049 ± 474	3067 ± 651	3032 ± 405	2391 ± 719***	.020
Preterm delivery rate (n, %)	2 (4%)	3 (16.7%)	2 (10%)	4 (40%)*	0.009
Fetal growth retardation (n, %)	-	1 (5.6%)	1 (5%)	1 (10%)	.133
Fetal distress (n, %)	1 (2%)	1 (5.6%)	1 (5%)	3 (30%)*	.010
1st min Apgar < 7	2 (4%)	2 (11.1%)	3 (15%)	3 (30%)	.075
5st min Apgar < 7	-	-	1 (5%)	1 (10%)	.125
Hospitalization in NICU (n, %)	2 (4%)	2 (11.1%)	4 (20%)	6 (60%)*	<.001

Note: Data given as median (interquartile range); number, percentile (n, %).
Abbreviations: C/S, cesarian section; NICU, Neonatal intensive care unit.
*Severe disease was significantly different with control.
***Severe disease was significantly different with control, mild, and moderate disease.

4 | DISCUSSION

In this study, we found low LCO z scores in the RSI group than the controls. Also, LCO and CCO z scores were found to be lower in the severe disease group when we divided the RSI group according to the disease severity. Additionally, adverse pregnancy outcomes including fetal distress, preterm delivery rate, and NICU admission were increased in the severe disease group.

The SARS-CoV-2 infection causes an excessive inflammatory response with the release of a large number of proinflammatory cytokines. Placental injury and deterioration of feto-maternal perfusion is triggered by inflammation and this have been shown in literature before. Furthermore, this proinflammatory event might affect fetal renin-angiotensin system (RAS) that regulates the uteroplacental blood flow by balancing vasodilator and vasoconstrictive pathways. Down-regulation of RAS also leads to impaired uteroplacental blood flow and might be associated with fetal decompensation and adverse pregnancy outcomes. The presence of SARS-CoV-2 mRNA or virions on amniotic fluid, placenta, and cord blood could be confirm direct effect of SARS-CoV-2 with vertical transmission. However, systematic review and meta-analysis of the available data provide no conclusive evidence of vertical transmission of SARS-CoV-2 to date. In addition, in a study that investigate fetal tissues and their ACE-2 receptors, reported that fetal heart tissue does not express ACE-2 receptors which is a gate for SARS-CoV-2 to the cell entrance. Therefore, fetal heart seems not to be an exact target for SARS-CoV-2. These results support that possible cardiac functional changes are more likely to be a result of maternal effects of SARS-CoV-2 rather than a direct fetal effect of virus.

In the literature, there are few Doppler and echocardiographic studies evaluating the effects of SARS-CoV-2 infection on fetal circulation. Rizzo et al. assessed the fetal growth velocity and fetal hemodynamics with pulsatility index of uterine, umbilical, and middle cerebral arteries Doppler in pregnancies complicated and in those not
complicated by SARS-CoV-2 infection.28 They found that pregnancies complicated by SARS-CoV-2 infection are not at higher risk of developing fetal growth restriction through impaired placental function.28 Ayhan et al. evaluated the effect of SARS-CoV-2 on fetal Doppler parameters in patients who tested positive were hospitalized for mild or moderate disease.29 They found that SARS-CoV-2 infection seems to have no effect on Doppler parameters.29 However, there were no severe or critical cases both of these studies. Rizzo et al. also evaluated 54 pregnancies complicated and 108 not complicated by SARS-CoV-2 infection to explore whether SARS-CoV-2 can affect umbilical vein blood flow (UVBF) and fetal cardiac function.30 The areas of atria and the sphericity index of both ventricles were selected among functional indices for assessing cardiac function in their study.30 They found that there was no difference in fetal cardiac function, suggesting that SARS-CoV-2 infection in pregnancy is unlikely to affect fetal venous and cardiac hemodynamic.30 However, they included only mild disease of SARS-CoV-2 infection, none of them required hospitalization and they point out that further studies are needed to elucidate the influence of SARS-CoV-2 infection on fetal cardiac function by the severe spectrum of the disease.30 In present study, we evaluated fetal cardiac output in pregnant women who recovered from SARS-CoV-2 infection and unlike other studies, we were able to evaluate hemodynamic changes in fetal circulation by measuring cardiac output. Also, we detected negative changes only in the severe disease group. The lack of severe disease group in previous studies may be the main reason why they did not find a significant difference in their evaluations.

The potential effects of SARS-CoV infection to the prenatal CO have not been previously studied. In fact, fetal cardiac output has been evaluated in several studies in obstetric conditions associated with cardiac dysfunction, such as hydrops fetalis, FGR, twin to twin transfusion syndrome (TTTS), and diabetes mellitus (DM).9–13 It has been observed that direct calculation of cardiac output could give valuable information for heart failure and is potentially useful in the assessment of fetal well-being.31

Cardiac output is dependent on preload (circulatory volume), afterload (circulatory resistance), and myocardial contractility.32 Fetal arterioma, placental chorioangioma, and fetal anemia are known to be associated with high fetal CO as a result of increased preload.11,33,34 Rizzo et al. found that left CO increases in FGR fetuses probably due to cerebral vasodilatation and consequently decreased cardiac afterload.35 In our study, a decrease in the left CO z score in the RSI group was observed. In addition, we found a significantly lower left CO z score in the severe disease group than in the other groups. Our findings were explained by either decreased preload or increased afterload, or a combination of both. This result seems to be associated with effect of SARS-CoV-2 infection-related inflammation on fetal circulation.10 When RSI patients were grouped according to disease severity, CCO and z scores decreased significantly in the severe disease group compared to the control and mild disease groups. This result highlights the importance of standardization according to fetal weight and z scores. Non-normalized cardiac morphological measurements and flow measurements in the growing fetus do not appear to be as significant as Z scores.

The main strength of the study is its novelty, prospective design and evaluation of subgroups according to disease severity. On the other hand, relatively few cases especially in the severe disease group are the main limitation. The other limitation of study was that researchers who performed echo and assessed cardiac function were not blinded to the condition of the women studied.

5 | CONCLUSION

In conclusion, SARS-CoV-2 infections have been conducted on fetal adverse effects.3,4,6 The negative impact on placental tissues and fetal organs has been observed.38,39 In the present study, we showed a decrease in fetal cardiac output, especially in severe diseases, and this is the first study in the literature to evaluate fetal CO in pregnant women recovering from SARS-CoV-2 infection on this view of point. Further studies are needed to clarify the impact of SARS-CoV-2 infection on fetal cardiac function.

ORCID

Ezgi Turgut MD https://orcid.org/0000-0002-5509-7888
Bedri Sakacak MD https://orcid.org/0000-0003-0277-5072
Derya Uyan Hendem MD https://orcid.org/0000-0003-1866-7295
Deniz Oluklu MD https://orcid.org/0000-0002-9050-2041
Sule Goncu Ayhan MD https://orcid.org/0000-0002-5770-7555
Dilek Sahin https://orcid.org/0000-0001-8567-9048

REFERENCES

1. Wang CL, Liu YY, Wu CH, Wang CY, Wang CH, Long CY. Impact of COVID-19 on pregnancy. Int J Med Sci. 2021;18:763. https://doi.org/10.7150/IJMS.49923
2. Nana M, Nelson-Piercy C. COVID-19 in pregnancy. CME: OBSTETRIC MED Clin Med. 2021;21:446–450. https://doi.org/10.7861/clinmed.2021-0503
3. Sahin D, Tanacan A, Erol SA, et al. Management of pregnant women with COVID-19: a tertiary pandemic center experience on 1416 cases. J Med Virol. 2021;94:1074–1084. https://doi.org/10.1002/jmv.27423

4. Juan J, Gil MM, Rong Z, Zhang Y, Yang H, Poos LC. Effect of coronavirus disease 2019 (COVID-19) on maternal, perinatal and neonatal outcome: systematic review. Ultrasound Obstet Gynecol. 2020;56:15–27. https://doi.org/10.1002/UOG.22088

5. Di Girolamo R, Khalil A, Alammedine S, et al. Placental histopathology after SARS-CoV-2 infection in pregnancy: a systematic review and meta-analysis. Am J Obstet Gynecol MFM. 2021;3(6):100468. https://doi.org/10.1016/j.ajogmf.2021.100468

6. Allotey J, Stallings E, Bonet M, et al. Clinical manifestations, risk factors, and maternal and perinatal outcomes of coronavirus disease 2019 in pregnancy: living systematic review and meta-analysis. BMJ (Clinical Research Ed). 2020;370:1–18. https://doi.org/10.1136/BMJ.M3320

7. Kenny J, Piappert T, Doubitte P, Salzman D, Sutton MG. Effects of heart rate on ventricular size, stroke volume, and output in the normal human fetus: a prospective Doppler echocardiographic study. Circulation. 1987;76:52–58. https://doi.org/10.1161/01.CIR.76.1.52

8. Parer JT. Fetal circulation. The Global Library of Women’s Medicine. 2013. https://doi.org/10.1515/ERP-17-0063

9. Di Mascii D, Sen C, Saccone G, et al. Risk factors associated with adverse fetal outcomes in pregnancies affected by Coronavirus disease 2019 (COVID-19): a secondary analysis of the WAPM study on COVID-19. J Perinat Med. 2020;48(9):950–958.

10. Davis L, Thornburg KL, Giraud GD. The effects of anaemia as a predictor of poor obstetric outcome: systematic review and meta-analysis. BMJ. 2006;333:1063–1068. https://doi.org/10.1136/bmj.38808.585-919

11. Bond SJ, Harrison MR, Schmidt KG, et al. Death due to high-output cardiac failure in fetal saccocoezzygat teratoma. J Pediatr Surg. 1990;25:1287–1291. https://doi.org/10.1016/0022-3468(90)90535-H

12. Davis L, Thornburg KL, Giraud GD. The effects of anaemia as a programming agent in the fetal heart. J Physiol. 2005;565:35–41. https://doi.org/10.1113/JPHYSIOL2004.082388

13. Pilania R, Sikka P, Rohit MK, Suri V, Kumar P. Fetal cardiodynamics by echocardiography in insulin dependent maternal diabetes and its correlation with pregnancy outcome. J Clin Diagnostic Res. 2016;10:1–4. https://doi.org/10.7860/JCDR/2016/17993.8079

14. Cardiac screening examination of the fetus: guidelines for performing the “basic” and “extended basic” cardiac scan. Ultrasound Obstet Gynecol. 2006;27:107–113. https://doi.org/10.1002/UOG.2677

15. van der Mooren K, Barendregt LG, Wladimiroff JW. Fetal atrioventricular and outflow tract flow velocity waveforms during normal second trimester in normal fetuses. Am J Obstet Gynecol. 2006;27:107–113. https://doi.org/10.1002/UOG.2677

16. Mao YK, Zhao BW, Zhou L, Wang B, Chen R, Wang SS. Z-score reference ranges for pulsed-wave Doppler indices of the cardiac outflow tracts in normal fetuses. Int J Cardiovasc Imaging. 2019;35:811–825. https://doi.org/10.1007/s10554-018-1517-1

17. Gagnon C, Bigras JL, Fournier JC, Dallaire F. Reference values and Z-scores for pulsed-wave Doppler and M-mode measurements in fetal echocardiography. J Am Soc Echocardiogr. 2016;29:448–460.e9. https://doi.org/10.1016/j.echo.2016.01.002

18. Hadlock FP, Harrist RB, Carpenter RJ, Deter RL, Park SK. Sonographic estimation of fetal weight. The value of femur length in addition to head and abdomen measurements. Radiology. 1984;150:535–540. https://doi.org/10.1148/RADIOLOGY.150.2.6691115

19. de Terwangne C, Laouni J, Jouffe L, et al. Predictive Accuracy of COVID-19 World Health Organization (WHO) severity classification and comparison with a Bayesian-Method-Based Severity Score (EPI-SCORE). Pathogens. 2020;9:1–17. https://doi.org/10.3390/PATHOGENS9101080

20. Kreis NR, Ritter A, Louwen F, Yuan J. A message from the human placenta: structural and immunomodulatory defense against SARS-CoV-2. Cells. 2020;9:1–24. https://doi.org/10.3390/CELLS9081777

21. Sharps MC, Hayes DJL, Lee S, et al. A structured review of placental morphology and histopathological lesions associated with SARS-CoV-2 infection. Placenta. 2020;101:13–29. https://doi.org/10.1016/J.PLACENTA.2020.08.018

22. Seymen CM. Being pregnant in the COVID-19 pandemic: effects on the placenta in all aspects. J Med Virol. 2021;93:2769–2773. https://doi.org/10.1002/JMV.26857

23. Ling HZ, Guo GP, Bisquera A, Nicolaides KH, Kametas NA. Maternal cardiac adaptation and fetal growth. Am J Obstet Gynecol. 2021;224:601.e1–601.e18. https://doi.org/10.1016/J.AJOG.2020.12.1199

24. Shanes ED, Mithal LB, Otero S, Azad HA, Miller ES, Goldstein JA. Placental pathology in COVID-19. Am J Clin Pathol. 2020;154(1):23–32. https://doi.org/10.1093/ajcp/aaaa089

25. Salem D, Katranji F, Bakdash T. COVID-19 infection in pregnant women: review of maternal and fetal outcomes. Int J Gynecol Obstet. 2021;152(3):291–298. https://doi.org/10.1016/j.ijgo.13533

26. Di Mascii D, Sen C, Saccone G, et al. Risk factors associated with adverse fetal outcomes in pregnancies affected by Coronavirus disease 2019 (COVID-19): a secondary analysis of the WAPM study on COVID-19. J Perinat Med. 2020;48(9):950–958.

27. Faure Bardon V, Isnard P, Roux N, et al. Protein expression of angiotensin converting enzyme-2 in a COVID-19-specific receptor, in fetal and placental tissues throughout gestation: new insight for perinatal counselling. Ultrasound Obstet Gynecol. 2021;57(2):242–247.

28. Rizzo G, Mappa I, Majquina P, et al. Effect of SARS-CoV-2 infection during the second half of pregnancy on fetal growth and hemodynamics: a prospective study. Acta Obstet Gynecol Scand. 2021;100(6):1034–1039. https://doi.org/10.1111/aogs.14130

29. Ayhan SG, Tanacan A, Atalay A, et al. Assessment of fetal Doppler parameters in pregnant women with COVID-19 infection: a prospective case-control study. J Perinat Med. 2021;49(6):679–701. https://doi.org/10.1515/jpm-2021-0657. Online ahead of print

30. Huhta JC. Diagnosis and treatment of foetal heart failure: foetal echocardiography and foetal hydrops. Fetal Diagn Ther. 2013;32(2):100–106. https://doi.org/10.1159/000331974

31. Vincent JL. Understanding cardiac output. Crit Care. 2008;12:1–3. https://doi.org/10.1186/CC6975

32. Statile CJ, Cnota JF, Gomien S, Divanovic A, Crombleholme T, Michelfelder E. Estimated cardiac output and cardiovascular profile score in fetuses with high cardiac output lesions. Ultrasound Obstet Gynecol. 2013;41:54–58. https://doi.org/10.1002/UOG.12309

33. Copel JA, Grannum PA, Green JJ, et al. Fetal cardiac output in the isoinmunized pregnancy: a pulsed Doppler-echocardiographic study of patients undergoing intravascular intrauterine transfusion. Am J Obstet Gynecol. 1989;161:361–365. https://doi.org/10.1016/0002-9378(91)90306-C
38. Facchetti F, Bugatti M, Drera E, et al. SARS-CoV2 vertical transmission with adverse effects on the newborn revealed through integrated immunohistochemical, electron microscopy and molecular analyses of Placenta. EBioMedicine. 2020;59:1–8. https://doi.org/10.1016/J.EBIO.2020.102951

39. Ping Wong Y, Yee Khong T, Chin Tan G. The effects of COVID-19 on placenta and pregnancy: what do we know so far? Diagnostics. 2021;11(1):94. https://doi.org/10.3390/diagnostics11010094