New editorial board members

As JCB approaches its 60th anniversary, we believe that one of the secrets to our longevity and success has been our commitment to regularly assess and refresh our editorial board. This ensures that our board members bring to the journal the expertise and commitment required to provide the cell biology community with the fair and expeditious review process they deserve. We would like to take this opportunity to welcome six new members to our editorial board, each of them extraordinarily well-regarded within their field. We thank these scientists, as well as our existing board members, for their dedication to the journal and their service to the cell biology community.

Martin Hetzer
Nuclear organization and function
Martin Hetzer is the Jesse and Caryl Philips Professor of Molecular and Cell Biology and Director of the Waitt Advanced Biophotonics Center at the Salk Institute for Biological Studies in La Jolla, CA. Martin received his PhD in biochemistry and genetics from the University of Vienna, Austria, and completed postdoctoral work at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany. His laboratory uses emerging technology and different model organisms to study how the cell nucleus is organized during development and disease. For example, his group discovered a remarkable phenomenon whereby the nuclear envelope becomes transiently ruptured and repaired during interphase in human cancer cells. Strikingly, nuclear envelope rupturing was associated with loss of cell compartmentalization and a catastrophic chromosome rearrangement event called chromothripsis, and thus might be a source of genomic instability. Additional projects include investigations into the role of long-lived proteins in aging and the mechanism of how nuclear envelope proteins regulate developmental gene expression.

Nancy Ip
Neural development and plasticity; neurodegenerative diseases and drug discovery
Nancy Ip is Dean of Science, Morningside Professor of Life Science, and Director of the State Key Laboratory of Molecular Neuroscience at The Hong Kong University of Science and Technology (HKUST). She received her PhD in pharmacology from Harvard University, after which she held the position of Senior Staff Scientist at Regeneron Pharmaceuticals, Inc., in New York. Her laboratory aims to understand the molecular pathways essential for wiring neural circuitry during development as well as the modulation of synaptic strength between neurons in response to experience, which underlies cognitive functions of the adult brain such as learning and memory. Using this knowledge, her research team aims to elucidate the pathophysiological mechanisms underlying neurodevelopmental disorders and neurodegenerative diseases. Her research efforts are also directed at identifying drug leads for these brain disorders from traditional Chinese medicines.

Jens Lykke-Andersen
mRNA translation and turnover
Jens Lykke-Andersen is a professor in the Division of Biological Sciences at the University of California, San Diego. His group studies mechanisms of eukaryotic gene regulation at the level of mRNA translation and degradation, including mRNA quality control pathways. Jens completed his PhD at the University of Copenhagen with Roger Garrett, where he studied RNA splicing in archaeb. He then did his postdoctoral training with Jan Christiansen at the University of Copenhagen and subsequently with Joen Steitz at Yale University studying translational regulation and mRNA quality control in human cells. Jens was Assistant and Associate Professor at the University of Colorado, Boulder, from 2001 until he moved to the University of California, San Diego, in 2009.

Elior Peles
Biology of myelinating glia
Elior Peles is Professor and Chairman of the Department of Molecular Cell Biology at the Weizmann Institute of Science in Rehovot, Israel. His research focuses on the biology of Schwann cells and oligodendrocytes, the myelinating glial cells of the peripheral and central nervous system, respectively. He obtained his PhD at the Weizmann Institute, where he identified neuregulin as a ligand for the ErbB tyrosine kinase receptors. During his postdoctoral studies at Sugen, Inc., he focused on the identification of receptor tyrosine phosphatases and cell adhesion molecules that mediate axon–glia interactions. His group is studying how glial cells recognize and wrap axons with myelin to enable rapid and efficient conduction of nerve impulses. His laboratory is also studying how myelinating glia control the molecular organization of the axonal membrane, which is required for the normal function of myelinated nerves. These studies have led to the identification of several cell adhesion systems that form specific intercellular contact sites along the longitudinal axis of the myelin unit.

This article is distributed under the terms of an Attribution-Noncommercial-Share Alike-No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License Attribution-Noncommercial-Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/.

The Rockefeller University Press
J. Cell Biol. Vol. 207 No. 4 439-440
www.jcb.org/cgi/doi/10.1083/jcb.201411028

JCB 439
Jeremy Reiter
Cilia assembly and signaling

Jeremy Reiter is an associate professor at the University of California, San Francisco. Jeremy was a postdoctoral fellow with Bill Skarnes, with whom he worked on gene editing technology and mammalian development. Work from the Reiter laboratory has contributed to the understanding of primary cilia as critical mediators of intercellular signals during development. Their work also has shown that cancer cells can be ciliated and addicted to their cilia for proliferative signals. More recently, the Reiter laboratory has explored the composition and function of the transition zone, a region between the basal body and cilium. The transition zone promotes ciliogenesis and controls ciliary composition in a tissue-specific manner. The Reiter laboratory has shown that problems in ciliary composition disrupt ciliary signaling and cause human ciliopathies, including Meckel and Joubert syndromes.

Patrik Verstreken
Neuronal communication and Parkinson’s disease

Patrik Verstreken earned his PhD in Developmental Biology at Baylor College of Medicine in Houston, TX, with Hugo Bellen, for studying modes and mechanisms of synaptic vesicle recycling. Transitioning to his postdoc, Patrik conducted large-scale genetic screens in fruit flies, discovering new components that regulate synaptic function and elucidating how mitochondria regulate vesicle transport at synapses. Patrik is currently a professor at KU Leuven in the Department of Human Genetics and is a group leader at the VIB Center for the Biology of Disease, Belgium. Using genetics, electron microscopy, electrophysiology, and imaging, his current research group uses fruit flies and human neurons differentiated from embryonic stem cells to study how synapses maintain neurotransmitter release and how this process is deregulated in Parkinson’s disease.