Probing CP symmetry and weak phases with entangled double-strange baryons

Small violations of CP symmetry are predicted by the standard model and are a well established phenomenon in weak decays of mesons. However, the mechanisms of the standard model are too specific to yield effects of a size that can explain the observed matter–antimatter asymmetry of the Universe. Therefore, CP tests can be considered a promising area to search for physics beyond the standard model. So far, no CP-violating effects beyond the standard model have been observed in the baryon sector.

In general, CP symmetry is tested by comparing the decay patterns of a particle to those of its antiparticle. Many CP-symmetry tests in hadron decays rely on strong interactions of the final particles to reveal the signal. This strategy is applied in the determination of the ratio ϵ/ϵ', quantifying the difference between the two-pion decay rates of the two weak eigenstates of neutral kaons. The ϵ/ϵ' measurement constitutes the only observation of direct CP violation for light strange hadrons and provides the most stringent test of contributions beyond the standard model in strange quark systems. This strategy, however, comes at a price: it is difficult to disentangle, in a model-independent way, the contributions from weak interactions or processes beyond the standard model from those of strong processes. Approaches that do not rely on strong interactions require that the kaon decay into four final-state particles.

Baryons provide additional information through spin measurements. Known examples involving three-body decays are spin correlations and polarization in nuclear and neutron β decays. Sequential two-body decays of entangled multi-strange baryon–antibaryon pairs provide another, hitherto unexplored, diagnostic tool to separate the strong and the weak phases.

In this work we explore spin correlations in weak two-body decays of spin-$\frac{1}{2}$ baryons. The spin direction of the parent baryon manifests itself in the momentum direction of the daughter particle, enabling straightforward experimental access to the spin properties. Spin-$\frac{1}{2}$ baryon decays are described by a parity-conserving (P-wave) and a parity-violating (S-wave) amplitude, quantified in terms of the decay parameters a_1, β_1, and γ_1 (ref. 13). The Y refers to the decaying parent hyperon (for example, A, or $\Xi^+\pi^-\Lambda$). These parameters are constrained by the relation $a_1^2 + \beta_1^2 + \gamma_1^2 = 1$. By defining the parameter ϕ_1 according to

$$\beta_1 = \sqrt{1 - a_1^2} \sin \phi_1, \quad \gamma_1 = \sqrt{1 - a_1^2} \cos \phi_1,$$

(1)

the decay is completely described by two independent parameters a_1 and ϕ_1. In the standard experimental approach, the initial baryon is produced in a well defined spin polarized state, which allows access to the decay parameters through the angular distribution of the final-state particles. For sequentially decaying baryons, for example, the decay of the double-strange Ξ^- baryon into $\Lambda\pi^-$, two effects are possible: 1) a polarized Ξ^- transfers its polarization P_{Ξ^-} to the daughter Λ; 2) a longitudinal component of the daughter Λ polarization is induced by the Ξ^- decay, even if the Ξ^- polarization has no component in this direction. In a reference system with the Ξ^- axis along the Λ momentum in the Ξ^- rest frame and the y axis along $P_{\Xi^-} \times \hat{z}$, the Λ polarization vector is given by ϕ_1.

Though immensely successful, the standard model of particle physics does not offer any explanation as to why our Universe contains so much more matter than antimatter. A key to a dynamically generated matter–antimatter asymmetry is the existence of processes that violate the combined charge conjugation and parity (CP) symmetry. As such, precision tests of CP symmetry may be used to search for physics beyond the standard model. However, hadrons decay through an interplay of strong and weak processes, quantified in terms of relative phases between the amplitudes. Although previous experiments constructed CP observables that depend on both strong and weak phases, we present an approach where sequential two-body decays of entangled multi-strange baryon–antibaryon pairs provide a separation between these phases. Our method, exploiting spin entanglement between the double-strange Ξ^- baryon and its antiparticle, has enabled a direct determination of the weak-phase difference, $(\xi_\alpha - \xi_\beta) = (1.2 \pm 3.4 \pm 0.8) \times 10^{-2}$ rad. Furthermore, three independent CP observables can be constructed from our measured parameters. The precision in the estimated parameters for a given data sample size is several orders of magnitude greater than achieved with previous methods. Finally, we provide an independent measurement of the recently debated Λ decay parameter a_1 (refs. 4). The $\Lambda\Lambda$ asymmetry is in agreement with and compatible in precision to the most precise previous measurement 4.

Baryons provide additional information through spin measurements. Known examples involving three-body decays are spin correlations and polarization in nuclear and neutron β decays. Sequential two-body decays of entangled multi-strange baryon–antibaryon pairs provide another, hitherto unexplored, diagnostic tool to separate the strong and the weak phases.

In this work we explore spin correlations in weak two-body decays of spin-$\frac{1}{2}$ baryons. The spin direction of the parent baryon manifests itself in the momentum direction of the daughter particle, enabling straightforward experimental access to the spin properties. Spin-$\frac{1}{2}$ baryon decays are described by a parity-conserving (P-wave) and a parity-violating (S-wave) amplitude, quantified in terms of the decay parameters a_1, β_1, and γ_1 (ref. 13). The Y refers to the decaying parent hyperon (for example, A, or $\Xi^+\pi^-\Lambda$). These parameters are constrained by the relation $a_1^2 + \beta_1^2 + \gamma_1^2 = 1$. By defining the parameter ϕ_1 according to

$$\beta_1 = \sqrt{1 - a_1^2} \sin \phi_1, \quad \gamma_1 = \sqrt{1 - a_1^2} \cos \phi_1,$$

(1)

the decay is completely described by two independent parameters a_1 and ϕ_1. In the standard experimental approach (refs. 4, 19-21), the initial baryon is produced in a well defined spin polarized state, which allows access to the decay parameters through the angular distribution of the final-state particles. For sequentially decaying baryons, for example, the decay of the double-strange Ξ^- baryon into $\Lambda\pi^-$, two effects are possible: 1) a polarized Ξ^- transfers its polarization P_{Ξ^-} to the daughter Λ; 2) a longitudinal component of the daughter Λ polarization is induced by the Ξ^- decay, even if the Ξ^- polarization has no component in this direction. In a reference system with the Ξ^- axis along the Λ momentum in the Ξ^- rest frame and the y axis along $P_{\Xi^-} \times \hat{z}$, the Λ polarization vector is given by ϕ_1.

Though immensely successful, the standard model of particle physics does not offer any explanation as to why our Universe contains so much more matter than antimatter. A key to a dynamically generated matter–antimatter asymmetry is the existence of processes that violate the combined charge conjugation and parity (CP) symmetry. As such, precision tests of CP symmetry may be used to search for physics beyond the standard model. However, hadrons decay through an interplay of strong and weak processes, quantified in terms of relative phases between the amplitudes. Although previous experiments constructed CP observables that depend on both strong and weak phases, we present an approach where sequential two-body decays of entangled multi-strange baryon–antibaryon pairs provide a separation between these phases. Our method, exploiting spin entanglement between the double-strange Ξ^- baryon and its antiparticle, has enabled a direct determination of the weak-phase difference, $(\xi_\alpha - \xi_\beta) = (1.2 \pm 3.4 \pm 0.8) \times 10^{-2}$ rad. Furthermore, three independent CP observables can be constructed from our measured parameters. The precision in the estimated parameters for a given data sample size is several orders of magnitude greater than achieved with previous methods. Finally, we provide an independent measurement of the recently debated Λ decay parameter a_1 (refs. 4). The $\Lambda\Lambda$ asymmetry is in agreement with and compatible in precision to the most precise previous measurement 4.
The decay parameter α_Ξ appears explicitly in the angular distribution of the direct decay $\Xi^- \rightarrow \Lambda\pi^-$, whereas the sequential decay distribution of the daughter Λ depends on both α_Λ and ϕ_Λ. CP symmetry implies that the baryon decay parameters α and ϕ equal those of the antibaryon $\bar{\alpha}$ and $\bar{\phi}$ but with opposite sign. Hence, CP violation can be quantified in terms of the observables

$$A^\prime_{\text{CP}} = \frac{\alpha_\Xi + \alpha_\Lambda}{\alpha_\Xi - \alpha_\Lambda}, \quad \Delta\phi_{\text{CP}} = \frac{\phi_{\Xi} + \phi_{\Lambda}}{2}.$$

(3)

CP violation can only be observed if there is interference between CP-even and CP-odd terms in the decay amplitude. Because the decay amplitude for $\Xi^- \rightarrow \Lambda\pi^-$ consists of both a P-wave and an S-wave part, the leading-order contribution to the CP asymmetry, A^\prime_{CP}, can be written as

$$A^\prime_{\text{CP}} = -\tan(\delta_{\Xi} - \delta_{\Lambda})\tan(\xi_{\Xi} - \xi_{\Lambda}),$$

(4)

where $\tan(\delta_{\Xi} - \delta_{\Lambda}) = \beta/\alpha$ denotes the strong-phase difference of the final-state interaction between the Λ and π^- from the Ξ^- decay. CP-violating effects would manifest themselves in a nonzero weak-phase difference $\xi_{\Xi} - \xi_{\Lambda}$ (refs. 21-24), an observable that is complementary to the kaon decay parameter ϵ' (refs. 23,24) because the latter only involves an S-wave. The strong-phase difference can be extracted from the ϕ_Ξ parameter, and is found to be small 21,26: (-0.037 ± 0.014). Hence, CP-violating signals in A^\prime_{CP} are strongly suppressed and difficult to interpret in terms of the weak-phase difference.

An independent CP-symmetry test in $\Xi^- \rightarrow \Lambda\pi^-$ is provided by determining the value of $\Delta\phi_{\text{CP}}$. At leading order, this observable is related directly to the weak-phase difference:

$$(\xi_{\Xi} - \xi_{\Lambda})_{\text{LO}} = \frac{\beta + \bar{\beta}}{\alpha - \bar{\alpha}} = \frac{1 - \langle a^2 \rangle}{\langle a \rangle} \Delta\phi_{\text{CP}}.$$

(5)

where $\langle a \rangle = (\alpha - \bar{\alpha})/2$, and can be measured even if $\delta_{\Xi} = \delta_{\Lambda}$. The absence of a strong suppression factor therefore improves the sensitivity to CP-violation effects by an order of magnitude with respect to that of the A^\prime_{CP} observable 21,26. To measure $\Delta\phi_{\text{CP}}$, using the standard polarimeter technique from refs. 23-24 requires beams of polarized Ξ^- and Ξ^+. In such experiments the precision is limited by the magnitude of the polarization and the accuracy of the polarization determination, which in turn is sensitive to asymmetries in the production mechanisms 27. In fact, no experiment with a polarized Ξ has been performed, and the polarization of the Ξ^- beams were below 5% (ref. 3). Here we present an alternative approach, in which the baryon–antibaryon pair is produced in a spin-entangled CP eigenstate and all decay sequences are analysed simultaneously.

To the best of our knowledge, no direct measurements of any of the asymmetries defined in equation (3) have been performed for the Ξ^- baryon. The HyperCP experiment 28, designed for the purpose of CP tests in baryon decays, used samples of around 10^7–10^8 Ξ^- events to determine the products α_Λ and ϕ_Λ. From these measurements, the sum $A^\prime_{\text{CP}} + A_{\text{CP}}$ was estimated to be $(0.0 \pm 5.5 \pm 4.4) \times 10^{-4}$, where the first uncertainty is statistical and the second systematic. In addition to the aforementioned problem of the smallness of ϕ_Ξ, which limits the sensitivity of A^\prime_{CP} to CP violation, an observable defined as the sum of asymmetries comes with other drawbacks: if A^\prime_{CP} and A_{CP} have opposite signs, the sum could be consistent with zero even in the presence of CP-violating effects. A precise interpretation therefore requires an independent measurement of A^\prime_{CP} with matching precision. The most precise result so far is a recent BESIII measurement 4 where A^\prime_{CP} was found to be $(-6 \pm 12 \pm 7) \times 10^{-5}$. Furthermore, ref. 4 revealed a 17% disagreement with previous measurements on the α_Λ parameter 26, a result that rapidly gained some support from a re-analysis of CLAS data 5. Although the CLAS result is in better agreement with BESIII than with the Particle Data Group value from 2018 and earlier, there is a discrepancy between the CLAS and BESIII results that needs to be understood. This is particularly important because many physics quantities from various fields depend on the parameter α_Λ. Examples include baryon spectroscopy, heavy-ion physics and hyperon-related studies at the Large Hadron Collider $^{29-31}$.

In this work we apply a newly designed method 32,33 to study entangled, sequentially decaying baryon–antibaryon pairs in the process $e^+e^- \rightarrow J/\psi \rightarrow \Xi^- \Xi^+$. This approach enables a direct measurement of all weak decay parameters of the $\Xi^- \rightarrow \Lambda \pi^-$ decay, and the corresponding parameters of the Ξ^+. The production and multi-step decays can be described by nine kinematic variables, here expressed as the helicity angles $\xi = (\theta, \phi, \phi, \phi, \phi, \phi, \phi, \phi, \phi)$. The first, θ, is the
Fig. 2 | Polarization and spin correlations of the e⁺e⁻ → Ξ⁺Ξ⁻ reaction. a, b, d, Spin correlations of the e⁺e⁻ → Ξ⁺Ξ⁻ reaction. The coordinate systems are denoted in reference to the centre-of-momentum system. The data points are determined independently in each bin of the Ξ⁺ cosine scattering angle in the e⁺e⁻ centre-of-momentum system. The blue curves represent the expected angular dependence obtained with the production parameters α and ΔΦ from the global maximum log-likelihood fit. The error bars indicate the statistical uncertainties.

Parameter	This work	Previous result	Reference
α⁺	0.58 ± 0.002 ± 0.001	0.58 ± 0.004 ± 0.008	Ref. 42
ΔΦ	1.213 ± 0.046 ± 0.016		
δ¹	-0.376 ± 0.007 ± 0.003	-0.401 ± 0.010	Ref. 26
δ²	0.011 ± 0.019 ± 0.009 rad	-0.037 ± 0.014 rad	
δ₃	0.371 ± 0.007 ± 0.002		
δ₄	-0.021 ± 0.019 ± 0.007 rad		
δ₅	0.757 ± 0.011 ± 0.008	0.750 ± 0.009 ± 0.004	Ref. 4
δ₆	-0.763 ± 0.011 ± 0.007	-0.758 ± 0.010 ± 0.007	Ref. 4
δ₇	(1.2 ± 3.4 ± 0.8) × 10⁻³ rad		
δ₈	(10.2 ± 3.9) × 10⁻⁵ rad		
αCP	(6 ± 1.6) × 10⁻⁵		
ΔΦCP	(−5 ± 14 ± 3) × 10⁻⁵ rad		
ACP⁺	(−4 ± 12 ± 9) × 10⁻³	(−6 ± 12 ± 7) × 10⁻³	Ref. 4
(δφ⁺)	0.016 ± 0.014 ± 0.007 rad		

The J/ψ → Ξ⁺Ξ⁻ angular distribution parameter α⁺; the hadronic form factor phase ΔΦ; the decay parameters for Ξ⁺ → Λ⁺π⁻ (α₊, δ₁₊), Ξ⁺ → Ξ⁺π⁻ (α₋, δ₂₋), Ξ⁺ → Λ⁺π⁻ (α₊) and Ξ → π⁺π⁻ (α₊), and the average ⟨ϕ⟩, the CP asymmetries ACP⁺, ΔΦCP and ACP⁻ and the average ⟨ϕ⟩. The first and second uncertainties are statistical and systematic, respectively.
The results of the fit, that is, the weak decay parameters $Ξ \rightarrow Λ\pi$ and $Ξ^0 \rightarrow Λ\pi$, as well as the production-related parameters α_s and $\Delta\phi$, are summarized in Table 1. To illustrate the fit quality, the diagonal spin correlations and the polarization defined in equation (7) are shown in Fig. 2. The upper-left panel of Fig. 2 shows that the $Ξ$-baryon is polarized with respect to the normal of the production plane. The maximum polarization is approximately 30%, as shown in the figure. The data points are determined by independent fits for each $\cos\theta$ bin, without any assumptions on the $\cos\phi$ dependence of C_{cp}. The red curves represent the angular dependence obtained with the parameters α_s and $\Delta\phi$ determined from the global maximum log-likelihood fit. The independently determined data points agree well with the globally fitted curves.

Online content

See the online content for full references.
16. Sehgal, L. M. & Wanninger, M. CP violation in the decay $K^+ \to \pi^+\pi^0\pi^0$, Phys. Rev. D 46, 1035–1041 (1992).
17. Gonzalez-Alonso, M., Navilat-Cuncic, O. & Severijns, N. New physics searches in nuclear and neutron decay, Prog. Part. Nucl. Phys. 104, 165–223 (2019).
18. Lee, T. A. G., Yang, L. & Wolfenstein, M. General partial wave analysis of the decay of a hyperon of spin 1/2, Phys. Rev. 108, 1645–1647 (1957).
19. Cronin, J. W. & Overseth, O. E. Measurement of the decay parameters of the Λ baryon, Phys. Rev. 129, 1795–1807 (1963).
20. Dauber, P. M., Berge, J. P., Hubbard, J. R., Merriam, D. W. & Muller, R. A. Production and decay of cascade hyperons, Phys. Rev. 179, 1262–1268 (1969).
21. Tandean, J. & Valencia, G. CP violation in hyperon nonleptonic decays within the standard model, Phys. Rev. D 67, 056001 (2003).
22. Cronin, J. W., Cronin, J. W., Fitch, V. L. & Turlay, R. Evidence for the 2nd form of the K_0 meson, Phys. Rev. Lett. 13, 138–140 (1964).
23. Particle Data Group. Review of particle physics. Phys. Rep. 507, 1–500 (2011).
24. Sozzi, M. Digital Symmetries and CP Violation: From Experiment to Theory (Oxford Univ. Press, 2008).
25. HyperCP Collaboration. Search for CP violation in charged-Λ and Ξ hyperon decays, Phys. Rev. Lett. 93, 262004 (2004).
26. Klement, E., Bradamante, F., Martin, A. & Joseph, J. F. Antinucleon nucleon interaction at low energy: scattering and production, Phys. Rept. 318, 119–316 (2000).
27. ATLAS Collaboration. Measurement of the transverse polarization of heavy quarks in $\sqrt{s} = 13$ TeV collisions using the ATLAS detector, Phys. Rev. D 91, 032004 (2015).
28. CLAS Collaboration. Photoproduction of J/ψ and Υ hyperons using linearly polarized photons, Phys. Rev. C 85, 015201 (2012).
29. The STAR Collaboration. Global Λ hyperon polarization in nuclear collisions, Nature 548, 62–65 (2017).
30. HyperCP Collaboration. Observation of parity violation in the $\Lambda \to \Xi^+ \Xi^-$ decay, Phys. Lett. B 637, 11–17 (2006).
31. HyperCP Collaboration. Measurement of the axial vector asymmetry parameter for the $\Lambda \to K^+\pi^-$ decay, Phys. Rev. D 71, 051102 (2005).
32. Penotti, E., Faldt, G., Kupsch, A., Leopold, S. & Song, J. J. Polarization observables in e^+e^- annihilation to a baryon–antibaryon pair, Phys. Rev. D 79, 056008 (2009).
33. Faldt, G. & Kupsch, A. Hadronic structure functions in the e^+e^- reaction, Phys. Lett. B 772, 16–20 (2017).
34. Ablikim, M. et al. Design and construction of the BESIII detector, Nucl. Instrum. Meth. A 614, 25–399 (2009).
35. STAR Collaboration. Polarization of the Λ hyperons along the beam direction in Au + Au collisions at $\sqrt{s_{NN}} = 200$ GeV, Phys. Rev. Lett. 113, 122301 (2019).
36. Becattini, F. & Liu, M. Polarization and vorticity in the quark-gluon plasma. Annu. Rev. Nucl. Part. Sci. 69, 385–423 (2019).
37. BESIII Collaboration. Complete measurement of the electromagnetic form factors, Phys. Rev. Lett. 123, 122003 (2019).
38. Blake, T., Meinel, S. & Dyrk, D. Bayesian analysis of $b \to s' \mu^+\mu^-$ Wilson coefficients using the angular distribution of the $b \to s' \mu^+\mu^-$ decays, Phys. Rev. D 101, 035303 (2020).
39. Han, T. Z., Ping, R. G. & Luo, T. Polarization in Ξ decays, Chin. Phys. C 34, 013002 (2020).
40. Nurushev, S., Rzaev, R., Salkhabov, V., Solovyov, V. & Vasilevsky, A. Polarized proton beam at DESY in High-Energy Physics With Polarized Beams And Polarized Targets (eds Joseph, C. & Soffner, J.) 501–502 (Springer, 1988).
41. Tandean, J. New physics and CP violation in hyperon nonleptonic decays, Phys. Rev. D 69, 076008 (2004).
42. Ablikim, M. et al. Future physics programmes of BESIII. Chin. Phys. C 44, 040001 (2020).
43. PANDA Collaboration. The potential of and studies with PANDA at FAIR, Eur. Phys. J. A 70, 395–423 (2020).
44. Bondar, A. L. et al. Project of a super charm-tau factory at the Budker Institute of Nuclear Physics in Novosibirsk, Yad. Fiz. 76, 1132–1145 (2013).
45. Shi, X. D., Zhou, X. R., Qin, X. S. & Peng, H. A fast simulation package for STCF detector. J. Instrument. 16, P03029 (2021).
46. BESIII Collaboration. Study of η decays to the Ξ^- and Ξ^0 final states, Phys. Rev. D 93, 072003 (2016).

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022.

The BESIII Collaboration

X. S. Kang, R. Kappert, M. Kavatsyuk, B. C. Keil, I. K. Keshelava, K. Khachatryan, R. Kluth, K. Lietz, O. K. Klovning, J. W. Cronin, J. W. Cronin, J. W., Fitch, V. L. & Turlay, R. Evidence for the 2nd form of the K_0 meson, Phys. Rev. Lett. 13, 138–140 (1964).

Institute of High Energy Physics, Beijing, People's Republic of China.
1 Bader Institute for Nuclear Physics, University of Heidelberg, Heidelberg, Germany.
2 Helmholtz Institute Mainz, Mainz, Germany.
3 Johannes Gutenberg University of Mainz, Mainz, Germany.
4 University of Turin, Turin, Italy.
5 INFN, Torino, Italy.
6 University of California, Los Angeles, Los Angeles, California, USA.
7 University of Science and Technology of China, Hefei, People's Republic of China.
8 State Key Laboratory of Particle Detection and Electronics, Hefei, People's Republic of China.
9 University of Jinan, People's Republic of China.
10 Southeast University, Nanjing, People's Republic of China.
11 Joint Institute for Nuclear Research, Dubna, Russia.
12 INFN Laboratori Nazionali di Frascati, Frascati, Italy.
13 INFN Sezione di Ferrara, Ferrara, Italy.
14 Peking University, Beijing, People's Republic of China.
Monte Carlo simulation

For the selection and optimization of the final event sample, estimation of background sources as well as normalization for the fit method, Monte Carlo simulations have been used. The simulation of the BESIII detector is implemented in the simulation software GEANT4\(^{43,44}\). GEANT4 takes into account the propagation of the particles in the magnetic field and particle interactions with the detector material. The simulation output is digitized, converting energy loss to pulse heights and points in space to channels. In this way the Monte Carlo digitized data have the same format as the experimental data. The production of the \(J/\psi\) is simulated by the Monte Carlo event generator KKMC\(^{45}\). Particle decays are simulated using the package BesEvtGen\(^{46,47}\), where the properties of mass, branching ratios and decay lengths come from the world-averaged values\(^{26}\).

We find that although the mass of the \(A\) in our data agrees with the established value, that of the \(\Xi^-\) is 95 keV/c\(^2\) above the central value of the world average\(^{26}\), \(m_{\Xi^-_{PDG}} = 1321.71 \pm 0.07\) MeV/c\(^2\) (PDG, Particle Data Group). Hence, we have adjusted the input mass value in the simulation accordingly\(^{48}\).

The signal channels used for optimization and consistency checks are implemented with the helicity formalism and with parameter values in close proximity to the results presented in Table I.

Selection criteria

The data were accumulated during two run periods, in 2009 and 2012, where the later set is approximately five times larger than the earlier. For the analysis all charged final-state particles have to be reconstructed. The main drift chamber of the BESIII experimental set-up is used for reconstructing the charged-particle tracks. At least three positively and three negatively charged tracks are required, each track fulfilling the condition that \(|\cos\theta_{\text{lab}}| < 0.93\), where \(\theta_{\text{lab}}\) is the polar angle with respect to the positron beam direction. The momentum distributions of protons and pions from the signal process are well separated and do not overlap, as shown in Extended Data Fig. 1.

Therefore a simple momentum criterion suffices for particle identification: \(p_p > 0.32\) GeV/c and \(p_\pi < 0.30\) GeV/c for protons and pions, respectively. The probability of misidentifying a proton (antiproton) for a \(n^-\) (\(\bar{n}^+\)) is 0.17% (0.18%). Only events with at least one proton, one antiproton, two negatively and two positively charged pions are saved for further analysis. Each \(\Xi^-\) decay chain is reconstructed separately, and is here described for the sequence \(\Xi^- \rightarrow \Lambda^0\pi^- \rightarrow \Lambda^0\pi^-\bar{\Lambda}^0\). To find the correct \(\Xi^-\) and \(\Lambda^0\) particles all proton and \(\pi^-\) candidates are combined together. The \(\Lambda^0\) and \(\pi^-\) particles are reconstructed through vertex fits by first combining the \(\pi^-\), pair to form a \(\Lambda^0\) and then the \(\Lambda^0\pi^-\) (\(i \neq j\)) pair to form a \(\Xi^-\). The fits take into account the nonzero flight paths of the hyperons, which can give rise to different production and decay points. All vertex fits must converge and the combination that minimizes \((m_{\text{mass}} - m_{\text{nom}})^2 + (m_{\text{mass}} - m_{\text{nom}})^2\)\(^{6,11}\), where \(m_{\text{mass}}\) and \(m_{\text{nom}}\) are the nominal masses and \(m_{\text{mass}}\)\((m_{\text{nom}})\) is the mass of the candidate \(\Xi^-\) (\(\Lambda^0\)), is retained for further analysis. The same procedure is performed for the \(\Xi^-\) decay chain. For each decay chain the probability that the pions from the \(\Xi^- \rightarrow \Lambda^0\pi^-\) and \(\Lambda^0 \rightarrow p\pi^-\) decays are wrongly assigned is found to be 0.51% and 0.49% for \(n^-\) and \(\bar{n}^+\), respectively, which is negligible for the analysis.

The invariant masses of the \(p\pi^-\) and \(p\pi^+\) pairs are also required to fulfill \(|m_{\text{mass}} - m_{\text{peak}}| < 11.5\) MeV/c\(^2\), where \(m_{\text{peak}}\) is the peak position of the \(A\) mass distribution. A similar mass window criterion, optimized to remove the broad resonance \(\Sigma^- (1385)\Sigma^- (1385)\) background contribution, is imposed on the \(\Xi^-\) particle, \(|m_{\text{mass}} - m_{\text{peak}}| < 11.0\) MeV/c\(^2\).

The decay length is defined as the distance between the point of origin and the decay position of the decaying \(A\) or \(\Xi^-\) particle. If the hyperon momentum points oppositely to the direction from the collision to the decay point, then the decay length becomes negative in the vertex-fit algorithm. These events are removed from the sample.

Differences between experimental data and Monte Carlo simulations are observed for large polar angles. This discrepancy induces a systematic bias on the parameter values. This bias can, however, be reduced to a negligible level by requiring \(|\cos\theta| < 0.84\). The \(\Xi^-\) scattering angle \(\theta_{\text{lab}}\) is defined in the main text.

After applying all aforementioned selection criteria, 73,244 \(\Xi^-\) candidates remain in the final sample. This is shown in Extended Data Fig. 3. The number of remaining background events are estimated to be 199 ± 17. The background contribution has a marginal effect on the results at this precision and is therefore neglected.

Definition of the helicity systems

In the \(e^-e^+ \rightarrow \Xi^-\Xi^+\), \(\Xi^- \rightarrow \Lambda^0\pi^-\), \(\Lambda^0 \rightarrow p\pi^-\) process, the ‘master coordinate system’, denoted \(R\), is defined in the \(e^-e^+\) centre-of-momentum system. In this system, we define the unit vector \(\hat{x}\) in the direction of the positron momentum. The coordinate system \(R_j\) is then defined in the rest frame of the \(\Xi^-\) baryon, with the \(z\) axis along the unit vector \(\hat{z}_j\), defined by the direction of the \(\Xi^-\) momentum in the \(R\) system. A Cartesian coordinate system with \(\hat{x}_\Xi\) and \(\hat{y}_\Xi\) unit vectors is defined as

\[
\hat{x}_\Xi = \frac{\hat{z}_\Xi \times \hat{y}_\Xi}{|\hat{z}_\Xi \times \hat{y}_\Xi|}, \quad \hat{y}_\Xi = \frac{\hat{z}_\Xi \times \hat{x}_\Xi}{|\hat{z}_\Xi \times \hat{x}_\Xi|}.
\]

The helicity system \(R_j\) is defined in the same way in the \(\Xi^-\) rest frame, and because \(\hat{z}_\Xi = -\hat{z}_\Xi\), the axes \(\hat{x}_\Xi = \hat{x}_\Xi\) and \(\hat{y}_\Xi = -\hat{y}_\Xi\). The system \(R_j\) is defined in the rest frame of the \(\Lambda\), with the \(\hat{z}_j\) pointing in the direction of the \(\Lambda\) momentum in the \(R\) system. A new Cartesian coordinate system is then defined by the unit vectors \(\hat{x}_\Lambda\) and \(\hat{y}_\Lambda\)

\[
\hat{x}_\Lambda = \frac{\hat{z}_\Xi \times \hat{y}_\Xi}{|\hat{z}_\Xi \times \hat{y}_\Xi|}, \quad \hat{y}_\Lambda = \frac{\hat{z}_\Xi \times \hat{x}_\Xi}{|\hat{z}_\Xi \times \hat{x}_\Xi|}.
\]

In the same way, the system \(R_j\) can be derived, and hence there is a unique definition of the orientations of the coordinate systems \(R_j\), \(R_j\), \(R_j\) and \(R_j\) used in the analysis.

The maximum log-likelihood fit procedure

The global fit is performed on the data through the joint angular distribution. For \(N\) events the likelihood function is given by

\[
\mathcal{L}(\xi_1, \xi_2, \ldots, \xi_N; \omega) = \prod_{i=1}^{N} \mathcal{L}(\xi_i; \omega) = \prod_{i=1}^{N} \mathcal{L}(\omega; \xi_i)
\]

where \(\xi\) is the efficiency, \(\mathcal{L}(\omega; \xi_i)\) is the weight as specified in equation (6), and the normalization factor \(\mathcal{L}(\omega) = \int \mathcal{L}(\omega; \xi) d\xi\). The normalization factor is approximated as \(\mathcal{L}(\omega) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(\omega; \xi_i)\), using Monte Carlo events \(\omega\) generated uniformly over phase space, propagated through the detector and reconstructed in the same way as data. \(M\) is chosen to be much larger than the number of events in data \(N\); our results exploit a simulation sample where \(M/N = 35\). By taking the natural logarithm of the joint probability density, the efficiency function can be separated and removed as it only affects the overall log-likelihood.

\[
\mathcal{L}(\xi_1, \xi_2, \ldots, \xi_N; \omega) = \prod_{i=1}^{N} \mathcal{L}(\omega; \xi_i)
\]
normalization and is not dependent on the parameters in \(\omega \). To determine the parameters, the Minuit package from the CERN library is used. The minimized function is given by \(S = -\ln(C) \). The operational conditions were slightly different for the 2009 and 2012 datasets, most notably in the nominal value of the magnetic field. For this reason, the likelihoods are constructed separately for the two different run periods.

The results of the simultaneous fit are shown in Table 1. Those results that depend on combinations of decay parameters account for the correlations between the parameters. The correlation coefficients between the decay parameters are given in Extended Data Table 1. Assuming that CP symmetry is conserved we find \((\alpha_e) = 0.760 \pm 0.006 \pm 0.003 \) and \((\alpha_{\bar{e}}) = -0.373 \pm 0.005 \pm 0.002 \), where the latter result is in disagreement with the current standard value \(\alpha = -0.401 \pm 0.010 \). The parameter \(\alpha_e \) has previously only been measured indirectly via the product \(\alpha_{e\bar{e}} \) and the assumed value of \(\alpha_{\bar{e}} \). The current standard value of \(\alpha = 0.732 \pm 0.014 \) is an average based on the two incompatible results of BESIII and the re-analysed CLAS data,\(^{5,4}\), and in disagreement with the value found in this analysis. By contrast, our measured value for the product \(\langle \alpha_e \rangle \) is \(-0.284 \pm 0.004 \pm 0.002 \) is compatible with the world average\(^{36} \) \(\alpha_{e\bar{e}} = -0.294 \pm 0.005 \).

Systematic uncertainties

The systematic uncertainties are assigned by performing studies related to the kinematic fit, the \(\Lambda \) and \(\Xi \) mass window requirements, the \(\Lambda \) and \(\Xi \) decay length selection, and a combined test on the \(\Xi \Xi \) fit reconstruction with the \(p, \pi \) main drift chamber track reconstruction efficiency. Searches of systematic effects are tests by varying the criteria above and below the main selection. For each test, \(i \), the parameter values are re-obtained, \(\omega, \omega_i \), and the changes evaluated compared to the central values, \(\omega = \omega_{\text{sys}}, \omega_i = \omega_{\text{sys}} \). Also calculated are the uncorrelated uncertainties \(\Delta_{\omega_i} \), \(\Delta_{\omega} \), and \(\Delta_{\omega_{\text{sys}}} \). Correspond to the fit uncertainties of the main and systematic test results, respectively. If the ratio \(\Delta_{\omega_i}/\Delta_{\omega} \) shows a trending behaviour and larger than twice this is attributed to a systematic effect.\(^{57,58} \) For each systematic effect the corresponding uncertainty is evaluated. The assigned systematic uncertainties are given in Extended Data Tables 2–4, where the individual systematic uncertainties are summed in quadrature.

1. Estimator

To test if the method produces systematically biased results, a large Monte Carlo data sample is produced with production and decay distributions corresponding to those of the fit results to the data sample (10 times the experimental data). The simulated data are divided into subsamples with equal number of events as the experimental sample, and run through the fit procedure. The obtained fit parameters and uncertainties are found to be consistent within one standard deviation of the generated parameter values and hence no bias is detected.

2. Kinematic fit

The systematic differences from the kinematic fit are tested by varying the kinematic fit \(\chi^2 \) value from 40 to 200, with an increment of 20 in each step. Significant effects are seen for the parameters \(\Delta \theta, \phi, \phi_6 \) when \(\chi^2 \) \(> 100 \). For \(\chi^2 < 100 \) systematic deviations occur for \(\alpha_e \) and \(\alpha_{\bar{e}} \). The difference in track resolution between data and Monte Carlo is the probable cause for these changes in the parameter values. The systematic uncertainty is assigned to be the average difference of the main result to a lower and upper limit, determined to be at \(\chi^2 \) = 60 and 200, respectively.

3. \(\Lambda \) and \(\Xi \) mass window selection

Possible systematic effects due to the \(\Lambda/\Lambda, \bar{\Lambda}/\Xi \) and \(\Xi \) \(\Xi \) mass windows are investigated by varying the selection criteria between 2 and 30 MeV/c\(^2 \) and 20 and 60 MeV/c\(^2 \) for the \(\Lambda/\Lambda \) and \(\Xi \) \(\Xi \) candidates, respectively. For the \(\Lambda \) selection systematic deviations are seen for decreasing mass windows. The uncertainty is assigned to be the difference of the nominal result to the result when 95% of the events are included, at \(m_{\Lambda/\Lambda} = m_{\Lambda/\Xi, \text{peak}} \) < 6.9 MeV/c\(^2 \). For the \(\Xi \Xi \) mass windows, significant effects are seen for the parameters \(\delta_{\rho \phi}, \alpha, \phi_6 \). The systematic uncertainties for these parameters are assigned to be the difference of the main result and the results obtained one standard deviation lower than the main selection window, estimated from the \(m_{\Lambda/\Lambda} \) line shape uncertainty.

4. \(\Lambda \) and \(\Xi \) decay length

Possible systematic effects related to the \(\Lambda \) and \(\Xi \) lifetimes are studied by varying the decay length selection criteria for the \(\Lambda \) and \(\Xi \) candidates. For \(\Xi \) no strong trend behaviour is seen, but for \(\Lambda \) a dependence is seen for the asymmetry parameters \(\alpha_e \) and \(\alpha_{\bar{e}} \), which is accounted for in the final systematic uncertainty.

5. The combined efficiency of \(\Xi \Xi \) reconstruction and \(p, \pi \) tracking

For the study of systematic effects related to the tracking and the \(\Lambda \) and \(\Xi \) reconstruction it is assumed that the combined efficiency for proton, antiproton and \(\pi \) depends only on the polar angle \(\cos(\theta_{\text{LAB}}) \) and the transverse momentum, \(p_t \). To study the tracking efficiency the fitted probability density function is modified by allowing for arbitrary efficiency corrections as a function of \(\cos(\theta_{\text{LAB}}) \) and \(p_t \) for each particle type in an iterative procedure. The correction procedure is repeated until the maximum log-likelihood is stable within \(\ln(2) \) between two successive iterations. The difference between the fit results with and without the tracking correction is assigned as the systematic uncertainty.

6. The \(\ast \) scattering angle

From comparing data to Monte Carlo simulation a discrepancy is seen for charged tracks with polar angles \(|\cos(\theta_{\text{LAB}})| > 0.84 \). The discrepancy is also seen to have a notable effect on some of the decay parameters. The effect can be isolated by removing only the events where \(|\cos(\theta)| > 0.84 \). Although the observed data–simulation differences are removed by requiring that \(|\cos(\theta)| < 0.84 \), residual systematic effects are observed for \((\alpha_e) \) and \((\alpha_{\bar{e}}) \), which are included in the systematic uncertainty.

Dataset consistency

When comparing the statistically independent results of the 2009 and 2012 datasets, all parameters are found to agree within two standard deviations. As there is no evidence of systematic bias, no uncertainty is assigned associated with possible dataset differences.

Data availability

The data points displayed in the plots within this paper are available on request to besii-publications@ihep.ac.cn.

Code availability

All algorithms used for data analysis and simulation are archived by the authors and are available on request to besii-publications@ihep.ac.cn.

Acknowledgements

The BESIII collaboration thanks the staff of BEPCII and the IHEP Computing Centre for their strong support. This work is supported in part by the National Key Research and Development Program of China under contract nos 2020YFA0406300 and 2020YFA0406400, the National Natural Science Foundation of China (NSFC) under contract nos 11625223, 11653010, 11735014, 11822506, 11825012, 11960256, 11935015, 11935016, 11935018, 12075706 and 1196140102, the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; Joint Large-Scale Scientific Facility Funds of the

50. GEANT4 Collaboration. GEANT4—a simulation toolkit. Nucl. Instrum. Meth. A 506, 250–303 (2003).
51. Allison, J. et al. Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53, 270–278 (2006).
52. Jadach, S., Ward, B. & Wa̧ski, Z. The precision Monte Carlo event generator KK for two fermion final states in \(e^-e^+ \) collisions. Comput. Phys. Commun. 130, 260–325 (2000).
53. Lange, D. The EvtGen particle decay simulation package. Nucl. Instrum. Meth. A 462, 152–155 (2001).
54. Ping, R.-G. Event generators at BESIII. Chin. Phys. C 32, 599–602 (2008).
55. Chen, J. C., Huang, G. S., Qi, X. R., Zhang, D. H. & Zhu, Y. S. Event generator for \(\tau \) fermion final states in \(p\bar{p} \) collisions. Phys. Rev. D 40, 3034003 (2000).
56. James, F. & Roos, M. Minuit—a function for system function minimization and analysis of the parameter errors and correlations. Comput. Phys. Commun. 10, 343–367 (1975).
57. Barlow, R. Systematic errors: facts and fictions. Preprint at https://arxiv.org/abs/hep-ex/0207026 (2002).
58. Wanke, R. in Data Analysis in High Energy Physics: A Practical Guide to Statistical Methods (eds Behnke, O. et al.) 263–296 (Wiley, 2013).
NSFC and CAS under contract nos U1732263 and U1832207; the CAS Key Research Program of Frontier Sciences under contract nos QYZDJ-SSW-SLH003 and QYZDJ-SSW-SLH040; the 100 Talents Program of CAS; the CAS President’s International Fellowship Initiative (PIFI) programme; INFAC and Shanghai Key Laboratory for Particle Physics and Cosmology; the Shanghai Pujiang Program (20P1401700); the ERC under contract no. 758462; the European Union Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement no. 894790; the German Research Foundation (DFG) under contract nos 443159800, Collaborative Research Center (CRC) 1044, FOR 2139, GRK 214; the Istituto Nazionale di Fisica Nucleare, Italy; the Ministry of Development of Turkey under contract no. DPT2006K-120470, the National Science and Technology fund; the Olle Engkvist Foundation under contract no. 200-0605; STFC (United Kingdom); The Knut and Alice Wallenberg Foundation (Sweden) under contract no. 2016.0157; The Royal Society, UK under contract nos DIH40054 and DIH50214; the Swedish Research Council, the US Department of Energy under contract nos DE-FG02-05ER41374 and DE-SC-0012069, and the National Science Centre (Poland) under contract no. 2019/35/O/ST2/02907.

Author contributions All authors have contributed to the publication, being variously involved in the design and the construction of the detectors, in writing software, calibrating sub-systems, operating the detectors and acquiring data and finally analysing the processed data.

Funding Open access funding provided by Uppsala University.

Competing interests The authors declare no competing interests.

Additional information The online version contains supplementary material available at https://doi.org/10.1038/s41586-022-04624-1.

Correspondence and requests for materials should be addressed to besii-publications@ihep.ac.cn.

Peer review information Nature thanks Yasmine Amhis, Sandrine Emery-Schrenk and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permissions information is available at http://www.nature.com/reprints.
Extended Data Fig. 1 | Final-state particle momenta of pions and protons for the decay process $J/\psi \rightarrow \Xi^- \Xi^+ \rightarrow \Lambda^+ n n' \rightarrow p n' n n$, The non-overlapping momentum ranges of the protons and pions allow for a straightforward assignment of particle species. The blue boxes and the red solid line denote the experimental and simulated data, respectively.
Extended Data Fig. 2 | Invariant mass distributions of the Ξ^- and Ξ^+ signal candidates. Distribution of the invariant masses $m_{\Lambda\pi}^+$ versus $m_{\Lambda\pi}^-$. The $\Xi^-\Xi^+$ candidates appear as an enhancement around $m_{\Lambda\pi}^- = m_{\Lambda\pi}^+ = 1.32$ GeV/c^2. The structure at $m_{\Lambda\pi}^- = m_{\Lambda\pi}^+ = 1.39$ GeV/c^2 is from the reaction $J/\psi \rightarrow \Sigma(1385)\Sigma(1385)$.
Extended Data Fig. 3 | Invariant mass distribution of the Ξ^- signal candidates before the final selection criterion. The $m_{\Lambda\pi^-}$ distribution, in log scale, for the BESIII data sample before the $\Lambda\pi^-$ mass window has been applied. The final requirement selects the events between the two lines. The total number of events in the distribution is 76,523.
Extended Data Table 1 | Correlation coefficients for the production and asymmetry decay parameters

	α_{ψ}	$\Delta\Phi$	α_{R}	ϕ	α_{Λ}	$\bar{\alpha}_{\Xi}$	$\bar{\alpha}_{\Lambda}$	$\bar{\phi}_{\Xi}$
α_{ψ}	1.0	0.414	-0.008	-0.006	-0.107	0.014	0.120	0.003
$\Delta\Phi$	1.0	-0.016	0.016	0.016	-0.133	0.008	0.138	-0.029
α_{Ξ}	1.0	0.280	0.024	0.024	0.071	0.010	0.013	
ϕ_{Ξ}	1.0	0.002	-0.010	-0.010	0.013			
α_{Λ}	1.0	0.070	0.401	0.014	0.001	0.006		
$\bar{\alpha}_{\Xi}$	1.0	0.269	0.001	0.006	1.0	0.001		
$\bar{\alpha}_{\Lambda}$	1.0	0.001	0.006	1.0	0.001	0.006		
$\bar{\phi}_{\Xi}$	1.0	0.001	0.006	1.0	0.001	0.006		
Extended Data Table 2 | Contributing systematic uncertainties, and the sum in quadrature

×10²	αψ	ΔΦ	αΞ	αΞ̄	αΛ	φΞ	φΞ̄	
Statistical	1.2	4.6	0.70	0.70	1.05	1.06	1.91	1.93
Kin. fit	0.36	1.5	0.18	0.17	0.21	0.43	0.77	0.44
mass win Λ	0.44	0.44	0.07	0.02	0.56	0.33	0.17	0.46
mass win Ξ	0.25	-	-	-	0.36	-	0.46	-
dec. length Λ	-	-	-	-	0.30	0.40	-	-
Track. eff.	0.80	0.41	0.27	0.05	0.21	0.14	0.16	0.16
Sum syst.	1.0	1.6	0.33	0.18	0.79	0.69	0.93	0.66

First row: statistical uncertainty as reference. The uncertainties of ΔΦ and φ are given in radians. All values multiplied by a factor 10², as indicated at top left.
Extended Data Table 3 | Contributing systematic uncertainties to CP tests, and the sum in quadrature

$\times 10^2$	$A_{A,\text{CP}}$	$A_{\Xi,\text{CP}}$	$\Delta\phi_{\text{CP}}$ (rad)	$\delta_P - \delta_S$ (rad)	$\zeta_P - \zeta_S$ (rad)
Statistical	1.17	1.34	1.37	3.3	3.4
Kin. fit	0.32	0.47	0.16	1.3	0.4
mass win. Λ	0.59	0.07	0.14	0.8	0.4
mass win. Ξ	0.38	-	0.20	0.7	0.5
dec. length Λ	0.46	-	-	-	-
Track. eff.	0.05	0.29	0.003	0.4	$2 \cdot 10^{-3}$
Sum syst.	0.90	0.56	0.29	1.7	0.75

First row: statistical uncertainty as reference. All values multiplied by a factor 10^2, as indicated at top left.
Extended Data Table 4 | Contributing systematic uncertainties to average values of decay parameters, and the sum in quadrature

×10^2	⟨α_z⟩	⟨α_λ⟩	⟨φ⟩ (rad)	⟨α_z⟩ · ⟨α_λ⟩
Statistical	0.49	0.58	1.35	0.38
Kin. fit	0.09	0.19	0.54	0.02
mass win. Λ	0.05	0.12	0.31	< 10^{-2}
mass win. Ξ	-	0.07	0.26	0.04
cos θ_Ξ, c.m.	0.12	-	-	0.13
Track. eff.	0.16	0.17	0.16	0.06
Sum syst.	0.22	0.29	0.69	0.21

First row: statistical uncertainty as reference. All values multiplied by a factor of 10^2, as indicated at top left.