Accepted Manuscript

Title: Red Phosphorus Decorated and Doped TiO₂ Nanofibers for Efficient Photocatalytic Hydrogen Evolution from Pure Water

Authors: Yukun Zhu, Junzhi Li, Chung-Li Dong, Jun Ren, Yu-Cheng Huang, Daming Zhao, Rongsheng Cai, Daixing Wei, Xianfeng Yang, Chunxiao Lv, Wolfgang Theis, Yuyu Bu, Wei Han, Shaohua Shen, Dongjiang Yang

PII: S0926-3373(19)30503-X
DOI: https://doi.org/10.1016/j.apcatb.2019.117764
Article Number: 117764
Reference: APCA TB 117764
To appear in: Applied Catalysis B: Environmental

Received date: 8 April 2019
Revised date: 17 May 2019
Accepted date: 19 May 2019

Please cite this article as: Zhu Y, Li J, Dong C-Li, Ren J, Huang Y-Cheng, Zhao D, Cai R, Wei D, Yang X, Lv C, Theis W, Bu Y, Han W, Shen S, Yang D, Red Phosphorus Decorated and Doped TiO₂ Nanofibers for Efficient Photocatalytic Hydrogen Evolution from Pure Water, Applied Catalysis B: Environmental (2019), https://doi.org/10.1016/j.apcatb.2019.117764

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Red Phosphorus Decorated and Doped TiO$_2$ Nanofibers for Efficient Photocatalytic Hydrogen Evolution from Pure Water

Yukun Zhua,b, Junzhi Lic, Chung-Li Dongd, Jun Rene, Yu-Cheng Huangd, Daming Zhaob, Rongsheng Caif, Daixing Weib, Xianfeng Yangg, Chunxiao Lva, Wolfgang Theisf, Yuyu Bub, Wei Hanc, Shaohua Shenb,*, and Dongjiang Yanga,1,*

a State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.

b International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China.

c Sino-Russian International Joint Laboratory for Clean Energy and Energy Conversion Technology, College of Physics, Jilin University, Changchun 130012, China.

d Research Center for X-ray Science, Department of Physics, Tamkang University, Tamsui 25137, Taiwan.

e School of Chemical and Environmental Engineering, North University of China, Taiyuan 030051, China.

f Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK.
Analytical and Testing Centre, South China University of Technology, Guangzhou 510640, China.

Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China.

Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Brisbane, Queensland 4111, Australia.

*Corresponding Authors:

E-mail address: shshen_xjtu@mail.xjtu.edu.cn (Shaohua Shen); d.yang@qdu.edu.cn (Dongjiang Yang).

Graphical Abstract:

Highlights

- A new class of TiO$_2$ nanofiber/red phosphorus (TiO$_2$/RP) nanolayer core/shell heterostructure was fabricated by vaporization-deposition strategy.
- TiO$_2$/RP exhibits enhanced photocatalytic pure water splitting performance.
- Decoration of RP extends the optical light harvesting ability.
- P$^{5+}$ doping induced oxygen vacancies improve the charge separation efficiency.

ABSTRACT:

In this study, we report a facile strategy to prepare a new class of red phosphorus (RP) decorated and doped TiO$_2$ (A: anatase and B: TiO$_2$(B)) nanofibers with boosted photocatalytic hydrogen evolution reaction (HER) performance from pure water. The optimized TiO$_2$(B)/RP and TiO$_2$(A)/RP heterostructure exhibits significantly enhanced photocatalytic performances, with HER rate reaching 11.4 and 5.3 μmol h$^{-1}$, respectively. The optical absorption of TiO$_2$ is significantly extended to the visible light region after decoration of RP. And more oxygen vacancies (V$_O$) were introduced by phosphorus doping in the TiO$_2$(B)/RP than TiO$_2$(A)/RP. The theoretical calculations illustrate the formation of V$_O$ can decrease the ratio of effective masses of electron to hole, which gives rise to promoted photoinduced charge separation and transfer. These results suggest that the boosted photocatalytic HER performance should be mainly attributed to the synergetic enhancement in light harvesting and charge separation enabled by RP deposition and P$^{5+}$ doping.

Keywords: Red phosphorus; Titanium oxide; Photocatalytic hydrogen evolution; Pure water splitting

1. **Introduction**

With increasing interest in hydrogen as an environmentally acceptable, alternative energy carrier with high energy density, several emerging clean-energy technologies have been discovered to pursue sustainable and efficient hydrogen production, such as photocatalytic...
Among them, photocatalytic hydrogen evolution reaction (HER) with semiconductors as photocatalysts has been considered as one of the most important pathways [7], since Fujishima-Honda initially developed TiO$_2$ as a water splitting photocatalyst [8].

To date, TiO$_2$ has been extensively investigated as an ideal model of the photocatalyst [9,10]. Nevertheless, its wide band gap limiting solar light harvesting and the fast charge recombination, as the main drawbacks, have lowered its photocatalytic efficiency to unsatisfied level. To improve the optical absorption properties, many approaches have been devoted to modifying TiO$_2$, including high temperature reduction or hydrogenation [11-13], doping or co-doping with metal and/or non-metal elements [14-17], and surface sensitization with visible light active semiconductors and dyes [18,19]. Recently, elemental red phosphorus (RP) has emerged as a new class of photocatalyst owing to its narrow bandgap, low cost, nontoxicity, and earth abundance [20-25]. More importantly, its visible-light absorption edge extends up to 700 nm, which is favorable to be as a sensitizer to couple with TiO$_2$ to extend the visible light response. As another determinant for efficient photocatalytic activity, charge separation should be facilitated in TiO$_2$, with some effective strategies well documented, such as fabrication of heterojunction and phase junction [26-28], surface passivation [29,30], and introduction of oxygen vacancies (V$_O$) [31,32]. Among them, V$_O$ as a donor source which can bring an increased majority carrier concentration to improve the charge transfer ability. However, the excessive V$_O$ may become the charge recombination centers by trapping the photo-induced electrons [33]. Thus, the density of V$_O$ created in TiO$_2$ should be optimized to balance their opposite roles as the electron donor and the trap sites.
Given that photocatalytic reactions depend on a sequence of multiple steps, including optical light harvesting, charge separation and transportation, and surface reaction, it is highly desirable to design a coupling strategy that not only can enhance the optical absorption but also can promote the charge transfer in the photocatalysts [34]. In this work, we report a vaporization-deposition strategy to prepare a new class of TiO$_2$ nanofiber/RP nanolayer core/shell heterostructure with boosted photocatalytic activity for HER from pure water. The optimized TiO$_2$(B)/RP and TiO$_2$(A)/RP composites (A: anatase and B: TiO$_2$(B)), displayed significantly enhanced photocatalytic activities than that of bare TiO$_2$, with the highest HER rates reaching 11.4 and 5.3 μmol h$^{-1}$, respectively. The great improvement in photocatalytic HER performances could be attributed to the synergy that the introduction of RP nanolayer acting as the visible light sensitizer can enhance light harvesting and the surface phosphorus (P$^{5+}$) doping induced V$_O$ can facilitate the migration of photogenerated electrons to the photocatalysts surface. This coupling strategy could be applied to the design and fabrication of other highly efficient photocatalysts for solar energy utilization by synergistically improving the light harvesting property and promoting the charge separation ability.

2. Experimental section

2.1 Synthesis of TiO$_2$/RP heterostructure composites

TiO$_2$ nanofibers (NFs) were prepared using a hydrothermal method followed by a calcination treatment according to our previous reports [26,27]. Typically, the synthesized H$_2$Ti$_3$O$_7$ NFs were calcined in a muffle furnace at 400 °C for 4 h to obtain TiO$_2$(B) NFs, and calcined at 700 °C for 4 h to produce anatase TiO$_2$(A) NFs. The commercial red phosphorus (RP, 99.999 %, Aladdin) was
used after purification as follows: 1 g of RP was added into 60 mL of H₂O, and hydrothermally treated at 200 °C for 12 h in an autoclave to remove the oxide layers.

In a typical process for the synthesis of TiO₂/RP heterostructure composites, 200 mg of TiO₂ NFs and an appropriate amount of RP powder (10 mg–60 mg) were well dispersed in 30 mL of distilled water by ultrasonic treatment for 30 min. The solution was then frozen using liquid nitrogen and freeze-dried to remove water. After that, the obtained pink powder was transferred into a quartz ampoule and sealed by an oxygen-hydrogen flame under a low vacuum condition (-0.09 MPa, high purity Ar filling before pumping) [21,22]. The ampoules were heated in a furnace at 500–700 °C (at a ramping rate of 2 °C·min⁻¹) for 4 h, then cooled down to 280 °C (at a ramping rate of 1 °C·min⁻¹) and held at this temperature for 4 h. After slowly cooled to room temperature at 0.1 °C·min⁻¹ to prevent the RP vapor transforming into white phosphorus, the as-prepared products were obtained by breaking the capsules and rinsing with CS₂, ethanol and distilled water, respectively. The TiO₂ NFs loaded with different contents (x mg, x = 10–60) of RP were labeled as TiO₂(B)/RP(x) or TiO₂(A)/RP(x).

2.2 Characterization

X-ray diffraction (XRD) was carried out with DX2700 operating at 40 kV and 30 mA equipped with Cu Kα radiation (λ = 1.5418 Å). The morphology and structure of the samples were investigated by an FEI Magellan 400 field emission scanning electron microscope (FESEM) and a JEOL JEM-2100F scanning transmission electron microscope (STEM) equipped with Cs probe corrector at 200 kV. X-ray photoelectron spectroscopy (XPS) was measured by ESCALAB 250XL electron spectrometer (Thermo Scientific Corporation) with monochromatic 150 W Al Kα radiation. All binding energies were calibrated with C 1s at 284.6 eV. Raman spectra were measured on a LabRAM HR800 evolution with the excitation wavelength of 532 nm. The diffuse reflectance
spectra were recorded with Agilent Cary 5000 UV-Vis-NIR spectrophotometer using integrated sphere accessory. Electron paramagnetic resonance (EPR) experiments were performed on a Bruker EMX X-band spectrometer and microwave frequency = 9.40 GHz at 100 K in the dark. The synchrotron X-ray absorption spectroscopic (XAS) measurements were conducted at the National Synchrotron Radiation Research Center, Taiwan. The Ti K-edge and P K-edge were carried out at BL17C and BL16A, respectively, and Ti L-edge and O K-edge were performed at BL20A.

2.3 Photocatalytic hydrogen evolution experiments

The photocatalytic hydrogen evolution experiments were carried out in a Pyrex top-irradiation reaction cell at atmospheric pressure. The reactant was pure water, and no sacrificial reagent or pH adjustment was used. 30 mg of the TiO$_2$/RP sample was dispersed in pure water (150 mL), and H$_2$PtCl$_6$ solution equivalent to 3 wt% Pt was added into the reactor. After being purged with argon to remove dissolved air, the solution was irradiated by a 300 W Xe arc lamp (PLS-SXE 300C) with an AM 1.5G filter to simulate solar light. The power intensity at the central point of reactant was measured to be 500 mW·cm$^{-2}$ by PM100D power meter with S302C thermal sensor (Thor Labs) [35]. And the irradiation area was controlled as about 20 cm2. The temperature of the reactant solution was held at 25 °C by a flow of cooling water. The amount of hydrogen evolution was measured in the air-tight continuous flow system which was connected with the online gas chromatograph (Shimadzu GC-2014C) equipped with a thermal conductivity detector. High purity argon gas (99.999%) was used as a carrier gas.

2.4 Density functional theory calculations

The Vienna Ab-initio Simulation Package (VASP) software on basis of the plane-wave method was utilized for density functional theory (DFT) calculations [36-38]. Our computations employed the generalized gradient approximation (GGA) with Perdew-Burke-Ernzerhof (PBE) exchange-
correlation function [39]. The Projector-Augmented-Wave (PAW) method was used to describe the interaction between the ionic core and valence electrons [40]. To localize the Ti 3d states, the well-known Hubbard-like U correction GGA+U method has also been used [41]. \(U_{\text{eff}} = 4.5 \) eV for \(\text{TiO}_2(\text{B}) \) and \(U_{\text{eff}} = 3.0 \) eV for \(\text{TiO}_2(\text{A}) \) which are the same as the previous calculations (Table S1) [42]. The threshold for energy convergence was set to \(10^{-6} \) eV. The convergence of the force on each atom was set to 0.02 eV/Å during geometry optimization. The lattice parameters and atomic coordinates were relaxed using the cutoff of 450 eV and Monkhorst-Pack grids of \(16 \times 16 \times 12 \) for bulk \(\text{TiO}_2(\text{B}) \) and \(16 \times 16 \times 10 \) \(k \)-points for bulk \(\text{TiO}_2(\text{A}) \). The (001) facet of \(\text{TiO}_2(\text{B}) \) and (100) facet of \(\text{TiO}_2(\text{A}) \) were built for comparison. The optimized lattice parameters of \(\text{TiO}_2(\text{B}) \) were \(a = 12.126 \) Å, \(b = 3.739 \) Å and \(c = 6.262 \) Å and those of \(\text{TiO}_2(\text{A}) \) were \(a = b = 3.789 \) Å and \(c = 9.487 \) Å. In short, the crystal structures, energy band structures and the density of states (DOS) were calculated by the DFT+U method. The effective masses of photogenerated electrons and holes were commutated by the band structures [43,44].

3. Results and discussion

![Fig. 1](image-url) Schematic illustration for making the \(\text{TiO}_2/\text{RP} \) core-shell heterostructure.
As shown in Fig. 1, the TiO\textsubscript{2}/RP core/shell heterostructure composites were fabricated via a vaporization-deposition strategy. Firstly, TiO\textsubscript{2} NFs were synthesized by a hydrothermal method and a subsequent calcination treatment. Then, the as-prepared TiO\textsubscript{2} NFs were mixed with different amounts of RP powders, which were sealed into a quartz ampoule under vacuum condition (Fig. S1). During the calcination process at high temperature (500~700 °C), phosphorus gas was vaporized in the ampoule due to the vacuum environment, and some P element would be doped into the TiO\textsubscript{2} NFs. After that, through a low-temperature procedure, the RP nanolayer would be deposited on the TiO\textsubscript{2} NFs surface with the condensation of phosphorus vapor, to obtain the TiO\textsubscript{2}/RP core/shell heterostructure composites [24].

The phase composition and the crystal structure of the TiO\textsubscript{2}/RP composites were investigated by X-ray diffraction (XRD). As shown in Fig. S2a, TiO\textsubscript{2}(B)/RP(40) composites which were calcined at 500~700 °C were all indexed to TiO\textsubscript{2}(B) phase (JCPDS 74-1940). However, in the absence of RP, phase transition from TiO\textsubscript{2}(B) to anatase phase (JCPDS 21-1272) started at 550 °C, and the anatase diffraction intensity increased as the temperature was elevated from 500 to 700 °C (Fig. S2b,c). It was thus indicated that the addition of RP can inhibit the phase transformation. With the RP vaporization temperatures optimized to be 600 °C to obtain the TiO\textsubscript{2}(B)/RP sample with the highest photocatalytic HER activity (Fig. S3), the TiO\textsubscript{2}/RP composites with different RP contents calcined at 600 °C were characterized and discussed in more details in the following sections. As shown in Fig. 2, the obtained composites exhibited all diffraction peaks indexed to TiO\textsubscript{2}(B) (Fig. 2a) or anatase TiO\textsubscript{2} (Fig. 2b). No typical diffraction peaks of RP were observed in the TiO\textsubscript{2}/RP composites due to the low amount and poor crystallization of RP. Whereas, when the weight of RP was increased to 80 mg, two small peaks at 2θ = 15.6° and 34.1° corresponding to Hittorf's phosphorus (monoclinic, JCPDS 44-0906) can be observed for TiO\textsubscript{2}(A)/RP (Fig. S2d).
Fig. 2 XRD patterns of TiO$_2$ and TiO$_2$/RP composites.

Raman spectroscopy was also conducted to verify the structural properties of TiO$_2$/RP composites. In **Fig. S4a**, the bands centered at ca. 252, 293, 367, 407, 434, 470, 553, and 636 cm$^{-1}$ can be assigned to the typical Raman vibration modes of TiO$_2$(B), while the bands centered at ca. 397, 516, and 637 cm$^{-1}$ can be assigned to the typical Raman vibration modes of TiO$_2$(A) (**Fig. S4b** [27]). For the TiO$_2$/RP composites, the main peaks centered at 352, 399 and 463 cm$^{-1}$ came from elemental red phosphorus could be observed. Moreover, the intensity of these three peaks increased gradually with the increasing contents of RP added during the vaporization-deposition process. These analysis in XRD and Raman spectra could confirm the successful decoration of RP onto the TiO$_2$ NFs during the vaporization-deposition process.
Fig. 3 (a) STEM image, (b,c) aberration corrected bright field (BF) and high-angle annular dark-field (HAADF) STEM images of TiO$_2$(B), (d) STEM image, (e,f) BF and HAADF STEM images, and (g) HAADF-STEM image and the corresponding EDS mapping of TiO$_2$(B)/RP(40), (h) STEM image, (i,j) BF and HAADF STEM images of TiO$_2$(A), (k) STEM image, (l,m) BF and HAADF STEM images, and (n) HAADF-STEM image and the corresponding EDS mapping of TiO$_2$(A)/RP(30).

The morphologies of as-prepared TiO$_2$/RP samples were observed by field emission scanning electron microscopy (FESEM) and scanning transmission electron microscopy (STEM). It is clear that all the samples displayed the one-dimensional (1-D) fibril morphology, and the deposition of RP would not bring obvious morphology change (Fig. S5, S6). STEM images (Fig. 3a,d,h,k) further confirm the 1-D fibril structure for all the samples. For the pristine TiO$_2$ NFs, the lattice fringes which were parallel or vertical to the NFs axis, with interplanar distance of 0.58 nm (Fig. 3b,c) and 0.35 nm (Fig. 3i,j), respectively, could be assigned to the (200) and (101) plane of well crystallized TiO$_2$(B) and anatase TiO$_2$, with mesoporous structure clearly observed. After the vaporization-deposition process, a uniform amorphous RP nanolayer was deposited on the surface of TiO$_2$(B) and TiO$_2$(A) NFs, with thickness estimated to be 6~7 nm for TiO$_2$(B)/RP(40) (Fig. 3e,f)
and TiO$_2$(A)/RP(30) (Fig. 3l,m). The corresponding energy dispersive X-ray spectroscopy (EDS) elemental mapping images (Fig. 3g,n) clearly show the uniform distribution of Ti, O, and P elements, confirming the successful deposition of RP nanolayer onto the TiO$_2$ NFs. It could be further observed that a disordered layer with a thickness of ca. 1.5 nm was formed at the interface of TiO$_2$ NFs and RP nanolayer for both TiO$_2$(B)/RP and TiO$_2$(A)/RP, which indicated that defects were introduced into the surface region of TiO$_2$ NFs during the vaporization-deposition process [11,31].

Fig. 4 High resolution XPS spectra of (a) Ti 2p, (b) O 1s, (c) P 2p, and (d) EPR spectra for TiO$_2$ NFs and TiO$_2$/RP composites.
X-ray photoelectron spectroscopy (XPS) was used to better understand the physicochemical interaction between TiO₂ core and RP shell. The XPS survey spectra revealed the presence of Ti 2p, O 1s and P 2p in the TiO₂/RP composites (Fig. S7), indicating that phosphorus has been introduced in the composites successfully. As shown in Fig. 4a, the pristine TiO₂(B) and TiO₂(A) revealed Ti 2p₃/₂ peaks at 458.7 eV and 458.2 eV and Ti 2p₁/₂ peaks at 464.4 eV and 463.9 eV, respectively, with a spin-orbit splitting of 5.7 eV, indicating the Ti⁴⁺ chemical state [11]. In comparison, these Ti 2p peaks in TiO₂/RP composites were all positively shifted to higher binding energy. As observed in the O 1s spectra of the TiO₂(B) and TiO₂(A) (Fig. 4b), the peaks at 529.9 eV and 529.5 eV corresponding to lattice oxygen (Oₐ) species of TiO₂ were also shifted to higher binding energy for both TiO₂(B)/RP and TiO₂(A)/RP. Moreover, the shift of Ti 2p and O 1s peaks increased depending on the increasing RP contents in TiO₂/RP composites. These results implied that phosphorus ions were partially doped into TiO₂ during the vaporization-deposition process, and the positive shift in binding energies of Ti 2p and O 1s should be due to the smaller electronegativity of titanium atoms (1.54) than that of phosphorus atoms (2.19) [45-48]. As shown in Fig. 4b, the OOH peaks of the TiO₂/RP composites exhibited enhanced intensity as compared to the pristine TiO₂ NFs (Table S2). Given the general fact that OOH concentrations correlates to the formation of Vₐ, TiO₂/RP composites should have more Vₐ created after the vaporization-deposition process as compared to the pristine TiO₂ NFs [11,31,49]. The P 2p spectra of RP show two peaks at 129.7 eV and 130.6 eV (Fig. 4c), which could be attributed to the spin-orbit doublets of P 2p₃/₂ and P 2p₁/₂, respectively, indicating the P⁰ chemical state [20-22]. In comparison to TiO₂(B)/RP(20) and TiO₂(A)/RP(10), TiO₂(B)/RP(40) and TiO₂(A)/RP(30) exhibited increased intensities of P⁰ peaks, respectively, demonstrating that the content of elemental RP in the TiO₂/RP composites increased with the increasing contents of RP used in the vaporization-deposition process. Moreover, the peak centered at 133.4 eV~133.7 eV in TiO₂/RP composites suggested the
existence of pentavalent oxidation state of P^{5+} that partially substituted some Ti^{4+} in the surface region of TiO_2 NFs with Ti-O-P bonds formed [46-48,50]. Electron paramagnetic resonance (EPR) spectra were further performed to elucidate the formation of V_O in the surface region of TiO_2 NFs in the TiO_2/RP composites, as induced by the introduction of P^{5+} at Ti^{4+} sites. As shown in **Fig. 4d**, the TiO_2/RP samples exhibited EPR signals at $g = 2.003$, suggesting that surface-free electrons were trapped at V_O created in TiO_2 NFs. Further comparison in the intensity of the EPR signals revealed that the concentration of V_O generated in $TiO_2(B)/RP$ was much higher than in $TiO_2(A)/RP$ [11,31]. XPS and EPR results provided clear evidence solidifying the strong chemical interaction between the TiO_2 core and RP shell, which further confirmed the presence of elemental RP and the doping of P^{5+} in the TiO_2/RP core/shell heterostructure.

Fig. 5 (a, b) Optical absorption spectra and (c, d) the corresponding optical images of TiO_2 and TiO_2/RP composites.
Fig. 5 shows the optical absorption spectra for the as-prepared samples and their corresponding optical images. As shown in Fig. 5a,b, as compared to the pristine TiO$_2$ NFs, all the TiO$_2$/RP composites possessed an extended optical absorption in the visible light region, with the absorption edge gradually red-shifted with the increasing RP amounts added for vaporization-deposition procedure. This should be related to the surface sensitization effect of RP, causing broad and strong visible light absorption in the region of 400~600 nm for both TiO$_2$(B)/RP and TiO$_2$(A)/RP composites. Further investigation revealed that TiO$_2$(B)/RP composites have an additional higher tail-like absorption band in 600~900 nm, as compared to TiO$_2$(A)/RP, which might be due to the higher concentration of V$_0$ created in TiO$_2$(B)/RP [12]. Correspondingly, it was obvious that these samples showed a gradient evolution in color from white to brown with the increase of RP contents (Fig. 5c,d), also demonstrating their efficient optical absorption in visible light region. In comparison to the physical mixtures of TiO$_2$ NFs and RP as the reference, the as-prepared TiO$_2$/RP composites displayed much stronger optical absorption in the range of 360-600 nm (Fig. S8) with colors deeper and darker (Fig. 5c,d and Fig. S9). These results again evidenced the chemical interaction between TiO$_2$ and RP in the TiO$_2$/RP composites with RP shell coated on and P$_{5+}$/V$_0$ introduced into TiO$_2$ NFs by a vaporization-deposition method.
Fig. 6 Photocatalytic HER from pure water activities of (a) TiO$_2$(B)/RP and (b) TiO$_2$(A)/RP composites under simulated solar light irradiation, (c) Wavelength-dependent photocatalytic HER rate TiO$_2$(B)/RP(40) and TiO$_2$(A)/RP(30) under different LEDs light irradiation with center wavelength of 400 nm, 456 nm, 522 nm, 585 nm, and 626 nm, respectively, (d) Time-course of photocatalytic HER rate over TiO$_2$(B)/RP(40) and TiO$_2$(A)/RP(30) under simulated solar light irradiation.

To further evaluate the photocatalytic activity of the obtained composites, photocatalytic HER in pure water without any sacrificial reagents was also performed at ambient pressure and temperature.
As shown in Fig. 6a,b and Fig. S10, the pure TiO$_2$(B) showed no HER performance, while TiO$_2$(A) and RP exhibited very weak HER activity (0.5 and 2.1 μmol h$^{-1}$) under simulated solar light illumination (Fig. S11a). Both TiO$_2$(B)/RP and TiO$_2$(A)/RP displayed a volcano-type curve of H$_2$ evolution rates depending on the RP contents, with the highest HER rates reaching 11.4 and 5.3 μmol h$^{-1}$, respectively, for TiO$_2$(B)/RP(40) and TiO$_2$(A)/RP(30) with optimized RP contents. It is noteworthy that the TiO$_2$(B)/RP(40) composite stands at the highest level of TiO$_2$-based photocatalysts for hydrogen production via pure water splitting (see Table S3). Similar to the trend of photocatalytic HER properties depending on RP contents, the transient photocurrent density was enhanced and Nyquist plots arc radius was decreased after the decoration of RP, which indicate the faster charge carrier transfer and separation in TiO$_2$/RP composites than that of TiO$_2$ (Fig. S12) [34]. Based on the analytic discussion on these above characterization results, such drastic improvement in photocatalytic activity can be attributed to the fact that the RP sensitization nanolayer on the TiO$_2$ NFs could harvest more visible light, and the surface P$^{5+}$ doping induced V$_O$ could enhance charge transportation and inhibit the recombination process. Interestingly, instead of O$_2$ evolution by water oxidation, hydrogen peroxide (H$_2$O$_2$) was produced by photogenerated holes via a two-electron process of water oxidation (Fig. S12) [51-53], which would benefit gas separation for hydrogen production via pure water splitting. As shown in Fig. 6c, the photocatalytic HER activities were great dependence on the wavelengths under different LEDs light irradiation (Fig. S11b) for both TiO$_2$(B)/RP(40) and TiO$_2$(A)/RP(30) composites, confirming that the extended optical absorption by RP decoration was greatly responsive to enhanced HER activities, as compared to the pure TiO$_2$ NFs. Furthermore, TiO$_2$/RP composites displayed good photocatalytic stability under a 12 h continuous light irradiation (Fig. 6d). It is interesting that, even though the photocatalytic activity of TiO$_2$(A) was higher than TiO$_2$(B), the TiO$_2$(A)/RP composites showed poor activities than the TiO$_2$(B)/RP composites. To achieve a better understanding of the intrinsic
characters (e.g., the RP sensitization, the introduced P$^{5+}$ dopants and V$_{O}$) contributing to the improved photocatalytic activity, X-ray absorption structure spectroscopy (XAS) and density functional theory (DFT) calculations were further performed.

Fig. 7 (a) The XAS spectra at Ti L-edge performed in the dark and under illumination, (b) Ti K-edge XAS spectra, (c) the pre-peak area of Ti K-edge XAS spectra, (d) the Fourier-transform of the EXAFS $k^3\chi$ data at Ti K-edge and (e) the XAS spectra at Ti L-edge, O K-edge and P K-edge of RP, TiO$_2$ and TiO$_2$/RP composites.

To reveal how these TiO$_2$/RP composites response to solar light, XAS at Ti L-edge was performed in the dark and under illumination. As shown in **Fig. 7a**, the intensity of Ti L-edge obtained under the illuminated condition was slightly lessened in comparison with that in the dark, suggesting the electronic structure was changed upon light illumination. Moreover, TiO$_2$/RP displayed a more
significant decrease in the intensity than TiO$_2$ NFs, indicating that TiO$_2$/RP composites were more sensitive to light. Notably, the spectral difference (marked by dashed squares) between dark and illumination was more remarkable for TiO$_2$(B)/RP(40) than TiO$_2$(A)/RP(30), revealing more efficient electron excitation to the unoccupied Ti 3d states in the conduction band of TiO$_2$(B)/RP(40). These results implied that RP could benefit electron photoexcitation and contribute to the increased photocatalytic activity of TiO$_2$/RP composites. One may also note that the spectral profiles of TiO$_2$ NFs were quite different from those of TiO$_2$/RP, suggesting that RP could modify the electronic and atomic structures of TiO$_2$ NFs. Therefore, XAS at Ti K-edge was also investigated and displayed in Fig. 7b. According to similar features indicated by vertical dashed lines as well as the features presented in the pre-peak region (marked by dashed squares), it is suggested the decoration of RP does not affect severely the crystal structure of TiO$_2$ NFs (either TiO$_2$(B) or TiO$_2$(A)), which is in agreement with the XRD characterization (Fig. 2) [54]. Anyhow, further investigation on the pre-peak region (about 4969-4977 eV) mainly originated from Ti 3d states would be of importance to look into the fine structures. After background subtraction, the pre-peak area was shown in Fig. 7c and decomposed into four components, A$_1$, A$_2$, A$_3$, and A$_4$ [55]. As RP was decorated onto TiO$_2$ NFs, the peak A$_2$ of TiO$_2$/RP was greater than that of bare TiO$_2$ NFs, indicating that P$^{5+}$ doping induced the formation of V$_O$ in TiO$_2$ NFs and thus increased the five-fold coordinated geometry or disordered local atomic structure. A more significant increase in peak A$_2$ intensity was observed in TiO$_2$(B)/RP(40) in comparison with TiO$_2$(A)/RP(30), meaning that more V$_O$ was created in TiO$_2$(B)/RP(40), agreeing well with optical absorption spectra as well as EPR spectra. To further verify the induction of V$_O$ in TiO$_2$ NFs by P$^{5+}$ doping, the Fourier-transform of extend X-ray absorption fine structures (EXAFS) $k^3\chi$ data at Ti K-edge was also investigated (Fig. 7d). The predominant peak at about 1.5Å was attributable to the first shell Ti-O
bonds, and the greater amplitude of TiO$_2$ than that of TiO$_2$/RP suggested that RP tended to induce V$_{O}$ in the TiO$_2$/RP composites, especially for TiO$_2$(B)/RP(40) [54,56]. Analytical results above elucidated that RP created V$_{O}$ in TiO$_2$ NFs and thus affected the local atomic structures. The presence of V$_{O}$ in TiO$_2$ NFs gives rise to two electrons remain behind, and these electrons tend to move toward neighbor Ti site owing to the maintenance of charge balance. To further elucidate the effect of RP on the electronic structure, XAS at Ti L-edge, O K-edge, and P K-edge are displayed in Fig. 7e. For Ti L-edge, the peak intensities of TiO$_2$/RP were greater than that of TiO$_2$, implying that Ti lost some charges in the presence of RP [55]. Whereas the change in peak intensities of O K-edge exhibited the opposite trend to Ti L-edge, which suggested that charges should be transferred from Ti to O [55,57], as RP was introduced. Notably, Ti lost more charges in TiO$_2$(A)/RP than in TiO$_2$(B)/RP, while electron density around O site for TiO$_2$(B)/RP was higher. Considering the electronegativity of Ti (1.54), O (3.44), and P (2.19), oxygen has the highest ability to attract the electrons, and therefore electrons at P site may migrate to O site. The P K-edge had two main features associated with P0 and P$^{5+}$ states [58,59]. It is clear that RP exhibited mostly the P0 states. However, when RP was decorated onto TiO$_2$ NFs, the P$^{5+}$ states increased. TiO$_2$(B)/RP(40) presented even more P$^{5+}$ states than TiO$_2$(A)/RP(30), which indicated that there were more P-O bonds in TiO$_2$(B)/RP(40). Consequently, the high electron density around the O site in TiO$_2$(B)/RP could be contributable to more P-O bonds formed. The presence of RP not only created V$_{O}$ by P$^{5+}$ doping but also redistributed the electrons from P to O sites. Notably, the O 2p states dominated the valence band maximum, and thus the high electron density at O sites in TiO$_2$(B)/RP resulted in the high possibility for electrons on the O 2p valence band to be excited to the Ti 3d conduction band under solar irradiation, which has been already verified by the solar light-dependent XAS revealed in Fig. 7a.
Fig. 8 Schematic of the P$^{5+}$ doped induced V$_0$ in (a) TiO$_2$(B) and (b) TiO$_2$(A) supercell. (c) The total density of states (TDOS) for pristine and P-doped induced V$_0$ in TiO$_2$.

DFT calculations were further performed to reveal the contribution of V$_0$ to the efficient charge transfer process and the improved photocatalytic activity, by elucidating the electronic structure and effective carrier masses. According to the TEM experimental investigation, the (001) and (100) planes were the predominantly exposed crystal facets for TiO$_2$(B) and TiO$_2$(A) [26], respectively, which were then built for the comparative DFT calculations. Fig. 8a,b show the schematics of the P$^{5+}$ doping induced V$_0$ in TiO$_2$(B) and TiO$_2$(A) supercells, with one P$^{5+}$ dopant replacing one Ti atom which induced one V$_0$. The P$^{5+}$ doping reduced the V$_0$ formation energy by 1.60 eV for
TiO$_2$(A) and 1.05 eV for TiO$_2$(B) (see calculation details in Supporting information), which further indicated that the P-induced formation of V$_O$ in TiO$_2$(B) was more favorable than in TiO$_2$(A). As shown in Fig. 8c, in comparison to the total density of states (TDOS) of pristine TiO$_2$, impurity states created by V$_O$ can be seen in P-doped TiO$_2$, which were responsible for the observed tail-like absorption in Fig. 5. The effective masses of electrons and holes can be used to assess the transfer rate of charge carriers. It has been well accepted that a lower charge carrier effective mass corresponds to a higher charge carrier mobility, and the large difference between effective masses of electron and hole suggests a low recombination rate of the electron-hole pairs [43,44]. Therefore, the relative effective masses of holes and electrons in pristine and P-doped TiO$_2$ NFs were further computed, by the quadratic fits of the band structures, to examine how the P doping induced V$_O$ affected the mobility and separation of charge carriers. The carrier effective masses (m^*) were calculated and shown in Table S4. The value of the effective mass of electrons (m_e^*) was smaller than that of the corresponding value of holes (m_h^*) for each sample and thus electron had higher mobility than hole in TiO$_2$. The values of m_e^*/m_h^* were then determined to be 0.918, 0.544, 0.894 and 0.612 for TiO$_2$(B), P doped TiO$_2$(B), TiO$_2$(A) and P doped TiO$_2$(A), respectively. It is clear that the P$^{5+}$ doping induced V$_O$ can decrease the ratio of electron to hole effective mass (m_e^*/m_h^*) significantly, indicating the reduced recombination rates of the charge carriers in P doped TiO$_2$ NFs. Moreover, in comparison to P doped TiO$_2$(A), P doped TiO$_2$(B) possessed the smaller m_e^*/m_h^*, implying the more efficient charge carrier separation. These DFT calculations revealed that the formation of V$_O$ was easier in TiO$_2$(B) by P$^{5+}$ doping than in TiO$_2$(A), as experimentally supported by the EPR and XAS results indicating that more V$_O$ was generated in TiO$_2$(B)/RP than TiO$_2$(A)/RP. Thus, the TiO$_2$(B)/RP composites with more V$_O$ introduced would have more effective charge separation, which could contribute to the great improvement in photocatalytic activity for
hydrogen evolution under solar light, together with the excellent visible light absorption of the deposited RP nanolayer as the photosensitizer.

Fig. 9 Illustration of the charge transfer processes in TiO$_2$/RP composites.

Based on the above experimental and theoretical results, the photocatalytic H$_2$ production mechanism was proposed in Fig. 9. Coating RP sensitization nanolayer on the TiO$_2$ NFs surface can enhance optical absorption in the visible light region, and the doping of P$^{5+}$ in TiO$_2$ crystal lattices would introduce V$_O$ in the surface region of TiO$_2$ NFs and thus facilitate the charge transfer process. Thus, more electrons can be photoexcited and then efficiently transferred to the photocatalyst surface active sites, which synergistically boosts photocatalysis efficiency of the TiO$_2$/RP composites.

4. Conclusion

In summary, a novel vaporization-deposition strategy was developed to simultaneously coat red phosphorous (RP) on and dope P$^{5+}$ into the surface of TiO$_2$ nanofibers. It was demonstrated that the obtained TiO$_2$/RP composites showed much increased photocatalytic activity for hydrogen production from pure water. By optimizing the RP amounts used during the vaporization-deposition process, the TiO$_2$/RP composites showed photocatalytic hydrogen evolution rates as high as 11.4
and 5.3 μmol h\(^{-1}\), with TiO\(_2\) existing in TiO\(_2\)(B) and anatase phase, respectively, under simulated solar illumination. Experimental and theoretical investigation evidenced that coating light sensitive RP nanolayer on the TiO\(_2\) surface can enhance optical absorption in the visible light region, and the doping of P\(^{5+}\) in TiO\(_2\) crystal lattice would introduce V\(_{O}\) in the TiO\(_2\) surface region and thus facilitate charge transfer. Thus, more electrons can be photoexcited and then efficiently transferred to the photocatalyst surface active sites, which synergistically boosted photocatalysis efficiency of the TiO\(_2\)/RP composites. This study presented an alternative strategy to design novel composite photocatalysts with efficient photocatalytic performances by synergistically extending optical absorption and improving charge carrier separation.

Acknowledgements

We appreciate the support from the National Natural Science Foundation of China (Nos. 51672143, 51672210, 21875183, 51808303), Taishan Scholar Program of Shandong Province, Outstanding Youth of Natural Science in Shandong Province (JQ201713), and ARC Discovery Project (No. 170103317).

Appendix A. Supplementary material

Supporting Information contains this information is available free of charge via the Internet.
References:

[1] A. Kudo, Y. Miseki, Heterogeneous Photocatalyst Materials for Water Splitting, Chem. Soc. Rev. 38 (2009) 253–278.

[2] X. Chen, S. Shen, L. Guo, S. S. Mao, Semiconductor-Based Photocatalytic Hydrogen Generation, Chem. Rev. 110 (2010) 6503–6570.

[3] Y. Zheng, Y. Jiao, M. Jaroniec, S. Qiao, Advancing the Electrochemistry of the Hydrogen Evolution Reaction through Combining Experiment and Theory, Angew. Chem. Int. Ed. 54 (2015) 52–65.

[4] X. Zou, Y. Zhang, Noble Metal-Free Hydrogen Evolution Catalysts for Water Splitting, Chem. Soc. Rev. 44 (2015) 5148–5180.

[5] I. Roger, M. A. Shipman, M. D. Symes, Earth-Abundant Catalysts for Electrochemical and Photoelectrochemical Water Splitting, Nat. Rev. Chem. 1 (2017) 0003.

[6] K. Sivula, R. Van De Krol, Semiconducting Materials for Photoelectrochemical Energy Conversion, Nat. Rev. Mater. 1 (2016) 15010.

[7] S. Chen, T. Takata, K. Domen, Particulate Photocatalysts for Overall Water Splitting, Nat. Rev. Mater. 2 (2017) 17050.

[8] A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature 238 (1972) 37–38.

[9] Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations, Chem. Rev. 114 (2014) 9987–10043.

[10] J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D. W. Bahnemann, Understanding TiO2 Photocatalysis: Mechanisms and Materials, Chem. Rev. 114 (2014) 9919–9986.
[11] J. Cai, M. Wu, Y. Wang, H. Zhang, M. Meng, Y. Tian, X. Li, J. Zhang, L. Zheng, J. Gong, Synergetic Enhancement of Light Harvesting and Charge Separation over Surface-Disorder Engineered TiO$_2$ Photonic Crystals, Chem 2 (2017) 877–892.

[12] Y. Liu, L. Tian, X. Tan, X. Li, X. Chen, Synthesis, Properties, and Applications of Black Titanium Dioxide Nanomaterials, Sci. Bull. 62 (2017) 431–441.

[13] Y. Yang, L. Yin, Y. Gong, P. Niu, J. Wang, L. Gu, X. Chen, G. Liu, L. Wang, H. Cheng, An Unusual Strong Visible-Light Absorption Band in Red Anatase TiO$_2$ Photocatalyst Induced by Atomic Hydrogen-Occupied Oxygen Vacancies, Adv. Mater. 30 (2018) 1704479.

[14] V. Kumaravel, S. Mathew, J. Bartlett, S. C. Pillai, Photocatalytic Hydrogen Production Using Metal Doped TiO$_2$: A Review of Recent Advances, Appl. Catal. B. 244 (2019) 1021–1064.

[15] H. Lin, C. Y. Shih, Efficient One-Pot Microwave-Assisted Hydrothermal Synthesis of M (M = Cr, Ni, Cu, Nb) and Nitrogen Co-doped TiO$_2$ for Hydrogen Production by Photocatalytic Water Splitting, J. Mol. Catal. A: Chem. 411 (2016) 128–137.

[16] X. Hong, J. Tan, H. Zhu, N. Feng, Y. Yang, J. T. S. Irvine, L. Wang, G. Liu, H. Cheng, Control of Spatially Homogeneous Distribution of Heteroatoms to Produce Red TiO$_2$ Photocatalyst for Visible-Light Photocatalytic Water Splitting, Chem. Eur. J. 25 (2019) 1787–1794.

[17] R. Marschall, L. Wang, Non-Metal Doping of Transition Metal Oxides for Visible-Light Photocatalysis, Catal. Today 225 (2014) 111–135.

[18] F. Xu, J. Zhang, B. Zhu, J. Yu, J. Xu, CuInS$_2$ Sensitized TiO$_2$ Hybrid Nanofibers for Improved Photocatalytic CO$_2$ Reduction, Appl. Catal. B 230 (2018) 194–202.

[19] A. Tiwari, N. V. Krishna, L. Giribabu, U. Pal, Hierarchical Porous TiO$_2$ Embedded Unsymmetrical Zinc–Phthalocyanine Sensitizer for Visible-Light-Induced Photocatalytic H$_2$ Production, J. Phys. Chem. C 122 (2018) 495–502.
[20] F. Wang, W. K. H. Ng, J. C. Yu, H. Zhu, C. Li, L. Zhang, Z. Liu, Q. Li, Red Phosphorus: An Elemental Photocatalyst for Hydrogen Formation from Water, Appl. Catal. B. 111–112 (2012) 409–414.

[21] Z. Shen, Z. Hu, W. Wang, S. F. Lee, D. K. L. Chan, Y. Li, T. Gua, J. C. Yu, Crystalline Phosphorus Fibers: Controllable Synthesis and Visible-Light-Driven Photocatalytic Activity, Nanoscale 6 (2014) 14163–14167.

[22] Z. Hu, L. Yuan, Z. Liu, Z. Shen, J. C. Yu, An Elemental Phosphorus Photocatalyst with a Record High Hydrogen Evolution Efficiency, Angew. Chem. Int. Ed. 55 (2016) 1–7.

[23] W. Li, Y. Zhang, G. Tian, S. Xie, Q. Xu, L. Wang, J. Tian, Y. Bu, Fabrication of Graphene-Modified Nano-Sized Red Phosphorus for Enhanced Photocatalytic Performance, J. Mol. Catal. A: Chem. 423 (2016) 356–364.

[24] L. Jing, R. Zhu, D. L. Phillips, Y. C. Yu, Effective Prevention of Charge Trapping in Graphitic Carbon Nitride with Nanosized Red Phosphorus Modification for Superior Photo(electro)catalysis, Adv. Funct. Mater. 2017, 1703484.

[25] J. Wang, D. Zhang, J. Deng, S. Chen, Fabrication of Phosphorus Nanostructures/TiO$_2$ Composite Photocatalyst with Enhancing Photodegradation and Hydrogen Production from Water under Visible Light, J. Colloid Interface Sci. 516 (2018) 215–223.

[26] L. Zhang, D. Jing, X. She, H. Liu, D. Yang, Y. Lu, J. Li, Z. Zheng, L. Guo, Heterojunctions in g-C$_3$N$_4$/TiO$_2$(B) Nanofibres with Exposed (001) Plane and Enhanced Visible-Light Photoactivity, J. Mater. Chem. A 2 (2014) 2071–2078.

[27] D. Yang, H. Liu, Z. Zheng, Y. Yuan, J. Zhao, E. R. Waclawik, X. Ke, H. Zhu, An Efficient Photocatalyst Structure: TiO$_2$(B) Nanofibers with a Shell of Anatase Nanocrystals, J. Am. Chem. Soc. 131 (2009) 17885–17893.
[28] J. Zhang, Q. Xu, Z. Feng, M. Li, C. Li, Importance of the Relationship between Surface Phases and Photocatalytic Activity of TiO$_2$, Angew. Chem. Int. Ed. 47 (2008) 1766–1769.

[29] L. Gao, Y. Li, J. Ren, S. Wang, R. Wang, G. Fu, Y. Hu, Passivation of Defect States in Anatase TiO$_2$ Hollow Spheres with Mg Doping: Realizing Efficient Photocatalytic Overall Water Splitting, Appl. Catal. B. 202 (2017) 127–133.

[30] Y. Pu, Y. Ling, K. Chang, C. Liu, J. Zhang, Y. Hsu, Y. Li, Surface Passivation of TiO$_2$ Nanowires Using a Facile Precursor Treatment Approach for Photoelectrochemical Water Oxidation, J. Phys. Chem. C 118 (2014) 15086–15094.

[31] Y. Liu, Y. Li, S. Yang, Y. Lin, J. Zuo, H. Liang, F. Peng, Revealing the Relationship between Photocatalytic Properties and Structure Characteristics of TiO$_2$ Reduced by Hydrogen and Carbon Monoxide Treatment, ChemSusChem 11 (2018) 2766–2775.

[32] G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Zhang, Y. Li, Hydrogen-Treated TiO$_2$ Nanowire Arrays for Photoelectrochemical Water Splitting, Nano Lett. 11 (2011) 3026–3033.

[33] J. H. Kim, Y. J. Jang, J. H. Kim, J. W. Jang, S. H. Choi, J. S. Lee, Defective ZnFe$_2$O$_4$ Nanorods with Oxygen Vacancy for Photoelectrochemical Water Splitting, Nanoscale 7 (2015) 19144–19151.

[34] Y. Zhu, J. Ren, X. Yang, G. Chang, Y. Bu, G. Wei, W. Han, D. Yang, Interface Engineering of 3D BiVO$_4$/Fe-Based Layered Double Hydroxide Core/Shell Nanostructures for Boosting Photoelectrochemical Water Oxidation, J. Mater. Chem. A 5 (2017) 9952–9959.

[35] F. Quan, J. Zhang, D. Li, Y. Zhu, Y. Wang, Y. Bu, Y. Qin, Y. Xia, S. Komarneni, D. Yang, Biomass as a Template Leads to CdS@Carbon Aerogels for Efficient Photocatalytic Hydrogen Evolution and Stable Photoelectrochemical Cells, ACS Sustainable Chem. Eng. 6 (2018) 14911–14918.
[36] G. Kresse, J. Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set, Phys. Rev. B 54 (1996) 11169–11186.

[37] G. Kresse, J. Furthmüller, Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set, Comput. Mater. Sci. 6 (1996) 15–50.

[38] G. Chang, J. Ren, X. She, K. Wang, S. Komarneni, D. Yang, How heteroatoms (Ge, N, P) Improve the Electrocatalytic Performance of Graphene: Theory and Experiment, Sci. Bull. 63 (2018) 155–158.

[39] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865–3868.

[40] G. Kresse, D. Joubert, From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method, Phys. Rev. B 59 (1999) 1758–1775.

[41] V. I. Anisimov, J. Zaanen, O. K. Andersen, Band Theory and Mott Insulators: Hubbard U Instead of Stoner I, Phys. Rev. B 44 (1991) 943–954.

[42] M. Nolan, S. D. Elliott, J. S. Mulley, R. A. Bennett, M. Basham, P. Mulheran, Electronic Structure of Point Defects in Controlled Self-Doping of the TiO₂ (110) Surface: Combined Photoemission Spectroscopy and Density Functional Theory Study, Phys. Rev. B. 77 (2008) 235424.

[43] P. Liao, E. A. Carter, New Concepts and Modeling Strategies to Design and Evaluate Photo-electro-catalysts Based on Transition Metal Oxides, Chem. Soc. Rev. 42 (2013) 2401–2422.

[44] J. Yu, P. Zhou, Q. Li, New Insight into the Enhanced Visible-Light Photocatalytic Activities of B-, C- and B/C-Doped Anatase TiO₂ by First-Principles, Phys. Chem. Chem. Phys 15 (2013) 12040–12047.

[45] S. Y. Mendiola-Alvarez, M. A. Hernández-Ramírez, J. L. Guzmán-Mar, L. L. Garza-Tovar, L. Hinojosa-Reyes, Phosphorous-Doped TiO₂ Nanoparticles: Synthesis, Characterization, and Visible
Photocatalytic Evaluation on Sulfamethazine Degradation, Environ. Sci. Pollut. Res. 26 (2019) 4180–4191.

[46] K. Wang, Y. Yu, L. Liu, L. Hou, F. Jin, Hierarchical P-doped TiO$_2$ Nanotubes Array@Ti Plate: Towards Advanced CO$_2$ Photocatalytic Reduction Catalysts, Ceram. Int. 42 (2016) 16405–16411.

[47] D. Qin, Q. Wang, J. Chen, C. He, Y. Li, C. Wang, J. Quan, C. Tao, X. Lu, Phosphorus-Doped TiO$_2$ Nanotube Arrays for Visible-Light-Driven Photoelectrochemical Water Oxidation, Sustainable Energy Fuels 1 (2017) 248–253.

[48] R. Zheng, L. Lin, J. Xie, Y. Zhu, and Y. Xie, State of Doped Phosphorus and Its Influence on the Physicochemical and Photocatalytic Properties of P-Doped Titania, J. Phys. Chem. C 112 (2008) 15502–15509.

[49] Z. Wang, X. Mao, P. Chen, M. Xiao, S. A. Monny, S. Wang, M. Konarova, A. Du, L. Wang, Understanding the Roles of Oxygen Vacancies in Hematite-Based Photoelectrochemical Processes, Angew. Chem. Int. Ed. 58 (2019) 1030–1034.

[50] C. Sotelo-Vazquez, N. Noor, A. Kafizas, R. Quesada-Cabrera, D. O. Scanlon, A. Taylor, J. R. Durrant, I. P. Parkin, Multifunctional P-Doped TiO$_2$ Films: A New Approach to Self-Cleaning, Transparent Conducting Oxide Materials. Chem. Mater. 27 (2015) 3234–3242.

[51] W. Wang, G. Li, T. An, D. K. L. Chan, J. C. Yu, P. K. Wong, Photocatalytic Hydrogen Evolution and Bacterial Inactivation Utilizing Sonochemical-Synthesized g-C$_3$N$_4$/Red Phosphorus Hybrid Nanosheets as a Wide-Spectral-Responsive Photocatalyst: The Role of Type I Band Alignment, Appl. Catal. B. 238 (2018) 126–13.

[52] L. Wang, S. Cao, K. Guo, Z. Wu, Z. Ma, L. Piao, Simultaneous Hydrogen and Peroxide Production by Photocatalytic Water Splitting, Chin. J. Catal. 40 (2019) 470–475.

[53] S. Siahrostami, G. L. Li, V. Viswanathan, J. K. Nørskov, One- or Two-Electron Water Oxidation, Hydroxyl Radical, or H$_2$O$_2$ Evolution, J. Phys. Chem. Lett. 8 (2017) 1157–1160.
[54] W. Zhou, J. Liu, J. Song, J. Li, J. Liu, X. Huang, Surface-Electronic-State-Modulated, Single-Crystalline (001) TiO₂ Nanosheets for Sensitive Electrochemical Sensing of Heavy-Metal Ions, Anal. Chem. 89 (2017) 3386–3394.

[55] S. J. Stewart, M. Fernández-García, C. Belver, B. S. Mun, F. G. Requejo, Influence of N-Doping on the Structure and Electronic Properties of Titania Nanoparticle Photocatalysts, J. Phys. Chem. B 110 (2006) 16482–16486.

[56] I. Krivtsov, M. Ilkaeva, E. Salas-Colera, Z. Amghouz, J. R. García, E. Díaz, S. Ordóñez, S. Villar-Rodil, Consequences of Nitrogen Doping and Oxygen Enrichment on Titanium Local Order and Photocatalytic Performance of TiO₂ Anatase, J. Phys. Chem. C 121 (2017) 6770–6780.

[57] O. Trejo, K. E. Roelofs, S. C. Xu, M. Logar, R. Sarangi, D. Nordlund, A. L. Dadlani, R. Kravec, N. P. Dasgupta, S. F. Bent, F. B. Prinz, Quantifying Geometric Strain at the PbS QD-TiO₂ Anode Interface and Its Effect on Electronic Structures, Nano Lett. 15 (2015) 7829–7836.

[58] W. Lei, Y. Mi, R. Feng, P. Liu, S. Hu, J. Yu, X. Liu, J. A. Rodriguez, J. Wang, L. Zheng, K. Tang, S. Zhu, G. Liu, M. Liu, Hybrid 0D–2D Black Phosphorus Quantum Dots–Graphitic Carbon Nitride Nanosheets for Efficient Hydrogen Evolution, Nano Energy 50 (2018) 552–561.

[59] M. Yoshida, T. Mineo, Y. Mitsutomi, F. Yamamoto, H. Kurosu, S. Takakusagi, K. Asakura, H. Kondoh, Structural Relationship between CoO₆ Cluster and Phosphate Species in a Cobalt-Phosphate Water Oxidation Catalyst Investigated by Co and P K-edge XAFS, Chem. Lett. 45 (2016) 277–279.