Blood donor safety, prevalence and associated factors for cytomegalovirus infection among blood donors in Minna-Nigeria, 2014

Musa Kalamullah Bawa1*, Aisha Mamman2, Adebola Olayinka1, Saheed Gidado1, Ndadinasiya Endie Waziri1, Muhammad Shakir Balogun1, Kabir Ibrahim Getso1, Mahmood Muazu Dalhat1, Peter Nsubuga4, Nuruddeen Aliyu1, Hussaini Baia1, Hauwa Muhammad1, Suleiman Haladu1, Usman Lawan Shehu1, Patrick Mboya Nguku1

1Nigeria Field Epidemiology and Laboratory Training Program, Abuja-Nigeria, 2Ahmadu Bello University, Zaria, Nigeria, 3Ministry of Health, Kano, Nigeria, 4Global Public Health Solutions, Atlanta GA, USA

*Corresponding author:
Musa Kalamullah Bawa, Nigeria Field Epidemiology and Laboratory Training Program (NFELTP), Abuja, Nigeria

Cite this: The Pan African Medical Journal. 2019;32 (Supp 1):6. DOI:10.11604/pamj supp.2019.32.1.13297
Received: 09/07/2017 - Accepted: 04/12/2017 - Published: 22/01/2019
Key words: Cytomegalovirus, blood donors, Minna, Northern Nigeria

Abstract

Introduction: human cytomegalovirus (CMV) has remained a cause of morbidity and mortality in pregnancy and immunocompromised patients. CMV is transmissible through blood transfusion. We conducted a descriptive, cross-sectional study to assess blood donor safety and to determine the prevalence and associated factors for CMV infection among blood donors in Minna, Nigeria.

Methods: all consenting blood donors were screened for CMV antibodies (IgM and IgG) using ELISA kit and haematological indices using a haematological analyzer. We administered structured questionnaires to obtain socio-demographic and socio-economic data. Data were subjected to univariate, bivariate and multivariate statistical analyses using Epi Info version 3.5.4. Significant associations were presumed if p < 0.05.

Results: a total of 345 participants were recruited, the majority were males 336 (97.4%). Monthly earnings of majority of the blood donors, 136 (40.6%) ranged from ₦18,000 to ₦35,000. The prevalence of CMV infection was 96.2%. The prevalence of anti-CMV IgG antibodies was 96.2% and that of IgM was 2.6%. Most of the study participants, 274 (79.4%) were family replacement donors. The majority of the blood donors 195 (56.5%) were anaemic (PCV < 36, Hb < 12g/dl). Those with positive CMV were more likely to be of high-income level (OR = 0.32, P = 0.04).

Conclusion: the seroprevalence of CMV was high with a significant proportion of donors capable of transmitting CMV infection to blood recipients. The majority of the blood donors were anaemic. High income level is associated with CMV infection. Quality of screening for anemia be improved.

This article is published as part of the supplement "Sharing experiences from the field: updates from the Nigeria Field Epidemiology and Laboratory Training Program" sponsored by Nigeria Field Epidemiology and Laboratory Training Program

Guest editors: Patrick Mboya Nguku, African Field Epidemiology Network 50 Haile Selassie Asokoro Abuja, Nigeria

Available online at: http://www.panafrican-med-journal.com/content/series/32/1/6/full
Introduction

Blood transfusion is usually a lifesaving therapeutic intervention. However, many preventable errors may make this a hazardous procedure [1]. The World Health Organization (WHO) recommends that blood donation should in all cases be voluntary [2]. However, in Nigeria, voluntary donors are relatively scarce. Hence, family replacement and commercial donors have become alternative sources of blood [3]. Healthy persons who are between the ages of 18 and 65 years with haemoglobin (Hb) levels of not less than 13.5 g/dl in males or 12.5 g/dl in females are acceptable as donors if they test negative for transfusion-transmissible infections (TTIs). These TTIs include hepatitis B virus (HBV), hepatitis C virus (HCV), human immunodeficiency virus (HIV), malaria, syphilis and chagas disease. However, females are only accepted as donors if they are not pregnant or breastfeeding [4]. Human cytomegalovirus (CMV), otherwise called human herpes virus type 5, over the years, has come to assume an important public health problem. As it is a significant cause of morbidity and mortality in pregnancy and among immunocompromised patients like recipients of organ transplants, HIV-infected persons, cancer patients on therapy and neonates [5].

Cytomegalovirus is transmissible through blood transfusion, among other parenteral routes [6]. However, donor screening for CMV is not routinely undertaken in Nigeria. A study by Chakravarti shows that most adults across the globe are seropositive for CMV [6]. The African region of the WHO, fraught with high disease burden and high prevalence of TTIs is faced with unique challenges to blood safety [7]. CMV is part of this challenge. A study in Ghana reported a CMV prevalence of 93.2% [7]. A previous study on the pre-donation screening of intending blood donors for antibodies to infectious agents at Obafemi Awolowo University Teaching Hospital Complex, Ile-Ife, Osun State, Nigeria indicated that about 12% donors were deferred due to TTIs and 5% due to anaemia [8]. The prevalence of transmissible transfusion viruses is still very high in Nigeria when compared with other developing countries with very similar challenges [9]. This challenge needs to be addressed to ensure blood and blood product safety. CMV prevalence rates in some parts of Nigeria were from 92% in Jos to 95% in Lagos both in 2009 [10].

The symptoms of CMV infection vary depending on the age and health of the person who is infected, and how the infection occurred and include hearing, vision, neurological and developmental problems. Other symptoms and morbidities of CMV include premature delivery, jaundice, spleen, microcephaly (small head), seizures, rash and feeding difficulties [8]. Premature and ill-term infants who are infected soon after birth are also at risk for neurological and developmental problems over time [8, 10]. Transfusion transmitted-cytomegalovirus (TT-CMV) is a significant cause of morbidity and mortality in the immunocompromised host. The risk of TT-CMV from seropositive donors is reported to be 0.4 to 12% [11]. The blood transfusion screening algorithm in Minna, Niger State includes HIV, HBV, HBC and syphilis. Malaria is endemic and anaemia is a common diagnosis in the area [12]. We conducted a study to determine the prevalence of and associated risk factors for CMV infection in blood donors in Minna, Northern Nigeria.

Methods

Study area: the study was conducted in Minna, the capital city of Niger State, Nigeria. The city is located in the North Central region of Nigeria. Minna City is made up of two local government areas (LGAs), each having one secondary health facility, General Hospital (GH), Minna and Ibrahim Babangida Specialist Hospital (IBBSSH), Minna located in Minna South and Minna East LGAs respectively. The average annual blood donor rates includes HIV, HBV, HBC and syphilis. Malaria is endemic and anaemia is a common diagnosis in the area [12]. We conducted a study to determine the prevalence of and associated risk factors for CMV infection in blood donors in Minna, Northern Nigeria.

The symptoms of CMV infection vary depending on the age and health of the person who is infected, and how the infection occurred and include hearing, vision, neurological and developmental problems. Other symptoms and morbidities of CMV include premature delivery, jaundice, spleen, microcephaly (small head), seizures, rash and feeding difficulties [8]. Premature and ill-term infants who are infected soon after birth are also at risk for neurological and developmental problems over time [8, 10]. Transfusion transmitted-cytomegalovirus (TT-CMV) is a significant cause of morbidity and mortality in the immunocompromised host. The risk of TT-CMV from seropositive donors is reported to be 0.4 to 12% [11]. The blood transfusion screening algorithm in Minna, Niger State includes HIV, HBV, HBC and syphilis. Malaria is endemic and anaemia is a common diagnosis in the area [12]. We conducted a study to determine the prevalence of and associated risk factors for CMV infection in blood donors in Minna, Northern Nigeria.

Eligibility criteria: we included apparently healthy looking persons who were between the ages of 18 and 65 years with haemoglobin (Hb) levels of not less than 13.5 g/dl in males or 12.5 g/dl in females and those already screened (laboratory screening) for transmission transmissible infections and found eligible to donate. The TTIs considered excluded CMV as donor screening for CMV is not routinely undertaken in Nigeria. Apparently healthy looking persons were considered to be people apparently looking well fed devoid of physically observable signs of sickness or disease.

Exclusion criteria: all those that tested positive for HIV, HBV and HCV were excluded.

Sample size determination: a total of 345 blood donors were recruited into the study. The sample size was obtained using the following formula:

\[n = \frac{z^2 \cdot p \cdot q}{d^2} \]

Where: \(n \) = required sample size, \(Z \) (\(z = (1-\alpha/2) \)) value was 1.96. This represents the value of the standard distribution corresponding to a significance level of \(\alpha \) (1.96 for a 2-sided test at the 0.05 level). We used a prevalence (\(p \)) of 92% (0.92) obtained from CMV prevalence study among prospective blood donors at a tertiary health facility (Jos University Teaching Hospital) in Jos, Nigeria [5]. Our \(q \) (1-p) was 0.08 and our absolute precision (\(d \)) was 3% (0.03).

Using 10% non-response obtained as 31, we obtained the sample size (n) 345.

Sampling technique

We employed systematic random sampling technique. We proportionately allocated the participants to the health facilities, GH, Minna and IBBSSH, Minna using the sampling frames for the health facilities. The blood donors that fitted into the inclusion criteria of the study and consented to the study were systematically selected from the two health facilities after obtaining an interval for selection for each, using \(n/N = k \). The interval was 5 and the first participant was selected randomly by balloting between 1 and 5, and then after that every Kth blood donor recruited until the required sample was obtained.

Study instruments

We used laboratory forms for capturing laboratory data, and interviewer-administered questionnaires made up of demography and risk factor sections were used for capturing data on socio-demographic, socio-economic characteristics and practices of the participants.

Data collection methods

Data were collected by trained research assistants and laboratory scientists. The data collection was from November 2013 to January 2014. 5ml of whole blood was collected using EDTA and serum using plain vacutainers from each subject. The serum was used for CMV ELISA screening for CMV antibodies, i.e. IgG and IgM using ELISA kit (DIALAB® Austria), while the whole blood was analyzed for haematological indices using a haematological analyzer (Abacus junior haematology analyzer 2.75, manufactured in 1995 by Diatron® U.S.A.). We used interviewer-administered questionnaires to obtain information from participants regarding their socio-demographic, socio-economic characteristics and practices [8].

Screening for CMV

Screening for CMV antibodies was done using ELISA kit (DIALAB® Austria). Serum was preserved under -20°C and analyzed using ELISA.
The analysis was done using automated microplate reader (Emax precision microplate reader), E11865 model (Molecular Devices® USA). ELISA procedure is shown in detail in an attached Annex 1. No molecular testing was done.

Analysis for haematological indices

Blood samples for haematological analyses were analyzed daily within 12 hours of collection using a haematological analyzer (Abacus junior haematology analyzer 2.75). The procedure included: 1) Using the EDTA blood container, whole blood was inserted into the analyzer; 2) The analyzer aspirated 2 micro liters of the blood into the probe and autoanalysed; 3) The result appeared on the screen and copied.

Data management

The independent variables were the socio-demographic and socio-economic characteristics of the respondents, cultural practices, while the dependent variable was the CMV serological status of the blood donors regarding IgM and IgG, which are either positive or negative. The demographic and socio-economic characteristics included age, sex, occupation, educational status, ethnic group, marital status, past history of transfusion, type of donor and monthly income level. The cultural practices included tribal marks, received blood transfusion, received dental procedure inside HF, dental procedure outside HF, worked in surgical procedure in HF, local circumcision, local uvulectomy, dental procedure inside HF, dental procedure outside HF, worked in surgical procedure in HF, local circumcision, local genital mark, received blood transfusion, received dental procedure inside HF, received dental procedure outside HF, worked in surgical procedure in HF, local circumcision, local genital mark, received blood transfusion, received dental procedure inside HF, local circumcision, local genital mark, received blood transfusion, received surgical procedure, local circumcision, local genital mark.

We reviewed all the completed questionnaires before electronic entry. Data obtained were analyzed using Epi Info version 3.5.4 (US Centers for Disease Control and Prevention) and Microsoft Excel 2007. Significant associations were presumed if p < 0.05.

Ethical considerations

Ethical clearance was obtained from the GH, Minna and IBBSH, Minna research and ethical clearance committees. Respect to participants’ rights was observed including the right to refuse participation with explanation through participant’s information form. We conducted informed consent for all potential participants prior to study through provision of individual consent forms for their consent.

Results

The majority of the blood donors, 139 (40.3%) were aged 20-29 years, 230 (66.7%) were married, 65 (19.5%) were unemployed, 273 (79.4%) were family blood donors. Most, 146 (42.6%) had post-secondary education, and 136 (40.6%) had a monthly income of between ₦51 and ₦100 (Table 1). The prevalence of CMV infection was found to be 96.2%. The prevalence of CMV IgG was found to be 96.2%, and that of CMV IgM was 2.6%. Combined CMV IgG and CMV IgM antibodies were detected in 9 (2.6%) blood donors (Table 2). Analyses of the distribution of CMV IgG seropositivity with age showed blood donors aged 20-29 years had the highest CMV IgG seroprevalence, 40.4% closely followed by those aged 30-39 years with 40.1%. The least CMV IgG seroprevalence, 0.9% was found in the blood donors aged > 60 years (Figure 1).

Table 1: sociodemographic characteristics of blood donors in Minna-Nigeria, 2014

Variable	Frequency (N=345)	Percent (%)
Age		
< 30	6	1.7
30 - 29	139	40.3
30 - 39	137	39.7
40 - 49	44	13.1
50 - 59	14	4.1
≥ 60	3	0.9
Marital status		
Married	230	66.2
Single	115	33.8
Separated	2	0.6
Occupation		
Self employed	183	53.0
Employed	95	27.5
Student	59	17.2
Unemployed	5	1.5
Retired	2	0.6
Educational status		
Postgraduate	38	11.1
Tertiary (first degree)		31.5
Secondary	96	28.0
Primary	26	7.6
No formal education	75	21.9
Type of donor		
Commercial	11	3.2
Volunteer	60	17.4
Family	223	79.4

The prevalence of CMV IgG was found to be 96.2%, and that of CMV IgM was 2.6%. Combined CMV IgG and CMV IgM antibodies were detected in 9 (2.6%) blood donors (Table 2). Analyses of the distribution of CMV IgG seropositivity with age showed blood donors aged 20-29 years had the highest CMV IgG seroprevalence, 40.4% closely followed by those aged 30-39 years with 40.1%. The least CMV IgG seroprevalence, 0.9% was found in the blood donors aged > 60 years (Figure 1).

Table 2: seroprevalence of anti-CMV IgG and IgM antibodies among blood donors in Minna-Nigeria, 2014

Sero-status	Frequency (N=345)	Percent (%)	Frequency (N=345)	Percent (%)
Positive	312	92.2	9	2.6
Negative	33	9.7	336	97.4

Bivariate analysis for socio-economic factors for CMV (IgG and IgM) infection showed blood donors with monthly income level < ₦18000 were less likely to be CMV-positive than those with higher income (OR = 0.32 (95% confidence interval: 0.10-0.97)). Other factors, age, sex, marital status, type of marriage, educational level, and occupation showed various levels of association but were not significant (p > 0.05) (Table 3). Table 4 shows the pattern of haemoglobin concentration (Hb) and packed cell volume (PCV) among various strata of blood donors. Of the 345 blood donors, 227 (65.8%) had Hb below the normal range (i.e. Hb < 12g/dl). Family replacement blood donors formed the majority, 185 (56.5%) of the anaemic blood donors. Most blood donors (197, 56.5%) had PCV below the normal range (i.e. PCV less than 36%). None of the blood donors had Hb or PCV above the normal range. Analysis for variances and statistical significance of means of CMV seropositive group and CMV seronegative group on haematological indices showed CMV seropositive group had a low Hb (p = 0.02), PCV (p = 0.03) and mean platelet distribution width (MPDW) (p = 0.04) compared to those of CMV seronegative group (Table 5).

Table 3: socioeconomically-associated factors for CMV (IgG) infection among blood donor in Minna-Nigeria, 2014

Variable	CMV IgG		Anti-CMV IgM	
	Positive	Negative	OR (95%CI)	P-value
Marital Status				
Married	62%	38%	2.42 (1.79-7.37)	0.09*
Single	72%	28%		
Type of marriage				
Homogamous	56%	44%	1.76 (1.20-25.4)	0.51*
Nonhomogamous	169%	10%		
Sex				
Male	232%	78%	2.16 (0.07-72.81)	0.68*
Female	7%	93%		
Age				
< 40 years	288%	12%	1.19 (0.26-5.55)	0.54*
≥ 40 years	52%	48%		
Monthly income level			0.32 (0.10-0.97)	0.04*
Below N10000	90%	10%		
Above N10000	252%	75%		
Educational level			1.40 (0.83-2.3)	0.44*
No formal education	98%	2%		
Tertiary (first degree)	6%	94%		
High education	233%	77%		
Occupation				
Unemployed	63%	37%	0.53 (0.16-1.77)	0.23*
Employed	95%	5%		

Fisher’s exact test.
Our study found family replacement donors constituted the majority, 79.4% while commercial donors made up 3.2% and voluntary donors 17.4%. The low proportion of voluntary donors reflects the dual role of ignorance and low national development index [2]. Family replacement blood donation predominates in the absence of a well organized national voluntary blood donation programme. People then rely on family or friends of patients to act as replacement donors. However, research findings indicates that blood from family or replacement donor is found to be unsuitable more often than blood from voluntary non enumerated and therefore presents a potentially greater risk to the safety of the blood supply [19, 20]. The commonest age group in this study was 20-29 years; this is higher than 18-20 years reported by a study in Chennai, India [21]. Our finding showed an overwhelming male predominance (97.4%). It is comparable to 95.4% reported by Akinbami and colleagues [14]. It maybe linked to the belief that women do not donate blood because of menstrual flow, pregnancy and childbirth [22].

We found that most study participants were employed, retirees accounted for very few. It shows blood donation is an activity of persons < 65 years of age [2]. The majority of the blood donors were educated as those without education were 21.9%. The rate of illiteracy observed in our study is higher than 15.4% reported for the North-Central zone in the National Demographic and Health Survey (NDHS) 2008 by National Population Commission, Nigeria (NPC) [23]. People earning of ₦18,000 and above were more likely to be CMV antibody positive. Blood donors with a monthly income level less than ₦18,000 were 68% less likely to be CMV-positive than those with monthly income level equal to or higher than ₦18,000. Our finding is consistent with findings by Revello and Giuseppewhere they found that the risk of primary maternal infection of CMV was about three times higher among the higher-income susceptible women (45%), compared to 15% in the lower-income group [24]. This finding is contrary to the report in California in which persons who earned less than $1,000 had a risk of 43.5% more than individuals with higher income [25]. Our finding also contrasts other findings that showed that the major risk factor for CMV infection is exposure to children [18, 26-28]. Many of the blood donors in this study, 55.9% were found to be anaemic (PCV < 36%). The study participants were considered to have been screened (laboratory screening) for anaemia with PCV cutoffs as not less than 40.5% (13.5 g/dl) in males or 37.5% (12.5 g/dl) in females based on the blood donor eligibility criteria of the country. Yet, such a high level of proportion of anaemic blood donors was found. This goes to show the level of the quality issues associated with screening procedures. The high proportion of anaemia in our study corroborates findings of other studies which include studies in Port Harcourt, Nigeria and south India [29, 30]. This is also identical with findings of Xu and colleagues, Gordon-smith and associates and Taglietti and colleagues [31-33]. This high level of anaemia may be associated with the finding in the study that 81.5% of the anaemic donors were family replacement donors and family replacement donors constituted 79.4% of all the donors (345) in the study. Comparison of the difference of the mean of PCV and Hb between CMV seropositive and CMV seronegative donors showed CMV seropositive donors had a lower PCV and Hb (P < 0.05). CMV seropositivity with its attendant risk predisposes to anaemia [34]. CMV causes infection of bone marrow suppression which is a risk factor for aplastic anaemia [35-37]. The findings of our study cannot be generalized to Nigeria as the study was a health facility-based study. Also, most of the private health facilities were not consistent blood donation centers and therefore were not considered in the study as their inclusion could have constituted a bias. Our findings will still provide the basis for the implementation of donor safety strategies in Minna.

Conclusion

In conclusion, we observed a high seroprevalence of 96.2% of CMV in Minna among blood donors with a significant proportion (2.6%) capable of transmitting CMV infection to blood recipients. But since up to 96.2% of blood donors are seropositive for CMV, it would seem superfluous to screen blood donors for CMV for all transfusions, as few seronegative blood units would be available for transfusion. The majority of the blood donors were anaemic. Prospective blood donors for immunocompromised patients, however, should be screened for CMV. The quality of screening for anaemia should be improved.
What is known about this topic

• Transfusion is a lifesaving therapeutic intervention - However, many preventable errors may make this a hazardous procedure;
• Cytomegalovirus is transmissible through blood transfusion, among other parenteral routes, however, donor screening for CMV is not routinely undertaken in Nigeria;
• CMV infection is widely spread among the human population but not commonly known as most CMV infections are asymptomatic and therefore commonly go undiagnosed.

What this study adds

• Combined CMV IgG and CMV IgM antibodies are detected in 2.6% of blood donors;
• Blood donors with monthly income level < ₦18000 are less likely to be CMV-positive than those with higher income;
• More than half of the study participants (blood donors) (65.8%) were anaemic i.e. had Hb below the normal range (i.e. Hb < 12g/dl) and majority were family replacement blood donors.

Competing interests

The authors declare no competing interests.

Authors’ contributions

MB was the principal investigator in this study from proposal, design and protocol development through data analysis to the final manuscript writing. AM contributed in the review of the article. AO contributed in the study design and review of the article. SG, NEW contributed in the design and review of the article. MSB, Kalamullah Bawa et al. 2013;89:A206–7.

Acknowledgements

We wish to acknowledge Professors Kabir Sabitu, Gabrielle Poggensee (Nigerian Field Epidemiology and Laboratory Training Program (NFELTP), professor Elizeus Rutebemberwa (Makerere University) for their mentoring support in this work. I want to acknowledge my NFELTP field supervisor Dr Tijjani Hussein. We also acknowledge the contributions of Alhaji Alfa Dangana and Dr. James Kolo (Niger State Ministry of Health) supervisor Dr Tijjani Hussein. We also acknowledge the contributions of the research assistants, Abdullahi Habibu, Abdullahi Sanusi of GH, Minna and Yusuf Ahmadu of IBBSH, Minna.

References

1. Barret CL, Pretorius JAD. New opportunity for transfusion training for african nurses: development of a distance based blood transfusion short learning programme. Afric Sang. 2011;1(1):23–8.
2. ICRC. Handbook of the International Red Cross and Red Crescent Movement. 2008. Accessed on 15/02/16
3. Ahmed SG, Ibrahim UA, Hassan AW. Adequacy and pattern of blood donations in northeast Nigeria: the implications for blood safety. Ann Trop Med Parasitol. 2007;101(8):725–31.
4. Federal Ministry of Health. The Nigerian National Blood Policy. Nigeria, Abuja. 2006.
5. Aalo OO, Joseph DE, Mamman A, Banwat EB. The Seroprevalence of cytomegalovirus antibodies among prospective blood donors in Jos. Niger J Med Natl Assoc Resid Dr Niger. 2009;17(2):200–2.
6. Chakravarti A, Kashyap B, Matlani M. Cytomegalovirus infection: an Indian perspective. Indian J Med Microbiol. 2007;27(1):3–11.
7. Tapko JP. The road to a safe blood supply in the African region of the World Health Organization: trends and current status: 1999 – 2006. Afr Sang. 2007;10:1.
8. Salawu L, Murainah HA. Pre-donation screening of intending blood donors for antibodies to infectious agents in a Nigerian tertiary health institution: a pilot study. Afr J Med Sci. 2006 Dec;35(4):453–6.
9. Fowotade A, Agbede O, Salami A, Fayaemivo A, Efunshile A. Cytomegalovirus and HIV co-infection among patients accessing care in a tertiary care centre in Nigeria. Sex Transm Infect. 2013;89:A206–7.
10. Ojide CK, Ophori EA, Egghafoni NO, Omoti C. Seroprevalence of Cytomegalovirus (CMV) amongst voluntary blood donors in University of Benin Teaching Hospital (UBTH), Edo State, Nigeria. Br J Med Med Res. 2012;2(1):15–20.
11. Krajden M et al. Detection of cytomegalovirus in blood donors by PCR using the digene SHARP signal system assay: effects of sample preparation and detection methodology. J Clin Microbiol. 1996;34(1):29–33.
12. Oche AO Aminu M. The prevalence of malarial parasitaemia among blood donors in Ahmadu Bello University Teaching Hospital, Shika, Zaria, Nigeria. Niger J Med. 2012;21(4):445–9.
13. Gargouri J, Elleuch H, Karray H, Rekik H, Hammami A. Prevalence of anti-CMV antibodies in blood donors in the Sfax region (value in blood transfusion). Tunis Med. 2000 Aug-Sep;78(8-9):512–7.
14. Akinbami AA, Akamru A5, Adeyemo TA, Wright KO, Dada MO, Dosumu AO. Cytomegalovirus antibodies among healthy blood donors at Lagos University Teaching Hospital. South African Medical Journal. 2009;99(7):7–9.
15. Souza MA, Passos AM, Treipent A, Spada C. Seroprevalence of cytomegalovirus antibodies in blood donors in southern, Brazil. Rev Soc Bras Med Trop. 2010 Jul-Aug;43(4):359-61.
16. Hamdan HZ, Abdelbaki IE, Nasser NM, Adam I. Seroprevalence of cytomegalovirus and rubella among pregnant women in western Sudan. Virol J. 2011 May 11;8:217.
17. Chaudhri CN, Bindra MS. Seroprevalence of Cytomegalovirus among voluntary blood donors. MJAFI. 2009;65(3):252–4.
18. Wujicicka W, Gaj Z, Wilczyński J, Sobiela W, Spiewak E, Nowakowska D. Impact of socioeconomic risk factors on the seroprevalence of cytomegalovirus infections in a cohort of pregnant Polish women between 2010 and 2011 Eur J Clin Microbiol Infect Dis. 2014;10(14):2170–3. Epub 2014 Jun 6.
19. Abdel Messih AY et al. The degree of family replacement donors versus voluntary non-remunerated donors in an Egyptian population: a comparative study. Blood Transfus. 2014;12(2):159–66.
20. Dahourou H, Tapko JB, Kienou K, Nebie K, Sanou M. Recruitment of blood donors in Burkina Faso: how to avoid donations from family members.? Biologicals. 2010 Jan;38(1):39–42. Epub 2010 Feb 9.
21. Irena Seferi, Pal Xhumari, Genc Burazeri. Prevalence of cytomegalovirus in paid and unpaid blood donor population in Tirana. Int J Heal Sci. 2009;2(4):261.
22. Hake JM. Child bearing practices in northern Nigeria. Ibadan Univ Press. 1972. 1,5–11.
23. Madauci IH, Isah Y DB. Hausa customs. North Niger Publ Co. 1992. 1,2.
24. Welten SPM, Redeker A, Franken KL, Benedict CA, Yagita H, Wensveen F et al. CD27-CD70 costimulation controls T cell immune response to latent CMV infection. Am J Epidemiol. 2013 Jun;87(12):6851-65. Epub 2013 Apr 10.
25. Dowd JB, Haan MN, Blythe L, Moore K, Aiello AE. Socioeconomic gradients in immune response to latent infection. Am J Epidemiol. 2006 Jan 11;167(1):112-20. Epub 2007 Sep 14.
26. US Centers for Disease Control and Prevention Report (CDC). Health, United States, 2013 with special feature on prescription drugs. 2013. Accessed on 08/06/2016.
27. de Vries JJ, Koerver AM, Verkerk PH, Rusman L, Claas EC, Loeber Wensveen FM et al. Cytomegalovirus infection in the offspring of young women: exposure to young children and recent onset of sexual activity. Pediatrics. 2006;118(2):286–92.
28. Karen Fowler B, Robert Pass F. Risk factors for congenital Cytomegalovirus infection in the offspring of young women: exposure to young children and recent onset of sexual activity. Pediatrics. 2006;118(2):286–92.
29. Jeremiah ZA, Umoh RE, Adias TC. Subclinical leukopenia in a cross sectional study of Nigerian blood donors. J Blood Med. 2011;2:79–85. Epub 2011 May 11.
30. Leena MS, Shafee Mohd. Trend and prevalence of transfusion transmitted infections among blood donors in rural teaching institute, South India. J Pathol Nepal. 2012;2:203–6.
31. Xu L-H, Fang J-P, Weng W-J, Huang K, Guo H-X, Liu Y et al. Pure red cell aplasia associated with cytomegalovirus and Epstein-Barr virus infection in seven cases of Chinese children. Hematology. 2013 Jan;18(1):56-9. Epub 2012 Nov 19.
32. National Population Commission (NPC) FR of N. National Demographic and Health Survey (NDHS). CCF Macro Calvert. 2008. 33.
33. Taglietti F, Drapeau CM, Grilli E, Capone A, Noto P, Topino S, Petrosillo N. Hemolytic anemia due to acute cytomegalovirus infection in an immunocompetent adult: a case report and review of the literature. J Med Case Rep. 2010;4:334.
34. Lopo S, Vinagre E, Palminha P, Paixao MT, Nogueira P, Freitas MG. Seroprevalence to cytomegalovirus in the portuguese population, 2002-2003. Euro Surveill. 2011 Jun 23;16(25). pii: 19896.
35. Gordon-Smith EC MC. Acquired haemolytic anaemias. In: Hoffbrand AV, Catovski D, Tuddenharm EG (eds). Postgraduate haematology. 5th edition. London, UK. Blackwell Publ ltd. 2005. p151–68.
36. Almeida-Porada GD, Ascensão JL. Cytomegalovirus as a cause of pancytopenia. Leuk Lymphoma. 1996 Apr;21(3-4):217-23.
37. Marsh JC, Ball SE, Cavenagh J, Darbyshire P, Dokal I, Gordon-Smith EC, Keidan J, Laurie A, Martin A, Mercieca J, Killick SB, Stewart R, Yin JA; British Committee for Standards in Haematology. Guidelines for the diagnosis and management of aplastic anaemia. Br J Haematol. 2009 Oct;147(1):43-70. Epub 2009 Aug 10.

PAMJ is an Open Access Journal published in partnership with the African Field Epidemiology Network (AFENET)