Feasibility of carbon-ion radiotherapy for oral non-squamous cell carcinomas

IKAWA Hiroaki 1) • KOTO Masashi 1) • HAYASHI Kazuhiko 1)
TONOGI Morio 2) • TAKAGI Ryo 3) • NOMURA Takeshi 4)
TSUJI Hiroshi 1) • KAMADA Tadashi 1)

Abstract:
Background: This study evaluated carbon-ion radiotherapy (C-ion RT) for oral non-squamous cell carcinomas.

Methods: We retrospectively obtained data from 74 patients who underwent C-ion RT for oral malignancies between April 1997 and March 2016. The C-ion RT was administered in 16 fractions at a total dose of 57.6 Gy or 64.0 Gy (relative biological effectiveness).

Results: Forty-three patients had salivary gland carcinomas, 29 patients had mucosal melanoma, and 2 patients had other types of pathologies. The tumors were classified as T1-T3 (24 cases), T4a (21 cases), or T4b (29 cases). The median follow-up was 49 months. The 5-year rates were 78.8% for local control, 36.2% for progression-free survival, and 58.3% for overall survival. Although 10 patients developed grade 3 osteoradionecrosis after C-ion RT, all patients maintained their mastication and deglutition functions after sequestrectomy and prosthesis placement.

Conclusion: C-ion RT was effective for oral non-squamous cell carcinomas and had acceptable toxicities.

Key words: Carbon-ion radiotherapy (重粒子線治療), head and neck malignancies (頭頸部悪性腫瘍), inoperable oral non-squamous cell carcinoma (手術非適応口腔非扁平上皮癌), salivary gland carcinoma (唾液線癌), osteoradionecrosis (放射線性骨壊死)
口腔恶性腫瘍の標準治療は外科手術であり1-3)、手術非適応症例においては通常、放射線治療が行われる。口腔がんの約90%を占める扁平上皮癌は一般的にX線感受性が良好であるが、約6〜10%を占める非扁平上皮癌はX線抵抗性である。そのため、非扁平上皮癌症例に対するX線治療の役割は限られており4,5)、手術非適応の非扁平上皮癌症例に対する有効な治療法の確立が必要である。

炭素イオン線は、X線と比較して線エネルギー付与(linear energy transfer: LET)が高く、生物学的効果比(relative biological effectiveness: RBE)が大きいためX線抵抗性の腫瘍に対しても効果が期待される6)。頭頸部領域の唾液腺癌や粘膜悪性黒色腫などのX線抵抗性腫瘍に対する炭素イオン線を用いた重粒子線治療の有用性については、これまでにいくつか報告されている7-9)。

Kotoら8)は、重粒子線治療が施行された局所進行耳下腺癌患者46例(観察期間中央値、62か月)の5年局所制御率および全生存率は74.5%および70.1%であったと報告した。さらに、Kotoら9)は、重粒子線治療を受けて頭頸部粘膜悪性黒色素癌患者260例を評価し、5年局所制御率および全生存率は72.3%および44.6%であったと報告した。一方、放射線性顎骨壊死は頭頸部悪性腫瘍に対する重粒子線治療後の主な有害事象であり、Grade3以上の放射線性顎骨壊死は4.8%に認められた9)。

本研究の目的は口腔非扁平上皮癌に対する重粒子線治療の安全性と有効性を評価することである。

対象と方法

患者および腫瘍背景

本研究では1997年4月から2016年3月までの間に、口腔非扁平上皮癌に対し当院で重粒子線治療が施行された症例で、以下の基準を満たす症例を解析対象とした。(1)組織学的に確認された悪性腫瘍、(2)手術非適応または手術拒否例、(3)年齢15以上80歳以下、(4)N0-N2b M0、(5)肉眼的に大きさを測ることができる腫瘍、(6)過去に頭頸部領域に対する放射線治療歴が無く、放射線性顎骨壊死を含む有害事象の頻度は明らかではない。そこで、本研究の目的は口腔非扁平上皮癌に対する重粒子線治療の安全性と有効性を評価することである。11)

表1 患者および腫瘍背景 症例数(%)}

年 齢	中央値	56歳
範 囲	31〜79歳	
性 別	男 性	37(50)
	女 性	37(50)
療法の状態	初 発	58(78)
	再 発	16(22)
手術適応	あり	47(64)
	なし	27(36)
腫瘍部位	硬口蓋	52(70)
	風上皮	9(12)
	腫皮	8(11)
	舌	4(5)
	口底	1(1)
T 分類	T1	1(1)
	T2	2(3)
	T3	21(28)
	T4a	21(28)
	T4b	29(39)
N 分類	N0	70(95)
	N1-2b	4(5)
頭蓋底浸潤	あり	23(31)
	なし	51(69)

組織型

唾液腺癌	腺様囊胞癌	34(46)
腺癌	4(5)	
上皮癌	2(3)	
粘表皮癌	1(1)	
腺房細胞癌	1(1)	
多形腺腫由来癌	1(1)	
粘膜悪性黑色腫	29(39)	
その他	結締組織癌	2(3)
粘膜表皮癌	29(39)	

本研究はヘルシンキ宣言に基づき、当施設の倫理委員会の承認を得て行われ(17-022)、UMINに登録した(UMIN000029522)。
治療時の上顎骨、下顎骨および舌の再現性を確保するために、患者ごとにカスタムメイドのマウスピースが作成された13)。患者体位の位置精度を保つため、患者は固定具（モールドケア、アルケア株式会社、東京）で姿勢を保ち、低温熱可塑性シェル（シェルフィッター、株式会社クラレ、大阪）を用いて固定された。実際の重粒子線治療計画を行うために用いる治療計画用CTは2.5mmのスライス幅で撮影された。CT撮影中および照射中は患者に嚥下をしないよう指示した。肉眼的腫瘍体積（Gross tumor volume: GTV）は腫瘍の進展や存在が肉眼的に確認できる領域と定義され、造影MRIやCT画像、口腔内の内視鏡所見に基づき決定された。粘膜悪性黒色腫の症例では、GTVは内視鏡の所見に基づいてメラノーシスを含んで設定した。臨床的標的体積（Clinical target volume: CTV）はGTVに加えて臨床的に進展が疑われる部分を含む領域と定義され、GTVに最小5mmのマージンを加えて設定した。腺様囊胞癌の症例では神経周囲浸潤を考慮し、中枢側および末梢側の神経束をCTVに含めた。CTVに各回の照射における設定誤差や体内臓器の動きなどを考慮した最終的に照射する領域である計画標的体積（Planning target volume: PTV）はCTVに2〜3mmのマージンを加えて設定した。CTV、PTV、マージンは重要臓器（下顎骨、上顎骨、眼球、視神経、視交叉、脳幹など）に近接する場合には、必要に応じて調整された。

標的基準を100%とし、PTVは少なくとも90%線量域に含まれるように計画した。本研究では、73名はパッシブ照射、1名はスポットスキャン照射で治療された。3次元放射線治療計画はHIPLAN（放射線医学総合研究所、千葉、日本）14)およびXio-N（ELEKTA、ストックホルム、スウェーデン、三菱電機、東京、日本）を用いて行われた。2013年にHIPLANからXio-Nに変更された。

表2 治療背景

線量分割	57.6 Gy (RBE) / 16回	49例 (66%)
64.0 Gy (RBE) / 16回	25例 (34%)	
肉眼的腫瘍体積	中央値	33.85 cm³
箇 围	1.5〜186.1 cm³	
計画標的体積	中央値	148.3 cm³
箇 围	22.7〜369.2 cm³	

RBE：生物学的効果比

重粒子線治療後の経過観察は、治療後2年間は2〜3か月ごとに、それ以降は3〜6か月ごとにMRI、内視鏡検査を施行した。局所再発はPTV内に腫瘍の再增大を認めた場合と定義した。領域再発は領域リンパ節やPTV外に再発病変が認められた場合と定義した。急性期および晚期有害事象は有害事象共通用語規準（CTCAE）v 3.0を用いて評価した。

統計解析

生存期間は重粒子線照射開始日からカウントした。局所制御率、無増悪生存率、全生存率はKaplan-Meier法を用いて算出した。予後因子解析ではまずLog-rank検定を用いて評価した。p値が0.1未満であった因子について、多変量解析としてコックス比例ハザード分析を行った。放射線性骨壊死の発生に対する処方線量の影響をカイ二乗検定で評価した。有意水準はp値が0.05未満を有意差ありと判定し、両側検定で行った。統計解析にはSPSS software version 19（IBM Corp., Armonk, NY, USA）を使用した。

結果

観察期間中央値は49か月（範囲、9〜204か月）で、重粒子線治療は全症例で完遂された。治療期間中央値は28日（範囲、24〜31日）で、1週間以上、治療期間が延長した症例はなかった。追跡不能症例はなかった。

局所再発を認めた14例のうち、PTV内の再発が13例、PTVの辺縁再発が1例であった。救済手術は4例に行われた、緩和ケアが4例、化学療法が1例、ニボルマブが1例、サイバーナイフが1例、化学放射線療法が1例、緩和ケアが1例に行われた。3例は治療方法が不明であった。

領域再発を認めた14例のうち、頸部リンパ節転移は13例に認められ、咀嚼筋間隙の再発が1例に認めた。頸部リンパ節転移を認めた13例のうち、頸部郭清術が8例に施行され、頭部郭清術および化学療法が2例、頭部郭清術および化学放射線療法が1例、サイバーナイフが1例、緩和ケアが1例に行われた。

遠隔転移は30例に認められた。最終経過観察日までに原病死が32例、他因死が1例であった（肺炎2例、急性心不全1例、悪性リンパ腫1例、敗血症1例、原因不明5例）、原因不明死の5例のうち、最終診察日に局所再発4例、胃癌1例を認めた。

全症例の局所制御率、無増悪生存率、全生存率のカプランマイヤー曲線を示す（図1A）。3年および5年の局所制御率はそれぞれ84.2%（95%信頼区間：74.5〜93.8%）および78.8%（95%信頼区間：67.3〜90.4%）であった。3年および5年の無増悪生存率はそれぞれ47.8%（95%信頼区間
口腔非扁平上皮癌に対する重粒子線治療

3年および5年の全生存率はそれぞれ78.0%（95%信頼区間：68.4〜87.5%）および58.3%（95%信頼区間：45.9〜70.6%）であった。3年および5年の全生存率はそれぞれ75.2%（95%信頼区間：58.7〜91.7%）および87.4%（95%信頼区間：73.9〜100.0%）であった（図1B）。43例の唾液腺癌および29例の粘膜悪性黒色腫の5年全生存率は、それぞれ65.7%（95%信頼区間：49.5〜81.8%）および48.8%（95%信頼区間：29.7〜67.8%）であった（図1C）。代表的な口腔粘膜の悪性黒色腫症例を示す（図2）。

図1 カプランマイヤー曲線
A: 全例の局所制御率、無増悪生存率、全生存率（n = 74例）
B: 組織型分類による局所制御率：唾液腺癌および粘膜悪性黒色腫の5年局所制御率はそれぞれ75.2%および87.4%であった。
C: 組織型分類による全生存率：唾液腺癌および粘膜悪性黒色腫の5年全生存率は65.7%および48.8%であった。

図2 重粒子線治療症例
64歳、男性。上顎前部歯肉に粘膜悪性黒色腫を認め、一部で上顎骨に浸潤する所見を認めた。リンパ節転移や遠隔転移は認められず、臨床病期はT4aN0M0であった。根治的切除術を拒否したため、重粒子線治療を紹介された。
A: 重粒子線治療前の口腔内所見では上顎歯肉や上顎に粘膜悪性黒色腫を認めた。
B: 重粒子線治療の線量分布図：重粒子線治療は2門を用いて総線量57.6 Gy（RBE）16回で照射を行った。等線量曲線は、95%、90%、70%、50%、30%、10%を示している。計画標的体積は黄色の線で輪郭描出されている。
C: 治療後20か月後の口腔内所見で、明らかな腫瘍は認めなかった。放射線性顎骨壊死による疼痛や骨露出は認めなかった。
局所制御、無増悪生存、全生存に対するリスク因子解析

因子	局所制御	無増悪生存	全生存							
	単変量解析	多変量解析	単変量解析	多変量解析	単変量解析	多変量解析				
	症例数	p値	p値 (95% CI)	HR	p値	p値 (95% CI)	HR	p値	p値 (95% CI)	HR
年齢										
<56歳	36	0.310	0.737	0.021	0.245	1.493	0.023	0.151	1.602	0.842
≥56歳	38									
性別										
女性	37	0.139	0.012	1.969	0.023	0.151	1.602	0.842	3.048	
男性	37									
腫瘍の状態										
初発	58	0.549	0.836	0.860						
再発	16									
手術適応										
あり	47	0.750	0.785	0.953						
なし	27									
原発部位										
硬口蓋	52	0.208	0.830	0.481						
その他	22									
T分類										
T1–3	24	0.843	0.888	0.730						
T4a–4b	50									
N分類										
N0	70	0.286	0.134	0.321						
N1–2b	4									
頭蓋底浸潤										
なし	51	0.198	0.655	0.979						
あり	23									
組織型										
唾液腺癌	43	0.160	0.564	0.054	0.113	1.704	0.883	3.289		
粘膜悪性黑色腫	29									
その他	2									
肉眼的腫瘍体積										
<33.85 cm³	37	0.107	0.672	0.075	0.099	1.728	0.902	3.111		
≥33.85 cm³	37									
線量分割										
64.0 Gy (RBE)/16回	25	0.157	0.289	0.789						
57.6 Gy (RBE)/16回	49									

RBE：生物学的効果比 CI：信頼区間 HR：ハザード比

予後因子
局所制御、無増悪生存、および全生存の予後因子について、単変量および多変量解析の結果を示す（表3）。局所制御についてはすべての因子で有意差を認めなかったが、無増悪生存については、性別（男性）が単変量解析で有意なリスク因子であることが示され（p = 0.012）、多変量解析でも独立したリスク因子であった（ハザード比：1.969, 95%信頼区間：1.148－3.377, p = 0.014）。全生存については、年齢、性別、組織型、およびGTVが単変量解析で有意なリスク因子であることが示された。しかし、多変量解析ではいずれ...
口腔非扁平上皮癌に対する重粒子線治療

表 4 Grade 2 以上の急性期および晩期有害事象の発生件数

有害事象の内容	Grade 2	Grade 3	Grade 4	Grade 5	Total
急性期有害事象					
粘膜炎	21	43	0	0	64
皮膚炎	13	1	0	0	14
晩期有害事象					
放射線性顎骨壊死	27	10	0	0	37
開口障害	10	0	-	-	10
嘔下障害	6	0	0	0	6
粘膜炎	5	1	0	0	6
放射線性脳炎	5	0	0	0	5
視神経障害	1	0	3	-	4
中耳炎	0	3	0	0	3
口腔内出血	1	1	0	0	2
感覚障害	1	1	0	-	2
結内障	1	0	0	-	1
鼻出血	1	0	0	0	1
反回神経麻痺	1	0	0	0	1
頜面神経麻痺	1	0	-	-	1
軟部組織壊死	0	1	0	0	1
腎機能炎	0	1	0	0	1
白内障	0	1	-	-	1
（RBE）では 10.2%（49 例中 5 例）、処方線量 64.0 Gy (RBE) では 20%（25 例中 5 例）と、処方線量による有意差は認めなかった（p = 0.244）。骨除去術後、顎骨再建は下顎骨に対してプラケット再建が 3 例、上顎骨に対して骨移植（血管柄付き軟骨）が 1 例に行われた。顎骨再建が行われた 4 例のうち、2 例（下顎 1 例、上顎 1 例）は再建プレートおよび移植骨の除去が必要となったが、軟部組織は保たれた。そのため、これら 2 例も摂食嚥下機能を維持することができた。骨除去術後に上顎骨欠損を認めた 8 例のうち、顎骨インプラントの埋入は 2 例に行われた。6 例は顎義歯を使用することで摂食嚥下機能を維持した。2 例は義歯を使用せず摂食嚥下機能を維持することができた。

Grade 4 の視神経障害による患側失明は 3 例に認めた。全 3 例で、腫瘍は頭蓋内に浸潤し視神経に近接していた。健側の眼障害や視神経障害は認めなかった。

考 察

多くの非扁平上皮癌は X 線抵抗性であるにも関わらず、X 線治療は局所進行口腔非扁平上皮癌に対する治療選択肢の 1 つとされており 2, 3)、治療成績は不良である 4, 5)。そのため、重粒子線治療は、X 線抵抗性腫瘍に対する根治的な治療法として期待されている。本研究において、口腔非扁平上皮癌に対する重粒子線治療が良好な治療成績が得られ、有害事象も許容内であることから、手術不能な局所進行口腔非扁平上皮癌症例に対して重粒子線治療は有望な治療法となり得ることが示唆された。

口腔悪性腫瘍に対する放射線治療後に臨床的問題となる合併症の 1 つが放射線性顎骨壊死である。Kuhnt ら 15) は、頭頸部悪性腫瘍 775 例のうち 6.6%が X 線治療後に広範な外科的切除を必要とする重度の放射線性顎骨壊死を生じ、口腔悪性腫瘍症例では最も高頻度 (13.6%) であったと報告した。本研究において、重粒子線治療が行われた口腔恶性腫瘍症例における放射線性顎骨壊死の発生率は 13.5%であり、これは我々が以前に報告した頭頸部悪性腫瘍に対する重粒子線治療の放射線性顎骨壊死発生率 (4.8%) より高率であった 10)。重粒子線の線量分布特性により放射線性顎骨壊死の出現範囲は限局しているものの、重粒子線治療および X 線治療による Grade 3 の放射線性顎骨壊死は同様の発生率であった 16)。

上顎骨の重度放射線性顎骨壊死症例では一般的に上顎骨除去術が行われ、術後は上顎骨欠損となることが多く、その後は摂食嚥下機能障害が出現する。しかし、このような症例における上顎骨欠損の大部分は顎義歯を用いることにより、摂食嚥下機能を回復することができる 17)。本研究でも、顎骨除去術後の上顎骨欠損患者 8 例中 6 例が、顎義
歯を使用することにより摂食嚥下機能を維持することがで
きた。
下顎骨の重度放射線性顎骨壊死症例に対しては、壊死組
織の外科的切除と即時再建が一般的に行われている20).
しかし、放射線治療後の再建術は放射線照射による血流障
害により遊離皮弁の生着率が悪く、皮弁の合併症発生率が
増加するとされている21).また、放射線治療を受けた症例では、放射線療法または根治治療としての選択肢とされており、
Woshouら21)は口腔粘膜悪性黒色腫21例に対するX線治
療の3年全生存率は0%であったと報告した。我々は口腔
粘膜悪性黒色腫19例に対する重粒子線治療単独の5年局
所制御率および全生存率が98.9%および77.1%であったと
報告している。しかし、口腔粘膜悪性黒色腫に対する免疫
チェックポイント阻害薬の有効性は報告されている3)、
Karlssonら32)は切除不能なIII/IV期の皮膚悪性黒色腫
において、免疫チェックポイント阻害薬はがんワクチン療
法や化学療法と比較して生存率や腫瘍縮小効果に対して有
効であることを報告した。また、放射線治療によるがん抗
原の提示が免疫チェックポイント阻害薬による腫瘍免疫の
賦活化を増強する可能性が指摘されている。今後、口腔粘
膜悪性黒色腫症例において、重粒子線治療に免疫チェック
ポイント阻害薬を併用することによって、延命が期待できる可能性が
ある。

本研究では、局所制御率、無増悪生存率および全生存率
について有意な線量依存性は認められなかった。しかし
ながら、5年局所制御率では64.0 Gy (RBE)群85.2%，57.6
Gy (RBE)群75.8%と、高線量群はより良好な治療成績で
あった。したがって、高線量群はより良好な治療成績で
あった。したがって、高線量群を用いることは、口腔非
扁平上皮癌の局所制御率を向上させる可能性がある。
Grade 3以上の放射線性顎骨壊死の発生率では、
64.0 Gy (RBE)を用いた症例は57.6 Gy (RBE)を用いた症
例と比較して高率であったが、統計的に有意差は認められ
なかった(p=0.244)。さらに、Grade 3の放射線性顎骨壊
死が出現した場合でも、重粒子線の線量集中特性により放
射線性顎骨壊死の領域は限局されていた。その結果、とく
に上顎骨放射線性顎骨壊死に対しては、腐骨除去術後の補

綴によって摂食嚥下機能を維持することが可能であった。したがって、口腔非扁平上皮癌に対する重粒子線治療の線量体積因子が危険因子であることが判明しており、50Gy (RBE) 以上照射された正常顎骨部の体積が放射線性顎骨壊死の危険因子であることが明らかとなっている。スポットスキャニング照射法や回転ガントリーを用いた治療法などの技術的進歩は、高線量照射される顎骨の体積を減少させ、放射線性顎骨壊死のリスクを低減させる可能性がある。

重粒子線治療は、手術不能な口腔非扁平上皮癌に対する有望な治療法として認められ、口腔・咽喉頭の扁平上皮癌を除く頭頸部悪性腫瘍に対する重粒子線治療は、2018年4月より日本の公的医療保険制度に適用された。

本研究では、口腔非扁平上皮症例、主に口腔小唾液腺癌と口腔粘膜悪性黒色腫に対する重粒子線治療の良好な治療効果と安全性が示された。放射線性顎骨壊死は留意すべき有害事象であるが上顎の補綴や下顎の軟組織再建により患者の摂食嚥下機能は維持される可能性がある。本論文に関して、開示すべき利益相反状態はない。

引 用 文 献

1）National Comprehensive Cancer Network practice guidelines in oncology, version 2.2017, pp. OR-1 to OR-3. https://www.nccn.org/professionals/physician_gls/f_guidelines.asp. Accessed July 7, 2017.

2）National Comprehensive Cancer Network practice guidelines in oncology, version 2.2017, pp. SALI-1 to SALI-4, 2017. https://www.nccn.org/professionals/physician_gls/f_guidelines.asp. Accessed July 7, 2017.

3）National Comprehensive Cancer Network practice guidelines in oncology, version 2.2017, pp. MM-1 to MM-4, 2017. https://www.nccn.org/professionals/physician_gls/f_guidelines.asp. Accessed July 7, 2017.

4）Yorozu A, Sykes AJ, et al: Carcinoma of the hard palate treated with radiotherapy: a retrospective review of 31 cases. Oral Oncol 37: 493-497, 2001.

5）Wushou A and Zhao VJ: The management and site-specific prognostic factors of primary oral mucosal malignant melanoma. J Craniofac Surg 26: 430-434, 2015.

6）Imanwa T, Kanematsu N, et al: Reformulation of a clinical-dose system for carbon-ion radiotherapy treatment planning at the National Institute of Radiological Sciences, Japan. Phys Med Biol 60: 3271-3286, 2015.

7）Ikawa H, Koto M, et al: Prognostic factors of adenoid cystic carcinoma of the head and neck in carbon-ion radiotherapy: The impact of histological subtypes. Radiat Oncol 123: 387-93, 2017.

8）Koto M, Hasegawa A, et al: Definitive carbon-ion radiotherapy for locally advanced parotid gland carcinomas. Head Neck 39: 724-9, 2017.

9）Koto M, Demizu Y, et al: Multicenter Study of Carbon-Ion Radiation Therapy for Mucosal Melanoma of the Head and Neck: Subanalysis of the Japan Carbon-Ion Radiation Oncology Study Group (J-CROS) Study (1402 HN). Int J Radiat Oncol Biol Phys 97: 1054-60, 2017.

10）Sasahara G, Koto M, et al: Effects of the dose-volume relationship on and risk factors for maxillary osteoradionecrosis after carbon ion radiotherapy. Radiat Oncol 9: 92, 2014.

11）International Classification of Diseases for Oncology, Third Edition, First Revision. World Health Organization, 2013.33-34. https://apps.who.int/iris/bitstream/handle/10665/96612/9789241548496_eng.pdf?ua=1?sequence=1. Accessed June 19, 2020.

12）Sobin LH, Gospodarowicz MK, et al: International Union Against Cancer. TNM Classification of Malignant Tumors, 7th ed. John Wiley & Sons, New York, 2009, 22-26.

13）Ikawa H, Koto M, et al: A custom-made mouthpiece incorporating tongue depressors and elevators to reduce radiation-induced tongue mucositis during carbon-ion radiation therapy for head and neck cancer. Pract Radiat Oncol 8: e27-31, 2018.

14）Endo M, Koyama-Ito H, et al: HIPLAN: a heavy ion treatment planning system at HIMAC. J Jpn Soc Ther Radiol Oncol 8: 231-238, 1996.

15）Kuhnt T, Stang A, et al: Potential risk factors for jaw osteoradionecrosis after radiotherapy for head and neck cancer. Radiat Oncol 11: 101, 2016.

16）Komada T: The Characteristics of Carbon-Ion Radiotherapy. In Tsuji H, Komada T, Shirai T, Noda K, Tsuji H, Karasawa K, editors; Carbon-Ion Radiotherapy: Principles, Practices, and Treatment Planning. Springer Science & Business Media, Tokyo, 2013, p13-16.

17）Davison SP, Sherris DA, et al: An algorithm for maxillectomy defect reconstruction. Laryngoscope 108: 215-219, 1998.

18）Matsuyama M, Tsukiyama Y, et al: Objective clinical assessment of change in swallowing ability of maxillectomy patients when wearing obturator prostheses.
19) Sullivan M, Gaebler C, et al: Impact of palatal prosthodontic intervention on communication performance of patients’ maxillectomy defects: a multilevel outcome study. Head Neck 24: 530-538, 2002.

20) Jacobson AS, Buchbinder D, et al: Paradigm shifts in the management of osteoradionecrosis of the mandible. Oral Oncol 46: 795-801, 2010.

21) Deutsch M, Kroll SS, et al: Influence of radiation on late complications in patients with free fibular flaps for mandibular reconstruction. Ann Plast Surg 42: 662-664, 1999.

22) Seol GJ, Jeon EG, et al: Reconstruction plates used in the surgery for mandibular discontinuity defect. J Korean Assoc Oral Maxillofac Surg 40: 266-271, 2014.

23) Baumann DP, Yu P, et al: Free flap reconstruction of osteoradionecrosis of the mandible: a 10-year review and defect classification. Head Neck 33: 800-807, 2011.

24) Hanasono MM, Zevallos JP, et al: A prospective analysis of bony versus soft-tissue reconstruction for posterior mandibular defects. Plast Reconstr Surg 125: 1413-1421, 2010.

25) Ikawa H, Koto M, et al: The efficacy of a custom-made mouthpiece with spacer to reduce osteoradionecrosis in carbon-ion radiation therapy for tongue-base tumor. Adv Radiat Oncol 4: 15-19, 2019.

26) Copelli C, Bianchi B, et al: Malignant tumors of intraoral minor salivary glands. Oral Oncol 44: 658-663, 2008.

27) Mićce T, Robitcky IK, et al: Advanced malignant minor salivary glands tumors of the oral cavity. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108: 81-89, 2009.

28) Agarwal JP, Jain S, et al: Intraoral adenoid cystic carcinoma: prognostic factors and outcome. Oral Oncol 44: 986-993, 2008.

29) Lee RJ, Lee SA, et al: Determining the epidemiologic, outcome, and prognostic factors of oral malignant melanoma by using the Surveillance, Epidemiology, and End Results database. J Am Dent Assoc 148: 288-297, 2017.

30) Naganawa K, Koto M, et al: Long-term outcomes after carbon-ion radiotherapy for oral mucosal malignant melanoma. J Radiat Res 58: 517-22, 2017.

31) Del Vecchio M, Di Guardo L, et al: Efficacy and safety of ipilimumab 3mg/kg in patients with pretreated, metastatic, mucosal melanoma. Eur J Cancer 50: 121-127, 2014.

32) Robert C, Long GV, et al: Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372: 320-330, 2015.

33) Karlsson AK and Saleh SN: Checkpoint inhibitors for malignant melanoma: a systematic review and meta-analysis. Clin Cosmet Investig Dermatol 10: 325-339, 2017.

34) Shiomi M, Mori S, et al: Comparison of carbon-ion passive and scanning irradiation for pancreatic cancer. Radiother Oncol 119: 326-330, 2016.

35) Iwata Y, Fujimoto T, et al: Beam commissioning of a superconducting rotating gantry for carbon-ion radiotherapy. Nucl Instrum Methods Phys Res A 834: 71-80, 2016.