A Quadruple Knockout of lasIR and rhlIR of Pseudomonas aeruginosa PAO1 That Retains Wild-Type Twitching Motility Has Equivalent Infectivity and Persistence to PAO1 in a Mouse Model of Lung Infection

James J. Lazenby1a, Phoebe E. Griffin2, Jennelle Kyd3ab, Cynthia B. Whitchurch4*, Margaret A. Cooley3a*

1 School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia, 2 School of Medicine, University of Tasmania, Hobart, Australia, 3 CQUniversity, Rockhampton, Australia, 4 ithree institute, University of Technology, Sydney, Sydney, Australia

Abstract

It has been widely reported that quorum-sensing incapable strains of Pseudomonas aeruginosa are less virulent than wild type strains. However, quorum sensing mutants of P. aeruginosa have been shown to develop other spontaneous mutations under prolonged culture conditions, and one of the phenotypes of P. aeruginosa is that is frequently affected by this phenomenon is type IV pili-dependent motility, referred to as twitching motility. As twitching motility has been reported to be important for adhesion and colonisation, we aimed to generate a quorum-sensing knockout for which the heritage was recorded and the virulence factor production in areas unrelated to quorum sensing was known to be intact. We created a lasIR/rhlIR quadruple knockout in PAO1 using a published technique that allows for the deletion of antibiotic resistance cartridges following mutagenesis, to create an unmarked QS knockout of PAO1, thereby avoiding the need for use of antibiotics in culturing, which can have subtle effects on bacterial phenotype. We phenotyped this mutant demonstrating that it produced reduced levels of protease and elastase, barely detectable levels of pyoverdin and undetectable levels of the quorum sensing signal molecules N-3-oxododecanoyl-L-homoserine lactone and N-butyryl homoserine lactone, but retained full twitching motility. We then used a mouse model of acute lung infection with P. aeruginosa to demonstrate that the lasIR/rhlIR knockout strain showed equal persistence to wild type parental PAO1, induced equal or greater neutrophil infiltration to the lungs, and induced similar levels of expression of inflammatory cytokines in the lungs and similar antibody responses, both in terms of magnitude and isotype. Our results suggest, in contrast to previous reports, that lack of quorum sensing alone does not significantly affect the immunogenicity, infectiveness and persistence of P. aeruginosa in a mouse model of acute lung infection.

Introduction

The role of quorum sensing (QS) and biofilm formation in Pseudomonas aeruginosa biology is clear, and previous reports have suggested that knocking out QS systems in P. aeruginosa results in decreased virulence in animal models of infection [1,2,3,4,5] and has impacts on bacterial growth rate in culture. The deletion of both the synthase genes and the responder genes for both 3-oxo-N-dodecanoyl-L-homoserine lactone (3OC12HSL) and the other principal homoserine lactone QS signal produced by P. aeruginosa, N-butyryl-L-homoserine lactone (C4HSL) should result in a quadruple knockout that will not respond to or produce 3OC12HSL or C4HSL. Previously reported lasI/rhlI knockouts including PAO1-JP2 have been reported to be less virulent than wild type P. aeruginosa PAO1 in a range of animal models [3,4,5,6,7,8,9,10,11]. However, QS mutants of P. aeruginosa have been shown to develop spontaneous mutations under prolonged culture conditions [12,13], and one of the phenotypes of P. aeruginosa that is frequently affected by this phenomenon is type IV pili-dependent motility, referred to as twitching motility [12]. In fact, twitching motility was originally reported to be controlled by QS [14] but was later confirmed to be independently regulated [15]. Interestingly, JP-2 has been reported to be incapable of twitching motility [14] which suggests that this strain is likely to contain secondary mutations in a gene (or genes) required for twitching motility. It has been shown that, unlike the PAO1 parental strain, a PAO1 mutant with defective pili is unable to bind to respiratory epithelial cells and cannot induce production of the proinflammatory and neutrophil-recruiting chemokine interleukin (IL)-8 [16]. It has also been reported in many studies that...
type-IV pili are integral for adherence to and colonization of mucosal surfaces [reviewed in Hahn et al. [17]]. It is therefore important that twitching motility remains intact in any QS knockout P. aeruginosa used for in vivo infection studies assessing the role of QS in bacterial infectivity and persistence.

Because of the inherent and spontaneous mutations that occur during standard laboratory subculturing of P. aeruginosa, we created a lasR::TetR knockout in a strain for which the heritage was recorded and the virulence factor production in areas unrelated to QS was known to be intact. We used a technique described by Hoang et al. [18], which allows for the deletion of antibiotic resistance cassettes following mutagenesis, to create an unmarked QS knockout of PAO1. Such a knockout strain has two benefits: firstly an unmarked knockout can be further genetically modified without the need for multiple resistance cassettes and secondly, it has been found that subinhibitory concentrations of antibiotics can profoundly influence the phenotype of P. aeruginosa [19,20,21]. A knockout strain that does not require antibiotic selection for maintenance of mutation would allow the comparison of QS knockout strains to isogenic wild-type bacteria without any possibility of phenotypic changes being generated in the bacteria because of the presence of antibiotics in the culture medium.

After creation of the quadruple lasIR::TetR knockout, we tested it in a mouse model of P. aeruginosa lung infection to compare the course of infection with that of the parental PAO1. We found that the knockout showed equal persistence, induced comparable or greater inflammation, and resulted in identical antibody responses in terms of magnitude and immunoglobulin isotype to parental PAO1.

Materials and Methods

Bacterial Strains, Plasmids and Media

The wild type P. aeruginosa used as the basis for this study was PAO1 strain ATCC 15692. E. coli strain DH5α was used in all genetic manipulations and in the preparation of DNA sequencing templates, and E. coli S17-1 was used as the donor strain in bacterial conjugation for allelic exchange mutagenesis. All bacterial strains used in this study are listed in Table 1.

P. aeruginosa and E. coli were cultured in LB-Lennox broth (LB) or cation-adjusted Mueller Hinton broth (CAMHB) or on LB solidified with 1.5% agar (LBA). Antibiotic concentrations used for selection of E. coli were 100 μg/mL ampicillin, 12.5 μg/mL tetracycline, and 50 μg/mL kanamycin and for P. aeruginosa were 250 μg/mL carbenicillin, and 200 μg/mL tetracycline.

Construction of PAO1ΔlasIR, PAO1ΔrhlIR, and PAO1ΔaslIRrhlIR

Unmarked deletion mutants of PAO1 were constructed using the Flp-FRT recombination system for site specific excision of chromosomal sequences described [18]. Briefly, 1 kb sections that flanked the lasIR and rhlIR region(s) to be deleted from PAO1 chromosomal DNA were PCR amplified and cloned into pGEMTeasy and sequenced to ensure that no mutations in these flanking regions had been introduced by PCR. The upstream and downstream flanking regions of the las or rhl regions were ligated and then cloned into pOK12 (creating pJL005 and pJL006 respectively) and the FRT::TetR cassette from pCBW108 cloned into the internal SacI site resulting in pOK12 constructs pJL007 and pJL008 containing the flanking regions of lasIR or rhlIR regions separated by the FRT::TetR cassette. The resultant clones were then digested with SpeI and cloned into the suicide vector pRIC380. This vector carries the genes sacBR, which promote sensitivity to sucrose, and oriT which enables conjugation transfer.

The resultant clones were transformed into the E. coli donor strain S17-1 in preparation for mating with P. aeruginosa PAO1. Following conjugation, the transconjugants were plated onto LBA without sodium chloride and supplemented with 5% sucrose and containing tetracycline to select for colonies in which the plasmid had excised while leaving the homologously recombined lasIR::TetR or rhlIR::TetR alleles in the chromosome. The TetR gene was then excised using the pFLP2 plasmid that expresses the Flp recombinase as described previously [19] creating P. aeruginosa strains with the lasIR or rhlIR regions deleted and replaced with an FRT sequence. Allelic exchange deletion mutants were confirmed by both PCR and Southern hybridization of isolated chromosomal DNA. A list of all plasmids used in this study is given in Table 1 and all primers used are listed in Table 2.

Assays of Bacterial Phenotypes

Growth curves. P. aeruginosa strains were cultured overnight in CAMHB at 37°C shaking at 250 r.p.m. Quadruplicate 200 μL aliquots of 1:100 dilutions of overnight cultures were added to wells of a sterile 96 well plate (BD Biosciences, Mountview, CA), which was then incubated for 10 h at 37°C shaking in a BIO-TEK Synergy™ HT microplate luminometer (BIO-TEK, Winooski, VT, USA). Optical density readings (605 nm) were taken every 20 min and subtracted from the blank (CAMHB only).

Extraction of acylated homoserine lactones (AHLs) from culture supernatant and AHL bioluminescence assay. The supernatant of 8 h cultures of P. aeruginosa strains cultured in LB at 37°C shaking at 250 r.p.m. was collected by centrifuging the culture at 3000 × g for 10 min. The supernatant was sterilised though a 0.22 μm filter and AHLs extracted using a method adapted from that described by Rice et al. [22]. Equal volumes of culture supernatant and 0.01% glacial acetic acid in ethyl acetate were mixed, centrifuged at 10000 × g for 2 min and the organic layer containing the AHL retained. This was repeated at least three times and the collected organic phase dried overnight at room temperature. The sediment was resuspended in 50 μL of ethyl acetate.

3OC12HSL and 4-HSL were quantified using bioluminescence reporter strains as described previously [23,24]. Briefly, 20 μL of culture supernatant or AHL standards were added to the wells of a white opaque microtiter plate (PerkinElmer, Wellesley, MA, USA), and 180 μL of mid-log phase cultures of E. coli containing pSB1073 or pSB406 was added to the microtiter plate, gently agitated and incubated at room temperature for 1 h, after which the luminescence was measured using a Veritas Microplate Luminometer (Veritas, Sunnyvale, CA) or a BIO-TEK Synergy™ HT microplate luminometer (BIO-TEK). The concentration of AHL in culture supernatants was determined using dilutions of synthetic AHL as a standard curve. The results were standardized to the expression from a vehicle control (the limit of detection for the assay), and because the interassay variation was large, the results are presented as a percentage of the wild-type.

Twitching motility assay. Twitching motility was assayed using the subsurface stab assay described previously [25]. Briefly, the P. aeruginosa strain to be tested was stab inoculated through a plate of LB solidified with 1% agar to the underlying Petri dish and incubated at 37°C with saturated humidity. After 20 h at 37°C the diameter of the interstitial biofilm was measured.

Rhamnolipid synthesis assay. Triplicate 5 μL aliquots of overnight culture were applied to a dry rhamnolipid assay agar (prepared as described by Kohler et al. [26]) and allowed to dry. The plate was incubated at 37°C for 10 h then chilled overnight at
Table 1. Bacterial strains and plasmids used in this study.

Bacterial strains	Relevant characteristic(s)	Source or reference
E. coli DH5α	recA endA1 gyrA96 hsdR17 thi-1 supE44 relA1 φ80 dlocZΔM15	Invitrogen
S17-1	thi pro hsdR recA chr:RP4-2	[44]
P. aeruginosa	Wild type P. aeruginosa strain ATCC 15692	American Type Culture Collection
PAO1ΔlasIR	PAO1 with deletion of lasIR region	This study
PAO1ΔrhlIR	PAO1 with deletion of rhlIR region	This study
PAO1ΔlasIRrhlIR	PAO1ΔrhlIR with deletion of lasIR region	This study

Plasmids

- pPS854: FRT cassette vector [18]
- EZ-TN5:<TET-1>: Source of TetR gene Epicenter
- pGEM-T: E. coli cloning vector; ApR Promega
- pOK12: E. coli cloning vector; KmR [45]
- pRIC380: P. aeruginosa suicide vector; ApR [46]
- pFLP2: [18]
- pSB406: C4HSL biosensor plasmid [23]
- pSB1073: 3OC12HSL biosensor plasmid [24]
- pCBW108: pPS854 containing 1.4 Kb TetR gene amplified from EZ-TN5:<TET-1>: cloned into EcoRI site. Source of FRT/TetR cassette [47] This study
- pJL001: 1 Kb lasR upstream region amplified from PAO1 genome in pGEMTeasy; ApR This study
- pJL002: 1 Kb las downstream region amplified from PAO1 genome in pGEMTeasy; ApR This study
- pJL003: 1 Kb rhlR upstream region amplified from PAO1 genome in pGEMTeasy; ApR This study
- pJL004: 1 Kb rhl downstream region amplified from PAO1 genome in pGEMTeasy; ApR This study
- pJL005: pOK12 containing lasR upstream region and lasl downstream region ligated at SacI sites and cloned into Xhol and Ndel sites of pOK12; KmR This study
- pJL006: pOK12 containing rhlR upstream region and rhl downstream region ligated at SacI sites and cloned into Xhol and Ndel sites of pOK12; KmR This study
- pJL007: pJL005 containing 1.4 Kb FRT/TetR cassette from pCBW108 cloned into SacI site; KmR, TcR This study
- pJL008: pJL006 containing 1.4 Kb FRT/TetR cassette from pCBW108 cloned into SacI site; KmR, TcR This study
- pJL009: 3.4 Kb SpeI insert from pJL008 cloned into pRIC380; ApR, TcR This study
- pJL010: 3.4 Kb SpeI insert from pJL009 cloned into pRIC380; ApR, TcR This study

doi:10.1371/journal.pone.0060973.t001

Table 2. Primers used in this study.

Oligonucleotide	Sequence 5’–3’	Description
TetR Forward	GCGAAATTCACCTGAAGTCAGCCCCCATAGG	EcoRI site inserted at 5’ end (italics)
TetR Reverse	CCGAATTCCTCAGAGTCAGCCCCCATAGG	EcoRI site inserted at 5’ end (italics)
lasR Upstream Flanking Region Forward	CCTCAGCCGGATGCTGAGCAGAACCAAGG	XhoI site inserted at 5’ end (italics).
lasR Upstream Flanking Region Reverse	GAGCTCCGGATGCTGAGCAGAACCAAGG	SacI site inserted at 5’ end (italics).
lasl Downstream Flanking Region Forward	GGGTACCCTCGAGACACTGAGCTGAGGATTGTTGC	SacI site inserted at the 5’ end (italics).
lasl Downstream Flanking Region Reverse	CATATGCTGGACCAAGCTGAGCTGAGG	Ndel site inserted at the 5’ end (italics).
rhlR upstream Flanking Region Forward	GGTACCAGCCGGATGCTGAGCAGAACCAAGG	KpnI site inserted at the 5’ end (italics).
rhlR Upstream Flanking Region Reverse	GAGCTCCGGATGCTGAGCAGAACCAAGG	SacI site inserted at the 5’ end (italics).
rhlI Downstream Flanking Region Forward	GGGTACCCTCGAGACACTGAGCTGAGG	SacI site inserted at the 5’ end (italics).
rhlI Downstream Flanking Region Reverse	CATATGCTGGACCAAGCTGAGCTGAGG	Ndel site inserted at the 5’ end (italics).

doi:10.1371/journal.pone.0060973.t002
4°C. The plates were then examined for the presence or absence of a zone of clearance.

Skim milk protease assay. This method was adapted from that described by Sokol et al. [27]. In brief, three 10 µL droplets of overnight broth culture were applied to a dry skim milk agar plate and grown for 18 h at 37°C. The zone of clearance was measured with the diameter of the colony subtracted.

Elastase assay. The determination of elastolytic activity of 16 h *P. aeruginosa* cultures was performed using a protocol based on those described by Ohman et al. [28] and Rust et al. [29]. In brief, *P. aeruginosa* strains were cultured in CAMHB and then centrifuged at 3000 x g for 10 min. The supernatant was then filter sterilized using a 0.22 µm syringe filter and either used immediately or stored at 4°C for up to 24 h. In triplicate, 10 mg of elastin Congo red (ECR), 500 µL of ECR buffer (0.1 M TrisCl and 10 mM CaCl₂) and either 500 µL of the sterile spent supernatants or 500 µL of a CAMHB negative control were added to 5 mL polystyrene tubes (BD Falcon®, BD Biosciences) and incubated at 37°C for 6 h with 250 r.p.m. shaking. The incubation was stopped by the addition of 100 µL of 0.12 M Na₂EDTA and the remaining solids were pelleted by centrifugation at 3000 x g for 10 min. The soluble Congo red in the aqueous supernatant was quantitated using duplicates of each supernatant in a 96-well microtiter plate (BD Biosciences) with the CAMHB negative control as a blank and measuring the absorbance at 495 nm in a Biomek spectro-photometer (Beckman Coulter, La Brea, CA, USA).

Pyocyanin extraction and assay. The pyocyanin production from 16 h cultures of *P. aeruginosa* was determined by first extracting the pyocyanin from the culture supernatant as described by Hassett et al. [30]. To assay pyocyanin, duplicate 100 µL aliquots of the HCl extraction were added to microtiter wells and the absorbance at 520 nm was measured in a Biomek spectro-photometer (Beckman Coulter).

Mouse Lung Infection Models

Ethics statement. All mouse studies were conducted in accord with the Australian Code of Practice for the Care and Use of Animals for Scientific Purposes, and were approved by the Animal Experimentation and Ethics committees of CQU (approval No. A09/02-242) and University of New South Wales (approval Nos. 04/105A and 03/10). Animals were anesthetized for infection as described below, and were euthanized for tissue collection. All experiments were designed to use the minimum number of animals consistent with statistical validity, and all animals were monitored daily and euthanized if signs of distress were detected.

Acute infection model. For studies of acute infection and inflammation, groups of five male BALB/c mice 8–12 weeks old (ARC, Perth, WA, Australia) were inoculated intratracheally at day 0 with 1 x 10⁶ colony forming units CFU) of PAO1 or PAO1ΔlasIRΔrhlIR in 20 µL PBS containing 0.03% ethanol. A group of mice were also sham treated (anesthetized and cannula inserted, but no treatment given). Mice were sedated with a tail vein injection of Alfaxan at 12 mg/kg body weight (90 mg alphaxalone, 30 mg alphadolone acetate; Schering-Plough Animal Health, Baulkham Hills, NSW, Australia), and treatment administered by means of a 20 G paediatric cannula (Terumo Medical, Macquarie Park, NSW, Australia) inserted in the trachea. Mice from all treatment groups were then sacrificed at 4 h, 24 h or 10 days after infection, and lung tissue and BAL collected for analysis. For analysis of antibody responses, groups of five mice were given 1 x 10⁶ CFU of PAO1 or PAO1ΔlasIRΔrhlIR in a 0.5% agar slurry administered intratracheally by the method described above. These mice were bled by cardiac puncture under terminal anesthesia at day 21. Blood was collected in a 1.1 mL Z-gel tube (Sarstedt, Mawson Lakes, SA, Australia) that was then left at room temperature for at least 30 min before centrifuging at 2000 x g for 10 min. The serum was collected and kept frozen at −20°C until use for evaluation of anti- *Pseudomonas* serum antibody concentrations.

Bronchoalveolar lavage (BAL). To obtain BAL, 0.5 mL of sterile PBS was slowly flushed into the lungs of euthanized mice, and as much as possible of the PBS was recovered. Differential cell counts were performed on cytopsin preparations of the BAL fixed with DPX mountant (Scharlau, Barcelona, Spain) and stained using the Diff-Quik Staining Kit 64851 (a modified version of the Wright’s stain; Veterinary Medical Surgical Supply, Maryville, NSW, Australia) according to the manufacturer’s instructions.

Bacterial enumeration in the lung tissue and BAL. A section of the mouse lung was homogenized in 2 mL sterile PBS using a tissue homogenizer. The bacterial CFU in the BAL fluid and homogenized lung were determined by making serial dilutions and plating onto LBA.

Preparation of cDNA from mouse lung tissue. Total RNA was extracted from the lung tissue using TRIzol® Reagent (Invitrogen, Mulgrave, VIC, Australia) with a maximum of 100 µg of tissue per mL of TRIzol® Reagent. Tissue was removed from RNAlater® storage solution and homogenized by bead dissociation in TRIzol® using 2.4 mm zirconia/silica beads (Dinimage Scientific, St Helens, TAS, Australia). Beads and cellular debris were pelleted by centrifugation at 10 000 x g for 10 min at 4°C. Approximately 1 mL of supernatant was removed to a fresh tube and total RNA extracted as per the TRIzol® protocol. Isolated RNA was resuspended in 50 µL of DEPC-treated water (Ambion) and DNase treated using a TURBO DNA-free kit™ (Ambion) according to the manufacturer’s instructions. The concentration and purity of recovered RNA was quantified using a NanoDrop™ 1000 spectrophotometer (Thermo Scientific, Scoresby, VIC, Australia). cDNA was synthesized from 500 ng of total RNA using the Superscript™ III Reverse Transcriptase kit according to the manufacturer’s instructions.

Quantitative reverse transcription real time PCR (RT-qPCR) for inflammatory markers in mouse lung. Primer sequences for reference gene β-actin [31], TNFz, IL1β (both [32]), and II-6 [33]) have been previously published. Primer sequences for mouse keratinocyte cytokine (KC) (analogue of human IL-8) (forward 5’-GCTGGGATCTCCTCAAGAA-3’, reverse 5’- AGTGTCGATCAGAGCAGTCT-3’) were designed from GenBank sequences using Primer 3-web version 0.3.0 [34]. Primer pairs were checked for reaction efficiency using triplicate serial dilutions of template cDNA with efficiency calculated as described in Pfaffl, 2001 [35]. Quantitative PCR (qPCR) was performed using the Platinum®SYBR®Green qPCR Supermix-UDG (Invitrogen). Each qPCR reaction contained 5 µL of cDNA diluted 1:5–1:10 with DEPC-treated H₂O, and final primer concentrations of 300 nM. The reactions were performed on a RotorGene 3000® (Corbett Life Science) with an initial incubation of 50°C for 10 min then 95°C for 10 min followed by 40 reaction cycles of 95°C for 15 sec, 60°C for 30 sec, and acquiring fluorescence at 72°C for 20 sec. All products underwent melt curve analysis. Replicates showing errors were omitted from further analysis. The average of the technical replicates was used to determine the ratio of the target to the reference genes (β-actin and GAPDH) and corrected for the primer efficiency as described by Pfaffl [35]. Interassay variation was calculated by comparing the Ct values of a standard incorporated into all qPCR reactions. A coefficient of variation was calculated using PRISM® v.5 software (Graph Pad...
Detection of anti-\textit{P. aeruginosa} Antibodies by Enzyme-linked Immunosorbent Assay (ELISA)

To prepare PAO1 sonicate to use as the capture antigen for the ELISA, PAO1 bacterial suspension was autoclaved for 15 min at 121°C and 15 kPa. The suspension was sonicated on ice three times with a Branson Sonifier® S250D digital sonicator using a fine point probe (Branson Ultrasonics Corp., Danbury, CT, USA) before the cellular debris was pelleted at 4°C and 3000× g for 10 min. The supernatant was then aliquotted and stored at −80°C. A bicinchoninic acid assay was used to determine the protein concentration. The concentration of the unknown was calculated against a BSA standard curve.

Preparation of \textit{P. aeruginosa} IgG and IgM positive and negative sera.

Heat-killed bacteria were diluted to the equivalent of 2×10^8 CFU/mL and 50 µL (1×10^8 CFU equivalents) were injected intraperitoneally into male BALB/c mice. Anti-\textit{P. aeruginosa} IgM-positive sera was obtained after 8 days, and anti-\textit{P. aeruginosa} IgG-positive was obtained after 24 days with repeat injections on day 8 and day 16. Negative control serum was collected from unimmunised mice. The positive sera were arbitrarily defined as containing 1×10^6 U/mL of anti-\textit{P. aeruginosa} antibody.

\textbf{Anti-\textit{P. aeruginosa} IgG and IgM ELISA.}

Ninety-six well Polysorp microtiter plates (Nunc, Rochester, NY, USA) were coated with 100 µL/well of \textit{P. aeruginosa} sonicate diluted to 10 µg/mL in coating buffer (1.59 g/L Na_2CO_3 and 2.94 g/L NaHCO_3 in diH_2O pH 9.6). The plates were sealed and incubated overnight at 4°C. The plates were then washed three times in Dulbecco’s modified phosphate buffered saline (DPBS) supplemented with 0.05% v/v Tween-20 then blocked with reagent diluent (DPBS with 5% skim milk powder, prepared on the day). All samples were prepared in reagent diluents and a standard curve was generated using the positive control serum.

After blocking, the plate was washed three times with washing buffer and then 100 µL/well of the samples added in duplicate to the plate, which was sealed and incubated at room temperature for 2 h. Following this incubation, the plate was washed with DPBS-Tween and 100 µL/well of the diluted detection antibodies added. The detection antibodies were diluted in reagent diluent to the following concentrations: biotinylated anti-mouse IgG1 heavy chain (1 µg/mL); biotinylated anti-mouse IgG2a heavy chain (1 µg/mL); and biotinylated anti-mouse IgM heavy chain (0.25 µg/mL) (all AbD Serotec, Oxford, UK) and allowed to incubate at room temperature for at least 10 min. The plate was washed and incubated at room temperature for 2 h.

The plate was washed with DPBS-Tween and 100 µL/well of 0.2 µg/mL Streptavidin-HRP (Amersham Biosciences) diluted in 1% w/v BSA in DPBS was added, the plate sealed and incubated at room temperature for 1 h. After the incubation, the plate was washed with DPBS-Tween and 100 µL/well of 3,3,5,5'-tetramethylbenzidine diluted to 110 µg/mL in citrate acetate (pH 9.6) supplemented with 0.2% v/v H_2O_2, and the colour left to develop for 5 min. The development was stopped by the addition of 100 µL/well of 0.16 M H_2SO_4. The absorbance was then read at 450 nm with a reference filter of 520 nm on a BioRad microplate reader and the software package Microplate Manager v 5.2.1 was used to calculate the standard curve. The least dilute sample with an absorbance reading that fit on the linear portion of the curve was used to calculate the antibody concentration of the sample.

\textbf{Statistical analysis.}

All statistical analysis was performed using GraphPad Prism v 5. Distribution of all data was tested for normality using the Kolmogorov–Smirnov test. Data sets that were normally distributed are expressed as mean ± standard deviation, and differences between groups were evaluated using t-test or ANOVA. Data sets (antibody titers) that were not normally distributed are presented as median with individual points. Differences between groups were evaluated using the Mann–Whitney U test.

\textbf{Results}

Phenotypic Characterisation of PAO1\textit{ΔlasIR}, PAO1\textit{ΔrhlIR} and PAO1\textit{ΔlasIRrhlIR} Deletion Mutants

To re-examine the role of quorum sensing in infection, we generated an unmarked deletion mutant of PAO1 that lacks both the \textit{las} and \textit{rhl} quorum sensing systems. We also further minimized any chance of other mutations arising by limiting its subculturing prior to characterization in various phenotypic assays and mouse models of infection. Because of the hierarchical nature of the \textit{las} and \textit{rhl} quorum sensing systems the PAO1\textit{ΔrhlIR} mutant was created first as a \textit{ΔlasIR} knockout would also be deficient in many of the phenotypes that we used to confirm the \textit{rhlIR} knockout.

An unmarked PAO1\textit{ΔrhlIR} deletion mutant was generated and a number of phenotypic assays were performed to confirm that this strain displayed phenotypes consistent with previously published observations for mutants of \textit{rhl} and \textit{las}. We could not confirm that it had not acquired secondary mutations that result in defective twitching motility. As expected, our PAO1\textit{ΔrhlIR} mutant produced reduced levels of elastase (Fig. 1a) and protease (Fig. 1b) relative to PAO1, did not produce rhamnomolipid (Fig. 1c), produced barely detectable levels of pyocyanin (Fig. 1c), and retained wild-type twitching motility (Fig. 1d).

After verification of the PAO1\textit{ΔrhlIR} mutant phenotypes, PAO1\textit{ΔlasIR} and PAO1\textit{ΔlasIRrhlIR} deletion mutants were created. These mutants were assayed to verify that they had phenotypes consistent with published observations and that they had not acquired secondary mutations that result in defective twitching motility. PAO1\textit{ΔlasIR} showed reduced levels of elastase production whereas the PAO1\textit{ΔlasIRrhlIR} quadruple knockouts produced barely detectable levels of elastase (Fig. 1a). Protease production by PAO1\textit{ΔlasIR} was significantly reduced compared with the wild-type control, and was even lower in the quadruple knockout PAO1\textit{ΔlasIRrhlIR} (Fig. 1b). PAO1\textit{ΔlasIR} did not show a significant defect in pyocyanin production whereas PAO1\textit{ΔlasIRrhlIR} produced barely detectable levels of pyocyanin (Fig. 1c). Importantly, both PAO1\textit{ΔlasIR} and PAO1\textit{ΔlasIRrhlIR} retained wild type levels of twitching motility (Fig. 1d).

All mutants were also tested to determine the levels of production of C4HSL or 3OC12HSL in the culture supernatant using bioluminescence reporters specific for C4HSL. [23] and 3OC12HSL. [24]. The concentration of AHLs produced was calculated using a standard curve of synthetic AHL, but because the interassay variation was large, the results are presented as a percentage of the wild-type (Fig. 2a, b). The \textit{rhlIR} mutant produced no detectable C4HSL and higher levels of 3OC12HSL than wild type PAO1; the \textit{lasIR} mutant produced similar levels of C4HSL to wild type and no detectable 3OC12HSL, and the \textit{lasIRrhlIR} mutant produced no detectable C4HSL or 3OC12HSL.

Characteristics of Lung Infection in BALB/c Mice

To evaluate the effects of knocking out both \textit{lasIR} and \textit{rhlIR} on the course of an infection, groups of BALB/c mice were infected with either PAO1 or PAO1\textit{ΔlasIRrhlIR}, and followed for 10 days. Mice were euthanized at 4 h, 24 h and 10 days after infection, and bacterial numbers, lung levels of inflammatory leukocytes, and
Figure 1. Phenotypic characteristics of QS mutants. Elastase production (a), protease production (b) pyocyanin production (c) twitching motility (d) rhamnolipid production (e) of QS mutants compared with parental PAO1. Rhamnolipid production only tested for ΔrhlIR mutant. All results represented as means ± SD of at least triplicate determinations. Differences between groups assessed with unpaired t-test; **P<0.01; ***P<0.001. doi:10.1371/journal.pone.0060973.g001

Figure 2. Production of C4HSL and 3OC12HSL by QS mutants compared with PAO1. The capacity of all mutants to produce C4HSL (a) and 3OC12HSL (b) is presented. Because of interassay variability, all results are presented as percent of production by wild type PAO1. Results for 100 μM C4HSL (a) or 3OC12HSL (b) included as positive controls. Values represent mean ± SD of at least triplicate determinations. LB: LB broth (negative control). ND: not detected. doi:10.1371/journal.pone.0060973.g002
lung expression of mRNA for inflammatory cytokines TNFα, IL-1β and mKC (IL-8 analogue) were evaluated. The bacterial numbers recovered from lung tissue and BAL at each time point are shown in Fig. 3, and indicate that at each time point there were no significant differences between wild type PAO1 and the PAO1ΔlasIrhlIR mutant, although there was a trend to recovery of higher numbers of PAO1ΔlasIrhlIR than PAO1 at 4 h and 24 h. Low levels of infection with both strains were maintained out to 10 days.

We also investigated leukocyte infiltration into the lung by examining leukocytes in BAL at all time points (Fig. 4). At 4 h and 24 h, the infiltrate was dominated by neutrophils (80-90%), whereas at day 10, neutrophils constituted only about 10% of infiltrating cells, with monocytes and other cells (mostly lymphocytes) both representing approximately 45% of cells. The only significant differences between mice inoculated with PAO1 and PAO1ΔlasIrhlIR were in total white cells and neutrophils at 4 h and 24 h post infection, where neutrophil numbers (and hence total white cell counts) were significantly higher in mice infected with PAO1ΔlasIrhlIR (p<0.01, unpaired t test).

We used RT-qPCR to investigate the level of expression of three cytokines characteristic of acute inflammation, TNFα, IL-1β and mKC, a mouse analogue of human IL-8, at 24 h post infection. The results, shown in Fig. 5, demonstrate that there was no significant difference in the level of expression of any of these cytokines between mice infected with PAO1 and those infected with PAO1ΔlasIrhlIR.

Lastly, in a different set of experiments, mice were infected with PAO1 or PAO1ΔlasIrhlIR embedded in agar slurry, euthanized at 22 days after initial infection and after a second dose of bacteria at day 21, and serum levels of *P. aeruginosa*-specific IgM, IgG1 and IgG2a measured by ELISA. Figure 6 shows that there was no significant difference in the titres of any of the isotypes between mice infected with PAO1 and those infected with PAO1ΔlasIrhlIR.

Discussion

The literature contains numerous examples of animal models of *P. aeruginosa* infection. In many of these, a comparison of a wild type (usually PAO1) and a variety of QS-deficient strains suggest that QS-controlled virulence factors are important in the pathogenesis of infection, and that most QS mutants are less virulent than wild type *P. aeruginosa*. It is unquestionable that QS controlled biofilm formation and virulence factor production plays an important role in bacterial virulence, particularly in clinical settings such as cystic fibrosis (CF) (e.g. [7]). However, because many QS mutants are known to acquire other mutations, particularly in twitching motility, which could affect infection and dissemination, we decided to create a rigorously designed quadruple knockout, and further minimize any chance of other mutations arising by limiting its culturing. Such a knockout would allow the separation of effects of bacterial adherence and infectivity from the effects of QS-controlled virulence.

Creation of the PAO1ΔlasIrhlIR was a multi-step process. A PAO1ΔhIIIR mutant was created first because of the hierarchical nature of the las and rhl quorum sensing systems: a lasIR knockout would be deficient in many of the phenotypes used to confirm a rhlIR knockout, making the phenotypic confirmation of a rhlIR knockout on a PAO1ΔlasIR background more difficult. However, creating the rhlIR knockout first enabled us to confirm that its phenotype was as expected, with loss of pyocyanin production being the key phenotype change. The deletion of the lasI and lasR genes also resulted in the deletion of rsaL, but we predicted that an rsaL deletion would not affect the mutant significantly because its product is a lasI repressor, and this was supported by the phenotypic studies on the PAO1ΔlasIrhlIR and PAO1ΔlasR mutants generated. The characteristics of the PAO1ΔlasIrhlIR knockouts clearly demonstrate that they are unable to produce a number of key QS-regulated virulence factors, and cannot respond to exogenous AHLs, but that they retain full twitching capability.

The results of the studies in the mouse model of lung infection suggest that there is no significant difference between the persistence of PAO1 and PAO1ΔlasIrhlIR in mouse lungs, or in their ability to induce an inflammatory response in the host, although there is a suggestion from the neutrophil counts that PAO1ΔlasIrhlIR actually induces a stronger inflammatory infiltrate than the parental PAO1, and the trend to higher bacterial numbers recovered in PAO1ΔlasIrhlIR infected mice is consistent with the slightly faster growth rate of this strain (results not shown). Wu *et al.* also observed a stronger inflammatory response to a PAO1 lasIrhlI knockout strain (PAO1-JP2) in a rat...
model, but unlike in our study, this was accompanied by a more rapid clearance of bacteria [11]. However, as PAO1-JP2 is known to be deficient in twitching motility [14], this is likely to affect its ability to colonise lungs and hence its ability to persist. However, other studies in rats and mice have also suggested that quorum sensing-defective mutants are cleared more effectively than wild type bacteria [11,36]. For example, a study using a neonatal BALB/c model of infection reported that a PAO1\(\Delta lasR\) mutant was virtually avirulent, causing no mortality, no evidence of lung pathology and only 15% of mice showed evidence of bacterial replication in vivo [37], although the authors found that PAO1-\(\Delta lasR\) were still recovered in the lungs 24 h post infection in numbers similar to PAO1, indicating that although the bacteria could persist they did not cause pathology [37]. In our study, the bacterial numbers in PAO1\(\Delta lasR\)rhlI-infected and wild type PAO1-infected mice were similar at each time point, with low numbers persisting out to at least 10 days after infection. Analysis of the cytokine mRNA in the lungs indicates that there is little difference in the ability of the two strains to stimulate effective proinflammatory cytokine responses, although analysis of the PMN recruitment to the lung indicates that PAO1\(\Delta lasR\)rhlI is more effective at stimulating innate immunity.

An explanation for some of the differences between our results and those of others may be that, although PAO1 is the laboratory standard for \(P. aeruginosa\), there is a great deal of genetic diversity between laboratories in the PAO1 strains used [13]. For example, twitching motility is one of the phenotypes commonly lost during ongoing laboratory culture, because of the development of point mutations in other regulators such as \(vfr\) [12]. For example, the PAO1 \(\Delta lasIrhlI\) knockout strain (PAO1-JP2) used in many studies has been reported to lack twitching motility [14] and this can reduce the ability of the bacteria to colonise mammalian epithelia. Thus, some of the reported reduced virulence of QS mutant \(P. aeruginosa\) may be the consequence of impaired colonization by twitching-deficient bacteria. Care was taken in the creation of the PAO1\(\Delta lasIrhlI\) mutant used in this study to ensure that such secondary mutations had not occurred, increasing confidence that the results from this study were in fact a reflection of the differences in quorum sensing ability of PAO1\(\Delta lasIrhlI\) and wild type PAO1, and not of other mutations in PAO1.

High antibody titres against \(P. aeruginosa\) have been associated with decreases in lung function and poorer outcomes of infection [38,39]. There were detectable titres of anti-\(P.
The differences between mice infected with PAO1 or PAO1ΔlasIrhlIR (QSneg) were assessed in RT-qPCR using β-actin as the reference gene. All results are expressed as gene expression relative to β-actin, and are presented as the mean ± SD of five mice per group. A control group of lungs from mice that underwent anaesthesia and intratracheal infusion of PBS without bacteria was included (grey bars). Expression of all cytokines was significantly higher in mice infected with bacteria than in sham-infected mice (P<0.01, all groups, ANOVA) but there were no significant differences between mice infected with PAO1 or PAO1ΔlasIrhlIR (QSneg).

Figure 5. Expression of cytokine mRNA in lung tissue of mice 4 h after infection with PAO1 or PAO1ΔlasIrhlIR. Lung tissue from mice infected with 1×10⁶ CFU of either PAO1 (hatched bars) or PAO1ΔlasIrhlIR (QSneg, open bars) was processed, total RNA extracted and cDNA prepared. Expression of cytokine genes was assessed in RT-qPCR using β-actin as the reference gene. All results are expressed as gene expression relative to β-actin, and are presented as the mean ± SD of five mice per group. A control group of lungs from mice that underwent anaesthesia and intratracheal infusion of PBS without bacteria was included (grey bars). Expression of all cytokines was significantly higher in mice infected with bacteria than in sham-infected mice (P<0.01, all groups, ANOVA) but there were no significant differences between mice infected with PAO1 or PAO1ΔlasIrhlIR (QSneg).

doi:10.1371/journal.pone.0060973.g005

P. aeruginosa IgM antibodies at 10 days post lung infection in the acute infection model, but no detectable IgG1 or IgG2a, and no difference between PAO1-infected mice and those infected with PAO1ΔlasIrhlIR (results not shown). To evaluate later immune responses, we generated a more chronic infection by giving mice P. aeruginosa in an agar slurry, which delays bacterial clearance, and collecting serum at day 22 after an acute bacterial challenge on day 21. P. aeruginosa-specific IgM, IgG1, and IgG2a were all easily detectable at this time point, but there was no difference in the titers of any of the isotypes between PAO1ΔlasIrhlIR-infected and PAO1-infected mice. This is in contrast to a previous report using a rat model of infection suggesting that the IgG1 response was higher in rats infected with PAO1 compared with rats infected with a QS signal-deficient mutant (PAO1ΔlasIrhlIR) [40]. As IgG1 is associated with humoral Th2 type responses in mice, this implied that QS-deficient mutants generated a more Th2-biased response, but we saw no such difference. The difference between our results and those reported by Wu et al. could be due to species variation, because of the differences in persistence between PAO1 and PAO1ΔlasIrhlIR observed in Wu et al.’s study, where the mutant was cleared more effectively than the wild type, or could be related to differences in the bacterial strains other than those defined.

The mouse model used in this study was an acute lung infection, and our results do not exclude the likelihood that QS-mediated induction of biofilm formation and virulence factor production play important roles in chronic infections. It would be of interest to repeat these studies in models of chronic infection, particularly immune deficiency or cystic fibrosis, which in humans, results in increased susceptibility to P. aeruginosa infection. It remains entirely possible that QS mutants may be less virulent in such situations than wild type P. aeruginosa, for a combination of reasons related to both defects in biofilm formation and virulence factor production and to host factors and the characteristics of the inflammatory and immune responses to infection, which are known to be aberrant in people with cystic fibrosis (CF) [41]. In this context, although it is clear that P. aeruginosa exists in biofilms in CF lung [42,43] and the bacterial populations present in CF lung are heterogeneous and always include some QS-competent bacteria [42], it is relevant to note that it has been reported that QS-deficient mutants arise spontaneously after some years in people with CF with chronic P. aeruginosa lung infection [7]. The most frequently observed mutation in the genes of the QS systems is in lasR which could suggest that while QS systems are important for initiating and maintaining chronic infection, “social cheating” by subpopulations of QS-deficient P. aeruginosa could confer a survival advantage in the environment of the chronically-infected and damaged CF lung.

In conclusion, our results suggest that careful control of culture and propagation of QS-deficient PAO1 derivatives to prevent additional mutations and the loss of such important characteristics as twitching motility may eliminate a significant proportion of the previously observed differences in infectivity and persistence of QS-deficient bacteria and wild-type P. aeruginosa in animal models, and allow a more precise evaluation of the importance of QS and QS-regulated gene expression in bacterial virulence and pathogenesis of infection.

Figure 6. Anti-Pseudomonas antibody production by mice infected with PAO1 or PAO1ΔlasIrhlIR. Mice were infected intratracheally with 1×10⁶ CFU of PAO1 or PAO1ΔlasIrhlIR in an 0.5% agar slurry, and bled on day 22. Sera were tested in ELISA against antigen prepared from whole killed PAO1, using isotype-specific detection antibodies for mouse IgM, IgG1, and IgG2a. Results are expressed as individual titers with a line representing the median values. There were no significant differences (Mann–Whitney U test) between mice infected with PAO1 or PAO1ΔlasIrhlIR (QSneg).

doi:10.1371/journal.pone.0060973.g006
Author Contributions

Conceived and designed the experiments: JL CBW JK MAC. Performed the experiments: JL PEG CBW. Analyzed the data: JL PEG CBW MAC.

References

1. Erickson DL, Lines JL, Psenci EC, Venturi V, Storrey DG (2004) Pseudomonas aeruginosa rsmA contributes to virulence in Drosophila melanogaster. Infect Immun 72: 5638–5645.

2. Kondo A, Hirakata Y, Gotoh N, Fukushima K, Yanagibara K, et al. (2006) Quorum sensing system lactones do not increase invasiveness of a MexAB-OprM efflux mutant but do play a partial role in Pseudomonas aeruginosa invasion. Microbiol Immunol 50: 395–401.

3. Mittal R, Sharma S, Chhibber S, Harjai K (2006) Contribution of quorum-sensing systems to virulence of Pseudomonas aeruginosa in an experimental pyelonephritis model. J Microbiol Infect Dis 39: 302–309.

4. Pearson JP, Feldman M, Iglewski BH, Prince A (2000) Pseudomonas aeruginosa cexA-cell signaling is required for virulence in a model of acute pulmonary infection. Infect Immun 68: 4331–4334.

5. Rumbaugh KP, Griswold JA, Iglewski BH, Hamood AN (1999) Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect Immun 67: 5034–5062.

6. Bjarnshol T, Givskov M (2007) The role of quorum sensing in the pathogenicity of the cunning aggressor Pseudomonas aeruginosa. Analytical & Bioanalytical Chemistry 387: 809–814.

7. Bjarnshol T, Jensen PO, Jakobsen TH, Phipps R, Nielsen AK, et al. (2010) Quorum sensing and virulence of Pseudomonas aeruginosa during heng infection of cystic fibrosis patients. PLoS ONE 5: e10115.

8. Lespir P, Faurisson F, Join-Lambert O, Roudot-Thorval F, Foglimo M, et al. (2003) Role of the Quorum-sensing System in Experimental Pneumonia due to Pseudomonas aeruginosa in Rats. Am J Respir Crit Care Med 167: 1478–1482.

9. Rumbaugh KP, Griswold JA, Hamood AN (2000) The role of quorum sensing in the in vivo virulence of Pseudomonas aeruginosa. Microbes & Infection 2: 1721–1731.

10. Smith RS, Iglewski BH (2005) P. aeruginosa quorum-sensing systems and virulence. Current Opinion in Microbiology 8: 56–60.

11. Wu H, Song Z, Givovik M, Doring G, Vorlitzsch D, et al. (2001) Pseudomonas aeruginosa mutation in las and rhl quorum sensing systems results in milder chronic lung infection. Microbiology 147: 1103–1113.

12. Beatson SA, Whitchurch CB, Sermiller ART, Matick JS (2002) Quorum sensing is not required for twitching motility in Pseudomonas aeruginosa. Journal of Bacteriology 184: 3508–3504.

13. Heutler K, Denervaud V, Harmini M, Guy L, Kratshaqip özelli V, et al. (2005) Quorum-sensing-negative (lux-) mutants of Pseudomonas aeruginosa avoid cell lysis and death. Journal of Bacteriology 187: 4875–4883.

14. Glessner S, Smith RS, Iglewski BH, Robinson JB (1999) Roles of Pseudomonas aeruginosa las and rhl Quorum-Sensing Systems in Control of Twitching Motility. J Bacteriol 181: 1623–1629.

15. Alm RA, Matick JS (1996) Identification of two genes with prepilin-like leader sequences involved in type IV fimbrial biogenesis in Pseudomonas aeruginosa. Journal of Bacteriology 178: 3809–3817.

16. Bryan R, Feldman M, Jawetz SC, Rajan S, DiMango E, et al. (1999) The effects of cell-to-cell signaling is required for virulence in a model of acute pulmonary infection. Infect Immun 68: 4331–4334.

17. Hahn HP (1997) The type-4 pilus is the major virulence-associated adhesin of Pseudomonas aeruginosa. J Bacteriol 181: 1623–1629.

18. Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP (1998) A broad-host-range Flp-Bet recombinase system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212: 77–86.

19. Kita E, Sawaki M, Oku D, Hamuro A, Mikasa K, et al. (1991) Suppression of virulence of Pseudomonas aeruginosa is not required for twitching motility in Pseudomonas aeruginosa. J Bacteriol 173: 5887–5894.

20.隐瞒iaoh, 插入p籍, 名称, 任命/分析工具: JK CBW MAC. 写作的论文: JL PEG CBW MAC.

21. Skindersoe ME, Alhede M, Phipps R, Yang L, Jensen PO, et al. (2008) Effects of quorum-sensing systems and P. aeruginosa virulence factors on pathogenesis of Pseudomonas aeruginosa. J Clin Microbiol 9: 530–540.

22. Ohlsson DE, Crzyj SJ, Iglewski BH (1980) Isolation and characterization of Pseudomonas aeruginosa PAO mutant that produces altered elastase. J Bacteriol 142: 836–842.

23. Rust I, Messing CR, Iglewski BH, Virginia LGPMIB (1998) Elastase assays. Methods in Enzymology: Academic Press. 534–502.

24. Brennan S (2008) Innate immune activation and cystic fibrosis. Paediatric Reviews in Allergy and Immunology 35: 124–134.

25. Semmler AB, Whitchurch CB, Mattick JS (1999) A re-examination of twitching motility in Pseudomonas aeruginosa. Microbiology 145: 2863–2873.

26. Kohler T, van Delden C, Curty LK, Hamzehpour MM, Pechere JC (2001) Overexpression of the MexEF-OprM Multidrug Efflux System Affects Cell-to-Cell Signaling in Pseudomonas aeruginosa. J Bacteriol 183: 5215–5222.

27. Sokol PA, Ohlman DE, Iglewski BH (1979) A More Sensitive Plate Assay for Detection of Protease Production by Pseudomonas aeruginosa. J Clin Microbiol 9: 185–192.

28. Whitchurch CB, Beatson SA, Comoli JC, Jakobsen T, Sargent JL, et al. (2005) Pseudomonas aeruginosa foul, regulates multiple virulence functions by intersecting with Vir-modulated pathways. Molecular Microbiology 55: 1357–1378.