Supplementary Materials

Cell-type-specific activation of two nitrogenase gene clusters by CnfR1 or CnfR2 in the cyanobacterium Anabaena variabilis

Brenda S. Pratte and Teresa Thiel*

Fig. S1. Phylogenetic tree of CnfR proteins. For strains that have two nif systems and thus two CnfR proteins, each copy is labeled on the tree. Blue box = CnfR in unicellular strains, Purple box = other CnfR genes, Grey box = CnfR2 family, Green box = CnfR1 genes in heterocystous cyanobacteria. Accession numbers for the genes are provided in Table S1. This BioNJ distance phylogeny tree was constructed using the program SeaView (1) with 100-replicate bootstrap values.
Table S1: Strains included in Fig. S1.

IMG Gene ID	Genome Name	IMG Locus Tag
637232894	Nostoc sp. PCC 7120	all2512
640625288	Crocosphaera chwakensis CCY 0110	CY0110_23386
642599653	Nostoc punctiforme PCC 73102	Npun_R0334
643475300	Rippkaea orientalis PCC 8801	PCC8801_2251
643480389	Gloeothecae citriformis PCC 7424	PCC7424_2132
643588188	Cyanothecae sp. PCC 7425	Cyan7425_5231
646565923	Anabaena variabilis ATCC 29413 – cnfR1	Ava_0444
646569759	Anabaena variabilis ATCC 29413 – cnfR2	Ava_4260
648188610	Gloeotheca verrucosa PCC 7822	Cyan7822_3694
2503614847	Chroococcidiopsis thermalis PCC 7203	Chro_4567
250379381	Nostoc sp. PCC 7107	Nos7107_0753
2504129697	Anabaena cylindrica PCC 7122	Anacy_0077
2509812238	Nostoc sp. PCC 7524	Nos7524_4670
2550718290	Fischeraea thermalis PCC 7521	UYKDRAFT_03084
2631162521	Nostoc sp. Moss2	Ga0080672_123114
2631163828	Nostoc sp. Moss5 – cnfR2	Ga0080674_104223
2631167682	Nostoc sp. Moss5 – cnfR1	Ga0080674_104408
2631177118	Nostoc sp. Moss4	Ga0080676_1211926
2634115732	Nostoc sp. Moss3	Ga0080673_0878
2634127375	Nostoc sp. Moss6 – cnfR1	Ga0080675_0504
2634128697	Nostoc sp. Moss6 – cnfR2	Ga0080675_1826
2774718376	Leptolyngbya boryana dg5	Ga0226171_122313
2776140273	Tolypothrix tenuis PCC 7101 NIES-37 – cnfR2	Ga0263545_16524
2776145131	Tolypothrix tenuis PCC 7101 NIES-37 – cnfR1	Ga0263545_165389
2833621481	Nostoc linckia NIES-25	Ga0263765_836
2843035298	Nostoc linckia z1	Ga0336783_054_19484_21073
2845924250	Nostoc sp. ATCC 53789	Ga0336842_155_87608_89203
2883181653	Trichormus variabilis 0441 – cnfR2	Ga0443053_01_273221_274816
2883182992	Trichormus variabilis 0441 – cnfR1	Ga0443053_01_1861810_1863441
2883410175	Anabaena sp. YBS01 – cnfR2	Ga0439566_01_365100_366695
2883411055	Anabaena sp. YBS01 – cnfR1	Ga0439566_01_1343754_1345343
2886593859	Cyanothecae sp. BG0011	Ga0452603_049_1738_3336
2909711544	Nostoc sp. 2RC – cnfR1	Ga0478412_158_79026_80615
2909716834	Nostoc sp. 2RC – cnfR2	Ga0478412_853_43_1659

[IMG: https://img.jgi.doe.gov/]
Fig. S2. Expression of cnfR2 under the control of the cnfR1 promoter or cnfR1 under the control of the cnfR2 promoter. Expression from P_{cnfR1::cnfR2} (BP870) and P_{cnfR2::cnfR1} (BP871) was determined by RT-qPCR in aerobic cells grown 24 h -N +O2, leading to formation of heterocysts that activate the cnfR1 promoter, or anaerobic cells grown 6 h -N -O2, leading to vegetative cells that activate the cnfR2 promoter. Expression of cnfR1 and cnfR2 was normalized to rnpB and the values on the y-axis represents the relative log2 fold differences in expression. Statistical analysis: $P < 0.001$ (**). The horizontal bars below the P-values provide statistical comparisons of the means for the two values immediately below the ends of the bar and do not include values between these ends.
Strains	Relevant characteristics	Source or reference
Anabaena variabilis FD	A derivative of *A. variabilis* 29413	(2)
Nostoc sp. PCC 7120	A filamentous nitrogen-fixing cyanobacterium that differentiates heterocysts, but lacks the Nif2 system	
Synechocystis sp. PCC 6803	non-filamentous, non-nitrogen fixing microorganism and source of the Co^{2+}-inducible promoter (PcoaT).	
BP291	*Nostoc* sp. strain PCC 7120 derivative that expresses frtRABC.	(3)
BP870	pBP870 (*PcnfR1:cnfR2* fusion) recombed into the *cnfR1* promoter of *A. variabilis* BP894 (*ΔcnfR1 ΔcnfR2* strain).	This study
BP871	pBP871 (*PcnfR2:cnfR1* fusion) recombed into the *cnfR2* promoter of *A. variabilis* BP894 (*ΔcnfR1 ΔcnfR2* strain).	This study
BP873	pBP873 (*PcnfR2:cnfR2:cnfR1HTH* fusion) recombed into the *cnfR2* promoter of *A. variabilis* BP894 (*ΔcnfR1 ΔcnfR2* strain).	This study
BP893	pBP890 (*nif2* operon with Sp' cassette) in BP291 (*Nostoc* sp. strain PCC 7120 containing the frtRABC operon)	This study
BP894	*A. variabilis* FD containing a deletion mutation in both *cnfR1* and *cnfR2* (Δ*cnfR1 ΔcnfR2*).	(4)
BP907	pBP907 (*PcnfR2:cnfR1:cnfR2HTH* fusion) recombed into the *cnfR2* promoter of *A. variabilis* BP894 (*ΔcnfR1 ΔcnfR2* strain).	This study
BP910	pBP910 (*PcnfR1:cnfR2:cnfR1HTH* fusion) recombed into the *cnfR1* promoter of *A. variabilis* BP894 (*ΔcnfR1 ΔcnfR2* strain).	This study
BP920	pBP920 (*PcnfR1:cnfR1* fusion) recombed into the *cnfR1* promoter of *A. variabilis* BP894 (*ΔcnfR1 ΔcnfR2* strain).	This study
Code	Description	
------	-------------	
BP921	pBP921 (*PcnfR2*:*cnfR2* fusion) recombined into the *cnfR2* promoter of *A. variabilis* BP894 (*ΔcnfR1 ΔcnfR2* strain).	This study
BP950	pBP950 (*PcnfR1:*cnfR1:*cnfR2:*cnfR1HTH* fusion) recombined into the *cnfR1* promoter of *A. variabilis* BP894 (*ΔcnfR1 ΔcnfR2* strain).	This study
BP951	pBP951 (*PcnfR1:*cnfR1:*cnfR2:*cnfR1HTH* fusion) recombined into the *cnfR1* promoter of *A. variabilis* BP894 (*ΔcnfR1 ΔcnfR2* strain).	This study
BP952	pBP952 (*PcnfR1:*cnfR1:*cnfR2:*cnfR1HTH* fusion) recombined into the *cnfR1* promoter of *A. variabilis* BP894 (*ΔcnfR1 ΔcnfR2* strain).	This study
BP1101	*PnifB2:B1:B2* promoter singly recombined to drive the *nifB2* operon in JE9 (a *xisA-nifE1* deletion strain of *A. variabilis*).	This study
BP1107	pBP1107 doubly recombined both upstream and downstream of *hetR* in *A. variabilis* FD to create a *hetR* deletion.	This study
BP1108	pBP1108 doubly recombined both upstream and downstream of *nrrA* in *A. variabilis* FD to create a *nrrA* deletion.	This study
BP1141	pBP1141 (*PcoaT:*lacZ* fusion*) in *A. variabilis* FD	This study
BP1142	pBP1142 (*PcoaT:*cnfR1* fusion*) in *A. variabilis* BP894 (*ΔcnfR1ΔcnfR2* strain)	This study
BP1143	pBP1143 (*PcoaT:*cnfR2* fusion*) in *A. variabilis* BP894 (*ΔcnfR1ΔcnfR2* strain)	This study
BP2197	pBP1197 (*PnifB2:B1:B2:*lacZ* fusion*) in *A. variabilis* BP1142 (*PcoaT:*cnfR1* in *ΔcnfR1ΔcnfR2* strain)	This study
BP3197	pBP1197 (*PnifB2:B1:B2:*lacZ* fusion*) in *A. variabilis* BP1143 (*PcoaT:*cnfR2* in *ΔcnfR1ΔcnfR2* strain)	This study
BP7142	pBP1142 (*PcoaT:*cnfR1* fusion*) in *A. variabilis* MM3 (*ntca* strain)	This study
BP7143	pBP1143 (*PcoaT:*cnfR2* fusion*) in *A. variabilis* MM3 (*ntca* strain)	This study
JE9	*xisA-nifEl* region of the *nif1I* genes interrupted with an Nm⁺ gene	(5)
-----------	---	-----
MM3	*A. variabilis* FD containing a mutation in *ntcA*.	(6)
Plasmids	Description	Source
---------------------	---	-----------------
pAAWY22574	Plasmid from JGI containing the *nrrA* region	JGI
pAAWY8706	Plasmid from JGI containing the *hetR* region	JGI
pAAWZ1787	Fosmid from JGI containing the *nif2* cluster from *ava_4241-ava_4266.*	JGI
pBP639	Vector with a promoterless *lacZ* for promoter fusions and a Tc' cassette for selection of promoter fragments; allows for recombination into a gene promoter region of the chromosome; Km'Tc'	(7)
pBP716	1.9-kb Smal fragment containing the *aadA* cassette (Sp'Sm') from pRL5801 into the Smal site of pRL2948a, containing *oriT* site required for conjugation into cyanobacteria.	This study
pBP744	Vector with a promoterless *lacZ* for promoter fusions and a Tc' cassette for selection of promoter fragments; allows for recombination into the *frtBC* region of the chromosome; Km'Tc'	(4)
pBP870	*PcnfR1*:cnfR2 fusion was inserted between the BglIII and SacI sites of pBP639.	(4)
pBP871	*PcnfR2*:cnfR1 fusion was inserted between the BglIII and SacI sites of pBP639.	(4)
pBP872	*PcnfR1*:cnfR1cnfR2HTH fusion was created using fusion PCR; *PcnfR1*:cnfR1HTH- and cnfR2HTH fragments were amplified using primers sets patB1L102 + patB1HTHB2-R and patB1HTHB2-L + patB2-R(Fus), respectively, fused into a single fragment, and then inserted between the BglIII and SacI sites of pBP639.	This study
pBP873	*PcnfR2*:cnfR2cnfR1HTH fusion was created using fusion PCR; *PcnfR2*:cnfR2HTH- and cnfR1HTH fragments were amplified using primer sets patB2L201 + patB2HTHB1-R and patB2HTHB1-L + patB1-R(Fus), respectively, fused into a single fragment, and then inserted between the BglIII and SacI sites of pBP639.	This study
pBP890	2.1-kb PCR fragment, containing the oriT site and aada (Sp'Sm') cassette, was generated from pBP716 using primers FosOriTSp-L2 + FosOriTSp-R2 and recombineered into pAAWZ1787 at the Cmr cassette. This study	
pBP907	*PcnfR2:cnfR1cnfR2HTH* fusion was created using fusion PCR; *PcnfR2* and *cnfR1:cnfR2HTH* were amplified from pBP873 using primer set patB2-L201 + P2patB1-R and from pBP872 using primer set P2patB1-L + patB2-R(Fus), respectively, fused into a single fragment, and then inserted between the BglII and SacI sites of pBP639. This study	
pBP910	*PcnfR1:cnfR2cnfR1HTH* fusion was created using fusion PCR; *PcnfR1* and *cnfR2:cnfR1HTH* were amplified from pBP872 using primer set patB1L102 + P1patB2-R and from pBP873 using primer set P1patB2-L + patB1-R(Fus), respectively, fused into a single fragment, and then inserted between the BglII and SacI sites of pBP639. This study	
pBP920	*PcnfR1:cnfR1* (wild-type) was amplified by PCR using primers patB1L102 and patB1-R(Fus) and then inserted between the BglII and SacI sites of pBP639. This study	
pBP921	*PcnfR2:cnfR2* (wild-type) was amplified by PCR using primers patB2L-201 and patB2-R(Fus) and then inserted between the BglII and SacI sites of pBP639. This study	
pBP950	*PcnfR1:cnfR1*1-179 cnfR2174-1425 cnfR1HTH1420-1590 fusion was created using fusion PCR; *pcnfR1:cnfR1*1-179 and *cnfR2*174-1425 *cnfR1HTH1420-1590* fragments were amplified from pBP872 using primer set patB1L102 + P1cnfR2fusion1-R and from pBP873 using primer set P1cnfR2fusion1-L + patB1-R (fus), respectively, fused into a single fragment, digested with BglII and SacI, and then inserted between the BglII and SacI sites of pBP639. This study	
pBP951	*PcnfR1:cnfR1*1-476 cnfR2486-1425 cnfR1HTH1420-1590 fusion was created using fusion PCR; *pcnfR1:cnfR1*1-476 and *cnfR2*486-1425 *cnfR1HTH1420-1590* fragments were amplified from pBP872 using primer set patB1L102+ P1cnfR2fusion2-R and from pBP873 This study	
pBP952	**PcnfR1:cnfR1**$^{1-992}$**cnfR2**$^{1002-1425}$**cnfR1HTH**$^{1420-1590}$ fusion was created using fusion PCR; **PcnfR1:cnfR1**$^{1-992}$ and **cnfR2**$^{1002-1425}$**cnfR1HTH**$^{1420-1590}$ fragments were amplified from pBP902 using primer set **patB1L102+ P1cnfR2fusion3-R** and from pBP903 using primer set **P1cnfR2fusion3-L + patB1-R (fus)**, respectively, fused into a single fragment, digested with BglII and Sacl, and then inserted between the BglII and Sacl sites of pBP639.	
pBP1101	**PnifB2:nifB1:nifB2** promoter was amplified by PCR from pSM54 using primers **pnifB2-L1(JJ) & pnifB2-BsaR1** and an additional 870-bp region at the 5’ end of the nifB2 gene was amplified from FD by PCR using primers **pnifB2-BsaL1 & nifB2-SmaR2** to create a larger region for recombination for the hybrid promoter. These fragments were digested with BglII & BsaI and BsaI & SmaI, respectively, and inserted between the BglII and SmaI sites of pBP639.	
pBP1104	A **hetR** deletion was created using fusion PCR; fragments upstream and downstream of **hetR** were amplified from pAAWY8706 using primer sets **hetRmut-L1(BamHI) & hetRmut-R1** and **hetRmut-L2 & hetRmut-R2 (PstI)**, respectively, fused into a single fragment, digested with BamHI and PstI, and then inserted between the BamHI and PstI sites of pUC18.	
pBP1105	A **nrrA** deletion was created using fusion PCR; fragments upstream and downstream of **nrrA** were amplified from pAAWY22574 using primer sets **nrrAmut-L1(BamHI) & nrrAmut-R1** and **nrrAmut-L2 & nrrAmut-R2 (PstI)**, respectively, fused into a single fragment, digested with BamHI and PstI, and then inserted between the BamHI and PstI sites of pUC18.	
pBP1107	6-kb Sacl fragment of pRL2948a cloned into the Sacl site of pBP1104.	
Vector	Description	Source
--------	-------------	--------
pBP1108	6-kb SacI fragment of pRL2948a cloned into the SacI site of pBP1105	This study
pBP1193	Inserted 2-kb HindIII fragment from pRL2949a containing the Sp' cassette into the HindIII site of pMH5, a modA integration vector.	This study
pBP1195	Inserted 1.7-kb BglII-Smal fragment from pBP639 containing the Tc' cassette between the BglII and Smal sites of pBP1193.	This study
pBP1197	Inserted 1.1-kb BglII-Sacl fragment containing PnifB2nifB1nifB2 from pSM54 into the 12.2-kb BglII-Sacl fragment of pBP1195.	This study
pBP1141	PcoaT: lacZ fusion was created using fusion PCR; PcoaT and lacZ fragments were amplified from Synechocystis sp. PCC 6803 using primer set pcoaR-L(BglII) + pcoaT: lacZ-R and from pBP639 using primer set pcoaT: lacZ-L + lacZ-R(Sacl) respectively, fused into a single fragment, digested with BglII and Sacl, and then inserted between the BglII and Sacl sites of pBP744.	This study
pBP1142	PcoaT: cnfR1 fusion was created using fusion PCR; PcoaT and cnfR1 fragments were amplified from Synechocystis sp. PCC 6803 using primer set pcoaR-L(BglII) + pcoaT: cnfR1-R and from pBP920 using primer set pcoaT: cnfR1-L + patB1-R(Fus), respectively, fused into a single fragment, digested with BglII and Sacl, and then inserted between the BglII and Sacl sites of pBP744.	This study
pBP1143	PcoaT: cnfR2 fusion was created using fusion PCR; PcoaT and cnfR2 fragments were amplified from Synechocystis sp. PCC 6803 using primer set pcoaR-L(BglII) + pcoaT: cnfR2-R and from pBP921 using primer set pcoaT: cnfR2-L + patB2-R(Fus), respectively, fused into a single fragment, digested with BglII and Sacl, and then inserted between the BglII and Sacl sites of pBP744.	This study
pJU410	PnifH1: lacZ fusion vector; Km'	(3)
pKA6	Source of 2.6-kb orf-modA region	(8)
pKM208	Plasmid containing all the genes for recombineering under the Ptac promoter; red and gam genes are	(9)
turned off using $lacI$; and has a temperature-sensitive origin of replication which allows it to be removed from the strain by growing at 37°C.

pMH2	A 1.4-kb XbaI fragment containing the $modAE$ from pKA6 was blunted and inserted into the Scal site of pJU410 to create a $lacZ$ vector that could integrate into the $modAE$ region in cyanobacteria.	This study			
pMH5	1.1-kb PCR product, containing the Em′ cassette was amplified from pRL2948a using primers Em(BglII)-L + Em(HindIII)-R, digested with BglII and HindIII, and inserted between the BglII and HindIII sites of pMH2.	This study			
pRL2948a	Source of mobilization site ($oriT$) and $sacB$ gene which confers sucrose sensitivity; Cm′Em′	C.P. Wolk			
pRL2949a	Source of mobilization site, $oriT$, and $sacB$ gene which confers sucrose sensitivity; Sp′	C.P. Wolk			
pRL5801	Source of $aadA$ cassette (Sp′Sm′)	C.P. Wolk			
pSM54	Source of hybrid $nifB2:nifB1:nifB2$ promoter fused to $lacZ$	(10)			
pUC18	Plasmid cloning vector; Ap′	(11)			
Oligonucleotide for cloning	Purpose	Sequence (5′→3′) DNA			
----------------------------	---------	---------------------			
Em(BglII)-L	Amplifies from the 5' end of the Em' cassette	ATTAAGATCTCTCTAGCTCCTGAAAATCTCG			
Em(HindIII)-R	Amplifies from the 3' end of the Em' cassette	TATAAAGCTTGCACCTGCTCCTTTAATTACTTA			
FosOriTSp-L2	Amplifies the oriT and Sp' cassette	GGCGTATTTTTTGAGTTATCGAGATTTTCAGGAGCTAAGG AAGCTAAAAATAGTAACGGCAGGTATATGTGATG			
FosOriTSp-R2	Amplifies the oriT and Sp' cassette	TTATCAGTTATCCAGCGTACCAAGCAGCGTCTTAAGGGC ACCAAATACTTCTGAACGAAATTGAGACATTAGT			
hetRmutchk-L	Spans the hetR deletion	TACGGGAGGAATGAGCATCTCG			
hetRmutchk-R	Spans the hetR deletion	GTCGCGTTGGCTTAATTCTTG			
HetRmut-L1(BamHI)	Amplifies 5' region in hetR deletion	ATTAGGATCCCAGCTATTATTAGTGCAAGCGTACC			
HetRmut-L2	Amplifies 3' region in hetR deletion	TTGTAATATGAGTAACGACATCGGTCTGTGTTGGTGA AAAGAAGATTAAGC			
HetRmut-R1	Amplifies 5' region in hetR deletion	CTTTACAGTTCTCTCTGTTACCAACACCAGATCGATGCTGTT ACTCATATTACAA			
HetRmut-R2(PstI)	Amplifies 3' region in hetR deletion	TATACTGAGCTCATTTACCTTTGGCATTGC			
lacZ-R(Sacl)	Amplifies the lacZ portion of the PcoAT::lacZ fusion	CAGTGCAGAGCTCGTTATCG			
nifB2-SmaR2	Extends the nifB2 region of pnifB2::nifB1:nifB2	ATTACCCGGGCGATTATCTCTTTGATTTTGATCTGATTTTATG			
nrrAmutchk-L	Spans the nrrA deletion	TATCACTGCGCTCTGGACAA			
nrrAmutchk-R	Spans the nrrA deletion	AAACCAAGCCGATGAAGATAAG			
Primer Name	Function	Amplified Region	Sequences		
---------------------	---	---	--		
nrrAmut-L1(BamHI)	Amplifies 5’ region in nrrA deletion	TAATGGATCCGGTTTCTATATTCTGAATTTTGACAATC			
nrrAmut-L2	Amplifies 3’ region in nrrA deletion	GTGGGTTCGGTTTGTATTGAAGTGAGAGGGAGTTAGGAG			
nrrAmut-R1	Amplifies 5’ region in nrrA deletion	CTCTAATCCCCTACCTCTCCTACCTCAATAACACCCGAAAC			
nrrAmut-R2(PstI)	Amplifies 3’ region in nrrA deletion	TAATCTGCAGCAAGGAATACAGTTAAATATCCATATCCACTG			
P1cnfR2fusion1-L	Amplifies cnfR2¹⁷⁴⁻¹⁴²⁵-cnfR1HTH¹⁴²⁰⁻¹⁵⁹⁰ portion of the hybrid fusion in BP950	TGTGATAGCCTGTCAGTAAACATCCCCATCCCCCTCTACACAGCCAAAAAG			
P1cnfR2fusion1-R	Amplifies PcnfR1:cnfR1¹⁻¹⁷⁹ portion of the hybrid fusion in BP950	CTTTTTTCGGGAGGAGGATTGGGATTTTACTGGACAAAGTCATCACAC			
P1cnfR2fusion2-L	Amplifies cnfR2⁴⁸⁶⁻¹⁴²⁵-cnfR1HTH¹⁴²⁰⁻¹⁵⁹⁰ portion of the hybrid fusion in BP951	ATGATAGCAAGCCAGTTGAGTATGGGATAGGAGCTGCTTCGAGC			
P1cnfR2fusion2-R	Amplifies PcnfR1:cnfR1¹⁻⁴⁷⁶ portion of the hybrid fusion in BP951	GCAGGTGCATACAAACAGTGCTCTAACATATTACCTACATTGGCTGCTACAT			
P1cnfR2fusion3-L	Amplifies cnfR2¹⁰⁰²⁻¹⁴²⁵-cnfR1HTH¹⁴²⁰⁻¹⁵⁹⁰ portion of the hybrid fusion in BP952	GTTATTATTAAACAAAAATGGGAAGGAGACATGCTAGTCTTCTGTGAAAATCTGCTATGCTGTACAT			
P1cnfR2fusion3-R	Amplifies PcnfR1:cnfR1¹⁻⁹⁹² portion of the hybrid fusion in BP952	AGCATAGGAATTGTAATGCACGTGTTCCATTTTGGTTTAAATAAAC			
P1patB2-L	Amplifies cnfR2:cnfR1HTH portion in the PcnfR1:cnfR2:cnfR1HTH fusion, BP910	ACGATTAGGGTGGGAAGAAGTTATATGCCCTACGGCATTACTATCG			
Primer	Description	Sequence	Primer	Description	Sequence
--------	-------------	----------	----	-------------	----------
P1patB2-R	Amplifies *PcnfR1* portion in the *PcnfR1:cnfR2cnfR1HTH* fusion, BP910	CGATTAGTAATGGCGTAGGGCATATAACTTTCTTCCCCACCC TAATCGT	P2patB1-L	Amplifies *PcnfR2* portion in the *PcnfR2:cnfR1cnfR2HTH* fusion, BP907	CTACCTGAAAATCAAGTTGCAAAAAACTAGCTTTATACACAT TCCTAAACACAGTTG
P2patB1-R	Amplifies *cnfR1:cnfR2HTH* portion in the *PcnfR2:cnfR1cnfR2HTH* fusion, BP907	CAACGTTGGAAGATTGTAATAGCGATTTTGTGCAACTGATTTTCAAGTAG	patB1HTHB2-L	Amplifies *cnfR2HTH* portion in the *PcnfR1:cnfR1:cnfR2HTH* fusion; BP872	CAAAAAAAACCCCGAGGCTTCTCTCTACTAGAATTTA TTATTGAGGTAGAA
patB1HTHB2-R	Amplifies *cnfR1:cnfR1HTH* portion in the *PcnfR1:cnfR1:cnfR2HTH* fusion; BP872	TTCTAGCCTCATAAATAATTCTCTAGAAAGATCACCTGCGGTTTTTATTTTTT			
patB1L102	Amplifies promoter region in *cnfR1* fusion constructs	TTAGATCTTTTTATCCGGTGAGAAACTTACTA	patB1-R (Fus)	Amplifies the C-terminal end of *cnfR1* fusion constructs	ATTAGAGCTCAGGTTTAACCTTAGAAATTCTGCTTAT
patB2HTHB1-L	Amplifies *cnfR1HTH* portion in the *PcnfR2:cnfR2:cnfR1HTH* fusion; BP873	AGACAAACTTAAAACCGCAATAACTTATGGTGAGCA AATTTTGGAAAG	patB2HTHB1-R	Amplifies *PcnfR2:cnfR2HTH* portion in the *PcnfR2:cnfR2:cnfR1HTH* fusion; BP873	CTTGCAAATTTGTGCTACCAACTAAAGTTATGTCGCGTTTT AAGTTTTGTCT
Fusion	Description	Sequence			
-------------	---	--			
patB2-L201	Amplifies promoter region in *cnfR2* fusion constructs	TATTAGATCTGCACTCATCAAGAAACCCTATTTTAGTTT			
patB2-R(Fus)	Amplifies the C-terminal end of *cnfR2* fusion constructs	ATTAGAGCTCAGGGTGAGGTTTTGAATAGTTAATTCTT			
pcoaR-L (BglII)	Amplifies *PcoaT* region in the *PcoaT*:fusions	ATTAAGATCTCTAAAGACAAAGTGAGATAGCAGTGCC			
pcoaT:cnfR1-L	Amplifies *cnfR1* gene in the *PcoaT*:cnfR1 fusion, BP1142	AGGTTAAAATCCCAAAGTTAAAAGCATGCTTATAACATTCCTAAACACAGTT			
pcoaT:cnfR1-R	Amplifies *PcoaT* region in the *PcoaT*:cnfR1 fusion, BP1142	CAACTGTTGTAGGAAATTGTATAAGGCGATGCTTTTTAAACTTGATTTTACCT			
pcoaT:cnfR2-L	Amplifies *cnfR2* gene in the *PcoaT*:cnfR2 fusion, BP1143	AGGTTAAAATCCCAAAGTTAAAAGCATGCCCTACCGCATTATACTCG			
pcoaT:cnfR2-R	Amplifies *PcoaT* region in the *PcoaT*:cnfR2 fusion, BP1143	CGATTAGTAATGGCGTAGGGCATGCTTTTTAAACTXGATTTTTACCT			
pcoaT:lacZ-L	Amplifies *lacZ* gene in the *PcoaT*:lacZ fusion, BP1141	AGGTTAAAATCCCAAAGTTAAAAGCATGACCAGATTACGCGATCTG			
pcoaT:lacZ-R	Amplifies *PcoaT* region in the *PcoaT*:lacZ fusion, BP1141	CAGTGAATCCCGTAATCATGGTCATGCTTTTTAACTTGGATTTTTACCT			
pnifB2-BsaL1	Amplifies the *pnifB2:nifB1:nifB2* promoter to extend the *nifB2* region in BP1101	ATGGTCTCATTTCAACATCGCCACTCCACAA			
pnifB2-BsaR1	Amplifies and extends the *nifB2* gene of *pnifB2:nifB1:nifB2* in BP1101	ATGGTCTCAAGAAGTCTGAGGTGAGGTGGTGGTGC			
pnifB2-L1 (JJ)	Amplifies the *pnifB2:nifB1:nifB2* promoter to extend	AGATCTGCTACAAAGACGCTTTAATCTATTACC			
Oligonucleotide for qPCR	Purpose	Sequence (5'→3') DNA			
-------------------------	---------	----------------------			
qcnfR2-mutL	qPCR primer that amplifies the deleted region of cnfR2; Fig. 2C	CCCTTGGGAAAECTGATGAGTCG			
qcnfR2-mutR	qPCR primer that amplifies the deleted region of cnfR2; Fig. 2C	TGATGGCTCTGATTGTACGCT			
qcnfRg1-R2	qPCR primer that specifically amplifies pcnfR2:cnfR1 fusion; Fig. S2	GATTTTGATTGCCACCGTAG			
qcnfRg2-R1	qPCR primer that specifically amplifies pcnfR1:cnfR2 fusion; Fig. S2	CCGTCTATAACTTTGATCGCA			
qcnfRp1-L1	qPCR primer that specifically amplifies pcnfR1:cnfR2 fusion; Fig. S2	CATCTCAACGATTAGGGTG			
qcnfRp2-L2	qPCR primer that specifically amplifies pcnfR2:cnfR1 fusion; Fig. S2	ACGGCTGAATGTTCCAATA			
qhesA2-L	qPCR primer that amplifies the hesA2 gene; Fig. 6	TTCAATCCGCGATGAGCCT			
qhesA2-R	qPCR primer that amplifies the hesA2 gene; Fig. 6	AAGCATCCATCCATCCATT			
qnifB1-L	qPCR primer that amplifies the nifB1 gene; Fig. 1, Fig. 3A&C	TTGCAGACAAAGCCCGAGATA			
Primer Name	qPCR primer that amplifies the nif gene;	Sequence			
-------------	--	----------			
qnifB1-R	qnifB1 gene; Fig. 1, Fig. 3A&C	CGCCTCGCACCTCTATAAC			
qnifB2 -L	qnifB2 gene; Fig. 1, Fig. 3B&D, Fig. 5, Fig. 7B	ACACCACCACGTACGGATG			
qnifB2 -R	qnifB2 gene; Fig. 1, Fig. 3B&D, Fig. 5, Fig. 7B	CCGGACGGCTTTCAATTTCAC			
qnifEN2 -L	qnifEN2 gene; Fig. 6	GTCCCTGATCATTCCACCTCCC			
qnifEN2 -R	qnifEN2 gene; Fig. 6	ACCCGAACTACCATCTGTCG			
qnifH2 -L	qnifH2 gene; Fig. 7B	CAAAATGGACATCCACCCACC			
qnifH2 -R	qnifH2 gene; Fig. 7B	ACTACTGCTTTGCCCTGCTT			
qnifZ2 -L	qnifZ2 gene; Fig. 6	TGAAACATAGCCAACCTTCCT			
qnifZ2 -R	qnifZ2 gene; Fig. 6	ACCAGCATTTGAAATTGCCGCA			
qpatB1-L	qPCR primer that amplifies the deleted region of cnfR1; Fig. 2C	GAGAAACGCAAAGACCTCAGC			
qpatB1-R	qPCR primer that amplifies the deleted region of cnfR1; Fig. 2C	AGCGGCTATTGCGACTGAAA			
qpatB25' -L	qPCR primer that amplifies the 5’ end of the cnfR2 gene; Fig. 7B	TTGACAAAACTATGCCCTACG			
qpatB25' -R	qPCR primer that amplifies the 5’ end of the cnfR2 gene; Fig. 7B	ACACAAAACTAGGGTCAATCCAGTAATC			

References

1. Gouy M, Guindon S, Gascuel O. 2010. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221-4.
2. Currier TC, Wolk CP. 1979. Characteristics of *Anabaena variabilis* influencing plaque formation by cyanophage N-1. J Bacteriol 139:88-92.
3. Ungerer JL, Pratte BS, Thiel T. 2010. RNA processing of nitrogenase transcripts in the cyanobacterium *Anabaena variabilis*. J Bacteriol 192:3311-3320.
4. Pratte BS, Thiel T. 2016. Homologous regulators, CnfR1 and CnfR2, activate expression of two distinct nitrogenase gene clusters in the filamentous cyanobacterium *Anabaena variabilis* ATCC 29413. Mol Microbiol 100:1096-109.
5. Thiel T, Lyons EM, Erker JC, Ernst A. 1995. A second nitrogenase in vegetative cells of a heterocyst-forming cyanobacterium. Proc Natl Acad Sci USA 92:9358-9362.
6. Thiel T, Pratte B. 2001. Effect on heterocyst differentiation of nitrogen fixation in vegetative cells of the cyanobacterium *Anabaena variabilis* ATCC 29413. J Bacteriol 183:280-6.
7. Pratte BS, Thiel T. 2014. Regulation of nitrogenase gene expression by transcript stability in the cyanobacterium *Anabaena variabilis*. J Bacteriol 196:3609-3621.
8. Zahalak M, Pratte B, Werth KJ, Thiel T. 2004. Molybdate transport and its effect on nitrogen utilization in the cyanobacterium *Anabaena variabilis* ATCC 29413. Mol Microbiol 51:539-49.
9. Murphy KC, Campellone KG. 2003. Lambda Red-mediated recombinogenic engineering of enterohemorrhagic and enteropathogenic *E. coli*. BMC Molecular Biology 4:11.
10. Vernon SA, Pratte BS, Thiel T. 2017. Role of the nifB1 and nifB2 Promoters in cell-type-specific expression of two Mo nitrogenases in the cyanobacterium *Anabaena variabilis* ATCC 29413. Journal of Bacteriology 199 (4) e00674-16.
11. Vieira J, Messing J. 1982. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259-268.