Frequency of circulating topoisomerase-I-specific CD4 T cells predicts presence and progression of interstitial lung disease in scleroderma

Andrea Fava1, Raffaello Cimbro1, Fredrick M. Wigley1, Qing-Rong Liu2, Antony Rosen1 and Francesco Boin3*

Abstract

Background: Scleroderma is an antigen-driven T cell-mediated autoimmune disease. Presence of anti-topoisomerase-I antibodies is associated with pulmonary fibrosis and predicts increased mortality. Characterization of autoreactive T lymphocytes may shed light on disease pathogenesis and serve as a biomarker for disease activity. Here, we aimed to quantify and functionally characterize circulating topoisomerase I (topo-I)-specific CD4+ T cells and to define their association with presence and progression of interstitial lung disease (ILD) in patients with scleroderma.

Methods: Using flow cytometry, circulating topo-I-reactive CD4+ T cells were identified by the expression of specific activation markers (CD154 and CD69) upon stimulation with purified topo-I and quantified in 27 SSc patients and 4 healthy donors (HD). Polarization of autoreactive T cells (Th1, Th2, Th17, Th1–17) was defined using surface expression of specific chemokine receptors. Presence and progression of ILD were determined using high-resolution chest CT and pulmonary function tests.

Results: Topo-I-reactive CD4+ T cells were found in all topo-I-positive patients compared to one topo-I-negative subject and no HD. Topo-I-specific CD4+ T cells exhibited a distinct Th17 polarized phenotype. Autoreactive T cells were significantly increased in subjects with evidence of ILD and were quantitatively associated with the decline of lung volumes.

Conclusions: Topo-I-specific T cells can be reliably quantified in the peripheral blood of patients with scleroderma, exhibit a pro-inflammatory Th17 phenotype, and predict progression of ILD.

Keywords: Systemic sclerosis, Interstitial lung disease, T lymphocytes, Th17, Autoantigen

Background

Systemic sclerosis (SSc) is characterized by obliterative microangiopathy, progressive fibrosis of affected organs, and autoimmunity [1]. Early in the disease, an inflammatory mononuclear cell infiltrate precedes fibrosis and parallels the development of vasculopathy in affected tissues, suggesting that a disrupted immune response is a major driver in SSc pathogenesis [2]. A more precise understanding of the immune effector pathways would allow identifying reliable markers to monitor disease activity and to define suitable targets for a selective therapeutic intervention.

In scleroderma, the presence of specific autoantibodies is strongly associated with distinct clinical phenotypes [3]. In particular, anti-topoisomerase-I (topo-I) antibodies have high specificity for scleroderma, and are present in 20–45 % of patients [4, 5]. They are associated with diffuse skin involvement and pulmonary fibrosis, and independently predict more severe disease and mortality [6, 7]. Despite these robust associations, the serum anti-topo-I antibody levels are not useful to monitor disease activity and progression in SSc patients [8–10], and there are no convincing data supporting a
direct role for these autoantibodies in the pathogenesis of SSc suggesting that the anti-topo-I response is involved but not antibody mediated.

Importantly, anti-topo-I antibodies undergo class switching and exhibit a strong association with human leukocyte antigen (HLA) alleles across different ethnic groups, implicating T cells in this response [11, 12]. The presence of an antigen-driven, T cell-dependent process in SSc is supported by several studies [12–16]. Defining the functional phenotype of topo-I-reactive T cells would be relevant to determine whether and how this cellular subset may contribute to inflammation and tissue damage in SSc. However, no conclusive data have been provided to define whether autoantigen-specific T cell responses are amplified in individuals with active disease and contribute to the generation of distinct phenotypes through their effector function. These aspects have been difficult to investigate due to poor accessibility of target tissues and technical challenges to detect ex vivo low-frequency antigen-specific T cells [12–16]. In this study, we employed a novel assay to identify, quantify and functionally characterize topo-I-specific CD4+ T cells. This is based on the detection upon antigen stimulation of reliable markers of early activation (i.e., CD154, CD69) as well as of T cell polarization. We found that topo-I-responsive T cells are selectively increased in anti-topo-I-positive SSc patients and exhibit a T helper (Th)17 pro-inflammatory functional phenotype, with frequency quantitatively associated with presence and progression of interstitial lung disease (ILD). These findings implicate amplified topo-I-specific T cell responses in the pathogenesis of SSc lung disease, and suggest that they may be appropriate targets to monitor disease activity and predict outcome.

Methods
Patients evaluated at the Johns Hopkins Scleroderma Center were included in the study after providing written informed consent if they met the American College of Rheumatology preliminary criteria for the classification of SSc [17]. The Johns Hopkins institutional review board approved the study.

Clinical phenotyping
Demographic and clinical data including age, sex, ethnicity, smoking status, disease duration, scleroderma subtype, specific organ involvement, use of immunosuppressive agents, and autoantibody status were obtained at the time of the visit. Severity of skin involvement was quantified using the modified Rodnan skin score [18]. Pulmonary involvement was determined based on abnormal pulmonary function tests (PFT), including measurements of forced vital capacity (FVC) and single-breath carbon monoxide diffusing capacity (DLCO), calculated according to the American Thoracic Society recommendations [19]. All PFT data were standardized to same reference values [20, 21]. Presence of ILD was confirmed by the detection of established fibrotic lung changes on computerized tomography of the chest. ILD progression was defined as % change in FVC in the year preceding the test date or in the subsequent 10 months in those patients for whom follow-up data became available. Lung disease severity was assessed using the Medsger severity scale [22].

T cell culture and stimulation
Peripheral blood mononuclear cells (PBMC) were isolated from whole blood through density-gradient centrifugation (Ficoll-Paque Plus, GE Healthcare, Chicago, IL, USA), resuspended in RPMI medium supplemented with 5 % autologous serum, 2 mM L-glutamine, 100 U/ml penicillin, and 100 ug/ml streptomycin, transferred onto a 96-well plate (1.5 × 10⁶ cells/well) and cultured at 37 °C. To prevent CD154 internalization, PBMCs were preincubated with anti-human CD40 blocking antibody (1 ug/ml; G28.5, BioLegend, San Diego, CA, USA) for 15 minutes. Subsequently, cells were stimulated for 18 hours using alternatively 1 ug/ml staphylococcal enterotoxin B (SEB)/staphylococcal enterotoxin A (SEA), 15 ug/ml tetanus toxoid (TT) (NIBSC), 17 ug/ml human recombinant topoisomerase-I purified from baculovirus-infected insect cells (GenScript Biotech Corp, Piscataway, NJ, USA), 18 ug/ml purified human recombinant (baculovirus) protein arginine methyltransferase 6 (PRMT6) (Cayman Chemicals, Ann Arbor, MI, USA) or human peptidyl arginine deiminase type 4 (PAD4) (gift from Dr. Erika Darrah).

Flow cytometry
After stimulation and washings with PBS, cells were then stained with Live/Dead Fixable Blue Dead Cell Stain Kit (Molecular Probes, Eugene, OR, USA), BV510-conjugated anti-CD3 (OKT3, BioLegend), Pacific Blue-conjugated anti-CD4 (RPA-T4, BD Pharmingen Franklin Lakes, NJ, USA), APC-H7-conjugated anti-CD8 (SK1, BD, Franklin Lakes, NJ, USA), PE-conjugated anti-CD154 (TRAP1, BD Pharmingen), APC-conjugated anti-CD69 (FN50, BD Pharmingen), Alexa-fluor 488-conjugated anti-CXCR3 (TG1/CXCR3, BioLegend), PerCP-Cy5.5-conjugated anti-CXCR6 (TG7/CXCR6, BioLegend), PE-Cy7-conjugated anti-CXCR4 (1G, BD Pharmingen) antibodies, and flow cytometry acquisition was performed on a FACS Aria (BD) instrument. Analysis was conducted using FlowJo software (Tree Star Inc., Ashland, OR, USA).

Cytokine quantitation
Freshly isolated PBMCs were sorted according to the surface expression of the chemokine receptors CXCR6, CXCR3, and CXCR4 (Fig. 3a), resuspended in RPMI medium supplemented with 10 % fetal bovine serum.
(FBS), 2 mM L-glutamine, 100 U/ml penicillin and 100
µg/ml streptomycin, and then stimulated with anti-CD3/
CD28 beads (Life Technologies, Carlsbad, CA, USA) at a
bead-to-cell ratio of 2:1 for 48 hours (37 °C). Superna-
tants were collected and stored at -80 °C. Quantitation
of interferon (IFN)γ, interleukin (IL)-4 and IL-17A was
performed in duplicate using DuoSet-ELISA kits (R&D
Systems, Minneapolis, MN, USA) according to manufac-
turer’s instructions.

RNA isolation and cDNA synthesis
Topo-I specific CD4+ T cells identified after 18 h stimu-
lation as described in the Methods section of the main
manuscript were sorted according to their chemokine
receptor expression pattern into 50 µl of RNA extraction
buffer (PicoPure RNA isolation kit, Arcturus Bioscience,
Inc., Mountain View, CA, USA), incubated at 42 °C for
30 min and centrifuged (800 × g) at RT for 2 min. The
supernatant was then collected in an RNase-free tube.
Subsequent column filtration, washing, and elution of
RNA from the columns were performed according to
section C of the PicoPure RNA isolation protocol
(Protocol for Use with CapSure Macro Laser Capture
Microscope Caps). RNA integrity numbers were measured
using Agilent RNA 600 Pico kit (Agilent Technologies,
Santa Clara, CA, USA). Single-strand cDNAs were synthe-
sized with the Superscript III first-strand cDNA synthesis
kit following the manufacturer’s protocol (Invitrogen, Life
Technologies, Waltham, MA, USA).

Pre-amplification and quantitative real-time polymerase
chain reaction (RT-qPCR)
TaqMan PreAmp Master Mix Kit was used for cDNA
preamplification (Applied Biosystems, Life Technologies,
Waltham, MA, USA) using pooled primer mixes (200
times dilution) of the predesigned TaqMan assays of
IL17A (Hs00174383_m1), IL4 (Hs00174122_m1), IFNG
(Hs00989291_m1) and endogenous control beta-actin
(4326315E). cDNAs were preamplified in an ABI 9700
Thermal Cycler using the program: 95 °C hold for
10 min, and then 14 cycles of denaturation at 90 °C for
15 sec and annealing and extension at 60 °C for 4 min.
The pre-amplification PCR products were immediately
diluted five times with molecular biology-grade water (5
PRIME, Gaithersbrug, MD, USA) and stored at -20 °C or
immediately processed for qPCR. Duplex qPCR assays
were performed on technical duplicates using a Fam-
labeled probe for each target gene and a Vic-labeled
probe for the endogenous control gene, along with Taq-
Man® Advanced Fast PCR Master Mix (Life Technology).
RT-qPCR reactions were run in a 7500 Fast TaqMan in-
strument using the program: 95 °C hold for 20 sec
followed by 40 cycles of denaturation at 95 °C for 3 sec
and annealing and extension at 60 °C for 30 sec.

Calculations of relative expression from Ct data were
carried out according to User Bulletin #2 for ABI Prism
7900 Sequence Detection System.

Enzyme-linked immunosorbent assay (ELISA)
Anti-topoisomerase-I antibody concentration was measured
in the serum of SSC patients using QUANTA Lite Sc70
enzyme-linked immunosorbent assay (Inova Diagnostics,
San Diego, CA, USA) according to the manufacturer’s instructions.

Statistical analysis
Statistical analysis was performed using Prism 6.0 Software
for Macintosh (GraphPad Software, San Diego, CA, USA).
Differences between variables were determined using
Student t test and Wilcoxon rank-sum test for continuous
variables, and the χ² or Fisher’s exact test for categorical
variables. Multiple comparisons were performed by analysis
of variance (ANOVA) with Bonferroni correction for normally
distributed variables or Kruskal-Wallis and Dunn’s test otherwise. Linear associations were analyzed
using Pearson correlation coefficient upon assessment for
Gaussian distribution with Shapiro-Wilk test. Throughout,
a two-tailed α of 0.05 was used.

Results
We studied 27 consecutive SSC patients: 15 anti-topo-I-
positive and 12 anti-topo-I-negative. The two groups
were similar with regards to the main demographic and
disease characteristics (Table 1). Consistent with previ-
ous studies, anti-topo-I positive patients exhibited a sig-
nificant higher prevalence of ILD (p = 0.005), worse
modified Rodnan Skin Score, and a trend for lower dif-
fusion capacity of lung for carbon monoxide (DLco).

CD154 and CD69 upregulation identifies topoisomerase-I-
reactive CD4+ T cells
In order to detect with reliability and specificity antigen-
specific T cells, we developed a flow cytometry-based
protocol measuring the expression of early activation
markers CD69 and CD154 on CD4+ T cells. First, we opti-
mized the assay using PBMCs obtained from a healthy
donor recently immunized with combined tetanus, diphteria,
and pertussis (Tdap) vaccine. After stimulation for
18 hours with tetanus toxoid (TT) in the presence of anti-
CD40 blocking antibodies and 5 % autologous serum, a se-
lective upregulation of both CD69 and CD154 was de-
ected on CD4+ T cells (Fig. 1a). The gating strategy for this experiment is shown
in Additional file 1: Figure S1. This approach was then ap-
plied to SSC patients using the whole topo-I molecule puri-
fied from baculovirus-infected insect cells and two
unrelated proteins for which no T cell autoreactivity was expected in SSc (PRMT6 and PAD4) as negative controls. A representative experiment is shown in Fig. 1b. Topo-I-reactive CD154 + CD69 + CD4+ T cells were specifically identified in topo-I-positive SSc patients, while no response was triggered by either PRMT6 or PAD4.

Topoisomerase-I-specific CD4+ T cells are increased in anti-topo-I-positive SSc patients

Next, we sought to define the magnitude of autoreactive CD4+ T cell expansion in the peripheral blood of SSc patients. CD4+ T cells from anti-topo-I-positive subjects consistently exhibited a significant upregulation of CD69 and CD154 upon topo-I challenge compared to unstimulated cells and those from anti-topo-I-negative patients (Fig. 1c). Autoreactive CD154 + CD69 + CD4+ topo-I-specific T cells were found in all 15 topo-I-positive patients compared to only one topo-I-negative subject and no healthy donors (HD), with a frequency ranging between 0.136 % and 0.417 % of total CD4+ T cells (topo-I-positive vs topo-I-negative p < 0.001; topo-I-positive vs HD p = 0.005; topo-I-negative vs HD p = ns) (Fig. 2).

Recognition of topoisomerase-I by autoreactive CD4+ T cells is HLA-DR restricted

As CD4 T cells recognize antigens in the context of major histocompatibility complex (MHC) class II molecules, we asked whether T cell response to topo-I was MHC-restricted and in particular mediated by HLA-DR alleles [23]. PBMCs from topo-I-positive patients were stimulated with topo-I in presence of anti-HLA-DR or -HLA-DP blocking antibodies. Positive responses to topo-I were significantly decreased by HLA-DR blockade (p = 0.013), while anti-HLA-DP antibodies did not impact
Fig. 1 (See legend on next page.)
T cell activation (Fig. 3), implicating that specific topo-I epitopes presented to the T cell receptor (TCR) by HLA-DR molecules can selectively induce and maintain auto-reactive T helper immune responses.

Topoisomerase-I-specific CD4+ T cells exhibit a Th17 polarized phenotype

To characterize the functional properties of topo-I-specific CD4+ T cells, we validated and employed an approach to identify polarized T helper subsets based on the surface expression of specific chemokine receptors [24]. Th1, Th2, Th17 and Th1-17 CD4+ T cells were defined by different combinations of CXCR3, CCR6 and CCR4 expression (Fig. 4a). After cell sorting and stimulation of each individual subset with anti-CD3/CD28 beads, the production of specific cytokines was assessed in the supernatants, confirming their polarized status (Fig. 4b). CCR6 + CCR4 + CXCR3- T cells (Th17) selectively secreted IL-17A, CCR6 + CCR4-CXCR3+ T cells (Th1) both IFN-γ and IL-17A, CCR6-CXCR4-CXCR3- T cells (Th2) exclusively IL-4 and CCR6-CXCR4-CXCR3+ T cells (Th1) mainly IFN-γ. Based on these findings, we found that CD4+ T cells responding to topo-I stimulation, exhibited a distinct enrichment in the Th17 subset (p < 0.001) compared to the total CD4+ population, while their Th1 polarization was decreased (p = 0.002) (Fig. 4c). The frequency of Th2 and Th1-17 subsets did not differ between topo-I-specific and total CD4+ T cells. To further test the specificity of these phenotypes, IFN-γ, IL-4 and IL-17A mRNA expression was quantified in topo-I-responsive T cells sorted according to their polarized status. The cytokine specificity of autoreactive polarized subsets was confirmed at the transcriptional level (Fig. 4d). In particular, topo-I-specific CCR6 + CCR4 + CXCR3-CD4+ T cells selectively expressed IL-17A mRNA.

Topoisomerase-I specific CD4+ T cells are quantitatively associated with presence and progression of ILD

Several studies have confirmed that anti-topo-I positivity is significantly more prevalent among SSC patients with pulmonary fibrosis and entails worse clinical outcome.
CD4+ T cells show a Th17 polarized functional phenotype. a CD4+ T cell subsets were identified by flow cytometry using the combined surface expression of chemokine receptors CCR6, CCR4, and CXCR3. b After sorting, the different T helper subsets were stimulated with anti-CD3/CD28 beads for 48 h and secretion of IFNγ, IL-4, and IL-17A was measured in their supernatants by enzyme-linked immunosorbent assay (bars represent mean ± SE, n = 3). c The distribution of polarized T helper subsets within topo-I-specific CD4+ T cells (closed circles) is shown in comparison to the general CD4+ population (open circles). T test with Bonferroni correction was used for multiple comparisons. Lines indicate mean ± SD. d After sorting topo-I-specific CD4+ T cells according to their polarized T helper phenotype (range 16–2064 cells), mRNA expression levels of IFNγ, IL-4, and IL-17A were measured by qPCR using the Arcturus® PicoPure® RNA Isolation system, which is designed to recover high-quality RNA from a very low number of cells (10–500 cells) and to accomplish cDNA synthesis from minimal amounts of cDNA. IFNγ and IL-17A expression was calculated as fold change in reference to a mix of topo-I-reactive CD4+ T cells from three patients; IL-4 expression is reported as delta Ct from actin expression since it was not detectable in the reference population. Data are representative of four separate patients (mean ± SE).
Therefore, we next addressed these important clinical associations and sought to define whether the frequency of topo-I-specific T cell responses might have clinical utility. Topo-I-reactive T cells were significantly increased in the peripheral blood of patients with ILD compared to those without lung involvement ($p = 0.002$) (Fig. 5a). A lower DLco was associated with higher number of topo-I-specific T cells (Pearson $r = -0.6$, $p = 0.018$) (Fig. 6) but no association was found with the FVC (Fig. 5b). In contrast, the proportion of circulating topo-I-specific CD4+ T cells was quantitatively associated with the progression of lung fibrosis as defined by the loss of lung volumes within the year preceding the test date (Pearson $r = 0.721$, $p = 0.002$) (Fig. 5c) or during the subsequent one (Pearson $r = 0.764$, $p = 0.017$) (Fig. 5d). None of these clinical associations were found with anti-topo-I serum titers (Additional file 2: Figure S2). Importantly, the frequency of topo-I-specific T cells did not show any linear relationship with anti-topo-I titer or with disease duration (Figs. 7 and 8). These data suggest that autoreactive T cell activation against topo-I is sustained during progression of SSc-ILD and predicts further loss of lung volumes.

Discussion

The evidence that a distinct immune-mediated process may drive target tissue injury in scleroderma has not been paralleled by the ability to define with precision its magnitude and the functional features of involved cellular and molecular effectors. In this study, we have developed a reliable method to identify and quantify topoisomerase-I-specific CD4+ T cells with high specificity and precision, determining that in SSc patients topo-I-specific T cells are strongly polarized toward a...
pro-inflammatory Th17 phenotype and quantitatively associated with the presence and progression of ILD.

Lung fibrosis is the most common pulmonary manifestation in SSc and a leading cause of morbidity and mortality [25, 26]. A substantial group of SSc-ILD patients (15–25%) progress towards end-stage lung disease [27]. Regrettably, treatment options for ILD have been limited to nonselective immunosuppression. Therapeutic efficacy has been hindered by our poor ability to diagnose lung involvement earlier, to effectively monitor the disease course and to identify highly selective pathogenic targets. Currently, the only reliable tool to predict disease activity and progression in SSc-ILD is the prospective measurement of lung volumes, as high-resolution chest computed tomography or bronchoalveolar lavage fluid analysis have shown lack of sensitivity and/or specificity both before or after therapeutic intervention [28, 29]. Importantly, the fact that ILD progression is often identified by spirometry criteria only after irreversible lung damage has already occurred remains one of the major obstacles to the prompt initiation of therapy and ultimately to its efficacy. The findings of this study indicate that quantification and functional profiling of topo-I-specific CD4+ T cells may represent a novel, useful, and noninvasive tool to assess and predict disease activity in SSc-ILD. Moreover, the quantitative association of these autoreactive T cells with the degree of progressive FVC decline suggests that expansion of the topo-I autoreactive T cells and ongoing lung injury may be mechanistically connected.

The identification of circulating autoreactive CD4+ T cells is challenging due to their very low frequency. Previous studies pursuing the detection of topo-I-specific T cells in SSc patients have yielded limited results due to relatively weak cellular responses to topo-I as well as poor specificity, as autoreactive T cells have been found also in anti-topo-I-negative patients as well as healthy controls [12–14, 16]. Most of these investigations used bulk assays measuring proliferation of mononuclear cells by ³H-thymidine incorporation after several days of in vitro stimulation and could not reliably determine the frequency of circulating topo-I-specific T cells nor provide insight about their functional phenotype. In addition, these studies did not yield any data regarding the association between topo-I-reactive T cells and relevant clinical outcomes. To overcome these problems, we used full-length topo-I obtained from a baculovirus-insect cell expression system and adopted a method that relies on markers of antigen-driven T cell activation such as CD69 and CD154 [30, 31]. CD154 upregulation is highly specific for T cell receptor (TCR) engagement with cognate antigens and is not influenced by nonspecific stimuli such as activating cytokines, providing our study with the specificity and sensitivity needed to detect rare cellular events [31]. Additionally, CD154 is expressed primarily on CD4+ T cells within few hours, making it the ideal marker to probe early activation events in response to autoantigen stimulation [31]. Such early activation is typical of antigen-experienced cells, which are uniquely and reliably identified by our method. This provides a clear advantage over other bulk assays where a significant background noise may be generated by nonspecific activation of naïve T cells in response to the culture conditions or topo-I. In fact, subjects with shared HLA-DR alleles associated with anti-topo-I antibody positivity may have low-level T cell clone proliferation in response to the autoantigen [12, 32].

The presence of topo-I specific CD4+ T cells is remarkably restricted in our study to patients with anti-topo-I antibodies. As lung fibrosis may occur in topo-I-negative
patients, other antigens, known (i.e., U1 RNP, U3 RNP) or yet unknown, may be targeted and drive the disease process. Our experimental approach can be applied to study these other autoantigens as well as to investigate other rheumatic conditions where the number and functional properties of autoreactive T cells targeting disease-specific autoantigens may be mechanistically related to the underlying fibrotic lung disease (i.e., antisyntethetase syndrome).

Anti-topo-I antibodies are class switched, indicating that topo-I-specific T cells play a significant role in B cell activation and autoantibody production. However, while anti-topo-I antibody positivity is strongly associated with development of SSc-ILD and independently predicts mortality, serum levels do not correlate reliably with disease activity and progression [5–10]. This further suggests that T cells may contribute to the pathogenesis of the disease through their direct pro-inflammatory and immunomodulatory effect.

We found that CD4 T cell responses to topo-I are HLA-DR restricted, which confirms and extends previous reports indicating that anti-topo-I positivity is significantly associated with HLA-DRB1*1104 alleles [23]. This finding should further support pursuing the identification of allele-specific HLA-DR-binding topo-I peptides and the development of tools such as class II peptide-MHC complexes tetramers, which can enhance our ability to monitor autoantigen-specific T cell responses in blood and within target tissues.

Our study shows robustly that topo-I-specific CD4+ T cells exhibit a chemokine receptor and cytokine expression profile indicative of a Th17 polarized phenotype. While the frequency of Th17 lymphocytes is low in the peripheral blood of healthy individuals, this subset may undergo recruitment and expansion in sites of active inflammation and tissue damage, as shown in several autoimmune disorders [33–35]. The tight association between autoreactive T cells and the declining lung function detected in our SSc-ILD patients suggests a possible mechanistic link between selective Th17 activation and progression of lung damage. In animal models, IL-17 can drive fibrosis, as shown in the lungs and skin of bleomycin as well as tight-skin-1 (TSK-1+/+) mice [36, 37]. In addition, immunization of C57BL/6 mice with recombinant human topo-I and Freund’s complete adjuvant promotes the development of SSc-like manifestations in association with increased production of IL-6 and IL-17 as well as higher levels of circulating IL-17-secreting T cells (Th17) [38]. IL-17 can also activate TGF-β and CTGC pathways in fibroblasts derived from mouse skin, and promote collagen production after epithelial-mesenchymal transition in mouse alveolar epithelial cells [37]. In contrast, a direct Th17-mediated pro-fibrotic function in humans has not been proven yet. Nonetheless, human fibroblasts express functional IL-17 receptors and respond to IL-17 stimulation with activation and proliferation [39]. Skin biopsies obtained from SSc patients have shown increased expression of collagen mRNA in fibroblasts nearby inflammatory infiltrates and higher numbers of IL-17+ T cells located in tight proximity of myofibroblasts, implying a cross-talk between these two cell types [40]. Therefore, Th17 T cell activation may indirectly contribute to the fibrotic process in SSc by driving early local inflammatory events and amplifying the magnitude of fibroblast response to other direct pro-fibrotic stimuli present in affected tissues. In fact, increased levels of IL-17 and Th17 cells have been found in the peripheral blood as well as within target tissues of SSc patients during early disease and in association with ILD [41, 42]. Cytokines crucial for Th17 T cell priming and expansion such as IL-6 and IL-23 have been reported enriched in SSc subjects [43, 44]. IL-6 secretion by topo I-specific T cell clones has shown to be crucial for effective activation and production of antitopo-I antibodies by autologous B cells obtained by SSc patients [45]. In addition, polymorphism of the IL-23 receptor gene (IL23R) has shown association with diffuse SSc and anti-topo-I positivity [46]. In our previous work, we have shown that an increased frequency of circulating Th2/Tc2 polarized T cells in SSc patients is significantly associated with the presence of pulmonary fibrosis [47]. Other studies have detected a predominance of T cells producing IFNγ (Th1) both in the periphery and within affected organs during earlier phases of the disease, with subsequent decline during late-fibrotic stages [48]. This emphasizes that the participation of T cells in SSc pathogenesis may not be exclusively limited to a direct pro-fibrotic function and varies in terms of intensity and phenotype during the course of the disease.

Conclusions

Our investigation shows that quantification and functional profiling of autoantigen-driven immune responses can be employed to predict with precision the presence and progression of underlying fibrotic lung disease in SSc. Prospective studies will determine whether assessing topo-I-specific T cell responses is useful to measure more precisely the efficacy of therapeutic interventions during routine clinical care and in experimental trials. More readily, this approach can be applied to investigate the presence and the function of autoreactive T cells within target organs, providing important insight about tissue-specific pathways and mechanisms of injury relevant for SSc onset and progression.

Ethics approval and consent to participate

Patients evaluated at the Johns Hopkins Scleroderma Center were included in the study after providing written informed. The Johns Hopkins institutional review board approved the study.
Additional files

Additional file 1: Figure S1. Flow cytometry gating strategy for CD4+ T cells. G1: live lymphocytes identified in peripheral blood mononuclear cells (PBMCs) according to the forward and sideward scatter (FSC-A/SSC-A). G2, G3: singlet selection conducted on FSC-H/FSC-W and SSC-H/SSC-W dot plots to avoid cellular doublets. G4: dead cells exclusion (Live/Dead Fixable Blue Dead Cell Stain Kit, Molecular Probes). G5, G6: gating on CD3+ and CD4+ T lymphocytes. Numbers indicate percentage of parent population. (TIF 12770 kb)

Additional file 2: Figure S2. Serum levels of anti-topo-I antibodies are not associated with severity and progression of ILD. (A and B) Association of anti-topo-I antibodies serum concentration with FVC (% predicted) and DLco (% predicted). (C and D) Associations between anti-topo-I antibodies serum levels and degree of ILD progression defined as % change in forced vital capacity (FVC) in the year preceding the test date (C) and in the subsequent 10 months (D). Pearson correlation coefficient r and p values are displayed. (TIF 12577 kb)

Abbreviations
ANOVA: analysis of variance; DLco: diffusion capacity of lung for carbon monoxide; ELISA: enzyme-linked immunosorbent assay; FBS: fetal bovine serum; FVC: forced vital capacity; HD: healthy donor; HLA: human leucocyte antigen; IFN: interferon; IL: interleukin; ILD: interstitial lung disease; MHC: major histocompatibility complex; PAD4: protein arginine deiminase 4; PBMC: peripheral blood mononuclear cells; PCR: polymerase chain reaction; PFT: pulmonary function test; PRMT6: protein arginine methyltransferase 6; SSC: systemic sclerosis; TCR: T cell receptor; Th: T helper; topo-I: anti-topoisomerase-I; TT: tetanus toxoid.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
AF and FB designed and conducted the experiments, analyzed the data, and wrote the manuscript. RC and LQ-R performed part of the experiments. FB, AR, FW, and RC guided study design and data interpretation. All authors contributed to the preparation and critical review of the manuscript, and approved the final version.

Acknowledgements
We thank Adrianne Woods for her assistance with data management and Tara Guhr for her valuable technical support. We are also indebted with all our patients for their participation in this research.

Funding
Research reported in this publication was supported by the Scleroderma Research Foundation (FB, FW), the Jerome L. Greene Foundation (FB), the Donald B. and Dorothy L. Stabler Foundation (FB), and the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institute of Health under Award Number P30AR053503 (AR, FB).

Author details
1Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, 5200 Eastern Avenue, MBL Building, Center Tower, Suite 4100, Baltimore, MD 21224, USA. 2Behavioral Neuroscience Research Branch, National Institute of Drug Abuse, National Institutes of Health, 251 Bayview Boulevard, Baltimore, Maryland 21224, USA. 3Department of Medicine, Division of Rheumatology, University of California, San Francisco, 513 Parnassus Avenue, Med Sci, S-847, San Francisco, CA 94143, USA.

Received: 28 February 2016 Accepted: 11 April 2016 Published online: 04 May 2016

References
1. Boin F, Wigley FM, et al. Clinical Features and Treatment of Scleroderma. In: Kelley’s Textbook of Rheumatology. 9th ed. Philadelphia: Elsevier; 2012. p. 1366–403.
2. Prescott RJ, Freemont AJ, Jones CJ, Hoyland J, Fielding P. Sequential dermal microvascular and perivascular changes in the development of sclerodermat. J Pathol. 1992;166:255–63.
3. Boin F, Rosen A. Autoimmunity in systemic sclerosis: current concepts. Curr Rheumatol Rep. 2007;9:165–72.
4. Reveille JD, Solomon DH, American College of Rheumatology Ad Hoc Committee of Immunologic Testing Guidelines. Evidence-based guidelines for the use of immunologic tests: antinuclear antibodies, rheumatoid factor, and anti-DNA topoisomerase I antibody levels determined by ELISA in systemic sclerosis. Arthritis Rheum. 2003;49:399–412.
5. Walker UA, Tyndall A, Carjik L, Denton C, Farge-Bancel D, Kowal-Bielecka O, et al. Clinical risk assessment of organ manifestations in systemic sclerosis: a report from the EULAR Scleroderma Trials And Research group database. Ann Rheum Dis. 2007;66:754–63.
6. Nihyuanova SI, Denton CP. Autoantibodies as predictive tools in systemic sclerosis. Nat Rev Rheumatol. 2010;6:112–6.
7. Cottrell TR, Wise RA, Wigley FM, Boin F. The degree of skin involvement identifies distinct lung disease outcomes and survival in systemic sclerosis. Ann Rheum Dis. 2014;73:1060–6.
8. Kuwana M, Kaburaki J. Mimirori T, Kawakami Y, Tojo T. Longitudinal analysis of autoantibody response to topoisomerase I in systemic sclerosis. Arthritis Rheum. 2000;43:1074–84.
9. Sato S, Hamaguchi Y, Hasegawa M, Takehara K. Clinical significance of anti-topoisomerase I antibody levels determined by ELISA in systemic sclerosis. Rheumatology (Oxford). 2001;40:i135–40.
10. Hu PQ, Fertig N, Medsger TA, Wright TM. Correlation of serum anti-DNA topo-isomerase I antibody levels with disease severity and activity in systemic sclerosis. Arthritis Rheum. 2003;48:1363–73.
11. Kuwana M, Kaburaki J, Arnett FC, Howard RF, Medsger TA, Wright TM. Influence of ethnic background on clinical and serologic features in patients with systemic sclerosis and anti-DNA topo-isomerase I antibody. Arthritis Rheum. 1999;42:665–74.
12. Kuwana M, Medsger TA, Wright TM. T cell proliferative response induced by DNA topo-isomerase I in patients with systemic sclerosis and healthy donors. J Clin Invest. 1995;95:586–96.
13. Kuwana M, Feghali CA, Medsger TA, Wright TM. Autoreactive T cells to topo-isomerase I in monozygotic twins discordant for systemic sclerosis. Arthritis Rheum. 2001;44:1654–9.
14. Veeraagahavan S, Renzoni EA, Heil J, Jones M, Hammer J, Wells AU, et al. Mapping of the immunodominant T cell epitopes of the protein topoisomerase I. Ann Rheum Dis. 2004;63:982–7.
15. Boin F, Wigley FM, Schneck JP, Oelke M, Rosen A. Evaluation of topo-isomerase-1-specific CD8+ T-cell response in systemic sclerosis. Ann N Y Acad Sci. 2005;1062:137–45.
16. Hu PQ, Oppenheim JJ, Medsger TA, Wright TM. T cell lines from systemic sclerosis patients and healthy controls recognize multiple epitopes on DNA topo-isomerase I. J Autoimmun. 2006;26:258–67.
17. Preliminary criteria for the classification of systemic sclerosis (scleroderma). Subcommittee for scleroderma criteria of the American Rheumatism Association Diagnostic and Therapeutic Criteria Committee. Arthritis Rheum. 1980;23:581–90.
18. Clements P, Lachenbruch P, Sebold J, White B, Weiner S, Martin R, et al. Inter and intradatabase variability of total skin thickness score (modified Rodnan TSS) in systemic sclerosis. J Rheumatol. 1995;22:1281–5.
19. Lung function testing: selection of reference values and interpretative strategies. American Thoracic Society. Am Rev Respir Dis. 1991;144:1202–18.
20. Hankinson JL, Odencrantz JR, Fedan KB. Spirometric reference values from a sample of the general U.S. population. Am J Respir Crit Care Med. 1999;159:179–87.
21. Knudtson RJ, Kaltenborn WT, Knudson DE, Burrows B. The single-breath carbon monoxide diffusing capacity. Reference equations derived from a healthy nonsmoking population and effects of hemocrit. Am Rev Respir Dis. 1987;135:805–11.
22. Medsger TA, Silman AJ, Steen VD, Black CM, Akesson A, Bacon PA, et al. A disease severity scale for systemic sclerosis: development and testing. J Rheumatol. 1999;26:159–67.
23. Arnett FC, Gourh P, Shete S, Ahn CW, Honey RE, Agarwal SK, et al. Major histocompatibility complex class II alleles, haplotypes and epitopes which confer susceptibility or protection in systemic sclerosis: analyses in 1300 Caucasian, African-American and Hispanic cases and 1000 controls. Ann Rheum Dis. 2010;69:822–7.
24. Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossy D, Gattorno M, Lanza Vecchia A, et al. Surface phenotype and antigenic specificity of
human interleukin 17-producing T helper memory cells. Nat Immunol. 2007;8:639–46.
25. Ioannidts JP, Vlachoyiannopoulos PG, Haidich AB, Medsgjer Jr TA, Lucas M, Michet CJ, et al. Mortality in systemic sclerosis: an international meta-analysis of individual patient data. Am J Med. 2005;118:2–10.
26. Gelber AC, Manno RL, Shah AA, Woods A, Le EN, Boin F, et al. Race and association with disease manifestations and mortality in scleroderma: a 20-year experience at the Johns Hopkins Scleroderma Center and review of the literature. Medicine (Baltimore). 2013;92:191–205.
27. Steen VD, Lanz Jr JK, Conte C, Owens GR, Medsgjer Jr TA. Therapy for severe interstitial lung disease in systemic sclerosis. A retrospective study. Arthritis Rheum. 1994;37:1290–4.
28. Clements PJ, Goldin JG, Kleerup EC, Furst DE, Elashoff RM, Tashkin DP, et al. Regional differences in bronchoalveolar lavage and thoracic high-resolution computed tomography results in dyspneic patients with systemic sclerosis. Arthritis Rheum. 2004;50:1909–17.
29. Goh NS, Veeraraghavan S, Desai SR, Cramer D, Hansell DM, Denton CP, et al. Bronchoalveolar lavage cellular profiles in patients with systemic sclerosis-associated interstitial lung disease are not predictive of disease progression. Arthritis Rheum. 2007;56:2005–12.
30. Mardiney M, Brown MR, Fleisher TA. Measurement of T-cell CD69 expression: a rapid and efficient means to assess mitogen- or antigen-induced proliferative capacity in normals. Cytometry. 1996;26:305–15.
31. Chattopadhyay PK, Yu J, Roederer M. A live-cell assay to detect antigen-specific CD4+ T cells with diverse cytokine profiles. Nat Med. 2005;11:1113–7.
32. Kuwana M, Medsgjer TA, Wright TM. Highly restricted TCR-alpha beta usage by autoreactive human T cell clones specific for DNA topoisomerase I: recognition of an immunodominant epitope. J Immunol. 1997;158:485–91.
33. Kyzczek I, Bruce AT, Gudjonsson JE, et al. Induction of IL-17+ T cell trafficking and development by IFN-gamma: mechanism and pathological relevance in psoriasis. J Immunol. 2008;181:4733–41.
34. Chabaud M, Durand JM, Buchs N, Fossiez F, Page G, Frappart L, et al. Human interleukin-17: A T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum. 1999;42:963–70.
35. Tzartos JS, Friese MA, Craner MJ, Palace J, Newcombe J, Esiri MM, et al. Interleukin-17 production in central nervous system-infiltrating T cells and gial cells is associated with active disease in multiple sclerosis. Am J Pathol. 2008;172:146–55.
36. Wilson MS, Madala SK, Ramalingam TR, Gochuico BR, Rosas KO, Cheever AW, et al. Bleomycin and IL-1-beta-mediated pulmonary fibrosis is IL-17A dependent. J Exp Med. 2010;207:535–52.
37. Mi S, Li Z, Yang HZ, Liu H, Wang JP, Ma YG, et al. Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-beta1-dependent and -independent mechanisms. J Immunol. 2011;187:3003–14.
38. Yoshizaki A, Yanaba K, Ogawa A, Asano Y, Kadono T, Sato S. Immunization by the rheumatoid synovium. Arthritis Rheum. 2008;172:146–55.
39. Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C, et al. The pronounced Th17 profile in systemic sclerosis (SSc) together with intracellular expression of TGFbeta and IFNgamma distinguishes SSc phenotypes. PLoS One. 2009;4:e5903.
40. Truchetet ME, Brembilla NC, Montanari E, Loniati P, Raschi E, Zeni S, et al. Induction of IL-17A+ cell counts are increased in systemic sclerosis skin and their number is inversely correlated with the extent of skin involvement. Arthritis Rheum. 2013;65:1347–56.
41. Radstake TR, van Bon L, Broen J, Hussaini A, Hesselstrand R, Wuttge DM, et al. The pronounced Th17 profile in systemic sclerosis (SSc) together with intracellular expression of TGFbeta and IFNgamma distinguishes SSc phenotypes. PLoS One. 2009;4:e5903.
42. Truchetet ME, Brembilla NC, Montanari E, Allarone Y, Chiazzioli C. Increased frequency of circulating Th22 in addition to Th17 and Th2 lymphocytes in systemic sclerosis: association with interstitial lung disease. Arthritis Res Ther. 2011;13:R166.
43. Gourh P, Arnett FC, Assassi S, Tan FK, Huang M, Diekman L, et al. Plasma cytokine profiles in systemic sclerosis: associations with autoantibody subsets and clinical manifestations. Arthritis Res Ther. 2009;11:R147.
44. Komura K, Fujimoto M, Hasegawa M, Ogawa F, Hara T, Murai E, et al. Increased serum interleukin 23 in patients with systemic sclerosis. J Rheumatol. 2008;35:120–5.
45. Kuwana M, Medsgjer TA, Wright TM. Analysis of soluble and cell surface factors regulating anti-DNA topoisomerase I autoantibody production demonstrates synergy between Th1 and Th2 autoreactive T cells. J Immunol. 2000;164:6138–46.
46. Agarwal SK, Gouh P, Shete S, Paz G, Divecha D, Reveille JD, et al. Association of interleukin 23 receptor polymorphisms with anti-topoisomerase-I positivity and pulmonary hypertension in systemic sclerosis. J Rheumatol. 2009;36:2715–23.
47. Boin F, De Fanis U, Bartlett SJ, Wiegley FM, Rosen A, Casolaro V. T cell polarization identifies distinct clinical phenotypes in scleroderma lung disease. Arthritis Rheum. 2008;58:1165–74.
48. Gruschwitz MS, Vieth G. Up-regulation of class II major histocompatibility complex and intercellular adhesion molecule 1 expression on scleroderma fibroblasts and endothelial cells by interferon-gamma and tumor necrosis factor alpha in the early disease stage. Arthritis Rheum. 1997;40:540–50.

Submit your next manuscript to BioMed Central and we will help you at every step:
• We accept pre-submission inquiries
• Our selector tool helps you to find the most relevant journal
• We provide round the clock customer support
• Convenient online submission
• Maximum visibility for your research

Submit your manuscript at www.biomedcentral.com/submit