Data Article

Data on chemical characteristics of waters in two boreal Sphagnum mires (North-Western Russia)

Dmitriy A. Philippov, Victoria V. Yurchenko

Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, Russia

A R T I C L E I N F O

Article history:
Received 10 October 2019
Received in revised form 17 November 2019
Accepted 27 November 2019
Available online 4 December 2019

Keywords:
Natural waters
Spectrophotometry
Solids concentration
Mire water bodies
Raised bog
Wetland

A B S T R A C T

The dataset contains chemical parameters of waters in different mire water bodies (fen strip, bog stream, Sphagnum hollows, hollow-pools, intra-mire lakes, drainage way). Data were collected once a month from May till September 2012 and in May, July and September 2013 and 2014 in Shichengskoe and Alekseevskoe-1 mires (Vologda Region, Russia). Water samples were kept in a cooling bag and transported to the laboratory within a day. Prior to analyses, water samples were filtered (pore size 90 μm). Colour of water, pH, permanganate value, dry residues, and total iron, manganese, carbonate, phosphate, sulphate and nitrate ion concentrations were measured. Data were obtained by the atomic absorption spectrometry and spectrophotometric and titrimetric methods. The pH values varied from 3.7 in Sphagnum hollows to 6.9 in a bog stream and 7.2 in a primary intra-mire lake. The minimum permanganate value of 5.6 mg O/L was registered in a bog stream, the maximum of 150.4 mg O/L in a weakly waterlogged Sphagnum hollow. Dry residue values varied in a range of 35 mg/L in a large hollow-pool to 315 mg/L in a flow-through fen strip. The data are useful for investigating chemical composition of waters in different mire water bodies and the heterogeneity of these abiotic factors.

© 2019 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author. IBIW RAS 109, Yaroslavl Region, Nekoyz District, Borok 152742, Russia.
E-mail address: victoria.yurchenko@rambler.ru (V.V. Yurchenko).

https://doi.org/10.1016/j.dib.2019.104928
2352-3409 © 2019 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Data

Table 1 provides general description of the sampling sites located in two wetlands, Shichengskoe and Alekseevskoe-1 mires. Table 2 presents data on colour of water, pH, permanganate value, dry residues, concentrations of total iron, manganese, and carbonate, phosphate, sulphate and nitrate ions in water samples collected in a fen strip, a bog stream, and a Sphagnum hollow in Shichengskoe mire in 2012 and 2013. Table 3 summarizes hydrochemical data for a fen strip, a bog stream, Sphagnum hollows, hollow-pools, intra-mire lakes, and a drainage way in Shichengskoe and Alekseevskoe-1 mires in 2014. Figs. 1–3 show the general view of the mires.

2. Experimental design, materials, and methods

Water level (or depth in a stream, hollow-pools and lakes) was measured by a steel ruler or a rope-weight gauge. Five measurements were made per sampling plot; min and max values are given in the article (Table 2, Table 3). Temperature in the water surface layer was measured using a standard mercury filled centigrade thermometer. Water samples were collected in clean plastic bottles, kept in a cooling bag and delivered to the laboratory within a day. Water samples were then filtered through a 0.90 μm filter.
Table 1
Sampling sites and dates of sampling.

Data collection area	Mire waterbody	Sampling site ID	Coordinates	Sampling date				
				May	June	July	August	September
Vologda Region, Syamzha District, Shichengskoe Mire	flow-through fen strip	S1	59°56'51" N 41°17'09" E	2012-05-27	2012-06-27	2012-07-27	2012-08-27	2012-09-27
				2013-05-26	2013-06-27	2013-07-15	2013-08-18	2013-09-19
				2014-05-23	2014-06-27	2014-07-15	2014-08-27	2014-09-19
	Sphagnum hollow (weakly waterlogged)	S2	59°56'31" N 41°16'54" E	2012-05-27	2012-06-27	2012-07-27	2012-08-27	2012-09-27
				2013-05-26	2013-06-27	2013-07-15	2013-08-18	2013-09-18
				2014-05-23	2014-06-27	2014-07-18	2014-08-27	2014-09-18
	bog stream	S3	59°56'26" N 41°16'05" E	2012-05-27	2012-06-27	2012-07-27	2012-08-27	2012-09-27
				2013-05-26	2013-06-27	2013-07-15	2013-08-18	2013-09-18
				2014-05-23	2014-06-27	2014-07-18	2014-08-27	2014-09-18
	Lake Shichengskoe (primary intra-mire lake)	S4	59°56'59" N 41°19'15" E	–	–	2012-07-28	–	–
				–	–	2014-07-16	–	–
	Lake Polyanok (primary intra-mire lake)	S5	59°55'58" N 41°31'41" E	–	–	2014-07-14	–	–
Vologda Region, Sokol District, Alekseevskoe-1 Mire	Sphagnum hollow (weakly waterlogged)	A1	59°27'09" N 40°30'36" E	2014-05-25	–	2014-07-20	–	2014-09-21
	Sphagnum hollow (moderately waterlogged)	A2	59°27'11" N 40°30'46" E	2014-05-25	–	2014-07-20	–	2014-09-21
	Sphagnum hollow (strongly waterlogged)	A3	59°27'11" N 40°30'55" E	2014-05-25	–	2014-07-20	–	2014-09-21
	hollow-pool (small)	A4	59°27'12" N 40°30'58" E	2014-05-25	–	2014-07-20	–	2014-09-21
	hollow-pool (medium)	A5	59°27'11" N 40°30'59" E	2014-05-25	–	2014-07-20	–	2014-09-21
	hollow-pool (large)	A6	59°27'07" N 40°31'03" E	2014-05-25	–	2014-07-20	–	2014-09-21
	drainage way	A7	59°27'10" N 40°30'32" E	2014-05-25	–	2014-07-20	–	2014-09-21
Table 2
Chemical characteristics of water in different mire water bodies of Shichengskoe mire in 2012 and 2013.

Parameter, units	Sampling date (see Table 1)	2012	2013					
	Sample ID	S1	S2	S3	S4	Sample ID	S1	S2
Colour of water, PCU	May	269	89	258	–	162	75	236
	June	210	121	350	–	–	–	–
	July	286	124	432	119	328	118	249
	August	310	127	210	–	–	–	–
	September	173	115	369	–	153	102	137
pH	May	4.9	4.3	6.4	–	5.6	4.6	6.2
	June	5.5	4.1	6.1	–	–	–	–
	July	5.3	4.1	6.9	7.1	5.7	4.4	6.3
	August	5.2	4.	6.5	–	–	–	–
	September	5.1	4	5.9	–	5.8	4.9	6.7
Permanganate value, mg O/L	May	45.6	32	43.2	–	27.2	19.6	32
	June	46.4	39.2	5.6	–	–	–	–
	July	64.8	64.8	64.8	64.8	72.8	22.8	49.6
	August	96.8	68.8	50.4	–	–	–	–
	September	45.2	45.6	71.2	–	84	88	50.4
Dry residues, mg/L	May	77	94	49	–	90	85	107
	June	114	104	103	–	–	–	–
	July	171	144	162	128	315	242	244
	August	205	162	237	–	–	–	–
	September	118	86	144	–	184	215	303
Total iron, mg/L	May	5.35	0.12	0.56	–	1.38	0.05	0.41
	June	4.2	0.19	0.92	–	–	–	–
	July	9.7	0.2	1.6	0.3	16.9	0.22	3.99
	August	2.5	0.13	2.4	–	–	–	–
	September	1.4	0.08	0.9	–	2.81	<0.1	6.2
Manganese, mg/L	May	0.21	<0.01	0.02	–	0.32	0.02	0.01
	June	0.34	<0.01	0.02	–	–	–	–
	July	0.49	0.03	0.11	0.04	0.48	0.02	0.75
	August	0.29	0.03	0.49	–	–	–	–
	September	0.24	0.02	0.06	–	0.4	0.03	0.68
Carbonate ions, mg/L	May	9	6	21	–	12	18	21
	June	6	3	45	–	–	–	–
	July	12	6	30	6	78	30	138
	August	18	12	162	–	–	–	–
	September	9	3	9	–	42	24	237
Phosphate ions, mg/L	May	0.14	<0.05	0.28	–	<0.05	<0.05	<0.05
	June	<0.05	0.11	0.16	–	–	–	–
	July	0.39	0.07	0.24	0.18	<0.05	<0.05	0.12
	August	1.51	<0.05	3.25	–	–	–	–
	September	0.23	0.07	0.25	–	<0.05	<0.05	0.58
Nitrate ions, mg/L	May	0.2	0.2	0.3	–	0.5	0.4	0.4
	June	0.9	0.5	0.6	–	–	–	–
	July	0.4	0.3	0.4	0.4	0.4	0.3	–
	August	1.1	1.1	0.5	–	–	–	–
	September	0.3	0.3	0.3	–	0.5	0.6	0.3
Temperature, °C	May	13	14	9	–	15	16	11
	June	16	18	17	–	–	–	–
	July	18	22	16	24	19	23	17
	August	13	16	12	–	–	–	–
	September	9	11	9	–	12	13	12
Water level, cm	May	10	0	35	120	15	0	55
	Min	20	2	125	230	25	5	145
	Max	5	–4	30	120	–	–	–
		10	–1	120	230	–	–	–
		1	–5	25	120	–5	–5	20
		5	–3	115	230	–3	–5	110
		–5	–12	20	120	–	–	–
		0	–10	110	230	–	–	–
Table 2 (continued)

Parameter, units	Sampling date (see Table 1)	2012	2013						
	Sample ID	S1	S2	S3	S4	Sample ID	S1	S2	S3
		2012	2013						
		S1	S2	S3	S4	S1	S2	S3	
Colour of water was measured by the Platinum–Cobalt method (e.g. Ref. [2]) at 413 nm using a UNICO-1201 spectrophotometer (INICO, USA). The pH was measured using a Sartorius Basic Meter PB-11 (Sartorius, USA). Permanganate value was determined by a modification of the standard procedure [3]. Water samples were incubated with acidified potassium permanganate for 10 minutes at 100 °C. The remaining unreduced permanganate is determined by addition of excess oxalic acid and back titration with potassium permanganate. The content of dry residues in water samples was obtained after evaporation at 100 °C. Analyses of total iron and manganese were carried out by atomic absorption spectrometry using a Spektr-5 spectrometer (Soyuzsvetmetavtomatika JSC, Russia). Carbonate content was measured as carbonate alkalinity by the potentiometric titration up to pH 5.4. Phosphate ion concentrations was determined by the photometric procedure with ammonium...
orthomolybdate at 690 nm. Sulphate ion concentrations was measured by the turbidimetric procedure at 650 nm. Nitrate ion concentrations was measured by the photometric procedure with salicylic acid at 410 nm. A UNICO-1201 spectrophotometer was used for these analyses.

Acknowledgments

This work was supported by the Russian Foundation for Basic Research [grant numbers 14-04-32258, 18-04-00988] and the Ministry of Education and Science of the Russian Federation [project AAAA-A18-118012690099-2]. Authors are grateful to Vasily A. Philippov for his help in the field.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] D.A. Philippov, Hydrochemical characteristics of mire water tracks (by the example of Shichengskoe raised bog, Vologda Region), Water: Chem. Ecol. 7 (2014) 10–17 (in Russian).

[2] Thermo Scientific, Application Note, Meter Log #133, 2013. https://assets.thermofisher.com/TFS-Assets/LSG/ApplicationNotes/Log-133-Color-in-Water-and-Wastewater-Platinum-Cobalt-at-455-nm.pdf. (Accessed 6 October 2019).

[3] Methods for the examination of waters and associated materials, The Permanganate Index and Permanganate Value Tests for Waters and Effluents, Her Majesty's Stationery Office, London, 1983.