A note on holomorphic extensions

R. Pérez-Marco *

Abstract. We give a criterion of holomorphy for some type formal power series. This gives a stronger form of a Rothstein’s type extension theorem for a particular ring of holomorphic functions.

Mathematics Subject Classification 2000 : 32D15, 31A15.

Key Words : Holomorphic extension, capacity, Bernstein lemma, Rothstein theorem.

We consider the set $R \subset \mathbb{C}[[z_1, z_2]], z_1, z_2 \in \mathbb{C}^k \times \mathbb{C}^m$ of formal power series of the form

$$f(z) = f(z_1, z_2) = \sum_{n} P_n(z_2)z_1^n$$

where P_n is a polynomial in m variables of total degree $d^0 P_n \leq C_0 + C_1 ||n||$, for some constants $C_0, C_1 > 0$. One easily checks that R is a local sub-ring of $\mathbb{C}[[z_1, z_2]]$. For the notion of Γ-capacity, that generalizes the notion of capacity in one complex variable, we refer to [Ro].

Theorem. Let

$$f(z_1, z_2) = \sum_{n} P_n(z_2)z_1^n$$

be a formal power series of the two complex variables $(z_1, z_2) \in \mathbb{C}^k \times \mathbb{C}^m$. We assume that (P_n) is a sequence of polynomials in m variables of total degree

$$\deg P_n \leq C_0 + C_1 ||n||.$$

We assume that for a set $K \in \mathbb{C}^m$ of positive Γ-capacity, $z_2 \in K$ being fixed, the formal power series $f(z_1, z_2)$ converges.

Then for some $C_2 > 0$, the formal power series f defines a holomorphic function in a neighborhood of the axes $\{z_1 = 0\}$ of the form,

$$U = \{(z_1, z_2) \in \mathbb{C}^k \times \mathbb{C}^m; ||z_1|| \leq \frac{C_2}{1 + ||z_2||}\}.$$

Compare with Rothstein’s theorem (see [Siu] p.25). Our theorem is motivated and has applications in problems of holomorphic dynamics and small divisors ([PM]) where power series in the ring A appear naturally.

* UCLA, Dept. of Mathematics, 405, Hilgard Ave., Los Angeles, CA-90095-1555, USA, e-mail: ricardo@math.ucla.edu; CNRS UMR 8628, Université Paris-Sud, Mathematiques, 91405-Orsay, France.
\textbf{Γ-capacity.}

We refer to [Ro]. Let $K \subset \mathbb{C}^m$. The Γ-projection of K on \mathbb{C}^{m-1} is the set $\Gamma_{m-1}(K)$ of $z = (z_1, \ldots, z_{m-1}) \in \mathbb{C}^{m-1}$ such that

$$K \cap \{(z, w) \in \mathbb{C}^m\}$$

has positive capacity in the complex plane $C_z = \{(z, w) \in \mathbb{C}^m\}$. We define

$$\Gamma_1^1(K) = \Gamma_2^1 \circ \Gamma_3^2 \circ \ldots \Gamma_{m-1}^m(K).$$

Finally, the Γ-capacity is defined as

$$\Gamma\text{-Cap}(K) = \sup_{A \in U(m, C)} \text{Cap}_{\Gamma}^1(A(K)).$$

where A runs over all unitary transformations of \mathbb{C}^m.

We have the following lemma ([Ro] Lemma 2.2.8 p.92)

\textbf{Lemma.} Let $K \subset \mathbb{C}^m$, $K \neq \mathbb{C}^m$ and assume that the intersection of K with any complex line which is not a subset of K has inner capacity zero. Then the Γ-capacity of K is zero.

Thus we are reduced to prove the theorem for $m = 1$

\textbf{Bernstein lemma.}

We recall (see [Ra] p.156):

\textbf{Lemma (Bernstein).} Let $K \subset \mathbb{C}$ be a non-polar set, and Ω be the component of $\mathbb{C} - K$ containing ∞.

If P is a polynomial of degree n, then for $z \in \mathbb{C}$

$$|P(z)| \leq ||P||_{C^0(K)} e^{ng_\Omega(z, \infty)}$$

where g_Ω is the Green function of Ω.

\textbf{Proof of the theorem.}

We are reduced to prove the theorem for $m = 1$. For $z_2 \in K$, let $R(z_2)$ be the radius of convergence in z_1 of $f(z_1, z_2)$. Let $K_i = \{z_2 \in K; R(z_2) \geq 1/i\}$. Since a countable union of polar sets is polar, there is K_i non-polar. We can take a non-polar sub-compact $L \subset K_i$ so that there exists $\rho_0 > 0$ such that for all $z_2 \in L$

$$\lim sup_{||n|| \to +\infty} \frac{|P_n(z_2)|}{\rho_0^{||n||}} < +\infty.$$

Define

$$\varphi(z_2) = \lim sup_{||n|| \to +\infty} \frac{|P_n(z_2)|}{\rho_0^{||n||}}.$$
The function φ is lower semi-continuous, and

$$L = \bigcup_{p \geq 1} L_p$$

where $L_p = \{ z \in L; \varphi(z_2) \leq p \}$ is closed. By Baire theorem for some p, L_p has non-empty interior (with respect to L), thus some L_p has positive capacity. Finally we found a compact set $C = L_p$ of positive capacity such that there exists $\rho_1 > 0$ such that for any $z_2 \in C$ and n,

$$|P_n(z_2)| \leq \rho_1^{||n||}.$$

Now using Bernstein lemma we conclude that for any $z_2 \in C$, for all n,

$$|P_n(z_2)| \leq \rho_1^{||n||}e^{(C_0 + C_1||n||)g_\Omega(z_2, \infty)}.$$

Finally using the asymptotic

$$g_\Omega(z_2, \infty) = \log |z_2| + O(1)$$

we obtain the extension to the desired domain.

Remark.

1. We can improve on the domain of extension if we control the growth of the degrees of the polynomials (P_n). For instance, the same proof shows that if

$$\limsup_{n} \frac{1}{||n||} \deg P_n = 0$$

we have a holomorphic extension to a domain

$$U = \{(z_1, z_2) \in \mathbb{C}^k \times \mathbb{C}^m; ||z_1|| \leq C\}$$

for some $C > 0$.

2. As N. Sibony has pointed out recently to me, the condition positive Γ-capacity in the theorem can be replaced by non-pluri-polar set (which is stronger and more natural) using the definition of capacity in higher dimension and the techniques of [Al] and [Si]. Essentially one writes down a general Bernstein lemma in higher dimension (similar to lemma 6.5 in [Al]) and use it as we do in dimension 1. The main dynamical applications, where we seek for generic conditions, work as well with the version with Γ-capacity. For this first version we content ourselves with the above statement.

Acknowledgments.

I am grateful to N. Sibony who told me about the notion of Γ-capacity and the reference [Ro], and also explained to me how to improve the condition in the theorem as pointed out above.
[Al] H. ALEXANDER, *Projective capacity*, “Recent developments in several complex variables”, J.E. Fornaess editor, Princeton Univ. Press, 1981, p. 3-27.

[PM] R. PÉREZ MARCO, *Total convergence or general divergence in Small Divisors*, Preprint, 2000.

[Ra] T. RANSFORD, *Potential theory in the complex plane*, London Mathematical Society, Student Texts 28, Cambridge University Press, 1995.

[Ro] L.I. RONKIN, *Introduction to the theory of entire functions of several variables*, Translations of Mathematical monographs, American Mathematical Society, 44, 1974.

[Si] N. SIBONY, *Sur la frontière de Sylow des domaines de \mathbb{C}^n*, Math. Ann., 273, 1985, p. 115-121.

[Siu] Y.-T. SIU, *Techniques of extension of analytic objects*, Lecture notes in pure and applied mathematics, 8, Dekker, 1974.