Supporting Information

Quantitative analysis of selected plastics in high commercial value Australian seafood by Pyrolysis Gas Chromatography Mass Spectrometry

Francisca Ribeiro1,2,*, Elvis D. Okoffo1, Jake W. O’Brien1, Sarah Fraissinet-Tachet1, Stacey O’Brien1, Michael Gallen1, Saer Samanipour1,3, Sarit Kaserzon1, Jochen F. Mueller1, Tamara Galloway2 and Kevin V. Thomas1

(1) Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia

(2) College of Life and Environmental Sciences, University of Exeter, EX4 4QD, Exeter UK

(3) Van’t Hoff Institute for Molecular Sciences, University of Amsterdam 1098 XH Amsterdam, The Netherlands

* Corresponding author
E-mail address: f.ribeiro@uq.edu.au

Number of pages: 20

Number of tables: 11

Number of figures: 5
List of tables and figures

Table S 1 Plastic standards used for data base library matching and mass calibration. NS – non specified ...3
Table S 2 ASE conditions for the selected plastics...4
Table S 3 Conditions for Single shot Pyrolysis-GC/MS measurements....................................5
Table S 4 Selected indicator ions of pyrolysis products of different polymers at 650 ºC; M/z masses highlighted in **bold** were used for quantification; polystyrene (PS), polypropylene (PP), polyethylene terephthalate (PET), poly-(methyl methacrylate) (PMMA), polyethylene (PE) and polyvinyl chloride (PVC)..6
Table S 5 Recovery of plastic standards after ASE with DCM at 180 ºC8
Table S 6 Recovery of spiked oyster samples after ASE with DCM at 180 ºC9
Table S 7 PS standard (1 mg ml\(^{-1}\)) peak areas and correspondent mass (n = 10)..............10
Table S 8 Calibration functions for selected plastics. \(^a^\) results are based on ions for the plastic as presented in Table S2; ...10
Table S 9 LOD and LOQ (in µg per g of tissue) ..11
Table S 10 Mass (µg) of each plastic found in the procedural blanks (n=10) measured by Py-GC/MS ..12
Table S 11 Concentration of PS, PE, PVC, PP and PMMA (µg/g tissue) measured in seafood (each sample was analysed in triplicate); < LOQ: below limit of quantification; when a value was <LOQ, \(\frac{1}{2}\) LOD was used; ..13

Figure S 1 Experimental design for the extraction of oyster’s. Filters were spiked with 6 different plastics: PS, PE, PET, PMMA, PP and PVC. Six glass fibre filters were used as a “blank” with no plastic added and the other 36 were spiked with selected plastics (as schematized) ...14

Figure S 2 Total Ion Chromatogram (TIC) pyrograms of extracted plastics by ASE. Detailed decomposition products and retention times are summarized in Table S2. Polystyrene (PS), polypropylene (PP), poly-(methyl methacrylate) (PMMA), polyethylene (PE) and polyvinyl chloride (PVC)...14

Figure S 3 Peak area (in counts per second) of indicator compounds for each selected plastic measured over 2.5 hours. Polyethylene (PE), poly-(methyl methacrylate) (PMMA), polypropylene (PP), Polystyrene (PS) and polyvinyl chloride (PVC)...14

Figure S 4 Correlation between peak area (in counts per second) of specific compounds selected for each plastic and split ratio (50:1, 20:1, 10:1 and 5:1); polystyrene (PS), polyethylene (PE), polyvinyl chloride (PVC) polypropylene (PP) and poly-(methyl methacrylate) (PMMA)..14

Figure S 5 Comparison of a TIC (total ion chromatogram) of a plastic standard mixture with TICs of analysed seafood ..14
Chemicals and reference materials

Polystyrene, poly (methyl methacrylate) and polyvinylchloride were purchased from Sigma-Aldrich and low density polyethylene (LDPE) from Thermo Fischer Scientific. Polyethylene terephthalate (PET) was kindly provided by the Norwegian Institute for Water Research (NIVA) in Oslo, Norway and polypropylene (PP) was donated by a plastic manufacturer from Melbourne, Australia.

Liquid/gas chromatography grade dichloromethane (DCM) was purchased from Merck (Darmstadt, Germany). Hydromatrix was purchased from Agilent Technologies (Santa Clara, CA, USA). Potassium hydroxide (KOH) in pellet form was purchased from Sigma-Aldrich (221473 – 2.5KG) and ultra-pure water (18.2 MΩ cm$^{-1}$) was obtained from a Milli-Q filtration unit (Merck Millipore, MA, USA).

Table S 1 Plastic standards used for data base library matching and mass calibration. NS – non specified

Polymer standard	Abbreviation	Size (µm)	Source of supply
Polystyrene (327794-1G) (powder form)	PS	NS	Sigma- Aldrich
Poly (methyl methacrylate) (81489 – 500 MG)	PMMA	NS	Sigma- Aldrich
Low Density Polyethylene (A10239) (powder form)	LDPE	500	Thermo Fischer Scientific
Polyethylene terephthalate (pellet form)	PET	20-110 µm	NIVA
Polyvinylchloride (powder form) (182621-25G)	PVC	NS	Sigma- Aldrich
Polypropylene, isotactic (EP341R) (pellet form)	PP	20-120 µm	Lyondellbasell (VIC)
Extraction of plastic standards using an Accelerated Solvent Extraction (ASE) method

All samples were extracted by a Dionex ASE-350 system. High temperature Viton-O-rings (Dionex 056325) were used in the end-caps, glass fibre filters (Dionex 056781) were used in the cell base and Hydromatrix sorbent was used to cover the sample, reduce solvent and prevent floatation.

To assess extraction efficiency, between 20 and 50 mg of each selected plastic was weighed and placed inside of an ASE cell (34 mL) previously covered with a filter. Five replicates were performed for each type of plastic (PS, PE, PET, PMMA, PP and PVC) in addition to three controls (cells filled with only Hydromatrix). Following extraction the recovered mass of each polymer was determined gravimetrically by evaporating the liquid in the collection bottles to dryness in a fume hood under a gentle stream of nitrogen (40 °C). Analysis was performed on the dried residues to quantify the mass of polymer recovered by weight (0.01 g of precision).

Table S 2 ASE conditions for the selected plastics

Parameter	Optimized extraction parameters
Extraction solvent	Dichloromethane
Extraction temperature (°C)	180
Static time (s)	5
Cycles	3
Rinse volume (%)	80
Purge time (s)	75
System rinse volume (ml)	9
Heating time (min)	9
Pressure (psi)	1500
Pyrolysis Gas Chromatography/ Mass Spectrometry (Py-GC/MS) analysis

Py-GC/MS was performed using a Multi-shot Pyrolyzer (EGA/PY-3030D) equipped with an auto-shot sampler (AS-1020E) (Frontier Laboratories Ltd., Fukushima Japan) coupled to a Shimadzu GC/MS-QP2010 plus. The MS was operated in electron ionisation (EI) mode and compounds separated on a Frontier Laboratories Ultra ALLOY -5 capillary column (30 m x 0.25 mm x 0.25 µm) with helium as the carrier gas.

The initial oven program was set at 40 °C for 2 min, then increased to 320 °C at 20 °C/min and held for 14 min. Data was acquired in full scan mode (mass range 40 to 600 m/z) with a scanning rate of 2000 Hz. Library search of Shimadzu was used for peak identification of the pyrolyzates together with Kovats retention index (RI) data.

Table S 3 Conditions for Single shot Pyrolysis-GC/MS measurements

Apparatus	Parameters	Settings
Micro-furnace Pyrolyzer (Single-shot analysis) EGA/PY-3030D	Temperature program	70 °C (2 min.) > 320 °C (12.5 min) at 20 °C min⁻¹
	Pyrolysis temperature	650 °C
	Interface temperature	300 °C
	Pyrolysis time	0.20 minutes (12 seconds)
Gas Chromatograph	Column	Ultra-Alloy® 5 capillary column (30 m, 0.25 mm I.D., 0.25 µm film thickness) (Frontier Lab)
	Injector port temperature	300 °C
	Column oven temperature program	40 °C (2 min) → (20 °C /min) → 320 °C (14 min)
	Injector mode	Split (5:1)
	Carrier gas	Helium, 52.1 cm/s, constant linear velocity
Mass Spectrometer	Ion source temperature	250 °C
	Ionization energy	Electron ionization (EI)); 70 eV
	Scan range	40 to 600 m/z
Table S 4 Selected indicator ions of pyrolysis products of different polymers at 650 °C; M/z masses highlighted in **bold** were used for quantification: polystyrene (PS), polypropylene (PP), polyethylene terephthalate (PET), poly-(methyl methacrylate) (PMMA), polyethylene (PE) and polyvinyl chloride (PVC)

Polymer	Characteristic decomposition product(s)	Indicator ions (m/z ratio)	Retention time (min)
PS	Styrene	104, 78	5.835
	Styrene dimer: 3-butene-1,3-diyl dibenzene	91, **130**, 193, 208	**12.875**
	Styrene trimer: 5-hexene-1,3,5-triyltribenzene	91, 117, 194, 312	16.765
PP	n-pentane	55, 72	2.105
	2-methyl-1-pentene	56, 69, 84	2.235
	2,4, 6-dimethyl-1-heptene	70, 83, **126**	**5.15**
PET	benzene	78, 52	2.825
	Vinyl benzoate	105, 77, 148, 51	8.42
	BENZOIC ACID	105, 122, 77	9.095
	diphenyl	154, 131, 76	10.525
	divinil terephthalate	175, 104	11.77
	4-(vinyloxycarbonyl) benzoic acid	149, 121	12.105
	Ethan-1,2-diyl dibenzoate	105, 77, 227	15.27
	2- (benzoyloxy)ethy1 vinyl terephthalate	297, 149	17.445
	Ethan-1,2-diyl divinyl diterphthalate	364, 325, 296, 219	20.13
	Bis(2-(benzoyloxy)ethyl) terephthalate	105, 297, 149	29
PMMA	Methyl acrylate	55, 85	2.4
	Methyl methacrylate	69, **100**, 89	**3.405**
	(Z)-trimethyl 4,6-dimethylhept-2-ene-2,4,6-tricarboxylate	121, 149	13.425
	(Z)-dimethyl 2,4-dimethylpent-2-enedioate	67, 95, 127, 111, 154	9.065
	dimethyl 2, 2-dimethyl-4-methylenepentanedioate	81, 101, 109, 125, 140	9.45
	C11H18O4	81, 95, 109, 123	10.055
PE	1-Nonene (C9)	83, 97, 111	5.815
	1, 9-decadiene (C10)	67, 81, 95, 110,123	6.895
	1-decene (C10)	**83**, 97, 111, 140	**6.97**
	n-decane (C10)	71, 85, 98, 113, 142	7.06
	1-undecene (C11)	83, 97,111,126, 152	7.97
	3-tetradecene (nitr) or 1-dodecene (C12)	**83**, 97, 111, 125	**8.87**
	1-tridecane (C13)	83, 97, 111, 125	9.695
	1-tetradecene (C14)	**83**, 97, 111,125,140	**10.465**
	1 pentadecene (C15)	83, 97, 111	11.185
	1-hexadecene (C16)	-	11.865
	1-eicosene (C20)	83, 97, 111	14.255
	C17	83, 97	12.51
	1-heptene (C7)	70, 83, 98	3.175
	C8	-	4.575
	C6	-	2.27
PVC	Benzene	78, 52	2.855
	Toluene	91, 65	4.165
	Indene	116, 119	7.640
	Styrene	104, 78	5.835
Multivariate calibration curve for PE

To generate a multivariate calibration curve for quantification of PE in different matrices, we used a least square approach, where the algorithm minimizes the sum of squares of the distance between each point and the line. The final calibration curve with an adjusted R^2 of 0.99 included four coefficients and the intercept term. These four coefficients consisted of three associated to each independent variable (i.e. peak intensity) and the interaction between 1-decene and 1-dodecene. For the validation of this multivariate calibration curve, we employed leave one out approach, where during each iteration one of the points in the curve will be removed while generating a new curve using the remaining points 1,2. This process was repeated in order to have each point the calibration curve removed at least once.
Table S 5 Recovery of plastic standards after ASE with DCM at 180 °C

Polymer type	Spike amount (mg)	Recovered amount (mg)	(%) Recovery	Average recovery mean ± STD (%)	RSD (%)			
	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5			
PMMA	45.4	50.1	44.4	47.6	44.9	97.7 ± 3.3	3.4	
	42.5	48.8	42.4	48.2	45.2	98.2 ± 13.4	13.7	
	93.6	97.4	95.5	101.3	100.7	92.8 ± 8.8	9.4	
PS	29.5	22.7	20.8	25.8	21.8	94.2 ± 5.3	5.6	
	31.7	25.4	18.6	20.5	22.4	90.8 ± 7.6	8.4	
	107.5	111.9	89.4	79.5	102.8	96.9 ± 7.5	8.7	
PET	22.6	50.8	43.6	36.7	45.9	92.8 ± 8.8	9.4	
	20.3	47.3	40.2	30.2	48.9	92.8 ± 8.8	9.4	
	89.8	93.1	92.2	82.3	106.5	92.8 ± 8.8	9.4	
PP	37.4	43.6	45.4	43.4	41.1	92.8 ± 8.8	9.4	
	35.1	39.9	43.4	38.2	42.0	92.8 ± 8.8	9.4	
	93.9	91.5	95.6	88.0	102.2	92.8 ± 8.8	9.4	
PE	45.1	41.7	45.6	37.8	44.6	90.8 ± 7.6	8.4	
	35.3	41.1	42.4	34.3	41.6	90.8 ± 7.6	8.4	
	78.2	98.6	93.0	90.7	93.3	90.8 ± 7.6	8.4	
PVC	45.5	40.3	37.4	28.5	39.2	86.8 ± 7.5	8.7	
	38.9	36.6	31.6	21.9	38.0	86.8 ± 7.5	8.7	
	85.4	90.7	84.4	76.7	96.9	86.8 ± 7.5	8.7	

Replicate (Rep) 1, 2, 3, 4 and 5 represent the number of experiments for each polymer standard; blue numbers represent the percentage of recovery of each trial; average recovery represents the mean recovery from the five replicates; STD: standard deviation; RSD: relative standard deviation (%); poly-(methyl methacrylate) (PMMA), polystyrene (PS), polyethylene terephthalate (PET), polypropylene (PP), polyethylene (PE) and polyvinyl chloride (PVC)
Table S 6 Recovery of spiked oyster samples after ASE with DCM at 180 ºC

Polymer type	Spike amount (mg)	Recovered amount (mg)	(%) Recovery	Average recovery mean ± STD (%)	RSD (%)			
	Rep. 1	Rep. 2	Rep. 3	Rep. 4	Rep. 5			
PS	14.01	14.95	16.23	15.06	17.49	14.29	83.1 ± 17.9	21.6
	17.06	10.87	13.69	11.19	13.42	9.82		
	121.77	72.71	84.35	74.30	76.72	68.719		
PE	19.45	21.20	18.58	18.51	18.37	18.82	85.7 ± 6.5	7.6
	19.01	16.28	15.55	15.69	16.37	15.40		
	97.74	76.79	83.69	84.76	89.11	81.83		
PP	21.57	18.17	19.59	18.58	18.47	18.76	78.3 ± 18.5	23.7
	14.28	13.58	14.09	12.01	21.96	13.76		
	66.20	74.74	71.92	64.64	118.90	73.35		
PVC	22.05	19.32	20.55	18.97	21.48	21.43	86.5 ± 13.1	15.1
	17.69	14.41	17.44	17.02	24.36	16.29		
	80.23	74.59	84.87	89.72	113.41	76.01		
PMMA	15.92	15.64	16.71	15.90	15.93	15.37	100.7 ± 14.5	14.4
	17.98	13.15	15.07	18.90	13.56	17.34		
	112.94	84.08	90.19	118.87	85.12	112.82		
PET	25.95	21.39	22.94	27.46	24.24	25.85	32.1 ± 11	34.3
	12.96	5.67	6.16	6.69	10.77	5.27		
	49.94	26.51	26.85	24.36	44.43	20.39		

Replicate (Rep) 1, 2, 3, 4, 5 and 6 represent the number of experiments for each polymer standard; blue numbers represent the percentage of recovery of each trial; average recovery represents the mean recovery from the five replicates; STD: standard deviation RSD: relative standard deviation (%); polystyrene (PS), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), poly-(methyl methacrylate) (PMMA) and polyethylene terephthalate (PET)
Table S 7 PS standard (1 mg ml\(^{-1}\)) peak areas and correspondent mass (n = 10)

Number of runs	Peak area (styrene dimer: 3-butene-1,3-diyl dibenzene)	Total mass (µg)	Mean ± STD	RSD (%)
1	1045825	3454		
2	1009723	3335		
3	1399269	4619		
4	1180607	3898		
5	1255677	4146		
6	1406879	4644		
7	985000	3253		
8	1149959	3797		
9	1428720	4716		
10	1692921	5587	4145 ± 707	17

Table S 8 Calibration functions for selected plastics. *results are based on ions for the plastic as presented in Table S4:

Plastic type	Indicator ions	Linear range (µg)	Calibration functions	Linearity \(R^2\) *
PS	3-butene-1,3-diyl dibenzene	0.02 - 10	\(Y = 189548 \times X - 1580.9\)	0.99
PE	1-decene (C\(10\))	0.02 - 10	\(Y = 99469 \times X - 10677\)	0.98
PVC	Benzene	0.02 - 10	\(Y = 3825975.5 \times X - 594914.38\)	0.98
PP	2,4, 6-dimethyl-1-heptene	0.02 - 10	\(Y = 63821 \times X - 118.72\)	0.98
PMMA	Methyl methacrylate	0.02 - 10	\(Y = 30793 \times X - 7518.4\)	0.99

Polystyrene (PS), polyethylene (PE), polyvinyl chloride (PVC) polypropylene (PP) and poly-(methyl methacrylate) (PMMA)
Table S 9 LOD and LOQ (in µg per g of tissue)

Sample	Plastic	LOD (µg/g tissue)	LOQ (µg/g tissue)
Oysters	PS	0.70	0.96
	PE	0.90	9.41
	PVC	1.04	10.93
	PP	0.83	2.45
	PMMA	0.95	24.29
Prawns	PS	0.70	0.96
	PE	8.05	9.35
	PVC	10.82	10.87
	PP	0.85	2.44
	PMMA	19.22	24.15
Squid	PS	0.54	0.75
	PE	0.69	7.28
	PVC	0.81	8.46
	PP	0.64	1.90
	PMMA	0.74	18.80
Sardines	PS	0.51	0.70
	PE	5.85	6.79
	PVC	7.86	7.90
	PP	0.62	1.77
	PMMA	13.96	17.54
Crabs	PS	0.05	0.07
	PE	0.62	0.72
	PVC	0.83	0.83
	PP	0.07	0.19
	PMMA	1.48	1.86
Table S 10 Mass (µg) of each plastic found in the procedural blanks (n=10) measured by Py-GC/MS

KOH filters	PS	PE	PVC	PP	PMMA
1	-	0.2	0.2	1.4	-
2	-	0.1	-	-	-
3	-	-	-	-	-
4	-	0.1	-	-	-
5	-	-	-	-	-
6	-	-	-	-	-
7	-	0.1	-	-	-
8	-	-	-	-	-
9	-	-	-	-	-
10	-	0.1	-	-	-
Sum	-	0.6	0.2	1.5	-
Average	-	0.1	-	0.1	-
Std	-	0.1	-	0.4	-
Table S 11 Concentration of PS, PE, PVC, PP and PMMA (µg/g tissue) measured in seafood (each sample was analysed in triplicate); < LOQ: below limit of quantification; when a value was <LOQ, ½ LOD was used;

Sample ID	Concentration (µg g⁻¹)						
Oysters Crassostrea gigas	**ΣPlastic** (µg g⁻¹)	PS	PE	PVC	PP	PMMA	
1	-	-	23.55	-	-	23.55	
2	-	-	13.40	-	-	13.40	
3	-	-	< LOQ	-	-	0.52	
4	-	-	< LOQ	-	-	0.52	
5	-	-	14.32	-	-	14.32	
6	-	-	14.82	< LOQ	-	15.23	
7	-	-	17.60	< LOQ	-	18.01	
8	-	-	-	-	-	-	
9	-	-	-	< LOQ	-	0.41	
10	-	-	16.18	< LOQ	-	16.59	
Prawns Penaeus esculentus		PS	PE	PVC	PP	PMMA	
1	-	-	11.52	< LOQ	-	11.95	
2	-	-	15.93	10.46	-	26.39	
3	-	-	-	-	-	-	
4	-	-	-	< LOQ	-	0.43	
5	-	-	-	-	-	-	
6	-	-	-	3.53	-	3.53	
7	-	-	-	7.24	-	7.24	
8	-	-	-	15.43	-	15.43	
9	-	-	-	2.92	-	2.92	
10	-	-	-	4.50	-	4.50	
Squid Nototodarus gouldi		PS	PE	PVC	PP	PMMA	
1	-	-	10.91	< LOQ	-	11.23	
2	-	-	-	-	-	-	
3	-	-	-	< LOQ	-	0.32	
4	-	-	-	-	-	-	
5	-	-	-	23.85	-	23.85	
6	-	-	-	-	-	-	
7	-	-	-	-	-	-	
8	-	-	-	-	-	-	
9	-	-	-	-	-	-	
10	-	-	-	-	-	-	
	Crabs	PS	PE	PVC	PP	PMMA	
----------	-------------------------------	-----	-----	-----	------	------	
	Portunus armatus						
1		8.07	-	29.05	10.27	4.53	
2		2.86	-	1.18	11.82	< LOQ	
3		4.98	-	5.39	19.30	-	
4		0.58	-	1.15	25.76	-	
5		0.69	-	20.53	14.74	-	
6		0.28	-	3.68	2.55	-	
7		0.57	-	3.32	14.29	-	
8		6.80	-	39.31	3.26	2.43	
9		0.86	-	18.61	7.25	-	
10		1.21	43.18	29.34	2.53	-	
	Sardinops neopilchardus						
1		-	-	-	3.32	13.96	17.28
2		-	-	-	-	-	
3		< LOQ	-	-	13.44	-	13.69
4		0.87	111.55	-	5.38	-	117.80
5		27.30	-	< LOQ	59.89	-	87.44
6		< LOQ	-	-	12.96	-	13.21
7		0.85	70.24	-	1.59	-	72.68
8		1.93	-	-	45.54	-	47.47
9		-	-	-	1.78	-	1.78
10		102.65	2352.28	9.72	-	26.76	2491.41
Figure S 1 Experimental design for the extraction of oyster’s. Filters were spiked with 6 different plastics: PS, PE, PET, PMMA, PP and PVC. Six glass fibre filters were used as a “blank” with no plastic added and the other 36 were spiked with selected plastics (as schematized).
Figure S 2 Total Ion Chromatogram (TIC) pyrograms of extracted plastics by ASE. Detailed decomposition products and retention times are summarized in Table S4. Polystyrene (PS), polypropylene (PP), poly-(methyl methacrylate) (PMMA), polyethylene (PE) and polyvinyl chloride (PVC)
Testing the dissolution of plastics in DCM after ASE extraction

After extraction, the samples were immediately placed in the pyrolysis cups (Eco-Cups 80LF, Frontier Labs, Japan) and evaporated to dryness in a fume hood to avoid airborne contamination of microplastics. The solubility of the selected plastics in DCM after ASE was tested by placing the plastic standard solutions in the sample cups at different times after the solvent extraction procedure (every 15 minutes for a total period of 2.5 hours).

Figure S 3 Peak area (in counts per second) of indicator compounds for each selected plastic measured over 2.5 hours. Polyethylene (PE), poly-(methyl methacrylate) (PMMA), polypropylene (PP), Polystyrene (PS) and polyvinyl chloride (PVC)
Relation between peak area of specific indicator compounds and split ratio

For all the indicator ions of selected plastics, areas significantly decreased with the increase of the split ratio ($p < 0.05$, One Way ANOVA) - Figure S4. Assuming linearity, the split ratio was set at 5 ensuring that the selected plastics in our samples were efficiently quantified and saturation of the mass spectrometer was avoided.

Figure S 4 Correlation between peak area (in counts per second) of specific compounds selected for each plastic and split ratio (50:1, 20:1, 10:1 and 5:1); polystyrene (PS), polyethylene (PE), polyvinyl chloride (PVC) polypropylene (PP) and poly-(methyl methacrylate) (PMMA)
Figure S 5 Comparison of a TIC (total ion chromatogram) of a plastic standard mixture with TICs of analysed seafood
References

1. Molinaro, A. M.; Simon, R.; Pfeiffer, R. M., Prediction error estimation: a comparison of resampling methods. *Bioinformatics* **2005**, *21*, (15), 3301-3307.
2. Samanipour, S.; Dimitriou-Christidis, P.; Gros, J.; Grange, A.; Samuel Arey, J., Analyte quantification with comprehensive two-dimensional gas chromatography: Assessment of methods for baseline correction, peak delineation, and matrix effect elimination for real samples. *J. Chromatogr. A* **2015**, *1375*, 123-139.