Membrane Protein Sorting in the Yeast Secretory Pathway: Evidence That the Vacuole May Be the Default Compartment

Christopher J. Roberts, Steven F. Nothwehr, and Tom H. Stevens
Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403

Abstract. The targeting signals of two yeast integral membrane dipeptidyl aminopeptidases (DPAPs), DPAP B and DPAP A, which reside in the vacuole and the Golgi apparatus, respectively, were analyzed. No single domain of DPAP B is required for delivery to the vacuolar membrane, because removal or replacement of either the cytoplasmic, transmembrane, or lumenal domain did not affect the protein’s transport to the vacuole. DPAP A was localized by indirect immunofluorescence to non-vacuolar, punctate structures characteristic of the yeast Golgi apparatus. The 118-amino acid cytoplasmic domain of DPAP A is sufficient for retention of the protein in these structures, since replacement of the cytoplasmic domain of DPAP B with that of DPAP A resulted in an immunolocalization pattern indistinguishable from that of wild type DPAP A. Overproduction of DPAP A resulted in its mislocalization to the vacuole, because cells expressing high levels of DPAP A exhibited vacuolar as well as Golgi staining. Deletion of 22 residues of the DPAP A cytoplasmic domain resulted in mislocalization of the mutant protein to the vacuole. Thus, the cytoplasmic domain of DPAP A is both necessary and sufficient for Golgi retention, and removal of the retention signal, or saturation of the retention apparatus by overproducing DPAP A, resulted in transport to the vacuole. Like wild type DPAP B, the delivery of mutant membrane proteins to the vacuole was unaffected in the secretory vesicle-blocked sec1 mutant; thus, transport to the vacuole was not via the plasma membrane followed by endocytosis. These data are consistent with a model in which membrane proteins are delivered to the vacuole along a default pathway.

Many proteins that reside in the organelles of the secretory pathway of eukaryotic cells have targeting information that directs retention in or sorting to the appropriate compartment (Pfeffer and Rothman, 1987). In the absence of retention or sorting signals, soluble proteins of the secretory pathway are secreted; thus, the default pathway for these proteins is secretion (Burgess and Kelly, 1987; Pelham, 1989). In Saccharomyces cerevisiae, mutations in the targeting signal of the soluble vacuolar protein, carboxypeptidase Y (Vails et al., 1990), or the retention signal of the soluble ER protein, BIP (Hardwick et al., 1990), result in the secretion of these proteins. Likewise, the flow of membrane proteins to the cell surface of nonpolarized mammalian cells is apparently by default, because mutations that disrupt the retention of ER or Golgi-retained membrane proteins (Machamer et al., 1987; Machamer, 1991; Jackson et al., 1990) or the sorting of a lysosomal membrane protein (Williams and Fukuda, 1990) result in localization to the plasma membrane. Little is known regarding membrane protein sorting in S. cerevisiae, although a previous study suggested that the cell surface is the default compartment for membrane proteins (Fuller et al., 1989b). In this paper, we characterize the targeting of two membrane proteins of the yeast secretory pathway, DAP dipeptidyl aminopeptidases (DPAPs)1 DPAP A and DPAP B of the Golgi apparatus and vacuole, respectively.

The biogenesis of two membrane proteins of the yeast vacuole, DPAP B (see Fig. 1A), and alkaline phosphatase (ALP), has been characterized (Klionsky and Emr, 1989; Roberts et al., 1989). Both DPAP B and ALP are type II membrane glycoproteins (nomenclature of Singer, 1990), consisting of NH2-terminal cytoplasmic domains of approximately 30 amino acids, single hydrophobic membrane anchors, and COOH-terminal lumenal catalytic domains. These proteins transit the early compartments of the secretory pathway (i.e., ER and Golgi), but not the later compartments (i.e., secretory vesicles), indicating that the proteins do not transiently reside at the plasma membrane before delivery to the vacuole. The localization signals of these two proteins have not been identified, although the lumenal domain of ALP has been shown to be unnecessary for vacuolar targeting (Klionsky and Emr, 1990).

The biosynthesis of several membrane proteins that reside

1 Abbreviations used in this paper: ALP, alkaline phosphatase; DPAP, dipeptidyl aminopeptidases; Endo H, endo-glycosidase H.
in the yeast Golgi apparatus has also been examined. In yeast,
three membrane-bound proteases, Kex2p, Kexlp, and
DPAP A (see Fig. 1 A) process the mating pheromone α-
factor precursor polypeptide as it traverses the secretory path-
way (Bussey, 1988; Fuller et al., 1988). The biosynthetic
pathways of Kex2p and Kexlp have been characterized (Ful-
ner et al., 1989a,b; Cooper and Bussey, 1989), and Kex2p
has been shown to function in a late Golgi compartment
(Julius et al., 1984; Graham and Emr, 1991). Kex2p has been
localized by indirect immunofluorescence to three to six
punctate structures per cell that exhibit a somewhat random
distribution within the cytoplasmic compartment (Franzusoff
et al., 1991; Redding et al., 1991). Thus, the Golgi apparatus
of yeast is not localized to a perinuclear location, as in mam-
malian cells, but rather is dispersed throughout the cell. Both
Kexlp (A. Cooper and H. Bussey, manuscript submitted) and
DPAP A (see below) have been immunolocalized to punctate
bodies that are similar to those containing Kex2p in size,
abundance, and distribution.

In this paper, a combined gene fusion and mutational anal-
ysis was used to show that no single domain of DPAP B is
required for vacuolar localization. Furthermore, both over-
production of DPAP A and a mutation in the cytoplasmic do-
main of DPAP A resulted in mislocalization of this protein
to the vacuole. Finally, the fusion proteins analyzed in this
work are shown to be transported directly to the vacuole
from the Golgi, and not to the plasma membrane.

Materials and Methods

Strains, Growth Conditions, and Materials

The bacterial strain MC1061 (Casadaban and Cohen, 1980) was used for all subcloning steps. Oligonucleotide-directed mutagenesis was carried out in strain CJ236 (Kunkel et al., 1987). The yeast strains used were JHRY20-1AΔ13 (MATα, dap2Δ::HIS3, stel3Δ::LEU2, ura3-52, leu2-3,112, his3Δ200, pep4-3; Roberts et al., 1989), SEY202A1 (MATα, dap2::LEU2, ura3-52, leu2-3,112, his3-519, suc2-4A; Emr et al., 1983), CJRY25-6B (MATα, dap2::LEU2, mna9η3::ura3-52, leu2-3,112, and MFF416 (MATα, sec1-1, dap2::LEU1, ura3-52, leu2-3,112, his3-519, suc2-4A; Emr et al., 1983). CJRY25-6B was grown in YEPD medium supplemented with the appro-
riate nutrients as previously described (Sherrman et al., 1982). For the simultaneous induction of the GALI promoter and the sec1-1
secretion defect, cells were grown to log phase in minimal media plus
raffinose and then harvested and resuspended in YEP-raffinose. After a 1-h
incubation at 35°C, galactose was added directly to the cultures and at the
same time the cultures were shifted to 34°C. After 2 h, the cells were fixed
and prepared for indirect immunofluorescence as described below.

Oligonucleotides for mutagenesis were prepared by the University of
Oregon Biotechnology Laboratory on an Applied Biosystems 380B DNA
synthesizer (Foster City, CA) as described (Ito et al., 1982). Tran SA-label
and Zymolyase 100T were from ICN Biomedicals (Irvine, CA). Endo H was
provided by Dr. George Sprague. pSL349 consists of pBR322 containing
the KsuI site and pBR322 containing the KsuI site (kindly provided by
Dr. George Sprague). pSL349 consists of pBR322 containing a 7.2-kbp BamHI STEI3 fragment, from which a 1.6-kbp BclI fragment was
cloned to the coding region of the DPAP A luminal domain (C. A. Flanagan,
D. A. Barnes, M. C. Fliesser, and J. Thorner, manuscript submitted for
publication) was replaced by the 2.9-kbp BglII LEU2 fragment. To create a
strain expressing both DPAP A and DPAP B, a disruption of the chromosomal
DAP2 locus with the HIS3 gene was made using the plasmid pGP6, which
contains the 1.2-kbp EcoRI-BamHI HIS3 fragment (Sikorski and Hieter,
1989) in place of the 1.3-kbp BstEII-KpnI portion of the coding region of
DAP2 (Roberts et al., 1989).

The α-factor signal sequence was fused to the luminal domain of DPAP
B as follows: A Salt linker was inserted at the HindIII site of psl plp71, which
contains a portion of the 5' region of the MFCal gene (Kurjan and Her-
skowitz, 1982), including 70 bp of non-coding region (not including the
UAS) and 66 bp of coding region, including the signal sequence, signal
peptide cleavage site (Waters et al., 1988), and 3 NH2-terminal residues of
pro-α-factor, fused to the KRE1 gene (Boone et al., 1990). The Accl site
at position +140 of the DAP2 gene was changed to a Salt site using
oligonucleotide-directed mutagenesis (Kunkel et al., 1987). Mutagenesis of
DAP2 was performed using the vector pCJR27, which contains the 3.3-kbp
BamHI-HindIII DAP2 fragment in the plasmid KS+ (Stratagene, San
Diego, CA). The 2.7-kbp Salt-HindIII fragment, encoding the luminal
domain of DAP2, was inserted into the Salt-HindIII sites of pflPlS1, fusing
the coding regions of MFCal and DAP2 in frame. α-Fus was placed under the
control of the GALI promoter (Johnson and Davis, 1984) by fusing the
2.9-kbp BamHI-HindIII fragment from this plasmid into the BamHI-
HindIII sites of pCR52, which contains the 822-bp EcoRI-BamHI GALI
promoter fragment inserted into EcoRI-BamHI sites of the CEN plasmid
pSEY68 (a modified version of pSEY58; Emr et al., 1983). The result-
fusing protein consists of the NH2-terminal 22 residues of pro-α-
factor and two residues arising from linker sequence fused to residue 49
of the luminal domain of DPAP B (Fig. 1 B; amino acid sequence NH2-
MRFPFSPFTAV1LFAASSALA-APVGRPHH...).

The BB-Inv fusion protein expression vectors, pCJR3 and pCJR15 (2μ and
CEN plasmids, respectively), were constructed by inserting the 0.6-kbp
BamHI-AccI fragment (AccI blunt ended) into the invertase fusion vectors
pSEY304 (a derivative of the 2μ plasmid pSEY303; Emr et al., 1986) and
the CEN plasmid pSEY306 (Johnson et al., 1987) in the BamHI and Hind
III sites of the plasmid. The resulting fusion protein contains the 48 NH2-
terminus of the luminal domain of DAP B fused to residue 3 of cytoplasmic
invertase (Fig. 1 B). BB-Inv was placed under the control of the GALI
promoter by cutting pCJR15 with EcoRI and HindIII and ligating in the 822-bp
GALI fragment (Johnson and Davis, 1984). This fused the 3' end of the
GALI fragment at nucleotide 822 of the (DAP2 and the 619-nucleotide
invertase (Fig. 1 B). BB-Inv was placed under the control of the GALI
promoter by cutting pCJR15 with EcoRI and HindIII and ligating in the 822-bp
GALI fragment (Johnson and Davis, 1984). This fused the 3' end of the
GALI fragment at nucleotide 822 of the (DAP2 and the 619-nucleotide
invertase (Fig. 1 B).

Restriction endonuclease digests and ligations were performed as recom-
cended by the suppliers. Plasmid purification, agarose gel electrophoresis,
fill-in reactions of sticky-ended DNA fragments using T4 DNA polymerase,
and DNA-mediated transformation of Escherichia coli were done according
to standard procedures (Maniatis et al., 1982). Lithium acetate transforma-
tions of yeast were performed as described (Jto et al., 1983). Restriction
endonuclease digests and ligations were performed according to standard
procedures (Maniatis et al., 1982). Lithium acetate transforma-
tions of yeast were performed as described (Jto et al., 1983).

Downloaded from jcb.rupress.org on August 17, 2017
The fusion protein B-A-B was constructed as follows: the 3.3-kbp BamHI-HindIII DAP2 fragment, including the XbaI site at +70, was ligated into the BamHI-HindIII sites of pSEYC58. A 4.3-kbp XbaI-HindIII fragment of STEI3, encoding the transmembrane and luminal domains of DPAP A, was inserted into the XbaI-HindIII sites, resulting in the plasmid pCJR58. The 2.7-kbp Sall-HindIII DAP2 fragment (Sall blunt ended), encoding the DPAP B luminal domain, was inserted into the MluI-HindIII sites of pSEY18, resulting in pCJR69. B-A-B was placed under the control of the GAL1 promoter by cloning the NheI-HindIII fragment of pCJR125 into the XbaI-HindIII sites of pEXP1, creating pCJR79. The B-A-B fusion protein consists of residues 116-150 of DPAP A in place of residues 26-46 of DPAP B (Fig. 1 C).

Oligonucleotide-directed mutagenesis of the portion of STEI3 encoding the 118 amino acid cytoplasmic domain of DPAP A (Fig. 1 A) was performed in pCJR71, which consists of the 0.65-kbp Eagl-PstI fragment of STEI3 inserted into the Eagl-PstI sites of KS*. A 66-bp in-frame deletion, removing the amino acids 85-106 (Δ22), was created, and the Sall-MluI fragment from this plasmid was inserted into the SacI-MluI sites of pCJR64, creating the 2µ plasmid pSN58, which encodes Δ22-AAB (Fig. 1 C). The same SacI-MluI fragment was ligated with the 4.8-kbp BamHI-HindIII fragment of pCJR69 that encodes residue 112-150 of DPAP A into the SacI-HindIII sites of pSEY18, creating pSN59, which encodes Δ22-AAA (Fig. 1 C). Δ22-AAA-B was placed under the control of the GAL1 promoter by fusing a SacI-Eagl fragment from pCJR125 (contains the 360 bp HindIII-EcoRI GAL1 fragment in pGEM-5Zf) to an Eagl-HindIII fragment from pSN58, both of which were inserted into the SacI-HindIII sites of pSEY18, creating pSN89.

The Fus1-LacZp expression plasmid pCJR14 as follows: a 5-kbp Nhel-HindIII fragment, encoding the 254 NH2-terminal amino acids of the Fus1 protein fused to β-galactosidase, under the GAL1 promoter (isolated from pCJR13, a derivative of pSB231 (Trueheart and Fink, 1989)) was cloned into the XbaI-HindIII sites of pET11b, a 2µ plasmid (Vernet et al., 1990), creating pCJR14.

For the production of DPAP A antigen to be used to generate DPAP A antiserum, the plasmid pCJR24 was constructed by inserting the 0.8-kbp MluI-HpaI (MluI blunt ended) STEI3 fragment into the Smal site of pEXP1, an E. coli expression vector containing the Tac promoter just upstream of the translational start codon of T4 lysozyme and a multiple cloning site (Raymond et al., 1990).

Production of Antiserum against DPAP A and the Cytoplasmic Domain of DPAP B

A 27 amino acid peptide, corresponding to the 26 NH2-terminal residues of DPAP B followed by a COOH-terminal cysteine residue, was synthesized on an Applied Biosystems Peptide Synthesizer. The peptide was coupled to carboxymethylated BSA through the COOH-terminal cysteine with the bifunctional crosslinking agent, MBS, following the manufacturer's recommendations (Pierce Chemical Co., Rockford, IL), and through lysine residues with gluteraldehyde as previously described (Kagen and Glick, 1979). A 1:1 mixture of BSA-peptide conjugates prepared by the two methods was used to immunize rabbits as described previously (Vaitukaitis, 1981). For affinity purification of the antibody, the peptide was cross-linked to Tresyl-activated Sepharose 4B (Pharmacia Fine Chemicals), and affinity purification was carried out as described (Raymond et al., 1990).

DPAP A antigen was produced in E. coli cells containing the plasmid pCJR24. Induction with IPTG resulted in the production of a 31-kD protein that corresponds to the NH2-terminal portion of the luminal domain of DPAP A (see Fig. 6) fused to seven residues of T4 lysozyme and seven...
Immunoprecipitations, Endo H Treatment, and High pH Carbonate Fractionation

Immunoprecipitations were performed by growing cultures to log phase in supplemented minimal media lacking methionine and cysteine, then pulse labeling in the same media with Tran35S-label and chasing by adding 50 μg/mL methionine and 50 μg/mL cysteine, followed by the addition of sodium azide to 10 mM. The cells were converted to spheroplasts (Stevens et al., 1986) which were lysed in 1% SDS, 8 M urea plus a protease inhibitor cocktail (0.5 mM PMSF, 1 μg/mL leupeptin, and 1 μg/mL pepstatin) for 5 min at 100°C, and adjusted to 1 mL in IP buffer (PBS, 0.1% SDS, 0.1% Triton X-100, 1 mM EDTA). For precipitating αFss-B from the extracellular fractions, the medium was supplemented with 2 mg/mL BSA and 50 mM potassium phosphate, pH 5.7. After spheroplasting, the periplasmic and media fractions were pooled and adjusted to 1 mL in IP buffer plus protease inhibitors. After pre-adsorption to 0.5% IgGSorb, anti-DPAP B COOH-terminal antibody (Roberts et al., 1989), or anti-DPAP A antibody was added, and samples were incubated one hour on ice. IgGSorb was added to 0.5%, followed by 1 h on ice, and the immune complexes were precipitated and washed twice with IP buffer. The immune complexes were solubilized, and half of the samples were treated with endoglycosidase H (Endo H) overnight at 37°C as described (Orlan et al., 1991). Samples were analyzed by SDS-PAGE and fluorography as described previously (Roberts et al., 1986). The secretion of αFss-B was quantified using an Ambis Radiologic Imaging System (Ambis Systems, Inc., San Diego, CA).

The fractionation of membranes in the presence of high pH sodium carbonate was performed as described (Roberts et al., 1989). Indirect Immunofluorescence Microscopy

Preparation of fixed, spheroplasted cells for indirect immunofluorescence was carried out essentially as previously described (Roberts et al., 1991), except that the fixed spheroplasts were treated with 1% SDS for 1-5 minutes. Antibody adsorption against fixed spheroplasts harboring null mutations in either DAP2 or STEI3 was performed as described elsewhere (Raymond et al., 1990; Roberts et al., 1991). The fixed spheroplasts were stained with a 1:10 dilution of adsorbed anti-DPAP A or anti-DPAP B affinity-purified antibody in PBS-BSA (Roberts et al., 1991). For co-localization with the 60-kD subunit of the vacuolar H+-ATPase (Vata2p, the product of the DAP2 gene; Yamashiro et al., 1990), the antibody solution also contained a 1:10 dilution of adsorbed anti-DPAP A or anti-DPAP B affinity-purified antibody in PBS (Raymond et al., 1990). The secretion of αFss-B was visualized using an Ambis Radiologic Imaging System (Ambis Systems, Inc., San Diego, CA).

The lumenal domain of DPAP B does not contain vacuolar targeting information

The role of the lumenal domain in the sorting of DPAP B to the vacuole was addressed in two ways. First, to determine if the lumenal domain was sorted to the vacuole when expressed in the secretory pathway as a soluble protein, a gene fusion was used to create the protein αFss-B, consisting of the NH2-terminal ER-targeting signal sequence of prepro-α-factor fused to the lumenal domain of DPAP B at residue 49 (Fig. 1B). The signal sequence should direct the translocation of the protein into the ER lumen and be cleaved, rendering the lumenal domain a soluble protein in the secretory pathway. The construct was analyzed in a strain which contains a null allele of DAP2, the structural gene for DPAP B (Suarez Rendueles and Wolf, 1987). Fig. 2 shows the results of immunoprecipitating αFss-B from intracellular and extracellular (i.e., periplasmic and media) fractions of 35S-labeled cells using an antibody that recognizes the COOH-terminal half of DPAP B (Roberts et al., 1989). Analysis of the samples by SDS-PAGE and fluorography showed that 64% of αFss-B was secreted as a heterogeneous population of highly glycosylated species (Fig. 2, lane 2), similar to the secreted protein invertase (Esmon et al., 1981), whereas the intracellular fraction contained a tightly migrating species (Fig. 2, lane 1). Treatment of the immunoprecipitates with Endo H to remove N-linked carbohydrate demonstrated that the difference in the apparent mobilities was due to glycosylation (Fig. 2, lanes 3 and 4). The glycosylation pattern of the secreted material differs from that of wild type DPAP B, which receives only modest glycosyl modifications of the core oligosaccharides in the Golgi apparatus (Roberts et al., 1989). To test whether the alteration in glycosylation caused the secretion of the lumenal domain, αFss-B was expressed in an mnn9 mutant, which is deficient in the addition of the extensive α1,6 outer chain glycosyl groups (Kukuruzinska et al., 1987). Fig. 2, lanes 5 and 6, show that αFss-B was secreted to the same extent (59%) from mnn9 cells, even though the protein was not aberrantly glycosylated. Indirect immunofluorescence microscopy showed that the portion of the lumenal domain that remained intracellular was retained in the ER, and no staining of the vacuole was observed (data not shown). Unlike the secreted material, the ER-retained material was enzymati-
The role of the lumenal domain of DPAP B in vacuolar targeting was also tested by constructing the fusion protein BB-Inv, in which the 48 NH2-terminal residues of DPAP B were fused to the non-vacuolar protein, invertase (Fig. 1 B). Immunoprecipitations of BB-Inv using anti-invertase antibody, followed by SDS-PAGE and fluorography, showed that the fusion protein was glycosylated, and treatment with Endo H showed that the protein was of the expected size (Fig. 3, lanes 9 and 10). BB-Inv fractionated with membranes under high pH carbonate conditions, consistent with BB-Inv being an integral membrane protein (data not shown). Invertase enzyme assays of either permeabilized or non-permeabilized whole cells deleted for the invertase structural gene and expressing BB-Inv from a CEN plasmid showed that <2% of the total invertase activity was extracellular. The subcellular localization of BB-Inv was determined by indirect immunofluorescence microscopy using an antibody that recognizes the cytoplasmic domain of DPAP B (see Materials and Methods). Fig. 4 shows the staining pattern of wild type DPAP B (Fig. 4, A–C) and BB-Inv (Fig. 4, D–I) when expressed from the high copy number (2μ) plasmids, pGP3 (Roberts et al., 1989) and pCJR13, respectively. For these and the other 2μ plasmid constructs used in this study, the proteins were overproduced 10–20-fold as determined by enzyme activity. Both DPAP B and BB-Inv were localized to the vacuolar membrane as judged by differential interference contrast (Nomarski) optics and co-localization with a marker for the vacuolar membrane, the 60-kD subunit of the vacuolar H+-ATPase (Vat2p; Yamashiro et al., 1990; Table 1). DPAP B and BB-Inv were also localized to the vacuolar membrane when expressed from a single copy (CEN) plasmid (data not shown). Aside from the differences in signal intensity, no difference in subcellular localization was observed when BB-Inv was expressed from CEN or 2μ plasmids. The results from the αFss-B and BB-Inv fusions indicate that, similar to ALP (Klionsky and Emr, 1990), the lumenal domain of DPAP B is neither necessary nor sufficient for vacuolar targeting.

The Cytoplasmic and Transmembrane Domains of DPAP B Are Not Necessary for Vacuolar Targeting

The role of the transmembrane domain in the vacuolar targeting of DPAP B was tested by constructing the fusion protein B-A-B (Fig. 1 B), in which the membrane anchor of DPAP B was replaced by that of the non-vacuolar membrane protein, DPAP A. The role of the cytoplasmic domain of DPAP B was tested by constructing in-frame deletions in this domain using oligonucleotide-directed mutagenesis of the DAP2 gene. Two deletion variants of DPAP B were constructed, Δ20-BB and Δ27-BB, in which 20 and 27 amino acids, respectively, were removed from the 29 residue cytoplasmic domain (Fig. 1 B; see Materials and Methods). Immunoprecipitations of B-A-B, Δ20-BB, and Δ27-BB from 35S-labeled cells, followed by SDS-PAGE and fluorography, showed that the mutant proteins were glycosylated, and that the deglycosylated proteins were of the predicted size (Fig. 3, lanes 3–8). As with BB-Inv, these proteins behaved as integral membrane proteins in high pH carbonate fractionation experiments (data not shown). DPAP activity assays of cells expressing B-A-B, Δ20-BB, and Δ27-BB showed that the proteins were fully enzymatically active, and that 88–98% of the total activity was intracellular.

Indirect immunofluorescence microscopy of cells expressing B-A-B, Δ20-BB, and Δ27-BB from either 2μ plasmids (Fig. 5, C–H) or CEN plasmids, using an antibody that recognizes the COOH-terminal half of DPAP B, showed that each of the mutant proteins was predominantly localized to the vacuolar membrane as determined by Nomarski optics (Fig. 5) and co-localization with Vat2p (data not shown). No staining of the plasma membrane was observed for any of these proteins. Thus, the cytoplasmic and transmembrane domains of DPAP B are not necessary for targeting to the vacuole.
Indirect immunofluorescence microscopy of DPAP B and BB-Inv. JHRY20-lAA1A3 (dap2Δ) cells containing plasmids expressing DPAP B (pGP3, A-C), vector alone (pSEY8, D-F), or BB-Inv (pCJR13, G-I) were fixed, converted to spheroplasts, and stained with a mouse mAb against Vat2p and affinity purified rabbit antibody specific for either the COOH-terminal half (A-C) or the cytoplasmic domain (D-I) of DPAP B as described in Materials and Methods. The cells were viewed by Nomarski optics (A and D) and epifluorescence microscopy through filter sets specific for fluorescein (B and E, DPAP B antibody) and rhodamine (C and F, Vat2p antibody) fluorescence.

vacuolar membrane. A significant fraction of cells expressing Δ20-BB and Δ27-BB also showed some ER localization, as judged by staining of the perinuclear space and long cisternal compartments (Table I; Rose et al., 1989), whereas B-A-B showed only vacuolar labeling. The Δ20-BB and Δ27-BB cells in Fig. 5 show predominantly vacuolar staining. In many cases, the plane of focus had to be adjusted to observe staining of both vacuolar and ER structures within a given cell. The increased residence time of Δ20-BB and Δ27-BB in the ER was corroborated by immunoblotting analysis, which showed that a small amount of the ER forms of Δ20-BB and Δ27-BB were seen in the steady state, along with the Golgi-modified forms, whereas only the Golgi-modified form was seen for wild type DPAP B (data not shown). The increased ER retention of Δ20-BB and Δ27-BB could be due to an impaired ability to achieve a native conformation competent for exiting the ER, as has been observed with mutant membrane proteins in mammalian cells (Gething et al., 1986; Doms et al., 1988). Upon exiting the ER, however, Δ20-BB and Δ27-BB were transported through the Golgi complex to the vacuole, indicating that the cytoplasmic domain of DPAP B is not necessary for vacuolar localization. These results, combined with those from the analysis of αFss-B, BB-Inv, and B-A-B, demonstrate that, aside from a membrane anchor, no single domain of DPAP B is required for transport to the vacuole.
Table I. Quantitation of Immunolocalization Observations in Wild Type Cells

Protein	Vacuoles	Golgi	ER**
DPAP B	100	2	0
BB-Inv	100	ND	0
B-A-B	100	ND	0
Δ20-BB	100	ND	26
Δ27-BB	100	ND	17
DPAP A	5	100	1
DPAP A, PEP4	1	100	18
AA-B	16	100	1
A-BB	18	100	1
Δ22-AAA	100	4	18
Δ22-AAA-B	100	1	45

* For each construct, the percentages refer to the fraction of stained cells that exhibited staining of a particular organelle. Depending on the protein being monitored, some cells showed staining of more than one class of organelle; thus, the percentages for a given protein may add up to more than 100.

1 JHRY20-1A Δα3 cells (Δα3 2apa 4ep 4-3) containing 2μ plasmids encoding either DPAP B (pCJR51), BB-Inv (pCJR13), B-A-B (pCJR70), Δ20-BB (pCJR56), Δ27-BB (pCJR54), DPAP A (pCJR46), AA-B (pCJR64), A-BB (pCJR67), Δ22-AAA (pSN59), or Δ22-AAA-B (pSN58) were fixed, spheroplasted, and stained with either anti-DPAP B lumenal domain antibody (DPAP B, B-A-B, Δ20-BB, Δ27-BB, AA-B, A-BB, and Δ22-AAA-B), anti-DPAP B cytoplasmic domain antibody (BB-Inv), or DPAP A antibody (DPAP A, Δ22-AAA-A and Vat2p mAb for indirect immunofluorescence as described in Materials and Methods. DPAP A was also analyzed in an otherwise isogenic STE13 strain; Table I). An exogenous copy of STE13 on a 2μ plasmid showed that DPAP A was localized to several non-vacuolar punctate patches dispersed throughout the cell, as judged by Nomarski optics and in double staining experiments with Vat2p antibody (Fig. 7, *D-U*). This signal was absent in a stelΔ strain (Fig. 7, *A-C*). This staining pattern is typical of the Golgi apparatus, as determined by the localization of Kex2p (Redding et al., 1991) and Kexlp (A. Cooper and H. Bussey, manuscript submitted for publication). Attempts to localize DPAP A in cells containing only the chromosomal copy of STE13 were unsuccessful due to the low abundance of the protein. Because the copy number of yeast 2μ plasmids can vary from 10 to 40 copies/cell within a population (Rose and Broach, 1991), the fluorescence signal corresponding to DPAP A when expressed from a 2μ plasmid also varied from cell to cell, ranging from a weak signal to a very strong signal, whereas the intensity of the Vat2p signal was consistent from cell to cell. All of the cells that showed a signal with the DPAP A antibody displayed a Golgi-staining pattern (Fig. 7, *D-U*; Table I); however, cells exhibiting a very strong signal, presumably due to a high dosage of the STE13 gene, also showed vacuolar staining (5% of the cells of a pep4-3 strain; Table I). An example of this is shown in Fig. 7, (*Q, S, and U*). A single cell exhibiting a strong DPAP A signal is shown, and the signal stains both vacuolar and punctate non-vacuolar structures, as judged by co-localization with Vat2p. The percentage of cells showing vacuolar localization of DPAP A decreased significantly in an otherwise isogenic PEP4 strain, which contains the full complement of vacuolar proteases (1%; Table I). Thus, cells producing high levels of DPAP A showed mis-localization of the protein to the vacuolar membrane, with the mislocalized protein degraded in a vacuolar protease-dependent fashion.

DPAP A Is a 112-kD Golgi Membrane Protein

DPAP A is a protein that resides in the Golgi apparatus, where it processes the α-factor precursor polypeptide (Julius et al., 1983). The structural gene for DPAP A (STE13) has been cloned and sequenced (Julius et al., 1983; C. A. Flanagan, D. A. Barnes, M. C. Fliessel, and J. Thorner, manuscript submitted for publication), and the predicted structure of DPAP A is similar to that of DPAP B in several regards. Both are type II integral membrane proteins, and both have luminal enzymatic domains of ~800 residues that share a high degree of sequence identity, including 48% identical residues over the COOH-terminal 250 residues (Fig. 1A); however, there is no significant sequence similarity between the cytoplasmic and transmembrane domains of DPAP A and DPAP B. To assess the subcellular distribution of DPAP A, an antibody specific for DPAP A was generated (see Materials and Methods). The specificity of the antibody is demonstrated in Fig. 6. Immunoprecipitation of DPAP A was carried out with 3S-labeled cells that varied with regard to the dosage of the STE13 gene. SDS-PAGE and fluorography showed that the antibody immunoprecipitated a protein of 112 kD from wild type cells but not from ste13Δ cells, and that this polypeptide was overproduced ~20-fold in a strain containing the STE13 gene on a 2μ plasmid (Fig. 6A). A protein of ~40 kD was also immunoprecipitated; however, the level of the 40-kD protein did not vary with the dosage of STE13. The STE13 DNA sequence predicts three possible sites for addition of N-linked carbohydrate (C. A. Flanagan, D. A. Barnes, M. C. Fliessel, and J. Thorner, manuscript submitted for publication). Treatment of DPAP A with Endo H resulted in an ~5 kD decrease in apparent molecular weight (Fig. 6 B), suggesting that at least two of the three Asn-X-Ser/Thr sites of DPAP A were modified, assuming that the core oligosaccharides added were of the typical structure (Kukuruzinska et al., 1987), and that the carbohydrate moieties were only slightly modified in the Golgi apparatus, as is the case for the glycosyl groups of Kex2p (Fuller et al., 1989, a,b) and Kexlp (A. Cooper and H. Bussey, 1989). The apparent molecular weight of deglycosylated DPAP A, 107 kD, is consistent with the molecular weight of DPAP A predicted from the STE13 DNA sequence, 107,200 D (C. A. Flanagan, D. A. Barnes, M. C. Fliessel, and J. Thorner, manuscript submitted for publication).

Indirect immunofluorescence microscopy of cells containing the STE13 gene on a 2μ plasmid showed that DPAP A was localized to several non-vacuolar punctate patches dispersed throughout the cell, as judged by Nomarski optics and in double staining experiments with Vat2p antibody (Fig. 7, *D-U*). This signal was absent in a stelΔ strain (Fig. 7, *A-C*). This staining pattern is typical of the Golgi apparatus, as determined by the localization of Kex2p (Redding et al., 1991) and Kexlp (A. Cooper and H. Bussey, manuscript submitted for publication). Attempts to localize DPAP A in cells containing only the chromosomal copy of STE13 were unsuccessful due to the low abundance of the protein. Because the copy number of yeast 2μ plasmids can vary from 10 to 40 copies/cell within a population (Rose and Broach, 1991), the fluorescence signal corresponding to DPAP A when expressed from a 2μ plasmid also varied from cell to cell, ranging from a weak signal to a very strong signal, whereas the intensity of the Vat2p signal was consistent from cell to cell. All of the cells that showed a signal with the DPAP A antibody displayed a Golgi-staining pattern (Fig. 7, *D-U*; Table I); however, cells exhibiting a very strong signal, presumably due to a high dosage of the STE13 gene, also showed vacuolar staining (5% of the cells of a pep4-3 strain; Table I). An example of this is shown in Fig. 7, (*Q, S, and U*). A single cell exhibiting a strong DPAP A signal is shown, and the signal stains both vacuolar and punctate non-vacuolar structures, as judged by co-localization with Vat2p. The percentage of cells showing vacuolar localization of DPAP A decreased significantly in an otherwise isogenic PEP4 strain, which contains the full complement of vacuolar proteases (1%; Table I). Thus, cells producing high levels of DPAP A showed mis-localization of the protein to the vacuolar membrane, with the mislocalized protein degraded in a vacuolar protease-dependent fashion.

Roberts et al. Membrane Protein Sorting in Yeast

75
Figure 5. Indirect immunofluorescence microscopy of B-A-B, Δ20-BB, and Δ27-BB. JHRY20-1A Δ1Δ3 (dap2Δ) cells harboring the vector with no insert (pSEY8, A and B), or plasmids expressing B-A-B (pCJR70, C and D), Δ20-BB (pCJR56, E and F), or Δ27-BB (pCJR54, G and H) were fixed, converted to spheroplasts, and stained with DPAP B antibody as described in Materials and Methods. The cells were viewed by Nomarski optics (A, C, E, and G) and by epifluorescence using a filter set specific for fluorescein fluorescence (B, D, F, and H).

DPAP enzyme assays on permeabilized and non-permeabilized cells expressing DPAP A from either CEN or 2μ plasmids showed that ~88% of the total activity was intracellular; thus, it is possible that a small percentage of DPAP A is present at the cell surface, even though no plasma membrane staining was detected by indirect immunofluorescence. However, the apparent extracellular DPAP A enzyme activity could in part be due to a small degree of cell lysis during the assay.

The Cytoplasmic Domain of DPAP A Is Sufficient for Retention in the Golgi Apparatus

To determine whether a specific domain of DPAP A con-
Figure 6. (A) Immunoprecipitations of DPAP A. JHRY20-1A strains of genotype ste3Δ (Δ), STE3 (+), or STE3 harboring the 2μ-STE3 plasmid pCJR46 (2μ) were labeled with Tran3S-label for 60 min, chased with cold methionine and cysteine for 30 min, and DPAP A was immunoprecipitated. The samples were analyzed by SDS-PAGE and fluorography. Half as much material was loaded in the 2μ lane: The positions of the molecular mass standards are indicated (in kD). (B) Endo H treatment. DPAP A, AA-B, and A-BB were immunoprecipitated from Tran3S-labeled cells, half of the samples were treated with Endo H, and equal amounts of treated and untreated samples were analyzed by SDS-PAGE and fluorography.

Indirect immunofluorescence microscopy using anti-DPAP B luminal domain antibody showed that AA-B and A-BB exhibited non-vacuolar punctate staining patterns indistinguishable from wild type DPAP A (Fig. 8, A–F). Again, no plasma membrane staining was detected. As with DPAP A, all cells that showed a signal displayed a punctate staining pattern, and a subset of those cells that showed a strong signal also exhibited vacuolar localization (Table I). An example is shown in Fig. 8 (A–C) for cells expressing AA-B. The cell in the bottom right corner shows a very intense fluorescein signal relative to the other cells in the panel, and clearly exhibits co-localization with Vat2p. Thus, as was seen for wild type DPAP A, overproduction of these proteins resulted in some mislocalization to the vacuole. These experiments demonstrate that the cytoplasmic domain of DPAP A is sufficient for the retention of an otherwise vacuolar membrane protein in punctate structures typical of the Golgi apparatus in S. cerevisiae. The cytoplasmic domain of DPAP A also has been shown to be sufficient for Golgi retention when fused to the transmembrane and luminal domains of the vacuolar membrane protein ALP (S. Nothwehr and T. Stevens, unpublished data).

A Mutation in the DPAP A Cytoplasmic Domain Results in Its Delivery to the Vacuole

To determine if the cytoplasmic domain of DPAP A was also necessary for the retention of DPAP A in the Golgi, a series of in-frame deletion mutations in the cytoplasmic domain were generated using oligonucleotide-directed mutagenesis (see Materials and Methods). Deletion variants that lacked...
residues 2-84 or 108-116 of the 118 amino acid cytoplasmic domain exhibited punctate localization patterns similar to wild type DPAP A (S. Nothwehr, C. Roberts, and T. Stevens, unpublished data). However, deletion of the 22-residue segment 85-106 from either DPAP A or the fusion protein AA-B (Δ22-AAA and Δ22-AA-B; see Fig. 1 C) resulted in mislocalization of the proteins to the vacuole (Fig. 9), although both proteins also showed a small amount of ER staining (Table I). Immunoblotting analysis of crude extracts prepared from cells expressing Δ22-AA-B showed a broadly migrating species on SDS-PAGE similar to AA-B and A-BB (data not shown; Fig. 6 B), suggesting that the Δ22-AA-B protein transits the Golgi apparatus before its transport to the vacuole. Similar to the deletions in the cytoplasmic domain of...
DPAP B, this deletion delays exit of the fusion proteins from the ER; however, upon exit from the ER, the enzymatically active Δ22-AAA and Δ22-AA-B fusion proteins were transported to the vacuole. Thus, the cytoplasmic domain is both necessary and sufficient for the retention of DPAP A in the Golgi apparatus, and the signal for the retention of DPAP A maps to a 22-amino acid segment within the 118-residue cytoplasmic domain.

Transport to the Vacuole Does Not Involve prior Delivery to the Plasma Membrane

We have previously shown that the transport of DPAP B to the vacuole does not involve delivery to the plasma membrane followed by endocytic targeting to the vacuole (Roberts et al., 1989). This was demonstrated by expressing DPAP B in a secl mutant, which at 34°C is blocked at a late stage of the secretory pathway and accumulates secretory vesicles (Novick et al., 1981; Salminen et al., 1987). To address the possibility that the mutant constructs analyzed in this study were mislocalized to the plasma membrane followed by rapid endocytic uptake to the vacuole, indirect immunofluorescence experiments were performed on BB-Inv, B-A-B, Δ20-BB, and Δ22-AA-B expressed in a secl strain at 34°C. As a positive control for accumulation in secretory vesicles, the localization of the fusion protein Fusl-LacZp was analyzed (Trueheart et al., 1987). The FUS1 gene product is required for the breakdown of the cell walls after the fusion of a and α cells during conjugation (McCaffrey et al., 1987; Trueheart et al., 1987), and has been shown by protease treatment of whole yeast cells to be a plasma membrane protein (Trueheart and Fink, 1989). The fusion protein Fusl-LacZp, consisting of the 254 NH₂-terminal amino acids of Fuslp fused to the lacZ gene product (β-galactosidase), has been shown by immunofluorescence microscopy to be localized to the plasma membrane after induction during mating (Trueheart et al., 1987).

Figure 8. Immunolocalization of AA-B and A-BB. JHRY20-1A (ste13Δ dap2Δ) cells containing plasmids expressing either AA-B (pCJR64, A–C) or A-BB (pCJR67, D–F) were fixed, spheroplasted, and stained with DPAP A antibody and Vat2p mAb. The cells were viewed by Nomarski optics (A and C) and by epifluorescence using filter sets specific for fluorescein (B and E) and rhodamine (C and F) fluorescence.
Figure 9. Immunolocalization of Δ22-AAA and Δ22-AA-B. JHRY20-1A (stel3Δ dap2Δ) cells containing plasmids expressing either Δ22-AAA (pSN59, A-F) or Δ22-AAB (pSN58, G-L) were fixed, spheroplasted, and stained with DPAP B (A-F) or DPAP A (G-L) antibody, and Vat2p mAb. The cells were viewed by Nomarski optics (A, D, G, and J) and by epifluorescence using filter sets specific for fluorescein (B, E, DPAP A antibody; H, K, DPAP B antibody) and rhodamine (C, F, I, and L; Vat2p antibody) fluorescence.

For these experiments, the expression of these proteins was under the control of the inducible GAL1 promoter (see Materials and Methods; Johnston and Davis, 1984). Neither Fus1-LacZp, BB-Inv, B-A-B, or Δ20-BB showed any signal before addition of galactose (data not shown). Fig. 10 (A-F) shows that Fus1-LacZp was localized to the plasma membrane in a SEC+ strain after 2 h of induction at 34°C, but accumulated intracellularly, presumably in secretory vesicles, in a sec1 strain under the same conditions. No colocalization with the vacuolar marker, ALP, was detected.

Figure 10. Immunolocalization in SEC+ and sec1 strains. JHRY20-1A (SEC+) and SEY-5016 (sec1) cells containing plasmids encoding Fus1-LacZp (pCJR14) or B-A-B (pCJR79) under the control of the GAL1 promoter were grown to log phase in media containing raffinose, then shifted to 34°C at the same time that galactose was added to the cultures. After 2 h, the cells were fixed, spheroplasted, and prepared for immunofluorescence. Cells expressing Fus1-LacZp were stained with anti-β-galactosidase mAb and anti-ALP polyclonal antibody, and were viewed using filter sets specific for fluorescein and rhodamine fluorescence, respectively. Cells expressing B-A-B were stained as in Fig. 5.
Table II. Quantitation of Immunolocalization Observations after Induction in sec1 cells

Protein†	Vacuoles‡	Intracellular, non-vacuolar‡	Plasma membrane
Fus-LacZp, SEC+	0	0	100
Fus1-LacZp, sec1	97	0	3
BB-Inv, sec1	100	0	0
B-A-B, sec1	77	23	0
Δ20-BB, sec1	98	2	0

* For each construct, the percentages refer to the fraction of stained cells that exhibited staining of a particular organelle. SEY5016 cells (sec1-1) or JHRY20-1A cells (SEC†) containing plasmids encoding either Fus1-LacZp (pCJR114), BB-Inv (pCJR51), B-A-B (pCJR92), or Δ20-BB (pCJR36) were grown to log phase, then shifted to 34°C at the same time that galactose was added to the culture, and incubated for 2 h. The cells were then fixed, spheroplasted, and stained with either LacZp antibody (Fus1-LacZp), NH²-terminal DPAP B antibody (BB-Inv), or COOH-terminal DPAP B antibody (B-A-B and Δ20-BB) for indirect immunofluorescence as described in Methods. For all constructs, >70% of the cells in the population showed a signal, and of those at least 100 cells were quantified for each construct.

† Vacular localization was determined both by coincidence of staining with the vacuole membrane as determined by Nomarski optics and by co-localization with either ALP (Fus1-lacZ) or Vat2p (BB-Inv, B-A-B, and Δ20-BB).

Typically, Fus1-LacZp accumulated in a large patch in the bud and bud neck region of budded cells, and near the cell periphery of un budded cells. BB-Inv, B-A-B, and Δ20-BB were each localized to the vacuole under these conditions (e.g., Fig. 10, G-I; Table II), as defined by co-localization with Vat2p. The intracellular, non-vacuolar signal occasionaly observed for B-A-B (23%; Table II) was different from that of Fus1-LacZp, in that the signal looked reminiscent of the Golgi signal observed for DPAP A (data not shown). This was also observed for B-A-B in SEC+ cells at 34°C, suggesting that the kinetics of delivery of this protein is slowed at elevated temperatures. The analysis of Δ22-AA-B in the sec1 strain was complicated by the fact that expression of the protein was leaky; ~50% of the cells in the population showed a weak vacuolar staining pattern before galactose addition. However, addition of galactose to the culture after shifting the cells to 34°C resulted in ~90% of the cells exhibiting an intense vacuolar signal (data not shown). These data show that the BB-Inv, B-A-B, Δ20-BB, and Δ22-AA-B proteins are targeted directly from the Golgi apparatus to the vacuole without transient appearance at the cell surface; thus, these proteins follow the same route to the vacuole as wild type vacuolar membrane proteins (Roberts et al., 1989).

Discussion

The search for the vacuolar localization determinant of DPAP B led to the surprising conclusion that neither the cytoplasmic, transmembrane, nor lumenal domain of the protein was necessary for vacuolar delivery. Analysis of the Golgi retention signal of DPAP A led to the equally surprising observations that both overproduction of the protein and mutations in the cytoplasmic domain resulted in mislocalization of DPAP A to the vacuole, not the plasma membrane. These results were unexpected, given that the targeting of soluble vacuolar proteins in yeast and soluble and membrane proteins of the lysosomes of animal cells require targeting information to prevent delivery to the cell surface (Valls et al., 1990; Kornfeld and Mellman, 1989; Williams and Fukuda, 1990; Machamer, 1991).

The fusion proteins analyzed in this study are appropriate tools for these experiments for the following reasons. All of the proteins were stable, enzymatically active, membrane-bound, and glycosylated when expressed in yeast, indicating that they have the correct membrane topology. In addition, all of the fusion proteins containing the DPAP B lumenal domain, i.e., Δ20-BB, Δ27-BB, B-A-B, and Δ22-AA-B, were transported to the vacuole after receiving glycosyl modifications in the Golgi apparatus. Finally, each of these fusion proteins was transported to the vacuole directly from the Golgi apparatus, without prior delivery to the plasma membrane followed by endocytic uptake to the vacuole.

Other Golgi membrane proteins have also been shown to be mislocalized to the vacuole rather than the plasma membrane. Both mutations in the cytoplasmic domain of Kex2p, as well as its overproduction result in mislocalization of the protein to the vacuolar membrane (A. Cooper and H. Bussey, manuscript submitted for publication). Similarly, a single amino acid change in the cytoplasmic domain of Kex2p results in its transport to the vacuole (C. Wilcox, K. Redding, R. Wright, and R. Fuller, manuscript submitted for publication). Whereas this result might appear to conflict with earlier published data on Kex2p, more recent analysis indicates that membrane-bound forms of Kex2p that fail to be retained in the Golgi are found in the vacuole rather than the plasma membrane, when these proteins are expressed at wild type or modestly elevated levels (C. Wilcox, K. Redding, R. Wright, and R. Fuller, manuscript submitted for publication).

Given that several Golgi membrane proteins all show missorting to the vacuole when either mutant or overproduced, the model we favor to explain these data is the vacuolar default model, which states that vacuolar membrane proteins do not require sorting information, because the default pathway for membrane proteins of the secretory pathway leads to the vacuole. Alternatively, one could argue that, given the similarity between DPAP B and DPAP A, both proteins could contain vacuolar targeting information in their transmembrane domains, even though no significant similarity is apparent from the amino acid sequence data (C. A. Flanagan, D. A. Barnes, M. C. Flessel, and J. Thorner, manuscript submitted for publication). Mutations in the Golgi retention signal of DPAP A, or saturation of the retention apparatus, would then result in the delivery of DPAP A to the vacuole. This model requires that both Kex2p and Kexlp must also have cryptic vacuolar targeting signals. With regard to the cryptic vacuolar targeting signal model, we have found that replacement of the membrane spanning domains of DPAP A and Δ22-AAA with a 21 residue hydrophobic sequence, (L(LALV)), creating the proteins AXA and Δ22-AXA, results in the retention of AXA in the Golgi and the transport of Δ22-AXA to the vacuole (S. Nothwehr and T. Stevens, unpublished data). These data suggest that the transmembrane domain of DPAP A does not contain vacuolar targeting information, and thus support the vacuolar default model. The vacuolar default model is directly testable by analyzing potential localization signals of yeast plasma membrane proteins.

In apparent conflict with the vacuolar default model is the observation that the majority of Kex2p (70%) is missorted
to the plasma membrane in cells deficient for clathrin heavy chain (Payne and Schekman, 1989). However, DPAP A is missorted to the cell surface to a lesser extent (30%; Seeger and Payne, 1992a). It is possible that the majority of DPAP A and a significant percentage of Kex2p are missorted to the vacuole in cells lacking clathrin heavy chain. Mutations in clathrin may affect both the retention of Golgi membrane proteins and the functional integrity of the sorting pathway (Seeger and Payne, 1992b). This could obscure the default pathway for membrane proteins, resulting in the transport of Golgi membrane proteins to the plasma membrane as well as the vacuole.

An alternative explanation of the data is that one or more of the DPAP A and DPAP B fusion or mutant proteins analyzed in this study were in a partially unfolded state, and thus recognized as abnormal and transported directly from the ER to the vacuole via a “garbage” pathway. There is no clear evidence for the existence of such a pathway in yeast or animal cells. However, several cases have been described in animal cells in which non-lysosomal membrane proteins were transported to lysosomes, either due to mutations (Armstrong et al., 1990), or in the case of the heptameric T-cell antigen receptor, complexes lacking the ë subunit are degraded in lysosomes (Minami et al., 1987). In these cases, the proteins were transported through the Golgi apparatus, and it is unclear whether the proteins were transported to lysosomes by a “garbage” pathway, or by the uncovering of a cryptic lysosomal targeting signal. In the great majority of cases, mislocalized membrane proteins of the secretory pathway in animal cells accumulate at the plasma membrane, which is presumed to be the default destination for these proteins (e.g., Williams and Fukuda, 1990). It is well established that proteins that are slow to reach the folded state are retained in the ER due to the action of proteins such as BIP (Pelham, 1989; Rothman, 1989), and proteins that are unable to fold or oligomerize properly are degraded in the ER (Klausner and Sitia, 1990). Several of the proteins analyzed in this study (i.e., Δ20-BB, Δ27-BB, Δ22-AAA, and Δ22-AA-B) showed increased retention in the ER. However, all of these proteins eventually exited the ER, were enzymatically active, and were transported through the Golgi complex to the vacuole.

The 22-amino acid segment of the cytoplasmic domain of DPAP A presumably contains the recognition domain for a “retention protein” of the Golgi apparatus. This protein could be a permanent resident of the Golgi apparatus; alternatively, the “retention protein” could reside in a post-Golgi compartment and function as a salvage receptor, such as the proposed receptor for soluble ER proteins (Pelham, 1989). It is interesting to note that the 22-amino acid stretch identified as the DPAP A Golgi retention signal contains five phenylalanine residues (Fig. 1). In animal cells, one or more aromatic amino acids in the cytoplasmic domains of cell surface receptors have been shown to comprise part of the signal for the clustering into coated pit regions of the plasma membrane (Chen et al., 1990; Johnson et al., 1990; Lobel et al., 1989; McGraw et al., 1991). That the phenylalanine residues in the Δ22 region may play a direct role in Golgi retention is supported by the observation that mutations in just two of these residues result in a substantial level of missorting of DPAP A to the vacuole (S. Nothwehr and T. Stevens, unpublished data).

The results of this study suggest that the default pathway for membrane proteins of the yeast secretory pathway may be different from that of certain mammalian cell lines that have been examined, where mutant forms of ER, Golgi, and lysosomal membrane proteins are mislocalized to the plasma membrane with the bulk flow of membrane (Machamer and Rose, 1987; Jackson et al., 1990; Williams and Fukuda, 1990; Wieland et al., 1987; Karrenbauer et al., 1990; Machamer, 1991). However, in polarized epithelial cells, it remains unclear which membrane serves as the default destination for membrane proteins (Simons and Wandinger-Ness, 1990; Mostov et al., 1992). Even if the default compartments for membrane proteins of the secretory pathways of yeast and certain animal cells are different, the same mechanistic considerations apply, that is, positive sorting information is required for proteins to avoid delivery to the default compartment.

According to the vacuolar default model for yeast membrane protein sorting, not only must ER and Golgi membrane proteins have sorting signals specifying their retention in the appropriate compartment, but plasma membrane proteins are predicted to have sorting information that prevents their localization to the vacuole. We are currently investigating whether yeast plasma membrane proteins have targeting signals that prevent their transport to the vacuole.

We acknowledge Cathy Flanagan, Jeremy Thorner, Antony Cooper, Howard Bussey, Celeste Wilcox, Robert Fuller, and Greg Payne for communication of results prior to publication; Scott Emer, Charlie Boone, and George Sprague for plasmids; Margaret Ho and Joe Horecka for help in the construction of the Δ20-BB and Fus1-LacZp constructs, respectively; and Jerry Gleason and Sean Poston for the photographic work. We especially thank Christopher Raymond for numerous insightful contributions to this work, and Nick Davis, Charlie Boone, George Sprague, Antony Cooper, Carol Vater, Cynthia Bauerle, and Margaret Ho for comments on the manuscript.

This work was supported by a National Institutes of Health predoctoral traineeship to C. J. Roberts, an American Cancer Society postdoctoral fellowship to S. F. Nothwehr (PF-3608), a grant from the National Institutes of Health (F38 38006) to T. H. Stevens, and an American Cancer Society Faculty Research Award to T. H. Stevens (PRA-337).

Received for publication 10 February 1992 and in revised form 30 June 1992.

References

Armstrong, J., S. Patel, and P. Riddle. 1990. Lysosomal sorting mutants of coronavirus E1 protein, a Golgi membrane protein. J. Cell Sci. 95:191–197.

Boone, C., S. S. Sommer, A. Hensel, and H. Bussey. 1990. Yeast KRE genes provide evidence for a pathway of cell wall β-glucan assembly. J. Cell Biol. 110:1833–1843.

Burgess, T. L., and R. B. Kelly. 1987. Constitutive and regulated secretion of proteins. Annu. Rev. Cell Biol. 3:243–293.

Bussey, H. 1988. Proteases and the processing of precursors to secreted proteins in yeast. Yeast. 4:17–26.

Casadaban, M., and S. Cohen. 1980. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J. Mol. Biol. 138:179–207.

Chen, W. J., J. L. Goldstein, and M. S. Brown. 1990. NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the LDL receptor. J. Biol. Chem. 265:3116–3123.

Cooper, A., and H. Bussey. 1989. Characterization of the yeast KEX1 gene product: a carboxypeptidase involved in processing secreted precursor proteins. Mol. Cell Biol. 9:2706–2714.

Doms, R. W., A. Russala, C. Machamer, J. Helenius, A. Helenius, and J. K. Rose. 1988. Differential effects of mutations in three domains on folding, quaternary structure, and intracellular transport of vesicular stomatitis virus G protein. J. Cell Biol. 107:89–99.

Emer, S. D., R. Schekman, M. C. Flesser, and J. Thorn. 1983. An MFlol-SUC2 (a-factor-invertase) gene fusion for study of protein localization and gene expression in yeast. Proc. Natl. Acad. Sci. USA. 80:7080–7084.

Emer, S. D., A. Vassartti, J. Garrett, B. L. Geller, M. Takeda, and M. G. Douglas. 1986. The amino terminus of the yeast F1-ATPase β-subunit precursor functions as a mitochondrial import signal. J. Cell Biol. 102:
