Complement Inhibition Reduces Post-Hemorrhagic Hydrocephalus in Mouse Neonatal Germinal Matrix Hemorrhage

Mohammed Alshareef  
Medical University of South Carolina  https://orcid.org/0000-0001-6259-7648

Khalil Mallah  
Medical University of South Carolina

Tyler Vasas  
Medical University of South Carolina

Ali Alawieh  
Emory University

Davis Borucki  
Medical University of South Carolina

Christine Couch  
Medical University of South Carolina

Jonathan Cutrone  
Medical University of South Carolina

Chelsea Shope  
Medical University of South Carolina

Ramin Eskandari  
Medical University of South Carolina

Stephen Tomlinson (✉ Tomlinss@musc.edu)  
Medical University of South Carolina  https://orcid.org/0000-0002-6281-2122

Research

Keywords: Germinal matrix hemorrhage, hydrocephalus, neuroinflammation, complement, microglia, pediatrics, brain injury

Posted Date: November 23rd, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1056257/v1

License: Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Introduction

Germinal matrix hemorrhage (GMH) is a devastating disease of infancy that results in intraventricular hemorrhage, post-hemorrhagic hydrocephalus (PHH), periventricular leukomalacia and neurocognitive deficits. There are no curative treatments and limited surgical options. We developed a novel mouse model of GMH and investigated the role of complement in PHH development.

Methods

We utilized a neonatal mouse model of GMH involving injection of collagenase into the subventricular zone of post-natal day four (P4) pups. Animals were randomized into four experimental arms: Naïve, sham injured, injured and vehicle (PBS) treated, and injured and CR2Crry-treated (a pan-complement inhibitor). Histopathologic and immunofluorescence analyses were performed at P14 with a focus on parameters of neuroinflammation and neuroprotection. Survival was monitored through day 45, prior to which cognitive and motor function was analyzed.

Results

The complement inhibitor CR2Crry, which binds C3 complement activation products, localized specifically in the brain following systemic administration after GMH. Compared to vehicle treatment, CR2Crry treatment reduced PHH and lesion size, which was accompanied by decreased perilesional complement deposition, decreased astrocytosis and microgliosis, and the preservation of dendritic and neuronal density. Progression to PHH and neuronal loss was linked to microglial phagocytosis of complement opsonized neurons, which was reversed with CR2Crry treatment. Complement inhibition also improved survival and weight gain, and improved motor performance and cognitive outcomes measured in adolescent GMH mice.

Conclusion

Complement plays an important role in the pathological sequelae of GMH. Complement inhibition represents a novel therapeutic approach to reduce disease progression in neonatal GMH and PHH, for which there is currently no treatment outside of surgical intervention.

Introduction

Germinal matrix hemorrhage (GMH) is the most common neurologic pathology in neonates, estimated at 3.5 per 1000 live births.[1] It is caused by disruption of fragile vasculature in the highly vascular subventricular zone (SVZ). Risk factors for GMH include pre-term birth (<32 weeks) or low weight (<1,500g), with rates of 20-40% in these infant groups.[2] Germinal matrix hemorrhage often leads to intraventricular hemorrhage (IVH), resulting in post-hemorrhagic hydrocephalus (PHH) and periventricular leukomalacia.[3] These two progressive pathological processes negatively impact neurodevelopmental
processes and are highly associated with development of cerebral palsy, with a rate of 30-42% of significant disability following severe GMH-IVH.[4, 5] Furthermore, patients with severe GMH-IVH have an approximately 90% rate of associated morbidity and mortality within two years.[5] There are no medical treatments for GMH or its sequelae.[6] A currently used procedure of surgical cerebrospinal fluid (CSF) diversion can mitigate the effects of PHH, but it does not cure the neurological disability caused by progressive damage from the hemorrhage, and there is life-long surgical morbidity in up to 90% of patients, including surgical infections and shunt malfunctions.[7, 8] As in traumatic brain injury (TBI) and stroke, brain injury following GMH involves an unpredictable primary insult, followed by secondary injury driven, at least in part, by neuroinflammation.[9] The primary injury of GMH cannot be prevented by intervention due to the immediate and unexpected mechanical trauma of a hemorrhagic mass, which is accompanied by a surrounding ischemic insult. On the other hand, secondary injury involves a progressive injury that extends into neighboring tissue, with breakdown of the blood brain barrier and resultant cytotoxic edema.[9] There is evidence that inflammation and increased cytokine and chemokine release in the setting of GMH contribute to the propagation of the secondary injury and are associated with subsequent periventricular leukomalacia and PHH.[10, 11] A central component of inflammatory cascades is the complement system,[12–14] although the role of complement in GMH has never been investigated. The complement system is a component of both innate and adaptive immunity, and there are three main activation pathways; the classical, lectin, and alternative pathways.[15] All pathways converge at the cleavage and activation of C3, leading to the generation of C3 opsonins (C3b, iC3b, C3d), anaphylatoxins (C3a and C5a), and finally the cytolytic membrane attack complex (MAC). Complement activation in TBI and stroke has been well studied,[12, 13] and complement is known to be involved in an ongoing inflammatory response that is implicated in secondary injury. In the settings of TBI and stroke, C3 opsonins can facilitate the phagocytosis of synapses and neurons, the anaphylatoxins can recruit and activate immune cells and may be have both injurious and reparative roles, and the MAC can result in cell lysis, including lysis of red blood cells that contribute to the dispersion of oxidative molecules such as heme into brain tissue and CSF.[12, 13, 16, 17]

In the current work, we describe the development of a novel neonatal mouse model of GMH with high post-operative survivability and with high rates of PHH development. We used this model for a foundational investigation into the role of complement in the development of PHH following GMH. Our data demonstrate a central role for complement in post-GMH pathology, and we show that a clinically relevant approach of complement inhibition post-GMH has a major impact on brain injury and inflammation, with subsequent benefit in terms of animal growth and longer-term motor and cognitive function. This work also establishes a direct relationship between complement activation and the development of secondary, post-hemorrhagic hydrocephalus. In this study we used the complement inhibitor CR2Cry, a previously characterized inhibitor of C3 activation that specifically targets to sites of complement activation and C3d deposition.[18] As previously shown, localizing complement inhibition to sites of complement activation significantly increases bioavailability and efficacy, and obviates the need to systemically inhibit complement, thus leaving the systemic physiological functions of complement, including host-defense, intact.[18, 19]
Materials And Methods

Study design

The study design and workflow are shown in Figure 1. Animal groups in this study were: Wild-type Naive (no injury, no treatment), Sham (PBS injection in the SVZ in place of collagenase, no treatment), Vehicle (Collagenase injection in the SVZ, with intraperitoneal PBS treatment), and CR2Crry treated (Collagenase injection into the SVZ, with intraperitoneal CR2Crry treatment). Prior to the surgical procedures for GMH, animal breeders were randomly assigned to groups. Randomization was performed by an external lab personnel and was dependent on litter sizes at P1 of life in order to satisfy the numbers across groups. To minimize confounders, a single lab person performed the surgeries, treatments, testing, and scoring and was blinded to group allocations for the duration of the study. Except where indicated, surgical injection into the SVZ was conducted on post-natal day 4 (P4). Animals were excluded if they died within 24 hours of surgery (<40% of animals). Study Endpoints were P14 (10 days post-injury) for subacute outcome analysis, including histology, and P45 (41 days post-injury) for animal survival study and cognitive tasks. For the P45 cohort, animal gender was identified after P8. In vehicle group, there were 10 females, 9 males, and 8 unknown due to death before P8. In the CR2Crry cohort, there were 5 females, 6 males, and 8 unknown due to death before P8.

Animal husbandry and care

All animal rearing, care, procedures and euthanasia were approved by the Institutional Animal Care and Use Committee at our institution. Wild-type C57BL/J mice (Jackson Laboratory, ME, USA) were obtained at age P30 and acclimatized for 1 week. Animals were then mated in pairs. Cages were cleaned weekly and corn cob bedding provided. All mice housed in the facility were exposed to 12 hours light/dark cycles. Mice received access to food and water ad libitum, while pregnant females received a high fat diet as recommended by the institutional veterinarian. All tests and experiments were conducted during the light cycle. Pregnancy and litter checks were performed daily. On day of initial injury induction (P4), male parent mice were removed and separated from the litter. Following surgery, pups were placed on a heating pad for 30 minutes, then reunited with the mother. The total handling time of pups away from the mother was approximately 45 minutes. They were then monitored for an additional 60 minutes to ensure care of the pups by the mother. All animals were then returned to the mouse housing facility.

Recombinant proteins and treatment paradigm

CR2Crry was prepared as previously described.[18] Both CR2Crry and PBS used for intraperitoneal (IP) treatment of animals was endotoxin-free. Complement inhibitory activity of the recombinant protein was verified using a zymosan assay, as previously described.[18, 20] Animals in the CR2Crry treatment group were treated IP at 10 mg/kg, a dose previously determined to be optimal in other models.[20] Two treatment time points were used in this study: 1 and 24 hours post injury. Following the first treatment in the 1-hour group, IP injections of CR2Crry were then administered at P7, P10, and P13 for a total of 4 doses. In the 24-hour treatment group, the first dose of CR2Crry was given 24 hours following injury, then
at P7, P10, and P13. The vehicle group was treated IP with PBS 1-hour post collagenase injection, then at
days P7, P10, and P13. To examine tissue targeting and the tissue half-life of CR2Crry, the protein was
labeled with a fluorescent marker (CF dye 92221, Biotium, Fremont, CA) per the manufacturer's protocol,
and administered i.p. to neonates 1 hour after induction of GMH or to control animals. Live animal
fluorescence tomography (Maestro II, PerkinElmer, Waltham, MA, USA) was performed at 24 h, 48 h, 72 h,
96 h and 7 days after the single dose injection. Relative CR2Crry brain deposition was quantified by
measuring signal intensity within the brain using NIH ImageJ (Fiji) integrated density.

**Germinal matrix hemorrhage injury model and lesion grading system**

Clostridium-derived collagenase (Type VII-S collagenase, C2399, Sigma-Aldrich) was injected into the SVZ
of mouse pups at P4 to induce direct spontaneous non-traumatic vessel rupture with intracerebral
hemorrhage in the region of the germinal matrix and SVZ. P4 mouse pups were placed on a cooled
platform to induce cryo-anesthesia as previously described. A Hamilton 32-gauge needle (Model
80008, Hamilton Co., NV, USA) was used to puncture the pup’s right sided scalp and skull with the
following conditions: 1mm posterior to the eye, 1 mm superior to the orbit, and 1 mm deep to reach the
periventricular zone (Fig. 1). The injection contained 0.5 units (0.5uL) collagenase for GMH groups, and
PBS for the Sham group. The location of injection was chosen at the level of the periventricular region to
induce parenchymal microvascular disruption (Fig. 1, 2a). To optimize injections and reduce variability,
the authors trained with Evans blue (EB) dye injection into the SVZ at the aforementioned parameters.
Animal brains were inspected 24 hours after injection to confirm correct location of injections. At least
80% accuracy was required to perform the experiments. For this experimental design, a single researcher
is recommended for all injections to maintain consistency.

Following collagenase injection, animals were placed on a heating pad for 30 minutes, and then returned
to their cages. Once the entire litter had completed the procedure and had been returned to their cage, the
mother was returned to the cage and monitored for interaction with the pups. The cage was kept on the
heating pad for an additional 1 hour, then returned to the mouse housing facility. Sham PBS injections
were performed to ensure that hemorrhage was a result of collagenase injection and not from
mechanical insertion of the needle. Animals were sacrificed at P14 (subacute outcomes) and P45
(chronic outcomes). In the process of developing the mode, collagenase injections were also performed in
P2 and P3 animals (procedural survival is shown in Fig. 2c).

The mechanism of injury in this model is the equivalent of clinical GMH grade 4 injury (intraparenchymal
hemorrhage). Thus, an animal-specific injury grading system was developed to establish a distinction
between parenchymal injury, ventricular involvement, and PHH (refer to Fig. 2d). Scale 0 = No lesion or
ventricular enlargement. Scale 1 = Lesion volume <30% of hemispheric cortical tissue ipsilateral to injury
site without ventricular involvement. Scale 2 = Lesion volume >30% of hemispheric cortical tissue
ipsilateral to injury site without ventricular involvement. Scale 3 = Lesion extending into the ipsilateral
ventricle with no ventricular enlargement. Scale 4 = Lesion extending into the ipsilateral ventricle coupled
with unilateral ventriculomegaly. Scale 5 = Lesion extending into both ventricles resulting in global hydrocephalus.

**Cognitive performance assessment**

Barnes maze was used to assess spatial learning and memory after GMH as previously described.[22] During the spatial learning phase, animals were trained beginning at P30 for 5 consecutive days with 2 trials per day spaced 60 minutes apart. Mice were given a two-day break, then re-tested using one trial for retention memory. All tasks were recorded using the Noldus EthoVision XT 13.0 system. Outcome measures included total distance traveled, latency to first poke (mouse peeking into the escape hole without entry), latency to escape hole entry, velocity, errors recorded (mouse peeking into holes other than escape hole), and time spent at different quadrants of the maze. To assess fear-conditioning and learning memory, the passive avoidance task was used as previously described.[23] Mice were acclimatized at P40 and tested at P44.

**Motor performance assessment**

Gait analysis was performed using the automated CatWalk XT 10.6 system (Noldus Co., VA, USA). Mice were placed at the edge of an illuminated walkway monitored by an underlying camera. Using light scattered from contact between the animals’ paws and glass, several computed parameters for each limb were tracked, including print area, limb contact intensity (average and maximum), gait consistency, and other gait-related parameters. The average from three runs was used for trail calculations for each animal. The run duration allotted was between 0.5 seconds and 8 seconds, and any run outside the given parameters was excluded. Any run that had more than 40% variation from start to finish was excluded. At P30, all experimental groups performed this task: naïve, vehicle, and CR2Crry-treated animals. Given the numerous output parameters of the device, a standardized Combined CatWalk Index (CCI) was applied as previously described.[24] In brief, parameters within each limb were assigned weighted significance, and the final CCI represents the overall performance of the animal during each run.

**Tissue processing and histologic analyses**

Animals in the subacute study were sacrificed at P14. Following euthanasia, cardiac perfusion was performed with cold PBS followed by 4% Paraformaldehyde mixed in PBS. Brains were then carefully extracted and placed in 4% Paraformaldehyde solution overnight at 4°C. The brains were then moved to a new vial with 30% sucrose mixed with 4% Paraformaldehyde in PBS. For tissue cutting, the brains were embedded in Tissue-Plus Optimal Cutting Temperature (OCT) compound (23-730-571, Fisher Healthcare) and frozen. At time of cutting, brains were cut in 40 µm coronal sections using a freeze-mount cryostat. The complete brain was collected in 12-well plates and kept in PBS-filled wells until histologic analysis. For Nissl staining, serial brain sections 200 µm apart were mounted on a slide and stained using cresyl violet as previously described.[25] For ventricular and lesion volume measurements, 8 serial Nissl-stained brain sections 200 µm apart and 40 µm thick were used to reconstruct the total lesion volume. 4x magnification images of each slice were acquired using a Keyence BZ-X710 microscope (Keyence Co,
Itasca, IL, USA). Two, independent blinded observers calculated the lesion and ventricular areas using NIH ImageJ (FIJI). The average of both observers was reported. 2D analyzed images were reconstructed into 3D volumetric output files to measure brain lesion and ventricular volumes using “Free-D” software.[26, 27]

**Immunofluorescence staining and imaging**

Mid-hippocampal and mid-ventricular regions were identified by stereometric measurement using a mouse brain atlas, followed by standard immunofluorescent (IF) staining as previously described.[28] All imaging and analysis were performed by a blinded lab personnel. High-resolution imaging was performed using a Zeiss LSM 880 confocal microscope (Zeiss, Carl Zeiss Microscopy, LLC, White plains, NY, USA) at 40x zoom with water-media overlay and using the Z-stacking feature of the microscope. Images were deconvoluted using the ZEN 2.5 software (Zeiss) and reconstructed in 3D plane. Distance from lesion edge was calculated for GFAP and NeuN analysis using ZEN 2.5 software, spectrum analysis. MAP2 arborization was calculated using spectrum analysis on ZEN 2.5 software and quantified using MATLab software (MathWorks, Inc. Natick, MA, USA). GFAP and Iba-1 perilesional signal intensity were calculated as the mean grey value (average signal intensity per pixel) using NIH ImageJ. All GFAP and Iba-1 staining was performed with negative control images (secondary antibodies only) in order to correct for underlying auto-fluorescence. Fluorescence-based analysis was performed rather than cell counting due to high cell density and clumping in the proximity of the injury site.

Colocalization analysis was performed using Imaris (Oxford Instruments, Concord, MA, USA) for 3D image reconstruction and quantification. Neurons were quantified per field of view on Imaris. Colocalization of C3/NeuN/Iba-1 was performed by spot-to-surface interaction and reported as a percent of total neurons within the field. For internalization of C3 or NeuN, manual quantification of partial or fully internalized particles by Iba-1 cells was quantified. Total internalized NeuN was reported as a percent of total neurons in the field. Primary antibodies used for staining were: anti-C3 (Abcam, Cat. #: ab11862, 1:200), anti-NeuN (Abcam, Cat. #: ab104225, 1:200), anti-Iba1 (Invitrogen, Cat. #: PA5-21274, 1:80), anti-MAP2 (Abcam, Cat. #: ab32454, 1:200), and anti-GFAP (Invitrogen, Cat. #: 13-0300, 1:200). Secondary antibodies utilized were all donkey and include anti-rabbit Alexa Fluor 488 nm (Invitrogen, Cat. #: A-21206, 1:200), anti-rat Alexa Fluor 488 nm (Invitrogen, Cat. #: A-21208, 1:200), anti-rat Alexa Fluor 555 nm (Abcam, Cat. #: ab150154, 1:200), anti-rabbit Alexa Fluor 555 nm (Invitrogen, Cat. #: A-31572, 1:200), anti-goat Alexa Fluor 647 nm (Invitrogen, Cat. #: A32849, 1:200).

**Statistical analysis**

Experimental sample size was determined using Power analysis and sample size estimation, performed through G*Power 3.1.9.2 tool (Franz Faul, Kiel University, Germany). Barnes maze performance was chosen as a reference test to calculate the effect size (Estimated mean and SD). Higher or comparable effect size was also expected for the remaining tests. A calculated effect size (d) of 2.0 was anticipated when comparing GMH mice to naive and 1.6 when comparing vehicle to CR2Crry in the treatment group based on our preliminary studies with GMH. Therefore, we used an effect size of 1.6 for our power
analysis for these aims. Two-tailed analysis with significance level $\alpha = 0.05$ was considered and then a corrected $\alpha_c = \alpha / (\text{number of primary comparisons}) = 0.05 / (2 \text{ primary comparisons}) = 0.025$. Ratios of group numbers was considered to be 1 (N1/N2) with equal number of mice per group. The result of analysis reveals a sample size of 8 evaluable mice per group with an actual computed power of 84%. To ensure sufficient number of evaluable animals is available, we corrected for potential 40% mortality/exclusion of animals in all studies. Thus, a final number of 12 animals would be required per experimental group to satisfy the necessary minimum. Finally, in order to maintain animal litter continuity, litters were randomized into experimental groups rather than individual pups.

Was performed using GraphPad Prism 8.0 (GraphPad Software, San Diego, CA, USA). Parametric testing was performed unless otherwise specified in the event of a failed Brown-Forsythe test for homogeneity of variance or if normality failed. Histologic analyses for hydrocephalus was performed using Chi-squared test for ventricular volumes. Statistical analyses for lesion and ventricle sizes, and IF analyses were performed using one-way ANOVA test with Bonferroni's correction for multiple comparisons. CCI and Passive avoidance tests were analyzed with one-way ANOVA test with Bonferroni correction. Barnes maze analysis was performed with two-way ANOVA test with Bonferroni correction. P values below 0.05 were considered significant. Student's t test (parametric) was used to compare two groups and was always used as two-tailed.

**Results**

**Germinal matrix hemorrhage model and induction of post-hemorrhagic hydrocephalus in neonatal mice**

We developed a novel neonatal mouse GMH model with relevance to human clinical disease in several aspects, including pathophysiology of insult, post-hemorrhagic survival rate, temporal profile of pathology, rate of post-hemorrhagic hydrocephalus, and motor/cognitive delay and deficits. Surgical details of the model are in materials and methods, and a workflow of the surgery and our subsequent complement inhibitor treatment paradigm is presented in figure 1. Briefly, at post-natal day 4 (P4), mouse pups were removed from their mothers and anesthetized on ice after defining syringe insertion location. Pups were then injected with 0.5 µl collagenase directly into the subventricular zone (SVZ) as annotated in figure 2a. After 1 hour on a heat pad, pups were returned to their mother. This procedure resulted in a lesion and deposition of blood products in a periventricular pattern, as shown in Nissl stains of brain sections collected 24 hours after injury (i.e. P5) (Fig. 2a). Of note, blood products were not only deposited in the ipsilateral hemisphere of needle insertion but were also evident along the ependymal layer of the contralateral ventricle (shown with a black arrow in Fig. 2a), indicating intraventricular hemorrhage, a feature of human GMH. The lesion and blood product deposition were a result of the collagenase injection and not mechanical insertion of the needle, as brain samples collected from PBS-injected animals (designated as sham) presented no lesion, blood deposition, or enlargement of the ventricles (hydrocephalus), in contrast to brains from collagenase-injected animals (Fig. 2b). In addition, unlike collagenase-treated animals, neither sham animals nor naïve non-injured pups showed any denudation of the ependymal lining in the lower border of the ventricles, shown in high resolution Nissl-stained images
(Fig. 2b). The decision to induce injury at P4 was based on initial studies in which we found that collagenase treatment on P2 or P3 resulted in unacceptably high mortality rates (Fig. 2c). A grading system from 0 to 5 was developed to characterize the severity phenotypes of brain injury and hydrocephalus, with scale 5 corresponding to global hydrocephalus. Details of the scoring system are described in the methods section, and representative images corresponding to injury scale are shown (Fig. 2d). Using Ter-119 red blood cell (RBC) stain, we show hematoma along the edges of the lesion three days after injury (Fig. 2e). Of note, the central portions of the hematoma get washed away as an artifact of the staining process, but the RBC stain shows layering of RBC's along the border of the lesion. Complement deposition was evident in the perilesional hemisphere with diffuse deposition along the lesion border as depicted by immunofluorescence staining for C3 (Fig. 2f), thus providing justification to explore the role of complement in the context of GMH and its post-hemorrhagic sequelae.

Targeting and tissue distribution of CR2Crry in neonates after induction of GMH

The complement inhibitor CR2Crry has been shown to bind deposited C3 activation fragments ([20]), which occurred at sites of injury in brains of collagenase injected mice (see above, Fig. 2e). To examine targeting specificity and whole-body distribution after systemic administration of CR2Crry, we administered fluorescently labeled CR2Crry via i.p. injection after induction of GMH. Live animal fluorescence tomography showed an initial systemic distribution of CR2Crry, with subsequent localization of the drug to the brains of GMH mice, but not to brains of control animals with no GMH (Fig. 3). Furthermore, quantification of fluorescence intensity revealed a CR2Crry tissue half-life of about 3 days in the brains of GMH mice, which we used as the interval between CR2Crry treatments in the therapeutic paradigm below.

Complement inhibition reduces lesion size and hydrocephalus in injured pups

To investigate the role of complement in GMH-induced pathology in a clinically relevant setting, we treated pups with CR2Crry or vehicle starting at either 1 or 24 hours after collagenase injection, and every 3 days (the tissue half-life) thereafter until sacrifice at P14 (refer to Fig. 1). Nissl stains of mid-hippocampal and ventricular regions from the vehicle group collected at P14 demonstrated varying degrees of parenchymal lesion along with high rates of associated intraventricular hemorrhage and PHH; no brains from the vehicle-treated group scored scale 0. On the other hand, 28% of 1-hour CR2Crry-treated animals were scale 0, and 17% of 24-hour CR2Crry-treated animals were scale 0. Global hydrocephalus occurred in 61% of brains from vehicle treated animals (scale 5), compared to only 7% and 22% in the CR2Crry 1-hour and 24-hour treatment groups, respectively (Fig. 4a and b). At P45 (41 days after injury), PHH was 75% in vehicle and 33% in the CR2Crry group (P<0.05) (Fig. 4f).

The lesion and ventricular volumes of the experimental groups were quantified using serial Nissl stained sections through each brain. Both ventricle and lesion volumes were decreased with CR2Crry treatment (both 1-hour and 24-hour treatments) compared to vehicle-treated animals (Fig. 4c and d). There was no significant difference between the 1 and 24-hour CR2Crry treatment groups, and in subsequent experiments we focused on 1-hour CR2Crry treatment. Of note, brains from vehicle-treated animals were
more likely to possess bilaterally enlarged ventricles occupying the majority of the intracranial compartment, coupled with relatively large lesions, as shown in the representative 3D reconstructed images of ventricle and lesion volume of all three conditions (Fig. 4e). The lateral ventricles in brains from CR2Crry-treated animals were closer to normal ventricular anatomy compared with the visually effaced ventricles observed in the vehicle group.

**CR2Crry treatment decreases perilesional complement deposition, astrocytosis, and microgliosis**

We investigated the impact of complement inhibition on a perilesional cellular response in terms of post-hemorrhage astrocyte and microglia/macrophage recruitment. For analysis of astrocytosis, brain sections from P14 mice were stained for Glial Fibrillary Acidic Protein (GFAP). Astrocytosis was examined in terms of the extent of astrocytic scar extending from the lesion border inward towards intact parenchymal tissue (Fig. 5a), and in terms of astrocyte density in the perilesional area at the interface with lesion (Fig. 5b). Compared to vehicle-treated animals, CR2Crry treated animals displayed reduced ipsilateral astrocytic scar formation within surrounding brain parenchyma (Fig. 5a, b). In addition, contralateral periventricular astrocytosis was also higher in vehicle animals compared to CR2Crry treated animals (Fig. 5c). Similarly, Iba-1 staining for microglia/macrophage in the perilesional region showed reduced microgliosis in CR2Crry-treated animals compared to vehicle treated animals (Fig. 5d). Correlating with reduced astrocytosis and microgliosis, there was also reduced C3 deposition in the perilesional area (Fig. 5e) and ipsilateral hippocampus (Fig. 5f) of CR2Crry treated mice.

**Complement inhibition results in dendritic and neuronal preservation**

To explore the role of complement activation in the neurodegenerative process occurring post-hemorrhagic injury, we investigated the effect of complement inhibition on dendritic arborization (MAP2 stain) in ipsilateral and contralateral cortical hemispheres (Fig. 6a). Compared to naïve mice, vehicle-treated animals displayed a decrease in dendritic arborization in both ipsi- and contralateral hemispheres, which was largely reversed with CR2Crry treatment; there was not a significant difference in MAP2 staining intensity between naïve and CR2Crry treated mice, suggesting a role for complement in dendritic loss post-injury. To further interrogate perilesional neurodegeneration, we immune-stained for neurons (NeuN). NeuN signal intensity, measured in terms of distance from lesion, was markedly higher in CR2Crry-treated mice compared to vehicle controls (Fig. 6b, upper panel). Brains from CR2Crry-treated mice showed high neuronal density in the immediate perilesional space compared to effacement of perilesional neurons in vehicle treated mice (Fig. 6b, lower panel). Notably, in vehicle-treated animals there is a presence of non-neuronal cells in the vicinity of the lesion as indicated by DAPI staining.

**Neuronal loss is promoted by microglial/macrophage engulfment of complement opsonized neurons.**

We next investigated a role for microglia in complement-mediated neuroinflammation that is associated with loss of neuronal density. In figure 5b, we analyzed perilesional neuronal density spatially extending from the lesion. Here, we analyzed overall neuronal density within perilesional fields and show that compared to naïve animals, vehicle-treated animals had a reduction in neuronal density in the perilesional
area of microgliosis that colocalizes with C3 deposition. Compared to vehicle treatment, CR2Crry treatment reduced C3 deposition and microgliosis and preserved neuronal density (Fig. 7a-b). To investigate whether C3 opsonization may be responsible for microglial association with neurons and subsequent neuronal loss by promoting microglia-dependent engulfment, we first quantified colocalization of microglia/macrophages with C3-tagged neurons. Within perilesional fields of view, C3/Iba-1 colocalization was observed on 62% of NeuN+ stained cells in vehicle-treated animals compared to 20% in CR2Crry-treated animals (Fig. 7c). We next demonstrated C3 deposition at the microglial/macrophage interface with neurons and quantified microglia/macrophage internalization of C3 and of neuronal (NeuN+) material. We found a higher number of microglia/macrophages with partially or fully internalized C3 in vehicle-treated animals compared to CR2Crry-treated animals (Fig. 7d). From calculations using the total number of NeuN+ cells within each field as the denominator, we similarly found a higher percentage of microglia/macrophages with partially or fully internalized NeuN+ material in vehicle-treated animals compared to CR2Crry-treated animals (Fig. 7e). Two examples of microglia surface interaction with and internalization of a C3-tagged neuron are shown in figure 7f.

Example 1 shows a C3 tagged neuron engulfed within a microglia/macrophage, and example 2 shows a direct interaction between a C3 tagged neuron and a microglia/macrophage (see supplementary material for video demonstration). These data indicate a role for complement-dependent microglial phagocytosis in neuronal loss after GMH.

**Complement inhibition improves overall weight gain and animal survival**

Weight gain was monitored from P2 until sacrifice at P14. Compared to vehicle-treated mice, the overall weight gain in this period was significantly improved for mice treated with CR2Crry and was similar to percent weight gain in naïve mice (Fig. 8a and b). In the two days prior to injury, all groups were growing at a comparable percent weight gain. 24 hours after GMH induction (shown by purple arrow, Fig. 8b), there was a deceleration in percent daily weight gain in both CR2Crry and vehicle animals until 4 days after injury (P8, shown by orange arrow). At that time point, CR2Crry animals began to exhibit an accelerated weight gain and approached the normal weight gain curve, as displayed by naïve animals. There was no difference between naïve and CR2Crry animal percent weight gains by P14. In a separate cohort of animals, survival was monitored for up to 41 days after collagenase-induced injury (P45). For this experiment, the same treatment paradigm used in the above studies was applied through P14, with subsequent CR2Crry or vehicle (PBS) treatments given weekly. Animal survival assessment began one day after injury (P5) to eliminate surgery-related deaths occurring within 24 hours. CR2Crry group mortality plateaued at P25, while vehicle animal mortality continued to increase through P45, at which time survival rate of CR2Crry-treated animals was 75% compared to 40% for vehicle treated animals (Fig. 8c). Within the vehicle cohort, 4 of 10 females and 4 of 9 males survived to P45 with no significant difference in gender. In the CR2Crry group, 4 of 5 females and 5 of 6 males survived, with no significant difference in gender.

**Complement inhibition after germinal matrix hemorrhage enhances motor and cognitive performance at adolescence.**
An ongoing neuroinflammatory response has been linked to motor and cognitive dysfunction that is likely secondary to a loss of neurons. Our data above show an ongoing complement-dependent neuroinflammatory response and loss of neurons after GMH, and we therefore assessed whether this was linked to motor and cognitive performance at P30, when mice are able to physically perform behavioral tasks. Gait analysis (Noldus CatWalk XT) was performed at P30, and a CCI was computed using 100 plus different obtained values. Naïve and CR2Crry-treated mice had similar CCI scores, and their scores were significantly higher than vehicle-treated mice (Fig. 9a). Hippocampal integrity was assessed with fear-conditioned memory retention using the passive avoidance task. CR2Crry-treated mice showed similar retention memory to naïve mice represented by a delayed time to enter the shock box of the task, which was significantly lower in vehicle-treated animals (Fig. 9b). The Barnes maze task was used to assess spatial learning and memory retention, and as with above tasks, CR2Crry-treated and naïve mice performed similarly and significantly better than vehicle-treated mice. CR2Crry-treated mice exhibited improved spatial learning ability throughout the learning phase of the task compared to vehicle-treated mice as shown by an improved total latency on the platform and latency until first peek into the escape hole (Fig. 9c). Additionally, for both latency parameters, CR2Crry treatment significantly improved animal retention memory compared to vehicle on the final day, in which animals performed the task after a 2-day break period. Heat maps depicting the movement of animals on the platform from representative experiments are shown in figure 9d. Thus, neuroinflammation and neuronal loss after GMH correlates with behavioral deficits as mice age, and these outcomes can be reversed by complement inhibition.

Discussion

The current work utilizes the targeted complement inhibitor CR2Crry in a novel murine model of GMH that mimics the natural mechanism of GMH in newborn humans. Unlike previously described animal models, the clostridium-derived collagenase-based murine model described here results in a high rate of post-hemorrhagic hydrocephalus (Scale 5 lesion) in a high percentage of animals (about 60%). In comparison, human neonates with high scale GMH (Scale 3-4) are reported to develop PHH in up to 70% of cases.[29] Autologous intraventricular blood-injection models (ABM) have also been described, but they fail to mimic the natural mechanism of GMH. Those previous models also do not induce non-traumatic germinal matrix zone vessel rupture with disruption of the SVZ, BBB and parenchymal vasculature.[30, 31] Cherian et al. described an ABM with a PHH rate of 65% following bilateral injection of autologous blood, but in the same study they showed that injection of artificial CSF alone caused hydrocephalus in 50% of animals, indicating that the volume of injection likely contributed to the development of hydrocephalus.[30] Other ABM studies reported significantly lower resultant PHH with about 14% success.[31] In contrast, collagenase results in vascular collagen breakdown, leading to robust neurovascular destruction that closely mimics human GMH-IVH. This mimics disruption of the BBB and the long-lasting effects of immune cell infiltration and inflammation that occurs from blood leakage into the brain tissue. The collagenase model causes neurovascular injury that also potentiates hypoxia and ischemia, as well as local immune and inflammatory responses, which may represent a limitation of this model. Nevertheless, it is of note that similar responses can be seen in human GMH pathology. Current
collagenase-based models (which produced minimal to no PHH) utilized slightly older, rat, models (P7), in contrast to our mouse model (P4). Notably, P4 induction of GMH in the mouse model equates to approximately 32-week-old premature human neonates in brain development,[32] making the model directly translatable to the human pathophysiology that results in post-hemorrhagic infarction, PHH, and periventricular leukomalacia. The P7 collagenase-injected rat models equate to approximately 2.5 month-old full term humans, in whom GMH is not encountered.[30, 33–35]. In our model it is possible that the diffusion of collagenase or blood across the ventricle can happen from the destruction of ependymal tissue on the ipsilateral side, with leakage of active collagenase, along with blood products, through the ventricle. To this point, an advantage of our model is the trajectory used to reach the SVZ and germinal matrix. Other models use a vertical, trans-ventricular approach to reach the SVZ, whereas the current model uses a horizontal injection to penetrate the SVZ while avoiding cross-penetration of the ventricular wall, which minimizes dispersion of collagenase through the ventricular system. This approach lowers the risk for tissue destruction resulting directly from extravasation of collagenase, with effects more likely to occur from tissue destruction and blood dispersion into the ventricles (IVH).

GMH pathophysiology is similar to other types of brain injury, such as TBI and stroke, in the pattern of primary injury which is then followed by secondary injury. Complement activation has been implicated in propagating secondary injury following TBI and stroke.[28, 36] However, the role of complement in GMH and the development of PHH has never been investigated. Multiple mechanisms have been described in the development of PHH, including iron deposition leading to inflammation and obstruction of the normal absorption pathways,[37, 38] TLR-4-activation leading to hypersecretion of CSF,[39] and recruitment of inflammatory cells and the formation of an astrocytic scar.[34, 40, 41] Although complement has been independently associated with these pathways, any direct role for complement in post-hemorrhagic hydrocephalus has not been investigated.[28, 42, 43]

Here we investigated the role of complement in post-GMH pathology and PHH development in a therapeutic paradigm. The complement inhibitor utilized, CR2Crry, is a fusion protein consisting of a CR2 targeting domain linked to Crry, an inhibitor of C3 activation which is a central step of the complement cascade. The CR2 moiety binds C3 activation fragments that become covalently attached to activating surfaces.[44] We initially investigated both 1-hour and 24-hour CR2Crry treatments post-GMH induction, since clinically delayed diagnosis of GMH is common. Treatment at both time points was protective, and there was no significant difference in outcomes between the different treatment times. Complement inhibition reduced the rate of PHH development and lesion volume, and increased brain tissue preservation. These improvements were associated with reduced perilesional C3 deposition, and reduced astrocytosis and microgliosis, occurrence of which has been shown to contribute to the secondary injury after neurotrauma.[45] Interestingly, we identified deposition of astrocytes in the contralateral periventricular region to be higher in vehicle compared to treated animals. This correlated with an increased rate of PHH in those animals. It is unclear whether periventricular infiltration of astrocytes contributed to hydrocephalus, but microgliosis and astrocytosis appear to be directly correlated, and both were reduced with complement inhibition. Furthermore, astrocytosis is known to play a role in minimizing
expansion of injury. The reduction of astrocytosis following CR2Crry treatment in the current study may be attributed to the overall reduction in injury rather than a casual deleterious effect of astrocytes.

In addition to perilesional effects, complement inhibition reduced deposition of C3 in the ipsilateral hippocampus and preserved dendritic density globally throughout the cortex. Clinically, high grade GMH leads to major cognitive sequelae in up to 86% of human infants. Inflammation within the hippocampus has been linked to poor neurocognitive performance in memory-related tasks, both clinically and experimentally. Prevention of global hippocampal inflammation with CR2Crry likely contributed to improved Barnes maze and passive avoidance tasks performed in early adulthood testing of treated animals (P30 and beyond). Secondary to lack of reliable fine motor and motor-related cognitive testing in younger animals, we evaluated motor and behavioral functions of pups at P30. Our results demonstrated preservation of motor function as well as cognitive function in CR2Crry-treated animals compared to vehicles. Maintaining larger regions of cortical tissue, both ipsilateral and contralateral to the injury site, are likely major contributors to improved motor and cognitive outcomes in CR2Crry-treated animals. CR2Crry treatment not only reduced rates of bilateral injury, but also the severity of unilateral injury, with more CR2Crry-treated animals having scale 1,2 and 3 hemorrhagic lesions relative to scale 4 and 5 in vehicle controls.

We also identified a probable mechanistic link between complement activation and neuronal loss. First, we identified a higher rate of colocalization of C3-opsonized neurons with microglia/macrophages in perilesional areas in the vehicle animals compared to CR2Crry-treated animals. Secondly, within perilesional areas we found higher a higher percentage of microglia/macrophages with internalized C3 and neuronal material in vehicle vs. CR2Crry-treated animals. This correlated with preservation of neuronal density in CR2Crry-treated animals that in turn was associated with improved motor and cognitive performance in adolescence. Together, the data indicate that following GMH, progression to PHH with neuronal loss and the associated behavioral deficits are mediated, at least in part, by complement receptor-mediated uptake of C3 opsonized neurons by microglia/macrophages. Although neurons appear to be phagocytosed at higher numbers in the vehicle animals, the underlying phenotype of those neurons remains unclear. Some studies have suggested neuronal damage occurs following hemorrhagic injury due to iron-induced ferroptosis. However, there is also evidence of continued, pathologic complement targeting of neurons and neuronal progenitors secondary to continued activation of the alternative pathway.

Conclusions

In conclusion, PHH is a devastating pathology, currently managed exclusively through surgical CSF diversion procedures which carry life-long risks of repeated failure, infection and complications. Neonatal survival without surgical intervention for PHH is dismal, while those treated for hydrocephalus continue to suffer secondary brain injury-related neurological deficits, such as motor, cognitive, visual and psychological deterioration. In this study, we demonstrated a survival rate of 75% at P45 following CR2Crry treatment, independent of surgical CSF diversion, compared to 40% in vehicle treated animals.
To our knowledge, this treatment paradigm with complement inhibition is the first to demonstrate a successful preclinical pharmacologic therapy for this devastating neonatal pathology without surgery. The data suggest that complement inhibition has the potential to also reduce the rate of neonates requiring PHH-related surgical intervention. On a translational note, a humanized CR2-targeted complement inhibitor has been shown to be safe and nonimmunogenic in humans.[53] Also, in addition to FDA approved anti-C5 mAbs that inhibit downstream of the C3 inhibitor used here,[54] there are currently a multitude of companies developing complement inhibitors, with many in clinical trials.[44]

**Abbreviations**

GMH – Germinal matrix hemorrhage
PHH – Post-hemorrhagic hydrocephalus
IVH – Intraventricular hemorrhage
SVZ – Subventricular zone
TBI – Traumatic brain injury
P – Post-natal day
MAC – Membrane attack complex
CSF – Cerebrospinal fluid
IP – Intraperitoneal
EB – Evans blue
CCI – Combined Catwalk index
OCT- Optimal cutting temperature
RBC- Red blood cell

**Declarations**

**Ethical approval and consent to participate**

Not applicable

**Consent for publication**

Not applicable
Availability of data

All data generated and/or analyzed during the current study are included in this published article and the supplementary material.

Competing interests

ST is an inventor on a licensed patent for CR2-targeted complement inhibitors. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Funding

This work was supported by the Neurosurgery Research and Education Foundation (NREF) through the AANS/CNS Section on Pediatric Neurological Surgery & NREF 2020-21 Research Fellowship Grant to MA. It is also supported by grants from the Department of Veterans Affairs (IK6BX005235, 1BX004256, 1RX001141) to ST, and the National Institutes of Health (NIH) (T32AI132164) to KM.

Authors’ Contribution

M.A., K.M., A.M.A., S.T., R.E. designed research; M.A., K.M., T.V., D.B., C.C. performed research; M.A., K.M., T.V., J.C. contributed unpublished reagents/analytic tools; M.A., K.M., T.V., J.C., R.E and S.T. analyzed and interpreted data; M.A., K.M., J.C., S.T., R.E. wrote the paper.

Acknowledgements

The authors would also like to acknowledge the MUSC Cell and Molecular Imaging Core, supported in part by the Cell & Molecular Imaging Shared Resource, MUSC Cancer Center Support Grant (P30 CA138313), the SC COBRE in Oxidants, Redox Balance, and Stress Signaling (P20 GM103542), the SC COBRE in Digestive and Liver Diseases (P20 GM130457), the MUSC Digestive Disease Core Center (P30 DK123704) and the Shared Instrumentation Grants S10 OD018113 and S10 OD028663

References

1. Heron M, Sutton PD, Xu J, Ventura SJ, Strobino DM, Guyer B: Annual summary of vital statistics: 2007. Pediatrics 2010, 125:4–15.

2. Mukerji A, Shah V, Shah PS: Periventricular/Intraventricular Hemorrhage and Neurodevelopmental Outcomes: A Meta-analysis. Pediatrics 2015, 136:1132–1143.

3. Robinson S: Neonatal posthemorrhagic hydrocephalus from prematurity: pathophysiology and current treatment concepts. J Neurosurg Pediatr 2012, 9:242–258.

4. Bolisetty S, Dhawan A, Abdel-Latif M, Bajuk B, Stack J, Lui K, New South W, Australian Capital Territory Neonatal Intensive Care Units’ Data C: Intraventricular hemorrhage and neurodevelopmental outcomes in extreme preterm infants. Pediatrics 2014, 133:55–62.
5. Radic JA, Vincer M, McNeely PD: Outcomes of intraventricular hemorrhage and posthemorrhagic hydrocephalus in a population-based cohort of very preterm infants born to residents of Nova Scotia from 1993 to 2010. J Neurosurg Pediatr 2015, 15:580–588.

6. Bassan H: Intracranial hemorrhage in the preterm infant: understanding it, preventing it. Clin Perinatol 2009, 36:737–762, v.

7. Nejat F, Tajik P, El Khashab M, Kazmi SS, Khotaei GT, Salahesh S: A randomized trial of ceftriaxone versus trimethoprim-sulfamethoxazole to prevent ventriculoperitoneal shunt infection. J Microbiol Immunol Infect 2008, 41:112–117.

8. Reddy GK, Bollam P, Caldito G: Long-term outcomes of ventriculoperitoneal shunt surgery in patients with hydrocephalus. World Neurosurg 2014, 81:404–410.

9. Garton T, Hua Y, Xiang J, Xi G, Keep RF: Challenges for intraventricular hemorrhage research and emerging therapeutic targets. Expert Opin Ther Targets 2017, 21:1111–1122.

10. Kallankari H, Kaukola T, Ojaniemi M, Herva R, Perhomaa M, Vuolteenaho R, Kingsmore SF, Hallman M: Chemokine CCL18 predicts intraventricular hemorrhage in very preterm infants. Ann Med 2010, 42:416–425.

11. Habiyaremye G, Morales DM, Morgan CD, McAllister JP, CreveCoeur TS, Han RH, Gabir M, Baksh B, Mercer D, Limbrick DD, Jr.: Chemokine and cytokine levels in the lumbar cerebrospinal fluid of preterm infants with post-hemorrhagic hydrocephalus. Fluids Barriers CNS 2017, 14:35.

12. Alawieh A, Langley EF, Weber S, Adkins D, Tomlinson S: Identifying the Role of Complement in Triggering Neuroinflammation after Traumatic Brain Injury. J Neurosci 2018, 38:2519–2532.

13. Alawieh A, Tomlinson S: Injury site-specific targeting of complement inhibitors for treating stroke. Immunol Rev 2016, 274:270–280.

14. Narang A, Qiao F, Atkinson C, Zhu H, Yang X, Kulik L, Holers VM, Tomlinson S: Natural IgM antibodies that bind neopeptides exposed as a result of spinal cord injury, drive secondary injury by activating complement. J Neuroinflammation 2017, 14:120.

15. Janeway CA Jr TP, Walport M: Immunobiology: The Immune System in Health and Disease. 5th edition. 5 edn. New York: Garland Science; 2001.

16. Wouters D, Zeerleder S: Complement inhibitors to treat IgM-mediated autoimmune hemolysis. Haematologica 2015, 100:1388–1395.

17. Stahel PF, Morganti-Kossmann MC, Kossmann T: The role of the complement system in traumatic brain injury. Brain Res Brain Res Rev 1998, 27:243–256.

18. Atkinson C, Song H, Lu B, Qiao F, Burns TA, Holers VM, Tsokos GC, Tomlinson S: Targeted complement inhibition by C3d recognition ameliorates tissue injury without apparent increase in susceptibility to infection. J Clin Invest 2005, 115:2444–2453.

19. Tomlinson S, Thurman JM: Tissue-targeted complement therapeutics. Mol Immunol 2018, 102:120–128.
20. Huang Y, Qiao F, Atkinson C, Holers VM, Tomlinson S: A novel targeted inhibitor of the alternative pathway of complement and its therapeutic application in ischemia/reperfusion injury. *J Immunol* 2008, 181:8068–8076.

21. Janus C, Golde T: The effect of brief neonatal cryoanesthesia on physical development and adult cognitive function in mice. *Behav Brain Res* 2014, 259:253–260.

22. Rosenfeld CS, Ferguson SA: Barnes maze testing strategies with small and large rodent models. *J Vis Exp* 2014:e51194.

23. Nasehi M, Piri M, Jamali-Raeufy N, Zarrindast MR: Influence of intracerebral administration of NO agents in dorsal hippocampus (CA1) on cannabinoid state-dependent memory in the step-down passive avoidance test. *Physiol Behav* 2010, 100:297–304.

24. Crowley ST, Kataoka K, Itaka K: Combined CatWalk Index: an improved method to measure mouse motor function using the automated gait analysis system. *BMC Res Notes* 2018, 11:263.

25. Tureyen K, Vemuganti R, Sailor KA, Dempsey RJ: Infarct volume quantification in mouse focal cerebral ischemia: a comparison of triphenyltetrazolium chloride and cresyl violet staining techniques. *J Neurosci Methods* 2004, 139:203–207.

26. Andrey P, Maurin Y: Free-D: an integrated environment for three-dimensional reconstruction from serial sections. *J Neurosci Methods* 2005, 145:233–244.

27. Biot E, Crowell E, Burguet J, Hofte H, Vernhettes S, Andrey P: Strategy and software for the statistical spatial analysis of 3D intracellular distributions. *Plant J* 2016, 87:230–242.

28. Alawieh A, Langley EF, Tomlinson S: Targeted complement inhibition salvages stressed neurons and inhibits neuroinflammation after stroke in mice. *Sci Transl Med* 2018, 10.

29. McCrea HJ, Ment LR: The diagnosis, management, and postnatal prevention of intraventricular hemorrhage in the preterm neonate. *Clin Perinatol* 2008, 35:777-792, vii.

30. Cherian SS, Love S, Silver IA, Porter HJ, Whitelaw AG, Thoresen M: Posthemorrhagic ventricular dilation in the neonate: development and characterization of a rat model. *J Neuropathol Exp Neurol* 2003, 62:292–303.

31. Balasubramaniam J, Xue M, Buist RJ, Ivanco TL, Natuik S, Del Bigio MR: Persistent motor deficit following infusion of autologous blood into the periventricular region of neonatal rats. *Exp Neurol* 2006, 197:122–132.

32. Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ: Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. *Prog Neurobiol* 2013, 106-107:1–16.

33. Andreollo NA, Santos EF, Araujo MR, Lopes LR: Rat’s age versus human’s age: what is the relationship? *Arq Bras Cir Dig* 2012, 25:49–51.

34. Lekic T, Manaenko A, Rolland W, Krafft PR, Peters R, Hartman RE, Altay O, Tang J, Zhang JH: Rodent neonatal germinal matrix hemorrhage mimics the human brain injury, neurological consequences, and post-hemorrhagic hydrocephalus. *Exp Neurol* 2012, 236:69–78.
35. Lekic T, Manaenko A, Rolland W, Tang J, Zhang JH: A novel preclinical model of germinal matrix hemorrhage using neonatal rats. *Acta Neurochir Suppl* 2011, **111**:55–60.

36. Alawieh AM, Langley EF, Feng W, Spiotta AM, Tomlinson S: Complement-Dependent Synaptic Uptake and Cognitive Decline after Stroke and Reperfusion Therapy. *J Neurosci* 2020, **40**:4042–4058.

37. Strahle JM, Garton T, Bazzi AA, Kilaru H, Garton HJ, Maher CO, Muraszko KM, Keep RF, Xi G: Role of hemoglobin and iron in hydrocephalus after neonatal intraventricular hemorrhage. *Neurosurgery* 2014, **75**:696–705; discussion 706.

38. Gao C, Du H, Hua Y, Keep RF, Strahle J, Xi G: Role of red blood cell lysis and iron in hydrocephalus after intraventricular hemorrhage. *J Cereb Blood Flow Metab* 2014, **34**:1070–1075.

39. Karimy JK, Zhang J, Kurland DB, Theriault BC, Duran D, Stokum JA, Furey CG, Zhou X, Mansuri MS, Montejo J, et al: Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. *Nat Med* 2017, **23**:997–1003.

40. Liu SP, Huang L, Flores J, Ding Y, Li P, Peng J, Zuo G, Zhang JH, Lu J, Tang JP: Secukinumab attenuates reactive astrogliosis via IL-17RA/(C/EBPbeta)/SIRT1 pathway in a rat model of germinal matrix hemorrhage. *CNS Neurosci Ther* 2019, **25**:1151–1161.

41. Ding Y, Zhang T, Wu G, McBride DW, Xu N, Klebe DW, Zhang Y, Li Q, Tang J, Zhang JH: Astrogliosis inhibition attenuates hydrocephalus by increasing cerebrospinal fluid reabsorption through the glymphatic system after germinal matrix hemorrhage. *Exp Neurol* 2019, **320**:113003.

42. Babu R, Bagley JH, Di C, Friedman AH, Adamson C: Thrombin and hemin as central factors in the mechanisms of intracerebral hemorrhage-induced secondary brain injury and as potential targets for intervention. *Neurosurg Focus* 2012, **32**:E8.

43. Hajishengallis G, Lambris JD: Crosstalk pathways between Toll-like receptors and the complement system. *Trends Immunol* 2010, **31**:154–163.

44. Mastellos DC, Ricklin D, Lambris JD: Clinical promise of next-generation complement therapeutics. *Nat Rev Drug Discov* 2019, **18**:707–729.

45. Loane DJ, Byrnes KR: Role of microglia in neurotrauma. *Neurotherapeutics* 2010, **7**:366–377.

46. Sofroniew MV: Reactive astrocytes in neural repair and protection. *Neuroscientist* 2005, **11**:400–407.

47. Hu J, Feng X, Valdearcos M, Lutrin D, Uchida Y, Koliwad SK, Maze M: Interleukin-6 is both necessary and sufficient to produce perioperative neurocognitive disorder in mice. *Br J Anaesth* 2018, **120**:537–545.

48. Whitelaw A, Pople I, Cherian S, Evans D, Thoresen M: Phase 1 trial of prevention of hydrocephalus after intraventricular hemorrhage in newborn infants by drainage, irrigation, and fibrinolytic therapy. *Pediatrics* 2003, **111**:759–765.

49. Chen B, Chen Z, Liu M, Gao X, Cheng Y, Wei Y, Wu Z, Cui D, Shang H: Inhibition of neuronal ferroptosis in the acute phase of intracerebral hemorrhage shows long-term cerebroprotective effects. *Brain Res Bull* 2019, **153**:122–132.
50. Leinhase I, Holers VM, Thurman JM, Harhausen D, Schmidt OI, Pietzcker M, Taha ME, Rittirsch D, Huber-Lang M, Smith WR, et al: Reduced neuronal cell death after experimental brain injury in mice lacking a functional alternative pathway of complement activation. *BMC Neurosci* 2006, 7:55.

51. Wellons JC, 3rd, Shannon CN, Holubkov R, Riva-Cambrin J, Kulkarni AV, Limbrick DD, Jr., Whitehead W, Browd S, Rozzelle C, Simon TD, et al: Shunting outcomes in posthemorrhagic hydrocephalus: results of a Hydrocephalus Clinical Research Network prospective cohort study. *J Neurosurg Pediatr* 2017, 20:19–29.

52. Levy ML, Masri LS, McComb JG: Outcome for preterm infants with germinal matrix hemorrhage and progressive hydrocephalus. *Neurosurgery* 1997, 41:1111-1117; discussion 1117-1118.

53. Mastellos DC, Reis ES, Yancopoulou D, Risitano AM, Lambris JD: Expanding Complement Therapeutics for the Treatment of Paroxysmal Nocturnal Hemoglobinuria. *Semin Hematol* 2018, 55:167–175.

54. Stern RM, Connell NT: Ravulizumab: a novel C5 inhibitor for the treatment of paroxysmal nocturnal hemoglobinuria. *Ther Adv Hematol* 2019, 10:2040620719874728.

**Figures**

![Figure 1](image_url)

**Figure 1**
Workflow of surgical procedure and treatment paradigms for all experimental groups. At P4, the surgical coordinate was marked and pups were cryo-anesthetized. 0.5 µl of collagenase was injected into the subventricular zone of the brain via a lateral transcortical approach and pups were returned to their mother after re-warming. Experimental groups were: 1. Wild-type non-injured (Naïve), 2. PBS injected into the SVZ (Sham), 3. Collagenase injected into the SVZ and subsequent IP treatment with PBS (Vehicle control), 4. Collagenase injected into the SVZ and subsequent IP treatment with CR2Cry. Mice received first PBS or CR2Cry treatment 1 hour after collagenase injection and at subsequent 3-day intervals as indicated (depicted by syringe). Mice were euthanized for sample collection on post-natal day 14 or monitored for survival (up to day 45).

Figure 2

Collagenase-induced intraparenchymal GMH results in lesion coupled with hydrocephalus and hemorrhage within the SVZ. a) Nissl stained images demonstrating collagenase injection site and showing blood product deposition within surrounding tissue in both ipsilateral and contralateral ventricles as labelled by the black and which arrowheads. b) Nissl stains of naïve, sham, and vehicle brains (showing hydrocephalus), with magnified images of the lower tip of the ventricle. c) Survival at 24 hours after collagenase injection in pups at P2, P3, or P4. Two separate Chi-square tests were performed, one between P2 and P4, and the other between P3 and P4. *p<0.05, **p<0.01. d) Nissl image examples of different injury scales (0 to 5) used to categorize injury severity. e) Representative IF staining of red blood cells (Ter-119 in red) and cell nuclei (DAPI in blue) in an injured P7 animal brain (3 days after injury) with deposition of blood products along the lesion. f) Representative IF staining of complement deposition (C3 in red) and cell nuclei (DAPI in blue) in an injured P7 animal brain (i.e. 3 days after injury) showing extensive perilesional C3 deposition. No data points were excluded from the analysis.
Fluorescence-tagged CR2Crry targets to the brain following injury. Fluorescent-tagged CR2Crry was administered i.p. to mice 1 hour after induction of GMH or to control mice (no injury). a) Representative live animal fluorescence tomography images at indicated time points after CR2Crry administration, showing initial systemic distribution with subsequent retention of signal in the brain of GMH mice. b) Quantification of fluorescence intensity in brains of GMH mice and control mice at indicated time points.
after CR2Crry administration, showing the drug has a tissue half-life in the brain of about 3 days in GMH mice. Two-way ANOVA with Bonferroni’s correction for multiple comparisons. *p<0.05. n=4 for GMH, no GMH, and control groups. Error bars = mean ± SEM.

Figure 4

Complement inhibition leads to a reduction in lesion size and hydrocephalus. a) Distribution of injury scales among the three different experimental groups: vehicle, CR2Crry (1 hour), and CR2Crry (24 hours). b) Ventricles, Infarct, Combined. c) Lesion Volume (mm^3). d) Ventricles, Infarct, Combined. e) Vehicle, Rostral, Caudal. f) CR2Crry (P45), Rostral, Caudal.
b) Quantification of percent of animals that develop hydrocephalus (scale 5) vs. no hydrocephalus in vehicle, CR2Crry (1 hour), CR2Crry (24 hours). Chi-squared test performed between each hydrocephalus group. *p<0.05, **p<0.001

c, d) Lesion volume and ventricular volume quantification for the different groups together with naïve wild type and sham. One-way ANOVA with Bonferroni’s correction for multiple comparisons. **p<0.01, ***p<0.001. n=5 for Naïve, n=7 for sham, n=17 for vehicle, n=14 for CR2Crry (1 hr), and n=17 for CR2Crry (24 hrs). Error bars = mean ± SEM. e) Representative images with 3D reconstruction of ventricle and lesion volumes. No data points were excluded from the analysis. f) Distribution of injury scales among the P45 vehicle and CR2Crry treated groups. PHH was lower in CR2Crry group (P<0.05).
CR2Cry treatment decreases astrocyte and microglia/macrophage recruitment and decreases complement deposition. a) Quantification of astrocyte signal with respect to distance in the perilesional region (left) and representative whole brain IF images (right) in CR2Cry vs. vehicle. Two-way ANOVA with Bonferroni’s correction for multiple comparisons. *p<0.05, **p<0.01. n=3 for naïve, n=16 for vehicle, and n=13 for CR2Cry. Error bars= mean ± SEM. b) Perilesional astrocytosis. GFAP mean grey value (AU, image J) quantified along the lesion edge (within 100 µm of lesion border) showing a higher average intensity in vehicle compared to CR2Cry. Cortical mean grey value was obtained for naïve animals for comparison. One-way ANOVA with Bonferroni’s correction for multiple comparisons. **p<0.01, ****p<0.0001. c) GFAP mean grey value quantified for all images with visible contralateral ventricle (within 100 µm of ventricle border). There was increased periventricular astrocytosis in vehicle brains compared to both naïve and CR2Cry animals. One-way ANOVA with Bonferroni’s correction for multiple comparisons. ***p<0.001, ****p<0.0001. d) Microglia/macrophages (Iba-1) density quantification in the perilesional area, and representative images of the vehicle (left) and CR2Cry (right) treatment groups. One-way ANOVA with Bonferroni’s correction for multiple comparisons. *p<0.05, **p<0.01. Error bars= mean ± SEM. e) Representative images of C3 deposition with quantification of deposition in the perilesional area naïve, vehicle, and CR2Cry-treated animals, showing perilesional C3 deposition with reduction following CR2Cry treatment. One-way ANOVA with Bonferroni’s correction for multiple comparisons. *p<0.05. n=6 for naïve, n=15 for vehicle, and n=14 for CR2Cry. Error bars= mean ± SEM. f) Representative images of C3 deposition with quantification of deposition within the ipsilateral hippocampus for naïve, vehicle, and CR2Cry-treated animals, showing perilesional C3 deposition with reduction following CR2Cry treatment. One-way ANOVA with Bonferroni’s correction for multiple comparisons. *p<0.05. n=5 for naïve, n=12 for vehicle, and n=14 for CR2Cry. Error bars= mean ± SEM. No data points were excluded from the analysis.
Figure 6

CR2Crry treatment decreases neurodegeneration by maintaining dendritic arborization and halting neuronal loss. a) Representative IF images of dendritic processes (MAP2) of cortical tissue in the ipsilateral hemisphere, and quantification of MAP2 dendritic density in both the ipsilateral and contralateral hemisphere of naïve, vehicle, and CR2Crry animals. One-way ANOVA with Bonferroni’s correction for multiple comparisons. *p<0.05, **p<0.01, ***p<0.001. Error bars= mean ± SEM. b) Representative IF images of NeuN-stained sections of the perilesional area, and quantification of NeuN signal starting from lesion border inward toward the ipsilateral cortical tissue. Two-way ANOVA with Bonferroni’s correction for multiple comparisons. *p<0.05, **p<0.01. n= 15 for vehicle, and n=14 for CR2Crry. Error bars= mean ± SEM. No data points were excluded from the analysis.
Complement inhibition reduces microglia/macrophage association with and internalization of C3-tagged neurons. a) Representative images of perilesional area showing staining for Iba-1, C3, and NeuN, obtained using confocal microscopy with Z-stacking. 3-D Image reconstruction was performed using Imaris to obtain colocalization analysis. b) Perilesional quantification of neurons in animals treated as indicated. Cortical images from naïve brains were used for comparison. *p<0.05, ****p<0.0001. Error bars= mean ± SEM. c) IF stain for C3 deposition, Iba-1, and NeuN colocalization, performed based on surface proximity and analyzed as a percent of total neurons/field. Association of microglia/macrophages (Iba-1) with complement-tagged neurons as a percentage of total neurons present was higher in vehicle (62%) compared to CR2Crry-treated animals (20%). ****p<0.0001. Error bars= mean ± SEM. n= 6 for naïve, n=15 for vehicle, and n=14 for CR2Crry. d) Quantification of microglia/macrophages within the perilesional space with partial or complete internalization of C3
material. e) Quantification of microglia/macrophages within the perilesional space with partial or complete internalization of NeuN+ material as a percent of total quantified neurons. ****p<0.0001. Error bars= mean ± SEM. n=15 for vehicle, and n=14 for CR2Crry. f) Example images showing microglia/macrophage association and internalization of C3-tagged neurons in vehicle animals. (see also supplementary material). No data points were excluded from the analysis.

Figure 8

CR2Crry treatment improves weight gain after GMH and promotes survival. a) Overall percent weight gain from day P2 to P14 in vehicle and CR2rry-treated mice. Unpaired Student's T-test. *p<0.05. Error bars= mean ± SEM. b) Daily weight percent gain over 12-day period following GMH induction. Deceleration in percent daily weight gain in CR2Crry and vehicle animals at P5 (purple arrow). Acceleration of weight gain in CR2Crry-treated animals (orange arrow). Two-way ANOVA with Bonferroni’s correction for multiple comparisons. **p<0.01, ***p<0.001. n=11 for naïve, n= 18 for vehicle, and n=14 for CR2Crry. Error bars= mean ± SEM. c) Survival assessed over 41 days after injury (P45). Animal survival was assessed beginning at one day after injury (P5). Animals that died within 24 hours of injury were excluded from
CR2Crry group deaths plateau around P25 while vehicle animal deaths continue until close to P45. P45 animal survival was 75% in the CR2Crry group compared to 45% in the vehicle (p<0.05). Log-rank (Mantel-Cox) test. *p<0.05. n=20 for vehicle and n=12 for CR2Crry. Error bars= mean ± SEM.

Figure 9

CR2Crry treatment improves motor performance and cognitive performance of GMH injured mice. a) Gait analysis evaluated using Catwalk XT. The output variables for all four limbs were combined into a
previously described Combined Catwalk Index (CCI) 26 days after injury (P30). One-way ANOVA with Bonferroni’s correction for multiple comparisons. *p<0.05, **p<0.01. Error bars= mean ± SEM. b) Passive avoidance test (time to entry) performed 36 days after injury (P40). Shows improvement in fear-conditioned learning in CR2Crry animals and naïve as compared to vehicle. One-way ANOVA with Bonferroni’s correction for multiple comparisons. **p<0.01. Error bars= mean ± SEM. c) Barnes maze task performed beginning at 26 days after injury (P30). There was a training period of 5 days followed by a two-day rest period and subsequently underwent testing to evaluate retention memory 33 days after injury (P37). Variables presented were total latency and latency to first peek into the escape hole. Two-way ANOVA with Bonferroni’s correction for multiple comparisons. *p<0.05, **p<0.01, ***p<0.001. n=7 for naïve, n= 21 for vehicle, and n= 16 for CR2Crry. Error bars= mean ± SEM. d) Representative heat maps of movement of mice from the three treatment groups on the platform on the retention day. No data points were excluded from the analysis.

**Supplementary Files**

This is a list of supplementary files associated with this preprint. Click to download.

- Supplementaryvideo1.mp4
- Supplementaryvideo2.mp4