LYAPUNOV EXPONENTS OF PROBABILITY DISTRIBUTIONS WITH NON-COMPACT SUPPORT

ADRIANA SÁNCHEZ AND MARCELO VIANA

Abstract. We prove that the Lyapunov exponents, considered as functions of measures with non compact support, are semi-continuous with respect to the Wasserstein topology but not with respect to the weak* topology. Moreover, we prove that they are not continuous in the Wasserstein topology.

1. Introduction

Let $M = SL(2, \mathbb{R})^\mathbb{Z}$ and, let $f : M \to M$ be the shift map over M defined by

$$(\alpha_n)_n \mapsto (\alpha_{n+1})_n.$$

Consider the function

$$A : M \to SL(2, \mathbb{R}), \quad (\alpha_n)_n \mapsto \alpha_0,$$

and we define its n-th iterate, the product of random matrices, by

$$A^n((\alpha_k)_k) = \alpha_{n-1} \cdots \alpha_0.$$

Given an invariant measure μ in $SL(2, \mathbb{R})$ we can define $\mu = \mu^\mathbb{Z}$ which is an invariant measure in M. Let $L^1(\mu)$ denote the space of μ-integrable functions on M. It follows from Furstenberg-Kesten theorem [5, Theorem 2], that if the function $\log^+ \|A^\pm\| \in L^1(\mu)$ then

$$\lambda_+(x) = \lim \frac{1}{n} \log \|A^n(x)\| \quad \text{and} \quad \lambda_-(x) = \lim \frac{1}{n} \log \|A^{-n}(x)\|^{-1},$$

exist for μ-almost every $x \in M$. We call such limits Lyapunov exponents.

Furthermore, since the Lyapunov exponents are f-invariant, ergodicity of μ implies that they are constant for μ-almost every point x. In this case we write $\lambda_+(x) = \lambda_+(\mu)$ and $\lambda_-(x) = \lambda_-(\mu)$.

Date: October 9, 2018.
The Lyapunov exponents are quantities that measure the average exponential growth of the norm iterates of the cocycle along invariant subspaces in the fibers. They describe the chaotic behavior of the system. For example, a strictly positive maximal Lyapunov exponent is synonymous of exponential instability. It is an indication that the system modeled by the cocycle behaves chaotically, and the maximal Lyapunov exponent measures the chaos. The continuity can be interpreted as the persistence of chaos under small perturbations.

Several authors studied the sensitivity of the Lyapunov exponents with respect the measure. In 2009, Bocker and Viana \cite{2} proved the continuity of the random product of 2-dimensional matrices on the Bernoulli shift respect measures of compact support. Later, Backes, Butler and Brown \cite{1} showed continuity for cocycles with invariant holonomies and use the well-known existence of a topological semiconjugacy between Anosov diffeomorphisms and subshifts of finite type, see \cite{4}, to proof continuity of the Lyapunov exponents as functions of the diffeomorphism.

One can consider a similar strategy as the one in \cite{1} to proof the continuity of the Lyapunov exponents for a larger set of diffeomorphisms by considering the semiconjugacy constructed by Sarig in \cite{6}. However, the resulting shift is over an infinite set of symbols so we need to consider first the continuity for measures with non compact support which have never been done before.

The aim of this short note is to study the continuity and semicontinuity of the Lyapunov exponents respect to measures of non-compact support. Our main result reads as follows (see Theorem 3.1 and Theorem 3.2 for a precise statement):

Theorem A. The function $p \mapsto \lambda_+(p)$ is upper semi-continuous with the Wasserstein topology but not with the weak* topology. The same remains valid for $p \mapsto \lambda_-(p)$ with lower semi-continuity.

Regarding continuity of Lyapunov exponents we prove the following (see Theorem 4.1 for a precise statement):

Theorem B. The function $p \mapsto \lambda_+(p)$ is not continuous in the Wasserstein Topology. The same remains valid for $p \mapsto \lambda_-(p)$.
2. WASSELERSTEN TOPOLOGY

Let \((M, \mu)\) and \((N, \nu)\) be two probability spaces. Coupling \(\mu\) and \(\nu\) means constructing a measure \(\pi\) on \(M \times N\), such that \(\pi\) projects to \(\mu\) and \(\nu\) on the first and second coordinate respectively. When \(\mu = \nu\) we call \(\pi\) a self-coupling.

If \((M, d)\) is a Polish metric space, for any two probability measures \(\mu, \nu\) on \(M\), the Wasserstein distance between \(\mu\) and \(\nu\) is defined by the formula

\[
W_1(\mu, \nu) = \inf_{\pi \in \Pi(\mu, \nu)} \int_M d(x, y) d\pi(x, y)
\]

The Wasserstein space is the space of probability measures which have a finite moment of order 1. By this we mean the space

\[
P_1(M) := \{ \mu \in P(M) : \int_M d(x_0, x) d\mu(x) < +\infty \},
\]

where \(x_0 \in M\) is arbitrary and \(P(M)\) denotes the space of Borel probability measures on \(M\). This does not depend on the choice of the point \(x_0\), and \(W_p\) defines a finite distance on it (see [8]).

An important property of the Wasserstein topology is the Kan-torovich duality. It establishes that

\[
W_1(\mu, \nu) = \sup \left\{ \int_M \psi d\mu - \int_M \psi d\nu \right\},
\]

where the supremum on the right is over all 1-Lipschitz functions \(\psi\).

A crucial fact is that the Wasserstein distance \(W_1\) metrizes the convergence in the Wasserstein topology in \(P_1(M)\). In other words, \((\mu_k)_{k \in \mathbb{N}}\) converges to \(\mu\) in \(P_1(M)\) if and only if \(W_1(\mu_k, \mu) \to 0\). This equivalence also implies that \(W_1\) is continuous on \(P_1(M)\) (see [8], Theorem 6.18).

Theorem 2.1 (Topology in \(P_1(M)\)). Let \((M, d)\) be a Polish metric space. Then the Wasserstein distance \(W_1\) metrizes the convergence in the Wasserstein topology in the space \(P_1(M)\). Moreover, with this metric \(P_1(M)\) is also a complete separable metric space and, any probability measure can be approximated by a sequence of probability measures with finite support.

Now we will study a characterization of convergence in the Wasserstein space. From now on the notation \(\mu_k \xrightarrow{W} \mu\) means that \(\mu_k\) converges in the Wasserstein topology, while \(\mu_k \xrightarrow{s} \mu\) means that \(\mu_k\)
Proposition 2.2 (Convergence in $P_1(M)$). Let (M,d) be a Polish metric space. Let $(\mu_k)_{k \in \mathbb{N}}$ be a sequence of probability measures in $P_1(M)$ and let μ be another element of $P_1(M)$. Then the following properties are equivalent for some (and then any) $x_0 \in M$:

1. $\mu_k \xrightarrow{w} \mu$;
2. $\mu_k \xrightarrow{\ast} \mu$ and $\int d(x_0,x) d\mu_k(x) \to \int d(x_0,x) d\mu(x)$;
3. $\mu_k \xrightarrow{\ast} \mu$ and
 $$\limsup_{k \to \infty} \int d(x_0,x) d\mu_k(x) \leq \int d(x_0,x) d\mu(x);$$
4. $\mu_k \xrightarrow{\ast} \mu$ and
 $$\lim_{R \to \infty} \limsup_{k \to \infty} \int_{d(x_0,x) \geq R} d(x_0,x) d\mu_k(x) = 0;$$
5. For all continuous functions φ with $|\varphi(x)| \leq C(1 + d(x_0,x))$, $C \in \mathbb{R}$, one has
 $$\int \varphi(x) d\mu_k(x) \to \int \varphi(x) d\mu(x).$$

3. Semicontinuity

It is a well-known fact that when the measures have compact support, the Lyapunov exponents are semicontinuous with the weak* topology (see for example [7, Chapter 9]). However, in the non compact setting this is no longer true. If they were semicontinuous then every measure with vanishing Lyapunov exponent would be a point of continuity. The next theorem shows that this is not the case.

Theorem 3.1. There exist a measure ν and a sequence of measures $(\nu_n)_{n}$ on $SL(2,\mathbb{R})$ converging to ν in the weak* topology, such that $\lambda_+(\nu_n) \geq 1$ for n large enough but $\lambda_+(\nu) = 0$.

Proof. Define the function $\alpha : \mathbb{N} \to SL(2,\mathbb{R})$ by

$$\alpha(2k-1) = \begin{pmatrix} \sigma_k & 0 \\ 0 & \sigma_k^{-1} \end{pmatrix}$$

$$\alpha(2k) = \begin{pmatrix} \sigma_k^{-1} & 0 \\ 0 & \sigma_k \end{pmatrix}$$
where \((\sigma_k)_k\) is an increasing sequence such that \(\sigma_1 > 1\) and \(\sigma_k \to +\infty\).

Let \(\mu = q^Z\) be a measure in \(M\) where \(q\) is the measure on \(SL(2, \mathbb{R})\) given by
\[
q = \sum_{k \in \mathbb{N}} p_k \delta_{\alpha(k)},
\]
with \(\sum p_k = 1\), \(0 < p_k < 1\) for all \(k \in \mathbb{N}\).

The key idea to construct this example is to find \(p_k\) and \(\sigma_k\) such that \(\log \|A\| \in L^1(\mu)\) and satisfying the hypothesis above. Hence, consider
\[
0 < r < 1/2 < s < 1, \text{ and } l = s/r > 1.
\]
Let us take \(\sigma_k = e^{l^k}\) for all \(k\), which is an increasing sequence provided that \(l > 1\).

For \(k \geq 2\) take \(p_{2k-1} = p_{2k} = r^k\). Since \(0 < r < 1/2\) it is easy to see that
\[
\sum_{k \geq 2} p_k = 2 \sum_{k \geq 2} p_{2k} = 2 \sum_{k \geq 2} r^k = 2 \frac{r^2}{1 - r} < 1
\]
We have to choose \(p_1\) and \(p_2\) such that \(\sum p_k = 1\). Then, it is enough to take
\[
p_1 = p_2 = \frac{1}{2} \left(1 - 2 \frac{r^2}{1 - r}\right).
\]

We continue by showing that \(\log \|A\| \in L^1(\mu)\). This is an easy computation,
\[
\int_M \log \|A\| d\mu = 2p_2 \log \sigma_1 + 2 \sum_{k \geq 2} p_{2k} \log \sigma_k = 2p_2 l + 2 \sum_{k \geq 2} s^k.
\]
Since \(0 < s < 1\) this geometric series is convergent. Moreover, since \(p_{2k-1} = p_{2k}\) for all \(k\) then \(\lambda_+(q) = 0\).

What is left is to construct the sequence \(q_n\). Fix \(n_0 > 1\) large enough so \(\frac{1}{2} \left(1 - 2 \frac{r^2}{1 - r}\right) > l^{-n}\) for all \(n \geq n_0\), and consider \(q_n = \sum k q^n_k \delta_{\alpha(k)}\) where for \(n \geq n_0\)
\[
q_{2n}^n = l^{-n} + r^n, \quad (2)
q_2^n = \frac{1}{2} \left(1 - \frac{r^2}{1 - r}\right) - l^{-n}, \quad (3)
q_k^n = p_k \text{ other case.}
\]
Thus, since \(q_k^n \to p_k\) when \(n \to \infty\) for all \(k\), it is easy to see that \(q_n\) converges in the weak* topology to \(q\).
The proof is completed by showing that \(\lambda_+(q^n) \geq 1 \) for \(n \) large enough. It follows easily since,
\[
\lambda_+(q^n) = |q^n_{2n-1} - q^n_{2n}| \log \sigma_n + |q^n_1 - q^n_2| \log \sigma_1 = l^{-n} + l^{-n+1},
\]
which is equal to \(1 + l^{-n+1} \geq 1 \) for all \(n \geq n_0. \)

We now consider the Wasserstein topology in \(P_1(SL(2, \mathbb{R})) \) which is stronger than the weak* topology, as stated in Proposition 2.2. The advantage of using this topology is that all probability measures in \(P_1(SL(2, \mathbb{R})) \) have finite moment of order 1. Therefore, the Lyapunov exponents always exist. This observation is a direct consequence of the fact that \(\log : [1, \infty) \to \mathbb{R} \) is a 1-Lipschitz function and, \(\|\alpha\| \geq 1 \) for every matrix \(\alpha \in SL(2, \mathbb{R}) \), because
\[
\int \log \|A(x)\| d\mu = \int \log \|\alpha\| dp \leq \int d(\alpha, \text{id}) dp < \infty.
\]

The convergence of the moments of order 1, allow us to control the weight of integrals outside compact sets and, proof semi-continuity of the Lyapunov exponents in \(P_1(SL(2, \mathbb{R})) \). We are thus led to the following result.

Theorem 3.2. The function defined on \(P_1(SL(2, \mathbb{R})) \) by \(p \to \lambda_+(p) \) is upper semi-continuous. The same remains valid for the function \(p \to \lambda_-(p) \) with lower semi-continuity.

Before beginning the proof of Theorem 3.2 we need to recalled some important results regarding the relationship between Lyapunov exponents and stationary measures.

A probability measure \(\eta \) on \(\mathbb{P}^1 \) is called a \(p \)-stationary if
\[
\eta(E) = \int \eta(\alpha^{-1}E) dp(\alpha),
\]
for every measurable set \(E \in \mathbb{P}^1 \) and \(\alpha^{-1}E = \{[\alpha^{-1}v] : [v] \in E \} \).

Roughly speaking, the following result shows that the set of stationary measures for a measure \(p \) is close for the weak* topology.

Proposition 3.3. Let \((p_k)_k \) be probability measures in \(SL(2, \mathbb{R}) \) converging to \(p \) in the weak* topology. For each \(k \), let \(\eta_k \) be \(p_k \)-stationary measures and \(\eta_k \) converges to \(\eta \) in the weak* topology. Then \(\eta \) is a stationary measure for \(p \).

Furthermore, in our context it is well-known that
\[
\lambda_+(p) = \max \left\{ \int \Phi dp \times \eta : \eta \text{ \(p \)-stationary} \right\},
\]
where $\Phi : SL(2, \mathbb{R}) \times \mathbb{P}^1 \to \mathbb{R}$ is given by

$$\Phi(\alpha, [v]) = \log \|\alpha v\| / \|v\|.$$

For more details see for example [7, Proposition 6.7].

We now proceed to the proof of Theorem 3.2.

Proof of Theorem 3.2. We will prove that $\lambda_+(p)$ is upper semi-continuous. The case of $\lambda_-(p)$ is analogous.

Let $(p_k)_k$ be a sequence in the Wasserstein space $P_1(M)$ converging to p, i.e. $W(p_k, p) \to 0$. For each $k \in \mathbb{N}$ let η_k a stationary measure that realizes the maximum in the identity above. That is:

$$\lambda_+(p_k) = \int \Phi dp_k d\eta_k.$$

Since P^1 is compact, passing to a subsequence if necessary, we can suppose η_k converges in the weak* topology to a measure η which, as established in Proposition 3.3 is a p-stationary measure.

Let $\epsilon > 0$, we want to prove that there exist a constant $k_0 \in \mathbb{N}$ such that for each $k > k_0$

$$\left| \int \Phi dp_k d\eta_k - \int \Phi dp d\eta \right| < \epsilon.$$

In order to do this we need to consider some properties of the Wasserstein topology. First of all, since the first moment of p is finite there exist K_1 a compact set of $SL(2, \mathbb{R})$ such that

$$\int_{K_1^c} d(\alpha, id) dp < \frac{\epsilon}{36}.$$

(4)

Moreover, by Proposition 2.2 since $p_k \overset{W}{\to} p$ there exist $R' > 0$ satisfying

$$\limsup_k \int_{d(\alpha, id) > R'} d(\alpha, id) dp_k < \frac{\epsilon}{36},$$

then, there exist $k' > 0$ such that for every $k > k'$

$$\int_{d(\alpha, id) > R'} d(\alpha, id) dp_k < \frac{\epsilon}{36}.$$

(5)

Take $R > 0$ big enough so $B(id, R') \cup K_1 \subset B(id, R)$ and define the compact set $K = \bar{B}(id, R)$.

Since the function log : [1, ∞) → ℝ is 1-Lipschitz and ∥α∥ ≥ 1 for all α ∈ SL(2, ℝ), then

\[|\Phi(\alpha, [v])| = \left| \log \frac{\|\alpha v\|}{\|v\|} \right| \leq \log \|\alpha\| \leq \|\alpha\| - \|id\| \leq d(\alpha, id). \] \hspace{1cm} (6)

Our proof starts with the observation that

\[\left| \int \Phi dp_k d\eta_k - \int \Phi dpd\eta \right| \leq \left| \int_{K \times \mathbb{P}^1} \Phi dp_k d\eta_k - \int_{K \times \mathbb{P}^1} \Phi dpd\eta \right| + \left| \int_{K' \times \mathbb{P}^1} \Phi dp_k d\eta_k \right| + \left| \int_{K' \times \mathbb{P}^1} \Phi dpd\eta \right|.\]

On account of (5) it follows that

\[\left| \int_{K' \times \mathbb{P}^1} \Phi dp_k d\eta_k \right| \leq \int_{K'} d(\alpha, id) dp_k < \frac{\epsilon}{3}. \] \hspace{1cm} (7)

Furthermore, (4) implies that

\[\left| \int_{K' \times \mathbb{P}^1} \Phi dpd\eta \right| \leq \int_{K'} d(\alpha, id) dp < \frac{\epsilon}{3}. \] \hspace{1cm} (8)

We now proceed to analyze the integral:

\[\left| \int_{K \times \mathbb{P}^1} \Phi dp_k d\eta_k - \int_{K \times \mathbb{P}^1} \Phi dpd\eta \right| \leq \left| \int_{K \times \mathbb{P}^1} \Phi dp_k d\eta_k - \int_{K \times \mathbb{P}^1} \Phi dpd\eta \right| + \left| \int_{K \times \mathbb{P}^1} \Phi dpk d\eta - \int_{K \times \mathbb{P}^1} \Phi dpd\eta \right|.

Consider \(\Phi_K = \Phi|_{K \times \mathbb{P}^1}\) the restriction of \(\Phi\) to the compact space \(K \times \mathbb{P}^1\). Thus, \(\Phi_K\) is uniformly continuous with the product metric. Hence, there exist \(\delta = \delta(\epsilon)\) such that for every \([v] \in \mathbb{P}^1\) and every \(\alpha, \beta \in K\) satisfying \(d(\alpha, \beta) < \delta\) we have

\[|\Phi_K(\alpha, [v]) - \Phi_K(\beta, [v])| < \frac{\epsilon}{18}.\]

Moreover, by the compacity of the set \(K\) we can find \(\alpha_1, \ldots, \alpha_N \in K\) such that \(K \subseteq \bigcup_{i=1}^N B(\alpha_i, \delta)\). Therefore, the convergence of \((\eta_k)_k\) to \(\eta\) in the weak* topology implies that for each \(i = 1, \ldots, N\) there exist \(k_i > 0\) such that

\[\left| \int_{\mathbb{P}^1} \Phi_K(\alpha_i, [v]) d\eta_k - \int_{\mathbb{P}^1} \Phi_K(\alpha_i, [v]) d\eta \right| < \frac{\epsilon}{18}.\]

Take \(k'' = \max\{k_1, \ldots, k_N\}\). From the above it follows that given \(\alpha \in K\) there exist \(i\) such that \(d(\alpha, \alpha_i) < \delta\) and for every \(k > k''\) if \(\Phi_i = \Phi_K(\alpha_i, [v])\) then

\[\left| \int_{\mathbb{P}^1} \Phi_K d\eta_k - \int_{\mathbb{P}^1} \Phi_K d\eta \right| \leq \int_{\mathbb{P}^1} |\Phi_K - \Phi_i| d\eta_k + \int_{\mathbb{P}^1} \Phi_i d\eta_k - \int_{\mathbb{P}^1} \Phi_i d\eta + \int_{\mathbb{P}^1} |\Phi_i - \Phi_K| d\eta < \frac{\epsilon}{6}.\]
LYAPUNOV EXPONENTS OF PROBABILITY DISTRIBUTIONS WITH NON-COMPACT SUPPORT

Since this convergence is uniform on \(\alpha \), this implies that

\[
\left| \int_{K^c \times \mathbb{P}^1} \Phi_k(\alpha, [v]) d\eta dp_k - \int_{K^c \times \mathbb{P}^1} \Phi_k(\alpha, [v]) d\eta dp \right| < \frac{\epsilon}{6}, \quad (9)
\]

for all \(k > k'' \).

Now, for each \(n \in \mathbb{N} \) define \(A_n = SL(2, \mathbb{R}) \setminus B(id, R + 1/n) \) and, consider the Urysohn function \(f_n : SL(2, \mathbb{R}) \to [0, 1] \) given by

\[
f_n(\alpha) = \frac{d(\alpha, A_n)}{d(\alpha, A_n) + d(\alpha, K)},
\]

which converges pointwise to the characteristic function \(\chi_K \). It is easily seen that \(f_n \) is continuous for each \(n \), equal to zero in \(A_n \) and equal to 1 in \(K \). Therefore, the functions

\[
\varphi_n(\alpha) = \int_{\mathbb{P}^1} \Phi(\alpha, [v]) d\eta \cdot f_n(\alpha)
\]

are continuous. Fix (any) \(n \in \mathbb{N} \), then since \(|\varphi_n(\alpha)| \leq d(\alpha, id) \) and, by the definition of the Wasserstein topology, there exist \(k''' = k'''(n) \) such that for every \(k > k''' \)

\[
\left| \int \varphi_n dp_k - \int \varphi_n dp \right| < \frac{\epsilon}{18}.
\]

Moreover, since \(\varphi_n - \varphi = 0 \) in \(K \) and

\[
|\varphi_n - \varphi| \leq \log \|\alpha\||f_n(\alpha) - \chi_K(\alpha)| \leq 2d(\alpha, id).
\]

Hence, by (4) and (5)

\[
\int |\varphi_n - \varphi| dp \leq 2 \int_{K^c} d(\alpha, id) dp < \frac{\epsilon}{18},
\]

\[
\int |\varphi_n - \varphi| dp_k \leq 2 \int_{K^c} d(\alpha, id) dp_k < \frac{\epsilon}{18}
\]

for each \(k > k' \). Thus, if \(k > \max\{k', k''', k'''\} \) we get

\[
\left| \int_{K \times \mathbb{P}^1} \Phi dp_k d\eta - \int_{K \times \mathbb{P}^1} \Phi dp d\eta \right| < \frac{\epsilon}{6}, \quad (10)
\]

Finally, taking \(k_0 = \max\{k', k'', k'''\} \), we conclude that for every \(k > k_0 \)

\[
\left| \int \Phi dp_k d\eta_k - \int \Phi dp d\eta \right| < \epsilon.
\]

We just proved that

\[
\lambda_+(p_k) = \int \Phi dp_k d\eta_k \to \int \Phi dp d\eta \leq \lambda_+(p),
\]

which concludes our proof. \(\square \)
Remark 3.4. Theorem (3.1) does not contradict Theorem (3.2) since $p \notin P_1(SL(2, \mathbb{R}))$. To see this take $x_0 = id$, then

$$\int d(x, x_0)dp = \sum_{k=0}^{\infty} p_k \|\alpha_k - id\| = 2 \sum_{k=0}^{\infty} r^k (e^{kh} - 1)$$

which diverges.

4. Proof of Theorem B

At this section we are going to describe a construction of points of discontinuity of the Lyapunov exponents as functions of the probability measure, relative to the Wasserstein topology.

Theorem 4.1. There exist a measure q and a sequence of measures $(q_n)_n$ on $SL(2, \mathbb{R})$ converging to q in the Wasserstein topology, such that $\lambda_+(q_n) = 0$ for all $n \in \mathbb{N}$ but $\lambda_+(q) > 0$.

Proof. Consider the function $\alpha : \mathbb{N} \to SL(2, \mathbb{R})$ defined by the hyperbolic matrices

$$\alpha(k) = \begin{pmatrix} k & 0 \\ 0 & k^{-1} \end{pmatrix}$$

Take $m \in \mathbb{N}$ the smallest natural number bigger than 1 such that $\sum_{n \geq m} e^{-\sqrt{n}} < 1$, which exist since $\sum_k e^{-\sqrt{k}}$ is convergent, and define

$$p_k = e^{-\sqrt{k}}, \text{ if } k \geq m,$$

$$p_1 = 1 - \sum_{n \geq m} e^{-\sqrt{n}},$$

$$p_k = 0, \text{ otherwise.}$$

It is obvious from the definition that $\sum_k p_k = 1$. Hence, we define the probability measure $q = \sum p_k \delta_{\alpha(k)}$. We need to see that $q \in P_1(SL(2, \mathbb{R}))$, in order to do so notice that if $x_0 = id$

$$\int d(x, x_0)dq = \sum_k p_k \|\alpha(k) - id\| = \sum_k e^{-\sqrt{k}} (k - 1)$$

which is convergent by the Cauchy condensation test. Moreover, since

$$\sum_k e^{-\sqrt{k}} \log k < \sum_k k e^{-\sqrt{k}}$$

then if $\mu = q^Z$ we have $\log \|A\| \in L^1(\mu)$ and,

$$\lambda_+(q) = \sum_k e^{-\sqrt{k}} \log k > 0.$$
Now, consider \(B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \) and for each \(n \) consider
\[
\beta_n(k) = \begin{cases}
\alpha(k) & \text{if } k \neq n, \\
B & \text{if } k = n.
\end{cases}
\]

With this we define the probability measures \(q_n = \sum_k p_k \delta_{\beta_n(k)} \). In a similar way as above, we can see that for all \(n \) these measures belong to \(P_1(SL(2, \mathbb{R})) \) and, \(\log \| A \| \in L^1(q_n) \). We proceed to show that \(q_n \) converges to \(q \) in the Wasserstein topology. This follows since
\[
W(q_n, q) \leq p_n d(\alpha(n), B) \sim ne^{-\sqrt{n}}
\]
which goes to 0 if \(n \) goes to \(\infty \).

It remains to proof that \(\lambda_+(q_n) = 0 \) for every \(n \). In order to do this we proceed by contradiction. Suppose there exist \(N \) such that \(\lambda_+(q_N) > 0 > \lambda_-(q_N) \). We will consider the distance in the projective space \(\mathbb{P}^1 \) given by
\[
\delta([v], [w]) := \frac{\| v \wedge w \|}{\| v \| \| w \|} = \sin(\angle(v, w)).
\]

Consider the family \(\mathcal{F} = \{ V, H \} \), where \(V = [e_2] \) and \(H = [e_1] \) are the vertical and horizontal axis respectively. By the definition of the measure \(q_N \), it is clear that this family is invariant by every matrix in the support of this measure. Moreover, if \(x = (x_k)_k \in M \) then we can see that for every \(m \)
\[
\delta(A^m(x)H, A^m(x)V) \geq \delta(H, V) = 1. \tag{11}
\]

On the other hand, we have for every unit vectors \(v \) and \(w \)
\[
\| A^m(x)v \wedge A^m(x)w \| \leq \| \wedge^2 A^m(x) \|.
\]
It is widely known that, for \(q_N \)-almost every \(x \in M \)
\[
\lambda_+(q_N) + \lambda_-(q_N) = \lim_m \frac{1}{m} \log \| \wedge^2 A^m(x) \|.
\]

Note that \(q_N \) is irreducible, this means that there is no proper subspace of \(\mathbb{R}^2 \) invariant under all the matrices in the support of \(q_N \). Therefore, we have
\[
\lambda_+(q_N) = \lim_m \frac{1}{m} \log \| A^m(x)w \|,
\]
for every unit vector \(w \). For a deeper discussion of the two results mention above we refer the reader to \([3, \text{Chapter III}]\).
Thus, we have for every unit vectors v and w

$$\lim_{m} \frac{1}{m} \log \frac{\| \wedge^2 A^m(x) \|}{\| A^m(x)v \| \| A^m(x)w \|} = \lambda_-(q_N) - \lambda_+(q_N) < 0,$$

and hence

$$\lim_{m} \delta(A^m(x)H, A^m(x)V) \leq \lim_{m} \frac{\| \wedge^2 A^m(x) \|}{\| A^m(x)e_1 \| \| A^m(x)e_2 \|} = \lim_{m} \exp \left(m \cdot \frac{1}{m} \log \frac{\| \wedge^2 A^m(x) \|}{\| A^m(x)e_1 \| \| A^m(x)e_2 \|} \right) = 0,$$

which is a contradiction with (11) and, we finish our proof.

Notice that this example shows that the Wasserstein topology is not enough to guarantee continuity of the Lyapunov exponents. The main problem is that the support of the measures q_n move further apart from the support of q. Thus, this suggest that we need to add some hypothesis guaranteeing the “convergence” of the supports. An assumption of this type was made by Bocker, Viana in [2] in order to prove the continuity for measures with compact support.

In the next two sections we are going to describe a construction of points of discontinuity of the Lyapunov exponents as functions of the measure, relative to the Wasserstein topology. However, in each of them the support of the measures are arbitrarily close. These constructions were inspired by the discontinuity example presented by Bocker Viana in [2, Section 7.1].

4.1. **Discontinuity example in $SL(2, \mathbb{R})^5$.** Let us recall that $M = (SL(2, \mathbb{R}))^2$, $f : M \to M$ is the shift map over M defined by

$$(\alpha_n)_n \mapsto (\alpha_{n+1})_n.$$ And the linear cocycle A is the product of random matrices which is defined by

$$A : M \to SL(2, \mathbb{R}), \quad (\alpha_n)_n \mapsto \alpha_0.$$ Given an invariant measure μ in $SL(2, \mathbb{R})$ we can define $\mu = \mu^x$ which is an invariant measure in M.

Now consider $X = SL(2, \mathbb{R})^5$ with the product metric

$$d_\infty((\alpha_1, \ldots, \alpha_5), (\beta_1, \ldots, \beta_5)) = \max\{d(\alpha_1, \beta_1), \ldots, d(\alpha_5, \beta_5)\}.$$
Let $N = X^\mathbb{Z}$ be the space of sequences over X and $g : N \to N$ the shift map over N. We can identify N with M using the function $\iota : M \to N$ by $\iota((\alpha_n)_n) = (\beta_n)_n$ where
\[
\beta_n = (\alpha_{5n}, \alpha_{5n+1}, \alpha_{5n+2}, \alpha_{5n+3}, \alpha_{5n+4}).
\]
It is easy to see that ι defines a bijection between N and M. Moreover, we have the following identity
\[
g(\iota((\alpha_n)_n)) = f^5((\alpha_n)_n).
\]
Also we can consider the linear cocycle induced by A in N, that is the function $B : N \to SL(2, \mathbb{R})$ given by
\[
B(\iota((\alpha_n)_n)) = A^5((\alpha_n)_n).
\]
So in this context we have the following result.

Theorem 4.2. There exist a measure q and a sequence of measures $(q_n)_n$ on X converging to q in the W arssestein topology, such that
\[
\lambda_+(B, q_n) \not\to \lambda_+(B, q).
\]
The main idea of the proof is to construct a measure on N whose Lyapunov exponents are positive and approximate it, in the Warssestein topology, by measures with zero Lyapunov exponents. In order to do that, define the function $\alpha : \mathbb{N} \to SL(2, \mathbb{R})$ as
\[
\alpha(2k-1) = \begin{pmatrix} k & 0 \\ 0 & k^{-1} \end{pmatrix}
\]
\[
\alpha(2k) = \begin{pmatrix} k^{-1} & 0 \\ 0 & k \end{pmatrix}
\]
As in the example before take $m \in \mathbb{N}$ the smallest natural (odd) number bigger than 3 such that $\sum_{k=m} e^{-\sqrt{k}} < 1$, which exist since $\sum_k e^{-\sqrt{k}}$ is convergent, and define
\[
p_{2k} = p_{2k-1} = \frac{1}{2} e^{-\sqrt{k}}, \text{ if } 2k - 1 \geq m,
\]
\[
p_3 = 1 - \sum_{n \geq m} e^{-\sqrt{n}},
\]
\[
p_k = 0, \text{ otherwise.}
\]
Let $\mu = \tilde{q}^Z$ be a measure in M where \tilde{q} is the measure on $SL(2, \mathbb{R})$ given by
\[
\tilde{q} = \sum_{k \in \mathbb{N}} p_k \delta_{\alpha(k)}.
\]
Let us consider the space $\Omega = \mathbb{N}^5$ and define the measure on X by

$$q = \sum_{w \in \Omega} p_w \delta_{\alpha(w)},$$

where $\alpha(w) = (\alpha(w_1), \cdots, \alpha(w_5))$ and, $p_w = p_{w_1} \cdots p_{w_5}$ if $w = (w_1, \ldots, w_5)$.

Now consider the measure $\nu = q^2$ on N. First, we need to ensure that the measure q belong to $P_1(X)$. This is a direct consequence of the fact that $\sum e^{-\sqrt{n}(n - 1)}$ is convergent equal to some positive constant c. Indeed, if $\alpha_0 = (\text{id}, \ldots, \text{id})$ and the notation $p_1 \cdots \hat{p}_i \cdots p_5$ denotes the product of p_1 through p_5 except p_i then

$$\int d_{\infty}(\alpha, \alpha_0) dq = \sum_{w} p_w d_{\infty}(\alpha(w), \alpha_0) \leq \sum_{i=1}^{5} \sum_{w, j \neq i} p_{w_1} \cdots \hat{p}_{w_i} \cdots p_{w_5} \left(\sum_{w_i} p_{w_i} d_{\infty}(\alpha(w_i), \text{id}) \right) < c \sum_{i=1}^{5} \sum_{w, j \neq i} p_{w_1} \cdots \hat{p}_{w_i} \cdots p_{w_5} = 5c$$

which proves our claim. Remember that this also guarantees the existence of $\lambda_{\pm}(B, q)$ as mention in Section 3.

It is easy to see that $\nu = \iota_* \mu$. Using this we have

$$\lambda_+(B, q) = \lim_{n} \frac{1}{n} \int_{N} \log \|B^n(x)\| d\nu = \lim_{n} \frac{1}{n} \int_{M} \log \|A^{5n}(x)\| d\mu = 5\lambda_+(A, \tilde{q}) = 5p_3 \log 2 > 0.$$

The task is now to construct the sequence $(q_n)_n$. In order to do this, for each $n \in \mathbb{N}$ consider $w_n = (2n, 2n + 2, 2n + 1, 2n - 1, 2n - 1)$ and define

$$\beta(w_n) = (\alpha(2n) R_\epsilon, \alpha(2n + 2), \alpha(2n + 1) R_\delta, \alpha(2n - 1), \alpha(2n - 1) R_\epsilon),$$

where $\epsilon = n^{-1}(n + 1)^{-1}$, $\delta = \arctan(\epsilon)$ and,

$$R_\epsilon = \begin{pmatrix} 1 & 0 \\ \epsilon & 1 \end{pmatrix}, \quad R_\delta = \begin{pmatrix} \cos(\delta) & -\sin(\delta) \\ \sin(\delta) & \cos(\delta) \end{pmatrix}.$$
We proceed to define the sequence by
\[q_n = \sum_{w \neq w_n} p_w \delta_{\alpha(w)} + p_{w_n} \delta_{\beta(w_n)}. \]

We claim that \(W(q_n, q) \to 0 \) if \(n \) goes to infinite. Our proof starts with
the observation that
\[\pi_n = \sum_{w \neq w_n} p_w \delta_{\alpha(w)} + p_{w_n} \delta_{\alpha(w_n), \beta(w_n))} \]
is a coupling of \(q \) and \(q_n \). Then,
\[W(q_n, q) \leq \int d_{\infty}(u, v) \pi_k(u, v) \]
\[= p_{w_n} d(\alpha(w_n), \beta(w_n)) \]
\[< \max\{\|\alpha(2n) - \alpha(2n)R_e\|, \|\alpha(2n - 1) - \alpha(2n + 1)R_e\|, \|\alpha(2n + 1) - \alpha(2n + 1)R_e\|\} \]
\[\leq \epsilon(n + 1) = n^{-1} \]
which proofs our claim.

What is left is to show that \(\lambda_+(B, q_n) = 0 \) for all \(n \). The method of proof follows the same arguments as the Bocker-Viana example ([2, Section 7.1]). The key idea is to prove the following lemma.

Lemma 4.3. Let \(H_x = \mathbb{R}(1, 0) \) and \(V_x = \mathbb{R}(0, 1) \). If \(Z_n = [0 : \beta(w_n)] \)
then, for all \(x \in Z_n \) we have \(B(x)H_x = V_g(x) \) and \(B(x)V_x = H_g(x) \)

Proof. Notice that for any \(x \in Z_n \)
\[B(x) = \begin{pmatrix} 0 & -\epsilon^{-2} \sin(\delta) \\ \epsilon^2 \sin(\delta) + \epsilon \cos(\delta) & 0 \end{pmatrix} \]
Which completes the proof. \(\square \)

4.2. Discontinuity example in \(GL(2, \mathbb{R})^2 \).
Let \(M = (GL(2, \mathbb{R}))^\mathbb{Z} \)
let \(f : M \to M \) be the shift map over \(M \) and \(A : M \to GL(2, \mathbb{R}) \) the product of random matrices. Now consider \(X = GL(2, \mathbb{R})^2 \) with the maximum norm, and let \(N = X^\mathbb{Z} \) be the space of sequences over \(X \) and \(g : N \to N \) the shift map over \(N \). As before, we can identify \(N \) with \(M \) using the function \(\iota : M \to N \) defined by \(\iota((\alpha_n)_n) = (\beta_n)_n \) where \(\beta_n = (\alpha_{2n}, \alpha_{2n+1}) \) which is a bijection between \(N \) and \(M \).

With the above definition we can see that
\[g(\iota((\alpha_n)_n)) = f^2((\alpha_n)_n) \]
and defined \(B : N \to GL(2, \mathbb{R}) \) the linear cocycle induced by \(A \) in \(N \)
by \(B(\iota((\alpha_n)_n)) = A^2((\alpha_n)_n) \). In a similar way as the previous example
there exist a measure p and a sequence of measures $(p_k)_k$ on X converging to p in the Warssestein topology, such that $\lambda_+(A, p_k) \rightarrow \lambda_+(A, p)$.

Indeed, let $\alpha : \mathbb{N} \rightarrow GL(2, \mathbb{R})$ be defined by

$$
\alpha(2k - 1) = \begin{pmatrix} k & 0 \\ 0 & k^{-2} \end{pmatrix}
$$

$$
\alpha(2k) = \begin{pmatrix} k^{-2} & 0 \\ 0 & k \end{pmatrix}.
$$

Taking $m \in \mathbb{N}$ the smallest natural (odd) number bigger than 3 such that $\sum_{n \geq m} e^{-\sqrt{n}}$ is less than 1, which exist since $\sum_k e^{-\sqrt{k}}$ is convergent, and define

$$
p_{2k} = p_{2k-1} = \frac{1}{2} e^{-\sqrt{k}}, \text{ if } 2k - 1 \geq m,
$$

$$
p_3 = 1 - \sum_{n \geq m} e^{-\sqrt{n}},
$$

$$
p_k = 0, \text{ otherwise.}
$$

and let $\check{q} = \sum_{k \in \mathbb{N}} p_k \delta_{\alpha(k)}$. Consider the space $\Omega = \mathbb{N}^2$ and define the measure on X by $q = \sum_{w \in \Omega} p_w \delta_{\alpha(w)}$, where $\alpha(w) = (\alpha(w_1), \alpha(w_2))$ and, $p_w = p_1 p_2$ if $w = (w_1, w_2)$. Let $\nu = q^2$ a measure on N.

Analysis similar to that in Section 4.1 shows that $q \in P_1(X)$, and using that $\nu = i_\ast \mu$ we have

$$
\lambda_+(B, q) = \lim_n \frac{1}{n} \int_N \log \|B^n(x)\| d\nu
$$

$$
= \lim_n \frac{1}{n} \int_M \log \|A^{2n}(x)\| d\mu
$$

$$
= 2 \lambda_+(A, q)
$$

$$
= 2p_3 \log 2 > 0.
$$

For each $n \in \mathbb{N}$ consider $w_n = (2n, 2n - 1)$ and define $\beta(w_n) = (\beta(2n), \beta(2n - 1))$, by

$$
\beta(2n) = \begin{pmatrix} 1 & -\delta \\ 0 & 1 \end{pmatrix} \alpha(2n) \begin{pmatrix} 1 & 0 \\ \epsilon n & 1 \end{pmatrix} = \begin{pmatrix} 0 & -n \delta \\ \epsilon n & n \end{pmatrix}
$$

$$
\beta(2n - 1) = \begin{pmatrix} 1 & 0 \\ \epsilon & 1 \end{pmatrix} \alpha(2n - 1) = \begin{pmatrix} n & 0 \\ \epsilon n & n^{-1} \end{pmatrix},
$$

where $\delta = n^{-(1+\gamma)}$ with $0 < \gamma < 1$, $\epsilon = n^{-3} \delta^{-1} = n^{\gamma - 2}$.
We proceed to define the sequence by
\[q_n = \sum_{w \neq w_n} p_w \delta_{\alpha(w)} + p_{w_n} \delta_{\beta(w_n)}. \]

To prove that \(W(q_n, q) \to 0 \) if \(n \) goes to infinite we consider the diagonal coupling of \(q_n \) and \(q \)
\[\pi_n = \sum_{w \neq w_n} p_w \delta_{(\alpha(w), \alpha(w))} + p_{w_n} \delta_{(\alpha(w_n), \beta(w_n))}. \]

Hence, we have
\[
W(q_n, q) \leq \int d_\infty(u, v) \pi_n(u, v) \\
= p_{w_n} d_\infty(\alpha(w_n), \beta(w_n)) \\
< \max\{\|\beta(2n) - \alpha(2n)\|, \|\beta(2n - 1) - \alpha(2n - 1)\|\} \\
\leq \max\{\epsilon \sigma_n, n^{-2} + n \delta\} \\
= \max\{n^{\gamma - 1}, n^{-2} + n^{-\gamma}\} \\
\leq 2n^{-l}
\]
where \(l = \min\{\gamma, 1 - \gamma\} > 0 \), which proofs our claim.

The rest of the proof, that is proving that \(\lambda_+(B, q_n) = 0 \) for all \(n \), runs as before by noticing that for any \(x \in Z_n = [0 : \beta(w_n)] \)
\[B(x) = \begin{pmatrix} 0 & -n^2 \delta \\ c_{n-1} & 0 \end{pmatrix}. \]

Indeed, this guarantees that \(B(x)H_x = V_{g(x)} \) and \(B(x)V_x = H_{g(x)} \) where \(H_x = \mathbb{R}(1,0) \) and \(V_x = \mathbb{R}(0,1) \). Finally, applying the argument of the first return map as in [2 Section 7.1] we conclude our proof.

References

[1] Lucas Backes, Aaron W Brown, and Clark Butler. Continuity of lyapunov exponents for cocycles with invariant holonomies. *J. Mod. Dyn.*, 12:223–260, 2018.

[2] Carlos Bocker-Neto and Marcelo Viana. Continuity of lyapunov exponents for random two-dimensional matrices. *Ergodic Theory and Dynamical Systems*, 37(5):1413–1442, 2017.

[3] Philippe Bougerol et al. *Products of random matrices with applications to Schrödinger operators*, volume 8. Springer Science & Business Media, 2012.

[4] Rufus Bowen. *Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms*, volume 470. Springer, 2006.

[5] H. Furstenberg and H. Kesten. Products of random matrices. *Ann. Math. Statist.*, 31:457–469, 1960.

[6] Omri Sarig. Symbolic dynamics for surface diffeomorphisms with positive entropy. *Journal of the American Mathematical Society*, 26(2):341–426, 2013.
[7] Marcelo Viana. *Lectures on Lyapunov Exponents*, volume 145. Cambridge University Press, 2014.

[8] Cédric Villani. *Optimal transport: old and new*, volume 338. Springer Science & Business Media, 2008.

IMPA – Estrada D. Castorina 110, Jardim Botânico, 22460-320 Rio de Janeiro, Brazil.

E-mail address: asanchez@impa.br

E-mail address: viana@impa.br