Increased expression of EGR1 and KLF4 by polysulfide via activation of the ERK1/2 and ERK5 pathways in cultured intestinal epithelial cells

Kaoru ARAKAKI1,2, Ayako UEHARA1,2, Sayomi HIGA-NAKAMINE1, Manabu KAKINOHANA2, and Hideyuki YAMAMOTO1

1 Departments of Biochemistry, and 2 Anesthesiology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan

(Received 31 January 2020; and accepted 19 February 2020)

ABSTRACT
Sodium trisulfide (Na2S3) releases hydrogen polysulfide (H2S n) and is useful for the investigation of the effects of H2S n on the cell functions. In the present study, we first examined the effects of Na2S3 on the gene expression of IEC-6 cells, a rat intestinal epithelial cell line. Microarray analysis and reverse transcription-polymerase chain reaction analysis revealed that Na2S3 increased the gene expression of early growth response 1 (EGR1) and Kruppel-like transcription factor 4 (KLF4). It was interesting that U0126, an inhibitor of the activation of extracellular signal-regulated kinase 1 (ERK1), ERK2, and ERK5, inhibited the Na2S3-induced gene expression of EGR1 and KLF4. Na2S3 activated ERK1 and ERK2 (ERK1/2) within 15 min. In addition to ERK1/2, Na2S3 activated ERK5. We noticed that the electrophoretic mobility of ERK5 was decreased after Na2S3 treatment. Phos-tag analysis and in vitro dephosphorylation of the cell extracts indicated that the gel-shift of ERK5 was due to its phosphorylation. The gel-shift of ERK5 was inhibited completely by both U0126 and ERK5-IN-1, a specific inhibitor of ERK5. From these results, we concluded that the gel-shift of ERK5 was induced through autophosphorylation by activated ERK5 after Na2S3 treatment. The present study suggested that H2S n affected various functions of intestinal epithelial cells through the activation of the ERK1/2 and ERK5 pathways.

INTRODUCTION
Hydrogen sulfide (H2S) is an environmental hazard produced by natural sources. High levels of H2S are cytotoxic primarily due to the inhibition of mitochondrial cytochrome C oxidase (for review, see Kakinohana et al. 2019). In contrast, H2S has been identified as the third gaseous transmitter, following nitric oxide and carbon monoxide (Guo et al. 2016). It has been reported that H2S has various biological effects in the nervous system, the cardiovascular system, and the immune system (Guo et al. 2016; Kimura 2017). There are accumulating data that H2S has neuroprotective effects in the central nervous system (Hu et al. 2009; Xie et al. 2015). Recently, we found that breathing of H2S prevented delayed paraplegia after spinal cord ischemia in mice (Kakinohana et al. 2019). These results suggested that H2S had anti-apoptotic effects on spinal neurons.

There are three enzymes involved in the endogenous production of H2S: cystathionine β-synthetase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptoppyruvate sulfurtransferase. Among these enzymes, CBS and CSE are expressed in the intestinal epithelial cells (Hosoki et al. 1997; Blachier et al. 2019). In addition to endogenous production by the enzymes in the intestinal epithelial cells, H2S is produced also by the intestinal microbiota (Blachier et al. 2019). It was reported that the concentration of H2S ranged from 0.2 mM to 1 mM in mouse stools (Rose et al. 2005). These reports indicate that intestinal epithelial cells are exposed to the higher concentration of H2S than any other cells in other...
organs. There are many reports that H₂S is involved in the pathophysiological conditions of inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn’s disease, and colorectal cancer (Wallace et al. 2007; Rowan et al. 2009; Hirata et al. 2011; Guo et al. 2016). However, the physiological and pathophysiological roles of H₂S in the intestinal epithelium remain to be elucidated.

It is known that H₂S is converted to hydrogen polysulfides (H₂Sₙ, n ≥ 2) and then H₂Sₙ affect various cell functions (Kimura 2017). H₂Sₙ have been reported to regulate the activities of ion channels and protein kinases (for review, see Miyamoto et al. 2017). It is highly possible that intestinal epithelial cells are exposed to the high concentrations of H₂Sₙ that are converted from H₂S, but the effects of H₂Sₙ on intestinal epithelium are not clear at present.

IEC-6 cells are immortalized rat intestinal epithelial cells. We have been studying about various mitogen-activated protein kinase (MAPK) pathways in IEC-6 cells. Among the MAPK pathways, the p38 MAPK pathway was activated by the stimulation of toll-like receptor 5 (TLR5) to enhance the cell migration (Kondo et al. 2016). In the present study, we sought to examine the effects of H₂Sₙ on the MAPK pathways and cell functions of IEC-6 cells. Sodium trisulfide (Na₂Sₙ) is useful for investigation of the effects of H₂Sₙ on cell functions. Therefore, we treated IEC-6 cells with Na₂Sₙ, and we first examined the effects of the gene expression by microarray analysis. We found that the mRNAs of early growth response 1 (EGR1) and Kruppel-like transcription factor 4 (KLF4) were increased by Na₂Sₙ. Interestingly, the increases in the mRNAs of EGR1 and KLF4 were completely inhibited by an inhibitor of the activation of extracellular signal-regulated kinase (ERK1), ERK2 and ERK5. We then confirmed that Na₂Sₙ activated ERK1, ERK2, and ERK5. In addition, the molecular mechanisms for the gel-shift of ERK5 after Na₂Sₙ treatment were examined.

MATERIALS AND METHODS

Materials. The following chemicals and reagents were obtained from the indicated sources: Dulbecco’s modified Eagle’s medium (DMEM) and phosphate-buffered saline from Sigma Chemical Co. (St. Louis, MO, USA); fetal calf serum (FCS) from HyClone (Logan, UT, USA); DynaMarker Protein MultiColor, BioDynamics Laboratory Inc. (Tokyo, Japan); U0126 (9903), anti-ERK5 antibody, anti-JNK antibody, anti-p38 MAPK antibody, anti-phospho-ERK5 antibody, anti-phospho-JNK antibody, and anti-phospho-p38 MAPK antibody from Cell Signaling Technology (Beverly, MA, USA); anti-ERK1/2 antibody, Sigma Chemical Co. (St Louis, MO, USA); anti-active ERK1/2 antibody, Promega Co. (Madison, WI, USA); BAY 43-9006, Cayman Chemical (Ann Arbor, MI, USA); ERK5-IN-1, Selleck Chemicals (Houston, TX, USA); and protease inhibitor cocktail, Nacalai Tesque (Kyoto, Japan). Other chemicals were of analytical grade.

Cell culture and Na₂Sₙ treatment. IEC-6 cells were obtained from the American Tissue Culture Collection (Manassas, VA, USA). The cells were grown in Petri dishes (Nunc, Roskilde, Denmark) in DMEM containing 4.5 g/L glucose and 10% (vol/vol) heat-inactivated FCS. Before the cell treatment, the medium was exchanged to DMEM containing 0.1% FCS, and the cells were cultured for 2 h. We stored Na₂Sₙ at 4°C, and opened the cap after reaching room temperature. Just before the treatment of the cells, we prepared 100 mM Na₂Sₙ solution with H₂O purged with N₂ gas. The cells were then treated with Na₂Sₙ for the indicated time intervals.

Microarray analysis and reverse transcription-polymerase chain reaction. After treatment of IEC-6 cells with 100 μM Na₂Sₙ for 60 min, total RNA was extracted using an RNeasy Mini Kit (Qiagen, Gaithersburg, MD, USA) in accordance with the manufacturer’s directions, and the amount of total RNA was determined by measuring absorbance at 260 nm using a Nano Drop 2000 spectrophotometer (Thermo Fisher Scientific, MA, USA). The expression profile of mRNA was determined using a SurePrint G3 Rat GE Microarray (8 × 60K v2) (Agilent Technology, Santa Clara, CA, USA). The experiment was performed by Cell Innovator Inc. (Fukuoka, Japan). The genes for which the Z score and the ratio were above 2.0 and 1.5, respectively, were considered up-regulated. In contrast, the genes for which the Z score and the ratio were below −2.0 and 0.66, respectively, were considered down-regulated. All microarray data were MIAME compliant, and the raw data have been deposited in the Gene Expression Omnibus (GEO) database, with the accession number GSE139672.

For reverse transcription-polymerase chain reaction (RT-PCR), first-strand cDNA was synthesized from 2 μg of total RNA in a 20 μL reaction volume using AMV Reverse Transcriptase (Promega Co.) with an Oligo dT-Adaptor primer. For the amplification of EGR1, we used as a sense primer, CGCTCA CTCCACTATCCACT, and as an antisense primer,
ACTCAACAGGGCAAGCATAC. For the amplification of FOS, we used as a sense primer, CAAGCC GACACAGATCAACT, and as an antisense primer, AGACATCTCTCTGGGAAGGC. For the amplification of Kruppel-like transcription factor 4 (KLF4), we used as a sense primer, GCCCGAAGATTAAGG AAGAG, and as an antisense primer, TTCTCGGG ACTCAGTGTAG. For the amplification of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), we used as a sense primer, ACCAGGTCTATGCCAT CAC, and as an antisense primer, TCCACCACC CTGTTGCTGTGA. Preliminary PCR experiments were performed to identify the linear amplification conditions for each product. Amplification of EGR1, FOS, KLF4, and GAPDH was performed for 25, 28, 25, and 22 cycles (30 s at 94°C, 1 min at 58°C, 1 min at 70°C), respectively, with Expand Long-Range dNTPack (Roche Diagnosis, Indianapolis, IN, USA). The PCR products were separated by electrophoresis in a 1.5% agarose gel, visualized by ethidium bromide staining, and quantified using an ImageQuant LAS 4000 mini (GE Healthcare UK Ltd.) with Multi Gauge software (version 3.1).

Preparation of cell extract. For the preparation of cell extracts, IEC-6 cells in 60-mm Petri dishes (Nunc) were washed once in phosphate-buffered saline and lysed in 300 μL of 1 × SDS-PAGE sample buffer containing 2% (wt/vol) SDS, 62.5 mM Tris-HCl, pH 6.8, 5% (vol/vol) 2-mercaptoethanol, 5% (vol/vol) glycerol, and 0.01% (wt/vol) bromophenol blue (Laemmli 1970). The cell extract was sonicated for 20 s on ice, heated at 98°C for 5 min, and kept at −80°C until use (Higa-Nakamine et al. 2012).

SDS-PAGE, Phos-Tag SDS-PAGE, and immunoblotting analysis. SDS-PAGE was performed using the method of Laemmli (1970) followed by immunoblotting analysis (Towbin et al. 1979; Mizutani et al. 2011). In the case of Phos-Tag SDS-PAGE, we used precast 7.5% (wt/vol) acrylamide gels that contained 50 μM Phos-Tag and formed a Zinc complex (Code No. 195-17371; Fujifilm Wako Pure Chemical Co., Osaka, Japan). Immunoreactive proteins were detected using an enhanced chemiluminescence detection kit (GE Healthcare UK Ltd., Little Chalfont, UK) and an ImageQuant LAS 4000 mini (GE Healthcare UK Ltd.) with Image Reader LAS 4000 mini (version 1.0; GE Healthcare UK Ltd.) in accordance with the manufacturer’s instructions. The level of immunoreactivity was quantified using Multi Gauge software (version 3.1). For reprobing, the membrane was incubated with stripping buffer containing 62.5 mM Tris-HCl, pH 6.7, 100 mM 2-mercaptoethanol, and 2% (wt/vol) SDS at 50°C for 30 min (Noguchi et al. 2013). The membrane was then washed with a blocking solution containing 5% (wt/vol) skim milk, 100 mM Tris-HCl, pH 7.5, 0.9% (wt/vol) NaCl, and 0.1% (vol/vol) Tween-20 followed by Tris-buffered saline with Tween-20 containing 100 mM Tris-HCl, pH 7.5, 0.9% (wt/vol) NaCl, and 0.1% (vol/vol) Tween-20 at room temperature, and subjected to immunoblotting analysis. For the quantification of the levels of the gel-shift of ERK5, the ratio of the signal of the shifted band to that of the total ERK5 was determined. The experiments were repeated at least three times, and representative results are shown.

Phosphatase treatment. IEC-6 cells were cultured in 100-mm Petri dishes (Nunc), and treated with 100 μM Na2S3 for 30 min. The cells were immediately frozen with liquid N2 and lysed in the presence of 150 μL of cell lysis buffer containing 10 mM Tris-HCl, pH 7.5, 1 mM EDTA, 1 mM EGTA, 0.05% (vol/vol) Triton X-100, and protease inhibitor cocktail by sonication for 20 s on ice. The cell lysate was centrifuged at 13,000 × g at 4°C for 10 min to obtain the cell extract. The cell extract was incubated with λ-protein phosphatase (New England Bio-labs Inc., Ipswich, MA, USA) in the presence of 1 mM MnCl2 at 30°C for 30 min, and then heated at 98°C for 5 min in the presence of 1 × SDS-PAGE sample buffer. The cell extract was kept at −80°C, and used for immunoblotting analysis of ERK5 within 3 days.

Other procedures. Protein concentrations were determined using a Qubit Protein Assay Kit with a Qubit 2.0 Fluorometer (Invitrogen, Carlsbad, CA, USA). In pilot experiments, the protein concentration curves were linear in the presence of 0.04% (wt/vol) SDS, 0.1% (vol/vol) 2-mercaptoethanol, and 0.1% (vol/vol) glycerol. Therefore, we diluted the cell extract 50-fold with water for protein quantification.

RESULTS

Microarray analysis after Na2S3 treatment
For the first step, we performed microarray analysis to examine the types of genes whose expression was affected by Na2S3 in IEC-6 cells. Microarray analysis indicated that 23,480 genes of 45,598 genes examined were expressed in IEC-6 cells. Among the 23,480 genes, 424 genes and 416 genes were up-reg-
We examined also the change of FOS mRNA level. Unlike the results from microarray analysis, Na$_2$S$_3$ treatment increased 2.4-fold the mRNA level of FOS. We further found that U0126, an inhibitor of the activation of ERK1/2, strongly decreased the mRNA levels of EGR1 and FOS regardless of the presence of Na$_2$S$_3$. These results suggested that the ERK1/2 pathway was involved in the Na$_2$S$_3$-induced gene expression of EGR1 and FOS. Interestingly, the increase in the mRNA level of KLF4 was inhibited also by U0126. It was reported that the gene expression of KLF4 was induced through ERK5 activation in human umbilical vein endothelial cells (Ohnesorge et al. 2010). In addition, it was also shown that U0126 inhibited the activation of ERK5 as well as ERK1/2 (Kamakura et al. 1999). Taken together, we considered the possibility that the ERK5 pathway might be involved in the Na$_2$S$_3$-induced gene expression of KLF4. When the mRNA level of GAPDH was examined, no sig-

Table 1 30 genes that were up-regulated by Na$_2$S$_3$

Number	Gene Symbol	Gene Title	Z score	Ratio
1	Atf3	Activating transcription factor 3	16.01	27.31
2	Vegfa	Vascular endothelial growth factor	12.02	9.00
3	Trib3	Tribbles pseudokinase 3	11.82	23.87
4	Fosl1	Fos-like antigen 1	11.49	21.83
5	Ptgs2	Cyclo-oxygenase 2 gene	10.23	6.48
6	Akr1d1	Aldo-keto reductase family 1	10.17	15.01
7	Chac1	ChAc glutathione-specific gamma-glutamylcyclotransferase 1	9.89	7.72
8	Myc	Myelocytomatosis oncogene	9.41	5.59
9	Epha2	Eph receptor A2	8.89	4.09
10	Srnx1	Sulfiredoxin 1	8.86	5.05
11	Sesn2	Sestrin 2	8.38	9.49
12	F3	Coagulation factor III	8.25	4.51
13	Nppb	Natriuretic peptide B	8.02	4.33
14	Vegfa	Vascular endothelial growth factor	7.13	6.79
15	Areg	Amphiregulin	7.10	3.08
16	Psmb11	Proteasome	6.94	57.1
17	Ddit4	DNA-damage-inducible transcript 4	6.70	3.40
18	Ddit3	DNA-damage-inducible transcript 3	6.66	2.87
19	Osgin1	Oxidative stress induced growth inhibitor 1	6.66	5.99
20	Ifrd1	Interferon-related developmental regulator 1	6.57	2.83
21	Maff	V-maf avian musculoaponeurotic fibrosarcoma oncogene homolog F	6.56	3.88
22	Scl3a2	Solute carrier family 3	6.48	3.27
23	Dusp6	Dual specificity phosphatase 6	6.44	2.77
24	Dusp5	Dual specificity phosphatase 5	6.31	5.45
25	Egr2	Early growth response 2	6.16	3.57
26	Mthfd2	Methylenetetrahydrofolate dehydrogenase	6.02	3.00
27	Pldha1	Pleckstrin homolog-like domain	6.01	5.03
28	Klf4	Kruppel-like transcription factor 4	5.93	2.56
29	Cxcl1	Chemokinase (C-X-C motif) ligand 1	5.82	2.89
30	Inhbe	Inhibin beta E	5.79	4.75
41	Egr1	Early growth response 1	4.91	2.45

RT-PCR of EGR1, KLF4, and FOS mRNAs

We next examined whether or not Na$_2$S$_3$ increased the mRNA levels of EGR1 and KLF4 using RT-PCR (Fig. 1). Na$_2$S$_3$ treatment increased 2.2-fold and 1.8-fold the mRNA levels of EGR1 and KLF4. Because it has been reported that the gene expression of FOS was increased by the pathway of ERK1 and ERK2 (ERK1/2), we examined also the change of FOS mRNA level. Unlike the results from microarray analysis, Na$_2$S$_3$ treatment increased 2.4-fold the mRNA level of FOS. We further found that U0126, an inhibitor of the activation of ERK1/2, strongly decreased the mRNA levels of EGR1 and FOS regardless of the presence of Na$_2$S$_3$. These results suggested that the ERK1/2 pathway was involved in the Na$_2$S$_3$-induced gene expression of EGR1 and FOS. Interestingly, the increase in the mRNA level of KLF4 was inhibited also by U0126. It was reported that the gene expression of KLF4 was induced through ERK5 activation in human umbilical vein endothelial cells (Ohnesorge et al. 2010). In addition, it was also shown that U0126 inhibited the activation of ERK5 as well as ERK1/2 (Kamakura et al. 1999). Taken together, we considered the possibility that the ERK5 pathway might be involved in the Na$_2$S$_3$-induced gene expression of KLF4. When the mRNA level of GAPDH was examined, no sig-

ulated and down-regulated, respectively, after Na$_2$S$_3$ treatment. Tables 1 and 2 list the 30 genes that were most strongly up-regulated and down-regulated, according to Z score. We excluded non-coding RNA genes from Tables 1 and 2. Among 30 up-regulated genes, EGR1 and KLF4 were up-regulated 4.9-fold and 5.9-fold, respectively, after Na$_2$S$_3$ treatment (Table 1). We performed a pathway enrichment analysis of the 340 up-regulated genes for differentially expressed genes using DAVID database (Huang et al. 2009). Pathway enrichment analysis indicated that 11 genes were related to the MAPK pathways.
Significant changes were observed for any treatment.

Activation of ERK1/2 and p38 MAPK by Na₂S₃

For the next step, we decided to examine whether or not Na₂S₃ treatment of IEC-6 cells activated the MAPK family (Fig. 2). Activation of each MAPK was examined by immunoblotting analysis with each antibody which could detect corresponding MAPK phosphorylated at both threonine and tyrosine residues. Both ERK1 and ERK2 (ERK1/2) were robustly phosphorylated at both threonine and tyrosine residues by 100 μM Na₂S₃ at 30 min, indicating that ERK1/2 were activated (Fig. 2A). The protein levels of ERK1/2 were not changed by Na₂S₃. When we divided the total phosphorylation levels of ERK1/2 by the total protein levels of ERK1/2, Na₂S₃ activated ERK1/2 1.3-, 2.6-, and 12.7-fold at 1, 10, and 100 μM, respectively. In contrast with ERK1/2, p38 MAPK was moderately activated by Na₂S₃. When we divided the phosphorylation levels of p38 MAPK by the protein levels of p38 MAPK, Na₂S₃ activated Table 2 30 genes that were down-regulated by Na₂S₃

Number	Gene Symbol	Gene Title	Z score	Ratio
1	Il6r	Interleukin 6 receptor	−7.28	0.01
2	Tap2	Transporter 2	−7.08	0.23
3	Ing3	Inhibitor of growth family, member 3	−7.03	0.23
4	Nyap1	Neuronal tyrosine-phosphorylated phosphoinositide-3-kinase adaptor 1	−7.03	0.01
5	Fkmn	Fukutin	−6.95	0.01
6	Fblim1	Filamin binding LIM protein 1	−6.89	0.01
7	LOC257642	rRNA promoter binding protein	−6.78	0.50
8	Oir1448	Olfactory receptor 1448	−6.55	0.02
9	Hmg11I	High-mobility group (nonhistone chromosomal) protein 1-like 1	−6.48	0.51
10	Bst2	Bone marrow stromal cell antigen 2	−6.40	0.31
11	Oir360	Olfactory receptor 360	−6.40	0.02
12	Ankara37	Ankyrin repeat domain 37	−6.33	0.18
13	Pchd1	Patched domain containing 1	−6.33	0.02
14	Em12	Echinoderm microtubule associated protein like 2	−6.27	0.27
15	Oir476	Olfactory receptor 476	−6.13	0.02
16	Nfim1	NFAT activating protein with ITAM motif 1	−6.11	0.02
17	Catspergl	Cation channel, sperm-associated auxiliary subunit gamma 1	−6.10	0.02
18	Ppr30	Proline rich 30	−6.07	0.02
19	Phgr1	Proline/histidine/glycine-rich 1	−5.96	0.20
20	Cacna1c	Calcium channel, voltage-dependent, L Type, Alpha 1C	−5.87	0.03
21	Oir1585	Olfactory receptor 1585	−5.73	0.03
22	Klrb1a	Killer cell lectin-like receptor subfamily B member 1A	−5.65	0.03
23	Hmbg1	High mobility group box 1	−5.61	0.41
24	Spata5	Spermatogenesis associated 5	−5.58	0.22
25	Ccdc175	Coiled-coil domain-containing protein 175	−5.50	0.03
26	Mycn	V-myc avian myelocytomatosis viral related oncogene, neuroblastoma derived	−5.48	0.32
27	Gpr31	G protein-coupled receptor 31	−5.31	0.04
28	Nua1	NUAK family, SNF1-like kinase, 1	−5.23	0.04
29	Smok2a	Sperm motility kinase 2A	−5.13	0.04
30	Prtr2	Proline-rich transmembrane protein 2	−3.62	0.11

![Fig. 1](image1.png) Figure 1 Increase in the mRNA levels of EGR1, KLF4, FOS, and GAPDH after Na₂S₃ treatment. IEC-6 cells were pre-treated with or without 10 μM U0126 for 30 min and treated with 100 μM Na₂S₃ for 60 min. After total RNA from IEC-6 cells was reverse transcribed, PCR was performed as described in the Materials and methods. We repeated the same experiments three times (EGR1, KLF4, and GAPDH) and six times (FOS) with reproducible results, and representative results are shown. The positions of EGR1, KLF4, FOS, and GAPDH are indicated.
Involvement of MEK1/2 and Raf in the Na$_2$S$_3$-induced activation of ERK1/2

Because ERK1/2 were strongly activated by Na$_2$S$_3$, we next examined the signal transduction mechanisms by which Na$_2$S$_3$ activated ERK1/2. We noticed that ERK1/2 were slightly activated in the absence of Na$_2$S$_3$, and U0126, an inhibitor of MEK1/2, inhibited this basal activation of ERK1/2 completely (Fig. 3A). Na$_2$S$_3$ activated ERK1/2 more than 10-fold, and U0126 inhibited the activation almost completely.

We tried to treat IEC-6 cells with 100 μM Na$_2$S$_3$ for various periods (Fig. 2B). The activation of ERK1/2 was observed from 15 min after the start of Na$_2$S$_3$ treatment, and it was decreased at 120 min. Na$_2$S$_3$ activated ERK1/2 11.1-fold at 15, 30, 60, and 120 min. The activation levels of p38 MAPK were lower than that of ERK1/2 at any time point, and Na$_2$S$_3$ activated p38 MAPK 1.8-fold at 15, 30, and 60 min. The protein levels of ERK1/2 and p38 MAPK were not changed by Na$_2$S$_3$ treatment, except that the protein level of p38 MAPK was decreased at 120 min by an unknown mechanism.

We examined the possible involvement of Raf in the Na$_2$S$_3$-induced activation of ERK1/2. Because ERK1/2 were strongly activated by Na$_2$S$_3$, we next examined the signal transduction mechanisms by which Na$_2$S$_3$ activated ERK1/2. We noticed that ERK1/2 were slightly activated in the absence of Na$_2$S$_3$, and U0126, an inhibitor of MEK1/2, inhibited this basal activation of ERK1/2 completely. Na$_2$S$_3$ activated ERK1/2 more than 10-fold, and U0126 inhibited the activation almost completely.

Involvement of MEK1/2 and Raf in the Na$_2$S$_3$-induced activation of ERK1/2

Because ERK1/2 were strongly activated by Na$_2$S$_3$, we next examined the signal transduction mechanisms by which Na$_2$S$_3$ activated ERK1/2. We noticed that ERK1/2 were slightly activated in the absence of Na$_2$S$_3$, and U0126, an inhibitor of MEK1/2, inhibited this basal activation of ERK1/2 completely (Fig. 3A). Na$_2$S$_3$ activated ERK1/2 more than 10-fold, and U0126 inhibited the activation almost completely.

We examined the possible involvement of Raf in the Na$_2$S$_3$-induced activation of ERK1/2. In this experiment, ERK1/2 were activated approximately 4.7-fold, and BAY43-9006, an inhibitor of Raf-1 and B-Raf, inhibited the activation. In contrast with U0126, we noted that BAY43-9006 did not inhibit the basal activation of ERK1/2 in the absence of Na$_2$S$_3$. These results suggested that Raf-1 or B-Raf was involved in the activation of ERK1/2 by Na$_2$S$_3$, but not under the basal conditions. The protein levels of ERK1/2 were not changed by any
Regulation of ERKs by Na$_2$S$_3$

Regulation of ERK5 by Na$_2$S$_3$. ERK5 was activated by dual phosphorylation of Thr-Glu-Tyr region (for review, see Kamakura et al. 1999). Because ERK1/2 were activated also by dual phosphorylation of Thr-Glu-Tyr region, we considered the possibility that anti-active ERK1/2 antibody might cross-react with activated ERK5. Therefore, we did the immunoblotting analysis of active ERK5 using anti-active ERK1/2 antibody (Fig. 4B). We found an immunoreactive band at the position of ERK5, and the immunoreactivity was augmented by Na$_2$S$_3$ treatment. When we divided the signal of phosphorylation of ERK5 by that of total ERK5, the activation of ERK5 was increased to 1.4-fold. These results clearly indicated that Na$_2$S$_3$ activated ERK5. In addition, the augmentation was inhibited in the presence of U0126. Because U0126 has been reported to inhibit MEK5 as well as MEK1/2 (Kamakura et al. 1999), these results suggested that ERK5 was activated by MEK5 after Na$_2$S$_3$ treatment. We confirmed that ERK1/2 was activated by Na$_2$S$_3$, and the activation was inhibited in the presence of U0126 on the same membrane (Fig. 4B).

Molecular mechanisms for the Gel-shift of ERK5 after Na$_2$S$_3$ treatment

Because Na$_2$S$_3$ activated ERK5, we wanted to confirm that the gel-shift of ERK5 was due to the autophosphorylation by activated ERK5. It has been reported that MEK5 was activated by B-Raf (Tusa et al. 2018); therefore, we examined whether or not the gel shift of ERK5 was inhibited by BAY43-9006 (Fig. 4C). In this experiment, the gel-shift ratio of ERK5 was increased to 0.4 from 0.2 after Na$_2$S$_3$ treatment. It was interesting that the gel-shift was decreased to 0.2 in the presence of BAY43-9006 and Na$_2$S$_3$. These results suggested that B-Raf was involved in the gel-shift of ERK5 by Na$_2$S$_3$.

We next examined whether or not the gel-shift of ERK5 was due to phosphorylation. For this purpose, we treated the cells with Na$_2$S$_3$ and U0126, and performed Phos-tag SDS-PAGE, in addition to standard SDS-PAGE (Fig. 4D). Phos-tag binds specifically to the phosphate group (Kinoshita et al. 2009; Kimura et al. 2016). When we used the standard gel, the gel-shift ratio of ERK5 was increased to 0.4 from 0.3 after Na$_2$S$_3$ treatment, and U0126 decreased the gel-shift ratio to 0.3. In the case of the Phos-tag gel, the gel-shift of ERK5 was more clearly observed than the standard gel.
and the gel-shift ratio was increased from 0.3 to 0.7 after Na$_2$S$_3$ treatment. We confirmed that the gel-shift of ERK5 was decreased to the control level by U0126.

In order to further confirm the involvement of phosphorylation in the gel-shift of ERK5, we incubated the cell extract with l-protein phosphatase in vitro. The gel-shift ratio was increased from 0.2 to 0.4 by Na$_2$S$_3$ treatment (Fig. 4E). We found that the gel-shift ratio returned to 0.2 after treatment with l-protein phosphatase in vitro (Fig. 4E). These results further supported the idea that the gel-shift of ERK5 was due to phosphorylation.

Necessity of ERK5 activity for the gel-shift of ERK5

We finally examined the effects of ERK5-IN-1, an
Regulation of ERKs by Na₂S₃

Regulation of ERKs by Na₂S₃ has become apparent that H₂S is converted to H₂Sn, and many of the effects of H₂S are conducted by H₂Sn (Kimura 2017). In the present study, we sought to examine the effects of H₂Sn on the functions of intestinal epithelial cells. For this purpose, we treated IEC-6 cells, a cultured intestinal epithelial cell line, with Na₂S₃ that releases H₂Sn. We first examined the effects of Na₂S₃ on the gene expression. It is well-known that the gene expression of EGR1 and FOS is regulated by the ERK1/2 pathways. Our DNA microarray analysis and RT-PCR revealed that the mRNAs of EGR1 and FOS were increased by Na₂S₃ treatment. The increases in these mRNAs were inhibited by U0126, indicating that the ERK1/2 pathway was involved in the gene expression. And then, we confirmed that the treatment of IEC-6 cells with Na₂S₃ activated ERK1/2. In addition, we found that the mRNA of KLF4 was increased also after Na₂S₃ treatment, and U0126 inhibited the effect of Na₂S₃. Because the MAP kinase pathway that was involved in KLF4 gene expression was reported to be the ERK5 pathway (Ohnesorge et al. 2010), and U0126 inhibited reportedly the activation of ERK5 as well as ERK1/2 (Kamakura et al. 1999), we decided to examine the activation of ERK5 by Na₂S₃.

Unexpectedly, we could not detect the activation of ERK5 with anti-phospho-ERK5 antibody after Na₂S₃ treatment. However, using anti-active ERK1/2 antibody, we could obtain the clear results indicating that Na₂S₃ activated ERK5 and that U0126 inhibited the activation. The reasons why anti-phospho-ERK5 antibody did not detect the activated ERK5 are not clear at present. From these results, we concluded that the gel-shift of ERK5 was due to the autophosphorylation by activated ERK5.

DISCUSSION

There are many reports indicating that H₂S is produced by the intestinal microbiota as well as in the intestinal epithelial cells (Blachier et al. 2019). Therefore, it is highly possible that the intestinal epithelial cells are exposed to the higher concentration of H₂S compared with any other cells in other organs (Rose et al. 2005). It has become apparent that H₂S is converted to H₂Sn, and many of the effects of H₂S are conducted by H₂Sn (Kimura 2017). In the present study, we sought to examine the effects of H₂Sn on the functions of intestinal epithelial cells. For this purpose, we treated IEC-6 cells, a cultured intestinal epithelial cell line, with Na₂S₃ that releases H₂Sn. We first examined the effects of Na₂S₃ on the gene expression. We have been studying the physiological and pathophysiological roles of the MAP kinase pathways in the cell functions, such as desensitization of epidermal growth factor receptor family and cell migration (Higa-Nakamine et al. 2012; Nishi et al. 2015; Kondo et al. 2016). Therefore, we focused on the expression of the genes that are regulated by the MAP kinase pathways.

It is well-known that the gene expression of EGR1 and FOS is regulated by the ERK1/2 pathways. Our DNA microarray analysis and RT-PCR revealed that the mRNAs of EGR1 and FOS were increased by Na₂S₃ treatment. The increases in these mRNAs were inhibited by U0126, indicating that the ERK1/2 pathway was involved in the gene expression. And then, we confirmed that the treatment of IEC-6 cells with Na₂S₃ activated ERK1/2. In addition, we found that the mRNA of KLF4 was increased also after Na₂S₃ treatment, and U0126 inhibited the effect of Na₂S₃. Because the MAP kinase pathway that was involved in KLF4 gene expression was reported to be the ERK5 pathway (Ohnesorge et al. 2010), and U0126 inhibited reportedly the activation of ERK5 as well as ERK1/2 (Kamakura et al. 1999), we decided to examine the activation of ERK5 by Na₂S₃. Unexpectedly, we could not detect the activation of ERK5 with anti-phospho-ERK5 antibody after Na₂S₃ treatment. However, using anti-active ERK1/2 antibody, we could obtain the clear results indicating that Na₂S₃ activated ERK5 and that U0126 inhibited the activation. The reasons why anti-phospho-ERK5 antibody did not detect the activated ERK5 are not clear at present. From the instruction manual of anti-phospho-ERK5 antibody, the sensitivity of the antibody might not be high enough to detect endogenous ERK5 in IEC-6 cells. To our knowledge, this is the first report about the activation by Na₂S₃ of ERK1/2 and ERK5 in any cell systems.

The molecular mechanisms by which Na₂S₃ activated ERK1/2 and ERK5 are not clear at present. Inhibitory effects of BAY43-9006 on ERK1/2 activation indicated that Raf-1 or B-Raf was involved in the activation of ERK1/2. It is well-known that...
Raf-1 is activated by Ras or protein kinase C. However, the inhibitors of Ras or protein kinase C that we tested did not inhibit the Na$_2$S$_3$-induced activation of ERK1/2 (K. Arakaki and H. Yamamoto, unpublished observation). It has been reported that B-Raf activated both MEK1/2 and MEK5 (for review, see Tusa et al. 2018). Taken together, Na$_2$S$_3$ may activate B-Raf directly, followed by the activation of both the MEK1/2-ERK1/2 and MEK5-ERK5 pathways (Fig. 6). Possible involvement of B-Raf in the effects of Na$_2$S$_3$ is worth examining in a future study.

It has been reported that activation of the ERK5-KLF4 pathway inhibited the migration of endothelial cells (Spiering et al. 2009; Komaravolu et al. 2015). In the preliminary experiments, Na$_2$S$_3$ inhibited the cell migration of IEC-6 cells (our unpublished observation). However, the effects of U0126 and ERK5-IN-1 on the cell migration were not clear. It was also reported that the ERK5/KLF4 pathway was involved in the cell proliferation and differentiation. Therefore, the outcomes of the activation of the ERK1/2 and ERK5 pathway should be examined precisely in future studies. These studies are crucial for the understanding of the roles of H$_2$S in the functions of intestinal epithelial cells.

In the present study, we could obtain the clear effects of Na$_2$S$_3$ on the ERK1/2 and ERK5 pathways at 0.1 mM. It is not clear at present whether or not intestinal epithelial cells are exposed to 0.1 mM H$_2$S$_3$ in vivo. However, it was reported that the concentration of H$_2$S ranged from 0.2 mM to 1 mM in mouse stools and might reach 3.4 mM in human stools (Rose et al. 2005). Therefore, the concentration of H$_2$S$_3$ may become higher than 0.1 mM under the normal conditions. In addition, there are many reports about the involvement of H$_2$S in IBD and colorectal cancer (Wallace et al. 2007; Hirata et al. 2011; Guo et al. 2016). When the protective effects of mucus against the high concentration of H$_2$S$_3$ were affected in the inflammatory conditions, intestinal epithelial cells may be exposed directly to the higher concentration of H$_2$S$_3$ than 0.1 mM. In conclusion, the present study contributes to the understanding of the physiological and pathophysiological roles of H$_2$S in the functions of gastrointestinal tract and the development of novel therapies of IBD and colorectal cancer.

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers 16K07058 and 17K07112. We thank the Research Laboratory Center of Faculty of Medicine, University of the Ryukyus for technical support.

CONFLICTS OF INTEREST

The authors declare that no significant conflicts of interest exist with any companies/organizations whose products or services may be discussed in this article.

REFERENCES

Blachier F, Beaumont M and Kim E (2019) Cysteine-derived hydrogen sulfide and gut health: a matter of endogenous or bacterial origin. *Curr Opin Clin Nutr Metab Care* 22, 68–75.

Guo F-F, Yu T-C, Hong J and Fang J-Y (2016) Emerging roles of hydrogen sulfide in inflammatory and neoplastic colonic diseases. *Front Physiol* 7, 156.

Higa-Nakamine S, Maeda N, Toku S, Yamamoto T, Yingyuenyong M et al. (2012) Selective cleavage of ErbB4 by G-protein-coupled gonadotropin-releasing hormone receptor in cultured hypothalamic neurons. *J Cell Physiol* 227, 2492–2501.

Hirata I, Naito Y, Takagi T, Mizushima K, Suzuki T et al. (2011) Endogenous hydrogen sulfide is an anti-inflammatory molecule in dextran sodium sulfate-induced colitis in mice. *Dig Dis Sci* 56, 1379–1386.

Hosoki R, Matsuji N and Kimura H (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. *Biochem Biophys Res Commun* 237, 527–531.

Hu LF, Lu M, Wu ZY, Wong PT and Bian JS (2009) Hydrogen sulfide inhibits retinone-induced apoptosis via preservation of mitochondrial function. *Mol Pharmacol* 75, 27–34.
Regulation of ERKs by Na₂S₃

Huang da W, Sherman BT and Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4, 44–57.

Kakinohana M, Marutani E, Tokuda K, Kida K, Kosugi S et al. (2019) Breathing hydrogen sulfide prevents delayed paraplegia in mice. Free Radic Biol Med 131, 243–250.

Kamakura S, Moriguchi T and Nishida E (1999) Activation of the protein kinase ERK5/BMK1 by receptor tyrosine kinases. Identification and characterization of a signaling pathway to the nucleus. J Biol Chem 274, 26563–26571.

Kimura H (2017) Hydrogen sulfide and polysulfide signaling. Antioxid Redox Signal 27, 619–621.

Kimura T, Hatsuta H, Masuda-Suzukake M, Hosokawa M, Ishiguro K et al. (2016) The abundance of nonphosphorylated tau in mouse and human tauopathy brains revealed by the use of Phos-tag method. Am J Pathol 186, 398–409.

Kinosita E, Kinoshita-Kikuta E and Koike T (2009) Separation and detection of large phosphoproteins using Phos-tag SDS-PAGE. Nat Protoc 4, 1513–1521.

Kondo Y, Higa-Nakamine S, Maeda N, Toku S, Kakinohana M et al. (2016) Stimulation of cell migration by flagellin through the p38 MAP kinase pathway in cultured intestinal epithelial cells. J Cell Biochem 117, 247–258.

Komaravolu RK, Adam C, Moonen J-R AJ, Harmsen MC, Goebeler M et al. (2015) Erk5 inhibits endothelial migration via KLF2-dependent down-regulation of PAK1. Cardiovasc Res 105, 86–95.

Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

Miyamoto R, Koike S, Takano Y, Shibuya N, Kimura Y et al. (2017) Polysulfides (H₂S₃) produced from the interaction of hydrogen sulfide (H₂S) and nitric oxide (NO) activate TRPA1 channels. Sci Rep 7, 45995.

Mizutani A, Maeda N, Toku S, Higa-Nakamine S, Isohama Y et al. (2011) Interaction of ethyl pyruvate in vitro with NF-κB subunits, RelA and p50. Eur J Pharmacol 650, 151–156.

Morimoto H, Kondoh K, Nishimoto S, Terasawa K and Nishida E (2007) Activation of a C-terminal transcriptional activation domain of ERK5 by autophosphorylation. J Biol Chem 282, 35449–35456.

Nishi H, Maeda N, Izumi S, Higa-Nakamine S, Toku S et al. (2015) Differential regulation of epidermal growth factor receptor by hydrogen peroxide and flagellin in cultured lung alveolar epithelial cells. Eur J Pharmacol 748, 133–142.

Noguchi N, Kondo Y, Maeda N, Higa-Nakamine S, Toku S et al. (2013) Phosphorylation of epidermal growth factor receptor at serine 1047 by MAP kinase-activated protein kinase-2 in cultured lung epithelial cells treated with flagellin. Arch Biochem Biophys 529, 75–85.

Ohnesorge N, Viemann D, Schmidt N, Czymai T, Spiering D et al. (2010) ERK5 activation elicits a vasoprotective endothelial phenotype via induction of Kruppel-like factor 4 (KLF4). J Biol Chem 285, 26199–26210.

Rose P, Moore PK, Ming SH, Nam OC, Armstrong JS et al. (2005) Hydrogen sulfide protects colon cancer cells from chemopreventative agent beta-phenylethyl isothiocyanate induced apoptosis. World J Gastroenterol 11, 3990–3997.

Rowan FE, Docherty NG, Coffey JC and O’Connell PR (2009) Sulphate-reducing bacteria and hydrogen sulphide in the aetiology of ulcerative colitis. Br J Surg 96, 151–158.

Spiering D, Schmolke M, Ohnesorge N, Schmidt M, Goebeler M et al. (2009) MEK5/ERK5 signaling modulates endothelial cell migration and focal contact turnover. J Biol Chem 284, 24972–24980.

Towbin H, Staehelin T and Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76, 4350–4354.

Tusa I, Gagliardi S, Tubita A, Pandolfi S, Urso C et al. (2018) ERK5 is activated by oncogenic BRAF and promotes melanoma growth. Oncogene 37, 2601–2614.

Wallace JL, Dcay M, McKnight W and Martin GR (2007) Hydrogen sulfide enhances ulcer healing in rats. FASEB J 21, 4070–4076.

Xie H, Xu Q, Jia J, Ao G, Sun Y et al. (2015) Hydrogen sulfide protects against myocardial ischemia and reperfusion injury by activating AMP-activated protein kinase to restore autophagic flux. Biochem Biophys Res Commun 458, 632–638.