GWAS analysis of handgrip and lower body strength in older adults in the CHARGE consortium

Amy M. Matteini, 1,* Toshiko Tanaka, 2,* David Karasik, 3,4 Gil Atzmon, 5,6 Wen-Chi Chou, 7 John D. Eicher, 7,8 Andrew D. Johnson, 7,8 Alice M. Arnold, 9 Michele L. Callisaya, 10,11 Gail Davies, 12,13 Daniel S. Evans, 14 Birte Hoflfreter, 15 Kurt Lohman, 16 Kathlyn L. Lunetta, 18,17 Massimo Mangino, 18,19 Albert V. Smith, 20 Jennifer A. Smith, 21 Alexander Teumer, 22 Lei Yu, 23 Dan E. Arking, 24 Aron S. Buchman, 23,25 Lori B. Chiabinik, 26,27 Philip L. De Jager, 26,27 Denis A. Evans, 28 Jessica D. Faul, 29 Melissa E. Garcia, 30 Irina Gillham-Nasenya, 18 Vilmundur Gudnason, 20,31 Albert Hofman, 32 Yi-Hsiang Hsu, 33 Till Ittermann, 22 Lies Lahousse, 32,34 David C. Liewald, 12 Yongmei Liu, 48 Kurt L. Lunetta, 33,34 Jennifer A. Smith, 8,17 Melissa E. Garcia, 8,17 John M. Starr, 13 Susan MacFarlane, 14,15 Joseph M. Boardman, 33,34 and Joanne M. Murabito 15

1Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
2Longitudinal Studies Section, Translational Gerontology Branch, Gerontology Research Center, National Institute on Aging, Baltimore, MD, USA
3Institute for Aging Research, Hebrew SeniorLife, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
4Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 13010, Israel
5Institute for Aging Research Departments of Medicine and Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx NY, USA
6Department of Human Biology, University of Haifa, Haifa, Israel
7National Heart, Lung and Blood Institute, Population Sciences Branch, Bethesda, MD, USA
8National Heart, Lung and Blood Institute’s The Framingham Heart Study, Framingham, MA, USA
9Department of Biostatistics, University of Washington, Seattle, WA, USA
10Stroke and Ageing Research Group, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Vic., Australia
11Menzies Institute for Medical Research, University of Tasmania, Hobart, Tas., Australia
12Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
13Department of Psychology, University of Edinburgh, Edinburgh, UK
14California Pacific Medical Center Research Institute, San Francisco, CA, USA
15Unit of Periodontology, Department of Restorative Dentistry, Periodontology and Endodontology, Centre of Oral Health, University Medicine Greifswald, Greifswald, Germany
16Center for Human Genetics, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
17Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
18Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
19NIHR Biomedical Research Centre at Guy’s and St. Thomas’ Foundation Trust, London, UK
20Icelandic Heart Association, Kopavogur, Iceland
21Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
22Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
23Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
24McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
25Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
26Program in Translational Neuropsychiatric Genomics, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
27Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
28Institute of Healthy Aging and Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
29Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
30Laboratory of Epidemiology and Population Science, National Institute on Aging, Bethesda, MD, USA
31Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
32Department of Medicine, Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, MA, USA
33Department of Respiratory Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium
34Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
35Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging (NCHA), Rotterdam, the Netherlands
36Division of Genomic Outcome, Departments of Pediatrics and Medicine, Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, University of California Los Angeles, Los Angeles, CA, USA
37Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
38Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
39German Center for Cardiovascular Research (DZHK), Greifswald, Germany
40German Center for Diabetes Research (DZD), Greifswald, Germany
41Departments of Neurology, Psychiatry and Epidemiology & Biostatistics, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
42Public Health Program, Center for Health Policy and Ethics, Creighton University School of Medicine, Omaha, NE, USA
43Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
44Department of Psychology, University of Edinburgh, Edinburgh, UK
45Laboratory of Epidemiology and Population Science, NIA, Bethesda, MD, USA
46Schicht Center on Aging, Wake Forest School of Medicine, Winston-Salem, NC, USA

*These authors contributed equally to this work.

Accepted for publication 22 February 2016

© 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
A genomewide meta-analysis included 27 581 community-dwelling men and women of European ancestry from a discovery set of 14 participating cohorts. On average across the cohorts, there were 2 725 778 SNPs analyzed, with SNPs analyzed per cohort ranging from 2 332 998 to 4 930 728. Sample size and cohort characteristics are found in Table S1 (Supporting information). There were no significant differences in age, strength, or gender distributions between the discovery and replication cohorts. Q-Q and Manhattan plots are shown in Figs S1, S2 (Supporting information). In the discovery set meta-analysis, 2 SNPs reached genomewide significance (rs3121278 chr10: \(P \text{-value} = 2.68 \times 10^{-8} \) and rs752045 chr8: \(P \text{-value} = 3.09 \times 10^{-8} \)). An additional 39 SNPs reached suggestive significance in eight regions on chromosomes 1 (one SNP), 5 (two highly correlated SNPs), seven (seven SNPs), 8p23 (two SNPs), 8q12 (14 SNPs), 10 (11 SNPs), 11 (three SNPs), and 12 (one SNP) (Table S4). Chromosomes 1, 5, and 12 loci were not pursued in subsequent analysis due to the fact that there was only a single SNP in the locus with suggestive significance. The five regions that remained suggestive are intergenic. Table S1 shows the lead SNP per region with meta-analyzed results from discovery, replication as well as combined discovery and replication cohorts. Regional plots (created using Locuszoom http://csg.sph.umich.edu/locuszoom/) are displayed in Fig. 1.

Results

Discovery set

Significant and suggestive SNPs on chromosomes 7, 8p23, 8q12, 10, and 11 were tested in the replication cohorts and in the combined discovery/replication set. First, the most significant discovery SNP, rs3121278, was significant in the replication \((P \text{-value}_{\text{rep}} = 0.01) \), yet the effect was in the opposite direction from the discovery set resulting in a decrease in significance in the combined analysis \((P \text{-value}_{\text{disccomp}} = 6.18 \times 10^{-5}) \). Next, SNP rs752045 on chromosome 8p23 showed an association with grip strength upon replication and the direction was consistent with that of the discovery set \((P \text{-value}_{\text{rep}} = 4.80 \times 10^{-5}) \), leading to increased significance in the combined set \((P \text{-value}_{\text{disccomp}} = 5.20 \times 10^{-5}) \). Likewise, the second best SNP on chromosome 11 rs11235843 showed consistent direction and magnitude of effect in the replication cohorts \((P \text{-value}_{\text{rep}} = 4.70 \times 10^{-5}) \) and significance in the combined set increased

© 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Genomewide association of strength in older adults, A. M. Matteini et al.

Table 1

SNP	Gene Structure	Most Proximal Gene(s)	P-value disc+rep	β-value disc+rep	β-valuedisc	β-valuerep	P-value disc+rep	β-value disc+rep	β-valuedisc	β-valuerep
rs1819054	Intergenic	FAM3C	0.17	6.07 × 10^{-5}	0.15	6.13 × 10^{-7}	0.25	5.20 × 10^{-10}	0.25	6.13 × 10^{-7}
rs1508086	Intergenic	LOC100287015	0.27	8.23 × 10^{-7}	0.45	4.86 × 10^{-3}	0.47	5.20 × 10^{-10}	0.47	5.20 × 10^{-10}
rs3121278	Downstream	BMS1L	0.38	1.00 × 10^{-2}	0.40	4.70 × 10^{-2}	0.40	4.70 × 10^{-2}	0.40	4.70 × 10^{-2}

Lower body strength

A meta-analysis of genomewide association analysis of lower body strength was conducted as a secondary muscle strength phenotype. There were no genomewide significant associations identified (Fig. S3). The most significant association was observed for rs16831 on chr11 (P = 6.07 × 10^{-7}; Table S5). The closest gene was an uncharacterized gene LOC101929497 approximately 187 Mb away. We also looked up the top signals from the grip strength analysis; however, these loci were not significantly associated with lower body strength (P > 0.05; Table S6).

Functional annotation

Results from the functional annotation analysis are shown in Table 2. SNPs in the chromosome 7, 10, and 11 regions showed direct links to regulatory chromatin states in muscle tissue or accessible chromatin states according to ChIP-seq and DNase-seq data. First, top discovery SNPs rs3121278 and rs752045 were located within accessible chromatin regions in skeletal muscle myotubes differentiated from the skeletal muscle myoblast (HSMM) cell lines. The suggestive SNP rs2796549 also was located within an accessible chromatin region in skeletal muscle myoblasts. Next, the three suggestive chromosome 11 SNPs localized to motifs predicted to be regulatory elements, promoters, and enhancers, in skeletal muscle myoblasts. The top suggestive chromosome 7 SNP rs1819054 was not shown to affect gene regulatory elements in muscle-related tissues; however, three SNPs within the region were predicted to localize in regulatory enhancers in skeletal muscle myoblasts. This chromosome 7 locus was significantly enriched for enhancer/promoter elements in muscle cells compared with other muscle types (P-value = 9.9 × 10^{-5}). Suggestive SNPs on chromosomes 7, 8p12, and 10 were also predicted to alter binding motifs of the CCAAT/enhancer-binding protein beta, delta, and gamma family (CEBPB, CEBPD, and CEBPG), zinc finger protein 263 (ZNF263), and the nuclear factor kappa beta (NF-kB).

eQTL analysis

The top five SNPs listed in Table 1 were queried as index SNP in skeletal muscle and brain tissue eQTL. For the locus on chromosome 10 (rs3121278), a proxy SNP rs3121327 (r^2 = 0.87) was significantly associated with gene transcript zinc finger protein 338 (ZNF338) in prefrontal cortex tissue. No other associations were observed for the other loci queried.

Discussion

The combined discovery and replication meta-analysis resulted in increased significance in the chr8p23 locus, exceeding genomewide significance (rs752045, P-value = 3.18 × 10^{-15} and rs890022, P-value = 4.80 × 10^{-9}). We conducted a genomewide association analysis of lower body strength in a smaller sample as a second trait for muscle strength. However, there were no significant genetic associations observed for lower body strength, and the results did not confirm the top signals from the grip strength analysis.
The chromosome 8p23 locus—rs752045—is over 500 kb away from the closest gene genomewide significant association. However, according to the ENCODE’s DNase I hypersensitivity data, rs752045 is located in an accessible chromatin region, indicating possible regulatory activities in skeletal muscle myotubes differentiated from the HSMM cell line. This SNP alters a binding motif of the CCAAT/enhancer-binding protein beta (CEBPB). The effect allele (G) decreases a score developed to define the effect of variants on regulatory motifs (the position weight matrix (PWM) score). In this case, the PWM score for CEBPB decreased from 11.6 to 9.0, indicating a prediction of decreased binding affinity of CEBPB. The PWM scores were reported as part of the HaploReg database (http://www.broadinstitute.org/mammals/haploreg/detail_v4.1.php?query=&id=rs752045). CEBPB is a transcription factor that regulates genes for inflammatory responses, including the IL-1 response element in the IL-6 gene (Harries et al., 2012). IL-6 levels are strongly related to muscle strength, functional decline, and sarcopenia in older adults.
Table 2 Functional annotations of the GWAS SNPs by histone marks, ChIP-seq, and DNase-seq from ENCODE project and epigenetic roadmap project

SNP	Chr	Position (hg18)	Gene Structure	Closest Gene (kb away)	Functional annotation results	# SNPs in LD‡	Permutation P-values§
rs3857836	7	120931488	Intergenic	FAM3C (108) PTP2R1 (369)	Weak enhancer in skeletal muscle myoblasts1	33	9.9 × 10⁻⁵
rs11761290	7	120932659	Intergenic	FAM3C (109) PTP2R1 (368)	Strong enhancer in skeletal muscle myoblasts1 and skeletal muscle2	33	9.9 × 10⁻⁵
rs10228676	7	120932913	Intergenic	FAM3C (109) PTP2R1 (368)	Weak enhancer in skeletal muscle myoblasts1	33	9.9 × 10⁻⁵
rs1013711	7	120943334	Intergenic	FAM3C (120) PTP2R1 (357)	Weak enhancer in colon smooth muscle2	8	9.9 × 10⁻⁵
rs1528351	7	120955111	Intergenic	FAM3C (131) PTP2R1 (345)	Nkx2	4	9.9 × 10⁻⁵
rs752045	8	5937538	Intergenic	CSMD1 (1098) LOC100287015 (311)	CEBPB; GR Skeletal muscle myotubes differentiated from HSMM cell line	12	1
rs2142991	10	42661111	Intergenic	BMS1 (11) LINC01264 (133)	CEBPB; CTCF; Smad4 Skeletal muscle myoblasts; aortic smooth muscle	40	1
rs2796549	10	42686043	Intergenic	BMS1 (36) LINC01264 (108)	Skeletal muscle myoblasts; aortic smooth muscle	1	1
rs3121278	10	42695652	Intergenic	BMS1 (45) LINC01264 (99)	SKI Skeletal muscle myotubes differentiated from HSMM cell line	35	1
rs7128512	11	73049947	Intronic	PLEKHB1 Roaz	Weak promoter in skeletal muscle myoblasts1	3	0.266
rs6590	11	73051200	UTR3	PLEKHB1 Roaz	Enhancer in skeletal muscle2; weak enhancer in stomach smooth muscle2	15	0.057
rs11235843	11	73051644	Downstream	PLEKHB1 Roaz	Enhancer in skeletal muscle2; weak enhancer in stomach smooth muscle2	15	0.057

*Enhancer/promoter enrichment in muscle cells including SNPs in linkage disequilibrium with GWAS lead SNPs.
†The change in log-odds (LOD) scores of regulatory motifs larger than 10 were reported; 1Annotation from ENCODE Database; 2Annotation from Epigenetic Roadmap.
‡SNPs in LD: Number of SNPs in LD (r² ≥ 0.8 and MAF ≥ 1%, based on 1000 Genome Project) with the lead GWAS SNP in each locus.
§Permutation P-values corrected for multiple testing: This analysis included all SNPs in LD with the GWS lead SNPs. Multiple testing corrected permutation P-values < 0.05 are considered statistically significant.
that both measure the same construct of muscle strength (Bohannon 2004).}

SNPs in associated regions on chromosomes 7 and 11 are proximal to genes PLEKH1 (chr11), FAM3C (chr7), and WNT16 (chr7), and the latter has been associated with bone mineral density, osteoporosis, and fracture risk. Both loci represent promoters or enhancers in regulatory chromatin states in skeletal muscle myoblasts in ENCODE and Epigentic Roadmap data. PLEKH1 protein interacts with ACVR1, which is involved in fibroblast growth factors (FGF), a rare congenital disorder that causes bone formation in muscles, tendons, ligaments, and connective tissues. Additionally, SNPs on the chromosome 7 locus were predicted to alter binding motifs of the CCAAT/enhancer-binding protein beta, delta, and gamma family (CEBPB, CEBPD, and CEBPG) and the nuclear factor kappa-β (NF-kB). In addition to the CEBPB association with muscle discussed above, CEBPD has also been linked to differential expression of myostatin, a skeletal muscle inhibitor factor that can lead to muscle strength declines (Allen et al., 2010). CEBPG likely plays a role in cell growth arrest in the setting of inflammation activation (Huggins et al., 2013). NF-kB is the nuclear transcription factor that acts as a gatekeeping molecule for activation of inflammatory signaling (Guttridge et al., 2000; Ershler, 2007). Subtle alteration in expression of these factors may well alter muscle tissue maintenance with aging and would in turn lead to grip strength declines.

Last, the suggestive region of chromosome 10 is 20 kb away from the BMST1 gene, a ribosome assembly protein which has no known function in skeletal muscle. This group of three SNPs also had relevant data from ENCODE, indicating that DNase-hypersensitive sites were found in skeletal muscle myotubes, in particular those differentiated from HSMM cell lines and osteoblasts.

There are several strengths to this study. First, we have identified 14 cohorts including 27,581 older adults that have appropriate handgrip strength measurements and genotypes necessary to perform a study of this kind. Next, the ability to explore potential findings with the ENCODE data provides an important biologic window into the potential relevance of the genetic findings. There are potential limitations to this study as well. First, a cross-sectional, one-time handgrip, or lower body strength measure may not be the best phenotypic measurement to capture age-related strength decline as a phenotype. Although the lower body strength analysis was consistent with grip strength, due to sample size restrictions, the age cutoff for lower body strength was set at 50 years of age. The correlation between grip and lower body strength has been reported to be in the range of 0.4–0.6, suggesting that both measure the same construct of muscle strength (Bohannon et al., 2012).

This cross-sectional study was designed to determine genetic variants associated with grip strength in persons over the age of 65 years. Strength in old age is thought to be a reflection of both the peak strength and the rate of decline. Similarly, cross-sectional analysis with phenotypes such as bone density or cognitive performance still have been useful for understanding rate of decline with age. Here, we studied individuals over 65 years of age; thus, the majority are predicted to have already entered the decline phase. Future genetic studies should consider examining changes in muscle strength to focus on the potential determinants of age-related decreases that are commonly observed with aging, as trajectories of strength decline were not widely available among these cohorts.

Despite limitations, these results suggest biologically plausibility. Chromosome 7 locus was significantly enriched for enhancer/promoter elements in muscle cells compared with other muscle types. C/EBP transcription factors have been linked to a number of metabolic and inflammatory processes that would be expected to influence skeletal muscle, and have been previously implicated in other cohorts. These findings provide additional rationale for the further study of C/EBP-related pathways and their overall influence in the development of dynapenia in older adults. Future studies should follow up these findings to determine whether there are potential epigenetic changes, or even whether there are significant CEBPB expression differences in skeletal muscle samples between young and old humans.

Experimental procedures

Subjects

The discovery phase of this GWAS was conducted on 27,581 subjects from the following 14 participating studies of the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (CHARGE); the Age, Gene/Environment Susceptibility Study (AGES), the Cardiovascular Health Study (CHS); the Framingham Heart Study (FHS); the Health, Aging, and Body Composition (Health ABC) Study, the Health and Retirement Study (HRS); the InCHIANTI Study; the Lothian Birth Cohort Studies (1921 and 1936); the Osteoporotic Fractures in Men Study (MrOS); Religious Order Study, Memory and Aging Project (MAP/ROS); the Study of Health in Pomerania (SHIP); the Study of Osteoporotic Fractures (SOF); the Tasmanian Study of Cognition and Gait (TasCog); and the Twins UK Study. Replication cohorts contributed 6393 subjects from three cohorts, the Atherosclerosis Risk in Communities Study (ARIC) and the Rotterdam Studies I and II. Detailed description of each cohort and references are included in the Appendix S1 (Supporting information). Each cohort’s study protocol was reviewed and approved by their respective institutional review board.

In parallel to grip strength analysis, a GWAS analysis of lower body strength was conducted as an additional measure of muscle strength in 9822 individuals over the age of 50 years from seven studies: AGES, Baltimore Longitudinal Study on Aging (BLSA), InCHIANTI, CHS, FHS, Health ABC, and MAP/ROS.

Phenotyping

All participants with at least one recorded grip strength measurement (kg) (Table S1) were included in the analysis. The primary outcome was defined as the maximal value across available trials. Exclusion criteria for grip strength analysis included age <65 years, non-Caucasian origin via self-report or identical-by-state (IBS) clustering of the GWAS data, and missing grip strength data. Additional exclusion based on self-reported pain, surgery, or osteoarthritis in the dominant hand was considered. However, as adequate data across all cohorts were not available, these exclusions were not implemented in this analysis. Handgrip was employed as a nontransformed, continuous trait.

For lower body strength, all studies used performance-based assessment methods reporting measures in kg or in Newton-meter (Table S2). If multiple examinations were performed, the maximum measurement was used. Exclusion for lower body strength analysis was consistent with grip strength; however, due to sample size restrictions, the age cutoff
was set at 50 years of age. Lower leg strength was analyzed as a nontransformed, continuous trait.

Additional variables used in this study included gender, age, standing height, and weight for both grip and lower body strength. Each of these characteristics was collected with handgrip and/or lower body strength according to study-specific protocols.

Genotyping

Each cohort performed its own genomewide genotyping and genotype imputation based on NCBI Build 36 (http://www.ncbi.nlm.nih.gov/SNP/). Table S3 (Supporting information) summarizes genotyping platform, imputation methods, quality control methods, and final SNP count per cohort. Results are reported for each SNP for as many cohorts as were available via genotyping and imputation.

Statistical analysis

Multiple linear regression models were built for genotyped and imputed SNPs on maximal grip strength (kg), adjusted for age, gender, height, weight, study site (when necessary), and principal components to control for population stratification (Price et al., 2006). An additive model with the count of the number of variant alleles was used for all analyses. Handgrip strength was used as a continuous trait, and the regression results reflect an increase or decrease in strength (kg) per additive allele. Test statistics for genomewide association analysis were combined using METAL (Willer et al., 2010). Inverse variance-weighted meta-analysis was performed using a fixed-effects model of β-estimates and standard errors from each cohort. In the meta-analysis of discovery GWAS, between-study heterogeneity was tested using Cochran’s Q test as implemented in METAL. A threshold of P-value < 5 × 10⁻⁸ was utilized to determine genomewide statistical significance, while P-values < 1 × 10⁻⁵ were considered suggestive. SNPs that met these significance thresholds were then evaluated in a set of 3 replications cohorts, as well as analyzed jointly in discovery and replication cohorts (n = 33 974).

For the leg strength analysis, as the unit of measure differed by cohort (kg or Nm), a sample size-weighted meta-analysis was conducted where an arbitrary reference allele is selected and a z-statistic summarizing the magnitude and the direction of effect relative to the reference allele was calculated and weighted by the square root of the sample size of each study. Thresholds for statistical significance set for the handgrip analysis were utilized for the leg strength results as well.

Using the HaploReg tool (http://compbio.mit.edu/HaploReg/), we annotated potential regulatory functions of our GWAS SNPs and loci based on experimental epigenetic data, including open chromatin and histone modifications, and transcription factor binding sites in human cell lines and tissues (Ward & Kellis, 2012). First, we constructed haplotype blocks for GWAS most significant, or lead, SNPs and SNPs in high linkage disequilibrium (LD, r² > 0.8) with GWAS lead SNPs. Then, we identified regulatory elements including enhancers and promoters estimated by chromatin states in the haplotype blocks across 98 healthy human tissues/normal cell lines available in the ENCODE Project and the Epigenomics Roadmap Project (Encode and Consortium 2011; Chadwick, 2012). The regulatory elements were annotated by an algorithm named ChromHMM, and data were downloaded from HaploReg3 (Ernst & Kellis, 2012; Ward & Kellis, 2012). To evaluate whether GWAS loci were enriched with regulatory elements and corresponded to the DNase I-hypersensitive sites (DHSs) in muscle tissues, we performed a promoter/enhancer enrichment analysis using a hypergeometric test to compare the abundance of regulatory elements in muscle tissues (9 relevant muscle tissues/cell lines) to nonmuscle tissues (89 tissues/cell lines) in the haplotype blocks of a GWAS locus. A permutation was performed to correct for multiple testing. Permutation P-values <0.05 were considered statistically significant.

Expression quantitative trait loci (eQTL) analysis

Proxy SNPs in linkage disequilibrium (r²>0.8) in European ancestry populations were identified for handgrip for the top five most significant SNPs as the lead SNPs using SNAP (Johnson et al., 2008). Index SNPs and proxies were identified in a collected database of expression SNP (eSNP) results. The collected eSNP results met criteria for statistical thresholds for association with gene transcript levels as described in the original papers. A general overview of a subset of >50 eQTL studies has been published (Zhang et al., 2014), with specific citations for >100 studies. For the current query, we focused our search to skeletal muscle and brain tissue (Keildson et al., 2014; Zhang et al., 2014). Details on tissue samples can be found in the Appendix S1 (Supporting information).

Acknowledgments

The Longevity Consortium, funded by the National Institute of Aging, grant number U19 AG023122, provided administrative resources for this work. Dr. Bruce Psaty serves on the DSMB for a clinical trial of a device funded by the manufacturer (Zoll LifeCor) and on the Steering Committee of the Yale Open Data Access Project funded by Johnson & Johnson. Dr. Kiel has received grant funding from Eli Lilly and has served on a scientific advisory board from Novartis.

Funding

Johns Hopkins University Claude D. Pepper Older Americans Independence Center (NIA Grant/Award Number P30 AG021334, Wellcome Trust, (Grant/Award Number: ‘FP7/2007–2013’) National Institute for Health Research, National Institute of Diabetes and Digestive and Kidney Diseases, (Grant/Award Number: ‘DK063491’) German Federal Ministry of Education and Research, (Grant/Award Number: ‘01Z20103’, ‘01Z20403’, ‘01Z20603’, ‘03IS2061A’, ‘03ZIK012’), National Institutes of Health, (Grant/Award Number: ‘HHSN268200625226C’, ‘HHSN2682007282096C’, ‘N01AG12 100’, ‘UL1RR025005’), Biotechnology and Biological Sciences Research Council, National Health and Medical Research Council, (Grant/Award Number: ‘NHMRC100089’, ‘NHMRC1034483’, ‘NHMRC1061457’, ‘NHMRC 403000’, ‘NHMRC491109’, ‘NHMRC606543’), National Institute on Aging, (Grant/Award Number: ‘1R01AG032098-01A1’, ‘263 MD 821336’, ‘263 MD 91164’, ‘AG016495’, ‘AG033193’, ‘AG08122’, ‘N01AG62101’, ‘N01AG62103’, ‘N01AG62106’, ‘P30AG10161’, ‘R01 AG005394’, ‘R01 AG005407’, ‘R01 AG027574’, ‘R01 AG027576’, ‘R01 AR53582’, ‘R01 AR53583’, ‘R01AG023629’, ‘R01AG040039’, ‘R01AG15819’, ‘R01AG17917’, ‘R01AG24480’, ‘R01AG29451’, ‘R01AG30146’, ‘R01AR53584’, ‘RC2 AG036495’, ‘U01 AG 18197’, ‘U01AG027810’, ‘U01AG009740’), National Institute of Arthritis and Musculoskeletal and Skin Diseases, (Grant/Award Number: ‘R01 AR1398’, ‘R01-AR051124’, ‘RC2AR058973’, ‘U01 AR45580’, ‘U01 AR45 583’, ‘U01 AR45614’, ‘U01 AR45632’, ‘U01 AR45647’, ‘U01 AR45654’), National Heart, Lung, and Blood Institute, (Grant/Award Number: ‘HHSN2682008000007C’, ‘HHSN268201100005C’, ‘HHSN268201100006C’, ‘HHSN268201100007C’, ‘HHSN268201100008C’, ‘HHSN268201100009C’, ‘HHSN268201100010C’, ‘HHSN268201100011C’, ‘HHSN268201100012C’).

© 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Conflict of interest
There are no additional conflict of interests.

Author contributions
All authors were involved in data collection, study design, development of methods, and review and final approval of the manuscript. In addition, AMM, TT, WCC, JDE, ADJ, AMA, MLC, GD, DSE, BH, KL, KLL, MM, AVS, JAS, AT, and LY, DEA, ASB, AH, YH, FR, AU were involved in data analysis. AMM, TT, DK, GA, WCC, ADE, ADJ, ABN, JDW, DPK, and JMM were responsible for writing the manuscript.

References
Allen DL, Cleary AS, Hansom AM, Lindsay SF, Reed JM (2010) CCAAT/enhancer binding protein-delta expression is increased in fast skeletal muscle by food deprivation and regulates myostatin transcription in vitro. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R1592–R1601.

Arking DE, Fallin DM, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) HapMap genetic variation and childhood obesity: the Childhood Obesity Gene Environment Study (COGENES). Diabetes 55, 3258–3263.

Arbeev KG, Barr G, Mayeux R, Newman AB, Walston JD (2010) Heritability estimates of endophenotypes of long and health life: the long life family study. J. Gerontol. A Biol. Sci. Med. Sci. 65, 1379–1385.

Babcock WA, Bubela DJ, Wang Y-C, Gershon RC (2012) Grip and survival at old age: association analysis in two Danish middle aged and elderly cohorts. PLoS ONE 7, e47106.

Bakker PI, Hottenga JJ, van Duijn CM, van Duijn CM, van Duijn CM, van Duijn CM, van Duijn CM (2012) Genome-wide association of strength in older adults, A. M. Matteini et al. (2014) Seropositivity for CMV and IL-6 levels are associated with grip strength and muscle size in the elderly. J. Gerontol. A Biol. Sci. Med. Sci. 69, 576–583.

Barnea E, Lipton B, Keren R, Kavehill A, Shapira S (2013) Diminished muscle strength and falls in older adults: a systematic review and meta-analysis. J. Gerontol. A Biol. Sci. Med. Sci. 68, 1376–1383.

Barnea E, Lipton B, Keren R, Kavehill A, Shapira S (2013) Diminished muscle strength and falls in older adults: a systematic review and meta-analysis. J. Gerontol. A Biol. Sci. Med. Sci. 68, 1376–1383.

Bateman JR, Whitehead PL, Worsfold PR, Polley MG, Proctor M, Hackett R, Higgs DR (2002) The human homologue of the Drosophila lethal giant larvae gene regulates dietary-induced inflammation in macrophages and adipose tissue in vivo. J. Biol. Chem. 277, 23633–23636.

Beamer BA, Friedman JE (2012) CCAAT/enhancer-binding protein-beta expression is associated with muscle strength. Aging Cell 11, 262–268.

Bennet KD, Bucolo EA, Schofield PR, Ronan PC, Treasure WT, Partridge T, Band B, Walker J, de la Llave PA, Bocchini JA, et al. (2008) The NIH roadmap epigenomics program data resource. Nature Biotechnol. 26, 38–41.

Bennet KD, Bucolo EA, Schofield PR, Ronan PC, Treasure WT, Partridge T, Band B, Walker J, de la Llave PA, Bocchini JA, et al. (2008) The NIH roadmap epigenomics program data resource. Nature Biotechnol. 26, 38–41.

Bennet KD, Bucolo EA, Schofield PR, Ronan PC, Treasure WT, Partridge T, Band B, Walker J, de la Llave PA, Bocchini JA, et al. (2008) The NIH roadmap epigenomics program data resource. Nature Biotechnol. 26, 38–41.

Bennet KD, Bucolo EA, Schofield PR, Ronan PC, Treasure WT, Partridge T, Band B, Walker J, de la Llave PA, Bocchini JA, et al. (2008) The NIH roadmap epigenomics program data resource. Nature Biotechnol. 26, 38–41.

Bennet KD, Bucolo EA, Schofield PR, Ronan PC, Treasure WT, Partridge T, Band B, Walker J, de la Llave PA, Bocchini JA, et al. (2008) The NIH roadmap epigenomics program data resource. Nature Biotechnol. 26, 38–41.

Bennet KD, Bucolo EA, Schofield PR, Ronan PC, Treasure WT, Partridge T, Band B, Walker J, de la Llave PA, Bocchini JA, et al. (2008) The NIH roadmap epigenomics program data resource. Nature Biotechnol. 26, 38–41.

Bennet KD, Bucolo EA, Schofield PR, Ronan PC, Treasure WT, Partridge T, Band B, Walker J, de la Llave PA, Bocchini JA, et al. (2008) The NIH roadmap epigenomics program data resource. Nature Biotechnol. 26, 38–41.
Supporting Information

Additional Supporting Information may be found online in the supporting information tab for this article:

Fig. S1 Quantile-Quantile plot of expected vs. observed $– \log_{10} P$-values for meta-analysis of genome-wide association of grip strength.

Fig. S2 Genome-wide scans of grip strength of CHARGE cohorts.

Fig. S3 Quantile-Quantile plot of expected vs. observed $– \log_{10} P$-values for meta-analysis of genome-wide association of leg strength.

Table S1 Details of Hand Grip Measure Collection per Cohort

Table S2 Assessment methods and cohort descriptive for lower leg strength analysis

Table S3 Genotyping and Data Cleaning Details per Discovery Cohort

Table S4 Top SNPs from the meta-analysis of grip strength genome-wide associations in 14 discovery cohorts

Table S5 Most significant non-redundant association from meta-analysis of lower body strength in 9822 individuals

Table S6 Associations from meta-analysis of lower body strength for the top signals from the grip strength meta-analysis.

Appendix S1 Detailed Description of Discovery Cohorts