Identifiable Phenotyping using Constrained Non–Negative Matrix Factorization

Shalmali Joshi
Electrical and Computer Engineering
The University of Texas at Austin
Austin, TX, USA

Suriya Gunasekar
Electrical and Computer Engineering
The University of Texas at Austin
Austin, TX, USA

David Sontag
Computer Science
New York University
NYC, NY, USA

Joydeep Ghosh
Electrical and Computer Engineering
The University of Texas at Austin
Austin, TX, USA

Abstract

This work proposes a new algorithm for automated and simultaneous phenotyping of multiple co–occurring medical conditions, also referred to as comorbidities, using clinical notes from electronic health records (EHRs). A latent factor estimation technique, non-negative matrix factorization (NMF), is augmented with domain constraints from weak supervision to obtain sparse latent factors that are grounded to a fixed set of chronic conditions. The proposed grounding mechanism ensures a one-to-one identifiable and interpretable mapping between the latent factors and the target comorbidities. Qualitative assessment of the empirical results by clinical experts show that the proposed model learns clinically interpretable phenotypes which are also shown to have competitive performance on 30 day mortality prediction task. The proposed method can be readily adapted to any non-negative EHR data across various healthcare institutions.

1. Introduction

Reliably querying for patients with specific medical conditions across multiple organizations facilitates many large scale healthcare applications such as cohort selection, multi-site clinical trials, epidemiology studies etc. (Richesson et al., 2013, Hripcsak and Albers, 2013, Pathak et al., 2013). However, raw EHR data collected across diverse populations and multiple care-givers can be extremely high dimensional, unstructured, heterogeneous, and noisy. Manually querying such data is a formidable challenge for healthcare professionals.
EHR driven phenotypes are concise representations of medical concepts composed of clinical features, conditions, and other observable traits facilitating accurate querying of individuals from EHRs (NIH Health Care Systems Research Collaboratory, 2014). Efforts like eMerge Network\(^1\), PheKB\(^2\) are well known examples of EHR driven phenotyping. Traditionally used rule–based composing methods for phenotyping require substantial time and expert knowledge and have little scope for exploratory analyses. This motivates automated EHR driven phenotyping using machine learning with limited expert intervention.

We propose a weakly supervised model for jointly phenotyping 30 co–occurring conditions (comorbidities) observed in intensive care unit (ICU) patients. Comorbidities are a set of co-occurring conditions in a patient at the time of admission that are not directly related to the primary diagnosis for hospitalization (Elixhauser et al., 1998). Phenotypes for the 30 comorbidities listed in Table 1 are derived using text-based features from clinical notes in a publicly accessible MIMIC-III EHR database (Saeed et al., 2011). We present a novel constrained non–negative matrix factorization (CNMF) for the EHR matrix that aligns the factors with target comorbidities yielding sparse, interpretable, and identifiable phenotypes.

The following aspects of our model distinguish our work from prior efforts:

1. **Identifiability:** A key shortcoming of standard unsupervised latent factor models such as NMF (Lee and Seung, 2001) and Latent Dirichlet Allocation (LDA) (Blei et al., 2003) for phenotyping is that, the estimated latent factors learnt are interchangeable and unidentifiable as phenotypes for specific conditions of interest. We tackle identifiability by incorporating weak (noisy) but inexpensive supervision as constraints our framework. Specifically, we obtain weak supervision for the target conditions in Table 1 using the Elixhauser Comorbidity Index (ECI) (Elixhauser et al., 1998) computed solely from patient administrative data (without human intervention). We then ground the latent factors to have a one-to-one mapping with conditions of interest by incorporating the comorbidities predicted by ECI as support constraints on the patient loadings along the latent factors.

2. **Simultaneous modeling of comorbidities:** ICU patients studied in this paper are frequently afflicted with multiple co–occurring conditions besides the primary cause for admission. In the proposed NMF model, phenotypes for such co–occurring conditions jointly modeled to capture the resulting correlations.

3. **Interpretability:** For wider applicability of EHR driven phenotyping for advance clinical decision making, it is desirable that these phenotype definitions be clinically interpretable and represented as a concise set of rules. We consider the sparsity in the representations as a proxy for interpretability and explicitly encourage conciseness of phenotypes using tuneable sparsity–inducing soft constraints.

We evaluate the effectiveness of the proposed method towards interpretability, clinical relevance, and prediction performance on EHR data from MIMIC-III. Although we focus on ICU patients using clinical notes, the proposed model and algorithm are general and can be applied on any non-negative EHR data from any population group.

\(^1\) http://emerge.mc.vanderbilt.edu/
\(^2\) http://phekb.org/
2. Data Extraction

The MIMIC-III dataset consists of de-identified EHRs for ~ 38,000 adult ICU patients at the Beth Isreal Deaconess Medical Center, Boston, Massachusetts from 2001–2012. For all ICU stays within each admission, clinical notes including nursing progress reports, physician notes, discharge summaries, ECG, etc. are available. We analyze patients who have stayed in the ICU for at least 48 hours (~ 17000 patients). We derive phenotypes using clinical notes collected within the first 48 hours of patients’ ICU stay to evaluate the quality of phenotypes when limited patient data is available. Further, we evaluate the phenotypes on a 30 day mortality prediction problem. To avoid obvious indicators of mortality and comorbidities, apart from restricting to 48 hour data, we exclude discharge summaries as they explicitly mention patient outcomes (including mortality).

1. Clinically relevant bag-of-words features: Aggregated clinical notes from all sources are represented as a single bag-of-words features. To enhance clinical relevance, we create a custom vocabulary containing clinical terms from two sources (a) the Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT), and (b) the level-0 terms provided by the Unified Medical Language System (UMLS), consolidated into a standard vocabulary format using Metamorphosys — an application provided by UMLS for custom vocabulary creation.3 To extract clinical terms from the raw text, the notes were tagged for chunking using a conditional random field tagger4. The tags are looked up against the custom vocabulary (generated from Metamorphosys) to obtain the bag-of-words representation. Our final vocabulary has ~3600 clinical terms.

2. Computable weak diagnosis: We incorporate domain constraints from weak supervision to ground the latent factors to have a one-to-one mapping with the conditions of interest. In the model described in Section 3, this is enforced by constraining the non-zero entries on patient loading along the latent factors using a weak diagnosis for comorbidities. The weak diagnoses of target comorbidities in Table 1 are obtained using ECI5, computed solely from patient administrative data without human annotation. We refer to this index as weak diagnoses as it is not a physician’s exact diagnosis and is subject to noise and misspecification. Note that ECI ignores diagnoses code related to the primary diagnoses of admission. Thus, ECI models presence and absence of conditions other than the primary reason for admission (comorbidities). The phenotype candidates from the proposed model can be considered as concise representations of such comorbidities.

3. See https://www.nlm.nih.gov/healthit/snomedct/ and https://www.nlm.nih.gov/research/umls/
4. https://taku910.github.io/crfpp/
5. https://git.io/v6e7q
The notation used in the paper are enumerated in Table 2. In summary, for each patient $j \in [N]$, (a) the bag-of-words features from clinical notes is represented as column $x^{(j)}$ of EHR matrix $X \in \mathbb{R}^{d \times N}$, and (b) the list of comorbidities diagnosed using ECI is denoted as $C_j \subseteq [K]$. Let an unknown $W^* \in [0, 1]^{K \times N}$ represent the risk of N patients for K comorbidities of interest; each entry w^*_{kj} lies in the interval $[0, 1]$, with 0 and 1 indicating no-risk and maximum-risk, respectively, of patient j being afflicted with condition k. If $C_j^* \subseteq [K]$ denotes an accurate diagnosis for patient j, then $w^{*(j)}$ satisfies $\text{supp}(w^{*(j)}) \subseteq C_j^*$.

Definition 1 (EHR driven phenotype)

EHR driven phenotypes for K co–occurring conditions are a set of vectors $\{a^{*(k)} \in \mathbb{R}^d : k \in [K]\}$, such that for a patient j afflicted with conditions $C_j^* \subseteq [K]$,

$$
\mathbb{E}[x^{(j)}|w^{*(j)}] = \sum_{k \in C_j^*} w^*_{kj} a^{*(k)} + b^*,
$$

(1)

where b^* is a bias representing the feature component observed independent of the K target conditions. $A^* \in \mathbb{R}^{d \times K}$ with $a^{*(k)}$ as columns is referred as the *phenotype factor matrix*.

Note that we explicitly model a feature bias b^* to capture frequently occurring terms that are not discriminative of the target conditions, e.g., temperature, pain, etc.

Cost Function

The bag-of-words features are represented as counts in the EHR matrix X. We consider a factorized approximation of X parametrized by matrices $A \in \mathbb{R}^{d \times K}$, $W \in \mathbb{R}^{K \times N}$ and $b \in \mathbb{R}^d$ as $Y = AW + b\mathbb{1}^\top$, where $\mathbb{1}$ denotes a vector of all ones of appropriate dimension. The approximation error of the estimate is measured using the I–divergence defined as follows:

$$
\mathcal{D}(X, Y) = \sum_{ij} y_{ij} - x_{ij} - x_{ij} \log \frac{y_{ij}}{x_{ij}},
$$

(2)

Minimizing the I–divergence is equivalent to maximum likelihood estimation under a Poisson distributional assumption on individual entries of the EHR matrix parameterized by $Y = AW + b\mathbb{1}^\top$ (Banerjee et al., 2005).

Table 2: Notation used in the paper

Notation	Description
$[m]$ for integer m	Set of indices $[m] = \{1, 2, \ldots, m\}$.
Δ^{d-1}	Simplex in dimension d, $\Delta^{d-1} = \{x \in \mathbb{R}^d_+ : \sum x_i = 1\}$.
$x^{(j)}$	Column j of a matrix X.
$\text{supp}(x)$	Support of a vector x, $\text{supp}(x) = \{i : x_i \neq 0\}$.
N, d	Number of patients (~ 17000) and features (~ 3600), respectively.
$X \in \mathbb{R}^{d \times N}$	EHR matrix from MIMIC III: Clinically relevant bag-of-words features from notes in first 48 hours of ICU stay for N patients.
$k = 1, 2, \ldots, K$	Indices for $K = 30$ comorbidities in Table 1.
$C_j \subseteq [K]$ for $j \in [N]$	Set of comorbidities patient j is diagnosed with using ECI.
$W \in [0, 1]^{K \times N}$	Estimate of patients’ risk for the K conditions.
$A \in \mathbb{R}^{d \times K}$, $b \in \mathbb{R}^d$	Estimate of phenotype factor matrix and feature bias vector.

3. Identifiable High–Throughput Phenotyping

The notation used in the paper are enumerated in Table 2. In summary, for each patient $j \in [N]$, (a) the bag-of-words features from clinical notes is represented as column $x^{(j)}$ of EHR matrix $X \in \mathbb{R}^{d \times N}$, and (b) the list of comorbidities diagnosed using ECI is denoted as $C_j \subseteq [K]$. Let an unknown $W^* \in [0, 1]^{K \times N}$ represent the risk of N patients for K comorbidities of interest; each entry w^*_{kj} lies in the interval $[0, 1]$, with 0 and 1 indicating no-risk and maximum-risk, respectively, of patient j being afflicted with condition k. If $C_j^* \subseteq [K]$ denotes an accurate diagnosis for patient j, then $w^{*(j)}$ satisfies $\text{supp}(w^{*(j)}) \subseteq C_j^*$.

Definition 1 (EHR driven phenotype) EHR driven phenotypes for K co–occurring conditions are a set of vectors $\{a^{*(k)} \in \mathbb{R}^d : k \in [K]\}$, such that for a patient j afflicted with conditions $C_j^* \subseteq [K]$,

$$
\mathbb{E}[x^{(j)}|w^{*(j)}] = \sum_{k \in C_j^*} w^*_{kj} a^{*(k)} + b^*,
$$

(1)

where b^* is a bias representing the feature component observed independent of the K target conditions. $A^* \in \mathbb{R}^{d \times K}$ with $a^{*(k)}$ as columns is referred as the phenotype factor matrix.

Note that we explicitly model a feature bias b^* to capture frequently occurring terms that are not discriminative of the target conditions, e.g., temperature, pain, etc.

Cost Function The bag-of-words features are represented as counts in the EHR matrix X. We consider a factorized approximation of X parametrized by matrices $A \in \mathbb{R}^{d \times K}$, $W \in \mathbb{R}^{K \times N}$ and $b \in \mathbb{R}^d$ as $Y = AW + b\mathbb{1}^\top$, where $\mathbb{1}$ denotes a vector of all ones of appropriate dimension. The approximation error of the estimate is measured using the I–divergence defined as follows:

$$
\mathcal{D}(X, Y) = \sum_{ij} y_{ij} - x_{ij} - x_{ij} \log \frac{y_{ij}}{x_{ij}},
$$

(2)

Minimizing the I–divergence is equivalent to maximum likelihood estimation under a Poisson distributional assumption on individual entries of the EHR matrix parameterized by $Y = AW + b\mathbb{1}^\top$ (Banerjee et al., 2005).
Algorithm 1: Phenotyping using constrained NMF.
Input: \(X, \{C_j : j \in [N]\}\) and parameter \(\lambda\). Initialization: \(A_{(0)}, b_{(0)}\).

\[
\text{while Not converged do }
\begin{align*}
W_{(t)} & \leftarrow \arg \min_W D(X, A_{(t-1)}W + b_{(t-1)}1^\top) \text{ s.t. } W \in [0,1]^{K \times N}, \supp(w^j) = C_j, \forall j \\
A_{(t)}, b_{(t)} & \leftarrow \arg \min_{A,b \geq 0} D(X, AW_{(t)} + b1^\top) \text{ s.t. } a_{(k)}^j \in \lambda \Delta^{d-1}, \forall k
\end{align*}
\]

Phenotypes For the \(K\) comorbidities, columns of \(A, \{a_{(k)}^j\}_{k \in [K]}\) are proposed as candidate phenotypes derived from the EHR \(X\), i.e. approximations to \(\{a^*_k\}_{k \in [K]}\).

Constraints The following constraints are incorporated in learning \(A\) and \(W\).

1. Support Constraints: The non-negative rank–\(K\) factorization of \(X\) is ‘grounded’ to \(K\) target comorbidities by constraining the support of risk \(w^j\) corresponding to patient \(j\) using weak diagnosis \(C_j\) from ECI as an approximation of the conditions in Definition 1.

2. Sparsity Constraints: Scaled simplex constraints are imposed on the columns of \(A\) with a tuneable parameter \(\lambda > 0\) to encourage sparsity of phenotypes. Restricting the patient loadings matrix as \(W \in [0,1]^{K \times N}\) not only allows to interpret the loadings as the patients’ risk, but also makes simplex constraints effective in a bilinear optimization.

Simultaneous phenotyping of comorbidities using constrained NMF is posed as follows:

\[
\tilde{A}, \tilde{W}, \tilde{b} = \arg\min_{A \geq 0, W \geq 0, b \geq 0} D(X, AW + b1^\top) \text{ s.t. } \supp(w^j) = C_j, \forall j \in [N], W \in [0,1]^{K \times N}, a_{(k)}^j \in \lambda \Delta^{d-1}, \forall j \in [K],
\]

4. Empirical Evaluation

The estimated phenotypes are evaluated on various metrics. We denote the model learned using Algorithm 1 with a given parameter \(\lambda > 0\) as \(\lambda\)-CNMF. The following baselines are used for comparison:

1. Labeled LDA (LLDA): LLDA (Ramage et al., 2009) is the supervised counterpart of LDA, a probabilistic model to estimate topic distribution of a corpus. It assumes that word counts of documents arise from multinomial distributions. It incorporates supervision on topics contained in a document and can be naturally adapted for phenotyping from bag-of-words clinical features, where the topic–word distributions form candidate phenotypes. While LLDA assumes that the topic loadings of a document lie on the probability simplex \(\Delta^{K-1}\), \(\lambda\)-CNMF allows each patient–condition \(w^j\) loading to lie in \([0,1]\). In interpreting the patient loading as a disease risk, the latter allows patients to have varying levels of disease prevalence. Also, LLDA can induce sparsity only indirectly via a hyperparameter \(\beta\) of the informative prior on the topic–word distributions. While this does not guarantee...
sparse estimates, we obtain reasonable sparsity on LLDA estimates. We use the Gibbs sampling code from MALLET (McCallum, 2002) for inference. For a fair comparison to CNMF which uses an extra bias factor, we allow LLDA to model an extra topic shared by all documents in the corpus.

2. **NMF with support constraints (NMF+support):** This NMF model incorporates non-negativity and support constraints from weak supervision but not the sparsity inducing constraints on the phenotype matrix. This allows to study the effect of sparsity inducing constraints for interpretability. On the other hand, imposing sparsity without our grounding technique does not yield identifiable topics and hence is not studied as a baseline.

3. **Multi-label Classification (MLC):** This baseline treats weak supervision (from ECI) as accurate labels in a fully supervised model. A sparsity inducing ℓ_1 regularized logistic regression classifier is learned for each condition independently. The learned weight vector for each condition k determines importance of clinical terms towards discriminating patients with condition k and are treated as candidate phenotypes for condition k.

The weak supervision does not account for the primary diagnosis for admission in the ICU population as the ECI ignores primary diagnoses at admission (Elixhauser et al., 1998). However, the learning algorithm can be easily modified to account for the primary diagnoses, if required by using a modified form of supervision or absorbing the effects in an additional additive term appended to the model. Nevertheless, the proposed model generates highly interpretable phenotypes for comorbidities. Finally, to mitigate the effect of local minima, whenever applicable, for each model, the corresponding algorithm was run with 5 random initializations and results providing the lowest divergence were chosen for comparison.

4.1 **Interpretability–accuracy trade–off**

Sparsity of the latent factors is used as a proxy for interpretability of phenotypes. Sparsity is measured as the median of the number of non-zero entries in columns of the phenotype matrix A (lower is better). The λ parameter in λ–CNMF controls the sparsity by imposing scaled simplex constraints on A. CNMF was trained on multiple λ in the range of 0.1 to 1. Stronger sparsity-inducing constraints results in worse fit to the cost function. This trade–off is indeed observed in all models (see A for details). For all models, we pick estimates with lowest median sparsity while ensuring that the phenotype candidate for every condition is represented by at least 5 non-zero clinical terms.

4.2 **Clinical relevance of phenotypes**

We requested two clinicians to evaluate the candidate phenotypes based on the top 15 terms learned by each model. The ratings were requested on a scale of 1 (poor) to 4 (excellent). The experts were asked to rate based on whether the terms are relevant towards the corresponding condition and whether the terms are jointly discriminative of the condition. Figure 1 shows the summary of qualitative ratings obtained for all models. For each model, we show two columns (corresponding to two experts). The stacked bars show the histogram of the ratings for the models. Nearly 50% of the phenotypes learned from our model were rated ‘good’ or better by both annotators. In contrast, NMF with support constraints but without sparsity inducing constraints hardly learns clinically relevant phenotypes. The proposed model 0.4–CNMF also received significantly higher number of ‘excellent’ and ‘good’
Figure 1: Qualitative Ratings from Annotation: The two bars represent the ratings provided by the two annotators. Each bar is a histogram of the scores for the 30 comorbidities sorted by scores.

![Figure 1: Qualitative Ratings from Annotation](image)

Table 3: Relative Rankings Matrix: Each row of the table is the number of times the model along the row was rated strictly better than the model along the column by clinical experts, e.g., column 3 in row 2 implies that LLDA was rated better than MLC 12 times over all conditions by all experts.

	0.4–CNMF	LLDA	MLC	NMF
LLDA	0	28	20	44
MLC	7	0	12	35
NMF+support	1	0	1	0

ratings from both experts. Although LLDA and MLC estimate sparse phenotypes, they are not at par with 0.4–CNMF. Table 3 shows a summary of relative rankings for all models. Each cell entry shows the number of times the model along the corresponding row was rated strictly better than that along the column. 0.4–CNMF is better than all three baselines. The supervised baseline MLC outperforms LLDA even though LLDA learns comorbidities jointly suggesting that the simplex constraint imposed by LLDA may be restrictive.

Figure 2 is an example of a phenotype (top 15 terms) learned by all models for psychoses. For this condition, the proposed model was rated “excellent” and strictly better than both LLDA and MLC by both annotators while LLDA and MLC ratings were tied. However, the phenotype for Hypertension (in Figure 3) learned by 0.4–CNMF has more terms related to ‘Renal Failure’ or ‘End Stage Renal Disease’ rather than hypertension. One of our annotators pointed out that “Candidate 1 is a fairly good description of renal disease, which is an end organ complication of hypertension”, where the anonymized Candidate 1 refers to 0.4–CNMF. Exploratory analysis suggests that hypertension and renal failure are the most commonly co-occurring set of conditions. Over 93% of patients that have hypertension (according to ECI) also suffer from Renal Failure. Thus, our model is unable to distinguish between highly co-occurring conditions. Other baselines were also rated poorly for hypertension, while LLDA was rated only slightly better. More examples of phenotypes are provided in B.
4.3 Mortality prediction

To quantitatively evaluate the utility of the learned phenotypes, we consider the 30 day mortality prediction task. We divide the EHR into 5 cross-validation folds of 80% training and 20% test patients. As this is an imbalanced class problem, the training–test splits are stratified by mortality labels. For each split, all models were applied on the training data to obtain phenotype candidates \tilde{A} and feature biases \tilde{b}. For each model, the patient loadings W along the respective phenotype space (\tilde{A}, \tilde{b}) are used as features to train a logistic regression classifier for mortality prediction. For CNMF and NMF+support, these are obtained as $W_{\text{train/test}} = \arg\min_{W\in[0,1]^K\times N} D(\tilde{A}W + \tilde{b}^T, X_{\text{train/test}})$ for fixed (\tilde{A}, \tilde{b}). For LLDA, these are obtained using Gibbs sampling with fixed topic–word distributions. For MLC, the predicted class probabilities of the comorbidities are used as features. Additionally, we train a logistic regression classifier using the full EHR matrix as features.

We clarify the following points on the methodology: (1) \tilde{A} is learned on the patients in the training dataset only, hence there is no information leak from test patients into training. (2) Test patients’ comorbidities from ECI are not used as support constraints on their loadings. (3) Regularized logistic regression classifiers are used to learn models for mortality prediction. The regularization parameters are chosen via grid-search.

The performance of the above baselines trained on ℓ_2 regularized logistic regression over a 5-fold cross-validation is reported in Table 4 rows 1–5. The classifier trained on the full EHR unsurprisingly outperforms all baselines as it uses richer high dimensional information. All phenotyping baselines, except NMF+support, show comparable performance on mortality prediction which in spite of learning on a small number of 30 features, is only slightly worse than predictive performance of full EHR with \sim3500 features.
Augmented features for mortality prediction (CNMF+Full EHR) Unsurprisingly, Table 4 suggests that the high dimensional EHR data has additional information towards mortality prediction which are lacking in the 30 dimensional features generated via phenotyping. To evaluate whether this additional information can be captured by CNMF if augmented with a small number of raw EHR features, we train a mortality prediction classifier using ℓ_1 regularized logistic regression on CNMF features/loadings combined with raw bag-of-words features, with parameters tuned to match the performance of the full EHR model. The results are reported in the final row of Table 4.

In exploring the weights learned by the classifier for all features, we observe that only 8.3% of the features corresponding to raw EHR based bag-of-words features have non-zero weights. This suggests that comorbidities capture significant amount of predictive information on mortality and achieve comparable performance to full EHR model with a small number of additional terms. See Figure 35 in Appendix showing the weights learned by the classifier for all features. Figure 4 shows comorbidities and EHR terms with top magnitude weights learned by the CNMF+full EHR classifier. For example, it is interesting to note that the top weighted EHR term – dnr or ‘Do Not Resuscitate’ is not indicative of any comorbidity but is predictive of patient mortality.

5. Discussion and Related Work

Supervised learning methods like Carroll et al. (2011); Kawaler et al. (2012); Chen et al. (2013) or deep learning methods (Lipton et al., 2015; Kale et al., 2015; Henao et al., 2015) for EHR driven phenotyping require expert supervision. Although unsupervised methods like NMF (Anderson et al., 2014) and non-negative tensor factorization (Kolda and Bader, 2009; Harshman, 1970) are inexpensive alternatives (Ho et al., 2014a b c; Luo et al. 2015), they pose challenges with respect to identifiability, interpretability and computation, limiting their scalability.

Most closely related to our paper is work by Halpern et al. (2016b) which is a semi-supervised algorithm for learning the joint distribution on conditions, requiring only that a domain expert specify one or more ‘anchor’ features for each condition (no other labeled data). An ‘anchor’ for a condition is a set of clinical features that when present are highly indicative of the target condition, but whose absence is not a strong label for absence of
Figure 4: Top magnitude weights on (a) EHR and (b) CNMF features in CNMF+Full EHR classifier

the target condition (Halpern et al., 2014, 2016a). For example, the presence of insulin medication is highly indicative of diabetes, but the converse is not true. Joshi et al. (2015) use a similar supervision approach for comorbidities prediction. Whereas the conditions in Halpern et al. (2016b) are binary valued, in our work they are real-valued between 0 and 1. Furthermore, we assume that the support of the conditions is known in the training data.

Our approach achieves identifiability using support constraints to ground the latent factors and interpretability using sparsity constraints. The phenotypes learned are clinically interpretable and predictive of mortality when augmented with a sparse set of raw bag-of-words features on unseen patient population. The model outperforms baselines in terms of clinical relevance according to experts and significantly better than the model which includes supervision but no sparsity constraints. The proposed method can be easily extended to other non-negative data to obtain more comprehensive phenotypes. However, it was observed that the algorithm does not discriminate between frequently co-occurring conditions, e.g. renal failure and hypertension. Further, the weak supervision (using ECI) does not account for the primary diagnoses of admission. Additional model flexibility to account for a primary condition in explaining the observations could potentially improve performance. Addressing the above limitations along with quantitative evaluation of risk for disease prediction, and understanding conditions for uniqueness of phenotyping solutions are interesting areas of follow-up work.
Acknowledgements

We thank Dr. Saul Blecker and Dr. Stephanie Kreml for their qualitative evaluation of the computational phenotypes. SJ, SG and JG were supported by NSF: SCH #1418511. DS was supported by NSF CAREER award #1350965. We also thank Yacine Jernite for sharing a code used in preprocessing clinical notes.

References

A. Anderson, P. K. Douglas, W. T. Kerr, V. S. Haynes, A. L. Yuille, J. Xie, Y. N. Wu, J. A. Brown, and M. S. Cohen. Non-negative matrix factorization of multimodal MRI, fMRI and phenotypic data reveals differential changes in default mode subnetworks in ADHD. Neuroimage, 2014.

A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh. Clustering with bregman divergences. Journal of Machine Learning Research, 2005.

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of Machine Learning Research, 2003.

R. J. Carroll, A. E. Eyler, and J. C. Denny. Naive electronic health record phenotype identification for rheumatoid arthritis. In AMIA Annual Symposium, 2011.

Y. Chen, R. J. Carroll, E. Hinz, A. Shah, A. E. Eyler, J. C. Denny, and H. Xu. Applying active learning to high-throughput phenotyping algorithms for electronic health records data. Journal of the American Medical Informatics Association, 2013.

A. Elixhauser, C. Steiner, D. R. Harris, and R. M. Coffey. Comorbidity measures for use with administrative data. Medical Care, 1998.

Y. Halpern, Y. Choi, S. Horng, and D. Sontag. Using anchors to estimate clinical state without labeled data. In AMIA Annual Symposium, 2014.

Y. Halpern, S. Horng, Y. Choi, and D. Sontag. Electronic medical record phenotyping using the anchor and learn framework. Journal of the American Medical Informatics Association, 2016a.

Y. Halpern, S. Horng, and D. Sontag. Clinical tagging with joint probabilistic models. Conference on Machine Learning for Health Care, 2016b.

R. A. Harshman. Foundations of the parafac procedure: Models and conditions for an explanatory multi-modal factor analysis. UCLA Working Papers in Phonetics, 1970.

R. Henao, J. T. Lu, J. E. Lucas, J. Ferranti, and L. Carin. Electronic health record analysis via deep poisson factor models. Journal of Machine Learning Research, 2015.

J. C Ho, J. Ghosh, S. R. Steinhubl, W. F. Stewart, J. C. Denny, B. A. Malin, and J. Sun. Limestone: High-throughput candidate phenotype generation via tensor factorization. Journal of Biomedical Informatics, 2014a.

J. C. Ho, J. Ghosh, and J. Sun. Extracting phenotypes from patient claim records using nonnegative tensor factorization. In International Conference on Brain Informatics and Health, 2014b.

J. C. Ho, J. Ghosh, and J. Sun. Marble: High-throughput phenotyping from electronic health records via sparse nonnegative tensor factorization. In SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014c.
G. Hripcsak and D. J. Albers. Next-generation phenotyping of electronic health records. *Journal of the American Medical Informatics Association*, 2013.

S. Joshi, O. Koyejo, and J. Ghosh. Simultaneous prognosis of multiple chronic conditions from heterogeneous EHR data. In *International Conference on Healthcare Informatics*, 2015.

D. C. Kale, Z. Che, M. T. Bahadori, W. Li, Y. Liu, and R. Wetzel. Causal Phenotype Discovery via Deep Networks. In *AMIA Annual Symposium*, 2015.

E. Kawaler, A. Cobian, P. Peissig, D. Cross, S. Yale, and M. Craven. Learning to predict post-hospitalization VTE risk from EHR data. In *AMIA Annual Symposium*, 2012.

T. G. Kolda and B. W. Bader. Tensor decompositions and applications. *SIAM Review*, 2009.

D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In *Advances in Neural Information Processing Systems*, 2001.

C. J. Lin. Projected gradient methods for nonnegative matrix factorization. *Neural computation*, 2007.

Z. C. Lipton, D. C. Kale, C. Elkan, and R. Wetzel. Learning to diagnose with lstm recurrent neural networks. *arXiv preprint arXiv:1511.03677*, 2015.

Y. Luo, Y. Xin, E. Hochberg, R. Joshi, O. Uzuner, and P. Szolovits. Subgraph augmented non-negative tensor factorization (santf) for modeling clinical narrative text. *Journal of the American Medical Informatics Association*, 2015.

A. K. McCallum. Mallet: A machine learning for language toolkit, 2002. URL http://mallet.cs.umass.edu

NIH Health Care Systems Research Collaboratory. Rethinking Clinical Trials: A Living Textbook of Pragmatic Clinical Trials, 2014.

N. Parikh and S. P. Boyd. Proximal algorithms. *Foundations and Trends in optimization*, 2014.

J. Pathak, A. N. Kho, and J. C. Denny. Electronic health records-driven phenotyping: challenges, recent advances, and perspectives. *Journal of the American Medical Informatics Association*, 2013.

D. Ramage, D. Hall, R. Nallapati, and C. D. Manning. Labeled lda: A supervised topic model for credit attribution in multi-labeled corpora. In *Empirical Methods in Natural Language Processing*, 2009.

R. L. Richesson, W. E. Hammond, M. Nahm, D. Wixted, G. E. Simon, J. G. Robinson, A. E. Bauck, D. Cifelli, M. M. Smerek, J. Dickerson, et al. Electronic health records based phenotyping in next-generation clinical trials: a perspective from the NIH health care systems collaboratory. *Journal of the American Medical Informatics Association*, 2013.

M. Saied, M. Villarroel, A. T. Reisner, G. Clifford, L. W. Lehman, G. Moody, T. Heldt, T. H. Kyaw, B. Moody, and R. G. Mark. Multiparameter intelligent monitoring in intensive care II (MIMIC-II): a public-access intensive care unit database. *Critical Care Medicine*, 2011.
Appendix A. Phenotype Sparsity

As suggested in Section 4.1, there is an inherent tradeoff between fit to the cost function and desired sparsity. The trade-off is made explicit for λ–CNMF in Figure 5. The sparsity of LLDA is controlled by tuning the hyperparameter (β) of the word-topic multinomial parameters (Blei et al., 2003) and for MLC via the ℓ_1 regularization parameter η. A smaller value of β ensures that the word-topic probabilities are sparse. As the value of β is increased, sparsity decreases (i.e., number of non-zero elements increases). For logistic regression (used by MLC), as the ℓ_1 regularization parameter increases, sparsity increases. Figure 6a demonstrates the sparsity of the estimated phenotypes for LLDA and Figure 6b shows that of logistic regression. We choose phenotypes obtained at $\beta = 1 \times 10^{-8}$ and $\eta = 100$ for qualitative annotation. The parameters were chosen to achieve the lowest median sparsity while ensuring that for each chronic condition, the corresponding phenotype candidate is represented by at least 5 non-zero clinical terms. Our fourth baseline (NMF + support) did not estimate sparse phenotypes and does not have a tuneable sparsity parameter (but were nevertheless annotated for qualitative evaluation). The proposed model provides the best sparsity among all baselines.

![Figure 5: Sparsity–Accuracy Trade–off. Sparsity of the model is measured as the median of the number of non-zero entries in columns of the phenotype matrix A. (a) shows a box plots of the median sparsity across the 30 chronic conditions for varying λ values. The median and third–quartile values are explicitly noted on the plots. (b) divergence function value of the estimate from Algorithm 1 plotted against λ parameter.](image)

Appendix B. Sample Phenotypes for Baseline Models

Figures 7–33 show the top 15 terms learned for all target chronic conditions for the proposed model and baselines. The sparsity level chosen is based on the criterion described in Section 4.1. For all conditions, the terms are ordered in decreasing order of importance as learned by the models.
Figure 6: Phenotype sparsity for baseline models

(a) LLDA

(b) MLC

Figure 7: Learned Phenotypes for Liver Disease

Figure 8: Learned Phenotypes for Solid Tumor
Figure 9: Learned Phenotypes for Metastatic Cancer

0.4-CNMF	LLDA	MLC	NMF+support
metastatic	metastatic_melanoma	metastatic_prostate_cancer	metastasis
metastatic_disease	metastatic_renal_cell_carcinoma	melanoma	mets
metastatic colon cancer	lung mass	metastatic disease	metastatic prostate cancer

0.4-CNMF	LLDA	MLC	NMF+support
pain	mass	hypotension	metastatic
metastatic	malignant neoplasm	tumor	metastatic melanoma
stress ulcer	sob	cancer	metastatic renal cell carcinoma
metastatic	disease	metastases	mets
metastatic prostate cancer	ovarian ca	lung mass	metastatic renal cell cancer

Figure 10: Learned Phenotypes for Chronic Pulmonary Disorder

0.4-CNMF	LLDA	MLC	NMF+support
copd	asthma	emphysema	agitated
chronic obstructive pulmonary disease	bronchitis	bronchiectasis	asthma
emphysema	asbestosis	aspergillosis	alcohol abuse
copd exacerbation	obstructive lung disease	pulmonary infarct	alcohol_withdrawal

0.4-CNMF	LLDA	MLC	NMF+support
pain	respiratory failure	asthama	pain
copd	pneumonia	sob	edema
respiratory failure	emphysema	hyperventilation	chest pain
sob	emphysema	sob	pneumonia
pneumonia	sob	pneumonia	sob
asthma	pneumonia	sob	pneumonia
emphysema	sob	pneumonia	sob
stress ulcer	stress ulcer	pneumonia	sob
sob	pneumonia	sob	pneumonia
pneumonia	sob	pneumonia	sob
sob	pneumonia	sob	pneumonia

Figure 11: Learned Phenotypes for Alcohol Abuse

0.4-CNMF	LLDA	MLC	NMF+support
etoh_abuse	alcohol_abuse	alcohol_withdrawal	alcohol_abuse
alcoholic cirrhosis	alcoholic hepatitis	withdrawal symptoms	alcohol_abuse
alcoholism	delirium tremens	alcoholic hepatitis	alcohol_abuse
delirium tremens	alcoholic hepatitis	withdrawal symptoms	alcohol_abuse
alcoholic hepatitis	withdrawal	cirrhosis	alcohol_abuse
withdrawal	cirrhosis	alcoholic hepatitis	alcohol_abuse
cirrhosis	alcoholic hepatitis	fracture	alcohol_abuse
alcoholic hepatitis	fracture	altered mental status	alcohol_abuse
fracture	altered mental status	htn	alcohol_abuse

0.4-CNMF	LLDA	MLC	NMF+support
pain	edema	pneumonia	alcohol_abuse
pneumonia	hemorrhage	agitation	alcohol_abuse
alcohol_abuse	stress ulcer	agitated	alcohol_abuse
alcohol_abuse	cough	fall	alcohol_abuse
alcohol_abuse	fever	stroke	alcohol_abuse
alcohol_abuse	seizure	subarachnoid hemorrhage	alcohol_abuse
subarachnoid hemorrhage	hematoma	alcohol_abuse	alcohol_abuse

15
0.4-CNMF	LLDA	MLC	NMF+support
dm	**dm**	**dm2**	**niddm**
diabetes	**type_2_diabetes**	**type_ii_diabetes**	**diabetes**
niddm	**type_2_diabetes_mellitus**	**type_ii_diabetes**	**diabetes**
convulsive_status_epilepticus	**diabetes_type_2**	**type_2_diabetes_mellitus**	**diabetes**
diabetes_type_2	**diabetes_mellitus_type_2**	**skin_ulcers**	**hypoglycemia**
chest_pains	**pain**	**dm**	**htn**
			edema
			cad
			diaibetes_mellitus
			chest_pain
			hypertension
			dm2
			chf
			diaibetes
			hypertension
			sob
			bleeding

Figure 12: Learned Phenotypes for Diabetes Uncomplicated

0.4-CNMF	LLDA	MLC	NMF+support
dm	**dm**	**htn**	**hypoglycemia**
hypo	**glycemia**	**diaibetes_mellitus**	**cad**
pain	**pain**	**dm**	**htn**
			edema
			cad
			diaibetes_mellitus
			chest_pain
			hypertension
			dm2
			chf
			diaibetes
			hypertension
			sob
			bleeding

Figure 13: Learned Phenotypes for Diabetes Complicated

0.4-CNMF	LLDA	MLC	NMF+support
pvd	**pain**	**pvd**	**pvd**
peripheral_vascular_disease	**pvd**	**edema**	**aaa**
aaa	**aortic**	**aneurysm**	**rupture**
	claudication	**induration**	**heel_ulcer**
	type_a_aortic_dissection	**leg_ulcer**	**carotid_stenosis**
	dural_tear	**endoleak**	**vascular_disease**
	eschar		**pain**
			pvd
			edema
			aaa
			htn
			hematoma
			nausea
			peripheral_vascular_disease
			ischemia
			atelectasis
			coronary_artery_disease
			stress_ulcer
			aflb
			hypertension
			pvd
			peripheral_vascular_disease
			pseudoaneurysm
			aaa
			coronary_artery_disease
			carotid_stenosis
			aortic_dissection
			ptx
			cardiomegaly
			aortic_aeurysm
			renal_artery_stenosis
			mesenteric_ischemia
			complaints
			vegetation
			calcifications

Figure 14: Learned Phenotypes for Peripheral Vascular Disorder
0.4-CNMF	LLDA	MLC	NMF+support
ESRD	Hypotension	CRI	Pain
Chronic Kidney Disease	ESRD	AVF	CP
Chronic Renal Failure	Renal Failure	ESRD	Nausea
CKD	Seizure Disorder	Acute Renal Failure	Chronic Pain
End Stage Renal Disease	Fever	Cardiomegaly	Hypertension
Acute on Chronic Renal Failure	Unresponsive	Atelectasis	Edema
Thrill	Stress Ulcer	Pneumothorax	Cough
Atrophic Kidneys	Infection	Seizures	Nausea
CRF	Hypertension	Stroke	Hemorrhage
Pulmonary Artery Hypertension	Hypotension	Acute Pain	Stress Ulcer
Diverticular Disease	Status Epilepticus	Intracranial Hemorrhage	Shock
Non Reactive	Mental Status	Shortness of Breath	Nausea

Figure 15: Learned Phenotypes for Renal Failure

0.4-CNMF	LLDA	MLC	NMF+support
Seizure	Seizure Disorder	Restless Leg Syndrome	Seizure
Seizure Disorder	Seizures	Seizures	Seizures
Status Epilepticus	Unresponsive	Mental Status	Seizures
Mental Retardation	Febrile	Dementia	Seizures
Seizures	Stress Ulcer	Dementia	Seizures
Restless Leg Syndrome	Stress Ulcer	Hemorrhax	Seizures
Epilepsy	Infection	Retropulsion	Seizures
Multiple Sclerosis	Pneumonia	Multiple Sclerosis	Seizures
Tonic Clonic Seizure	Hypertension	Epilepsy	Seizures
CNS Infection	Agitated	Hydrocephalus	Seizures
Trigeminal Neuralgia	Status Epilepticus	Lethargic	Seizures
Parkinsons Disease	Seizure Disorder	Hypoxemia	Seizures
Grand Mal Seizure	Mental Status	Overdose	Seizures
Generalized Seizure	Dementia	Shortness of Breath	Seizures
Facial Twitching	Seizure Disorder	Infarction	Seizures

Figure 16: Learned Phenotypes for Other Neurological Disorders

0.4-CNMF	LLDA	MLC	NMF+support
A Fib	Atrial Fibrillation	Rapid Ventricular Response	Pain
Atrial Fibrillation	Atrial Fibrillation	Atrial Fibrillation	A Fib
RVR	Pain	Cardiomegaly	A Fib
A Fib	Stress Ulcer	Atrial Fibrillation	Hemorrhage
Pain	Stroke	Acute Cholecystitis	Atelectasis
Stress Ulcer	Edema	Calculations	Atrial Fibrillation
HTN	Bleeding	Acute Coronary Syndrome	Stroke
Stroke	Hypertension	Subdural Hematoma	Pneumothorax
Stroke	AVA	Acute on Chronic Renal Failure	HTN
Stroke	Ga	Ischemic Heart Disease	Cough
Stroke	GI Bleed	Stroke	Stress Ulcer
Bleed	Altered Mental Status	Atrial Flutter	Pleural Effusion
Aspiration	Bleed	Tachycardia	Intracranial Hemorrhage
Narrowing		Hip Fracture	Shock

Figure 17: Learned Phenotypes for Cardiac Arrhythmias
0.4-CNMF	LLDA	MLC	NMF+support
polysubstance_abuse	pain	substance_abuse	pain
substance_abuse	stress_ulcer	polypsustance_abuse	edema
cocaine_abuse	polypsustance_abuse	overdose	pneumothorax
overdose	agitated	substance_abuse	headache
addiction	asthma	chest_pressure	aneurysm
poisoning	chronic_pain	cocaine_abuse	cough
rhabdomyolysis	pneumonia	withdrawal	subarachnoid_hemorrhage
assault	anxiety	skin_warm	hemorrhage
heroin_abuse	fever	fracture	dyspnea
hep_c	agitation	epidural_abscess	sob
multiple_stab_wounds	substance_abuse	tamponade	hiv
bile_leak	respiratory_distress	hep_c	fracture
bipolar_disorder	aspiration	chronic_renal_failure	afebrile
esophageal_injury	movement	intracranial_hemorrhage	alectasis
hep	infection	lower_extremity_weakness	subdural_hematoma
		quadriplegia	headache
		right_hemiplegia	

Figure 18: Learned Phenotypes for Drug Abuse

0.4-CNMF	LLDA	MLC	NMF+support
hemiparesis	stroke	movement	pain
stroke	edema	hemiparesis	hemorrhage
paraplegia	cva	paraplegia	edema
cerebral_palsy	hemorrhage	cebra_palsy	seizure
decubitus_ulcers	seizure	cva	fever
ischemic_attack	weakness	infarction	syncope
lower_extremity_weakness	intracranial_hemorrhage	quadrplegia	bleeding
quadriplegia	infarct	brain	epidural_hematoma
expressive_aphasia	movement	expressive_aphasia	varix
right_hemiplegia	aspiration	pneumonia	sinus_tachycardia
quadrplegia	stress_ulcer	hypotension	necrosis
contractures	cerebral_infarction	fever	loose_stool
thalamic_hemorrhage	infection	syncope	subcutaneous_air
mca_infarct			afebrile
			lower_gl_bleed
			abd
			ascites
			lung_cancer
			aneurysm

Figure 19: Learned Phenotypes for Paralysis

0.4-CNMF	LLDA	MLC	NMF+support
hiv	aids	hiv	pain
bacterial_meningitis	pneumonia	scalp_laceration	pneumothorax
epidural_hematoma	hypotension	nsf	subarachnoid_hemorrhage
cryptocogenic_cirrhosis	fever	posturing	ascites
occipital_fracture	syncope	varix	hiv
orthostasis	fall	sinus_tachycardia	appendicitis
human_immunodeficiency_virus	edema	necrosis	afebrile
aids	respiratory_distress	loose_stool	chf
acquired_immunodeficiency	bleeding	subcutaneous_air	nausea
temporal_bone_fracture	epidural_hematoma	afebrile	bm
syncope	braquycardia	lower_gl_bleed	aneurysm
hlv_positive	aspiration	abd	opactities
memory_loss	cough	ascites	sepis
acute_liver_failure			abdominal_distension
conjunctiva			
0.4-CNMF	LLDA	MLC	NMF+support
----------	------	-----	-------------
hypotension	**hypotension**	**metabolic_acidosis**	**pain**
lactic_acidosis	**hypotension**	**hypodermophosis**	**edema**
hyperkalemia	**sepsis**	**hypernatremia**	**pneumothorax**
hypertremia	**acute_renal_failure**	**hyperkalemia**	**hypotension**
renal_failure	**stress_ulcer**	**hyperkalemia**	**stress_ulcer**
hypoatremia	**arfd**	**hypopotassium**	**nausea**
respiratory_failure	**renal_failure**	**acidosis**	**aspiration**
renal_failure	**infection**	**respiratory_acidosis**	**atelectasis**
hyponatremia	**ARDS**	**complications**	**cough**
hyperkalemia	**ARDS**	**obstruction**	**pleural_fffusion**
hyponatremia	**ARDS**	**ARDS**	**hematoma**
lactic_acidosis	**ARDS**	**ARDS**	**bleeding**
acute_renal_failure	**ARDS**	**ARDS**	**pneumonia**
hyposmolality	**ARDS**	**ARDS**	**subarachnoid_hemorrhage**

Figure 21: Learned Phenotypes for Fluid Electrolyte Disorders

0.4-CNMF	LLDA	MLC	NMF+support
rheumatoid_arthritis	**pain**	**rheumatoid_arthritis**	**fever**
lupus	**fever**	**lupus**	**cad**
scleroderma	**hypotension**	**polyamygia_rheumatica**	**pain**
polymyagia_rheumatica	**infection**	**hip_fraacture**	**pna**
hip_fracture	**sepsis**	**scleroderma**	**chf**
absent_bowel_sounds	**chronic_pain**	**chronic_renal_insufficiency**	**sob**
ankylosing_spondylitis	**card**	**ankylosing_spondylitis**	**coronary_artery_disease**
imi	**afibrile**	**interstitial_lung_disease**	**bleeding**
myelosplastic_flagonrome	**pna**	**dvt**	**ml**
exertional_dyspnea	**hip_fraacture**	**reflux**	**cp**
eye_pain	**stress_ulcer**	**feeling_weak**	**crackles**
interstitial_lung_disease	**hypotensive**	**primary_biliary_cirrhosis**	**pulmonary_edema**
amyloid_angiopathy	**crackles**	**occlusion**	**edema**
femoral_neck_fraacture	**femoral_neck_fraacture**	**exertional_dyspnea**	**dementia**
liver_hematoma	**liver_hematoma**	**tamponade**	**ischemic_heart_disease**

Figure 22: Learned Phenotypes for Rheumatoid Arthritis

0.4-CNMF	LLDA	MLC	NMF+support
multiple_myeloma	**lymphoma**	**lymphoma**	**lesion**
myeloma	**multiple_myeloma**	**hodgkins_lymphoma**	**pain**
lymphoma	**fever**	**multiple_myeloma**	**afib**
hodgkins_lymphoma	**hypotension**	**myeloma**	**dementia**
achalasia	**fevers**	**myeloma**	**edema**
amyloidosis	**pneumonia**	**esophagitis**	**atrial_fibrillation**
remission	**sob**	**opacities**	**proptosis**
hemochromatosis	**myeloma**	**edematous**	**peripheral_swelling**
foot_pain	**hypercalcemia**	**remission**	**infection**
barotrauma	**hypoxia**	**sah**	**htn**
neutropenic_fever	**chest_pain**	**orthopnea**	**seizure**
mmn	**anemia**	**discomfort**	**pneumothorax**
shingles	**pna**	**hypercalcemia**	**aibcess**
fungemia	**renal_failure**	**febrile_neutropenia**	**laceration**
hypoxic_brain_injury	**stress_ulcer**	**subcutaneous_emphysema**	**subdural_hematoma**

Figure 23: Learned Phenotypes for Lymphoma
0.4-CNMF	LLDA	MLC	NMF+support
thrombocytopenia	hit	hypotension	pain
hit	coagulopathy	liver_failure	pneumothorax
hepatic_encephalopathy	bleeding	ascites	edema
hepatorenal_syndrome	fever	edematous	pleural_education
cirrhosis_of_liver	acute_renal_failure	generalized_edema	bleeding
schistocytes	renal_failure	fatigue	atelectasis
low_fibrinogen	arf	cirrhosis	fever
splenic_sequestration	infection	cirrhosis	hypotensive
hepatic_dysfunction	stress_ulcer	transcription	stress_ulcer
polysubstance_abuse	coagulopathy	splenomegaly	fevers
liver_cirrhosis	fevers	pulmonary_emia	cough
dic	ards	hepatitis_c	sepsis
kidney_failure	sinus_tachycardia	hemorrage	hematoma

Figure 24: Learned Phenotypes for Coagulopathy

0.4-CNMF	LLDA	MLC	NMF+support
morbid_obesity	obese	obesity	pain
obesity	pain	respiratory_failure	edema
osa	obesity	respiratory_failure	edema
bronchomalacia	respiratory_failure	respiratory_failure	edema
obesity_hypoventilation_syndrome	respiratory_failure	respiratory_failure	edema
obstructive_sleep_aphrenia	respiratory_failure	respiratory_failure	edema
bronchomalacia	respiratory_failure	respiratory_failure	edema
tracheomalacia	respiratory_failure	respiratory_failure	edema
pannus	respiratory_failure	respiratory_failure	edema
obese	respiratory_failure	respiratory_failure	edema
pancreatic_pseudocyst	respiratory_failure	respiratory_failure	edema
venous_stasis_ulcers	respiratory_failure	respiratory_failure	edema
eeg	respiratory_failure	respiratory_failure	edema
daytime_somnolence	respiratory_failure	respiratory_failure	edema
group_a_strep	respiratory_failure	respiratory_failure	edema

Figure 25: Learned Phenotypes for Obesity

0.4-CNMF	LLDA	MLC	NMF+support
hip_fracture	pe	dyspnea	pain
pulmonary_hypertension	pain	hypoxia	pneumothorax
polycythemia	pain	hypoxia	pneumothorax
femoral_neck_fracture	pain	hypoxia	pneumothorax
pulmonary_infarct	pain	hypoxia	pneumothorax
mediastinal_mass	pain	hypoxia	pneumothorax
pseudocyst	pain	hypoxia	pneumothorax
mucositis	pain	hypoxia	pneumothorax
stasis	pain	hypoxia	pneumothorax
pulmonary_emia	pain	hypoxia	pneumothorax
chest_tightness	pain	hypoxia	pneumothorax
pe	pain	hypoxia	pneumothorax
pca_infarct	pain	hypoxia	pneumothorax
acute_pulmonary_emia	pain	hypoxia	pneumothorax
myeloma	pain	hypoxia	pneumothorax

Figure 26: Learned Phenotypes for Pulmonary Circulation Disorder
Figure 27: Learned Phenotypes for Valvular Disease

Figure 28: Learned Phenotypes for Peptic Ulcer

Figure 29: Learned Phenotypes for Congestive Heart Failure
0.4-CNMF	LLDA	MLC	NMF+support
hypothyroidism	pain	hypothyroidism	pain
hypothyroid	hypothyroid	hypothyroid	pneumothorax
sick_sinus_syndrome	hypertension	endometrial_ca	edema
thyroid_ca	stress_ulcer	infection	ateleclasis
respiratory_infection	edema	hypoglycemia	hypothyroidism
essential_tremor	pneumonia	hypoxia	stress_ulcer
pancreatic_duct	hypothyroid	hip_fracture	nausea
first_degree_heart_block	bleeding	cardiomegaly	hypotension
straining	nausea	aortic_stenosis	htn
aplastic_anaemia	sob	encephalopathy	sob
acute_delirium	chronic_pain	ateleclasis	pleural_effusion
pulm_hypertension	acute_pain	hypovolemic	bleeding
stress	pericardial_effusion	meningo ...	afebrile

Figure 30: Learned Phenotypes for Hypothyroidism

0.4-CNMF	LLDA	MLC	NMF+support
malnutrition	respiratory_failure	weight_loss	pain
ulcerative_colitis	pneumonia	failure_to_thrive	edema
failure_to_thrive	wound	calcifications	hemorrhage
hepatic_cirrhosis	ascites	anasarca	stroke
hydrothorax	aspiration	ulcerative_colitis	fever
pancreatic_pseudocyst	bleeding	pneumonia	pneumothorax
volvulus	pleural_effusion	volvulus	subdural_hemorrhage
esophageal_varices	fever	neutropenic_fever	stress_ulcer
gastroparesis	stress_ulcer	upper_gastrointestinal_bleed	facial_fra ...
bloody_diarrhea	hypoxia	glaucoma	cough
hemochromatosis	sepsis	subdural_hemorrhage	ateleclasis
necrotizing_fascitis	pna	pneumonia	pneumonia
malnourished	dvt	fracture	fracture
diverticulum	atelectasis	intracranial_hemorrhage	intracranial_hemorrhage
gastric_cancer	malnutrition	epidural_abscess	necrotizing_fascitis

Figure 31: Learned Phenotypes for Weight loss

0.4-CNMF	LLDA	MLC	NMF+support
hypotension	pain	iron_deficiency_anemia	pain
pain	fever	sinus_rhythm	pneumothorax
anemia_of_chronic_disease	hypotension	esrd	edema
end_stage_renal_disease	pneumonia	chronic_renal_failure	nausea
iron_deficiency_anemia	anemia	hydronephrosis	sob
hypercalcemia	sepsis	mitral_regurgitation	fever
anemia	sob	endocarditis	pneumothorax
chronic_anemia	stress_ulcer	hip_fracture	subdural_hemorrhage
esrd	nausea	vomiting	stress_ulcer
pancolitis	cough	pulmonary_edema	ateleclasis
babesiosis	infection	shortness_of_breath	hypothyroid ...
microcytic_anemia	edema	pyelonephritis	cough
guaiac_stools	fevers	gerd	pneumonia
dry_gangrene	chest_pain	uti	afebrile
	pna		chest_pain

Figure 32: Learned Phenotypes for Deficiency Anemias
Figure 33: Learned Phenotypes for Blood Loss Anemia

0.4-CNMF	LLDA	MLC	NMF+support
cryptogenic_cirrhosis	pain	fulminant_hepatic_failure	pain
squamous_cell_carcinoma	bleeding	tired	bleeding
heel_ulcer	gi	hocm	chf
diverticular_disease	anemia	hit	pneumothorax
lactate_levels	stress_ulcer	restless	hit
anastomotic_leak	hives	lower_gi_bleed	lower_gi_bleed
dark_stools	hypotension	effusions	effusions
gangrenous_cholecystis	gastrointestinal_bleed	calcifications	calcifications
gastropathy	abdominal_pain	peripheral_neuropathy	peripheral_neuropathy
bowel_perforation	chest_pain	blood_loss	blood_loss
portal_hypertensive_gastropathy	melena	unresponsiveness	unresponsiveness
syncopal_episodes	wound	sinus_tachycardia	sinus_tachycardia
angioedema	chf	bacteremia	bacteremia
neutropenic_fever	diarrhea	upper_gi_bleed	upper_gi_bleed
irritable_bowel_syndrome		duodenal_perforation	duodenal_perforation

Figure 34: Learned Phenotypes for Depression

0.4-CNMF	LLDA	MLC	NMF+support
depression	pain	depression	pain
overdose	depression	systolic_dysfunction	hypotension
serotonin_synrome	stress_ulcer	overdose	bleeding
od	anxiety	chronic_pain	sob
fibromyalgia	nausea	osteoarthritis	edema
clonus	chest_pain	ha	depression
blurred_vision	hypotension	blurred_vision	stress_ulcer
elevated_ammonia	aspiration	chest_pressure	nausea
type_1_diabetes	fever	cerebral_edema	bleed
crohns_disease		back_pain	pneumothorax
fulminant_hepatic_failure	sob	lightheaded	atelectasis
liver_injury	chronic_pain	pulmonary_edema	aspiration
toxic_ingestion	bleeding	obesity	hematoma
vp_shunt	abdominal_pain	osa	hematoma
bronchopleural_fistula	vomiting	hypothyroidism	pleural_effusion
	htn		anxiety
Appendix C. Augmented Mortality Prediction

Figure 35 shows weights learned by the classifier for all features. The weights shaded red correspond to phenotypes and are relatively high compared to raw notes based features (shaded blue), indicating that comorbidities capture significant amount of predictive information on mortality and achieve comparable performance to full EHR model when augmented with additional raw clinical terms.

Figure 35: Weights learned by the CNMF+Full EHR classifier for all features. The weights shaded red correspond to phenotypes.