In this contribution we present our recent computation of the NNLO QCD corrections to the production of a Higgs boson associated with a top-antitop quark pair. This process is of great importance since it allows for a direct measurement of the top-quark Yukawa coupling, and the inclusion of NNLO corrections is crucial in order to provide theory predictions with an uncertainty competitive with the projected accuracy of the experimental measurements at the end of the high-luminosity phase of the LHC.

1 Introduction

The discovery of the Higgs boson (H) in 2012\(^1\),\(^2\) confirmed one of the most glaring predictions of the Standard Model. Since then, studying its properties has been one of the priorities of the LHC scientific programme. In this context, its production associated with a pair of top quarks (\(t\bar{t}\)) plays a special role because of the strong coupling between the Higgs boson and the top quarks. Indeed, this same process allows for a direct measurement of the top quark Yukawa coupling.

The current theoretical uncertainties of the predictions for the \(t\bar{t}H\) process are of \(\mathcal{O}(10\%)\)\(^3\), and include the computation of next-to-leading order (NLO) QCD corrections\(^4\),\(^5\),\(^6\),\(^7\),\(^8\),\(^9\) and NLO EW corrections\(^10\),\(^11\),\(^12\). Beyond these on-shell calculations, the full off-shell process including leptonic top decays was studied at NLO QCD\(^13\),\(^14\) and NLO EW\(^15\), and soft-gluon contributions close to the partonic kinematical threshold were resummed\(^16\),\(^17\),\(^18\),\(^19\),\(^20\),\(^21\). As a first step towards next-to-next-to-leading order (NNLO) QCD corrections, the contribution coming from off-diagonal channels has also been computed\(^22\).

On the experimental side, the \(t\bar{t}H\) production signal has been measured by both the ATLAS and CMS collaborations with an uncertainty of \(\mathcal{O}(20\%)\)\(^23\),\(^24\), but the projection for the end of the High-Luminosity phase indicates an uncertainty at the \(\mathcal{O}(2\%)\) level\(^25\).

\(^{a}\text{Work done in collaboration with Stefano Catani, Massimiliano Grazzini, Stefan Kallweit, Javier Mazzitelli and Chiara Savoini.}\)
In this proceeding we report on our recent computation of the full NNLO QCD corrections for on-shell $t\bar{t}H$ production\cite{26}, predictions that are required in order to match, on the theoretical side, the extraordinary precision expected for the future measurements. In order to estimate the unknown two-loop amplitudes for $t\bar{t}H$ production, we developed a soft-Higgs approximation, which will be discussed in the following.

2 Challenges of the computation

Our computation of the NNLO corrections to the $t\bar{t}H$ process $c(p_1) + \bar{c}(p_2) \to t(p_3) + \bar{t}(p_4) + H(k)$ ($c = q, \bar{q}, g$), has been performed by using the q_T-subtraction formalism\cite{27} to handle and cancel singularities of infrared origin arising at intermediate steps of the computation.

Within the q_T-subtraction formalism, we can write the the cross section $d\sigma_{NNLO}$ as follows:

$$d\sigma_{NNLO}^{t\bar{t}H} = H_{NNLO}^{t\bar{t}H} \otimes d\sigma_{LO}^{t\bar{t}H} + \left[d\sigma_{NLO}^{t\bar{t}H + jet} - d\sigma_{NNLO}^{t\bar{t}H} \right].$$ (1)

The term in the square brackets in Eq. (1) represents the contribution to the cross section with $q_T \neq 0$, q_T being the transverse momentum of the final state system. As such, it is captured by the NLO cross section for the process $t\bar{t}H + \text{jet}$ and can be computed with known NLO subtraction techniques\cite{28}. The counterterm $d\sigma_{NNLO}^{CT}$ cancels additional singularities of pure NNLO type associated with the limit $q_T \to 0$.

The contribution with exactly $q_T = 0$ is provided by the coefficient $H_{NNLO}^{t\bar{t}H}$:

$$H_{NNLO}^{t\bar{t}H} = H_{t\bar{t}H}^{(2)} \delta(1 - z_1) \delta(1 - z_2) + \delta H_{t\bar{t}H}^{(2)},$$ (2)

which contains the main challenges that needed to be overcome in order to generalise the q_T-subtraction formalism for this process.

The factor $\delta H_{t\bar{t}H}^{(2)}$ contains the known one-loop squared contribution and the soft parton contribution. The latter has been computed in the case of heavy-quark pair production\cite{29} by assuming back-to-back kinematics for the massive quarks, and allowed us to apply q_T-subtraction to the case of top-pair production\cite{30,31} and bottom-pair production\cite{32}. In order to extend these results to the current class of processes, such a constraint had to be lifted: the extra contributions have been computed numerically and their on-the-fly evaluation has been implemented in a dedicated library\cite{33}.

The coefficient $H_{t\bar{t}H}^{(2)}$ contains the genuine virtual contribution, in the form of the two-loop amplitude $M_{t\bar{t}H}^{(2)}$:

$$H_{t\bar{t}H}^{(2)} = \frac{2 \text{ Re} (M_{t\bar{t}H}^{(2)}(\mu_R, \mu_R) M_{t\bar{t}H}^{(0)}(\mu_R))}{|M_{t\bar{t}H}^{(0)}|^2},$$ (3)

where μ_R is the scale at which the infrared poles are subtracted and μ_R is the renormalisation scale. Since $M_{t\bar{t}H}^{(2)}$ is not yet known, we had to estimate it via a suitable approximation.

In the limit in which the momentum of the Higgs boson k is soft ($k \to 0$), the amplitude $M_{t\bar{t}H}^{(2)}(\{p_i\}, k)$ fulfills:

$$M_{t\bar{t}H}^{(2)}(\{p_i\}, k) \simeq F(\alpha_S(\mu_R); m_t, \mu_R) \frac{m_t}{v} \sum_{i=3,4} \frac{m_t}{p_i \cdot k} M_{t\bar{t}}^{(2)}(\{p_i\}),$$ (4)

where $v = (\sqrt{2} G_F)^{-1/2}$, and $M_{t\bar{t}}^{(2)}(\{p_i\})$ is the amplitude in which the Higgs boson has been removed, i.e. the amplitude for $t\bar{t}$ production, available up to two-loop level\cite{34}. The formula in Eq. (4) can be derived by using the eikonal approximation and low-energy theorems\cite{35}. The function $F(\alpha_S(\mu_R); m_t, \mu_R)$ is the soft limit of the scalar form factor of the heavy-quark\cite{36,37}.

In order to validate our approximation, we first test it at NLO, considering the contribution of the hard coefficient $H_{t\bar{t}H}^{(3)}$ to the NLO cross section and comparing the exact result with the
approximated one. As it is shown in Table 1, the deviation with respect to the exact computation is about 30% for the gg channel and 5% for the $q\bar{q}$ channel. The better agreement for the $q\bar{q}$ channel can be explained by the presence of additional diagrams where a Higgs boson is radiated from a virtual top, both at LO and NLO, in the gg channel. Since the approximation captures the leading behaviour in the soft limit $k \to 0$, the effect of the emission from highly off-shell top propagators as the ones in these families of diagrams is not correctly reproduced.

Having checked the behaviour of the approximation at NLO, we can employ it for the computation of the NNLO corrections. We find a small contribution from the (approximated) NNLO hard coefficient $H^{(2)}_{t\bar{t}H}$: it corresponds to 1% of the LO cross-section in the gg channel and to 2% of the LO cross-section in the $q\bar{q}$ channel. To estimate the uncertainties due to the approximation at NNLO, we use the results in Table 1: we consider the deviation from the exact results at NLO as a lower bound on the NNLO uncertainty and we multiply it by a tolerance factor of 3, finally combining linearly the uncertainties for the $q\bar{q}$ and gg channel. With this choice, the final uncertainties on the NNLO corrections amount to $\pm 15\%$, which corresponds to $\pm 0.6\%$ on the total cross section.

In order to test if such estimation of the uncertainties is reliable, we can compare it with the effect given by the variation of (unphysical) parameters of the approximation. A first check that can be performed is to use different recoil prescriptions. In order to apply the approximation, there is the need to map the $2 \to 3$ kinematics of $t\bar{t}H$ production to the $2 \to 2$ kinematics of $t\bar{t}$ production. In our computation, we use the q_T recoil prescription, reabsorbing the Higgs momentum equally in the initial-state parton momenta and leaving unchanged the top and anti-top momenta. We verified that the difference in the result obtained by using different prescriptions, for example by reabsorbing the transverse momentum of the Higgs boson entirely into one of the initial state momenta, is negligible when compared with the provided uncertainties. Another possible check is to vary the scale μ_{IR} at which the infrared singularities are subtracted, which in our computation we fix at the virtuality of the $t\bar{t}H$ system M. In an exact computation, the dependence on this parameter would cancel between $H^{(2)}_{t\bar{t}H}$ and $\delta H^{(2)}_{t\bar{t}H}$ in Eq. (2). By repeating our calculation with $\mu_{IR} = 2M$ and $\mu_{IR} = M/2$ we verified that the numerical result for the hard virtual contribution changes by $+164\% \ (-25\%)$ in the gg channel and by $+4\% \ (-9\%)$ in the $q\bar{q}$ channel at $\sqrt{s} = 13(100) \text{TeV}$, an amount comparable with the uncertainties that have been estimated.

Table 1: Hard contribution to the NLO cross sections in the soft approximation.

Channel	$\sqrt{s} = 13 \text{TeV}$	$\sqrt{s} = 100 \text{TeV}$		
gg	$\Delta\sigma_{NLO,H} [\text{fb}]$	88.62	8205	
$q\bar{q}$	$\Delta\sigma_{NLO,H	\text{soft}} [\text{fb}]$	61.98	5612
Difference	$\Delta\sigma_{NLO,H}$	30.1%	31.6%	

3 Results

Our results for the inclusive cross section, obtained by implementing the $t\bar{t}H$ process within the MATRIX framework, are shown in Table 2 (see Ref. 26), together with the customary 7-point scale variation. For the NNLO predictions, we quote in brackets the combination of the numerical errors and the soft-approximation uncertainty described in the previous section: it can be observed that they turn out to be significantly smaller than remaining perturbative uncertainties.

The inclusion of NNLO corrections leads to an increase of $+4\%$ at centre-of-mass energy $\sqrt{s} = 13 \text{TeV}$ and of $+2\%$ at $\sqrt{s} = 100 \text{TeV}$. In both cases, they also significantly reduce the scale-variation bands, which are at the few percent level.
\begin{tabular}{|c|c|c|}
\hline
σ [pb] & $\sqrt{s} = 13$ TeV & $\sqrt{s} = 100$ TeV \\
\hline
σ_{LO} & $0.3910^{+31.3\%}_{-22.2\%}$ & $25.38^{+21.1\%}_{-16.0\%}$ \\
σ_{NLO} & $0.4875^{+5.8\%}_{-9.1\%}$ & $36.43^{+9.4\%}_{-8.7\%}$ \\
σ_{NNLO} & $0.5070 (31)^{+0.9\%}_{-3.0\%}$ & $37.20 (25)^{+0.1\%}_{-2.2\%}$ \\
\hline
\end{tabular}

Table 2: LO, NLO and NNLO cross sections at $\sqrt{s} = 13$ TeV and $\sqrt{s} = 100$ TeV. The errors stated in brackets at NNLO combine numerical errors with the uncertainty due to the soft Higgs boson approximation.

Figure 1 – Single-differential cross sections as a function of $p_{T,H}$ (preliminary).

In Figure 1 we also present some preliminary results for the transverse-momentum distribution of the Higgs boson. In the upper plot we show our LO (grey), NLO (red) and NNLO (blue) predictions, with their scale variation bands, while in the lower plot the ratio to the NLO prediction is presented. The smaller dark blue band in the NNLO predictions shows the soft-approximation uncertainties, computed as described above and on a bin-by-bin basis. We can observe that the NLO and NNLO uncertainty bands overlap, providing first signs of perturbative convergence. Despite the fact that the soft approximation is expected to be less accurate at high $p_{T,H}$ values, the uncertainties remain of the same order over all the spectrum. This can be understood from the fact that at high $p_{T,H}$ the role of the gg channel is reduced and the $q\bar{q}$ channel, which is under better control, plays the major role.

4 Conclusions

In this contribution we reported on our recent computation of the NNLO QCD corrections to $t\bar{t}H$ production at hadron colliders. Our computation is exact, with the exception of the contribution from the two-loop amplitudes which have been estimated by using a soft-Higgs approximation. The uncertainty due to such approximation is estimated to be smaller than 1% of the inclusive result, and well below the remaining perturbative uncertainties. The inclusion of NNLO QCD corrections lead to an increase of the cross section of a few percent, and to a significant reduction of the scale-variation bands. We have also presented preliminary results for the transverse momentum distribution of the Higgs boson.
References

1. ATLAS Collaboration. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. *Phys. Lett.*, B716:1–29, 2013.

2. CMS Collaboration. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. *Phys. Lett.*, B716:30–61, 2013.

3. D. de Florian et al. Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector. 2/2017, 10 2016.

4. W. Beenakker, S. Dittmaier, M. Krämer, B. Plumber, M. Spira, and P.M. Zerwas. Higgs radiation off top quarks at the Tevatron and the LHC. *Phys. Rev. Lett.*, 87:201805, 2001.

5. W. Beenakker, S. Dittmaier, M. Krämer, B. Plumber, M. Spira, and P.M. Zerwas. NLO QCD corrections to t anti-t H production in hadron collisions. *Nucl. Phys. B*, 653:151–203, 2003.

6. L. Reina and S. Dawson. Next-to-leading order results for t anti-t h production at the Tevatron. *Phys. Rev. Lett.*, 87:201804, 2001.

7. L. Reina, S. Dawson, and D. Wackeroth. QCD corrections to associated t anti-t h production at the Tevatron. *Phys. Rev. D*, 65:053017, 2002.

8. S. Dawson, L.H. Orr, L. Reina, and D. Wackeroth. Associated top quark Higgs boson production at the LHC. *Phys. Rev. D*, 67:071503, 2003.

9. S. Dawson, C. Jackson, L.H. Orr, L. Reina, and D. Wackeroth. Associated Higgs production with top quarks at the large hadron collider: NLO QCD corrections. *Phys. Rev. D*, 68:034022, 2003.

10. S. Frixione, V. Hirschi, D. Pagani, H.S. Shao, and M. Zaro. Weak corrections to Higgs hadroproduction in association with a top-quark pair. *JHEP*, 09:065, 2014.

11. Yu Zhang, Wen-Gan Ma, Ren-You Zhang, Chong Chen, and Lei Guo. QCD NLO and EW NLO corrections to t\bar{t}H production with top quark decays at hadron collider. *Phys. Lett. B*, 738:1–5, 2014.

12. S. Frixione, V. Hirschi, D. Pagani, H. S. Shao, and M. Zaro. Electroweak and QCD corrections to top-pair hadroproduction in association with heavy bosons. *JHEP*, 06:184, 2015.

13. Ansgar Denner and Robert Feger. NLO QCD corrections to off-shell top-antitop production with leptonic decays in association with a Higgs boson at the LHC. *JHEP*, 11:209, 2015.

14. Daniel Stremmer and Malgorzata Worek. Production and decay of the Higgs boson in association with top quarks. *JHEP*, 02:196, 2022.

15. Ansgar Denner, Jean-Nicolas Lang, Mathieu Pellen, and Sandro Uccirati. Higgs production in association with off-shell top-antitop pairs at NLO EW and QCD at the LHC. *JHEP*, 02:053, 2017.

16. Anna Kulesza, Leszek Motyka, Tomasz Stebel, and Vincent Theeuwes. Soft gluon resummation for associated ttH production at the LHC. *JHEP*, 03:065, 2016.

17. Alessandro Broggio, Andrea Ferroglia, Ben D. Pecjak, Adrian Signer, and Li Lin Yang. Associated production of a top pair and a Higgs boson beyond NLO. *JHEP*, 03:124, 2016.

18. Alessandro Broggio, Andrea Ferroglia, Ben D. Pecjak, and Li Lin Yang. NNLL resummation for the associated production of a top pair and a Higgs boson at the LHC. *JHEP*, 02:126, 2017.

19. Anna Kulesza, Leszek Motyka, Tomasz Stebel, and Vincent Theeuwes. Associated ttH production at the LHC: Theoretical predictions at NLO+NNLL accuracy. *Phys. Rev. D*, 97(11):114007, 2018.

20. Alessandro Broggio, Andrea Ferroglia, Rikkert Frederix, Davide Pagani, Benjamin D. Pecjak, and Ioannis Tsinikos. Top-quark pair hadroproduction in association with a heavy boson at NLO+NNLL including EW corrections. *JHEP*, 08:039, 2019.

21. Anna Kulesza, Leszek Motyka, Daniel Schwartländer, Tomasz Stebel, and Vincent
Theeuwes. Associated top quark pair production with a heavy boson: differential cross sections at NLO+NNLL accuracy. *Eur. Phys. J. C*, 80(5):428, 2020.

22. Stefano Catani, Ignacio Fabre, Massimiliano Grazzini, and Stefan Kallweit. $t\bar{t}H$ production at NNLO: the flavour off-diagonal channels. *Eur. Phys. J. C*, 81(6):491, 2021.

23. M. Aaboud et al. Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector. *Phys. Lett. B*, 784:173–191, 2018.

24. Albert M Sirunyan et al. Observation of $t\bar{t}H$ production. *Phys. Rev. Lett.*, 120(23):231801, 2018.

25. M. Cepeda et al. Report from Working Group 2: Higgs Physics at the HL-LHC and HE-LHC. *CERN Yellow Rep. Monogr.*, 7:221–584, 2019.

26. Stefano Catani, Simone Devoto, Massimiliano Grazzini, Stefan Kallweit, Javier Mazzitelli, and Chiara Savoini. Higgs Boson Production in Association with a Top-Antitop Quark Pair in Next-to-Next-to-Leading Order QCD. *Phys. Rev. Lett.*, 130(11):111902, 2023.

27. Stefano Catani and Massimiliano Grazzini. An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC. *Phys. Rev. Lett.*, 98:222002, 2007.

28. S. Catani and M. H. Seymour. A General algorithm for calculating jet cross-sections in NLO QCD. *Nucl. Phys.*, B485:291–419, 1997. [Erratum: Nucl. Phys. B510, 503 (1998)].

29. Stefano Catani, Simone Devoto, Massimiliano Grazzini, and Javier Mazzitelli. Soft-parton contributions to heavy-quark production at low transverse momentum. *JHEP*, 04:144, 2023.

30. Stefano Catani, Simone Devoto, Massimiliano Grazzini, Stefan Kallweit, Javier Mazzitelli, and Hayk Sargsyan. Top-quark pair hadroproduction at next-to-next-to-leading order in QCD. *Phys. Rev.*, D99(5):051501, 2019.

31. Stefano Catani, Simone Devoto, Massimiliano Grazzini, Stefan Kallweit, and Javier Mazzitelli. Top-quark pair production at the LHC: Fully differential QCD predictions at NNLO. *JHEP*, 07:100, 2019.

32. Stefano Catani, Simone Devoto, Massimiliano Grazzini, Stefan Kallweit, and Javier Mazzitelli. Bottom-quark production at hadron colliders: fully differential predictions in NNLO QCD. *JHEP*, 03:029, 2021.

33. Simone Devoto, Javier Mazzitelli, in preparation.

34. P. Bärrreuther, M. Czakon, and P. Fiedler. Virtual amplitudes and threshold behaviour of hadronic top-quark pair-production cross sections. *JHEP*, 02:078, 2014.

35. Bernd A. Kniehl and Michael Spira. Low-energy theorems in Higgs physics. *Z. Phys. C*, 69:77–88, 1995.

36. W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, P. Mastrolia, and E. Remiddi. Decays of scalar and pseudoscalar Higgs bosons into fermions: Two-loop QCD corrections to the Higgs-quark-antiquark amplitude. *Phys. Rev. D*, 72:096002, 2005.

37. J. Ablinger, A. Behring, J. Blümlein, G. Falcioni, A. De Freitas, P. Marquard, N. Rana, and C. Schneider. Heavy quark form factors at two loops. *Phys. Rev. D*, 97(9):094022, 2018.

38. Stefano Catani, Daniel de Florian, Giancarlo Ferrera, and Massimiliano Grazzini. Vector boson production at hadron colliders: transverse-momentum resummation and leptonic decay. *JHEP*, 12:047, 2015.

39. Massimiliano Grazzini, Stefan Kallweit, and Marius Wiesemann. Fully differential NNLO computations with MATRIX. *Eur. Phys. J. C*, 78(7):537, 2018.