Running title: Vein and hypophysis specification by AXR6

Corresponding author: José Luis Micol
Address: Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
Telephone: +34 96 665 8504; fax: +34 96 665 8511
e-mail: jlmicol@umh.es

Journal Research Area: Development and Hormone Action
incurvata13, a novel allele of AUXIN RESISTANT6, reveals a specific role for auxin and the SCF complex in Arabidopsis embryogenesis, vascular specification and leaf flatness

David Esteve-Bruna, José Manuel Pérez-Pérez, María Rosa Ponce and José Luis Micol

Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
Financial source: This work was supported by grants BIO2008-04075, BFU2011-22825 and CSD2007-00057 (TRANSPLANTA) from the Ministerio de Ciencia e Innovación of Spain, PROMETEO/2009/112 from the Generalitat Valenciana and LSHG-CT-2006-037704 (AGRON-OMICS) from the European Commission to J.L.M., and by a fellowship from the Generalitat Valenciana (BFPI/2009/015) to D.E.-B.

Corresponding author: José Luis Micol (telephone: +34 96 665 8504; fax: +34 96 665 8511; e-mail: jlmicol@umh.es)
ABSTRACT

Auxin plays a pivotal role in plant development by modulating the activity of SCF ubiquitin ligase complexes. Here, we positionally cloned Arabidopsis icu13 (incurvata13), a mutation that causes leaf hyponasty and reduces leaf venation pattern complexity and auxin responsiveness. We found that icu13 is a novel recessive allele of AXR6 (AUXIN RESISTANT6), which encodes CULLIN1, an invariable component of the SCF complex. Consistent with a role for auxin in vascular specification, the vascular defects in the icu13 mutant were accompanied by reduced expression of auxin transport and auxin perception markers in provascular cells. This observation is consistent with the expression pattern of AXR6, which we found to be restricted to vascular precursors and hydathodes in wild-type leaf primordia. AXR1, RCE1 (RUB1 CONJUGATING ENZYME 1), CSN5A (COP9 SIGNALOSOME 5A) and CAND1 (CULLIN-ASSOCIATED NEDD8-DISSOCIATED1) participate in the covalent modification of CULLIN1 by RUB (RELATED TO UBIQUITIN). Hypomorphic alleles of these genes also display simple venation patterns, and their double mutant combinations with icu13 exhibited a synergistic, rootless phenotype reminiscent of that caused by loss of function of MP (MONOPTEROS), which forms an auxin-signaling module with BDL (BODENLOS). The phenotypes of double mutant combinations of icu13 with either a gain-of-function allele of BDL or a loss-of-function allele of MP were synergistic. In addition, a BDL:GFP fusion protein accumulated in icu13, and BDL loss of function or MP overexpression suppressed the phenotype of icu13. Our results demonstrate that the MP-BDL module is required not only for root specification in embryogenesis and vascular post-embryonic development, but also for leaf flatness.
INTRODUCTION

The plant hormone auxin is a key player in multiple morphogenetic processes (Friml et al., 2003; Scarpella et al., 2006; Weijers et al., 2006; Donner et al., 2009). Transcription of many auxin-responsive genes is regulated by Auxin/Indole-3-acetic acid (Aux/IAA)–AUXIN RESPONSE FACTOR (ARF) signaling modules (Mockaitis and Estelle, 2008; De Smet et al., 2010). In the absence of auxin, interaction between an Aux/IAA protein and its partner ARF results in ARF inactivation; in the presence of auxin, ubiquitination and degradation of the Aux/IAA protein by the SCF TIR1/AFB1-3 E3 ubiquitin ligase complex and the 26S proteasome allows the ARF to directly inhibit or repress its target genes (Gray et al., 2001; Dharmasiri et al., 2005a; Dharmasiri et al., 2005b; Mockaitis and Estelle, 2008).

The core of the SCF complex includes three major components: RBX1 (RING-BOX1), CUL1 (CULLIN1, also called AXR6) and SKP1 (S PHASE KINASE-ASSOCIATED PROTEIN1). There are 21 SKP1 homologues in Arabidopsis (Liu et al., 2004). The fourth component of the SCF complex is a variable F-box protein, of which the Arabidopsis genome encodes 700-900 (Hua et al., 2011). TIR1 (TRANSPORT INHIBITOR RESPONSE1) (Gray et al., 2001; Dharmasiri et al., 2005a) and AFB1-3 (AUXIN SIGNALING F-BOX1-3) (Dharmasiri et al., 2005b; Parry et al., 2009) are the F-box proteins that target Aux/IAA proteins for ubiquitination.

CUL1 is post-translationally modified by RUB (RELATED TO UBIQUITIN, also called Nedd8 [Neuronal precursor cell-expressed developmentally downregulated8]), a small peptide with 60% identity to ubiquitin (Rao-Naik et al., 1998; del Pozo and Estelle, 1999; Bostick et al., 2004). The covalent modification of CUL1 requires a three-step enzymatic pathway similar to the ubiquitination pathway (Hotton and Callis, 2008; Hua and Vierstra, 2011), where AXR1 and ECR1 (E1 C-TERMINAL RELATED1) encode the two subunits of the E1 ubiquitin-activating enzyme and RCE1 (RUB-CONJUGATING-ENZYME1; Dharmasiri et al., 2003) functions as E2. The SCF subunit RBX1 probably acts as the E3 enzyme for rubylation (Kamura et al., 1999). Derubylation of CUL1 is carried out by the CSN5 metalloprotease subunit of the COP9 (constitutive photomorphogenic 9) signalosome (Cope et al., 2002; Dohmann et al., 2005). Another layer of the regulation of the SCF complex involves CAND1 (CULLIN-
ASSOCIATED NEDD8-DISSOCIATED1), a protein that can sequester the derubylated CUL1-RBX1 core of the SCF complex, thereby preventing complex assembly (Min et al., 2003; Goldenberg et al., 2004).

Several Aux/IAA-ARF auxin-signaling modules play important roles in different developmental processes. The BODENLOS-MONOPTEROS (BDL-MP or IAA12-ARF5) module, for example, is known to participate in cell specification (Weijers et al., 2006) and organogenesis (De Smet et al., 2010). Basal structures are missing in Arabidopsis seedlings homozygous for either strong loss-of-function alleles of MP or a gain-of-function allele of BDL; these seedlings lack hypocotyl and root and exhibit reduced cotyledon vasculature (Berleth and Jürgens, 1993; Hamann et al., 1999). Basal defects of these mutants are caused by misspecification of the hypophysis, the upper part of the suspensor, during early embryogenesis (Hardtke and Berleth, 1998; Hamann et al., 1999). MP is directly repressed by BDL (Hamann et al., 2002; Hardtke et al., 2004), but the auxin-dependent MP-BDL regulatory loop is not simple: the MP protein activates expression of MP and BDL (Lau et al., 2011). Although the precise mechanism is still unknown, MP plays a crucial role in hypophysis specification via a non-cell autonomous signal (Weijers et al., 2006; Schlereth et al., 2010). MP also plays a postembryonic role in vein specification (Hardtke et al., 2004; Wenzel et al., 2007; Schuetz et al., 2008; Donner et al., 2009; Krogan et al., 2012): it directly activates the expression of ATHB8 (ARABIDOPSIS THALIANA HOMEBOX GENE8) (Donner et al., 2009), which encodes a HD-Zip III transcription factor involved in procambium cell fate specification (Baima et al., 1995). The levels of PIN1 (PIN-FORMED 1), an auxin transporter that is expressed in procambium formation domains (Scarpella et al., 2006; Wenzel et al., 2007), are reduced in mp mutants (Wenzel et al., 2007). Moreover, pin1 mutants genetically interact with mp in a synergistic manner (Schuetz et al., 2008) and transgenes expressing truncated MP proteins that lack the homo- and hetero-dimerization domains cause increased leaf vascularization (Krogan et al., 2012).

A number of Arabidopsis mutants exhibit hyponastic (curled up) leaves, a phenotype that can be explained by impaired coordination of the growth of adaxial and abaxial leaf tissues (McConnell et al., 2001; García et al., 2006; Pérez-Pérez et al., 2010; Jover-Gil et al., 2012). We isolated a large set of incurvata (icu) mutants, which display hyponastic vegetative leaves and include
alleles of 14 genes (Berná et al., 1999; Serrano-Cartagena et al., 1999; Serrano-Cartagena et al., 2000). Ten of the initial set of ICU genes have been cloned, allowing their functional classification in three different pathways, related to chromatin-mediated cellular memory (Barrero et al., 2007), microRNA biogenesis and action (Jover-Gil et al., 2005; Jover-Gil et al., 2012) and auxin signaling (Pérez-Pérez et al., 2010). Two of the genes in the last group are SHY2 (SHORT HYPOCOTYL 2, also called IAA3) and AXR3 (AUXIN RESISTANT3, also called IAA17) (Pérez-Pérez et al., 2010). For example, icu6, a semi-dominant allele of AXR3, causes reduced size of leaf adaxial pavement cells and abnormal expansion of palisade mesophyll cells. Hence, the differential growth of the adaxial and abaxial leaf tissues of icu6 is thought to be a consequence of the limited space available for the internal mesophyll, which is defined by the epidermal layers (Pérez-Pérez et al., 2010). We also studied mutants exhibiting aberrant leaf venation patterns (Candela et al., 1999; Alonso-Peral et al., 2006; Candela et al., 2007; Robles et al., 2010), three of which carried loss-of-function alleles of HEMIVENATA (HVE), the gene encoding CAND1 (Alonso-Peral et al., 2006; Candela et al., 2007), which is known to physically interact with AXR6.

Here, we report the characterization of icu13, a novel recessive allele of AXR6 that causes leaf hyponasty as a consequence of a strong reduction of AXR6 protein levels. Our genetic and molecular results support the hypothesis that AXR6 acts through the MP-BDL module, which is crucial for embryo basal patterning and vascular specification in the early stages of leaf development. Hence, altering the amount of active CUL1, via missregulation of rubylation and derubylation, phenocopies the strong defects of mp and bdl mutants. As the leaf incurvature of icu13 can be rescued by either overexpression of MP or loss-of-function of BDL, we suggest that the MP-BDL module is also responsible for leaf flatness.
RESULTS

Positional cloning of *icu13* and detection of its mRNA and protein products

For positional cloning of the recessive *icu13* mutation, a mapping population of 481 F2 phenotypically mutant plants derived from an *icu13 × Ler* cross was used for linkage analysis as previously described (Ponce et al., 1999; Ponce et al., 2006). The oligonucleotides used for SSLP marker scoring are listed in Supplemental Table S1. The *icu13* mutation mapped to a 139 kb interval on top of chromosome 4, encompassing 38 annotated genes, one of which was *AXR6* (*AUXIN RESISTANT6*; Fig. 1A, B). We sequenced the *AXR6* transcription unit in the *icu13* mutant and its corresponding wild-type En-2, finding in exon 15 a C→T transition that creates a new splicing donor site, as confirmed by comparison of the sequences of PCR amplification products obtained from En-2 and *icu13* cDNAs (Supplemental Fig. S1). Two different *AXR6* splice variants are present in *icu13* seedlings: one variant differs from the wild-type En-2 mRNA only in a silent point mutation (GGC→GGT, both codons encoding glycine), but the other variant lacks the last five nucleotides of the 15th exon as a consequence of the new splicing donor site (GC→GT) introduced by the mutation. Translation of the latter mRNA is predicted to produce a truncated protein product; whereas the *AXR6* wild-type protein includes 738 amino acids, the mutant protein is predicted to contain only 492, 19 of which, at its C-terminus, are different from those of the wild type (Supplemental Fig. S2).

To quantify the relative levels of the two splice variants produced by the *icu13* allele, we performed qRT-PCR amplifications using two primer pairs: one primer pair (1F + 1R) amplifies a cDNA region upstream of the *icu13* mutation, that is shared by both splice variants, and the other primer pair (1F + 2R) amplifies only the long splice variant (Fig. 1C). Our results indicated that *AXR6* mRNA levels in En-2 are more than twice those in the *icu13* mutant. Also, only 43.2% of the *AXR6* mRNA in the *icu13* mutant corresponded to the longer splice variant, which can be assumed to be functionally wild-type (Fig. 1D). Taken together, these results indicate that the amount of mRNA than can be translated into wild-type *AXR6* proteins in *icu13* is 18% of that seen in the wild type En-2.

As we could not exclude translation of the short, aberrant splice variant of
icu13, we tried to detect its predicted truncated protein product (Supplemental Fig. S2) by Western blotting using the available α-CUL1 antibody (Gray et al., 1999). Although we could not detect any band with the size predicted for the truncated protein (57 kDa), we confirmed that both wild-type inactive (CUL1) and wild-type rubylated (CUL1-RUB) protein species were strongly decreased in icu13 seedling extracts, compared to wild type (Fig. 1E).

Phenotypic characterization of the icu13 and eta1 mutants
The eta1 recessive allele of AXR6 carries a missense mutation (Quint et al., 2005) (Fig. 1B). Both eta1 and icu13 caused mild leaf hyponasty (Fig. 2A, B). Transverse sections of first-node vegetative leaves indicated that icu13 leaves contained smaller adaxial pavement cells, more densely packed palisade mesophyll cells and fewer air spaces in the spongy mesophyll than wild type En-2 (Supplemental Fig. S3). More vegetative leaves were produced by icu13 (13.60 ± 1.34 at 21 days after stratification [das]) than En-2 (11.85 ± 0.91; P<0.01; Fig. 2B), despite bolting occurring earlier in icu13 (20.98 ± 1.71 das) than in En-2 (23.64 ± 1.34 das; P<0.01). Flowering stems were much shorter in icu13 and eta1 mutants than in their respective wild types (Fig. 2C), and also displayed reduced apical dominance (increased inflorescence branching): at 45 das, icu13 plants exhibited more flowering stems (44.22 ± 6.48; n=9) than En-2 (23.67 ± 3.74; n=9; P<0.01). Similar results were obtained for eta1 (52.00 ± 5.7; n=5) compared to Col-0 (33.40 ± 5.70; n=5; P<0.01).

We found that the complexity of the vascular network was reduced in icu13 and eta1 first- and third-node leaves compared with their wild types. Third-, fourth- and higher-order veins were missing from icu13 and eta1 venation patterns in these leaves (Fig. 2D). The venation density and number of branching points per mm², which are indicators of vascular complexity (Candela et al., 1999), were reduced in both icu13 and eta1, and the number of free-ending veins per mm of venation length was significantly increased only in icu13 (Table I).

We also tested the auxin response of icu13 and eta1. Seedlings of these mutants displayed reduced inhibition of primary root growth when treated with exogenous 3-indolacetic acid (IAA; Fig. 2E; P<0.01), and displayed a small increase in the number of lateral roots after the transfer of mutant seedlings to IAA-supplemented plates (Fig. 2F). We confirmed this reduction in auxin
responses by examining the expression of the DR5rev:GFP reporter (Friml et al., 2003) in primary root meristems. DR5rev:GFP expression in icu13 and eta1 roots, in contrast to expression in wild type, was restricted to the distal region of the meristem (quiescent center and columella) and excluded from the vasculature (Supplemental Fig. S4). These results are consistent with a reduction in auxin responses in the icu13 and eta1 mutants, a reduction that can be explained by impaired SCFTIR1/AFB1-3 function.

Phenotypic characterization of heterozygotes for AXR6 alleles

Twelve mutations of AXR6 have already been described, including loss- and gain-of-function alleles (Fig. 1B). To study their phenotypes in combination with icu13, we selected four mutants, a semi-dominant, gain-of-function allele, axr6-2 (Hobbie et al., 2000), and three recessive alleles, two of which are null (cul1-1 and cul1-2; Shen et al., 2002) and one that is likely hypomorphic (eta1; Quint et al., 2005). We studied the embryo and seedling phenotypes of plants heterozygous for all possible combinations of these five alleles of AXR6 (Fig. 3).

The icu13/eta1 heterozygotes (Fig. 3I) were indistinguishable from their icu13/icu13 parent, except for their increased size, which is due to heterosis caused by their hybrid En-2/Col-0 background (data not shown). Seedlings heterozygous for icu13 and either axr6-2, cul1-1 or cul1-2 lacked their basal region, including most of the hypocotyl and primary root, and died at postembryonic stages (Fig. 3C; 3G and data not shown). These three heterozygotes strongly resembled homozygous axr6-1, axr6-2 (Fig. 3B), mp or bdl mutants. However, combinations of eta1 with axr6-2, cul1-1 or cul1-2 developed roots and were fertile when grown in Petri dishes (Fig. 3D; 3H and data not shown). Taken together, our results indicate that the recessive icu13 mutation causes a stronger loss of function in AXR6 than the eta1 mutation.

To study the phenotypes of axr6-2/cul1-1 and axr6-2/cul1-2 heterozygotes, siliques from several axr6-2/AXR6 × AXR6/cul1-1 and axr6-2/AXR6 × AXR6/cul1-2 crosses were collected before dehiscence and manually dissected. In 17 out of 19 siliques a quarter of the seeds were abortive (Supplemental Table S2). Differential interference contrast (DIC) microscopy revealed that the axr6-2/cul1-1 (Fig. 3K) and axr6-2/cul1-2 (Fig. 3L) embryos were in most cases arrested at the late globular stage (89.7%; n=68) exhibiting several layers of cells within the suspensor.
Expression patterns of auxin and vascular markers in the icu13 mutant

Previous analysis of AXR6 indicated that it played a role in auxin signaling. To assess the role of AXR6 and auxin signaling in vascular fate specification and in the mutant phenotype of icu13, we examined the expression of markers for auxin transport (PIN1 pro:PIN1:GFP; Xu et al., 2006), auxin perception (DR5rev:GFP; Friml et al., 2003), and vascular differentiation (ATHB8 pro:GUS; Baima et al., 1995) (see Materials and Methods).

PIN1 encodes the only PIN family auxin-efflux carrier that is expressed early in leaf preprocambial cells, and whose expression is auxin dependent (Scarpella et al., 2006). We used the PIN1 pro:PIN1:GFP marker (Xu et al., 2006) to visualize auxin transport during early development of the leaf venation pattern. PIN1:GFP expression was lower in icu13 than in wild type En-2 primordia at 3 das (Fig. 4A; 4F). PIN1:GFP expression in leaf primordia was detected at 4 das in the preprocambial cells of more than three vascular loops in En-2 (Fig. 4B), and in only one or two vascular loops, including the midvein, in icu13 (Fig. 4G). The differences in PIN1:GFP expression between En-2 and icu13 were enhanced later in leaf primordium development (Fig. 4C-D; 4H-I). Both En-2 and icu13 seedlings treated with the auxin efflux inhibitor N-1-naphthylphthalamic acid (NPA) (Mattsson et al., 1999) displayed increased leaf vein densities, which correlates with an enhanced expression of PIN1:GFP (Fig. 4E; 4J). However, the venation patterns of icu13 leaf primordia treated with NPA were always less complex than those of the wild type.

In contrast to PIN1 pro:PIN1:GFP, the expression of DR5rev:GFP was initially indistinguishable in icu13 and En-2 and was restricted to the apex of leaf primordia at 3 das (Fig. 4K; 4P). However, from 4 to 7 das, DR5rev:GFP expression broadened in the wild type but expanded much less in icu13 (Fig. 4L-N; 4Q-S). Consistent with decreased auxin signaling in icu13 leaves, DR5rev:GFP expression was substantially reduced in the quiescent center and the columella region of icu13 root meristems at 7 das (Supplemental Fig. S4). NPA treatment increased vein densities and DR5rev:GFP expression in En-2 and icu13, but the icu13 venation pattern was much simpler (Fig. 4O; 4T).

ATHB8 encodes an MP-inducible HD-Zip III transcription factor that restricts preprocambial cell fate specification downstream of auxin (Baima et al., 1995; Donner et al., 2009). ATHB8 pro:GUS expression was similar in the central
region of leaf primordia of En-2 and icu13 at 3 das (Fig. 4U; 4Z), and more complex in En-2 than in icu13 from 4 das onwards (Fig. 4V-Y; 4AA-AD).

In eta1 leaf primordia, the expression patterns of DR5rev:GFP, PIN1pro:PIN1:GFP and ATHB8pro:GUS were similar to the expression patterns in icu13 (data not shown). Taken together, our results indicate that a loss-of-function mutation in AXR6, such as the icu13 and eta1 mutations, alters vascular development, beginning at the earliest stages of auxin perception and transport and extending to the later expression of specific vascular differentiation genes.

Spatial expression pattern of the AXR6 gene
To examine AXR6 expression, an AXR6pro:GUS transcriptional fusion was obtained and transferred into plants. Two independent T2 transgenic families in the Col-0 background and five in the En-2 background exhibited similar expression patterns. AXR6 was broadly expressed during embryogenesis from the 16-cell dermatogen (Supplemental Fig. S5A) to the early torpedo (Supplemental Fig. S5B-D) stages, and remained ubiquitous in both the embryo and the suspensor. From the torpedo stage onwards, strong GUS staining was associated with provascular tissues and the shoot apical meristem (Supplemental Fig. S5E). During post-embryonic development, AXR6 expression was high in the shoot (Fig. 5A) and root apical meristems (Fig. 5C), vascular-associated cells, and cotyledon and leaf hydathodes (Fig. 5A, B). In the flowers, AXR6pro:GUS was mainly expressed in the vasculature, mature stigmas, ovules and mature pollen grains (Fig. 5D-F). We also examined AXR6pro:GUS expression during the early development of the first pair of leaves, from 3 to 10 das, in phenotypically mutant and wild-type siblings from several F3 families segregating for the icu13 mutation. The initially broad AXR6pro:GUS expression in leaf primordia (Supplemental Fig. S5F, K) was rapidly restricted to vascular-associated cells and hydathodes (Supplemental Fig. S5G-J, L-O). NPA treatment of either wild-type or icu13 seedlings increased vein density, which was correlated with an increase in the expression of the AXR6pro:GUS marker in their leaves (Supplemental Fig. S5I, S5N).

Distribution of the AXR6 protein
To study AXR6 protein distribution and subcellular localization, we used an
AXR6:GFP fusion expressed under the control of the *AXR6* promoter. We obtained two T2 families in the Col-0 background and four in the En-2 background, all of them expressing the *AXR6*ₚｒｏ:AXR6:GFP construct. AXR6:GFP was detected early in embryogenesis, from the dermatogen stage onwards (Fig. 5G-K). The pattern of early embryonic AXR6:GFP expression was ubiquitous, similar to that seen for *AXR6*ₚｒｏ:GUS. However, increased AXR6:GFP signal was detected in provascular tissues from the heart stage onwards (Fig. 5I-K). Postembryonic expression of AXR6:GFP was strong in the division zone of the root meristem (Fig. 5L), with both nuclear and cytoplasmic subcellular localization (Fig. 5M, N) as previously described for the AXR6 protein (Farrás et al., 2001; Shen et al., 2002). In the root differentiation zone, AXR6:GFP was detected only in pericycle cells (data not shown). AXR6:GFP was broadly expressed in young leaf primordia (Fig. 5O), but in mature cotyledons and leaves, it was restricted to vascular-associated cells (Fig. 5P) and some cells within the hydathodes (Fig. 5Q). We also performed a time-series analysis of AXR6:GFP localization during leaf development (Supplemental Fig. S5P-T). In contrast to other auxin signaling (*DR5rev*) or vascular (*PIN1, ATHB8*) markers (see above), specific procambial expression of AXR6:GFP was not seen in leaf primordia earlier than 5 das (Supplemental Fig. S5Q). As leaf development proceeded, AXR6:GFP was restricted to vascular tissues (Supplemental Fig. S5R-T). In addition, we obtained similar NPA-dependent patterns of AXR6:GFP to those previously found for *AXR6*ₚｒｏ:GUS (Supplemental Fig. S5S).

Genetic interactions of icu13 and eta1 with loss-of-function alleles of genes required for SCF Function

To investigate whether precise regulation of SCF function is essential for leaf development and vein patterning, we examined the interaction of *icu13* with mutations affecting genes that regulate the covalent modification of CULLIN1 by RUB (RELATED TO UBIQUITIN). We obtained double mutant combinations of either *icu13* or *eta1* with *axr1-12* (del Pozo et al., 2002), *hve-2* (Alonso-Peral et al., 2006), *rc1-10* (this work) and *csn5a-2* (Dohmann et al., 2005) (Fig. 6A), loss-of-function mutations that affect RUB modification of CUL1 (see Introduction).

The *axr1-12* and *hve-2* mutants display reduced venation pattern
complexity and leaf size, compared to their wild type counterparts (Dharmasiri et al., 2003; Alonso-Peral et al., 2006; Robles et al., 2010). We found a T-DNA insertion in the first intron of RCE1 that reduced its expression to 6% of the wild-type level (Supplemental Fig. S6), and we named this allele rce1-10. Leaves of homozygous rce1-10 plants were slightly hyponastic (Fig. 6A) and normally sized, but exhibited reduced venation density and number of branching points veins per mm2 (Fig. 6B; Table I). Leaves of the csn5a-2 mutant were of reduced size but with a venation density and number of branching points per mm2 similar to those of Col-0. The number of free-ending veins per venation length, however, was significantly decreased in csn5a-2 mutant leaves compared with those of Col-0 (Fig. 6B; Table I).

All the double mutant combinations of axr1-12, hve-2, rce1-10 or csn5a-2 with icu13 or eta1 (Supplemental Tables S3 and S4) shared a seedling lethality phenotype that we interpreted as synergistic (Fig. 6C-F). These double mutants strongly resembled homozygous axr6-1 and axr6-2 (Hobbie et al., 2000), mp (Berleth and Jürgens, 1993) or bdl (Hamann et al., 1999) single mutants, with a lack of roots and hypocotyls, strong defects in vein differentiation and only incipient leaf development. Since this more-than-additive phenotype showed variable expressivity, we classified the embryo-lethal double mutants into five phenotypic classes, from strong (non-germinated seeds) to weak (seedlings developing more than two leaves) (Fig. 6C-F; Supplemental Table S3). However, no clear pattern emerged from our phenotypic classification that would allow us to make conclusions on differences in the strength of the genetic interactions found. We further dissected siliques from F2 plants that were homozygous for icu13 and heterozygous for either axr1-12, rce1-10, csn5a-2 or hve-2, and vice versa. All double mutant embryos for all four genetic combinations displayed failures in the division of the hypophysis and hypophysis-derived cells, giving rise to embryonic phenotypes (Fig. 6G-H; 6J-K), similar to those previously observed in homozygotes for loss-of-function mp (Berleth and Jürgens, 1993) or gain-of-function bdl (Hamann et al., 1999) and axr6 (Hobbie et al., 2000) mutations. The most extreme double mutant phenotypes that we found were in some cases more severe than those usually observed in mp, bdl, axr6-1 and axr6-2 homozygotes (Fig. 6I; 6L). In summary, we found genetic interactions between loss-of-function alleles of AXR6 and four genes required to regulate SCF activity by the rubylation-derubylation pathway,
suggesting that both activation and inhibition of CUL1 by RUB attachment and release, respectively, are essential for proper SCF function.

Genetic interactions of *icu13* and *eta1* with gain-of-function alleles of *Aux/IAA* genes

The main role of the SCF_{TIR1/AFB1-3} complex is the ubiquitin-mediated destabilization of Aux/IAA repressors, which are negative regulators of auxin signaling (Gray et al., 2001; Dharmasiri et al., 2005a; Dharmasiri et al., 2005b). We next examined the interaction of *icu13* and *eta1* with hypermorphic alleles of *Aux/IAA* genes, such as the dominant *shy2-10* (this work; see Materials and Methods) and *axr2-1* (Timpte et al., 1994) (Supplemental Table S5), or the semi-dominant *axr3-3* (Leyser et al., 1996) and *icu6* (Berná et al., 1999; Pérez-Pérez et al., 2010) alleles (Supplemental Table S6). All plants of the eight double mutant genotypes analyzed were dwarfed and exhibited compact rosettes, with leaves of reduced size and increased hyponasty compared to their single mutant siblings (Fig. 7A), phenotypes that we interpreted as additive. Leaves of the *shy2-10* and *axr2-1* mutants were reduced in size, but their vascular phenotypes were similar to wild type, the only exception being an increased number of free-ending veins per mm of venation (Table I). The *shy2-10 icu13*, *shy2-10 eta1*, *axr2-1 icu13* and *axr2-1 eta1* double mutants displayed additive venation phenotypes, as we found a significant reduction in their leaf area and intermediate values in vascular complexity traits compared to those seen in both single mutants alone (Fig. 7B; Table I). All the double mutant combinations including a loss-of-function allele of *AXR6* and a gain-of-function allele of *SHY2*, *AXR2* or *AXR3* were viable and fertile, in contrast to the interactions that we observed between loss-of-function alleles of *AXR6* and *AXR1*, *HVE/CAND1*, *RCE1* or *CSN5A* (Fig. 6).

Genetic interactions of *AXR6* with *BDL* and *MP*

As we mentioned in the Introduction, seedlings homozygous for *bdl*, a semi-dominant, gain-of-function allele of *BDL*, do not develop basal structures due to defective early hypophysis specification (Hamann et al., 2002; Fig. 8A; 8G), a phenotype that is similar to that caused by strong loss-of-function alleles of *MP* (Berleth and Jürgens, 1993; Hardtke and Berleth, 1998; Fig. 8I). We found this phenotype to be reminiscent of that caused by strong loss of SCF function
either directly (strong loss- and gain-of-function alleles of *AXR6*; Fig. 3) or indirectly (mutations affecting the regulators of SCF activity; Fig. 6). In our standard growth conditions, *bdl/BDL* heterozygotes (Fig. 8B) displayed a leaf incurvature similar to that seen in *icu13* and *eta1* homozygotes. In light of our finding that *icu13* and *eta1* do not interact with gain-of-function alleles of some *Aux/IAA* genes (Fig. 7), the dose-dependent phenotype of the *bdl* allele suggested to us that the leaf and vascular phenotypes of *icu13* and *eta1* primarily arise from the stabilization of BDL, whose levels are known to be precisely titrated during embryogenesis for proper specification of embryonic basal structures (Hamann et al., 2002). In several F2 families derived from selfed *AXR6/icu13;bdl/BDL* and *AXR6/eta1;bdl/BDL* plants, we found more rootless, early-lethal seedlings than expected, a significant proportion of which were heterozygous for the *bdl* mutation and homozygous for either *icu13* (21%; n=24; Fig. 8C) or *eta1* (12.5%; n=24; Fig. 8D). About one quarter of the F2 seeds studied did not germinate and as no double mutant was found among the germinated seedlings, we hypothesize that *icu13 bdl* and *eta1 bdl* double homozygotes might have an embryonic lethality phenotype. We then dissected siliques from *AXR6/icu13;bdl/BDL* and *AXR6/AXR6;bdl/BDL* selfed plants to visualize the embryonic phenotypes of the offspring by DIC microscopy. In all cases, wild-type embryos were found in siliques from homozygous *icu13* and *eta1* plants (Fig. 8E, F) as expected since these mutations do not alter the root initiation program during embryogenesis. Moreover, whereas *bdl/bdl* embryos only display weak phenotypes derived from hypophysis misspecification (Fig. 8G, H), putative *icu13 bdl* double homozygotes embryos show more severe defects, such as apparently twin embryos (Fig. 8K, L) or embryos displaying strong division defects and overproliferation in the suspensor (Fig. 8L-N). Similar embryo-lethal phenotypes were found in the progeny of *AXR6/eta1;bdl/BDL* selfed plants (data not shown).

BDL is known to interact with and inhibit the MP transcription factor, which is required for basal patterning of embryos and vascular development (Hamann et al., 2002; Hardtke et al., 2004; Weijers et al., 2006). To confirm that the genetic interaction found between *AXR6* and *BDL* is mediated by *MP*, we crossed the weak *mp-S319* allele (Cole et al., 2009) to *icu13* or *eta1*. As previously described, only 7-14% of the progeny from *MP/mp-S319* plants were rootless, due to incomplete penetrance (Schlereth et al., 2010). Several F3
families obtained by selfing *icu13/icu13;MP/mp-S319* and *eta1/eta1;MP/mp-S319* plants included a number of rootless seedlings (3 to 9%; n=803) lower than that of the expected double mutants (7 to 14%). To unequivocally identify the *icu13 mp-S319* and *eta1 mp-S319* double mutant phenotypes, we quantified the number of abortive seeds in the siliques of *icu13/icu13;MP/mp-S319* (n=30 from 109 seeds) and *eta1/eta1;MP/mp-S319* (data not shown) plants. We then determined the embryonic phenotypes by DIC microscopy. We found abnormal cell divisions in the hypophysis and hypophysis-derived cells in homozygous *mp-S319* embryos (Fig. 8I, J) as previously described (Schlereth et al., 2010). All the abortive seeds contained dead embryos with mutant phenotypes of different degrees of severity, some of which are shown in Fig. 8O-Q.

We reasoned that the *icu13* phenotype might be caused by the inactivation of *MP* caused by the stabilization of its Aux/IAA repressor, BDL, as a consequence of partial inactivation of the SCF^{TIR1/AFB1-3} complex (Gray et al., 2001; Dharmasiri et al., 2005a; Dharmasiri et al., 2005b). To test our hypothesis, we obtained 10 *icu13* and 9 En-2 transgenic lines expressing the BDL_{pro}:BDL:GFP construct, which were used to study BDL stabilization. We found faint expression of the BDL:GFP protein in the central region of primary roots in young En-2 seedlings (Fig. 8R), which is indicative of rapid protein turnover via 26S proteasome degradation (Gray et al., 2001). Consistent with a reduced function of SCF^{TIR1/AFB1-3} in the *icu13* mutants (see above), we found accumulation of BDL:GFP in the vascular domain of the root meristem in *icu13* plants (Fig. 8T). To confirm that BDL:GFP accumulation in *icu13* is earlier and independent of proteasome function, we incubated young seedlings in the presence of MG132, a proteasome-inhibitor (Jensen et al., 1995). We found that a short MG132 treatment increased the accumulation of BDL:GFP in wild-type roots (Fig. 8S; V), whereas no significant differences were found between *icu13* roots treated or not with MG132 (Fig. 8U; V). BDL:GFP was found mainly in the nucleus of abaxial pavement cells of cleared *icu13* leaf primordia (Supplemental Fig. S7A-C), whereas no BDL:GFP signal was found in wild-type leaves (data not shown). We discarded that the stronger signal of BDL:GFP was caused by overexpression of the *BDL* gene in the *icu13* background, by quantifying *BDL* expression (Supplemental Fig. S7D). These results are consistent with the hypothesis that BDL:GFP accumulates in the *icu13* mutant due to a defective SCF^{TIR1/AFB1-3} function, which is upstream of proteosomal
degradation.

Taken together, the genetic interactions found between AXR6, BDL and MP suggest that the regulatory pathway involving these three genes is mainly responsible for the specification of embryonic basal structures and for the specification of postembryonic vascular tissues, and that tight regulation of BDL activity through auxin-mediated SCF regulation is required.

Loss of function in BDL and gain of function in MP suppress the phenotype of icu13

To investigate if the phenotype of icu13 depends on the MP-BDL module, we assessed to what extent it can be modified by MP overexpression and we obtained independent T1 lines carrying the 35Spro:MP transgene (Hardtke et al., 2004) in the icu13 (n=24) and En-2 (n=4) backgrounds. In 10 35Spro:MP icu13 T2 families, we observed segregation for a mild leaf hyponasty phenotype, clearly distinguishable from that of the icu13 homozygotes (Fig. 9A). In all cases (n=13), plants with this phenotype were icu13/icu13 and carried the 35Spro:MP construct, likely as homozygotes. We confirmed further this partial rescue in T3 35Spro:MP families which exhibited a mild leaf incurvature and found that all were transgenic for the 35Spro:MP construct and homozygous for the icu13 mutation (Fig. 9B).

As BDL accumulated to higher levels in icu13 (Fig. 8R-V), we hypothesized that a stronger phenotypic suppression might be achieved with a lack-of-function allele of BDL. We crossed icu13 and eta1 to the iaa12-1 mutant (Overvoorde et al., 2005; this work), which bears a T-DNA insertion in the second exon of BDL abolishing its expression (Supplemental Fig. S8). In the F2 progeny, the icu13/icu13;iaa12-1/iaa12-1 double mutants exhibited only weak leaf hyponasty (Fig. 9C) likely as a consequence of suppression of the phenotype of icu13 by the lack of function of BDL. This observation was confirmed by genotyping in the F3 progeny of selfed icu13/icu13;BDL/iaa12-1 F2 plants. Similar results were obtained in the F2 and F3 generations derived from an eta1 × iaa12-1 cross (data not shown). Taken together, our results suggest that the leaf incurvature of icu13 is caused by the loss of MP activity due to the accumulation of its repressor BDL.

We quantify the partial suppression carried out by the 35Spro:MP transgene and the iaa12-1 null mutant over some icu13 phenotypes. The
number of lateral roots was significantly higher in icu13 iaa12-1 double mutants (Supplemental Fig. S9A). Regarding auxin responsiveness, both icu13 35S_pro:MP and icu13 iaa12-1 were more sensitive to endogenous auxin than icu13, but less than the wild type (Supplemental Fig. S9B). Although icu13 35S_pro:MP leaf size was similar to that of Col-0, the venation density of icu13 35S_pro:MP leaves was not significantly different than icu13. The number of free-ending veins per venation length, however, was significantly lower in icu13 35S_pro:MP leaves than in icu13 (Fig. 9D; Table I). While in the icu13 iaa12-1 double mutants leaf size was not rescued, their vein phenotypes (venation density, number of branching points per mm² and number of free-ending veins per venation length) were significantly different than those of icu13 and more similar to those of their wild type (Fig. 9D; Table I). Taken together, both MP overexpression and a null allele of BDL restore most of the phenotypic defects caused by the icu13 mutation, suggesting that the MP-BDL module is responsible for some of the icu13 phenotypes studied.
DISCUSSION

Leaf vascular patterning is assumed to be established by a polar flux of auxin. Consistent with the canalization hypothesis (Sachs, 1981), cells that primarily respond to auxin express the auxin efflux facilitator PIN1 in a polar fashion (Scarpella et al., 2006; Wenzel et al., 2007; Scarpella et al., 2010). PIN1 positioning within a row of cells allows a more efficient auxin transport through them than through their neighbors, which results in narrower PIN1 expression domains. Cells suited for auxin flow will later differentiate into functional veins (Scarpella et al., 2006; Wenzel et al., 2007; Scarpella et al., 2010). Hence PIN1 expression represents the first stage of vascular differentiation, and the irreversible stage of preprocambial cell identity is marked by the later expression of the transcription factor ATHB8 (Baima et al., 1995; Scarpella et al., 2006). The direct link between these two stages is led by auxin signaling, as MP directly activates \textit{ATHB8} expression (Donner et al., 2009).

\textit{icu13} leaves display a simple venation pattern with a lack of higher-order veins and an increased number of free-ending veins. A reduction of PIN1:GFP expression in the young primordia was the earliest defect observed during \textit{icu13} leaf development. Low PIN1 expression in \textit{icu13} primordia might cause a reduction in auxin transport through PIN1-expressing cells. Although we did not measure auxin levels directly, the lower responses of the \textit{DR5rev:GFP} auxin reporter found in \textit{icu13} leaf primordia is consistent with the hypothesis that auxin levels in provascular cells are lower in \textit{icu13} than in En-2. Alternatively, defective function of the SCF \textit{TIR1/AFB1-3} complex in \textit{icu13} leaf primordia may directly cause reduced auxin responses. The expression of late vascular markers, such as \textit{ATHB8\textsubscript{pro}:GUS}, correlated to those of PIN1:GFP in both wild-type and \textit{icu13} seedlings. Since \textit{PIN1} expression depends on MP (Weijers et al., 2006; Wenzel et al., 2007; Schuetz et al., 2008) and MP binds to the \textit{ATHB8} promoter to activate its expression (Donner et al., 2009), the simpler expression patterns of PIN1:GFP and \textit{ATHB8\textsubscript{pro}:GUS} in \textit{icu13} leaf primordia will mirror active MP levels. However, the earliest differences observed between \textit{icu13} and En-2 leaves involve PIN1:GFP but not \textit{ATHB8\textsubscript{pro}:GUS}, suggesting that ARFs other than MP might activate \textit{PIN1} expression during the initial stages of leaf development. Consistent with these data, quadruple mutants of the \textit{YUCCA} (\textit{YUC}) genes, which encode flavin monooxygenases required for auxin
biosynthesis, fail to develop veins (Cheng et al., 2007).

The expression pattern of the AXR6 gene and AXR6 protein fully overlapped as expected if the SCF complex acts cell autonomously. For SCFTIR1/AFB1-3, the auxin molecule acts as the diffusible factor that determines its function (Gray et al., 2001; Dharmasiri et al., 2005a; Dharmasiri et al., 2005b). During embryogenesis, the AXR6:GFP fusion protein was broadly expressed in the embryo and the suspensor up to the heart stage, and was later restricted to the central domain of the embryo, mirroring the MP and BDL expression domains within the vascular precursor cells (Hardtke and Berleth, 1998; Hamann et al., 2002; Hardtke et al., 2004; Cole et al., 2009; Rademacher et al., 2011). Postembryonically, the AXR6 gene and protein patterns remain comparable to MP expression in the developing veins and the hydathodes within the leaf primordia (Wenzel et al., 2007). Interestingly, the earliest expression patterns for AXR6 in leaf primordia did not fully overlap with auxin signaling, measured by DR5rev:GFP reporter expression, which suggests the involvement of other SCF complexes in the leaf initiation process.

Loss-of-function mutations in genes required to regulate SCF assembly through the rubylation-derubylation pathway, such as AXR1, HVE, RCE1 and CSN5A (del Pozo et al., 2002; Dohmann et al., 2005; Alonso-Peral et al., 2006; Hotton and Callis, 2008; Hua and Vierstra, 2011) (see Introduction) displayed reduced venation density in their leaves (Dharmasiri et al., 2003; Alonso-Peral et al., 2006; Robles et al., 2010; this work). Similar to the results described for axr1-12 eta1 (Quint et al., 2005), axr1-30 cul1-7 (Gilkerson et al., 2009) and eta2-1 eta1 (Zhang et al., 2008), the double mutants obtained in this work involving icu13 or eta1 and mutations in the SCF rubylation-derubylation pathway displayed seedling lethality phenotypes resembling homozygous mp, bdl, axr6-1 or axr6-2. We hypothesize that, when AXR6 levels are reduced (as in the icu13 or eta1 mutants), the turnover between active and inactive SCF complexes is now limiting for optimal SCF function. Our results are in agreement with the current model where the cyclic rubylation-derubylation of the AXR6 subunit determines SCF activity (Gray et al., 2001; del Pozo et al., 2002; Gray et al., 2002; Hotton and Callis, 2008).

The pleiotropic phenotype of icu13 mutants is likely due to the importance of the AXR6 protein as a scaffold for SCF function, which is a key integrator of intracellular hormone-regulated responses and environmental
stimuli (Vierstra, 2009). Our results indicate, however, that most of the phenotype of icu13 might be related to auxin signaling defects alone. Auxin signaling through SCF acts on the stability of Aux/IAA repressors, of which there are 29 members in Arabidopsis (Overvoorde et al., 2005; Guilfoyle and Hagen, 2007; Mockaitis and Estelle, 2008). Gain-of-function mutants in several Aux/IAA repressors with partially overlapping phenotypes have been described; this suggests functional redundancy between Aux/IAA homologues (Overvoorde et al., 2005; Mockaitis and Estelle, 2008; Pérez-Pérez et al., 2010). Although shy2-10, axr2-1, axr3-3 and icu6 displayed subtle alterations in their venation patterns (this work), we did not observe enhancement of their vascular defects either by icu13 or eta1. On the contrary, the semi-dominant phenotype of bdl was clearly enhanced by icu13 or eta1 mutations. We also found that BDL::GFP was stabilized in the icu13 mutants, and the loss of function of BDL partially restored the wild-type phenotype of icu13 leaves. Taken together our results indicate that the primary cause of the icu13 phenotype is BDL stabilization caused by defective SCF function, which limits 26S proteasome-mediated degradation of BDL. Since the main function of BDL is to inhibit MP activity (Hamann et al., 2002; Hardtke et al., 2004), the phenotype of icu13 might be due to inactivation of MP function. In support of this hypothesis, icu13 and eta1 also enhanced the phenotype of a weak hypomorphic MP allele, mp-S319. Also, leaf upcurling and vascular phenotypes in icu13 were partially rescued by the gain-of-function of MP. However, we did not obtain a full rescue of leaf flatness and vascular development in icu13 by manipulation of the MP-BDL module, which might be due to the functional redundancy between BDL and its closest homologue IAA13 (Weijers et al., 2005) or to the repression of the MP gain-of-function by the endogenous BDL (Krogan et al., 2012). Nevertheless, it should not be forgotten that icu13 might display an altered ubiquitination profile and accumulation of many other SCF-targets (Maor et al., 2007; Manzano et al., 2008). As previously proposed for the leaf incurvature of the icu6 mutant (Pérez-Pérez et al., 2010), our observations suggest that the adaxial tissues in icu13 leaves are mostly defective in cell expansion and that the upward curling of icu13 leaves might be explained by the differential growth of adaxial and abaxial tissues and by the limited space available for the internal mesophyll.

The icu13 bdl, eta1 bdl, icu13 mp-S319 and eta1 mp-S319 double mutants die during embryogenesis, with morphological alterations ranging from
arrest at the globular stage with additional divisions of suspensor cells as also seen in arx6-2/cul1-1 and arx6-2/cul1-2 heterozygotes, to cell overproliferation of the embryo and the suspensor, producing root-like structures. The latter phenotype was also found in double homozygotes of icu13 and arx1-12, rce1-10, csn5a-2 or hve-2. Such strong defects were never seen in bdl and mp mutants alone, but similar phenotypes have been found in embryos affected in auxin biosynthesis (yuc1 yuc4 yuc10 yuc11 quadruple mutants; Cheng et al., 2007), auxin transport (pin1 pin3 pin4 pin7 quadruple mutants; Friml et al., 2003) or auxin signaling (arf1 arf2 arf6 triple mutants; Rademacher et al., 2011).

These similarities suggest that the strongest embryonic phenotypes that we have found are caused by the specific disruption of auxin target regulation through the SCF^{TIR1/AFB1-3} complex. It may be possible that these root-like structures arise from early proliferation of a specific cell population within the proembryo. Further studies using specific cell identity and cell patterning markers (Lukowitz et al., 2004) will be required to determine the nature of the aberrant structures formed in these double mutants. It was proposed that MP acts in specifying the hypophysis via a non-cell autonomous signal (Weijers et al., 2006; Schlereth et al., 2010) because the mp and bdl mutants are defective in the specification of the hypophysis but MP and BDL are expressed in the lower tier of subepidermal cells of the early globular embryos and not in the hypophysis (Hardtke and Berleth, 1998; Hamann et al., 2002; Weijers et al., 2006; Schlereth et al., 2010). DR5 maximum activity is observed in the hypophysis at this stage, indicating that there is auxin perception in response to auxin accumulation in this cell via PIN1 (Friml et al., 2003). Auxin signaling might be dependent on other ARFs to inhibit cell divisions in the hypophysis and its daughter cells which will later give rise to the quiescent center, stem cells and the columella cells of the root apical meristem (Dolan et al., 1993).

Recently, detailed cellular expression of most ARFs during embryogenesis has been described (Rademacher et al., 2011) and there are some ARFs specifically expressed in the hypophysis and suspensor cells. ARF2 and ARF13 are expressed along the suspensor including the hypophyseal cell (Rademacher et al., 2011), and both act as repressor ARFs in protoplast transfection assays (Ulmasov et al., 1999; Tiwari et al., 2003), which makes them candidates to inhibit the root initiation program during embryogenesis. Alternatively, the strong embryonic phenotypes found in the double mutants
studied here, such as *icu13 axr1-12, icu13 rce1-10, icu13 csn5a-2, icu13 hve-2, icu13 bdl, eta1 bdl, icu13 mp-S319* and *eta1 mp-S319* could be caused be unrestricted periclinal cell divisions of suspensor cells as has been proposed for *axr6-1* (Hobbie et al., 2000).

In conclusion, the similar synergistic phenotypes obtained in double homozygotes for loss-of-function alleles of *AXR6* and either *mp-S319, bdl* or any loss-of-function alleles of genes associated with the rubylation-derubylation pathway (*AXR1, RCE1, CSN5A* and *HVE*) indicate that tight regulation of SCF activity is essential to control Aux/IAA-ARF modules in response to the auxin signal. Among the Aux/IAA-ARF modules, we validated that the MP-BDL module is required for leaf vein specification, leaf flatness and basal patterning during embryogenesis.
MATERIALS AND METHODS

Plant material and growth conditions
All Arabidopsis thaliana (L.) Heynh. plants studied in this work are homozygous for the mutations indicated unless otherwise stated. The Nottingham Arabidopsis Stock Centre (NASC) provided seeds of the icu13 mutant (NASC stock code N349), which was donated to the Arabidopsis Information Service Form Mutants collection by A.R. Kranz (Kranz and Kirchheim, 1987; Serrano-Cartagena et al., 1999). The eta1 (Quint et al., 2005), axr6-2/AXR6 (Hobbie et al., 2000), AXR6/cul1-1 and AXR6/cul1-2 (Shen et al., 2002), bdl/BDL (Hamann et al., 1999) and MP/mp-S319 (Cole et al., 2009) seeds were kindly provided upon request by the scientists mentioned in the Acknowledgements section. Seeds of the hver-2 (SALK_099479; N599479) (Alonso-Per et al., 2006), axr1-12 (N3076) (del Pozo et al., 2002), axr2-1 (N3077) (Timpte et al., 1994) and axr3-3 (N57505) (Leyser et al., 1996) mutants and of the wild-type accessions Enkheim-2 (En-2), Columbia-0 (Col-0) and Landsberg erecta (Ler) were also obtained from NASC. shy2-10 (previously named icu5 [N379]; Serrano-Cartagena et al., 1999; Serrano-Cartagena et al., 2000) contains a mutation identical to shy2-3 (Tian and Reed, 1999) in an En-2 background (this work).

We previously described a few aspects of the icu6 allele of AXR3 (Berná et al., 1999; Pérez-Pérez et al., 2010). The rce1-10 (GK-394B06; N437746), csn5a-2 (SALK_027705; N527705) (Dohmann et al., 2005) and iaa12-1 (SALK_138684; N638684; it contains the same insertion as N25213; Overvoorde et al., 2005) T-DNA insertion lines were obtained from the NASC and are described at the SIGnAL website (http://signal.salk.edu/). We confirmed the presence and position of all T-DNA insertions by PCR amplification using the gene-specific primer pairs listed in Supplemental Table S1 and the left border primers of the T-DNA insertion as indicated. Lines carrying the DR5rev:GFP, PIN1pro:PIN1:GFP and ATHB8pro:GUS transgenes have been described elsewhere (Baima et al., 1995; Friml et al., 2003; Xu et al., 2006).

Plants were grown under sterile conditions on 150 mm Petri dishes containing 100 ml of half-strength Murashige and Skoog (MS) agar medium with 1% sucrose at 20±1°C, 60-70% relative humidity, and continuous illumination at ≈80 μmol m⁻² s⁻¹, as described in Ponce et al. (1998). To study the effects of exogenous auxin on root growth, seedlings were grown for 4 days on vertically-
oriented plates containing MS medium and then transferred to plates containing MS medium supplemented with 0, 50, 100 or 200 nM IAA (Sigma-Aldrich, St. Louis, MO, USA) that were kept vertically oriented for 6 days before their root phenotypes were scored. To study the effects of NPA, seedlings were grown on standard plates containing 0 or 1 µM NPA (Sigma-Aldrich).

Construction of transgenes

A single colon is used to indicate promoter-coding sequence fusions and fusions of coding sequences. For the sake of clarity, a single colon indicates that a gene is driven by its native promoter. To construct the $\text{AXR6}_{\text{pro}}:\text{GUS}$ transgene, a 2.3-kb segment from the upstream region of the start codon of the AXR6 gene was PCR amplified from Col-0 genomic DNA with Phusion High-Fidelity DNA Polymerase (Finnzymes, Thermo Fisher Scientific, Rockford, IL, USA). The PCR product obtained was purified with the Illustra GFX PCR DNA and Gel Band Purification Kit (GE Healthcare Bio-Sciences, Piscataway, NJ, USA) and then cloned into the pGEM-T Easy221 vector (see Acknowledgements) using the BP clonase II kit (Life Technologies Corporation, Carlsbad, CA, USA) as indicated by the manufacturer. Chemically competent *Escherichia coli* DH5α cells were transformed by the heat shock method and the orientation and structural integrity of the inserts carried by the transformants isolated were verified by sequencing. The target sequences were transferred via an LR clonase II (Life Technologies) reaction to the pMDC163 Gateway-compatible destination vector, containing the *gusA* gene (Curtis and Grossniklaus, 2003). For the $\text{AXR6}_{\text{pro}}:\text{AXR6}:\text{GFP}$ and $\text{BDL}_{\text{pro}}:\text{BDL}:\text{GFP}$ transgenes, 6.4- and 3.7-kb segments of the *AXR6* and *BDL* genes, respectively, were amplified from Col-0 genomic DNA, cloned into pGEMTeasy221, and subcloned into pMDC107, which harbors an in-frame version of the *GFP6* gene (Curtis and Grossniklaus, 2003), using the Gateway technology as described above. All these constructs were mobilized into *Agrobacterium tumefaciens* GV3101 (C58C1 RifR) cells, which were used to infect En-2, *icu13*, Col-0 and *eta1* plants by the floral-dip method (Clough and Bent, 1998). T1 transgenic plants were selected on plates supplemented with 15 µg ml$^{-1}$ of hygromycin B (Invitrogen). For the $\text{35S}_{\text{pro}}:\text{MP}$ construct (Hardtke et al., 2004), *Agrobacterium tumefaciens* GV3101 cells were transformed with plasmid DNA, and the transformants were used to infect En-2 and *icu13* plants.
T1 seeds were sown on river sand watered with a 15 mg l⁻¹ solution of BASTA (Finale, Bayer CropScience, Monheim, Germany) as described in Hadi et al. (2002). Primers used in the PCR amplifications performed to obtain the AXR6_pro:GUS, AXR6_pro:AXR6:GFP and BDL_pro:BDL:GFP constructs are described in Supplemental Table S1, together with those used to genotype antibiotic- and herbicide-resistant T1 plants.

Morphological and histological analyses
For root growth studies, root images were obtained with a flatbed scanner. Root length was digitally measured (n ≥ 17 per genotype and hormone concentration tested) with the NIS Elements AR 2.30 image analysis package (Nikon, Tokyo, Japan). Flowering time was scored by counting the number of icu13 and En-2 plants (n=165 per genotype) that had a visible flowering stem at 17 to 27 das. Rosette leaf number was scored in the same plants at 21 das. To assay the degree of apical dominance in mutant and wild-type plants, we recorded the flowering stem number at 45 das. For embryo visualization, siliques from six week-old plants were manually excised and dissected, and their seeds were mounted in an 8:1:3 mix of chloral hydrate:glycerol:water and observed under DIC optics as previously described (Weijers et al., 2001). GUS staining of embryos was performed as described in Weijers et al. (2001).

Rosette and leaf pictures were taken 16 and 21 das, respectively, with a Leica MZ6 (Leica Microsystems, Wetzlar, Germany) stereomicroscope equipped with a Nikon DXM1200 digital camera (Nikon Instruments, Tokyo, Japan). Leaf section micrographs were taken as described in Serrano-Cartagena et al. (2000). Venation morphometry was performed on diagrams that were obtained from micrographs of 10 cleared first-node leaves per genotype as previously described (Candela et al., 1999; Alonso-Peral et al., 2006; Robles et al., 2010).

All data were analyzed using SPSS (Statistical Package for the Social Sciences, Chicago, IL, USA) 16.0.2 software, and their normality assessed by Kolmogorov-Smirnov tests with Lilliefors correction. When the data fitted a normal distribution, Student’s t tests were used to compare mean values; otherwise the non-parametric Mann-Whitney U test was used instead.

Confocal Laser Scanning Microscopy (CLSM) micrographs were obtained digitally and processed using the operation software EZ-C1 for a Nikon.
C1 confocal microscope (Nikon Instruments). GFP was excited at 488 nm with an argon ion laser and its emission analyzed between 515 and 530 nm. To visualize GFP from embryos and leaf primordia, chlorophyll was solubilized by incubating seedlings in 1:1 methanol:acetone for 30 min at -20°C, and then transferring the samples to phosphate buffer pH 6.8 prior to confocal microscopy. To avoid non-specific fluorescence in the green channel, in some cases we also excited at 543 nm with a HeNe laser and analyzed the emission between 605 and 675 nm, recording the non-specific fluorescence in red. For CLSM micrographs of roots, we stained seedlings with a 10μg ml⁻¹ solution of propidium iodide (PI; Sigma-Aldrich), which visualizes cell walls in the red channel. To confirm the nuclear localization of AXR6:GFP and BDL:GFP, we stained seedlings with a 10 μg ml⁻¹ solution of 4’,6-diamidino-2-phenylindole dihydrochloride (DAPI; Sigma-Aldrich) for five min, washed extensively with water and further excited at 408 nm with a modulated diode laser. All pictures from a given GFP marker at a defined time-point were taken using the same CLSM settings. For comparison of GFP fluorescence from icu13 and wild-type seedlings, we used F2 or F3 siblings unless otherwise stated.

Quantification of the BDL:GFP fusion protein
To quantify BDL:GFP levels, 4-day-old seedlings from three En-2 and three icu13 T2 families carrying the BDLpro:BDL:GFP transgene were transferred to liquid MS medium supplemented with 50 μM MG132 (PeptaNova, Sandhausen, Germany), a proteosome inhibitor, or 0.5% dimethyl sulfoxide (DMSO, Sigma-Aldrich). After 6 h incubation under standard experimental conditions, seedlings were washed three times for 5 min with liquid MS medium to remove residual DMSO or MG132. CLSM pictures were then taken from PI stained roots (see above) and processed using ImageJ as follows. First, the green-channel of each CLSM image was converted to eight-bit format images using a defined threshold. Then, we selected an equivalent region of interest for each image, as a line drawn in the center of the root that extends from the quiescent center up to the elongation zone. A plot profile of the gray values along this line was recorded for each image, which positively correlates with the GFP intensity as described in Scacchi et al. (2010). Arbitrary units were converted to percentages of GFP intensity, defining the 100% value as the mean of icu13 values. GFP intensity data were analyzed using SPSS by applying Kolmogorov-
Smirnov tests with Lilliefors correction, and Student's t tests were used to compare mean values.

Western blot
Protein samples were obtained from 30 to 40 seedlings collected at 6 das and extracted with buffer containing 100 mM Tris-HCl, 150 mM NaCl, 10% glycerol, 0.5% Nonidet P-40 and 1 mM phenylmethylsulfonyl fluoride. SDS-PAGE was performed by adding 20 μl of each protein extract, using the Mini-Protean Cell kit (Bio-Rad Laboratories, Hercules, CA, USA). Electrotransfer to nitrocellulose membranes (Amersham, GE Healthcare, Buckinghamshire, UK) was performed as described in the Mini Trans-Blot Electrophoretic Transfer Cell (Bio-Rad) manual. We used α-CUL1 (Gray et al., 1999) at a 1:3,000 dilution as a primary antibody, and α-RbcL (Agrisera, Vännäs, Sweden) at a 1:10,000 dilution as a loading control. A goat α-rabbit IgG antibody with conjugated horseradish peroxidase (HRP; Agrisera) was used as a secondary antibody, which was detected with the Immun-Star HRP Chemiluminescent Kit (Bio-Rad) as described by the manufacturer and Lumi-Film Chemiluminescent Detection Films (Roche Diagnostics, Vilvoorde, Belgium).

qRT-PCR
Total RNA was extracted from 60-100 mg of rosette tissue collected 14 das, using the citric acid method (Oñate-Sánchez and Vicente-Carbajosa, 2008). cDNA was reverse-transcribed using Maxima Reverse Transcriptase (Fermentas, Thermo Fisher Scientific, Rockford, IL, USA). Either Power SYBR Green PCR Master Mix (Life Technologies) or Maxima SYBR Green qPCR Master Mix (Fermentas) kits were used as indicated in the manufacturers’ instructions. At least one oligonucleotide in each primer pair was designed to span the ends of two adjacent exons so that genomic DNA would not be amplified. Relative quantification of gene expression data was performed using the 2^−ΔΔCT method (Livak and Schmittgen, 2001). Each reaction was made using three biological replicates, each with three technical replicates; the expression levels were normalized to the C_T values obtained for the housekeeping gene OTC (Quesada et al., 1999).

Double mutant analyses
Double mutant phenotypes caused by the combination of recessive mutations in two genes were independently confirmed in several F3 families derived from selfed F2 plants exhibiting the phenotype of one of the single mutant parents. In some cases, the putatively double mutant F3 seedlings were genotyped to confirm that they were double homozygotes, using the oligonucleotides shown in Supplemental Table S1. Genetic interactions of icu13 with dominant or semi-dominant mutations in Aux/IAA genes were analyzed in F2 plants, 3/16 of which exhibited the double mutant phenotype. To exclude phenotypes dependent on the genetic background, all the genetic interactions of icu13 were also assayed in parallel with eta1. The χ^2 statistic was used to calculate two-tailed P values to test whether the observed phenotypic ratios fit expected segregations.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Fig. S1. Missplicing caused by the icu13 mutation.

Supplemental Fig. S2. Alignment of human CUL1 and the two CUL1 proteins encoded by icu13.

Supplemental Fig. S3. Transverse sections from first-node leaves of En-2 and icu13.

Supplemental Fig. S4. Visualization of DR5rev:GFP expression in icu13 and eta1 roots.

Supplemental Fig. S5. Visualization of AXR6pro:GUS activity and AXR6:GFP localization in embryos and leaf primordia.

Supplemental Fig. S6. Molecular nature of rce1-10, a new hypomorphic allele of RCE1.

Supplemental Fig. S7. Expression of BDL:GFP in icu13 leaves and qRT-PCR analysis of BDL in transgenic BDLpro:BDL:GFP plants.

Supplemental Fig. S8. Molecular nature of iaa12-1 and its effects on BDL expression.

Supplemental Fig. S9. Partial suppression of auxin resistance in icu13 by gain-of-function of MP or loss-of-function of BDL.

Supplemental Table S1. Primer sets used in this work.

Supplemental Table S2. Seed phenotypes in the F1 progeny of axr6-2/AXR6 × AXR6/cul1 crosses.

Supplemental Table S3. Lethality in single and double mutants.
Supplemental Table S4. Phenotypic segregation in the F3 of crosses between mutants carrying loss-of-function alleles of AXR6 and genes of the rubylation-derubylation pathway.

Supplemental Table S5. Phenotypic segregation in the F2 progeny of crosses between eta1 or icu13 and axr2-1 or shy2-10.

Supplemental Table S6. Genotypic segregation in the F2 progeny of crosses between eta1 or icu13 and axr3-3 or icu6.
ACKNOWLEDGEMENTS

We thank J.C. del Pozo (UPM-INIA, Madrid, Spain) for providing the α-CUL1 antibody and eta1/eta1 and axr6-2/AXR6 seeds, P. Genschik (IBMP-CNRS, Strasbourg, France) for AXR6/cul1-1 and AXR6/cul1-2 seeds, G. Jürgens (Max Planck Institute, Tübingen, Germany) for bdl/BDL seeds, D. Weijers (Wageningen University, the Netherlands) for MP/mp-S319 seeds, T. Berleth (University of Toronto, Canada) for 35S:MP seeds and plasmid, and B. Scheres (Utrecht University, the Netherlands) for the pGEM-T Easy221 vector. We specially thank F.M. Lozano, J.M. Serrano, T. Trujillo and L. Serna for their excellent technical assistance.
LITERATURE CITED

Alonso-Peral MM, Candela H, del Pozo JC, Martínez-Laborda A, Ponce MR, Micol JL (2006) The \textit{HVE/CAND1} gene is required for the early patterning of leaf venation in \textit{Arabidopsis}. Development \textbf{133}: 3755-3766

Baima S, Nobili F, Sessa G, Lucchetti S, Ruberti I, Morelli G (1995) The expression of the \textit{Athb-8} homeobox gene is restricted to provascular cells in \textit{Arabidopsis thaliana}. Development \textbf{121}: 4171-4182

Barrero JM, González-Bayón R, del Pozo JC, Ponce MR, Micol JL (2007) \textit{INCURVATA2} encodes the catalytic subunit of DNA polymerase alpha and interacts with genes involved in chromatin-mediated cellular memory in \textit{Arabidopsis thaliana}. Plant Cell \textbf{19}: 2822-2838

Berleth T, Jürgens G (1993) The role of the \textit{monopteros} gene in organising the basal body region of the \textit{Arabidopsis} embryo. Development \textbf{118}: 575-587

Berná G, Robles P, Micol JL (1999) A mutational analysis of leaf morphogenesis in \textit{Arabidopsis thaliana}. Genetics \textbf{152}: 729-742

Bostick M, Lochhead SR, Honda A, Palmer S, Callis J (2004) Related to ubiquitin 1 and 2 are redundant and essential and regulate vegetative growth, auxin signaling, and ethylene production in Arabidopsis. Plant Cell \textbf{16}: 2418-2432

Candela H, Alonso-Peral MM, Ponce MR, Micol JL (2007) Role of \textit{HEMIVENATA} and the ubiquitin pathway in venation pattern formation. Plant Signal Behav \textbf{2}: 258-259

Candela H, Martínez-Laborda A, Micol JL (1999) Venation pattern formation in \textit{Arabidopsis thaliana} vegetative leaves. Dev Biol \textbf{205}: 205-216

Clough SJ, Bent AF (1998) Floral dip: a simplified method for \textit{Agrobacterium}-mediated transformation of \textit{Arabidopsis thaliana}. Plant J \textbf{16}: 735-743

Cole M, Chandler J, Weijers D, Jacobs B, Comelli P, Werr W (2009) \textit{DORNRÖSCHEN} is a direct target of the auxin response factor \textit{MONOPTEROS} in the \textit{Arabidopsis} embryo. Development \textbf{136}: 1643-1651

Cope GA, Suh GS, Aravind L, Schwarz SE, Zipursky SL, Koonin EV, Deshaies RJ (2002) Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science \textbf{298}: 608-611

Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes \textit{in planta}. Plant Physiol \textbf{133}: 462-469
Cheng Y, Dai X, Zhao Y (2007) Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19: 2430-2439

De Smet I, Lau S, Voss U, Vanneste S, Benjamins R, Rademacher EH, Schlereth A, De Rybel B, Vassileva V, Grunewald W, Naudts M, Levesque MP, Ehrismann JS, Inze D, Luschnig C, Benfey PN, Weijers D, Van Montagu MC, Bennett MJ, Jürgens G, Beeckman T (2010) Bimodular auxin response controls organogenesis in Arabidopsis. Proc Natl Acad Sci USA 107: 2705-2710

del Pozo JC, Dharmasiri S, Hellmann H, Walker L, Gray WM, Estelle M (2002) AXR1-ECR1-dependent conjugation of RUB1 to the Arabidopsis Cullin AtCUL1 is required for auxin response. Plant Cell 14: 421-433

del Pozo JC, Estelle M (1999) The Arabidopsis cullin AtCUL1 is modified by the ubiquitin-related protein RUB1. Proc Natl Acad Sci USA 96: 15342-15347

Dharmasiri N, Dharmasiri S, Estelle M (2005a) The F-box protein TIR1 is an auxin receptor. Nature 435: 441-445

Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jürgens G, Estelle M (2005b) Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell 9: 109-119

Dharmasiri S, Dharmasiri N, Hellmann H, Estelle M (2003) The RUB/Nedd8 conjugation pathway is required for early development in Arabidopsis. EMBO J 22: 1762-1770

Dohmann EM, Kuhnle C, Schwichheimer C (2005) Loss of the CONSTITUTIVE PHOTOMORPHOGENIC9 signalosome subunit 5 is sufficient to cause the cop/det/fus mutant phenotype in Arabidopsis. Plant Cell 17: 1967-1978

Dolan L, Jannaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B (1993) Cellular organisation of the Arabidopsis thaliana root. Development 119: 71-84

Donner TJ, Sherr I, Scarpella E (2009) Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves. Development 136: 3235-3246

Farrás R, Ferrando A, Jásik J, Kleinow T, Ökrész L, Tiburcio A, Salchert K, del Pozo C, Schell J, Koncz C (2001) SKP1-SnRK protein kinase interactions mediate proteasomal binding of a plant SCF ubiquitin ligase. EMBO J 20: 2742-2756

Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426: 147-153
García D, Collier SA, Byrne ME, Martienssen RA (2006) Specification of leaf polarity in Arabidopsis via the trans-acting siRNA pathway. Curr Biol 16: 933-938

Gilkerson J, Hu J, Brown J, Jones A, Sun TP, Callis J (2009) Isolation and characterization of cul1-7, a recessive allele of CULLIN1 that disrupts SCF function at the C terminus of CUL1 in Arabidopsis thaliana. Genetics 181: 945-963

Goldenberg SJ, Cascio TC, Shumway SD, Garbutt KC, Liu J, Xiong Y, Zheng N (2004) Structure of the Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases. Cell 119: 517-528

Gray WM, del Pozo JC, Walker L, Hobbie L, Risseeuw E, Banks T, Crosby WL, Yang M, Ma H, Estelle M (1999) Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev 13: 1678-1691

Gray WM, Hellmann H, Dharmasiri S, Estelle M (2002) Role of the Arabidopsis RING-H2 protein RBX1 in RUB modification and SCF function. Plant Cell 14: 2137-2144

Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001) Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414: 271-276

Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10: 453-460

Hadi MZ, Kemper E, Wendeler E, Reiss B (2002) Simple and versatile selection of Arabidopsis transformants. Plant Cell Rep 21: 130-135

Hamann T, Benkova E, Bäurle I, Kientz M, Jürgens G (2002) The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev 16: 1610-1615

Hamann T, Mayer U, Jürgens G (1999) The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo. Development 126: 1387-1395

Hardtke CS, Berleth T (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 17: 1405-1411

Hardtke CS, Ckurshumova W, Vidaurre DP, Singh SA, Stamatiou G, Tiwari SB, Hagen G, Guilfoyle TJ, Berleth T (2004) Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. Development 131: 1089-1100
Hobbie L, McGovern M, Hurwitz LR, Pierro A, Liu NY, Bandyopadhyay A, Estelle M (2000) The axr6 mutants of Arabidopsis thaliana define a gene involved in auxin response and early development. Development 127: 23-32

Hotton SK, Callis J (2008) Regulation of cullin RING ligases. Annu Rev Plant Biol 59: 467-489

Hua Z, Vierstra RD (2011) The cullin-RING ubiquitin-protein ligases. Annu Rev Plant Biol 62: 299-334

Hua Z, Zou C, Shiu SH, Vierstra RD (2011) Phylogenetic comparison of F-Box (FBX) gene superfamily within the plant kingdom reveals divergent evolutionary histories indicative of genomic drift. PLoS One 6: e16219

Jensen TJ, Loo MA, Pind S, Williams DB, Goldberg AL, Riordan JR (1995) Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83: 129-135

Jover-Gil S, Candela H, Ponce MR (2005) Plant microRNAs and development. Int J Dev Biol 49: 733-744

Jover-Gil S, Candela H, Robles P, Aguilera V, Barrero JM, Micol JL, Ponce MR (2012) The MicroRNA Pathway Genes AGO1, HEN1 and HYL1 Participate in Leaf Proximal-Distal, Venation and Stomatal Patterning in Arabidopsis. Plant Cell Physiol 53: 1322-1333

Kamura T, Conrad MN, Yan Q, Conaway RC, Conaway JW (1999) The Rbx1 subunit of SCF and VHL E3 ubiquitin ligase activates Rub1 modification of cullins Cdc53 and Cul2. Genes Dev 13: 2928-2933

Kranz AR, Kirchheim B (1987) Genetic resources in Arabidopsis., Vol 24, Frankfurt

Krogan NT, Ckurshumova W, Marcos D, Caragea AE, Berleth T (2012) Deletion of MP/ARF5 domains III and IV reveals a requirement for Aux/IAA regulation in Arabidopsis leaf vascular patterning. New Phytol 194: 391-401

Lau S, De Smet I, Kolb M, Meinhardt H, Jürgens G (2011) Auxin triggers a genetic switch. Nat Cell Biol 13: 611-615

Leyser HM, Pickett FB, Dharmasiri S, Estelle M (1996) Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter. Plant J 10: 403-413

Liu F, Ni W, Griffith ME, Huang Z, Chang C, Peng W, Ma H, Xie D (2004) The ASK1 and ASK2 genes are essential for Arabidopsis early development. Plant Cell 16: 5-20
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\Delta\Delta CT}$ Method. Methods 25: 402-408

Lukowitz W, Roeder A, Parmenter D, Somerville C (2004) A MAPKK kinase gene regulates extra-embryonic cell fate in Arabidopsis. Cell 116: 109-119

Manzano C, Abraham Z, López-Torrejón G, Del Pozo JC (2008) Identification of ubiquitinated proteins in Arabidopsis. Plant Mol Biol 68: 145-158

Maor R, Jones A, Nühse TS, Studholme DJ, Peck SC, Shirasu K (2007) Multidimensional protein identification technology (MudPIT) analysis of ubiquitinated proteins in plants. Mol Cell Proteomics 6: 601-610

Mattsson J, Sung ZR, Berleth T (1999) Responses of plant vascular systems to auxin transport inhibition. Development 126: 2979-2991

McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK (2001) Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411: 709-713

Min KW, Hwang JW, Lee JS, Park Y, Tamura TA, Yoon JB (2003) TIP120A associates with cullins and modulates ubiquitin ligase activity. J Biol Chem 278: 15905-15910

Mockaitis K, Estelle M (2008) Auxin receptors and plant development: a new signaling paradigm. Annu Rev Cell Dev Biol 24: 55-80

Oñate-Sánchez L, Vicente-Carbajosa J (2008) DNA-free RNA isolation protocols for Arabidopsis thaliana, including seeds and siliques. BMC Res Notes 1: 93

Overvoorde PJ, Okushima Y, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Liu A, Onodera C, Quach H, Smith A, Yu G, Theologis A (2005) Functional genomic analysis of the AUXIN/INDOLE-3-ACETIC ACID gene family members in Arabidopsis thaliana. Plant Cell 17: 3282-3300

Parry G, Calderón-Villalobos LI, Prigge M, Peret B, Dharmasiri S, Itoh H, Lechner E, Gray WM, Bennett M, Estelle M (2009) Complex regulation of the TIR1/AFB family of auxin receptors. Proc Natl Acad Sci USA 106: 22540-22545

Pérez-Pérez JM, Candela H, Robles P, López-Torrejón G, del Pozo JC, Micol JL (2010) A role for AUXIN RESISTANT3 in the coordination of leaf growth. Plant Cell Physiol 51: 1661-1673

Ponce MR, Quesada V, Micol JL (1998) Rapid discrimination of sequences flanking and within T-DNA insertions in the Arabidopsis genome. Plant J 14: 497-501

Ponce MR, Robles P, Lozano FM, Brotons MA, Micol JL (2006) Low-resolution mapping of untagged mutations. Methods Mol Biol 323: 105-113
Ponce MR, Robles P, Micol JL (1999) High-throughput genetic mapping in Arabidopsis thaliana. Mol Genet Genomics 261: 408-415

Quesada V, Ponce MR, Micol JL (1999) OTC and AUL1, two convergent and overlapping genes in the nuclear genome of Arabidopsis thaliana. FEBS Lett 461: 101-106

Quint M, Ito H, Zhang W, Gray WM (2005) Characterization of a novel temperature-sensitive allele of the CUL1/AXR6 subunit of SCF ubiquitin-ligases. Plant J 43: 371-383

Rademacher EH, Möller B, Lokerse AS, Llavata-Peris Cl, van den Berg W, Weijers D (2011) A cellular expression map of the Arabidopsis AUXIN RESPONSE FACTOR gene family. Plant J 68: 597-606

Rao-Naik C, delaCruz W, Laplaza JM, Tan S, Callis J, Fisher AJ (1998) The RUB family of ubiquitin-like proteins. Crystal structure of Arabidopsis RUB1 and expression of multiple RUBs in Arabidopsis. J Biol Chem 273: 34976-34982

Robles P, Fleury D, Candela H, Cnops G, Alonso-Peral MM, Anami S, Falcone A, Caldana C, Willmitzer L, Ponce MR, Van Lijsebettens M, Micol JL (2010) The RON1/FRY1/SAL1 gene is required for leaf morphogenesis and venation patterning in Arabidopsis. Plant Physiol 152: 1357-1372

Sachs T (1981) The control of the patterned differentiation of vascular tissues. Adv Bot Res 9: 151-262

Scacchi E, Salinas P, Gujas B, Santuari L, Krogan N, Ragni L, Berleth T, Hardtke CS (2010) Spatio-temporal sequence of cross-regulatory events in root meristem growth. Proc Natl Acad Sci USA 107: 22734-22739

Scarpella E, Barkoulas M, Tsiantis M (2010) Control of leaf and vein development by auxin. Cold Spring Harb Perspect Biol 2: a001511

Scarpella E, Marcos D, Friml J, Berleth T (2006) Control of leaf vascular patterning by polar auxin transport. Genes Dev 20: 1015-1027

Schlereth A, Möller B, Liu W, Kientz M, Flipse J, Rademacher EH, Schmid M, Jürgens G, Weijers D (2010) MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature 464: 913-916

Schuetz M, Berleth T, Mattsson J (2008) Multiple MONOPTEROS-dependent pathways are involved in leaf initiation. Plant Physiol 148: 870-880

Serrano-Cartagena J, Candela H, Robles P, Ponce MR, Pérez-Pérez JM, Piqueras P, Micol JL (2000) Genetic analysis of incurvata mutants reveals three independent
genetic operations at work in Arabidopsis leaf morphogenesis. Genetics 156: 1363-1377

Serrano-Cartagena J, Robles P, Ponce MR, Micol JL (1999) Genetic analysis of leaf form mutants from the Arabidopsis Information Service collection. Mol Genet Genomics 261: 725-739

Shen WH, Parmentier Y, Hellmann H, Lechner E, Dong A, Masson J, Granier F, Lepiniec L, Estelle M, Genschik P (2002) Null mutation of AtCUL1 causes arrest in early embryogenesis in Arabidopsis. Mol Biol Cell 13: 1916-1928

Tian Q, Reed JW (1999) Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development 126: 711-721

Timpte C, Wilson AK, Estelle M (1994) The axr2-1 mutation of Arabidopsis thaliana is a gain-of-function mutation that disrupts an early step in auxin response. Genetics 138: 1239-1249

Tiwari SB, Hagen G, Guilfoyle T (2003) The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15: 533-543

Ulmasov T, Hagen G, Guilfoyle TJ (1999) Activation and repression of transcription by auxin-response factors. Proc Natl Acad Sci USA 96: 5844-5849

Vierstra RD (2009) The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Bio 10: 385-397

Weijers D, Benkova E, Jäger KE, Schlereth A, Hamann T, Kientz M, Wilmoth JC, Reed JW, Jürgens G (2005) Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. EMBO J 24: 1874-1885

Weijers D, Franke-van Dijk M, Vencken RJ, Quint A, Hooykaas P, Offringa R (2001) An Arabidopsis Minute-like phenotype caused by a semi-dominant mutation in a RIBOSOMAL PROTEIN S5 gene. Development 128: 4289-4299

Weijers D, Schlereth A, Ehrismann JS, Schwank G, Kientz M, Jürgens G (2006) Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis. Dev Cell 10: 265-270

Wenzel CL, Schuetz M, Yu Q, Mattsson J (2007) Dynamics of MONOPTEROS and PIN-FORMED1 expression during leaf vein pattern formation in Arabidopsis thaliana. Plant J 49: 387-398

Xu J, Hofhuis H, Heidstra R, Sauer M, Friml J, Scheres B (2006) A molecular framework for plant regeneration. Science 311: 385-388
Zhang W, Ito H, Quint M, Huang H, Noel LD, Gray WM (2008) Genetic analysis of CAND1-CUL1 interactions in Arabidopsis supports a role for CAND1-mediated cycling of the SCF^{TR1} complex. Proc Natl Acad Sci USA 105: 8470-8475
FIGURE LEGENDS

Fig. 1. Positional cloning of icu13 and its effects on AXR6 expression. (A) Map-based cloning strategy used to identify the icu13 mutation showing the markers used for linkage analysis, their physical map positions, and the number of informative recombination events identified (in brackets). (B) Structure of the AXR6 gene, indicating the nature and position of known mutations. Boxes and lines between boxes indicate exons and introns, respectively. Open boxes correspond to the 5’ and 3’ untranslated regions. Vertical arrows and triangles indicate point mutations and T-DNA insertional mutations, respectively. (C) Magnification of the 14th, 15th and 16th exons of AXR6 showing the oligonucleotides (not drawn to scale) used as qRT-PCR primers. A vertical arrow marks the site of the icu13 mutation. (D) qRT-PCR analysis of AXR6 expression in the icu13 mutant. Bar graphs indicate the relative expression levels (2^-ΔΔC\text{t} method) obtained using the oligonucleotide pairs shown in the abscissa. (E) Western blot probed with a primary antibody against CUL1 (α-CUL1). The large subunit of Rubisco (α-RbcL) was used as a loading control.

Fig. 2. Morphology and responses to IAA of the icu13 and eta1 mutants. (A) Rosettes, (B) dissected cotyledons and vegetative leaves and (C) adult inflorescences from the icu13 and eta1 mutants and their wild types (En-2 and Col-0, respectively). (D) Venation patterns from first- and third-node leaves. Leaf margins are shown in orange. (E-F) Effects of exogenous auxin on (E) primary root growth and (F) lateral root number. Pictures were taken (A) 16, (B, D) 21 and (C) 45 das. Scale bars: (A-B, D) 3 mm and (C) 2 cm.

Fig. 3. Vegetative and embryonic phenotypes of combinations of alleles of AXR6. (A-B) Homozygotes for the axr6-2 semi-dominant, gain-of-function allele of AXR6 are seedling-lethal. (C) Heterozygotes for icu13 and axr6-2 were rootless and seedling-lethal. (D) Heterozygotes for eta1 and axr6-2 developed roots and were viable. (E-F) The cul1-1 and cul1-2 recessive, null alleles were both embryonic- and gametophyte-lethal. A white arrowhead indicates an aborted ovule in a dissected siliquae. (G, H) cul1-1/icu13, but not cul1-1/eta1 heterozygotes were rootless and seedling-lethal. A black arrowhead indicates the root. (I) Rosettes of icu13/eta1 heterozygotes were indistinguishable from those of their homozygous parents. (J-K)
At the globular and heart stages (J) wild-type embryos differed from embryos heterozygous for axr6-2 and either (K) cul1-1 or (L) cul1-2, which exhibited more than one row of suspensor cells (white arrowheads). Pictures of rosettes and dead seedlings were taken 16 das. Scale bars: (A-E, G-I) 2 mm, (F) 0.2 mm and (J-L) 25 μm.

Fig. 4. Auxin transport, auxin perception and vascularization in icu13 leaf primordia. Visualization of the expression of reporter transgenes for (A-J) auxin transport (PIN1pro:PIN1:GFP), (K-T) auxin perception (DR5rev:GFP) and (U-AD) vascular fate specification (ATHB8pro:GUS) at expanding first- and second-node leaf primordia, in (F-J, P-T, Z-AD) icu13 and (A-E, K-O, U-Y) En-2 backgrounds. Pictures were taken of plants grown on medium (E, J, O, T, Y, AD) supplemented or (A-D, F-I, K-N, P-S, U-X, Z-AC) not with 1 μM NPA. Values in brackets indicate number of primordia behaving as the ones shown/total primordia studied. Scale bars: (A-B, F-G, K-L, P-Q, U-V, Z-AA) 25 μm and (C-E, H-J, M-O, R-T, W-Y, AB-AD) 50 μm.

Fig. 5. Visualization of AXR6pro:GUS activity and AXR6:GFP localization. (A-F) AXR6pro:GUS postembryonic expression in (A) a whole rosette, (B) an apical hydathode from a first-node leaf, (C) a primary root, (D) an immature flower, (E) pollen grains and (F) an ovule. (G-K) AXR6pro:AXR6:GFP embryonic expression in (G) dermatogen, (H) globular, (I) heart, (J) torpedo and (K) bent-cotyledon stages. (L-P) AXR6pro:AXR6:GFP postembryonic expression in (L) a lateral root cap, (M) a differentiated region of the root, colocalizing with (N) DAPI staining, (O) a first pair of leaf primordia, (P) a fully expanded cotyledon, and (Q) a lateral hydathode from a cotyledon. Pictures were taken (A) 13, (B-C) 7, (D-F) 45 and (L-Q) 3 das. Scale bars: (A, D) 1 mm, (B-C, K, O-P) 50 μm and (E-J, L-N, Q) 10 μm.

Fig. 6. Genetic interactions of icu13 and eta1 with loss-of-function alleles of genes of the rubylation-derubylation pathway. (A) Rosettes and (B) venation patterns of first-node leaves of axr1-12, rce1-10, csn5a-2 and hve-2. (C-F) Phenotypic classes of rootless and early-lethal seedlings found among the icu13 axr1-12, eta1 axr1-12, icu13 rce1-10, eta1 rce1-10, icu13 csn5a-2, eta1 csn5a-2, icu13 hve-2 and eta1 hve-2 double mutants: (C) 1C, one cotyledon; (D) 2C, two cotyledons; (E) 2L, two cotyledons and one or two leaves; (F) >2L, more than two
leaves. (G-L) Some embryonic phenotypes found in the double mutant combinations indicated. Pictures were taken (A, C-F) 16 and (B) 21 das. Scale bars: (A-F) 1 mm and (G-L) 50 μm.

Fig. 7. Genetic interactions of icu13 and eta1 with gain-of-function alleles of SHY2, AXR2 and AXR3. (A) Rosettes and (B) first-node leaf venation patterns from double mutant combinations of either icu13 or eta1 and dominant alleles of SHY2 and AXR2 (shy2-10, axr2-1) or semi-dominant alleles of AXR3 (axr3-3 and icu6). Pictures were taken (A) 16 and (B) 21 das. Scale bars: 2 mm.

Fig. 8. Genetic interactions of icu3 and eta1 with bdl and mp. (A-D) The bdl semi-dominant mutation (A) causes seedling lethality when homozygous, as well as when heterozygous with its wild-type allele in (C) icu13 and (D) eta1 homozygous backgrounds. (E-Q) The embryonic phenotype of homozygous bdl and mp-S319 are made more extreme by icu13. (E-F) icu13, (G-H) bdl and (I-J) mp-S319 single mutants and the (K-N) icu13 bdl and (O-Q) icu13 mp-S319 double homozygotes at (E, G, I) globular and (F, H, J) heart stages. White arrows indicate abnormal divisions at the basal pole cells derived from the hypophysis. (R-U) Confocal micrographs of roots stained with propidium iodide and expressing the BDLpro:BDL:GFP transgene in the (R-S) En-2 and (T-U) icu13 backgrounds, (S, U) treated or (R, T) not with the MG132 proteasome inhibitor. (V) Average values of BDL:GFP fluorescence intensity in seedlings treated or not with MG132. Double and triple asterisks indicate P<0.05 and P<0.01, respectively. Pictures were taken (A-D) 16 and (R-U) 4 das. Scale bars: (A-D) 2 mm and (E-U) 10 μm.

Fig. 9. Suppression of the phenotype of icu13 by gain-of-function of MP or loss-of-function of BDL. Rosettes of (A) icu13, (B) a plant expressing the 35Spro:MP transgene in an icu13 background and (C) the icu13 iaa12-1 double mutant. Pictures were taken 16 das. (D) Venation patterns from first-node leaves excised 21 das. Scale bars: 1 mm.
TABLES

Table I. Morphometry of first-node leaf venation patterns in single and double mutants

Genotype	Leaf area (mm2)	Venation density (mm mm$^{-2}$)	Number of branching points per mm2	Number of free-ending veins per venation length (mm)
En-2	33.96 ± 7.54	2.80 ± 0.30	3.13 ± 0.69	0.18 ± 0.07
icu13	13.58 ± 2.50	2.45 ± 0.25	2.27 ± 0.50	0.47 ± 0.08
Col-0	29.83 ± 11.69	2.89 ± 0.47	3.23 ± 0.95	0.23 ± 0.06
eta1	11.67 ± 2.21	1.89 ± 0.26	1.07 ± 0.42	0.27 ± 0.10
rce1-10	25.16 ± 8.56	2.35 ± 0.34	1.74 ± 0.49	0.25 ± 0.06
csn5a-2	9.15 ± 3.17	3.12 ± 0.30	3.21 ± 0.75	0.42 ± 0.12
axr2-1	14.85 ± 3.21	3.02 ± 0.18	3.12 ± 0.48	0.34 ± 0.06
axr2-1 icu13	6.90 ± 2.87	2.55 ± 0.32	2.08 ± 0.69	0.38 ± 0.24
axr2-1 eta1	5.81 ± 1.64	2.65 ± 0.67	2.28 ± 1.57	0.40 ± 0.21
shy2-10	23.87 ± 7.37	3.05 ± 0.43	3.54 ± 0.88	0.31 ± 0.08
shy2-10 icu13	7.42 ± 1.40	2.68 ± 0.16	2.46 ± 0.39	0.44 ± 0.16
shy2-10 eta1	9.62 ± 0.63	2.66 ± 0.15	2.50 ± 0.34	0.44 ± 0.08
icu13 35S$_{pro}$:MP	20.73 ± 3.97	2.63 ± 0.23	2.34 ± 0.47	0.28 ± 0.12
icu13 iaa12-1	15.41 ± 2.14	3.03 ± 0.34	3.02 ± 0.68	0.36 ± 0.05

All values are means from 10 first-node leaf measurements ± standard deviations. Numbers in bold indicate significantly different ($P<0.05$) values of the single mutants compared to their wild types, or of the double mutants compared to their parental single mutants. For *icu13 35S$_{pro}$:MP* and *icu13 iaa12-1*, values in bold are significantly different ($P<0.05$) from those of *icu13*.

Figure 1. Positional cloning of *icu13* and its effects on *AXR6* expression. (A) Map-based cloning strategy used to identify the *icu13* mutation showing the markers used for linkage analysis, their physical map positions, and the number of informative recombination events identified (in brackets). (B) Structure of the *AXR6* gene, indicating the nature and position of known mutations. Boxes and lines between boxes indicate exons and introns, respectively. Open boxes correspond to the 5' and 3' untranslated regions. Vertical arrows and triangles indicate point mutations and T-DNA insertional mutations, respectively. (C) Magnification of the 14th, 15th and 16th exons of *AXR6* showing the oligonucleotides (not drawn to scale) used as qRT-PCR primers. A vertical arrow marks the site of the *icu13* mutation. (D) qRT-PCR analysis of *AXR6* expression in the *icu13* mutant. Bar graphs indicate the relative expression levels (2^−ΔΔCT method) obtained using the oligonucleotide pairs shown in the abscissa. (E) Western blot probed with a primary antibody against CUL1 (α-CUL1). The large subunit of Rubisco (α-RbcL) was used as a loading control.
Figure 2. Morphology and responses to IAA of the *icu13* and *eta1* mutants. (A) Rosettes, (B) dissected cotyledons and vegetative leaves and (C) adult inflorescences from the *icu13* and *eta1* mutants and their wild types (En-2 and Col-0, respectively). (D) Venation patterns from first- and third-node leaves. Leaf margins are shown in orange. (E-F) Effects of exogenous auxin on (E) primary root growth and (F) lateral root number. Pictures were taken (A) 16, (B, D) 21 and (C) 45 das. Scale bars: (A-B, D) 3 mm and (C) 2 cm.
Figure 3. Vegetative and embryonic phenotypes of combinations of alleles of AXR6. (A-B) Homozygotes for the axr6-2 semi-dominant, gain-of-function allele of AXR6 are seedling-lethal. (C) Heterozygotes for icu13 and axr6-2 were rootless and seedling-lethal. (D) Heterozygotes for eta1 and axr6-2 developed roots and were viable. (E-F) The cul1-1 and cul1-2 recessive, null alleles were both embryonic- and gametophyte-lethal. A white arrowhead indicates an aborted ovule in a dissected silique. (G, H) cul1-1/icu13, but not cul1-1/eta1 heterozygotes were rootless and seedling-lethal. A black arrowhead indicates the root. (I) Rosettes of icu13/eta1 heterozygotes were indistinguishable from those of their homozygous parents. (J-K) At the globular and heart stages (J) wild-type embryos differed from embryos heterozygous for axr6-2 and either (K) cul1-1 or (L) cul1-2, which exhibited more than one row of suspensor cells (white arrowheads). Pictures of rosettes and dead seedlings were taken 16 das. Scale bars: (A-E, G-I) 2 mm, (F) 0.2 mm and (J-L) 25 μm.
Figure 4. Auxin transport, auxin perception and vascularization in *icu13* leaf primordia. Visualization of the expression of reporter transgenes for (A-J) auxin transport (*PIN1pro*:PIN1:GFP), (K-T) auxin perception (*DR5rev:GFP*) and (U-AD) vascular fate specification (*ATHB8pro*:GUS) at expanding first- and second-node leaf primordia, in (F-J, P-T, Z-AD) *icu13* and (A-E, K-O, U-Y) En-2 backgrounds. Pictures were taken of plants grown on medium (E, J, O, T, Y, AD) supplemented or (A-D, F-I, K-N, P-S, U-X, Z-AC) not with 1 μM NPA. Values in brackets indicate number of primordia behaving as the ones shown/total primordia studied. Scale bars: (A-B, F-G, K-L, P-Q, U-V, Z-AA) 25 μm and (C-E, H-J, M-O, R-T, W-Y, AB-AD) 50 μm.
Figure 5. Visualization of AXR6pro::GUS activity and AXR6:GFP localization. (A-F) AXR6pro::GUS postembryonic expression in (A) a whole rosette, (B) an apical hydathode from a first-node leaf, (C) a primary root, (D) an immature flower, (E) pollen grains and (F) an ovule. (G-K) AXR6pro::AXR6:GFP embryonic expression in (G) dermatogen, (H) globular, (I) heart, (J) torpedo and (K) bent-cotyledon stages. (L-P) AXR6pro::AXR6:GFP postembryonic expression in (L) a lateral root cap, (M) a differentiated region of the root, colocalizing with (N) DAPI staining, (O) a first pair of leaf primordia, (P) a fully expanded cotyledon, and (Q) a lateral hydathode from a cotyledon. Pictures were taken (A) 13, (B-C) 7, (D-F) 45 and (L-Q) 3 das. Scale bars: (A, D) 1 mm, (B-C, K, O-P) 50 μm and (E-J, L-N, Q) 10 μm.
Figure 6. Genetic interactions of *icu13* and *eta1* with loss-of-function alleles of genes of the rubylation-derubylation pathway. (A) Rosettes and (B) venation patterns of first-node leaves of *axr1-12, rce1-10, csn5a-2* and *hve-2*. (C-F) Phenotypic classes of rootless and early-lethal seedlings found among the *icu13 axr1-12, eta1 axr1-12, icu13 rce1-10, eta1 rce1-10, icu13 csn5a-2, eta1 csn5a-2, icu13 hve-2* and *eta1 hve-2* double mutants: (C) 1C, one cotyledon; (D) 2C, two cotyledons; (E) 2L, two cotyledons and one or two leaves; (F) >2L, more than two leaves. (G-L) Some embryonic phenotypes found in the double mutant combinations indicated. Pictures were taken (A, C-F) 16 and (B) 21 das. Scale bars: (A-F) 1 mm and (G-L) 50 μm.
Figure 7. Genetic interactions of *icu13* and *eta1* with gain-of-function alleles of *SHY2*, *AXR2* and *AXR3*. (A) Rosettes and (B) first-node leaf venation patterns from double mutant combinations of either *icu13* or *eta1* and dominant alleles of *SHY2* and *AXR2* (*shy2-10*, *axr2-1*) or semi-dominant alleles of *AXR3* (*axr3-3* and *icu6*). Pictures were taken (A) 16 and (B) 21 das. Scale bars: 2 mm.
Figure 8. Genetic interactions of icu3 and eta1 with bdl and mp.

(A-D) The bdl semi-dominant mutation (A) causes seedling lethality when homozygous, as well as when heterozygous with its wild-type allele in (C) icu13 and (D) eta1 homozygous backgrounds. (E-Q) The embryonic phenotype of homozygous bdl and mp-S319 are made more extreme by icu13 (E-F), icu13, (G-H) bdl and (I-J) mp-S319 single mutants and the (K-N) icu13 bdl and (O-Q) icu13 mp-S319 double homozygotes at (E, G, I) globular and (F, H, J) heart stages. White arrows indicate abnormal divisions at the basal pole cells derived from the hypophysis. (R-U) Confocal micrographs of roots stained with propidium iodide and expressing the BDLpro:BDL:GFP transgene in the (R-S) En-2 and (T-U) icu13 backgrounds, (S, U) treated or (R, T) not with the MG132 proteasome inhibitor. (V) Average values of BDL:GFP fluorescence intensity in seedlings treated or not with MG132. Double and triple asterisks indicate $P<0.05$ and $P<0.01$, respectively. Pictures were taken (A-D) 16 and (R-U) 4 das. Scale bars: (A-D) 2 mm and (E-U) 10 μm.
Figure 9. Suppression of the phenotype of *icu13* by gain-of-function of *MP* or loss-of-function of *BDL*. Rosettes of (A) *icu13*, (B) a plant expressing the $35S_{pro}:MP$ transgene in an *icu13* background and (C) the *icu13 iaa12-1* double mutant. Pictures were taken 16 das. (D) Venation patterns from first-node leaves excised 21 das. Scale bars: 1 mm.