Solving the riddle of Aguascalientes nephropathy: nephron number, environmental toxins, and family clustering

Priscila Villalvazo¹, Sol Carriazo¹,²,³, Catalina Martin-Cleary¹,²,³, Maria Dolores Sanchez-Niño¹,²,⁴, Alberto Ortiz¹,²,³

1 IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
2 RJCORS2040, Madrid, Spain
3 Department of Medicine, School of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
4. Department of Pharmacology, School of Medicine, Universidad Autonoma de Madrid, Madrid, Spain

Running title: Aguascalientes hotspot

Correspondence to: Alberto Ortiz; E-mail: aortiz@fjd.es
ABSTRACT

Aguascalientes, Mexico has a high incidence and prevalence of advanced chronic kidney disease (CKD). CKD is especially frequent in young people aged 20 to 40 years in whom the cause of CKD was unknown (CKDu), although kidney biopsies frequently showed focal segmental glomerulosclerosis (FSGS) and glomerulomegaly. Macias-Diaz et al have now pursued this lead by screening teenagers in Calvillo, one of the hardest hit municipalities. They uncovered clinical, laboratory, kidney biopsy and exposure findings that define a new entity, Aguascalientes nephropathy, and are consistent with familial exposure to common environmental toxins, potentially consisting of pesticides. They hypothesize that prenatal exposure to these toxins may decrease nephron number. The young age of persons with FSGS would be consistent with a novel environmental toxin introduced more than 50 years ago, but not present in the environment before. Key takeaways from this research are the need to screen teenagers for albuminuria, to provide kidney protective strategies to patients identified as having CKD and for the research community to support Aguascalientes nephrologists and health authorities to unravel the cause and potential solutions to this CKD hotspot. In this regard, the screening approach and the cohort generated by Macias-Diaz et al represent a giant step forward. The next steps should be to screen younger children for albuminuria and kidney size and to identify the putative toxins.

Keywords: burden of disease, CKD of uncertain etiology, CKD hotspot, familial, focal segmental glomerulosclerosis, Mexico, pesticides
The Aguascalientes CKD hotspot

Chronic kidney disease (CKD) hotspots are countries, regions, communities, or ethnicities with a higher-than-average incidence of CKD. Parts of Central America are CKD hotspots and the site of Mesoamerican nephropathy. Mesoamerican nephropathy is associated with male gender, agricultural work, water intake and lowland altitude, likely reflecting the impact of higher temperature and humidity. There is frequently a family history of CKD, potentially implying a genetic background, common intrafamilial exposure or a combination of both. However, there are no significant associations with pesticide exposure, non-steroidal anti-inflammatory drugs, heat stress or alcohol consumption. More recently, Aguascalientes has emerged as one of the hottest CKD hotspots in Mexico and is among the hottest in the world for 20- to 40-year-olds. A well-coordinated research effort led by José Manuel Arreola Guerra is collecting the kidney replacement therapy (KRT) incidence and prevalence in a KRT registry published with the USRDS report and also the causes of CKD with histological confirmation in a kidney biopsy registry. The combination of KRT and kidney biopsy registries identified an atypical age pattern characterized by an average age of 46 years at KRT initiation in Aguascalientes, with peaks at ages 20 to 40 and 50 to 70 years. CKD of unknown origin was the main cause of KRT (73% of KRT cases) in Aguascalientes, especially at ages 20 to 40 years, followed by diabetes, in contrast to KEEP data for Mexico City and Jalisco, in which diabetes was the main cause for CKD. Moreover, kidney biopsy showed a high prevalence of focal segmental glomerulosclerosis (FSGS) of unknown origin with glomerulomegaly in young Aguascalientes patients which differed from the predominantly tubulointerstitial injury of Mesoamerican nephropathy or Sri Lanka CKD of unknown origin.

Both genetic and environmental factors may contribute to the Aguascalientes CKD hotspot. The Aguascalientes CKD hotspot was recently identified and patients are young, pointing to recently introduced environmental factors or to the interaction of new environmental toxins with a permissive genetic background as drivers of the disease. Determining the precise timing of the emergence of the regional CKD hotspot is essential to identify coetaneous environmental factors that may enable or cause CKD. In this regard, the 20 to 40 years age range peak is consistent with an environmental factor introduced within the last 50 years. However, describing environmental timelines is not an easy task, as environmental changes may increase the intensity of exposure over time, until a critical exposure threshold causes harm. Moreover, the population may not be universally sensitive to the same thresholds. Additionally, environmental exposures may impact adults, children and even newborns through their
mothers during pregnancy, potentially to different degrees. Finally, for chronic diseases such as CKD, there may be a lag time that may last decades, before becoming clinically evident or needing KRT, as is the case for genetic kidney diseases such as Fabry disease or autosomal dominant polycystic kidney disease. It is even possible that by the time the CKD hotspot has been identified, the environmental factor is no longer active or present.

An agricultural community and FSGS as guiding clues for the characterization of a new form of CKD

The Aguascalientes municipality with the highest prevalence of KRT is Calvillo, the largest guava producer in Mexico. This raises the issue of the potential contribution of an agricultural link, as for example, through pesticide use, in the pathophysiology of the syndrome, either through ground or water contamination or unsafe direct exposure. Malathion and Cypermethrin have been associated with impaired kidney function and nephrotic syndrome. Additionally, fluoride levels above the Mexican standard have been observed in Calvillo water. Exposure to fluoride can cause kidney injury and FSGS, and maternal exposure may lead to kidney disease in the offspring during puberty.

Although the most frequent kidney biopsy pattern in Aguascalientes was FSGS, nephrotic syndrome was uncommon, suggesting a secondary form of FSGS such as hyperfiltration-mediated podocytopathies. These are characterized by the coexistence of FSGS and glomerulomegaly in kidney biopsies, a feature found in 62% of biopsies of young patients in Aguascalientes. Glomerular hyperfiltration is an adaptive repose to congenital or acquired low nephron number. When acquired later in life, the causal kidney injury may lead to scarring, i.e. kidney fibrosis. Low nephron endowment at birth causes a reduced kidney mass and hyperfiltration-mediated podocytopathy and may be due to genetic causes or to pregnancy-related factors.

Further defining the timelines and defining characteristics of Aguascalientes nephropathy

Macias-Diaz et al now have set up a cohort of 513 students (mean age 13 years) from Calvillo in whom urinary albumin:creatinine ratio (UACR) and eGFR were assessed. Nearly 4% had high UACR (> 30 mg/g, median 50 mg/g) at baseline, i.e. evidence of CKD category G1-G3/A2-A3, as mean eGFR in albuminuric students was 112 ml/min/1.73 m² and one participant had a GFR <60 ml/min/1.73 m² and UACR > 1500 mg/g. Both sexes were affected equally. Despite preserved GFR, patients with
pathological albuminuria had a lower kidney volume on ultrasound consistent with CKD. Eighteen underwent kidney biopsy. All biopsies showed partial foot process effacement and 72% had glomerulomegaly. Interstitial fibrosis was mostly absent. Overall, the imaging, histological and analytical findings were interpreted as consistent with congenital low nephron number. Macias-Diaz et al further identified risk facts for pathological albuminuria that included homestead proximity to maize crops, the use of pesticides at the father’s workplace, a family history of CKD, and blood pressure abnormalities. However, Macias-Diaz et al detailed evaluation did not find an association of persistent albuminuria with either birth weight or prematurity, arguing against these factors as drivers of low nephron number. The body mass index and breastfeeding were identified as protective factors.

In summary, Macias-Diaz et al have provided evidence for potential exposure to pesticides (proximity to crops, father link to pesticides) as a driver of the Aguascalientes CKD hotspot. Together with the characteristic natural history, imaging, histological and analytical features, Macias-Diaz et al have generated enough evidence to define a new entity that, in the absence of firm causal insight, may be termed Aguascalientes nephropathy to differentiate it from other forms of CKD of unknown origin (Figure 2). Nevertheless, some parallelism with Mesoamerican nephropathy is apparent, since both are found in agricultural communities, despite the different climate conditions and biomarker and histological findings. Additionally, both Mesoamerican and Aguascalientes nephropathies are associated with a family history of CKD. Further studies are needed to differentiate a permissive genetic background (which may be responsive only to certain environmental triggers) from common intrafamilial exposure, which is supported by the proximity to crops and father link to pesticides. A further difference is that Mesoamerican Nephropathy is associated with male gender, while Macias-Diaz et al observed similar frequencies of pathological albuminuria in boys and girls. As KRT and kidney biopsies in routine clinical practice in the key young decades of life were more common in men in Aguascalientes, an impact of gender on CKD progression or on later and more persistent exposure to environmental toxins cannot be excluded.

Confirming the hypothesis for pesticides as the potential cause of Aguascalientes nephropathy is challenging. Macias-Diaz et al have collected data on pesticide use in the country and in Aguascalientes. If the hypothesis is made that this may be a local Aguascalientes issue (which may not be correct), then pesticides overused in Aguascalientes may be of interest for further research. Macias-Diaz et al disclose clear differences in the types and amounts of pesticides commercialized in Aguascalientes versus Mexico.
as whole (Figure 3)20. Diazinon, abamectin, lambda cyhalothrin, imidacloprid, malathion, chlorpyrifos, atrazine and aminopyralid appear to be more common in Aguascalientes than in the whole of Mexico. To establish a causal relationship between these pesticides and nephropathy, the following steps would be helpful: a timeline of the introduction of different pesticides in relationship with the timeline of the Aguascalientes CKD hotspot, identification of any mass intoxication episode, and the search for other communities in Mexico or abroad where these pesticides are used or overrepresented and where epidemiological studies similar to the one reported by Macias-Diaz et al can be performed. Additionally, mechanistic studies should assess individual pesticides alone or in combination with other pesticides and fluoride. Evidence for reduced kidney mass at early age in the absence of fibrosis points to prenatal exposure to toxins causing suboptimal nephrogenesis. Given the age of the students, this prenatal exposure was ongoing as recently as 10 to 15 years ago. Thus, it would be prudent to hope for the best but prepare for the worst and assume that the environmental issue keeps ongoing.

A further interesting epidemiological finding was the decreased risk of CKD in teenagers associated to breastfeeding. This may be used as an argument against prenatal exposure, as breastfeeding may potentially continue to expose the infant to the same environmental factors that the mother was exposed to, if these factors are secreted in maternal milk. An alternative hypothesis explaining the breastfeeding observation relates to the gut microbiota. The impact of the gut microbiota on human health is now beyond discussion and breastfeeding may impact the gut microbiota21. Additionally, the diet, drugs and potentially, environmental toxins interact with the gut microbiota22–25. Thus, these factors can modify the microbiota but also the microbiota may metabolize and transform dietary components and drugs. The gut microbiota can turn dietary components (e.g. tryptophan) into toxins (e.g. indole), and can also metabolize drugs, potentially increasing or decreasing drug exposure or generating toxic metabolites23,26,27. Indeed, the microbiota can prevent the toxicity of environmental toxins such as those ingested with diet28. An interaction between pesticides, microbiota and the kidney may be the underlying connection to the familial aggregation of CKD cases, as household contacts that share a similar diet tend to share the gut microbiota. The microbiota is also a source of metabolites that may decrease inflammation and protect from kidney injury, including short chain fatty acids such as butyrate and crotonate29–31.

Finally, antiproteinuric therapy with renin-angiotensin system blockade was initiated in patients with pathological albuminuria. In preliminary results, this was associated with a roughly 40% decrease in albuminuria20. Longer term results in a larger cohort are expected.
Avenues for further research on Aguascalientes nephropathy

Key takeaways from the recent manuscript by Macias-Diaz et al.20 are the need for albuminuria screening in Aguascalientes teenagers, the potential utility of kidney protective strategies in patients thus identified and the need for the research community to support Aguascalientes nephrologists and health authorities to unravel the cause and potential solutions of Aguascalientes nephropathy (Table 1). In this regard, the screening approach and the study cohort generated by Macias-Diaz et al represent a giant step forward. Research support would be needed to follow and expand the present cohort in number and in scope. Thus, the research effort may benefit from screening for albuminuria and sonography a wider age range of participants, to include younger children and even neonates or adding prenatal sonography to the screening tools. After answering the research question of whether sonography identifies earlier stages of the disease characterized already by small kidney size that precedes the increase in albuminuria, prenatal or neonatal sonography may eventually be used to identify mothers that may have been exposed to nephrotoxins and to collect biological samples that may contain the toxin/s. If indeed a decreased kidney size precedes albuminuria, sonography may become the basic screening tool that may inform on exposure prenatally or postnatally and eventually help to assess the activity status of the CKD hotspot. The epidemiological study should be expanded to affected and unaffected family members, to map current and past exposure to different pesticides as well as to heavy metals. Additionally, funding should support a biobank of biological samples ranging from blood and urine to feces for microbiota assessments and kidney tissue remaining after a diagnosis has been achieved in kidney biopsies. These samples may be used for the identification of specific toxins or metals or their molecular fingerprint as well as for systems biology studies that provide insights into pathogenesis or biomarkers. In family units, genetic testing to identify gene variants that segregate with CKD may be informative. Finally, preclinical studies should address the impact of the identified environmental toxins, alone or in combination, on kidney cells at diverse stages of development.

FUNDING

FIS/Fondos FEDER (PI18/01366, PI19/00588, PI19/00815, PI21/00251, DTS18/00032, ERA-PerMed-JTC2018 (KIDNEY ATTACK AC18/00064 and PERSTIGAN AC18/00071, ISCIII-RETIC REDinREN RD016/0009), Sociedad Española de Nefrología, FRIAT, Comunidad de Madrid en Biomedicina.
Instituto de Salud Carlos III (ISCIII) RICORS program to RICORS2040 (RD21/0005/0001), FEDER funds.

CONFLICT OF INTEREST STATEMENT

AO has received consultancy or speaker fees or travel support from Astellas, Astrazeneca, Amicus, Amgen, Fresenius Medical Care, Bayer, Sanofi-Genzyme, Menarini, Kyowa Kirin, Alexion, Otsuka and Vifor Fresenius Medical Care Renal Pharma and is Director of the Catedra Mundipharma-UAM of diabetic kidney disease and the Catedra Astrazeneca-UAM of chronic kidney disease and electrolytes. AO is the Editor-in-Chief of CKJ.

REFERENCES

1. Ferguson R, Leatherman S, Fiore M, Minnings K, Mosco M, Kaufman J, et al. Prevalence and Risk Factors for CKD in the General Population of Southwestern Nicaragua. J Am Soc Nephrol. 2020 Jul 1;31(7):1585–93.

2. Chandrajith R, Nanayakkara S, Itai K, Aturaliya TNC, Dissanayake CB, Abeysekera T, et al. Chronic kidney diseases of uncertain etiology (CKDue) in Sri Lanka: Geographic distribution and environmental implications. Environmental Geochemistry and Health. 2011 Jun 18;33(3):267–78.

3. Wijkström J, Leiva R, Elinder CG, Leiva S, Trujillo Z, Trujillo L, et al. Clinical and pathological characterization of mesoamerican nephropathy: A new kidney disease in central America. Am J Kidney Dis. 2013 Nov 10;62(5):908–18.

4. Leibler JH, Ramirez-Rubio O, Velázquez JA, Pilarte DL, Obeid W, Parikh CR, et al. Biomarkers of kidney injury among children in a high risk region for chronic kidney disease of uncertain etiology. Pediatr Nephrol. 2021 Feb 1;36(2):387–96.

5. González-Quiroz M, Pearce N, Caplin B, Nitsch D. What do epidemiological studies tell us about chronic kidney disease of undetermined cause in Meso-America? A systematic review and meta-analysis. Clin Kidney J. 2018 Aug 1;11(4):496–506.

6. Perez-Gomez MV, Martin-Cleary C, Fernandez-Fernandez B, Ortiz A. Meso-American nephropathy: What we have learned about the potential genetic influence on chronic kidney disease development. Clin Kidney J. 2018 Aug 1;11(4):491–5.
7. Gutierrez-Peña M, Zuñiga-Macías L, Marin-Garcia R, Ovalle-Robles I, García-Díaz AL, Macías-Guzmán MJ, et al. High prevalence of end-stage renal disease of unknown origin in Aguascalientes Mexico: role of the registry of chronic kidney disease and renal biopsy in its approach and future directions. Clin Kidney J. 2021 Apr 2;14(4):1197–206.

8. Annual Data Report USRDS. Available from: https://adr.usrds.org/2020/end-stage-renal-disease/11-international-comparisons; accessed 2021 Jun 21.

9. Villalvazo P, Carriazo S, Martin-Cleary C, Ortiz A. Aguascalientes: one of the hottest chronic kidney disease (CKD) hotspots in Mexico and a CKD of unknown aetiology mystery to be solved. Clin Kidney J 2021 Nov 8;14(11):2285–94.

10. Laney DA, Germain DP, Oliveira JP, Burlina AP, Cabrera GH, Hong GR, et al. Fabry disease and COVID-19: international expert recommendations for management based on real-world experience. Clin Kidney J. 2020;13(6):913–25.

11. Torra R, Pérez-Gómez MV, Furlano M. Autosomal dominant polycystic kidney disease: possibly the least silent cause of chronic kidney disease. Clin Kidney J. 2021 Nov 8;14(11):2281–4.

12. Arias Cardona J, Escamilla Violante R, Reynoso Vazquez J, Ruvalcaba Ledez, a J. The Ingestion of Contaminated Water with Pesticides and Heavy Metals as Probable Cause to Chronic Renal Failure. Int J Pure App Biosci. 2015;3:423–6.

13. Wan ET, Darssan D, Karatela S, Reid SA, Osborne NJ. Association of Pesticides and Kidney Function among Adults in the US Population 2001-2010. Int J Environ Res Public Health. 2021;18(19):10249.

14. Yokota K, Fukuda M, Katafuchi R, Okamoto T. Nephrotic syndrome and acute kidney injury induced by malathion toxicity. BMJ Case Reports. 2017 Nov 9;2017:bcr-2017-220733.

15. Inayat Q, Ilahi M, Khan J. A morphometric and histological study of the kidney of mice after dermal application of cypermethrin. Journal of the Pakistan Medical Association. 2007 Dec 1;57(12):587–91.

16. Haque SM, Sarkar CC, Khatun S, Sumon KA. Toxic effects of agro-pesticide cypermethrin on histological changes of kidney in Tenga, Mystus tengara. Asian Journal of Medical and Biological Research. 2018 Jan 30;3(4):494–8.

17. Wasana HMS, Perera GDRK, Gunawardena PDS, Fernando PS, Bandara J. WHO water quality standards Vs Synergic effect(s) of fluoride, heavy metals and hardness in drinking water on kidney tissues. Scientific Reports. 2017 Feb 14;7:42516–42516.
18. Tian X, Xie J, Chen X, Dong N, Feng J, Gao Y, et al. Deregulation of autophagy is involved in nephrotoxicity of arsenite and fluoride exposure during gestation to puberty in rat offspring HHS Public Access. Arch Toxicol. 2020;94(3):749–60.

19. Conti G, De Vivo D, Fede C, Arasi S, Alibrandi A, Chimenz R, et al. Low birth weight is a conditioning factor for podocyte alteration and steroid dependance in children with nephrotic syndrome. J Nephrol. 2018 Jun 1;31(3):411–5.

20. Macias Diaz D, Corrales Aguirre M, Reza Escalera A, et al. Histologic characterization and risk factors for persistent albuminuria in adolescents in a region of highly prevalent kidney failure of unknown origin. Clin Kidney J. 2022;

21. Shao Y, Forster SC, Tsaliki E, Vervier K, Strang A, Simpson N, et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature. 2019 Oct 3;574(7776):117–21.

22. Favero C, Carriazo S, Cuarental L, Fernandez-Prado R, Gomá-Garcés E, Perez-Gomez MV, et al. Phosphate, Microbiota and CKD. Nutrients. 2021 Apr 1;13(4):1273.

23. Fernandez-Prado R, Esteras R, Perez-Gomez MV, Gracia-Iguacel C, Gonzalez-Parra E, Sanz AB, et al. Nutrients Turned into Toxins: Microbiota Modulation of Nutrient Properties in Chronic Kidney Disease. Nutrients. 2017 May 12;9(5):

24. Maier L, Pruteanu M, Kuhn M, Zeller G, Telzerow A, Anderson EE, et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature. 2018 Mar 29;552(7698):623–8.

25. Maier L, Goemans C v., Wirbel J, Kuhn M, Eberl C, Pruteanu M, et al. Unravelling the collateral damage of antibiotics on gut bacteria. Nature. 2021 Nov 4;599(7883):120–4.

26. Rekdal VM, Bess EN, Bisanz JE, Turnbaugh PJ, Balskus EP. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Science. 2019 Jun 14;364(6445):eaau6323

27. Klünemann M, Andrejev S, Blasche S, Mateus A, Phapale P, Devendran S, et al. Bioaccumulation of therapeutic drugs by human gut bacteria. Nature. 2021 Sep 23;597(7877):533–8.

28. Reardon S. Faecal transplants could help preserve vulnerable species. Nature. 2018 Jun 14;558(7709):173–4.

29. Ruiz-Andres O, Sanchez-Niño MD, Cannata-Ortiz P, Ruiz-Ortega M, Egido J, Ortiz A, et al. Histone lysine crotonylation during acute kidney injury in mice. Disease models & mechanisms. 2016 Jun 1;9(6):633–45.
30. Fontecha-Barriuso M, Martin-Sanchez D, Ruiz-Andres O, Poveda J, Sanchez-Niño MD, Valiño-Rivas L, et al. Targeting epigenetic DNA and histone modifications to treat kidney disease. Nephrol Dialysis Transplant. 2018 Nov 1;33(11):1875–86.

31. Sanchez-Niño MD, Aguilera-Correa JJ, Politei J, Esteban J, Requena T, Ortiz A. Unraveling the drivers and consequences of gut microbiota disruption in Fabry disease: the lyso-Gb3 link. Future microbiology. 2020 Mar 1;15(4):227–31.
Table 1. New and persistent research questions on Aguascalientes nephropathy

- Is there an environmental factor?
- What would this/these factor/s be?
- When did the Aguascalientes hotspot develop?
- Is the environmental factor still active and in need of solution?
- Is Aguascalientes nephropathy limited to Aguascalientes or are there other examples worldwide?
- What would be the cellular and molecular mechanisms of injury?
- Is kidney injury already present in neonates or fetuses?
- If not, when does it become evident?
- What is the best screening tool for the early detection of Aguascalientes nephropathy?
- What is the natural history, and can it be modified by therapy? What would be the optimal therapy among the different nephroprotective strategies available (Conventional RAS blockade, SGLT2 inhibitors, MRA)

RAS: renin-angiotensin system; SGLT2: Sodium-glucose transport protein 2; MRA. Mineralocorticoid receptor antagonist
Figure 1. Conceptual framework for CKD of unknown origin: the Aguascalientes hotspot as example. Based on available evidence regarding the concentration of CKD cases within certain geographic location and families, as well as on the association with certain environments and occupations, a conceptual framework implying a genetic susceptibility background in association/interacting with environmental exposures is a reasonable starting point to unravel the pathogenesis of CKDu. However, the familial incidence may also be due to familial exposure to the same environmental actor and/or to a shared microbiota pattern. The genetic background may be expected to have been present for centuries unless significant immigration occurred in recent decades. The age pattern evidenced by kidney replacement therapy and kidney biopsy epidemiology points to the initiation of the CKD hotspot in Aguascalientes around 50 years ago, which may be hypothesized to be the date of the irruption of an environmental factor, and the more recent data on albuminuria and decreased kidney size in teenagers suggest that the CKD hotspot was still active 10 to 15 years ago and potentially, today.
Figure 2. The natural history of Aguascalientes nephropathy. Aguascalientes nephropathy is characterized by the presence of pathological albuminuria, decreased kidney size as observed by sonography and preserved kidney function in the second decade of life, associated to histological evidence of decreased nephron number and hyperfiltration-induced podocytopathy in the absence of significant fibrosis, which argues against recent nephron loss induced by acquired kidney injury. This evolves towards proteinuric focal segmental glomerulosclerosis in the third decade of life, associated to decreasing glomerular filtration rate that will need kidney replacement therapy peaking at ages 30 to 40 years. It is yet unknown whether the decreased kidney size can be observed in fetuses, neonatally or during the first decade of life, whether this can be used for screening for the condition and when albuminuria first develops. It is also unknown whether conventional antiproteinuric therapy with renin-angiotensin system blockers slows CKD progression, although it does decrease albuminuria. Further unknowns relate to the triggers for the condition, as low birth weight or prematurity do not appear to be responsible but family clustering and evidence suggesting exposure to agrochemical toxins was uncovered. Another unknown is whether low nephron number was determined in the past and accounts for the condition as a non-modifiable factor or whether continued exposure to a putative environmental toxin is still accelerating the loss of kidney function.
Figure 3. Pesticide sales in Mexico and in Aguascalientes. A) Total kg. Please note that data for Mexico are expressed as thousands of Kg and data for Aguascalientes as Kg. B) Percentage of total Kg represented by each pesticide. Source: Suppl table 4 from 20 which used data from the Agrochemicals Marketing Survey 2020, Department of Sanitary Regulation Aguascalientes.