Echocardiography-Guided Hemodynamic Management of Severe Sepsis and Septic Shock in Adults: A Randomized Controlled Trial

CURRENT STATUS: POSTED

Walid S. Alhabashy
Tanta University Faculty of Medicine

Osama M. Shalaby
Tanta University Faculty of Medicine

Ahmed S. Elgebaly
Tanta University Faculty of Medicine

elgebaly_13@hotmail.com

Corresponding Author

ORCID: https://orcid.org/0000-0001-9826-6365

Mohammed S. Abd El Ghafar
Tanta University Faculty of Medicine

DOI:
10.21203/rs.3.rs-17392/v1

SUBJECT AREAS
Critical Care & Emergency Medicine

KEYWORDS
Echocardiography; EGDT; Severe sepsis; Septic Shock; Adults; Randomized Controlled Trial
Abstract
Background:
Echocardiography (ECHO) is used to guide septic shock resuscitation, but without evidence for efficacy. Therefore, we compared the outcome of early goal-directed therapy (EGDT) and ECHO-guided management of hemodynamics in severe sepsis and septic shock.

Methods:
This is a single center, randomized controlled trial conducted on 100 adult patients with severe sepsis or septic shock. Patients were assessed and treated either EGDT protocol (EGDT group) or ECHO-guided resuscitation protocol (ECHO group).

Results:
In this study, only 87 patients with severe sepsis/septic shock were analyzed; 45 patients in group I and 42 patients in group II. There was significant increase of norepinephrine, dobutamine doses, MV free days, time to normalization, time to weaning of vasopressors, total MV days and ICU and hospital stay in EGDT group compared to ECHO group. At 30 days, the mortality rate in EGDT group was 35.6% which was significantly higher compared to 14.3% in ECHO group. At 90 days, the overall mortality was significantly higher in EGDT group compared to Echo group (40.0% vs 16.7% respectively). Hazardous ratio of mortality was 1.630 (95% confidence interval (CI): 1.123 - 2.366) and 1.653 (95% CI: 1.137 - 2.404) at 30 and 90 days respectively in EGDT group compared to ECHO group.

Conclusion:
In severe sepsis and septic shock, ECHO-guided management of hemodynamic resulted in decrease in mortality, lower total fluid intake, vasopressor and inotrope, earlier weaning of vasopressors and less MV days, ICU and hospital stay.

Background
Severe sepsis and septic shock are common in critically ill patients and are on top of the causes of mortality in intensive care unit (ICU) [1]. Vasodilation, increased permeability, hypovolemia, and ventricular dysfunction are the main findings in septic shock [2].
A paradigm of “early goal-directed therapy” (EGDT) has been dominated in sepsis resuscitation for about fifteen years based on the results of a single-center, randomized, “usual care” controlled study [3]. EGDT was not, however, repeated in large, multinational, multicenter studies, even the patients received more intensive fluid in the “usual care” group than the control group in the first study [4–7]. Due to the failure of several negative randomized controlled trials to obtain similar benefits as the initial trial, the ideal approach to resuscitate patients with septic shock is still uncertain. Research is ongoing to find an optimal balance between administering large volumes of intravenous fluids that can have deleterious effects, or small volumes of fluids that fail to support adequate organ perfusion [8].

Previously, the invasive assessment of hemodynamic parameters using central venous catheters and/or pulmonary artery catheters allowed clinicians to define cardiovascular physiology and dominated fluid management for many years [9]. However, utilization of such techniques has significantly decreased due to risks associated with their use. In addition, their “static” variable outcomes poorly predicted fluid responsiveness, and prospective studies showed no benefit from their routine use [10–15].

Nowadays, critical care physicians are increasingly employing the echocardiography (ECHO) in the non-invasive assessment of hemodynamic parameters during hemodynamic instability. Many clinicians advocate the use of ECHO as a vital tool in the management of the critically ill patient [16, 17].

Despite the adequacy of focused ECHO in the early stages of septic shock, nevertheless, a comprehensive systemic ECHO assessment of cardiac output, left and right ventricular systolic functions, volume status and filling pressure is crucial to provide a comprehensive hemodynamic management. Unfortunately, outcome studies on the utilization of ECHO in septic shock are not adequate and are therefore strongly required [18].

The aim of this study was to compare the outcome between EGDT and ECHO-guided management of hemodynamics in severe sepsis and septic shock in adult patients.

Methods
This single center randomized controlled clinical trial was conducted from March 2015 to May 2016 at the surgical ICU at Tanta university hospitals. After ethics committee approval and obtaining of an informed written consent from each patient either by the patient or his next of kin. All data of patients were confidential with secret codes and private file for each patient. All given data were used for the current medical research only.

The target population included 100 patients aged 18 to 60 years, admitted or planned for admission to ICU for an episode of severe sepsis and septic shock. Severe sepsis and septic shock was defined by the American College of Chest Physicians/Society of Critical Care Medicine consensus criteria [19].

Patients met criteria for inclusion if they had (1) a suspected infection, (2) two or more systemic inflammatory response syndrome criteria, and (3) either: (a) had severe sepsis (end-organ dysfunction) or (b) had septic shock (a systolic blood pressure less than 90 mmHg despite an intravenous fluid challenge of at least 20 ml/kg with evidence of organ dysfunction or hyperlactatemia).

Exclusion criteria were patient refusal to be included, known history of any cardiac disease, acute coronary syndrome, cardiac dysrhythmias (as a primary diagnosis), acute pulmonary edema, status asthmaticus, body mass index > 35, severe respiratory disorders or high PEEP requirements on mechanical ventilation (MV), liver insufficiency, multi-organ system failure, contraindication to central venous catheterization, active gastrointestinal hemorrhage, and/or do-not-resuscitate status.

After stabilization of the airway and breathing, standard continuous monitoring of ECG, respiratory rate (RR), oxygen saturation and invasive arterial blood pressure was done. Then venous access and initiation of fluid resuscitation and empirical antibiotics were done.

Patients were randomly allocated into two equal groups (n = 50). Randomization was accomplished by a volunteer, not sharing in the study by computer generated sequence through sealed opaque envelopes.

**Group I (egdt Group):**
In which the surviving sepsis campaign dependent resuscitation protocol was applied, targeting all of the following as a part of a stepwise treatment protocol:
500-ml bolus of crystalloid was given every 30 minutes to achieve a central venous pressure (CVP) of 8 to 12 mmHg. If the mean arterial pressure (MAP) was less than 65 mmHg, vasopressors (noradrenaline 0.05–0.3 µg/kg/min) were given to maintain a MAP of at least 65 mmHg. If the central venous oxygen saturation (ScvO₂) was less than 70%, red cells were transfused to achieve a hematocrit of at least 30%. After the CVP, MAP, and hematocrit were thus optimized, if the ScvO₂ was less than 70%, Dobutamine administration was started at a dose of 2.5 µg/kg/min, a dose that was increased by 2.5 µg/kg/min every 30 minutes until the ScvO₂ was 70% or higher or until a maximal dose of 20 µg/kg/min was given. Dobutamine was decreased in dose or discontinued if the heart rate (HR) was above 120 beats per minute (Fig. 1).

**Group II (echo Group):**

In which a transthoracic bedside focused echocardiographic assessment of the patient was done, as a baseline ECHO in a five-step approach to monitor hemodynamics using Philips (CX50 – Extreme edition) machine with S5-1 ECHO probe.

**Step 1:** Starting point was to detect potential signs of pre-existing chronic cardiac dysfunction that needs a full formal ECHO study and exclude the patient from this study, as these findings can mislead in interpretation of subsequent findings (i.e. primary cardiogenic cause of shock, instead of sepsis, LV or LA significant dilatation, and LV marked hypertrophy are signs or chronic volume/pressure overload; RA significant dilatation, RV dilatation and hypertrophy have the same meaning for right-side chronic disease (isolated RV dilatation can vice versa be a sign of acute RV dysfunction).

**Step 2:** LV/RV contractility assessment by eyeballing categorizing into hyperdynamic, good and poor function with Step 3: LVOT VTI assessment by Echo Doppler, a low output state can then be ascribed to sepsis-related LV systolic dysfunction (± RV dysfunction) or isolated RV dysfunction and treated with inotropic support ± vasopressors (depending on MAP after inotropic support).

Low output with evidence of normal biventricular systolic function should prompt investigation of fluid responsiveness (Step 4): Fluid responsiveness assessed by 3 parameters A) IVC Collapsibility (Fig. 3A,3B) B) passive leg raise test and C) velocity time integral (VTI) variation on the left ventricular outflow tract (LVOT) (Fig. 3C) if patient is fluid responder he received a fluid infusion of 500 ml of
crystalloids. When inadequacy of global perfusion and/or hypotension is associated with a non-low output state, persistent preload defect should be investigated (again step 4) and if detected corrected.

If this is not the case, an exclusion diagnosis of vasodilatation is made (Step 5), and systemic arterial tone corrected with upward titration of vasopressors. Whenever this is done, LV Systolic/Diastolic functions should subsequently be re-assessed, as normalization of LV afterload can unmask sepsis related myocardial dysfunction and diastolic function was assessed using spectral doppler on mitral inflow and e’ and a’ velocities using tissue doppler of the septal mitral annulus in apical four chamber view (Fig. 2).

Echocardiographic parameters: were repeated before each change in the management of fluids, vasopressors or inotropes, then just before discharge from the ICU.

IVC Collapsibility diameter < 2 cm and index > 50% indicates fluid responsiveness in spontaneously breathing patients. IVC distensibility index > 18% indicates fluid responsiveness in MV patients.

Passive leg raising test > 10% increase in SV indicates fluid responsiveness (Fig. 4).

In Both Groups:
The source of sepsis was early treated or eradicated according to the situation. The time of the study was the first 24 hours.

Measurements:
Demographic characteristics and clinical parameters (HR, RR, core temperature, invasive MAP, CVP and urine output) were recorded. Acute Physiology and Chronic Health Evaluation Score II (APACHE II) was calculated on 24 hours of study enrolment in both groups. Laboratory parameters (complete blood count, serum urea and creatinine) were done daily for three days to be incorporated in the severity scoring system. Also, central venous saturation, arterial lactate level and arterial blood gases were recorded. Total fluid requirements in first 24 hours from initiation of therapy, vasopressors and inotropic drugs requirements in first 24 hours, time till normalization of the tissue perfusion indicators, time till weaning of vasopressors and inotropic drugs, MV and ventilator-free days, ICU length of stay, mortality at 30 and 90 days of admission were recorded.
The primary outcome was mortality at 30 days and the secondary outcomes were mortality at 90 days, the total fluid intake, MV-free days and duration of ICU and hospital stay.

Statistical analysis:
The sample size calculation was performed using G.power 3.1.9.2. The sample size was calculated on the following considerations: 0.05 $\alpha$ error and 80% power of the study and group ratio 1:1 to demonstrate a 25% decrease (expected) in mortality (the primary outcome) with ECHO-guided compared to EGDT management of hemodynamics (35% according to a previous study [20]). To overcome dropout, 7 cases were added to each group. Therefore, 50 patients were recruited in each group.

The collected data were organized, tabulated and statistically analyzed using SPSS version 20 (IBM® SPSS® Inc., Chicago, Illinois, USA). All data were assessed for normal distribution using Shapiro-Wilks test. Quantitative parametric data were presented as mean $\pm$ standard deviation and compared by unpaired student (t) test. Quantitative non-parametric data were presented as median and interquartile range and compared by Mann-Whitney (U) test. Qualitative variables were expressed as frequency and percent and were compared by Chi-square ($X^2$) test. A $P$ value $< 0.05$ was considered statistically significant.

Results
In this study, only 87 patients with severe sepsis/septic shock were analyzed; 45 patients in group I (5 cases were withdrawn) and 42 patients in group II (8 cases dropped out; 1 case with poor window, 4 cases with chronic cardiac dysfunction and 3 cases were withdrawn). (Fig. 5)

Both groups in our study were matched in the baseline characteristics (age, sex, BMI and body surface area (BSA). The source of sepsis, type of organism and APACHE II score were comparable between both groups. (Table 1)
|                          | Group I (EGDT) (n = 45) | Group II (ECHO) (n = 42) | Test | P    |
|--------------------------|-------------------------|--------------------------|------|------|
| Age (years)              | 44.44 ± 7.65            | 42.33 ± 8.96             | T = 0.18 | 0.24 |
| Sex                      |                         |                          |      |      |
| Male                     | 23 (51.1%)              | 24 (57.1%)               | X² = 0.31 | 0.57 |
| Female                   | 22 (48.9%)              | 18 (42.9%)               |      |      |
| BMI (kg/m²)              | 27.93 ± 3.04            | 27.90 ± 2.73             | T = 0.04 | 0.96 |
| BSA (m²)                 | 1.90 ± 0.14             | 1.90 ± 0.13              | T = 0.14 | 0.88 |
| Source of sepsis         |                         |                          |      |      |
| Respiratory tract        | 19 (42.2%)              | 16 (38.1%)               | X² = 2.98 | 0.81 |
| Soft tissue              | 11 (24.4%)              | 7 (16.7%)                |      |      |
| Blood                    | 5 (11.1%)               | 6 (14.3%)                |      |      |
| Urinary tract            | 4 (8.9%)                | 6 (14.3%)                |      |      |
| Abdomen                  | 4 (8.9%)                | 5 (11.9%)                |      |      |
| Endocarditis             | 0 (0%)                  | 1 (2.4%)                 |      |      |
| Unknown                  | 2 (4.4%)                | 1 (2.4%)                 |      |      |
| Type of organism         |                         |                          |      |      |
| Gram positive            | 18 (40.0%)              | 14 (33.3%)               | X² = 0.59 | 0.74 |
| Gram negative            | 16 (35.6%)              | 15 (35.7%)               |      |      |
| Mixed                    | 11 (24.4%)              | 13 (31%)                 |      |      |
| APACHE II score          | 24.76 ± 4.26            | 23.95 ± 3.45             | T = 0.79 | 0.42 |

BSA was calculated by Mosteller Formula (BSA = 0.01667xW^{0.5}xH^{0.5}). EGDT: early goal directed therapy group; ECHO: echocardiography group; BMI: body mass index; BSA: body surface area, T: Student’s t test, X²: Chi-square.
Table 2
Vital signs, central venous pressure, central venous oxygen saturation, lactate concentration, pH and urine output of the studied patients

|                                | Group I (EGDT) (n = 45) | Group II (ECHO) (n = 42) | T     | P     |
|--------------------------------|-------------------------|--------------------------|-------|-------|
| **Mean arterial pressure (mmHg)** |                         |                          |       |       |
| Baseline                        | 58.31 ± 6.29            | 56.57 ± 7.49             | 1.17  | 0.24  |
| At 6 hours                      | 66.31 ± 4.32            | 74.98 ± 9.24             | 5.65  | < 0.001 |
| At 12 hours                     | 67.91 ± 3.30            | 81.43 ± 12.06            | 7.23  | < 0.001 |
| At 24 hours                     | 69.51 ± 2.46            | 70.05 ± 2.09             | 1.09  | 0.27  |
| **Heart rate (beats/min)**      |                         |                          |       |       |
| Baseline                        | 119.78 ± 13.23          | 113.62 ± 16.04           | 1.97  | 0.52  |
| At 6 hours                      | 116.02 ± 10.96          | 100.05 ± 9.77            | 7.15  | < 0.001 |
| At 12 hours                     | 107.47 ± 10.63          | 95.31 ± 7.8              | 6.04  | < 0.001 |
| At 24 hours                     | 106.82 ± 22.92          | 84.90 ± 7.85             | 5.88  | < 0.001 |
| **Core body temperature (°C)**  |                         |                          |       |       |
| Baseline                        | 37.98 ± 1.34            | 38.16 ± 1.25             | 0.62  | 0.53  |
| At 6 hours                      | 37.54 ± 1.08            | 37.43 ± 1.24             | 0.41  | 0.67  |
| At 12 hours                     | 37.46 ± 0.58            | 37.19 ± 0.74             | 1.92  | 0.06  |
| At 24 hours                     | 37.47 ± 0.62            | 37.24 ± 0.65             | 1.65  | 0.10  |
| **Central venous pressure (mmHg)** |                         |                          |       |       |
| Baseline                        | 6.89 ± 2.87             | 10.38 ± 4.03             | 4.67  | < 0.001 |
| At 6 hours                      | 11.2 ± 2.39             | 11.19 ± 3.44             | 0.02  | 0.98  |
| At 12 hours                     | 11.73 ± 1.94            | 10.38 ± 3.13             | 2.43  | 0.017 |
| At 24 hours                     | 12.07 ± 1.87            | 9.6 ± 2.84               | 4.81  | < 0.001 |
| **Central venous oxygen saturation (%)** |             |                          |       |       |
| Baseline                        | 61.2 ± 7.43             | 65.9 ± 3.47              | 1.57  | 0.508 |
| At 6 hours                      | 65.82 ± 5.82            | 69.37 ± 5.36             | 3.81  | 0.004 |
| At 12 hours                     | 65.82 ± 5.82            | 70.79 ± 4.00             | 2.79  | 0.006 |
| At 24 hours                     | 68.36 ± 4.97            | 71.24 ± 4.62             | 2.69  | 0.006 |
| **Lactate concentration (mmol/L)** |                         |                          |       |       |
| Baseline                        | 6.02 ± 1.51             | 6.38 ± 1.62              | 1.07  | 0.28  |
| At 6 hours                      | 5.03 ± 1.27             | 5.26 ± 1.68              | 0.71  | 0.47  |
| At 12 hours                     | 4.54 ± 1.42             | 4.08 ± 1.24              | 1.58  | 0.12  |
| At 24 hours                     | 3.74 ± 2.42             | 2.32 ± 0.61              | 3.68  | < 0.001 |
| **pH**                          |                         |                          |       |       |
| Baseline                        | 7.16 ± 0.12             | 7.2 ± 0.09               | 1.95  | 0.54  |
| At 12 hours                     | 7.23 ± 0.09             | 7.28 ± 0.07              | 1.99  | 0.049 |
| At 24 hours                     | 7.27 ± 0.08             | 7.36 ± 0.06              | 5.46  | < 0.001 |
| **Urine output (mL)**           |                         |                          |       |       |
| At 6 hours                      | 216.24 ± 140.13         | 254.33 ± 190.46          | 1.06  | 0.28  |
| At 12 hours                     | 414.67 ± 284.33         | 622.74 ± 189.19          | 3.98  | < 0.001 |
| First day                       | 751.31 ± 485.13         | 1070.55 ± 338.23         | 3.71  | < 0.001 |

Data are presented as mean ± SD, T: Student’s t test
Table 3
Outcomes of the studied patients

|                                | Group I (EGDT) (n = 45) | Group II (ECHO) (n = 42) | Test | p     |
|--------------------------------|-------------------------|--------------------------|------|-------|
| Fluids in the first 24 hours (mL) | 3635.56 ± 973.32        | 2564.29 ± 927.58         | t = 5.24 | < 0.001 |
| Norepinephrine dose (µg/kg/h)    | 0.1 (0.05–0.2)          | 0.3 (0.2–0.34)           | U = 308.5 | < 0.001 |
| Dobutamine dose (µg/kg/h)        | 2.50 (0–7.5)            | 7.50 (5–10)              | U = 538.0 | < 0.001 |
| Time to normalization            | 12 (7–16)               | 36 (27.2–66.8)           | U = 114.5 | < 0.001 |
| Time to weaning vasopressors (h) | 24 (12–24)              | 48 (24–72)               | U = 231.0 | < 0.001 |
| Total MV days                    | 7 (5–8)                 | 10 (6–12)                | U = 501.0 | < 0.001 |
| MV free days                     | 2 (2–3)                 | 3 (0–4)                  | U = 205.0 | < 0.001 |
| ICU stay (d)                     | 10 (7.25–11)            | 12 (6–15)                | U = 603.5 | 0.004  |
| Hospital stay (d)                | 13 (10–14)              | 18 (10–21)               | U = 595.5 | 0.003  |
| Morality at 30 days              | 16 (35.6%)              | 6 (14.3%)                | X² = 5.20 | 0.023  |
| Morality at 90 days              | 18 (40.0%)              | 7 (16.7%)                | X² = 5.77 | 0.016  |

Data are presented as mean ± SD, median (and IQR) or number (and %). IQR: Interquartile range, T: Student’s t test, U: Mann Whitney test

MAP showed significant increase in ECHO group compared to EGDT group at 6 and 12 h. In each group, there was significant increase in MAP at 6, 12 and 24 h compared to baseline values. HR showed significant decrease in ECHO group compared to EGDT group at 6, 12 and 24 h. In addition, there was significant progressive decrease in each group at 6, 12, and 24 hours compared baseline values. Core body temperature showed no significant differences at baseline and at 6, 12 and 24 h between both groups. [Table (2)]

CVP was significantly lower in EGDT group compared to ECHO group at baseline. Then, values in EGDT progressively increased with time, while values in ECHO increased at 6 h, then decreased nearly to baseline values at 12 h and progressively decreased at 24 h. The difference between both groups was non-significant at 6 h, while at 12 and 24 h, there was significant decrease in ECHO group compared to EGDT group. [Table (2)]

ScvO₂ showed significant increase in ECHO group compared to EGDT group at 6, 12 and 24 h. Lactate concentration showed significant decrease at 24 h in ECHO group compared to EGDT group. pH was significantly higher in ECHO group at 12 and 24 h. Urine output showed no significant difference between both groups at the first 6 h. However, urine output was significantly increased in Echo group compared to EGDT group at 12 and 24 h. [Table (2)]
There was significant increase of norepinephrine, dobutamine doses, MV free days in Echo group compared to EGDT group. In addition, there was significant decrease in time to normalization, time to weaning of vasopressors, total MV days, ICU stay duration and duration of hospital stay in Echo group compared to EGDT group. [Table (3)]

At 30 days, mortality rate in EGDT group was 35.6% (16 patients) which was significantly higher compared to 14.3% (6 patients) in Echo group. At 90 days, the overall mortality was significantly higher in EGDT group compared to Echo group (40.0%; 18 patients vs 16.7%; 7 patients respectively). [Table (3)] Hazardous ratio of mortality was 1.630 (95% confidence interval (CI): 1.123–2.366) and 1.653 (95% CI: 1.137–2.404) at 30 and 90 days respectively in EGDT group compared to ECHO group.

Discussion
In the present work, we proposed that the use of ECHO to guide treatment of sepsis and septic shock will be associated with better outcome. Thus, we designed the present study to examine this hypothesis in the light of available gold standard of sepsis treatment (i.e. EGDT) at the time of the study. We prospectively evaluated a group of patients whose treatment was guided by ECHO and compared the results with a group of patients who received EGDT.

Our results regarding the mortality is comparable to those reported by Chertoff et al. [21] who reported a mortality rate of 29.69%. In addition, the reported incidence of mortality in the present work lies within reported range in literature; the short-term mortality is 20–30%, and up to 50% in patients with septic shock [1,22].

In contrary to Lanspa et al. [8] who reported insignificant difference between ECHO-guided resuscitation compared to EGDT in mortality, ICU stay or lactate clearance. This could be a result of late ECHO assessment after initial resuscitation as no difference in fluids administration between the two groups in contrary to our study results which showed a statistically significant difference between groups in the fluid resuscitation volume.

The present work revealed that the baseline MAP of both groups shows no significant difference. Then the MAP of the ECHO group became higher significantly than that of the EGDT group after 6 and 12 hours of the study. Thereafter, the MAP of both groups shows no significant difference at 24 hours
from enrolment. This means that the ECHO group reached the target MAP earlier.

As well, Lin [23] and his colleagues observed improvement of blood pressure of the intervention group when they tested the effect of modified goal-directed protocol (targeting specific MAP, CVP and UOP without targeting ScvO$_2$) on the clinical outcome of septic shock patients. However, the MAP of the intervention group stayed significantly higher throughout the study [23].

In the current work, there was no statistically significant difference between both groups as regards the HR at the start of the study, then the HR starting from 6 hours till 24 hours after the enrolment differed significantly between both groups.

The significant decrease in the HR in the ECHO group was shown as well when the HR measurement was compared to the baseline HR at enrolment in the study. This decrease in the HR in the ECHO group can be a preceding indicator of the improvement of the hemodynamics which also correlated with higher MAP in the ECHO group.

The fluid therapy in the EGDT group was according to the CVP (targeting CVP between 8–12 mm Hg). This CVP guidance made the fluid therapy relatively higher in the EGDT group. Most of recent studies that test the CVP in guiding fluid therapy criticize the CVP as a predictor of fluid responsiveness as it may be falsely high in volume-depleted patient hindering useful fluid resuscitation or it may be falsely low in volume overloaded patient exposing the patient to more overload or even pulmonary congestion and edema. However, it is still used by many clinicians in ICU.

In agreement with our results, a study by Feng et al. [24], who reported that those who had trans-thoracic ECHO (TTE) had a higher maximum dose of norepinephrine, but surprisingly were weaned of vasopressors earlier compared to the no TTE group. Dobutamine was used more often in the group who received TTE, they concluded that performance of TTE is associated with a 28-day mortality benefit in a general population of septic, critically ill patients [24].

This is also in agreement with Kanji et al. [25] reported more utilization of Dobutamine in the limited ECHO group compared to the standard management.

In the present study we reported significantly lower number, in ECHO group versus EGDT group, of
mechanically ventilation days, ICU stay, and hospital stay due to earlier weaning from vasopressors and Mechanical ventilation.

This is in disagreement with Lanspa et al. [26] who reported an insignificant difference between the echo group and non-echo group (median of 28 days versus 25 days; p = 0.51). Also, Feng et al. [24] reported no significant difference in ventilation-free days between ECHO group and non-ECHO groups. Overall, results of the present work indicated that, ECHO as a sole monitoring and guiding tool was associated with better outcome than EGDT as evidenced from enhancement of vital data over time, decreased total fluid administration, significant decrease of 30 day and overall mortality. Critical care ultrasound may be considered the fifth pillar of clinical examination especially in critically ill patients.

ECHO is widely used in critical care medicine [27,28].

Finally, it may be the first time to compare outcome between EGDT and use of echocardiographic findings to govern the progress of management in sepsis and septic shock. Results of the present work seems to be promising. However, further studies with larger sample size and in multi-centers are needed to generalize the routine use of ECHO in management of hemodynamic in severe sepsis and septic shock provides. Anyway, present work advocates routine uses of ECHO as a crucial, non-invasive bedside tool for the management of patients with severe sepsis and septic shock.

Another limitation of our study is the use of old definitions of sepsis, sever sepsis and septic shock and it’s preferred to depend on the new definitions for sepsis and septic shock provided by the International Consensus (Sepsis-3) in 2016 [29].

Further studies are needed to reveal the role of early diagnosis by new scores as Quick Sequential Organ Function Assessment (qSOFA) and qSOFA-65 [30] which helps in prediction and thereby early management.

Limitations in ECHO use still exist; low echogenicity at surface examination. Whenever there is strict requirement of continuous monitoring of cardiac output or pulmonary artery pressure, ECHO is not the right tool. Also, in centers where adequate training on the use of critical care ECHO does not exist, and repeated bedside assessment of hemodynamic variables are required, ECHO is of limited use as a
single monitoring tool. Patients excluded from the study e.g. morbid obese and atrial fibrillation still represent challenges in echocardiographic assessments and follow up either due to inconsistency of cardiac output on LVOT VTI or limited window for examination respectively.

Conclusion
In severe sepsis and septic shock, ECHO-guided management of hemodynamic provides additional benefits over EGDT. It is a non-invasive, reproducible, readily available tool with a resultant decrease in mortality and favorable outcomes in the term of lower total fluid intake, vasopressor and inotrope, earlier weaning of vasopressors and less MV days, ICU and hospital stay. ECHO-guided management should be a routine care in the management of hemodynamics in severe sepsis and septic shock patients during the first 24 hours.

Abbreviations
MV
Mechanical ventilation
EGDT
early goal-directed therapy
ECHO
Echocardiography
ICU
Intensive care unit
CVP
Central venous pressure
MAP
Mean arterial pressure
HR
Heart rate
ScvO₂
Central venous oxygen saturation

Declarations
**Ethics approval:** 2932/12/14 (Tanta University Research Ethics Committee at 12/2014)

**Consent to participate:** After ethics committee approval and obtaining of an informed written consent from each patient either by the patient or his next of kin
Consent for publication: Contributors agreed to publish this work

Availability of data and material: No

Competing interests: There are no conflicts of interest

Funding: No financial support

Authors' contributions: All authors contributed in writing the manuscript. They read and approved the final manuscript.

Acknowledgements: Nil

References

1. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29 (7):1303-1310. doi:10.1097/00003246-200107000-00002

2. Russell JA, Rush B, Boyd J (2018) Pathophysiology of Septic Shock. Crit Care Clin 34 (1):43-61. doi:10.1016/j.ccc.2017.08.005

3. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345 (19):1368-1377. doi:10.1056/NEJMoa010307

4. Mouncey PR, Osborn TM, Power GS, Harrison DA, Sadique MZ, Grieve RD, Jahan R, Harvey SE, Bell D, Bion JF, Coats TJ, Singer M, Young JD, Rowan KM (2015) Trial of early, goal-directed resuscitation for septic shock. N Engl J Med 372 (14):1301-1311. doi:10.1056/NEJMoa1500896

5. Peake SL, Delaney A, Bailey M, Bellomo R, Cameron PA, Cooper DJ, Higgins AM, Holdgate A, Howe BD, Webb SA, Williams P (2014) Goal-directed resuscitation for patients with early septic shock. N Engl J Med 371 (16):1496-1506. doi:10.1056/NEJMoa1404380

6. Rowan KM, Angus DC, Bailey M, Barnato AE, Bellomo R, Canter RR, Coats TJ, Delaney...
A, Gimbel E, Grieve RD, Harrison DA, Higgins AM, Howe B, Huang DT, Kellum JA, Mouncey PR, Music E, Peake SL, Pike F, Reade MC, Sadique MZ, Singer M, Yealy DM (2017) Early, Goal-Directed Therapy for Septic Shock - A Patient-Level Meta-Analysis. N Engl J Med 376 (23):2223-2234. doi:10.1056/NEJMoa1701380

7. Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA, Pike F, Terndrup T, Wang HE, Hou PC, LoVecchio F, Filbin MR, Shapiro NI, Angus DC (2014) A randomized trial of protocol-based care for early septic shock. N Engl J Med 370 (18):1683-1693. doi:10.1056/NEJMoa1401602

8. Lanspa MJ, Burk RE, Wilson EL, Hirshberg EL, Grissom CK, Brown SM (2018) Echocardiogram-guided resuscitation versus early goal-directed therapy in the treatment of septic shock: a randomized, controlled, feasibility trial. J Intensive Care 6:50. doi:10.1186/s40560-018-0319-3

9. Kortgen A, Niederprum P, Bauer M (2006) Implementation of an evidence-based "standard operating procedure" and outcome in septic shock. Crit Care Med 34 (4):943-949. doi:10.1097/01.CCM.0000206112.32673.D4

10. Harvey S, Harrison DA, Singer M, Ashcroft J, Jones CM, Elbourne D, Brampton W, Williams D, Young D, Rowan K, collaboration PA-Ms (2005) Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. Lancet 366 (9484):472-477. doi:10.1016/S0140-6736(05)67061-4

11. Micek ST, Roubinian N, Heuring T, Bode M, Williams J, Harrison C, Murphy T, Prentice D, Ruoff BE, Kollef MH (2006) Before-after study of a standardized hospital order set for the management of septic shock. Crit Care Med 34 (11):2707-2713. doi:10.1097/01.CCM.0000241151.25426.D7

12. Richard C, Warszawski J, Anguel N, Deye N, Combes A, Barnoud D, Boulain T, Lefort
Y, Fartoukh M, Baud F, Boyer A, Brochard L, Teboul JL, French Pulmonary Artery Catheter Study G (2003) Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial. JAMA 290 (20):2713-2720. doi:10.1001/jama.290.20.2713

13. Shah MR, Hasselblad V, Stevenson LW, Binanay C, O'Connor CM, Sopko G, Califf RM (2005) Impact of the pulmonary artery catheter in critically ill patients: meta-analysis of randomized clinical trials. JAMA 294 (13):1664-1670. doi:10.1001/jama.294.13.1664

14. Shapiro NI, Howell MD, Talmor D, Lahey D, Ngo L, Buras J, Wolfe RE, Weiss JW, Lisbon A (2006) Implementation and outcomes of the Multiple Urgent Sepsis Therapies (MUST) protocol. Crit Care Med 34 (4):1025-1032. doi:10.1097/01.CCM.0000206104.18647.A8

15. Swan HJ, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D (1970) Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med 283 (9):447-451. doi:10.1056/NEJM197008272830902

16. Cholley BP, Vieillard-Baron A, Mebazaa A (2006) Echocardiography in the ICU: time for widespread use! Intensive Care Med 32 (1):9-10. doi:10.1007/s00134-005-2833-8

17. Seppelt IM (2007) All intensivists need echocardiography skills in the 21st century. Crit Care Resusc 9 (3):286-288

18. Via G, Price S, Storti E (2011) Echocardiography in the sepsis syndromes. Crit Ultrasound J 3 (2):71-85. doi:10.1007/s13089-011-0069-0

19. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 101
20. Early Goal-Directed Therapy Collaborative Group of Zhejiang Province. [The effect of early goal-directed therapy on treatment of critical patients with severe sepsis/septic shock: a multi-center, prospective, randomized, controlled study] (2010). Zhongguo wei zhong bing ji jiu yi xue = Chinese critical care medicine = Zhongguo weizhongbing jijiuyixue 22 (6):331-334

21. Chertoff J, Chisum M, Simmons L, King B, Walker M, Lascano J (2016) Prognostic utility of plasma lactate measured between 24 and 48 h after initiation of early goal-directed therapy in the management of sepsis, severe sepsis, and septic shock. J Intensive Care 4:13. doi:10.1186/s40560-016-0142-7

22. Annane D, Bellissant E, Cavaillon JM (2005) Septic shock. Lancet 365 (9453):63-78. doi:10.1016/S0140-6736(04)17667-8

23. Lin SM, Huang CD, Lin HC, Liu CY, Wang CH, Kuo HP (2006) A modified goal-directed protocol improves clinical outcomes in intensive care unit patients with septic shock: a randomized controlled trial. Shock 26 (6):551-557. doi:10.1097/01.shk.0000232271.09440.8f

24. Feng M, McSparron JL, Kien DT, Stone DJ, Roberts DH, Schwartzstein RM, Vieillard-Baron A, Celi LA (2018) Transthoracic echocardiography and mortality in sepsis: analysis of the MIMIC-III database. Intensive Care Med 44 (6):884-892. doi:10.1007/s00134-018-5208-7

25. Kanji HD, McCallum J, Sirounis D, MacRedmond R, Moss R, Boyd JH (2014) Limited echocardiography-guided therapy in subacute shock is associated with change in management and improved outcomes. J Crit Care 29 (5):700-705. doi:10.1016/j.jcrc.2014.04.008

26. Lanspa MJ, Pittman JE, Hirshberg EL, Wilson EL, Olsen T, Brown SM, Grissom CK
(2015) Association of left ventricular longitudinal strain with central venous oxygen saturation and serum lactate in patients with early severe sepsis and septic shock. Critical Care 19 (1):304. doi:10.1186/s13054-015-1014-6

27. Narula J, Chandrashekhar Y, Braunwald E (2018) Time to Add a Fifth Pillar to Bedside Physical Examination: Inspection, Palpation, Percussion, Auscultation, and Insonation. JAMA Cardiol 3 (4):346-350. doi:10.1001/jamacardio.2018.0001

28. Mayo P, Arntfield R, Balik M, Kory P, Mathis G, Schmidt G, Slama M, Volpicelli G, Xirouchaki N, McLean A, Vieillard-Baron A (2017) The ICM research agenda on critical care ultrasonography. Intensive Care Med 43 (9):1257-1269. doi:10.1007/s00134-017-4734-z

29. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Jama 315 (8):801-810. doi:10.1001/jama.2016.0287

30. Lee J, Song JU (2020) Performance of a quick sofa-65 score as a rapid sepsis screening tool during initial emergency department assessment: A propensity score matching study. J Crit Care 55:1-8. doi:10.1016/j.jcrc.2019.09.019

Figures
Figure 1: Early goal directed therapy (EGDT) protocol in severe sepsis/septic shock
Figure 2: Echocardiography-guided algorithm in severe sepsis/septic shock.
Fig. 3: IVC Collapsibility is showing non-fluid responder in (a) compared to potential fluid responder in (b), velocity time integral (VTI) variation on the left ventricular outflow tract (LVOT) variability is showing a fluid responsive patient (c)
Fig. 4: Cardiac output calculation using the left ventricular outflow tract (LVOT) velocity time integral (VTI) and LVOT cross sectional area (CSA)

Figure 4

Cardiac output calculation using LVOT VTI and LVOT CSA
Figure 5
Patient flowchart of the study groups
