Antimicrobial resistance and related gene analysis of *Salmonella* from egg and chicken sources by whole-genome sequencing

Lijun Hu,* Guojie Cao,* Eric W. Brown,* Marc W. Allard,* Li M. Ma,† Ashraf A. Khan,‡ and Guodong Zhang*,1

*Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Nutrition, U.S. Food and Drug Administration, College Park, MD; †National Institute for Microbial Forensics & Food and Agricultural Biosecurity, Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK; and ‡Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR

ABSTRACT Whole-genome sequencing (WGS) is a valuable tool in research on foodborne pathogens. In this study, a total of 143 isolates of *Salmonella* serotypes Enteritidis, Typhimurium, and Heidelberg sourced from eggs and chickens were analyzed for their antimicrobial resistance profiles using WGS data. The isolates carried high rate of genes resistant to aminoglycoside (70.63%), tetracycline (26.57%), fosfomycin (25.17%), sulfonamides (23.78%), and β-lactamases (15.38%); and *aadA* was the most frequently observed antimicrobial resistance gene (ARG). Antimicrobial resistance varies by *Salmonella* serotypes, with *Salmonella enterica* serovar Enteritidis (*Salmonella* ser. Enteritidis) isolates being highly resistant to aminoglycoside (particularly streptomycin); *Salmonella* ser. Typhimurium more resistant to aminoglycoside, tetracycline, and sulfonamides; and *Salmonella* ser. Heidelberg more resistant to aminoglycoside and fosfomycin. *Salmonella* ser. Typhimurium isolates presented more varieties of ARG than *Salmonella* ser. Enteritidis and *Salmonella* ser. Heidelberg. Our data showed that 5 isolates of *Salmonella* ser. Typhimurium and *Salmonella* ser. Heidelberg contained ARG resistant to ≥ 5 antimicrobials. In addition, 23 *Salmonella* isolates carried ARG resistant to 4 antimicrobials.

Key words: *Salmonella*, WGS, antimicrobial resistance, egg, chicken

2020 Poultry Science 99:7076–7083
https://doi.org/10.1016/j.psj.2020.10.011

INTRODUCTION

Salmonella has always been a serious threat to global public health. In the United States, *Salmonella* caused approximately 1.2 million illnesses and 450 deaths annually; and about 1 million of these illnesses were due to contaminated foods (Centers for Disease Control and Prevention (CDC), 2019; Scallan et al., 2011). It was estimated that *Salmonella* serotypes Enteritidis, Typhimurium, and Heidelberg caused about 50% of the foodborne salmonellosis outbreaks in the United States and were frequently isolated from eggs and egg products, chicken meats, chicken ovaries, and feces (Schoeni et al., 1995; Chittick et al., 2006; Gast et al., 2017).

In the past 20 yr, the increasing resistance to medically important antimicrobial agents in *Salmonella* has been widely reported (Su et al., 2004). The emerging and spreading new resistance mechanisms contributed to the deteriorating situation of antimicrobial resistance and threatened the ability to treat foodborne diseases, then caused more prolonged illnesses, disabilities, and deaths (World Health Organization (WHO), 2018). The Centers for Disease Control and Prevention (CDC) estimated at least 2 million people are infected with antibiotic-resistant bacteria annually in the United States, leading to at least 23,000 deaths (CDC, 2018a). Furthermore, widespread of multidrug-resistance (resistance to more than 4 antibiotic classes) *Salmonella*, particularly *Salmonella* ser. Typhimurium, to the most commonly used antibiotics in human beings, has made it an even greater threat to the public health (CDC, 2014; European Center for Disease Prevention and Control (ECDC), 2009; European Food Safety Authority (EFSA) and ECDC, 2017). During 2009–2011, about 5% of nontyphoidal *Salmonella* tested by the CDC were resistant to ≥5 types of drugs (CDC, 2013). For the 2,364 *Salmonella* isolates from humans, retail meats, and food-producing animals tested in the United States in 2015, 65 of them (2.7%) were resistant.
to at least 5 antimicrobial agents: ampicillin, chloramphenicol, streptomycin, sulfonamide (sulfamethoxazole/sulfisoxazole), and tetracycline. *Salmonella* ser. Typhimurium was the serotype that most frequently presented ampicillin, chloramphenicol, streptomycin, sulfonamide (sulfamethoxazole/sulfisoxazole), and tetracycline resistance with a prevalence of 10.8% (27 of 251) (CDC, 2018b). From 1998 to 2003, the US Food Safety and Inspection Service tested 293,938 samples sourced from meat and poultry products and pasteurized egg products; of which, 136 (91.9%) of the 148 *Salmonella* ser. Enteritidis isolates from these samples were pansusceptible; 12 resistant isolates showed resistance to ampicillin (11), tetracycline (3), sulfamethoxazole (4), cephalothin (3), and ticarcillin (3); and 4 of the 12 isolates were resistant to 4 or more antimicrobials (White et al., 2007). Suresh et al. (2006) tested 492 eggs (492 eggshell and 492 egg content) and 82 egg-storing trays during 1-year period in South India; 40 *Salmonella* ser. Enteritidis isolates from the 46 *Salmonella* positive samples were all determined to be resistant to at least 4 drugs. Among the 46 positive samples, 5.3% was from eggshell, 1.8% from egg contents, and 6.1% from egg storing trays (Suresh et al., 2006). There are many mechanisms of actions that could cause antibiotic resistance, such as inhibiting an enzyme, altering the cell membrane permeability (ionophores), affecting the structure of the cell wall, interfering with DNA/protein synthesis (mutations, horizontal gene transfer) (Barbosa and Levy, 2000; Giedraitiené et al., 2011). Therefore, a collective effort should be made to limit the spread of resistance and reduce the impact of these extremely harmful bacteria.

Whole-genome sequencing (WGS) technology has attracted so much attention in the last decade, owing to its unique power in data generation, evolution and epidemiology study, microbiological risk assessment, and outbreak investigation. Scientists also use WGS to rapidly identify antimicrobial resistance genes (ARG) and gene clusters and mutations of these genetic elements in foodborne pathogens. Based on the WGS data, a novel trimethoprim-resistance gene dfrA34 has been identified in *Salmonella* ser. Heidelberg (Tagg et al., 2018). In a Québec study, 65 of 69 (96.9%) *Salmonella* ser. Heidelberg isolates investigated contained blaCMY-2 plasmids; 2 blaCMY-2 plasmids were found to have been inserted into the chromosome and the CMY-2 plasmid transmission occurred among *Salmonella* ser. Heidelberg isolates with variable genetic backgrounds (Edirmanasinghe et al., 2017).

The National Center for Biotechnology Information Pathogen Detection system is a centralized Web-based portal that integrates the genomic sequence, metadata, antibiotic susceptibility and resistance gene information, and the SNP cluster information, widely used for outbreak investigation, source tracking, and epidemiologic studies of bacterial pathogens, such as *Salmonella*, *Campylobacter*, *Listeria*, *Escherichia coli*, and *Shigella* (https://www.ncbi.nlm.nih.gov/pathogens/).

The objectives of this study were 1) to investigate the prevalence of ARG in 143 isolates of 3 *Salmonella* serotypes (*Salmonella* ser. Enteritidis, *Salmonella* ser. Typhimurium, and *Salmonella* ser. Heidelberg) sourced from eggs and chickens, using WGS data and 2) to compare the differences regarding the occurrence and trends of ARG in these pathogens, highlighting the differences among the 3 serotypes investigated.

MATERIALS AND METHODS

Salmonella Isolates

A total of 143 *Salmonella* isolates from egg and chicken sources, including 64 *Salmonella* ser. Enteritidis collected from 1995 to 2016 (Table 1), 40 *Salmonella* ser. Typhimurium collected from 2001 to 2010 (Table 2), and 39 *Salmonella* ser. Heidelberg collected from 2003 to 2013 (Table 3), were used in this study. All isolates were in the collection of Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition (CFSAN), U.S. Food and Drug Administration (FDA). These isolates were cultured overnight at 37 ± 2°C in Trypticase Soy Broth (Becton Dickinson, Franklin Lakes, NJ) for DNA extraction.

Whole-Genome Sequencing

Isolates were cultured for 16 ± 1 h at 37 ± 2°C in Trypticase Soy Broth. Genomic DNA from each isolate was extracted and purified using the DNeasy Blood and Tissue Kit (Qiagen, Inc., Valencia, CA). Concentrations of DNA were measured using a Qubit 3.0 fluorometer (Life Technologies, MD). Genomic DNA was sequenced on the Illumina MiSeq/NextSeq 500 platform following the manufacturer’s instructions (Illumina, San Diego, CA). The Illumina reads were assembled de novo using CLC Genomics Workbench v9 (Qiagen Bioinformatics, Redwood City, CA). The WGS data of all isolates studied here can be searched and downloaded from the Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra) and Pathogen Detection System in the National Center for Biotechnology Information. The ARG were identified by the National Center for Biotechnology Information antimicrobial resistance finder process; all isolates were run against GenBank genomes in the Bacterial Antimicrobial Resistance Reference Gene Database (https://www.ncbi.nlm.nih.gov/associations/CLC) and Pathogen Detection System in the National Center for Biotechnology Information. The ARG were identified by the National Center for Biotechnology Information antimicrobial resistance finder process; all isolates were run against GenBank genomes in the Bacterial Antimicrobial Resistance Reference Gene Database (https://www.ncbi.nlm.nih.gov/associations/CLC), which included more than 5,300 sequence data for identifying bacterial genomes with AMR genes.

RESULTS

Of the 143 *Salmonella* isolates that were investigated in this study (Tables 1–4), the highest rates of ARG were against aminoglycoside (70.63%), followed by
tetracycline (26.57%), fosfomycin (25.17%), sulfonamides (23.78%), and β-lactamases (15.38%) (Tables 1–3). The gene adaA (in 95 isolates) was the most frequently occurred ARG among the isolates, followed by gene fosA (36 isolates), tet(A) (32 isolates), and sul2 (27 isolates). The ARG against aminoglycoside were very diverse, including genes adaA, adaA1, adaA2, aac(3), aph(3′)-Ib, aph(3′)-IId, aph(3′)-II, aph(3′)-Ia, aph(3′)-Ib, aph(6)-Ic.
Table 2. Sources and antimicrobial resistance genes (ARG) of Salmonella ser. Typhimurium.

Isolates	Source	Location	Year	ARG
CFSAN017093	Duck egg yolks (Cooked, Frozen)	China	2010	aph(3')-B, aph(6)-Id, ble_TEM-1, bleO, tet(A)
CFSAN017094	Duck egg yolks (Cooked, Frozen)	China	2010	aadA, aph(3')-B, aph(6)-Id, ble_TEM-1, bleO, tet(A)
CFSAN017095	Duck egg yolks (Cooked, Frozen)	China	2010	aadA, aph(3')-B, aph(6)-Id, ble_TEM-1, bleO, tet(A)
CFSAN015377	Frozen salted duck yolk	China	2002	N/A
CFSAN015378	Frozen salted duck yolk	China	2002	aadA, aph(3')-B, aph(6)-Id, ble_TEM-1, bleO, tet(A)
CFSAN015380	Frozen salted duck yolk	China	2002	N/A
CFSAN013737	Salted egg yolk	China (Taiwan)	2001	sul2, tet(A)
CFSAN012405	Salted duck eggs	China (Taiwan)	2004	aadA
CFSAN015282	Chicken jerky	China	2001	aac(3)-Ib, aadA1, tet(A), aph(3)-Ib, catA1, dfrAI2, qacEdelta1, sul1, sul2, tet(A)
CFSAN027862	Chicken breast	US:CO	2005	aadA
CFSAN029063	Chicken breast	US:GA	2006	aadA, ble_CMY
CFSAN029213	Chicken breast	US:MD	2006	aadA, ble_CMY, sul2, tet(A)
CFSAN029210	Chicken breast	US:MD	2006	aadA, aph(3)-Ia, ble_CMY, sul2, tet(A)
CFSAN035417	Chicken breast	US:CA	2007	aadA
CFSAN035525	Chicken breast	US:CT	2007	aac(3), aadA1, ble_TEM-1, qacEdelta1, sul1, sul2, tet(A)
CFSAN035560	Chicken breast	US:MD	2008	aadA, ble_CMY, sul2, tet(A)
CFSAN035575	Chicken breast	US:NY	2008	aadA, aph(3')-Ib, aph(3)-Ia, ble_CMY, sul2, tet(A)
CFSAN036172	Chicken breast	US:MD	2008	aadA, aph(3')-Ib, aph(6)-Id, sul2, tet(A)
CFSAN036174	Chicken breast	US:NM	2008	N/A
CFSAN036179	Chicken breast	US:NY	2008	aadA, sul2, tet(A)
CFSAN036177	Chicken breast	US:NY	2008	aac(3), aph(3')-Ib, ble_CMY, sul2, tet(A)
CFSAN036183	Chicken breast	US:PA	2008	aadA, aph(3')-Ib, aph(6)-Id, ble_CMY, tet(A), tet(B)
CFSAN036186	Chicken breast	US:PA	2008	aadA, sul2, tet(A)
CFSAN036257	Chicken breast	US:MD	2008	aadA, aph(3')-Ia, sul2, tet(A)
CFSAN036272	Chicken breast	US:MD	2008	aadA, aph(3')-Ia, sul2, tet(A)
CFSAN036362	Chicken breast	US:NY	2008	aadA, aph(3')-Ia, sul2, tet(A)
CFSAN036367	Chicken breast	US:NY	2008	aadA, aph(3')-Ia, sul2, tet(A)
CFSAN041824	Chicken breast	US:NY	2009	aadA, sul2, tet(A)
CFSAN041835	Chicken breast	US:NY	2009	aadA, aph(3')-Ia, ble_CMY, sul2, tet(A)
CFSAN041875	Chicken breast	US:PA	2009	sul2, tet(A)
CFSAN041878	Chicken breast	US:PA	2009	aadA, aph(3')-Ia, ble_CMY, sul2, tet(A)
CFSAN041887	Chicken breast	US:PA	2009	aac(3), aadA, aadA1, qacEdelta1, sul1, sul2, tet(A)
CFSAN040229	Chicken breast	US:MD	2009	aadA
CFSAN041925	Chicken breast	US:CT	2010	aadA, aadA2, ble_CAR-2, floR, qacEdelta1, sul1, sul1delta, tet(G)
CFSAN041934	Chicken breast	US:GA	2010	aadA, sul2, tet(A)
CFSAN041947	Chicken breast	US:MD	2010	aadA, aph(3')-Ib, ble_CMY, sul2, tet(A)
CFSAN041940	Chicken breast	US:MD	2010	aadA, ble_CMY, sul2, tet(A)
CFSAN041965	Chicken breast	US:MN	2010	aadA, sul2, tet(A)
CFSAN041987	Chicken breast	US:NY	2010	aadA, aadA2, ble_CAR-2, floR, qacEdelta1, sul1, sul1delta, tet(G)
CFSAN041662	Chicken breast	US:TN	2010	aadA, sul2, tet(A)

Abbreviations: CA, California; CT, Connecticut; CO, Colorado; GA, Georgia; MD, Maryland; MN, Minnesota; NM, New Mexico; NY, New York; PA, Pennsylvania; TN, Tennessee.

1No information available.
2Typhimurium var. 5.
3Typhimurium var. O:5.

and aph(6)-Id. The ARG against β-lactamases included bla, ble_CMY, ble_CMY-2, ble_TEM, ble_TEM-1, ble_OXA-1, and ble_CAR-2. The ARG of sul1, sul2, suldelta were resistant to sulfonamides. The ARG of tet(A), tet(B), tet(C), and tet(G) were resistant to tetracycline.

Among the ARG studied, Salmonella ser. Enteritidis isolates had the highest rate of aadA against aminoglycoside (streptomycin). However, we did not find ARG among the Salmonella ser. Enteritidis isolates in Salmonella ser. Enteritidis (CFSAN030067) had the β-lactamase resistant gene (bla_TEM-1). A few egg-sourced Salmonella ser. Enteritidis isolates were found to have ARG resistant to bleomycin (CFSAN024743, BleO) and quaternary ammonium compound (CFSAN057651, qacEdelta1). Only 1 egg-sourced (CFSAN024727, qnrB19) and 1 chicken-sourced (CFSAN057814, qnrB2) Salmonella ser. Enteritidis isolate were observed to have quinolone-associated ARG (Table 1). Other ARG, such as tet(A), dfrA15, dfrA25, were also found in Salmonella ser. Enteritidis isolates.

For Salmonella ser. Typhimurium, ARG against fosfomycin and quinolone were not detected in chicken-sourced isolates, and ARG against chloramphenicol, trimethoprim, and quaternary ammonium compound were not found in egg-sourced isolates (Table 4). The ARG aadA, sul2, and tet(A) were the most frequent ones contained in chicken-sourced isolates. We observed 8 and 5 different ARG against aminoglycoside and β-lactamases, respectively. Three chicken-sourced isolates carried the floR (CFSAN041925 and CFSAN041987) and catA1 (CFSAN015282) which confer resistance to
chloramphenicol. And, 5 chicken-sourced isolates contained ARG *gacEdelta1*. In addition, isolates CFSAN041925 and CFSAN041987 were the only 2 isolates contained ARG *tet(G)* among all 143 isolates (Table 2).

Salmonella ser. Heidelberg isolates had high rates of ARG against aminoglycoside (90%) and fosfomycin (90%) (Table 4). A total of 27 of the 30 egg-sourced isolates contained ARG against aminoglycoside (90%) and fosfomycin. And, 5 chicken-sourced isolates contained ARG against aminoglycoside (90%) and fosfomycin.

There were 3 and 2 isolates with ≥5 ARG found from *Salmonella* ser. Typhimurium (CFSAN015282, CFSAN041925, CFSAN041987) and *Salmonella* ser. Heidelberg (CFSAN036283, CFSAN035554), respectively; there was no *Salmonella* ser. Enteritidis isolate in this category (Tables 1–3). Many isolates carried 4 ARG: 17 *Salmonella* ser. Enteritidis, where chicken-sourced isolates (7) contained fewer varieties of ARG than egg-sourced isolates (13) (Table 4).

There were 3 and 2 isolates with ≥5 ARG found from *Salmonella* ser. Typhimurium (CFSAN015282, CFSAN041925, CFSAN041987) and *Salmonella* ser. Heidelberg (CFSAN036283, CFSAN035554), respectively; there was no *Salmonella* ser. Enteritidis isolate in this category (Tables 1–3). Many isolates carried 4 ARG: 17 *Salmonella* ser. Typhimurium, 4 *Salmonella* ser. Enteritidis, and 2 *Salmonella* ser. Heidelberg isolates.

DISCUSSION

Prevalence of antimicrobial resistant bacteria has been increasing rapidly on US meat and poultry products in recent yr (North American Meat Institute (NAMI), 2019). This study investigated ARG of 3 major *Salmonella* serotypes associated with egg and chicken sources,
using WGS data. The high rates of ARG against aminoglycosides (particularly streptomycin), tetracycline, fosfomycin, and sulfonamides among these isolates are probably related to the extensive use of these antimicrobials in the poultry industry (WHO, 2011), as well as the inappropriate use of antimicrobial agents in both livestock and humans. From 2009 to 2015, in the United States, domestic sales and distribution of antimicrobials approved for use in food-producing animals increased by 24%, and tetracycline sales represent the largest volume of these domestic sales (U.S. Food and Drug Administration (FDA), 2016). The US FDA tested 4,072 imported foods in 2000, 187 Salmonella isolates consisting of 82 serotypes were found, 60% of the resistant isolates exhibited resistance to tetracycline, 47% to sulfonamides, and 33% to streptomycin (Zhao et al., 2003). Similar results have also been reported in other countries. For example, among nontyphoidal Salmonella isolates from retail meats of the United States and China, aada1 gene was found most frequently among 6 ARG against aminoglycoside (aada1, aada2, aacC2, Kn, aph(3’)-Iba, and aac(3)-Iva) (Chen et al., 2004). The study also found other ARG, such as tet(A), tet(B), dhfr1, dhfr12, dhfr13, cat1, cat2, blatem1, and blacmy-2.

Our study only found quinolone-associated ARG in 1 egg-sourced and 1 chicken-sourced Salmonella serotypes Typhimurium and Heidelberg; all isolates from retail meats of other countries. For example, among nontyphoidal Salmonella isolates from retail meats of the United States and China, aada1 gene was detected most frequently among 6 ARG against aminoglycoside (aada1, aada2, aacC2, Kn, aph(3’)-Iba, and aac(3)-Iva) (Chen et al., 2004). The study also found other ARG, such as tet(A), tet(B), dhfr1, dhfr12, dhfr13, cat1, cat2, blatem1, and blacmy-2.

Our study only found quinolone-associated ARG in 1 egg-sourced and 1 chicken-sourced Salmonella serotypes Typhimurium and Heidelberg; all isolates from Salmonella serotypes Typhimurium and Heidelberg did not contain

Table 4. Antimicrobial resistance genes of Salmonella.

Antimicrobials	Egg and egg products (59)	Chicken (5)	Egg and egg products (8)	Chicken (32)	Egg and egg products (30)	Chicken (9)
Aminoglycoside	aadA, 26; aadA1, 1; aph(3’)-Ib, 1; aph(6)-Id, 2	aadA, 1; aph(3’)-Ib, 1; aph(6)-Id, 1	aadA, 4; aph(3’)-Ib, 4; aph(6)-Id, 4	aadA, 28; aadA1, 3; aadA2, 3; aac(3), 2; aac(3)-Id, 1; aph(3’)-Ib, 7; aph(6)-Id, 4	aadA, 27; aadA1, 3; aadA2, 3; aph(3’)-Ib, 2; aph(3’)-Ib, 6	aadA, 1; aadA1, 1; aph(3’)-Ib, 1; aac(3), 2; aac(3)-Id, 1; aph(3’)-Ib, 7; aph(6)-Id, 4
β-Lactamases	bteTEM-1, 1	0	bte, 1; bteTEM-1, 3	0	bteCMY-1, 10	0
Sulfonamides	sul1, 3; sul2, 1	sul1, 1	sul2, 1	sul1, 1; sul2, 2	sul2, 12	sul1, 3
Tetracycline	tet(A), 2	tet(A), 1	tet(A), 5	tet(A), 24; tet(B), 2; tet(G), 2	0	tet(B), 2; tet(C), 1
Fosfomycin	0	0	0	0	fosA, 27	fosA, 9
Chloramphenicol	0	0	0	0	catA1, 1	0
Quinolone	qnrA9, 1	qnrB2, 1	0	0	0	0
Trimethoprim	dfrA15, 1; dfrA25, 1	0	dfrA15, 1	0	0	0
Bleomycin	blcO, 1	blcO, 4	0	0	0	ble, 2
Quaternary ammonium compound (ethilium bromide)	qacEdeltal1, 1	0	qacEdeltal5, 1	0	qacEdeltal3	

1Total number of isolates studied.
2Name of the antibiotics resistance gene, number of isolates containing the corresponding gene.

from carcasses of fattening pigs in Europe (EFSA and ECDC, 2017).

By binding to the bacterial 30S/50S ribosomal sub-unit, aminoglycosides could inhibit the translocation of the peptidyl-tRNA from A-site to P-site, causing RNA unit, aminoglycosides could inhibit the translocation of the peptidyl-tRNA from A-site to P-site, causing RNA
ARG against quinolone, although previous research showed a rise in quinolone resistance in *Salmonella* isolates associated with contaminated eggs and egg products in Europe during a 5-year survey from 2000 to 2004 (Meakins et al., 2008). The study also found a decreased occurrence of chloramphenicol and tetracyclines resistance in *Salmonella* ser. Typhimurium isolates. Our data indicated that resistance to chloramphenicol was associated with *Salmonella* ser. Typhimurium isolates from chicken origin only and fosfomycin with *Salmonella* ser. Heidelberg isolates from either egg or chicken origins. The use of different antimicrobials in different parts of the world may have contributed to this phenomenon, as well as the antimicrobial resistance variation by *Salmonella* serotypes (CDC, 2018b).

The present study also indicated that chicken-sourced isolates contained more diverse ARG than egg-sourced and egg products–sourced isolates among *Salmonella* ser. Typhimurium and *Salmonella* ser. Heidelberg. There were 5 *Salmonella* isolates from both chicken and egg sources with ARG against ≥5 antimicrobials in this study; none of them were from *Salmonella* ser. Enteritidis. Furthermore, among the isolates studied, many carried ARG against 4 antimicrobials, particularly the isolates from *Salmonella* ser. Typhimurium. Borges et al. (2017) analyzed 148 *Salmonella* ser. Enteritidis strains and found only 25 (16.9%) were susceptible to all antimicrobials tested, and poultry strains presented higher resistance and a greater number of multidrug resistance than those isolated from food involved in salmonellosis. Zhao et al. (2003) reported that 2 *Salmonella* ser. Typhimurium isolated from ground chicken exhibited resistance to 12 antibiotics among the 18 identified *Salmonella* resistant isolates from imported food in United States. In the European Union, 29.3% of human *Salmonella* isolates exhibited multidrug resistance, especially for the monophasic *Salmonella* ser. Typhimurium 1,4,[5],12:i:-, which had an extremely high rate of multidrug resistance of 81.1% (EFSA and ECDC, 2017). However, the relationship between antimicrobial resistance and multiresistance isolates from humans and animals are often confounded by the selected isolates with different serotypes, geographical locations, or temporal intervals (Carroll et al., 2017). The mechanisms of multiresistance are highly intricate. The use of different antibiotics in the life cycle of food animals make it more likely that *Salmonella* harbored by the animals might be resistant to common antibiotics, and the genes that encode these antibiotic resistances can also be transferred to human pathogens. With the increased resistance to conventional antibiotics (e.g., ampicillin and chloramphenicol), the extended-spectrum cephalosporins and fluoroquinolones were used more widely as the treatment of infections caused by multidrug-resistant *Salmonella* serotypes (Chen et al., 2004). Consequently, *Salmonella* is adapting to these drugs and developing resistance to them.

It would be great we could verify the ARG by traditional phenotypic antibiotic susceptibility testing and determine the minimum inhibitory concentrations for the antimicrobials. The information will help scientists better understand the expression or lack of expression of these ARG. However our WGS data were accumulated in a few years, we could not locate all the isolates anymore. This topic is worth future study as it is important to prove the correlation between the genotypic and phenotypic resistances. It has practical implications for developing prevention and control strategies for antimicrobial resistant bacteria.

In summary, among the 143 *Salmonella* isolates studied, high rates of ARG against aminoglycoside (particularly streptomycin), tetracycline, fosfomycin, sulfonamides, and β-lactamases were observed; *Salmonella* ser. Typhimurium isolates contained more variety of ARG and higher level of multiresistance than *Salmonella* ser. Enteritidis and *Salmonella* ser. Heidelberg; Chicken-sourced isolates contained more different types of ARGs than egg-sourced and egg products–sourced isolates among *Salmonella* ser. Typhimurium and *Salmonella* ser. Heidelberg. Widespread *Salmonella* antimicrobial-resistant isolates sourced from egg and chicken underline the urgent need for continued both consumer and workers/farmers education and efforts on proper animal raising and food handling/cooking to decrease/eradicate *Salmonella* in poultry and egg products. This also demonstrates the importance of One Health Initiative, which is a collaborative, multisectoral, and interdisciplinary approach, recognizing the interconnection among animals, plants, people, and their shared environment, with the collaboration at the local, regional, national, and global levels, to achieve optimal health outcomes (https://www.cdc.gov/onehealth/index.html).

DISCLOSURES

The authors declare no conflicts of interest. Mention of trade names or commercial products in the article is solely for the purpose of providing scientific information and does not imply recommendation or endorsement by the US Food and Drug Administration.

REFERENCES

Antibiotic Resistance Genes Database (ARDB). 2019. Aminoglycoside resistance. Accessed Feb. 2019. https://ardb.cbcb.umd.edu/browse/aminoglycoside.shtml#.auc.

Barbosa, T. M., and S. B. Levy. 2000. The impact of antibiotic use on resistance development and persistence. Drug Resist. Updat. 3:303–311.

Borges, K. A., T. Q. Furian, S. N. de Souza, R. Menezes, C. T. P. Salle, H. L. de Souza Moraes, E. C. Tondo, and V. P. D. Nascimento. 2017. Phenotypic and molecular characterization of Salmonella Enteritidis SE86 isolated from poultry and salmonellosis outbreaks. Foodborne. Pathog. Dis. 14:742–754.

Carroll, L. M., M. Wiedmann, H. den Bakker, J. Šiler, S. Warchocki, D. Kent, S. Lyalina, M. Davis, W. Sischo, and T. Besser. 2017. Whole-genome sequencing of drug-resistant *Salmonella enterica* isolated from dairy cattle and humans in New York and Washington states reveals source and geographic associations. Appl. Environ. Microbiol. 83:e00140-17.

Centers for Disease Control and Prevention (CDC). 2013. Antibiotic resistance threats in the United States, 2013. Accessed Feb. 2019. https://www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013-508.pdf.
Centers for Disease Control and Prevention (CDC). 2014. Summary of NARMS 2014 Surveillance data. Accessed Oct. 2018. https://www.cdc.gov/narms/pdf/2014-Annual-Report-narms-508c.pdf#page=15.

Centers for Disease Control and Prevention (CDC). 2018a. Antibiotic/antimicrobial resistance (AR/AMR). Accessed Feb. 2019. https://www.cdc.gov/drugresistance/about.html.

Centers for Disease Control and Prevention (CDC). 2018b. National antimicrobial resistance Monitoring system for enteric bacteria (NARMS): human isolates Surveillance report for 2015 (final report). Accessed Feb. 2019. https://www.cdc.gov/narms/pdf/2015-NARMS-Annual-Report-cleared_508.pdf.

Centers for Disease Control and Prevention (CDC). 2019. Salmonella. Accessed Feb. 2019. https://www.cdc.gov/salmonella/index.html.

Chen, S., S. Zhao, D. G. White, C. M. Schroeder, R. Lu, H. Yang, P. F. McDermott, S. Ayers, and J. Meng. 2004. Characterization of multiple-antimicrobial-resistant Salmonella serovars isolated from retail meats. Appl. Environ. Microbiol. 70:1–7.

Chittick, P., A. Sulka, R. V. Tauxe, and A. M. Fry. 2006. A summary of national reports of foodborne outbreaks of Salmonella Heidelberg infections in the United States: clues for disease prevention. J. Food Prot. 69:1150–1153.

Edirmenasinghe, R., R. Finley, E. J. Parnley, B. P. Avery, C. Carson, S. Bekal, G. Golding, and M. R. Mulvey. 2017. A whole genome sequencing approach to study ceftoxitin-resistant Salmonella enterica serovar Heidelberg from various sources. Antimicrob. Agents Chemother. 61:e01916–e01919.

European Centre for Disease Prevention and Control (ECDC). 2017. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2015. EFSA J. 15:e04694.

Gast, R. K., R. Guraya, D. R. Jones, J. Guard, K. E. Anderson, and D. M. Karcher. 2017. Frequency and duration of fecal shedding of Salmonella serovars Heidelberg and Typhimurium by experimentally infected laying hens housed in enriched colony cages at different stocking densities. Avian Dis. 61:366–371.

Giedraitienė, A., A. Vitkauskienė, R. Naginienė, and A. Pavilonis. 2011. Antibiotic resistance mechanisms of clinically important bacteria. Medicina 47:137–146.

Meakins, S., I. S. Fisher, C. Berghold, P. Gerner-Smidt, H. Tschäpe, M. Cormican, I. Luzzi, F. Schneider, W. Wannett, and J. Coia. 2008. Antimicrobial drug resistance in human nontyphoidal Salmonella isolates in Europe 2000–2004: a report from the Enter-net International Surveillance Network. Microbiol. Drug Resist. 14:31–35.

North American Meat Institute (NAMI). 2019. The Facts about antibiotics in livestock & poultry production. Accessed Feb. 2019. https://www.meatinstitute.org/index.php?ht=d/sp/i/102248/pid/www.fda.gov.

Schoeni, J. L., J. A. Glass, J. L. McDermott, and A. C. Wong. 1995. Growth and penetration of Salmonella Enteritidis, Salmonella Heidelberg and Salmonella Typhimurium in eggs. Int. J. Food Microbiol. 24:385–396.

Su, L.-H., C.-H. Chiu, C. Chu, and J. T. O. 2004. Antimicrobial resistance in nontyphoidal Salmonella serotypes: a global challenge. Clin. Infect. Dis. 39:546–551.

Suresh, T., A. Hatha, D. Sreenivasan, N. Sangeetha, and P. Lashmanaperumalsamy. 2006. Prevalence and antimicrobial resistance of Salmonella Enteritidis and other salmonellas in the eggs and egg-storing trays from retail markets of Coimbatore, South India. Food Microbiol. 23:294–299.

Tagg, K. A., L. Francois Watkins, M. D. Moore, C. Bennett, Y. J. Young, J. C. Chen, and J. P. Folster. 2018. Novel trimethoprim-resistance gene dfrA34 identified in Salmonella Heidelberg in the USA. J. Antimicrob. Chemother. 73:38–41.

U. S. Food and Drug Administration (FDA). 2016. 2015 summary report on antimicrobials sold or distributed for use in food-producing animals. Accessed Oct. 2018. https://www.fda.gov/downloads/ForIndustry/UserFees/AnimalDrugUserFeeActADUFA/UCM534243.pdf.

Voss-Rech, D., L. Potter, C. S. L. Vaz, D. I. B. Pereira, L. A. Sanjioni, A. C. Vargas, and S. de Avila Botton. 2017. Antimicrobial resistance in nontyphoidal Salmonella isolated from human and poultry-related samples in Brazil: 20-Year meta-analysis. Foodborne Pathog. Dis. 14:116–124.

White, P. L., A. L. Naugle, C. R. Jackson, P. J. Fedorka-Cray, B. E. Rose, K. M. Pritchard, P. Levine, P. K. Saini, C. M. Schroeder, and M. S. Dreyfuss. 2007. Salmonella Enteritidis in meat, poultry, and pasteurized egg products regulated by the US Food Safety and Inspection Service, 1998 through 2003. J. Food Prot. 70:582–591.

World Health Organization (WHO). 2011. Tackling antibiotic resistance from a food safety perspective in Europe. Accessed Oct. 2018. http://www.euro.who.int/__data/assets/pdf_file/0005/136454/e94889.pdf.

World Health Organization (WHO). 2018. Antibiotic resistance. Accessed Feb. 2019. https://www.who.int/en/news-room/fact-sheets/detail/antibiotic-resistance.

Zhao, S., A. R. Datta, S. Ayers, S. Friedman, R. D. Walker, and D. G. J. Joung, J. C. Chen, and J. P. Folster. 2018. Novel trimethoprim-resistance gene dfrA34 identified in Salmonella Enteritidis in the USA. J. Antimicrob. Chemother. 73:38–41.