Introduction

Aspergillus oryzae is a filamentous ascomycete used in traditional Japanese soy sauce production, and has important industrial applications as a producer of hydrolytic enzymes in solid-state fermentations [1,2]. When the *A. oryzae* genome was sequenced it was found to be significantly larger and to contain more genes than the genomes of other species in the genus *Aspergillus* [3–5]. At 37 Mb, the *A. oryzae* genome assembly is 25% larger than the *A. nidulans* assembly and 32% larger than the *A. fumigatus* assembly. It is predicted to code for 12,074 proteins of >100 amino acids, which is 1,412 more proteins than *A. nidulans* and 2,444 more than *A. fumigatus* [4]. Although some of the differences in the predicted gene count between species may be due to differences in the bioinformatics methods used by the three sequencing laboratories to annotate the genomes, the larger DNA content of *A. oryzae* is incontrovertible. Moreover, even if one excludes singleton genes (those with no homologs in completed fungal genome databases), which are the ones most likely to be annotation artifacts, *A. oryzae* still contains 16–26% more genes than the other species: the numbers of non-singletons are 12,044, 10,425 and 9,574 for *A. oryzae*, *A. nidulans* and *A. fumigatus* respectively. There is also indirect evidence that most of the predicted genes in *A. oryzae* are functional: sequencing the genome of *A. flavus*, which is a very close relative of *A. oryzae* and has a similarly large genome, shows that 8,953 genes (85% of all orthologs between *A. oryzae* and *A. flavus*) have a conservative pattern of nucleotide substitution (*K_s*<*K_a*) consistent with purifying selection to retain protein-coding capacity [N. Khaldi and G. Payne, unpublished results].

Comparisons of gene order revealed the presence of syntenic blocks common to *A. oryzae*, *A. nidulans* and *A. fumigatus*, as well as genomic blocks specific to *A. oryzae* that lack synteny with the other two species [3]. These non-syntenic blocks share the characteristics of, first, containing genes that seem to exist only in *A. oryzae* (that is, they lack orthologs in *A. nidulans* and *A. fumigatus*) and, second, appearing in a mosaic manner throughout the genome of *A. oryzae*. Machida et al. [3] reported that, surprisingly, phylogenetic analysis of some genes from these non-syntenic regions indicated that they are distantly related paralogs of other genes that have a syntenic and apparently orthologous relationships among *A. oryzae*, *A. nidulans* and *A. fumigatus*. Thus, the extra genes in *A. oryzae* did not seem to be the result of recent gene duplications that happened specifically in *A. oryzae* after it diverged from the other two species; rather, they seemed to be the products of much older divergence event(s) [3]. This is particularly surprising because comprehensive genome-based phylogenetic analysis shows that *A. nidulans* is an outgroup to *A. fumigatus* and *A. oryzae* [4], so on that basis the increased gene number in *A. oryzae* would most parsimoniously be explained by a more recent species-specific expansion.

In this study we aim to find out the origin of the *A. oryzae* genes giving rise to this unusual phylogenetic tree topology. This topology was first noticed, but not named, by Machida et al. [3]. We refer to it as the “S topology” . We show that the discovery of these trees is not just a subjective observation: there is a genuine statistical excess of trees with the S topology in *A. oryzae* as compared to other *Aspergillus* species. We then explore several possible explanations for these trees. First, we test whether the
Pattern could have been caused by an ancient whole-genome duplication (WGD) in the common ancestor of the three Aspergillus species, similar to the WGD that occurred in an ancestor of Saccharomyces cerevisiae [6,7], followed by a lower rate of gene loss in A. oryzae than in A. nidulans and A. fumigatus. We find no evidence for WGD or similar events such as whole-chromosome duplication (aneuploidy). Second, we consider the possibility that the Topology S trees might be artifacts. If the paralogous pairs in A. oryzae were in fact the products of recent (species-specific) gene duplications, but one gene copy subsequently underwent rapid sequence divergence, the ensuing asymmetry of evolutionary rates could cause phylogenetic methods to infer an incorrect tree due to the phenomenon of long-branch attraction between the accelerated branch and the outgroup [8,9]. Third, we consider the possibility that the extra genes were added to the A. oryzae genome by horizontal gene transfer (HGT).

Results

An excess of topology S trees

Machida et al. [3] noted that many gene families are expanded in A. oryzae and that phylogenetic trees of these families often show the topology that we have called Topology S. This topology is remarkable because it implies that a pair of paralogous genes (AO1 and AO2; Figure 1a) that are present in A. oryzae originated by a gene duplication that occurred before the speciation events that separated A. oryzae, A. nidulans and A. fumigatus. If that interpretation is correct, then orthology of the AO2 gene must subsequently have been deleted from the A. nidulans and A. fumigatus genomes, and the shape of the species phylogeny necessitates that two independent deletions of AO2 must have occurred in A. nidulans and A. fumigatus.

We quantified this phenomenon by searching systematically for loci that form a paralogous pair in A. oryzae but are single-copy in A. nidulans and A. fumigatus, and where one of the A. oryzae copies is divergent from the other three sequences as expected under Topology S (see Methods). We found 456 such pairs, which accounts for 19% of all pairs of paralogous genes in A. oryzae. We refer to these loci as Set S_AO. For comparison, we likewise defined two analogous sets of loci that contain extra copies in other species. Set S_AF contains genes that are double-copy only in A. fumigatus and have the equivalent of Topology S for that species (Figure 1b). This set contains 202 pairs, which is 11% of all paralog pairs in A. fumigatus. Similarly, Set S_AN consists of 219 pairs (12% of all paralog pairs) that are duplicated only in A. nidulans and have the topology shown in Figure 1c.

The number of loci in Set S_AO is significantly greater than the numbers in Set S_AN (P=2×10^{-53} by Fisher test) and Set S_AFU (P=7×10^{-15}), whereas there is no significant difference between Sets S_AN and S_AFU (P=0.43). This result confirms Machida et al.’s report that there is an excess of divergent paralogous gene copies in the A. oryzae genome.

Topology S trees are unlikely to be artifacts of rate acceleration after gene duplication.

Gene duplication is often followed by a period of accelerated sequence evolution in one or both gene copies [10–12]. If the rates are sufficiently unequal, the resulting phylogenetic trees can suffer from long branch attraction [8,13], an artifact of tree reconstruction methods that causes the longer branches to clump together in the tree regardless of their true phylogenetic relationship. Where one member of a duplicated gene pair has accelerated, attraction between this gene’s branch and the outgroup used to root the tree (which is usually also a long branch) can result in an incorrect topology that makes the gene duplication appear older than it actually was. In the case of Saccharomyces cerevisiae, this artifact affected more than half of all the duplicate gene pairs that were formed by its WGD [9,14].

To test whether the A. oryzae Topology S trees are the result of a similar artifact, we compared the levels of synonymous nucleotide divergence (K_S) between each of the A. oryzae genes (AO1 and AO2) and their single homolog (AN) in A. nidulans. Rate acceleration after gene duplication is expected to affect synonymous divergence to a much lesser extent than nonsynonymous divergence, if at all. If the duplication that produced AO1 and AO2 was a species-specific event in A. oryzae (i.e., the Topology S trees are artifacts) then the synonymous distances |AO1-AN| and |AO2-AN| should be equal, and the excess amino acid sequence divergence of AO2 could be attributed to accelerated protein evolution. Alternatively, if AO2 truly branched off before the A. oryzae-A. nidulans divergence (i.e., the Topology S trees are correct) then the synonymous distance |AO1-AN| should be less than the synonymous distance |AO2-AN| (Note that AO2 is always defined as the A. oryzae gene that lacks an apparent A. nidulans ortholog; Figure 1a). We find that the synonymous divergence is indeed higher for the AO2 genes: the median K_S values are 3.35 for |AO1-AN| and 2.87 for |AO2-AN| (P<10^{-4} by Wilcoxon test; Figure 2). This result indicates that the excess of genes in Set S_AO is not an artifact of long branch attraction.

One possible caveat with the above analysis is that, if the AO2 genes are expressed at lower levels than their AO1 homologs, then codon bias in the AO1 genes might decrease the apparent level of synonymous divergence from A. nidulans [15]. It is known that A. oryzae genes located in genomic regions that are not syntenic to other species have lower average expression levels than those in syntenic blocks [3]. However, this expression difference is due primarily to the low expression of genes in non-syntenic blocks that lack homologs elsewhere in the genome, and not to AO2-type genes [16]. Using codon bias as a proxy for gene expression levels, we found that the frequency of optimal codons (Fop) is slightly higher in AO1 genes than in their AO2 homologs (median Fop values 0.4290 and 0.3945 respectively), which is suggestive of higher expression but the difference is not statistically significant (Wilcoxon test of the hypothesis that the ratio Fop[AO1]/Fop[AO2] in each locus is greater than 1; P=0.25). We doubt that the difference in Fop values is sufficient to cause the difference in K_S values observed in Figure 2, but are unable to test this directly.
No evidence for ancient WGD in *Aspergillus*.

Another possible scenario that might explain the extra genes in *A. oryzae* is an ancient whole genome duplication (WGD) prior to the speciation of *A. oryzae, A. nidulans* and *A. fumigatus*, followed by parallel independent losses of most of the duplicated genes in the latter two species (Figure 3). Although this scenario might seem unlikely – and indeed Machida et al. [3] did not observe any long duplicated segments in the *A. oryzae* genome – it is a formal possibility so we searched rigorously for evidence of it.

The WGD events described so far in other genomes were detected using a number of different methods [reviewed in 17]. Patterns in the chromosomal locations of paralogs give by far the clearest signals in situations where a WGD is present in a sequenced genome but no genome sequence from a closely-related unduplicated outgroup species is available [6,18–21]. Immediately after a WGD, the genome consists of pairs of identical chromosomes containing identical genes in the same order. This pattern will gradually become eroded by gene losses and chromosomal rearrangements, but we would expect that even an old WGD should leave a signal: the order of genes along a given chromosomal region should be correlated with the order of their paralogs along some other region in the genome. In other words, paralogs should not just be randomly distributed with regard to one another.

To compare the distribution of locations of paralogous genes in the *A. oryzae* genome to random expectations we defined a distance measure, *d*, of the extent to which genes that are close together in a genome also have paralogs that are close together somewhere else in the genome (see Methods). We estimated the statistical significance of the observed distances in *A. oryzae* by comparing it to the distribution of distances obtained in computer simulations where gene locations were shuffled randomly (Figure 4).

We applied this method to both *S. cerevisiae* and *A. oryzae*. The method successfully detects a strong signal of non-random locations of paralogous gene pairs in *S. cerevisiae*, a species known to have undergone WGD (empirical *P*< 10^{-3}; Figure 4A,B), but there is no significant signal of WGD in the *A. oryzae* genome (*P* = 0.79; Figure 4C). This result not only argues against WGD but also against segmental duplication which would be expected to leave a similar, though weaker, signal. We also used a modified measure to permit consideration of situations where two genes on one chromosome have paralogs on two different chromosomes (see Methods) but again found no evidence of ancient WGD in *A. oryzae* (Figure 4D).

Can the excess of Topology S genes be explained by Horizontal Gene Transfer?

Taken together, the above results show that the excess of *A. oryzae* genes in Set *S*\(_{AO}\) cannot be explained satisfactorily by recent gene duplications in *A. oryzae*, nor by an ancient WGD or segmental duplications in an *Aspergillus* ancestor. We therefore examined the third possibility of HGT into *A. oryzae*.

To detect a possible donor taxon, we first analyzed the phylogenetic trees of a random sample of genes from Set *S*\(_{AO}\). This showed that the extra *AO2* copies of most genes are nested in the Ascomycota kingdom, so if HGT occurred the donor should
also be in the Ascomycota. To provide a common reference point for phylogenetic reconstructions, we imposed the basidiomycete *Ustilago maydis* [whose genome is completely sequenced; 23], as the outgroup for all trees. This reduced our Set SAO to a subset QAO of 122 genes for which an ortholog in *U. maydis* could be identified unambiguously by a reciprocal-best-BLAST-hits (RBH) approach.

We constructed rooted phylogenetic trees for the 122 genes in Set QAO with their homologs in other fungi (primarily Sordariomycetes), and sorted them manually into three mutually exclusive topology types depending on the position of the *AO2* gene (Types A, B and C; Figure 5; Supplementary Figure S1). In all three topologies the *AO1* gene of *A. oryzae* is clustered in a monophyletic group with its orthologs from *A. nidulans* and *A. fumigatus*, and in all three the species in the subphylum Sordariomycetes (e.g., *Neurospora crassa*, *Fusarium graminearum*, *Magnaporthe grisea*) form a monophyletic group. Type A trees are

![Figure 4. Testing for whole genome duplication in *A. oryzae* and *S. cerevisiae*.](image-url)
those where the second *A. oryzae* copy *AO2* clusters with Sordariomycete species to the exclusion of the genus *Aspergillus* (Figure 5, upper). Type B trees have a topology in which *AO2* lies outside both the *Aspergillus* genus and the Sordariomycetes (Figure 5, center). Type C trees are those where *AO2* forms a sister group to the clade of *Aspergillus* orthologs that includes *AO1*, with Sordariomycete sequences outside this pair (Figure 5, lower). Of these three topologies, only the Type A trees are directly suggestive of HGT because they implicate an identifiable donor lineage.

There are only three possible topologies for a phylogenetic tree that consists of an outgroup and three ingroup taxa. The A, B, and C trees correspond to these three topologies; the ingroup clades are *AO2*, the *Aspergillus* clade that includes *AO1*, and the Sordariomycete clade (Figure 5, left). No other topologies can exist for our data unless the Sordariomycete or *Aspergillus* clades are broken up.

The sorting process for trees in Set QAO was done manually and with reference to the bootstrap support values for critical branches on the tree (we required a bootstrap value of ≥70% for topology-
defining branches. To keep the process simple we rejected trees from complex gene families or with poor bootstrap support, and we permitted minor deviations from the expected species phylogeny for the Aspergillus (AO1) and Sordariomycete clades. We also classified trees where the AO2 gene was placed within the Sordariomycetes, rather than as sister to Sordariomycetes, as Type A. These additional restrictions left only 35 classifiable trees from Set QAQ, of which 12 were Type A, 9 were Type B, and 14 were Type C (Table 1 and Supplementary Table S1). Likelihood Ratio Tests on these trees confirmed that monophyly of the AO1 and AO2 genes could be rejected at $p<0.0001$. The fact that we find approximately equal numbers of trees of the three possible types is not consistent with the hypothesis that all AO2 genes originated by HGT from the same donor. Instead, the result suggests that all AO2 genes are heterogeneous in terms of their origins: if they all arose by HGT then the HGT events involved multiple donors, or if they all arose by gene duplication then those duplications occurred at multiple times.

For comparison, we made similar analyses in A. nidulans and A. fumigatus. We compiled two other sets of genes that are analogous to Set QAQ but have duplications only in A. nidulans (Set QAQ, 40 genes), or only in A. fumigatus (Set QAQF, 28 genes), and that give phylogenetic trees that place the second gene (AO2 or AFU2) outside a monophyletic group containing one gene from each of the three Aspergillus species. As expected, these gene sets are smaller than the corresponding set with duplication in A. oryzae. After phylogenetic tree construction we find that sets QAQ and QAQF both present an absence of Topology A trees (Table 1). Although the numbers of classified trees are small (11 in Set QAQ and 6 in Set QAQF) this deficit contrasts with the number of Topology A trees seen in the A. oryzae set. Topology A trees are the only ones where a putative HGT donor lineage can be identified (Figure 5), so it is striking that trees with this topology are found only in A. oryzae. If HGT from Sordariomycetes to A. oryzae accounts for the type A topologies, we can estimate that it maximally accounts for one-third of the extra genes in A. oryzae (that is, by extrapolation from the 12/35 proportion found in the loci that were classifiable).

It is also notable that among the 12 A. oryzae gene pairs that give Topology A trees, the trees for 10 of these pairs place the AO2 gene on a branch within the Sordariomycetes as opposed to lying sister to the Sordariomycetes. An example is the Topology A gene in Figure 5, where the AO2 sequence (NCBI identifier 83775924) clusters specifically with F. graminearum. Of the 10 genes that showed this property, five clustered with F. graminearum, three with M. grisea and two with N. crassa. A single consistent candidate donor lineage is again lacking, even within the Sordariomycetes.

Table 1. Numbers of phylogenetic trees with Topologies A, B and C obtained from genes in Sets QAQ, QAQ, and QAQF.

Topology	Number of trees		
	A. oryzae (Set QAQ)	A. nidulans (Set QAQ)	A. fumigatus (Set QAQF)
A	12	0	0
B	9	9	2
C	1	2	4

doi:10.1371/journal.pone.0003036.t001

Figure 6. A case of family expansion due to apparent HGT. The gene family is a member of the metal dependent hydrolytic enzyme superfamily (amidases, aminoacyclases, and carboxypeptidases). The A. oryzae genes AO1 and AO2 originally identified in our automated search are labeled. Four of the six A. oryzae genes (83775625, 83765251, 83766521, 83770136) in this family lack orthology in A. nidulans and A. fumigatus, and for the first two of these there is strong bootstrap support for HGT from Sordariomycetes. Of these four genes, three show Topology A and one (83766521) shows Topology C relative to their nearest Sordariomycete homologs.

doi:10.1371/journal.pone.0003036.g006
E. coli [24], shows that many of the AO2 genes have orthologs in that species. Therefore, the AO2 genes were gained by A. oryzae after it diverged from A. fumigatus but before the split between A. flavus and A. oryzae.

If foreign DNA enters a recipient genome in a single event, the foreign genes might be expected to exhibit some clustering in the recipient genome. Conversely if they arrived in independent events, or if the hypothesis of HGT is incorrect, they should exhibit random genomic locations. If an HGT event is very recent, the transferred genes may also still be clustered in the donor genome. We applied the method of Lee and Sonnhammer [25] to test whether the locations of the AO2 genes that may have undergone HGT from Sordariomycetes show significant physical clustering in the A. oryzae genome. For the 12 AO2 genes with tree topology A (Supplementary Table S1), the clustering score is 56, as compared to a mean score of 21.7 for 100,000 replicates with randomized data (empirical P = 0.02). In contrast, the AO1 partners of these genes do not show physical clustering (score = 6.6; P = 0.95), nor did we find significant clustering in comparisons of the A. oryzae AO2 genes that gave B, C, or both B and C topologies (P = 0.19; P = 0.06 and P = 0.19 respectively). This result again highlights the distinctive nature of the AO2 genes with tree topology A, in terms of both their phylogenetic and genomic placement. The physical clustering of the Topology A AO2 genes is indicative of either a one-time transfer event, or a preference for integrating new genes into the genome at particular sites. We did not detect significant clustering in the F. graminearum genome of homologs of the AO2 genes that form branches specifically with F. graminearum (though the dataset is small; only 5 genes).

Discussion
A frustrating feature of our study was the extent of data loss that we encountered as the analysis progressed. The A. oryzae genome contains more than one thousand extra genes as compared to A. nidulans and A. fumigatus, but when we attempted to use phylogenetic methods to determine the origin of these genes the dataset collapsed to only 35 informative loci (Table 1). One major cause of the reduction of the dataset is that we were only able to work with genes that are duplicated in A. oryzae. The reason for this is pragmatic: we cannot actually identify which, out of the 12,074 genes in A. oryzae, are the ‘extra’ ones, except in the 456 cases where the gene was retained too (Set S_{AO}). Moreover, our method ignored recent species-specific duplications in all species. A second problem was the lack of identifiable basidiomycete outgroup sequences for many of the genes that are duplicated in A. oryzae. It is difficult to speculate why these sequences do not exist, but one possibility is that the set of genes that has been added to the A. oryzae genome tends to be derived from the fastest-evolving, and hence ascomycete-specific, portion of the fungal genome [26,27].

We were able to rule out annotation error and WGD as possible sources of the extra genes in A. oryzae relative to other Aspergillus species. Our phylogenetic analysis also rules out species-specific gene duplication events in A. oryzae as the source of many (456) of these genes. These results leave only two viable possibilities for the origin of the extra genes: HGT, or older single-gene duplications (in the common ancestor of the three Aspergillus species) followed by independent parallel losses in A. nidulans and A. fumigatus. If multiple single-gene duplications occurred, then the level of retention of ancient duplicated genes must have been much higher in A. oryzae than in the other two Aspergillus species, and parallel losses of the same genes must have occurred in A. nidulans and A. fumigatus. This scenario seems unparsimonious, but it is not impossible and it may have occurred in a systematic manner if – for example – there were large differences in the effective population sizes of the species [29].

Parallel losses in A. nidulans and A. fumigatus may therefore account for some of the extra content in A. oryzae. However, barring phylogenetic tree error, parallel loss is specifically ruled out in the case of the 12 loci with Topology A (Figure 5 and Supplementary Table S1). This result seems to leave HGT as the most viable option for the source of much of the increased gene content of A. oryzae, which makes it all the more puzzling that we were unable to identify a consistent donor lineage. Indeed, if we accept that all the tree topologies are correct, we must postulate that A. oryzae has received genes from at least five different donor lineages: one lineage that diverged prior to the Eurotiomycetes/Sordariomycetes split (giving Topology B trees), one lineage that is in Eurotiomycetes but outside Aspergillus (Topology C), and three separate Sordariomycete lineages that have specific affinities to F. graminearum, N. crassa and M. grisea respectively (accounting for the heterogeneity within the Topology A trees). We can speculate that some aspect of the lifestyle or physiology of A. oryzae (and A. flavus) could make it more able to take up foreign DNA by HGT than other Aspergillus species.

Many previous published examples of HGT have involved genes that were transferred between distantly related kingdoms, such as from bacteria to eukaryotes [29–34]. In many of these cases the gained genes were inferred to have changed the lifestyle of the recipient species markedly. In the case of the 12 loci with Topology A (Figure 5 and Supplementary Table S1), the plausibility of a recent HGT event is reduced by the fact that the population sizes of the species [28].

If foreign DNA enters a recipient genome in a single event, the foreign genes might be expected to exhibit some clustering in the recipient genome. Conversely if they arrived in independent events, or if the hypothesis of HGT is incorrect, they should exhibit random genomic locations. If an HGT event is very recent, the transferred genes may also still be clustered in the donor genome. We applied the method of Lee and Sonnhammer [25] to test whether the locations of the AO2 genes that may have undergone HGT from Sordariomycetes show significant physical clustering in the A. oryzae genome. For the 12 AO2 genes with tree topology A (Supplementary Table S1), the clustering score is 56, as compared to a mean score of 21.7 for 100,000 replicates with randomized data (empirical P = 0.02). In contrast, the AO1 partners of these genes do not show physical clustering (score = 6.6; P = 0.95), nor did we find significant clustering in comparisons of the A. oryzae AO2 genes that gave B, C, or both B and C topologies (P = 0.19; P = 0.06 and P = 0.19 respectively). This result again highlights the distinctive nature of the AO2 genes with tree topology A, in terms of both their phylogenetic and genomic placement. The physical clustering of the Topology A AO2 genes is indicative of either a one-time transfer event, or a preference for integrating new genes into the genome at particular sites. We did not detect significant clustering in the F. graminearum genome of homologs of the AO2 genes that form branches specifically with F. graminearum (though the dataset is small; only 5 genes).

Discussion
A frustrating feature of our study was the extent of data loss that we encountered as the analysis progressed. The A. oryzae genome contains more than one thousand extra genes as compared to A. nidulans and A. fumigatus, but when we attempted to use phylogenetic methods to determine the origin of these genes the dataset collapsed to only 35 informative loci (Table 1). One major cause of the reduction of the dataset is that we were only able to work with genes that are duplicated in A. oryzae. The reason for this is pragmatic: we cannot actually identify which, out of the 12,074 genes in A. oryzae, are the ‘extra’ ones, except in the 456 cases where the AO1 gene was retained too (Set S_{AO}). Moreover, our method ignored recent species-specific duplications in all species. A second problem was the lack of identifiable basidiomycete outgroup sequences for many of the genes that are duplicated in A. oryzae. It is difficult to speculate why these sequences do not exist, but one possibility is that the set of genes that has been added to the A. oryzae genome tends to be derived from the fastest-evolving, and hence ascomycete-specific, portion of the fungal genome [26,27].

We were able to rule out annotation error and WGD as possible sources of the extra genes in A. oryzae relative to other Aspergillus species. Our phylogenetic analysis also rules out species-specific gene duplication events in A. oryzae as the source of many (456) of these genes. These results leave only two viable possibilities for the origin of the extra genes: HGT, or older single-gene duplications (in the common ancestor of the three Aspergillus species) followed by independent parallel losses in A. nidulans and A. fumigatus. If multiple single-gene duplications occurred, then the level of retention of ancient duplicated genes must have been much higher in A. oryzae than in the other two Aspergillus species, and parallel losses of the same genes must have occurred in A. nidulans and A. fumigatus. This scenario seems unparsimonious, but it is not impossible and it may have occurred in a systematic manner if – for example – there were large differences in the effective population sizes of the species [29].
the A. oryzae orthologous and paralogous copies were termed AO1 and AO2 respectively. An automated search using these criteria resulted in the Set SAO of 456 loci that are duplicated only in A. oryzae and have topology S. We then used phylogenetic methods to verify the topology of the trees in Set SAO. Using the likelihood ratio test, we tested whether the unrooted topology ([AO2,AO1](AO1(AFU))) has a significantly higher likelihood than both of the two possible alternative topologies for the four sequences. We found that at a cutoff of \(\chi^2 = 0.05 \), the expected tree was significantly more likely at 443 of the 456 loci, and at the remaining 13 loci no other topology was significantly better than the expected. We retained all 456 loci for further analysis. Analogous methods were used to identify Sets QAN and QAFU. Synonymous and nonsynonymous sequence divergence was calculated using the yn00 program in the PAML package [35]. Fop values were calculated using CodonW (http://mobyle.pasteur.fr) with its predefined set of optimal codons for A. nidulans.

Testing for WGD

To evaluate the hypothesis that the pairs of genes in Set SAO could be the products of a whole-genome duplication, we tested whether these pairs tend to be located on sister genomic regions. If a WGD occurred and produced two pairs of duplicates, A' and A", B' and B", we would expect that if A' and B' are physically close together in the genome, their paralogs A" and B" should also be close together somewhere else in the genome. We examined whether the Set SAO paralogs in the A. oryzae genome tend to be arranged in this pattern, relative to random expectations. In this analysis we did not take into account the distinction between the AO1 and AO2 members of the A. oryzae pairs (which have and do not have, respectively, orthologs in A. nidulans and A. fumigatus). We used a sliding window approach to find regions of relatively high paralog density in A. oryzae. We considered windows of size \(j \) genes (\(j = 200 \) genes in the examples shown in Figure 4), and counted how many genes in Set SAO they contained. We then retained only the denser windows for further analysis: those with some number \(i \) genes in Set SAO (\(i = 6 \) in Figure 4C). For each window with a particular value of \(i \), we then tried to measure the physical distance (in units of genes) spanned by their paralogs elsewhere in the A. oryzae genome. In many cases the paralogs were not all on the same chromosome. For those windows whose paralogs were all on the same chromosome, we computed the total chromosomal distance \(d \) occupied by the paralogous windows. We then evaluated the statistical significance of the observed value of \(d \) by comparing it to the empirical distribution of values obtained in 10,000 computer simulations where the locations of the paralogous genes were randomized. We carried out a parallel analysis on 10,000 computer simulations where the locations of the paralogous by comparing it to the empirical distribution of values obtained in these cases (Figure 4D). The penalty was set at 3000, which is approximately the average number of genes on an A. oryzae chromosome. Experimenting with different values of \(f \) and \(i \) (data not shown) did not reveal any statistically significant evidence of WGD for A. oryzae, whereas the results for S. cerevisiae were consistently significant.

Testing for HGT

We used the basidiomycete U. maydis as an outgroup for all phylogenetic analyses. Among the 456 loci in Set SAO, we retained a subset (QAO) of 122 loci for which the same U. maydis protein was identified as the reciprocal best BLASTP hit of the SAO set members from all three Aspergillus species. We then used BLASTP to identify additional fungal homologs of the Set QAO genes pairs in the NCBI nonredundant protein sequence database. Proteins were aligned using ClustalW [37], and Gblocks [38] was used to remove poorly aligned positions and regions. Maximum likelihood trees were constructed using PHYML [39] with the JTT amino acid substitution matrix and four categories of substitution rates. Bootstrapping was done using PHYML’s default options with 100 replicates per run. The trees for each gene were inspected manually to detect common themes and classified into the three possible mutually exclusive topologies (Figure 5). Analogous methods were used to make and study Sets QAN and QAFU.

Supporting Information

Table S1 Names and putative functions of A. oryzae gene pairs showing Topologies A, B or C.

Gene Pair	Function
AO1/ABU	Unknown
AO2/AFU	Unknown

Figure S1 Trees classified as Types A, B and C in each Aspergillus species. Trees were constructed using PHYML as described in Methods. In each tree, the sequences identified as AO1 and AO2 (for duplications A. oryzae), AN1 and AN2 (for duplications in A. nidulans), or AFU1 and AFU2 (for duplications in A. fumigatus) are labeled. NCBI identifier (GI) numbers for each sequence are shown.

Acknowledgments

We thank Gary Payne and members of his lab for sharing A. flavus data, and are grateful to Gavin Conant, Kevin Byrne and Meg Woolfit for discussion.

Author Contributions

Conceived and designed the experiments: NK KHW. Performed the experiments: NK. Analyzed the data: NK. Wrote the paper: NK KHW.

References

1. Hamada T, Fukushima Y, Motai H (1992) Continuous production of soy sauce in a bioreactor. Applications of Biotechnology to Traditional Fermented Foods. Report of an Ad Hoc panel of the Board on Science and Technology for International Development Office of International Affairs, National Research Council. Washington DC: National Academy Press. pp 114–118.

2. Kobayashi T, Abe K, Asai K, Gomi K, Juvvadi PR, et al. (2007) Genomics of A. oryzae. Nature 438: 1151–1156.

3. Machida M, Asai K, Sano M, Tanaka T, Kumagai T, et al. (2005) Genome and comparative analysis with A. fumigatus and A. nidulans. Biosci Biotechnol Biochem 71: 646–670.

4. Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387: 708–713.

5. Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387: 708–713.

6. Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387: 708–713.

7. Kellis M, Birren BW, Lander ES (2004) Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428: 617–624.

8. Feustel J, et al. (1978) Cases in which parsimony and compatibility methods will be positively misleading. Syst Zool 27: 401–410.

9. Fares MA, Byrne KP, Wolfe KH (2006) Rate asymmetry after genome duplication causes substantial long-branch attraction artifacts in the phylogeny of Saccharomyces species. Mol Biol Evol 23: 245–253.

10. Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290: 1113–1115.

11. van de Peer Y, Taylor JS, Braasch I, Meyer A (2001) The ghost of selection past: rates of evolution and functional divergence of anciently duplicated genes. J Mol Evol 53: 436–446.
12. Conant GC, Wagner A (2003) Asymmetric sequence divergence of duplicate genes. Genome Res 13: 2052–2058.

13. Delsuc F, Brinkmann H, Philippe H (2005) Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 6: 361–373.

14. Langkjaer RB, Cliften PF, Johnston M, Piskur J (2003) Yeast genome duplication was followed by asynchronous differentiation of duplicated genes. Nature 421: 848–852.

15. Sharp PM, Li WH (1987) The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias. Mol Biol Evol 4: 222–230.

16. Tamano K, Sano M, Yamane N, Terabayashi Y, Toda T, et al. (2008) Transcriptional regulation of genes on the non-syntenic blocks of Aspergillus oryzae and its functional relationship to solid-state cultivation. Fungal Genet Biol 45: 159–151.

17. van de Peer Y (2004) Computational approaches to unveiling ancient genome duplications. Nat Rev Genet 5: 752–763.

18. Simillion C, Vandepoele K, Van Montagu MC, Zabeau M, van de Peer Y (2002) The hidden duplication past of Arabidopsis thaliana. Proc Natl Acad Sci U S A 99: 13627–13632.

19. Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, et al. (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 444: 171–178.

20. Aury JM, Jaillon O, Duret L, Noel B, Juhin C, et al. (2006) Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature 444: 171–178.

21. Hall C, Brachat S, Dietrich FS (2005) Contribution of horizontal gene transfer to the evolution of Saccharomyces cerevisiae. Eukaryot Cell 4: 1102–1115.

22. Lynch M, Conery JS (2003) The origins of genome complexity. Science 302: 1401–1404.

23. Hall C, Braich S, Dietrich FN (2005) Contribution of horizontal gene transfer to the evolution of Saccharomyces cerevisiae. Eukaryot Cell 4: 1102–1115.

24. Nison JE, Wang A, Field J, Morrison HG, McArthur AG, et al. (2002) Evidence for lateral transfer of genes encoding ferredoxins, nitroreductases, NADH oxidase, and alcohol dehydrogenase 3 from anaerobic prokaryotes to Giardia lamblia and Entamoeba histolytica. Eukaryot Cell 1: 101–190.

25. Garcia-Vallejo S, Romo A, Palau J (2008) Horizontal gene transfer of glycosyl hydrolases of the rumen fungi. Mol Biol Evol 17: 358–361.

26. Byrne KP, Wolfe KH (2005) The Yeast Gene Order Browser: combining curated homology and syntetic context reveals gene fate in polyploid species. Genome Res 15: 1456–1461.

27. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24: 1586–1591.

28. Byrne KP, Wolfe KH (2005) The Yeast Gene Order Browser: combining curated homology and syntetic context reveals gene fate in polyploid species. Genome Res 15: 1456–1461.

29. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680.

30. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17: 580–597.

31. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696–704.

32. Yang Z (1997) PAML: a program package for phylogenetic analysis based on maximum likelihood. Comput Appl Biosci 13: 535–541.