Tropical cyclone climatology change greatly exacerbates US joint rainfall-surge hazard

Avantika Gori
Princeton University

Ning Lin (nlin@princeton.edu)
Princeton University https://orcid.org/0000-0002-5571-1606

Dazhi Xi
Princeton University

Kerry Emanuel
MIT https://orcid.org/0000-0002-2066-2082

Article

Keywords: tropical cyclones, tropical cyclones climatology, rainfall-surge hazard

DOI: https://doi.org/10.21203/rs.3.rs-805581/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Tropical cyclone climatology change greatly exacerbates US joint rainfall-surge hazard

Avantika Gori¹, Ning Lin*¹, Dazhi Xi¹, Kerry Emanuel²

¹Princeton University, Department of Civil & Environmental Engineering
²Massachusetts Institute of Technology, Department of Earth, Atmospheric and Planetary Sciences

*Corresponding Author, nlir@princeton.edu

Abstract

Tropical cyclones (TCs) are among the largest drivers of extreme rainfall and surge, but current and future TC joint hazard has not been well quantified. We utilize a physics-based approach to simulate TC rainfall and storm tides and quantify their joint hazard under historical conditions and a future (SSP5 8.5) climate projection. We find drastic increases in the frequency of exceeding joint historical 100-yr hazard levels by 2100, with a 10-36 fold increase along the southern US coast and 30-195 fold increase in the northeast. The joint hazard increase is induced by sea-level rise and TC climatology change; the relative contribution of TC climatology change is higher than that of sea-level rise for 96% of the coast due to large increases in rainfall. Increasing storm intensity and decreasing translation speed are the main TC change factors that cause higher rainfall and storm tides and up to 25% increase in their dependence.

Introduction

Coastlines across the globe are vulnerable to the joint occurrence of high sea levels and intense rainfall¹–³, which can increase flooding beyond the level predicted by considering either hazard alone and result in a compound flood⁴,⁵. However, traditional flood risk assessment frameworks have typically focused on storm surge flooding alone, neglecting contributions from rainfall-runoff. Along the US Atlantic and Gulf Coasts, tropical cyclones (TC) are one of the largest drivers of coastal flood losses⁶,⁷ and are major contributors to compound flood hazard due to their ability to produce extreme storm surges and intense precipitation¹,⁸. However, few regional studies of compound flood hazard have explicitly accounted for TC events⁹ due to their sparse occurrence in the historical record and
challenges in representing TCs within reanalysis datasets and typical global circulation models (GCMs).

Dynamics between coastal rainfall and storm tides may be impacted in the future due to the combination of sea-level rise (SLR) and changes in storm climatology. Recent projections of future storm climatology change suggest an increase in the probability of joint rainfall-surge events along much of the European coastline, mostly driven by an increase in rainfall hazard. Along the US coastline, previous studies have considered changes in joint hazard resulting from changes in a subset of climate-induced variables, such as SLR and changes in river flow or changes in rainfall. However, it is still unclear how future changes in TC climatology and SLR will alter the severity and spatial variation of joint rainfall-surge hazard across the US Atlantic and Gulf Coasts, what will be the relative contribution of storm climatology change and SLR to changes in the joint hazard, and how changes in TC characteristics are related to changes in rainfall hazard, storm surge hazard, and their dependence.

To address these questions, we apply a full probabilistic joint hazard analysis framework to investigate the current and future joint rainfall-surge hazard from TC events impacting the US Atlantic and Gulf Coasts under the combined influence of end-of-21st century high emission scenario SLR (RCP 8.5) and storm climatology change (SSP5 8.5). We utilize a large set of synthetic TCs generated from a statistical-deterministic TC model forced with reanalysis or GCM output. Synthetic TCs for historical (1980-2005) conditions are downscaled from reanalysis data and used to represent historical joint hazard. Projected future (2070-2100) TCs are downscaled from eight CMIP6 GCMs, bias-corrected, and combined into a single weighted-average composite projection that represents future storm climatology (see Methods). We simulate storm tides (storm surge plus astronomical tide) for each event with the advanced circulation (ADCIRC) hydrodynamic model, using a high-resolution mesh that spans the entire North Atlantic basin and has been previously validated (Methods). We estimate rainfall fields using the physics-based Tropical Cyclone Rainfall (TCR) model, which has previously been used to assess historical rainfall climatology, project changes in rainfall hazard, and simulate flood impacts (Methods). To evaluate the impact of SLR, we incorporate spatially-
varied, probabilistic SLR projections for 2100 from ref. 13, which are based on projections from a suite of CMIP5 GCMs (Methods).

To focus on a particular metric to measure the joint hazard, we define a joint extreme event as one that exceeds both the historical 100-year storm tide (relative to the historical sea level) and the historical 100-year 24-hour rainfall at a given coastal location. Based on the simulations and bivariate extreme value analysis, we quantify the return period of the joint extreme event (henceforth referred to as JRP) in the historical and future climates (see Methods) and show that SLR and TC climatology change cause drastic increases in the frequency of joint extreme events. We quantify the relative importance of the change of different climatological variables (i.e., sea level, storm frequency, rainfall, storm tides, and hazard dependence) in driving the changes in JRP (Methods) and find that TC climatology changes drive larger increases in joint hazard compared to SLR. We further investigate the effect of TC characteristic changes and find an increase in intensity and a decrease in translation speed, which drive the increases in rainfall and surge hazards as well as their dependence. Our findings motivate explicit consideration of TC climatology changes in compound flood hazard analysis.

Results

Spatial pattern of joint hazard in current and future climate

For each location along the coastline, we quantify the univariate 100-year storm tide (i.e. the storm tide level that has a 1% annual probability to be exceeded) and univariate 100-year 24-hour rainfall for the historical period (Fig S1). Using the thresholds of historical 100-year storm tide and rainfall, we quantify the probability of joint extreme event occurrence through JRP in the historical climate (1980-2005) and in the future climate (2070-2100). There are large variations in JRP across the US coastline under historical conditions (Fig 1a). The coastlines of the Gulf of Mexico and Southeast Atlantic (up to Chesapeake Bay) have lower JRP, typically ranging from 200-500 years, signifying a higher probability of joint extreme occurrence compared to other regions. JRP increases along the northern Mid-Atlantic (up to Connecticut) due to a decrease in the statistical dependence between storm tide and 24-hour rainfall. Along the New England coastline JRP is much larger than other regions (>1000 years) because in this region the two hazards occur
almost independently. The low correlation between rainfall and storm tides in New England is due to the large tidal constituents that dominate total extreme sea levels compared to TC-induced storm surges.

Due to the combination of future storm climatology and SLR, future JRP may decrease to 3-30 years, with higher JRP values along the Gulf of Mexico and Southeast Atlantic (10-30 years) and lower JRP along the Mid-Atlantic and New England region (3-10 years; Fig. 1b). The reason for higher future JRP along the southern coastline is because these regions are already prone to extreme rainfall and surges in the historical climate (Fig S1) and the percent increase in the hazard there is smaller than the percent increase for northern regions. Across the entire coastline, JRP decreases drastically compared to its historical values. In general, the change in JRP increases moving from south to north, with the largest decreases in JRP occurring in northern locations. However, even the locations of smallest JRP change still correspond to a 7-fold increase in the frequency of joint events. The southeast Florida coast (i.e., Miami region) is an exception to the spatial trend of future JRP. Here, the historical JRP is 600 years and the future JRP is 3 years, resulting in a JRP change that is much greater than the JRP change for the rest of the Southeast Atlantic. The reason for the large change in JRP in the Miami region is because storm tides and rainfall are not highly correlated in the historical period, but large increases in rainfall hazard and SLR in the future cause the joint extreme sea level and rainfall thresholds to be exceeded frequently.

The projection of JRP is associated with statistical and physical modeling uncertainties; Figure 2 depicts the median JRP estimate (as discussed above) and 95% boot-strapped sampling uncertainty bounds under historical (gray) and composite future (blue) conditions and the JRP estimates from individual GCMs for representative coastal locations. The sampling uncertainty ranges of the composite future JRP (blue boxes) are much smaller than the historical uncertainties, since joint exceedances are more frequent in the future period and consequently JRP can be estimated with less sampling uncertainty. The variations in JRP estimates among different models are primarily due to differences in the future projected TC frequency and intensity. MPI, MRI, and GFDL consistently predict smaller decreases in JRP since these GCMs project low/no increase in storm frequency (Fig S2) and low-moderate increases in storm intensity (Fig S3). Conversely, ECEARTH and IPSL
consistently predict large decreases in JRP since both models project the highest increases in storm frequency and intensity. The variations among the GCMs are consistent for the entire coastline (Fig. S4). Although there is a relatively large inter-model range of future JRP estimates, especially for locations in the Gulf of Mexico, even the most conservative GCM (i.e., MPI) projects large increases in future joint hazard.

Drivers of joint hazard change

The change in JRP can be driven by three mechanisms: 1) changes in storm frequency, 2) marginal changes in rainfall totals and/or extreme sea level driven by TC climatology changes and SLR, and 3) changes in the statistical dependence between extreme rainfall and storm surges. To understand the relative contribution to changes in JRP from each mechanism, we calculate the isolated impact of changes in storm frequency, rainfall hazard, storm tide hazard, hazard dependence, and SLR, by adjusting each variable to its future value or distribution one at a time and calculating the resulting JRP. In Figure 1c we plot the single variable that causes the largest decrease in JRP at each coastal location. Across the Gulf of Mexico and Florida coastline, the increase in 24hr rainfall is the largest driver of changes in JRP, while the increase in storm frequency has the largest impact on JRP change for parts of the Southeast and Mid-Atlantic. Along the upper Mid-Atlantic and New England coastline, SLR causes the largest decrease in future JRP. For the select locations, we show the relative impact on JRP change of each variable and the combined impact of all storm climatology variables (TCC) (Fig 3). Across all locations in Fig 3 the change in marginal rainfall distribution is among the largest contributor to the change in JRP, since all GCMs project significant increases in rainfall totals (Fig S5) due to both the increased saturation specific humidity of the warmed environment and the projected increase in TC intensity. Other studies have also projected large increases in the frequency of intense (> 80 mm/d) TC rainfall\(^2\), and up to 30% increase (under RCP 4.5) in North Atlantic TC rainfall rates due to projected increases in TC intensity\(^2\). In contrast to the large rainfall impact, the change in marginal storm tide distribution has small impact on the change in JRP for northern locations and a small to moderate impact on JRP change for locations along the Gulf of Mexico. The relative impact of SLR on JRP change generally increases moving south to north, with the largest impact at Portland, ME. Importantly, the total storm climatology
changes drive large increases in joint hazard across all locations. The TCC impact on JRP is larger than the SLR impact for 96% of locations along the coastline.

The change in the dependence between hazards also causes a small to moderate decrease in JRP for most locations in Figure 3, indicating that the extremes of the two hazards are projected to become more dependent in the future climate. To further examine the change in hazard dependence, Figure 4a shows the conditional probability of 24-hour rainfall exceeding the 90th percentile given a storm tide that exceeds the 90th percentile, calculated for the historical period. The conditional probability is a representation of the tail dependence between the hazards, as higher conditional probability corresponds to higher tail dependence. The eastern Gulf of Mexico and Chesapeake Bay exhibit the strongest dependence between hazards, the western Gulf of Mexico and Southeast Atlantic have moderate hazard dependence, and the Mid-Atlantic and New England have relatively low dependence. Figure 4b shows the composite change in the conditional probability from the historical to future climate, with areas of red (blue) indicating increases (decreases) in dependence. With the exception of the eastern Gulf of Mexico and Chesapeake Bay, most regions are projected to have higher dependence between extreme rainfall and storm tides in the future. Specifically, the lower Texas, Georgia, North Carolina, and New Jersey coastlines are projected to experience the largest strengthening of hazard dependence in the future, resulting in up to 0.2 increase in the conditional probability (Fig. 4b). Along the eastern Gulf of Mexico there is almost no change in the dependence strength, which is because the two hazards are already highly correlated in the historical climate (Fig 4a) and will remain similarly correlated in the future climate. The Chesapeake Bay stands as an outlier, and it is the only location where the dependence strength between hazards decreases in the future climate (discussed below).

Changes in dominant TC storm characteristics

Since TC climatology change is the dominant contributor to JRP change, we investigate how projected changes in TC storm characteristics drive changes in rainfall accumulations, peak storm surges, and their dependence at the coast. After investigating correlations between each hazard and storm intensity, approach angle, translation speed, and landfall location and quantifying projected changes in each storm characteristic, we find that storm
intensity and translation speed are both projected to change significantly in the future (Fig 5a and 5b, respectively) and are significantly correlated with rainfall and/or storm tide (Fig 5c-f). For the vast majority of the coastline, both the peak storm tide and 24-hour rainfall are significantly correlated with TC intensity, although the strength of correlation is higher for rainfall (Fig 5c-d). The 24-hour rainfall is also strongly negatively correlated with storm translation speed (Fig 5f), as slower moving storms will drop more rainfall in a given coastal location than faster moving storms. The peak storm tide is not strongly correlated with translation speed (Fig 5e), since both slow and fast moving storms can generate high surges, and the additional wind speed contribution from fast moving storms is generally small compared to the cyclonic wind speed. Under future storm climatology, the 90th percentile of TC intensity is projected to increase by 15-30% along the Gulf of Mexico and Southeast Atlantic, 30-50% along the Mid-Atlantic, and 20-30% along the New England coastline (Fig 5a). The vast majority of previous studies also project an increase in North Atlantic TC intensity, and many predict an increase in the frequency of high intensity (category 3-5) TCs. We also find a large future reduction in the translation speed of storms that exceed the 90th percentile intensity (Fig 5b). For all regions except New England, storms that exceed 90th percentile intensity are likely to move 20-30% slower in the future than in the historical period. The decrease in translation speed found here is consistent with previous work examining changes in translation speed in the historical record and projections of TC translation speed under future climate conditions. The increase in storm intensity coupled with the decrease in translation speed drives an increased likelihood to observe both extreme rainfall and extreme storm tide in the future and increases the upper tail dependence between the hazards. By comparing Figure 4b with Figures 5a-b it is clear that most regions experiencing a significant increase in the hazard dependence also experience significant increases in storm intensity and decreases in translation speed. The Chesapeake Bay is a notable exception, since the hazards are projected to become less dependent in the future even though there is an increase in TC intensity and decrease in translation speed. In the future a larger number of intense storms are projected to approach the coast north of the Bay opening. These storms do not induce high storm surges within the Bay since the cyclonic winds are pointed away from the coast,
but they still induce extreme rainfall. Thus, the increase in the number of these types of storms causes a decrease in the hazard correlation at this location in the future climate.

Discussion

The results presented here provide new insight into how the spatial pattern of TC hazards and their co-occurrence may evolve in the future under a combination of SLR and changing storm climatology. In particular, we project large increases in joint hazard across the US East and Gulf coasts, with the most extreme increases (up to 195-fold decrease in JRP) occurring along the Mid-Atlantic and New England coastlines. We also find that the impact of storm climatology change on joint hazard is larger than the SLR impact for 96% of the coastline. This is an important finding, since previous work that examined the influence of storm climatology change on extreme sea level change found large impacts at low latitudes but small impacts at high latitudes. Here, we find that storm climatology change is a dominant contributor to future joint surge-rainfall hazard at northern coastal locations, mostly due to projected increases in rainfall hazard. Lastly, we find that the statistical dependence between extreme rainfall and storm tide increases in the future for large swaths of the coastline, resulting in a higher probability to observe multi-hazard extremes during future storm events. This finding is significant since many previous studies of future compound flooding have neglected potential increases in hazard dependence, which could underestimate compound flood risk.

The findings presented here are associated with inevitable uncertainties. We utilize a single TC model to downscale all GCMs and reanalysis data, and the model predicts a significant increase in future TC frequency for five of the eight GCMs. Although a few other studies have also predicted increases in TC frequency, the majority of studies predict a decrease or no change in North Atlantic storm frequency. However, the main findings of our study are unchanged even if we assume no change in future TC frequency. The future JRP change calculated by holding TC frequency constant at the historical level is slightly lower at each coastal location (up to 149-fold decrease in JRP; see comparison in Fig S6), but the spatial trends (i.e. higher JRP change in the north compared to the south) are unchanged. The relative importance of TC climatology change compared to SLR also remains similar when assuming constant frequency, and TC climatology change still causes
a larger JRP change than SLR for 84% of the coastline. The reason our results are relatively unchanged if we neglect frequency change projections is because the increase in TC hazards and their joint occurrence is largely driven by projected increases in TC intensity and decreases in translation speed.

Although the findings from this work cannot directly predict future compound flood hazard, which must be quantified using high-resolution coastal inundation models, we provide evidence that joint rainfall-surge extreme events could become an increasing threat to coastal communities in the future. Our modeling results and characterization of joint rainfall-surge probability distributions can be used to develop flood mapping scenarios35 for regional9,36 or local-scale37–39 flood models to assess the impact of joint rainfall-surge occurrence on coastal flooding in a changing climate.

Methods

Data

We generated 5018 synthetic TC tracks for the historical time period (between 1980 and 2005), based on the National Centers for Environmental Prediction (NCEP) reanalysis40. We then generated 4400 synthetic TCs for the historical period (1984-2005) and 6200 TCs for the future period (2070 to 2100) under the Shared Socioeconomic Pathway (SSP) 5, 8.5 emission scenario14 based on each of eight CMIP614 climate models: Canadian Earth System Model (CANESM), Centre National de Recherches Méteorologiques (CNRM), EC-Earth Consortium Model (ECEARTH), Geophysical Fluid Dynamics Laboratory Climate Model (GFDL), The Institute Pierre Simon Laplace Climate Model (IPSL), Model for Interdisciplinary Research on Climate (MIROC), Max Planck Institute Earth System Model (MPI), and Meteorological Research Institute Earth System Model (MRI).

Synthetic TCs

The statistical/deterministic TC model15, which has been widely applied for TC hazard assessment22,31,41–43, generates synthetic events based on data about the large-scale environment and can be forced with either reanalysis data or projections from GCMs. Vortices are randomly seeded based on historical genesis locations and moved according to the large-scale environmental winds plus a beta-drift correction44. TC intensity is estimated
at each time step based on the Coupled Hurricane Intensity Prediction System (CHIPS),
which is an axisymmetric vortex model coupled to a 1D ocean model. For each TC the
outer radius at which the cyclonic wind speed goes to zero (henceforth outer radius) is
randomly drawn from an empirical lognormal distribution. We neglect the variation in
outer radius size over the TC lifetime since previous work has shown the outer radius
variation to be relatively small. Using the CHIPS-estimated intensity and outer radius, we
estimate the radius to maximum winds based on a theoretical wind model that links the
outer descending region of the TC with the inner ascending region. We assume no change
in the distribution of TC outer size for the future climate since historical trend analysis for
the North Atlantic basin found no statistically significant changes in TC size over time.
Moreover, an analysis of dynamically-downscaled TCs based on RCP 4.5 end of century
forcing found nearly constant outer radius compared to the historical period.

Bias Correction
The downscaled TCs from each GCM may be biased compared to the NCEP-downscaled
TCs, and biases within the TC characteristics can propagate to become biases in the hazard
estimation. TC intensity and annual frequency are both important drivers of coastal flood
risk, and both variables are likely to be biased due to the GCM projections and the method
of downscaling. Therefore, we perform bias correction at the storm level based on the
difference between the NCEP TC intensity distribution and the GCM-predicted intensity
distribution for the historical period. We then bias correct the annual TC frequency
(independently from the intensity bias correction) at each location based on the NCEP-
downscaled historical frequency and the GCM-downscaled historical frequency. Using our
method of bias correction, we avoid multivariate bias correction on the modeled storm
tides and rainfall, which often fails to preserve the entire dependence structure between
hazards. Additionally, bias correction at the storm level is computationally efficient, while
bias correction at the hazard level requires performing intensive hydrodynamic
simulations for thousands of historical period GCM TCs.

Specifically, to correct the GCM-projected TC intensity (Vmax) of each storm set, we
first utilize the quantile delta mapping (QDM) approach described in ref. applied to each
location along the coast. Essentially, the change between the GCM-projected future (2070-
2100) and historical (1984-2005) downscaled Vmax quantiles is added to the NCEP-
downscaled historical quantiles to create a corrected future Vmax distribution for each
GCM model at each location. Then by the principle of importance sampling the GCM-
projected storms are weighted and re-sampled with weights corresponding to the ratio of
the corrected Vmax probability density to the GCM-projected Vmax probability density. By
doing weighted re-sampling of the storms at each location we are able to match the
corrected future Vmax distribution and consequently generate a storm set at each location
that is unbiased with respect to the intensity distribution. Figure S7 shows the bias
correction procedure applied at a sample location for a sample GCM, demonstrating that
after weighting/re-sampling the target Vmax distribution is matched accurately. After
correcting the Vmax distribution, we bias correct TC frequency by adding the GCM-
predicted frequency change to the NCEP-derived frequency at each location.

Hydrodynamic Modeling

We simulate TC storm tides using the 2D depth-integrated version of the ADvanced
CIRCulation (ADCIRC) model. We utilize an unstructured computational mesh
developed by ref. that spans the entire North Atlantic basin and has resolution varying
from >50 km in the deep ocean to ~1 km near the coastline. Eight tidal constituents are
incorporated as periodic boundary conditions at the ocean boundaries of the mesh, and
tidal data are obtained from the global model of ocean tides TPXO8-ATLAS. Wind and
pressure fields are developed based on the Vmax and radius to maximum wind (Rmax) of
each synthetic TC and physics-based parametric models. Further details regarding the
mesh formulation, tidal forcing, and wind/pressure models are documented in ref.
Simulated storm tides from the model configuration utilized in this study were compared
against observed water levels for 191 historical TCs impacting the US East and Gulf Coasts,
and the model was found to satisfactorily reproduce peak storm tides (with an average
root mean square error of 0.31 m and Willmott skill of 0.90). In this study we do not
account for wave setup since the computational expense of coupling a spectral wave model
with the ADCIRC model would prevent a large-scale Monte Carlo risk assessment. For each
TC we extract peak storm tides at nodes along the coastline that are spaced roughly 25 km
apart.
Rainfall Modeling

We estimate rainfall fields from each synthetic TC using the Tropical Cyclone Rainfall (TCR) model described in refs. TCR is a physics-based model that simulates convective TC rainfall by relating the precipitation rate to the total upward velocity within the TC vortex. Vertical velocity is estimated by taking into account frictional convergence, topographic forcing, vortex stretching, baroclinic effects, and radiative cooling. TCR has been previously utilized in risk assessment studies and was recently compared against observed TC rainfall across the US. It was found in ref. that TCR simulates the rainfall climatology of coastal regions with relatively good accuracy, although it underperforms in inland and mountainous regions. TCR does not simulate outer TC rain bands, which are three-dimensional in nature and cannot be directly simulated with an axisymmetric model. Nevertheless, a recent study modeled compound flooding using TCR-predicted rainfall fields for several historical events and found that TCR rainfall produced similar flood depth/extent compared to using radar rainfall forcing. In our study, we utilize area-averaged TCR rainfall over each coastal catchment delineated according to USGS hydrologic units (HUs), and each coastline point is paired with its upstream coastal catchment. We utilize the maximum 24-hour rainfall accumulation (over the catchment) from each storm event as our rainfall metric because the 24-hour storm duration is frequently used for rainfall risk assessment studies.

Sea Level Rise Projections

We incorporate probabilistic, localized sea level rise projections from ref. considering the RCP 8.5 emission scenario. In ref. sea level rise probability distributions are developed for tide gauge locations across the globe by taking into account ice sheet components (Greenland, West Antarctic, and East Antarctic), glacier and ice cap surface mass balance, thermal expansion and oceanographic processes, land water storage, and other non-climatic factors. Sea level changes due to thermal expansion and oceanographic processes are based on ensemble mean projections from a suite of CMIP5 GCMs. For each point along the coastline, we select the nearest tide gauge and adopt the probability distribution specified by ref.
We treat TC climatology change and SLR as independent, although they may be significantly correlated. Ref60 found a significant correlation between SLR and changes in power dissipation index (an integrated measure of TC intensity, frequency, and duration) for the North Atlantic, suggesting that large increases in mean sea level are more likely to co-occur with larger increases in TC hazard. By neglecting correlations between SLR and climatology changes our results may underestimate the composite (weighted-average) change in climatology and SLR, and consequently represent a conservative estimate of joint hazard change.

Statistical Analysis of Joint Hazard

We conduct statistical analysis on the pairs of modeled storm tides (or storm tides plus SLR) and 24-hr rainfall at each location along the coastline to quantify their marginal and joint hazard.

The marginal distributions of both rainfall and storm tides are often characterized by a long tail representing the rare but extreme events41,42. The heavy tail can be modeled with a Peaks-Over-Threshold approach, where the probability above a high threshold is estimated by a Generalized Pareto (GP) distribution61. We fit marginal GP distributions using the maximum likelihood method61 for the rainfall and storm tides at each location, and the threshold is set by numerically minimizing the root mean square error between the empirical quantiles and the theoretical quantiles. According to bivariate extreme value theory, a logistic model can be used to estimate the joint distribution of two GP variables such that their bivariate CDF takes the form61,62:

\[
G(x, y) = \exp\left\{-(\tilde{x}^{-1/\alpha} + \tilde{y}^{-1/\alpha})^\alpha\right\}
\]

\[
1
\]

Where \(\tilde{x}\) and \(\tilde{y}\) are the Fréchet-transformed versions of the variables \(x\) and \(y\), and \(\alpha\) is a parameter that quantifies the strength of the dependence between the variables (\(\alpha \to 0\) signifies complete dependence and \(\alpha=1\) complete independence). At each location we fit the bivariate distribution of extreme storm tide and rainfall, based on their respective GP thresholds, using a censored maximum likelihood approach62 (within the “evd” R-package63). The bivariate logistic model employed here has previously been utilized to model dependence between rainfall and storm surges2,62,64,65.
After characterizing the marginal and joint distributions of rainfall and storm tides at each coastline location, we quantify the return period (inverse of the annual exceedance probability) of jointly extreme events. For each location, we model TC occurrence as a Poisson Process with arrival rate λ per year. The basin arrival rate is a parameter of the TC model and is calibrated to match the observed occurrence rate in the North Atlantic basin for the historical period. The location-specific arrival rate (λ) is an adjustment of the basin arrival rate according to the proportion of storms passing within 200 km of each location. We define x_T, y_T as the marginal 100-year storm tide and 100-year rainfall, defined in the historical period. Then the return period of an event that jointly exceeds x_T and y_T (henceforth labeled JRP) is calculated as follows:

$$JRP = \frac{1}{1 - e^{-\lambda P}}$$ (2)

Where P is the joint exceedance probability:

$$P = 1 - \Pr(X \leq x_T) - \Pr(Y \leq y_T) + G(x_T, y_T)$$ (3)

Where G is defined in equation 1.

We quantify JRP under the current and future storm climates, by fitting marginal and joint distributions to storm tide and rainfall pairs from NCEP or each GCM-derived storm dataset, with x_T, y_T defined from the historical period. We estimate the sampling uncertainty bounds of the JRP estimates by implementing a bootstrapping approach with 500 iterations for each location and each GCM. For each iteration we re-sample (with replacement) pairs of modeled storm tides and rainfall, fit the univariate and joint distributions and re-calculate JRP. We also create a composite JRP projection for the future climate using a weighted average across all GCM storm sets, where the weights of each GCM are based on their Willmott skill in matching the NCEP TC intensity return level curve in the historical period (Fig. S8). To additionally account for SLR impacts, we randomly draw from the SLR probability distribution specified for each coastline location and add it to the modeled peak storm tide for each event. We apply a standard bootstrapping approach with 500 iterations at each location and for each GCM storm set to quantify the sampling uncertainty from the synthetic storm set and the SLR distribution.
Attribution of Changes in Joint Hazard

To quantify the isolated impact of various climate factors on changes in joint rainfall-surge hazard, we adjust a single factor at a time and then re-calculate JRP. To quantify the isolated impact of SLR on changes in JRP, we randomly draw SLR values from location-specific probability distributions and add them to the historical rainfall-storm tide pairs. The impact of changes in future storm frequency is quantified by simply changing the value of λ in equation 2 to reflect the future period frequency. Because storm tide and rainfall are dependent, we quantify the impact of changes in (1) marginal rainfall distribution, (2) marginal storm tide distribution, and (3), dependence between hazards through quantile-matching. We calculate $F_{r,h}$ and $F_{s,h}$ which are the historical rainfall (r_h) and storm tide (s_h) cumulative distribution functions (CDFs), and $F_{r,f}$ and $F_{s,f}$, which are the future CDFs. Given historical pairs of rainfall and storm tide (r_h, s_h) we can evaluate the impact of changes in rainfall hazard by changing r_h values to $r_h^* = F_{r,f}^{-1}(F_{r,h}(r_h))$ so that the magnitude of rainfall is increased according to the future period rainfall distribution but the storm tide (s_h) values and dependence between hazards are unchanged. We similarly calculate the storm tide values (s_h^*) while keeping the rainfall values (r_h) constant to evaluate the impact of increases in storm tide on JRP change. The methodology above guarantees the rank correlation between TC rainfall and surge is unchanged. To measure the impact of changes in hazard dependence (α in equation 1), we adjust the future rainfall and storm tide pairs (r_f, s_f) as follows: $r_f^* = F_{r,h}^{-1}(F_{r,f}(r_f))$, $s_f^* = F_{s,h}^{-1}(F_{s,f}(s_f))$. The adjusted values of rainfall and storm tide are reduced according to their historical distributions, but the dependence between hazards is based on the future period climatology.

Data availability statement:
The data generated from this study are deposited to the NSF DesignSafe-CI and can be accessed online (https://www.designsafe-ci.org/); link to the dataset will be provided upon publication.

Code availability statement:
The codes for marginal and bivariate extreme value analysis are deposited to the NSF DesignSafe-CI and can be accessed online (https://www.designsafe-ci.org/); link to the dataset will be provided upon publication.

Acknowledgements
A.G was supported by a National Defense Science & Engineering Graduate (NDSEG) fellowship from DoD, N.L. and D.X. were supported by National Science Foundation (NSF) grant ICER-1854993, and K.E. was supported by NSF grant ICER-1854929.

Author Contributions
A.G. and N.L designed the study and N.L supervised the modeling and analysis. A.G. performed the hydrodynamic modeling and statistical analysis. A.G. and D.X. performed the rainfall modeling. K.E. modeled the synthetic tropical cyclones. All authors contributed to writing and editing the manuscript.

References
1. Wahl, T., Jain, S., Bender, J., Meyers, S. D. & Luther, M. E. Increasing risk of compound flooding from storm surge and rainfall for major US cities. *Nat. Clim. Chang.* 1–6 (2015). doi:10.1038/NCLIMATE2736
2. Wu, W. *et al.* Mapping Dependence Between Extreme Rainfall and Storm Surge. *J. Geophys. Res. Ocean.* 123, 2461–2474 (2018).
3. Lai, Y., Li, J. & Gu, X. Global compound floods from precipitation and storm surge: Risks and physical mechanisms. *J. Clim.* (2021). doi:10.1175/JCLI-D-21-0050.1.
4. Santiago-Collazo, F., Bilskie, M. V. & Hagen, S. C. A comprehensive review of compound inundation models in low-gradient coastal watersheds. *Environ. Model. Softw.* 119, 166–181 (2019).
5. Zscheischler, J. et al. A typology of compound weather and climate events. *Nat. Rev. Earth Environ.* (2020). doi:10.1038/s43017-020-0060-z

6. Hallegatte, S., Green, C., Nicholls, R. J. & Corfee-Morlot, J. Future flood losses in major coastal cities. *Nat. Clim. Chang.* **3**, 802 (2013).

7. Peduzzi, P. et al. Global trends in tropical cyclone risk. *Nat. Clim. Chang.* **2**, 289–294 (2012).

8. Orton, P. M. et al. Flood hazard assessment from storm tides, rain and sea level rise for a tidal river estuary. *Nat. Hazards* (2018). doi:10.1007/s11069-018-3251-x

9. Bates, P. D. et al. Combined Modeling of US Fluvial, Pluvial, and Coastal Flood Hazard Under Current and Future Climates. *Water Resour. Res.* **57**, 1–29 (2021).

10. Bevacqua, E. et al. Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change. *Sci. Adv.* **5**, 1–8 (2019).

11. Moftakhari, H. R., Salvadori, G., AghaKouchak, A., Sanders, B. F. & Matthew, R. A. Compounding effects of sea level rise and fluvial flooding. *Proc. Natl. Acad. Sci.* **114**, 9785–9790 (2017).

12. Ghanbari, M., Arabi, M., Kao, S., Obeysekera, J. & Sweet, W. Climate Change and Changes in Compound Coastal-Riverine Flooding Hazard Along the U. S. Coasts. *Earth’s Futur.* doi:10.1029/2021EF002055

13. Kopp, R. E. et al. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. *Earth’s Futur.* **2**, 383–406 (2014).

14. O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. *Geosci. Model Dev.* **9**, 3461–3482 (2016).

15. Emanuel, K., Ravela, S., Vivant, E. & Risi, C. A Statistical Deterministic Approach to Hurricane Risk Assessment. *Bull. Am. Meteorol. Soc.* **87**, S1–S5 (2006).

16. Luettich, R. A., Westerink, J. J. & Scheffner, N. W. *ADCIRC: An advanced three-dimensional circulation model for shelves, coasts, and estuaries. Report 1: Theory and methodology of ADCIRC-2DDI and ADCIRC-3DL.* (1992).

17. Westerink, J. J., Luettich, R. A., Blain, C. A. & Scheffner, N. W. *ADCIRC: An advanced three-dimensional circulation model for shelves, coasts, and estuaries. Report 2: User’s Manual for ADCIRC-2DDI.* (1992).

18. Marsooli, R. & Lin, N. Numerical Modeling of Historical Storm Tides and Waves and
19. Zhu, L., Quiring, S. M. & Emanuel, K. A. Estimating tropical cyclone precipitation risk in Texas. *Geophys. Res. Lett.* **40**, 6225–6230 (2013).

20. Xi, D., Lin, N. & Smith, J. Evaluation of a physics-based tropical cyclone rainfall model for risk assessment. *J. Hydrometeorol.* **21**, 2197–2218 (2020).

21. Emanuel, K. Assessing the present and future probability of Hurricane Harvey’s rainfall. *Proc. Natl. Acad. Sci.* **0**, 201716222 (2017).

22. Gori, A., Lin, N. & Xi, D. Tropical Cyclone Compound Flood Hazard Assessment: From Investigating Drivers to Quantifying Extreme Water Levels. *Earth’s Futur.* **8**, (2020).

23. Lu, P., Lin, N., Emanuel, K., Chavas, D. & Smith, J. Assessing Hurricane Rainfall Mechanisms Using a Physics-Based Model: Hurricanes Isabel (2003) and Irene (2011). *J. Atmos. Sci.* **75**, 2337–2358 (2018).

24. Bacmeister, J. T. *et al.* Projected changes in tropical cyclone activity under future warming scenarios using a high-resolution climate model. *Clim. Change* **146**, 547–560 (2018).

25. Liu, M., Vecchi, G. A., Smith, J. A. & Knutson, T. R. Causes of large projected increases in hurricane precipitation rates with global warming. *npj Clim. Atmos. Sci.* **2**, 1–5 (2019).

26. Knutson, T. *et al.* Tropical cyclones and climate change assessment part II: projected response to anthropogenic warming. *Bull. Am. Meteorol. Soc.* **100**, 1987–2007 (2019).

27. Kossin, J. P. A global slowdown of tropical-cyclone translation speed. *Nature* **558**, 104–107 (2018).

28. Zhang, G., Murakami, H., Knutson, T. R., Mizuta, R. & Yoshida, K. Tropical cyclone motion in a changing climate. *Sci. Adv.* **6**, 1–8 (2020).

29. Yamaguchi, M., Chan, J. C. L., Moon, J. J., Yoshida, K. & Mizuta, R. Global warming changes tropical cyclone translation speed. *Nat. Commun.* **11**, 1–7 (2020).

30. Emanuel, K. Response of global tropical cyclone activity to increasing CO2: Results from downscaling CMIP6 models. *J. Clim.* **34**, 57–70 (2021).

31. Marsooli, R., Lin, N., Emanuel, K. & Feng, K. Climate change exacerbates hurricane
flood hazards along US Atlantic and Gulf Coasts in spatially varying patterns. *Nat. Commun.* **10**, 1–9 (2019).

32. Helaire, L. T., Talke, S. A., Jay, D. A. & Chang, H. Present and Future Flood Hazard in the Lower Columbia River Estuary: Changing Flood Hazards in the Portland-Vancouver Metropolitan Area. *J. Geophys. Res. Ocean.* **125**, 1–17 (2020).

33. Lee, C. Y., Camargo, S. J., Sobel, A. H. & Tippett, M. K. Statistical-Dynamical downscaling projections of tropical cyclone activity in a warming climate: Two diverging genesis scenarios. *J. Clim.* **33**, 4815–4834 (2020).

34. Bhatia, K., Vecchi, G., Murakami, H., Underwood, S. & Kossin, J. Projected response of tropical cyclone intensity and intensification in a global climate model. *J. Clim.* **31**, 8281–8303 (2018).

35. Moftakhari, H. R., Schubert, J. E., Aghakouchak, A., Matthew, R. A. & Sanders, B. F. Linking statistical and hydrodynamic modeling for compound flood hazard assessment in tidal channels and estuaries. *Adv. Water Resour.* **128**, 28–38 (2019).

36. Ye, F. *et al.* Simulating storm surge and compound flooding events with a creek-to-ocean model: Importance of baroclinic effects. *Ocean Model.* **145**, 101526 (2020).

37. Valle-Levinson, A., Olabarrieta, M. & Heilman, L. Compound flooding in Houston-Galveston Bay during Hurricane Harvey. *Sci. Total Environ.* **747**, 141272 (2020).

38. Gori, A., Lin, N. & Smith, J. Assessing Compound Flooding from Landfalling Tropical Cyclones on the North Carolina Coast. *Water Resour. Res.* (2020). doi:10.1029/2019wr026788

39. Bilskie, M. V. *et al.* Enhancing Flood Hazard Assessments in Coastal Louisiana Through Coupled Hydrologic and Surge Processes. *Front. Water* **3**, 1–19 (2021).

40. Kalnay, E. *et al.* The NCEP_NCAR 40-year reanalysis project. 1996.pdf. *Bull. Am. Meteorol. Soc.* **77**, 437–472 (1996).

41. Lin, N., Emanuel, K., Oppenheimer, M. & Vanmarcke, E. Physically based assessment of hurricane surge threat under climate change. *Nat. Clim. Chang.* **2**, 462–467 (2012).

42. Lin, N., Emanuel, K. A., Smith, J. A. & Vanmarcke, E. Risk assessment of hurricane storm surge for New York City. *J. Geophys. Res. Atmos.* **115**, 1–11 (2010).

43. Feldmann, M., Emanuel, K., Zhu, L. & Lohmann, U. Estimation of atlantic tropical cyclone rainfall frequency in the United States. *J. Appl. Meteorol. Climatol.* **58**, 1853–
44. Holland, G. J. Tropical Cyclone Motion: Environmental Interaction Plus a Beta Effect. *J. Atmos. Sci.* **40**, 328–342 (1983).

45. Emanuel, K., DesAutels, C., Holloway, C. & Korty, R. Environmental control of tropical cyclone intensity. *J. Atmos. Sci.* **61**, 843–858 (2004).

46. Chavas, D. R., Lin, N., Dong, W. & Lin, Y. Observed tropical cyclone size revisited. *J. Clim.* **29**, 2923–2939 (2016).

47. Schenkel, B. A. et al. Lifetime evolution of outer tropical cyclone size and structure as diagnosed from reanalysis and climate model data. *J. Clim.* **31**, 7985–8004 (2018).

48. Chavas, D. R. & Lin, N. A model for the complete radial structure of the tropical cyclone wind field. Part II: Wind field variability. *J. Atmos. Sci.* **73**, 3093–3113 (2016).

49. Knaff, J. A., Longmore, S. P. & Molenar, D. A. An objective satellite-based tropical cyclone size climatology. *J. Clim.* **27**, 455–476 (2014).

50. Knutson, T. R. et al. Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. *J. Clim.* **28**, 7203–7224 (2015).

51. Cannon, A. J. Multivariate quantile mapping bias correction: an N-dimensional probability density function transform for climate model simulations of multiple variables. *Clim. Dyn.* **50**, 31–49 (2018).

52. Cannon, A. J., Sobie, S. R. & Murdock, T. Q. Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes? *J. Clim.* **28**, 6938–6959 (2015).

53. Tokdar, S. T. & Kass, R. E. Importance sampling: A review. *Wiley Interdiscip. Rev. Comput. Stat.* **2**, 54–60 (2010).

54. Egbert, G. D. & Erofeeva, S. Y. Efficient inverse modeling of barotropic ocean tides. *J. Atmos. Ocean. Technol.* **19**, 183–204 (2002).

55. Emanuel, K. & Rotunno, R. Self-stratification of tropical cyclone outflow. Part I: Implications for storm structure. *J. Atmos. Sci.* **68**, 2236–2249 (2011).

56. Holland, G. An analytical model of wind and pressure profiles in hurricanes. *Mon. Weather Rev.* **108**, 1212–1218 (1980).

57. Willmott, C. J. On the validation of models. *Phys. Geogr.* **2**, 184–194 (1981).
58. USGS. National Hydrography Dataset (ver. USGS National Hydrography Dataset Best Resolution (NHD) for Hydrologic Unit (HU) 4. (2019). Available at: https://www.usgs.gov/core-science-systems/ngp/national-hydrography/access-national-hydrography-products. (Accessed: 10th September 2020)

59. Fagnant, C., Gori, A., Ensor, K. B., Sebastian, A. & Bedient, P. B. Characterizing spatiotemporal trends in extreme precipitation across the southern Texas coast. Nat. Hazards (2020). doi:10.1007/s11069-020-04235-x

60. Little, C. M. et al. Joint projections of US East Coast sea level and storm surge. Nat. Clim. Chang. 5, 1114–1120 (2015).

61. Coles, S. An Introduction to Statistical Modeling of Extreme Values. (Springer-Verlag, 2001).

62. Zheng, F., Westra, S., Leonard, M. & Sisson, S. a. Modeling dependence between extreme rainfall and storm surge to estimate coastal flooding risk. Water Resour. Res. 2050–2071 (2014). doi:10.1002/2013WR014616

63. A. G. Stephenson. evd: Extreme Value Distributions. R News 2, 31–32 (2002).

64. Zheng, F., Westra, S. & Sisson, S. A. Quantifying the dependence between extreme rainfall and storm surge in the coastal zone. J. Hydrol. 505, 172–187 (2013).

65. Wu, W. & Leonard, M. Impact of ENSO on dependence between extreme rainfall and storm surge. Environ. Res. Lett. 14, 124043 (2019).
Figure 1: Joint return period of NCEP historical 100-yr rainfall and 100-yr sea level (JRP) for (a) NCEP historical period, (b) future period (2070-2100) based on GCM composite projection and 2100 SLR, and (c) largest single factor contributing to increase in joint hazard or N/A if no single hazard is larger than others.
Figure 2: Historical and future JRP estimates and 95% boot-strapped uncertainty bounds for select locations under NCEP historical (gray) and GCM future composite (blue) forcing. GCM model ensemble spread at each location for the future period (2070-2100) shown as colored dots.
Figure 3: Relative impact of each single climate factor on JRP change and impact of total changes in TC climatology or sea level rise. Zero indicates no change in JRP compared to NCEP historical JRP and one indicates that the factor causes the entire change between historical and future JRP. Negative impact values indicate that the factor increases the JRP compared to historical best estimate (vertical black lines in Fig 2a). Note that the combined impact of all climate factors on JRP is highly non-linear and thus the sum of the relative impact of each single factor does not sum to one.
Figure 4: (a) Conditional probability of extreme rainfall (exceeding 90th percentile) given extreme storm tide (exceeding 90th percentile) in the historical period, and (b) change in conditional probability of extreme rainfall due to future storm climatology. Positive (negative) values indicate increase (decrease) in conditional probability. Areas where fewer than six models agree on the sign of the change are depicted in gray.
Figure 5: Change between future composite TC characteristics and historical characteristics for (a) 90th percentile TC intensity (Vmax), and (b) median translation speed (Vt) of storms that exceed 90th percentile intensity. Kendall correlation between Vmax and storm tide (c) or rainfall (d) and between Vt and storm tide (e) or rainfall (f).
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryInformation.docx