INTRODUCTION
Rice, the staple food of more than half of the population of the world, is an important target to provide food security and livelihoods for millions. Fertilizer is one of the costliest inputs in agriculture and the use of the right amount of fertilizer is fundamental for farm profitability and environmental protection (Kimetu et al., 2004). Soil test based fertilizer prescription eliminates over or under usage of fertilizer inputs thereby increasing the fertilizer use efficiency and yield of crops.
The fertilizer prescription equations developed by the AICRP centre of the project on STCR for different crops of different agro-ecological situations in different states. Substitution of soil test values and target yield in the prescription equations gives us that particular fertilizer nutrient recommendation which need to be converted in to fertilizer quantity to be applied. These fertilizer target yield equations will not only help in saving of fertilizers and improving the economy but also help in improvement of soil health.

The treatment with N application based STCR realized the target yield (Ramesh & Chandrashekaran, 2007). Srinivasan and Angayarkanni (2008) reported that application of fertilizers based on STCR equation will result in buildup of nutrients in the soil. Soil test based application of plant nutrients helps to realize higher response ratio and benefit: cost ratio as the nutrients are applied in proportion to the magnitude of the deficiency of a particular nutrient and the correction of the nutrients imbalance in soil helps to harness the synergistic effects of balanced fertilization (Rao & Srivastava, 2000). Hence the present investigation was undertaken where STCR approach of fertilizer application was compared with farmers practice and recommended dose of fertilizers application. In this contest, STCR based target yield approach will help to provide the required amount of nutrient to the crop and increases the crop uptake and in turn higher yield can be expected.

MATERIALS AND METHODS

On farm trails were conducted at six different locations across three villages in Nagarkurnool district of Telangana during Rabi 2017 and 2018 to evaluate the soil test crop response (STCR) based fertilizer prescription for paddy on Alfisols. The fertilizer prescription equation developed for desired yield target of paddy (T = 70 q ha\(^{-1}\)) for Southern Telangana soil series are furnished here.

\[
FN = 3.23T - 0.46SN \\
FP_O_5 = 1.51T - 1.80SP \\
FK_O = 1.65T - 0.26SK
\]

Where, FN, FP\(_O_5\) and FK\(_O\) are fertilizer N, P\(_2\)O\(_5\) and K\(_2\)O in kg ha\(^{-1}\) respectively. T is the yield targeted in q ha\(^{-1}\); SN, SP and SK are soil available N, P and K in kg ha\(^{-1}\) respectively. The treatments include T1: Farmers Fertilizer Practice, T2: Recommended Dose of Fertilizers (RDF) and T3: Soil Test Crop Response (STCR) based fertilizer dose for an yield target of 70 q ha\(^{-1}\). The test crop paddy variety Telangana Sona (RNR 15048). BCR (B: C ratio) was worked out based on the standard procedure (Gittinger, 1982). The cultivation practices were carried out periodically and the grain and straw yield was recorded at harvest.

Initial available soil nutrient status

Initial soil samples were collected in each location and analysed for alkaline KMnO\(_4\)-N (Subbiah & Asija, 1956), Olsen-P (Olsen et al., 1954) and NH\(_4\)OAc-K (Hanway & Heidal, 1952). Initial soil samples were collected in each location and analyzed for available status of nutrients. The soils across 6 locations were neutral in reaction to non-saline in nature. Available N, P and K were low, high and medium to high in status ranging from 188 to 232, 31 to 46 and 279 to 348 kg ha\(^{-1}\), respectively (Table 1).

S.No.	pH	EC (dSm\(^{-1}\))	Available soil nutrient status (kg ha\(^{-1}\))	SN	SP	SK
1.	7.56	0.314	201.6	39.63	286	
2.	7.93	0.146	192.4	30.63	297	
3.	7.41	0.251	225.8	39.28	320	
4.	7.88	0.198	212.9	44.80	348	
5.	7.92	0.324	188.2	34.49	279	
6.	8.01	0.285	232.8	46.41	308	
Mean	7.79	0.254	209	38	306	

Table 1: Initial available soil nutrient status of selected locations
The available status of nutrients was used to compute fertiliser doses for paddy through adjustment equations using basic data that had earlier been generated from fertility gradient field experiments for paddy. The detailed procedure has been described by Valayutham et al (1985). The range of N, P₂O₅ and K₂O application rates under different treatments across 6 locations indicated that, N, P₂O₅ and K₂O recommendations by farmers practice were lower than STCR recommendations. Across all sites, farmers practice of N, P₂O₅ and K₂O recommendations ranged from 123.8 to 148.5, 97.5 to 137.5 and 75 to 95 with a mean of 137, 109 and 79, respectively (Table 2 & Fig.1). Recommended dose of fertilizer application for paddy in Telangana region is 100-50-40 kg N- P₂O₅-K₂O ha⁻¹.

Table 2: Fertilizer recommendations for rice in different treatments

S.No	T1: Farmers Fertiliser Practice (kg ha⁻¹)	T3: Targeted yield with chemical fertilizers (kg ha⁻¹)				
	N	P₂O₅	K₂O	N	P₂O₅	K₂O
1	138.8	137.5	77.5	133	34	41
2	131.3	115	75.0	138	51	38
3	148.5	97.5	95.0	122	35	32
4	123.8	97.5	57.5	128	25	25
5	148.5	97.5	95.0	140	44	43
6	130	107.5	75.0	119	22	35
Mean	137	109	79	130	35	36

Recommended Dose: 100-50-40 kg N- P₂O₅ - K₂O ha⁻¹

![Fig.1: Fertilizer recommendations for rice in different treatments](image)

RESULTS AND DISCUSSION

The fertilizer application as per the STCR equation with yield target 70 q ha⁻¹ to paddy crop for validation were achieved the desired targeted yield (Table 2). The yield level that could be achievable with 100 % recommended dose (120-60-40 kg N-P₂O₅-K₂O ha⁻¹) to paddy crop can be obtained with a lower dose of 130-35-36 kg N-P₂O₅-K₂O ha⁻¹ to the same crop and thus saving 25 kg cost of P input without sacrificing the yield of rice crop. The grain yield under STCR recommendations at six locations varied from 69.08 to 72.49 kg ha⁻¹ with a mean of 71.15 q ha⁻¹. The variation in yield obtained from the targeted ones ranged from -1.31 to +1.64. The fertiliser application as per the STCR equation with yield target 70 q ha⁻¹ to paddy crop for validation were achieved the targeted yield. With respect to farmers practice of fertilizer recommendations, the yield at ten locations varied from 66.18 to 69.82 q ha⁻¹ with a mean yield of 67.92 q ha⁻¹. The grain yield recorded with STCR recommendations were higher in producing
grain yield as compared farmers practice of fertilizer recommendations (Table 3).

Singh et al. (2014) reported that targeted yield of rice was achieved by using the plant nutrients on the basis of targeted yield concept (soil test crop response technology). The present results were in accordance with the study conducted by Singh et al. (2017) and revealed that among the treatments, STCR recorded relatively higher yield, benefit: cost ratio and per cent achievement. Suresh and Santhi (2018) validated STCR equation for hybrid maize and reported that, STCR based fertilizer recommendations with the targeted yield has been achieved within +/- 10 per cent variation proving the validity of the equations. The results of the validation experiment on paddy clearly indicated that the per cent achievement was below 10 per cent variation at all the locations for validation was achieved the targeted yield of paddy crop.

The benefit cost ratio of the treatments was estimated using the cost of input and value of output. Economics of fertilizer application based on targeted concept gave benefit cost ratio varying from 2.27 to 2.36 with a mean value of 2.31. The corresponding value for farmers fertilizer practice ranged from 1.96 to 2.02 with a mean value of 2.00 (Table 3). The results are confirming that, the treatment of targeted yield found most economic treatment as compared to farmer practices and general recommendation. Similar results were reported by Singh et al. (2015).

Table 3: Grain yield and benefit cost ratio of rice under different treatments

S.No	Grain Yield (q ha⁻¹)	Benefit- Cost Ratio				
	T1	T2	T3	T1	T2	T3
1	69.82	68.50	71.83	2.00	2.17	2.33
2	68.94	69.25	72.08	2.02	2.19	2.30
3	66.72	70.75	72.49	1.96	2.24	2.36
4	66.18	68.24	69.08	2.00	2.16	2.28
5	68.02	68.56	71.16	2.00	2.17	2.27
6	67.82	71.75	70.24	2.01	2.27	2.32
Mean	67.92	69.51	71.15	2.01	2.20	2.31

T1: Farmers Fertilizer Practice; T2: RDF; T3: STCR based fertilizer dose

The gross and net returns in T1 were Rs. 1,07,988/- and Rs.53,952/-, respectively (Table 4) where as in T3 the higher gross and net returns were obtained (Rs.1,13,123/- and Rs.64,160, respectively). Chaubey et al. (2015) reported that the net returns from the improved practice (STCR technology) were substantially higher than the farmers’ practice (GRD).

Table 4: Economics of rice under different treatments

S.No	Cost of Cultivation	Gross Returns	Net Returns						
	T1	T2	T3	T1	T2	T3	T1	T2	T3
1	55,449	50,205	49,104	111014	108915	114210	55565	58710	65106
2	54,152	50,205	49,928	109615	110108	114607	55463	59902	64679
3	54,100	50,205	48,741	106085	112493	115259	51985	62287	66518
4	52,654	50,205	48,109	105226	108502	109837	52572	58296	61728
5	54,100	50,205	49,754	108152	109010	113144	54052	58805	63390
6	53,760	50,205	48,142	107834	114083	111682	54074	63877	65359
Mean	54,036	50,205	48,963	1,07,988	1,10,518	1,13,123	53,952	60,313	64,160
CONCLUSION
Adoption of STCR based fertilizer recommendations for rice was useful to the farmers for saving of P fertilizers from current recommended dose by 25 kg P₂O₅ ha⁻¹ (42 % of RDP) and saving of cost of P fertilizers applied per hectare to the extent of Rs.1250/-. The culturable area of rice in Telangana state is 2.0 lakh hectares. Out of this, an average 30 percent of the rice growing area (60,000 hectares) found to have P accumulation. Hence, adoption of this technology can be useful to save Rs.4.5 crores on P fertilizer application.

REFERENCES
Chaubey, A. K., Parganiha, O. P., & Paraye, P. M. (2015). Effect of STCR technology for target yield in Rice. Pl. Archives, 15(1), 267-269.
Gittinger, J. P. (1982). Economic analysis of agricultural projects. Economic Development Institute of the World Bank. Johns Hopkins University Press. Baltimore, London.
Hanway, J. J., & Heidal, H. (1952). Soil analysis methods as used in Iowa State College. Agril. Bulletin, 57, 1-13.
Kimetu, M., Mugendi, D. N., Palm, C. A., Mutro, P. K., Gachengo, C. N., Nandwa S., & Kungu, B. (2004). Soil Test Crop Response based fertilizer prescription for Urd grown on Mollisol of Uttarakhand. African network on soil bio. and fert., pp-207-224.
Olsen, S. R., Cole, C. V., Watanabe, F. S. (1954). Estimation of available phosphorous in soils by extraction with sodium bicarbonate. Pp. 939. Circular US Dept. of Agriculture, 1400 Independence Ave. S. W., Washington DC.
Ramesh, S., & Chendrashekaran, B. (2007). Evaluation of crop establishment methods and nitrogen management strategies on realizing yield potential of Rice hybrids ADTRHI. *Asian J. Plant Sci.*, 6(2), 239-251.

Rao, S., & S. Srivastava, (2000). Soil test based fertilizer use-a must for sustainable agriculture. *Fertilizer News*, 45, 25-38.

Srinivasan, S., & Angayarkanni, S. (2008). Fertilizer potassium doses based on STCR for a yield target of 70 q ha\(^{-1}\) on rice cv. ADT -36. *Asian J of Soil. Sci.*, 3(2), 246-248.

Singh, A. K., Gautam, U. S., Singh, A., & Shrivastava, P. (2015). Impact of nutrient management technologies in transplanted rice under irrigated domains of central India. *African J. Agri.* 10(5), 345-350.

Singh, Y. V., Sharmaand, P. K., & Meena, R. (2014). Effect of Soil Test Crop Response Technology on Productivity and Economics of Rice crop of Varanasi district of Uttar Pradesh. *J of Rural Agric Res* 14(1), 77-80.

Singh, Y. V., Singh, S. K., Dey, P., Jat, L. K., & Ram, R. L. (2017). Validation of Soil Test and Yield Target based Fertilizer Prescription Model for Rice on Inceptisol of Eastern Zone of Uttar Pradesh, India. *Int. J. Curr. Microbiol. App. Sci.* 6(2), 406-415.

Subbiah, B. V., & Asija, G. L. (1956). A rapid procedure for estimation of available nitrogen in soils. *Curr. Sci.*, 25, 259-260.

Suresh, R., & Santhi, R. (2018). Validation of Soil Test and Yield Target Based Fertiliser Prescription Model for Hybrid Maize on Vertisol. *Int. J. Curr. Microbiol. App. Sci.*, 7(9), 2131-2139.

Velayutham, M., Reddy, K. C. K., & Sankar, G. R. M. (1985). Soil test crop response research work in India for fertilizer recommendation. *In. Proc. In SYMP. Soil Test Crop Response Correlation Studied*, Dhaka, Bangladesh, 662-644.