Width of the Whitehead double of a nontrivial knot

Zhenkun Li, Qilong Guo

March 8, 2018

Abstract

In this paper, we prove that \(w(K) = 4w(J) \), where \(w(.) \) is the width of a knot and \(K \) is the Whitehead double of a nontrivial knot \(J \).

1 Introduction

Width is a knot invariant introduced in Gabai [1]. It has been studied intensively since then. Zupan in [4] conjectured that

\[w(K) \geq n^2w(J), \]

where \(K \) is a satellite knot with companion \(J \) and wrapping number \(n \). This conjecture is still open. The authors of this paper proved in [2] a weaker version of the conjecture with wrapping number being replaced by winding number. In this paper we prove a special case of \(K \) having wrapping number 2 and winding number 0, which is not covered by the discussion in [2].

Theorem. Suppose \(J \) is a nontrivial knot and \(K \) is a Whitehead double of \(J \). Then we have

\[w(K) = 4 \cdot w(J). \]

The gap between wrapping number and winding number in the proof in author’s previous paper [2] lies in lemma 4.4, which says that any properly embedded surface representing a generator of \(H_2(V, \partial V) \) has the number of intersection points with the satellite knot \(K \) being no smaller than the
absolute value of the winding number of K. Here V is the tubular neighborhood of J containing K. This is in general not true for wrapping number but for the special case that K is a Whitehead double, we can somehow overcome this difficulty.

Acknowledgement. Guo is supported by NSFC (No.11601519) and Science Foundation of China University of Petroleum, Beijing (No.2462015YJRC034 and No.2462015YQ0604).

2 Width of a Whitehead double

We will include the definition of Whitehead double here but for the width of a knot, readers are referred to [2]. In what follows, we will use capital letters K, J, L to denote the knot or link classes while use lower case letters k, j, l to denote particular knots or links within the corresponding classes.

Definition 2.1. Suppose $l_w = \hat{k} \cup \hat{j}$ is a Whitehead link in S^3. Let $\hat{V} = S^3 \setminus N(\hat{j})$ be the exterior of \hat{j} containing \hat{k} in its interior. Since \hat{j} is the unknot in S^3, \hat{V} is a solid torus and $\hat{k} \in \hat{V}$ can be thought as in figure 1. Let $j \subset S^3$ be a non-trivial knot and let $V = N(j)$ be the closure of a tubular neighborhood of j in S^3. Let $f : \hat{V} \to S^3$ be an embedding such that $f(\hat{V}) = V$, and let $k = f(\hat{k})$. Then k is called a Whitehead double of j.

![Figure 1: Pattern for Whitehead double](image)

Lemma 2.2. Suppose k, j, V are defined as in definition 2.1, then any meridian disk D of V would intersect k at least two times.
Remark 2.3. The above lemma actually means that the wrapping number of k is 2. On the other hand, $[k] = 0 \in H_1(V)$ so the winding number of k is 0.

As discussed in the introduction, the key lemma is the following.

Lemma 2.4. (Key lemma.) Suppose S is a connected properly embedded planar surface inside V which represents a generator of $H_2(V, \partial V)$, then S intersects k at least two times.

In order to prove the key lemma, we need the following one.

Lemma 2.5. Suppose S is a connected, properly embedded planar surface inside a three ball B. Let B_1 and B_2 be the two components of $B \setminus S$. Then there is no Hopf link $l_h = l_1 \cup l_2$ inside B such that

$l_i \subset B_i$ for $i = 1, 2$.

Proof. Assume, on the contrary, that there is a Hopf link $l_h = l_1 \cup l_2$ such that

$l_i \subset B_i$.

We can find a disk E (actually a Seifert surface for l_1) such that

1. $\partial E = l_1$,
2. E is in the interior of B.

Now since $l_2 \subset B_2$, we know that $l_2 \cap E = l_2 \cap (E \cap B_2)$. Suppose E_0 is a component of $E \cap B_2$. Since $\partial E \subset B_1$, we have $\partial E_0 \subset S$. Then we can do a surgery using E_0 on S: on S cut a neighborhood of ∂E_0 and glue back two copies of E_0, denoted by $E_{0,+}$ and $E_{0,-}$ respectively, along the boundary created by the cutting. Since S is a planar surface and any circle on a planar surface is separating, the result of the surgery is a disjoint union of two connected surfaces S_1 and S_2 and each one contains one copy of E_0.

Let us focus on S_1, and assume without loss of generality that $E_{0,+} \subset S_1$. Since l_2 is a circle inside B, we know that L_2 has algebraic intersection number 0 with S_1. Since $l \cap S = \phi$, the intersection of l_2 with S_1 must be all in $E_{0,+}$. Then l_2 must have an even intersection number with $E_{0,+}$, and hence has an even intersection number with E_0. Since E_0 is an arbitrary component of $E \cap B_2$, we know that L_2 must have an even intersection points with E, which contradicts to the fact that l_2 has linking number 1 with l_1, since $l_h = l_1 \cup l_2$ is a Hopf link.

\[\boxempty\]
In the proof of lemma 2.4, we will also need the auxiliary function defined as follows.

Definition 2.6. Suppose M is a compact 3-manifold with boundary and S is a properly embedded surface in M such that any components of S separates M. Then we can define a map

$$C_{M,S} : (M \setminus S) \times (M \setminus S) \to \{\pm 1\}$$

as

$$C_{M,S}(x,y) = (-1)^{|\gamma \cap S|},$$

where $x, y \in M$ are two points and γ is an arc connecting two points x and y that is transverse to S. $|\gamma \cap S|$ means the number of intersection points.

When S is connected, $C_{M,S}(x,y)$ is 1 if and only if x and y lie in the same component of $M \setminus S$. If in general S is not necessarily connected, we know that $C_{M,S}(x,y) = -1$ would still imply that x and y are not in the same component of $M \setminus S$.

Another good property of this function is the following equality: for any 3 points $x, y, z \in M \setminus S$, we have

$$C_{M,S}(x,y) \cdot C_{M,S}(y,z) = C_{M,S}(x,z). \quad (1)$$

Now we are ready to prove the key lemma.

Proof of lemma 2.4. Suppose k is a Whitehead double of j, V is the tubular neighborhood of j containing k and S is a connected, properly embedded planar surface in V, representing a generator of $H_2(V, \partial V)$. Assume that S and k have less than 2 intersections, then since $[k] = 0 \in H_1(V)$, we know that S and k must be disjoint.

It is easy to see that there is a meridian disk D of V, such that in $B = V \setminus N(D)$, that D intersects S transversely, and that after adding two small arcs to $(k - N(D))$ near $\partial N(D)$, we will get a Hopf link l out of k. Here $N(D)$ is a neighborhood of D in V. See figure 2.

If $D \cap S = \emptyset$, then we can apply lemma 2.5 directly to conclude a contradiction, since when $[S]$ represents a generator of $H_2(V, \partial V)$ and $l \cap S = \emptyset$, the two components of the Hopf link l are in two different components of $B \setminus S$.

If $D \cap S \neq \emptyset$, we can assume that

$$D \cap S = \beta_1 \cup \beta_2 \ldots \cup \beta_m,$$
where β_1, \ldots, β_n are intersection circles of the two surfaces and are in the order such that β_j bounds a disk $D_j \subset D$ disjoint from any β_i for $i < j$.

If all D_i are disjoint from k, then we can do a series surgeries on S with respect to $D_n, D_{n-1}, \ldots, D_1$ one by one to get a surface S'' so that S'' is disjoint from D and k. We can pick any connected component of S'', and it will also have such properties and applying the argument above we can get the same contradiction.

Now we are in the most complicated case where some D_i intersects k. Suppose j_0 is the greatest index such that $D_j \cap k \neq \emptyset$, then we claim that D_{j_0} cannot have a unique intersection point with k. Suppose the contrary, then a sequence of surgeries on S with respect to D_n, \ldots, D_{j_0+1} would generate a surface S' such that S' represent a generator of $H_2(V, \partial V)$, S' is disjoint from k and

$$D_{j_0} \cap S' = \partial D_{j_0} = \beta_{j_0}.$$

Suppose S'_0 is the component of S' containing β_{j_0}, then S'_0 is still a planar surface. A surgery on S'_0 with respect to D_{j_0} would result in two surfaces S'_1 and S'_2, each of which contains one copy of D_{j_0} and hence has a unique intersection point with k. This is impossible since $[k] = 0 \in H_1(V)$.

Hence we conclude that D_{j_0} has two intersection points with k, which are all the intersection points of D with k. Now, as before, we can do a sequence of surgeries on S with respect to $D_n, \ldots, D_{j_0+1}, D_{j_0}$ to get S'. When doing last surgery with respect to D_{j_0}, we shall modify k at the same time: cut k along D and glue two small arcs to the newly born boundary points near D to get a Hopf link l disjoint from S' and D. See figure 3.

![Figure 2: Cutting off a neighborhood of D](image)
Now we can apply the remaining sequence of surgeries on \(S' \), with respect to \(D_{j_0-1}, ..., D_1 \), to get a surface \(S'' \) which represents a generator of \(H_2(V, \partial V) \) and is disjoint from \(D \) and \(l \).

![Figure 3: Surgery on \(S \)](image)

Now we can cut off a neighborhood \(N(D) \) of \(D \) from \(V \), which is disjoint from \(l \) and \(S'' \), to get a 3-ball \(B = V \setminus N(D) \). In order to see that the two components of \(l \) are in different components of \(B \setminus S'' \), we can pick points \(x, y \) on two arcs of \(l \) which do not belong to \(k \), and pick two points \(u, v \) near the boundary \(\partial N(D) \) but on different sides of \(D \). See figure 4.

![Figure 4: Points \(u, v, x, y \)](image)

There is a symmetry between the two pairs \((x, u) \) and \((y, v) \) with respect
to D so we have
\[C_{B,S''}(x, u) = C_{B,S''}(v, y), \]
where $C_{B,S''}$ is defined as in definition 2.6. Since S'' represents a generator of $H_2(V, \partial V)$, we have
\[C_{B,S''}(u, v) = -1. \]
Using equality (1), we have
\[C_{B,S''}(x, y) = C_{B,S''}(x, u) \cdot C_{B,S''}(u, v) \cdot C_{B,S''}(v, y) = -1. \]
Thus the two components of l are in different components of $B \setminus S''$. Pick a connected component S_0'' which separates the two components of l, we can apply lemma 2.5 to get a contradiction.

Theorem 2.7. Suppose J is a nontrivial knot (class) and K is a Whitehead double of J, then we have
\[w(K) = 4w(J). \]

Proof. It is easy to construct examples to show that
\[w(K) \leq 4w(J). \]
In order to prove the reverse inequality, we repeat the whole argument as in the authors’ previous paper [2], with lemma 4.4 in that paper replaced by lemma 2.4 in the current paper. Then we can conclude that
\[w(K) \geq 4w(J). \]
References

[1] David Gabai et al. Foliations and the topology of 3-manifolds. iii. Journal of Differential Geometry, 26(3): 479–536, 1987.

[2] Qilong Guo and Zhenkun Li. Width of a satellite knot and its companion. Algebraic and Geometric Topology, 18(1): 1–13, 2018.

[3] Dale Rolfsen. Knots and links, volume 346, American Mathematical Soc., 1976.

[4] Alexander Zupan. Properties of knots preserved by cabling. arXiv preprint arXiv:1010.3220, 2010