RESEARCH ARTICLE

Multi-omic analysis of stroke recurrence in African Americans from the Vitamin Intervention for Stroke Prevention (VISP) clinical trial

Nicole M. Davis Armstrong1,*, Kelsey J. Spragley1, Wei-Min Chen2,3, Fang-Chi Hsu4, Michael S. Brewer1, Patrick J. Horn1, Stephen R. Williams5, Michèle M. Sale2,3, Bradford B. Worrall3,5, Keith L. Keene1,6

1 Department of Biology, East Carolina University, Greenville, North Carolina, United States of America, 2 Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America, 3 Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, United States of America, 4 Division of Public Health Sciences, Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America, 5 Department of Neurology, University of Virginia, Charlottesville, Virginia, United States of America, 6 Center for Health Disparities, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America

☯ These authors contributed equally to this work.

*keenek@ecu.edu

Abstract

African Americans endure a nearly two-fold greater risk of suffering a stroke and are 2–3 times more likely to die from stroke compared to those of European ancestry. African Americans also have a greater risk of recurrent stroke and vascular events, which are deadlier and more disabling than incident stroke. Stroke is a multifactorial disease with both heritable and environmental risk factors. We conducted an integrative, multi-omic study on 922 plasma metabolites, 473,864 DNA methylation loci, and 556 variants from 50 African American participants of the Vitamin Intervention for Stroke Prevention clinical trial to help elucidate biomarkers contributing to recurrent stroke rates in this high risk population. Sixteen metabolites, including cotinine, N-delta-acetyl ornithine, and sphingomyelin (d17:1/24:1) were identified in t-tests of recurrent stroke outcome or baseline smoking status. Serum tricosanoyl sphingomyelin (d18:1/23:0) levels were significantly associated with recurrent stroke after adjusting for covariates in Cox Proportional Hazards models. Weighted Gene Co-expression Network Analysis identified moderate correlations between sphingolipid markers and clinical traits including days to recurrent stroke. Integrative analyses between genetic variants in sphingolipid pathway genes identified 29 nominal associations with metabolite levels in a one-way analysis of variance, while epigenomic analyses identified xenobiotics, predominately smoking-associated metabolites and pharmaceutical drugs, associated with methylation profiles. Taken together, our results suggest that metabolites, specifically those associated with sphingolipid metabolism, are potential plasma biomarkers for stroke recurrence in African Americans. Furthermore, genetic variation and DNA methylation may play a role in the regulation of these metabolites.
Introduction
Stroke is a leading cause of death and disability globally, resulting in more than 6 million deaths per year [1]. For reasons yet to be elucidated, individuals of African descent are more likely to suffer a stroke, have an earlier age of occurrence, and experience poorer outcomes compared to individuals of other ancestry [2]. While overall stroke mortality rates have declined since 1990, the rates have remained higher among African Americans (AAs) than any other racial group in the United States. For example, stroke mortality rates are approximately 50% higher in AAs than their white counterparts with this mortality increasing with age (e.g. at age 55 the risk is up to three times greater) [3]. While racial disparities are prevalent in primary strokes, data on AAs and stroke recurrence are rare, even though recurrent strokes are more disabling and deadlier than initial strokes and account for 25% of annual cases [1]. The management of stroke risk factors, including hypertension and diabetes, remains an important strategy to decrease the stroke burden.

The use of blood biomarkers that aid in stroke diagnosis and early identification of patients with high-risk of recurrence has been difficult to establish [4]. Part of this analytical complexity derives from the biologically complex set of associated effects, which can vary from person to person depending on the type of stroke, its severity, the location within the brain, number of strokes and recurrence, and other general health parameters. One of the most common approaches is to utilize a comparative analysis of core metabolites (e.g. amino acids, lipids, carbohydrates, coenzymes) quantified by mass spectrometric-based profiling of serum samples from stroke patients versus appropriate controls. Indeed, recent studies have identified several aberrant serum and urine metabolic biomarkers associated with stroke. For example, in a metabolomics analysis of 3,900 participants from the Atherosclerosis Risk in Communities Study (ARIC), two serum long-chain dicarboxylic acids, tetradecanedioate and hexadecanedioate (hazard ratio [95% confidence interval (CI)] 1.11 [1.06–1.16] and 1.12 [1.07–1.17], respectively), were associated with incident ischemic stroke [5]. In contrast, a smaller study of 40 patients with acute ischemic stroke more broadly identified potential metabolic biomarkers spanning amino acid, fatty acid, phospholipid, and choline metabolism pathways [6]. In a separate study of 67 cerebral infarction patients, metabolites that comprise the folate one-carbon cycle, including folic acid, cysteine, S-adenosyl homocysteine, and oxidized glutathione, were determined as potential stroke biomarkers using an ultra-high-performance liquid chromatography in tandem with time of flight mass spectrometer (UPLC–TOF MS)-based metabolomic approach [7]. These few studies collectively demonstrate the complexity of analyzing metabolic events associated with stroke and identification of reliable biomarkers.

In this current study, we conducted an integrative -omics analysis utilizing serum metabolites, DNA methylation, and genotype data from 50 African American participants from the Vitamin Intervention for Stroke Prevention (VISP) clinical trial. Like the aforementioned studies, metabolomics analyses of serum from stroke patients revealed additional metabolic biomarkers associated with recurrent stroke events. However, subsequent integration with genetics data has provided additional confidence in these event-metabolome associations and provides a foundation for future studies.

Methods
Ethics statement
The VISP clinical trial study protocol was approved by the institutional review boards (IRBs) of Wake Forest University School of Medicine, the University of North Carolina at Chapel Hill School of Medicine, and individual recruitment sites. All VISP participants provided written,
informed consent and a subset of 2,100 participants agreed to be included in subsequent genetic studies. IRB approval from the University of Virginia and East Carolina University was obtained for the genetic, epigenetic, and metabolomic components.

The Vitamin Intervention for Stroke Prevention (VISP) trial

The Vitamin Intervention for Stroke Prevention (VISP) clinical trial was a multi-centered, double-blinded, randomized and controlled clinical trial designed to determine whether a combination pyridoxine (vitamin B6), cyanocobalamin (vitamin B12), and folic acid (vitamin B9) supplementation reduced recurrent cerebral infarction, myocardial infarction (MI), or fatal coronary heart disease [8]. Participants were enrolled within 120 days of suffering a non-disabling cerebral infarction, assigned a daily high-dose or low-dose B-vitamin formulation, and followed for two years. VISP inclusion/exclusion criteria are listed below.

Inclusion criteria included:

1. Participants aged 35 years or older with elevated baseline homocysteine levels at or above the 25th percentile;
2. Participant enrollment within 120 days of suffering a non-disabling cerebral infarction characterized by the sudden onset of a neurological deficit persisting at least 24 hours and observed on CT or MRI;
3. Geographical accessibility for follow-up;
4. Adequate means of transportation;
5. Compliance of 75% or greater with vitamin regimen in the run-in period and
6. Patient agreement to take study medication and avoid other vitamin supplements containing folic acid and B6

VISP exclusion criteria included:

1. Stroke due to any form of intracranial hemorrhage, dissection of a cervico-cephalic artery, veno-occlusive disease, drug abuse, or vasculitis;
2. CT or MRI of brain showing lesion other than ischemic infarction as cause;
3. Modified Rankin Stroke Scale (RSS) score of 4–5 at time of eligibility determination;
4. Presence of specific potential sources of cardiogenic emboli, such as atrial fibrillation within 30 days of stroke or history of prosthetic cardiac valve, intracardiac thrombus or neoplasm, or valvular vegetation;
5. Presence of major neurologic illness apart from stroke that would prevent proper evaluation of recurrent stroke;
6. Presence of cancer, pulmonary disease, or other illness which, in the opinion of the study physician, would limit the life expectancy of the patient to less than two years;
7. Severe congestive heart failure;
8. Renal insufficiency requiring dialysis;
9. Untreated pernicious anemia or untreated B12 deficiency;
10. Uncontrolled hypertension defined as systolic blood pressure >185 mm or diastolic >105 mm on two readings separated by five minutes at time of eligibility determination;
11. Conditions that prevent reliable participation in the study, such as refractory depression, severe cognitive impairment, alcoholism, or other substance abuse;

12. Use of medications, within the last 30 days, that affect homocysteine, such as methotrexate, tamoxifen, L-dopa, or phenytoin or bile acid sequestrants that can decrease folate levels

13. Woman of childbearing potential, defined as not having reached natural or surgical menopause or having had tubal ligation;

14. Participation in another trial in which active intervention is being received;

15. Participants on multivitamin supplements or single vitamins of B6 or folic acid were excluded unless they were willing to take the study supplements in place of the one(s) they usually took and/or

16. Any surgical procedure requiring a general anesthesia or hospital stay of three days or more, any type of invasive cardiac instrumentation, or an endarterectomy, stent placement, thrombectomy, or any other endovascular treatment of an abnormal carotid artery performed within 30 days prior to randomization or scheduled to be performed within 30 days after randomization [8].

In this study, global metabolite data were generated from serum samples of 50 AAs, enriched for recurrent stroke cases (N = 28). When possible, nonrecurrent controls were matched with recurrent stroke cases for age (within eight years), sex, number of cigarettes smoked per day (within 5 cigarettes), and disability measured by the modified Rankin Stroke Scale (RSS; within two points) (S1 and S2 Tables).

Stroke recurrence, vascular outcomes, and clinical trait definition

In this study, recurrent stroke was defined as an acute neurological ischemic event of at least 24 hours duration with focal signs and symptoms and without evidence of primary intracranial hemorrhage or alternate explanation. Additionally, one of the following was present: 1) a one-point increase in the NIH stroke scale (NIHSS) in a previously normal section or 2) a new or 3) extended abnormality seen on CT or MRI. Diagnoses were reviewed by a local neurologist, two endpoint reviewers, and on a case-by-case basis, a Stroke Endpoint Review Committee. Underlying cause of death was decided by a Death Review Committee composed of physicians independent of VISP. Decisions were based on information available from hospital records, death certificates, coroners’ reports, or physicians’ questionnaires. Ischemic stroke subtype information is not available [8, 9]. Composite vascular event was defined as fatal coronary heart disease, a nonfatal hospitalized myocardial infarction (MI), and resuscitation for cardiac collapse, coronary bypass surgery, coronary angioplasty, or VISP recurrent stroke. Fatal/disabling stroke, MI, or death (FDMD) was defined as an outcome variable which identified individuals who suffered a disabling recurrent stroke or MI during the clinical trial or those who died from any cause. All of these outcomes were expressed as dichotomous variables and days from trial randomization to vascular event were recorded as time to event.

The “recurrent stroke ever” variable indicated whether an individual had suffered a stroke in addition to the VISP enrollment stroke. The MI variable was indicative of an individual suffering a MI during the VISP clinical trial. Known stroke risk factors such as the number of cigarettes smoked per day, smoking status (at enrollment and ever), blood pressure (BP) measurements (systolic and diastolic), self-reported hypertension (HTN) status, diabetes status, the number of strokes prior to VISP, the treatment arm, age, sex, and body mass index
(BMI) were included in analyses. Additionally, four stroke severity/functional scales were included: Mini-Mental State (MMS) status scale, NIHSS, RSS, and Barthel Stroke Questionnaire Form (BAR).

Metabolomics

Global, untargeted metabolic profiling of 922 metabolites for the 50 AA VISP participants was performed by Metabolon, Inc (Durham, NC) using gas chromatography-mass spectrometry and liquid chromatographic-mass spectrometry protocols, as previously described [10]. Metabolite levels were measured using the fasting serum plasma samples from the baseline VISP visit.

Supernatants from a methanol extraction were used for analyses by two reverse phase (RP) ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) methods with positive ion mode electrospray ionization (ESI); (RP) UPLC-MS/MS with negative ion mode ESI; and hydrophilic interaction liquid chromatography/UPLC-MS/MS with negative ion mode ESI. All methods utilized a Waters ACQUITY UPLC system (Waters Corporation, Milford, MA) and a Thermo Scientific Q-Exactive high resolution/accurate MS interfaced with a heated ESI source and Orbitrap mass analyzer (ThermoFisher Scientific, Waltham, MA). Raw data was extracted, peak-identified and processed using Metabolon’s proprietary hardware and software. Compounds were identified by comparison to library entries of purified standards or recurrent unknown entities that contain the retention time/index, mass to charge ratio, and chromatographic data, including tandem MS spectral data, on all molecules present in the library (S1 Appendix). Metabolite peaks were quantified using area-under-the-curve, and a data normalization step was performed to correct variation resulting from instrument inter-day tuning differences, setting the medians equal to one. A log transformation was performed on the normalized data for subsequent analysis.

Instrument variability was determined by calculating the median relative standard deviation (RSD) for the internal standards that were added to each sample prior to injection into the mass spectrometers (median RSD = 3%). Overall process variability was determined by calculating the median RSD for all endogenous metabolites (median RSD = 9%). These values for instrument and process variability met Metabolon’s acceptance criteria.

DNA methylation

As previously described, Illumina Infinium HumanMethylation450K BeadChip microarrays (Illumina, Inc., San Diego, CA, United States) were used per the manufacturer’s protocol to determine the degree of methylation (β values) for 485,512 methylation loci [11]. Quality control and quantile normalization was performed, resulting in 473,864 autosomal methylation CpG loci [12–14].

Genetic association of selected variants

Previously, 2100 VISP participants were genotyped on the Illumina HumanOmni1-Quad_v1-0_B BeadChip (Illumina, Inc) [9, 15]. We selected 556 variants spanning ±10 kb of 24 genes associated with sphingolipid metabolism and the sphingomyelinase pathway (S3 Table). Individual level VISP genetic, metabolomics, and epigenetics data is considered sensitive controlled data and cannot be shared publicly, as specified by the IRBs of Wake Forest University School of Medicine, the University of North Carolina at Chapel Hill School of Medicine, and the University of Virginia School of Medicine, along with the NIH Data Access Committee. Controlled-access data can only be obtained if a user has been authorized by the appropriate Data Access Committee (DAC). The individual level Genomics and Randomized Trials
Network (GARNET) VISP data are available in the database of Genotypes and Phenotypes (dbGaP) (Accession: phs000343.v3.p1) and can be requested through the dbGaP Authorized Access System (https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page=login), the Cerebrovascular Disease Knowledge Portal (https://cd.hugeamp.org/), and the Coriell Institute for Medical Research (https://catalog.coriell.org/). The authors will also share the data on request.

Statistical analysis

Baseline characteristics of the study participants with and without recurrent stroke were compared using t-tests and chi-squared (χ^2) tests for continuous and categorical traits, respectively. Univariate Welch’s two sample t-tests were performed using all VISP participants (N = 50) and compared recurrent stroke, recurrent stroke ever, composite vascular event, and smoking statuses. VISP recurrent stroke analyses were stratified by sex, treatment arm, diabetes status (DM), and/or smoking status (S4 Table). A Bonferroni correction accounting for the number of metabolites tested was applied to determine the significance threshold of $p \leq 5.42e-05$ (error rate of 0.05 divided by the total number of metabolites, or $= 0.05/922$). A suggestive threshold of $p \leq 4.42e-04 (= 0.05/113$ total number of metabolite sub-pathways) was also implemented. Statistical power was calculated as 0.786, assuming a large effect size (Cohen’s $d = 0.8$) using the “pwr” package in R [16, 17].

Matched pair analyses on a subset of 44 VISP participants (22 recurrent, 22 non-recurrent matched on age, sex, cigarettes smoked per day, and enrollment stroke severity) was conducted utilizing a matched-pair t-test. Statistical and suggestive significance was calculated as $p \leq 5.42e-05$ (Bonferroni adjustment described above) and $p \leq 2.27e-03 (= 0.05/22$ matched pairs), respectively. Statistical power of 0.8 was reached using a two-sided test, an effect size of 0.626, alpha = 0.05, and n = 22 matched pairs [16, 17].

Cox proportional hazards (PHs) regression models were used to identify metabolites associated with time to event for VISP recurrent stroke or composite vascular event and adjusted for age, sex, and current smoking. Sensitivity models were formed adjusting for treatment and diabetes status. Conditional PH models adjusting for matched pairs was performed on the 22 pairs. Statistical and suggestive significance was determined as $p \leq 5.42e-05$ and $p \leq 4.42e-04$, respectively (see above for threshold determination) [18].

A one-way analysis of variance (ANOVA) categorizing the genotypes (homozygous-dominant, heterozygous, homozygous-recessive) of 556 variants was implemented on all 305 sphingolipid and fatty acid metabolite levels. A Tukey’s HSD post-hoc test was performed to determine differences among genotypes. Statistical and suggestive significance was determined at $p \leq 2.90e-09 (= 0.05/ (556 variants * 305 sphingolipid and fatty acid metabolites))$ and $p \leq 8.99e-05 (= 0.05/556$ variants), respectively.

Weighted Gene Co-expression Network Analysis (WGCNA) [19] was calculated for: 1) clusters of metabolites and clinical traits; 2) clusters of metabolites and DNA methylation as traits; 3) clusters of DNA methylation and metabolite measures as traits; and 4) clusters of DNA methylation and clinical traits. Statistical and suggestive significance was calculated as 1) $p \leq 2.26e-06 (= 0.05/(922 metabolites * 24 traits))$ and $p \leq 2.08e-03 (= 0.05/24$ traits), respectively; 2) $p \leq 1.14e-10 (= 0.05/(922 metabolites * 473864 loci))$ and $p \leq 1.06e-07 (= 0.05/473864 loci)$, respectively; 3) $p \leq 1.14e-10 (= 0.05/(922 metabolites * 473864 loci))$ and $p \leq 5.42e-05 (= 0.05/922$ metabolites), respectively; and 4) $p \leq 4.39e-09 (= 0.05/(473864 loci * 24 traits))$ and $p \leq 2.08e-03 (= 0.05/24$ traits), respectively.

In the metabolite cluster analyses, modules comprising the 922 metabolites were constructed using a soft-threshold power of 5. Pearson correlations between the first principal component (module eigenvalue) and trait (clinical or methylation beta values) were
performed. WGCNA on the methylation profiles were performed and correlations between these modules and the metabolite profiles or clinical traits used the same quality control steps above. These modules were calculated using the blockwise module function, a soft-threshold power of 14, and a maximum block size of 10,000. Parameters for the module construction for all analyses consisted of the signed topographical overlap matrix type, a signed-hybrid network model, and the minimum number of loci set to 30.

A multiple linear regression analysis adjusting for age, sex, batch effect, current smoking and estimated cellular proportions [20, 21] was performed to identify inferentially methylated CpG loci associated with metabolite measurements. Statistical and suggestive significance was determined at a threshold of $p \leq 1.14 \times 10^{-10} (= 0.05/473864 \text{ loci\ ''} \text{922 metabolites})$ and $p \leq 1.06 \times 10^{-07} (= 0.05/473856 \text{ CpG loci})$, respectively. Using the large effect size for regression ($f^2 = 0.35$) with alpha of 0.05, degrees of freedom in the numerator and denominator of 13 and 35, respectively, resulted in a power of 0.6232 [16, 17]. All analyses were performed in R, version 3.5 [22].

Results

Baseline demographics for VISP metabolomics subset

Baseline characteristics of VISP study participants with and without recurrent stroke were compared using χ^2 and t-tests for categorical and continuous variables, respectively, and are presented in Table 1. Of the 50 participants, 56% (N = 28) suffered a recurrent stroke during the 2-year follow-up. The average baseline age of participants suffering a VISP recurrent stroke was approximately 1.5 years older than those who did not have stroke recurrence at ages 65.07 (standard deviation, SD 11.59) versus 63.68 (9.76), respectively. Those individuals who experienced a recurrent event had worse enrollment stroke severity based on the Modified Rankin Stroke Scale. Only one non-recurrent participant had moderate disability described as a Rankin score of 3, while 11 (39%) of the individuals who experienced stroke recurrence during the trial had moderate disability after the enrollment stroke ($p < 0.001$).

Identification of metabolites associated with VISP stroke recurrence

Global, untargeted metabolic profiling of 922 metabolites was performed on each of the VISP participant serum samples. A series of statistical tests utilizing the metabolite profiles of VISP participants were performed, including a standard Welch’s t-test to account for unequal sample sizes and variances within the complete dataset, Cox proportional hazards regression analyses (Cox PH) to reveal associations between the survival time of VISP patients and metabolite detection, and one-sample t-tests for matched pair analyses. Collectively, these approaches identified seven significant and 25 suggestive metabolites associated with cardiovascular outcomes or associated clinical traits.

Welch’s t-test identified 16 metabolites with significant (N = 6) or suggestive (N = 10) associations (Table 2). Of these 16 metabolites, six were associated with recurrent stroke including N-delta-acetylornithine (male only VISP recurrence; $p = 1.97 \times 10^{-05}$), 5α-androstan-3β,17β-diol monosulfate (recurrent stroke ever; $p = 2.90 \times 04$), sphingomyelin (d17:1/24:1) (high-dose VISP recurrence; $p = 3.00 \times 04$) and ceramide phosphoethanolamine (d18:1/16:0) (high-dose VISP recurrence; $p = 3.10 \times 04$). Five significant and five suggestive associations were identified in comparisons of smoking status at trial enrollment. The tobacco and cigarette smoking metabolites cotinine ($p = 9.25 \times 13$), 2-naphthol sulfate ($p = 2.20 \times 09$), and methylnaphthyl sulfate ($p = 7.35 \times 09$), were the most significant associations observed.

In matched pair analyses, gamma-glutamylhistidine was identified as a metabolite with observed profile changes between recurrent stroke and non-recurrent participants (fold change, FC = 0.60, $p = 3.10 \times 04$) (S5 Table). While not reaching our a priori thresholds for
significance, 18 sphingolipid metabolites had p-values less than 0.05, including sphingomyelin (d18:1/20:1) (FC = 0.77, p = 3.50e-03), sphingomyelin (d18:2/21:0) (FC = 0.66, p = 4.21e-03), and tricosanoyl sphingomyelin (d18:1/23:0) (FC = 0.72, p = 7.16e-03) (S5 Table).

Cox PH survival analyses for the time to recurrent stroke identified tricosanoyl sphingomyelin (d18:1/23:0) (hazard ratio (HR): 0.002 [95% CI:0.000–0.036], p = 1.50e-05), as well as 11 suggestive associations; seven with time to recurrent stroke and four with composite vascular endpoint in the discovery model. Of the suggestively significant metabolites, 10 were associated with sphingomyelin metabolism. Threonate was independently associated with a composite vascular event (HR: 0.001 [0.001–0.135]; p = 4.00e-04) and not related to sphingolipid metabolism. Using global Schoenfeld residual tests, we did not observe any evidence of violation to the proportional hazards assumptions for any of the discovery models (p-values ranging from 0.26

Table 1. Baseline demographics for VISP metabolomics subset.	VISP Nonrecurrent Stroke	VISP Recurrent Stroke	P*
Age, years	63.68 (9.76)	65.07 (11.59)	0.654
Sex	0.828		
Males	11 (50.0%)	16 (57.1%)	
Females	11 (50.0%)	12 (42.9%)	
Treatment Arm	0.973		
High-dose	10 (45.5%)	14 (50.0%)	
Low-dose	12 (54.5%)	14 (50.0%)	
Current Smoker	4 (18.2%)	7 (25.0%)	0.815
Smoker Ever	11 (50.0%)	18 (64.3%)	0.467
Cigarettes per day	1.50 (3.67)	2.39 (5.55)	0.519
Recurrent stroke ever	10 (45.5%)	28 (100%)	<0.001
HTN	20 (90.9%)	24 (85.7%)	0.902
DM	12 (54.5%)	8 (28.6%)	0.116
PNS	0.600		
0	12 (54.5%)	11 (40.7%)	
1	8 (36.4%)	9 (33.3%)	
2	1 (4.5%)	4 (14.8%)	
3	1 (4.5%)	2 (7.4%)	
4	0 (0.0%)	1 (3.7%)	
Baseline BMI, kg/m^2	29.70 (6.13)	28.92 (5.57)	0.639
Baseline SBP, mmHg	146.41 (22.63)	143.82 (19.98)	0.670
Baseline DBP, mmHg	81.64 (9.99)	79.57 (9.13)	0.450
RSS	<0.001		
0	0 (0.0%)	2 (7.1%)	
1	13 (59.1%)	15 (53.6%)	
2	8 (36.4%)	0 (0.00%)	
3	1 (4.5%)	11 (39.3%)	
Days to VISP Stroke	NA	256.25 (212.85)	NA
Days to Composite Endpoint	552.23 (217.99)	262.57 (210.46)	<0.001

*p-value calculated using t-tests and χ² for continuous and categorical traits, respectively.
Continuous traits described as mean (SD). Categorical traits described as N (%).

Abbreviations: HTN- hypertension; DM- baseline diabetes mellitus status; MI- myocardial infarction; PNS- previous number of strokes; SBP- systolic blood pressure; DBP- diastolic blood pressure; BMI- body mass index; RSS-modified Rankin Stroke Scale.

https://doi.org/10.1371/journal.pone.0247257.t001
to 0.537). Sensitivity models including the addition of treatment arm and diabetes status indicated consistent results for these 12 metabolites. A conditional Cox PH model adjusting for pair was performed and resulted in nominal significance for these metabolites (Table 3).

WGCNA analyses of metabolite clusters and clinical traits identified six minimal correlations for 45 VISP participants upon sample filtering ($p < 0.01$; Fig 1; Table 4). The strongest correlation observed was between a module comprising 77 lipid metabolites (green module) and BMI ($r = -0.44, p = 0.002$). The yellow module incorporated 81 metabolites, mostly involved in sphingolipid metabolism, and was associated with three stroke outcomes including days to composite vascular endpoint ($r = 0.40, p = 0.006$), days to VISP recurrent stroke ($r = 0.40, p = 0.007$), and VISP recurrent stroke status ($r = -0.36, p = 0.01$).

Integrative metabolomics-genomics

A one-way ANOVA was performed using the genotypes of 556 variants located within 10 kb upstream/downstream of 24 sphingolipid-metabolism-associated genes selected from the
Harmonizome database [23] and the profiles of 305 sphingolipid/fatty acid metabolites (S3 Table). These analyses identified 29 variant-metabolite associations between 16 unique metabolites and 23 variants, that exceeded a suggestive threshold of $p < 8.99 \times 10^{-5}$. Furthermore, Tukey’s post-hoc tests identified 54 differences among genotypes (Table 5). The most significant association identified was between leukotriene B4 and rs7025659 ($p = 6.12 \times 10^{-7}$; post-hoc comparison between TG-GG genotypes $p = 3.00 \times 10^{-7}$), an upstream variant of SPTLC1 (serine palmitoyltransferase long chain base subunit 1). Sphingosine and spinganine were nominally associated with five common variants and one distinct variant (rs10757056 (sphingosine only), rs10118089, rs7020745, rs10125228, rs10757058, rs10118371) in the region of ACER2 encoding alkaline ceramidase 2 (Table 5).

Integrative metabolomics-epigenomics

WGCNA analyses of methylation modules and 39 clinical traits identified 14 associations that met or exceed $p \leq 6.25 \times 10^{-6}$, of which nine were statistically significant ($p \leq 2.71 \times 10^{-9}$). The two most significant associations were with number of strokes prior to enrollment and the thistle4 module ($r = 0.91$; $p = 2.00 \times 10^{-18}$) and lightsteelblue1 module ($r = -0.89$; $p = 6.00 \times 10^{-17}$). Other

Table 3. Significant metabolite associations with time to event.

Phenotype	Metabolite	Discovery Model	Sensitivity Analyses						
		B	SE	HR (95% CI)	p^a	Global Schoenfeld Residual P	Model 2b p	Model 3c p	Model 4d p
VISP recurrent stroke	tricosanoyl sphingomyelin (d18:1/23:0)	-6.12	1.41	0.002 (0.000--0.035)	1.41E-05	0.537	1.55E-05	4.20E-05	5.97E-02
VISP recurrent stroke	sphingomyelin (d18:1/21:0)	-5.17	1.29	0.005 (0.000--0.071)	6.21E-05	0.390	6.75E-05	1.06E-04	3.46E-02
VISP recurrent stroke	behenoyl sphingomyelin (d18:1/22:0)	-5.40	1.36	0.005 (0.000--0.064)	6.92E-05	0.472	5.74E-05	1.70E-04	5.63E-02
Composite	tricosanoyl sphingomyelin (d18:1/23:0)	-5.32	1.35	0.005 (0.000--0.069)	8.15E-05	0.440	8.93E-05	1.37E-04	5.97E-02
Composite	sphingomyelin (d18:1/21:0)	-4.74	1.25	0.009 (0.001--0.099)	1.46E-04	0.260	1.52E-04	1.92E-04	3.46E-02
VISP recurrent stroke	sphingomyelin (d18:2/23:0)	-5.97	1.58	0.003 (0.000--0.057)	1.59E-04	0.429	1.49E-04	3.04E-04	2.75E-02
VISP recurrent stroke	sphingomyelin (d17:2/16:0)	-4.87	1.30	0.008 (0.001--0.098)	1.73E-04	0.350	1.73E-04	4.75E-04	2.24E-02
VISP recurrent stroke	sphingomyelin (d18:2/21:0)	-4.72	1.26	0.009 (0.001--0.105)	1.79E-04	0.440	1.55E-04	2.37E-04	1.97E-02
VISP recurrent stroke	lignoceroyl sphingomyelin (d18:1/24:0)	-4.51	1.22	0.011 (0.001--0.121)	2.25E-04	0.365	2.03E-04	5.72E-04	3.81E-02
VISP recurrent stroke	sphingomyelin (d18:1/20:0)	-5.76	1.57	0.003 (0.000--0.068)	2.43E-04	0.310	2.32E-04	3.94E-04	3.23E-02
Composite	behenoyl sphingomyelin (d18:1/22:0)	-4.66	1.29	0.009 (0.001--0.122)	3.15E-04	0.383	3.13E-04	4.85E-04	5.63E-02
Composite	threonate	-4.49	1.26	0.011 (0.001--0.133)	3.70E-04	0.390	3.77E-04	5.84E-04	3.86E-02

a Discovery model adjusts for age, sex, current smoking.

b Model 2 adjusts for discovery model plus treatment arm.

c Model 3 adjusts for model 2 plus diabetes mellitus status.

d Model 4 is a conditional Cox proportional hazards model that adjusts for pair.

Statistical significance threshold: $p \leq 5.42 \times 10^{-5}$; **suggestive threshold:** $p \leq 4.42 \times 10^{-4}$.

Abbreviations: B-beta coefficient; SE- standard error; HR- hazard ratio; CI- confidence interval; p- p-value.

https://doi.org/10.1371/journal.pone.0247257.t003

Harmonizome database [23] and the profiles of 305 sphingolipid/fatty acid metabolites (S3 Table). These analyses identified 29 variant-metabolite associations between 16 unique metabolites and 23 variants, that exceeded a suggestive threshold of $p \leq 8.99 \times 10^{-5}$. Furthermore, Tukey’s post-hoc tests identified 54 differences among genotypes (Table 5). The most significant association identified was between leukotriene B4 and rs7025659 ($p = 6.12 \times 10^{-7}$; post-hoc comparison between TG-GG genotypes $p = 3.00 \times 10^{-7}$), an upstream variant of SPTLC1 (serine palmitoyltransferase long chain base subunit 1). Sphingosine and spinganine were nominally associated with five common variants and one distinct variant (rs10757056 (sphingosine only), rs10118089, rs7020745, rs10125228, rs10757058, rs10118371) in the region of ACER2 encoding alkaline ceramidase 2 (Table 5).

Integrative metabolomics-epigenomics

WGCNA analyses of methylation modules and 39 clinical traits identified 14 associations that met or exceed $p \leq 6.25 \times 10^{-6}$, of which nine were statistically significant ($p \leq 2.71 \times 10^{-9}$). The two most significant associations were with number of strokes prior to enrollment and the thistle4 module ($r = 0.91$; $p = 2.00 \times 10^{-18}$) and lightsteelblue1 module ($r = -0.89$; $p = 6.00 \times 10^{-17}$). Other
associations were detected with clinical biomarkers including baseline plasma folate, pro-thrombin fragments F1 + 2, thrombin-antithrombin complex, thrombomodulin, and triglycerides (S6 Table).

WGCNA of methylation modules and metabolites identified 38 associations, of which 24 (22 significant and 2 suggestive) were between modules of methylation loci and pharmacological sub-pathways including analgesics/anesthetics (n = 7), cardiovascular (n = 6), gastrointestinal (n = 1), neurological (n = 2), psychoactive (n = 4), respiratory (n = 2), and topical agents (n = 2). Additional significant associations were found between the eicosanoid 5-hydroxyeicosatetraenoic acid and the brown4 (177 loci, r = -0.90, p = 2.00e-22) and lightpink3 modules (77 loci, r = 0.92, p = 3.00e-20), as well as threonylphenylalanine and the darkolivegreen (284 loci, r = -0.90, p = 5.00e-21) and the lightsteelblue1 (214 loci, r = 0.89, p = 8.00e-17) modules (S7 Table).

Fig 1. WGCNA for log transformed metabolite profiles of 45 AFR.

A.) Sample dendrogram and trait heatmap of metabolites and clinical traits/stroke outcomes.

B.) Module-trait heatmap of module eigenvalues and stroke outcomes.

https://doi.org/10.1371/journal.pone.0247257.g001
Network associations between metabolite modules and methylation loci as traits detected 64 suggestive associations ($p < 5.42 \times 10^{-5}$), with the strongest correlation observed between the green module (lysophospholipids and phosphatidylcholine synthesis) and cg18461635, a methylation locus in an intron of CCDC12 ($r = -0.65$, $p = 2.00 \times 10^{-6}$) (S8 Table).

For tests of epigenetic-metabolite associations, linear regression analyses identified 2,622 methylation loci that met or exceeded $p < 1.05 \times 10^{-7}$ (2-naphthol sulfate ($n = 245$), (2,4 or 2,5) dimethylphenol sulfate ($n = 2,023$), o-cresol-sulfate ($n = 192$), 2-ethylphenyl sulfate ($n = 130$), cotinine ($n = 31$), and hydroxycotinine ($n = 1$))(S9 Table).

Discussion

This study integrated metabolomics, epigenomics, and genomics data in analyses of recurrent stroke in AAs. The metabolites identified in the baseline smoking t-test analysis included those present in tobacco or cigarette smoke. Cotinine, an alkaloid found in tobacco leaves and the main metabolite of nicotine, [24] was the most significant metabolite in a series of group-means comparisons. Serum cotinine levels have been used as an indicator of second-hand smoke exposure where high second-hand smoke levels (serum cotinine >0.7 ng/mL) increased coronary heart disease risk up to 1.5-fold [25, 26]. In total, ten metabolites were detected in our smoking analyses. While these associations were significant, they were not surprising and serve as a proof-of-concept, validating the utility of metabolomics in the VISP study. Notable differences in the levels of N-delta-acetylornithine, sphingomyelin (d17:1/24:1), and ceramide phosphoethanolamine (d18:1/16:0) were observed in t-tests of stroke recurrence. N-delta-acetylornithine was previously associated with NAT8, a gene correlated with creatinine levels and chronic kidney disease in AA [27]. This is of interest since the risk of stroke is 5–30 times higher in patients with chronic kidney disease [28]. Identified in the matched pairs analysis, gamma-glutamylhistidine is a component of gamma-glutamyl amino acid metabolism. Previous studies suggested elevated gamma-glutamyl transferase is associated with increased risk of stroke, coronary heart disease, arterial HTN, and cardiovascular disease-related mortality [29].

Sphingolipid-related metabolites were implicated in Welch’s t-tests, survival analyses, matched-pairs analysis, and WGCNA, where we observed an increase in sphingomyelin levels to confer a level of neuroprotection or delayed event recurrence. Sphingolipids play a vital role in intracellular signal transduction and regulation of cellular proliferation, maturation, apoptosis, and cellular stress response, as well as being components of the cardiomyocyte cell membrane [30]. Inflammatory cytokines, such as TNF-α, may induce the synthesis of ceramides from sphingomyelins via sphingomyelinase [31]. While numerous studies report detrimental effects associated with increased ceramide levels, sphingosine-1-phosphate (S1P), has a

Table 4. Top WGCNA module-trait associations for metabolite profiles and stroke traits/outcomes.

Module	# of Metabolites/Module	Pathway*	Correlated Trait	r	P^*
green	77	Lipid metabolism (plasmalogens)	BMI	-0.44	0.002
brown	103	Amino acid metabolism (BCAA); Lipid metabolism (PC; PE)	DM	-0.43	0.003
yellow	81	Lipid metabolism (sphingomyelins)	Days to Composite Endpoint	0.40	0.006
black	38	Lipid metabolism (androgenic, progestin steroids)	Sex	-0.36	0.01
yellow	81	Lipid metabolism (sphingomyelins)	VISP Stroke	-0.36	0.01

* Statistical significance threshold $p \leq 2.26 \times 10^{-6}$; suggestive threshold: $p \leq 2.08 \times 10^{-3}$.

Abbreviations: BCAA - branched chain amino acids; PC - phosphatidylcholine; PE - phosphatidylethanolamine; BMI - body mass index, kg/m2; DM - diabetes mellitus status

https://doi.org/10.1371/journal.pone.0247257.t004
Table 5. Comparison between sphingolipid-associated variant genotype calls and mean metabolite level. Sorted by ANOVA P value.

Metabolite	Variant	Closest Gene	ANOVA P*	Genotype Comparison	Tukey HSD P
leukotriene B4	rs7025659	SPTLC1	6.12E-07	TG GG	3.00E-07
				TG TG	7.24E-04
5-HETE	rs11601088	SMPD1	2.15E-05	GG AG	2.15E-05
1-linoleoyl-GPE (18:2)	rs2898458	ASAH1	2.24E-05	GA AA	1.69E-04
				GG GA	4.72E-04
octadecadienedioate (C18:2-DC)	rs918957	CERS6-AS1	2.59E-05	CC CA	1.79E-05
				CC AA	1.24E-04
3-hydroxyoctanoate	rs7897345	ASAH2B	2.80E-05	CT CC	1.91E-05
				TT CC	8.11E-05
3-hydroxyoctanoate	rs13376734	ASAH2B	2.80E-05	TT CC	8.11E-05
				TT TC	1.91E-05
2-hydroxyglutarate	rs1124626	CERS4	3.12E-05	AG AA	5.13E-05
				GG AA	1.75E-05
2-hydroxyglutarate	rs11666971	CERS4	3.31E-05	GG AA	1.87E-05
				GG GA	5.81E-05
sphingosine	rs10757056	ACER2	3.41E-05	TT CC	4.14E-04
				TT TC	3.76E-05
sphingosine	rs10118089	ACER2	3.48E-05	AG AA	3.04E-05
				GG AA	3.67E-04
sphingosine	rs7020745	ACER2	3.48E-05	AC AA	3.04E-05
				CC AA	3.67E-04
1-palmitoyl-GPG (16:0)	rs135700	CERK	3.57E-05	TC CC	9.63E-05
				TT CC	3.76E-02
1-oleoyl-GPE (18:1)	rs2898458	ASAH1	3.63E-05	GA AA	2.71E-04
				GG GA	6.25E-04
sphinganine	rs10118089	ACER2	5.07E-05	AG AA	3.32E-05
				GG AA	2.25E-04
sphinganine	rs7020745	ACER2	5.07E-05	AC AA	3.32E-05
				CC AA	2.25E-04
(S)-3-hydroxybutyrylcarmitine	rs12358176	SGMS1	5.11E-05	AG AA	1.33E-04
				GG AA	3.74E-05
malonate	rs12355439	SGMS1	5.57E-05	CT CC	5.47E-05
				TT CC	3.27E-05
malonate	rs11595661	SGMS1	5.57E-05	GG AA	3.27E-05
				GG GA	5.47E-05
palmitoyl-oleoyl-glycerol (16:0/18:1)	rs1466447	CERS4	5.72E-05	TT CT	3.40E-05
sphingosine	rs10125228	ACER2	6.06E-05	AG AA	5.04E-05
				GG AA	4.46E-04
sphinganine	rs10125228	ACER2	6.41E-05	AG AA	4.39E-05
				GG AA	2.78E-04
sphingosine	rs10757058	ACER2	6.96E-05	CT CC	4.90E-05
				TT CC	4.24E-04
sphingosine	rs10118371	ACER2	6.96E-05	TT CC	4.24E-04
				TT TC	4.90E-05
sphinganine	rs10757058	ACER2	7.62E-05	CT CC	4.66E-05
				TT CC	2.68E-04

(Continued)
neuroprotective function during ischemia [32]. This is presumably due to S1P regulating pro-
survival mechanisms through the suppression of pro-apoptotic factors including caspase 3 and
the activation of protein kinase B or Akt [32]. Furthermore, increased ceramide levels have
been reported in patients with HTN, with ceramide concentrations positively correlated with
HTN severity [33]. Further investigation on the homeostatic balance between sphingomyelins
and ceramides are needed to validate biological markers of stroke recurrence and stroke-
related comorbidities such as HTN.

Examining variants within sphingolipid metabolism enzymes identified 23 unique variants
that were associated with metabolites within sphingolipid and fatty acid metabolism. In the
present study, rs7025659 was associated with leukotriene B4, a pro-inflammatory lipid media-
tor derived from arachidonic acid [34]. Leukotriene B4 levels are associated with poorer func-
tional recovery in ischemic stroke patients. A 2020 study reported that higher leukotriene B4
levels on days 0 and 7 post-ischemic stroke are associated with poorer functional recovery
based on RSS [34]. Five genetic variants within ACER2 were associated with plasma sphinga-
nine and sphingosine levels, while an additional ACER2 variant (rs10757056) was associated
with sphingosine levels. ACER2 encodes alkaline ceramidase 2, which hydrolyzes ceramides to
generate sphingosine and sphingosine-1-phosphate [35]. ACER2 expression is in-part regu-
lated by the hypoxia-inducible factor 2α, an atherosclerosis suppressor and known ischemic
stroke marker [36, 37]. Additionally, four variants within SGMS1, rs10763500, rs11595661,
rs12355439, and rs12358176, were implicated in the ANOVA. SGMS1 encodes the sphingo-
myelin synthase 1 protein, which is a transmembrane protein highly expressed in the brain
[38] and functions by metabolizing ceramide into sphingomyelin [39]. While these results are
promising, further studies with increased sample sizes are needed to determine the biological
implications of these variants in regard to metabolism and stroke recurrence.

Integrative analyses consisting of methylation, metabolite profiles, and covariates have rein-
forced our univariate results implicating tobacco and smoking related metabolites. This find-
ing could strengthen the paradigm that secondhand smoke influences stroke and stroke
recurrence [40]. Network analyses identified clusters of DNA methylation loci that were corre-
lated with concentrations of prescribed analgesics, cardiovascular, neurological, and psychoac-
tive drugs. These associations are to be expected in a population with individuals having
suffered prior strokes and cardiovascular events, as these drugs are commonly prescribed to
post-stroke patients. It is possible these drug associations could be useful for identifying

Table 5. (Continued)

Metabolite	Variant	Closest Gene	ANOVA P*	Genotype Comparison	Tukey HSD P
sphinganine	rs10118371	ACER2	7.62E-05	TT CC	2.68E-04
				TT TC	4.66E-05
1-oleoyl-2-arachidonoyl-GP (18:1/20:4)	rs773280	SPTLC1	7.67E-05	TG GG	7.67E-05
laurate (12:0)	rs10763500	SGMS1	7.68E-05	TT CC	6.01E-05
				CT CC	2.39E-04
leukotriene B4	rs6721420	CERS6	7.81E-05	TT CT	7.81E-05
ceramide phosphoethanolamine (d18:1/16:0)	rs1047123	CERK	8.63E-05	GC CC	8.09E-05
				GG GC	3.31E-02

* Statistical significance threshold: p≤2.90e-07; suggestive significance threshold: p≤8.99e-05.

Abbreviations: HSD- Honestly Significant Difference; ACER2- Alkaline Ceramidase 2; ASAH1- N-Acylsphingoine Amidohydrolase 1; ASAH2B- N-Acylsphingoine Amidohydrolase 2B; CERK- Ceramide Kinase; CERS4- Ceramide Synthase 4; CERS6- Ceramide Synthase 6; CERS6-AS1- CERS6 Antisense RNA 1; SGMS1- Sphingomyelin Synthase 1; SMPD1- Sphingomyelin Phosphodiesterase 1; SPTLC1- Serine Palmitoyltransferase Long Chain Base Subunit 1.

https://doi.org/10.1371/journal.pone.0247257.t005
individuals who are poor drug metabolizers or indicative of the efficacy and/or potency of particular therapeutics.

This study was performed in a subset of AA VISP clinical trial participants, a population more likely to experience a recurrent stroke than their white counterparts. Furthermore, risk factors for stroke, specifically HTN, diabetes mellitus, and chronic kidney disease, are more prevalent in this population. The recurrent stroke phenotype overall is understudied and its etiology is not well understood; therefore, the multi-omic analyses on this complex disease is a strength of this study. DNA used in the methylation analyses was extracted from whole blood samples upon enrollment in the trial. Although not optimal due to cellular heterogeneity, whole blood provides a valuable resource that is available for replication studies. Adjusting for this limitation, cellular proportions were calculated in silico, and used as covariates in the association models.

This study has a modest sample size of 50 individuals and thus our statistical power was limited and analyses could only confidently detect large effect associations. This was a primary drawback in addition to the lack of validation. Studies of AA with global metabolite, methylation, and genetic data, as well as adjudicated recurrent stroke outcomes are rare, further limiting our ability to include a replication cohort. Although stroke subtype is not adjudicated in VISP, these stroke cases most likely represent small vessel variety due to the inclusion/exclusion criteria and higher proportion of small vessel (lacunar) ischemic stroke typically overserved in AA [41].

While the design of matched pairs is an optimal approach, in our analyses larger sample sizes could improve the detection of associations of small and/or medium effect size. Multiple blood samples per individual would allow for more comprehensive matched-pairs analyses, while matching based on similar pharmacological profiles and time of blood draw would be ideal as the consumption of pharmaceutical drugs, time of day, and time of year (i.e. season), all influence metabolite levels. We also cannot conclusively state that the metabolite levels were not altered by time post-stroke since the metabolites were collected within 120 days of stroke onset. Potentially acute metabolite profiles could differ from sub-acute or chronic stroke metabolite profiles. Additionally, samples should be matched closer to age, as our paired individuals were within eight years of age.

In conclusion, even with a limited sample size, findings from this study provide insight into associations between metabolites, DNA methylation, genetic variants and recurrent stroke, thus identifying potential plasma biomarkers in AA. Further studies are needed to highlight the pathways underlying these associations in regard to their biological and clinical applications.

Supporting information

S1 Appendix.
(XLSX)

S1 Table. Baseline demographics of matched pairs.
(DOCX)

S2 Table. Demographics by pair.
(DOCX)

S3 Table. Sphingolipid related genes used in SNP-based tests. Gene region based on hg19.
(DOCX)

S4 Table. Summary of Welch’s t-test comparisons.
(DOCX)
S5 Table. One-sample t-test of the fold change from 22 matched pairs. (DOCX)

S6 Table. WGCNA module-trait associations for methylation profiles and stroke traits/outcomes. (DOCX)

S7 Table. Significant WGCNA module (DNA methylation)-trait (metabolite) associations. (DOCX)

S8 Table. WGCNA module (metabolite)-trait (DNA methylation loci) associations. (DOCX)

S9 Table. Summary of significant metabolites-methylation associations using fully adjusted regression models. (DOCX)

Acknowledgments
The authors would like to thank the individuals who participated in the VISP studies. We would additionally like to thank Gregory R. Wagner, PhD and Metabolon for generation of the metabolite data. Michele M. Sale passed away before the submission of the final version of this manuscript. The corresponding author (KLK) accepts responsibility for the integrity and validity of the data collected and analyzed.

Author Contributions
Conceptualization: Michèle M. Sale, Bradford B. Worrall, Keith L. Keene.
Data curation: Nicole M. Davis Armstrong, Wei-Min Chen, Fang-Chi Hsu, Michael S. Brewer, Keith L. Keene.
Formal analysis: Nicole M. Davis Armstrong, Kelsey J. Spragley, Wei-Min Chen, Fang-Chi Hsu, Michael S. Brewer.
Funding acquisition: Michèle M. Sale, Bradford B. Worrall, Keith L. Keene.
Methodology: Nicole M. Davis Armstrong, Wei-Min Chen, Fang-Chi Hsu, Michael S. Brewer, Patrick J. Horn, Stephen R. Williams, Michèle M. Sale, Bradford B. Worrall, Keith L. Keene.
Supervision: Keith L. Keene.
Visualization: Nicole M. Davis Armstrong, Kelsey J. Spragley, Wei-Min Chen, Fang-Chi Hsu, Michael S. Brewer, Patrick J. Horn, Stephen R. Williams.
Writing – original draft: Nicole M. Davis Armstrong, Kelsey J. Spragley.
Writing – review & editing: Wei-Min Chen, Fang-Chi Hsu, Michael S. Brewer, Patrick J. Horn, Stephen R. Williams, Bradford B. Worrall, Keith L. Keene.

References
1. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, et al. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation. 2020; 141(9):e139–e596. https://doi.org/10.1161/CIR.0000000000000757 PMID: 31992061
2. Owolabi M, Sarfo F, Howard VJ, Irvin MR, Gebregziabher M, Akinyemi R, et al. Stroke in Indigenous Africans, African Americans, and European Americans: Interplay of Racial and Geographic Factors. Stroke. 2017; 48(5):1169–75. https://doi.org/10.1161/STROKEAHA.116.015937 PMID: 28389611
3. Howard G, Labarthe DR, Hu J, Yoon S, Howard VJ. Regional differences in African Americans’ high risk for stroke: the remarkable burden of stroke for Southern African Americans. Ann Epidemiol. 2007;17(9):689–96. https://doi.org/10.1016/j.annepidem.2007.03.019 PMID: 17719482

4. Sonderer J, Katan Kahles M. Aetiological blood biomarkers of ischaemic stroke. Swiss Med Wkly. 2015;145:w14138. https://doi.org/10.4414/smw.2015.14138 PMID: 26024210

5. Sun D, Tiedt S, Yu B, Jian X, Gottesman RF, Mosley TH, et al. A prospective study of serum metabolites and risk of ischemic stroke. Neurology. 2019; 92(16):e1890–e8. https://doi.org/10.1212/WNL.0000000000007279 PMID: 30867269

6. Liu P, Li R, Antonov AA, Wang L, Li W, Hua Y, et al. Discovery of Metabolite Biomarkers for Acute Ischemic Stroke Progression. J Proteome Res. 2017;16(2):e1890–e8. https://doi.org/10.1021/acs.jproteome.6b00779 PMID: 28092160

7. Jiang Z, Sun J, Liang Q, Cai Y, Li S, Huang Y, et al. A metabolomic approach applied to predict patients with cerebral infarction. Talanta. 2011; 84(2):298–304. https://doi.org/10.1016/j.talanta.2011.01.015 PMID: 21376948

8. Toole JF. Vitamin intervention for stroke prevention. J Neurol Sci. 2002; 203–204:121–4. https://doi.org/10.1016/s0022-510x(02)00265-4 PMID: 12417369

9. Williams SR, Yang Q, Chen F, Liu X, Keene KL, Jacques P, et al. Genome-wide meta-analysis of homocysteine and methionine metabolism identifies five one carbon metabolism loci and a novel association of ALDH1L1 with ischemic stroke. PLoS Genet. 2014; 10(3):e1004214. https://doi.org/10.1371/journal.pgen.1004214 PMID: 24651765

10. Evans AM, DeHaven CD, Barrett T, Mitchell M, Milgram E. Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal Chem. 2009; 81(16):6656–67. https://doi.org/10.1021/ac901536h PMID: 19624122

11. Davis Armstrong NM, Chen WM, Brewer MS, Williams SR, Sale MM, Worrall BB, et al. Epigenome-Wide Analyses Identify Two Novel Associations With Recurrent Stroke in the Vitamin Intervention for Stroke Prevention Clinical Trial. Front Genet. 2018; 9:358. https://doi.org/10.3389/fgene.2018.00358 PMID: 30237808

12. Pidsley R, CC YW, Volta M, Lunnon K, Mill J, Schalkwyk LC. A data-driven approach to preprocessing Illumina 450K methylation array data. BMC Genomics. 2013; 14:293. https://doi.org/10.1186/1471-2164-14-293 PMID: 23631413

13. Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014; 30(10):1363–9. https://doi.org/10.1093/bioinformatics/btu049 PMID: 24478339

14. Touleimat N, Tost J. Complete pipeline for Infinium((R)) Human Methylation 450K BeadChip data processing using subset quantile normalization for accurate DNA methylation estimation. Epigenomics. 2012; 4(3):325–41. https://doi.org/10.2217/epi.12.21 PMID: 22690668

15. Keene KL, Chen WM, Chen F, Williams SR, Elkhatab SD, Hsu FC, et al. Genetic Associations with Plasma B12, B6, and Folate Levels in an Ischemic Stroke Population from the Vitamin Intervention for Stroke Prevention (VISP) Trial. Front Public Health. 2014; 2:112. https://doi.org/10.3389/fpubh.2014.00112 PMID: 25147783

16. Champlsey S. pwr: Basic Functions for Power Analysis. R package version 1.3–0. 2020.

17. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale, N.J.: L. Erlbaum Associates; 1988. xxi, 567 p. p.

18. Therneau T. A package for Survival Analysis in R. R package version 3.2–3. 2020.

19. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008; 9:559. https://doi.org/10.1186/1471-2105-9-559 PMID: 19114008

20. Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlen SE, Greco D, et al. Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS One. 2012; 7(7):e41361. https://doi.org/10.1371/journal.pone.0041361 PMID: 22848472

21. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsil CJ, Nelson HH, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics. 2012; 13:86. https://doi.org/10.1186/1471-2105-13-86 PMID: 22568884

22. Team RDC. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2019.

23. Rouillard AD, Gundersen GW, Fernandez NF, Wang Z, Monteiro CD, McDermott MG, et al. The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database (Oxford). 2016;2016. https://doi.org/10.1093/database/baw100 PMID: 27374120
24. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 2019; 47(D1):D1102–D9. https://doi.org/10.1093/nar/gky1033 PMID: 30371825

25. Jeffersis BJ, Lawlor DA, Ebrahim S, Wannamethee SG, Feyerabend C, Doig M, et al. Cotinine-assessed second-hand smoke exposure and risk of cardiovascular disease in older adults. Heart. 2010; 96(11):854–9. https://doi.org/10.1136/hrt.2009.191148 PMID: 20478684

26. Whincup PH, Gilg JA, Emberson JR, Jarvis MJ, Feyerabend C, Bryant A, et al. Passive smoking and risk of coronary heart disease and stroke: prospective study with cotinine measurement. BMJ. 2004; 329(7459):200–5. https://doi.org/10.1136/bmj.38146.427188.55 PMID: 15229131

27. Yu B, Zheng Y, Alexander D, Morrison AC, Corsh J, Boerwinkle E. Genetic determinants influencing human serum metabolome among African Americans. PLoS Genet. 2014; 10(3):e1004212. https://doi.org/10.1371/journal.pgen.1004212 PMID: 24625756

28. Nayak-Rao S, Shenoy MP. Stroke in Patients with Chronic Kidney Disease. . .: How do we Approach and Manage it? Indian J Nephrol. 2017; 27(3):167–71. https://doi.org/10.4103/0971-4065.202405 PMID: 26553032

29. Ndrepepa G, Kastrati A. Gamma-glutamyl transferase and cardiovascular disease. Ann Transl Med. 2016; 4(24):481. https://doi.org/10.21037/atm.2016.12.27 PMID: 28149843

30. Sun N, Keep RF, Hua Y, Xi G. Critical Role of the Sphingolipid Pathway in Stroke: a Review of Current Utility and Potential Therapeutic Targets. Stroke. 2016; 47(5):420–38. https://doi.org/10.1161/STROKEAHA.116.014405 PMID: 27339463

31. Borodzicz S, Czarzasta K, Kuch M, Cudnoch-Jedrzejewska A. Sphingolipids in cardiovascular diseases and metabolic disorders. Lipids Health Dis. 2015; 14:55. https://doi.org/10.1186/s12944-015-0053-y PMID: 26076974

32. Hasegawa Y, Suzuki H, Sozen T, Rolland W, Zhang JH. Activation of sphingosine 1-phosphate receptor-1 by FTY720 is neuroprotective after ischemic stroke in rats. Stroke. 2010; 41(2):368–74. https://doi.org/10.1161/STROKEAHA.109.568899 PMID: 19940275

33. Spijkers LJ, van den Akker RF, Janssen BJ, Debets JJ, De Mey JG, Stroes ES, et al. Hypertension is associated with marked alterations in sphingolipid biology: a potential role for ceramide. PLoS One. 2011; 6(7):e21817. https://doi.org/10.1371/journal.pone.0021817 PMID: 21812627

34. Chan SJ, Ng MPE, Zhao H, Ng GJL, De Foo C, Wong PT, et al. Early and Sustained Increases in Leukotriene B4 Levels Are Associated with Poor Clinical Outcome in Ischemic Stroke Patients. Neurotherapeutics. 2020; 17(1):282–93. https://doi.org/10.1007/s13311-019-00787-4 PMID: 31520306

35. Xu R, Jin J, Hu W, Sun W, Bielawski J, Szulc Z, et al. Golgi alkaline ceramidase regulates cell proliferation and survival by controlling levels of sphingosine and S1P. FASEB J. 2006; 20(11):1813–25. https://doi.org/10.1096/fj.05-5689com PMID: 16940153

36. Zhang X, Zhang Y, Wang P, Zhang SY, Dong Y, Zeng G, et al. Adipocyte Hypoxia-Inducible Factor 2alpha Suppresses Atherosclerosis by Promoting Adipose Ceramide Catabolism. Cell Metab. 2019; 30(5):937–51 e5. https://doi.org/10.1016/j.cmet.2019.09.016 PMID: 31668872

37. Du X, Yang J, Liu C, Wang S, Zhang C, Zhao H, et al. Hypoxia-Inducible Factor 1alpha and 2alpha Have Beneficial Effects in Remote Ischemic Preconditioning Against Stroke by Modulating Inflammatory Responses in Aged Rats. Front Aging Neurosci. 2020; 12:54. https://doi.org/10.3389/fnagi.2020.00054 PMID: 32210788

38. Centers for Disease Control and Prevention, National Center for Health Statistics. Multiple causes of death, 1999–2015. [Internet]. [cited April 1, 2019]. Available from: https://wonder.cdc.gov/ucd-icd10.html

39. Yamaoka S, Miyaji M, Kitano T, Umehara H, Okazaki T, Kinosita T. Expression cloning of a human cDNA restoring sphingomyelin synthesis and cell growth in sphingomyelin synthase-defective lymphoid cells. J Biol Chem. 2004; 279(18):18688–93. https://doi.org/10.1074/jbc.M401205200 PMID: 14976195

40. Lin MP, Ovbiagile B, Markovic D, Towfighi A. Association of Secondhand Smoke With Stroke Outcomes. Stroke. 2016; 47(11):2828–35. https://doi.org/10.1161/STROKEAHA.116.014099 PMID: 27729574

41. Gardener H, Sacco RL, Rundek T, Battistella V, Cheung YK, Elkind MSV. Race and Ethnic Disparities in Stroke Incidence in the Northern Manhattan Study. Stroke. 2020; 51(4):1064–9. https://doi.org/10.1161/STROKEAHA.119.028806 PMID: 32078475