Anticonvulsive and Antioxidant Effects of Pioglitazone on Pentylenetetrazole-induced Seizures in Rats

Yasaman Ghiasi1, Saba Rostamian1, Ehsan Aali2, *Yazdan Naderi2

1. Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran.
2. Department of Pharmacology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.

Background: Epilepsy is a neurologic dysfunction caused by abnormal electrical activity in the brain. Oxidative stress is involved in the seizure-induced brain damage.

Objective: This study aimed to evaluate the anticonvulsant and antioxidant effects of pioglitazone (a peroxisome proliferator-activated receptor gamma agonist used for treatment of type 2 diabetes) on Pentylenetetrazole (PTZ)-induced seizure in rats.

Method: In this experimental study, 28 rats weighing 20-30 g were divided into four groups of control, pioglitazone, PTZ, and treatment. For treatment, PTZ (85 mg/kg) or normal saline was injected intraperitoneally and 4 hours later, pioglitazone (80 mg/kg) was administrated orally. Carboxymethylcellulose was administered orally in the control and PTZ groups, instead of pioglitazone. One hour after PTZ injection, seizure severity was assessed using Racine scale. Then, the rats were decapitated and the Malondialdehyde (MDA) level and the activity of Catalase (CAT) and Superoxide Dismutase (SOD) in their hippocampus samples were measured by standard methods.

Findings: Pioglitazone administration significantly increased the latency to the onset of seizure stages 1-4 and prevented the stage 5. It significantly reduced the lipid peroxidation caused by PTZ-induced seizure and increased the activity of CAT and SOD enzymes in the hippocampus of rats.

Conclusion: Antioxidant effects of pioglitazone may play a role in preventing stable PTZ-induced seizures and protecting neurons from seizure-caused damage.

Extended Abstract

1. Introduction

Epilepsy is a chronic neurological disorder in the brain characterized by recurrent seizures [1]. The severity of these attacks varies from mild episodes involving involuntary movements of a part of the body, to general seizures involving all parts of the body [1, 2]. In developed countries, the prevalence of the disease is 40-70 per 100,000 people, while in developing countries the rate is 100-190 per 100,000 people [3]. More than 60% of people with epilepsy need treatment with anticonvulsant drugs [4]. Various studies have shown that seizures cause neuronal damage and complications through the production of free radicals and oxidative stress [10, 11]. Therefore, treatment with antioxidant drugs may reduce seizure damage in the brain [12]. One of the models of seizures in rodents is the...
administration of high dose of Pentylentetrazole (PTZ) [13]. PTZ damages GABAergic interneurons in the hippocampus by causing oxidative stress, resulting in the induction of stable seizures [14]. Pioglitazone is a PPAR-γ nuclear receptor agonist used for treatment of type 2 diabetes [15]. Various studies have shown that pioglitazone has antioxidant effects [16]. Due to the role of oxidative stress in neuronal damage caused by seizures, in this study we aims to investigate the antioxidant and anticonvulsant effects of pioglitazone in a rat model of seizure induced by PTZ.

2. Materials and Methods

In this study, 28 adult male rats were divided into 4 groups of 7: control, pioglitazone, PTZ, and treatment. For treatment, pioglitazone (80 mg/kg) was administered orally and, 4 hours later, normal saline or PTZ (85 mg/kg) was injected intraperitoneally. Carboxymethylcellulose (0.5%) was used instead of pioglitazone in control and PTZ groups. Within one hour after PTZ injection, the latency time to the onset of different stages of seizures (according to Racine’s criteria) was measured. Racine stages include: Stage 0=no seizures, stage 1= mouth and facial movement, stage 2= rhythmic head nodding, stage 3= forelimb clonus, stage 4= rearing with forelimb clonus, and stage 5= rearing and falling with forelimb clonus. Rats were then anesthetized and their brains were extracted. Next, the Malondialdehyde (MDA) level and the activity of catalase and superoxide dismutase enzymes in hippocampal samples were measured. Results were expressed based on Mean±SEM. Student t-test was used to compare the latency time to the onset of different stages of seizures. In order to investigate the difference between the mean MDA and the activity of antioxidant enzymes in the study groups, Tukeys’ post hoc test and one-way ANOVA were used, considering P<0.05 as the significance level.

3. Results

The results showed that oral administration of 80 mg/kg pioglitazone or its vehicle (control group) did not induce seizures in rats; however, oral administration of 80 mg/kg pioglitazone 4 hours before intraperitoneal administration of 85 mg/kg PTZ increased the latency time to the onset of seizures stages 1 to 4 of and prevented the stage 5 (Table 1). Measurement of MDA level in hippocampal samples showed that PTZ-induced seizures significantly increased lipid peroxidation in the hippocampus of rats (P<0.001). Moreover, oral administration of 80 mg/kg pioglitazone 4 hours before 85 mg/kg PTZ administration significantly reduced MDA in hippocampus samples (P<0.05). PTZ-induced seizures significantly reduced the activity of catalase and superoxide dismutase in the hippocampus samples compared to the control group (P<0.001). However, oral administration of pioglitazone 4 hours before intraperitoneal administration of PTZ significantly increased the activity of superoxide dismutase and catalase enzymes (P<0.05).

4. Conclusion

Pioglitazone administration increases the PTZ-induced seizure threshold and reduces the PTZ-induced oxidative stress in the hippocampus of rats. Therefore, pioglitazone may have antioxidant effects against PTZ-induced seizures.

Ethical Considerations

Compliance with ethical guidelines

This study was approved by the Research Ethics Committee of Qazvin University of Medical Sciences (Code: IR.QUMS.REC.1398.004).

Table 1. Effect of pioglitazone on the latency time (seconds) to the onset of different stages of PTZ-induced seizures

Group	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5
Control	-	-	-	-	-
Pioglitazone (80 mg/kg)	-	-	-	-	-
PTZ (85 mg/kg)	58.4±7	90.4±2.69	104.8±5	203.7±6.23	216.4±6.234
Treatment*	91.3±2.73**	111.4±8.24**	165.5±17*	269.27±8.88***	-

*PTZ (85 mg/kg) + Pioglitazone (80 mg/kg); *P<0.05; **P<0.01; ***P<0.001 compared to PTZ group.
Funding

This research received financial support from the Student Research Committee of Qazvin University of Medical Sciences.

Authors’ contributions

All authors equally contributed to preparing this article.

Conflicts of interest

The authors declared no conflict of interest.
اثرات ضد تشنج و آنتی اکسیدان پیوگلیتازون در برابر تشنج ناشی از پنتیلن تترازول در موش سوری

یاسمن قیاسی، صبا رستمیان، احسان عالی، یزدان نادری

1. کمیته تحقیقاتی ماهنامه علمی تخصصی کربوهیدرات، قزوین، ایران
2. گروه فارماکولوژی دانشکده پزشکی دانشگاه علوم پزشکی قزوین، قزوین، ایران

چکیده

شکاف بیماری‌های مغزی که با تشنج آغاز می‌شود، به طور خودگردان ادامه می‌یابد. تحقیقات گزارش می‌نماید که تشنج در نورون‌های مغز نقش داشته است. استررس اکسیداتیو در آسیب ناشی از تشنج در نورون‌های مغز نقش دارد. در این مطالعه ارزیابی اثبات ضد تشنج و آنتی اکسیدانتی پیوگلیتازون، یک داروی مورد استفاده در دیابت نوع 2 در برابر تشنج ناشی از پنتیلن تترازول در موش سوری مورد بررسی قرار گرفت.

۱. مقدمه

یک اختلال عصبی مزمن در مغز است که به صورت عضلانی موردنداشت هست که به سرطان فعالیت الکتریکی پاتولوژیک (EP) می‌گویند. بیماری سیستم العصبی، مغز و آلزایمر

2. قبل از لحاظ شناختی، تحلیل و اختلالات شناختی همراه است

- EpiLST (2020). بررسی درمان‌های جدید مزمن در فاصله عصبی مغز و آلزایمر

3. مطالعات مختلف نشان داده‌اند که استررس اکسیداتیو (آکسیداسیون) از مهم‌ترین عواملی است که تشنج را تولید می‌کند. این شناسایی و درمان تشنج را در برابر تشنج کاهش می‌دهد.

4. پیوگلیتازون (GLP-1) یک دارویی که در مطالعه‌های مختلف بر روی مدل‌های آنزیمی و نورون‌های ناشده در کشورهای توسعه‌یافته و در حال توسعه با داروهای ضد تشنج مخاطب است.

5. نتایج این مطالعه نشان‌دهنده‌ی کاهش آسیب‌های مغزی در نورون‌های مغز ناشی از آبگیری از تشنج از تشنج پایدار و درمان درمان تزریق از پنتیلن تترازول و میزان مالون دی آلدهید و فعالیت آنزیم کاتالاز و سوپراکسید دیسموتاز در نمونه‌های هیپوکامپ اندازه‌گیری شد.

نتیجه‌گیری

مقدمه

1. Seizure

2. Pathologic

3. Alzheimer

4. Epilepsy

موفقیت

3. EpiLST (2020). بررسی درمان‌های جدید مزمن در فاصله عصبی مغز و آلزایمر

مطالعات مختلف نشان داده‌اند که استررس اکسیداتیو (آکسیداسیون) از مهم‌ترین عواملی است که تشنج را تولید می‌کند. این شناسایی و درمان تشنج را در برابر تشنج کاهش می‌دهد.

پیوگلیتازون (GLP-1) یک دارویی که در مطالعه‌های مختلف بر روی مدل‌های آنزیمی و نورون‌های ناشده در کشورهای توسعه‌یافته و در حال توسعه با داروهای ضد تشنج مخاطب است.

نتایج این مطالعه نشان‌دهنده‌ی کاهش آسیب‌های مغزی در نورون‌های مغز ناشی از آبگیری از تشنج از تشنج پایدار و درمان درمان تزریق از پنتیلن تترازول و میزان مالون دی آلدهید و فعالیت آنزیم کاتالاز و سوپراکسید دیسموتاز در نمونه‌های هیپوکامپ اندازه‌گیری شد.

نتیجه‌گیری

مقدمه

1. Seizure

2. Pathologic

3. Alzheimer

4. Epilepsy

موفقیت

3. EpiLST (2020). بررسی درمان‌های جدید مزمن در فاصله عصبی مغز و آلزایمر

مطالعات مختلف نشان داده‌اند که استررس اکسیداتیو (آکسیداسیون) از مهم‌ترین عواملی است که تشنج را تولید می‌کند. این شناسایی و درمان تشنج را در برابر تشنج کاهش می‌دهد.

پیوگلیتازون (GLP-1) یک دارویی که در مطالعه‌های مختلف بر روی مدل‌های آنزیمی و نورون‌های ناشده در کشورهای توسعه‌یافته و در حال توسعه با داروهای ضد تشنج مخاطب است.

نتایج این مطالعه نشان‌دهنده‌ی کاهش آسیب‌های مغزی در نورون‌های مغز ناشی از آبگیری از تشنج از تشنج پایدار و درمان درمان تزریق از پنتیلن تترازول و میزان مالون دی آلدهید و فعالیت آنزیم کاتالاز و سوپراکسید دیسموتاز در نمونه‌های هیپوکامپ اندازه‌گیری شد.

نتیجه‌گیری

مقدمه

1. Seizure

2. Pathologic

3. Alzheimer

4. Epilepsy

موفقیت

3. EpiLST (2020). بررسی درمان‌های جدید مزمن در فاصله عصبی مغز و آلزایمر

مطالعات مختلف نشان داده‌اند که استررس اکسیداتیو (آکسیداسیون) از مهم‌ترین عواملی است که تشنج را تولید می‌کند. این شناسایی و درمان تشنج را در برابر تشنج کاهش می‌دهد.

پیوگلیتازون (GLP-1) یک دارویی که در مطالعه‌های مختلف بر روی مدل‌های آنزیمی و نورون‌های ناشده در کشورهای توسعه‌یافته و در حال توسعه با داروهای ضد تشنج مخاطب است.

نتایج این مطالعه نشان‌دهنده‌ی کاهش آسیب‌های مغزی در نورون‌های مغز ناشی از آبگیری از تشنج از تشنج پایدار و درمان درمان تزریق از پنتیلن تترازول و میزان مالون دی آلدهید و فعالیت آنزیم کاتالاز و سوپراکسید دیسموتاز در نمونه‌های هیپوکامپ اندازه‌گیری شد.

نتیجه‌گیری

مقدمه

1. Seizure
استرس اکسیداتیو می شود و به صورت خوراکی به موش ها داده می شود. Pentylenetetrazol (PTZ) به صورت داخل سطح ساژیتال شد و در مدت ۸۰ ثانیه (۸ میلی‌گرم بر کیلوگرم) به صورت داخل مغز مانند گروه پنتیلن تترازول (۲ میلی‌گرم بر کیلوگرم) به صورت سیستمیک اضافه شد. سپس با دور بیست هزار درجه سانتی‌گراد به شدت هم زده شدند و پس از رسیدن به دمای محیط در محلول پتاسیم کلرید قبل از انجام آزمایش نمونه های بیفت مغز از یخچال خارج شدند. درجه سانتی گراد نگهداری شدند. بلافاصله هیپوکامپ از بقیه قسمت‌های مغز جدا شد. نمونه‌ها در یخچال بافت و ریز کرده شدند و سپس

میلی‌گرم بر کیلو گرم به صورت خوراکی به موش‌ها داده می شود. Pentylenetetrazol (PTZ) به صورت داخل سطح ساژیتال شد و در مدت ۸۰ ثانیه (۸ میلی‌گرم بر کیلوگرم) به صورت داخل مغز مانند گروه پنتیلن تترازول (۲ میلی‌گرم بر کیلوگرم) به صورت سیستمیک اضافه شد. سپس با دور بیست هزار درجه سانتی‌گراد به شدت هم زده شدند و پس از رسیدن به دمای محیط در محلول پتاسیم کلرید قبل از انجام آزمایش نمونه‌ها در یخچال خارج شدند. درجه سانتی‌گراد نگهداری شدند. بلافاصله هیپوکامپ از بقیه قسمت‌های مغز جدا شد. نمونه‌ها در یخچال بافت و ریز کرده شدند و سپس

مواد و روش‌ها

در این مطالعه جوهر ۲۰ موش سوری را غلظت یا بلافاصله از همان اسید فسفریک معکس شد. میلی‌لیتر محلول اسید فسفریک به علت درجه نگهداری شدند. بلافاصله هیپوکامپ از بقیه قسمت‌های مغز جدا شدند. نمونه‌ها در یخچال بافت و ریز کرده شدند و سپس

مواد و روش‌ها

در این مطالعه جوهر ۲۰ موش سوری را غلظت یا بلافاصله از همان اسید فسفریک معکس شد. میلی‌لیتر محلول اسید فسفریک به علت درجه نگهداری شدند. بلافاصله هیپوکامپ از بقیه قسمت‌های مغز جدا شدند. نمونه‌ها در یخچال بافت و ریز کرده شدند و سپس

مواد و روش‌ها

در این مطالعه جوهر ۲۰ موش سوری را غلظت یا بلافاصله از همان اسید فسفریک معکس شد. میلی‌لیتر محلول اسید فسفریک به علت درجه نگهداری شدند. بلافاصله هیپوکامپ از بقیه قسمت‌های مغز جدا شدند. نمونه‌ها در یخچال بافت و ریز کرده شدند و سپس

مواد و روش‌ها

در این مطالعه جوهر ۲۰ موش سوری را غلظت یا بلافاصله از همان اسید فسفریک معکس شد. میلی‌لیتر محلول اسید فسفریک به علت درجه نگهداری شدند. بلافاصله هیپوکامپ از بقیه قسمت‌های مغز جدا شدند. نمونه‌ها در یخچال بافت و ریز کرده شدند و سپس

مواد و روش‌ها

در این مطالعه جوهر ۲۰ موش سوری را غلظت یا بلافاصله از همان اسید فسفریک معکس شد. میلی‌لیتر محلول اسید فسفریک به علت درجه نگهداری شدند. بلافاصله هیپوکامپ از بقیه قسمت‌های مغز جدا شدند. نمونه‌ها در یخچال بافت و ریز کرده شدند و سپس
پیامدهای انتخابی

تولید جدایی بین میکروکاسپیان نتیجه بررسی می‌شود که تعداد بیش از میزان مالن (Malondialdehyde) در نمونه‌های پریتوئن (34/7 ± 3/4 میلی‌گرم پروتئین) در نمونه‌های پریتوئن ندارد.

عوامل تشکیل ویجی در میزان پروتئین نمی‌شود. تجویز ویجی در فرآیندهای فازی گروه کنترل (100 میلی‌گرم پروتئین در 5 میلی‌گرمی با 0 میلی‌گرمی در 80 مولار تی‌استودنت (P<0/05) نتایج مورد استفاده قرار گرفته شد.

گروه درمانی: پریتوئن تزریق (80 میلی‌گرم پروتئین با 0 میلی‌گرمی در 80 مولار) چهار ساعت بعد از تجویز خوراکی پریتوئن (80 میلی‌گرم پروتئینی) تزریق گردید.

میزان انتخابات استخراج در میزان مالن (Malondialdehyde) در فازی گروه پریتوئن (34/7 ± 3/4 میلی‌گرم پروتئین) در نمونه‌های پریتوئن ندارد.

پژوهش‌ها

نتایج مطالعه نشان داد که تولید خوراکی پریتوئن (80 میلی‌گرم پروتئین با 0 میلی‌گرمی در 80 مولار) باعث افزایش خوراکی در میزان پروتئین نمی‌شود. تجویز خوراکی پریتوئن (80 میلی‌گرم پروتئین) در فازی گروه (5 میلی‌گرم پروتئین در 80 مولار) باعث افزایش خوراکی در میزان پروتئین نمی‌شود. تجویز خوراکی پریتوئن (80 میلی‌گرم پروتئین) در فازی گروه (5 میلی‌گرم پروتئین در 80 مولار) باعث افزایش خوراکی در میزان پروتئین نمی‌شود. تجویز خوراکی پریتوئن (80 میلی‌گرم پروتئین) در فازی گروه (5 میلی‌گرم پروتئین در 80 مولار) باعث افزایش خوراکی در میزان پروتئین نمی‌شود. تجویز خوراکی پریتوئن (80 میلی‌گرم پروتئین) در فازی گروه (5 میلی‌گرم پروتئین در 80 مولار) باعث افزایش خوراکی در میزان پروتئین نمی‌شود.

یافته‌ها

میزان خوراکی پریتوئن (80 میلی‌گرم پروتئین در 80 مولار) باعث افزایش میزان پروتئین نمی‌شود. تجویز خوراکی پریتوئن (80 میلی‌گرم پروتئین) باعث افزایش میزان پروتئین نمی‌شود. تجویز خوراکی پریتوئن (80 میلی‌گرم پروتئین) باعث افزایش میزان پروتئین نمی‌شود.

نتایج مطالعه نشان داد که تولید خوراکی پریتوئن (80 میلی‌گرم پروتئین با 0 میلی‌گرمی در 80 مولار) باعث افزایش خوراکی در میزان پروتئین نمی‌شود.

میزان خوراکی پریتوئن (80 میلی‌گرم پروتئین در 80 مولار) باعث افزایش میزان پروتئین نمی‌شود.

نتایج مطالعه نشان داد که تولید خوراکی پریتوئن (80 میلی‌گرم پروتئین با 0 میلی‌گرمی در 80 مولار) باعث افزایش میزان پروتئین نمی‌شود.
بحث و نتیجه‌گیری
نتایج مطالعه نشان داد که تجویز پیوگلیتازون در فاصله زمانی گروه پنتیلن تترازول آسیب به نورون ها در قسمت های مختلف سیستم عصبی مرکزی از جمله هیپوکامپ می‌شود. نتایج حاصل نشان داده که افزایش ناشی از پنتیلن تترازولPTZداخل صفاقی و سوپراکسید دیسموتاز P>0/01 (فعالیت آنزیم های کاتالاز) در هیپوکامپ موش سوری در مقایسه با گروه کنترل P>0/001 (80 میلی گرم بر کیلوگرم) تجویز شدند.

این مطالعه نشان داد که تجویز پیوگلیتازون در فاصله زمانی چهار ساعت قبل از تجویز میلی گرم بر کیلوگرم، خوراکی و پیوگلیتازون CMC درصد 0/5 در گروه های کنترل و پیوگلیتازون، به ترتیب

بتخیص پیوگلیتازون، به ترتیب

پیوگلیتازون یک آگونیست هسته‌ای PPAR-γ که باعث افزایش حساسیت گیرنده های انسولین PPAR-γ و تولید رادیکال‌های آزاد در آسیب به سایر سلول‌های در برابر استرس اکسیداتیو نقش مهمی دارد. پیوگلیتازون به عنوان یک آگونیست هسته‌ای PPAR-γ و کاهش فعالیت آنزیم‌های آنتی اکسیدانت باعث محافظت از نورون ها در برابر استرس اکسیداتیو ناشی از تشنج نمی‌شود. پیوگلیتازون در پیشگیری از تعادل انسولین و افزایش مدت زمان لازم برای شروع تشنج مؤثر باشد.

در طی مطالعه شناخته شد که تجویز پیوگلیتازون در فاصله زمانی چهار ساعت قبل از تجویزPTZ، بنابراین تجویز پیوگلیتازون می‌تواند به عنوان یک مدل علمی برای تحقیق در مورد عواملی که باعث پیشگیری از تعادل انسولین و افزایش مدت زمان لازم برای شروع تشنج مؤثر باشد، به عنوان مدل علمی برای تحقیق در مورد عواملی که باعث پیشگیری از تعادل انسولین و افزایش مدت زمان لازم برای شروع تشنج مؤثر باشد، به عنوان مدل علمی برای تحقیق در مورد عواملی که باعث پیشگیری از تعادل انسولین و افزایش مدت زمان لازم برای شروع تشنج مؤثر باشد.
آزاد و افزایش فعالیت آنتیاکسیدانت، باعث محافظت از نورون‌ها در برابر آسیب ناشی از استرس اکسیداتیو می‌شود. مکانیسم‌هایی در توصیف اثرات آنتیاکسیدانتی مطرح شده است که از مهم‌ترین آنها می‌توان به پیوگلیتازون اشاره کرد که افزایش تولید NADPH-تعدیل بیان تحت واحدهای سوپراکسید دیسموتاز و مهار مسیر‌های فاکتور هسته‌ای -NF-κB- و پروتئین کیناز فعال شده میتوژن-31- اشاره کرد. نتایج این مطالعه نشان داد که پیوگلیتازون مدت زمان لازم را در تأخیر خود پنتیلن تترازول در بررسی می‌کند که به تأخیر حرکتی پنتیلن تترازول در موش سایه می‌پردازد. همچنین نتایج این مطالعه نشان داد که پیوگلیتازون باعث کاهش لیپید پراکسیداسیون ناشی از PTZ و همچنین افزایش فعالیت آنتیاکسیدانت‌ها کاتالاز و سوپراکسید دیسموتاز در هیپوکامپ موش‌ها می‌شود.

نتایج این مطالعه نشان داد که پیوگلیتازون باعث افزایش آنزیم‌های آنتیاکسیدانت کاتالاز و سوپراکسید دیسموتاز در هیپوکامپ موش‌ها می‌شود.

نتایج این مطالعه نشان داد که پیوگلیتازون باعث افزایش آنزیم‌های آنتیاکسیدانت کاتالاز و سوپراکسید دیسموتاز در هیپوکامپ موش‌ها می‌شود.

نتایج این مطالعه نشان داد که پیوگلیتازون باعث افزایش آنزیم‌های آنتیاکسیدانت کاتالاز و سوپراکسید دیسموتاز در هیپوکامپ موش‌ها می‌شود.
پیوگلیتازون، به عنوان یکی از اسکسیدازهای تنشی آن، در هیپوکامپ موش های سوری استرس اکسیداتیو را کاهش می دهد، بنابراین احتمالاً اثرات آنتی اکسیدان پیوگلیتازون در اثرات مخاطراتی این دارو در پرایرز تحقیق ناشی از PTZ می‌تواند با توجه به تاثیرات حیوانی می‌ریزد اثرات این دارو را در بیماری صرع در کارآزمایی‌های بالینی مورد مطالعه قرار داد.

ملاحظات اخلاقی

تمام نویسندگان در طراحی، اجرا و نگارش همه بخش‌های پژوهش حاضر مشارکت داشته‌اند.

تعارض منافع

بنابر اظهار نویسندگان این مقاله تعارض منافع ندارد.

یاسمن قیاسی و همکاران. اثرات ضدتشنج و آنتی اکسیدان پیوگلیتازون در برابر تشنج ناشی از پنتیلن تترازول در موش سوری
References

[1] Stafsström CE, Carmant L. Seizures and Epilepsy: An overview for neuroscientists. Cold Spring Harb Perspect Med. 2015; 5(6):a022426. [DOI:10.1101/cshperspect.a022426] [PMID] [PMCID]

[2] Manford M. Recent advances in epilepsy. J Neurol. 2017; 264(8):1811-24. [DOI:10.1007/s00415-017-8394-2] [PMID] [PMCID]

[3] Ashjazadeh N, Yadollahikhales G, Ayoobzadehshirazi A, Sadraei N, Hadi N. Comparison of the health-related quality of life between epileptic patients with partial and generalized seizure. Iran J Neurol. 2014; 13(2):94-100. [PMID] [PMCID]

[4] Perucca P, Mula M. Antiepileptic drug effects on mood and behavior: Molecular targets. Epilepsy Behav. 2013; 26(3):440-9. [DOI:10.1016/j.yebeh.2012.09.019] [PMID] [PMCID]

[5] Zhu HL, Wan JB, Wang YT, Li BC, Xiang C, He J, et al. Medicinal behavior: Molecular targets. Epilepsy Behav. 2013; 26(3):440-9. [DOI:10.1016/j.yebeh.2013.05.002] [PMID] [PMCID]

[6] Kowalski AB, Weissinger F, Gaus V, Fidzinski P, Losch F, Holtkamp M. Specific adverse effects of antiepileptic drugs -- A true-to-life monotherapy study. Epilepsy Behav. 2016; 54:150-7. [DOI:10.1016/j.yebeh.2015.11.009] [PMID] [PMCID]

[7] Wahab A. Difficulties in treatment and management of epilepsy and challenges in new drug development. Pharmaceuticals (Basel). 2010; 3(7):2090-110. [DOI:10.3390/ph3072090] [PMID] [PMCID]

[8] Ono T, Galanopoulou AS. Epilepsy and epileptic syndrome. Adv Exp Med Biol. 2012; 724:99-113. [DOI:10.1007/978-1-4614-0653-2_8] [PMID] [PMCID]

[9] Gu B, Daltone KA. Models and detection of spontaneous recurrent seizures in laboratory rodents. Zool Res. 2017; 38(4):171-84. [DOI:10.24272/jzr.2017.042] [PMID] [PMCID]

[10] Geronzio U, Lotti F, Grosso S. Oxidative stress in epilepsy. Expert Rev Neurother. 2018; 18(5):427-34. [DOI:10.1080/14737575.2018.1465410] [PMID]

[11] Pearson-Smith JN, Patel M. Metabolic dysfunction and oxidative stress in epilepsy. Int J Mol Sci. 2017; 18(11):2365. [DOI:10.3390/ijms18112365] [PMID] [PMCID]

[12] Martinc B, Grabnar I, Vovk T. Antioxidants as a preventive treatment for epileptic process: A review of the current status. Curr Neuropharmacol. 2014; 12(6):527-50. [DOI:10.2174/1567201514012060527] [PMID] [PMCID]

[13] Shimada T, Yamagata K. Pentylenetetrazol-induced kindling mouse model. J Vis Exp. 2018; (136):56573. [DOI:10.3791/56573] [PMID] [PMCID]

[14] Zaitsev AV. The role of GABAergic interneurons in cortex and hippocampus in the development of epilepsy. Neurosci Behav Physiol. 2017; 47:913-22. [DOI:10.1007/s11055-017-0491-2] [PMID] [PMCID]

[15] Pavlova V, Filipova E, Uzunova K, Kalinov K, Vekov T. Pioglitazone therapy and fractures: Systematic review and meta-analysis. Endocr Metab Immune Disord Drug Targets. 2018; 18(5):502-7. [DOI:10.2174/187153031866180423121833] [PMID] [PMCID]

[16] Karabas MK, Ayhan M, Guney E, Serter M, Meteoglu I. The effect of pioglitazone on antioxidant levels and renal histopathology in streptozotocin-induced diabetic rats. ISRN Endocrinol. 2013; 2013:858690. [DOI:10.1155/2013/858690] [PMID] [PMCID]

[17] Cela E, McFarlan AR, Chung AJ, Wang T, Chierzi S, Murai KK, et al. An optogenetic kindling model of neocortical epilepsy. Sci Rep. 2019; 9(1):5236. [DOI:10.1038/s41598-019-41533-2] [PMID] [PMCID]

[18] Ghani MA, Barril C, Bedgood DR Jr, Prenzler PD. Measurement of antioxidant activity with the thiobarbituric acid reactive substances assay. Food Chem. 2017; 230:195-207. [DOI:10.1016/j.foodchem.2017.02.127] [PMID]

[19] Hadwan MH. Simple spectrophotometric assay for measuring catalase activity in biological tissues. BMC Biochem. 2018; 19(1):7. [DOI:10.1186/s12858-018-0997-5] [PMID] [PMCID]

[20] Durak I, Yurtarslan Z, Canbolat O, Akyol O. A methodological approach to Superoxide Dismutase (SOD) activity assay based on inhibition of Nitroblue Tetrazolium (NBT) reduction. Clin Chim Acta. 1993; 214(1):103-4. [DOI:10.1016/0009-8981(93)90307-P] [PMID] [PMCID]

[21] Carligb I, Mannervik B. Glutathione reductase. In: Meister A, Glutamate, Glutamine, Glutathione, and Related Compounds. Methods in Enzymology. Vol. 113. Academic Press: Cambridge, MA: 1985. p. 484-490. [DOI:10.1007/50076-6879(85)13062-4] [PMID]

[22] Katsarou AM, Moshé SL, Galanopoulou AS. Interneuronopathies and their role in early life epilepsies and neurodevelopmental disorders. Epilepsia Open. 2017; 2(3):284-306. [DOI:10.1002/epi4.12062] [PMID] [PMCID]

[23] Gao R, Penzes P. Common mechanisms of excitatory and inhibitory imbalance in schizophrenia and autism spectrum disorders. Curr Mol Med. 2015; 15(2):146-67. [DOI:10.2174/15665240156615030303028] [PMID] [PMCID]

[24] Dudek FE, Shao LR. Loss of GABAergic interneurons in seizure-induced epileptogenesis. Epilepsy Curr. 2003; 3(5):159-61. [DOI:10.1046/j.1535-7597.2003.03503.x] [PMID] [PMCID]

[25] Faghihi N, Mohammadi MT. Anticonvulsant and antioxidant effects of pitavastatin against pentylenetetrazol-induced kindling in mice. Adv Pharm Bull. 2017; 7(2):291-8. [DOI:10.15171/apb.2017.035] [PMID] [PMCID]

[26] Puttchachay S, Sharma Sh, Stark S, Thippeswamy T. Seizure-induced oxidative stress in temporal lobe epilepsy. Biomed Res Int. 2015; 2015:745613. [DOI:10.1155/2015/745613] [PMID] [PMCID]

[27] Lee CH, Yi MH, Chae DJ, Zhang E, Oh SH, Kim DW. Effect of pioglitazone on excitotoxic neuronal damage in the mouse hippocampus. Biomol Ther (Seoul). 2015; 23(3):261-7. [DOI:10.4062/biomolther.2014.146] [PMID] [PMCID]

[28] Chandrasekar T, Muthiah NS, Sandiya R, Sanitha, Aparna. Evaluation of antioxidant activity of pioglitazone: Hydrogen peroxide scavenging activity (in-vitro method). Res J Pharm Biol Chem Sci. 2015; 6(5):1492-5. [https://www.rjpbs.com/pdf/2015_65/206.pdf]
Pérez-Girón JV, Palacios R, Martín A, Hernanz R, Aguado A, Martínez-Revelles S, et al. Pioglitazone reduces angiotensin II-induced COX-2 expression through inhibition of ROS production and ET-1 transcription in vascular cells from spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol. 2014; 306(11):H1582-93. [DOI:10.1152/ajpheart.00924.2013] [PMID]

Wang Sh, Ye SD, Sun WJ, Hu YY. Pioglitazone inhibits the expressions of p22phox and p47phox in rat mesangial cells in vitro. ISRN Endocrinol. 2014; 2014:601352 [DOI:10.1155/2014/601352] [PMID] [PMCID]

Jesse CR, Bortolatto CF, Wilhelm EA, Roman SS, Prigol M, Nogueira CW. The peroxisome proliferator-activated receptor-γ agonist pioglitazone protects against cisplatin-induced renal damage in mice. J Appl Toxicol. 2014; 34(1):25-32. [DOI:10.1002/jat.2818] [PMID]
This Page Intentionally Left Blank