Retrospective Study

Performance of 18-fluoro-2-deoxyglucose positron emission tomography for esophageal cancer screening

Masau Sekiguchi, Takashi Terauchi, Yasuo Kakugawa, Naoki Shimada, Yutaka Saito, Takahisa Matsuda

AIM
To evaluate the performance of 18-fluoro-2-deoxyglucose positron emission tomography (FDG-PET) for esophageal cancer (EC) screening.

METHODS
We retrospectively analyzed the data of consecutive asymptomatic individuals who underwent FDG-PET and esophagogastroduodenoscopy (EGD) simultaneously for cancer screening at our institution from February 2004 to March 2013. In total, 14,790 FDG-PET and EGD procedures performed for 8,468 individuals were included in this study, and the performance of FDG-PET for EC screening was assessed by comparing the
results of FDG-PET and EGD, considering the latter as the reference.

RESULTS
Thirty-two EC lesions were detected in 28 individuals (31 squamous cell carcinomas and 1 adenocarcinoma). The median tumor size was 12.5 mm, and the depths of the lesions were as follows: Tis (n = 12), T1a (n = 15), and T1b (n = 5). Among the 14790 FDG-PET procedures, 51 examinations (0.3%) showed positive findings in the esophagus; only 1 was a true-positive finding. The screen sensitivity, specificity, positive predictive value, and negative predictive value of FDG-PET for ECs were 3.6% (95%CI: 0.1-18.3), 99.7% (95%CI: 99.6-99.7), 2.0% (95%CI: 0.0-10.4), and 99.8% (95%CI: 99.7-99.9), respectively. Of the 50 FDG-PET false-positive cases, 31 were observed in the lower esophagus, and gastroesophageal reflux disease was observed in 17 of these 31 cases.

CONCLUSION
This study is the first to clarify the FDG-PET performance for EC screening. Based on the low screen sensitivity, FDG-PET is considered to be difficult to use as a screening modality for ECs.

Key words: Cancer screening; Esophageal cancer; Esophagogastroduodenoscopy; Positron emission tomography; Screen sensitivity

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: The present study first clarified the performance of 18-fluoro-2-deoxyglucose positron emission tomography (FDG-PET) for esophageal cancer screening by adopting an appropriate study method. A large number of asymptomatic screened individuals who underwent both FDG-PET and esophagogastroduodenoscopy were included in the study, and the performance of FDG-PET was assessed by comparing the results of FDG-PET and esophagogastroduodenoscopy, considering the latter as the reference. As a result, the low screen sensitivity (3.6%) and positive predictive value (2.0%) of FDG-PET for esophageal cancer were clearly shown. Based on the results, FDG-PET is considered to be difficult to use as a screening modality for esophageal cancer.

Sekiguchi M, Terauchi T, Kakugawa Y, Shimada N, Saito Y, Matsuda T. Performance of 18-fluoro-2-deoxyglucose positron emission tomography for esophageal cancer screening. World J Gastroenterol 2017; 23(15): 2743-2749. Available from: URL: http://www.wjgnet.com/1007-9327/full/v23/i15/2743.htm DOI: http://dx.doi.org/10.3748/wjg.v23.i15.2743
participate in the study and 24 individuals with a history of esophageal treatment, 14790 EGDs and FDG-PETs performed for 8438 individuals were included and retrospectively analyzed in this study.

To evaluate the performance of FDG-PET for EC screening, we compared the results of FDG-PET and EGD, considering the latter as the reference, and then calculated the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of FDG-PET for EC lesions. If multiple ECs were detected in one patient, the most advanced lesion in terms of tumor depth and size was analyzed as the representative one.

ECs were defined as malignant epithelial tumors originating in the esophagus, including squamous cell carcinoma (SCC) and adenocarcinoma [21]. According to the Vienna classification, both invasive and noninvasive carcinoma (carcinoma in situ) were included in ECs [22].

FDG-PET and EGD were performed on two consecutive days. FDG-PET was performed on the first day and EGD on the second day. Each test was performed and diagnosed in a blinded fashion with no knowledge of the findings of the other test by different doctors [19,20].

FDG-PET examination

FDG-PET was conducted according to the Japanese FDG-PET guidelines published by the Japanese Society of Nuclear Medicine (http://www.jsnm.org/fdg_pet), as previously described [20]. PET and PET/CT were used during the study period. For the first 2 years (February 2004 to December 2005), only PET was used (ECAT Accel; Siemens, Washington DC, United States); this was gradually replaced by PET/CT (Aquiduo PCA-7000B; Toshiba, Tokyo, Japan, or Discovery-600; GEMS, Milwaukee, WI, United States). The findings and diagnoses of FDG-PET examinations were evaluated by a single expert radiologist specializing in nuclear medicine who was blinded to the endoscopic findings. A positive FDG-PET finding was defined as significantly higher round or oval focal accumulation of FDG in the esophagus compared with background levels. Segmental uptake, i.e., FDG accumulation in the shape of the part of the esophagus in which it was present was diagnosed as a negative FDG-PET finding. The maximum standardized uptake value (SUVmax) was evaluated in cases of positive FDG-PET findings.

EGD examination

EGD examinations were performed by endoscopists certified by the Japanese Gastrointestinal Endoscopy Society as previously described [19]. Transoral (GIF-H-260, GIF-Q260; Olympus Co., Tokyo, Japan) or transnasal endoscopy (EG 530-NW, EG 580-NW; Fujifilm Co., Tokyo, Japan) was performed according to each screenee’s request. The image-enhanced function (narrow band imaging or flexible spectral imaging color enhancement) was routinely used. If necessary, 2% Lugol solution was sprayed on the esophageal mucosa. Biopsies were taken for histopathological examination of all lesions that appeared potentially malignant. When an EC lesion was detected, the patient was recommended to receive treatment at the National Cancer Center Hospital or any other hospital. The results of the treatment, including the histopathological findings of the resected specimens, were reviewed and recorded.

Evaluation of screenee characteristics

All screened individuals at our institution are required to complete a self-administered questionnaire on lifestyle, demographic characteristics, and medical history at the time of their first screening and 5 years later [23]. In the present study, information about cigarette smoking (nonsmoker, ex-smoker, or current smoker) and alcohol drinking (nondrinker, ex-drinker, or current drinker) were extracted from these questionnaires. Age, sex, height, and weight were also evaluated.

Evaluation of EC characteristics

The macroscopic type of EC was determined endoscopically in accordance with the Paris classification [24]. The tumor location was also determined endoscopically and classified as cervical esophagus, upper thoracic esophagus, middle thoracic esophagus, lower thoracic esophagus, or abdominal esophagus [25]. The size of the EC lesions was measured based on the pathological evaluation of each surgically or endoscopically resected specimen; when a specimen was not resected, its size was determined endoscopically. Tumor depth was also pathologically determined except when EC lesions were not resected. The depth of EC lesions that were not resected was evaluated using EGD and endoscopic ultrasonography. The histopathological type of EC was determined by the evaluation of each endoscopically or surgically resected specimen; the type was determined based on examination of the biopsy specimen only when it was not resected. The staging of EC lesions was based on the TNM classification [26]. The presence of lymph node and distant metastasis was evaluated based on radiological imaging (in all patients) and pathological evaluation of resected lymph nodes (only in patients undergoing surgery with lymphadenectomy).

Statistical analysis

Statistical analyses were performed using SPSS software (version 22.0; IBM Corp., Armonk, NY, United States) and the statistical program R, version 3.2.4 (http://cran.r-project.org). For evaluation of the sensitivity, specificity, PPV, and NPV of FDG-PET for ECs, 95%CI were also calculated for these estimates. The \(\chi^2 \) test or Fisher’s exact test was used for categorical variables, and the Mann-Whitney \(U \) test was used for continuous variables to compare the screenee characteristics between cases with and without ECs. A \(P \) value of < 0.05 was considered statistically significant.
Table 1 Screenee characteristics in the cases with and without esophageal cancer \(n \) (%)

Characteristics	Total \(n = 14790 \)	Esophageal cancer(+) \(n = 28 \)	Esophageal cancer(-) \(n = 14762 \)	\(P \) value
Age (yr), median (range)	61.0 (40-92)	67.5 (55-76)	61.0 (40-92)	< 0.001\(^2\)
Gender				0.002\(^3\)
Male	9699 (65.6)	26 (92.9)	9673 (65.5)	
Female	5091 (34.4)	2 (7.1)	5089 (34.5)	
Body mass index, median (range)	23.3 (13.3-44.7)	22.6 (17.6-31.3)	23.3 (13.3-44.7)	0.885\(^4\)
Smoker				0.136\(^5\)
Current smoker	1310 (12.9)	4 (18.2)	1306 (12.9)	
Former smoker	3921 (38.6)	12 (31.5)	3909 (38.5)	
Non-smoker	4936 (48.5)	6 (27.3)	4930 (48.6)	
Alcohol				0.171\(^6\)
Current drinker	7479 (73.6)	20 (90.9)	7459 (73.5)	
Former drinker	391 (3.8)	0 (0.0)	391 (3.9)	
Non-drinker	2297 (22.6)	2 (9.1)	2295 (22.6)	

\(^1\) Chi-square test; \(^2\) \(P \) values were calculated using the Mann-Whitney \(U \) test; \(^3\) \(P \) values were calculated using the \(\chi^2 \) test.

Table 2 Clinicopathologic findings of esophageal cancers detected in this study

Size (mm), median (range)	12.5 (5-60)
Depth \(^1\)	12/15/5
Location	0/1/20/8/2/1
Macropscopic type	0-11/0-21/21/21
Histopathological type	30/1/1
SCC/ adenocarcinoma	31/1
Treatment\(^2\)	28/3/1/1
Lymph node metastasis	Positive
Distant metastasis	Positive
Positive/negative	1/31
Positive/negative	0/32

\(^1\) The depth of four lesions that were not resected (\(n = 3 \)) or had an unknown treatment result (\(n = 1 \)) were determined clinically: Tla (\(n = 2 \)) and Tlb (\(n = 2 \)); \(^2\) Two cases overlapped: surgery following noncurative endoscopic resection (\(n = 1 \)) and chemoradiotherapy following noncurative endoscopic resection (\(n = 1 \)).

RESULTS

Screenee characteristics

The screenee characteristics in the cases with and without ECs are summarized in Table 1. As a whole, the median age was 61 years (range, 40-92), and the male:female ratio was 1.9 (9699:5091). The age of those with ECs (median, 67.5 years; range, 55-76 years) was higher than that of those without ECs (median, 61.0 years; range, 40-92 years) \((P < 0.001) \). The male:female ratio was also higher in cases with ECs (median, 67.5 years; range, 55-76 years) than without ECs (median, 61.0 years; range, 40-92 years) \((P < 0.001) \).

Information on smoking and alcohol was available for 10167 of 14790 cases (68.7%). Although the proportion of current smokers and drinkers seemed higher in those with than without ECs, no significant difference was observed.

Clinicopathologic findings of detected ECs

Thirty-two EC lesions, all of which were histologically proven, were detected in 28 individuals; 25 individuals had 1 lesion, 2 individuals had 2 lesions, and 1 individual had 3 lesions. Clinicopathologic characteristics of the 32 EC lesions are summarized in Table 2. The first treatment was endoscopic resection for 28 lesions, chemoradiotherapy for 2 lesions, and radiation for 1 lesion (the treatment for 1 lesion was unknown). Among the 28 endoscopically resected lesions, resection was noncurative in 2 because of submucosal invasion; 1 underwent subsequent esophagectomy with lymphadenectomy, and the other received subsequent chemoradiation therapy. The pathological evaluation of the 28 resected lesions showed that the depth of invasion was pTis in 12 lesions, pT1a in 13 lesions, and pT1b in 3 lesions. The depth of the other four lesions was estimated to be cT1a (\(n = 2 \)) and cT1b (\(n = 2 \)) based on the clinical examination findings. The median lesion size was 12.5 mm (range, 5-60 mm). With the exception of 1 adenocarcinoma lesion, the other 31 lesions were histologically diagnosed as SCC. With respect to lymph node metastasis, one lesion treated with additional esophagectomy with lymphadenectomy following endoscopic resection showed pN0. Among the other 31 lesions that were not treated with surgery, only 1 cT1b case showed cN1; the others showed cN0. No distant metastasis was observed in any patients in this study.

Sensitivity, specificity, PPV, and NPV of FDG-PET for ECs

The results of the performance of FDG-PET for screening of ECs are shown in Table 3. The sensitivity, specificity, PPV, and NPV of FDG-PET for ECs were 3.6% (95%CI: 0.1-18.3), 99.7% (95%CI: 99.6-99.9), 2.0% (95%CI: 0.0-10.4), and 99.8% (95%CI: 99.7-99.9), respectively. Excluding the cases between 2004 and 2005 during which only PET alone was performed \((n = 3808) \), these four values were 5.3% (95%CI: 0.1-26.0),
99.6% (95%CI: 99.4-99.7), 2.1% (95%CI: 0.1-11.1), and 99.8% (95%CI: 99.7-99.9), respectively.

Evaluation of FDG-PET-positive cases and SUVmax
Among the 14790 FDG-PET examinations, 51 (0.3%) showed positive findings in the esophagus; only 1 was a true-positive finding. The true-positive case was a 60-mm 0-IIa + IIc EC lesion located in the lower thoracic esophagus with a histological diagnosis of SCC and estimated invasion depth of the superficial submucosa; it was detected as a positive FDG-PET finding with an SUVmax of 4.7. The other 50 FDG-PET-positive cases were false-positive, and the median SUVmax in these cases was 3.3 (range, 2.0-5.2). The SUVmax (4.7) of the one true-positive case was higher than that of all but one of the false-positive cases (n = 49). Of all 50 false-positive cases, 31 showed a positive FDG-PET finding in the lower part of the esophagus, and gastroesophageal reflux disease (GERD) was observed in 17 of these 31 patients (54.8%; grade A/B of the Los Angeles classification, n = 13/4). GERD was not observed in the other 19 false-positive cases.

DISCUSSION
The present study is the first to evaluate the performance of FDG-PET for ECs in the screening setting. The results clarified the very low screen sensitivity of FDG-PET for ECs. The population comprised asymptomatic individuals, and all detected ECs were superficial and did not invade beyond the submucosal layer. In this situation, the sensitivity of FDG-PET for ECs was very low. Even after excluding old cases using PET alone, the sensitivity was still very low. The difference from several previous studies showing a relatively high sensitivity of FDG-PET for ECs (69%-100%) is considered to be mainly due to the differences in study populations[11,13,14]. While the study population of those previous studies was patients with previously known ECs that mostly comprised advanced ECs, the present study population was asymptomatic individuals being screened for cancer. Some previous studies showed low sensitivity of FDG-PET for superficial ECs. The results of our study are consistent with these, and our study is highly important because it confirms the low sensitivity of FDG-PET for ECs in the screening setting[11,13,14,18]. Because of the very low sensitivity, it is believed that FDG-PET is difficult to use as a screening modality for ECs.

The very low PPV with many false-positive cases is also a problem for FDG-PET as a screening modality of ECs. The false-positive results of FDG-PET reportedly may be associated with esophageal inflammation[27,28]. In this study, many false-positive cases showed GERD, indicating a possible relationship between false-positive FDG-PET findings and GERD. This raises the question of whether the SUVmax is helpful in differentiating true-positive from false-positive cases, such as those with GERD. In this study, the SUVmax was evaluated in every FDG-PET-positive case, which is a strength of this study. Considering that the SUVmax (4.7) of the one true-positive case was higher than that of almost all false-positive cases (49 of 50), it is possible that the SUVmax may be useful for this differentiation. However, because of the small number of true-positive cases (n = 1), it was difficult to draw a clear conclusion regarding this issue. In addition, even if the SUVmax is useful, there must be a limit on the increase in the PPV from the very low value gained in this study.

There were several limitations in this study. First, although this study adopted the results of EGD examinations, the most reliable and accepted modality for detecting ECs, as the reference for the analyses of the performance of FDG-PET, it remains possible that some EC lesions were overlooked by EGD[14,9]. However, considering that EGD examinations were performed by experienced endoscopists certified by the Japanese Gastrointestinal Endoscopy Society and that image-enhanced endoscopy was routinely used, the risk of overlooking EC lesions was presumably low, and its effect on the results of the performance of FDG-PET for EC screening was small.

Second, the number of detected ECs was relatively small, and no ECs invading the muscularis propria were included in this study. If ECs invading the muscularis propria had been included, the sensitivity may have increased. Importantly, however, the prevalence of advanced ECs is not expected to be high in the screening setting as shown in this study, and the target lesions to be screened should be early-stage lesions. Thus, the low sensitivity of FDG-PET for ECs in the present study, which analyzed large-scale data of the screening population, is believed to reflect the actual performance of FDG-PET for ECs in the screening setting.

Table 3 Performance of 18-fluoro-2-deoxyglucose positron emission tomography for esophageal cancer screening
Esophageal cancer (+) (n = 28)	Esophageal cancer(-) (n = 14762)	PPV, NPV	
FDG-PET positive (n = 51)	1	50	PPV 2.0% (95%CI: 0.0-10.4)
FDG-PET negative (n = 14739)	27	14712	NPV 99.8% (95%CI: 99.7-99.9)
Sensitivity, specificity	Sensitivity 3.6% (95%CI: 0.1-18.3)	Specificity 99.7% (95%CI: 99.6-99.7)	

FDG-PET: 18-fluoro-2-deoxyglucose positron emission tomography; NPV: Negative predictive value; PPV: Positive predictive value.
setting.

Third, this study included four ECs in which the clinicopathologic features (tumor depth, etc.) were determined not by the pathological evaluation of the whole lesions but by the findings of clinical examinations such as EGD and endoscopic ultrasonography; thus, the accuracy may not have been perfect. However, the diagnostic accuracy of these examinations for ECs is reportedly high, and the effect of this issue on the results of the present study is considered small.[4-9,20]

Fourth, the histological type of all ECs except one was SCC in this study, reflecting the predominance of SCC in Japanese ECs and showing that the screening performance of FDG-PET for esophageal adenocarcinomas is difficult to judge from the findings of this study.[3]. Although the results of FDG-PET performance in EC screening may depend on the histological type of ECs, no high-quality data have shown the difference in FDG-PET visualization between adenocarcinoma and SCC. In addition, considering that the screen sensitivity of FDG-PET for early gastric cancer and early colorectal cancer, both mostly comprising adenocarcinoma, is reportedly low, FDG-PET may still be difficult to use for EC screening even when adenocarcinoma is the predominant histological type of ECs.[19,20]

Fifth, data regarding screenee characteristics were missing in a part of cases of this study. However, only individuals considered to be at average risk underwent screening at our institution; thus, the study population as a whole was believed to be at average risk for ECs. The available data on the screenee characteristics showed that the study population did not include many high-risk individuals.

Finally, the FDG-PET findings in this study were evaluated by a single expert radiologist specializing in nuclear medicine. Although this led to reduced interobserver variability, representing a strength of this study, further studies involving multiple radiologists are warranted.[20].

In conclusion, this study is the first to examine the performance of FDG-PET for EC screening using a large number of asymptomatic individuals and clearly showed the low sensitivity and PPV of FDG-PET for ECs in the screening setting. Based on these results, FDG-PET is considered to be difficult to use as a screening modality for primary ECs.

REFERENCES

1. **GLOBOCAN.** Estimated cancer incidence, mortality and prevalence worldwide in 2012. Available from: URL: http://globocan.iarc.fr/Default.aspx
2. **Matsuda A, Matsuda T, Shibata A, Katanoda K, Sobue T, Nishimoto H.** Cancer incidence and incidence rates in Japan in 2008: a study of 25 population-based cancer registries for the Monitoring of Cancer Incidence in Japan (MCIJ) project. *Jpn J Clin Oncol* 2014; 44: 388-396 [PMID: 24503029 DOI: 10.1111/j.1572-0241.2013.02702.x]
3. **Hashimoto CI, Biehl M, Lonardo F, Botteri E, Chiosea S, Loupakis F.** PET-CT in staging and restaging of surgically resected esophageal cancer. *J Gastrointest Surg* 2015; 19: 1566-1572 [PMID: 2503029 DOI: 10.1111/j.1572-0241.2014.03519.x]
4. **Kuraoka K, Hoshino E, Tsuochida T, Fujisaki J, Takahashi H, Fujita R.** Early esophageal cancer can be detected by screening endoscopy assisted with narrow-band imaging (NBI). *Hepatogastroenterology* 2009; 56: 63-66 [PMID: 19453030]
5. **Muto M, Minakata K, Yano T, Saito Y, Oda I, Nonaka S, Omori T, Sugihara H, Gada K, Kaise M, Iwase H, Ishikawa H, Ochiai A, Shimoda T, Watanabe H, Tajiiri H, Saito D.** Early detection of superficial squamous cell carcinoma in the head and neck region and esophagus by narrow band imaging: a multicenter randomized controlled trial. *J Clin Oncol* 2010; 28: 1566-1572 [PMID: 20177025 DOI: 10.1200/JCO.2009.25.4680]
6. **Wang CH, Lee YC, Wang CP, Chen CC, Ko JY, Han ML, Chen TC, Lou PJ, Yang TL, Hsiao YW, Wu MS, Wang HP, Tseng PH.**
Use of transanal endoscopy for screening of esophageal squamous cell carcinoma in high-risk patients: yield rate, completion rate, and safety. Dig Dis 2014; 26: 24-31 [PMID: 23551305 DOI: 10.1111/den.12053]

Tanaka T, Niwa Y, Tajika M, Ishihara M, Imaoka H, Mizuno N, Hara K, Hiijisaka S, Hirooka Y, Goto H, Yamam K. Prospective evaluation of a transanal endoscopy utilizing flexible spectral imaging color enhancement (FICE) with the Valsalva maneuver for detecting pharyngeal and esophageal cancer. Hepatogastroenterology 2014; 61: 1627-1634 [PMID: 25436354]

Nagami Y, Tominaga K, Machida H, Nakatani M, Kameda N, Sugimori S, Okazaki H, Tanigawa T, Yamagami H, Kubo N, Shiba M, Watanabe K, Watanabe T, Iguchi H, Fujwara Y, Ohira M, Hirakawa K, Arakawa T. Usefulness of non-magnifying narrow-band imaging in screening of early esophageal squamous cell cancer: a prospective comparative study using propensity score matching. Am J Gastroenterol 2014; 109: 845-854 [PMID: 24751580 DOI: 10.1038/ajg.2014.94]

Minaminoto R, Senda M, Jinmouchi S, Terauchi T, Yoshida T, Murano T, Fukuda H, Iinuma T, Uno K, Nishizawa S, Tsukamoto E, Iwata H, Inoue T, Oguchi K, Nakashima R, Inoue T. The current status of an FDG-PET Cancer screening program in Japan, based on a 4-year (2006-2009) nationwide survey. Ann Nucl Med 2013; 27: 46-57 [PMID: 23086544 DOI: 10.1007/s12149-012-0660-x]

Himeno S, Yasuda S, Shimada H, Tajima T, Makuuchi H. Evaluation of esophageal cancer by positron emission tomography. Jpn J Clin Oncol 2002; 32: 340-346 [PMID: 12417599]

van Westreenen HL, Westerterp M, Bossuyt PM, Pruim J, Sloot GW, van Lanschot JJ, Groen H, Plukker JT. Systematic review of the staging performance of 18F-fluorodeoxyglucose positron emission tomography in esophageal cancer. J Clin Oncol 2004; 22: 3805-3812 [PMID: 15365078 DOI: 10.1200/JCO.2004.01.083]

Kato H, Fukuchi M, Miyazaki T, Nakajima M, Kimura H, Faried A, Sohda M, Fukai Y, Masuda N, Manda R, Ojima H, Tsukada K, Ichii R, Kurihara N, Endo K, Kuwano H. Positron emission tomography in esophageal cancer. Esophagus 2005; 2: 111-121 [DOI: 10.1007/s10388-005-0053-5]

Kato H, Miyazaki T, Nakajima M, Takita J, Kimura H, Faried A, Sohda M, Fukai Y, Masuda N, Manda R, Ojima H, Tsukada K, Kuvano H, Ichii R, Kurihara N, Endo K. The incremental effect of positron emission tomography on diagnostic accuracy in the initial staging of esophageal carcinoma. Cancer 2005; 103: 148-156 [PMID: 15558794 DOI: 10.1002/cncr.20724]

van Vliet EP, Heijenbrok-Kal MH, Huning KG, Kuipers EJ, Sierssema PD. Staging investigations for oesophageal cancer: a meta-analysis. Br J Cancer 2008; 98: 547-557 [PMID: 18212745 DOI: 10.1038/sj.bjc.6604200]

Goense L, van Rossum PS, Reitsma JB, Lam MG, Meijer GJ, van Vulpen M, Ruurda JP, van Hillersweg MR. Diagnostic Performance of 18F-FDG PET and PET/CT for the Detection of Recurrent Esophageal Cancer After Treatment with Curative Intent: A Systematic Review and Meta-Analysis. J Nucl Med 2015; 56: 995-1002 [PMID: 25952733 DOI: 10.2967/jnumed.115.155580]

Kukar M, Alnaji RM, Jabi F, Platz TA, Attwood K, Nava H, Ben-David K, Mattson D, Salerno K, Malhotra U, Kanchira K, Gannon J, Hochwald SN. Role of Repeat 18F-Fluorodeoxyglucose Positron Emission Tomography Examination in Predicting Pathologic Response Following Neoadjuvant Chemoradiation Therapy for Esophageal Adenocarcinoma. JAMA Surg 2015; 150: 555-562 [PMID: 25902198]

Nakajo M, Nakajo M, Tani A, Kajiyama Y, Shimao H, Matsuda A, Noth T, Nihara A, Sunaga T, Tanaka S, Shihara H, Higashi M, Koriyama C. Clinical significance of primary lesion FDG uptake for choice between oesophagectomy and endoscopic submucosal dissection for resectable esophageal squamous cell carcinomas. Eur Radiol 2011; 21: 2396-2407 [PMID: 21750887]

Shoda H, Kakugawa Y, Saito D, Kozu T, Terauchi T, Daisaki H, Hamashima C, Muramatsu Y, Moriyama N, Saito H. Evaluation of 18F-2-deoxy-2-fluoro-glucose positron emission tomography for gastric cancer screening in asymptomatic individuals undergoing esophopy. Br J Cancer 2007; 97: 1493-1498 [PMID: 18040274 DOI: 10.1038/sj.bjc.6604062]

Sekiguchi M, Kakugawa Y, Terauchi T, Matsumoto M, Saito H, Muramatsu Y, Saito Y, Matsuda T. Sensitivity of 2-[18F]fluoro-2-deoxyglucose positron emission tomography for advanced colorectal neoplasms: a large-scale analysis of 7505 asymptomatic screening individuals. J Gastroenterol 2016; 51: 1122-1132 [PMID: 27021493 DOI: 10.1007/s00535-016-1201-5]

Rosman FT, Carneiro F, Hruban RH, Theise ND (eds). WHO Classification of Tumors of the Digestive System. 4th ed. Lyon: IARC, 2010

Schlemper RJ, Riddell RH, Kato Y, Borchard F, Cooper HS, Dawsey SM, Dixon MF, Fenoglio-Preiser CM, Flejou JF, Geboes K, Hattori T, Hirota T, Iabashi M, Iwafuchi M, Iwashita A, Kim YI, Kirchner T, Klimpfinger M, Koike M, Lauwers GY, Lewin JK, Oberhuber G, Offner F, Price AB, Rubio CA, Shimanu M, Shimoda T, Sipponen P, Solcia E, Stolte M, Watanabe H, Yamabe H. The Vienna classification of gastrointestinal epithelial neoplasia. Gut 2000; 47: 251-255 [PMID: 10896917]

Budhathoki S, Iwasaki M, Sawada N, Yamaji T, Shimazu T, Sasazuki S, Inoue M, Tsugane S. Soy food and isoflavone intake and endometrial cancer risk: the Japan Public Health Center-based prospective study. BJOG 2015; 122: 304-311 [PMID: 24941880 DOI: 10.1111/1471-0528.12853]

The Paris endoscopic classification of superficial neoplastic lesions: esophagus, stomach, and colon: November 30 to December 1, 2002. Gastrointest Endosc 2003; 58: S3-S43 [PMID: 14652541]

The Japanese Esophageal Society. Japanese classification of esophageal cancer. 11th ed (in Japanese). Tokyo: Kanehara, 2015

Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A (eds). AJCC cancer staging manual, 7th edition. New York: Springer, 2010

Fukunaga T, Okazumi S, Ikuya Y, Isono K, Imaeke K. Evaluation of esophageal cancers using fluorine-18-fluorodeoxyglucose PET. J Nucl Med 1998; 39: 1002-1007 [PMID: 9627333]

Bakheet SM, Amin T, Alia AG, Kuzo R, Powe J. F-18 FDG uptake in benign esophageal disease. Clin Nucl Med 1999; 24: 995-997 [PMID: 10595492]

Thosani N, Singh H, Kapadia A, Ochi N, Lee JH, Ajani J, Swisher SG, Hofstetter WL, Guha S, Bhutani MS. Diagnostic accuracy of EUS in differentiating mucosal versus submucosal invasion of superficial esophageal cancers: a systematic review and meta-analysis. Gastrointest Endosc 2012; 75: 242-253 [PMID: 22115605 DOI: 10.1016/j.gie.2011.09.016]
