Almost Kenmotsu manifolds admitting certain vector fields

Dibakar Dey and Pradip Majhi
Department of Pure Mathematics,
University of Calcutta, 35 Ballygunge Circular Road,
Kolkata - 700019, West Bengal, India,
E-mail: deydibakar3@gmail.com; mpradipmajhi@gmail.com

Abstract: In the present paper, we characterize almost Kenmotsu manifolds admitting holomorphically planar conformal vector (HPCV) fields. We have shown that if an almost Kenmotsu manifold \mathcal{M}^{2n+1} admits a non-zero HPCV field V such that $\phi V = 0$, then \mathcal{M}^{2n+1} is locally a warped product of an almost Kaehler manifold and an open interval. As a corollary of this we obtain few classifications of an almost Kenmotsu manifold to be a Kenmotsu manifold and also prove that the integral manifolds of \mathcal{D} are totally umbilical submanifolds of \mathcal{M}^{2n+1}. Further, we prove that if an almost Kenmotsu manifold with positive constant ξ-sectional curvature admits a non-zero HPCV field V, then either \mathcal{M}^{2n+1} is locally a warped product of an almost Kaehler manifold and an open interval or isometric to a sphere. Moreover, a $(k, \mu)^{1}$-almost Kenmotsu manifold admitting a HPCV field V such that $\phi V \neq 0$ is either locally isometric to $\mathbb{H}^{n+1}(-4) \times \mathbb{R}^{n}$ or V is an eigenvector of h'. Finally, an example is presented.

Mathematics Subject Classification 2010: 53D15, 53C25.

Keywords: Almost Kenmotsu manifold, Holomorphically Planar conformal vector field, Almost Kaehler manifold, Totally umbilical submanifolds.

1. Introduction

In the present time, the study of existence of Killing vector fields in Riemannian manifolds is a very interesting topic as they preserves a given metric and determine the degree of symmetry of the manifold. Conformal vector fields whose flow preserves a conformal class of metrics are very important in the study of several kind of almost contact metric manifolds.

A smooth vector field V on a Riemannian manifold (\mathcal{M}, g) is said to be conformal vector field if there exist a smooth function f on \mathcal{M} such that

$$\mathcal{L}_V g = 2fg,$$

where $\mathcal{L}_V g$ is the Lie derivative of g with respect to V. The vector field V is called homothetic or Killing accordingly as f is constant or zero. Moreover, V is said to be closed conformal vector field if the metrically equivalent 1-form of V is closed. If the conformal vector field V is gradient of some smooth function λ, then V is called gradient conformal vector field. The geometry of conformal vector fields have been investigated in ([5], [6]).

A vector field V on a contact metric manifold $\mathcal{M}^{2n+1}(\phi, \xi, \eta, g)$ is said to be holomorphically planar conformal vector field if it satisfies

$$\nabla_X V = aX + b\phi X$$

(1.2)
for any vector field X, where a, b are smooth functions on M. As a generalization of closed conformal vector fields Sharma [16] introduced the notion of holomorphically planar conformal vector (in short, HPCV) fields on almost Hermitian manifold. In [12], Ghosh and Sharma characterize an almost Hermitian manifolds admitting a HPCV field. They shows that if V is strictly non-geodesic non-vanishing HPCV field on an almost Hermitian manifold, then V is homothetic and almost analytic. Further Sharma [17] shows that among all complete and simply connected K-contact manifolds only the unit sphere admits a non-Killing HPCV field and a (k, μ)-contact manifold admitting a non-zero HPCV field is either Sasakian or locally isometric to E^3 or $E^{n+1} \times S^n(4)$. In [11], Ghosh studied HPCV fields in the framework of contact metric manifolds under certain conditions and proved that a contact metric manifold with pointwise constant ξ-sectional curvature admitting a non-closed HPCV field V is either K-contact or V is homothetic.

Motivated by the above studies we consider HPCV fields in the framework of a special type of almost contact metric manifolds, called almost Kenmotsu manifolds. The paper is organized as follows:

In section 2, we present some preliminary notions on almost Kenmotsu manifolds existing in the literature. Section 3 deals with HPCV fields on almost Kenmotsu manifolds and section 4 is associated to the study of HPCV fields on $(k, \mu)'$-almost Kenmotsu manifolds.

2. Preliminaries

An almost contact structure on a $(2n + 1)$-dimensional smooth manifold M^{2n+1} is a triplet (ϕ, ξ, η), where ϕ is a $(1,1)$-tensor, ξ is a global vector field and η is a 1-form satisfying ([1], [2]),

$$\phi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1,$$

where I denote the identity endomorphism. Here also $\phi \xi = 0$ and $\eta \circ \phi = 0$ hold; both can be derived from (2.1) easily.

If a manifold M with a (ϕ, ξ, η)-structure admits a Riemannian metric g such that

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y),$$

for any vector fields X, Y on M^{2n+1}, then M^{2n+1} is said to be an almost contact metric manifold. The fundamental 2-form Φ on an almost contact metric manifold is defined by

$$\Phi(X, Y) = g(X, \phi Y)$$

for any vector fields X, Y on M^{2n+1}. The condition for an almost contact metric manifold being normal is equivalent to vanishing of the $(1,2)$-type torsion tensor N_ϕ, defined by

$$N_\phi = [\phi, \phi] + 2d\eta \otimes \xi,$$

where $[\phi, \phi]$ is the Nijenhuis tensor of ϕ [1]. Recently in ([8], [9], [10]), almost contact metric manifold such that η is closed and $d\Phi = 2\eta \wedge \Phi$ are studied and they are called almost Kenmotsu manifolds. For more details on almost Kenmotsu manifolds we refer the reader to go through the references ([4], [9], [10]). Obviously, a normal almost Kenmotsu manifold is a Kenmotsu manifold. Also Kenmotsu manifolds can be characterized by

$$(\nabla_X \phi)Y = g(\phi X, Y)\xi - \eta(Y)\phi X,$$
for any vector fields X, Y. Let the distribution orthogonal to ξ is denoted by \mathcal{D}, then $\mathcal{D} = Im(\phi) = Ker(\eta)$. Since η is closed, \mathcal{D} is an integrable distribution.

The study of nullity distributions is a very interesting topic on almost contact metric manifolds. The notion of k-nullity distribution was introduced by Gray [13] and Tanno [18] in the study of Riemannian manifolds. Blair, Koufogiorgos and Papantonio [3] introduced the generalized notion of the k-nullity distribution, named the (k, μ)-nullity distribution on a contact metric manifold. In [8], Dileo and Pastore introduce the notion of $(k, \mu)'$-nullity distribution, another generalized notion of the k-nullity distribution, on an almost Kenmotsu manifold $(M^{2n+1}, \phi, \xi, \eta, g)$, which is defined for any $p \in M^{2n+1}$ and $k, \mu \in \mathbb{R}$ as follows:

$$N_p(k, \mu)' = \{Z \in T_pM : R(X, Y)Z = k[g(Y, Z)X - g(X, Z)Y] + \mu[g(Y, Z)h'X - g(X, Z)h'Y]\},$$

(2.2)

where $h' = h \circ \phi$.

Let M^{2n+1} be an almost Kenmotsu manifold with structure (ϕ, ξ, η, g). The Levi-Civita connection satisfies $\nabla_\xi \xi = 0$ and $\nabla_\xi \phi = 0$. We denote by $h = \frac{1}{2}\xi \phi$ and $l = R(\cdot, \xi)\xi$ on M^{2n+1}. The tensor fields l and h are symmetric operators and satisfy the following relations [15]:

$$h\xi = 0, \ l\xi = 0, \ tr(h) = 0, \ tr(h\phi) = 0, \ h\phi + \phi h = 0,$$

(2.3)

We also have the following formulas given in (8 - 10)

$$\nabla_X \xi = X - \eta(X)\xi - \phi hX,$$

(2.4)

$$R(X, Y)\xi = \eta(X)(Y - \phi hY) - \eta(Y)(X - \phi hX) + (\nabla_Y \phi h)X - (\nabla_X \phi h)Y,$$

(2.5)

$$(\nabla_X \phi)Y - (\nabla_Y \phi)\phi Y = -\eta(Y)\phi X - 2g(X, \phi Y)\xi - \eta(Y)hX,$$

(2.6)

for any X, Y on M^{2n+1}. The $(1,1)$-type symmetric tensor field $h' = h \circ \phi$ is anticommuting with ϕ and $h'\xi = 0$. Also it is clear that $(8, 20)$

$$h = 0 \iff h' = 0, \ h^2 = (k + 1)\phi^2 \iff h^2 = (k + 1)\phi^2.$$

(2.7)

3. HPCV fields on almost Kenmotsu manifolds

In this section we characterize almost Kenmotsu manifolds admitting a holomorphically planar conformal vector field V. Before proving our main theorems we first state and prove the following lemma.

Lemma 3.1. Let M^{2n+1} be an almost Kenmotsu manifold admitting a HPCV field V. Then the following relation

$$\phi V a = 4nb\eta(V) + (\xi b)\eta(V) - Vb$$

holds on M^{2n+1}.

Proof: Differentiating (1.2) covariantly along any vector field Y, we have

$$\nabla_Y \nabla_X V = a(\nabla_Y X) + (Ya)X + b(\nabla_Y \phi X) + (Yb)\phi X.$$

(3.1)

Interchanging X and Y in the above equation, we get

$$\nabla_X \nabla_Y V = a(\nabla_X Y) + (Xa)Y + b(\nabla_X \phi Y) + (Xb)\phi Y.$$

(3.2)

Replacing X by $[X, Y]$ in (1.2) yields

$$\nabla_{[X,Y]} V = a(\nabla_X Y) - a(\nabla_Y X) + b(\nabla_X \phi Y) - b(\nabla_Y X).$$

(3.3)
Now using $R(X,Y)Z = [\nabla_X, \nabla_Y]Z - \nabla_{[X,Y]}Z$ gives
\begin{equation}
R(X,Y)V = (Xa)Y - (Ya)X + (Xb)\phi Y - (Yb)\phi X \\
+ b[(\nabla_X^\phi)Y - (\nabla_Y^\phi)X].
\end{equation}
(3.4)

Putting $X = \phi X$ and $Y = \phi Y$ in (3.4) we get
\begin{align*}
R(\phi X, \phi Y)V &= (\phi Xa)\phi Y - (\phi Ya)\phi X + (\phi Xb)[-Y + \eta(Y)\xi] \\
&\quad - (\phi Yb)[-X + \eta(X)\xi] + b[(\nabla_{\phi X}^\phi)\phi Y - (\nabla_{\phi Y}^\phi)\phi X].
\end{align*}
(3.5)

Now adding equations (3.4) and (3.5) and using (2.6) we have
\begin{align*}
R(X,Y)V + R(\phi X, \phi Y)V &= (Xa)Y - (Ya)X + (Xb)\phi Y - (Yb)\phi X \\
&\quad + (\phi Xa)\phi Y - (\phi Ya)\phi X - (\phi Xb)Y \\
&\quad + (\phi Xb)\eta(Y)\xi + (\phi Yb)X - (\phi Yb)\eta(X)\xi \\
&\quad + b[-\eta(Y)\phi X - 2g(X,\phi Y)\xi - \eta(Y)hX \\
&\quad + \eta(X)\phi Y + 2g(\phi X,\phi Y)\xi + \eta(X)hY].
\end{align*}
(3.6)

Taking inner product of (3.6) with V and then substituting $X = \phi X$ and $Y = \phi Y$ yields
\begin{align*}
(\phi Xa)g(\phi Y, V) - (\phi Ya)g(\phi X, V) + (\phi Xb)\eta(Y)\eta(V) \\
- (\phi Yb)\eta(Y)\eta(V) \\
- [\eta(Y)\xi(a)[-g(X, \phi Y) + \eta(X)\eta(V)] \\
- [\eta(Y)\xi(b)[4g(\phi X, V) - 4b\phi Y, \phi Y)\eta(V) = 0.
\end{align*}
(3.7)

Now replacing Y by ϕY in the foregoing equation we obtain
\begin{align*}
-g(\phi Da, X)[-g(Y, V) + \eta(Y)\eta(V)] + g(Da, Y)g(\phi X, V) - \eta(Y)(\xi a)g(\phi X, V) \\
+ g(\phi Db, X)g(Y, V) + g(Db, Y)[-g(X, V) + \eta(X)\eta(V)] - \eta(Y)(\xi b)[-g(X, V) \\
+ \eta(X)\eta(V)] + g(Db, Y)[-g(Y, V) + \eta(Y)\eta(V)] - \eta(X)(\xi b)[-g(Y, V) \\
+ \eta(Y)\eta(V)] - g(Db, Y)g(\phi X, V) + 4b\eta(X, \phi Y)\eta(V) - 4b\eta(X, \phi Y)\eta(V) = 0.
\end{align*}
(3.8)

Contracting X and Y in (3.8) we have
\[-2\phi V a - 2V b + 2(\xi b)\eta(V) + 8nb\eta(V) = 0,
\]
which implies
\[\phi V a = 4nb\eta(V) + (\xi b)\eta(V) - V b. \quad (3.9)\]
This completes the proof.

Theorem 3.2. If an almost Kenmotsu manifold M^{2n+1} admits a non-zero HPCV field V such that $\phi V = 0$, then M^{2n+1} is locally a warped product of an almost Kaehler manifold and an open interval.

Proof. Let M^{2n+1} be an almost Kenmotsu manifold admitting a non-zero HPCV field V such that $\phi V = 0$. Operating ϕ on it we get
\[V = \eta(V)\xi. \quad (3.10)\]
Now using (3.10) and $\phi V = 0$ in Lemma 3.1 we have $4nb\eta(V) = 0$, which implies either $b = 0$ or $\eta(V) = 0$. If $\eta(V) = 0$, then from (3.10) we have $V = 0$, which is a contradiction to our hypothesis. Thus we get $b = 0$.

Differentiating (3.10) covariantly along any vector field \(X \) and using \(b = 0, \phi V = 0, (1.2) \) and (2.4) we obtain
\[
a X = a \eta(X) \xi + g(X, V) \xi - 2\eta(X) \eta(V) \xi + \eta(V) X - \eta(V) \phi h X. \tag{3.11}
\]
Contracting \(X \) and using (2.3) in (3.11) yields \(a = \eta(V) \). Substituting the value of \(a \) in (3.11) we get
\[
g(X, V) \xi - \eta(X) \eta(V) \xi - \eta(V) \phi h X = 0. \tag{3.12}
\]
Replacing \(X \) by \(\phi X \) in the above equation and using the hypothesis \(\phi V = 0 \) and \(\eta(V) \neq 0 \) we infer that \(h X = 0 \) for any vector field \(X \) on \(M^{2n+1} \). The rest of the proof follows from Theorem 2 of [10].

Proposition 1 of [10] says that "In an almost Kenmotsu manifold \(M^{2n+1} \), the integral manifolds of \(D \) are totally umbilical submanifolds of \(M^{2n+1} \) if and only if \(h \) vanishes ". Hence, we can state the following:

Corollary 3.3. Let \(M^{2n+1} \) be an almost Kenmotsu manifold admitting a non-zero HPCV field \(V \) such that \(\phi V = 0 \). Then the integral manifolds of \(D \) are totally umbilical submanifolds of \(M^{2n+1} \).

Corollary 3.4. If a locally symmetric almost Kenmotsu manifold \(M^{2n+1} \) admits a non-zero HPCV field \(V \) such that \(\phi V = 0 \), then \(M^{2n+1} \) is a Kenmotsu manifold.

The above Corollary follows directly from Theorem 3 of [10].

Proposition 2.1 of [19] states that "Any 3-dimensional almost Kenmotsu manifold is Kenmotsu if and only if \(h \) vanishes ". Thus we arrive to the following:

Corollary 3.5. A 3-dimensional almost Kenmotsu manifold \(M^{2n+1} \) admitting a non-zero HPCV field \(V \) such that \(\phi V = 0 \) is a Kenmotsu manifold.

Theorem 3.6. Let \(M^{2n+1} \) be a complete almost Kenmotsu manifold admitting a non-zero HPCV field \(V \). If \(M^{2n+1} \) has positive constant \(\xi \)-sectional curvature, then either \(M^{2n+1} \) is locally a warped product of an almost Kaehler manifold and an open interval or isometric to a sphere.

Proof. If the sectional curvature \(K(\xi, X) = c \) of an almost Kenmotsu manifold is a positive constant, then we can easily obtain the following:
\[
R(\xi, X)\xi = -c[X - \eta(X)\xi]. \tag{3.13}
\]
Now putting \(X = \xi \) in (3.4) we have
\[
R(\xi, Y)V = (\xi a)Y - (Ya)\xi + (\xi b)\phi Y + b\phi Y + bh Y. \tag{3.14}
\]
Taking inner product of (3.14) with \(\xi \) we get
\[
g(R(\xi, Y)V, \xi) = (\xi a)\eta(Y) - (Ya). \tag{3.15}
\]
Again using (3.13) we have
\[
g(R(\xi, Y)V, \xi) = -g(R(\xi, Y)\xi, V) = c[g(Y, V) - \eta(Y)\eta(V)]. \tag{3.16}
\]
Hence from (3.15) and (3.16) we obtain
\[
Da - (\xi a)\xi + cV - c\eta(V)\xi = 0. \tag{3.17}
\]
Taking inner product of (3.14) with \(V \) we get
\[
(\xi a)V - \eta(V)(Da) - (\xi b)\phi V - b\phi V + bh V = 0. \tag{3.18}
\]
Eliminating Da from (3.17) and (3.18) we have
\[-(\xi a)\phi^2 V - c\eta(V)\phi^2 V - (\xi b)\phi V - b\phi V + bh V = 0. \tag{3.19}\]
Now differentiating (3.17) covariantly along any vector field X and then taking inner product of the resulting equation with Y we infer
\[g(\nabla_X Da, Y) - (\xi a)[g(X, Y) - \eta(X)\eta(Y) - g(\phi hX, Y)] - (X(\xi a))\eta(Y) + c[a\phi g(X, Y) + b\phi g(X, Y)] - c\eta(V)[g(X, V) - \eta(X)\eta(V)] + a\eta(X)]
\[= -c\eta(V)[g(X, V) - \eta(X)\eta(V)] - g(\phi hX, Y)] = 0. \tag{3.20}\]
Antisymmetrizing the above equation and using the symmetry of the Hessian operator, that is, $\text{Hess}_a(X, Y) = g(\nabla_X Da, Y) = g(\nabla_Y Da, X)$ we obtain
\[(Y(\xi a))\eta(X) - (X(\xi a))\eta(Y) + 2bcg(\phi X, Y)
- c\eta(Y)g(X, V) + c\eta(X)g(Y, V) = 0. \tag{3.21}\]
Replacing X by ϕX and Y by ϕY in (3.21) we get $2bcg(\phi X, Y) = 0$, which implies $b = 0$ as c is non-zero constant by hypothesis. Then from (3.18) we have
\[(\xi a)V = (Da)\eta(V). \tag{3.22}\]
Also from (3.19) we obtain
\[[c\eta(V)\phi^2 V = 0, \tag{3.23}\]
which implies either $\phi^2 V = 0$ or $(\xi a) = -c\eta(V)$.

Case 1: If $\phi^2 V = 0$, then we have $V = \eta(V)\xi$ and this implies $\phi V = 0$. Thus from Theorem 3.2 we infer that M^{2n+1} is locally a warped product of an almost Kaehler manifold and an open interval.

Case 2: If $(\xi a) = -c\eta(V)$, then from (3.22) we have
\[(Da + cV)\eta(V) = 0. \tag{3.24}\]
Now if $\eta(V) = 0$, then from (3.22) we have $\xi a = 0$ as V is non-zero. Hence from (3.17) we get $Da = -cV$. Thus in either cases we obtain $Da = -cV$. Differentiating this covariantly along any vector field X and using (1.2) we have $\nabla_X Da = -caX$. We are now in a position to apply Obata’s theorem [14]: ” In order for a complete Riemannian manifold of dimension $n \geq 2$ to admit a non-constant function λ with $\nabla_X D\lambda = -c^2\lambda X$ for any vector X, it is necessary and sufficient that the manifold is isometric with a sphere $S^n(c)$ of radius $\frac{1}{\sqrt{c}}$ ” to conclude that the manifold is isometric to the sphere $S^{2n+1}(\sqrt{c})$ of radius $\frac{1}{\sqrt{c}}$.

4. HPCV fields on a class of almost Kenmotsu manifolds

In this section, we study HPCV fields on almost Kenmotsu manifolds with ξ belonging to the $(k, \mu)'$-nullity distribution. Let $X \in \mathcal{D}$ be the eigen vector of h' corresponding to the eigen value λ. Then from (2.7) it is clear that $\lambda^2 = -(k + 1)$, a constant. Therefore $k \leq -1$ and $\lambda = \pm \sqrt{-k - 1}$. We denote by $[\lambda]'$ and $[-\lambda]'$ the corresponding eigenspaces related to the non-zero eigenvalue λ and $-\lambda$ of h', respectively. Before proving our main theorem in this section we recall some results:

Lemma 4.1. (Prop. 4.1 of [8]) Let $(M^{2n+1}, \phi, \xi, \eta, g)$ be an almost Kenmotsu manifold such that ξ belongs to the $(k, \mu)'$-nullity distribution and $h' \neq 0$. Then $k < -1$, $\mu = -2$ and $\text{Spec}(h') = \{0, \lambda, -\lambda\}$, with 0 as simple eigen value and $\lambda = \sqrt{-k - 1}$. The distributions $[\xi] \oplus [\lambda]'$ and $[\xi] \oplus [-\lambda]'$ are integrable with totally geodesic leaves. The
Proof.\ Substituting V field V manifold or Theorem 4.4.\ A (Lemma 4.2.\ X Equations (8.3) and g Taking inner product of (8.4), $\lambda \in \mathbb{R}$, $X, Y \in \mathcal{D}$, $\lambda \in [-\lambda']$, λ such that $\xi \in [\lambda']$ and $X, Y \in [-\lambda']$.\ M^{2n+1} has constant negative scalar curvature $r = 2n(k - 2n)$.

Lemma 4.2. (Lemma 4.1 of [8]) Let $M^{2n+1}, \phi, \xi, \eta, \gamma$ be an almost Kenmotsu manifold with $h' \neq 0$ and ξ belongs to the $(k, -2)'$-nullity distribution. Then, for any $X, Y \in \chi(M^{2n+1})$,

$$$(4.1) (\nabla_X h')Y = -g(h'X + h'^2X, Y)\xi - \eta(Y)(h'X + h'^2X)$$$

Lemma 4.3. (Prop. 4.2 of [8]) Let $M^{2n+1}, \phi, \xi, \eta, \gamma$ be an almost Kenmotsu manifold such that $h' \neq 0$ and ξ belongs to the $(k, -2)'$-nullity distribution. Then for any $X, Y, Z \in [\lambda']$ and $X, Y, Z \in [-\lambda']$, the Riemann curvature tensor satisfies:

$$R(X, Y)Z - \lambda = 0,$$

$$R(X, Y)Z = 0,$$

$$R(X, Y)Z - \lambda = (k + 2)g(X, Z)Y - \lambda,$$

$$R(X, Y)Z + \lambda = -(k + 2)g(Y, Z)X + \lambda,$$

$$R(X, Y)Z - \lambda = (k - 2\lambda)[g(Y, Z)X - g(X, Z)Y],$$

$$R(X, Y)Z + \lambda = (k + 2\lambda)[g(Y, Z)X - g(X, Z)Y].$$

From (2.2) we have

$$R(X, Y)\xi = k[\eta(Y)X - \eta(X)Y] + \mu[\eta(Y)h'X - \eta(Y)h'Y], \tag{4.2}$$

where $k, \mu \in \mathbb{R}$. Also we get from (4.2)

$$R(\xi, X)Y = k[g(X, Y)\xi - \eta(Y)X] + \mu[g(h'X, Y)\xi - \eta(Y)h'X]. \tag{4.3}$$

Theorem 4.4. A $(k, \mu)'$-almost Kenmotsu manifold with $h' \neq 0$ admitting a HPCV field V such that $\phi V \neq 0$ is either locally isometric to the Riemannian product of an $(n+1)$-dimensional manifold of constant sectional curvature -4 and a flat n-dimensional manifold or V is an eigenvector of h'.

Proof. Substituting $X = \xi$ in (3.4) we have

$$R(\xi, Y)V = (\xi a)V - (Y a)\xi + (\xi b)\phi Y + b\phi Y + bh Y. \tag{4.4}$$

Taking inner product of (4.4) with ξ we obtain

$$g(R(\xi, Y)V, \xi) = (\xi a)\eta(Y) - (Y a). \tag{4.5}$$

Making use of (4.2) we get

$$g(R(\xi, Y)V, \xi) = -g(R(\xi, Y)\xi, V) = -k\eta(Y)\eta(V) + kg(Y, V) - 2g(h'Y, V). \tag{4.6}$$

Equations (4.5) and (4.6) together implies

$$-k\eta(Y)\eta(V) + kg(Y, V) - 2g(h'Y, V) = (\xi a)\eta(Y) - (Y a), \tag{4.7}$$
which implies
\[-k\eta(V)\xi + kV - 2h'V = (\xi a)\xi - Da. \quad (4.8)\]

Now taking inner product of (4.4) with \(V \) gives
\[(\xi a)g(Y, V) - (Y a)\eta(V) + (\xi b)g(\phi Y, V) + bg(\phi Y, V) + bg(hY, V) = 0,
\]
which implies
\[(\xi a)V - (Da)\eta(V) - (\xi b)\phi V - b\phi V + bhV = 0. \quad (4.9)\]

Eliminating \(Da \) from (4.8) and (4.9) we have
\[-(\xi a)\phi^2V - k\eta(V)\phi^2V - 2\eta(V)h'V - (\xi b)\phi V - b\phi V + bhV = 0. \quad (4.10)\]

Differentiating (4.8) covariantly along any vector field \(X \) and using (1.2), (2.4), Lemma 4.2 and the value of \(\mu \) from Lemma 4.1 we infer
\[-k[g(X - \eta(X))\xi - \phi hX, V] + g(\xi, aX + b\phi X)]\xi - k\eta(V)[X - \eta(X)\xi - \phi hX] \nonumber
\]
\[+ k[aX + b\phi X] - 2[-g(h'X + h^2X, V)\xi - \eta(V)(h'X + h^2X) + h'(aX + b\phi X)] \nonumber
\]
\[= (\xi a)[X - \eta(X)\xi - \phi hX] + (X(\xi a))\xi - \nabla X Da. \nonumber\]

Taking inner product of the foregoing equation with \(Y \) we obtain
\[-k[g(X, V) - \eta(X)\eta(V) - g(\phi hX, V) + a\eta(X)]\eta(Y) - k\eta(V)[g(X, Y)] \nonumber
\]
\[+ \eta(X)\eta(Y) - g(\phi hX, Y)] + k[a g(X, Y) + bg(\phi X, Y)] - 2[-g(h'X + h^2X, V)\eta(Y) + g(\phi hX, Y)] \nonumber
\]
\[= (\xi a)[g(X, Y) - \eta(Y)\eta(X)] + (X(\xi a))\eta(Y) - g(\nabla X Da, Y(\xi a)). \quad (4.11)\]

Antisymmetrizing the above equation and using the symmetry of the Hessian operator, that is, \(\text{Hess}_a(X, Y) = g(\nabla X Da, Y) = g(\nabla Y Da, X) \) we obtain
\[-k[g(X, V)\eta(Y) - g(Y, V)\eta(X) - g(\phi hX, V)\eta(Y) + g(\phi hY, V)\eta(X)] \nonumber
\]
\[+ 2kbg(\phi X, Y) - 2[-g(h'X + h^2X, V)\eta(Y) + g(h'Y + h^2Y, V)\eta(X)] \nonumber
\]
\[= (X(\xi a))\eta(Y) - (Y(\xi a))\eta(X). \quad (4.12)\]

Putting \(X = \phi X \) and \(Y = \phi Y \) in the previous equation we infer that \(2kbg(\phi X, Y) = 0, \) which implies \(b = 0 \) as \(k < -1. \) Hence from (4.9) we have
\[(\xi a)V = (Da)\eta(V). \quad (4.13)\]

Now letting \(Y \in [\lambda]' \) in (4.7) yields
\[(k - 2\lambda)g(Y, V) = -(Ya), \]
which implies
\[Da = (2\lambda - k)V \quad \text{and} \quad (\xi a) = (2\lambda - k)\eta(V). \quad (4.14)\]

Now using \(b = 0 \) and the value of \((\xi a) \) from (4.14) in (4.10) we have
\[2(\lambda + 1)\eta(V)(h'V + \phi^2V) = 0, \quad (4.15)\]
which implies either \(\lambda = -1 \) or \(\eta(V) = 0 \) or \(h'V = -\phi^2V. \)

Case 1: If \(\lambda = -1, \) then from \(\lambda^2 = -(k - 1) \) we obtain \(k = -2. \) Now letting \(X, Y, Z \in [\lambda]' \) and noticing that \(k = -2, \lambda = -1, \) from Lemma 4.3 we have
\[R(X_{-\lambda}, Y_{-\lambda})Z_{-\lambda} = 0, \]
and
\[R(X_{-\lambda}, Y_{-\lambda})Z_{-\lambda} = -4[g(Y_{-\lambda}, Z_{-\lambda})X_{-\lambda} - g(X_{-\lambda}, Z_{-\lambda})Y_{-\lambda}], \]
for any $X_{\lambda}, Y_{\lambda}, Z_{\lambda} \in [\lambda]'$ and $X_{-\lambda}, Y_{-\lambda}, Z_{-\lambda} \in [-\lambda]'$. Also noticing $\mu = -2$ it follows from Lemma 4.1 that $K(X, \xi) = -4$ for any $X \in [-\lambda]'$ and $K(X, \xi) = 0$ for any $X \in [\lambda]'$. Again from Lemma 4.1 we see that $K(X, Y) = -4$ for any $X, Y \in [-\lambda]'$ and $K(X, Y) = 0$ for any $X, Y \in [\lambda]'$. As is shown in [8] that the distribution $[\xi] \oplus [\lambda]'$ is integrable with totally geodesic leaves and the distribution $[-\lambda]'$ is integrable with totally umbilical leaves by $H = -(1 - \lambda)\xi$, where H is the mean curvature tensor field for the leaves of $[-\lambda]'$ immersed in M^{2n+1}. Here $\lambda = -1$, then the two orthogonal distributions $[\xi] \oplus [\lambda]'$ and $[-\lambda]'$ are both integrable with totally geodesic leaves immersed in M^{2n+1}. Then we can say that M^{2n+1} is locally isometric to $\mathbb{H}^{n+1}(-4) \times \mathbb{R}^n$.

Case 2: If $\eta(V) = 0$, then from (4.14) we have $(\xi a) = 0$. Then from (4.8) we have $Da = 2h'V - kV$. Now equating the value of Da from this and (4.14) we get $h'V = \lambda V$. This shows that V is an eigenvector of h'.

Case 3: If $h'V = -\phi V = V - \eta(V)\xi$, then applying h' on both side of it we have $h^2V = h'V$. Hence using (2.7) we obtain $-(k + 2)(V - \eta(V)\xi) = 0$. Now $V - \eta(V)\xi \neq 0$ as $\phi V \neq 0$ by hypothesis. Therefore, we have $k = -2$. Now from $\lambda^2 = -k - 1$, we obtain $\lambda^2 = 1$. Without loss of generality we assume that $\lambda = -1$. Then by the same argument as in Case 1 we get M^{2n+1} is locally isometric to $\mathbb{H}^{n+1}(-4) \times \mathbb{R}^n$. This completes the proof.

Example. In [7], the author present an example of a 5-dimensional $(k, \mu)'$-almost Kenmotsu manifold with $k = -2$ and $\mu = -2$. Then by the same argument as in Case 1 of Theorem 4.4, M^5 is locally isometric to $\mathbb{H}^{3}(-4) \times \mathbb{R}^2$.

Let $X = \alpha_1(\xi_1 + \alpha_2e_2 + \alpha_3e_3 + \alpha_4e_4 + \alpha_5e_5)$ be any vector field on M^5 and let $V = e_4$. Then, $\nabla_XV = 0 = \alpha e_X + b\phi X$, where $a = b = 0$. Hence, $V = e_4$ is an example of a HPCV field, where $\phi V = \phi e_4 = -e_2 \neq 0$. Hence, Theorem 4.4 is verified.

Acknowledgement: The author Dibakar Dey is supported by the Council of Scientific and Industrial Research, India (File no: 09/028(1010)/2017-EMR-1) in the form of Senior Research Fellowship.

References

[1] D. E. Blair, Contact manifold in Riemannian Geometry. Lecture Notes on Mathematics, Springer, Berlin, 509 (1976).

[2] D. E. Blair, Riemannian Geometry on contact and symplectic manifolds, Progr. Math., Birkhäuser, Boston, 203 (2010).

[3] D. E. Blair, T. Koufogiorgos and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel. J. Math. 91 (1995), 189-214.

[4] U. C. De and D. Dey, Pseudo-symmetric structures on almost Kenmotsu manifolds with nullity distributions, Acta Comment. Univ. Tartu. Math. 23(2019), 13-24.

[5] S. Deshmukh, Gradient conformal vector fields on a compact Riemannian manifold, Colloq. Math. 112 (2008), 157-161.

[6] S. Deshmukh and F. Alsalamy, Conformal vector fields on a Riemannian manifold, Balkan J. Geom. Appl. 19 (2014), 86-93.

[7] D. Dey, A note on two classes of ξ-conformally flat almost Kenmotsu manifolds, Konuralp J. Math. 7(2019), 388-394.
[8] G. Dileo and A. M. Pastore, *Almost Kenmotsu manifolds and nullity distributions*, J. Geom. **93** (2009), 46-61.

[9] G. Dileo and A. M. Pastore, *Almost Kenmotsu manifolds with a condition of \(\eta\)-parallelism*, Differential Geom. Appl. **27** (2009), 671-679.

[10] G. Dileo and A. M. Pastore, *Almost Kenmotsu manifolds and local symmetry*, Bull. Belg. Math. Soc. Simon Stevin, **14** (2007), 343-354.

[11] A. Ghosh, *Holomorphically planar conformal vector fields on contact metric manifolds*, Acta Math. Hungar. **129** (2010), 357-367.

[12] A. Ghosh and R. Sharma, *Almost Hermitian manifolds admitting holomorphically planar conformal vector fields*, J. Geom. **84** (2005), 45-54.

[13] A. Gray, *Spaces of constancy of curvature operators*, Proc. Amer. Math. Soc. **17** (1966), 897-902.

[14] M. Obata, *Certain conditions for a Riemannian manifold to be isometric with a sphere*, J. Math. Soc. Japan., **14** (1962), 333-340.

[15] A. M. Pastore and V. Saltarelli, *Generalized nullity distribution on almost Kenmotsu manifolds*, Int. Elec. J. Geom. **4** (2011), 168-183.

[16] R. Sharma, *Holomorphically planar conformal vector fields on almost Hermitian manifolds*, Contemp. Math. **337**(2003), 145-154.

[17] R. Sharma, *Certain results on K-contact and \((k,\mu)\)-contact manifolds*, J. Geom. **89** (2008), 138-147.

[18] S. Tanno, *Some differential equations on Riemannian manifolds*, J. Math. Soc. Japan, **30** (1978), 509-531.

[19] Y. Wang, *Conformally flat almost Kenmotsu 3-manifolds*, Mediterr. J. Math. **14** (2017): 186.

[20] Y. Wang and X. Liu, *Riemannian semi-symmetric almost Kenmotsu manifolds and nullity distributions*, Ann. Polon. Math. **112** (2014), 37-46.