Vascular plant checklist in an area of extreme biological importance: filling gaps in the Caparaó National Park-ES, Brazil

Eduardo Alves Araújo, Sustanis Horn Kunz, Henrique Machado Dias, João Paulo Fernandes Zorzanelli, & Rafael Marian Callegaro

1Universidade Federal do Espírito Santo, NUPEMASE, Herbário Capixaba (CAP), Av. Governador Carlos Lindenberg, 316, 29550-000, Jerônimo Monteiro, ES, Brasil.
2Universidade Federal do Espírito Santo, Centro de Ciências Agrárias e Engenharias, Departamento de Ciências Florestais e da Madeira, NUPEMASE, Jerônimo Monteiro, ES, Brasil.
3Instituto Nacional da Mata Atlântica, Santa Teresa, ES, Brasil.
4Universidade Federal do Pampa, Campus São Gabriel, RS, Brasil.
*Corresponding author: Henrique Machado Dias, e-mail: henridias@yahoo.com.br

ARAÚJO, E.A., KUNZ, S.H., DIAS, H.M., ZORZANELLI, J.P.F., CALLEGARO, R.M. Vascular plant checklist in an area of extreme biological importance: filling gaps in the Caparaó National Park-ES, Brazil. Biota Neotropica 21(1): e20201024. https://doi.org/10.1590/1676-0611-BN-2020-1024

Abstract: Regional floristic lists are essential for defining biodiversity conservation strategies and are key to assist in filling knowledge gaps. They aim to provide a data source for applying tools to reduce extinction rates and to conserve ecosystems. Herein we present the results of an inventory of vascular plants in a rainforest in the Caparaó National Park (CNP) and approach their implications for conservation and management of this protected area and the surrounding communities. We conducted botanical expeditions between the years 2012 and 2017 in a montane and upper-montane forest of the CNP. We found 361 species distributed in 78 families and 181 genera. The study area is home to new species for science that were recently described in other publications outside that location, and 4 new records for Espírito Santo State; also 43 species listed in different extinction threat categories (VU, EN and CR) and another 190 categorized with lesser concerns (LC and NT). The families with the highest species richness were: Melastomataceae (41 spp.), Lauraceae and Myrtaceae (30), Orchidaceae (26), Rubiaceae (24), and Asteraceae (20). Our results contribute to greater knowledge of the CNP flora, of the montane environments in Brazil and the vegetation of Espírito Santo state, in addition to demonstrate the importance of this protected area to the conservation Atlantic Forest biodiversity.

Keywords: Neotropical region, Atlantic Forest, nature conservation, endangered species, regional flora.

Checklist de plantas vasculares em uma área de extrema importância biológica: preenchendo lacunas no Parque Nacional do Caparaó-ES, Brasil

Resumo: As listas florísticas regionais são essenciais para definir estratégias de conservação da biodiversidade e importantes instrumentos para preencher lacunas de conhecimento. O objetivo foi fornecer uma base de dados para a conservação da biodiversidade e manejo do ecossistema. Realizamos expedientes botânicas entre os anos de 2012 e 2017 em uma floresta ombrófila densa no Parque Nacional Caparaó e abordamos suas implicações para a conservação e manejo desta área protegida e das comunidades do entorno. Foram encontradas 361 espécies distribuídas em 78 famílias e 181 gêneros. A área abriga novas espécies para ciência que foram recentemente descritas em outras publicações fora dessa localidade, e 4 novos registros para Espírito Santo; também 43 espécies listadas em diferentes categorias de ameaça de extinção (VU, EN, CR) e outras 190 categorizadas com menores preocupações (LC e NT). As famílias com maior riqueza de espécies foram: Melastomataceae (41 spp.), Lauraceae e Myrtaceae (30), Orchidaceae (26), Rubiaceae (24), e Asteraceae (20). Nossos resultados contribuem para um maior conhecimento da flora do Parque, de montanhas do Brasil e da vegetação do Espírito Santo, além de demonstrar a importância dessa área protegida para a conservação da biodiversidade da Mata Atlântica.

Palavras-chave: Região neotropical, Floresta Atlântica, conservação da natureza, espécies ameaçadas.
Introduction

Regional floristic listings consist of important tools for designing conservation plans and actions for different ecosystems, and forms the essential basis for biodiversity management, developing of regional flora projects, supporting knowledge expansion. Despite the need for cataloguing biological diversity globally, especially in biodiversity hotspots (Myers et al. 2000, Mittermeier et al. 2004), the number of large expeditions like those carried out in the past by great naturalists, for instance, von Martius, Saint Hilaire and more recently A.C. Brade, were considerably reduced (Christenhusz & Byng 2016) and there are no more. However, regional floristic surveys have been growing in the tropical region, enabling estimation of plant species richness in these tropical regions (Slik et al. 2015).

Brazil is the country that has the greatest plant richness in the world, with an estimated 34,459 species of vascular plants (BFG 2018). However, the state of knowledge on flora is still incipient in many regions of the country, as occurs in the Atlantic Forest, including protected areas (Lima et al. 2015, Zappi et al. 2016, Oliveira et al. 2017), which have the conservation of plant species among their goals. Despite this, many species of vascular plants are listed as “data deficient” (Sousa-Baena et al. 2014), compromising actions for their conservation.

The lack of floristic studies in forest remnants in Brazil, especially those in which the access is difficult, such as mountain areas, leads to a lack of data in estimating the richness, as well as the occurrence of species (Giulietti et al. 2009). Thus, the restricted knowledge on the distribution of species due to the low number of floristic inventories in some regions creates gaps and makes it harder to make decisions of public politics, since these studies work as tools for identifying potential places for the conservation, or even for establishing new strategies in areas already under protection regimes (IUCN 2017). Floristic inventories, in addition to generating information about the species composition of a certain area, also enable the feed a database that will serve as the basis for other taxonomic and ecologic studies, as well as studies on the restoration of degraded areas (Souza et al. 2009).

Given these justifications and for being recognized as an important Atlantic Forest remnant, as well as being in a priority area for conservation and having extremely high biological importance (Ministério do Meio Ambiente - MMA 2007), the efforts to know the flora in the Caparão National Park (CNP) has started with the pioneering study by Brade (1942) has been expanding over the last decade (Mazine & Souza 2008; Forster & Souza 2013, Couto et al. 2016, Machado et al. 2016, Zorzaneli et al 2016, Araujo et al. 2018, Campos et al. 2018), beyond fascicles published by the herbarium “Guido Pabst” (GFJP). Recently, the list of plants from CNP was made available on the digital platform “Catálogo de Plantas das Unidades de Conservação do Brasil” (https://catalogo-ucs-brasil.jbrj.gov.br/), where there are 1,789 species of 714 genera and 198 botanical families, of these, 1,292 are angiosperms, 37 lycophytes, 262 ferns and 198 are avascular plants (Carrijo et al. 2020).

Therefore, herein we present the results of a floristic inventory of vascular plants in a rainforest in the CNP and approach its implications for the handling and conservation of this protected area. Moreover, we collaborate to fill the knowledge gaps for mountain environments in Brazil. Our intent is to show that floristic listings of plant species are indispensable tools for biodiversity conservation and that they should be encouraged.

Materials and methods

1. Study area

The Caparão National Park (CNP) is a protected area located between Espírito Santo and Minas Gerais states (Figure 1), within the Serra da Mantiqueira mountain range (20º18’ - 20º37’S and 41º42’ - 41º52’W). The park has 31,853.12 ha area, with 79% of being within the state of Espirito Santo (ICMBio 2015). It is located in the Atlantic Forest domain and protects different vegetation formations, such as montane forests (Dense Ombrophilous Forest and Semi-deciduous Seasonal Forest), high-altitude grasslands, and inselbergs (IBGE 2012, ICMBIO 2015, Couto et al. 2016, Campos et al. 2018). The Dense Ombrophilous Forest are exclusive to the Espírito Santo state side of the Park.

The CNP surrounding areas consist mostly of agricultural and cattle ranching, with emphasis on coffee and cattle farming, as well as a recent growth in areas destined to silviculture. Activities with potential negative impacts for the CNP are performed in surrounding areas, i.e. the use of pesticides, irregular deforestation for expanding agricultural areas (ICMBIO 2015). We also highlight anthropogenic pressures that may cause ecological unbalance in the park, such as unauthorized hunting, illegal extraction of palm hearts (Euterpe edulis Mart.), and the occurrence of forest fires (personal observation).

Floristic expeditions were concentrated in the Santa Marta valley (central point in the sampling area: 20º29’27.7”S 41º45’15.6”W), located in the municipality of Ibitirama - ES. The valley has an elevation range from 870 and 2480 m (Figure 1). Vegetation types reported to the area are Montane and Upper Montane Dense Ombrophilous Forests, according to the classification by IBGE (2012). The weather in the Ibitirama municipality is defined as Cwb according to the Köppen classification, adapted to Brazil by Alvares et al. (2013), being characterized as humid subtropical with dry winters and mild summers, and the region has annual precipitation of 1,284 mm and average annual temperatures of 16.8 ºC.

The vegetation in the beginning of the valley at lower elevation has different forest succession stages due to its wood extraction past, also presenting exotic/invasive species (i.e. Eriobotrya japonica (Thunb.) Lindl.), representing one of the exotic species that exist inside the protected area (Field observation; not collected). The signs of anthropogenic activity are reduced throughout the valley, given that the vegetation is extremely preserved in the highest areas and with an observed great presence of epiphytes (personal observation).

1.2 Data collection

We performed botanic expeditions between 2012 and 2017 to collect specimens comprising all life forms in order to compose the floristic listing to the Santa Marta valley (CNP). We collected fertile plant samples along trails using the walk-over survey method (Filgueiras et al. 1994), as well as samples in plots, covering an elevation gradient of around 700 m (900-1,600 m). We identified the species through pertinent e.g. Wanderley et al. 2005, 2012, Melhem et al. 2007, Martins et al. 2009) and compared our materials to images available in virtual herbaria such as the Herbário Virtual - Reflora (http://reflora.jbrj.gov.br/reflora/herbarioVirtual/) and the Jabot (http://jabot.jbrj.gov.br/v2/consulta.php). Duplicates were sent to group experts at BHCB, CEPEC, HUFSJ, RB, SPSF, and UPCB...
Figure 1. Location map (a; b), relief representation (c), and pictures (d) of the Santa Marta valley, Caparaó National Park (PNC), Brazil. Photo: Araujo, E.A.
herbaria – acronyms according to Thiers (2019) – for confirmation of the species. We have incorporated the specimens in the collection of the VIES and CAP Herbaria. In addition, sterile materials from plot sampling were included in the listing. These were reviewed by experts in their respective families and deposited in a didactic collection of CAP Herbaria. The exotic / invasive species were disregarded in this study. We try to keep a distance from the collection points of any area of human interference and therefore we prioritize including only native species.

Botanical families were classified according to the system proposed by the Angiosperm Phylogeny Group (APG IV 2016) for angiosperms, The Pteridophyte Phylogeny Group (2016) for ferns and lycophytes, and Christenhusz et al. (2011) for gymnosperms. We confirmed name orthography, authorship and synonyms through consulting “Flora do Brasil” 2020 online (<http://floradobrasil.jbrj.gov.br/>), complementing it with data from the online platform of the Missouri Botanical Garden (http://www.tropicos.org) and The Plant List (http://www.theplantlist.org/).

Potentially threatened species were verified in the following lists: a) Red List of Espirito Santo state (Fraga et al. 2019); b) Red List of Flora of Brazil/CNC Flora (Martinelli & Moraes 2013; CNCFlora 2018); and c) The IUCN Red List of Threatened Species (IUCN 2017). New records of species from Espirito Santo state were compiled after the confirmation of group experts, as well as its verification in the database of the “Flora do Brasil” 2020 online (<http://floradobrasil.jbrj.gov.br/>) and Carrijo et al. (2020).

Results

We catalogued 361 species of vascular plants (Figure 2, Table 1) in the Santa Marta river valley, belonging to 78 botanical families (70 angiosperms and eight ferns and lycophytes), and 181 genera. The families with highest species richness were Melastomataceae (41 spp.) Lauraeaceae and Myrtaceae (30), Orchidaceae (26), Rubiaceae (24), Asteraceae (20), Piperaceae (15), Solanaceae (15) and Bromeliaceae (12), which altogether sum 59% of all compiled species. The most well represented genera regarding number of species were: Miconia (23 spp.), Ocotea (18), Myrcia (12), Psychotria (9), and Eugenia, Mikania, Peperomia, and Leandra (8).

We found 3 new records for the State of Espirito Santo: Alsophila salvini Hook. (Cyatheaceae); Pleroma foveolatum (Naudin) Triana; (Melastomataceae); Pilea hilariana Wedd. (Urticaceae), and three possible new species that are under investigation (Psychotria sp., Sloanea sp. and Solanum sp.), which are recent taxonomic discoveries and are being described.

Our results have also pointed out the existence of 43 species (12%) listed as threatened of extinction on The IUCN Red List of Threatened Species, in the Red Book of Brazilian Flora, and on the list of endangered flora species in the State of Espirito Santo (Table 1). The families that have the highest number of species categorized as threatened of extinction were: Myrtaceae (7 spp.), Lauraeaceae (6), Melastomataceae and Orchidaceae (5), Begoniaceae and Monimiaceae (4).

Based on our field observations during the inventory process, it was possible to notice a gradual change in the plant community throughout the valley (data on the ecology of plant communities are being published). To exemplify this differentiation, we observed some species occurring restrictedly at certain elevation, such as Alsophila setosa Kaulf., Capania ludowigii Sommer & Ferrucci, Euterpe edulis Mart. and Sorocela bonplandii (Baill.). W. C. Burger et al. that were only observed between approximately 1,100 m and 1,400 m of altitude, while species such as Baccharis oblongifolia (Ruiz & Pav.) Pers., Miconia longicuspis Cogn., M. molest Cogn., and Weinmannia pinnata L. only occurred in elevations above 1,400 m. Some species were observed throughout the whole sampled altitude range, e.g., Alchornea triplinervia (Spreng.) Müll.Arg., Cyathea atrorubescens Labiack P.E. et Matos F.B., Dendropanax cuneatus (DC.) Decne. & Planch., Myrica splendens (Sw.) DC., and Myrsine gardneriana A.DC. Species such as Bathysa australis (A.St-Hil.) K.Schum. and Leandra melastomoides Raddi mainly occurred in low elevations (1,000 m), especially in areas close to water streams. Maxillaria caparaoensis Brade is an endemic species to the CNP, with few sheets deposited in herbaria. Cyathea atrorubescens Labiack P.E. et Matos F.B. and Vochysia santaluciae M.C. Vianna & Fontella are endemic species of Espirito Santo, originally described for the Estação Biológica de Santa Lúcia in the Santa Teresa region.

Discussion

The new records for the state of Espirito Santo revealed in our study reflects the history of research efforts in certain places regarding the flora of the state (Carrijo et al. 2020, Dutra et al. 2015, Araújo et al. 2018), especially for montane environments. Our data show that the Santa Marta Valley houses 20.2% (361 species) of the vascular plants from CNP (Carrijo et al. 2020), in addition our list includes 88 species of local flora not yet documented, representing an increase of approximately 1%. These knowledge gaps make it harder to map the species and biodiversity distribution correctly, and makes delimitation of endemic areas imprecise, being one of the main obstacles to obtain actual understanding and to establish proper plans for biodiversity conservation (Hopkins 2007, Oliveira et al. 2016). Our findings are relevant for contributing to filling this knowledge gap about the flora in the state, in addition to helping to reduce the current lack of knowledge on the biodiversity in certain locations within Brazilian protected areas (Oliveira et al. 2017).

We have also registered the third known occurrence of Freziera atlantica Zorzanelli & Amorim (Pentaphylacaceae). This specie was described in 2016 with samples collected in the Papuã Mountains-BA and in the Valentin Mountains-ES (Zorzanelli et al. 2016), given that these mountains belong to the surrounding areas of the Caparaó Mountains. We have also included a species for the recently described science, Myrcia altomontana Sobral & Zorzanelli (Myrtaceae) (Sobral et al. 2017) in our list.

Plant communities of montane ecosystems usually present higher rates of endemism than ecosystems of lower elevations (Gentry 1995), which makes the diversity in these places more vulnerable to climate change due to the specialization degree developed by the species colonizing these environments (Eller et al. 2015, 2016). Expanding knowledge on montane environments has been increasingly important as a support to avoid species loss (Bertoncello et al. 2011).

This list was performed in an area defined by the Brazilian government as priority for the conservation and with extremely high biological importance (MMA 2007). It is one of the first listings for vascular plants in forests above 1000 m in Espirito Santo state. Our
Figure 2. Sample of the vascular plants diversity collected in the Santa Marta valley, Caparaó National Park. (a) *Psychotria bracteocardia* (DC.) Müll.Arg. (Rubiaceae); (b) *Clusia criuva* Cambess. (Clusiaceae); (c) *Aechmea coelestis* (K.Koch) E.Morren (Bromeliaceae); (d) *Psychotria nuda* (Cham. & Schltdl.) Wawra (Rubiaceae); (e) *Pleroma foveolatum* (Naudin) Triana (Melastomataceae); (f) *Scuticaria hadwenii* (Lindl.) Planch. (Orchidaceae); (g) *Schlumbergera cf. kautskyi* (Horobin & McMillan) N.P.Taylor (Cactaceae); (h) *Dryadella crenulata* (Pabst) Luer (Orchidaceae); (i) *Alstroemeria cunhae* Vell. (Alstroemeriaceae); (j) *Peperomia urocarpa* Fisch. & C.A.Mey. (Piperaceae); (k) *Nematanthus crassifolius* (Schott) Wichler (Gesneriaceae); (l) *Zygopetalum maxillare* Lod. (Orchidaceae); (m) *Billbergia ephemerae* E.Morren (Bromeliaceae); (n) *Maxillaria caparaoensis* Brade (Orchidaceae); (o) *Athenaea martiana* Sendtn. (Solanaceae); (p) *Zygopetalum mackayi* Hook. (Orchidaceae); (q) *Staurogyne anigozanthus* (Nees) Kuntze (Acanthaceae); (r) *Pitcairnia flammea* Lindl. (Bromeliaceae). Photos: Araujo, E.A.
Table 1. List of vascular plant species collected in the Santa Marta valley Caparaó National Park, organized by group and plant family, scored for category of threat (DD = Data Deficient; LC = Least Concern; NT = Near Threatened; VU = Vulnerable; EN = Endangered; CR = Critically Endangered). * New records for the State of Espírito Santo; ** Possible new species that are under investigation. The acronym CAP (Herbarium “Capixaba”), where sterile specimens were deposited in a didactic collection, does not have a voucher number. The other with voucher were all deposited in herbaria VIES and CAP.

GROUP / Family / Species	Voucher	IUCN	CNCFlora	ES Red List
ANGIOSPERMS				
Acanthaceae				
Aphelandra longiflora (Lindl.) Profice	Dias 666; Zorzanelli 25	LC	LC	
Mendoncia veloziana Mart.	Dias 612			
Staurogyne anigozanthus (Nees) Kuntze	Araújo 154; Dias 747	NT	EN	
Alstroemeriaaceae				
Alstroemeria cf. cunha Vell.	Dias 589, 720, 765			
Amaryllidaceae				
Hippeastrum aulicum (Ker Gawl.) Herb.	Dias 727		NT	
Annonaceae				
Guatteria pohliana Schltdl.	Araújo 119, 202, 204, 221		NT	
Aquifoliaceae				
Ilex cf. chamaedryfolia Reissek	Araújo 254, 272			
Ilex cf. dumosa Reissek	Araújo 265, 275			
Ilex cf. theezans Mart. ex Reissek	Araújo 267			
Araliaceae				
Anthurium gladifolium Schott	Dias 706			
Anthurium scandens (Aubl.) Engl. subsp. scandens	Araújo 525		LC	
Araceae				
Asteraceae				
Austroeupatorium inulaefolium (Kunth) R.M.King & H.Rob.	Araújo 144; Zorzanelli 557			
Baccharis oblongifolia (Ruiz & Pav.) Pers.	Araújo 490, 491		LC	
Bidens cf. segetum Mart. ex Colla	Dias 616			
Cyrtocymura cf. scorpioides (Lam.) H.Rob.	Dias 755			
Exostigma rivialare (Gardner) G.Sancho	Araújo 148			
Mikania argyreiae DC.	Araújo 497		VU	LC
Mikania conferta Gardner	Dias 723		LC	
Mikania cf. hoffmanniana Dusén	Araújo 499			
Mikania hirsutissima DC.	Araújo 146, 151		LC	
Mikania lanuginosa DC.	Araújo 205		LC	
Mikania lindbergii Baker	Dias 700		LC	
Mikania stylosa Gardner	Dias 702		LC	
Mikania trinervis Hook. & Arn.	Araújo 489		LC	

http://www.scielo.br/bn https://doi.org/10.1590/1676-0611-BN-2020-1024
Vascular plant checklist in Caparaó National Park

Biota Neotrop., 21(1): e20201024, 2021

https://doi.org/10.1590/1676-0611-BN-2020-1024 http://www.scielo.br/bn

Vascular Plants	Scientific Name	Author	Location	Status
Piptocarpha leprosa	(Less.) Baker	Araújo 173, 485		LC
Piptocarpha macropoda	(DC.) Baker	Araújo 174, 492; Campanharo 13		LC
Piptocarpha ramiflora	(Spreng.) Baker	Araújo 500, 501		LC
Verbesina cf. glabra	Hook. & Am.	Araújo 362		
Vernonanthura discolor	(Spreng.) H.Rob.	Araújo 494, 555; Pinto-Júnior 85		LC
Vernonanthura divaricata	(Spreng.) H.Rob.	Araújo 161, 560		LC
Vernonanthura phaeoneura	(Toledo)	Araújo 493		

Begoniaceae

Begonia altamiroi	Brade	Araújo 283	EN	DD
Begonia angularis	Raddi	Araújo 147	LC	LC
Begonia convolvalacea	(Klotzsch) A.DC.	Zorzaneli 525		LC
Begonia digitata	Raddi	Dias 673; Zorzaneli 542		LC
Begonia cf. huegelii	(Klotzsch) A.DC.	Zorzaneli 524		
Begonia integrifolia	Spreng.	Araújo 145, 156; Zorzaneli 735		LC
Begonia valdensium	A.DC.	Zorzaneli 717		LC

Bromeliaceae

Aechmea coelestis	(K.Koch) E.Morren	Dias 619; Araújo 239, 523	LC	
Aechmea lamarchei	Mez	Zorzaneli 740		LC
Billbergia euphemiae	E.Morren	Araújo 517; Zorzaneli 830		LC
Neoregelia farinosa	(Ule) L.B.Sm.	Araújo 518		VU
Nidularium antoineanum	Wawra	Zorzaneli 707		EN
Pitcairnia flammee	Lindl.	Araújo 573		LC
Quesnelia kautskyi	C.M.Vieira	Dias 771; Zorzaneli 556, 726		VU
Tillandsia gardneri	Lindl.	Araújo 550		LC
Vriesea carinata	Wawra	Araújo 524		LC
Vriesea heterostachys	(Baker) L.B.Sm.	Araújo 106; Dias 618, 732; Zorzaneli 706		LC
Vriesea paraibica	Wawra	Dias 617		VU
Vriesea ruschii	L.B. Sm.	Araújo 40		LC

Cactaceae

| Rhopalocereus elliptica | G.Lindb. ex K.Schum. | Zorzaneli 720 | LC | VU |
| Schlumbergera cf. kautskyi | (Horobin & McMillan) N.P.Taylor | Araújo 569 |

Campanulaceae

| Lobelia thapsoides | Schott | Araújo 143 | | LC |
| Siphocampylus aff. longipedunculatus | Pohl | Araújo 155; Zorzaneli 725 |

Cannaceae

| Canna cf. paniculata | Ruiz & Pav. | Zorzaneli 722 |

Celastraceae

| Maytenus longifolia | Reiss. ex Loes. | Araújo 69 | | LC |
| Monteverdia cestrifolia | (Reissek) Biral | Araújo 76, 135 | | |
Family	Genus	Author(s)	Location	Range
Monteverdia	schummaniana (Loes.)	Biral Araújo 33		LC
Chloranthaceae				
Hedyosmum	brasiliense Mart. ex Miq.	Araújo 51, 509; Campanharo 22	LC	
Clethraceae				
Clethra	scabra Pers.	Campanharo 21; Dias 879	LC	LC
Clusiaceae				
Clusia	arrudea Planch. & Triana ex	Araújo 215		
	Engl.			
	organensis Planch. & Triana	Araújo 130, 531; Dias 697	LC	LC
	Tovomitopsis saldanhae Engl.	Dias 770		CR
Commelinaceae				
Dichorisandra	hexandra (Aubl.)	Araújo 60		LC
	C.B.Clarke			
Cunoniaceae				
Lamanonia	ternata Vell.	Araújo 164, 563; Campanharo 16	LC	
Cyperaceae				
Scleria	cf. panicoides Kunth	Zorzaneli 520		
Dichapetalaceae				
Stephanopodium	organense (Rizzini) Prance	Araújo 541; Zorzaneli 554		
Elaeocarpaceae				
Sloanea	hirsuta (Schott) Planch. ex	Araújo 111, 570; Dias 842	LC	LC
	Benth.			
	sp.**	Araújo 213		
Ericaceae				
Gaylussacia	cf. martii Meisn.	Araújo 564		
Euphorbiaceae				
Alchornea	triplinerva (Spreng.) Müll. Arg.	Campanharo 14, 25	LC	
	Croton salutaris Casar.	Araújo 31, 32; Campanharo 15	LC	
	Tetrorchidium parvulum Müll. Arg.	Araújo 511; Zorzaneli 549	DD	
Fabaceae				
Chaetocalyx	scandens (L.) Urb.	Araújo 61	LC	
	Copaifera trapezifolia Hayne	Campanharo 18	LC	
	Inga marginata Willd.	Dias 668	LC	
	Inga platyptera Benth.	Araújo 559	EN	VU
	Inga schinifolia Benth.	Araújo 263, 466, 558	EN	
	Machaerium declinatum (Vell.) Stellfeld	Araújo 131	LC	
	Senna multijuga (Rich.) H.S.Irwin & Barneby	Araújo 15; Dias 667	LC	
Gentianaceae				
Macrocarpaea	glaziovii Gilg	Araújo 136; Zorzaneli 823	VU	
Senaea	janeirensis Brade	Araújo 522	EN	
Gesneriaceae				
Vascular plant checklist in Caparaó National Park

Biota Neotrop., 21(1): e20201024, 2021

https://doi.org/10.1590/1676-0611-BN-2020-1024 http://www.scielo.br/bn

Vascular Plant	Author	Collection Details	Critically Endangered (CR)	Endangered (EN)	Least Concern (LC)	Vulnerable (VU)	Data Deficient (DD)
Nematanthus crassifolius	(Schott) Wiehler	Dias 748, 836; Zorzaneli 739, 821					
Paliavana prasinata	(Ker Gawl.) Benth. Araújo 138; Dias 691						
Sinningia cooperi	(Paxton) Wiehler Araújo 568						
Sinningia magnifica	(Otto & A.Dietr.) Wiehler Dias 589B						
Heliconiaceae							
Heliconia angusta	Vell. Zorzaneli 1587						
Hypoxidaceae							
Hypoxis decumbens	L. Dias 677						
Lauraceae							
Aitoua saligna	Meisn. CAP	LC	DD				
Cinnamomum glaziovii	(Mez) Kosterm. Dias 662						
Cinnamomum triplinerve	(Ruiz & Pav.) Kosterm. CAP	LC					
Endlicheria paniculata	(Spreng.) J.F.Macbr. CAP						
Licaria bahiana	Kurz Araújo 376						
Nectandra aff. barbellata	Coe-Teix.						
Nectandra aff. debilis	Mez CAP						
Nectandra oppositifolia	Nees CAP						
Nectandra psammophila	Nees CAP	EN					
Ocotea aciphylla	(Nees & Mart.) Mez Araújo 433						
Ocotea bicolor	Vattimo-Gil CAP						
Ocotea cernua	(Nees) Mez CAP						
Ocotea corymbosa	(Meisn.) Mez Araújo 217, 399	DD					
Ocotea dispersa	(Nees & Mart.) Mez Araújo 424						
Ocotea floribunda	(Sw.) Mez CAP						
Ocotea glaziovi	Mez CAP						
Ocotea indecera	(Schott) Mez CAP						
Ocotea leucoxylon	(Sw.) Laness. Araújo 428	LC					
Ocotea longifolia	Kunth CAP						
Ocotea aff. notata	(Nees & Mart.) Mez CAP						
Ocotea aff. nunesiana	(Vattimo-Gil) J.B. Baitello CAP						
Ocotea aff. mutans	(Nees) Mez CAP						
Ocotea odorifera	(Vell.) Rohwer CAP	EN					
Ocotea silvestris	Vattimo-Gil CAP						
Ocotea aff. spixiana	(Nees) Mez CAP						
Ocotea sulcata	Vattimo-Gil CAP						
Ocotea vaccinioideae	(Meisn.) Mez Araújo 383						
Persea aff. fusca	Mez CAP						
Persea aff. willdenovii	Kosterm. CAP						
Rhodostemonodaphne macrocalyx	(Meisn.) Rohwer ex Madriñán Araújo 389, 415						
Loranthaceae							
Struthanthus salicifolius	(Mart.) Mart. Araújo 253	DD					
Malpighiaceae							
Heteropteryx aff. rubiginosa	A.Juss. Araújo 135						
Malvaceae

Specie	Author	Status
Triumfetta semitriloba Jacq.	Araújo; Zorzaneli	743

Marcgraviaeace

Specie	Author	Status
Marcgravia polyantha Delpino	Araújo 547	

Melastomataceae

Specie	Author	Status
Henriettea cf. glabra (Vell.) PENNEYS, F.A. Michelangeli, Judd et Almeda	CAP	
Leandra acutiflora (Naudin) Cogn.	Dias 670	DD
Leandra amplexicaulis DC.	Araújo 288	LC
Leandra barbinervis (Cham. ex Triana) Cogn.	Araújo 317	DD
Leandra fallax (Cham.) Cogn.	Araújo 42	LC
Leandra melastomoides Raddi	Araújo 18; Dias 592, 699	LC
Leandra multiplinervis (Naudin) Cogn.	Araújo 20	DD
Leandra quinquedentata (DC.) Cogn.	Araújo 233, 256, 350	LC
Leandra xanthostachya Cogn.	Araújo 289	DD
Meriania tetramera Wurdack	Araújo 346; Campanharo 8	NT
Miconia cf. atlantica CADDAD & R. Goldenb.	CAP	
Miconia budleoides Triana	Araújo 349	LC
Miconia chartacea Triana	Dias 739	LC
Miconia fasciculata Gardner	Araújo 327, 359; Dias 761	LC
Miconia flammea Casar.	Araújo 234, 247, 250	LC
Miconia formosa Cogn.	Araújo 331	LC
Miconia goldenbergiana CADDAD	CAP	
Miconia cf. hirtella Cogn.	Araújo 304	
Miconia ibaguensis (Bonpl.) Triana	Araújo 59; Zorzaneli 518	LC
Miconia laevigata (L.) D.DON	Zorzaneli 1591	
Miconia latecrenata (DC.) Naudin	Araújo 340	LC
Miconia aff. lepidota DC.	Araújo 123, 179	
Miconia cf. paniculata (DC.) Naudin	Araújo 13, 231	LC
Miconia ligustroides (DC.) Naudin	Araújo 291	DD
Miconia longicuspis Cogn.	Araújo 77, 85, 229, 310	NT
Miconia molesta Cogn.	Araújo 196, 218, 259	LC
Miconia aff. petroniana Cogn. & Saldañha	CAP	
Miconia cf. polyandra Gardner	CAP	
Miconia pusilliflora (DC.) Naudin	Araújo 258, 352; Dias 675	LC
Miconia sellowiana Naudin	Araújo 158, 167, 187, 341, 356	LC
Miconia setosociliata Cogn.	Araújo 357, 372	VU
Miconia tristis Spring	Araújo 128; Zorzaneli 550	LC
Miconia aff. valentinensis Bacci & R.Goldenb.	Araújo 292	
Ossaea angustifolia (DC.) Triana	Araújo 290	LC
Pleiochiton plepharodes (DC.) Reginato et al.	Dias 593	LC
Pleroma arboeum Gardner	Campanharo 24	LC
Pleroma fassinervium Schrank et Mart. ex DC.	CAP	
Vascular plant checklist in Caparaó National Park

Meliaceae

Species	Collector(s)	Conservation Status
Pleroma fothergillii (Schrank et Mat. ex DC.) Triana	Araújo 293	LC
Pleroma foveolatum (Naudin) Triana*	Araújo 262	
Pleroma heteromallum D. Don (D.Don)	Araújo 62	LC
Tibouchina estrellensis (Raddi) Cogn.	Dias 682	LC

Monimiaceae

Species	Collector(s)	Conservation Status
Trichilia elegans A.Juss.	Araújo 539	
Trichilia hirta L.	Araújo 540	LC

Moraceae

Species	Collector(s)	Conservation Status
Sorocea bonplandii (Baill.) W.C.Burger et al.	Araújo 17	LC

Myrtaceae

Species	Collector(s)	Conservation Status
Blepharocalyx salicifolius (Kunth) O.Berg	CAP	LC
Calyptranthes brasiliensis Spreng.	CAP	LC
Calyptranthes pulchella DC.	CAP	LC
Campomanesia cf. phaea (O.Berg) Landrum	CAP	
Eugenia cf. candelleana DC.	CAP	
Eugenia cf. capitulifera O.Berg	CAP	
Eugenia involucrata DC.	CAP	LC
Eugenia leonoraes Mattos	CAP	EN
Eugenia nutans O.Berg	CAP	LC
Eugenia cf. pisiformis Cambess.	CAP	
Eugenia ramboi D.Legrand	CAP	
Eugenia cf. rostrata O.Berg	CAP	
Marlierea cf. regeliana O.Berg	CAP	
Myrceugenia miersiana (Gardner) D.Legrand & Kausel	Dias 724	NT
Myrcia altomontana Sobral & Zorzanei	Dias 710	
Myrcia bergiana O.Berg	Campanhoro 12	LC
Myrcia cf. bicolor Kiaersk.	CAP	
Myrcia cf. coelosepala Kiaersk.	CAP	
Myrcia guianensis (Aubl.) DC.	Dias 751	LC
Myrcia hartwegiana (O.Berg) Kiaersk.	Dias 754	LC
Myrcia lineata (O.Berg) Nied.	Araújo 375; Dias 753; Zorzanei 727	VU EN
Myrcia cf. oligantha O.Berg	CAP	
continuation...

Species	Author(s)	Status	Location
Myrcia pubipetala Miq.		CAP	LC
Myrcia retorta Cambess.		CAP	
Myrcia splendens (Sw.) DC.	Araújo 89, 557; Zorzaneli 552	LC	
Myrcia subcordata DC.	Araújo 121, 201		
Myrciaria cf. floribunda (H.West ex Willld.) O.Berg		CAP	
Pimenta pseudocaryophyllus (Gomes) Landrum	Araújo 556		
Plinia rivularis (Cambess.) Rotman	Araújo 505	LC	
Siphoneuena dassii (Krug & Urb.)	CAP	LC	
Nyctaginaceae			
Guapira graciliflora (Mart. ex Schmidt)	Dias 841		
Ochnaceae			
Ouratea grandiflora (A.DC.) Engl.	Araújo 214		
Ouratea parviflora (A.DC.) Baill.	Araújo 190		
Ouratea vaccinioides (A.St.-Hil. & Tul.) Engl.	Araújo 513		
Onagraceae			
Fuchsia regia (Vell.) Munz	Dias 590	LC	LC
Orchidaceae			
Anathallis sclerophylla (Lindl.) Pridgeon & M.W.Chase	Araújo 549	LC	
Brasiliorchis cf. picta (Hook.) R.B.Singer et al.	Dias 768		
Brasiliorchis ubatubana (Hoehne) R.B.Singer et al.	Zorzaneli 532	LC	
Cattleya cf. coccinea Lindl.	Dias 766		
Dryadella crenulata (Pabst) Luer	Araújo 207		
Elleanthus brasiensis (Lindl.) Rchb.f.	Dias 826	LC	
Epidendrum paranaense Barb.Rodr.	Araújo 84	LC	EN
Epidendrum saxatile Lindl.	Dias 813	LC	LC
Eurystyles actinosophila (Barb.Rodr.) Schlr.	Dias 686	LC	
Gomesa forbesii (Hook.) M.W.Chase & N.H.Williams	Dias 820	LC	
Gomesa cf. recurva R.Br.	Araújo 574		
Isochilus linearis (Jacq.) R.Br.	Zorzaneli 523	LC	
Maxillaria caparaoensis Brade	Zorzaneli 546	VU	
Pabstiella fusca (Lindl.) Chiron & Xim.	Zorzaneli 834	LC	
Bols.			
Pabstiella pseudotrifida L. Kollmann & D. R. Couto	Dias 827	EN	
Pabstiella punctatifolia (Barb.Rodr.) Luer	Dias 821	LC	
Pogoniopsis nidus-avis Rchb.f. & Warm.	Dias 811	VU	
Pogoniopsis schenckii Cogn.	Araújo 193	LC	VU
Prescottia stachyodes (Sw.) Lindl.	Dias 764	LC	
Promenaea cf. xanthina (Lindl.) Lindl.	Araújo 191; Dias 854		
Vascular plant checklist in Caparaó National Park

Biota Neotrop., 21(1): e20201024, 2021

https://doi.org/10.1590/1676-0611-BN-2020-1024 http://www.scielo.br/bn

Prosthechea

- *Prosthechea cf. bulbosa* (Vell.) W.E.Higgins 672

Scaphyglottis

- *Scaphyglottis modesta* (Rchb.f.) Schltr. Zorzanelli 540
- *Scuticaria hadwenii* (Lindl.) Planch. Araújo 244

Zygopetalum

- *Zygopetalum maculatum* (Kunth) Garay Dias 767
- *Zygopetalum maxillare* Lodg. Araújo 575

Passifloraceae

- *Passiflora mediterranea* Vell. Araújo 63
- *Passiflora aff. porophylla* Vell. Dias 828
- *Passiflora speciosa* Gardner Araújo 512, 551; Zorzanelli 544

Pentaphylacaceae

- *Freziera atlantica* Zorzanelli & Amorim CAP CR

Peraceae

- *Pera glabrata* (Schott) Poepp. ex Baill. Araújo 280, 545
- *Pera heteranthera* (Schrank) I.M.Johnst. Araújo 544

Phyllanthaceae

- *Hyeronima alchorneoides* Allemão Campanharo 29

Piperaceae

- *Peperomia alata* Ruiz & Pav. Dias 615, 685; Zorzanelli 521
- *Peperomia corcovadensis* Gardner Araújo 361; Zorzanelli 729
- *Peperomia choroniana* C.DC. Araújo 514
- *Peperomia mandioccana* Miq. Dias 728
- *Peperomia martiana* Miq. Dias 684
- *Peperomia tetraphylla* (G.Forst.) Hook. & Arn. Araújo 195, 237; Dias 824
- *Peperomia tetraphylla* var. valantoides (Miq.) Yunck. Dias 729
- *Peperomia urocarpa* Fisch. & C.A.Mey. Araújo 37; Dias 611; Zorzanelli 517
- *Piper aduncum* L. Zorzanelli 829
- *Piper eucalyptophyllum* C.DC. Dias 604
- *Piper cf. lhotzyanum* Kunth Araújo 58
- *Piper mollicomum* Kunth Araújo 516
- *Piper richardiifolium* Kunth Araújo 515; Dias 607
- *Piper strictifolium* D.Monteiro & E.F.Guim. Araújo 565
- *Piper tectoniifolium* Kunth Araújo 21

Primulaceae

- *Cybianthus fuscus* Mart. CAP LC
- *Cybianthus cf. obovatus* (Mart.) Mart. ex Miq. CAP
- *Cybianthus peruvianus* (A.DC.) Miq. Araújo 118, 192, 487
- *Myrsine gardneriana* A.DC. Araújo 109, 159

https://doi.org/10.1590/1676-0611-BN-2020-1024 http://www.scielo.br/bn
Myrsine hermogenesii (Jung-Mend. & Bernacci) M.F.Freitas & Kin.-Gouv.

Proteaceae

Roupala consimilis Mez ex Taub. Araújo 178, 530

Quinaceae

Lacunaria crenata (Tul.) A.C.Sm. Araújo 521

Rhamnaceae

Reissekia smilacina (Sm.) Steud. Araújo 64

Rubiaceae

Amaioua intermedia Mart. ex Schult. & Schult.f.

Sabiaceae

Meliosma sellowii Urb.

Salicaceae

Stylogyne warmingii Mez.
Family	Species Description	Reference	Status	
Sapindaceae	*Casearia arborea* (Rich.) Urb.	Araújo 542, 543	LC	
	Allophylus edulis (A.St.-Hil. et al.) Hieron. ex Nied.	Araújo 72, 536, 537	LC	
	Allophylus racemosus Sw.	Araújo 538	LC	
	Cupania ludowigii Somner & Ferrucci	Araújo 535	LC	
	Paullinia carpopoda Cambess.	Araújo 125	LC	
	Thinouia mucronata Radlk.	Araújo 561	LC	
Sapotaceae	*Micropholis crassipedicellata* (Mart. & Eichler) Pierre	Araújo 211, 216	NT	LC
	Siparuna brasiliensis (Spreng.) A.DC.	Zorzaneli 828	LC	LC
Smilacaceae	*Smilax staminea* Griseb.	Araújo 571		
Solanaceae	*Athenaeae cuspidata* (Witasek) I.M.C.Rodrigues & Stehmann	Dias 750		
	Athenaeae martiana (Sendtn.) I.M.C.Rodrigues & Stehmann	Araújo 97, 120; Dias 749; Zorzaneli 831		
	Athenaeae picta (Mart.) I.M.C.Rodrigues & Stehmann.	Zorzaneli 719		
	* Brunfelsia brasiliensis* (Spreng.) L.B.Sm. & Downs	Araújo 189; Campanharo 27	LC	
	Capsicum mirabile Mart.	Dias 713		
	Cestrum bracteatum Link & Otto	Dias 614, 692, 846; Zorzaneli 543	LC	
	Cestrum strigilatum Ruiz & Pav.	Dias 769	LC	
	Cestrum subpulverulentum Mart.	Dias 688	LC	
	Solanum campaniforme Roem. & Schult.	Dias 663	LC	
	Solanum cinnamomeum Sendtn.	Araújo 168,528; Campanharo 4; Dias 690	NT	LC
	Solanum didymum Dunal	Zorzaneli 528		
	Solanum leucodendron Sendtn.	Araújo 163, 175, 529	NT	LC
	Solanum pseudoquina A.St.-Hil.	Campanharo 26	LC	
	Solanum swartzianum Roem. & Schult.	Dias 722	LC	
	Solanum sp. **	Araújo 200		
Symplocaceae	*Symplocos estrellensis* Casar.	Araújo 70, 132		
Theaceae	*Laplacea fruticosa* (Schrad.) Kobuski	Araújo 532, 533	LC	
Thymelaeaceae	*Daphnopsis fasciculata* (Meisn.) Neving	Araújo 124		
Urticaceae	*Pilea hilariana* Wedd.*	Araújo 235	NT	
Verbenaceae	*Lantana camara* L.	Zorzaneli 545		
Vitaceae				
Name	Author(s)	Location	Notes	
-------------------------------	--------------------	---------------------------	-------	
Cissus cf. tinctoria Mart.	Araújo 65			
Vochysiaceae				
Vochysia angelica M.C.Vianna & Fontella	Araújo 53	EN	EN	
Vochysia bifalcata Warm.	CAP	DD		
Vochysia glazioviana Warm.	Araújo 519			
Vochysia cf. oppugnata (Vell.) Warm.	CAP			
Vochysia santaluciae M.C.Vianna & Fontella	Araújo 520	EN	EN	
Winteraceae				
Drimys brasiliensis Miers	Araújo 203, 223; Dias 736	LC	LC	
FERNS AND LYCOPHYTES				
Anemiaceae				
Anemia mandioccana Raddi	Araújo 27, 188; Dias 599; Zorzaneli 536	LC		
Anemia phyllitidis (L.) Sw.	Araújo 26		LC	
Aspleniacae				
Asplenium gastonis Fée	Zorzaneli 733			
Asplenium cf. harpeodes Kunze	Zorzaneli 515			
Asplenium scandicum Kaulf.	Araújo 572			
Blechnaceae				
Neoblechnum brasiliense (Desv.) Gasper & V.A.O. Ditrich	Zorzaneli 736	LC		
Cyatheaceae				
Alsophila salvini Hook.*	Araújo 502	DD		
Alsophila setosa Kaulf.	Araújo 534, 552, 553	LC		
Cyathea atrocastanea Labiack P.E. et Matos F.B.	Araújo 94, 96, 186	EN		
Cyathea corcovadensis (Raddi) Domin	Araújo 29; Zorzaneli 553	LC	LC	
Cyathea delgadi Sternb.	Araújo 90, 100, 113	LC		
Cyathea dichromatolepis (Fée) Domin	Araújo 23, 25	LC		
Cyathea phalerata Mart.	Araújo 114, 116, 186B	LC		
Cyathea rufa (Fée) Lellinger	Araújo 171, 503, 504	LC		
Dennstaedtiaceae				
Blotiella lindeniana (Hook.) R.M.Tryon	Araújo 209	LC	EN	
Marattiaceae				
Eupodium kaufussii (J.Sm.) J.Sm.	Araújo 22, 554; Zorzaneli 832	LC		
Polypodiaceae				
Campyloneurum repens (Aubl.) C.Presl	Zorzaneli 519			
Cochlidium punctatum (Raddi)	Zorzaneli 715	LC		
L.E.Bishop	Zorzaneli 530	LC		
Microgramma percussa (Cav.) de la Sota	Zorzaneli 530	LC		
Niphidium crassifolium (L.) Lellinger	Araújo 16	LC		
Pleopeltis hirsutissima (Raddi) de la Sota	Zorzaneli 822	LC		
Serpocaulon fraxinifolium (Jacq.) A.R. Sm.	Araújo 137			
Pteridaceae				
Pteris splendens Kaulf.	Zorzaneli 534	LC		

http://www.scielo.br/bn
https://doi.org/10.1590/1676-0611-BN-2020-1024
results may thus contribute to real actions for the conservation of biodiversity in the park, given that listings are an important source of basic information for scientists and decision-makers (Ulloa Ulloa et al. 2017), in addition to providing relevant data for the “Flora do Espírito Santo” and “Catálogo de Plantas das Unidades de Conservação do Brasil” Projects (Dutra et al. 2015, Carrijo et al. 2020).

The CNP is one of the few large remnants in the Atlantic Forest, which thereby confers larger potential to keep high rates of biodiversity in relation to other smaller remnants, making it extremely important for species conservation (Oliveira et al. 2017). In a scenario in which protected areas within the Atlantic Forest are mostly small and disconnected (Joppa et al. 2008), our list demonstrates the importance of CNP for the conservation of species, since one of the great challenges for biodiversity conservation in Brazil is to create matrices of protected areas which are large enough for the actual conservation of biological diversity (Rylands & Brandon 2005).

We highlight herein the role played by the CNP in protecting species in montane environments of the Atlantic Forest, as shown in our study (Table 1). Protected areas are indeed the best strategy to reduce deforestation and the extinction of species in tropical regions (Joppa et al. 2008). For example, a recent study in Brazil has demonstrated that protected areas preserve a considerable share of known Brazilian biodiversity (Oliveira et al. 2017).

However, we have mentioned the need for conservation actions that can surpass the CNP limits and to which the importance of local communities, should be recognized to protect forest remnants and maintain the biodiversity in these areas. It is important to have a positive interaction between the protected area and its surrounding areas, since the maintenance of native vegetation close to it contributes to maintaining ecological processes and species richness in protected areas (DeFries et al. 2005). In certain occasions, pressure within the protected area’s limits reflect the ones happening in its surrounding areas (Laurance et al. 2012). Thus, affirmative actions taken with surrounding communities of the CNP are essential, aiming to reduce threats such as illegal hunting and extraction of native species, especially endangered ones (e.g. *E. edulis*).

The botanical families that have presented the highest richness in our study are also the most rich ones across the Atlantic Forest mountains (Amorim et al. 2009, Pifano et al. 2010, Coelho & Amorim 2014, Meireles et al. 2014, BFG 2018, Dutra et al. 2015, Zorzanelli et al. 2017). In addition to these families, the most representative genera (*Miconia* Meireles et al. 2014, BFG 2018, Dutra et al. 2015, Zorzanelli et al. 2017) and genera such as *E. edulis* and *M. edulis*)

List, and after that moment collective efforts must be made to protect these species. We suggest the adoption of the list of threatened species created by this study as a possibility to guide a better zoning of the park, subsidizing protection actions for the area as a whole.

Our results have indicated high diversity of vascular plants in the Santa Marta valley, municipality of Itiúbara, with presence of species threatened, new records, occurrence of possible new species and the presence of recently described species. These data contribute to the knowledge of the Caparaó National Park Flora, mainly for the Capixaba portion where further research to prospect biological data should be encouraged. Moreover, these results highlight the role played by protected areas, showing that they are an essential strategy for protecting diversity from to extinction threats. As such, the CNP plays an important role for species preservation in montane and upper montane forests in the Brazilian southeast and for biodiversity in the Atlantic rainforest, and efforts must be maintained to mitigate existing conflicts within the territorial limit of the protected area.

Acknowledgements

We thanks the numerous taxonomists associated to the BHCB, CEPEC, HUFSJ, RB, SPSF, UEC, and UPCB herbaria from different parts of the country for helping us to identify the collected material. List of experts who contributed to the identifications: Lycophytes and ferns: Alexandre Salino; Annonaceae: Adriana Quintella Lobão; Araliaceae: Pedro Fiaschi; Begoniaceae: Ludovic Kollmann; Bromeliaceae: Dayvid Rodrigues Couto and Talita Mota Machado; Clusiaceae: Lucas Marinho; Elaeocarpaceae: Daniela Sampaio; Gesneriaceae: Alain Chautems; Lauraceae: João Batista Baitello; Malpighiaceae: Cleiton Pessoa; Melastomataceae: Marcelo Reginato, Renato Goldenberg and Lucas Bacci; Monimiaceae and Siparunaceae: Elton John de Lirio; Myrtaceae: Marcos Sobral; Orchidaceae: Claudio Nicoletti de Fraga and Dayvid Rodrigues Couto; Pentaphyllyaceae: João Paulo Fernandes Zorzanel; Piperaceae: Valderes Sarnaglia Junior and Esle Franklin Guimarães; Primulaceae: Tatiana Tavares Carrijo; Rubiaceae: Filipe Torres Leite; Leandro Giacomin; Vochysiaceae: Gustavo Shimizu. To Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq for the support through the Universal Public Call 14/2011 (475471/2011-3) and the Fundação de Amparo à Pesquisa e Inovação do Espírito Santo (FAPES) Universal Public Call no. 03/2017 (T.O.169 - SIAFEM: 80709605/18) for funding part of this research. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. To UFES for the logistic support, to Mr. Ademar Silva for climbing the trees to collect the evidence specimens, and to the many friends who have helped us in field collections. Finally, we want to thank the anonymous reviewer and the editor for their comment and advise that greatly improved the article.

Author Contributions

Eduardo Alves Araújo: Contribution to data collection; Contribution to data analysis and interpretation; Contribution to manuscript preparation.

Sustanis Horn Kunz: Substantial contribution in the concept and design of the study; Contribution to data collection; Contribution to critical revision, adding intellectual content.

https://doi.org/10.1590/1676-0611-BN-2020-1024 http://www.scielo.br/bn
Henrique Machado Dias: Substantial contribution to the concept and design of the study; Contribution to data collection; Contribution to critical revision, adding intellectual content.

João Paulo Fernandes Zornozaneli: Contribution to data analysis and interpretation; Contribution to critical revision, adding intellectual content.

Rafael Marian Callegaro: Contribution to critical revision, adding intellectual content.

Conflicts of interest

The authors declares that they have no conflict of interest related to the publication of this manuscript.

Ethics

The authors declares that the research did not involve humans or clinical trials in this manuscript.

Data availability

The authors inform that all data are available in the SISBIO Database because it was carried out within a federal protected area (National Park).

References

ALVARES, C.A., STAPE, J.L., SENTELHAS, P.C., DE MORAES GONÇALVES, J.L. & SPAROVEK, G. 2013. Köppen’s climate classification map for Brazil. Meteorol Z 22 (6): 711–728. doi: 10.1127/0941-2948/2013/0507

AMORIM, A.M., JARDIM, J.G., LOPES, M.M.M., FIASCHI, P., BORGES, R.A.X., PERDIZ, R.O. & THOMAS, W.W. 2009. Angiosperms em remanescentes de floresta montana no sul da Bahia, Brasil. Biota Neotrop 9 (3): 313–348. doi: 10.1590/S1676-06032009000300028

APG IV – The Angiosperm Phylogeny Group. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181 (1): 1–20. doi: 10.1111/boj.12385

ARAÚJO, E.A., KUNZ, S.H., DIAS, H.M., CARRIJO, T.T. & ZORZANELLI, J.P.F. 2018. Inventários florísticos na região do Caparaó Capixaba revelam novos registros para a flora do Espírito Santo. Rodriguesia 69 (4): 1953–1963. doi: 10.1590/2175-7860201869429

BACCI, L.F., CADDAH, M.K. & GOLDENBERG, R. 2016. The genus Miconia (Melastomataceae) in Espírito Santo, Brazil. Phytotaxa 271 (1): 1. doi: 10.11646/phytotaxa.271.1.1

BERTONCELLO, R., YAMAMOTO, K., MEIRELES, L.D. & SHEPHERD, G.J. 2011. A phytogeographic analysis of cloud forests and other forest subtypes amidst the Atlantic forests in south and southeast Brazil. Biodivers Conserv 20: 3413–3433. doi: 10.1007/s10531-011-0219-6

BFG – The Brazilian Flora Group. 2018. Brazilian Flora 2020: Innovation and BERTONCELLO, R., YAMAMOTO, K., MEIRELES, L.D. & SHEPHERD, G.J. Database because it was carried out within a federal protected area.

BRADE, A.C. 1942. Excursão à Serra do Caparaó, Minas Gerais. Rodriguesia 6: 87-92.

CAMPOS, P.V., VILLA, M.P., NUNES, J.A., SCHAEFFER, C.E.R.G., POREMBSKI, S. & NERI, A.V. 2018. Plant diversity and community structure of Brazilian Páramos. J. Mt. Sci. 15(6): 1186-1198. doi: 10.1007/s11629-017-4674-7

CARRIJO, T.T., ALVES-ARAÚJO, A.G., AMORIM, A.M.A., ANTAR, G.M., et al. 2020. Lista de espécies de plantas terrestres do Parque Nacional do Caparaó. In: Catálogo de Plantas das Unidades de Conservação do Brasil. Jardim Botânico do Rio de Janeiro. Disponible: [https://catalogo-ucs-brasil.jbrj.gov.br/]. last acess in 29/jul/2020.

CHRISTENHUSZ, M.J.M. & BYNG, J.W. 2016. The number of known plants species in the world and its annual increase. Phytotaxa 261 (3): 201. doi: 10.11646/phytotaxa.261.3.1

CHRISTENHUSZ, M.J.M., REVEAL, J.L., FARJON, A., GARDNER, R.R.M. & CHASE, M.W. 2011. A new classification and linear sequence of extant gymnosperms. Phytotaxa 19: 55-70. doi: 10.11646/phytotaxa.19.1.3

CNCFlora – Centro Nacional de Conservação da Flora. 2018. Lista Vermelha. Available from: http://www.cnclflora.jbrj.gov.br/portal/ (accessed: 8 Jul 2018).

COELHO, M.M. & AMORIM, A.M. 2014. Floristic composition of the Montane Forest in the Almadina-Barro Preto axis, Southern Bahia, Brazil. Biota Neotrop 14: 1–41. doi: 10.1590/S1676-0603201666144

ELLER, C.B., BURGESS, S.S.O. & OLIVEIRA, R.S. 2015. Environmental controls in the water use patterns of a tropical cloud forest tree species, Drimys brasiliensis (Winteraceae). Tree Physiol 35 (4): 387–399. doi: 10.1093/treephys/tvp001

ELLER, C.B., LIMA, A.L. & OLIVEIRA, R.S. 2016. Cloud forest trees with higher foliar water uptake capacity and anisohydric behavior are more vulnerable to drought and climate change. New Phytol 211 (2): 489–501. doi: 10.1111/nph.13952

FILGUEIRAS, T.S., NOGUEIRA, P.E., BROCHADO, A.L. & GUALA, G.F. 1994. Caminhamento: um método expedito para levantamentos florísticos qualitativos. Cadernos de Geociências, 12, 39–43.

FORSTER, W. & SOUZA, V.C. 2013. Laelinae (Orchidaceae) do Parque Nacional do Caparaó, Estados do Espírito Santo e Minas Gerais, Brasil. Hoehnea 40 (4): 701–726. doi: 10.1590/S2236-89062013000400010

FRAGA, C.N., PEIXOTO, A.L., LEITE, Y.L.R., SANTOS, N.D., OLIVEIRA, J.R.P.M., SYLVESTRE, L.S., SCHWARTSBURD, P.B., TULER, A.C., FREITAS, J., LÍRIO, E.J., COUTO, D.R., DUTRA, V.F., WAICHERT, C., SOBRINHO, T.G., HOSTIM-SILVA, M., FORERO, E. & LUTEYN, J.L. (eds) Biodiversity and conservation of Neotropical montane forests. In: CHURCHILL, S.P., BALSLEV, H., FORERO, E. & LUTEYN, J.L. (eds) Biodiversity and conservation of Neotropical montane forests. The New York Botanical Garden, New York, pp 103–126.

GIULIETTI, A.M., RAPINI, A., ANDRADE, M.J.G. DE, QUEIROZ, L.P., GOLDENBERG, R., BAUMGRATZ, J.F.A. & SOUZA, M.L.D.R. 2012. Taxonomia de Melastomataceae no Brasil: retrospectiva, perspectivas e chave de identificação para os gêneros. Rodriguesia 63 (1): 145–161. doi: 10.1590/S2175-78602012000100011

http://www.scielo.br/bn

Araújo, E.A. et al.

https://doi.org/10.1590/1676-0611-BN-2020-1024
Vascular plant checklist in Caparaó National Park

HOPKINS, M.J.G. 2007. Modelling the known and unknown plant biodiversity of the Amazon Basin. J Biogeogr 34 (special issue):1400–1411. doi: 10.1111/j.1365-2699.2007.01737.x

IBGE. 2012. Manual técnico da vegetação brasileira. 2nd. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro, 275 p.

ICMBIO. 2015. Plano de Manejo para Parque Nacional do Caparaó. Agência Comunica, Brasília. 517 p.

IUCN. 2017. The IUCN Red List of Threatened Species. Version 2017-2. http://www.iucnredlist.org. Accessed 28 Nov 2017

JOPPA, L.N., LOARIE, S.R. & PIMM, S.L. 2008. Biodiversity hotspots for conservation priorities. Nature 403: 853–858. doi: 10.1038/35002501

LAURANCE, W.F., CAROLINA USECHE, D., RENDEIRO, J. & et al. 2012. Averting biodiversity collapse in tropical forest protected areas. Nature 489: 290–294. doi: 10.1038/nature11318

LIMA, R.A.F., MORI, D.P., PITTA, G., MELITO, M.O., MAGNAGO, L.F., ZWIENER, V.P., SARAIVA, D.D., MARQUES, M.C.M., OLIVEIRA, A.A. & PRADO, P.I. 2015. How much do we know about the endangered Atlantic Forest? Reviewing nearly 70 years of information on tree community surveys. Biodivers Conserv 24: 2135–2148. doi: 10.1007/s10531-015-0953-1

MACHADO, T.M., FORZZA, R.C. & STEHMANN, J.R. 2016. Bromeliaceae from Caparaó National Park, Minas Gerais/Esério Santo states, Brazil, with notes on distribution and conservation. Oecol Aust 20 (2): 271–284. doi: 10.4257/oeco.2016.2002.10

MARTINELLI, G. & MORAES, M.A. (eds). 2013. Livro vermelho da flora do estado de São Paulo. Instituto de Botânica, FAPESP, São Paulo.

MARTINS, S.E., WANDERLEY, M. DAS G.L., SHEPHERD, G.J. & et al. (eds). 2009. Flora fanerógâmica do estado de São Paulo. Instituto de Botânica, FAPESP, São Paulo.

MAZINE, F.F. & SOUZA, V.C. 2008. Myrtaceae dos campos de altitude do Parque Nacional do Caparaó – Espírito Santo/Minas Gerais, Brasil. Rodriguesia 59 (1): 57–74. doi: 10.1590/2175-7860200859102

MEIRELES, L.D., KINOSHITA, L.S. & SHEPHERD, G.J. 2014. Composição florística da vegetação altimontana do distrito de Monte Verde (Camanducaia, MG), Serra da Mantiqueira Meridional, Sudeste do Brasil. Rodriguesia 65 (4): 831–859. doi: 10.1590/2175-7860201465403

MELHEM, T.S., WANDERLEY, M. DAS G.L., MARTINS, S.E. & et al. (eds). 2007. Flora fanerógâmica do estado de São Paulo. Instituto de Botânica, FAPESP, São Paulo.

MMA – Ministério do Meio Ambiente. 2007. Áreas prioritárias para a conservação, uso sustentável e repartição de benefícios da biodiversidade brasileira. MMA, Brasília.

MITTERMEIER, R.A., ROBLES GIL, P., HOFFMANN, M. & et al. (eds). 2004. Hotspots revisited: Earth’s biologically richest and most endangered terrestrial ecoregions. CEMEX, Ciudad de México.

MORAES, M.A., BORGES, R.A.X., MARTINS, E.M., FERNANDES, R.A., MESSINA, T. & MARTINELLI, G. 2014. Categorizing threatened species: an analysis of the Red List of the flora of Brazil. Oryx 48 (2): 258–265. doi: 10.1017/S003060531200018X

MYERS, N., MITTERMEIER, R.R., MITTERMEIER, C.G., FONSECA, G.A.B. & KENT, J. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858. doi: 10.1038/35002501

OLIVEIRA-FILHO, A.T. & FONTES, M.A.L. 2000. Patterns of Floristic Differentiation among Atlantic Forests in Southeastern Brazil and the Influence of Climate. Biotropica 32 (4b): 793–810. doi: 10.1111/j.1744-7429.2000.tb00619.x

OLIVEIRA, U., PAGLIA, A.P., BRESCOVIT, A.D. & et al. 2016. The strong influence of collection bias on biodiversity knowledge shortfalls of Brazilian terrestrial biodiversity. Divers Distrib 22 (12): 1232–1244. doi: 10.1111/ddi.12489

OLIVEIRA, U., SOARES-FILHO, B.S., PAGLIA, A.P. & et al. 2017. Biodiversity conservation gaps in the Brazilian protected areas. Sci Rep-UK 7: 9141. doi: 10.1038/s41598-017-08707-2

PIFANO, D.S., VALENTE, A.S.M., ALMEIDA, H.D.S., MELO, P.H.A., CASTRO, R.M. & VAN DEN BERG, E. 2010. Caracterização florística e fitofisionômica da Serra do Condado, Minas Gerais, Brasil. Biota Neotrop 10 (1): 55–71. doi: 10.1590/S1676-06032010001000005

RYLANDS, A.B. & BRANDON, K. 2005. Brazilian protected areas. Conserv Biol 19 (3): 612–618. doi: 10.1111/j.1523-1739.2005.00711.x

SLIK, J.W.F., ARROYO-RODRÍGUEZ, V., AIBA, S.I. & et al. 2015. An estimate of the number of tropical tree species. P Natl Acad Sci-Biol 112 (24): 7472–7477. doi: 10.1073/pnas.1423147112

SOUBRAL, M., COSTA, I.G., SOUZA, M.C., ZORZANELLI, J.P.F. 2017. Five new species and one new combination in Brazilian Myrtaceae. Phytotaxa 307: 233–244. doi: 10.11646/phytotaxa.307.4.1

SOUZA-BENA, M.S., GARCIA, L.C. & TOWNSEND PETERSON, A. 2014. Knowledge behind conservation status decisions: data basis for “Data Deficient” Brazilian plant species. Biol Conserv 173: 80–89. doi: 10.1016/j.bico.2013.06.034

SOUZA, M., KAWAKITA, K., SLUSARSKI, S. & PEREIRA, G. 2009. Vascular flora of the Upper Paraná River floodplain. Braz J Biol 69 (2): 735–745. doi: 10.1590/S1519-69842009000300027

THE PTERIDOPHYTE PHYLOGENY GROUP. 2016. A community-derived classification for extant lycophytes and ferns. J Syst Evol 54 (6): 563–603. doi: 10.1111/jse.12229

THIERS, B. 2019. Index Herbariorum: A global directory of public herbaria and associated staff. Available from: http://sweetgum.nybg.org/science/ih/ (accessed 1 Jul 2018).

ULLOA-Ulloa, C., ACEVEDO-RODRÍGUEZ, P., BECK, S. & et al. 2017. An integrated assessment of the vascular plant species of the Americas. Science 358 (6370): 1614–1617. doi: 10.1126/science.aa0398

WANDERLEY, M. DAS G.L., MARTINS, S.E., ROMANINI, R.P. & et al (eds). 2012. Flora fanerógâmica do estado de São Paulo. Instituto de Botânica, FAPESP, São Paulo.

WANDERLEY, M. DAS G.L., SHEPHERD, G.J., MELHEM, T.S. & et al (eds). 2005. Flora fanerógâmica do estado de São Paulo. FAPESP, RioM, São Paulo.

ZAPPI, D.C., MILLIKEN, W., LOPES, C.R.A.S., LUCAS, E., PIVA, J.H., FRISBY, S., BIGGS, N. & FORZZA, R.C. 2016. Xingu State Park vascular plant survey: filling the gaps. Braz J Biol 39: 751–778. doi: 10.1007/s40415-016-0262-2

ZORZANELLI, J.P.F., DIAS, H.M., DA SILVA, A.G. & KUNZ, S.H. 2017. Vascular plant diversity in a Brazilian hotspot: floristic knowledge gaps and tools for conservation. Braz J Bot 40 (3): 819-827. doi: 10.1007/s40415-017-0386-z

ZORZANELLI, J.P.F., CARRUJO, T.T., FIASCHI, P., JARDIM, J.G., ZORZANELLI, J.P.F. 2016. Averting biodiversity collapse in tropical forest protected areas. Nature 489: 745–749. doi: 10.1038/nature11379

Received: 20/04/2020
Revised: 22/09/2020
Accepted: 03/11/2020
Published online: 21/12/2020