A Review on Antibacterial Effects of Iranian Herbal Medicine on Methicillin-Resistant Staphylococcus aureus

Masoumeh Baradaran1,2 and Amir Jalali2
1Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
2Department of Pharmacology and Toxicology, Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

Received 2019 July 06; Revised 2019 September 28; Accepted 2019 October 04.

Abstract

Context: Staphylococcus aureus (S. aureus) is an opportunistic pathogen that is able to cause different types of life-threatening infections from acute bacteria to often chronic osteomyelitis, endocarditis, infections of indwelling devices and wound infections. These chronic infections are highly recalcitrant to antibiotic treatment. Owing to the increasing incidence of S. aureus infections and resistance with long-term treatment with available antibiotics, S. aureus is notorious. Research for new drugs, especially from natural sources is ongoing. Plants were commonly used in the treatment of diseases by a primary human from ancient times. Exhibiting minimum side effects, ease of use, availability, and commonly cost-effective are the advantages of plants. So in the last few decades, research on herbal medicine is getting popularized.

Evidence Acquisition: In this systematic review, we aimed to review antimicrobial potential of essential oil and different extracts (methanolic, ethanolic, ethyl acetate, ether or aqueous extracts) from 31 genera of medical plants, including 83 species against S. aureus and its most frequent resistant strain, methicillin-resistant S. aureus (MRSA) for introducing them as potent therapeutic agents. To find intended articles, we searched in several databases using a list of suitable keywords.

Results: The essential oil of T. caucasicus has the best inhibitory effect on S. aureus. However, extract of 8 plant species has also the acceptable inhibitory effect. Surprisingly, essential oil of some plants showed better anti-staphylococcal effect than standard antibiotics. Moreover, twelve plant species have effective inhibitory effect against MRSA.

Conclusions: Some of the evaluated Iranian plants such as T. parthenium, T. vulgaris, T. eriocalyx, T. persicus, A. millefolium, H. scabrum, and S. urmiensis with acceptable MIC or inhibition zone have the potency of antimicrobial activity, especially against S. aureus and MRSA. According to the comparison, essential oil of Thymus caucasicus with the MIC value of 0.31 μg/mL for S. aureus and 2.5 μg/mL for MRSA has the best inhibitory effect. So the mentioned natural extract, especially essential oil of T. caucasicus can be a candidate for drug design with the goal of the treatment of S. aureus infections.

Keywords: Herbal Medicine, Antimicrobial Susceptibility, Staphylococcus aureus, Chronic Infections

1. Context

Infectious diseases are the second leading cause of death worldwide (1). Staphylococcus aureus (S. aureus) is one of the important and problematical infectious pathogens (2). It is an opportunistic pathogen and is the primary cause of lower respiratory tract and surgical site infections, and the second leading cause of nosocomial bacteremia, pneumonia, and cardiovascular infections (3). Moreover, S. aureus is often found among chronic and recurrent bone infections, and is often the cause of chronic osteomyelitis, endocarditis, infections of indwelling devices and postsurgical wound infections such as chronic biofilm-associated infections in prosthetic devices (4). In recent years, the emergence of antibiotic-resistant forms of pathogenic S. aureus is a worldwide problem in clinical medicine (5). Methicillin-resistant S. aureus (MRSA) is the most common antibiotic-resistant of all antibiotic-resistant threats. The MRSA was first identified five decades ago (6). Hereafter, MRSA infections have spread in Europe, the Americas, and the Asia-Pacific region (7). Hence the search for newer, safer and more potent antimicrobials with less susceptibility to the resistance is a pressing need (8). Evidence currently shows that improved quality of life is considerably important in the treatment of chronic diseases (9). The negative effects of chronic infection induced by MRSA on the quality of life increase the need to search for newer, safer, and more potent antimicrobial agents with less susceptibility to resistance is a pressing need (8).

Plants were commonly used in the treatment of dis-
eases by a primary human from ancient times. (9). Over the years, the World Health Organization (WHO) advocated traditional medicine as safe remedies for both microbial and non-microbial diseases. According to the WHO in 2008, above 80% of the world’s population rely on traditional medicine for their primary healthcare needs (10). On the other hand, almost one-third of all medical products have a plant origin (11). Plants contain a variety of compounds against a variety of pathogens. It means that plants have widespread effects against a different variety of infectious agents, including antibiotic-resistant bacteria. Thus recently, the research is growing on medical plants as safe, cheap, accessible, and more acceptable for peoples than synthetic antibiotics (12).

The diversity of the climate has resulted in a high diversity of plant flora in Iran. So it is possible to identify effective substances in different native plants of the country and to extract these substances in order to produce these materials in large quantities at the industrial level. Evaluation of these capabilities, especially in the case of plants native to Iran is of special importance (13). A considerable number of articles are published annually on the antimicrobial effect of various Iranian plants. Given the growing problem of antibiotic resistance, analyzing and summarizing the results of these articles will be important for their practical use. Moreover, the comparison between pharmaceutical effects of different parts of a medical plant can give a good vision for accomplishing further study with more efficiency.

2. Objectives

The aim of the present systematic review was to deliberate on whether plants, found commonly in Iran, could be used as an alternative for infection therapy. This review would describe some of the Iranian plant species as potent therapeutic agents specifically against S. aureus and its frequent resistant strain, MRSA. It also compared the antimicrobial potential of different Iranian herbs to highlight the most functional of them.

3. Data Sources

The present systematic review study was conducted after obtaining prior permission from the Research Ethics Committee (code: IR.AJUMS.REC.1396.150). This review involves searching for available literature about plants and herbal compounds effective against S. aureus and MRSA. To find related articles, we searched several databases, including PubMed, Science Direct, Scopus, Springer Link, Wiley Online Library, and Google Scholar databases and Persian databases, including Iran Medex (indexing articles published in Iran biomedical journals), Magiran (Iranian magazines database), and SID (scientific information database) using a list of keywords in MeSH such as medicinal plant, healing plants, pharmaceutical plants, medical herbs, healing plants, plant extracts, plant drug, Iranian medical plants, antimicrobial susceptibility, *Staphylococcus aureus*, plant antimicrobial extract, microbial sensitivity tests, plant biologically active compounds, methicillin-resistant *Staphylococcus aureus*, as well as a combination of them. We studied all related articles, collected, and classified all relevant data published from January 1, 1974 to January 2017.

4. Study Selection and Data Extraction

All research articles that focused on the antimicrobial assay of essential oil or at least one of the different extracts (methanolic, ethanolic, ethyl acetate, ether or aqueous) from plants, growing in Iran, by Microdilution method and Kirby-Bauer test (zone of inhibition test) against S. aureus, published from January 1, 1974 to January 2017 were included in this study. All other relevant research articles that used other antimicrobial assays did not investigate the antimicrobial effect against S. aureus or were out of desired time range were excluded from the study. A flow diagram depicts the flow of information through the different phases of this review (Figure 1).

5. Results

This systematic review compared the result of research articles that determined the antimicrobial activity of essential oil and different extracts (methanolic, ethanolic, ethyl acetate, ether or aqueous extracts) from different parts of 31 genera of medical plants, including 83 species, especially against S. aureus. All described herbal medicine with the details of using part of the plant, types of extracts, maximum inhibitory concentration (MIC) and inhibition zone against S. aureus, location of harvesting, and the references are summarized in Table 1. The map of Iran along with the provinces is shown in Figure 2 so that the harvesting areas of the plants can be traced back to the map.

According to the comparison, essential oil of *T. caucasicus* with the MIC value of 0.31 µg/mL for S. aureus and 2.5 µg/mL for MRSA has the best inhibitory effect on S. aureus strains (Table 1). However, essential oil of *T. parthenium*, *T. vulgaris*, *T. eriocalyx*, *T. persicus*, *A. millefolium*, ethanolic extract of *P. harmala*, flower extract of *H. scabrum*, and ethyl acetate extract of *S. urmiensis* with MIC value lower than 22 µg/mL have also the acceptable inhibitory effect against...
The flow of information through the different phases of the current review is shown in Figure 1. The antimicrobial properties the oil of *Thymus* species is due to phenol content. The oil of *Thymus* has been traditionally used as anthelmintic, bacteriostatic, antiseptic and spasmyloytic agents (14, 15). *Achillea* species also contain a complex of different antimicrobial agents such as monoterpens, sesquiterpene lactones, flavonoids, and phenolic acids that are found most often in their oils (16-18). Therefore, displaying acceptable inhibitory effect against *S. aureus* was predictable in these plants. It seems the best antimicrobial effect of *T. caucasicus*, may be due to more phenol concentration in this species.

Flower extract of *H. scabrum*, collected from Charmahal va Bakhtiari was more potent than that collected from Isfahan due to its more thymol and carvacrol content (41). It is consistent with other studies that variation in environmental parameters, such as irradiance, climate, nutrients, and soil-water availability can influence plant compositions, and thus cause variation in the antimicrobial activity (73). In some herbs, variation in the antimicrobial activity was due to the plant parts used for extract preparation. For example, methanolic extract of the root from *P. harmala* has the best effect rather than other parts of this plant. Moreover, different extracts of herbs showed significant different antimicrobial effects in most cases. In addition, some plants showed different antimicrobial effects at different stages of their growth. In this case, *Thymus pubescens*, *Thymus serpyllum* (44), and *Tanacetum parthenium* (64) should be noted that during flowering stage, they had a better anti-staphylococcal effect than the pre-flowering stage. Unripe seeds of *Terminalia chebula* was also more active against *S. aureus* than ripe seeds (22).

The antimicrobial effect of methanolic extract of aerial parts of *Salvia sahendica* (27) and essential oil and methanolic extract from aerial parts of *Salvia eremophila* (29) were the same as Gentamicin on *S. aureus*. Moreover, the antimicrobial effect of hydroalcoholic extract of *Teucrium polium*
was higher compared to Amoxicillin, Ciprofloxacin, Vancomycin, and Imipenem (58). Surprisingly, essential oil of *M. pulegium* (48), *Tanacetum parthenium* (11), and *Tanacetum pinnatum* (74) showed better anti-staphylococcal effects than standard antibiotics.

Bahrami et al. determined that the antimicrobial activity of ethanolic extract from *S. striata* leaves is lower than Doxycyclin and Ofloxacin against *S. aureus*. However, these antibiotics have synergistic effects in combination with ethanolic extract of *S. striata* leaves (42).

Among all of the evaluated medical herbs, antimicrobial effect of 12 species, including *S. tomentosa*, *Cuminum cyminum*, *Artemisia dracunulus*, *Artemisia absinthium*, *Thymus vulgaris*, *Artemisia herbalba*, *Achillea wilhelmsii*, *Berberis vulgaris*, and *Eucalyptus globules* are also studied against MRSA. In comparison to antibacterial assays against MRSA we found that ethanolic extract of *S. tomentosa*, seeds of *C. cyminum*, *A. dracunulus*, *A. herbalba*, *A. absinthium*, *T. caramanicus*, *A. wilhelmsii*, ethanolic, and aqueous extract of *M. piperita*, root of *B. vulgaris*, essential oil and ethanolic extract of *T. vulgaris*, methanolic extract of seed, leaves, stem, root, flower and ethanolic extract of *P. harmala*, ethanolic extract, aqueous extract and essential

![Image](77x280 to 531x697)

Figure 2. Geographical position of provinces in Iran is shown

Jundishapur J Chronic Dis Care. 2019; 8(4):e96058.
oil of leaves of *E. globulus* have effective inhibitory effects against MRSA.

It is noteworthy that *S. multicaulis* (methylamatic extract) was the only plant active against penicillin-resistant *S. aureus*. More studies concerning the molecular basis of every active extract against clinical *S. aureus*, especially MRSA must be performed in the future. A limitation was trouble finding the full text of some articles. We had to email the authors. Lack of response or late response of some of them caused to waste a lot of time.

6. Conclusions

Most of the evaluated Iranian plants with acceptable MIC or inhibition zone have the potency of antimicrobial activity, especially against *S. aureus* and its most frequent resistant strains, MRSA. So the intended natural extract, especially essential oil of *Thymus caucasicus* can be a candidate for drug design for replacement of conventional antibiotics with the intention treatment of *S. aureus* infections. However, further clinical and analytical trials of these data are necessary to finding new knowledge such as *in vivo* effects and side effects of using herbal extracts as antibiotics. It was also understood that extracts derived from the same species can show significant differences in antimicrobial potency when collected at different sites, owing to the influence of soil, climate, and other factors. These differences may also relate to the type of extract, using plant parts, and the stage of plant growth.

Acknowledgments

The authors would like to show their gratitude to Ahvaz Jundishapur University of Medical Sciences for its financial support.

Footnotes

Authors’ Contribution: Study design, collection of data, analysis and interpretation of data, drafting of the manuscript: Masoumeh Baradaran; study concept, critical revision of the manuscript for important intellectual content: Amir Jalali.

Conflict of Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval: IR.AJUMS.REC.1396.150.

Funding/Support: This study was supported in part by grant 93864 from Jundishapur University of Medical Sciences, Ahvaz, Iran.

References

1. Fauci AS. Infectious diseases: Considerations for the 21st century. *Clin Infect Dis*. 2001;32(5):675–85. doi: 10.1086/320935. [PubMed: 1129834].
2. Harris LG, Foster SJ, Richards RG. An introduction to Staphylococcus aureus, and techniques for identifying and quantifying *S. aureus* adhesins in relation to adhesion to biomaterials. *Review Eur Cell Mater*. 2002;4:39–60. [PubMed: 14562246].
3. Klein E, Smith DL, Laxminarayan R. Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States, 1999-2005. *Emerg Infect Dis*. 2007;13(12):1840–4. doi: 10.3201/eid1312.070629. [PubMed: 18258033]. [PubMed Central: PMC2876761].
4. Conlon BP. Staphylococcus aureus chronic and relapsing infections: Evidence of a role for persister cells: An investigation of persister cells, their formation and their role in *S. aureus* disease. *Intox Essays*. 2014;36(10):991–6. doi: 10.1002/bies.201400080. [PubMed: 25100249].
5. Ventola CL. The antibiotic resistance crisis: Part I: Causes and threats. *PT*. 2015;40(4):277–83. [PubMed: 25859123]. [PubMed Central: PMC4378521].
6. Spellberg B, Gilbert DN. The future of antibiotics and resistance: A tribute to a career of leadership by John Bartlett. *Clin Infect Dis*. 2014;59 Suppl 2:S57–S5. doi: 10.1093/cid/ciu392. [PubMed: 25013481]. [PubMed Central: PMC407689].
7. Rossellini GM, Arena F, Pecile P, Pollini S. Update on the antibacterial resistance crisis. *Curr Opin Pharmacol*. 2014;18:56–60. doi: 10.1016/j.coph.2014.09.006. [PubMed: 25254623].
8. Fair RJ, Tor Y. Antibiotics and bacterial resistance in the 21st century. *Perspect Medizin Chem*. 2014;6:25–64. doi: 10.4137/PMC.S14459. [PubMed: 25222278]. [PubMed Central: PMC4159373].
9. Baraz S, Miladini M, Mosavini E. A comparison of quality of life between adolescents with beta thalassemia major and their healthy peers. *Int J Pediatr*. 2016;4(1):2195–204. doi: 10.22098/ijpp.2016.6228.
10. Oyebode O, Kandala NB, Chilton PJ, Lilford RJ. Use of traditional medicine in middle-income countries: A WHO-SAGE study. *Health Policy Plan*. 2016;31(8):984–91. doi: 10.1093/heapol/czw022. [PubMed: 27033166]. [PubMed Central: PMC5018777].
11. Izadi Z, Aghaali Khani M, Esna-Ashari M, Davoodi P. Determining chemical composition and antimicrobial activity of feverfew (Tanacetum parthenium L.). essential oil on some microbial strains. *Zahedan J Res Med Sci*. 2012;14(6):38–41.
12. Gayathri M, Man A. Effect of anti-biofilm potential of different medicinal plants: Review. *Asian J Pharmaceut Clin Res*. 2017;10(2):24. doi: 10.22159/ajpcr.2017.v10i2.15314.
13. Heshmati GA. Vegetation characteristics of four ecological zones of Iran. *Int J Plant Prod*. 2012;6(2):215–24. doi: 10.22069/ijpp.2012.538.
14. Salehi P, Sonboli A, Mohammadi F. Composition and antimicrobial activity of the essential oil of Dicyclophora persica Boiss. from Iran. *Z Naturforsh C J Biosci*. 2006;61(5-6):315–8. doi: 10.1515/znc-2006-5-602. [PubMed: 16669485].
15. Sonboli A, Salehi P, Yousefzadi M. Antimicrobial activity and chemical composition of the essential oil of Nepeta cисpa Wild. from Iran. *Z Naturforsh C J Biosci*. 2004;59(9-10):653–6. doi: 10.1515/znc-2004-9-1008. [PubMed: 15540597].
16. Sonboli A, Gholipour A, Yousefzadi M, Mozarrad M. Antibacterial activity and composition of the essential oil of Nepeta menthaefl from Iran. *Nat Prod Commun*. 2009;4(2):283–6. [PubMed: 19370940].
17. Bonjar GH. Antibacterial screening of plants used in Iranian folkloric medicine. *Fitoterapia*. 2004;75(2):239–5. doi: 10.1016/j.fitote.2003.12.015. [PubMed: 15030913].
18. Bonjar S. Evaluation of antibacterial properties of some medicinal plants used in Iran. *J Ethnopharmacol*. 2004;94(2-3):301–5. doi: 10.1016/j.jep.2004.06.007. [PubMed: 15325735].

Jundishapur J Chronic Dis Care. 2019; 8(4):e96058.
19. Yousefzadi M, Sonboli A, Karimic F, Ebrahimi SN, Asghari B, Zeinalia A. Antimicrobial activity of some Salvia species essential oils from Iran. Z Naturforsch C J Biosci. 2007;62(7-8):514-8. doi: 10.1553/znc-2007-7-809. [PubMed: 17910065].

20. Karamian R, Asadhegy M, Pakzad R. Essential oil compositions and in vitro antioxidant and antibacterial activities of the methanol extracts of some Salvia species (Lamiaceae) from Iran. J Agri Crop Sci. 2013;5(3):217-8.

21. Paknejadi M, Foroozhi F, Yousefzadi M, Antimicrobial activities of the essential oils of five Salvia species from. Journal of Paramedical Sciences. 2012;8(2).

22. Lotfipour F, Nazemiyeh H, Fathi-Azad F, Garaei N, Arami S, Talat S, et al. Evaluation of antibacterial activities of different Salvia species from North-West Iran. Iran J Basic Med Sci. 2008;11(2):80-5. doi: 10.22038/ijbms.2008.5200.

23. Ghomi H, Masoomi R, Kashi H, Batooli H. In vitro bioactivity of essential oils and methanol extracts of Salvia reuterana from Iran. Nat Prod Commun. 2012;7(5):565-1. doi: [PubMed: 22799099].

24. Ebrahimabadi AH, Mazoochi A, Kashi FJ, Djafari-Bidgoli Z, Batooli H. Essential oil composition and antioxidant and antimicrobial properties of the aerial parts of Salvia eremophila Boiss. from Iran. Food Chem Toxicol. 2010;48(5):1371-6. doi: 10.1016/j.fct.2010.03.003. [PubMed: 20216675].

25. Javidnia K, Miri R, Assadollahi M, Gholami M, Ghaderi M. Screening of selected plants growing in Iran for antimicrobial activity. Iran J Sci Technol. 2009;33(4):29-31.

26. Farjam MH. Comparative study of the antimicrobial activity of essential oil and two different extract from Salvia ursinensis Bunge. Asian Pac J Trop Biomed. 2012;2(3):S1680–2. doi: 10.22037/jps.v4i4.4925.

27. Dadgar T, Asmar M, Safii A, Mazandarani M, Bayat H, Moradi A, et al. Antibacterial activity of certain Iranian medicinal plants against methicillin-resistant and sensitive Staphylococcus aureus. Asian J Plant Sci. 2006;5(3):861-6. doi: 10.3923/ajps.2006.861.866.

28. Mahdavi S, Karimzadeh G. Karyological and nuclear DNA content variation in some Iranian endemic thymus species (Lamiaceae). J Agric Sci Tech. 2010;12(4):447-58. eng.

29. Tabatabaei Yazdi F, Alizadeh Bebbahani B. Antimicrobial effect of the aqueous and ethanolic Teucrum polium L extracts on gram positive and gram negative bacteria “in vitro”. J Paramed Sci. 2013;4(4):56-62. doi: 10.20207/v4i4.4925.

30. Aburjai T, Hudalb M. Antiplatelet, antibacterial and antifungal activities of Achillea falcata extract and evaluation of volatile oil composition. Phcog Mag. 2006;2(7):391-8.

31. Motavalizadehkakhky A, Shaqafat A, Zamani HA, Akhlaghi H, Mohammadossemini M, Mehrad J, et al. Composition and the in vitro antimicrobial activities of the essential oils and extracts of two Achillea species from Iran. J Med Plant Res. 2012;6(19):1280-92.

32. Lemmens-Gruber R, Marchart E, Rawnduzi P, Engel N, Benedek B, Kopf B. Investigation of the spasmylocytic activity of the flavonoid fraction of Achillea millefolium L. on isolated guinea-pig ilea. Arzneimittelforschung. 2006;56(6):582-8. doi: 10.1555/03-1297675. [PubMed: 17009899].

33. Torbati M, Nazemiyeh H, Lotfipour F, Asnaashari S, Nemati M, Fathi- Azad F. Composition and antibacterial activity of heracleum trunk exudates of Pistacia atlantica var. mutica. Z Naturforsch C J Biosci. 2011;66(2):142–5. doi: 10.1007/s10600-014-0959-2.

34. Talei GR, Meshkatalasad MH, Mosaie Z. Antibacterial activity and chemical composition of essential oils from four medicinal plants of Lorestan, Iran. J Med Plant Res. 2013;7(2):1371–6. doi: 10.5897/ijp.2010.03.003.

35. Ramezani M, Fazli-Bazzaz BS, Saghafi-Khadem F, Dabaghiyan A. Antibacterial activity of some Artemisia species of Iran. Fitoterapia. 2004;75(2):201-8. doi: 10.1016/j.fitote.2003.11.006. [PubMed: 15039025].

36. Malekzadeh F. An antimicrobial compound in two Pistacia species. Mycopathol Mycol Appl. 1974;54(1-7):7-3. doi: 10.1007/BF02055975. [PubMed: 4427816].

37. Taran M, Sharifi M, Azizi E, Khanahmadi M. Antimicrobial activity of the Leaves of Pistacia khinjuk. J Med Plant. 2010;2(1):38-5. eng.

38. Habibi Najafi MB, Hajimohamadi Farimani R, Tavakoli J, Madayeni S. GC-MS analysis and antimicrobial activity of the essential oil of trunk exudates of Pistacia atlantica var. mutica. Chem Nat Comp. 2014;50(2):376-8. doi: 10.1007/s10597-014-0959-2.

39. Ghasemi Pirbalouti A, Rahnama GH, Malekpooor F, Roohi Broujeni H. Variation in antibacterial activity and phenolic content of Hypericum scabrum L populations. J Med Plants Res. 2015;9(17):4199-215.

40. Bahrami AM, Valadi E. Effects of Scrophularia striata ethanolic leaves extracts on Staphylococcus aureus. Int J Pharmaco. 2010;6(4):341-4. doi: 10.22037/jps.v4i4.4925.

41. Tohidpour A, Sattari M, Omidbargi R, Vadekar A, Nazemi J. Antibacterial effect of essential oils from two medicinal plants against Methicillin-resistant Staphylococcus aureus (MRSA). Phytomedicine. 2010;17(2):134-5. doi: 10.1016/j.phymed.2009.05.007. [PubMed: 19576738].

42. Hajighaeree R, Reza zadeh S, Ajani Y, Samadi N, Ashoury N, Agha-Ham madzade S, et al. [Chemical compounds of essential oil and antibacterial effects of Thymus caucasicum. J Med Plant. 2009;4(12):132-7. Persian.

43. Paknejadi M, Foroohi F, Yousefzadi M, Antibacterial activity and chemical composition of the essential oil of Grammosciadium scabrum L. populations. Z Naturforsch C J Biosci. 2009;64(8):73-7. doi: 10.1553/znc-2009-8-108. [PubMed: 19620162].

44. Darabpour E, Poshkoushivian Bavi A, Motamed H, Seyyed Nejad SM. Antibacterial activity of different parts of Peganum harmala L growing in Iran against multi-drug resistant bacteria. EXCLI J. 2011;10:252-63. [PubMed: 29031706]. [PubMed Central: PMC561620].

45. Sonbolii A, Eftekhar F, Yousefzadi M, Kanani MR. Antibacterial activity and chemical composition of the essential oil of Grammosciadium platycarpum Boiss. from Iran. Z Naturforsch C J Biosci. 2005;60(5-6):707-10. doi: 10.1553/znc-2005-9-108. [PubMed: 19093484].

46. Shahverdi AR, Monsef-Esfahani HR, Nickavar B, Bitarafan L, Khodaee S, Khoshakhlagh N. Antimicrobial activity and main chemical composition of two smoke condensates from Peganum harmala seeds. Z Naturforsch C J Biosci. 2010;65(4):560-2. doi: 10.1553/znc-2010-5-60. [PubMed: 22799095].

47. Zarehian M and Jalali A. 2019; 8(4):e96058.
MT, Ghaemi EA. Antibacterial and antioxidant activities of root extract of Onosma dichroanthum Boiss. in north of Iran. *Afr J Microbiol Res*. 2012;6(8):1776-81. doi: 10.5897/AJMR11.1225.

55. Fazly Bazzaz BS, Hassanzadeh Khayat M, Emami SA, Asili J, Sahebkar A, Javadi Neishabory E. Antioxidant and antimicrobial activity of methanol, dichloromethane, and ethyl acetate extracts of Scutellaria litwinowii. *SciAsia*. 2011;37(4):327. doi: 10.2306/sci asia1513-1874.2011.37.327.

56. Motamedi H, Darabpour E, Gholipour M, Seyyednejad SM. Antibacterial effect of ethanolic and methanolic extracts of Plantago ovata and Oliveria decumbens endemic in Iran against some pathogenic bacteria. *Int J Pharmocol*. 2010;6(2):217-22. doi: 10.3923/ijp.2010.17.122.

57. Darabpour E, Motamedi H, Seyyednejad SM. Antimicrobial properties of Teucrium polium against some clinical pathogens. *Asian Pac J Trop Med*. 2010;3(2):224-7. doi: 10.18534/apjtm.2010.0509-8.

58. Meshkhihar MH, Abdollahi A, Fasibi Ramandi M, Adhani Sadati SJ, Moravej A, Htabi S. [Antibacterial effects of hydro-alcoholic extracts of Ziziphus tenuior, Teucrium polium, Barberis corcorde and Stachys inflate]. *Joomesh*. 2010;21(4):240-4. Persian.

59. Mortezasemnani K, Saeedi M, Mahdavi MR, Rahimi F. [Antimicrobial effects of methanolic extracts of some species of stachys and phlomis]. *J Mazandaran Univ Med Sci*. 2007;17(57):57-66. Persian.

60. Yousefi M, Gandomak S, Habibi Z. Essential oil from aerial parts of Betonica grandiflora Wild. from Iran. *Nat Prod Res*. 2012;26(2):346-51. doi: 10.1080/14786419.2010.534992. [PubMed: 21899955].

61. Ahmadi F, Sadeghi S, Modarresi M, Abiri B, Mikael A. Chemical composition, in vitro anti-microbial, antifungal and antioxidant activities of the essential oil and methanolic extract of Hymenocorcor longiflorus Benth., of Iran. *Food Chem Toxicol*. 2010;48(5):1317-44. doi: 10.1016/j.fct.2010.01.028. [PubMed: 2012856].

62. Rajaee A, Barzegar M, Mobarez AM, Saharai MA, Esfahani ZH. Antioxidant, anti-microbial and antinutagenicity activities of pistachio (Pistachia vera) green hull extract. *Food Chem Toxicol*. 2010;48(1):307-12. doi: 10.1016/j.fct.2009.08.023. [PubMed: 19781589].

63. Maleki S, Seyyednejad SM, Damabi NM, Motamedi H. Antibacterial activity of the fruits of Iranian Torilis lepthophylla against some clinical pathogens. *Pak J Biol Sci*. 2008;11(9):1286-9. doi: 10.3923/ijjbs.2008.1286.1299. [PubMed: 18809541].

64. Mohsenzadeh F, Chehregani A, Amiriz H. Chemical composition, antibacterial activity and cytotoxicity of essential oils of Tanacetum partenium in different developmental stages. *Pharm Biol*. 2011;49(9):920-6. doi: 10.3109/13880209.2011.556550. [PubMed: 21592001].

65. Esmaeili A, Amiriz H. The in vitro antioxidant and antibacterial activities of Tanacetum pinnatum boiss. grown in Iran. *BulgChem Com*. 2013;42:267-71.

66. Maz M, Mirdelami SZ, Pessarakli M. Essential oil composition and antibacterial activity of Achillea millefolium L. from different regions in North east of Iran. *J Med Plant Res*. 2013;7(16):1063-9.

67. Motavalizadeh Kakhky A, Shafaghat A, Zamani HA, Akhlaghi H, Mohammadhosseini M, Mehrzad J, et al. Compositions and the in vitro antimicrobial activities of the essential oils and extracts of two Achillea species from Iran. *J Med Plant Res*. 2013;7(9):1280-92.

68. Shafaghat A. Composition and antibacterial activity of the volatile oils from different parts of Achillea tenufolia Lam. from Iran. *J Med Plant. Plant*. 2009;3(3):93-8.

69. Alfatemi SM, Rad JS, Rad MS, Mohsenzadeh S, da Silva JA. Chemical composition, antioxidant activity and in vitro antibacterial activity of Achillea wilhelmsii C. Koch essential oil on methicillin-susceptible and methicillin-resistant Staphylococcus aureus spp. *Biotec*. 2015;5(1):39-44. doi: 10.1007/s12051-014-0197-x. [PubMed: 28324358]. [PubMed Central: PMC432754].

70. Mohammad Sichani M, Amjad L, Mohammad-Komalabadi M. Antibacterial activity of methanol extract and essential oil of Achillea wilhelmsii against pathogenic bacteria. *Zahedan J Res Med Sci*. 2011;3(3). en. e94008.

71. Asghari G, Nourallah H, Havaie SA, Issa L. Antimicrobial activity of *Orostega persica* Boiss. extracts. *J Res Pharm Sci*. 2007;4(1):53-8.

72. Khalighi-Sigaroodi F, Hadjiakhoondi A, Shahverdi AR, Mozaffarian V, Shafiee A. Chemical composition and antimicrobial activity of the essential oil of Ferulago Bernardii Tomk. and M. Pimen. *DMRU J Pharma- scut. Sci*. 2005;13(1):200-5.

73. Asghari G, Jalali M, Sadoughi E. Antimicrobial activity and chemical composition of essential oil from the seeds of artemisia aucheri boiss. *Jundishapur J Nat Pharm Prod*. 2012;7(1):31-5. [PubMed: 24624415]. [PubMed Central: PMC3941861].

74. Esmeili A, Amiriz H. The in vitro antioxidant and antibacterial activities of Tanacetum pinnatum boiss. grown in Iran. *Bulg Chem Com*. 2011;43:532-7.
Table 1. The Name of the Plant Species with Their Related Characterization are Listed in the

Plant	References	Using Part	Extraction	Inhibition Zone (IZ)	MIC
Dicyclophora persica	(19)	Aerial part	Essential oil	20 mm	1.2 mg/mL
Nepeta crispia	(20)	Aerial part	Essential oil	19.5 mm (15 µl/disc)	
Nepeta menthoid	(21)	Aerial part	Essential oil	21 mm (10 µl/disc)	3.6 mg/mL
Terminalia chebula	(22)	Ripe and unripe seed	Methanolic extract		5 mg/mL for ripe seed, 2.5 mg/mL for unripe seed
Myrtus communis	(23)	Leaves and seeds	Methanolic extract	26 mm (20 mg/mL), 10 mm (5 mg/mL) for leaves 16 mm (20 mg/mL), 9 mm (0.62 mg/mL) for seeds	
Salvia multicaulis	(24)	Aerial parts	Essential oil		7.5 mg/mL
Salvia scabra	(24)	Aerial parts	Essential oil		15 mg/mL
Salvia verticillata	(24)	Aerial parts	Essential oil		7.5 mg/mL
Salvia limbata	(25)	Aerial parts	Essential oil		10 mg/mL
Salvia chloroleuca	(26)	Aerial parts	Essential oil		7.5 mg/mL
Salvia officinalis	(22)	Whole plant	Methanolic extract	16 mm	
Salvia suhendica	(27)	Aerial parts	Methanolic extract	14 mm	1.2 mg/mL
Salvia reuterana	(28)	Flower and leaves	Methanolic extract		0.5 mg/mL for flower, 0.25 mg/mL for leaves
Salvia eremophila	(29)	Aerial parts	Methanolic extract and essential oil		7.8 mg/mL for essential oil, 0.5 mg/mL for methanolic extract
Salvia eremophila	(30)	Aerial parts	Methanolic extract	10 mm (4 mg/disc)	1 mg/mL
Salvia reuterana	(30)	Aerial parts	Methanolic extract	8 mm (4 mg/disc)	1 mg/mL
Salvia mirzayani	(30)	Aerial parts	Methanolic extract	12.2 mm (4 mg/disc)	1 mg/mL
Salvia santolinifolia	(30)	Aerial parts	Methanolic extract	12.2 mm (4 mg/disc)	1 mg/mL
Salvia microsiphon	(30)	Aerial parts	Methanolic extract	14.2 mm (4 mg/disc)	1 mg/mL
Salvia armieszii	(31)	Essential oil	Ethyl acetate extract		21.3 µg/mL
Salvia armieszii	(31)	Ethanol extract	Ethanol extract	8.4 mm (4 mg/disc for MRSA^a 6.8 mm/4 mg/disc for S.aureus)	
Salvia armieszii	(31)	Ethanol extract	Ethanol extract	8.4 mm (4 mg/disc for MRSA^a 6.8 mm/4 mg/disc for S.aureus)	
Salvia tomentosa	(32)	Mature plant	Aqueous extract	NA for MRSA^a & S. aureus strains	
Salvia tomentosa	(32)	Mature plant	Ethanol extract	8.4 mm (4 mg/disc for MRSA^a 6.8 mm/4 mg/disc for S.aureus)	
Alhagi maurorum	(22)	Stem gum	Methanolic extract	15 mm	
Heracleum rechingeri	(22)	Fruit	Methanolic extract	20 mm	
Heracleum transcaucasicum	(33)	Aerial parts	Essential oil	NA	
Heracleum anisactis	(33)	Aerial parts	Essential oil	NA	
Foeniculum vulgare	(34)	Fennel seeds	Essential oil	2%	
Cuminum cyminum	(22)	Fennel root	Methanolic extract	12 mm	
Cuminum cyminum	(35)	Fennel root	Methanolic extract	12 mm	
Cuminum cyminum	(23)	Seeds	Methanolic extract	15 mm	
Cuminum cyminum	(32)	Seeds	Aqueous extract	NA for MRSA^a & S. aureus strains	
Cuminum cyminum	(32)	Seeds	Ethanol extract	11.5 mm (4 mg/disc for MRSA^a 8.5 mm/4 mg/disc for S.aureus)	
Artemisia diffusa	(36)	Aerial parts	Methanolic extract	18.4 mm (16 mg/cup)	10 mg/mL
Artemisia oligerria	(36)	Aerial parts	Methanolic extract	12.2 mm (16 mg/cup)	10 mg/mL
Artemisia scoparia	(36)	Aerial parts	Methanolic extract	13.6 mm (16 mg/cup)	10 mg/mL
Plant	Type	Extract/Component	Concentration/Clinical Effect		
-------------------------------	--------------------	----------------------------	--		
Artemisia turanica	Aerial parts	Methanolic extract	11.9 mm (4 mg/disc) (for MRSA^a) 7 mm (4 mg/disc for S. aureus)		
Artemisia dracunculus	Mature plant	Ethanollic extract	8 mm (4 mg/disc) (for MRSA^a) 7 mm (4 mg/disc for S. aureus)		
Artemisia dracunculus	Mature plant	Aqueous extract	NA (for MRSA^a & S. aureus)		
Artemisia herbalba	Mature plant	Ethanollic extract	22.5 mm (4 mg/disc) (for MRSA^a) 11 mm (4 mg/disc for S. aureus)		
Artemisia herbalba	Mature plant	Aqueous extract	12 mm (4 mg/disc) (for MRSA^a) 9 mm (4 mg/disc for S. aureus)		
Artemisia absinthium	Mature plant	Ethanollic extract	9 mm (4 mg/disc) (for MRSA^a) 8 mm (4 mg/disc for S. aureus)		
Pistacia vera	Fruit	Extract	32 mm		
Pistacia mutica	Fruit	Extract	18 mm		
Pistacia vera	Leaves	Extract	22 mm		
Pistacia mutica	Leaves	Extract	22 mm		
P. khinjuk	Leaves	Chloroform	0.04 mg/ml		
P. khinjuk	Leaves	Ethyl acetate	0.13 mg/ml		
P. khinjuk	Leaves	Ethyl alcohol	0.09 mg/ml		
P. khinjuk	Leaves	Diethyl ether	0.42 mg/ml		
P. atlantica	Mastic gum	Essential oil	11 mm (10 µL/disc) 13 mm (20 µL/disc)		
Helichrysum armenium	Flower, leaf and stem	Oil	12.4 mm, 11.22 mm and 10.8 mm (50 µL/cup)		
Helichrysum scabrum	Flower	Extract	9 mm to 19 mm (MIC value varied from lower than 19 µg/mL to 5000 µg/mL)		
Scrophulari astriata	Leaves	Ethanollic extract	50.6 µg/mL		
Thymus persicus	Leaves	Essential oil	0.5 µL/mL		
Thymus ericoclyx	Leaves	Essential oil	0.5 µL/mL		
Thymus pubescens	Pre and flowering stages	Essential oil	29 mm for pre and 34 mm for flowering (dilution of 1/8)		
Thymus serpyllum	Pre and flowering stages	Essential oil	14 mm for pre and 22 mm for flowering (dilution of 1/4)		
Thymus pubescens	Aerial parts	Methanolic extract	8 to 16 mm		
Thymus vulgaris	Leaves	Essential oil	0.1%		
Thymus vulgaris	Whole plant	Methanolic extract	10 mm		
Thymus vulgaris	Essential oil	20 - 35 mm (for 14 clinical MRSA^a strains) 19 mm (for S. aureus) 18.5 µg/mL (for 14 clinical MRSA^a strains) 18.5 µg/mL (for S. aureus)			
Thymus vulgaris	Mature plant	Ethanollic extract	10.5 mm (4 mg/disc for MRSA^a) 9.4 mg/disc for S. aureus		
Thymus vulgaris	Mature plant	Aqueous extract	NA (for MRSA^a & S. aureus)		
Thymus vulgaris	Mature plant	Ethanollic extract	11.2 mm (4 mg/disc for MRSA^a) 9 (4 mg/disc for S. aureus)		
Thymus caraminicus	Mature plant	Aqueous extract	NA (for MRSA^a & S. aureus)		
Thymus caucasicus	Mature plant	Essential oil	0.31 µg/mL (for S. aureus 2.5 µg/mL for MRSA^a)		
Mentha pulegium	Flowering aerial parts	Essential oil	21 mm (1 µL of oil)		
Mentha pulegium	Leaves	Essential oil	0.5%		
Mentha apipera	Essential oil	2 µL/mL.			
Plant Name	Part	Type	Diameter (mm)		
----------------------------	-----------------------	-----------------------	---------------		
Mentha piperita	Leaves	Essential oil	7.5 (4 mg/disc)	0.4%	
		Ethanolic extract	7.5 mm (4 mg/disc) for MRSA^a, 8.5 mm (4 mg/disc) for S. aureus		
Peganum harmala	Seed smoke	Dichloromethane extract	15.7 mm (5 mg of smoke condensate)		
Peganum harmala	Mature plant	Aqueous extract	7.4 mm (4 mg/disc) for MRSA^a, NA (4 mg/disc)		
		Ethanolic extract	18 mm (4 mg/disc) for MRSA^a, 20 mm (4 mg/disc)		
				0.02 mg/mL (for clinical and standard MRSA^a strains), 0.02 mg/mL (for standard and clinical S. aureus strains)	
Peganum harmala	Seed	Methanolic extract	22 mm (in concentration of 400 mg/mL for MRSA^a)		
				0.625 mg/mL	
	Leaves	Methanolic extract	10 mm (in concentration of 400 mg/mL for MRSA^a)		
				0.625 mg/mL	
	Stem	Methanolic extract	18 mm (in concentration of 400 mg/mL for MRSA^a)		
	Root	Methanolic extract	24.5 mm (in concentration of 400 mg/mL for MRSA^a)		
				0.625 mg/mL	
Grammosciadium platycarpum	Aerial parts	Essential oil	18 mm		
				1.9 mg/mL	
Grammosciadium scabridum	Aerial parts	Essential oil	14 mm (10 µg/disc)		
				1.2 mg/mL	
Onosma chroanthum	Root	Methanolic and ethanolic extract	15 mm (50 µL/well), 15 mm (50 µL/well)		
				0.36 mg/mL for methanolic extract and 0.32 mg/mL for ethanolic extract	
Scutellaria litwinowii	Aerial parts	Methanolic extract	6.25 mg/mL		
Scutellaria lindbergii	Aerial parts	Methanolic extract	6.25 mg/mL		
Oliveria decumbens	Aerial parts	Ethanol and methanolic extracts	20 mg/mL, 20 mg/mL		
Teucrium polium	Aerial parts	Alcoholic extracts	40 mg/mL		
Stachys fruticulosa	Aerial parts	Methanolic extract	12 mm		
				2.5 mg/mL	
Stachys schtschegleevii	Aerial parts	Methanolic extract	13 mm		
				1.25 mg/mL	
Stachys byzantia	Aerial parts	Methanolic extract	8.4 mm		
				100 µg/mL	
Stachys inflata	Aerial parts	Methanolic extract	8.3 mm		
				250 µg/mL	
Stachys lavandulifolia	Aerial parts	Methanolic extract	8.6 mm		
				500 µg/mL	
Stachys laxa	Aerial parts	Methanolic extract	8.6 mm		
				100 µg/mL	
Stachys grandiflora	Aerial parts	Essential oil	12 mm		
Stachys obtusiflora	Aerial parts	Methanolic extract	9.2 mm (4 mg/disc)		
Hyoscyamus longiflorus	Polar sub-fraction	Essential oil	31 mm		
				40 µg/mL	
Pistacia vera	Green hull	Purified extract	11.7 mm (at 1200 µg/plate)		
Phlomis caucasia	Aerial parts	Methanolic extract	12 mm		
				1.25 mg/mL	
Phlomis buruguieri	Aerial parts	Methanolic extract	16.7 mm		
				10 mg/mL	
Phlomis herbaeenti	Aerial parts	Methanolic extract	12.2 mm		
				10 mg/mL	
Phlomis oliveri	Aerial parts	Methanolic extract	13.1 mm		
				25 mg/mL	
Tornilis leptophylla	Aerial parts	Ethanol extract	10 mm		
				0.4 g/mL	
Tanacetum balsamita	Aerial parts	Dichloromethane extract	18.5 mm (2.5 µL), 34 mm (5 µL), 39 mm (7.5 µL) and 42 mm (15 µL)		
				2.5 mg/mL	
Tanacetum parthenium	Whole plant	Essential oil	24 mm		
				8 µg/mL	

^a MRSA: Methicillin Resistant Staphylococcus aureus

Jundishapur J Chronic Dis Care. 2019; 8(4):e96058.
Plant Name	Stage	Type	Extract/Concentration	Diameter (mm)	
Tanacetum parthenium	Pre-flowering	Essential oil	8 µg/mL	18	
T. parthenium	Post-flowering	Essential oil	8 µg/mL	22	
T. pinnatumboiss	Aerial parts	Essential oil		24.2	
Achillea millefolium		Methanolic extract	0.625 mg/mL		
Achillea pachycephala	Flowers	Essential oil	12 mm		
Achillea pachycephala	Leaves	Essential oil	10.5 mm		
Achillea pachycephala	Stems	Essential oil	8 mm		
Achillea santolina	Aerial parts	Methanolic extract	12.5 mg/mL		
Achillea santolina	Flowers	Essential oil	9 mm		
Achillea santolina	Leaves	Essential oil	7.5 mm		
Achillea santolina	Stems	Essential oil	6.5 mm		
Achillea santolina	Aerial parts	Hexan-ether	6.25 mg/mL		
Achillea tenuifolia	Flowers	Volatile oils	14 mm		
Achillea tenuifolia	Leaves	Volatile oils	9 mm		
Achillea tenuifolia	Stems	Volatile oils	8 mm		
Achillea wilhelmsii	Essential oil	27 mm (200 µL) (for MRSA^a)			
Otostegia persica	Aerial parts	Hexane extract	10 mg/mL		
Otostegia persica	Aerial parts	Chloroform extract	1.25 mg/mL		
Otostegia persica	Aerial parts	Methanolic extract	3.12 mg/mL		
Berberis vulgaris	Root	Aqueous extract	0.39 mg/mL (for clinical strain S. aureus & MRSA^a) 0.04 mg/mL (for standard S. aureus strains) 0.39 mg/mL (for standard and clinical S. aureus strains)	17 mm	
Berberis vulgaris	Root	Ethanol extract	0.39 mg/mL (for clinical strain S. aureus & MRSA^a) 0.04 mg/mL (for standard S. aureus strains) 0.39 mg/mL (for standard and clinical S. aureus strains)	17 mm	
Ferula angulata	Aerial parts	Essential oil	15 µg/mL		
Ferula angulata	Seeds	Essential oil	> 4 × 10³ µg/mL		
Eucalyptus globulus	Aerial parts	Essential oil	51.36 µg/mL		
Eucalyptus globulus	Leaves	Aqueous extract	34.24 to 85.6 µg/mL (for 14 clinical MRSA^a strains) 37 mm (for S. aureus)	10 to 30 mm (for 14 clinical MRSA^a strains) 17 mm (for S. aureus)	11 mm
Eucalyptus globulus	Leaves	Ethanol extract	0.18 mg/mL (for clinical strain MRSA^a) 0.09 mg/mL (for standard MRSA^a strain) 0.39 mg/mL (for standard and clinical S. aureus strains)	17 mm	

Abbreviation: NA, no activity.
^aPlants that were also evaluated against MRSA.