Isolate dependency of Brassica rapa resistance QTLs to Botrytis cinerea
Zhang, Wei; Kwon, Soon-Tae; Chen, Fang; Kliebenstein, Daniel James

Published in:
Frontiers in Plant Science

DOI:
10.3389/fpls.2016.00161

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Zhang, W., Kwon, S-T., Chen, F., & Kliebenstein, D. J. (2016). Isolate dependency of Brassica rapa resistance QTLs to Botrytis cinerea. DOI: 10.3389/fpls.2016.00161
Isolate Dependency of *Brassica rapa* Resistance QTLs to *Botrytis cinerea*

Wei Zhang¹,², Soon-Tae Kwon¹,³, Fang Chen² and Daniel J. Kliebenstein¹,4*

¹ Department of Plant Sciences, University of California, Davis, CA, USA; ² National and Local Joint Engineering Laboratory for Energy Plant Bio-oil Production and Application, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China; ³ Department of Horticulture and Breeding, Andong National University, Andong, South Korea; ⁴ DynaMo Center of Excellence, University of Copenhagen, Copenhagen, Denmark

Generalist necrotrophic pathogens including *Botrytis cinerea* cause significant yield and financial losses on *Brassica* crops. However, there is little knowledge about the mechanisms underlying the complex interactions encoded by both host and pathogen genomes in this interaction. This potentially includes multiple layers of plant defense and pathogen virulence mechanisms that could complicate in breeding broad spectrum resistance within *Brassica* species. Glucosinolates (GSLs) are a diverse group of defense metabolites that play a key role in interaction between *Brassica* and biotic attackers. In this study, we utilized a collection of diverse *B. cinerea* isolates to investigate resistance within the *Brassica rapa* R500 × IMB211 recombinant inbred line population. We tested variation on lesion development and glucosinolate accumulation in parental lines and all population lines. We then mapped quantitative trait loci (QTL) for both resistances to *B. cinerea* and defense metabolites in this population. Phenotypic analysis and QTL mapping demonstrate that the genetic basis of resistance to *B. cinerea* in *B. rapa* is isolate specific and polygenic with transgressive segregation that both parents contribute resistance alleles. QTLs controlling defensive GSLs are highly dependent on pathogen infection. An overlap of two QTLs identified between resistance to *B. cinerea* and defense metabolites also showed isolate specific effects. This work suggests that directly searching for resistance loci may not be the best approach at improving resistance in *B. rapa* to necrotrophic pathogen.

Keywords: plant–pathogen interaction, *Brassica rapa*, *B. cinerea*, quantitative disease resistance, QTL mapping, GSL

INTRODUCTION

Generalist necrotrophic pathogens including *Botrytis cinerea* are significant economic challenges on *Brassica* crops because of its ability to cause lesions on nearly all harvestable components of the plant including leaves, stems, florets, and pods (Bolton et al., 2006; Williamson et al., 2007). Thus, there is interest in breeding for resistance to *B. cinerea* within *Brassica* crop species. This is, however, complicated because resistance to *B. cinerea* is a highly quantitative trait with little evidence of major effect resistance loci (Denby et al., 2004; Finkers et al., 2007a,b, 2008; Rowe and Kliebenstein, 2008; Staal et al., 2008; Davis et al., 2009; Anuradha et al., 2011). The effort if further complicated by the desire to breed for broad spectrum resistance which runs into the complication that *B. cinerea* is a highly polymorphic pathogen with this genetic variation altering the virulence mechanisms by which the pathogen interacts with the plant.
of 14 genetically variable quantitative resistance in Brown et al., 2015; Gupta et al., 2015; Rout et al., 2015). However, most genetic or molecular studies looking at how plants resist B. cinerea typically utilize individual isolates hindering the effort to find loci that provide potential resistance to a broad spectrum of B. cinerea isolates.

Defense metabolites including glucosinolates (GSLs), have frequently been linked to resistance to B. cinerea and other generalist necrotrophic pathogens within the Brassicas (Stotz et al., 2011; Buxdorf et al., 2013; Cargnel et al., 2014; Calmes et al., 2015). GSLs are sulfur containing secondary metabolites unique to the order Capparales whose genetics and chemistry have been extensively studied (Chan et al., 2010; Sønderby et al., 2005; Pfalz et al., 2007, 2009; Fan et al., 2011; Weis et al., 2014; Kerwin et al., 2015). As a result of this role in numerous different biotic interactions, GSLs show extensive genetic variation in all tested Brassica’s but the link between this natural genetic variation and quantitative resistance to pathogens including B. cinerea has not been queried (Kliebenstein et al., 2002a,b; Wentzell et al., 2007; Chan et al., 2010; Velasco et al., 2011; Feng et al., 2012; Zou et al., 2013; Rahman et al., 2014; Brown et al., 2015; Gupta et al., 2015; Rout et al., 2015).

To test the influence of genetic variation in B. cinerea upon quantitative resistance in Brassica rapa, we utilized a collection of 14 genetically variable B. cinerea isolates to test for variation in lesion development on the IMB211 and R500 parents of a B. rapa RIL population (Iniguez-Luy et al., 2009). This identified a significant interaction of the host and pathogen genotypes on the quantitative resistance outcome of the interaction. We then proceeded to map resistance to five B. cinerea isolates in the IMB211 × R500 RIL population. Simultaneously, we measured glucosinolate accumulation in all the RILs in the presence and absence of the pathogen to map defense metabolite quantitative trait loci (QTLs). This showed that the detached leaf assay approach identified isolate specific resistance QTLs in B. rapa and that the defense metabolite QTLs were highly dependent upon the interaction with the pathogen. There was also an overlap of two QTLs between defense metabolites and resistance to B. cinerea but both loci showed isolate specific effects. This work suggests that a potential avenue going forward to breed for quantitative resistance to B. cinerea in B. rapa would be to focus on breeding for the proper defense metabolite blend. Or alternatively to stack isolate specific resistance loci to create the appearance of broad spectrum resistance. Further work is required to assess if these detached leaf identified loci will work in whole plant field based assays.

MATERIALS AND METHODS

Bulking of Brassica rapa Germplasm

Seeds of the two parental lines of the B. rapa BraIRR population, the annual yellow sarson R500 (male) and the rapid cycling IMB211 (female) (Williams and Hill, 1986) as well as the resulting recombinant inbred lines (RILs) population, were obtained (Iniguez-Luy et al., 2009). Both parental lines and 133 lines of RILs in this study were bulked during 2013 in the University of California, Davis greenhouses under a controlled environment. The plants were grown under a 12-h photoperiod under metal-halide lamps using a day/night temperature set at 25/18°C and relative humidity of 70. Plants were grown in 15-cm-diameter plastic round pot, filled with standard potting soil (Sunshine Mix #1; Sun Gro Horticulture) and ~4.5 g of a slow-release fertilizer (14-14-14 Osmocote, Scotts). For bulking, all plants were bagged with mesh pollination bag during flowering to prevent cross-pollination. The plants were staked upright to produce larger fruits and reduce pathogen and herbivore attack. We watered the plants once a day and then reduced the watering times for about 2 weeks when the fruits began to mature. The seeds were harvested once the majority of the seedpods were dry and then stored separately in paper bags in a cool, dry, dark place until further use.

Growth of the R500 X IMB211 RIL Mapping Populations for QTL Analysis

For measuring the resistance to B. cinerea and GSL metabolite accumulation, the B. rapa parental lines and 120 RILs that had sufficient seed were raised in a controlled environment chamber at University of California, Davis. Three seeds of each genotype were sown in the center of a separate well of a 6 × 12 well tray filled with standard potting soil matrix and the tray was placed in a large planting flat (280 mm × 540 mm × 58 mm). All genotypes were randomized in a randomized complete block design. Two liters of nutrient-enriched water (0.5% N-P-K fertilizer in a 2-1-2 ratio; Grow More 4-18-38) were added into the flat to ensure the compost around seeds was moist. The flat was covered with a transparent plastic hood to maintain humidity during germination and placed into a chamber at 5°C to complete vernalization. After 3 days of chilling, the transparent hood was removed and the flat was transferred into a climate-controlled chamber with the temperature at 22°C and a photoperiod 10 h light:14 h dark photoperiod. All plants were watered twice a week using nutrient-enriched water. At 21 days after sowing, 4–5 true leaves were harvested from each plant for analysis of lesion size and GSL content. The entire experiment was repeated a second independent time.

B. cinerea Isolates, Preparation of Conidia and Inoculation

Information for all B. cinerea isolates used in this study is described in previous reports (Denby et al., 2004; Kliebenstein et al., 2005). To collect spores for plant inoculation, all isolates were maintained as conidial suspensions in 30% glycerol at −80°C at our lab for long time storage. Conidia suspensions were swabbed on freshly prepared potato dextrose agar (PDA, Gibco/Invitrogen, Carlsbad, CA, USA) medium in Petri dishes and cultured at room temperature. Spores used for infection on B. rapa leaves were obtained as described (Rowe and Kliebenstein, 2008). The detached leaf assay has been utilized in
numerous settings to identify causal loci controlling resistance to necrotrophic fungi. While this assay will miss loci controlling resistance in a whole plant context like pedicel transmission barriers, it is a useful approximation (Sharma et al., 2005; Mulema and Denby, 2012; Cowley et al., 2014; Boydom, 2015). For lesion assays and trypan blue staining, the fully developed detached leaves placed on 1% phytoagar in large plastic trays. Detached leaves were inoculated with 4 µL droplets of B. cinerea spore suspensions (10 spores/µL) in 50% filtered grape juice (Santa Cruz Organics, CA) at room temperature with light illumination. Control leaves (mock) were inoculated with of the 4 µL droplet of 50% filtered grape juice without spores. An abiotic GSL elicitor, AgNO3 (5 mM), was inoculated in the same way. Six independent infections were conducted per isolate/genotype pair across the two independent experiments. Digital photographs were taken every 8–12 h to examine the lesion development on leaves.

To test for differences in the B. rapa parental lines, we screened fourteen B. cinerea isolates for differential virulence against the two parental lines using six independent biological replicates per genotype/isolate combination. Susceptibility of B. rapa parental lines, R500 and IMB211, to diverse B. cinerea isolates was digitally measured by measuring the size of the developing fungal lesion after 72 h post inoculation. The lesion size for each isolate was compared between the two genotypes using ANOVA to test the statistical significance of influence of each experimental factor, or a specific interaction between experimental factors on the lesion size. The ANOVA model was lesion = plant genotype + fungal isolate + experiment replicate + plant genotype × fungal isolate + plant genotype × experiment replicate + fungal isolate × experiment replicate + error.

For QTL mapping, three isolates that showed significantly differential virulence between the two B. rapa parents, Ausubel, Davis navel, and Pepper, as well as the most virulent isolate, Katie tomato, and least virulent isolate UK Razz were used to measure lesion size on each RIL in threefold replication per experiment in two independent experiments for a total of six biological replicates. Seeds were sown in replicate and plants were measured for resistance to the different isolates as described above. After

TABLE 1	ANOVAs for lesion size in the Brassica rapa parental genotypes and recombinant inbred lines (RILs).					
Sources of variation	df	SS	P	df	SS	P
Genotype	1	80	<0.001	114	2078	<0.001
Isolate	13	1137	<0.001	4	8250	<0.001
Experiment	5	8	0.256	3	1	0.556
Genotype × Isolate	13	98	<0.001	350	3005	<0.001
Genotype × Experiment	5	3	0.819	342	202	0.027
Isolate × Experiment	65	86	0.282	12	47	<0.001

The ANOVA results for the various factors in the Parental and RIL experiments are shown with degrees of freedom (df), Type III Sums-of-Squares (SS) and estimated P-value. Genotype shows the effect of plant genetic variation while Isolate shows the effect of the pathogens genetic variation.
planting, there were 114 RILs left for the final lesion size analysis due to the failure of 6 RILs to grow. Least square means for all lesion data was then obtained using the ANOVA as described above for the parents.

Trypan Blue Staining

Trypan blue staining was used to visualize the growth and structure of mycelium and accompanying plant cell death caused by different *B. cinerea* isolates on leaves of both *B. rapa* parental lines. Staining of *B. rapa* leaves was performed at 12 h post-inoculation as previously described (van Wees, 2008). Briefly, the infected leaf tissues were transferred into a 50 mL plastic tube with lid and covered with 2.5 mg/mL trypan blue-lactophenol solution diluted in ethanol (96%; 1 :2 v/v). The plastic tube (lid slightly unscrewed) was heated in a boiling water bath for 1 min and the leaf tissues were left in staining solution at RT for about 12 h. Leaf tissues were destained by removing the staining solution and covering the tissues in chloral hydrate solution for 6 h and the destaining solution changed several times until the leaf tissues were clear. The cleared leaf tissues were placed into 50 mL plastic tubes with 70% glycerol. For analysis, stained leaf tissue was spread on a transparent plastic Petri dish and examined by taking high-resolution digital photos of the entire leaf tissue and each lesion.

GSL Analysis

To measure the plants response to infection, GSLs were extracted, identified and quantified using a high-throughput analytical system from all of the above leaf tissue treated with *B. cinerea* isolates, Silver nitrate or grape juice after 72 h post inoculation (Kliebenstein et al., 2001a,b,c). Briefly, GSLs were identified by comparing the retention time of HPLC peak and UV absorption spectrum with standards (Reichelt et al., 2002). For the RILs, we were only able to obtain GSL values for the control and *B. cinerea* isolate Pepper infected samples due to a technical failure during sample storage. Each GSL was analyzed using the same statistical models as for the respective lesion size analysis described above.

QTL Analysis

To detect QTL for the lesion size and GSL content in the R500 × IMB211 RIL population, we used the least-square means for each trait for each RIL across all experiments. A high-resolution genetic map was obtained for the R500 × IMB211 RIL population from previously published resources (Devisetty et al., 2014). This was used in conjunction with the Composite interval mapping (CIM) algorithm as implemented by the cim function in the R/qtl analysis package to map QTL (Broman et al., 2003). The imputation method was selected...
and forward regression was used to identify three markers as covariates, with window size of 10 cM, an error of 0.0001, and 0 cM steps: cim(cross, method = "imp," n.marcovar = 3, window = 10).

The LOD thresholds to call significant QTLs were estimated using 1000 permutation for each phenotype with a genome-wide significance level of $p = 0.05$ (Churchill and Doerge, 1994; Doerge and Churchill, 1996). Results obtained by CIM were analyzed and the define.peak function in R/qtl analysis package was used to define the QTL with support LOD interval for each phenotypic trait (Broman et al., 2003). QTL were named with respect to their phenotypic traits and the cM position on the chromosome number. The additive effects of the loci along all chromosomes were estimated using the effectscan function in R/qtl package (Broman et al., 2003).

Testing of QTL Interactions

To identify QTL \times Isolate or QTL \times QTL interactions using the detected QTL, we conducted an ANOVA using all of the RILs. In the ANOVA model, the markers that most closely associated with each QTL were used as factors. Furthermore, the different isolates as well as the untreated data were all used within the model to allow *B. cinerea* isolates and the treatments to be used as factors in the model. We tested all the QTL main effects as well as all possible pairwise interactions, including the QTL \times isolate, QTL \times infection or QTL \times QTL interactions where appropriate.
Zhang et al. Isolate Specific Botrytis Resistance QTLs

FIGURE 5 | Botrytis cinerea isolate dependent effects of resistance QTLs. The estimated phenotypic effect of the alleles from R500 and IMB211 at markers associated with isolate dependent QTL are shown. Error bars indicate standard error. Isolates that were significant affected by the QTL were tested by ANOVA with post hoc Tukey’s HSD and is indicated by asterisks above bars: * \(P < 0.05 \), ** \(P < 0.01 \). Light shows the value for the R500 allele and dark shows the value for the IMB211 allele at the given QTL. QTLs are as labeled in Figure 4: (A) QTL L1.51.7, (B) QTL L7.26.6, (C) QTL L9.0.1.

RESULTS

Variable Resistance of B. rapa Genotypes to Diverse B. cinerea Isolates

To investigate resistance to B. cinerea, we tested two B. rapa genotypes, R500 and IMB211, for resistance to 14 isolates of this necrotrophic pathogen using a previously published foliar resistance assay (Table 1). This detached lesion assay has been widely used to identify necrotrophic resistance genes in a number of different systems (Sharma et al., 2005; Mulema and Denby, 2012; Cowley et al., 2014; Boydom, 2015). These isolates show extensive genomic variation (Atwell et al., 2015). Leaves of B. rapa R500 and IMB211 were inoculated with B. cinerea spore suspension from each of the 14 isolates and visible expansion of necrotic lesions appeared between 12 and 24 h post inoculation (HPI), indicating outgrowth of hyphae and the initial establishment of primary lesion. Most of the lesions induced by isolates were observed to spread beyond the inoculation droplets at 24 HPI, with lesions expanding in general more rapidly on IMB211 leaves. Chlorotic zones adjacent to the developing lesion were observed for all isolates on both plant genotypes with a tendency to extend to the distal regions of leaves, plants. Quantifying lesion diameter for all infections showed that there was a statistically significant effect of the B. rapa and B. cinerea genotypes and an interaction between the plant and pathogen genotype in controlling resistance (Table 1 and Figure 1). Comparison of the mean lesion diameters showed that in all instances where there was a significant effect, B. rapa R500 plants had smaller lesion sizes than IMB211 (Figure 1). In addition to the plant genotype, there were significant differences across the B. cinerea isolates for lesion size on the B. rapa genotypes ranging from the low virulence Fresa SD to higher virulence Apple 517 (Table 1 and Figure 1). While most isolates showed equal virulence on the two B. rapa genotypes, four B. cinerea isolates (Ausubel, Davis Navel, Pepper and Supersteak) showed significant differences in virulence across the B. rapa genotypes suggesting that there are Host × pathogen genetic interactions underlying the quantitative resistance of B. rapa to B. cinerea.

Morphological Analysis of the Interaction of B. rapa Genotypes with Diverse B. cinerea Isolates

To investigate if the quantitative variation in resistance between these B. cinerea isolates and B. rapa genotypes is apparent at the microscopic level, we stained the infected B. rapa leaves at 24 HPI (Figure 2). This allowed us to visualized plant vasculature, dead plant cells and fungal hyphae. In all cases, the fungal hyphae developed in the primary lesion, including those isolates that had extremely low virulence UK Razz, Rose or Fresa SD suggesting that the plant was preventing hyphal growth. There no consistent relationship between lesion outgrowth and hyphal production at 24 h with the strongly virulent Apple 517 and Katie Tomato showing similar hyphal distribution as the low virulent UK Razz, Rose or Fresa SD (Figure 2). Thus, the quantitative resistance that we are measuring in the B. rapa/B. cinerea system is not preventing hyphal germination or establishment (Figure 2). Instead, the quantitative resistance is altering the relative rate of outgrowth of the hyphae in each interaction. This is similar to what had previously been found in Arabidopsis thaliana (Rowe et al., 2010).

QTLs for Quantitative Resistance to B. cinerea

To begin identifying the loci that may control the quantitative interaction of B. rapa with B. cinerea, we measured lesion
TABLE 2 | ANOVAs for the accumulation of the GSLs in the B. rapa RILs.

Sources of variation	Geno	Treat	Exp	Geno × Treat	Geno × Exp	Treat × Exp
GSL	111	1	2	111	197	2
4MSB	587592	14675	4673	249079	522431	1547
P	<0.001	0.009	0.329	0.331	0.052	0.691
Benzyl	42514373	28489898	16266	26141049	26739529	199225
P	<0.001	<0.001	0.945	0.002	0.673	0.504
I3M	926625	764771	64741	863947	497570	45710
P	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
4MO-I3M	174256	110996	3452	165917	126089	2915
P	<0.001	<0.001	0.087	<0.001	0.725	0.127
1MO-I3M	209265	36323	2499	152165	249352	1898
P	0.042	<0.001	0.414	0.557	0.768	0.511

The ANOVA results for the various factors that may alter GSL accumulation in the RIL experiments are shown with degrees of freedom (df), Type III Sums-of-Squares (SS) and estimated P-value. Geno shows the effect of plant genetic variation while Treat shows the effect of the presence or absence of the Botrytis cinerea Pepper isolate. Exp shows the effect of the experiment. 4MSB stands for 4-methylsulfinylbutyl glucosinolate, Benzyl stands for the benzylic glucosinolates (GSLs), I3M stands for Indol-3-ylmethyl glucosinolate, 4MO-I3M stands for 4-methoxy-indol-3-ylmethyl glucosinolate and 1MO-I3M stands for 1-methoxy-indol-3-ylmethyl glucosinolate.

FIGURE 6 | QTL mapping of glucosinolates accumulation in B. rapa RILs in response to B. cinerea. Shown are results from CIM of the mean glucosinolate accumulation in leaves of B. rapa with the absence (control, left) or presence (infection, right) of B. cinerea isolate Pepper across the 112 IMB211 × R500 RILs. The LOD score is shown with the horizontal line representing the permutation obtained significance threshold. Each QTL is labeled with the trait and chromosome position showing the maximum LOD score. The QTL plots for the different glucosinolates are as follows with abbreviations as given in Table 2: (A) 4MSB, (B) benzyl glucosinolates, (C) I3M, (D) 4MO-I3M, and (E) 1MO-I3M.

diameter on leaves of the B. rapa R500 × IMB211 RIL population using five B. cinerea isolates (Iniguez-Luy et al., 2009). We utilized three B. cinerea isolates that showed different virulence on R500 and IMB211 (Ausubel, Davis Navel and Pepper) as well as one strongly virulent (Katie Tomato) and one avirulent (UK Razz) isolate that had no difference between the two parents
Lesion development induced by the five fungal isolates was significantly influenced by *B. rapa* genotypic variation \((p < 0.001)\). *B. cinerea* isolate variation \((p < 0.001)\) and the interaction of the two as determined using analysis of variance (ANOVA; Table 1). This further supports that there are genotypic dependent interactions between *B. cinerea* and *B. rapa*. The *B. rapa* RIL population displayed a range of variation for lesion size trait that was different for all five *B. cinerea* isolates (Figures 1 and 3). Using the Ausubel and Pepper isolates showed a distribution that skewed toward the sensitive IMB211 parent. In contrast, the Davis Navel isolate highlighted a distribution that skewed toward the sensitive IMB211 parent.

Interestingly, for both isolates that had no difference between the parental values. In contrast, the Davis Navel isolate highlighted a distribution that skewed toward the sensitive IMB211 parent.

The QTL L1.51.7 found only for the Katie Tomato isolate also significantly altered resistance to Davis Navel. Thus, we were able to identify QTL that appear to control isolate specific aspects of quantitative resistance in the interaction of *B. rapa* with *B. cinerea*.

Identification of QTL Controlling Defense Responses

Previous work has linked genetic variation in defense compounds to variation in biotic interactions including for *B. cinerea* (Denby et al., 2004; Rowe and Kliebenstein, 2008). Thus, we measured GSL content in all of the RILs in both control leaves and *B. cinerea* isolate Pepper infected leaves. This showed that all detected GSLs had genetic variation and were affected by the infection with the *B. cinerea* Pepper isolate (Table 2). There were no presence or absence polymorphisms affecting GSL abundance in this population allowing us to focus on quantitative variation controlling their relative abundance (Table 2; Kliebenstein et al., 2001b; Wentzell et al., 2007; Chan et al., 2010). All five GSLs identified significant QTLs with the majority of them appearing to be dependent on the presence or absence of *B. cinerea* (Figure 6).
FIGURE 7 | Glucosinolates QTL that are show pathogen responsiveness. Shown is the estimated phenotypic effect of the alleles from R500 and IMB211 at GSL accumulation QTL that are treatment dependent. Error bars indicate standard error. Significance differences between the treatment × genotype groupings were determined by ANOVA with a post hoc Tukey’s HSD test and are indicated with different letters. The top of each graph indicates the GSL and QTL being shown with abbreviations as listed in Table 2. Light shows the accumulation for RILs with the R500 allele and dark shows the value for the IMB211 allele at the given QTL.

and Table 3). The aliphatic and benzylic GSLs identified more QTLs under the control treatment whereas the indolic GSLs identified more QTLs under the B. cinerea infected tissue. This agreed with the observation that the treatments in general lead to higher indolic GSLs and lower 4MSB and Benzylic GSLs. This allowed QTL effects to be seen for indolic GSL following treatment and Benzylic and 4MSB prior to treatment (Figure 7). Most of the indolic QTLs were such that the IMB211 allele leads to lower pathogen induced indolic GSLs in contrast to the R500 allele (Figure 7). One QTL, G9.5.0, on chromosome IX shared by both aliphatic and benzylic GSLs, was also detected as affecting lesion development when the RILs were infected with the B. cinerea isolate Ausubel isolate. This suggested that there might be a link between these GSL and resistance to at least this B. cinerea isolate (Figures 4 and 6).

Epistasis Analysis

Previous work on quantitative resistance to B. cinerea has shown that the identified QTLs are typically epistatic to each other (Finkers et al., 2007a,b, 2008; Rowe and Kliebenstein, 2008). To investigate the epistatic architecture underlying isolate-specific resistance to B. cinerea and chemical defense within the R500 × IMB211 population, we conducted ANOVA models for QTL controlling lesion development and individual GSL using the genetic markers closest to the QTL peak as terms in the linear model. In contrast to previous studies, we only found a single epistatic interaction with any evidence of significance in altering Botrytis resistance. This interaction was between the L3.2 and L9.72.3 QTLs that were unique to the UK Razz isolate (Figure 8). In comparison to B. cinerea resistance, more epistatic interactions were detected for GSL accumulation, one for the accumulation of aliphatic GSLs and three for the accumulation of the I3MGSL (Figure 8, Supplementary Tables 2–6). Interestingly, all of the epistatic interactions between GSL loci were also found to interact with the presence or absence of the pathogen suggesting that they may be linked to the regulation of the defense compounds.

DISCUSSION

Using 14 diverse B. cinerea isolates to measure quantitative resistance in two B. rapa lines that are the parent of a common RIL population showed that the two parents differed in their
resistance to some but not all of the isolates (Figure 1). Further
QTL mapping with a subset of these isolates showed that the
genetic basis of this is likely polygenic with transgressive
segregation showing that both parents can contribute resistance
alleles. This was even the case when both B. rapa parents
had identical resistance to an isolate (Figures 3 and 4).
These loci need to be assessed in whole plant assays under
field growth conditions to assess their agronomic utility.
This quantitative, isolate specific and transgressive basis of
quantitative resistance loci that target overlapping ranges of
resistance QTLs, GLS have frequently been linked to altered
biotic interactions within the Brassicas (Mithen et al., 1986,
1987; Mithen, 1992; Mithen and Magrath, 1992; Kroymann
and Mitchell-Olds, 2005; Pfalz et al., 2007, 2009; Fan et al.,
2011; Stotz et al., 2011; Buxdorf et al., 2013; Cargnel et al.,
2014; Weis et al., 2014; Calmes et al., 2015; Kerwin et al.,
2015). However, the specific mechanism by which the GSL can alter
biotic interactions is not yet well understood. Some studies have
provided evidence of direct toxicity to the biotic attacker that
can be compensated by resistance mechanisms in the pathogen
(Bednarek et al., 2009; Fan et al., 2011; Stotz et al., 2011).
In contrast other studies have begun to illuminate a different
possibility, specifically that the GLS alter the defense signaling
pathways by which the plant responds to pathogens or jasmonic
acid (Clay et al., 2009; Kerwin et al., 2011; Burow et al.,
2015). Using the QTL results, it is not possible to discriminate
between these two possibilities and further work will be required
to test if the link between GSL accumulation and B. cinerea
resistance in B. rapa is due to direct toxicity, altered defense
responses or a blend of both. Partitioning between these two
possibilities will be key to develop a maximally efficient effort
at improving resistance to a broad array of B. cinerea isolates in
B. rapa.

CONCLUSION

This work begins to highlight the underlying genetic complexity
of breeding for improved resistance to B. cinerea within
B. rapa. The directly identified resistance loci are highly
isolate specific but it may be possible to improve the breeding
efficiency by breeding for an optimal defense compound
blend. This, however, needs to be balanced by the fact
that these same defense compounds also influence the flavor
and nutritive value of the resulting Brassica crop. As such
any effort at resistance breeding will by fact of this link
also alter the quality of the resulting crop. By combining
quantitative resistance loci that target overlapping ranges of
Botrytis isolates together may be a more feasible breeding
strategy to confer a broad-spectrum and durable resistance
to crops against this pathogen. It is also important to note
that this level of isolate specific resistance loci has significant
impact on the mechanistic analysis of quantitative resistance
(Broekgaarden et al., 2015). This indicates that the use of
individual isolates will only provide mechanistic insight into
how that individual isolate is resisted and that a broad range of
pathogen genetics needs to be incorporated to assess the broader
mechanistic influences on quantitative resistance. The low
number of identified QTLs given the high heritability of the resistance trait suggests that there is a need to increase the available RIL population sizes to decrease the false negative error rate and to obtain a more precise picture of the genetic architecture underlying the resistance to B. cinerea in B. rapa.

AUTHOR CONTRIBUTIONS

S-TK, DK conceived and designed the experiments. WZ, S-TK performed the experiments. WZ, S-TK, DK analysis the data. WZ, DK wrote the paper.

REFERENCES

Amsellem, J., Cuomo, C. A., Van Kan, J. A. L., Viaud, M., Benito, E. P., Couloux, A., et al. (2011). Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet. 7:e1002230. doi: 10.1371/journal.pgen.1002230

Anuradha, C., Gaur, P. M., Pande, S., Gali, K. K., Ganesh, M., Kumar, J., et al. (2011). Mapping QTL for resistance to botrytis grey mould in chickpea. Euphytica 182, 1–9. doi:10.1007/s10681-011-0394-1

Atwell, S., Corwin, J. A., Soltis, N. E., Subedy, A., Denby, K. J., and Kliebenstein, D. J. (2015). Whole genome ressequencing of Botrytis cinerea isolates identifies high levels of standing diversity. Front. Microbiol. 6:996. doi: 10.3389/fmicb.2015.00996

Bednarek, P., Pilewska-Bednarek, M., Svatos, A., Schneider, B., Dubsky, J., Manusurova, M., et al. (2009). A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323, 101–106. doi:10.1126/science.1163732

Bolton, M. D., Thomma, B. P., and Nelson, B. D. (2006). Sclerotinia sclerotiorum (Lib.) de bary: biology and molecular traits of a cosmopolitan pathogen. Mol. Plant Pathol. 7, 1–16. doi:10.1111/j.1364-3730.2005.00316.x

Bouard, A. (2015). Evaluation of detached leaf assay for assessing leaf rust (Puccinia triticina Eriks.) resistance in wheat. J. Plant Pathol. Microbiol. 4:176. doi:10.4172/2157-7471.1000176

Brouckaert, C., Schepens, K., Leemans, J., Huneeus, H., Kusters, S., Verver, P., et al. (2015). Novel genes affecting the interaction between the cabbage whitefly and Brassica napus that control glucosinolate concentration in the seeds and leaves of B. napus. Front. Plant Sci. 6:996. doi:10.3389/fpls.2015.00414

Burov, M., Atwell, S., Fancisco-Candeiro, M., Guedes, M., Serrano, J. M., and Kliebenstein, D. J. (2015). The glucosinolate biosynthetic gene AOP2 mediates feedback regulation of jasmonic acid signaling independent of its known enzymatic function. Mol. Plant 8, 1201–1212. doi:10.1016/j.molp.2015.03.001

Buxdorf, K., Yaffe, H., Barda, O., and Levy, M. (2013). The effects of glucosinolates and their breakdown products on necrotrophic fungi. PLoS ONE 8:e70771. doi: 10.1371/journal.pone.0070771

Calmes, B., Nguyen, G., Dumur, J., Brisach, C. A., Campion, C., Iacomii, B., et al. (2015). Glucosinolate-derived isothiocyanates impact mitochondrial function in fungal cells and elicit an oxidative stress response necessary for growth recovery. Front. Plant Sci. 6:414. doi:10.3389/fpls.2015.00414

Cargnel, M. D., Demkura, P. V., and Ballare, C. L. (2014). Linking phytochrome to plant immunity: low red : far-red ratios increase Arabidopsis susceptibility to Botrytis cinerea by reducing the biosynthesis of indolic glucosinolates and camalexin. New Phytol. 204, 342–354. doi:10.1111/nph.13032

Chan, E. K., Rowe, H. C., Corwin, J. A., Joseph, B., and Kliebenstein, D. J. (2011). Combining genome-wide association mapping and transcriptional networks to identify novel genes controlling glucosinolates in Arabidopsis thaliana. PLoS Biol. 9:e1001125. doi: 10.1371/journal.pbio.1001125

Chen, E. K. F., Rowe, H. C., and Kliebenstein, D. J. (2010). Understanding the evolution of defense metabolites in Arabidopsis thaliana using genome-wide association mapping. Genetics 185, 991–1007. doi:10.1534/genetics.109.108522

Churchill, G. A., and Doerge, R. W. (1994). Empirical threshold values for quantitative trait mapping. Genetics 138, 963–971.

Clay, N. K., Adio, A. M., Denoux, C., Jander, G., and Ausubel, F. M. (2009). Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323, 95–101. doi:10.1126/science.1164627

Couloux, A., et al. (2011). Genomic analysis of the necrotrophic fungal pathogen Botrytis cinerea in fungal cells and elicit an oxidative stress response necessary for growth. Euphytica 182, 1–9. doi:10.1007/s10681-011-0394-1

Couloux, A., et al. (2011). Genomic analysis of the necrotrophic fungal pathogen Botrytis cinerea in fungal cells and elicit an oxidative stress response necessary for growth. Euphytica 182, 1–9. doi:10.1007/s10681-011-0394-1

Finkers, R., Bai, Y. L., Van Den Berg, P., Van Berloo, R., Meijer-Dekens, F., Ten Have, A., et al. (2012). Polypharmacology of the Pseudomonas syringae type III secretion system reveals multiple targets for antifungal defense. Science 331, 1185–1188. doi:10.1126/science.1199707

Feng, J., Long, Y., Shi, L., Shi, J. Q., Barker, G., and Meng, J. L. (2012). Characterization of metabolome quantitative trait loci and metabolic networks that control glucosinolate concentration in the seeds and leaves of Brassica napus. New Phytol. 193, 96–108. doi:10.1111/j.1469-8137.2011.03890.x

Finkers, R., Bai, Y. L., Van Den Berg, P., Van Berloo, R., Meijer-Dekens, F., Ten Have, A., et al. (2008). Quantitative resistance to Botrytis cinerea from Solanum neocirrii. Euphytica 159, 83–92. doi:10.1007/s10681-007-9460-0

Finkers, R., Finkers, R., Van Heusden, A. W., Meijer-Dekens, F., Van Kan, J. A. L., Maris, P., et al. (2007a). The construction of a Solanum habrochaites LYC4 introgression line population and the identification of QTLs for resistance to Botrytis cinerea. Theor. Appl. Genet. 114, 585–593. doi:10.1007/s00122-006-0500-2

Finkers, R., Van Den Berg, P., Van Berloo, R., Ten Have, A., Van Heusden, A. W., Van Kan, J. A. L., et al. (2007b). Three QTLs for Botrytis cinerea resistance in tomato. Theor. Appl. Genet. 114, 585–593. doi:10.1007/s00122-006-0500-2

Finkers, R., Van Den Berg, P., Van Berloo, R., Ten Have, A., Van Heusden, A. W., Van Kan, J. A. L., et al. (2007). Three QTLs for Botrytis cinerea resistance in tomato. Theor. Appl. Genet. 114, 585–593. doi:10.1007/s00122-006-0500-2

Funding for this work was provided by the China Scholarship Council grant 20130624 to WZ, the NSF award IOS 1339125 to DK, the USDA National Institute of Food and Agriculture, Hatch project number CA-D-PLS-7033-H to DK and by the Danish National Research Foundation (DNRF99) grant to DK.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fpls.2016.00161
Iniguez-Luy, F. L., Lukens, L., Farnham, M. W., Amasino, R. M., and Osborn, T. C. (2009). Development of public immortal mapping populations, molecular markers and linkage maps for rapid cycling Brassica rapa and B. oleracea. Theor. Appl. Genet. 120, 31–43. doi: 10.1007/s00122-009-1157-4

Joseph, B., Atwell, S., Corwin, J. A., Li, B. H., and Kliebenstein, D. J. (2014). Meta-analysis of metabolome QTLs in Arabidopsis: trying to estimate the network size controlling genetic variation of the metabolome. Front. Plant Sci. 5:461. doi: 10.3389/fpls.2014.00461

Kliebenstein, D. J., Kroymann, J., Brown, P., Figuth, A., Pedersen, D., Joseph, B., Atwell, S., Corwin, J. A., Li, B. H., and Kliebenstein, D. J. (2002b). Genetic architecture of polygalacturonase loci. Mol. Plant Microbe Interact. 20, 1126–1137. doi: 10.1094/MPMI-20-9-1126

Kliebenstein, D. J. (2011). Network quantitative trait loci mapping of circadian clock outputs identifies metabolic pathway-to-clock linkages in Arabidopsis. Plant Cell 23, 471–485. doi: 10.1007/s11192-010-9926-9

Kleinert, R., Mulema, J. M., and Denby, K. J. (2012). Spatial and temporal transcriptomic analysis of metabolome QTLs in Arabidopsis thaliana. Theor. Appl. Genet. 125, 67–76. doi: 10.1007/s00122-011-1939-3

Leitner, L., Zhao, J., Jiang, X., Senior, K. M., Li, W., Metz, K., et al. (2015). Prevalent genetic variation in Arabidopsis thaliana defense metabolism genes modulates field fitness. eLife 4:e05604.

Rahman, H., Kebede, B., Zimmerli, C., and Yang, R. C. (2014). Genetic study and QTL mapping of seed glucosinolate content in Brassica rapa L. Crop Sci. 54, 537–543. doi: 10.2135/cropsci2013.06.0391

Pfalz, M., Vogel, H., and Kroymann, J. (2009). The gene controlling the Indole glucosinolate Mod1f1 quantitative trait locus alters indole glucosinolate structures and aphid resistance in Arabidopsis. Plant Cell 21, 985–999. doi: 10.1105/tpc.108.063115

Pfalz, M., Vogel, H., Mitchell-Olds, T., and Kroymann, J. (2007). Mapping of QTL for resistance against the crucifer specialist herbivore Pieris brassicae in a new Arabidopsis inbred line population, Da(1)-12 × Ei-2. PLoS ONE 2:e2578. doi: 10.1371/journal.pone.0000578

To identify and understand the genetic basis of Botrytis resistance in oilseed rape, researchers have focused on mapping QTLs controlling seed glucosinolate content. This study, led by Dr. R. F. Mithen and colleagues, aimed to dissect the genetic architecture of seed glucosinolate traits in oilseed rape (Brassica napus). Their work is published in the journal *Frontiers in Plant Science*.

Using a series of molecular and genetic approaches, the team identified multiple QTLs (quantitative trait loci) that influence the content of different glucosinolates in oilseed rape seeds. These loci were mapped across the genome, allowing for the localization of specific genes involved in glucosinolate biosynthesis and metabolism.

The results showed that the distribution of QTLs controlling glucosinolate content varied between genotypes, indicating the presence of multiple genes contributing to this trait. The study also highlighted the importance of glucosinolates in oilseed rape for resistance against the fungal pathogen *Botrytis cinerea*, a major pest in oilseed rape production.

The findings from this study contribute to the ongoing efforts to improve oilseed rape varieties that are resistant to *Botrytis cinerea* by identifying and breeding for specific glucosinolate profiles that are beneficial against the pathogen. This work not only advances our understanding of the genetic basis of glucosinolate variation but also paves the way for future breeding programs aimed at developing oilseed rape cultivars with enhanced resistance to *Botrytis cinerea*.

References:

- Iniguez-Luy, F. L., Lukens, L., Farnham, M. W., Amasino, R. M., and Osborn, T. C. (2009). Development of public immortal mapping populations, molecular markers and linkage maps for rapid cycling Brassica rapa and B. oleracea. Theor. Appl. Genet. 120, 31–43. doi: 10.1007/s00122-009-1157-4
- Joseph, B., Atwell, S., Corwin, J. A., Li, B. H., and Kliebenstein, D. J. (2014). Meta-analysis of metabolome QTLs in Arabidopsis: trying to estimate the network size controlling genetic variation of the metabolome. Front. Plant Sci. 5:461. doi: 10.3389/fpls.2014.00461
- Kliebenstein, D. J., Kroymann, J., Brown, P., Figuth, A., Pedersen, D., Joseph, B., Atwell, S., Corwin, J. A., Li, B. H., and Kliebenstein, D. J. (2002b). Genetic architecture of polygalacturonase loci. Mol. Plant Microbe Interact. 20, 1126–1137. doi: 10.1094/MPMI-20-9-1126
- Kliebenstein, D. J. (2011). Network quantitative trait loci mapping of circadian clock outputs identifies metabolic pathway-to-clock linkages in Arabidopsis. Plant Cell 23, 471–485. doi: 10.1007/s11192-010-9926-9
- Kleinert, R., Mulema, J. M., and Denby, K. J. (2012). Spatial and temporal transcriptomic analysis of metabolome QTLs in Arabidopsis thaliana. Theor. Appl. Genet. 125, 67–76. doi: 10.1007/s00122-011-1939-3
- Rahman, H., Kebede, B., Zimmerli, C., and Yang, R. C. (2014). Genetic study and QTL mapping of seed glucosinolate content in Brassica rapa L. Crop Sci. 54, 537–543. doi: 10.2135/cropsci2013.06.0391
- Pfalz, M., Vogel, H., and Kroymann, J. (2009). The gene controlling the Indole glucosinolate Mod1f1 quantitative trait locus alters indole glucosinolate structures and aphid resistance in Arabidopsis. Plant Cell 21, 985–999. doi: 10.1105/tpc.108.063115
- Pfalz, M., Vogel, H., Mitchell-Olds, T., and Kroymann, J. (2007). Mapping of QTL for resistance against the crucifer specialist herbivore Pieris brassicae in a new Arabidopsis inbred line population, Da(1)-12 × Ei-2. PLoS ONE 2:e2578. doi: 10.1371/journal.pone.0000578
sequencing for identification of candidate genes controlling 4-methylthio-3-butenyl glucosinolate contents in roots of radish, *Raphanus sativus* L. *PLoS ONE* 8:e53541. doi: 10.1371/journal.pone.0053541

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.