Human Neutrophils Employ the Myeloperoxidase-Hydrogen Peroxide-Chloride System to Oxidize α-Amino Acids to a Family of Reactive Aldehydes

MECHANISTIC STUDIES IDENTIFYING LABILE INTERMEDIATES ALONG THE REACTION PATHWAY*

(Received for publication, July 31, 1997, and in revised form, September 23, 1997)

Stanley L. Hazen‡, Andre d’Avignon§, Melissa M. Anderson¶, Fong F. Hsu, and Jay W. Heinecke¶

From the Department of Medicine, §Department of Chemistry, and ¶Department of Molecular Biology and Pharmacology, Washington University, St. Louis, Missouri 63110

We have recently demonstrated that neutrophils oxidize nearly all of the amino acids commonly found in plasma to a corresponding family of aldehydes in high yield. The reaction is mediated by hypochlorous acid (HOCl), the major oxidant generated by the myeloperoxidase-H$_2$O$_2$-Cl$^-$ system of phagocytes. We now present evidence for the underlying mechanism of this reaction, including the structural requirements and reaction intermediates formed. Utilizing mass spectrometry and isotopically labeled amino acids, we rule out hydrogen atom abstraction from the α-carbon as the initial event in aldehyde formation during amino acid oxidation, a pathway known to occur with ionizing radiation. Aldehyde generation from amino acids required the presence of an α-amino moiety; β- and ε-amino acids did not form aldehydes upon oxidation by either the myeloperoxidase system or HOCl, generating stable monochloramines instead. UV difference spectroscopy, high pressure liquid chromatography, and multinuclear (1H,15N) NMR spectroscopy established that the conversion of α-amino acids into aldehydes begins with formation of an unstable α-monochloramine, which subsequently decomposes to yield an aldehyde. Precursor product relationships between α-amino acid and α-monochloramine, and α-monochloramine and aldehyde were confirmed by high pressure liquid chromatography purification of the reaction intermediate and subsequent 1H and 15N NMR spectroscopy. Collectively, these results detail the chemical mechanism and reaction intermediates generated during conversion of amino acids into aldehydes by myeloperoxidase-generated HOCl.

Activated phagocytes both secrete the heme enzyme myeloperoxidase and generate hydrogen peroxide (H$_2$O$_2$)\(^1\) (1, 2).

* This work was supported in part by Grants R01 AG15013, R01 AG12293 and RR00954 from the National Institutes of Health. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ Howard Hughes Medical Institute Physician Postdoctoral Fellow. Current address: Dept. of Cell Biology, Cleveland Clinic Foundation, Cleveland, OH 44195.

§ Supported by the Lucille P. Markey Special Emphasis Program in Human Pathobiology.

¶ Established Investigator of the American Heart Association. To whom correspondence should be addressed: Division of Atherosclerosis, Nutrition and Lipid Research, Box 8046, 660 S. Euclid Ave., St. Louis, MO 63110. Tel.: 314-362-6923; Fax: 314-362-0811; E-mail: heinecke@im.wustl.edu.

1 The abbreviations used are: H$_2$O$_2$, hydrogen peroxide; HOCl, hypochlorous acid; HPLC, high performance liquid chromatography; M$^+$, molecular ion; PFB, pentafluorobenzyl; pHA, p-hydroxyphenylacetaldehyde.
and NHCl groups to yield an aldehyde. Collectively, these results describe the underlying mechanism for aldehyde formation from α-amino acids by the phagocyte oxidant HOCl. The relative abundance of α-amino acids in plasma (24), interstitial fluid, and intracellular compartments (25) suggests that aldehydes derived from these precursors should be readily formed at sites of inflammation.

EXPERIMENTAL PROCEDURES

Materials

HPLC solvents were purchased from Baxter (McGaw Park, IL). Sodium phosphate, ethyl acetate, H₂O₂, and sodium hypochlorite were obtained from Fisher. D₂O, L-[15N]tyrosine, and L-[15N]phenylalanine were purchased from Cambridge Isotopes, Inc. (Andover, MA). All other materials were purchased from Sigma, except where indicated.

Methods

General Procedures—Aldehydes were synthesized and analyzed by electron impact gas chromatography/mass spectrometry and reverse phase HPLC as described (3).

UV Absorbance Spectroscopy—UV absorbance spectra were obtained on a Beckman DU7 spectrophotometer equipped with a thermostatically controlled cuvette holder. UV difference spectra of amino acid-derived monochloramines were performed at the indicated temperature with the starting amino acid used as a reference. Kinetic studies of monochloramines were carried out similarly by monitoring the time-dependent changes in absorbance at 254 nm.

Glycolaldehyde Production—Glycolaldehyde production was measured by reverse phase HPLC following derivatization with 3-methyl-2-benzothiazolinone hydrazone hydrochloride as described previously (26).

Multinuclear NMR Studies—Monochloramines for NMR experiments were synthesized by dropwise addition of NaOCl (1:1; mol/mol) to the indicated amino acid in 20 mM sodium phosphate buffer (pH 7.0) in 10% D₂O, 90% H₂O (v/v) at 0 °C with constant mixing. NMR spectra were acquired on a Varian Unity-Plus 500 spectrometer (499.843 MHz for 1H). A Nalorac indirect detection probe was employed for the 1H and 15N two-dimensional NMR studies. Sample temperature was maintained (±0.1 °C) with an Oxford Instruments temperature controller. 1H chemical shifts were referenced to external sodium 3-(trimethylsilyl)-propionate-2,3,3-dJ in D₂O. The intense HOD signal was attenuated by transmitter pre-irradiation, and digital signal processing was employed to suppress phase distortions for 1H spectra.

The proton NMR spectrum of L-tyrosine α-monochloramine was recorded from 32 transients under the following conditions: pre-acquisition delay = 1 s, acquisition time = 1.89 s (37,760 complex data points), pulse width = 5 μs (62° flip angle) and spectral width = 10,000 Hz. The free induction decays were processed with a combination of gaussian and exponential weighting functions.

**15N NMR chemical shifts of L-[15N]tyrosine and L-[15N]troponine α-monochloramine were established through heteronuclear multiple bond correlation spectroscopy experiments collected at 0 °C. Collection conditions for the tJ domain (1H) include transmitter presaturation of the intense water signal, a spectral width of 6,000 Hz, and collection of eight transients containing 2,048 complex data points. The tJ domain (18N) included 128 increments over a spectral width of 7,000 Hz (evolution time ~ 18 ms). The 90° pulse duration was 8 and 26 μs for the 1H and 15N channels, respectively. Data were collected and processed in the hypercomplex mode employing sine bell and gaussian weighting in

SHEME I. Potential pathways of amino acid oxidation to yield aldehydes.

Table I.

Amino compound	Aldehyde yielda	Monochloramine half-life
α-Alanine	94%	6.8 min
β-Alanine	<1	>1500 min
N⁺-Acetyltirosine	85%	9.0 min
N⁺-Acetyltirosine	<1	>1500 min
Taurine	<1	>1500 min
Ethanolamine	<1	>1500 min
D-Tyrosine	94%	7.3 min
L-Tyrosine	87%	7.2 min
N⁺-Acetyltirosine tyrosinamide	<1	_b
N⁺-Acetyltirosine ethyl ester	<1	_b
Tyrosine methyl ester	<1	_b

a Yield relative to oxidizing substrate (H₂O₂).

b UV spectra not examined.

RESULTS

Only Amino Acids with Free Amino and Carboxylic Acid Groups on the α-Carbon Yield Aldehydes When Oxidized by the Myeloperoxidase-H₂O₂-Cl⁻ System—To explore the reaction mechanism by which the myeloperoxidase system generates aldehydes during oxidation of α-amino acids, we first determined which structural features the amino acids must possess. Incubation of α-alanine (1-aminopropanoic acid) with the complete myeloperoxidase-H₂O₂-Cl⁻ system resulted in the near quantitative conversion of the α-amino acid into its corresponding aldehyde, acetaldehyde (Table I) (3). In contrast, incubation of β-alanine (2-aminopropanoic acid) with the complete myeloperoxidase system generated no detectable aldehyde. We next examined aldehyde yield during regiospecific chlorination of either the α- or ε-amino moieties of lysine. Incubation of the α-amino blocked analog (N⁺-acetyltirosine) with the myeloperoxidase-H₂O₂-Cl⁻ system resulted in aldehyde formation in high yield (85%; Table I). In contrast, incubation of the α-amino blocked analog (N⁺-acetyltirosine) with the complete myeloperoxidase system failed to generate detectable aldehyde. No aldehyde was formed when the myeloperoxidase system oxidized taurine (β-aminosulfonic acid) or ethanolamine (Table I). Thus, only α-amino acids that have both the primary amino and carboxylic acid groups in the α-position are oxidized to aldehydes by the myeloperoxidase-H₂O₂-Cl⁻ system. There were no significant differences in overall aldehyde yield from D- or L-tyrosine. Finally, aldehyde formation required that both the α-amino and α-carboxylic acid groups be free since no detectable p-hydroxyphenylacetaldehyde (pH) was formed during...
myeloperoxidase-catalyzed oxidation of Nα-acetyltyrosine, tyrosinamide, Nα-acetyltyrosine ethyl ester, or tyrosine methyl ester (Table I).

The Myeloperoxidase System Does Not Abstract a Hydrogen Atom When It Oxidizes α-Amino Acids—The finding that amino acids must contain an α-amino moiety to serve as substrates for aldehyde generation during amino acid oxidation suggested either the initial formation of an unstable α-monochloramine (Pathway B) or an alternative catalytic strategy involving hydrogen atom abstraction from the tertiary α-carbon (Pathway A). To determine which of these reaction mechanisms mediated aldehyde formation, we analyzed the products generated when myeloperoxidase acted on an amino acid that was isotopically labeled with deuterium at the α-carbon position (Scheme II). Oxidation of isotopically labeled l-[d8]phenylalanine in an aqueous solution would be anticipated to generate an aldehyde with a molecular ion (M+) of mass to charge ratio (m/z) 127, if hydrogen atom abstraction of the α-carbon occurred. Chlorination of the primary amino group generating an α-monochloramine intermediate would instead lead to a product with a M1 of m/z 128.

Electron impact gas chromatography/mass spectrometric analysis of l-phenylalanine and l-[d8]phenylalanine oxidized by the myeloperoxidase-H2O2-Cl− system revealed that the aldehyde formed with the d8 analogue possessed an M+ of m/z 127 (Fig. 1) and was identical in isotopic composition to the parent amino acid. Examination of pentfluorobenzyl (PFB)-oxime derivatives of the aldehydes formed from the precursor deuterated and non-deuterated amino acids revealed molecular ions of m/z 323 and m/z 315, respectively. The 8 mass unit increase in the derivatized aldehyde derived from myeloperoxidase-catalyzed oxidation of l-[d8]phenylalanine confirms that the deuteron at the α-carbon position was retained, as in Pathway B. In contrast, l-[d8]phenylalanine oxidized by a hydroxyl radical-generating system (2 mM H2O2 and 100 mM CuSO4) produced only traces amounts of aldehyde, as well as other products that likely reflect HO− addition products to the ring (27, 28). The low abundance of the aldehyde formed prevented its mass analysis by electron impact mass spectrometry; however, gas chromatography-mass spectrometry analysis of the PFB-oxime derivative confirmed that the aldehyde lost the α-carbon deuteron (M+) of m/z 322; data not shown). Thus, aldehyde generation by myeloperoxidase does not involve hydrogen (or deuteron) atom abstraction from the α-carbon of l-phenylalanine, in contrast to amino acid oxidation with a hydroxyl radical generating system.

Oxidation of α-Amino Acids by HOCl Yields Unstable Intermediates with UV Spectral Features Consistent with α-Mono-chloramines—Preliminary studies demonstrated that oxidation of several common amino acids (glycine, alanine, isoleucine, phenylalanine, and serine) by the myeloperoxidase-H2O2-Cl− system generated a labile intermediate with a UV absorbance band at 252–254 nm, the absorbance maximum of monochloramines (15–17). To explore the possibility of an unstable α-monochloramine as a reaction intermediate, amino acids were incubated with HOCI at 0 °C, and their UV difference spectra were determined. A characteristic absorbance band was observed at 254 nm, suggesting monochloramine formation. Comparisons of the stability of α-, β- and ε-monochloramines of amino acids, as assessed by the disappearance of absorbance at 254 nm at 37 °C, demonstrated that only α-monochloramines were thermally labile (Table I). Parallel experiments with each of these same α-, β-, and ε-amino acids reacted with purified myeloperoxidase, chloride, and H2O2 also demonstrated that only α-monochloramines were unstable, as assessed by loss of an absorbance band at 254 nm (data not shown).

The differing stabilities of α- and ε-monochloramines are illustrated in the experiment depicted in Fig. 2. Either the α-amino or ε-amino moiety of L-lysine was regiospecifically chlorinated with HOCl using the appropriate N-acetylated parent compound as substrate, and the thermal stability of the resulting α- or ε-monochloramine was determined. Chlorination of the α-amino group of Nα-acetylysoleucine generated a labile α-monochloramine that demonstrated a t1/2 of ~9 min at 37 °C (Fig. 2A). In striking contrast, chlorination of the ε-amino...
an absorbance band at 254 nm, suggesting that a stable monochloramine was formed (Fig. 3, right panel). Collectively, these results suggest that unstable primary α-monochloramines serve as intermediates when the myeloperoxidase-H$_2$O$_2$-Cl$^-$ system of phagocytes oxidizes α-amino acids to form aldehydes.

Intermediates with UV Spectral Features Consistent with a Monochloramine Are Precursors for α-Amino Acid-derived Aldehydes—The labile intermediates formed during HOCI-mediated oxidation of α-amino acids are stabilized at low temperatures and have UV spectral features consistent with an α-monochloramine; aldehydes were also formed when these reaction mixtures were warmed (Table I). Direct demonstration of this precursor-product relationship was achieved by isolating the unstable intermediate and demonstrating its conversion into an aldehyde. L-Tyrosine was first cooled to 0 °C, isolating the unstable intermediate and demonstrating its conversion into an aldehyde. L-Tyrosine was first cooled to 0 °C, following an initial first-order loss of monochloramine, ~10% of the original absorbance at 254 nm remained, despite prolonged incubation (>10 h) at 37 °C. The UV spectrum of the reaction mixture, however, demonstrated an absorbance maximum at 230 nm and no absorbance band at 254 nm.

Following an initial first order loss of monochloramine, ~30% of the original absorbance at 254 nm remained, despite prolonged incubation (>10 h) at 37 °C. The UV spectrum of the reaction mixture still demonstrated an absorbance maxima at 254 nm, consistent with monochloramine formation.

Aromatic

Amino acid	Half-life (min)
Gly	35
Leu	7.8
Amides	5.7
Aliphatic	6.0
Basic	9.2
Secondary	7.8
Thiods	ND

Following an initial first-order loss of monochloramine, ~10% of the original absorbance at 254 nm remained, despite prolonged incubation (>10 h) at 37 °C. The UV spectrum of the reaction mixture, however, demonstrated an absorbance maximum at 230 nm and no absorbance band at 254 nm.

b *Following an initial first order loss of monochloramine, ~30% of the original absorbance at 254 nm remained, despite prolonged incubation (>10 h) at 37 °C. The UV spectrum of the reaction mixture still demonstrated an absorbance maxima at 254 nm, consistent with monochloramine formation.*

c *No detectable monochloramine was observed.*

Classic qualitative assays for reactive carbonyls (29, 30). These results are consistent with our recent observation that no aldehyde was formed when proline (an imino acid that contains a secondary amino group) was oxidized by the myeloperoxidase-H$_2$O$_2$-Cl$^-$ system (3). Collectively, these results suggest that unstable primary α-monochloramines serve as intermediates when the myeloperoxidase-H$_2$O$_2$-Cl$^-$ system of phagocytes oxidizes α-amino acids to form aldehydes.

FIG. 2. Oxidation of N-acetyllysine and N-acetyllysine by HOCI. Monochloramines of N-acetyl lysine (A) or N-acetyllysine (B) were generated by dropwise addition of HOCI (1.5 mM) to reaction mixtures of the amino acids (1.5 mM) in buffer A at 0 °C. Reaction mixtures were rapidly warmed to 37 °C, transferred to thermostatically controlled cuvettes (37 °C), and the initial rate of monochloramine decay monitored spectrophotometrically (A$_{254}$ nm). Note that at $t = 0$ min, quantitative chlorination of both the α- and ε-amino moieties results in near identical UV absorbance profiles. Upon warming to 37 °C, the α-monochloramine is unstable and decomposes with first-order kinetics, whereas the ε-monochloramine is stable. Insets in A and B represent the proposed structures of the monochloramines.

TABLE II

Half-life of monochloramines of each class of α-amino acids
Monochloramines of α-amino acids were prepared as described in the legend to Table I, and the initial rate of monochloramine decay was monitored spectrophotometrically as the decrease in absorbance at 254 nm.

Amino acid	Half-life (min)
Acetic	7.6
Glu	6.0
Lys	5.7
Pro	6.3
Ser	9.2
Glu	7.8
Gly	35
Leu	7.8
Amides	5.7
Aliphatic	6.0
Basic	9.2
Secondary	7.8
Thiods	ND

a Following an initial first-order loss of monochloramine, ~10% of the original absorbance at 254 nm remained, despite prolonged incubation (>10 h) at 37 °C. The UV spectrum of the reaction mixture, however, demonstrated an absorbance maximum at 230 nm and no absorbance band at 254 nm.

b Following an initial first order loss of monochloramine, ~30% of the original absorbance at 254 nm remained, despite prolonged incubation (>10 h) at 37 °C. The UV spectrum of the reaction mixture still demonstrated an absorbance maxima at 254 nm, consistent with monochloramine formation.

c No detectable monochloramine was observed.
atom. L-[15N]Tyrosine was incubated with HOCl (1:1, mol/mol) to mediate with UV spectral features consistent with an unstable intermediate, we utilized multinuclear NMR to confirm the structure of the thermally labile intermediate generated during incubation of an α-amino acid and HOCl. 15N-Labeled L-tyrosine was employed since the presumed α-monochloramine of the aromatic amino acid is readily resolved at 0 °C on reverse phase HPLC, and production of the aldehyde, monochloramine, and monochloramine decomposition, and then analyzed by reverse phase HPLC as described above. Note the consumption of the tyrosine α-monochloramine and production of the aldehyde, p-hydroxyphenylacetaldehyde, upon sample warming. Identity of the intermediate as L-tyrosine α-monochloramine was confirmed utilizing multinuclear NMR spectroscopy as described under “Results.”

these results demonstrate that oxidation of α-amino acids by myeloperoxidase-generated HOCl produces an unstable intermediate with UV spectral features consistent with an α-monochloramine. This labile intermediate then serves as a precursor for the ultimate generation of a reactive aldehyde.

NMR Spectroscopy Confirms That α-Monochloramines Are Intermediates in Aldehyde Formation during HOCl-mediated Oxidation of α-Amino Acids—Because UV difference spectroscopy cannot establish unequivocally the structure of a reaction intermediate, we utilized multinuclear NMR to confirm the structure of the thermally labile intermediate generated during incubation of an α-amino acid and HOCl. 15N-Labeled L-tyrosine was employed since the presumed α-monochloramine of the aromatic amino acid is readily resolved at 0 °C on reverse phase HPLC (Fig. 3) and since the 15N resonance position should serve as a non-perturbing and sensitive probe into the immediate chemical environment at the α-amino nitrogen atom. L-[15N]Tyrosine was incubated with HOCl (1:1, mol/mol) in 50 mM sodium phosphate buffer (pH 7.0) at 0 °C. The intermediate formed was then analyzed by 1H NMR and 1H,15N two-dimensional NMR spectroscopy. The chemical shifts, integrated areas, and coupling constants of resonances in the 1H NMR spectrum of the compound all were consistent with the formation of L-tyrosine α-monochloramine (Fig. 5). The chemical environment of the 15N atom of the initial L-[15N]tyrosine/HOCl oxidation product was interrogated by heteronuclear multiple bond correlation spectroscopy. The chemical shift of the 15N resonance of the thermally labile intermediate was consistent with a monochloramine (data not shown); the electron withdrawing halide deshielded the 15N atom, shifting the resonance to a characteristic downfield position. Thus,
multinuclear NMR studies directly confirm that the α-monochloramine is a reaction intermediate in aldehyde formation.

To confirm a precursor-product relationship between L-tyrosine α-monochloramine and pHA, we performed an NMR experiment similar to the HPLC study described in Figs. 3 and 4. L-Tyrosine α-monochloramine was warmed from 0 to 25 °C in the NMR spectrometer with continuous 1H spectra acquisition. A time- and temperature-dependent disappearance of the α-monochloramine was observed (Fig. 6). Disappearance of the α-monochloramine occurred in concert with the appearance of pHA and a second compound that exhibited distinct spectral features (Fig. 6).

**Aldehydes Generated during Amino Acid Oxidation by HOCl Exist in a Complex Equilibrium between Monomeric Aldehyde and Other Species Such as the Gem Diol, Aldehydic Condensation Products, and Schiff Base Adducts—Aldehydes react with amines to form Schiff bases; they also produce gem diols and condensation products in aqueous solution (31, 32). The 1H NMR spectrum obtained following the thermal decomposition of tyrosine α-monochloramine (Fig. 6) suggested that the monomeric pHA was in equilibrium with one or more of these species (termed I in Scheme III). To test this hypothesis, we used 1H NMR to analyze the distribution of monomeric pHA and its equilibrium product(s) as a function of temperature. Warming the reaction mixture greatly increased the proportion of monomeric pHA, and cooling it increased the proportion of its equilibrium product(s), confirming the reversible nature of the equilibrium (Fig. 7). In another experiment similar to that shown in Fig. 3B, we monitored the 1H NMR peaks that appeared as reagent HOCl oxidized L-tyrosine. A peak for α-monochloramine was clearly present, and it was replaced by a pHA peak as the reaction proceeded. Resonances in the full 1H spectra for L-tyrosine (T), tyrosine α-monochloramine (M), pHA (A), and the compound(s) in equilibrium with pHA (I) are summarized in Table III. Collectively, these results demonstrate that the conversion of L-tyrosine to pHA involves a monochloramine intermediate. The resulting monomeric aldehyde then exists in equilibrium with a second compound or compounds.

We used a variety of approaches to determine whether the Schiff base, the gem diol, or the trimer accounted for the compound that is in equilibrium with pHA (Scheme III). These species cannot be distinguished by 1H NMR because the proton resonances at the benzylic and α-carbon positions of each compound possess nearly identical chemical shifts. However, even 1H,15N two-dimensional NMR analysis failed to detect a 15N correlation with the 1H resonances attributed to the equilibrium compound(s). This suggests that either the Schiff base is not a component of the reaction mixture or that the heteronuclear coupling constants were too small for detection. We also examined the reaction products by electrospray ionization mass spectrometry, finding a major ion of m/z 136, the mass of monomeric pHA. Tandem mass spectrometry with collisional activated dissociation confirmed that the ion was the M1 of pHA (data not shown). There was no evidence for ions derived from the three equilibrium products suggested in Scheme III, the Schiff base (gem diol or trimer) suggesting that these compounds, if produced, are thermally labile, even under the gentle ionization conditions of electrospray.

When we analyzed an aqueous solution of reagent phenylacetalddehyde, the aldehyde that forms when the myeloperoxidase system oxidizes phenylalanine (3), we detected 1H NMR peaks corresponding to both the monomeric form of the aldehyde and a second compound. The latter had distinctive spectral features that resembled those of the benzylic and α-carbon proton resonances assigned to the compound in equilibrium with pHA (labeled I in Fig. 6 and Scheme III). Because phenylacetalddehyde has no amino groups available for Schiff base formation under these conditions, the equilibrium compound is likely to be a gem diol and/or trimer. 1H NMR analysis of reagent phenylacetalddehyde or pHA extracted into an aprotic solvent (CDCl3) also demonstrated spectral features consistent with the monomeric form of each aldehyde (data not shown). These observations again suggest that a gem diol and/or trimer is the equilibrium products.

To determine whether Schiff base formation may at least
partly account for the resonances observed in the 1H NMR spectrum of the compound(s) in equilibrium with pHA, we examined the effect on the 1H NMR spectrum of adding NH₄OH to phenylacetaldehyde in aqueous solution at neutral pH. Our rationale was that ammonia is present as an end product after HOCl oxidizes an amino acid to an aldehyde (18). We found that adding NH₄OH decreased the resonances attributed to monomeric aldehyde and increased the relative intensity of the non-monomeric 1H resonances (data not shown). These results strongly suggest that the 1H spectra of the compound(s) in equilibrium with monomeric aldehyde are nearly identical to that of an imine. It therefore appears that a complex equilibrium between a monomeric aldehyde, its gem diol, aldehydic condensation products, and Schiff base adducts exists in aqueous solution.

Mechanism of Aldehyde Generation by Myeloperoxidase

Halide Dependence of Glycolaldehyde Production from Serine by the Myeloperoxidase-H₂O₂-Halide System—Myeloperoxidase and eosinophil peroxidase use Cl⁻, Br⁻, and I⁻ as substrates to generate a variety of hypohalous acids (1, 14, 33). Previous studies have suggested that Cl⁻ is the only halide with which myeloperoxidase converts l-tyrosine into pHA, however (34). To explore this halide specificity in greater detail, we studied the oxidation of L-serine by the enzyme. HOCl generated by myeloperoxidase converts L-serine to glycolaldehyde, an α-hydroxy aldehyde lacking functional groups that can scavenge reactive chlorinating species (26). We quantified this aldehyde by HPLC following derivatization with 3-methyl-2-benzothiazolinone hydrazone hydrochloride (26). Exposing L-serine to either the myeloperoxidase-H₂O₂-Br⁻ system or hypobromous acid, the primary oxidant of eosinophil peroxidase (33, 35, 36), generated glycolaldehyde (data not shown). In contrast to HOCl (26, 34), hypobromous acid generated aldehyde from L-serine only after prolonged incubation (≥1 h at 37 °C). Other halides (I⁻, F⁻) or the pseudohalide SCN⁻ failed
to generate glycolaldehyde in this system, despite incubations of up to 24 h at 37 °C (data not shown). These results suggest that hypobromous acid reacts with amino acids to form an α-monobromamine intermediate that is more stable to deamination and decarboxylation than its α-monochloramine analogue.

DISCUSSION

We have recently demonstrated that human neutrophils use the myeloperoxidase-H$_2$O$_2$-Cl$^-$ system to convert common α-amino acids to an array of reactive aldehydes (3). Here, we provide evidence for the mechanism of aldehyde production. Free primary amino and carboxyl acid groups on the α-carbon of an amino acid were required for aldehyde generation. Mass spectrometric studies with isotopically labeled amino acids demonstrated that hydrogen atom abstraction from the α-carbon (Scheme I, Pathway A), a mechanism described for aldehyde formation by ionizing radiation (4–9) and Fenton systems (9–13), did not occur. Rather, several independent analytical methods (UV spectroscopy and 1H and 15N two-dimensional NMR spectroscopies) indicate that chlorination of the α-amino group by HOCl (a product of the myeloperoxidase pathway) appears to be the initial event. This generates a labile α-monochloramine which rapidly decomposes to an aldehyde (Scheme I, Pathway B). Examination of HOCl oxidation products of multiple α-, β-, and ε-amino acids confirmed that α-monochloramines, but not β- or ε-monochloramines, are labile.

We were unable to confirm the structural identity of a stable intermediate between the α-monochloramine and aldehyde for any of the amino acids examined. A likely explanation is that the half-lives of the intermediates are too short for detection under the methods employed. For example, a short-lived imine might form during monochloramine decomposition directly in a single step by the concerted loss of CO$_2$ and Cl$^-$; subsequent loss of ammonia would then yield an aldehyde. A plausible mechanism for this rearrangement is illustrated in Scheme IV.

Indeed, a short-lived imine has been proposed as a reaction intermediate in the oxidation of amino acids by ionizing radiation (Scheme I, Ref. 9). Our identification of α-monochloramines as reaction intermediates in myeloperoxidase-mediated oxidation of α-amino acids suggests that these labile intermediates could also have biological functions at sites of inflammation. By analogy, this may also be true for α-monobromamines formed by either myeloperoxidase or eosinophil peroxidase, particularly at sites of an allergic inflammatory response where an eosinophilic infiltrate is a characteristic finding (37).

The 1H NMR studies clearly suggest that aldehydes formed by the myeloperoxidase system in vitro are likely to exist in equilibrium with hydrated and condensed forms (31, 32). Aldehydes are also likely to interact with thiol and primary amine groups, generating an array of Michael adducts (32) and Schiff bases (9, 31, 32). We recently have identified the reduced Schiff base adduct between pHA and the ε-amino groups of protein lysine residues in inflamed human tissues (34). It is likely that adducts between other amino acid-derived aldehydes and proteins, lipids, and nucleic acids will also be found. Autoantibodies that recognize proteins modified by acrolein, an α-β unsaturated aldehyde formed when myeloperoxidase oxidizes l-threonine (26), are present in animals and humans with atherosclerosis (38, 39). Anti-acrolein antibodies also recognize epitopes in atherosclerotic lesions and in lipoproteins recovered from human aorta (38, 40), suggesting that the myeloperoxidase system generates reactive aldehydes in the artery wall. Indeed, the enzyme is abundant and catalytically active in human atherosclerotic lesions (41, 42). The selective reactivity of aldehydes, and their ability to form covalent adducts, suggests that amino acid-derived aldehydes generated at sites of inflammation may damage cellular targets. The reversible nature of many of these adducts also may serve to prolong their half-lives. Because reversible covalent modification has served as a paradigm for biological signaling processes, labile α-monochloramines and amino acid-derived aldehydes have the potential to serve as signaling molecules at sites of inflammation, perhaps to coordinate the oxidative capacity of phagocytes with the response of other immune cells of the host’s defense system.

Collectively, these observations identify the reaction mechanism for aldehyde formation by HOCl and strongly suggest that free α-amino acids, which are present at a concentration of 4–5 mM in plasma and even higher intracellularly (24, 25), may be major substrates for oxidation by activated phagocytes. The ability of aldehydes to react with nucleophilic moieties on proteins, lipids, and DNA suggests that the generation of such species may represent an important mechanism for damage of biological targets and the transduction of biological signals at sites of inflammation.

Acknowledgments—We thank S. Seutino and D. Mueller for expert technical assistance. Mass spectrometry experiments were performed at the Washington University School of Medicine Mass Spectrometry Resource.

REFERENCES

1. Klebanoff, S. J., and Clark, R. A. (1978) *The Neutrophil: Function and Clinical Disorders*, pp. 447–451, Elsevier/North Holland Biomedical Press, Amsterdam
2. Babior, B. M., Kipnes, R. S., and Curnutte, J. T. (1973) *J. Clin. Invest.* 52, 741–744
3. Hazen, S. L., Hsu, F. F., d’Avignon, A., and Heinecke, J. W. (1998) *Biochemistry*, in press
4. Sharpless, N. E., Blair, A. E., and Maxwell, C. R. (1955) *Radiat. Res.* 2, 135–144
5. Maxwell, C. R., Paterson, D. C., and White, C. (1955) *Radiat. Res.* 2, 431–438
6. Rouser, G. (1968) *Radiation Chemistry of Organic Compounds*, pp. 200–224, Pergamon Press Inc., Tarrytown, NY
7. Garrison, W. M. (1964) *Radiat. Res.* 4 (suppl.), 158–170
8. Garrison, W. M. (1966) *Curr. Top. Radiat. Res.*, 43–94
9. Stadtmann, E. R. (1993) *Ann. Rev. Biochem.* 62, 797–821
10. Stadtmann, E. R., and Berlett, B. S. (1991) *Proc. Natl. Acad. Sci. U. S. A.* 87, 389–393
11. Dakin, H. D. (1955) *J. Biol. Chem.* 211, 171–176
12. Dakin, H. D. (1958) *J. Biol. Chem.* 4, 63–76
13. Dakin, H. D. (1958) *J. Biol. Chem.* 235, 419–424
14. Harrison, J. E., and Schultz, J. (1976) *J. Biol. Chem.* 251, 1371–1374
15. Weiss, S. J., Klein, R., Silvia, A., and Weil, M. (1982) *J. Clin. Invest.* 70, 598–607
16. Kettle, A. J., and Winterbourn, C. C. (1994) *Methods Enzymol.* 233, 502–512
17. Thomas, E. L., Grisham, M. B., and Jefferson, M. M. (1986) *Methods Enzymol.* 132, 569–585
18. Zgliczynski, J. M., Stelmazszyńska, T., Domanski, J., and Ostrowski, W. (1971) *Biochim. Biophys. Acta* 235, 438–444
19. Albrich, J., McCarthy, C., and Hurst, J. (1982) *Proc. Natl. Acad. Sci. U. S. A.* 79, 210–214
20. Weiss, S. J., Lampert, M. B., and Test, S. T. (1983) *Science* 222, 625–628
21. Grisham, M. B., Jefferson, M. M., and Thomas, E. L. (1984) *J. Biol. Chem.* 259, 6757–6765
22. Test, S. T., Lampert, M. B., Ossanna, P. J., Thoene, J. G., and Weiss, S. J. (1984) *J. Clin. Invest.* 74, 1341–1349
23. Thomas, E. L., Grisham, M. B., Melton, D. F., and Jefferson, M. M. (1986) *J. Biol. Chem.* 261, 3321–3329
24. Lindner, M. (1992) *Nutritional Biochemistry and Metabolism*, p. 98, Elsevier Science Publishing Co., Inc., New York
25. Monnier, V. M., Sell, D. R., Nagaraj, R. H., and Miyata, S. (1991) *Gerontology* 37, 152–165
26. Anderson, M. M., Hazen, S. L., Hsu, F. F., and Heinecke, J. W. (1997) *J. Clin. Invest.* 99, 424–432
27. Rowbottom, J. (1955) *J. Biol. Chem.* 212, 877–885
28. Raper (1932) *J. Biol. Chem.* 99, 521–530.
Mechanism of Aldehyde Generation by Myeloperoxidase

29. Knapp, D. R. (1979) *Handbook of Analytical Derivatization Reactions*, pp. 485–486, John Wiley & Sons, Inc., New York
30. Shriner, R. L., Pason, R. C., Curtin, D. Y., and Morrill, T. C. (1980) *The Systematic Identification of Organic Compounds: A Laboratory Manual*, 6th Ed., pp. 161–184, John Wiley & Sons, Inc., New York
31. Furukawa, J., and Saegusa, T. (1963) *Polymerization of Aldehydes and Oximes*, pp. 43–123, Interscience Publishers of John Wiley & Sons, Inc., New York
32. Schauenstein, E., and Esterbauer, H. (1978) CIBA Found. Symp. 67, 225–44
33. Weiss, S. J., Test, S. T., Eckmann, C. M., Ross, D., and Regiani, S. (1986) *Science* 234, 200–203
34. Hazen, S. L., Gaut, J. P., Hsu, F. F., Crowley, J. R., d’Avignon, A., and Heinecke, J. W. (1997) *J. Biol. Chem.* 272, 16990–16998
35. Mayeno, A. N., Curran, A. J., Roberts, R. L., and Fonte, C. S. (1989) *J. Biol. Chem.* 264, 5660–5668
36. Thomas, E. L., Bozeman, P. M., Jefferson, M. M., and King, C. C. (1995) *J. Biol. Chem.* 270, 2906–2913
37. Bass, D. A. (1985) in *Cecil Textbook of Medicine* (Wyngaarden, J. B., and Smith, L. H., eds) pp. 1011–1013, W. B. Saunders Co., Philadelphia
38. Palinski, W., Ord, V., Plump, A. S., Breslow, J. L., Steinberg, D., and Witztum, J. L. (1996) *J. Clin. Invest.* 98, 800–814
39. Steinbrecher, U. P., and Loughheed, M. (1992) *Arterioscler. Thromb.* 12, 608–625
40. Daugherty, A., Dunn, J. L., Rateri, D. L., and Heinecke, J. W. (1994) *J. Clin. Invest.* 94, 437–444
41. Hazen, S. L., and Heinecke, J. W. (1997) *J. Clin. Invest.* 99, 2075–2081
Human Neutrophils Employ the Myeloperoxidase-Hydrogen Peroxide-Chloride System to Oxidize \(\alpha \)-Amino Acids to a Family of Reactive Aldehydes:

MECHANISTIC STUDIES IDENTIFYING LABILE INTERMEDIATES ALONG THE REACTION PATHWAY

Stanley L. Hazen, Andre d'Avignon, Melissa M. Anderson, Fong F. Hsu and Jay W. Heinecke

J. Biol. Chem. 1998, 273:4997-5005.
doi: 10.1074/jbc.273.9.4997

Access the most updated version of this article at http://www.jbc.org/content/273/9/4997

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 33 references, 15 of which can be accessed free at http://www.jbc.org/content/273/9/4997.full.html#ref-list-1