Mini Review

Iatrogenic parasitic myoma and iatrogenic adenomyoma after laparoscopic morcellation: A mini-review

Natalia Darii a, Emil Anton a,*, Bogdan Doroftei a, Alin Ciobica b, Radu Maftei a, Sorana C. Anton c, Taymour Mostafa d

a Department of Gynecology, Cuza Voda Hospital, University of Medicine and Pharmacology Gr T Popa, 700038 Iasi, Romania
b Department of Research, Faculty of Biology, Alexandru Ioan Cuza University, B dal Carol I, 700506, no 11, Iasi, Romania
"Grigore T.Popa" University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania
d Department of Andrology and Reproduction, Faculty of Medicine, Cairo University, Al-Saray Street, El Manial Cairo 11956, Egypt

HIGHLIGHTS

- Parasitic myoma and adenomyoma are two different pathologies.
- Both diseases are iatrogenic conditions developed after morcellation.
- Each entity has different clinical and paraclinical findings.
- The common point of pathogenesis is morcellation.
- Both diseases may be avoided by using in-bag morcellation or by switching to other surgical procedures.

ABSTRACT

Laparoscopy is widely recognized as a procedure of choice for gynaecological surgery. Myomectomy and hysterectomy are the most frequently performed surgical procedures in gynaecology. A morcellator is often used in myomectomies or subtotal hysterectomies, but morcellation may cause rare complications, such as parasitic iatrogenic myoma or adenomyoma. To improve patient counselling, proper risk estimation as well as risk factor identification should be acknowledged. This article aimed to review the literature on parasitic myoma and adenomyoma and to compare these diseases in terms of clinical, surgical, and prognostic factors. All published literature (case series and case reports) on iatrogenic myoma and adenomyoma was reviewed using PubMed/MEDLINE and ScienceDirect resources. Despite both conditions having an iatrogenic origin, iatrogenic parasitic myoma and adenomyoma are two different entities in terms of clinical manifestations as well as intraoperative particularities, with a common point: iatrogenic complication. A possible solution to avoid these iatrogenic complications is by using in-bag morcellation or switching to another surgical procedure (e.g., a vaginal or abdominal approach). It is concluded that parasitic myoma and iatrogenic adenomyoma are two different iatrogenic morcellator-related complications. In patients with a history of uterus or myoma morcellation who report pelvic symptoms, iatrogenic parasitic myoma or adenomyoma should be considered in the differential diagnosis.

2019 THE AUTHORS. Published by Elsevier BV on behalf of Cairo University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Laparoscopy has become the surgical treatment of choice for several benign pathologies [1]. It has many advantages, such as magnification of the pelvis, short hospitalisation, rapid recovery, low rate of infection, and good cosmetic results [2–4]. Additionally, hysterectomy is one of the most common gynaecological procedures, with approximately 600,000 hysterectomies performed per year in the US [5]. Laparoscopic subtotal/supracervical hysterectomy (LASH) is a surgical option when hysterectomy is indicated in the absence of cervical or endometrial malignant pathology [6]. This technique has many advantages, such as low perioperative morbidity, and faster postoperative recovery [7]. However, leiomyoma is still the most common indication for hysterectomy [8,9]. Both LASH and laparoscopic myomectomy are surgical procedures that could be proposed in cases of uterine myoma, depending on the patient’s age and their wish to preserve fertility. Both techniques require laparoscopic tissue extraction through small incisions to avoid the need for a mini-laparotomy. Intra-abdominal fragmentation is performed with the use of a morcellator. Since 1993, with the development of the Steiner morcellator [10], several systems of electromechanical morcellation have become available. A rapidly circulating sharp cylinder with a coring knife/cutter at its intra-abdominal end is placed inside the trocar sleeve and is rotated by an electrical micro-engine attached to the trocar. Cylindrical tissue blocks are cut out of the main specimen in a stepwise fashion and removed from the peritoneal cavity through the cannula [11]. Morcellation can induce different sizes of tissue specimens. Fragments that are microscopic or even larger may be unnoticed and may remain in the abdominal cavity, tract incisions, or trocars, resulting in the appearance of an unrecognized pathology such as iatrogenic parasitic myoma (IPM) [12] or iatrogenic adenomyoma (IA) [2,13–16].

The incidence of retained uterine fragments remains unknown because this complication of morcellation is underestimated due to the small series and because the majority of such pathologies are published as case reports. In the largest series, the incidence of IPM was 1.2% [17], and that of IA was 0.57% [13]. In the Van der Meulen et al. [18] review, the incidence was 0.12% to 0.94%. The majority of case reports and series have been published in the last few decades after electromechanical morcellator introduction. Many types of morcellators (motor coring, motor peeling, or bipolar cutting as the working principle) with four types of blade diameters (12, 13, 15, and 20 mm) and increased morcellation rates (6.2–40.4 g/min) [19] were available from 1993 to 2014 (after the FDA warning concerning morcellator use) [20]. Following this communication regarding power morcellation, the utilization of minimally invasive hysterectomy and morcellation decreased. However, asymptomatic cases of IPM are not reported, and these cases will likely be diagnosed and reported in the next period.

This article aimed to review the literature on parasitic myoma and adenomyoma and to compare these diseases in terms of clinical, paraclinical, surgical, and prognostic factors. Available articles were reviewed using PubMed/MEDLINE and ScienceDirect resources, and the differences between these two entities were analysed. Thirty-six cases of IPM (13 case reports and 5 case series) and 10 cases of IA (2 case reports and one series) were found (Fig. 1).

Parasitic myoma [12,15,16,21–34]

Myoma was the initial surgical indication for myomectomy or hysterectomy in all cases of IPM, except in 3 cases in which the initial indication of hysterectomy was not stated. In 7 of 10 cases (70%), when the myoma location was indicated, a posterior location in the uterine wall was cited. Myomectomy was performed for large uterine myomas (>5 cm) in all cases when their size was described (fibroids measuring 8.3 ± 2.2 cm). A myoma size exceeding 6 cm was described in 9 cases (29%); in 25 cases, the data were not available, and in 2 cases, the myoma size was measured at 5 cm (Table 1). The initial surgical procedure (myomectomy/hysterectomy) was performed by laparoscopy in 88.8% of cases (n = 32) and by laparotomy in 11% of cases (n = 4) in women aged 23–50 years. In the laparoscopic group, 78.8% (n = 25) of the procedures were myomectomies, whereas 21.8% (n = 7) were hysterectomies (3 cases of total hysterectomy and 4 cases of subtotal hysterectomy). When the laparoscopic approach was performed, an electromechanical morcellator was used in 90% of cases (n = 29). In the other 3 cases, manual morcellation with a cold knife was performed. Manual morcellation was described even in the

Fig. 1. Flow chart for literature search.
Table 1
Initial pathologic characteristics and surgery performed in cases of iatrogenic parasitic myoma and iatrogenic adenomyoma.

References (year)	n	Initial pathology	Myomas n°	Location	Size (cm)	U/M weight	Surgery	Morcellator used	
La Coursiere et al. (2005) [16]	1	Myoma	5	NA	6	205 g	LTH	Yes	
Paul and Koshy (2006) [21]	1	Myoma	1	Posterior	9	NA	LM	Yes	
Rakesh et al. (2007) [22]	1	Myoma	1	NA	NA	NA	LM	Yes	
Rakesh et al. (2007) [23]	2	Myoma	1	Posterior	10	390 g > ut	920 g	LM > 3 years LTH	Yes
Myoma	1	Posterior	5	135 g > ut	300 g	LM – 8 years LASH nR + excision	Yes		
Takeda et al. (2007) [24]	1	Myoma	1	Intraligamental	NA	NA	NA	LM	Yes
Thian YL et al. (2009) [12]	1	Myoma	1	Posterior	9.7	NA	LM	Yes	
Moon HS et al. (2008) [25]	1	Myoma	1	Posterior	6.3	NA	LM	Yes	
Rakesh et al. (2009) [26]	1	Myoma	1	Posterior	10	620 g	LM	Yes	
Epstein JH et al. (2009) [27]	1	Myoma	1	Anterior	5	NA	LM	Yes	
Wada-Hiraike et al. (2009) [28]	1	Myoma	1	Posterior	9.3	NA	LAM	Cold knife	
Kho KA (2009) [29]	12	Myoma	NA	NA	LM, AM	Yes	(6) * 2 cold knife		
Larraín et al. (2010) [15]	4	Myoma	1	NA	1	600 g	LM	Yes	
	1	NA	1	1	600 g	LM	Yes		
	1	NA	1	1	LM	Yes			
	1	NA	1	1	LTH	Yes			
	1	NA	1	1	LTH	Yes			
Cuccinela et al. (2011) [17]	4	Myoma	1	NA	1	NA	LM + 2 years TAH	Yes	
	1	Myoma	1	NA	NA	NA	LM	Yes	
	1	Myoma	1	NA	NA	NA	LM + 2 years TAH	Yes	
	1	Myoma	1	NA	NA	NA	LM	Yes	
Sesti F (2011) [30]	1	Myoma	5	NA	GLM	Cold knife			
Yanamune et al. (2012) [31]	1	Myoma	10	Fundal	NA	NA	AM	No	
Takeda A (2012) [32]	1	Myoma	1	Posterior	11	262 g	GLM	Cold knife	
Leren et al. (2012) [33]	3	NA	NA	NA	NA	LASH	Yes		
Ehdaiavand et al. (2014) [34]	2	Myoma	NA	NA	NA	NA	LM	Yes	

abdominal approach (n = 3). The interval between the initial surgery and the diagnosis of IPM or IA varied depending on symptoms. For asymptomatic cases, the average time was longer (6.2 years) than that for the symptomatic case (4.2 years). In the Kho and Nezat [29] series, the average time between the previous abdomin surgery and surgery during which an IPM was diagnosed was 75 months. In this review overall, 63.8% of patients presenting with IMP were asymptomatic at the time of the diagnosis, while Van der Noord et al. [35] reported that 21.7% of patients were asymptomatic, in both parasitic myoma and adenomyoma cases. Common symptoms of IPM include abdominal discomfort, fatigue, backache, dyspareunia, and urinary/bowel complaints.

There was no relationship between the size of IPM and symptomatic patients, as asymptomatic cases were described with 8–10-cm parasitic myomas [12,23,30], and a 15-mm parasitic myoma was described as causing pelvic or abdominal pain [17]. Pain was usually described in cases of IPM located in the pelvic region [15,16,26]. These iatrogenic lesions were identified by vaginal ultrasound and more accurately by magnetic resonance imaging (MRI). Masses similar to uterine myoma were observed in the cases of IPM.

The location of these iatrogenic pathologies may be on any abdominal organ or peritoneal area, especially if an electromechanical morcellator is used. However, the majority of IPMs were found in the pelvis (67.7%), along the gastrointestinal tract, and less frequently in the upper abdomen, along the urinary tract, or along the trocar or abdominal scar. Cuccinela et al. [17] identified the pelvic location of IPMs by movement of the fragments to the lower part of the abdomen. Kho and Nezat [29] noted that the most likely locations of IPMs are in the pelvis. The number of IPMs varies depending on the type of morcellation. After mechanical morcellation, one lesion is usually cited. In cases in which an electrical morcellator is used, the number can reach up to seven or more. This difference could be explained by the fact that when manual morcellation is used, the tissue fragments are larger and can be seen easily, which is not the case in electromechanical morcellation due to the force of the rotating blade, causing very small fragments to be dispersed away from the field. The size of nodules varies from 3 mm to 30 cm.

Concerning intraoperative macroscopic analysis of the lesions, the majority of IPMs were not described as causing an inflammatory reaction or adhesions (69.2%, n = 18/26 of available data). In two case reports and in one series, there were no available data regarding the adhesions. All cases of IPM were confirmed by histological findings to be composed only of smooth muscles (Table 2). The pathogenesis of IPM is still not clearly understood. Pieces of the endometrium, such as the myometrium, can implant and proliferate [36]. According to Kho and Nezat [29], the greater risk factor for the development of parasitic myomas is the presence of a uterine leiomyoma. It was shown that myomas >6.5 cm had a significantly higher proportion of abnormal karyotypes than myomas <6.5 cm (75% vs. 34%) and subsequently more mitotic activity [37,38]. This finding suggests that small fragments coming from a myoma that is >6.5 cm could have a higher implantation and growth potential. In this review, 29% (9 cases) of the laparoscopic myomectomies that were performed were for fibroids >6 cm, whereas in 2 cases, the size of the fibroid was <6 cm; in 20 cases, no data were provided. A posterior location of uterine myomas was frequently described for the previous laparoscopic myomectomy, and this position may have made the surgical intervention more difficult, contributing to the formation of IPMs.

As with uterine myoma [39], the theory of response to injury may explain the pathogenesis of IPM. Experimental data on mice showed that primary myoma cells are able to form xenograft tumour. Associated stromal cells, such as myoma-derived fibroblasts or microvasculature endothelial cells, could account for tumour formation by providing a supportive tumour stroma or a microvascular network [40]. Huang et al. [41] suggested that increased angiogenesis and cell proliferation occur in implanted xenografted myomas (compared with primary myomas) and are involved in the pathogenesis of iatrogenic myomas.
References (Year)	Symptoms	Interval (years)	Iatrogenic myomas N	Location of iatrogenic lesions	Size of the developed nodules	CA125 Adhesions	Anatomopathology	
LaCoursiere et al. (2005) [16]	DPP, pelvic pain, dysuria	1	5	Pelvis	0.4–0.7 cm	NA	Yes	Leiomyoma, fibrosis, cervical and endocervical tissue
Paul and Koshy (2006) [21]	DPP, pelvic pain	2, 5	Nr	Parietal peritoneum at the trocar site, uterine fundus, paracolic gutter	NA	NA	NA (no)	Leiomyoma
Rakesh et al. (2007) [22]	Asymptomatic	5	2	Right dome diaphragm + rectovaginal septum	5 cm, 3 cm	NA	No	Leiomyoma
Rakesh et al. (2007) [23]	Pain and mass	3	3	Pelvis > liver, sigmoid colon broad pedicle; lateral pelvic wall; urinary bladder left paraumbilical region; sigmoid colon and left lateral abdominal wall	15 cm, 7 cm, 8 cm	NA	Yes	Leiomyoma
Takeda et al. (2007) [24]	Abdominal mass	6	1	Omentum, round ligament, vesicouterine peritoneum, peritoneum	10 cm	NA	NA	Leiomyoma
Thian YL et al. (2009) [12]	Asymptomatic	1	50	Right adnexa, umbilical nodule, peritoneal cavity, colon	8 cm, 4 cm	N	NA	Leiomyomas
Moon HS et al. (2008) [25]	Mass, left lower quadrant of the abdomen	5	1	Abdominal wall (subfascial area)	3 cm	NA	No	Leiomyoma
Rakesh S et al. (2009) [26]	Abdominal pain	3	2	Pouch D + right lumbar region	6, 7 cm	NA	NA	Leiomyoma
Epstein JH et al. (2009) [27]	Pelvic pain	1, 5	2	Omentum, sigmoid	3 cm, 8 cm	NA	NA (no)	Leiomyoma
Watla-Hiraike et al. (2009) [28]	Mass, left lower quadrant of the abdomen	4	1	Rectus muscle at the suprapubic incisioned scar	10 cm	NA	NA	Desmoid tumour
Kho KA (2009) [29]					NA	NA	NA	
Larrain et al. (2010) [15]	Pelvic mass	16	1	Pouch of Douglas	3 cm	NA	No	Calcified leiomyoma
Larrain et al. (2010) [15]	Pelvic mass	8	1	Pouch of Douglas	7 cm	NA	No	Leiomyoma
Larrain et al. (2010) [15]	Pelvic pain, pelvic mass	6	1	Presacral peritoneum	6 cm	N	Yes	Adenomyosis
Cuccinela et al. (2011) [17]	Vaginal mass	3	1	Vaginal scar	5 cm	NA	No	Leiomyoma
Cuccinela et al. (2011) [17]	Pelvic pain, abdominal masses	7	3		15–60 mm	NA	NA (no)	Leiomyoma
Asymptomatic		2	1	Pelvic peritoneum, along the gastrointestinal tract	18 mm	NA	NA (no)	Leiomyoma
Asymptomatic		5	1		4–35 mm	NA	NA (no)	Leiomyoma
Atishi et al. (2012) [30]	Palpable masses of the abdominal wall	6	2	Abdominal wall: umbilical area, rectus muscles, left abdominal region	43–60 mm	NA	NA (no)	Leiomyoma
Yanamanda et al. (2012) [31]	Painful subcutaneous mass	10	6	Abdominal subcutaneous adipose tissue	0.3–10 cm	NA	No	Leiomyoma
Takeda A (2012) [32]	Asymptomatic	2	1	Vesicouterine pouch	1, 4 cm	NA	NA (no)	Leiomyoma
Leren et al. (2012) [33]	Pain, mass in the abdomen	3, 6–8	1–12	Peritoneum, abdominal wall, colon transversum, caecum, in the pelvic abdominal wall, rectum, cervix and small intestine, pouch of Douglas	1–11 cm	KU/L	Yes	Leiomyoma + adenomyoma
Ehdaivand et al. (2014) [34]	Asymptomatic	0, 15–1,7	1	Omentum	NA	NA	Yes	Leiomyoma
LM, laparoscopic myomectomy; LTH, laparoscopic total hysterectomy; LASHnR, laparoscopic subtotal nonradical hysterectomy; AM, abdominal myomectomy; NA, not available; N, normal; UTROSCT, uterine tumour resembling ovarian sex cord tumour.								
Kho and Nezat [29] described the parasitic myoma as follows: after administration of gonadotropin-releasing hormone, which restricts blood supply to the myoma, a subserosal or pedunculated myoma may lose its uterine blood supply and parasite to an adjacent organ. In the review of Van der Meulen et al. [18], the duration of steroid exposure seems to be a risk factor that contributes to the development of either IPM or IA. All patients in this review had a premenopausal status at the time of the first surgery (myomectomy or hysterectomy). Even if leiomyomatosis peritonealis disseminata is described after a surgical procedure, it may not be an iatrogenic condition. In this pathology, the pathogenesis differs from the clinical picture, and the evolution is different from IPM. Regarding this pathology that developed after a surgical procedure, removal of this iatrogenic pathology is necessary because the risk of malignant transformation is higher than that with uterine myoma (2–5% [43]) versus 2.33–3.6 per 1000 hysterectomies for uterine myoma [44]).

Iatrogenic adenomyoma [13–15]

All described cases of IA (n = 10) were found after total (n = 1) or subtotal hysterectomy (n = 9) with morcellation (Table 3). The hysterectomy was performed for a large uterus with myomas or a large uterus with myomas and adenomyosis weighing 211.6 ± 5 g in women aged 39–48 years. The average interval between hysterectomy and symptoms of IA varied within 7.42 ± 1.03 years. Common symptoms of IA included abdominal discomfort, moderate-to-severe deep dyspareunia, and pelvic pain. Pelvic pain was described in all cases, mostly due to the existence of adhesions and nerve involvement. Dyspareunia was another common symptom in patients with this entity, explained by rectal retraction and the presence of adhesions. Clinical examination was painful when the pouch of Douglas and lateral Cul-de-sac were explored, and vaginal examination showed the presence of retrocervical or laterocervical masses. The preoperative blood sample analysis showed elevated CA 125 in 9 cases (90%). Pelvic MRI showed an irregular mass overhanging the cervix, extending up into the pelvis, pressing against the rectum or rectosigmoid, or a pelvic mass fixed to the vaginal vault. These heterogeneous masses were composed of hypo- and hyperintense signals on T2-weighted images. Gadolinium injection evidenced vascularisation of the lesions. Hyperintense signals on T1-weighted images with saturation of fatty tissue suggested the presence of old blood.

Laparoscopic excision was proposed for patients with retrocervical masses filling the pouch of Douglas. The number of lesions varied between 1 and 2, which was not the case for IPM, which had seven lesions in one case. The iatrogenic nodule size measured 34.5 ± 28.7 mm. Despite the use of an electromechanical morcellator in the case of IA masses, the usual location was in the pelvic area, especially in the retrocervical zone. A macroscopic inflammatory reaction was observed, creating retraction of the surrounding organs, such as the cervix and rectum. Adhesions between the pelvic masses and the rectum were found in all cases. Extensive dessection of the rectum and pararectal fossa were required to isolate the lesions. During resection of the masses, bluish lesions were identified corresponding to haemorrhagic spots observed on MRI. In the physiology of adhesion formation, the inflammatory process is commonly implicated [45], and adenomyosis is associated with a more inflammatory reaction than uterine fibroids. Additionally, the junctional zone is more inflammatory for the peritoneum. In peritoneal endometriosis, according to Sampson’s theory, viable endometrial cells are able to implant, proliferate and create an inflammatory reaction [46]. The experimental baboon model confirmed these data with more adhesions after grafting the endometrium or endometrium and junctional zone, as the inflammatory response is more important in IAs than in myomatous lesions [13]. Histological examination of the excised iatrogenic lesions confirmed smooth muscle hyperplasia infiltrated by endometrial glands and stroma. An inflammatory reaction was also observed around the dilated glands, probably due to old blood retention in the lumen of these glands (Table 4).

Concerning IA, all cases were described after morcellation of an adenomyotic uterus. We thus agreed with Donnez et al. [36] that retained uterine fragments containing both endometrium and myometrium are able to survive in the peritoneal cavity, resulting in adenomyotic lesions. The most important difference between IPMs and IAs is the presence of endometrium associated with subendometrial myometrium (junctional zone). When this association is found in forgotten specimens, these iatrogenic lesions are able to develop tumours characterised by dense tissue composed of smooth muscle hyperplasia with isolated foci of endometrial mucosa and stroma. Experimental studies conducted by Donnez et al. [36] on baboons showed that 20–24 months after grafting of the myometrium alone, smooth muscle lesions associated with fibrotic tissue were found in all cases except one. After grafting the endometrium together with the junctional zone and total uterine thickness, novel lesions composed of endometrial glands and stroma associated with smooth muscle hyperplasia were found. Induced nodular endometriotic lesions were significantly larger and showed a stronger invasion process when tissue specimens containing the junctional zone were grafted. Adenomyosis was the initial indication for LASH in the Donnez et al. [36] series, which means that the junctional zone was larger with a higher risk of having more junctional zone fragments able to induce the formation of iatrogenic adenomyosis. Based on an experimental model [47], the adhesion of human endometrial cells to mouse peritoneum was increased by treatment with pro-inflammatory cytokines, and surgical intervention creates an inflammatory reaction because of peritoneal damage, crush-induced ischaemia, suture ligation, coagulation, or CO₂ use [45].

In cases of uterine morcellation, both types of iatrogenic lesions may develop, but IA lesions were more commonly described. The duration of steroid exposure seems to be a risk factor in the case of IPM, and all patients were in the premenopausal period at the time of first surgery. Removal of this iatrogenic pathology is necessary because of the risk of malignant transformation. Rabischong [48] described one case with atypical endometrial hyperplasia as an initial pathology without this atypia. Methods to avoid these iatrogenic complications may include laparoscopic morcellation in a bag, as suggested by Kanade et al. [49], or culdotomy or mini-laparotomy with manual morcellation within a specimen bag [50]. There are no limitations of in-bag morcellation, with the possibility of use even with single-site access. Morcellation in

Table 3
Initial pathology and initial surgery performed in the case of iatrogenic adenomyoma.

References (Year)	N	Initial pathology	U/M weight	Surgery	Morcellator used
Hilger et al. (2006) [14]	1	Myomas	225 g	LASHnR	Yes
Donnez et al. (2007) [13]	8	Myomas + ADM	210 ± 59 g	LASHnR	Yes
Larrain et al. (2010) [15]	1	Myomas	-	LH	Yes
a bag is proposed for myomas and for the uterus and does not require additional advanced surgical skills. In cases of uterine morcellation (subtotal or total hysterectomy), the use of a bag may systematically include conditions without anatomopathological modifications, such as uterine prolapse [51]. In 2016, the FDA approved the first bag for contained morcellation [52]. However, an in vitro study demonstrated that the risk of leakage and tissue dissemination still exists, depending on the insufflation pressure and material type of the bag [53], and the case of Suleyman Salman confirmed this issue [54]. Another in vivo study showed that some types of bags seem to be safe [55,56], but the existing bags were not designed for power morcellation and, thus, risk spillage in the case of multiport laparoscopy. The authors of that study suggested that the absence of leakage be assessed by visual inspection. Akdemir et al. [57] proposed the use of surgical gloves for enclosed morcellation in cases of multiport laparoscopy to decrease tissue spillage, but the myoma size is a limiting factor for this in-bag morcellation technique. In addition to the concern of spreading malignant cells, morcellation raises new challenges in the pathological interpretation of disrupted tissue specimens. Pathologic evaluation of morcellated uteri is more challenging, and there is a possibility that smaller uterine tumours would be missed. Furthermore, the complexity of this technique may require more advanced training to ensure safety in the hands of novice users [58]. In the review titled “Contained Morcellation: Review of Current Methods and Future Directions”, the authors concluded that there is currently no available method for tissue extraction that completely eliminates the risk of cellular dissemination [59]. The FDA discouraged the use of laparoscopic power morcellation to avoid the spread and worsened clinical outcomes of unsuspected uterine malignancy with a first safety communication warning in April 2014 [60,61]. Following this communication regarding power morcellation, utilization of minimally invasive hysterectomy and morcellation decreased [35]. In patients with a history of uncontained uterus or myoma morcellation who report pelvic symptoms, IPM or adenomyoma should be considered in the differential diagnosis.

Conclusions and future perspectives

Retained uterine or myoma fragments after laparoscopic surgery are able to survive and grow in the peritoneal cavity under hormonal steroid exposure when the uterine blood supply is lost. The lack of systematic follow-up after laparoscopic morcellation could result in an underestimation of the incidence because many cases are asymptomatic. Iatrogenic myoma and adenomyoma have a possible different pathogenetic mechanism, but both pathologies have a common point: they originate after a surgical procedure involving morcellation. In-bag morcellation might decrease the incidence of these iatrogenic conditions and is technically feasible but has some limitations and risks. When a morcellator is used, a thorough inspection of the peritoneal cavity and the observation of no leakage from the bag are required. In addition, the patient should be informed concerning this potential, rare iatrogenic complication and the remaining risk potential of in-bag morcellation as well as provided balanced information on alternative treatment options, particularly when a laparoscopic approach is employed. Although the studies discussed in this review provide a good understanding of the risk factors of IPM and adenomyoma, other prospective data collection is necessary to establish other risk factors in addition to morcellator use to develop an algorithm for patient selection for laparoscopic morcellation of the uterus or myoma, with the aim of improving patient safety.

Conflict of interest

The authors have declared no conflict of interest

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects

Acknowledgements

The authors would like to thank Professor Donnez Olivier for his advice regarding publication at the beginning of this work.

References

[1] Chapron C, Pierre F, Querleu D. Complication of laparoscopy in gynecology. Cynecol Obstet Fertil 2001;29:605–12.
[2] Donnez O, Jadoul P, Squifflet J, Donnez J. A series of 3190 laparoscopic hysterectomies for benign disease from 1990 to 2006: evaluation of complications compared with vaginal and abdominal procedures. BJOG 2009;116:492–500.
[3] Malinowski A, Makowska J, Antosiak B. Total laparoscopic hysterectomy – indications and complications of 158 patients. Ginekol Pol 2013;84:252–7.
[4] Wood C, Mahert PJ. Laparoscopic hysterectomy. Bail Clin Obstet Gynecol 1997;11:111–36.
[5] Wallenstein MR, Anathav C, Kim JH, Burke WM, Hershman DL, Lewin SN, Neugut AI, et al. Effect of surgical volume on outcomes for laparoscopic hysterectomy for benign indications. Obstet Gynecol 2012;119:709–16.
[6] Donnez J, Smets M, Polet R, Bassil S, Nisolle M. LASH: laparoscopic subtotal hysterectomy and material type of the bag. Int J Gynaecol Obstet 2007;99:67–8.
[7] Blomqvist M, Hill N. Electromechanical morcellation in laparoscopic surgery. J Minim Invasive Gynecol 2009;16:492–5.
[8] European Medicines Agency. Supracervical hysterectomy. Module 1. Guideline on the application of Article 44(3) of the EMA. 2007;3–12.
[9] Radin ML, Paganini EP, Helman SR, Farooq A, Genel M, Crapanzano D, et al. Randomized controlled comparison: in-bag morcellation versus morcellation in-situ. J Minim Invasive Gynecol 2010;17:630–4.
[10] Donnez O, Squifflet J, Leonte I, Jadoul P, Donnez J. Post hysterectomy pelvic adenomyotic masses observed in 8 cases out of a series of 1405 laparoscopic subtotal hysterectomies. J Minim Invasive Gynecol 2007;14:156–60.
Rakesh S, Sundaram M, Mahajan C, Sambhus A. Multiple leiomyomas after laparoscopic myomectomy. Arch Gynecol Obstet 2013;285:821–5.

Yanazume S, Tsuji T, Yoshioka T, Yamasaki H, Yoshinaga M, Douchi T. Large leiomyoma: an unusual case associated with leiomyomatosis peritonealis disseminata. J Gynecol Obstet Invest 2011;70:121–5.

Steller C, Cholkeri-Singh A, Sasaki K, Miller CE. Power morcellation using a closed bag. J Minim Invasive Gynecol 2014;21:961.

Kho K, Nezat C. Parasitic myomas. Obstet Gynecol 2009;114:611–5.

Rabinbch S, Beguinot M, Compan C, Boudrel N, Kaemmerlen AG, Pouly JL, Canis M, et al. Long-term complication of laparoscopic uterine morcellation: iatrogenic parasitic myomas. J Gynecol Obstet Biol Reprod (Paris) 2013:42:577–84.

Kanade TT, McKenna JB, Choi S, Tsai BP, Rosen DM, Cario GM, Chou SY. Contained in bag morcellation for laparoscopic myomectomy. J Minim Invasive Gynecol 2014:21:961.

Paul PG, Shintre H, Mehta S, Gulati G, Paul G, Mannur S. Parasitic myomas: an unusual risk after morcellation. Gynecol Minim Invasive Ther 2018;7:124–6.

Rimbach S, Schempershofe M. In-bag morcellation as a routine for laparoscopic hysterectomy. Biomed Res Int 2017:2017:670916.

Halama Niels. Silke A Grauling-Halama, and Isam Daboul. Familial clustering of uterine leiomyomas: a case report. J Minim Invasive Gynecol 2009:5:1145–9.

Van der Meulen PF, Boomsma CM, Verberg MFG, Genomi PMAJ, Bongers MY. Parasitic myoma after laparoscopic surgery: a systematic review of the literature. BJOG 2016:123:69–75.

Driessen SR, Arkenbout EA, Thurkow AL, Jansen FW. Electromechanical morcellators in minimally invasive gynecologic surgery: an update. J Minim Invasive Gynecol 2014:21:377–83.

https://www.fda.gov/downloads/MedicalDevices/Safety/AlertsandNotices/UCM424444.pdf.

Paul PG, Kosky AK. Multiple peritoneal parasitic myomas after laparoscopic myomectomy and morcellation. Fertil Steril 2006:85:492–3.

Rakesh S, Hegde A, Mahajan C. Parasitic myoma under the diaphragm. J Minim Invasive Gynecol 2007;14:1.

Rakesh S, Sundaram M, Mahajan C, Sambhus A. Multiple leiomyomas after laparoscopic hysterectomy: report of two cases. J Minim Invasive Gynecol 2007;14:123–7.

Takeda A, Mori M, Sakai K, Mitui T, Nakamura H. Parasitic peritoneal leiomyomatosis diagnosed 6 years after laparoscopic surgery with electric tissue morcellation: report of a case and review of the literature. JMG 2007;14:770–5.

Moon HS, Koo JS, Park SH, Park GS, Choi JG, Kim SG. Parasitic leiomyoma in the abdominal wall after laparoscopic myomectomy. Fertil Steril 2008;90:1201.e1–e2.

Rakesh S, Sundaram M, Lakhotia S, Kadom P, Rao G, Mahajan C. Parasitic myoma after morcellation: case report. J Gynec Endosc Surg 2009;9:113–5.

Epstein JH, Nejat EJ, Say T. Parasitic myomas after laparoscopic myomectomy: case report. Fertil Steril 2009;91:932.e13–14.

Wada-Hiraike O, Yamamoto N, Osuga Y, Yano T, Kozuma S, Taketani Y. Ablarent implantation and growth of uterine leiomyoma in the abdominal wall after laparoscopically assisted myomectomy. Fertil Steril 2009;92(5):1747. doi: https://doi.org/10.1016/j.fertnstert.2009.07.068, e13-5, Epub 2009 Sep 17.

Kho K, Nezat C. Parasitic myomas. Obstet Gynecol 2009;114:611–5.

Sesti F. Multiple ectopic leiomyomas of the abdominal rectus muscles after gasless laparoscopic uterine surgery. Arch Gynecol Obstet 2012;285:883-1.

Yanazume S, Tsuji T, Yoshioka T, Yamasaki H, Yoshinaga M, Douchi T. Large parasitic myomas in abdominal subcutaneous adipose tissue along a previous myomectomy scar. J Obstet Gynaecol Res 2012:38:875–9.

Takeda A, Imoto S, Mori M, Yamada J, Nakamura H. Rapid growth of parasitic myomas in a patient previously treated with in vitro fertilization: a rare disorder after laparoscopic-assisted myomectomy. Eur J Obstet Gynecol Reprod Biol. 2012 May;162(1):117–8. doi: https://doi.org/10.1016/j.ejogrb.2012.01.015, Epub 2012 Feb 19.

Leroy V, Langebekke A, Quigstad E. Parasitic leiomyomas after laparoscopic surgery with morcellation. Acta Obstet Gynecol Scand 2012;91:1233–6.

Eldavvand S, Simon RA, Sung CJ, Steinhoff MM, Lawrence WD, Qudusi MM. Incidental gynecologic neoplasms in morcellated uterine specimens: a case series with follow-up. Hum Pathol 2014;45:2311–7.

Van der Meulen PF, Pijnegem JMA, Boomsma CM, Verberg MFG, Genomi PM. Iatrogenic parasitic myomas. J Gynecol Obstet Biol Reprod (Paris) 2013;42:577–84.

Rein MS, Powell WL, Walters FC, Weremowicz S, Cantor RM, Barbieri RL, Morton CC. Cytogenetic abnormalities in uterine myomas are associated with myoma size. Mol Hum Reprod 1998;4:83–6.

Flake GP, Andersen J, Dixon D. Etiology and pathogenesis of uterine leiomyomas: a review. Environ Health Perspect 2003;111:1037–54.

Raine-Bennett T, Tucker LY, Zartisky E, Littell RD, Palen T, Neugebauer R, Axtell A, Schultzte PM, Kronbach DW, Emmy-Schubert J, Sundang A, Bischoff K, Compton-Phillips AL, Lentz SE. Occult uterine sarcoma and leiomyosarcoma: incidence of and survival associated with morcellation. Obstet Gynecol 2016;127(1):29–39.

Davey AK, Maher PJ. Surgical adhesions: a timely update, a great challenge for the future. J Minim Invasive Gynecol 2007;14:15–22.

Van der Linden JF. Theories on the pathogenesis of endometriosis. Hum Reprod 1996;11:53–65.

Belard A, Noel A, Coffin F, Frankeenne F, Foidart JM. Adhesion of endometrial cells labeled with 111Indium-tropolonate to peritoneum; a novel in vitro model to study endometriosis. Fertil Steril 2003;79:724–9.

Natalia Darii is a specialist in gynecology with focus on minimal invasive surgery. She is focusing on surgery for benign conditions and fertility and in finding new risk factors for iatrogenic parasitic myoma.
Bogdan Doroftei is a Lecturer at the University of Medicine and Pharmacy Gr. T. Popa from Iasi, Romania and a member of the Steering committee Eshre-IVF Monitoring (EIM) Consortium. His interest include minimally invasive gynaecological surgery, human assisted reproduction and medical genetics.

Alin Ciobica is a Researcher interested in various biochemical, molecular and histological studies, especially correlated with relevance of oxidative stress status in some diseases of both humans and animal models.

Sorana Caterina Anton is an undergraduate student at the University of General Medicine and Pharmacy Gr. T. Popa Iasi, Romania. Right now she is focusing on obstetrics and gynecology.

Taymour Mostafa is a full Professor of “Andrology, Sexology & STIs” at the University of Cairo, Egypt since 1998 to date. He is an author of more than 160 local as well as international publications in the field of Andrology, Sexology, Reproduction, and STIs. His scientific points of interest include: reproduction, male infertility, apoptosis, stem cells, varicocele, sexual health, erectile dysfunction, oxidative stress, human health, and pollution. He is the winner of ISSM/Pfizer congress celebration award (2005), Jean Francois Gentiesse Award for the best basic research paper 2006 (Cairo) and 2008 (Brussels) successively from ISSM. He also awarded the State Prize for Appreciation in Medical Sciences 2017.