Research Article
Inverted Length-Biased Exponential Model: Statistical Inference and Modeling

Waleed Almutiry

Department of Mathematics, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Saudi Arabia

Correspondence should be addressed to Waleed Almutiry; wkmtierie@qu.edu.sa

Received 17 September 2021; Revised 29 September 2021; Accepted 11 October 2021; Published 26 October 2021

1. Introduction

Length-biased exponential (LBE) or moment exponential (ME) distribution is considered as one of the most important univariate and parametric models. It is commonly utilized in the analysis of data collected throughout a lifespan and in problems connected to the modeling of failure processes. There is much to be said for a flexible lifespan distribution model, and this one may be a suitable fit for some sets of failure data. Reference [1] proposed the LBE with the following PDF and distribution function (CDF):

\[g(x; \alpha) = \alpha^2 x e^{-\alpha x}; \quad x \geq 0, \alpha > 0, \] \tag{1}

\[G(x; \alpha) = 1 - (1 + \alpha x)e^{-\alpha x}; \quad x \geq 0, \alpha > 0, \] \tag{2}

where \(\alpha \) is the scale parameter. Different values of the shape parameter lead to different shapes of density function.

Many authors extended new models from the LBE distribution such as exponentiated ME [2], generalized exponentiated ME [3], and Marshall–Olkin (MO) LBE (MOLBE) distributions [4]. MO Kumaraswamy ME model was discussed in [5].

Several univariate continuous distributions have been extensively used in environmental, engineering, financial, and biomedical sciences, among other areas for modeling lifetime data. However, there is still a strong need for a significant improvement of the classical distributions through different techniques for modeling several data lifetime. In this regard, the inverted (or inverse) (I) distribution is one procedure that explores extra properties of the phenomenon which cannot be produced from noninverted distributions. Applications of inverted distributions include econometrics as well as the engineering sciences as well as biology and survey sampling as well as medical research among others. In the literature, several studies related to
inverted distributions have been handled by several researchers; for instance, Reference [6] introduced the I Weibull distribution. Reference [7] studied the I Pareto type 1 distribution. Reference [8] investigated the I Pareto type 2 distribution. Reference [9] handled exponentiated I Weibull distribution. Reference [10] provided the I Lindley distribution. Reference [11] suggested the I Kumaraswamy model. Reference [12] presented the I power Lomax model. Reference [13] studied the I power Lomax model. Reference [14] suggested the I Rayleigh model. Refer-
ence [15] discussed the Weibull I Lomax model. Reference [16] investigated the I Pareto type 2 distribution. Reference [17] suggested the I Nadarajah-Haghighi model. Reference [18] studied the I Pareto type 1 distribution. Reference [19] provided the I Lindley dis-
tribution. Reference [20] introduced the I Nadarajah-Haghighi model. Reference [21] investigated the I Topp–Leone distribution, and Reference [22] suggested the power transmuted I Rayleigh model. Refer-
ence [23] discussed the Weibull I Lomax model. Reference [24] investigated the I Pareto type 2 dis-
tribution. Reference [25] provided the I Lindley distribution. Reference [26] introduced the I

2.1. Quantile Function. A generated random number from the ILBE distribution is obtained by solving the following equation numerically:

\[Q(u) = \frac{\alpha}{-1 - W_{-1}(e^{-u\alpha})}, \quad 0 < u < 1, \]

where \(W_{-1} \) denotes the negative branch of the Lambert W function (i.e., the solution of the equation \(W(Z)e^{W(Z)} = z \)).

2.2. Moments. Due to its relevance in any statistical study, we shall give the \(n \)-th MO of the ILBE distribution here. For the ILBE model, the \(n \)-th MO of \(T \) about the origin is computed as follows:

\[\mu'_n = E(T^n) = \int_0^\infty t^n \frac{\alpha^2}{t} e^{-\alpha t} \, dt = \alpha^n \Gamma(2 - n), \quad n < 2. \]

The following formula may be used to determine the MOGF of the ILBE distribution:

\[M_X(t) = \sum_{n=0}^{\infty} \frac{\mu'_n}{n!} t^n = \sum_{n=0}^{\infty} \frac{\alpha^n}{n!} \Gamma(2 - n), \quad n < 2. \]

The incomplete (IN) MO, say \(c_n(x) \), is

\[c_n(t) = \alpha^2 t \int_0^{t^{n-3}} e^{-\alpha t} \, dt = \alpha^n \gamma(2 - n, \alpha t), \quad n < 2, \]

where \(\gamma(.,t) \) is the upper IN gamma function.

Further, the conditional MO, say \(\omega_c(x) \), is

\[\omega_c(t) = \alpha^2 t \int_t^{\infty} e^{-\alpha t} \, dt = \alpha^n \Gamma(2 - n, \alpha t), \quad n < 2, \]

where \(\Gamma(.,t) \) is the lower IN gamma function.

For the ILBE distribution, the \(n \)-th inverse MO is calculated on the basis:

\[\tau_k(x) = \alpha^2 \int_0^{\infty} t^{-n-3} e^{-\alpha t} \, dt = \alpha^-k \Gamma(n + 2). \]

For \(n = 1 \), we get the harmonic mean of the ILBE distribution.

The Lorenz and Bonferroni curves are obtained as follows.

2. Fundamental Mathematical Properties of ILBE Distribution

Here, we give some essential properties of the ILBE distribution, like QuF, MOs, PRWMOS, incomplete MOs, and inverse MOs.
2.3. Order Statistics. Let T_1, T_2, \ldots, T_n be r samples from the ILBE model with order statistics $T_{(1)}, T_{(2)}, \ldots, T_{(n)}$. The PDF of $T_{(k)}$ of order statistics is given by

$$f_{T_{(k)}}(t) = \frac{n!}{(k-1)!(n-k)!} f^{k-1}(t) f(t) (1 - F(t))^{n-k}. \quad (15)$$

The PDF of $T_{(k)}$ can be expressed as

$$f_{T_{(k)}}(t) = \frac{n!\alpha^2}{(k-1)!(n-k)!} e^{-\alpha t} \left(1 + \frac{\alpha}{t}\right)^{k-1} e^{-\alpha t} \left(1 - \left(1 + \frac{\alpha}{t}\right) e^{-\alpha t}\right)^{n-k}. \quad (16)$$

Particularly, PDF of the first and largest order statistics can be calculated as

$$f_{T_{(1)}}(t) = n\alpha^2 t^{-3} e^{-\alpha t} \left(1 + \frac{\alpha}{t}\right)^{n-1} e^{-\alpha t}, \quad (17)$$

$$f_{T_{(n)}}(t) = n\alpha^2 t^{-3} \left(1 + \frac{\alpha}{t}\right)^{n-1} e^{-\alpha t}, \quad (18)$$

respectively.

2.4. Mean Residual Life Function. It has an important application of the MOs of residual lifetime function. The MRLS of ILBE distribution is

$$u(t) = E(T - t | T > t) = \frac{1}{F(t)} \int_t^\infty x f(x) dx - t \quad (19)$$

The MINT represents the amount of time that has passed after an item has failed, assuming that this failure has occurred. The MINT of ILBE distribution is

$$\omega(t) = E(T - t | T \leq t) = t - \frac{1}{F(t)} \int_0^t x f(x) dx \quad (20)$$

2.5. Probability Weighted Moments. The PRWMOs are often used to investigate additional aspects of the probability distribution. The PRWMOs of the random variable T, denoted by $S_{r,p}$, are defined as

$$S_{r,p} = \int_0^\infty t^r f(t)[F(t)]^p dt, \quad (21)$$

where r and p are positive integers. Substituting (3) and (4) into (21) yields the PRWMOs of the ILBE distribution as follows:
3. Statistical Inference

3.1. MLL Estimator Based on TIIC. Assume $T_{(1)}, T_{(2)}, \ldots, T_{(n)}$ are the recorded TIICS of size r, whose lifetimes have the ILBE distribution with PDF (4), and the experiment is completed once the r-th object fails for just some fixed values of r. The log-likelihood function (LLF), according to TIIC, is provided by

$$\ln l_2 = \ln C + 2r \ln \alpha - 3 \sum_{i=1}^{r} t_i - \sum_{i=1}^{r} \begin{array}{l} \alpha \end{array} t_i + (n - r) \ln \left[1 - \left(1 + \frac{\alpha}{t_r} \right) e^{-\alpha t_r} \right],$$

and for the sake of simplification, we abbreviate t_i rather than $t_{(i)}$. As a result, the partial derivatives of the LLF with regard to the component of the score $U(\alpha) = \partial \ln l_2 / \partial \alpha$ may be computed as follows:

$$U(\alpha) = \frac{2r}{\alpha} - \sum_{i=1}^{r} \frac{1}{t_i} + \frac{(n - r)\alpha e^{-\alpha t_r}}{t_r \left[1 - \left(1 + \left(\frac{\alpha}{t_r} \right) e^{-\alpha t_r} \right) \right]}. \quad (25)$$

The model parameters’ MLL estimator is produced by numerically solving equation (18) after assigning it to zero. In the case of a complete sample, we acquire the MLL estimators of the model parameters for $r = n$.

3.2. Simulation Results. A simulation is used to evaluate the estimators’ behavior considering a set of parameter choices. Mean square error (ϱ), bias (\mathfrak{I}), lower limit (\mathfrak{G}) of the COIs, upper bound (\mathfrak{H}) of the COIs, and average length (\boxtimes) of 90% and 95% are among the metrics computed. All numerical calculations are made using the R programming (R 4.1.1). The following algorithm are used:

(i) On aggregate, the ILBE distribution produces 1000 random samples with sizes of $n = 100, 200, 300$. A simulation is used to evaluate the estimators’ behavior considering a set of parameter choices. Mean square error (ϱ), bias (\mathfrak{I}), lower limit (\mathfrak{G}) of the COIs, upper bound (\mathfrak{H}) of the COIs, and average length (\boxtimes) of 90% and 95% are among the metrics computed. All numerical calculations are made using the R programming (R 4.1.1). The following algorithm are used:

(ii) Values for a few parameters are $\alpha = 1.2$ and $\alpha = 1.5$.

(iii) There are three degrees of censorship: $r = 60\%$, 80% (TIIC), and 100% (complete sample).

(iv) ϱ, \mathfrak{I}, \mathfrak{G}, \mathfrak{H}, and \boxtimes of estimates are computed. Tables 1 and 2 include the numerical findings for the complete and TIIC measurements, respectively.

Table 1: MLE, ϱ, \mathfrak{I}, \mathfrak{G}, \mathfrak{H}, and \boxtimes of the ILBE distribution for $\alpha = 1.2$ under TIIC.

n	t_r (%)	MLE	ϱ	\mathfrak{I}	\mathfrak{G}	90%	95%			
100	60	1.6901	0.4091	0.2111	1.3068	1.9113	0.6045	1.2489	1.9692	0.7203
200	80	1.3548	0.1548	0.0546	1.0803	1.6294	0.5490	1.0278	1.6819	0.6542
500	100	1.2316	0.0316	0.0263	0.9700	1.4931	0.5231	0.9199	1.5432	0.6233

Table 2: MLE, ϱ, \mathfrak{I}, \mathfrak{G}, \mathfrak{H}, and \boxtimes of the ILBE distribution for $\alpha = 1.5$ under TIIC.

n	t_r (%)	MLE	ϱ	\mathfrak{I}	\mathfrak{G}	90%	95%			
100	60	1.9815	0.4815	0.2846	1.6901	2.3538	0.7447	1.3378	2.4251	0.8873
200	80	1.6720	0.1720	0.0666	1.3332	2.0107	0.6775	1.2683	2.0756	0.8073
500	100	1.5196	0.0196	0.0313	1.1969	1.8423	0.6454	1.1351	1.9041	0.7690

\[
\begin{align*}
S_{r,p} &= \alpha^2 \int_0^\infty t^{r-3} \left(1 + \frac{1}{n^2} \right) e^{-(p+1)\alpha t} dt \\
&= \sum_{j=0}^{p} \binom{p}{j} \alpha^{j+2} \int_0^\infty t^{r-3} e^{-(p+1)\alpha t} dt.
\end{align*}

(22)

As a result of the simplification, the PRWMOs of the ILBE distribution assume the following structure:

\[
S_{r,p} = \sum_{j=0}^{p} \binom{p}{j} \alpha^{j+2} (j - r + 2)(p + 1)^2 r^{j-2}.
\]

(23)
From these tables, we conclude the following:

(i) As the sample size grows, \mathcal{P}, \mathcal{I}, and \mathcal{R} of all estimates decrease.

(ii) \mathcal{P}, \mathcal{I}, and \mathcal{R} of all estimates decrease as r decreases.

(iii) \mathcal{R} of the COIs increases as the confidence levels increase from 90% to 95%.

4. Applications to Real Data

In this part, we demonstrate the ILBE model’s adaptability by examining three real-world datasets. Comparing the fit of the ILBE model with known distributions such as the HLOIR [19], TIITOLIR [20], and TRIR [21] distributions, the ILBE model performs better. The PDFs of competitive models are

$$f_{HLOIR}(t) = \frac{4\lambda \alpha t^{-3} \exp(-\alpha t^2)(1 - \exp(-\alpha t^2))^{\lambda - 1}}{\left(1 + (1 - \exp(-\alpha t^2))^{\lambda}
ight)^2},$$

$$f_{TIITOLIR}(t) = 4\theta \alpha t^{-3} \exp(-2\alpha t^2)(1 - \exp(-2\alpha t^2))^{\theta - 1}.$$

(26)
In order to make a comparison between various models, some information criteria (INC) like maximized likelihood (λ_1), Akaike INC (λ_2), consistent Akaike INC (λ_3), Bayesian INC (λ_4), and Hannan–Quinn INC (λ_5) are used. According to the given data, the optimal model is one with the lowest value of λ_1, λ_2, λ_3, λ_4, and λ_5.

$\lambda_1 =
\begin{align*}
\text{ILBE} & : 224.111 \\
\text{HLIR} & : 260.586 \\
\text{TIITOLIR} & : 280.492 \\
\text{TIR} & : 280.538
\end{align*}$

$\lambda_2 =
\begin{align*}
\text{ILBE} & : 226.111 \\
\text{HLIR} & : 264.586 \\
\text{TIITOLIR} & : 284.492 \\
\text{TIR} & : 284.538
\end{align*}$

$\lambda_3 =
\begin{align*}
\text{ILBE} & : 225.969 \\
\text{HLIR} & : 264.301 \\
\text{TIITOLIR} & : 284.207 \\
\text{TIR} & : 284.253
\end{align*}$

$\lambda_4 =
\begin{align*}
\text{ILBE} & : 227.018 \\
\text{HLIR} & : 266.399 \\
\text{TIITOLIR} & : 286.305 \\
\text{TIR} & : 286.351
\end{align*}$

$\lambda_5 =
\begin{align*}
\text{ILBE} & : 226.168 \\
\text{HLIR} & : 264.76 \\
\text{TIITOLIR} & : 284.666 \\
\text{TIR} & : 284.712
\end{align*}$

In order to make a comparison between various models, some information criteria (INC) like maximized likelihood (λ_1), Akaike INC (λ_2), consistent Akaike INC (λ_3), Bayesian INC (λ_4), and Hannan–Quinn INC (λ_5) are used. According to the given data, the optimal model is one with the lowest value of λ_1, λ_2, λ_3, λ_4, and λ_5.

$\lambda_1 =
\begin{align*}
\text{ILBE} & : 224.111 \\
\text{HLIR} & : 260.586 \\
\text{TIITOLIR} & : 280.492 \\
\text{TIR} & : 280.538
\end{align*}$

$\lambda_2 =
\begin{align*}
\text{ILBE} & : 226.111 \\
\text{HLIR} & : 264.586 \\
\text{TIITOLIR} & : 284.492 \\
\text{TIR} & : 284.538
\end{align*}$

$\lambda_3 =
\begin{align*}
\text{ILBE} & : 225.969 \\
\text{HLIR} & : 264.301 \\
\text{TIITOLIR} & : 284.207 \\
\text{TIR} & : 284.253
\end{align*}$

$\lambda_4 =
\begin{align*}
\text{ILBE} & : 227.018 \\
\text{HLIR} & : 266.399 \\
\text{TIITOLIR} & : 286.305 \\
\text{TIR} & : 286.351
\end{align*}$

$\lambda_5 =
\begin{align*}
\text{ILBE} & : 226.168 \\
\text{HLIR} & : 264.76 \\
\text{TIITOLIR} & : 284.666 \\
\text{TIR} & : 284.712
\end{align*}$

The first dataset [22]: it describes 72 guinea pigs infected with highly pathogenic tubercle bacilli and their survival periods (in days).

The second dataset: acquired and documented in [23], the dataset comprises the waiting times (in minutes) of 100 bank clients.

The third dataset [24]: it offers 32 observations on the failure time for vertical boring machines.

Figures 2–4 indicate the fitted PDFs, fitted CDFs of the ILBE distribution, and those of the comparison models (HLOIR, TIITOLIR, and TIR) for the three datasets.
It can be observed from Figures 2–4 that the ILBE distribution exhibits good matches, attesting its applicability for the three datasets.

Tables 3–5 show the ML estimates (MLEs) and standard errors (SEs) for the ILBE model when compared to various known distributions such like HLOIR, TIITOLIR, and TRIR. They also include the relevant measures of fit statistic.

Furthermore, Tables 3–5 show that the ILBE distribution is the best match among the other models for the three datasets, since the ILBE distribution has the lowest values of the suggested metrics.

5. Conclusions

This paper developed a new one-parameter lifetime distribution, named as inverse length-biased exponential distribution. The new model is quite flexible in nature and can acquire a variety of shapes of density and hazard rate functions. MOs, PRWMOs, inverse MOs, incomplete MOs, MRLS, and MINT are all explored as key characteristics of the new distribution. In both complete and censored samples, the maximum likelihood methodology is developed to calculate the parameters of the new distribution. To investigate the conduct of estimations, a simulation analysis is discussed. Three real-world examples show that the inverse length exponential distribution gives a pretty good fit and may be used as a competitive model to fit real-world data. It is hoped that this distribution would be helpful to scholars in a variety of disciplines. In the future, we plan to use the new proposed model to study the statistical inference of it under different censored schemes, using various methods of estimation to assess the performance of its parameters. Also, researchers can extend and generalized it because this model is very simple and has more flexibility to fitting more datasets.

Data Availability

Interested parties can reach out to the author in order to receive the numerical dataset used to perform the research described in the paper.

Conflicts of Interest

The author declares that there are no conflicts of interest.

Acknowledgments

The author would like to thank the Deanship of Scientific Research, Qassim University, for funding the publication of this project.

References

[1] S. T. Dara and M. Ahmad, Recent Advances in Moment Distribution and their Hazard Rates, Lap Lambert Academic Publishing GmbH KG, Sunnyvale, CA, USA, 2012.

[2] S. A. Hasnain, Exponentiated Moment Exponential Distributions, National College of Business Administration & Economics, Lahore, Pakistan, 2013.

[3] Z. Iqbal, S. A. Hasmain, M. Salman, M. Ahmad, and G. Hamedani, “Generalized exponentiated moment exponential distribution,” Pakistan Journal of Statistics, vol. 30, no. 4, pp. 537–554, 2014.

[4] M. A. u. Haq, R. M. Usman, S. Hashmi, and A. I. Al-Omeri, “The Marshall-Olkin length-biased exponential distribution and its applications,” Journal of King Saud University Science, vol. 31, no. 2, pp. 246–251, 2019.

[5] A. Ali, H. Ahmadini, A. S. Hassan, R. E. Mohamed, S. S. Alshqaq, and H. F. Nagy, “A New four-parameter moment exponential model with applications to lifetime data,” Intelligent Automation & Soft Computing, vol. 29, no. 1, pp. 131–146, 2021.

[6] A. Keller and A. R. R. Kamath, “Alternative reliability models for mechanical systems,” in Proceedings of the Third International Conference on Reliability and Maintainability, Toulouse, France, October 1982.

[7] R. I. Abd EL-Kader, G. R. AL-Dayian, and S. A. AL-Gendy, “Inverted Pareto type I distribution: properties and estimation,” Journal of Faculty of Commerce AL-Azhar University, vol. 21, pp. 19–40, 2013.

[8] G. R. AL-Dayian, “Inverted Pareto type II distribution: properties and estimation,” Journal of Faculty of Commerce AL-Azhar University Girls’ Branch, vol. 22, pp. 1–18, 2004.

[9] A. Aljuaid, “Estimating the parameters of an exponentiated inverted Weibull distribution under type-II censoring,” Applied Mathematical Sciences, vol. 7, no. 35, pp. 1721–1736, 2013.

[10] V. K. Sharma, S. K. Singh, U. Singh, and V. Agiwal, “The inverse Lindley distribution: a stress-strength reliability model with application to head and neck cancer data,” Journal of Industrial and Production Engineering, vol. 32, no. 3, pp. 162–173, 2015.

[11] A. M. Abd AL-Fattah, A. A. EL-Helbawy, and G. R. AL-Dayian, “Inverted Kumaraswamy distribution: properties and estimation,” Pakistan Journal of Statistics, vol. 33, no. 1, pp. 37–61, 2017.

[12] M. H. Tahir, G. M. Cordeiro, S. Ali, S. Dey, and A. Manzoor, “The inverted Nadarajah-Haghighi distribution: estimation methods and applications,” Journal of Statistical Computation and Simulation, vol. 88, no. 14, pp. 2775–2798, 2018.

[13] A. S. Hassan and M. Abd-Allah, “On the inverse power Lomax distribution,” Annals of Data Science, vol. 6, no. 2, pp. 259–278, 2019.

[14] A. S. Hassan and R. E. Mohamed, “Parameter estimation for inverted exponentiated Lomax distribution with right censored data,” Gazi University Journal of Science, vol. 32, no. 4, pp. 1370–1386, 2019.

[15] A. S. Hassan and R. E. Mohamed, “Weibull inverse Lomax distribution,” Pakistan Journal of Statistics and Operation Research, vol. 15, no. 3, pp. 587–603, 2019.

[16] A. S. Hassan, S. M. Assar, and A. M. Abd Elghaffar, “Statistical properties and estimation of power-transmuted inverse Rayleigh distribution,” Statistics in Transition new series, vol. 21, no. 3, pp. 1–20, 2020.

[17] A. S. Hassan, M. Elgarhy, and R. Ragab, “Statistical properties and estimation of inverted Topp-Leone distribution,” Journal of Statistics Applications & Probability, vol. 9, no. 2, pp. 319–331, 2020.

[18] R. A. Bantan, M. Elsehetry, A. S. Hassan et al., “A two-parameter model: properties and estimation under ranked sampling,” Mathematics, vol. 9, pp. 1–16, 2021.
[19] A. M. Almarashi, M. M. Badr, M. Elgarhy, F. Jamal, and C. Chesneau, “Statistical inference of the half-logistic inverse Rayleigh distribution,” *Entropy*, vol. 22, no. 4, p. 449, 2020.
[20] H. F. Mohammed and N. Yahia, “On type II Topp Leone inverse Rayleigh distribution,” *Applied Mathematical Sciences*, vol. 13, no. 13, pp. 607–615, 2019.
[21] A. Ahmad, S. P. Ahmad, and A. Ahmed, “Transmuted inverse Rayleigh distribution: a generalization of the inverse Rayleigh distribution,” *Mathematical Theory and Modeling*, vol. 4, no. 7, pp. 90–98, 2014.
[22] T. Bjerkedal, “Acquisition of resistance in Guinea pigs infected with different doses of virulent tubercle Bacilli,” *American Journal of Epidemiology*, vol. 72, no. 1, pp. 130–148, 1960.
[23] M. E. Ghitany, B. Atieh, and S. Nadarajah, “Lindley distribution and its application,” *Mathematics and Computers in Simulation*, vol. 78, no. 4, pp. 493–506, 2008.
[24] M. Pear Hossain, M. Hafidz Omar, and M. Riaz, “Estimation of mixture Maxwell parameters and its possible industrial application,” *Computers & Industrial Engineering*, vol. 107, pp. 264–275, 2017.