Effect of dietary vanadium supplementation on growth performance, mineral balance and antioxidant activity in male Sahiwal calves

DIGVIJAY SINGH1, CHANDER DATT2, AKASH MISHRA3, SWATI SHIVANI4, RITIKA GUPTA5 and VEENA MANI6

ICAR-National Dairy Research Institute, Karnal, Haryana 132 001 India

ABSTRACT

The study was aimed to examine the effect of supplementation of sodium metavanadate (NaVO3) as source of vanadium on DMI intake, growth performance, antioxidant activity, level of mineral in plasma and their balance in male Sahiwal calves. The vanadium content in maize (Zea mays) and bajra (Pennisetum glaucum) grains was 58 ppb and 53 ppb while in berseem (Trifolium alexandrinum) and mustard (Brassica campestris) fodder it was 8.37 and 7.24 ppm, respectively. Male Sahiwal calves (20) of comparable age (6±0.82 months) and body weight (71±8.06 kg) were randomly allotted to 4 different treatments with replication of 5 animals in each. Supplementation was done with 0, 2, 4 and 8 ppm of vanadium in groups T1, T2, T3 and T4, respectively, for 120 days. Blood samples were collected at monthly intervals to examine antioxidant activity in blood, plasma and mineral levels. Feed consumption (DM intake, DM intake% BW) and growth rate did not show any significant effect of vanadium supplementation. Glutathione peroxidase activity was higher in groups T3 and T4 as compared to T1 and T2 whereas, SOD and catalase activity was similar in all the groups. Excretion and absorption patterns of Ca, P, Cu and Fe and their plasma levels were similar in different groups. However, vanadium and Zn balance and their plasma levels increased due to vanadium supplementation. The present study revealed that in growing calves, vanadium supplementation showed enhanced glutathione peroxidise activity, plasma Zn and vanadium levels.

Key words: Growth performance, Mineral balance, Nitrogen balance, Nutrient intake, Sahiwal calves, Vanadium

Vanadium, an ultra trace element, has become a subject of interest amongst nutritionists after its discovery in various marine species as an essential trace element (Almedeida et al. 2001). Vanadium inhibits various ATPases, phosphatases, and phosphoryl-transfer enzymes (Nielsen 1984). It has gained acceptance of possibly essential element in humans (Harland et al. 1994), goats and rats (Nielson et al. 1984). Vanadium-deprived goats showed elevated abortion rates and decreased milk production (Anke et al. 2000). Vanadium exists in 6 oxidation states in nature, viz. –1, 0, +2, +3, +4 and +5, while only 3 oxidation states (+3, +4 and +5) are predominant under physiological condition. The pentavalent (VO3) form predominates in extracellular body fluids whereas the quadrivalent (VO2+) is most common intracellularly (Hirano et al. 1996). In rats, supplementation of vanadium complexes mitigated effect on reactive oxygen species and increased glutathione peroxidase (GPx) activity (Francik et al. 2011). Supplementation of vanadyl sulphate protects the rats from lipid peroxidation and also decreases thiobarbituric acid reactive substances (Harati et al. 2006). Liu et al. (2015) also reported that vanadyl(IV)-ascorbate complex (VOAsc) would reduce oxidative stress, hyperglycemia and insulin resistance in high fat high-sucrose diet (HFSD)-induced type 2 diabetes in mice. HFSD animals supplemented with VOAsc exhibited a marked increase in catalase activity, SOD, GSH-Px and GSH. Thus, vanadium supplementation can also be explored to enhance the immune status of the animals.

Vanadium absorption, excretion and retention in body depends on its solubility, chemical nature (Trevino et al. 2018) and complex formation as chelates (Thompson et al. 2006). Studies were conducted on interactions of vanadium with iron (Nielsen et al. 1984, Zaparowska et al. 1993), zinc (Rossetti et al. 1990), aluminium (Wiegmann et al. 1982), manganese, cobalt, lithium and molybdenum (Thompson et al. 1993) and copper (Rucker et al. 2000). The research on role of vanadium in ruminants is lacking and still unclear. The present study was conducted to examine the vanadium and other minerals absorption, retention, their plasma levels and antioxidant activity as affected by different levels of vanadium supplementation in male Sahiwal calves.

Present address: 1PhD Scholar (singhdigvijay2712@gmail.com), 2,6Principal Scientist (chandatt@gmail.com, goldymishra88@gmail.com), Animal Nutrition Division. 3Veterinary Officer (goldymishra88@gmail.com), Department of Animal Husbandry, Government of Odisha. 4Teaching Assistant (swatishivani2703@gmail.com), College of Veterinary Science and Animal Husbandry, Ranchi, Jharkhand. 5Veterinary Officer (ritika.loat@gmail.com), Department of Animal Husbandry, Government of Himachal Pradesh.
MATERIALS AND METHODS

Ethics approval: Prior to the requisition of the experiment, animal care procedures were approved and conducted under the established standard of the Institutional Animal Ethics Committee (IAEC) constituted as per the article number 13 of the committee for control and supervision on experiments on animals rules, recommended by the Government of India.

Animal, diets and management: The experiment was conducted at the NDRI, Karnal which is situated at an altitude of 250 m amsl. The maximum ambient temperature in summer goes up to 45°C and minimum temperature in winter goes down to about 4°C with a diurnal variation to the order of 15–20°C. The average annual rainfall is 696 mm most of which is received from early July to mid-September.

Male Sahiwal calves (20) of similar age (6±0.82 months) and body weight (71±8.06 kg) were randomly allotted to 4 treatment groups and each treatment had 5 replicates. Proper deworming and vaccination was done. All the animals were fed rations in form of TMR to meet their nutrient requirements (ICAR 2013). Concentrate mixture and maize fodder (Zea mays) were supplied in the ratio of 40:60 (DM basis) in form of total mixed ration (Table 1). Concentrate mixture (21.33% CP and 70% TDN) was procured from Godrej Agrovet Pvt. Ltd., and the chemical composition of total mixed ration is presented in Table 2.

Animals in groups T1, T2, T3 and T4 were supplemented with 0, 2, 4, and 8 ppm of vanadium from inorganic source (NaVO₃, Hi-Media Laboratories Ltd, Mumbai, India). Stock solutions of 2, 4 and 8 ppm vanadium were prepared and required amount (calculated on the basis of daily dry matter of animals) was given to ensure complete intake of vanadium after proper mixing with 50 g concentrate mixture.

Observations recorded and blood collection schedule: Daily feed offered, residue left and DM intake of the animals were recorded. Body weights were recorded at the beginning of experiment and subsequent fortnightly intervals in the morning hours before offering feed or water by computerized weight management system. Sahiwal calves were weighed for 2 consecutive days, the average of 2 days was considered as body mass for that fortnight. Average daily gain (ADG) and DM intake were calculated.

During experimental period, peripheral blood samples were collected from all the animals by jugular puncture in heparinised vaccutainer at the start of experiment and on 30, 60, 90 and 120 days of vanadium supplementation, mixed well by rotating tubes between palms to ensure proper mixing of blood and anticoagulant and brought to the laboratory after placing in ice box. The samples were centrifuged at 3,000 rpm for 15 min to separate the plasma. Plasma samples were analysed for minerals (Ca, P, V, Zn, Cu and Fe).

Chemical composition analysis and trace elements estimation: The contents of DM, OM, CP, EE and total ash in feeds, residues, faeces samples and urine samples (for nitrogen content) were determined (AOAC 2005). The fractions of cell wall constituents (NDF, ADF, cellulose and ADL) were also analysed (Van Soest 1991). Concentration of calcium (Ca), zinc (Zn), copper (Cu), iron (Fe), and manganese (Mn) in feed, faeces, urine, and plasma samples were determined in an air-acetylene flame optical emission spectrophotometer (ICP-OES) Shimadzu ICAP 9000 series at wavelength 292.4 nm.

Concentration of calcium (Ca), zinc (Zn), copper (Cu), iron (Fe), and manganese (Mn) in feed, faeces, urine, and plasma samples were determined in an air-acetylene flame optical emission spectrophotometer (ICP-OES) Shimadzu ICAP 9000 series at wavelength 292.4 nm.

Concentration of calcium (Ca), zinc (Zn), copper (Cu), iron (Fe), and manganese (Mn) in feed, faeces, urine, and plasma samples were determined in an air-acetylene flame optical emission spectrophotometer (ICP-OES) Shimadzu ICAP 9000 series at wavelength 292.4 nm.

Concentration of calcium (Ca), zinc (Zn), copper (Cu), iron (Fe), and manganese (Mn) in feed, faeces, urine, and plasma samples were determined in an air-acetylene flame optical emission spectrophotometer (ICP-OES) Shimadzu ICAP 9000 series at wavelength 292.4 nm.
on an atomic absorption spectrophotometer (Shimadzu Scientific Instruments, Kyoto, Japan) after digestion in triacid mixture (HNO3/HClO4/H2SO4; 3:2:1). Two blank samples having tri-acid mixture were also analysed. The procedure for preparation of stock and standard solutions, and choice of instrumental conditions were as per AAS Manual (1988). Phosphorus content in various samples was estimated using calorimetric method (AOAC 2005). Standard curve was prepared for each mineral with their working standards.

Estimation of antioxidant status: The activities of antioxidant enzyme SOD (Madesh and Balasubramanian 1998), catalase (Aebi 1984) and glutathion peroxidase (GPx; Paglia and Valentine 1967) were estimated by haemolysates through spectrophotometry method. For hemolysate preparation, 2 ml of whole blood was collected in vials with anticoagulant, acid citrate dextrose 300 µl/2 ml blood and centrifuged at 2,000 rpm for 15 min at 4°C with separation of plasma and buffy coat. The erythrocyte pellet (packed RBC) was washed with phosphate buffer saline (PBS) solution (NaCl, 137 mM; KCl, 2.7 mM; Na2HPO4, 10 mM and KH2PO4, 1.8 mM; pH adjusted to 7.4). The packed RBC was mixed with an equal volume of PBS to form RBC suspension. Haemolysate (1:20 dilution) was prepared by mixing 0.5 ml RBC suspension with 4.5 ml of stabilizing solution (2.7 mM EDTA and 0.7 mM 2-marcaptoethanol).

Statistical analysis: The data were analysed using the general linear model procedure of Statistical Package for the Social Sciences (SPSS for Windows, v21.0; SPSS Inc., Chicago, IL, USA). To estimate the effect of treatment and period, and their interaction, the following model was used:

\[
Y_{ijk} = \mu + T_i + D_j + (T \times D)_{ij} + e_{ijk}
\]

where \(Y_{ijk}\), dependent variable; \(\mu\), overall mean of the population; \(T_i\), mean effect of the \(i^{th}\) treatments; \(D_j\), mean effect of day of sampling with day as a repeated factor (\(j = 0, 30, 60, 90, 120\) and 150 days of dietary treatment); \((T \times D)_{ij}\), effect of the interaction between effects of treatment and day of sampling, and \(e_{ijk}\), unexplained residual element assumed to be independent and normally distributed. The individual animal was used as the experimental unit for all data. The pair-wise comparison of means was carried out using Tukey’s honest significant difference (HSD) test. Significance was determined at \(P<0.05\). The values are expressed as means±SE and differences between the means were compared as per Snedecor and Cochran (1994).

RESULTS AND DISCUSSION

Vanadium in feedstuffs: The vanadium concentrations (Table 3) in maize and bajra grains were 58 ppb and 55 ppb while in berseem and mustard it was 8.37 and 7.24 ppm, respectively. The total vanadium content of the basal diets formulated was determined to be 5.24 mg/kg DM, whereas concentrate mixture, maize and sorghum fodder contained 7.40, 2.80, and 2.61 mg V/kg DM, respectively. Vanadium content of different feed stuffs collected from different locations showed inconsistency in concentration (Anke et al. 2004, Barceloux 1999). However, scanty information regarding vanadium content and its chemical form present in different feeds leaves scope for further chemical characterisation. Balos et al. (2017) evaluated vanadium content in poultry feed and gave a range for complete layer and chicken feed on fresh basis. These values for vanadium content in feed were comparable to our study on dry matter basis. Vanadium content of complete feed may be influenced by source of phosphate used for feed formulation as phosphates have vanadium as contaminant. Use of phosphate in feed may incorporate up to 120 mg V/kg feed (Henry and Miles 2001). Various researchers had reported range of vanadium for different source of phosphates (Sullivan et al. 1994, Limma et al. 1995, Balos et al. 2017). Our study suggested that green fodder have higher vanadium content in comparison to grain and byproducts, which might be due to leaves which are rich source of vanadium (Barceloux 1999).

Dry matter intake and average daily gain: The diet had adequate crude protein (CP) and total digestible nutrients (TDN) to support maintenance and growth of Sahiwal calves (ICAR 2013). Dry matter intake (kg/100 kg BW) varied from 3.29 to 3.55 in different treatment group (Table 4). Average daily gain (g/d) varied from 57, 57, 50 and 59 in groups T1, T2, T3 and T4. The level of vanadium in the diet did not influence feed consumption (DM intake, DM intake% BW) and average daily gain. Requirement of vanadium in dairy animals is yet to be determined. However, importance of vanadium in higher animals is supported by biologist and biomedical scientists. Similar to our study, our study suggested that green fodder have higher vanadium content in comparison to grain and byproducts, which might be due to leaves which are rich source of vanadium (Barceloux 1999).
Kumar et al. (2017) reported that vanadium supplementation did not have any significant effect on DM, CP and TDN intake, and digestibility of nutrients up to 9 ppm level. Pal et al. (2017) reported that supplementation of crossbred calves with inorganic source of vanadium did not change the dry matter intake, growth performance and feed efficiency. Similarly, Heidari et al. (2016) reported that dietary supplementation of 0.04, 0.08 and 0.12 mg of V as vanadyl sulphate per kilogram of metabolic body weight did not affect body weight, body condition score, dry matter intake and energy balance in multiparous periparturient Holstein cows. In contrast to our findings, Bonomi et al. (2003) reported the addition of vanadium in milk replacer fed to lamb kids at the dose of 5 and 10 ppm for 30 d improved the weight gain, efficiency of feed utilisation and dressing percentage. Gurtler et al. (1999) reported that vanadium deficiency did not affect the growth of female or male calves.

Blood antioxidant enzymes and plasma mineral levels: Blood glutathione peroxidase activity was 13.90, 14.58, 23.73 and 21.05 µmole NADPH oxidized/g Hb/min in groups T1, T2, T3 and T4, respectively, which increased (P<0.05) by 70.71 and 51.43% in groups T3 and T4 (Table 5). Similar to our observations, Francik et al. (2011) reported that vanadium increased plasma glutathione peroxidise levels in treated rats. Kim et al. (2011) reported that vanadyl sulphate supplementation increased the nuclear translocation of Nrf2 and the accumulation of phosphorylated Nrf2 which leads to increase in expression and activity of glutathione peroxidise in human liver cells. While blood catalase and SOD enzymes activities were not affected by vanadium supplementation. Similarly, Liu et al. (2015) also reported that vanadyl (IV)-ascorbate complex (VOAsc) would reduce oxidative stress, hyperglycemia and insulin resistance in high fat high-sucrose diet (HFSD)-induced type 2 diabetes in mice. HFSD animals supplemented with VOAsc exhibited a marked (P<0.01) increase in catalase activity (44.8%), SOD (15.3%), GSH-Px (16.9%) and GSH (43.2%) in HFSD animals.

Parameter Group	Group			
Parameter	T1	T2	T3	T4
Initial BW (kg)	71.15±	71.74±	71.50±	68.22±
Final BW (kg)	139.4±	139.09±	141.70±	139.02±
Gain (kg)	68.25±	67.35±	70.20±	70.75±
ADG (kg)	0.57±	0.57±	0.60±	0.59±
DMI (kg/d)	3.14±	3.25±	3.10±	3.17±
DMI (% BW)	3.18±	3.05±	3.05±	3.09±
V intake (mg/d)	18.05±	24.05±	30.05±	42.05±

Table 4. Effect of supplementation of different levels of vanadium on dry matter intake and growth performance

Table 5. Effect of vanadium supplementation on antioxidant status and plasma mineral levels

Parameter	T1	T2	T3	T4
Antioxidant enzyme activity				
SOD (U/mg Hb)	57.48±	56.42±	58.79±	56.65±
Catalase (µmol of H2O2 oxidized/min/g Hb)	141.12±	147.54±	141.36±	148.23±
GPx (NADPH oxidized/g Hb/min)	13.90±	14.58±	23.73±	21.05±

Table 5. Effect of vanadium supplementation on antioxidant status and plasma mineral levels

Mineral balance: Vanadium balance (Table 6) increased (P<0.05) with increasing dietary vanadium level. Similarly, faecal and urinary excretion of vanadium (mg/d) also increased with increase in the level of supplemental vanadium. Retention of vanadium was significantly increased with increase in response to dose of supplementation. Vanadium level showed linear increase in response to dose of supplementation. Vanadium concentration in the blood of mammals was reported to be about 0.2–0.5 ng/ml out of which nearly 80% present in plasma as a component of proteins such as transferrin and albumins (Thompson et al. 2006).

Mineral balance: Vanadium balance (Table 6) increased (P<0.05) with increasing dietary vanadium level. Similarly, faecal and urinary excretion of vanadium (mg/d) also increased with increase in the level of supplemental vanadium. Retention of vanadium was significantly increased with increase in response to dose of supplementation. Vanadium level showed linear increase in response to dose of supplementation. Vanadium concentration in the blood of mammals was reported to be about 0.2–0.5 ng/ml out of which nearly 80% present in plasma as a component of proteins such as transferrin and albumins (Thompson et al. 2006).

Mineral balance: Vanadium balance (Table 6) increased (P<0.05) with increasing dietary vanadium level. Similarly, faecal and urinary excretion of vanadium (mg/d) also increased with increase in the level of supplemental vanadium. Retention of vanadium was significantly increased with increase in response to dose of supplementation. Vanadium level showed linear increase in response to dose of supplementation. Vanadium concentration in the blood of mammals was reported to be about 0.2–0.5 ng/ml out of which nearly 80% present in plasma as a component of proteins such as transferrin and albumins (Thompson et al. 2006).

Mineral balance: Vanadium balance (Table 6) increased (P<0.05) with increasing dietary vanadium level. Similarly, faecal and urinary excretion of vanadium (mg/d) also increased with increase in the level of supplemental vanadium. Retention of vanadium was significantly increased with increase in response to dose of supplementation. Vanadium level showed linear increase in response to dose of supplementation. Vanadium concentration in the blood of mammals was reported to be about 0.2–0.5 ng/ml out of which nearly 80% present in plasma as a component of proteins such as transferrin and albumins (Thompson et al. 2006).
Table 6. Effect of vanadium supplementation on trace mineral utilization and plasma trace mineral level

Parameter	Group			
	T₁	T₂	T₃	T₄
Fe intake (mg/d)	18.05±	24.05±	30.05±	42.05±
	0.86	1.02	0.80	0.87
V outgo in faeces (mg/d)	16.80±	18.33±	20.97±	23.77±
Apparent absorption (%)	0.22	0.29	0.32	0.49
Retention (%)	0.37	0.75	0.94	0.99
V outgo in urine (mg/d)	1.07±	1.46±	1.16±	1.23±
Apparent absorption (%)	0.07	0.05	0.07	0.09
Retention (%)	0.94±	0.72±	0.04±	0.10±
Ca intake (g/d)	15.27±	15.12±	16.60±	17.37±
Apparent absorption (%)	3.12±	3.68	2.96	2.09
Retention (%)	1.04	1.27	1.50	1.95
Cu intake (mg/d)	56.12±	56.20±	59.40±	57.66±
Apparent absorption (%)	0.85	0.83	0.91	0.86
Retention (%)	0.85	0.83	0.91	0.86
Fe intake (mg/d)	2150.12±	2077.20±	2223.40±	2222.82±
Apparent absorption (%)	58.13	30.68	25.96	29.09
Retention (%)	17.86±	17.50±	17.04±	17.84±
Zn intake (mg/d)	147.69±	148.20±	148.80±	144.01±
Apparent absorption (%)	7.20	8.35	6.90	5.49
Retention (%)	28.73±	40.36±	38.55±	44.17±
(P<0.05) different among the groups and the maximum retention was in group T₃. Retention of Ca, P, Cu, Mg and Fe was similar in all the groups. While Zn absorption increased by 40.48, 34.18 and 53.74% in 2, 4 and 8 ppm vanadium supplemented groups. Zn retention and absorption was (P<0.05) higher in vanadium supplemented groups as compared to control group, and was maximum in 8 ppm vanadium supplemented group. Information about vanadium absorption, retention and excretion is still lacking. The dietary vanadium requirement in growing calves has not been established explaining its semi-essential nature. Findings of the present study suggested that most of the vanadium was excreted through faeces, the absorption coefficient was around 6%, which increased in a dose-dependent manner of vanadium supplementation. Similar to present study, Harris et al. (1984) reported that vanadium is absorbed from digestive tract at efficiency less than 5% of ingested vanadium, therefore, most of the ingested vanadium was found in the faeces. Absorbed vanadate was converted to the vanadyl cation, which can complex with ferritin and transferrin in plasma and body fluids. Contrary to this, NRC (2005) report suggested that rate of absorption for vanadium was 1% or less and most of the vanadium is excreted by kidney through urine and a minor amount was in faeces.				

Hence, the present study revealed that, vanadium supplementation to growing calves enhanced glutathione peroxidase activity, plasma Zn and vanadium levels in Sahiwal calves.

REFERENCES

Aebi H. 1984. Catalase in vitro. pp. 121–126. Methods in Enzymology. (Ed) Packer L. Academic Press, New York.

Almedeida M, Filipe S, Huanies M, Mala M F, Melo R, Severino N, Silva J A, Fruecesto da Silva J J and Wever R. 2001. Vanadium haloperoxidases from brown algae of the laminariaeaceae family. Phytochemistry 57: 633–42.

Anke M, Illing-guehter H, Gurtler H, Holzinger S, Jaritz M, Anke S and Schaffer U. 2000. Vanadium —An essential element for animals and humans. Trace Elements in Man and Animals, Vol 10. Kluwer Academic/Plenum Publishers, New York, Boston. pp. 221–225.

Anke M. 2004. Vanadium—An element both essential and toxic to plants, animals and humans. Anales de la Real Academia Nacional de Farmacia 70: 961–99.

AOAC. 2005. Official Methods of Analysis, 18th edn. Association of Official Analytical Chemists, Washington, DC, USA.

Balog M Z, Ljubojevic D, Jaksic S, Mihaljev Z, Pelic M, Petrovic T and Sefer D. 2017. Vanadium in poultry nutrition. Barceloux D G. 1999. Vanadium. Journal of Toxicology and Clinical Pathology 37: 265–78.

Bonomi A, Bonomi B M, Mazzotti A, Vonghia G and Caputi Jambrenghi A. 2003. Vanadium in light lamb feeding. Rivista di Scienza dell’Alimentazione.

Francik R, Krosniak M, Barlik M, Kudla A, Grybos R and Librowski T. 2011. Impact of vanadium complexes treatment on the oxidative stress factors in Wistar rats plasma. Bioinorganic Chemicals Applications 16: 1–8.

Gurtler H, Anke M, Gleie M, Illing-Guehter H and Anke S. 1999. Influence of vanadium deficiency on performance, health as well as blood and tissue parameters in goats. (Ed.) Pais J. New Perspectives in the Research of Hardly Known Trace Elements, as well as blood and tissue parameters in goats. (Ed.) Pais J. New Perspectives in the Research of Hardly Known Trace Elements, University of Horticulture and Food Science Budapest, Hungary, pp. 84–91.

Harati M and Ani M. 2006. Low doses of vanadyl sulfate protects rats from lipid peroxidation and hypertriglyceridemic effects of fructose-enriched diet. International Journal of Diabetes Metabolism 14: 134.

Harland B F and Harland Williams B A. 1994. Is vanadium of human nutritional importance yet? Journal of American Diet Association 94: 891–94.

Harris W R, Friedman S B and Silberman D. 1984. Behavior of vanadate and vanadylion in canine blood. Journal of Inorganic
