Abstract

Thermal management of electronics semiconductor technology is elixir to transform dream and imagination of the designers into reality. Motivation and need for research in development of novel cooling strategies for modern electronics is of paramount importance. Pulsating Heat Pipes, a novel research topic in heat pipe science, are new two-phase heat transfer devices that rely on the oscillatory flow of liquid slug and vapor plug in a long miniature tube bent into many
turns. The unique feature of PHPs, compared with conventional heat pipes, is that there is no wick structure to return the condensate to the heating section; thus, there is no countercurrent flow between the liquid and vapor. This paper highlights the thermo-hydrodynamic characteristics of these devices. State of art indicates that at least three thermo-mechanical boundary conditions have to be met for the device to function properly as pulsating heat pipe. This includes the internal tube diameter, the applied heat flux and amount of the working fluid in the system. Additionally the numbers of turns of the device and thermo-physical properties of the working fluid also play a vital role in determining the thermal behavior. Apart from this, paper is a literature review on pulsating heat pipe technology and work performed by researcher; it investigates experimental work performed on operating mechanisms of PHP, by using various working fluids. Finally, unresolved issues on the mechanism of PHP operation with different type of working fluids, and application are discussed.

References

- Akachi H, Structure of a heat pipe. US Patent No. 4921041, 1990.
- Piyanun Charoensawan, Sameer Khandekar, Manfred Groll, Pradit Terdtoon. (2003): “Closed loop pulsating heat pipes Part A: parametric experimental investigations”. Applied Thermal Engineering, Vol. 23, pp. 2009–2020.
- Groll, M., and Khandekar, S., Pulsating Heat Pipes: Progress and Prospects, Proc. International Conference on Energy and the Environment, Shanghai, China, 2003, vol. 1, pp. 723–730.
- P. Charoensawan, S. Rittidech (2004) “Closed And Open Looped Pulsating Heat Pipes”. 13th international heat pipe conference, shanghai, china.
- G. Karimi t, J.R. Culham “Review and Assessment of Pulsating Heat Pipe mechanism For High Heat Flux Electronic Cooling” Inte society conference on thermal phenomenon 2004.
- Stéphane Launay, Valérie Sartre, Jocelyn Bonjour (2007): “Parametric analysis of loop heat pipe operation: a literature review” International Journal of Thermal Sciences 46 (2007) 621–636
- T. Kaya, J. Ku, A parametric study of performance characteristics of loop heat pipes, in: International Conference On Environmental Systems, Denver, July 1999 (SAE paper 1999-01-2006), 7
- J.I. Rodriguez, M. Pauken, Performance characterization and model verification of a looph heat pipe, in: International Conference On Environmental Systems, Toulouse, July 2000 (SAE paper 2000-01-2317), 7
- J.H. Boo, W.B. Chung, Thermal performance of a small-scale loop heat pipe with PP wick, in: 13th IHPC, Shanghai, China, 21–25 September 2004, pp. 259–264.
- J. Baumann, S. Rawal, Viability of loop heat pipes for space solar power applications, in: AIAA Thermophysics Conference, 35th, Anaheim, CA, 11–14 June 2001 (AIAA 2001-3078), 10
- S. Khandekar, Nicolas Dollinger, and Manfred Groll “Understanding operational regimes of closed loop pulsating heat pipes: an experimental study”. Applied Thermal Engineering 23 (2003) 707–719.
Effect of Working Fluid on Thermal Performance of Closed Loop Pulsating Heat Pipe: A Review

- P. Charoensawan, S. Khandekar, Manfred Groll, and Pradit Terdtoon “Closed loop pulsating heat pipes Part A: parametric experimental investigations”. Applied Thermal Engineering 23 (2003) 2009–2020.
- Franco Andrey Silvério De Souza “An Experimental Investigation of A Co2 Pulsating Heat Pipe” 14th International Heat Pipe Conference (14th IHPC), Brazil, April 22-27, 2007.
- P. Meena, S. Rittidech and P. Tammasaeng “Effect of Evaporator Section Lengths and Working Fluids on Operational Limit of Closed Loop Oscillating Heat Pipes with Check Valves (CLOHP/CV)” American Journal of Applied Sciences 6 (1): 133-136, 2009.
- N.Kammuang-lue, P.Charoensawan, S.Ritthidech, K.Booddachan and P.Terdtoon, “Effects of Working Fluids on Heat Transfer Characteristics of a Closed-Loop Pulsating Heat Pipe at Critical State” International Heat Pipe Conference (2008).
- W. Qu, H.B. Ma. (2007): “Theoretical analysis of startup of a pulsating heat pipe”. International Journal of Heat and Mass Transfer, Vol. 50, pp. 2309–2316.
- J.L. Xu, Y.X. Li, T.N. Wong(2009) “High speed flow visualization of a closed loop pulsating heat pipe” International Journal of Heat and Mass Transfer 48 (2005) 3338–3351.
- L. Lin, R. Ponnappan, J. Leland, Experimental investigation of oscillating heat pipes, Thermophys. Heat Transfer 15 (2001) 395–400.
- Shung-Wen Kang, Wei-Chiang Wei, Sheng-Hong Tsai, Chia-Ching Huang. (2009): “Experimental investigation of nanofluids on sintered heat pipe thermal performance”. Applied Thermal Engineering, Vol. 29, pp. 973–979.
- Jian Qu, Hui-ying Wu, Ping Cheng. (2010): “Thermal performance of an oscillating heat pipe with Al2O3– waternanofluids”. International Communications in Heat and Mass Transfer, Vol.37, pp. 111–115.
- H.B. Ma, C. Wilson, Q. Yu, U.S. Choi, M. Tirumala, An experimental investigation of heat transport capability in a nanofluid oscillating heat pipe, J. Heat Transfer 28 (2006) 1213–1216.
- S. Khandekar and M. Groll “Pulsating Heat Pipes: Attractive Entrants in the Family of Closed Passive Two-Phase System”. Journal of Energy, Heat And Mass Transfer, Vol. 26, pp.99-115, march-december2004.
- Zhang XM, Xu JL, Zhou ZQ. (2004): “Experimental study of a pulsating heat pipe using FC-72, ethanol and water as working fluids”. Experimental Heat Transfer, Vol. 17, pp. 47–67.
- H. Yang , S. Khandekar , M. Groll, Performance characteristics of pulsating heat pipes as integral thermal Spreaders, International Journal of Thermal Sciences 48 (2008) 815–824.
- Shafii, M. B., Faghri, A., and Zhang, Y., Thermal Modeling of Unlooped and Looped Pulsating Heat Pipes, ASME Journal of Heat Transfer, vol. 123, pp. 1159–1171, 2001.

Index Terms

Computer Science

Engineering and Technology

Keywords
Pulsating heat pipe oscillating heat pipe