Solutions for certain classes of the Riccati differential equation

Nasser Saad¹, Richard L Hall² and Hakan Ciftci³

¹ Department of Mathematics and Statistics, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI C1A 4P3, Canada
² Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve Boulevard West, Montréal, Québéc H3G 1M8, Canada
³ Gazi Universitesi, Fen-Edebiyat Fakültesi, Fizik Bölümü, 06500 Teknikokullar, Ankara, Turkey

E-mail: nsaad@upei.ca, rhall@mathstat.concordia.ca and hciftci@gazi.edu.tr

Received 2 April 2007, in final form 18 July 2007
Published 14 August 2007
Online at stacks.iop.org/JPhysA/40/10903

Abstract
We derive some analytic closed-form solutions for a class of Riccati equations

\[y'(x) - \lambda_0(x)y(x) \pm y^2(x) = \pm s_0(x) \]

where \(\lambda_0(x), s_0(x) \) are \(C^\infty \)-functions.

We show that if \(\delta_n = \lambda_n s_n - 1 - \lambda_{n-1} s_{n-1} = 0 \), where \(\lambda_n = \lambda_{n-1} + s_{n-1} + \lambda_0^2 \lambda_{n-1} \) and \(s_n = s_{n-1} + s_0 \lambda_{n-1}, n = 1, 2, \ldots \) then the Riccati equation has a solution given by \(y(x) = \pm \frac{s_n(x)}{\lambda_{n-1}(x)} \). Extension to the generalized Riccati equation \(y'(x) + P(x)y(x) + Q(x)y^2(x) = R(x) \) is also investigated.

PACS number: 03.65.Ge

1. Introduction
The present authors have recently introduced an iterative technique [1], known as the asymptotic iteration method (AIM), for the exact and approximate solution of the second-order homogeneous differential equation

\[u''(x) = \lambda_0(x)u'(x) + s_0(x)u(x), \]

where \(\lambda_0(x) \) and \(s_0(x) \) are \(C^\infty \)-differentiable functions. It was shown that if for sufficiently large \(n > 0 \),

\[\frac{s_n}{\lambda_n} = \frac{s_{n-1}}{\lambda_{n-1}} = \alpha, \]

\[\lambda_n = \lambda_{n-1} + s_{n-1} + \lambda_0 \lambda_{n-1}, \quad s_n = s_{n-1} + s_0 \lambda_{n-1}, \quad n = 1, 2, \ldots \]

then

\[y(x) = \exp \left(- \int x \alpha(t) dt \right) \left[C_2 + C_1 \int x \exp \left(\int (\lambda_0(\tau) + 2\alpha(\tau)) d\tau \right) dt \right] \]

10903
is the general solution of the differential equation (1). Saad et al [2] proved that the termination condition (2) is necessary and sufficient for the differential equation (1) to have polynomial-type solutions. Using the termination condition (2), the authors were able to show that the classical differential equation of Laguerre, Hermite, Legendre, Jacobi, etc obey this simple criterion. Continuing the work started in [2], in the present paper we derive some analytic closed-form solutions for different classes of the nonlinear first-order Riccati equation:

\[y' + P(x)y + Q(x)y^2 = R(x). \] (5)

The principal idea comes from the fact that every Riccati equation reduces to a second-order linear differential equation by some suitable transformation [3]. Using this idea along with the asymptotic iteration method [1, 2], we construct closed-form solutions for different classes of the Riccati equation (5) under certain conditions on the functions \(P(x), Q(x) \) and \(R(x) \). The nonlinear Riccati equation is of great interest for many applications to mathematical physics. It is well known that to find the general solution of the Riccati equation it is enough to know one nontrivial particular solution \([3–5]\). The paper is organized as follows: in the next section we discuss two simple cases

\[y' - \lambda_0(x)y + y^2 = s_0(x), \]

where \(\lambda_0(x) \) and \(s_0(x) \) are differentiable functions. In section 3, we discuss the generalized Riccati equation (5). We show that for certain relations connecting the functions \(P(x), Q(x) \) and \(R(x) \), we can construct many closed-form solutions of the Riccati equation. Selections of results are presented in the tables, which can easily be extended.

2. Two simple cases

The following theorem provides condition for the solvability of a certain class of (5).

Theorem 1. Given \(\lambda_0 \) and \(s_0 \) in \(C^\infty(a, b) \), the Riccati equation

\[y' - \lambda_0(x)y + y^2 = s_0(x) \] (6)

has a solution

\[y_n(x) = -s_n^{-1}(x) \frac{\lambda_n^{-1}(x)}{\lambda_{n-1}(x)} \] (7)

if for some \(n > 0 \), \(\delta_n = \lambda_n s_{n-1} - \lambda_{n-1} s_n = 0 \) where \(\lambda_n \) and \(s_n \) satisfy the recurrence relations (3).

The validity of this theorem can be easily verified by direct substitution of (7) into (6) and the application of the termination condition (2) and the AIM sequence (3). However, a more constructive proof can be established by substituting \(y = \frac{u'}{u} \) in equation (6) to obtain the well-known second-order differential equation (1). Using the termination condition (2), we have for \(\delta_n = \lambda_n s_{n-1} - \lambda_{n-1} s_n = 0 \), where \(\lambda_n \) and \(s_n \) are given by (3), that the differential equation (1) has a solution [2]

\[u(x) = \exp\left(-\int x \frac{s_{n-1}(\tau)}{\lambda_{n-1}(\tau)} \, d\tau \right), \] (8)

which implies \(y(x) = \frac{u'(x)}{u(x)} = \frac{s_n(x)}{\lambda_n(x)} \), as required.

Example 1. Consider the Riccati differential equation

\[y'(x) + \frac{(m-a)x^2 + (2cm-1)x - c)}{(ax^3 + bx^2 + cx)} y(x) + y^2(x) \equiv -\frac{(2mx + 1)}{(ax^3 + bx^2 + cx)}, \]
With $\lambda_0(x) = \frac{(m-a)x^2+(2cm-1)x-c}{(ax^2+bx+c)}$ and $s_0(x) = \frac{(-5m+1)}{(ax^2+bx+c)}$, we can easily show $\delta_2 = \lambda_2 s_1 - \lambda_1 s_2 = 0$, where

$$
\lambda_2(x) = -\frac{((m+a)x^2+(4cm+2b-1)(x+c))(m(m+3a)x^2+(2m^2c-2(1-b)m-4a)x-3b-3cm+1)}{x(ax^2+bx+c)^3}
$$

and

$$
s_2(x) = \frac{(2(m+a)x+4cm+2b-1)(m(m+3a)x^2+(2m^2c-2(1-b)m-4a)x-3b-3cm+1)}{x(ax^2+bx+c)^3}.
$$

Thus a solution is

$$
y(x) = \frac{s_1(x)}{\lambda_1(x)} = \frac{2(m+a)x+4cm+2b-1}{(m+a)x^2+(4cm+2b-1)(x+c)}.
$$

In table 1, we present some closed-form solutions for different classes of Riccati equation, obtained by direct applications of theorem 1. In this table, we use the generalized hypergeometric series $pFq(\alpha_1, \alpha_2, \ldots, \alpha_p; \beta_1, \beta_2, \ldots, \beta_q; x)$ defined by [6]

$$pFq(\alpha_1, \alpha_2, \ldots, \alpha_p; \beta_1, \beta_2, \ldots, \beta_q; x) = \sum_{k=0}^{\infty} \frac{\prod_{i=1}^{p} (\alpha_i)_k \prod_{j=1}^{q} (\beta_j)_k}{(x)_k k!} x^k \quad (9)
$$

where p and q are nonnegative integers and no β_k, $k = 1, 2, \ldots, q$ is zero or a negative integer. Clearly, (9) includes the special cases of the confluent hypergeometric function $1F1$ and the classical ‘Gaussian’ hypergeometric function $2F1$. The Pochhammer symbol $(\alpha)_k$ is defined in terms of Gamma function as

$$(\alpha)_k = \frac{\Gamma(\alpha + n)}{\Gamma(\alpha)}, \quad k = 0, 1, 2, \ldots \quad (10)
$$

If α is a negative integer $-n$, we have

$$(-n)_k = \begin{cases} (-1)^k n! & 0 \leq k \leq n \\ 0 & k > n \end{cases} \quad (11)
$$

in which case, the generalized hypergeometric series reduces to a polynomial of degree n in its variable x.

Theorem 2. Given λ_0 and s_0 in $C^\infty(a, b)$, the Riccati equation

$$y' - \lambda_0(x)y - y^2 = -s_0(x) \quad (12)
$$

has a solution

$$y_n(x) = \frac{s_{n-1}(x)}{\lambda_{n-1}(x)} \quad (13)
$$

if for some $n > 0$, $\delta_n = \lambda_n s_{n-1} - \lambda_{n-1} s_n = 0$ where λ_n and s_n satisfy the recurrence relations (3).

Proof. We substitute $y = -\frac{s_{n-1}}{\lambda_{n-1}}$ in (12) and thereby obtain the differential equation (1) which, by using AIM, yields $\frac{d}{du} \frac{s_{n-1}}{\lambda_{n-1}} = -\frac{u_{n-1}}{u_n}$. Therefore the solution of the Riccati equation (12) is given by (13). □
Example 2. Consider the Riccati equation

\[y' = \left(3ax + \frac{1}{x}\right) y - y^2 = -a^2, \]

where \(a \) is a constant. Direct computation yields

\[\delta_{2n} = \prod_{k=1}^{n} (a + 6k) = 0. \]

Consequently, we have

\[y_2 = -\frac{2}{x}, \quad y_4 = -\frac{2(18x^2 + 1)}{x(1 + 9x^2)}, \quad y_6 = -\frac{2(729x^4 + 108x^2 + 2)}{x(243x^4 + 54x^2 + 2)}, \ldots. \]

In Table 1, we present some closed-form solutions for different classes of the Riccati equation, as direct applications of Theorem 2.

Table 1. Closed-form solutions for the Riccati differential equation \(y' - \lambda_0(x)y + y^2 = \lambda_0(x) \) by theorem 1.

Riccati equation	\(y_n, \ n = 0, 1, 2, \ldots \)
\(y' - 2xy + y^2 = -4n \)	\(y_n = -4nx \frac{F_{1-n}(\frac{1}{2}x^2)}{F_{1-n}(\frac{1}{2}x^2)} \)
\(y' - 2xy + y^2 = -2(2n + 1) \)	\(y_n = \frac{1}{4} - \frac{2nx}{F_{1-n}(\frac{1}{2}x^2)} \)
\(y' - (ax + b)y + y^2 = -2na \)	\(y_n = -2n(ax + b) \frac{F_{1-n}(\frac{1}{2}x^2)}{F_{1-n}(\frac{1}{2}x^2)} \)
\(y' - (b - \frac{a}{n})y + y^2 = -\frac{nb}{c} \)	\(y_n = \frac{nb}{c} \frac{F_{1-n}(\frac{1}{2}x^2)}{F_{1-n}(\frac{1}{2}x^2)} \)
\(y' - \frac{a(n+1)}{n(1-x)}y + y^2 = -\frac{a}{n+1} \)	\(y_n = \frac{a(n+1)}{n+1} \frac{F_{1-n}(\frac{1}{2}x^2)}{F_{1-n}(\frac{1}{2}x^2)} \)
\(y' - \frac{a(n+2)}{n(1-x)}y + y^2 = -\frac{a(n+2)}{n+2} \)	\(y_n = \frac{a(n+1)}{n+1} \frac{F_{1-n}(\frac{1}{2}x^2)}{F_{1-n}(\frac{1}{2}x^2)} \)
\(y' - \frac{a(n+1)}{n(1-x)}y + y^2 = -\frac{a(n+1)}{n+1} \)	\(y_n = \frac{a(n+1)}{n+1} \frac{F_{1-n}(\frac{1}{2}x^2)}{F_{1-n}(\frac{1}{2}x^2)} \)
\(y' - \frac{a(n+2)}{n(1-x)}y + y^2 = -\frac{a(n+2)}{n+2} \)	\(y_n = \frac{a(n+1)}{n+1} \frac{F_{1-n}(\frac{1}{2}x^2)}{F_{1-n}(\frac{1}{2}x^2)} \)
\(y' - \frac{a(n+1)}{n(1-x)}y + y^2 = -\frac{a(n+1)}{n+1} \)	\(y_n = \frac{a(n+1)}{n+1} \frac{F_{1-n}(\frac{1}{2}x^2)}{F_{1-n}(\frac{1}{2}x^2)} \)
Solutions for certain classes of the Riccati differential equation

Table 2. Closed-form solutions for the Riccati differential equation \(y' - \lambda_0(x)y - y^2 = -s_0(x) \) by theorem 2.

Riccati equation	\(y_n, n = 0, 1, 2, \ldots \)
\(y' - 2xy - y^2 = 4n \)	\(y_n = 4nx \left[F_{n+1}(x) - \frac{1}{2}x^2 \right]_{F_{n+1}(x)} \)
\(y' - 2xy - y^2 = 2(2n + 1) \)	\(y_n = \frac{1}{2} + 2nx \left[F_{n+1}(x) - x^2 \right]_{F_{n+1}(x)} \)
\(y' - (ax + b)y - y^2 = 2na \)	\(y_n = 2n(ax + b) \left[F_{n+1}(x) - \frac{1}{2}x^2 \right]_{F_{n+1}(x)} \)
\(y' - (b - \frac{1}{n})y - y^2 = \frac{ab}{c} \)	\(y_n = \frac{1}{2} + \frac{2x}{2} (ax + b) \left[F_{n+1}(x) - \frac{1}{2}x^2 \right]_{F_{n+1}(x)} \)
\(y' - \left(\frac{a}{x} + \frac{b}{x} \right)y - y^2 = \frac{a^2}{c} \)	\(y_n = \frac{a^2}{c} F_{n+1}(x) - \frac{1}{2}x^2 \left[F_{n+1}(x) \right]_{F_{n+1}(x)} \)
\(y' - \left(\frac{b}{x} - \frac{a}{x} \right)y - y^2 = \frac{a}{c} \)	\(y_n = \frac{a}{2} F_{n+1}(x) - \frac{1}{2}x^2 \left[F_{n+1}(x) \right]_{F_{n+1}(x)} \)
\(y' - \frac{a}{x}y - y^2 = \frac{a}{c} \)	\(y_n = \frac{a}{c} F_{n+1}(x) - \frac{1}{2}x^2 \left[F_{n+1}(x) \right]_{F_{n+1}(x)} \)
\(y' - \frac{b}{x}y - y^2 = \frac{b}{c} \)	\(y_n = \frac{b}{c} F_{n+1}(x) - \frac{1}{2}x^2 \left[F_{n+1}(x) \right]_{F_{n+1}(x)} \)
\(y' - \left(\frac{a}{x} + \frac{b}{x} \right)y - y^2 = \frac{a^2}{c} \)	\(y_n = \frac{a^2}{c} F_{n+1}(x) - \frac{1}{2}x^2 \left[F_{n+1}(x) \right]_{F_{n+1}(x)} \)
\(y' - \left(\frac{b}{x} - \frac{a}{x} \right)y - y^2 = \frac{a}{c} \)	\(y_n = \frac{a}{2} F_{n+1}(x) - \frac{1}{2}x^2 \left[F_{n+1}(x) \right]_{F_{n+1}(x)} \)

3. Generalized Riccati equation

The differential equation,

\[
\frac{dy}{dx} + P(x)y + Q(x)y^2 = R(x),
\]

is known as the generalized Riccati equation. A number of transformations exist for changing this Riccati equation to a second-order linear homogeneous equation (and vice versa). Some of these transformations are summarized in the table 3.

Theorem 3. The Riccati equation \(y' + P(x)y + Q(x)y^2 = R(x) \), has a solution

\[
y(x) = -\frac{s_{n-1}(x)}{Q(x)\lambda_{n-1}(x)}
\]

where

\[
\lambda_0 = \frac{Q'}{Q} - P \quad \text{and} \quad s_0 = QR
\]

and for \(n > 0 \), \(\lambda_n \) and \(s_n \) are given by \(\lambda_n = \lambda_{n-1} + s_{n-1} + \lambda_0 \lambda_{n-1} \) and \(s_n = s_{n-1} + s_0 \lambda_{n-1} \), \(n = 1, 2, \ldots \) if for some \(n > 0 \), \(\delta_n = \lambda_{n-1}s_{n-1} - \lambda_{n-1}s_n = 0 \).
Table 3. Methods for transforming the generalized Riccati differential equation \(y' + P(x)y + Q(x)y^2 = R(x) \) to a second-order homogeneous differential equation.

Transformation	Resulting equation	Reference
\(y = \frac{u'}{u} \)	\(u'' = \left(\frac{Q}{Q} - P \right)u' + QRu \)	[7]
\(y = \frac{u'}{u} \)	\(u'' = \left(\frac{Q}{Q} - P \right)u' + QRu \)	[8]
\(y = \frac{u'}{u} \)	\(u'' = \left(\frac{Q}{Q} - P \right)u' + QRu \)	[9]

Proof. We substitute \(y = \frac{u'}{u} \) in the Riccati equation and thereby obtain the second-order differential equation \(u'' = \left(\frac{Q}{Q} - P \right)u' + QRu \). By using AIM with \(\lambda_0 = \frac{Q}{Q} - P \) and \(s_0 = QR \), we have \(\frac{u''}{u} = -\frac{\lambda_0}{s_0} \) if \(\lambda_0 \) and \(s_0 \), along with AIM sequence (3); thus we satisfy the termination condition \(\delta_n = 0 \).

Example 3. For the Riccati differential equation

\[y'(x) + y(x) + e^{\frac{1}{2}x^2}y^2(x) = -27x^2 e^{-\frac{1}{2}x^2}, \]

with \(\lambda_0(x) = \frac{Q}{Q} - P = 3x^3 \) and \(s_0(x) = QR = -27x^2 \), we can easily show \(\delta_0 = \lambda_0 s_0 = \lambda_3 s_0 = 0 \). Thus a solution of the given differential equation is given by

\[y(x) = -\frac{s_8(x)}{Q(x)\lambda_8(x)} \frac{9x^5 - 30x^4 + 5}{x e^{\frac{1}{2}x^2}(x^6 - 5x^4 + 5)}. \]

Example 4. Consider the Riccati differential equation

\[y'(x) - \frac{b}{x} y(x) - ax^b y^2(x) = \frac{c}{x^{n+2}}. \]

Here \(Q = -ax^n, P = -\frac{b}{x} \) and \(R = \frac{c}{x^{n+2}} \), we have \(\lambda_0(x) = \frac{Q}{Q} - P = \frac{b}{x} \) and \(s_0(x) = QR = \frac{ac}{x^{n+1}} \), we can easily show

\[\delta_1 = \lambda_1 s_0 - \lambda_0 s_1 = \frac{ac(-n - b + ac)}{x^4} = 0 \text{ if } ac - (n+b) = 0 \]

\[\Rightarrow y_1(x) = -\frac{s_0}{Q\lambda_0} = -\frac{1}{ax^{n+1}} \]

\[\delta_2 = \lambda_2 s_1 - \lambda_1 s_2 = \frac{ac(-n - b + ac)(-2b + 2 - 2n + ac)}{x^6} = 0 \text{ if } ac - 2(n+b) + 2 = 0 \]

\[\Rightarrow y_2(x) = -\frac{s_1}{Q\lambda_1} = -\frac{2}{ax^{n+1}} \]

\[\delta_3 = \lambda_3 s_2 - \lambda_2 s_3 = \frac{ac(-n - b + ac)(-2b + 2 - 2n + ac)(-3b + 6 - 3n + ac)}{x^8} = 0 \text{ if } ac - 3(n+b) + 6 = 0 \]

\[\Rightarrow y_3(x) = -\frac{s_2}{Q\lambda_2} = -\frac{3}{ax^{n+1}} \]

and so on. It is clear that \(\delta_m = 0 \) for \(m = 1, 2, \ldots \), if \(ac - m(n+b) + m(m-1) = 0 \), and the solution is given by

\[y_m(x) = -\frac{m}{ax^{n+1}} \text{ for } m = 1, 2, \ldots . \]

This result is expected since the corresponding second-order differential equation is the well-known Cauchy–Euler differential equation.
There are some interesting applications that follow from theorem 3.

- If we know that λ_0 and s_0 satisfy the termination condition (2), we can solve (16) for $Q(x)$ and $R(x)$ as

\[
Q(x) = \exp\left(\int_{x_0}^x (\lambda_0(t) + P(t)) \, dt \right),
\]

\[
R(x) = s_0(x) \exp\left(- \int_{x_0}^x (\lambda_0(t) + P(t)) \, dt \right),
\]

(17)

where $P(x)$ is an arbitrary integrable function. Thus, the Riccati equation

\[
y' + P(x)y + e^{\int_{x_0}^x (\lambda_0(t) + P(t)) \, dt} y^2 = s_0(x) e^{-\int_{x_0}^x (\lambda_0(t) + P(t)) \, dt}
\]

has the particular solution

\[
y(x) = -\frac{s_{n-1}(x)}{\lambda_{n-1}(x)} e^{-\int_{x_0}^x (\lambda_0(t) + P(t)) \, dt}.
\]

(19)

In order to illustrate this idea, we know [2] for $\lambda_0 = 2x$ and $s_0 = -2k$ that $\delta_n = 0$ for $n = k, k = 0, 2, 4, \ldots$. Thus, with $Q(x) = e^{x^2+\int_{x_0}^x P(t) \, dt}$ and $R(x) = -4n e^{-x^2-\int_{x_0}^x P(t) \, dt}$, the differential equation

\[
y' + P(x)y + e^{x^2+\int_{x_0}^x P(t) \, dt} y^2 = -4n e^{-x^2-\int_{x_0}^x P(t) \, dt},
\]

has the particular solution

\[
y_n(x) = -4nx e^{-x^2-\int_{x_0}^x P(t) \, dt} \frac{1}{\Gamma(1-n)} \frac{1}{\Gamma(n)}
\]

\[
\text{for } n = 0, 1, 2, \ldots.
\]

(20)

Furthermore, the differential equation

\[
y' + P(x)y + e^{x^2+\int_{x_0}^x P(t) \, dt} y^2 = -2(2n+1) e^{-x^2-\int_{x_0}^x P(t) \, dt},
\]

has the solution

\[
y_n = e^{-x^2-\int_{x_0}^x P(t) \, dt} \left(\frac{1}{\lambda(x)} - \frac{4nx}{3} \frac{1}{\Gamma(1-n)} \frac{1}{\Gamma(n)} F_1 \left(-n+1; \frac{3}{2}; x^2 \right) \right),
\]

(22)

Note that, in the case of $P(x) = -\lambda_0(x)$, we recover (6). In table 4, we present some closed-form solutions for different classes of Riccati equation (18) for known $\lambda_0(x)$ and $s_0(x)$ [2].

- The Riccati equation

\[
y' + \left(\frac{s_0'(x)}{s_0(x)} - \frac{R'(x)}{R(x)} - \lambda_0(x) \right) y + \frac{s_0(x)}{R(x)} y^2 = R(x)
\]

has the particular solution

\[
y(x) = \frac{R(x) s_{n-1}(x)}{s_0(x) \lambda_{n-1}(x)}
\]

(24)

if λ_0 and s_0, along with the AIM sequence (3), satisfies the termination condition $\delta_n = 0$.

- For the Riccati equation $y' + P(x)y + Q(x)y^2 = R(x)$, if

\[
\frac{Q'}{Q} - P + x Q R = 0,
\]

(25)

then $y = \frac{1}{x Q(x)}$ is a particular solution. For example, the Riccati differential equation

\[
y'(x) - xf(x)y - y^2 = f(x)
\]

for arbitrary differentiable function f has a solution given by $y = -1/x$. This follows from the fact that, if $\lambda_0 = -x s_0$, then $\delta_1 = 0$, and the corresponding second-order differential equation has the solution $u = x$.

Solutions for certain classes of the Riccati differential equation
Table 4. Closed-form solutions for the Riccati differential equation $y' + P(x)y + Q(x)y^2 = R(x)$ by theorem 3. Here $P(x)$ is an arbitrary integrable function.

$Q(x)$	$R(x)$	y_k, $n = 0, 1, 2, \ldots$
$e^{2x}y^2 + Q(x)y + R(x)$	$-4nxe^{-x^2} + e^{-x^2} + R(x)$	$-4nx e^{-x^2} + F_1(-n+1; x)$
$e^{2x}y^2 + Q(x)y + R(x)$	$2(2n+1)e^{x^2} + R(x)$	$2(2n+1)F_1(-n+1; x)$
$e^x y^2 + Q(x)y + R(x)$	$-ne^{-x} + e^{-x^2} + R(x)$	$-n F_1(-n; x)$
$e^{2x}y^2 + Q(x)y + R(x)$	$-nh(x^{-1} + Q(x)) + e^{-x^2} + R(x)$	$-nh(x^{-1} + Q(x)) F_1(-n; x)$
$(x-1)(x-1/2)^2 y^2 + Q(x)y + R(x)$	$-n^2(x^2 + 1) e^{-x^2} + R(x)$	$-n^2(x^2 + 1) F_1(-n; x)$
$(x-1)(x-1/2)^2 y^2 + Q(x)y + R(x)$	$-nh(x^{-1} + Q(x)) + e^{-x^2} + R(x)$	$-nh(x^{-1} + Q(x)) F_1(-n; x)$
$(x-1)^2 + Q(x)y + R(x)$	$n(n+1)e^{-x^2} + R(x)$	$n(n+1) F_1(-n; x)$
$\frac{1}{(x-1)^2} e^{x^2} y^2 + Q(x)y + R(x)$	$n(2n+2) e^{-x^2} + R(x)$	$n(2n+2) F_1(-n; x)$
$\frac{1}{(x-1)^3/2} e^{x^2} y^2 + Q(x)y + R(x)$	$n(n+a-1)(x^2-1) e^{-x^2} + R(x)$	$n(n+a-1)(x^2-1) F_1(-n; x)$
$\frac{1}{(x-1)^3/2} e^{x^2} y^2 + Q(x)y + R(x)$	$n(n+2k+1)(x^2-1) e^{-x^2} + R(x)$	$n(n+2k+1)(x^2-1) F_1(-n; x)$
$\frac{1}{(x-1)^3/2} e^{x^2} y^2 + Q(x)y + R(x)$	$n(n+2k)(x^2-1) e^{x^2} + R(x)$	$n(n+2k)(x^2-1) F_1(-n; x)$
$\frac{1}{(x-1)^3/2} e^{x^2} y^2 + Q(x)y + R(x)$	$n(n+1)e^{-2x^2} + R(x)$	$n(n+1) F_1(-n; x)$
$\frac{1}{(x-1)^3/2} e^{x^2} y^2 + Q(x)y + R(x)$	$\frac{n(n+a-1)}{b} e^{-x^2} + R(x)$	$\frac{n(n+a-1)}{b} F_1(-n; x)$
$\frac{1}{(x-1)^3/2} e^{x^2} y^2 + Q(x)y + R(x)$	$\frac{n(n+a+b+1)}{b} e^{-x^2} + R(x)$	$\frac{n(n+a+b+1)}{b} F_1(-n; x)$
By means of the transformation \(y = \frac{Bx}{w} \), the following theorem can easily be proved.

Theorem 4. The Riccati differential equation \(y' + P(x)y + Q(x)y^2 = R(x) \), has the particular solution

\[
y(x) = \frac{R(x)\lambda_{n-1}(x)}{s_{n-1}(x)},
\]

if for some \(n > 0 \), \(\delta_n = \lambda_n s_{n-1} - \lambda_{n-1} s_n = 0 \) where \(\lambda_0 = \frac{B}{R} + P \) and \(s_0 = Q R \).

In table 5, we present closed-form solutions for different classes of Riccati equation, obtained as direct applications of theorem 4.

By means of the transformation \(y = \frac{Bx}{w + \rho_n} \), it becomes straightforward to prove the following theorem.

Theorem 5. The Riccati differential equation \(y' + P(x)y + Q(x)y^2 = R(x) \), has the particular solution

\[
y(x) = -\frac{R(x)\lambda_{n-1}(x)}{s_{n-1}(x) + P(x)\lambda_{n-1}(x)},
\]

if for some \(n > 0 \), \(\delta_n = \lambda_n s_{n-1} - \lambda_{n-1} s_n = 0 \) where \(\lambda_0 = \frac{B}{R} - P \) and \(s_0 = R(Q - \frac{P}{R})' \).

There are two immediate consequences of this theorem.

- For an arbitrary function \(R(x) \), the Riccati equation

\[
y' + \left(\frac{R'(x)}{R(x)} - \lambda_0(x) \right)y + \left(\frac{s_0(x)}{R(x)} + \left(\frac{R(x)}{R'(x)} - \frac{\lambda_0(x)}{R(x)} \right) \right)y^2 = R(x)
\]

has the particular solution

\[
y_n(x) = \frac{R(x)\lambda_{n-1}(x)}{-s_{n-1}(x) + \left(\frac{R'(x)}{R(x)} - \lambda_0(x) \right)\lambda_{n-1}(x)} \quad \text{for} \quad n = 0, 1, 2, \ldots
\]

if \(\lambda_0(x) \) and \(s_0(x) \) satisfy the termination condition (2), namely \(\delta_n = \lambda_n s_{n-1} - \lambda_{n-1} s_n = 0 \) for \(n = 0, 1, 2, \ldots \).

Note that the iteration sequence (3) can start with \(n = 0 \) for \(\lambda_0 = 1 \) and \(s_{-1} = 0 \). In table 6, we exhibit closed-form solutions for the Riccati equation (14).

- For an arbitrary function \(P(x) \), the Riccati equation

\[
y' + P(x)y + \left[s_0(x) e^{-\int (\lambda_0(t)+P(t)) \, dt} + \left(P(x) e^{-\int (\lambda_0(t)+P(t)) \, dt} \right) \right]y^2 = e^{\int (\lambda_0(t)+P(t)) \, dt}
\]

has the particular solution

\[
y_n = \frac{\lambda_{n-1}(x) e^{\int (\lambda_0(t)+P(t)) \, dt}}{-s_{n-1}(x) + P(x)\lambda_{n-1}(x)} \quad \text{for} \quad n = 0, 1, 2, \ldots
\]

if \(\lambda_0(x) \) and \(s_0(x) \) satisfy the termination condition (2), namely \(\delta_n = \lambda_n s_{n-1} - \lambda_{n-1} s_n = 0 \) for \(n = 0, 1, 2, \ldots \).

By means of the transformation \(y = \frac{w - Pu}{Qw} \), it then becomes straightforward to prove the following theorem.

Theorem 6. The Riccati differential equation \(\frac{dy}{dx} + P(x)y + Q(x)y^2 = R(x) \) has the particular solution

\[
y(x) = \frac{-s_{n-1}(x) - P(x)\lambda_{n-1}(x)}{Q(x)\lambda_{n-1}(x)},
\]

if for some \(n > 0 \), \(\delta_n = \lambda_n s_{n-1} - \lambda_{n-1} s_n = 0 \) where \(\lambda_0 = P + \frac{Q'}{Q} \) and \(s_0 = Q \left(\frac{P'}{Q} + R \right) \).
Table 5. Closed-form solutions for the Riccati differential equation $y' + P(x)y + Q(x)y^2 = R(x)$ by theorem 4. Here $P(x)$ is an arbitrary integrable function.

$Q(x)$	$R(x)$	$y_0, n = 1, 2, \ldots$
$-4n e^{-x^2 + \frac{x}{2}} P(x)dx$	$e^{x^2 - \frac{x}{2}} P(x)dx$	$\frac{1}{2} \ln \left(\frac{P(-n, \frac{1}{2})}{P(-n, \frac{1}{2})} \right) - e^{-x^2} P(x)dx$
$-2(2n + 1) e^{-x^2 + \frac{x}{2}} P(x)dx$	$e^{x^2 - \frac{x}{2}} P(x)dx$	$\frac{1}{2} \ln \left(\frac{P(-n, \frac{1}{2})}{P(-n, \frac{1}{2})} \right) - e^{-x^2} P(x)dx$
$-2na e^{-\frac{x^2}{2} - bx + \frac{x}{3}} P(x)dx$	$\frac{2}{3} e^{bx - \frac{x}{3}} P(x)dx$	$- \frac{2}{3} \ln \left(\frac{P(-n, \frac{1}{2})}{P(-n, \frac{1}{2})} \right) - e^{-\frac{x^2}{2} - bx + \frac{x}{3}} P(x)dx$
$-(2n + 1)a e^{-\frac{x^2}{2} - bx + \frac{x}{3}} P(x)dx$	$\frac{2}{3} e^{bx - \frac{x}{3}} P(x)dx$	$- \frac{2}{3} \ln \left(\frac{P(-n, \frac{1}{2})}{P(-n, \frac{1}{2})} \right) - e^{-\frac{x^2}{2} - bx + \frac{x}{3}} P(x)dx$
$-n e^{-x^2 + \frac{x}{2}} P(x)dx$	$\frac{1}{2} e^{x^2 - \frac{x}{2}} P(x)dx$	$- \frac{1}{2} \ln \left(\frac{P(-n, \frac{1}{2})}{P(-n, \frac{1}{2})} \right) - e^{-x^2 + \frac{x}{2}} P(x)dx$
$-nb e^{-x^2 + \frac{x}{2}} P(x)dx$	$\frac{1}{2} e^{x^2 - \frac{x}{2}} P(x)dx$	$- \frac{1}{2} \ln \left(\frac{P(-n, \frac{1}{2})}{P(-n, \frac{1}{2})} \right) - e^{-x^2 + \frac{x}{2}} P(x)dx$
$n(1 + 1)b e^{-x^2 + \frac{x}{2}} P(x)dx$	$\frac{1}{2} e^{x^2 - \frac{x}{2}} P(x)dx$	$- \frac{1}{2} \ln \left(\frac{P(-n, \frac{1}{2})}{P(-n, \frac{1}{2})} \right) - e^{-x^2 + \frac{x}{2}} P(x)dx$
$n x e^{-x^2 + \frac{x}{2}} P(x)dx$	$x e^{x^2 - \frac{x}{2}} P(x)dx$	$x e^{-x^2 + \frac{x}{2}} P(x)dx$
$n(1 + 1)b e^{-x^2 + \frac{x}{2}} P(x)dx$	$\frac{1}{2} e^{x^2 - \frac{x}{2}} P(x)dx$	$- \frac{1}{2} \ln \left(\frac{P(-n, \frac{1}{2})}{P(-n, \frac{1}{2})} \right) - e^{-x^2 + \frac{x}{2}} P(x)dx$
$n(1 + 1)b e^{-x^2 + \frac{x}{2}} P(x)dx$	$\frac{1}{2} e^{x^2 - \frac{x}{2}} P(x)dx$	$- \frac{1}{2} \ln \left(\frac{P(-n, \frac{1}{2})}{P(-n, \frac{1}{2})} \right) - e^{-x^2 + \frac{x}{2}} P(x)dx$
$n(1 + 1)b e^{-x^2 + \frac{x}{2}} P(x)dx$	$\frac{1}{2} e^{x^2 - \frac{x}{2}} P(x)dx$	$- \frac{1}{2} \ln \left(\frac{P(-n, \frac{1}{2})}{P(-n, \frac{1}{2})} \right) - e^{-x^2 + \frac{x}{2}} P(x)dx$
Table 6. Closed-form solutions for the Riccati differential equation $y' + P(x)y + Q(x)y^2 = R(x)$ by theorem 5. Here $R(x)$ is an arbitrary differentiable function.

Riccati equation	Solution $y_n, n = 0, 1, 2, \ldots$
$y' + \frac{E'(x)}{R(x)} - 2x y + \left(-\frac{4x}{R(x)} + \left(\frac{E'(x)}{R(x)} - \frac{2x}{R(x)} \right) \right)^2 = R(x)$	$R(x)$
$y' + \frac{E'(x)}{R(x)} - 2x y + \left(-\frac{2(2x+1)}{R(x)} + \left(\frac{E'(x)}{R(x)} - \frac{2x}{R(x)} \right) \right)^2 = R(x)$	$R(x)$
$y' + \frac{E'(x)}{R(x)} - ax - b y + \left(-\frac{2(n+1)}{R(x)} + \left(\frac{E'(x)}{R(x)} - \frac{ax+b}{R(x)} \right) \right)^2 = R(x)$	$R(x)$
$y' + \frac{E'(x)}{R(x)} - b + \frac{x}{2} y + \left(-\frac{n}{R(x)} + \left(\frac{E'(x)}{R(x)} - \frac{x}{R(x)} \right) \right)^2 = R(x)$	$R(x)$
$y' + \frac{E'(x)}{R(x)} + \frac{n+1}{R(x)} y + \left(\frac{2a+1}{R(x)} + \left(\frac{E'(x)}{R(x)} + \frac{ax+b}{R(x)} \right) \right)^2 = R(x)$	$R(x)$
$y' + \frac{E'(x)}{R(x)}\frac{2(2x+1)}{1-x^2} y + \left(-\frac{2(n+2)}{1-x^2} + \left(\frac{E'(x)}{R(x)} - \frac{(2x+1)^2}{1-x^2} \right) \right)^2 = R(x)$	$R(x)$
$y' + \frac{E'(x)}{R(x)}\frac{(2x+1)^2}{1-x^2} y + \left(-\frac{n(n+1)}{1-x^2} + \left(\frac{E'(x)}{R(x)} - \frac{(2x+1)^2}{1-x^2} \right) \right)^2 = R(x)$	$R(x)$
An immediate result implied by this theorem is the following: for arbitrary \(P(x) \), the Riccati equation
\[
y' + P(x)y + e^{\int (\lambda_0(\tau) - P(\tau)) d\tau} y^2 = s_0(x) e^{-\int (\lambda_0(\tau) - P(\tau)) d\tau} - (P(x) e^{-\int (\lambda_0(\tau) - P(\tau)) d\tau})'
\]
has the particular solution
\[
y(x) = \left[-\frac{s_{n-1}(x)}{\lambda_{n-1}(x)} \right] e^{-\int (\lambda_0(\tau) - P(\tau)) d\tau}
\]
(34)

4. Conclusion

It is well known that a Riccati equation can be transformed to a second-order linear differential equation by means of a suitable transformation. Using this fact along with a criterion, recently introduced, which guarantees the existence of polynomial solutions to second-order linear differential equations, we are able to derive analytic closed-form solutions for different classes of Riccati equation. By using the methods developed in this paper, the tables of solutions we present can easily be extended. For any given pair of differentiable functions, \(\lambda_0 \) and \(s_0 \), satisfying the termination condition (2) along with (3), a corresponding class of exactly solvable Riccati equation can be generated.

Acknowledgments

Partial financial support of this work under grant nos. GP3438 and GP249507 from the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged by two of us (respectively (RLH) and (NS)).

References

[1] Ciftci H, Hall R L and Saad N 2003 Asymptotic iteration method for eigenvalue problems J. Phys. A: Math. Gen. 36 11807–16
[2] Saad N, Hall R L and Ciftci H 2006 Criterion for polynomial solutions to a class of linear differential equation of second order J. Phys. A: Math. Gen. 39 13445–54
[3] Polyanin A D and Zaitsev V F 2003 Handbook of Exact Solutions for Ordinary Differential Equations 2nd edn (London/Boca Raton, FL: Chapman and Hall/CRC Press)
[4] Kamke E 1977 Differentialgleichungen: Losungsmethoden und Losungen: I. Gewohnliche Differentialgleichungen (Leipzig: B. G. Teubner)
[5] Ince E L 1956 Ordinary Differential Equations (New York: Dover) p 22 and p 531 of Appendix A
[6] Prudnikov A P, Brychkov Yu A and Marichev O I 1998 Integrals and Series: More Special Functions vol 3 (London: Gordon and Breach Science Publishers)
[7] Murphy G M 1960 Ordinary Differential Equations and Their Solutions (Princeton, NJ: Van Nostrand)
[8] Sugai Iwao 1960 Riccati’s nonlinear differential equation Am. Math. Mon. 69 134–9
[9] Haaheim D R and Stein F M 1969 Methods of solution of the Riccati differential equation Math. Mag. 42 233–40