Rising inequality in mortality among working-age men and women in Sweden: a national registry-based repeated cohort study, 1990–2007

Naoki Kondo,1 Mikael Rostila,2,3 Monica Åberg Yngwe3

ABSTRACT

Background In the past two decades, health inequality has persisted or increased in states with comprehensive welfare.

Methods We conducted a national registry-based repeated cohort study with a 3-year follow-up between 1990 and 2007 in Sweden. Information on all-cause mortality in all working-age Swedish men and women aged between 30 and 64 years was collected. Data were subjected to temporal trend analysis using joinpoint regression to statistically confirm the trajectories observed.

Results Among men, age-standardised mortality rate decreased by 38.3% from 234.9 to 145 (per 100 000 population) over the whole period in the highest income quintile, whereas the reduction was only 18.3% (from 774.5 to 632.5) in the lowest quintile. Among women, mortality decreased by 40% (from 187.4 to 112.5) in the highest income group, but increased by 12.1% (from 280.2 to 314.2) in the poorest income group. Joinpoint regression identified that the differences in age-standardised mortality between the highest and the lowest income quintiles decreased among men by 18.85 annually between 1990 and 1994 (p trend<0.02), whereas it increased later, with a 2.88 point increase per year (p trend<0.0001). Among women, it continuously increased by 9.26/year (p trend<0.0001).

In relative terms, age-adjusted mortality rate ratios showed a continuous increase in both genders.

Conclusions Income-based inequalities among working-age male and female Swedes have increased since the late 1990s, whereas in absolute terms the increase was less remarkable among men. Structural and behavioural factors explaining this trend, such as the economic recession in the early 1990s, should be studied further.

INTRODUCTION

Concern has been raised about the public health consequences of the rapid expansion of globalisation since the early 1990s. These include persistent income inequalities, weakened social protection, changing social relationships and increased psychosocial stresses, which are usually discussed in relation to the volatile macroeconomic fluctuations.1–5 For example, an economic recession may contribute to health inequalities, as it is likely to have a disproportionately negative influence on living conditions and health among individuals in socioeconomically disadvantaged populations.6–8 Sweden experienced an economic recession between 1990 and 1994, which was the worst since the 1920s. Unemployment soared from 1.7% to 8.3%,

To respond to this crisis, the government introduced a series of macroeconomic reforms, the so-called Crisis Packages, which included tax reforms, cutbacks to social services, unemployment compensation and sick pay.2 These reforms increased the financial and psychosocial burden on the working-age population and, in particular, worsened the situation of the most disadvantaged. At the same time, income inequality also increased faster than anywhere else in the European Union.2

Welfare policy can function as a buffer against financial, occupational and educational constraints during periods of economic hardship. Sweden and other Nordic countries are recognised as societies with generous and universal welfare systems and low income inequality.9,10 and early evidence suggested that health inequalities did not widen during the deep recession in the early 1990s.11 However, these studies only used data up until 1995, so longer term observations are lacking. The purpose of this study therefore was to describe the long-term trends in inequalities in mortality across different income groups using a 3-year follow-up repeated cohort study of the total working-age population in Sweden between 1990 and 2007.

METHODS

Data

Data were collected from multiple governmental censuses, the population registry and the cause of death registry for the whole of the Swedish working-age population between 1990 and 2007. We adopted this data period for the sake of comparability. Data from 2008 onwards were not available because of the lack of further updates in the database. Information on demographic and socioeconomic status was obtained from the National Population and Housing Censuses, the Total Population Registry (RTB) and the Longitudinal Data Base on Education, Income and Employment (LOUISE). Mortality data were obtained from the National Cause of Death Registry. In accordance with recent relevant studies, we restricted the data to individuals aged 30–64 years, to evaluate the health disparities of people who were actively involved in the labour market.4,11 The population included 1 883 651 men and 1 836 890 women in 1993, and 2 022 279 men and 1 970 943 women in 2007. Those individuals with missing data from the National Cause of Death Registry or income data, mostly as a result of moving out of the country, were excluded. Data were missing for 3.37% of the study population in 1993 and 0.097% in 2007.

1 School of Public Health, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
2 Department of Sociology, Stockholm University, Stockholm, Sweden
3 Centre for Health Equity Studies, Stockholm University/ Karolinska Institute, Stockholm, Sweden

Correspondence to Dr Naoki Kondo, Floor 3, Medical Building #3, School of Public Health, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; naoki-kondo@umin.ac.jp

Received 8 November 2013
Accepted 25 July 2014

To cite: Kondo N, Rostila M, Åberg Yngwe M. J Epidemiol Community Health Published Online First: [please include Day Month Year] doi:10.1136/jech-2013-203619

Copyright Article author (or their employer) 2014. Produced by BMJ Publishing Group Ltd under licence.
Measurements
We collected all records of deaths from the National Death Registry, and therefore determined the numbers alive at December 31 of every year. The number of deaths was determined according to age in 5-year intervals, gender and income quintile. The measure of income was the annual individual disposable income 3 years prior to the year when mortality was determined. We stratified data by income quintiles that were calculated for each annual cohort by gender.

Statistical analysis
Calculation of age-standardised mortality rates
First, we calculated mortality rates standardised for the Swedish population in 2000.13 To evaluate the secular trends in mortality disparities across income quintiles, the differences and ratios of age-standardised mortality rates were calculated for lower income quintiles (Q1 and Q2) against the highest quintile (Q5).

We excluded deaths that occurred within 2 years of gathering income information. This was to minimise the confounding effect of existing health conditions, which could have altered income information. This was to minimise the confounding effect of existing health conditions, which could have altered income information.

Trend analysis
Next, we plotted these inequality measures and visually evaluated the secular trends over time. To evaluate the changes in secular trends in the differences in age-standardised mortality rates between income quintiles over time, we conducted a trend analysis using joinpoint regression.14 Joinpoint regression explored the potential points of trend changes in an inductive manner and statistically evaluated whether or not potential point changes in trend were statistically significant. We accounted for potential autocorrelations of errors within each gender over time and the regression coefficients were estimated by weighted least squares. To determine the best fit for each model, we used the grid search methods, creating a ‘grid’ of all possible locations for ‘joinpoints’, or the points where two different trends connected one another, and testing the sum of squared error at each one to find the best possible fit. We used permutation test methods to determine the number of joinpoints, setting a significance level of each individual test as 0.05. A detailed statistical note is available elsewhere.14 These analyses were performed using the statistical analysis package R V3.0.3, HD^Calc V1.2.3 and Joinpoint Regression Program V4.0.4 (US National Cancer Institute).

Sensitivity analysis
We also calculated other disparity indexes including range difference, between-group variance, absolute concentration index, slope index of inequality, range ratio, index of disparity, mean log deviation, Theil index, relative concentration index and relative index of inequality. Since these disparity measures used parameters which were aggregated, weighted and ranked by income groups, a Taylor series approximation with the Poisson model was used to calculate SEs, formally accounting for those potential issues.16

RESULTS
Overall, mortality rates steadily decreased over time in all age groups among both men and women (table 1, full data in online supplementary table S1). However, among income quintile groups, the lowest income quintile showed different trends; age-standardised mortality rates by income quintile showed a continuous decline in all income groups except for the lowest quintile (figures 1 and 2). Among men in the highest income quintile, age-standardised mortality rates (per 100 000 population) decreased by 38.3% from 234.9 to 145 during the observed period. However, in the lowest income quintile, the rates decreased by only 18.3% from 774.5 to 632.5. Among women, the rates decreased by 40% in the richest quintile, from 187.4 to 112.5, whereas in the lowest quintile it increased by 12.1% from 280.2 to 314.2 (online supplementary figure). Joinpoint regression for the differences in age-standardised mortality rates between income quintiles 1 vs 5 among men selected a 1-joinpoint model, showing that the rate decreased 18.85/100 000 population annually (p for trend=0.02) until the 1994–1997 cohort and then continuously increased by 2.88/year (p for trend <0.04; figure 3). In women, no point of trend change was statistically identified. The final model showed that the mortality differences constantly increased by 9.26/year (p<0.0001). Joinpoint models for the ratios of age-standardised mortality rates between income quintiles 1 vs 5 selected a 0-joinpoint model for men and a 1-joinpoint model for women. For men, the ratio increased by 0.08/year, while among women the annual increase was 0.89 (p for trend=0.30) until 1995 and 0.09 thereafter (p for trend <0.0001). Among women, the increasing trend of mortality disparities was similarly observed in alternative absolute and relative inequality measures. Among men, changes in relative mortality disparities were also constantly shown by alternative measures, whereas the increasing trends were less consistent across alternative absolute measures (online supplementary table S2).

DISCUSSION
After the middle of the 1990s, the rate of reduction in mortality rates in the lowest income groups slowed down among men and increased among women. The trends of overall income-based inequalities reflected these trends in the lowest income groups, especially in absolute terms, suggesting that the absolute inequality trends were largely driven by trends in the lowest income groups. Consequently, mortality differentials by income have widened since around 1995 among men, whereas among women a continuous increase in mortality disparities was observed between 1990 and 2004. The pace of increase in mortality disparities was not fast among men (only 2.88/100 000 population annually), but it might be slightly faster for women (annual increase=9.26) than men. In relative terms, the mortality inequality across income groups showed a continuous rise in both genders. Lundberg et al12 compared the periods 1986–1987 and 1994–1995 in terms of the gaps in self-rated health across different sociodemographic groups, but did not find any widening of health disparities. Similar results were obtained in other studies in Sweden and other Nordic countries.10 17 The advantages of the present study over these are that it used register-based data with very little missing data for the entire Swedish working-age population over more years, it had more objective health outcome measures (mortality) and it used register-based total population data. Our study added new findings: increasing income-based inequality in mortality in the working-age population that had important implications compared with earlier studies in Scandinavia.

We found a potentially changing trend in mortality among the male cohorts after 1994, with a subsequent continuous increase in mortality inequality among the working-age population. Possible explanations for the trends are as follows. First, it may be associated with the economic recession of the early 1990s. An economic recession may directly affect individual socioeconomic and living conditions, influencing physical and
mental health, and changing behaviour that influences health (eg, diet, smoking, drinking and healthcare utilisation). In Sweden, however, the economy and the labour market recovered before the mortality inequality started to increase after 1995. Therefore, the widening inequalities in income-related mortality do not seem to be fully attributable to the direct effects of the recession. Second, macroeconomic structural reforms to ameliorate the recession may account for the trend observed. Several studies have shown increasing health inequalities or deteriorating health in specific social groups during and

Table 1 Basic demographic characteristics, number of deaths of the working-age population (30–64 years) and mortality rate (per 100 000 population) in Sweden in selected cohorts (full data available online)

	1990 Cohort	1997 Cohort	2004 Cohort						
	Population	Mortality	Mortality rate	Population	Mortality	Mortality rate	Population	Mortality	Mortality rate
Men									
Total	1 883 651	7448	395.4	2 008 500	6726	334.9	2 022 279	6547	323.7
Age group									
30–34	289 810	274	94.5	304 483	212	69.6	266 632	174	65.3
35–39	288 216	396	137.4	310 002	302	97.4	288 074	224	77.8
40–44	298 383	547	183.3	286 755	397	138.4	318 034	410	128.9
45–49	332 420	914	275.0	285 665	698	244.3	280 576	563	200.7
50–54	266 021	1203	452.2	314 010	1184	377.1	279 724	976	348.9
55–59	212 356	1633	769.0	291 917	1730	592.6	287 480	1530	532.2
60–64	196 445	2481	1262.9	215 668	2203	1 021.5	301 759	2670	884.8
Income									
Quintile 1	376 601	2741	727.8	401 072	2322	578.9	403 759	2714	672.2
Quintile 2	375 140	1768	471.3	401 527	1636	407.4	405 003	1454	359.0
Quintile 3	377 854	1154	305.4	401 422	1027	255.8	404 291	931	230.3
Quintile 4	377 091	941	249.5	402 636	894	222.0	404 470	725	179.2
Quintile 5	376 965	844	223.9	401 843	847	210.8	404 756	723	178.6
Women									
Total	1 836 890	4269	232.4	1 952 129	4408	225.8	1 970 943	4106	208.3
Age group									
30–34	273 366	135	49.4	290 640	69	23.7	255 235	74	29.0
35–39	275 741	178	64.6	294 372	186	63.2	278 090	146	52.5
40–44	287 287	297	103.4	276 022	250	90.6	304 049	229	75.3
45–49	320 325	592	184.8	278 132	440	158.2	272 187	361	132.6
50–54	256 854	703	273.7	308 160	792	257.0	274 930	601	218.6
55–59	213 980	919	429.5	284 869	1233	432.8	286 022	1003	350.7
60–64	209 337	1445	690.3	219 934	1438	653.8	300 430	1692	563.2
Income									
Quintile 1	365 773	1220	333.5	390 227	1344	344.4	393 782	1373	348.7
Quintile 2	367 228	1014	276.1	389 124	1089	279.9	393 914	1008	255.9
Quintile 3	367 080	755	205.7	390 368	764	195.7	393 373	658	167.3
Quintile 4	368 545	649	176.1	391 809	624	159.3	395 217	548	138.7
Quintile 5 (highest)	368 264	631	171.3	390 601	587	150.3	394 657	519	131.5

![Figure 1](http://jech.bmj.com/)

Figure 1 Trends in age-standardised mortality rates by income quintile (Q5 is highest): Swedish men and women aged 30–64 years, 1990–2004. Income data were based on the individual disposable income at a point 3 years prior to death.
after recessions. Third, the expanding health inequality may be attributable to other factors that occurred parallel to the recession and subsequent sociopolitical changes. It is known that widening health disparities are a recent global trend and have been observed even in countries with continual economic development, though potential factors attributable to this global trend have rarely been investigated.

Critically, we found that the widening mortality inequality was mostly attributed to increasing mortality rates among the poorest quintile. This may be explained by ‘materialistic’ and ‘psychosocial’ pathways. Materialistic pathways relate to increased mortality among the poorest, which may be associated with weakened social protection for the financially vulnerable, including cutbacks in social services, unemployment compensation or sick pay, potentially leading to less access to benefits and services necessary to maintain health. Psychosocial pathways relate to increased psychosocial stresses, perhaps because income inequality continued to expand from the 1990s, leading to a greater sense of relative deprivation among the poorest group. Another possibility is a reverse causation, that is, unhealthy individuals may have experienced income reductions before they died. Weakened social protection may negatively affect the ability of ill individuals (eg, having chronic diseases such as diabetes) to continue working and earn income. Downward income mobility due to poor health may explain our findings to some extent. We tried to address this problem in part by excluding deaths occurring in the first 2 years of follow-up. Moreover, there could be compositional changes in the income groups over time. For example, the absolute standing of each income group today may be different from that in earlier years. To address these issues, more sophisticated approaches, for example, a longitudinal panel data analysis using continuous income data, would be necessary.

The relative increase in mortality rates among the lowest income quintile was larger for women than for men (online supplementary figure). This is consistent with the results of recent studies which showed faster expansion of education-based inequalities in life expectancy among women than men.

Figure 2 Trends in the absolute and relative health inequality indices: Swedish men and women aged 30–64 years, 1990–2004. Error bars represent the 95% CIs. ASMR, age-standardised mortality rate; Q, quintile.

Figure 3 Joinpoint models selected as the regressions on the trends in income-based disparities in age-standardised mortality rates (ASMR) among Swedish men and women aged 30–64 years, 1990–2004 (Q, quintile).
Although further studies of these potential gender differences are required, we speculate that they may be associated with gender differences in working conditions. That is, although welfare benefits have been equal for men and women in Sweden, more women worked in the public sector, which was particularly affected by governmental cutbacks.30 In the late 1990s, the number of women on long-term sick leave because of job-related mental illnesses increased dramatically. Vingård et al31 reported that a strained financial situation and excess physical and mental demands at work were the leading risk factors for this change.

In addition to the aforementioned limitations, residual confounding by factors affecting health over the life course is also likely, including education, parental influence and lifestyle. Another point to consider carefully is that the living standard of older age groups should also be evaluated.

What is already known on this subject

- Persistent or even increasing health inequality has been observed since the 1990s in many developed countries.
- In Sweden, short-term evaluation studies have shown no expansion of health inequalities by income in the 1990s, when the country experienced its economic recession since 1930.

What this study adds

- Reductions in mortality rates of working-age men and women in the lowest income quintile were slower than those with higher incomes between 1990 and 2007.
- Consequently, income-based inequality in mortality rates increased by 32\% among men and 87\% among women over this period, in relative terms.
- The recent trend of increasing health inequality may exist even in countries like Sweden with good welfare provision.

Contributors NK was responsible for the study conception, design, analysis and interpretation of data, as well as the drafting of the article. MÅY and MR supported NK in study conception and drafted and intensively revised the manuscript.

Funding Ministry of Education, Culture, Sports, Science and Technology, MEXT, Japan (No: 25235052), Ministry of Health, Labour and Welfare, Japan (H24-chikyukibo-ippan-009); Stiftelsen Riksbankens Jubileumsfond.

Competing interests NK had support from the Ministry of Education, Culture, Sports, Science and Technology, MEXT, Japan (No: 25235052) and Ministry of Health, Labour and Welfare, Japan (H24-chikyukibo-ippan-009) for the submitted work. MÅY had support from Stiftelsen Riksbankens Jubileumsfond, Sweden and MR had support from the Swedish Research Council (grant no. VR 421-2011-1649).

Ethics approval Ethical permission (no 02-481) was provided by the Regional Ethics Committee at Karolinska Institutet in Stockholm.

Provenance and peer review Not commissioned; externally peer reviewed.

Authors’ access to data All authors had full access to all of the data in the study and can take responsibility for the integrity of the data and the accuracy of the data analysis.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/

REFERENCES

1. Eckersley R. Is modern Western culture a health hazard? Int J Epidemiol 2006;35:252–8.
2. Fritzell J, Hertzman JB, Bäckman O, et al. Sweden: increasing income inequalities and changing social relations. In: Nolan B, Salverda W, Checchi D. eds. Changing inequalities and societal impacts in rich countries thirty countries’ experiences. Oxford University Press, 2014:641–65.
3. Kondo N, Sembajwe G, Kawachi I, et al. Income inequality, mortality, and self rated health: meta-analysis of multilevel studies. Br Med J 2009;339:b4471–1.
4. Kondo N, Subramanian SV, Kawachi I, et al. Economic recession and health inequalities in Japan: analysis with a national sample, 1986–2001. J Epidemiol Community Health 2008;62:869–75.
5. Mackenbach JP, Looman CW. Changing patterns of mortality in 25 European countries and their economic and political correlates, 1955–1989. Int J Public Health 2013;58:811–23.
Research report

6. Blakely T, Tobias M, Atkinson J. Inequalities in mortality during and after restructuring of the New Zealand economy: repeated cohort studies. Br Med J 2008;336:371–5.
7. Khang YH, Kim HR. Explaining socioeconomic inequality in mortality among South Koreans: an examination of multiple pathways in a nationally representative longitudinal study. Int J Epidemiol 2005;34:630–7.
8. Wada K, Kondo N, Gilmour S, et al. Trends in socioeconomic disparities in stroke mortality in six European countries between 1981–1985 and 1991–1995. Am J Epidemiol 2005;161:52–61.
9. Esping-Andersen G. The three worlds of welfare capitalism. Princeton: Princeton University Press, 1990.
10. Lahelma E, Kivela K, Roos E, et al. Analysing changes of health inequalities in the Nordic welfare states. Soc Sci Med 2002;55:609–25.
11. Wada K, Kondo N, Gilmour S, et al. Trends in cause specific mortality across occupations in Japanese men of working age during period of economic stagnation, 1980–2005: retrospective cohort study. BMJ 2012;344:e1191.
12. Lundberg O, Diderichsen F, Yngve MA. Changing health inequalities in a changing society? Sweden in the mid-1980s and mid-1990s. Scand J Public Health Suppl 2001;55:31–9.
13. Statistics Sweden. Population statistics (Befolkningsstatistik). Stockholm: Statistics Sweden, 2013. http://www.scb.se/Pages/ProductTables.aspx?id=25795.
14. Kim H, Fay M, Feuer E, et al. Permutation tests for joinpoint regression with applications to cancer rates. Stat Med 2000;19:335–51.
15. Joinpoint Regression Program, Version 4.0.4—May 2013: Statistical Methodology and Applications Branch, Surveillance Research Program, National Cancer Institute.
16. Harper S, Lynch J, Meesman S, et al. An overview of methods for monitoring social disparities in cancer with an example using trends in lung cancer incidence by socioeconomic position and race-ethnicity, 1992–2004. Am J Epidemiol 2008;167:889–907.
17. Krokstad S, Kunst AE, Westin S. Trends in health inequalities by educational level in a Norwegian total population study. J Epidemiol Community Health 2002;56:375–80.
18. Åberg Yngwe M, Fritzell J, Burstrom B, et al. Comparison or consumption? Distinguishing between different effects of income on health in Nordic welfare states. Soc Sci Med 2005;61:627–35.
19. Lynch JW, Smith GD, Kaplan GA, et al. Income inequality and mortality: importance to health of individual income, psychosocial environment, or material conditions. Br Med J 2000;320:1200–4.
20. Saito M, Kondo N, Kondo K, et al. Gender differences on the impacts of social exclusion on mortality among older Japanese: AGES cohort study. Soc Sci Med 2012;75:940–5.
21. Kondo N, Kawachi I, Hirai H, et al. Relative deprivation and incident functional disability among older Japanese women and men: prospective cohort study. J Epidemiol Community Health 2009;63:461–7.
22. Kondo N, Kawachi I, Subramanian SV, et al. Do social comparisons explain the association between income inequality and health? Relative deprivation and perceived health among male and female Japanese individuals. Soc Sci Med 2008;67:982–7.
23. Åberg Yngwe M, Lundberg O. Assessing the contribution of relative deprivation to income differences in health. In: Fritzell J, Lundberg O, eds. Health inequalities and welfare resources continuity and change in Sweden. Bristol: Policy Press, 2007:135–56.
24. Wilkinson RG, Pickett KE. Income inequality and population health: a review and explanation of the evidence. Soc Sci Med 2006;62:1768–84.
25. Åberg Yngwe M, Kondo N, Hägg S, et al. Relative deprivation and mortality—a longitudinal study in a Swedish population of 4.7 million, 1990–2006. BMC Public Health 2012;12:664.
26. Smith JP. The impact of socioeconomic status on health over the life-course. J Hum Resour 2007;42:739–64.
27. Rostila M, Toivanen S. Den öratvista hälsan: om socioekonomiska skillnader i hälsa och livslängd. Stockholm: Liber, 2012.
28. Fritzell J, Lundberg O. Health inequalities and welfare resources: continuity and change in Sweden. Bristol: Policy Press, 2007.
29. Krawdal H. Widening educational differences in cancer survival in Norway. Eur J Public Health 2014;24:270–5.
30. Anghel B, Rica Sdl, Dolado JJ. The effect of public sector employment on women’s labour market outcomes. IZA discussion paper series (Institute for the Study of Labor), vol 5825. 2011:1–60.
31. Vingård E, Lindberg P, Josephson M, et al. Long-term sick-listing among women in the public sector and its associations with age, social situation, lifestyle, and work factors: a three-year follow-up study. Scand J Public Health 2005;33:370–5.
32. Khang Y-H, Lynch JW, Kaplan GA. Impact of economic crisis on cause-specific mortality in South Korea. Int J Epidemiol 2005;34:1291–301.
33. Ruhm CJ. Economic conditions and alcohol problems. J Health Econ 1995;14:583–603.
34. Tapir Granados JA. Macroeconomic fluctuations and mortality in postwar Japan. Demography 2008;45:323–43.
35. Kondo N. Socioeconomic disparities and health: impacts and mechanisms. J Epidemiol 2012;22:3–6.
36. Gertham Ug, Johannesson M. Business cycles and mortality: results from Swedish microdata. Soc Sci Med 2005;60:205–18.
37. Marmot M, Allen J, Bell R, et al. WHO European review of social determinants of health and the health divide. Lancet 2012;380:1011–29.
38. Mackenbach JP. The persistence of health inequalities in modern welfare states: the explanation of a paradox. Soc Sci Med 2012;75:761–9.
39. Marmot M, Allen J, Goldblatt P, et al. Fair society, healthy lives: the Marmot Review, strategic review of health inequalities in England post-2010. London: The Marmot Review, 2010.
Rising inequality in mortality among working-age men and women in Sweden: a national registry-based repeated cohort study, 1990–2007
Naoki Kondo, Mikael Rostila and Monica Åberg Yngwe

J Epidemiol Community Health published online August 20, 2014

Updated information and services can be found at:
http://jech.bmj.com/content/early/2014/08/20/jech-2013-203619

These include:

Supplementary Material
Supplementary material can be found at:
http://jech.bmj.com/content/suppl/2014/08/20/jech-2013-203619.DC1

References
This article cites 30 articles, 7 of which you can access for free at:
http://jech.bmj.com/content/early/2014/08/20/jech-2013-203619#BIBL

Open Access
This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Open access (298)
Epidemiologic studies (2838)
Mortality and morbidity (1463)
Cohort studies (794)
Health service research (832)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/