Chitin Synthesis in *Saccharomyces cerevisiae* in Response to Supplementation of Growth Medium with Glucosamine and Cell Wall Stress

Dorota A. Bulik,1 Mariusz Olczak,1† Hector A. Lucero,1 Barbara C. Osmond,1 Phillips W. Robbins,1 and Charles A. Specht2

Department of Molecular and Cell Biology, School of Dental Medicine, and Department of Medicine, School of Medicine, Boston University, Boston, Massachusetts 02118

Received 26 February 2003/Accepted 10 July 2003

In *Saccharomyces cerevisiae* most chitin is synthesized by Chs3p, which deposits chitin in the lateral cell wall and in the bud-neck region during cell division. We have recently found that addition of glucosamine (GlcN) to the growth medium leads to a three- to fourfold increase in cell wall chitin levels. We compared this result to the increases in cellular chitin levels associated with cell wall stress and with treatment of yeast with mating pheromone. Since all three phenomena lead to increases in precursors of chitin, we hypothesized that chitin synthesis is at least in part directly regulated by the size of this pool. This hypothesis was strengthened by our finding that addition of GlcN to the growth medium causes a rapid increase in chitin synthesis without any pronounced change in the expression of more than 6,000 genes monitored with Affymetrix gene expression chips. In other studies we found that the specific activity of Chs3p is higher in the total membrane fractions from cells grown in GlcN and from mutants with weakened cell walls. Sucrose gradient analysis shows that Chs3p is present in an inactive form in what may be Golgi compartments but as an active enzyme in other intracellular membrane-bound vesicles, as well as in the plasma membrane. We conclude that Chs3p-dependent chitin synthesis in *S. cerevisiae* is regulated both by the levels of intermediates of the UDP-GlcNAc biosynthetic pathway and by an increase in the activity of the enzyme in the plasma membrane.

Chitin is a linear polysaccharide composed of β(1→4)-linked N-acetylglucosamine (GlcNAc) residues. In the yeast *Saccharomyces cerevisiae*, chitin is an important component of the cell wall and septum. Three chitin synthases, Chs1p, Chs2p, and Chs3p, have the same polymerizing activity but deposit chitin at different times and at different locations during the cell cycle. Chs1p is thought to be a repair enzyme that adds chitin to the birth scar on the daughter cell at the end of cytokinesis. Chs2p is responsible for synthesis of chitin in the primary septum. Chs3p deposits chitin as a ring at the base of an emerging bud and is retained by the mother cell (bud scar) after cell division. Chs3p-generated chitin is also deposited in the lateral wall (reviewed in references 7 and 21). When the cell wall is weakened by mutations (“cell wall stress”) (41, 42) or otherwise modified, as in treatment with mating pheromones (39, 46), chitin is deposited in the lateral wall as a reinforcing polymer.

Chs3p synthesizes about 90% of the chitin in *S. cerevisiae*. Levels of Chs3p are virtually unaltered during the yeast life cycle (9). However, temporal changes in its subcellular location result from being secreted to and endocytosed from the plasma membrane. Chs3p transits through the endoplasmic reticulum/Golgi secretory pathway to the plasma membrane early in the formation of a daughter cell. Once the daughter cell is full size, Chs3p is retrieved by endocytosis into “chitosomes,” intracellular vesicles related to the trans-Golgi network and early endosomes (22, 59). Several proteins—Chs4p (Skt5p), Chs5p, Chs6p, and Chs7p—regulate Chs3p enzymatic activity and trafficking through the endoplasmic reticulum to the plasma membrane (reviewed in references 7 and 44). Loss of any of these proteins results in a reduction of the chitin concentration in the cell wall to levels comparable to those observed when Chs3p itself is absent. Chs4p serves a dual role of binding with Chs3p to form an active complex and localizing the active complex to the bud-neck region by also binding to the septin ring through Bni4p (13). The resulting synthesis of a ring of chitin reinforces the bud-neck region during cell division. For vegetatively grown cells, the amount of Chs4p is limiting and therefore impacts chitin synthesis by its availability to complex with Chs3p (38). Chs7p is involved specifically in the exit of Chs3p from the endoplasmic reticulum (51). Chs5p and Chs6p have been identified as components required for transport of secretory and/or endocytic vesicles to the plasma membrane (45, 52, 60). The clathrin AP-1 complex has recently been shown to also be important in the process of retrieval of Chs3p by endocytosis and its recycling into the secretory pathway (52).

Information concerning the molecular activation and trafficking of Chs3p to the sites where it produces chitin is emerging, but details remain to be elucidated. Data from our laboratory and other groups show that chitin levels in *S. cerevisiae* increase in response to (i) treatment of mating-type a cells with α-factor, a mating pheromone (39, 46; this study), probably as a result of modifications of cell wall architecture in preparation for mating; (ii) mutations resulting in impairment of cell wall integrity, e.g., gas1, fks1, kre6, mnn9, and knr4 mutations (16,
28, 40, 41, 42; this study); or (iii) addition of glucosamine (GlcN) to the growth medium, probably as a result of an increased intracellular pool of metabolites (2; this study).

Chitin passes through the plasma membrane to the extraacellular cell wall by the polymerizing activities of chitin synthases with UDP-GlcNAc as a substrate. Bio- synthesis of UDP-GlcNAc from glucose, however, takes place in the cytosol. Fructose-6-phosphate is converted to GlcN-6-phosphate (GlcN-6-P) by GlcN-6-P synthase (encoded by GFA1), which is then acetylated by GlcN-6-P acetyltransferase (encoded by GNA1) to GlcNAC-6-P, followed by the conversion of the latter to GlcNAC-1-P, a reaction catalyzed by acetylglucosamine phosphomutase (encoded by AGM1 [PCM1]). The synthesis of UDP-GlcNAc from GlcNAC-1-P and UTP is catalyzed by UDP-GlcNAc pyrophosphorylase (encoded by UAP1 [QRI1]). Where chitin levels have been shown to increase following α-factor treatment, transcriptional profiling has revealed that GFA1 and AGM1 are up-regulated; GNA1 and UAP1 transcript levels remain unchanged. All four genes encoding enzymes involved in UDP-GlcNAc biosynthesis are up-regulated to various degrees during meiosis and sporulation, when new chitin is synthesized for the spore wall (YPD Database [http://www.inceyte.com/control/researchproducts/insilico/proteome]; KEGG Metabolic Pathways [www.genome.ad.jp/kegg/pathway/map/map00530.html]). It is now recognized that this pathway is highly regulated in yeast and in higher eukaryotes, since UDP-GlcNAc serves as a donor nucleotide sugar for at least four groups of compounds: N-linked glycans, glycosylphosphatidylinositol (GPI)-anchored proteins, chitin, and glycolipids. Treatment of yeast cells with α-factor causes a three- to fivefold increase in the chitin level, associated with an increase in the level of the UDP-GlcNAc precursor pool (39, 46). Gfa1p, the first enzyme in the pathway, is a key step in UDP-GlcNAc biosynthesis; it is regulated at the transcriptional and posttranscriptional levels. Its activity increases during hyphal growth (36) and in S. cerevisiae during mating, which correlates with an increase in chitin formation (54). The enzyme is inhibited by UDP-GlcNAc in C. albicans (36), Drosophila melanogaster (20), and bacteria (26). Gfa1p activity is regulated by a protein kinase(s); the protein kinase A-dependent phosphorylated form of Gfa1p appears to have a higher activity than the unphosphorylated protein (20, 57). Protein phosphatase 1, encoded in Saccharomyces by GLC7, is a strong repressor of GFA1 transcription. When Gcl7p activity is blocked, GFA1 transcription increases (57).

In this paper we report our recent findings on the factors that contribute to the regulation of chitin synthesis. We studied a number of single and double mutants, which elevate or decrease chitin levels, and examined the effect on chitin levels of addition of GlcN or α-factor to the growth medium. We show here that there is a direct correlation between Gfa1p activity, the pool of metabolic intermediates, and chitin synthesis. Finally, since the increase in chitin levels associated with treatment of wild-type cells with GlcN is similar to the increase in chitin levels associated with the cell wall stress response, we investigated the relevant whole-genome transcription responses.

Yeast strains used in these studies. Strains of S. cerevisiae either were made by the Saccharomyces Genome Deletion Project (55; www.deletion.stanford.edu/cgi-bin/deletion/search3.pl) and are available from Research Genetics, a division of Invitrogen (San Diego, Calif.), or were from our stock collection as described in Table 1. Mating, sporulation, and tetrad dissection were carried out by standard methods. Due to the poor sporulation of diploids derived from the Research Genetics strains, conditions were modified as described by L. Riles and M. Curtiss in “Sporulation Method for BY4743” (www.sequence.stanford.edu/group/yeast_deletion_project/spo.html). Media were used YPD medium (1% Bacto Yeast Extract, 2% Bacto Peptone, 2% glucose) and SD minimal medium (0.7% Bacto Yeast Nitrogen Base without amino acids, 0.2% SCM supplement [Bufferad, Inc., Lake Bluff, Ill.], 2% glucose) with or without 1.5% agar.

α-Factor induction. MATa haploid strains were shaken overnight in YPD medium at 30°C, diluted 1:100 into fresh YPD medium (optical density at 600 nm [OD600], 0.1), and grown 4 h to an OD of 0.4 to 0.5, at which time the medium was adjusted to contain 5 μM α-factor (Sigma-Aldrich, St. Louis, Mo.). At hourly intervals after the addition of α-factor, an aliquot of cells was harvested as described below to determine the chitin content.

Preparation of cell extracts for enzyme measurements. Yeast cells were grown in standard YPD medium at 30°C and harvested in the logarithmic phase (OD600, 1.5 to 2.0) by centrifugation at 1,800 × g for 10 min, and the supernatant was discarded. The pellet was suspended in 1 ml of phosphate-buffered saline and spun again, and the buffer was discarded. Each pellet was suspended in 0.1 ml of McIlwain’s buffer, pH 6.0, and 5 μl of purified Streptomyces phomopsis chitinase-63 (5 mg/ml in phosphate-buffered saline) was added to hydrolyze chitin to GlcNAc; samples were incubated for 24 h at 37°C. Ten microliters of 0.27 M sodium borate, pH 9.0, and 10 μl of sample supernatant were combined in 0.2-ml PCR tubes. Samples were heated in a thermocycler (Techne Inc., Princeton, N.J.) to 99.9°C for about 60 s, mixed gently, and incubated further at 99.9°C for 10 min. Immediately upon cooling to room temperature, 100 μl of freshly diluted DMAB solution (Ehrlich’s reagent, consisting of 10 g of p-dimethylaminobenzaldehyde in 12.5 ml of concentrated HCl and 87.5 ml of glacial acetic acid, diluted 1:10 with glacial acetic acid) was added to samples, which were incubated at 37°C for 20 min. Seventy-five microliters was transferred to 96-well low-evaporation microtiter plates, and absorbance at 585 nm was recorded. Standard curves were prepared from stocks of 0.2 to 2.0 mM GlcNAc.

Measurement of the chitin content of cells. The Morgan-Elson method (29) for colorimetric determination of GlcNAc was adapted for microplate readers in measurements of cellular chitin levels. Cultures for chitin determination were made from those initially grown to stationary phase in liquid YPD medium and then diluted 1:100 in fresh medium and incubated at 30°C with shaking for 18 to 22 h. Typically, 1 ml of culture was spun in a tared microcentrifuge tube and then washed with and with 1 ml of water, and all residual liquid and the pellet to yield 10 to 25 mg (wet weight) of cells. The cells were suspended in 0.5 ml of 6% KOH and heated at 80°C for 10 min. Samples were centrifuged at 20,000 × g for 10 min, and the supernatant was discarded. The pellet was suspended in 1 ml of phosphate-buffered saline and spun again, and the buffer was discarded. Each pellet was suspended in 0.1 ml of McIlwain’s buffer, pH 6.0, and 5 μl of purified Streptomyces phomopsis chitinase-63 (5 mg/ml in phosphate-buffered saline) was added to hydrolyze chitin to GlcNAc; samples were incubated for 24 h at 37°C. Ten microliters of 0.27 M sodium borate, pH 9.0, and 10 μl of sample supernatant were combined in 0.2-ml PCR tubes. Samples were heated in a thermocycler (Techne Inc., Princeton, N.J.) to 99.9°C for about 60 s, mixed gently, and incubated further at 99.9°C for 10 min. Immediately upon cooling to room temperature, 100 μl of freshly diluted DMAB solution (Ehrlich’s reagent, consisting of 10 g of p-dimethylaminobenzaldehyde in 12.5 ml of concentrated HCl and 87.5 ml of glacial acetic acid, diluted 1:10 with glacial acetic acid) was added to samples, which were incubated at 37°C for 20 min. Seventy-five microliters was transferred to 96-well low-evaporation microtiter plates, and absorbance at 585 nm was recorded. Standard curves were prepared from stocks of 0.2 to 2.0 mM GlcNAc.
performed in triplicate in two independent preparations. The reaction was shown to be linear with respect to time and enzyme concentration. Specific enzyme activity is expressed as micromoles of GlcN-6-P formed per minute per milligram of protein.

Gfap1 overexpression in a gfa1 deletion mutant. A haploid strain with the gfa1 deletion was obtained by sporulation of a GFA1/gfa1 diploid strain (24954). Because the gfa1 deletion is lethal, progeny (BY4741 gfa1Δ) were identified as auxotrophic for GlcN and were maintained in liquid and solid media supplemented with 5 mM GlcN. A DNA fragment containing the GFA1 gene with 600 bp upstream of the open reading frame (ORF) was amplified by PCR from yeast genomic DNA by using forward primer 5'-GAGCTCGAATTCCGGAG TTTGTA3' and reverse primer 5'-TTATTCGACGTTAACCAGATTAGCC-3'. The PCR product of 2.936 kb was directly cloned into the high-copy-number yeast vector pYES2.1 TOPO TA (Invitrogen). Standard methods were used for transformation of *Escherichia coli* and for preparation of plasmid DNA. Competent cells of strain BY4741 gfa1Δ were transformed chemically by using the Frozen-EZ Yeast Transformation II kit (Zymo Research, Orange, Calif.). Positive clones were selected on YPD agar medium, on which only cells expressing functional Gfa1p can grow.

Measurements of intracellular UDP-GlcNAc. YPD medium (20 ml) was inoculated with overnight cultures to an OD₆₀₀ of 0.4 to 0.6, and cultures were then grown for 5 to 7 h at 30°C to an OD₆₀₀ of 1.8 to 2.3. Cells were harvested by centrifugation for 5 min at 1,800 × g at room temperature and were then grown for 5 to 7 h at 30°C, then grown for 5 to 7 h at 30°C, and then grown for 5 to 7 h at 30°C. Cells were

Table 1: Yeast strains

Strain	Genotype	Reference or source
PRY242	MATa ura3-52 lys2-801 his3Δ200 trp1Δ1 leu2-3,112	36a
PRY488	MATa ura3-52 lys2-801 his3Δ200 trp1Δ1 leu2-3,112 cts1::TRP1	36a
PRY88.1D	MATa ura3-52 lys2-801 ade2-101 his3Δ201 leu2Δ1	40
PRY533	MATa ura3-52 lys2-801 ade2-101 his3Δ201 trp1Δ1 leu2Δ1 chs3::LEU2	40
PRY408	MATa ura3-52 lys2-801 ade2-101 his3Δ200 trp1Δ1 leu2Δ1 chs6::TRP1	40
OCY6	MATa ura3-52 lys2-801 ade2-101 his3Δ200 trp1Δ1 leu2Δ1 kre5::HIS3	8a
BY4741	MATa his3Δ1 leu2Δ0 met15Δ0 uraΔ0	Research Genetics
BY4742	MATa his3Δ1 leu2Δ0 met15Δ0 uraΔ0	Research Genetics
BY4743	MATa (BY4741/BY4742)	Research Genetics
2020	MATa his3Δ1 leu2Δ0 met15Δ0 uraΔ0 chs1::kanMX4	This work
3175	MATa his3Δ1 leu2Δ0 met15Δ0 uraΔ0 chs2::kanMX4	This work
13175	MATa his3Δ1 leu2Δ0 lys2Δ0 uraΔ0 chs2::kanMX4	This work
1360	MATa his3Δ1 leu2Δ0 met15Δ0 uraΔ0 chs3::kanMX4	Research Genetics
13160	MATa his3Δ1 leu2Δ0 lys2Δ0 uraΔ0 chs3::kanMX4	Research Genetics
9087	MATa his3Δ1 leu2Δ0 met15Δ0 uraΔ0 chs4::kanMX4	Research Genetics
13087	MATa his3Δ1 leu2Δ0 lys2Δ0 uraΔ0 chs4::kanMX4	Research Genetics
529	MATa his3Δ1 leu2Δ0 met15Δ0 uraΔ0 chs5::kanMX4	Research Genetics
15239	MATa his3Δ1 leu2Δ0 lys2Δ0 uraΔ0 chs5::kanMX4	Research Genetics
1324	MATa his3Δ1 leu2Δ0 met15Δ0 uraΔ0 chs6::kanMX4	Research Genetics
11324	MATa his3Δ1 leu2Δ0 lys2Δ0 uraΔ0 chs6::kanMX4	Research Genetics
2835	MATa his3Δ1 leu2Δ0 met15Δ0 uraΔ0 chs7::kanMX4	Research Genetics
12835	MATa his3Δ1 leu2Δ0 lys2Δ0 uraΔ0 chs7::kanMX4	Research Genetics
5251	MATa his3Δ1 leu2Δ0 met15Δ0 uraΔ0 fks1::kanMX4	Research Genetics
15251	MATa his3Δ1 leu2Δ0 lys2Δ0 uraΔ0 fks1::kanMX4	Research Genetics
897	MATa his3Δ1 leu2Δ0 met15Δ0 uraΔ0 gas1::kanMX4	Research Genetics
10897	MATa his3Δ1 leu2Δ0 lys2Δ0 uraΔ0 gas1::kanMX4	Research Genetics
5574	MATa his3Δ1 leu2Δ0 met15Δ0 uraΔ0 kre6::kanMX4	Research Genetics
15574	MATa his3Δ1 leu2Δ0 lys2Δ0 uraΔ0 kre6::kanMX4	Research Genetics
2778	MATa his3Δ1 leu2Δ0 met15Δ0 uraΔ0 mnr9::kanMX4	Research Genetics
277	MATa his3Δ1 leu2Δ0 met15Δ0 uraΔ0 anp1::kanMX4	Research Genetics
7116	MATa his3Δ1 leu2Δ0 met15Δ0 uraΔ0 van1::kanMX4	Research Genetics
4406	MATa his3Δ1 leu2Δ0 met15Δ0 uraΔ0 och1::kanMX4	Research Genetics
14406	MATa his3Δ1 leu2Δ0 lys2Δ0 uraΔ0 och1::kanMX4	Research Genetics
5882	MATa his3Δ1 leu2Δ0 met15Δ0 uraΔ0 kre6::kanMX4	Research Genetics
15882	MATa his3Δ1 leu2Δ0 lys2Δ0 uraΔ0 kre6::kanMX4	Research Genetics
14317	MATa his3Δ1 leu2Δ0 lys2Δ0 uraΔ0 kre2::kanMX4	Research Genetics
3792	MATa his3Δ1 leu2Δ0 met15Δ0 uraΔ0 pmr1::kanMX4	Research Genetics
13792	MATa his3Δ1 leu2Δ0 lys2Δ0 uraΔ0 pmr1::kanMX4	Research Genetics
385	MATa his3Δ1 leu2Δ0 met15Δ0 uraΔ0 pmr2::kanMX4	Research Genetics
10385	MATa his3Δ1 leu2Δ0 lys2Δ0 uraΔ0 pmr2::kanMX4	Research Genetics
1974	MATa his3Δ1 leu2Δ0 met15Δ0 uraΔ0 kex2::kanMX4	Research Genetics
4572	MATa his3Δ1 leu2Δ0 met15Δ0 uraΔ0 chc1::kanMX4	Research Genetics
14572	MATa his3Δ1 leu2Δ0 lys2Δ0 uraΔ0 chc1::kanMX4	Research Genetics
14797	MATa his3Δ1 leu2Δ0 met15Δ0 uraΔ0 chc1::kanMX4	Research Genetics
11901	MATa his3Δ1 leu2Δ0 lys2Δ0 uraΔ0 chc1::kanMX4	Research Genetics
24954	MATa (GFA1/gfa1::kanMX4) (BY4743)	Research Genetics
174.1C	MATa his3Δ1 leu2Δ0 uraΔ0 gfa1::kanMX4	This work
174.1D	MATa his3Δ1 leu2Δ0 uraΔ0 gfa1::kanMX4	This work
184.4A	MATa his3Δ1 leu2Δ0 lys2Δ0 met15Δ0 uraΔ0 gas1::kanMX4 chs5::kanMX4	This work
184.4B	MATa his3Δ1 leu2Δ0 lys2Δ0 uraΔ0 gas1::kanMX4 chs5::kanMX4	This work
183.1C	MATa his3Δ1 leu2Δ0 met15Δ0 uraΔ0 gfa1::kanMX4 chs6::kanMX4	This work
183.3C	MATa his3Δ1 leu2Δ0 lys2Δ0 uraΔ0 gfa1::kanMX4 chs6::kanMX4	This work
175.2C	MATa his3Δ1 leu2Δ0 lys2Δ0 met15Δ0 uraΔ0 fks1::kanMX4 chs6::kanMX4	This work
177.1D	MATa his3Δ1 leu2Δ0 uraΔ0 fks1::kanMX4 chs6::kanMX4	This work
were synthesized from total RNA (10 to 40 ng) according to algorithms implemented in MAS 5.0 software. The arrays were then processed by using Microarray Suite 5.0 (MAS 5.0) instructions. Following data acquisition, the scanned images were subjected to densitometry, and quantitation was carried out with Quantity One software (Bio-Rad). GDPase (Gda1p) activity was measured as previously described (56).

RESULTS

Chitin synthesis in response to cell wall stress. We have begun a survey of full-ORF-deletion strains for their chitin content, concentrating principally on those available through Research Genetics. This has minimized genetic background effects and made possible a ranking of the effects of gene loss on chitin synthesis. It has also avoided complications that would remain undefined if strains had genes mutated by other means. Work in several laboratories, including our own, has shown that mutations that affect cell wall structure and integrity lead to extensive deposition of chitin in the lateral wall (11, 28, 41, 42; this study). Some typical results for chitin levels in cells with defects in glucan or mannan synthesis or in cell wall cross-linking are shown in Fig. 1. It is also apparent from this preliminary survey that deletions of genes that impact endocytosis and/or retention of Chs3p in intracellular vesicles yield strains that have high chitin contents. This suggests that Chs3p is being retained at the plasma membrane and/or that more Chs3p is being directed to the plasma membrane in these strains. It is also reasonable to consider that cells respond to cell wall stress by redirecting their intracellular pools of Chs3p. The knr4Δ deletion is not categorized in Fig. 1 because the function of Knr4p is not well defined. An extensive list of chitin measurements in other Saccharomyces mutants may be found on our laboratory website (http://dentschools.bu.edu/research/ molecular-faculty supplemental.html).

Genomewide transcriptional profile of the fks1Δ strain. Although our major effort in transcriptional profiling was concerned with the study of GlcN supplementation (see below), we also carried out a briefier profiling of the fks1Δ strain and compared our results with those reported in other publications (Table 2). Jung and Levin (24) used miniarray filters to compare expression profiles of 6,144 ORFs encoded by the yeast genome in response to the cell wall integrity pathway. Rather than using a cell wall mutation to create stress conditions, they compared wild-type cells with cells bearing a gain-of-function allele of MKK1, which encodes a key enzyme in the cell wall integrity pathway (1, 30) (see Discussion). Terashima et al. (50) used high-density gene microarrays to identify up-regulation of genes in the fks1Δ strain. They then fused the 800 bp of the 5′ noncoding region from each gene to E. coli lacZ, introduced plasmids containing these constructs into wild-type cells.
and \(fks1 \) mutant cells, and monitored \(\beta \)-galactosidase expression in the two strains. In addition, Hughes et al. (23) constructed a reference database (Hughes compendium) in which they analyzed the global-genome responses to 300 different mutations and chemical treatments. This set of data (available at http://www.transcriptome.ens.fr/ymgv) was especially relevant to our studies, because the analysis was performed with Research Genetics strains and Affymetrix chips.

The most noticeable effect in our studies and those of others (24, 49) is the strong induction of cell wall integrity genes, which either are directly induced by the stress-related transcription factor \(Rlm1p \) (\(\text{PIR3, YLR194C, CRH1, CWP1, CHS3, CHS7, YKL161C, SLT2, PTP2, PRM5, and PST1} \)), have a putative \(Rlm1p \) binding site(s) (\(\text{YPS3, KTR2, DFG5, YAL053W, YBR071W, BOP1, and GFA1} \)), or are transcriptionally coregulated with other proteins involved in aging, the cell cycle, the cell wall, the cytoskeleton, glycolysis, or endocytosis (\(\text{SRL3, AFR1, Ppy2, and MCH5} \)) (YPD Database) (Table 2). \(RLM1 \) itself is also activated in our studies. Although details differ, probably as a result of the very different methodologies used, the above studies give similar pictures (Table 2). All studies show a strong induction of genes for cell wall proteins such as \(\text{PIR3, CRH1, CWP1, and YLR194C} \). Our study, that of Terashima et al. (50), and the Hughes compendium (23) also show very strong induction of \(\text{YPS3} \), which encodes a \(\text{GPI-anchored aspartyl protease} \) and, to a lesser extent, induction of the related gene \(\text{YP6} \). All studies also demonstrate the expected induction of the alternative glucan synthase gene \(\text{FKS2} \) and chitin synthase genes. It is interesting that both \(\text{CHS3} \) and \(\text{CHS7} \) are induced in the \(\text{fks1} \) strain. Chs7p has been shown to be responsible for the export of Chs3p from the endoplasmic reticulum, and increased Chs3p levels at the cell surface require induction of both genes (51). Our results and those of Terashima et al. (50) also show induction of \(\text{KTR2} \), a mannosyltransferase gene associated with stress and pseudohyphal growth (34). Among the interesting genes in this “other proteins” category are \(\text{PST1} \), encoding another \(\text{GPI-anchored cell wall protein} \), and \(\text{PTP2} \), encoding a phosphatase which probably is involved in maintaining homeostasis in the cell wall integrity pathway (35). In addition, our data confirm the transcriptional up-regulation of \(\text{GFA1} \), a key regulatory enzyme in the UDP-GlcNAc biosynthetic pathway (see below), in agreement with other reports (28, 50). Interestingly, treatment of cells with the \(\alpha \)-factor pheromone for 120 min (Hughes compendium) similarly up-regulates most of the genes identified in Table 2; only two genes (\(\text{YBR071W} \) and \(\text{SVS1} \)) are clearly down-regulated by pheromone treatment. This supports the idea that cell wall remodeling induced by pheromones may in fact occur partly in response to cell wall stress (25).

Role of metabolic precursors in the regulation of chitin synthesis. The concept that metabolic intermediates leading to UDP-GlcNAc play an important regulatory role in chitin synthesis was developed from the early studies of Cabib and co-workers, who showed that in vitro, chitin synthesis was strongly stimulated by GlcNAc (6). Seminal in vivo evidence came from studies by Schekman and Brawley (46) and Orlean et al. (39) of the extra chitin synthesis that occurs when mating-type cells are treated with the pheromone \(\alpha \)-factor, a phenomenon probably related to chitin synthesis in response to cell wall stress. Orlean et al. (39) found that treatment with \(\alpha \)-factor led to a rapid four- to fivefold increase in the pool of soluble chitin precursors, followed by a three- to fivefold increase in the rate of chitin synthesis. In our studies we observed that wild-type cells treated with the \(\alpha \)-factor for 3 h had about a fivefold increase in chitin content. No such effect was observed in a \(\text{chS3} \) strain, where the chitin level remained unchanged. When
cells were exposed to α-factor, chitin levels increased slightly over those in untreated cells, suggesting that there is an alternative, Chs6p-independent chitin deposition in the lateral cell wall (Fig. 2).

Transcription profiling studies of cells treated with α-factor have shown substantial increases in the transcription of GFA1 and AGM1 mRNAs, encoding two of the four enzymes in the UDP-GlcNAc biosynthetic pathway. An increase in the transcription of all four genes accompanies meiosis and sporulation, when chitin synthesis is required for spore wall formation (48). Special attention has recently focused on the regulatory role of Gfa1p (28).

ORF*	Gene name	Log$_2$ fold change in expression (fks1 strain/WT)b in the indicated study:	Log$_2$ fold change in expression with 50 nM α-factor for 120 minc	Function
Cell wall proteins				
YKL163W***	PIR3	2.6 2.3 —d	1.1	Similar to Pir1p/Hsp150/Pir3 family
YLR194C***	CRH1	2.8 2.7	3.1	Cell wall protein, GPI anchored
YDR055W***	PST1	1.3 1.3	0.7	Cell wall protein, GPI anchored
YKL096W***	CWP1	0.8 1.1	2.2	Cell wall mannoprotein
YIR039C	YPS6	1.6 1.1	1.3	Aspartyl protease. GPI anchored
YLR121C*	YPS3	2.2 3.0	2.9	Aspartyl protease, GPI anchored
Cell wall synthesis				
YGR032W	FKS2	2.9 0.7 1.5	2.9	Beta-1,3-glucan synthase
YKR061W	KTR2	2.0 1.3 0.8	2.4	Mannosyltransferase of KRE2 family
YGR166W	CHS1	1.2 0.7 1.3	2.0	Chitin synthase 1
YNL192W	CHS3	1.0 1.1	1.3	PIP binding protein
YMIR38W*	CHS4	0.7 0.6 0.8	1.5	Chitin synthase 3
YHR142W**	CHS7	0.6 0.6 1.0	0.5	Chitin synthase 7
Environmental stress response				
YPR005C	HAL1	1.7 1.1	2.0	Ion homestasis
YGL248W	PDE1	1.0 0.6	1.5	Cyclic AMP phosphodiesterase
YHR006W	STP2	1.5 0.8	0.9	Transcription factor, Msn2/Msn4 dependent
YGL184C	STR3	1.9 0.9	0.9	Cystathione beta-lyase
Cell signaling				
YKL161C**	3.5 3.1	2.6	Ser/Thr kinase	
YHR030C***	2.6 1.6 1.5	2.6	Ser/Thr mitogen-activated protein kinase family	
YPL080C	RLM1	1.5 1.2	1.6	Transcription factor
YOR208W***	1.4 1.0 0.8	1.6	Protein tyrosine phosphatase	
YNL289W	PCL1	0.8 0.0 1.5	0.1	G$_1$/S cyclin
YKR013W***	PRY2	1.0 0.8	2.0	Cell surface signaling
Mating				
YIL117C**	PRM5	3.3 1.7	2.8	Mating, cell wall stress
YBR296C	PHO89	2.9 1.7	2.4	Sodium symporter
YDR085C***	AFR1	2.8 1.7	4.5	Shmoo formation
YEL060C	PRB1	1.5 2.0	2.8	α-Factor receptor-degrading protease
Other proteins				
YHR209W	4.5 2.9	2.7	Putative methyltransferase	
YAL053W	1.6 1.3 1.4	1.6	Unknown function	
YOR306C***	MCH5	1.9 0.7	1.3	Permease
YBR071W*	BOP1	1.0 0.8	0.8	Unknown function
YPL221W*	1.2 1.1	0.8	Unknown function	
YPL086W***	3.2 1.7	4.0	Putative alcohol dehydrogenase	
YKR091W	SRL3	3.5 1.7	2.1	Unknown function
YKL104C*	GFA1	1.0 0.9 0.6	2.0	Glutamine-fructose-6-P aminotransferase
YPL163C	SV31	0.7 1.1 1.3	0.7	Unknown function

* These proteins were found in the YPD Database. A complete list is available at http://dentalschool.bu.edu/research/molecular-faculty/supplemental.html. *, Rlm1p binding site(s) in a promoter; **, Rlm1p induced; ***, Rlm1p transcription coregulation.

b WT, wild type.
c From the study of Roberts et al. (43).
d —, not done.
results of Lagorce et al. (28), we found that while the correlation between the cell wall stress-related transcriptional activation of GFA1 and the rise in chitin synthesis is impressive, it is not strictly quantitative, suggesting that additional factors are involved. It is interesting that the chs3Δ and chs4Δ strains, which are unable to synthesize ring or lateral wall chitin, still express a somewhat increased level of Gfa1p activity, possibly reflecting cell wall stress and increased GFA1 transcription even in the absence of extensive chitin synthesis. It is possible that accumulation of intermediates as a result of lack of chitin synthesis may moderate the level of the enzyme activity. If the Gfa1p or the precursor pool plays a direct or indirect role in chitin synthesis, then increasing the enzyme and/or precursor pool by overexpressing GFA1 should give rise to extra chitin deposition. In fact, we found that when GFA1 was expressed on a multicopy plasmid with its own promoter, cellular chitin levels increased from the normal level of 4 to 5 nmol of GlcNAc per mg of cells to 14 nmol. GlcN concentrations higher than 23 mM in the medium have a toxic effect on cells. We also measured the rate of chitin synthesis in yeast cells exposed to 15 mM GlcN over time (Fig. 4B). There was no apparent lag in chitin synthesis, as chitin levels nearly doubled in the first hour. After 4 h, chitin content approached its new steady-state level, as found for cells grown overnight with GlcN. Upon examination by fluorescence microscopy using Calcofluor to stain chitin, large budded cells as well as mother cells showed increased fluorescence in their lateral walls following culture in 15 mM GlcN (data not shown).

Cells grown overnight with 15 mM GlcN usually have wet weights 21 to 25% lower than parallel WT cultures (data not shown). In order to determine the source of this difference, we measured the cell growth rate by OD600, performed cell counts, and also measured the dry weight of cells. ODs and numbers of cells were comparable in cells grown in the presence and absence of GlcN, indicating that 15 mM GlcN does not inhibit the rate of cell growth. Furthermore, the dry weights of these two sets were comparable, suggesting that the difference in the wet weights should probably be attributed to water content. Thus, for reasons we do not yet understand, cells grown in the presence of GlcN appeared to retain less water.

GlcN is presumed to enter cells by way of hexose transport systems and to be phosphorylated by hexokinase(s). The resulting GlcN-6-P is a normal intermediate in the chitin synthesis, as chitin levels nearly doubled in the presence and absence of GlcN, indicating that 15 mM GlcN does not inhibit the rate of chitin synthesis. Therefore, the dry weights of these two sets were comparable, suggesting that the difference in the wet weights should probably be attributed to water content. Thus, for reasons we do not yet understand, cells grown in the presence of GlcN appeared to retain less water.

GlcN is presumed to enter cells by way of hexose transport systems and to be phosphorylated by hexokinase(s). The resulting GlcN-6-P is a normal intermediate in the chitin synthesis systems and to be phosphorylated by hexokinase(s). The resulting GlcN-6-P is a normal intermediate in the chitin synthesis systems and to be phosphorylated by hexokinase(s)
sis pathway, and the increased levels of metabolic intermediates must initiate the increased chitin formation observed. GlcNAc, on the other hand, either is not transported into the cell or is not phosphorylated.

GlcN supplementation also increased chitin levels in various cell wall mutants, as shown in Fig. 5A. In some cases the amount of chitin increased to nearly 10 times the normal wild-type level. In these cases, chitin constituted as much as 20% of the cell wall mass. We have not noted any decrease in the viability or growth rate of these cells. Considering also the minimal amount of chitin in, for example, a chs3Δ strain (relative to the maximum observed upon GlcN supplementation), it is clear that S. cerevisiae readily adapts to a >50-fold change in cell wall chitin levels.

Chitin levels in chs3Δ, chs4Δ, and chs5Δ mutants and some double-mutant strains are shown in Fig. 5B. It is obvious that the increase in chitin synthesis brought about by addition of GlcN to the medium is mediated by Chs3p, since chs3 and chs4 deletion mutants produce almost no chitin, whether cells are exposed to GlcN or not. Previous results (40) suggested that the increased lateral wall chitin synthesis associated with an fks1 glucan synthase mutation could “bypass” loss of Chs6p, a factor required for targeting of chitosomes to the plasma membrane. For reasons that are still unclear, we were unable to

FIG. 4. (A) Effect of GlcN addition on chitin level. Addition of GlcN to wild-type cells cultured in YPD medium at 30°C for 18 to 22 h caused a concentration-dependent increase in chitin levels. Addition of GlcNAc had no effect on chitin levels. Each data point is the combined average of the chitin determinations for strains BY4741 and BY4742. (B) The rate of chitin synthesis of a wild-type (WT) strain (BY4741) was measured during growth in YPD medium at 30°C in the presence and absence of 15 mM GlcN. Aliquots of cells were withdrawn at 1-h intervals for chitin determinations.

FIG. 5. (A) Effect of GlcN on chitin contents of wild-type (WT) and mutant strains. Mutant strains that already had elevated chitin levels showed increased chitin synthesis upon addition of GlcN. Cells were cultured in YPD medium plus 15 mM GlcN at 30°C for 18 to 22 h before being collected for chitin determinations. Strains studied were BY4741 (wild type), 5251 (fks1), 897 (gas1), OCY6 (mnn9), 4406 (och1), and 5574 (kre6). Data are averages of two chitin determinations for each genotype. (B) Effects of GlcN on chitin synthesis for single- and double-mutant strains defective in the activity or localization of Chs3p were measured. Strains studied were 3160 (chs3), 3087 (chs4), 5239 (chs5), 1324 (chs6), 2835 (chs7), 184.4A and 184.4B (chs5 gas1), 183.1C and 183.3C (chs6 gas1), and 175.2C and 177.1D (chs6 fks1). Data are averages of two chitin determinations for each genotype.
restore a chs6 mutant phenotype to the chs6 fks1 mutant strain used in that study by making a chs6/chs6 fks1/fks1 diploid. We have therefore turned to studies with standard Research Genetics deletion strains (Table 1) for clarification. As can be seen, the presence of the fks1 deletion with the chs6 deletion causes chitin levels to increase somewhat over those with chs6Δ alone; similarly, the gas1 deletion produces a larger increase. The stimulation of chitin formation by the gas1 mutation is even more pronounced in a chs5Δ strain. The level of chitin synthesis in these double mutants is still consistent with an active role for Chs5p and Chs6p in lateral wall chitin synthesis, as reported recently by Carotti et al. (8).

Cellular UDP-GlcNAc levels. To further explore the role of the precursor pool in chitin synthesis by Chs5p, the levels of UDP-GlcNAc in several cell wall mutants were quantitated. Soluble components were extracted from the cytosol of logarithmically growing cells with formic acid. Extracted metabolites were incubated with alkaline phosphatase to remove non-specifically linked metabolites. UDP-GlcNAc was quantitated from the precursor pool in chitin synthesis by Chs3p, the levels of UDP-GlcNAc were also found in cultures grown to mid-log phase (these are referred to below as cells exposed to “steady-state” conditions). Analysis of genomewide expression was carried out in triplicate in all cases, and the average intensities of the mRNA signals showing a significant change are reported in Table 3. Microarray chips used in these studies (GeneChip Yeast Genome S98 Array; Affymetrix) contained approximately 6,200 S. cerevisiae ORFs recognized by the Saccharomyces Genome Database and an additional 600 putative ORFs identified by other methods, such as SAGE (serial analysis of gene expression) analysis. In order to determine how gene expression is differentially altered, we applied the t test, where we assumed a P value of ≤0.02. We selected those genes which had a t of ≥3.7 and also a ≥1.5-fold change from the signal measured for wild-type cells cultured in YPD medium without GlcN. Of nearly 7,000 ORFs, only 105 met the above criteria (complete data sets are available at the National Center for Biotechnology Information under GEO series number GSE441 and on our website [http://dental.school.bu.edu/research/molecular-faculty/supplemental.html]). Table 3 contains the data set for genes that showed a ≥2-fold change. Surprisingly, we found fewer up-regulated than down-regulated genes. It is somewhat surprising that GlcN has such a moderate effect on the transcription profile, considering its strong stimulation of chitin synthesis. Only four genes (URA4, RIB4, GLN1, and YNL129W) were up-regulated both 2 h after GlcN addition and in the steady state (see our website). Other genes were virtually unaffected after 2 h of GlcN treatment. The largest functional group of transcripts up-regulated in the steady state represents genes involved in mating, sporulation, and cell cycle arrest. Activation of these genes in the steady state may be a secondary effect of GlcN and an adaptive response to new growth conditions. In the gene transcription pattern there is essentially no overlap (with the exception of UDP-GlcNAc is actually lowest in cells that show the highest rate of synthesis. It is thus clear that the UDP-GlcNAc concentration alone does not control the rate of chitin formation. In summary, since chitin synthesis is proportional to Gfa1p but not to UDP-GlcNAc concentrations, it is likely that either Gfa1p itself or another GlcN metabolite plays a role in the activation and/or localization of Chs3p. However, the recent results of Valdivia et al. (52) show that control of Chs3p targeting may be complex and subject to secondary mutations. These investigators demonstrated that mutations in proteins of the clathrin AP-1 complex allow extensive bypassing of the Chs6p requirement for lateral wall chitin synthesis.

Genomewide transcription profiling of cells exposed to GlcN. Another obvious question was whether treatment of cells with GlcN would lead to transcription of any of the genes found to be “turned on” in strains with mutations affecting cell wall structure, since in both cases there is a major increase in the synthesis of lateral cell wall chitin. Also, we wanted to know whether GlcN simply produces—either directly or indirectly—a cell wall stress. In that case, the transcription profile following addition of GlcN would be similar to that seen, for example, in the fks1 mutant. We designed two experiments. In one, the cells were grown first in YPD medium and then for 1 to 2 h after supplementation with GlcN (to 15 mM). In the other, cells were grown in the presence of GlcN overnight, diluted in fresh medium containing 15 mM GlcN, and again grown to mid-log phase (these are referred to below as cells exposed to “steady-state” conditions). Analysis of genomewide expression was carried out in triplicate in all cases, and the average intensities of the mRNA signals showing a significant change are reported in Table 3.

![Figure 6](https://example.com/figure6.png)

FIG. 6. UDP-GlcNAc levels in wild-type (WT) and mutant strains grown in the presence of GlcN. UDP-GlcNAc was quantitated from mid-log-phase cultures of the wild-type strain BY4741 and mutant strains 5251 (fks1), 897 (gas1), 3160 (chs3), 3087 (chs4), 5239 (chs5), and 1324 (chs6) grown in YPD medium at 30°C. GlcN was added to 23 mM. Each measurement was done three to five times, and the standard deviation was determined.
TABLE 3. Effects of GlcN addition on gene expression

ORF	Gene name	Function	Expression level (U) under the following condition:	Log2 ratio (GlcN added/ no GlcN)	Expression level (U) with steady-state GlcN	Log2 ratio (steady-state GlcN/no GlcN)	
			No GlcN	GlcN added after 2 h			
Up-regulated genes							
YJR094C	IME1	Transcription factor	93 ± 17	113 ± 8	0.3	263 ± 50	1.5
YJR086W	STE18	GTPase activator	87 ± 25	113 ± 26	0.4	198 ± 15	1.2
YGR098W	SCM4	Putative cell cycle control	202 ± 7	195 ± 58	0	390 ± 68	1.2
YBL016W	FUS3	Mitogen-activated protein kinase	180 ± 38	193 ± 61	0.1	355 ± 38	1.0
Metabolic genes							
YOR377W	ATF1	Alcohol dehydrogenase; lipids, sterols	143 ± 19	141 ± 34	0	386 ± 100	1.4
YBR085W	AAC3	ADP/ATP transporter mitochondria	223 ± 29	177 ± 14	−0.3	537 ± 150	1.3
Other genes							
YIL080W		Unknown function	87 ± 15	106 ± 45	0.3	217 ± 55	1.3
YLR040C		Possible cell wall mannoproteins	172 ± 66	176 ± 44	0	395 ± 45	1.2
YCR018C	SRD1	Protein involved in pre-rRNA processing	111 ± 15	107 ± 30	0	248 ± 20	1.1
YNL129W		Unknown function	102 ± 14	165 ± 43	0.7	200 ± 36	1.0
Down-regulated genes							
YJR048W	CYC1	Cytochrome c	1,282 ± 362	1,166 ± 579	−0.1	387 ± 29	−1.7
YGL167C	COX4	Cytochrome c oxidase	1,839 ± 379	1,486 ± 502	−0.3	660 ± 74	−1.5
YLR304C	ACO1	Acetate hydratase	3,590 ± 750	3,069 ± 1,158	−0.2	1,378 ± 450	−1.4
YLR214W	FRE1	Flavoxytochrome	237 ± 54	138 ± 53	−0.8	92 ± 14	−1.3
YOR161C		Mitochondrial protein	698 ± 87	550 ± 109	−0.3	280 ± 166	−1.3
YKL141W	SDH3	Succinate dehydrogenase complex	1,889 ± 232	1,804 ± 596	0	936 ± 41	−1.0
YJR077C	MIR1	Mitochondrial phosphate carrier	5,060 ± 1,152	4,831 ± 1,606	0	2,473 ± 310	−1.0
YLR395C	COX8	Cytochrome c oxidase	2,838 ± 209	2,356 ± 360	−0.3	1,455 ± 200	−1.0
YPR033C	QCR6	Ubiquinol-cytochrome c reductase	787 ± 91	660 ± 100	−0.3	383 ± 25	−1.0
Amino acid metabolism							
YLR303W	MET17	Acetylhomoserine sulfhydrolase	1,046 ± 314	645 ± 362	−0.7	152 ± 62	−2.7
YDR380W	ARO10	Putative inole-3-pyruvate decarboxylase	400 ± 35	524 ± 97	0.4	129 ± 18	−1.6
YER119C		Amino acid permease	180 ± 11	169 ± 37	−0.1	81 ± 27	−1.2
YCL064C	CHA1	Serine/threonine deaminase	579 ± 119	594 ± 123	0	273 ± 81	−1.1
YHR137W	AR09	Aromatic amino acid aminotransferase	947 ± 135	1,459 ± 111	0.6	463 ± 97	−1.0
Other metabolic genes							
YBR093C	PHOS	Acid phosphatase	3,357 ± 650	1,187 ± 386	−1.5	728 ± 509	−2.2
YDR281C	PHM6	Phosphate metabolism	456 ± 32	189 ± 28	−1.3	124 ± 84	−1.9
YPR184W	GDB1	Glycogen debranching enzyme	421 ± 54	253 ± 99	−0.7	212 ± 69	−1.0
Cell stress							
YBR244W	GPX2	Glutathione peroxidase	216 ± 20	245 ± 137	0.2	88 ± 43	−1.3
YNL241C	ZWF1	Glucose-6-phosphate dehydrogenase	1,330 ± 68	1,099 ± 138	−0.3	675 ± 190	−1.0
Other							
YOL155C		Similar to glucan 1,4-glucosidase	7,062 ± 107	4,911 ± 554	−0.5	1,810 ± 225	−1.9
YML091C	RPM2	RNA processing/modification	236 ± 37	230 ± 98	0	73 ± 38	−1.7
YPL196W	RPL7B	Ribosomal protein L7	1,898 ± 201	677 ± 252	−1.5	658 ± 536	−1.5
YHR136C	SFL2	Inhibitor of cyclin-dependent protein kinase	1,005 ± 75	697 ± 72	−0.5	334 ± 300	−1.6
YBR230C		Unknown function	1,478 ± 95	1,018 ± 342	−0.5	654 ± 184	−1.2

*Experiments were carried out in triplicate, *P* ≤ 0.02; *t* ≥ 3.7; fold change, ≥2.0. A complete list is available at http://dentalschool.bu.edu/research/molecular-faculty-supplemental.html.

IME1, ATF1, YDL241W, SRD1, YNL129W, and PLB3) between the cell wall stress response in fks1A strains and exposure to GlcN (Fig. 7A), although in these two cases chitin synthesis is stimulated to about the same extent. Since most of the overlapping genes are involved in mating and sporulation, this may again be an adaptation to steady-state exposure to GlcN rather than a direct impact of GlcN on their transcription.

Steady-state GlcN appears to suppress aerobic respiration, as the largest group of down-regulated genes is composed of mitochondrial respiratory genes. We do not have a rationale...
for this phenomenon, but in this case also it is predominantly a steady-state effect (Table 3). We found that the cell stress response genes were among the down-regulated genes, reaffirming that GlcN does not "stress" cells. None of the typical environmental stress response identifiers, e.g., Yap1 and Msn2/ Msn4, which are activated upon any environmental stress (18), were found in our analysis. As with up-regulated genes, there is little overlap between down-regulated genes in steady-state GlcN-treated wild-type cells and genes down-regulated due to fks1 mutation, with a few exceptions (ZWF1, ISU1, HEM2, YGR101W, TIM1, YOR227W, and PET9) (Fig. 7B). Further experiments are needed to determine whether these overlapped transcripts represent nonspecific "biological noise" or a true effect.

In summary, it appears that GlcN or one of its metabolites must activate chitin synthesis. We assume that the same is true for the chitin synthesis that occurs when Gfa1p is overexpressed. Possible explanations are discussed below. It should be emphasized that although Gfa1p provides GlcN-6-P for UDP-GlcNAc synthesis, this reaction is not required when GlcN is being used as a substrate, and in any case, GFA1 is neither up- nor down-regulated by GlcN addition.

CSIII (Chs3p) enzymatic activity in wild-type and mutant cells. Although it is clear that precursor molecules play an important role in regulating chitin synthesis, the data above show that UDP-GlcNAc concentrations are not the only controlling factor in chitin biosynthesis. It has been reported previously that CSIII activity increases in fks1 cells (16) and in gas1 cells (53). These reports correlate well with the fact that both strains show elevated levels of chitin. We isolated total cellular membrane fractions and measured CSIII specific activity in wild-type cells and deletion mutants which either had elevated chitin levels (cell wall mutants) or made very little chitin (Fig. 8). In all cases, when the chitin level was elevated, CSIII activity also increased. The same observation was made for cells grown in the presence of GlcN. A study of the time course of activation by GlcN shows little effect in the first hour of exposure but full activation after 2 h (data not shown). Since treatment with GlcN does not lead to extra CHS3 transcription (see above), we assume that the increase is the result of some type of activation and/or redistribution of the enzyme.

Interestingly, there is a general, although not strictly quantitative, correlation between the amount of cellular chitin and CSIII activity (for comparisons see Fig. 1 and 8). All mutants with elevated chitin content also have higher CSIII activities than wild-type cells. Among mutant strains, however, the amount of elevated chitin is not necessarily proportional to CSIII activity. For example, in comparing mnn9 and och1 N-
glycosylation mutants, the CSIII activity found for the och1 mutant is higher than that for the mnn9 mutant, although the chitin content of the former is lower. In all mutants which make little chitin (chs3/H9004, chs4/H9004, chs5/H9004, and chs6/H9004) mutants), CSIII activity is virtually absent. The low signal probably represents trace activities of other chitin synthases (CSI and CSII). Consistently, our data for strains with chs6 (csd3) deletions have contrasted with those reported by Bulawa (5), who found wild-type activities of CSIII for the csd3 mutant strain.

Yeast strains defective in proteins involved in cellular trafficking and endocytosis (end4, clc1, and chc1) have an elevated CSIII activity, suggesting that Chs3p has accumulated at the plasma membrane.

The next question we posed was whether small precursor molecules might activate CSIII. We measured CSIII enzymatic activity in total membrane fractions in vitro in the presence of added GlcN-6-P, GlcNAc-1-P, GlcNAc-6-P, or GalNAc. None of these metabolites had any apparent stimulatory or inhibitory effect on CSIII activity (data not shown). The only stimulator, GlcNAc, is not actually a chitin precursor or primer (6, 14) and is used in the standard assay at the very high concentration of 80 mM. Its two- to fourfold activation of CSIII is seen in wild-type membranes as well as in membranes of cell wall mutants (data not shown). Activity increases linearly over the GlcNAc concentration range of 0 to 40 mM (data not shown). The mechanism of this effect has yet to be determined.

CSIII (Chs3p) activity in subcellular fractions. Chs3p follows an intricate secretory and endocytotic pathway, which distributes it primarily to the plasma membrane and subcellular compartments. We separated subcellular membranes (devoid of much of the plasma membrane and microsomal fractions due to a precentrifugation step) on a sucrose gradient and then correlated the distribution of Chs3p (by using an anti-Chs3 antibody) with its enzymatic activity. As shown in Fig. 9, which is representative of four experiments, samples were essentially devoid of plasma membrane as indicated by the distribution of the plasma membrane ATPase Pma1p (3). Chs3p was broadly distributed in the gradient as two peaks, similar to findings reported from previous studies (22, 45, 59). While Holthuis et al. (22) did not measure enzyme activity, their resolution of the subcellular distribution of Chs3p was similar to what we have observed. We found no Chs3p in fractions (18 to 20% sucrose) containing the vacuolar protein

Yeast strains defective in proteins involved in cellular trafficking and endocytosis (end4, clc1, and chc1) have an elevated CSIII activity, suggesting that Chs3p has accumulated at the plasma membrane.

The next question we posed was whether small precursor molecules might activate CSIII. We measured CSIII enzymatic activity in total membrane fractions in vitro in the presence of added GlcN-6-P, GlcNAc-1-P, GlcNAc-6-P, or GalNAc. None of these metabolites had any apparent stimulatory or inhibitory effect on CSIII activity (data not shown). The only stimulator, GlcNAc, is not actually a chitin precursor or primer (6, 14) and is used in the standard assay at the very high concentration of 80 mM. Its two- to fourfold activation of CSIII is seen in wild-type membranes as well as in membranes of cell wall mutants (data not shown). Activity increases linearly over the GlcNAc concentration range of 0 to 40 mM (data not shown). The mechanism of this effect has yet to be determined.

CSIII (Chs3p) activity in subcellular fractions. Chs3p follows an intricate secretory and endocytotic pathway, which distributes it primarily to the plasma membrane and subcellular compartments. We separated subcellular membranes (devoid of much of the plasma membrane and microsomal fractions due to a precentrifugation step) on a sucrose gradient and then correlated the distribution of Chs3p (by using an anti-Chs3 antibody) with its enzymatic activity. As shown in Fig. 9, which is representative of four experiments, samples were essentially devoid of plasma membrane as indicated by the distribution of the plasma membrane ATPase Pma1p (3). Chs3p was broadly distributed in the gradient as two peaks, similar to findings reported from previous studies (22, 45, 59). While Holthuis et al. (22) did not measure enzyme activity, their resolution of the subcellular distribution of Chs3p was similar to what we have observed. We found no Chs3p in fractions (18 to 20% sucrose) containing the vacuolar protein

Yeast strains defective in proteins involved in cellular trafficking and endocytosis (end4, clc1, and chc1) have an elevated CSIII activity, suggesting that Chs3p has accumulated at the plasma membrane.

The next question we posed was whether small precursor molecules might activate CSIII. We measured CSIII enzymatic activity in total membrane fractions in vitro in the presence of added GlcN-6-P, GlcNAc-1-P, GlcNAc-6-P, or GalNAc. None of these metabolites had any apparent stimulatory or inhibitory effect on CSIII activity (data not shown). The only stimulator, GlcNAc, is not actually a chitin precursor or primer (6, 14) and is used in the standard assay at the very high concentration of 80 mM. Its two- to fourfold activation of CSIII is seen in wild-type membranes as well as in membranes of cell wall mutants (data not shown). Activity increases linearly over the GlcNAc concentration range of 0 to 40 mM (data not shown). The mechanism of this effect has yet to be determined.

CSIII (Chs3p) activity in subcellular fractions. Chs3p follows an intricate secretory and endocytotic pathway, which distributes it primarily to the plasma membrane and subcellular compartments. We separated subcellular membranes (devoid of much of the plasma membrane and microsomal fractions due to a precentrifugation step) on a sucrose gradient and then correlated the distribution of Chs3p (by using an anti-Chs3 antibody) with its enzymatic activity. As shown in Fig. 9, which is representative of four experiments, samples were essentially devoid of plasma membrane as indicated by the distribution of the plasma membrane ATPase Pma1p (3). Chs3p was broadly distributed in the gradient as two peaks, similar to findings reported from previous studies (22, 45, 59). While Holthuis et al. (22) did not measure enzyme activity, their resolution of the subcellular distribution of Chs3p was similar to what we have observed. We found no Chs3p in fractions (18 to 20% sucrose) containing the vacuolar protein

Yeast strains defective in proteins involved in cellular trafficking and endocytosis (end4, clc1, and chc1) have an elevated CSIII activity, suggesting that Chs3p has accumulated at the plasma membrane.

The next question we posed was whether small precursor molecules might activate CSIII. We measured CSIII enzymatic activity in total membrane fractions in vitro in the presence of added GlcN-6-P, GlcNAc-1-P, GlcNAc-6-P, or GalNAc. None of these metabolites had any apparent stimulatory or inhibitory effect on CSIII activity (data not shown). The only stimulator, GlcNAc, is not actually a chitin precursor or primer (6, 14) and is used in the standard assay at the very high concentration of 80 mM. Its two- to fourfold activation of CSIII is seen in wild-type membranes as well as in membranes of cell wall mutants (data not shown). Activity increases linearly over the GlcNAc concentration range of 0 to 40 mM (data not shown). The mechanism of this effect has yet to be determined.

CSIII (Chs3p) activity in subcellular fractions. Chs3p follows an intricate secretory and endocytotic pathway, which distributes it primarily to the plasma membrane and subcellular compartments. We separated subcellular membranes (devoid of much of the plasma membrane and microsomal fractions due to a precentrifugation step) on a sucrose gradient and then correlated the distribution of Chs3p (by using an anti-Chs3 antibody) with its enzymatic activity. As shown in Fig. 9, which is representative of four experiments, samples were essentially devoid of plasma membrane as indicated by the distribution of the plasma membrane ATPase Pma1p (3). Chs3p was broadly distributed in the gradient as two peaks, similar to findings reported from previous studies (22, 45, 59). While Holthuis et al. (22) did not measure enzyme activity, their resolution of the subcellular distribution of Chs3p was similar to what we have observed. We found no Chs3p in fractions (18 to 20% sucrose) containing the vacuolar protein

Yeast strains defective in proteins involved in cellular trafficking and endocytosis (end4, clc1, and chc1) have an elevated CSIII activity, suggesting that Chs3p has accumulated at the plasma membrane.

The next question we posed was whether small precursor molecules might activate CSIII. We measured CSIII enzymatic activity in total membrane fractions in vitro in the presence of added GlcN-6-P, GlcNAc-1-P, GlcNAc-6-P, or GalNAc. None of these metabolites had any apparent stimulatory or inhibitory effect on CSIII activity (data not shown). The only stimulator, GlcNAc, is not actually a chitin precursor or primer (6, 14) and is used in the standard assay at the very high concentration of 80 mM. Its two- to fourfold activation of CSIII is seen in wild-type membranes as well as in membranes of cell wall mutants (data not shown). Activity increases linearly over the GlcNAc concentration range of 0 to 40 mM (data not shown). The mechanism of this effect has yet to be determined.

CSIII (Chs3p) activity in subcellular fractions. Chs3p follows an intricate secretory and endocytotic pathway, which distributes it primarily to the plasma membrane and subcellular compartments. We separated subcellular membranes (devoid of much of the plasma membrane and microsomal fractions due to a precentrifugation step) on a sucrose gradient and then correlated the distribution of Chs3p (by using an anti-Chs3 antibody) with its enzymatic activity. As shown in Fig. 9, which is representative of four experiments, samples were essentially devoid of plasma membrane as indicated by the distribution of the plasma membrane ATPase Pma1p (3). Chs3p was broadly distributed in the gradient as two peaks, similar to findings reported from previous studies (22, 45, 59). While Holthuis et al. (22) did not measure enzyme activity, their resolution of the subcellular distribution of Chs3p was similar to what we have observed. We found no Chs3p in fractions (18 to 20% sucrose) containing the vacuolar protein
Vma2p or Pho8p (data not shown). The peak of Chs3p found at sucrose concentrations of 32 to 35% was in subcellular fractions partially colocalizing with the late endosome marker Pep12p and Golgi GDPase (Gda1p). Chs3p was inactive in those subcellular fractions. However, Chs3p was enzymatically active in fractions with higher sucrose concentrations, with the highest specific activity found in a fraction (43% sucrose) with very little of the plasma membrane marker Pma1p. The Chs3p that was enzymatically active had a higher specific activity in the plasma membrane than in its subcellular fraction, as observed by Lucero et al. (33). The distribution we observed likely represents the mixed population of vesicles through which Chs3p transits going to and from the plasma membrane. For wild-type cells treated with GlcN, the amount of Chs3p decreased in the intracellular compartments (unpublished data) and was probably translocated to the plasma membrane, as reflected by the increased CSIII specific activity shown in Fig. 8.

DISCUSSION

We have confirmed and extended the finding that a great many mutations or conditions that produce cell wall weakening or stress lead to extensive deposition of chitin in the lateral cell wall of *S. cerevisiae*. The effect seems to be limited to situations that activate the cell wall integrity pathway (24, 43). For example, careful study of the high-osmolarity glycerol response has shown that induction of this pathway does not affect chitin synthesis (17). Our genomewide profiling of genes activated by the cell wall integrity pathway is in general agreement with the findings of other studies, showing up-regulation of cell wall proteins, cell wall synthesis genes, and genes of the chitin precursor pathway (23, 24, 50). It is striking that not all the genes of each functional category are turned on and that levels of activation are different for genes within each category. One finding that is consistent with the observed expression is that those genes that were up-regulated have prominent binding sites in their promoters for the transcription factor Rlm1p (YPD Database). Among the genes induced by fks1 stress is *PTP2*, encoding a phosphatase that modulates pathway activity (35). It will be of interest to see whether deletion of this gene leads to extra cell wall chitin deposition, since the null mutant appears to allow exaggerated and even excessive expression of other stress pathway genes.

Activation of the cell wall stress pathway leads to increased chitin synthesis and to up-regulation of the enzymes that synthesize the metabolic precursors of chitin. However, we and Lagorce et al. (28) have shown that increasing flux through the pathway, even without the application of stress, also leads to increased cell wall chitin synthesis. Lagorce et al. (28) used overexpression of *GFA1*, the first gene in the metabolic pathway. We have made the same observation and have also shown that chitin synthesis can be activated simply by adding GlcN to the growth medium. That stress is not a factor in this situation has been shown by our survey of genes that are activated and repressed following GlcN treatment. Very few genes are up- or down-regulated in common between cells subjected to weakened-cell-wall stress (*fks1Δ* mutants) and GlcN-treated cells, and the slight overlap is probably the secondary effect of extra chitin deposition or other minor changes in cell wall metabolism. The fact that cell wall stress is not involved suggests the hypothesis that when stress is applied to the cell, one of the primary responses is activation of the GFA1 metabolic pathway. The proteins or metabolic products of these reactions by themselves (and without other transcriptional changes) are able to increase the rate of chitin synthesis.

In addition to its regulation by cell wall stress, Gfa1p has properties and structural motifs that suggest that it may act in a regulatory manner itself. A global analysis of protein activities using proteome chips (58) has shown that Gfa1p binds in a strong, specific manner to phosphatidylinositol 3-phosphate [PI(3)P] the phosphoinositide that plays a major role in the activity of intracellular vesicles involved in protein targeting (12). In the absence of either Vps34p or Vps15p, the proteins required to make PI(3)P, mis-sorting of vacuolar and perhaps other proteins occurs. Biochemical studies localizing the Vps34/15 phosphoinositid kinase suggest a functional role for PI(3)P in membrane trafficking from the Golgi apparatus to the endosome and, by extension, a possible role of Gfa1p in these processes. Gfa1p also has a myristoylation site and possibly a VHS domain (15), found in the Vps27, Hrs, and STAM proteins (37). The latter domain is found in proteins associated with endocytosis and/or vesicular trafficking (31). Both of these motifs as well as the PI(3)P binding activity would allow direct participation of Gfa1p in the trafficking of Chs3p. In their extensive study of subcellular localization of the yeast proteome, Kumar et al. (27) found that Gfa1p has both cytoplasmic and “granular” distribution in the cell. Other specific points concerning the hypothesis that stress leads to activation of the GFA1 metabolic pathway and that the protein(s) or metabolic products by themselves play a major role in activating chitin synthesis are summarized briefly below.

(i) The hypothesis as stated may not be the whole story of weakened-cell-wall stress-induced chitin synthesis, since cell wall stress produces about a twofold increase in the expression of *CHS3* and *CHS7*, genes that are not up-regulated by GlcN treatment. It has been demonstrated that increasing the transcription of these two genes may lead to an increase in the level of Chs3p in the cell (51). However, it has not been shown whether overexpression of these two proteins together necessarily leads to increased chitin synthesis. Lagorce et al. (28) found that when Chs3p and Chs7p were overproduced in cells also overproducing Gfa1p, no more chitin was made than in cells overproducing Gfa1p alone. This is consistent, however, with Chs4p (which was not overexpressed) limiting the activity of Chs3p (38). Therefore, the role played by extra transcription of *CHS3* and *CHS7*, although suggestive, is not yet clear. Furthermore, in our studies there is no clear-cut quantitative relationship among in vitro enzymatic activity, stress-related chitin synthesis, and GlcN-stimulated chitin synthesis.

(ii) Given the high levels of chitin synthesized in response to cell wall stress, it might be anticipated that the amount of chitin made would reach a “saturation” level and that addition of GlcN would not bring about further increases. In fact, as shown in Fig. 5A, the increases in chitin levels upon addition of GlcN are roughly the same in wild-type and stressed cells, independent of the level present before GlcN addition. This would suggest that stress and GlcN operate independently. If this is true, it is surprising, since it has seemed probable to us that both have the same basic effect, namely, an increase in the
acetylg glucosamine phosphate pool. Viewed in another way, if GlcN saturates the soluble precursor pool, then stress must act by other mechanisms to increase chitin synthesis.

Although we and Lagorce et al. (28) found that chitin synthesis is proportional to the cellular level of Gfa1p, the enzyme responsible for the formation of GlcN-6-P, it is clear that UDP-GlcNAc concentrations are increased to only moderately higher levels in mutant strains that are making more than four times as much chitin as wild-type cells. More dramatically, when chitin synthesis is driven not by Gfa1p but by added GlcN, the level of UDP-GlcNAc is actually lowest in cells that show the highest rate of synthesis. It is thus clear that the UDP-GlcNAc concentration alone does not control the rate of chitin formation. In fact, if the intracellular concentration of substrate saturates the enzyme under all conditions (a question to be explored), chitin formation would be independent of the UDP-GlcNAc concentration, barring allosteric and other indirect effects. In summary, since chitin synthesis is proportional to the Gfa1p activity but not to the UDP-GlcNAc concentration, it is likely that either Gfa1p itself (see above) or a GlcN metabolite plays a role in the activity and/or localization of Chs3p.

(iii) Surprisingly, GlcN has only minor effects on gene expression on a whole-genome scale. Only a few genes seem responsive to GlcN treatment, and of these, suppressed genes are prevalent. Down-regulated genes are mostly those of mitochondrial respiration following steady-state GlcN exposure. Thus far, we cannot provide an explanation for this phenomenon. The largest group of up-regulated genes (again only in the steady state) are involved in mating and sporulation. This may well be a secondary effect of accumulated chitin rather than an effect of GlcN itself. Furthermore, upon treatment with GlcN, very few genes show as much as a threefold or higher change; most genes respond at lower levels. From the above we conclude that chitin biosynthesis is regulated by gene expression only to a minor extent and that GlcN likely affects chitin synthesis metabolically without drastically changing gene expression.

(iv) Although GlcN treatment does not increase CHS3 transcription, it does produce a substantial increase in the activity of the enzyme within 2 h. The mechanism of this activation remains to be determined. Changes in cellular location of the enzyme, activation by interaction with Chs4p, or some other type of activation may be involved.

(v) Our vesicle fractionation studies show that both enzymatically active and inactive forms of Chs3p are usually present in the cell. While Chs3p-containing chitosomes have been described (10, 45, 59), clarification is now needed for whether “active chitosomes” and “inactive chitosomes” would be more appropriate terminology. Because Chs3p activity requires interaction with Chs4p, our results also suggest that Chs4p is present in the active chitosome and is formed in a post-Golgi compartment.

(vi) The CHS3 gene, as well as all the genes responsible for its intracellular movement and localization, is required for both stress- and GlcN-induced chitin synthesis. We find we must revise the previous indication that the targeting gene, CHS6, is not required for stress-related chitin synthesis (40). Although there is indeed some bypassing of the chs6 mutation in the chs6Δ rks1 double mutant, this is reflected as an increase in chitin levels of less than 20% of the chitin made in wild-type cells. Interestingly, the chs6Δ mutation is more prone to a bypass when combined with gas1Δ mutation. And finally, when the chs5Δ deletion is combined with gas1Δ deletion, the bypass is exemplified by restoration of chitin levels to those of wild-type cells.

(vii) Although it is still possible that the metabolic precursors of chitin, GlcN-6-P, GlcNAc-6-P, and GlcNAc-1-P, may bring about some kind of allosteric activation of Chs3p, we have not yet seen stimulation in vitro. The only effective low-molecular-weight activator of the enzyme to date is GlcNAc, which is not a metabolic intermediate and which does not serve as a chitin primer (14).

ACKNOWLEDGMENTS

This work was supported by grants from the National Institutes of Health (GM13138 and AI44070) to P.W.R. C.A.S. was supported by grant AI25780 to Stuart M. Levitz.

We are grateful to John V. Goodman for assistance in producing the figures and tables. We are also grateful to the Microarray Resource Center at Boston University Medical Center for their assistance.

REFERENCES

1. Ammerer, G. 1994. Sex, stress and integrity: the importance of MAP kinases in yeast. Curr. Opin. Genet. Dev. 4:90–95.
2. Ballou, C. E., S. K. Maitra, J. W. Walker, and W. L. Whelan. 1977. Developmental defects associated with glucosamine autotrophy in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 74:4351–4355.
3. Black, M. W., and R. B. Pelham. 2000. A selective transport route from Golgi to late endosomes that requires the yeast GGA proteins. J. Cell Biol. 151:587–600.
4. Brown, A., and M. Tuile. 1998. Yeast gene analysis. Methods Microbiol. 26:318–320.
5. Bulawa, C. E. 1992. CSD2, CSD3, and CSD4, genes required for chitin synthesis in Saccharomyces cerevisiae: the CSD2 gene product is related to chitin synthases and to developmentally regulated proteins in Rhizobium species and Xenopus laevis. Mol. Cell. Biol. 12:1764–1776.
6. Cabib, E. 1972. Chitin synthase system from yeast. Methods Enzymol. 28:572–580.
7. Cabib, E., D. H. Roh, M. Schmidt, L. B. Crotti, and A. Varma. 2001. The yeast cell wall and septum as paradigms of cell growth and morphogenesis. J. Biol. Chem. 276:19679–19682.
8. Carotti, C., L. Ferrari, C. Roncero, M. H. Valdivieso, A. Duran, and L. Popescu. 2002. Maintenance of cell integrity in the gas1Δ mutant of Saccharomyces cerevisiae requires the Chs3p-targeting and activation pathway and involves an unusual Chs3p localization. Yeast 19:1113–1124.
9. Castron, O., L. Y. Chen, A. J. Parodi, and C. Aebel. 1999. Uridine diphosphate-glucose transport into the endoplasmic reticulum of Saccharomyces cerevisiae: in vivo and in vitro evidence. Mol. Biol. Cell 10:1019–1030.
10. Choi, W. J., B. Santos, A. Duran, and E. Cabib. 1994. Are yeast chitin synthases regulated at the transcriptional or the posttranslational level? Mol. Cell. Biol. 14:7685–7694.
11. Chuang, J. S., and R. W. Schekman. 1996. Differential trafficking and timed localization of two chitin synthase proteins, Chs2p and Chs3p. J. Cell Biol. 135:597–610.
12. Dallies, N. J., M. Francois, and V. Paquet. 1998. A new method for quantitative determination of polysaccharides in the yeast cell wall. Application to the cell wall defective mutants of Saccharomyces cerevisiae. Yeast 14:1297–1306.
13. De Camilli, P., S. D. Emr, P. S. McPherson, and P. Novick. 1996. Phosphoinositides as regulators in membrane trafficking. Science 271:1533–1539.
14. DeMarini, D. J., A. E. Adams, H. Fares, C. De Virgilio, G. Valle, J. S. Chuang, and J. R. Pringle. 1997. A septin-based hierarchy of proteins required for localized deposition of chitin in the Saccharomyces cerevisiae cell wall. J. Cell Biol. 139:75–93.
15. Duran, A., and E. Cabib. 1978. Solubilization and partial purification of yeast chitin synthetase. Confirmation of thezymogenic nature of the enzyme. J. Biol. Chem. 253:4419–4425.
16. Falquet, L., M. Pagni, P. Bucher, N. Hulo, C. J. Sigrist, K. Hofmann, and A. Bairoch. 2002. The PROSITE database, its status in 2002. Nucleic Acids Res. 30:235–238.
17. Garcia-Rodriguez, L. J., J. A. Trilla, C. Castro, M. H. Valdivieso, A. Duran, and C. Roncero. 2000. Characterization of the chitin biosynthesis process as a compensatory mechanism in the fls1Δ mutant of Saccharomyces cerevisiae. FEBS Lett. 478:84–88.
18. Garcia-Rodriguez, L. J., A. Duran, and C. Roncero. 2000. Calcofluor antifungal action depends on chitin and a functional high-osmolarity glycerol.
response (HOG) pathway: evidence for a physiological role of the Saccharomyces cerevisiae HOG pathway under noninducing conditions. J. Bacteriol. 182:2422–2437.

18. Gash, A. P., and M. Werner-Washburne. 2002. The genomes of yeast responses to environmental stress and starvation. Funct. Integr. Genomics 2:181–192.

19. Ghosh, S., H. J. Blumenthal, E. Davidson, and S. Roseman. 1960. Glucosamine metabolism. V. Enzymatic synthesis of glucosamine-6-phosphate. J. Biol. Chem. 235:1265–1273.

20. Graack, H. R., U. Cinque, and H. Kress. 2001. Functional regulation of glutamine:fructose-6-phosphate aminotransferase 1 (GPT1) of Drosophila melanogaster in a UDP-N-acetylgalactosamine and CAMP-dependent manner. Biochem. J. 360:301–412.

21. Henar Valdivieso, M., A. Duran, and C. Roncero. 1999. Chitin synthases in yeast and fungi. EXS 87:55–69.

22. Holtjus, J. C., B. J. Nichols, and H. R. Pelham. 1998. The syntaxin Tlg1p mediates trafficking of chitin synthase III to polarized growth sites in yeast. Mol. Biol. Cell 9:315–333.

23. Hughes, T. R., M. J. Marton, A. R. Jones, C. J. Roberts, R. Stoughton, C. D. Armour, H. A. Bennett, E. Coffey, H. Dai, Y. D. He, M. J. Kidd, A. M. King, M. R. Meyer, D. Slade, P. Y. Lum, S. B. Stepaniants, D. D. Shoemaker, D. Gachotte, K. Chakrabarti, J. Simon, M. Bard, and S. H. Friend. 2000. Functional discovery via a combinatorial expression proflie. Cell 102:125–126.

24. Jung, U. S., and D. E. Levin. 1999. Genome-wide analysis of genes regulated by the yeast cell wall integrity signaling pathway. Mol. Microbiol. 34:1049–1057.

25. Klis, F. M., P. Mol, K. Hellingwerf, and S. Brul. 2002. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 26:239–256.

26. Kucharczyk, N., M. A. Denisot, F. Le Goffic, and B. Badet. 1990. Glucosamine-6-phosphate synthase from Escherichia coli: determination of the mechanism of inactivation by N3-fumaryl-1,2,3-diaminopiprline derivatives. Biochemistry 29:3668–3676.

27. Kumar, A., S. Agarwal, J. A. Heyman, S. Matson, M. Heidtman, S. Piccirillo, L. Umansky, A. Drewal, R. Jansen, Y. Liu, K. H. Cheung, P. Miller, M. Gerstein, G. S. Roeder, and M. Snyder. 2002. Subcellular localization of the yeast proteome. Genes Dev. 16:707–719.

28. Lagorce, A., V. Le Berre-Anton, A. Aguilar-Uscanga, H. Martin-Vken, A. Dagkessamanskaia, and J. Francois. 2002. Involution of GFA1, which encodes glucosamine-fructose-6-phosphate amidotransferase, in the activation of the chitin synthetase pathway in response to cell-wall defects in Saccharomyces cerevisiae. Eur. J. Biochem. 269:1697–1707.

29. Leloir, L. F., and C. E. Cardini. 1953. The biosynthesis of glucosamine. Biochim. Biophys. Acta 12:15–22.

30. Levin, D. E., B. Bowers, C. Y. Chen, Y. Kamada, and M. Watanabe. 1994. Dissecting the protein kinase CAM kinase signalling pathway of Saccharomyces cerevisiae. Cell Mol. Biol. Res. 40:229–239.

31. Lohi, O., and V. P. Lehto. 1999. VHS domain marks a group of proteins functionally engaged in the regulation of chitin synthesis in fungi. Curr. Biol. 9:1059–1062.

32. Lowry, H. O., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

33. Lucero, H. A., M. J. Kuranda, and D. A. Bulik. 1998. A non-radioactive, high throughput assay for chitin synthase activity. Anal. Biochem. 260:255–257.

34. Lussier, M., M. A. Midda, C. Camirand, and H. Bussey. 1996. Functional characterization of the YUR1, KTR1, and KTR2 genes as members of the yeast KRE2/MNT1 mannosyltransferase gene family. J. Biol. Chem. 271:11510–11516.

35. Mattison, C. P., S. S. Spencer, K. A Kresge, J. Lee, and L. I. Ota. 1999. Differential regulation of the cell wall integrity mitogen-activated protein kinase pathway in budding yeast by the protein tyrosine phosphatases Ptp2 and Ptp3. Mol. Cell. Biol. 19:7651–7660.

36. Milewski, S., D. Kusczczak, R. Jedrzejczak, R. J. Smith, A. J. Brown, and G. W. Gooday. 1999. Oligomeric structure and regulation of Candida albicans glucosamine-6-phosphate synthase. J. Biol. Chem. 274:4000–4008.

37. Mishra, C., C. E. Semino, K. J. McCreath, H. de la Vega, R. J. Jones, A. Specht, and P. W. Robbins. 1997. Cloning and expression of two chitin deacetylase genes of Saccharomyces cerevisiae. Yeast 13:327–336.

38. Misra, S., B. M. Beach, and J. H. Hurley. 2000. Structure of the VHS domain of human T0M1 (target of myb 1): insights into interactions with proteins and membranes. Biochemistry 39:11282–11290.

39. Mon, S., T. Yabe, M. Sudoh, T. Nakajima, T. Yamada-Okabe, M. Arisawa, and H. Yamada-Okabe. 2000. The yeast Chs4 protein stimulates the trypsin-sensitive activity of chitin synthase 3 through an apparent protein-protein interaction. Microbiology 146:385–391.

40. Orlean, P., E. Arnold, and W. Tanner. 1985. Apparent inhibition of glyco-