Characterising Sobolev inequalities by controlled coarse homology and applications for hyperbolic spaces

Koivisto, Juhani

Published in:
Revista Matemática Iberoamericana

DOI:
10.4171/rmi/1015

Publication date:
2018

Document version:
Submitted manuscript

Citation for published version (APA):
Koivisto, J. (2018). Characterising Sobolev inequalities by controlled coarse homology and applications for hyperbolic spaces. Revista Matemática Iberoamericana, 34(3), 1055-1070. https://doi.org/10.4171/rmi/1015

Go to publication entry in University of Southern Denmark's Research Portal

Terms of use
This work is brought to you by the University of Southern Denmark. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

• You may download this work for personal use only.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying this open access version

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk
Characterising Sobolev inequalities by controlled coarse homology and applications for hyperbolic spaces

Juhani Koivisto

Department of Mathematics and Statistics, University of Helsinki
address: P.O. Box 68 FI-00014 University of Helsinki
e-mail: juhani.koivisto@helsinki.fi

Abstract. We give a Sobolev inequality characterisation for the vanishing of a fundamental class in the controlled coarse homology of Nowak and Špakula for quasiconvex uniform spaces that support a local weak \((1,1)\)-Poincaré inequality. As applications, we consider visual Gromov hyperbolic spaces and Carnot groups.

Mathematics subject classification (2000): Primary 53C23, 30L99; Secondary 58J32

Key words: Controlled coarse homology, Sobolev inequalities.

1 Introduction

In this article, a metric measure space \((X,d,\mu)\) is a metric space \((X,d)\) with Borel regular outer measure \(\mu\) such that \(\mu(X) > 0\) and \(\mu(B(x,r)) < \infty\) for every \(x \in X\) and \(r > 0\). In what follows, we call a function \(\varrho: [0,\infty) \rightarrow [0,\infty)\) a control function if it is non-decreasing, \(\varrho(0) = 1\), and satisfies the conditions

\[
\varrho(\varepsilon + t) \leq L(\varepsilon) \varrho(t) \quad (\varrho_1)
\]

and

\[
\varrho(\varepsilon t) \leq M(\varepsilon) \varrho(t), \quad (\varrho_2)
\]

for some functions \(L, M : (0,\infty) \rightarrow (0,\infty)\) whenever \(t, \varepsilon > 0\). The space \((X,d,\mu)\) satisfies the global \(\varrho\)-weighted \((1,1)\)-Sobolev inequality \((S^{\varrho}_{1,1})\) if for some control function \(\varrho\) there exists \(C > 0\) and \(o \in X\) such that

\[
\int_X |u|d\mu \leq C \int_X |\nabla u| \varrho(d(o,\cdot))d\mu
\]

for every \(u \in N^{1,1}(X,d,\mu)\) with bounded support. Here, \(N^{1,1}(X,d,\mu)\) is the Newton-Sobolev space of equivalence classes of integrable functions \(u: X \rightarrow [-\infty,\infty]\) with integrable upper gradient, and \(|\nabla u|: X \rightarrow [0,\infty]\) the 1-weak minimal upper gradient of \(u\); see [10] Section 7.1. If \((S^{\varrho}_{1,1})\) holds for \(\varrho \equiv 1\) we say that \((X,d,\mu)\) satisfies \((S_{1,1})\).

Given \((X,d,\mu)\) what is the relationship between the \(\varrho\)-isoperimetry of \((X,d)\) and \((S^{\varrho}_{1,1})\)? Previously, \(\varrho\)-isoperimetry has been studied in [7] [10] [13], and Sobolev inequalities including \((S_{1,1})\) for Riemannian manifolds in [4] [5] [6] and...
for metric measure spaces in [8][17]. Our main result is a metric measure version of a result of Nowak and Špakula [16] Theorem 4.2, in part saying the following.

Theorem A. Let \((X, d, \mu)\) be a quasiconvex uniform space supporting a local weak \((1, 1)\)-Poincaré inequality. Then \((X, d, \mu)\) satisfies \(\left(S^0_{1,1}\right)\) for a given control function \(g\) if and only if \(0 = [\Gamma] \in H^0_0(\Gamma)\) for any quasi-lattice \(\Gamma \subseteq X\).

For the proof of Theorem A as well as several other equivalent statements; see Theorem 12. For the terminology related to controlled coarse homology \(H^0_0\) and its relationship with \(\varrho\)-isoperimetry, we refer to Section 2. A quasi-lattice in \((X, d)\) is any \((C-)\)cobounded set \(\Gamma \subseteq X\), that is \(N_C(\Gamma) := \{x \in X : d(x, \Gamma) < C\} = X\) for some \(C > 0\), which is uniformly locally finite in the sense that there exists a function \(N : (0, \infty) \rightarrow \mathbb{N}\) for which the cardinality \(#(\Gamma \cap B(x, r))\) \(\leq N(r)\) for every open ball \(B(x, r) \subseteq X\). The space \((X, d)\) is \((Q-)\)quasiconvex if there exists \(Q \geq 1\) such that for any \(x, y \in X\) there is a rectifiable path \(\gamma\) from \(x\) to \(y\) of length \(\ell(\gamma) \leq Qd(x, y)\). A Borel regular outer measure \(\mu\) is uniform if there exist non-decreasing functions \(f, g : (0, \infty) \rightarrow (0, \infty)\) such that \(f(r) \leq \mu(B(x, r)) \leq g(r)\) for all \(0 < r < \infty\) and \(B(x, r) \subseteq X\). We say that \((X, d, \mu)\) is uniform if \(\mu\) is uniform. Examples of uniform spaces are locally Ahlfors regular spaces and second-countable locally compact compactly generated groups with respect to a left-invariant metric and Haar measure; see [3] Proposition 4.B.9.

A space \((X, d, \mu)\) supports a local weak \((1, p)\)-Poincaré inequality (up to scale \(R_p\)) for \(1 \leq p < \infty\) if there exist \(C_p, R_p > 0\) and \(\tau \geq 1\) such that for all \(B(x, r) \subseteq X\) with \(0 < r \leq R_p, 0 < \mu(B(x, \tau r)) < \infty\) and

\[
\frac{1}{r} \int_{B(x, r)} |u - u_{B(x, r)}|d\mu \leq C_p r \left(\int_{B(x, \tau r)} g_u^p d\mu \right)^{1/p}
\]

for \(u : X \rightarrow \mathbb{R}\) such that \(u \in L^1(B(x, \tau r), d, \mu)\) and its minimal \(p\)-weak upper gradient of \(g_u : X \rightarrow [0, \infty]\); this is the local version of [10] Proposition 8.1.3. Here as usual,

\[
f_A = \int_A f d\mu = \frac{1}{\mu(A)} \int_A f d\mu
\]

assuming that \(A \subseteq X\) is a \(\mu\)-measurable set \(0 < \mu(A) < \infty\) and \(f : A \rightarrow [-\infty, \infty]\) is integrable over \(A\).

Contained in the proof of Theorem 12 is also the following partial result that does not rely on a local weak \((1, 1)\)-Poincaré inequality.

Theorem B. Let \((X, d, \mu)\) be quasiconvex uniform metric measure space satisfying \(\left(S^0_{1,1}\right)\). Then \([\Gamma] = 0\) in \(H^0_0(\Gamma)\) for any quasi-lattice \(\Gamma \subseteq X\).

We now list some immediate applications motivating Theorem A.

Corollary C. Let \((X, d, \mu)\) and \((X', d', \mu')\) be quasiconvex uniform spaces that support a local weak \((1, 1)\)-Poincaré inequality. If \((X, d)\) and \((X', d')\) are quasi-isometric, then \((X, d, \mu)\) satisfies \(\left(S^0_{1,1}\right)\) if and only if \((X', d', \mu')\) satisfies \(\left(S^0_{1,1}\right)\).

Recall that \((X, d)\) and \((X', d')\) are quasi-isometric if there exists \(f : X \rightarrow X'\) and constants \(\lambda \geq 1\) and \(\mu \geq 0\) such that

\[
\lambda^{-1}d(x, x') - \mu \leq d'(f(x), f(x')) \leq \lambda d(x, x') + \mu
\]

2
for all \(x, x' \in X\), and \(f(X) \subseteq X'\) is \(\mu\)-cobounded. Corollary C now follows from Theorem A as controlled coarse homology is a quasi-isometry invariant; see [16, Corollary 2.3]. A metric space \((X,d)\) with a quasi-lattice \(\Gamma \subseteq X\) is amenable if for any \(\varepsilon, r > 0\) there exists a non-empty finite \(F \subseteq \Gamma\) such that

\[
\frac{\# \partial_r F}{\# F} < \varepsilon,
\]

where \(\partial_r F = \{x \in \Gamma: d(x, \Gamma) < r \text{ and } d(x, \Gamma \setminus F) < r\}\). If \((X,d)\) is not amenable, we say that it is non-amenable. As observed by Block and Weinberger, a space \((X,d)\) with a quasi-lattice \(\Gamma \subseteq X\) is non-amenable if and only if \(0 = [\Gamma] \in H^0_1(\Gamma)\) where \(H^0_1(\Gamma)\) denotes 0-dimensional controlled coarse homology group for \(\varrho \equiv 1\); see [1, Proposition 2.3, Theorem 3.1] as well as [16]. With this in mind, we give the following characterisation.

Corollary D. Let \((X,d,\mu)\) be a quasiconvex uniform space that supports a local weak \((1,1)\)-Poincaré inequality. Then \((X,d)\) is non-amenable if and only if \((X,d,\mu)\) satisfies \((S_{1,1})\).

Corollary D follows directly from Theorem A and the characterisation [1, Theorem 3.1]. Note the similarity between Corollary D and [6, Theorem 7.1]; see also [17, Example 5.8].

Theorem E. Let \((X,d,\mu)\) be a quasiconvex uniform visual Gromov hyperbolic space defined using the Gromov product. If \((X,d,\mu)\) supports a local weak \((1,1)\)-Poincaré inequality and its Gromov boundary \(\partial X\) is connected and contains at least two points, \((X,d,\mu)\) satisfies \((S_{1,1})\).

Proof. Since \((X,d,\mu)\) is uniform visual and Gromov hyperbolic with connected boundary containing at least two points, \(0 = [\Gamma] \in H^0_1(\Gamma)\) for any quasi-lattice \(\Gamma \subseteq X\); see [15]. The claim now follows from Theorem A.

We give a further application of Corollary E to the Dirichlet problem at infinity that generalises a result of Cao [2, Corollary 1.1]; see also [12].

Theorem F. Suppose \((X,d,\mu)\) is a locally compact quasiconvex visual Gromov hyperbolic metric measure space defined using the Gromov product having uniform measure that supports a local weak \((1,1)\)-Poincaré inequality. Suppose its Gromov boundary \(\partial X\) is connected and contains at least two points. Then, if \(f: \partial X \to \mathbb{R}\) is a bounded continuous function, there exists a continuous function \(u: X^* \to \mathbb{R}\) on the Gromov closure \(X^*\) of \(X\) that is \(p\)-harmonic for \(p > 1\) in \(X\) and \(u|\partial X = f\).

Proof. By Theorem E, the space \((X,d,\mu)\) satisfies \((S_{1,1})\) and hence the corresponding \((p,p)\)-Sobolev inequality for \(1 \leq p < \infty\); see [12, Example 8]. By Hölder’s inequality, \((X,d,\mu)\) supports a local weak \((1,p)\)-inequality for \(1 \leq p < \infty\) as well. Thus, \((X,d,\mu)\) satisfies all the assumptions of [12, Theorem 1.1] (see Lemma [11] and the claim follows.

We finish with an example illustrating the case when \(\varrho \not\equiv 1\). Write \(f \preceq g\) for non-decreasing functions \(f, g: [0,\infty) \to [0,\infty)\) for which there exist constants \(\lambda, \mu > 0\) and \(c \geq 0\) such that \(f(r) \leq \lambda g(\mu r + c)\) for all \(r \geq 0\). Also, write \(f \asymp g\) if \(f \preceq g\) but \(g \not\preceq f\).
Example G. The first real Heisenberg group $(H_1(\mathbb{R}), d_H, \mu)$ with Heisenberg metric satisfies $(S^q_{1,1})$ for $\varrho(t) = t + 1$ but not $(S^q_{1,1})$ for any other control function $\xi(t) \sim t + 1$.

Proof. As the first integer Heisenberg group $H_1(\mathbb{Z}) \leq H_1(\mathbb{R})$ is a uniform lattice, there exists a quasi-isometry

$$f : (H_1(\mathbb{Z}), d_S) \to (H_1(\mathbb{R}), d_H)$$

where d_S is the word metric; see [1] Definition 4.B.1 and [3] Proposition 5.C.3. In particular, $H^q_0(H_1(\mathbb{Z})) \cong H^q_0(H_1(\mathbb{R}))$ are isomorphic. As the group $H_1(\mathbb{Z})$ is infinite polycyclic, $0 = [H_1(\mathbb{Z})] \in H^q_0(H_1(\mathbb{Z}))$ if and only if $\varrho(t) = t + 1$; see [16] Corollary 5.5. In particular, $0 \neq [H_1(\mathbb{Z})] \in H^q_0(H_1(\mathbb{Z}))$ for $\xi(t) \sim t + 1$. The claim now follows from Theorem A.

Similar arguments hold for Carnot groups; again Theorem A gives a homological way to deduce $(S^q_{1,1})$ from algebraic growth data.

Acknowledgements I would like to thank Ilkka Holopainen for introducing me to the topic of Sobolev inequalities and for providing me with unpublished notes by Aleksi Väisänen on global Sobolev inequalities on Gromov hyperbolic spaces. I also wish to thank Piotr Nowak for many discussions on growth homology, Pekka Pankka whose comments and suggestions more than improved the text at hand, Antti Perälä for many conversations on related topics, the Technion for its hospitality during my stay from January to May 2014, Uri Bader and Tobias Hartnick for many inspiring conversations, and Eline Zehavi for all her help during this stay. Last, I would like to thank the Academy of Finland, projects 252293, 271983, and the ERC grant 306706, for financial support, and DOMAST for travel support.

2 Tools of controlled coarse homology

We first recall some terminology; see [16] for details. A metric space (X, d) is uniformly coarsely proper if it has a quasi-lattice $\Gamma \subseteq X$.

Remark 1. A metric space (X, d) is uniformly coarsely proper if and only if there exists $r_0 > 0$ and $N : (r_0, \infty) \times (r_0, \infty) \to \mathbb{N}$ such that, for all $R > r > r_0$, any open ball of radius R in X can be covered by $N(R, r)$ open balls of radius r in X; see [3] Section 3.

A pointed uniformly coarsely proper space (X, d, o) always has a quasi-lattice $\Gamma \ni o$. For $q \in \mathbb{N}$, we denote by (X^{q+1}, d, o) the corresponding pointed $(q + 1)$-Cartesian product with basepoint $\bar{o} = (o, \ldots, o)$ and metric

$$d(\bar{x}, \bar{y}) = \max_{0 \leq i \leq q} d(x_i, y_i)$$

where $\bar{x} = (x_0, \ldots, x_q) \in X^{q+1}$ and $\bar{y} = (y_0, \ldots, y_q) \in X^{q+1}$. For a quasi-lattice $\Gamma \ni o$ and a control function ϱ, we denote by $C^\varrho_q(\Gamma)$ the space of functions $c : \Gamma^{q+1} \to \mathbb{R}$ for which

(a) there exists a constant $K(c) \geq 0$, which may depend on c, such that $|c(\bar{x})| \leq K(c)\varrho(d(\bar{x}, \bar{o}))$ for all $\bar{x} \in \Gamma^{q+1}$;
(b) \(c \) is alternating, that is \(c(x_{\sigma(0)}, \ldots, x_{\sigma(q)}) = \text{sign}(\sigma)c(x_0, \ldots, x_q) \) for all \((x_0, \ldots, x_q) \in \Gamma^{q+1} \) and all permutations \(\sigma: \{0, \ldots, q\} \to \{0, \ldots, q\} \);

(c) there exists a constant \(P(c) \geq 0 \), which may depend on \(c \), such that \(c(x_0, \ldots, x_q) = 0 \) if \(\max_{i \neq j} d(x_i, x_j) > P(c) \).

Note that \(C_0^q(\Gamma) \) is an \(\mathbb{R} \)-module that does not depend on the choice of basepoint by \((21)\). A function \(c \in C_0^q(\Gamma) \) is called a **controlled coarse \(q \)-chain** and we write

\[
c = \sum_{(x_0, \ldots, x_q) \in \Gamma^{q+1}} c(x_0, \ldots, x_q) [x_0, \ldots, x_q]
\]

where the abstract \(q \)-cell \([x_0, \ldots, x_q] \in C_0^q(\Gamma)\) is the characteristic function \(\chi_{(x_0, \ldots, x_q)}: \Gamma^{q+1} \to \mathbb{R} \) of the point \((x_0, \ldots, x_q)\). The **controlled coarse homology** \(H_0^q(\Gamma) \) is the homology of the chain complex

\[
\cdots \xrightarrow{\partial_3} C_3^q(\Gamma) \xrightarrow{\partial_2} C_2^q(\Gamma) \xrightarrow{\partial_1} C_1^q(\Gamma) \xrightarrow{\partial_0} 0
\]

where the boundary homomorphism \(\partial_q: C_q^q(\Gamma) \to C_{q-1}^q(\Gamma) \) is given by

\[
\partial_q([x_0, \ldots, x_q]) = \sum_{i=0}^q (-1)^i[x_0, \ldots, \hat{x}_i, \ldots, x_q]
\]

for each abstract \(q \)-cell \([x_0, \ldots, x_q]\) and extended linearly to \(C^q(\Gamma) \) for \(q \in \mathbb{N} \setminus \{0\}\); as usual, \([x_0, \ldots, \hat{x}_i, \ldots, x_q] \) denotes the abstract \(q \)-cell obtained from \([x_0, \ldots, x_q]\) by omitting its \(i \)th coordinate. In particular, \(\partial_{q-1} \circ \partial_q = 0 \) and \(\partial_q c \in C_{q-1}^q(\Gamma) \) by \((21)\). The \(q \)-dimensional controlled coarse homology group is explicitly

\[
H_q^q(\Gamma) = \ker \partial_q / \text{im} \partial_{q+1}.
\]

A special role is played by the homology class \([\Gamma] \in H_0^0(\Gamma)\) of the characteristic function

\[
\chi_\Gamma = \sum_{x \in \Gamma} [x] \in C_0^0(\Gamma),
\]

called the **fundamental class**. Its vanishing characterises the \(q \)-isoperimetry of the space. In what follows we use the notation \([x, y] := d(\bar{o}, (x, y))\).

Theorem [16, Lemma 4.1, Theorem 4.2]. For a quasi-lattice \(\Gamma \ni o \), assume that there exists \(C \in (0, 1) \) such that \(d(x, y) \geq C \) whenever \(x, y \in \Gamma \) are distinct, and that for all \(x, y \in \Gamma \) there is a sequence \((x = x_0, \ldots, x_n = y)\) in \(\Gamma \) such that \(n \leq d(x, y) \) and \(d(x_i, x_{i+1}) \leq 1 \) for every \(0 \leq i \leq n-1 \). Then, the following are equivalent:

1. \(0 = [\Gamma] \in H_0^0(\Gamma) \),
2. there exists \(C' > 0 \) such that for every finitely supported \(\eta: \Gamma \to \mathbb{R} \)

\[
\sum_{x \in \Gamma} |\eta(x)| \leq C' \left(\sum_{x \in \Gamma} \sum_{y \in B(x,1)} |\eta(x) - \eta(y)| \varphi(\| (x, y) \|) \right)
\]

where \(B(x, 1) = \{ y \in \Gamma: d(x, y) \leq 1 \} \),
(3) there exists $C'' > 0$ such that for all finite $F \subseteq \Gamma$

$$
\# F \leq C'' \sum_{x \in \partial F} \varrho(d(o, x)),
$$

where $\partial F = \{x \in \Gamma: d(x, F) = 1 \text{ or } d(x, \Gamma \setminus F) = 1\}$.

Lemma 16. Assume $\Gamma \subseteq X$ is a quasi-lattice for which there exists $c = \sum_{x \in F} c(x)[x] \in C^0_0(\Gamma)$ such that $\inf_{x \in \Gamma} c(x) > 0$ and $[c] = 0$ in $H^0_0(\Gamma)$. Then $0 = [\Gamma] \in H^0_0(\Gamma)$.

This leads us to the following observation which shows that if $[\Gamma] = 0$ for some quasi-lattice $\Gamma \subseteq X$ then $[\Gamma'] = 0$ for every quasi-lattice $\Gamma' \subseteq X$.

Lemma 2. Let $f: \Gamma \to \Gamma'$ be a quasi-isometry between quasi-lattices. Then, $[\Gamma] = 0$ in $H^0_0(\Gamma)$ if and only if $[\Gamma'] = 0$ in $H^0_0(\Gamma')$.

Proof. The quasi-isometry $f: \Gamma \to \Gamma'$ induces a chain map $f_q: C^0_q(\Gamma) \to C^0_q(\Gamma')$ extending the map $[x_0, \ldots, x_q] \mapsto [f(x_0), \ldots, f(x_q)]$ linearly to $C^0_q(\Gamma)$. By (3) and (2), f_q is well-defined. In particular

$$f_0 \left(\sum_{x \in \Gamma} [x] \right) = \sum_{x \in \Gamma} [f(x)] = \sum_{y \in f(\Gamma)} c(y)[y] = c' \in C^0_0(\Gamma')$$

where $c(y) = \# f^{-1}(y) \geq 1$ for $y \in f(\Gamma)$. Since $f(\Gamma) \subseteq \Gamma'$ is a quasi-lattice and $0 = [\Gamma]$ implies that $0 = [c'] \in H^0_0(\Gamma')$ there exists for every $y \in f(\Gamma)$ a controlled coarse 1-chain

$$t_y = \sum_{i=0}^{\infty} [x_i, x_{i+1}] \in C^1_f(f(\Gamma))$$

where $x_0 = y$ so that

$$t = \sum_{y \in f(\Gamma)} t_y \in C^1_f(f(\Gamma))$$

by the proof of (3); see also [1] Lemma 2.4. By coboundedness, fix $C > 0$ such that $N_C(f(\Gamma)) = \Gamma'$. To begin, let $y_1 \in f(\Gamma)$ and let

$$t_{w, y_1} = [w, y_1] + t_y \in C^1_f(\Gamma')$$

for each $w \in B(y_1, C) \setminus \{y_1\}$. Since Γ' is uniformly locally finite, there is at most $\# (B(y_1, C) \cap \Gamma') \leq N(C)$ chains t_{w, y_1}. Next, let $y_2 \in f(\Gamma) \setminus \{y_1\}$ and let

$$t_{w, y_2} = [s, y_2] + t_{y_2} \in C^1_f(\Gamma')$$

for each $w \in (B(y_2, C) \setminus \{y_2\}) \setminus B(y_1, C)$. Again, there is at most $N(C)$ chains t_{w, y_2}. Continuing in the obvious way, we obtain a controlled coarse 1-chain

$$t' = \sum_{i=1}^{\infty} t_{w, y_i} + \sum_{y \in f(\Gamma)} t_y \in C^1_f(\Gamma')$$

whose boundary is $\partial t' = \sum_{y \in f(\Gamma)} [y]$. In other words, $0 = [\Gamma'] \in H^0_0(\Gamma')$ as claimed.

\[\square \]
3 Uniform metric measure spaces, discretisation, and smoothing

A metric measure space \((X, d, \mu)\) is a \((DV)_{\text{loc}}\) space if it has the \((DV)_{\text{loc}}\) property saying that there exists a function \(C: (0, \infty) \to (0, \infty)\) such that

\[
0 < \mu(B(x, 2r)) \leq C(r) \mu(B(x, r)) < \infty
\]

for all \(B(x, r) \subseteq X\); see \[6\]. This implies that the space is separable; see \[10\] Lemma 3.3.30. Examples of \((DV)_{\text{loc}}\) spaces are locally compact groups acting by measure preserving isometries on metric measure spaces \[17\] Example 5.4, and uniform spaces with \(C\) saying that there exists a function \(\kappa\) in \((DV)_{\text{loc}}\) for all \(u \in N\).

3.1 Discretisation and smoothing: from discrete to smooth

A maximal \(\varepsilon\)-net in \((X, d)\) is a \(\varepsilon\)-cobounded subset \(N(X, \varepsilon) \subseteq X\) such that \(d(x, y) \geq \varepsilon\) whenever \(x, y \in N(X, \varepsilon)\) are distinct. We also write \(q \sim p\) saying that \(q\) is a neighbour of \(q\) if \(p, q \in N(X, \varepsilon)\) and \(0 < d(p, q) \leq 3\varepsilon\). By Zorn’s lemma, for any \(\varepsilon > 0\) and \(o \in X \neq \emptyset\) there exists a maximal \(\varepsilon\) net \(N(X, \varepsilon) \ni o\).

Adapting the argument for doubling spaces in \[10\] Section 4.1, we record the following fact.

Remark 3. A \((DV)_{\text{loc}}\) space \((X, d, \mu)\) is uniformly coarsely proper as a metric space. In particular any \(N(X, \varepsilon)\) is a quasi-lattice.

Lemma 4. Let \((X, d, \mu)\) be an unbounded quasiconvex \((DV)_{\text{loc}}\) space that supports a local weak \((1, 1)\)-Poincaré inequality up to scale \(R_{\mu}\) Then, given \(0 < \varepsilon \leq R_{\mu}/4\), a quasi-lattice \(N(X, \varepsilon) \ni o\), where \(\mu\{\{o\}\} = 0\), and a control function \(\varrho: [0, \infty) \to [0, \infty)\), there exists \(C > 0\) for which

\[
\sum_{p \in N(X, \varepsilon)} \int_{q \sim p} |u_{B(p, 4\varepsilon)} - u_{B(q, 4\varepsilon)}|q(d(o, p))\mu(B(p, \varepsilon)) \leq C \int_X |\nabla u(x)|q(d(o, x))d\mu(x)
\]

for every \(u \in N^{1,1}(X, d, \mu)\).

This lemma is well-known for complete Riemannian manifolds of bounded geometry when \(\varrho \equiv 1\) \[11\] Lemma 33; see also \[13\]. Here the point to note is that using inequality \[23\] the classic result can additionally be weighted by the control function \(\varrho\) which connects it to controlled coarse homology.

Proof of Lemma 4. Let \(p \in N(X, \varepsilon)\) and \(x \in B(p, 8\varepsilon)\) where \(\tau \geq 1\). Now \(d(o, p) \leq d(o, x) + d(x, p) \leq d(o, x) + 8\varepsilon\), and since \(\varrho\) is non-decreasing

\[
(1) \quad \varrho(d(o, p)) \int_{B(p, 8\varepsilon)} |\nabla u(x)|d\mu(x) \leq \int_{B(p, 8\varepsilon)} |\nabla u(x)|\varrho(d(o, x) + 8\varepsilon)d\mu(x)
\]

\[
= \int_{B(p, 8\varepsilon)} \{\nabla u(x) |\varrho(d(o, x) + 8\varepsilon)d\mu(x)
\]

\[
\leq L(8\varepsilon) \int_{B(p, 8\varepsilon)} |\nabla u(x)|\varrho(d(o, x))d\mu(x),
\]

by \[23\]. The proposition follows from estimating (1) from below using the local weak \((1, 1)\)-Poincaré inequality. First, choose a neighbour \(q \sim p\) noting that the
space is quasiconvex and unbounded. Now $B(p, 4\tau \varepsilon) \cup B(q, 4\tau \varepsilon) \subseteq B(p, 8\tau \varepsilon)$ and

$$\int_{B(p, 8\tau \varepsilon)} |\nabla u(x)|d\mu(x) \geq \frac{1}{2} \int_{B(p, 4\tau \varepsilon)} |\nabla u(x)|d\mu(x) + \frac{1}{2} \int_{B(q, 4\tau \varepsilon)} |\nabla u(x)|d\mu(x).$$

By the local weak $(1, 1)$-Poincaré inequality

$$\int_{B(p, 4\tau \varepsilon)} |\nabla u(x)|d\mu(x) \geq \frac{1}{4C} \int_{B(p, 4\varepsilon)} |u(x) - u_{B(p, 4\varepsilon)}|d\mu(x),$$

and since $\mu(B(p, 4\tau \varepsilon)) \geq \mu(B(p, 4\varepsilon))$,

$$\int_{B(p, 4\tau \varepsilon)} |\nabla u(x)|d\mu(x) \geq C \int_{B(p, 4\varepsilon)} |u(x) - u_{B(p, 4\varepsilon)}|d\mu(x)$$

for some $C > 0$. Hence

$$\int_{B(p, 8\tau \varepsilon)} |\nabla u(x)|d\mu(x)$$

$$\geq \frac{1}{2} \int_{B(p, 4\tau \varepsilon)} |\nabla u(x)|d\mu(x) + \frac{1}{2} \int_{B(q, 4\tau \varepsilon)} |\nabla u(x)|d\mu(x)$$

$$\geq \frac{C}{2} \int_{B(p, 4\varepsilon)} |u(x) - u_{B(p, 4\varepsilon)}|d\mu(x) + \frac{C}{2} \int_{B(q, 4\varepsilon)} |u(x) - u_{B(q, 4\varepsilon)}|d\mu(x)$$

$$\geq \frac{C}{2} \int_{B(p, 4\varepsilon) \cap B(q, 4\varepsilon)} (|u(x) - u_{B(p, 4\varepsilon)}| + |u(x) - u_{B(q, 4\varepsilon)}|)d\mu(x)$$

$$\geq \frac{C}{2} |u_{B(p, 4\varepsilon)} - u_{B(q, 4\varepsilon)}| \int_{B(p, \varepsilon)} d\mu(x)$$

$$= \frac{C}{2} |u_{B(p, 4\varepsilon)} - u_{B(q, 4\varepsilon)}| \mu(B(p, \varepsilon)),$$

since $B(p, \varepsilon) \subseteq B(p, 4\varepsilon) \cap B(q, 4\varepsilon)$. Using this to estimate (1) gives

$$\int_{B(p, 8\tau \varepsilon)} |\nabla u(x)|g(d(o, x))d\mu(x) \geq \frac{\rho(d(o, p))}{L(8\tau \varepsilon)} \int_{B(p, 8\tau \varepsilon)} |\nabla u(x)|d\mu(x)$$

$$\geq \frac{C\rho(d(o, p))}{2L(8\tau \varepsilon)} |u_{B(p, 4\varepsilon)} - u_{B(q, 4\varepsilon)}| \mu(B(p, \varepsilon)).$$

Since $N(X, \varepsilon)$ is uniformly locally finite, the number of neighbours $q \sim p$ is uniformly bounded and hence

$$\int_{B(p, 8\tau \varepsilon)} |\nabla u(x)|g(d(o, x))d\mu(x)$$

$$\geq C' \rho(d(o, p)) \sum_{q \sim p} |u_{B(p, 4\varepsilon)} - u_{B(q, 4\varepsilon)}| \mu(B(p, \varepsilon)).$$

for some $C' > 0$ independent of u. Similarly, every $x \in X$ belongs to a uniformly bounded number of open balls of radius $8\tau \varepsilon$ having a center in $N(X, \varepsilon)$, and
altogether
\[\sum_{p \in N(X, \varepsilon)} \sum_{q \sim p} |u_{B(p, 4\varepsilon)} - u_{B(q, 4\varepsilon)}|g(d(o, p))\mu(B(p, \varepsilon)) \]
\[\leq C' \sum_{p \in N(X, \varepsilon)} \int_{B(p, 7\varepsilon)} |\nabla u(x)|g(d(o, x))d\mu(x) \]
\[\leq C'' \int_X |\nabla u(x)|g(|x|)d\mu(x) \]
for some \(C'' > 0 \) independent of \(u \), which proves the claim.

We now show that the inequality obtained in Lemma 4 implies \((S^q_{1, 1})\). This time we need both \([71]\) and \([72]\).

Proposition 5. Let \((X, d, \mu)\) be a quasiconvex \((DV)_{\text{loc}}\) space that supports a local weak \((1, 1)\)-Poincaré inequality up to scale \(R_p\). Let \(N(X, \varepsilon) \ni o\) be a quasi-lattice, where \(\mu(\{o\}) = 0\) and \(0 < \varepsilon \leq R_p/4\). Suppose there exists a control function \(g: [0, \infty) \rightarrow [0, \infty)\) and a constant \(C > 0\) such that
\[\sum_{p \in N(X, \varepsilon)} |v(p)|\mu(B(p, \varepsilon)) \leq C \sum_{p \in N(X, \varepsilon)} \sum_{q \sim p} |v(p) - v(q)|g(|(p, q)|)\mu(B(p, \varepsilon)) \]
for every \(v: N(X, \varepsilon) \rightarrow \mathbb{R}\) having finite support. Then \((X, d, \mu)\) satisfies \((S^q_{1, 1})\).

Proof. Let \(u: X \rightarrow [0, \infty)\) be a function in \(N^{1, 1}(X, d, \mu)\) having bounded support. Now,
\[u_{B(.4\varepsilon)}: N(X, \varepsilon) \rightarrow [0, \infty) \]
is finitely supported, and since \(|(p, q)| = d(o, (p, q)) \leq 2d(o, p) + 3\varepsilon\), we have
\[\sum_{p \in N(X, \varepsilon)} u_{B(p, 4\varepsilon)}\mu(B(p, \varepsilon)) \]
\[\leq C \sum_{p \in N(X, \varepsilon)} \sum_{q \sim p} |u_{B(p, 4\varepsilon)} - u_{B(q, 4\varepsilon)}|g(|(p, q)|)\mu(B(p, \varepsilon)) \]
\[\leq C \sum_{p \in N(X, \varepsilon)} \sum_{q \sim p} |u_{B(p, 4\varepsilon)} - u_{B(q, 4\varepsilon)}|g(2d(o, p) + 3\varepsilon)\mu(B(p, \varepsilon)) \]
\[+ C \sum_{q \sim o} |u_{B(o, 4\varepsilon)} - u_{B(q, 4\varepsilon)}|g(3\varepsilon)\mu(B(o, \varepsilon)). \]
In this inequality, the first sum on the right-hand side contains every neighbour of \(o\). To estimate the second sum observe that \(g(3\varepsilon) \leq g(2d(o, p) + 3\varepsilon)\) for every \(p \in N(X, \varepsilon)\), and when \(p \sim o\) we have \(B(o, \varepsilon) \subseteq B(o, 4\varepsilon) \subseteq B(p, 8\varepsilon)\) which gives \(\mu(B(o, \varepsilon)) \leq C(4\varepsilon)C(2\varepsilon)C(\varepsilon)\mu(B(p, \varepsilon))\) using the \((DV)_{\text{loc}}\) property. Put together, this gives the estimate
\[\sum_{p \in N(X, \varepsilon)} u_{B(p, 4\varepsilon)}\mu(B(p, \varepsilon)) \]
\[\leq 2CC(4\varepsilon)C(2\varepsilon)C(\varepsilon) \sum_{p \in N(X, \varepsilon) \setminus \{o\}} \sum_{q \sim p} |u_{B(p, 4\varepsilon)} - u_{B(q, 4\varepsilon)}|g(2d(o, p) + 3\varepsilon)\mu(B(p, \varepsilon)). \]
Now, using both (P1) and (P2) this gives
\[
\sum_{p \in \mathcal{N}(X, \varepsilon)} u_{B(p, 4\varepsilon)} \mu(B(p, \varepsilon)) \\
\leq C' \sum_{p \in \mathcal{N}(X, \varepsilon) \setminus \{o\}} \sum_{q \prec p} |u_{B(p, 4\varepsilon)} - u_{B(q, 4\varepsilon)}| \delta(d(o, p)) \mu(B(p, \varepsilon)) \\
\leq C' \sum_{p \in \mathcal{N}(X, \varepsilon) \setminus \{o\}} \sum_{q \prec p} |u_{B(p, 4\varepsilon)} - u_{B(q, 4\varepsilon)}| \delta(d(o, p)) \mu(B(p, \varepsilon)).
\]
for some $C' > 0$ independent of u. By Lemma [H]
\[
\sum_{p \in \mathcal{N}(X, \varepsilon) \setminus \{o\}} \sum_{q \prec p} |u_{B(p, 4\varepsilon)} - u_{B(q, 4\varepsilon)}| \delta(d(o, p)) \mu(B(p, \varepsilon)) \leq C' \int_X |\nabla u(x)| \delta(d(o, x)) d\mu(x),
\]
so
\[
\sum_{p \in \mathcal{N}(X, \varepsilon)} u_{B(p, 4\varepsilon)} \mu(B(p, \varepsilon)) \leq C' \int_X |\nabla u(x)| \delta(d(o, x)) d\mu(x)
\]
for some $C'' > 0$ independent of u. On the other hand, by the $(DV)_{\text{loc}}$ property
\[
\int_X u(x) d\mu(x) \leq \sum_{p \in \mathcal{N}(X, \varepsilon)} \int_{B(p, 4\varepsilon)} u(x) d\mu(x) = \sum_{p \in \mathcal{N}(X, \varepsilon)} u_{4B(p, 4\varepsilon)} \mu(B(p, 4\varepsilon)) \\
\leq C(2\varepsilon) C(\varepsilon) \sum_{p \in \mathcal{N}(X, \varepsilon)} u_{4B(p, \varepsilon)} \mu(B(p, \varepsilon))
\]
from which the claim follows for $u : X \rightarrow [0, \infty)$ in $N(X, d, \mu)$ having bounded support. The claim for any $u \in N^{1,1}(X, d, \mu)$ having bounded support follows by replacing u with $|u|$ and noticing that $|\nabla|u|| \leq |\nabla u|$. \qed

3.2 From smooth to discrete

To begin, recall the notion of Lipschitz partition of unity associated to $N(X, \varepsilon)$ and Lipschitz extensions.

Definition 6. [A Section 1.12] A Lipschitz partition of unity associated to $N(X, \varepsilon)$ of a metric space (X, d) is a locally finite family $\{\varphi_p : p \in \mathcal{N}(X, \varepsilon)\}$ of L-Lipschitz functions $\varphi_p : X \rightarrow [0, 1]$ such that
\[
\sum_{p \in \mathcal{N}(X, \varepsilon)} \varphi_p(x) = 1
\]
for every $x \in X$ and $\varphi_p|[X \setminus B(p, 2\varepsilon)] \equiv 0$.

The following lemma is a modification of [H] Section 1.12; the proofs are essentially identical.

Lemma 7. Let (X, d) be a quasiconvex and uniformly coarse properly proper space and $N(X, \varepsilon)$ a quasi-lattice where $0 < \varepsilon \leq 2$. Then, the family $\{\varphi_p : p \in \mathcal{N}(X, \varepsilon)\}$ where
\[
\varphi_p(x) = \frac{\psi_p(x)}{\psi(x)}
\]
\[\psi(x) = \min \left\{ 1, \frac{2}{\varepsilon} \text{dist} (x, X \setminus B(p, 3\varepsilon/2)) \right\}, \] and \(\psi(x) = \sum_{p \in N(X, \varepsilon)} \psi_p(x) \), is a Lipschitz partition of unity associated to \(N(X, \varepsilon) \).

Definition 8. Let \((X, d)\) be a quasiconvex uniformly coarsely proper space and \(N(X, \varepsilon)\) a quasi-lattice where \(0 < \varepsilon \leq 2\). Given any function \(v: N(X, \varepsilon) \to \mathbb{R}\), its locally Lipschitz extension \(\overline{v}: X \to \mathbb{R}\) associated to \(\{\varphi_p: p \in N(X, \varepsilon)\}\) is defined by

\[\overline{v}(x) = \sum_{p \in N(X, \varepsilon)} v(p) \varphi_p(x), \]

where \(\{\varphi_p: p \in N(X, \varepsilon)\}\) is the Lipschitz partition of unity associated to \(N(X, \varepsilon)\).

The pointwise upper Lipschitz constant at \(x \in X\) of a function \(v: X \to \mathbb{R}\) from a metric space \((X, d)\) is

\[\text{Lip} v(x) = \limsup_{r \to 0} \sup_{y \in B(x, r)} \frac{|v(x) - v(y)|}{r}. \]

Note that \(\text{Lip} \overline{v}: X \to [0, \infty]\) is an upper gradient of the locally Lipschitz extension \(\overline{v}: X \to \mathbb{R}\) of \(v: N(X, \varepsilon) \to \mathbb{R}\); see \([10, \text{Lemma 6.2.6}]\). We are now ready to prove the following lemma.

Lemma 9. Let \((X, d, \mu)\) be a quasiconvex \((DV)_{\text{loc}}\) space, \(N(X, \varepsilon) \ni o\) a quasi-lattice where \(0 < \varepsilon \leq 2\), \(\mu(o) = 0\), and \(g: [0, \infty) \to [0, \infty)\) a control function. Then there exists \(C > 0\) such that

\[\int_X \text{Lip} \overline{v}(x) g(d(o, x)) d\mu(x) \leq C \sum_{p \in N(X, \varepsilon)} \sum_{q \sim p} |v(p) - v(q)| g(d(o, p)) \mu(B(p, \varepsilon)) \]

for any \(v: N(X, \varepsilon) \to \mathbb{R}\).

Proof. Let \(v: N(X, \varepsilon) \to \mathbb{R}\) be any function and \(\overline{v}: X \to \mathbb{R}\) its locally Lipschitz extension as in Lemma 7. Arguing as in \([12, \text{Lemma 3.2}]\), there exists a constant \(C > 0\) such that, for any \(p \in N(X, \varepsilon)\) and \(x, y \in B(p, \varepsilon)\),

\[\frac{|\overline{v}(x) - \overline{v}(y)|}{d(x, y)} \leq C \sum_{q \in B(p, 3\varepsilon) \cap N(X, \varepsilon)} |v(q) - v(p)|. \]

In particular,

\[\text{Lip} \overline{v}(x) = \limsup_{r \to 0} \sup_{y \in B(x, r)} \frac{|\overline{v}(x) - \overline{v}(y)|}{r} \leq C \sum_{q \in B(p, 3\varepsilon) \cap N(X, \varepsilon)} |v(q) - v(p)|. \]

Thus,

\[\int_X \text{Lip} \overline{v}(x) g(d(o, x)) d\mu(x) \leq \sum_{p \in N(X, \varepsilon)} \int_{B(p, \varepsilon)} \text{Lip} \overline{v}(x) g(d(o, x)) d\mu(x) \]

\[\leq C \sum_{p \in N(X, \varepsilon)} \sum_{q \in B(p, 3\varepsilon) \cap N(X, \varepsilon)} |v(q) - v(p)| \int_{B(p, \varepsilon)} g(d(o, x)) d\mu(x). \]
The claim now follows by an application of inequality \([21]\). Indeed, if \(x \in B(p, \varepsilon)\), then \(d(o, x) \leq d(x, p) + d(p, o) \leq \varepsilon + d(o, p)\), and we have \(\varrho(d(o, x)) \leq L(\varepsilon)\varrho(d(o, p))\) whenever \(p \neq o\). Hence,

\[
\int_X \text{Lip} \, \overline{\varpi}(x) \varrho(d(o, x)) d\mu(x) \leq CL(\varepsilon) \sum_{p \in N(X, \varepsilon)} \sum_{q \sim p} |v(q) - v(p)| \varrho(d(o, p)) \mu(B(p, \varepsilon))
\]

as claimed. \(\square\)

At this point, we have the following intermediate version of [16, Theorem 4.2] for quasiconvex \((DV)_{\text{loc}}\) spaces.

Theorem 10. If \((X, d, \mu)\) is a quasiconvex \((DV)_{\text{loc}}\) space that supports a local weak \((1, 1)\)-Poincaré inequality up to scale \(R_p\). Then the following are equivalent:

1. \((X, d, \mu)\) satisfies \((S^q_{1,1})\);
2. For any \(0 < \varepsilon \leq \min\{2, R_p/4\}\) and \(N(X, \varepsilon) \ni o\) such that \(\mu(\{o\}) = 0\), there exists \(C > 0\) such that

\[
\sum_{p \in N(X, \varepsilon)} |v(p)| \mu(B(p, \varepsilon)) \leq C \sum_{p \in N(X, \varepsilon)} \sum_{q \sim p} |v(p) - v(q)| \varrho((p, q)) \mu(B(p, \varepsilon))
\]

for every \(v: N(X, \varepsilon) \to \mathbb{R}\) with finite support.

Proof. By Proposition \([14]\) it follows that (2) implies (1). To prove that that (1) implies (2) let \(v: N(X, \varepsilon) \to [0, \infty)\) be finitely supported and let \(\overline{\varpi}: X \to [0, \infty)\) be its locally Lipschitz extension

\[
\overline{\varpi}(x) = \sum_{p \in N(X, \varepsilon)} v(p) \varphi_p(x) = \sum_{p \in N(X, \varepsilon)} v(p) \frac{\varphi_p(x)}{\varphi(x)},
\]

now with bounded support. Since \(\overline{\varpi}\) is locally Lipschitz, \(\text{Lip} \, \overline{\varpi}\) is an upper gradient of \(\overline{\varpi}\). In particular, \(\overline{\varpi}\) and has a minimal 1-weak upper gradient |\(\nabla \overline{\varpi}\)|; see [10, Theorem 6.3.20]. Thus, by \((S^q_{1,1})\)

\[
\int_X \overline{\varpi}(x) d\mu(x) \leq C \int_X |\nabla \overline{\varpi}| \varrho(d(o, x)) d\mu(x) \leq C \int_X \text{Lip} \, \overline{\varpi}(x) \varrho(d(o, x)) d\mu(x).
\]

By Lemma \([9]\)

\[
\int_X \text{Lip} \overline{\varpi}(x) \varrho(d(o, x)) d\mu(x) \leq C' \sum_{p \in N(X, \varepsilon)} \sum_{q \sim p} |v(p) - v(q)| \varrho((p, q)) \mu(B(p, \varepsilon)).
\]

Since \(\psi\) appearing in the Lipschitz partition of unity is uniformly bounded, there exists \(C'' > 0\) for which \(\psi(x) \leq C''\) for all \(x \in X\) and

\[
\int_X \overline{\varpi}(x) d\mu(x) = \int_X \sum_{p \in N(X, \varepsilon)} v(p) \varphi_p(x) d\mu(x) = \int_X \sum_{p \in N(X, \varepsilon)} v(p) \frac{\varphi_p(x)}{\varphi(x)} d\mu(x)
\]

\[
\geq \frac{1}{C''} \int_X \sum_{p \in N(X, \varepsilon)} v(p) \varphi_p(x) d\mu(x)
\]

\[
\geq \frac{1}{C''} \sum_{p \in N(X, \varepsilon)} v(p) \mu(B(p, \varepsilon)),
\]

12
Then, the following are equivalent:

By Proposition 10, (1) and (2) are equivalent. By uniformity 0

Proof. for

for every μ equipping N for every X,d,μ that (3) implies (4). First, we approximate (Ψ)

\therefore, it remains to prove that (3) and (4) are equivalent and we first show

fundamental class in \H Combining the previous results, we are ready to prove that the vanishing of a

local weak $(1, \epsilon)$ Let

Theorem 12.

Lemma 11.

uniform. We begin with the following fact.

as $\psi_p|B(p, \epsilon) \equiv 1$; and altogether for some $C'' > 0$ independent of v

for every $v: N(X, \epsilon) \to [0, \infty)$ with finite support. The general claim for any $v: N(X; \epsilon) \to \mathbb{R}$ with finite support now follows observing that the claim holds

for $|v|$ by the previous, and by the triangle inequality for v.

3.3 Connecting H_0^g to $(S^g_{1,1})$

Combining the previous results, we are ready to prove that the vanishing of a fundamental class in H_0^g of a quasiconvex $(DV)_{loc}$ space that supports a local weak $(1, 1)$-Poincaré inequality is characterised by $(S^g_{1,1})$ whenever the space is uniform. We begin with the following fact.

Lemma 11. A quasiconvex uniform space (X,d,μ) has at most exponential volume growth.

Proof. Fix a quasi-lattice $N(X, \epsilon)$ and let $k \in \mathbb{N}\setminus\{0\}$. Since $N(X, \epsilon)$ is uniformly locally finite any open ball $B(x, 2k\epsilon) \subseteq X$ can be covered by $N(3\epsilon)^k$ balls of radius ϵ. Since (X,d,μ) is uniform,

for every $k \in \mathbb{N}\setminus\{0\}$.

Theorem 12. Let (X,d,μ) be a quasiconvex uniform space that supports a local weak $(1, 1)$-Poincaré inequality up to scale R_p. Let $0 < \epsilon \leq \min\{2, R_p/4\}$, $N(X, \epsilon) \supseteq o$, where $\mu(\{o\}) = 0$, and $\varphi: [0, \infty) \to [0, \infty)$ a control function. Then, the following are equivalent:

(1) (X,d,μ) satisfies $(S^g_{1,1})$;

(2) there exists $C_1 > 0$ such that for every $v: N(X, \epsilon) \to \mathbb{R}$ with finite support

$(\sum p \in N(X, \epsilon)) |v(p)|\mu(B(p, \epsilon)) \leq C_1 \sum p \in N(X, \epsilon) v(p)|v(p)|\mu(B(p, \epsilon))$;

(3) there exists $C_2 > 0$ such that for every $v: N(X, \epsilon) \to \mathbb{R}$ with finite support

$(\sum p \in N(X, \epsilon)) |v(p)| \leq C_2 \sum p \in N(X, \epsilon) v(p)|v(p)|\mu(B(p, \epsilon))$;

(4) $0 = [\Gamma] \in H_0^g(\Gamma)$ for any quasi-lattice $\Gamma \subseteq X$.

Proof. By Proposition 10 (1) and (2) are equivalent. By uniformity $0 < f(\epsilon) \leq \mu(B(p, \epsilon)) \leq g(\epsilon) < \infty$ for all $p \in N(X, \epsilon)$, and so (2) and (3) are equivalent. Hence, it remains to prove that (3) and (4) are equivalent and we first show that (3) implies (4). First, we approximate (X,d) by the space obtained from equippping $N(X, \epsilon)$ with the edge path length $\delta: N(X, \epsilon) \times N(X, \epsilon) \to \mathbb{N}\cup\{\infty\}$ given by

13
δ(x, y) = 0 if x = y, \\
δ(x, y) = k if the shortest 3ε-path from x to y is of length k, \\
δ(x, y) = ∞ if there is no 3ε-path from x to y,

where a 3ε-path from x to y of length k is any sequence of points x = x₀, . . . , xₖ = y in N(X, ε) where 0 < d(xᵢ, xᵢ₊₁) ≤ 3ε. Since (X, d) is uniformly coarsely proper and (Q)-quasiconvex, δ is a metric on N(X, ε) and (N(X, ε), δ) is quasi-isometric to (X, d); see [13, Proposition 3.D.16], and

\[
\frac{1}{3\varepsilon} d(p, q) \leq \delta(p, q) \leq \frac{Q}{\varepsilon} d(p, q) + 1 \quad \text{(QI)}
\]

for all p, q ∈ N(X, ε) adapting [13, Lemma 2.5] for geodesic spaces to quasiconvex spaces. Thus \(\varrho(d(\bar{o}, (p, q))) \leq 3 \varepsilon \delta(\bar{o}, (p, q))\) by (QI), and using (22) we see that (N(X, ε), δ) satisfies

\[
\sum_{x \in N(X, \varepsilon)} |\eta(x)| \leq C_2 M(3\varepsilon) \left(\sum_{x \in \Gamma \setminus \{y : \delta(y, x) = 1\}} \sum_{y} |\eta(x) - \eta(y)| \varrho(\{(x, y)\}) \right)
\]

for every finitely supported \(\eta : N(X, \varepsilon) \to \mathbb{R}\). Equivalently, 0 = [N(X, ε)] ∈ \(H^0_0(N(X, \varepsilon))\) where \(H^0_0(N(X, \varepsilon))\) is defined using the metric δ; see [16, Lemma 4.1, Theorem 4.2]. Since id : (N(X, ε), δ) → (N(X, ε), d) is a quasi-isometry, we conclude that 0 = [(N(X, ε))] ∈ \(H^0_0(N(X, \varepsilon))\), where \(H^0_0(N(X, \varepsilon))\) is defined using the metric d, and hence 0 = \([\Gamma]\) ∈ \(H^0_0(\Gamma)\) for any quasi-lattice \(\Gamma \subseteq X\) by Lemma 2. It remains to prove that (4) implies (3). By assumption, 0 = \([\Gamma]\) ∈ \(H^0_0(\Gamma)\) for any quasi-lattice \(\Gamma \subseteq X\); in particular for N(X, ε) ⊆ X. Since id : (N(X, ε), d) → (N(X, ε), δ) is a quasi-isometry, 0 = [(N(X, ε))] ∈ \(H^0_0(N(X, \varepsilon))\) defined using the metric δ, equivalently, for some \(D > 0\)

\[
\sum_{x \in N(X, \varepsilon)} |\eta(x)| \leq D \left(\sum_{x \in N(X, \varepsilon) \setminus \{y : \delta(y, x) = 1\}} \sum_{y} |\eta(x) - \eta(y)| \varrho(\{(x, y)\}) \right)
\]

for every finitely supported \(\eta : N(X, \varepsilon) \to \mathbb{R}\). Applying (QI), (21) and (22), respectively, \(\varrho(\delta(\bar{o}, (p, q))) \leq L(1)M(Q/\varepsilon)\varrho(d(\bar{o}, (p, q)))\). Using this to estimating the above inequality from above gives (3).

Theorem A summarises this by stating the equivalence between (1) and (4) above. Theorem B follows from the observation that the local weak (1, 1)-Poincaré inequality is not needed to prove that (1) implies (2) in Theorem 10.

References

[1] J. Block and S. Weinberger. Aperiodic tilings, positive scalar curvature and amenability of spaces. *J. Amer. Math. Soc.*, 5(4):907–918, 1992.

[2] J. Cao. Cheeger isoperimetric constants of Gromov-hyperbolic spaces with quasi-poles. *Commun. Contemp. Math.*, 2(4):511–533, 2000.
[3] Y. Cornulier and P. de la Harpe. Metric geometry of locally compact groups, June 2015. arXiv:1403.3796 [math.GR].

[4] T. Coulhon. Espaces de Lipschitz et inégalités de Poincaré. J. Funct. Anal., 136(1):81–113, 1996.

[5] T. Coulhon and L. Saloff-Coste. Isopérimétrie pour les groupes et les variétés. Rev. Mat. Iberoamericana, 9(2):293–314, 1993.

[6] T. Coulhon and L. Saloff-Coste. Variétés Riemanniennes isométriques à l’infini. Rev. Mat. Iberoamericana, 11(3):687–726, 1995.

[7] A. Erschler. On isoperimetric profiles of finitely generated groups. Geom. Dedicata, 100:157–171, 2003.

[8] P. Hajłasz and P. Koskela. Sobolev met Poincaré. Mem. Amer. Math. Soc., 145(688):x+101, 2000.

[9] J. Heinonen. Geometric embeddings of metric spaces. Report, University of Jyväskylä Department of Mathematics and Statistics, 90, 2003.

[10] J. Heinonen, P. Koskela, N. Shanmugalingam, and J. T. Tyson. Sobolev spaces on metric measure spaces, volume 27 of New Mathematical Monographs. Cambridge University Press, Cambridge, 2015. An approach based on upper gradients.

[11] I. Holopainen. Rough isometries and p-harmonic functions with finite Dirichlet integral. Rev. Mat. Iberoamericana, 10(1):143–176, 1994.

[12] I. Holopainen, U. Lang, and A. Vähäkangas. Dirichlet problem at infinity on Gromov hyperbolic metric measure spaces. Math. Ann., 339(1):101–134, 2007.

[13] M. Kanai. Rough isometries, and combinatorial approximations of geometries of noncompact Riemannian manifolds. J. Math. Soc. Japan, 37(3):391–413, 1985.

[14] M. Kanai. Rough isometries and the parabolicity of Riemannian manifolds. J. Math. Soc. Japan, 38(2):227–238, 1986.

[15] J. Koivisto. Non-amenability and visual gromov hyperbolic spaces, Nov. 2015. arXiv:1505.04662[math.MG].

[16] P. W. Nowak and J. Špakula. Controlled coarse homology and isoperimetric inequalities. J. Topol., 3(2):443–462, 2010.

[17] R. Tessera. Large scale Sobolev inequalities on metric measure spaces and applications. Rev. Mat. Iberoam., 24(3):825–864, 2008.

[18] A. Żuk. On an isoperimetric inequality for infinite finitely generated groups. Topology, 39(5):947–956, 2000.