Abstract

The existence of etamesic nuclei has been speculated for a long time without firm experimental evidence. Much of the effort has taken place in final state interactions on production. One crucial factor in seeing a quasibound state is its width, which should be related to the imaginary part of the scattering length. Comparing two models for ηN scattering giving the same elementary scattering length, a simple optical potential and an explicit coupling to the pionic channel, it is seen that the latter yields a much smaller imaginary part for η-nucleus scattering. This decrease of absorption may also mean a possibility for narrow η-nuclear states.

PACS numbers: 25.80.-e, 21.85.+d, 13.75.-n, 24.10.Ht

Keywords: eta nucleus, eta scattering, optical model, coupled channels
I. INTRODUCTION

Since the realization by Bhalerao and Liu \cite{1} that the ηN interaction is relatively attractive the next step was an anticipation of possible η-nuclear (quasi)bound states \cite{2,3}. In spite of intense searches, so far no unambiguous experimental evidence has been brought up to support these expectations1. Also theoretical predictions are mixed, varying from bound states for nuclei only heavier than carbon to claims of binding for ^4He or even ^3He\cite{2}.

The existence of bound states is closely related to scattering, in particular to the low energy expansion by the scattering length and effective range

$$q \cot \delta = \frac{1}{a} + \frac{r_0}{2} q^2,$$

(1)

where, with the convention normal in meson physics, a positive $\Re a$ indicates moderate attraction, while a negative value means repulsion or a bound state. Unfortunately, this relation is predictive only in theory, since experimentally the cross section in scattering or in production final state interactions (FSI) cannot distinguish the sign of the real part.

However, as pointed out earlier by Haider and Liu, actually the condition for complex potentials is more restrictive and also $|a_R| > a_I$ should be valid \cite{6}. By unitarity, the imaginary part a_I is always positive. In Ref. \cite{7} this condition was pushed to the next order in r_0/a with the condition

$$\Re[a^3(a^* - r_0^*)] > 0,$$

(2)

which reduces to the former one, if $r_0 = 0$. From these conditions (albeit with the bold assumption that $|a| \gg |r_0|$) one can see that also the imaginary part of the scattering length has an essential role even for the very existence of bound states, not to say anything about their width. For this reason a detailed study and understanding of also the imaginary part of the η-nuclear scattering length is relevant. In fact, a very strong correlation between \Im and the binding properties has been seen for nuclei ranging from helium to magnesium in Refs. \cite{8-11}, giving constraints for the latter provided bound states do exist. This means that the FSI data can yield information on the potential bound states only on the condition that they exist - anyhow a possible starting point to make meaningful guesses in searches for binding observables from scattering data.

1 Ref. \cite{4} reports a possible observation in ^{25}Mg.

2 For an extensive recent review see Ref. \cite{5}.
Theoretical calculations for the low energy parameters to compare with experimental FSI effects are also very varied even for the lightest real nucleus 3He studied most intensively (for a review see e.g. Ref. [7]). In addition to the wide variation of the predicted real part in the case of 3He another problem is the predicted imaginary part, which is often large. This is a problem for two reasons. Firstly, obviously the bound state could be too broad for observation. Secondly, even if $\Re a$ were negative, the above condition (2) for the existence of a bound state may not be satisfied with a large imaginary part. Therefore, the large predicted imaginary parts are a bad prospect for finding bound η-nuclear states. However, there are indications about unexpectedly small imaginary parts from the meta-analysis [7] on 3He and later experiments and analyses of the $p+d \to \eta+^3$He reaction [12, 13] and the η^4He final state studied in $d+d$ interactions making use of unpolarized beams [14] as well as polarized beams [15].

In Ref. [7] a reanalysis of existing data on the η^3He system was presented. These data stem from the reaction $pd \to \eta^3$He and the extraction of the scattering length was based on the standard low energy expression of the final state interaction

$$|f|^2 = \frac{|f_p|^2}{1 + a_1 q + |a|^2 q^2},$$ \hspace{1cm} (3)

where the original production amplitude f_p is assumed to be very short ranged and essentially momentum independent. The global fit to available data gave the result $a = \pm 4.3 \pm 0.3 + i \ (0.5 \pm 0.5) \text{ fm}$. It should still be stressed that this analysis cannot determine the sign of the real part, which only appears in the second power. Further, this result is fully consistent with a coupled channel K-matrix analysis of Ref. [16] yielding $a = 4.24 \pm 0.29 + i \ (0.72 \pm 0.81) \text{ fm}$. These values may be contrasted with the somewhat contradictory results of two different high-precision experiments at COSY $a = \pm 2.9 \pm 2.7 + i \ (3.2 \pm 1.8) \text{ fm}$ [12] and $a = \pm 10.7 \pm 0.9 + i \ (1.5 \pm 2.8) \text{ fm}$ [13]. Here the latter group gets a better fit including also the effective range and might be preferable. Further support for a small imaginary part may be derived from an overall result for η^4He scattering length $a = \pm 3.1 \pm 0.5 + i \ (0 \pm 0.5) \text{ fm}$ [17]. It is very interesting and suggestive to note that, if the real part for 4He is really smaller in magnitude than for 3He, the behaviour indicates binding for 4He (without any conclusion for 3He).

The aim of the present paper is to investigate possible justification for the smallness of $\Im a$. First the standard static optical potential model is replaced with a coupled channels model.
with an assumed explicit coupling of the ηN system to the pion-nucleon system in a totally phenomenological way but giving the same elementary ηN scattering lengths. Normally the nuclear density profile is used to spread the ηN interaction over the nucleus leading to single channel optical potentials. Now in Sec. III this is generalized to a sort of a two channel optical model. While the limit of a complex optical potential could, in principle, be total absorption ("black sphere), in the case of two channels there is a feedback effect. With the stronger nuclear interaction this could make a difference even though for scattering from a single nucleon the zero energy results would be the same. Another factor could be the longer range of a nucleus vs. the large wave number of the pionic channel. In Sec. III this turns out to be the most important effect.

II. COUPLED OPTICAL MODEL

In line with the simple optical approach [18] the ηN and η-nuclear potential can be expressed as

$$V_{\text{opt}} = -4\pi (V_R + iV_I) \rho(r) \hbar^2/(2\mu_{\eta N}),$$

with $\mu_{\eta N}$ the reduced mass of the ηN system and ρ the nuclear density (V_R and V_I in fm).

In Ref. [18] the strength parameters are taken to be the complex scattering length. Unfortunately, this quantity may not be very well known with values for its real part varying roughly between about 0.25 fm (e.g. chiral models [19]) and about 1 fm (e.g. K matrix methods [20]) and the imaginary part between 0.2 fm and 0.4 fm. An up-to-date listing can be found in Ref. [5]. However, most of the analyses for ηN scattering length yield the magnitude of the imaginary part roughly equal to one half of the real part. K matrix methods tend to give lower ratios down to a quarter and chiral models higher, but in this calculation, just to compare the effect in nuclei for scattering length equivalent elementary interactions, the ratio is kept as one half. So $a_I = 0.5 a_R$ and the strengths V_R and V_I will be varied so that a_R covers the interval 0.2 – 1 fm. In the case of the elementary interaction the range is obviously short, rather dictated by the size of the hadrons. In this case the density profile is taken simply as a normalized Gaussian

$$\rho(r) = A \exp[-(r/b)^2]/(\sqrt{\pi} b)^3,$$

where b is the range parameter and $A = 1$.

4
In the simplest static optical potential the strength parameters \(V_R \) and \(V_I \) are sometimes taken to be the components of the zero energy elementary amplitude (\(i.e. \) the scattering length \(a_\eta N \) as in Ref. [18]). This may be thought of as spreading over the nuclear size the scattering strength from single nucleons. An implicit background assumption could be a density profile of Dirac’s \(\delta \)-functions, point-like sources. However, it was numerically found that this assumption cannot be used for a potential approach. It was impossible to make the range \(b \) arbitrarily small in the Schrödinger equation for any constant strength \(V_R \). This is due to the fact that qualitatively a condition for bound states (and singularities in the scattering length) with varying potential strength and range is that the well-depth times the squared range should be larger than some constant. (In the case of a square well \(\pi^2 \hbar^2/(8\mu) \).) However, making the range smaller, but at the same time increasing the normalization constant as required by the \(\delta \)-function limit, causes the well effectively to deepen inversely to the cube of the range, as can be seen from eq. [5] and the above binding condition will be met. (For a real square well the resulting binding condition would be \(R < 12 V_R/\pi^2 \) and presently for the Gaussian \(R < 0.84 V_R \).) With still decreasing range more bound states and scattering length singularities would appear and pass. The importance of the distortions in the context of short-ranged strong interactions has been discussed in \(e.g. \) Ref. [21] in the case of repulsive interactions, but the effect for attraction is even more drastic and achieving a \(\delta \)-function meaningfully seems impossible.

For the coupled channels interaction the model to be used is similar, but in eq. [4] the strengths will be matrices. In that case \(V_R \) is replaced by a diagonal \(2 \times 2 \) matrix and \(V_I \) effectively by an off-diagonal \(\eta N \leftrightarrow \pi N \) transition matrix. Let’s denote its strength as \(V_C \) for coupling. For the present only the \(\eta N \) interaction is assumed strong enough to warrant a potential so that the diagonal part in the \(\pi N \) sector is set to zero. Because of the large mass-difference term in this channel the effect of this omission is probably small.

The single channel Schrödinger equation is perfectly standard

\[
\frac{p^2}{2\mu} \psi + V_\eta \psi = T \psi \tag{6}
\]

with \(V_\eta \) the complex \(\eta \) potential [4], \(T \) its kinetic energy and \(\mu \) the relevant reduced mass.

In the case of the coupled model also the pion wave function appears into the radial equation (s-wave)

\[
\frac{d^2 u_\eta}{dr^2} - \frac{2\mu}{\hbar^2} V_\eta(r) u_\eta(r) - \frac{2\mu}{\hbar^2} V_\pi(r) u_\pi(r) = -\frac{2\mu}{\hbar^2} T u_\eta(r) \tag{7}
\]
with \(V_{\eta} \) the transition potential (i.e. \(V_C \)) and \(\mu \) the relevant reduced mass. The light pion with the total energy equal to the \(\eta \) mass cannot be handled by the same equation but the relativistic version (Klein-Gordon equation) is more relevant. Here the local momentum is represented by the modified Einstein relation \(p^2 = (E_{\text{tot}} - V)^2 - m_{\pi}^2 c^4 \) leading in the lowest order in \(T/m_{\eta} c^2 \) and \(V/m_{\eta} c^2 \) to

\[
\frac{d^2 u_\pi}{dr^2} + \left(\frac{m_{\eta}^2 - m_{\pi}^2}{(hc)^2} \right) u_\pi(r) - \frac{2m_{\eta}}{h^2} V_\pi(r) u_\pi(r) - \frac{2\mu}{h^2} V_{\eta\pi}(r) u_\eta(r) = - \frac{2m_{\eta}}{h^2} T u_\pi(r). \quad (8)
\]

In the transition term of the pionic channel the \(\eta \) mass has been replaced by the reduced mass of the first channel for hermiticity. It should be noted that in the calculation of the elementary scattering this strength is anyway a freely adjustable parameter and for nuclear scattering the difference is not large. As already mentioned the diagonal \(V_\pi \) term will be neglected. From the asymptotics one gets for the free pion momentum

\[
q_\pi = \sqrt{\frac{(m_{\eta}^2 - m_{\pi}^2)c^4 + 2m_{\eta}c^2 T}{h^2 c^2}} \quad (9)
\]

to be used in the asymptotic boundary conditions.

The procedure is then, after finding the numerical correspondence between the elementary \((V_R, V_I)\) or \((V_R, V_C)\) and \((a_R, a_I)\) for both models, use the strengths thus obtained for a given \(a \) to calculate nuclear scattering with more extensive nuclear density profiles (normalized to \(A \)). This means simply summing the potentials of individual nucleons and smoothing the resultant total potential to the nucleon density. This is not quite the same as in e.g. Ref. [18], where the scattering lengths were used as the strengths. Rather this is the “direct interaction part for the optical potential [22].

Now, with the much stronger nuclear transition potential in the coupled case the feedback effect from pions should be larger and consequently the inelasticity could be smaller than in the direct optical model. In fact, quantum mechanically the strong coupling limit should be to share the probability of \(\eta \)'s and pions equally instead of formally total absorption in the optical model limit. However, one should keep in mind that strong absorption is nonlinear in \(V_I \) and quite complex. The imaginary potential eats the wave function off and acts like repulsion causing correlations, which tend to saturate possible inelasticity as seen e.g. in Ref. [9] for \(\eta \)-nuclei and in even stronger annihilation of antinucleons [23]. Another effect to corroborate the expectation of weaker absorption in the coupled model is the large wave number in the pionic channel (minimum 2.7 fm\(^{-1}\)) forcing by oscillations the relevant
transition matrix to decrease for smooth long range potentials. In fact, this effect can be a
decrease by orders of magnitude.

III. RESULTS

As discussed in the previous section, trying to make the ηN interaction range infinites-\nially small is impractical or even impossible. So as the finite extension b in eq. (5) 0.3 fm
is adopted at first. For this choice the strength parameter V_R varies roughly between 0.14
– 0.28 fm in the case of the single channel optical potential and between 0.10 – 0.25 fm for
coupled channels to produce the values of a_R in the interval 0.2 – 1.0 fm. The imaginary (or
coupling) strength varies between 0.04 – 0.03 fm and 0.14 – 0.12 fm, respectively. It may
be noted that without absorption and the subsequent effective repulsion the upper values
would be close to a binding for such a short range, as discussed earlier. The dependence on
the elementary range will be studied later.

As the most relevant and most investigated nucleus 3He is used with a Gaussian profile
as given in eq. (5) but using the range parameter $b = \sqrt{2/3} r_{rms} = 1.55$ fm with the root-
mean-square radius of 1.9 fm and the normalization to $A = 3$ [18]. The result for the real
and imaginary parts of the nuclear scattering length is given in Fig. 1. While the real parts
differ only moderately in the imaginary parts there is a dramatic difference of more than
two orders of magnitude.

To investigate the origin of the drastic drop in the imaginary part of the nuclear scattering
length the calculation of the effect is divided into a study of two possible mechanisms
indicated previously. First the effect of changing the strength only is shown, then a change
in the range. The varying is performed by a multiplicative factor acting on both model
strengths giving originally the same single elementary scattering length $a(\eta N) = (0.55 +
0.27 i)$ fm. The optical model strength for this is $(V_R, V_I) = (0.23, 0.0393)$ fm and coupling
$(V_R, V_C) = (0.20, 0.14)$ fm.

The results are shown in Fig. 2. It can be seen that as the strength (V_R, V_I) or (V_R, V_C)
doubles, both the real and imaginary parts experience qualitatively strong variation. The
real part on the left shows first strong attraction changing quickly into apparent repulsion
with sharp maxima in both models. This behaviour could also reflect a complex bound
state, as this limit for the very short ranged interaction is close. (Of course, the elementary
FIG. 1. Nuclear scattering length as a function of elementary ηN scattering length calculated for potentials yielding the same elementary lengths (with the constraint $a_I = a_R/2$). Solid: single channel optical model, dashed: coupled channels. The two values of the range parameter b are indicated.

interaction does not support this.) The imaginary part on the right-hand panel goes through a sharp peak in the same interval. Apparently the strong absorption causes the change into effective repulsion. Also the maximum expresses a saturation of absorption. Although these strength varying curves are qualitatively similar for both models, it is noteworthy that for a stronger interaction the coupled channel result has a much smaller imaginary part. If the strength of several nucleons were concentrated within the elementary range, the coupled channels would give less absorption according to this calculation.

However, real nuclei have an extension much larger than 0.3 fm. The less dramatically behaving curves starting from “factor” = 1 describe corresponding changes due to multi-
FIG. 2. ηN scattering lengths for an optical potential (solid) vs. coupled model (dashed) as a function of strength and range. The elementary ηN models yielding the same scattering length $(0.55 + 0.27 \, \text{i}) \, \text{fm}$ have been modified varying either the strength or range by a multiplicative factor between 0 and 5. The curves starting from 0 vary the strength, whereas those starting discontinuously from factor 1 correspond to varying the range.

Applying the range by this factor. (It does not make sense to study smaller ranges.) The behaviour of the real part is now smooth and similar to both models. Also the imaginary part does not look particularly spectacular, but it is important to note that in the case of coupled channels the vanishing with increasing range is very much faster than for the optical potential, which, combined with the strength variation, could account for the unexpectedly small result for ^3He. It may further be noted that with the Gaussian distribution the upper limit in the figure would actually closely correspond to the nuclear ^3He distribution with “factor” $= 5.17$. For this value of “factor” the imaginary part a_1 in the coupled channels
model is already vanishingly small.

In the case of real nuclei both effects play their roles. The nuclear size increases with A as well as the strength does. The latter, however, is moderated by the volume (and hence by the range) and eventually saturates. The influence of the size can be thought as a form factor effect for the case of coherent inelasticity with the nucleus remaining intact. This is actually an inherent assumption in the simplistic optical model with the potential described as being proportional to the density, but the form factor effect really hits only in the explicit inelastic pion channel with a large wave number, not on the low energy η meson. Such a strong suppressing effect for pionic inelasticity was already suggested in Ref. [24] as a ratio of the nuclear and elementary form factors.

It is time to discuss the model dependence. The basic interaction has been taken so far very short-ranged to simulate a δ-function potential. As discussed, this has problems. Also the drastic behaviour in Fig. 2 might be an artifact due to this. Therefore, next the same calculation is repeated with the range $b = 0.6$ fm, which is certainly reasonably large. The corresponding results are also shown in Fig. 1. Now the size of both the real and imaginary parts is much larger, since - due to the longer range as discussed before - the elementary strength also must be larger and this factor is conveyed to the nuclear potential (whose range is not changed). Although this change is even qualitative, still the imaginary part remains much smaller in the coupled case than for the optical one over the whole range of realistic values of the elementary scattering length. The smallness of the imaginary part is further emphasized by the larger size of the real part for the coupled-channel calculation. The rapid rise of $\Im a(\eta^3\text{He})$ for $\Re a(\eta N) > 0.9$ fm combined with a large maximum in the real part is associated with the onset of a narrow bound state for $\Re a(\eta N) \approx 1.1$ fm. Qualitatively the behaviour of $a(\eta^3\text{He})$ is similar to Fig. 2 though with numerically much larger values.

Another aspect of model dependence in the above calculation is that pionic inelasticity is not the only one in the ηN system. About a quarter of inelasticity can be due to two-pion final states. This assertion is consistent with the reported branching ratios of the $N^*(1535)$, 50% to ηN and 13% into $\pi\pi N$ [25]. Its influence is estimated by adding to the coupled channels calculation also an imaginary ηN potential. The strength of this additional potential is taken from the optical potential model yielding this fraction. Actually about one quarter of the earlier imaginary part turns out to be a fairly good value. Then the new complex coupled model becomes too absorptive (and less attractive) and its transition
Re $a(\eta N)$ (fm)

10 x $b=0.3$ fm

$b=0.6$ fm

$10 x b=0.3$ fm

Re $a(\eta N)$ (fm)

FIG. 3. η^3He scattering length for the coupled model as a function of the elementary ηN scattering length supplemented by an optical potential to account for the inelasticity to two pions. The solid curves present the real part for two values of the elementary range while the dashed ones are for the imaginary part.

Potential must be reduced to yield still $a_I(\eta N) = a_R(\eta N)/2$. The elementary scattering length changes only by a few percent giving credibility to this procedure. The results of this modification are shown in Fig. 3 for the η^3He scattering length with the two values of the elementary range parameter $b = 0.3$ fm and 0.6 fm. As expected, because of the sensitivity to the optical potential for small coupling strengths the imaginary part increases significantly, even qualitatively. However, for the most reasonable values of the elementary scattering length it still remains much smaller than for the pure optical model results (solid curves in the right-hand panel of Fig. 1). Also one may note the larger increased size of the real part in both coupled models, though the sharp peaking is smeared quite a lot with this.
FIG. 4. η-nuclear scattering length on carbon as a function of elementary ηN scattering length calculated for models yielding the same elementary lengths (with the constraint $a_l = a_R/2$). Solid: single channel optical model, dashed: pure coupled channels (the imaginary part multiplied by 10), dotted: coupled channels plus two-pion inelasticity. The range parameter $b = 0.6$ fm is used throughout. The real part of the amplitude is negative.

Since it has been seen that the size is of paramount importance in the coupled channel model of inelasticity, it would be interesting to also consider scattering from an even larger nucleus. As a representative example let us take 12C, where binding is unanimously assumed. For this the modified harmonic oscillator of Ref. [26] may be used as the density profile

$$\rho(r) = 0.17 \left[1 + 1.15 \left(\frac{r}{1.672}\text{ fm} \right)^2 \right] \exp \left[-\left(r/1.672\text{ fm} \right)^2 \right] \text{ fm}^{-3}$$

with the normalization $4\pi \int_0^\infty \rho r^2 dr = 12$. Accordingly the optical, the pure coupled chan-
nel and the smeared coupled channels models are applied to produce Fig. 4 but now only with the more realistic range parameter $b = 0.6$ fm. In this case one may note that the real part is negative as it should be for a binding potential. The singular threshold is below $\Re a(\eta N) = 0.2$ fm, so the magnitude of both real and imaginary parts is decreasing instead of increasing as in Fig. 1. Again the pure coupled channels model gives a very small imaginary part, except very close to the binding threshold just below the interaction strengths shown in the figure. In that region the single channel optical model and the complex coupled channels become comparable.

It is noteworthy that for fairly well binding strong interactions both coupled channels models give smaller imaginary parts than the single channel optical one. This gives hope for distinguishing fairly narrow states, if the binding is strong enough. However, in the weaker end of the elementary interaction ($a(\eta N) \lesssim 0.3$ fm) the peaking of the coupled channels result (with larger magnitude of the real part) means also a smaller binding energy in the coupled case making the threshold final state interaction effects in η production very sharp and the binding energy possibly also smaller than the width. Here the largish scattering length makes it possible to use the low-energy expansion for the complex bound state energy

$$E = -\frac{\hbar^2}{\mu r_0^2} \left(1 + \frac{r_0}{a} - \sqrt{1 + \frac{2r_0}{a}} \right)$$

(11)
to estimate these. For the most realistic model (the combination of the optical and coupled channels) with $a(\eta N) \leq 0.25$ fm the real and imaginary parts are, indeed, comparable, but already $a(\eta N) \approx 0.3$ fm seems feasible with $E \approx -(2 + i)$ MeV. For strong binding, when $\Re a \approx -2 \Re r_0$, the meaning of this simple approximation becomes dubious even though the imaginary parts are small, meaning, in principle, a narrow state. It shows the general importance of also the effective range.

IV. CONCLUSION

A coupled channels generalization of the optical potential has been applied to low energy η-nuclear scattering to study the effect of the pionic inelasticity more explicitly and a strong decrease was seen in the imaginary part of the scattering length as compared to the simple single channel optical model. In Fig. 2 this decrease was traced to both a possible increase of the transition strength in nuclei vs. elementary ηN scattering and even more importantly
to the larger spatial range of nuclei. Due to the high pion channel momentum the form
factor of the sizeable nucleus decreases the absorption amplitude drastically as compared to
low-energy η inelasticity obtained from the single channel optical potential even though the
elementary low-momentum ηN scattering is equivalent. This effect is strongly dependent
on the range of the elementary interaction, i.e. on the relation of the elementary to the
nuclear form factor as anticipated earlier [24], but for the range of values normally considered
reasonable for the elementary amplitude [3] the conclusion appears valid. This holds also
after the inclusion of two-pion inelasticity described by an additional optical potential as
seen in the final results of Figs. 3 and 4.

Some nuclear contributions to η inelasticities (notably absorption on nucleon pairs) were
also qualitatively estimated in Ref. [24] to be small, so that the minor imaginary parts of the
nuclear scattering length referred in the Introduction [7, 12–15] may have some theoretical
understanding and justification. The results also may facilitate finding η-mesic nuclei. Fur-
ther, there is no apparent reason how or why the extension of the optical model considered
here would change the phenomenological and numerical connection between the low-energy
scattering parameters and η-nuclear binding properties [8–10].

As a cautionary note one should, however, remember that the simple optical model
potential (also with the present extension) being proportional to the nuclear density does
not formally take into account the change of the nucleus (e.g. by removal of the recoil
nucleon), so calculations to overcome this restriction would be desirable. Further, as shown
e.g. in Ref. [27], the bound-state properties are also affected by subthreshold medium
effects, which are not directly and obviously dealt with above-threshold scattering.

ACKNOWLEDGMENTS

I thank J. Haidenbauer, Ch. Hanhart and H. Machner for useful discussions. I also
acknowledge the kind hospitality of Forschungszentrum Jülich.

[1] R.S. Bhalerao and L.C. Liu, Phys. Rev. Lett. 54, 865 (1985).
[2] Q. Haider and L.C. Liu, Phys. Lett. B172, 257 (1986).
[3] Q. Haider and L.C. Liu, Phys. Rev. C 34, 1845 (1986).
[4] A. Budzanowski et al. (COSY-GEM collaboration), Phys. Rev. C 79 (2009) 012201R.
[5] H. Machner, J. Phys. G: Nucl. Part. Phys. 42 (2015) 043001.
[6] Q. Haider and L.-C. Liu, Phys. Rev. C 66 (2002) 045208.
[7] A. Sibirtsev, J. Haidenbauer, C. Hanhart, and J. A. Niskanen, Eur. Phys. Journal A 22 (2004) 495.
[8] A. Sibirtsev, J. Haidenbauer, J. A. Niskanen, and U. Meissner Phys. Rev. C 70 (2004) 047001.
[9] J.A. Niskanen and H. Machner, Nucl. Phys. A902, 40 (2013); arXiv:1207.3210 [nucl-th].
[10] J. A. Niskanen, Proc. II Int. Symp. on Mesic Nuclei, Sept. 2013, Cracow, Acta Physica Polonica 45 (2014) 663; arXiv:1312.7281 [nucl-th].
[11] Q. Haider and L.-C. Liu, Proc. II Int. Symp. on Mesic Nuclei, Sept. 2013, Cracow, Acta Physica Polonica 45 (2014) 827.
[12] J. Smyrski, et al., Phys. Lett. B 649 (2007) 258.
[13] T. Mersmann et al., Phys. Rev. Lett. 98 (2007) 242301.
[14] A. Wrońska et al., The European Physical Journal A 26 (2005) 421.
[15] A. Budzanowski et al. (The GEM Collaboration) Nucl. Phys. A 821 (2009) 193.
[16] A.M. Green and S. Wycech, Phys. Rev. C 68, 061601(R) (2003).
[17] , H. Machner, Proc. II Int. Symp. on Mesic Nuclei, Sept. 2013, Cracow, Acta Physica Polonica 45 (2014) 705.
[18] C. Wilkin, Phys. Rev. C. 47 (1993) R938.
[19] M. Mai, P.C. Bruns, U.-G. Meißner, Phys. Rev. D 86 (2012) 094033.
[20] A.M. Green and S. Wycech, Phys. Rev. C 71 (2005) 014001.
[21] R. Peierls, Surprises in theoretical physics, Princeton University Press 1979.
[22] C.J. Joachain, Quantum Collision Theory (North Holland, Amsterdam, 1983).
[23] A.M. Green and J.A. Niskanen, Nuclear Physics A 404 (1983) 495.
[24] J.A. Niskanen, arXiv nucl-th/0508021.
[25] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86 (2012) 010001.
[26] Atomic Data and Nuclear Data Tables, Vol. 14, No. 5,6, NOV/DEC 1974.
[27] A. Gal et al., Proc. II Int. Symp. on Mesic Nuclei, Sept. 2013, Cracow, Acta Physica Polonica 45 (2014) 673.