Sofic groups: graph products and graphs of groups

Laura Ciobanu, Derek F. Holt and Sarah Rees

Warwick, 21st June 2013

Abstract

We prove that graph products of sofic groups are sofic, as are graphs of groups for which vertex groups are sofic and edge groups are amenable.

2010 Mathematics Subject Classification: 20F65, 37B05.

Key words: sofic, graph products, free and direct products, groups of graphs.

1 Introduction

We prove the following results.

Theorem 1.1. A graph product of sofic groups is sofic.

Theorem 1.2. The fundamental group of a graph of groups is sofic if each vertex group is sofic and each edge group is amenable.

Theorem 1.1 generalises Theorem 1 of [3], and our proof is based on ideas used in the proof of that theorem. Theorem 1.2 is an extension of the result that free products of sofic groups amalgamated over amenable subgroups are sofic, proved independently in [4, Theorem 1] and [7, Corollary 2.3]; most of the argument needed to extend the result is already found in [1, Corollary 3.6].

The term sofic groups is attributed to Weiss [12], and applied to a definition due to Gromov [6]; this is a class of groups which, together with the related class of hyperlinear groups, has inspired much recent study, through its connections to a variety of different mathematical areas. A very useful introduction to sofic groups is provided by [8]. There are many open questions, including the question of whether all groups are sofic.

A number of quite distinct, but equivalent, definitions exist for sofic groups, and are proved equivalent in [8]. The definition in [12] for finitely generated groups involves finite subsets of the Cayley graph of the group, and is essentially the
same as the definition in [3] of the Cayley graph being *initially subamenable*. An alternative and equivalent definition of [3] defines a group to be sofic if it embeds as a subgroup in an ultraproduct of symmetric groups. Another (equivalent) definition, found in [3], is phrased in terms of quasi-actions. We shall work with a variation of that definition, given below as Definition 1.4; we phrase it in terms of (what we call) special quasi-actions. That this is equivalent to the definition of [3] (and hence to the others) follows from [3, Lemma 2.1].

For a finite set A, let $S(A)$ be the group of all permutations of A. For $\epsilon > 0$, we say that two elements f_1, f_2 of $S(A)$ are ϵ-similar if the number of elements $a \in A$ for which $f_1(a) \neq f_2(a)$ is at most $\epsilon|A|$. Note that for $\epsilon \geq 1$ this condition is always satisfied.

Definition 1.3. Suppose that G is a group, $\epsilon > 0$ a real number and $F \subseteq G$ a finite subset of G. A special (F, ϵ)-quasi-action of G on a finite set A is a function $\phi : G \rightarrow S(A)$ with the following properties:

(a) $\phi(1) = 1$;
(b) $\forall g \in G$, $\phi(g)^{-1} = \phi(g^{-1})$;
(c) for $g \in F \setminus \{1\}$, $\phi(g)$ has no fixed points;
(d) for $g_1, g_2 \in F$ the map $\phi(g_1g_2)$ is ϵ-similar to $\phi(g_1)\phi(g_2)$.

For $a \in A, g \in G$, we write $a^{\phi(g)}$ for the image of a under $\phi(g)$.

Definition 1.4. A group G is sofic if, for each number $\epsilon \in (0, 1)$ and any finite subset $F \subseteq G$, G admits a special (F, ϵ)-quasi-action.

It is immediate from the definition that a group is sofic precisely if every one of its finitely generated subgroups is sofic. We note at this stage also the following elementary result, which will be useful to us later.

Lemma 1.5. Let ϕ_i be special (F, ϵ)-quasi-actions of G on A_i for $1 \leq i \leq n$, let $A = A_1 \times \cdots \times A_n$, and define $\phi : G \rightarrow S(A)$ by $(a_1, \ldots, a_n)^{\phi(g)} = (a_1^{\phi_1(g)}, \ldots, a_n^{\phi_n(g)})$. Then ϕ is a special $(F, n\epsilon)$-quasi-action.

Proof. The conditions (a), (b) and (c) of the definition are straightforward to check for ϕ. The equality $(a_1, \ldots, a_n)^{\phi(g_1)\phi(g_2)} = (a_1, \ldots, a_n)^{\phi(g_1)\phi(g_2)}$ holds whenever $a_i^{\phi_1(g_1)\phi_2(g_2)} = a_i^{\phi_1(g_1)\phi_2(g_2)}$ for each a_i, which is the case for at least $(1 - \epsilon)^n|A|$ elements $(a_1, \ldots, a_n) \in A$. The result now follows, since $(1 - \epsilon)^n \geq 1 - n\epsilon$ for all $n \geq 1$. \[\square\]

This article contains two further sections; Section 2 contains the proof of Theorem 1.1 and Section 3 the proof of Theorem 1.2.

2 Proof of the graph product theorem

Let Γ be a simple graph and, for each vertex v of Γ, let G_v be a group. The graph product of the groups G_v with respect to Γ is defined to be the quotient of
their free product by the normal closure of the relators \([g_v, g_w]\) for all \(g_v \in G_v, g_w \in G_w\) for which \(\{v, w\}\) is an edge of \(\Gamma\).

Graph products were introduced by Green in her PhD thesis \([5]\), and their basic properties are established there. For a graph product of vertex groups \(G_1, \ldots, G_n\) with respect to a finite graph \(\Gamma\) with vertices \(1, \ldots, n\), and for \(J \subseteq \{1, \ldots, n\}\), we define \(G_J := \langle G_j \mid j \in J \rangle\). By \([5, \text{Proposition 3.31}]\), \(G_J\) is isomorphic to the graph product of \(G_j\) \((j \in J)\) on the full subgraph of \(\Gamma\) with vertex set \(J\). Note that \(G_\emptyset\) is the trivial group.

Green only considered graph products of finitely many vertex groups, but the definition applies equally well to graphs with infinite vertex sets \(I\). Since any relation in a group is a consequence of finitely many defining relations, the property that, for any \(J \subseteq I\), \(G_J\) is isomorphic to the graph product of \(G_j\) \((j \in J)\) on the full subgraph of \(\Gamma\) with vertex set \(J\), extends to graph products with infinitely many vertex groups. Hence, since a group is sofic if and only if all of its finitely generated subgroups are sofic, it suffices to prove Theorem 1.1 for graph products of finitely many groups, so we shall assume from now on that the graph \(\Gamma\) is finite.

Any non-identity element in a graph product can be written as a product \(g_1 \cdots g_l\) for some \(l > 1\), where each \(g_i\) is a non-trivial element of a vertex group \(G_j\). By \([5, \text{Theorem 3.9}]\), we can get from any such expression of minimal length to any other by swapping the order in the expression of elements \(g_i, g_{i+1}\) from commuting vertex groups. Hence every minimal length expression for an element \(g\) has the same length \(l\), which we call the \textit{syllable length} of \(g\), and involves the same set \(\{g_1, g_2, \ldots, g_l\}\) of vertex group elements, with the same multiplicities, the \textit{syllables} of \(g\). Whenever \(g_1 \cdots g_i\) is a minimal length expression for \(g\), we call each product \(g_1 \cdots g_i\) a \textit{left divisor} of \(g\), and each product \(g_i+1 \cdots g_n\) a \textit{right divisor} of \(g\), for \(0 \leq i \leq n\).

We also note that, for any finite subset of a graph product of groups \(G_i\), there is a bound \(N\) on the syllable lengths of its elements, and there are finite subsets \(F_i\) of the vertex groups \(G_i\) that contain all the syllables of those elements. Hence Theorem 1.1 follows from the following proposition.

\begin{proposition}
There is a function \(f : \mathbb{N} \to \mathbb{N}\) with the following property. Let \(G_1, \ldots, G_n\) be sofic groups, and \(G\) their graph product with respect to a finite graph \(\Gamma\). Let \(e > 0\) be given, and for each \(i = 1, \ldots, n\), let \(F_i\) be a finite subset of \(G_i\), \(A_i\), a finite set, and suppose that \(\psi_i : G_i \to S(A_i)\) is a special \((F_i, e)\)-quasi-action of \(G_i\) on \(A_i\).

Then, for any \(N \in \mathbb{N}\), \(G\) has a special \((F, f(n)e)\)-quasi-action \(\phi\) on a finite set \(C\), where \(F\) is the set of elements of \(G\) of syllable length at most \(N\) for which each syllable is in some \(F_i\), such that the following additional properties hold:

1. whenever \(x, y\) are in distinct vertex groups, \(\phi(xy) = \phi(x)\phi(y)\):
2. \(C\) admits equivalence relations \(\sim_1, \ldots, \sim_n\) such that, for each \(c \in C\), \(g \in F\) and \(J \subseteq \{1, \ldots, n\}\),

\[\psi^\phi(g) \sim_J c \iff g \in G_J\]

\end{proposition}
(where \sim_j is the join of those equivalence relations \sim_j for which $j \in J$).

Note that, by definition, $a \sim_j b$ if and only if there is a sequence $a = c_1, \ldots, c_m = b$ of elements with $c_i \sim_{j_i}, c_{i+1}$ for some $j_i \in J$. In particular, $x \sim y \iff x = y$.

Note that the conditions (1) and (2) imposed on the special quasi-action ϕ are necessary for the inductive proof of the proposition, rather than to deduce the theorem. Condition (1) ensures in particular that $\phi(x)\phi(y) = \phi(y)\phi(x)$ whenever x, y are from commuting vertex groups.

Proof. The proof is by induction on n. Suppose first that $n = 1$. Then $G = G_1$ and $F = F_1$ (for any value of $N \in \mathbb{N}$). We put $F := F_1$ and $C := A_1$, and define the equivalence relation \sim_1 by $c \sim_1 d$ for all $c, d \in C$. Then ϕ is a special (F, ϵ)-quasi-action on C, and the additional property (1) holds vacuously. To see that the additional property (2) also holds, note that there are only two possibilities for J: $J = \{1\}$ and $J = \emptyset$. If $J = \{1\}$ then $G = G_J$, so the left and right hand sides of the equivalence in (2) are true for all $g \in G$. If $J = \emptyset$ then, by the definition of a special (F, ϵ)-quasi-action, both the left and right hand sides of the equivalence are true if and only if $g = 1$. So the property (2) holds, and the statement of the proposition is true with $f(n) = 1$.

So now we proceed to prove the inductive step. We shall prove that the result holds with $f(n) = n(f(n - 1) + 1)$.

Write $I = \{1, 2, \ldots, n\}$, and for each $k \in I$, $I_k = I \setminus \{k\}$. For each $k \in I$, let $H_k := G_{I_k}$ be the subgroup of G that is the graph product of the groups G_i for $i \neq k$ with respect to the appropriate subgroup of Γ. By the induction hypothesis, we may assume that, for $\epsilon := f(n - 1)\epsilon$, and $F_{H_k} := F \cap H_k$, H_k has a special (F_{H_k}, ϵ')-quasi-action θ_k on a set D_k admitting equivalence relations \sim_k^i for each $i \neq k$, such that

1. $\theta_k(xy) = \theta_k(x)\theta_k(y)$ for x, y in distinct vertex groups of H_k; and
2. for $d \in D_k$, $h \in F_{H_k}$, and $J \subseteq I_k$, $d^{\theta_k(h)} \sim_{j} d \iff h \in G_J$.

For each $k \in I$, we shall build a set C_k related to D_k, admitting equivalence relations \sim^k_i for each $i \in I$, and then construct a special quasi-action ϕ_k of G on C_k that satisfies Condition (1) and more. We shall then construct ϕ and the equivalence relations \sim_1, \ldots, \sim_n on the set $C := C_1 \times C_2 \times \cdots \times C_n$ in terms of the special quasi-actions ϕ_k and the equivalence relations \sim^k_i, using Lemma [1,5].

For $k \in I$, let $L_k \subseteq I_k$ be the set of vertices joined in Γ to k. Let \sim_{L_k} be the join of the equivalence relations \sim^k_i for $i \in L_k$, and let π_k be the projection from D_k to its set of equivalence classes under \sim_{L_k} (for which the image of $d \in D_k$ is its equivalence class).

Now, using ideas from [3, Theorem 1] we choose a finite group V_k, with generating set $\pi_k(D_k) \times A_k$, for which all relators among the generators have length greater than N, and we let $C_k := D_k \times A_k \times V_k$.

We define equivalence relations \sim^k_i on C_k, for $i \neq k$, by the rules

$$(d, a, v) \sim^k_i (d', a', v') \iff d \sim^k_i d', a = a', v = v'.$$
Then we define \(\sim_k \) on \(C_k \) by specifying its equivalence classes; for \(d \in D_k, v \in V_k \), the class \(\alpha_k(d, v) \) is the subset \(\{(d, a, v \circ (\pi_k(d), a)) : a \in A_k\} \) of \(C_k \). Multiplication \(\circ \) within the third component is the group multiplication of \(V_k \).

We define a special quasi-action \(\phi_k \) of \(G \) on \(C_k \) as a composite of natural extensions to \(C_k \) of the special quasi-actions \(\theta_k, \psi_k \) of \(H_k \) and \(G_k \) on \(D_k, A_k \).

For \(h \in H_k \), we define
\[
(d, a, v)^{\phi_k(h)} = (d^{\theta_k(h)}, a, v).
\]

Then, for \(g \in G_k \), we define
\[
(d, a, v)^{\phi_k(g)} = (d, a^{\psi_k(g)}, v \circ (\pi_k(d), a)^{-1} \circ (\pi_k(d), a^{\psi_k(g)})).
\]

Now it follows, essentially from [5] lemma 3.20, that each element \(g \in G \) has a unique expression as a product \(g = x_1 y_1 \cdots x_m y_m \), with each \(x_i \in H_k \), each \(y_i \in G_k \), \(x_i \) nontrivial for \(i > 1 \), \(y_i \) nontrivial for \(i < m \), and such that, for \(i > 1 \), \(x_i \) has no non-trivial left divisor in the subgroup \(G_k \); we call this expression the normal form for \(g \). We note that the \(y_i \)'s are syllables, the \(x_i \)'s products of syllables and the number of terms at most the syllable length of \(g \). We use that expression for \(g \) to extend to \(G \) the definitions of \(\phi_k \) on \(H_k \) and \(G_k \), that is, for \(g \in G, \phi_k(g) := \phi_k(x_1) \phi_k(y_1) \cdots \phi_k(x_m) \phi_k(y_m) \).

We need now the following lemma, whose proof we defer.

Lemma 2.2. Let \(e'' := (nf(n-1)+1)e \). Then, for each \(k \), \(\phi_k \) is a special \((F, e'')\)-quasi-action of \(G \) on \(C_k \), such that

1. whenever \(x, y \) are in distinct vertex groups, \(\phi_k(xy) = \phi_k(x) \phi_k(y) \),
2. for each \(c \in C_k, g \in F \), we have \(g \in G_J \Rightarrow e^{\phi_k(g)} \sim_k c \) for all \(J \subseteq I \), and \(e^{\phi_k(g)} \sim_k c \Rightarrow g \in G_J \) for all \(J \subseteq I_k \).

Now we define a map \(\phi : G \to S(C) \), where \(C := C_1 \times \cdots \times C_n \), by \((c_1, \ldots, c_n)^{\phi(g)} = (c_1^{\phi_1(g)}, \ldots, c_n^{\phi_n(g)}) \). It follows from Lemma 1.3 that this is a \((F, f(n)e)\)-quasi-action with \(f(n) = n(nf(n-1)+1) \). Condition (1) of the proposition is inherited from the maps \(\phi_k \).

We define equivalence relations \(\sim_1, \sim_2, \ldots, \sim_n \) on \(C \) by \((c_1, \ldots, c_n) \sim_j (c_1', \ldots, c_n')\) if and only if \(c_k \sim_j' c_k' \) for \(1 \leq k \leq n \). We need now to verify Condition (2).

Let \(J \subseteq I \). The fact that \(g \in G_J \) implies that \(e^{\phi(g)} \sim_J c \) for all \(c \in C \) is inherited from the maps \(\phi_k \). If \(J = I \), then \(G = G_J \) and the converse statement is immediate. Otherwise we have \(J \subseteq I_k \) for some \(k \) with \(1 \leq k \leq n \). If \(g \not\in G_J \), and \(c = (c_1, \ldots, c_n) \in C \), then \(c_k^{\phi_k(g)} \not\sim_J c_k \) and hence \(e^{\phi(g)} \not\sim_J c \).

So the proof of the proposition will be complete once the proof of Lemma 2.2 has been provided.

Proof of Lemma 2.2. Note that it is clear that the restriction of \(\phi_k \) to \(H_k \) is a special \((F_{H_k}, e')\)-quasi-action for \(H_k \), since \(\theta_k \) is. And certainly that quasi-action preserves each of the \(\sim_k \) equivalence classes with \(i \neq k \). And it is clear that the
restriction of \(\phi_k \) to \(G_k \) is a special \((F \cap G_k, \epsilon)\)-quasi-action for \(G_k \), since \(\psi_k \) is.

That quasi-action preserves the \(\sim_k \) equivalence classes, since both \((d, a, v)\) and \((d, a, v)^{\phi_k(g)}\) are in \(\alpha_k(d, v \circ (\pi_k(d), a)^{-1}) \).

The equation \((d, a, v)^{\phi_k(1)} = (d, a, v)\) follows immediately from \((d, a, v)^{\phi_k(h)} = (d^{\theta_k(h)}, a, v)\), for \(h \in H_k \), and hence Condition (a) of Definition 1.3 is verified for \(\phi_k \).

We shall verify the remaining conditions in the order (c), (1), (b), (d), (2').

First we introduce some notation. We need to consider \(\phi_k(g) \) for a general element \(g \) in the graph product, written in normal form as \(x_1y_1 \cdots x_my_m \). We write \(x \) for the group product \(x_1 \cdots x_m \), then \(y \) for the group product \(y_1 \cdots y_m \), and \(x[i], y[i] \) for the products \(x_1 \cdots x_i, y_1 \cdots y_i \), where \(x[0] = y[0] = 1 \).

We see then that
\[
(d, a, v)^{\phi_k(g)} = (d, a, v)^{\phi_k(x_1y_1 \cdots x_my_m)} = (d^{\theta_k(x[m])}, a^{\psi_k(y[m])}, v \circ u),
\]
where \(u = \prod_{i=1}^m (\pi_k(d^{\theta_k(x[i])}), a^{\psi_k(y[i])})^{-1} \circ (\pi_k(d^{\theta_k(x[i])}), a^{\psi_k(y[i])}) \).

unless \(y_m \) is the identity, in which case the product for \(u \) is from \(i = 1 \) to \(m - 1 \).

Our next step is to establish Condition (c) of Definition 1.3 for \(\phi_k \). Let \(g \) be a non-trivial element of \(F \), with normal form \(x_1y_1 \cdots x_my_m \). So \(2m \leq N \) and, for each \(i, x_i \in F_{H_k} \) and \(y_i \in F_k \). Suppose first that \(u \), in the above expression, is not the empty word. Since \(\psi_k \) is a special quasi-action, Condition (c) for \(\psi_k \) implies that \(a^{\psi_k(y[i-1])} \neq a^{\psi_k(y[i])} \) for each \(i \). Since \(x_{i+1} \not\in G_{L_k} \), it follows from the induction hypothesis that \(\theta_k(x_{i+1}) \) cannot map any element of \(D_k \) to an element in the same \(\sim_{L_k} \) equivalence class, that is, \(\pi_k(d^{\theta_k(x[i])}) \neq \pi_k(d^{\theta_k(x[i+1])}) \).

So no generator in the word of length \(2m \) representing \(u \) can freely cancel with the generator either before it or after it. The fact that \(V \) admits no short relators now ensures that \(u \) is nontrivial. In that case certainly \((d, a, v)^{\phi_k(g)} \neq (d, a, v)\).

So now suppose that \(u \) is empty. Then \(m = 1, y_1 \) is trivial, and \(g = x_1 \). So \(x = x_1 \) is a non-identity element of \(F_{H_k} \), and hence \(d^{\theta_k(x)} \neq d \). So again\((d, a, v)^{\phi_k(g)} \neq (d, a, v)\). Hence we have shown that the map \(\phi_k \) from \(G \) to \(S(C_k) \) allows no non-identity element of length less than \(N \) in \(F \) to fix any element of \(C_k \), and so Condition (c) of Definition 1.3 is verified for \(\phi_k \).

In order to establish Condition (1) of the Lemma for \(\phi_k \), we suppose first that \(x \in G_{L_k} \), and \(y \in G_k \). By definition \(\phi_k(xy) = \phi_k(x)\phi_k(y) \), and
\[
(d, a, v)^{\phi_k(x)\phi_k(y)} = (d^{\theta_k(x)}, a^{\psi_k(y)} \circ (\pi_k(d^{\theta_k(x)}), a))^{-1} \circ (\pi_k(d^{\theta_k(x)}), a^{\psi_k(y)})
\]
while
\[
(d, a, v)^{\phi_k(y)\phi_k(x)} = (d, a^{\psi_k(y)} \circ (\pi_k(d), a)^{-1}) \circ (\pi_k(d), a^{\psi_k(y)})^{\phi_k(x)}
\]
\[
= (d^{\theta_k(x)}, a^{\psi_k(y)} \circ (\pi_k(d), a)^{-1} \circ (\pi_k(d), a^{\psi_k(y)})).
\]

Then since \(d \sim_{L_k} d^{\theta_k(x)} \), we have \(\pi_k(d) = \pi_k(d^{\theta_k(x)}) \), and so
\[
(d, a, v)^{\phi_k(x)\phi_k(y)} = (d, a, v)^{\phi_k(y)\phi_k(x)}.
\]
that is, for \(x \in G_{L_k}, y \in H_k, \phi_k(xy) = \phi_k(x)\phi_k(y) = \phi_k(y)\phi_k(x) \).

Now suppose that \(x, y \) are in distinct vertex groups, \(G_i, G_j \). If \(i, j \neq k \) then Condition (1) follows immediately by induction applied to \(H_k \). If \(j = k \), or if \(i = k \) and \(G_i, G_j \) do not commute, then \(xy \) is in normal form, and Condition (1) follows from the definition of \(\phi_k \). Finally if \(i = k \) and \(G_i, G_j \) commute, then \(x \in G_{L_k}, y \in H_k \), and we can deduce Condition (1) for \(\phi_k \) from the result above.

Next suppose that \(g = x_1y_1 \cdots x_my_m \in G \). We compare \(\phi_k(g)^{-1} \) and \(\phi_k(g)^{-1} \). We have \(g^{-1} = y_m^{-1} x_m^{-1} \cdots y_1^{-1} x_1^{-1} \). The expression for \(g^{-1} \) is not necessarily in normal form, because some of the \(x_i^{-1} \) could have left divisors in \(G_{L_k} \), but we can transform it into normal form by splitting any such \(x_i^{-1} \) into syllables and then applying commuting relations to move left divisors of \(x_i^{-1} \) in \(G_{L_k} \) past \(y_i^{-1} \). By the results of the preceding two paragraphs, if we apply the corresponding transformations to \(\phi_k(y_m^{-1})\phi_k(x_m^{-1}) \cdots \phi_k(y_1^{-1})\phi_k(x_1^{-1}) \), then we do not change the resulting permutation. Hence we have \(\phi_k(g^{-1}) = \phi_k(y_m^{-1})\phi_k(x_m^{-1}) \cdots \phi_k(y_1^{-1})\phi_k(x_1^{-1}) \). It follows from Condition (b) of Definition 1.3 that \(\phi_k(y_i^{-1}) \) is inverse to \(\phi_k(y_i) \), and from the induction hypothesis on \(H_k \) that \(\phi_k(x_i^{-1}) \) is inverse to \(\phi_k(x_i) \). Hence \(\phi_k(g^{-1}) = \phi_k(g)^{-1} \), which verifies Condition (b) of Definition 1.3 for \(\phi_k \).

We proceed now to verify Condition (d) of Definition 1.3 for \(\phi_1 \); that is, to show that for all \(g_1, g_2 \in F \), \(\phi_1(g_1g_2) \) is \(\epsilon'' \)-similar to \(\phi_1(g_1)\phi_1(g_2) \). Let \(g_1 = x_1y_1 \cdots x_my_m \), \(g_2 = x_1'y_1' \cdots x_p'y_p' \) be the normal forms of \(g_1, g_2 \in F \). In the following discussion, we refer to an element of \(H_k \) or of \(G_k \) as a **block**, and to a product of blocks as an **expression**. The normal form for \(g_1g_2 \) is derived from the concatenation \(x_1y_1 \cdots x_my_mx_1'y_1' \cdots x_p'y_p' \) by a sequence of moves, each of which is one of four types:

1. **(a)** deletion of a block that is equal to the identity;
2. **(b)** cancellation (that is, merger of two adjacent mutually inverse blocks that are both in \(H_k \) or both in \(G_k \));
3. **(c)** expression of a block in \(H \) as a product of a left divisor in \(G_{L_k} \) and a right divisor, and moving the left divisor to the left, past a block in \(G_k \);
4. **(d)** merger of two adjacent blocks that are either both in \(H_k \) or both in \(G_k \), and whose product is not the identity, to give a new block from that same subgroup.

Note that in (c) the left and right divisors of a block in \(H_k \) are simply subblocks, whose concatenation is a permutation of the original block; that is, the (multi)set of syllables of the block in \(H_k \) is the union of the (multi)sets of syllables of those left and right divisors. By contrast, a move of type (d) will normally change the (multi)set of syllables in an expression. Starting with the permutation

\[
\phi(x_1)\phi(y_1) \cdots \phi(x_m)\phi(y_m)\phi(x'_1)\phi(y'_1) \cdots \phi(x'_p)\phi(y'_p),
\]

we study the sequence of composites of permutations of \(C_k \) defined by the various expressions that arise when we apply the corresponding operations to this
expression of images during this rewrite process, and keep track of the proportion of elements of C_k on which they differ. We note that, as a consequence of what we have proved so far, two expressions that differ only on moves of types (a), (b) and (c) correspond to composites of permutations that have the same effect on all points of C. Hence we only need to concern ourselves with moves of type (d).

Suppose that a move converts an expression w to an expression w'. Let σ, σ' be the permutations corresponding to the two expressions. If the move merges two blocks from G_k, then the permutations σ and σ' differ on the same proportion of elements of C_k as do permutations for the quasi-action of G_k on the set A_k, that is, on at most $\epsilon |C_k|$ of the elements, by the hypothesis.

If the move merges two blocks from H_k, then the permutations σ and σ' differ on the same proportion of elements of C_k as do permutations for the quasi-action of H_k on the set D_k that is, on at most $f(n-1)\epsilon |C_k|$ of the elements, by the induction hypothesis. Notice however that if the two blocks z_1, z_2 being merged are left and right divisors of z_1z_2 (or, equivalently, if the syllable length of z_1z_2 is the sum of the syllable lengths of z_1 and z_2), then our induction hypothesis on H ensures that $\phi_k(z_1z_2) = \phi_k(z_1)\phi_k(z_2)$. We shall call such mergers non-reducing, and other mergers, for which this equality is not guaranteed to hold, reducing.

Condition (d) can now be now established by application of the following lemma.

Lemma 2.3. During the rewrite process, we perform at most n reducing mergers of blocks of H_k and at most one reducing merger of blocks of G_k.

Proof. We may assume that $m, p > 0$ (since otherwise one of g_1, g_2 is the identity) and split the proof into three cases (1) $1 \neq y_m$ and $x'_1 \notin G_{L_k}$; (2) $y_m = 1$; and (3) $1 \neq y_m$ and $x_1 \in G_{L_k}$.

We deal with Case 1 first, proving by induction on m that in this case the product can be rewritten using at most $|L_k|$ mergers, all of which are within H_k. Using that result we then deal with the remaining two cases together, also using induction on m.

Case 1. $1 \neq y_m$ and $x'_1 \notin G_{L_k}$.

Let $x'_1 = z_1z_2$, where z_1 is the longest left divisor of x'_1 in G_{L_k}. Suppose that $z_1 \in G_{L'}$ for some $L' \subseteq L_k$. We prove by induction on m that this product can be rewritten using at most $|L'| \leq |L_k|$ H_k-mergers and no G_k-mergers.

If $m = 1$ then there can be at most one H_k-merger $x_1x'_1$, so the result is clear. So suppose that $m > 1$; then $y_{m-1} \neq 1$, and x_m is nontrivial with no left divisor in G_k. If z_1 commutes with x_m, then the claim follows by induction applied to the product $(x_1y_1 \cdots x_{m-1}y_{m-1})(z_1x_my_mz_2y'_1 \cdots x'_py'_p)$. Otherwise, we can write $z_1 = z_1z_{12}$, where z_{12} (which may be trivial) is the longest left divisor of z_1 that commutes with x_m. So $z_{12} \in G_{L''}$ with $|L''| < |L'|$. We can then perform the rewriting by performing an H_k-merger x_mz_{12} (if necessary) and, by induction, at most $|L''|$ further H_k-mergers resulting from moving z_{12} further to the left. This completes the proof of the claim, and of the lemma in Case 1.
So now we may assume that \(m, p > 0 \), and that we are in Case 2 or 3.

Case 2. \(y_m = 1 \).

If \(m = 1 \), then there is at most one \(H_k \)-merger \(x_1x'_1 \), and so the result holds. So suppose that \(m > 1 \) and hence that \(y_{m-1} \neq 1 \), and \(x_m \) is nontrivial with no left divisor in \(G_{L_k} \).

If \(x_mx'_1 \notin G_{L_k} \), then we perform an \(H_k \)-merger (if necessary) on \(x_mx'_1 \), and now observe that the product \((x_1y_1 \cdots x_{m-1}y_{m-1})(x_mx'_1y'_1 \cdots x'_py'_p) \) satisfies the conditions of Case 1, and so can be rewritten using at most \([L_k] \) further \(H_k \)-mergers and no \(G_k \)-mergers. So in this case too, the lemma is proved.

If \(x_mx'_1 \in G_{L_k} \), then, since \(x_m \) has no left divisor in \(G_{L_k} \), the product \(x_mx'_1 \) can be evaluated by writing \(x_m \) and \(x'_1 \) as products of syllables and then performing commuting and cancellation moves only so we can rewrite \(x_mx'_1 \) as \(z \in G_{L_k} \) without performing any mergers, to arrive at the product

\[
(x_1y_1 \cdots x_{m-1}y_{m-1})(z'y'_1 \cdots x'_py'_p),
\]

which satisfies the conditions of Case 3 for \(m = 1 \). The lemma now follows by induction applied to that product.

Case 3. \(1 \neq y_m \) and \(x'_1 \in G_{L_k} \).

If \(y_my'_1 \neq 1 \), then we perform the \(G_k \)-merger \(y_my'_1 \), and the \(H_k \)-merger \(x_mx'_1 \) (which cannot be in \(G_{L_k} \), since \(x_m \notin G_{L_k}, x'_1 \in G_{L_k} \)). Then we can apply the result of Case 1 to the product \((x_1y_1 \cdots x_{m-1}y_{m-1})(x_mx'_1y'_1 \cdots x'_py'_p) \), and the proof is complete.

If \(y_my'_1 = 1 \) then the result is clear if \(p = 1 \) and otherwise, since \(x'_2 \) has no left divisor in \(G_{L_k} \), the merger \(x'_1x'_2 \) is non-reducing, so the result follows by applying Case 2 to the product \((x_1y_1 \cdots x_{m-1}y_{m-1})(x'_1x'_2y'_2 \cdots x'_py'_p) \). □

This completes the proof of Condition (d), and hence we see that \(\phi_k \) is a special \((F,\epsilon'')\)-quasi-action, with \(\epsilon'' = (\inf(n-1) + 1)\epsilon \).

It remains to verify Condition (2'). We have seen already that, for each \(i \in I \), the action of \(\phi_k(G_i) \) on \(C \) preserves each of the \(\sim_k \)-equivalence classes, from which it follows immediately that \(g \in G_J \) with \(J \subseteq I \) implies \(\epsilon_k(g) \sim_k c \).

Now suppose that \(J \subseteq I_k, c = (d, a, v) \in C_k, g \in F \), and that \(\epsilon_k(g) \sim_k c \). Since \(k \notin J \), it is immediate from the definition of \(\sim_j \) for \(j \in J \) that

\[
(d, a, v) \sim_j (d', a', v') \iff d \sim_j d', a = a', v = v'.
\]

So now, arguing as in our earlier proof of Condition (c) of Definition 1.3 for \(\phi_k \) that, for \(1 \neq g \in F, (\delta_k(g), a, v) \neq (d, a, v) \) we find that, for \(g \in F, (\delta_k(g), a, v) \sim_J (d, a, v) \) if and only if \(g \in H_k \) and \(\delta_k(g) \sim_J d \). By our inductive hypothesis, this is true if and only if \(g \in G_J \). Hence Condition (2') holds. □

9
3 Graphs of groups

In this section we prove Theorem 1.2.

We recall the definition of a graph of groups, which arises from the work of Bass and Serre [11, 10].

Definition 3.1. A graph of groups \(G \) consists of

1. a connected graph \(\Gamma \) (in which loops are allowed, but no multiple edges), with vertex set \(V \), edge set \(E \),
2. a collection of vertex groups \(G_v : v \in V \) and edge groups \(G_e : e \in E \),
3. for each edge \(e = \{v_1, v_2\} \) of \(\Gamma \), monomorphisms \(\theta_1^e : G_e \to G_{v_1} \) and \(\theta_2^e : G_e \to G_{v_2} \).

The fundamental group \(\pi_1(G) \) of a graph of groups \(G \) can be defined in various different (but equivalent) ways. The following definition is essentially [2, Definition I.3.4]. The definition is given in terms of a selected spanning tree \(T \) of \(\Gamma \), but (up to isomorphism) the resulting group is independent of this choice. The associated fundamental group \(\pi_1(G, T) \) is then the group generated by the groups \(G_v : v \in V \) together with generators \(t_e \), one for each (oriented) edge in \(E \), given the following relations.

1. all the relations of the groups \(G_v \),
2. \(t_e^{-1} \theta_1^e(g)t_e = \theta_2^e(g) \), for each \(e \in E, g \in G_e \),
3. \(t_e = 1 \) for each edge \(e \) of \(T \).

From this description it is not hard to see that \(\pi_1(G, T) \) is isomorphic to a multiple HNN extension, with stable letters \(t_e \) for \(e \notin E(T) \), of the amalgamated product of the groups \(G_v \) in which \(\theta_1^e(g) \) and \(\theta_2^e(g) \) are identified for all \(e \in E(T), g \in G_e \). Independent results of Elek and Szabo ([4, Theorem 1]) and Paunescu ([7, Corollary 2.3]) already prove that the amalgamated product of two sofic groups over an amenable subgroup is sofic. Hence Theorem 1.2 follows immediately by combining that result with

Proposition 3.2. An HNN extension of a sofic group \(H \) over an amenable subgroup \(K \) is sofic.

We deduce Proposition 3.2 as a corollary of the amalgamated product result. We note that the argument to do this was already provided by Collins and Dykema in order to deduce their result [1, Corollary 3.6] as a corollary of their result [1, Theorem 3.4], that is to deduce the same result as above in the situation where the associated subgroups (in both amalgamated products and HNN extensions) are monotileably amenable. The argument of [1] goes through without any modification, when monotileability of the associated subgroup is dropped, to deduce the Proposition from the results of [1, 7]. But we include the argument here for completeness.

Proof. Let \(G \) be an HNN extension of \(H \) over \(K \), as in the proposition, and let \(L \) be the subgroup \(t^{-1}Kt \). Define \(H_i = t^{-i}Ht^i, K_i = t^{-i}Kt^i, L_i = t^{-i}Lt^i \) for each
\[i \in \mathbb{Z}, \text{ and define } S := \langle H_i \mid i \in \mathbb{Z} \rangle. \text{ Then } G \text{ can be expressed as an extension of } S \text{ by } \mathbb{Z}. \text{ Since } \mathbb{Z} \text{ is amenable, and by } [3, \text{ Theorem 1(3)}] \text{ an extension of a sofic group by an amenable group is sofic, in order to prove } G \text{ sofic it is enough to prove } S \text{ sofic.} \]

Now \(S \) can be expressed as an iterated amalgamated product of the (countably many) \(H_i \)'s, with amalgamation over subgroups isomorphic to \(K \). More precisely, \(S \) is the fundamental group of the graph of groups associated with the graph of the integers, where \(H_i \) is the vertex group of the vertex \(i \), each edge group is isomorphic to \(K \), and the copy of \(K \) associated with edge \(\{i, i+1\} \) maps to the subgroup \(L_i \) of \(H_i \), and the subgroup \(K_{i+1} \) of \(H_{i+1} \), as in Figure 1.

\[
\cdots H_{i-1} \xrightarrow{L_{i-1}} H_i \xrightarrow{L_i} H_{i+1} \xrightarrow{L_{i+1}} H_{i+2} \cdots
\]

Figure 1: The graph of groups \(\mathcal{H} \)

To prove \(S \) sofic we now need to verify soficity for each of its finitely generated subgroups. So let \(M \) be such a subgroup. Then for some \(k, l \), all the generators of \(M \) are within vertex subgroups \(H_i \) for \(k \leq i \leq l \), that is, \(M \) is a subgroup of the amalgamated product

\[H_j *_{L_j=K_{j+1}} H_{j+1} *_{L_{j+1}=K_{j+2}} \cdots *_{L_{l-1}=K_l} H_l. \]

Since this is sofic, by \([4, 7]\), so is \(M \). \(\square \)

Acknowledgments

All three authors were partially supported by the Marie Curie Reintegration Grant 230889. The first named author was also supported by the Swiss National Science Foundation grant Ambizione PZ00P-136897/1.

References

[1] B. Collins and K. J. Dykema, Free products of sofic groups with amalgamation over monomially amenable groups, Münster J. Math. 4 (2011), 101–118.

[2] W. Dicks and M.L.Dunwoody, Groups acting on graphs, Cambridge studies in advanced mathematics 17, C.U.P. 1989.

[3] G. Elek and E. Szabo, On sofic groups, J. Group Theory 9 (2006), 161 –171.

[4] G. Elek and E. Szabo, Sofic representations of amenable groups, Proc. Amer. Math. Soc. 139 (2011), 4285–4291.

[5] E. Green, Graph products of groups, Ph.D. thesis, University of Leeds, 1990.

[6] M. Gromov, Endomorphisms of symbolic algebraic varieties, J. Eur. Math. Soc (JEMS) 1 (1999) 109–197.
[7] L. Paunescu, On sofic actions and equivalence relations, J. Funct. Anal. 261 (2011) 2461-2485.

[8] V.G. Pestov, Hyperlinear and sofic groups: a brief guide, Bull. Symbolic Logic 14 (2008), 449–480.

[9] V.G. Pestov and A. Kwiatkowska, An introduction to hyperlinear and sofic groups (preprint) http://arxiv.org/pdf/0911.4266.

[10] J.-P. Serre, Trees, Springer Monogr. Math., Springer, Berlin 2003.

[11] J.-P. Serre, Arbres, amalgames, SL₂, Astérisque 46 (1977).

[12] B. Weiss, Sofic groups and dynamical systems, Ergodic Theory and Harmonic Analysis 2000 (62) 350–359.

L. Ciobanu, Mathematics Department, University of Neuchâtel, Rue Emile - Argand 11, CH-2000 Neuchâtel, Switzerland

E-mail address: laura.ciobanu@unine.ch

D. F. Holt, Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK

E-mail address: D.F.Holt@warwick.ac.uk

S. Rees, School of Mathematics and Statistics, University of Newcastle, Newcastle NE1 7RU, UK

E-mail address: Sarah.Rees@newcastle.ac.uk