B-Chromosome Ribosomal DNA Is Functional in the Grasshopper *Eyprepocnemis plorans*

Mercedes Ruiz-Estévez, Mª Dolores López-León, Josefa Cabrero, Juan Pedro M. Camacho*

Departamento de Genética, Universidad de Granada, Granada, Spain

Abstract

B-chromosomes are frequently argued to be genetically inert elements, but activity for some particular genes has been reported, especially for ribosomal RNA (rRNA) genes whose expression can easily be detected at the cytological level by the visualization of their phenotypic expression, i.e., the nucleolus. The B24 chromosome in the grasshopper *Eyprepocnemis plorans* frequently shows a nucleolus attached to it during meiotic prophase I. Here we show the presence of rRNA transcripts that unequivocally came from the B24 chromosome. To detect these transcripts, we designed primers specifically anchoring at the ITS-2 region, so that the reverse primer was complementary to the B chromosome DNA sequence including a differential adenine insertion being absent in the ITS2 of A chromosomes. PCR analysis carried out on genomic DNA showed amplification in B-carrying males but not in B-lacking ones. PCR analyses performed on complementary DNA showed amplification in about half of B-carrying males. Joint cytological and molecular analysis performed on 34 B-carrying males showed a close correspondence between the presence of B-specific transcripts and of nucleoli attached to the B chromosome. In addition, the molecular analysis revealed activity of the B chromosome rDNA in 10 out of the 13 B-carrying females analysed. Our results suggest that the nucleoli attached to B chromosomes are actively formed by expression of the rDNA carried by them, and not by recruitment of nucleolar materials formed in A chromosome nucleolar organizing regions. Therefore, B-chromosome rDNA in *E. plorans* is functional since it is actively transcribed to form the nucleolus attached to this B chromosome. This demonstrates that some heterochromatic B chromosomes can harbour functional genes.

Introduction

B chromosomes constitute a bizarre part of the genomes in about 15% of eukaryote species, being dispensable and frequently harmful for carrier individuals, despite they sometimes reach high population frequencies thanks to conspicuous mechanisms for advantageous transmission (drive). The DNA contained into B chromosomes is a broad panoply of repetitive sequences, including satellite and microsatellite DNA, ribosomal DNA (rDNA) and mobile elements [1]. Recently, the presence of H3 and H4 histone genes has been shown in the B chromosomes of *Locusta migratoria* [2].

The kind of repetitive DNA most frequently found in B chromosomes is 45S rDNA [1,3,4]. It is located at chromosome sites named nucleolus organizer regions (NORs) consisting of tandemly repeated units composed of 18S, 5.8S and 28S rDNA, separated by two internal transcribed spacers (ITS1 and ITS2) and flanked by external transcribed spacers (ETS) and non-transcribed spacers (NTS) [3]. A cytologically visible phenotype for these genes is the nucleolus, a nuclear membrane-free compartment where ribosome components are synthesized [6]. It may easily be revealed in both interphase and meiotic cells by silver impregnation [7]. This technique specifically reveals the transcriptional machinery of RNA polymerase I, including the B23, nucleolin, UBF and ARN Pol I subunits proteins [8–10].

The size of the nucleolus is proportional to its biosynthetic activity [11–17].

B chromosomes were considered genetically inert for long, since experiments with tritiated uridine revealed its scarce incorporation into B chromosomes in the grasshoppers *Myrmeleotettix maculatus* and *Chorthippus parallelus* [18] and the mouse *Apodemus peninsulae* [19]. In maize, B chromosomes are basically inert [20]. However, indirect evidence for transcription from B chromosomes was obtained in the toad *Leiopelma hochstetteri* [21] and the mosquito *Simulium juxtacrenobium* [22]. Recently, evidence for a functional role of B chromosomes on female sex determination has been shown in cichlid fishes [23].

Some B chromosomes have been shown to carry a NOR being able to organize nucleoli. For instance, in the grasshopper *Dichroplus proetens*, a B chromosome was frequently associated to a nucleolus during meiosis [24], and it was later shown, by fluorescent in situ hybridization (FISH), that it carries rDNA [25]. In many cases, however, the rDNA located on the B chromosomes is inactive, as found, for instance, in the black rat *Rattus rattus* [26] and the fish species *Metynnis maculatus* [27] and *Haplochromis obtliquidens* [28]. Especially puzzling is the case of the plant *Biachychome dichromosomatica*, where large B chromosomes carrying rRNA genes are often associated with a nucleolus at mitotic prophase cells in root tips and in meiosis of pollen mother cells [29], but these genes do not silver stain and no transcripts were
detected coming from them in leaves [30]. On the other hand, the rare nucleolar association of micro B chromosomes suggests inactivity of its 45S rDNA [31].

The first molecular evidence for gene activity on B chromosomes was found in the plant Geopis capitata [32], specifically for rDNA. In the parasitic wasp Trichogramma kaykai, NOR activity of B chromosomes and presence of rRNA transcripts coming from the Bs has also been reported [33]. In rye, it has recently been shown the transcription of B-specific DNA sequences belonging to high-copy number families with similarity to mobile elements [34].

In the grasshopper Eyprepocnemis plorans, FISH has shown that most A chromosomes carry rDNA, although the highest amount is actually found in the B chromosomes [35]. However, in most cases, NOR activity is only observed in the three smallest autosomes (9, 10 and 11) and the X chromosome, but not in the B chromosomes [35]. It was later shown that rDNA is one of the principal components of B chromosomes in this species [35], and we have recently found a natural population where the rDNA in the B24 chromosome is recurrently active, as deduced from the presence of nucleoli attached to B chromosomes [37,38]. It was unknown, however, whether those B-attached nucleoli are formed in situ by expression of the B chromosome rDNA, or else by recruitment of nucleolar material coming from other nucleolar organizer regions (NORs), and therefore without expression of the B rDNA. The main objective of the present research was to test for these two alternatives by trying to detect RNA transcripts that undoubtedly had come from the B chromosome rDNA. For this purpose, we used previous information provided by Teruel [39], who determined the DNA sequence of the ITS1 and ITS2 of rDNA coming from microdissected B24 chromosomes in E. plorans. A comparison with the corresponding DNA sequence in the A chromosomes, obtained from 0B individuals, revealed that most B-derived ITS2 sequences carried an inserted adenine which was absent in all A-derived sequences [39]. This difference could thus be used for identifying the rRNA transcripts coming from the B chromosome. We then developed a PCR-based molecular method to detect the B-rRNA transcripts in B-carrying males and, as a cytological control, analysed the presence of nucleoli attached to B chromosomes at diplotene. This molecular approach also demonstrated to be useful to find B-rRNA transcripts in females.

Results

Cytological analysis

Table 1 shows the number of B chromosomes observed in the 67 individuals analysed. Silver impregnation of diplotene cells revealed the presence of nucleoli attached to B chromosomes in 14 out of the 29 B-carrying males collected in 2008 (Figure 1), but not in the 15 remaining males (Table 2). Therefore, 48.3% of B-carrying males showed NOR activity in the B chromosomes. This figure did not differ from that reported by Teruel et al. [38] in a sample from this same population collected in 2004, where 53% of 36 B-carrying males showed B-NOR activity (contingency χ² = 0.02, df = 1, P = 0.89). This shows that the frequency of B-carrying males showing NOR activity in the B chromosomes has not significantly changed in these four years. As Table 2 shows, the likelihood of showing NOR activity in a B chromosome increased with B number, at least from 1–3 Bs, the exception being a single 4B male failing to show active Bs.

In the 14 males showing B-NOR activity, a rather regular proportion of diplotene cells showed B-attached nucleoli: 23.3% in 1B, 23.7% in 2B and 26.9% in 3B males (Table 3), suggesting that it does not depend on the number of B chromosomes. The cytological analysis of the five B-carrying males collected in 2003 and 2004 showed nucleoli attached to Bs in all of them, since they had been selected from a larger sample previously analysed [39]. The average frequency of diplotene cells showing B-attached nucleoli in males showing B-NOR expression in the 2008 sample (24.7% of 284 cells analysed in 14 males), did not differ from the values previously observed in this same population (23.2% of 69 cells in 1999, 23.3% of 240 cells in 2003 and 19.5% of 380 cells in 2004) [37,38] (contingency χ² = 2.84, df = 3, P = 0.42).

Molecular analysis

In each individual, we performed PCR experiments with the ITS1 and ITS2 primers on both genomic (gDNA) and complementary (cDNA) DNA. The former served as a positive control for the presence of the B-specific ITS2 with the inserted adenine (ITS2_B), whereas the cDNA analysis tested the presence of rRNA transcripts carrying the B-specific ITS2.

The PCR experiments on gDNA showed amplification in all B-carrying males and females but not in any of the B-lacking ones (Figure 2). Therefore, this PCR reaction shows the appropriate specificity to reveal B chromosome (and ITS2_B) presence.
Cloning and sequencing of the obtained band revealed that it corresponded to the expected ITS2_B region (Figure S1).

The PCR analysis on cDNA with the ITSA and ITSB primers in B-lacking individuals, as a negative control, revealed no amplification in both males and females (Figure 2), as expected from the results of the PCR experiments on gDNA. However, the molecular analysis of all B-carrying individuals (34 males and 13 females), showed that the ITS2_B transcript was present in the cDNA of 20 of these males (9 with 1B, 4 with 2B and 7 with 3B) but not in 14 of them (11 with 1B, 2 with 2B and 1 with 4B). Likewise, 10 B-carrying females (2 with 1B and 8 with 2B) showed the presence of the 484 bp ITS2_B transcript, whereas 3 females with 2B failed to show it. The frequency of B-carrying individuals showing ITS2_B transcripts was thus 58.8% in males and 76.9% in females.

The joint cytological and molecular analysis performed in 34 B-carrying males (also including five males collected in 2003 and 2004) revealed that 18 out of the 20 males showing ITS2_B transcripts also showed nucleoli attached to B chromosomes in diplotene cells, whereas the two remaining males (no. 43 and 72, both with 1B) failed to show evidence of B-rDNA expression at the cytological level. On the other hand, one male (no. 74) failed to show the presence of the ITS2_B transcript but showed nucleoli attached to Bs in two out of the 20 cells analysed (see Table 3). Finally, 13 males showed absence of B-rDNA expression at both cytological and molecular levels (Table 4). A contingency chi-square test performed to this 2x2 table showed a very strong association between the presence of nucleoli attached to the B chromosomes and the presence of the ITS2_B transcript ($\chi^2 = 19.69$, P < 0.0001, with Yates’ correction).

Discussion

A number of evidences have shown that B chromosomes in the grasshopper *Eyprepocnemis plorans* are sometimes attached to a nucleolus, suggesting the possibility of expression of their rDNA. In addition to previous evidences of NOR activity on B chromosomes [36-39], our present cytological analysis, by means of silver impregnation, in the 29 B-carrying males collected in this same population, in 2008, has shown that the frequency of males showing NOR activity in B chromosomes has not changed from 2004 to 2008, being close to 50%. In addition, the average proportion of diplotene cells showing B-NOR activity seemed to be rather stable (about 20%) from 1999 to 2008. This suggests that the phenotypic expression of the “active B-NOR” trait shows high temporal stability in this population. In contrast, expresivity of this trait is highly variable among individuals, i.e. 5–50% (see Table 3).

Table 2. Frequency of B-carrying males from the 2008 sample showing NOR activity in the B chromosomes, as deduced from the presence of nucleoli attached to B chromosomes in diplotene cells.

Number of Bs	Males with inactive Bs	Males with active Bs	Total	% Males with active Bs
1	13	6	19	31.6
2	1	4	5	80
3	0	4	4	100
4	1	0	1	0
Total	**15**	**14**	**29**	**48.3**

doi:10.1371/journal.pone.0036600.t002

Table 3. Proportion of diplotene cells showing nucleoli attached to B chromosomes in 14 B-carrying males collected in Torrox in 2008 and therefore showing NOR activity in the B chromosome.

Number of Bs	Male no.	B-NOR inactivity	B-NOR activity	Total	% B-NOR activity
1	54	10	10	20	50.0
	49	14	6	20	30.0
	58	16	4	20	20.0
	67	15	5	20	25.0
	52	19	1	20	5.0
	45	18	2	20	10.0
Total	**92**	**28**	**60**	**120**	**23.3**
2	74	18	2	20	10.0
	61	14	6	20	30.0
	63	15	5	20	25.0
	55	12	8	20	40.0
Total	**59**	**21**	**80**	**139**	**23.7**
3	62	15	9	24	37.5
	50	13	7	20	35.0
	42	17	3	20	15.0
	71	16	4	20	20.0
Total	**61**	**23**	**84**	**269**	**26.9**

doi:10.1371/journal.pone.0036600.t003
Although nucleoli are usually formed by expression of the rDNA contained in the NOR to which they are attached [6], in the case of non-standard genomic elements like parasitic B chromosomes, the possibility exists that B chromosomes could recruit nucleolar materials from other NORs without the need to expressing their own rDNA. Our present results show that it is possible to detect the presence of rRNA transcripts unequivocally derived from the B chromosome in males showing nucleoli attached to the B chromosome at diplopetone cells. We designed primers which specifically amplified a 484 bp region of the ITS2 rDNA in the B chromosome, on the basis of an adenine insertion attached to the B chromosome at diplotene cells. We designed primers which specifically amplified a 484 bp region of the ITS2-derived rDNA transcripts could lead to an increasing proportion of abnormal rRNA copies that could be detrimental for the fitness of the B chromosome, suggesting that the transcripts might have structural functions in the species are hypoacetylated for lysine 9 in the H3 histone [41].

The role of B-derived rRNA transcripts and the mechanism of transcription of the B repeats remain to be elucidated. A possibility is that these transcripts might have structural functions in the organization and regulation of the Bs themselves [42,43]. But, in E. plorans, the NOR activity observed by Cabrero et al. [36] in the B2 chromosome fused to the longest autosome was later shown to be related with undermethylated of the rDNA [40]. In addition, it has been shown that B chromosomes in this species are hypoacetylated for lysine 9 in the H3 histone [41].

The active or inactive status of the rDNA in the B chromosome may depend on epigenetic modifications such as DNA methylation and/or histone methylation or acetylation. In E. plorans, the NOR activity observed by Cabrero et al. [36] in the B2 chromosome fused to the longest autosome was later shown to be related with undermethylated of the rDNA [40]. In addition, it has been shown that B chromosomes in this species are hypoacetylated for lysine 9 in the H3 histone [41].

The active or inactive status of the rDNA in the B chromosome may depend on epigenetic modifications such as DNA methylation and/or histone methylation or acetylation. In E. plorans, the NOR activity observed by Cabrero et al. [36] in the B2 chromosome fused to the longest autosome was later shown to be related with undermethylated of the rDNA [40]. In addition, it has been shown that B chromosomes in this species are hypoacetylated for lysine 9 in the H3 histone [41].

The role of B-derived rRNA transcripts and the mechanism of transcription of the B repeats remain to be elucidated. A possibility is that these transcripts might have structural functions in the organization and regulation of the Bs themselves [42,43]. But, in E. plorans, B chromosomes in the Torrox population might also contribute to the total rRNA demanded by the cell, since the activity of the B-NOR is associated with a decrease in the activity of the NORs in the A chromosomes, so that total cell nucleolar area does not change [37,38]. Unless the rDNA located in the B chromosome would have preserved functionality, an increase in B-derived rRNA transcripts could lead to an increasing proportion of abnormal rRNA copies that could be detrimental for the fitness of B-carrying individuals. This possibility, however, needs further research to determine the relative amount of the B-rRNA.
transcripts (in respect to those derived from the A chromosomes) and whether the B-rRNA transcripts are completely functional.

Given that total cell nuclear area in B-carrying males does not change despite B chromosome contribution to nucleolus formation, Teruel et al. suggested that cell regulation of rDNA demands should lead to a decrease in the nuclear area contributed by the A chromosomes [37,38]. Therefore, the presence of rDNA in the B chromosome of *E. plurans* seems to have implications for the regulation of rDNA expression and its relationship with the genomic amount of this kind of repetitive DNA. Ide et al. have recently suggested that the presence of many copies of rDNA, many of which are transcriptionally inactive, makes genomes less sensitive to DNA damage, because the extra copies facilitate recombinational repair [44]. As shown by these authors, the lower RNA sensitivity in yeast strains with high copy number depends on a lower ratio of transcribed rRNA genes than that in strains with low copy number whose rRNA genes are up-regulated. On this basis, the fact that B-NOR activity in *E. plurans* does not change total cell nuclear area [37,38] might be the result of a rigid A genome control on rDNA expression, perhaps because excessive activity would decrease individual fitness through a lower protection against DNA-damaging agents. Similar reasons would explain why the grasshopper *Stauroderus scalaris* carries large amounts of rDNA in all chromosomes but only those in chromosome 3 are active [45].

The case of nucleolar expression in the B chromosomes of *E. plurans* resembles nucleolar dominance, a phenomenon usually observed in interspecific hybrids, by which the rDNA clusters from one of the parental species are active whereas those from the other parental species are inactive [46]. Nucleolar dominance seems to be reversible since, in some individuals, the silenced rDNA can be reactivated under certain conditions, e.g. in developmental stages demanding more ribosomal synthesis [47]. In *E. plurans*, the rDNA located in the B2 chromosome is usually silenced [48] whereas that in the three smallest autosomes and the X chromosome is active in a variable proportion of diplotype cells in all males [49]. The B24 chromosome arose from B2 and replaced it in the Torrox population during the 1980’s [50], from where it is currently expanding towards the west [51] and the east [52]. In the last years, for unknown reasons, the rDNA in the B24 chromosome has been derepressed since, in 1999, it showed NOR activity in 31% of males [37], and this figure increased to about 40% in 2003–2004 [38] and 48.3% in 2008 (this paper, Table 2). Therefore, it seems that the “active B-NOR” phenotype is increasing in frequency in this species. Ide et al. have recently suggested that the presence of many copies of rDNA, many of which are transcriptionally inactive, makes genomes less sensitive to DNA damage, because the extra copies facilitate recombinational repair [44]. As shown by these authors, the lower RNA sensitivity in yeast strains with high copy number depends on a lower ratio of transcribed rRNA genes than that in strains with low copy number whose rRNA genes are up-regulated. On this basis, the fact that B-NOR activity in *E. plurans* does not change total cell nuclear area might be the result of a rigid A genome control on rDNA expression, perhaps because excessive activity would decrease individual fitness through a lower protection against DNA-damaging agents. Similar reasons would explain why the grasshopper *Stauroderus scalaris* carries large amounts of rDNA in all chromosomes but only those in chromosome 3 are active [45].

The case of nucleolar expression in the B chromosomes of *E. plurans* resembles nucleolar dominance, a phenomenon usually observed in interspecific hybrids, by which the rDNA clusters from one of the parental species are active whereas those from the other parental species are inactive [46]. Nucleolar dominance seems to be reversible since, in some individuals, the silenced rDNA can be reactivated under certain conditions, e.g. in developmental stages demanding more ribosomal synthesis [47]. In *E. plurans*, the rDNA located in the B2 chromosome is usually silenced [48] whereas that in the three smallest autosomes and the X chromosome is active in a variable proportion of diplotype cells in all males [49]. The B24 chromosome arose from B2 and replaced it in the Torrox population during the 1980’s [50], from where it is currently expanding towards the west [51] and the east [52]. In the last years, for unknown reasons, the rDNA in the B24 chromosome has been derepressed since, in 1999, it showed NOR activity in 31% of males [37], and this figure increased to about 40% in 2003–2004 [38] and 48.3% in 2008 (this paper, Table 2). Therefore, it seems that the “active B-NOR” phenotype is increasing in frequency in this population. Remarkably, however, the proportion of diplotype cells showing the phenotype in B-carrying males was about the same in 1B, 2B and 3B males, thus showing no odd-even pattern for this trait, in contrast to many B chromosome effects (see [53]).

The B24 chromosome thus constitutes excellent material to analyse the regulation of rDNA expression at intragenomic level, and the PCR assay described here could contribute significantly to this task because it permits to analyse B-rDNA expression in every cell type, tissue and organ at every developmental stage where this task because it permits to analyse B-rDNA expression in every cell type, tissue and organ at every developmental stage where.
volume of 25 μl. PCR conditions were the following: an initial denaturation at 94°C for 5 min and 30 cycles of 94°C for 30 s, 62.5°C for 40 s, 72°C for 45 s and final extension of 72°C for 7 min. PCR products were visualized in an electrophoresis 1.5% agarose gel and the amplified fragment was cloned into TOPO TA vector (Invitrogen) and subsequently sequenced in both directions (Macrogen). Searching for sequence homology in databases was performed using BLAST (Basic Local Alignment Search tool) at NCBI site. Alignments were performed with Biöedit software (version 7.0.9.0).

Complementary DNA (cDNA) was synthesized from total RNA with SuperScript III First-Strand Synthesis SuperMix (Invitrogen), following manufacturer’s protocol, and it was used as template for PCR experiments with the ITSA and ITSB primers. PCR reactions on cDNA contained 2000 μM dNTPs, 10 μM of each primer, 1U Taq polymerase (New England, BioLabs) and 30 ng cDNA. PCR conditions were as follows: initial denaturation at 94°C for 5 min, 30 cycles of 94°C for 30 s, 62.5°C (males) and 62.7°C (females) for 40 s, 72°C for 45 s and a final extension of 72°C for 7 min. Analysis of PCR products, cloning of amplified fragments, DNA sequencing and homology search in the databases were performed as for genomic DNA (see above).

Supporting Information

Figure S1 Nucleotide sequence of the DNA amplified with the ITSA2A and ITSB2 primers. (DOC)

Acknowledgments

We thank Maria Teruel for providing some materials.

Author Contributions

Conceived and designed the experiments: MRE MDLL JC JPMC. Performed the experiments: MRE JC MDLL. Analyzed the data: MRE MDLL JC JPMC. Contributed reagents/materials/analysis tools: MDLL JC JPMC. Wrote the paper: MRE MDLL JC JPMC.

References

1. Camacho JPM (2005) B chromosomes. In: Gregory TR, ed. The evolution of the genome. New York: Academic Press, pp 223–236.
2. Teruel M, Cabrero J, Perfecti F, Camacho JMP (2010) B chromosome ancestry revealed by histone genes in the migratory locust. Chromosoma 119: 217–225.
3. Green DM (1990) Muller’s Ratchet and the evolution of supernumerary chromosomes. Genome 33: 818–824.
4. Jones RN (1995) Lauerley review no. 83: B chromosomes in plants. New Phytol 134: 131–434.
5. Lang EO, David IB (1980) Repeated genes in eukaryotes. Annu Rev Biochem 49: 727–764.
6. Cardoso-Mereca M, Mendes-Soares L, Campos I (2000) To be or not to be in the nucleus. Nat Cell Biol 2: E107–E112.
7. Rufus JS, Intra P, de Souza W, Esponda P (1982) Simple silver staining procedure for the localization of nucleolus organizer and nucleolar organizer under light and electron microscopy. Arch Biol 93: 85–97.
8. Roussel P, Belenguer P, Amalric F, Hernandez-Verdun D (1992) Nucleolin is an Ag-NOR protein; this property is determined by its amino-terminal domain independently of its phosphorylation state. Exp Cell Res 203: 259–269.
9. Roussel P, Hernandez-Verdun D (1994) Identification of Ag-NOR proteins: markers of proliferation related to ribosomal gene activity. Exp Cell Res 214: 465–472.
10. Roussel P, Andic C, Comai L, Hernandez-Verdun D (1996) The cDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J Cell Biol 133: 235–246.
11. Casperzon L (1996) Cell growth and cell function, a cytostudy. New York: WU-Norton and Co, Inc.
12. Busch H, Daskal Y, Goyorky S, Smetana K (1979) Silver staining of nucleolar granules in tumor cells. Cancer Res 39: 857–863.
13. Okabe Y, Nakamura S, Hatao M, Kobayashi K, et al. (1991) The origin of B chromosomes in inactive NORs. J Cell Biol 133: 235–246.
14. Thiele J, Fischer R (1993) Bone marrow tissue and proliferation markers: results and general problems. Virchows Arch A 423: 409–416.
15. Busch H (1997) Nucleolar and nucleolosominal proteins of cancer cells. J Tumor Marker Oncol 12: 5–68.
16. Nakamoto K, Ito A, Watake K, Koma Y, Asada H, et al. (2001) Increased expression of a nuclear Nop5/Skia homolog member in metastatic melanoma cells: evidence for its role in nucleolar size and function. Am J Pathol 159: 1363–1374.
17. Mogollon W (2004) Nucleolar ultrastructure in vertebrates. In Olson MOJ, ed. The Nucleolus. New York: Kluwer. pp 10–20.
18. Fox DP, Hewitt GM, Hall DJ (1974) DNA replication and RNA transcription of euchromatic and heterocromatic chromosome regions during grasshopper meiosis. Chromosoma 45: 49–62.
19. Ishak B, Jaafar H, Maetz JL, Rumpler Y (1991) Absence of transcriptional activity of the B-chromosome of Brachycome dichromosomatica during pachytene. Chromosoma 100: 278–281.
20. Carlson WR (1996) The B chromosome of maize. CRC Crit Rev Plant Sci 3: 201–226.
21. Green DM (1988) Cytogenetics of the endemic New Zealand frog, Litoripomatoss macrosoma; extraordinary supernumerary chromosome variation and a unique sex-chromosome system. Chromosoma 97: 55–70.
22. Brockhouse C, Bas JAB, Fereyday MM, Strauss NA (1989) Supernumerary chromosomes evolution in the Simulium ronou group (Diptera: Simulidae). Genome 32: 516–521.
41. Cabrero J, Terruel M, Carmona FD, Jiménez R, Camacho JPM (2007) Histone H3 lysine 9 acetylation pattern suggests that X and B chromosomes are silenced during entire male meiosis in a grasshopper. Cytogenet Genome Res 119: 135–142.
42. Garchinian M, Delgado M, Ribeiro T, Costa-Nunes P, Caperta A, et al. (2007) Transcriptionally active heterochromatin in rye B chromosomes. Plant Cell 19: 1738–1749.
43. Han F, Lamb JC, Yu W, Gao Z, Birchler JA (2007) Centromere function and nondisjunction are independent components of the maize B chromosome accumulation mechanism. Plant Cell 19: 524–533.
44. Ide S, Miyazaki T, Maki H, Kobayashi T (2010) Abundance of ribosomal RNA gene copies maintains genome integrity. Science 327: 693–696.
45. López-León MD, Cabrero J, Camacho JPM (1999) Unusually high amount of inactive ribosomal DNA in the grasshopper Stauroderus scalaris. Chromosome Res 7: 83–88.
46. López-León MD, Cabrero J, Camacho JPM (1995) Changes in DNA methylation during development in the B chromosome NOR of the grasshopper Eyprepocnemis plorans. Heredity 74: 296–302.
47. López-León MD, Cabrero J, Camacho JPM (1995) Changes in NOR activity in the presence of supernumerary heterochromatin in the grasshopper Eyprepocnemis plorans. Genome 38: 68–74.
48. López-León MD, Cabrero J, Camacho JPM (1995) Polymorphism regeneration for a neutralized selfish B chromosome. Evolution 52: 274–277.
49. Manrique-Poyato MI, Muñoz-Pajares AJ, Loero V, López-León MD, Cabrero J, et al. (2006) Causes of B chromosome variant substitution in the grasshopper Eyprepocnemis plorans. Chromosome Res 14: 693–700.
50. Manrique-Poyato MI (2010) Dinámica espacial y temporal de los cromosomas B del saltamontes Eyprepocnemis plorans. PhD Universidad de Granada.
51. Chen ZJ, Pikaard CS (1997) Transcriptional analysis of nucleolar dominance in polyploidy plants: biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica. Proc Nat Acad Sci USA 94: 3442–3447.
52. Perfectti F, Corral JM, Mesa JA, Cabrero J, Bakkali M, et al. (2004) Rapid suppression of drive for a parasitic B chromosome. Cytogenet Genome Res 106: 338–343.