Rainbow trees in uniformly edge-colored graphs

Elad Aigner-Horev | Dan Hefetz | Abhiruk Lahiri

Correspondence Dan Hefetz, Department of Computer Science, Ariel University, Ariel 40700, Israel.
Email: danhe@ariel.ac.il
Funding information ISF (Israel Science Foundation), Grant/Award Number: 822/18

Abstract
We obtain sufficient conditions for the emergence of spanning and almost-spanning bounded-degree rainbow trees in various host graphs, having their edges colored independently and uniformly at random, using a predetermined palette. Our first result asserts that a uniform coloring of $G(n, \omega(1)/n)$, using a palette of size n, a.a.s. admits a rainbow copy of any given bounded-degree tree on at most $(1 - \epsilon)n$ vertices, where $\epsilon > 0$ is arbitrarily small yet fixed. This serves as a rainbow variant of a classical result by Alon et al. pertaining to the embedding of bounded-degree almost-spanning prescribed trees in $G(n, C/n)$, where $C > 0$ is independent of n. Given an n-vertex graph G with minimum degree at least δn, where $\delta > 0$ is fixed, we use our aforementioned result in order to prove that a uniform coloring of the randomly perturbed graph $G \cup G(n, \omega(1)/n)$, using $(1 + \alpha)n$ colors, where $\alpha > 0$ is arbitrarily small yet fixed, a.a.s. admits a rainbow copy of any given bounded-degree spanning tree. This can be viewed as a rainbow variant of a result by Krivelevich et al. who proved that $G \cup G(n, C/n)$, where $C > 0$ is independent of n, a.a.s. admits a copy of any given bounded-degree spanning tree. Finally, and with G as above, we prove that a uniform coloring of $G \cup G(n, o(n^{-2}))$ using $n - 1$ colors a.a.s. admits a rainbow spanning tree. Put another way, the trivial lower bound on the size of the palette required for supporting a rainbow spanning tree is also sufficient, essentially as soon as the random perturbation a.a.s. has edges.

KEYWORDS
edge-coloring, rainbow trees, random graphs, random perturbation
1 | INTRODUCTION

Given a graph G and an edge-coloring ψ of G, a subgraph $H \subseteq G$ is said to be ψ-rainbow if $|\{\psi(e) : e \in E(H)\}| = \epsilon(H)$ holds; that is, if $\psi(e) \neq \psi(e')$ for every two distinct edges $e, e' \in E(H)$. An edge coloring of a graph G is said to be k-uniform, if the color of every edge of G is chosen independently and uniformly at random from a prescribed color palette of size $k \in \mathbb{N}$.

We obtain sufficient conditions for the emergence of bounded-degree rainbow trees in various host graphs. First, we consider the rainbow emergence of prescribed almost-spanning bounded-degree trees in uniformly colored (sparse binomial) random graphs, establishing a rainbow variant for the classical result of Alon et al. [3]. Second, we consider the rainbow emergence of prescribed spanning bounded-degree trees in uniformly colored graphs that consist of a dense seed which is perturbed by a (sparse binomial) random graph, establishing a rainbow variant for a result of Krivelevich et al. [31]. Finally, we study the emergence of rainbow spanning trees in uniformly colored randomly perturbed dense graphs; here the tree is not prescribed.

The study of the emergence of almost-spanning trees with bounded degrees in $G(n, p)$ dates back to a conjecture put forth by Erdős [18], stipulating that $G \sim G(n, c/n)$ a.a.s. contains a path of length at least $(1 - \alpha(c))n$, with $\lim_{c \to \infty} \alpha(c) = 0$. Following an earlier result by Fernandez de la Vega [22], proving a slightly weaker version of this conjecture, the conjecture was resolved by Ajtai et al. [2]. Refinements regarding $\alpha(c)$ and its rate of convergence were provided by Bollobás [13] and by Frieze [24]. The study of the emergence of almost-spanning trees with bounded degrees (rather than just paths) in random graphs was initiated by Fernandez de la Vega [23]. Significant progress in this line of research was attained by Alon et al. [3] who proved that for every integer $d \geq 2$ and every $\epsilon > 0$ there exists a constant $c > 0$ such that $G(n, c/n)$ a.a.s. contains every tree on $(1 - \epsilon)n$ vertices whose maximum degree is at most d. The upper bound on the constant c was subsequently improved by Balogh et al. [8].

The emergence of rainbow Hamilton cycles in uniformly colored (binomial) random graphs has been studied extensively; in particular, in [7,20,21,25] one encounters a series of improvements and refinements regarding the density of the random graph being colored as well as the size of the color palette being used.

The study of the emergence of various spanning configurations in randomly perturbed (hyper)graphs dates back to the work of Bohman et al. [12], and received significant attention in recent years, see for example, [5,9–11,14,15,17,27,28,30–32] to name just a few. In most results in this area, the random perturbation is the binomial random graph $G(n, p)$ (or the, essentially equivalent, Erdős-Rényi random graph $G(n, m)$); however, quite recently other distributions have been considered, such as random geometric graphs [19] and random regular graphs [16]. In the context of rainbow spanning configurations, the emergence of rainbow Hamilton cycles in uniformly colored randomly perturbed graphs was studied by Anastos and Frieze [4] as well as by the first two authors [1].

1.1 | Our results

We write (G, ψ) to denote a graph G whose edges are colored according to a coloring ψ. Our first main result can be viewed as a rainbow variant of the aforementioned result of [3].

Theorem 1.1. Let $\epsilon > 0$ be a real number, let $d \geq 2$ be an integer, and let T be a tree on at most $(1 - \epsilon)n$ vertices and with maximum degree at most d. Then, (G, ψ) a.a.s. admits a ψ-rainbow copy of T, where $G \sim G(n, \omega(1)/n)$ and ψ is an n-uniform coloring of G.
The corresponding result of [3] handles the embedding of almost-spanning prescribed trees of bounded-degree in \(G(n, C/n) \), where \(C \) is an explicit constant. We conjecture that the analogous rainbow variant holds as well.

Conjecture 1.2. For every \(\epsilon > 0 \) and every integer \(d \geq 2 \), there exists a constant \(C > 0 \) such that the following holds. Let \(T \) be a tree on at most \((1 - \epsilon)n \) vertices with maximum degree at most \(d \). Then, \((G, \psi)\) a.a.s. admits a \(\psi \)-rainbow copy of \(T \), where \(G \sim G(n, C/n) \) and \(\psi \) is an \(n \)-uniform coloring of \(G \).

Our second main result pertains to rainbow embeddings of prescribed spanning trees with bounded maximum degree in uniformly colored randomly perturbed dense graphs. The latter have the form \(\Gamma \sim G(n, C/n) \). For every \(\alpha > 0 \) and integer \(d \geq 2 \), let \(\Gamma \sim G(d, n) \) be a tree with maximum degree at most \(d \). Then, \((\Gamma, \psi)\) a.a.s. admits a \(\psi \)-rainbow copy of \(T \), where \(G \sim G(n, C/n) \) and \(\psi \) is an \(n \)-uniform coloring of \(G \).

Our second main result can be viewed as a rainbow variant of their result.

Theorem 1.3. Let \(\delta, \alpha > 0 \) be real numbers, let \(d \geq 2 \) be an integer, and let \(T \) be an \(n \)-vertex tree with maximum degree at most \(d \). Then, \((\Gamma, \psi)\) a.a.s. admits a \(\psi \)-rainbow copy of \(T \), where \(\Gamma \sim G(\delta, n) \cup G(n, C/n) \) and \(\psi \) is a \((1 + \alpha)n\)-uniform coloring of \(\Gamma \).

Our proof of Theorem 1.3 employs the absorption method (see Section 3) and is aided by our first main result, namely Theorem 1.1. Similarly to Conjecture 1.2, we conjecture that a slightly sparser random graph suffices.

Conjecture 1.4. For every \(\delta, \alpha > 0 \) and integer \(d \geq 2 \), there exists a constant \(C > 0 \) such that the following holds. Let \(T \) be an \(n \)-vertex tree with maximum degree at most \(d \). Then, \((\Gamma, \psi)\) a.a.s. admits a \(\psi \)-rainbow copy of \(T \), where \(\Gamma \sim G(\delta, n) \cup G(n, C/n) \) and \(\psi \) is a \((1 + \alpha)n\)-uniform coloring of \(\Gamma \).

It follows from our proof of Theorem 1.3 that Conjecture 1.4 is a direct consequence of the assertion of Conjecture 1.2. However, perhaps the former is easier to prove than the latter.

Any edge-coloring of an \(n \)-vertex graph containing a rainbow spanning tree requires a color palette of size at least \(n - 1 \). Theorem 1.3, dealing with the rainbow embedding of prescribed spanning trees, constrains the size of the palette to be \((1 + \alpha)n\), with \(\alpha > 0 \) being arbitrarily small yet fixed. Dropping the requirement that the tree is predetermined has the effect that the aforementioned trivial yet necessary lower bound on the size of the palette becomes also sufficient, even with a minimal perturbation, so to speak. Our last result reads as follows.

Proposition 1.5. Let \(\delta \in (0, 1) \) be fixed and let \(p := p(n) = o(n^{-2}) \). Then, \((\Gamma, \psi)\) a.a.s. admits a \(\psi \)-rainbow spanning tree, where \(\Gamma \sim G(\delta, n) \cup G(n, p) \) and \(\psi \) is an \((n - 1)\)-uniform coloring of \(\Gamma \).
We note that a related result for random graphs was obtained by Frieze and McKay [26] (in fact, they proved a stronger hitting-time result). A variation of their result was later proved by Bal et al. [6].

2 | PRESCRIBED ALMOST-SPANNING RAINBOW TREES IN RANDOM GRAPHS

In this section, we prove Theorem 1.1. Several results facilitating our proof of this theorem are collected in Section 2.1, whereas the proof itself is included in Section 2.2.

2.1 | Auxiliary results

Given a linearly sized prescribed set of colors, taken from the palette of an \(n\)-uniform coloring of an appropriate random (binomial) graph, the following result provides lower bounds on the number of colors that are a.a.s. used from the prescribed set.

Lemma 2.1. Let \(\alpha, \beta, \gamma > 0\) be real numbers and let a positive integer \(d\) be fixed. Let \(A \subseteq \{1, \ldots, n\}\) be a set of size \(\alpha n\). Let \(G \sim \mathbb{G}(\beta n, \omega(1)/n)\), let \(u \in V(G)\) be arbitrary, and let \(\varphi : E(G) \to \{1, \ldots, n\}\) be an \(n\)-uniform coloring. Then, the following hold a.a.s.

(a) \(|\varphi(E(G)) \cap A| \geq (1 - \gamma)\alpha n|;

(b) \(|\{\varphi(uv) : v \in N_G(u)\} \cap A| \geq d|.

Proof. Starting with (a), note that a.a.s. \(e(G) = \omega(1)\). If \(|\varphi(E(G)) \cap A| < (1 - \gamma)\alpha n|, then there exists a set \(B \subseteq A\) of size \(\gamma\alpha n|\) such that \(\varphi(E(G)) \cap B = \emptyset\). The probability of this latter event is at most

\[
\left(\frac{\alpha n}{\gamma an}\right) \left(1 - \frac{\gamma an}{n}\right)^{\omega(1)} \leq 2^n e^{-\omega(1)} = o(1).
\]

Next we prove (b); we may clearly assume that \(\omega(1) \ll \ln n\). It then follows that a.a.s. \(\deg_G(u) \leq \ln n\). Therefore, the probability that \(\varphi(uv) = \varphi(uw)\) for any two distinct vertices \(v, w \in N_G(u)\) is at most

\[
\left(\frac{\ln n}{2}\right) \frac{1}{n} = o(1).
\]

We may thus condition on the event \(|\{\varphi(uv) : v \in N_G(u)\}| = \deg_G(u)|, which in turn implies that \(X_u := |\{\varphi(uv) : v \in N_G(u)\} \cap A|\) is a binomial random variable with parameters \(n - 1\) and \(\frac{\omega(1)}{n} \cdot \frac{|A|}{n} = \omega(1)\). Applying Chernoff’s inequality then yields

\[
P(X_u < d) \leq P(X_u < \mathbb{E}(X_u)/2) \leq e^{-\omega(1)} = o(1).
\]

For a real number \(\eta > 0\) and a positive integer \(r\), an \(n\)-vertex graph is said to be an \((\eta, r)\)-expander if \(|\Gamma_G(X)| \geq r|X|\) for every \(X \subseteq V(G)\) of size \(|X| \leq \eta n\), where

\[
\Gamma_G(X) := \{u \in V(G) \setminus X : N_G(u) \cap X \neq \emptyset\},
\]

denotes the set of external neighbors of \(X\).
The following result asserts that attaching a high-degree vertex to an expander yields an expander (with slightly degraded expansion parameters).

Lemma 2.2. For all positive integers \(k \) and \(d \), there exists an integer \(n_0 \) such that the following holds for every \(n \geq n_0 \). Let \(G \) be a graph on \(n \) vertices and let \(u \in V(G) \) be a vertex of degree \(\deg_G(u) \geq (d + 2)^2 \). Suppose that every induced subgraph of \(G \setminus u \) with minimum degree at least \(k \) is a \((\frac{1}{2d+2}, d + 1)-\expander \). Then, every induced subgraph of \(G \) with minimum degree at least \(k \) is a \((\frac{1}{2d+2}, d + 1)-\expander \).

Proof. Fix some induced subgraph \(H \) of \(G \) with minimum degree at least \(k \) and some set \(A \subseteq V(H) \) of size \(|A| \leq \frac{\nu(H)}{2d+2} \). If \(u \notin A \), then \(|\Gamma_G(A)| \geq |\Gamma_G \setminus u(A)| \geq (d+1)|A| \) by assumption as \(|A| \leq \frac{\nu(H)}{2d+2} \leq \frac{\nu(H \setminus u)}{2d+1} \).

Assume then that \(u \in A \). If \(|A| \leq d+1 \), then \(|\Gamma_G(A)| \geq \deg_G(u)-|A| \geq (d+2)^2-(d+1) \geq (d+1)|A| \). Otherwise \(|\Gamma_G(A)| \geq |\Gamma_G \setminus u(A \setminus u)| \geq (d+2)(|A|-1) \geq (d+1)|A| \).

Next, we collect several results from [3] which are relevant to our proof. All results are adjusted to our setting, but the proofs are as in [3] mutatis mutandis and are therefore omitted. Slightly more significant changes are made in the proof of Lemma 2.4; these changes are thus described in Appendix A.

The first of these results allows one to decompose a bounded-degree tree into subtrees whose number is independent of the size of the tree being decomposed. The resulting subtrees are linked to one another in a certain advantageous manner. The decomposition also provides a certain level of control over the sizes of the resulting subtrees.

Proposition 2.3 ([(3), corollary 4.3—adapted]). Let \(\epsilon \in (0, 1/2), \xi > 0 \), and an integer \(d \geq 2 \) be fixed. Let \(T \) be a tree on \((1-\epsilon)n \) vertices with maximum degree at most \(d \). Then, \(T \) can be decomposed into \(s := s_{2\xi}(d, \epsilon, \xi) \) subtrees, namely \(T_1, \ldots, T_s \), such that for each \(2 \leq i \leq s \), the tree \(T_i \) is connected to \(\bigcup_{j<i} T_j \) via a unique edge; moreover, \(\xi n/d \leq v(T_i) \leq \xi n \) holds for every \(2 \leq i \leq s \) and \(v(T_1) \leq \xi n \).

For positive integers \(n \) and \(r \), and real numbers \(\theta, \eta, C > 0 \), write \(\text{EXPAND}(n, \theta, C, \eta, r) \) to denote the family of \(n \)-vertex graphs \(H \) for which there exists a subgraph \(H' \subseteq H \) satisfying the following properties.

1. \(v(H') \geq (1-\theta)n \);
2. \(C \leq \deg_{H'}(v) \leq 10C \) for every \(v \in V(H') \); and
3. every induced subgraph \(H'' \subseteq H' \) with minimum degree \(\delta(H'') \geq \ell_1(r, C) := 2e^4r^2 \ln(C) \) is an \((\eta, r) \)-expander.

We refer to \(H' \) as the effective expander of \(H \).

Lemma 2.4 ([3], Lemma 3.1—adapted). For every \(\theta \in (0, 1/2) \), integer \(r \geq 3 \), real \(0 < \eta \leq (r+2)^{-1} \), and \(C \) satisfying \(C \geq 50/\theta \) as well as \(C \geq \ell_1(r, C) \), the random graph \(G \sim G(n, 4C/n) \) is a.a.s. in \(\text{EXPAND}(n, \theta, C, \eta, r) \).

For a real number \(\eta > 0 \) and positive integers \(k \) and \(d \), set \(\ell_2(\eta, d, k) = \frac{\eta k}{40d^2 \ln(2/\eta)} \). The following is the main result of [3].

Theorem 2.5 ([3], Theorem 1.4—adapted). For every integer \(d \geq 2 \) and real \(\eta \in (0, 1/2) \), there exists an \(n_0 := n_0(\eta, d) \) such that the following holds for all \(n \geq n_0 \). Let \(G \) be an \(n \)-vertex graph satisfying \(\Delta(G) \leq 10\delta(G) \) as well as having the property that every induced subgraph \(H \subseteq G \) with minimum degree \(\geq \ell_2(\eta, d, k) \).
degree at least $\epsilon_2(n, d, \delta(G))$ is a \(\left(\frac{1}{2d+2}, d+1\right)\)-expander. Let \(v \in V(G)\) be arbitrary, and let \(T\) be a tree on at most \((1-\eta)n\) vertices having maximum degree at most \(d\). Then, \(G\) contains a copy of \(T\) rooted at \(v\).

2.2 | Proof of Theorem 1.1

Given \(d, \epsilon, \) and \(T\) as in the premise of the theorem, set \(\zeta > 0\) such that

\[
\zeta \leq \frac{\epsilon}{2(1-\epsilon)}.
\]

(1)

Fix \(\beta > 0\) and \(\phi > 0\) such that

\[
\beta \ll \frac{\zeta \epsilon}{d^4 \ln(\zeta^{-1})},
\]

(2)

and

\[
\phi \ll \epsilon.
\]

(3)

Finally, write \(s := s_{2.3}(d, \epsilon, (1-3\zeta/2)\beta)\).

By Proposition 2.3, the tree \(T\) may be decomposed into \(s\) subtrees, namely \(T'_1, \ldots, T'_s\), such that

\[
\frac{1-3\zeta/2}{d}\beta n \leq v(T'_i) \leq \frac{(1-3\zeta/2)\beta n}{s} \text{ for every } 2 \leq i \leq s \text{ and } v(T'_1) \leq (1-3\zeta/2)\beta n.\]

Moreover, for every \(2 \leq i \leq s\), the tree \(T'_i\) is connected to \(\bigcup_{j=1}^{i-1} T'_j\) via a unique edge. In particular, for every \(i \in [s-1]\), there exists a set \(Z_i \subseteq V(T)\) such that

\[
(T.1) \quad |Z_i \cap V(T'_j)| \leq 1 \text{ for every } j \in [s]; \text{ in particular, } |Z_i| \leq s.
\]

\[
(T.2) \quad Z_i \cap V(T'_j) = \emptyset \text{ for every } j \in [i].
\]

\[
(T.3) \quad \text{For every } x \in Z_i, \text{ there exists a unique vertex } y \in V(T'_i) \text{ such that } xy \in E(T).
\]

We refer to the vertices of \(Z_i\) as the roots of the trees to which \(T'_i\) connects. For \(i \in [s-1]\), define \(T_i\) to be the subtree of \(T\) induced by \(V(T'_i) \cup Z_i\). This defines the sequence of trees \(T_1, \ldots, T_s := T'_s\). Note that \(v(T_i) \leq v(T'_i) + s\) holds by (T.1) for every \(1 \leq i \leq s\).

Let \(R \subseteq [n]\) be an arbitrary (yet fixed) set of size \(\phi n\); the set \(R\) is referred to as the color-reservoir; in the sequel, this set is used for embedding roots in a rainbow fashion.

Let \(G \sim \mathbb{G}(n, \omega(1)/n)\) and let \(\psi : E(G) \rightarrow [n]\) be an \(n\)-uniform coloring of \(G\). We embed the trees \(T_1, \ldots, T_s\) in \(G\) one after the other in a rainbow fashion with respect to \(\psi\), using a probabilistic embedding procedure; we prove that this procedure terminates a.a.s. with a rainbow copy of \(T\) in \(G\). For every \(1 \leq i \leq s\), let \(T_i\) denote the image of \(T_i\) in our embedding of \(T\) in \(G\). We ensure deterministically that \(\bigcup_{i=1}^{s} T_i \equiv T\) and that \(\psi(E(T_i)) \cap \psi(E(T_j)) = \emptyset\) holds for every \(1 \leq i \neq j \leq s\). Since, moreover, \(s\) is fixed, it suffices to prove that the rainbow embedding of each single tree \(T_i\) is successful asymptotically almost surely.

Let \(X_1, \ldots, X_s \subseteq [n]\) be pairwise-disjoint sets satisfying \(|X_i| = (1+3\zeta/2)v(T_i)\) for every \(i \in [s]\). For sufficiently large \(n\), such a collection of sets exists, since

\[
\sum_{j=1}^{s} |X_j| = \sum_{j=1}^{s} (1+3\zeta/2)v(T_j) \leq (1+3\zeta/2)((1-\epsilon)n + s) < n.
\]

(1)

For constants \(a\) and \(b\) we write \(a \ll b\) to mean that \(a\) is sufficiently small with respect to \(b\).
The exposure of G is carried out through s rounds, where (apart from its root, unless $i = 1$) T_i is to be embedded in $G[X_i]$ for every $i \in [s]$.

Embedding T_1. Let $X_1 \subseteq [n]$ be an arbitrary set of size

$$\xi_1 n := (1 + 3\zeta/2)\nu(T_1),$$

so that $\xi_1 \leq (1 + 3\zeta/2)((1 - 3\zeta/2)\beta + s/n) \leq \beta$ for sufficiently large n. Note that $G[X_1] \sim G(\xi_1 n, \omega(1)/n)$. Let $A_1 := [n] \setminus R$ denote the set of colors available for the rainbow embedding of T_1.

Observe that $|A_1| \geq (1 - \rho)n \geq n/2$. Let E_1 denote the event that an n-uniform coloring of $G[X_1]$ uses at least $n/4$ colors from A_1; such an event occurs a.a.s. by Part (a) of Lemma 2.1. Conditioning on E_1, we perform a random sparsification procedure of (the yet unexposed) $G[X_1]$ as follows.

(S.1) Include each $e \in \left(\frac{X_1}{2}\right)$ as an edge independently at random with probability $\omega(1)/n$.

(S.2) If $e \in \left(\frac{X_1}{2}\right)$ was included as an edge in Step (S.1), assign e a color from $[n]$ uniformly at random.

(S.3) For every $c \in A_1$, let E_c be the set of edges colored c. If $E_c \neq \emptyset$, choose a single member of E_c uniformly at random, that is, with probability $1/|E_c|$.

(S.4) Discard all edges not chosen in Step (S.3) (this includes, in particular, all edges whose color is in $[n] \setminus A_1$).

(S.5) From the remaining set of edges choose a subset of size $n/4$ uniformly at random.

The resulting graph distribution, which we denote by \tilde{G}_1, coincides with the *uniform* graph distribution, namely $G(\xi_1 n, n/4)$, set over all graphs with $\xi_1 n$ vertices and $n/4$ edges. Moreover, all graphs sampled from \tilde{G}_1 are by definition rainbow with all colors found in A_1.

Let E_2 denote the event that $H \sim \tilde{G}_1$ is in

$$\text{EXPAND}_1 := \text{EXPAND}(\xi_1 n, \zeta/2, (4\xi_1)^{-2}, (2d + 2)^{-1}, d + 1),$$

and let E_3 denote the event that $K \sim G\left(\frac{\xi_1 n}{2}, \frac{1}{(2\xi_1)^n}\right)$ is in EXPAND_1. Since $\xi_1 \leq \beta \ll \zeta/d^2$, it follows by a straightforward calculation that

$$(4\xi_1)^{-2} \geq \max\{50\xi^{-1}, C_4(d + 1, (4\xi_1)^{-2})\},$$

implying that E_3 occurs a.a.s., by Lemma 2.4. As \tilde{G}_1 coincides with $G(\xi_1 n, n/4)$, the event E_2 holds a.a.s. as well due to the well-known relation between $G(n, p)$ and $G(n, m)$ with appropriate parameters (see, e.g., [29, proposition 1.13]).

Fix a graph $H \sim \tilde{G}_1$ satisfying EXPAND_1 and let $H' \subseteq H$ be its effective expander; in particular, $\nu(H') \geq |X_1| - \zeta|X_1|/2 \geq (1 + 3\zeta/4)\nu(T_1)$ holds. Owing to $\xi_1 \leq \beta \ll \frac{\zeta}{d^4 \ln(\zeta^{-1})}$, we may write

$$\mathcal{E}_2 \left(\frac{\zeta}{2}, d, (4\xi_1)^{-2}\right) \geq \mathcal{E}_1 \left(d + 1, (4\xi_1)^{-2}\right).$$

Consequently, H' contains a copy of T_1, namely T_1, by Theorem 2.5. As H' is rainbow with all colors used found in A_1, so is T_1. The elements of the set $Z_1 \subseteq V(T)$, that is, the roots associated with T_1, are embedded in T_1; subsequent tree-embeddings whose roots have thus been determined are to be embedded in a *rooted* manner.

At this stage, only the edges of $G[X_1]$ and their colors under ψ have been fully exposed. Finally, note that no color from the color-reservoir set R is present on the edges of T_1.

Embedding T_s. Suppose that the trees T_1, …, T_{s-1} have all been embedded into $G[X_1] \cup \ldots \cup G[X_{s-1}]$ such that the following properties hold
(I.1) $\mathcal{T} := \bigcup_{i=1}^{i-1} T_j$ is rainbow under ψ, where T_j is the image of T_j for every $j \in [i-1]$;
(I.2) $\mathcal{T} \cong [i-1] T_j$;
(I.3) No edge of G with at least one endpoint in X_i nor its color have been exposed;
(I.4) $\vert \psi(E(\mathcal{T})) \cap \mathcal{R} \vert = O(1)$.

Write \mathcal{R}_i to denote the subset of colors of \mathcal{R} not appearing on the edges of \mathcal{T}, and note that $\vert \mathcal{R}_i \vert = \Omega(n)$ holds by (I.4). Let $A_i = [n] \setminus (\psi(E(\mathcal{T})) \cup \mathcal{R})$ denote the set of available colors for the embedding of T_i. Observe that
\[\vert A_i \vert \geq (\epsilon - \rho)n \geq \epsilon n/2. \]

Finally, let $r \in V(\mathcal{T})$ be the predetermined root for the forthcoming embedding of T_i. Then, $r \notin X_i$ and, by (I.3), none of the pairs of the form $\{r, x\} : x \in X_i$ nor their color have been thus far exposed (i.e., $rx \in E(G)$ with probability $\omega(1)/n$ and, if it is an edge, its color is chosen uniformly at random from $[n]$).

Write $\xi_i n := |X_i|$ so that $\xi_i \leq \beta$ holds. Since $G[X_i] \sim G(\xi_i n, \omega(1)/n)$, the event that an n-uniform coloring of $G[X_i]$ uses at least $\epsilon n/4$ colors from A_i occurs a.a.s. by Part (a) of Lemma 2.1 and by (5). Conditioning on this event, we randomly sparsify $G[X_i]$, as performed in the embedding argument of T_1, where in that argument we replace X_1 with X_i, A_1 with A_i, and $n/4$ with $\epsilon n/4$.

The resulting graph distribution \tilde{G}_i coincides with the uniform graph distribution, namely $G(\xi_i n, \epsilon n/4)$. Moreover, all graphs sampled according to this distribution are rainbow, with all colors used found in A_i. Owing to $\xi_i \leq \beta \ll \xi / d^2$, the inequality $\epsilon (4\xi)^{-2} \geq \max \{50\xi^{-1}, \ell_1 (d + 2, \epsilon (4\xi)^{-2})\}$ holds; this coupled with Lemma 2.4 (and aided by [29, Proposition 1.13] as above) imply that a graph sampled from \tilde{G}_i is a.a.s. in
\[\text{EXPAND}_2 := \text{EXPAND}(\xi_i n, \xi / 2, \epsilon (4\xi)^{-2}, (2d + 1)^{-1}, d + 2). \]

Fix a graph $H \sim \tilde{G}_i$ satisfying EXPAND_2 and let $H' \subseteq H$ be its effective expander. In particular, $\nu(H') \geq (1 + 3\xi / 4)\nu(T_i)$ holds.

Include each pair of $\{r, v\} : v \in V(H')$ as an edge independently at random with probability $\omega(1)/n$. Color each such edge rv uniformly at random from $[n]$. It follows by Part (b) of Lemma 2.1 that there exists an edge-set $E_r \subseteq \{rv : v \in V(H')\}$ of size $\epsilon (4\xi)^{-2} \geq (d + 2)^2$ which is rainbow and $\psi(e) \in \mathcal{R}_i$ for every $e \in E_r$. Fix such a set E_r. Lemma 2.2 then asserts that the graph $H'' := (V(H') \cup \{r\}, E(H') \cup E_r)$ is in
\[\text{EXPAND} (\nu(H''), 0, \epsilon (4\xi)^{-2}, (2d + 2)^{-1}, d + 1) \]
(that is, H'' is its own effective expander). Moreover, H'' is rainbow and $\psi(E(H'')) \cap \psi(E(\mathcal{T})) = \emptyset$.

Since $\xi_i \leq \beta \ll (\xi / d^2 \ln(\xi^{-1}))$, it follows that
\[\ell_2 (\xi / 2, d, \epsilon (4\xi)^{-2}) \geq \ell_1 (d + 1, \epsilon (4\xi)^{-2}) . \]

It thus follows, by Theorem 2.5, that a rainbow copy of T_i rooted at r exists in H''. The set of colors removed from the color-reservoir set is a subset of $\{\psi(e) : e \in E_r\}$ and thus has size at most $O(1)$.

It is now straightforward to verify that the, appropriately updated, properties (I.1) – (I.4) are satisfied, thus concluding the proof.
3 | PRESCRIBED RAINBOW SPANNING TREES IN RANDOMLY PERTURBED GRAPHS

In this section we prove Theorem 1.3. The main ingredients of our proof are Theorem 1.1, a randomness shift argument (see details below), taken from [31], which allows one to apply the randomness originating from the random perturbation to the seed, and an absorbing structure; the latter can be viewed as a rainbow variant of the one used in [27] (see also [15]).

Absorbers. Let \(H_1 \) and \(H_2 \) be edge-disjoint graphs on the same vertex-set \([n] \) and set \(H := H_1 \cup H_2 \). Let \(\psi : E(H) \to \mathbb{N} \) be an edge-coloring of \(H \). Let \(T \) be a tree with vertex-set \(V(T) = [n] \). In order to avoid confusion, throughout this section, we refer to the members of \(V(H) \) as *vertices* and to the members of \(V(T) \) as *nodes*. Let \(S \subseteq T \) be a subtree of \(T \). Let \(f : V(S) \to V(H_1) \) be an embedding of \(S \) in \(H_1 \) such that \(S := f(S) \) is \(\psi \)-rainbow. Set \(A := A(S) := \{ \psi(e) : e \in E(S) \} \) be the set of colors seen on the edges of \(S \) under \(\psi \). Let \(I := I(S) \subseteq V(S) \) be a set of nodes of \(S \) such that \(N_T(x) \subseteq V(S) \) for every \(x \in I \). The members of \(I \) are nodes of \(T \) that are completely resolved by \(f \) in the sense that their entire closed neighborhood in \(T \) is embedded in \(S \). Set \(I := f(I) \).

For two vertices \(u, v \in V(H) \), let

\[
B(u, v) := \{ x \in N_{H_2}(u) \cap I : N_S(x) \subseteq N_{H_2}(v) \}
\]

denote the set of vertices of \(I \) which are neighbors of \(u \) in \(H_2 \) and, moreover, all their neighbors in the tree \(S \) are neighbors of \(v \) in \(H_2 \). Sets of the form \(B(u, v) \) are used to extend a given rainbow embedding of a subtree of \(T \), say \(S \), into a rainbow embedding of another subtree of \(T \), namely \(\tilde{S} \), where \(S \subseteq \tilde{S} \subseteq T \). This is accomplished by absorbing (in a rainbow fashion) a vertex of \(H \setminus S \); we denote the resulting tree by \(\tilde{S} \).

The absorption of a vertex \(v \in V(H) \setminus V(S) \) is performed in the following setting. Suppose that there exist nodes \(u' \in V(S) \) and \(v' \in V(T) \setminus V(S) \) such that \(u'v' \in E(T) \); let \(u := f(u') \), and let \(x \in B(u, v) \) be a vertex for which

\[
|\{ \psi(ux) \} \cup \{ \psi(yy) : y \in N_S(x) \} \setminus A| = 1 + |N_S(x)|
\]

holds. Observe that \(x \in I \) holds by the definition of \(B(u, v) \); in particular, the node \(f^{-1}(x) \in V(S) \) is completely resolved by \(f \). In order to absorb \(v \) into \(S \) and consequently produce \(\tilde{S} \), we alter the image of \(f^{-1}(x) \) by resetting it to \(v \). This replacement is feasible since \(N_S(x) \subseteq N_{H_2}(v) \) by the definition of \(B(u, v) \). Next, we embed \(v' \), the neighbor of \(u' \) in \(T \), into \(x \); this embedding is feasible since \(ux \in E(H_2) \) by the definition of \(B(u, v) \). More concisely, define \(\tilde{f} \) to be given by

\[
\tilde{f}(z) = \begin{cases}
v, & z = f^{-1}(x), \\
x, & z = v', \\
f(z), & \text{otherwise},
\end{cases}
\]

where \(z \in V(S) \cup \{ v' \} \). Then, \(\tilde{f} \) is an embedding of the subtree of \(T \) induced by \(V(S) \cup \{ v' \} \), namely \(\tilde{S} \).

We say that \(x \) was used to absorb \(v \).

Assuming \(\tilde{S} \) is \(\psi \)-rainbow, it is seen that its extension \(\tilde{f} \), defined above, is a \(\psi \)-rainbow embedding of \(\tilde{S} \). Indeed, it follows by (6) that \(\psi(e) \neq \psi(e') \) for every two distinct edges \(e \in E(\tilde{S}) \setminus E(S) \) and \(e' \in E(\tilde{S}) \).

Randomness shift. Our proof of Theorem 1.3 commences with an application of Theorem 1.1 in order to find an embedding of a prescribed almost-spanning rainbow subtree of \(T \), say \(T' \), within the random
perturbation and colouration thereof. The randomness shift argument, described next, allows one to view this initial embedding of T' as though it were sampled uniformly amongst all copies of T' in K_n.

This, in turn, allows one to appeal to the hypergeometric distribution in order to estimate the cardinality of certain $B(u, v)$-sets (see Claim 3.1 for details) that are then used for the sake of absorption.

Let r be a positive integer, let $R \sim \mathcal{G}(n, p)$, and let $\psi : E(R) \to [r]$ be an edge-coloring of R. Suppose that a.a.s. R contains a certain edge-colored subgraph. As noted above, we may assume that this subgraph is uniformly distributed over its copies in K_n (with an appropriate edge-coloring). Indeed, R and ψ can be generated as follows. First, generate a random graph $R' \sim \mathcal{G}(n, p)$ and color its edges; denote the resulting coloring by ψ'. Next, permute the vertex-set of R' randomly; denote the resulting graph by R and the resulting edge-coloring by ψ. That is, choose a permutation $\pi \in S_n$ uniformly at random and set $R = ([n], \{\pi(u)\pi(v) : uv \in E(R')\})$ and $\psi(\pi(u)\pi(v)) = \psi'(uv)$ for every $uv \in E(R')$. The corresponding probability space coincides with $\mathcal{G}(n, p)$ with an appropriate edge-coloring; in particular $G' \subseteq R'$ is rainbow under ψ' if and only if $\pi(G') \subseteq R$ is rainbow under ψ. In this manner, the aforementioned edge-colored subgraph of R is sampled uniformly at random through π.

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let δ, d, α, and T be as in the premise of the theorem. Set

$$\varepsilon = \left(\frac{\delta}{4d}\right)^{d+1} \cdot \frac{1}{10d^2}.$$

Let T_0 be a tree on $\ell' := (1 - \varepsilon)n$ (which we assume is an integer) vertices which is obtained by successively removing leaves from T. Let $G \in \mathcal{C}_{\delta, n}$ and let $R \sim \mathcal{G}(n, \omega(1)/n)$; we may assume that the $\omega(1)$ term is sufficiently small so that a.a.s. $\Delta(R) = o(\ln n)$. Let ψ be a $[1 + \alpha n]$-uniform coloring of $G \cup R$.

It follows by Theorem 1.1 that R a.a.s. admits a ψ-rainbow copy of T_0. Fix $R \sim \mathcal{G}(n, \omega(1)/n)$ and an n-uniform coloring ψ of its edges such that $\Delta(R) = o(\ln n)$ and such that there exists an embedding $f : V(T_0) \to [n]$ for which $T_0 := f(T_0)$ is ψ-rainbow. We proceed to use the edges of $E(G) \setminus E(R)$ in order to absorb all vertices in $[n] \setminus V(T_0)$ in a series of (rainbow) absorption steps.

Owing to $\Delta(R) = o(\ln n)$, the graph $G \setminus E(R)$ is a member of $\mathcal{C}_{\delta, 9\delta, n}$. Let H_1, \ldots, H_d be spanning edge-disjoint subgraphs of $G \setminus E(R)$ such that $\delta(H_i) \geq \delta n/(2d)$ holds for every $1 \leq i \leq d$. A standard argument shows that an appropriately defined random partition of $E(G) \setminus E(R)$ into d parts yields the aforementioned decomposition a.a.s. and so, in particular, the desired graphs H_1, \ldots, H_d exist. The role of this partition is to ensure that there are edges which are needed for the absorption of a vertex, whose color has not yet been exposed. Indeed, suppose that u' is some node of T that was already embedded, and v'_1, \ldots, v'_r are its neighbors in T that were not yet embedded. Since, clearly, $r \leq d$, we will be able to ensure that when we wish to embed v'_j for some $1 \leq j \leq r$, there will be an $1 \leq i \leq d$ for which the colors of the edges of H_i that are incident with the image of u' were not previously exposed.

Let $I_0 \subseteq V(T_0)$ be a set satisfying the following properties.

\begin{align*}
\text{(Q.1)} \quad & \text{dist}_{T_0}(x, y) \geq 3 \text{ for any two distinct vertices } x, y \in I_0; \\
\text{(Q.2)} \quad & N_{T'}(x) \subseteq V(T_0) \text{ for every } x \in I_0; \\
\text{(Q.3)} \quad & |I_0| = \left\lceil \frac{n-(d+1)\alpha n}{d^2+1} \right\rceil.
\end{align*}

Such a set I_0 can be constructed via a simple greedy procedure. Let $I_0 = f(I_0)$. For every $1 \leq j \leq d$ and distinct vertices $u, v \in [n]$, set

$$B_j(u, v) := \{ x \in N_{H_j}(u) \cap I_0 : N_{T_0}(x) \subseteq N_{T_0}(v) \}.$$
We prove that a.a.s. the set $B_j(u,v)$ is large for every $j \in [d]$ and $u,v \in [n]$; this is done without exposing the colors of the edges of $G \setminus E(R)$.

Claim 3.1. Asymptotically almost surely $|B_j(u,v)| \geq \left(\frac{\delta}{4d} \right)^{d+1} \cdot \frac{n}{5d^2}$ holds for every $1 \leq j \leq d$ and every $u,v \in [n]$.

Proof. Let $u, v \in [n]$ and $k \in [d]$ be fixed. As explained in the randomness shift argument, we may assume that a random permutation $\pi : V(R) \to [n]$ maps T_0 to an isomorphic tree; in particular, the source of randomness throughout the proof of the claim is the location of T_0. Let w_1, w_2, \ldots, w_n be an ordering of $V(R)$ satisfying the following properties.

- (P.1) $V(T_0) = \{w_1, \ldots, w_n\}$;
- (P.2) for every positive integer i, if $w_i \in I_0$, then $w_{i+j} \in N_{T_0}(w_i)$ for every $1 \leq j \leq \deg_{T_0}(w_i)$;
- (P.3) for all positive integers i and j, if $w_i \in I_0 \cup N_{T_0}(I_0)$ and $w_j \notin I_0 \cup N_{T_0}(I_0)$, then $i < j$.

Owing to properties (Q.1) and (Q.2) stated above, such an ordering exists. We may assume that the images $\pi(w_1), \pi(w_2), \ldots, \pi(w_n)$ are determined (randomly) first and in this order; then the images $\pi(w_j)$ are set for every $\ell' + 1 \leq j \leq n$ in an arbitrary order.

For $i \in [\ell']$, let X_i denote the indicator random variable for the event that $\pi(w_i) \in N_{I_0}(u)$; let Y_i denote the indicator random variable for the event that $\pi(w_i) \in N_{I_0}(v)$. For every index i such that $w_i \in I_0$, set

$$Z_i := X_i \cdot \prod_{j=1}^{\deg_{T_0}(w_i)} Y_{i+j}.$$

By Property (P.2) stated above, the random variable Z_i is the indicator random variable for the event that $\pi(w_i) \in B_k(u,v)$. We may then write that $|B_k(u,v)| = \sum Z_i$, where the sum ranges over all $i \in [\ell']$ for which $w_i \in I_0$.

Let A_u (respectively, A_v) denote the event that

$$|N_{H_k}(u) \cap \{\pi(w_1), \ldots, \pi(w_{n/3})\}| \geq |N_{H_k}(u)|/2$$

(respectively, $|N_{H_k}(v) \cap \{\pi(w_1), \ldots, \pi(w_{n/3})\}| \geq |N_{H_k}(v)|/2$). The random variable $|N_{H_k}(u) \cap \{\pi(w_1), \ldots, \pi(w_{n/3})\}|$ (and its counterpart for v) is distributed hypergeometrically owing to the randomness shift argument. A straightforward application of Chernoff’s bound for the hypergeometric distribution then yields that $\Pr(A_u \cup A_v) = o(1)$. Hence, throughout the remainder of the proof we assume that $A_u \cap A_v$ holds.

Recalling that $\delta(H_k) \geq \delta n / (2d)$, we may write that

$$\Pr(Z_i = 1) \geq \frac{|N_{H_k}(u)| - \sum_{j=1}^{i-1} X_j \cdot \prod_{j=1}^{\deg_{T_0}(w_i)} Y_{i+j} \cdot n - \sum_{j=1}^{i-1} Y_j}{n} \geq \left(\frac{\delta}{4d} \right)^{d+1},$$

holds for every $i \in [n/3 - d]$ for which $w_i \in I_0$. Properties (P.2) and (P.3) imply that

$$|I_0 \cap \{w_1, \ldots, w_{n/3 - d}\}| \geq \min \left\{ \frac{|I_0| \cdot n - 3d}{3(d+1)}, \frac{n - 3d}{3(d+1)} \right\} \geq |I_0|/2,$$
holds, where the last inequality is owing to Property (Q.3) and the assumption that \(d \geq 2 \). Therefore, even though the random variables \(Z_i \), defined above, are not necessarily mutually independent, we may still write

\[
\mathbb{P} \left(|B_k(u, v)| < \left(\frac{\delta}{4d} \right)^{d+1} \cdot \frac{n}{5d^2} \right) \leq \mathbb{P} \left(\text{Bin} \left(\frac{|I_0|}{2}, \left(\frac{\delta}{4d} \right)^{d+1} \right) < \left(\frac{\delta}{4d} \right)^{d+1} \cdot \frac{n}{5d^2} \right) \leq e^{-\alpha \left(\left(\frac{\delta}{4d} \right)^{d+1} \cdot \frac{n}{5d^2} \right)},
\]

where the last inequality follows by a standard application of Chernoff’s bound.

To conclude the proof, a union bound over every \(k \in [d] \) and all pairs \(u, v \in [n] \) shows that the probability that there exist such an index \(k \) and a pair of vertices \(u, v \in [n] \) for which \(|B_k(u, v)| < \left(\frac{\delta}{4d} \right)^{d+1} \cdot \frac{n}{5d^2} \) holds, is \(o(1) \).

As mentioned above, the source of randomness underlying Claim 3.1 is the location of \(T_0 \). Fix this tree such that the assertion of Claim 3.1 holds. We proceed with the absorption argument for the leftover vertices found in \([n] \setminus V(T_0)\); let \(v_1, \ldots, v_r \) be an arbitrary enumeration of these vertices. Throughout the absorption process, a nested sequence of rainbow trees, namely \(T_0, \ldots, T_r \), in \(G \cup R \) is defined, where \(V(T_i) = V(T_0) \cup \{ v_1, \ldots, v_i \} \). This sequence of trees in \(G \cup R \) corresponds to a nested sequence \(T_0, \ldots, T_r = T \) of subtrees of \(T \) such that \(T_i \cong T_i \) for every \(0 \leq i \leq r \).

Suppose that, for some \(0 \leq i < r \), we have already defined \(T_0, \ldots, T_i \) and their respective images \(T_0, \ldots, T_i \), and now wish to define \(T_{i+1} \) by absorbing \(v_{i+1} \) in a rainbow fashion. Fix some \(u \in V(T_i) \) for which there exists a vertex \(v' \in V(T \setminus V(T_i)) \) such that \(u'v' \in E(T) \), where \(u' = f^{-1}(u) \). For every \(k \in [i] \), let \(x_k \in I_0 \) denote the vertex that was used to absorb \(v_k \) and set

\[
B_j(u, v_{i+1}) := B_j(u, v_{i+1}) \setminus \{ x_1, \ldots, x_i \},
\]

for every \(j \in [d] \). The elements of \(B_j(u, v_{i+1}) \) are the potential absorbers for \(v_{i+1} \) with respect to \(u \). In particular, \(B_{j,0}(u, v_1) = B_j(u, v_1) \). As the absorption of additional vertices proceeds, these sets diminish in size; nevertheless, this decrease may be controlled as

\[
|B_{j,i}(u, v_{i+1})| \geq |B_j(u, v_{i+1})| - i \geq \left(\frac{\delta}{4d} \right)^{d+1} \cdot \frac{n}{5d^2} - \epsilon n \geq \left(\frac{\delta}{4d} \right)^{d+1} \cdot \frac{n}{10d^2},
\]

holds for every \(0 \leq i \leq r - 1 \) and every \(j \in [d] \), by Claim 3.1 and by our choice of \(\epsilon \).

The removal of vertices that were previously used for absorption is crucial in two respects. First, absorbing vertices cannot be reused. Second, there is a need to keep track over those edges for which the random coloring \(\psi \) has been exposed. The manner by which the coloring is exposed throughout the absorption process is as follows. Let \(j^* \in [d] \) be the smallest integer \(k \in [d] \) for which the colors of the members of \(E(H_k) \setminus E(R) \) incident to \(u \) are not yet exposed. Such an index \(j^* \) exists since, as can be seen below, colors of the edges in \(E(G) \setminus E(R) \) which are incident with \(u \), are only revealed upon embedding \(u \) or one of its neighbors in the tree; moreover, either \(u \in V(T_0) \) or \(u \in V(T_s) \) for some \(s \in [i] \) and one of its neighbors is in \(V(T_{s-1}) \). For every vertex \(x \in B_{j^*,i}(u, v_{i+1}) \), expose the colors of the edges in

\[
E(H_{j^*}) \cap \{ ux \} \cup \{ yv_{i+1} : y \in N_{T_i}(x) \}.
\]

Note crucially that the colors of \(E_{H_{j^*}}(v_{i+1}, T_i) \cup E_{H_{j^*}}(u, I_0) \) were not previously exposed. In particular, \(E(H_1 \cup \ldots \cup H_d) \cap E(R) = \emptyset \) and thus the exposure of \(\psi \) along \(E(R) \) is of no consequence here.
To conclude the absorption argument and, indeed, the proof of Theorem 1.3, observe that if there exists a vertex \(x \in B'_{\psi, \omega}(u, v_{i+1}) \) such that

\[
\left| \{ \psi(ux) \} \cup \{ \psi(yv_{i+1}) : y \in N_{G}(x) \} \setminus \{ \psi(e) : e \in E(T_{i}) \} \right| = 1 + |N_{G}(x)|,
\]

then it can be used to absorb \(v_{i+1} \) as explained above. It follows by (7) that the probability that no such vertex exists is at most

\[
\left(1 - \left(\frac{\alpha}{1 + \alpha} \right)^{d+1} \right)^{|B'_{\psi, \omega}(u, v_{i+1})|} \leq e^{-\left(\frac{1}{16} \right)^{d+1} \left(\frac{1}{t} \right)^{d+1} \frac{n}{\alpha n^{2}}} = o(1/n).
\]

This holds for every \(0 \leq i \leq r - 1 \); consequently, a union bound shows that the probability that the absorption of any of \(v_{1}, \ldots, v_{r} \) fails is \(o(1) \).

\[\blacksquare \]

4 | RAINBOW SPANNING TREES IN RANDOMLY PERTURBED GRAPHS

In this section, we prove Proposition 1.5. The following two results will be used in our proof.

Lemma 4.1 ([111]). Let \(H = (V, E) \) be a graph on \(n \) vertices with minimum degree \(k > 0 \). Then, there exists a partition \(V = V_{1} \cup \ldots \cup V_{t} \) such that, for every \(i \in [t] \), the subgraph \(H[V_{i}] \) is \(k^{2}/(16n) \)-connected and \(|V_{i}| \geq k/8 \).

Theorem 4.2 ([33]). Let \(G \) be an \(n \)-vertex edge-colored graph. Then, \(G \) admits a rainbow spanning tree if and only if, for every \(2 \leq s \leq n \) and for every partition \(S \) of \(V(G) \) into \(s \) parts, there are at least \(s - 1 \) edges between the parts of \(S \), all assigned different colors.

Proof of Proposition 1.5. Let \(\Pi := V_{1} \cup \ldots \cup V_{t} \) be a partition of \(V(G) \) such that for every \(i \in [t] \) it holds that \(|V_{i}| \geq \delta n / 8 \) and \(G[V_{i}] \) is \(\delta^{2}n/16 \)-connected; such a partition exists by Lemma 4.1. Let \(G' \sim G \cup G(n, p) \), where \(p = o(n^{-2}) \). A standard argument shows that a.a.s. \(e_{G'}(V_{i}, V_{j}) \geq 2t \) holds for every \(1 \leq i < j \leq t \); for the remainder of the proof, we assume that \(G' \) satisfies this property.

Let \(\psi \) be an \((n - 1)\)-uniform coloring of \(G' \). To complete the proof of Proposition 1.5, we prove that \((G', \psi)\) a.a.s. satisfies the sufficient (and necessary) condition for the existence of a rainbow spanning tree stated in Theorem 4.2. To that end, we distinguish between the following four types of partitions \(\Pi' := U_{1} \cup \ldots \cup U_{s} \) of \(V(G') \).

Case I: Consider the case where the partition \(\Pi' \) does not refine any part of the partition \(\Pi \). That is, for every \(i \in [r] \) there exists an index \(j \in [s] \) such that \(V_{i} \subseteq U_{j} \). The probability that there exists such a partition with at most \(s - 2 \) distinct colors on the edges connecting its parts is at most

\[
\left(\frac{n - 1}{s - 2} \right) \left(\frac{s - 2}{n - 1} \right)^{2t} \leq \left(\frac{t^{3}}{n - 1} \right)^{t} = o(1).
\]

Indeed, \(s \leq t \) so that there are at most \(t' \) such partitions; moreover, for \(G' \) we have that \(\sum_{1 \leq i < j \leq s} e_{G}(U_{i}, U_{j}) \geq 2t \), as stated above.

Case II: Suppose that \(2 \leq s \leq \ln n \). Owing to Case I, we may assume that \(\Pi' \) refines some part of \(\Pi \); that is, there are indices \(k \in [r] \) and \(1 \leq i < j \leq s \) such that \(V_{k} \cap U_{i} \neq \emptyset \) and \(V_{k} \cap U_{j} \neq \emptyset \). Since \(G[V_{k}] \) is \(\delta^{2}n/16 \)-connected and the partition \(\Pi' \) refines \(V_{k} \), it follows...
that \(\sum_{1 \leq i < j \leq s} e_{G'}(U_i, U_j) \geq \delta^2 n/16 \). Therefore, the probability that there exists such a partition with at most \(s - 2 \) distinct colors on the edges connecting its parts is at most

\[
\sum_{s=2}^{\ln n} s^n \left(\frac{n-1}{s-2} \right) \delta^{2n/16} \leq \sum_{s=2}^{\ln n} e^{n \ln s + \ln n - \frac{\delta^2 n}{16} \ln \left(\frac{2s}{s-2} \right)} = o(1).
\]

Case III: Suppose, next, that \(\ln n \leq s \leq n - 20\delta^{-1} \ln n \). For \(i \in [s] \), the part \(U_i \) is said to be small if \(|U_i| \leq \delta n/2 \) and large otherwise; clearly there are at most \(2/\delta \) large parts. This simple observation and the assumption that \(s \geq \ln n \) jointly imply that there are at least \(s/2 \) small parts. Assume, without loss of generality, that \(U_1, \ldots, U_{s/2} \) are all small. For \(i \in [s/2] \), let \(u_i \in U_i \) be an arbitrary vertex. Note that

\[
\deg_{G'}(u_i, V(G') \setminus U_i) \geq \deg_{G}(u_i, V(G') \setminus U_i) \geq \delta(G) - |U_i| \geq \delta n/2,
\]

holds for every \(i \in [s/2] \). Hence,

\[
\sum_{1 \leq i < j \leq s/2} e_{G'}(U_i, U_j) \geq s \cdot \frac{\delta n}{2} \cdot \frac{1}{2} = \delta ns/8.
\]

Therefore, the probability that there exists such a partition with at most \(s - 2 \) distinct colors on the edges connecting its parts is at most

\[
\sum_{s=\ln n}^{n-20\delta^{-1} \ln n} s^n \left(\frac{n-1}{s-2} \right) \frac{\delta ns/8}{\delta^{2n/16}} \leq \sum_{s=\ln n}^{n-20\delta^{-1} \ln n} e^{n \ln s + \ln n - \frac{\delta n}{8} \ln \left(\frac{2s}{s-2} \right)} = o(1),
\]

where the equality holds by the assumed upper bound on \(s \) and the known fact that \(\ln(1 + x) \approx x \) whenever \(x \) tends to 0.

Case IV: Suppose, lastly, that \(n - 20\delta^{-1} \ln n \leq s \leq n \). The same argument as in Case III shows that

\[
\sum_{1 \leq i < j \leq s} e_{G'}(U_i, U_j) \geq \delta ns/8.
\]

Moreover, the assumed lower bound on \(s \) implies that the number of parts whose size is at least 2 is at most \(20\delta^{-1} \ln n \) and that the total number of vertices in these parts is at most \(40\delta^{-1} \ln n \). Therefore, for any \(n - 20\delta^{-1} \ln n \leq s \leq n \), the number of partitions \(\Pi' = U_1 \cup \ldots \cup U_s \) is at most

\[
\left(\frac{n}{40\delta^{-1} \ln n} \right)^{40\delta^{-1} \ln n} \leq \left(\frac{en}{40\delta^{-1} \ln n} \cdot 40\delta^{-1} \ln n \right)^{40\delta^{-1} \ln n} \leq n^{50\delta^{-1} \ln n}.
\]

We conclude that the probability that there exists such a partition with at most \(s - 2 \) distinct colors on the edges connecting its parts is at most

\[
\sum_{s=n-20\delta^{-1} \ln n}^{n} n^{50\delta^{-1} \ln n} \left(\frac{n-1}{s-2} \right) \left(\frac{s-2}{n-1} \right)^{\delta ns/8} \leq \sum_{s=n-20\delta^{-1} \ln n}^{n} e^{100\delta^{-1} \ln n} \cdot \frac{e^{50\delta^{-1} \ln n}}{\delta^{-1} \ln n} \left(\frac{s-2}{n-1} \right) = o(1),
\]
where the inequality holds by the assumed lower bound on s and the equality holds by the assumed upper bound on s and the known fact that $\ln(1 + x) \approx x$ whenever x tends to 0.

\section*{Acknowledgment}
We thank Joshua Erde for drawing our attention to several known results that are related to Proposition 1.5 and the anonymous referee for helpful comments.

\section*{References}
1. E. Aigner-Horev and D. Hefetz, \textit{Rainbow Hamilton cycles in randomly coloured randomly perturbed dense graphs}, SIAM J. Discrete Math. \textbf{35} (2021), no. 3, 1569–1577.
2. M. Ajtai, J. Komlós, and E. Szemerédi, \textit{The longest path in a random graph}, Combinatorica \textbf{1} (1981), 1–12.
3. N. Alon, M. Krivelevich, and B. Sudakov, \textit{Embedding nearly-spanning bounded degree trees}, Combinatorica \textbf{27} (2007), no. 6, 629–644.
4. M. Anastos and A. Frieze, \textit{How many randomly colored edges make a randomly colored dense graph rainbow Hamiltonian or rainbow connected?} J. Graph Theory \textbf{92} (2019), 405–414.
5. S. Antoniu, A. Dudek, C. Reiher, A. Ruciński, and M. Schacht, \textit{High powers of Hamiltonian cycles in randomly augmented graphs}, J. Graph Theory \textbf{98} (2021), no. 2, 255–284.
6. D. Bal, P. Bennett, A. Frieze, and P. Prałat, \textit{Power of K choices and rainbow spanning trees in random graphs}, Electron. J. Comb. \textbf{22} (2015), no. 1, Paper 1.29
7. D. Bal and A. Frieze, \textit{Rainbow matchings and Hamilton cycles in random graphs}, Random Struct. Algorithms \textbf{48} (2016), 503–523.
8. J. Balogh, B. Csaba, M. Pei, and W. Samotij, \textit{Large bounded degree trees in expanding graphs}, Electron. J. Comb. \textbf{17} (2010), no. 1, Research Paper 6
9. J. Balogh, A. Treglown, and A. Z. Wagner, \textit{Tilings in randomly perturbed dense graphs}, Comb. Probab. Comput. \textbf{28} (2019), no. 2, 159–176.
10. W. Bedenknecht, J. Han, Y. Kohayakawa, and G. Mota, \textit{Powers of tight Hamilton cycles in randomly perturbed hypergraphs}, Random Struct. Algorithms \textbf{55} (2019), no. 4, 795–807.
11. T. Bohman, A. Frieze, M. Krivelevich, and R. Martin, \textit{Adding random edges to dense graphs}, Random Struct. Algorithms \textbf{24} (2004), no. 2, 105–117.
12. T. Bohman, A. Frieze, and R. Martin, \textit{How many random edges make a dense graph Hamiltonian?} Random Struct. Algorithms \textbf{22} (2003), no. 1, 33–42.
13. B. Bollobás, \textit{Long paths in sparse random graphs}, Combinatorica \textbf{2} (1982), no. 3, 223–228.
14. J. Böttcher, J. Han, Y. Kohayakawa, R. Montgomery, O. Parczyk, and Y. Person, \textit{Universality for bounded degree spanning trees in randomly perturbed graphs}, Random Struct. Algorithms \textbf{55} (2019), no. 4, 854–864.
15. J. Böttcher, R. Montgomery, O. Parczyk, and Y. Person, \textit{Embedding bounded degree graphs in randomly perturbed graphs}, Combin. Probab. Comput. \textbf{28} (2019), no. 2, 159–176.
16. W. Fernandez de la Vega, \textit{Long paths in random graphs}, Studia Sci. Math. Hungar. \textbf{14} (1979), 319–330.
17. W. Fernandez de la Vega, \textit{Trees in sparse random graphs}, J. Comb. Theory. Ser. B \textbf{45} (1988), no. 1, 77–85.
18. A. Dudek, C. Reiher, A. Ruciński, and M. Schacht, \textit{Powers of Hamiltonian cycles in randomly augmented graphs}, Random Struct. Algorithms \textbf{56} (2020), no. 1, 122–141.
19. P. Erdős, \textit{Problems and results on finite and infinite graphs}, \textit{Recent advances in graph theory}, Proc. 2nd Czechoslovak Sympos. Prague, 1974), 1975, pp. 183–192. (loose errata).
20. A. Espuny Díaz, \textit{Hamiltonicity of graphs perturbed by a random geometric graph}, 2021, arXiv:2102.03231.
21. A. Frieze and M. Krivelevich, \textit{"Rainbow Hamilton cycles in random graphs and hypergraphs}, Electron. J. Comb. \textbf{21} (2015), no. 2, Paper 1.61.
22. A. Frieze and B. D. McKay, \textit{Multicolored trees in random graphs}, Proc. 5th Int. Seminar Random Graphs Probab. Methods Comb. Comput. Sci. (Poznań, 1991), vol. 5, 1994, pp. 45–56.
27. M. Hahn-Klimroth, G. S. Maesaka, Y. Mogge, S. Mohr, and O. Parczyk, Random perturbation of sparse graphs, Electron. J. Comb. 28 (2021), no. 2, Paper No. 2.26
28. J. Han and Y. Zhao, Hamiltonicity in randomly perturbed hypergraphs, J. Comb. Theory Ser. B 144 (2020), 14–31.
29. S. Janson, T. Łuczak, and A. Rucinski, Random graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience, New York, 2000.
30. M. Krivelevich, M. Kwan, and B. Sudakov, Cycles and matchings in randomly perturbed digraphs and hypergraphs, Comb. Probab. Comput. 25 (2016), no. 6, 909–927.
31. M. Krivelevich, M. Kwan, and B. Sudakov, Bounded-degree spanning trees in randomly perturbed graphs, SIAM J. Discrete Math. 31 (2017), no. 1, 155–171.
32. A. McDowell and R. Mycroft, Hamilton ℓ-cycles in randomly perturbed hypergraphs, Electron. J. Comb. 25 (2018), no. 4, Paper 4.36, 30.
33. K. Suzuki, A necessary and sufficient condition for the existence of a heterochromatic spanning tree in a graph, Graphs Comb. 22 (2006), 261–269.

How to cite this article: E. Aigner-Horev, D. Hefetz, and A. Lahiri, Rainbow trees in uniformly edge-colored graphs, Random Struct. Alg. 62 (2023), 287–303. https://doi.org/10.1002/rsa.21103

APPENDIX A: PROOF OF LEMMA 2.4

Lemma 2.4 is implied by the following result. Our proof of this result is that of [3, lemma 3.1] with the necessary modifications to some of the constants, made in order to facilitate the slightly larger range of values of η seen in Lemma 2.4.

Lemma A.1. For every $0 < \theta < 1/2$, $C \geq 50/\theta$, integer $r \geq 3$, real $0 < \eta \leq 1/(r + 2)$, and integer $k \geq 2e^4r$, the random graph $G \sim G(n, 4C/n)$ a.a.s. has an induced subgraph H satisfying the following properties.

(A.1) $\nu(H) \geq (1 - \theta)n$.
(A.2) $C \leq \delta(H) \leq \Delta(H) \leq 10C$.
(A.3) Every induced subgraph $H' \subseteq H$ with $\delta(H') \geq kr \ln(C)$ is an (η, r)-expander.

Remark. Property (A.3) could be meaningless if no induced subgraph of H has minimum degree at least $kr \ln(C)$.

Proof. The existence of an induced subgraph H of $G \sim G(n, 4C/n)$ satisfying properties (A.1) and (A.2) is ensured by the arguments seen in [3, proof of lemma 3.1] (hence, we do not repeat them here). It is in this part of the proof found in [3] that the condition $C \geq 50/\theta$, seen in the premise of the lemma, is used. Our arguments below pertain solely to the expansion properties of H, as stated in Property (A.3). Throughout these arguments, no additional constraints are imposed on C.

Let E denote the event that there exists a subset $U \subseteq [n]$ such that $\delta(H[U]) \geq kr \ln(C)$ and yet $H[U]$ is not an (η, r)-expander. Our aim is to prove that $\mathbb{P}[E] = o(1)$. In order to do so, we first define the following auxiliary events.

A_ℓ: there exist disjoint vertex-sets X and Y satisfying $|X| = t$ and $|Y| = rt$ such that $e_G(X \cup Y) \geq \ell t$, where $\ell := kr \ln(C)/2$.

B_t: there exist disjoint vertex-sets X and Z satisfying $|X| = t$ and $|Z| = t$ such that $e_G(X, Z) = 0$.

Observe that if \(E \) occurs, that is, if there exists a set \(U \subseteq \{n\} \) such that \(\delta(H[U]) \geq kr \ln(C) \) and yet \(H[U] \) is not an \((\eta, r)\)-expander, then there exists a set \(X \subseteq U \) of size \(t \) for some \(1 \leq t \leq \eta|U| \leq \eta n \) such that \(|\Gamma_G(U)(X)| < rt \) (the latter inequality holds since \(H \) is an induced subgraph of \(G \)). Since \(\delta(H[U]) \geq kr \ln(C) \) by assumption, it follows that \(e_G(X \cup \Gamma_G(U)(X)) \geq ikr \ln(C)/2 \), which is precisely the event \(A_t \). Similarly, \(e_G(X, U \setminus (X \cup \Gamma_G(U)(X))) = 0 \) and \[|U| - |X| - |\Gamma_G(U)(X)| \geq |U| - \eta|U| - rt \geq (1 - \eta) \frac{t}{\eta} - rt = (1/\eta - 1 - r) t \geq t, \]

where the last inequality holds since \(\eta \leq 1/(r + 2) \); this is precisely the event \(B_t \). We conclude that

\[
P[E] \leq \sum_{i=1}^{\gamma n} P[A_i, \wedge B_i] \leq \sum_{i=1}^{\gamma n} P[A_i] + \sum_{i=\gamma n}^{\eta n} P[B_i],
\]

where \(\gamma := \ln(C)/C \).

It is therefore sufficient to prove that \(\sum_{i=1}^{\gamma n} P[A_i] = o(1) \) and that \(\sum_{i=\gamma n}^{\eta n} P[B_i] = o(1) \). Starting with the former, note that

\[
P[A_i] \leq \binom{n}{t} \binom{n}{rt} \left(\frac{t + rt}{\ell t} \right)^2 \left(\frac{4C}{n} \right)^{\ell t}
\]

\[
\leq \left(\frac{en}{t} \left(\frac{en}{rt} \right)^r \left(\frac{e^4rt}{k \ln(C)} \right)^\ell \left(\frac{C}{n} \right)^\ell \right)^t
\]

\[
\leq \left(\exp(-\ell / 4) \left(\frac{n}{t} \right)^{r+1} \left(\frac{Ct}{n \ln(C)} \right)^\ell \right)^t
\]

\[
= \left(C^{-kr/8} \left(\frac{n}{t} \right)^{r+1} \left(\frac{t}{\gamma n} \right)^\ell \right)^t,
\]

where the penultimate inequality holds since \((e/r)^r < 1 \) holds by our assumption \(r \geq 3 \), and \(\ln(e^4r/k) < -1/2 \) holds by our assumption \(k \geq 2e^4r \). Since \(n^{r+1-\ell r} = o(n^{-1}) \) holds for every \(1 \leq t \leq 2 \ln n \), it follows that \(\sum_{i=1}^{2 \ln n} P[A_i] = o(1) \). Moreover, for every \(1 \leq t \leq \gamma n \), we have

\[
C^{-kr/8} \left(\frac{n}{t} \right)^{r+1} \left(\frac{t}{\gamma n} \right)^\ell \leq C^{-kr/8+r+1} \leq e^{-1}.
\]

Hence, \(P[A_i] \leq e^{-2 \ln n} = o(n^{-1}) \), whenever \(2 \ln n \leq t \leq \gamma n \); consequently, \(\sum_{i=\gamma n}^{\eta n} P[A_i] = o(1) \). We conclude that \(\sum_{i=\gamma n}^{\eta n} P[A_i] = o(1) \) holds, as required.

We proceed to proving that \(\sum_{i=\gamma n}^{\eta n} P[B_i] = o(1) \). For every \(\gamma n \leq t \leq \eta n \), it holds that

\[
P[B_i] \leq \left(\frac{n}{t} \right)^2 \left(1 - \frac{4C}{n} \right)^{\ell t} \leq \left(\frac{en}{t} \right)^2 \exp(-4Ct/n)^t
\]

\[
\leq \left(\frac{eC}{\ln(C)} \right)^2 C^{-4} \leq C^{-2t} = o(n^{-1}).
\]

Hence, \(\sum_{i=\gamma n}^{\eta n} P[B_i] = o(1) \); concluding the proof.