Measurements of the absolute branching fractions and CP asymmetries for $D^+ \rightarrow K^0_{SL}K^+(\pi^0)$
8 COMSATS Institute of Information Technology, Lahore, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
9 G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
10 GSI Helmholtz Centre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
11 Guangxi Normal University, Guilin 541004, People’s Republic of China
12 Guangxi University, Nanning 530004, People’s Republic of China
13 Hangzhou Normal University, Hangzhou 310007, People’s Republic of China
14 Helmholtz Institute Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
15 Henan Normal University, Xinxiang 453007, People’s Republic of China
16 Henan University of Science and Technology, Luoyang 471003, People’s Republic of China
17 Huangshan College, Huangshan 245000, People’s Republic of China
18 Hunan University, Changsha 410082, People’s Republic of China
19 Indiana University, Bloomington, Indiana 47405, USA
20 (A)INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy; (B)INFN and University of Perugia, I-06100, Perugia, Italy
21 (A)INFN Sezione di Ferrara, I-44122, Ferrara, Italy; (B)University of Ferrara, I-44122, Ferrara, Italy
22 Institute of Physics and Technology, Peace Ave. 54B, Ulaanbaatar 13330, Mongolia
23 Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
24 Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
25 Justus-Liebig-Universität Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
26 KVI-CART, University of Groningen, NL-9747 AA Groningen, The Netherlands
27 Lanzhou University, Lanzhou 730000, People’s Republic of China
28 Liaoning University, Shenyang 120004, People’s Republic of China
29 Nanjing Normal University, Nanjing 210023, People’s Republic of China
30 Nanjing University, Nanjing 210093, People’s Republic of China
31 Nankai University, Tianjin 300071, People’s Republic of China
32 Peking University, Beijing 100871, People’s Republic of China
33 Seoul National University, Seoul, 151-747 Korea
34 Shandong University, Jinan 250100, People’s Republic of China
35 Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
36 Shanxi University, Taiyuan 030006, People’s Republic of China
37 Sichuan University, Chengdu 610064, People’s Republic of China
38 Soochow University, Suzhou 215006, People’s Republic of China
39 State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People’s Republic of China
40 Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
41 Tsinghua University, Beijing 100084, People’s Republic of China
42 (A)Ankara University, 06100 Tandogan, Ankara, Turkey; (B)Istanbul Bilgi University, 34060 Eyup, Istanbul, Turkey;
43 (C)Uludag University, 16059 Bursa, Turkey; (D)Near East University, Nicosia, North Cyprus, Mersin 10, Turkey
44 University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
45 University of Hawaii, Honolulu, Hawaii 96822, USA
46 University of Science and Technology Liaoning, Anshan 116004, People’s Republic of China
47 University of Science and Technology of China, Hefei 230026, People’s Republic of China
48 University of South China, Hengyang 421001, People’s Republic of China
49 University of the Punjab, Lahore-54590, Pakistan
50 (A)University of Turin, I-10125, Turin, Italy; (B)University of Eastern Piedmont, I-15121, Alessandria, Italy; (C)INFN, I-10125, Turin, Italy
51 Uppsala University, Box 516, SE-75120 Uppsala, Sweden
52 Wuhan University, Wuhan 430072, People’s Republic of China
53 Zhejiang University, Hangzhou 310027, People’s Republic of China
54 Zhengzhou University, Zhengzhou 450001, People’s Republic of China
55 Also at Bogazici University, 34468 Istanbul, Turkey
56 Also at the Moscow Institute of Physics and Technology, Moscow 117991, Russia
57 Also at the Functional Electronics Laboratory, Tomsk State University, Tomsk, 634050, Russia
58 Also at the Novosibirsk State University, Novosibirsk, 630090, Russia
59 Also at the NRC “Kurchatov Institute”, PNPI, 188300, Gatchina, Russia
60 Also at Istanbul Arel University, 34349 Istanbul, Turkey
61 Also at Goethe University Frankfurt, 60323 Frankfurt am Main, Germany
62 Also at Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology; Institute of Nuclear and Particle Physics, Shanghai 200240, People’s Republic of China
63 Currently at: Center for Underground Physics, Institute for Basic Science, Daejeon 34126, Korea
Using e^+e^- collision data corresponding to an integrated luminosity of 2.93 fb$^{-1}$ taken at a center-of-mass energy of 3.773 GeV with the BESIII detector, we determine the absolute branching fractions

\[B(D^+ \rightarrow K^0_S K^+) = (3.62 \pm 0.09 \pm 0.08) \times 10^{-3}, \]
\[B(D^0 \rightarrow K^0_S K^+ \pi^0) = (5.07 \pm 0.19 \pm 0.23) \times 10^{-3}, \]
\[B(D^+ \rightarrow K^0_L K^+) = (3.21 \pm 0.11 \pm 0.11) \times 10^{-3}, \]
\[B(D^+ \rightarrow K^0_L K^+ \pi^0) = (5.24 \pm 0.22 \pm 0.22) \times 10^{-3}, \]

where the first and second uncertainties are statistical and systematic, respectively. The branching fraction $B(D^+ \rightarrow K^0_L K^+)$ is consistent with the world average value and the other three branching fractions are measured for the first time. We also measure the CP asymmetries for the four decays and do not find a significant deviation from zero.

PACS numbers: 13.25.Ft, 11.30.Er

\section{I. INTRODUCTION}

Experimental studies of hadronic decays of charm mesons shed light on the interplay between the strong and weak forces. In the standard model (SM), the singly Cabibbo-suppressed (SCS) D^\pm meson hadronic decays are predicted to exhibit CP asymmetries of the order of 10^{-3} [1]. Direct CP violation in SCS D^\pm meson decays can arise from the interference between tree-level and penguin decay processes [2]. However, the doubly Cabibbo-suppressed and Cabibbo-favored D^\pm meson decays are expected to be CP invariant because they are dominated by a single weak amplitude. Consequently, any observation of CP asymmetry greater than $\mathcal{O}(10^{-3})$ in the SCS D^\pm meson hadronic decays would be evidence for new physics beyond the SM [3]. In theory, the branching fractions of two-body hadronic decays of D mesons can be calculated within SU(3) flavor symmetry [4]. An improved measurement of the branching fraction of the SCS decay $D^+ \rightarrow K^0_L K^+$ will help to test the theoretical calculations and benefit the understanding of the violation of SU(3) flavor symmetry in D meson decays [4]. In this paper, we present measurements of the absolute branching fractions and the direct CP asymmetries of the SCS decays of $D^+ \rightarrow K^0_S K^+, K^0_L K^+ \pi^0$, $K^0_L K^+$ and $K^0_L K^+ \pi^0$.

In this analysis, we employ the “double-tag” (DT) technique, which was first developed by the MARK-III Collaboration [5, 6], to measure the absolute branching fractions. First, we select “single-tag” (ST) events in which either a D or \bar{D} meson is fully reconstructed in one of several specific hadronic decays. Then we look for the D meson decays of interest in the presence of the ST D events; the so-called the DT events in which both the D and \bar{D} mesons are fully reconstructed. The ST and DT yields (N_{ST} and N_{DT}) can be described by

\[N_{ST} = 2N_{D^+ \bar{D}^-} B_{\text{tag}} \epsilon_{ST}, \]
\[N_{DT} = 2N_{D^+ \bar{D}^-} B_{\text{tag}} B_{\text{sig}} \epsilon_{DT}, \]

where $N_{D^+ \bar{D}^-}$ is the total number of $D^+ D^-$ pairs produced in data, ϵ_{ST} and ϵ_{DT} are the efficiencies of reconstructing the ST and DT candidate events, and B_{tag} and B_{sig} are the branching fractions for the tag mode and the signal mode, respectively. The absolute branching fraction for the signal decay can be determined by

\[B_{\text{sig}} = \frac{N_{DT}/\epsilon_{DT}}{N_{ST}/\epsilon_{ST}} = \frac{N_{DT}/\epsilon}{N_{ST}}, \]

where $\epsilon = \epsilon_{DT}/\epsilon_{ST}$ is the efficiency of finding a signal candidate in the presence of a ST \bar{D}, which can be obtained from MC simulations. With the measured absolute branching fractions of D^+ and D^- meson decays (B_{sig}^+ and B_{sig}^-), the CP asymmetry for the decay of interest can be determined by

\[A_{CP} = \frac{B_{\text{sig}}^+ - B_{\text{sig}}^-}{B_{\text{sig}}^+ + B_{\text{sig}}^-}. \]

\section{II. THE BESIII DETECTOR AND DATA SAMPLE}

The analysis presented in this paper is based on a data sample with an integrated luminosity of 2.93 fb$^{-1}$ [7] collected with the BESIII detector [8] at the center-of-mass (c.m.) energy of $\sqrt{s} = 3.773$ GeV. The BESIII detector is a general-purpose detector at the BEPCII [9] with double storage rings. The detector has a geometrical acceptance of 93% of the full solid angle. We briefly describe the components of BESIII from the interaction point (IP) outward. A small-cell multi-layer drift chamber (MDC), using a helium-based gas to measure momenta and specific ionization of charged particles, is surrounded by a 1.0 T magnetic field parallel to the beam direction. Finally, a multilayer resistive plate counter system installed in the iron flux return yoke of the magnet is used to track muons. The momentum resolution for charged tracks in the MDC is 0.5% for a transverse momentum of 1 GeV/c. The specific energy loss (dE/dx) measured in the MDC has a resolution better than 6%. The TOF can
measure the flight time of charged particles with a time resolution of 80 ps in the barrel and 110 ps in the end caps. The energy resolution for the EMC is 2.5% in the barrel and 5.0% in the end caps for photons and electrons with an energy of 1 GeV. The position resolution of the EMC is 6 mm in the barrel and 9 mm in the end caps. More details on the features and capabilities of BESIII can be found elsewhere [8].

A GEANT4-based [10] Monte Carlo (MC) simulation software package, which includes the geometric description of the detector and its response, is used to determine the detector efficiency and to estimate potential backgrounds. An inclusive MC sample, which includes the D^0D^0, D^+D^-, and non-$D\overline{D}$ decays of $\psi(3770)$, the initial state radiation (ISR) production of $\psi(3686)$ and J/ψ, the $q\bar{q}$ ($q = u, d, s$) continuum process, Bhabha scattering events, and di-meson and di-tau events, is produced at $\sqrt{s} = 3.773$ GeV. The KKMC [11] package, which incorporates the beam energy spread and the ISR effects (radiative corrections up to next to leading order), is used to generate the $\psi(3770)$ meson. Final state radiation of charged tracks is simulated with the PHOTOS package [12]. $\psi(3770) \to D\overline{D}$ events are generated using EVTGEN [13, 14], and each D meson is allowed to decay according to the branching fractions in the Particle Data Group (PDG) [15]. This sample is referred as the “generic” MC sample. Another MC sample of $\psi(3770) \to D\overline{D}$ events, in which one D meson decays to the signal mode and the other one decays to any of the ST modes, is referred as the “signal” MC sample. In both the generic and signal MC samples, the two-body decays $D^+ \to K_{S,L}^0K^+$ are generated with a phase space model, while the three-body decays $D^+ \to K_{S,L}^0K^0\pi^0$ are generated as a mixture of known intermediate decays with fractions taken from the Dalitz plot analysis of their charge conjugated decay $D^+ \to K^+K^0\pi^+$ [16].

III. DATA ANALYSIS

The ST D^{\mp} mesons are reconstructed using six hadronic final states: $K^\pm\pi^\mp\pi^\pm$, $K^\pm\pi^\mp\pi^0\pi^0$, $K_S^0\pi^\mp\pi^0$, $K_{S,L}^0\pi^\mp\pi^0\pi^0$, $K_S^0\pi^\mp\pi^0\pi^\pm$, and $K^\mpK^\pm\pi^0$. Two variables are used to identify ST D mesons: the energy difference ΔE and the beam-energy constrained mass M_{BC}, which are defined as

$$\Delta E \equiv E_D - E_{beam},$$

$$M_{BC} \equiv \sqrt{E_{beam}^2 - |\vec{p}_D|^2}.$$

Here, \vec{p}_D and E_D are the reconstructed momentum and energy of the D candidate in the e^+e^- c.m. system, and E_{beam} is the beam energy. Signal events are expected to peak around zero in the ΔE distribution and around the nominal D mass in the M_{BC} distribution. In the case of multiple candidates in one event, the one with the smallest $|\Delta E|$ is chosen. Tag mode-dependent ΔE requirements as used in Ref. [17] are imposed on the accepted ST candidate events, as summarized in Table I.

To obtain the ST yield for each tag mode in data, a binned maximum likelihood fit is performed on the M_{BC} distribution, where the signal of D meson is described by a MC-simulated shape and the background is modeled by an ARGUS function [18]. The MC-simulated shape is convolved with a Gaussian function with free parameters to take into account the resolution difference between data and MC simulation. Figures 1 and 2 illustrate the resulting fits to the M_{BC} distributions for ST D^+ and D^- candidate events in data, respectively. The fitted ST
FIG. 1. (Color online) Fits to the M_{BC} distributions of ST D^+ candidate events. The points with error bars are data, the green dashed curves show the fitted backgrounds, and the blue solid curves show the total fit curve.

FIG. 2. (Color online) Fits to the M_{BC} distributions of ST D^- candidate events. The points with error bars are data, the green dashed curves show the fitted backgrounds, and the blue solid curves show the total fit curve.
TABLE I. ΔE requirements and ST yields in data (N_{ST}), where the uncertainties are statistical only.

ST mode \rightarrow	ΔE (GeV)	N_{ST} (D^+)	N_{ST} (D^-)
$D^\pm \rightarrow K^\pm \pi^\pm \pi^\mp$	$(-0.030, 0.030)$	412416 ± 687	414410 ± 690
$D^\pm \rightarrow K^\pm \pi^\mp \pi^\mp \pi^\mp$	$(-0.052, 0.039)$	114910 ± 474	118246 ± 479
$D^\pm \rightarrow K^0_S \pi^\mp \pi^\mp \pi^\mp$	$(-0.032, 0.032)$	48220 ± 229	47938 ± 229
$D^\pm \rightarrow K^0_S \pi^\mp \pi^\mp \pi^\mp$	$(-0.057, 0.040)$	98907 ± 385	99169 ± 384
$D^\pm \rightarrow K^0_S \pi^\mp \pi^\mp \pi^\mp$	$(-0.034, 0.034)$	57386 ± 307	57090 ± 305
$D^\pm \rightarrow K^0_S \pi^\mp \pi^\mp \pi^\mp$	$(-0.030, 0.030)$	35706 ± 253	35377 ± 253

yields of data are presented in Table I, too.

B. DT yields

On the recoiling side against the ST D^\pm mesons, the hadronic decays of $D^\pm \rightarrow K^0_S L^\pm L^\mp (\pi^\mp)$ are selected using the remaining tracks and neutral clusters. The charged kaon is required to have the same charge as the signal D meson candidate. To suppress backgrounds, no extra good charged track is allowed in the DT candidate events. The signal D^\pm candidates are also identified with the energy difference and the beam energy constrained mass. In the following, the energy difference and the beam-energy constrained mass of the particle combination for the ST/signal side are denoted as $\Delta E^{\text{tag}}/\text{signal}$ and $M^{\text{tag}}/\text{signal}$, respectively. In each event, if there are multiple signal candidates for $D^\pm \rightarrow K^0_S L^\pm L^\mp (\pi^\mp)$, the one with the smallest $|\Delta E^{\text{tag}}|$ is selected. The ΔE^{tag} is required to be within $(-0.031, 0.031)$ GeV and $(-0.057, 0.040)$ GeV for $D^\pm \rightarrow K^0_S L^\pm L^\mp$ and $D^\pm \rightarrow K^0_S L^\pm L^\mp (\pi^\mp)$, respectively.

Due to its long lifetime, very few K^0_L decay in the MDC. However, most K^0_L will interact in the material of the EMC, which gives their position but no reliable measurement of their energy. Thus, to select the candidates of $D^\pm \rightarrow K^0_L L^\pm L^\mp (\pi^\mp)$, the momentum direction of the K^0_L particle is inferred by the position of a shower in the EMC, and a kinematic fit imposing signal and energy conservation for the observed particles and a missing K^0_L particle is performed to select the signal, where the K^0_L particle is of known mass and momentum direction, but of unknown momentum magnitude. The kinematic fit individually for all shower candidates in the EMC that are not used in the ST side and do not form a π^0 candidate with any other shower candidate with invariant mass within $(0.110, 0.155)$ GeV/c^2 [17]. The candidate with the minimal chi-square of the kinematic fit ($x^2_{K^0_L}$) is selected. To minimize the correlation between M^{tag} and M^{sig}, the momentum of the K^0_L candidate is not taken from the kinematic fit, but inferred by constraining ΔE^{tag} to be zero. In order to suppress backgrounds due to cluster candidates produced mainly from electronics noise, the energy of the K^0_L shower in the EMC is required to be greater than 0.1 GeV. Finally, DT candidate events are imposed with the optimized, and ST and signal mode dependent $x^2_{K^0_L}$ requirements, as summarized in Table II.

TABLE II. Requirements on $x^2_{K^0_L}$ for DT signal events.

ST mode \rightarrow	$D^\pm \rightarrow K^0_S L^\pm L^\mp (\pi^\mp)$	$D^\pm \rightarrow K^0_S L^\pm L^\mp (\pi^\mp)$
$D^\pm \rightarrow K^0_S L^\pm L^\mp (\pi^\mp)$	80	80
$D^\pm \rightarrow K^0_S L^\pm L^\mp (\pi^\mp)$	50	40
$D^\pm \rightarrow K^0_S L^\pm L^\mp (\pi^\mp)$	80	50
$D^\pm \rightarrow K^0_S L^\pm L^\mp (\pi^\mp)$	40	25
$D^\pm \rightarrow K^0_S L^\pm L^\mp (\pi^\mp)$	40	30
$D^\pm \rightarrow K^0_S L^\pm L^\mp (\pi^\mp)$	40	40

Figure 3 illustrates the distribution of M^{tag}_{BC} versus M^{sig}_{BC} for the DT candidate events of $D^+ \rightarrow K^0_S L^+ L^-$, summed over the six ST modes. Candidate signal events concentrate around the intersection of $M^{\text{tag}}_{BC} = M^{\text{sig}}_{BC} = M_{D^+}$, where M_{D^+} is the nominal D^+ mass [15]. Candidate events with one correctly reconstructed and one incorrectly reconstructed D meson are spread along the vertical band with $M^{\text{sig}}_{BC} = M_{D^+}$ or horizontal band with $M^{\text{tag}}_{BC} = M_{D^+}$, respectively (named BKGI thereafter). Other candidate events, smeared along the diagonal, are mainly from the continuum process $e^+ e^- \rightarrow q\bar{q}$ (named BKGIW thereafter). To determine the DT signal yield, we perform an unbinned two-dimensional (2D) maximum likelihood fit on the distribution of M^{tag}_{BC} versus M^{sig}_{BC} of the selected events. In the fit, the probability density functions for the signal, BKGI and BKGII components are constructed as follows:

- Signal: $a(x, y) \otimes g(x; x_0, \sigma_x) \otimes g(y; y_0, \sigma_y)$,
- BKGI: $b(x, y)$,
- BKGII: $c(\sqrt{x + y}/\sqrt{2}; x_0, \xi, \rho) \cdot (G \cdot (x - y)/\sqrt{2}; z, \sigma_z) + (1 - G) \cdot g((x - y)/\sqrt{2}; z, \sigma_z))$,

where $x(y)$ denotes $M^{\text{tag}}_{BC}(x(y))$. The signal is described with a MC-simulated shape $a(x, y)$ convolved with two independent Gaussian functions $g(x; x_0, \sigma_x)$ and $g(y; y_0, \sigma_y)$ representing the resolution difference between data and MC simulation in the variables M^{tag}_{BC} and M^{sig}_{BC}, respectively. The parameters of the Gaussian functions $x_0, \sigma_x, y_0, \sigma_y$ are determined by performing 1D fits on the M^{tag}_{BC} and M^{sig}_{BC} distributions of data, individually. The shape of BKGI $b(x, y)$ is determined from the generic DD MC sample. In particular, in the studies of $D^+ \rightarrow K^0_S L^+ L^-$, irreducible and peaking backgrounds come mainly from $D^+ \rightarrow K^0_S L^+ L^-$ with $K^0_S \rightarrow \pi^0 \pi^0$. Since their shape is too similar to be separated from the signal in the fit, their size and shape are fixed. To take into account possible differences between data and MC simulation, both shapes and magnitudes of the $D^+ \rightarrow K^0_S L^+ L^-$ background events are re-estimated as follows. The background shapes are determined by imposing the same selection criteria as for
data on the MC samples of $D^+ \to K_S^0 K^+(\pi^0)$ with K_S^0 decaying inclusively. The background magnitudes are estimated by using the samples of $D^+ \to K_S^0 K^+(\pi^0)$ with $K_S^0 \to \pi^0 \pi^0$ selected from data and MC samples, from which the event yields $N_{K_S^0}^{DT}$ and $N_{K_S^0}^{MC}$ are determined individually. We also apply the selection criteria of $D^+ \to K_S^0 K^+(\pi^0)$ on the same MC samples of $D^+ \to K_S^0 K^+(\pi^0)$ with K_S^0 decaying inclusively, selecting $N_{K_S^0}^{MC}$ events. The number of background events is then estimated by $N_{K_S^0}^{DT} \cdot N_{K_S^0}^{MC} / N_{K_S^0}^{MC}$.

The shape of BKGII is described with an ARGUS function [18], $c(x + y)/\sqrt{2}; m_0, \xi, \rho) = A(x + y)/\sqrt{2}(1 - (x + y)^2/2m_0^2) \cdot e^{\xi(1 - (x + y)^2/2m_0^2)}$, multiplied by a double Gaussian function. The parameters A and ξ of the ARGUS function are obtained by fitting the $(x + y)/\sqrt{2}$ distribution with fixed values $\rho = 0.5$ and $m_0 = 1.8865 \text{ GeV}/c^2$, and the parameters z, σ_z, σ_{z2} and G of the double Gaussian function are obtained by a fit to the $(x - y)/\sqrt{2}$ distribution of data.

The 2D fit is performed on the M_{BC}^{tag} versus M_{BC}^{sig} distribution for each ST mode individually. Figure 4 shows the projections on the M_{BC}^{tag} and M_{BC}^{sig} distributions of the 2D fits summed over all six ST modes. The detection efficiencies of $D^+ \to K_{S,L}^0 K^+(\pi^0)$ are determined by MC simulation. In our previous work [17], differences of the $K_{S,L}^0$ reconstruction efficiencies between data and MC simulation (called data-MC difference) were found, due to differences in nuclear interactions of K^0 and K^0 mesons. The detection efficiencies were investigated for $K^0 \to K_{S,L}^0$ and $\bar{K}^0 \to K_{S,L}^0$ separately. To compensate for these differences, the signal efficiencies are corrected by the $K_{S,L}^0$ momentum-weighted data-MC differences of the $K_{S,L}^0$ reconstruction efficiencies. The efficiency correction factors are about 2% and 10% for $D^0 \to K_{S,L}^0 K^+(\pi^0)$ and $D^0 \to K_{S,L}^0 K^+(\pi^0)$, respectively. The DT signal yields in data (N_{DT}) and the corrected detection efficiencies (ϵ) of $D^+ \to K_{S,L}^0 K^+(\pi^0)$ are presented in Table III.

C. Branching fraction and CP asymmetry

According to Eq. (2) and taking into account the numbers of N_{ST}, N_{DT}, and ϵ listed in Tables I and III, the branching fractions of D^+ and D^- decays for the individual ST modes are calculated. The average branching fractions of D^+ and D^- decays as well as combination of charged conjugation modes are obtained by using the standard weighted least-squares method [15], and are summarized in Table IV. We also determine the CP asymmetries with Eq. (3) based on the average branching fractions of D^+ and D^- decays, and the results are listed in Table IV, too.

IV. SYSTEMATIC UNCERTAINTY

Due to the use of the DT method, those uncertainties associated with the ST selection are cancelled. The relative systematic uncertainties in the measurements of absolute branching fractions and the CP asymmetries of the decay $D^\pm \to K_{S,L}^0 K^+(\pi^0)$ are summarized in Table V and are discussed in detail below.

The efficiencies of K^\pm tracking and PID in various K^\pm momentum ranges are investigated with K^\pm samples selected from DT hadronic $D\bar{D}$ decays. In each momentum range, the data-MC difference of efficiencies $\epsilon_{data}/\epsilon_{MC} - 1$ is calculated. The data-MC differences weighted by the K^\pm momentum in the decays $D^\pm \to K_{S,L}^0 K^+(\pi^0)$ are assigned as the associated systematic uncertainties.

The π^0 reconstruction efficiency is studied by the DT control sample $D^0 \to K^-\pi^+\pi^0$ versus $\bar{D}^0 \to K^+\pi^\mp\pi^\mp$ using the partial reconstruction technique. The data-MC difference of the π^0 reconstruction efficiencies weighted according to the π^0 momentum distribution in $D^\pm \to K_{S,L}^0 K^+(\pi^0)$ is assigned as the systematic uncertainty in π^0 reconstruction.

The branching fractions of $K_{S,L}^0 \to \pi^+\pi^-$ and $\pi^0 \to \gamma\gamma$ are taken from the Particle Data Group [15]. Their uncertainties are 0.07% and 0.03%, respectively, which are negligible in these measurements.

As described in Ref. [17], the correction factors of $K_{S,L}^0$ reconstruction efficiencies are determined with the two control samples of $J/\psi \to K^*(892)^\pm K^\pm$ with $K^*(892)^\pm \to K_{S,L}^0 \pi^\pm$ and $J/\psi \to \phi K_{S,L}^0 K^\pm\pi^\mp$ decays. Since the efficiency corrections are imposed in this analysis, the corresponding statistical uncertainties of the cor-
TABLE IV. The measured branching fractions and CP asymmetries, where the uncertainties are statistical and systematic, respectively, and a comparison with the world average value [15].

Signal mode	$B(D^+)$ (×10^{-3})	$B(D^-)$ (×10^{-3})	\bar{B} (×10^{-3})	B (PDG) (×10^{-3})	A_{CP} (%)
$K_S^0 \rightarrow \pi^+ \pi^-$	2.96 ± 0.11 ± 0.08	3.07 ± 0.12 ± 0.08	3.02 ± 0.09 ± 0.08	2.95 ± 0.15	-1.8 ± 2.7 ± 1.6
$K_S^0 \pi^+ \pi^0$	5.14 ± 0.27 ± 0.24	5.00 ± 0.26 ± 0.22	5.07 ± 0.19 ± 0.23	-	1.4 ± 3.7 ± 2.4
$K_S^0 \pi^+$	3.07 ± 0.14 ± 0.10	3.34 ± 0.15 ± 0.11	3.21 ± 0.11 ± 0.11	-	-4.2 ± 3.2 ± 1.2
$K_S^0 \pi^0$	5.21 ± 0.30 ± 0.22	5.27 ± 0.30 ± 0.22	5.24 ± 0.22 ± 0.22	-	-0.6 ± 4.1 ± 1.7

TABLE V. Systematic uncertainties (%) of the measured branching fractions and corresponding CP asymmetries.

Source	$K_S^0 \pi^+$	$K_S^0 \pi^-$	$K_S^0 \pi^0$	$K_S^0 \pi^-$	$K_S^0 \pi^+$	$K_S^0 \pi^-$	$K_S^0 \pi^0$	$K_S^0 \pi^-$
K^\pm tracking	0.7	0.9	1.8	1.4	0.7	0.8	1.8	1.5
K^\pm PID	0.3	0.2	0.2	0.3	0.3	0.2	0.2	0.3
π^0 reconstruction	-	-	2.0	2.0	-	-	-	-
K_S^0 reconstruction	1.9	1.9	2.9	2.8	-	-	-	-
K_L^0 reconstruction	-	-	-	-	1.2	1.3	1.4	1.4
χ^2 cut	-	-	-	-	2.5	2.5	1.7	1.8
Sub-resonances	-	-	1.4	1.1	-	-	-	1.5
M_{BC} fit in DT	1.3	1.3	1.5	1.5	1.1	1.1	1.6	1.6
Peaking backgrounds in DT	-	-	-	-	0.1	0.1	0.2	0.2
Total (for B)	2.5	2.6	4.5	4.2	3.1	3.2	4.2	4.1
Total (for A_{CP})	2.1	2.2	3.5	3.2	1.5	1.6	2.3	2.1
certainties.

As described in Ref. [17], in the determination of the correction factor of the \(\chi^2_{K_L} \) efficiency, we perform a kinematic fit to select the \(K^0_L \) candidate with the minimal \(\chi^2_{K_L} \) and require \(\chi^2_{K_L} < 100 \). The uncertainty of the correction factor associated with the \(\chi^2_{K_L} \) cut is determined by comparing the selection efficiency between data and MC simulation using the same control samples. The \(\chi^2_{K_L} \) requirement summarized in Table II brings an uncertainty. The momentum-weighted uncertainty of the \(\chi^2_{K_L} \) selection according to the \(K^0_L \) momentum distribution of signal events is assigned as the associated systematic uncertainties.

In the analysis of multi-body decays, the detection efficiency may depend on the kinematic variables of the final-state particles. The possible difference of the kinematic variable distribution between data and MC simulation causes an uncertainty on detection efficiency. For the three-body decays \(D^+ \rightarrow K^0_{S,L} K^\pm (\pi^0) \), the nominal efficiencies are estimated by analyzing an MC sample composed of the decays \(D^+ \rightarrow K^*(892)^+ K^0, D^+ \rightarrow K^*(892)^0 K^+, D^+ \rightarrow K^+(1430)^0 K^+, \) and \(D^+ \rightarrow K^0_{S,L} K^\pm (\pi^0) \) [16]. The differences of the nominal efficiencies to those estimated with an MC sample of their dominant decays of \(D^+ \rightarrow K^*(892)^+ K^0_{S,L} \) [15] are taken as the systematic uncertainties due to the MC model.

To evaluate the systematic uncertainty associated with
the ST yields, we repeat the fit on the M_{BC} distribution of ST candidate events by varying the resolution of the Gaussian function by one standard deviation. The resulting change on the ST yields is found to be negligible.

The systematic uncertainties in the 2D fit on the M_{BC} versus M_{tag} distribution are evaluated by repeating the fit with an alternative fit range (1.8400, 1.8865) GeV/c^2, varying the resolution of the smearing Gaussian function by one standard deviation, and varying the endpoint of the ARGUS function by ± 0.2 MeV/c^2, individually, and the sum in quadrature of the changes in DT yields are taken as the systematic uncertainties.

As described in Sec. III B, the dominant peaking backgrounds for $D^\pm \rightarrow K_S^0 K^{\mp} (\pi^0)$ are found to be from $D^\pm \rightarrow K_S^0 K^{\mp} (\pi^0)$ with $K_S^0 \rightarrow \pi^0 \pi^0$, whose contributions are about 3% (5%). Their sizes are estimated based on MC simulation after considering the branching fraction of the background channel and are fixed in the fits. Other peaking backgrounds like $D^\pm \rightarrow K_S^0 \pi^\mp (\pi^0)$ are found to have contributions of less than 0.5%. The uncertainties due to these peaking backgrounds are estimated by varying the branching fractions of the peaking background channels by $\pm 1\sigma$, and the changes of the DT signal yields are assigned as the associated systematic uncertainties.

In the studies of $D^\pm \rightarrow K_S^0 K^{\mp} (\pi^0)$, a ΔE requirement in the signal side is applied to suppress the background. The corresponding uncertainty is studied by comparing the DT yields with and without the ΔE requirement for an ST mode with low background, i.e., $D^\pm \rightarrow K^{\mp} \pi^0 \pi^0$. The resulting difference of relative change of DT yields between data and MC simulation is assigned as the systematic uncertainty.

For each signal mode, the total systematic uncertainty of the measured branching fraction is obtained by adding all above individual uncertainties in quadrature, as summarized in Table V. In the determination of the CP asymmetries, the uncertainties arising from π^0 reconstruction, χ^2_{recon} requirement of the K_L^0 selection, MC model of $D^\pm \rightarrow K_S^0 L K^{\mp} \pi^0$, M_{BC} fit for ST events and ΔE requirement in signal side are canceled. The total systematic uncertainties in the measured CP asymmetries are also listed in Table V.

V. CP ASYMMETRIES IN DIFFERENT DALITZ PLOT REGIONS FOR $D^\pm \rightarrow K_{S,L}^0 K^{\mp} \pi^0$

We also examine the CP asymmetries for the three-body decay $D^\pm \rightarrow K_{S,L}^0 K^{\mp} \pi^0$ in different regions across the Dalitz plot. For this study, a further kinematic fit constraining the masses of K_S^0 and D^+ candidates to their nominal masses [15] is performed in the selection of $D^\pm \rightarrow K_S^0 K^{\mp} \pi^0$. To select signal $D^\pm \rightarrow K_L^0 K^{\mp} \pi^0$ events, a kinematic fit constraining the D^+ to its nominal mass is performed in addition to the kinematic fit to select the K_L^0 shower as described in Sec. III B. The recoiling mass of the $K_{S,L}^0 K^{\mp} \pi^0$ system,

$$M_{\text{rec}} = \sqrt{(q_0 - q_D)^2},$$

which should equal the mass of the ST D meson in correctly reconstructed signal events, is used to identify the signal, where q_0 and q_D are the four-momentum of the e^+e^- system and the selected D^+ candidate, respectively. This procedure ensures that D candidates have the same phase space (PHSP), regardless of whether M_{rec} is in the signal or sideband region.

Figure 5 shows the fits to the M_{rec} distributions and the Dalitz plot of event candidates in the M_{rec} signal region defined as (1.864, 1.877) GeV/c^2. In the M_{rec} distribution of $D^\pm \rightarrow K_S^0 K^{\mp} \pi^0$, there is a significant tail above the D^+ mass due to ISR effects. For ISR events in $D^\pm \rightarrow K_S^0 K^{\mp} \pi^0$, the momentum of the K_S^0 becomes larger than what it should be due to the constraint of $\Delta E = 0$, which leads to a significant tail below the D^+ mass in the M_{rec} distribution. The M_{rec} distributions are fitted with a MC-derived signal shape convolved with a Gaussian function for the signal, together with an ARGUS function for the combinatorial background.

The Dalitz plot of $D^\pm \rightarrow K_{S,L}^0 K^{\mp} \pi^0$ is further divided into three regions to examine the CP asymmetries. The DT yields in data are obtained by counting the numbers of events in the individual Dalitz plot regions in the M_{rec} signal region, and then subtract the numbers of background events in the M_{rec} sideband regions (shown in Fig. 5). MC studies show that the peaking backgrounds in the study of $D^\pm \rightarrow K_S^0 K^{\mp} \pi^0$ are negligible. For the study of $D^\pm \rightarrow K_L^0 K^{\mp} \pi^0$, however, there are non-negligible peaking backgrounds dominated by $D^\pm \rightarrow K_{S,L}^0 K^{\mp} \pi^0$ with $K_{S,L}^0 \rightarrow \pi^0 \pi^0$. These peaking backgrounds are estimated by MC simulations as described previously and are also subtracted from the data DT yields.

The background-subtracted DT yields in data N_{DT}, the signal efficiencies ϵ, the calculated branching fractions B and the CP asymmetries A_{CP} in the different Dalitz plot regions are summarized in Tables VI and VII. Here, the branching fractions and the CP asymmetries are calculated by Eq. (2) and Eq. (3), respectively. The corresponding systematic uncertainties are assigned after considering the different behaviors of K^\pm and $K_{S,L}^0$ reconstruction in the detector. We use the same method as described in Sec. IV to estimate the systematic uncertainties on the CP asymmetries in the individual Dalitz plot regions, all of which are listed in Table VIII. No evidence for CP asymmetry is found in individual regions.

VI. SUMMARY

Using an e^+e^- collision data sample of 2.93 fb$^{-1}$ taken at $\sqrt{s} = 3.773$ GeV with the BESIII detector, we present the measurements of the absolute branching fraction
sideband regions, respectively. (Right) The Dalitz distributions of $M_{K_{S,L}^0K^+\pi^-}$ and $M_{K_{S,L}^0K^-\pi^+}$ for the events in the M_{rec} signal region. The Dalitz PHSP is divided into three regions, i.e., region 1 with $X < 2.22$ GeV/c2 and $Y > 1.03$ GeV2/c4, region 2 with $X < 2.22$ GeV2/c4 and $Y < 1.03$ GeV2/c4, region 3 with $X > 2.22$ GeV2/c4 and $Y < 1.03$ GeV2/c4.

TABLE VI. Background-subtracted DT yields in data (N_{DT}) and detection efficiencies (ϵ) in different Dalitz plot regions for $D^{\pm} \to K_{S,L}^0 K^{\pm} \pi^0$, where the uncertainties are statistical only.

Region	N_{DT}	ϵ (%)	N_{DT}	ϵ (%)
$K_{S,L}^0K^+\pi^0$	$K_{S,L}^0K^-\pi^0$	$K_{S,L}^0K^+\pi^0$	$K_{S,L}^0K^-\pi^0$	
1	201 ± 15	9.25 ± 0.18	189 ± 14	9.11 ± 0.18
2	50 ± 8	13.80 ± 0.66	59 ± 9	13.45 ± 0.66
3	164 ± 14	11.68 ± 0.21	146 ± 13	11.68 ± 0.21
$K_{S,L}^0K^+\pi^0$	$K_{S,L}^0K^-\pi^0$	$K_{S,L}^0K^+\pi^0$	$K_{S,L}^0K^-\pi^0$	
1	177 ± 14	8.04 ± 0.17	176 ± 14	8.23 ± 0.17
2	51 ± 8	13.29 ± 0.64	49 ± 8	13.08 ± 0.64
3	146 ± 13	10.13 ± 0.19	155 ± 13	9.68 ± 0.19

$B(D^+ \to K_{S,L}^0 K^+)$ = $(3.02 \pm 0.09 \pm 0.08) \times 10^{-3}$, which is in agreement with the CLEO result [19], and the three other absolute branching fractions $B(D^+ \to K_{S,L}^0 K^+\pi^0)$ = $(5.07 \pm 0.19 \pm 0.23) \times 10^{-3}$, $B(D^+ \to K_{S,L}^0 K^+\pi^0)$ = $(3.21 \pm 0.11 \pm 0.11) \times 10^{-3}$, $B(D^+ \to K_{S,L}^0 K^+\pi^0)$ = $(5.24 \pm 0.22 \pm 0.22) \times 10^{-3}$, which are measured for the first time. We also determine the direct CP asymmetries for the four SCS decays and, for the decays $D^+ \to K_{S,L}^0 K^+\pi^0$, also in different Dalitz plot regions. No evidence for direct CP asymmetry is found. Theoretical calculations [4] are in agreement with our measurements $B(D^+ \to K_{S,L}^0 K^+)$. Our measurements are helpful for the understanding of the SU(3)-flavor symmetry and its breaking mechanisms, as well as for CP violation in hadronic D decays [1–4].

TABLE VII. Branching fractions (B) and CP asymmetries (A_{CP}) in different Dalitz plot regions for $D^{\pm} \to K_{S,L}^0 K^{\pm} \pi^0$, where the first and second uncertainties are statistical and systematic, respectively.

Region	$B(D^+) \times 10^{-3}$	$B(D^-) \times 10^{-3}$	A_{CP} (%)
$K_{S,L}^0K^+\pi^0$	$K_{S,L}^0K^-\pi^0$	$K_{S,L}^0K^+\pi^0$	$K_{S,L}^0K^-\pi^0$
1	2.86 ± 0.22 ± 0.10	2.75 ± 0.21 ± 0.09	2.0 ± 5.4 ± 2.4
2	0.48 ± 0.08 ± 0.02	0.58 ± 0.09 ± 0.02	-9.4 ± 13.3 ± 2.7
3	1.85 ± 0.16 ± 0.05	1.65 ± 0.15 ± 0.04	-5.7 ± 6.3 ± 1.8

TABLE VIII. Systematic uncertainties (%) of the CP asymmetries in different Dalitz plot regions for $D^{\pm} \to K_{S,L}^0 K^{\pm} \pi^0$.

Source	1	2	3	1	2	3
$K_{S,L}^0K^+\pi^0$	$K_{S,L}^0K^-\pi^0$	$K_{S,L}^0K^+\pi^0$	$K_{S,L}^0K^-\pi^0$			
K^\pm tracking	2.5	1.4	1.1	1.8	1.2	1.1
K^\pm PID	0.3	0.4	0.5	0.6	0.3	0.2
$K_{S,L}^0$ reconstruction	2.6	3.5	2.3	2.8	3.3	2.3
Total	3.6	3.8	2.6	3.4	3.5	2.6

VII. ACKNOWLEDGMENTS

The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by National Key Basic Research Program of China under Contract No. 2015CB856700; National Natural Science Foundation of China (NSFC) under Contracts Nos. 11235011, 11322544, 11335008, 11425524, 11635010; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; the CAS Center for Excellence in Particle Physics (CCEPP); the Collaborative Innovation Center for Particle and Interactions (CICPI); Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts Nos. U1232201, U1332201, U1532257, U1532258; CAS under Contracts Nos. KJCX2-YW-N29, KJCX2-YW-N45, QYZDJ-SSW-SLH003; 100 Talents Program of CAS; National 1000 Talents Program of China; INPAC and Shanghai Key Laboratory for Parti-
cle Physics and Cosmology; German Research Foundation DFG under Contracts Nos. Collaborative Research Center CRC 1044, FOR 2359; Istituto Nazionale di Fisica Nucleare, Italy; Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) under Contract No. 530-4CDP03; Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Science and Technology fund; The Swedish Research Council; U. S. Department of Energy under Contracts Nos. DE-FG02-05ER41374, DE-SC-0010118, DE-SC-0010504, DE-SC-0012069; University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt; WCU Program of National Research Foundation of Korea under Contract No. R32-2008-000-10155-0. This paper is also supported by the NSFC under Contract Nos. 11475107.

[1] K. Waikwok and S. Rosen, Phys. Lett. B 298, 413 (1993).
[2] Y. Grossman and D. J. Robinson, J. High Energy Phys. 1101, 132 (2011).
[3] F. -S. Yu, X. -X. Wang, and C. -D. Lü, Phys. Rev. D 84, 074019 (2011).
[4] H.-n. Li, C.-D. Lu, and F.-S. Yu, Phys. Rev. D 86, 036012 (2012).
[5] R. M. Baltrusaitis et al. (MARK-III Collaboration), Phys. Rev. Lett. 56, 2140 (1986).
[6] J. Adler et al. (MARK-III Collaboration), Phys. Rev. Lett. 60, 89 (1988).
[7] M. Ablikim et al. (BESIII Collaboration), Chin. Phys. C 37, 123001 (2013); Phys. Lett. B 753, 629 (2016).
[8] M. Ablikim et al. (BESIII Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 614, 345 (2010).
[9] C. Zhang, Sci. China. Phys., Mech. Astron., 53, 2084 (2010).
[10] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[11] S. Jadach, B. F. L. Ward, and Z. Was, Phys. Rev. D 63, 113009 (2001).
[12] E. Barberio and Z. Was, Comput. Phys. Commun. 79, 291 (1994).
[13] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).
[14] R. G. Ping, Chin. Phys. C 32, 599 (2008).
[15] M. Tanabashi et al. (Particle Data Group) Phys. Rev. D. 98, 030001 (2018).
[16] P. Rubin et al. (CLEO Collaboration), Phys. Rev. D. 78, 072003 (2008).
[17] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D. 92, 112008 (2015).
[18] H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 241, 278 (1990).
[19] G. Bonvicini et al. (CLEO Collaboration), Phys. Rev. D. 77, 091106(R) (2008).