Vitamin D signaling increases nitric oxide and antioxidant defenses of bovine monocytes

Mercedes F. Kweh,1 Kathryn E. Merriman,1 Teri L. Wells,2 and Corwin D. Nelson2 *

Graphical Abstract

Summary

The oxidative burst of phagocytes is a key part of antimicrobial defenses. Vitamin D contributes to several aspects of bovine immunity, including antimicrobial activity. Our objectives were to assess the effects of vitamin D on the oxidant and antioxidant responses of freshly isolated monocytes of dairy cows. Vitamin D increased antioxidant potential of interferon-γ–stimulated monocyte cultures. Vitamin D also increased mRNA transcripts for metallothionein (MT1A) and thioredoxin (TRX) genes. Our data indicate a potential role for vitamin D in maintaining redox balance during infection.

Highlights

- Vitamin D and interferon-gamma (IFN-γ) increased monocyte nitric oxide production
- IFN-γ decreased antioxidant potential of monocyte cultures
- Vitamin D signaling increased antioxidant potential of IFN-γ-stimulated monocytes
- Vitamin D increased abundance of metallothionein and thioredoxin transcripts
Vitamin D signaling increases nitric oxide and antioxidant defenses of bovine monocytes

Mercedes F. Kweh,1 Kathryn E. Merriman,1 Teri L. Wells,2 and Corwin D. Nelson2*

Abstract: Vitamin D contributes to multiple aspects of bovine immunity and is reported to decrease the effects of mastitis and metritis in dairy cows. We hypothesized that vitamin D signaling in bovine monocytes increases antioxidant responses as part of its immunomodulatory actions. Our objectives were to assess the effects of vitamin D on oxidant and antioxidant responses of bovine monocytes. Monocytes from peripheral blood of nonpregnant, lactating Holstein cows between 90 and 300 d in milk were used for in vitro cell culture experiments. To test the effects of vitamin D on reactive oxygen metabolites (dROM) and antioxidant potential (AOP), monocytes from 14 cows were cultured in replicates for 16 h with 25-hydroxyvitamin D3 [25(OH)D3, 0 or 75 ng/mL] in a factorial arrangement with lipopolysaccharide (LPS, 100 ng/mL) or interferon-γ (IFN-γ, 10 ng/mL) or with no stimulation. Data were analyzed by ANOVA for main effects of 25(OH)D3, stimulant, and interactions between 25(OH)D3 and stimulant. Significant interactions between 25(OH)D3 and stimulant were observed for dROM and AOP of culture supernatants. In unstimulated cultures, 25(OH)D3 tended to increase dROM, but the opposite was observed in stimulated cultures. In contrast, LPS and IFN-γ treatments alone decreased AOP of culture supernatants, but 25(OH)D3 counteracted the decrease in AOP caused by IFN-γ. Abundances of transcripts of genes encoding antioxidant-related proteins were measured by quantitative PCR using RNA from monocytes from 4 cows treated with 25(OH)D3 (0 or 75 ng/mL) in a factorial arrangement with increasing concentrations of LPS (0 to 1,000 ng/mL) or IFN-γ (0 to 10 ng/mL). Treatment with 25(OH)D3 increased transcripts of genes encoding metallothionein 1A and metallothionein 2A in the presence of IFN-γ but not LPS. Furthermore, 25(OH)D3 increased transcripts of genes encoding thioredoxin and thioredoxin reductase, but the effect of 25(OH)D3 did not depend on IFN-γ or LPS stimulation. In conclusion, 25(OH)D3 increased antioxidant capacity of IFN-γ–stimulated bovine monocytes, potentially by increasing metallothionein and thioredoxin activities in monocytes.

Recent reports have documented positive effects of 25-hydroxyvitamin D3 [25(OH)D3] for protection against uterine and mammary infections in dairy cows (Lippolis et al., 2011; Martinez et al., 2018; Poindexter et al., 2020). Concentrations of 25(OH)D3 in serum of dairy cows during the postpartum period, a time when cows are at greatest risk of disease, are lower compared with those during prepartum or mid lactation (Nelson et al., 2016; Holcombe et al., 2018). Moreover, Wisnieski et al. (2020) reported that cows with serum 25(OH)D3 >71 ng/mL in the postpartum period were at lowest risk for uterine diseases.

The direct actions of vitamin D in the immune system of cows provide a likely explanation for the positive effects of 25(OH)D3 in reduction of dairy cow diseases. Toll-like receptor agonists such as LPS and IFN-γ stimulate an intracellular vitamin D pathway in innate immune cells that contributes to activation of multiple immune functions. For example, intramammary LPS challenge increased transcripts for 1α-hydroxylase (CYP27B1), which catalyzes conversion of 25(OH)D3 to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], and the vitamin D receptor (VDR) in macrophages and neutrophils in the mammary gland (Merriman et al., 2018). The effects of vitamin D signaling in immunity are quite diverse and include induction of antimicrobial responses and chemokines, and suppression of proinflammatory T cells and cytokines (Hewison, 2012). In particular, 1,25(OH)2D3 elicits a robust nitric oxide (NO) response in bovine monocytes and macrophages, which enhances killing of Mycobacteria bovis by macrophages (Garcia-Barragán et al., 2018). Intramammary and dietary vitamin D treatments also increased abundance of transcripts for inducible nitric oxide synthase (NOS2) in immune cells of the mammary glands of cows (Merriman et al., 2017; Poindexter et al., 2020). However, NO production by immune cells may increase oxidation of host cell membranes and proteins and, if not balanced by protective antioxidant mechanisms, lead to tissue damage (Shi et al., 2018). In addition to the effects of vitamin D on nitric oxide, it also is known to have positive effects on antioxidant status in human and rodent cells. We hypothesized that vitamin D signaling in bovine monocytes would increase antioxidant responses to counteract pro-oxidant responses to LPS or IFN-γ. Therefore, our objectives were to assess the effects of vitamin D signaling on oxidant and antioxidant responses of bovine monocytes.

Monocytes used in the experiments were collected from lactating, nonpregnant Holstein cows at the University of Florida Dairy Unit according to approval of the University of Florida Institutional Animal Care and Use Committee. Average ± SD parity, days in milk, and milk yield of cows were 20 ± 10 parities, 207 ± 99 d, and 29.5 ± 9.4 kg/d, respectively. Cows were free of any clinical diseases before and at the time of blood collection. Cows were fed a standard lactating cow TMR that provided cows with approximately 40,000 IU of vitamin D3/d.

Monocytes were isolated as previously described (Merriman et al., 2015). Briefly, 50 mL of blood was sampled from the jugular vein using 60-mL syringes containing 5 mL of acid citric dextrose...
solution. Blood was centrifuged at 1,500 × g for 20 min, the buffy coat layer was collected, and erythrocytes were removed by hypotonic lysis. Mononuclear cells were then layered over 1.083 g/mL Percoll and centrifuged for 30 min at 450 × g to remove any remaining neutrophils. Monocytes were isolated by adherence on a T-75 tissue-culture-treated flask for 1 h in RPMI 1640 medium (HyClone Laboratories, Logan UT) containing 10% fetal bovine serum (characterized; HyClone Laboratories). After removal of non-adherent cells by washing with warm Dulbecco’s PBS, monocytes were collected from the flask with ice-cold PBS. Monocytes were counted, resuspended in RPMI 1640 medium containing penicillin-streptomycin (100 units each/mL) and 10% fetal bovine serum to a concentration of 1 × 10⁶ cells/mL. Finally, 200 µL of cell suspensions were added to 96-well tissue culture-treated plates before applying treatments. All cell culture reagents, unless otherwise noted, were purchased from Fisher Scientific (Waltham, MA). The 25(OH)D₃ and 1,25-dihydroxyvitamin D₃ were purchased from Cayman Chemical (Ann Arbor, MI) and dissolved in reagent-grade ethanol. Lipopolysaccharide derived from Serratia marcescens was purchased from Sigma Aldrich (St. Louis, MO). Recombinant bovine IFN-γ was purchased from R&D Systems (Minneapolis, MN).

Each experiment was a randomized, complete block design with cow (the source of monocytes) as the blocking factor. For experiments used to test effects of 25(OH)D₃ on nitrite (experiment 1), reactive oxygen metabolites and antioxidant potential (experiment 2), 2 levels of 25(OH)D₃ (0 or 75 ng/mL) and 3 types of stimulations used to test effects of 25(OH)D₃ on nitrite (experiment 1), reactive oxygen metabolites and antioxidant potential (experiment 2), 2 levels of 25(OH)D₃ (0 or 75 ng/mL) and 3 types of stimulations used to test effects of 25(OH)D₃ on nitrite (experiment 1), reactive oxygen metabolites and antioxidant potential (experiment 2), 2 levels of 25(OH)D₃ (0 or 75 ng/mL) and 3 types of stimulations used to test effects of 25(OH)D₃ on nitrite (experiment 1), reactive oxygen metabolites and antioxidant potential (experiment 2). The 25(OH)D₃ and 1,25-dihydroxyvitamin D₃ were pur-
The model for experiment 3 included effects of LPS (0 vs. 100 ng/mL), 1,25(OH)2D3 (0 vs. 4 ng/mL), interaction between LPS and 1,25(OH)2D3, and cow. Experiment 4 was performed as one experiment, but the effects of 25(OH)D3 were analyzed separately for LPS and IFN-γ treatments to account for the multiple doses of LPS and IFN-γ that were used. The model used for experiment 4 included effects of 25(OH)D3 (0 vs. 75 ng/mL), dose of stimulant (0 to 10 ng/mL IFN-γ or 0 to 1,000 ng/mL LPS), and interaction between 25(OH)D3 and dose of stimulant. Furthermore, the contrast statement was used to test the effect of 25(OH)D3 in the presence of stimulant (IFN-γ at 0.1, 1 and 10 ng/mL; LPS at 10, 100 and 1,000 ng/mL). Least squares means were computed for the interactions of 25(OH)D3 with LPS and IFN-γ, and the Tukey adjustment was applied to account for multiple comparisons of means. For gene expression data, least squares means of ΔCt values were transformed using the equation (2−ΔΔCt) and expressed as relative number of transcripts. Statistical significance was declared at P < 0.05 and tendencies were declared at P < 0.10 and P > 0.05.

Treatment of monocytes with IFN-γ, LPS, and 25(OH)D3 increased (P < 0.01) nitrite concentrations in culture supernatants (Figure 1A). However, none of the factors (LPS, IFN-γ, or 25(OH)D3) alone increased nitrite compared with cultures not stimulated and not treated with 25(OH)D3. Rather, nitrite was greater (P < 0.05) in cultures treated with LPS and 25(OH)D3 or IFN-γ and 25(OH)D3 compared with cultures that did not receive stimulant or 25(OH)D3 (Figure 1A). The IFN-γ treatment increased oxidative burst capacity, as measured by DHR in response to heat-killed E. coli challenge, but LPS and 25(OH)D3 treatments did not affect oxidative burst capacity of monocytes (Figure 1B). Interactions were observed between 25(OH)D3 and stimulation for dROM (P = 0.04) and AOP (P = 0.001). In the absence of LPS or IFN-γ, 25(OH)D3 tended to increase dROM in culture supernatants but had the opposite effect in the presence of LPS or IFN-γ stimulation such that dROM was lower (P < 0.05) in cultures treated with 25(OH)D3 and IFN-γ compared with 25(OH)D3 alone (Figure 1C). In contrast, 25(OH)D3 somewhat decreased AOP in the absence of IFN-γ or LPS but counteracted the decrease in AOP caused by stimulation, such that AOP of cultures treated with IFN-γ and 25(OH)D3 was greater (P = 0.04) than AOP of cultures treated with IFN-γ alone (Figure 1D).

We also evaluated the effects of vitamin D signaling on expression of antioxidant genes that may explain the changes in antioxidant potential of monocytes. Metallothionein and thioredoxin genes were increased by 1,25(OH)2D3 treatment according to RNA sequencing of monocytes treated with 1,25(OH)2D3 and LPS (C. D. Nelson, University of Florida, and J. D. Lippolis, USDA-ARS National Animal Disease Center, Ames, IA; unpublished data). Therefore, we hypothesized that vitamin D may increase expression of antioxidant genes in bovine monocytes. Because 1,25(OH)2D3 has more potent activity than 25(OH)D3 and it does not depend on CYP27B1 activity, the effects of vitamin D on expression of several genes encoding for antioxidant proteins were assessed in monocyte cultures treated with LPS and 1,25(OH)2D3 (Table 1). We found that 1,25(OH)2D3 increased, or tended to increase, transcripts of GPX1, MT1A, MT2A, TRX, and TXNRD1 genes but not transcripts of NFE2L2. As positive controls of 1,25(OH)2D3 activity, 1,25(OH)2D3 also increased CYP24A1, DEFB7, and NOS2 expression, as previously reported (Merriman et al., 2015).

To further characterize the role of vitamin D signaling on antioxidant response, the effects of 25(OH)D3 on expression of known vitamin D pathway and antioxidant genes were assessed (Figure 2). As previously reported, LPS increased CYP27B1 expression in monocyte cultures (Figure 2A). Likewise, IFN-γ induced CYP27B1 in a dose-dependent manner (Figure 2A). CYP27B1 encodes 1α-hydroxylase, which catalyzes conversion of 25(OH)D3 to 1,25(OH)2D3, indicating the potential for monocytes to increase 1,25(OH)2D3 synthesis when stimulated by IFN-γ or LPS. In contrast, 25(OH)D3 increased (P < 0.001) CYP24A1, which encodes the 24-hydroxylase that catalyzes inactivation of vitamin D (Figure 2B). Notably, IFN-γ and LPS decreased CYP24A1 in the presence of 25(OH)D3 [IFN-γ dose × 25(OH)D3, P = 0.006; LPS dose × 25(OH)D3, P = 0.004; Figure 2B]. Further demonstrating vitamin D pathway activity, transcripts of DEFB7 and NOS2 were increased (P < 0.001) by 25(OH)D3 in the presence and absence of IFN-γ and LPS.
of LPS or IFN-γ (Figure 2 C, D). However, IFN-γ decreased ($P < 0.001$) DEFB7 in a dose-dependent manner (Figure 2D), even though it strongly increased 3gene expression in our other experiment (Table 1), we found that 25(OH)D$_3$ decreased ($P < 0.001$) DEFB7 expression (Figure 2D).

Although 1,25(OH)$_2$D$_3$ did not affect NF2EL2 expression in our other experiment (Table 1), we found that 25(OH)D$_3$ decreased ($P < 0.001$) NF2EL2 expression (Figure 2E). In contrast, IFN-γ, but not LPS, increased NF2EL2 in a dose-dependent manner, and the suppression of NF2EL2 by 25(OH)D$_3$ dissipated as IFN-γ increased (Figure 2E). Also, in contrast to our experiment with 1,25(OH)$_2$D$_3$, expression of GPX1 was not affected by 25(OH)D$_3$ in the presence of IFN-γ and was decreased ($P = 0.02$) by 25(OH)D$_3$ in the presence of LPS (Figure 2F).

The metallothionein genes MT1A and MT2A were increased by 25(OH)D$_3$ but the effect of 25(OH)D$_3$ depended on stimulation (Figure 2G, H). Transcripts of each gene were strongly increased ($P < 0.01$) by IFN-γ or LPS stimulation. In the absence of stimulation, 25(OH)D$_3$ did not affect MT1A or MT2A; however, 25(OH)D$_3$ increased MT1A and MT2A in the presence of IFN-γ but not LPS stimulation [IFN-γ × 25(OH)D$_3$ interaction, $P < 0.05$].

Transcripts of TRX were generally increased 3-fold ($P < 0.001$) by 25(OH)D$_3$, and the effect of 25(OH)D$_3$ did not depend on IFN-γ or LPS stimulation (Figure 2I). Stimulation with IFN-γ also increased TRX expression in a dose-dependent manner ($P < 0.001$), but LPS did not affect TRX expression. Likewise, 25(OH)D$_3$ increased TXNRD1 expression approximately 2-fold (Figure 2J). Both IFN-γ and LPS increased TXNRD1 expression, and the effect of 25(OH)D$_3$ appeared to become greater as the dose of LPS increased; however, the interactions between 25(OH)D$_3$ and IFN-γ or LPS were not significant.

Our data collectively show a role for vitamin D in maintaining the redox balance of bovine monocytes. The oxidative environment generated by production of superoxides and nitric oxide in phagocytes is a key element in elimination of bacterial pathogens and redox signaling (Weiss and Schaible, 2015). Indeed, García-Barragán et al. (2018) reported that vitamin D-mediated NO production improved killing of Mycobacterium bovis. Generation of RNS, however, can lead to damage or impairment of infected tissues if not balanced by adequate supply of antioxidants (Trigona et al., 2006; Shi et al., 2018). As such, nutrients that have antioxidant properties or support antioxidant systems (i.e., vitamin E, Se, and Cu) are key nutrients in protection of cattle from bacterial diseases (Sordillo, 2016). Here, our data indicate that vitamin D also supports antioxidant activity in monocytes via increasing thioredoxin and metallothionein systems.

Physiological systems use several antioxidant mechanisms to combat the ROS produced from normal metabolism or oxidative bursts of phagocytes (Virág et al., 2019). Endogenous antioxidants such as the glutathione, metallothionein, and thioredoxin systems are known to protect host cells from ROS and maintain the redox balance (Itoh et al., 2005; Trigona et al., 2006). Previous work showed that 1,25(OH)$_2$D$_3$ increased thioredoxin reductase gene expression and enzyme activity in the human THP-1 monocyte cell.

Table 1. Effects of 1,25-dihydroxyvitamin D$_3$ on expression of antioxidant genes

Gene	Primer sequence1	Fold change2	P-value3
ACTB	GGATCATCTGACCTCCAAGTA	—	—
GAPDH	CATTGCCCCTCGACATAG	—	—
RPS9	GTGAGGCTGCGAGGTCCTCA	—	—
CYP24A1	GAAGACTGCGAGGTCCTAG	13.9	<0.01
CYP27B1	TTGGACAGAGTACGGTCG	0.7	0.04
DEFB7	TCTCTCTGTTGCTGCTGCT	9.2	<0.01
GPX1	GCAACACGTCTGTTGGAACAG	1.8	<0.01
MT1A	TCCCATCCACAGATCTCTCG	1.8	0.06
MT2A	GCCATCTTCTTGCTCGAGT	1.6	0.04
NOS2	GATCCAGCTGTACAGACACGT	9.9	<0.01
NFE2L2	GCTATGTGCTCTCTGCTCTTG	0.9	0.44
TRX	AGTTTGGCAGCTTGGACATT	1.7	<0.01
TXNRD1	AGTGCACGCTCAGGACAGACT	1.8	<0.01

1Primer specificity and efficiency determined as previously described (Nelson et al., 2010). All primer pair efficiencies were >95%. Forward primer, top row; reverse primer, bottom row.

2Monocytes were treated with 0 or 100 ng/mL LPS and 0 or 4 ng/mL 1,25-dihydroxyvitamin D$_3$ in a factorial arrangement (n = 4 cows). Fold change represents mean effect of 1,25(OH)$_2$D$_3$ compared with no 1,25(OH)$_2$D$_3$.

3Significance of the main effect of 1,25-dihydroxyvitamin D$_3$ treatment. LPS increased ($P < 0.05$) CYP27B1, MT1A, MT2A, NOS2, TRX, and TXNRD1. Interactions between LPS and 1,25(OH)$_2$D$_3$ ($P < 0.05$) were observed for CYP24A1 and TXNRD1 but not the other genes.
Figure 2. Monocytes from lactating Holstein cows (n = 4) were treated for 16 h with increasing concentrations of LPS or interferon-γ (IFN-γ) with 0 or 75 ng/mL 25-hydroxyvitamin D₃ (25D) in a factorial arrangement. Transcripts for CYP27B1 (A), CYP24A1 (B), DEFB7 (C), NOS2 (D), NFE2L2 (E), GPX1 (F), MT1A (G), MT2A (H), TRX (I), and TXNRD1 (J) were measured by quantitative PCR. Data represent the LSM ± SEM of ΔCt transformed by 2^{ΔCt} and expressed as abundance relative to reference genes. The P-values for main effects of stimulant dose (IFN-γ, 0 to 10 ng/mL; LPS, 0 to 1,000 ng/mL), 25D (0 vs. 75 ng/mL), and their interaction (IFN-γ × 25D or LPS × 25D) are indicated on each plot. Tukey adjustment was made to account for multiple means comparison. *P < 0.05, **P < 0.01, ***P < 0.001: effect of 25(OH)D₃ within dose of stimulant is significant. #P < 0.05, ##P < 0.01, ###P < 0.001: effect of 25(OH)D₃ in stimulated cultures (0.1, 1, and 10 ng/mL IFN-γ or 10, 100, and 1,000 ng/mL LPS) is significant.
line (Schütze et al., 1999). We hypothesized that vitamin D would increase antioxidant responses of bovine monocytes to counteract the pro-oxidant environment induced by TLR and IFN-γ signaling. Collectively, our data show that vitamin D signaling contributes to induction of endogenous antioxidant systems of bovine monocytes. For example, in the presence of IFN-γ stimulation, 25(OH)D$_3$ increased antioxidant potential and expression of metallothionein genes. Furthermore, 25(OH)D$_3$ increased expression of TRX and TXNRD1 regardless of stimulation. Thioredoxin and metallothionein have protective roles against NO-induced cell damage (Schwarz et al., 1995; Ferret et al., 2000). Thus, we speculate that increased antioxidant activity from thioredoxin and metallothionein may serve as a protective factor against vitamin D-induced NO production in monocytes.

Certainly, our data do not rule out other antioxidant systems because we did not measure specific antioxidant activities. Glutathione peroxidase activity protects against nitric oxide-induced damage of mammary epithelial cells (Shi et al., 2018) and, in other species, vitamin D signaling increases glutathione concentrations (Jain and Micinski, 2013; Xu et al., 2015). Here, treatment of monocytes with 1,25(OH)$_2$D$_3$ increased GPX1 expression, but the opposite was observed with 25(OH)D$_3$ treatment. We speculate the conflicting results stem from the timing of each metabolite’s actions. For instance, 1,25(OH)$_2$D$_3$ can act immediately in the cell, whereas 25(OH)D$_3$ must be converted to 1,25(OH)$_2$D$_3$ by CYP27B1. Keeping in mind that we measured steady-state transcript abundance at only one time point, it is quite likely the transcript abundance for each gene was not reflective of respective antioxidant activities. Furthermore, posttranslational mechanisms exert substantial control over antioxidant activities of glutathione and thioredoxin systems (Asahi et al., 1995; Rundlöf and Arnér, 2004). Thus, further experiments are needed to assess the effects of vitamin D on specific antioxidant activities in bovine immunity.

The ability of 25(OH)D$_3$ to support the antioxidant potential of monocytes seemed to depend on stimulation, particularly that of IFN-γ, indicating that the vitamin D and IFN-γ pathways work together to maintain the redox balance of monocytes. For instance, dROM was less in cultures treated with IFN-γ and 25(OH)D$_3$ compared with those treated with 25(OH)D$_3$ alone, and upregulation of metallothionein genes depended on IFN-γ stimulation. We also observed that, apart from 25(OH)D$_3$, IFN-γ was a potent stimulator of metallothionein and thioredoxin genes.

The dependency of 25(OH)D$_3$ effects on antioxidant responses may be explained in part by the transcription factor NFE2L2, a key factor in the activation of cellular antioxidant defenses, including induction of MT1A, MT2A, TRX, and TXNRD1 (Sakurai et al., 2005; Fujie et al., 2016). In our experiments, 25(OH)D$_3$ downregulated expression of NFE2L2 but the effect of 25(OH)D$_3$ on NFE2L2 became less pronounced with increasing IFN-γ. Accordingly, we observed the same pattern of responses for antioxidant potential and metallothionein genes. The interaction between IFN-γ and vitamin D also may occur at the point of NFE2L2 protein activity and stability, which we did not measure. To our knowledge, direct binding of the VDR to the metallothionein and thioredoxin promoters in cattle or other species has not been reported. On the other hand, Dai et al. (2019) reported that 1,25(OH)$_2$D$_3$ increased antioxidant responses by increasing NFE2L2 translocation to the nucleus. Likewise, Tao et al. (2019) reported that 1,25(OH)$_2$D$_3$ decreased NFE2L2 ubiquitination. Those interactions between the VDR and NFE2L2 provide a plausible explanation for how vitamin D may increase metallothionein and thioredoxin responses despite downregulation of NFE2L2 expression by 25(OH)D$_3$ treatment. Future work should explore the interactions between NFE2L2 and VDR proteins in regulation of antioxidant responses in cattle.

The implications of our findings are significant in understanding the benefits of vitamin D in transition cow health and production. The health benefits that were observed from supplementing pre-partum cows 25-hydroxyvitamin D$_3$ (Martínez et al., 2018) may involve increased antioxidant potential of immune cells, in addition to the previously reported antimicrobial actions of vitamin D in bovine immunity (Yue et al., 2017; García-Barragán et al., 2018). In theory, the capacity of vitamin D signaling to increase endogenous antioxidant mechanisms of immune cells will limit the degree of oxidative stress and subsequent tissue damage that occurs from inflammatory insults, such as those of the uterus and mammary glands of postpartum cows that are susceptible to bacterial infections. Consequently, biomarkers for oxidative stress may be key outcomes to assess for the effects of vitamin D treatments in cattle.

References
Alberti, A., L. Bolognini, D. Macciantelli, and M. Caratteri. 2000. The radical cation of N,N-diethyl-para-paraphenylendiamine: A possible indicator of oxidative stress in biological samples. Res. Chem. Intermed. 26:253–267. https://doi.org/10.1163/156856700X00769.
Asahi, M., J. Fujii, K. Suzuki, H. G. Seo, T. Kuzuya, M. Hori, M. Tada, S. Fujii, and N. Taniguchi. 1995. Inactivation of glutathione peroxidase by nitric oxide. Implication for cytotoxicity. J. Biol. Chem. 270:21035–21039. https://doi.org/10.1074/jbc.270.36.21035.
Crow, J. P. 1997. Dichlorodiethylfluorescein and dihydroluciferin 123 are sensitive indicators of peroxyxynitrite in vitro: implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide 1:145–157. https://doi.org/10.1006/niox.1996.0113.
Dai, Y., J. Zhang, J. Xiang, Y. Li, D. Wu, and J. Xu. 2019. Calcitriol inhibits ROS-NLRP3-IL-1β signaling axis via activation of Nrf2-antioxidant signaling in hyperosmotic stress stimulated human corneal epithelial cells. Redox Biol. 21:101093. https://doi.org/10.1016/j.redox.2018.101093.
Ferret, P. J., E. Soum, O. Negre, E. E. Wollman, and D. Fradelizi. 2000. Protective effect of thioredoxin upon NO-mediated cell injury in THP1 monocyte human cells. Biochem. J. 346:759–765. https://doi.org/10.1042/0006-2937:bj3460759.
Fujie, T., M. Murakami, E. Yoshida, S. Yasuike, T. Kimura, Y. Fujiwara, C. Yamamoto, and T. Kaji. 2016. Transcriptional induction of metallothionein by tris(pentafluorophenyl)stibine in cultured bovine aortic endothelial cells. Int. J. Mol. Sci. 17:1381. https://doi.org/10.3390/ijms17091381.
García-Barragán, A., J. A. Gutiérrez-Pabello, and E. Alfonseca-Silva. 2018. Calcitriol increases nitric oxide production and modulates microbicidal capacity against Mycobacterium bovis in bovine macrophages. Comp. Immunol. Microbiol. Infect. Dis. 59:17–23. https://doi.org/10.1016/j.cimid.2018.09.001.
Hewison, M. 2012. Vitamin D and immune function: An overview. Proc. Nutr. Soc. 71:50–61. https://doi.org/10.1017/S0029665111001650.
Holcombe, S. J., L. Wisneski, J. Gandy, B. Norby, and L. M. Sordillo. 2018. Reduced serum vitamin D concentrations in healthy early-lactation dairy cattle. J. Dairy Sci. 101:1488–1494. https://doi.org/10.3168/jds.201713547.
Ignarro, L. J., J. M. Fukuto, J. M. Griscavage, N. E. Rogers, and R. E. Byrns. 1993. Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: comparison with enzymatically formed nitric oxide from L-arginine. Proc. Natl. Acad. Sci. USA 90:8103–8107. https://doi.org/10.1073/pnas.90.17.8103.
Itoh, N., H. Shibayama, M. Kanekiyo, D. Namphung, T. Nakashiba, A. Matsuyama, T. Odani, and K. Tanaka. 2005. Reduced bacterial activity and nitric oxide production in metallothionein-deficient macrophages in re-
sponse to lipopolysaccharide stimulation. Toxicology 216:188–196. https://doi.org/10.1016/j.tox.2005.08.005.

Jain, S. K., and D. Micinski. 2013. Vitamin D upregulates glutamate cytosine ligase and glutathione reductase, and GSH formation, and decreases ROS and MCP-1 and IL-8 secretion in high-glucose exposed U937 monocytes. Biochem. Biophys. Res. Commun. 437:7–11. https://doi.org/10.1016/j.brc.2013.06.004.

Kweh, M. F., K. E. Merriman, and C. D. Nelson. 2019. Short communication: Inhibition of DNA methyltransferase and histone deacetylase increases β-defensin expression but not the effects of lipopolysaccharide or 1,25-dihydroxyvitamin D3 on cell viability and signaling events. Antioxid. Redox Signal. 6:41–52. https://doi.org/10.1089/ars.200500712.

Metallothionein protects against the cytotoxic and DNA-damaging effects of nitric oxide. Proc. Natl. Acad. Sci. USA 92:4452–4456. https://doi.org/10.1073/pnas.92.11.4452.

Shi, H. Y., S. M. Yan, Y. M. Guo, Z. X. Guo, and B. L. Shi. 2018. Vitamin A pretreatment protects NO-induced bovine mammary epithelial cells from oxidative stress by modulating Nrf2 and NF-kB signaling pathways. J. Anim. Sci. 96:1305–1316. https://doi.org/10.1093/jas/sky037.

Sordillo, L. M. 2016. Nutritional strategies to optimize dairy cattle immunity. J. Dairy Sci. 99:4967–4982. https://doi.org/10.3168/jds.2015-10354.

Tao, S., H. Zhang, L. Xue, X. Jiang, H. Wang, B. Li, H. Tian, and Z. Zhang. 2019. Vitamin D protects against particles-caused lung injury through induction of autophagy in an Nrf2-dependent manner. Environ. Toxicol. 34:594–609. https://doi.org/10.1002/tox.22726.

Trigona, W. L., I. K. Mullarky, Y. Cao, and L. M. Sordillo. 2006. Thioridoxin reductase regulates the induction of haem oxygenase-1 expression in aortic endothelial cells. Biochem. J. 394:207–216. https://doi.org/10.1042/BJ200505712.

Virág, L., R. I. Jaén, Z. Regdon, L. Boscá, and P. Prieto. 2019. Self-defense of macrophages against oxidative injury: Fighting for their own survival. Redox Biol. 26:101261. https://doi.org/10.1016/j.redox.2019.101261.

Weiss, G., and U. E. Schaible. 2015. Macrophage defense mechanisms against intracellular bacteria. Immunol. Rev. 264:182–203. https://doi.org/10.1111/imr.12266.

Wisnieski, L., J. L. Brown, S. J. Holcombe, J. C. Gandy, and L. M. Sordillo. 2020. Serum vitamin D concentrations at dry-off and close-up predict increased postpartum urine ketone concentrations in dairy cattle. J. Dairy Sci. 103:1795–1806. https://doi.org/10.3168/jds.2019-16599.

Xu, S., Y. H. Chen, Z. X. Tan, D. D. Xie, C. Zhang, M. Z. Xia, H. Wang, H. Zhao, D. X. Xu, and D. X. Yu. 2015. Vitamin D3 pretreatment alleviates renal oxidative stress in lipopolysaccharide-induced acute kidney injury. J. Steroid Biochem. Mol. Biol. 152:133–141. https://doi.org/10.1016/j.jsbmb.2015.05.009.

Yue, Y., L. Hymøller, S. K. Jensen, C. Lauridsen, and S. Purup. 2017. Effects of vitamin D and its metabolites on cell viability and Staphylococcus aureus invasion into bovine mammary epithelial cells. Vet. Microbiol. 203:245–251. https://doi.org/10.1016/j.vetmic.2017.03.008.

Notes
Corwin D. Nelson https://orcid.org/0000-0003-0195-5610

This work was supported with funds from USDA Hatch Project FLA-ANS-005309 through the University of Florida Institute of Food and Agricultural Sciences and funds from the Southeast Milk Inc. Milk Checkoff Research and Promotion Board (Belleview, FL).

The authors thank Madelin Pozadas, Gabriela Silva, and Danna Burgos Vera at the University of Florida for their technical assistance.

The authors have not stated any conflicts of interest.