Full description of the eigenvalue set of the (p,q)-Laplacian with a Steklov-like boundary condition

Luminiţa Barbu · Gheorghe Moroşanu

Received: date / Accepted: date

Abstract In this paper we consider in a bounded domain $\Omega \subset \mathbb{R}^N$ with smooth boundary an eigenvalue problem for the negative (p,q)-Laplacian with a Steklov-like boundary condition, where $p,q \in (1,\infty)$, $p \neq q$, including the open case $p \in (1,\infty)$, $q \in (1,2)$, $p \neq q$. A full description of the set of eigenvalues of this problem is provided. Our results complement those previously obtained by Abreu and Madeira [1], Barbu and Moroşanu [4], FărăŞeanu, Mihăilescu and Stancu-Dumitru [8], Mihăilescu [13], Mihăilescu and Moroşanu [14].

Keywords Eigenvalues · (p,q)-Laplacian · Sobolev space · Nehari manifold · variational methods.

Mathematics Subject Classification (2010) 35J60 · 35J92 · 35P30

1 Introduction

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain with smooth boundary $\partial \Omega$. Consider in Ω the eigenvalue problem

$$\begin{aligned}
Au := -\Delta_p u - \Delta_q u &= \lambda a(x) |u|^{q-2} u \quad \text{in } \Omega, \\
\frac{\partial u}{\partial \omega} &= \lambda b(x) |u|^{q-2} u \quad \text{on } \partial \Omega,
\end{aligned}$$

(1)

under the following hypotheses

Luminiţa Barbu
Faculty of Mathematics and Computer Science
Ovidius University
124 Mamaia Blvd, 900527 Constanța, Romania
E-mail: lbarbu@univ-ovidius.ro

Gheorghe Moroşanu
Academy of Romanian Scientists, Bucharest, Romania
and
Faculty of Mathematics and Computer Science
Babeş-Bolyai University
1 M. Kogălniceanu Str., 400084 Cluj-Napoca, Romania
E-mail: morosanu@math.ubbcluj.ro
\[(h_{pq})\quad p, q \in (1, \infty), p \neq q;\]

\[(h_{ab})\quad a \in L^\infty(\Omega) \text{ and } b \in L^\infty(\partial \Omega) \text{ are given nonnegative functions satisfying}\]
\[
\int_\Omega a(x) \, dx + \int_{\partial \Omega} b(\sigma) \, d\sigma > 0.\tag{2}
\]

We have used above the notation
\[
\frac{\partial u}{\partial \nu_A} := (| \nabla u |^{p-2} + | \nabla u |^{q-2}) \frac{\partial u}{\partial \nu},
\]
where \(\nu\) is the unit outward normal to \(\partial \Omega\). As usual, \(\Delta_p\) denotes the \(p\)-Laplacian, i.e.,
\[
\Delta_p u = \text{div} (|\nabla u|^{p-2} \nabla u).
\]

The operator \((\Delta_p + \Delta_q)\), called \((p,q)\)-Laplacian, occurs in many applications in physics and related sciences such as biophysics (see \cite{9}, \cite{15}), quantum and plasma physics (see \cite{2}, \cite{19}), solid state physics (\cite{16}), chemical reaction design (see \cite{3}), etc.

The solution \(u\) of \((1)\) is understood in a weak sense, as an element of the Sobolev space \(W := W^{1, \max\{p,q\}}(\Omega)\) satisfying equation \((1)_1\) in the sense of distributions and \((1)_2\) in the sense of traces.

\[\text{Definition 1}\quad \lambda \in \mathbb{R} \text{ is an eigenvalue of problem } (1) \text{ if there exists } u_\lambda \in W \setminus \{0\} \text{ such that}
\]
\[
\int_{\Omega} \left(| \nabla u_\lambda |^{p-2} + | \nabla u_\lambda |^{q-2} \right) \nabla u_\lambda \cdot \nabla w \, dx
\]
\[
= \lambda \left(\int_{\Omega} a | u_\lambda |^{q-2} u_\lambda w \, dx + \int_{\partial \Omega} b | u_\lambda |^{q-2} u_\lambda w \, d\sigma \right) \forall w \in W.\tag{3}
\]

According to a Green type formula (see \cite{7}, p. 71), \(u \in W\) is a solution of \((1)\) if and only if it satisfies \((3)\).

Choosing \(w = u_\lambda\) in \((3)\) shows that the eigenvalues of problem \((1)\) cannot be negative. It is also obvious that \(\lambda_0 = 0\) is an eigenvalue of this problem and the corresponding eigenfunctions are the nonzero constant functions. So any other eigenvalue belongs to \((0, \infty)\).

If we assume that \(\lambda > 0\) is an eigenvalue of problem \((1)\) and choose \(w \equiv 1\) in \((3)\) we deduce that every eigenfunction \(u_\lambda\) corresponding to \(\lambda\) satisfies the equation
\[
\int_{\Omega} a | u_\lambda |^{q-2} u_\lambda \, dx + \int_{\partial \Omega} b | u_\lambda |^{q-2} u_\lambda \, d\sigma = 0.\tag{4}
\]

So all eigenfunctions corresponding to positive eigenvalues necessarily belong to the set
\[
\mathcal{C} := \left\{ u \in W; \int_{\Omega} a | u |^{q-2} u \, dx + \int_{\partial \Omega} b | u |^{q-2} u \, d\sigma = 0 \right\}.\tag{5}
\]

This set is a symmetric cone and for \(q = 2\) it is a linear subspace of \(W\).

In the particular case \(q = 2, a \equiv 1, b \equiv 0\), the set of eigenvalues for problem \((1)\) was completely described by M. Mihăilescu \cite{13} (for \(p > 2\)) and M. Fărăcaseanu, M. Mihăilescu and D. Stancu-Dumitru \cite{8} (for \(p \in (1, 2)\)). Problem \((1)\) with \(q = 2, p \in (1, \infty) \setminus \{2\}\) has been studied by J. Abreu and G. Madeira \cite{1}. We point
out that in the case \(p = 2 \) the techniques employed in the papers just mentioned are not applicable to the case of the \((p, q)\)-Laplacian with \(q \neq 2 \) since in this situation \(C \) is no longer a linear subspace of \(W \). Note that problem \(\text{I} \) with \(p \in (1, \infty) \), \(q \in (2, \infty) \), \(p \neq q \), \(a \equiv 1 \), \(b \equiv 0 \) has been investigated by M. Mihăilescu and G. Moroşanu in [14]; also, problem \(\text{I} \) with \(p \in (1, \infty) \), \(q \in (2, \infty) \), \(p \neq q \) has been solved by L. Barbu and G. Moroşanu [4]. The strategy employed in these two papers, based on the Lagrange Multipliers Rule, cannot be applied to the case of the \((p, q)\)-Laplacian with \(p \neq q \), since the constraint set \(C \) defined in (5) is no longer a \(C^1 \) manifold. This case requires separate analysis and some difficulties that occur within the new framework have to be overcome. We shall make use of the so-called direct methods in the Calculus of Variations. In fact, the arguments we shall use work for all \(q \in (1, \infty) \), not just for \(q \in (1, 2) \).

Specifically, our goal here is to determine the set of all eigenvalues of problem \(\text{I} \) under \((h_pq) \) and \((h_{ab}) \). As we have already mentioned, in \[\text{I} \] Theorem 1.1] and \[\text{I} \] Theorem 3.1] it was proved that in the cases \(p \in (1, \infty) \), \(q \in (1, 2) \), \(p \neq q \), respectively, the set of eigenvalues of problem \(\text{I} \) is given by \(0 \cup (\lambda_1, \infty) \), where \(\lambda_1 \) is given by

\[
\lambda_1 := \inf_{w \in C \\setminus \{0\}} \frac{\int_{\Omega} a \left| \nabla w \right|^q dx}{\int_{\Omega} w \left| \nabla w \right|^q dx + \int_{\partial\Omega} b \left| w \right|^q d\sigma} \tag{6}
\]

Note that the denominators of the above fractions may equal zero for some \(w \)'s in \(C \setminus \{0\} \) and in such cases the corresponding numerators are obviously \(> 0 \), thus the values of those fractions are considered \(\infty \) so they do not contribute to \(\lambda_1 \).

Let us now state the main result of this paper (which covers the open case \(p \in (1, \infty) \), \(q \in (1, 2) \), \(p \neq q \)).

Theorem 1 Assume that \((h_pq)\) and \((h_{ab})\) above are fulfilled. Then the set of eigenvalues of problem \(\text{I} \) is precisely \(\{0\} \cup (\lambda_1, \infty) \), where \(\lambda_1 \) is the positive constant defined by (6).

The conclusion that the eigenvalue set contains an interval is due to the fact that the operator \(A \) is nonhomogeneous \((p \neq q) \). Note also that Theorem \(\text{I} \) provides a full description of the eigenvalue set of \(A \).

On the other hand, a complete description of the eigenvalue set in the homogeneous case \(p = q \) is not known even in particular cases. For example, if \(p = q > 1 \), \(a \equiv 1 \), \(b \equiv 0 \), then the eigenvalue set of the corresponding problem is fully known only if \(p = q = 2 \) (i.e., \(A = -2\Delta \)); otherwise, i.e. if \(p = q \in (1, \infty) \), \(p \neq 2 \), then it is only known, as a consequence of the Ljusternik-Schnirelman theory, that there exists a sequence of positive eigenvalues of problem \(\text{I} \) with \(A = -2\Delta \) (see, e.g., [11] Chap. 6)], but this sequence may not constitute the whole eigenvalue set.

2 Preliminary results

Let \(q \in (1, \infty) \) be arbitrary but fixed. As we have pointed out in Introduction, all eigenfunctions corresponding to positive eigenvalues necessarily belong to the set

\[
\mathcal{C} := \left\{ u \in W; \int_{\Omega} a \left| u \right|^{q-2} u \, dx + \int_{\partial\Omega} b \left| u \right|^{q-2} u \, d\sigma = 0 \right\}.
\]
This is a symmetric cone. Moreover, \(C \) is a weakly closed subset of \(W \). Indeed, let \((u_n)_n \subset C \) such that \(u_n \rightharpoonup u_0 \) in \(W \). Since \(W \hookrightarrow L^q(\Omega) \) and \(W \hookrightarrow L^q(\partial \Omega) \) compactly, there exists a subsequence of \((u_n)_n \), also denoted \((u_n)_n \), such that
\[
 u_n \rightharpoonup u_0 \text{ in } L^q(\Omega), \quad u_n \rightharpoonup u_0 \text{ in } L^q(\partial \Omega).
\]

By Lebesgue’s Dominated Convergence Theorem (see also [3, Theorem 4.9]) we obtain \(u_0 \in C \). In addition, \(C \) has nonzero elements (see [4, Section 2]).

Now, for \(r > 1 \) define the set
\[
 C_r := \left\{ u \in W^{1,r}(\Omega); \int_{\Omega} a |u|^{r-2} u \, dx + \int_{\partial \Omega} b |u|^{r-2} u \, d\sigma = 0 \right\}.
\]

Arguing as before, we infer that for all \(r > 1 \), \(C_r \) is a symmetric, weakly closed (in \(W^{1,r}(\Omega) \)) cone, containing infinitely many nonzero elements. Note also that \(C = C_q \) if \(q > p \), otherwise (i.e., if \(q < p \)), then \(C \) is a proper subset of \(C_q \).

Next, for \(q > 1 \), we consider the eigenvalue problem
\[
 \begin{align*}
 -\Delta q u &= \lambda a(x) |u|^{q-2} u \text{ in } \Omega, \\
 |\nabla u|^{q-2} \nabla u &\cdot \nabla w = \lambda b(x) |u|^{q-2} u \text{ on } \partial \Omega.
\end{align*}
\]

As usual, the number \(\lambda \in \mathbb{R} \) is said to be an eigenvalue of problem (7) if there exists a function \(u_{\lambda} \in W^{1,q}(\Omega \setminus \{0\}) \) such that
\[
 \int_{\Omega} |\nabla u_{\lambda}|^{q-2} \nabla u_{\lambda} \cdot \nabla w \, dx \\
 = \lambda \left(\int_{\Omega} a |u_{\lambda}|^{q-2} u_{\lambda} w \, dx + \int_{\partial \Omega} b |u_{\lambda}|^{q-2} u_{\lambda} w \, d\sigma \right) \quad \forall w \in W^{1,q}(\Omega).
\]

Obviously, \(\lambda_0 = 0 \) is an eigenvalue of problem (7) and any other eigenvalue belongs to \((0, \infty) \). Moreover, if we consider an eigenvalue \(\lambda > 0 \) of (7) and choose \(w \equiv 1 \) in (7), we deduce that every eigenfunction \(u_{\lambda} \) corresponding to \(\lambda \) belongs to \(C_q \setminus \{0\} \). We also define
\[
 \lambda_{1q} := \inf_{u \in C_q \setminus \{0\}} \frac{\int_{\Omega} |\nabla w|^{q} \, dx}{\int_{\Omega} a |w|^{q} \, dx + \int_{\partial \Omega} b |\nabla w|^{q} \, d\sigma}.
\]

Now, let us consider the functional
\[
 J : W^{1,q}(\Omega) \to \mathbb{R}, \quad J(w) := \int_{\Omega} |\nabla w|^{q} \, dx,
\]
which is positively homogeneous of order \(q \). By standard arguments we can infer that functional \(J \) is convex and weakly lower semicontinuous for all \(q > 1 \).

Consider the minimization problem
\[
 \inf_{w \in C_1} J(w),
\]
where
\[
 C_1 := C_q \cap \left\{ u \in W^{1,q}(\Omega); \int_{\Omega} a |u|^{q} \, dx + \int_{\partial \Omega} b |u|^{q} \, d\sigma = 1 \right\}.
\]

The next result states that \(J \) attains its minimal value over the set \(C_{1q} \), this value is positive and is equal to \(\lambda_{1q} \).
Lemma 1 If $q \in (1, \infty)$, then there exists $u_* \in \mathcal{C}_q$ such that

$$
\mu := J(u^*) = \inf_{w \in \mathcal{C}_q} J(w) > 0.
$$

Moreover, $\mu = \lambda_{1q}$ and it is the lowest positive eigenvalue of problem (7) with eigenfunction u_*.

Proof It is well-known that functional J is of class C^1 on $W^{1,q}(\Omega)$ and obviously J is bounded below. Let $(u_n)_n \subset \mathcal{C}_q$ be a minimizing sequence for J, i.e.,

$$
J(u_n) \to \inf_{w \in \mathcal{C}_q} J(w) = \mu.
$$

Let us prove that $(u_n)_n$ is bounded in $W^{1,q}(\Omega)$. Assume the contrary, that there exists a subsequence of $(u_n)_n$, again denoted $(u_n)_n$, such that $\|u_n\|_{W^{1,q}(\Omega)} \to \infty$ as $n \to \infty$. Define

$$
v_n := \frac{u_n}{\|u_n\|_{W^{1,q}(\Omega)}} \quad \forall n \in \mathbb{N}.
$$

Clearly, the sequence $(v_n)_n$ is bounded in $W^{1,q}(\Omega)$ so there exist a $v \in W^{1,q}(\Omega)$ and a subsequence of $(v_n)_n$, again denoted $(v_n)_n$, such that

$$
v_n \to v \text{ in } W^{1,q}(\Omega).
$$

Since $W^{1,q}(\Omega) \hookrightarrow L^q(\Omega)$ and $W^{1,q}(\Omega) \hookrightarrow L^q(\partial \Omega)$ compactly, we have up to a subsequence

$$
v_n \to v \text{ in } L^q(\Omega), \ v_n \to v \text{ in } L^q(\partial \Omega).
$$

As $\|v_n\|_{W^{1,q}(\Omega)} = 1 \ \forall n \in \mathbb{N}$, we have $\|v\|_{W^{1,q}(\Omega)} = 1$, and

$$
\int_{\Omega} |\nabla v|^q \, dx \leq \liminf_{n \to \infty} \int_{\Omega} |\nabla v_n|^q \, dx = \liminf_{n \to \infty} \frac{1}{\|u_n\|_{L^q(\Omega)}} J(u_n) = 0,
$$

which shows that v is a constant function. On the other hand, since $(v_n)_n \subset \mathcal{C}_q$ and \mathcal{C}_q is weakly closed in $W^{1,q}(\Omega)$, we infer that $v \in \mathcal{C}_q$, hence $v \equiv 0$. But this contradicts the fact that $\|v\|_{W^{1,q}(\Omega)} = 1$. Therefore, $(u_n)_n$ is indeed bounded in $W^{1,q}(\Omega)$, hence there exist $u_* \in W^{1,q}(\Omega)$ and a subsequence of $(u_n)_n$, also denoted $(u_n)_n$, such that

$$
u_n \to u_* \text{ in } W^{1,q}(\Omega),
$$

$$
u_n \to u_* \text{ in } L^q(\Omega), \ u_n \to u_* \text{ in } L^q(\partial \Omega).
$$

By Lebesgue’s Dominated Convergence Theorem we obtain $u_* \in \mathcal{C}_q$, so the weak lower semicontinuity of J leads to $\mu = J(u_*)$. In addition, $J(u_*) > 0$. Indeed, assuming by contradiction that $J(u_*) = 0$ would imply that $u_* \equiv \text{Const.}$, which is impossible because $u_* \in \mathcal{C}_q$ (see also assumption $(h)_{ab}$).

Since the functional J is positively homogeneous of order q, we have

$$
\mu = \inf_{w \in \mathcal{C}_q \setminus \{0\}} \frac{\int_{\Omega} |\nabla w|^q \, dx}{\int_{\Omega} a \, |w|^q \, dx + \int_{\partial \Omega} b \, |w|^q \, d\sigma}.
$$

thus, we derive from (8) $\mu = \lambda_{1q}$.

We are now going to prove that $\mu = \lambda_{1q}$ is the lowest positive eigenvalue of problem (7) with corresponding eigenfunction u_*. For $q \in [2, \infty)$ the result has been proved in [3] Remark 3.2. If $q \in (1, 2)$, since the constraint set C_q is no longer a C^1 manifold, we cannot use the Lagrange Multipliers Theorem as in [3]. In order to overcome this inconvenience, let us define $J_\mu : W^{1,q}(\Omega) \to \mathbb{R}$,

$$J_\mu(u) = \frac{1}{q} \int_{\Omega} |\nabla u|^q \, dx - \frac{\mu}{q} \left(\int_{\Omega} a \, |u|^q \, dx + \int_{\partial \Omega} b \, |u|^q \, d\sigma \right) \forall u \in W^{1,q}(\Omega),$$

(12)

which is a C^1 functional whose derivative is given by

$$\langle J'_\mu(u), w \rangle = \int_{\Omega} |\nabla u|^{q-2} \nabla u \cdot \nabla w \, dx - \mu \left(\int_{\Omega} a \, |u|^{q-2} \, uw \, dx + \int_{\partial \Omega} b \, |u|^{q-2} \, uw \, d\sigma \right)$$

(13)

for all $u, w \in W^{1,q}(\Omega)$. In order to prove that $\mu = \lambda_{1q}$ is an eigenvalue of problem (7) with eigenfunction $u_* \neq 0$, it is sufficient to show that $J'_\mu(u_*) = 0$. In this case we make use of an argument in [5, Lemma 5.8].

In this respect, we fix $v \in \text{Lip}(\Omega)$ arbitrarily and try to construct a sequence $(u_n)_n \subset C_q$ such that $u_n \to u_*$ in $W^{1,q}(\Omega)$ as $n \to \infty$. To this aim, let us define $I : W^{1,q}(\Omega) \to \mathbb{R}$,

$$I(w) := \int_{\Omega} a \, |w|^{q-2} \, w \, dx + \int_{\partial \Omega} b \, |w|^{q-2} \, w \, d\sigma \forall w \in W^{1,q}(\Omega),$$

and for each $n \in \mathbb{N}^*$,

$$g_n : \mathbb{R} \to \mathbb{R}, \quad g_n(s) := I\left(u_* + \frac{1}{n} v + s\right) \forall s \in \mathbb{R}. \quad (14)$$

Since the function $s \mapsto |w + s|^{q-2} (w + s)$ is strictly increasing on \mathbb{R}, g_n is increasing on \mathbb{R}. In fact, g_n is strictly increasing on \mathbb{R} since, by virtue of (h_{ab}), we see that [2] implies that either $\{|x \in \Omega; a(x) > 0\}|_N > 0$ or $a = 0$ a.e. in Ω and $|\{x \in \partial \Omega; b(x) > 0\}|_{N-1} > 0$. Here $|\cdot|_N, |\cdot|_{N-1}$ denote the Lebesgue measures of the corresponding sets.

In order to show that for all $n \in \mathbb{N}^*$ there exists $s_n \in \mathbb{R}$ such that $g_n(s_n) = 0$, i.e. $u_* + \frac{1}{n} v + s_n \in C_q$, we also define $h_n : \mathbb{R} \to \mathbb{R}$,

$$h_n(s) = \int_{\Omega} a \, |u_* + \frac{1}{n} v + s|^q \, dx + \int_{\partial \Omega} b \, |u_* + \frac{1}{n} v + s|^q \, d\sigma \forall n \in \mathbb{N}^* \forall s \in \mathbb{R}. \quad (15)$$

It is easily seen that h_n is coercive, because

$$h_n(s) \geq 2^{-q} \, |s|^q \left(\|a\|_{L^\infty(\Omega)} |\Omega|_N + \|b\|_{L^\infty(\partial \Omega)} |\partial \Omega|_{N-1} \right) - \int_{\Omega} a \, |u_* + \frac{1}{n} v|^q \, dx - \int_{\partial \Omega} b \, |u_* + \frac{1}{n} v|^q \, d\sigma.$$

Here, we have also used the inequality

$$|x|^q \leq (|x + y| + |y|)^q \leq 2^q (|x + y|^q + |y|^q) \forall x, y \in \mathbb{R}, \quad q > 1.$$
Moreover, h_n is continuously differentiable, $h'_n = g_n$ (see [10] Theorem 2.27) and convex (its derivative g_n is an increasing function). Therefore, for all $n \in \mathbb{N}^*$, h_n has a minimizer s_n, such that $h'_n(s_n) = g_n(s_n) = 0$.

Next, we want to show that the sequence $(ns_n)_n$ is bounded. Arguing by contradiction, let us assume that, after passing to a subsequence if necessary, $ns_n \to \infty$ or $ns_n \to -\infty$ as $n \to \infty$. Since $v \in \text{Lip}(\Omega)$, there exists N_1 large enough such that, we have either $v(\cdot) + ns_n > 0$ in Ω, or $v(\cdot) + ns_n < 0$ in $\Omega \forall n \geq N_1$.

Set

$$u_n := u_* + \frac{1}{n} v + s_n \forall n \in \mathbb{N}^*. \quad (16)$$

Obviously, $(u_n)_n \subset C_q$.

Since the functions g_n, $n \geq N_1$, are strictly increasing on \mathbb{R}, we have

$$0 = g_n(u_n) > g(u_*) = 0 \quad \forall n \geq N_1, \quad (17)$$

if $v(\cdot) + ns_n > 0$ in Ω, or the reverse inequality in the latter case, when $v(\cdot) + ns_n < 0$ in Ω. So, in both cases we get a contradiction.

Consequently, the sequence $(ns_n)_n$ is indeed bounded. This implies that there exists $S \in \mathbb{R}$ such that, on a subsequence, $ns_n \to S$ as $n \to \infty$. Therefore, on a subsequence, we have

$$n(u_n - u_*) \to v + S \text{ and } u_n \to u_* \text{ in } W^{1,q}(\Omega) \text{ as } n \to \infty. \quad (18)$$

In addition, there exists $N_2 \in \mathbb{N}^*$ such that $u_n \not\equiv 0 \forall n \geq N_2$. Now, making use of [11] and [12] it is easy to observe that u_* minimizes functional J_μ over $C_q \setminus \{0\}$. By using the minimality of u_* and the fact that $u_n \in C_q \setminus \{0\}$, we obtain that

$$0 \leq \lim_{n \to \infty} \frac{J_\mu(u_n) - J_\mu(u_*)}{(1/n)}. \quad (19)$$

On the other hand,

$$n(J_\mu(u_n) - J_\mu(u_*)) = \langle J_\mu'(u_*), n(u_n - u_*) \rangle + o(n; u_*, v), \quad (20)$$

where $o(n; u_*, v)$ is a notation for the term which tends to zero in the definition of the Fréchet differential of J_μ at u_*, that is $o(n; u_*, v) \to 0$ as $n \to \infty$. It follows from [19] - [20] in combination with $u_* \in C_q$ that

$$0 \leq \lim_{n \to \infty} n(J_\mu(u_n) - J_\mu(u_*)) = \lim_{n \to \infty} \langle J_\mu'(u_*), n(u_n - u_*) \rangle + o(n; u_*, v)$$

$$= \langle J_\mu'(u_*), v + S \rangle = \langle J_\mu'(u_*), v \rangle. \quad (21)$$

A similar reasoning with $-v$ instead of v shows that $\langle J_\mu(u_*), v \rangle = 0$ for every Lipschitz test function v. Taking into account the density of Lipschitz functions in $W^{1,q}(\Omega)$, which is true since $\partial \Omega$ is smooth (hence Lipschitz, see [12] Theorem 3.6), we obtain that u_* is an eigenfunction of problem (7) corresponding to eigenvalue $\mu = \lambda_q > 0$.

It remains to show that there is no eigenvalue of problem (7) in the open interval $(0, \lambda_q)$.

Remark 2

Assume by way of contradiction that there exists \(\lambda \in (0, \lambda_1) \) for which (7) possesses a solution \(u_\lambda \in C \setminus \{0\} \). It follows from (3) with \(w = u_\lambda \) and (9) that

\[
0 < (\lambda_1 - \lambda) \left(\int_{\Omega} a \ | u_\lambda |^q \ dx + \int_{\partial \Omega} b \ | u_\lambda |^q \ d\sigma \right) \leq \int_{\Omega} | \nabla u_\lambda |^q \ dx
\]

\[
- \lambda \left(\int_{\Omega} a \ | u_\lambda |^q \ dx + \int_{\partial \Omega} b \ | u_\lambda |^q \ d\sigma \right) = 0,
\]

which is a contradiction. This concludes the proof.

Remark 1

If \(u_\lambda \) is an eigenfunction corresponding to an eigenvalue \(\lambda > 0 \), then we have from (3)

\[
\int_{\Omega} \left(| \nabla u_\lambda |^p + | \nabla u_\lambda |^p \right) \ dx = \lambda \left(\int_{\Omega} a \ | u_\lambda |^q \ dx + \int_{\partial \Omega} b \ | u_\lambda |^q \ d\sigma \right),
\]

thus \(u \) cannot be a constant function (see (2) and so

\[
\int_{\Omega} a \ | u_\lambda |^q \ dx + \int_{\partial \Omega} b \ | u_\lambda |^q \ d\sigma > 0.
\]

Therefore, denoting

\[
\Gamma_1(u_\lambda) := \{ x \in \Omega; \ a(x)u_\lambda(x) \neq 0 \}, \quad \Gamma_2(u_\lambda) := \{ x \in \partial \Omega; \ b(x)u_\lambda(x) \neq 0 \},
\]

we see that either \(|\Gamma_1(u_\lambda)| > 0 \) or \(|\Gamma_2(u_\lambda)| > 0 \). Obviously, \(u_\lambda \) corresponding to any eigenvalue \(\lambda > 0 \) cannot be a constant function (see (3) with \(v = u_\lambda \) and (2)).

Remark 2

Note that the infimum on \(C \setminus \{0\} \) of the Rayleigh-type quotient associated to the eigenvalue problem (1) is given by

\[
\bar{\lambda}_1 := \inf_{w \in C \setminus \{0\}} \frac{\frac{1}{p} \int_{\Omega} | \nabla w |^p \ dx + \frac{1}{q} \int_{\partial \Omega} | \nabla w |^q \ dx}{\int_{\Omega} a \ | w |^q \ dx + \int_{\partial \Omega} b \ | w |^q \ d\sigma} \quad (22)
\]

In fact, \(\bar{\lambda}_1 = \lambda_1 \). Indeed, it is obvious that \(\lambda_1 \leq \bar{\lambda}_1 \) and for the converse inequality we note that, \(\forall v \in C \setminus \{0\} \), \(t > 0 \), we have \(tv \in C \setminus \{0\} \) and

\[
\bar{\lambda}_1 \leq \inf_{w \in C \setminus \{0\}} \frac{\frac{1}{p} \int_{\Omega} | \nabla v |^p \ dx + \frac{1}{q} \int_{\partial \Omega} | \nabla v |^q \ dx}{\int_{\Omega} a \ | v |^q \ dx + \int_{\partial \Omega} b \ | v |^q \ d\sigma} \leq \frac{\int_{\Omega} | \nabla v |^p \ dx}{\int_{\Omega} a \ | v |^q \ dx + \int_{\partial \Omega} b \ | v |^q \ d\sigma} + tp^{-q} \frac{q \int_{\Omega} | \nabla v |^p \ dx}{p(\int_{\Omega} a \ | v |^q \ dx + \int_{\partial \Omega} b \ | v |^q \ d\sigma)}.
\]

Now letting \(t \to \infty \) if \(q > p \), and \(t \to 0 \) if \(q < p \), then passing to infimum for \(v \in C \setminus \{0\} \) we get the desired inequality. Hence \(\lambda_1 \) can be expressed in two different ways (see (22) and (22)).

Remark 3

As a consequence of Lemma 1 we have \(\lambda_1 > 0 \). Indeed, from (6) we have

\[
\lambda_1 := \inf_{w \in C_1} \int_{\Omega} | \nabla w |^q \ dx,
\]

where \(C_1 = \{ v \in C; \int_{\Omega} a \ | v |^q \ dx + \int_{\partial \Omega} b \ | v |^q \ d\sigma = 1 \} \). So \(\lambda_1 = J(u^*) \) for \(p \leq q \) and \(\lambda_1 \geq J(u^*) \) if \(p > q \). Thus in both cases \(\lambda_1 > 0 \).
3 Proof of the main result

We have already stated that \(\lambda_0 = 0 \) is an eigenvalue of problem (1) and any other eigenvalue of this problem belongs to \((0, \infty)\). We verify next that no eigenvalue belongs to \((0, \lambda_1)\). To argue by contradiction, assume that problem (1) possesses an eigenvalue \(\lambda \in (0, \lambda_1) \) with a corresponding eigenfunction \(u_\lambda \). Then, from (3)

\[
\int_\Omega \left(|\nabla u_\lambda|^p + |\nabla u_\lambda|^q \right) \, dx = \lambda \left(\int_\Omega a |u_\lambda|^q \, dx + \int_{\partial\Omega} b |u_\lambda|^q \, d\sigma \right).
\]

Note that \(\int_\Omega a |u_\lambda|^q \, dx + \int_{\partial\Omega} b |u_\lambda|^q \, d\sigma \neq 0 \), otherwise \(u_\lambda \equiv \text{Const.} \), which is impossible (see Remark 1). On the other hand, as \(u_\lambda \in C \setminus \{0\} \), we derive from (1) and (23)

\[
\lambda \leq \lambda_1 \leq \frac{\int_\Omega |\nabla u_\lambda|^q \, dx}{\int_\Omega a |u_\lambda|^q \, dx + \int_{\partial\Omega} b |u_\lambda|^q \, d\sigma} \leq \lambda \cdot \frac{\lambda \int_\Omega a |u_\lambda|^q \, dx + \int_{\partial\Omega} b |u_\lambda|^q \, d\sigma}{\int_\Omega a |u_\lambda|^q \, dx + \int_{\partial\Omega} b |u_\lambda|^q \, d\sigma} < \lambda,
\]

which is a contradiction.

In what follows we shall prove that every \(\lambda > \lambda_1 \) is an eigenvalue of problem (1). To this purpose we fix such a \(\lambda \) and define \(J_\lambda : W \to \mathbb{R} \),

\[
J_\lambda(u) = \frac{1}{p} \int_\Omega |\nabla u|^p \, dx + \frac{1}{q} \int_\Omega |\nabla u|^q \, dx - \lambda \left(\int_\Omega a |u|^q \, dx + \int_{\partial\Omega} b |u|^q \, d\sigma \right),
\]

which is a \(C^1 \) functional whose derivative is given by

\[
(J'_\lambda(u), w) = \int_\Omega |\nabla u|^{p-2} \nabla u \cdot \nabla w \, dx + \int_\Omega |\nabla u|^{q-2} \nabla u \cdot \nabla w \, dx - \lambda \left(\int_\Omega a |u|^{q-2} \, dx + \int_{\partial\Omega} b |u|^{q-2} \, d\sigma \right) \forall u, w \in W.
\]

So, according to Definition 1, \(\lambda > \lambda_1 \) is an eigenvalue of problem (1) if and only if there exists a critical point \(u_\lambda \in W \setminus \{0\} \) of \(J_\lambda \), i.e. \(J'_\lambda(u_\lambda) = 0 \).

The proof of Theorem 1 will follow as a consequence of several intermediate results. We shall discuss two cases which are complementary to each other.

Case 1: \(q \in (1, \infty) \), \(p > q \).

In this case we have \(W = W^{1,p}(\Omega) \). The following lemma shows, essentially, that the functional defined in (25) is coercive for every \(\lambda > \lambda_1 \) restricted to the subset \(C \subset W = W^{1,p}(\Omega) \).

Lemma 2 Let \(q \in (1, \infty) \), \(p > q \). For every \(\lambda > \lambda_1 \), we have

\[
\lim_{\|u\|_{W^{1,p}(\Omega)} \to \infty, u \in C} J_\lambda(u) = \infty.
\]

For the proof of this lemma we refer the reader to L. Barbu and G. Moroșanu [4, Case 1].
Lemma 3 Let \(q \in (1, \infty), \ p > q. \) Every number \(\lambda \in (\lambda_1, \infty) \) is an eigenvalue of problem (1).

Proof Note that \(\mathcal{C} \) is a weakly closed subset of the reflexive Banach space \(W = W^{1,p}(\Omega) \), and functional \(J_\lambda \) is coercive (see Lemma 2) and weakly lower semicontinuous on \(\mathcal{C} \) with respect to the norm of \(W^{1,p}(\Omega) \). Standard results in the calculus of variations (see, e.g., [17, Theorem 1.2]) ensures the existence of a global minimizer \(z_* \in \mathcal{C} \) for \(J_\lambda \), i.e., \(J_\lambda(z_*) = \min_{\mathcal{C}} J_\lambda \).

From Remark 2 we know that \(\lambda_1 = \lambda_1 \), hence \(\lambda > \lambda_1 = \bar{\lambda}_1 \). Then (by (29)) there exists \(u_{0\lambda} \in \mathcal{C} \setminus \{0\} \) such that \(J_\lambda(u_{0\lambda}) < 0 \). It follows that

\[J_\lambda(z_*) \leq J_\lambda(u_{0\lambda}) < 0, \]

which shows that \(z_* \neq 0 \).

Next, we are going to show that the global minimizer \(z_* \) for \(J_\lambda \) restricted to \(\mathcal{C} \) is a critical point of \(J_\lambda \) considered on the whole space \(W^{1,p}(\Omega) \), i.e., \(J_\lambda(z_*) = 0 \), in other words, \(z_* \) is an eigenfunction of problem (1) corresponding to \(\lambda \).

In fact, \(z_* \) is a solution of the minimization problem

\[\min_{w \in W} J_\lambda(w), \]

under the restriction

\[g(w) := \int_{\Omega} a \ | w |^{q-2} w \ dx + \int_{\partial \Omega} b \ | w |^{q-2} w \ d\sigma = 0. \]

If \(q \in [2, \infty), \ p > q \), we have proved in [4, Case 1], by using the Lagrange Multipliers Rule, that \(J'_\lambda(z_*) = 0 \). For \(q \in (1, 2) \), \(g \) is no longer a \(C^1 \) function on \(W \), so we cannot use the same reasoning to prove our assertion. Fortunately, we can use a technique similar to that used in the proof of Lemma [1] It is worth mentioning that this technique works for the case \(q \in [2, \infty), \) too.

Since \(p > q \), the inclusions \(W^{1,p}(\Omega) \hookrightarrow L^q(\Omega) \) and \(W^{1,p}(\Omega) \hookrightarrow L^q(\partial \Omega) \) are compact. As in the proof of Lemma [4] let us fix an arbitrary \(v \in \text{Lip}(\Omega) \) and construct the sequence

\[u_n := z_* + \frac{1}{n} v + s_n \ \forall n \in \mathbb{N}^*, \tag{26} \]

such that \(\{u_n\}_n \subset \mathcal{C} \).

Similar arguments as in the proof of Lemma [4] can be used in order to prove that the sequence \((n s_n)_n \) is also bounded, hence it converges on a subsequence to some \(S \in \mathbb{R} \) and so, on a subsequence,

\[n(u_n - z_*) \to v + S \text{ and } u_n \to z_* \text{ in } W^{1,p}(\Omega) \text{ as } n \to \infty. \tag{27} \]

Since \(z_* \) minimizes functional \(J_\lambda \) over \(\mathcal{C} \) and \((u_{n\lambda})_n \subset \mathcal{C} \), we have

\[0 \leq \lim_{n \to \infty} \frac{J_\lambda(u_n) - J_\lambda(z_*)}{n}. \tag{28} \]

We also have

\[n(J_\lambda(u_n) - J_\lambda(z_*)) = \langle J'_\lambda(z_*), n(u_n - z_*) \rangle + o(n; z_{\lambda_*}, v), \tag{29} \]
with \(o(n; z_*,v) \to 0 \) as \(n \to \infty \). From \([27]-[29]\), combined with \(z_* \in \mathcal{C} \), we get
\[
0 \leq \lim_{n \to \infty} n (J_\lambda(u_n) - J_\lambda(z_*)) = \lim_{n \to \infty} \langle J'_\lambda(z_*), n(u_n - z_*) \rangle + o(n; z_*, v) = \langle J'_\lambda(z_*), v + S \rangle = \langle J'_\lambda(z_*), v \rangle.
\]

A similar reasoning with \(-v\) instead of \(v\) and the density of Lipschitz functions in \(W^{1,p}(\Omega)\) yield \(J'_\lambda(z_*) = 0 \), which concludes the proof.

Case 2: \(q \in (1, \infty) \), \(p < q \).

In this case \(W = W^{1,q}(\Omega) \) and \(\mathcal{C} = C_q \). Let \(\lambda > \lambda_1 \) be a fixed number. Under the assumption \(p < q \) we cannot expect coercivity on \(W^{1,q}(\Omega) \) of the functional \(J_\lambda \). From now on we analyse the action of \(J_\lambda \) on the Nehari type manifold (see \([18]\)) defined by
\[
\mathcal{N}_\lambda = \{ v \in \mathcal{C} \setminus \{0\} ; \langle J'_\lambda(v), v \rangle = 0 \} = \left\{ v \in \mathcal{C} \setminus \{0\} ; \int_\Omega (|\nabla v|^p + |\nabla v|^q) \, dx = \lambda \left(\int_\Omega a \, |v|^q \, dx + \int_{\partial \Omega} b \, |v|^q \, d\sigma \right) \right\}.
\]

It is natural to consider the restriction of \(J_\lambda \) to \(\mathcal{N}_\lambda \) since any possible eigenfunction corresponding to \(\lambda \) belongs to \(\mathcal{N}_\lambda \). Note that on \(\mathcal{N}_\lambda \), functional \(J_\lambda \) has the form
\[
J_\lambda(u) = \frac{1}{p} \int_\Omega |\nabla u|^p \, dx + \frac{1}{q} \int_\Omega |\nabla u|^q \, dx - \frac{\lambda}{q} \left(\int_\Omega a \, |u|^q \, dx + \int_{\partial \Omega} b \, |u|^q \, d\sigma \right).
\]

Now, let us recall the following result from L. Barbu and G. Morosanu \([4]\) Case 2, Steps 1-4.1.

Lemma 4 Let \(q \in (1, \infty) \), \(p < q \). Then there exists a point \(u_* \in \mathcal{N}_\lambda \) where \(J_\lambda \) attains its minimal value, \(m_\lambda := \inf_{w \in \mathcal{N}_\lambda} J_\lambda(w) > 0 \).

In the sequel we show that the minimizer \(u_* \), given by Lemma 4 is a critical point of \(J_\lambda \) considered on the whole space \(W^{1,q}(\Omega) \).

Lemma 5 Let \(q \in (1, \infty) \), \(p < q \). The minimizer \(u_* \in \mathcal{N}_\lambda \) from Lemma 4 is an eigenfunction of problem \((1)\) with corresponding eigenvalue \(\lambda \).

Proof It suffices to prove that \(J'_\lambda(u_*) = 0 \).

In fact \(u_* \) is a minimizer of \(J_\lambda \) for \(w \in W \) subject to the restrictions
\[
g_1(w) := \int_\Omega (|\nabla w|^p + |\nabla w|^q) \, dx - \lambda \left(\int_\Omega a \, |w|^q \, dx + \int_{\partial \Omega} b \, |w|^q \, d\sigma \right) = 0, \quad (31)
\]
\[
g_2(w) := \int_\Omega a \, |w|^{q-2} w \, dx + \int_{\partial \Omega} b \, |w|^{q-2} w \, d\sigma = 0. \quad (32)
\]

In the case \(q \in [2, \infty) \), \(p < q \), the conclusion was proved in L. Barbu and G. Morosanu \([4]\) Step 5, by using the Lagrange Multipliers Rule. If \(q \in (1, 2) \), the function \(g_2 \) is not in \(C^1(W; \mathbb{R}) \), so the Lagrange Multipliers Rule is no longer applicable to this case. What we can do is to apply a reasoning similar to that used in the proofs of Lemmas 1 and 2 to show that \(J'_\lambda(u_*) = 0 \).
So, let $v \in \text{Lip}(\Omega)$ be an arbitrary but fixed function. Let $u_\ast \in \mathcal{N}_\lambda$ be the minimizer of \mathcal{J}_λ over \mathcal{N}_λ, and consider the sequence $(u_n)_n \subset W^{1,q}(\Omega)$,

$$u_n := u_\ast + \frac{1}{n}v + s_n \ \forall \ n \in \mathbb{N}^*,$$ \hspace{1cm} (33)

with $(u_n)_n \subset \mathcal{C}_q$. Again, the sequence $(ns_n)_n$ is bounded, so it converges on a subsequence to some $S \in \mathbb{R}$. Therefore, on a subsequence, we have

$$n(u_n - u_\ast) \to v + S, \ u_n \to u_\ast \text{ in } W^{1,q}(\Omega) \text{ as } n \to \infty.$$ \hspace{1cm} (34)

Since $u_\ast \neq 0$, one can assume that $(u_n)_n \subset \mathcal{C}_q \setminus \{0\}$. Using this last subsequence of $(u_n)_n$, we shall construct a sequence $(t_n)_n \subset \mathbb{R}$ such that $(t_nu_n)_n \subset \mathcal{N}_\lambda$, for every n sufficiently large, i.e.,

$$t_n^p \int_{\Omega} |\nabla u_n|^p \ dx + t_n^q \int_{\Omega} |\nabla u_n|^q \ dx = \lambda t_n^q \left(\int_{\Omega} a |u_n|^q \ dx + \int_{\partial \Omega} b |u_n|^q \ d\sigma \right),$$ \hspace{1cm} (35)

or, equivalently,

$$t_n = \left(\frac{\int_{\Omega} |\nabla u_n|^p \ dx}{\lambda \left(\int_{\Omega} a |u_n|^q \ dx + \int_{\partial \Omega} b |u_n|^q \ d\sigma \right)} \right)^{\frac{1}{q-p}}.$$ \hspace{1cm} (36)

Note that for sufficiently large n, both the numerator and the denominator are positive numbers. Indeed, since $u_\ast \in \mathcal{N}_\lambda$, we have

$$\int_{\Omega} |\nabla u_\ast|^p \ dx > 0 \text{ and } \int_{\Omega} |\nabla u_\ast|^q \ dx < \lambda \left(\int_{\Omega} a |u_\ast|^q \ dx + \int_{\partial \Omega} b |u_\ast|^q \ d\sigma \right).$$ \hspace{1cm} (37)

Since the functionals

$$\mathcal{I}_1, \mathcal{I}_2 : W \to \mathbb{R}, \ \mathcal{I}_1(w) := \int_{\Omega} |\nabla w|^p \ dx,$$
$$\mathcal{I}_2(w) := -\int_{\Omega} |\nabla w|^q \ dx + \lambda \left(\int_{\Omega} a |w|^q \ dx + \int_{\partial \Omega} b |w|^q \ d\sigma \right) \ \forall \ w \in W$$ \hspace{1cm} (38)

are continuous on W and $\mathcal{I}_1(u_\ast) > 0$, $\mathcal{I}_2(u_\ast) > 0$, (see (37)), there exists $\delta_0 > 0$ such that

$$w \in W, \ ||w - u_\ast||_W < \delta_0 \implies \mathcal{I}_1(w) > 0, \ \mathcal{I}_2(w) > 0.$$ \hspace{1cm} (39)

Since $u_n \to u_\ast$ in W, it follows that for N_0 large enough, $\mathcal{I}_1(u_n) > 0, \mathcal{I}_2(u_n) > 0 \ \forall \ n \geq N_0$, hence t_n given by (36) is well defined for $n \geq N_0$. So we can define

$$z_n := t_n \left(u_\ast + \frac{1}{n}v + s_n \right) = t_n u_n \ \forall \ n \geq N_0,$$ \hspace{1cm} (39)

with $(z_n)_n \subset \mathcal{N}_\lambda$. In addition, using (36) and (39), we can see that

$$t_n \to 1 \text{ in } \mathbb{R}, \ z_n \to u_\ast \text{ in } W^{1,q}(\Omega) \text{ as } n \to \infty.$$ \hspace{1cm} (40)
In what follows we shall prove that the sequence \((n(t_n - 1))_n\) is bounded. To this purpose, let us first show that the sequence \((n(t_n^p - q - 1))_n\) is bounded. Define the functional \(L_\lambda : W \to \mathbb{R}\),

\[
L_\lambda(u) = -\int_\Omega |\nabla u|^p \, dx - \int_\Omega |\nabla u|^q \, dx + \lambda \int_\Omega a |u|^q \, dx + \int_{\partial \Omega} b |u|^q \, d\sigma \quad \forall u \in W,
\]

which belongs to \(C^1(W; \mathbb{R})\), and for \(u, w \in W\)

\[
\langle L'_\lambda(u), w \rangle = -p \int_\Omega |\nabla u|^{p-2} \nabla u \cdot \nabla w \, dx - q \int_\Omega |\nabla u|^{q-2} \nabla u \cdot \nabla w \, dx + \lambda \int_\Omega a |u|^{q-2} u w \, dx + \int_{\partial \Omega} b |u|^{q-2} u w \, d\sigma.
\]

From (41) and (45) we deduce that the sequence \((u_n) \to u\) as \(n \to \infty\), since \(p < q\).

Hence, there exists \(N \in \mathbb{N}\) such that for all \(n \geq N_0\), we infer from (46) that the sequence \(n(t_n^p - q - 1)\) has a finite limit. Hence, there is \(K > 0\) such that for all \(n \geq N_0\), \(n(t_n^p - q - 1) \leq K\), which implies

\[
1 - \frac{K}{n} \leq t_n^p - q - 1 \leq 1 + \frac{K}{n} \quad \forall n \geq N_0.
\]

Since, there exists \(N_1 \in \mathbb{N}\) such that \(1 - K/n > 0 \quad \forall n \geq N_1\), we have

\[
n \left(1 + \frac{K}{n} \right)^{1/(p-q)} - 1 \leq n(t_n - 1) \leq n \left(1 - \frac{K}{n} \right)^{1/(p-q)} - 1 \quad \forall n \geq \max\{N_0, N_1\}.
\]

Taking into account the relations

\[
\lim_{x \to 0} \frac{(1 + Kx)^{1/(p-q)} - 1}{x} = K/(p - q), \quad \lim_{x \to 0} \frac{(1 - Kx)^{1/(p-q)} - 1}{x} = -K/(p - q),
\]

we infer from (46) that the sequence \((n(t_n - 1))_n\) is bounded, thus, by possibly passing to a subsequence, there exists \(T \in \mathbb{R}\), such that \(n(t_n - 1) \to T\) as \(n \to \infty\).

By using the minimality of \(u_*\) and the fact that \((z_n)_n \subset N_\lambda\) we obtain that

\[
0 \leq \lim_{n \to \infty} J_\lambda(z_n) - J_\lambda(u_*)
\]

Since functional \(J_\lambda \in C^1(W; \mathbb{R})\), we can write

\[
n(J_\lambda(z_n) - J_\lambda(u_*)) = \langle J'_\lambda(u_*), n(z_n - u_*) \rangle + o(n; u_*, v),
\]

where \(o(n; u_*, v)\) denotes a term which is of order \(o(n)\) as \(n \to \infty\).
with $o(n; u_*, v) \to 0$ as $n \to \infty$. Taking into account (39) and (40), we can see that, on a subsequence,

$$n(z_n - u_*) = n(t_n - 1)u_* + v + ns_n \to Tu_* + v + S \text{ as } n \to \infty \text{ in } W.$$ \hspace{1cm} (49)

It follows from (47) and (49) that

$$0 \leq \langle J'(\lambda)(u_*), v + S + Tu_* \rangle.$$ \hspace{1cm} (50)

Since $u_* \in \mathcal{N}_\lambda$, we obtain that

$$\langle J'(\lambda)(u_*), u_* \rangle = 0, \quad \langle J'(\lambda)(u_*), S \rangle = 0,$$

hence (50) implies

$$0 \leq \langle J'(\mu)(u_*), v \rangle.$$ \hspace{1cm} (51)

A similar reasoning with $-v$ instead of v shows that the converse inequality holds, hence $0 = \langle J'(\lambda)(u_*), v \rangle$. Finally, using the density of Lipschitz functions in W we obtain that $J'(\lambda)(u_*) = 0$, which concludes the proof.

Therefore, as it has already been pointed out, $\lambda = 0$ is an eigenvalue, so the conclusion of Theorem 1 follows from Lemma 3 and Lemma 5.

Remark 4 Thus, if $q > 1$ and $1 < p < q$ then $\lambda_1 = \lambda_{1q}$, so the eigenvalue set of problem (1) is $\{0\} \cup (\lambda_{1q}, \infty)$, which is independent of p. If $1 < q < p$ then $\lambda_1 \geq \lambda_{1q}$.

References

1. Abreu, J., Madeira, G., Generalized eigenvalues of the $(P,2)$–Laplacian under a parametric boundary condition, Proc. Edinburgh Math. Soc., 63(1) (2020), 287-303.
2. Anderson D., Jancel R., Wilhelmsson, H., Phys. Rev. A 30 (1984), 2, 965–966.
3. Aris, R., Mathematical modelling techniques, Research Notes in Mathematics, 24, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979.
4. Barbu, L., Moroşanu, G., Eigenvalues of the negative (p,q)-Laplacian under a Steklov-like boundary condition, Complex Var. Elliptic Equations, 64(4) (2019), 685–700.
5. Brasco, L., Franzina, G. An anisotropic eigenvalue problem of Stekloff type and weighted Wulff inequalities, Nonlinear Differ. Equ. Appl. 20 (2013), 1795-1830.
6. Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011.
7. Casas, E., Fernández, I.A., A Green’s formula for quasilinear elliptic operators, J. Math. Anal. Appl., 142(1989), 62-73.
8. Fărcaşeanu, M., Mihăilescu M., Stanca-Dumitru, D., On the set of eigenvalues of some PDEs with homogeneous Neumann boundary condition, Nonlinear Anal. Theory Methods Appl., 116 (2015), 19-25.
9. Fife, P.C., Mathematical aspects of reacting and diffusing systems, Lecture Notes in Biomathematics, 28, Springer-Verlag, Berlin-New York, 1979.
10. Folland, G.B., Real Analysis: Modern Techniques and Their Applications (2nd ed.), Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1999.
11. Gasinski, L., Papageorgiou, N.S., Nonlinear Analysis, Series in Mathematical Analysis and Applications, 9, Chapman & Hall/CRC, Boca Raton, FL, 2006.
12. Giga, Y., Surface Evolution Equations. A Level Set Approach, Birkhäuser Verlag, Basel, 2006.
13. Mihăilescu, M., An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue, Commun. Pure Appl. Anal. 10 (2011), 701-708.
14. Mihăilescu, M., Moroşanu, G., Eigenvalues of $-\Delta_p - \Delta_q$ under Neumann boundary condition, Canadian Math. Bull., 59(3) (2016), 606-626.
15. Murray, J.D., Mathematical biology, Biomathematics, 19, Springer-Verlag, Berlin, 1993.
16. Myers-Beaghton, A.K., Vvedensky, D. D., Chapman-Kolmogorov equation for Markov models of epitaxial growth. J. Phys. A, 22(11) (1989), 467 - 475.
17. Struwe, M., Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, 1996.
18. Szulkin, A., Weth, T., The Method of Nehari Manifold, Handbook of Nonconvex Analysis and Applications, Int. Press, Somerville, MA, 597-632, 2010.
19. Wilhelmsson, H., Explosive instabilities of reaction-diffusion equations, Phys. Rev. A (3) 36 (1987), no. 2, 965–966.