Research Article

Ramachandran Ishwarya, Kavitha Saravanan, Daniel Selvaraj, Marimuthu Govindarajan*, Naiyf S. Alharbi, Shine Kadaikunnan, Jamal M. Khaled, Jeyachandran Sivakamavalli, Thangaswamy Selvakumar, and Baskaralingam Vaseeharan*

Antibacterial greener silver nanoparticles synthesized using *Marsilea quadrifolia* extract and their eco-friendly evaluation against Zika virus vector, *Aedes aegypti*

https://doi.org/10.1515/gps-2021-0070
received July 19, 2021; accepted October 24, 2021

Abstract: Fabrication and use of nanoparticles have progressively enlarged within the last decade. Herein the silver nanoparticles (AgNPs) were synthesized via the extract from *Marsilea quadrifolia* (Mq) as a decreasing and steadying mediator. The Mq-AgNPs demonstrated superior toxicity on Zika virus vector, *Aedes aegypti* with the LC50 value of 10.69 µg mL⁻¹. The Mq-AgNPs were established securely to non-target organisms *Artemia nauplii* and *Ceriodaphnia cornuta*, and no structural or anatomical alterations confirm its security to the surroundings. The antibacterial activity exposed that Mq-AgNPs showed superior growth inhibition effect against the tested bacteria. Furthermore, the Mq-AgNPs showed strong antioxidant activities when compared to Mq leaf extract. Overall, our results highlight that Mq-AgNPs are hopeful and biodegradable devices against mosquito vectors of therapeutic significance, with moderate toxicity against non-target aquatic animals.

Keywords: *Marsilea quadrifolia*, Zika virus, *Artemia nauplii*, *Ceriodaphnia cornuta*, antioxidant assay

1 Introduction

Mosquito vectors are exclusively liable for spreading pathogens and parasites of different infections like dengue, malaria, chikungunya, encephalitis, Zika virus infection, filariasis, and yellow fever [1–3]. World Health Organization (WHO) approximates that dengue is passed on from 50 to 400 million citizens yearly on the earth. The appearance of dengue-resistant strains is a significant challenge to hold; it has extended and impacted human health [4]. Since commercial vaccines for most diseases spread by *Aedes aegypti* do not exist, mosquito control remains a critical component of all prevention and control campaigns, which typically rely on pesticide spraying, biological control agents, and environmental management, among other things. As a result, developing novel, environmentally acceptable, and effective mosquito control techniques are critical to ensuring our future ability to prevent and manage diseases spread by these insects. Mosquito management is being improved in numerous regions; however, essential confronts and the rising mosquito resistances to insecticides require other
commercial and safe insecticides. The frequent use of chemical insecticides promotes numerous ecological risks and increases insecticide resistance and danger to non-target organisms and public health [5]. In this situation, ecological management devices against mosquitoes are precedence [6,7], and the progress of plant-borne pesticides with several action methods is perhaps the prosperity for managing disease-transmitting mosquitoes [8].

Nanotechnology is another innovative technology with considerable potential in the field of mosquito control. The synthesis of silver nanoparticles (AgNPs) with extracts of plants with insecticidal action has been proven to produce larvicidal chemicals that are effective against mosquitoes at low concentrations. The good insecticidal resistance calls for a novel move towards a nanomaterial-based combinable system to extend the insecticidal exploit. Besides the plant-based biocontrol mediators, nanoparticles’ formulation gives an enhanced approach for mosquito management [9]. AgNPs are the majority of hopeful nanoproducts with excellent physio-chemical properties, regularly occupied in various household and industrialized uses [10,11]. The AgNPs have potent inhibitory activity against a broad array of microorganisms, separately as their antimicrobial property; currently, these have been searching for differentiating their part in controlling the insect pests [12]. The AgNPs have several beneficial properties that could make them an effective bactericide in the future. However, the cost, preparation, and particle dispersion constraints must all be addressed.

Furthermore, before large-scale application, the environmental behavior of AgNPs and the toxicity on non-target creatures must be determined. Marsilea quadrifolia L. (family: Marsileaceae), a waterleaf, originates plentifully in India’s eastern and southern areas. The M. quadrifolia (Mq) leaf aqueous extract contains phytosterols, flavonoids, alkaloids, tannins, reducing sugars, and phenolics compounds [13–15]. The Mq leaf juice is used to treat snakebite and applied to swellings; besides, it is anti-inflammatory and refrigerant [16,17]. Several studies have been published on the production of green AgNPs from diverse plant sources. However, for employing novel plant sources, there is still a need for an economically stable, commercially viable, and environmentally safe way to synthesize AgNPs. Herein the leaf extract of Mq, AgNO₃, and Mq-AgNPs were tested for their larvicidal activity and biotoxicity on Brine shrimp (Artemia nauplii) and Ceriodaphnia cornuta as non-target aquatic organisms.

2 Materials and methods

2.1 Mq leaf extracts preparation

Mq leaves (Figure 1a) were collected from a local source, and they were rinsed with double distilled water (d.H₂O) and dehydrated at 37°C. Ten grams of thinly incised leaves were reserved in a beaker with 100 mL of d.H₂O and heated for 30 min and then stained and stocked up at 4°C for additional utilization.

2.2 Mq-AgNPs synthesis and characterization

In a sterile conical flask, 10 mL of leaf extract was combined with 90 mL of silver nitrate (10 mM) and kept at 37°C. To distinguish the AgNPs, it was examined via
Figure 2: XRD pattern of Mq-AgNPs.

Figure 3: FTIR analysis of Mq-AgNPs.
2.3 Mosquito larvicidal activity and histology analysis

The *A. aegypti* larvae (III instar) were maintained for 1 day in a glass beaker (250 mL) full of 200 mL of dechlorinated water with *Mq* leaf extract (30, 60, 90, 120, and 150 µg·mL⁻¹) and *Mq*-AgNPs (5, 10, 15, 20, and 25 µg·mL⁻¹) followed by the method suggested by Ishwarya et al. [18]. All concentrations were simulated 5 times, and larval mortality was documented 1 day (24 h) after exposure. In histology examination, the dead larvae were stocked up in formalin and mounded in paraffin blocks by 8 µm broad sectors of larval tissue, stained using eosin and hematoxylin, and examined under a stereomicroscope.

2.4 Biototoxicity on *Artemia nauplii*

Artemia cysts were first chlorinated for 20–30 s prior to the hatching procedure. At first, *Artemia* cysts that emerged in marine water were afforded incessant brightness coverage and energetic exposure to air for 1 day. Ten *Artemia nauplii* larvae were placed in each well of the 24-well plates and were experienced against different concentrations (2.5–10 µg·mL⁻¹) of *Mq* extracts, AgNO₃, and *Mq*-AgNPs. The death rate of *Artemia nauplii* was counted and the treated *Artemia nauplii* were viewed under a microscope to detect the nanoparticles’ impairments. The investigation was conducted in triplicate.

2.5 Evaluation of the toxicity on *Ceriodaphnia cornuta*

The *Ceriodaphnia* cornuta employed in this study was a derivation of the store culture carried out in our laboratory by Vijayakumar et al. [19]. Acute toxicity tests for 1 day were executed based on USEPA procedure EPA-821-R-02-012. The neonates of *C. cornuta* were responsive to diverse concentrations (2.5–10 µg·mL⁻¹) of *Mq* extract and *Mq*-AgNPs and this study was observed for 2 days. In brief, 10 neonates of *C. cornuta* were added to glass beakers having freshwater (60 mL) and continued throughout the test; the following day, the structural alterations of *C. cornuta* were noticed.

2.6 Antibacterial study

To assess the antibacterial activity of *Mq* extract and *Mq*-AgNPs against Gram-positive bacteria, *B. subtilis* and *E. faecalis*, and Gram-negative bacteria, *P. aeruginosa* and *P. vulgaris*, the agar well diffusion method carried out by Ishwarya et al. [20] was followed with slight modifications.
The key indicator of AgNP production was an instantaneous color change after adding aqueous Mq extract to silver nitrate solution. AgNPs' surface plasmon resonance revealed a peak at 440 nm, corresponding to their absorbance (Figure 1b). XRD graph clearly shows peaks at 27.9, 32.3, 38.1, 46.3, 54.8, 57.6, 65.1, 67.6, and 76.8 and these peaks are corresponding to (210), (101), (112), (200), (006), (105), (110), (112), and (201) planes, respectively. The peaks on planes less than 30 are due to the subsistence of phytochemical compounds in the leaf extracts and the deposition of AgNPs in the midgut, abdomen, and siphon suggests that larval disease may be caused by tissue injury.

Table 1: Mosquito larvicidal efficacy of Mq extract and Mq-AgNPs on Zika virus vector, Aedes aegypti

Tested materials	Concentration (µg·mL⁻¹)	% of mortality ± SD	LC₅₀ (LCL-UCL)	LC₉₀ (LCL-UCL)	Regression equation	χ²
Mq extract	30	26 ± 0.6	69.68 (62.01–76.56)	140.41 (129.53–155.11)	y = 8.200 + 0.586x	3.064ᵃ
	60	42 ± 0.8				
	90	63 ± 1.2				
	120	78 ± 0.6				
	150	96 ± 0.8				
Mq-AgNPs	5	29 ± 1.2	10.69 (9.41–11.82)	21.93 (20.25–24.18)	y = 11.70 + 3.500x	6.141ᵃ
	10	46 ± 0.8				
	15	66 ± 1.4				
	20	81 ± 1.2				
	25	99 ± 0.8				

ᵃNot significant (α = 0.05).

2.7 Antioxidant assay

To establish the antioxidant activity of Mq leaf extract and Mq-AgNPs for the 1,1-diphenyl-2-picrylhydrazil (DPPH) radical scavenging assay was carried out as per McDonald et al. [21] with some modifications. The scavenging activity of Mq leaf extract and Mq-AgNPs for the hydrogen peroxide was assayed according to the procedure followed by Halliwell et al. [22]. The nitric oxide radical inhibition was examined according to the procedure followed by Ebrahimzadeh et al. [23]. The reducing power of Mq leaf extract and Mq-AgNPs was determined according to the modified protocol of Chang et al. [24] and the absorbance was calculated spectrophotometrically at 700 nm.

2.8 Statistical analysis

All the studies were put through probit analysis, and the LC₅₀ and LC₉₀ values were calculated using SPSS software version 15.

3 Results

3.1 Mq-AgNPs characterization

The treated larvae’s epithelial layer and surface cuticle had broken down, as seen by the stereomicroscope. Furthermore, the epithelium of A. aegypti larvae was damaged, and cells were vacuolated; the hindgut was exaggerated, and the epithelium showed severely vacuolated by spoiled intercellular membranes (Figure 5). Damage to the hindgut and larval muscles has been seen, and the deposition of Mq-AgNPs in the midgut, abdomen, and siphon suggests that larval disease may be caused by tissue injury.

3.2 Analysis of histology and larvicidal assay

The Mq-AgNPs showed the best larvicidal activity against the Zika virus vector A. aegypti larvae with the LC₅₀ and LC₉₀ values of 10.69 and 21.93 µg·mL⁻¹, respectively (Table 1).
3.3 Biotoxicity on Artemia nauplii and C. cornuta

The Mq-AgNPs were non-toxic to the non-target organisms Artemia nauplii and C. cornuta. The primary clarification hinted that the tested animals’ long life and swimming action were not changed for 7 days following the experiment. A slight irregularity in swimming, heart rate, and thoracic limb progress was detected under a stereomicroscope in Artemia nauplii and C. cornuta treated with Mq-AgNPs (Figure 6). The confocal laser scanning microscopy examination also evidenced the accretion and morphological irregularities of Artemia nauplii and C. cornuta treated with Mq-AgNPs (Figures 7 and 8).

3.4 Antibacterial activity

The Mq extract and Mq-AgNPs were assessed for the antibacterial activity against tested bacterial pathogens. The agar well diffusion method was used to investigate the

![Figure 5: Stereomicroscopic images of third instar larvae of Aedes aegypti: control (a), Mq leaf extract (b), AgNO3 (c), Mq-AgNPs (d). Histological studies of A. aegypti third instar larvae: control (e), Mq leaf extract (f), AgNO3 (g), Mq-AgNPs (h). Red arrows indicate damages in head, abdomen, thorax region, and siphon.](image)
in vitro vulnerabilities of the favored bacterial pathogens toward the Mq extract and Mq-AgNPs at different concentrations of 25, 50, and 100 µL such as the width of the inhibition zone (mm) around discs with Mq-AgNPs (Figures 9 and 10). The antibacterial effect of inhibition was more for Mq-AgNPs compared to the Mq leaf extract.

3.5 Antioxidant assay

In vitro, the antioxidant activity of Mq-AgNPs was examined using DPPH, hydrogen peroxide, nitric oxide radical scavenging, and reducing power activity concerning the standard antioxidants butylated hydroxytoluene (BHT) (Figure 11). The DPPH reducing the activity of the Mq-AgNPs was assessed based on color change and revealed potent inhibition of Mq-AgNPs activity contrasted with standard BHT (Figure 11a). The varying concentration of the Mq-AgNPs (25, 50, and 100 µg.mL⁻¹) significantly scavenged DPPH by 45.16%, 55.54%, and 65%, respectively. In hydrogen peroxide scavenging activity, concentrations at 100 µg·mL⁻¹ inhibition were 70.25%, 30.12%, and 40.58% for the Mq-AgNPs, Mq leaf extract, and BHT, respectively (Figure 11b). In nitric oxide radical scavenging assay, at higher concentration of 100 µg·mL⁻¹, the Mq leaf extract and Mq-AgNPs demonstrated the concentration-dependent NO scavenging activity of 48.12% and 62.16%, respectively (Figure 11c). The Mq-AgNPs were dose-dependent in reducing powers; the enlarged concentration of AgNPs constantly enlarged the reducing power activity. The Mq-AgNPs, Mq leaf extract, and BHT have exposed approximately equivalent reducing power activity 70.25%, 55.16%, and 65%, respectively (Figure 11d).

4 Discussion

The NPs synthesis is the lime glow of current nanotechnology. Ag ion’s decline into AgNPs through disclosure to the plant extracts might be pursued via color modification. Biosynthesis of NPs using plant extracts is now well development and advanced into a significant division of nanotechnology. In the present study, the NPs were principally distinguished through UV spectrum, which was established to be a precious method for investigating NPs [25]. The maximum absorption peak observed in the AgNPs solution residues near 440 nm during the reaction time [26,27]. The XRD results of Mq-AgNPs correspond to
the mass silver’s FCC structure through the broad peaks at 32.4, 46.4, and 28.0, equivalent to 111, 200, and 311 planes, respectively. The line expansion of the peaks is mainly owing to minute particle size. The XRD results display that the AgNPs produced by reducing Ag$^+$ ions through the Mq leaf extract are crystalline [28–31].

Nowadays, using poisonous chemicals to manage disease-spreading mosquito vectors are unsuccessful because

Figure 7: Confocal laser scanning microscopy analysis of Artemia nauplii.
Figure 8: Confocal laser scanning microscopy analysis of Mq-AgNPs on micro-crustacean C. cornuta.
of ecological and health-associated troubles [32–36]. At present, outbursts of mosquito-borne diseases have been influenced to recognize efficient, constant, and ecological negotiators for the constant discharge of insecticides in mosquitoes propagation [37]. In our study, the Mq leaf extract illustrated larvicidal effectiveness on A. aegypti (LC50 = 183.63 µg·mL−1 and LC90 = 167.19 µg·mL−1) (Table 1). Earlier studies reported that numerous plant extracts, specifically Clerodendrum chinense [38], Mukia maderaspatana [39], Chomelia asiatica [40], and Clausena dentata [41], have been described as possible larvicial agents against target mosquitoes, and these results carry the effect of the current investigation. The mortality outcome of AgNPs on larvae might be because of the toxic interior effects of the minute particles within the cuticle [42]. The Mq leaf extract affecting the fourth instar larvae of A. Aegypti requires elevated concentrations to cause larvae mortality than AgNPs treatments, which emerged lethal consequence brightly on mosquito larvae tiny concentrations [43]. The stereomicroscopic results displayed the epithelial and external cuticle breakdowns in the treated larvae (Figure 3a). In agreement with our findings, numerous reports showed that plant-mediated AgNPs are conscientious of cruel histological modifies in larvae of A. Aegypti like Hedychium coronarium [44] and Pedalium murex-mediated AgNPs [18].

Microscopic observations highlighted that the Mq leaf extract- and Mq-AgNPs-treated Artemia nauplii
and *C. cornuta* organisms have a long life and the study species’ swimming action were not changed for a week following the experiment. At this time, a prudent understanding of the extreme toxicity of mosquitocidal NPs on non-target aquatic species is available [45]. Previously, much research was focused on the plant extract-mediated AgNPs on biotoxicity to the different non-target aquatic organisms such as *Poecilia reticulata (Plumeria rubra* and *Pergularia daemia*) [46], *C. cornuta* (garlic clove and sodium alginate) [19,47], *P. reticulata (Vinca rosea)* [48], mosquito predators (*Solanum nigrum*) [49], and copepods (*Melia azedarach*) [50]. Fascinatingly, the exposure to tiny doses of biosynthesized AgNPs did not harmfully affect the non-target organisms [51].

Mq-AgNPs show potent antibacterial properties against Gram-positive and Gram-negative bacterial strains. Our results were concurrent with the reports of Mani et al. [52] and Maji et al. [15], which found that AgNPs produced by *Mq* have excellent antibacterial activity. In the present study, the *Mq*-AgNPs have exposed more inhibition with 65%, 40.58%, 85.43%, and 65%, corresponding to scavenging of DPPH, hydrogen peroxide, nitric oxide, and reducing power activity, respectively. The antioxidant activity of *Mq*-AgNPs could be recognized to functional groups that remained to them, which were initiated from the *Mq* leaf extract. These results are in good agreement with the previous reports on the *in vitro* antioxidant effect of different plant extracts [53–58].

Figure 10: Antibacterial activity of *Mq*-AgNPs.
Conclusion

Overall, Mq leaf extract is used to synthesize the AgNPs. The biosynthesized Mq-AgNPs were typically spherical in shape and crystalline in nature. This study determined that Mq-AgNPs can be engaged in small quantities to powerfully decrease the populations of vector mosquitoes, which lacks harmful effects on predation rates of non-target aquatic organisms, like Artemia and C. cornuta. Moreover, the present research offers an insight into the usage of Mq leaf extract as an acceptable source of naturally occurring antioxidants and could have immense significance as a therapeutic agent in preventing oxidative stress-related diseases.

Acknowledgements: Ramachandran Ishwarya gratefully acknowledges the Science and Engineering Research Board, New Delhi, India, for rendering financial assistance [Ref: PDF/2020/001027]. The authors express their sincere appreciation to the Researchers Supporting Project Number (RSP-2021/70), King Saud University, Riyadh, Saudi Arabia.

Author contributions: Ramachandran Ishwarya: conceptualization, writing – original draft; Kavitha Saravanan: formal analysis; Daniel Selvaraj: formal analysis; Marimuthu Govindarajan: writing – review and editing; Naijyf S. Alharbi: resources, funding acquisition, and validation; Shine Kadaikunnan: funding acquisition and formal analysis; Jamal M. Khaled: formal analysis; Jeyachandran Sivakamavalli: methodology and software; Thangaswamy Selvakumar: formal analysis; Baskaralingam Vaseeharan: conceptualization and supervision.

Conflict of interest: Authors state no conflict of interest.

References

[1] Govindarajan M. Evaluation of indigenous plant extracts against the malarial vector, Anopheles stephensi (Liston) (Diptera: Culicidae). Parasitol Res. 2011;109(1):93–103.
[2] Govindarajan M, Benelli G. Artemisia absinthium-borne compounds as novel larvicides: effectiveness against six mosquito vectors and acute toxicity on non-target aquatic organisms. Parasitol Res. 2016;115(12):4649–61.
[3] Govindarajan M, Benelli G. A facile one-pot synthesis of eco-friendly nanoparticles using Carissa carandas: Ovicidal and larvicidal potential on malaria, dengue and filariasis mosquito vectors. J Clust Sci. 2017;28(1):15–36.
[4] WHO, Dengue and severe dengue. Fact sheet No. 117. World Health Organization, Geneva, 2015.
[5] Sivakumar R, Jebanesan A, Govindarajan M, Rajasekar P. Larvicidal and repellent activity of tetradecanoic acid against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say.) (Diptera: Culicidae). Asian Pac J Trop Med. 2011;4(9):706–10.

[6] Govindarajan M, Sivakumar R, Rajeswary M, Veerakumar K. Mosquito larvicidal activity of thymol from essential oil of Coleus aromaticus Benth. against Culex tritaenioryhnchus, Aedes albopictus, and Anopheles subpictus (Diptera: Culicidae). Parasitol Res. 2013;112(11):3713–21.

[7] Govindarajan M, Sivakumar R. Adulticidal and repellent properties of indigenous plant extracts against Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Parasitol Res. 2012;110(5):1607–20.

[8] Benelli G, Mehlhorn H. Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control. Parasitol Res. 2016;115(5):1747–54.

[9] Willems, VDW. Roadmap report on nanoparticles. Barcelona, Spain: W&W Espana s.l.; 2005. p. 1–57.

[10] Khan SS, Srivatsan P, Vaishnavi N, Mukherjee A, Chandrasekaran N. Silver nanoparticles: Green route, stability and effect of additives. J Biomater Nanobiotechnol. 2011;2(4):390–9.

[11] Moghaddam MG, Dabanlou RH, Khyajeh M, Rakshshinoupour M, Shameli K. Green synthesis of silver nanoparticles using plant extracts. Korean J Chem Eng. 2014;31(5):548–57.

[12] Vimala RT, Sathishkumar G, Sivaramakrishnan S. Optimization of reaction conditions to fabricate nano-silver using Couroupita guianensis AUBL. (leaf & fruit) and its enhanced larvicidal effect. Spectrochim Acta A. 2015;135:110–5.

[13] Sivaguru Nathan A, Innocent BX. Phytochemical analysis and antimicrobial efficiency of Marsilea quadrifolia linn (Aquatic fern). IJPRS. 2014;3(2):2727–7783.

[14] Mathangi T, Prabahakaran P. Screening for antimicrobial activity of the leaf extracts of Marsilea quadrifolia against various bacterial pathogens. Herb Tech Ind. 2012;11:1–2.

[15] Maje A, Beg M, Mandal AK, Das S, Jha PK, Kumar A, et al. Spectroscopic interaction study of human serum albumin and human hemoglobin with Marsilea quadrifolia leaves extract mediated silver nanoparticles having antibacterial and anticaercer activity. J Mol Str. 2017;1141:584–92.

[16] Zabihollah R, Rina FA, Alam BM, Haque MA, Mosaddik MA, Nahar L. Hypoglycemic and in vitro antioxidant effects of methanolic extract of Marsilea quadrifolia. Plant J Phcog. 2011;3(26):86–92.

[17] Manjula R, Mythili T. Improved phytochemical production using biotic and abiotic elicitors in Marsilea quadrifolia. Int J Curr Sci. 2012;98:98–101.

[18] Ishwarya R, Vaseeharan B, Anuradha B, Rekha R, Govindarajan M, Alharbi NS, et al. Eco-friendly fabrication of Ag nanoparticles using the seed extract of Pedalium murex, an ancient Indian medicinal plant: histopathological effects on the Zika virus vector Aedes aegypti and inhibition of biofilm forming pathogenic bacteria. J Photochem Photobiol B. 2017;174:43–43.

[19] Vijayakumar S, Malakozhundan B, Ramasamy P, Vaseeharan B. Assessment of biopolymer stabilized silver nanoparticle for their ecotoxicity on Ceridophya cornuta and antibiofilm activity. J Env Chem Eng. 2016;4(2):2076–83.

[20] Ishwarya R, Vaseeharan B, Kalyani S, Banumathi B, Govindarajan M, Alharbi NS, et al. Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity. J Photochem Photobiol B. 2018;178:249–58.

[21] McDonald S, Prenzler PD, Autolovich M, Robards K. Phenolic content and antioxidant activity of olive extracts. Food Chem. 2011;73(1):73–84.

[22] Halliwell B, Gutteridge JMC, Aruoma OI. The deoxyribose method: A simple "test tube" assay for determination of rate constants for reactions of hydroxyl radicals. Anal Biochem. 1987;165:215–24.

[23] Ibrahimzadeh MA, Nabavi SM, Sabavi SF, Bahramian F, Bekhradnia AR. Antioxidant and free radical scavenging activity of H. officinalis L. var. angustifolius, V. odorata, B. hyrcana and C. speciosum. Pak J Pharm Sci. 2012;23(1):29–34.

[24] Chang ST, Wu JH, Wang SY, Kang PL, Yang NS, Shyur LF. Antioxidant activity of extracts from Acacia confusa bark and heartwood. J Agri Food Chem. 2001;49(7):3420–4.

[25] Ibrahim HM. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J Radian Res Appl Sci. 2015;8(3):265–75.

[26] Ashraf JM, Ansari MA, Khan HM, Alzohairi MA, Choi I. Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AEGes formation using biophysical techniques. Sci Rep. 2016;6:20414.

[27] Falaf T, Taştan P, Tüzün BS, Ozayzici M, Kivcak B. Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Asphodelus aestivus Brot. aerial part extract. S Afr J Bot. 2017;112:346–53.

[28] Sathyavathiri R, Krishna MB, Rao SV, Saritha R, Rao DN. Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Adv Sci Lett. 2010;3(2):138–43.

[29] Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology. 2007;18(10):10510A.

[30] Udayasooryan C, Kumar RV, Jayabalakrishnan M. Extracellular synthesis of silver nanoparticles using leaf extract of Cassia auriculata. Dig. J Nanomater Biostruct. 2011;6(1):279–83.

[31] Gong P, Li HM, He XX, Wang SY, Kang PL, Yang NS, Shyur LF. Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology. 2007;18(28):285604.

[32] Mathivanan T, Govindarajan M, Elumalai K, Krishnappa K, Ananthan A. Mosquito larvicidal and phytochemical properties of Ervatamia coronaria Stapf. (Family: Apocynaceae). J Vector Borne Dis. 2010;47(3):178–80.

[33] Govindarajan M. Chemical composition and larvicidal activity of leaf essential oil from Clausena anisata (Willd.) Hook. f. ex Benth (Rutaceae) against three mosquito species. Asian Pac J Trop Med. 2010;3(11):874–7.

[34] Govindarajan M. Mosquito larvicidal and ovicidal activity of Cardiospermum halicacabum Linn. (Family: Sapindaceae) leaf extract against Culex quinquefasciatus (Say.) and Aedes aegypti (Linn.) (Diptera: Culicidae). Eur Rev Med Pharmacol Sci. 2011;15(7):787–94.

[35] Benelli G. Research in mosquito control: current challenges for a brighter future. Parasitol Res. 2015;114(8):2801–5.

[36] Benelli G. Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitol Res. 2015;114(9):3201–12.
Sivagnaname S, Kalyanasundaram M. Laboratory evaluation of methanolic extract of Atlantic monoprylla (Family: Rutaceae) against immature stages of mosquitoes and non-target organisms. Mem Inst Oswaldo Cruz. 2004;99(1):115–8.

Govindarajan M. Green synthesized silver nanoparticles: a potential new insecticide for mosquito control. In: Mehlihorn H, editor. Nanoparticles in the fight against parasites. Switzerland: Springer International Publishing; 2016. p. 99–153.

Chitra G, Balasubramani G, Ramkumar R, Sowmya R, Perumal P. Mukiadarterapاث (Cucurbitaceae) extract-mediated synthesis of silver nanoparticles to control Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Parasitol Res. 2015;114(3):1407–15.

Muthukumarun U, Govindarajan M, Rajeswary M. Mosquito larvicidal potential of silver nanoparticles synthesized using Chomelia asiatica (Rubiaceae) against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res. 2015;114(3):899–99.

Sowndarya P, Ramkumar G, Shivakumar MS. Green synthesis of selenium nanoparticles conjugated Clausena dentata plant leaf extract and their insecticidal potential against mosquito vectors. Artif Cell Nanomed Biotechnol. 2016;45(8):1490–6.

Saplam N, Homkilinchan N, Larpudomlert R. UV irradiation induced silver nanoparticles as mosquito larvicides. J Appl Sci. 2012;10(23):3132–6.

Bedini S, Flamini G, Cosci F. Cannabis sativa and Humulus lupulus essential oils as novel control tools against the invasive mosquito Aedes albopictus and fresh water snail Physella acuta. Ind Crop Prod. 2016;85:318–23.

Kalimuthu K, Panneerselvam C, Chou C, Tseng LC, Murugan K, Tsai KH, et al. Control of dengue and Zika virus vector Aedes aegypti using the predatory copepod Megacyclops formosanus: synergy with Hedychium coronarium-synthesized silver nanoparticles and related histological changes in targeted mosquitoes. Process Saf Env. 2017;109:82–96.

Benelli G. Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res. 2016;115(1):23–34.

Patil CD, Borase HP, Patil SV, Salunkhe RB, Salunke BK. Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and non-target fish Poecilia reticulata. Parasitol Res. 2012;111(2):555–62.

Vijayakumar S, Malaiokzhundan B, Saravanakumar K, F.Durán-Lara E, Wang MH, Vaseeharan B. Garlic clove extract assisted silver nanoparticle – Antibacterial, antioxidant, anti-helminthic, anti-inflammatory, anticancer and ecotoxicity assessment. J Photochem Photobiol B. 2019;198:111558.

Subarani S, Sabhanayakam S, Kamraj C. Studies on the impact of biosynthesized silver nanoparticles (AgNPs) in relation to malaria and filariasis vector control against Anopheles stephensi Liston and Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res. 2013;112(2):487–99.

Rawani A, Ghosh A, Chandra G. Mosquito larvicidal and antimicrobial activity of synthesized nano-crystalline silver particles using leaves and green berry extract of Solanum nigrum L. (Solanaceae: Solanales. Acta Trop. 2013;128:613–22.

Ramanibai R, Velayutham K. Bioactive compound synthesis of Ag nanoparticles from leaves of Melia azedarach and its control for mosquito larvae. Res Vet Sci. 2015;98:82–8.

Suganya P, Vaseeharan B, Vijayakumar S, Balan B, Govindarajan M, Alharbi NS, et al. Biopolymer zein-coated gold nanoparticles: synthesis, antibacterial potential, toxicity and histopathological effects against the Zika virus vector Aedes aegypti. J Photochem Photobiol B. 2017;173:404–11.

Mani M, Pavithra S, Babujanarthanam R, Saradha Devi N, Kumaresan S, Selvaraj S. Rapid synthesis, characterization and antibacterial activities of Ag-NPs derived from Marsilea quadrifolia. Int J Anal Exp Modal Anal. 2019;11(1):1620–3.

Khorrami S, Zarrabi A, Khaleghi M, Danaei M, Mozfari M. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int J Nanomed. 2018;13:8013–24.

Elemike EE, Fayemi OE, Ekenia AC, Onwudiwe DC, Ebenso EE. Silver nanoparticles mediated by Costus afer leaf electrochemical properties. Molecules. 2017;22(5):701.

Phull A, Abbas Q, Ali A, Raza H, Ja S, Zia M, et al. Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliata. Futur J Pharm Sci. 2016;2(1):31–6.

Sathiyaaseelan A, Saravanakumar K, Vijaya A, Mariadoss A, Wang M. Biocompatible fungal chitosan encapsulated phyto-genic silver nanoparticles enhanced antidiabetic, antioxidant and antibacterial activity. Int J Biol Macromol. 2020;153:63–71.

Mousavi-Khattat M, Keyhanfar M, Razmjou AA. Comparative study of stability, antioxidant, DNA cleavage and antibacterial activities of green and chemically synthesized silver nanoparticles. Artif Cellsnanomed Biotechnol. 2018;46(3):1022–31.

Saravanakumar K, Wang M. Trichoderma based synthesis of anti-pathogenic silver nanoparticles and their characterization, antioxidant and cytotoxicity properties. Microb Pathog. 2018;114:269–73.