AN INFINITE FAMILY OF GROMOLL-MEYER SPHERES

CARLOS DURÁN, THOMAS PÜTTMANN, AND A. RIGAS

Abstract. We construct a new infinite family of models of exotic 7-spheres. These models are direct generalizations of the Gromoll-Meyer sphere. From their symmetries, geodesics and submanifolds half of them are closer to the standard 7-sphere than any other known model for an exotic 7-sphere.

1. Introduction

This paper provides a new geometric way to construct all exotic 7-spheres. Exotic spheres are differentiable manifolds that are homeomorphic but not diffeomorphic to standard spheres. The first examples were found by Milnor [Mi1] in 1956 among the S^3-bundles over S^4. It turned out that 7 is the smallest dimension where exotic spheres can occur except possibly in the special dimension 4. In any dimension $n > 4$ the exotic spheres and the standard sphere form a finite abelian group: the group Θ_n of (orientation preserving diffeomorphism classes of) homotopy spheres [KM]. The inverse element in Θ_n can be obtained by a change of orientation. In dimension 7 we have $\Theta_7 \approx \mathbb{Z}_{28}$. Hence, ignoring orientation there are 14 exotic 7-spheres. From these 14 exotic 7-spheres four (corresponding to 2, 5, 9, 12, 16, 19, 23, 26 $\in \mathbb{Z}_{28}$) are not diffeomorphic to an S^3-bundle over S^4 [EK].

In 1974 Gromoll and Meyer [GM] constructed an exotic 7-sphere, Σ_{GM}, as quotient of the compact group $\text{Sp}(2)$ by a two-sided S^3-action. This construction provided Σ_{GM} automatically with a metric of nonnegative sectional curvature ($K \geq 0$). The Gromoll-Meyer sphere Σ_{GM} was the only exotic sphere known to admit such a metric until 1999 when Grove and Ziller [GZ] constructed metrics with $K \geq 0$ on all Milnor spheres, i.e., on all exotic 7-spheres that are S^3-bundles over S^4. In 2002 Totaro [To] and independently Kapovitch and Ziller [KZ] showed that Σ_{GM} is the only exotic sphere that can be modeled by a biquotient of a compact group and thus underlined the singular status of the Gromoll-Meyer sphere among all models for exotic spheres.

We nevertheless provide an elementary and direct generalization of the Gromoll-Meyer construction. The essential components in this construction are natural self-maps of S^7, namely, the n-powers of unit octonions, $n \in \mathbb{Z}$. In terms of quaternions these maps are defined by

$$\rho_n : S^7 \to S^7, \quad (\cos t + p \sin t) \mapsto (\cos nt + p \sin nt) \quad (\cos nt + p \sin nt)$$

C. Durán and A. Rigas were supported by CNPq. C. Durán was also supported by FAPESP grant 03/016789 and FAEPSEX grant 15/406. T. Püttmann was supported by a DFG Heisenberg fellowship and by the DFG priority program SPP 1154 “Globale Differentialgeometrie”.

1
where \(p \in \text{Im} \mathbb{H} \) and \(w \in \mathbb{H} \) with \(|p|^2 + |w|^2 = 1 \). Let \(\langle u, v \rangle := \bar{u}v \) denote the standard Hermitian product on \(\mathbb{H}^2 \). The submanifolds
\[
E_{n}^{10} := \{ (u, v) \in S^7 \times S^7 \mid \langle \rho_n(u), v \rangle = 0 \}
\]
come equipped with a free action of the unit quaternions:
\[
S^3 \times E_{n}^{10} \to E_{n}^{10}, \quad q \ast (u, v) = (qu, qv).
\]
Here, \(quq \) means that the two quaternionic components of \(u \) are simultaneously conjugated by \(q \in S^3 \). The quotient of \(E_{n}^{10} \) by the free \(\ast \)-action is a smooth manifold
\[
\Sigma_{n}^{7} := E_{n}^{10}/S^3.
\]
For \(n = 1 \) we have \(E_{1}^{10} = \text{Sp}(2) \) (the group of quaternionic \(2 \times 2 \) matrices \(A \) with \(\bar{A}A = I \)) and the \(\ast \)-action is the original Gromoll-Meyer action. Hence, \(\Sigma_{1}^{7} = \Sigma_{GM}^{7} \).

Theorem 1. The differentiable manifold \(\Sigma_{n}^{7} \) is a homotopy sphere and represents the \((n \mod 28) \)-th element in \(\Theta_7 \approx \mathbb{Z}_{28} \).

Let \(\mathbb{Z}_2 \times \mathbb{Z}_2 \) denote the diagonal matrices of \(O(2) \subset \text{Sp}(2) \). All \(E_{n}^{10} \) admit a smooth action of \(\mathbb{Z}_2 \times \mathbb{Z}_2 \times S^3 \) that commutes with the free \(\ast \)-action:
\[
\mathbb{Z}_2 \times \mathbb{Z}_2 \times E_{n}^{10} \to E_{n}^{10}, \quad B \ast (u, v) = (Bu, Bv),
\]
\[
S^3 \times E_{n}^{10} \to E_{n}^{10}, \quad q \ast (u, v) = (u, qv).
\]
The induced effective action on \(\Sigma_{n}^{7} \) is an action of \(\mathbb{Z}_2 \times \mathbb{Z}_2 \times SO(3) \) where \(SO(3) = S^3/\{ \pm 1 \} \). On \(\Sigma_{n}^{7} \) this action can be identified with the linear action
\[
(B, \pm q) \cdot (x, u) = (Bx, Bqu)
\]
on \(S^7 \subset \mathbb{R}^2 \times (\text{Im} \mathbb{H})^2 \). On \(\Sigma_{1}^{7} = \Sigma_{GM}^{7} \) the action coincides with the subaction of the \(O(2) \times SO(3) \)-action given in \(\text{GM} \).

The surprising fact is the following even/odd grading of the \(\Sigma_{n}^{7} \):

Theorem 2. All \(\Sigma_{n}^{7} \) with even \(n \) are equivariantly homeomorphic to \(S^7 \) with the linear \(\mathbb{Z}_2 \times \mathbb{Z}_2 \times SO(3) \)-action given above. All \(\Sigma_{n}^{7} \) with odd \(n \) are equivariantly homeomorphic to the Gromoll-Meyer sphere \(\Sigma_{GM}^{7} \) with the above \(\mathbb{Z}_2 \times \mathbb{Z}_2 \times SO(3) \)-action. If \(n \) is even all fixed point sets in \(\Sigma_{n}^{7} \) are spheres while if \(n \) is odd there are also 3-dimensional fixed point sets with fundamental groups \(\mathbb{Z}_2 \) and \(\mathbb{Z}_3 \).

The even/odd grading of the \(\Sigma_{n}^{7} \) also transfers to some of the invariant submanifolds. The most important one is \(\Sigma_{5}^{7} \) whose preimage under the map \(E_{n}^{10} \to \Sigma_{n}^{7} \) consists of points \((u, v) \) where both quaternionic components of \(u \) are purely imaginary.

Proposition 3. \(\Sigma_{5}^{7} \) is \(\mathbb{Z}_2 \times \mathbb{Z}_2 \times SO(3) \)-equivariantly diffeomorphic to \(S^5 \subset (\text{Im} \mathbb{H})^2 \) with the linear action \((B, \pm q) \cdot u = Bqu \) if \(n \) is even and to the Brieskorn sphere \(W_5^{3} \) if \(n \) is odd. The subsphere \(\Sigma_{5}^{7} \) is minimal for every \(\{ \pm I \} \times SO(3) \)-invariant metric on \(\Sigma_{n}^{7} \).
Recall here that the Brieskorn sphere W_d^7 with $d \in \mathbb{N}$ is the intersection of the unit sphere in $\mathbb{C}^4 = \mathbb{C} \oplus \mathbb{C}^3$ with the complex hypersurface
\[z_0^2 + z_1^2 + z_2^2 + z_3^2 = 0 \]
and that there is a natural $O(2) \times SO(3)$-action on W_d^5.

\[O(2) \times SO(3) \times W_d^5 \rightarrow W_d^5, \]

\[
\begin{align*}
&\left(\begin{array}{c}
\cos \theta - \sin \theta \\
\sin \theta \\
\cos \theta
\end{array} , A \right) \cdot (z_0, z) = (e^{2i\theta} z_0, e^{d\theta} A z), \\
&\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array} , A \right) \cdot (z_0, z) = (\overline{z}_0, A \overline{z}).
\end{align*}
\]

The classification theorems of Jänich and Hsiang-Hsiang imply that for $G = O(2) \times SO(3)$ and even for the smaller group $G = \{\pm 1\} \times SO(3)$ the Brieskorn sphere W_d^5 is not G-equivariantly homeomorphic to S^5 with any linear action, see [HMa]. However, W_d^5 is SO(3)-equivariantly diffeomorphic to S^5. In the case $d = 3$ an explicit formula for such a diffeomorphism is given in [DP].

The invariant subsphere Σ_n^5 is dual to the invariant circle Σ_n^1 whose preimage under the map $E_{n}^{10} \rightarrow \Sigma_n^7$ consists of points (u, v) for which both components of u are real. These two dual submanifolds play a central role for the geodesic geometry of M_n^7. We construct a one parameter family of $\mathbb{Z}_2 \times \mathbb{Z}_2 \times SO(3)$-invariant metrics $\langle \cdot, \cdot \rangle_{\nu}$ on each Σ_n^7 with the following property:

Theorem 4. All points $p \in \Sigma_n^1$ have the wiedersehen property, i.e., every unit speed geodesic γ in Σ_n^7 with $\gamma(0) = p$ is length minimizing on $[0, \pi[$ and obeys $\gamma(\pi) = -p$ and $\gamma(2\pi) = p$. Moreover, $\Sigma_n^1 \times \Sigma_n^5 \rightarrow \Sigma_n^7$ that maps (x, y, t) to $\gamma(t)$, where $\gamma : [0, \frac{\pi}{2}] \rightarrow \Sigma^7$ is the unique unit speed geodesic segment from x to y, is a homeomorphism.

This invariant geodesic join structure actually is the key to prove Theorem 1 and Theorem 2. In the particular case of exotic 7-spheres our method is an improvement over the general construction that equips all exotic spheres with pointed wiedersehen metrics [Ba].

The even/odd grading of the Σ_n^7 is in contrast to what happens for the Milnor spheres $M_{k,l}^7$ and the Brieskorn spheres $W_{6n-1,3}^7$.

The Milnor sphere $M_{k,l}^7$ with $k + l = 1$ is defined by gluing two copies of $\mathbb{H} \times S^3$ along $(\mathbb{H} \setminus \{0\}) \times S^3$ by the map

\[
(u, v) \mapsto \left(\frac{u}{|u|}, \frac{v}{|v|} \right)^k \cdot \left(\frac{u}{|u|} \right)^l.
\]

For convenience, we set $M_{k,l}^d = M_{d}^d$ where $d = k - l$ is odd. The Milnor sphere M_d^7 represents the $\frac{d+1}{2}$-th element in Θ_7, see [Ek]. There is a natural $SO(3) = S^3/\{\pm 1\}$-action on M_d^7 which is in both charts defined by

\[
\pm q \cdot (u, v) = (quq^{-1}, qvq^{-1}).
\]

Davis [Da] has shown that M_d^7 is $SO(3)$-equivariantly diffeomorphic to M_d^7 if and only if $d' = \pm d$ and that all M_d^7 are $SO(3)$-equivariantly homeomorphic to $S^7 \subset \mathbb{H}^2$.

with the linear SO(3)-action given by \((\pm q, u) \mapsto qu\bar{q}\). We show that the latter situation changes when one extends the SO(3)-action by the commuting involution \((u, v) \mapsto (u, -v)\) in both charts. This involution fixes all points in the base of the bundle \(M^7_d \to S^4\) and induces the antipodal map on all the \(S^3\)-fibers. For consistency, the group generated by SO(3) and the involution is denoted by \(\{\pm 1\} \times SO(3)\).

Theorem 5. The fixed point set of the involution \((-1, \pm i)\) on \(M^7_d\) is a 3-dimensional lens space with fundamental group \(\mathbb{Z}_{|d|}\). Hence, \(M^7_d\) is \(\{\pm 1\} \times SO(3)\)-equivariantly homeomorphic to any of the \(\Sigma^n_7\).

This theorem is a consequence of Theorem 5.1 which is the analogue of Proposition 3 for the Milnor spheres.

Grove and Ziller [GZ] constructed SO(3)-actions on \(M^7_d\) that are entirely different from the SO(3)-actions on \(M^7_d\) and \(\Sigma^n_7\) above. The SO(3)-actions on \(M^7_d\) and \(\Sigma^n_7\) fix a circle pointwise while the Grove-Ziller actions are almost free.

The Brieskorn sphere \(W^7_{6n-1, 3}\) is defined by the intersection of the the unit sphere \(S^9 \subset \mathbb{C}^5 = \mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}^3\) with the complex hypersurface

\[w^{6n-1} + z_0^3 + z_1^2 + z_2^2 + z_3^2 = 0.\]

It represents the \((n \text{ mod } 28)\)-th homotopy sphere in \(\Theta_7\) (see [BK]) and admits the natural SO(3)-action \((A, (w, z_0, z)) \mapsto (w, z_0, Az)\).

Theorem 6. None of the \(W^7_{6n-1, 3}\) are SO(3)-equivariantly diffeomorphic to any of the \(\Sigma^n_7\) or to any of the \(M^7_{k,l}\).

In particular, \(W^7_{6n-1, 3}\) is not SO(3)-equivariantly homeomorphic to the join of a circle and \(W^3_3\). Thus, the equivariant topology of the \(\Sigma^n_7\) with odd \(n\) is much more determined by the equivariant topology of \(W^3_3\) than the equivariant topology of \(W^7_{6n-1, 3}\) although the latter contain \(W^3_3\) in a much more obvious way (just by setting \(w = 0\)).

Many of the constructions in this paper generalize the constructions given in [DP] for the original Gromoll-Meyer sphere \(\Sigma^n_{7\text{GM}}\).

The authors would like to thank Uwe Abresch for several useful discussions and Wolfgang Ziller for many valuable suggestions.

2. A CONSTRUCTION OF THE \(S^3\)-PRINCIPAL BUNDLES OVER \(S^7\)

Recall from the introduction the definition of \(E^{10}_n \subset S^7 \times S^7\):

\[E^{10}_n = \{(u, v) \in S^7 \times S^7 \mid \langle \rho_n(u), v \rangle = 0\}.\]

For \(n = 1\) the space \(E^{10}_1\) can be equivalently seen as the group Sp(2) of \(2 \times 2\) quaternionic matrices \(A\) such that \(A^tA = \mathbb{I}\). The standard projection \(Sp(2) \to S^7\), \(A = (u, v) \mapsto u\) turns Sp(2) into an \(S^3\)-principal bundle over \(S^7\).
Lemma 2.1. E_{n}^{10} is the pull-back of $\text{Sp}(2)$ by the map $\rho_{n} : S^{7} \to S^{n}$.

Proof. By the usual explicit construction, the total space of the pull-back bundle $\rho_{n}(\text{Sp}(2))$ is the submanifold of $S^{7} \times \text{Sp}(2)$ consisting of all pairs (u, A) such that $\rho_{n}(u)$ is the first column of A. It is evident, however, that in this construction we log the first column of A twice. Eliminating this redundancy leads to the definition of E_{n}^{10} above. This in particular shows that E_{n}^{10} is a submanifold of $S^{7} \times S^{7}$. □

Corollary 2.2. E_{n}^{10} is an S^{3}-principal bundle over S^{7} classified by $n \mod 12$.

Proof. The S^{3}-principal bundles over S^{7} are classified by $\pi_{6}(S^{3}) \approx \mathbb{Z}_{12}$ and the characteristic map of the bundle $\text{Sp}(2) \to S^{7}$ generates $\pi_{6}(S^{3})$ (see [Hu] or [DMR] for a more explicit reference). The map ρ_{n} has degree n. □

The principal bundle map $E_{n}^{10} \to S^{7}$ is given by the projection to the first column. The corresponding free S^{3}-action on E_{n}^{10} is given by

$$S^{3} \times E_{n}^{10} \to E_{n}^{10}, \quad (q \star (u, v)) = (u, v \bar{q}).$$

The map $\tilde{\rho}_{n}$ in the pull-back diagram

$$E_{n}^{10} \xrightarrow{\tilde{\rho}_{n}} \text{Sp}(2) \quad \downarrow \quad \downarrow$$

$$S^{7} \xrightarrow{\rho_{n}} S^{7}$$

takes the explicit form

$$\tilde{\rho}_{n} : E_{n}^{10} \to \text{Sp}(2), \quad (u, v) \mapsto (\rho_{n}(u), v).$$

Recall from the introduction that there is a free S^{3}-action $q \star (u, v) = (qu, qv)$ on E_{n}^{10} that commutes with the \cdot-action and whose orbit space is the smooth manifold Σ_{n}^{7}. The pull-back diagram above extends to the following commutative diagram:

$$E_{n}^{10} \xrightarrow{\tilde{\rho}_{n}} \text{Sp}(2) \quad \downarrow \quad \downarrow$$

$$\Sigma_{n}^{7} \xrightarrow{\rho_{n}} \Sigma_{GM}^{7}$$

The degree of the induced map $\rho_{n}^{\prime} : \Sigma_{n}^{7} \to \Sigma_{GM}^{7}$ is n. The proof that Σ_{n}^{7} represents the $(n \mod 28)$-th element of Θ_{7} requires several geometric constructions and is postponed until section 4.

Each principal bundle E_{n}^{10} admits a natural action of $Z_{2} \times Z_{2} \times S^{3} \times S^{3} \times S^{3}$, where $Z_{2} \times Z_{2}$ denotes the diagonal matrices in $O(2) \subset \text{Sp}(2)$:

(3) \hspace{1cm} $Z_{2} \times Z_{2} \times E_{n}^{10} \to E_{n}^{10}, \quad B \cdot (u, v) = (Bu, Bv),$

(4) \hspace{1cm} $S^{3} \times S^{3} \times E_{n}^{10} \to E_{n}^{10}, \quad (q_{1}, q_{2}, q_{3}) \cdot (u_{1}, v_{1}) = q_{1}u_{1}q_{1}^{-1}q_{2}u_{2}q_{2}^{-1}q_{3}v_{3}q_{3}^{-1}$.

Lemma 2.3. This action on E_{n}^{10} is of cohomogeneity 2.
Proof. The third S^3-factor yields the principal action related to the bundle $E_7^{10} \rightarrow S^7$, $(u,v) \mapsto u$, i.e., this S^3-factor acts simply transitively on the fiber over any $u \in S^7$. The action of the first two S^3-factors on S^7 has kernel $\{\pm(1,1)\}$ and induces a standard linear $SO(4)$-action on S^7. By applying all three S^3-factors one can transform an arbitrary point in E_7^{10} to a point of the form

$$\begin{pmatrix} \cos t + i \cos s \sin t & -\sin s \sin nt \\ \sin s \sin t & \cos nt - i \cos s \sin nt \end{pmatrix}.$$

The diagonal in the first two S^3-factors gives the Gromoll-Meyer action \star corresponding to the principal bundle $E_7^{10} \rightarrow \Sigma_{7}$, The third S^3-factor and the $Z_2 \times Z_2$-factor yield the effective $Z_2 \times Z_2 \times SO(3)$-action \bullet on Σ_{7} from the introduction. It is an interesting question for which n this \bullet-action can be extended. The maximum dimension of any compact differentiable transformation group of an exotic 7-sphere is four $[St]$. On the original Gromoll-Meyer sphere $\Sigma_{GM} = \Sigma_{1}$ there is a natural $O(2) \times SO(3)$-action. It is induced by the action

$$O(2) \times SO(3) \times Sp(2) \rightarrow Sp(2), \quad (A,q) \bullet (u,v) \mapsto (Au,Avq)$$

on $Sp(2) = E_1^{10}$ and extends the \bullet-action naturally. A corresponding $O(2) \times SO(3)$-action exists of course on Σ_{7-1}. On Σ_{3} an $O(2) \times SO(3)$-action is induced by the action

$$O(2) \times SO(3) \times E_6^{10} \rightarrow E_6^{10}, \quad (A,q) \bullet (u,v) \mapsto (Au,vq).$$

On the other Σ_{n} with $n \neq -1,0,1$, however, it seems likely that the $Z_2 \times Z_2 \times SO(3)$-action cannot be extended to any larger group, see Remark 4.4.

Question 2.4. Which E_n^{10} admit Riemannian metrics with $K \geq 0$ that are invariant under the cohomogeneity 2 action above? If some E_n^{10} admits such a metric then by the O’Neill formulas the induced metric on Σ_{n} also has $K \geq 0$. This would be particularly interesting for those Σ_{n} that are not diffeomorphic to S^3-bundles over S^4 since on such exotic spheres no metrics with $K \geq 0$ are known so far.

Remark 2.5. While there are twelve S^3-principal bundles over S^7 there are 28 homotopy 7-spheres. This means in particular that some Σ_{n} are quotients of trivial bundles E_n^{10}. This phenomenon is well-known from surgery theory (see [Wa]) in an inexplicit way.

Remark 2.6. Grove and Ziller [GZ] constructed cohomogeneity one metrics with $K \geq 0$ on all $S^3 \times S^3$-principal bundles over S^4. It is known that the $(n \mod 12)$-th S^3-principal bundle over S^4 is diffeomorphic to an $S^3 \times S^3$-principal bundle over S^4 if and only if $n \mod 12 \in \{0,1,3,4,6,7,9,10\}$. It is easy to see that the set of all integers n with $n \mod 12 \in \{0,1,3,4,6,7,9,10\}$ maps surjectively on Z_{28}. Thus, every element in Θ_7 can be represented by some Σ_{n} such that E_n^{10} admits a cohomogeneity one metric with $K \geq 0$. However, this does not mean that Σ_{n} admits a metric with $K \geq 0$ since the Gromoll-Meyer action E_n^{10} is not isometric with respect to the Grove-Ziller metric.
3. Invariant submanifolds and parity

In this section we will see that the even/odd grading of the generalized Gromoll-Meyer spheres Σ_n^7 is based on an elementary property of the maps ρ_n.

Consider the subsets
\[E_n^0 := \{(u, v) \in E_n^{10} \mid u \in \text{Im} \mathbb{H} \times \mathbb{H} \}, \]
\[E_n^8 := \{(u, v) \in E_n^{10} \mid u \in \text{Im} \mathbb{H} \times \text{Im} \mathbb{H} \} \]
of $E_n^{10} \subset S^7 \times S^7$. These are the preimages of the subspaces
\[S^6 = \{ (\frac{p}{w}, w) \mid p \in \text{Im} \mathbb{H}, w \in \mathbb{H}, |p|^2 + |w|^2 = 1 \}, \]
\[S^5 = \{ (\frac{p_1}{p_2}, p_1, p_2) \in \text{Im} \mathbb{H}, |p_1|^2 + |p_2|^2 = 1 \} \]
of $S^7 \subset \mathbb{H} \times \mathbb{H}$ under the principal bundle projection $E_n^{10} \to S^7$.

Lemma 3.1. E_n^0 and E_n^8 are submanifolds of E_n^{10} diffeomorphic to $S^6 \times S^3$ and $S^5 \times S^3$, respectively.

Proof. $E_n^0 \to S^6$ is a proper subbundle of $E_n^{10} \to S^7$ and hence trivial. \(\square\)

Lemma 3.2. E_n^0 and E_n^8 are invariant under the free $*$-action of S^3 and under the \bullet-action of $\mathbb{Z}_2 \times \mathbb{Z}_2 \times S^3$. Hence, the $*$-quotients Σ_n^6 and Σ_n^5 are submanifolds of Σ_n^7 with a natural \bullet-action of $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \text{SO}(3)$.

Proof. Straightforward. \(\square\)

Lemma 3.3. As submanifolds of $S^7 \times S^7$ we have
\[\ldots = E_{-3}^0 = E_{-2}^0 = E_{-1}^0 = E_1^0 = E_2^0 = E_3^0 = \ldots, \]
\[\ldots = E_{-4}^0 = E_{-2}^8 = E_0^8 = E_2^8 = E_4^8 = \ldots \]
and the same identities also hold for $E_n^8 \subset E_n^0$ and for the quotients Σ_n^6 and Σ_n^5.

Proof. This is an immediate consequence of the two basic identities
\[\rho_{2m+1}((\frac{p}{w})) = (-1)^m (\frac{p}{w}) \quad \text{and} \quad \rho_{2m}((\frac{p}{w})) = (-1)^m (\frac{0}{1}) \]
for $(\frac{p}{w}) \in S^6 \subset \text{Im} \mathbb{H} \times \mathbb{H}$. \(\square\)

Corollary 3.4. If n is odd, Σ_n^5 is equivariantly diffeomorphic to the Brieskorn sphere W_3^5 with its natural $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \text{SO}(3)$-action. If n is even, Σ_n^5 is equivariantly diffeomorphic to the Euclidean sphere $S^5 \subset \mathbb{R}^3 \times \mathbb{R}^3$ where $\text{SO}(3)$-acts diagonally on both \mathbb{R}^3-factors and each \mathbb{Z}_2-factor acts on one of the \mathbb{R}^3-factors.

Proof. From Lemma 7.4 of [DF] we know that Σ_5^7 is $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \text{SO}(3)$-equivariantly diffeomorphic to W_3^5. For Σ_0^5 we observe that
\[E_0^8 = \{ (\frac{p_1}{p_2}, q) \mid p_1, p_2 \in \text{Im} \mathbb{H}, q \in S^3 \} \]
The natural embedding $S^5 \to E_0^8$, $(\frac{p_1}{p_2}) \mapsto (\frac{p_1}{p_2}, 1)$ identifies the $*$-quotient of E_0^8 with S^5. \(\square\)

Lemma 3.5. The subsphere Σ_n^5 is minimal in Σ_n^6 and Σ_n^7 for all $\{\pm 1\} \times \text{SO}(3)$-invariant Riemannian metrics on Σ_n^7.
Proof. Analogous to the proof of Corollary 3.4 in [DP] this follows from the fact that Σ^5_n is the union of orbits whose isotropy groups contain elements of the form $(-1, \pm q)$. \hfill \Box

4. The geodesic join structure of Σ^7_n

We will now study the geometry of a one parameter family of Riemannian metrics on E^{10}_n and Σ^7_n and use the results to prove Theorem 1, Theorem 2 and Theorem 4. The one parameter family of metrics is defined in such a way that the constructions of [Du] and [DP] for Σ^7_{GM} can be extended to all Σ^7_n.

We equip the total space of the principal bundle $E^{10}_n \to S^7$ with the Riemannian metric $\langle \cdot, \cdot \rangle_{\nu}$ with $\nu > 0$ defined by the following properties:

- The S^3-fibers have constant curvature $\frac{1}{\nu}$.
- The horizontal distribution is given by the pull-back of the horizontal distribution of $Sp(2)$ via the map ρ_n, i.e., we pull-back the principal bundle connection of $Sp(2)$.
- The metric $\langle \cdot, \cdot \rangle_{\nu}$ induces on S^7 the metric with constant curvature 1 by Riemannian submersion.

Such metrics are called connection metrics or Kaluza-Klein metrics.

The $Z_2 \times Z_2 \times S^3 \times S^3 \times S^3$-action given in (3) and (4) is isometric with respect to the metric $\langle \cdot, \cdot \rangle_{\nu}$. In particular, the Gromoll-Meyer action \star is isometric and Σ^7_n inherits a Riemannian metric by Riemannian submersion, which will again be denoted by $\langle \cdot, \cdot \rangle_{\nu}$. The \bullet-action of $Z_2 \times Z_2 \times S^3$ on E^{10}_n is also isometric.

Since the \bullet-action commutes with the \star-action, it induces an effective isometric $Z_2 \times Z_2$-action on $(\Sigma^7_n, \langle \cdot, \cdot \rangle_{\nu})$.

Lemma 4.1. The common fixed point set of $SO(3)$ in Σ^7_n is the circle

$$\Sigma^1_n := \left\{ \pi_{\Sigma^7_n} \left(\begin{pmatrix} \cos t & -\sin nt \\ \sin t & \cos nt \end{pmatrix} \right) \mid t \in \mathbb{R} \right\}.$$

Hence, for any $SO(3)$-invariant Riemannian metric on Σ^7_n, this circle Σ^1_n is a simple closed geodesic.

Proof. $\pi_{\Sigma^7_n}(u, v)$ is a fixed point of $SO(3)$ if and only if for every $q \in S^3$ there is a $q' \in S^3$ such that $(q'uv^2, q'vq) = (u, v)$. It is easy to see from the second column of this equation that all elements of S^3 occur for q'. Therefore, u must have two real components. \hfill \Box

Note that the $Z_2 \times Z_2$-action on Σ^1_n is equivalent to the standard $Z_2 \times Z_2$-action on S^1. In particular, for each point $p \in \Sigma^1_n$ there is a natural antipode $-p$.

Theorem 4.2. Every unit speed geodesic γ in $(\Sigma^7_n, \langle \cdot, \cdot \rangle_{\nu})$ with $\gamma(0) = p \in \Sigma^1_n$ is length minimizing on $[0, \pi]$ and we have $\gamma(\pi) = -p$ and $\gamma(2\pi) = p$.

Proof. The proof is similar to the proofs of Theorem I in [Du] and Theorem 2.1 in [DP]. We lift γ horizontally to a geodesic $\tilde{\gamma}$ in E^{10}_n with

$$\tilde{\gamma}(0) = \alpha(t) := \begin{pmatrix} \cos t & -\sin nt \\ \sin t & \cos nt \end{pmatrix} \in E^1_n.$$
That \(\hat{\gamma} \) is horizontal with respect to \(E_{10}^n \to \Sigma_n^7 \) means that the geodesic \(\hat{\gamma} \) passes perpendicularly through all \(\star \)-orbits. It is straightforward to check that
\[
S^3 \star \alpha(t) = S^3 \star \alpha(t).
\]
Thus, \(\hat{\gamma} \) passes perpendicularly through \(S^3 \star \hat{\gamma}(0) \). A geodesic that passes perpendicularly through one orbit passes perpendicularly through all orbits. Hence, \(\hat{\gamma} \) passes perpendicularly through all \(S^3 \)-orbits of the \(\bullet \)-action. In other words, \(\hat{\gamma} \) is horizontal to the principal fibration \(E_{10}^n \to \Sigma_n^7 \). Hence, \(\hat{\gamma} \) projects to a geodesic \(\beta \) in \(\Sigma_n^7 \). By definition of \(\langle \cdot, \gamma \rangle \nu \) the sphere \(S^7 \) inherits the metric with constant curvature 1 from \(E_{10}^n \) by Riemannian submersion. Since all unit speed geodesics of \(S^7 \) that start at \(\beta(0) = \pi_{S^7}(\alpha(t)) \) pass through \(\beta(\pi) = -\beta(0) \) at time \(\pi \) we have \(\beta(\pi) = \pi_{S^7}(\alpha(t + \pi)) \). Thus, \(\hat{\gamma}(\pi) \) is contained in \(S^3 \star \alpha(t + \pi) = S^3 \star \alpha(t + \pi) \) and \(\hat{\gamma}(2\pi) \) is contained in \(S^3 \star \alpha(t + 2\pi) = S^3 \star \hat{\gamma}(0) \). This shows \(\gamma(\pi) = -\gamma(0) \) and \(\gamma(2\pi) = \gamma(0) \). Now let \(\gamma \) be a unit speed geodesic in \(\Sigma_n^7 \) with \(\gamma(0) = p \) and \(\gamma_1(t) = -p \). By the construction above \(\beta \) is a unit speed geodesic in \(S^7 \) with \(\beta(l) = -\beta(0) \). Hence, \(l \) cannot be less than \(\pi \).

Recall that the join \(X \star Y \) of two spaces \(X \) and \(Y \) is the quotient of \(X \times Y \times [0, 1] / \sim \) where \((x, y, 0) \sim (x, y', 0) \) and \((x, y, 1) \sim (x', y, 1) \) for all \(x \in X \) and all \(y \in Y \). For our purposes it is convenient to substitute \([0, 1] \) by \([0, \frac{\pi}{2}] \).

Corollary 4.3. \(\Sigma_n^1 \) and \(\Sigma_n^5 \) have constant distance \(\frac{\pi}{2} \). Moreover, the map \(\Sigma_n^1 \star \Sigma_n^5 \to \Sigma_n^7 \) that maps \((x, y, t) \) to \(\gamma(t) \), where \(\gamma : [0, \frac{\pi}{2}] \to S^7 \) is the unique unit speed geodesic segment from \(x \) to \(y \), is an equivariant homeomorphism.

Proof. This follows from the construction in the proof of Theorem 4.2 if one recalls that the submanifolds \(E_{10}^n \) and \(E_{10}^n \) project to the submanifolds
\[
S^1 = \{ (\cos t, \sin t) \mid t \in \mathbb{R} \},
\]
\[
S^5 = \{ (p_1, p_2) \mid p_1, p_2 \in \text{Im } \mathbb{H}, |p_1|^2 + |p_2|^2 = 1 \}
\]
of \(S^7 \subset \mathbb{H}^2 \) under the principal fibration \(E_{10}^n \to S^7 \) and to the submanifolds \(\Sigma_n^1 \) and \(\Sigma_n^5 \) of \(\Sigma_n^7 \) under the principal fibration \(E_{10}^n \to \Sigma_n^7 \).

Theorem 4.2 and Corollary 4.3 together yield Theorem 4 from the introduction.

Corollary 4.4. \(\Sigma_n^7 \) is \(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \text{SO}(3) \)-equivariantly homeomorphic to \(S^1 \star S^5 \) if \(n \) is even and to \(S^1 \star W_3^5 \) if \(n \) is odd. Here, the \(\mathbb{Z}_2 \times \mathbb{Z}_2 \) acts on \(S^1 \) in the standard way.

Proof. This is evident from Corollary 4.4 and Corollary 4.3.

In particular, all \(\Sigma_n^7 \) with even \(n \) are mutually equivariantly homeomorphic and that all \(\Sigma_n^7 \) with odd \(n \) are mutually equivariantly homeomorphic. This proves Theorem 2 from the introduction.

Proof of Theorem 1. Consider the unit speed geodesic
\[
\beta(t) = \left(\frac{\cos t + p \sin t}{\sqrt{\sin t}} \right).
\]
in $S^7 \subset \mathbb{H}^2$ that emanates from the north pole with initial velocity $(p, w) \in S^6 \subset \text{Im } \mathbb{H} \times \mathbb{H}$. A lift $\tilde{\gamma}_n$ of this curve to E^{10}_n with $\tilde{\gamma}_n(0) = (1, 0, 0)$ is given by

\begin{equation}
\tilde{\gamma}_n(t) = \left(\cos t + p \sin t \frac{w}{|w|} e^{-n|p| \sin(nt)} - e^{n|p| \cos(nt)} \frac{w}{|w|} t \right).
\end{equation}

Here $e^p = \cos |p| + \frac{\omega}{|p|} \sin |p|$ denotes the exponential map of $S^3 \subset \mathbb{H}$ at 1. Note that for $w = 0$ equation (5) simply becomes $\tilde{\gamma}_n(t) = (e^{n|p| \cos(t)}, 0)$. Using the identity

$$\tilde{\rho}_n(\tilde{\gamma}_n(t)) = \tilde{\gamma}_n(nt)$$

for the map $\tilde{\rho}_n : E^{10}_n \to \text{Sp}(2)$ defined in section 4 it is straightforward to verify that $\tilde{\gamma}_n$ is the unique horizontal lift of γ to E^{10}_n with $\tilde{\gamma}_n(0) = 1$. Since the fibers of $E^{10}_n \to S^7$ and $E^{10}_n \to \Sigma^7_n$ through $\tilde{\gamma}_n(0) = (1, 0, 0)$ are the same (as sets), the geodesic $\tilde{\gamma}_n$ is horizontal with respect to both these fibrations. This shows that $\gamma_n = \pi_{\Sigma^7_n} \circ \tilde{\gamma}_n$ is a geodesic in Σ^7_n. Now, considering all possible unit initial vectors $(p, w) \in S^6 \subset \text{Im } \mathbb{H} \times \mathbb{H}$ and times $t \in [0, \frac{\pi}{2}]$ the geodesics γ_n provide an embedding of a disk $D^7(\frac{\pi}{2})$ into Σ^7_n by Theorem 4.2. In the same way, the geodesics $\pi_{\Sigma^7_n} \circ (-\gamma_n) \circ (-\text{id})$ provide another embedding of the same disk. By Theorem 4.2 Σ^7_n is the twisted sphere obtained by gluing these two embedded disks along their common boundary. One easily checks that

$$\tilde{\gamma}_n(p, w, \frac{\pi}{2}) = q \ast (-\tilde{\gamma}_n(-p', -w', \frac{\pi}{2}))$$

for some $q \in S^3$ if and only if $(p', w') = \sigma^n(p, w)$ where σ is the exotic diffeomorphism of $S^6 \subset \text{Im } \mathbb{H} \times \mathbb{H}$ first described in [Du]. This diffeomorphism σ generates $\pi_0(\text{Diff}_+(S^6))$. It is given by the formula

$$\sigma(p, w) := b(p, w)(p, w)b(p, w)$$

where $b(p, w) = \frac{w}{|w|} e^{n|p| \omega} \frac{w}{|w|}$ is an analytic formula for a generator of $\pi_0(S^3)$. Hence, we have obtained Σ^7_n by gluing two 7-disks with the n-th power of a generator of $\pi_0(\text{Diff}_+(S^6)) \approx \Theta_7 \approx \mathbb{Z}_{28}$. \hfill \Box

Remark 4.5. Let G be a compact group acting smoothly on Σ^7_n with $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \text{SO}(3) \subset G$. Precisely as in [DP], Lemma 3.7, one can show that G leaves Σ^1_n and Σ^5_n invariant. Let $n \notin \{-1, 0, 1\}$. Comparing for different $p \in \Sigma^1_n$ the closing behaviour of geodesics that start at p perpendicularly to Σ^1_n, one can see that $\mathbb{Z}_2 \times \mathbb{Z}_2$ is the maximal compact group that acts isometrically on $(\Sigma^7_n, \langle \cdot, \cdot \rangle_\nu)$ and effectively on the circle Σ^1_n. This difference from the cases $n = -1, 0, 1$ suggests that $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \text{SO}(3)$ is the full isometry group of $(\Sigma^7_n, \langle \cdot, \cdot \rangle_\nu)$.

Remark 4.6. If we pull back the metric $\langle \cdot, \cdot \rangle_\nu$ on $\text{Sp}(2)$ by the map $\tilde{\rho}_n$ then we obtain a degenerate metric $\langle \cdot, \cdot \rangle_\nu^\ast$ on E^{10}_n that has the same geodesics through the circle Σ^1_n as the metric $\langle \cdot, \cdot \rangle_\nu$. For $n \notin \{-1, 0, 1\}$ the metric $\langle \cdot, \cdot \rangle_\nu^\ast$ is degenerate precisely over $|n| - 1$ subspaces in S^7 whose first quaternionic components have constant real part. With such a metric Σ^7_n looks like n copies of Σ^7_{GM} stacked one on top of the other, i.e., like a degenerate connected sum of n copies of Σ^7_{GM}.
Remark 4.7. The manifolds \((E^n, \langle \cdot, \cdot \rangle_\nu)\) with even \(n\) are not just mutually equal as submanifolds of \(S^7 \times S^7\) but also mutually equal as Riemannian manifolds. Hence, also the manifolds \((\Sigma^n_\nu, \langle \cdot, \cdot \rangle_\nu)\) with even \(n\) are all mutually equal as Riemannian manifolds. The analogous statements hold for odd \(n\).

5. Comparison to the exotic Milnor and Brieskorn 7-spheres

In this section we compare the equivariant topology of the spheres \(\Sigma^7_n\) with the equivariant topology of the Milnor spheres \(M^7_d\) and the Brieskorn spheres \(W^7_{6n-1,3}\) and prove Theorem 5 and Theorem 6 of the introduction.

Recall from the introduction that the Milnor spheres \(M^7_d\) admit natural \({\pm \mathbb{I}}\times SO(3)\)-actions. Davis [Da] has shown that these actions can be extended to \(GL(2, \mathbb{R}) \times SO(3)\)-actions. In the first chart the \(GL(2, \mathbb{R})\)-action is given by

\[
(\begin{smallmatrix} a & c \\ b & d \end{smallmatrix}) \cdot (u, v) = (\frac{bu+dv}{|bu+dv|}, \det (\begin{smallmatrix} a & c \\ b & d \end{smallmatrix})^k v (\frac{bu+dv}{|bu+dv|}))
\]

and in the second one by

\[
(\begin{smallmatrix} a & c \\ b & d \end{smallmatrix}) \cdot (u, v) = \left(\frac{b+du}{a+cu}, \det (\begin{smallmatrix} a & c \\ b & d \end{smallmatrix}) \left(\frac{a+cu}{|a+cu|}\right)^k \left(\frac{b+du}{a+cu}\right)\right).
\]

Note that our definition of the action differs from the definition given by Davis by the factor \(\det (\begin{smallmatrix} a & c \\ b & d \end{smallmatrix})\). The reason is that with our definition the identification between \(M^7_d\) and the Gromoll-Meyer sphere \(\Sigma^7_{GM}\) given in [GM] becomes an \(O(2) \times SO(3)\)-equivariant diffeomorphism while without the determinant factor the identification is only \(SO(2) \times SO(3)\)-equivariant. Moreover, note that the map \(M^7_d \to \Sigma^7_{GM}\) given by \((u, v) \mapsto (\bar{u}, \bar{v})\) in both charts is an \(GL(2, \mathbb{R}) \times SO(3)\)-equivariant diffeomorphism.

Theorem 5.1. In every Milnor sphere \(M^7_d\) there is a unique invariant submanifold \(M^5_d\) which is \(O(2) \times SO(3)\)-equivariantly diffeomorphic to the Brieskorn sphere \(W^5_{5d}\) with the \(O(2) \times SO(3)\)-action given in [H]. This submanifold \(M^5_d\) is minimal for any \({\pm \mathbb{I}}\times SO(3)\)-invariant Riemannian metric on \(M^7_d\).

Proof. It suffices to consider the case \(d > 0\). Let \(M^5_d\) be the submanifold of \(M^7_d\) given by the equations \(\text{Re} v = 0\) and \(\text{Re} w v = 0\) in both charts (it is essential here that \(k + l = 1\)). Hirsch and Milnor [HM] proved that \(M^5_d\) is homeomorphic and hence (because exotic spheres do not exist in dimension 5) diffeomorphic to \(S^5\). It is straightforward to check that \(M^5_d\) is invariant under the \(SO(2) \times SO(3)\)-action. Consider the curve \(\alpha\) in \(M^7_d\) which is given by \(\alpha(s) = (i \tan s, j)\) in the first chart. The isotropy groups along \(\alpha\) are

\[
K_- = \{(\mathbb{I}, \pm e^{j\tau})\} \cup \{(-\mathbb{I}, \pm ie^{j\tau})\} \cup \{([1 0]_{-1}, \pm e^{j\tau})\} \cup \{([-1 0]_1, \pm e^{j\tau})\}
\]

at \(s = 0\),

\[
H = \{(\mathbb{I}, \pm 1), (-\mathbb{I}, \pm i), ([1 0]_{-1}, \pm j), ([-1 0]_1, \pm k)\}
\]

for \(0 < s < \frac{\pi}{4}\), and

\[
K_+ = \{([\cos \theta - \sin \theta]_{\cos \theta}, \pm e^{-\frac{4}{\theta} j\theta})\} \cup \{([\cos \theta - \sin \theta]_{\cos \theta} [1 0]_{-1}, \pm e^{-\frac{4}{\theta} j\theta})\}
\]
at \(s = \frac{\pi}{4} \). Now consider the Brieskorn sphere \(W^5_d \) with the \(O(2) \times SO(3) \)-action given in \(\| \) and the curve

\[
\beta(s) = \left(s, 0, \frac{1}{\sqrt{2}} \sqrt{1 - s^2 - s^d}, -\frac{1}{\sqrt{2}} \sqrt{1 - s^2 + s^d} \right)
\]
on the interval \([s_-, 0]\) where \(s_- < 0 \) is the root of \(1 - s^2 + s^d \). Straightforward computations show that the isotropy groups along \(\beta \) are the same as the isotropy groups along \(\alpha \). This proves that \(M^5_d \) and \(W^5_d \) are equivariantly diffeomorphic. The uniqueness and minimality of \(M^5_d \) follows from the following fact: The fixed point set of any element of the form \((\pm 1, \pm q)\) is contained in \(M^5_d \) and even more \(M^5_d \) can be seen to be the union of orbits whose isotropy groups contains such elements. \(\square \)

Proof of Theorem 5. The involution \((-1, \pm i)\) is contained in \(M^5_d \approx W^5_{|d|} \). The fixed point set of \((-1, \pm i) = (-1, \text{diag}(1, -1, -1)\) in \(W^5_{|d|} \) is the \(W^3_{|d|} \) given by the equation \(z_1 = 0 \) and hence diffeomorphic to a lens space with fundamental group \(\mathbb{Z}_{|d|} \). \(\square \)

The Milnor sphere \(M^7_d \) have direct analogues \(M^{15}_d \) in dimension 15. They are obtained by gluing two copies of \(O \times S^7 \) along \((O \setminus \{0\}) \times S^7 \) by the map \(\| \). Precisely as above each \(M^{15}_d \) admits a smooth action of \(O(2) \times G_2 \) (see \(\| \)).

Theorem 5.2. In every \(M^{15}_d \) there is a unique invariant submanifold \(M^{13}_d \) which is \(O(2) \times G_2 \)-equivariantly diffeomorphic to the Brieskorn sphere \(W^{13}_{|d|} \) with the action of \(O(2) \times G_2 \subset O(2) \times SO(7) \) given analogously to \(\| \). This submanifold \(M^{13}_d \) is minimal for any \(\{\pm 1\} \times G_2 \)-invariant Riemannian metric on \(M^{15}_d \).

Proof. Analogous to the proof of Theorem 5.1. \(\square \)

Finally, we turn to the Brieskorn spheres \(W^7_{6n-1,3} \) and prove Theorem 6 from the introduction.

Proof of Theorem 6. The involution \(\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \in SO(3) \) on \(W^7_{6n-1,3} \) is given by

\[
(w, z_0, z_1, z_2, z_3) \rightarrow (w, z_0, z_1, -z_2, -z_3).
\]

Its fixed point set is thus identical to \(W^3_{6n-1,3,2} \), which is the intersection of the unit sphere \(S^5 \) in \(\mathbb{C}^3 \) with the complex hypersurface

\[
w^{6n-1} + z_0^3 + z_1^2 = 0.
\]

Milnor \(\| \) has shown that \(W^3_{5,3,2} \) is diffeomorphic to Poincare dodecahedral space and that the universal covering space of \(W^3_{6n-1,3,2} \) is non-compact if \(n > 1 \). \(\square \)

References

[Ba] A. L. Besse, *Manifolds all of whose geodesics are closed*, Ergebnisse der Mathematik und ihrer Grenzgebiete 93, Springer, Berlin-New York, 1978.

[Bk] E. Brieskorn, *Beispiele zur Differentialgeometrie von Singularitäten*, Invent. Math. 2 (1966), 1–14.

[Da] M. W. Davis, *Some group actions on homotopy spheres of dimension seven and fifteen*, Am. J. Math. 104 (1982), 59–90.
[Du] C. E. Durán, Pointed Wiedersehen metrics on exotic spheres and diffeomorphisms of S^6, Geom. Dedicata 88 (2001), 199–210.

[DMR] C. E. Durán, A. Mendoza, A. Rigas, Blakers-Massey elements and exotic diffeomorphisms of S^6 and S^{14} via geodesics, Trans. Amer. Math. Soc. 356 (2004), 5025–5043.

[DP] C. E. Durán, T. Püttmann, A minimal Brieskorn 5-sphere in the Gromoll-Meyer sphere and its applications, arXiv:math.DG/0606769

[EK] J. Eells, N. H. Kuiper, An invariant for certain smooth manifolds, Ann. Mat. Pura Appl. 60 (1962), 93–110.

[GM] D. Gromoll, W. Meyer, An exotic sphere with nonnegative curvature, Ann. Math. 100 (1974), 401–406.

[GZ] K. Grove, W. Ziller, Curvature and symmetry of Milnor spheres, Ann. of Math. 152 (2000), 331–367.

[HMi] M. Hirsch, J. Milnor, Some curious involutions of spheres, Bull. Amer. Math. Soc. 70 (1964), 372–377.

[HMa] F. Hirzebruch, K. H. Mayer, $O(n)$-Mannigfaltigkeiten, exotische Sphären und Singularitäten, Lecture Notes in Mathematics 57, Springer, Berlin 1968.

[Hu] S. T. Hu, Homotopy theory, Pure and Applied Mathematics VIII, Academic Press, New York, 1959.

[KZ] V. Kapovitch, W. Ziller, Biquotients with singly generated rational cohomology, Geom. Dedicata 104 (2004), 149–160.

[KM] M. A. Kervaire, J. W. Milnor, Groups of homotopy spheres I, Ann. of Math. 77 (1963), 504–537.

[Mi1] J. W. Milnor, On manifolds homeomorphic to the 7-sphere, Ann. of Math. 64 (1956), 399–405.

[Mi2] J. W. Milnor, On the 3-dimensional Brieskorn manifolds $M(p, q, r)$, Knots, Groups and 3-Manifolds (L. P. Neuwirth, ed.), Annals of Mathematical Studies 84, 175–225. Princeton University Press, Princeton, NJ, 1975.

[Ri] A. Rigas, S^3-bundles and exotic actions, Bull. Soc. Math. France 112 (1984), 69–92; correction by T. E. Barros, Bull. Soc. Math. France 129 (2001), 543–545.

[St] E. Straume, Compact differentiable transformation groups on exotic spheres, Math. Ann. 299 (1994), 355–389.

[To] B. Totaro, Cheeger manifolds and the classification of biquotients, J. Differential Geom. 61 (2002), 397–451.

[Wa] C. T. C. Wall, Surgery on compact manifolds, Mathematical surveys and monographs 69, AMS, Providence, 1999.

IMECC-UNICAMP, Praça Sérgio Buarque de Holanda, 651, Cidade Universitária - Barão Geraldo, Caixa Postal: 6065 13083-859 Campinas, SP, Brasil
E-mail address: cduran@ime.unicamp.br

Mathematisches Institut, Universität Bonn, D-53115 Bonn, Germany
E-mail address: puttmann@math.uni-bonn.de

IMECC-UNICAMP, Praça Sérgio Buarque de Holanda, 651, Cidade Universitária - Barão Geraldo, Caixa Postal: 6065 13083-859 Campinas, SP, Brasil
E-mail address: rigas@ime.unicamp.br