Cholinergic α7 nicotinic receptors encoded by the CHRNA7 gene are ligand-gated ion channels directly related to memory and immunomodulation. Exons 5-7 in CHRNA7 can be duplicated and fused to exons A-E of FAR7α, resulting in a hybrid gene known as CHRFAM7A, unique to humans. Its product, denoted herein as Dupα7, is a truncated subunit where the N-terminal 146 residues of the ligand binding domain of the α7 receptor have been replaced by 27 residues from FAM7. Dupα7 has a negative effect on the functioning of α7 receptors associated with neurological disorders, including Alzheimer's diseases and schizophrenia.

However, the stoichiometry for the α7 nicotinic receptor containing dupα7 monomers remains unknown. In this work, we developed computational models of all possible combinations of wild-type α7 and dupα7 pentamers and evaluated their stability via atomistic molecular dynamics and coarse-grain simulations. We assessed the effect of dupα7 subunits on the Ca2+ conductance using free energy calculations. We showed that receptors comprising of four or more dupα7 subunits are not stable enough to constitute a functional ion channel. We also showed that models with dupα7/α7 interfaces are more stable and are less detrimental for the ion conductance in comparison to dupα7/dupα7 interfaces. Based on these models, we used protein-protein docking to evaluate how such interfaces would interact with an antagonist, α-bungarotoxin, and amyloid Aβ42.

Our findings show that the optimal stoichiometry of dupα7/α7 functional pentamers should be no more than three dupα7 monomers, in favour of a dupα7/α7 interface in comparison to a homodimer dupα7/dupα7 interface. We also showed that receptors bearing dupα7 subunits are less sensitive to Aβ42 effects, which may shed light on the translational gap reported for strategies focused on nicotinic receptors in Alzheimer's Disease research.

File list (2)

Liu_etal_FINAL.pdf (3.99 MiB) view on ChemRxiv download file
Structure, dynamics, and ligand recognition of human-specific CHRFAM7A (Dupα7) nicotinic receptor linked to neuropsychiatric disorders

Danlin Liu1, João V. de Souza1, Ayaz Ahmad1 and Agnieszka K. Bronowska1,2*

1Chemistry – School of Natural and Environmental Sciences, Newcastle University, NE1 7RU Newcastle, UK
2Newcastle University Centre for Cancer, Newcastle University, NE1 7RU Newcastle, UK
*Equal contribution
*Corresponding author: agnieszka.bronowska@ncl.ac.uk

Abstract

Cholinergic α7 nicotinic receptors encoded by the CHRNA7 gene are ligand-gated ion channels directly related to memory and immunomodulation. Exons 5-7 in CHRNA7 can be duplicated and fused to exons A-E of FAR7a, resulting in a hybrid gene known as CHRFAM7A, unique to humans. Its product, denoted herein as Dupα7, is a truncated subunit where the N-terminal 146 residues of the ligand binding domain of the α7 receptor have been replaced by 27 residues from FAM7. Dupα7 has a negative effect on the functioning of α7 receptors associated with neurological disorders, including Alzheimer’s diseases and schizophrenia. However, the stoichiometry for the α7 nicotinic receptor containing dupα7 monomers remains unknown. In this work, we developed computational models of all possible combinations of wild-type α7 and dupα7 pentamers and evaluated their stability via atomistic molecular dynamics and coarse-grain simulations. We assessed the effect of dupα7 subunits on the Ca2+ conductance using free energy calculations. We showed that receptors comprising of four or more dupα7 subunits are not stable enough to constitute a functional ion channel. We also showed that models with dupα7/α7 interfaces are more stable and are less detrimental for the ion conductance in comparison to dupα7/dupα7 interfaces. Based on these models, we used protein-protein docking to evaluate how such interfaces would interact with an antagonist, α-bungarotoxin, and amyloid Aβ42. Our findings show that the optimal stoichiometry of dupα7/α7 functional pentamers should be no more than three dupα7 monomers, in favour of a dupα7/α7 interface in comparison to a homodimer dupα7/dupα7 interface. We also showed that receptors bearing dupα7 subunits are less sensitive to Aβ42 effects, which may shed light on the translational gap reported for strategies focused on nicotinic receptors in Alzheimer’s Disease research.

Introduction

Nicotinic α7 receptors, encoded by the CHRNA7 gene, are ligand-gated ion channels involved in cognition, memory, and immunomodulation, which have emerged as attractive targets for neuropsychiatric disorders neuroinflammation, neuropathic pain, and autoimmune diseases (Lew et al., 2018). The overall three-dimensional structure of nicotinic α7 receptors is well characterised (Hendrickson et al., 2013). Each receptor is composed of five identical α7 subunits that are symmetrically arranged around the central channel’s axis. Each subunit contains a large agonist-binding extracellular
domain, a transmembrane region formed by four helices, and an intracellular domain-containing receptor modulation and protein-protein interactions (Maroli et al., 2019). The acetylcholine (ACh) binding sites are located at the interfaces of the extracellular domains of adjacent subunits. The \(\alpha_7 \) receptor has five identical ACh binding sites; however, ACh binding to only one site is sufficient for the receptor activation (Andersen et al., 2013). ACh binding triggers the conformational changes that propagate from the binding site toward the interface between the extracellular and transmembrane domains, called the coupling region. These conformational changes contribute to the molecular mechanism of the receptor activation (Andersen et al., 2013). The secondary structure of each subunit comprises a long hydrophilic extracellular domain (EC domain) with an N-terminal \(\beta \)-sheet, three hydrophobic transmembrane regions (M1-M3) that are all \(\alpha \)-helical (TM domain), followed by an intracellular loop (IC domain), a fourth transmembrane helix (M4), and an extracellular C-terminus (Albuquerque et al., 2009; Cecchini and Changeux, 2015; Dani, 2015; Hendrickson et al., 2013). Upon agonist binding to the extracellular domain, all subunits undergo a large conformational change, which results in the opening of the transmembrane hydrophilic channel. Hallmarks of \(\alpha_7 \) receptors include their high \(\text{Ca}^{2+} \) permeability and very rapid desensitisation (Andersen et al., 2013).

In humans, exons 5-10 in CHRNA7 may be duplicated and fused to exons A-E of FAM7A (family with sequence similarity 7A), resulting in the hybrid gene denoted as CHRFAM7A (Jiang et al., 2019; Sinkus et al., 2015; Sinkus et al., 2009). Its product, denoted as Dup\(\alpha_7 \), is a truncated subunit where the N-terminal 146 residues of the ligand binding domain of the \(\alpha_7 \) receptor have been replaced by 27 residues from FAM7 protein (Jiang et al., 2019; Sinkus et al., 2015; Sinkus et al., 2009); the remaining sequences of \(\alpha_7 \) and Dup\(\alpha_7 \) are identical (Costantini et al., 2015; Lasala et al., 2018). Dup\(\alpha_7 \) is associated with neuropsychiatric disorders, including Alzheimer's disease (Lew et al., 2018; Szigeti et al., 2020), schizophrenia (Kalmady et al., 2018), and immunomodulation (Chan et al., 2020; Maroli et al., 2019), most likely through regulating the function of the \(\alpha_7 \) receptor by direct interactions (Lasala et al., 2018). Besides, Kunii and coworkers have observed that CHRFAM7A was upregulated in the brains of patients with schizophrenia and bipolar disorder, and the ratio of CHRFAM7A/CHRNA7 increased (Kunii et al., 2015). It is postulated that Dup\(\alpha_7 \) acts as a dominant-negative inhibitor of \(\alpha_7 \) function, suggesting its role in human cognition and immune responses by perturbing normal \(\alpha_7 \) activities (Costantini et al., 2019). However, the exact mechanism and specific contribution of Dup\(\alpha_7 \) to the biology of \(\alpha_7 \) receptors remain highly elusive.

Even though the quaternary arrangements of both nicotinic receptors are known (Hendrickson et al., 2013), and reports on overall stoichiometries of heteromeric \(\alpha_7 \) and dup\(\alpha_7 \) receptors have been published recently (Lasala et al., 2018), atomistic details controlling those assemblies are still missing. Unravelling the molecular mechanisms governing the formation of the most probable dup\(\alpha_7/\alpha_7 \) pentamers is of high clinical interest, crucial for structure-guided approaches to target those heteromeric receptors, which account for the translational gap in research focusing on nicotinic receptors as therapeutic targets for neurodegenerative diseases (Szigeti et al., 2020).

To describe the most likely \(\alpha_7/\text{dup}\alpha_7 \) stoichiometry at an atomistic level of detail and to elucidate the structural, energetic and functional effects of incorporation of dup\(\alpha_7 \)
monomers into the α7 channels, we combined molecular modelling, multiscale molecular dynamics (MD) simulations (all-atom and coarse-grain), and umbrella sampling (US) simulations of the whole receptors embedded in a DCCP membrane. We have also studied extracellular domains separately using all-atom MD simulations, focusing on their structure and intrinsic dynamics alongside the binding side dynamical behaviour. We have subsequently studied how the formation of α7/ dupα7 heteromeric receptors affected the binding of two known ligands of α7 nicotinic receptors: the β-amyloid (Aβ42) and α-bungarotoxin (α-BTX) using molecular docking methods. Our results explain several experimental observations previously published. Our data link the structure and dynamics to the function of human-specific dupα7 receptors and address the specific translational gap reported for cholinergic strategies in Alzheimer's Disease (Szigeti et al., 2020). The outcomes of our study may serve as the starting point for structure-guided development of potent and selective dupα7 modulators to be rendered as future therapeutics for neurological and immune disorders.

Materials and Methods

Molecular modelling of α7 and dupα7 receptors

The initial models of pentameric α7 homopentamers and partially duplicated dupα7 subunits were created using SWISS-MODEL, a fully automated protein structure homology-modelling server, accessible via the ExPASy web server (Bertoni et al., 2017; Waterhouse et al., 2018). The primary sequences of the human canonical α7 and dupα7 were obtained from the UniProt repository (entries P36544 and Q494W8, respectively). Fifty models were generated and ranked according to their sequence similarity and QMEAN (Waterhouse et al., 2018) quality scores combined. After the visual inspection, the model based on the crystal structure of α7-AChBP in complex with lobeline (PDB code: 5AFH) combined with high-resolution (4.3 Å) cryo-EM structure of mouse 5-HT₃ serotonin receptor (PDB code: 6BE1) was chosen for both receptors, since the difference comes mainly from the N-terminal region (Figure 1A). Different stoichiometries were generated in UCSF Chimera molecular modelling and visualisation toolkit (Pettersen et al., 2004), resulting in eight receptor models in total (Fig. 1). A disulfide bridge at the conserved Cys-loop was ensured for each model. All models, arising from different stoichiometries of dupα7 and α7 subunits, were quality checked by UCSF Chimera, having any missing loops modelled by MODELLER interface (Huang et al., 2014; Yang et al., 2012) within UCSF Chimera, and conformations of interfacial side chains checked for steric clashes.
A) Sequence alignment of α7/dupα7 extracellular (EC) domains (residues 1-180), performed by ClustalW. B) Schematic representation of all eight different model arrangements dupa7-α7 pentamer, considered in this study: the canonical (WT) α7 subunits are coloured blue; dupα7 subunits are coloured red.

Coarse-grain molecular dynamics simulations

To equilibrate the modelled pentamers and understand the intrinsic dynamics in a time scale relevant to the ion channel conductance, coarse-grain simulations of all eight models were done. The atomistic models were translated to MARTINI beads (Kmiecik et al., 2016) and parametrised with the MARTINI 2.2 force field (Marrink et al., 2007). The principal protein axis was aligned to the Cartesian Z-axis. The membrane was built using the insane.py script. The membrane model was built using dipalmitoylphosphatidylcholine (DPPC), with 15 nm in the X and Y axis and 25 nm in the Z-axis, resulting in a box of 15x15x25 nm in dimensions. The system was then solvated,
using 90% of MARTINI water beads and 10% anti-freeze MARTINI water beads (Marrink et al., 2007). The solvated receptor-membrane systems were energy minimised using steepest descent algorithm and equilibrated. In the minimisation, the energy step size was set to 0.001 nm, and the maximum number of steps was set to 50,000. The minimisation was stopped when the maximum force fell below 1000 kJ/mol/nm using the Verlet cutoff scheme. Treatment of long-range electrostatic interactions and Van der Waals interactions were set to be shifted to 0 and 0.9 nm, respectively, beyond the cutoff of 1.5 nm. After the energy minimisation, heating to 300 K was performed for 10 ns with a time step of 20 fs. The temperature coupling was set between the protein and the non-protein entities using a Berendsen thermostat, with a time constant of 1 ps and the temperature set to reach 300 K with the pressure coupling. Pressure equilibration was run at 300 K with a semi-isotropic Berendsen barostat and set to 1 bar in an NPT ensemble. Both NVT and NPT had harmonic position restraints applied to the backbone. The constraint algorithm used was LINCS. The production run was made using the same parameters as NPT, except the backbone position restraints were removed. The production run was made in triplicates of 1 μs each, for each of the eight combinations of α7/dupα7.

Atomistic molecular dynamics (MD) simulations

Atomistic MD simulations have been carried out to generate ensembles to get a detailed insight into the stoichiometry of nicotinic α7/dupα7 receptors in atomistic resolution. The simulations were performed for α7/dupα7 pentamers with different stoichiometries for the models containing all three domains (EC-TM-IC) and only the EC domain to evaluate the effect of the TM-IC domain on the dynamics.

All simulations were performed using Gromacs 2016.3 (Van Der Spoel et al., 2005). The protein was parametrised using the AMBER99SB-ILDN force field, with the DPPC lipid bilayer and TIP3P water model (Lindorff-Larsen et al., 2010). The α7 and dupα7 models were embedded in a DPPC bilayer lipid molecule, using the computational membrane builder tool in the CHARMM-GUI server (www.charmm-gui.org) (Jo et al., 2007; Jo et al., 2008; Wu et al., 2014). Box distance was set to 1 nm, and periodic boundary conditions were applied. The box was solvated and Na+ and Cl− ions were added to achieve a 0.1 M concentration and maintain charge neutrality of the unit. The solvated receptor-membrane systems were energy minimised and equilibrated. The minimisation ran using steepest descent for 1,000 cycles followed by the conjugate gradient. Energy step size was set to 0.001 nm, and the maximum number of steps was set to 50,000. The minimisation was stopped when the maximum force fell below 1000 kJ/mol/nm using the Verlet cutoff scheme. Treatment of long-range electrostatic interactions was set to Particle Mesh-Ewald (PME) (Darden et al., 1993), and the short-range electrostatic and van der Waals cutoff set to 1.0 nm. After the energy minimisation, heating to 300 K was performed for 20 ps with a time step of 2 fs and position restraints applied to the backbone in an NVT ensemble. The constraint algorithm used was LINCS, which was applied to all bonds and angles in the protein (Hess et al., 1997). The cutoff for non-bonded short-range interaction was set to 1.0 nm with the Verlet cutoff scheme. Long-range electrostatics were set to PME. The temperature coupling was set between the protein and the non-protein entities using a Berendsen thermostat, with a time constant of 0.1 ps and the temperature set to reach 300 K with the pressure coupling off. Pressure equilibration was run at 300 K with a Parrinello-Rahman barostat and set to 1 bar
in an NPT ensemble. The equilibration trajectories were set to 5 ns (discarded from the analysis), and the production MD simulations were performed for 100 ns. Each trajectory was run in triplicates.

Analysis of the trajectories was performed using GROMACS tools, including root-mean-square deviation (RMSD) to assess overall stability, per-residue root-mean-square fluctuation (RMSF) to assess the local flexibility, and calculating SASA for solvent-mapping.

Umbrella sampling (US) simulations

Umbrella sampling (steered molecular dynamics) (Kästner, 2011) simulations were used to assess the influence of different stoichiometry of receptors on the pentamer’s ion conductance. The energies of the Ca$^{2+}$ ion pulled through the axis of the channel pore (Z-axis) were calculated using the Weighted Histogram Analysis Method (WHAM) method (Ferrenberg and Swendsen, 1989) to extract the potential of mean force (PMF). To prevent the channel from moving out of the membrane, the receptor subunits were position-restrained during the pulling simulations, using 1000 kJ mol$^{-1}$·nm$^{-2}$. The ion has been placed above the top of the EC domain and pulled downward along the Z-axis towards the TM and IC domains over 5 ns at a rate of 0.01 Å·ps$^{-1}$. A series of umbrella sampling windows were generated from the pulling trajectory to proceed with the umbrella sampling. The entire pathway covering the range of [-10, 10] Å was divided into 0.7 Å, totaling 40 windows.

Aβ42 and α-bungarotoxin (α-BTX) binding to α7 pentamers

The analysis of interactions between different α7/dupα7 receptors and two established macromolecular ligands: Aβ and α-BTX, were performed by molecular docking. Aβ (PDB code: 6RHY) and α-BTX (PDB code:4HQP) were docked to all four possible combinations of α7 and dupα7 interfaces using ClusPro web server (Desta et al., 2020; Kozakov et al., 2017). The top 10 lowest-energy complexes were selected to further analysis, and the binding affinities were calculated by SeeSAR (www.biosolveit.de) (Lee et al., 2016), using the HYDE scoring function (Reulecke et al., 2008).

Results

Stoichiometry studies for different combinations of dupα7/α7

The three-dimensional molecular models of extracellular domains of the canonical α7 and dupα7 are shown in Fig. 2. In dupα7, the N-terminal segment (blue region in Fig. 2) of α7 has been replaced by a shorter α-helix (Fig. 2B). Three β-sheet segments (β1-β3 in Fig. 2) are missing, yet the following segment (β-sheets 4 to 10) resembles the canonical structure.
Given that the pentamer's overall structure containing Dupα7 subunits has not been experimentally solved, we built and investigated all possible models. These different combined pentamers totalise eight models, with seven containing various combinations of Dupα7 nicotinic receptors (Fig. 1B). The functional pentamer is assembled by the dimerisation through only two interfaces. Given this, four possible dimer combinations can be formed: WT-WT, dupα7-WT, WT-dupα7, dupα7-dupα7). Those combinations are functionally relevant since the orthosteric binding site is located at the interface between two monomers. Thus, each particular dimer combination will affect the receptor's function.

The eight models were first simulated using a coarse-grain approach by translating the atomistic model to MARTINI beads (Supp. Fig. S.1). The RMSD and the total potential energy in the function of time are shown in Fig. 3. All eight pentamers showed a similar magnitude of deviation from their starting structures (Fig. 3A), with the average values fluctuating between 1 to 1.4 nm, which was achieved by most of the models after 50 ns of simulation.

The RMSD plots did not show any statistical difference regarding relative motions regarding their starting configuration when a single WT α7 is swapped for a dupα7. However, there is a significant difference in total internal potential energy between the different stoichiometries. As expected, the WT α7 has the lowest internal energy average value, closely followed by A-Dupα7. Interestingly, both models with two Dupα7 (AB-Dupα7 and AC-Dupα7) have undistinguishable average values, which is also the case for both models with three Dupα7 (ABC and ACD-Dupα7). This characteristic shows that CG models could discern the different stoichiometries' internal energy, but it does not have the resolution to discern which internal configuration is more stable. Therefore, we decided to simulate all eight models with an atomistic resolution.
To unravel the most probable stoichiometry and the effect the interfacial interactions have on the system stability, all eight models of different combinations of Dupα7/α7 were simulated for 100 ns (each replica, all simulations performed in triplicates) in an atomistic resolution. This step was made for both the whole model embedded in a DPPC membrane and its EC domain separately. The protein RMSD for the trajectories shows that for a higher ratio of Dupα7/α7, the overall average RMSD is higher compared to the starting structure. This characteristic is more pronounced for the EC domain simulations, as shown in Fig. 4A and Fig. 4B, respectively.

The pentamer simulations embedded in membrane show RMSDs quickly plateauing for most of the models containing less than three Dupα7 subunits. Nonetheless, the ACD-Dupα7 model shows a higher average RMSD than its ABC-Dupα7 counterpart, which may indicate that interfacial dupα7-dupα7 interactions may be favourable for the molecular assemble.

The analysis of the pentamers' internal potential energy (Fig. 4C-D) shows that the average energy increases as the Dupα7/α7 ratio increases. For the extracellular (EC) domain, the combination containing a single Dupα7 subunit has significantly lower energy than all the other models. However, the full-length receptor model simulations show that the A model’s internal energy (Fig. 1B) fluctuates between similar values to the WT and AB model. The difference in energy between the EC domain and its counterpart containing all three domains may indicate that the transmembrane and intracellular (IC) domains may significantly stabilise the pentamers containing Dupα7 subunits.
As expected, the total number of hydrogen bonds formed shows similar behaviour to the calculated potential energy. Specifically, the EC domain trajectories (Fig. 5A) show a higher number of H-Bonds for both WT and A-Dup than their counterparts. The pentamers containing a higher number of Dupα7 subunits show higher average internal energy and a lower average number of hydrogen bonds. Therefore, a clear correlation was observed between a higher Dupα7/ α7 ratio and lower structural energy and fewer total hydrogen bonds. (Fig. 5B)

When observing the hydrogen bond formation between interfaces, several key residues were identified. All these sets of residues are listed in Suppl. Tables S.1-16. Investigating WT-WT dimer, we identified six residues that are often present on the interaction between two adjacent subunits (N69, N75, R101, P110, D111 and W172). In contrast to that, the number of interfacial hydrogen bond pairs for WT-Dupα7 interfaces varied between three to four. One of the main differences between the WT-WT interfaces and Dupα7 containing interfaces is that the latter does not have the hydrogen bond between R101 and the P110 of the sequential subunit residues are not present in the sequence of the Dupα7.
Figure 5: A) The total number of hydrogen bonds vs time of the eight EC domain combinations. B) The total number of hydrogen bonds vs time of eight fully models during 100 ns MD simulation. The black line shows α7 WT model; red - A-Dupα7, green - AB-Dupα7, blue - AC-Dupα7, yellow - ABC-Dupα7, brown - ACD-Dupα7, grey - 4-Dupα7, and purple - 5-Dupα7. The schematic arrangements of all models are shown in Fig. 1B.

A higher number of Dupα7 subunits directly changes the molecular dynamics. Fig. 6 shows that the trajectory projection on the two most significant principal components is affected by the dupα7/α7 ratio. WT, A-Dupα7 and the complexes with two Dupα7 (AB and AC) subunits have similar distributions (Fig. 6A), especially for the transmembrane complexes (Fig. 6B). The most significant difference comes from models with three or higher number of dupα7 subunits. Given their higher energy, pentamers with four or five subunits resulted in higher magnitudes on their projection values, achieving a sparser distribution on the two-dimensional principal component space. These complexes show the same behaviour for their extracellular (EC) domain simulations, albeit less pronounced than the complexes containing a lower Dupα7/α7 ratio when the EC domain is simulated by itself.

Figure 6: A) Principal component analysis, showing the 2D projection of eight different models of the extracellular (EC) domain. B) Principal component 2D projection of eight different fully models during 100 ns of the atomistic MD simulation. The data for α7 WT model is coloured black; A-Dupα7 - red, AB-Dupα7 - green, AC-Dupα7 - blue, ABC-Dupα7 - yellow, ACD-Dupα7 - brown, 4-Dupα7 - grey, 5-Dupα7 - purple. The schematic arrangements of all models are shown in Fig. 1B.

These differences in the transmembrane model dynamics are directly related to the motions on its EC domain, mainly of loop C and the loops connecting the central β sheets (Fig. 7). The motion of Loop C changes depending on its neighbouring subunit for both simulated models, as shown in Fig. 7 and Supp. Fig. S.2. For WT-WT interfaces (Fig. 7A), the loop fluctuates between an open and closed conformation and the entire α7 model remains stable overall (Supp. Fig. S.3). WT-Dupα7 and Dupα7-Dupα7 interfaces (Fig. 7B and Fig. 7C) show a more open conformation and higher local flexibility.
Figure 7: A) Left panel: The extracellular view of the three conformations of the α7 model EC domain; Right panel: the Loop C motion. The representative configurations sampled around 15 ns, 50 ns and 85 ns are coloured yellow, orange and red, respectively; B) The extracellular view of the three conformations of the AB-Dupα7 model EC domain. The representative configurations for the starting conformation's state (around 15 ns) are coloured yellow and cyan; the representative configurations for the state sampled around 50 ns are coloured orange and cornflower blue; the representative configurations for state sampled around 85 ns are coloured red and blue. The dashed lines represent the interfacial loops, which are the areas with the highest fluctuation.

The effect of Dupα7 subunits on Ca^{2+} conductance

To investigate the effect of different combinations of Dupα7/α7 subunits on the Ca^{2+} passing, umbrella sampling simulations were carried out. As shown in Fig. 8, all eight potential mean force (PMF) curves show similar profiles. At -8 nm, the ion is at the tunnel entrance in the EC domain, transitioning to the transmembrane region (TM) around -1.5 nm. The energetic differences between the eight combinations started to arise around -5 nm, near the TM region's start. At this region, α7 and A-Dupα7 have the lowest energy (-37.5 kcal.mol^{-1}). However, an energetic barrier emerges after the TM entrance, which is higher for AB, ABC, 4-Dupα7 and 5-Dupα7. This energetic difference emerges form how the ions interact with the model, specifically with glutamate E254. The canonical α7 (WT) structure can maintain the cohesion of the beginning of the α-helix located in the TM entrance, where the E254 residue is located (Sequence: 250-LVAEIM-257). This behaviour allows a more favourable interaction with the E254, resulting in a higher number of contact points with Ca^{2+} (Supp. Fig. S.4 and Supp. Tables S.17-18).

The final 2nm – 6nm section represent the intracellular (IC) domain, which shows that the energy becomes significantly higher when the ion is distant from the TM domain.
The AB-Dupα7 shows the highest energy (81.2 kcal.mol⁻¹) at the bottom of the IC domain, with the lowest 5-Dupα7 pentamer results (28.3 kcal.mol⁻¹).

Figure 8: Potential of mean force (PMF) calculated for the position of the Ca²⁺ moving through the pentamer axis. The black line shows the PMF obtained for the canonical α7 (WT) receptor, A-Dupα7 - red, AB-Dupα7 - green, AC-Dupα7 - blue, ABC-Dupα7 - yellow, ACD-Dupα7 - brown, 4-Dupα7 - grey, and 5-Dupα7 - purple. The schematic arrangements of all models are shown in Fig. 1B.

The final 2nm – 6nm section represent the intracellular (IC) domain, which shows that the energy becomes significantly higher when the ion far away from the TM domain. The AB-Dupα7 shows the highest energy (81.2 kcal.mol⁻¹) at the bottom of the IC domain, with the lowest 5-Dupα7 model results (28.3 kcal.mol⁻¹).

Table 1: Sampling results Ca²⁺ permeability energetics

Energy/Model (kcal. mol⁻¹)	α7	A-Dup	AB-Dup	AC-Dup	ABC-Dup	ACD-Dup	4-Dup	5-Dup
EC -> TM (around -1.5 nm)	-37.5	-37.5	-15.7	-23.6	-16.4	-21.6	-15.9	-13.9
Transmembrane domain	0.2	1.8	14.6	7.7	4.1	2.3	4.8	9.84
(around 0 nm)								
TM -> IC (around 2 nm)	-0.1	-12.5	-0.1	-10.4	1.1	-7.6	-6.6	-12.6
Exiting IC (around 6 nm)	51.1	37.6	81.2	52.3	63.1	43.7	52.8	37.3
The effect of Dupα7 subunits on macromolecular ligand binding

Alongside the effect of the Dupα7/α7 ratio on the pentameric receptor dynamics, we also assessed the effects of Dupα7/α7 ratio on the binding of two macromolecular ligands: α-bungarotoxin (α-BTX) and the amyloid β (Aβ42). α-BTX is a well-established, 74 residues (8 kDa) neurotoxin that binds nicotinic acetylcholine receptors, including α7 subtypes, and acts as a competitive antagonist upon them. While the experimental structure of α-BTX-α7 is known (PDB code: 4HQP), the structural information on interactions between receptors containing Dupα7 subunits and α-BTX is missing. Aβ42 and α7 interact with high affinity (Ihnatovych et al., 2019; Roberts et al., 2021). However, the details of those interactions remain elusive.

To gain insight into those interactions, we have performed molecular docking calculations. Molecular models of the α-BTX binding sites were built on the dimerisation interface (orthosteric binding sites, inferred from the reported α-BTX-α7 interactions). We evaluated the binding poses of α-BTX and their binding affinities to all four combinations of receptors: α7/α7 (canonical), α7-Dupα7, Dupα7-α7, and Dupα7-Dupα7.

To identify the binding site for Aβ42, we performed the exhaustive scan of the whole extracellular receptor domain using ClusPro. The best-scoring poses (8/10) converged to the site, which partially overlaps with the reported α-BTX binding sites, consistent with the reports on α7 receptor activation via orthosteric modality reversing the Aβ42 binding (Roberts et al., 2021). Therefore, we concluded that the amyloid β (Aβ42) binding site overlaps with that for α-BTX.

The results are shown in Table 2. α-BTX showed very low binding affinity to all the receptors containing Dupα7 subunits (Table 2), suggesting that those receptors will be resistant to α-BTX. This observation agrees with the published experimental data showing that CHRFAM7A decreased α-BTX binding as detected by immunohistochemistry and flow cytometry and markedly decreased α-BTX staining neuromuscular junction of CHRFAM7A transgenic mice (Chan et al., 2019).

For Aβ42 interactions, the ligand residues that interacted with the receptor binding sites were located in the C-terminal regions of the Aβ42 monomer (Table 2). The predicted binding affinity of the Aβ42 to the binding site comprising two α7 subunits (the canonical receptor) was in the low nM range, consistent with available experimental data (Roberts et al., 2021). As a comparison, α-BTX was predicted to bind to the canonical α7 binding sites with one order of magnitude lower (high pM range) than Aβ. This difference, too, is consistent with the experimental data available.

The α7 receptor residues crucial for maintaining the binding pose include R208, F209, and E211. All those residues are conserved in both α7 and Dupα7 isoforms, albeit their dynamics are different in Dupα7. In particular, R208 and E211 were involved in favourable, stabilising electrostatic interactions with the ligand. F209 is involved in the network of aromatic residues, including two tryptophan residues: W171 and W77. The latter is located at the different subunit, as showed in Fig. 9, and, despite variation in the N-terminal region of the receptor, it is also conserved in primary sequence alignment between α7 and Dupα7 (Fig. 1A).

When we analysed the effects of Dupα7 on the binding affinities, we observed a substantial increase of the predicted binding affinities for Aβ by both α7-Dupα7 and
Dupα7-Dupα7 (predicted to be within low-mM range), compared to the canonical α7-α7 binding site (affinities in low-nM range, Table 2). Intriguingly, calculated binding affinity for Aβ to Dupα7-α7 improved (high nM to low μM range). This difference indicates that the residues involved in the interactions with Aβ and are not conserved between Dupα7 and α7 (S56, S58, L60, and Q61) may be necessary complex stabilisation. Also, it indicates that the α7 secondary structure architecture in this region is critical for the binding of Aβ42. This characteristic suggests that receptors containing Dupα7 subunits will be more resistant to Aβ42-related toxicity, supported by recent experimental data (Szigeti et al., 2020).

Table 2: Binding affinity ranges of Aβ42 or α-BTX to orthosteric binding sites. All affinity ranges were calculated by SeeSAR.

Binding site interface	Aβ42 affinity (K_{calc})	α-BTX affinity (K_{calc})
α7 – α7	Low nM	High pM
α7-Dupα7	mM	>mM
Dupα7-α7	High nM to Low μM	>mM
Dupα7-Dupα7	mM	>mM

Discussion

Dupα7/α7 ratio directly affects the structural cohesion of the receptor pentamer

In this work, we aimed to understand the assembly and stability of different combinations of functional α7 nicotinic acetylcholine receptors (nAChR), bearing a partial duplicate Dupα7nAChR.

Lasala and coworkers reported that WT α7 nicotinic receptors could form functional pentamers incorporating Dupα7 subunits. However, for this to be the case, the minimum number of WT α7 had to be two (Lasala et al., 2018). Nonetheless, neither the effect of different stoichiometry on α7 nAChR receptor function nor the structural stability of pentamers containing Dupα7 subunits is known.

Our results showed that the overall arrangement of the extracellular domain for both α7 and Dupα7 subunits is similar, except for the N-terminal portion of the EC domain. This characteristic agrees with the models published shown by Lasala and coworkers (Lasala et al., 2018). Their models showed that changes in the α1 loop and differences in the configuration of the β-sheets in the EC domain core could be observed between the canonical and Dupα7-including receptors. Our data confirmed that these modifications affected the heteropentamers’ stability and showed how the interfaces interact.
We showed how structural equilibration of the receptors with different stoichiometries occurs through time. For the pentamers with higher Dup7 content, the RMSD curves take longer to plateau, and they reach higher average values than their starting structure, which reflects their decreased stability and weaker cohesion. These characteristics are found in both resolutions used: coarse-grain and atomistic MD as well. Also, similar behaviour when comparing the internal structural energy can be found: the pentamers’ average structural energy steadily increases with the Dup7/α7 ratio. This comes from several hydrogen bonds' dissemble and favourable interactions, both at the interfaces and hydrophobic core. One of the critical differences comes from the absence of the interaction with the R101 in the receptors containing Dupα7 subunits. This residue interacts with several other residues located in the subsequential subunit, and the lack of these interactions directly affects the structural cohesion of the interface.

The truncation directly affects the orthosteric binding site configuration. As we showed, the loop dynamics that works as a gatekeeper entirely depends on the Dupα7/α7 interactions.

The canonical α7 (WT) pentamer simulations showed that loop C moves from an open conformation to a closed conformation. At the WT-Dupα7 interfaces, very different dynamic signatures are found. As discussed in previous works (Andersen et al., 2011; Andersen et al., 2013), the requirement for a functional α7 pentamer is a single functional orthosteric binding site, albeit this is less sensitive in comparison to a fully functional pentamer with up to five orthosteric sites. Given the destabilisation effect that dupα7 subunit causes on its dimerisation interface and in the orthosteric binding site, the dupα7 interface should be less sensitive to the orthosteric ligand binding. This effect is evidenced by how the loop C on the dupα7 subunit moves away from the pentamer. This movement shows that the dupα7 binding site might remain open, not stabilising the orthosteric ligand in the binding cavity.

The partial duplication and truncation that leads to the dupα7 protein are located in the extracellular domain (Fig. 1A). Hence, this is the region that shows the highest difference between WT and dupα7 dynamics. However, the transmembrane domain reduces the system’s overall energy by creating a higher number of hydrogen bonds, resulting in a lower average RMSD and RMSD standard deviation compared to the EC domain by itself. Nonetheless, pentamers containing Dupα7 subunits go through structural changes within the TM domain, mainly on the entrance region (residues 250-257). The energetic landscape referring to the extracellular to intracellular calcium intake showed that this region plays a vital role in this process.

Residues 250-257 go from an α-helical conformation in the WT pentamer to a short π-helix in most dupα7 models. This conformation transition destabilises the favourable interactions between the calcium and the residue E254 and its neighbouring residues, which was found in the WT simulation. This also is an effect that is directly related by the Dup7/α7 ratio: Both WT and A-Dup7 models show similar profiles, indicating that a single Dup7 subunit does not affect the calcium intake substantially. Nonetheless, another Dup7 subunit increases the system energy substantially for the TM domain entrance region. This energy difference suggests that pentamers bearing two consecutive Dupα7 subunits are unlikely to occur.
These effects are also position-dependent: AB-dupα7 model and ACD-dupα7 model showed similar energetic profiles within the calcium intake TM. These profiles had lower free energy values than the AC-dupα7 model in the TM region. This indicates that Dupα7 interfaces have a less pronounced effect on the function of the Dupα7-α7 interface for models with more than one Dupα7 subunit. For models with four or five subunits, the 250-257 loop interactions and the calcium are significantly reduced. A higher barrier is found in comparison to the other models. Hence, this shows that pentamers with four or five dupα7 subunits are not functionally viable.

In addition to the previously published works, the results shown in this work shed light on the plausible stoichiometry of Dupα7/α7 subunits. We evaluated stability and functional differences emerging from the positioning of the Dupα7 subunits within the pentamer. Albeit with a weaker interface interaction, the AC-dupα7 model showed a lower effect on the calcium transition than the AB-dupα7 model. A similar effect was observed when the pentamer had three dupα7 subunits. The simulations of models with four or five Dupα7 are both too unstable, with an unfavourable effect on the Ach binding site organisation compared to the crystal structure. Also, it disrupts the calcium transmission by the pentamer.

In summary, a number higher than three Dupα7 subunits is unlikely to be naturally occurring and to be functional. The most stable stoichiometry is the 1:Dupα7-4:WT α7, which is also one of the combinations with the least negative effect on calcium transmission. With two subunits, we expect to see Dupα7 interacting with WT subunits, given it has a lower effect on its function. Naturally occurring pentamers with three subunits should be less likely than with two, but should also be more favourable the interaction between Dupα7/α7 interfaces, which we would expect the predominance of an ACD dupα7 organisation.

Dupα7/α7 ratio affects the ligand binding and may be linked to the nicotinic translational gap

The α7 receptor has been a promising target for diseases affecting cognition. However, the results gathered in animal studies failed to translate into human clinical trials identifying a translational gap. Being human-specific, CHRFAM7A, which encodes dupα7, was not included in those preclinical studies, and effects arising from its distinct structural and dynamic features were not accounted for. Since the CHRFAM7A gene is present in different copy number variations in the human genome with high frequency (Ihnatovych et al., 2019), understanding distinct features of dupα7 may offer novel insights when exploring the human α7 receptor as a drug target.

Recent reports have shown the direct interactions between α7 receptors and Aβ_{42} (Goldwaser et al., 2020; Hassan et al., 2019; Sun et al., 2019). These studies strongly suggest that the α7 receptor can contribute to synaptic dysfunction in Alzheimer’s Disease (AD) since Aβ oligomers can alter neuronal signalling through interactions with nicotinic receptors, particularly with α7. However, how exactly Aβ interacts with α7 receptor, and whether human-specific dupα7 increases or decreases those interactions, has not been fully understood.
Regarding interactions with disease-linked macromolecular ligands, our results indicate that in mixed functional receptors (i.e. comprising of both α7 and Dupα7 subunits), dupα7/α7 interfaces can bind Aβ42 with a higher affinity than α7/dupα7 and dupα7/dupα7, albeit impaired compared to canonical α7/α7 sites. Receptors bearing Dupα7 subunits are shown to be insensitive to α-BTX. These results collectively suggest that the receptors bearing Dupα7 subunits may be less sensitive to effects exerted by neurotoxin or Aβ42. This data is in agreement with the recent study, which focused on the function of CHRFAM7A alleles in vitro in two disease-relevant phenotypic readouts: electrophysiology and Aβ uptake, and in the double-blind pharmacogenetic analysis on the effect of therapy using acetylcholine esterase inhibitors (AChEIs), based on CHRFAM7A carrier status (Szigeti et al., 2020).

Mechanistic insights arising from our work suggest competitive binding between α-BTX (an orthosteric ligand) and Aβ1–42 to the α7 receptors. The earlier studies support this characteristic, showing that both orthosteric agonists and antagonists mitigate Aβ uptake (Szigeti et al., 2020). Uptake of Aβ1–42 via α7 receptors binding induces apoptosis, and orthosteric α7 agonists mitigate the Aβ-induced apoptosis in animal models (Szigeti et al., 2020 and references therein). The results of our study highlight the mechanistic link between receptor structure and Aβ binding, indicating key differences between α7 receptors and receptors bearing Dupα7 subunits, which may be translated to the clinic. Moreover, our results suggest that in receptors containing dupα7 subunits, Aβ42 might be competitive to α-BTX, albeit its binding affinity is low, hence the significance of this potential competing is challenging to estimate. Further follow-up studies are needed to validate these findings.

At the time of translation to the clinical trials, virtually all drugs that were effective in animals have demonstrated a lack of efficacy in humans, showing a robust translational gap. Dupα7 functional studies are sparse and are lacking in the clinical context. Clinical efforts need to be continued with a trial design incorporating Dupα7 distinct structural biology, pharmacology and pharmacogenetics. Dupα7 non-carriers account for 25% of the Alzheimer’s Disease (AD) population, which is significant, considering an increasing number of AD patients. Our results, which match neuronal toxicity data published (Szigeti et al., 2020), suggest that Dupα7 carriers should be protected against Aβ effects to some extent, and Dupα7 non-carriers should be more acutely affected by Aβ effects. Therefore, therapeutics that reduce amyloid burden could be effective in non-carriers. Considering the number of AD patients worldwide and AD being essentially an unmet clinical need, these findings pave the way to bring new AD therapeutics into the clinic.

Conclusions

In this work, we performed a systematic study on all possible combinations of Dupα7/α7 nicotinic receptors, focusing on their structural stability and stoichiometry, to find the most probable functional pentamers bearing Dupα7 subunits. This understanding was essential since Dupα7 has been regarded as a dominant-negative regulator of α7 receptors. However, reports of functional pentamers bearing Dupα7 subunits have been
published. To address the conflicting evidence from published studies, we modelled all possible combinations and evaluated them using structure-based multiscale computational methods. We showed that higher content of Dupa7 subunits resulted in less cohesive pentamers, and dupa7/dupa7 interfaces, corresponding to the orthosteric binding sites, were markedly less stable than Dupa7/a7 interfaces. These indicate that the most likely combinations were pentamers bearing one Dupa7 subunit (A-dupa7 model) or pentamers containing two non-consecutive subunits (AC-dupa7 model). Pentamers bearing three subunits with the lowest dupa7/dupa7 interfaces (ACD-dupa7 model) were also suggested to be functional. Our work has also shown that dupa7 interfaces are insensitive to α-bungarotoxin (α-BTX), but not to Aβ42, even though their Aβ42 binding is impaired compared to the canonical a7 receptors. This impairment indicates that receptors containing dupa7 subunits are less sensitive to Aβ42 effects and that dupa7 subunits, despite their impaired agonist binding, may offer protection against detrimental Aβ42 effects. We expect that our work will contribute to the elucidation of the biological roles of Dupa7 subunits, generating models that can be used for a rational drug design. Future research aiming to characterise the function of Dup 7 in the clinical context may result in novel pathways for AD treatment based on early-stage preclinical data. As α7 receptors are implicated in a broad range of diseases, including cognition, memory, schizophrenia, chronic pain and inflammation, mechanistic insights into receptors containing Dupa7 subunits will impact all of these therapeutic areas, including those conditions which currently represent an unmet clinical need.

Author Contributions: D.L., J.V.S., and A.K.B. designed the study. D.L. carried out the equilibrium atomistic and coarse-grain molecular dynamics simulations. D.L. and J.V.S. carried out umbrella sampling simulations. J.V.S. wrote scripts for data analysis. A.A., D.L. and J.V.S. extracted and analysed data from the simulations. A.A., D.L., and A.K.B. performed molecular docking calculations. A.K.B supervised the study. D.L. and J.V.S produced the figures, plots, and supplementary data. D.L. and A.K.B. wrote the first draft of the manuscript. All authors reviewed the manuscript.

Funding: This work was funded by the Newcastle University School of Natural and Environmental Sciences (scholarship for J.V.S.), EPSRC-AstraZeneca iCASE scholarship to A.A., and EPSRC funding to A.K.B. (EP/S022791/1).

Acknowledgements: We are grateful to Dr M. Garner and Dr K. Bower for technical assistance and Dr Graeme Robb (AstraZeneca) and Dr Michael Carroll (Newcastle University) for their critical review.

Conflicts of Interest: The authors declare no conflict of interest.
References

Albuquerque, E.X., Pereira, E.F., Alkondon, M., and Rogers, S.W. (2009). Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89, 73-120.

Andersen, N., Corradi, J., Bartos, M., Sine, S.M., and Bouzat, C. (2011). Functional relationships between agonist binding sites and coupling regions of homomeric Cys-loop receptors. J Neurosci 31, 3662-3669.

Andersen, N., Corradi, J., Sine, S.M., and Bouzat, C. (2013). Stoichiometry for activation of neuronal alpha7 nicotinic receptors. Proc Natl Acad Sci U S A 110, 20819-20824.

Bertoni, M., Kiefer, F., Biasini, M., Bordoli, L., and Schwede, T. (2017). Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Sci Rep 7, 10480.

Cecchini, M., and Changeux, J.P. (2015). The nicotinic acetylcholine receptor and its prokaryotic homologues: Structure, conformational transitions & allosteric modulation. Neuropharmacology 96, 137-149.

Chan, T., Williams, E., Cohen, O., Eliceiri, B.P., Baird, A., and Costantini, T.W. (2019). CHRFAM7A alters binding to the neuronal alpha-7 nicotinic acetylcholine receptor. Neurosci Lett 690, 126-131.

Chan, T.W., Langness, S., Cohen, O., Eliceiri, B.P., Baird, A., and Costantini, T.W. (2020). CHRFAM7A reduces monocyte/macrophage migration and colony formation in vitro. Inflamm Res 69, 631-633.

Costantini, T.W., Chan, T.W., Cohen, O., Langness, S., Treadwell, S., Williams, E., Eliceiri, B.P., and Baird, A. (2019). Uniquely human CHRFAM7A gene increases the hematopoietic stem cell reservoir in mice and amplifies their inflammatory response. Proc Natl Acad Sci U S A 116, 7932-7940.

Costantini, T.W., Dang, X., Yurchyshyna, M.V., Coimbra, R., Eliceiri, B.P., and Baird, A. (2015). A Human-Specific alpha7-Nicotinic Acetylcholine Receptor Gene in Human Leukocytes: Identification, Regulation and the Consequences of CHRFAM7A Expression. Mol Med 21, 323-336.

Dani, J.A. (2015). Neuronal Nicotinic Acetylcholine Receptor Structure and Function and Response to Nicotine. Int Rev Neurobiol 124, 3-19.

Desta, I.T., Porter, K.A., Xia, B., Kozakov, D., and Vajda, S. (2020). Performance and Its Limits in Rigid Body Protein-Protein Docking. Structure 28, 1071-1081 e1073.

Ferrenberg, A.M., and Swendsen, R.H. (1989). Optimized monte carlo data analysis. Computers in Physics 3, 101-104.

Goldwaser, E.L., Acharya, N.K., Wu, H., Godsey, G.A., Sarkar, A., DeMarshall, C.A., Kosciuk, M.C., and Nagele, R.G. (2020). Evidence that Brain-Reactive Autoantibodies Contribute to Chronic Neuronal Internalization of Exogenous Amyloid-beta1-42 and Key Cell Surface Proteins During Alzheimer's Disease Pathogenesis. J Alzheimers Dis 74, 345-361.

Hassan, M., Shahzadi, S., Raza, H., Abbasi, M.A., Alashwal, H., Zaki, N., Moustafa, A.A., and Seo, S.Y. (2019). Computational investigation of mechanistic insights of Abeta42 interactions against extracellular domain of nAChRalpha7 in Alzheimer's disease. Int J Neurosci 129, 666-680.
Hendrickson, L.M., Guildford, M.J., and Tapper, A.R. (2013). Neuronal nicotinic acetylcholine receptors: common molecular substrates of nicotine and alcohol dependence. Front Psychiatry 4, 29.
Hess, B., Bekker, H., Berendsen, H.J., and Fraaije, J.G. (1997). LINCS: a linear constraint solver for molecular simulations. Journal of computational chemistry 18, 1463-1472.
Huang, C.C., Meng, E.C., Morris, J.H., Pettersen, E.F., and Ferrin, T.E. (2014). Enhancing UCSF Chimera through web services. Nucleic Acids Research 42, W478-W484.
Ihnatovych, I., Nayak, T.K., Ouf, A., Sule, N., Birkaya, B., Chaves, L., Auerbach, A., and Szigeti, K. (2019). iPSC model of CHRFAM7A effect on alpha7 nicotinic acetylcholine receptor function in the human context. Transl Psychiatry 9, 59.
Jiang, Y., Yuan, H., Huang, L., Hou, X., Zhou, R., and Dang, X. (2019). Global proteomic profiling of the uniquely human CHRFAM7A gene in transgenic mouse brain. Gene 714, 143996.
Jo, S., Kim, T., and Im, W. (2007). Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS One 2, e880.
Jo, S., Kim, T., Iyer, V.G., and Im, W. (2008). CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29, 1859-1865.
Kalmady, S.V., Agrawal, R., Venugopal, D., Shivakumar, V., Amaresha, A.C., Agarwal, S.M., Subbanna, M., Rajasekaran, A., Narayanaswamy, J.C., Debnath, M., and Venkatasubramanian, G. (2018). CHRFAM7A gene expression in schizophrenia: clinical correlates and the effect of antipsychotic treatment. J Neural Transm (Vienna) 125, 741-748.
Kastner, J. (2011). Umbrella sampling. Wiley Interdisciplinary Reviews: Computational Molecular Science 1, 932-942.
Kmiecik, S., Gront, D., Kolinski, M., Wieteska, L., Dawid, A.E., and Kolinski, A. (2016). Coarse-Grained Protein Models and Their Applications. Chem Rev 116, 7898-7936.
Kozakov, D., Hall, D.R., Xia, B., Porter, K.A., Padhony, D., Yueh, C., Beglov, D., and Vajda, S. (2017). The ClusPro web server for protein-protein docking. Nat Protoc 12, 255-278.
Kunii, Y., Zhang, W., Xu, Q., Hyde, T.M., McFadden, W., Shin, J.H., Deep-Soboslay, A., Ye, T., Li, C., Kleinman, J.E., et al. (2015). CHRNA7 and CHRFAM7A mRNAs: co-localized and their expression levels altered in the postmortem dorsolateral prefrontal cortex in major psychiatric disorders. Am J Psychiatry 172, 1122-1130.
Lasala, M., Corradi, J., Bruzzzone, A., Esandi, M.D.C., and Bouzat, C. (2018). A human-specific, truncated alpha7 nicotinic receptor subunit assembles with full-length alpha7 and forms functional receptors with different stoichiometries. J Biol Chem 293, 10707-10717.
Lee, A., Lee, K., and Kim, D. (2016). Using reverse docking for target identification and its applications for drug discovery. Expert opinion on drug discovery 11, 707-715.
Lew, A.R., Kellermayer, T.R., Sule, B.P., and Szigeti, K. (2018). Copy Number Variations in Adult-onset Neuropsychiatric Diseases. Curr Genomics 19, 420-430.
Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J.L., Dror, R.O., and Shaw, D.E. (2010). Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78, 1950-1958.
Maroli, A., Di Lascio, S., Drufuca, L., Cardani, S., Setten, E., Locati, M., Fornasari, D., and Benfante, R. (2019). Effect of donepezil on the expression and responsiveness to
LPS of CHRNA7 and CHRFAM7A in macrophages: A possible link to the cholinergic anti-inflammatory pathway. J Neuroimmunol 332, 155-166.

Marrink, S.J., Risselada, H.J., Yefimov, S., Tieleman, D.P., and de Vries, A.H. (2007). The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111, 7812-7824.
Parrinello, M., and Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied physics 52, 7182-7190.
Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25, 1605-1612.
Reulecke, I., Lange, G., Albrecht, J., Klein, R., and Rarey, M. (2008). Towards an integrated description of hydrogen bonding and dehydration: decreasing false positives in virtual screening with the HYDE scoring function. ChemMedChem 3, 885-897.
Roberts, J.P., Stokoe, S.A., Sathler, M.F., Nichols, R.A., and Kim, S. (2021). Selective co-activation of alpha7- and alpha4beta2-nicotinic acetylcholine receptors reverses beta-amyloid-induced synaptic dysfunction. J Biol Chem, 100402.
Sinkus, M.L., Graw, S., Freedman, R., Ross, R.G., Lester, H.A., and Leonard, S. (2015). The human CHRNA7 and CHRFAM7A genes: A review of the genetics, regulation, and function. Neuropharmacology 96, 274-288.
Sinkus, M.L., Lee, M.J., Gault, J., Logel, J., Short, M., Freedman, R., Christian, S.L., Lyon, J., and Leonard, S. (2009). A 2-base pair deletion polymorphism in the partial duplication of the alpha7 nicotinic acetylcholine gene (CHRFAM7A) on chromosome 15q14 is associated with schizophrenia. Brain Res 1291, 1-11.
Sun, J.L., Stokoe, S.A., Roberts, J.P., Sathler, M.F., Nip, K.A., Shou, J., Ko, K., Tsunoda, S., and Kim, S. (2019). Co-activation of selective nicotinic acetylcholine receptors is required to reverse beta amyloid-induced Ca(2+) hyperexcitation. Neurobiol Aging 84, 166-177.
Szigeti, K., Ihnatovych, I., Birkaya, B., Chen, Z., Ouf, A., Indurthi, D.C., Bard, J.E., Kann, J., Adams, A., Chaves, L., et al. (2020). CHRFAM7A: A human specific fusion gene, accounts for the translational gap for cholinergic strategies in Alzheimer's disease. EBioMedicine 59, 102892.
Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., and Berendsen, H.J. (2005). GROMACS: fast, flexible, and free. J Comput Chem 26, 1701-1718.
Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumieny, R., Heer, F.T., de Beer, T.A.P., Rempfer, C., Bordoli, L., et al. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46, W296-W303.
Wu, E.L., Cheng, X., Jo, S., Rui, H., Song, K.C., Davila-Contreras, E.M., Qi, Y., Lee, J., Monje-Galvan, V., Venable, R.M., et al. (2014). CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. J Comput Chem 35, 1997-2004.
Yang, Z., Lasker, K., Schneidman-Duhovny, D., Webb, B., Huang, C.C., Pettersen, E.F., Goddard, T.D., Meng, E.C., Sali, A., and Ferrin, T.E. (2012). UCSF Chimera, MODELLER, and IMP: an integrated modeling system. J Struct Biol 179, 269-278.
Supporting Figure 1: The atomistic α7 model translation to MARTINI coarse-grain framework.
Supporting Table 1: Full list of interfacial hydrogen bond contacts for the canonical α7 receptor (WT) before MD simulations.

Donor	Acceptor	Donor-Acceptor distance (Å)	Donor hydrogen-Acceptor distance (Å)	Total number of contacts	
AB (WT-WT)	10 H-bonds				
GLN	61.A NE2	SER	149.B OG	2.868	1.887
ASN	75.A ND2	ARG	121.B O	2.983	2.166
ARG	101.A NE	TYR	173.B OH	2.837	1.823
ARG	101.A NH1	TYR	173.B OH	3.388	2.633
ARG	101.A NH2	PRO	39.B O	3.345	2.583
ASN	69.B ND2	MET	63.A O	2.815	1.808
ASN	69.B ND2	ASP	64.A OD1	2.834	1.909
GLN	70.B NE2	PRO	192.A O	3.623	2.651
TRP	171.B NE1	LEU	141.A O	2.842	1.936
BC (WT-WT)	5 H-bonds			219	
ASN	75.B ND2	GLU	120.C OE1	2.685	1.809
ARG	101.B NH1	SER	172.C O	3.267	2.429
ASN	133.B ND2	TYR	173.C OH	3.189	2.322
TRP	171.C NE1	LEU	141.B O	2.777	1.77
SER	172.C OG	ASN	133.B O	2.843	1.908
CD (WT-WT)	5 H-bonds			164	
LYS	28.C N	GLU	41.D OE2	3.458	2.628
TRP	77.C NE1	ASP	119.D O	2.975	2.063
GLN	70.D NE2	PRO	192.C O	3.183	2.218
SER	149.D OG	GLN	61.C OE1	2.823	1.911
TRP	171.D NE1	LEU	141.C O	2.797	1.795
DE (WT-WT)	10 H-bonds			123	
GLN	61.D NE2	SER	149.E OG	2.955	2.019
TRP	77.D NE1	GLU	120.E OE1	2.748	1.864
TRP	77.D NE1	GLU	120.E OE2	2.887	1.964
ARG	101.D NH1	LYS	109.E O	3.12	2.329
ARG	101.D NH2	ASP	111.E OD1	2.66	1.749
ASN	129.D ND2	SER	172.E OG	2.876	1.855
GLN	70.E NE2	PRO	192.D O	2.982	1.977
SER	117.E OG	GLY	189.D O	2.819	2.229
ARG	121.E NH1	PRO	143.D O	2.818	1.995
TRP	171.E NE1	LEU	141.D O	2.808	1.806
DE (WT-WT)	13 H-bonds			185	
ASN	69.A ND2	MET	63.E O	2.867	1.858
GLN	70.A NE2	PRO	192.E O	3.007	2.022
-----	-----	-----	-----	-----	-----
ARG	121.A NE	ASN	75.E OD1	2.826	2.012
ARG	121.A NH1	ASN	75.E OD1	2.855	2.005
TRP	171.A NE1	LEU	141.E O	2.78	1.844
SER	172.A OG	ASN	129.E OD1	2.833	1.943
GLN	61.E NE2	SER	149.A OG	2.974	2.171
TRP	77.E NE1	ASP	119.A O	2.684	1.953
ARG	101.E NE	TYR	173.A OH	2.872	1.87
ARG	101.E NH1	TYR	173.A OH	3.428	2.629
ARG	101.E NH2	PRO	39.A O	3.361	2.439
ARG	101.E NH2	LEU	40.A O	2.843	2.132
ASN	129.E ND2	ASP	111.A OD2	2.675	1.806
Supporting Table 2: Full list of interfacial hydrogen bond contacts in A-dupα7 receptor before MD simulations.

Donor	Acceptor	Donor-Acceptor distance (Å)	Donor hydrogen-Acceptor distance (Å)	Total number of contacts
AB (dup-WT)				
GLN 70.B NE2	PRO 102.A O	3.452	2.486	132
ARG 121.B NH1	PHE 32.A O	3.467	2.54	
TRP 171.B NE1	LEU 51.A O	2.964	2.141	
BC (WT-WT)				
ASN 75.B ND2	GLU 120.C OE1	2.714	1.989	214
ARG 101.B NH1	SER 172.C O	3.492	2.74	
ASN 133.B ND2	TYR 173.C OH	3.115	2.243	
TRP 171.C NE1	LEU 141.B O	2.71	1.699	
CD (WT-WT)				
TRP 177.C NE1	ASP 119.D O	2.909	2.017	158
GLN 70.D NE2	PRO 192.C O	3.233	2.255	
TRP 171.D NE1	LEU 141.C O	2.787	1.78	
DE (WT-WT)				
GLN 61.D NE2	SER 149.E OG	2.97	2.111	131
TRP 77.D NE1	GLU 120.E OE1	2.675	1.821	
TRP 77.D NE1	GLU 120.E OE2	3.006	2.199	
ARG 101.D NH1	LYS 109.E O	3.184	2.453	
ARG 101.D NH2	ASP 111.E OD1	2.62	1.879	
ASN 129.D ND2	SER 172.E OG	2.9	1.886	
GLN 70.E NE2	PRO 192.D O	2.984	1.974	
TRP 171.E NE1	LEU 141.D O	2.757	1.751	
EA (WT-dup)				
SER 82.A OG	ASN 129.E OD1	3.027	2.276	73
GLN 61.E NE2	SER 59.A OG	2.857	2.155	
ARG 101.E NE	TYR 83.A OH	2.509	1.595	
Supporting Table 3: Full list of interfacial hydrogen bond contacts in AB-dupα7 receptor before MD simulations.

Donor	Acceptor	Donor-Acceptor distance (Å)	Donor hydrogen-Acceptor distance (Å)	Total number of contacts
AB (dup-dup)	3 H-bonds			78
ARG 31.A NH1	ASP 29.B OD1	3.079	2.374	
TRP 81.B NE1	LEU 51.A O	2.806	1.972	
TYR 83.B OH	ASN 39.A OD1	2.717	1.816	
BC (dup-WT)	3 H-bonds			134
TRP 108.C NE1	GLN 13.B OE1	2.979	2.092	
SER 117.C OG	GLY 99.B O	2.766	2.064	
TRP 171.C NE1	LEU 51.B O	2.77	1.797	
CD (WT-WT)	5 H-bonds			166
LYS 28.C N	GLU 41.D OE2	3.474	2.652	
TRP 77.C NE1	ASP 119.D O	2.976	2.066	
GLN 70.D NE2	PRO 192.C O	3.166	2.201	
SER 149.D OG	GLN 61.C OE1	2.818	1.893	
TRP 171.D NE1	LEU 141.C O	2.794	1.792	
DE (WT-WT)	10 H-bonds			122
GLN 61.D NE2	SER 149.E OG	2.95	2.013	
TRP 77.D NE1	GLU 120.E OE1	2.756	1.878	
TRP 77.D NE1	GLU 120.E OE2	2.872	1.946	
ARG 101.D NH1	LYS 109.E O	3.126	2.336	
ARG 101.D NH2	ASP 111.E OD1	2.665	1.754	
ASN 129.D ND2	SER 172.E OG	2.882	1.861	
GLN 70.E NE2	PRO 192.D O	2.981	1.977	
SER 117.E OG	GLY 189.D O	2.813	2.213	
ARG 121.E NH1	PRO 143.D O	2.808	1.97	
TRP 171.E NE1	LEU 141.D O	2.803	1.801	
EA (WT-WT)	3 H-bonds			68
TRP 81.A NE1	LEU 141.E O	3.308	2.435	
SER 82.A OG	ASN 129.E OD1	3.017	2.103	
ARG 101.E NE	TYR 83.A OH	2.798	1.852	
Supporting Table 4: Full list of interfacial hydrogen bond contacts in AC-dupα7 receptor before MD simulations.

Donor	Acceptor	Donor-Acceptor distance (Å)	Donor hydrogen-Acceptor distance (Å)	Total number of contacts	
AB (dup-WT)	3 H-bonds				
GLN 70.B NE2	PRO	102.A O	3.454	2.485	123
ARG 121.B NH1	PHE	32.A O	3.199	2.306	
TRP 171.B NE1	LEU	51.A O	2.786	1.897	
BC (WT-dup)	6 H-bonds				
ASN 75.B ND2	GLU	120.C OE1	2.686	1.819	219
ARG 101.B NH1	SER	172.C O	3.267	2.418	
ASN 133.B ND2	TYR	173.C OH	3.196	2.335	
TRP 171.C NE1	LEU	141.B O	2.77	1.764	
SER 172.C OG	LEU	131.B O	3.516	3.001	
SER 172.C OG	ASN	133.B O	2.884	2.01	
CD (dup-WT)	3 H-bonds				
ARG 101.C NH1	SER	82.D O	2.862	2.092	70
SER 59.D OG	GLN	61.C OE1	3.189	2.417	
TRP 81.D NE1	LEU	141.C O	2.683	1.698	
DE (WT-WT)	4 H-bonds				
GLN 70.E NE2	PRO	102.D O	2.883	1.878	177
TRP 108.E NE1	GLN	13.D OE1	3.107	2.124	
SER 117.E OG	GLY	99.D O	2.858	2.303	
TRP 171.E NE1	LEU	51.D O	2.815	1.807	
EA (WT-dup)	3 H-bonds				
TRP 81.A NE1	LEU	141.E O	3.267	2.39	62
SER 82.A OG	ASN	129.E OD1	3.007	2.087	
ARG 101.E NE	TYR	83.A O	2.802	1.854	
Supporting Table 5: Full list of interfacial hydrogen bond contacts in ABC-dupα7 receptor before MD simulations.

Donor	Acceptor	Donor-Acceptor distance (Å)	Donor hydrogen-Acceptor distance (Å)	Total number of contacts	
AB (dup-dup)			78		
ARG	31.A NH1	ASP	29.B OD1	3.021	2.264
TRP	81.B NE1	LEU	51.A O	2.802	1.969
TYR	83.B OH	ASN	39.A OD1	2.711	1.803
BC (dup-dup)			86		
TRP	81.C NE1	LEU	51.B O	2.808	2.019
CD (dup-WT)			158		
GLN	70.D NE2	PRO	102.C O	3.244	2.276
TRP	108.D NE1	GLN	13.C OE1	2.886	2.019
TRP	171.D NE1	LEU	51.C O	2.83	1.819
TYR	173.D OH	GLN	13.C OE1	2.956	2.251
DE (WT-WT)			120		
GLN	61.D NE2	SER	149.E OG	2.949	2.012
TRP	77.D NE1	GLU	120.E OE1	2.763	1.887
TRP	77.D NE1	GLU	120.E OE2	2.862	1.935
ARG	101.D NH1	LYS	109.E O	3.13	2.34
ARG	101.D NH2	ASP	111.E OD1	2.667	1.756
ASN	129.D ND2	SER	172.E OG	2.887	1.866
GLN	70.E NE2	PRO	192.D O	2.979	1.974
SER	117.E OG	GLY	189.D O	2.81	2.207
ARG	121.E NH1	PRO	143.D O	2.789	1.934
TRP	171.E NE1	LEU	141.D O	2.796	1.794
EA (WT-dup)			68		
TRP	81.A NE1	LEU	141.E O	3.289	2.415
SER	82.A OG	ASN	129.E OD1	3.014	2.1
ARG	101.E NE	TYR	83.A OH	2.799	1.852
Supporting Table 6: Full list of interfacial hydrogen bond contacts in ABD-dupα7 receptor before MD simulations.

Donor	Acceptor	Donor-Acceptor distance (Å)	Donor hydrogen-Acceptor distance (Å)	Total number of contacts
AB (dup-dup)				
ARG 31.A NH1	ASP 29.B OD1	3.03	2.279	78
TRP 81.B NE1	LEU 51.A O	2.801	1.967	
TYR 83.B OH	ASN 39.A OD1	2.709	1.799	
BC (dup-WT)				
TRP 108.C NE1	GLN 13.B OE1	2.971	2.082	121
SER 117.C OG	GLY 99.B O	2.766	2.059	
TRP 171.C NE1	LEU 51.B O	2.77	1.797	
CD (WT-dup)				
ARG 101.C NH1	SER 82.D O	2.861	2.088	70
SER 59.D OG	GLN 61.C OE1	3.19	2.424	
TRP 81.D NE1	LEU 141.C O	2.686	1.705	
DE (dup-WT)				
GLN 70.E NE2	PRO 102.D O	2.882	1.876	178
TRP 108.E NE1	GLN 13.D OE1	3.111	2.128	
SER 117.E OG	GLY 99.D O	2.854	2.295	
TRP 171.E NE1	LEU 51.D O	2.814	1.804	
EA (WT-dup)				
TRP 81.A NE1	LEU 141.E O	3.252	2.375	67
SER 82.A OG	ASN 129.E OD1	3.007	2.089	
ARG 101.E NE	TYR 83.A OH	2.801	1.853	
Supporting Table 7: Full list of interfacial hydrogen bond contacts in α7 4-dupα7 receptor before MD simulations.

Donor	Acceptor	Donor-Acceptor distance (Å)	Donor hydrogen-Acceptor distance (Å)	Total number of contacts	
AB (dup-dup)					
GLN	PRO	102.A O	3.448	2.479	133
ARG	PHE	32.A O	3.217	2.315	
TRP	LEU	51.A O	2.779	1.889	
BC (dup-dup)					
ARG	SER	82.C O	3.401	2.468	149
ARG	SER	87.C OG	3.029	2.241	
THR	ILE	27.C O	3.459	2.578	
TRP	LEU	141.B O	2.742	1.846	
TYR	ASN	133.B OD1	3.135	2.166	
CD (dup-dup)					
TRP	GLN	13.C OE1	2.82	1.912	76
TRP	LEU	51.C O	2.734	1.743	
SER	HIS	37.C ND1	3.087	2.181	
DE (dup-WT)					
ARG	ASP	29.E OD1	3.129	2.355	98
TRP	GLN	13.D OE1	3.037	2.076	
TRP	LEU	51.D O	2.776	1.766	
EA (WT-dup)					
TRP	LEU	51.E O	2.789	1.925	89
SER	ASN	39.E OD1	2.9	1.999	
THR	ASP	29.A OD1	3.324	2.437	
PHE	ASP	29.A OD1	3.274	2.411	
Supporting Table 8: Full list of interfacial hydrogen bond contacts in 5-dupα7 receptor before MD simulations.

Donor	Acceptor	Donor-Acceptor distance (Å)	Donor hydrogen-Acceptor distance (Å)	Total number of contacts
AB (dup-dup)	3 H-bonds			77
ARG	31.A NH1	ASP 29.B OD1	2.972	2.159
TRP	81.B NE1	LEU 51.A O	2.793	1.956
TYR	83.B OH	ASN 39.A OD1	2.699	1.779
BC (dup-dup)	1 H-bonds			86
TRP	81.C NE1	LEU 51.B O	2.801	2.01
CD (dup-dup)	3 H-bonds			74
TRP	20.D NE1	GLN 13.C OE1	2.816	1.908
TRP	81.D NE1	LEU 51.C O	2.731	1.739
SER	82.D OG	HIS 37.C ND1	3.079	2.173
DE (dup-dup)	3 H-bonds			99
ARG	31.D NH1	ASP 29.E OD1	3.108	2.328
TRP	20.E NE1	GLN 13.D OE1	3.035	2.075
TRP	81.E NE1	LEU 51.D O	2.774	1.764
EA (dup-dup)	4 H-bonds			88
TRP	81.A NE1	LEU 51.E O	2.786	1.92
SER	82.A OG	ASN 39.E OD1	2.894	1.981
THR	35.E OG1	ASP 29.A OD1	3.324	2.403
PHE	36.E N	ASP 29.A OD1	3.205	2.314
Supporting Table 9: Full list of interfacial hydrogen bond contacts in the canonical α7 (WT) receptor after MD simulations.

Donor	Acceptor	Donor-Acceptor distance (Å)	Donor hydrogen-Acceptor distance (Å)	Total number of contacts
AB (WT-WT)	8 H-bonds			75
ASN 75.A ND2	PHE 122.B O	2.862	1.948	
ARG 101.A NE	ASP 111.B OD1	2.821	1.85	
ARG 101.A NE	ASP 111.B OD2	2.844	1.85	
ARG 101.A NH1	LYS 109.B O	2.966	2.229	
ARG 101.A NH1	ASP 111.B OD1	2.944	2.008	
ARG 101.A NH1	ASP 111.B OD2	3.1	2.191	
ASN 133.A ND2	TYR 173.B OH	3.329	2.587	
ARG 155.B NH2	LEU 231.A O	3.322	2.344	
BC (WT-WT)	2 H-bonds			17
ARG 101.B NH2	TRP 171.C O	2.617	1.85	
THR 128.B OG1	GLU 120.C OE2	3.355	2.531	
CD (WT-WT)	1 H-bonds			105
ARG 121.D NH2	GLN 61.C OE1	3.069	2.119	
DE (WT-WT)	7 H-bonds			79
GLN 61.D NE2	ASN 69.E O	2.728	2.042	
GLN 61.D NE2	GLN 70.E O	3.536	2.589	
ASN 75.D ND2	GLU 120.E O	2.54	1.548	
ARG 101.D NH1	ASP 111.E OD1	3.162	2.199	
ARG 101.D NH1	ASP 111.E OD2	3.311	2.404	
GLN 70.E NE2	ASN 193.D O	3.56	2.883	
SER 149.E OG	GLN 61.D OE1	2.83	1.92	
EA (WT-WT)	3 H-bonds			22
ASN 46.A ND2	PRO 95.E O	3.212	2.35	
ARG 121.A NE	ASN 75.E OD1	2.833	1.884	
ARG 121.A NH1	ASN 75.E OD1	2.998	2.162	
Supporting Table 10: Full list of interfacial hydrogen bond contacts in A-dupα7 receptor after MD simulations.

Donor	Acceptor	Donor-Acceptor distance (Å)	Donor hydrogen-Acceptor distance (Å)	Total number of contacts	
AB (dup-WT)					
GLU 105.A N	ASN 69.B OD1	3.534	2.613	83	
TRP 108.B NE1	GLN 13.A OE1	2.994	2.136		
ARG 121.B NH1	PHE 32.A O	3.17	2.472		
ARG 121.B NH1	ASP 33.A OD1	2.901	2.009		
ARG 121.B NH2	ASP 33.A OD1	2.742	1.768		
ALA 124.B N	PHE 32.A O	2.877	1.908		
SER 177.B OG	GLN 11.A OE1	3.562	2.817		
BC (WT-WT)					
LEU 29.B N	GLU 41.C OE1	3.177	2.334	98	
LEU 29.B N	GLU 41.C OE2	3.461	2.52		
TYR 30.B N	GLU 41.C OE1	3.523	2.519		
ARG 101.B NH1	TRP 171.C O	3.519	2.664		
SER 117.C OG	GLY 189.B O	3.519	2.807		
CD (WT-WT)					
LYS 28.C N	GLU 41.D OE1	2.748	1.742	136	
LYS 28.C N	GLU 41.D OE2	3.358	2.561		
LEU 29.C N	GLU 41.D OE1	2.884	1.893		
LEU 29.C N	GLU 41.D OE2	3.23	2.475		
TYR 30.C N	GLU 41.D OE2	3.221	2.229		
ASN 75.C ND2	ASP 119.D O	3.246	2.304		
TRP 77.C NE1	ASP 119.D O	2.874	1.874		
ARG 101.C NE	SER 172.D O	2.826	2.165		
ARG 101.C NH1	SER 172.D O	2.274	1.465		
DE (WT-WT)					
LYS 28.D N	GLU 41.E OE1	3.065	2.218	65	
LYS 28.D N	GLU 41.E OE2	2.995	2.078		
LEU 29.D N	GLU 41.E OE1	3.038	2.273		
ARG 101.D NH1	ASP 111.E OD2	3.359	2.536		
SER 117.E OG	SER 188.D O	3.547	2.753		
EA (WT-WT)					
ARG 65.A NH1	ASN 193.E O	2.482	1.589	76	
ARG 65.A NH2	ASN 193.E O	3.193	2.52		
LYS 31.E NZ	GLN 17.A O	3.539	2.709		
-----	-----	-----	-----	-----	
ARG	101.E NE	SER	82.A OG	2.963	2.057
ARG	101.E NH1	ASP	26.A OD1	2.642	1.92
ARG	101.E NH1	SER	82.A OG	2.997	2.123
Supporting Table 11: Full list of interfacial hydrogen bond contacts in AB-dupα7 receptor after MD simulations.

Donor	Acceptor	Donor-Acceptor distance (Å)	Donor hydrogen-Acceptor distance (Å)	Total number of contacts
AB (dup-dup)	2 H-bonds			25
GLN	13.A NE2	ILE 21.B O	3.305	
ALA	23.B N	GLN 13.A OE1	2.437	
BC (dup-WT)	3 H-bonds			29
GLN	13.B NE2	TYR 173.C OH	2.378	
ARG	42.C N	GLN 13.B OE1	2.087	
TRP	171.C NE1	PRO 52.B O	2.171	
CD (WT-WT)	6 H-bonds			52
LEU	29.C N	GLU 41.D OE1	2.404	
LEU	29.C N	GLU 41.D OE2	1.978	
TYR	30.C N	GLU 41.D OE2	2.213	
GLN	106.C NE2	LEU 40.D O	2.645	
TYR	115.D OH	HIS 127.C O	2.229	
ARG	121.D NH1	GLN 61.C OE1	2.716	
DE (WT-WT)	5 H-bonds			51
LEU	29.D N	GLU 41.E OE1	1.948	
TYR	30.D N	GLU 41.E OE1	2.142	
ARG	101.D NH1	ASP 111.E OD1	1.856	
ARG	101.D NH2	ASP 111.E OD1	2.721	
ARG	101.D NH2	SER 172.E OG	2.177	
EA (WT-dup)	5 H-bonds			84
ARG	65.A NH1	GLU 195.E OE1	2.007	
ARG	65.A NH1	GLU 195.E OE2	2.02	
ARG	65.A NH2	GLU 195.E OE1	2.199	
ARG	65.A NH2	GLU 195.E OE2	2.092	
GLN	139.E NE2	SER 82.A O	2.605	
Supporting Table 12: Full list of interfacial hydrogen bond contacts in AC-dupα7 receptor after MD simulations.

Donor	Acceptor	Donor-Acceptor distance (Å)	Donor hydrogen-Acceptor distance (Å)	Total number of contacts
AB (dup- WT)	6 H-bonds			39
GLN	11.A N SER	172.B O 3.205	2.205	
ARG	31.A NE PHE	122.B O 3.052	2.131	
ARG	31.A NH1 PHE	122.B O 2.893	1.961	
PHE	32.A N ASP	123.B OD1 3.532	2.527	
GLN	49.A NE2 GLU	211.B OE2 3.546	2.627	
ALA	124.B N PHE	32.A O 2.953	2.011	
BC (WT-dup)	1 H-bonds			117
ASN	193.B ND2 GLN	70.C OE1 3.278	2.618	
CD (dup- WT)	6 H-bonds			34
ARG	101.C NE SER	82.D O 3.051	2.288	
ARG	101.C NH1 SER	82.D O 2.859	2.058	
ARG	121.C NH1 ASP	29.D OD2 3.104	2.106	
ARG	121.C NH2 ASP	29.D OD1 3.33	2.322	
THR	128.C OG1 ILE	21.D O 3.521	2.642	
TYR	83.D OH ASN	129.C OD1 3.126	2.314	
DE (WT-WT)	1 H-bonds			52
ARG	42.E NE GLN	11.D OE1 3.691	2.721	
EA (WT-dup)	1 H-bonds			58
ASN	75.E ND2 ASP	26.A O 3.475	2.476	
Supporting Table 13: Full list of interfacial hydrogen bond contacts in ABC-dupα7 receptor after MD simulations.

Donor	Acceptor	Donor-Acceptor distance (Å)	Donor hydrogen-Acceptor distance (Å)	Total number of contacts
AB (dup-dup)				
GLN	SER	82.8 O	3.241	2.296
TYR	TYR	61.8 O	3.137	2.169
TYR	SER	98.4 O	3.108	2.114
ARG	LEU	141.4 O	3.354	2.411
BC (dup-dup)				
GLN	SER	82.4 O	2.8	1.83
THR	ASP	29.4 O	2.865	1.875
ASN	ILE	21.4 O	3.699	2.919
ARG	ASP	63.4 OD1	2.855	1.857
ARG	ASP	63.4 OD2	2.94	1.95
ARG	ASP	63.4 OD1	2.568	1.752
ARG	ASP	63.4 OD2	2.662	1.844
ALA	ASN	39.4 OD1	2.95	1.968
ASP	THR	35.4 OG1	2.892	1.907
TYR	ASN	39.4 OD1	2.847	1.892
CD (dup-WT)				
TYR	ASP	33.4 O	2.686	1.793
DE (WT-WT)				
ARG	ASP	111.4 OD1	3.568	2.581
ARG	ASP	111.4 OD2	3.544	2.569
ARG	SER	172.4 OG	2.872	1.941
EA (WT-dup)				
TYR	ARG	101.4 O	3.274	2.322
LYS	HIS	18.4 O	3.528	2.843
LYS	ILE	16.4 O	3.286	2.304
Supporting Table 14: Full list of interfacial hydrogen bond contacts in ABD-dupa7 receptor after MD simulations.

Donor	Acceptor	Donor-Acceptor distance (Å)	Donor hydrogen-Acceptor distance (Å)	Total number of contacts
AB (dup-dup)				26
TYR 61.B OH	GLY 99.A O	3.411	2.649	
BC (dup-WT)				59
ARG 31.B NH1	GLU 120.C OE1	2.612	1.642	
ARG 31.B NH2	GLU 120.C OE2	2.662	1.658	
ARG 31.B NH2	GLU 120.C OE1	2.966	1.993	
ASN 39.B ND2	TRP 171.C O	3.123	2.491	
ASN 103.B ND2	LYS 68.C O	3.102	2.536	
TRP 171.C NE1	ASN 39.B O	3.011	2.169	
LYS 214.C NZ	GLN 11.B OE1	3.012	2.202	
CD (WT-dup)				49
ASN 129.C ND2	TYR 83.D OH	2.788	1.992	
CYS 122.D SG	GLN 139.C OE1	3.595	2.308	
DE (WT-WT)				48
GLN 13.D N	LEU 40.E O	2.97	2.016	
ARG 42.E N	GLN 11.D O	3.518	2.521	
LYS 109.E N	GLN 13.D OE1	3.223	2.261	
ARG 121.E NH1	PHE 32.D O	2.707	2.026	
ARG 121.E NH2	PHE 32.D O	3.225	2.245	
EA (WT-dup)				64
ARG 101.E NH2	SER 87.A O	2.884	2.013	
Supporting Table 15: Full list of interfacial hydrogen bond contacts in 4dupx7 receptor after MD simulations.

Donor	Acceptor	Donor-Acceptor distance (Å)	Donor hydrogen-Acceptor distance (Å)	Total number of contacts
AB (dup-dup)	4 H-bonds	215.8 OE1 2.86 1.995		39
GLN	GLU	215.8 OE2 2.817 1.922		
GLN	TYR	217.8 OH 3.318 2.494		
GLY	GLN	13.8 OE1 3.039 2.23		
BC (dup-dup)	5 H-bonds	29.8 OD1 2.992 2.13		62
THR	ASP	29.8 OD2 2.829 2.018		
ASN	ASP	29.8 OD1 3.312 2.351		
ASN	ASP	29.8 OD2 2.991 2.005		
VAL	ASP	29.8 OD2 3.362 2.355		
CD (dup-dup)	6 H-bonds	30.8 OE1 2.677 1.808		69
ARG	GLU	30.8 OE2 2.689 1.822		
ARG	GLU	30.8 OE1 2.506 1.687		
ARG	GLU	30.8 OE2 2.531 1.726		
ASN	CYS	60.8 O 2.919 1.961		
SER	TYR	100.8 O 3.182 2.29		
DE (dup-WT)	3 H-bonds	82.8 OG 2.943 2.033		167
HIS	SER	21.8 O 3.314 2.418		
ASN	ILE	81.8 NE1 3.396 2.389		
TRP	LEU			
EA (WT-dup)	3 H-bonds	13.8 OE1 2.992 1.992		138
GLY	GLN	27.8 O 2.876 1.991		
ALA	SER	82.8 A 2.884 2.01		
ASN	SER	39.8 ND2 2.884 2.01		
Supporting Table 16: Full list of interfacial hydrogen bond contacts in 5-dupα7 receptor after MD simulations.

Donor	Acceptor	Donor-Acceptor distance (Å)	Donor hydrogen-Acceptor distance (Å)	Total number of contacts
AB (dup-dup)	2 H-bonds			88
GLN 13.A NE2	TRP 81.B O	3.568	2.56	
ALA 34.A N	ILE 27.B O	3.24	2.258	
BC (dup-dup)	0 H-bonds			103
CD (dup-dup)	1 H-bonds			44
TRP 81.D NE1	HIS 37.C O	2.981	2.005	
DE (dup-dup)	1 H-bonds			106
GLU 30.E N	PHE 32.D O	2.933	1.939	
EA (dup-dup)	0 H-bonds			39
Supporting Figure 2: A) RMSF (averaged per-residue) obtained for extracellular (EC) domains of all receptor stoichiometries investigated in this study during 100 ns of all-atom MD simulation. Each simulation has been performed in triplicate. The data for all replicas are denoted as Experiment 1 - Experiment 3.
Supporting Figure 3: Left panel: The side view of the three conformations of the full-length α7 receptor. Middle panel: The top view of the three conformations of the full-length α7 receptor. Yellow, orange and red colours signify representative configurations around 15 ns, 50 ns and 85 ns of the all-atom simulation, respectively. Right panel: root-mean-square deviation (RMSD) calculated for α7 WT receptor during 100 ns of all-atom MD simulation. Black line shows data obtained for all atoms in the full-length receptor, red line shows data for the protein backbone, green line shows data for the sidechain of α7 WT receptor.

Supporting Table 17: Interaction between the ‘gatekeeping’ glutamate E254 (GLU) residue within WT-α7 and dupa7 subunits in different pentamer stoichiometries and passing Ca2+ cation (Ca), calculated from umbrella sampling simulations. Orange diamond represents the interaction between E254 and Ca2+.

a	Subunit	WT	A	AB	AD	ABC	ABD	4	5
Ca-GLU (O)	WT	Dup	Dup	Dup	WT	Dup	Dup	Dup	Dup
Ca-GLU (OE1)	WT	Dup	Dup	Dup	WT	Dup	Dup	Dup	Dup
Ca-GLU (OE2)	WT	Dup	Dup	Dup	WT	Dup	Dup	Dup	Dup
Ca-GLU (CD)	WT	Dup	Dup	Dup	WT	Dup	Dup	Dup	Dup
Ca-GLU (C)	WT	Dup	Dup	Dup	WT	Dup	Dup	Dup	Dup

Supporting Table 18: Hydrogen bonds and electrostatic interactions between WT α7/dupa7 subunits in different receptor stoichiometries obtained from the umbrella sampling simulations. Red triangles represent the interactions between the protein residues in the canonical α7 (WT) subunit and Ca2+ cation. Blue diamonds represent the interactions between the protein residues in Dupa7 subunit and Ca2+ cation.

H-bonds	Subunit	WT	A	AB	AD	ABC	ABD	4	5				
	Number	6	5	5	6	5	3	5	9	8	6	6	4
LEU-PHE		▲	▲	▲	▲	▲	▲	▲	▲	▲	▲	▲	▲
ALA-MET		▲	▲	▲	▲	▲	▲	▲	▲	▲	▲	▲	▲
GLU-LEU		▲	▲	▲	▲	▲	▲	▲	▲	▲	▲	▲	▲
ILE-LEU		▲	▲	▲	▲	▲	▲	▲	▲	▲	▲	▲	▲
MET-VAL		▲	▲	▲	▲	▲	▲	▲	▲	▲	▲	▲	▲
VAL-MET													
TYR-ALA		▲	▲	▲	▲	▲	▲	▲	▲	▲	▲	▲	▲
LEU-VAL		▲	▲	▲	▲	▲	▲	▲	▲	▲	▲	▲	▲
ILE-VAL		▲	▲	▲	▲	▲	▲	▲	▲	▲	▲	▲	▲
ALA-LEU		▲	▲	▲	▲	▲	▲	▲	▲	▲	▲	▲	▲
LYS-GLU		▲	▲	▲	▲	▲	▲	▲	▲	▲	▲	▲	▲
ASN-ALA		▲	▲	▲	▲	▲	▲	▲	▲	▲	▲	▲	▲
ALA-VAL		▲	▲	▲	▲	▲	▲	▲	▲	▲	▲	▲	▲
TYR-ILE		▲	▲	▲	▲	▲	▲	▲	▲	▲	▲	▲	▲
Supporting Figure 4: The Ca$^{2+}$ interaction scheme within the canonical (WT) receptor, at the entrance to the transmembrane (TM) region. Glutamate E254 (red) ‘gatekeeper’ residue interacts with the Ca$^{2+}$ cation (yellow lines). The blue line represents the favourable electrostatic interaction between Ca$^{2+}$ and the receptor TM region. The receptor backbone is rendered as secondary structure elements (all but E254 side chains are omitted for clarity) and coloured golden brown.
