In silico mining of microsatellites in coding sequences of the date palm (arecaceae) genome, characterization and transferability
Frédérique Aberlenc-Bertossi, Karina Castillo, Christine Tranchant-Dubreuil, Emira Cherif, Marco Ballardini, Sabira Abdoulkder, Muriel Gros-Balthazard, Nathalie Chabrillange, Sylvain Santoni, Antonio Mercuri, et al.

To cite this version:
Frédérique Aberlenc-Bertossi, Karina Castillo, Christine Tranchant-Dubreuil, Emira Cherif, Marco Ballardini, et al.. In silico mining of microsatellites in coding sequences of the date palm (arecaceae) genome, characterization and transferability. Applications in Plant Sciences, Wiley, 2014, 2 (1), 10.3732/apps.1300058. hal-01268884

HAL Id: hal-01268884
https://hal.archives-ouvertes.fr/hal-01268884
Submitted on 27 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License
In Silico Mining of Microsatellites in Coding Sequences of the Date Palm (Arecaceae) Genome, Characterization, and Transferability

Author(s): Frédérique Aberlenc-Bertossi, Karina Castillo, Christine Tranchant-Dubreuil, Emira Chérif, Marco Ballardini, Sabira Abdoulkader, Muriel Gros-Balthazard, Nathalie Chabrillange, Sylvain Santoni, Antonio Mercuri, and Jean-Christophe Pintaud

Source: Applications in Plant Sciences, 2(1)

Published By: Botanical Society of America

DOI: http://dx.doi.org/10.3732/apps.1300058

URL: http://www.bioone.org/doi/full/10.3732/apps.1300058
IN SILEX MINING OF MICROSATellites IN CODING SEQUENCES OF THE DATE PALM (ARECACEAE) GENOME, CHARACTERIZATION, AND TRANSFERABILITY

FRÉDÉRIQUE ABERLENC-BERTOSSI, KARINA CASTILLO, CHRISTINE TRANCHANT-DUBEUIL, EMIRA CHÉRIF, MARCO BALLARDINI, SABIRA ABDOUNAKER, MURIEL GROS-BALTHAZARD, NATHALIE CHABRI LLANGE, SYLVAIN SANTONI, ANTONIO MERCURY, AND JEAN-CHRISTOPHE PINTAUD

1IRD, UMR DIADE—BDP, DYNADIV, and EVODYN teams, 911 Av. Agropolis, BP 64501, 34394 Montpellier, Cedex 5, France; 2Laboratoire de génétique moléculaire, immunologie et biotechnologie, Faculté des Sciences de Tunis, Campus Universitaire, 2092 El Manar, Tunis, Tunisia; 3Consiglio per la ricerca e la sperimentazione in agricoltura—Unità di Ricerca per la Floricoltura e le Specie Ornamentali (CRA-FSO), Corso degli Inglese 508, I-18038 Sanremo (IM), Italy; 4Consiglio per la ricerca e la sperimentazione in agricoltura—Unità di Ricerca per la Floricoltura e le Specie Ornamentali (CRA-FSO), Corso degli Inglese 508, I-18038 Sanremo (IM), Italy; 5ISV/CERD, route de l’Aéroport, BP 468, Djibouti; 6Centre de Bio-Archéologie et d’Ecologie (UMR 5059 CNRS/Université Montpellier 2/EPHE/INRAP), Institut de Botanique, 163 Rue Auguste Broussouet, 34090 Montpellier, France; and 7INRA, UMR AGAP, 2 Place Viala, 34060 Montpellier, Cedex 1, France

• Premise of the study: To complement existing sets of primarily dinucleotide microsatellite loci from noncoding sequences of date palm, we developed primers for tri- and hexanucleotide microsatellite loci identified within genes. Due to their conserved genomic locations, the primers should be useful in other palm taxa, and their utility was tested in seven other Phoenix species and in Chamaerops, Livistona, and Hyphaene.

• Methods and Results: Tandem repeat motifs of 3–6 bp were searched using a simple sequence repeat (SSR)–pipeline package in coding portions of the date palm draft genome sequence. Fifteen loci produced highly consistent amplification, intraspecific polymorphisms, and stepwise mutation patterns.

• Conclusions: These microsatellite loci showed sufficient levels of variability and transferability to make them useful for population genetic, selection signature, and interspecific gene flow studies in Phoenix and other Coryphoideae genera.

Key words: Arecaeeae; Coryphoideae; microsatellite/SSR mining; Phoenix dactylifera; transferability.

The date palm (Phoenix dactylifera L.) is a monocotyledon species belonging to the Arecaeeae family, and is widely cultivated in North Africa, the Sahel (from the Atlantic to the Red Sea), the Middle East, and eastward to the Indus Valley. The date palm is well adapted to cultivation in arid and semiarid areas, and it has been introduced in warm and dry regions worldwide. Mainly grown for its fruits, the date palm represents an important ecological and socioeconomic resource.

Despite the increasing number of studies on date palm, there are still not enough molecular markers available for a number of applications. Most published microsatellite or simple sequence repeat (SSR) markers are dinucleotide loci from unknown noncoding regions of the genome, generally isolated from microsatellite-enriched DNA libraries (Billotte et al., 2004; Arabnezhad et al., 2012). The increasing amount of available genome sequence data offers new prospects for microsatellite marker development through in silico mining, a promising approach for date palm characterization, and transferability.

METHODS AND RESULTS

In silico microsatellite mining and primer design were performed on the date palm genome draft sequence version 2 (Al-Dous et al., 2011), with the Perl script SSR_pipeline-v2.pl (Poncet et al., 2006), which incorporates three free software programs: Tandem Repeats Finder (Benson, 1999), Primer3 (Rozen and Skaltsky, 2000), and BLAST (Altschul et al., 1990). The multi-FASTA file of all 19,414 predicted genes (full and partial; PDK20.mRNA.fsa) and the multi-FASTA file with all scaffold sequences (PDK20.fsa) from version 2 of the date palm genome research program at Weill Cornell Medical College in Qatar were downloaded from http://qatar-weill.cornell.edu/research/datepalmGenome/download.html. The search identified 204 genes containing coding sequences with microsatellites, 150 of which were suitable for primer design, but only 103 had nonduplicated primer annealing sites. Among them, we retained loci having perfect trinucleotide motifs with six (excluding those without annotation) or more (with or without annotations) repeats, and hexanucleotide motifs with at least four repeats (with or without annotation).

Of the 47 primer pairs finally retained, 33 generated expected PCR amplification patterns in a preliminary test with eight P. dactylifera individuals (Table 1). The 33 loci were further tested on 16 individuals representing P. dactylifera (7), P. bchafti (7), P. canariensis (3), P. falconeri (3), P. marginata (3), and P. pachypoda (2) (Cherif et al., 2013), based on the recently published date palm genome sequence (Al-Dous et al., 2011) and expressed sequence tags (ESTs) (Zhao et al., 2012). Our aim was to develop new markers from coding sequences to ensure clear stepwise mutation patterns usable for genetic diversity, dating, and selection signature analyses, and also to facilitate transferability to other species.
Locus	Primer sequences (5′–3′)	Repeat motif	Size range (bp)	Scaffold ID	Start	Stop	Gene annotation	E-value	Organism
mPdIRD01	F: CTCGGAAGGGTATGGAACAA	(AAG)$_3$	200	PDK_20s1306691	24393	24401	Putative pectinesterase/pectinesterase inhibitor 28	4.00E-87	*Arabidopsis thaliana*
	R: TTGCTTGGGCTGATGAGTA								
mPdIRD03	F: CATTAGTCAACACACACCAC	(CCT)$_6$	192–198	PDK_20s1315791	3431	3448	Cysteine-rich receptor-like protein kinase 2	1.00E-166	*Arabidopsis thaliana*
	R: GCAAACACAGCTCTGGTACAC				9405	9422			
mPdIRD04	F: TCATTAGTCAACATGGTTGG	(GAT)$_6$	301–302	PDK_20s1366071	11666	11683	DEAD-box ATP-dependent RNA helicase ISE2, chloroplastic	3.00E-09	*Arabidopsis thaliana*
	R: ACCATCCATGAGCTCCAG				3737	3754			*Oryza sativa*
mPdIRD05	F: CATTAGTCAACATGGTTGG	(GAT)$_6$	202	PDK_20s1402051	10945	10962	No hit –		
	R: TGACTGCTCGTCATCAGGGG				194-214				
mPdIRD06	F: ATGCGTTCATCTCCCTTGAG	(CAG)$_6$	184	PDK_20s1405881	31976	31993		4.00E-82	*Wheat*
	R: CCTGCAAAACATCATCTCCAC								
mPdIRD07	F: CATTAGTCAACATGGTTGG	(GAT)$_6$	319–321	PDK_20s1387131	3737	3754	No hit –		
	R: CTTGCAAGTCTCTCCAACAC				194-214				
mPdIRD08	F: TGACTGCTCGTCATCAGGGG	(AAG)$_6$	202	PDK_20s1402051	10945	10962	No hit –		
	R: ACCATCCATGAGCTCCAG				194-214				
mPdIRD10	F: ATGCGTTCATCTCCCTTGAG	(CAG)$_6$	184	PDK_20s1387131	3737	3754	No hit –		
	R: CCTGCAAAACATCATCTCCAC								
mPdIRD11	F: CATTAGTCAACATGGTTGG	(GAT)$_6$	309–317	PDK_20s1422721	4385	4402	Two-component response regulator-like APRR9	5.00E-18	*Arabidopsis thaliana*
	R: CACAAACACCTCTGGTCC								
mPdIRD13	F: CATTAGTCAACATGGTTGG	(GAT)$_6$	309–317	PDK_20s1496731	12538	12555	Trihelix transcription factor GT-2	8.00E-62	*Arabidopsis thaliana*
	R: CACAAACACCTCTGGTCC								
mPdIRD14	F: CATTAGTCAACATGGTTGG	(GAT)$_6$	198–227	PDK_20s1503531	9121	9138	Probable ascorbate-specific transmembrane electron transporter 1	1.00E-82	*Oryza sativa*
	R: CACAAACACCTCTGGTCC								
mPdIRD15	F: CATTAGTCAACATGGTTGG	(GAT)$_6$	309–317	PDK_20s1507261	2378	2395	Eukaryotic translation initiation factor 2 subunit beta	1.00E-22	*Wheat*
	R: CACAAACACCTCTGGTCC								
mPdIRD16	F: CATTAGTCAACATGGTTGG	(GAT)$_6$	198–227	PDK_20s1521921	7038	7055	Probable WRY1 transcription factor 41	3.00E-47	*Arabidopsis thaliana*
	R: CACAAACACCTCTGGTCC								
mPdIRD17	F: CATTAGTCAACATGGTTGG	(GAT)$_6$	198–227	PDK_20s1549911	54838	54855	Flowering time control protein FCA	3.00E-38	*Arabidopsis thaliana*
	R: CACAAACACCTCTGGTCC								
mPdIRD20	F: CATTAGTCAACATGGTTGG	(GAT)$_6$	309–317	PDK_20s1640771	6702	6719	Transcription factor bHLH62	7.00E-57	*Arabidopsis thaliana*
	R: CACAAACACCTCTGGTCC								
mPdIRD22	F: CATTAGTCAACATGGTTGG	(GAT)$_6$	309–317	PDK_20s172551	2878	2895	Probable peptide/nitrate transporter At1g59740	4.00E-40	*Arabidopsis thaliana*
	R: CACAAACACCTCTGGTCC								
mPdIRD24	F: CATTAGTCAACATGGTTGG	(GAT)$_6$	309–317	PDK_20s176271	5194	5211	Probable nucleolar protein 5-1	2.00E-46	*Arabidopsis thaliana*
	R: CACAAACACCTCTGGTCC								
mPdIRD25	F: CATTAGTCAACATGGTTGG	(GAT)$_6$	309–317	PDK_20s1813761	4692	4709	Heat stress transcription factor A-2c	8.00E-135	*Oryza sativa*
	R: CACAAACACCTCTGGTCC								
mPdIRD26	F: CATTAGTCAACATGGTTGG	(GAT)$_6$	309–317	PDK_20s13004114	13441	13461	Protein transport protein Sec24-like At3g07100	4.00E-99	*Arabidopsis thaliana*
	R: CACAAACACCTCTGGTCC								
mPdIRD28	F: CATTAGTCAACATGGTTGG	(GAT)$_6$	309–317	PDK_20s1327431	28753	28773	Nuclear cap-binding protein subunit 2	3.00E-82	*Arabidopsis thaliana*
	R: CACAAACACCTCTGGTCC								
TABLE 1. Continued.

Locus	Primer sequences (5′–3′)	Repeat motif	Size range (bp)	Scaffold ID	Start	Stop	Gene annotation	E-value	Organism
mPdIRD29	F: GGCTGGACCACCATGGACA	(CCA)₇	205–217	PDK_20s1359471	804	824	Putative pectinesterase 14	1.00E-34	*Arabidopsis thaliana*
	R: AACAGCATGAGCTGCTTCT								
mPdIRD30	F: GCAAGTGCTGAAAGCTCCT	(TCA)₇	218–224	PDK_20s1398581	15353	15373	No hit	4.00E-76	*Arabidopsis thaliana*
	R: CCCATTAAACAGGATCACGG								
mPdIRD31	F: GCAAGTGCTGAAAGCTCCT	(CCA)₇	343–372	PDK_20s1419261	29072	29092	Flowering time control protein FY	0.0	*Oryza sativa*
	R: CTATTGGGCTGCTGATCCT								
mPdIRD32	F: AGAGAAGATTTTGGGCCTGT	(ATC)₇	148–163	PDK_20s1457341	3172	3192	Probable alpha-glucosidase Os06g0675700	0.0	*Oryza sativa*
	R: GGAGGTGTGATGATTGATG								
mPdIRD33	F: GGAGCATACAGTGGGGTTGC	(CAG)₇	189–213	PDK_20s1569281	5206	5226	Putative clathrin assembly protein At4g25940	6.00E-133	*Arabidopsis thaliana*
	R: CAGCTGGGAAAGAGGATAGG								
mPdIRD35	F: CAGGGGTTACTCGAGATCG	(GCA)₇	209	PDK_20s1690511	5056	5076	No hit	0.0	*Oryza sativa*
	R: CCCATAAGGCTGATTGCTG								
mPdIRD36	F: GACATGTGGACGACGAAAGA	(TCA₉)	162–177	PDK_20s1457341	3210	3233	Probable alpha-glucosidase Os06g0675700	0.0	*Solenostemon scutellarioides*
	R: CCATTGCTGATTGAGGAGG								
mPdIRD37	F: TTTCTGCTGAGAAGACACC	(AGC)₉	171–191	PDK_20s1521781	15593	15619	Hydroxyphenylpyruvate reductase	3.00E-71	*Solenostemon scutellarioides*
	R: CTTAGCCAGCCTCCACACTC								
mPdIRD40	F: GAGGAAGTGGCTAGGGAGATC	(CCAGTG)₄	175–211	PDK_20s1327401	16193	16216	No hit	0.0	*Oryza sativa*
	R: CCAGAATCTCCTCAAGGACGC								
mPdIRD42	F: GAGGGAAAATCTAGGAGGAGAC	(CCAGCA)₄	82–86	PDK_20s1397171	13789	13812	Histone-lysine N-methyltransferase SUVR2	6.00E-04	*Arabidopsis thaliana*
	R: TTACCTGGAGCCAGGTTAGG								
mPdIRD43	F: GCAAGCTATTGCTAGAGAAGA	(AACCCT)₄	202–208	PDK_20s1411101	2862	2885	Chaperone protein ClpB1	2.00E-05	*Arabidopsis thaliana*
	R: TAAACTGCTCCTCTTTTG								
mPdIRD44	F: CAGCTGCGAGAATGAGAAA	(TGGTGCG)₄	263	PDK_20s1467201	3121	3144	Two-component response regulator ARR2	2.00E-06	*Arabidopsis thaliana*
	R: AGCAAGCGACCTGCAAAGAT								
mPdIRD45	F: TAGGCCTGCTGAGTTGCTT	(AGCATC)₄	197	PDK_20s1473281	13788	13811	No hit	0.0	*Oryza sativa*
	R: AACAGCAGCTGATGGTATG								
mPdIRD46	F: ATGGCTCTAGGATGGAGACT	(CAGGCA)₄	173–197	PDK_20s1677871	3983	4006	Protein spotted leaf 11	0.0	*Oryza sativa*
	R: GACCGGAGCTTAGTACTGCTC								

a Annealing temperature for all primers is 60°C.
b Size ranges were compiled from all amplification experiments conducted on seven *Phoenix* species.
P. reclinata Jacq. (2), P. roebelenii O’Brien (2), P. rupicola T. Anderson (2), P. theophrasti Greuter (2), and the interspecific hybrid P. canariensis × P. sylvestris (Table 2). Among these loci, 15 showed consistent amplification and promising polymorphism across the sample and were further investigated in a variable number of individuals (80–1000) of the aforementioned species, including population samplings of P. dactylifera and P. reclinata. The transferability of 10 loci was also evaluated in Chamaerops humilis L., resulting in 100% positive amplification, with eight polymorphic loci displaying two to 12 alleles among seven to 51 individuals (Table 3). Moreover, the amplification of one Hyphaene thebaica Mart. individual and one Livistona carinensis (Chiov.) J. Dransf. & N.W. Uhl individual was tested for five loci, with both species giving positive amplification results in three loci (mPdIRD25, mPdIRD31, and mPdIRD33).

DNA from these individuals was extracted from freeze-dried or silica-dried leaf tissue. Samples were reduced into a fine powder using either an IKA A10 analytical grinder (IKA-Werke, Staufen, Germany) or a QIAGEN TissueLyser and QIAGEN DNeasy Plant Mini, Maxi, or 96-well kits (QIAGEN, Courtaboeuf, France). PCR reactions were performed in a thermocycler (Biometra GmbH, Göttingen, Germany) or an Eppendorf (Hamburg, Germany) in a total reaction mixture of 25 μL, containing: 10 ng of total genomic DNA, 1× PCR buffer, 2 mM MgCl₂, 200 μM dNTP, 0.5 μL of Taq DNA polymerase, 0.4 pmol of the forward primer labeled with a 5' fluorochrome-marked M13 tail, plus sterile water to reach the final volume. The PCR mixture was denatured for 2 min at 94°C; followed by six cycles at 94°C for 45 s, 55°C for 1 min, and 72°C for 1.5 min; then 10 cycles at 94°C for 45 s, 55°C for 1 min, and 72°C for 1.5 min; and a final elongation step at 72°C for 10 min.

The PCR products were processed on an ABI 3130XL Genetic Analyzer (Applied Biosystems, Foster City, California, USA). Allele size scoring was performed with respect to a noncommercial ladder using GeneMapper version 3.7 software (Applied Biosystems).

Genetic analyses (number of alleles, observed and expected heterozygosity, Wright’s fixation index [Fₜₐₜ] and its significance calculated using the permutation test) were conducted with GENETIX version 4.05 software (Belkhir et al., 2004).

Each of the 15 loci tested were polymorphic in at least one Phoenix species (Tables 2 and 3). The loci mPdIRD25, mPdIRD30, mPdIRD31, mPdIRD33, and mPdIRD40 were particularly suitable in P. dactylifera with three to eight alleles, having a clear stepwise mutation pattern in accordance with the microsatellite motif (tri- or hexanucleotide), and showing little to moderate heterozygosity deficit. The loci mPdIRD13, mPdIRD25, mPdIRD31, and mPdIRD33 were useful in Chamaerops humilis with three to 12 alleles, confirming good intergeneric transferability. In addition, mPdIRD25, mPdIRD31, and mPdIRD33 were amplified in Livistona carinensis and Hyphaene thebaica.

Table 2. Test of functionality of the 33 loci across the Phoenix genus.⁸

Locus	Pdac (7)	Prec (2)	Proc (2)	Prup (2)	Pthe (2)	Phyb (1)	All (16)	SM	Locus comment
mPdIRD01	M	M	M	M	M	M	M	—	100% amplification, monomorphic
mPdIRD03	M	M	M	M	Failed	M	Failed	P	3
mPdIRD04	M	M	M	M	M	M	M	P	3
mPdIRD05	M	M	M	M	M	M	M	P	3
mPdIRD07	M	M	M	M	M	M	M	P	3
mPdIRD08	M	Failed	Failed	Failed	Failed	M	Failed	M	3
mPdIRD10	P	P	M	Failed	Failed	Failed	M	P	3
mPdIRD11	P	P	P	M	M	M	M	P	3
mPdIRD13	P	P	P	M	M	M	M	P	3
mPdIRD14	M	Failed	Failed	Failed	Failed	M	Failed	M	Partial amplification, monomorphic
mPdIRD15	M	M	M	M	M	M	M	P	3
mPdIRD16	P	M	M	M	M	M	M	P	3
mPdIRD17	M	M	M	M	M	M	M	P	3
mPdIRD20	M	P	M	M	M	M	M	P	3
mPdIRD22	M	M	P	M	M	M	M	P	3
mPdIRD24	M	M	M	M	M	M	M	P	3
mPdIRD25	P	P	M	M	M	M	M	P	3
mPdIRD26	P	M	M	M	M	M	M	P	3
mPdIRD28	P	M	M	M	M	M	M	P	3
mPdIRD29	P	M	Failed	Failed	Failed	M	Failed	M	Partial amplification, monomorphic
mPdIRD30	P	Failed	Failed	Failed	Failed	M	Failed	M	Partial amplification, monomorphic
mPdIRD31	P	M	M	M	M	M	M	P	3
mPdIRD32	M	M	M	M	M	M	M	P	3
mPdIRD33	P	P	M	M	M	M	M	P	3
mPdIRD35	M	M	M	M	M	M	M	—	100% amplification, monomorphic
mPdIRD36	M	M	M	M	M	M	M	P	3
mPdIRD37	M	M	M	M	M	M	M	P	3
mPdIRD40	P	P	M	M	M	M	M	P	3
mPdIRD42	P	P	M	M	M	M	M	P	3
mPdIRD43	P	Failed	Failed	Failed	Failed	M	Failed	M	Partial amplification, monomorphic
mPdIRD44	P	Failed	Failed	Failed	Failed	M	Failed	M	Partial amplification, monomorphic
mPdIRD45	P	M	M	M	M	M	M	M	Partial amplification, monomorphic
mPdIRD46	P	P	P	P	P	P	P	6	100% amplification, intra- and interspecific polymorphism

Note: M = monomorphic; P = polymorphic; Pdac = Phoenix dactylifera; Prec = Phoenix roebelenii; Proc = Phoenix rupicola; Pthe = Phoenix theophrasti; Phyb = Phoenix canariensis × Phoenix sylvestris; SM = stepwise mutation pattern.

-species abbreviations are presented with the number of samples tested in parentheses. Herbarium voucher information: Pdac = dacr1: cultivated, Kew, United Kingdom, MWC 1395 (K); dacr2: cultivated, Elche, Spain, cv. ‘Zahidi’, MWC 1800/Barrow 77 (K); dac3: cultivated, Kew, MWC 1891 (K); dac4: cultivated, Kew, MWC 1398/Kew 1987-3379 (K); dac5: cultivated, Kew, MWC 1164 (K); dac6: feral, Gran Canaria, Piantada 636 (G); dac7: cultivated Faisalabad, Pakistan, cv. ‘Khadrawy’, Piantada 648 (G); Prec = rec1: Djibouti, Piantada 642 (G); rec2: Zimbabwe, MWC 1874/Wilkin 724 (K); Proc = roe1: cultivated, Thailand, MWC 1161/Barrow 26 (K); roe2: cultivated, United Kingdom, MWC 1400/Kew 1987-530; Pthe = the1: cultivated, United Kingdom (from India), Piantada 586 (G); rup2: Samchi, Bhutan, MWC 1162/Grierson and Long 3414 (K); Pthe = the1: cultivated, Sanremo, Italy, Piantada 646 (G); Pthe = cultivated, Sanremo, Italy, no. 91005.

In cases where stepwise mutation occurs, the number of base pairs of the repeat unit is given.

http://www.bioone.org/loi/apps

Aberlenc-Bertossi et al.—Phoenix dactylifera microsatellites

Applications in Plant Sciences 2014 2 (1): 1300058 doi:10.3732/apps.1300058
The loci described here are a useful addition to previously published microsatellite markers for palms. Their interspecific allelic differentiation makes them particularly suitable for hybrid and gene flow analysis within Phoenix. The most polymorphic loci can be added to other SSR loci to create marker sets for genetic diversity analysis in P. dactylifera and other species. Their transferability within the Coryphoideae subfamily will facilitate the study of species with limited molecular resources, such as Chamaerops humilis.

LITERATURE CITED

Table 3. Polymorphism characterization for 15 loci in Phoenix and 10 loci in Chamaerops.

Locus	N	A	F_{IS}	H_E	H_o	Phoenix dactylifera	Chamaerops humilis
mPdIRD11	18/92	2/2	—	—	—	—	—
mPdIRD13	700/560/25	10/2/4	—	—	—	7	4
mPdIRD16	100/87/2	3/2/1	0.29	0.42	0.31*	51	3
mPdIRD20	100/87/2	5/1/2	0.06	0.44	0.85*	—	—
mPdIRD22	100/87/2	5/1/1	0.11	0.10	—0.04	—	—
mPdIRD25	300/108/60	5/4/2	—	—	—	7	5
mPdIRD28	184/108/15	9/4/3	0.19	0.20	0.03	51	3
mPdIRD30	83/28/15	4/3/2	0.19	0.23	0.16*	51	3
mPdIRD32	186/108/15	6/1/4	—	—	—	51	2
mPdIRD33	1000/618/85	12/4/8	—	—	—	51	2
mPdIRD36	186/108/15	5/1/3	0.19	0.23	0.16*	51	12
mPdIRD40	1000/645/85	11/8/6	0.19	0.23	0.16*	51	1
mPdIRD43	100/87/2	2/2/1	0.47	0.53	0.11*	51	2
mPdIRD46	80/32/5	6/3/3	—	—	—	51	1

* Significant departure from Hardy–Weinberg equilibrium.

Note: A = number of alleles; F_{IS} = fixation index for inbreeding within populations; H_E = expected heterozygosity; H_o = observed heterozygosity; N = number of individuals tested; Pdac = Phoenix dactylifera; Phoenix all = all individuals of seven Phoenix species; Prec = Phoenix reclinata.

CONCLUSIONS

The loci described here are a useful addition to previously published microsatellite markers for palms. Their interspecific allelic differentiation makes them particularly suitable for hybrid and gene flow analysis within Phoenix. The most polymorphic loci can be added to other SSR loci to create marker sets for genetic diversity analysis in P. dactylifera and other species. Their transferability within the Coryphoideae subfamily will facilitate the study of species with limited molecular resources, such as Chamaerops humilis.

LITERATURE CITED

Aberlenc-Bertossi et al.—Phoenix dactylifera microsatellites

http://www.bioone.org/loi/apps