Racial and Ethnic Disparities in Management and Outcomes of Cardiac Arrest Complicating Acute Myocardial Infarction

Anna V Subramaniam, Mayo Clinic, Rochester
Sri Harsha Patlolla, Mayo Clinic, Rochester
Wisit Cheungpasitporn, Mayo Clinic, Rochester
Pranathi R Sundaragiri, Mayo Clinic, Rochester
Elliot P Miller, Yale University School of Medicine
Gregory W Barsness, Mayo Clinic, Rochester
Malcolm R Bell, Mayo Clinic, Rochester
David R Holmes Jr, Mayo Clinic, Rochester
Saraschandra Vallabhajosyula, Emory University

Journal Title: Journal of the American Heart Association
Volume: Volume 10, Number 11
Publisher: Wiley | 2021-05-20
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1161/JAHA.120.019907
Permanent URL: https://pid.emory.edu/ark:/25593/vvr4d

Final published version: http://dx.doi.org/10.1161/JAHA.120.019907

Copyright information:

© 2021 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/rdf).

Accessed October 1, 2023 7:27 PM EDT
Racial and Ethnic Disparities in Management and Outcomes of Cardiac Arrest Complicating Acute Myocardial Infarction

Anna V. Subramaniam, MD*; Sri Harsha Patlolla, MBBS*; Wisit Cheungpasitporn, MD; Pranathi R. Sundaragiri, MD; P. Elliott Miller, MD; Gregory W. Barsness, MD; Malcolm R. Bell, MD; David R. Holmes Jr, MD; Saraschandra Vallabhajosyula, MD, MSc

BACKGROUND: The role of race and ethnicity in the outcomes of cardiac arrest (CA) complicating acute myocardial infarction (AMI) is incompletely understood.

METHODS AND RESULTS: This was a retrospective cohort study of adult admissions with AMI-CA from the National Inpatient Sample (2012–2017). Self-reported race/ethnicity was classified as White, Black, and others (Hispanic, Asian or Pacific Islander, Native American, Other). Outcomes of interest included in-hospital mortality, coronary angiography, percutaneous coronary intervention, palliative care consultation, do-not-resuscitate status use, hospitalization costs, hospital length of stay, and discharge disposition. Of the 3.5 million admissions with AMI, CA was noted in 182,750 (5.2%), with White, Black, and other races/ethnicities constituting 74.8%, 10.7%, and 14.5%, respectively. Black patients admitted with AMI-CA were more likely to be female, with more comorbidities, higher rates of non–ST-segment–elevation myocardial infarction, and higher neurological and renal failure. Admissions of patients of Black and other races/ethnicities underwent coronary angiography (61.9% versus 70.2% versus 73.1%) and percutaneous coronary intervention (44.6% versus 53.0% versus 58.1%) less frequently compared to patients of white race (p<0.001). Admissions of patients with AMI-CA had significantly higher unadjusted mortality (47.4% and 47.4%) as compared with White patients admitted (40.9%). In adjusted analyses, Black race was associated with lower in-hospital mortality (odds ratio [OR], 0.95; 95% CI, 0.91–0.99; P=0.007) whereas other races had higher in-hospital mortality (OR, 1.11; 95% CI, 1.08–1.15; P<0.001) compared with White race. Admissions of Black patients with AMI-CA had longer length of hospital stay, higher rates of palliative care consultation, less frequent do-not-resuscitate status use, and fewer discharges to home (all P<0.001).

CONCLUSIONS: Racial and ethnic minorities received less frequent guideline-directed procedures and had higher in-hospital mortality and worse outcomes in AMI-CA.

Key Words: acute myocardial infarction ■ cardiac arrest ■ healthcare disparities ■ minorities ■ outcomes research ■ race

Racial and ethnic disparities in treatment and outcomes of critical illness have been studied previously, including in patients presenting with acute cardiovascular conditions such as acute myocardial infarction (AMI), cardiac arrest (CA), and cardiogenic shock.1–4 CA is of special interest as it has clearly defined treatment guidelines, and national registries such as the NRCPR (National Registry of Cardiopulmonary Care) have collected data on CA since 2000. While other studies have described disparities in care for patients with AMI, less is known about disparities for patients with AMI-CA. This study is one of the largest to date to report racial and ethnic disparities in mortality and outcomes for patients with AMI-CA.
Subramaniam et al Racial/Ethnic Differences in AMI-CA

Resuscitation), have evolved into nationwide quality improvement initiatives, now known as GWTG-R (Get with the Guidelines-Resuscitation), to address gaps in care.5 Previous CA studies have shown clear racial/ethnic disparities, especially among Black patients, including an increased risk of fatal coronary artery disease, while receiving lower rates of percutaneous coronary intervention (PCI) and guideline-directed medical therapies.6–12 Patients of Hispanic and other ethnicities, commonly grouped as “non-White” or “other,” have also been found to have lower rates of coronary angiography and PCI, with increased morbidity and mortality from cardiovascular disease when compared with White patients.13,14

Several theories have been posited to explain racial/ethnic disparities in outcomes of CA, many of which remain broadly debated. Discrepancies in out-of-hospital cardiac arrest (OOHCA) care, including lack of bystander cardiopulmonary resuscitation, lower rates of witnessed arrest, and less frequent shockable rhythms have been associated with increased mortality among racial/ethnic minorities.13,14 Additionally, differences in care by hospital center may also contribute to outcomes of both OOHCA and in-hospital cardiac arrest (IHCA), as Black and Hispanic patients are often cared for in hospitals that have been identified in national registries to have lower overall survival rates.5,15 However, more recent work has shown that gaps in care are less pronounced, finding very little difference in prehospital care or outcomes by race/ethnicity in the past few years.16–19

In light of these conflicting data, this study sought to assess the racial/ethnic differences in the management and outcomes of CA complicating AMI. We hypothesized that racial/ethnic minority patients would have worse outcomes with AMI-CA as compared with White patients. We also sought to evaluate the racial/ethnic differences in demographics, clinical course, and management strategies of these cohorts to better inform clinical care for these patients.

METHODS

Study Population, Variables, and Outcomes

The National (Nationwide) Inpatient Sample (NIS) is the largest all-payer database of hospital inpatient stays in the United States. NIS contains discharge data from a 20% stratified sample of community hospitals and is a part of the Healthcare Quality and Utilization Project (HCUP), sponsored by the Agency for Healthcare Research and Quality.20 Information regarding each discharge includes patient demographics, primary payer, hospital characteristics, principal diagnosis, up to 24 secondary diagnoses, and procedural diagnoses. The HCUP-NIS does not capture individual patients but captures all information for a given admission.20 Institutional review board approval was not required because of the publicly available nature of this de-identified database. These data are available to other authors via the HCUP-NIS database with the Agency for Healthcare Research and Quality.

Using the HCUP-NIS data from January 1, 2012 through December 31, 2017, a cohort of adult admissions (>18 years) with AMI in the primary diagnosis field (International Classification of Diseases, Ninth Revision, Clinical Modification [ICD-9-CM] 410.x and Tenth Revision, Clinical Modification [ICD-10-CM] I21.x-22.x) were identified.21–23 A concomitant diagnosis of CA was identified using ICD-9-CM 427.5, 427.41,
We identified 3,504,225 admissions for AMI between January 1, 2012 and December 31, 2017, of whom 1,827,500 (5.2%) were complicated by CA. Of these 1,827,500 admissions, White, Black, and other races/ethnicities comprised 74.8%, 10.7%, and 14.5%, respectively. White admissions with AMI-CA were on average older, more likely to have Medicare insurance, and had higher rates of STEMI, atrial fibrillation/flutter, and shockable rhythms compared with admissions who were Black and other races/ethnicities. Black admissions with AMI-CA were more likely to be female, belong to the lowest income quartile, have more comorbidities, and higher rates of NSTEMI compared with admissions who were White and other races/ethnicities.
Subramaniam et al Racial/Ethnic Differences in AMI-CA

Table 1. Baseline Characteristics of Admissions With AMI and CA Stratified by Race/Ethnicity

Characteristic	White (N=136,698)	Black (N=19,468)	Others* (N=26,584)	P Value
Age, y	66.8±12.9	63.9±13.5	64.9±13.4	<0.001
Female sex	31.6	43.6	31.7	<0.001
Primary payer				
Medicare	56.4	53.4	46.7	<0.001
Medicaid	7.1	15.0	15.2	
Private	27.7	20.2	25.0	
Others†	8.8	11.4	13.1	
Quartile of median household income for zip code				<0.001
0–25th	28.0	53.0	32.2	
26th–50th	28.0	22.3	22.6	
51st–75th	25.3	15.1	23.6	
75th–100th	20.7	9.5	21.6	
Charlson Comorbidity Index				<0.001
0–3	40.9	39.3	40.9	
4–6	40.0	36.5	38.3	
≥7	19.1	24.2	20.8	
Hospital teaching status and location				<0.001
Rural	6.9	4.0	2.8	
Urban nonteaching	32.2	22.5	32.8	
Urban teaching	60.9	73.5	64.6	
Hospital bed-size				<0.001
Small	12.0	11.4	12.1	
Medium	28.5	29.9	28.5	
Large	59.4	58.7	59.5	
Hospital region				<0.001
Northeast	17.6	13.9	16.1	
Midwest	23.4	19.8	9.4	
South	40.9	56.9	37.1	
West	18.1	9.4	37.3	
AMI type				<0.001
ST-segment–elevation myocardial infarction	62.7	51.7	60.1	
Non–ST-segment–elevation myocardial infarction	37.3	48.3	39.9	
Atrial fibrillation or flutter	26.5	20.2	23.1	
Cardiac rhythm				<0.001
Shockable	64.8	57.0	57.6	
Nonshockable	35.2	43.0	42.4	
Acute organ failure				<0.001
Multiorgan failure	55.1	62.3	63.2	
Respiratory	51.9	57.8	59.7	
Hepatic	10.3	13.2	13.0	
Renal	34.7	41.4	39.5	
Hematologic	9.9	12.5	13.6	
Neurologic	25.5	33.1	29.9	
Cardiogenic shock	34.7	30.8	40.2	
Pulmonary artery catheterization	2.4	2.4	3.2	<0.001

(Continued)
ethnicities (Table 1 and Table S2). Hospital characteristics of these admissions were relatively comparable during the study period (Table 1). During this 6-year period, admissions with STEMI had a significantly higher prevalence of CA compared with admissions with NSTEMI (Figure 1A). Admissions of Black race had higher rates of concomitant CA in both STEMI and NSTEMI compared with other race/ethnicity categories (Figure 1A and 1B). Adjusted temporal trends revealed a declining trend in CA prevalence among both admissions with STEMI and NSTEMI in all races (Figure 1B). Compared with White and Black admissions,
other race/ethnicity admissions with AMI-CA had higher rates of concomitant multiorgan failure, cardiogenic shock, and use of invasive mechanical ventilation. Black admissions had higher rates of concomitant neurological, renal, and hepatic organ failure compared with admissions who were White and other races/ethnicities (Table 1). Black and other race/ethnicity admissions with AMI-CA received less frequent early coronary angiography (41.4% versus 50.2% versus 52.8%), coronary angiography (61.9% versus 70.2% versus 73.1%), PCI (44.6% versus 53.0% versus 58.1%), coronary artery bypass grafting, and mechanical circulatory support compared with White and other races/ethnicities (all \(P<0.001\)) (Table 2). The mean time to coronary angiography from admission was highest among Black patients (3.4±4.2 days) and lowest among White patients (3.0±3.7 days) (\(P<0.001\)) (Table 2 and Table S2). These disparities persisted over the 6-year period with White admissions consistently receiving higher rates of early coronary angiography, coronary angiography, and PCI compared with admissions who were Black and other races/ethnicities among admissions with STEMI and NSTEMI and had shorter mean time to coronary angiography among admissions with NSTEMI (Figures 2A through 2D). However, a trend toward decrease in these disparities was noted across the study period. Admissions of other races/ethnicities had higher rates of acute organ failure, cardiogenic shock, mechanical circulatory support use, and pulmonary artery catheterization use.

Admissions of Black and other races/ethnicities with AMI-CA had significantly higher unadjusted mortality (47.4% and 47.4%) as compared with White admissions (40.9%). In a multivariable logistic regression analysis with White race as referent, Black race was associated with lower in-hospital mortality (OR, 0.95; 95% CI, 0.91–0.99; \(P=0.007\)) whereas other races/ethnicities had higher in-hospital mortality (OR, 1.11; 95% CI, 1.08–1.15; \(P<0.001\)) compared with White race (Table S3). In-hospital mortality remained relatively stable between 40%–50% across all race/ethnicity categories during this time period (Figure 1C and 1D).

Multiple subgroups analyses were performed to verify the primary outcome. In an analysis stratifying admissions as White versus non-White, the non-White cohort had higher adjusted in-hospital mortality in the female, high-income, STEMI presentation and PCI subgroups (Figure 3). Admissions of Black race with AMI-CA had longer length of hospital stay, higher rates of palliative care consultation, less frequent DNR status use, and fewer discharges to home (Table 2). Admissions of other races/ethnicities had higher use of DNR status and higher hospitalization costs compared with White and Black admissions (Table 2).

In a supplementary analysis, we expanded the other race/ethnicity category into Hispanic, Asian/Pacific Islander, Native American, and other groups to better understand the differences in these subgroups (Table S4). Compared with White admissions with AMI-CA, all subgroups of other race/ethnicity category (Hispanic, Asian/Pacific Islander,

Table 2. Clinical Outcomes of Admissions With AMI and CA Stratified by Race/Ethnicity

Characteristic	White \((N=136\,698)\)	Black \((N=19\,468)\)	Others* \((N=26\,584)\)	\(P\) Value
In-hospital mortality	40.9	47.4	47.4	\(<0.001\)
Length of stay, d	7.1±9.2	8.9±13.3	8.2±11.3	\(<0.001\)
Coronary angiography	73.1	61.9	70.2	\(<0.001\)
Early coronary angiography	52.8	41.4	50.2	\(<0.001\)
Mean time to angiography	3.0±3.7	3.4±4.2	3.2±3.9	\(<0.001\)
Percutaneous coronary intervention	58.1	44.6	53.0	\(<0.001\)
Mechanical circulatory support	23.5	19.4	27.9	\(<0.001\)
Coronary artery bypass grafting	9.3	7.3	10.5	\(<0.001\)
Palliative care consultation	9.8	10.5	9.6	0.003
Do-not-resuscitate status	15.6	15.3	16.8	\(<0.001\)
Hospitalization costs \((\times1000\text{US dollars})\)	148.8±186.9	151.5±183.1	198.9±248.6	\(<0.001\)

Discharge disposition

Discharge disposition	Home	Transfer	Skilled nursing facility	Home with home health care	Against medical advice
	55.2	8.7	23.1	12.2	0.8
	47.3	10.0	28.3	13.5	0.9

Represented as percentage or mean±SD; AMI indicates acute myocardial infarction; and CA, cardiac arrest.

*Hispanic, Asian or Pacific Islander, Native American, Others.
Native American, and other groups) had higher rates of concomitant multiorgan failure and cardiogenic shock (Table S4). Use of coronary angiography was lower in Hispanic, Asian/Pacific Islander, and Native American groups with AMI-CA with lower rates of PCI use seen in Hispanic and Asian/Pacific Islander in comparison to White admissions with AMI-CA (Table S5). Mechanical circulatory support was used more often in Hispanic, Asian/Pacific Islander, Native American, and other groups compared with White admissions.

Similar to the primary analysis, compared with White admissions with AMI-CA (40.9%), admissions belonging to Hispanic (49.3%), Asian/Pacific Islander (48.7%), Native American (45.2%), and other (42.5%) groups had higher unadjusted in-hospital mortality (Table S5). In adjusted analysis, with White race as referent, Black race was associated lower in-hospital mortality (OR, 0.95; 95% CI, 0.91–0.99; P=0.008) whereas Hispanic (OR, 1.16; 95% CI, 1.11–1.21; P<0.001) and Asian/Pacific Islander (OR, 1.1; 95% CI, 1.03–1.19; P=0.003) groups were associated with higher adjusted in-hospital mortality with Native American and Other ethnicity (OR, 1.03; 95% CI, 0.97–1.09; P=0.32) group having comparable in-hospital mortality (Table S6).

DISCUSSION

In this large contemporary study, evaluating for racial/ethnic differences in the management and outcomes of CA in admissions with AMI, we noted CA to complicate 5.2% of all admissions with AMI with a higher prevalence in the Black race. Admissions of Black and other races/ethnicities had consistently lower use of guideline-directed therapies (such as coronary angiography and PCI), longer time to angiography, and greater use of palliative care and DNR status. Though Black race had higher unadjusted mortality, these differences were not noted when adjusted for in-hospital factors and comorbid conditions. Admissions of other race/ethnicity categories...
had consistently higher in-hospital mortality compared with White admissions.

Our sample had a heterogeneous race/ethnicity distribution with 74.8% of admissions with CA being White, and 10.7% and 14.5% of admissions of Black or other races/ethnicities respectively. Prior studies of IHCA include populations ranging from 73 to 88% White, and OOHCA populations range from 47 to 91% White depending on the geographic region represented. Although our distribution is comparable to prior studies of both IHCA and OOHCA, it has been well documented that Black race is associated with higher incidence of CA. The reasons behind this disparity in incidence of CA by race/ethnicity are likely multifactorial but raise significant concern for inequity in prearrest factors and resuscitation efforts.

Prearrest factors contributing to disparities in CA include higher overall burden of comorbidities, poorly controlled comorbidities, and younger age in Black admissions with CA and AMI. Insights from the CRUSADE (Can Rapid Risk Stratification of Unstable Angina Patients Suppress Adverse Outcomes With Early Implementation of the ACC/AHA Guidelines?) initiative and Dynamic Registry reported higher rates of obesity, hypertension, diabetes mellitus, renal insufficiency, tobacco use, and history of heart failure or stroke. Differences in rates of shockable rhythms in IHCA have also been proposed to account for a large degree of difference in outcomes. However, when in-hospital outcomes of pulseless electrical activity arrest and asystole have been compared between White and Black patients, Black patients still have lower survival to hospital discharge (OR, 0.85; 95% CI, 0.79–0.92) and lower rate of return of spontaneous circulation (OR, 0.88; 95% CI, 0.84–0.92) when compared with White patients. A study from the GWTG-R database found that patient, event, and hospital characteristics could not fully explain this difference. Other potential explanations included the setting in which a patient arrests (telemetry versus nontelemetry unit) and/or control of chronic comorbidities, such as diabetes mellitus, hypertension, and chronic kidney disease. Another notable difference in admission characteristics is higher rate of CA in admissions with both STEMI and
NSTEMI for Black patients, which is clearly correlated with increased mortality and may be reflective of lower rate of revascularization and use of primary/secondary prevention in this population. Finally, it is notable that Black admissions for AMI-CA were more likely to be female. Prior studies have showed increased risk of fatal coronary artery disease events and increased need for multivessel PCI among Black women, highlighting a particularly vulnerable population.

Our study demonstrated lower rates of guideline-directed therapies for Black and other racial/ethnic minority patients when compared with White patients admitted for AMI-CA, which is consistent with other studies spanning several decades of investigation. Our data were consistent with studies by Ayanian et al and Peterson et al who found lower rates of coronary angiography and revascularization in Black patients across a variety of hospitals and found this trend to persist despite a large predicted benefit of an early invasive strategy. Similarly, the California Cooperative Cardiovascular Project found that racial/ethnic minorities were less likely than White patients to receive cardiac catheterization and PCI. Asian patients have also been found to have lower rates of invasive cardiovascular procedures when compared with White patients.

We found differences in the rates of DNR status and palliative care consultation by race/ethnicity. The existing data surrounding this issue is mixed. We found Black patients were less likely to have a DNR status compared with White patients and other racial/ethnic minorities (15.3% versus 15.6% versus 16.8%). Some have suggested that the difference in outcomes of Black patients when compared with White patients after CA may be related to decreased use of DNR status in patients who would be unlikely to survive cardiopulmonary resuscitation, including those with dependency for activities of daily living, impaired renal function, advanced age, hypotension on admission, or admission with sepsis. This hypothesis is supported by our finding that Black patients and others admitted with AMI-CA have both more comorbidities and higher rates of acute organ failure. We also found that Black patients were more likely to receive palliative care consultation when compared with White and other patients. Others have posited that the rise of palliative care is falsely improving survival in racial/ethnic minorities with more comorbidities who develop IHCA. Conversely, Woo et al found that Black and Hispanic patients received significantly lower rates of palliative care consultation and higher rates of aggressive care including renal replacement therapy, percutaneous gastrostomy, and tracheostomy. However, this was a cohort of patients presenting with OOHCA, suggesting that trends may be divergent depending on the setting in which a patient arrests.

Finally, in our analysis we found unadjusted in-hospital mortality was higher for admissions who were Black and other racial/ethnic minorities when compared with White admissions (47.4% and 47.4% versus 40.9%). This is consistent with several prior studies of both IHCA and OOHCA. Chan et al found Black patients less likely to survive to hospital discharge than White patients with IHCA (relative risk, 0.73; 95% CI, 0.67–0.79); however, adjustment for hospital center minimized much of this gap in the NRCPR registry suggesting that gaps in care were created by quality of hospital care instead of race/ethnicity alone. Merchant et al found a similar trend for OOHCA, with unadjusted survival favoring White patients and adjusted analysis showing the disparity was primarily accounted for by overall hospital survival. Furthermore, when hospitals were stratified by survival rate, Black patients actually fared better than White patients at “low survival” hospitals. Desai et al found that Hispanic and Asian patients had higher odds of in-hospital mortality for multivessel PCI admissions (OR, 1.51 and 1.22 respectively). This population correlates in our study to other races/ethnicities, who were found to have higher adjusted mortality, the highest mean hospitalization cost, and overall longer length of stay. The category of other non-White races/ethnicities captures people who are Hispanic, Asian or Pacific Islander, Native American, and others, who represent a growing proportion of the US population. Although it appears that gaps in care for AMI-CA are improving in Black patients, it is widening in other non-White populations, which warrants further investigation and intervention.

Limitations

Despite the HCUP-NIS database’s attempts to mitigate potential errors by using internal and external quality control measures, this study has several limitations. Prior validation of administrative codes for AMI and CA reduces the inherent errors in the study. The HCUP-NIS database does not provide important information such as receipt of bystander cardiopulmonary resuscitation, quality of cardiopulmonary resuscitation, timing of multiorgan failure, timing of CA relative to AMI presentation, and extent of neurological injury. Echocardiographic data, angiographic variables, and hemodynamic parameters were unavailable in this database, which limits physiological assessments of disease severity. Despite best attempts at controlling for confounders by a multivariate analysis, it is possible that observed results could be because of residual confounding. Finally, our data are reflective of only in-hospital outcomes and cannot comment on the long-term outcomes of these admissions. Importantly, the NIS does not capture...
individual patients but identifies all information for each admission. Recurrent hospitalizations of the same individual will appear as distinct observations. Therefore, each encounter has been referred to as an “admission” as opposed to a "patient" in this analysis. Despite these limitations, this study addresses an important knowledge gap highlighting the racial/ethnic disparities in CA complicating AMI in a contemporary population.

CONCLUSIONS

Significant racial/ethnic disparities exist in in-hospital mortality among admissions with AMI complicated with CA. The differences observed in in-hospital management and comorbidity associated with race/ethnicity appears to have a role in associated outcomes. Racial/ethnic minorities continue to experience worse in-hospital outcomes independent of patient and hospital-related factors. Urgent quantitative and qualitative research into the equitable care of racial/ethnic minorities with AMI-CA is needed to address this disparity.

Take Home Point

Significant racial/ethnic disparities observed in in-hospital management and a higher proportion of comorbidities in racial/ethnic minorities appear to affect outcomes of admissions with AMI-CA.

REFERENCES

1. Institute of Medicine Committee on U, Eliminating R, Ethnic Disparities in Health C. In: Smedley BD, Stith AY, Nelson AR, ed. Unequal Treatment: Confronting Racial and Ethnic Disparities in Health Care. Washington (DC): National Academies Press (US); Copyright 2002 by the National Academy of Sciences. All rights reserved; 2003.
2. Polsky D, Jha AK, Lave J, Pauly MV, Cen L, Kluzaritz H, Chen Z, Volpp KG. Short- and long-term mortality after an acute illness for elderly whites and blacks. Health Serv Res. 2008;43:1388–1402. DOI: 10.1111/j.1475-677X.2008.00837.x.
3. Soto GJ, Martin GS, Gong MN. Healthcare disparities in critical illness. Crit Care Med. 2013;41:2784–2793. DOI: 10.1097/CCM.0b013e318a54a43.
4. Safford MM, Brown TM, Muntner PM, Durant RW, Glasser S, Halanych JH, Shikany JM, Prineas RJ, Samdarshi T, Bittner VA, et al. Association of race and sex with risk of incident acute coronary heart disease events. JAMA. 2012;308:1768–1774. DOI: 10.1001/jama.2012.14306.
5. Chan PS, Nichol G, Krumholz HM, Speratus JA, Jones PO, Peterson ED, Rathore SS, Nallamothu BK. American Heart Association National Registry of Cardiopulmonary Resuscitation I. Racial differences in survival after in-hospital cardiac arrest. JAMA. 2009;302:1195–1201. DOI: 10.1001/jama.2009.1340.
6. Ayanian JZ, Udvarhelyi IS, Gatsonis CA, Pashos CL, Epstein AM. Racial-differences in the use of revascularization procedures after coronary angiography. JAMA J Am Med Assoc. 1993;269:2642–2646. DOI: 10.1001/jama.1993.03500200653033.
7. Kressin NR, Petersen LA. Racial differences in the use of invasive cardiovascular procedures: review of the literature and prescription for future research. Ann Intern Med. 2001;135:352–366. DOI: 10.7326/0003-4819-135-5-2001090400-00012.
8. Peterson ED, Wright SM, Daley J, Thibault GE. Racial variation in cardiac procedure use and survival following acute myocardial-infarction in the department-of-veterans-affairs. JAMA J Am Med Assoc. 1994;271:1175–1180. DOI: 10.1001/jama.1994.03500390045028.
9. Peterson ED, Shaw LK, DeLong ER, Pryor DB, Califf RM, Mark DB. Racial variation in the use of coronary-revascularization procedures. Are the differences real? Do they matter? N Engl J Med. 1997;336:480–486.
10. Slater J, Selzer F, Dorbala S, Tormey D, Vlachos HA, Wilensky RL, Jacobs AK, Laskey WK, Douglas JS, Williams DO, et al. Ethnic differences in the presentation, treatment strategy, and outcomes of percutaneous coronary intervention (a report from the national heart, lung, and blood institute dynamic registry). Am J Cardiol. 2003;92:773–778. DOI: 10.1016/S0002-9149(03)00881-6.
11. Barnato AE, Lucas FL, Staiger D, Wennberg DE, Chandra A. Hospital-level racial disparities in acute myocardial infarction treatment and outcomes. Med Care. 2005;43:308–319. DOI: 10.1097/01.mlr.0000056848.62086.06.
12. Sonel AF, Good CB, Mulgund J. Racial variations in treatment and outcomes of black and white patients with high-risk non-ST-elevation acute coronary syndromes: insights from CRUSADE (can rapid risk stratification of unstable angina patients suppress adverse outcomes with early implementation of the ACC/AHA guidelines?). ACC Current Journal Review. 2005;14:1–2. DOI: 10.1016/j.accreview.2005.06.006.
13. Ford E, Newman J, Deosaransingh K. Racial and ethnic differences in the use of cardiovascular procedures: findings from the California cooperative cardiovascular project. Am J Public Health. 2000;90:1128–1134. DOI: 10.2105/ajph.90.7.1128.
14. Desai R, Singh S, Fong HK, Goyal H, Gupta S, Zalavadiya D, Doshi R, Savani S, Pancholy S, Sachdeva R, et al. Racial and sex disparities in resource utilization and outcomes of multi-vessel percutaneous coronary
interventions (a 5-year nationwide evaluation in the United States), Cardiovasc Diagn Ther. 2019;9:18–29. DOI: 10.21037/cdt.2018.09.02.

15. Merchant RM, Becker LB, Yang F, Groeneveld PW. Hospital racial com- position: a neglected factor in cardiac arrest survival disparities. Am J Heart J. 2011;161:705–711. DOI: 10.1016/j.ajhj.2011.01.011.

16. Amen A, Karabon P, Bartram C, Irvin K, Dunne R, Wolff M, Daya MR, Veliano K, McNally S, Jacobsen RC, et al. Disparity in receipt and uti- lization of telecommunicator CPR instruction. Prehosp Emerg Care. 2020;24:544–549. DOI: 10.1080/10903127.2019.1680781.

17. Ebel MH, Afton AM. Pre-arrest predictors of failure to survive in after-in hospital cardiopulmonary resuscitation: a meta-analysis. Fam Pract. 2011;28:505–515. DOI: 10.1093/fampra/cmr023.

18. Gholibrial J, Heckbert SR, Bartz TM, Lovasi G, Wallace E, Lemaire RN, Mohanty AF, Rana TD, Siscovick DS, Yee J, et al. Ethnic differences in sudden cardiac arrest resuscitation. Heart. 2016;102:1363–1370. DOI: 10.1136/heartjnl-2015-308384.

19. Joseph L, Chan PS, Bradley SM, Zhou Y, Graham G, Jones PG, Subramaniam AV, Cheungpasitporn W, Sundaragiri PR, Noseworthy J. 2019;7:1781–1791. DOI: 10.1016/j.jacc.2019.01.053.

20. DeZorzi C, Boyle B, Qazi A, Luthra K, Khera R, Chan PS, Girotra S. 2020;125:1774–1781. DOI: 10.1016/j.amjca rd.2020.03.015.

21. Vallabhajosyula S, Prasad A, Sandhu GS, Bell MR, Gulati R, Eleid MG, Best PJM, Gersh BJ, Singh M, Lerman A, et al. Ten-year trends, predictors and outcomes of mechanical circulatory support in percu- taneous coronary intervention for acute myocardial infarction with car- diogenic shock. EuroIntervention. 2021;16;e1254–e1261. DOI: 10.2444/ EU-D-19-00226.
SUPPLEMENTAL MATERIAL
Table S1. Administrative codes used for identification of diagnoses and procedures.

Comorbidity	International Classification of Diseases 9.0 Clinical Modification Codes
Cardiac arrest	Cardiac arrest: 427.5
	Ventricular fibrillation: 427.41
	Cardiopulmonary Resuscitation: 99.60
	Closed Chest Cardiac Massage: 99.63
Coronary angiography	37.22, 37.23, 88.53-88.56
Percutaneous coronary intervention	00.66, 36.01, 36.02, 36.05, 36.06, 36.07, 88.57
Invasive hemodynamic assessment	89.63, 89.64, 89.66, 89.67, 89.68
Mechanical circulatory support	37.61, 37.68, 39.65
Invasive mechanical ventilation	96.7, 96.70, 96.71, 96.72
Hemodialysis	39.95
Hepatic failure	570.0, 572.2, 573.3, 573.4
Respiratory failure	518.81, 518.82, 518.85, 786.09, 799.1, 96.7, 96.70, 96.71, 96.72
Renal failure	584, 584.5, 584.6, 584.7, 584.8, 584.9
Hematologic failure	286.6-286.9, 287.4, 287.5
Neurological failure	293, 293.0, 293.1, 293.8, 293.81-293.84, 293.89, 293.9, 348.1, 348.3, 348.30, 348.81, 348.9, 780.01, 780.09, 89.14
Table S2. Univariate associations with in-hospital mortality in AMI-CA.

	Total cohort (N=182,750)	Odds ratio	95% confidence interval	P	
			Lower Limit	Upper Limit	
Race					
White	Reference category				
Black	1.30	1.26	1.34	<0.001	
Others*	1.30	1.27	1.34	<0.001	
Age (years)					
<75 years	Reference category				
>75 years	2.98	2.92	3.05	<0.001	
Female sex		1.54	1.51	1.57	<0.001
Primary payer					
Medicare	Reference category				
Medicaid	0.49	0.48	0.51	<0.001	
Private	0.33	0.33	0.34	<0.001	
Others#	0.54	0.52	0.56	<0.001	
Quartile of median household income for zip code					
0-25th	Reference category				
26th-50th	0.86	0.83	0.88	<0.001	
51st-75th	0.78	0.76	0.80	<0.001	
75th-100th	0.78	0.76	0.80	<0.001	
Hospital teaching	Rural	Reference category			
	Urban Non-Teaching				
--------------------------	--------------------	---------	---------	---------	------
status and location	Urban Non-Teaching	0.87	0.83	0.91	<0.001
	Urban Teaching	0.85	0.82	0.89	<0.001
Hospital bed-size	Small	Reference category			
	Medium	1.01	0.97	1.04	0.67
	Large	0.95	0.92	0.98	<0.001
Hospital region	Northeast	Reference category			
	Midwest	0.86	0.83	0.89	<0.001
	South	1.01	0.98	1.04	0.44
	West	1.03	0.99	1.06	0.08
Charlson Comorbidity Index	0-3	Reference category			
	4-6	2.09	2.04	2.13	<0.001
	≥ 7	3.49	3.40	3.59	<0.001
Type of AMI	ST-segment elevation	Reference category			
	Non-ST-segment elevation	1.53	1.51	1.56	<0.001
Multi-organ failure	2.57	2.52	2.62	<0.001	
Cardiogenic shock	1.89	1.85	1.92	<0.001	
Atrial fibrillation/flutter	1.15	1.13	1.18	<0.001	
Ventricular tachycardia/fibrillation	0.24	0.24	0.25	<0.001	
Procedure	95% CI	Adjusted 95% CI	p-value		
---	-------	----------------	---------		
Coronary angiography	0.20	0.20	0.21	<0.001	
Percutaneous coronary intervention	0.26	0.26	0.27	<0.001	
Coronary artery bypass grafting	0.40	0.39	0.41	<0.001	
Pulmonary artery catheterization	1.07	1.01	1.13	0.03	
Mechanical circulatory support	1.19	1.17	1.22	<0.001	
Invasive mechanical ventilation	2.23	2.19	2.27	<0.001	
Acute hemodialysis	2.08	1.93	2.24	<0.001	

*Hispanic, Asian or Pacific Islander, Native American, Others; #Self-Pay, No Charge, Others

AMI: acute myocardial infarction; CA: cardiac arrest
Table S3. Multivariable regression for in-hospital mortality in AMI-CA.

	Total cohort (N=182,750)	Odds ratio	95% confidence interval	P	
		Lower Limit	Upper Limit		
Race					
White	Reference category				
Black	0.95	0.91	0.99	0.007	
Others*	1.11	1.08	1.15	<0.001	
Age (years)					
<75 years	Reference category				
>75 years	1.73	1.68	1.79	<0.001	
Female sex		1.13	1.10	1.16	<0.001
Primary payer					
Medicare	Reference category				
Medicaid	0.67	0.65	0.70	<0.001	
Private	0.60	0.58	0.62	<0.001	
Others#	0.92	0.88	0.96	<0.001	
Quartile of median household income for zip code	0-25th	Reference category			
	26th-50th	0.92	0.89	0.95	<0.001
	51st-75th	0.85	0.83	0.88	0.78
	75th-100th	0.83	0.80	0.85	0.74
Hospital teaching	Rural	Reference category			
status and location	Urban Non-Teaching				
-----------------------------	--------------------	-----	-----	-----	
	Urban Teaching	1.16	1.10	1.22	
				<0.001	
Hospital bed-size	Small (Reference category)				
	Medium	1.15	1.10	1.19	
				<0.001	
	Large	1.15	1.11	1.20	
				<0.001	
Hospital region	Northeast (Reference category)				
	Midwest	1.05	1.01	1.09	
				0.02	
	South	1.11	1.08	1.15	
				<0.001	
	West	1.14	1.10	1.19	
				<0.001	
Charlson Comorbidity Index	0-3 (Reference category)				
	4-6	1.20	1.17	1.24	
				<0.001	
	≥ 7	1.42	1.37	1.47	
				<0.001	
Type of AMI	ST-segment elevation (Reference category)				
	Non-ST-segment elevation	0.77	0.75	0.79	
				<0.001	
Multi-organ failure		1.51	1.47	1.56	
				<0.001	
Cardiogenic shock		1.63	1.58	1.68	
				<0.001	
Atrial fibrillation/flutter		0.82	0.80	0.84	
				<0.001	
Ventricular tachycardia/fibrillation		0.36	0.35	0.36	
				<0.001	
Procedure	0.42	0.41	0.44	<0.001	
--	------	------	------	--------	
Coronary angiography					
Percutaneous coronary intervention	0.37	0.36	0.38	<0.001	
Coronary artery bypass grafting	0.23	0.22	0.24	<0.001	
Pulmonary artery catheterization	0.97	0.91	1.04	0.41	
Mechanical circulatory support	1.79	1.74	1.84	<0.001	
Invasive mechanical ventilation	1.37	1.34	1.41	<0.001	
Acute hemodialysis	1.13	1.03	1.23	0.01	

*Hispanic, Asian or Pacific Islander, Native American, Others; #Self-Pay, No Charge, Others

AMI: acute myocardial infarction; CA: cardiac arrest
Table S4. Baseline characteristics of AMI admissions with CA stratified by race.

Characteristic	White (N=136,698)	Black (N=19,468)	Hispanic (N=14,286)	Asian/Pacific Islander (N= 5,163)	Native American (N=890)	Other (N=6,245)	P	
Age (years)	66.8 ± 12.9	63.9 ± 13.5	65.1 ± 13.2	66.4 ± 13.6	62.3 ± 12.3	63.6 ± 13.7	<0.001	
Female sex	31.6	43.6	34.1	30.6	30.8	27.4	<0.001	
Primary payer								
Medicare	56.4	53.4	48.8	47.1	47.1	41.6	<0.001	
Medicaid	7.1	15.0	15.5	13.3	13.3	16.1		
Private	27.7	20.2	21.3	30.7	26.9	28.6		
Others*	8.8	11.4	14.3	8.9	12.8	13.7		
Quartile of median household income for zip code								
0-25th	26.0	53.0	40.8	13.8	44.3	26.2	<0.001	
26th-50th	28.0	22.3	24.7	17.2	23.8	22.0		
51st-75th	25.3	15.1	22.2	27.1	16.4	24.9		
75th-100th	20.7	9.5	12.3	41.9	15.5	26.9		
Charlson Comorbidity Index								
0-3	40.9	39.3	39.2	39.3	41.7	46.2	<0.001	
4-6	40.0	36.5	38.3	37.2	42.0	38.6		
≥ 7	19.1	24.2	22.5	23.5	16.3	15.2		
Hospital teaching status and location	Rural	6.9	4.0	2.2	2.2	14.9	2.9	<0.001
--------------------------------------	-------	-----	-----	-----	-----	------	-----	--------
Urban non-teaching	32.2	22.5	34.8	31.7	28.3	28.9		
Urban teaching	60.9	73.5	63.0	66.0	56.7	68.3		
Hospital bed-size								
Small	12.0	11.4	12.3	13.2	12.0	10.6	<0.001	
Medium	28.5	29.9	30.4	27.3	25.5	25.4		
Large	59.4	58.7	57.3	59.5	62.5	64.0		
Hospital region								
Northeast	17.6	13.9	12.0	14.8	4.5	28.3	<0.001	
Midwest	23.4	19.8	6.9	8.8	23.6	13.9		
South	40.9	56.9	45.2	14.7	38.0	37.1		
West	18.1	9.4	35.9	61.8	33.9	20.7		
AMI type								
STEMI	62.7	51.7	59.2	58.1	51.2	64.9	<0.001	
NSTEMI	37.3	48.3	40.8	41.9	48.8	35.1		
Atrial fibrillation or flutter	26.5	20.2	22.9	25.4	18.9	22.3	<0.001	
Cardiac rhythm								
Shockable	64.8	57.0	55.2	57.3	62.5	62.7	<0.001	
Non-shockable	35.2	43.0	44.8	42.7	37.5	37.3		
Acute organ failure	Multi-organ failure							
----------------------	---------------------	------	------	------	------	------	------	
	Respiratory	51.9	57.8	60.6	60.3	55.2	57.9	
	Hepatic	10.3	13.2	11.9	15.0	12.0	13.8	
	Renal	34.7	41.4	39.4	41.6	39.3	38.1	
	Hematologic	9.9	12.5	12.0	17.5	10.3	14.5	
	Neurologic	25.5	33.1	28.9	33.3	25.3	30.2	
Cardiogenic shock		34.7	30.8	38.5	42.0	44.5	42.2	
Pulmonary artery catheterization		2.4	2.4	2.7	4.2	2.9	3.7	
Invasive mechanical ventilation		50.1	59.0	60.8	62.7	56.1	56.3	
Acute hemodialysis		1.4	2.0	2.3	3.0	3.4	2.4	

Represented as percentage or mean ± standard deviation; *Self-Pay, No Charge, Others

AMI: acute myocardial infarction; CA: cardiac arrest; NSTEMI: non-ST-segment-elevation myocardial infarction; STEMI: ST-segment-elevation myocardial infarction
Table S5. Clinical outcomes of AMI admissions with CA stratified by race.

Characteristic	White (N=136,698)	Black (N=19,468)	Hispanic (N=14,286)	Asian/Pacific Islander (N= 5,163)	Native American (N=890)	Other (N=6,245)	P
In-hospital mortality	40.9	47.4	49.3	48.7	45.2	42.5	<0.001
Length of stay (days)	7.1 ± 9.2	8.9 ± 13.3	8.1 ± 11.5	8.1 ± 10.2	7.2 ± 6.5	8.7 ± 12.0	<0.001
Coronary angiography	73.1	61.9	69.8	66.8	71.1	73.8	<0.001
Early coronary angiography	52.8	41.4	50.1	48.2	41.9	53.2	<0.001
Mean time to angiography	3.0 ± 3.7	3.4 ± 4.2	3.2 ± 4.3	2.8 ± 2.8	2.2 ± 1.7	3.5 ± 3.9	<0.001
Percutaneous coronary intervention	58.1	44.6	52.6	47.8	59.7	57.1	<0.001
Mechanical circulatory support	23.5	19.4	26.1	27.6	25.7	32.5	<0.001
Coronary artery bypass grafting	9.3	7.3	9.6	12.4	8.0	11.1	<0.001
Palliative care consultation	9.8	10.5	9.9	10.2	8.2	8.6	<0.001
Do-not-resuscitate status	15.6	15.3	18.8	15.7	11.1	14.2	<0.001
Hospitalization costs (x1000 USD)	146.8 ± 186.9	151.5 ± 183.1	197.9 ± 239.4	203.6 ± 248.5	142.3 ± 129.4	205.7 ±	<0.001
Discharge disposition							
Home	55.2	47.3	51.3	48.6	61.3	53.2	<0.001
Transfer	8.7	10.0	9.6	14.9	9.4	10.8	
	23.1	28.3	23.3	21.8	19.1	24.1	
--------------------------	------	------	------	------	------	------	
Skilled nursing facility							
Home with HHC	12.2	13.5	14.6	14.5	10.2	11.5	
Against medical advice	0.8	0.9	1.2	0.2	0.0	0.4	

Represented as percentage or mean ± standard deviation

AMI: acute myocardial infarction; CA: cardiac arrest; HHC: home health care; USD: United States Dollars
Table S6. Multivariable regression for in-hospital mortality in AMI-CA.

Race	Total cohort (N=182,750)	Odds ratio	95% confidence interval	P	
		Odds ratio	Lower Limit	Upper Limit	
Race		Reference category			
White		Reference category			
Black	0.95	0.91	0.99	0.008	
Hispanic	1.16	1.11	1.21	<0.001	
Asian/Pacific Islander	1.11	1.03	1.19	0.003	
Native American & Other*	1.03	0.97	1.09	0.32	
Age (years)					
<75 years	Reference category				
>75 years	1.74	1.68	1.79	<0.001	
Female sex		1.13	1.10	1.16	<0.001
Primary payer					
Medicare	Reference category				
Medicaid	0.67	0.65	0.70	<0.001	
Private	0.60	0.58	0.62	<0.001	
Others#	0.92	0.88	0.96	<0.001	
Quartile of median household income for zip code	0-25th	Reference category			
	0.92	0.90	0.95	<0.001	
26th-50th	0.92	0.90	0.95	<0.001	
51st-75th	0.85	0.83	0.88	<0.001	
	75th-100th				
--------------------------------	------------	----------	----------	----------	----------
Hospital teaching status and location	Rural	Reference category			
Urban Non-Teaching	1.04	0.99	1.09	0.16	
Urban Teaching	1.16	1.10	1.22	<0.001	
Hospital bed-size	Small	Reference category			
Medium	1.15	1.10	1.19	<0.001	
Large	1.15	1.11	1.20	<0.001	
Hospital region	Northeast	Reference category			
Midwest	1.05	1.01	1.09	0.02	
South	1.11	1.07	1.15	<0.001	
West	1.14	1.10	1.18	<0.001	
Charlson Comorbidity Index	0-3	Reference category			
4-6	1.20	1.17	1.24	<0.001	
≥ 7	1.42	1.37	1.47	<0.001	
Type of AMI	ST-segment elevation	Reference category			
Non-ST-segment elevation	0.77	0.75	0.79	<0.001	
Multi-organ failure	1.515	1.472	1.560	<0.001	
Cardiogenic shock	1.630	1.585	1.676	<0.001	
Procedure	Hazard Ratio (95% CI)	p Value			
---	-----------------------	---------			
Atrial fibrillation/flutter	0.82	<0.001			
Ventricular tachycardia/fibrillation	0.36	<0.001			
Coronary angiography	0.42	<0.001			
Percutaneous coronary intervention	0.37	<0.001			
Coronary artery bypass grafting	0.23	<0.001			
Pulmonary artery catheterization	0.97	0.43			
Mechanical circulatory support	1.79	<0.001			
Invasive mechanical ventilation	1.37	<0.001			
Acute hemodialysis	1.13	0.01			

*Hispanic, Asian or Pacific Islander, Native American, Others; #Self-Pay, No Charge, Others

AMI: acute myocardial infarction; CA: cardiac arrest