Determination of Clinical Characteristics of Mycobacterium kansasii-Derived Species by Reanalysis of Isolates Formerly Reported as M. kansasii

Young-gon Kim, M.D.,1 Hong Yeul Lee, M.D.,2 Nakwon Kwak, M.D.,2 Jae Hyeon Park, M.D.,1 Taek Soo Kim, M.D.,1 Man Jin Kim, M.D.,1 Jee-Soo Lee, M.D.,1 Sung-Sup Park, M.D., Ph.D.,1 Jae-Joon Yim, M.D., Ph.D.,2,3 and Moon-Woo Seong, M.D., Ph.D.1

1Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea; 2Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea; 3Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea

Background: Seven genotypic subtypes of Mycobacterium kansasii were recently demonstrated to represent distinct species based on phylogenomic analysis. Mycobacterium kansasii sensu stricto (formerly known as subtype 1) is most frequently associated with human diseases; only a few studies have compared the diverse clinical characteristics of M. kansasii subtypes, including their drug susceptibilities. We determined the actual incidence of infections caused by each subtype of M. kansasii and identified their clinical characteristics.

Methods: We subtyped isolates identified as M. kansasii over the last 10 years at a tertiary care hospital. Percent identity score of stored sequencing data was calculated using curated reference sequences of all M. kansasii subtypes. Clinical characteristics were compared between those classified as subtype 1 and other subtypes. Student’s t-test, Wilcoxon rank-sum test, and Fisher’s exact test were used for comparisons.

Results: Overall, 21.7% of the isolates were identified as species distinct from M. kansasii. The proportion of patients with subtype 1 M. kansasii infection who received treatment was significantly higher than that of patients with other subtype infections (55.3% vs. 7.7%, P = 0.003). Only patients with subtype 1 infection received surgical treatment. Non-subtype 1 M. kansasii isolates showed a higher frequency of resistance to ciprofloxacin and trimethoprim/sulfamethoxazole.

Conclusions: Non-subtype 1 M. kansasii isolates should be separately identified in routine clinical laboratory tests for appropriate treatment selection.

Key Words: Mycobacterium kansasii, subtypes, subtype 1 M. kansasii, Non-subtype 1 M. kansasii

INTRODUCTION

Mycobacterium kansasii is a common non-tuberculous mycobacterial (NTM) species with relatively high pathogenicity [1, 2]. It can cause severe lung diseases, similar to that caused by Mycobacterium tuberculosis [3, 4]. Seven subtypes of M. kansasii have been described, based on restriction fragment length polymorphism analysis of hsp65 [5-7]. PCR-restriction enzyme analysis of rpoB and tuf has also been used to distinguish subtypes [8, 9]. Among these subtypes, M. kansasii sensu stricto is considered the most pathogenic and is isolated most frequently [4, 10-13]. Reports of human diseases caused by subtype 2 are
rare, demonstrating its higher association with immunosuppression than subtype 1 [7, 14]. There is a consensus that the other subtypes (subtypes 3–7) are not human pathogens, although this opinion is controversial owing to the limited evidence caused by the paucity of isolates of these subtypes [4]. “Mycobacterium kansasii complex” has been proposed as an inclusive term comprising all subtypes of *M. kansasii* and *M. gastri*, which is a closely related species but indistinguishable from *M. kansasii* by 16S rRNA sequencing [4, 15].

Although the difference in the pathogenicity of *M. kansasii* subtypes has been recognized, these subtypes have recently been differentiated into distinct species [15, 16]. Unlike subspecies, subtypes are not a part of the standard taxonomic classification system, and reporting of subtypes in mycobacterial identification by clinical laboratories is not mandatory [17, 18]. However, the recently published *M. kansasii*-derived species, which were formerly classified as *M. kansasii* subtypes, have not been included as target species of commercial kits for NTM identification [15]. Genotyping of at least one discriminatory target, such as *rpoB* and *hsp65*, is required for accurate species identification.

The detection frequency of *M. kansasii* subtypes in clinically relevant populations have been reported; however, only a few studies have compared the clinical characteristics among infections caused by *M. kansasii* subtypes [4, 13]. Several studies on the clinical relevance of *M. kansasii* have not separately analyzed the subtypes, resulting in substantial variability (17%–88%) in the reported rate of pulmonary diseases caused by *M. kansasii* isolates and diversity in radiological findings [1, 2, 19–24].

To fill this knowledge gap, we reanalyzed the sequencing trace files of all isolates reported to involve *M. kansasii*, from an up-to-date database of reference sequences, and compared the clinical characteristics of infections caused by different *M. kansasii* subtypes.

MATERIALS AND METHODS

Participants and samples

This study was approved by the Institutional Review Board of Seoul National University Hospital (SNUH), Seoul, Korea. We reviewed the medical records of 60 consecutive patients with *M. kansasii* infection, diagnosed based on a routine NTM identification testing performed from June 15, 2011 to April 8, 2020 at SNUH. The routine NTM identification was performed by in-house method which was based on PCR amplification of the two target regions, the 5’ end of the 16S rRNA gene (about 500 bp) and a part of *rpoB* gene, and subsequent Sanger sequencing. Informed consent from patients was not obtained, as this was a retrospective study performed using medical records and raw data files. The patient selection process is shown in Fig. 1. For patients with NTM identification testing being requested two or more times, we preferentially selected the tests with drug susceptibility testing results. For patients with no drug susceptibility testing results or two or more drug susceptibility testing results, earlier NTM identification testing results were chosen. All samples included in the analysis were cultured colonies from sputum (53, 88.3%), bronchial wash or bronchoalveolar lavage fluid (6, 10.0%), and joint fluid (1, 1.7%).

![Fig. 1. Among 9,364 isolates in the non-tuberculous mycobacterial (NTM) identification tests, 114 isolates were identified as *M. kansasii* (1.2%).](https://doi.org/10.3343/alm.2021.41.5.463)

Identification of *M. kansasii* subtypes

Sequencing data generated from routine identification testing were used. For the 60 patients, percent identity score was calculated based on curated reference sequences of each subtype of *M. kansasii*. The reference sequences of the 16S rRNA gene and *rpoB* were curated from the List of Prokaryotic Names with Standing in Nomenclature (http://www.bacterio.net) and NCBI Genbank (https://www.ncbi.nlm.nih.gov/genbank/), respectively. SnackNTM software (https://github.com/Young-gonKim/SnackNTM, last accessed August 27, 2020) was used for aligning sequencing data to the curated reference sequences.

Grouping of patients

The patients were divided into two groups for comparison. Group 1 comprised patients infected with *M. kansasii* subtype 1, the most pathogenic subtype [4, 10–13]. Group 2 comprised patients infected with other subtypes, *M. kansasii* subtypes 2, 3, and 6. Baseline characteristics of patients, clinical manifestations, outcome, and drug susceptibility of the isolates were compared between the groups.
Review of medical records

Patient characteristics including age, sex, body mass index, and smoking history were retrieved from the medical records. Medical histories of tuberculosis, malignancy, diabetes mellitus, liver diseases, kidney diseases, and immunocompromising diseases were reviewed. Radiologic findings and pulmonary function test results including forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), and FEV1/FVC were retrieved. Clinical course of NTM isolation, such as co-infection with other NTM organisms, presence of NTM pulmonary diseases, and treatment initiation were reviewed. The drug susceptibility test results were also reviewed.

Statistical analysis

Statistical analysis was performed using R software (version 4.0.2, R Foundation for Statistical Computing, Vienna, Austria). For quantitative variable comparison, Shapiro test was used to evaluate the normality of data. Student’s t-test was used when the normality assumption was satisfied; otherwise, the non-parametric Wilcoxon rank-sum test was used. Fisher’s exact test was used to compare categorical variables between groups. \(P < 0.05 \) were considered statistically significant.

RESULTS

Among the 60 isolates included in the analysis, 13 were reclassified as one of the newly reported \(M. kansasii \)-derived species (21.7%), including 10 (16.7%) isolates of \(M. persicum \) (former subtype 2), 2 (3.3%) isolates of \(M. pseudokansasii \) (former subtype 3), and 1 (1.7%) isolate of \(M. attenuatum \) (former subtype 6). The remaining 47 isolates were classified as subtype 1.

The baseline characteristics of the two patients’ groups are shown in Table 1. FVC was significantly lower in Group 1 than in Group 2 (88.0% vs. 97.5% predicted, \(P = 0.025 \)), leading to a significantly higher FEV1/FVC ratio in Group 1 (74.0 vs. 70.5, \(P = 0.038 \)). Non-cavitary nodular bronchiectatic lesions were commonly observed in Group 2 (34.0% vs. 76.9%, \(P = 0.010 \)) and fibrocavitary lesions were observed only in Group 1 (38.3% vs. 0%, \(P = 0.006 \)).

Table 1. Patients’ characteristics including comorbidities, pulmonary function, and radiologic findings

Characteristics	Group 1: \(M. kansasii \) former subtype 1 (N=47)	Group 2: \(M. kansasii \) former subtypes 2, 3, and 6 (N=13)	\(\rho \)
Age (yr), median (IQR)	62.0 (49.3–71.2)	63.4 (50.4–75.6)	0.378
Male, N (%)	31 (66.0)	8 (61.5)	0.755
Body mass index (kg/m\(^2\)), median (IQR)	21.2 (19.6–22.8)	22.0 (20.7–22.8)	0.385
Smoking, N (%)	26 (57.8)	6 (46.2)	0.535
Underlying disease, N (%)	32 (68.1)	9 (69.2)	1
Previous history of tuberculosis, N (%)	17 (36.2)	8 (61.5)	0.122
Previous history of tuberculosis treatment, N (%)	11 (23.4)	7 (53.8)	0.046
Malignancy, N (%)	13 (27.7)	1 (7.7)	0.264
Diabetes Mellitus, N (%)	10 (21.3)	3 (23.1)	1
Chronic kidney disease, N (%)	1 (2.1)	0 (0)	1
Chronic liver disease, N (%)	3 (6.4)	0 (0)	1
Immunocompromised, N (%)	8 (17.0)	0 (0)	0.182
Sputum smear positivity, N (%)	6 (12.8)	1 (7.7)	1
FEV1 (% predicted), median (IQR)	93.0 (79.5–102.5)	99.0 (78.3–103.0)	0.688
FVC (% predicted), median (IQR)	88.0 (79.0–96.5)	97.5 (91.8–108.8)	0.025
FEV1/FVC, median (IQR)	74.0 (70.0–81.5)	70.5 (57.0–71.8)	0.038
Erythrocyte sediment rate (mm/h), median (IQR)	25.0 (12.5–42.5)	25.0 (7.0–34.8)	0.762
Radiographic characteristics, N (%)	39 (83.0)	11 (84.6)	1
Non-cavitary nodular bronchiectatic lesion	16 (34.0)	10 (76.9)	0.010
Cavitary nodular bronchiectatic lesion	5 (10.6)	1 (7.7)	1
Fibrocavitary lesion	18 (38.3)	0 (0)	0.006

Abbreviations: IQR, interquartile range; FVC, forced vital capacity; FEV1, forced expiratory volume in 1 second.
vs. 0%, \(P=0.006 \)).

The clinical course of the two groups is summarized in Table 2. Co-infection with \(M. \text{avium} \) complex was more frequent in Group 2 (19.1% vs. 53.8%, \(P=0.029 \)). The proportion of patients who satisfied the NTM pulmonary disease (NTM-PD) diagnostic criteria did not differ between the groups (85.1% vs. 76.9%, \(P=0.675 \)). However, the proportion of treated patients was significantly higher in Group 1 than in Group 2 (55.3% vs. 7.7%, \(P=0.003 \)).

The \textit{in vitro} drug susceptibility testing results of the available isolates are presented in Table 3. Among the 60 patients, 32 (25 from Group 1 and 7 from Group 2) had drug susceptibility testing results. Among the eight drugs, whose breakpoints are published in the CLSI guidelines [25], resistance to four drugs (ciprofloxacin, ethambutol, rifampin, and trimethoprim/sulfamethoxazole) was detected. Susceptibility frequencies for all the four drugs were higher in Group 1 than in Group 2. The frequency of ciprofloxacin susceptibility was significantly higher in Group 1 than in Group 2 (80.0% vs. 28.6%, \(P=0.019 \)). However, there was no significant difference in the MICs of the antimicrobial drugs whose breakpoints are not available in the CLSI guidelines (cefotaxin, doxycycline, imipenem, and tobramycin) between the groups.

Table 2. Comparison of co-infection rate and clinical courses between Groups 1 and 2

	Group 1: \(M. \text{kansasii} \) former subtype 1 (N=47)	Group 2: \(M. \text{kansasii} \) former subtypes 2, 3, and 6 (N=13)	\(P \)
Co-infection with other organisms, N (%)	16 (34.0)	7 (53.8)	0.215
With \(M. \text{avium} \) complex	9 (19.1)	7 (53.8)	0.029
With \(M. \text{abscessus} \) complex	3 (6.4)	0 (0)	1
With other NTM	9 (19.1)	2 (15.4)	1
Met diagnostic criteria of NTM-PD, N (%)	40 (85.1)	10 (76.9)	0.675
Observed without treatment, N (%)	21 (44.7)	12 (92.3)	0.003
Spontaneous conversion, N (%)	6/14 (42.9)	3/7 (42.9)	1
Treatment initiation within three yrs, N (%)	26 (55.3)	1 (7.7)	0.003
Microbiologic cure* n/N (%)	18/20 (90.0)	1/1 (100)	1
Surgical treatment, N (%)	5 (10.6)	0.0	0.575

*Three or more consecutive negative results from cultures that were performed with intervals longer than one month. Abbreviation: NTM-PD, non-tuberculous mycobacterial pulmonary disease.

Table 3. Comparison of \textit{in vitro} drug susceptibilities between Groups 1 and 2

Antimicrobial	Group 1: \(M. \text{kansasii} \) former subtype 1 (N=25)	Group 2: \(M. \text{kansasii} \) former subtypes 2, 3, and 6 (N=7)	\(P \)
Amikacin	\(\leq 1 \text{–} 16 \)	\(\leq 1 \text{–} 16 \)	1
Cefotaxin	64 to > 256	8 to > 256	
Ciprofloxacin	0.5–8	0.25–8	0.019
Clarithromycin	\(\leq 0.5 \text{–} 1 \)	\(\leq 0.5 \text{–} 1 \)	1
Doxycycline	1 to > 32	1 to > 32	
Imipenem	8 to > 64	16 to > 64	
Ethambutol	0.5–16	1 to > 32	0.590
Linezolid	\(\leq 2 \text{–} 8 \)	\(\leq 2 \text{–} 4 \)	1
Moxifloxcin	\(\leq 0.125 \text{–} 1 \)	\(\leq 0.125 \text{–} 2 \)	1
Rifampin	\(\leq 0.125 \text{–} 2 \)	5 (71.4)	0.113
Tobramycin	1 to > 32	4 to > 32	
TMP/SMX	\(\leq 0.25/4.75 \text{ to } 32/608 \)	\(\leq 0.25/4.75 \text{ to } 32/608 \)	0.074

Abbreviations: TMP/SMX, trimethoprim/sulfamethoxazole; MIC, minimum inhibitory concentration.
DISCUSSION

In this study, 21.7% of isolates previously identified as *M. kansasi* were reclassified as new species with reportedly lower pathogenicity than *M. kansasi* sensu stricto. As conventional line probe-based commercial kits cannot discriminate the species, a considerable proportion of isolates identified as *M. kansasi* may actually belong to different species with significantly different clinical implications [15]. Even sequencing-based methods cannot detect new species unless at least one discriminatory target, such as *hsp65* and *rpoB*, is incorporated in the test.

Most reports on *M. kansasi* subtype 1, sensu stricto, being the most pathogenic subtype are based on its detection frequency in clinically relevant populations [4, 10, 12, 13]. However, a recent report indicated that a specific genetic element, the espACD operon, is the main source of pathogenicity of this subtype [13]. We did not find a difference in the detection frequency of isolates that met the criteria for NTM-PD between Groups 1 and 2. However, other results suggested that subtype 1 isolates are more pathogenic than other subtypes. The significantly lower values of pulmonary function test parameters and FVC in Group 1 further support the higher pathogenicity of subtype 1, considering that lung destruction can decrease the FVC. Distinct radiographic findings were obtained for the two groups: Group 1 showed a higher frequency of fibrocavitary lesions, and Group 2 showed a higher frequency of non-cavitary nodular bronchiectatic lesions. These results support the assumption that the disease caused by subtype 1 is more aggressive.

Only a few studies have examined the drug susceptibility of *M. kansasi* subtypes [11, 12, 14]. The CLSI recommends susceptibility testing of clarithromycin and rifampin as first-line treatment, and isoniazid, ethambutol, streptomycin, amikacin, cotrimoxazole, moxifloxacin, linezolid, ciprofloxacin, and others as second-line treatment, because *M. kansasi* isolates are generally susceptible to these drugs [12]. Indeed, all isolates included in this study were susceptible to amikacin, clarithromycin, linezolid, and moxifloxacin. In contrast to the present study, a previous study found that the drug resistance frequency was consistently higher for subtype 1 isolates and attributed this result to the selection pressure due to higher exposure to drugs owing to a high frequency of treatment [14].

Our study had some limitations. First, the utilization of only two target regions, the 16S rRNA gene and *rpoB*, would not have provided enough information for distinguishing all *M. kansasi* subtypes. No single target could accurately distinguish all *M. kansasi* subtypes, requiring whole genome sequence-based approach for reliable subtyping [4]. It is possible that we have missed rarer subtypes of *M. kansasi* due to the limitation of the target regions used. Second, the number of isolates was limited, especially for non-subtype 1 *M. kansasi* isolates. We included only 2 subtype 3 *M. kansasi* isolates and 1 subtype 6 *M. kansasi* isolate. The adoption of laboratory methods capable of distinguishing these subtypes can provide more data.

In conclusion, approximately one-fifth of the isolates identified as *M. kansasi* were newly designated species derived from *M. kansasi* but with lower pathogenicity. Non-subtype 1 *M. kansasi* species should be identified by routine testing in clinical laboratories to select appropriate treatment strategies.

AUTHOR CONTRIBUTIONS

Kim YG identified patients with *M. kansasi* isolation, performed subtyping and drafted the manuscript. Lee HY and Kwak N reviewed medical records of included patients. Park JH and Kim TS interpreted the data and performed the statistical analysis. Kim MJ and Lee JS contributed to the revision of the manuscript. Park SS, Yim JJ, and Seong MW supervised the study and performed the final revision of the manuscript.

CONFLICTS OF INTEREST

None declared.

RESEARCH FUNDING

None declared.

ORCID

Young-gon Kim https://orcid.org/0000-0001-6840-6830
Hong Yeul Lee https://orcid.org/0000-0002-3638-8890
Nakwon Kwak https://orcid.org/0000-0002-1897-946X
Jae Hyeon Park https://orcid.org/0000-0003-0261-2185
Taek Soo Kim https://orcid.org/0000-0002-2093-1721
Man Jin Kim https://orcid.org/0000-0002-9345-6976
Jee-Soo Lee https://orcid.org/0000-0002-7005-5686
Sung-Sup Park https://orcid.org/0000-0003-3754-4848
Jae-Joon Yim https://orcid.org/0000-0002-9605-0074
Moon-Woo Seong https://orcid.org/0000-0003-2954-3677
REFERENCES

1. Koh WJ, Kwon OJ, Jeon K, Kim TS, Lee KS, Park YK, et al. Clinical significance of nontuberculous mycobacteria isolated from respiratory specimens in Korea. Chest 2006;129:341-8.

2. Van Ingen J, Bendien SA, De Lange WC, Hoefsloot W, Dekhuijzen PNR, Boeree MJ, et al. Clinical relevance of non-tuberculous mycobacteria isolated in the Nijmegen-Arnhem region, The Netherlands. Thorax 2009;64:502-6.

3. Matveychuk A, Fuks L, Priess R, Hahim I, Shitrit D, Clinical and radiological features of Mycobacterium kansasii and other NTM infections. Respir Med 2012;106:1472-7.

4. Jagielski T, Borówka P, Bakula Z, Lach J, Marciniak B, Brzostek A, et al. Genomic insights into the Mycobacterium kansasii complex: an update. Front Microbiol 2020;10:2918.

5. Alcaide F, Richter I, Bernasconi C, Springer B, Hagenau C, Schulze-Röbbecke R, et al. Heterogeneity and clonality among isolates of Mycobacterium kansasii: implications for epidemiological and pathogenicity studies. J Clin Microbiol 1997;35:1959-64.

6. Picardeau M, Prod’Hom G, Raskine L, LePennec MP, Vincent V. Genotypic characterization of five subspecies of Mycobacterium kansasii. J Clin Microbiol 1997;35:25-32.

7. Taillard C, Greub G, Weber R, Pfiffner GE, Bodmer T, Zimmerli S, et al. Clinical implications of Mycobacterium kansasii species heterogeneity: Swiss National Survey. J Clin Microbiol 2003;41:1240-4.

8. Kim BJ, Lee KH, Park BN, Kim SJ, Bai GH, Kim SJ, et al. Differentiation of mycobacterial species by PCR-restriction analysis of DNA (342 base pairs) of the RNA polymerase gene (rpoB). J Clin Microbiol 2001;39:2102-9.

9. Bakula Z, Modrzyewska M, Safianowska A, van Ingen J, Probscz M, Bielecki J, et al. Proposal of a new method for subtyping of Mycobacterium kansasii based upon PCR restriction enzyme analysis of the tuf gene. Diagn Microbiol Infect Dis 2016;84:318-21.

10. Zhang Y, Mann LB, Wilson RW, Brown-Elliott BA, Vincent V, Inouma Y, et al. Molecular analysis of Mycobacterium kansasii isolates from the United States. J Clin Microbiol 2004;42:119-25.

11. da Silva Telles MA, Chimara E, Ferrazzi L, Riley LW. Mycobacterium kansasii: antibiotic susceptibility and PCR-restriction analysis of clinical isolates. J Med Microbiol 2005;54:975-9.

12. Bakula Z, Modrzyewska M, Pennings L, Probscz M, Safianowska A, Bielecki J, et al. Drug susceptibility profiling and genetic determinants of drug resistance in Mycobacterium kansasii. Antimicrob Agents Chemother 2018;62:e01788-17.

13. Guan Q, Ummels R, Ben-Rached F, Alzahid Y, Amini MS, Adroub SA, et al. Comparative genomic and transcriptomic analyses of Mycobacterium kansasii subtypes provide new insights into their pathogenicity and taxonomy. Front Cell Infect Microbiol 2020;10:122.

14. Li Y, Pang Y, Tong X, Zheng H, Zhao Y, Wang C. Mycobacterium kansasii subtypes provides new insights into their pathogenicity and taxonomy. Front Cell Infect Microbiol 2020;10:72097.

15. Shahraki AH, Trovato A, Miraesendi M, Borroni E, Heidarieh P, Hashemzadeh M, et al. Mycobacterium persicum sp. nov., a novel species closely related to Mycobacterium kansasii and Mycobacterium gastri. Int J Syst Evol Microbiol 2017;67:1766-70.

16. Tagini F, Aeby S, Bertelli C, Droz S, Casanova C, Prod’Hom G, et al. Phylogenomics reveal that Mycobacterium kansasii subtypes are species-level lineages. Description of Mycobacterium pseudokansasii sp. nov., Mycobacterium innocens sp. nov. and Mycobacterium attenuatum sp. nov. Int J Syst Evol Microbiol 2019;69:1696-704.

17. Parker CT, Tindall BJ, Garrity GM. International code of nomenclature of prokaryotes: prokaryotic code. Int J Syst Evol Microbiol 2019;69:S1-111.

18. CLSI. Laboratory detection and identification of mycobacteria. 2nd ed. CLSI M48. Wayne, PA: Clinical and Laboratory Standards Institute, 2018.

19. Park HK, Koh WJ, Shim TS, Kwon OJ. Clinical characteristics and treatment outcomes of Mycobacterium kansasii lung disease in Korea. Yonsei Med J 2010;51:552-6.

20. Moon SM, Park HY, Jeon K, Kim SY, Chung MJ, Huh HJ, et al. Clinical significance of Mycobacterium kansasii isolates from respiratory specimens. PLoS One 2015;10:e0139621.

21. Bloch KC, Zwerling L, Pletcher MJ, Hahn JA, Gerberding JL, Ostroff SM, et al. Incidence and clinical implications of isolation of Mycobacterium kansasii: results of a 5-year, population-based study. Ann Intern Med 1998;129:698-704.

22. Shitrit D, Baum GL, Priess R, Lavy A, Shitrit AB-G, Raz M, et al. Pulmonary Mycobacterium kansasii infection in Israel, 1999-2004: clinical features, drug susceptibility, and outcome. Chest 2006;129:771-6.

23. Bodle EE, Cunningham JA, Della-Latta P, Schluger NW, Saiman L. Epidemiology of nontuberculous mycobacteria in patients without HIV infection. New York City. Emerg Infect Dis 2008;14:390-6.

24. Simons S, van Ingen J, Hsueh PR, Van Hung N, Dekhuijzen PN, Boeree MJ, et al. Nontuberculous mycobacteria in respiratory tract infections, Eastern Asia. Emerg Infect Dis 2011;17:343-9.

25. CLSI. Susceptibility testing of mycobacteria, nocardiae, and other aerobic actinomycetes. CLSI M24-A2. Wayne, PA: Clinical and Laboratory Standards Institute. 2011.