Nitrogen addition has minimal effect in Wyoming big sagebrush (Artemisia tridentata) communities

Running head: sagebrush nitrogen fertilization

CHRISTOPHER W. BELTZ1,2, Yale University School of Forestry & Environmental Studies, 195 Prospect St., New Haven, CT 06511, USA

MEGAN L. MOBLEY, Department of Crop and Soil Science, Oregon State University, Oregon State University, Corvallis, OR 97331, USA (meg.mobley@alumni.duke.edu)

INGRID C. BURKE, Yale University School of Forestry & Environmental Studies, 195 Prospect St., New Haven, CT 06511, USA (indy.burke@yale.edu)

1\textit{E-mail: christopher.beltz@yale.edu}

2\textit{Present address: 370 Prospect St., Yale University School of Forestry & Environmental Studies, Greeley Memorial Laboratory, New Haven, CT 06511, USA}

\textbf{KEYWORDS} Artemisia tridentata, Odocoileus hemionus, mule deer, dryland, energy mitigation, sagebrush, nitrogen, fertilization

\textbf{ABSTRACT}

Nitrogen additions are known to elicit variable responses in semi-arid ecosystems, with responses increasing with precipitation. The response of semi-arid ecosystems to nitrogen are important to understand due to their large spatial extent worldwide and the global trend of increasingly available nitrogen. In this study, we evaluated the impact of nitrogen additions on semi-arid big sagebrush (Artemisia tridentata) ecosystems. This is important given that sagebrush ecosystems are poorly understood, despite their prevalence in the western US. In addition, large-scale nitrogen additions have begun on sagebrush landscapes in Wyoming in
order to mitigate population declines in mule deer (*Odocoileus hemionus*). The study objectives were (1) to evaluate the effectiveness of nitrogen fertilization in increasing sagebrush biomass and forage quality, and (2) to assess effects of nitrogen addition on soil biogeochemistry and vegetation community structure. We fertilized 15 plots across 5 locations in western Wyoming using nitrogen (5.47g N m\(^{-2}\)), in the form of urea. In addition, we immobilized available nitrogen through surface hay treatments (254g hay/m\(^2\)). Nitrogen additions failed to increase growth of sagebrush, alter nitrogen content of sagebrush leaders, or alter greenhouse gas efflux from soils. However, the vegetation community shifted; nitrogen-fertilized plots were only 72% similar to the controls (Bray-Curtis). Over the two years of this study, we did not find indications of nitrogen limitation of ecosystem processes, despite a wet growing season in 2014. Thus, we have found a general lack of response to nitrogen in sagebrush ecosystems, with some shifts in the plant community composition.

INTRODUCTION

Nitrogen (N) additions are known to elicit varying responses in semi-arid ecosystems (1). Ecosystems respond to N in multiple ways, including increased net primary production and plant growth (2,3), plant community composition changes (4), and increased greenhouse gas (GHG) emissions from soils (5). Most semi-arid and arid systems (henceforth ‘drylands’) are thought to be primarily limited by water, though this limitation can be affected by both intra- and inter-annual variation in precipitation (6). If drylands were only restricted by water-limitation, N additions to the system should have no effect without a concurrent increase in precipitation. However, most dryland systems show a response to N additions alone, indicating at least a partial limitation by N (1,7).
In a meta-analysis of research studies on the effects of N fertilization studies in water-limited drylands worldwide, Yahdjian et al. (8) found that in almost all cases the addition of N increased net primary productivity (NPP), showing that nitrogen limitation – even if minor – is a global phenomenon. The ability to predict the effects of increased N on ecosystem process and structure is important because of the global trend of increasing N deposition (9). Given that drylands cover 40% of the Earth’s terrestrial surface (10,11) and 20% of the US (12), it is critical to investigate the effects of increasing N availability in dryland systems, due to their co-limitation by both water and N. In addition, dryland systems are home to 44% of all cultivated land (13,14), making understanding the effects of increasing N particularly important due to the high use N-based fertilizers.

In the western US, big sagebrush (Artemisia tridentata spp.) ecosystems are the dominant dryland system (15,16), covering 48 million hectares (ha) and 13 states (17). Despite its current extent in the US, up to 60% of the historic, pre-settlement big sagebrush range has been partially or completely converted to exotic annual grasslands because of increased disturbance to these systems and conversion to grazing and agricultural lands (18). In addition, significant portions of the big sagebrush range continue to be affected by energy development, agriculture, and expansion of urban areas (19–22). These drivers of the loss of big sagebrush — unsustainable use of natural resources, population expansion, globalization, as well as climate change — are the same as those exacerbating desertification in drylands globally (13). Big sagebrush ecosystems are expected to continue to decline in coverage over the next decade with 2.3-5.5 million hectares projected to be impacted due to oil and gas development (23). While agricultural additions of N account for a majority of the increase in N availability globally, energy
development also affects N deposition locally, through the production and release of NO$_x$

The effects of nitrogen additions on big sagebrush ecosystems are poorly understood due
to both the small number of studies and the complexities associated with potential co-limitation
of ecosystem processes by water and N in dryland systems (26). Although current knowledge
gaps exist regarding N limitation in dryland ecosystems, increased N availability is widely
known to have environmental consequences in other ecosystems (5). These include: (1)
increasing the amount of carbon stored in terrestrial biomass in both soil and in aboveground
plant biomass (27,28), (2) increasing soil efflux of GHGs (29), and (3) changing the species
composition of plant communities (30). Over the past decade, it has become increasingly
important to understand the role of nitrogen in sagebrush ecosystems. Our research will help to
close the gap in knowledge on the effects of N fertilization in sagebrush.

Mule Deer: A Case Study in the Nitrogen Limitation of Drylands

The Pinedale Anticline of western Wyoming is one of the most disturbed regions of big
sagebrush. Land managers are particularly concerned with large population declines in mule deer
(Odocoileus hemionus) over the 15 years since the onset of natural gas development (31). The
direct loss of 615 ha of big sagebrush habitat, and the associated winter forage, appear to be
associated with the increased mortality in Sublette Mule Deer Herd (32). By 2010, this
population decline has been of sufficient magnitude that the Pinedale Anticline Project Office
was required to initiate on-site mitigation (26). Land managers hypothesized that fertilizing the
area with N would increase habitat quality (33) through increases in big sagebrush biomass (i.e.,
forage production) and N content in forage (i.e., forage quality).
The Pinedale Anticline is over 12,000 ha, with 320 ha in the pilot fertilization area (26,32). Fertilization was performed by helicopter in 2010 and 2011. Each fertilization application was projected to cost US$135/ha – totaling greater than US$1.6m per year. Due to the high cost, potential environmental effects, and the expected dominance of water limitation, some ecologists argued that fertilization of big sagebrush was unlikely to be effective in offsetting forage loss for mule deer (26). The eventual monitoring report of the fertilization project reached a similar conclusion (34), however, as the study was conducted on a previously applied and unreplicated treatment, no generalizable conclusions could be reached.

Given that N deposition is likely to increase through the end of the century, the development of an N fertilization project on the Pinedale Anticline provides a rare opportunity to ask basic research questions about N limitation in drylands, while helping to inform decisions about a regional environmental issue.

Project Goals & Hypotheses

Inspired by the actions on the Pinedale Anticline, the goals of this study were (1) to evaluate the efficacy of N fertilization for increasing big sagebrush biomass and forage quality, and (2) to assess effects of N addition on soil biogeochemistry, plant biomass, and plant community composition. We hypothesized that N fertilization would increase N availability in the soil, however it would not increase growth, biomass, or forage quality of big sagebrush due to primary limitation by water. In addition, we expected changes in plant community composition and a high potential for increased GHG emission.

MATERIALS AND METHODS

Study area and site selection
We conducted this study between 2012 and 2015 in semi-arid big sagebrush plant communities in western Wyoming, near the town of Pinedale (42°51′58″ N 109°51′53″ W). The area surrounding Pinedale is consistent with sagebrush steppe in other parts of Wyoming; plant communities are co-dominated by Wyoming big sagebrush (*Artemisia tridentata wyomingensis*) and mountain big sagebrush (*Artemisia tridentata vaseyana*). Other common plant species present include Sandberg bluegrass (*Poa secunda*), western wheatgrass (*Pascopyrum smithii*), chaffweed (*Antennaria microphylla*), squirreltail (*Elymus elymoides*), and longleaf phlox (*Phlox longifolia*).

The soils in this area are categorized as Typic Haplocryalfs, Typic Dystrocryepts, and Typic Haplocryolls with aridic moisture regimes (35). Soil textures at our sites were categorized as loam, sandy loam, and sandy clay loam. Mean annual precipitation across the region averages 290 mm and mean annual temperature is 2.6 °C (36). The precipitation in this region falls predominantly in the spring and summer months.

We used NRCS Soil Survey data to identify five site locations across three privately owned cattle ranches, all within 25 km of the Pinedale Anticline and 10-20 km of each other. Sites were sufficiently distributed to represent variability across the region (geographic coordinates for specific sites are not provided due to privacy concerns). We used privately-owned lands because of constraints associated with imposing manipulations on public areas adjacent to the Pinedale Anticline. We identified site locations with similar soil types, textures, and landscape positions, with all sites were positioned on a slight slope. Each site had previously been moderately grazed for over a century; this grazing history is typical of the region, big sagebrush plant communities throughout the western U.S., and - most importantly – consistent
with the history of the Pinedale Anticline, for which we are trying to characterize potential
effects of N fertilization.

Experimental design and nitrogen fertilization

To address our hypotheses, we applied three treatments: nitrogen fertilization, nitrogen
removal through immobilization (hay addition), and a no-addition control. We created three
plots (10m x 10m) at each of the five site locations. Each plot was enclosed by cattle-proof
fencing and contained three subplots (2.5m x 8.5m) each randomly assigned one of the above
treatments. Subplots were fertilized with nitrogen in the form of urea (4.5g N m^{-2}) and surface
hay (well-aged for at least one year) was applied (referred as ‘nitrogen removal’ here; 250g hay
m^{-2}) for the above respective treatments in September 2012. All subplots had a 0.56 - 0.625m
buffer between subplots and between subplot edge and fence.

Mineralized Soil Nitrogen

Inorganic nitrogen availability, in the form of nitrate (NO_3^-), and ammonium (NH_4^+),
were estimated *in situ* using Plant Root Simulator (PRS®) probes. The PRS® probes are ion
exchange resin membranes held within a rigid plastic frame (Western Ag Innovations, Inc.,
Saskatoon, Canada) and provide an index of nitrogen availability to plants. PRS probes are
placed in pairs, one anion probe (collecting NH_4^+) and one cation probe (collecting NO_3^-).
Multiple pairs were placed within a single treatment. All probes were washed with DI water
following the manufacturer’s protocol and shipped to Western Ag Innovations, Inc., (Saskatoon,
Canada) for analysis. We installed probes over winter to catch the spring snowmelt, the largest
pulse of nitrogen for the year (37), as plots are inaccessible from winter until soils dry out in the spring.

During the first year of the experiment (Sept 2012 – May 2013), we placed two pairs of PRS® probes within each treatment of all fifteen plots to measuring available soil nitrogen on the edge (i.e., cusp) of the canopy of a big sagebrush individual, to get an integrated reading of under-canopy and interspace, as N availability is known to be different in those locations (38). During the first half of third year of the study (Oct 2014 – May 2015), two additional sets of probes were installed, three pairs to measure soil N available under the big sagebrush canopy and three pairs in the interspace.

Sagebrush Growth & Forage Quality

We estimated big sagebrush annual growth by measuring leader growth (i.e., big sagebrush stems) and the ephemeral branch growth (i.e., inflorescence) in 2014. Leaders and ephemeral branches were collected at the end of the growing season in late October 2014 and dried in the laboratory for five days at 55°C and then at 35°C until mass remained constant over a 5-day period. We then weighed and measured the length of each individual leader and branch. The dried leaders were ground in a ball mill and submitted to the Stable Isotope Facility at the University of Wyoming for total carbon and nitrogen analysis (39), as a proxy for forage quality.

Plant Community

We sampled the plant communities at each site over two days in August 2014. We surveyed the plant community using 20 randomly placed Daubenmire quadrats (0.1 m²) within each subplot. The canopy cover of each plant species was estimated using a modified
Daubenmire (40) method with the following cover categories: <1%, 1-5%, 6-15%, 26-40%, 41-60%, and >60%. Unknown species were marked as unknown in the field and identified using the Rocky Mountain Herbarium (Univ. of Wyoming). If the unknown species were unable to be identified they were not included in the analyses of the plant community.

Soil Trace Gas Emission

We sampled soil trace gas emissions twice in July 2013; each was at least 48 hours after any precipitation because high amounts of water vapor can be can confound measurement of CO$_2$. All sites were sampled within a single day for each sampling period. We deployed 90 soil gas flux chambers, 2 per subplot across all 15 sites, and arranged them on the cusp of a random interspace and adjacent big sagebrush canopy, as it is well-recognized that shrubs locations and interspaces create important environmental microsites and soil heterogeneity in mountain big sagebrush ecosystems (38).

Sections of polyvinyl chloride (PVC) pipe (10 cm high x 20 cm diameter) were permanently buried in the ground to a depth of 6 ± 2cm, which then acted as bases for the chamber lid. Chamber lids were round, 20 cm inside diameter and 8 cm high, made of opaque PVC and vented following Hutchinson & Mosier (41). The chamber base and lid fit snuggly together and were sealed using a rubber gasket for the 30-minute sampling period. Once the chamber was sealed, 30 ml samples of air were drawn from the chamber headspace every 15 minutes (t = 0, 15, and 30 mins). Each sample was collected by drawing 60 ml of air from the headspace into a 60 ml syringe (Allison Medical, Inc.), expelling 30 ml into the air outside the chamber, and then injecting as much of the sample as possible of the remaining 30 ml into a 12 ml flat bottomed, pre-evacuated glass vial (Exetainer, Labco Ltd.), sealed with a rubber septum.
Ambient air samples were collected at each plot following the same procedure above and stored with the sample vials to account for any systemic change during the sample period. Standards of known chemical composition were carried along on field sampling campaigns and analyzed along with the field samples to account for any systemic change or contamination. Gas samples were analyzed in the laboratory using gas chromatography on a Shimadzu GC-2014 to measure concentrations of CO$_2$, CH$_4$, and N$_2$O.

Data Analysis

Mineralized soil nitrogen data for each separate N species (NO$_3^-$ and NH$_4^+$) and ‘Total-inorganic-N’ (NO$_3^-$ plus NH$_4^+$) were averaged across all sites for each treatment (n=5) and a Tukey’s Honest Significant Difference (HSD) test was used to evaluate differences between treatments within each of the two sampling years.

We analyzed big sagebrush growth and forage quality data by site to examine treatment effects and by individual subplots (n=45) to analyze correlation between soil N and big sagebrush growth. Tukey’s HSD test was used to evaluate the site differences between treatments for four metrics of growth and three metrics of forage quality: leader length, ephemeral branch length, leader dry mass, and leader dry density, along with percent C, percent N, and C:N ratio of the big sagebrush leaders. We examined the effect of soil N availability for its ability to predict leader length with multiple models, using the ‘gls’ function in the ‘nlme’ package. Models were evaluated using Bayesian Information Criteria (BIC) and the model with the lowest BIC was selected (Table 1).

We averaged plant community data by site (n=5) for total plant cover and species richness. Total plant cover was assessed by summing the cover class midpoint for all species in
each quadrat and then averaging across all quadrates to determine mean total percent cover. We used Tukey’s HSD test to evaluate differences in cover and richness between treatments. We also calculated Bray-Curtis dissimilarity using the ‘distance’ function within the ‘ecodist’ package. Dissimilarity was then converted to similarity by subtracting it from 1. Specifically, we calculated average Bray-Curtis similarity of each treatment (control, N addition, N removal) to every other treatment.

We quantified soil trace gas fluxes for each treatment and plot using the rate of change for each of the gases analyzed over the 30-minute period, calculated as the slope values of a linear regression. Fluxes were then summarized by site (n=5) and evaluated using Tukey’s HSD test.

We conducted all data analysis and figure creation using R version 3.4.1 (R core Team, 2017).

RESULTS

The addition of N significantly increased the availability of total inorganic N in soils (p<0.001; Fig 1) during the first year of the experiment, while hay addition significantly reduced the availability of N (p= 0.049; Fig 1). No differences were found for availability of NH$_4^+$ between treatments, however NO$_3^-$ was significantly more available in the N fertilized treatments than either the control or N removal (p<0.001). By the end of second year of the experiment, no significant differences remained between treatments for total inorganic N, NO$_3^-$, or NH$_4^+$. During year one, NO$_3^-$ represented 99.0% ± 0.4 of the total available inorganic N across all treatments/locations, while in year two it was 92.0% ± 1.7.
Fig 1. Mean total soil inorganic N availability within a big sagebrush plant community in Pinedale, WY.

N fertilization occurred in 2012 with soil available N measured via PRS probes in fall/winter/spring of 2012-2013 and 2014-2015 (n=5 sites). The 2013 data were collected from soil on the *cusp* of the canopy and interspace, while 2015 data were collected separately from within the *interspace* and *under the canopy*. Significant differences are indicated by different letters based on $\alpha = 0.05$. Whiskers indicate the standard error based on among-site variation.

The addition of N and the application of hay had no treatment effect on the growth of big sagebrush leaders and ephemeral branches or the C:N ratio of big sagebrush leaders (i.e., forage quality). Increased levels of nitrogen availability were significantly correlated with increases in annual leader growth across all sites ($p<0.001$, $R^2=0.74$; Fig 2), though nitrogen availability only explained approximately 12% of the variation in leader length across all sites, with length increasing with N availability across all sites. However, ranch location explained the largest portion of the variability at nearly 62%. The model used was `total-N (2013) + ranch` (BIC=122; Table 1).

Fig 2. Relationship between sagebrush leader growth and total inorganic N with ranch as a random effect.

Different ranches and sites are indicated by colors and shapes, respectively. The model used was

\[
\text{leader length} = \text{total-N (2013)} + \text{ranch} \quad (p<0.001, \ R^2=0.74, \ n=45).
\]
Table 1. Models and BIC values for all models considered predict length of big sagebrush leaders.

The model including additive effects of Total-N and ranch (in bold) had the lowest BIC and was selected as the best/most parsimonious model.

Model	BIC
Leader Length ~ Total-N (2013)	165
Leader Length ~ Total-N (2013) + Ranch	**122**
Leader Length ~ Total-N (2013) * Ranch	152
Leader Length ~ Total-N (2013) + Treatment	130
Leader Length ~ Total-N (2013) + Ranch * Treatment	155

We found no treatment effect on total plant cover or species richness. However, plant community composition shifted slightly between treatments; a Bray-Curtis similarity analysis showed that the largest differences were found when N was added, with a 72% similarity to both the control and N removal treatments. The N removal and control treatments were 79% similar with respect to plant community composition.

Soil trace gas emission displayed no effect from treatments for any gas species.

Differences in flux among treatments types were not significant using a Tukey HSD. Fluxes were relatively consistent with other studies of gas fluxes in big sagebrush plant communities (Table 2).

Table 2. Mean fluxes for 2013 and extrapolated annual fluxes (kg N ha\(^{-1}\) y\(^{-1}\)) for different GHGs is western Wyoming.

Fluxes are reported as the mean mass of either carbon (C) or nitrogen (N) for the control treatment across both samplings in 2013. For comparison, literature referenced values for similar ecosystems are provided in the right column(s). Reference values are from Norton et al. (2008).
Reference Values

Flux Type	CO$_2$-C	CH$_4$-C	N$_2$O-N	Reference Values
mg m$^{-2}$ hr$^{-1}$	80.26	-0.18	0.03	10.4 – 30.6
kg ha$^{-1}$ yr$^{-1}$	1.93 x 1013	-4.30 x 1010	7.61 x 109	0.9 – 4.3

Discussion

N fertilization significantly increased the availability of N in soil for the first year post-treatment, however there was no significant difference in N availability by the second year. Differences in control values between year one and two are not surprising given the different locations and microsites of their installation. In addition, length of deployment, soil temperature, and soil moisture can all affect the adsorption of anion and cations to their counter-ion resins, making comparisons between years (and conditions) difficult.

The lack of significant increase in soil N availability in the second year in fertilized plots is likely due to ‘normal’ N losses through N mineralization, gaseous loses (volatilization and microbially-mediated), and leaching. Additions of N were conducted at 4.5 g N m$^{-2}$ (or 45 kg N ha$^{-1}$), which is 150-900% of annual N mineralization (38). Trace gas emissions of N-containing gases (N$_2$O and NO$_x$) accounted for an additional 10-20 kg N ha$^{-1}$ yr$^{-1}$ loss from the soil, which could contribute to the lack of increase observed in inorganic soil N among treatments in year two (5,26). While we found lower fluxes of N$_2$O compared to these studies one year after fertilization, it may be that fluxes were greater immediately after fertilization or during the spring when water was more available, therefore not captured in our sampling period.

Increased N availability had minimal effect on the length of big sagebrush leaders over the two years of the study. Additional N did not result in an increase in forage quality; C:N ratio and mass of N were the same between the control and N fertilized plots. The minimal difference
between the N fertilized and the control subplots indicates that while N fertilization in the big
sagebrush communities of the Pinedale Anticline increased the amount of N available to plants
for one growing season, it did not increase forage or forage quality such that mule deer and other
herbivores would benefit. Our prediction that there would be no differences between treatments
was generally supported, despite the minor increases in leader length correlated with increasingly
available soil N estimated in the first year.

While the plant community composition changed slightly with N addition as predicted –
becoming more dissimilar with the addition of N, there was no change to either total plant cover
or species richness by treatment. This is not surprising as soil N availability was only increased
for the first year after treatment. In addition, drylands – and big sagebrush ecosystems – are
primarily water limited, making short-lived increases of N unlikely to affect cover or richness.
Interestingly, the removal of N resulted in greater differences than N addition. This is likely due
to increasing the degree of N limitation within the hay treatment.

There was no effect of N additions on GHG efflux (i.e., CO$_2$, CH$_4$, and N$_2$O) from soil.
This is similar to findings in another sagebrush studies by Norton et al. (42), which focuses on
the relationship of soil N and GHGs. The lack of significant treatment effect could be due to a
number of reasons: (1) trace gas measurements are highly variable and sensitive to a number of
different environmental factors; (2) increased GHG fluxes occurred during a time that was not
measured, potentially closer to fertilization or during the spring when water is more available; or
(3) the ability of the microbial community to produce CO$_2$, CH$_4$, and N$_2$O may be limited
primarily by water availability, not N availability.

Our findings are not consistent with other studies, which have generally found a positive
response of plant productivity to N fertilization (1,8) indicating some N limitation. However
given that the mean annual precipitation of the Pinedale, WY area is 290mm, it is not surprising that we found no response of leader growth to N additions; Hooper and Johnson (1) found that the response to N was greater for areas with 450-900 mm of precipitation than for 300 mm. It is important to note that while some studies do find a primary water limitation in drylands (44), the response of dryland ecosystems to N can be expected to increase with increased precipitation (45).

Our results indicate that a one-time application of N does not affect soil N availability in the long term. We suggest that annual fertilization would be necessary to maintain high levels of soil N availability within big sagebrush systems, as the levels of soil N were the same between the fertilized and control plots by the second year. However, increases in N availability over the long term may have negative consequences, including higher volatile N losses, and increases in invasive plants (26). The increased levels of N found in the first year after fertilization only minimally increased the length of big sagebrush leaders, and continued application at that level would be unlikely to increase forage quality. Ecosystem processes in drylands are primarily water limited and do not change with short-term N additions, at least over the two-year duration of this study.

Conclusions

This study was conducted to investigate the role of N limitation in dryland sagebrush ecosystems and to consider the effect of N fertilization to increase forage and forage quality for mule deer. We evaluated responses of soil N availability, annual growth rate of big sagebrush, and forage N concentration in response to N additions. In addition, we investigated the response of trace gas production and plant community structure to increased N. This study demonstrates that N fertilization does increase N availability in soil for one year after fertilization. However, this
increased soil N availability is only loosely associated with increased growth of big sagebrush and not likely to impact forage availability and quality for mule deer. The results of this study suggest that N fertilization is likely a poor choice for mitigation of mule deer population declines on the Pinedale Anticline due to the minimal gains in forage, shifts in the plant community, and high cost.

Acknowledgements

Thank you to B. Amgalan, O. Avirmed, D. Bell, M. Cleary, T. Martyn, K. Palmquist, V. Pennington, B. Peterson, and C. Rottler for assistance with field work, data collection, lab work, and manuscript review. Additional thanks to T. Gregoire for help with data analysis. Thank you to our three private landowners for making this research possible, including Freddie Botur and the Cottonwood Ranch in Big Piney, as well as the Sommers Ranch in Pinedale. An earlier poster version of this study was presented at the Ecological Society of America conference in 2015. Many thanks to those attendees that provided feedback and encouragement. Financial support for this research came from the University of Wyoming and the Wyoming Excellence Fund.
REFERENCES

1. Hooper DU, Johnson L. Nitrogen limitation in dryland ecosystems: Responses to geographical and temporal variation in precipitation. Biogeochemistry. 1999 Jul 1;46(1–3):247–93.

2. Lauenroth WK, Dodd JL, Sims PL. The effects of water- and nitrogen-induced stresses on plant community structure in a semiarid grassland. Oecologia. 1978 Jan 1;36(2):211–22.

3. LeBauer DS, Treseder KK. Nitrogen Limitation of Net Primary Productivity in Terrestrial Ecosystems Is Globally Distributed. Ecology. 2008 Feb 1;89(2):371–9.

4. Reich PB. Elevated CO₂ Reduces Losses of Plant Diversity Caused by Nitrogen Deposition. Science. 2009 Dec 3;326(5958):1399.

5. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, et al. Human Alteration of the Global Nitrogen Cycle: Sources and Consequence. Ecol Appl. 1997;7(3):737–50.

6. Sala OE, Gherardi LA, Reichmann L, Jobbágy E, Peters D. Legacies of precipitation fluctuations on primary production: theory and data synthesis. Philos Trans R Soc B Biol Sci. 2012 Nov 19;367(1606):3135–44.

7. Mobley ML, Cleary MJ, Burke IC. Inorganic Nitrogen Supply and Dissolved Organic Nitrogen Abundance across the US Great Plains. PLoS ONE. 2014 Sep;9(9):1–5.

8. Yahdjian L, Gherardi L, Sala OE. Nitrogen limitation in arid-subhumid ecosystems: A meta-analysis of fertilization studies. J Arid Environ. 2011 Aug 1;75(8):675–80.

9. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, et al. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science. 2008 May 16;320(5878):889–92.

10. Wang L, D’Odorico P, Evans JP, Eldridge DJ, McCabe MF, Caylor KK, et al. Dryland ecohydrology and climate change: critical issues and technical advances. Hydrol Earth Syst Sci. 2012 Aug 9;16(8):2585–603.

11. S. Feng, Q. Fu. Expansion of global drylands under a warming climate. Atmospheric Chem Phys. 2013 Oct;13(19):10081–94.

12. Sobecki TM, Moffitt DL, Stone J, Franks CD, Mendenhall AG. Chapter 2: A Broad-Scale Perspective on the Extent, Distribution, and Characteristics of U.S. Grazing Lands. In: Follet RF, Kimble JM, Lal R, editors. The Potential of US Grazing Lands to Sequester Carbon and Mitigate the Greenhouse Effect. Boca Raton, FL: CRC Press; 2001.

13. Millenium Ecosystem Assessment. Ecosystems and Human Well-being: Desertification Synthesis. Washington, DC: World Resources Institute; 2005.
14. Reynolds JF, Smith DMS, Lambin EF, Turner BL, Mortimore M, Batterbury SPJ, et al. Global Desertification: Building a Science for Dryland Development. Science. 2007 May 11;316(5826):847–51.

15. West NE. Intermountain deserts, shrub steppes, and woodlands. North Am Terr Veg. 1989;209–30.

16. Palmquist KA, Schlaepfer DR, Bradford JB, Lauenroth WK. Mid-latitude shrub steppe plant communities: climate change consequences for soil water resources. Ecology. 2016 Sep 1;97(9):2342–54.

17. Connelly JW, Knick ST, Schroeder MA, Stiver SJ. Conservation Assessment of Greater Sage-grouse and Sagebrush Habitats. Cheyenne, Wyoming: Western Association of Fish and Wildlife Agencies; 2004.

18. Knick ST, Dobkin DS, Rotenberry JT, Schroeder MA, Haegen WMV, van Riper C. Teetering on the Edge or Too Late? Conservation and Research Issues for Avifauna of Sagebrush Habitats. The Condor. 2003;105(4):611–34.

19. Walston LJ, Cantwell BL, Krummel JR. Quantifying spatiotemporal changes in a sagebrush ecosystem in relation to energy development. Ecography. 2009 Dec 1;32(6):943–52.

20. Davies KW, Bates JD, Nafus AM. Vegetation Response to Mowing Dense Mountain Big Sagebrush Stands. Rangel Ecol Manag. 2012 May 1;65(3):268–76.

21. Manier DJ, Wood DJA, Bowen ZH, Donovan RM, Holloran MJ, Juliussion LM, et al. Summary of science, activities, programs, and policies that influence the rangewide conservation of Greater Sage-Grouse (Centrocercus urophasianus): U.S. Geological Survey Open-File Report 2013–1098 [Internet]. 2013 p. 170. Available from: http://pubs.usgs.gov/of/2013/1098/.

22. Schlaepfer DR, Lauenroth WK, Bradford JB. Natural Regeneration Processes in Big Sagebrush (Artemisia tridentata). Rangel Ecol Manag. 2014 Jul 1;67(4):344–57.

23. Copeland HE, Doherty KE, Naugle DE, Pocewicz A, Kiesecker JM. Mapping Oil and Gas Development Potential in the US Intermountain West and Estimating Impacts to Species. PLoS ONE. 2009 Oct 14;4(10):e7400.

24. Naftz DL, Schuster PF, Johnson CA. A 50-year record of NOx and SO2 sources in precipitation in the Northern Rocky Mountains, USA. Geochem Transit. 2011;12(4):1–10.

25. McMurray JA, Roberts DW, Fenn ME, Geiser LH, Jovan S. Using Epiphytic Lichens to Monitor Nitrogen Deposition Near Natural Gas Drilling Operations in the Wind River Range, WY, USA. Water Air Soil Pollut. 2013 Mar 1;224(3):1487.

26. Korfanta NM, Mobley ML, Burke IC. Fertilizing western rangelands for ungulate conservation: An assessment of benefits and risks. Wildl Soc Bull. 2015 Mar 1;39(1):1–8.
27. Frey SD, Ollinger S, Nadelhoffer K, Bowden R, Brzostek E, Burton A, et al. Chronic nitrogen additions suppress decomposition and sequester soil carbon in temperate forests. Biogeochemistry. 2014 Nov 1;121(2):305–16.

28. Coskun D, Britto DT, Kronzucker HJ. Nutrient constraints on terrestrial carbon fixation: The role of nitrogen. J Plant Physiol. 2016 Sep 20;203:95–109.

29. Gomez-Casanovas N, Hudiburg TW, Bernacchi CJ, Parton WJ, DeLucia EH. Nitrogen deposition and greenhouse gas emissions from grasslands: uncertainties and future directions. Glob Change Biol. 2016 Apr 1;22(4):1348–60.

30. Milchunas DG, Lauenroth WK. Inertia in Plant Community Structure: State Changes After Cessation of Nutrient-Enrichment Stress. Ecol Appl. 1995 May 1;5(2):452–8.

31. Sawyer H, Korfanta NM, Nielson RM, Monteith KL, Strickland D. Mule deer and energy development—Long-term trends of habituation and abundance. Glob Change Biol [Internet]. 2017; Available from: http://dx.doi.org/10.1111/gcb.13711

32. U.S. Department of the Interior Bureau of Land Management. Environmental Assessment for Mesa Mule Deer Winter Habitat Improvement Project. Cheyenne, Wyoming (USA): Bureau of Land Management, Wyoming State Office; 2011a. Report No.: WY-100-EA10-303.

33. U.S. Department of the Interior Bureau of Land Management. Finding of no significant impact and decision record for mesa sagebrush fertilization project. Cheyenne, Wyoming (USA): Bureau of Land Management, Wyoming State Office; 2011b.

34. Dahlke J, Holloran M. Mesa Fertilization Data Collection. Pinedale, WY (USA): Wyoming Wildlife Consultants; 2015. Report No.: WGFD Service Contract No. 07SC0403657.

35. Munn LC, Arneson CS. Soils of Wyoming. University of Wyoming, Agricultural Experiment Station; 1998.

36. NOAA. 1981-2010 Climate Normal [Internet]. National Oceanic and Atmospheric Administration National Centers for Environmental Information; n.d. [cited 2017 Jul 17]. Available from: https://www.ncdc.noaa.gov/cdo-web/datatools/normals

37. Brooks PD, Williams MW, Schmidt SK. Inorganic nitrogen and microbial biomass dynamics before and during spring snowmelt. Biogeochemistry. 1998 Oct 1;43(1):1–15.

38. Burke IC. Control of Nitrogen Mineralization a Sagebrush Steppe Landscape. Ecology. 1989;70(4):1115–26.

39. Chen J, Carrillo Y, Pendall E, Dijkstra FA, Evans RD, Morgan JA, et al. Soil Microbes Compete Strongly with Plants for Soil Inorganic and Amino Acid Nitrogen in a Semiarid Grassland Exposed to Elevated CO2 and Warming. Ecosystems. 2015 Aug 1;18(5):867–80.
475 40. Daubenmire RF. Plants and environment: a textbook of plant autecology. New York; London: John Wiley and Sons, Inc.; Chapman and Hall, Ltd.; 1959. 422 pp.

477 41. Hutchinson GL, Mosier AR. Improved Soil Cover Method for Field Measurement of Nitrous Oxide Fluxes. Soil Sci Soc Am J. 1981;45(2):311–6.

479 42. Norton U, Mosier AR, Morgan JA, Derner JD, Ingram LJ, Stahl PD. Moisture pulses, trace gas emissions and soil C and N in cheatgrass and native grass-dominated sagebrush-steppe in Wyoming, USA. Soil Biol Biochem. 2008 Jun 1;40(6):1421–31.

482 43. Matson PA, Volkmann C, Coppinger K, Reiners WA. Annual nitrous oxide flux and soil nitrogen characteristics in sagebrush steppe ecosystems. Biogeochemistry. 1991 Jan 1;14(1):1–12.

485 44. Seagle SW, McNaughton SJ. Simulated Effects of Precipitation and Nitrogen on Serengeti Grassland Productivity. Biogeochemistry. 1993;22(3):157–78.

487 45. Burke IC, Lauenroth WK, Parton WJ. Regional and temporal variation in net primary production and nitrogen mineralization in grasslands. Ecology. 1997;78(5):1330–40.
