THE PROPERTIES OF DYNAMICALLY EJECTED RUNAWAY AND HYPER-RUNAWAY STARS

HAGAI B. PERETS1 AND LDALISV SUBR2

1 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
2 Astronomical Institute, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Praha, Czech Republic

Received 2012 February 9; accepted 2012 March 30; published 2012 May 15

ABSTRACT

Runaway stars are stars observed to have large peculiar velocities. Two mechanisms are thought to contribute to the ejection of runaway stars, both of which involve binarity (or higher multiplicity). In the binary supernova scenario, a runaway star receives its velocity when its binary massive companion explodes as a supernova (SN). In the alternative dynamical ejection scenario, runaway stars are formed through gravitational interactions between stars and binaries in dense, compact clusters or cluster cores. Here we study the ejection scenario. We make use of extensive N-body simulations of massive clusters, as well as analytic arguments, in order to characterize the expected ejection velocity distribution of runaway stars. We find that the ejection velocity distribution of the fastest runaways ($v \gtrsim 80$ km s$^{-1}$) depends on the binary distribution in the cluster, consistent with our analytic toy model, whereas the distribution of lower velocity runaways appears independent of the binaries' properties. For a realistic log constant distribution of binary separations, we find the velocity distribution to follow a simple power law: $\Gamma(u) \propto u^{-8/3}$ for the high-velocity runaways and $u^{-3/2}$ for the low-velocity ones. We calculate the total expected ejection rates of runaway stars from our simulated massive clusters and explore their mass function and their binarity. The mass function of runaway stars is biased toward high masses and strongly depends on their velocity. The binarity of runaways is a decreasing function of their ejection velocity, with no binaries expected to be ejected with $v > 150$ km s$^{-1}$. We also find that hyper-runaways, with velocities of hundreds of km s$^{-1}$ can be dynamically ejected from stellar clusters, but only at very low rates, which cannot account for a significant fraction of the observed population of hyper-runaway stars in the Galactic halo.

Key words: binaries: general – stars: kinematics and dynamics – stars: peculiar – stars: statistics

Online-only material: color figures

1. INTRODUCTION

Runaway stars are those stars observed to have large peculiar velocities ($40 \leq v_{pec} \leq 200$ km s$^{-1}$ (Blaauw 1961; Gies 1987; Hoogerwerf et al. 2001) and even higher (Martin 2006); the specific definitions vary). A considerable fraction of the population of early O and B stars is known to be runaway stars (~ 30--40% of the O stars and 5--10% of the B stars; Stone 1991, and references therein). The velocity dispersion of the population of runaway stars is much larger than that of the “normal” early-type stars (Stone 1991). Besides their relatively high velocities, runaway stars are also distinguished from the normal early-type stars by their much lower (<10%) multiplicity compared with the normal fraction of normal early-type OB stars (>50% and up to 100%; Garmany et al. 1980; Mason et al. 1998; Kobulnicky & Fryer 2007; Kouwenhoven et al. 2007).

Two mechanisms are thought to contribute to the acceleration of regular runaway stars, both of which involve binarity (or higher multiplicity). In the binary supernova scenario (BSS; Blaauw 1961), a runaway star receives its velocity when the primary component of a massive binary system explodes as a supernova (SN). When the SN shell passes the secondary, the gravitational attraction of the primary reduces considerably and the secondary starts to move through space with a velocity comparable to its original orbital velocity. In the dynamical ejection scenario (DES; Poveda et al. 1967), runaway stars are formed through gravitational interactions between stars in dense, compact clusters. Simulations show that such encounters may produce runaways with velocities up to 200 km s$^{-1}$ and even higher in rarer cases (Mikkola 1983; Leonard & Duncan 1990; Leonard 1991; Gualandris et al. 2004). These scenarios suggest that many of the early OB stars formed in young clusters could be ejected from their birthplace and leave the cluster at high velocity. Interestingly, observations show that even very massive O stars could be accelerated to become runaways (Comerón & Pasquali 2007).

In recent years, stars with extremely high peculiar velocities (hyper-velocity stars; HVSs) of a few $\times 10^4$ km s$^{-1}$ have been observed in the Galactic halo (Brown et al. 2005, 2006a, 2006b, 2007; Edelmann et al. 2005). HVSs are thought to be ejected from the Galactic center following a dynamical interaction with the massive black hole known to exist in the center (Hills 1988; Hansen & Milosavljević 2003; Yu & Tremaine 2003; Gualandris et al. 2005; Baumgardt et al. 2006; Brown et al. 2006a; Levin 2006; Perets et al. 2007; Perets 2009a). Nevertheless, it was suggested that the BSS and/or the DES could eject, under some conditions, stars with extreme velocities (termed hyper-runaways), comparable to those of observed HVSs, possibly explaining the origin of some of these HVSs (Gvaramadze et al. 2009).

Several studies have explored the DES (see Hoogerwerf et al. 2000) using N-body simulations. Most of these have focused on single encounters between a single/binary star and another binary star, and found the velocities of the ejected stars in such encounters (e.g., Gvaramadze et al. 2009). Leonard & Duncan (1990, 1988) explored the dynamical properties of runaway stars and their distribution in a stellar cluster environment, and not in single encounters. Their studies, however, were limited to a relatively small number of simulations of very small clusters (~ 30 stars; in addition to some hybrid N-body Monte Carlo simulations of larger clusters of a few hundreds of stars), and hence to a very small sample of ejected runaway stars. Recently,
Tanikawa & Fukushige (2009), Fuji & Portegies Zwart (2011), and Banerjee et al. (2012) studied the ejection of stars from large clusters. These simulations provide important progress on these issues, and complement the current study, but they include only a limited number of simulations, which do not provide enough statistics of the high-velocity tail distribution of runaways and hyper-runaways, and cannot be used for the analysis done here. Note that the Fuji & Portegies Zwart (2011) study considered only dynamically formed binaries and did not include primordial binaries in the simulations. Banerjee et al. (2012) studied extremely massive clusters ($N = 10^5$ stars). These approaches explore different regimes and/or processes than explored by us and complement our current study.

Here we develop an analytic understanding of the velocity distribution of the fastest runaways in the DES. We compare it with a large sample of simulated runaway stars produced in extensive N-body simulations of hundreds of large stellar clusters. These provide us, for the first time, with a large enough database of runaway stars with high velocities, which could be analyzed statistically. Using our N-body simulations we characterize the ejection rates, velocity distribution, and binarity of dynamically ejected runaway stars. We find cases of stars dynamically ejected at extreme ejection velocities of a few hundreds of km s$^{-1}$, however, these are relatively rare cases and are not likely to explain the vast majority of HVSs observed and inferred to exist in the Galactic halo.

2. ANALYTICAL ESTIMATES

We begin by analytically exploring the DES for runaway and hyper-runaway stars. We consider an interaction of a binary of mass $M_B = M_1 + M_2$ and a single star M_\ast. Large accelerations of the single star are assumed to occur when it passes one of the binary components within the semi-major axis, a, of the binary. Assuming that the scattering is dominated by the gravitational focusing, the cross-section of the interaction is

$$\sigma(a) \approx \frac{2\pi GM_B a}{v_c^2},$$

(1)

where v_c is the characteristic stellar velocity in the cluster.

The energy exchange between a hard binary and star is comparable to the binary orbital energy. Hence, the energy transfer to the star is of the order

$$\Delta E_\ast \approx \frac{GM_B M_\ast}{a},$$

(2)

and the star acquires a large velocity kick, v_{kick}, of the order of the orbital velocity of the binary. We are interested in the cases where ΔE_\ast is much larger than the star’s energy before the interaction. The velocity of the ejected star $v_{\text{esc}} \approx \sqrt{\Delta E}$ is therefore estimated as

$$v_{\text{esc}} \approx \left(\frac{2GM_B}{a}\right)^{-\alpha},$$

(3)

with $\alpha = 1/2$. Simulations of binary-single star encounters suggest a somewhat steeper slope of $\alpha \sim 3/5$ (see Figure 4 in Gvaramadze et al. 2009).

The differential cross-section per unit volume of the binary–single star interaction with a semi-major axis in the interval $(a, a+\Delta a)$ is

$$\frac{dR(a)}{da} \approx n(a)n_Bn_\ast\sigma(a)v_c,$$

(4)

where n_B is the number of binaries per unit volume, n_\ast is the number density of stars, and $n(a)$ is the differential distribution of the semi-major axis of the binaries, which is normalized to unity:

$$\int_{a_{\min}}^{a_{\max}} da n(a) = 1.$$

(5)

Let us consider a log constant distribution of the binaries’ semi-major axis (so-called Opik’s law, with $n(a) \propto a^{-\beta}$; $\beta = 1$), representing an empirical distribution of massive binaries (e.g., Kobulnicky & Fryer 2007) and, for testing purposes, a uniform distribution of $n(a) = \text{const}$; $\beta = 0$. Due to the gravitational focusing, the cross-section of encounters with massive binaries is much higher than with low-mass stars. In addition, the ejection velocities from encounters with massive stars are higher. Observationally, massive stars also have a much higher binarity fraction, as well as separation distribution which is biased toward closer binaries (lower mass stars seem to have a log normal distribution of periods; Duquennoy & Mayor 1991).

For all these reasons, the majority of runaway stars are ejected through interactions of massive stars with massive binaries. For simplicity, we neglect the dependence of $dR(a)$ on the specific mass function of binaries in Equation (4), and assume some fiducial effective typical mass for the stars involved in the dynamical encounter. Interestingly, our numerical simulation results suggest that this may be justified even for a range of stellar masses, however, we leave the more detailed analytic study of this dependence for further investigation.

Equation (4) can be directly transformed to the production rate of high velocity stars per unit volume and velocity interval dR_{esc}:

$$\frac{dR(v_{\text{esc}})}{dv_{\text{esc}}} \approx 4GM_B v_{\text{esc}}^{-(\alpha+1)/\alpha} n(a)n_Bn_\ast\sigma(a)\frac{v_c}{v_{\text{esc}}^{1-\beta/3}}.$$

(6)

Making use of Equations (1) and (3) we can find the expected velocity distribution of the ejected stars, for some appropriate choice of the binaries separation distribution. For an Opik’s distribution of the semi-major axis $n(a) \propto a^{-1}$ we expect the velocities of ejected stars to be distributed as $R(v_{\text{esc}}) \propto v_{\text{esc}}^{\beta/3}$ ($\alpha = 3/5$; $\beta = 1$), while for $n(a) = \text{const}$, we get $R(v_{\text{esc}}) \propto v_{\text{esc}}^{-1}$ ($\alpha = 3/5$; $\beta = 0$). This approach can be naturally extended to any desired distribution of binary separations.

3. N-BODY SIMULATION MODELS

We have studied several different numerical models of star clusters in order to characterize the properties of runaway stars. We also make use of simplified cluster models to verify our analytic calculations of the velocity distribution of ejected runaways. Table 1 summarizes basic physical parameters of the models which were integrated by means of NBODY6 code (Aarseth 1999). In all cases, distribution of the binary semi-major axis was truncated outside the interval (0.05 AU, 50 AU); initial eccentricities were set to zero. In the first models (denoted by 016 and 017 below) we studied highly simplified stellar systems in which only two masses were used rather than a continuous mass function. All binaries in these models are made of identical 10 M_\odot components and the single stars are identical 1 M_\odot stars. In addition, all stars are treated as point masses in these models, i.e., the models are scale free. In Table 1, we present scaling with initial half-mass radius $r_h = 0.4$ pc, which, together with considered stellar masses, implies scaling of time. The models were integrated to 35.5 Myr. Later we also
compared these to simulation results of similar clusters with no primordial binaries, to verify that single–single encounters can only lead to ejections with $v_{\text{esc}} \lesssim 20 \text{ km s}^{-1}$. During the cluster evolution, dynamically formed binaries could eject stars at higher velocities, but the overall fraction of runaways was only a small fraction of that in the case of clusters including the primordial binary population.

Though in this study we focus on the simple cluster simulations, we also run simulations of somewhat more realistic clusters, in which the full range of the Salpeter initial mass function (IMF) for the stars is considered. In the latter models (009 and 014), all massive ($M \geq 4 M_\odot$) stars reside in primordial binaries, and we set a lower limit for the primary and the secondary star of 4 M_\odot and 1 M_\odot, respectively. We use a pairing algorithm that prefers similar masses of the two components which is in accordance with observations. More specifically, the algorithm first sorts the stars from the most massive to the lightest one. The most massive star from the set is taken as the primary. The secondary star index, id, in the ordered set is generated as a random number with the probability density $\propto id^{-\beta}$ and max(id) corresponding to a certain mass limit, $M_{a,\text{min}}$. The two stars are removed from the set and the whole procedure is repeated until stars with $M_\star \geq M_{P,\text{min}}$ remain. We used as the minimal mass of the primary $M_{p,\text{min}} = 4 M_\odot$ as the minimal mass of the secondary $M_{a,\text{min}} = 1 M_\odot$ and the pairing algorithm index $\beta = 40$. Furthermore, binary stars in real clusters may physically collide. Hence, we enable the possibility of stellar collisions for these models in order to increase their realism; stars are merged if they pass to each other at a distance smaller than the sum of their radii. Finite stellar radii (we adopted simple relation $R_\star = R_\odot(M_\star/M_\odot)$ and $R_\star = R_\odot(M_\star/M_\odot)^{4/5}$ for $M_\star \leq M_\odot$ and $M_\star > M_\odot$ respectively) establish scales within the clusters. Both models 009 and 014 have a total mass of 5000 M_\odot (~7400 stars for a Salpeter IMF in the given mass range) and the initial half-mass radius $r_h = 0.2 \text{ pc}$. They have been integrated to $T = 2.7 \text{ Myr}$ and 4.4 Myr, respectively. Nevertheless, we use results only from the first 2.7 Myr of evolution, such that the ejections from the different clusters could be directly compared.

Note that we do not include stellar evolution in our models, as even the most massive stars in our simulation have a longer main-sequence lifetime, and therefore stellar evolution does not play a role. Models 016 and 017 are followed for a longer timescale (35.5 Myr), but these are idealized two-mass models which serve to explore the overall dynamical processes and not the overall realistic evolution. The evolution of stellar clusters over larger timescales would be affected by stellar evolution. In particular, SN explosions could produce runaways through the BSS scenario. Here, we focus on the DES case and do not explore the longer time evolution in which stellar evolution can play an important role.

The initial state of models 009 and 014 corresponds to the mass-segregated state according to Šubr et al. (2008). Briefly, this setup is based on an empirical finding that the mean specific binding energy of stars in numerical models of star clusters tends toward a power-law relation to stellar masses. Profiles of initially mass-segregated models cannot be expressed analytically but, in general, their density increases toward the center. All models under consideration were assumed to be isolated, i.e., no external tide was considered.

The process under consideration, i.e., acceleration of stars to velocities $>60 \text{ km s}^{-1}$ is quite rare. Therefore, we have integrated several hundreds of different realizations (N_{run}) of each model in order to obtain statistically relevant results.

4. RESULTS

4.1. Velocity Distribution

Figure 1 shows the velocity distribution of escaping stars. We define escapers as those found at least 5 pc away from the host cluster at the end of the simulations, and ejected at the first 2.7 (35) Myr of evolution for models 009 and 014 (016 and 017). The figure shows the velocity distribution compared with the predicted distribution at the high velocity regime (when taking the overall normalization to be a free parameter). Although the analytic derivation does not account for the mass function, we find that the velocity distribution of ejected stars in models 009 and 014 are also consistent with simple analytic formulation, and the slope is determined mainly by the distribution of the semi-major axis of the binaries (see Figure 1). The velocity distribution at the lower velocity regime $v_{\text{esc}} \approx 20$–150 km s$^{-1}$ is qualitatively different and appears to be independent of the distribution of the binary separation. Comparison with a model where no binaries exist shows that all the bona fide runaway stars arise from the existence of binaries in the clusters. Although not the focus of this paper, it is interesting to note in passing that stars with velocities in the intermediate velocity range 20–150 km s$^{-1}$ cannot be explained by single–single encounters alone; however, they also do not follow the simple analytic approach described before, but rather appear to follow a shallower distribution.
which is independent of the binary separation distribution. This may be consistent with the recent results of Fuji & Portegies Zwart (2011) who studied runaways from massive clusters in this range of velocities. These may arise from the dynamical interactions with a small number or even single very massive binaries in the cluster (bullies), which dominate the ejection rate and are later on ejected themselves from the clusters. The properties of runaways from such interactions are independent of the overall binary population characteristics. Our findings in Figure 4 showing ejection of very massive runaway binaries are consistent with this picture. Note, however, that models 016 and 017 did not include massive binaries, which can play the role of “bullies.” Unfortunately, we did not keep data on specific interactions leading to runaway ejections; we therefore cannot directly confirm or refute this scenario for the low velocity regime. We defer such simulations and analysis to future work.

4.2. Binarity of Runaway Stars

The binarity of runaway stars is an important signature of the DES. Previous studies of dynamically ejected runaway stars suggested their binary fraction to be low relative to the binary fraction of their parent stars in the cluster (Leonard & Duncan 1990). We find a similar trend; Figure 2 shows the velocity distribution of single and binary runaways in models 009 and 014 of our simulations (for which a realistic binary period distribution was used), and the binary fraction of runaways as a function of their velocity. The simulation results are consistent with theoretical arguments: in a binary single encounter the binary receives a smaller fraction of the kinetic energy, $M_\ast/(M_B + M_\ast)$ (Portegies Zwart et al. 2010); it is therefore typically ejected at considerably lower velocities. Note that encounters where the single star is much more massive than the binary components likely lead to an exchange of the massive components with one of the lower mass binary components, therefore even such encounters would eventually lead to the binary being the most massive component in the encounter, further contributing to its low ejection velocity, compared with the ejection of single stars. Binary–binary encounters may eject a binary to higher velocities, however, these complex encounters may easily disrupt one of the binaries and/or form higher multiplicity systems. A hard binary can be ejected similar to the ejection of single star by a softer binary, however, its typical ejection velocity would be comparable to the orbital velocity of the wide binary, again producing a bias toward low-velocity ejections. The overall binary fraction of runaways decreases significantly with higher ejection velocities; and effectively no binary was ejected at velocities higher than $\sim 150 \,(300) \, \text{km s}^{-1}$ in the 009 (016) models (compare with the ejection velocities of single stars). Hyper-runaway binaries are therefore not likely to be produced through the DES (see also Perets 2009b; Brown et al. 2010 for discussions on this issue).

4.3. The Mass Function and Mass–Velocity Relation for Runaway Stars

In Figure 3, we show the runaway fraction of stars. As can be seen, OB runaways are relatively more abundant than lower mass stars, with the O star runaways, fraction two to three times larger than that of the B stars, consistent with observations (see Stone 1991, and references therein).

The total fraction of runaways we find are comparable to, but systematically lower ($\sim 1/2$) than those reported by Stone (1991); this may result from the limited time of the simulation; the lifetime of typical O stars could be two to three times longer than the simulation time (which is comparable to the lifetime of the most massive stars in our simulations). Obviously, many other simplified assumptions we use affect our theoretical results and may contribute to the difference. In particular, the BSS,
Figure 3. Fraction of runaways vs. mass with given (lower limit) velocities for model 009. All stars below $4\,M_\odot$ are initially single stars, and their runaway fraction might be non-realistic. For OB stars $m > 4\,M_\odot$ the runaway fraction increases with mass. This trend is consistent with the observed runaway fractions of O stars to be three to six times larger than the runaway B star fraction (see Stone 1991, and references therein). Note that even the most massive stars are ejected as runaways; some of which are merger products, with masses extending beyond the initial mass distribution (not shown).

(A color version of this figure is available in the online journal.)

Figure 4. Mass function of runaway stars in model 009 as a function of lower limit velocity. The distribution tends to be bi-modal, with runaways in the range $1–4\,M_\odot$ typically being least represented in the population (compare with the shown IMF of all stars in the initial simulated clusters).

(A color version of this figure is available in the online journal.)

which is not studied here, would also contribute to the runaway population.

In Figure 4, we present the mass–velocity distribution of the ejected stars. We see again the trend of more massive stars having a higher runaway fraction (as reflected by the large fraction of massive runaways compared with their fraction in the IMF); we note that even the most massive stars are ejected as runaways. We also find that the velocity distribution of more massive runaways tends toward higher velocities than the lower mass stars, i.e., the fraction of more massive stars increases with ejection velocity. In fact, we find that ~ 20 (10\%) of the runaway O stars with $v > 20\,(100)\,\text{km s}^{-1}$ are more massive than $40\,M_\odot$, and ~ 5 (3\%) of the O stars are with $v > 20\,(100)\,\text{km s}^{-1}$ are more massive than $80\,M_\odot$ (consistent with finding of very massive runaway stars; e.g., Hoogerwerf et al. 2001). The latter are runaway merger products of two or more less massive stars, since the adopted IMF of the clusters’ upper mass cutoff was $80\,M_\odot$. Similar trends are found by Banerjee et al. (2012) who performed simulations of more massive clusters.

4.4. Hyper-runaways and Hyper-velocity Stars

As can be seen for both the two-mass models and the continuous mass ones, the high-velocity tail of the distribution follows a steep power law. The ejection of the fastest runaways requires close encounters with binaries, the rate of which are dominated by the densest clusters (which are also typically the most massive ones). Therefore, in order to provide a basic estimate of the ejection of the fastest runaways we consider here only the most massive clusters in the Galaxy. The average number of hyper-runaways ejected with $v_{esc} > 300\,(>450)\,\text{km s}^{-1}$, in our most realistic cluster, model 009, is $\sim 0.2\,(0.02)$ stars per cluster. Currently, $N_c \sim 10–20$ young ($\sim t_c = 10\,\text{Myr}$) massive clusters ($M > 10^4\,M_\odot$) with cores comparable to our simulated clusters exist in the Galaxy (Murray & Rahman 2010). We therefore expect the ejection rate of hyper-runaways to be $\sim 0.2 \times N_c \times t_c^{-1} = 0.2–0.4\,\text{Myr}^{-1}$. For B-stars (of masses $\sim 3–10\,M_\odot$ such as observed among the HVSs in the Galactic halo), the rate is ~ 2.5 times lower. Over 100 Myr (comparable to the propagation time for the observed HVSs in the Galactic halo), we therefore expect to have of order $10–20$ hyper-runaways in the galaxy, but only one or two such stars with $v_{esc} > 400$. Currently ~ 20 HVSs ($v_{esc} > 400$; though this is generally a good definition, note that a more accurate definition also depends on distance from the Galaxy; see Perets et al. 2009) have been observed in the Galactic halo, from which a total of ~ 100 B-stars (of $3–4\,M_\odot$) are inferred to exist in the Galaxy (Brown et al. 2006a, 2009; Brown 2011 and references therein), and a few hundred lower velocity HVSs (so-called bound HVSs; $275 < v_{esc} < 400$ Brown et al. 2007) may exist in the Galaxy (Perets et al. 2009). Comparing the predicted and observed numbers of HVSs, hyper-runaways from this scenario may contribute at most 1%-2% of the HVSs population and are unlikely to have produced any of the currently observed HVSs in the Galactic halo (or at most one), though they may contribute a small fraction of the observed bound HVSs.

5. SUMMARY

In this paper, we explored the dynamical ejection of runaway stars from the cores of massive stellar clusters. We presented a simple analytical toy model to explain the velocity distribution of the fastest runaway stars. We then used extensive N-body simulations of simplified clusters composed of only two types of stars with masses 1 and $10\,M_\odot$ to characterize the velocity distribution of runaway binaries; later we also simulated clusters with a realistic continuous Salpeter IMF. We found the trends in velocity distribution to depend on the properties of binaries in the cluster and be generally consistent with the analytical toy models of multi-interactions with multiple binaries at the high velocity regime $v \gtrsim 80\,\text{km s}^{-1}$ (or $v \gtrsim 150\,\text{km s}^{-1}$; depending on the model). At the lower velocity regime, ejection velocities are less dependent or possibly even independent of the binary properties, suggesting a different channel for runaway ejections dominate this regime (e.g., Fujii & Portegies Zwart 2011).
We characterized the velocity distribution of runaways from the continuous IMF clusters, and discussed their mass function and binarity. We find that the runaway fraction of stars increases with mass, consistent with observations, and that very massive stars formed through collisions in the cluster could be ejected as runaways. The binarity of runaway stars decreases with increasing velocity and is generally lower than the binary fraction of their birth cluster. In particular, we find that the maximal velocity of binary runaways is limited to $<200 \text{ km s}^{-1}$.

We also find the mass function of runaways to be velocity dependent. Although runaways are much more frequent among the massive stellar population $>4 M_\odot$, we find that a large population of low-mass runaways should also exist. The ejection rate of hyper-runaways, with velocities $>300 \text{ km s}^{-1}$, appears to be too low to explain a significant fraction of the observed HVSs in the Galactic halo and could at most explain a small fraction of the observed bound HVSs. When combined with models for the runaway’s propagation in the Galaxy, our models can be used to predict the spatial distribution of runaway and hyper-runaway stars in the Galaxy (Bromley et al. 2009), and could be constrained by future surveys.

H.B.P. is a CfA and BIKURA (FIRST) prize fellow. L.Š. acknowledges the support of the Czech Science Foundation via grant GAČR-202/09/0772 and from the Research Program MSM0021620860 of the Czech Ministry of Education.

REFERENCES

Aarseth, S. J. 1999, PASP, 111, 1333
Banerjee, S., Kroupa, P., & Oh, S. 2012, ApJ, 746, 15
Baumgardt, H., Gualandris, A., & Portegies Zwart, S. 2006, MNRAS, 372, 174
Blauw, A. 1961, Bull. Astron. Inst. Netherlands, 15, 265
Bromley, B. C., Kenyon, S. J., Brown, W. R., & Geller, M. J. 2009, ApJ, 706, 925
Brown, W. R. 2011, in ASP Conf. Ser. 439, The Galactic Center: a Window to the Nuclear Environment of Disk Galaxies, ed. M. R. Morris, Q. D. Wang, & F. Yuan (San Francisco, CA: ASP), 246
Brown, W. R., Anderson, J., Gnedin, O. Y., et al. 2010, ApJ, 719, L23
Brown, W. R., Geller, M. J., & Kenyon, S. J. 2009, ApJ, 690, 1639
Brown, W. R., Geller, M. J., Kenyon, S. J., & Kurtz, M. J. 2005, ApJ, 622, L33
Brown, W. R., Geller, M. J., Kenyon, S. J., & Kurtz, M. J. 2006a, ApJ, 640, L35
Brown, W. R., Geller, M. J., Kenyon, S. J., & Kurtz, M. J. 2006b, ApJ, 647, 303
Brown, W. R., Geller, M. J., Kenyon, S. J., Kurtz, M. J., & Bromley, B. C. 2007, ApJ, 660, 311
Comerón, F., & Pasquale, A. 2007, A&A, 467, L23
Duquennoy, A., & Mayor, M. 1991, A&A, 248, 485
Edelmann, H., Napiwotzki, R., Heber, U., Christlieb, N., & Reimers, D. 2005, ApJ, 634, L181
Fujii, M., & Portegies Zwart, S. 2011, Science, 334, 1380
Garmany, C. D., Conti, P. S., & Massey, P. 1980, ApJ, 242, 1063
Gies, D. R. 1987, ApJS, 64, 545
Gualandris, A., Portegies Zwart, S., & Eggleton, P. P. 2004, MNRAS, 350, 615
Gualandris, A., Portegies Zwart, S., & Sipior, M. S. 2005, MNRAS, 363, 223
Gvaramadze, V. V., Gualandris, A., & Portegies Zwart, S. 2009, MNRAS, 396, 570
Hansen, B. M. S., & Milosavljević, M. 2003, ApJ, 593, L77
Hills, J. G. 1988, Nature, 331, 687
Hoogerwerf, R., de Bruijne, J. H. J., & de Zeeuw, P. T. 2000, ApJ, 544, L133
Hoogerwerf, R., de Bruijne, J. H. J., & de Zeeuw, P. T. 2001, A&A, 365, 49
Kobulnicky, H. A., & Fryer, C. L. 2007, ApJ, 670, 747
Kouwenhoven, M. B. N., Brown, A. G. A., Portegies Zwart, S. F., & Kaper, L. 2007, A&A, 474, 77
Leonard, P. J. T. 1991, AJ, 101, 562
Leonard, P. J. T., & Duncan, M. J. 1988, AJ, 96, 222
Leonard, P. J. T., & Duncan, M. J. 1990, AJ, 99, 608
Levin, Y. 2006, ApJ, 653, 1203
Martin, J. C. 2006, AJ, 131, 3047
Mason, B. D., Gies, D. R., Hartkopf, W. I., et al. 1998, AJ, 115, 821
Mikkola, S. 1983, MNRAS, 205, 733
Murray, N., & Rahman, M. 2010, ApJ, 709, 424
Perets, H. B. 2009a, ApJ, 690, 795
Perets, H. B. 2009b, ApJ, 698, 1330
Perets, H. B., Hopman, C., & Alexander, T. 2007, ApJ, 656, 709
Perets, H. B., Wu, X., Zhao, H. S., et al. 2009, ApJ, 697, 2096
Portegies Zwart, S. F., McMillan, S. L. W., & Gieles, M. 2010, ARA&A, 48, 431
Poveda, A., Ruiz, J., & Allen, C. 1967, Bol. Obs. Tonantzintla Tzucabaya, 4, 86
Stone, R. C. 1991, AJ, 102, 333
Subr, L., Kroupa, P., & Baumgardt, H. 2008, MNRAS, 385, 1673
Tanikawa, A., & Fukushige, T. 2009, PASJ, 61, 721
Yu, Q., & Tremaine, S. 2003, ApJ, 599, 1129

Brown, W. R., Anderson, J., Gnedin, O. Y., et al. 2010, ApJ, 719, L23
Brown, W. R., Geller, M. J., & Kenyon, S. J. 2009, ApJ, 690, 1639
Brown, W. R., Geller, M. J., Kenyon, S. J., & Kurtz, M. J. 2005, ApJ, 622, L33
Brown, W. R., Geller, M. J., Kenyon, S. J., & Kurtz, M. J. 2006a, ApJ, 640, L35
Brown, W. R., Geller, M. J., Kenyon, S. J., & Kurtz, M. J. 2006b, ApJ, 647, 303