Emerging Designs of Aggregation-Induced Emission Agents for Enhanced Phototherapy Applications

Rui Qu, Xu Zhen* & Xiqun Jiang*

MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093

*Corresponding authors: zhenxu@nju.edu.cn; jiangx@nju.edu.cn

Cite this: CCS Chem. 2021, 3, 2950–2968

Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), that employs phototherapeutic agents to generate cytotoxic reactive oxygen species (ROS) or hyperthermia, is a promising approach for disease therapy. However, conventional organic phototherapeutic agents suffer poor photo-stability and aggregation-caused quenching (ACQ) in the aggregate state, restricting their therapeutic efficacy. Aggregation-induced emission (AIE) agents can solve these issues with strong emission in the aggregate state and reverse designation to generate heat. This review summarizes the recent advances in the development of AIE phototherapy agents for enhanced PDT and PTT performances in biomedical applications. First, design strategies of AIE agents that adjust the intersystem crossing process or intramolecular charge transfer to boost ROS generation or regulate ROS types are discussed. The AIE agents with ROS generation ability for biomedical applications including antitumor and antibacterial performances are then introduced. Next, designs and examples of AIE agents that enhance PTT performances through molecular motions are described. Finally, the current challenges and perspectives of AIE agents in the phototherapy field are discussed.

Keywords: aggregation-induced emission, structural designing, phototherapy, photodynamic therapy, photothermal therapy

Introduction

Phototherapy that utilizes photoradiation to generate cytotoxic reactive oxygen species (ROS) for photodynamic therapy (PDT) or hyperthermia for photothermal therapy (PTT) is a promising approach for disease therapy because of its non-invasiveness, negligible drug resistance, high therapeutic selectivity and efficacy, and minimized off-target side effects. Organic contrast agents have attracted much attention in the phototherapy field due to their excellent optical properties and tunable molecular structures. However, the traditional small molecular organic contrast agents used for phototherapy such as rose bengal analogs, methylene...
blue, and cyanine derivatives, suffer from poor photostability and aggregation-caused quenching (ACQ) in the aggregate state after they are transformed into water-soluble nanoparticles, leading to a relatively low therapeutic efficacy.12–14

Organic contrast agents with aggregation-induced emission (AIE) phenomena are contrary to the traditional contrast agents with the ACQ effect.15–19 The AIE agents are almost non-emissive in the isolated molecular state but strongly emissive in the aggregate form.20–22 This phenomenon is due to the restriction of intramolecular motion (RIM) of AIE agents in the aggregated state, which avoids the nonradiative decay that dissipates the absorbed light, and thus leads to the enhanced fluorescence emissions.23,24 Meanwhile, the non-planar structure of AIE agents also contributes to circumventing z–z interactions and activates strong emission in aggregated state.25 Because of such a special molecular structure, AIE agents have been developed into optical probes for long-term cell tracking, tumor imaging, and image-guided surgery.26–28 Recently, AIE agents were reported to show strong photosensitization and high photothermal conversion efficiency through molecular engineering.29–31 Introducing an electron-rich anion–π structure into AIE agents results in the highly efficient ROS generation for PDT.32,33 In addition, the disease microenvironment often suffers from hypoxia which limits the generation efficiency of singlet oxygen by AIE photosensitizers (PSs) through the energy transfer process from excited triplet AIE PSs to triplet oxygen.34,35 Another type of AIE PS that depends on the electron transfer from excited AIE PSs to oxygen to produce free radical ROS has obtained more and more attention.36,37 With the help of rotors and spacer structures, the molecular motions of AIE agents in the aggregate state can be tuned to enhance the nonradiative decay, providing guidelines for the development of AIE agents for PTT applications.38–40

In this review, we summarize the recent advances in the design strategies of AIE agents for enhanced PDT and PTT performances. The chemical structures of AIE agents used for enhanced PDT and PTT performances are summarized in Schemes 1 and 2. The design strategies of AIE agents through adjusting the intersystem crossing (ISC) process or intramolecular charge transfer (ICT) to boost ROS generation or regulate ROS types under laser irradiation are first discussed. Next, we review the AIE agents with ROS generation ability for biomedical applications including antitumor and antibacterial performances. Then, designs and examples of AIE agents to enhance PTT performances through molecular motions are described. Finally, a summary and current challenges and perspectives of AIE agents in the phototherapy field are given.

### AIE Agents with ROS Generating Ability

**Design strategies to enhance the photosensitizing performance of AIE agents**

PDT that relies on PSs and laser irradiation to produce ROS is an emerging therapeutic modality for diseases.41–45 According to the Jablonski diagram (Figure 1a), after the excitation light is absorbed by the PSs, the electrons of PSs are excited from the ground state (S0) to the excited state (S1), and the electrons at the S1 state dissipate the energy and return to the singlet excited state (S1) through the relaxation process. There are three major energy dissipation pathways from S1 to S0: radiative decay to produce fluorescence emission, nonradiative decay to generate heat for PTT, and ISC to the triplet excited state (T1) to produce ROS for PDT.39 The ROS produced by PSs mainly includes two types: Type I PSs produce radical species including superoxide anion (O2−•) and hydroxyl radicals (OH•) through electron transfer from excited PSs to oxygen species, whereas type II PSs utilize energy transfer between triplet states of PSs and oxygen to produce singlet oxygen (O2).46,47 The key step for enhancing ROS generating efficiency is the ISC process.48,49 Promoting the ISC process and creating rich triplet-state energy levels show potential for improving the ROS generating efficiency.

To investigate the relationship between the molecular structure and the photosensitizing performance of AIE agents, four PSs, which were named TPAN, TPAPy, TPANPF6, and TPAPyPF6, composed of the electron-donating triphenylamine and electron-withdrawing azafluorenone and different substituents were designed and synthesized by Tang’s group (Figure 1b).30 The nonionized compounds (TPAN and TPAPy) displayed higher molar absorption coefficients relative to their corresponding ionized counterparts (TPANPF6 and TPAPyPF6). Meanwhile, TPAN exhibited a typical ACQ effect, whereas the other three compounds were all AIE-active as verified by the enhanced fluorescence intensity in the high water fractions of organic solvent/water mixtures. The ionized compounds (TPANPF6 and TPAPyPF6) showed higher ROS generation capacity compared to their nonionized parent, when a general commercial ROS indicator 2,7′-dichlorodihydro-fluorescein diacetate (H2DCF-DA) that measures many types of ROS activity including type I and type II was employed. However, the singlet oxygen generation ability of TPAPy is higher than that of TPAPyPF6, indicating TPAPyPF6 produced both singlet oxygen and free-radical ROS. According to a previous report, enhanced ISC benefits the ROS generation through promoting spin-orbital coupling (SOC) and lowering the energy gaps.
between the $S_1$ state and $T_1$ state ($\Delta E_{ST}$). These four PSs showed similar SOC through theoretical calculation. Therefore, the $\Delta E_{ST}$ values should be the key factor to determine the ROS generation efficiency of these four PSs. However, such a theory cannot give a satisfactory explanation for the ROS generation efficiency order of these four PSs. Especially for TPAN, which has a small $\Delta E_{ST}$ but inefficiently generates ROS. Therefore, other factors such as the large difference in molar absorption coefficient or the aggregation state of PSs should also attribute to the ROS generation efficiency.

The singlet oxygen generation by type II PSs is the primary species in PDT. However, its oxygen dependence limits the generation efficiency in the hypoxic disease microenvironment. In fact, the oxygen consumption of the singlet oxygen generation process even aggravates the disease hypoxia and further reduces its treatment efficacy. Therefore, the design of type I PSs to generate free radicals in an oxygen-independent manner shows the potential to resolve this issue. The type I ROS, including superoxide radical ($O_2^-$), hydrogen peroxide ($H_2O_2$), and $OH^*$, are generated in a cascade
reaction via electron transfer after laser irradiation. $O_2^{•−}$ is first converted to $H_2O_2$ and $O_2$ by intracellular superoxide dismutase (SOD)-mediated disproportionation, and the generated $H_2O_2$ is further catalyzed by ferrous ions to form highly cytotoxic $OH^{•}$, resulting in the successful PDT (Figure 1c). To explore the molecular engineering strategy to fabricate AIE agents with type I ROS generation ability, Tang et al.33 included anion-$π$ structures into the AIE agents to obtain strong ICT characteristics to promote electron transfer from excited AIE agents to adjacent substrates. The electron-rich group in the AIE agent structure could improve the electron density of the triplet excited state, which should facilitate the generation of free radical ROS. Four anion-$π$ AIE agents, which were named TBZPy, MTBZPy, TNZPy, and MTNZPy, were prepared (Figure 1d). These AIE agents were composed of three parts: triphenylamine (TPA) or its methoxy-substituted triphenylamine (MTPA) units linking benzo-$1,2,3$-thiadiazole (BZ) or naphtho[$2,3-c][1,2,5]$ thiadiazole (NZ) moieties as the AIE-active electron donors, styrylpyridine cation as the electron acceptor, and iodide anion and collaborative donors to create electron-rich conditions for providing electrons to excited AIE agents. It was found that NZ-based AIE agents generated free radical ROS while TBZPy primarily generated $1O_2$ species. MTBZPy yielded both $1O_2$ and free radicals.
radical ROS due to the enhanced donor effect. Compared with BZ-based AIE agents, the NZ-based structure in AIE agents boosted the ICT intensity, leading to the high free radical ROS generation efficacy. These results demonstrated the importance of the electron-rich anion-π structure for the design of AIE agents with type I ROS generation ability.

The electron transfer mechanism of type I PSs exists not only in ICT but also in charge transfer between substrates. In most luminophore systems, photon excitation triggers energy level transition and is dissipated through radiative or nonradiative decay processes. Besides laser irradiation, chemical reaction provides another pathway for subsequently controlling the excitation of the surrounding species. Photochemical reactions such as photochromism and photocyclization in tetraphenyl ethylene (TPE) and stilbene have been reported. Under UV light irradiation, stilbene undergoes trans-cis isomerization, which induces subsequent photocyclization of cis-stilbene to form trans-4a,4b-dihydrophenanthrene. However, this unstable structure reverts to cis-stilbene if not trapped. Utilizing oxidative trapping, dihydrophenanthrene is oxidized to irreversibly yield phenanthrene, which is the pivotal step in photocyclization. Therefore, improving the photochemical efficiency of TPE could be used for the design of type I PS. Based on the electron-rich anion-π structure with a photochemical reaction feature, Tang et al. designed...
and synthesized an isoquinolinium organic salt derivative with a TPE structure feature, named TIdBO, to investigate the type I ROS generation efficacy (Figure 1e). This AIE agent displayed strong ICT and potential photocyclization reactivity, providing opportunities for electron transfer and improved free radical ROS in prospect. Compared to its similar AIE agent, TiOdB, which possesses photoinduced crystallization with an emission enhancement (PICCEE) property, exhibited high photocyclization reactivity in the dispersive state and sufficiently produced type I ROS upon aggregation due to the translocation of the electron-donating methoxy group. To reveal the structure–function relationship in this photochemistry-based type I PS, single crystals of TIdBO were obtained to confirm its molecular structure and conformation. The tetraphenyl ethylene group showed a twisted propeller conformation, leading to less \( \pi - \pi \) stacking interaction, which could suppress the ACQ effect. Tetrafluoroborate anions were interspersed on different sides of the twisted plane and exhibited a similar effect to avoid emission quenching. TIdBO in phosphate-buffered saline (PBS) solution showed a robust ROS generating capacity under white light irradiation, and only OH\(^{-}\) free radicals were detected when using 2,7-dichlorodihydrofluorescein (DCFH), 9,10-anthracenediyi-bis(methylene) dimalonic acid (ABDA), singlet oxygen sensor green (SOSG), dihydro-rhodamine 123 (DHR123), and hydroxyphenyl fluorescein (HPF) as ROS general or special indicators, respectively. The photocyclization was completely inhibited in PBS solution, but obvious in DMEM + FBS mixtures. The photocyclization process was impacted by the excited-state molecular conformational adjustment, which occurred easily in solution or loose aggregates but hardly in tight aggregates because the twisted dihedral angles impeded planarization in photocyclization. Therefore, in the aggregated state such as in PBS solution, TIdBO could not acquire the molecular conformation, which is necessary for the photocyclization process, and thus impels the electron in the excited state to interact with oxygen to dissipate energy, leading to the generation of type I ROS.

Various design strategies have been explored to create AIE agents with high ROS generating efficiency.\(^{75,76}\) For example, a strong electron donor–acceptor interaction in the molecular skeleton facilitates ICT, thus leading to the enhanced singlet oxygen generation efficacy.\(^{74}\) Based on these design strategies, Tang et al.\(^{74}\) synthesized several zwitterionic compounds, BITT, BITB, ITT, and ITB, which consist of a dimethylaniline or triphenylamine moiety as the donor, thiophene fragment as a donor and \( \pi \)-bridge, double bond for the \( \pi \)-bridge, and a quaternary ammonium salt unit as acceptor. Here, the strong D–A effect contributed to the separation of highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) distribution and a reduced energy gap for ISC, which critically enhanced the ROS generation. In a similar work, Tang et al.\(^{72,73}\) designed two AIE agents TTPy and MeTTPy containing a pyridinium unit (as A), double bond (\( \pi \)-bridge), thiophene fragment (D and \( \pi \)-bridge), and triphenylamine segment (D). Twisted conformation of the triphenylamine moiety can enlarge the intermolecular distance, which generally prevents \( \pi - \pi \) stacking interaction. This aggregation-related character promoted the ISC process, while the enhancement of the D–A strength also contributed to the ROS generating efficacy of AIE agents. Moreover, the D–\( \pi \)-A molecular structure is widely adopted in the design of AIE agents for strong charge transfer and certainly benefits the adjustment of the HOMO and LUMO.\(^{50}\) A new AIE agent, MeO-TPE-indo (MTI), designed according to this strategy, contains an electron donor methoxy group and an acceptor indo moiety modified on the TPE conjugated skeleton and exhibits the effective generation of ROS for PDT.\(^{30}\) The spin-orbit coupling constant (\( \xi_{ST} \)) is an ISC efficiency factor that essentially influences ROS generation.\(^{76}\) However, \( \xi_{ST} \) in traditional organic fluorophores could be adjusted in narrow range. Introducing heavy atoms, such as bromine, into the structure of AIE agents could potentially solve this issue. Tang et al.\(^{75}\) synthesized two red-emissive AIE agents, named TBP-1 and TBP-2, with addition of bromine atoms in the anion-\( \pi \) structure. Results demonstrated that charge transfer occurring from the bromine atoms to the \( \pi \)-conjugated core in TBP-1 and TBP-2 could reduce \( \Delta E_{\text{ST}} \) and increase energy levels of the excited triplet states, thus achieving efficient ROS generation.

### AIE agents for PDT applications

PDT has been widely applied in the biomedical field due to its noninvasive and controllable characteristic.\(^{78,79}\) Although design strategies for enhancing ROS generation by AIE agents have been well developed, the absence of their disease targeting ability could cause phototoxicity toward normal tissue.\(^{30}\) Recently, in situ synthesis of antitumor drugs inspired a PS design that largely decreases toxicity and specifically targets the PSs to the tumor region.\(^{81}\) Liu et al.\(^{85}\) designed a nanoscale metal–organic framework (nMOF) that carries AIE precursors and utilizes an F127 coating to form precursor-loaded MOF nanoparticles (PMOF NPs) (Figure 2a). A Cu-embedded nMOF, MOF-199, was chosen as the carrier due to the high loading efficiency of PS precursors and catalytic activity of the Cu-based skeleton. TPA-alkyne-2+ and MePy-N\(_2\), having negligible photoactivity before coupling, were chosen as the precursors. This nanosystem could specifically generate Cu(I) from glutathione (GSH) reduction of the Cu(II) skeleton in

DOI: 10.31635/ccschem.021.202101302

CCS Chem. 2021, 3, 2950–2968
Figure 2 | (a) Synthetic mechanism of TPATrzPy-3+ in situ and components of PMOF NPs. (b) GSH-induced in situ PS synthesis for PDT. (c) Viability of HeLa cells after 24 h incubation with a range of concentrations of different agents under light irradiation. (d) Confocal laser scanning microscopy (CLSM) images of HeLa cells incubated with precursors or TPATrzPy-3+ for 24 h before staining of commercialized mitotracker for 30 min. (e) The relative tumor volume changes of zebrafish under different treatment. (f) Chemical structure of organelle-targeting AIE agents and schematic illustration of multi-organelle killing PDT. *, **, *** represent different person correlation coefficients (p); *p < 0.05, **p < 0.01, ***p < 0.001. (g) Confocal microscopy images of HeLa cells for co-localization test of different AIE agents with commercialized organelle trackers: (A) TFPy; (B) TFVP; (C) TPE-TFPy; (D) All three AIE agents. (h) Viability of HeLa cells incubated with different concentrations of AIE agents under light irradiation. Figures a–e are reprinted with permission from ref 82. Copyright 2021 Wiley-VCH. Figures f–h are reprinted with permission from ref 83. Copyright 2020 Wiley-VCH.
cancerous cells; a subsequently induced in situ click reaction of TPA-alkyne-2+ and MePy-N2 provides photosensitive TPATrzPy-3+, which performed highly efficient ROS generation (Figures 2b and 2c). Moreover, the co-localization of TPATrzPy-3+ and MitoTracker Green under confocal laser scanning microscopy revealed the mitochondria-targeting property of TPATrzPy-3+, which assists the killing of cancer cells (Figure 2d). Thus, an in vivo antitumor experiment was conducted on zebrafish, showing an excellent phototherapy effect via this in situ catalysis strategy (Figure 2e).

Tang et al. put forward an innovative strategy for PDT that combines multiple AIE agents with different targeting abilities to achieve a 1 + 1 + 1 > 3 photosensitizing effect (Figure 2f). Three novel AIE PSs, TFPy, TFVP, and TPE-TFPy, were tailored based on the D–A feature with slight adjustments, and could specifically endow mitochondria, cell membrane, and lysosome target ability, respectively, to perform full-scale photodynamic killing of cancer cells. The high efficiency of electrophoretic transmembrane migration and binding affinity of the positively charged pyridinium moiety toward the negatively charged interior of the transmembrane potential of mitochondria contribute to the mitochondria-staining ability of TFPy. The high free-energy barrier caused low membrane permeability coefficients of TFVP and led to specific accumulation of TFVP in the cell membrane. TPE-TFPy generally formed nanosized aggregates due to high hydrophobicity; whereas in situ aggregates targeted lysosomes through endocytosis. The colocalization of these three AIE agents with the commercial organelle fluorescent probes including MitoTracker Green, CellMask Green, and LysoTracker Green, respectively, indicate the high targeting ability of AIE agents to the respective organelle (Figure 2g). Thus, the three-in-one group which was comprised of one-third concentration of each AIE agent showed the best PDT effect in vitro and in vivo experiments compared to the single AIE agent at the same total concentration, indicating 1 + 1 + 1 > 3 synergistic PDT via three-pronged attack of tumor cells (Figure 2h).

PDT used in antibacterial treatment has also been explored to discriminate Gram-positive (G+) and Gram-negative (G−) bacteria or to conquer drug tolerance caused by antibiotic drug abuse. To investigate the relationship between antibacterial efficiency and chemical structure of AIE agents, Tang et al. designed two red-emissive AIE agents (TBP-1 and TBP-2) with the same luminogenic core but a different number of positive charges. The importance of the number of positive charges of AIE agents on the antibacterial performance was found by revealing the different behavior of TBP-1 and TBP-2 under incubation with G+ and G− bacteria. Both TBP-1 and TBP-2 exhibited dark toxicity to G+ bacteria and obvious ROS activation under light irradiation (Figure 3a). However, TBP-1 barely killed G− bacteria either in dark or under light irradiation, whereas TBP-2 showed much higher phototoxicity toward G− bacteria (Figure 3b). Further investigation into the underlying mechanism of antibacterial activity by TBP-2 under laser irradiation found that both TBP-1 and TBP-2 accumulated in the bacteria wall and cytoplasm of G+ bacteria, demonstrating the strong interactions between AIE agents and the G+ bacteria lead to effective dark toxicity (Figure 3c). However, TBP-2 showed stronger accumulation in the bacteria wall of G− bacteria, indicating that TBP-2 interacts better with bacteria G− compared to TBP-1. The difference in accumulation is probably due to the difference in the number of positive charges of the AIE agents (Figure 3d). When the TBP-2-incubated G− bacteria was treated with Mg2+, obvious fluorescence quenching of TBP-2 was found, indicating the interactions between lipopolysaccharide (LPS) and TBP-2 were blocked by the divalent cations (Figure 3e). This phenomenon revealed that sufficiently positive-charged TBP-2 could interact more strongly with the negatively charged LPS on the outer membrane of G− bacteria and compete with the divalent cations (Ca2+ or Mg2+) that are bonded to stabilize the LPS structure. This process may cause cracks in the permeability barrier, benefiting the penetration of TBP-2 into the periplasmic space of G− bacteria for effectively destroying the biomolecules of G− bacteria. Moreover, TBP-1 and TBP-2 showed selective photoactivation of G+ and G− bacteria, respectively, over mammalian cells.

Recently, antibiotic drug abuse has become an intractable problem that directly induces tolerance of antibiotics in the bacterial population. A typical antibiotic, vancomycin (Van), possesses a pesticide effect on G+ bacteria by specific binding affinity to the peptidoglycan sequence N-acyl-L-Ala-L-Ala presented on G+ bacterial cell walls. However, the occurrence of Van-resistant Enterococcus (VRE), having a largely decreased binding affinity for Van, impedes the therapeutic effect on infection problems. Synthesis of dimer or oligomer types of Van is an alternative method to maintain the binding ability. Liu et al. reported a novel AIE agent conjugated with two Van groups for antibacterial treatment, named AIE-2Van. AIE-2Van showed a high binding affinity toward G+ bacteria and retained the binding affinity toward VRE bacteria. Under restricted concentration, AIE-2Van performed satisfactory ROS generation when incubated with VRE bacteria. Therefore, although AIE-2Van showed low killing efficiencies on VRE bacteria in the dark due to the resistance of VRE bacteria to Van, the maintained binding ability of AIE-2Van to VRE bacteria boosted its antibacterial effect through ROS generation under light irradiation, indicating the great potential for PS-assisted antibacterial therapy against antibiotic-tolerant bacteria.
AIE Agents with Photothermal Conversion Performances

Design strategies to enhance the photothermal conversion efficiency of AIE agents

Under laser irradiation, the nonradiative decay of excited-state energies is inevitable due to natural vibration and rotation.92 Utilizing dissipated energy as the thermal effect for PTT has been well investigated in the biomedical field. Various structure-dependent design strategies have been explored for boosting the nonradiative relaxation of photothermal agents.93,94 For instance, Pu et al.95 quenched the fluorescence of semiconducting polymer nanoparticles by intraparticle photoinduced electron transfer to achieve heat generation. Lee et al.96 modified the semiconducting polymer chains with light-harvesting groups to increase the photothermal properties. Cheng et al.97 constructed \( \pi \rightarrow \pi \) stacking structures for the ACQ effect that consumes the excited energy as heat. However, structural design of AIE agents for nonradiative decay is conducted in a quite different way. Molecular motions are conceptually proposed as an energy-consuming pathway and closely correlate to light-controllable molecular machines with a rotatable moiety.98 Similar rotor structures in AIE agents transform optical energy into mechanical energy, thus generating a thermal effect.99 However, AIE agents are sterically encumbered in an aggregated state, which largely impedes the molecular motions and suppresses the nonradiative decay.24 To solve the inconsistent mechanism, Tang et al.100 reported the spacer-supported molecular motion in an aggregate state as a strategy to design photothermal AIE agents (Figure 4a). Here, the introduction of long alkyl chains into the highly twisted AIE agents spacer decreases the restrictions on molecular motion and stabilizes the twisted ICT (TICT) state, which prefers the nonradiative decay.101 The synthesis of three AIE agents, naphthalene diimide-fused 2-(1,3-dithiol-2-ylidene) acetonitrile (NDTA), 2TPE-NDTA, and 2TPE-2NDTA, confirmed this hypothesis. Appended were a TPE group as the intramolecular rotor and a NDTA moiety as the acceptor. The twisting characteristic of the TPE group acts as a strong donor while the NDTA possesses bulky \( \pi \)-conjugation and electron-withdrawing ability, which forms a typical structure favoring TICT. The long alkyl chain is coupled to enable the intermolecular spatial isolation in aggregates to produce the necessary room for intramolecular rotation of the phenyl ring in TPE groups. To prove the preference of the structure toward nonradiative decay, excited-state dynamics revealed that the lifetime for the S\(_1\) state of 2TPE-NDTA was much shorter than NDTA because rotation in the TPE units accelerated the internal conversion.

Figure 3 | Survival rate of (a) G(+) and (b) G(−) bacteria under incubation with various concentrations of TBP-1 and TBP-2 in the dark or with light irradiation. Confocal fluorescent images of (c) Staphylococcus epidermidis (G(+)) and (d) Escherichia coli (G(−)) after incubation with (A1−A4, C1−C4) TBP-1 or (B1−B4, D1−D4) TBP-2 and Hoechst 33342 for 10 min. (e) Photoluminescence (PL) intensity change of TBP-1 or TBP-2 with or without E. coli G(−) bacteria in PBS upon increasing Mg\(^{2+}\) concentration. Reprinted with permission from ref 77. Copyright 2020 WILEY-VCH.
Moreover, obvious fluorescence at low temperature confirmed that molecular motion is a critical factor for fluorescence suppression. The change in orbital contribution to the HOMO and LUMO, which demonstrates a great ICT effect, also verified the highly twisted structure underwent the TICT process. The solid-state nuclear magnetic resonance (SSNMR) experiment showed a rapider relaxation time of the TPE moiety in 2TPE-NDTA than in a single TPE molecule, which indicates free motions in 2TPE-NDTA. Therefore, due to the spacer-promoted intramolecular motions, nanoparticles encapsulating AIE agents 2TPE-2NDTA and 2TPE-NDTA possessed robust photothermal conversion efficiencies of 54.9 and 43.0%, respectively (Figure 4b). In a similar work, Tang et al.102 applied the design to another AIE structure and confirmed the universality of this strategy among a broad fluorophore species.

Although the chemical decoration of AIE agents with long and flexible alkyl chains can create sufficient free volume for intramolecular motions in an aggregate state to promote efficient photothermal conversion, the improved motion remains sensitive to the external...
environment.\textsuperscript{100} However, the synthesis of new photothermal AIE agents inevitably requires a huge investment of time. Intramolecular bond stretching vibration is a molecular motion with high frequency that generally exists within a short distance along the bond axis.\textsuperscript{104} Such molecular motion keeps stable towards the environmental restraint and spontaneously produces dark-state energy for boosting the photothermal effect. To investigate the impact of bond stretching vibration compared with structural rotation, Tang et al.\textsuperscript{104} synthesized two D–A conjugated AIE agents, DCP-TPA and DCP-PTPA (Figure 4c), with a pyrazine unit and aromatic amine as the electron acceptor and donor, respectively. The pyrazine units also served as bond stretching vibrators to promote intramolecular motions in the excited state. Basic photophysical properties and optimized geometries showed more vigorous molecular motions in DCP-PTPA due to the additional phenyl group, which indicates enhanced vibration modes. The single-molecule reorganization energy ($\lambda_r$) is one of the key factors to evaluate the influence of molecular motion on the nonradiative decay process. The high-frequency component associated with the bond-stretching vibration showed a primary contribution to the total $\lambda$ (Figure 4d). Moreover, the pyrazino(2,3-b)pyrazine moiety boosted the high-frequency molecular motion and accounts for most of $\lambda$. More than 86% of $\lambda$ in DCP-TPA was contributed by the bond length variation, which also implies the importance of bond stretching vibration in the excited-state relaxation process. Although the proportion of bond stretching vibration in $\lambda$ of DCP-PTPA decreased to 76%, a contribution to stretching vibration from phenyl ring rotation increased from 9.5% to 21% by enhanced vibration modes in the low-frequency region, leading to a higher total $\lambda$ in DCP-PTPA than DCP-TPA. Therefore, DCP-PTPA showed stronger photothermal conversion efficiency due to the presence of more benzene groups. Nevertheless, the intramolecular bond stretching vibration maintained dominance in the motion model.

Strategies utilizing spacer or rotor modification and bond stretching vibration have essentially overcome the restriction on the AIE-based photothermal effect. However, spacer and rotor structures are sensitive to the biological surroundings, and the uncertain design principles limit the application of bond stretching vibration.\textsuperscript{104} To achieve sufficient photothermal conversion efficiency in nanoparticles, Tang et al.\textsuperscript{17} created disordered amorphous aggregates with loose packing, where molecular motions were still active. The AIE agent TFM, which obtained a twisted D–A–D structure and packing manner of amorphous form in the aggregate state, was synthesized. TFM aggregates displayed a disordered packing in molecular dynamics (MD) simulations (Figure 4e), which indicate deficient resistance for molecular motions. Dihedral angle was also investigated to show a partially restricted rotation in the $\pi$-conjugated system favored by the loose packing (Figure 4f). After encapsulated in nanoparticles, TFM-based nanoparticles showed a great photothermal conversion efficiency of 51.2%, demonstrating that the structure of AIE agents with amorphous packing formed in the aggregate state facilitates the nonradiative decay for PTT.

### AIE agents for PTT applications

Structural design strategies have theoretically boosted the photothermal effects of AIE agents.\textsuperscript{17,104} Further applications in the biomedical field require biocompatible packing of AIE-based photothermal agents. Inspired by the different behaviors of the D–A–D group in polar and non-polar solvents, Lu et al.\textsuperscript{17} synthesized BPBBT and utilized its specific affinity toward human serum albumin (HSA) to create HSA-bound BPBBT nanoparticles for near infrared (NIR)-II fluorescence imaging-guided PTT. Van der Waals interactions and forming hydrogen bonds through Ser454 and Lys195 assist the HSA pocket to catch BPBBT. The photophysical properties of BPBBT/HSA complexes were well investigated to reveal the effect of HSA after the specific binding. In non-polar solvents, BPBBT prefers a planar structure and emits intense fluorescence by local excitation (LE), whereas in polar solvents, the TICT state is formed and enhances the nonradiative transition. After binding to HSA, intramolecular rotation in BPBBT was restricted in the protein pocket as an aggregate-like state that suppresses non-radiative decay and activates the NIR-II fluorescence. However, the dihedral angles of BPBBT were changed to reduce planarity after binding to HSA, which formed a largely twisted geometry to drive equilibrium toward the TICT state. The charge transfer in the twisted structure improved the photothermal conversion efficiency of BPBBT. The specific intermediate state provided NIR-II emission and photothermal effect and showed great potential in imaging-guided PTT (Figure 5a). BPBBT/HSA nanoparticles (BPBBT/HSA NPs) maintained the binding activity of HSA toward secreted protein acidic and rich in cysteine (SPARC) following the nanoformulation. Meanwhile, the photothermal conversion efficiency of BPBBT/HSA NPs (27.5%) was higher than that of BPBBT in 5% tetrahydrofuran (THF) (22.0%). BPBBT/HSA NPs were then applied for NIR-II fluorescence image-guided PTT in the orthotopic model and metastatic lesions. BPBBT/HSA NPs displayed colocalization with luminophore-labeled cancer cells and SPARC in the tumor, demonstrating the excellent tumor targeting effect of BPBBT/HSA NPs through the albumin-SPARC binding (Figures 5b and 5c). Moreover, the NIR-II imaging specifically identified the two metastatic lesions of the same mouse, which evidenced the sensitivity of NIR-II imaging guidance. Intraoperative NIR-II image-guided PTT utilizing BPBBT/HSA NPs precisely identified both primary and metastatic tumors and achieved a great photothermal therapeutic effect (Figure 5d).
For traditional PTT, inexhaustive quenching of fluorescence limits the nonradiative decay of photothermal agents, leading to relatively low photothermal conversion efficiency. Since PTT requires irradiating targets with real-time guidance and precision, Tang et al. designed pH-responsive AIE photothermal nanoparticles for photoacoustic (PA) imaging-guided PTT. In this work, AIE agents, NIRb6, NIRb10, and NIRb14, possessing alkyl chains with different lengths as a spacer and the typical structure for TICT state, were synthesized. NIRb14 displayed an excellent photothermal effect, which promised great quality for PA imaging and PTT. To improve tumor uptake and retention in vivo, poly(β-amino ester)-block-polycaprolactone (PAE-b-PCL), a pH-responsive polymer, was employed to encapsulate NIRb14 (Figure 5f). The rapid pH-responsive ability of the PAE moiety in the positively charged shell of NIRb14 displayed an excellent photothermal effect, which promised great quality for PA imaging and PTT. To improve tumor uptake and retention in vivo, poly(β-amino ester)-block-polycaprolactone (PAE-b-PCL), a pH-responsive polymer, was employed to encapsulate NIRb14 (Figure 5f).

Although PTT through AIE photothermal agents has been commonly effective against general tumor models, glioblastoma (GBM) remains extremely difficult to treat because of the existence of blood–tumor barriers (BTBs) and low penetration of laser irradiation. Modulating the permeability of the BTB and receptor-mediated

**Figure 5** | (a) Schematic mechanism for active heating and fluorescence in HAS-bind BPBBT. (b) IR thermal images before (0 min) and at the end of PTT of the BPBBT-treated mice bearing primary and metastatic tumor. (c) Time dependent temperature curves in the PTT process of different tumor models in (b). (d) Tumor growth curves of mice following different treatment measured by the bioluminescence. (e) Schematic design of pH-responsive NIRb14-PAE/PEG NPs. (f) PA images at tumor sites from mice before (0 h) and after intravenous injection of NIRb14-PAE/PEG or NIRb14-PEG NPs at time intervals. The region in the red dotted half-ellipse indicates the tumor location. (g) IR thermal images at time intervals of tumor-bearing mice under 808 nm laser irradiation after different treatments. Figures a–d are reprinted with permission from ref 37. Copyright 2019 the Springer Nature. Figures e–g are reprinted with permission from ref 102. Copyright 2019 American Chemical Society.
penetration is a feasible way to enhance the delivery of therapeutic probes for GBM therapy. Tang et al.\textsuperscript{106} focused on the kinin B1 receptor (B1R) as a particular target to achieve the transportation of NIR-II AIE photothermal agents into GBM. B1R is specifically inducible in inflammatory diseases, and it assists kinin peptides to work as modulators of the tone and permeability of vessels. Since GBM occurs in an inflammatory environment with tumor proliferation and angiogenesis, B1R is preferred as the pharmaceutical target to minimize side effects. Therefore, [des–Arg]\textsuperscript{–}bradykinin (BK, a type of B1R agonist) was applied as a modified fragment conjugated to the bared carboxylic acid group on the shell of AIE NIR-II nanoparticles to form BK@AIE NPs (Figure 6a). Upon transport to brain cancer lesions, the kinin ligand BK effectively bound on B1R and thus amplified the permeability of BTB, which improves the delivery of BK@AIE NPs. PTT under irradiation of 980 nm laser showed better therapeutic effects because of its deep-tissue penetrating capacity. In vitro experiments were conducted to verify the targeting efficiency of BK@AIE NPs, and PTT-induced immunogenic cell death (ICD) was observed through the exposure of calreticulin proteins. A U87-MG/human vascular endothelial cell (HUVEC) co-culture model was designed to show not only the increased passing rate of BK@AIE NPs but also effective PTT targeting of GBM with minimal damage to the adjacent cells (Figure 6b). In vivo application of BK@AIE NPs displayed excellent brain accumulation (Figure 6c), while PTT performed on orthotopic brain tumor models exhibited a great killing effect toward tumor

Figure 6 | (a) Schematic diagram of PTT treatment on glioma-bearing mice and induced local immune-response activation. (b) Scheme of PTT on U87-MG cells and normal human astrocytes in the basal chamber and confocal fluorescence imaging for the viability of cell types in different groups after treatment. (c) In vivo fluorescence imaging on mice at different times after AIE NP and BK@AIE NP injections. (d) Congo red and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining of the brains of glioma-bearing mice following PBS + laser, AIE NP + laser, and BK@AIE NP + laser treatments (scale bar: 100 µm). Reprinted with permission from ref 106. Copyright 2021 WILEY-VCH.

DOI: 10.31635/ccschem.021.202101302
CCS Chem. 2021, 3, 2950–2968
tissue (Figure 6d), demonstrating the advantage of receptor-mediated penetration of BTB combined with deep-tissue NIR-II PTT.

Summary and Outlook

This review summarizes recent advances in design strategies of AIE agents as PSs or PTT agents. Since energy transfer or electron transfer between the AIE agents and surroundings are largely dependent on the formation of the triplet state, adjustments of $\Delta E_{\text{ST}}$ in the chemical structure is a feasible way to improve the ISC efficiency of AIE agents for enhanced PDT. Meanwhile, controllable synthesis of type I or type II AIE-based PSs attracted much interest and various electron-transfer-prefering structures have been developed. Amplified $\pi$-conjugation with the electron-donating group enhances ICT, favoring the type I route. Moreover, the photoreactive structure TPE also contributes to the type I ROS generation by restricted photocyclization for electron transfer toward oxygen species in an aggregate state. Biomedical applications of AIE-based PSs mainly focused on antitumor treatment and antibacterial therapy. Specific PDT with low normal-tissue toxicity led to the development of therapeutic strategies, such as in situ catalyzed AIE-based PSs and a combination of multi-organelle targeting AIE agents. In addition, the charge effect in killing bacteria and the binding affinity of antibiotic-oligomers-modified AIE agents were also discussed. In a reverse thought to boost the nonradiative decay for PTT, photothermal AIE agents were designed with a typical D–A–D structure, which generally preferred the TICT state and enhanced the heat generation of AIE agents. With the introduction of spacers or rotors, the photothermal effect could also be improved by the enhanced intra-molecular rotations. Meanwhile, bond stretching vibration was critical in the excited-state relaxation process and dominated the high-frequency component of molecular motions that prefer the nonradiative decay. When the AIE agents were encapsulated in nanoparticles, disordered amorphous aggregates with loose packing were necessary to maintain the rotations of the photothermal AIE agents for PTT. The design strategies to enhance the PDT or PTT performances of AIE agents are summarized and compared in Table 1.

Chemical structures of AIE agents are subtly designed, and various biomedical applications also show great potential in practical treatment. However, there remain several issues to be solved. First, structural design principles are hardly universal in different molecular skeletons, and illustrations of the photophysical mechanism are often provided by theoretical calculations instead of convincing experimental results. For instance, it was supposed that restriction on planarization in TPE prompts the electron transfer from PSs to oxygen species. However, no further verification was conducted to confirm it. Second, either D–A type PSs or D–A–D type photothermal agents highly rely on TPE or triphenylamine moiety as rotors, which largely restricts the tuning of the emission spectrum in all-scale wavelength. Innovative structures with AIE character need to be explored to extend the AIE agents for phototherapy. Moreover, regardless of loose or tight aggregate formation, nanoparticles remain sensitive to biological environments. New methods to construct

| Table 1 | Designing Strategies and Phototherapy Applications of AIE Agents |
|---------|---------------------------------------------------------------|
| AIE Agents | Designing Strategy | Phototheray Applications | References |
| TPAPyPF$_6$ | Small $\Delta E_{\text{ST}}$ for ISC | PDT | [31] |
| MTNZpy | Anion-$\pi^+$ structure | NIR imaging-guided type I PDT | [33] |
| TdBO | Photochemistry activity | Type I PDT | [71] |
| BITT | ICT | Mitochondria targeting PDT | [74] |
| TTPy | ICT | Mitochondria targeting PDT | [75] |
| MeO-TPE-indo | Small $\Delta E_{\text{ST}}$ for ISC | G(--$)$ bacteria killing PDT | [77] |
| TPB-2 | ISC enhancement | In situ catalyzed PDT | [82] |
| TPATrzPy-3+ | In situ synthesis | Mitochondria targeting PDT | [83] |
| TFPy | Charge-induced targeting | Mitochondria targeting PDT | [83] |
| TFVP | Charge-induced energy barrier | Cytomembrane targeting PDT | [83] |
| TPE-TFPy | Low-polarity induced aggregates | Lysosome targeting PDT | [83] |
| AIE-2Van | Van oligomer | VRE bacteria killing PDT | [91] |
| 2TPE-2NDTA | TICT and spacer+rotor | PA imaging | [100] |
| DCP-PTPA | Bond stretching vibration | PA imaging | [104] |
| TFM | Amorphous aggregate | PA imaging and PTT/PDT | [17] |
| BPBTT | TICT | NIR imaging-guided PTT | [37] |
| NIRb14 | Spacer+rotor | PA imaging-guided PTT | [102] |
| BBT-C6T-DPA | BIR mediated | Glioma PTT | [106] |
biocompatible AIE agents should be developed to guarantee the stability and specificity for in vivo applications. Third, the inherent mechanism of de-excitation in the photothermal conversion process largely depends on inter or intramolecular interaction of AIE agents. Apart from the design strategies of chemical structure to regulate the photothermal effect, the supramolecular self-assembly strategy could also facilitate the nonradiative decay for heat generation. AIE agents with supramolecular interaction should have great potential to achieve high photothermal conversion efficiency and perform well in PTT. Finally, the in vivo fate of AIE agents needs to be carefully examined to advance to clinical applications. Tang and co-workers tested liver function markers including alanine transaminase (ALT) and aspartate transaminase (AST) and renal function markers including creatinine, uric acid, and blood urea nitrogen of mice after intravenous injection of AIE agents for 1 week. The blood routine indexes including white blood cells, lymphocyte, monocyte, granulocyte, hemoglobin, hematocrit test, mean corpuscular volume, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, red cell distribution width, and mean platelet volume of AIE agents-treated mice were also examined. All the measured parameters were in the normal levels, indicating the biosafety of AIE agents in mice. However, metabolism and degradation of AIE agents in vivo have not been reported in recent studies, which is also important for clinical applications of AIE agents. The biodegradable amphiphilic polymers such as poly(actic-co-glycolic acid) (PLGA) could be used to encapsulate AIE agents, whereas endowing AIE agents with biodegradability without compromising their optical properties remains a chemical challenge.

Conflict of Interest
The authors declare no conflict of interest.

Funding Information
This work was supported by the National Key R&D Program of China (nos. 2017YFA0701301 and 2017YFA0205400), National Natural Science Foundation of China (nos. 5160153, 21720102005, and 51903120), and the Fundamental Research Funds for the Central Universities (no. 020514913212).

References
1. Celli, J. P.; Spring, B. Q.; Rizvi, I.; Evans, C. L.; Samkoe, K. S.; Verma, S.; Pogue, B. W.; Hasan, T. Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and Optimization. Chem. Rev. 2010, 110, 2795–2838.
2. Zhen, X.; Pu, K.; Jiang, X. Photoacoustic Imaging and Photothermal Therapy of Semiconducting Polymer Nanoparticles: Signal Amplification and Second Near-Infrared Construction. Small 2021, 17, 2004723.
3. Yu, Z.; Zhou, P.; Pan, W.; Li, N.; Tang, B. A Biomimetic Nanoreactor for Synergistic Chemiexcited Photodynamic Therapy and Starvation Therapy against Tumor Metastasis. Nat. Commun. 2018, 9, 5044.
4. Wu, L.; Sun, Y.; Sugimoto, K.; Luo, Z.; Ishigaki, Y.; Pu, K.; Suzuki, T.; Chen, H. Y.; Ye, D. Engineering of Electrochemical Materials as Activatable Probes for Molecular Imaging and Photodynamic Therapy. J. Am. Chem. Soc. 2018, 140, 16340–16352.
5. Zhen, X.; Qu, R.; Chen, W.; Wu, W.; Jiang, X. The Development of Phosphorescent Probes for in Vitro and in Vivo Bioimaging. Biomater. Sci. 2021, 9, 285–300.
6. Castano, A. P.; Mroz, P.; Hamblin, M. R. Photodynamic Therapy and Anti-Tumour Immunity. Nat. Rev. Cancer 2006, 6, 535–545.
7. Sun, B.; Chang, R.; Cao, S.; Yuan, C.; Zhao, L.; Yang, H.; Li, J.; Yan, X.; van Hest, J. C. M. Acid-Activatable Transmorphic Peptide-Based Nanomaterials for Photodynamic Therapy. Angew. Chem. Int. Ed. 2020, 59, 20582–20588.
8. Patel, N.; Pera, P.; Joshi, P.; Dukh, M.; Tabaczynski, W. A.; Suters, K. E.; Kryman, M.; Cherukuri, R. R.; Durrani, F.; Missert, J. R.; Watson, R.; Ohulchansky, T. Y.; Tracy, E. C.; Baumann, H.; Pandey, R. K. Highly Effective Dual-Function Near-Infrared (NIR) Photosensitizer for Fluorescence Imaging and Photodynamic Therapy (PDT) of Cancer. J. Med. Chem. 2016, 59, 9774–9787.
9. Zhu, S.; Tian, R.; Antaris, A. L.; Chen, X.; Dai, H. Near-Infrared-II Molecular Dyes for Cancer Imaging and Surgery. Adv. Mater. 2019, 31, 1900321.
10. Hong, G.; Antaris, A. L.; Dai, H. Near-Infrared Fluorophores for Biomedical Imaging. Nat. Biomed. Eng. 2017, 1, 0010.
11. Lv, S.; Miao, Y.; Liu, D.; Song, F. Recent Development of Photothermal Agents (PTAs) Based on Small Organic Molecular Dyes. Chembiochem 2020, 21, 2098–2110.
12. Wong, R. C. H.; Lo, P.-C.; Ng, D. K. P. Stimuli Responsive Phthalocyanine-Based Photothermal Probes and Photosensitizers. Coord. Chem. Rev. 2019, 379, 30–46.
13. Lin, J.; Zeng, X.; Xiao, Y.; Tang, L.; Nong, J.; Liu, Y.; Zhou, H.; Ding, B.; Xu, F.; Tong, H.; Deng, Z.; Hong, X. Novel Near-Infrared II Aggregation-Induced Emission Dots for in Vivo Bioimaging. Chem. Sci. 2019, 10, 1219–1226.
14. Chen, L.; Chen, Y.; Zhou, W.; Li, J.; Zhang, Y.; Liu, Y. Mitochondrion-Targeting Chemiluminescent Ternary Supramolecular Assembly for in Situ Photodynamic Therapy. Chem. Commun. 2020, 56, 8857–8860.
15. Zheng, Z.; Zhang, T.; Liu, H.; Chen, Y.; Kwok, R. T. K.; Ma, C.; Zhang, P.; Sung, H. Y.; Williams, I. D.; Lam, J. W. Y.; Wong, K. S.; Tang, B. Z. Bright Near-Infrared Aggregation-Induced Emission Luminogens with Strong Two-Photon Absorption, Excellent Organelle Specificity, and Efficient Photodynamic Therapy Potential. ACS Nano 2018, 12, 8145–8159.
16. Ni, X.; Zhang, X.; Duan, X.; Zheng, H. L.; Xue, X. S.; Ding, D. Near-Infrared Afterglow Luminescence Aggregation-Induced Emission Dots with Ultrahigh Tumor-to-Liver Signal Ratio for Promoted Image-Guided Cancer Surgery. Nano Lett. 2019, 19, 318–330.
17. Wang, D.; Lee, M. M. S.; Xu, W.; Shan, G.; Zheng, X.; Kwok, R. T. K.; Lam, J. W. Y.; Hu, X.; Tang, B. Z. Boosting Non-Radiative Decay to Do Useful Work: Development of a Multi-Modality Theranostic System from an AIEgen. Angew. Chem. Int. Ed. 2019, 58, 5628–5632.

18. Hu, F.; Mao, D.; Kenny, Cai, X.; Wu, W.; Kong, D.; Liu, B. A Light-Up Probe with Aggregation-Induced Emission for Real-Time Bio-Orthogonal Tumor Labeling and Image-Guided Phototherapy. Angew. Chem. Int. Ed. 2018, 57, 10182–10186.

19. Wang, S.; Wu, W.; Manghani, P.; Xu, S.; Wang, Y.; Goh, C. C.; Ng, L. G.; Liu, B. Polymerization-Enhanced Two-Photon Photosensitization for Precise Photodynamic Therapy. ACS Nano 2019, 13, 3095–3105.

20. Würthner, F. Aggregation-Induced Emission (AIE): A Historical Perspective. Angew. Chem. Int. Ed. 2020, 59, 14192–14196.

21. Kaur, M.; Kaur, H.; Kumar, M.; Bhalla, V. ‘Light-Up’ AIE-Active Materials: Self-Assembly, Molecular Recognition and Catalytic Applications. Chem. Rec. 2021, 21, 240–256.

22. Zhao, Z.; Zhang, H.; Lam, J. W. Y.; Tang, B. Z. Aggregation-Induced Emission: New Vistas at the Aggregate Level. Angew. Chem. Int. Ed. 2020, 59, 9888–9907.

23. Wang, D.; Tang, B. Z. Aggregation-Induced Emission Luminogens for Activity-Based Sensing. Acc. Chem. Res. 2019, 52, 2559–2570.

24. Hong, Y.; Lam, J. W.; Tang, B. Z. Aggregation-Induced Emission. Chem. Soc. Rev. 2011, 40, 5361–5388.

25. Feng, H. T.; Yuan, Y. X.; Xiong, J. B.; Zheng, Y. S.; Tang, B. Z. Macrocycles and Cages Based on Tetraphenylethylene with Aggregation-Induced Emission Effect. Chem. Soc. Rev. 2018, 47, 7452–7476.

26. Li, J.; Wang, J.; Li, H.; Song, N.; Wang, D.; Tang, B. Z. Supramolecular Materials Based on AIE Luminogens (AIEgens): Construction and Applications. Chem. Soc. Rev. 2020, 49, 1114–1172.

27. Liu, C.; Wang, X.; Liu, J.; Yue, Q.; Chen, S.; Lam, J. W. Y.; Luo, L.; Tang, B. Z. Near-Infrared AIE Dots with Chemiluminescence for Deep-Tissue Imaging. Adv. Mater. 2020, 32, 2004685.

28. Qi, J.; Chen, C.; Zhang, X.; Hu, X.; Ji, S.; Kwok, R. T. K.; Lam, J. W. Y.; Ding, D.; Tang, B. Z. Light-Driven Transformable Optical Agent with Adaptive Functions for Boosting Cancer Surgery Outcomes. Nat. Commun. 2018, 9, 1848.

29. Yuan, B.; Wu, H.; Wang, H.; Tang, B.; Xu, J. F.; Zhang, X. A Self-Degradable Supramolecular Photosensitizer with High Photodynamic Therapeutic Efficiency and Improved Safety. Angew. Chem. Int. Ed. 2021, 60, 706–710.

30. Chen, Y.; Ai, W.; Guo, X.; Li, Y.; Ma, Y.; Chen, L.; Zhang, H.; Wang, T.; Zhang, X.; Wang, Z. Mitochondria-Targeted Polydopamine Nanocomposite with AIE Photosensitizer for Image-Guided Photodynamic and Photothermal Tumor Ablation. Small 2019, 15, 1902352.

31. Liu, Z.; Zou, H.; Zhao, Z.; Zhang, P.; Shan, G. G.; Kwok, R. T. K.; Lam, J. W. Y.; Zheng, L.; Tang, B. Z. Tuning Organelle Specificity and Photodynamic Therapy Efficiency by Molecular Function Design. ACS Nano 2019, 13, 11283–11293.

32. Wang, J.; Gu, X.; Zhang, P.; Huang, X.; Zheng, X.; Chen, M.; Feng, H.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Ionization and Anion-π(+) Interaction: A New Strategy for Structural Design of Aggregation-Induced Emission Luminogens. J. Am. Chem. Soc. 2017, 139, 16974–16979.

33. Wan, Q.; Zhang, R.; Zhuang, Z.; Li, Y.; Huang, Y.; Wang, Z.; Zhang, W.; Hou, J.; Tang, B. Z. Molecular Engineering to Boost AIE-Active Free Radical Photogenerators and Enable High-Performance Photodynamic Therapy under Hypoxia. Adv. Funct. Mater. 2020, 30, 2002057.

34. Brown, J. M.; Wilson, W. R. Exploiting Tumour Hypoxia in Cancer Treatment. Nat. Rev. Cancer. 2004, 4, 437–447.

35. Ju, E.; Dong, K.; Chen, Z.; Liu, Z.; Liu, C.; Huang, Y.; Wang, Z.; Pu, F.; Ren, J.; Qu, X. Copper(I)-Graphitic Carbon Nitride Triggered Synergy: Improved ROS Generation and Reduced Glutathione Levels for Enhanced Photodynamic Therapy. Angew. Chem. Int. Ed. 2016, 55, 11467–11471.

36. Gu, X.; Zhao, E.; Zhao, T.; Kang, M.; Gui, C.; Lam, J. W.; Du, S.; Loy, M. M.; Tang, B. Z. A Mitochondrion-Specific Photoactivatable Fluorescence Turn-On AIE-Based Bioprobe for Localization Super-Resolution Microscope. Adv. Mater. 2016, 28, 5064–5071.

37. Gao, S.; Wei, G.; Zhang, S.; Zheng, B.; Xu, J.; Chen, G.; Li, M.; Song, S.; Fu, W.; Xiao, Z.; Lu, W. Albumin Tailoring Fluorescence and Photothermal Conversion Effect of Near-Infrared Fluorophore with Aggregation-Induced Emission Characteristics. Nat. Commun. 2019, 10, 2206.

38. Zhang, R.; Duan, Y.; Liu, B. Recent Advances of AIE Dots in NIR Imaging and Phototherapy. Nanoscale 2019, 11, 19241–19250.

39. Feng, G.; Zhang, G. Q.; Ding, D. Design of Superior Phototheranostic Agents Guided by Jablonski Diagrams. Chem. Soc. Rev. 2020, 49, 8179–8234.

40. Cai, X.; Liu, B. Aggregation-Induced Emission: Recent Advances in Materials and Biomedical Applications. Angew. Chem. Int. Ed. 2020, 59, 9868–9886.

41. Sun, J.; Du, K.; Diao, J.; Cai, X.; Feng, F.; Wang, S. GSH and H(2)O(2) Co-Activatable Mitochondria-Targeted Photodynamic Therapy under Normoxia and Hypoxia. Angew. Chem. Int. Ed. 2020, 59, 12122–12128.

42. Zhang, L.; Wang, S.; Zhou, Y.; Wang, C.; Zhang, X. Z.; Deng, H. Covalent Organic Frameworks as Favorable Constructs for Photodynamic Therapy. Angew. Chem. Int. Ed. 2019, 58, 14213–14218.

43. Zhang, P.; Huang, H.; Banerjee, S.; Clarkson, G. J.; Ge, C.; Imberti, C.; Sadler, P. J. Nucleus-Targeted Organoiridium-Albumin Conjugate for Photodynamic Cancer Therapy. Angew. Chem. Int. Ed. 2019, 58, 2350–2354.

44. Li, J.; Huang, J.; Lyu, Y.; Huang, J.; Jiang, Y.; Xie, C.; Pu, K. Photocatalytic Organic Semiconductor Pro-Nanonezymes. J. Am. Chem. Soc. 2019, 141, 4073–4079.

45. Cao, S.; Shao, J.; Wu, H.; Song, S.; De Martino, M. T.; Pijpers, I. A. B.; Friedrich, H.; Abdelmohsen, L.; Williams, D. S.; van Hest, J. C. M. Photoactivated Nanomotors via Aggregation Induced Emission for Enhanced Phototherapy. Nat. Commun. 2021, 12, 2077.
46. Feng, G.; Liu, B. Aggregation-Induced Emission (AIE) Dots: Emerging Theranostic Nanolights. Acc. Chem. Res. 2018, 51, 1404–1414.

47. Baptista, M. S.; Cadet, J.; Di Mascio, P.; Ghogare, A. A.; Greer, A.; Hamblin, M. R.; Lorente, C.; Nunez, S. C.; Ribeiro, M. S.; Thomas, A. H.; Vignoni, M.; Yoshimura, T. M. Type I and Type II Photosensitized Oxidation Reactions: Guidelines and Mechanistic Pathways. Photochem. Photobiol. 2017, 93, 912–919.

48. DeRosa, M. C.; Crutchley, R. J. Photosensitized Singlet Oxygen and Its Applications. Coord. Chem. Rev. 2002, 233–234, 351–371.

49. Zhao, J.; Wu, W.; Sun, J.; Guo, S. Triplet Photosensitizers: From Molecular Design to Applications. Chem. Soc. Rev. 2013, 42, 5323–5351.

50. Xu, S.; Yuan, Y.; Cai, X.; Zhang, C. J.; Hu, F.; Liang, J.; Zhang, G.; Zhang, D.; Liu, B. Tuning the Singlet-Triplet Energy Gap: A Unique Approach to Efficient Photosensitizers with Aggregation-Induced Emission (AIE) Characteristics. Chem. Sci. 2015, 6, 5824–5830.

51. Yang, L.; Wang, X.; Zhang, G.; Chen, X.; Zhang, G.; Jiang, J. Aggregation-Induced Inter-system Crossing: A Novel Strategy for Efficient Molecular Phosphorescence. Nano- scale 2016, 8, 17422–17426.

52. Li, X.; Kwon, N.; Guo, T.; Liu, Z.; Yoon, J. Innovative Strategies for Hypoxic-Tumor Photodynamic Therapy. Angew. Chem. Int. Ed. 2018, 57, 11522–11531.

53. Song, G.; Liang, C.; Yi, X.; Zhao, Q.; Cheng, L.; Yang, K.; Liu, Z. Perfluorocarbon-Loaded Hollow B2Se3 Nanoparticles for Timely Supply of Oxygen under Near-Infrared Light to Enhance the Radiotherapy of Cancer. Adv. Mater. 2016, 28, 2716–2723.

54. Cheng, Y.; Cheng, H.; Jiang, C.; Qiu, X.; Wang, K.; Huan, W.; Yuan, A.; Wu, J.; Hu, Y. Perfluorocarbon Nanoparticles Enhance Reactive Oxygen Levels and Tumour Growth Inhibition in Photodynamic Therapy. Nat. Commun. 2015, 6, 8785.

55. Chen, H.; Tian, J.; He, W.; Guo, Z. H2O2-Activatable and O2-Evolving Nanoparticles for Highly Efficient and Selective Photodynamic Therapy against Hypoxic Tumor Cells. J. Am. Chem. Soc. 2015, 137, 1539–1547.

56. Cheng, Y.; Chang, Y.; Feng, Y.; Liu, N.; Sun, X.; Feng, Y.; Li, X.; Zhang, H. Simulated Sunlight-Mediated Photodynamic Therapy for Melanoma Skin Cancer by Titanium-Dioxide-Nanoparticle-Gold-Nanocluster-Graphene Heterogeneous Nanocomposites. Small 2017, 13, 1603935.

57. Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with Enzyme-like Characteristics (Nanoyzmes): Next-Generation Artificial Enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076.

58. Hua, M.; Wang, L.; Chen, Y.; Shi, J. Tumor-Selective Catalytic Nanomedicine by Nanocatalyst Delivery. Nat. Commun. 2017, 8, 357.

59. Liu, Y.; Ai, K.; Ji, X.; Askhatova, D.; Du, R.; Lu, L.; Shi, J. Comprehensive Insights into the Multi-Antioxidative Mechanisms of Melanin Nanoparticles and Their Application to Protect Brain from Injury in Ischemic Stroke. J. Am. Chem. Soc. 2017, 139, 856–862.

60. Yang, Z.; Dai, Y.; Yin, C.; Fan, Q.; Zhang, W.; Song, J.; Yu, G.; Tang, W.; Fan, W.; Yung, B. C.; Li, J.; Li, X.; Li, X.; Tang, Y.; Huang, W.; Song, J.; Chen, X. Activatable Semiconducting Theranostics: Simultaneous Generation and Ratiometric Photoacoustic Imaging of Reactive Oxygen Species in Vivo. Adv. Mater. 2018, 30, 1707509.

61. Xu, Z.; B.; Lu, G.; P.; Cai, C. Acid-Induced Chemoselective Arylthiolations of Electron-Rich Arenes in Ionic Liquids from Sodium Arylsulfinites: The Reducibility of Halide Anions in [Hmim]Br. Org. Biomol. Chem. 2017, 15, 2804–2808.

62. Zhou, Z.; Song, J.; Nie, L.; Chen, X. Reactive Oxygen Species Generating Systems Meeting Challenges of Photodynamic Cancer Therapy. Chem. Soc. Rev. 2016, 45, 6597–6626.

63. Chapman, J. D.; Stobbe, C. C.; Arnfield, M. R.; Santus, R.; Lee, J.; McPhee, M. S. Oxygen Dependency of Tumor Cell Killing in vitro by Light-Activated Photofrin II. Radiat. Res. 1991, 126, 73–79.

64. Shi, L.; Hu, F.; Duan, Y.; Wu, W.; Dong, J.; Meng, X.; Zhu, X.; Liu, B. Hybrid Nanospheres to Overcome Hypoxia and Intrinsic Oxidative Resistance for Enhanced Photodynamic Therapy. ACS Nano 2020, 14, 2183–2190.

65. Waldeck, D. H. Photoisomerization Dynamics of Stilbenes in Polar Solvents. J. Mol. Liq. 1993, 57, 127–148.

66. Gu, X.; Zhao, E.; Lam, J. W.; Peng, Q.; Xie, Y.; Zhang, Y.; Wong, K. S.; Sung, H. H.; Williams, I. D.; Tang, B. Z. Mitochon- drion-Specific Live-Cell Bioprobe Operated in a Fluorescence Turn-On Manner and a Well-Designed Photoactivatable Mechanism. Adv. Mater. 2015, 27, 7093–7100.

67. Li, Q.; Gong, J.; Li, Y.; Zhang, R.; Wang, H.; Zhang, J.; Yan, H.; Lam, J. W. Y.; Sung, H. H. Y.; Williams, I. D.; Kwok, R. T. K.; Li, M. H.; Wang, J.; Tang, B. Z. Unusual Light-Driven Amplification Through Unexpected Regioselective Photogeneration of Five-Membered Aza heterocyclic AIEgen. Chem. Sci. 2020, 12, 709–717.

68. Matsushima, T.; Kobayashi, S.; Watanabe, S. Air-Driven Potassium Iodide-Mediated Oxidative Photocyclization of Stilbene Derivatives. J. Org. Chem. 2016, 81, 7799–7806.

69. Li, Z.; Twieg, R. J. Photocyclodehydrofluorination. Chemistry 2015, 21, 15534–15559.

70. Shi, Y. G.; Mellerup, S. K.; Yuan, K.; Hu, G. F.; Sauriol, F.; Peng, T.; Wang, N.; Chen, P.; Wang, S. Stabilising Fleeting Intermediates of Stilbene Photocyclization with Amino-Borane Functionalisation: The Rare Isolation of Persistent Dihydrophenanthrenes and Their [1,5] H-Shift Isomers. Chem. Sci. 2018, 9, 3844–3855.

71. Chen, K.; He, P.; Wang, Z.; Tang, B. Z. A Feasible Strategy of Fabricating Type I Photosensitizer for Photodynamic Therapy in Cancer Cells and Pathogens. ACS Nano 2021, 15, 7735–7743.

72. Liu, J.; Liu, X.; Wu, M.; Qi, G.; Liu, B. Engineering Living Mitochondria with AIE Photosensitizer for Synergistic Cancer Cell Ablation. Nano Lett. 2020, 20, 7438–7445.

73. Li, Y.; Liu, S.; Ni, H.; Zhang, H.; Zhang, H.; Chua, C.; Ma, C.; Wong, K. S.; Lam, J. W. Y.; Kwok, R. T. K.; Qian, J.; Lu, X.; Tang, B. Z. ACQ-to-AIE Transformation: Tuning Molecular Packing by Regioisomerization for Two-Photon NIR Bioimaging. Angew. Chem. Int. Ed. 2020, 59, 12822–12826.
101. Sasaki, S.; Drummen, G. P. C.; Konishi, G.-i. Recent Advances in Twisted Intramolecular Charge Transfer (TICT) Fluorescence and Related Phenomena in Materials Chemistry. *J. Mater. Chem. C* 2016, 4, 2731-2743.

102. Liu, S.; Zhou, X.; Zhang, H.; Ou, H.; Lam, J. W. Y.; Liu, Y.; Shi, L.; Ding, D.; Tang, B. Z. Molecular Motion in Aggregates: Manipulating TICT for Boosting Photothermal Theranostics. *J. Am. Chem. Soc.* 2019, 141, 5359-5368.

103. Bu, F.; Wang, E.; Peng, Q.; Hu, R.; Qin, A.; Zhao, Z.; Tang, B. Z. Structural and Theoretical Insights into the AIE Attributes of Phosphindole Oxide: The Balance Between Rigidity and Flexibility. *Chemistry* 2015, 21, 4440-4449.

104. Chen, M.; Zhang, X.; Liu, J.; Liu, F.; Zhang, R.; Wei, P.; Feng, H.; Tu, M.; Qin, A.; Lam, J. W. Y.; Ding, D.; Tang, B. Z. Evoking Photothermy by Capturing Intramolecular Bond Stretching Vibration-Induced Dark-State Energy. *ACS Nano* 2020, 14, 4265-4275.

105. Deng, G.; Peng, X.; Sun, Z.; Zheng, W.; Yu, J.; Du, L.; Chen, H.; Gong, P.; Zhang, P.; Cai, L.; Tang, B. Z. Natural-Killer-Cell-Inspired Nanorobots with Aggregation-Induced Emission Characteristics for Near-Infrared-II Fluorescence-Guided Glioma Theranostics. *ACS Nano* 2020, 14, 11452-11462.

106. Zhang, M.; Wang, W.; Mohammadienei, M.; Zheng, T.; Zhang, Q.; Ashley, J.; Liu, S.; Sun, Y.; Tang, B. Z. Upregulating Aggregation-Induced-Emission Nanoparticles with Blood-Tumor-Barrier Permeability for Precise Photothermal Eradication of Brain Tumors and Induction of Local Immune Responses. *Adv. Mater.* 2021, 33, 2008802.

107. Zhao, L.; Li, S.; Liu, Y.; Xing, R.; Yan, X. Kinetically Controlled Self-Assembly of Phthalocyanine-Peptide Conjugate Nanofibrils Enabling Superlarge Redshifted Absorption. *CCS Chem.* 2019, 1, 173-180.

108. Zhao, L.; Liu, Y.; Xing, R.; Yan, X. Supramolecular Photothermal Effects: A Promising Mechanism for Efficient Thermal Conversion. *Angew. Chem. Int. Ed.* 2020, 59, 3793-3801.

109. Zou, Q.; Abbas, M.; Zhao, L.; Li, S.; Shen, G.; Yan, X. Biological Photothermal Nanodots Based on Self-Assembly of Peptide–Porphyrin Conjugates for Antitumor Therapy. *J. Am. Chem. Soc.* 2017, 139, 1921-1927.

110. Yang, Z.; Zhang, Z.; Lei, Z.; Wang, D.; Ma, H.; Tang, B. Z. Precise Molecular Engineering of Small Organic Phototheranostic Agents toward Multimodal Imaging-Guided Synergistic Therapy. *ACS Nano* 2021, 15, 7238-7339.