Up-Regulation of Angiotensin-Converting Enzyme (ACE) Enhances Cell Proliferation and Predicts Poor Prognosis in Laryngeal Cancer

Chao-dong Han

Wen-sheng Ge

Corresponding Author: Wen-sheng Ge, e-mail: wenshengyuner@sina.com
Source of support: Departmental sources

Background: The angiotensin-converting enzyme (ACE, CD143) gene plays a crucial role in the pathology of many cancers. Previous studies mostly focused on the gene polymorphism, but the other functions of ACE have rarely been reported. The purpose of this study was to investigate the expression of ACE and its biological function, as well as its prognostic value, in laryngeal cancer.

Material/Methods: The expression of ACE was detected by quantitative real-time polymerase chain reaction (qRT-PCR) analysis in 106 patients with laryngeal cancer and 85 healthy people. Then the cell proliferation was estimated after the cell lines Hep-2 were transfected with pGL3-ACE and empty vector, respectively. In addition, the relationship between ACE expression and clinicopathologic characteristics was analyzed. Finally, Kaplan-Meier analysis was used to evaluate the overall survival of patients with different ACE expression, while Cox regression analysis was conducted to reveal the prognostic value of ACE in laryngeal cancer.

Results: Our results demonstrate that ACE is over-expressed in laryngeal cancer and thus promotes cell proliferation. The up-regulation of ACE was significantly influenced by tumor stage and lymph node metastasis. Patients with high ACE expression had a shorter overall survival compared with those with low ACE expression according to Kaplan-Meier analysis. The ACE gene was also found to be an important factor in the prognosis of laryngeal cancer.

Conclusions: Our study shows that the ACE gene was up-regulated, which promoted the cell proliferation, and it could be an independent prognostic marker in laryngeal cancer.

MeSH Keywords: Angiotensin-Converting Enzyme Inhibitors • Cell Proliferation • Prognosis

Full-text PDF: http://www.medscimonit.com/abstract/index/idArt/896933
Background

Laryngeal cancer is one of the most common malignancies in the head and neck [1] and accounts for 2.4% of new malignancies worldwide each year [2]. According to GLOBOCAN 2012, there were an estimated 156 877 new cases and 83 376 deaths due to laryngeal cancer per year worldwide [3]. Approximately 40% of patients have advanced (stage III or IV) disease when first evaluated and the lack of reliable and early diagnostic bio-markers lead a poor prognosis of laryngeal cancer [4,5]. Therefore, it is of great importance to look for appropriate and effective prognostic markers in laryngeal cancer.

The angiotensin-converting enzyme (ACE, CD143) gene is located on chromosome 17q23 and is a member of the renin-angiotensin system (RAS) [6–8]. It is characterized in humans by a major polymorphism exhibiting presence (I allele, insertion) or absence (D allele, deletion) of a 287-base pair Alu repeat sequence in intron 16 of this gene [9]. Hence, previous researchers usually focussed on the association between ACE gene polymorphism and the occurrence risk of diseases such as gastric cancer, colorectal cancer, coronary artery disease, and digestive cancer [10–13]. Wacker et al. [14] studied the relationship between ACE I/D polymorphism and body mass index, and other studies investigated ACE methylation [9,15] and ACE inhibitor (ACEI) [16,17]. For example, Ganz et al. [15] reported there was an increased risk of recurrence in patients taking ACEI the year before and after a breast cancer diagnosis. Michael et al. [17] suggested that ACEI use alone or coupled with significant weight loss predisposed patients to acute kidney injury during chemoradiation for head and neck cancer. However, the effects of ACE on laryngeal cancer are incompletely understood.

In the present study we measured the expression of ACE at mRNA and protein levels via qRT-PCR and ELISA analysis, and we also estimated its function in cell proliferation and its association with clinicopathologic characteristics. The prognostic value of ACE was evaluated through Kaplan-Meier and Cox regression analysis.

Material and Methods

Patients and samples

The study was conducted in Liaocheng People’s Hospital and EENT Hospital and was approved by the Ethics Committee of the hospital. We enrolled 106 patients who were diagnosed as having laryngeal cancer during 2009–2010; none of them had ever received radiotherapy or chemotherapy before sampling. We enrolled 85 healthy people as healthy controls. All participants signed written informed consent in advance.

We extracted 3–4 ml of peripheral venous blood from all patients and healthy controls under the standardized phlebotomy procedures. Then the blood samples were put into BD Vacutainer spray-coated K2EDTA tubes (BD, Franklin Lakes, USA) and stored at room temperature for 30 min. After centrifuging at 3000×g for 15 min at 4°C, the supernatant was transferred to the centrifugal tube for another centrifugation at 13 000×g for 10 min at 4°C. Finally, the plasma samples were transferred to fresh tubes and stored at -80°C until the cell debris were all removed. The clinicopathologic characteristics including age, sex, tumor stage, smoking, drinking, differentiation, lymph node metastasis, and tumor depth were recorded in a database. Five-year follow-up was carried out with the laryngeal cancer patients. Patients who died from unexpected events or other diseases were excluded from our study.

Cell culture and treatment

The human laryngeal cancer cell line Hep-2 was purchased from the American Type Culture Collection (ATCC, Manassas, VA) and cultured in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum and 100 µg/ml penicillin/streptomycin at 37°C with 5% CO₂.

ACE gene were cloned from human genomic DNA into the pGL3 basic vector (Promega, E1751). The cells were seeded in 96-well plates. When the concentration reached 80–90%, the cells were transfected with plasmids pGL3 containing ACE and empty plasmids pGL3 using Lipofectamine 2000 (Invitrogen 11668027) according to the manufacturer’s instructions. Moreover, in order to reinforce the role of ACE on the progression of laryngeal cancer, some of the Hep-2 cells transfected with empty plasmids pGL3 were treated with Fosinopril (Sigma) at the concentration of 10 µmol/L for 48 h. The experiment was performed in triplicate.

RNA extraction and quantitative real-time polymerase chain reaction (qRT-PCR)

Total RNA was extracted from the plasma of patients and healthy controls with TRIZol (Invitrogen, Carlsbad, CA, USA). Reverse transcription was conducted to synthesize the first chain of cDNA with TaqMan MicroRNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA). RT-PCR reaction was performed in the Applied Biosystems 7900 Fast Real-Time PCR system (Applied Biosystems, Foster City, California, USA). GAPDH was taken as the endogenous control for ACE. The relative quantification of ACE at mRNA level was evaluated by comparative cycle threshold (CT) method. Samples were analyzed in triplicate.

ELISA analysis

Total protein was extracted from all plasma samples of patients and healthy controls. The protein expression of ACE in
plasma samples was measured by ACE (human) ELISA kits (DSA00-R&D systems) according to the manufacture’s protocol. The absorbance was measured using an automated ELISA reader (ChroMate 4300 Microplate Reader; Palm City, FL, USA) at 450 nm. Each experiment was performed in triplicate.

Cell proliferation analysis

Cell proliferation ability was analyzed via MTS assay using the MTS Cell Proliferation Assay Kit (Colorimetric 197010) according to the manufacturer’s instructions. After transfection and ACEI treatment, viability of Hep-2 cells (pGL3-ACE and ACE empty) at different time points (0, 24, 48, and 72 h) was measured at 450 nm with an enzyme immunoassay analyzer (Bio-Rad, Hercules, CA, USA). Each sample was detected in triplicate.

Statistical analysis

Statistical analysis was performed using SPSS version 13.0 software (SPSS Inc, IL, USA). All quantified data were presented as mean ±SD. The differences between 2 groups were analyzed via the t test, while one-way ANOVA was used to compare the variances among 3 or more groups. The relationship between ACE expression and clinicopathologic characteristics was analyzed using the chi-square test. The prognostic value of ACE was estimated through Kaplan-Meier and Cox regression analysis. Differences were considered to be significant at *P*<0.05.

Results

ACE was over-expressed in the plasma of patients with laryngeal cancer

The expression of ACE at mRNA level was detected by qRT-PCR analysis. As shown in Figure 1, ACE was increased in the plasma of patients with laryngeal cancer compared with that in healthy controls (*P*<0.05).

ACE protein expression in the plasma of patients with laryngeal cancer and healthy controls

ELISA analysis was used to measure the expression of ACE protein. The result demonstrated that ACE protein expression was higher in patients with laryngeal cancer than that in healthy controls (*P*<0.05). Combined with expression at the mRNA level, we inferred that the ACE gene is related to laryngeal cancer and it might act as an oncogene.
The function of ACE gene in cell proliferation in laryngeal cancer

As ACE was up-regulated in laryngeal cancer, we further explored its effects on cell proliferation via MTS assay. The cell line Hep-2 was transfected with pGL3-ACE and empty vector. The outcome showed the proliferation of cells transfected with pGL3-ACE was induced compared with cells transfected with empty vector, but the proliferation of cells treated with Fosinopril was worse than in the empty vector group. The results indicate that the increase of ACE could promote Hep-2 cell proliferation and ACEI could reverse the role of ACE to a certain degree (Figure 3).

Table 1. Association between ACE expression and clinicopathological characteristics in 106 patients with laryngeal cancer.

Clinicopathological characteristics	n	ACE expression	χ²	P
		High		
		Low		
Age	0.359	0.549		
<60	40	17	23	
≥60	66	32	34	
Gender	3.036	0.081		
Female	28	9	19	
Male	78	40	38	
Tumor stage	17.320	0.000		
I–II	49	12	37	
III–IV	57	37	20	
Smoking	2.035	0.154		
Nonsmokers	49	19	30	
Current smokers	57	30	27	
Drinking	0.000	0.988		
Drinker	52	24	28	
Nondrinker	54	25	29	
Differentiation	3.518	0.172		
Well	26	8	18	
Moderate	39	21	18	
Poor	41	20	21	
Lymph node metastasis	7.986	0.005		
Absent	43	27	16	
Present	63	22	41	
Tumor depth (pT)	1.683	0.641		
T1	19	9	10	
T2	27	12	15	
T3	31	12	19	
T4	29	16	13	
Both important prognostic factors in laryngeal cancer (Table 2).

Parameter	HR	95% Confidence Interval	P
Lymph node metastasis	2.610	1.165–5.848	0.020
High-ACE expression	8.190	2.362–28.393	0.001

Discussion

The human larynx is an organ essential for breathing, sound production, and protecting the trachea against food aspiration; cancer of the larynx affects quality of life and causes serious disease [3]. Laryngeal cancer is caused by many factors, including alcohol and tobacco abuse, exposure to hard-alloys dust, chlorinated solvents, and familial genetic patterns [18–20]. Invasion and metastasis are the main causes of cancer mortality [21]. Although surgery, radiation therapy, or chemotherapy alone or combination therapy have been widely used and developed in the treatment of laryngeal cancer, the overall survival of patients is still low [4]. The survival rate is only about 30–40% for laryngeal cancer if it metastasizes [22]. It is therefore necessary to explore effective markers for predicting the prognosis of laryngeal cancer.

Accumulated evidence had verified some bio-markers in the prognosis of laryngeal cancer. For instance, stanniocalcin 2 (STC2) was found to be increased and led to a poor prognosis in laryngeal cancer according to the study of Zhang et al. [23]. A meta-analysis by Liu et al. reported that matrix metalloproteinase 2 (MMP2) protein is a prognostic factor due to its overexpression in laryngeal cancer [24]. Zhang et al. detected the expression of miR-23a and analyzed its function, reporting that it is an independent prognostic factor for laryngeal cancer [25]. Serum HMGB1 was significantly up-regulated in patients with laryngeal cancer and it was reported to be a potential diagnostic and prognostic marker [26]. Other studies showed that IncRNA AC026166.2-001 and RP11-169D4.1-001, Dicer, Combined expression of serum exosomal miR-21, and HOTAIR, as well as miR-152, were all important prognostic indicators in laryngeal cancer through [27–30]. However, the role of ACE in laryngeal cancer was rarely reported.

Every organ and tissue is related with blood vascular systems and angiogenesis is of great importance. A previous study has shown that sodium nitrite can induce angiogenesis in vitro and in vivo [31]. ACE has been studied in a variety of diseases; for example, Sliva et al. [32] reported that low expression of ACE can be used as a biomarker to identify an endothelial cell subpopulation that is more capable of driving neovascularization. Sorich et al. [33] reported that angiotensin system inhibitors can improve the survival of patients with metastatic renal cell carcinoma. Babacan et al. [34] reported that ACE inhibitor/ARBs were effective and reduced the risk of recurrence...
in breast cancer patients. Therefore, the effect of ACE in laryngeal cancer progression and prognosis attracted our interest.

In this study, we detected the expression of ACE gene at mRNA and protein levels, and we confirmed the up-regulation of ACE. Moreover, we showed that the expression of ACE was significantly regulated by tumor stage and lymph node metastasis. This reveals that ACE is related to laryngeal cancer and might participate in the development of this disease.

We further explored the function of ACE in laryngeal cancer. The development of cancers is closely linked with cell proliferation. For example, Chen et al. [35] showed that p21 plays a key role in the cellular response to UVB-induced DNA damage in skin cancer development. Fong et al. [36] studied the effect of mTOR inhibitors through transplant HEC-1A cells or Ishikawa cell in nude mice. We therefore investigated the influence of ACE on proliferation of Hep-2 cells. Our results demonstrate that ACE is a positive factor in cell proliferation. Kaplan-Meier and Cox regression analysis were performed to determine the prognostic value. The overall survival of patients with high ACE expression was relative shorter than in those with low expression. High ACE expression and lymph node metastasis were proven to be vital factors in the prognosis of laryngeal cancer.

Conclusions

The ACE gene is up-regulated in laryngeal cancer and its expression is related to tumor stage and lymph node metastasis. Cell proliferation is regulated by ACE expression and ACE could be an independent prognostic indicator in laryngeal cancer. Based on the above results, further studies with larger sample sizes are warranted to develop effective therapies for laryngeal cancer patients.

References:

1. Braakhuis BJ, Leemans CR, Visser O: Incidence and survival trends of head and neck squamous cell carcinoma in the Netherlands between 1989 and 2011. Oral Oncol, 2014; 50(7): 670–75
2. Parkin DM, Bray F, Ferlay J, Pisani P et al: Estimating the world cancer burden. Globocan 2000. Int J Cancer, 2001; 94(2): 153–56
3. Liu SY, Sima X, Wang CH et al: The association between ACE polymorphism and digestive cancer risk: A meta-analysis. Cancer Causes Control, 2011; 22(4): 1306–13
4. Xu CZ, Xie J, Jin B et al: Gene and microRNA expression reveals sensitivity of paclitaxel in larynx cancer cell line. Int J Clin Exp Pathol, 2013; 6(7): 1351–81
5. Zhan Z, Jiang HX, Peng SF: ITRAQ-based quantitative proteomic analysis on S100 calcium binding protein A2 in metastasis of laryngeal cancer. PLoS One, 2015; 10(4): e0122322
6. Abali H, Gülü IH, Engin H et al: Old antihypertensives as novel antineoplastic agents: Angiotensin-I-converting enzyme inhibitors and angiotensin II type 1 receptor antagonists. Med Hypotheses, 2002; 59(3): 344–48
7. Saddick SY: Angiotensin converting enzyme gene polymorphism studies: A case-control study. Saudi J Biol Sci, 2015; 22(3): 327–31
8. Rieder MJ, Taylor SL, Clark AG, Nickerson DA et al: Sequence variation in the human angiotensin converting enzyme gene. Nat Genet, 1999; 22(1): 59–62
9. Rangel M, dos Santos JC, Ortiz PH et al: Modification of epigenetic patterns in low birth weight children: importance of hypomethylation of the ACE gene promoter. PLoS One, 2014; 9(8): e106138
10. Röcken C, Lendeckel U, Dierkes J et al: The number of lymph node metastases in gastric cancer correlates with the angiotensin I-converting enzyme gene insertion/deletion polymorphism. Clin Cancer Res, 2005; 11(7): 2526–30
11. Liu SY, Sima X, Wang CH et al: The association between ACE polymorphism and risk of colorectal cancer in a Chinese population. Clin Biochem, 2011; 44(14–15): 1223–26
12. Sahin S, Ceyhan K, Benli I et al: Traditional risk factors and angiotensin-converting enzyme insertion/deletion gene polymorphism in coronary artery disease. Genet Mol Res, 2015; 14(1): 2063–68
13. Yang H, Cai C, Ye L et al: The relationship between angiotensin-converting enzyme gene insertion/deletion polymorphism and digestive cancer risk: Insights from a meta-analysis. J Renin Angiotensin Aldosterone Syst, 2015; 16(4): 1306–13
14. Wacker MI, Godard MP, McCabe EH et al: Sex difference in the association of the angiotensin converting enzyme I/D polymorphism and body mass index. Med Sci Monit, 2008; 14(7): CR353–57
15. Zill P, Baghali TC, Schüle C et al: DNA methylation analysis of the angiotensin converting enzyme (ACE) gene in major depression. PLoS One, 2012; 7(7): e40479
16. Ganz PA, Habel LA, Weltzin EK et al: Examining the influence of beta blockers and ACE inhibitors on the risk for breast cancer recurrence: results from the LACE cohort. Breast Cancer Res Treat, 2011; 129(2): 549–56
17. Spiotto MT, Cao H, Mell L, Toback FG: Angiotensin-converting enzyme inhibitors predict acute kidney injury during chemoradiation for head and neck cancer. Anticancer Drugs, 2015; 26(3): 343–49
18. Talamin R, Bosetti C, Levecchia C et al: Combined effect of tobacco and alcohol on laryngeal cancer risk: A case-control study. Cancer Causes Control, 2002; 13(10): 957–64
19. Shangina O, Brennan P, Szeszenia-Dabrowska N et al: Occupational exposure and laryngeal and hypopharyngeal cancer risk in central and eastern Europe. Am J Epidemiol, 2006; 164(4): 367–75
20. Negrí E, Bofilleta P, Berthiller J et al: Family history of cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. Int J Cancer, 2009; 124(2): 394–401
21. Jemal A, Bray F, Center MM et al: Global cancer statistics. Cancer J Clin, 2011; 61(2): 69–90
22. Gourin CG, Conger BT, Sheils WC et al: The effect of treatment on survival in patients with advanced laryngeal carcinoma. Laryngoscope, 2009; 119(7): 1312–17
23. Zhang C, Guan Z, Peng J: [The correlation between stanniocalcin 2 expression and prognosis in laryngeal squamous cell cancer]. Lin Chung Er Bi Yan Hou Ke Za Zhi, 2015; 29(2): 102–7 [in Chinese]
24. Liu RR, Li MD, Li T et al: Matrix metalloproteinase 2 (MMP2) protein expression and laryngeal cancer prognosis: A meta analysis. Int J Clin Exp Med, 2015; 8(2): 2261–66
25. Zhang JW, Liu N, Chen S et al: High microRNA-23a expression in laryngeal squamous cell carcinoma is associated with poor patient prognosis. Diagn Pathol, 2015; 10(1): 22
26. Qiu G, Li Y, Liu Z et al: Clinical value of serum HMGB1 in diagnosis and prognosis of laryngeal squamous cell carcinoma. Acta Otolaryngol, 2014; 134(9): 959–63
29. Wang J, Zhou Y, Lu J et al: Combined detection of serum exosomal miR-21 and HOTAIR as diagnostic and prognostic biomarkers for laryngeal squamous cell carcinoma. Med Oncol, 2014; 31(9): 148

30. Song Y, Tian Y, Bai WL, Ma XL: Expression and clinical significance of microRNA-152 in supraglottic laryngeal carcinoma. Tumour Biol, 2014; 35(11): 11075–79

31. Yildirim V, Doganci S, Yesildal F et al: Sodium nitrite provides angiogenic and proliferative effects in vivo and in vitro. Med Sci Monit Basic Res, 2015; 21: 41–46

32. Silva EA, Eseonu C, Mooney DJ: Endothelial cells expressing low levels of CD143 (ACE) exhibit enhanced sprouting and potency in relieving tissue ischemia. Angiogenesis, 2014; 17(3): 617–30

33. Sorich MJ, Kichenadasse G, Rowland A et al: Angiotensin system inhibitors and survival in patients with metastatic renal cell carcinoma treated with VEGF targeted therapy: A pooled secondary analysis of clinical trials. Int J Cancer, 2016; 138(9): 2293–99

34. Babacan T, Balakan O, Kuzan TY et al: The effect of renin-angiotensin-system inhibition on survival and recurrence of N3+ breast cancer patients. J BUON, 2015; 20(1): 50–56

35. Chen A, Huang X, Xue Z et al: The role of p21 in apoptosis, proliferation, cell cycle arrest, and antioxidant activity in UVB-irradiated human HaCat keratinocytes. Med Sci Monit Basic Res, 2015; 21: 86–95

36. Fong P, Meng LR: Effect of mTOR inhibitors in nude mice with endometrial carcinoma and variable PTEN expression status. Med Sci Monit Basic Res, 2014; 20: 146–52

Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System] [ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica] [Chemical Abstracts/CAS] [Index Copernicus]