Multi-Dimensional Gene Regulation in Innate and Adaptive Lymphocytes: A View From Regulomes

Nilisha Fernando¹, Giuseppe Sciumè², John J. O’Shea³ and Han-Yu Shih¹,⁴*

¹ Neuro-Immune Regulome Unit, National Eye Institute, National Institutes of Health, Bethesda, MD, United States,
² Laboratory Affiliated to Istituto Pasteur Italia – Fondazione Cenci-Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy, ³ Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States, ⁴ National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States

The precise control of cytokine production by innate lymphoid cells (ILCs) and their T cell adaptive system counterparts is critical to mounting a proper host defense immune response without inducing collateral damage and autoimmunity. Unlike T cells that differentiate into functionally divergent subsets upon antigen recognition, ILCs are developmentally programmed to rapidly respond to environmental signals in a polarized manner, without the need of T cell receptor (TCR) signaling. The specification of cytokine production relies on dynamic regulation of cis-regulatory elements that involve multi-dimensional epigenetic mechanisms, including DNA methylation, transcription factor binding, histone modification and DNA-DNA interactions that form chromatin loops. How these different layers of gene regulation coordinate with each other to finely tune cytokine production, and whether ILCs and their T cell analogs utilize the same regulatory strategy, remain largely unknown. Herein, we review the molecular mechanisms that underlie cell identity and functionality of helper T cells and ILCs, focusing on networks of transcription factors and cis-regulatory elements. We discuss how higher-order chromatin architecture orchestrates these components to construct lineage- and state-specific regulomes that support ordered immunoregulation.

Keywords: signal-regulated transcription factors, lineage-determining transcription factors, de novo enhancers, poised enhancers, ATAC-seq and chromatin accessibility, innate lymphoid cell (ILC), histone modifications

Abbreviations: 3C, chromatin conformation capture; ATAC-seq, Assay for Transposase-Accessible Chromatin using sequencing; ChIP, chromatin immunoprecipitation; circRNA, circular RNA; CTCF, CCCTC-binding factor; CTL, cytotoxic T lymphocyte; EOMES, eomesodermin; GATA-3, GATA-binding protein 3; H3K27Ac, histone 3 lysine 27 acetylation; IFN-γ, interferon gamma; IL, interleukin; ILC, innate lymphoid cell; LDTF, Lineage-Determining Transcription Factor; IncRNA, long non-coding RNA; LTI, Lymphoid tissue inducer cell; miRNA, microRNA; NCR, natural cytotoxicity receptor; NF-kB, Nuclear factor-kB; NK, natural killer cell; NKT, natural killer T cell; RE, regulatory element; RORγt, RAR-related orphan receptor gamma; SE, super-enhancer; SRTF, Signal-Regulated Transcription Factor; STAT, signal transducer and activator of transcription; TAD, topologically associating domains; TCR, T cell receptor; TF, transcription factor; Th cell, helper T cell.
REGULOMES DEFINE DIVERGENT LYMPHOCYTE TRANSCRIPTIONAL PROGRAMS

Each nucleus contains six billion nucleotides compacted into nucleosomes as basic units of chromatin that are orderly compacted and compartmentalized for precise gene regulation (1, 2). Residing among 98% of non-coding mammalian genomes are nearly three million regulatory elements (REs) that control the expression of approximately 20,000 genes in a cell-specific manner upon developmental and environmental cues (3). In lymphocytes, large networks of REs and transcription factors (TFs) orchestrate transcriptional and phenotypic diversity (4–6). The majority of REs are enhancers that remotely modulate transcription from a distance. However, the mechanisms of how intrinsic and extrinsic cues control enhancer activities to coordinate cell type- and state-specific gene expression profiles are yet to be understood.

Innate lymphoid cells (ILCs) play critical roles in tissue homeostasis, barrier integrity and primary host defense and mirror the functionalities of their effector counterparts in the adaptive immune compartment. CD4+ helper T (Th) and CD8+ cytotoxic T lymphocytes (CTL) (7–10). The similarities between innate and adaptive lymphocyte programming have dramatically accelerated our understanding of ILC regulation using the knowledge accumulated from studies of T cells (11–14). Other innate-like T cells, such as NKT cells, that mirror their functional T cell analogs also reveal similar lineage programming during development at both transcripomics and epigenomic levels, which is beyond the scope of this review (15, 16).

Here, we will focus on how cell identity and function are epigenetically imprinted during ILC maturation and how environmental signals activate or maintain ILC regulomes that define their transcriptomes.

REGULOMES OF ILCs AND THEIR T CELL DOPPELGÄNGERS

Immune responses mounted against pathogens can be categorized into three main programs (17). Type 1 immunity is manifested by IFN-γ production in natural killer (NK) cells, CTLs, type 1 ILC (ILC1) and type 1 Th cells (Th1) to control intracellular pathogens. Type 2 immunity is characterized by interleukin (IL)-4, IL-5, IL-9 and IL-13 production from ILC2 and Th2 cells in defense against extracellular helminths. Finally, type 3 immunity is defined by the production of IL-17 and IL-22 in ILC3 and Th17/22 cells to constrain extracellular fungi and bacteria (10, 18–20).

These distinct, but sometimes overlapping, programs are specified by key lineage-determining transcription factors (LDTFs) that shape regulomes by acting as master regulators to control lymphocyte development and differentiation (21–23). EOMES, a T-box family TF, oversees initial NK cell development and CTL differentiation into effector and memory stages (24–31). T-bet, another T-box family TF encoded by Tbx21, also directs the type 1 immune response by coordinating with EOMES for CTL memory establishment and maintenance and enforcing NK cell maturation. T-bet expression is exclusively essential for both lineage specification and function in ILC1 and Th1 cells, as these lymphocytes do not express EOMES (32, 33). High level expression of GATA-binding protein 3 (GATA-3, encoded by the Gata3 gene) plays a key role in ILC2 and Th2 cell differentiation and cytokine production (34–36). Finally, type 3 immunity is governed by RAR-related orphan receptor gamma, RORγt (encoded by the Rorc gene), which controls ILC3 and Th17 lineage specification and cytokine secretion (37, 38). These LDTFs epigenetically activate and stabilize function-related gene expression and, at the same time, inhibit transcription of genes that contribute to alternative cell fates (8, 39).

REs are typically characterized as conserved non-coding DNA sequences that become nucleosome-depleted to permit TF binding. For many years, identification and characterization of functional REs required extraordinary but often imprecise efforts. Use of computational prediction of REs through sequence conservation provided candidates that required further validation by assessment of chromatin accessibility by a DNase hypersensitivity assay or chromatin immunoprecipitation (ChIP) assays using antibodies directed at acetylated histone marks (40, 41). Similarly, the crosstalk between REs, such as enhancer-promoter interactions, has been measured by chromatin conformation capture (3C) or 3C-based assays (42). However, the development of massively parallel genomic DNA sequencing incorporating with conventional assays (e.g. DNase-seq, ChIP-seq, Hi-C) ushered in a new era of epigenomic research (43–46). These methods have been applied to map the regulomes of a wide range of immune cell populations, including T cells, B cells and macrophages (6, 47–52). CD4+ naïve T cells, for instance, establish lineage-specific regulomes during terminal differentiation that underlie Th cell identity and effector function (53–58). The improvement of relevant molecular biology techniques, including single cell RNA-seq (59), assay of transposase-accessible chromatin using sequencing (ATAC-seq) (60), ultra-low-input native ChIP-seq (61) and indexing first ChIP (iChIP) (62), further allows for the systematic interrogation of global transcriptomes and regulomes in low cell and rarer populations, including ILCs. Similar to their Th analogs, ILC subsets revealed cell-type restricted regulomes that define their lineage and effector competence (38, 63–66). These pre-programmed epigenomic configurations prime the REs at both TF and cytokine loci to maintain cell identity and enable rapid innate immune responses.

In contrast to Th cells that reshape naïve T-cell chromatin landscapes into divergent Th regulomes in response to combinational TCR and cytokine stimulation (54–56, 67), ILCs gradually construct lineage-specific, function-related regulomes during development prior to activation (38, 64). Un-supervised hierarchical clustering of murine immune cell regulomes clearly segregates ILCs from T lymphocytes (64). Similar results were obtained in humans when comparing type 1 and type 3 innate and adaptive lymphocytes from pediatric tonsils (63), consistent with the finding that regulomes are highly conserved across species (68).
Interestingly, while encountering challenges such as infection, innate and adaptive lymphocyte analogs converge their regulomes to execute overlapped effector activities to synergize host defense (64, 69). For example, upon *Nippostrongylus brasiliensis* infection in mice, naïve T cell regulomes are transformed into Th2 regulomes that resemble ILC2 regulomes, while ILC2 regulomes were minimally altered (64). Similarly, in mouse cytomegalovirus infection, effector NK cells and CD8+ T cells exhibit higher epigenomic commonality compared to naive NK and CD8+ cells (69). Also, global DNA methylation patterns of adaptive NK cells in human cytomegalovirus were highly similar to the profile observed in CD8+ T cells (70). The convergence of ILC and T cell regulomes indicates a conservation of intrinsic regulatory networks in innate and adaptive compartments along with the impact of extrinsic signals.

During the course of mouse cytomegalovirus infection, NK cells acquire an adaptive-like phenotype that provides memory responses similarly to those of T cells (71). This process involves acquisition of both stable and transient epigenetic changes, although the majority of accessible sites return to the naïve state (Figure 1) (69). Notably, naïve and memory CD8+ T cell regulomes are clustered in proximity in the un-supervised hierarchical clustering analysis, suggesting a naïve-like chromatin landscape in memory T cells (64). Upon NK cell activation, REs associated with *Socs3*, *Cish*, *Pdcd1*, *Dnmt3a*, and *Il10* gene loci acquire stable DNA-accessibility, while REs near *Tbx21*, *Klrq1*, *Ifng*, and *Zbtb32* are associated with transient modifications (69). Interferon-stimulated response element-like sequences were enriched in peaks remaining accessible over time, while motifs for TCF–LEF and NF-κB family members were enriched in regions becoming less accessible and undergoing epigenetic poising (69). Nevertheless, in contrast to naïve and infected ILC regulomes that are clustered in close proximity, terminally differentiated effector Th cells are clustered distally from naïve T cells (64). A recent study indicates that environmental challenges like microbes in gut heavily contribute to the continuous effector Th cell distribution of both transcriptomes and epigenomes (73). This finding suggests that adaptive T cells bear a more plastic character as compared to ILCs.

FIGURE 1 | Dynamics of NK cell regulomes during infection. (A) Dynamic regulomes during infection. Innate immune response occurs along with changes in gene expression as well as chromatin accessibility. (B) High-magnitude gene upregulation during NK cell activation relies on recruitment of signal-regulated transcription factors (SRTFs) to poised enhancers that are developmentally acquired in a lineage-determining transcription factors (LDTFs) manner for chromatin remodeling (top) (72). High-magnitude gene induction also forms *de novo* enhancers through a process involving sequence-specific binding of SRTFs to inaccessible chromatin regions, followed by LDTF recruitment and enhancer activation (bottom) (72). (C) Formation of new accessible sites rapidly occurs *in vivo* upon mouse cytomegalovirus or Toxoplasma gondii infection until a peak of the response is reached (69). (D) At the end of viral infection, majority of these rapidly opened chromatins return to resting state, while part of them undergo stable epigenetic poising that maintains NK cell adaptive-like or memory phenotype (69, 70).
TRANSCRIPTION FACTORS SHAPE LYMPHOCYTE SUBSET REGULOMES

During development, inaccessible REs are recognized by pioneer TFs in a sequence-specific manner. This is followed by chromatin remodeling, which propagates heritable epigenetic information that instructs cell identity (74). LDTFs are often considered as pioneer TFs, specifying lymphocyte lineage fates by targeting selective REs. In macrophages and B cells, PU.1 is an LDTF that occupies the majority of the active enhancers and is required for nucleosome remodeling and histone 3 lysine 4 methylation of these REs (75). The enrichment of T-bet, GATA-3 and RORγt motifs in type 1, 2 and 3 ILC-specific accessible chromatin, respectively, leads to the question whether LDTFs can directly open the chromatin or cooperate with other factors to shape ILC regulomes during development (23, 63, 64). More recently, the integration of transcriptomic analysis and TF motif analysis, obtained by chromatin accessibility data, has been applied to predict the role for almost one hundred TFs in the regulation of ILC identity, in mice. These data reveal the ability of TFs to both activate or repress gene expression corresponding to alternative ILC fates (23).

Several LDTFs involved in T lymphocyte development in mice, likely controlling this process by shaping their regulomes. These LDTFs include TCF-1 (encoded by the Tcf7 gene) (76–78), TOX (79–81), Bcl11b (82–84), Runx (85, 86) and GATA-3 (87–91). During early T cell development in the thymus, TCF1 and Bcl11b sequentially switch T cell regulomes to a fate-committed configuration that possess lineage-specific accessible chromatin and nuclear organization (92, 93). Notably, in different lineages the same LDTFs can bind divergent sites in a context-dependent manner (85, 91, 94). Bcl11b, for example, targets different genomic locations in T cell progenitors and ILC2s, mediating lineage-specific gene regulation (94). Therefore, in depth experimental evaluation is required to map out complete ILC lineage- and state-specific transcriptional networks.

By contrast, some LDTFs bifurcate T and ILC development and contribute to initial steps in ILC regulome formation. NFIL3, for example, is essential for multiple stages of ILC lineage commitment and differentiation, but is dispensable in T cell development (95–98). High expression of NFIL3 in common ILC progenitors activates the NFIL3–TOX–TCF-1 cascade to permit differentiation of NK and ILC lineages from T cells and endorses NK and ILC lineage commitment (81, 96). NFIL3 is also required for the expression of ID2 (95, 99, 100); the latter is a key repressor that suppresses B and T cell fates to ensure ILC and NK cell specification (101–103). Depletion of ID2 enforces NK cells to acquire naïve T lymphocyte transcriptional and epigenetic programs (102). Transient expression of PLZF (encoded at Zbtb16), another key LD TF associated with NKT cell development, plays an essential role in the commitment of ILC1, ILC2 and NCR+ ILC3 subsets and the exclusion of NK cell and LTi fates during early ILC development (104, 105). However, the potential of ILC precursors has been recently redefined by the generation of Id2<sup>Cre<sup>FL(Lox)_{PP}–Zbtb16<sup>Cre<sub>Fl(Lox)_{PP}–Bcl11b<sub>Tomato_{Cre} mice, showing that Id2^{Cre}Zbtb16^{Cre} ILC precursors are able to give rise to NK cells, while Zbtb16 and Bcl11b control the late fates of ILC3 and ILC2 precursors (106).

In addition to LDTFs, signal-regulated transcription factors (SRTFs) activated by external signals can also lead to regulome transformation. In effector Th cells, activation-induced SRTFs (AP-1, IRF4 and BACH2) have a higher impact on the segregation of T cell populations than LDTFs do (T-bet, EOMES, RORγt and RORα) (73). Interestingly, the signaling pathways that dominate lymphocyte development and activation are in common at a significant level (39, 107). Polarization of distinct Th subsets requires activation of TCR-dependent SRTFs, including NF-kB, AP-1 and NFAT, as well as cytokine-mediated SRTFs like STATs and SMADs (108). Activation of STATs is essential for promoting differentiation of the Th lineages, as well as activation of ILCs and NK cells (109–112). The LDTFs T-bet and GATA-3 occupy lineage-specific REs in Th1 and Th2 cells, respectively; however, the absence of STAT4 and STAT6, which respectively shape Th1 and Th2 active enhancer landscapes, cannot be overcome by forced expression of LDTFs (56, 113). Additionally, polarization of Th17 cells relies on STAT3 and SMAD2/3 signaling pathways, which also promote activation of ILC3 and trans-differentiation of ILC1 or ILC2 lymphocytes to an ILC3-like phenotype (109, 114, 115). Other agonists, including cytokines and alarmins like IL-25, IL-33 and IL-18, along with leukotrienes, prostaglandin 2, and the neuropeptide neumedin U can lead to NF-kB, AP-1 and NFAT activation (116–121).

ILC regulomes are hard-wired to prime cytokines and other key effector genes for rapid responses. The paradigmatic view is that SRTFs facilitate rapid gene induction by activating enhancers primed during ILC development. For example, the SRTF STAT5 represents a central node in ILC development and acquisition of cell identity (122–124). However, rapid ILC activation relies on abilities of SRTFs to remodel de novo or latent enhancer landscapes for LDTF binding to their cognate DNA motifs in a sequence-specific manner (50, 125, 126). ILCs can further undergo chromatin remodeling in the context of infection or inflammation (127, 128), a process involving sequence-specific recognition of SRTFs (69, 72, 129). Interestingly, SRTF-activated de novo enhancer landscapes can further recruit LDTFs through a sequence-independent mechanism (72). Recent evidence indicates that TFs and co-activators with intrinsically disordered regions can form non-membrane bound condensates through weak multivalent protein-protein interactions, a dynamic process called phase separation (Figure 2A) (136–139). It remains to be determined whether the stimulation-dependent redistribution of LDTFs results from SRTF-mediated reorganization of phase separation, which contributes to biased loading of transcriptional machinery at super-enhancers (130–132).

SUPER-ENHANCERS, A RESERVOIR OF TRANSCRIPTIONAL MACHINERY

Super-enhancers or stretch-enhancers (SEs), in contrast to typical enhancers, denote complex REs marked by high density deposition of transcription factors and enhancer marks (Figure 2B); these features are often indicative of key cell identity and
disease-associated genes (57, 130, 140–145). The construction of SEs involves remodeling chromatin landscapes induced by both intrinsic and extrinsic signals to recruit large numbers of TFs and transcriptional apparatus that contains co-activators including Mediator (Figures 2A, B) (136, 140). Along with the formation of multi-loop hubs, the result is that regulatory elements and their target genes are brought into close proximity (130, 146).

Delineation of SEs in Th cells using the active enhancer-associated protein histone acetyltransferase p300, revealed that the majority of Th lineage- and function-defining genes, including cytokines (Ifng, Il4, Il10, Il17a and Il17f) and key transcription factors (Tbx21, Gata3, Rorc and Rora), form SE structures during Th differentiation (57). These findings are consistent with multiple REs or locus control regions previously identified to be in close proximity to cytokine genes, including Ifng, Th2 cytokines (Il4-I13-I15) and the Il17a-I17f locus (67, 147). Profiling SEs in human tonsillar ILCs and T cells by active enhancer mark histone 3 lysine 27 acetylation (H3K27Ac) clearly differentiates ILCs from Th cells (63).

Recent studies revealed that SE structures also are indicative of a high magnitude of gene induction. Within hours of cytokine stimulation, SRTFs such as NF-κB and STATs rapidly establish SEs at effector gene loci in innate immune cells (macrophages and NK cells) to quickly provoke pro-inflammatory transcriptomes (72, 148–150). This process involves the recruitment of p300 to catalyze H3K27Ac histone modification to both primed and de novo enhancers for prompt gene induction. In activated NK cells, de novo SEs are linked to highly-inducible genes, suggesting the rapid construction of SE structures boosts the magnitude of immediate transcriptional activity (Figure 2) (72).

SOLUTION FOR PHYSICAL DISTANCING — NUCLEAR COMPARTMENTALIZATION AND HIGHER-ORDER CHROMATIN ARCHITECTURE

Within the nucleus, the stretch of one-meter long DNA is segregated into active (euchromatin) and inactive (heterochromatin) territories, which are spatially organized into individual regulatory domains, designated topologically associating domains (TADs) (5, 151, 152). TADs are formed via an extrusion process mediated by a cohesin ring and blocked by two convergently orientated CCCTC-binding factor (CTCF) sites (Figures 2A, C) (2, 133, 134, 153–158). CTCF is a chromatin
organizer that dominates higher-order chromatin architecture and a multifunctional zinc finger TF that functions as an activator, a repressor or an insulator depending on co-localized molecules and how the chromatin is looped (135, 159).

Although most TADs are largely invariant across cell types, TADs and nested sub-TADs may also be cell-type specific, and thus underlie cell identity and discrete functions (151, 160). Even though CTCF is ubiquitously expressed and constitutively occupies TAD boundaries across different cell types (135), dynamic enhancer-promoter interactions and selective CTCF deposition at cell type-specific genes does occur. The CTCF-cohesin-mediated 3D chromatin architecture dominates many biological processes including regulation of key cytokines. Global CTCF deficiency leads to impaired IFN-γ and Th2 cytokine production in Th1 and Th2 cells, respectively (161, 162).

Other TFs also actively control chromatin topology. In Th1 cells, T-bet coordinates with CTCF to regulate Ifng locus 3D structure and full expression capacity (161). Crystal structure studies indicate that the T-bet DNA binding domain forms a dimer that allows T-bet to bind two independent DNA motifs distal from each other, suggesting the role of T-bet in loop formation (163). IL-2-mediated STAT5 activation also reconstruct T cell regulomes by remodeling SE landscapes and 3D regulatory domains that facilitate induction of IL-2 target genes (164). Dissecting the specific and dynamic roles of LDTFs and SRTFs in higher-order chromatin architecture in resting and activated ILCs will have important implications for understanding ILC gene regulation in health and disease.

NON-CODING RNAs IN LYMPHOCYTE REGULATION

Short non-coding RNAs, including microRNAs (miRNAs), as well as long non-coding RNAs (lncRNAs), including circular RNAs (circRNAs), are key players in post-transcriptional regulation and chromatin remodeling in innate and adaptive lymphocytes (165, 166). Mechanistically, lineage-specific miRNAs and lncRNAs are linked to super-enhancers and can control target genes in cis or in trans (167–170). For example, miR-29 directly regulates IFN-γ production in NK, CD4+ and CD8+ T cells by targeting IFN-γ mRNA or indirectly via suppression of LDTFs EOMES and T-bet (171, 172). Other miRNAs including miR-155 and miR-17–92 promote Th1 immunity (173–176). Interestingly, miR-17–92 also promotes Th2 immunity in asthma affected airways (177), pointing to complex, less well-understood functions. In ILC1s, miR-142 plays a central role in IL-15-mediated NK cell survival, trafficking, homeostasis and defense against viral infection (178). Deficiency of miR-142 led to aberrant ILC1-like cell accumulation, potentially driven by TGF-β.

lncRNAs are critical for CD8+ (179, 180) and CD4+ T cell differentiation (181, 182). The Ifng locus itself is positively regulated by the lncRNA Ifng-as1 (also known as NeST or Tmevpg1) as a mechanism to enhance Ifng expression in Th1 cells (183–186). The expression of Ifng-as1 is dependent on remodeling of the proximal and distal enhancers by T-bet, recruiting TFs NF-κB and Ets1 to drive Ifng-as1 transcription (187). Ifng-as1 is capable of engaging the chromatin modifying enzyme WDR5 that alters histone 3 methylation at the Ifng locus (184). Deletion of Ifng-as1, within the Ifng extended locus, led to disruption of chromatin organization and reduced Ifng expression, indicating its role in maintenance of the chromatin architecture of the Ifng extended locus. This was in part due to the deletion of a critical CTCF site that acted as a functional insulator (183).

lncRNAs can also modulate ILC development and function. For instance, the ILC1-specific lncRNA Rroid promotes the expression of Ifd2, a transcription regulator that represses adaptive lymphocyte cell fate, and is essential for ILC1 development (188). The lncRNA lncKdm2b is highly expressed in ILC3s and plays a key role in ILC3 maintenance through activation of the TF Zfp292 (189). On the other hand, the circRNA circKent2 inhibits Batf expression, which results in inhibition of ILC3 activation and IL-17 expression (190). Exactly how these lncRNAs precisely exert their effects and whether these mechanisms are conserved between innate and adaptive lymphocytes, however, remains unclear.

CONCLUDING REMARKS

Regulation of key cell identity and cytokine genes in lymphocytes requires carefully orchestrated epigenetic mechanisms and remodeling of the chromatin landscape by transcription factors (LDTFs and SRTFs), super-enhancers, TAD formation, CTCF-anchored loops and non-coding RNAs. Exploration of these avenues in both local tissue and systemic environments holds promise in furthering our understanding of ILC and T cell regulomes. Several fundamental questions remain: how are nuclear compartmentalization and phase separation altered during lymphocyte development and activation? How do LDTFs and other co-activators developmentally shape and maintain immune cell regulomes? How do divergent chromatin landscapes respond to distinct pathogen invasion? What are the roles of SRTFs in the redistribution of transcriptional apparatus to mount an adequate immune response? How do super-enhancers coordinate different TFs and co-activators in the 3D space to direct final transcriptional output?

The rapid improvement in genome-wide epigenomic and single-cell transcriptomic profiling has provided a new angle to view global chromatin landscapes and transcriptional networks, even in rare populations such as ILCs. However, we are still yet to fully understand how novel key factors (DNAs, RNAs and proteins) asymmetrically distribute in the nuclei and physically interplay with each other in a context-dependent manner. The potential of newly developed techniques in the fields of molecular biology, fixed-cell microscopy, live-cell imaging, cryo-EM and genome editing may help to further our understanding. We are rapidly emerging into an era of epigenomic research that will allow us to decipher the mechanisms for lineage commitment and cytokine regulation in detail. Ultimately, we seek to identify key factors, signaling pathways or epigenetic modulations that can be
targeted to prevent and/or control lymphocyte-mediated inflammation in diseases.

AUTHOR CONTRIBUTIONS:

H-YS conceived and wrote the first draft of the manuscript. NF and GS wrote sections of the manuscript and drafted the figures. JJO, NF, and GS reviewed and revised the text and figures. All authors contributed to the article and approved the submitted version.

REFERENCES

1. Zheng H, Xie W. The role of 3D genome organization in development and cell differentiation. *Nat Rev Mol Cell Biol* (2019) 20:535–50. doi: 10.1038/s41580-019-0132-4
2. Rowley MJ, Corces VG. Organizational principles of 3D genome architecture. *Nat Rev Genet* (2018) 19:789–800. doi: 10.1038/s41576-018-0060-8
3. Consortium EP, Moore JE, Purcaro MJ, Pratt HE, Epstein CB, Shores N, et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. *Nature* (2020) 583:699–710. doi: 10.1038/s41586-020-2493-4
4. Van Bortle K, Corces VG. Nuclear organization and genome function. *Annu Rev Cell Dev Biol* (2012) 28:163–87. doi: 10.1146/annurev-cellbio-101011-155824
5. Hnisz D, Day DS, Young RA. Insulated Neighborhoods: Structural and Functional Units of Mammalian Gene Control. *Cell* (2016) 167:1188–200. doi: 10.1016/j.cell.2016.10.024
6. Heinz S, Romanoski CE, Benner C, Glass CK. The selection and function of cell type-specific enhancers. *Nat Rev Mol Cell Biol* (2015) 16:144–54. doi: 10.1038/nrmm.2014
7. Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, et al. Innate lymphoid cells--a proposal for uniform nomenclature. *Nat Rev Immunol* (2013) 13:145–9. doi: 10.1038/nri3365
8. Shih HY, Sciure G, Poholek AC, Vahedi G, Hirahara K, Villarino AV, et al. Transcriptional and epigenetic networks of helper T and innate lymphoid cells. *Immunity* (2014) 28:161–86. doi: 10.1016/j.immuni.2013.07.004
9. Colonna M. Innate Lymphoid Cells: Diversity, Plasticity, and Unique Functions in Immunity. *Immunity* (2018) 48:1104–17. doi: 10.1016/j.immuni.2018.05.013
10. Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, et al. Innate Lymphoid Cells: 10 Years On. *Cell* (2018) 174:1054–66. doi: 10.1016/j.cell.2018.07.017
11. Cherrier DE, Serafini N, Di Santo JP. Innate Lymphoid Cell Development: A T Cell Perspective. *Immunity* (2018) 48:1091–103. doi: 10.1016/j.immuni.2018.05.010
12. De Obaldia ME, Bhandoola A. Transcriptional regulation of innate and adaptive lymphocyte lineages. *Annu Rev Immunol* (2015) 33:607–42. doi: 10.1146/annurev-immunol-032114-120332
13. Fang D, Zhu J. Dynamic balance between master transcription factors determines the fates and functions of CD4 T cell and innate lymphoid cell subsets. *J Exp Med* (2017) 214:1861–76. doi: 10.1084/jem.20170949
14. Huang Q, Belz GT. Parallel worlds of the adaptive and innate immune cell networks. *Curr Opin Immunol* (2019) 58:53–9. doi: 10.1016/j.coi.2019.04.008
15. Harsha Krovi S, Zhang J, Michaels-Foster MJ, Brunetti T, Loh L, Scott-Browne J, et al. Thymic inKT single cell analyses unveil the common developmental program of mouse innate T cells. *Nat Commun* (2020) 11:6238. doi: 10.1038/s41467-020-20073-8
16. Engel I, Seunou G, Cheval L, Samaniego-Castruita D, White R, Chavala A, et al. Innate-like functions of natural killer T cell subsets result from highly divergent gene programs. *Nat Immunol* (2016) 17:728–39. doi: 10.1038/ni.3437
17. Annunziato F, Romagnani C, Romagnani S. The 3 major types of innate and adaptive cell-mediated effector immunity. *J Allergy Clin Immunol* (2015) 135:626–35. doi: 10.1016/j.jaci.2014.11.001
18. Diefenbach A, Colonna M, Koyasu S. Development, differentiation, and diversity of innate lymphoid cells. *Immunity* (2014) 41:354–65. doi: 10.1016/j.immuni.2014.09.005
19. Klose CS, Artis D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. *Nat Immunol* (2016) 17:765–74. doi: 10.1038/nii.3489
20. Cella M, Miller H, Song C. Beyond NK cells: the expanding universe of innate lymphoid cells. *Front Immunol* (2014) 5:282. doi: 10.3389/fimmu.2014.00282
21. Heinz S, Glass CK. Roles of lineage-determining transcription factors in establishing open chromatin: lessons from high-throughput studies. *Curr Top Microbiol Immunol* (2012) 356:1–15. doi: 10.1007/82_2011_142
22. Zaret KS, Carroll JS. Pioneer transcription factors: establishing competence for gene expression. *Genes Dev* (2011) 25:2227–41. doi: 10.1101/gad.178262.111
23. Pokrovskii M, Hall JA, Ochayon DE, Yi R, Chaimowitz NS, Seelamneni H, et al. Characterization of Transcriptional Regulatory Networks that Promote and Restrict Identities and Functions of Intestinal In innate Lymphoid Cells. *Immunity* (2019) 51:185–97.e6. doi: 10.1016/j.immuni.2019.06.001
24. Intlekofer AM, Takemoto N, Wherry EJ, Longsworth SA, Northrup JT, Palanivel VR, et al. Effector and memory CD8(T) cell fate coupled by T-bet and eomesodermin. *Nat Immunol* (2005) 6:1236–44. doi: 10.1038/ni.9268
25. Pritchard GH, Keld RM, Hunter CA. The evolving role of T-bet in resistance to infection. *Nat Rev Immunol* (2019) 19:398–410. doi: 10.1038/s41577-019-0145-4
26. Gray SM, Kaech SM, Staron MM. The interface between transcriptional and epigenetic control of effector and memory CD8(+) T cell differentiation. *Immunol Rev* (2014) 261:157–68. doi: 10.1111/imi.12205
27. Kaech SM, Cui W. Transcriptional control of effector and memory CD8+ T cell differentiation. *Nat Rev Immunol* (2012) 12:749–61. doi: 10.1038/nri3307
28. Pearce EL, Mullen AC, Martins GA, Krawczyk CM, Hutchins AS, Zediak VP, et al. Control of effector CD8+ T cell function by the transcription factor Eomesodermin. *Science* (2003) 302:1041–3. doi: 10.1126/science.1090148
29. Sun JC, Lanier LL. NK cell development, homeostasis and function: parallels with CD8(+)+ T cells. *Nat Rev Immunol* (2011) 11:645–57. doi: 10.1038/nri3044
30. Gordon SM, Chaix J, Rupp LJ, Wu I, Madera S, Sun JC, et al. The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation. *Immunity* (2012) 36:55–67. doi: 10.1016/j.immuni.2011.11.016
31. Daussy C, Faure F, Mayol K, Viel S, Gasteiger G, Charrier E, et al. T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. *J Exp Med* (2014) 211:563–77. doi: 10.1084/jem.20131560
32. Zhang J, Marotel M, Fauteux-Daniel S, Mathieu AL, Viel S, Marcais A, et al. T-bet and Eomes govern differentiation and function of mouse and human NK cells and ILC1. *Eur J Immunol* (2018) 48:738–50. doi: 10.1002/eji.201747299
33. Lazarevic V, Glumcher LH, Lord GM. T-bet: a bridge between innate and adaptive immunity. *Nat Rev Immunol* (2013) 13:777–89. doi: 10.1038/155
34. Mjosberg J, Bernink J, Golebski K, Carrich JF, Peters CP, Blom B, et al. The transcription factor GATA3 is essential for the function of human type 2
innate lymphoid cells. *Immunity* (2012) 37:649–59. doi: 10.1016/j.immuni.2012.08.015
35. Hoye T, Kloet CS, Souabni A, Turqueti-Neves A, Pfeifer D, Rawlins EL, et al. The transcription factor GA/T-3 controls cell fate and maintenance of type 2 innate lymphoid cells. *Immunity* (2012) 37:634–48. doi: 10.1016/j.immuni.2012.06.020
36. Tindemans I, Serafini N, Di Santo JP, Hendriks RW. GA/T-3 function in innate and adaptive immunity. *Immunity* (2014) 41:191–206. doi: 10.1016/j.immuni.2014.06.006
37. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaile JJ, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. *Cell* (2006) 126(6):1121–33. 126. doi: 10.1016/j.cell.2006.07.035
38. Cording S, Medvedovic J, Cherrier M, Eberl G. Development and regulation of RORgammat(+)- innate lymphoid cells. *FEBS Lett* (2014) 588:4176–81. doi: 10.1016/j.febslet.2014.03.034
39. Serafini N, Vossenrich CA, Di Santo JP. Transcriptional regulation of innate lymphoid cell fate. *Nat Rev Immunol* (2015) 15:415–28. doi: 10.1038/nri3855
40. Wu C. The 5’ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I. *Nature* (1980) 286:854–60. doi: 10.1038/286854a0
41. Hebbes TR, Clayton AL, Thorne AW, Crane-Robinson C. Core histone hyperacetylation co-operates with generalized DNase I sensitivity in the chicken beta-globin chromosomal domain. *EMBO J* (1994) 13(18):1823–30. doi: 10.1002/j.1460-2075.1994.tb06451.x
42. Dekker J, Rippe K, Dekker M, Kleckner N. Capturing chromosome conformation. *Science* (2002) 295:1306–11. doi: 10.1126/science.1067799
43. Crawford GE, Holt IE, Mullikin JC, Tai D, Blakesley R, Bouffard G, et al. Identifying gene regulatory elements by genome-wide recovery of DNase hypersensitive sites. *Proc Natl Acad Sci USA* (2004) 101:992–7. doi: 10.1073/pnas.0307540100
44. Johnson DS, Mortazavi A, Myers RM, Wold B. Genome-wide mapping of in vivo protein-DNA interactions. *Science* (2007) 316:1497–502. doi: 10.1126/science.1141319
45. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, et al. High-resolution mapping of transcription factor binding sites to genome-wide precision. *Genome Res* (2007) 17:1101–11. doi: 10.1101/gr.135830.106
46. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. *Nature* (2007) 448:553–60. doi: 10.1038/nature05608
47. Kieffer-Kwon KR, Tang Z, Mathe E, Qian J, Sung MH, Li G, et al. Interactome maps of mouse gene regulatory domains reveal basic principles of transcriptional regulation. *Cell* (2013) 155:1507–20. doi: 10.1016/j.cell.2013.09.039
48. Chaudhri VK, Dienger-Stambaugh K, Wu Z, Shrestha S, Singh H. Charting the cis-regulo of activated B cells by coupling structural and functional genomics. *Nat Immunol* (2020) 21:2120–20. doi: 10.1038/s41590-019-0565-0
49. Smale ST, Natoli G. Transcriptional control of activation and priming in innate and adaptive immunity. *Nat Immunol* (2015) 16:1134–46. doi: 10.1038/j.1460-2075.2016.04.014
50. Shi H, Sciume G, Miikami Y, Guo L, Sun HW, Brooks SR, et al. Developmental Acquisition of Regulators Underlies Innate Lymphoid Cell Functionality. *Cell* (2016) 165:1120–33. doi: 10.1016/j.cell.2016.04.029
51. Singh H, Khan AA, Dinner AR. Gene regulatory networks in the immune system. *Trends Immunol* (2014) 35:211–20. doi: 10.1016/j.ti.2014.03.006
52. Zhang JA, Mortazavi A, Williams BA, Wold BJ, Rothenberg EV. Dynamic identification of differentiating CD4+ T cells. *Cell* (2009) 136:4179–90. doi: 10.1016/j.cell.2009.09.039
53. Schoenborn JR, Dorschner MO, Sekimata M, Sherry JA, Sherry V, et al. Conservation of trans-acting circuitry during mammalian regulatory evolution. *Nature* (2014) 515:365–70. doi: 10.1038/nature13972
54. Lau CM, Adams NM, Geary CD, Weizman OE, Rapp M, Pritykin Y, et al. Epigenetic control of innate and adaptive immune memory. *Nat Immunol* (2018) 19:963–72. doi: 10.1038/s41590-018-0176-1
55. Schlums H, Chichocki F, Tesi B, Theorell J, Beizati V, Holmes TD, et al. Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. *Immunity* (2015) 42:443– 56. doi: 10.1016/j.immuni.2015.02.008
56. Wilson CB, Rowell E, Sekimata M. Epigenetic control of T helper-cell differentiation. *Nat Rev Immunol* (2009) 9:91–105. doi: 10.1038/nri2487
57. Storchova A, Neph S, Sandstrom R, Haugen E, Reynolds AP, Zhang M, et al. Conservation of the chromatin circuitry during mammalian regulatory evolution. *Nature* (2014) 515:365–70. doi: 10.1038/nature13972
58. Wei L, Dahlin J, Hu-Soltys E, Lu Y, Tang C, Wang X, et al. Rapid Enhancer Remodeling and Transcription Factor Repurposing Enable High Magnitude Gene Induction upon Acute Activation of NK Cells. *Immunity* (2020) 53:745–59. doi: 10.1016/j.immuni.2020.09.008
59. Kiner E, Haller L, Zhang Z, Schmitz H, Thaler B, et al. Gut CD4(+) T cell phenotypes are a continuum molded by microbes, gut microbiome and host immunity. *Cell Host Microbe* (2019) 25:R141–8. doi: 10.1016/j.chom.2019.07.012
60. Buenrostro JD, Giresi PG, Zaba LC, Zhang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. *Nat Methods* (2013) 10:1213–8. doi: 10.1038/nmeth.2688
61. Brind’Amour J, Liu S, Hudson M, Chen C, Karimi MM, Lorincz MC. An ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare cell populations. *Nat Commun* (2015) 6:6033. doi: 10.1038/ncomms6033
62. Lara-Astiaso D, Weiner A, Lorenzo-Vivas E, Zaret KS, Libin DA, David E, et al. Immunogenetics. Chromatin state dynamics during blood formation. *Science* (2014) 345:943–9. doi: 10.1126/science.1256271
63. Koues OI, Collins PL, Cella M, Robinette ML, Porter SI, Pyfrom SC, et al. Distinct Gene Regulatory Pathways for Human In innate versus Adaptive Lymphoid Cells. *Cell* (2016) 165:1134–46. doi: 10.1016/j.cell.2016.04.014
64. Wei L, Dahlin J, Hu-Soltys E, Lu Y, Tang C, Wang X, et al. Discrete roles of STAT4 and STAT6 transcription factors in tuning epigenetic modifications and transcription during T helper cell differentiation. *Immunity* (2010) 32:840–51. doi: 10.1016/j.immuni.2010.06.003
65. Vieira Braga FA, Teichmann SA, Chen X. Genetics and immunity in the single-cell genomics. *Hum Mol Genet* (2016) 25:R141–8. doi: 10.1093/hmg/ddw192
66. Iwafuchi-Doi M, Zaret KS. Pioneering transcription factors in cell reprogramming. *Genes Dev* (2014) 28:2679–92. doi: 10.1101/gad.253443.114
67. Heinz S, Benner S, Spann N, Bertolino E, Lin YC, Lassè E, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. *Mol Cell* (2010) 38:576–89. doi: 10.1016/j.molcel.2010.05.004
76. Harly C, Kenney D, Ren G, Lai B, Raabe T, Yang Q, et al. The transcription factor TCF-1 enforces commitment to the innate lymphoid cell lineage. Nat Immunol (2019) 20:1150–60. doi: 10.1038/s41590-019-0445-7
77. Yang Q, Li F, Harly C, Xing S, Ye L, Xia X, et al. TCF-1 upregulation identifies early innate lymphoid progenitors in the bone marrow. Nat Immunol (2015) 16:1044–50. doi: 10.1038/ni.3248
78. Raghu D, Xue HH, Mielle LA. Control of Lymphocyte Fate, Infection, and Tumor Immunity by TCF-1. Trends Immunol (2019) 40:1149–62. doi: 10.1016/j.it.2019.10.006
79. Spits H. TOX sets the stage for innate lymphoid cells. Immunity (2016) 17:169. doi: 10.1016/j.immuni.2016.06.016
80. Califano D, Cho JJ, Uddin MN, Lorentsen KJ, Yang Q, Bhandoola A, et al. Lineage-Determining Transcription Factor TCF-1 Initiates the Epigenetic Commitment of Type 2 Innate Lymphoid Cells. Immunity (2015) 43:354–68. doi: 10.1016/ j.immuni.2015.07.005
81. Yu Y, Wang C, Clare S, Wang J, Lee SC, Brandt C, et al. The transcription factor Bcl11b is specifically expressed in group 2 innate lymphoid cells and is essential for their development. J Exp Med (2016) 212:865–74. doi: 10.1084/ jem.20142318
82. Califano D, Cho JJ, Uddin MN, Lorentsen KJ, Yang Q, Bhandoola A, et al. Transcription Factor Bcl11b Controls Identity and Function of Mature Type 2 Innate Lymphoid Cells. Immunity (2016) 539:102. doi: 10.1016/j.immuni.2015.07.005
83. Miyamoto C, Kojo S, Yamashita M, Moro K, Lacaud G, Shiroguchi K, et al. Bcl11b Specifically Expresses in Group 2 Innate Lymphoid Cells and is Essential for their Development. J Exp Med (2017) 214:941–61. doi: 10.1084/jem.20162411
84. Harly C, Kenney D, Ren G, Lai B, Raabe T, Yang Q, et al. Transcription factor ID2 prevents E proteins from enforcing a naive T lymphocyte gene program during NK cell development. Sci Immunol (2018) 3(22):eaao2139. doi: 10.1126/sciimmunol.aao2139
85. Chenrier M, Sawa S, Eberl G, Notch, Id2, and RORgammat sequentially orchestrate the fetal development of lymphoid tissue inducer cells. J Exp Med (2012) 209:729–40. doi: 10.1084/jem.20111594
86. Yu X, Tsang JC, Wang C, Clare S, Wang J, Chen X, et al. Single-cell RNA-seq identifies a PD-1(hi) ILC progenitor and defines its development pathway. Nature (2016) 539:102–6. doi: 10.1038/nature20105
87. Miyamoto C, Kojo S, Yamashita M, Moro K, Lacaud G, Shiroguchi K, et al. Runx/Cbfbeta complexes protect group 2 innate lymphoid cells from exhausted-like hyporesponsiveness during allergic airway inflammation. Nat Commun (2019) 10:447. doi: 10.1038/s41467-019-08932-5
88. Yu Y, Wang C, Clare S, Wang J, Lee SC, Brandt C, et al. The transcription factor Bcl11b is specifically expressed in group 2 innate lymphoid cells and is essential for their development. J Exp Med (2016) 212:865–74. doi: 10.1084/jem.20142318
89. Zook EC, Kee BL. IDYing innate and innate-like lymphoid cells. Immunol Rev (2014) 261:177–97. doi: 10.1111/imr.12203
90. Zook EC, Li ZY, Xu Y, de Pooter RF, Verykokakis M, Beau lieu A, et al. Transcription factor ID2 prevents E proteins from enforcing a naive T lymphocyte gene program during NK cell development. Sci Immunol (2018) 3(22):eaao2139. doi: 10.1126/sciimmunol.aao2139
91. Cherrier M, Sawa S, Eberl G, Notch, Id2, and RORgammat sequentially orchestrate the fetal development of lymphoid tissue inducer cells. J Exp Med (2012) 209:729–40. doi: 10.1084/jem.20111594
92. Constantiniades MG, McDonald BD, Verhoef PA, Bendelac A. A committed precursor to innate lymphoid cells. Nature (2014) 508:397–401. doi: 10.1038/ nature13047
93. Klose CSN, Flach M, Mohle L, Rogell L, Hoyler T, Ebert K, et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell (2014) 157:340–56. doi: 10.1016/ j.cell.2014.03.030
94. Xu W, Cherrier DE, Chea S, Voschenrich C, Serafini N, Petit M, et al. An Id2 (RFP)-reporter mouse redlines innate lymphoid cell precursor potentials. Immunity (2019) 50:1054–68.e3. doi: 10.1016/j.immuni.2019.02.022
95. McGinty JW, von Molkte J. A three course menu for ILC and bystander T cell activation. Curr Opin Immunol (2020) 62:61–21. doi: 10.1016/j.coi.2019.11.005
96. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol (2010) 28:445–89. doi: 10.1146/ annurev-immunol-030409-100912
97. Bernard K, Krabbe M, Germar K, de Jong E, Gronke K, Kofoed-Nielsen M, et al. Interleukin-12 and -23 Control Plasticity of CD127(+) Group 1 and Group 3 In innate Lymphoid Cells in the Intestinal Lamina Propria. Immunity (2014) 40:1346–60. doi: 10.1016/j.immuni.2014.06.019
98. O’Sullivan TE, Rapp M, Fan X, Weizman OE, Bhardwaj P, Adams NM, et al. Adipose-Resident Group 1 Innate Lymphoid Cells Promote Obesity-Associated Insulin Resistance. Immunity (2016) 45:428–41. doi: 10.1016/j.immuni.2016.06.016
99. Symowsk C, Voehringer D, Th2 cell-derived IL-4/IL-13 promote ILC2 accumulation in the lung by ILC2-intrinsic STAT6 signaling in mice. Eur J Immunol (2019) 49:1421–32. doi: 10.1002/eji.201948161
100. Motomura Y, Morita H, Moro K, Naka S, Artis D, Endo TA, et al. Basophil-derived interleukin-4 controls the function of natural helper cells, a member of ILC2a, in lung inflammation. Immunity (2014) 40:758–71. doi: 10.1016/j.immuni.2014.04.013
101. Kanhere A, Hertweck A, Bhatia U, Gokmen MR, Perucha E, Jackson I, et al. Subsets of ILC3-ILC1-like cells generate a diversity spectrum of innate lymphoid cells in human mucosal tissues. Nat Immunol (2019) 20:980–91. doi: 10.1038/ s41555-019-0425-y
102. Bal SM, Golebski K, Spits H. Plasticity of innate lymphoid cell subsets. Nat Rev Immunol (2020) 20:552–65. doi: 10.1038/s41577-020-0282-9
103. Doherty TA, Khorram N, Lund S, Mehta AK, Croft M, Broide DH. Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which
156. Busslinger G, Stocsits RR, van der Leij P, Axelsson E, Tedeschi A, Gajl-Peczely N, et al. Cohesin is positioned in mammalian genomes by transcription, CtCF and Wapl. Nature (2017) 544:503–7. doi: 10.1038/nature22063

157. Haarhuis JHI, van der Weide RH, Blomen VA, Yanez-Cuna JO, Amendola M, van Ruiten MS, et al. The Cohesin Release Factor WAPL Restricts Chromatin Loop Extension. Cell (2017) 169:693–707.e14. doi: 10.1016/j.cell.2017.04.013

158. Ribeiro de Almeida C, Heath H, Krpic S, Dingjan GM, van Hamburg JP, Berger E, et al. Critical role for the transcription regulator CCTC-binding factor in the control of Th2 cytokine expression. J Immunol (2009) 182:999–1010. doi: 10.4049/jimmunol.182.2.999

159. Liu CF, Brandt GS, Hoang QQ, Naumova N, Lazariev V, Hwang ES, et al. Crystal structure of the DNA binding domain of the transcription factor T-bet suggests simultaneous recognition of distant genome sites. Nat Cell Biol (2017) 19:952–61. doi: 10.1038/ncb3573

160. Sekimoto M, Perez-Melgos M, Miller SA, Weinmann AS, Sabo PJ, Batista PJ, Chang HY. Long noncoding RNAs: cellular address codes in organization to cellular function. Nat Cell Biol (2017) 19:58–67. doi: 10.1038/nccell7458

161. Hanssen LLP, Kassouf MT, Oudelaar AM, Biggs D, Preece C, Downes DJ, et al. Expression of novel long noncoding RNAs defines virus-specific effector and memory CD8+ T cells. Nat Commun (2019) 10:196. doi: 10.1038/s41467-018-07956-7

162. Petermann F, Pekowska A, Johnson CA, Jankovic D, Shih HY, Jiang K, et al. The magnitude of IFN-gamma responses is fine-tuned by DNA architecture and the non-coding transcript of Ifng-as1. Mol Cell (2019) 75:1229–42.e5. doi: 10.1016/j.molcel.2019.06.025

163. Gomez JA, Wapinski OL, Yang YW, Bureau JF, Ganopin S, Monack DM, et al. The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-gamma locus. Cell (2013) 152:743–54. doi: 10.1016/j.cell.2013.01.015

164. Collier SP, Collins PL, Williams CL, Boothby MR, Aune TM. Cutting edge: influence of Tmevpg1, a long intergenic noncoding RNA, on the expression of Ifng by Th1 cells. J Immunol (2012) 188:2084–8. doi: 10.4049/jimmunol.1200774

165. Collier SP, Henderson MA, Tossberg JT, Aune TM. Regulation of the Th1 genomic locus from Ifng through Tmevpg1 by T-bet. J Immunol (2014) 193:3959–65. doi: 10.4049/jimmunol.1401099

166. Mowel WK, McCright SJ, Kotzin JJ, Collet MA, Uyar A, Chen X, et al. An inducible circular RNA circKcen2 inhibits IL3C activation to facilitate colitis resolution. Nat Commun (2020) 11:4076. doi: 10.1038/s41467-020-17944-5

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
GLOSSARY
Regulatory elements (REs)
Regulomes
Innate lymphoid cells (ILCs)
Pioneer transcription factors (TFs)
Lineage-determining transcription factors (LDTFs)
Signal-regulated transcription factors (SRTFs)
Poised enhancers
De novo enhancers
Phase separation
Topologically associating domains (TADs)