Kolmogorov equations on spaces of measures associated to nonlinear filtering processes

Mattia Martini
Università degli Studi di Milano

01/07/22 - BSDE2022 - Annecy
1 Stochastic filtering
- Nonlinear filtering problem
- Nonlinear filtering equations

2 Kolmogorov equations associated to filtering equations
- Itô formula
- Backward equation associated to the Zakai equation
- Backward equation associated to the K.-S. equation
We want to introduce and study a class of backward Kolmogorov equations on

- $\mathcal{M}^+_2(\mathbb{R}^d)$, $\mathcal{P}_2(\mathbb{R}^d)$: positive and probability measures with finite second moment;
- $\langle \mu, \psi \rangle = \mu(\psi) = \int_{\mathbb{R}^d} \psi(x) \mu(\,dx)$;

SDEs for measure-valued processes arise naturally in the stochastic filtering framework.

- Many results when there is a density, using stochastic calculus on Hilbert spaces (e.g. Rozovsky [9], Pardoux [8]).
- New tools for calculus on spaces of (probability) measures (e.g. Ambrosio, Giglio & Savarè [1], P.-L. Lions [5], Carmona & Delarue [3]).
- Optimal control with partial observation (e.g. Gozzi & Święch [4] in the Hilbert setting, or recently Bandini, Cosso, Fuhrman & Pham [2] on $\mathcal{P}_2(\mathbb{R}^d)$).
We want to introduce and study a class of backward Kolmogorov equations on

- $\mathcal{M}_2^+(\mathbb{R}^d)$, $\mathcal{P}_2(\mathbb{R}^d)$: positive and probability measures with finite second moment;
- $\langle \mu, \psi \rangle = \mu(\psi) = \int_{\mathbb{R}^d} \psi(x) \mu(\mathrm{d}x)$;

SDEs for measure-valued processes arise naturally in the stochastic filtering framework.

- Many results when there is a density, using stochastic calculus on Hilbert spaces (e.g. Rozovskiy [9], Pardoux [8]).
- New tools for calculus on spaces of (probability) measures (e.g. Ambrosio, Gigli & Savarè [1], P.-L. Lions [5], Carmona & Delarue [3]).
- Optimal control with partial observation (e.g. Gozzi & Święch [4] in the Hilbert setting, or recently Bandini, Cosso, Fuhrman & Pham [2] on $\mathcal{P}_2(\mathbb{R}^d)$).
Signal process

\[dX_t = b(X_t) \, ds + \sigma(X_t) \, dW_t, \quad X_0 \in L^2(\Omega, F_0), \quad t \in [0, T]. \]

(1)
Signal process

\[dX_t = b(X_t) \, ds + \sigma(X_t) \, dW_t, \quad X_0 \in L^2(\Omega, \mathcal{F}_0), \quad t \in [0, T]. \]

(1)

Observation process

For every \(t \in [0, T] \),

\[dY_t = h(X_t) \, dt + dB_t, \quad Y_0 = 0, \]

\[\mathcal{F}_t^Y = \sigma(Y_s, 0 \leq s \leq t) \lor \mathcal{N}, \]

where \(\mathcal{N} \) are \(\mathbb{P} \)-negligible sets.
Stochastic filtering: The problem

Signal process

\[
dx_t = b(x_t) \, ds + \sigma(x_t) \, dW_t, \quad x_0 \in L^2(\Omega, \mathcal{F}_0), \quad t \in [0, T]. \tag{1}
\]

Observation process

For every \(t \in [0, T] \),

\[
dy_t = h(x_t) \, dt + dB_t, \quad y_0 = 0,
\]

\[
\mathcal{F}^y_t = \sigma(y_s, 0 \leq s \leq t) \vee \mathcal{N},
\]

where \(\mathcal{N} \) are \(\mathbb{P} \)-negligible sets.

Goal

- The signal \(X \) is not directly observed;
- The available information is given by \(Y \);
- We want to provide an approximation of \(X \) given the observation \(Y \).
• Given the information $\mathcal{F}_t^\mathcal{Y}$, the best estimate for $\varphi(X_t)$ is

$$\mathbb{E} \left[\varphi(X_t) | \mathcal{F}_t^\mathcal{Y} \right];$$
• Given the information \mathcal{F}_t^Y, the best estimate for $\varphi(X_t)$ is

$$\mathbb{E} \left[\varphi(X_t) | \mathcal{F}_t^Y \right];$$

• Let Π_t be the regular conditional probability distribution of X_t given \mathcal{F}_t^Y: for any $A \in \mathcal{B}(\mathbb{R}^d)$

$$\Pi_t(A, \omega) = \mathbb{P} \left(X_t \in A | \mathcal{F}_t^Y \right)(\omega), \quad \text{a.e. } \omega.$$
• Given the information \mathcal{F}_t^Y, the best estimate for $\varphi(X_t)$ is

$$\mathbb{E} \left[\varphi(X_t) | \mathcal{F}_t^Y \right];$$

• Let Π_t be the regular conditional probability distribution of X_t given \mathcal{F}_t^Y:

for any $A \in \mathcal{B}(\mathbb{R}^d)$

$$\Pi_t(A, \omega) = \mathbb{P} \left(X_t \in A | \mathcal{F}_t^Y \right)(\omega), \; \text{a.e. } \omega.$$

• For every $\varphi \in C_b(\mathbb{R}^d)$ and $t \in [0, T]$,

$$\langle \Pi_t, \varphi \rangle = \mathbb{E} \left[\varphi(X_t) | \mathcal{F}_t^Y \right], \; \text{a.s.}$$
• Given the information \mathcal{F}_t^Y, the best estimate for $\varphi(X_t)$ is

$$E \left[\varphi(X_t) | \mathcal{F}_t^Y \right] ;$$

• Let Π_t be the regular conditional probability distribution of X_t given \mathcal{F}_t^Y: for any $A \in \mathcal{B}(\mathbb{R}^d)$

$$\Pi_t(A, \omega) = P \left(X_t \in A | \mathcal{F}_t^Y \right) (\omega), \quad \text{a.e.} \ \omega.$$

• For every $\varphi \in C_b(\mathbb{R}^d)$ and $t \in [0, T]$,

$$\langle \Pi_t, \varphi \rangle = E \left[\varphi(X_t) | \mathcal{F}_t^Y \right], \quad \text{a.s.}$$

$\{\Pi_t = \text{Law}(X_t | \mathcal{F}_t^Y)\}_{t \in [0, T]}$ is a $\mathcal{P}(\mathbb{R}^d)$-valued process called filter.
Define Q by

$$
\frac{dQ}{dp}|_{\mathcal{F}_t} = M_t^{-1} = \exp \left\{ -\frac{1}{2} \int_0^t |h(X_s)|^2 \, ds - \int_0^t h(X_s) \, dB_s \right\}.
$$
Define \mathbb{Q} by
$$\frac{d\mathbb{Q}}{d\mathbb{P}}|_{\mathcal{F}_t} = M_t^{-1} = \exp\left\{-\frac{1}{2} \int_0^t |h(X_s)|^2 \, ds - \int_0^t h(X_s) \, dB_s\right\}.$$

Theorem (Kallianpur-Striebel formula)

The filter Π can be represented as
$$\langle \Pi_t, \varphi \rangle = \frac{\langle \rho_t, \varphi \rangle}{\langle \rho_t, 1 \rangle}, \quad t \in [0, T], \varphi \in C_b(\mathbb{R}^d),$$

where $\langle \rho_t, \varphi \rangle = \mathbb{E}^\mathbb{Q}[M_t \varphi(X_t)|\mathcal{F}_t]$.

\{\rho_t\}_{t\in[0,T]} is a $\mathcal{M}^+(\mathbb{R}^d)$-valued process called **unnormalized filter**.
Stochastic filtering The unnormalized filter

Define \mathcal{Q} by
\[\frac{d\mathcal{Q}}{d\mathcal{P}}|_{\mathcal{F}_t} = M_t^{-1} = \exp \left\{ -\frac{1}{2} \int_0^t |h(X_s)|^2 \, ds - \int_0^t h(X_s) \, dB_s \right\}. \]

Theorem (Kallianpur-Striebel formula)

The filter Π can be represented as
\[\langle \Pi_t, \varphi \rangle = \frac{\langle \rho_t, \varphi \rangle}{\langle \rho_t, 1 \rangle}, \quad t \in [0, T], \varphi \in C_b(\mathbb{R}^d), \]
where
\[\langle \rho_t, \varphi \rangle = \mathbb{E}^{\mathcal{Q}} \left[M_t \varphi(X_t) | \mathcal{F}_t^Y \right]. \]

\{\rho_t\}_{t \in [0, T]} is a $\mathcal{M}^+(\mathbb{R}^d)$-valued process called **unnormalized filter**.

Y is a brownian motion under \mathcal{Q}.
Stochastic filtering

The unnormalized filter

Define \(Q \) by
\[
\frac{dQ}{dP} |_{\mathcal{F}_t} = M_t^{-1} = \exp \left\{ -\frac{1}{2} \int_0^t |h(X_s)|^2 \, ds - \int_0^t h(X_s) \, dB_s \right\}.
\]

Theorem (Kallianpur-Striebel formula)

The filter \(\Pi \) can be represented as
\[
\langle \Pi_t, \varphi \rangle = \frac{\langle \rho_t, \varphi \rangle}{\langle \rho_t, 1 \rangle}, \quad t \in [0, T], \varphi \in C_b(\mathbb{R}^d),
\]
where \(\langle \rho_t, \varphi \rangle = \mathbb{E}^Q [M_t \varphi(X_t) | \mathcal{F}_t^Y] \).

\(\{\rho_t\}_{t \in [0, T]} \) is a \(\mathcal{M}^+(\mathbb{R}^d) \)-valued process called unnormalized filter.

\(Y \) is a brownian motion under \(Q \). By Itô formula applied to \(M_t \varphi(X) \) we obtain

The Zakai equation (Z)

The unnormalized filter satisfies, for every test \(\varphi \),
\[
d\langle \rho_t, \varphi \rangle = \langle \rho_t, A \varphi \rangle \, dt + \langle \rho_t, h \varphi \rangle \, dY_t, \quad t \in (0, T],
\]
where \(A \) is the infinitesimal generator of \(X \).
Stochastic filtering Kushner-Stratonovitch equation

Let A be the generator of X: $A \varphi = b^T (D_x \varphi) + \frac{1}{2} \text{tr}\{(D_x^2 \varphi)\sigma \sigma^T\}$.

The Zakai equation (Z)

The unnormalized filter satisfies, for every test φ,

$$d \langle \rho_t, \varphi \rangle = \langle \rho_t, A \varphi \rangle \, dt + \langle \rho_t, h \varphi \rangle \, dY_t, \quad t \in (0, T],$$

where Y is a Brownian motion under \mathbb{Q}.

Mattia Martini
Let A be the generator of X: $A\varphi = b^\top (D_x \varphi) + \frac{1}{2} \text{tr}\{ (D_x^2 \varphi) \sigma \sigma^\top \}$.

The Zakai equation (Z)

The unnormalized filter satisfies, for every test φ,

$$d\langle \rho_t, \varphi \rangle = \langle \rho_t, A \varphi \rangle \, dt + \langle \rho_t, h \varphi \rangle \, dY_t, \quad t \in (0, T],$$

where Y is a Brownian motion under Q.

Using the Kallianpur-Striebel formula

The Kushner-Stratonovich equation (KS)

The filter satisfies, for every test φ,

$$d\langle \Pi_t, \varphi \rangle = \langle \Pi_t, A \varphi \rangle \, dt + (\langle \Pi_t, h \varphi \rangle - \langle \Pi_t, \varphi \rangle \langle \Pi_t, h \rangle) \, dl_t, \quad t \in (0, T],$$

where $\{l_t\}_{t \in [0, T]}$ is called **innovation process** and is a Brownian motion under P.
Stochastic filtering

Example: Kalman-Bucy filter

Signal:

\[dX_t = b_t X_t \, dt + \sigma_t \, dW_t, \quad a^{ij}_t = \sigma_t \sigma^T_t, \]

\[A_t \varphi(x) = D_x \varphi(x)^T b_t x + \frac{1}{2} \sum_{i,j} a^{ij}_t \partial^2_{ij} \varphi(x). \]
Stochastic filtering Example: Kalman-Bucy filter

Signal:
\[
dX_t = b_t X_t \, dt + \sigma_t \, dW_t, \quad a_{ij}^t = \sigma_t \sigma_t^T,
\]
\[
A_t \varphi(x) = D_x \varphi(x)^\top b_t x + \frac{1}{2} \sum_{i,j} a_{ij}^t \partial_{ij}^2 \varphi(x).
\]

Observation:
\[
dY_t = h_t X_t \, dt + dB_t, \quad Y_0 = 0.
\]

\((X, Y)\) is a gaussian process.
Stochastic filtering Example: Kalman-Bucy filter

Signal:
\[dX_t = b_t X_t \, dt + \sigma_t \, dW_t, \quad a_{ij}^t = \sigma_t \sigma_t^\top, \]
\[A_t \varphi(x) = D_x \varphi(x)^\top b_t x + \frac{1}{2} \sum_{i,j} a_{ij}^t \partial_{ij}^2 \varphi(x). \]

Observation:
\[dY_t = h_t X_t \, dt + dB_t, \quad Y_0 = 0. \]

\((X, Y)\) is a gaussian process.

The filter \(\Pi \) solves
\[d\langle \Pi_t, \varphi \rangle = \langle \Pi_t, A_s \varphi \rangle \, dt + \langle \Pi_t, \varphi h_t^\top \iota \rangle \, dl_t - \langle \Pi_t, \varphi \rangle \langle \Pi_t, h^\top \iota \rangle \, dl_t, \]
\[\iota(x) = x. \]
Stochastic filtering Example: Kalman-Bucy filter

Signal:
\[dX_t = b_t X_t \, dt + \sigma_t \, dW_t, \quad a_t^{ij} = \sigma_t \sigma_t^T, \]
\[A_t \varphi(x) = D_x \varphi(x)^T b_t x + \frac{1}{2} \sum_{i,j} a_t^{ij} \partial_{ij}^2 \varphi(x). \]

Observation:
\[dY_t = h_t X_t \, dt + dB_t, \quad Y_0 = 0. \]

\((X, Y)\) is a gaussian process.

The filter \(\Pi \) solves
\[d\langle \Pi_t, \varphi \rangle = \langle \Pi_t, A_s \varphi \rangle \, dt + \langle \Pi_t, \varphi h_t^T \iota \rangle \, dl_t - \langle \Pi_t, \varphi \rangle \langle \Pi_t, h^T \iota \rangle \, dl_t, \]
\[\iota(x) = x. \] Moreover, for \(\omega \in \Omega \) fixed, \(\Pi_t(\omega) \) is gaussian with
- **Mean** \(\hat{X}_t \) that solves the SDE
 \[d\hat{X}_t = b_t \hat{X}_t \, dt + \gamma_t h_t \, dl_t, \quad l_t = Y_t - \int_0^t h_s \hat{X}_s \, ds. \]
- **Deterministic variance** that solves the Riccati equation
 \[\frac{d}{dt} \gamma_t = \gamma_t b_t^T + b_t \gamma_t + a_t - \gamma_t (h^T h) \gamma_t^T. \]
Let $\{\rho_t\}_{t \in [0, T]}$ be a solution to (Z), i.e. for every test φ
\[d\langle \rho_t, \varphi \rangle = \langle \rho_t, A\varphi \rangle \, dt + \langle \rho_t, h\varphi \rangle \, dY_t, \quad t \in (0, T). \]
Itô formula for the Zakai equation

Let \(\{ \rho_t \}_{t \in [0,T]} \) be a solution to (Z), i.e. for every test \(\varphi \)

\[
d\langle \rho_t, \varphi \rangle = \langle \rho_t, A \varphi \rangle \, dt + \langle \rho_t, h \varphi \rangle \, dY_t, \quad t \in (0, T].
\]

Hypotheses (H)

a. \(b, \sigma, h \) are Borel-measurable and bounded, \(b, \sigma \) are Lipschitz;

b. The matrix \(\sigma \sigma^\top (x) \) is positive definite for every \(x \in \mathbb{R}^d \).
Ito formula for the Zakai equation

Let \(\{\rho_t\}_{t \in [0,T]} \) be a solution to (Z), i.e. for every test \(\varphi \)
\[
d\langle \rho_t, \varphi \rangle = \langle \rho_t, A\varphi \rangle \, dt + \langle \rho_t, h\varphi \rangle \, dY_t, \quad t \in (0, T].
\]

Hypotheses (H)

a. \(b, \sigma, h \) are Borel-measurable and bounded, \(b, \sigma \) are Lipschitz;
b. The matrix \(\sigma \sigma^\top(x) \) is positive definite for every \(x \in \mathbb{R}^d \).

Proposition (M. [6])

Let \(u \) be in \(\mathcal{C}^2_L(\mathcal{M}_2^+(\mathbb{R}^d)) \) and let us assume (H). Then, for every \(t \in [0, T] \):
\[
du(\rho_t) = \langle \rho_t, A\delta u(\rho_t) \rangle \, dt + \langle \rho_t, h\delta u(\rho_t) \rangle \, dY_t + \frac{1}{2} \langle \rho_t \otimes \rho_t, h^\top h\delta^2 u(\rho_t) \rangle \, dt.
\]
Itô formula for the Zakai equation

Let \(\{ \rho_t \}_{t \in [0,T]} \) be a solution to (Z), i.e. for every test \(\varphi \)
\[
d\langle \rho_t, \varphi \rangle = \langle \rho_t, A \varphi \rangle \, dt + \langle \rho_t, h \varphi \rangle \, dY_t, \quad t \in (0, T].
\]

Hypotheses (H)

a. \(b, \sigma, h \) are Borel-measurable and bounded, \(b, \sigma \) are Lipschitz;
b. The matrix \(\sigma \sigma^\top (x) \) is positive definite for every \(x \in \mathbb{R}^d \).

Proposition (M. [6])

Let \(u \) be in \(C^2_L(\mathcal{M}_2^+(\mathbb{R}^d)) \) and let us assume (H). Then, for every \(t \in [0, T] \):
\[
du(\rho_t) = \langle \rho_t, A \delta_{\mu} u(\rho_t) \rangle \, dt + \langle \rho_t, h \delta_{\mu} u(\rho_t) \rangle \, dY_t + \frac{1}{2} \langle \rho_t \otimes \rho_t, h^\top h \delta_{\mu}^2 u(\rho_t) \rangle \, dt.
\]

- \(\delta_{\mu} u \) is a notions of derivatives for \(u : \mathcal{M}^+(\mathbb{R}^d) \to \mathbb{R} \):
 \[
 \delta_{\mu} u : \mathcal{M}^+(\mathbb{R}^d) \times \mathbb{R}^d \to \mathbb{R}, \quad \delta_{\mu}^2 u : \mathcal{M}^+(\mathbb{R}^d) \times \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R};
 \]
- Proof by cylindrical approximation: \(u(\mu) := g(\langle \mu, \psi_1 \rangle, \ldots, \langle \mu, \psi_n \rangle) \).

Mattia Martini
The generator $\mathcal{L} : C^2_{L}(\mathcal{M}_2^+(\mathbb{R}^d)) \to C_b(\mathcal{M}_2^+(\mathbb{R}^d))$
The infinitesimal generator of the Zakai equation

The generator $\mathcal{L} : C^2_L(\mathcal{M}_2^+(\mathbb{R}^d)) \to C_b(\mathcal{M}_2^+(\mathbb{R}^d))$

$$(\mathcal{L}u)(\mu) = \langle \mu, A\delta_\mu u(\mu) \rangle + \frac{1}{2} \langle \mu \otimes \mu, h^\top h\delta_\mu^2 u(\mu) \rangle$$

$$= \int_{\mathbb{R}^d} (A\delta_\mu u)(\mu, x) \mu(\,dx) + \frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} h(x)^\top h(y)\delta_\mu^2 u(\mu, x, y) \mu(\,dx) \mu(\,dy).$$
The infinitesimal generator of the Zakai equation

The generator \(\mathcal{L} : C^2_L(\mathcal{M}_2^+ (\mathbb{R}^d)) \to C_b(\mathcal{M}_2^+ (\mathbb{R}^d)) \)

\[
(\mathcal{L}u)(\mu) = \langle \mu, A\delta_\mu u(\mu) \rangle + \frac{1}{2} \langle \mu \otimes \mu, h^\top h\delta_\mu^2 u(\mu) \rangle \\
= \int_{\mathbb{R}^d} (A\delta_\mu u)(\mu, x)\mu(\,dx) + \frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} h(x)^\top h(y)\delta_\mu^2 u(\mu, x, y)\mu(\,dx)\mu(\,dy).
\]

Remark

- Formally \(d\rho_t = A^* \rho_t \, dt + h^\top \rho_t \, dY_t \), so:

\[
du(\rho_t) = \langle A^* \rho_t, \delta_\mu u(\rho_t) \rangle \, dt + \langle h^\top \rho_t, \delta_\mu u(\rho_t) \rangle \, dY_t + \frac{1}{2} \langle h^\top \rho_t \otimes h\rho_t, \delta_\mu^2 u(\rho_t) \rangle \, dt.
\]
The infinitesimal generator of the Zakai equation

The generator $\mathcal{L} : C^2_{\mathcal{L}}(\mathcal{M}^+_2(\mathbb{R}^d)) \to C_b(\mathcal{M}^+_2(\mathbb{R}^d))$

$$(\mathcal{L}u)(\mu) = \langle \mu, A\delta_{\mu}u(\mu) \rangle + \frac{1}{2} \langle \mu \otimes \mu, h^\top h\delta^2_{\mu}u(\mu) \rangle$$

$$= \int_{\mathbb{R}^d} (A\delta_{\mu}u)(\mu, x)\mu(dx) + \frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} h(x)^\top h(y)\delta^2_{\mu}u(\mu, x, y)\mu(dx)\mu(dy).$$

Remark

- Formally $d\rho_t = A^\ast \rho_t \, dt + h^\top \rho_t \, dY_t$, so:

$$du(\rho_t) = \langle A^\ast \rho_t, \delta_{\rho_t}(\rho_t) \rangle \, dt + \langle h^\top \rho_t, \delta_{\rho_t}(\rho_t) \rangle \, dY_t + \frac{1}{2} \langle h^\top \rho_t \otimes h\rho_t, \delta^2_{\rho_t}(\rho_t) \rangle \, dt.$$

- On \mathbb{R}, if $dX_t = bX_t \, dt + \sigma X_t \, dB_t$, then

$$du(X_t) = bX_t \, D_x u(X_t) \, dt + \sigma X_t \, D_x u(X_t) \, dB_t + \frac{1}{2} \sigma^2 X_t^2 \, D_x^2 u(X_t) \, dt.$$
The backward Kolmogorov equation

Existence and uniqueness

Let

\[(Lu)(\mu) = \langle \mu, A\delta_\mu u(\mu) \rangle + \frac{1}{2} \langle \mu \otimes \mu, h^\top h\delta_{\mu}^2 u(\mu) \rangle.\]

(5)
Let

$$(Lu)(\mu) = \langle \mu, A\delta_{\mu} u(\mu) \rangle + \frac{1}{2} \langle \mu \otimes \mu, h^\top h \delta_{\mu}^2 u(\mu) \rangle.$$ \hfill (5)

Given $\Phi: \mathcal{M}_2^+(\mathbb{R}^d) \to \mathbb{R}$, the Backward Kolmogorov equation (BEZ) reads as

$$\begin{cases}
 \partial_s u(\mu, s) + Lu(\mu, s) = 0, \quad (\mu, s) \in \mathcal{M}_2^+(\mathbb{R}^d) \times [0, T], \\
 u(\mu, T) = \Phi(\mu), \quad \mu \in \mathcal{M}_2^+(\mathbb{R}^d).
\end{cases}$$
Let
\[(L u)(\mu) = \langle \mu, A \delta \mu u(\mu) \rangle + \frac{1}{2} \langle \mu \otimes \mu, h^\top h \delta^2 \mu u(\mu) \rangle.\] (5)

Given $\Phi : M_2^+ (\mathbb{R}^d) \to \mathbb{R}$, the Backward Kolmogorov equation (BEZ) reads as
\[
\begin{cases}
\partial_s u(\mu, s) + Lu(\mu, s) = 0, & (\mu, s) \in M_2^+ (\mathbb{R}^d) \times [0, T], \\
u(\mu, T) = \Phi(\mu), & \mu \in M_2^+ (\mathbb{R}^d).
\end{cases}
\]

Let $\{\rho_t^{s, \mu}\}_{t \in [s, T]}$ be a solution to (Z) starting at time s from $\mu \in M_2^+ (\mathbb{R}^d)$.

Theorem (M. [6]) Let $\Phi \in C^2 L (M_2^+ (\mathbb{R}^d))$. Let (H) holds and let us set
\[
u(\mu, s) := E[\Phi(\rho_s^{s, \mu})], \quad (\mu, s) \in M_2^+ (\mathbb{R}^d) \times [0, T].\] (6)
Then u is the unique classical solution to (BEZ).
Let
\[(\mathcal{L}u)(\mu) = \langle \mu, A\delta_\mu u(\mu) \rangle + \frac{1}{2} \langle \mu \otimes \mu, h^\top h \delta^2_\mu u(\mu) \rangle.\] (5)

Given \(\Phi: \mathcal{M}^+_2(\mathbb{R}^d) \to \mathbb{R}\), the **Backward Kolmogorov equation** (BEZ) reads as
\[
\begin{aligned}
\partial_s u(\mu, s) + \mathcal{L} u(\mu, s) &= 0, \quad (\mu, s) \in \mathcal{M}^+_2(\mathbb{R}^d) \times [0, T], \\
u(\mu, T) &= \Phi(\mu), \quad \mu \in \mathcal{M}^+_2(\mathbb{R}^d).
\end{aligned}
\]

Let \(\{\rho_t^{s, \mu}\}_{t \in [s, T]}\) be a solution to (Z) starting at time \(s\) from \(\mu \in \mathcal{M}^+_2(\mathbb{R}^d)\).

Theorem (M. [6])
Let \(\Phi \in C^2_L(\mathcal{M}^+_2(\mathbb{R}^d))\). Let (H) holds and let us set
\[
u(\mu, s) := \mathbb{E}[\Phi(\rho_t^{s, \mu})], \quad (\mu, s) \in \mathcal{M}^+_2(\mathbb{R}^d) \times [0, T].\] (6)

Then \(u\) is the unique classical solution to (BEZ).
Uniqueness:

- By the Itô formula, every classical solution to (BEZ) has the form

\[u(\mu, s) = \mathbb{E} \left[\Phi(\rho_{s}^{s, \mu}) \right]. \]
Proof (key steps)

Uniqueness:

- By the Itô formula, every classical solution to (BEZ) has the form

\[u(\mu, s) = \mathbb{E} \left[\Phi(\rho_{T}^{s, \mu}) \right] . \]

Existence:

- Prove that \(\mu \mapsto u(\mu, s) := \mathbb{E} \left[\Phi(\rho_{T}^{s, \mu}) \right] \) is in \(C_{L}^{2}(\mathcal{M}_{2}^{+}(\mathbb{R}^{d})) \):
Proof (key steps)

Uniqueness:

• By the Itô formula, every classical solution to (BEZ) has the form

\[u(\mu, s) = \mathbb{E} \left[\Phi(\rho^s_{\tau}, \mu) \right]. \]

Existence:

• Prove that \(\mu \mapsto u(\mu, s) := \mathbb{E} \left[\Phi(\rho^s_{\tau}, \mu) \right] \) is in \(C^2_{\mathcal{L}}(\mathcal{M}_2^+(\mathbb{R}^d)) \):

 • given a suitable notion of derivative for functions from \(C^2_{\mathcal{L}}(\mathcal{M}_2^+(\mathbb{R}^d)) \) to \(C^2_{\mathcal{L}}(\mathcal{M}_2^+(\mathbb{R}^d)) \), we show that \(\mu \mapsto \rho^s_{\tau, \mu} \) is twice differentiable;
Proof (key steps)

Uniqueness:

- By the Itô formula, every classical solution to (BEZ) has the form
 \[u(\mu, s) = \mathbb{E} [\Phi(\rho_{T}^{s,\mu})] . \]

Existence:

- Prove that \(\mu \mapsto u(\mu, s) := \mathbb{E} [\Phi(\rho_{T}^{s,\mu})] \) is in \(C_{L}^{2}(\mathcal{M}_{2}^{+}(\mathbb{R}^{d})) \):
 - given a suitable notion of derivative for functions from \(C_{L}^{2}(\mathcal{M}_{2}^{+}(\mathbb{R}^{d})) \) to \(C_{L}^{2}(\mathcal{M}_{2}^{+}(\mathbb{R}^{d})) \), we show that \(\mu \mapsto \rho_{T}^{s,\mu} \) is twice differentiable;
 - since \(\Phi \in C_{L}^{2}(\mathcal{M}_{2}^{+}(\mathbb{R}^{d})) \) and by the previous point, we conclude by a chain rule.
Proof (key steps)

Uniqueness:

• By the Itô formula, every classical solution to (BEZ) has the form

$$u(\mu, s) = \mathbb{E} \left[\Phi(\rho^s_{T, \mu}) \right].$$

Existence:

• Prove that $\mu \mapsto u(\mu, s) := \mathbb{E} \left[\Phi(\rho^s_{T, \mu}) \right]$ is in $C^2_L(\mathcal{M}_2^+(\mathbb{R}^d))$:

 - given a suitable notion of derivative for functions from $C^2_L(\mathcal{M}_2^+(\mathbb{R}^d))$ to $C^2_L(\mathcal{M}_2^+(\mathbb{R}^d))$, we show that $\mu \mapsto \rho^s_{T, \mu}$ is twice differentiable;
 - since $\Phi \in C^2_L(\mathcal{M}_2^+(\mathbb{R}^d))$ and by the previous point, we conclude by a chain rule.

• By Itô formula and Markov property

$$\lim_{h \to 0} \frac{1}{h} \left[u(\mu, s + h) - u(\mu, s) \right] = -\lim_{h \to 0} \frac{1}{h} \mathbb{E} \left[\int_s^{s+h} \mathcal{L}u(\rho^s_{T, \mu}, s + h) \, d\tau \right] = -\mathcal{L}u(\mu, s).$$
The Kushner-Stratonovich equation case

The operator $L^{KS}: C^2_L(\mathcal{P}_2(\mathbb{R}^d)) \rightarrow C_b(\mathcal{P}_2(\mathbb{R}^d))$

$$L^{KS}u(\pi) = \langle \pi, A\delta_\mu u(\pi) \rangle + \frac{1}{2} \langle \pi \otimes \pi, (h - \pi(h))^\top(h - \pi(h))\delta_{\mu}^2 u(\pi) \rangle.$$
The Kushner-Stratonovich equation case

The operator $\mathcal{L}^\text{KS}: \mathcal{C}^2_L(\mathcal{P}_2(\mathbb{R}^d)) \to \mathcal{C}_b(\mathcal{P}_2(\mathbb{R}^d))$

\[\mathcal{L}^\text{KS} u(\pi) = \langle \pi, A\delta_\mu u(\pi) \rangle + \frac{1}{2} \langle \pi \otimes \pi, (h - \pi(h))^\top (h - \pi(h))\delta_\mu u(\pi) \rangle. \]

Given $\Phi: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$, the Backward Kolmogorov equation (BEKS) reads as

\[
\begin{cases}
\partial_s u(\pi, s) + \mathcal{L}^\text{KS} u(\pi, s) = 0, & (\pi, s) \in \mathcal{P}_2(\mathbb{R}^d) \times [0, T], \\
u(\pi, T) = \Phi(\pi), & \pi \in \mathcal{P}_2(\mathbb{R}^d).
\end{cases}
\]
The Kushner-Stratonovich equation case

The operator $L^{KS}: C^2_L(\mathcal{P}_2(\mathbb{R}^d)) \to C_b(\mathcal{P}_2(\mathbb{R}^d))$

$$L^{KS}u(\pi) = \langle \pi, A\delta\mu u(\pi) \rangle + \frac{1}{2} \langle \pi \otimes \pi, (h - \pi(h))^\top (h - \pi(h))\delta^2\mu u(\pi) \rangle.$$

Given $\Phi: \mathcal{P}_2(\mathbb{R}^d) \to \mathbb{R}$, the Backward Kolmogorov equation (BEKS) reads as

$$ \begin{cases}
\partial_s u(\pi, s) + L^{KS}u(\pi, s) = 0, & (\pi, s) \in \mathcal{P}_2(\mathbb{R}^d) \times [0, T], \\
u(\pi, T) = \Phi(\pi), & \pi \in \mathcal{P}_2(\mathbb{R}^d).
\end{cases} $$

Let $\{\Pi_t^{s,\pi}\}_{t \in [s, T]}$ be a solution to (KS) starting at time s from $\pi \in \mathcal{P}_2(\mathbb{R}^d)$:

$$d\langle \Pi_t, \psi \rangle = \langle \Pi_t, A\psi \rangle \, dt + (\langle \Pi_t, h\psi \rangle - \langle \Pi_t, \psi \rangle \langle \Pi_t, h \rangle) \cdot dl_t, \quad t \in (0, T]. \quad (7)$$

Theorem (M. [6])

Let $\Phi \in C^2_L(\mathcal{P}_2(\mathbb{R}^d))$. Let (H) holds and let us set

$$u(\pi, s) = E \left[\Phi(\Pi_T^{s,\pi}) \right], \quad (\pi, s) \in \mathcal{P}_2(\mathbb{R}^d) \times [0, T].$$

Then u is the unique classical solution to (BEKS).
The Kushner-Stratonovich equation case Viscosity approach

\[K \subset \mathbb{R}^d \text{ compact, } \Phi \in C_b(\mathcal{P}_2(K)): \]

\[
\begin{cases}
 \partial_s u(\pi, s) + \mathcal{L}^{KS} u(\pi, s) = 0, \quad (\pi, s) \in \mathcal{P}_2(K) \times (0, T], \\
 u(\pi, T) = \Phi(\pi), \quad \pi \in \mathcal{P}_2(K).
\end{cases}
\]

Let \(\{\Pi_t^{s, \pi}\}_{t \in [s, T]} \) be a solution to (KS) confined in \(\mathcal{P}_2(K) \).

Theorem (M. [7])

Let \(\Phi \in C_b(\mathcal{P}_2(K)) \). Let (H) holds and let us set

\[
u(\pi, s) = \mathbb{E}\left[\Phi(\Pi_t^{s, \pi}) \right], \quad (\pi, s) \in \mathcal{P}_2(K) \times (0, T].
\]

Then \(u \) is the unique viscosity solution to (BEKS).
Proof of the comparison principle (Key steps)

Let u_1 and u_2 be respectively a subsolution and a supersolution to (BEKS). Moreover, let $u(\pi, s) := \mathbb{E} \left[\Phi(\Pi_s^\pi) \right]$. We want to show that $u_1 \leq u_2$.

- Show: $u_1 \leq u$ and $u \leq u_2$.
- Introduce a family of approximated problems:

$$\begin{cases}
\partial_s u(\pi, s) + \mathcal{L}^{KS} u(\pi, s) = 0, & (\pi, s) \in \mathcal{P}_2(K) \times (0, T], \\
u(\pi, T) = \Phi_n(\pi) \in C^2_L(\mathcal{P}_2(K)), & \pi \in \mathcal{P}_2(K).
\end{cases}$$

- $u^n(\pi, s) := \mathbb{E} \left[\Phi_n(\Pi_s^\pi) \right]$ is a classical solution to the approximated problem which converges to u.
- Using the Borwein-Preiss variational principle with a suitable smooth gauge-type function, we introduce a suitable test function that allows us to conclude.
Thank you!
References

[1] L. AMBROSIO, N. GIGLI AND G. SAVARÈ. Gradient Flows In Metric Spaces and in the Space of Probability Measures, Birkhäuser Basel, 2005.

[2] E. BANDINI, A. COSSO, M. FUHRMAN, AND H. PHAM. Randomized filtering and Bellman equation in Wasserstein space for partial observation control problem, Stochastic Process. Appl, 2019.

[3] R. CARMONA AND F. DELARUE. Probabilistic Theory of Mean Field Games with Applications, Vol. I-II, Springer, 2018.

[4] F. GOZZI AND A. ŚWIĘCH. Hamilton-Jacobi-Bellman equations for the optimal control of the Duncan-Mortensen-Zakai equation, J. Funct. Anal., 2000.

[5] P.-L. LIONS. Cours au Collège de France, 2007-2013.

[6] M. MARTINI. Kolmogorov equations on spaces of measures associated to nonlinear filtering processes, arXiv preprint, 2021.

[7] M. MARTINI. Kolmogorov equations on the space of probability measures associated to the nonlinear filtering equation: the viscosity approach, arXiv preprint, 2022.

[8] E. PARDOUX. Filtrage non lineaire et equations aux derivees partielles stochastiques associées, Saint-Flour XIX, Springer, 1991.

[9] B. L. ROZOVSKY. Stochastic Evolution Systems, Springer, 1990.
Spaces of measures Linear functional derivatives

Linear functional derivative

\[u: \mathcal{M}^+(\mathbb{R}^d) \to \mathbb{R} \text{ is in } C^1_b(\mathcal{M}^+(\mathbb{R}^d)) \text{ if it is continuous, bounded and if exists} \]

\[\delta_\mu u: \mathcal{M}^+(\mathbb{R}^d) \times \mathbb{R}^d \ni (\mu, x) \mapsto \delta_\mu u(\mu, x) \in \mathbb{R}, \]

bounded, continuous and such that for all \(\mu \) and \(\mu' \) in \(\mathcal{M}^+(\mathbb{R}^d) \), it holds:

\[
 u(\mu') - u(\mu) = \int_0^1 \int_{\mathbb{R}^d} \delta_\mu u \left(t \mu' + (1-t)\mu, x \right) [\mu' - \mu](dx) \, dt. \tag{8}
\]

Similarly we can define \(C^k_b(\mathcal{M}^+(\mathbb{R}^d)), k \in \mathbb{N} \).

Example

Let \(g \in C^2_b(\mathbb{R}) \) and let \(\psi \in C_b(\mathbb{R}^d) \). We define

\[u: \mathcal{M}^+(\mathbb{R}^d) \ni \mu \mapsto g(\langle \mu, \psi \rangle) \in \mathbb{R}. \]

Then \(u \in C^2_b(\mathcal{M}^+(\mathbb{R}^d)) \) and it holds:

\[
 \delta_\mu u(\mu, x) = g'(\langle \mu, \psi \rangle) \psi(x), \quad \delta^2_\mu u(\mu, x, y) = g''(\langle \mu, \psi \rangle) \psi(x)\psi(y).\]
The space $C^2_L(M^+(\mathbb{R}^d))$

$u: M^+(\mathbb{R}^d) \rightarrow \mathbb{R}$ is in $C^2_L(M^+(\mathbb{R}^d))$ if:

a. u is in $C^2_B(M^+(\mathbb{R}^d))$;

b. $\mathbb{R}^d \ni x \mapsto \delta_\mu u(\mu, x) \in \mathbb{R}$ is twice differentiable, with continuous and bounded derivatives on $M^+(\mathbb{R}^d) \times \mathbb{R}^d$.

We set

$$D_\mu u(\mu, x) := D_x \delta_\mu u(\mu, x) \in \mathbb{R}^d,$$

Remark

On $\mathcal{P}_2(\mathbb{R}^d)$, the derivative $D_\mu u$ coincides with the one introduced by P.-L. Lions through the lifting procedure in the context of mean field games ([5, 3]).
1. Prove the formula for functions of the form

\[u: \mathcal{M}_2^+ (\mathbb{R}^d) \ni \mu \mapsto g (\langle \mu, \psi_1 \rangle, \ldots, \langle \mu, \psi_n \rangle), \]

exploiting classical Itô formula and the Zakai equation.

2. Prove the formula for functions of the form

\[u(\mu) = \langle \frac{\mu^r}{\mu(\mathbb{R}^d)^r}, \varphi(\cdot, \ldots, \cdot, \mu(\mathbb{R}^d)) \rangle \]

by approximation, where \(\varphi: \mathbb{R}^{d \times r+1} \rightarrow \mathbb{R} \) is symmetrical in the first \(r \) arguments.

3. Prove the formula for functions in \(C^2_L (\mathcal{M}_2^+ (\mathbb{R}^d)) \) by approximation.
The backward Kolmogorov equation Existence and uniqueness

Theorem (M. [6])

Let us set

\[u(\mu, s) = \mathbb{E} \left[\Phi(\rho_T^{s, \mu}) \right], \tag{9} \]

where \(\rho_T^{s, \mu} \) is the weak solution to the Zakai equation starting at time \(s \) from \(\mu \in \mathcal{M}_2^+ (\mathbb{R}^d) \), \(\Phi \in C^2_{L}(\mathcal{M}_2^+ (\mathbb{R}^d)) \) and let (H) hold. Then \(u \) is the unique classical solution to the backward Kolmogorov equation (BEZ).

Proof (uniqueness)

We show that if \(u \) is a classical solution to (BEZ), then \(u(\mu, s) = \mathbb{E} \left[\Phi(\rho_T^{s, \mu}) \right] \).

- By the Itô formula

\[u(\rho_T^{s, \mu}, T) - u(\rho_s^{s, \mu}, s) = \int_s^T \left\{ \partial_s u(\rho_T^{s, \mu}, \tau) + \mathcal{L} u(\rho_T^{s, \mu}, \tau) \right\} \, d\tau + \int_s^T \mathcal{G} u(\rho_T^{s, \mu}, \tau) \cdot dY_\tau. \]

- By taking the expectation and since \(u \) solves (BEZ)

\[\mathbb{E} \left[\Phi(\rho_T^{s, \mu}) \right] - u(\mu, s) = \mathbb{E} \left[\int_s^T \mathcal{G} u(\rho_T^{s, \mu}, \tau) \cdot dY_\tau \right]. \]

- The rhs is zero since the integral is a martingale, thus \(u(\mu, s) = \mathbb{E} \left[\Phi(\rho_T^{s, \mu}) \right] \).
The backward Kolmogorov equation
Existence and uniqueness

Proof (existence)

Let $u(\mu, s) = \mathbb{E} \left[\Phi(\rho^s_T, \mu) \right]$ be our candidate solution.

1. Prove that $\mu \mapsto u(\mu, s)$ is in $C^2_L(M^+_T(R^d))$:
 - given a suitable notion of derivative for functions from $C^2_L(M^+_T(R^d))$ to $C^2_L(M^+_T(R^d))$, we show that $\mu \mapsto \rho^s_T, \mu$ is twice differentiable;
 - since $\Phi \in C^2_L(M^+_T(R^d))$ and by the previous point, we conclude by a chain rule.

2. Prove the continuity of

 $[0, T] \ni s \mapsto Lu(\mu, s), \quad [s, T] \times [0, T] \ni (\tau, \sigma) \mapsto Lu(\rho^s_T, \mu, \tau) \in L^2(\Omega)$.

3. By the Itô formula and the Markov property

 $$\lim_{h \to 0} \frac{1}{h} \left[u(\mu, s + h) - u(\mu, s) \right] = -\lim_{h \to 0} \frac{1}{h} \mathbb{E} \left[\int_s^{s+h} Lu(\rho^s_T, \mu, s + h) \, d\tau \right] = -Lu(\mu, s).$$