Re-engineered p53 activates apoptosis \textit{in vivo} and causes primary tumor regression in a dominant negative breast cancer xenograft model

A Okal1, KJ Matissek1,2, SJ Matissek3, R Price1, ME Salama4, MM Janát-Amsbury1,5,6 and CS Lim1,6

Inactivation of p53 pathway is reported in more than half of all human tumors and can be correlated to malignant development. Missense mutation in the DNA binding region of p53 is the most common mechanism of p53 inactivation in cancer cells. The resulting tumor-derived p53 variants, similar to wild-type (wt) p53, retain their ability to oligomerize via the tetramerization domain. Upon hetero-oligomerization, mutant p53 enforces a dominant negative effect over active wt-p53 in cancer cells. To overcome this barrier, we have previously designed a chimeric superactive p53 (p53-CC) with an alternative oligomerization domain capable of escaping transdominant inhibition by mutant p53 \textit{in vitro}. In this report, we demonstrate the superior tumor suppressor activity of p53-CC and its ability to cause tumor regression of the MDA-MB-468 aggressive p53-dominant negative breast cancer tumor model \textit{in vivo}. In addition, we illustrate the profound effects of the dominant negative effect of endogenous mutant p53 over wt-p53 in cancer cells. Finally, we investigate the underlying differential mechanisms of activity for p53-CC and wt-p53 delivered using viral-mediated gene therapy approach in the MDA-MB-468 tumor model.

\textit{Gene Therapy} (2014) 21, 903–912; doi:10.1038/gt.2014.70; published online 31 July 2014

\section*{INTRODUCTION}

The ability of p53 to achieve tumor suppressor function depends on the formation of p53 tetramers to act as a transcription factor of several target genes.1,2 Once activated, p53 stimulates a wide network of signals including DNA repair, cell cycle arrest and apoptosis.3 The significance of p53 function is highlighted by the correlation of its inactivity and malignant development. Inactivation of p53 pathway is reported in more than half of all human tumors and can be achieved via several mechanisms including nuclear exclusion and hyperactivation of MDM2, the main regulator of p53 function.4,6 However, acquisition of missense mutations in one or both alleles of the TP53 gene remains the most common mechanism of p53 inactivation.7 The majority of these mutations take place in the DNA binding domain, which is responsible for p53 interaction with DNA. Although mutant p53 in cancer cells may have impaired tumor suppressor function and transcriptional activity, it retains its ability to oligomerize with other mutant or wild-type (wt) p53 via the tetramerization domain.8,9 When mutant p53 oligomerizes with wt-p53 through hetero-oligomerization, the resulting tetramer has impaired function in most cases due to transdominant inhibition by mutant p53 (Figure 1). The outcome of this transdominant inhibition varies significantly based on the type of mutant p53 present in the cells.10 This phenomenon is known as the dominant negative effect of mutant p53 and gives rise to a critical barrier in utilizing wt-p53 for cancer gene therapy.11

Our goal was to design a new, chimeric superactive p53 with the following activity: wt-p53-like functional transcriptional activity; promotion of improved, highly potent p53-dependent apoptosis; and circumvention of the dominant negative inactivating effect of endogenous mutant p53 in cancer cells. To this end, we engineered a chimeric p53 (p53-CC) that has an alternative tetramerization domain and showed its ability to escape transdominant inhibition by mutant p53 \textit{in vitro}.12 The Bcr oligomerization domain is a 72 amino acid coiled-coil (CC) motif that serves as an alternative oligomerization domain of p53-CC to evade hetero-oligomerization with endogenous mutant p53, and hence, bypass the dominant negative effect reported in cancer cells. The CC domain itself was tested as a control previously, and was found to be nontoxic.12 p53-CC activity was found to retain similar tumor suppressor activity compared with exogenous wt-p53 in several cancer cell lines harboring different p53 statuses (null, wt, wt mislocalized and mutant nondominant). Finally, we investigated potential transdominant inhibition of p53-CC and wt-p53 via co-expression of a potent dominant negative mutant p53. As hypothesized, p53-CC retained the same levels of activity regardless of the presence of transdominant mutant p53, whereas wt-p53 showed loss of activity.12

In this report, we demonstrate the superior tumor suppressor activity of p53-CC \textit{in vitro} and \textit{in vivo} in MDA-MB-468, an aggressive p53-dominant negative breast cancer cell line. Furthermore, we investigate the underlying differential mechanisms of activity for p53-CC and wt-p53 in the MDA-MB-468 tumor model. Our viral-mediated gene therapy approach succeeds in demonstrating the effects of the transdominant effect of endogenous mutant p53 over wt-p53 but not p53-CC.
Figure 1. Schematic representation of the fates of wt-p53 (left) and p53-CC (right) in the presence of endogenous mutant p53 in cancer cells. Wt-p53 (left) is sequestered into hetero-oligomers that have an impaired transcriptional function, whereas p53-CC (right) can exclusively form homo-oligomers that retain full tumor suppressor activity.

RESULTS

p53-CC induces higher levels of cell death compared with wt-p53. We and others have shown that the MDA-MB-468 human breast adenocarcinoma cell line serves as a suitable dominant negative mutant p53 model for testing the effect of p53-CC and wt-p53. The endogenous p53 in MDA-MB-468 contains the R273H point mutation, which is known to exhibit a dominant negative effect over wt-p53. As we have shown previously, p53-CC is capable of inducing cell death in this as well as other cancer cell lines, regardless of endogenous p53 status. Figure 2 illustrates the superior tumor suppressor function of p53-CC over wt-p53 in a 7-AAD viability assay which stains apoptotic and necrotic cells (compare Figure 2a vs b). Wt-p53 activity is not significantly different from that achieved by the negative control Ad-ZsGreen1 (Figure 2b vs c). This observation illustrates the dominant negative effect of endogenous mutant p53 over wt-p53 in cancer cells and highlights the significance of our approach to escape transdominant inhibition. These results are summarized in Figure 2d.

p53-CC causes cell death via the apoptotic pathway. Figure 2 suggests that the MDA-MB-468 cell line is a suitable tumor model to test the impact of the dominant negative effect of mutant p53 in vivo. Preceding animal studies, we explored the mechanism of cell death, and hypothesized that it occurs via an apoptotic pathway. Thus, three different apoptosis assays: the tetramethylrhodamine ethyl ester (TMRE) assay (analogous to the JC-1 assay), activated caspase-3/7 assay and annexin-V staining were carried out.

Mitochondrial depolarization, measured by the loss in TMRE intensity, correlates with an increase in mitochondrial outer membrane permeabilization (MOMP). TMRE is a cationic, cell-permeant and fluorescent dye that rapidly accumulates in the mitochondria of living cells due to the negative mitochondrial membrane potential (ΔΨm) of intact mitochondria compared with cytosol. Mitochondrial depolarization results in loss of TMRE from mitochondria and a decrease in mitochondrial fluorescence intensity, illustrated as %MOMP induction in Figure 3a. Figure 3a demonstrates that p53-CC induced significantly higher levels of mitochondrial membrane permeabilization, a hallmark of intrinsic apoptosis, compared with wt-p53. Wt-p53 also induced mitochondrial membrane permeabilization, although not to the same extent as p53-CC. MOMP indicates that cells are transitioning to an apoptotic state.21

To further investigate the potential apoptotic activity of p53-CC and wt-p53, we carried out a flow cytometry-based assay to detect the levels of activated caspase-3/7 in MDA-MB-468 cells (Figure 3b). Caspase-3/7 activation is downstream from MOMP in the intrinsic apoptotic pathway and has a central role at the execution-phase of cell apoptosis. Figure 3b shows that cells treated with p53-CC display increased levels of active caspase-3/7 compared with those treated with wt-p53 or the negative control Ad-ZsGreen1.

Finally, annexin-V staining was performed, which measures externalization of phosphatidylserine on the cell surface of apoptotic cells specifically. Figure 3c shows higher levels of annexin-V positive staining in cells treated with Ad-p53-CC compared with Ad-wt-p53; wt-p53 apoptotic activity was not significantly different from the negative control Ad-ZsGreen1. Cellular apoptosis as indicated in Figure 3c parallels the results from the 7-AAD staining in Figure 2.

To summarize, Figures 3a, b and c show MDA-MB-468 cells treated with Ad-p53-CC undergo significant apoptosis, validating p53-CC as a potent candidate for gene therapy. The levels of apoptosis induced by Ad-p53-CC are statistically significant compared with that of Ad-wt-p53 or Ad-ZsGreen1 in all three apoptosis assays (Figure 3) in addition to the 7-AAD assay (Figure 2).

In vivo efficacy in a dominant negative breast cancer animal model

MDA-MB-468 human breast adenocarcinoma represents an aggressive breast cancer cell line characterized as triple negative due to the absence of molecular targets including estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2. In addition, MDA-MB-468 cells harbor a dominant negative mutant p53 capable of impairing the function of wt-p53. We therefore used this cell line to induce orthotopic breast tumors in mice to compare the impact of the dominant negative effect of mutant p53 on the biological activity of p53-CC and wt-p53 in viral-mediated gene therapy. Because of the presence of the coxsackievirus and adenovirus receptor, MDA-MB-468 cells can be transfected by adenovirus.

Induced in the mammary fat pad of female athymic nu/nu mice, MDA-MB-468 tumors orthotopically engraftment fosters tumorigenesis to occur in the appropriate macro- as well as micro-environment mimicking the environment of human MDA-MB-468 tumors. Due to this, MDA-MB-468 is a commonly used xenograft model for triple negative breast cancer. Tumors were allowed to grow to approximately 50 mm³ before randomization of treatment groups, which received intratumoral injections of Ad-p53-CC or Ad-wt-p53. The empty viral vector (Ad-ZsGreen1) served as a negative control in addition to an untreated control. Injections were made on days 0–4 and 7–11 for optimal efficacy and consisted of 5.0 x 10⁵ PFU of the viral constructs in a 50 µl volume. All procedures were performed according to established NIH guidelines and followed University of Utah Institutional Animal Care and Use Committee approved protocols.

Figure 4a shows a representative image of a tumor-bearing mouse with the mammary tumor located in the right inguinal area, while Figure 4b shows images of representative excised tumors from each treatment group. The tumor size reduction expected with these treatments served as a direct measure of the tumor suppressor function of our p53 variants. As expected, the Ad-p53-CC treatment group achieved statistically significant (P < 0.001) reduction in mean tumor size compared with Ad-wt-p53, Ad-ZsGreen1 and untreated groups (Figure 4c).
Although tumor reduction induced by Ad-wt-p53 is not statistically significant compared with the Ad-ZsGreen1 or untreated groups, Ad-wt-p53 treatment resulted in stable disease, halting tumor progression. The findings from Figure 4c reveal that p53-CC can achieve tumor regression of an aggressive p53-dominant negative breast cancer model in vivo, whereas wt-p53 is only capable of halting tumor progression. In addition, the excised tumors from the Ad-ZsGreen1 negative control and untreated groups appeared to be more vascularized compared with tumors derived from the treatment groups Ad-p53-CC and Ad-wt-p53 (Figure 4b), potentially implying an additional antiangiogenic effect of p53-CC and wt-p53 in vivo.

Animal body weights were regularly monitored throughout the study and no significant weight loss in animals was observed in any of the groups (Figure 4d) rendering the treatment as well as the viral carrier safe. Throughout the study, the Ad-p53-CC treatment group maintained the smallest mean tumor size compared with all other groups. Both control groups...
Ad-ZsGreen1 and untreated) exhibited the largest mean tumor size compared with all other groups throughout the entire study.

Histopathological evaluation of tumor tissues and evidence for tumor suppressor activity

The tumor size reduction observed in Figure 4c indicates tumor suppressor functionality of Ad-p53-CC as well as Ad-wt-p53 in vivo. To verify if this activity is indeed p53-dependent, we carried out immunohistochemical staining of p21 as it is one of the best characterized bona fide p53 target genes. Photomicrographs of representative sections from harvested tumor tissues from each group are displayed in Figure 5a. The left column in Figure 5a exhibits hematoxylin and eosin staining, whereas the middle column represents p21 immunohistochemical staining for each group. In addition, the right column in Figure 5a shows the intratumoral expression of our gene load (that is, p53-CC or wt-p53) as a function of the ZsGreen1 fluorescent protein co-expressed with our genes of interest. Microscopic examination of hematoxylin and eosin staining revealed higher levels of necrosis (solid arrows; necrosis; open arrows; nonnecrotic areas) in all tumors harvested from mice injected with Ad-p53-CC compared with the Ad-wt-p53, Ad-ZsGreen1 or untreated groups (Figure 5a). This implies that the detected necrosis may be due to the tumor suppressor activity of p53-CC as the tumors did not reach a large enough size to develop a necrotic core, and as such the observed necrosis was due to treatment, not hypoxia.

3,3’ diaminobenzidine stains the nuclei of p21-positive cells brown, as shown in photomicrographs (middle column, Figure 5a). Unexpectedly, p21 immunohistochemistry staining revealed higher levels of p21 induction in the Ad-wt-p53 treatment group compared to the Ad-p53-CC treatment group. p21 is one of the key factors by which p53 enforces cell cycle arrest. The induction of cell cycle arrest by p21 converges with findings from Figure 4c where tumors from the Ad-wt-p53 treatment group show a halt (arrest) in tumor growth. As expected, p21 expression was not detected in the Ad-ZsGreen1 negative control or untreated groups, which validates that p21 expression is linked to direct p53 activation. Similar expression of ZsGreen1 across the different groups (Ad-p53-CC, Ad-wt-p53 and Ad-ZsGreen1) in the right column of Figure 5a indicates comparable intratumoral expression of our viral constructs. In addition, p53 immunohistochemistry staining was performed and equal levels of total (that is, endogenous and exogenous) p53 expression were detected across all groups, including the untreated group, which relates to the known presence of endogenous p53 in MDA-MB-468 cells (data not shown). Figures 5b and c represent semi-quantitative histoscore analyses of tumor necrosis and p21 upregulation in the excised tumors from all groups.

Tissues from additional organs (liver, kidney, spleen, heart and lungs) harvested from animals of all treatment groups showed normal physiology and no abnormalities or signs of pathology (data not shown). However, metastases of tumor cells to the gastrointestinal region were noted in two out of six mice in the Ad-ZsGreen1 group and three out of six mice in the untreated group (data not shown). This may imply an antimetastatic function of p53-CC as well as wt-p53 in this tumor model although further examination is necessary.

Detection of pathway-specific markers for cell cycle arrest and apoptosis

Based on our observations, we postulate that p53-CC is capable of causing tumor size reduction in vivo by favoring the apoptotic pathway, whereas wt-p53 activity is biased towards inducing cell cycle arrest. To further investigate this hypothesis, we carried out...
immunoblotting of cleaved (activated) caspase-3 and p21 on samples from in vitro and in vivo. It is well known that all apoptotic pathways converge on caspase-3 (the main executioner caspase), whereas p21 induction by p53 causes cells to undergo cell cycle G1 phase arrest. Therefore, detection of activated caspase-3 and p21 are acceptable biomarkers for apoptosis and cell cycle arrest, respectively. Figure 6a shows representative western blot analyses of p21 (middle band) and caspase-3 (bottom band) of MDA-MB-468 cells in vitro. MDA-MB-468 cells treated with Ad-p53-CC express lower levels of p21 compared with cells treated with Ad-wt-p53 (Figure 6b), a clear indication of a cell cycle arrest activity of wt-p53. However, higher levels of...
activated caspase-3 (a hallmark of apoptosis induction) are detected in cells treated with Ad-p53-CC compared with Ad-wt-p53 (Figure 6c).

Part of the excised tumor tissues from each animal was homogenized and lysed for western blotting. Figure 6d shows representative western blotting of MDA-MB-468 in vivo tumor tissue lysates. Similar to the findings obtained from in vitro western blotting (Figures 6a–c), tumor tissues from the Ad-p53-CC treatment group showed lower p21 expression (Figure 6e) but higher caspase-3 induction (Figure 6f).

To further validate our hypothesis about the differential ability of p53-CC and wt-p53 to induce p21-dependent cell cycle arrest, we carried out cell cycle arrest evaluation via DNA content analysis (Figures 7a–c) in MDA-MB-468 cells. Indeed, our data suggest that wt-p53 is capable of causing higher levels of cell cycle arrest at the G0/G1 phase compared with p53-CC ($P < 0.01$; Figure 7, compare b with a). Hence, results from Figures 6 and 7 corroborate our hypothesis that p53-CC favors induction of apoptosis in vitro and in vivo, whereas wt-p53 is biased towards inducing cell cycle arrest in MDA-MB-468 cells.

DISCUSSION

The data obtained in this report supports our hypothesis that chimeric p53-CC has superior tumor suppressor function compared with wt-p53 in vitro and in vivo using a dominant negative mutant p53 model. Although the concept of a 'superactive' p53 was reported in 2010,40 there are no known reports of
constructing a p53 capable of bypassing the dominant negative effect of mutant p53 in cancer cells and increasing apoptosis (over wt-p53), p53-CC induces higher levels of cell death in vitro compared with wt-p53 in the 7-AAD assay (Figure 2) as well as in the apoptosis assays: TMRE, caspase-3/7 and annexin-V (Figure 3). To validate if the superior activity of p53-CC in vitro translates in vivo, we carried out animal studies using an orthotopic MDA-MB-468 xenograft breast cancer model in mouse mammary fat pads. Indeed, intratumoral injections with Ad-p53-CC achieved substantial tumor regression that is statistically significant compared with the Ad-wt-p53, Ad-ZsGreen1 and untreated groups (Figure 4c), without any sign of treatment toxicity (Figure 4d). Hematoxylin and eosin staining of tumor tissues revealed higher levels of necrosis in all tumor tissues from mice injected with Ad-p53-CC compared with the Ad-wt-p53, Ad-ZsGreen1 or untreated groups. To test if the observed tumor suppressor activity of p53-CC in vivo is p53-dependent, immunohistochemistry staining of p21, the most well studied p53 target gene, was conducted. As expected, p21-positive staining was observed only in the Ad-p53-CC and Ad-wt-p53 treatment groups (Figure 5a) with higher p21 staining with Ad-wt-p53 treatment.

As p53-CC was able to induce apoptosis (including caspase-3/7), and wt-p53 increased p21 expression, we explored a possible differential mechanism of p53-CC (favoring apoptosis) and wt-p53 (favoring cell cycle arrest) in MDA-MB-468 cells. To test this premise, immunoblotting was carried out on samples from in vitro (Figures 6a–c) and in vivo (Figures 6d–f) to detect expression levels of p21, which induces cell cycle arrest, and caspase-3, a major executor of apoptosis. Figure 6 revealed that tumor tissues treated with Ad-p53-CC expressed low levels of p21 (reduced cell cycle arrest) but high levels of active caspase-3 (increased apoptosis). In contrast, tumor tissues injected with Ad-wt-p53 expressed high levels of p21 (increased cell cycle arrest) but low levels of caspase-3 (decreased apoptosis).

Figures 3a–c validated that p53-CC induces higher levels of apoptosis compared with wt-p53, whereas our cell cycle arrest analysis (Figures 7a–c) revealed that wt-p53 induced higher levels of G0/G1 cell cycle arrest compared with p53-CC. These results may provide evidence that p53-CC and wt-p53 may have different mechanisms of activity in the MDA-MB-468 breast cancer model.

The transdominant mutant p53 found endogenously in MDA-MB-468 cells retains the ability to hetero-oligomerize with exogenous wt-p53, as its tetramerization domain remains intact. We and others have shown previously that upon hetero-oligomer formation, the activity of exogenous wt-p53 is impaired due to the dominant negative effect of mutant p53 in cancer cells. 12–14 Our chimeric p53-CC was designed to overcome this barrier with the use of an alternative oligomerization domain, a coiled-coil from Bcr (CC). This CC is known to tetramerize as an antiparallel dimer of dimers, similar to the tetramerization domain of wt-p53. 12,41

The use of this alternative oligomerization domain allows p53-CC to escape any possible hetero-oligomerization with mutant p53 and consequent transdominant inhibition. Indeed, our previous work validated the ability of p53-CC to exclusively form homo-oligomers. From a gene therapy point of view, the ability of p53-CC to evade transdominant inhibition gives it an advantage over wt-p53 in dominant mutant p53 cancer cells such as MDA-MB-468.

Our viral-mediated gene therapy in vivo studies show that p53-CC has superior tumor suppressor activity compared with wt-p53 in the MDA-MB-468 aggressive p53-dominant negative breast cancer model. In fact, p53-CC is capable of achieving significant tumor regression, whereas wt-p53 is only capable of halting tumor progression (Figure 4c). On further investigation, we discovered that the difference in outcome of the tumor size reduction was due to the ability of p53-CC to activate the apoptotic pathway, whereas wt-p53 activates cell cycle arrest via p21 induction (Figure 8). These findings are supported by western blot analyses from in vitro (Figures 6a–c) and in vivo (Figures 6d–f) MDA-MB-468 cells/tumors, as well as cell cycle arrest analysis (Figures 7a–c).

Analysis of p53-regulated gene expression patterns may possibly offer an explanation for differential pathway activation between p53-CC and wt-p53 (apoptosis vs cell cycle arrest). It has been shown that p53-responsive gene expression patterns are highly variable, depending on the p53 protein levels in the cell. 42 It is also known that higher levels of active p53 lead to activation of apoptotic genes, whereas lower levels of p53 activate cell cycle regulator genes. 43 In cells treated with p53-CC vs wt-p53, higher levels of the chimeric p53-CC protein exist compared with levels of active wt-p53 protein in cells (although they have similar expression levels), due to the ability of p53-CC to escape sequestration by mutant p53. Unlike p53-CC, substantial amounts of the wt-p53 protein are forced into inactive hetero-oligomers with endogenous mutant p53 (the dominant negative effect). This reduction in ‘available’ active wt-p53 could lead to failure in binding promoters of apoptotic genes that require higher active p53 protein levels in the cell. Cell cycle regulator genes, such as p21, would be activated instead, as wt-p53 possess higher binding affinities to these promoters (that is, requires less

Figure 8. Schematic representation of the outcomes of wt-p53 (left) and p53-CC (right) activation. Wt-p53 induces cell cycle arrest via p21 expression (left), whereas p53-CC induces cell death via the apoptotic pathway (right).
p53 to bind and activate). In contrast, abundance in active chimeric p53-CC protein levels is found in cells treated with p53-CC (due to escaping transdominant inactivation and not difference in expression levels), which would lead to binding and activation of apoptotic genes promoters. The variability of pathway activation (that is, p53-CC, apoptosis vs wt-p53, cell cycle arrest) may be specific to this tumor model due to the dominant negative mutant p53 endogenously found in MDA-MB-468 cells/tumors. This is because we have shown previously, that p53-CC and wt-p53 induce similar levels of apoptosis in four different non-p53-dominant negative breast cancer cell lines with varying endogenous p53 statuses (H1373 cells: p53 null, HeLa cells: wt-p53, T47D cells: wt-p53 mislocalized and MDA-MB-231 cells: mutant p53). Furthermore, qRT-PCR analyses and western blotting showed that p53-CC and wt-p53 induced similar levels of p21 gene expression in T47D breast carcinoma cells.

In summary, we have shown for the first time, the use of a version of p53 that overcomes the limitations of using wt-p53 for gene therapy. A chimeric superactive p53 has been described as the ‘ultimate cancer therapeutic’. Our p53-CC demonstrates comparable functional transcriptional activity to wt-p53, shows significantly improved apoptosis (Figures 2 and 3) and successfully circumvents the dominant negative inactivating effect of endogenous mutant p53 in vitro. Importantly, our compelling in vivo data (Figure 4) demonstrates that p53-CC is more effective than wt-p53, and may serve as a more potent and reliable novel anticancer therapeutic.

MATERIALS AND METHODS

Recombinant adenovirus production

Replication-deficient recombinant adenovirus serotype 5 (Ad) constructs were generated using the Adeno-X Adenoviral Expression System 3 (Clontech, Mountain View, CA, USA) as we have done before. Either wt-p53 or p53-CC was inserted into a cassette under the control of the CMV promoter. A separate CMV promoter controls the expression of ZsGreen1 fluorescent protein for visualization. The empty virus (vector) was used as a negative control. Wt-p53 and p53-CC were PCR amplified with primers containing 15 base pair homology with a linearized pAdenoX vector (Clontech) based on an In-Fusion HD Cloning Kit (Clontech). Stellar competent cells (Clontech) were transformed with the adenoviral vector plasmids containing our constructs. Viral DNA was then purified, linearized and transfected into HEK293 cells for packaging and amplification. Viral particles were isolated from HEK293 cells by freeze-thawing, purified using Adeno-X Mega Puri cation Kit (Clontech), and dialyzed against storage and proper tonicity buffer (2.5% glycerol (w/v), 25 mM NaCl and 20 mM Tris-HCl, pH 7.4). The viral titer was determined using flow cytometry as per the manufacturer’s recommendation.

Cell lines and viral transductions

HEK293 human embryonic kidney cells (ATCC, Manassas, VA, USA) were used for viral production and MDA-MB-468 human breast adenocarcinoma cells (ATCC) harboring a dominant negative mutant p53 were grown as monolayers in Dulbecco’s Modified Eagle’s medium (Invitrogen, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum, 1% penicillin-streptomycin-glutamine and 0.1% gentamicin. MDA-MB-468 cells were also supplemented with 1% MEM nonessential amino acids (Invitrogen). All cells were incubated in 5% CO2 at 37 °C. The cells were seeded at a density of 3.0 × 10^5 cells in six-well plates (Greiner Bio-One, Monroe, NC, USA). Viral transductions were carried out immediately after seeding the cells at multiplicity of infection (MOI) of 200.

7-AAD assay

Following manufacturer’s instructions and as previously described, MDA-MB-468 cells were stained with 7-aminoactinomycin D (7-AAD, Invitrogen) 48 h after transfection. Cells were analyzed and gated for ZsGreen1 (with same fluorescence intensity to ensure equal expression of proteins) using the FACSCanto-II (BD Biosciences, University of Utah Core Facility, Salt Lake City, UT, USA) and FACSDiva software. Excitation was set at 488 nm and detected at 507 and 780 nm for ZsGreen1 and 7-AAD, respectively.

The means from three separate experiments (n = 3) were analyzed using one-way analysis of variance with Bonferroni’s post hoc test.

TMRE assay

MDA-MB-468 cells were incubated with 100 nm tetramethylrhodamine ethyl ester (TMRE; Invitrogen) for 30 min at 37 °C 36 h after infection. The time point was determined to be 36 h as a result of several optimization pilot studies for the TMRE assay, and as MOMP occurs before caspase-3/7, annexin-V and 7-AAD detection (48 h). MDA-MB-468 cells were pelleted and resuspended in 300 μl of annexin-V binding buffer (Invitrogen). Only ZsGreen1 positive cells were analyzed by using the FACSCanto-II (BD BioSciences) with FACS Diva software. ZsGreen1 was excited with the 488 nm laser with emission filter 530/35, and TMRE was excited with the 561 nm laser with the emission filter 585/15. Mitochondrial depolarization (loss in TMRE intensity) correlates with an increase in MOMP. Independent transfections of each construct were tested three times (n = 3).

Caspase-3/7 assay

MDA-MB-468 cells were probed 48 h after treatment using FLICA 660 Caspase-3/7 Assay Kit (Immunochemistry Technologies, Bloomingston, MN, USA). Cells were pelleted, resuspended in 300 μl of 1 x wash buffer (Imunochemistry Technologies), and incubated with FLICA 660 Caspase-3/7 reagent for 45 min as per the manufacturer’s recommendations. Only ZsGreen1 positive cells were analyzed using the FACSCanto-II (BD BioSciences) with FACS Diva software. ZsGreen1 and FLICA 660 were excited with the 488 nm (emission filter 530/35) and the 635 laser (emission filter 670/30), respectively. Independent transfections of each construct were tested three times (n = 3).

Annexin-V assay

The annexin-V assay was performed as before. Briefly, 48 h post infection, MDA-MB-468 cells were suspended in 400 μl annexin binding buffer (Invitrogen) and incubated with 5 μl annexin-APC (annexin-V conjugated to allophycocyanin, Invitrogen) for 15 min. The incubated cells were ZsGreen1 gated and analyzed using the FACSCanto-II. ZsGreen1 and APC were excited at 488 and 635 nm wavelengths and detected at 507 and 660 nm, respectively. Each construct was tested three times (n = 3) and analyzed using one-way analysis of variance with Bonferroni’s post hoc test.

In Vivo study

The experimental protocol was approved by the Institutional Animal Care and Use Committee (IACUC) at the University of Utah. All experiments were performed in female nu/nu athymic mice (6–8 weeks old, Jackson Laboratories, Bar Harbor, ME, USA). Human MDA-MB-468 cells (1 × 10^7 cells per mouse in 100 μl of serum-free RPMI-1640 medium) were injected subcutaneously into the mammary fat pad located in the right inguial area. When tumors reached a mean size of 50 mm^3, animals were randomized into four treatment groups and received single peritumoral injections of adenoviral constructs (5.0 × 10^9 p.f.u.) in a 50 μl volume prepared fresh on days 0–4 and 7–11. Twenty-four hours after the last injection, the mice were killed and the tumors as well as the organs were harvested for analyses. Tumor volumes were measured daily using Vernier calipers along the longest width (W) and the corresponding perpendicular length (L). The tumor volume was calculated using V = (L x W^2)/2 (0.5 W). All procedures were performed according to established NIH guidelines and University of Utah Institutional Animal Care and Use Committee approved protocols.

Histology

Animal tumor tissue samples and organs were fixed in 10% formalin for 24 h followed by tissue preparation and embedded in paraffin. Embedded tissues were then sectioned to cut at 4 μm thick sections and mounted on plus slides. Slides from each tumor tissue from all the mice in the three treatment groups as well as the untreated group were stained using hematoxylin and eosin and p21 immunohistochemistry stain. Tissue and histological slide preparation was conducted in collaboration with ARUP Laboratories (Salt Lake City, UT, USA).
Western blotting

In vivo: fresh tumor tissue samples from the animals of each treatment group were collected, snap-frozen in liquid nitrogen, ground with mortar and pestle, resuspended in 200 ml lysis buffer (62.5 mM Tris-HCl, 2% w/v SDS, 10% glycerol, 1% protease inhibitor) followed by sonication on ice. Recovered tissue lysates were then centrifuged for 45 min at 14,000 r.p.m. and the supernatants were used for immunoblotting. Standard western blotting procedures27,28 were followed using primary antibodies to detect p21/WAF1, and the supernatants were used for immunoblotting. Standard western blotting were detected using a FluorChem FC2 imager and software (Alpha Innotech, Santa Clara, CA, USA). Signals were detected using a FluorChem FC2 imager and software (Alpha Innotech, Santa Clara, CA, USA). All experiments were conducted in triplicates.

In vitro: twenty-four hours following infection of MDA-MB-468 cells, 3 x 105 cells were pelleted and resuspended in 200 ml lysis buffer (25 mM Tris-HCl, 2% w/v SDS, 10% glycerol, 1% protease inhibitor), sonicated on ice and centrifuged for 15 min at 14,000 r.p.m. The supernatants were used for immunoblotting as described above and densitometry analysis was performed as described before.48

Cell cycle arrest

The cell cycle arrest analysis was carried out as previously described.47 Briefly, 1 x 106 MDA-MB-468 cells were infected as described above (Cell Lines and Viral Transductions). Thirty-six hours post infection, cells were collected, washed in phosphate-buffered saline (Inntron), and fixed in 70% ethanol (−20 °C for 1 h). Fixed cells were then washed three times with phosphate-buffered saline and suspended in a staining solution containing 10% v/v of 0.5 mg ml−1 propidium iodide (Sigma-Aldrich, St. Louis, MO, USA), 5% v/v of phosphate-buffered saline, 84% v/v of 4 mM citrate buffer (Sigma-Aldrich), 0.62% v/v of RNase A (Sigma-Aldrich), 1% v/v of Triton X-100 (Sigma-Aldrich) and 3% v/v of PEG 6000 (Fluka, St. Louis, MO, USA) for 20 min at 37 °C. An equal volume of salt solution containing 5% of propidium iodide, 1% of Triton X-100, 89% v/v of 0.4 mM NaCl (Thermo Fisher Scientific Inc, Pittsburgh, PA, USA), and 3% v/v of PEG 6000 was added to the stained cells and incubated at 4 °C for 1 h. The cells were then used at a similar intensity level of ZsGreen1. ZsGreen1 and PI were excited at 488 nm and detected at 507 and 670 nm, respectively. The means from three separate experiments (n = 3) were analyzed using one-way analysis of variance with Bonferroni's post hoc test.

Statistical analysis

One-way analysis of variance with Bonferroni’s post test was used to compare the different treatment groups and controls. A value of P < 0.05 was considered statistically significant. Error bars represent standard deviations from at least three independent experiments (n = 3) except for the animal study (n = 6).

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

We acknowledge the use of DNA/Peptide Core and Flow Cytometry Core (NCI Cancer Center Support Grant P30 CA042014, Huntsman Cancer Institute). Research reported in this publication was supported by the National Cancer Institute of the National Institutes of Health under award number R01-CA151847. We also acknowledge support of funds in conjunction with grant P30 CA042014 awarded to Huntsman Cancer Institute. We thank Sheryl Tripp (ARUP Laboratories), Ben Bruno and Geoff Miller for scientific discussions.

REFERENCES

1 Gu W, Roeder RG. Activation of p53 Sequence-Specific DNA Binding by Acetylation of the p53 C-Terminal Domain. Cell 1997; 90: 595–606.
2 Vogelstein B, Kinzler KW. p53 function and dysfunction. Cell 1992; 70: 523–526.
3 Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000; 408: 307–310.
4 Levine AJ, Momand J, Finlay CA. The p53 tumour suppressor gene. Nature 1991; 351: 453–456.
5 Moll UM, Riou G, Levine AJ. Two distinct mechanisms alter p53 in breast cancer: mutation and nuclear exclusion. Proc Natl Acad Sci USA 1992; 89: 7726–7726.
6 Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 1996; 274: 948–953.
7 Okal A, Reaz S, Lim C. Cancer biology: some causes for a variety of different diseases. In: Bae YH, Mrsný RJ, Park K (eds). Cancer Targeted Drug Delivery. Springer: New York, NY, USA, 2013, pp 121–159.
8 Waterman MJ, Waterman JL, Halazonetis TD. An engineered four-stranded coiled coil substitutes for the tetramerization domain of wild-type p53 and alleviates transdominant inhibition by tumor-derived p53 mutants. Cancer Res 1996; 56: 158–163.
9 Willis A, Jung EJ, Wakefeld T, Chen X. Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes. Oncogene 2004; 23: 2330–2338.
10 Chan WM, Siu WY, Lau A, Poon RY. How many mutant p53 molecules are needed to inactivate a tetramer? Mol Cell Biology 2004; 24: 3536–3551.
11 Zeimet AG, Marth C. Why did p53 gene therapy fail in ovarian cancer? Lancet Oncol 2003; 4: 415–422.
12 Okal A, Mossalam M, Matissek KJ, Dixon AS, Moos PJ, Lim CS. A chimERIC p53 evades mutant p53 transdominant inhibition in cancer cells. Mol Med 2013; 10: 392–393.
13 Junk DJ, Vba L, Watts GS, Oshiro MM, Martinez JD, Futschek BW. Different mutant/wild-type p53 combinations cause a spectrum of increased invasive potential in nonmalignant immortalized human mammary epithelial cells. Neoplasia 2008; 10: 450–461.
14 Lim LY, Vidnovic N, Ellisen LW, Leong CG. Mutant p53 mediates survival of breast cancer cells. Br J Cancer 2009; 101: 1606–1612.
15 Okal A, Cormillie S, Matissek SJ, Matissek KJ, Cheatham TE 3rd, Lim CS. Re-engineered p53 chimera with enhanced homo-oligomerization that maintains tumor suppressor activity. Mol Pharm 2014; 11: 2442–2452.
16 Schmidla I, Krall WJ, Uittenbogaart CH, Braun J, Gjorgi JV. Dead cell discrimination with 7- amino-actinomycin D in combination with dual color immunofluorescence in single laser flow cytometry. Cytometry 1992; 13: 204–208.
17 Serrano MJ, Sanchez-Rovira P, Algarra I, Lozano A, Gaforio JJ. Evaluation of seq DNA Binding by Acetyla-
18 tion of the p53 C-Terminal Domain. J Cell Biol
1992; 90: 595–606.
20 Chipuk JE, Green DR. Caspase-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis. J Cell Biol 2003; 160: 65–75.
21 Price R, Gustafson J, Greish K, Cappello J, McGill L, Ghandehari H. Comparison of silk-elastinlike protein polymer hydrogel and poloxamer in matrix-mediated gene delivery.
22 Mossalam M, Matissek KJ, Okal A, Lim CS. The DNA binding domain of p53 is sufficient to trigger a potent apoptotic response at the mitochondria. Mol Pharm 2013; 10: 3592–3602.
23 Slee EA, Adrian C, Martin SJ. Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem 2001; 276: 7320–7326.
24 Lakhani SA, Masud A, Kuida K, Porter Jr GA, Booth CJ, Mehal WZ et al. Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 2006; 311: 847–851.
25 Koopman G, Reutelingsperger CP, Kuijten GA, Keenhen RM, Pals ST, van Oes MH. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 1994; 84: 1415–1420.
26 Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 1995; 184: 39–51.
27 Metzger-Filho O, Tutt A, de Azambuja E, Saini KS, Viale G, Loi S et al. Dissecting the heterogeneity of triple-negative breast cancer. J Clin Oncol 2012; 30: 1879–1887.
28 Price R, Gustafson J, Greish K, Cappello J, McGill L, Ghandehari H. Comparison of silk-elastinlike protein polymer hydrogel and poloxamer in matrix-mediated gene delivery.
29 Killion J, Radinsky R, Fidler I. Orthotopic models are necessary to predict therapy of transplantable tumors in mice. Cancer Metastasis Rev 1998; 17: 279–284.
30 Bibby MC. Orthotopic models of cancer for preclinical drug evaluation: advantages and disadvantages. Eur J Cancer 2004; 40: 852–857.
31 Vantyghem S, Allan A, Postenkova C, Al-Rahbi W, Keeney M, Tuck A et al. A new model for lymphatic metastasis: development of a variant of the MDA-MB-468
human breast cancer cell line that aggressively metastasizes to lymph nodes. Clin Exp Metastasis 2005; 22: 351–361.

32 Garlich JR, De P, Dey N, Su JD, Peng X, Miller A et al. A vascular targeted pan phosphoinositide 3-kinase inhibitor prodrug, SF1126, with antitumor and anti-angiogenic activity. Cancer Res 2008; 68: 206–215.

33 Nielsen LL, Lipari P, Dell J, Guarni M, Hajian G. Adenovirus-mediated p53 gene therapy and paclitaxel have synergistic efficacy in models of human head and neck, ovarian, prostate, and breast cancer. Clin Cancer Res 1998; 4: 835–846.

34 Laptenko O, Beckerman R, Freulich E, Prives C. p53 binding to nucleosomes within the p21 promoter in vivo leads to nucleosome loss and transcriptional activation. Proc Natl Acad Sci USA 2011; 108: 10385–10390.

35 Tait SW, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 2010; 11: 621–632.

36 Fulda S, Debatin KM. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 2006; 25: 4798–4811.

37 el-Deiry WS, Harper JW, O’Connor PM, Velculescu VE, Canman CE, Jackman J et al. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 1994; 54: 1169–1174.

38 Waldman T, Kinzler KW, Vogelstein B. p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 1995; 55: 5187–5190.

39 Waldman T, Zhang Y, Dillehay L, Yu J, Kinzler K, Vogelstein B et al. Cell-cycle arrest versus cell death in cancer therapy. Nat Med 1997; 3: 1034–1036.

40 Lane DP, Cheok CF, Lain S. p53-based cancer therapy. Cold Spring Harb Perspect Biol 2010; 2: a001222.

41 Wichmann C, Becker Y, Chen-Wichmann L, Vogel V, Vojtkova A, Herglotz J et al. Dimer-tetramer transition controls RUNX1/ETO leukemogenic activity. Blood 2010; 116: 603–613.

42 Yamada T, Hiraoka Y, Ikehata M, Kimbara K, Avner BS, Das Gupta TK et al. Apoptosis or growth arrest: Modulation of tumor suppressor p53’s specificity by bacterial redox protein azurin. Proc Natl Acad Sci USA 2004; 101: 4770–4775.

43 Chen X, Ko LJ, Jayaraman L, Prives C. p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dev 1996; 10: 2438–2451.

44 Mossalam M, Matissek KJ, Okal A, Constance JE, Lim CS. Direct induction of apoptosis using an optimal mitochondrially targeted p53. Mol Pharm 2012; 9: 1449–1458.

45 Krohn AJ, Wahlbrink T, Prehn JH. Mitochondrial depolarization is not required for neuronal apoptosis. J Neurosci 1999; 19: 7394–7404.

46 Salama ME, Rajan Mariappan M, Inamdar K, Tripp SR, Perkins SL. The value of CD23 expression as an additional marker in distinguishing mediastinal (thymic) large B-cell lymphoma from Hodgkin lymphoma. Int J Surg Pathol 2010; 18: 121–128.

47 Reaz S, Mossalam M, Okal A, Lim CS. A single mutant, A276S of p53, turns the switch to apoptosis. Mol Pharm 2013; 10: 1350–1359.

48 Woessner DW, Lim CS. Disrupting BCR-ABL in combination with secondary leukemia-specific pathways in CML cells leads to enhanced apoptosis and decreased proliferation. Mol Pharmacol 2013; 10: 270–277.