Arnica montana (Arnica m.) is used for its purported anti-inflammatory and tissue healing actions after trauma, but its cellular and molecular mechanisms are largely unknown. This work tested Arnica m. using an in vitro model of macrophages polarized towards a "wound-healing" phenotype. The monocyte-macrophage cell line was cultured and differentiated with phorbol-myristate acetate and Interleukin-4, then exposed for 24h to centesimal (c) dilutions 2c, 3c, 5c, 9c, 15c or Control. Total RNA was isolated and cDNA libraries were sequenced with NextSeq500 sequencer. Genes with significantly positive (up-regulated) or negative (down-regulated) fold changes were differentially expressed genes (DEGs). A total of 20 DEGs were identified in Arnica m. 2c treated cells. Of these, 7 genes were up-regulated and 13 were down-regulated. The most significantly up-regulated function concerned 4 genes with a conserved epidermal growth factor-like region (p<0.001) and three genes of proteinaceous extracellular matrix, including heparin proteoglycan 2 (HSPG2), fibrillin 2 (FBN2), and fibronectin (FN1) (p<0.01). Protein assay confirmed a statistically significant increase of fibronectin production (p<0.05). The down-regulated transcripts derived from mitochondrial genes coding for components of electron transport chain. The same groups of genes were also regulated by increasing dilutions of 9c, 15c), although with a lower effect size. We further tested the healing potential of Arnica m. 2c in a scratch model of wound closure based on the motility of bone marrow-derived macrophages and found evidence of an accelerating effect on closure in this system. The results of this work, taken together, provide new insights into the action of Arnica m. and identify extracellular matrix regulation by macrophages as a therapeutic target.
Introduction

Arnica montana L. (referred to here as * Arnica m.*) is one of the most popular medications in complementary medicine and is employed in tincture, ointment, cream, gel, and tablet form. It is a herb native to the mountains of Siberia and Central Europe that has been used to treat various pathological conditions, including pain, stiffness and swelling associated with trauma, post-injury clinical conditions (including contusions and sprains) and for symptomatic relief in osteoarthritis [1]. *Arnica m.* is generally applied only topically on the skin, while as a homeopathic formulation it is also given orally or as a suppository—since it is not considered dangerous owing to the high dilution. The literature on *Arnica m.* in both phytotherapeutic and homeopathic preparations is rapidly increasing, but the knowledge of its action mechanism(s) remains scant.

The chemical composition of *Arnica m.* depends on the part of the plant that is used, principally the flowers and roots, and the most pharmacologically active compounds are sesquiterpene lactones, thymol derivatives, flavonoids, and acid polysaccharides and their glycoconjugates [6–8]. The ability of *Arnica m.* to inhibit activation of the nuclear factor of activated T cells (NFAT) and pro-inflammatory cytokines IL-1 and TNF-α correlates with its quantitative and qualitative content of sesquiterpene lactones [9].

There is some experimental evidence, in laboratory animals, of an anti-inflammatory action of *Arnica m.* ethanolic extract [10] or at the 6th centesimal homeopathic dilution (6c) [11,12]. Additionally, *Arnica m.* reduces inducible NO synthase and cyclooxygenase-2 protein levels, a reduction in TNF-α, and prevents nuclear translocation in J774 murine macrophage cells without cytotoxicity *in vitro* [13]. Furthermore, oral treatment with *Arnica m.* experimental animals (rats) against hepatic mitochondrial membrane permeabilization induced to the attack by reactive oxygen species [14].

Given the central role of macrophages in tissue repair and regeneration, we formulated the hypothesis that one of the targets of *Arnica m.* action is the macrophage, and accordingly decided to evaluate this plant’s effects on a cell line, a widely used model for immune modulation [15,16]. This cell line is widely used in laboratories to study macrophage biochemistry and molecular biology. The advantage of a cell line resides essentially in the easier reproducibility of experiments in the same conditions, avoiding the variations due to individual sensitivity of different donors. Since we used the same doses of drugs—even with the highest *Arnica m.* 2c dilution, in assay medium the sesquiterpene lactones are in the micromolar range—we expected small effect sizes and so preferred to use a highly reproducible model. THP-1 monocytes, but when treated with low doses of phorbol esters (PMA) they differentiate to cells with both functional features of tissue macrophages. On the basis of environmental cues and molecular signals, macrophages polarize by interleukin-4 (IL-4) treatment to a phenotype that takes on characteristic properties functionally different from those of M1 macrophages polarized by interleukin-12 (IL-12) or from inflammatory macrophages stimulated with lipopolysaccharide (LPS) [17].
regulation, wound healing, and tissue remodelling [16,21].

In a preliminary study, we used RT-PCR analysis to investigate changes in the expression of a panel of 28 genes focusing on immune response [22]. Among the tested genes, CXCL1 in particular exhibited the most substantial increase, suggesting a positive influence on immune cell recruitment and on angiogenesis. The most pronounced effects were noted in IL-4 polarized macrophages treatment. Therefore, we decided to re-investigate the same cell extracts with the most high-throughput method, RNA-seq, designed to evaluate the whole transcriptome. We assessed RNA samples from a series of experiments comparing Arnica m. at the 2nd centesimal homeopathic dilution (Arnica m. 2c) with vehicle (Control). We used bioinformatics analysis of the different genes (Arnica m. 2c vs Control) and statistical methods correcting for false discovery rates. Furthermore, since Arnica m. was used at several doses in clinical settings [5], we also tested pooled samples of the experiments carried out at 3c, 5c, 9c and 15c. Lastly, to further investigate the potential therapeutic capacity of this homeopathic medicine, we used a series of 5 experiments for Control solutions using an in vitro model of wound healing, in which macrophages migrate through a scratch made in a cell monolayer. A major advantage of this method is that it mimics, to some extent, the migration of cells suitable for studies on the effects of cell–matrix and cell–cell interactions during wound healing.

Materials and Methods

Materials

The human monocytic leukaemia cell line THP-1 was purchased from DSMZ (Germany). Growth media RPMI 1640, 20 mM solution and DMEM with l-glutamine were purchased from Lonza (Belgium). Foetal bovine serum (FBS), phorbol 12-myristate 13-acetate (PMA), pure ethanol and ultra-pure water (W3500) were purchased from Sigma-Aldrich (USA). Human interleukin-4 (IL-4) was purchased from Macs-Miltenyi Biotec (Germany). Murine IL-4 was purchased from R&D Systems (UK). Cell proliferation reagent WST-1 was purchased by Roche Diagnostics GmbH (Germany). Nanoparticle content was determined by nanoparticle tracking analysis (NTA) using a NanoSight LM10 (Malvern) instrument equipped with laser at 532nm and the NanoSight NTA 3.0 analysis software. Zeiss Axio Observer Z1 microscope was used to capture images of cells. Zeta potential was measured by Zetasizer Nano (Malvern) using disposable capillary cells (Malvern).

Arnica m. was produced by Boiron Laboratoires (Lyon, France) according to the French Homeopathic Pharmacopoeia as a first centesimal dilution (Arnica m. 1c) of the hydroalcoholic extract (Mother Tincture, MT) in 30% ethanol/distilled water. The content of sesquiterpene lactones of the MT was determined by liquid chromatography and the pharmacopoeia standards was checked by thin layer chromatography. UV-visible absorption spectra were performed with a Jasco V-650 double-beam spectrophotometer using quartz cuvettes with 1cm path length. The UV absorbance at 280nm was used as the reference-blank sample. Nanoparticle content was determined by nanoparticle tracking analysis (NTA) using a NanoSight LM10 (Malvern) instrument equipped with laser at 532nm and the NanoSight NTA 3.0 analysis software. Zeiss Axio Observer Z1 microscope was used to capture images of cells. Zeta potential was measured by Zetasizer Nano (Malvern) using disposable capillary cells (Malvern).

Arnica m. 1c was used to prepare the second centesimal dilution (Arnica m. 2c) by adding 50µl of ultra-pure water. Therefore, 2c corresponds to 10^-4 of the MT. This solution was filtered with a 0.22µm filter and subjected to vigorous succussion with a Dyna-A mechanical shaker delivering 20 strokes/second with an amplitude of 11mm. The test solution was prepared using 30% ethanol/distilled water (same batch of the Arnica m. 1c dilution) diluted 100x in ultra-pure water and succussed as described for Arnica m. 2c sample. Final ethanol concentration in the test solutions was adjusted to 0.03% v/v. The test medicines were added as 10% of the final culture volume. This dose did not affect cell viability, as verified in previous experiments.

Higher dilutions of Arnica m. were prepared as described previously [22]. Starting from a 1c solution prepared in 5ml of 30% ethanol/distilled water solvent followed by filtering and succussion. Stock solutions were wrapped in aluminium foil, stored at room temperature in the dark, and used within 12 months.

Test solutions

Arnica montana Stimulates Extracellular Matrix Gene Expression in...
preparation. The last centesimal dilution step was always performed immediately before each experiment. The dilutions prepared in this way, those tested with the cells were: 2c, 3c, 5c, 9c, and 15c.

All procedures for drug preparation and cell treatments were done in sterile conditions.

Cell cultures and treatments

The THP-1 cell line was cultured in RPMI 1640 medium, supplemented with FBS 10% and 2mM Ultraglutamine (Lonza), at 37°C in 5% CO₂ in a humidified incubator as described [22]. Briefly, the cells were seeded at a density of 2.5x10^5 cells/mL in 24-well plates in 1ml medium with 2ml of medium every day. All the cell cultures were supplemented with 20 ng/mL of PMA on day 2 of the experiment and on day 3 the cultures were treated with IL-4 at a concentration of 50 ng/mL for 24h. On day 4 the plates were washed twice with culture medium supplemented with 50 ng/mL IL-4 and incubated for 24h. Macrophages were exposed for 24h to solvent (1ml cell culture + 110µl test solutions). We performed a total of 5 complete separate experiments; in each experiment every treatment was performed in triplicate wells.

Bone marrow–derived macrophages

For the scratch test, bone marrow–derived macrophages (BMDM) were isolated from femurs and tibias of 8 week-old C57BL/6J mice as described by Suen et al. (1999) [24] and Baruzzi et al. [25]. Briefly, cells were cultured in DMEM with 15% FBS, 10% L929-cell conditioned medium (LCM) as a source of cytokines, 100 U/ml penicillin, and 100 µg/ml streptomycin (BMDM complete medium), and cultured at 37°C/5% CO₂ in 75 cm² flasks. Before the generation of clusters, the non-adherent cells were removed, counted, plated on bacteriological (non tissue-culture-tREATED) plastic dishes at a concentration of 1x10^5/ml, and cultured in BMDM complete medium.

Evaluation of cell viability

Cell viability was checked by the Cell proliferation reagent WST-1 assay. THP-1 cells were seeded in 96-well plates and differentiated with IL-4 as described above. After 24h of treatment with Arnica m (v/v) pre-warmed WST-1 solution was added to the cells and the plate was incubated for 20 min. Cell viability was then measured using a Victor3 multilabel reader (PerkinElmer, Shelton, CT, USA) at 450nm. Total proteins were quantified by Bradford assay according to the manufacturer’s instructions.

RNA sequencing

Total RNA from cultured THP-1 cells was isolated using the RNeasy mini Kit (Qiagen). RNA quality was assessed using a Nanodrop 2000 spectrophotometer (Thermo Scientific, Wilmington, DE). RNA samples were reverse transcribed using an RNA 6000 Nano Kit (Agilent, Wokingham, UK). The samples with RNA integrity numbers ≥7 were adequate for library preparation. RNA aliquots (2.5µg) were used to isolate poly(A) mRNA for the Illumina RNA-Seq library using the TruSeq RNA Sample Prep Kit v2 (Illumina Inc., San Diego, CA). Before the generation of clusters, the samples were checked with High Sensitivity DNA Kit (Agilent, Wokingham, UK). Libraries were then quantified by qPCR using the KAPA Library Quantification kit (Kapa Biosystems Inc., Woburn, MA). Libraries were sequenced with a NextSeq500 sequencer (HighOutput flow cell with 75 sequencing cycles). The reads were aligned to the human reference genome (GRCh38) using the TopHat expression value of known and novel genes was quantified as reads per kilobase of exon model gene using the human working gene set (Ensembl release 80) as reference annotation. The effect of Arnica m.-treated samples and Control-treated samples (Log₂ Fold Change). Genes with Log₂ Fold Change values that were significantly positive (up-regulated) or negative (down-regulated) were defined as differentially expressed genes (DEGs).
Sequences of DEGs in the “protein coding” category were functionally annotated using Blast2GO metabolic pathway in the Kyoto Encyclopedia of Genes and Genomes (KEGG) to the query sec classification and enrichment analysis were performed by DAVID Bioinformatics Resources 6.7 [27]. The data discussed in this publication have been deposited in NCBI's Gene Expression Omnibus through GEO Series accession numbers GSE77381 and GSE77382 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE77381; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE77382).

Protein quantification by ELISA

Matrix-related proteins (fibronectin, fibrillin, and heparan sulfate proteoglycan 2) were quantified in conditioned medium cells using ELISA assays fibronectin human Elisa kit (Abcam), human Fibrillin-2 ELISA Kit and heparan sulfate 2 ELISA Kit (Cusabio), respectively.

In vitro wound-healing (scratch) assay

The capacity of macrophages to close an artificial “wound” was assessed using a culture model BMDM monolayer was denuded of cells by scraping it with a pipette tip, after which the number space was assessed microscopically [23]. Macrophages were cultured in 12-well plates in BMDM On day 4, a portion of the cell cultures was supplemented with 20 ng/ml murine IL-4 while another portion was left un

day 5 the monolayers were wounded by transversely scratching the well with the tip of a 200 µl. The detached cells were carefully aspirated and the wells washed with phosphate-buffered saline migration test was DMEM (Glutamax, pen-strep) with 2% FBS, either with or without 20 ng/ml IL-4 solutions were added 24 h before wounding and maintained, during the migration time, at the culture volume. Three sets of experiments were performed with triplicate wells for each condition. The field of the wound were acquired by means of contrast phase microscopy using an Olympus IX50: magnification to assess cell migration. The experiments were evaluated by examining microscopically and using a grid composed of 500 small frames to calculate the % of wounded area occupied b

Statistics

RNA-seq analysis was performed separately on 5 experiments for Arnica m. 2c and Control solvent. cells treated with higher dilutions, RNA samples from 5 experiments carried out with Arnica m. 2c solvent were pooled and sequenced.

The evaluation of differential gene expression between the Arnica m.-treated and Control sample performed using the DESeq2 package with a paired design [29]. Where indicated (Table 1), the False Discovery Rate (FDR) with the Benjamini and Hochberg method using an adjusted p-value. Comparisons were done by testing, for each gene and each experiment (N = 5), the null hypothesis exactly zero, i.e., that the gene was not at all affected by the treatment.
Table 1. Gene expression of IL-4 differentiated THP-1 macrophages, treated with Control solvent or Arnica https://doi.org/10.1371/journal.pone.0166340.t001

The statistical significance of the differences between expression profiles of gene groups (Up-regulated and Down-regulated) from cells treated with various Arnica m. dilutions (2c, 3c, 5c, 9c, 15c) was calculated followed by the Wilcoxon signed-rank test using the SPSS software, version 17 (SPSS Inc., Chicago, IL, USA). The Friedman test is a nonparametric test for multiple related samples (in this case, the multiple genes—7 up-regulated and 13 down-regulated from cells treated with five Arnica m. dilutions and control solution) that checks the null hypothesis that multiple ordinal responses (in this case, RPKM of genes after treatment with each dilution and mean RPKM of Control-treated cells, and to check whether such differences were prevalently positive or negative distributed between the two signs. The differences were accordingly ranked, and the positive and negative ranks were summed and statistically compared using the specific Wilcoxon tables. The logic of this approach is to test the null hypothesis of the absence of treatment effects: if treatment has no effect the differences between gene expression (RPKM) of samples and Control-treated samples should approach zero in all considered genes of the group. Moreover, since some effects of Arnica m. could be modified by chance, the number of up- and down-regulated genes should be approximately significantly different). Log2 Fold Changes were lower than or equal to ±0.05 (-0.05<FC<0.05) were considered to be non-significant. Comparison of protein release in Arnica m. 2c and Control samples was done with the Sigma Plot statistical package using the paired t-test, or the Wilcoxon Signed Rank Test when data were not normally distributed (as preliminarily evaluated by normality test). Cell viability data were evaluated by ANOVA followed by Dunnet post-hoc test, using the SPSS statistical software. Statistical evaluation of the scratch assay was done using the Friedman test. It is used to test for differences between the series of time points for the Treated and Control samples) when the dependent variable is the time series for two compared treatments (Arnica m. and Control)

Results

Characterization of Arnica m.

The Arnica m. 1c used as starting materials for this series of experiments was analysed by physiochemical methods. The UV-VIS absorption spectrum shows a large UV peak around 220 nm, followed by two shoulders at 280 and 340 nm. No substances absorbing at wavelength > 500 nm were detected in our pre
NTA analysis of the original *Arnica m.* 1c sample revealed the presence of a heterogeneous array of nanoparticles (9.3 ± 1.0 particles/frame) corresponding to a concentration of $1.83 \times 10^8 \pm 1.88 \times 10^8$ particles/ml. The nanoparticle spectrum (Fig 2) showed a profile with about 6 peaks with a hydrodynamic diameter ranging from 274.4 ± 100.4 nm. Zeta potential of these nanoparticles was -25.54 ± 9.50 mV ($n = 12$ determinations).

The amount of total sesquiterpene lactones in the original Mother Tincture was 36 mg/100ml. Since the mean molecular weight of *Arnica m.* sesquiterpene lactones is 340 g/mol [31], this amount is equivalent to 1.05×10^{-3} Mo/L. The concentration of these active substances is 1.05×10^{-5} Mol/L in *Arnica m.* 1c and 1.05×10^{-7} Mol/L in *Arnica m.* 1.05 $\times 10^{-8}$ Mol/L).

Cell viability
The WST assay of cell viability (Fig 3) showed that the metabolic activity of macrophages, both
differentiation, was slightly increased after 24h incubation with *Arnica m.* dilutions 2c and 3c, but
vehicle was not statistically significant. Since the WST-1 assay depends on the level of NADH produced by the cells,
shows that mitochondrial NADH-producing activity was not significantly impaired by *Arnica m.* It was
higher in IL-4 differentiated macrophages, irrespective of the presence of *Arnica m.*, suggesting
basal metabolism of macrophages.

![Graph showing cell viability of macrophages](https://doi.org/10.1371/journal.pone.0166340.g003)

Fig 3. Cell viability of macrophages.
THP-1 macrophages in the resting state (diagonal bars) or after differentiation with IL-4 (crossed bars) were cultivat
hours in the presence of *Arnica m.* at various dilutions or Control solvent. The histograms represent separate wells of a typical experiment. There are no significant differences between any *Arnica m.* (p>0.05)
https://doi.org/10.1371/journal.pone.0166340.g003

Changes in gene expression after *Arnica m.* treatment
The effects of *Arnica m.* treatment on the global gene expression of IL4-polarized THP-1 cells with incubation by comparison with Control. The basic RNA-seq analysis were done in cells treated with
dilution and highest dose that could be used since 1c contained a dose of ethanol incompatible
reproduced in 5 different biological replications. Approximately 25 million valid reads obtained for
unambiguously annotated on 60434 gene transcripts. No arbitrary filtering of expression level was applied to the data.
Differential gene expression analysis was performed to identify significant target genes of *Arnica m.*
statistically significant DEGs was thus obtained as shown in Table 1. The RPKM and Log2 Fold
separate experiments performed, plus the original values of pooled samples from assays done
S1 Table.

Mean RPKM is an indicator of the absolute amount of RNA in samples from cells treated with A
shows that FN1 (fibronectin) was by far the most expressed gene and its RPKM values increased
most expressed gene was LRP1 (from 19.4 to 23.6), and the third was HSPG2 (from 9.5 to 11.3). It
included 6 mitochondrially-coded NADH dehydrogenases which are subunits of Complex I, Cytochrome oxidases of Complex 4, and two ATP synthases of Complex V. In eukaryotes, the 13 Complex I are encoded by the mitochondrial genome [33] and are normally highly expressed. With expression in Control (e.g. 529.6 RPKM for cytochrome c oxidase III, 4766.7 RPKM for NADH dehydrogenase) caused a slight but reproducible decrease of the expression of all the indicated genes (Table 1).

Mean fold changes, calculated as the average of the Log2 Fold Change of the 5 replicates, range
up-regulation) to -0.36 (maximum down-regulation). The 7 up-regulated genes included low-density lipoprotein receptor 1 (LRP1), fibronectin 1 (FN1), lysine (K)-specific methyltransferase (KMT2D), complement heparan sulfate proteoglycan (perlecan, HSPG2), microtubule-actin crosslinking factor 1 (MACF1), and fibrillin 2 (FBN2) down-regulated DEGs (13 genes) were mitochondrial genes coding for proteins of the mitochondrial complex I as expected (p<0.001).

Functional gene enrichment analysis (Table 2) was performed by analysing international databases DAVID software. Among the genes stimulated by Arnica m, a statistically significant enrichment HSPG2, FBN2, FN1 and Calcium ion binding motifs (LRP1, MACF1, FBN2) emerged (Fisher p<0.05). Most notably, a clearly up-regulated function concerned the proteinaceous extracellular matrix (ECM) including genes (HSPG2, FBN2, FN1) and Calcium ion binding motifs (LRP1, MACF1, FBN2) emerged (Fisher p<0.001). The down-regulated genes converge into the common pathway of oxidative phosphorylation into the cell component gene ontology of mitochondrial complex I as expected (p<0.001).

Table 2. Functional classification and gene enrichment analysis.
https://doi.org/10.1371/journal.pone.0166340.t002

Protein release in supernatants

To confirm the function of up-regulated genes, we measured the release of some relevant proteases, HSPG2 and fibrillin were detected only in traces, while fibronectin was identified in considerable amounts. The protein was increased in IL-4 macrophages as compared with non-polarized cells and was increased by PMA-differentiated THP-1 macrophages were polarized with IL-4 as described in Methods or maintained in the same medium without IL-4 (Normal Macrophages), then both cultures were incubated for 24 h in the absence of Arnica m. 2c. N = 6 complete experiments, assay in technical duplicates (HSPG2 and fibrillin) micrograms/million cells. Note that HSPG2 and fibrillin in some experiments were under the detection limit of the assay.

Fig 4 shows the amount of fibronectin detected in the supernatants in the 6 separate experiments. In IL-4 macrophage 2c effect was almost null in one experiment only, while in the other 5 it ranged from 13.9% to 39.6% (p<0.05).

Table 3. Proteins detected in supernatant of THP-1 macrophages cultivated 24 h in the presence and absence of IL-4.
https://doi.org/10.1371/journal.pone.0166340.t003

PMA-differentiated THP-1 macrophages were polarized with IL-4 as described in Methods or without IL-4 (Normal Macrophages), then both cultures were incubated for 24 h in the absence of Arnica m. 2c. N = 6 complete experiments, assay in technical duplicates (HSPG2 and fibrillin) micrograms/million cells. Note that HSPG2 and fibrillin in some experiments were under the detection limit of the assay.
Fig 4. Fibronectin detected in supernatants of cell cultures in the absence and in the presence of Arnica m
Symbols indicate the fibronectin values of the same experiments in the two conditions of polar percent effect as compared with Control of the same experiment.
https://doi.org/10.1371/journal.pone.0166340.g004

Testing higher Arnica m. dilutions

We then investigated the changes induced by increasingly higher Arnica m. dilutions in the same genes that had show significant alterations after treatment with 2c test solution (Table 1). These effects are reported in comparison with the mean of Controls and the RPKM of all samples are given in S1 Table, right (availability of sufficient volumes) and the high costs of RNA-seq, we could not separately assay five experiments at all the various dilutions. Therefore, to decrease experimental variability, we treated with the same Arnica m. dilution, using extracts from all the five experiments performed. variation possibly due to biological replicates, but meant we could not evaluate the standard err these reasons, Fig 5 (panels B-F) does not include the error bars for individual genes, but only each group of genes (7 up-regulated in red, 13 down-regulated in blue). Since most of genes in belong to similar functional groups, calculating the mean of the various genes provided a first at major effects across different dilutions.
Fig 5. Effects induced by increasing dilutions of *Arnica m.* on gene expression in THP-1 cells.

DEGs described in Table 1 were divided in the two groups as upregulated (red bars) and downregulated genesets. Grey bars report the mean fold changes ± SE of the two genesets at each dilution. Log₂ fold change values calculated from 5 experiments; Panels B-F *Arnica m.* 2c, 3c, 5c, 9c, pooled RNAs of 5 experiments. P values of Wilcoxon signed-rank test statistics are reported near the mean of each group.

https://doi.org/10.1371/journal.pone.0166340.g005

The gray bars in Fig 5 show the means and standard errors of the *Arnica m.* effects for each gene (up or down-regulated), with the p values of the differences between treatments and Control solvent. If the null hypothesis that treatment has no effect: in such a case the mean fold change values for a given group of genes approximate zero, and eventually (since some genes may be modified by chance), the mean of all considered genes approaches zero. Finally, if the null hypothesis is true, the number of up- and down-regulated genes—assuming random up- or down-regulation—should be approximately the same.

Considering the *Arnica m.* 2c dilution (Fig 5, top two panels) we can see that the up-regulated genes responded in the pooled analysis (Panel B) roughly in the same direction as they did in the separate analysis (Panel A). Generally, looking at the red bars (which denote the genes previously found to be up-regulated) 7 were also up-regulated in this pooled analysis. Conversely, looking at the blue bars (denoting down-regulation) we see that all 13 of these genes are likewise down-regulated in this pooled analysis. Values of pooled samples were reliable also if done with a single RNA-seq assay. The differences...
statistically only for each entire geneset (up-regulated or down-regulated groups of genes) by a test for paired data, testing whether the differences are mainly positive or negative, or evenly distributed.

The changes due to *Arnica m*. 2c were highly significant both in the mean of 5 experiments (Panel A). Absolute fold changes less than or equal to 0.05 were considered null.

For what concerns the higher dilutions, *Arnica m*. 3c (Panel C) similarly showed a prevailing stimulatory effect on up-regulated geneset: 6 genes out of a total of 7 (the exception was MACF1) were here also upregulated. All down-regulated geneset were actually down-regulated also here (the exception was HSPG2). Changes of each geneset (grey bars) were approximately of the same magnitude as those inducible by 2c, and statistically significant. *Arnica m*. 5c (Panel D) instead stimulated all genes of the up-regulated geneset, with the exception of HSPG2. The down-regulated geneset of *Arnica m*. 9c had a faint but statistically significant effect, with the exception of HSPG2.

On the downregulated geneset *Arnica m*. 3c had a faint but statistically significant effect, with the exception of ATP8 and CCDC88B. *Arnica m*. 15c slightly up-regulated 7 genes out of a total of 7, the strongest effect was on CCDC88B. *Arnica m*. 9c in downregulated geneset, *Arnica m*. caused a slight but consistent downregulation of 10 genes, the exception was ATP8 and CCDC88B as seen with the lower dilutions. In summary, both upregulating and downregulating effects were maintained across the increasing dilutions, while for many considered genes a non-linear trend was noted.

Other candidate DEGs

The results presented thus far concern significant alterations of a series of genes identified through analysis under very stringent statistical tests—that is, after adjusting for FDR. By so doing, we minimize type-1 errors but also the probability of discovering true positive effects of *Arnica m*. on other candidate genes in the ECM. In point of fact, a large list of proteins with different roles are involved in the ECM changes during phases of wound healing and remodeling and includes various cell types. To explore the possible involvement of additional genes in the *Arnica m*. effects on macrophages, we performed a further analysis which included only those genes that were differentially expressed without applying the correction (n = 476). We then searched for the list of proteins interacting with fibronectin in the Reactome pathway database (http://www.reactome.org/) and retrieved a list of 291 genes that represent the pathway of extracellular matrix organization (identifier R-HSA-1474244.1). By matching these 291 genes with the 476 differentially expressed genes in the *Arnica m*. treatment, we retrieved 22 genes, 13 of which were upregulated and 9 downregulated. The upregulated genes included metalloproteinases and the proteolytic enzyme calpain 3 resulted among the down-regulated DEGs that were already discovered with application of FDR and cited in Table 1.) are reported in S2 Table, left part. The changes due to *Arnica m*. treatment in the same way (upregulation and down-regulation) are reported in Fig 5. Even if a general tendency to maintain across the increasing dilutions, while for many considered genes a non-linear trend was noted.

In a previous study, which analysed a panel of inflammatory genes by RT-array, *Arnica m*. stimulated CCCL2 (MCP-1), CXCL1, CXCL2, CXCL8, MRC1, NFKB1 and inhibited the expression of MMP14. In a previous study, which analysed a panel of inflammatory genes by RT-array, *Arnica m*. stimulated extracellular matrix gene expression and inhibited the expression of MMP14, which did not change upon *Arnica m*. treatment. Although this supplemental analysis should be considered only as preliminary, it suggests that in *Arnica m*. may affect ECM organization in the same direction could be noted, most genes changed from up to down regulation or did not change at all. Only the genes ADAMTS2 and ITGAD responded to *Arnica m*. treatment in the same way (upregulation and downregulation, respectively) in cells treated by all dilutions. Although this supplemental analysis should be considered as preliminary, it suggests that in *Arnica m*. may affect ECM organization in the same way (upregulation and downregulation, respectively).

We also checked whether the same genes were affected by increasing drug dilutions (S2 Table). The results showed that the changes observed in the group of genes described in Table 1 and Fig 5. Even if a general tendency to maintain across the increasing dilutions, while for many considered genes a non-linear trend was noted.

In a previous study, which analysed a panel of inflammatory genes by RT-array, *Arnica m*. stimulated extracellular matrix gene expression and inhibited the expression of MMP14. In a previous study, which analysed a panel of inflammatory genes by RT-array, *Arnica m*. stimulated extracellular matrix gene expression and inhibited the expression of MMP14, which did not change upon *Arnica m*. treatment. Although this supplemental analysis should be considered only as preliminary, it suggests that in *Arnica m*. may affect ECM organization in the same way (upregulation and downregulation, respectively) in cells treated by all dilutions. Although this supplemental analysis should be considered as preliminary, it suggests that in *Arnica m*. may affect ECM organization in the same way (upregulation and downregulation, respectively).

We also checked whether the same genes were affected by increasing drug dilutions (S2 Table). The results showed that the changes observed in the group of genes described in Table 1 and Fig 5. Even if a general tendency to maintain across the increasing dilutions, while for many considered genes a non-linear trend was noted.

In a previous study, which analysed a panel of inflammatory genes by RT-array, *Arnica m*. stimulated extracellular matrix gene expression and inhibited the expression of MMP14. In a previous study, which analysed a panel of inflammatory genes by RT-array, *Arnica m*. stimulated extracellular matrix gene expression and inhibited the expression of MMP14, which did not change upon *Arnica m*. treatment. Although this supplemental analysis should be considered only as preliminary, it suggests that in *Arnica m*. may affect ECM organization in the same way (upregulation and downregulation, respectively) in cells treated by all dilutions. Although this supplemental analysis should be considered as preliminary, it suggests that in *Arnica m*. may affect ECM organization in the same way (upregulation and downregulation, respectively).
Effectiveness on a wound healing model

In order to investigate the possible functional implications of the observed molecular changes, cells treated with *Arnica m*. 2c comparing them with untreated cells. The scratch assay is an ea method for measuring cell migration *in vitro* [23]. The test is based on the observation that, whe “scratch” is created on a confluent cell monolayer, the cells on the edge of the newly created gap close the gap. To test *Arnica m*. in this system we used primary mouse bone marrow derived m. This because in the previous experience of our department laboratory, and in our own test assay stable monolayers and showed more consistent motility [25]. The left panels of Fig 6 show some assay.

![Image of wound closure effect of Arnica m.](https://doi.org/10.1371/journal.pone.0166340.g006)

Fig 6. Wound closure effect of *Arnica m.*

Light microscope images of *in vitro* wound closure using a confluent monolayer of BMD macrophages show one representative experiment of cell migration into the created wound area in the absence (B and D) of *Arnica m*. 2c. Images A and B show the wound area immediately after the wound area after 4.5 h. Pictures were acquired by means of contrast phase microscopy. The bar charts (E and F) report the gap width of the wound area before and after cell migration. The bar charts on the right of Fig 6 represent the time-course of cell migration in the absence (E) and in the presence (F) of 20 ng/ml IL-4. Gray bars: Control solvent, yellow bars: *Arnica m*. 2c. Means±SE of three replicate wells of an experiment representative of the three performed. The result of the statistical analysis is reported in the graphs.

Standardized scratches initially caused complete removal of the monolayers of BMD macrophages a few hours the cells started to fill the gap sufficiently to allow the front line to be easily determin quantified. In the presence of *Arnica m*. (Fig 6D) the filling of the gap was slightly faster than in the presence of IL-4. The same field was completely full of macrophages after 24 hours of incul (98.8±0.7% occupancy with Control cells and 99.3± 0.1% with *Arnica m.*, treated cells, n.s.) wh part of the gap was filled (63.2±3.9% occupancy with Control cells and 62.3±7.0% with *Arnica n* shown in figure). The bar charts on the right of Fig 6 represent the time-course of cell migration (F) of IL-4. *Arnica m*. 2c promoted a faster cell migration in both conditions but the difference be
and statistically significant only in the presence of IL-4 (p = 0.014). The level of wound closure was higher than that obtained with the Control solvent.

Discussion

Preparations from traditional medicinal plants are often used as alternative remedies aimed at facilitating wound healing [34,35]. However, according to the available literature in medical databases, the mechanisms of action of homeopathic remedies have yet to be fully understood. The application of whole plant extracts, formulations, may be beneficial because herbaceuticals can have multiple and pleiotropic target pathways, but little is known about its possible action on the stages of tissue formation and remodeling. Different dilutions of the whole plant extract in THP-1 human cells, differentiated into an IL-4 activated phenotype involved in healing and tissue remodelling. RNA sequencing of whole transcriptome allowed the identification of expression was significantly altered following the treatment.

The physicochemical features of the Arnica m. used as a starting material to prepare further working dilutions were investigated through NTA, which provided a quantitative and morphological analysis of nanostructures in the naturally during preparation of herbal extracts in liquid solution, and the presence of traces of silica from the glass container has been observed to help nanoparticle nucleation [39]. Moreover, exosomes or lipidic plant debris [40]. In this work, for the first time, Arnica m. preparations were found to exhibit polydispersed nanoscale structures ranging from 100 to 400 nm in size. These nanosized formations might represent a bioactive form of diluted herbal extract, as suggested [41–44], and this interesting hypothesis deserves further investigation.

The main and novel finding was the increased expression of several genes of tissue matrix proteins whose increase was confirmed also by protein assay in culture supernatants. This evidence suggests a possible role of this plant in wound-healing processes. In fact, most of the up-regulated genes which emerged from extracellular matrix (ECM), and their enrichment as a functional group of genes is highly significant. The ECM is composed of components that bind to each other as well as to cell adhesion receptors, forming a complex network that interacts with cells and tissue. The ECM consists of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, fibrillin, and several other glycoproteins.

Fibronectin is a multi-domain protein with an essential role in the ECM since it binds to both cell membrane and fibrillar components. Cell receptors for fibronectin transduce signals which regulate diverse functions, such as cell adhesion, spreading, proliferation, migration [47]. Fibronectin supports efficient platelet aggregation and pro-coagulant activity [48]; in the wound site it is a key player in regulating the neovascularisation of granulation tissue during the resolution of tissue injury. Fibronectin is an important component of the early tendon repair process [49,50]. FN-1 gene is overexpressed in macrophages during the inflammatory phase of inflammation, suggesting it has important role in ECM deposition and tissue remodeling and in chronic inflammatory diseases [51]. Based on these considerations, we can formulate the hypothesis that even a small increase (20–30%) in the production of fibronectin induced by treatment with Arnica m. could greatly facilitate the wound healing process by providing a scaffold for the migration of epithelial cells over the granulation tissue.

Other up-regulated genes included LRP1, HSPG2, and FBN2, which have an EGF-like domain in common with FN1. The significant association of these four genes into this functional group defined by enrichment analysis reflects the described changes of gene expression identify specific Arnica m. targets and can not be a result of chance. EGF-like domain is an evolutionary conserved domain, which derives its name from the epidermal growth factor, which plays a role in cell growth and tissue repair. Most occurrences of the EGF-like domain are found in extracellular matrix proteins or in proteins known to be secreted, such as components of the extracellular matrix. This evidence suggests a possible role of this plant in wound-healing processes.
is important in protein-protein interactions and the proteolytic release of this domain from memt on erbB receptors involved in cell growth and survival [52]. The interaction between the EGF-like calcium-dependent, a feature that is in keeping with the enrichment of calcium-binding group of

Low-density lipoprotein-receptor-related protein-1 (LRP1) is a receptor that mediates endocytosis signaling. LRP-1 binds and internalizes numerous, structurally diverse ligands, delivering most lysosomes for degradation [53]. LRP-1 also controls the plasma membrane proteome by regul proteins in the secretory pathway [54]. Recently, its role as a regulator of inflammation has eme to bind extracellular matrix proteins including fibronectin and thrombospondin [55] and to clear r of macrophage LRP1 to modulate endocytosis and protein degradation confers on it a role in re after wound and inflammation—e.g. adhesion and deadhesion processes, cell movements, clea proteases (e.g. MMP) that are generated in an inflammatory environment. In addition, LRP1 reg modulating levels of connective tissue growth factor [57]. Finally, LRP-1 affects macrophage po development of an anti-inflammatory M2 functional phenotype [58].

Heparan sulfate proteoglycan 2 (HSPG2, Perlecan) is a protein that in humans is encoded by th protein in basement membrane. HSPG2 is a key component of the cortical bone and serves as the osteocyte cell body to the bone matrix. A reduction in perlecan secretion interferes with bon vivo [59].

The protein encoded by KMT2D is a histone methyltransferase that methylates the Lys-4 position regulates chromatin accessibility of adjacent genes and is associated with positive regulation of modifications induced by this protein, which are slight even after Arnica m. 2c treatment, may h be identified. In fact, many genes are expressed under the presence of this histone modification markers for M2 phenotype in IL-4 treated macrophages [60]. The gene MACF1 (microtubule an likewise slightly but significantly overexpressed by Arnica m. 2c treatment. This protein has the crosslink microtubules and F-actin networks, thereby directing microtubule organization. Directio wound repair, and MACF1 has been observed to play a role in wound healing and epidermal mi required for rapid and efficient formation of a hyperproliferative epithelium in response to injury, on epidermal migration rather than proliferation [61].

The decreased expression of several mitochondrially-coded genes of respiratory chain is a puzzling phenomenon was accompanied by a decreased synthesis of related proteins, one would envis chain and oxidative phosphorylation. Certainly, this expression change was not associated with damage, since cell viability was not changed upon Arnica m. treatment. Instead, the slight incre statistically significant, and to be confirmed by further studies) could suggest an increased level consequence of decreased consumption in the mitochondrial respiratory chain. Furthermore, sif free radicals in conditions of lack of oxygen and reperfusion [62], it is possible that a moderate could have a cytoprotective effect in conditions of lack of oxygen, such as those presumably en tissue. This hypothesis is in agreement with the finding that a 30c dilution of Arnica m., administ decreased oxygen consumption of isolated liver mitochondria and protected from oxidative dam [14]. The authors of that work interpreted this effect as a defence against oxidative stress. Further whole extract of Arnica m. showed antioxidant activity and a cytoprotective effect against oxidat reports an inhibitory action of Arnica m. on nitric oxide and TNF-α production by murine macrop wound, treatment with Arnica m. 2c increased cell motility, confirming that the drug does not infl metabolism of the cell.

Among the down-regulated genes, the only non-mitochondrial gene was CCDC88B, coding for protein 88b, that is expressed in lymphocytes and myeloid cells and may have a role in regulat inflamation [64]. Interestingly, this gene showed an unusual behaviour in cells treated with dif decreased in samples from cells treated with low dilutions of Arnica m. (2c and 3c) while it incre dilutions.
One of the major components of *Arnica m.* with an acknowledged biological activity is the sesquiterpene lactone helenalin. In a lymphoid cellular model, helenalin was found to inhibit the transcription of the NF-kappaB—a central mediator of human immune response—through the alkylation of p65 subunit binding to DNA [6]. However, the cited studies did not evaluate the contribution of the whole plant concentration in assay of 1.05 x 10^{-6} Mol/L, much higher than that present in *Arnica m.* 2c used in this investigation concentration in assay of 1.05 x 10^{-8} Mol/L. In this RNA-seq investigation, NFkB1 and RELA gene expression was modulated by *Arnica m.* but, the reported effects of helenalin on NF-kappaB were due the inhibition of protein expression at the transcription level. The role of the NF-kb system and other transduction factors in the regulation of fibronectin synthesis may have a decisive positive outcome of tissue healing and repair. Moreover, given the variety of gene actions to correct the gene expression that has gone wrong and produced the disorder or disease. In this hypothesis, even a 20-30% increase of macrophage activity in production of key-proteins such as fibronectin may have a decisive positive outcome of tissue healing and repair. The slight effect in this *in vitro* model does not mean that the modulating effect will also be small without the help of a suitable working hypothesis. On the basis of all the available evidence, originally proposed by Khuda-Bukhsh [70] offers an acceptable logical explanation of the molecular mechanism involved in the biological action of diluted homeopathic remedies in living organisms—whether plants or animal microorganisms. Models ultradiluted *Arsenicum* 30c or *Arnica m.* 30c modified the expression of key genes associated with inflammation and wound healing processes. This same model has previously been proven a valuable tool for assessing the effect of homeopathic remedies, using a scratch-test model to evaluate cellular migratory events after treatment with *Arnica m.* can be due to many factors, including the augmented synthesis of fibronectin, the ability to adhere to the surface of the well and to each other, also in virtue of the increased synthesis of ECM matrix by natural and chemical compounds is open to further studies and developments. In these conditions, even a 20–30% increase of macrophage activity in production of key-proteins such as fibronectin may have a decisive positive outcome of tissue healing and repair. Moreover, given the multiplicity of its alkaloids, flavonoids, and sesquiterpene lactones [80], it is conceivable that the field of connective tissue and cell matrix by natural and chemical compounds is open to further studies and developments. In these conditions, even a 20–30% increase of macrophage activity in production of key-proteins such as fibronectin may have a decisive positive outcome of tissue healing and repair.
Conclusions

The results of this work indicate that *Arnica m.* acts on macrophages by modulating a number of genes and motility. RNA-seq analysis allowed the identification of several genes which are particularly sensitive to dilutions of this plant extract. Molecular analysis of gene expression suggests that a primary action of this medicinal plant extract is the stimulation of tissue matrix synthesis. These findings provide new insights into wound-associated molecular events and point to macrophage fibronectin production as a potential therapeutic target of *Arnica m.* for the treatment of wound repARATION.

Supporting Information

S1 Table. Expression values (RPKM) of Control and *Arnica m.*-treated cells and differential expression (Log2 Fold Change) as reported in Table 1.

IL-4-differentiated THP-1 macrophages were treated with Control solvent or with *Arnica m.* 2c, 3c, 5c, 9c and 15c dilutions. Samples from Control solvent and *Arnica m.* 2c were analysed by RNA-seq in each experiment. RNA samples from 5 experiments of cells treated with *Arnica m.* dilutions 2c, 3c, 5c, 9c and 15c were pooled, analysed with RNA-seq and Fold Change calculated comparing their RPKM with the mean RPKM of Control values.

https://doi.org/10.1371/journal.pone.0166340.s001 (XLSX)

S2 Table. Expression values (RPKM) and differential expression (Log2 Fold Change) of a series of extracellular matrix genes selected from the Reactome database as described in the text.

The genes with FDR-adjusted p values > 0.05 and FDR unadjusted p values < 0.05 are here reported, while those with p values < 0.05 are reported in Table 1. Samples from Control solvent and *Arnica m.* 2c were analysed by RNA-seq in each experiment of five performed. RNA samples from 5 experiments of cells treated with *Arnica m.* dilutions 2c, 3c, 5c, 9c and 15c were pooled, analysed with RNA-seq and Fold Change calculated comparing their RPKM with the mean RPKM of Control values.

https://doi.org/10.1371/journal.pone.0166340.s002 (XLSX)

Author Contributions

- **Conceived and designed the experiments:** PB MM DO CB.
- **Performed the experiments:** MM DO CB AB LB EG.
- **Analyzed the data:** MM LB FDL.
- **Contributed reagents/materials/analysis tools:** MM AB EG LB.
- **Wrote the paper:** PB MM.

References

1. Alonso D, Lazarus MC, Baumann L. Effects of topical arnica gel on post-laser treatment bruises. Dermatol Surg 2002; 28: 686–688.
2. Lawrence WT. Arnica. Plast Reconstr Surg 2003; 112: 1164–1166. pmid:12973238
3. Brinkhaus B, Wilkens JM, Ludtke R, Hunger J, Witt CM, Willich SN. Homeopathic arnica therapy in patients receiving knee surgery: randomised double-blind trials. Complement Ther Med 2006; 14: 237–246. pmid:17105693
 View Article • PubMed/NCBI • Google Scholar

4. Widrig R, Suter A, Saller R, Melzer J. Choosing between NSAID and Arnica for topical treatment of hand osteoarthritis in a randomised study. Rheumatol Int 2007; 27: 585–591. pmid:17318618
 View Article • PubMed/NCBI • Google Scholar

5. Iannitti T, Morales-Medina JC, Bellavite P, Rottigni V, Palmieri B. Effectiveness and Safety of Arnica montana in Inflammation. Am J Ther 2016; 23: e184–e197. pmid:25171757
 View Article • PubMed/NCBI • Google Scholar

6. Lyss G, Schmidt TJ, Merfort I, Pahl HL. Helenalin, an anti-inflammatory sesquiterpene lactone from Arnica, selectively inhibits NF-kappaB. Biol Chem 1997; 378: 951–961. pmid:9348104
 View Article • PubMed/NCBI • Google Scholar

7. Douglas JA, Smallfield BM, Burgess EJ, Perry NB, Anderson RE, Douglas MH, Glennie VL. Sesquiterpene lactones in Arnica montana: method and the effects of flower maturity and simulated mechanical harvesting on quality and yield. Planta Med 2004; 70: 166–170.
 View Article • PubMed/NCBI • Google Scholar

8. Sutovska M, Capek P, Kocmalova M, Pawlaczyk I, Zacynska E, Czarny A et al. Characterization and pharmacodynamic properties of an Arnica montana complex. Int J Biol Macromol 2014; 69: 214–221. pmid:24875316
 View Article • PubMed/NCBI • Google Scholar

9. Klaas CA, Wagner G, Laufer S, Sosa S, Della LR, Bomme U et al. Studies on the anti-inflammatory activity of Arnica montana flowers. Planta Med 2002; 68: 385–391. pmid:12058311
 View Article • PubMed/NCBI • Google Scholar

10. Sharma S, Arif M, Nirala RK, Gupta R, Thakur SC. Cumulative therapeutic effects of phytochemicals in Arnica montana induced arthritis: inhibition of both pro-inflammatory mediators and oxidative stress. J Sci Food Agric 2016; 96: 84–87. pmid:15139092
 View Article • PubMed/NCBI • Google Scholar

11. Macedo SB, Ferreira LR, Perazzo FF, Carvalho JC. Anti-inflammatory activity of Arnica montana 6cH: preclinical study in animals. J Sci Food Agric 2016; 96: 84–87. pmid:15139092
 View Article • PubMed/NCBI • Google Scholar

12. Kawakami AP, Sato C, Cardoso TN, Bonamin LV. Inflammatory Process Modulation by Homeopathic Arnica Montana Variation. Evid Based Complement Alternat Med 2011; 2011: 917541. pmid:21318109
 View Article • PubMed/NCBI • Google Scholar

13. Verma N, Tripathi SK, Sahu D, Das HR, Das RH. Evaluation of inhibitory activities of plant extracts on pro-inflammatory mediators in J774 murine macrophages. Mol Cell Biochem 2010; 336: 127–135. pmid:19813079
 View Article • PubMed/NCBI • Google Scholar
14. de Camargo RA, da Costa ED, Catisti R. Effect of the oral administration homeopathic Arnica montana on mitochondrial oxidative st
2013; 102: 49–53. pmid:23290879
View Article • PubMed/NCBI • Google Scholar

15. Qin L, Crews FT. NADPH oxidase and reactive oxygen species contribute to alcohol-induced microglial activa
Neuroinflammation 2012; 9: 5. pmid:22240163
View Article • PubMed/NCBI • Google Scholar

16. Chanput W, Mes JJ, Wichers HJ. THP-1 cell line: an in vitro cell model for immune modulation approach. Int l
pmid:25130606
View Article • PubMed/NCBI • Google Scholar

17. Gordon S. Alternative activation of macrophages. Nat Rev Immunol 2003; 3: 23–35. pmid:12511873
View Article • PubMed/NCBI • Google Scholar

18. Martinez FO, Helming L, Milde R, Varin A, Melgert BN, Draijer C et al. Genetic programs expressed in resting human macrophages: similarities and differences. Blood 2013; 121: e57–e69. pmid:23293084
View Article • PubMed/NCBI • Google Scholar

19. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S et al. Macrophage activation and polarizatio
guidelines. Immunity 2014; 41: 14–20. pmid:25035950
View Article • PubMed/NCBI • Google Scholar

20. Das A, Sinha M, Datta S, Abas M, Chaffee S, Sen CK et al. Monocyte and macrophage plasticity in tissue rep
185: 2596–2606. pmid:26118749
View Article • PubMed/NCBI • Google Scholar

21. Chanput W, Mes JJ, Savelkoul HF, Wichers HJ. Characterization of polarized THP-1 macrophages and polari
Food Funct 2012.
View Article • PubMed/NCBI • Google Scholar

22. Olioso D, Marzotto M, Bonafini C, Brizzi M, Bellavite P (2016) Arnica montana effects on gene expression in e
quantitative Real-Time PCR. Homeopathy 105: 131–147. pmid:27211321
View Article • PubMed/NCBI • Google Scholar

23. Liang CC, Park AY, Guan JL. In vitro scratch assay: a convenient and inexpensive method for analysis of cell
329–333. pmid:17406593
View Article • PubMed/NCBI • Google Scholar

24. Suen PW, Ilic D, Caveggion E, Berton G, Damsky CH, Lowell CA. Impaired integrin-mediated signal transduc
reduced motility in Hck/Fgr deficient macrophages. J Cell Sci 1999; 112 (Pt 22): 4067–4078.
View Article • PubMed/NCBI • Google Scholar

25. Baruzzi A, Remelli S, Lorenzetto E, Sega M, Chignola R, Berton G. Sos1 Regulates Macrophage Podosome .
26. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptome and gene fusions. Genome Biol 2013; 14: R36. PMID:23618408

27. Huang dW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bi 44–57. PMID:19131956

28. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array 207–210. PMID:11752295

29. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq. PMID:25516281

30. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing (Methodological) 1995; 57: 289–300.

31. Staneva J, Denkova P, Todorova M, Evstatieva L. Quantitative analysis of sesquiterpene lactones in extract of Arnica montana L. by spectroscopy. J Pharm Biomed Anal 2011; 54: 94–99. PMID:20837387

32. Berridge MV, Herst PM, Tan AS. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. 127–152. PMID:16216776

33. Hirst J. Mitochondrial complex I. Annu Rev Biochem 2013; 82: 551–575. PMID:23527692

34. Budovsky A, Yarmolinsky L, Ben-Shabat S. Effect of medicinal plants on wound healing. Wound Repair Regen 2015; 23: 171–183.

35. Maver T, Maver U, Stana KK, Smrke DM, Kreft S. A review of herbal medicines in wound healing. Int J Dermatol

36. Mantle D, Gok MA, Lennard TW. Adverse and beneficial effects of plant extracts on skin and skin disorders. A 89–103. PMID:11482001
37. Karow JH, Abt HP, Frohling M, Ackermann H. Efficacy of Arnica montana D4 for healing of wounds after Hallux Valgus surgery. Altern Complement Med 2008; 14: 17–25. pmid:18199022

38. Reddy KK, Grossman L, Rogers GS. Common complementary and alternative therapies with potential use in dermatologic surgery. Am Acad Dermatol 2013; 68: e127–e135. pmid:21890235

39. Bell IR, Schwartz GE. Enhancement of adaptive biological effects by nanotechnology preparation methods. J Altern Complement Med 2010; 16: 123–138. pmid:25869977

40. Mu J, Zhuang X, Wang Q, Jiang H, Deng ZB, Wang B et al. Interspecies communication between plant and mouse derived exosome-like nanoparticles. Mol Nutr Food Res 2014; 58: 1561–1573. pmid:24842810

41. Chikramane PS, Suresh AK, Bellare JR, Kane SG. Extreme homeopathic dilutions retain starting materials: A nanoparticulate perspective. J Altern Complement Med 2010; 99: 231–242. pmid:20970092

42. Bell IR, Schwartz GE. Adaptive network nanomedicine: an integrated model for homeopathic medicine. Front Biosci (Schol Ed) 2013; 4: 123–138. pmid:24910581

43. Bell IR, Ives JA, Jonas WB. Nonlinear effects of nanoparticles: biological variability from hormetic doses, small particle sizes, and dynamic interactions. Dose Response 2014; 12: 202–232. pmid:24910581

44. Bhattacharyya SS, Mandal SK, Biswas R, Paul S, Pathak S, Boujedaini N et al. In vitro studies demonstrate anticancer activity of an homeopathic model of Gelsemium sempervirens. Exp Biol Med (Maywood) 2008; 233: 1591–1601.

45. Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev 2015; 93: 430–436. pmid:26521758

46. Meldolesi J. Pharmacology of the cell/matrix form of adhesion. Pharmacol Res 2010; 107: 430–436. pmid:26521758

47. To WS, Midwood KS. Plasma and cellular fibronectin: distinct and independent functions during tissue repair. Thromb Haemost 2015; 114: 1175–1188. pmid:26245230

48. Maurer E, Schaff M, Receveur N, Bourdon C, Mercier L, Nieswandt B et al. Fibrillar cellular fibronectin supports procoagulant activity. Thromb Haemost 2010; 114: 175–188. pmid:22724720
49. Gelberman RH, Steinberg D, Amiel D, Akeson W. Fibroblast chemotaxis after tendon repair. J Hand Surg Am View Article • PubMed/NCBI • Google Scholar

50. Juneja SC, Schwarz EM, O'Keefe RJ, Awad HA. Cellular and molecular factors in flexor tendon repair and ad analysis. Connect Tissue Res 2013; 54: 218–226. pmid:23586515 View Article • PubMed/NCBI • Google Scholar

51. Gratchev A, Guillot P, Hakiy N, Politz O, Orfanos CE, Schledzewski K et al. Alternatively activated macrophage splice variants and the extracellular matrix protein betaIG-H3. Scand J Immunol 2001; 53: 386–392. pmid:112 View Article • PubMed/NCBI • Google Scholar

52. Fleck D, van Bebber F, Colombo A, Galante C, Schwenk BM, Rabe L et al. Dual cleavage of neuregulin 1 type EGF-like domain and allows paracrine signaling. J Neurosci 2013; 33: 7856–7869. pmid:23637177 View Article • PubMed/NCBI • Google Scholar

53. Gaultier A, Hollister M, Reynolds I, Hsieh EH, Gonias SL. LRP1 regulates remodeling of the extracellular matrix 22–30. pmid:19699300 View Article • PubMed/NCBI • Google Scholar

54. Gonias SL, Wu L, Salicioni AM. Low density lipoprotein receptor-related protein: regulation of the plasma membrane 91: 1056–1064. pmid:15175790 View Article • PubMed/NCBI • Google Scholar

55. Gonias SL, Campana WM. LDL receptor-related protein-1: a regulator of inflammation in atherosclerosis, can Pathol 2014; 184: 18–27. pmid:24128688 View Article • PubMed/NCBI • Google Scholar

56. Yamamoto K, Troeberg L, Scilabra SD, Pelosi M, Murphy CL, Strickland DK et al. LRP-1-mediated endocytosis of ADAMTS-5 in articular cartilage. FASEB J 2013; 27: 511–521. pmid:23064555 View Article • PubMed/NCBI • Google Scholar

57. Strickland DK, Au DT, Cunfer P, Muratoglu SC. Low-density lipoprotein receptor-related protein-1: role in the role Thromb Vasc Biol 2014; 34: 487–498. pmid:24504736 View Article • PubMed/NCBI • Google Scholar

58. May P. The low-density lipoprotein receptor-related protein 1 in inflammation. Curr Opin Lipidol 2013; 24: 134- View Article • PubMed/NCBI • Google Scholar

59. Wijeratne SS, Martinez JR, Grindel BJ, Frey EW, Li J, Wang L et al. Single molecule force measurements of osteocyte pericellular matrix. Matrix Biol 2016; 50: 27–38. pmid:26546708 View Article • PubMed/NCBI • Google Scholar

60. Ishii M, Wen H, Corsa CA, Liu T, Coelho AL, Allen RM et al. Epigenetic regulation of the alternatively activated 3244–3254. pmid:19567879
| Reference | Title |
|-----------|-------|
| 61. Wu X, Kodama A, Fuchs E. | ACF7 regulates cytoskeletal-focal adhesion dynamics and migration and has ATF activity. Cell 2008; pmid:18854161 |
| 62. Babot M, Birch A, Labarbuta P, Galkin A. | Characterisation of the active/de-active transition of mitochondrial complex I. Biochim Biophys Acta 2014; 1839–1092. pmid:24569053 |
| 63. Craciunescu O, Constantin D, Gaspar A, Toma L, Utoiu E, Moldovan L. | Evaluation of antioxidant and cytoprotective effects of Artemisia absinthium L. ethanolic extracts. Chem Cent J 2012; 6: 97. pmid:22958433 |
| 64. Kennedy JM, Fodil N, Torre S, Bongfen SE, Olivier JF, Leung V et al. | CCDC88B is a novel regulator of maturation and effector functions of pathological inflammation. J Exp Med 2014; 211: 2519–2535. pmid:25403443 |
| 65. Lussignoli S, Bertani S, Metelmann H, Bellavite P, Conforti A. | Effect of Traumeel S, a homeopathic formulation, on blood-induced inflammation. Complement Ther Med 1999; 7: 225–230. pmid:10709306 |
| 66. Conforti A, Bellavite P, Bertani S, Chiarotti F, Menniti-Ippolito F, Raschetti R. | Rat models of acute inflammatory effects of homeopathic remedies. BMC Complement Altern Med 2007; 7: 1. pmid:17233886 |
| 67. Castro FC, Magre A, Cherpinski R, Zelante PM, Neves LM, Esquisatto MA et al. | Effects of microcurrent application of Hypericum perforatum L. and Arnica montana L. on surgically induced wound healing in Wistar rats. Homeopathy 2012; 101: 147–153. pmid:22809413 |
| 68. Hostanska K, Rostock M, Melzer J, Baumgartner S, Saller R. | A homeopathic remedy from arnica, marigold, and comfrey accelerates in vitro wound scratch closure of NIH 3T3 fibroblasts. BMC Complement Altern Med 2012; 12: 100. pmid:22809413 |
| 69. Bresler A, Hawkins D, Raziog R, Abrahamse H (2007) | Effect of low level laser therapy and Calendula officinalis on wound healing. Ind J Res Hom 2: 7–15. pmid:25869978 |
| 70. Khuda-Bukhsh A. | Potentiated homoeopathic drugs act through regulation of gene-expression: a hypothesis to explain their mechanism of action in vitro. Compl Ther Med 1997; 5: 43–46. pmid:10709306 |
| 71. Bellavite P, Signorini A, Marzotto M, Moratti E, Bonafini C, Olioso D. | Cell sensitivity, non-linearity and inverse effects of homeopathic remedies. BMC Complement Altern Med 2007; 7: 1. pmid:17233886 |
72. Das D, De A, Dutta S, Biswas R, Boujedaini N, Khuda-Bukhsh AR. Potentized homeopathic drug Arsenicum /
biomarkers and gene expressions in Saccharomyces cerevisae exposed to arsenate. Zhong Xi Yi Jie He Xue
View Article PubMed/NCBI Google Scholar

73. De A, Das D, Dutta S, Chakraborthy D, Boujedaini N, Khuda-Bukhsh AR. Potentiated homeopathic drug Arsenicum
reactive oxygen species generation and up-regulates expression of arsenic resistance gene in arsenite-expos
He Xue Bao 2012; 10: 210–227. pmid:22313889
View Article PubMed/NCBI Google Scholar

74. Das S, Saha SK, De A, Das D, Khuda-Bukhsh AR. Potential of the homeopathic remedy, Arnica Montana 30C
exposed to ultraviolet irradiation through up-regulation of nucleotide excision repair genes. Zhong Xi Yi Jie He
pmid:22409925
View Article PubMed/NCBI Google Scholar

75. Marzotto M, Olioso D, Brizzi M, Tononi P, Cristofoletti M, Bellavite P. Extreme sensitivity of gene expression in
doses of Gelsemium sempervirens. BMC Complement Altern Med 2014; 14: 104. pmid:24642002
View Article PubMed/NCBI Google Scholar

76. Olioso D, Marzotto M, Moratti E, Brizzi M, Bellavite P. Effects of Gelsemium sempervirens L. on pathway-focu
cells. J Ethnopharmacol 2014; 153: 535–539. pmid:24613275
View Article PubMed/NCBI Google Scholar

77. Bigagli E, Luceri C, Dei A, Bernardini S, Dolara P. Effects of Extreme Dilutions of Apis mellifica Preparations c
Dose Response. 2016 Jan 6;14(1):1559325815626685.
View Article PubMed/NCBI Google Scholar

78. Ramo P, Kesseli J, Yli-Harja O. Perturbation avalanches and criticality in gene regulatory networks. J Theor B
View Article PubMed/NCBI Google Scholar

79. Balleza E, varez-Buylla ER, Chaos A, Kauffman S, Shmulevich I, Aldana M. Critical dynamics in genetic regul
kingdoms. PLoS ONE 2008; 3: e2456. pmid:18560561
View Article PubMed/NCBI Google Scholar

80. Ganzera M, Egger C, Zidorn C, Stuppner H. Quantitative analysis of flavonoids and phenolic acids in Arnica n
chromatography. Anal Chim Acta 2008; 614: 196–200. pmid:18420051
View Article PubMed/NCBI Google Scholar