Letters to the Editor

Immunoglobulin G (IgG) anti-platelet autoantibodies are thought to play a central role in platelet destruction in immune thrombocytopenia (ITP). IgG autoantibodies are detected in up to 81% of patients with ITP by the direct monoclonal antibody immobilization of platelet antigens (MAIPA) assay, and target several platelet glycoproteins (GP) including GPlib/IIa, GPlib/IX, and GPFV. While anti-GPlib antibodies can mediate FcγR-independent modes of platelet clearance, anti-GPlib/IIa autoantibodies are presumed to drive FcγR-dependent platelet clearance through mononuclear phagocytes in the spleen (splenic macrophages). However, the role of specific types of FcγR in the phagocytosis of autoantibody-opsonized platelets is unknown. Here, we purified macrophages from the spleens of ITP patients and incubated them with platelets opsonized with anti-GPlib/IIa ITP sera to induce phagocytosis. The role of specific FcγR types was investigated by treating macrophages with individual or combined blocking antibodies against specific FcγR. Anti-GPlib/IIa-specific ITP sera mediated significant phagocytosis of platelets relative to platelets incubated with sera from healthy donors. Targeting all FcγR by combining blocking antibodies led to near-complete inhibition of splenic macrophage phagocytosis. Blockade of single FcγR types revealed that FcγRI and FcγRIII, but not FcγRIIA, were responsible for phagocytosis. Furthermore, we compared macrophages from ITP and control (trauma) spleens and determined that they had similar phagocytic activity, FcγR expression, and used the same types of FcγR in the phagocytosis of an unbiassed target (anti-D-opsonized erythrocytes). Our results indicate that anti-GPlib/IIa ITP autoantibodies mediate FcγR-dependent splenic macrophage phagocytosis through FcγRI and FcγRIII.

Despite the prevailing hypothesis that anti-GPlib/IIa autoantibodies clear platelets through splenic macrophage FcγR, direct demonstrations of this are lacking. McMillan et al. first observed that splenic leukocytes from patients with ITP mediated uptake and/or binding of healthy donor platelets without prior incubation with ITP serum, implicating the spleen as a site of both autoantibody production and platelet clearance. Kuwana et al. demonstrated in vitro that peripheral blood monocyte-derived macrophages acquire antigen from ITP patients’ platelets through FcγRI for presentation to GPlib/IIa-specific T cells. Nakar et al. successfully treated a small cohort of ITP patients with a blocking antibody against FcγRIII, implicating FcγRIII in the clearance of platelets. However, the contribution of specific splenic macrophage FcγR to the clearance of platelets has not been directly established and the involvement of other FcγR cannot be excluded.

To identify which FcγR are involved in splenic macrophage phagocytosis, macrophages were purified from ITP patients’ spleen cell suspensions by CD14-positive selection (Online Supplementary Figure S1). Sera from five patients with ITP who were positive for GPlib/IIa autoantibodies but negative for antibodies against GPlib/IX and GPFV (by indirect MAIPA assay) were used individually to opsonize healthy donors’ platelets for phagocytosis. Available characteristics of the ITP patients who provided spleen samples are summarized in Online Supplementary Table S1 and while those of ITP patients who gave sera are summarized in Online Supplementary Table S2. Platelets were fluorescently labeled with 5-chloromethylfluorescein diacetate (CMFDA) and phagocytosis was evaluated by confocal microscopy. Non-phagocytosed platelets were detected with an anti-GPIIX fluorescent antibody after phagocytosis. Incubation of platelets with ITP serum led to a significant increase in splenic macrophage phagocytosis compared to the phagocytosis following incubation in normal human serum (NHS) (P<0.0015) (Figure 1A, B). To evaluate the specific FcγR types involved, blocking antibodies against FcγRI, FcγRIIA, FcγRIIB/C, and FcγRIII were used. Antibodies were deglycosylated using PNGase-F to reduce non-specific blockade, and each antibody was dose-dependently examined for its ability to bind and block phagocytosis (not shown). Two representative ITP sera were selected to evaluate FcγR utilization. Platelet uptake was reduced significantly by the combination of all FcγR blocking antibodies compared to the isotype control (P<0.0001) (Figure 1C). Using single blocking antibodies, blockade of FcγRI inhibited ITP splenic macrophage phagocytosis by 42% (P<0.0001), while blockade of FcγRIII inhibited phagocytosis by 38% (P<0.0001). Surprisingly, minimal, non-significant inhibition was achieved with blockade of FcγRIIA (10%, P=0.056) or all FcγRII isoforms (7%, P=0.15).

Although antibody blockade of FcγRII has been used to successfully treat ITP patients, unfavorable adverse events limited this approach. As a monovalent approach can overcome toxicity associated with bivalent FcγR blocking antibodies, we evaluated whether a monovalent FcγRIII blocking antibody inhibits phagocytosis with equal efficacy as a bivalent antibody. We generated a monovalent FcγRIII-blocking IgG1-humanized duobody composed of an anti-FcγRIII (SG8) Fab paired with an irrelevant anti-2,4,6-trinitrophenyl Fab. The construct also encoded N297A (which prevents Fc glycosylation) and PG-LALA (P329G, L234A, and L235A) mutations to completely abrogate Fc-FcγR binding. The inhibition of ITP splenic macrophage phagocytosis achieved by the monovalent anti-FcγRIII duobody was not significantly different from that achieved by the bivalent and deglycosylated blocking antibody (P=0.87) (Figure 1D).

We next compared the leukocyte composition and macrophage FcγR expression in spleens from ITP patients with those in spleens from healthy controls (splenic samples available because of trauma). Both ITP and control spleens contained similar percentages of B cells (CD19+), T cells (CD3+), monocyte/macrophages (CD14+), and granulocytes (CD66b+) (Figure 2A), as evaluated by flow cytometry. Macrophage FcγR expression was also similar between the two types of spleen, with a non-significant trend to increased FcγR expression being observed for ITP macrophages relative to controls (Figure 2B, C).

Lastly, we compared the phagocytic activity between splenic macrophages from ITP patients and controls using healthy donor erythrocytes opsonized with a commercial preparation of anti-D (Cameca) as an unbiased phagocytic target. Phagocytosis was evaluated by bright-field microscopy and non-phagocytosed erythrocytes were removed by hypotonic lysis. Erythrocytes were phagocytosed in an antibody-dependent manner and no significant difference in the phagocytic index was observed between the two spleen types (Figure 3A, B). Blocking antibodies were next used alone or in combina-
Figure 1. Splenic macrophages from patients with immune thrombocytopenia phagocytose GPIIb/IIIa autoantibody-opsonized platelets through FcγRI and FcγRIII.

(A) Splenic macrophages were isolated from spleens from patients with immune thrombocytopenia (ITP) by CD14-positive selection. Healthy donor platelets were opsonized with one of five different ITP sera positive for autoantibodies to GPIIb/IIIa but negative for GPIb/IX and GPV autoantibodies (identified by symbols □, ●, ■, ▲, and ▼ as patients 1-5, respectively, in Online Supplementary Table S2) (n=4 experiments each). A total of eight unique ITP spleens were used to perform the phagocytosis studies. Four normal human sera (NHS, allogeneic to the platelet donor) specimens were used to opsonize platelets as controls (n=7 experiments). Non-ops: non-opsonized (phosphate-buffered saline only). Phagocytic index: the number of phagocytosed platelets per 100 macrophages. (B) ITP splenic macrophage (left-most panel) with a phagocytosed anti-GPIIb/IIIa ITP serum-opsonized platelet as imaged by spinning disc confocal microscopy (63x objective). Platelets were labeled with the cytoplasmic dye 5-chloromethylfluorescein diacetate (CMFDA) (green, middle panel). External (non-phagocytosed) platelets were identified after phagocytosis using an AlexaFluor 647 (AF647)-conjugated anti-CD42a antibody (red, right panel). Platelets were additionally defined by size (1.5 μm to 3.5 μm) to distinguish them from internalized microparticles or platelet aggregates. Arrow: one phagocytosed platelet. (C) Splenic macrophage FcγR were blocked using deglycosylated antibodies to FcγRI (clone 10.1), FcγRIIA (IV.3), FcγRIIA/B/C (AT10), or FcγRIII (3G8), as indicated. Healthy donor platelets were opsonized with one of two representative anti-GPIIb/IIIa ITP sera (represented by ● and ■) (n=3 experiments; different spleen per experiment). Isotype control: 30 μg/mL deglycosylated mouse IgG1, 10 μg/mL deglycosylated mouse IgG2b (respective to combined blocking antibodies). (D) Inhibition of ITP splenic macrophage phagocytosis of anti-GPIIb/IIIa ITP serum-opsonized platelets by a deglycosylated blocking antibody to FcγRIII (clone 3G8, “FcγRIII”) or a monovalent FcγRIII-blocking IgG1-humanized duobody (“FcγRIII duobody”). The duobody was bispecific (3G8 Fab, paired with anti-2,4,6-trinitrophenyl as an irrelevant Fab) and possessed PG-LALA (P 329 G, L 234 A, and L 235 A) and N 297 A mutations. Two different ITP sera (represented by ● and ■) were evaluated (n=3 experiments; different spleen per experiment). Significance for (A): Kruskal-Wallis test (non-parametric one-way analysis of variance [ANOVA]) with multiple comparisons against all means with a Dunn post-hoc test. Significance for panels (C, D): one-way analysis of variance with multiple comparisons with a Dunnett post-hoc test (C) or Tukey post-hoc test (D). P values: ****P<0.0001, **P=0.0015, ns=not significant. Percent phagocytosis was calculated relative to an untreated group (untreated splenic macrophages with opsonized platelets). Data error: mean ± standard deviation.
tion to determine whether FcR utilization may differ between ITP and control splenic macrophages for anti-D-opsinized erythrocytes. Blockade of all FcγR types led to a significant decrease in the phagocytosis of anti-D-opsinized erythrocytes, down to non-opsinized levels (Figure 3C, D). For macrophages from ITP spleens, FcγRIIIB blockade inhibited phagocytosis of anti-D-opsinized erythrocytes by 58% (P<0.0001), while blockade of FcγRIIIC inhibited phagocytosis by 29% (P<0.0001). Blockade of FcγRIIIB or all FcγRII isoforms did not significantly inhibit phagocytosis (4%, P=0.62 for FcγRIIIB; and 6%, P=0.20 for all FcγRII isoforms). FcγRI was also the major phagocytic receptor in control splenic macrophages, as FcγRI blockade inhibited phagocytosis by 51% (P<0.0001) while FcγRIIIC blockade inhibited phagocytosis by 20% (P<0.05). No significant effect was observed following blockade of FcγRIIIB (3%, P=0.99) or all FcγRII isoforms (4%, P=0.97).

While both Fc-dependent and Fc-independent autoantibody-mediated platelet clearance mechanisms in ITP have been explored, the dominant pathophysiological mechanism in most patients is thought to involve FcγR-mediated platelet clearance by splenic macrophages. Therapies suggested to block FcγR-dependent processes such as anti-D and IVIg are effective in many patients with ITP, and an FcγRIII-specific blocking antibody was able to rapidly raise platelet counts in a small cohort of ITP patients. Furthermore, inhibition of spleen tyrosine kinase (Syk) by treatment with fostamatinib is clinically effective in ITP. The success of these therapies suggests that interfering with FcγR function is an effective strategy to increase platelet counts in patients with ITP.

While involvement of splenic macrophage FcγRIII in anti-GPIIb/IIIa-autoantibody-opsonized platelet uptake is consistent with reports that selective blockade of FcγRIII is clinically effective, significant involvement of
FcγRI was unexpected. Although the high-affinity nature of FcγRI for monomeric IgG suggests that FcγRI is saturated with IgG in vivo, FcγRI can engage effectively with immune complexes despite saturation under conditions such as cytokine stimulation. Antibody targeting of FcγRI as a therapeutic strategy for ITP has been reported for a single ITP patient and led to downmodulation of FcγRI in circulating monocytes and transient monocytopenia but not to an improvement in the platelet count. However, as the antibody used did not directly target the IgG binding region of FcγRI and was reported for a single patient, it remains difficult to make conclusions about this approach.

We found that control and ITP splenic macrophage levels of FcγR expression, phagocytic activity, and the specific types of FcγR utilized in the phagocytosis of anti-D-opsonized erythrocytes were not significantly different. The dominance of splenic macrophage FcγRI for anti-D-opsonized erythrocytes supports the findings of Nagelkerke et al., who also observed that FcγRI was the primary FcγR mediating red pulp splenic macrophage phagocytosis of anti-D-opsonized erythrocytes. A previous study by Audia et al. found similar FcγR expression between ITP and control splenic macrophages; we observed a trend of increased FcγR expression on ITP splenic macrophages relative to control macrophages although the difference did not reach statistical significance. Splenic macrophages from patients with ITP have been previously identified to have an M1-type polarization bias. Although we did not investigate macrophage polarization, our results indicate at least that splenic macrophage FcγR expression and phagocytic activity in
patients with ITP are similar to those in healthy individuals.

Combined FcγR blockade may be particularly useful in patients who are refractory to splenectomy, as it may block platelet clearance mediated by macrophages residing outside the spleen such as those in the liver, marrow, and lungs. Our results indicate that, to the extent that FcγR-dependent phagocytosis contributes to platelet clearance in ITP, the individual or combined blockade of FcγRI and FcγRIII is likely the most effective strategy for targeted FcγR blockade as a therapeutic modality.

Peter A. A. Norris, George B. Segel, W. Richard Burack, Ulrich J. Sachs, Suzanne N. Lissenberg-Thummissen, Gestur Vidarsson, Behnaz Bayat, Christine M. Csern-Gazlewich, Jeannie Callum, Yuliu Lin, Donald R. Branch, Rick Kapur, John W. Semple, and Alan H. Lazarus

Centre for Innovation, Canadian Blood Services, Ottawa, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada; Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada; Department of Medicine, University of Rochester School of Medicine, Rochester, NY, USA; Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA; Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University, Giessen, Germany; Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Haematology and Transfusion Medicine, Lund University, Lund, Sweden and Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada

Correspondence: ALAN H. LAZARUS

lazarusa@smh.ca/alan.lazarus@uhnresearchhealth.ca
doi:10.3324/haematol.2020.248385

Disclosures: Yuli Lin has received research funding from Novartis and Octapharma and consulting fees from Amgen and Pfizer.

Alan H. Lazarus has patents on the use of monoclonal antibodies as replacements for IVig and has received research funding from Rigol Pharmaceuticals Incorporated and CSL Behring, GBS, WRB, UJS, BB, SNL-T, CMC-G, GV, JC, DB, RK, and JWS do not have relevant conflicts of interest to disclose.

Contributions: AHL, GBS and PAAN conceived the study; PAAN, AHL, GBS, and R.K. designed experiments; WRB, UJS, SNL-T, GV, BB, CMC-G, JC, YL, Danid JWS provided reagents; PAAN performed experiments; AHL, GB and PAAN analyzed and interpreted data; PAAN and GBS wrote the manuscript; AHL, GBS, PAAN, WRB, UJS, SNL-T, GV, JC, RK and JWS edited the manuscript.

Funding: this research is supported by the University of Toronto, Alexandra Yeo Chair Grant in Benign Hematology (to CMC-G) and received funding support from the Canadian Blood Services Intramural Research Grant Program (to AHL) and Graduate Fellowship Program (to PAAN). It was also funded by the federal government (Health Canada) and provincial and territorial ministries of health. The views herein do not necessarily reflect the views of Canadian Blood Services or the federal, provincial, or territorial governments of Canada. We are grateful to Canadian Blood Services’ blood donors who made this research possible. WRB received funding to support specimen acquisition, from grant award P50-CA153825 from the National Institutes of Health (USA) and an “Upstate New York Translational Research Grant” administered through ULA RRR24160 from the National Center for Advancing Translational Sciences of the National Institutes of Health.

References

1. Zufferey A, Kapur R, Semple JW. Pathogenesis and therapeutic mechanisms in immune thrombocytopenia (ITP). J Clin Med. 2017; 6(2):16.
2. Porcelijn L, Huiskes E, Oldert G, Schipperus M, Zwaginga JJ, de Haas M. Detection of platelet autoantibodies to identify immune thrombocytopenia: state of the art. Br J Haematol. 2018;182(3):423-426.
3. Vollenberg R, Jouni R, Norris PAA, et al. Glycoprotein V is a relevant immune target in patients with immune thrombocytopenia. Haematologica. 2019;104(6):1237-1243.
4. Li J, van der Wel DE, Zhu G, et al. Desialylation is a mechanism of Fc-independent platelet clearance and a therapeutic target in immune thrombocytopenia. Nat Commun. 2015;6:7787.
5. McMillan R, Longmire RL, Tavassoli M, Armstrong S, Yelenosky R. In vitro platelet phagocytosis by splenic leukocytes in idiopathic thrombocytopenic purpura. N Engl J Med. 1974;290(5):249-251.
6. Kuwana M, Okazaki Y, Ikeda Y. Splenic macrophages maintain the anti-platelet autoimmune response via uptake of opsonized platelets in patients with immune thrombocytopenic purpura. J Thromb Haemost. 2009;7(2):322-329.
7. Nakar CT, Bussel JB. SGB and GMA161, anti FcγRII inhibitory monoclonal antibodies in the treatment of chronic refractory ITP: (Summary of 2 pilot studies). Blood. 2009;114(22):2404.
8. Yu X, Menard M, Prechil J, Bhakta V, Sheffield WP, Lazarus AH. Monovalent Fc receptor blockade by an anti-Fc receptor/albumin fusion protein ameliorates murine ITP with abolished effector function. Protein Eng Des Sel. 2016;29(10):457-466.
9. Bussel JB, Arnold DA, Boes J, et al. Long-term fostamatinib treatment of adults with immune thrombocytopenia during the phase 3 clinical trial program. Am J Hematol. 2019;94(5):546-553.
10. van der Poel CE, Karssmeijer RA, Boross P, et al. Cytokine-induced immune complex binding to the high-affinity IgG receptor, FcγRII, in the presence of monoclonic IgG. Blood. 2010;116(24):5327-5333.
11. Ericson SG, Coleman KD, Wardwell K, et al. Monoclonal antibody 197 (anti-FcyRII) infusion in a patient with immune thrombocytopenia purpura (ITP) results in down-regulation of FcγRI on circulating monocytes. Br J Haematol. 1996;92(5):718-724.
12. Nagelkerke SQ, Bruggeman CW, den Haan JMM, et al. Red pulp macrophages in the human spleen are a distinct cell population with a unique expression of Fcγ receptors. Blood Adv. 2018;2(8):941-953.
13. Audia S, Santegato K, Laatikainen AG, et al. Fcγ receptor expression on spleen macrophages in adult immune thrombocytopenia. Clin Exp Immunol. 2017;182(2):275-282.
14. Feng Q, Xu M, Yu YY, et al. High-dose dexamethasone or all-trans retinoic acid restores the balance of macrophages towards M2 in immune thrombocytopenia. J Thromb Haemost. 2017;15(9):1845-1858.