Event Classification with Quantum Machine Learning in High-Energy Physics

Koji Terashi · Michiru Kaneda · Tomoe Kishimoto · Masahiko Saito · Ryu Sawada · Junichi Tanaka

Abstract We present studies of quantum algorithms exploiting machine learning to classify events of interest from background events, one of the most representative machine learning applications in high-energy physics. We focus on variational quantum approach to learn the properties of input data and evaluate the performance of the event classification using both simulators and quantum computing devices. Comparison of the performance with standard multi-variate classification techniques based on a boosted-decision tree and a deep neural network using classical computers shows that the quantum algorithm has comparable performance with the standard techniques at the considered ranges of the number of input variables and the size of training samples. The variational quantum algorithm is tested with quantum computers, demonstrating that the discrimination of interesting events from background is feasible. Characteristic behaviors observed during a learning process using quantum circuits with extended gate structures are discussed, as well as the implications of the current performance to the application in high-energy physics experiments.

Keywords Quantum Computing · Machine Learning · HEP Data Analysis

1 Introduction

The field of particle physics has been recently driven by large experiments to collect and analyze data produced in particle collisions occurred using high-energy accelerators. In high-energy physics (HEP) experiments, particles created by collisions are observed by layers of high-precision detectors surrounding collision points, producing a large amount of data. The large data volume, which is so-called big data, has motivated the use of machine learning (ML) techniques in many aspects of experiments, including triggering, event reconstruction, detector simulation, data-quality control as well as data analysis, to improve their performances. In addition, computational resources are expected to be reduced for specific tasks by adopting relatively new techniques such as ML. This will continue over next decades; for example, a next-generation proton-proton collider, called High-Luminosity Large Hadron Collider (LHC) [1,2], at CERN is expected to deliver a few exabytes of data every year and requires huge computing resources for the data processing. Quantum computing (QC), on the other hand, has been evolving rapidly over the past years, with a promise of a significant speed-up or reduction of computational resources in certain tasks. Early attempts to use QC for HEP have been made, e.g., on data analysis [3,4], charged particle tracking [5,6] and vertexing [7], particle shower simulation [8,9] and jet clustering algorithm [10]. The techniques developed in HEP are also adapted to QC, e.g., the unfolding techniques for physics measurement are applied to QC in Refs. [11,12]. Among these attempts, the quantum machine learning (QML) is considered as one of the QC algorithms that could bring quantum advantages over classical methods, as discussed in literatures, e.g., [13].

Most frequently-used ML technique in HEP data analysis is the discrimination of events of interest, e.g,
signal events originating from new physics beyond the Standard Model (SM) of particle physics, from background events. The ATLAS [14] and CMS [15] experiments at the LHC have adapted ML algorithms in various physics analyses, including, e.g., measurement of the properties of the Higgs boson [16] and search for new particles such as those predicted by the theory of Supersymmetry (SUSY) [17]. In this paper, we have investigated the application of QML techniques to the task of the event classification in HEP data analysis. To our knowledge, the first attempt to utilize QC for HEP data analysis is performed in Ref. [3] for the classification of the Higgs boson using quantum annealing [18].

We focus on QML algorithms developed for gate-based quantum computer, in particular the algorithms based on variational quantum circuit [19]. In the variational circuit approach, the classical input data are encoded into quantum states and a quantum computer is used to obtain and measure the quantum states which vary with tunable parameters. Exploiting a complex Hilbert space that grows exponentially with the number of “quantum bits” (or qubits) in quantum computer, the representational ability of the QML is far superior to classical ML that grows only linearly with the number of classical bits. This motivates the application of ML techniques to quantum computer, which could lead to an advantage over the classical approach. The optimization of the parameters is performed using classical computer, therefore the variational method is considered to be suitable for the present quantum computer, which has difficulty in processing deep quantum circuits due to limited quantum coherence. Practically, actual performance of the variational quantum algorithm depends on the implementation of the algorithm and the properties of the QC device. The primary aim of this paper is to demonstrate the feasibility of ML for the event classification in HEP data analysis using gate-based quantum computer.

First, the variational quantum algorithms are described in Sect. 2, followed by the classical approaches that are used for the comparison. Section 3 discusses the experimental setup used in the study, including the dataset, software simulator and quantum computer. Results of the experiments are discussed in Sect. 4 followed by discussions on several observations about the performance of the quantum algorithms in Sect. 5. We conclude the studies in Sect. 6.

2 Algorithms

2.1 Variational Quantum Approaches

In this study we consider an approach based on variational quantum circuit with tunable parameters [19]. The quantum circuit used in this algorithm is constructed, as shown in Fig. 1, using three components: 1) quantum gates to encode classical input data \(x \) into quantum states (denoted as \(U_{in}(x) \)), 2) quantum gates to produce output states used for supervised learning (denoted as \(U(\theta) \)) and 3) measurement gates to obtain output values from the circuit, that are subsequently compared with the corresponding input labels \(y \). In this study the measurement is performed 1,024 times on each event to obtain certain values of the observables, e.g., the expectation values \(\langle Z \rangle \) of the Pauli-Z operators. For the classification of events into two categories, the first two qubits are typically measured. The \(U(\theta) \) gates used in 2) are parameterized such that they are optimized to model input training data by iterating the computational processes of 1)–3) by \(N_{\text{iter}} \) times and tuning the parameters \(\theta \). The parameter tuning is performed using a classical computer by minimizing a cost function, which is defined such that a difference between the input labels \(y \) and the measured values \(\langle Z \rangle \) can be quantified. The optimized \(U(\theta) \) circuit with the tuned parameters is used, with the same \(U_{in}(x) \) gates, to classify unseen data for testing. The \(U_{in}(x) \) and \(U(\theta) \) are often built by using a same set of quantum gates multiple times and the number of the repetition is denoted by \(N_{\text{depth}} \) and \(N_{\text{var}} \), respectively.

In this study, we use two implementations of the variational quantum algorithms, called Quantum Circuit Learning (QCL) [20] and Variational Quantum Classification (VQC) [21]. The QCL is used for simulating the performance of the variational quantum algorithm. The VQC is used for testing the variational algorithm.
ferred to as the "First Order Expansion" (FOE). The evolution gate, denoted as \(e^{-iHt} \), with the Hamiltonian \(H \) of an Ising model with random coefficients (for creating entanglement between qubits) and the series of single-qubit rotation gates \(R \) is characterized by the series of single-qubit rotation gates and rotation gates with angles from \(\sin^{-1}(x) \) and \(\cos^{-1}(x^2) \), respectively. The input data are needed to be normalized within the range \([−1, 1]\) by scaling linearly using the maximum and minimum values of the input variables. The \(U(\theta) \) is constructed using a time-evolution gate, denoted as \(e^{-iHt} \), with the Hamiltonian \(H \) of an Ising model with random coefficients (for creating entanglement between qubits) and the series of \(R_X \), \(R_Z \) and \(R_Y \) gates with angles as parameters. The nominal \(N_{\text{depth}} \) value is set to 3 after optimization studies. This results in 27 parameters in total for the 3-variable case. The structure for the 5- and 7-variable circuits is the same as the 3-variable case, leading to the total parameters of 45 and 63, respectively. The cost function is defined using a cross-entropy function in scikit-learn package [22], and the minimization of the cost function is performed using COBYLA. See [20] for more details about the implementation.

2.1.1 Quantum Circuit Learning

A QCL circuit used in this study for the 3-variable classification is shown in Fig. 2. The \(U_{\text{in}}(x) \) in QCL is characterized by the series of single-qubit rotation gates \(R_Y \) and \(R_Z \) [20]. The angles of the rotation gates are obtained from the input data \(x \) to be \(\sin^{-1}(x) \) and \(\cos^{-1}(x^2) \), respectively. The input data are needed to be normalized within the range \([−1, 1]\) by scaling linearly using the maximum and minimum values of the input variables. The \(U(\theta) \) is constructed using a time-evolution gate, denoted as \(e^{-iHt} \), with the Hamiltonian \(H \) of an Ising model with random coefficients (for creating entanglement between qubits) and the series of \(R_X \), \(R_Z \) and \(R_Y \) gates with angles as parameters. The nominal \(N_{\text{depth}} \) value is set to 3 after optimization studies. This results in 27 parameters in total for the 3-variable case. The structure for the 5- and 7-variable circuits is the same as the 3-variable case, leading to the total parameters of 45 and 63, respectively. The cost function is defined using a cross-entropy function in scikit-learn package [22], and the minimization of the cost function is performed using COBYLA. See [20] for more details about the implementation.

2.1.2 Variational Quantum Classification

Figure 3 shows a VQC circuit for the 3-variable classification used in this study. The \(U_{\text{in}}(x) \) consists of a set of Hadamard gates and rotation gates with angles from the input data \(x \) (the latter is represented as \(U_{\phi}(x) \) in the figure). The \(U_{\phi}(x) \) is composed of single-qubit rotation gates using the \(U_{\phi}(x) \) term written in Eq. (32) of the supplementary information of Ref. [21], also referred to as the “First Order Expansion” (FOE). The \(U_{\phi}(x) \) is not repeated in this study unless otherwise stated, thus \(\Lambda_{\text{train}}=1 \). The \(U(\theta) \) part of the circuit is also taken from that in [21] but simplified by not repeating a set of entangling gate \(U_{\text{ent}} \) and single-qubit rotation gates \(R_Y \) and \(R_Z \) (surrounded by the dashed box in Fig. 3). The \(U_{\text{ent}} \) is implemented using the Hadamard and CNOT gates, as in Fig. 3. The total number of \(\theta \) parameters is 12 (20, 28) for the 3 (5, 7)-variable classification. The cost function for the VQC algorithm is a cross-entropy function and the minimization is performed using COBYLA as well.

2.2 Classical Approaches

The ML application to the classification of events has been widely attempted in HEP data analyses. Among others, a Boosted Decision Tree (BDT) in the TMVA framework [23] is one of the most commonly used algorithms. A neural network (NN) is another class of multivariate analysis methods, and an algorithm with a deep neural network (DNN) has been proven to be powerful for modelling complex multi-dimensional problems. We use BDT and DNN as benchmark tools for comparison with the performance of the variational quantum algorithms.

In this study we use the TMVA package 4.2.1 for the BDT and the Keras 2.1.6 with TensorFlow 1.8.0 backend for the DNN. The BDT and DNN parameters used are summarized in Table 1. The maximum depth of the decision tree (MaxDepth) and the number of trees in the forest (NTrees) vary with the number of events used in the training (\(\Lambda_{\text{train}} \)) to avoid over-training. The DNN model is a fully-connected feed-forward network composed of 2–6 hidden layers with 16–256 nodes.
Table 1 Parameter settings for the BDT and DNN used in this study. The definitions of the BDT parameters are documented in Ref. [23].

BDT Parameter	Value
BoostType	Grad
NTrees	10 ($N_{\text{train}} = 0.1K$), 100 (0.5K \leq N_{\text{train}} \leq 10K), 1000 ($N_{\text{train}} \geq 50K$)
MaxDepth	1 ($N_{\text{event}} \leq 1K$), 2 (5K \leq N_{\text{event}} \leq 100K), 3 ($N_{\text{event}} \geq 200K$)
nCuts	20
MinimumNodeSize	2.5%
UseBaggedBoost	True
BaggedSampleFraction	0.5

DNN Parameter	Value
Layer Type	Dense
Number of hidden layers	2 ($N_{\text{train}} = 0.1K$ or 1K), 3 ($N_{\text{train}} = 0.5K$), 4 (5K \leq N_{\text{train}} \leq 100K), 6 ($N_{\text{train}} \geq 200K$)
Number of nodes per hidden layer	16 (0.1K \leq N_{\text{train}} \leq 0.5K), 64 (1K \leq N_{\text{train}} \leq 10K), 128 (50K \leq N_{\text{train}} \leq 100K), 256 ($N_{\text{event}} \geq 200K$)
Activation function	Rectified linear unit
Optimizer	Adam
Learning rate	0.001
Batch size	None ($N_{\text{train}} \leq 10K$), 2048 ($N_{\text{train}} \geq 50K$)
Batch normalization	No
Number of epochs	100 with early stopping

numbers of hidden layers and nodes are also optimized separately for N_{train} to avoid over-training.

3 Experimental Setup

Our experimental test of the variational quantum algorithms is performed using both simulators of quantum computers and real quantum computers available via the IBM Q Network [24]. As a benchmark scenario for the HEP data analysis, we consider a problem of discriminating events with SUSY particles from the most representative background events.

3.1 Dataset

We use the “SUSY Data Set” available in the UC Irvine Machine Learning Repository [23], which was prepared for studies of Ref. [26]. The signal process, labelled true, targets a chargino-pair production via a Higgs boson. Each chargino decays into a neutralino that escapes detection and a W-boson that subsequently decays into a charged lepton and a neutrino, resulting in a final state with two charged leptons and a missing transverse momentum. The background process, labelled false, is a W-boson pair production (WW) with each W-boson decaying into a charged lepton and a neutrino. Therefore, both the signal and background processes have the same final state. Monte Carlo simulation is used to produce events of these processes as described in [20].

In our main studies a small fraction of the data is used because the process of the full data (5 million events) with the quantum algorithms requires significant computing resources. For the comparison of the quantum and classical MLs, five sets of data containing 100, 500, 1,000, 5,000 and 10,000 events are used for training and other five sets of data with the same number of events for testing. For the classical MLs, additional four sets of data containing 50,000, 100,000, 200,000 and 500,000 events are used to study the dependence on the sample size.

The dataset contains 18 variables characterizing the properties of the SUSY signal and WW background events, ranging from low-level variables such as lepton transverse momenta to high-level variables such as those reflecting the kinematics of W-bosons and/or charginos (detailed in [26]). Figure 4 shows the normalized distributions of the 18 variables for the signal and background events. Among those, the following 3, 5 and 7 variables, which are quoted as $N_{\text{var}} = 3$, 5 and 7 later, are considered in the main study:

- 3 variables: p_T^{lep1}, p_T^{lep2} and E_T^{miss}.
- 5 variables: 3 variables + M_R^T, M_D^R.
- 7 variables: 5 variables + η^{lep1}, η^{lep2}.

The choice of these variables is based on a ranking of AUC (area under ROC curve) values obtained using the DNN algorithm. In addition, all the 18 variables are used for evaluating the best performance which the classical MLs can reach, as described below.

3.2 Simulator

We use quantum circuit simulators to evaluate the performance of the quantum algorithms. The QCL circuit is implemented using Quilacs 0.1.8 [27], a fast quantum circuit simulator implemented in C++, with Python 3.6.5 and gcc 7.3.0, and the performance is evaluated on cloud Linux servers managed by OpenStack at CERN. The VQC circuit is implemented using Aqua 0.6.1 in the Qiskit 0.14.0 [28], a quantum computing software development framework (Qiskit Aqua framework). The VQC performance is evaluated using a QASM simulator on a local machine as well as real quantum computer explained below.
Event Classification with Quantum Machine Learning in High-Energy Physics

3.3 Quantum Computer

We use the 20-qubit IBM Q Network quantum computers, called Johannesburg and Boeblingen, for evaluating the VQC performance. The quantum computers are accessed using the `QuantumInstance` class in the Qiskit Aqua framework. The $U_\phi(x)$ part of the VQC circuit (Fig. 3) is created separately for each event because the $U_\phi(x)$ gates depend on the input data x. For the training and testing, we use 40 events each, composed of 20 signal and 20 background events. The θ parameters are determined by iterating the training process as explained in Sect. 2.1. The N_{iter} is set to 100 unless otherwise stated.

4 Results

4.1 Qulacs Simulator

First, the classification performance of the QCL algorithm evaluated using the Qulacs simulator is compared with those of the BDT and DNN. Due to a significant increase of the computational resources with N_{var} for the QCL (discussed later), the N_{var} is considered only up to 7.

Figure 5 shows ROC curves for the three algorithms with $N_{\text{var}} = 7$ and $N_{\text{event}} = 10,000$. The center and width of each curve correspond to the average value and the standard deviation of true positive rates calculated at a given false positive rate (or vice versa). Figure 6 shows the comparisons of the AUC values in the testing
phase as a function of $N_{\text{train}}^{\text{event}}$ for $N_{\text{var}} = 3$, 5 and 7. For each algorithm, a single AUC value is obtained from a test sample after each training, and the calculation is repeated 100 (30) times at $N_{\text{train}}^{\text{event}} \leq 10,000$ ($50,000 \leq N_{\text{train}}^{\text{event}} \leq 500,000$). Shown in the figure is the average of the AUC values and its uncertainty. As expected, it is apparent from the BDT and DNN curves that the performance of these two algorithms improves rapidly with increasing $N_{\text{train}}^{\text{event}}$ and then flattens out. The BDT works well over the entire $N_{\text{train}}^{\text{event}}$ range while the DNN performance appears to improve faster at very small $N_{\text{train}}^{\text{event}}$ and exceed BDT at $N_{\text{train}}^{\text{event}}$ beyond $\sim 1,000$. In the case of $N_{\text{var}} = 7$ and $N_{\text{event}}^{\text{train}} = 500,000$, the AUC values are 0.8729 ± 0.0003 for the DNN and 0.8696 ± 0.0006 for the BDT. When using all the 18 variables with 2,000,000 events for the training and testing each, the average AUC value from only five trials is 0.8772 ± 0.0004 (0.8750 ± 0.0004) for the DNN (BDT).

The performance of the QCL algorithm is characterized by the relatively flat AUC values regardless of $N_{\text{event}}^{\text{train}}$. Increasing the N_{var} appears to degrade the performance if the $N_{\text{event}}^{\text{train}}$ is fixed, and the same behavior is also seen for the DNN with $N_{\text{event}}^{\text{train}} \leq 500$ (not clearly visible for the BDT). The DNN algorithm overcomes this and eventually improves the performance with increasing N_{var} by using more data. Investigating how the QCL algorithm behaves with more data is a future subject, as discussed below. Nevertheless, for the N_{var} and $N_{\text{event}}^{\text{train}}$ ($\leq 10,000$) ranges considered all the three algorithms have a comparable discriminating power with the AUC values of 0.80–0.85.

4.2 Quantum Computer and QASM Simulator

The VQC algorithm with $N_{\text{var}} = 3$ has been tested on the 20-qubit IBM Q Network quantum computers and the QASM simulator, as explained in Sect. 3.3. The present study focuses only on the classification accuracy with the real quantum computer. Figure 7 shows the values of the cost function as a function of N_{iter} for both the quantum computer and the simulator in a training phase. For each of the quantum computer and the simulator, the training is repeated five times over the same set of events and their cost-function values are shown. When running the algorithm on the quantum computer, the first three hardware qubits [0, 1, 2] are used [29]. The figure shows that both the quantum computer and the simulator have reached the minimum values in the cost function after iterating about 50 times. However, the cost values for the quantum computer are constantly higher and more fluctuating after reaching the minimum values, indicating that there are contributions from errors due to hardware noise.

The ROC curves for the quantum computer and the simulator obtained from the training and testing samples are shown in Fig. 8, averaged over the five trials of the training or testing. The AUC values for the testing samples are considerably worse than those for the training ones because of the small sample sizes. This has been checked by increasing the $N_{\text{event}}^{\text{train}}$ from 40 to 70, 100, 200, 500 and 1,000 for the simulator (Table 2). As
seen in the table, the over-training largely disappears as the sample sizes increase. Figure 8 shows the ROC curves from the simulator for the two sample sizes of $N_{\text{event}} = 40$ and 1,000, confirming that the over-training is not significant for the latter.

The AUC values are consistent between the quantum computer and the simulator within the standard deviation (Fig. 8), but the simulator results are considered to be systematically better because the input samples are identical. The QCL results are given for $N_{\text{var}} = 3$, $N_{\text{event}} = 40$ and $N_{\text{iter}} = 100$ for both algorithms.

N_{event} ($= N_{\text{iter}}$)	Testing	Training
40	0.555 ± 0.032	0.813 ± 0.012
70	0.716 ± 0.037	0.741 ± 0.022
100	0.708 ± 0.039	0.761 ± 0.025
200	0.812 ± 0.012	0.741 ± 0.014
500	0.779 ± 0.008	0.796 ± 0.007
N_{var}	0.779 ± 0.008	0.789 ± 0.005

Table 2 AUC values in testing and training phases for the VQC algorithm running the QASM simulator. The AUC values are consistent between the quantum computer and the simulator within the standard deviations.

5 Discussion

5.1 Performance with different QCL models

As seen in Fig. 8, the QCL performance stays approximately flat in $N_{\text{train}}^{\text{event}}$ and gets slightly worse when increasing the N_{var} at fixed $N_{\text{train}}^{\text{event}}$. Since the computational resources needed to explore the QCL model with more variables ($N_{\text{var}} \approx 10$) or larger sample sizes ($N_{\text{train}} > 10K$) are beyond our capacity as discussed below, understanding the behavior is a subject for future study.

To investigate a possibility that the QCL performance could be limited by insufficient flexibility of the circuit used (Fig. 2), alternative QCL models with the $U(\theta)$ circuit of $N_{\text{depth}}^{\text{var}} = 5$ or 7, instead of 3, are tested. This changes the AUC values by 1-2% at most for the $N_{\text{train}}^{\text{event}}$ of 100 or 1,000 events, which is negligible com-
pared to the statistical fluctuation. Another type of QCL circuit is also considered by modifying the $U_{\text{in}}(x)$ to include 2-qubit gates for creating entanglement, as shown in Fig. 10 (as motivated by the Second Order Expansion in VQC discussed below). It turns out that the QCL with the new $U_{\text{in}}(x)$ does not increase the AUC values when the $U(\theta)$ is fixed to the original model with $N_{\text{var}} = 3$ in Fig. 2. On the other hand, the new $U_{\text{in}}(x)$ appears to improve the performance by 5–10% with respect to the original $U_{\text{in}}(x)$ when $N_{\text{var}} = 1$ is set to 1. This indicates that a more complex structure in the $U_{\text{in}}(x)$ could help improve the performance when the $U(\theta)$ is simplified. However, the performance of the new $U_{\text{in}}(x)$ with $N_{\text{var}} = 1$ is still considerably worse than the nominal QCL model in Fig. 2.

5.2 Performance with different VQC models

The VQC circuit used in this study (Fig. 3) is simplified with respect to the one used in Ref. [21]. To examine whether more extended circuits could improve the performance, alternative VQC models are tested using QASM simulator. The first alternative model is the one in which the $U_{\theta}(x)$ in Fig. 3 (FOE) is replaced with the so-called “Second Order Expansion” (SOE), constructed as the $U_{\Phi L,\text{SOE}}(x)$ and $U_{\Phi U,\text{SOE}}(x)$ terms in Eq. (32) of the supplementary information of Ref. [21].

The second alternative model is the one with extended $U_{\text{in}}(x)$ and $U(\theta)$ gates by increasing the $N_{\text{in}}^{\text{depth}}$ and $N_{\text{var}}^{\text{depth}}$; this model includes the combinations of $N_{\text{in}}^{\text{depth}}$ up to 2 and $N_{\text{var}}^{\text{depth}}$ up to 3, separately for the FOE and SOE in $U_{\theta}(x)$.

Testing these models show that the AUC values stay almost constant (within at most 2%) regardless of the $N_{\text{in}}^{\text{depth}}$ or $N_{\text{var}}^{\text{depth}}$ if the $U_{\theta}(x)$ is fixed to either FOE or SOE. But, the performance improves by about 10% when changing the $U_{\theta}(x)$ from FOE to SOE at fixed $N_{\text{var}}^{\text{depth}}$ and $N_{\text{var}}^{\text{depth}}$. On the other hand, no improvement is observed when testing the SOE with a real quantum computer. Moreover, the standard deviation of the AUC values becomes significantly larger for the SOE with quantum computer. These could be qualitatively understood to be due to increased errors from hardware noise because the number of single- and two- qubit gate operations increases by 60% when switching from the FOE to SOE at $N_{\text{in}}^{\text{depth}} = N_{\text{var}}^{\text{depth}} = 1$.

Table 4 Number of trainable parameters used in the DNN model of Table 1

$N_{\text{train}}^{\text{event}}$	N_{var}	N_{par}
100	3	353
500	5	385
1,000	7	417

5.3 Comparison with DNN model with less number of parameters

A characteristic difference between the QCL and DNN algorithms is on the number of trainable parameters (N_{par}). As in Sect. 2.1, the N_{par} is fixed to 27 (45, 63) for the QCL with 3 (5, 7) variable case. For the DNN model in Table 1, the N_{par} varies with $N_{\text{train}}^{\text{event}}$ as given in Table 4. Typically the N_{par} of the DNN model is about 6-13 times more than that of the QCL model at $N_{\text{train}}^{\text{event}} = 100$, and the ratio increases to 75-165 (200-470) at $N_{\text{train}}^{\text{event}} = 1,000$ (10,000). Comparing the two algorithms with a similar number of trainable parameters could give more insight into the QCL performance and reveal a potential advantage of the variational quantum approach over the classical method. A new DNN model is thus constructed to contain only one hidden layer with 5 (6, 7) nodes for 3 (5, 7) variable case, resulting in the N_{par} of 26 (43, 64). The rest of the model parameters is identical to that in Table 1. Shown in Fig. 11 is the comparison of the AUC values for the new DNN and QCL models at $N_{\text{train}}^{\text{event}} \leq 10,000$. It is indicated from the figure that the QCL can learn more efficiently than the simple feed-forward network with the similar number of parameters when the sample size is below 1,000. Exploiting this feature in the application to HEP data analysis would be an interesting future subject.
AUC

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

N

are slightly shifted horizontally from the nominal uncertainties of the average AUC values. The DNN points (circles), 5 (squares) and 7 (triangles). The error bars represent

10

samples) as a function of the training sample size up to \(N\)\(^\times\)train \(\leq 7\) and \(N\)\(^\times\)event \(\sim 10,000\). The QCL algorithm shows relatively flat AUC values in \(N\)\(^\times\)event, in contrast to the BDT and DNN algorithms, which show that the AUC values increase with increasing \(N\)\(^\times\)train in the considered \(N\)\(^\times\)event range. This characteristic QCL behavior could be considered as a possible advantage over the classical method at small \(N\)\(^\times\)event where the DNN performance gets considerably worse if the number of trainable parameters of the DNN model is constrained to be similar to that of the QCL.

The QCL algorithm has been tested on quantum computers only for a small problem of \(N\)\(^\times\)event \(= 40\), but it shows that the algorithm does acquire the discrimination power. There is an indication that the actual VQC performance varies when it runs on the simulator or real quantum computer, most likely due to errors in quantum hardware. This appears to prevent us from using an extended quantum circuit such as the Second Order Expansion for the encoding of classical input data. The QCL and VQC algorithms show similar performance when they run on the simulators with the same conditions for the \(N\)\(^var\) and \(N\)\(^event\) values. With a better control of the measurement and gate errors, it is expected that the performance of the variational quantum machine learning will further improve.

5.4 CPU/memory usages for QCL implementation

The QCL algorithm runs on the Qulacs simulator with cloud Linux servers, as described in Sect. 3.2. Under this condition, we examine how the computational resources scale with the problem size. For the creation of input quantum states with \(U_\theta(x)\), both CPU time and memory usage grow approximately linearly with \(N\)\(^var\) or \(N\)\(^train\). The creation of the variational quantum states with \(U(\theta)\) shows an exponential increase in CPU time and memory usage with \(N\)\(^var\) (i.e., number of qubits) up to \(N\)\(^var\) = 12, roughly a factor 8 (4) increase in CPU time (memory) by incrementing the \(N\)\(^var\) by one. The overall CPU time is by far dominated by the minimization process with COBYLA. It increases linearly with \(N\)\(^train\) but grows exponentially with \(N\)\(^var\), making it impractical to run the algorithm a sufficient number of times for \(N\)\(^var\) \(\sim 10\) or more. The memory usage stays constant over \(N\)\(^var\) during the COBYLA minimization process.

6 Conclusion

In this paper, we present studies of quantum machine learning for the event classification, commonly used as the application of conventional machine learning techniques to high-energy physics. The studies focus on the application of variational quantum algorithms using the implementations in QCL and VQC, and evaluate the performance in terms of AUC values of the ROC curves. The QCL performance is compared with the standard classical multi-variate classification techniques based on the BDT and DNN, and the VQC performance is tested using the simulator and real quantum computers. The overall QCL performance is comparable to the standard techniques if the problem is restricted to \(N\)\(^var\) \(\leq 7\) and \(N\)\(^train\) \(\sim 10,000\). The QCL algorithm shows relatively flat AUC values in \(N\)\(^train\), in contrast to the BDT and DNN algorithms, which show that the AUC values increase with increasing \(N\)\(^train\) in the considered \(N\)\(^train\) range. This characteristic QCL behavior could be considered as a possible advantage over the classical method at small \(N\)\(^train\) where the DNN performance gets considerably worse if the number of trainable parameters of the DNN model is constrained to be similar to that of the QCL.

The VQC algorithm has been tested on quantum computers only for a small problem of \(N\)\(^train\) = 40, but it shows that the algorithm does acquire the discrimination power. There is an indication that the actual VQC performance varies when it runs on the simulator or real quantum computer, most likely due to errors in quantum hardware. This appears to prevent us from using an extended quantum circuit such as the Second Order Expansion for the encoding of classical input data. The QCL and VQC algorithms show similar performance when they run on the simulators with the same conditions for the \(N\)\(^var\) and \(N\)\(^event\) values. With a better control of the measurement and gate errors, it is expected that the performance of the variational quantum machine learning will further improve.

Acknowledgements The results presented in this paper were obtained in part using an IBM Q quantum computing system as part of the IBM Q Academic Program. The views expressed are those of the authors and do not reflect the official policy or position of IBM or the IBM Q team. We thank Dr. Naoki Kanazawa (IBM Japan), Dr. Tamiya Onodera (IBM Japan) and Prof. Hiroshi Imai (The University of Tokyo) for the useful discussion and guidance for addressing the technical issues occurred during the studies. We acknowledge the support from using the dataset provided by the UCI Machine Learning Repository in the University of California Irvine, School of Information and Computer Science.

References

1. Apollinari, G., Bjar Alonso, I., Brning, O., Fessia, P., La- mont, M., Rossi, L., Tavian, L.: High-Luminosity Large Hadron Collider (HL-LHC). CERN Yellow Rep. Monogr. 4, 1–516 (2017). DOI 10.23731/CYRM-2017-004

2. Mo, L., Bryant, P.: LHC Machine. JINST 3, S08001 (2008). DOI 10.1088/1748-0221/3/08/S08001

3. Mott, A., Job, J., Vlimant, J.R., Lidar, D., Spiropulu, M.: Solving a Higgs optimization problem with quantum
annealing for machine learning. Nature 550(7676), 375–379 (2017). DOI 10.1038/nature24047

4. Zlokapa, A., Mott, A., Job, J., Vlimant, J.R., Lidar, D., Spiropulu, M.: Quantum adiabatic machine learning with zooming (2019).

5. Shapoval, I., Calafuria, P.: Quantum Associative Memory in HEP Track Pattern Recognition. EPJ Web Conf. 214, 01012 (2019). DOI 10.1051/epjconf/201921401012

6. Bapst, F., Bhimji, W., Calafuria, P., Gray, H., Lavrijsen, W., Linder, L.: A pattern recognition algorithm for quantum annealers (2019).

7. Das, S., Wildridge, A.J., Vaidya, S.B., Jung, A.: Track clustering with a quantum annealer for primary vertex reconstruction at hadron colliders (2019).

8. Bauer, C.W., De Jong, W.A., Nachman, B., Provasoli, D.: A Quantum Algorithm to Efficiently Sample from Interfering Binary Trees (2019).

9. Bauer, C.W., De Jong, W.A., Nachman, B., Provasoli, D.: A quantum algorithm for high energy physics simulations (2019).

10. Wei, A.Y., Naik, P., Harrow, A.W., Thaler, J.: Quantum annealing for machine learning. Nature 550(7676), 375–379 (2017). DOI 10.1038/nature24047

11. Cormier, K., Di Sipio, R., Wittek, P.: Unfolding measurement distributions via quantum annealing. JHEP 11(2019)128.

12. Cormier, K., Di Sipio, R., Wittek, P.: Unfolding measurement distributions via quantum annealing. JHEP 11(2019)128.

13. ATLAS Collaboration: Search for squarks and gluinos in final states with jets and missing transverse momentum at 13 TeV. Eur. Phys. J. C79(5), 421 (2019). DOI 10.1007/JHEP11(2019)128.

14. ATLAS Collaboration: The ATLAS Experiment at the CERN Large Hadron Collider. JINST 3, S08003 (2008). DOI 10.1088/1748-0221/3/08/S08003

15. CMS Collaboration: The CMS experiment at the CERN LHC. JINST 3, S08004 (2008). DOI 10.1088/1748-0221/3/08/S08004

16. Sirunyan, A.M., et al.: Combined measurements of Higgs boson couplings in proton-proton collisions at √s = 13 TeV. Eur. Phys. J. C79(5), 421 (2019). DOI 10.1140/epjc/s10052-019-6909-y

17. ATLAS Collaboration: Search for squarks and gluinos in final states with jets and missing transverse momentum using 139 fb−1 of √s =13 TeV pp collision data with the ATLAS detector. ATLAS-CONF-2019-040 (2019). URL https://cds.cern.ch/record/2865254

18. Johnson, M.W., Amin, M.H.S., Gildert, S., Lanting, T., Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011).

19. Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.H., De Jong, W.A., Nachman, B., Worthington, D.: A variational eigenvalue solver on a photonic quantum processor. Nature Communications 5, 567 (2014). DOI 10.1038/ncomms567

20. Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning. Physical Review A 98(3) (2018). DOI 10.1103/physreva.98.032309. URL http://dx.doi.org/10.1103/PhysRevA.98.032309

21. Havlícek, V., Córcoles, A.D., Temme, K., Harrow, A.W., Kandala, A., Chow, J.M., Gambetta, J.M.: Supervised learning with quantum-enhanced feature spaces. Nature 567, 209–212 (2019).

22. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011).

23. Speckmayer, P., Hecker, A., Stelzer, J., Voss, H.: The toolkit for multivariate data analysis, TMVA 4. Journal of Physics: Conference Series 210(3), 032057 (2010). DOI 10.1088/1742-6596/210/3/032057. URL https://doi.org/10.1088/1742-6596/210/3/032057

24. IBM Q Network. URL https://www.ibm.com/quantum-computing/network/overview/

25. Dua, D., Graff, C.: UCI machine learning repository (2017). URL http://archive.ics.uci.edu/ml

26. Bärd, P., Sadowski, P., White, D.: Searching for Exotic Particles in High-Energy Physics with Deep Learning. Nature Commun. 5, 4308 (2014). DOI 10.1038/ncomms5308

27. Qulacs. URL http://qulacs.org/index.html

28. Abraham, H., Akhalwaya, I.Y., Aleksandrowicz, G., Alexander, T., Alexandrowics, G., Arbel, E., Asfaw, A., Azaustre, C., AzizNgoueya, Barkoutous, P., Barron, G., Bello, L., Ben-Haim, Y., Bevenius, D., Bishop, L.S., Bosch, S., Bucher, D., Cz, Cabrera, F., Calpin, P., Capeluto, L., Carballo, J., Carrascal, G., Chen, A., Chen, C.F., Chen, R., Chow, J.M., Claus, C., Coss, A.J., Cross, A.W., Cross, S., Cruz-Benito, J., Cryor, Culver, C., Córcoles-Gonzales, A.D., Dague, S., Dattaill, M., DavideFrr, Davila, A.R., Ding, D., Drechsler, E., Drew, Dvmitrescu, E., Dumou, K., Duran, I., Eastman, E., Endebak, P., Egger, D., Everitt, M., Fernández, P.M., Fernández, P.M., Ferrera, A.H., Frisch, A., Fuhrer, A., GEORGE, M., GOULD, I., Gacon, J., Gadi, G., Gao, B.G., Gambetta, J.M., Garcia, S., Gavel-Kus, Gomez-Mosquera, J., de la Puente Gonzalez, S., Greenberg, D., Grinko, D., Guan, W., Gunnels, J.A., Haide, I., Hamamura, I., Hlavicke, V., Hellmers, J., Herok, L., Hillmich, S., Horii, H., Howington, C., Hu, S., Hu, W., Imai, H., Imamichi, T., Ishizaki, K., Iten, R., Itoke, T., Javadi-Abhari, A., Jessica, Johns, K., Kanazawa, N., Kang-Dae, Karazeev, A., Kassebaum, P., Knabber-joee, Kovyrshin, A., Krishnan, V., Kruish, K., Kus, G., LaRose, R., Lambert, R., Latone, J., Lawrence, S., Liu, D., Liu, D., Mac, P.B.Z., Maeng, Y., Malyshave, A., Marecek, J., Marques, Marz, Arith, A., Mason, M., Matsuo, A., McCutier, D.T., McGarry, C., McKay, D., Meesala, S., Mezzacapo, A., Midha, R., Minev, Z., Moorng, M.D., Morales, R., Moran, N., Murali, P., Mugegen, J., Nadlinger, D., Nannicini, G., Nation, F., Naveh, Y., Nick-Singthong, Niropla, P., Norlen, H., O’Riordan, L.J., Ogunbayo, O., Ollitrault, P., Oud, S., Padilha, D., Paik, H., Perriello, S., Phan, A., Pistoia, M., Pozas-iKerstjens, A., Prutyavan, V., Puz Olson, D., Pérez, J., Quintii, Rayndon, R., Redondo, R.M.C., Reuter, M., Rodríguez, D.M., Ryu, M., SAPV, T., SamFerrac, Sandberg, M., Sathaye, N., Schmitt, B., Schnabel, C., Scholten, T.L., Schoute, E., Sertage, I.F., Shanmah, N., Shi, Y., Silva, A., Sirachi, Y., Sittikov, I., Sivarajah, S., Smolin, J.A., Soeken, M., Steenken, D., Stypulkoski, M., Takahasi, H., Taylor, C., Thomas, T., Tillet, M., Tod, M., de la Torre, E., Trabing, K., Treinish, M., TrishaPe, Turner, E., Uchaikin, S., Wang, J., Wilson, B., Rose, J., Woon, D., Wood, C.J., Wood, R., Wood, S., Woottin, J., Yeralin, D., Yu, J., Zachow, C., Zdaniski, L., Zoufa, Koji Terashi et al. 10.
29. IBM Q system configuration maps. URL https://www.ibm.com/blogs/research/2019/09/quantum-computation-center/