Exchangeable partitions derived from Markovian coalescents

Rui Dong † and Alexander Gnedin ‡ and Jim Pitman§

March 29, 2022

Abstract

Kingman derived the Ewens sampling formula for random partitions describing the genetic variation in a neutral mutation model defined by a Poisson process of mutations along lines of descent governed by a simple coalescent process, and observed that similar methods could be applied to more complex models. Möhle described the recursion which determines the generalization of the Ewens sampling formula in the situation when the lines of descent are governed by a Λ-coalescent, which allows multiple mergers. Here we show that the basic integral representation of transition rates for the Λ-coalescent is forced by sampling consistency under more general assumptions on the coalescent process. Exploiting an analogy with the theory of regenerative partition structures, we provide various characterizations of the associated partition structures in terms of discrete-time Markov chains.

1 Introduction

The theory of random coalescent processes starts from Kingman’s series of papers [20, 21, 22] in 1982. The idea comes from biological studies for genealogy of haploid model [5]: given a large population with many generations, you track backward in time the family history of each individual in the current generation. As you track further, the family lines coalesce with each other, eventually all terminating at a common ancestor of current generation. The same mathematical process may be interpreted in other way as describing collisions of an aggregating system of physical particles. In Kingman’s coalescent process [20], each collision only involves two parts. This idea is extended to coalescent with multiple collisions in [31, 33], where every collision can involve two or more parts. This model is further developed into the theory of coalescent with simultaneous multiple collisions in [36, 25]. See [37, 39, 9, 4, 34, 3, 6] for related developments.

Kingman [22] indicated a basic connection between random partitions of natural interest in genetics, and coalescent processes. Suppose in the haploid case the family line of current generation is modeled by Kingman’s coalescent, and the mutations are applied along the family lines by using a Poisson process with rate $\theta/2$ for some non-negative number θ. Define a partition by saying that two individuals are in the same block if there is no mutation along their family lines before they coalesce. Then the resulting random partition is governed by the Ewens sampling formula with parameter θ. See [28, Section 5.1, Exercise 2] and [2, 27] for review and more on this idea. Recently, Möhle [29] applied this idea to the genealogy tree modeled by coalescents with multiple collisions and simultaneous multiple collisions. He studied the resulting family of partitions, and derived a recursion which determines them. In [24], Möhle showed that the partition derived from coalescent with multiple collisions is regenerative in the sense of [14, 15] if and only if the underlying coalescent is Kingman’s coalescent or a hook case, corresponding to the extreme cases when the characterization measure Λ of coalescent with multiple collisions concentrates at 0 or 1, respectively. In particular, the intersection of Möhle’s family of partitions with Pitman’s two-parameter family is the one-parameter Ewens’ family.

*Research supported in part by N.S.F. Grant DMS-0405779
†University of California, Berkeley; e-mail ruidong@stat.Berkeley.EDU
‡Utrecht University; e-mail gnedin@math.uu.nl
§University of California, Berkeley; e-mail pitman@stat.Berkeley.EDU
Here we offer a different approach to the family of random partitions generated by Poisson marking along the lines of descent of a Λ-coalescent. We study partitions with an additional feature, assigning each part one of two possible states: active or frozen. We introduce a new class of continuous time partition-valued coalescent processes, called *coalescents with freeze*, which are characterized by an underlying measure determining collision rates, together with a freezing rate. Every coalescent with freeze has a terminal state with all blocks frozen, called the final partition of this process, whose distribution is characterized by the recursion of Möhle [23]. In the spirit of [14][15], we focus here on the discrete time chains embedded in the coalescent with freeze, and from the consistency of their transition operators we derive a backward recursion satisfied by the decrement matrix, analogous to [14] Theorem 3.3]. This decrement matrix determines the partition through Möhle’s recursion. As in [14], we use algebraic methods to derive an integral representation for the decrement matrix. Also, adapting an idea from [15], we establish a uniqueness result by constructing another Markov chain, with state space the set of partitions of a finite set, whose unique stationary distribution is the law of the final partition restricted to this set. We analyze in detail the case of coalescent with freeze when no simultaneous multiple collisions are permitted, leaving the more general case to another paper.

The remaining part of the paper is organized as following. Some notations and background are introduced in Section 2 together with a review of Möhle’s result. In Section 8 the coalescent with freeze is defined and the relation between our method and Möhle’s method is discussed. In Section 4 we detail the study of coalescent with freeze in terms of the freeze-and-merge (FM) operators of the embedded finite discrete chain, whose consistency with sampling derives a backward recursion for the decrement matrix. In Section 5 the Markov chain with sample-and-add (SA) operation is introduced, and the law of the partition in our study is identified as the unique stationary distribution of this chain. In Section 6 we derive the integral representation for an infinite decrement matrix. This gives another approach to Möhle’s partitions via consistent freeze-and-merge chains, which may be seen as discrete-time jumping processes associated with the Λ-coalescent with freeze. Section 7 provides an alternate approach to the representation of an infinite decrement matrix in terms of a positivity condition on a single sequence. Section 8 offers some results about the structure of the random set of freezing times derived from a coalescent with freeze. Finally, in Section 9 we point out some striking parallels with our previous work on regenerative partition structures, which guided this study. Section 10 mentions briefly some further parallels with the theory of homogenous and self-similar Markovian fragmentation processes due to Bertoin [2].

2 Some notation and background

Following the notations of [23], for any finite set F, a partition of F into ℓ blocks, also called a finite set partition, is an unordered collection of non-empty disjoint sets $\{A_1, \ldots, A_\ell\}$ whose union is F. In particular we consider partitions of the set $[n] := \{1, 2, \ldots, n\}$ for $n \in \mathbb{N}$. We use $\mathcal{P}_{[n]}$ to denote the set of all partitions of $[n]$. A composition of the positive integer n is an ordered sequence of positive integers $(n_1, n_2, \ldots, n_\ell)$ with $\sum_{i=1}^{\ell} n_i = n$, where $\ell \in \mathbb{N}$ is number of parts. We use \mathcal{C}_n to denote the set of all compositions of n, and \mathcal{P}_n to denote the set of non-increasing compositions of n, also called partitions of n.

Let $\pi_n = \{A_1, A_2, \ldots, A_\ell\}$ denote a generic partition of $[n]$; we may write $\pi_n \vdash [n]$ to indicate this fact. The shape function from partitions of the set $[n]$ to partitions of the positive integer n is defined by

$$\text{shape}(\pi_n) = ([A_1], [A_2], \ldots, [A_\ell])$$

where $|A_i|$ is the size of block A_i which represents the number of elements in the block, and “\downarrow” means arranging the sequence of sizes in non-increasing order.

A random partition Π_n of $[n]$ is a random variable taking values in $\mathcal{P}_{[n]}$. It is called exchangeable if its distribution is invariant under the action on partitions of $[n]$ by the symmetric group of permutations of $[n]$. Equivalently, the distribution of Π_n is given by the formula

$$\mathbb{P}(\Pi_n = \{A_1, A_2, \ldots, A_\ell\}) = p_\alpha(|A_1|, |A_2|, \ldots, |A_\ell|)$$

(2)
for some symmetric function p_n of compositions of n. We call p_n the exchangeable partition probability function (EPPF) of Π_n.

An exchangeable random partition of \mathbb{N} is a sequence of exchangeable set partitions $\Pi_\infty = (\Pi_n)_{n=1}^\infty$ with $\Pi_n \vdash [n]$, subject to the consistency condition
\[
\Pi_n|_m = \Pi_m,
\]
where the restriction operator $|_m$ acts on $\mathcal{P}_{[n]}$, $n > m$, by deleting elements $m + 1, m + 2, \ldots, n$. The distribution of such an exchangeable random partition of \mathbb{N} is determined by the function p defined on the set of all integer compositions $\mathcal{C}_n := \bigcup_{i=1}^n \mathcal{C}_i$, which coincides with the EPPF p_n of Π_n when acting on \mathcal{C}_n. This function p is called the infinite EPPF associated with $\Pi_\infty = (\Pi_n)_{n=1}^\infty$.

The consistency condition (3) translates into the following addition rule for the EPPF p: for each positive integer n and each composition $(n_1, n_2, \ldots, n_\ell)$ of n,
\[
p(n_1, n_2, \ldots, n_\ell) = p(n_1, n_2, \ldots, n_\ell, 1) + \sum_{i=1}^{\ell} p(n_1, \ldots, n_i + 1, \ldots, n_\ell)
\]
where $(n_1, \ldots, n_1 + 1, \ldots, n_\ell)$ is formed from (n_1, \ldots, n_ℓ) by adding 1 to n_i. Conversely, if a non-negative function p on compositions satisfies (4) and the normalization condition $p(1) = 1$, then by Kolmogorov's extension theorem there exists an exchangeable random partition Π_∞ with EPPF p.

Similar definitions apply to a finite sequence of consistent exchangeable random set partitions $(\Pi_m)_{m=1}^n$ with $\Pi_m \vdash [m]$, where n is some fixed positive integer. The finite EPPF p of such a sequence can be defined as the unique recursive extension of p_n by the addition rule (4) to all compositions $(n_1, n_2, \ldots, n_\ell)$ of $m < n$.

Let \mathcal{P}_∞ be the set of all partitions of \mathbb{N}. We identify each $\pi_\infty \in \mathcal{P}_\infty$ as the sequence $(\pi_1, \pi_2, \ldots) \in \mathcal{P}_1 \times \mathcal{P}_2 \times \cdots$, where $\pi_n = \pi_\infty|_n$ is the restriction of π_∞ to $[n]$ by deleting all elements bigger than n. Give \mathcal{P}_∞ the topology it inherits as a subset of $\mathcal{P}_1 \times \mathcal{P}_2 \times \cdots$ with the product of discrete topologies, so the space \mathcal{P}_∞ is compact and metrizable. Following [4], call a \mathcal{P}_∞-valued stochastic process $(\Pi_\infty(t), t \geq 0)$ a coalescent if it has càdlàg paths and $\Pi_\infty(s)$ is a refinement of $\Pi_\infty(t)$ for every $s < t$. For a non-negative finite measure Λ on the Borel subsets of $[0, 1]$, a Λ-coalescent is a \mathcal{P}_∞-valued Markov coalescent $(\Pi_\infty(t), t \geq 0)$ whose restriction $(\Pi_n(t), t \geq 0)$ to $[n]$ is for each n a Markov chain such that when $\Pi_n(t)$ has b blocks, each k-tuple of blocks of $\Pi_n(t)$ is merging to form a single block at rate $\lambda_{b,k}$, where
\[
\lambda_{b,k} = \int_0^1 x^{k-2}(1 - x)^{b-k} \Lambda(dx) \quad (2 \leq k \leq b < \infty).
\]
The measure Λ which characterizes the coalescent is derived from the consistency requirement, that is for any positive integers $0 < m < n < \infty$, and $\pi_n \vdash [n]$, the restricted process $(\Pi_n(t)|_m, t \geq 0)$ given $\Pi_n(0) = \pi_n$ has the same law as $(\Pi_m(t), t \geq 0)$ given $\Pi_m(0) = \pi_m|_m$. This condition is fulfilled if and only if the array of rates $(\lambda_{b,k})$ satisfies
\[
\lambda_{b,k} = \lambda_{b+1,k} + \lambda_{b+1,k+1} \quad (2 \leq k \leq b < \infty).
\]
The integral representation (5) can be derived from (6) via de Finetti’s theorem [31, Lemma 18].

When $\Lambda = \delta_0$, this reduces to Kingman’s coalescent [20, 22, 21] with only binary merges. When Λ is the uniform distribution on $[0, 1]$, the coalescent is the Bolthausen-Sznitman coalescent [4]. In [36] this construction is further developed to build the Ξ-coalescent where the measure Ξ on infinite simplex characterizes the rates of simultaneous multiple collisions.

Möhle [23] studied the following generalization of Kingman’s model [22]. Take a genetic sample of n individuals from a large population and label them as $\{1, 2, \ldots, n\}$. Suppose the ancestral lines of these n individuals evolve by the rules of a Λ-coalescent, and that given the genealogical tree, whose branches are the ancestral lines of these individuals, mutations occur along the ancestral lines according to a Poisson point process with rate $\rho > 0$. The infinite-many-alleles model is assumed, which means that when a gene mutates, a brand new type appears. Define a random partition of
where in time from the current generation is a mutation or collision. On the left side of (7), either kind.

one of the particular is the probability of ending up with any partition of \([n]\) from (\(\Phi(b)\)) of \([n]\) by declaring individuals \(i\) and \(j\) to be in the same block if and only if they are of the same type, that is either \(i = j\) or there are no mutations along the ancestral lines of \(i\) and \(j\) before these lines coalesce. These random partitions are exchangeable, and consistent as \(n\) varies. The EPPF of this random partition is the unique solution \(p\) with \(p(1) = 1\) of Möhle’s recursion: for each positive integer \(n\) and each composition \((n_1, n_2, \ldots, n_\ell)\) of \(n\),

\[
p(n_1, n_2, \ldots, n_\ell) = \frac{q(n : 1)}{n} \sum_{j:n_j=1} p(\ldots, \tilde{n}_j, \ldots) + \sum_{k=2}^{n} \left(\frac{n}{k}\right) p(\ldots, n_j - k + 1, \ldots),
\]

where \((\ldots, \tilde{n}_j, \ldots)\) is formed from \((n_1, n_2, \ldots, n_\ell)\) by removing part \(n_j\), \((\ldots, n_j - k + 1, \ldots)\) is formed from \((n_1, n_2, \ldots, n_\ell)\) by only changing \(n_j\) to \(n_j - k + 1\), and \(q(b : k)\) is the stochastic matrix

\[
q(b : k) = \frac{\Phi(b : k)}{\Phi(b)} \quad (1 \leq k \leq b \leq n),
\]

where

\[
\Phi(b) = \sum_{k=1}^{b} \Phi(b : k) = \int_{0}^{1} \frac{1 - (1 - x)^{b - k}}{x^2} \Lambda(dx) + \rho b.
\]

If at some time \(t \geq 0\) there are exactly \(b\) lines of descent whose associated genealogical trees of depth \(t\) contain no mutations, then \(\Phi(b : 1)\) is the total rate of mutations along one of these \(b\) lines, \(\Phi(b : k)\) is the total rate of \(k\)-fold merges among these lines, and \(\Phi(b)\) is the total rate of events of either kind.

Möhle \((\text{23})\) derived the recursion \((\text{4})\) by conditioning on whether the first event met tracing back in time from the current generation is a mutation or collision. On the left side of \((\text{4})\), \(p(n_1, n_2, \ldots, n_\ell)\) is the probability of ending up with any particular partition \(\pi_n\) of the set \([n]\) into \(\ell\) blocks of sizes \((n_1, n_2, \ldots, n_\ell)\). On the right side, \(q(n : 1)\) is the chance that starting from the current generation, one of the \(n\) genes mutates before any collision; for this to happen together with the specified partition of \([n]\), the individual with this gene must be chosen from those among the singletons of \(\pi_n\), with chance \(1/n\) for each different choice, and after that the restriction of the coalescent process to a subset of \([n]\) of size \(n - 1\) must end up generating the restriction of \(\pi_n\) to that set. Similarly, \(q(n : k)\) is the chance that the first event met is \(k\) out of \(n\) genes coalescing to the same block. Again, the \(k\) individuals bearing these \(k\) genes must be chosen from a block of \(\pi_n\) of size \(n_j \geq k\), so the chance for possible choices from a block with size \(n_j\) is \(\left(\binom{n}{k}\right) / \left(\binom{n}{n_j}\right)\), and given exactly which \(k\) individuals are chosen, the restriction of the coalescent process to some set of \(n - k + 1\) lines of descent must end up generating a particular partition of these \(n - k + 1\) lines into sets of sizes \((\ldots, n_j - k + 1, \ldots)\). The multiplication of various probabilities is justified by the strong Markov property of the \(\Lambda\)-coalescent at the time of the first event, and by the special symmetry property that lines of descent representing blocks of individuals coalesce according to the same dynamics as if they were singletons.

In this paper we step back from these detailed dynamics of the \(\Lambda\)-coalescent with mutations to consider the following questions related to Möhle’s recursion \((\text{4})\) and associated partition-valued processes. We choose to ignore the special form \((\text{5})\) of the matrix \((q(n : k))\; 1 \leq k \leq n < \infty\) derived from the \((\Lambda, \rho)\), and analyse Möhle’s recursion \((\text{4})\) as an abstract relation between a stochastic matrix \(q\) and a function of compositions \(\rho\). In particular, we ask the following questions:

1. For which probability distributions \(q(n : k), 1 \leq k \leq n\), on \([n]\) is Möhle’s recursion \((\text{4})\) satisfied by the EPPF \(p\) of some exchangeable random partition of \([n]\), and is this \(p\) uniquely determined?

2. How can such random partitions be characterized probabilistically?
3. Can such random partitions of \([n]\) be consistent as \(n\) varies for any other \(q\) besides \(q\) derived from \((\Lambda, \rho)\) as above?

We stress that in the first two questions the recursion (7) is only required to hold for a single value of \(n\), while in the third question (7) must hold for all \(n = 1, 2, \ldots\). The answer to the first question is that for each fixed probability distribution \(q(n : k), 1 \leq k \leq n, \) on \([n]\), Möhle’s recursion (7) determines a unique EPPF \(p\) for an exchangeable random partition of \([n]\) (Theorem 9). Answering the second question, we characterize the distribution of this random partition in two different ways: firstly as the terminal state of a discrete-time Markovian coalescent process, the freeze-and-merge chain introduced in Section 4, and secondly as the stationary distribution of a partition-valued Markov chain with quite a different transition mechanism, the sample-and-add chain introduced in Section 5. The answer to the third question is positive if we restrict \(n\) to some bounded range of values, for some but not all \(q\) (see Section 4), but negative if we require consistency for all \(n\) (Theorem 13): if an infinite EPPF \(p\) solves Möhle’s recursion (7) for all \(n\) for some triangular matrix \(q\) with non-negative entries, then \(q\) must have the form (8) for some \((\Lambda, \rho)\).

We were guided in this analysis by a remarkable parallel between this theory of finite and infinite partitions subject to Möhle’s recursion (7) and the theory of regenerative partitions developed in [14, 15]. Following the terminology in [14, 15], we call a triangular stochastic matrix a decrement matrix. We use the notation \(q_n = (q(b : k); 1 \leq k \leq b \leq n)\) or \(q_\infty = (q(n : k); 1 \leq k \leq n < \infty)\) to indicate whether we wish to consider finite or infinite matrices. Thus, the entries of a decrement matrix are nonnegative and satisfy \(\sum_{b=1}^{k} q(b : k) = 1\) for all \(b\) in the required range. In present notation, the characteristic property of a regenerative partition is that its EPPF \(p\) satisfies

\[
p(n_1, n_2, \ldots, n_\ell) = \sum_{j=1}^{\ell} \frac{1}{n_j} q(n : n_j) p(n_j, \ldots, \tilde{n_j}, \ldots)
\]

for some decrement matrix \(q = q_\infty\). The main results of [14, 15] gave similar answers to the above questions for this recursion instead of Möhle’s recursion (7).

There is an important distinction between the recursion (4) on the one hand and (7) and (12) on the other hand. The recursion (4) has many solutions since it is a backward recursion, from larger values of \(n\) to smaller. By contrast, both (7) and (12) are forward recursions, from smaller values of \(n\) to larger. Consequently it is obvious that given an arbitrary infinite decrement matrix \(q_\infty\), each of the recursions (7) and (12) has a unique solution \(p\) with the initial value \(p(1) = 1\). Moreover, it is clear that each of these functions \(p\) can be written as a linear combination of products of entries of the \(q_\infty\) matrix.

To illustrate the close parallel between the two recursions (7) and (12), we list the first few values of \(p\) in terms of the decrement matrix \(q\), first for Möhle’s recursion (7):

\[
\begin{align*}
p(1) &= 1, \\
p(2) &= q(2 : 2), \\
p(1, 1) &= q(2 : 1), \\
p(3) &= q(3 : 3) + q(3 : 2)q(2 : 2), \\
p(2, 1) &= p(1, 2) \\
&= \frac{1}{3} q(3 : 2)q(2 : 1) + \frac{1}{3} q(3 : 1)q(2 : 2), \\
p(1, 1, 1) &= q(3 : 1)q(2 : 1), \\
p(4) &= q(4 : 4) + q(4 : 3)q(2 : 2) + q(4 : 2)q(3 : 3) + q(4 : 2)q(3 : 2)q(2 : 2),
\end{align*}
\]
\[p(3, 1) = p(1, 3) \]
\[= \frac{1}{4} q(4 : 3) q(2 : 1) + \frac{1}{6} q(4 : 2) q(3 : 2) q(2 : 1) + \frac{1}{2} q(4 : 2) q(3 : 1) q(2 : 2) + \frac{1}{4} q(4 : 1) q(3 : 3) \]
\[+ \frac{1}{12} q(4 : 1) q(3 : 2) q(2 : 2), \]
\[p(2, 1, 1) = p(1, 2, 1) = p(1, 1, 2) \]
\[= \frac{1}{6} q(4 : 2) q(3 : 1) q(2 : 1) + \frac{1}{6} q(4 : 1) q(3 : 2) q(2 : 1) + \frac{1}{6} q(4 : 1) q(3 : 1) q(2 : 2), \]
\[p(1, 1, 1) = q(4 : 1) q(3 : 1) q(2 : 1). \]

Note that for a general transition matrix \(q \) these functions \(p \) may not be consistent as \(n \) varies, meaning that (4) may fail. A condition on \(q \) equivalent to consistency of \(p \) will be described later in Lemma 7.

Similarly, the first few values of the \(p \) determined by a decrement matrix \(q \) via the recursion (12) associated with a regenerative partition structure are:

\[p(1) = 1, \]
\[p(2) = q(2 : 2), \]
\[p(1, 1) = q(2 : 1), \]
\[p(3) = q(3 : 3), \]
\[p(2, 1) = p(1, 2) \]
\[= \frac{1}{3} q(3 : 2) + \frac{1}{3} q(3 : 1) q(2 : 2), \]
\[p(1, 1, 1) = q(3 : 1) q(2 : 1), \]
\[p(4) = q(4 : 4), \]
\[p(3, 1) = p(1, 3) \]
\[= \frac{1}{4} q(4 : 3) + \frac{1}{4} q(4 : 1) q(3 : 3), \]
\[p(2, 1, 1) = p(1, 2, 1) = p(1, 1, 2) \]
\[= \frac{1}{6} q(4 : 2) q(2 : 1) + \frac{1}{6} q(4 : 1) q(3 : 2) + \frac{1}{6} q(4 : 1) q(3 : 1) q(2 : 2), \]
\[p(1, 1, 1, 1) = q(4 : 1) q(3 : 1) q(2 : 1). \]

Looking at these displays, both similarities and differences may be observed. In particular, the formulas for singleton partitions \((1, 1, \ldots, 1)\) are identical. As is to be expected, the simpler recursion (12) for regenerative partitions generates simpler algebraic expressions than Möhle’s recursion (7).

See [15, Equation (16)] (reproduced as (34) below) for the general formula for the shape function associated with (12).

In principle, the recursions (7) and (12) have probabilistic meaning for arbitrary decrement matrix \(q \), since they determine a sequence of exchangeable partitions of \([n]\)’s for \(n \) in some finite or the infinite range. Distributions of these partitions are obtained algebraically as above, by fully expanding \(p \) through \(q \). However, typically these partitions of \(n \) are not consistent with respect to restrictions, so in the infinite case they might not determine the distribution of a partition of \(\mathbb{N} \).

3 Coalescents with freeze

To provide a natural generalization of partition structures derived from a coalescent with Poisson mutations along the branches of a genealogical tree, we consider the structure of a partition of a set (respectively, of an integer) with each of its blocks (or parts) assigned one of two possible conditions, which we call active and frozen. We call such a combinatorial object a partially frozen partition of a set or of an integer, as the case may be. Ignoring the conditions of the blocks of a partially frozen
partition π^* induces an ordinary partition π. As special cases of partially frozen partitions, we include the possibility that all blocks may be active, or all frozen. We use the symbol Σ^*_n for the pure singleton partition of $[n]$ with all blocks active, and Σ^*_∞ for the sequence $(\Sigma^*_n)_{n=1}^\infty$. The $*$-shape of a partially frozen partition π^*_n of $[n]$ is the corresponding partially frozen partition of n, and the ordinary shape is defined in terms of the induced partition π_n.

For each positive integer n, we denote P^*_n the set of all partially frozen partitions of $[n]$. Let P^*_∞ be the set of all partially frozen partitions of \mathbb{N}. We identify each element $\pi^*_n \in P^*_\infty$ as the sequence $(\pi^*_1, \pi^*_2, \ldots) \in P^*_1 \times P^*_2 \times \cdots$, where π^*_n is π^*_∞|$_n$, the restriction of π^*_∞ to $[n]$. Endowing P^*_∞ with the topology it inherits as a subset of $P^*_1 \times P^*_2 \times \cdots$, the space P^*_∞ is compact and metrizable. We call a random partially frozen partition of $[n]$ exchangeable if its distribution is invariant under the action of permutations of $[n]$. Similarly to [9][20], call a P^*_∞-valued stochastic process $(\Pi^*_\infty(t), t \geq 0)$ a coalescent if it has càdlàg paths and $\Pi^*_\infty(s)$ is a $*$-refinement of $\Pi^*_\infty(t)$ for every $s < t$, meaning that the induced partition $\Pi^*_\infty(s)$ is a refinement of $\Pi^*_\infty(t)$ and the set of frozen blocks of $\Pi^*_\infty(s)$ is a subset of the set of frozen blocks of $\Pi^*_\infty(t)$.

The construction of an exchangeable random partition of \mathbb{N} by cutting branches of the merger-history tree of a Λ-coalescent $(\Pi^*_\infty(t), t \geq 0)$ by mutations with rate ρ can now be formalized as follows. For each $i \in \mathbb{N}$ let τ_i denote the random time at which a mutation first occurs along the line of descent to leaf i of the tree, and declare that the block of $\Pi^*_\infty(t)$ containing i to be active if $\tau_i > t$ and frozen if $\tau_i \leq t$. This defines a P^*_∞-valued Markov process $(\Pi^*_\infty(t), t \geq 0)$. As $t \to \infty$ the state $\Pi^*_\infty(t)$ approaches a limit $\Pi^*_\infty(\infty)$ with all blocks frozen. This is the exchangeable random partition generated by the exchangeable sequence of random variables $(\tau_i, i \in \mathbb{N})$, meaning that two integers i and j are in the same block of $\Pi^*_\infty(\infty)$ iff $\tau_i = \tau_j$. Assuming that $\Pi^*_\infty(0) = \Sigma^*_\infty$, it should be clear that the EPPF of $\Pi^*_\infty(\infty)$ is that defined by Möhle’s recursion [7]. The following two theorems present more formal statements.

Theorem 1. Let $(\lambda_{b,k}, 2 \leq k \leq b < \infty)$, $(\rho_n, 1 \leq n < \infty)$ be two arrays of non-negative real numbers. There exists for each $\pi^*_\infty \in P^*_\infty$ a P^*_∞-valued coalescent $(\Pi^*_n(t), t \geq 0)$ with $\Pi^*_\infty(0) = \pi^*_\infty$, for each n whose restriction $(\Pi^*_n(t), t \geq 0)$ to $[n]$ is a P^*_n-valued Markov chain starting from $\pi^*_n = \pi^*_\infty|_n$, and evolving with the rules:

- at each time $t \geq 0$, conditionally given $\Pi^*_n(t)$ with b active blocks, each k-tuple of active blocks of $\Pi^*_n(t)$ is merging to form a single active block at rate $\lambda_{b,k}$, and
- each active block turns into a frozen block at rate $\rho_{n,b}$,

if and only if the integral representation [5] holds for some non-negative finite measure Λ on the Borel subsets of $[0,1]$, and $\rho_{n,b} = \rho$ for some non-negative real number ρ. This P^*_∞-valued process $(\Pi^*_n(t), t \geq 0)$ directed by (Λ, ρ) is a strong Markov process. For $\rho = 0$, this process reduces to the Λ-coalescent, and for $\rho > 0$ the process is obtained by superposing Poisson marks at rate ρ on the merger-history tree of a Λ-coalescent, and freezing the block containing i at the time of the first mark along the line of descent of i in the merger-history tree.

Proof. Just as in [3][1], consistency of the rate descriptions for different n implies that [6] holds, hence the integral representation [5], and equality of the $\rho_{n,b}$’s is also obvious by consistency. □

Definition 2. Call this P^*_∞-valued Markov process directed by a non-negative integer ρ and a non-negative finite measure Λ on $[0,1]$ the Λ-coalescent freezing at rate ρ, or the (Λ, ρ)-coalescent for short. Call a (Λ, ρ)-coalescent starting from state Σ^*_∞ a standard Λ-coalescent freezing at rate ρ, where Σ^*_∞ is the pure singleton partition with all blocks active.

Consider the finite coalescent with freeze $(\Pi^*_n(t), t \geq 0)$ which is the restriction of a standard Λ-coalescent freezing at rate ρ to $[n]$. According to the description above, all active blocks will coalesce by the rules of a Λ-coalescent, except that every active block enters the frozen condition at rate ρ, and after that the block will stay frozen forever. Hence it is clear that as long as the freezing rate ρ is positive, in finite time the process $(\Pi^*_n(t), t \geq 0)$ will eventually reach a final partition E^*_n, with all of its blocks in the frozen condition.
is the unique solution of M"ohle’s recursion (7).

In the case \(b = 1 \) only the second option is possible, that is \(q(1 : 1) = 1 \), and when all blocks of \(\pi_n^* \) are in frozen condition, the operation is defined to be the identity. For the \(\Lambda \)-coalescent freezing at positive rate \(\rho \), we know that

- (i) the decrement matrix \(q \) is of the special form \([5]\), and
- (ii) the continuous time processes \(\Pi_n^* (t) \) are Markovian and consistent as \(n \) varies, meaning that \(\Pi_n^*(t) \) for \(m < n \) coincides with \(\Pi_n^*(t)|_m \), the restriction of \(\Pi_n^*(t) \) to \([m]\).

Now recall M"ohle’s model \([23]\) as reviewed in Section \([2]\). The ancestral lines of \(n \) labeled genes of current generation coalesce as a \(\Lambda \)-coalescent, and mutations happen along each ancestral line as Poisson point process with rate \(\rho > 0 \). Hence the final partition of \([n]\) is defined so that if the ancestral line of an individual is interrupted by a mutation before the line coalesces with any other ancestral lines, the individual will be a singleton in the partition. This corresponds to the idea of freezing here: tracing evolution of a particle starting from time 0, if a particle freezes before coalescing with others, it will enter as a singleton block in the final partition of the process.

To detail the study, let us look at the discrete chain embedded in \(\Lambda \)-coalescent freezing at rate \(\rho \). By the definition, for each time \(t \geq 0 \), \(\Pi_n^*(t) \) is a partially frozen exchangeable random partition of \([n]\), hence its induced form \(\Pi_n(t) \) gives an exchangeable random partition of \([n]\). So does the final partition \(E_n^* = \Pi_n^*(\infty) \) and its induced form \(E_n \). Set \(E_n^\infty := (E_n^*) \) as the final partition of \((\Pi_n^*(t), t \geq 0)\), and denote its induced partition as \(E_\infty = (E_n) \). The following facts can be read from the existence of \((\Pi_n^*(t), t \geq 0)\) and M"ohle’s analysis recalled around (7).

Theorem 3. (M"ohle \([23, \text{Theorem 3.1}]\)) The induced final partition \(E_\infty = (E_n^\infty)_{n=1}^\infty \) of a standard \(\Lambda \)-coalescent freezing at rate \(\rho > 0 \) is an exchangeable infinite random partition of \(\mathbb{N} \) whose EPPF \(p \) is the unique solution of M"ohle’s recursion \([7]\) with coefficients from the infinite decrement matrix \(q_\infty \) defined through \((\Lambda, \rho)\) as in \([5]\).

4 Freeze-and-merge operations

Given a stochastic process \(X \) indexed by a continuous time parameter \(t \geq 0 \), assuming \(X \) has right continuous piecewise constant paths, the *jumping process derived from* \(X \) is the discrete-time process

\[
\tilde{X} = (\tilde{X}(0), \tilde{X}(1), \ldots) = (X(T_0), X(T_1), X(T_2), \ldots)
\]

where \(T_0 := 0 \) and \(T_k \) for \(k \geq 1 \) is the least \(t > T_{k-1} \) such that \(X(t) \neq X(T_{k-1}) \), if there is such a \(t \), and \(T_k = T_{k-1} \) otherwise. The processes \(X \) of interest here will ultimately arrive in some absorbing state, and then so will \(\tilde{X} \). In particular, the finite coalescent with freeze \((\Pi_n^*(t), t \geq 0)\), obtained by restriction to \([n]\) of a \(\Lambda \)-coalescent freezing at positive rate \(\rho \), is a Markov chain with transition rate \((\binom{k}{b})\lambda_{b,k} \) for a \(k \)-merge and rate \(b\rho \) for a freeze, where \(b \) is the number of active blocks at time \(t \) and the \(\lambda_{b,k} \)'s are as in \([5]\): while the jumping process \(\Pi_n^* \) is then a Markov chain governed by the following *freeze-and-merge* operation \(\text{FM}_n \), which acts on a generic partially frozen partition \(\pi_n^* \) of \([n]\) as follows: if \(\pi_n^* \) has \(b > 1 \) active blocks then

- with probability \(q(b : k) \) some \(k \) of \(b \) active blocks are chosen uniformly at random and merged into a single active block (for \(2 \leq k \leq b \)),
- with probability \(q(b : 1) \) an active block is chosen uniformly at random from \(b \) blocks and turned into a frozen block.

In the case \(b = 1 \) only the second option is possible, that is \(q(1 : 1) = 1 \), and when all blocks of \(\pi_n^* \) are in frozen condition, the operation is defined to be the identity. For the \(\Lambda \)-coalescent freezing at positive rate \(\rho \), we know that

- (i) the decrement matrix \(q \) is of the special form \([5]\), and
- (ii) the continuous time processes \(\Pi_n^*(t) \) are Markovian and consistent as \(n \) varies, meaning that \(\Pi_n^*(t) \) for \(m < n \) coincides with \(\Pi_n^*(t)|_m \), the restriction of \(\Pi_n^*(t) \) to \([m]\).

Note that \(\text{FM}_n \) always reduces the number of active blocks, in particular it transforms a partition of \([n]\) with \(b > 1 \) active blocks into some other partition of \([n]\) with \(b - 1 \) active blocks with probability \(q(b : 1) + q(b : 2) \).

To view M"ohle’s recursion \([7]\) in greater generality, we consider this freeze-and-merge operation \(\text{FM}_n \) for \(n \) some fixed positive integer, and \(q_n \) a finite decrement matrix. Let \((\Pi_n^*(k), k = 0, 1, 2, \ldots)\) be the Markov chain obtained by iterating \(\text{FM}_n \) starting from \(\Pi_n^*(0) = \Sigma_n^* \). Since \(\text{FM}_n \) is defined in
Definition 5. For a decrement matrix \(q_n \) and \(1 \leq m < n \), call the transition operators \(\text{FM}_n \) and \(\text{FM}_m \) derived from \(q_n \) consistent if whenever \(\hat{\Pi}_n^* \) is a Markov chain governed by \(\text{FM}_n \), the jump process derived from the restriction of \(\hat{\Pi}_n^* \) to \([m] \) is a Markov chain governed by \(\text{FM}_m \). Call the decrement matrix \(q_n \) consistent if this condition holds for every \(1 \leq m < n \).

As the leading example, it is clear from consistency of the continuous time chains \((\Pi_n^*(t), \ t \geq 0) \) which represent a \((\Lambda, \rho) \)-coalescent, that for every \(n \) the corresponding decrement matrix \(q_n \) is consistent. The following lemma collects some general facts about consistency. The proofs are elementary and left to the reader. Let \(\text{FM}_n(\pi_n^*) \) denote the random partition obtained by action of \(\text{FM}_n \) on an initial partially frozen partition \(\pi_n^* \) of \([n] \).

Lemma 6. Given a particular decrement matrix \(q_n \):

(i) For fixed \(1 \leq m < n \) the transition operators \(\text{FM}_m \) and \(\text{FM}_n \) are consistent if and only if for each partially frozen partition \(\pi_n^* \) of \([n] \), there is the equality in distribution

\[
\text{FM}_m(\pi_n^*|_m) \overset{d}{=} \text{FM}_n(\pi_n^*)|_m
\]
where on the left side \(\pi^*_n|_m \) is the restriction of \(\pi^*_n \) to \([m]\), and on the right side the notation \(|_m \) means the restriction to \([m]\) conditional on the event \(\text{FM}_n(\pi^*_n|_m) \neq \pi^*_n|_m \) that \(\text{FM}_n \) freezes or merges at least one of the blocks of \(\pi^*_n \) containing some element of \([m]\).

(ii) If \(\text{FM}_{m-1} \) and \(\text{FM}_m \) are consistent for every \(1 < m \leq n \), then so are \(\text{FM}_m \) and \(\text{FM}_n \) for every \(1 < m \leq n \); that is, \(q_n \) is consistent.

Lemma 7. A decrement matrix \(q_n \) is consistent if and only if it satisfies the backward recursion

\[
q(b : k) = \frac{k + 1}{b + 1} q(b + 1 : k + 1) + \frac{b + 1 - k}{b + 1} q(b + 1 : k) \\
+ \frac{1}{b + 1} q(b + 1 : 1) q(b : k) + \frac{2}{b + 1} q(b + 1 : 2) q(b : k) \quad (2 \leq k < b < n),
\]

\[
q(b : 1) = \frac{b}{b + 1} q(b + 1 : 1) + \frac{1}{b + 1} q(b + 1 : 1) q(b : 1) + \frac{2}{b + 1} q(b + 1 : 2) q(b : 1) \quad (1 \leq b < n).
\]

Consequently, each probability distribution \(q(n : \cdot) \) on \([n]\) determines a unique consistent decrement matrix \(q_n \) with this nth row.

Proof. Consider \(\text{FM}_n \) and \(\text{FM}_{n-1} \) applied to \(\Sigma^*_n \) and \(\Sigma^*_{n-1} \), that is the partitions into singletons, all in the active condition. For \(k \leq n - 1 \), \(\text{FM}_{n-1} \) operates by coalescing \(\{1, \ldots, k\} \) into an active block with probability

\[
q(n - 1 : k) = \binom{n - 1}{k}.
\]

(15)

As for the jumping process of \(\text{FM}_n \) restricted to \([n-1]\)], the probability of a coalescence of \(\{1, \ldots, k\} \) into an active block is the sum of the following four parts, depending on the development of the \(\text{FM}_n \) chain. Let \(T_1 \) be the time of the first change in the restriction of the \(\text{FM}_n \) chain to \([n-1]\). To obtain the required coalescence, either \(T_1 = 1 \) and the state after a single step of \(\text{FM}_n \) comes from \(\Sigma^*_n \) by coalescing \(\{1, \ldots, k, n\} \) or \(\{1, \ldots, k\} \), these occurring with probability

\[
q(n : k + 1) \binom{n}{k+1} + q(n : k) \binom{n}{k};
\]

(16)

or \(T_1 = 2 \) with \(\text{FM}_n \) acting on \(\Sigma^*_n \) by first freezing \(\{n\} \) then coalescing \(\{1, 2, \ldots, k\} \), or first coalescing \(\{n\} \) with one of other \(n - 1 \) singletons, leaving \(1, 2, \ldots, k \) in \(k \) distinct blocks, then coalescing these \(k \) blocks at the next step; these ways occur with probability

\[
q(n : 1) \binom{n}{k+1} + \frac{(n - 1)q(n : 2)}{\binom{n}{2}} \frac{q(n - 1 : k)}{\binom{n}{k}}.
\]

(17)

Equate (16) with the sum of (17) and (18) to get (13) for \(b = n - 1 \). In much the same way, \(\text{FM}_{n-1} \) may act on \(\Sigma^*_{n-1} \) by freezing \(\{1\} \) with probability

\[
q(n - 1 : 1) = \frac{n - 1}{n}.
\]

(18)

While for the jumping process of \(\text{FM}_n \) restricted to \([n-1]\)], to get the required form, either \(T_1 = 1 \) and \(\text{FM}_n \) acts on \(\Sigma^*_n \) by freezing \(\{1\} \) with probability

\[
q(n : 1) = \frac{n}{n - 1};
\]

(19)

or \(T_1 = 2 \) and the result is obtained from \(\Sigma^*_n \) by first freezing \(\{n\} \) then freezing \(\{1\} \), or first coalescing \(\{n\} \) with one of other \(n - 1 \) singletons then freezing the block containing \(1 \), these ways occurring with probability

\[
q(n : 1) \frac{n - 1}{n - 1} + \frac{(n - 1)q(n : 2)}{\binom{n}{2}} \frac{q(n - 1 : 1)}{n - 1}.
\]

(20)
Equate \((18)\) with the sum of \((19)\) and \((20)\) to get \((13)\) for \(b = n - 1\). Combine them to get \((14)\) for \(b = n - 1\). The recursions for \(b < n\) follow by replacing \(n\) by \(b + 1\).

Conversely, granted the recursions \((13)\) and \((14)\), in order to prove consistency it is enough to check the case \(m = n - 1\), and this is done by application of Lemma \(8\).

\[\quad\]

Lemma 8. For \(1 \leq m \leq n\) let \(E_m\) be the final partition of the \(\text{FM}_n\)-chain starting in state \(\Sigma_m^*\). If the decrement matrix \(q_m\) is consistent then the finite sequence of exchangeable random set partitions \((E_m)_{m=1}^n\) is consistent in the sense that

\[E_m \equiv E_{n|m}.\]

The finite EPPF \(p\) of \((E_m)_{m=1}^n\) then satisfies Möhle’s recursion \((7)\) for all compositions of \(m \leq n\) in the left hand side.

Proof. The consistency in distribution is clear. To show \((7)\) it is enough to look at the case with compositions of \(n\) on the left hand side, for which Lemma \(8\) applies.

Here is our principal result regarding finite partitions satisfying \((7)\):

Theorem 9. For a positive integer \(n > 1\) and arbitrary probability distribution \(q(n : \cdot)\) on \([n]\)

(i) there exists a unique finite EPPF \(p\) for a consistent sequence of random set partitions \((\Pi_m)_{m=1}^n\) which satisfies Möhle’s recursion \((7)\) for all compositions of \(n\) on left hand side,

(ii) this finite EPPF \(p\) satisfies Möhle’s recursion \((7)\) for all compositions of positive integers \(m < n\) on the left hand side with coefficients \(q(m : \cdot)\) derived from \(q(n : \cdot)\) by the recursion \((13)\), \((14)\),

(iii) for each \(1 \leq m \leq n\) the distribution of \(\Pi_m\) determined by the restriction of this EPPF \(p\) to compositions of \(m\) is that of the final partition of the \(\text{FM}_m\) Markov chain with decrement matrix \(q_m\) defined by (ii), starting from state \(\Sigma_m^*\).

Proof. We apply Lemma \(8\). Given arbitrary probability distribution \(q(n : \cdot)\) on \([n]\), we can define all \(q(m : \cdot), 1 \leq m < n\), by the backward recursion \((13)\), \((14)\). Then we use the decrement matrix \(q_m\) with these rows to build a sequence of Markov chains: for each \(m\), the chain \((\Pi_m(k), k = 0, 1, 2, \ldots)\) starts from \(\Sigma_m^*\) and evolves according to \(\text{FM}_m\). The sequence of induced final partitions \((E_m)_{m=1}^n\) of these chains has EPPF \(p\) which satisfies recursion \((7)\). Hence the existence part of (i) follows. We postpone the proof of uniqueness in part (i) to the next section. The assertions (ii) and (iii) follow directly from this construction.

5 **The sample-and-add operation**

Given a probability distribution \(q(n : \cdot)\) on \([n]\), we now interpret Möhle’s recursion \((7)\) as the system of equations for the invariant probability measure of a particular Markov transition mechanism on partitions of \([n]\), and show that this invariant probability distribution is unique. This will complete the proof of Theorem \(9\).

Consider the following *sample-and-add* random operation on \(P_{[n]}\), denoted \(\text{SA}_n\). We regard a generic random partition \(\Pi_n \sim [n]\) as a random allocation of balls labeled \(1, \ldots, n\) to some set of nonempty boxes, which the operation \(\text{SA}_n\) transforms into some other random allocation \(\Pi_n'\). Fix \(q(n : \cdot),\) a probability distribution on \([n]\) and let \(K_n\) be a random variable with this distribution \(q(n : \cdot)\). Given \(K_n = k\) and \(\Pi_n = \pi_n\),

- if \(k = 1\), first delete a single ball picked uniformly at random from the balls allocated according to \(\pi_n\) to make an intermediate partition of some set of \(n - 1\) balls, then add to this intermediate partition a single box containing the deleted ball.
Proposition 11. For each probability distribution \(q(n : \cdot) \) on \([n] \), the corresponding \(\text{SA}_n \) transition operator on partitions of \([n] \) has a unique stationary distribution. A random partition with this stationary distribution is exchangeable, and its EPPF is the finite unique EPPF \(p \) that satisfies Möhle’s recursion \((7)\), that is \((7)\) with \(p' = p \).

Proof. If \(q(n : 1) = 1 \) then eventually \(\text{SA}_n \) terminates with singleton partition, so the stationary distribution is degenerate and concentrated on the singleton partition. If \(q(n : 1) = 0 \) then eventually \(\text{SA}_n \) terminates with one-block partition, so the stationary distribution is degenerate and
concentrated on the one-block partition. If $0 < q(n : 1) < 1$ then also $q(n : k) > 0$ for some $k > 1$; in this case the stationary law is again unique because all states communicate: e.g. the pure-singleton partition Σ_n is reachable from everywhere, and it can reach any partition in finitely many steps, as is easily verified. Observe that passing to shapes projects the SA_n chain with state space partitions of the set $[n]$ onto another Markov chain whose state space is the set of partitions of the integer n. It follows easily that the unique stationary distribution of SA_n governs an exchangeable random partition of $[n]$. The previous lemma shows that its EPPF p solves Möhle’s recursion. Finally, if an EPPF p solves Möhle’s recursion, then it provides a stationary state for the SA_n chain. Hence the uniqueness result for solutions of Möhle’s recursion by an EPPF p. □

5.1 Special cases

Following are two special cases of SA_n operation:

Ewens’ partition appears when $q(n : \cdot)$ may have only two positive entries

$$q(n : 1) = \frac{2 \rho}{n - 1 + 2 \rho} \quad \text{and} \quad q(n : 2) = \frac{n - 1}{n - 1 + 2 \rho}$$

for each $n \geq 2$. It is easy to realize that the SA_n operation in this case is reduced to the following operation with $u = 2 \rho / (n - 1 + 2 \rho)$: given a number $0 \leq u \leq 1$ and a partition of $[n]$ as allocation of n labeled balls, first we uniformly sample two balls named A and D without replacement from the n balls (so $A = D$ is excluded), then we put ball A back to where it was, and finally

- with probability u append a new box containing the single ball D,
- with probability $1 - u$ add the ball D to the box containing ball A.

In this case, if we consider the FM operator determined by q, it is clear that only binary merges happen. That the stationary partition Π_n follows the Ewens’ sampling formula with parameter $\theta = (n - 1)u / (1 - u)$ is seen by the ‘Chinese restaurant’ rule [28] for transition from Π_{n-1} to Π_n, or can be easily concluded from the formula. The coincidence of the stationary distribution of this SA_n chain with the law of the induced final partition E_n of the associated FM_n chain confirms in this case the well known fact that Kingman’s coalescent with mutations terminates at Ewens’ partition.

The SA_n-chain resembles Moran’s novel mutation chain [26, 38, 40]. Transitions of the latter are the following: given a number $0 \leq u \leq 1$ and a partition of $[n]$ as allocation of labeled balls, first choose two balls named A and D uniformly and independently from the n balls (so $A = D$ is not excluded), then follow the rules

- with probability u append a new box with a single ball C,
- with probability $1 - u$ add a ball C to the box that contains ball A,

then assign to ball C the same label as that of D and finally remove ball D. It is well known [38] that the stationary law of Moran’s chain corresponds to Ewens’ partition with parameter $nu / (1 - u)$.

Hook partitions. Another extreme case appears when $q(n : \cdot)$ may have only two positive entries

$$q(n : 1) = \frac{n \rho}{1 + n \rho} \quad \text{and} \quad q(n : n) = \frac{1}{1 + n \rho}.$$

In this case SA_n creates some number of singletons and then after some number of steps puts all balls in a single box. If $0 < q(n : 1) < 1$, the stationary distribution concentrates on partitions with a hook shape $(m, 1, 1, \ldots, 1)$. This partition results from the Λ-coalescent with freeze when $\Lambda = \delta_1$ is a Dirac mass at 1.
6 Infinite partitions

In this section we pass from finite partitions to the projective limit, and arrive at the desired integral representation of infinite decrement matrix \(q_\infty \) satisfying recursion (13), (14). This gives another approach to Möhle’s partitions via consistent freeze-and-merge chains, which may be seen as discrete-time jumping processes associated with the Λ-coalescent with freeze.

An infinite sequence of freeze-and-merge operations \(\text{FM} := (\text{FM}_n, n = 1, 2, \ldots) \) which satisfies the condition in Definition 4 for all positive integers \(1 \leq m < n < \infty \) is called consistent. By Lemma 7 such a sequence FM is determined by an infinite decrement matrix \(q_\infty \) which satisfies the recursions (13), (14).

For each \(n = 1, 2, \ldots \) the Markov chain starting from \(\Sigma_n^* \) and driven by \(\text{FM}_n \) terminates with an induced final partition \(\Pi_n \). These comprise an infinite partition \(\Pi_\infty = (\Pi_n)_{n=1}^\infty \) which we call the final partition associated with consistent FM. In the case \(q(2 : 1) = 0 \) the final partition is the trivial one-block partition.

Lemma 12. For every infinite decrement matrix \(q_\infty \) with entries satisfying the recursion (13), (14) there exist a non-negative finite measure \(\Lambda \) on \([0, 1]\) and a non-negative real number \(\rho \), which satisfy \((\Lambda, \rho) \neq (0, 0)\) and are such that the representation \(q(n : k) = \Phi(n : k)/\Phi(n) \) \((1 \leq k \leq n) \) holds with \(\Phi \) as in (9), (10), (11). The data \((\Lambda, \rho)\) are unique up to a positive factor.

Proof. Suppose \(q \) solves (13), (14) and suppose \(q(2 : 2) < 1 \). Let \(\Phi(n), n = 1, 2, \ldots \) satisfy

\[
\frac{\Phi(n)}{\Phi(n + 1)} = 1 - \frac{1}{n+1}q(n + 1 : 1) - \frac{2}{n+1}q(n + 1 : 2) \quad (25)
\]

for \(n \geq 1 \); because the right side is strictly positive this recursion has a unique solution with some given initial value \(\Phi(1) = \rho \), where \(\rho > 0 \). For \(2 \leq k \leq n \) set

\[
\Phi(n : k) := q(n : k)\Phi(n),
\]

then from (25) and (13)

\[
\Phi(n : k) = \frac{k + 1}{n + 1}\Phi(n + 1 : k + 1) + \frac{n + 1 - k}{n + 1}\Phi(n + 1 : k) \quad (2 \leq k \leq n < \infty).
\]

Apart from a shift by 2, this is the well-known Pascal-triangle recursion appearing in connection with de Finetti’s theorem and the Hausdorff moment problem, hence (10) holds for some non-negative measure \(\Lambda \) on Borel sets of \([0, 1]\). From (14) we find

\[
\rho = \frac{\Phi(1)q(1 : 1)}{1} = \cdots = \frac{\Phi(n)q(n : 1)}{n} = \cdots,
\]

and from

\[
\sum_{k=1}^{n} \Phi(n)q(n : k) = \Phi(n)
\]

we deduce (11) and \(q(n : 1) = \rho n/\Phi(n) \). Setting by definition \(\Phi(n : 1) := \rho n \) we are done. For the special case \(q(2 : 2) = 1 \), it is easy to observe that \(\rho = 0 \), and we get \(\Lambda = \delta_0 \) by similar analysis. □

Recording this lemma together with previous results, we have:

Theorem 13. Let \((\Pi_n)_{n=1}^\infty \) be a nontrivial exchangeable random partition of \(\mathbb{N} \), different from the trivial one-block partition. The following are equivalent:

(i) The EPPF \(p \) satisfies recursion (7) with some infinite decrement matrix \(q_\infty \).

(ii) This matrix is representable as \(q(n : k) = \Phi(n : k)/\Phi(n) \) with \(\Phi \) defined by (9), (10), (11) and some nontrivial \((\Lambda, \rho)\), which is unique up to a positive factor.
(ii) This Π_∞ is induced by the final partition of some standard Λ-coalescent freezing at rate ρ.

(iii) This Π_∞ is the final partition of some consistent FM operation.

Complementing this result, we have the following uniqueness assertion.

Lemma 14. The correspondence $q \mapsto p$ between infinite decrement matrices with $q(2 : 1) > 0$ satisfying consistency (13), (14) and the EPPF’s is bijective.

Proof. We only need to show that p, which by Lemma 8 must solve (7), uniquely determines q. For general infinite partitions $q(2 : 1) > 0$ implies that $p(1, 1, \ldots, 1) > 0$. This applied to the singleton shapes together with

$$p(1, \ldots, 1) = q(n : 1)q(n - 1 : 1)\cdots q(2 : 1)$$

shows that the $q(n : 1)$’s are uniquely determined by p. To show that $q(n : m)$ for $1 \leq m \leq n - 1$ is also determined by p, exploit the formula

$$\begin{align*}
p(m, 1, \ldots, 1) &= \frac{q(n : m)}{\binom{n}{m}} p(1, \ldots, 1) + \\
\sum_{k=2}^{m-1} q(n : k) \frac{\binom{n}{k}}{\binom{n}{m}} p(m-k+1, 1, \ldots, 1) + q(n : 1) \frac{n-m}{n} p(m, 1, \ldots, 1),
\end{align*}$$

and argue by induction in $m = 2, 3, \ldots, n - 1$. \[\square\]

Thus if an exchangeable infinite partition can be realized as the induced final partition of a consistent FM-operation, then this FM-operation is unique. The realization via a (Λ, ρ)-coalescent process is unique up to a positive multiple of the parameters, which corresponds to a linear time-change of the coalescent. If there is no freeze the uniqueness fails, since any Λ-coalescent terminates with the trivial one-block partition.

We classify next the cases when some of the entries of q are zeros. It is assumed that the starting partition is Σ_∞.

(i) If $q(n : 1) = 1$ holds for $n = 2$ then the same holds for $n \geq 2$. This is the pure-freeze coalescent with $\Lambda = 0$, hence $E_\infty = \Sigma_\infty$.

(ii) If $q(n : 1) = 0$ holds for $n = 2$ then the same holds for $n \geq 2$. This is a Λ-coalescent with no freeze, hence E_∞ is the one-block partition.

(iii) If $q(n : 1) > 0$, $q(n : 2) > 0$ and $q(n : 1) + q(n : 2) = 1$ hold for $n = 3$ then the same relations hold for $n \geq 3$. This is the case of Kingman’s coalescent with freeze, Λ is a positive mass at 0, and E_∞ is Ewens’ partition. \ld

(iv) if $q(n : 1) > 0$, $q(n : n) > 0$ and $q(n : 1) + q(n : n) = 1$ hold for $n = 3$ then also for $n \geq 3$. In this case Λ is a positive mass at 1, and E_∞ is a hook partition.

The ‘generic’ case is characterised by $q(3 : 1) > 0$, $q(3 : 2) > 0$, $q(3 : 3) > 0$, in which case $0 < q(n : m) < 1$ for all $1 \leq m \leq n < \infty$.

7 Positivity

This section provides a construction of decrement matrices q_∞ satisfying the consistency condition (13), (14), from a single sequence of real numbers satisfying a positivity condition. For $(c(n), n = 0, 1, 2, \ldots)$ a sequence of real numbers, the backward difference operator ∇ is defined as

$$\nabla c(n) := c(n) - c(n + 1),$$

where $c(n)$ is a sequence of real numbers. The backward difference operator ∇ satisfies the property $\nabla (c(n) + d) = \nabla c(n) - d$ for any real number d. This is useful in proving certain properties of sequences that are defined recursively or in terms of differences. For example, if $c(n)$ is a sequence of positive real numbers, then the backward differences $\nabla c(n)$ are also positive.
and for any $j = 0, 1, 2, \ldots$ its iterates act as

$$\nabla^j c(n) = \sum_{i=0}^{j} (-1)^i \binom{j}{i} c(n+i).$$

Now let $(\Phi(n), n = 1, 2, \ldots)$ be a sequence of real numbers and ρ be a positive real number. Define for each n

$$\Phi(n : 1) := \rho n,$$ \hspace{1cm} (26)

and

$$\Phi(n) := \Phi(n) - \rho n.$$ \hspace{1cm} (27)

Define

$$\Psi(n) := \frac{\nabla \Phi(n)}{n}$$ \hspace{1cm} (28)

and let

$$\Phi(n : m) := -\left(\frac{n}{m}\right) \nabla^{m-2} \Psi(n-m+1), \hspace{0.5cm} 2 \leq m \leq n.$$ \hspace{1cm} (29)

With these definitions, it can be verified that for each n

$$\Phi(n) = \Phi(n : 1) + \Phi(n : 2) + \cdots + \Phi(n : n).$$ \hspace{1cm} (30)

Hence if all $\Phi(n)$ are positive and all $\Phi(n : m)$ are non-negative, the matrix with entries

$$q(n : m) := \frac{\Phi(n : m)}{\Phi(n)}, \hspace{0.5cm} 1 \leq m \leq n$$ \hspace{1cm} (31)

is a well defined infinite decrement matrix. More than that, we have the following observation:

Lemma 15. Suppose that a sequence of positive real numbers ρ, $\Phi(n)$, $n = 1, 2, \ldots$ is such that each entry $\Phi(n : 1)$, $\Phi(n : m)$ in (26), (29) is non-negative. Then the matrix (31) satisfies the recursion (13), (14).

Proof. The definition (29) of $\Phi(n : m)$ implies the recursion

$$\Phi(n : m) = \frac{m+1}{n+1} \Phi(n+1 : m+1) + \frac{n-m+1}{n+1} \Phi(n+1 : m), \hspace{0.5cm} 2 \leq m \leq n.$$ \hspace{1cm} (32)

Using this relation, the first recursion (13) can be reduced to

$$2\Phi(n+1 : 2) = (n+1)(\Phi(n+1) - \Phi(n)) - \Phi(n+1 : 1)$$

which follows from definition of $\Phi(n+1 : 2)$ and $\Phi(n+1 : 1)$. The second recursion is actually the definition of $\Phi(n+1 : 2)$ after we plug in all the $\Phi(n : 1)$, $\Phi(n : 1)$ terms. \hspace{1cm} □

The above lemma shows that given a sequence of positive real numbers with some additional positivity property, we can recover Möhle’s partition structure by first defining a consistent decrement matrix, then using the recursion (7). By Lemma 14, we know that every decrement matrix satisfying consistency condition (13), (14) has an integral representation which is unique up to a positive factor, so it is clear that we also have integral representation for the sequence of $\Phi(n)$ given here:

Proposition 16. A sequence of positive real numbers ρ, $\Phi(n)$, $n = 1, 2, \ldots$ is such that each entry $\Phi(n : 1)$, $\Phi(n : m)$ as in (26), (29) is non-negative if and only if these numbers admit the integral representation (9), (10), (11) for some non-negative finite measure Λ on $[0,1]$, which is then unique.
8 Freezing times

In this section ($\Pi^*(t), t \geq 0$) is a standard (Λ, ρ)-coalescent, with $(\Pi(t), t \geq 0)$ induced ordinary partitions, and E_∞ final partition. We assume that both Λ and ρ are nonzero. The process $(\Pi^0(t), t \geq 0)$ will denote the standard Λ-coalescent. We presume that all (Λ, ρ)-coalescents are defined consistently as ρ varies, so that the $\Pi(t)$’s and E_∞ get finer as the freezing rate ρ increases, in particular each partition $\Pi(t)$ is finer than $\Pi^0(t)$, for each $t \geq 0$ and $\rho > 0$.

8.1 Age ordering

Assigning each individual $j \in \mathbb{N}$ the freezing time τ_j, when the active block containing j gets frozen, the final partition E_∞ is defined by sending i, j to the same block if and only if $\tau_i = \tau_j$. The correspondence $j \mapsto \tau_j$ induces a total order on the set of blocks of E_∞: we say that the block containing j is older than the block containing i if $\tau_i < \tau_j$. With this age ordering, E_∞ is an ordered exchangeable partition of \mathbb{N}, as studied in [1, 2, 3].

We preserve the notation $E_\infty = (E_n)$ to denote the partition with this additional feature of total order on the set of the blocks. The law of ordered partition E_∞ is determined by an exchangeable composition probability function (ECPF) $c(n_1, \ldots, n_d)$ on compositions of n. The ECPF c must satisfy an addition rule similar to (4) but, unlike p, need not be symmetric. The EPPF p of unordered partition is recovered from c by symmetrization. See [4] for details.

With each j we associate a random open interval $]a_j, b_j[\text{, where}$

$$a_j = \lim_{n \to \infty} \frac{\# \{ i \leq n : \tau_i < \tau_j \}}{n}, \quad b_j - a_j = \lim_{n \to \infty} \frac{\# \{ i \leq n : \tau_i = \tau_j \}}{n},$$

(33)

and the existence of the frequencies is guaranteed by de Finetti’s theorem. Thus a_j is the total frequency of blocks preceding the block containing j, and $b_j - a_j$ is the frequency of the block containing j. The random open set $U = \bigcup_j [a_j, b_j[$ is the paintbox representing E_∞. The partition E_∞ can be uniquely recovered from U by a simple sampling scheme [19, 20, 14].

For instance, when $\Lambda = \delta_0$, the complement closed set is $U^c = \{1, Y_1, Y_1 Y_2, \ldots, 0\}$ for Y_k’s independent random variables whose distribution is beta($2\rho, 1$). This case has been thoroughly studied [7, 8], and it is well known that the arrangement of the block sizes in the age order is inverse to the arrangement in size-biased order. In the case $\Lambda = \delta_1$, the set U has only one interval $]Y, 1[$, where Y has a beta distribution.

8.2 Properties of the final partition

Some properties of U for a (Λ, ρ)-coalescent with $\rho > 0$ follow from known results about the Λ-coalescents [31]. We shall discuss only the case $\Lambda\{1\} = 0$, since the case $\Lambda\{1\} > 0$ only differs by an independent exponential killing and its properties easily follow from that in the case $\Lambda\{1\} = 0$. Let

$$\mu_r := \int_0^1 x^r \Lambda(dx).$$

Denote Leb the Lebesgue measure on $[0, 1]$. In the event Leb(U) < 1 the ordered partition E_∞ with paintbox U has a positive total frequency of singletons blocks, and in the event Leb(U) = 0 there are no singleton blocks at all.

Proposition 17. If $\mu_{-1} < \infty$ then with probability one

(i) $\Pi^0(t)$ has singletons, for each $t > 0$,

(ii) $\Pi^*(t)$ has active singletons, for each $t > 0$,

(iii) $\Pi^*(t)$ has frozen singletons, for each $t > 0$,

(iv) E_∞ has singleton blocks.
If \(\mu_{-1} = \infty \) then the opposites of (i)-(iv) hold with probability one.

Proof. By [31] Lemma 25, if \(\mu_{-1} < \infty \) then \(\Pi^0(t) \) has singletons almost surely, and if \(\mu_{-1} = \infty \) the partition has no singletons almost surely. Now, if \(\Pi^0(t) \) has singletons each of them is active with probability \(0 < e^{-pt} < 1 \), independently of the others, thus the partially frozen partition \(\Pi^+(t) \) has singletons in both conditions, and the frozen ones are also singleton blocks of \(E_\infty \). Conversely, if with positive probability \(E_\infty \) has singletons then for some \(t \) with positive probability \(\Pi^+(t) \) has frozen singletons, then, perhaps for some other \(t \), with positive probability \(\Pi^+(t) \) has active singletons, but in this event the partition \(\Pi^0(t) \) has singletons, hence \(\mu_{-1} = \infty \) cannot hold. \(\square \)

By [31] Proposition 23 the \(\Lambda \)-coalescent either *comes down from infinity* (the number of blocks in \(\Pi^0(t) \), is finite almost surely for every \(t > 0 \)) or *stays infinite* (the number of blocks is finite).

Proposition 18. If the \(\Lambda \)-coalescent stays infinite, then the \((\Lambda, \rho) \)-coalescent has infinitely many active blocks at any time, therefore

(i) the set of freezing times \(\{ \tau_j \} \) is dense in \(\mathbb{R}_+ \),

(ii) the closed set \(U^c \) has empty interior and no isolated points.

If the \(\Lambda \)-coalescent comes down from infinity, then the \((\Lambda, \rho) \)-coalescent satisfies

(i') the set of freezing times \(\{ \tau_j \} \) is bounded and only accumulates near 0,

(ii') the closed set \(U^c \) only accumulates near 0.

Proof. Let \(J_k \) be the minimal element in some block \(A_k \) of \(\Pi^0(t) \). Then \(J_k \) is also the minimal element in some block \(B_k \subset A_k \) of \(\Pi^+(t) \). Since the block containing \(J_k \) changes the condition from active to frozen independently of the \(\Lambda \)-coalescent, with positive probability \(1 - e^{-pt} \) the block \(B_k \) is active. For \(k = 1, 2, \ldots \) these events are independent, hence \(\Pi^+(t) \) has infinitely many active blocks.

But the same is true for \(t + \epsilon \), hence arguing as in Proposition [17] we see that infinitely many of the active \(B_k \)'s get frozen before \(t + \epsilon \), whence (i). Moreover, infinitely many of the active \(B_k \)'s are nonsingleton, hence, by the law of large numbers for exchangeable trials, have positive frequency.

The assertion (ii) follows now from this remark, (i) and [31]. \(\square \)

9 Comparison with regenerative partitions

This section is devoted to parallels and differences between M"ohle’s partitions and regenerative partitions [14, 15]. A novel feature discussed here is a realization of regenerative partitions by a simple continuous-time coalescent process.

9.1 Continuous time realization and EPPF

Consider a \(\mathcal{P}_\infty \)-valued Markovian process \((\Pi^\omega_\infty(t), t \geq 0) \) which starts with \(\Sigma_\infty^\omega(t) \) and evolves by the following rules. Any number of active singleton blocks can merge to form a single frozen block, which suspends further evolution immediately. In particular, an active singleton block can turn into frozen singleton block, an event interpreted as unary merge. If \(\Pi_n(t) \) has \(b \) active blocks, each \(k \)-tuple is merging at the same rate, so that the total rate for a \(k \)-merge is \(\Phi(b : k) \), for \(1 \leq k \leq b < \infty \), and \(\Phi(1 : 1) > 0 \).

Eventually there are only frozen blocks whose configuration determines a final partition \(E_\infty \). Setting \(\Phi(b) := \Phi(b : 1) + \ldots + \Phi(b : b) \) and \(q(n : k) := \Phi(n : k)/\Phi(n) \), the EPPF of \(E_\infty \) satisfies

\[
p(n_1, n_2, \ldots, n_\ell) = \sum_{j=1}^{\ell} \frac{1}{\binom{n}{n_j}} q(n : n_j) p(\ldots, n_j, \ldots)
\] \hspace{1cm} (34)

18
for any composition \((n_1, n_2, \ldots, n_\ell)\) of \(n\), which is a recursion analogous to (7). This allows an explicit formula

\[
p(n_1, n_2, \ldots, n_\ell) = \sum_{\sigma} \frac{q(N_{\sigma(1)} : n_{\sigma(1)}) \cdots q(N_{\sigma(\ell)} : n_{\sigma(\ell)})}{(n_1, \ldots, n_\ell)}.
\]

where the sum is over all permutations \(\sigma : [\ell] \to [\ell]\), and \(N_{\sigma(j)} = n_{\sigma(j)} + \ldots + n_{\sigma(\ell)}\).

9.2 Subordinator

Exchangeability implies the existence of a nonnegative finite measure on \([0, 1]\) such that

\[
\Phi(b : k) = \binom{n}{k} \int_0^1 x^{k-1} (1 - x)^{b-k} \Lambda(dx),
\]

a representation to be compared with (10). The cumulative rate for some transition when \(\Pi_n(t)\) has \(b\) active blocks equals

\[
\Phi(b) := \Phi(b : 1) + \ldots + \Phi(b : b) = \int_0^1 \frac{1 - (1 - x)^b}{x} \Lambda(dx).
\]

The last formula is an integral representation of a Bernstein function, hence the measure \(\Lambda(dx)/x\) can be associated with some subordinator \([10]\). Explicitly, by de Finetti’s theorem there exists the limit proportion \(S_t\) of integers in \([n]\) that comprise the active blocks of \(\Pi_n(t)\), as \(n \to \infty\). The process \((-\log(1-S_t), t \geq 0)\) is a subordinator with \(S_0 = 0\) and distribution determined by

\[
E[(1 - S_t)^\lambda] = e^{-t\Phi(\lambda)}, \quad t \geq 0, \lambda \geq 0,
\]

which is a version of the Lévy-Khintchine formula in the form of the Mellin transform. The subordinator has a drift if \(\Lambda\) has an atom at 0.

Putting the blocks of \(E_\infty\) in increasing order of their freezing times yields an ordered exchangeable partition with ECPF

\[
p(n_1, \ldots, n_\ell) = \prod_{j=1}^\ell q(N_j : n_j),
\]

where \(N_j := n_j + \cdots + n_\ell\). The closed range of the process \((S_t)\) is the complement \(U^c\) to the paintbox \(U\) of the ordered partition \(E_\infty\).

9.3 Related Markov chains

9.3.1 Transient

For regenerative partitions the analogue of \(\text{FM}_n\) introduced in Section \([14]\) is the following. Let \(q_\infty = \{q(b : k), 1 \leq k \leq b < \infty\}\) be a decrement matrix. If there are \(b\) active blocks in a partially frozen partition of \([n]\), then with probability \(q(b : k)\) any \(k\) of \(b\) active blocks are chosen uniformly at random and merged into a single frozen block.

Consistency translates as the recursion

\[
q(b : k) = \frac{k+1}{b+1}q(b+1 : k+1) + \frac{b+1-k}{b+1}q(b+1 : k) + \frac{1}{b+1}q(b+1 : 1)q(b : k)
\]

with \(q(1 : 1) = 1\), which leads to

\[
q(b : k) = \Phi(b : k)/\Phi(b) \quad (1 \leq k \leq b < \infty),
\]

where \(\Phi\) has the above integral representation \([10]\) with some measure \(\Lambda\) unique up to a positive multiple.
9.3.2 Recurrent

The analogue of operation \(\text{SA}_n \) introduced in Section 3.4 acting on ordinary partitions of \([n]\), is the following [5]. Given a decrement matrix \(q \), let \(K_n \) follow \(q(n : \cdot) \). Choose a value \(k \) for \(K_n \), then starting from some partition \(\pi_n \) of \([n]\) sample \(k \) balls from \(\pi_n \) uniformly without replacement, and then append a new box with these \(k \) balls to the remaining partition of \(n - k \) balls. According to an ordered version of the algorithm, acting on ordered partitions, the balls are sampled from a totally ordered series of boxes, and the newly created box is always arranged as the first box in the series.

In contrast to the \(\text{SA}_n \) operation, these Markov chains on partitions of \([n]\) are consistent under restrictions as \(n \) varies. To see that the operations \(\text{SA}_n \) are not consistent as \(n \) varies (excluding the hook case \(q(n : 1) + q(n : n) = 1 \)) fix \(n > 2 \) and let \(\pi_{n+1} \) be a partition having a singleton block \([n+1]\). There is a chance that some \(2 \leq r \leq n \) balls are sampled from \(\pi_{n+1} \) and added in the box \([n+1]\). In this case the restriction of \(\text{SA}_{n+1} \) to \([n]\) creates a novel nonsingleton box, which is not a legitimate option for \(\text{SA}_n \).

In [13] it was shown that the unique stationary \([n]\)-partition is the one given by (35).

Example. When

\[
q(n : 1) = \frac{n\rho}{1 + n\rho}, \quad q(n : n) = \frac{1}{1 + n\rho},
\]

the operation will create a new singleton block with probability \(q(n : 1) \), and merge everything in one block with probability \(q(n : n) \). So the stationary distributions will concentrate on hook partitions. The decrement matrix for this chain is the same as for \(\text{SA}_n \).

Example. When

\[
q(n : m) = \left(\frac{n}{m} \right) \frac{[\theta]_m m!}{[\theta + 1]_m m!},
\]

with \(\theta = 2\rho \), the invariant partition is Ewens’ with parameter \(\theta \). The decrement matrix for this chain is different from the one for \(\text{SA}_n \), which also leads to Ewens’ distribution.

9.4 Comparing decrement matrices

In [14] we found very similar recursions for entries of decrement matrix which characterizes a regenerative composition structure, hence a regenerative partition structure in [15]. According to [14] Proposition 3.3], a non-negative matrix \(q \) is the decrement matrix of some regenerative composition structure if and only if \(q(1 : 1) = 1 \) and (37) holds for \(1 \leq k \leq b \). Comparing with Lemma 7 above, the difference from our recursions here is that we have a separate recursion for \(q(b : 1) \), and we have an extra term

\[
\frac{2}{b+1} q(b + 1 : 2) q(b : k)
\]

in right hand side of recursions for \(q(b : k) \), \(k \geq 2 \). Both of them are backward recursions. For the purpose of illustration, suppose we are given \(q(4 : k) \), \(k = 1, 2, 3, 4 \), the entries \(q(b : \cdot) \) with \(b \leq 3 \) of decrement matrix for regenerative composition structure would be:

\[
\begin{align*}
q(3 : 3) &= \frac{4q(4 : 4) + q(4 : 3)}{4 - q(4 : 1)}, \\
q(3 : 2) &= \frac{3q(4 : 3) + 2q(4 : 2)}{4 - q(4 : 1)}, \\
q(3 : 1) &= \frac{2q(4 : 2) + 3q(4 : 1)}{4 - q(4 : 1)}, \\
q(2 : 2) &= \frac{3q(3 : 3) + q(3 : 2)}{3 - q(3 : 1)} = \frac{6q(4 : 4) + 3q(4 : 3) + q(4 : 2)}{6 - 3q(4 : 1) - q(4 : 2)}, \\
q(2 : 1) &= \frac{2q(3 : 2) + 2q(3 : 1)}{3 - q(3 : 1)} = \frac{3q(4 : 3) + 4q(4 : 2) + 3q(4 : 1)}{6 - 3q(4 : 1) - q(4 : 2)}.
\end{align*}
\]
While for decrement of the partition structure studied here, we have
\[
q(3 : 3) = \frac{4q(4 : 4) + q(4 : 3)}{4 - q(4 : 1) - 2q(4 : 2)},
\]
\[
q(3 : 2) = \frac{3q(4 : 3) + 2q(4 : 2)}{4 - q(4 : 1) - 2q(4 : 2)},
\]
\[
q(3 : 1) = \frac{3q(4 : 1)}{4 - q(4 : 1) - 2q(4 : 2)},
\]
\[
q(2 : 2) = \frac{3q(3 : 3) + q(3 : 2)}{3 - q(3 : 1) - 2q(3 : 2)} = \frac{6q(4 : 4) + 3q(4 : 3) + q(4 : 2)}{6 - 3q(4 : 1) - 5q(4 : 2) - 3q(4 : 3)},
\]
\[
q(2 : 1) = \frac{2q(3 : 1)}{3 - q(3 : 1) - 2q(3 : 2)} = \frac{3q(4 : 1)}{6 - 3q(4 : 1) - 5q(4 : 2) - 3q(4 : 3)}.
\]

10 Comparison with Markovian fragmentations

The theory of homogenous and self-similar Markovian fragmentation processes due to Bertoin [2] is formulated much like the present theory of coalescents in terms of consistent partition-valued processes. Ford [11, Proposition 41] provides a sampling consistency condition for decrement matrices associated with discrete fragmentation processes which is an extremely close relative of our Lemma 7. The article [18] provides an integral representation for such decrement matrices, analogous to our results for the decrement matrices associated with regenerative partition structures and with Markovian coalescents, and embeds Ford’s result in the broader context of continuous time fragmentation processes and continuum random trees. A missing element of the fragmentation discussion is some way of deriving a partition structure by a recursion like (7) or (12). But we expect such a partition structure and an associated recursion may be associated with a suitably defined Markovian fragmentation with freeze, such as that introduced in [17].

References

[1] D. J. Aldous. Exchangeability and related topics. In École d’été de probabilités de Saint-Flour, XIII—1983, Lecture Notes Math. 1117: 1–198. Springer, Berlin, 1985.

[2] J. Bertoin, Random fragmentation and coagulation processes. Cambridge University Press, to appear.

[3] J. Bertoin and C. Goldschmidt. Dual random fragmentation and coagulation and an application to the genealogy of Yule processes. In Mathematics and computer science. III, Trends Math., 295–308. Birkhäuser, Basel, 2004.

[4] E. Bolthausen and A. S. Sznitman. On Ruelle’s probability cascades and an abstract cavity method. Comm. Math. Phys. 197(2): 247–276, 1998.

[5] C. Cannings. The latent roots of certain Markov chains arising in genetics: a new approach. I. Haploid models. Advances in Appl. Probability 6: 260–290, 1974.

[6] R. Dong, C. Goldschmidt, and J. B. Martin. Coagulation-fragmentation duality, Poisson-Dirichlet distributions and random recursive trees. Preprint (2005), arXiv:math.PR/0507591

[7] P. Donnelly and P. Joyce. Consistent ordered sampling distributions: characterization and convergence. Adv. in Appl. Probab. 23(2): 229–258, 1991.

[8] P. Donnelly and S. Tavaré. The ages of alleles and a coalescent. Adv. Appl. Probab. 18(1): 1–19, 1986.
[9] S. N. Evans and J. Pitman. Construction of Markovian coalescents. *Ann. Inst. H. Poincaré Probab. Statist.* 34(3): 339–383, 1998.

[10] W. J. Ewens. The sampling theory of selectively neutral alleles. *Theoret. Population Biology*, 3: 87–112; erratum, ibid. 3 (1972), 240; erratum, ibid. 3 (1972), 376, 1972.

[11] D. J. Ford. Probabilities on cladograms: introduction to the alpha model. Preprint (2005), arXiv:math.PR/0511246

[12] A. V. Gnedin. The representation of composition structures. *Ann. Probab.* 25(3): 1437–1450, 1997.

[13] A. Gnedin and J. Pitman. Markov and self-similar composition structures, *Zapiski Pomi* 326: 59–84. Available at http://www.pdmi.ras.ru/zns1/2005/v326.html

[14] A. Gnedin and J. Pitman. Regenerative composition structures. *Ann. Probab.* 33(2): 445–479, 2005.

[15] A. Gnedin and J. Pitman. Regenerative partition structures. *Electron. J. Combin.*, 11(2): Research Paper 12, 21 pp. (electronic), 2004/05.

[16] A. Gnedin and J. Pitman. Moments of convex distribution functions and completely alternating sequences, 2006, arXiv:math.PR/0602091

[17] A. Gnedin and Y. Yakubovich. Recursive Partition Structures, 2005, arXiv:math.PR/0510305

[18] B. Haas, G. Miermont, J. Pitman and M. Winkel. Asymptotics of discrete fragmentation trees and applications to phylogenetic models, 2006, in preparation.

[19] J. F. C. Kingman. The representation of partition structures. *J. London Math. Soc. (2)* 18(2): 374–380, 1978.

[20] J. F. C. Kingman. The coalescent. *Stochastic Process. Appl.* 13(3):235–248, 1982.

[21] J. F. C. Kingman. Exchangeability and the evolution of large populations. In *Exchangeability in probability and statistics (Rome, 1981)*, 97–112, North-Holland, Amsterdam, 1982.

[22] J. F. C. Kingman. On the genealogy of large populations. *J. Appl. Probab.* (Special Vol. 19A): 27–43, 1982. Essays in statistical science.

[23] M. Möhle. On sampling distributions for coalescent processes with simultaneous multiple collisions. *Bernoulli* 12(2): 35–53, 2006.

[24] M. Möhle. On a class of non-regenerative sampling distributions. *Combinatorics, Probability and Computing* 2005, to appear.

[25] M. Möhle and S. Sagitov. A classification of coalescent processes for haploid exchangeable population models. *Ann. Probab.* 29(4): 1547–1562, 2001.

[26] P. A. P. Moran. Random processes in genetics. *Proc. Camb. Phil. Soc.* 54: 60–71, 1958.

[27] M. Nordborg. Coalescent theory. In D.J. Balding et al (eds) *Handbook of statistical genetics*, 179-208, Wiley, NY, 2001.

[28] J. Pitman. *Combinatorial stochastic processes*. (Lecture notes for St. Flour course, July 2002), *Springer L. Notes Math.*, 2006, to appear. Available via http://www.stat.Berkeley.edu

[29] J. Pitman. Exchangeable and partially exchangeable random partitions. *Probab. Theory Related Fields* 102(2): 145–158, 1995.

[30] J. Pitman. Partition structures derived from Brownian motion and stable subordinators. *Bernoulli* 3(1): 79–96, 1997.
[31] J. Pitman. Coalescents with multiple collisions. *Ann. Probab.* 27(4): 1870–1902, 1999.

[32] J. Pitman and M. Yor. The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator. *Ann. Probab.* 25(2):855–900, 1997.

[33] S. Sagitov. The general coalescent with asynchronous mergers of ancestral lines. *J. Appl. Probab.* 36(4): 1116–1125, 1999.

[34] S. Sagitov. Convergence to the coalescent with simultaneous multiple mergers. *J. Appl. Probab.* 40(4): 839–854, 2003.

[35] J. Schweinsberg. A necessary and sufficient condition for the Λ-coalescent to come down from infinity. *Electron. Comm. Probab.* 5:1–11 (electronic), 2000.

[36] J. Schweinsberg. Coalescents with simultaneous multiple collisions. *Electron. J. Probab.* 5: Paper no. 12, 50 pp. (electronic), 2000.

[37] S. Tavaré. Line-of-descent and genealogical processes, and their applications in population genetics models. *Theoret. Population Biol.* 26(2): 119–164, 1984.

[38] G. A. Watterson. Reversibility and the age of an allele. *Theoret. Population Biology* 10: 239–253, 1976.

[39] G. A. Watterson. Lines of descent and the coalescent. *Theoret. Population Biol.* 26(1): 77–92, 1984.

[40] J. E. Young. Partition-valued stochastic processes with applications. *U.C. Berkeley Ph.D. Thesis*, 1995.