The unicity of real Picard–Vessiot fields

Teresa Crespo, Zbigniew Hajto and Marius van der Put

Abstract

Using Deligne’s work on Tannakian categories, the unicity of real Picard-Vessiot fields for differential modules over a real differential field is derived. The inverse problem for real forms of a semi-simple group is treated. Some examples illustrate the relations between differential modules, Picard–Vessiot fields and real forms of a group.

1 Introduction

K denotes a real differential field with field of constants k. We suppose that $k \neq K$ and that k is a real closed field. Let M denote a differential module over K of dimension d, represented by a matrix differential equation $y' = Ay$ where A is a $d \times d$-matrix with entries in K. A Picard–Vessiot field L for M/K is a field extension of K such that:
(a) L is equipped with a differentiation extending the one of K,
(b) M has a full space of solutions over L, i.e., there exists an invertible $d \times d$-matrix F (called a fundamental matrix) with entries in L satisfying $F' = AF$,
(c) L is (as a field) generated over K by the entries of F,
(d) the field of constants of L is again k.

A real Picard–Vessiot field L for M/K is a Picard–Vessiot field which is also a real field. In [CHS1] and [CHS2] the existence of a real Picard–Vessiot field is proved using results of Kolchin.

The main result of this paper is:

MSC2000: 34M50, 12D15, 11E10, 11R34. Keywords: differential Galois theory, real fields

T. Crespo and Z. Hajto acknowledge support of grant MTM2009-07024, Spanish Science Ministry.
Theorem 1.1 Let L_1, L_2 denote two real Picard–Vessiot extensions for M/K. Suppose that L_1 and L_2 have total orderings which induce the same total ordering on K. Then there exists a K-linear isomorphism $\phi : L_1 \to L_2$ of differential fields.

Remarks 1.2 Suppose that ϕ exists. Choose a total ordering of L_1 and define the total ordering of L_2 to be induced by ϕ. Then L_1 and L_2 induce the same total ordering on K. Therefore the condition of the Theorem 1.1 is necessary.

If K happens to be real closed, then the assumption in the theorem is superfluous since K has a unique total ordering. On the other hand, consider the example $K = k(z)$ with differentiation $' = \frac{d}{dz}$ and the equation $y' = \frac{1}{2}y$. Let $L_1 = K(t_1)$ with $t_1^2 = z$ and $L_2 = K(t_2)$ with $t_2^2 = -z$. Both fields are real Picard–Vessiot fields for this equation. They are not isomorphic as differential field extensions of K, since z is positive for any total ordering of L_1 and z is negative for any total ordering of L_2. □

The proof of Theorem 1.1 uses Tannakian categories as presented in [DM] and P. Deligne’s fundamental paper [De]. We adopt much of the notation of [De]. Let $< M >$ denote the Tannakian category generated by the differential module M. The forgetful functor $\rho : < M > \to \text{vect}(K)$ associates to any differential module $N \in < M >$ the finite dimensional K-vector space N. Let $\omega : < M > \to \text{vect}(k)$ be a fibre functor with values in the category $\text{vect}(k)$ of the finite dimensional vector spaces over k.

Now we recall some results of [De], §9. The functor $\text{Aut}(\omega)$ is represented by a linear algebraic group G over k. By Proposition 9.3, the functor $\text{Isom}_K^G(K \otimes \omega, \rho)$ is represented by a torsor P over $G_K := K \times_k G$. This torsor is affine, irreducible and its coordinate ring $O(P)$ has a natural differentiation extending the differentiation of K. Moreover, the field of fractions $K(P)$ of $O(P)$ is a Picard–Vessiot field for M/K.

On the other hand, let L be a Picard–Vessiot field for M/K. Define the fibre functor $\omega_L : < M > \to \text{vect}(k)$ by $\omega_L(N) = \ker(\partial : L \otimes_K N \to L \otimes_K N)$. Then ω_L produces a Picard–Vessiot field L' which is isomorphic to L as differential field extension of K. The conclusion is:
Proposition 1.3 ([De], §9) The above constructions yield a bijection between
the (isomorphism classes of) fibre functors \(\omega : \langle M \rangle \otimes \rightarrow \text{vect}(k) \) and the
(isomorphism classes of) Picard–Vessiot fields \(L \) for \(M/K \).

The following result will also be useful.

Proposition 1.4 ([DM], Thm. 3.2) Let \(\omega : \langle M \rangle \otimes \rightarrow \text{vect}(k) \) be a fibre
functor and \(G = \text{Aut}^\otimes(\omega) \).

(a) For any field \(F \supset k \) and any fibre functor \(\eta : \langle M \rangle \otimes \rightarrow \text{vect}(F) \), the
functor \(\text{Isom}^\otimes_F(F \otimes \omega, \eta) \) is representable by a torsor over \(G_F = F \times_k G \).

(b) The map \(\eta \mapsto \text{Isom}^\otimes_F(F \otimes \omega, \eta) \) is a bijection between the (isomorphy
classes of) fibre functors \(\eta : \langle M \rangle \otimes \rightarrow \text{vect}(F) \) and the (isomorphy classes
of) \(G_F \)-torsors.

The main ingredient in the proof of Theorem 1.1, given in §2, is:

Theorem 1.5 Suppose that \(K \) is real closed. Let \(L \) be a Picard–Vessiot field
for \(M/K \). Then \(L \) is a real field if and only if the torsor \(\text{Isom}_K^\otimes(K \otimes \omega_L, \rho) \)
is trivial.

2 The proof of Theorem 1.1

2.1 Reduction to \(K \) is a real closed differential field

For notational convenience, the differential module \(M/K \) is represented by
a scalar homogeneous linear differential equation \(\mathcal{L}(y) := y^{(d)} + a_{d-1}y^{(d-1)} +
\cdots + a_1y^{(1)} + a_0y = 0 \). A Picard–Vessiot field \(L \) for \(\mathcal{L} \) has the properties:
k is the field of constants of \(L \), the solution space \(V = \{ v \in L \mid \mathcal{L}(v) = 0 \} \)
is a \(k \)-linear space of dimension \(d \) and \(L \) is generated over the field \(K \) by \(V \) and all the derivatives of the elements in \(V \). One writes \(L = K < V > \) for
this last property.

Lemma 2.1 Let \(L_1, L_2 \) be two real Picard–Vessiot fields for \(M \) over \(K \). Suppose
that \(L_1 \) and \(L_2 \) have total orderings extending a total ordering \(\tau \) on \(K \). Let \(K^r \supset K \) be the real closure of \(K \) inducing the total ordering \(\tau \). Then:

The fields \(L_1, L_2 \) induce Picard–Vessiot fields \(\tilde{L}_1, \tilde{L}_2 \) for \(K^r \otimes M \) over \(K^r \).
These fields are isomorphic as differential field extensions of \(K^r \) if and only if \(L_1 \) and \(L_2 \) are isomorphic as differential field extensions of \(K \).
Proof. Let, for \(j = 1, 2 \), \(\tau_j \) be a total ordering on \(L_j \) inducing \(\tau \) on \(K \) and let \(L_j^r \) be the real closure of \(L_j \) which induces the ordering \(\tau_j \). The algebraic closure \(K_j \) of \(K \) in \(L_j^r \) is real closed. Since \(\tau_j \) induces \(\tau \), there exists a \(K \)-linear isomorphism \(\phi_j : K^r \to K_j \). This isomorphism is unique since the only \(K \)-linear automorphism of \(K^r \) is the identity. We will identify \(K_j \) with \(K^r \).

Let \(V_j \subset L_j \) denote the solution space of \(M \). Then, for \(j = 1, 2 \), the field \(\tilde{L}_j := K^r < V_j > \subset L_j^r \) is a real Picard–Vessiot field for \(K^r \otimes M \).

Assume the existence of a \(K^r \)-linear differential isomorphism \(\psi : K^r < V_1 > \to K^r < V_2 > \). Clearly \(\psi(V_1) = V_2 \) and \(\psi \) induces therefore a \(K \)-linear differential isomorphism \(L_1 = K < V_1 > \to L_2 = K < V_2 > \).

On the other hand, an isomorphism \(\phi : L_1 \to L_2 \) (of differential field extensions of \(K \)) extends to an isomorphism \(\tilde{\phi} : L_1^r \to L_2^r \). Clearly \(\tilde{\phi} \) maps \(\tilde{L}_1 \) to \(\tilde{L}_2 \). \(\square \)

\[\sum \]

2.2 Real algebras and connected linear groups

An algebra \(R \) (commutative with 1 and without zero divisors) is called real if \(x_1, \ldots, x_n \in R \) and \(\sum_{j=1}^n x_j^2 = 0 \) implies \(x_1 = \cdots = x_n = 0 \). By lack of a reference we give a proof of the following statement.

Lemma 2.2 Let \(F \) be a real closed field and let \(G \) be a linear algebraic group over \(F \) such that \(G_{F(i)} = F(i) \times_F G \) is connected. Then the coordinate ring \(F[G] \) of \(G \) over \(F \) is a real algebra.

Proof. We consider the case \(F \) is equal to \(\mathbb{R} \), the field of real numbers. Consider \(x_1, \ldots, x_n \in \mathbb{R}[G] \) with \(\sum_{j=1}^n x_j^2 = 0 \). We regard \(G(\mathbb{R}) \) as a real analytic group. There is an exponential map \(\text{Lie}(G)(\mathbb{R}) \to G(\mathbb{R}) \), where \(\text{Lie}(G) \) is the Lie algebra of \(G \). Define the real analytic map \(\tilde{x}_j : \text{Lie}(G)(\mathbb{R}) \xrightarrow{\text{exp}} G(\mathbb{R}) \xrightarrow{x_j} \mathbb{R} \).

Now \(\sum \tilde{x}_j^2 = 0 \) and hence all \(\tilde{x}_j = 0 \). The complex analytic morphism \(X_j : \text{Lie}(G)(\mathbb{C}) \xrightarrow{\text{exp}} G(\mathbb{C}) \xrightarrow{x_j} \mathbb{C} \) is the complex extension of \(\tilde{x}_j \). It is zero since it is zero on the subset \(\text{Lie}(G)(\mathbb{R}) \) of \(\text{Lie}(G)(\mathbb{C}) \). The image of the complex exponential map generates the component of the identity of \(G(\mathbb{C}) \) and \(x_j \) is zero on this set. By assumption \(G_{\mathbb{C}} \) is connected and thus \(x_j = 0 \) is zero for all \(j \). Hence \(\mathbb{R}[G] \) is a real algebra.

For any real field \(F \) which has an embedding in \(\mathbb{R} \), one has \(F[G] \subset \mathbb{R}[G] \) and \(F[G] \) is a real algebra. Further, a real field \(k \) which is finitely generated over \(\mathbb{Q} \) has an embedding in \(\mathbb{R} \) ([Si] Proposition 3).
We consider the general case: G is a linear algebraic group defined over a real closed field F. Now G is defined over a subfield F_0 of F which is finitely generated over \mathbb{Q}. Then $F[G]$ is the union of the subrings $k[G]$, where k runs in the set of the subfields of F which are finitely generated over \mathbb{Q} and contain F_0. Thus $F[G]$ is a real algebra since every $k[G]$ is a real algebra.

Remark. The condition that $G_{F(i)}$ is connected (or equivalently G is connected) is necessary. Indeed, consider the example of the group μ_3 over \mathbb{R} with coordinate algebra $\mathbb{R}[X]/(X^3 - 1)$. This algebra is isomorphic to the direct sum $\mathbb{R} \oplus \mathbb{R}[X]/(X^2 + X + 1)$ and therefore is not real.

Corollary 2.3 ([La] Corollary 6.8) Let G be a linear algebraic group over the real closed field F. Suppose that $G_{F(i)}$ is connected. Then the group $G(F)$ is Zariski dense in $G(F(i))$.

Theorem 2.4 (1.5) Suppose that K is real closed. Let L be a Picard–Vessiot field for a differential module M/K. Then L is a real field if and only if the torsor $\text{Isom}^\otimes_K(K \otimes \omega_L, \rho)$ is trivial.

Proof. $G := \text{Aut}^\otimes_K(\omega_L)$ coincides with the group of the K-linear differential automorphisms of L. Let R denote the coordinate ring of the torsor $\text{Isom}^\otimes_K(K \otimes \omega_L, \rho)$. Then L is the field of fractions of R.

If L is a real Picard–Vessiot field, then $R \subset L$ is a finitely generated real K-algebra. From the real Nullstellensatz and the assumption that K is real closed it follows that there exists a K-linear homomorphism $\phi : R \rightarrow K$ with $\phi(1) = 1$. The torsor $\text{Spec}(R)$ has a K-valued point and is therefore trivial.

We observe that $L(i)$ is a Picard–Vessiot field for the differential module $K(i) \otimes M$ over $K(i)$. Further $G_{K(i)}$ is the group of the $K(i)$-linear differential automorphisms of $L(i)$ and is the ‘usual’ differential Galois group of $K(i) \otimes M$ over $K(i)$. This group is connected since $K(i)$ is algebraically closed.

Suppose that the torsor $\text{Spec}(R)$ is trivial. Then $R \cong K \otimes_k k[G] \cong K[G]$. According to Lemma 2.2, $K[G]$ is a real K-algebra and therefore its field of fractions L is a real field. \qed
2.3 The final step

By Lemma 2.1, we may suppose that K is real closed. Let L_1, L_2 denote two real Picard-Vessiot fields for a differential module M/K.

Write $\omega_j = \omega_{L_j} : < M > \to \text{vect}(k)$ for the corresponding fibre functors. Let $G = \text{Aut}_k^\otimes(\omega_j)$. Then $\text{Isom}_k^\otimes(\omega_1, \omega_2)$ is a G-torsor over k corresponding to an element $\xi \in H^1(\{1, \sigma\}, G(k(i)))$, where $\{1, \sigma\}$ is $\text{Gal}(k(i)/k)$, represented by a 1-cocycle c with $c(1) = 1$, $c(\sigma) \in G(k(i))$ and $c(\sigma) \cdot \sigma c(\sigma) = 1$.

The G_K-torsor $\text{Isom}_K^\otimes(K \otimes \omega_1, K \otimes \omega_2)$ corresponds to an element $\eta \in H^1(\{1, \sigma\}, G(K(i)))$. This element is the image of ξ under the map, induced by the inclusion $G(k(i)) \subset G(K(i))$, from $H^1(\{1, \sigma\}, G(k(i)))$ to $H^1(\{1, \sigma\}, G(K(i)))$ (we note that $\text{Gal}(K(i)/k) = \text{Gal}(k(i)/k)$). Since L_j is real, the torsor $\text{Isom}_K^\otimes(K \otimes \omega_j, \rho)$ is trivial for $j = 1, 2$, by Theorem 1.5. Thus there exists isomorphisms $\alpha_j : K \otimes \omega_j \to \rho$ for $j = 1, 2$. The isomorphism $\alpha_2^{-1} \circ \alpha_1 : K \otimes \omega_1 \to K \otimes \omega_2$ implies that η is trivial. In particular, there is an element $h \in G(K(i))$ such that $c(\sigma) = h^{-1} \sigma(h)$.

There exists a finitely generated k-algebra $B \subset K$ with $h \in G(B(i))$. Since B is real and k is real closed, there exists, by the real Nullstellensatz, a k-linear homomorphism $\phi : B \to k$ with $\phi(1) = 1$. Applying ϕ to the identity $c(\sigma) = h^{-1} \sigma(h)$ one obtains $c(\sigma) = \phi(h)^{-1} \sigma(\phi(h))$. Thus c is a trivial 1-cocycle and there is an isomorphism $\omega_1 \to \omega_2$. Hence L_1 and L_2 are isomorphic as differential field extensions of K.

Remark. The natural map $H^1(\{1, \sigma\}, G(k(i))) \to H^1(\{1, \sigma\}, G(K(i)))$ is injective, by the above argument.

\[\square\]

3 Comments and Examples

The proof of the unicity of a real Picard–Vessiot field uses almost exclusively properties of Tannakian categories. This implies that the proof remains valid for other types of equations, such as:

(a). linear partial differential equations, like $\frac{\partial}{\partial z_j} Y = A_j Y$ for $j = 1, \ldots, n$,
(b). linear ordinary difference equations, like $Y(z + 1) = AY(z),$
(c). linear q-difference equations with $q \in \mathbb{R}^*$, like $Y(qz) = AY(z)$.

For case (a), the existence of a real Picard-Vessiot field has been proved in [CH]. The proof of the uniqueness result (Theorem 1.1) for real differential
fields with real closed field of constants can probably be rephrased for the case of differential modules over a formally p-adic differential field with a p-adically closed field of constants of the same rank.

Observations 3.1

Let K be a real closed differential field with field of constants k, M/K a differential module and $\omega :< M >_{\otimes} \rightarrow vect(k)$ a fibre functor. Let L be the Picard–Vessiot field corresponding to ω and G the group of the differential automorphisms of L/K. Let H be the differential Galois group of $K(i) \otimes M$ over $K(i)$. We recall that G is a form of H over the field $k(i)$. Using the identification $k(i) \times_k G = H$, one obtains on H and on $Aut(H)$ a structure of algebraic group over k. Let $\{1, \sigma\}$ be the Galois group of $k(i)/k$. Then $H^1(\{1, \sigma\}, Aut(H))$ has a natural bijection to the set of forms of H over k. Although the action of σ on $Aut(H)$ depends on G, this set does not depend on the choice of G.

Let $\eta :< M >_{\otimes} \rightarrow vect(k)$ be another fibre functor. Then η is mapped, according to Proposition 1.4, to an element in $\xi(\eta) \in H^1(\{1, \sigma\}, G(k(i)))$ (and this induces a bijection between η’s and elements in this cohomology set). A 1-cocycle c for the group $\{1, \sigma\}$ has the form $c(1) = 1$, $c(\sigma) = a$ and a should satisfy $a \cdot \sigma(a) = 1$ (and is thus determined by a).

A 1-cocycle for $\xi(\eta)$ can be made as follows. The fibre functor η corresponds to a Picard–Vessiot field L_η. Both $L(i)$ and $L_\eta(i)$ are Picard–Vessiot fields for $K(i) \otimes M$ over $K(i)$. Thus there exists a $K(i)$-linear differential isomorphism $\phi : L(i) \rightarrow L_\eta(i)$. On the field $L(i)$ we write τ for the conjugation given by $\tau(i) = -i$ and τ is the identity on L. The similar conjugation on $L_\eta(i)$ is denoted by τ_η. Now $\tau_\eta \circ \phi \circ \tau : L(i) \rightarrow L_\eta(i)$ is another $K(i)$-linear differential isomorphism. A 1-cocycle c for $\xi(\eta)$ is now $c(\sigma) = \phi^{-1} \circ \tau_\eta \circ \phi \circ \tau$.

Let G_η denote the group of the K-linear differential automorphism of L_η. The group G_η is a form of G and produces an element in $H^1(\{1, \sigma\}, G(k(i)))$ with $H = k(i) \times G$. We want to compute a 1-cocycle C for this element. Define the isomorphism $\psi : k(i) \times G \rightarrow k(i) \times G_\eta$ of algebraic groups over $k(i)$, by $\psi(g) = \phi \circ g \circ \phi^{-1}$. Define τ_G, the ‘conjugation’ on $k(i) \times G$, by the formula $\tau_G(g) = \tau \circ g \circ \tau$ for the elements $g \in G(k(i))$. Let τ_{G_η} be the similar conjugation on $k(i) \times G_\eta$. Now $\tau_{G_\eta} \circ \psi \circ \tau_G : k(i) \times G \rightarrow k(i) \times G_\eta$ is another isomorphism between the algebraic groups over $k(i)$. The 1-cocycle C is given by $C(\sigma) = \psi^{-1} \circ \tau_{G_\eta} \circ \psi \circ \tau_G$. One observes that $C(\sigma)(g) = c(\sigma)gc(\sigma)^{-1}$.

7
The map, which associates to \(h \in G(k(i)) \), the automorphism \(g \mapsto hgh^{-1} \) of \(G \), induces a map \(H^1(\{1, \sigma\}, G(k(i))) \to H^1(\{1, \sigma\}, G/Z(G)(k(i))) \to H^1(\{1, \sigma\}, \text{Aut}(H)) \), denoted by \(\xi(\eta) \mapsto \tilde{\xi}(\eta) \). The forms corresponding to elements in the image of \(H^1(\{1, \sigma\}, G/Z(G)(k(i))) \to H^1(\{1, \sigma\}, \text{Aut}(H)) \) are called ‘inner forms of \(G \).’ By §1, \(\eta \) induces a Picard–Vessiot field and a form \(G(\eta) \) of \(H \). Above we have verified (see \([B]\) for a similar computation) that \(G(\eta) \) is the inner form of \(G \) corresponding to the element \(\tilde{\xi}(\eta) \). For the delicate theory of forms we refer to the informal manuscript \([B]\) and the standard text \([Sp]\). \(\square \)

Examples.

We continue with the notation and assumptions of Observations (3.1).

(1). Let \(M/K, \omega, L, G \) be such that \(G = \text{SL}_{n,k} \). Since \(H^1(\{1, \sigma\}, \text{SL}_{n,k}(k(i))) \) is trivial, \(L \) is the unique Picard–Vessiot field and is a real field (because a real Picard–Vessiot field exists).

The group \(\text{SL}_n \) has non trivial forms. For instance, \(\text{SU}(2) \) is an inner form of \(\text{SL}_{2,\mathbb{R}} \). There are examples, according to Proposition 3.2 below, of differential modules \(M/K \) having a real Picard–Vessiot field \(L \) with group of differential automorphisms of \(L/K \) equal to \(\text{SU}(2) \).

From \([Sp]\), 12.3.7 and 12.3.9 one concludes that \(H^1(\{1, \sigma\}, \text{SU}(2)(\mathbb{C})) \) is trivial. Again \(L \) is the only Picard–Vessiot field.

(2). If \(G \) is the symplectic group \(\text{Sp}_{2n,k} \), then there are no forms and \(H^1(\{1, \sigma\}, G(k(i))) \) is trivial. Therefore there is only one Picard–Vessiot field \(L \) and this is a real field.

(3). Consider a \(k \)-form \(G \) of \(\text{SO}(n)_k \) with odd \(n \geq 3 \). The center \(Z \) of \(G \) consists of the scalar matrices of order \(n \), thus \(Z \) is the group \(\mu_{n,k} \) of the \(n \)th roots of unity. Since \(n \) is odd, one has \(Z(k) = \{1\} \). Further, again since \(n \) is odd, the automorphisms of \(H = G_k(i) \) are interior and \(\text{Aut}(H)(k(i)) = G/Z(k(i)) \).

We claim the following.

The natural map \(H^1(\{1, \sigma\}, G(k(i))) \to H^1(\{1, \sigma\}, G/Z(k(i))) \) is a bijection.

Proof. A 1-cocycle \(c \) for \(G/Z(k(i)) \) is given by \(c(1) = 1 \) and \(c(\sigma) = a \in G/Z(k(i)) \) with \(a\sigma(a) = 1 \). Choose an \(A \in G(k(i)) \) which maps to \(a \). Thus \(A\sigma(A) \in Z(k(i)) \) and \(A \) commutes with \(\sigma A \). Further \(\sigma(A\sigma(A)) = \sigma(A)A = A\sigma(A) \) and thus \(A\sigma(A) \in \mu_{n}(k) = \{1\} \). Therefore \(C \) defined by \(C(1) = 1 \), \(C(\sigma) = A \) is a 1-cocycle for \(G(k(i)) \) and maps to \(c \). Hence the map is surjective.
Consider for \(j = 1, 2 \) the 1-cocycle \(C_j \) for \(G \) given by \(C_j(\sigma) = A_j \). Suppose that the images of \(C_j \) as 1-cocycles for \(G/Z(k(i)) \) are equivalent. Then there exists \(B \in G(k(i)) \) such that \(B^{-1}A_1\sigma(B) = xA_2 \) for some element \(x \in Z(k(i)) \). We may replace \(B \) by \(yB \) with \(y \in Z(k(i)) \). Then \(x \) is changed into \(xy^{-1}\sigma(y) \). And the latter is equal to 1 for a suitable \(y \). This proves the injectivity of the map.

We conclude from the above result that there exists a (unique up to isomorphism) fibre functor \(\eta : M > \otimes \rightarrow \text{vect}(k) \) (or, equivalently, a Picard–Vessiot field) for every form of \(H = SO(n)_{k(i)} \) over \(k \). Moreover, only one of these fibre functors corresponds to a real Picard–Vessiot field.

Let \(\omega : M > \otimes \rightarrow \text{vect}(k) \) denote the fibre functor corresponding to a real Picard–Vessiot field \(L_\omega \) and \(G_\omega \) the group of the differential automorphisms of \(L_\omega/K \). We want to identify this form \(G_\omega \) of \(H := SO(n)_{k(i)} \).

Since the differential Galois group of \(K(i) \otimes M \) is \(SO(n)_{k(i)} \), there exists an element \(F \in \text{sym}^2(K(i) \otimes M^*) \) with \(\partial F = 0 \). Further \(F \) is unique up to multiplication by a scalar and \(F \) is a non degenerate bilinear symmetric form. The non trivial automorphism \(\sigma \) of \(K(i)/K \) and of \(k(i)/k \) acts in an obvious way on \(K(i) \otimes M \) and on constructions by linear algebra of \(K(i) \otimes M \). Now \(\sigma(F) \) has the same properties as \(F \) and thus \(\sigma(F) = cF \) for some \(c \in K(i) \). After changing \(F \) into \(aF \) for a suitable \(a \in K(i) \), we may suppose that \(\sigma(F) = F \). Then \(F \) belongs to \(\text{sym}^2(M^*) \) and is a non degenerate form of degree \(n \) over the field \(K \). Further \(F \) is determined by its signature because \(K \) is real closed. Moreover \(KF\) is the unique 1-dimensional submodule of \(\text{sym}^2(M^*) \). We claim the following:

\(G_\omega \) is the special orthogonal group over \(k \) corresponding to a form \(f \) over \(k \) which has the same signature as \(F \).

Let \(V = \omega(M) \). The group \(G_\omega \) is the special orthogonal group of some non degenerate bilinear symmetric form \(f \in \text{sym}^2(V^*) \). Since \(L_\omega \) is real, there exists a isomorphism \(m : K \otimes_k \omega \rightarrow \rho \) of functors. Applying \(m \) to the modules \(M \) and \(\text{sym}^2(M^*) \) one finds an isomorphism \(m_1 : K \otimes_k V \rightarrow M \) of \(K \)-vector spaces which induces an isomorphism of \(K \)-vector spaces \(m_2 : K \otimes_k \text{sym}^2(V^*) \rightarrow \text{sym}^2(M^*) \). The latter maps the subobject \(K \otimes k f \) to \(K F \) by the uniqueness of \(K F \). One concludes that the forms \(f \) and \(F \) have the same signature.
Proposition 3.2 Suppose that K is real closed. Given is a connected semi-simple group H over $k(i)$ and a form G of H over k. Then there exists a differential module M over K and a real Picard–Vessiot field for M/K such that the group of the differential automorphisms of L/K is G.

Proof. Let G be given as a subgroup of some $GL_{n,k}$, defined by a radical ideal I. Then $k[G] = k[\{X_{k,l}\}_{k,l=1}^n, \frac{1}{\det}] / I$. The tangent space of G at $1 \in G$ can be identified with the k-linear derivations D of this algebra, commuting with the action of G. These derivations D have the form $(DX_{k,l}) = B \cdot (X_{k,l})$ for some matrix $B \in \text{Lie}(G)(k)$ (where $\text{Lie}(G) \subset \text{Matr}(n,k)$ is the Lie algebra of G).

The same holds for $K[G] = K \otimes_k k[\{X_{k,l}\}_{k,l=1}^n, \frac{1}{\det}] / I$. Any K-linear derivation D on the algebra, commuting with the action of G, has the form $(DX_{k,l}) = A \cdot (X_{k,l})$ with $A \in \text{Lie}(G)(K)$. We choose A as general as possible.

The differential module M/K is defined by the matrix equation $y' = Ay$. It follows from [PS], Proposition 1.3.1 that the differential Galois group of $K(i) \otimes M$ is contained in $H = G_{k(i)}$. Now one has to choose A such that the differential Galois group (which is connected because $K(i)$ is algebraically closed) is not a proper subgroup of H. Since H is semi-simple, there exists a Chevalley module for H. Using this Chevalley module one can produce a general choice of A such that differential Galois group of $y' = Ay$ over $K(i)$ is in fact $G_{k(i)}$ (compare [PS], §11.7 for the details which remain valid in the present situation).

The usual way to produce a Picard–Vessiot ring for the equation $y' = Ay$ is to consider the differential algebra $R_0 := K[\{X_{k,l}\}_{k,l=1}^n, \frac{1}{\det}]$, with differentiation defined by $(X'_{k,l}) = A \cdot (X_{k,l})$, and to produce a maximal differential ideal in R_0. Since $A \in \text{Lie}(G)(K) \subset \text{Lie}(H)(K(i))$, the ideal $J \subset R_0[i]$, generated by I is a differential ideal. It is in fact a maximal differential ideal of $R_0[i]$, since the differential Galois group is precisely H. Then $J \cap R_0 = IR_0$ is a maximal differential ideal of R_0 and $K[G] = R = R_0/IR_0$ is a Picard–Vessiot ring for M over K. The field of fractions L of R is real because the G-torsor $\text{Spec}(K[G])$ is trivial.

It seems that, imitating the proofs in [MS], one can show that Proposition 3.2 remains valid under the weaker conditions: K is a real differential field and a C_1-field and H is connected.
References

[B] K. Buzzard, *Forms of reductive algebraic groups*, On the web, February 7, 2012.

[BCR] J. Bochnak, M. Coste, M.-F. Roy, *Real Algebraic Geometry*, Springer Verlag, Berlin, 1998.

[CH] T. Crespo, Z. Hajto, *Picard-Vessiot theory for real partial differential fields*, submitted.

[CHS1] T. Crespo, Z. Hajto, E. Sowa, *Constrained extensions of real type*, C. R. Acad. Sci. Paris, Ser. I 350 (2012), 235-237.

[CHS2] T. Crespo, Z. Hajto, E. Sowa, *Picard-Vessiot theory for real fields*, Israel J. Math., to appear.

[De] P. Deligne, *Catégories galoisiennes*, in: “The Grothendieck Festschrift”, vol. 2, Progr. Math. Birkhäuser 87, 1990, pp. 111-195.

[DM] P. Deligne, J.S. Milne, *Tannakian Categories*, in: “Hodge cycles, motives, and Shimura varieties”, Lect. Notes Math. 900, Springer, 1982, pp.101-228.

[La] T.Y. Lam, *An introduction to real algebra*, Rocky Mt. J. Math. 14 (1984), 767-814.

[MS] C. Mitschi, M.F. Singer, *Connected linear algebraic groups as differential Galois groups*, J.Algebra, 184 (1996), 333-361.

[PS] M. van der Put, M.F. Singer, *Galois Theory of Linear Differential Equations*, Grundlehren, Volume 328, Springer Verlag 2003

[Si] M.F. Singer *The model theory of ordered differential fields*, J. Symbolic Logic 43 (1978), 82-91.

[Sp] T.A. Springer, *Linear Algebraic Groups, Second Edition*, Progress in Mathematics, Volume 9, 1998.
Teresa Crespo
Departament d’Àlgebra i Geometria
Universitat de Barcelona
Gran Via de les Corts Catalanes 585
08007 Barcelona, Spain
teresa.crespo@ub.edu

Zbigniew Hajto
Faculty of Mathematics and Computer Science
Jagiellonian University
ul. Prof. S. Lojasiewicza 6
30-348 Kraków, Poland
zbigniew.hajto@uj.edu.pl

Marius van der Put
Department of Mathematics
University of Groningen
P.O. Box 800
9700 AV Groningen, The Netherlands
M.van.der.Put@math.rug.nl