Original Research Article

Postharvest Treatments on Storage Life of Guava (*Psidium guajava* L.) in Himalayan Terai Region of West Bengal, India

Piyali Dutta¹*, Nilesh Bhowmick², Surajit Khalko³, Arunava Ghosh⁴ and Swapan Kr. Ghosh²

¹Department of Fruits and Orchard Management, Bidhan Chandra KrishiViswavidyalaya, Nadia, 741252, West Bengal, India
²Department of Pomology and Postharvest Technology, ³Department of Plant Pathology, ⁴Department of Agril. Statistics, Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar, 736165, W.B., India

*Corresponding author

Abstract

Guava (*Psidium guajava* L.) is the fifth most important fruit crop of India, has a limited postharvest shelf life. This study explored the use of some postharvest treatments to extend the shelf life, post-harvest disease incidence and to assess the physico-chemical changes of fruits during storage and to study the effect of seasonal variation on quality and storage life of guava fruits (cv.L-49). Fully mature but green guava fruits were treated with different edible coating materials, chemicals, powder formulation of bio-control agent, hot water, and control. On the rainy and winter season, retention percent was found maximum with paraffin liquid 10%. Physiological loss in weight was minimum with the guar gum 1% in rainy season, paraffin 5% and gum acacia 10% in winter season. Regarding other horticultural traits like total soluble solids, ascorbic acid, total sugar, reducing sugar, non-reducing sugar content etc. were recorded maximum with gum acacia 10% in rainy season and winter. From this experiment, it is concluded that winter season guava fruits could be stored well as compared to rainy season fruits. Edible coating materials showed the better results in terms of extending the shelf life of guava fruits (cv. L-49) in both rainy and winter season as well as to maintain the qualities than the other chemicals.

Keywords

Edible coatings, chemicals, bio-control agent, guava, Storage Life.

Article Info

Accepted: 24 February 2017
Available Online: 10 March 2017

Introduction

Guava (*Psidium guajava* L.), belongs to the family Myrtaceae, is the fifth most important fruits of India in terms of production during 2014-15. Guava is one of the commonest fruits liked by poor and the rich people and also known as “The Apple of Tropics” (Bose and Mitra, 2011). Guava is being grown all over the sub-tropical and tropical world due to its high dietary value and good flavor. It is a highly palatable fruit with a rich source of vitamin C (Pal *et al*., 2004) and it is a climacteric fruits (Akamine and Goo, 1979; Markado-silva *et al*., 1998); ripen rapidly after the harvest and has a short shelf life. Therefore, guava fruits are required to be managed appropriately in order to get a regulated market supply through postharvest treatments to improve the storage life. Keeping these viewpoints, the study was conducted with objectives to extend the marketable shelf life and to assess the physico-chemical changes of fruits during
storage and to study the effect of seasonal variation on quality and storage life of guava fruits cv. L-49 treated with different edible coating materials (guar gum, gum acacia, chitosan), chemicals (calcium chloride, paraffin liquid), powder formulation of bio-control agent (Pseudomonas), hot water.

Materials and Methods

To conduct the experiment, fully mature but green guava fruits (cv. L-49) of two successive seasons (rainy and winter) were collected from an private orchard of Coochbehar district, West Bengal, India during the year 2013 and immediately brought to the laboratory of the Department of Pomology and Postharvest Technology, at Uttar Banga Krishi Viswa vidwalya, Pundibari, Coochbehar, West Bengal, India for storage after necessary treatments. The fruits after washing in running tap water dried in the shade for few minutes. The fruits were treated with T1- CaCl2 1% (Dip in aqueous solution of calcium chloride 1% for five minutes), T2- CaCl2 2% (Dip in aqueous solution of calcium chloride 2% for five minutes), T3- Paraffin liquid 5% (Dipped for 30 seconds in 5% aqueous emulsion of liquid paraffin), T4- Paraffin liquid 10% (Dipped for 30 seconds in 10% aqueous emulsion of liquid paraffin), T5- Pseudomonas fluorescence 1% (Dipped for 5 minutes in 1% (Pseudomonas fluorescence) aqueous solution of pseudomonas), T6- Pseudomonas fluorescence 2% (Dipped for 5 minutes in 2% (Pseudomonas fluorescence) aqueous solution of pseudomonas), T7- Hot water (45°±2°C) (Immersed into hot water for 8 minutes at 45°C± 2°C in hot water bath chamber and then were hydro cooled rapidly), T8- Hot water (35°C±2°C)(Immersed into hot water for 8 minutes at 35°C ± 2°C in hot water bath chamber and then were hydro cooled rapidly), T9- Chitosan 0.5% (To prepare 500 mL of 0.5% (w/v) chitosan solution, accurate weight of 2.5 g of chitosan were dispersed in 50 mL of glacial acetic acid), T10- Chitosan 1% (To prepare 500 mL of 1% (w/v) chitosan solution, accurate weight of 5 g of chitosan were dispersed in 50 mL of glacial acetic acid), T11- Guar gum 1% (1g guar gum powder was mixed with 100 ml of water for the preparation of 1% solution), T12- Guar gum 2% (2g guar gum powder was mixed with 100 ml of water for the preparation of 2% solutions respectively), T13- Gum acacia 10% (Dissolve 100 mg of gum acacia powder in 1000 mL water. The solution was stirred with low heat, 40 °C for 30 minutes), T14- Gum acacia 20% (Dissolve 200 mg of gum acacia powder in 1000 mL water. The solution was stirred with low heat at 40 °C for 30 minutes), T15- Control (Without treatment).

A number of observations were recorded during storage period at an interval of 2 days, i.e., physical parameters of fruits like retention percent of fruits, physiological loss in weight, fruit weight loss %= (fruit weight at initial period – fruit weight at sampling period)/fruit weight at initial period × 100, diseases incidence percent (percentage of darken fruits due to fungal and mould growth), and bio-chemical parameters of fruits like total soluble solid (TSS) (recorded with the help of handrefractometer, (Mazumdar and Majumder, 2003), total sugar and reducing sugar (AOAC, 1984), ascorbic acid (Rangana, 1977).

Statistical analysis

Analysis of variance (one way classified data) for each parameter was performed using ProcGlm of Statistical Analysis System (SAS) software (version 9.3). Mean separation for different treatment under different parameter were performed using Least Significant Different (LSD) test (P≤ 0.05).Data transformation is done by following Gomez and Gomez (Gomez and Gomez, 1983).
Results and Discussion

Percentage of retention

Observation during storage of rainy and winter season guava fruits revealed that the retention percent (Table 1) was decreased in all the treatments as the storage period progressed. In rainy season, on 10 days after treatment, the retention percent was found highest (80.33%) with paraffin liquid 10%, followed by paraffin liquid 5% (79%), whereas, it was minimum (42%) in control. However, in winter season, on 12 days after treatment, the retention percent was found highest (86%) with paraffin liquid 10%, followed by paraffin liquid 5% (85.67%) and statistically at par with the other chemicals, whereas, it was minimum (74.67%) in control. In winter season, 12 days after treatment, the chemical property of fruits of all treatments was better but marketable quality decreased. Treatment with hot water (Wang et al., 1963) and coating with wax emulsion (Ayranci and Tunc, 2003) also increased the shelf life of mango fruits.

Weight Loss Percentage

Weight loss percentage increased significantly with the prolongation of the storage period for all treatments. Normally, the weight loss occurs during the fruit storage due to its respiratory process, the transference of humidity and some processes of oxidation (Ayranci and Tunc, 2003). In rainy season on 10 days after treatment, the physiological loss in weight was found minimum (7.15%) with guar gum 1% and statistically at par with paraffin liquid 5% (7.39%), whereas, it was maximum (10.49%) in control. However, on 12 days after treatment, the physiological loss in weight was found lowest (5.60%) with both paraffin liquid 5% and gum acacia 10% and statistically at par with the paraffin liquid 10% (5.62%) and gum acacia 20% (5.62%), whereas, it was maximum (8.00%) in control (Table 2). The reduction in weight loss was probably due to the effects of these coatings as a semi permeable barrier against oxygen, carbon dioxide, moisture and solute movement, thereby reducing respiration, water loss and oxidation reaction rates (Baldwin, 1999).

Disease incidence percent

It was found that the postharvest disease of guava was mainly due to anthracnose diseases caused by Gloeosporium psidii. The disease incidence percent was studied by visual observation from infected guava fruits. Observation during storage of rainy and winter season guava fruits revealed that the disease incidence percent (Table III) was increased in all the treatments as the storage period progressed.

In rainy season, on 10 days after treatment, the disease incidence percent was found lowest (4%) with paraffin liquid 10% which was statistically at par with paraffin liquid 5% (5%), whereas, it was maximum (26%) under control. However, in winter season, on 12 days after treatment, the disease incidence percent was found lowest (5%) with paraffin liquid 10%, whereas, it was highest (22%) under control. Passam (Passam, 1982) also reported that ‘Doodooth’ mango was highly susceptible to anthracnose but when the fruits were treated with hot water (52±2°C) containing 500-1000 mg/l benomyl the incidence of diseases was reduced.

Total soluble solids (TSS)

TSS content during winter months was higher in general as compared to fruits harvested during rainy season (Table 4). It was increased up to a certain period and there after decreased in all the treatments as the storage period progressed.
Table 1 Effect of different treatments on fruit retention (percent)

TREATMENTS	Days after treatments	Rainy season	Winter season								
	2	4	6	8	10	2	4	6	8	10	12
T₁- CaCl₂ 1%	95.00 (77.19)	80.66 (63.93)	70.66 (57.21)	59.67 (50.57)	52.67 (46.53)	95.00 (77.19)	92.33 (74.07)	90.00 (71.7)	87.67 (69.54)	85.00 (67.28)	81.33 (64.5)
T₂- CaCl₂ 2%	97.00 (81.85)	84.00 (66.51)	70.66 (57.22)	58.67 (50.57)	51.67 (45.96)	97.00 (81.85)	93.33 (75.1)	91.00 (72.59)	88.00 (69.77)	85.33 (67.5)	82.00 (64.94)
T₃- Paraffin liquid 5%	100.00 (90)	94.66 (76.73)	90.00 (71.56)	85.67 (67.76)	79.00 (62.74)	100.00 (90)	97.00 (80.12)	94.67 (76.66)	92.33 (73.93)	89.00 (70.64)	85.67 (67.76)
T₄- Paraffin liquid 10%	100.00 (90)	96.00 (69.06)	93.33 (62)	87.33 (56.11)	80.33 (51.74)	100.00 (90)	96.67 (79.66)	94.33 (76.27)	92.00 (73.59)	89.00 (70.64)	86.00 (68.05)
T₅- *Pseudomonas fluorescence* 1%	95.33 (80.01)	88.33 (70.11)	78.33 (62.47)	69.00 (56.27)	56.67 (48.84)	96.00 (78.46)	91.33 (72.9)	88.67 (70.35)	86.00 (68.04)	83.00 (65.67)	80.00 (63.4)
T₆- *Pseudomonas fluorescence* 2%	96.00 (78.46)	88.66 (70.38)	76.33 (60.89)	65.00 (57.33)	54.00 (47.3)	93.33 (77.71)	86.33 (68.32)	83.33 (65.95)	81.00 (64.19)	78.00 (62.05)	78.33 (62.46)
T₇- Hot water (45±2 C)	95.33 (80.01)	85.33 (67.52)	70.66 (57.21)	57.67 (49.41)	47.33 (43.47)	95.33 (79.97)	92.00 (74.00)	89.33 (71.14)	86.33 (68.44)	86.67 (69.24)	82.33 (65.55)
T₈- Hot water (35±2 C)	97.66 (84.89)	81.33 (64.46)	71.66 (57.89)	57.67 (49.41)	44.67 (41.94)	97.67 (84.89)	93.67 (75.7)	91.00 (72.73)	88.33 (70.11)	85.00 (67.27)	81.00 (64.19)
T₉- Chitosan 0.5%	91.00 (72.59)	82.00 (64.97)	71.66 (57.86)	60.00 (54.1)	52.33 (46.34)	97.67 (84.89)	94.00 (76.22)	91.33 (73.17)	89.00 (70.78)	86.67 (68.99)	83.33 (66.26)
T₁₀- Chitosan 1%	93.33 (77.7)	87.33 (69.21)	73.66 (59.15)	62.67 (52.34)	45.33 (42.32)	95.33 (80.01)	91.33 (73.6)	89.00 (70.93)	86.67 (68.99)	84.00 (66.59)	80.67 (64.19)
T₁₁- Guar gum 1%	96.66 (83.85)	90.66 (60.89)	76.33 (60.89)	64.67 (53.53)	57.67 (49.41)	96.67 (83.85)	93.00 (75.26)	90.00 (69.69)	87.33 (69.34)	84.00 (66.59)	81.66 (64.82)
T₁₂- Guar gum 2%	98.66 (86.15)	93.00 (60.89)	76.33 (54.13)	65.66 (51.43)	57.67 (49.41)	98.67 (86.15)	95.67 (78.23)	93.00 (74.82)	90.00 (71.62)	86.67 (68.6)	84.00 (66.44)
T₁₃- Gum acacia 10%	97.66 (84.89)	92.66 (59.38)	74.00 (59.38)	63.33 (52.73)	53.00 (46.72)	95.33 (80.01)	92.67 (75.13)	90.00 (71.95)	88.67 (70.66)	85.67 (67.89)	82.33 (65.18)
T₁₄- Gum acacia 20%	95.33 (80.01)	89.66 (59.38)	74.00 (59.38)	60.00 (50.77)	51.67 (45.95)	96.00 (78.46)	93.33 (75.05)	90.67 (72.23)	87.67 (69.49)	85.00 (67.24)	82.33 (65.18)
T₁₅- Control	96.00 (78.46)	87.33 (57.89)	71.66 (57.89)	56.33 (48.64)	42.00 (40.41)	91.00 (72.56)	86.67 (68.62)	83.67 (66.17)	80.67 (63.93)	78.00 (62.03)	74.67 (60)
Least Significant Difference (P≤0.05)	11.765	3.430	3.790	3.640	2.37	11.77	6.16	5.42	4.73	5.01	5.17

Means with the same letter are not significantly different
Table 2. Effect of different treatments on physiological loss in weight (percent)

Treatments	Days after treatments	Rainy season	Winter season									
		2	4	6	8	10	2	4	6	8	10	12
		2.32	3.22	4.63	6.52	8.11	1.61	2.46	3.37	4.36	5.47	6.75
T1- CaCl₂ 1%		2.07	3.07	4.48	6.26	8.06	1.60	2.44	3.35	4.33	5.43	6.70
T2- CaCl₂ 2%		1.51	3.08	4.62	5.88	7.39	1.31	2.39	3.27	4.23	5.30	5.60
T3- Paraffin liquid 5%		1.68	2.85	4.10	5.97	7.65	1.05	2.40	3.28	4.24	5.32	5.62
T4- Paraffin liquid 10%		2.08	3.40	5.28	6.97	8.99	1.59	2.43	3.33	4.31	5.40	6.66
T5- Pseudomonas fluorescence 1%		1.66	3.39	5.27	6.97	8.98	1.61	2.46	3.36	4.36	5.47	6.75
T6- Pseudomonas fluorescence 2%		2.22	3.70	5.03	6.98	9.02	1.59	2.42	3.31	4.28	5.37	6.62
T7- Hot water (45°C ± 2°C)		2.11	3.89	4.95	7.11	9.18	1.59	2.42	3.32	4.29	5.38	6.64
T8- Hot water (35°C ± 2°C)		2.19	3.79	4.84	6.94	9.12	1.59	2.43	3.33	4.31	5.40	6.81
T9- Chitosan 0.5%		2.20	3.35	4.77	7.01	8.96	1.59	2.69	3.88	5.18	6.38	6.82
T10- Chitosan 1%		1.40	2.52	3.75	7.15	9.18	1.59	2.43	3.89	5.20	6.40	6.84
T11- Guar gum 1%		1.78	3.12	4.61	5.89	7.85	1.60	3.00	3.93	5.27	6.50	6.95
T12- Guar gum 2%		2.25	3.17	4.76	6.09	8.15	1.08	2.39	3.29	4.26	4.74	5.60
T13- Gum acacia 10%		2.24	3.30	4.89	6.24	8.15	1.06	2.39	3.30	4.27	5.35	5.62
T14- Gum acacia 20%		2.54	4.31	6.31	8.18	10.49	2.39	3.27	4.24	5.30	6.54	8.00
Least Significant Difference (P≤0.05)		0.40	0.36	0.35	0.71	0.60	0.38	0.50	0.43	0.10	0.25	0.17

Means with the same letter are not significantly different
Table 3: Effect of different treatments on disease incidence (percent)

Treatments	Rainy season	Days after treatments	Winter season															
	2	4	6	8	10	2	4	6	8	10	12							
T₁⁺ CaCl₂ 1%	1(3.33)a	6(14.2)a	b	11(19.62)a	16(23.56)a	ab	21(27.2)a	6ab	1(3.3)a	4(11.74)a	ab cd	9(17.02)a	12(20.51)a	ab	16(23.83)a	b	20(26.56)a	ab
T₂⁺ CaCl₂ 2%	1(3.33)a	5(12.8)a	ab	10(18.20)a	15(22.23)a	ab	20(26.45)a	ab	1(3.3)a	4(11.77)a	ab cd	7(15.26)a	11(18.86)a	abc	13(21.30)a	bc	16(23.49)a	bc
T₃⁻ Paraffin liquid 5%	0(0)a	0(0)e	0(0)c	1(3.33)e	5(12.8)e	0(0)a	0(0)f	0(0)d	1(3.33)	4(10.96)ef	7(15.18)	fgh						
T₄⁻ Paraffin liquid 10%	0(0)a	0(0)e	0(0)c	1(3.33)e	4(11.38)e	0(0)a	0(0)f	0(0)d	1(3.33)	3(7.76)3f	5(13.11)	h						
T₅⁻ Pseudomonas fluorescence 1%	0(0)a	2(4.73)cdde	2(4.73)c	6(14.2)cd	10(18.4)4d	0(0)a	0(0)f	2(6.65)bc	4(9.42)ef	7(15.29)de	10(17.8)2e	fg						
T₆⁻ Pseudomonas fluorescence 2%	0(0)a	0(0)e	0(0)c	4(11.38)d	10(18.20)d	0(0)a	0(0)f	0(0)d	1(3.33)	4(10.96)ef	7(14.90)	gh						
T₇⁻ Hot water (45°±2°C)	0(0)a	2(6.65)abcd	5(12.78)b	11(19.62)bc	21(27.26)ab	0(0)a	2(6.65)5cef	5(12.78)ab	10(18.42)abcd	15(22.52)ab	18(24.7)abc							
T₈⁻ Hot water (35°±2°C)	1(3.33)a	6(14.2)ab	11(19.62)ja	14(21.97)ab	22(27.93)ab	1(3.3)3a	6(14.2)ab	10(18.58)ja	13(21.33)ab	16(23.80)ab	19(26.1)abc							
T₉⁻ Chitosan 0.5%	2(6.65)a	5(12.78)abc	10(18.44)ab	16(23.56)ab	23(28.63)ab	1(3.3)3a	2(4.30)edef	2(4.73)cd	5(12.8)cd	8(16.36)cd	11(19.2)2de							
T₁₀⁻ Chitosan 1%	1(3.33)a	5(12.78)abc	10(18.44)ab	15(22.76)ab	19(25.82)ab	0(0)a	0(0)f	0(0)d	4(11.38)cd	8(16.36)cd	11(18.91)1def							
T₁₁⁻ Guar gum 1%	1(3.33)a	4(9.47)abcd	8(15.38)ab	13(20.90)ab	18(24.55)bc	1(3.33)3a	3(7.63)bced	6(14.2)a	11(19.09)abc	14(22.14)ab	18(25.0)6abc							
T₁₂⁻ Guar gum 2%	1(3.33)a	2(4.73)cede	5(12.8)b	10(18.20)bc	17(23.85)bc	1(3.3)3a	2(4.73)3def	5(12.47)ab	10(17.92)abcd	12(20.5)2bc	16(23.59)bc							
T₁₃⁻ Gum acacia 10%	0(0)a	5(12.78)abc	9(17.02)ab	13(21.07)ab	18(24.84)bc	1(3.3)3a	5(12.78)abc	9(17.02)a	12(20.23)ab	15(22.75)a	18(24.84)abc							
T₁₄⁻ Gum acacia 20%	0(0)a	1(3.33)de	2(4.73)c	6(14.2)cd	12(20.41)cd	0(0)a	1(3.33)3ef	2(4.73)cd	6(14.2)bcde	12(19.89)bc	15(22.47)cd							
T₁₅⁻ Control	3(6.15)a	7(15.6)a	13(20.79)a	20(26.52)ab	26(30.84)ab	2(6.65)ja	7(14.93)a	11(19.05)ja	15(23.04)ab	19(26)1.1a	22(28.2)4a							

Least Significant Difference (P ≤ 0.05) - 8.27 6.59 6.07 5.17 7.21 6.64 7.15 5.34 4.00

Means with the same letter are not significantly different
Table 4: Changes in total soluble solids (Obrix)

Treatments	Days after treatments	Rainy season	Winter season															
	2	4	6	8	10	2	4	6	8	10	12							
T₁ - CaCl₂ 1%	6.86a	7.30de	6.43cdef	5.85bc	d	5.29b	c	9.96cdef	10.60c	d	11.26c	def	11.73de	fg	10.73c	de	10.33c	d
T₂ - CaCl₂ 2%	6.77a	7.37cd	e	6.43cdef	5.78cd	5.33b	c	10.40ab	10.73a	bcd	11.12d	ef	11.66ef	g	10.40e	10.00	de	
T₃ - Paraffin liquid 5%	7.19a	7.73ab	6.91abc	6.48a	5.86a	10.66ab	11.27a	b	12.26ab	c	11.90a	11.13a	b					
T₄ - Paraffin liquid 10%	7.16a	7.67abc	d	6.25ab	5.63a	10.66ab	11.27a	b	12.40ab	11.93a	11.13a	b						
T₅ - *Pseudomonas fluorescence* 1%	7.01a	b	7.30de	6.32def	5.97bc	5.19c	10.33ab	cd	10.73a	bcd	11.20c	def	11.60fg	10.99c	d	10.06de		
T₆ - *Pseudomonas fluorescence* 2%	6.94a	b	7.37cd	e	6.54abc	de	5.93bc	5.29b	c	9.93cdef	10.40c	d	10.84f	11.73de	fg	11.12bc	10.73bc	
T₇ - Hot water (45°±2°C)	6.77a	b	7.16e	6.45bc	def	5.74cd	5.29b	c	10.06bc	def	11.00a	bc	11.34bc	def	11.60fg	10.60c	de	9.86de
T₈ - Hot water (35°±2°C)	6.54a	b	7.06e	6.16ef	5.68cd	5.19c	9.53f	10.2dd	10.99ef	11.46g	10.53de	9.80e						
T₉ - Chitosan 0.5%	6.46c	7.27de	6.46abc	def	5.88bc	d	5.42b	c	9.80cdef	10.53cd	11.34bc	cde	12.00bc	def	11.20bc	10.80bc		
T₁₀ - Chitosan 1%	6.86a	b	7.19e	6.63abc	de	5.88bc	d	5.36b	c	9.67ef	10.40c	d	11.12d	ef	11.80cd	efg	11.12bc	10.73bc
T₁¹ - Guar gum 1%	7.26a	7.84ab	6.96ab	6.51a	5.93a	10.20ab	cde	10.67bc	d	11.44abc	cde	12.13ab	cde	11.79a	11.06ab			
T₁² - Guar gum 2%	7.13a	6.54bc	d	6.73abc	d	6.00bc	5.59a	b	10.13bc	ab	10.73abc	d	11.50abc	d	12.20abc	cd	11.60abc	10.93b
T₁⁻ - Gum acacia 10%	7.28a	7.91a	6.91abc	6.53a	5.95a	10.80a	11.33a	11.90a	12.60a	12.00a	11.26a							
T₁⁴ - Gum acacia 20%	7.25a	7.90a	6.98a	6.48a	5.86a	10.33abc	cd	11.00abc	11.64abc	12.33abc	11.89a	11.20ab						
T₁₅ - Control	6.74a	bc	7.07e	6.00f	5.51d	5.16c	9.73def	10.53cd	11.20def	11.60fg	10.93c	d	10.33cd					
Least Significant Difference (P≤0.05)	0.55	0.34	0.52	0.40	0.36	0.67	0.66	0.50	0.53	0.49	0.51							

Means with the same letter are not significantly different
Table 5: Changes in total sugar content (mg)

Treatments	Days after treatments	Rainy season		Winter season									
		2	4	6	8	10	12	2	4	6	8	10	12
T1- CaCl$_2$ 1%		4.33	5.11	4.27	3.76def	3.29d	6.11f	6.56h	6.88f	7.17bc	6.49e	6.04g	
T2- CaCl$_2$ 2%		4.27d	5.17b	4.30	3.67ef	3.33d	6.67bc	6.94bcd	7.02d	7.17bc	6.69cd	6.29de	
T3- Paraffin liquid 5%		4.72a	5.51a	4.77	4.26ab	3.89a	6.75abc	6.98ab	7.17a	7.27a	6.95ab	6.60ab	
T4- Paraffin liquid 10%		4.66ab	5.53a	4.56	4.19abc	3.69ab	6.92ab	7.07a	7.23a	7.29a	6.92ab	6.62a	
T5- Pseudomonas fluorescence 1%		4.49	5.05b	4.23	3.83bcd	3.19d	6.83ab	6.91bcd	7.08cde	7.18bc	6.62de	6.27e	
T6- Pseudomonas fluorescence 2%		4.38	5.18b	4.35	3.81cde	3.29d	6.52d	6.84def	7.00e	7.15cd	6.63de	6.26e	
T7- Hot water (45° ±2°C)		4.10e	5.07bc	4.25	3.65ef	3.30d	6.59cd	6.72g	7.07de	7.25ab	6.76bc	6.41cd	
T8- Hot water (35° ±2°C)		4.33	5.11bc	4.31	3.86abc	3.16e	6.28ef	6.57h	6.89f	7.08d	6.66de	6.21ef	
T9- Chitosan 0.5%		4.33	5.12bc	4.44	3.75def	3.43cd	6.60bc	6.94bcd	7.05de	7.14cd	6.83ab	6.46c	
T10- Chitosan 1%		4.40	5.11bc	4.50	3.74def	3.35c	6.50bc	6.83ef	7.07de	7.14cd	6.74bc	6.48cd	
T11- Guar gum 1%		4.78a	5.61a	4.80	4.30ab	3.93a	6.71ab	6.79fg	7.07de	7.11cd	6.82ab	6.33cd	
T12- Guar gum 2%		4.65	5.49b	4.58	4.07abc	3.59bc	6.54cd	6.87cd	7.03de	7.12cd	6.65cd	6.40cd	
T13- Gum acacia 10%		4.78a	5.60a	4.81	4.30a	3.93a	6.93a	7.01ab	7.17a	7.28a	6.98a	6.64a	
T14- Gum acacia 20%		4.70	5.61a	4.80	4.25abc	3.89a	6.63bcd	6.94bcd	7.10bcd	7.24ab	6.99a	6.66a	
T15- Control		4.25	5.00c	4.26	3.60f	3.13e	6.54cd	6.89cd	7.01de	7.12cd	6.59de	6.13fg	
Least Significant Difference		0.18	0.15	0.14	0.45	0.25	0.23	0.11	0.09	0.07	0.22	0.12	

Means with the same letter are not significantly different
Table 6 Changes in reducing sugar content (mg)

Treatments	Days after treatments	Winter season									
	2	4	6	8	10	2	4	6	8	10	12
T₁- CaCl₂ 1%	2.30c def	3.03d e	2.30 d	2.04 a	1.70d ef	3.15d ef	3.27 ef	3.3 5a	3.21 e	3.07 d	3.01d
T₂- CaCl₂ 2%	2.20d efg	3.10c de	2.37 cd	2.03 a	1.75c de	3.16c def	3.26 ef	3.3 3b	3.20 e	3.11 cd	3.02c d
T₃- Paraffin liquid 5%	2.57a	3.30a b	2.70 ab	2.36 a	1.96a b	3.23a b	3.33ab c	3.4 1a	3.33 c	3.26 c	3.18a
T₄- Paraffin liquid 10%	2.53a b	3.30a b	2.53 ab	2.32 a	1.87a bc	3.24a b	3.33ab c	3.4 2a	3.35 ab	3.26 a	3.17a
T₅- Pseudomonas fluorescence 1%	2.31b cde	3.14c de	2.37 cd	2.03 a	1.56g	3.16c def	3.26 f	3.3 3b	3.20 e	3.14 bc	3.07b
T₆- Pseudomonas fluorescence 2%	2.30c def	3.10c de	2.36 cd	2.08 a	1.68e fg	3.13f	3.25 f	3.3 3b	3.20 e	3.15 bc	3.07b
T₇- Hot water (45º ± 2º C)	2.08g	3.03d e	2.36 cd	2.09 a	1.74c de	3.15e f	3.26ef	3.3 3b	3.2e	3.13 bc	3.05c
T₈- Hot water (35º ± 2º C)	2.27c def	3.14c de	2.31 d	2.12 a	1.77c de	3.15d ef	3.27df e	3.3 3b	3.21 e	3.16 b	3.04b cd
T₉- Chitosan 0.5%	2.09f g	3.07d e	2.43 cd	2.08 a	1.74c de	3.20b cde	3.30ab cde	3.3 5b	3.27 c	3.15 bc	3.05b c
T₁₀- Chitosan 1%	2.20d efg	3.00e	2.50 c	2.09 a	1.74c de	3.22a cde	3.28de f	3.3 3b	3.26 cd	3.14 bc	3.05b c
T₁₁- Guar gum powder 1%	2.59a	3.34a b	2.71 a	2.26 a	1.83b cde	3.23a b	3.29cd ef	3.3 4b	3.27 cd	3.15 bc	3.07b
T₁₂- Guar gum powder 2%	2.42a bc	3.23b c	2.50 c	2.06 a	1.81b cde	3.20b cde	3.32ab cd	3.3 6b	3.27 cd	3.16 b	3.07b
T₁₃- Gum acacia 10%	2.60a	3.37a	2.73 a	2.38 a	1.98a	3.26a b	3.34a	3.4 1a	3.35 ab	3.28 a	3.19a
T₁₄- Gum acacia 20%	2.40a bcd	3.12c de	2.50 c	2.00 a	1.76c de	3.27a	3.33ab c	3.4 3a	3.36 a	3.27 a	3.18a
T₁₅- Control	2.17e fg	3.02d e	2.30 d	2.01 a	1.58f g	3.21a bcd	3.29bc def	3.3 3b	3.25 d	3.13 bc	3.02c d

Least Significant Difference (P≤0.05)

| | 0.22 | 0.13 | 0.17 | 0.44 | 0.14 | 0.06 | 0.04 | 0.0 | 0.03 |

Means with the same letter are not significantly different
Table 7 Changes in ascorbic acid content (mg/100g of pulp)

Treatments	Rainy season	Days after treatments	Winter season								
	2	4	6	8	10	2	4	6	8	10	12
T₁ CaCl₂ 1%	161.57f	154.21h	149.41 ef	142.1 6e	135.24 gh	248.36c def	243.2 5cd	236.1 5e	230.4 5g	225.3 1de	220.6 1de
T₂ CaCl₂ 2%	165.17 cde	159.61d e	152.34 cd	147.0 0c	140.27 de	253.16a b	248.6 1a	242.0 0b	236.1 6cd	230.3 4c	224.3 9c
T₃ Paraffin liquid 5%	167.24 T	162.00b cde	157.18 b	151.0 0b	145.32 c	253.21a b	249.3 8a	245.3 2a	240.8 4a	236.5 1ab	230.3 4ab
T₄ Paraffin liquid 10%	167.00 bc	163.14a b	158.34 ab	152.2 4b	146.23 bc	253.17a b	248.3 1a	244.1 6a	239.6 4ab	235.6 1ab	229.1 6ab
T₅ Pseudomonas fluorescence 1%	164.00 de	156.00g h	150.05 def	144.3 1de	137.26f g	247.00e f	241.2 8cd	235.3 4ef	230.6 1fg	225.6 4de	219.6 1de
T₆ Pseudomonas fluorescence 2%	163.42 ef	156.65f gh	150.82 cde	142.2 5e	135.21 gh	248.21c def	253.3 4bc	237.5 7d	231.0 4fg	226.5 4d	220.3 1de
T₇ Hot water (45°±2°C)	163.12 ef	155.26h	148.21f	144.2 8de	138.00 ef	245.62f	239.2 7de	233.6 4f	227.3 4h	222.6 1f	218.1 6ef
T₈ Hot water (35°±2°C)	166.00 bcd	158.36e fg	151.45 f	144.3 4de	135.42 gh	251.00a b	245.3 1bc	240.2 1bc	234.5 4de	229.6 1c	221.5 2cd
T₉ Chitosan 0.5%	165.16 cde	158.32e fg	152.37 cde	146.2 9cd	140.28 de	247.00e f	241.3 1cd	235.0 0ef	230.6 1fg	224.3 5ef	219.6 1de
T₁₀ Chitosan 1%	165.32 cde	159.45e f	153.12 c	147.2 6c	141.33 d	250.31a bcd	242.3 0c	236.3 1de	230.0 0g	223.0 0f	215.6 1f
T₁₁ Guar gum 1%	168.05 ab	162.31b cd	157.61 b	151.3 4b	148.36 ab	249.31c de	245.3 1b	239.1 3c	232.6 5ef	226.3 5d	222.3 1cd
T₁₂ Guar gum 2%	167.27 bc	163.19a b	158.27 ab	152.3 4b	145.23 c	247.61d ef	243.2 1bc	237.6 1d	231.2 3de	225.1 3de	220.6 1de
T₁₃ Gum acacia 10%	170.00 a	165.31a	160.20 a	155.1 5a	150.10 a	250.15b cde	245.1 6b	241.3 1bc	237.6 1bc	234.6 1b	229.0 0b
T₁₄ Gum acacia 20%	168.05 ab	163.00a bc	158.34 ab	152.0 0b	148.10 ab	253.42a	249.6 1a	244.3 1a	240.3 1a	236.1 0ab	232.1 5a
T₁₅ Control	167.19 bc	160.18c de	152.61 c	145.2 6cd	133.28 h	246.00f	238.0 9e	230.6 1g	223.0 6i	218.0 0g	210.3 1g

Least Significant Difference (P≤0.05)

2.39 | 2.37 | 2.37 | 2.37 | 3.17 | 2.33 | 1.42 | 2.16 | 1.73 | 3.13

**Means with the same letter are not significantly different

In rainy season, on 10 days after treatment, TSS was found maximum (5.95°brix) with gum acacia 10%, followed by guar gum 1% (5.93°brix) and statistically at par with paraffin liquid 5%, 10% and gum acacia 20%, whereas, it was minimum (5.16°brix) under control. Similarly, in winter season, on 12 days after treatment, it was found maximum (11.26°brix) with gum acacia 10% which was statistically at par with the gum acacia 20%, paraffin liquid 5% and 10%. The increase in TSS and sugar content during storage may possibly be due to hydrolysis of starch into sugars as on complete hydrolysis of starch no further increase occurs and subsequently a decline in these parameters is predictable as they along with other organic acids are primary substrate for respiration.
(Wills et al., 1980). Kagzi lime fruits treated with coconut oil recorded minimum (8.4%) increase in TSS followed by (8.5%) liquid paraffin wax (Bisen et al., 2012).

Total sugar (TS)

In rainy season, on 10 days after treatment, total sugar (Table 5) content was found maximum (3.93) with guar gum 1% and gum acacia 10% and statistically at par with paraffin liquid 5% (3.89), gum acacia 20% (3.89) and paraffin liquid 10% (3.69), whereas, it was minimum(3.13) under control. However, in winter season, on 12 days after treatment, total sugar content was found maximum (6.66) with gum acacia 20% and statistically at par with gum acacia 10% (6.64), paraffin liquid 10% (6.62) and paraffin liquid 5% (6.60), whereas, it was minimum (6.04) with calcium chloride 1%.

Reducing sugar

In rainy season, on 10 days after treatment, reducing sugar content (Table 6) was found maximum (1.98) with gum acasia 10% and statistically at par with paraffin liquid 5% (1.96%) paraffin liquid 10% (1.87). In winter season similarly, maximum (3.19)reducing sugar content was recorded with gum acasia 10% and it was statistically at par with paraffin liquid 5% (3.18), paraffin liquid 10% (3.17) and gum acasia 20%(3.18).

Ascorbic acid

The ascorbic acid content (Table 7) was decreased in all the treatments as the storage period advanced. In rainy season, on 10 days after treatment, the ascorbic acid content was found highest (150.1 mg/100g of pulp) with gum acacia 10% and statistically at par with the guar gum 1% and gum acacia 20%, whereas, it was lowest (133.28mg/100g of pulp) under control. However, in winter season, on 12 days after treatment, it was found maximum (232.15mg/100g of pulp) with gum acacia 20% and statistically at par with the paraffin liquid 5% (230.34mg/100g of pulp) and 10% (229.16mg/100g of pulp), whereas, it was minimum (210.31mg/100g of pulp) under control. The ascorbic acid content (5.81 mg/100g) was more in peach fruits treated with paraffin liquid (20%) as compared to fruits under control (2.81 mg/100g) (Elham and Sawsan, 2013).

In conclusion, the fruit retention percentage in both the rainy and winter season was found maximum with paraffin liquid 10%. Physiological loss in weight was minimum in fruits treated with the guar gum 1% in rainy season and paraffin 5% and gum acacia 10% in winter season. Disease incidence was found minimum in the fruits treated with paraffin liquid 5% in both the seasons. Regarding other horticultural traits like TSS, ascorbic acid, total sugar, reducing sugar, content were recorded maximum with gum acacia 10% in rainy season guava fruits and gum acacia10% and 20% in winter season, respectively. From this experiment, it is concluded that winter season guava fruits could be store well as compared to rainy season fruits. Edible coating materials showed the better results in terms of extending the shelf life as well as the qualities of guava fruits than the other chemicals in both rainy and winter season.

References

Akamine, E.K., Goo, T. 1979. Respiration and ethylene production in fruits of species and cultivars of Psydium and species of Eugenia. J. Am. Soc. Hort. Sci., 104: 632-635.

AOAC. 1984. Official methods of analysis (14th ed). Washington, DC: Association of Official Agriculture Chemist

Ayranci, E., S. Tunc. 2003. A method for the measurement of the oxygen permeability and the development of edible films to reduce the rate of
oxidative reactions in fresh foods. *Food Chem.*, 80: 423-431.

Baldwin, E.A., Burns, J.K., Kazokas, W., Brecht, J.K, Hagenmaier, R.D., Bender, R., Pesise. 1999. Effect of two edible coatings with different permeability characteristics on mango (*Mangiferaindica*L.) ripening during storage. *Posthar Biol. Technol.*, 17: 215-226.

Bisen, A., Pandey, S.K., Patel, N. 2012. Effect of skin coatings on prolonging shelf life of kagzi lime fruits (*Citrus aurantifolia* Swingle). *J. Food Sci. Technol.*, 49(6): 753–759.

Bose, T.K., Mitra, S.K 2001. Guava.In: Fruits: Tropical and subtropical. NayaPrakasan, Kolkata. pp. 280-303.

Elham, Z., Abd El-Motty, Sawsan, Y., El-Faham. 2013. Effect of oil coating and different wrapping materials on prolonging storage periods of Florida Prince Peach fruits. *J. Appl. Sci. Res.*, 9(4): 2927-2937.

Garg, R.C., Ram, H.B. 1973. A note on the effect of wax emulsion treatment on mango cv. Lucknow Safeda. *Prog. Hort.*, 5: 35-39.

Gomez, K.A., Gomez, A.A. 1983. Problem data. In: Statistical procedures for Agricultural Research (2nd edition), Wiley-Inter science publication (John Wiley and Sons); New York, USA, pp 275-315.

Mazumdar, B.C., Majumder, K. 2003. Determination of chemical constituents. In: Methods on physico-chemical Analysis of Fruits. Delhi: Daya Publishing House. New Delhi, India

Mercado-Silva, E., Benito-Bautista, P., Garcia-Velasco, M.A. 1998. Fruit development, harvest index and ripening changes of guavas produced in central Mexico. *Posthar Bio and Tech.*, 13: 143-150.

Pal, P.K., Ahmad, M.S., Roy, S.K., Singh, M. 2004. Influence of storage environment, surface coating, and individual shrink wrapping on quality assurance of guava (*Psidium guajava*) fruits. *Plant Foods Hum. Nutr.*, 59: 67–72.

Passam, H.C. 1982. Storage of some local and introduced mango cultivars grown in Trinidad. *Scientia Hort.*, 16: 171-177.

Rangana, S. 1977. In: Manual of analysis of fruits and vegetable products. Tata and Mc. Graw Hill Publishing company limited: New Delhi, India

Wang, H., Huang, C.C., Chienh, S. 1964. A study on the storage and post-harvest treatment of mango fruits. *Rep. Fengshan. Trop. Hort. Exp. Stat.*, Taiwan, 32: 7.

Wills, R.B.H., Bembridge, P.A., Scott, K.J. 1980. Use of flesh firmness and other objective tests to determine consumer acceptability of Delicious apples. *Aust. J. Exp. Agri. and Ainm.*, 20: 252-256.

How to cite this article:

Piyali Dutta, Nilesh Bhowmick, Surajit Khalko, Arunava Ghosh and Swapan Kr. Ghosh. 2017. Postharvest Treatments on Storage Life of Guava (*Psidium guajava* L.) in Himalayan Terai Region of West Bengal, India. *Int.J.Curr.Microbiol.App.Sci.* 6(3): 1831-1842. doi: https://doi.org/10.20546/ijcmas.2017.603.209