Should cervicothoracic junctions be avoided in long cervical posterior fusion surgery? Analysis of clinical and radiologic outcomes over two years

Jung Jae Lee1, Jin Hoon Park2, Young Gyu Oh2, Hong Kyung Shin2 and Sang Ku Jung3

Abstract

Purpose: This study aimed to confirm the usefulness of surgery that avoids the cervicothoracic junction (CTJ) by comparing the clinical and radiographic outcomes after posterior cervical fusion at C5/6 with those at C7/T1.

Methods: Patients who underwent laminectomy and posterior cervical instrument fusion for cervical spondylotic myelopathy (CSM) from 2012 to 2019 were retrospectively reviewed and divided according to whether the end level was at C5/6 (group 1) or C7/T1 (group 2). Demographic variables and incidence of distal junctional kyphosis (DJK) were compared between the groups. Clinical outcomes (visual analog scale [VAS] score for arm and neck pain and the Neck Disability Index value) and radiologic outcomes (T1 slope, cervical lordosis, segmental lordosis, C2-7 sagittal vertical axis, T1 slope-cervical lordosis mismatch) were compared over time.

Results: Sixty-seven patients were included. There were 32 patients in group 1 and 35 in group 2. The VAS score for neck pain was significantly lower in group 1 than in group 2 at 2 years after surgery (p = 0.03). The C2-7 sagittal vertical axis was significantly larger in group 2 than in group 1 at 1 year and 2 years postoperatively (p = 0.04). The incidence of DJK was higher in group 2 than in group 1 (28.57% vs 9.37%, p = 0.04).

Conclusion: This study found that when CTJs are included in the posterior cervical long fusion surgery, although it would be better than preoperation, postoperative kyphosis and consequent neck pain may progress. The results of this study advocate the concept of avoiding CTJ fusion if possible.

Keywords
Cervical vertebrae, complication, spinal curvature, neck pain

Date received: 14 June 2022; Received revised 4 October 2022; accepted: 23 October 2022

Brief introduction

In the aging society, the number of patients with degenerative cervical disease has increased rapidly in recent decades.1,2 A considerable number of patients with cervical spondylotic myelopathy (CSM) are undergoing posterior cervical decompression and fusion.3,4 The cervicothoracic junction (CTJ) is often included in multilevel posterior cervical fusion surgery. The CTJ has several unique

1Department of Neurosurgery, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Korea
2Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
3Department of Emergency Medicine, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Korea

Corresponding author:
Jin Hoon Park, Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea.
Email: jhpark@amc.seoul.kr
biomechanical and structural properties. The cervical spine maintains lordosis, whereas the thoracic spine maintains kyphosis. The cervical spine has greater mobility in flexion, extension, and lateral bendings than the thoracic spine due to articulation of the ribs and bony ligament structures of the thoracic spine.5–7 This non-physiological load may increase the risk of implant failure or disc degeneration at adjacent levels. Previous studies have aimed at guiding the surgeon through extension to the upper thoracic vertebrae in selecting the most appropriate caudal level of fusion but have not yielded definitive results.8–11 Recommendations for a caudal “end level” in posterior cervical fusion surgery vary, and few studies have investigated the benefits of routinely avoiding “extension” to the CTJ in posterior cervical fusion surgery. This study compared the clinical and radiologic outcomes of fusion ending at C5/6 and fusion extending to C7/T1 to determine the effect of avoiding the CTJ by fusion of only the cervical spine, unlike the existing method of extending fusion to the upper thoracic spine.

Materials and methods

This study was approved by the Institutional Review Board of our institution.

Study population

We retrospectively reviewed a series of patients with degenerative CSM (age ≥18 years) who underwent laminectomy and posterior cervical instrument fusion at a single surgeon and center between January 2012 and February 2018. The inclusion criteria were multilevel (≥3) posterior cervical fusion without adding a C1 screw or occipital plate and screw fixation below T2. Patients with trauma, tumors, infection, or prior cervical spinal surgery were excluded, as were those who had undergone non-fusion surgery, such as unilateral or bilateral open-door laminoplasty, posterior lamina decompression, posterior laminectomy, discectomy, and those who had been followed up for less than 24 months. In addition, patients with ossification of posterior longitudinal ligament, whose alignment change after posterior fusion surgery would not be distinct, were excluded.

Patients were divided into groups according to whether fusion surgery ended at C5/6 (group 1) or C7/T1 (thereby including the CTJ, group 2). We decided on the lower instrumented level according to the presence of stenosis. We decided to include CTJ when there were C6-7-T1 lesions, such as myelopathy, severe stenosis, or severe arthropathy with or without cord signal change.

Differences in demographic and clinical variables, including age, sex, smoking history, body mass index, hypertension, bone mineral density (T-score), and diabetes, were compared between the two groups. The number of fusion levels was also compared between the groups.

Clinical outcomes

All patients were assessed preoperatively, immediately after surgery, and 24 months postoperatively. Clinical outcomes were evaluated using a visual analog scale (VAS) for neck and arm pain and the neck disability index (NDI). We also assessed pain intensity and its impact on disability and quality of life using VAS scores and responses to NDI and satisfaction with treatment questionnaires. When patients had difficulty completing a written questionnaire, the clinical outcomes were investigated by telephone.

Surgical procedure

A freehand cervical pedicle screw (CPS) fixation technique was performed in all patients. The safety and efficacy of CPS placement have been validated previously.12–16 The CPS fixation technique was performed as follows. First, Computed tomography (CT) was performed along with preoperative spinal angiography in all patients. CPS insertion using the freehand technique was considered when the pedicle diameter was ≥3.0 mm on the axial CT image, and there was no vertebral artery malformation.17 The entry point of the screw was determined at the level of the notch in the sagittal plane and medially at the outer border of the superior process by 1/4 of the width in the axial plane. A small pilot hole was made with a 1.8 mm diameter match head type burr at a predetermined entry point. Screw diameter and length were based on preoperative measurements of axial CT images. Vertex pedicle screw system (Medtronic Sofamor Danek, Memphis, TN) used diameters ranging from 3.5 to 4.0 mm. A more detailed technical description of this technique has been previously published.12,13,17,18 Although cervical pedicle screw placement using a freehand technique was considered, there were some cases of lateral mass screw fixation conversions or screw skipping.19,20 Decompressive laminectomy was done en bloc, and posterolateral fusion was done with local bone chips after exposing cancellous bone on the lateral mass (Figure 1).21

Following screw insertion and decompression, the position of the patient’s head was extended using remote-controlled table head segments. Correct screw positioning and lordotic cervical alignment were confirmed on portable anteroposterior and lateral radiographs.22

Radiologic evaluation

Radiographic measurements were obtained using lateral cervical radiographs before surgery, immediately after
surgery, and 3 months, 1 and 2 years postoperatively. Cervical lordosis (CL), C2-7 sagittal vertical axis (SVA), T1 slope, segmental lordosis (SL), and T1-CL mismatch were measured. CL was defined as the sagittal Cobb angle between the C2 and C7 vertebrae. The T1 slope was defined as the angle at which the line tangential to the upper end plate of T1 and the horizontal reference line intersect. C2-C7 SVA was defined as the distance between C2 and C7. SL was defined as the angle between the cranial and caudal endplates of the upper and lower vertebrae in the affected segment (Figure 2).

The incidence of distal junctional kyphosis (DJK) between the two groups was also investigated. DJK was defined as a change in angle of -10° or less at the distal disc level from the end of the fusion construct between baseline and final follow-up.23

Statistical analysis

Continuous variables were described as mean ± standard deviation, and categorical variables were expressed as frequencies or percentages. Additionally, Student’s t-tests, chi-square test, and Fisher’s exact tests were used to confirm the statistical significance of differences in radiological and clinical outcomes. All statistical analyses were performed using SPSS Statistics for Windows, Version 17.0 (IBM Corp., Armonk, NY, USA). A p-value $<$0.05 was considered statistically significant.
Results

Demographic characteristics

Sixty-seven patients met the inclusion criteria. Thirty-two patients had multilevel posterior fusions terminating at C5/6 (group 1), and 35 patients had fusions terminating at C7/T1 (group 2). There was no significant between-group difference in age, body mass index, bone mineral density (T-score), number of levels fused, comorbidities, sex, or smoking status (Table 1).

Clinical outcomes

There was an improvement in the mean VAS arm and neck pain scores and the mean NDI value at the 2-years follow-up in both groups. There was no statistically significant difference between the groups preoperatively. Immediately after surgery, the mean VAS score for arm pain was lower in group 2 than in group 1 (2.76 ± 1.64 vs 1.92 ± 0.86, p = 0.04). There was no significant difference in the VAS score for arm pain or the NDI value between the groups 2 years after surgery. However, the VAS score for neck pain was significantly higher in group 2 than in group 1 (2.58 ± 1.75 vs 5.23 ± 1.64, p = 0.03; Table 2).

Radiologic outcomes

There was no statistically significant difference in CL, T1 slope, SL, or T1-CL mismatch between the two groups before, immediately after, or 2 years after surgery. Immediately after surgery, the T1 slope was larger, and the T1-CL mismatch was smaller in group 2. However, 1 year after surgery, the T1 slope and CL values were smaller, and T1-CL mismatches were larger in group 2 (Table 3). No significant difference in C2-7 SVA between the two groups was found before, immediately after, or 3 months after surgery. However, the C2-7 SVA was significantly larger in group 2 than in group 1 from 1 year after surgery (p = 0.04; Figure 3). The proportion of patients with DJK development was significantly higher in group 2 than in group 1 (28.57% vs 9.37%, p = 0.04; Table 1).

Illustrative case

A 74-year-old woman presented with weakness and pain in her left arm; she had weak left elbow flexion/extension (2/5) and hand grip (3/5). Preoperative MRI showed severe spinal canal stenosis and spinal cord compression in C3-7 with myelopathy. The patient underwent posterior fusion and decompression at C3-7. Immediately after surgery, the weakness and pain in the left upper extremity improved. However, 15 months after the operation, she came to the hospital with progressively increasing posterior cervical pain (VAS 0 → 3), and distal junctional kyphosis was observed during the examination (Figure 4).

Discussion

Although laminectomy and multilevel fusion are standard CSM techniques, there is still debate about whether or not to connect the CTJ to reduce or avoid complications. In long instrument vertebral fusion surgery of the thoracolumbar spine, some studies recommend extending the highest instrumented vertebra to the level of the upper thoracic vertebra or at least T10 or higher to avoid proximal junctional kyphosis.24,25 Similarly, to solve the problem of the CTJ, several studies9,26 have recommended bridging the CTJ, but there were also contradicting reports.27,28

Therefore, we considered a method to terminate fusion above the CTJ in multilevel cervical fusion and compared the postoperative cervical parameters and clinical outcomes between patients whose fusion was completed at C5/6 and those whose fusion was completed at CTJ.

Radiographs showed that the C2-7 SVA was increased 1 year after surgery in group 2, including the fusion of the CTJ. This finding confirmed that kyphosis was greater after surgery involving the CTJ. The CTJ presents a challenging biomechanical environment because it is where the lordotic
Table 2. Clinical outcome for each period in both study groups.

Group (caudal fixation)	1 (C5/6, n = 32)	2 (C7/T1, n = 35)	p-value
VAS score (neck)			
Preoperative	7.69 ± 1.31	7.11 ± 2.02	0.60
Immediately after surgery	3.41 ± 2.25	2.23 ± 1.96	0.68
2 years after surgery	2.58 ± 1.75	5.23 ± 1.64	0.03
VAS score (arm)			
Preoperative	5.53 ± 2.75	6.72 ± 2.20	0.13
Immediately after surgery	2.76 ± 1.64	1.92 ± 0.86	0.04
2 years after surgery	2.61 ± 1.60	2.31 ± 1.71	0.84
NDI score			
Preoperative	29.12 ± 10.82	26.48 ± 11.20	0.33
Immediately after surgery	14.40 ± 9.92	11.74 ± 8.30	0.23
2 years after surgery	9.90 ± 7.30	12.37 ± 8.35	0.19

NDI, Neck Disability Index; VAS, visual analog scale.

Table 3. Comparison of radiologic parameters between the two groups.

Group (caudal fixation)	1 (C5/6, n=32)	2 (C7/T1, n=35)	p-value
T1 slope			
Before surgery	26.04 ± 8.92	23.14 ± 8.24	0.17
Immediately after surgery	28.96 ± 6.78	29.12 ± 7.04	0.92
3 months	26.76 ± 8.47	25.22 ± 7.51	0.43
1 year	24.80 ± 8.52	24.80 ± 7.33	0.38
2 years (last follow-up)	26.41 ± 8.55	24.68 ± 7.34	0.37
CL			
Before surgery	9.31 ± 8.04	7.80 ± 7.22	0.42
Immediately after surgery	16.96 ± 8.67	18.25 ± 9.79	0.57
3 months	12.81 ± 9.27	12.14 ± 8.51	0.75
1 year	11.96 ± 8.80	8.51 ± 7.18	0.08
2 years (last follow-up)	11.81 ± 8.77	8.37 ± 7.24	0.08
SL			
Before surgery	7.56 ± 8.11	5.65 ± 7.05	0.30
Immediately after surgery	12.18 ± 6.63	13.05 ± 8.97	0.65
3 months	9.68 ± 6.30	9.57 ± 8.11	0.94
1 year	9.40 ± 6.31	9.14 ± 8.22	0.88
2 years (last follow-up)	9.37 ± 6.29	9.08 ± 8.21	0.87
C2-7 II SVA			
Before surgery	27.83 ± 10.10	27.52 ± 10.55	0.90
Immediately after surgery	19.22 ± 10.89	17.40 ± 8.41	0.44
3 months	20.75 ± 11.02	22.81 ± 10.87	0.44
1 year	20.83 ± 10.99	26.42 ± 11.14	0.04
2 years (last follow-up)	20.84 ± 11.01	26.51 ± 11.13	0.04
T1-CL mismatch			
Before surgery	16.73 ± 6.14	15.34 ± 6.90	0.39
Immediately after surgery	12.00 ± 7.51	10.86 ± 6.99	0.52
3 months	13.95 ± 7.76	13.07 ± 7.49	0.64
1 year	14.52 ± 7.29	16.28 ± 5.85	0.27
2 years (last follow-up)	14.60 ± 7.35	16.31 ± 5.99	0.28

CL, cervical lordosis; DJK, distal junctional kyphosis; SL, segmental lordosis; SVA, sagittal vertical axis.
and mobile cervical vertebrae transition into a kyphotic and relatively immobile ribbed thoracic vertebra. Therefore, there are significantly greater flexion and translational forces in this area of the spine than at other levels, and these vulnerabilities are exaggerated after surgery.29,30

A higher incidence of DJK was observed when fusion ended at CTJ compared to when it was extended to the C5/6 level (28.5% vs 9.3%). This study confirmed that the involvement of C7 affects the progression of DJK after cervical fusion and found that muscle degeneration at the C7 level affects cervical kyphosis and balance, as noted in the Tamai et al.31 study. The thoracolumbar junction also shows a relationship between the muscles of the thoracolumbar region and PJK.32 Furthermore, the CTJ is subjected to unique biomechanical stresses, and postoperative instability in this region is thought to be caused by DJK.30

Regarding clinical outcomes, the VAS score for neck pain was significantly higher in group 2. Riew et al.33 mentioned that muscle attachment and the spinous processes at C7 are postoperatively associated with increased neck pain. Moreover, it is thought that the occurrence of DJK may affect the clinical outcome. The incidence of DJK was high in group 2, and Passias et al.23 reported an association between neurological symptoms and DJK.

In this study, DJK and kyphosis occurred because of the destruction of the unique mechanical structure and muscle degeneration at the CTJ after the extension of fusion to C7/T1, which is thought to exacerbate postoperative neck pain (Figure 5).

Some studies10,34,35 have shown that crossing the CTJ prevents kyphotic collapse, ongoing neck pain, and symptomatic adjacent segment degeneration. According to the results of this study, CTJ should be avoided if possible; if CTJ must be included, fusion extension up to T2-4 can be considered.
This study had two major limitations. First, it contained a small number of patients, including only five and two patients in the C5 and T1 lower instrumented vertebra. Second, this study was performed retrospectively.

Conclusion
This study confirms that when CTJs are included in the posterior cervical long fusion surgery, although it would be better than preoperation, postoperative kyphosis and consequent neck pain might progress. The findings of this study support the concept of avoiding CTJ fusion as much as possible. Surgeons should remember that CTJ stop in the posterior cervical long fusion surgery can accelerate the degeneration of distal uninstrumented level during long-term follow-up.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

IRB approval
The Institutional Review Board of Asan Medical Center (IRB No. GNAH 2021-11-009).

ORCID iD
Jung Jae Lee https://orcid.org/0000-0002-1887-0069

References
1. Davies BM, McHugh M, Elgheriani A, et al. The reporting of study and population characteristics in degenerative cervical myelopathy: a systematic review. PLoS One 2017; 12: e0172564. DOI: 10.1371/journal.pone.0172564.
2. Nouri A, Tetreault L, Singh A, et al. Degenerative cervical myelopathy: epidemiology, genetics, and pathogenesis. Spine (Phila Pa 1976) 2015; 40: E675–E693. DOI: 10.1097/BRS.0000000000000913.
3. Fehlings MG, Barry S, Kopjar B, et al. Anterior versus posterior surgical approaches to treat cervical spondylotic myelopathy: outcomes of the prospective multicenter AO-Spine North America CSM study in 264 patients. Spine (Phila Pa 1976) 2013; 38: 2247–2252. DOI: 10.1097/BRS.0000000000000407.
4. Sekhon LH. Posterior cervical decompression and fusion for circumferential spondylotic cervical stenosis: review of 50 consecutive cases. J Clin Neurosci 2006; 13: 23–30. DOI: 10.1016/j.jocn.2005.02.006.
5. An HS, Wise JJ and Xu R. Anatomy of the cervicothoracic junction: a study of cadaveric dissection, cryomicrotomy, and magnetic resonance imaging. J Spinal Disord 1999; 12: 519–525.
6. Lapsiwala S and Benzel E. Surgical management of cervical myelopathy dealing with the cervical-thoracic junction. Spine J 2006; 6: 268S–273S. DOI: 10.1016/j.spinee.2006.05.008.
7. White AA and Panjabi MM. Clinical biomechanics of the spine. 2nd ed. Philadelphia: Lippincott, 1990, p. 722.
8. Osterhoff G, Ryang YM, von Oelhafen J, et al. Posterior multilevel instrumentation of the lower cervical spine: is bridging the cervicothoracic junction necessary? World Neurosurg 2017; 103: 419–423. DOI: 10.1016/j.wneu.2017.04.029.
9. Schroeder GD, Kepler CK, Kurd MF, et al. Is it necessary to extend a multilevel posterior cervical decompression and fusion to the upper thoracic spine? Spine (Phila Pa 1976) 2016; 41: 1845–1849. DOI: 10.1097/BRS.0000000000001864.
10. Traumees E, Singh D, Geck MJ, et al. Should long-segment cervical fusions be routinely carried into the thoracic spine? a multicenter analysis. Spine J 2018; 18: 782–787. DOI: 10.1016/j.spinee.2017.09.010.
11. Kennamer BT, Arginteanu MS, Moore FM, et al. Complications of poor cervical alignment in patients undergoing posterior cervicothoracic laminectomy and fusion. World Neurosurg 2019; 122: e408–e414. DOI: 10.1016/j.wneu.2018.10.062.
12. Park JH, Jeon SR, Roh SW, et al. The safety and accuracy of freehand pedicle screw placement in the subaxial cervical spine: a series of 45 consecutive patients. Spine (Phila Pa 1976) 2014; 39: 280–285. DOI: 10.1097/BRS.000000000000133.
13. Lee S, Seo J, Lee MK, et al. Widening of the safe trajectory range during subaxial cervical pedicle screw placement: advantages of a curved pedicle probe and laterally located starting point without creating a funnel-shaped hole. J Neurourosurg Spine 2017; 27: 150–157. DOI: 10.3171/2016.12.SPINE16738.
14. Hyun SJ, Kim KJ, Jahng TA, et al. Clinical impact of T1 slope minus cervical lordosis after multilevel posterior cervical
fusión surgery: a minimum 2-year follow up data. Spine (Phila Pa 1976) 2017; 42: 1859–1864. DOI: 10.1097/BRS.0000000000002250.

15. Oe S, Togawa D, Nakai K, et al. The influence of age and sex on cervical spinal alignment among volunteers aged over 50. Spine (Phila Pa 1976) 2015; 40: 1487–1494. DOI: 10.1097/BRS.0000000000001071.

16. Park JH, Roh SW and Rhim SC. A single-stage posterior approach with open reduction and pedicle screw fixation in subaxial cervical facet dislocations. J Neurosurg Spine 2015; 23: 35–41. DOI: 10.3171/2014.11.SPINE14805.

17. Heo Y, Lee SB, Lee BJ, et al. The learning curve of subaxial cervical deformity surgery. J Neurosurg (Hagerstown) 2019; 17: 603–607. DOI: 10.1093/ons/ops070.

18. Jung YG, Jung SK, Lee BJ, et al. The subaxial cervical pedicle screw for cervical spine diseases: the review of technical developments and complication avoidance. Neurol Med Chir (Tokyo) 2020; 60: 231–243. DOI: 10.2176/nmc.ra.2019-0189.

19. Karaikovic EE, Yingsakmongkol W and Gaines RW Jr. Accuracy of cervical pedicle screw placement using the funnel technique. Spine (Phila Pa 1976) 2001; 26: 2456–2462. DOI: 10.1097/00007632-200111150-00012.

20. Yukawa Y, Kato F, Ito K, et al. Placement and complications of cervical pedicle screws in 144 cervical trauma patients using pedicle axis view techniques by fluoroscopy. Eur Spine J 2009; 18: 1293–1299. DOI: 10.1007/s00586-009-1032-7.

21. Lee JK, Jung SK, Lee YS, et al. Analysis of the fusion and graft resorption rates, as measured by computed tomography, 1 year after posterior cervical fusion using a cervical pedicle screw. World Neurosurg 2017; 99: 171–178. DOI: 10.1016/j.wneu.2016.12.027.

22. Kim HB, Lee MK, Lee YS, et al. An assessment of the medial angle of inserted subaxial cervical pedicle screw during surgery: practical use of preoperative CT scanning and intraoperative X-rays. Neurol Med Chir (Tokyo) 2017; 57: 159–165. DOI: 10.2176/nmc.oa.2016-0161.

23. Passias PG, Vasquez-Montes D, Poorman GW, et al. Predictive model for distal junctional kyphosis after cervical deformity surgery. Spine J 2018; 18: 2187–2194. DOI: 10.1016/j.spinee.2018.04.017.

24. O’Shaughnessy BA, Bridwell KH, Lenke LG, et al. Does a long-fusion “T3-sacrum” portend a worse outcome than a short-fusion “T10-sacrum” in primary surgery for adult scoliosis? Spine (Phila Pa 1976) 2012; 37: 884–890. DOI: 10.1097/BRS.0b013e3182376414.

25. Shufflebarger H, Suk SI and Mardjetko S. Debate: determining the upper instrumented vertebra in the management of adult degenerative scoliosis: stopping at T10 versus L1. Spine (Phila Pa 1976) 2006; 31: S185–S194. DOI: 10.1097/01.brs.0000232811.08673.03.

26. Alpayci M, Senkoy E, Delen V, et al. Decreased neck muscle strength in patients with the loss of cervical lordosis. Clin Biomech (Bristol, Avon) 2016; 33: 98–102. DOI: 10.1016/j.clinbiomech.2016.02.014.

27. Lee DH, Cho JH, Jung JI, et al. Does stopping at C7 in long posterior cervical fusion accelerate the symptomatic breakdown of cervicothoracic junction? PLoS One 2019; 14: e0217792. DOI: 10.1371/journal.pone.0217792.

28. Huang KT, Harary M, Abd-El-Barr MM, et al. Crossing the cervicothoracic junction in posterior cervical decompression and fusion: a cohort analysis. World Neurosurg 2019; 131: e514–e520. DOI: 10.1016/j.wneu.2019.07.219.

29. An HS, Vaccaro A, Cotler JM, et al. Spinal disorders at the cervicothoracic junction. Spine (Phila Pa 1976) 1994; 19: 2557–2564. DOI: 10.1097/00007632-199411001-00011.

30. Steinmetz MP, Miller J, Warbel A, et al. Regional instability following cervicothoracic junction surgery. J Neurosurg Spine 2006; 4: 278–284. DOI: 10.3171/spi.2006.4.4.278.

31. Tamai K, Romanu J, Grisdela P Jr, et al. Small C7-T1 lordotic angle and muscle degeneration at <C7 level were independent radiological characteristics of patients with cervical imbalance: a propensity score-matched analysis. Spine J 2018; 18: 1505–1512. DOI: 10.1016/j.spinee.2018.01.012.

32. Hyun SJ, Kim YJ and Rhim SC. Patients with proximal junctional kyphosis after stopping at thoracolumbar junction have lower muscularity, fatty degeneration at the thoracolumbar area. Spine J 2016; 16: 1095–1101. DOI: 10.1016/j.spinee.2016.05.008.

33. Riew KD, Raich AL, Dettori JR, et al. Neck pain following cervical laminoplasty: does preservation of the C2 muscle portend a worse outcome than a ”short” approach with open reduction and pedicle screw fixation in cervicothoracic junction? A systematic review and meta-analysis. World Neurosurg 2019; 127: 588–595.e5. DOI: 10.1016/j.wneu.2019.03.283.

34. Goyal A, Akhras A, Wahood W, et al. Should multilevel posterior cervical fusions involving C7 cross the cervicothoracic junction? A systematic review and meta-analysis. World Neurosurg 2019; 127: 588–595.e5. DOI: 10.1016/j.wneu.2019.03.283.