On Ramsey \((P_3, C_7)\)-minimal graphs

G A Muttaqin, D Rahmadani, Purwanto, and I M Sulandra
Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Indonesia
E-mail: desi.rahmadani.fmipa@um.ac.id

Abstract. Let \(G, H\) be graphs. Notation \(F \rightarrow (G, H)\) means that there is any two-coloring, say red and blue, of all edges of \(F\) which contains red subgraph isomorphic to \(G\) or blue subgraph isomorphic to \(H\). The graph \(F\) is Ramsey \((G, H)\)-minimal if \(F \rightarrow (G, H)\) but \(F - e \nrightarrow (G, H)\) for any \(e \in E(F)\). The class of all Ramsey \((G, H)\)-minimal graphs will be denoted by \(\mathcal{R}(G, H)\). According to the previous study, we know that graphs in \(\mathcal{R}(P_3, C_7)\) have at least 13 edges. In this paper, we find graphs in \(\mathcal{R}(P_3, C_7)\) having seven vertices and 13 and 14 edges, respectively. Further, we give some necessary conditions for Ramsey \((P_3, C_7)\)-minimal graphs with seven vertices.

1. Introduction

Ramsey theory was first applied in graph theory [1]. In their study, they found a new concept related to Ramsey theory called Ramsey number. In 1978, Erdos et al. [2] introduced size Ramsey numbers. Then a new concept called Ramsey minimal graph was introduced by Burr et al. [3]. Here, we follow the notations in [4]. Let \(G, H\) be graphs. Notation \(F \rightarrow (G, H)\) means that there is any two-colorings, say red and blue, of all edges of \(F\) which contains red subgraph isomorphic to \(G\) or blue subgraph isomorphic to \(H\). Let a graph \(F\) satisfy \(F \rightarrow (G, H)\). The minimum number of vertices and edges of \(F\) is called Ramsey number and size Ramsey number, respectively. We write a graph \(F\) without any fixed edge \(e \in E(F)\) by \(F - e\). Graph \(F\) is a Ramsey \((G, H)\)-minimal graph if \(F \rightarrow (G, H)\) but \(F - e \nrightarrow (G, H)\), \(\forall e \in (F)\). The class of all Ramsey \((G, H)\)-minimal graphs will be denoted by \(\mathcal{R}(G, H)\).

Many problems arise in determining the class of Ramsey \((G, H)\)-minimal graphs. In 2005, Borowiecki et al. [4] found all graphs in \(\mathcal{R}(K_{1,2}, K_3)\). Then in 2008, Buskoro et al. [5] gave a family of graphs with diameter 2 that belongs to \(\mathcal{R}(K_{1,2}, C_4)\). Veterik et al. [6] found an infinite family of Ramsey \((K_{1,2}, C_4)\)-minimal graphs with diameter at least 4. Then Cyman and Dzido [7] found the restricted size Ramsey number for \(P_3\) versus cycle. Nisa et al. [8] studied \(\mathcal{R}(P_3, C_6)\). In this paper, we prove that there are some graphs that have seven vertices and 13 and 14 edges, respectively, in \(\mathcal{R}(P_3, C_7)\). Further, we give some necessary conditions for graphs with seven vertices in \(\mathcal{R}(P_3, C_7)\).

2. Graph

Some basic notations and terminologies, we follow of that [9]. Graph \(G\) is a set of an ordered pair \((V(G), E(G))\), where \(V(G)\) is a nonempty set of vertices and \(E(G)\) is a set of edges (it can be empty).

Two graphs \(G\) and \(H\) are called isomorphic if there is a bijection \(\theta : V(G) \rightarrow V(H)\) and \(\varphi : E(G) \rightarrow E(H)\) such that \(\varphi_G(e) = uv\) if and only if \(\varphi_H(\varphi(e)) = \theta(u)\theta(v)\). Graph \(H\) is called subgraph of \(G\), denoted by \(H \subseteq G\), if \(V(H) \subseteq V(G)\) and \(E(H) \subseteq E(G)\). If \(H\) is a subgraph of \(G\), where \(H \neq G\), then...
is called a proper subgraph of \(G \). Let \(e \) and \(f \) be edges of graph \(G \). If \(e \neq f \) and these edges are incident with different vertices, then \(e \) and \(f \) are called independent edges. A set of all independent edges is called a matching.

![Figure 1. Some types of graphs.](image1)

A cycle \(C_n \) is a connected graph with \(n \) vertices, where each vertex has degree two. If the number of vertices is even, then it is called even cycle, otherwise, it is called odd cycle. A path \(P_n \) is a connected graph with \(n \) vertices and \(n - 1 \) edges, where its end vertices have one degree and the others have degree one. Consequently, the degree of each vertex of \(K_n \) is \(n - 1 \). Star graph \(K_{1,n} \) is a connected graph with \(n + 1 \) vertices where one vertex has degree \(n \) and each other vertex has degree one. A vertex that has one degree is called pendant. Examples of \(C_6 \), \(P_5 \), \(K_6 \) and \(K_{1,5} \) are as in Figure 1.

3. Ramsey number and restricted size Ramsey number

Let \(F, G \) and \(H \) be graphs. The Ramsey number \(R(G, H) \) is the minimum number of vertices of graph \(F \) such that any red-blue coloring of the edges of \(F \) contains a red subgraph \(G \) or a blue subgraph \(H \), it is also defined as \(\min \{|V(F)| \colon F \rightarrow (G, H)\} \). The size Ramsey number \(r(G, H) \) is the minimum number of edges of graph \(F \) such that any red-blue coloring of the edges of \(F \) contains a red subgraph \(G \) or a blue subgraph \(H \). Additionally, if the order of \(F \) in the size Ramsey number equals \(R(G, H) \), then it is called the restricted size Ramsey number which is denoted by \(r^*(G, H) \) and also defined as \(\min \{|E(F)| \colon F \rightarrow (G, H), |V(F)| = R(G, H)\} \).

4. Main results

The results in the previous research (see e.g [5], [6], [8]) explain that there are graphs that satisfy \(R(P_n, C_n) \) for \(n \leq 6 \). We are interested to investigate graphs in \(R(P_n, C_7) \). There are results from the previous studies that we will use in our main result as follow.

Theorem 1 [10] \(R(C_m, P_n) = \max\{m + \left\lceil \frac{n}{2} \right\rceil - 1, 2n - 1\} \) for \(2 \leq n \leq m, m \text{ odd} \).

Theorem 2 [7] \(r(P_3, C_7) = 13 \).

![Figure 2. Graph \(F_1 \) and graph \(F_2 \).](image2)
Next, we will give our main results. Firstly, we find graphs in $\mathcal{R}(P_3, C_7)$ having seven vertices and 13 and 14 edges, respectively. We find all graphs in this section analytically. In addition, we give some necessary conditions for Ramsey (P_3, C_7)-minimal graphs with seven vertices.

We use graph F_1 and F_2 each with seven vertices and 13 edges as in Figure 2 above in our results.

Theorem 3 Graph F_1 is in $\mathcal{R}(P_3, C_7)$.

Proof. According to Theorem 1 and Theorem 2, we know that $R(P_3, C_7) = 7$ and $r(P_3, C_7) = 13$. Now, we will prove that F_1 is in $\mathcal{R}(P_3, C_7)$.

First, we show that $F_1 \to (P_3, C_7)$. Consider any red blue coloring of the edges in F_1. Suppose that there is no red copy of P_3 in coloring. Let us consider maximum red coloring of the edges of graph F_1 is v_1v_2, v_3v_4, and v_5v_6, then we have blue cycle $v_1v_3v_2v_7v_5v_4v_6$. If we give another maximum red coloring of the edges of graph F_1, say v_1v_7, v_2v_3, v_4v_5, we have blue cycle C_7 that is $v_1v_2v_7v_5v_6v_4v_3$.

For other red coloring of the edges of graphs F_1, we will find blue cycle C_7.

Next we will prove that $F_1 - e \not\to (P_3, C_7), \forall e \in (F_1)$. We will explain this proof by several cases:

Case 1. If $e = v_6, v_7$ or v_1v_7, then give red color for v_1v_6, v_2v_5 and v_3v_4.

Case 2. If $e = v_1v_2$ or v_6v_5, then give red color for v_1v_6, v_2v_5 and v_3v_4.

Case 3. If $e = v_2v_3$ or v_4v_5, then give red color for v_1v_6, v_2v_5 and v_3v_4.

Case 4. If $e = v_1v_3$ or v_6v_4, then give red color for v_2v_3, v_4v_5 and v_6v_7.

Case 5. If $e = v_2v_7$ or v_5v_7, then give red color for v_2v_3, v_4v_5 and v_6v_7.

Case 6. If $e = v_1v_6$, then give red color for v_2v_5, v_3v_4 and v_6v_7.

Case 7. If $e = v_2v_5$, then give red color for v_1v_6, v_2v_7 and v_3v_4.

Case 8. If $e = v_3v_4$, then give red color for v_1v_6, v_2v_5 and v_2v_5.

For each case, color remaining edges by blue. By this coloring we obtain that $F_1 - e \not\to (P_3, C_7), \forall e \in E(F_1)$. \blacksquare

Theorem 4 Graph F_2 is in $\mathcal{R}(P_3, C_7)$.

Proof. First, we show that $F_2 \to (P_3, C_7)$. Consider any red blue coloring of the edges in F_2. Suppose that there is no red copy of P_3 in coloring. Let us consider maximum red coloring of the edges of graph F_1 is v_1v_2, v_3v_4, and v_5v_6, then we have blue cycle $v_1v_3v_2v_7v_5v_4v_6$. If we give any other maximum red coloring of the edges of graph F_2, say v_1v_7, v_2v_3, v_4v_5, we have blue cycle C_7 that is $v_1v_2v_7v_5v_6v_4v_3$.

Next we will prove $F_1 - e \not\to (P_3, C_7), \forall e \in (F_2)$. We will explain this proof by several cases:

Case 1. If $e = v_6, v_7$ or v_1v_7, then give red color for v_1v_6, v_2v_5 and v_3v_4.

Case 2. If $e = v_1v_2$ or v_6v_5, then give red color for v_1v_6, v_2v_5 and v_3v_4.

Case 3. If $e = v_2v_3$ or v_4v_5, then give red color for v_1v_6, v_2v_5 and v_3v_4.

Case 4. If $e = v_1v_3$ or v_6v_4, then give red color for v_2v_3, v_4v_5 and v_6v_7.

Case 5. If $e = v_2v_7$ or v_5v_7, then give red color for v_2v_3, v_4v_5 and v_6v_7.

Case 6. If $e = v_1v_6$, then give red color for v_2v_3, v_4v_5 and v_6v_7.

Case 7. If $e = v_2v_5$, then give red color for v_1v_6, v_2v_7 and v_3v_4.

Case 8. If $e = v_3v_4$, then give red color for v_1v_6, v_2v_5 and v_4v_5.

For each case above, color remaining edges by blue. By this coloring we obtain that $F_2 - e \not\to (P_3, C_7), \forall e \in E(F_2)$. \blacksquare
Next we give two graphs with seven vertices and 14 edges as in Figure 3.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3.pdf}
\caption{Graph F_3, graph F_4 and graph F_5.}
\end{figure}

Theorem 5 Graph F_3 is in $\mathcal{R}(P_3, C_7)$.

Proof. First, we show that $F_3 \rightarrow (P_3, C_7)$. Consider any red-blue coloring of the edges in F_3. Suppose that there is no red copy of P_3 in coloring. Let us consider maximum red coloring of the edges of graph F_3 is $v_1v_2, v_3v_4,$ and v_5v_6, then we have blue cycle $v_1v_3v_2v_7v_4v_5v_6$. Then we give another maximum red coloring of the edges of graph $F_3v_1v_7, v_2v_3, v_4v_5$ we have blue cycle $C_7v_1v_3v_4v_6v_5v_7v_2$. For other red coloring of the edges of graphs F_3 we will find blue cycle C_7.

Next we will prove $F_3 - e \rightarrow (P_3, C_7), \forall e \in (F_3)$ we will explain this proof by several cases:

- **Case 1.** If $e = v_6, v_7$ or v_1, v_7, then give red color for v_1v_5, v_3v_4 and v_2v_6.
- **Case 2.** If $e = v_1v_2$ or v_6v_5, then give red color for v_1v_5, v_3v_4 and v_2v_7.
- **Case 3.** If $e = v_2v_3$, then give red color for v_1v_5, v_2v_6 and v_3v_4.
- **Case 4.** If $e = v_1v_2$ or v_2v_6, then give red color for v_1v_2, v_3v_6 and v_4v_5.
- **Case 5.** If $e = v_2v_7$ or v_5v_7, then give red color for v_1v_7, v_2v_6 and v_3v_4.
- **Case 6.** If $e = v_1v_6$, then give red color for v_1v_2, v_7v_5 and v_3v_4.
- **Case 7.** If $e = v_4v_7$, then give red color for v_1v_5, v_2v_6 and v_3v_4.
- **Case 8.** If $e = v_3v_4$, then give red color for v_2v_3, v_4v_5 and v_1v_6.
- **Case 9.** If $e = v_4v_5$, then give red color for v_3v_4, v_3v_2 and v_6v_7.

For every case, color remaining edges by blue and by this coloring we obtain that $F_3 - e \rightarrow (P_3, C_7), \forall e \in E(F_3)$.

Theorem 6 Graph F_4 is in $\mathcal{R}(P_3, C_7)$.

Proof. First, we show that $F_4 \rightarrow (P_3, C_7)$. Consider any red-blue coloring of the edges in F_4. Suppose that there is no red copy of P_3 in coloring. Let us consider maximum red coloring of the edges of graph F_4 is $v_1v_2, v_3v_4,$ and v_5v_6, then we have blue cycle $v_1v_3v_2v_7v_4v_5v_6$. Then we give another maximum red coloring of the edges of graph $F_4v_1v_7, v_2v_3, v_4v_5$ we have blue cycle $C_7v_1v_3v_4v_6v_5v_7v_2$. For other red coloring of the edges of graphs F_4, we will find blue cycle C_7.

Next we will prove $F_4 - e \rightarrow (P_3, C_7), \forall e \in (F_4)$ we will explain this proof by several cases:

- **Case 1.** If $e = v_6, v_7$ or v_1, v_7, then give red color for v_2v_6, v_3v_4 and v_5v_7.
- **Case 2.** If $e = v_1v_2$ or v_6v_5, then give red color for v_1v_6, v_4v_5 and v_2v_7.
- **Case 3.** If $e = v_2v_3$ or v_4v_5, then give red color for v_1v_7, v_2v_6 and v_3v_4.
- **Case 4.** If $e = v_1v_5$ or v_2v_6, then give red color for v_2v_6, v_3v_4 and v_5v_7.
Case 5. If \(e = v_2v_7 \) or \(v_5v_7 \), then give red color for \(v_1v_5, v_2v_6 \) and \(v_3v_4 \).
Case 6. If \(e = v_1v_6 \), then give red color for \(v_1v_5, v_2v_6 \) and \(v_3v_4 \).
Case 7. If \(e = v_1v_3 \) or \(v_4v_6 \), then give red color for \(v_1v_5, v_2v_6 \) and \(v_3v_4 \).
Case 8. If \(e = v_3v_4 \), then give red color for \(v_2v_3, v_4v_5 \) and \(v_1v_6 \).

For every case, color remaining edges by blue and by this coloring we obtain that \(F_4 - e \leftrightarrow (P_3, C_7) \), \(\forall e \in E(F_4) \).

Theorem 7 Graph \(F_5 \) is in \(\mathcal{R}(P_3, C_7) \).

Proof. First, we show that \(F_5 \rightarrow (P_3, C_7) \). Consider any red blue coloring of the edges in \(F_5 \). Suppose that there is no red copy of \(P_3 \) in coloring. Let us consider maximum red coloring of the edges of graph \(F_5 \) is \(v_1v_2, v_2v_4, v_5v_6 \), then we have blue cycle \(v_1v_2v_3v_4v_5v_6v_3 \). Then we give another maximum red coloring of the edges of graph \(F_5 \) we have blue cycle \(C_7 \) as graph \(v_1v_2v_3v_4v_5v_6v_3 \). For other red coloring of the edges of graphs \(F_5 \) we will find blue cycle \(C_7 \).

Next we will prove \(F_5 - e \leftrightarrow (P_3, C_7) \), \(\forall e \in E(F_5) \) we will explain this proof by several cases:

Case 1. If \(e = v_6, v_7 \) or \(v_1v_7 \), then give red color for \(v_2v_6, v_3v_4 \) and \(v_5v_7 \).
Case 2. If \(e = v_1v_2 \) or \(v_6v_7 \), then give red color for \(v_2v_7, v_3v_4 \) and \(v_5v_6 \).
Case 3. If \(e = v_2v_3 \) or \(v_4v_5 \), then give red color for \(v_1v_6, v_2v_5 \) and \(v_3v_4 \).
Case 4. If \(e = v_1v_5 \) or \(v_2v_4 \), then give red color for \(v_2v_3, v_4v_5 \) and \(v_5v_7 \).
Case 5. If \(e = v_2v_7 \) or \(v_5v_7 \), then give red color for \(v_1v_6, v_2v_5 \) and \(v_3v_4 \).
Case 6. If \(e = v_1v_6 \), then give red color for \(v_4v_7, v_2v_6 \) and \(v_3v_4 \).
Case 7. If \(e = v_1v_4 \) or \(v_3v_6 \), then give red color for \(v_1v_6, v_2v_6 \) and \(v_3v_4 \).
Case 8. If \(e = v_3v_4 \), then give red color for \(v_2v_3, v_4v_5 \) and \(v_1v_6 \).

For every case, color remaining edges by blue and by this coloring we obtain that \(F_5 - e \leftrightarrow (P_3, C_7) \), \(\forall e \in E(F_5) \).

Next, we give necessary conditions for graphs with seven vertices in \(\mathcal{R}(P_3, C_7) \) as in the following theorem.

Theorem 8 Let \(G \) be any connected graph with seven vertices in \(\mathcal{R}(P_3, C_7) \) then:

a. The minimum degree of \(G \) is three.

b. If \(G \) has exact two vertices of degree three, then the vertices have no common neighbour.

Proof. (a) Assume that there is a vertex have degree two \((v_1v_2v_3) \), suppose that any red coloring \(v_1v_2 \) then the edge \(v_2v_3 \) must be blue, to make any \(C_7 \) we need at least 2 degree. So the vertices must be have degree 3 to make \(C_7 \). Contradiction. (b) Assume a pair of vertices have joining vertices said \(v_1v_2v_3v_4v_5 \), and \(v_2v_4 \) adjacent. Suppose red coloring on \(v_1v_2 \) and \(v_4v_5 \) then the coloring blue \(v_2v_3v_4 \) is \(C_3 \). To make another graph cycle, we need another edge. Contradiction.

5. Conclusion

All graphs in \(\mathcal{R}(K_{1,2}, K_3) \) had been characterized by Borowiecki, et al. Error! Reference source not found. Some graphs in \(\mathcal{R}(P_3, C_4), \mathcal{R}(P_3, C_5), \) and \(\mathcal{R}(P_3, C_6) \) has been studied. Recently, Nisa et al. studied about \(\mathcal{R}(P_3, C_6) \). However, the characterization of all graphs in \(\mathcal{R}(P_3, C_4), \mathcal{R}(P_3, C_5), \) and \(\mathcal{R}(P_3, C_6) \) are still open. In this paper, we show that the graphs with seven vertices as in Figure 4, namely \(F_1, F_2, F_3, F_4, F_5 \), are in \(\mathcal{R}(P_3, C_7) \).
We also give two necessary conditions for graphs with seven vertices in $\mathcal{R}(P_3, C_7)$, as in Theorem 8. However, the characterization of all graphs in $\mathcal{R}(P_3, C_7)$ are still open. It is interesting to find an algorithm to construct all graphs in $\mathcal{R}(P_3, C_7)$. So the graphs in $\mathcal{R}(P_3, C_7)$ will be determined computationally.

Acknowledgments
This Research was supported by Research Grant “PNPB research grant of Universitas Negeri Malang” under contract No.10.3.48/UN32.14.1/LT/2019 organized by LP2M Universitas Negeri Malang.

References
[1] Erdos P and Szekeres G 1935 A combinatorial problem in geometry (Compositio Mathematica) 2 p 463-470
[2] Erdos P, Faudree R J, Rousseau C C and Schelp R H 1978 The size ramsey number (Periodica Mathematica Hungarica) 9(22) p 145-161
[3] Burr S, Erdos P and Lovasz L 1976 Ars Combinatoria 1 p 167-190
[4] Borowiecki M, Schiermeyer I and Sidorowicz E 2005 The Electronic J. of Combinatorics 12#R20
[5] Baskoro E T, Yulianti L and Vetrik T 2008 Proc. Int. Conf. 70 years of Faculty of Civil Engineering, (Slovakia, Slovak University of Technology) p 1-4
[6] Vetrik T, Baskoro E T and Yulianti L 2010 On Ramsey ($K_{1,2}, C_4$)-minimal graphs Discussiones Mathematics Graph Theory 30 p 637-649
[7] Cyman J and Dzido T 2018 Restricted size Ramsey number for P_3 versus cycle Preprint arXiv:1706.08134, 2017
[8] Nisa F, Ramadani D, Purwanto and Susanto H 2019 On Ramsey (P_3, C_6)-minimal graph Journal of Physics (Accepted)
[9] Diestel R 2010 Graph Theory 4rd ed. (New York; Springer-Verlag Heidelberg)
[10] Faudree R J, Lawrence S L, Parsons T D and Schelp R H 1974 Discrete Mathematics 10 p 277-269

Figure 4. Some graphs with seven vertices in $\mathcal{R}(P_3, C_7)$.