CONFORMALLY QUASI-RECURRENT
PSEUDO-RIEMANNIAN MANIFOLDS

CARLO ALBERTO MANTICA AND LUCA GUIDO MOLINARI

Abstract. Conformally quasi-recurrent pseudo-Riemannian manifolds are investigated, with emphasis on 4-dimensional Lorentzian ones. It is shown that the Ricci tensor and the gradient of the fundamental vector are both Weyl compatible tensors (the notion was introduced recently by the authors); topological conditions for the vanishing of the first Pontryagin form are stated. The fundamental vector of conformally quasi-recurrent 4-dimensional Lorentzian manifolds is null and unique up to a scaling; moreover it is an eigenvector of the Ricci tensor and its integral curves are geodesics. Such Lorentzian manifolds are Petrov type-N with respect to the fundamental null vector.

1. Introduction

Recurrent manifolds were investigated by many geometers: Walker [4] studied manifolds with recurrent Riemann curvature, Adati and Miyazawa [1] studied conformally recurrent manifolds, Mc Lenaghan and Leroy [22] and then Mc Lenaghan and Thompson [23] investigated space-times with complex recurrent conformal curvature tensor; they showed that they are Petrov type D and N and obtained the metric form for the case of real recurrence vector. Other results are found in [15], [16] and [31]. Prvanovic introduced the following notion [27], [28]:

Definition 1.1. A n-dimensional pseudo-Riemannian manifold is conformally quasi recurrent, (CQR)ₙ, if it is not conformally flat, and there is a non-zero vector field Aᵢ (the fundamental vector) such that:

\(\nabla_j C_{jklm} = 2A_i C_{jklm} + A_j C_{iklm} + A_k C_{jilm} + A_l C_{jkim} + A_m C_{jkli}. \)

\(C_{jklm} \) is the conformal curvature tensor,

\(R_{jkl} = -R_{mkl} \) is the Ricci tensor and \(R = R^m_m \) is the scalar curvature.

Condition (1) arises in certain studies on conformal transformations of the metric [4]. Manifolds with the same characterisation were named differently, pseudo conformally symmetric (PCS)ₙ, by De and Biswas [5]. De and Mazumdar [6] proved the following:

1) if a (PCS)ₙ manifold admits a proper conformal motion with scalar field \(\sigma \), then it is either conformally flat or \(\nabla_j \sigma \) is a null vector;

2) a (PCS)₄ space-time with a proper conformal motion is type N or O.
A pseudo-Riemannian manifold admits an infinitesimal conformal motion if there are a vector field ξ_j and a scalar field σ such that: $\nabla_i \xi_j + \nabla_j \xi_i = 2\sigma g_{ij}$. If $\nabla_i \sigma \neq 0$ the motion is proper, if σ is constant the motion is homothetic (see [30] page 564).

In this paper we present new results for (CQR)$_n$ manifolds, in particular for 4-dimensional Lorentzian ones. In Section 2, after a review of their main properties, based on the works [4] [27] [28], we prove that the Ricci tensor and the tensor $\nabla_i A_j$ of (CQR)$_n$ manifolds are Weyl compatible. The notion of Weyl compatibility was recently introduced and investigated by us in [19], [20] and [21]. In Section 3 we study (4-dimensional) (CQR)$_4$ Lorentzian manifolds (space-times): we prove that the fundamental vector A is null and unique up to a scaling; moreover we show that the same vector is eigenvector of the Ricci tensor and its integral curves are geodesics. Finally we show that such space-times are Petrov type-\textit{N} with respect to A.

The manifolds are Hausdorff, connected, of dimension $n \geq 3$, with a Levi-Civita connection ($\nabla_j g_{kl} = 0$), and non-degenerate metric of arbitrary signature (pseudo-Riemannian manifolds. For Lorentzian manifolds the signature is 2).

2. (CQR)$_n$ manifolds: general properties

The following proposition collects some basic known facts:

Proposition 2.1. In a pseudo-Riemannian (CQR)$_n$ manifold, with fundamental vector A_i, the following relations hold:

(3) $A^m C_{jklm} = 0$,

(4) $\nabla_m C_{jkl}^m = 0$.

(5) $(\nabla_i A^m) C_{jklm} + (A^m A_m) C_{jkl} = 0$.

(6) $A^i (\nabla_i A^m) C_{jklm} = 0$.

Proof. The first two identities [27] are here derived as follows: write three versions of (1) with indices ijk cyclically permuted, and sum up (some terms cancel by the first Bianchi identity): $\nabla_i C_{jklm} + \nabla_j C_{kilm} + \nabla_k C_{ijlm} = 0$. Contraction with g^m gives (2). By transvecting (1) with g^m one gets $\nabla^m C_{jklm} = 3A^m C_{jklm}$, but the left hand side term was just shown to be zero. The third identity was obtained in [27] and reobtained in [4]. The last one follows from (5) and (3). \qed

The condition $\nabla_m C_{jkl}^m = 0$ has an interesting consequence that is now elucidated. We need a differential identity connecting the Weyl, the Riemann and the Ricci tensors, that we proved in [13], [20], extending an identity by Lovelock to curvature tensors other than Riemann’s:

Lemma 2.2. In pseudo-Riemannian manifolds the following holds:

(7) $\nabla_i \nabla_m C_{jkl}^m + \nabla_j \nabla_m C_{kilm} + \nabla_k \nabla_m C_{ijlm} = -\frac{n-3}{n-2} (R_{im} R_{jkl}^m + R_{jm} R_{kil}^m + R_{km} R_{ijl}^m)$.

Theorem 2.3. The Ricci tensor of a (CQR)$_n$ pseudo-Riemannian manifold is Riemann compatible:

(8) $R_{im} R_{jkl}^m + R_{jm} R_{kil}^m + R_{km} R_{ijl}^m = 0$.

Proof. The left hand side of (7) vanishes because of property (1). □

Remark 2.4. Eq. (8), which we proved straightforwardly, was first obtained in [27]. It coincides with the definition that the Ricci tensor is a Riemann compatible tensor [19], [20]. The geometric and topological consequences were studied in [20] and [21], where it was proven that Riemann compatible tensors are also Weyl compatible. For the Ricci tensor this means:

\[R_{im}C_{jkl}^{\prime m} + R_{jm}C_{kil}^{\prime m} + R_{km}C_{ijl}^{\prime m} = 0. \]

Weyl compatible tensors and vectors were investigated in [21].

Suppose that the manifold has a matter content described by a stress-energy tensor \(T_{ij} \); the Einstein’s equations link it to the Ricci tensor:

\[R_{kl} - \frac{(R/2)g_{kl}}{8\pi G} = kT_{kl}, \]

where \(k = 8\pi G \) is Einstein’s gravitational constant, [8], [29]. Then eqs (8) and (9) for the Ricci tensor imply analogous statements for the stress energy tensor:

Corollary 2.5. In a \((\text{CQR})_n\) Lorentzian manifold the stress-energy tensor is Riemann and Weyl compatible.

The next new theorem is about the fundamental vector \(A_i \) and its gradient (note that \(\nabla_i A_m \) is not necessarily a symmetric tensor. If such, \(A_i \) would be closed):

Theorem 2.6. In a \((\text{CQR})_n\) pseudo-Riemannian manifold with fundamental vector \(A_i \), the tensor \(\nabla_i A_m \) is Weyl compatible,

\[(\nabla_i A_m)C_{jkl}^{\prime m} + (\nabla_j A_m)C_{kil}^{\prime m} + (\nabla_k A_m)C_{ijl}^{\prime m} = 0. \]

and the following identities hold:

\[A_i R_{im}C_{jkl}^{\prime m} = 0, \]

\[(\nabla_i C_{jklm})(\nabla^i C_{jklm}) = 8(A_i A^i)C_{jklm}C_{jklm}. \]

Proof. Write three versions of equation (5) with indices \(ijk \) cyclically permuted and sum up. A cancellation occurs by the first Bianchi identity of the Weyl tensor. The relation (11) follows by transvecting with \(A_i \) the equation (9). Finally, (12) is proven by squaring (1); most terms in the right-hand-side vanish because of (9). □

In the geometric literature a deep study is devoted to pseudo-Riemannian manifolds with a vector field \(A_i \) such that (see for example [7], [11],[12]):

\[A_i C_{jklm} + A_j C_{kim} + A_k C_{ijm} = 0. \]

We need the following [7]:

Proposition 2.7. In a \(n\)-dimensional non-conformally flat pseudo-Riemannian manifold, if (13) holds, then:

1) \(A_i A^i = 0 \),
2) \(C_{imj}^k C_{pqk}^j = 0 \).

Proof. By contracting (13) with \(g^{im} \) one obtains \(A^m C_{jklm} = 0 \). Contraction of (13) with \(A^i \) gives \((A_i A_i)C_{jklm} = 0 \) from which we infer 1); contracting (13) with \(C^{kj}_{pq} \) and using \(A_mC_{jklm} = 0 \) gives \(A_i C_{jklm}C^{kj}_{pq} = 0 \) from which 2) follows. □
The last relation in Prop. 2.7 is relevant in the study of Pontryagin forms. Given orthonormal tangent vectors X_r, Pontryagin forms p_k are antisymmetric combinations $p_k(X_1 \ldots X_{4k}) = \sum_p (-1)^p \omega_k(X_{i1} \ldots X_{ik})$ of forms ω_k.

$$\omega_1(X_1 \ldots X_4) = R_{ija} b R_{klb} a (X_i^1 \wedge X_j^2)(X_k^3 \wedge X_l^4),$$

$$\omega_2(X_1 \ldots X_8) = R_{ija} b R_{klb} c R_{mn} d R_{pq} a (X_i^1 \wedge X_j^2)(X_k^3 \wedge X_l^4) \ldots (X_j^p \wedge X_k^q)$$

etc. (see [9], [10], [20], [24], [26] pp 317-318). It was shown by Avez [2] (see also [9]) that forms are unchanged if Riemann’s tensor is replaced by Weyl’s tensor, for example:

$$\omega_1(X_1 \ldots X_4) = C_{ija} b C_{klb} a (X_i^1 \wedge X_j^2)(X_k^3 \wedge X_l^4)$$

Proposition 2.8. In a pseudo-Riemannian manifold of type (13), the first Pontryagin form vanishes.

Proof. By prop.2.7 it is $C_{lmj} b C_{pqk} a = 0$, then $\omega_1 = 0$ and $p_1 = 0$.

Remark 2.9. For a compact orientable 4-dimensional pseudo-Riemannian manifold M, the vanishing of the first Pontryagin form p_1 has a topological significance. According to Hirzebruch’s theorem ([14], [26] pp 229-230),

$$\tau(M) = \frac{1}{3} \int_M p_1,$$

where Hirzebruch’s signature $\tau(M)$ is related in 4k dimension to Euler’s topological index by the relation $\tau = \chi \mod 2$ [24], page 465.

For (CQR)$_n$ manifolds the additional condition (13) has been investigated, and makes them conformally recurrent [4], [28]:

$$\nabla_i C_{jklm} = 4 A_i C_{jklm}.$$

3. (CQR)$_4$ Lorentzian manifolds

We show that (CQR)$_4$ Lorentzian manifolds, besides being conformally harmonic [4], are also conformally recurrent, and various other properties.

Let us quote two useful lemma on 4-dimensional manifolds:

Lemma 3.1. ([17] page 128)
The Weyl tensor of a 4-dimensional pseudo-Riemannian manifold satisfies the following identity:

$$\delta_r^i C_{jkl}^r + \delta_i^r C_{jkl}^r + \delta_{i}^j C_{rkl}^i + \delta_{i}^k C_{rjl}^i + \delta_{i}^l C_{rjk}^i + \delta_{r}^j C_{ikl}^i + \delta_{r}^k C_{ijl}^i + \delta_{r}^l C_{ijk}^i = 0$$

Lemma 3.2. ([8] page 46, [13], page 148)
In a 4-dimensional pseudo-Riemannian manifold let A be a null vector and B a vector orthogonal to A, $A \cdot B = 0$. Then B is either space-like, or null and proportional to A, i.e. $B_j = \lambda A_j$ for some $\lambda \in R$.

We then prove:

Theorem 3.3. In a 4-dimensional non conformally flat pseudo-Riemannian manifold, let A and B be vector fields such that $A_mC_{jkl}^m = 0$ and $B_mC_{jkl}^m = 0$. Then they are both null ($A^l A_j = 0, B^l B_j = 0$) and $B_j = \lambda A_j$ for some real λ.

Proof. On multiplying eq. (16) by $A_j B^s$ we obtain $(A_j B^s)C^{ki}_{tr} = 0$. Similarly, way we obtain $(A^j A_k)C^{ki}_{st} = 0$ and $(B^j B_k)C^{ki}_{tr} = 0$ (see [17] page 128). Then A and B are orthogonal null vectors. By lemma 3.2 they are proportional. □

Proposition 3.4. (CQR) Lorentzian manifolds are conformally recurrent.

Proof. On multiplying eq. (16) by A_j, and using (3) we obtain:

$$A_r C^{kist} + A_t C^{kirs} + A_s C^{kitr} = 0,$$

i.e. eq. (13) is verified. Then (15) follows by property (1). □

Theorem 3.3, eq. (12) and prop. 2.8 imply:

Corollary 3.5. In a non conformally flat (CQR) Lorentzian manifold:
1) the fundamental vector A is null and unique up a scaling,
2) the scalar $(\nabla_i C_{jklm})(\nabla^i C^{jklm})$ vanishes identically.
3) the first Pontryagin form vanishes.

The Bel-Debever version of Petrov’s classification of Weyl tensors on 4-dimensional Lorentzian manifolds (see [13] page 196, [3], [25] and [29]) is based on null vectors k. By identifying the null vector k with the fundamental vector A, we may assert:

Proposition 3.6. On a non conformally flat (CQR) Lorentzian manifold, the Weyl tensor is type-N with respect to its fundamental vector.

Theorem 3.7. On a non conformally flat (CQR) Lorentzian manifold,
1) the fundamental vector A is an eigenvector of the Ricci tensor;
2) the integral curves of the fundamental vector A are geodesics;
3) $\nabla_i A_i = 0$.

Proof. Consider eqs (3) and (10), i.e. $A^m C_{jklm} = 0$ and $A^i R_{im} C_{jkl} = 0$; the last one defines a vector $B_m = A^i R_{im}$ such that $B^m C_{jklm} = 0$. By theorem 3.1 it is $A^i R_{im} = \lambda A_m$, i.e. A is an eigenvector of the Ricci tensor. Next, consider equations (3) and (6), i.e. $A^m C_{jklm} = 0$ and $(A^i \nabla_i A^m) C_{jklm} = 0$: by the same arguments we obtain $A^i (\nabla_i A_m) = \lambda A_m$. Therefore the integral curves of the vector A are geodesics (see [29] page 41). Multiply (16) by $\nabla^p A^j$ and use (5):

$$(\nabla^p A_r) C^{kisi} + (\nabla^p A_t) C^{kirs} + (\nabla^p A_s) C^{kitr} = 0,$$

Contraction of s with p gives $(\nabla_s A^s) C^{kitr} = 0$. □

From $A^m C_{jklm} = 0$ and $A^i R_{im} = \lambda A_m$, a direct calculation gives $A^m A^i R_{jklm} = (\lambda - R/6) A_k A_l$ (see also Hall’s theorem in [30] and [21]). It follows that $A^m R_{ijkl} A^m A^j = 0$, i.e. the Riemann’s tensor is algebraically special (i.e. type II or D).

In their study of (PCS) manifolds with proper conformal motion, De and Mazumdar [6] obtained the following relations:

$$(\nabla_i \sigma)(\nabla^i \sigma) = 0,$$

$$C^{kimi} \nabla_m \sigma = 0$$

For $n = 4$ this proves that the vector $\nabla_i \sigma$ is null and that the space is type-N with respect to it. If we consider the previous results [17] and theorem 3.5 we have $\nabla_i \sigma = \lambda A_i$, and we may conclude:

Proposition 3.8. If a non conformally flat (CQR) Lorentzian manifold admits a proper conformal motion, then $\nabla_i \sigma = \lambda A_i$, i.e. the fundamental vector A is closed.
References

[1] T. Adati, and T. Miyazawa, On a Riemannian space with recurrent conformal curvature, Tensor (N.S.) 18 (1967) 348-354.
[2] A. Avez, Formule de Gauss-Bonnet-Chern en métrique de signature quelconque, C. R. Acad. Sci. Paris 255 (1962) 2049-2051.
[3] L. Bel, Radiation states and the problem of energy in General Relativity, (reprint from Cah. Phys. 16 (1962) 59), Gen. Rel. Grav. 32 n. 10 (2000) 2047-2078.
[4] K. Buchner and W. Roter, On conformally quasi recurrent metrics I. Some general results and existence questions, Soochow Journal of Mathematics 19 n. 4 (1993) 381-400.
[5] U. C. De and H. A. Biswas, On pseudo conformally symmetric manifolds, Bull. Cal. Math Soc. 85 (1993) 479-486.
[6] U. C. De and B. K. Mazumdar, Some remarks on proper conformal motions in pseudo conformally symmetric spaces, Tensor (N.S.) 60 (1998) 48-51.
[7] F. Defever and R. Deszcz, On semi Riemannian manifolds satisfying the condition \(R\dot{R} = Q(S, R) \), in Geometry and Topology of Submanifolds, III, World Scientific Publ. Singapore (1991) 108-130.
[8] F. De Felice and C. J. S. Clarke, Relativity on curved manifolds, Cambridge University Press (1990).
[9] A. Derdzinski and W. Roter, On compact manifolds admitting indefinite metrics with parallel Weyl tensor, J. of Geometry and Physics 58 n. 9 (2008) 1137-1147.
[10] A. Derdzinski and C. L. Shen, Codazzi tensor fields, curvature and Pontryagin forms, Proc. Lomd. Math. Soc. 47 (1983) 15-26.
[11] R. Deszcz and M. Hotlos, On a certain extension of the class of semisymmetric manifolds, Publ. de L’Institut Math. N.s., tome 63 (77) (1998) 115-130.
[12] R. Deszcz and W. Grycak, On certain curvature conditions on Riemannian manifolds, Colloq. Math. 58 n. 1 (1990) 259-268.
[13] G. S. Hall, Symmetries and Curvature Structure in general Relativity, World Scientific Singapore (2004).
[14] F. Hirzebruch, New topological methods in algebraic topology, (1966) Springer.
[15] V. R. Kaigorodov, The curvature structure of spacetimes, Problems of Geometry 14 (1983) 177-204.
[16] Q. Khan, On Recurrent Riemannian manifolds, Kyungpook Math. J. 44 (2004) 269-276.
[17] D. Lovelock and H. Rund, Tensors, differential forms and variational principles, reprint Dover ed (1988).
[18] C. A. Mantica and L. G. Molinari, A second order identity for the Riemann tensor and applications, Colloq. Math. 122 n. 1 (2011), 69-82.
[19] C. A. Mantica and L. G. Molinari, Extended Derdziński-Shen theorem for curvature tensors, Colloq. Math. 128 n. 1 (2012) 1-6.
[20] C. A. Mantica and L. G. Molinari, Riemann compatible tensors, Colloq. Math. 128 n. 2 (2012) 197-210.
[21] C. A. Mantica and L. G. Molinari, Weyl compatible tensors, arXiv:1212.1273[math-ph], 21 Jan. 2013.
[22] R. G. Mc. Lenaghan and J. Leroy, Complex recurrent space-times, Proc. Roy. Soc. London A 327 n. 1569 (1972) 229-249.
[23] R. G. Mc. Lenaghan and H. A Thompson, Second order recurrent space-times in General Relativity, Lett. Nuovo Cimento 5 n. 7 (1972) 563-564.
[24] M. Nakahara, Geometry, Topology and Physics, 2nd Ed. Taylor & Francis, New York (2003).
[25] A. Z. Petrov The classification of spaces defining gravitational field (a reprint), Gen. Rel. Grav. 32 (2000) 1665-1685.
[26] M. M. Postnikov Geometry VI ; Riemannian geometry, Encyclopaedia of Mathematical Sciences, Vol. 91 (2001) Springer.
[27] M. Prvanovic, Some theorems on conformally quasi recurrent manifolds, Univ. u Novom Sadu Zb. Rad. Prirod.- Mat. Fak. Ser. Mat.19 n2 (1989) 21-31.
[28] M. Prvanovic, A note on conformally quasi recurrent manifolds, Univ .u Novom Sadu Zb. Rad. Prirod.- Mat. Fak. Ser. Mat. 20 n.1 (1990) 195-212.
[29] H. Sthepani, General Relativity Cambridge University Press
[30] H. Sthepani, D. Kramer, M. MacCallum, C. Hoenselaers and E. Hertl, *Exact solutions of Einstein’s field equations*, Cambridge University Press, 2nd ed. (2003).

[31] A. G. Walker, *On Ruse’s spaces of recurrent curvature*, Proc. London Math. Soc. **52** (1950), 36-64.

C. A. Mantica: I.I.S. Lagrange, Via L. Modignani 65, 20161, Milano, Italy – L. G. Molinari (corresponding author): Physics Department, Università degli Studi di Milano and I.N.F.N. sez. Milano, Via Celoria 16, 20133 Milano, Italy.

E-mail address: carloalberto.mantica@libero.it, luca.molinari@mi.infn.it