Fourier expansion along geodesics on Riemann surfaces

Central European Journal of Mathematics 12, No 4, 559-573 (2014)

Anton Deitmar

Institute of Mathematics
University of Tuebingen
Auf der Morgenstelle 10
72076 Tuebingen, GERMANY.

Abstract. For an eigenfunction of the Laplacian on a hyperbolic Riemann surface, the coefficients of the Fourier expansion are described as intertwining functionals. All intertwiners are classified. A refined growth estimate for the coefficients is given and a summation formula is proved.

Contents

1 Generalized period integrals 3

2 Intertwining functionals 6

3 Fourier expansion of Maaß forms 17

4 Triple products 18
Introduction

For an automorphic function, the invariance under parabolic elements is used to give the standard Fourier expansion, the coefficients of which define the L-function of the form. In this paper, we instead consider the Fourier-expansion along a hyperbolic element. In other terms, let Y be a hyperbolic Riemann surface and let c be a closed geodesic in Y. We are interested in the Fourier coefficients

$$c_k(f) = \int_0^1 f(c(l_c t)]e^{2\pi i k t} dt$$

of a smooth function $f \in C^\infty(Y)$. Here l_c is the length of the geodesic c. Under the assumption that f be an eigenfunction of the Laplace operator on Y with eigenvalue α, one can relate c_k to an intertwining integral $I^\alpha_k(f)$, which depends on α and f, but not on c. There is an automorphic coefficient $a_k \in \mathbb{C}$, such that

$$c_k = a_k I^\alpha_k.$$

The present paper contains three main results:

- in Theorem 2.3 one finds a classification of all intertwining functionals on the dual of the group $\text{PGL}_2(\mathbb{R})$.
- In Theorem 2.5 there is given the growth estimate

$$a_k = O(|k|^{\frac{1}{2}})$$

as $|k| \to \infty$. The proof uses the technique of analytic continuation developed by Bernstein and Reznikov in [BR99].
- In Theorem 4.2 finally, a summation formula is proved, which involves the coefficients a_k and the spectral decomposition in the compact case. The proof relies on the uniqueness of invariant trilinear forms as in [BR04]. The sum formula is of the form

$$\sum_{k \in \mathbb{Z}} |a_k|^2 \hat{\alpha}(k) = \sum_j c_j \int_{\mathbb{R}^2} W_j(t, x) \alpha(\hat{t}_x) dt dx,$$

where α is a test function, the decomposition of the G-representation on $L^2(\Gamma \backslash G)$ is $\bigoplus_j \pi_j$ and the constants c_j and the explicit functions W_j depend on π_j. Finally $\hat{t}_x = \frac{1}{2} \log \left| \frac{(e^{ix}+x)(x-1)}{(e^{ix}+x-1)x} \right|$. It is hoped that the choice of specific test functions will lead to more precise growth estimates for the a_k.

We explain the construction of the factors a_k in a bit more detail. Let X be the universal covering of Y and Γ its fundamental group. Then Γ acts on X by isometries and Y is the quotient $\Gamma \backslash X$. So Γ injects into the isometry group G of X, which acts transitively on X, i.e., $X \cong G/K$ for a maximal compact subgroup K. Let (π, V_π) be an irreducible unitary representation of the group G and let $\eta : V_\pi \to L^2(\Gamma \backslash G)$ be an isometric linear G-map. Let $P_K : L^2(\Gamma \backslash G) \to L^2(\Gamma \backslash G)^K = L^2(\Gamma \backslash G/K) = L^2(Y)$ denote the orthogonal projection onto the subspace of K-invariants. Demanding that $f \in C^\infty(Y)$ be an eigenfunction of the Laplacian amounts to the same as demanding f to lie in the image of $P_K \circ \eta$ for some π and some η. The functional $I^\gamma_k = c_k \circ P_K \circ \eta$ on V_π then has an intertwining property with respect to a split torus A inside G. By a uniqueness result, proven in Section 2, this implies that I^γ_k is a multiple of a standard intertwiner $I^\alpha_{\pi,k}$ on V_π, which we named I^α_k above. So we get the existence of a factor $a_k \in \mathbb{C}$ with $I^\gamma_k = a_k I^\alpha_{\pi,k} = a_k I^\alpha_k$ as above.

In Section 1 we describe the setting in greater precision. In Section 2 we classify the intertwining functionals that show up in the context and define the standard intertwiners that give rise to the factors a_k above. We also show the growth estimate of the factors a_k. In Section 3 we show how the Fourier expansion along a geodesic expands to an expansion on the whole space and in Section 4 we show how to derive the summation formula from the uniqueness of triple products.

1 Generalized period integrals

In this paper we use the group $GL_2(\mathbb{R})$, the elements of which we write as matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and the group $G = PGL_2(\mathbb{R}) = GL_2(\mathbb{R})/\mathbb{R}^\times$, the elements of which we write in the form $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Here we will usually arrange the determinant of $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ to be 1 or -1. The connected component of G is $G^0 = PSL_2(\mathbb{R}) = SL_2(\mathbb{R})/(\pm 1)$. The group G^0 acts on the upper half plane \mathbb{H} by linear fractionalals and this action extends to an action of G in a way that G is identified with the group of all hyperbolic isometries on \mathbb{H}. The stabilizer in G of the point $i \in \mathbb{H}$ is the maximal compact subgroup $K = PO(2) = O(2)/\pm 1$ of G. So \mathbb{H} is identified with G/K.

Let Γ be a discrete subgroup of the group G. Later we will assume Γ to be of finite covolume. For simplicity, we will assume Γ to be torsion-free and that $\Gamma \subset G^0$. This implies that Γ is the fundamental group of $Y = \Gamma \backslash \mathbb{H}$ and
the latter is a Riemann surface equipped with the hyperbolic metric.

For a closed geodesic c in Y let $l(c)$ denote its length. The period integral
\[I_c(f) = \int_0^{l(c)} f(c(t)) \, dt \]
is the zeroth coefficient of the Fourier-expansion of the function $t \mapsto f(c(t))$. Therefore the higher coefficients can be viewed as "generalised period integrals".

The real Lie-algebra of G is $\mathfrak{g}_\mathbb{R} = \mathfrak{sl}_2(\mathbb{R})$, the Lie-algebra of all real 2×2 matrices of trace zero. For $X, Y \in \mathfrak{g}_\mathbb{R}$ let $b(X, Y) = \frac{1}{2} \text{tr} (XY)$. Then b is an invariant symmetric bilinear form. Let $\mathfrak{e}_\mathbb{R} \subset \mathfrak{g}_\mathbb{R}$ be the Lie algebra of K. Then b is negative definite on $\mathfrak{e}_\mathbb{R}$ and positive definite on its orthogonal complement $\mathfrak{p}_\mathbb{R}$. Let $a^0 = \mathbb{R}(1_{-1})$, and let $A = \exp(a^0)$ be the corresponding subgroup of G. Let $a^+ = \mathbb{R}_{>0}(1_{-1})$ be the positive cone and let $A^+ = \exp(a^+)$.

A closed geodesic c in Y gives rise to a conjugacy class $[\gamma]$ in Γ of elements which "close" c. Any such $\gamma \in \Gamma$ is hyperbolic in the sense that it is conjugate in G to an element of the form $a_{t_0} = \text{diag}(e^{t_0}, e^{-t_0}) \in A \setminus \{1\}$. We insist that $a_{t_0} \in A^+$, i.e., $t_0 > 0$ to make it unique. We now assume that γ is primitive, i.e., γ is no power τ^n for any $\tau \in \Gamma$ and $n \geq 2$. This is equivalent to the geodesic c being primitive, i.e., c is no power of any shorter geodesic. The characters of the compact abelian group $A/\langle a_\gamma \rangle$ are given by those $\mu \in a^*$ with $\mu(\log a_\gamma) = 2\pi i$. Let μ_γ be the unique element of a^* with $\mu_\gamma(\log a_\gamma) = 2\pi i$. Then $A/\langle a_\gamma \rangle = \mathbb{Z}_{\mu_\gamma}$. Later we will use the notation

$$\hat{\mu} = \frac{1}{2\pi i} \mu.$$
Then the map $t \mapsto f^\sigma(a_t x)$ with $a_t = \text{diag}(e^t, e^{-t})$ is periodic of period t_0 and thus has a Fourier-expansion

$$f^\sigma(a_t x) = \sum_{k \in \mathbb{Z}} e^{2\pi i k t/t_0} \frac{1}{t_0} \int_0^{t_0} f^\sigma(a_t x) e^{-2\pi i k t/t_0} dt.$$

For $k \in \mathbb{Z}$ let

$$I_k^\gamma : C^\infty(\Gamma \backslash G) \to \mathbb{C}$$

$$f \mapsto \frac{1}{t_0} \int_0^{t_0} f^\sigma(a_t x) e^{-2\pi i k t/t_0} dt.$$

Note that I_k^γ depends on the choice of σ. Geometrically, this corresponds to choosing a base-point on the closed orbit c. This dependence is not severe, as σ is determined up to multiplication from the right by elements of A.

If we replace σ by σa_0, then I_k^γ is replaced by $a_0^{k \mu \gamma} I_k^\gamma$. So in particular, the absolute value $|I_k^\gamma|$ is uniquely determined by k and γ. Further, if γ is replaced by a Γ-conjugate, say $\gamma' = \tau \tau^{-1}$ then one can choose $\sigma_{\gamma'}$ to be equal to $\tau \sigma_{\gamma}$ and with this choice one gets $I_k^{\gamma'} = I_k^\gamma$.

The form b determines a Haar measure dg on G. Let R denote the unitary G-representation on $L^2(\Gamma \backslash G)$ given by right translations. We are particularly interested in the subspace $L^2_{\text{cusp}}(\Gamma \backslash G)$ of cusp forms. This representation space decomposes discretely,

$$L^2_{\text{cusp}}(\Gamma \backslash G) \cong \bigoplus_{\pi \in \hat{\Gamma}} N_\Gamma(\pi) \pi,$$

where the sum runs over the unitary dual $\hat{\Gamma}$ of G and the multiplicities $N_\Gamma(\pi)$ are finite. Here and later we understand the direct sum to be a completed direct sum in the appropriate topology. We define $C^\infty_{\text{cusp}}(\Gamma \backslash G)$ to be the intersection of $C^\infty(\Gamma \backslash G)$ with the space of cusp forms. Then it turns out that $C^\infty_{\text{cusp}}(\Gamma \backslash G)$ is the set of smooth vectors in the representation space $L^2_{\text{cusp}}(\Gamma \backslash G)$, i.e.,

$$C^\infty_{\text{cusp}}(\Gamma \backslash G) = L^2_{\text{cusp}}(\Gamma \backslash G)^\infty = \bigoplus_{\pi \in \hat{\Gamma}} N_\Gamma(\pi) \pi^\infty,$$

where π^∞ is the representation on the Fréchet space of smooth vectors. The linear functional I_k^γ satisfies

$$I_k^\gamma(R(a)\varphi) = a^{k \mu \gamma} I_k^\gamma(\varphi)$$

for every $a \in A$. This means that I_k^γ is an intertwining functional.
2 Intertwining functionals

We first shall give a description of the admissible and unitary duals of the group G. For any topological group G, let \hat{G} denote the unitary dual of G, that is, the set of unitary equivalence classes of irreducible unitary representations of G.

Next let G denote a semisimple Lie group with finite center and finitely many connected components. Then G has a maximal compact subgroup K which is unique up to conjugation. A representation (π, V_{π}) of G is called admissible, if for every $\tau \in \hat{K}$ the isotype $V_{\pi}(\tau)$ is finite-dimensional. In that case the space $V_{\pi,K}$ of K-finite vectors in V_{π} forms a (g, K)-module, where g is the complexified Lie algebra of G. Two admissible representations are called infinitesimally equivalent if their (g, K)-modules of K-finite vectors are isomorphic. The admissible dual \hat{G}_{adm} of G is the set of infinitesimal equivalence classes of irreducible admissible representations of G.

Due to results of Harish-Chandra, every irreducible unitary representation of G is admissible and two unitary admissible representations are unitarily equivalent if and only if they are infinitesimally equivalent. Thus the unitary dual \hat{G} can be considered a subset of the admissible dual \hat{G}_{adm}.

Now consider $G = \text{PGL}_2(\mathbb{R})$. There is a canonical character

$$\chi : G \to \{\pm 1\}; \quad g \mapsto \text{sign}(\det(g)),$$

taking the values ± 1 and having the connected component G^0 for kernel. For a representation π of G we define the χ-twist $\chi\pi$ of π, also written $\chi \otimes \pi$ as the representation with the same space V_{π} as π but defined as

$$\chi\pi(x) = \chi(x)\pi(x).$$

Let P denote the parabolic subgroup of G consisting of all upper triangular matrices. Then $P = MAN$, where N is the group of all upper triangular matrices with ones on the diagonal. For $\lambda \in \mathbb{C}$ and $a = \begin{bmatrix} e^t & \cdot \\ e^{-t} & 1 \end{bmatrix} \in A$ we write

$$a^\lambda = e^{\lambda t}.$$

Let π_λ be the corresponding principal series representation, which we normalize to live on the space of functions $\varphi : G \to \mathbb{C}$ satisfying $\varphi(manx) = a^{\lambda+1}\varphi(x)$. Let V_λ be the space of π_λ and let V_λ^∞ be the space of smooth
vectors in it. These can be viewed as smooth sections of the line bundle E_λ over $P \backslash G$ given by the P-representation $(\pi, V_\pi) \mapsto a^{\lambda+1}$. Note that restriction of functions to K identifies V_λ^∞ with the space $C^\infty(M \backslash K)$, so in particular, for $\varphi \in V_\lambda^\infty$, the function $\varphi|_K$ is independent of λ.

Proposition 2.1. Let $G = \text{PGL}_2(\mathbb{R})$. The admissible dual \hat{G}_{adm} of G consists of

(a) π_λ, $\lambda \in \mathbb{C}$, $\lambda \notin 1 + 2\mathbb{Z}$,

(b) \mathcal{D}_{2n} for $n = 1, 2, 3, \ldots$ the standard discrete series representations,

(c) δ_m for $m = 0, 2, 4, \ldots$ where δ_m is the $(m + 1)$-dimensional representation on the space of all homogeneous polynomials $p(X, Y)$ of degree m,

Proof. This can be deduced from the description of the unitary dual of $\text{SL}_2(\mathbb{R})$ given, for example, in [Kna01].

Let $T = \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix}$ be the non-trivial element of M. As $T^2 = 1$, for every representation (π, V_π), the space V_π splits as a direct sum $V_\pi = V_\pi^+ \oplus V_\pi^-$.
where $V_{π}^\pm$ is the ± 1-eigenspace of $π(T)$. Twisting by $χ$ interchanges the roles of $V_{π}^+$ and $V_{π}^-$.

Let $μ ∈ a^*$ and let $(π, V_π)$ be a representation of G. A continuous linear functional $l : V_π^∞ → C$ is called a $μ$-intertwiner, if

$$l(π(a)v) = a^μl(v)$$

holds for every $a ∈ A$ and every $v ∈ V_π$. Let $V_π^∞(μ)$ be the space of all $μ$-intertwiners. Note that $V_π^∞(μ) = V_π^∞(χπ(μ))$, where we consider the $χ$-twist $χπ$ as a representation with the same representation space as $π$.

Let $w_0 = [1 \ -1]$ and $n_0 = [1 \ 1]$. Then w_0 is a representative of the non-trivial element of the Weyl-group $W(G, A)$.

The base space $P \setminus G$ of the bundle $E_λ$ consists of three orbits under the group AM, namely the open orbit $[w_0n_0]$, and the two closed orbits $[1]$, $[w_0]$ which are indeed points.

We now define a standard intertwiner on the representation $π_λ$ for $\text{Re}(λ) > -1$. Let

$$I^\text{st}_{λ,μ}(φ) = I^\text{st}_{π_λ,μ}(φ) = \int_A φ(w_0n_0a)a^{-μ}da, \quad φ ∈ V_λ^∞.$$

If $\text{supp} φ ⊂ [w_0n_0]$, then the integral $I^\text{st}_{λ,μ}$ is extended over a compact set, hence it exists.

Lemma 2.2. Let $μ ∈ C$. If $\text{Re}(λ) > -1 - \text{Re}(μ)$, then the integral $I^\text{st}_{λ,μ}(φ)$ exists for every $φ ∈ V_λ^∞$ and defines a $μ$-intertwiner. The map $λ ↦ I^\text{st}_{λ,μ}$ extends to a meromorphic operator-valued function with poles exactly at

$$λ = -μ - 1 - 4k, \quad k ∈ N_0$$

and

$$λ = μ - 3 - 4k, \quad k ∈ N_0.$$

Outside the poles, $I^\text{st}_{λ,μ}$ spans the one dimensional space of intertwiners supported on the open orbit. At the poles this space is zero.

Proof. Let $a : G → A$, $n : G → N$, $k : G → K$ be the smooth maps defined by the Iwasawa decomposition $g = ank = a(g)n(g)k(g)$ for $g ∈ G$. For
\[\varphi \in V^\infty_{\lambda} \text{ one has} \]

\[
I_{\lambda,\mu}^{st}(\varphi) = \int_{A} a(w_{0}n_{0}a)\lambda^{+1} a^{-\lambda-1-\mu} \varphi(k(w_{0}n_{0}a)) da \\
= \int_{A} a(w_{0}n_{0}^{a})\lambda^{+1} a^{-\lambda-1-\mu} \varphi(k(w_{0}n_{0}a)) da,
\]

where \(n_{0}^{a} = a^{-1}n_{0}a \). Noting that if \(a = \begin{pmatrix} e^{t} & e^{-t} \\ e^{-t} & e^{t} \end{pmatrix} \), then we have \(n_{0}^{a} = \begin{pmatrix} 1 & e^{-2t} \\ e^{-2t} & 1 \end{pmatrix} \), we get \(w_{0}n_{0}^{a} = \begin{pmatrix} 0 & \sqrt{e^{-4t+1}} \\ \sqrt{e^{-4t+1}} & 1 \end{pmatrix} \) and thus \(k(w_{0}n_{0}^{a}) = \frac{1}{\sqrt{e^{-4t+1}} \begin{pmatrix} e^{-2t} & -1 \\ -1 & e^{-2t} \end{pmatrix}} \). We now define special test functions. For \(k, l \in \mathbb{N}_{0} \) let \(\varphi_{k,l} : \text{SO}(2) \to \mathbb{C} \) be defined by

\[\varphi_{k,l}(d_{c,d}) = e^{kd}. \]

If \(k + l \) is even, \(\varphi_{k,l} \) defines an element of \(V^\infty_{\lambda} \). The theory of Taylor-series tells us that every \(\varphi \in V^\infty_{\lambda} \) can be written as

\[\varphi = \sum_{0 \leq k,l \leq N} c_{k,l} \varphi_{k,l} + R_{N}(\varphi), \]

where \(c_{k,l} \in \mathbb{C} \) and the function \(R_{N}(\varphi) \in V^\infty_{\lambda} \cong C^{\infty}(M\backslash K) \) vanishes to order \(N \) at 1 and \(w_{0} \). The integral \(I_{\lambda,\mu}^{st}(\varphi) \), as written above, makes sense for \(\varphi = \varphi_{k,l} \) also in the case when \(k + l \) is not even. We use this fact for convenience. For \(k, l \in \mathbb{N}_{0} \) we compute

\[
I_{\lambda,\mu}^{st}(\varphi_{k,l}) = \int_{A} a(w_{0}n_{0}^{a})\lambda^{+1} a^{-\lambda-1-\mu} \varphi_{k,l}(k(w_{0}n_{0}^{a})) da \\
= \int_{R} a\begin{pmatrix} 0 & -1 \\ 1 & e^{-2t} \end{pmatrix}^{\lambda^{+1}} e^{-(\lambda+1+\mu)t} \varphi_{k,l}\begin{pmatrix} 0 & -1 \\ 1 & e^{-2t} \end{pmatrix} dt \\
= \int_{R} (e^{-4t} + 1)^{-\lambda+1} e^{-(\lambda+1+\mu)t} \varphi_{k,l} \left(\frac{1}{\sqrt{e^{-4t} + 1}} \begin{pmatrix} e^{-2t} & -1 \\ -1 & e^{-2t} \end{pmatrix}\right) dt \\
= \int_{R} (e^{-4t} + 1)^{-\lambda + 2l + 1 + \mu} e^{-(\lambda+2l+1+\mu)t} dt \\
= \frac{1}{4} \int_{R} (e^{-t} + 1)^{-\lambda + 2l + 1 + \mu} e^{-\lambda - 2l + 1 + \mu} dt \\
= \frac{1}{4} B\left(\frac{\lambda + 2l + 1 + \mu}{4}, \frac{\lambda + 2k + 1 - \mu}{4}\right),
\]

where \(B(x, y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} \) is Euler’s Beta-function. We conclude

\[I_{\lambda,\mu}^{st}(\varphi_{k,l}) = \frac{\Gamma\left(\frac{\lambda + 2l + 1 + \mu}{4}\right) \Gamma\left(\frac{\lambda + 2k + 1 - \mu}{4}\right)}{\Gamma\left(\frac{\lambda + 2l + 1 + \mu}{4}\right)}. \]
Note that
\[I_{\lambda,\mu}^{st}(\varphi_{k+1,l+1}) = I_{\lambda+2,\mu}^{st}(\varphi_{k,l}). \]
The space \(\varphi_{N,N}C^\infty(M \setminus K) \) is the space of all \(\varphi \in V^\infty_\lambda \) which vanish to order \(\geq N \) at 1 and \(w_0 \). For any \(\varphi \) in this space, the integral \(I_{\lambda,\mu}^{st}(\varphi) \) converges if \(\text{Re}(\lambda) > -N - 1 - \text{Re}(\mu) \). Therefore we get analytic continuation of the map \(\lambda \mapsto I_{\lambda,\mu}^{st} \) as claimed. The lemma follows.

We next consider intertwiners which are supported on the closed orbits [1] and \([w_0]\). Let \(S_{[1],0} : V^\infty_\lambda \to \mathbb{C} \) denote the distribution
\[
S_{[1],0}(\varphi) = \varphi(1).
\]
Then \(S_{[1],0} \circ R(a) = a^{\lambda+1}S_{[1],0} \), so \(S_{[1],0} \) is an \(\mu \)-intertwiner for \(\mu = \lambda + 1 \).

We next consider higher derivatives of this distribution. For \(X \in \mathfrak{g} \), the Lie algebra of \(G \), and \(f \in C^\infty(G) \), we let
\[
R_X f(y) = \frac{d}{dt} \bigg|_{t=0} f(y \exp(tX)).
\]
Let \(\bar{N} = \theta(N) \) and let \(\bar{n}_\mathbb{R} \) be its Lie algebra. Then the tangent space of \(P \setminus G \) at the unit is isomorphic to \(\bar{n}_\mathbb{R} \). Let \(X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \) and \(\bar{X} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \). Then \(n_\mathbb{R} = \mathbb{R}X \) and \(\bar{n}_\mathbb{R} = \mathbb{R}\bar{X} \). For \(k \in \mathbb{N} \) set
\[
S_{[1],k}(\varphi) = R^k_X \varphi(1).
\]
Then \(S_{[1],k} \circ R(a) = a^{\lambda+1+2k}S_{[1],k} \). Since these span the space of all distributions supported at 1 we see that we get a non-zero \(\mu \)-intertwiner supported on 1 if and only if
\[
\mu = \lambda + 1 + 2k
\]
for some \(k \in \mathbb{N}_0 \). If this condition is satisfied, then the space of intertwiners supported on \([1]\) is one dimensional.

We turn to the other closed orbit \([w_0]\). In this case we define
\[
S_{[w_0],k}(\varphi) = R^k_X \varphi(w_0).
\]
Then \(S_{[w_0],k} \circ R(a) = a^{-\lambda-1-2k}S_{[w_0],k} \) and we conclude that there exists a non-zero intertwiner supported on \([w_0]\) if and only if
\[
\mu = -\lambda - 1 - 2k, \quad k \in \mathbb{N}_0,
\]
in which case the space of intertwiners supported on \([w_0]\) is one dimensional.
Theorem 2.3. (a) For \(\lambda, \mu \in \mathbb{C} \) with \(\mu \neq 0 \) we have
\[
\dim V^{\infty}_{\lambda}(\mu) = 1.
\]
In this case, if \(\lambda \notin \pm(\mu - 1) - 2\mathbb{N}_0 \), then \(V^{\infty}_{\lambda}(\mu) \) is spanned by \(I_{\lambda\mu}^{st} \). If \(\lambda = \mu - 1 - 2k \) with \(k \in \mathbb{N}_0 \), then \(V^{\infty}_{\lambda}(\mu) \) is spanned by \(S_{[1],k} \) and if \(\lambda = -\mu - 1 - 2k \) with \(k \in \mathbb{N}_0 \), then \(V^{\infty}_{\lambda}(\mu) \) is spanned by \(S_{[w_0],k} \).

The same holds for the \(\chi \)-twist.

(b) For \(\lambda \in \mathbb{C} \) and \(\mu = 0 \) we have
\[
\dim V^{\infty}_{\lambda}(0) = \begin{cases}
2 & \lambda \in -1 - 2\mathbb{N}_0, \\
1 & \text{otherwise.}
\end{cases}
\]
If \(\lambda \notin -1 - 2\mathbb{N}_0 \), then \(V^{\infty}_{\lambda}(0) \) is spanned by \(I_{\lambda,0}^{st} \). If \(\lambda = -1 - 2k \) with \(k \in \mathbb{N}_0 \), then \(V^{\infty}_{\lambda}(0) \) is spanned by \(S_{[w_0],k}, S_{[1],k} \).

The same holds for the \(\chi \)-twist.

(c) For the finite-dimensional representations we have \(\dim \delta_{2n}(\mu) = 0 \) if \(\mu \neq -2n, -2n + 2, \ldots, 2n \) and \(\dim \delta_{2n}(\mu) = 1 \) if \(\mu \in \{-2n, -2n + 2, \ldots, 2n\} \).

(d) Let \(\mu \in \mathbb{C}, n \in \mathbb{N} \). Then we have an exact sequence
\[
0 \to \mathcal{D}^{\infty}_{2n}(\mu) \to V^{\infty}_{1-2n}(\mu) \to \delta_{2n-2}(\mu) \to 0.
\]
If \(\mu \notin \{-2n + 2, \ldots, 2n - 2\} \), then \(\delta_{2n-2}(\mu) = 0 \) and therefore \(\mathcal{D}^{\infty}_{2n}(\mu) \cong V^{\infty}_{1-2n}(\mu) \) is one dimensional.

If \(\mu \in \{-2n + 2, \ldots, 2n - 2\} \) but \(\mu \neq 0 \), then \(\mathcal{D}^{\infty}_{2n}(\mu) = 0 \) and finally \(\mathcal{D}^{\infty}_{2n}(0) \) is one-dimensional and is spanned by \(S_{[1],n-1} - S_{[w_0],n-1} \).

Proof. (a) and (b) are clear by the above. For (c) recall that \(\delta_{2n} \) has the basis \(e_{2j-2n} = X^j Y^{2n-j} \) for \(j = 0, \ldots, 2n \) and the group \(A \) acts by \(\delta_{2n}(a)e_{2j-2n} = a^{2j-2n}e_{2j-2n} \). This proves (c).

For (d) we consider the exact sequence
\[
0 \to \delta_{2n-2} \to \pi_{1-2n} \to \mathcal{D}_{2n} \to 0,
\]
which induces the exact sequence of intertwiners
\[
0 \to \mathcal{D}^{\infty}_{2n}(\mu) \to V^{\infty}_{1-2n}(\mu) \to \delta_{2n-2}(\mu).
\]
This proves the first assertion, i.e., the case $\delta_{2n-2}(\mu) = 0$. If $\mu \in \{-2n + 2, \ldots, 2n - 2\}$, which means $\delta_{2n-2}(\mu) \neq 0$, then we have to show that the map $V_{1-2n}^\infty(\mu) \to \delta_{2n-2}(\mu)$ is non-zero, for it is automatically onto then, as the target space is one-dimensional. The above exact sequence dualizes to the exact sequence

$$0 \to D_{2n} \to \pi_{2n-1} \to \delta_{2n-2} \to 0,$$

which yields an exact sequence

$$0 \to \delta_{2n-2}(\mu) \to V_{2n-1}^\infty(\mu) \to D_{2n}^\infty(\mu).$$

So the arrow $\delta_{2n-2}(\mu) \to V_{2n-1}^\infty(\mu)$ is non-zero, hence its dual $V_{1-2n}^\infty(\mu) \to \delta_{2n-2}(\mu)$ likewise.

Finally, for $\mu = 0$ we show that the kernel of the restriction map $V_{1-2n}^\infty(0) \to \delta_{2n-2}(0)$ is spanned by $S_{[w_0],n-1} - S_{[1],n-1}$. Recall that R_X and $R_{\bar{X}}$ are the weight-change operators in highest weight theory, so $R_{X}^{-1}e_0$ is a multiple of e_{2n-2} and $R_{\bar{X}}^{-1}e_0$ is a multiple of e_{2-2n}. Let $\theta(x) = x^{-t}$ be the transpose followed by the inversion, i.e., θ is the Cartan-involution on G with fixed point set K. We have $\theta(X) = \bar{X}$. It is readily verified that the map Ψ with $\Psi(f)(x) = f(w_0\theta(x))$ is an isomorphism between the representations π_λ and $\pi_{\lambda} \circ \theta$. Thus it follows that $S_{[w_0],n-1}(\Psi(\varphi)) = S_{[1],n-1}(\varphi)$. As $\Psi(\pi(a)\varphi) = \pi(a^{-1})\Psi(\varphi)$ and $\Psi^2 = \text{Id}$ it follows that $\Psi(e_0) = \pm e_0$. We want to show $\Psi(e_0) = e_0$. For this we let $(d^c_{-c}) \in \text{SO}(2)$ with $c, d > 0$. The A-invariance of e_0 shows that for $a > 0$ we have

$$e_0 \left(\frac{1}{\sqrt{a^2c^2 + d^2/a^2}} \begin{pmatrix} ad - c/a \\ ac - d/a \end{pmatrix} \right) = (c^2a^2 + d^2/a^2)^{\frac{n-1}{2}} e_0 \left(\begin{pmatrix} d & -c \\ c & d \end{pmatrix} \right).$$

So the A-orbit is mapped to positive multiples of $e_0 \left(\begin{pmatrix} d & -c \\ c & d \end{pmatrix} \right)$. By the M-invariance we get on the other hand,

$$e_0 \left(\begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} d & -c \\ c & d \end{pmatrix} \right) = e_0 \left(\begin{pmatrix} -c & -d \\ d & c \end{pmatrix} \right) = e_0 \left(\begin{pmatrix} c & -d \\ d & c \end{pmatrix} \right).$$

As (d^c_{-c}) lies in the same A-orbit as (d^c_{-c}), the claim follows. We therefore conclude that $S_{[w_0],n-1}(e_0) = S_{[1],n-1}(e_0)$.

A sequence $(c_j)_{j \in \mathbb{N}}$ of complex numbers is said to be of moderate growth, if there exist $N \in \mathbb{N}$ such that

$$|c_j| = O(j^N),$$
as \(j \to \infty \). The sequence is called rapidly decreasing, if for every \(N \in \mathbb{N} \) one has
\[
|c_j| = O(j^{-N})
\]
as \(j \to \infty \). The product of two moderately growing sequences is moderately growing and the product of a moderately growing sequence and a rapidly decreasing sequence is rapidly decreasing.

Proposition 2.4. Let \(\text{Re}(\lambda) > -1 \) and \(f \in V_\lambda^\infty \) as well as \(\mu \in i\mathbb{R} \setminus \{0\} \) be given. Then the sequence \((I_{\lambda,k\mu}^\ast(f))_{k \in \mathbb{Z}} \) is rapidly decreasing.

Proof. Recall \(H_1 = \begin{pmatrix} 1 & -1 \\ \end{pmatrix} \). Using integration by parts, we compute for \(N \in \mathbb{N} \),
\[
I_{\lambda,k\mu}^\ast(\varphi) = \int_A \varphi(w_0n_0a)a^{-k\mu} \, da \\
= \int_\mathbb{R} \varphi(w_0n_0 \exp(tH_1)e^{-k\mu t}) \, dt \\
= \left(\frac{1}{k\mu} \right)^N \int_\mathbb{R} R_{H_1}^N \varphi(w_0n_0a)a^{-k\mu} \, da.
\]
As \(\text{Re}(\mu) = 0 \) we have \(|a^{-k\mu}| = 1 \) and the claim follows. \(\square \)

By an automorphic representation \((\pi, V_\pi, \eta) \) we mean an irreducible unitary representation \((\pi, V_\pi) \) of \(G \) together with an isometric \(G \)-equivariant linear map \(\eta: V_\pi \to L^2(\Gamma \setminus G) \). Then \(\eta \) maps the space \(V_\pi^\infty \) of smooth vectors into \(C^\infty(\Gamma \setminus G) \). Let \(k \in \mathbb{Z} \). The map \(I_k^\gamma \circ \eta \) is an intertwiner for \(k\mu_\gamma \). So, for instance, let \(\pi = \pi_\lambda \in \hat{G} \), then the space of intertwiners on \(V_\lambda \) is spanned by \(I_{\lambda,k\mu_\gamma} \). Therefore there exists \(a_k^{\eta;\gamma} \in \mathbb{C} \) such that
\[
I_k^\gamma \circ \eta = a_k^{\eta;\gamma} I_{\lambda,k\mu_\gamma}^\ast.
\]
However, if \(\pi = D_{2n} \) is a discrete series representation and \(k = 0 \), then there are \(b_0^{\eta;\gamma}, c_0^{\eta;\gamma} \in \mathbb{C} \) such that
\[
I_0^\gamma \circ \eta = b_0^{\eta;\gamma} S_{[1],n-1} + c_0^{\eta;\gamma} S_{[w_0],n-1},
\]
where \(c_0^{\eta;\gamma} = -b_0^{\eta;\gamma} \) if \(n \) is even and analogously for the \(\chi \)-twist. Finally, If \(\pi \) is the trivial representation, we consider \(\pi \) as a subrepresentation of \(\pi_{-1} \), so this case does not need extra treatment.
Theorem 2.5. (a) There exists a constant $C_\eta > 0$, depending on γ, such that

$$|a^{\eta,\gamma}_k| \leq C_{\gamma} \left(1 + |\lambda|^{1/4} \right) \left(1 + |\lambda^2 - k^2\mu^2|^{1/4} \right) e^{\pi|k\mu|}$$

holds for every cuspidal automorphic representation $\eta : V_\lambda \to L^2_{\text{cusp}}(\Gamma \backslash G)$ and every $k \in \mathbb{Z}$.

(b) For a fixed automorphic representation $\eta : V_\lambda \to L^2_{\text{cusp}}(\Gamma \backslash G)$ there exists a constant $C_{\eta,\gamma} > 0$ such that

$$|a^{\eta,\gamma}_k| \leq C_{\eta,\gamma} (1 + |k|^{1/4})$$

holds for every $k \in \mathbb{Z}$.

(c) There exists a constant $D_{\gamma} > 0$, depending on γ, such that

$$|b^{\eta,\gamma}_0|, |c^{\eta,\gamma}_0| \leq D_{\gamma} n^{5-n}$$

holds for every cuspidal automorphic representation $\eta : D_{2n} \to L^2_{\text{cusp}}(\Gamma \backslash G)$.

Proof. (a) Let $\varphi = \varphi_\lambda \in V_\lambda$ be the unique K-invariant function which on K takes the value 1 and let $f = \eta(\varphi)$. Then

$$I^{\gamma}_k(f) = a^{\eta,\gamma}_k I^{k\mu}_{\lambda}(\varphi) = a^{\eta,\gamma}_k I^{k\mu}_{\lambda}(f_{0,0}) = a^{\eta,\gamma}_k \frac{\Gamma \left(\frac{\lambda+1+k\mu}{4} \right) \Gamma \left(\frac{\lambda+1-k\mu}{4} \right)}{\Gamma \left(\frac{\lambda+1}{2} \right)}$$

If Γ is cocompact, by [SS89] the sup norm of f satisfies

$$\|f\|_\infty = O \left(|\lambda|^{1/4} \right).$$

If Γ is not cocompact, one finds in [Iwa02], Sec. 13.2, that

$$|f(z)| = O_x (|z|^{1/4}),$$

where the implied constant depends continuously on z. Therefore, this estimate holds uniformly on the closed geodesic attached to γ. According to [GR07] 8.328.1, for fixed real x and for $|y| \to \infty$ one has

$$|\Gamma(x + iy)| \sim \sqrt{2\pi} e^{-\frac{x}{2}|y|} |y|^{x-\frac{3}{2}}.$$

This implies the claim.
(b) We start out as in the above proof, except that we don’t use the estimate $|f(z)| \ll z^{|\lambda| \frac{3}{4}}$. We thus get

$$|a_k^{\eta,\gamma}| \ll |I_k^{\gamma}(f)|(1 + |\lambda|^2 - k^2 |\mu|^2 |\frac{3}{4})e^{\frac{\pi}{4}|k\mu|}.$$

It suffices to show that for fixed γ and η one has

$$|I_k^{\gamma}(f)| \ll e^{-\frac{\pi}{4}|k\mu|}.$$

We will show this using the technique of analytic continuation of representations from [BR99]. Let $X \in \text{sl}_2(\mathbb{R})$ with $\gamma = \exp(X)$. After conjugating Γ, we may assume $X = \text{diag}(A, -A)$ for some $A > 0$. Then $\gamma = \text{diag}(e^A, e^{-A})$ and $\mu = \frac{2\pi i}{A}$. We have

$$I_k^{\gamma}(f) = \int_0^1 f(\exp(tX))e^{-2\pi i k t} dt.$$

It is easy to see that the function $t \mapsto \pi_\lambda(a_t)\phi$ with $a_t = \begin{bmatrix} e^{At} & e^{-At} \end{bmatrix}$ extends to a holomorphic function from $\{ \text{Im} z < \frac{\pi}{4A} \}$ to V_λ. It follows that the function $f(\exp(tX)) = \eta(\pi_\lambda(a_t)\phi(1))$ extends to a holomorphic function on the set of all $z = x + iy \in \mathbb{C}$ with $|y| < \frac{\pi}{4A}$. We get a continuous extension to $|y| \leq \frac{\pi}{4A}$. For $k \geq 0$ we get by a shift of the contour integral that

$$I_k^{\gamma}(f) = \int_0^1 f(\exp(tX))e^{-2\pi i k t} dt$$

$$= \int_0^1 f(\exp((t - i \frac{\pi}{4A})X))e^{-2\pi i k t} dt e^{-\frac{\pi^2}{4A} k} = \text{const} \cdot e^{-\frac{\pi}{4}|k\mu|}.$$

For $k < 0$ we similarly move the contour to $i\frac{\pi}{4A}$.

(c) Let $n \in \mathbb{N}$ and let $\varphi_n : K \to \mathbb{C}$ be given by

$$\varphi_n \left(\begin{bmatrix} d & c \\ e & d \end{bmatrix} \right) = (ci + d)^{2n}.$$

Then φ_n and its complex conjugate span the lowest K-type in $\mathcal{D}_{2n} \cong \pi_{1 - 2n}/\delta_{2n - 2}$. A computation shows

$$R_X^* \varphi_n = i n(\varphi_n + \varphi_{n+1}),$$

$$R_X \varphi_n = -i n(\varphi_n - \varphi_{n+1}).$$

We use induction in $k \in \mathbb{N}_0$ to show that

$$S_{[1],k}(\varphi_n) = (-1)^{k+n} S_{[\varphi_0],k}(\varphi_n).$$
For $k = 0$ we have

$$S_{[1],k}(\varphi_n) = \varphi_n(1) = 1 = (-1)^n \varphi(w_0) = (-1)^{k+n} S_{[w_0],k}(\varphi_n).$$

The step $k \mapsto k + 1$ is

$$S_{[1],k+1}(\varphi_n) = R_X^{k+1} \varphi_n(1)$$

$$=
\int (R_X^k \varphi_n + \varphi_{n+1})(1)

= \int (S_{[1],k}(\varphi_n) + S_{[1],k}(\varphi_{n+1})

= \int ((-1)^{k+n} S_{[w_0],k}(\varphi_n) + (-1)^{k+n+1} S_{[w_0],k}(\varphi_{n+1})

= (-1)^{k+n+1} \left(-\int S_{[w_0],k}(\varphi_n) + S_{[w_0],k}(\varphi_{n+1}) \right)

= (-1)^{k+n+1} \left(-\int R_X^k \varphi_n(w_0) + R_X^{k+1} \varphi_{n+1}(w_0) \right)

= (-1)^{k+n+1} \left(R_X^{k+1} \varphi_n(w_0) \right)

= (-1)^{k+n+1} \left(S_{[w_0],k+1}(\varphi_n) \right).$$

Next we show that

$$|S_{[1],n-1}(\varphi_n)| \geq n^{n-1} \quad \text{and} \quad |S_{[1],n-1}(\varphi_{n+1})| \geq n^{n-1}$$

This follows from $\varphi_m(1) = 1$ and the fact that

$$R_X^k \varphi_n = i^k (n^k \varphi_n + (\ast)),$$

where (\ast) denotes a linear combination of φ_m, $m \geq n + 1$ with positive coefficients. Now the equality

$$I_0^\gamma(\eta(\varphi_n)) = b_0^{\eta_\gamma} S_{[1],n-1}(\varphi_n) + c_0^{\eta_\gamma} S_{[w_0],n-1}(\varphi_n)$$

implies $I_0^\gamma(\eta(\varphi_n)) = (b_0^{\eta_\gamma} - c_0^{\eta_\gamma}) S_{[1],n-1}(\varphi_n)$ and thus

$$|b_0^{\eta_\gamma} - c_0^{\eta_\gamma}| \ll \frac{|I_0^\gamma(\eta(\varphi_n))|}{n^{n-1}}.$$
FOURIER EXPANSION

independent of \(\eta \). To see this, let \(\Delta \) denote the group Laplacian, i.e.,
\[
\Delta = -C + 2CK
\]
where \(C \) is the Casimir-operator and \(CK \) is the Casimir operator of the group \(K \). Then for \(\eta : D_{2n} \to L^2_{\text{cusp}}(\Gamma \backslash G) \) a computation shows \(\Delta \eta(\varphi_n) = n(n-1)\eta(\varphi_n) \). Since \(\Delta \) is elliptic, positive definite and of order two on the 3-dimensional manifold \(\Gamma \backslash G \), the operator \((1 + \Delta)^{-1}\) has a continuous kernel \(k_0(x, y) \). It acts on the space of cusp forms through the continuous kernel
\[
k_0(x, y) = \sum_{j=1}^{\infty} (1 + \lambda_j)^{-2} \phi_j(x) \overline{\phi_j(y)},
\]
where \(\phi_j \) is an orthonormal basis of \(L^2_{\text{cusp}}(\Gamma \backslash G) \) consisting of \(\Delta \)-eigenfunctions and \(\lambda_j \) is the eigenvalue of \(\phi_j \). Selberg has shown in the Göttingen lectures, that \(k_0 \) actually is an \(L^2 \)-kernel. We have
\[
|\eta(\varphi_n)(x)| = (1 + n(n - 1))^2 |(1 + \Delta)^{-2} \eta(\varphi_n)(x)|
\]
\[
= (1 + n(n - 1))^2 \left| \int_{\Gamma \backslash G} k_0(x, y) \eta(\varphi_n)(y) \, dy \right|
\]
\[
\leq (1 + n(n - 1))^2 \left(\int_{\Gamma \backslash G} |k_0(x, y)|^2 \, dy \right)^{1/2}.
\]
As \(k_0 \) is an \(L^2 \)-kernel, the latter integral is finite almost everywhere in \(x \) and is locally bounded outside a set of measure zero. Hence the continuous function \(\eta(\varphi_n) \) is locally bounded by a constant times \((1 + n(n - 1))^2 \), so it is locally \(O(n^4) \) and the same holds for the period integral \(I_0(\eta(\varphi_n)) \).

3 Fourier expansion of Maaß forms

Let \(f : \Gamma \backslash \mathbb{H} \to \mathbb{C} \) be a Maaß form, i.e., \(f \in L^2(\Gamma \backslash \mathbb{H}) \) is an eigenform of the hyperbolic Laplacian, say \(\Delta f = (\frac{1}{4} - \lambda^2) f \) for \(\lambda \in \mathbb{C} \). Then there exists an automorphic representation \((\pi, V_\pi, \eta) \) with \(\pi = \pi_\lambda \) such that \(f = \eta(\varphi_0) \), where \(\varphi_0 \in V_\pi \) is a \(K \)-invariant function. By scaling, one can achieve \(\varphi_0(K) = \{1\} \). One then gets the Fourier expansion
\[
f(x) = \sum_{k \in \mathbb{Z}} a_k^{\eta, \gamma} I_{\lambda_k, \mu_\gamma}^{\text{st}} (\pi(\sigma^{-1} x) \varphi_0).
\]
Note that the automorphic representation \(\eta \), which determines the form \(f \), enters on the right hand side only through the coefficients \((a_k^{\eta, \gamma})_{k \in \mathbb{Z}} \). In particular, if \(x = \sigma a_t \) for \(t \in \mathbb{R} \), one has
\[
I_{\lambda_k, \mu_\gamma}^{\text{st}} (\pi(\sigma^{-1} x) \varphi_0) = I_{\lambda_k, \mu_\gamma}^{\text{st}} (\pi(a_t) \varphi_0) =
\]
FOURIER EXPANSION

\[a^\mu I^\iota_{\lambda,k\mu_\gamma}(\varphi_0), \text{ and therefore } f \left(\sigma \left(\frac{e^t}{e^{-t}} \right) \right) \text{ equals} \]

\[\frac{1}{\Gamma \left(\frac{\lambda+1}{2} \right)} \sum_{k \in \mathbb{Z}} a^\eta \gamma e^{2\pi i k \tilde{\mu} t} \Gamma \left(\frac{\lambda + 2\pi ik\tilde{\mu} + 1}{4} \right) \Gamma \left(\frac{\lambda - 2\pi ik\tilde{\mu} + 1}{4} \right). \]

4 Triple products

In this section we assume \(\Gamma \) to be cocompact. Then \(L^2_{\text{cusp}}(\Gamma \backslash G) = L^2(\Gamma \backslash G) \).

Let \((\pi, V_\pi, \eta)\) be an automorphic representation with \(\pi = \pi_\lambda \) for some \(\lambda \in \mathbb{C} \). Since \(\pi \) is unitary, there is an anti-linear isomorphism to the dual \(c : V_\pi \to V_\pi^* \). Let \(\tilde{\pi} \) denote the dual representation on \(V_\pi^* = V_\tilde{\pi} \). Let \(\cdot \) be the complex conjugation on \(L^2(\Gamma \backslash G) \) and let \(\tilde{\eta} \) be the composition of the maps

\[V_\tilde{\pi} \xrightarrow{c^{-1}} V_\pi \xrightarrow{\eta} L^2(\Gamma \backslash G) \xrightarrow{\cdot} L^2(\Gamma \backslash G) \]

Then \(\tilde{\eta} \) is a \(G \)-equivariant linear isometry of \(V_\tilde{\pi} \) into \(L^2(\Gamma \backslash G) \), so \((\tilde{\pi}, V_\tilde{\pi}, \tilde{\eta})\) is an automorphic representation as well.

Let \(\Delta : \Gamma \backslash G \to \Gamma \backslash G \times \Gamma \backslash G \) be the diagonal map. Let \(\Delta^* : C^\infty(\Gamma \backslash G \times \Gamma \backslash G) \to C^\infty(\Gamma \backslash G) \) be the corresponding pullback map and let \(E = V_\pi^\infty \otimes V_\tilde{\pi}^\infty \), where \(\otimes \) denotes the projective completion of the algebraic tensor product.

Let \(\eta_E : E \to C^\infty(\Gamma \backslash G) \otimes C^\infty(\Gamma \backslash G) \cong C^\infty(\Gamma \backslash G \times \Gamma \backslash G) \)

be given by \(\eta \otimes \tilde{\eta} \). For \(\gamma \) as in the first section and \(k \in \mathbb{Z} \) we get an induced functional on \(E \),

\[l^k_{\Delta(\gamma)} = \hat{I}^\gamma_\iota \circ \Delta^* \circ \eta_E. \]

In other words, for \(w \in E \) we have

\[l_{\Delta(\gamma)}(w) = \frac{1}{l(\gamma)} \int_{\Lambda/\langle a_\gamma \rangle} \eta_E(w)(\sigma_\gamma a, \sigma_\gamma a) da. \]

This has the Fourier series expansion,

\[l_{\Delta(\gamma)}(w) = \sum_{k \in \mathbb{Z}} I^\gamma_\iota \circ \eta \otimes I^*_\iota_{-k} \circ \tilde{\eta}(w) \]

\[= \sum_{k \in \mathbb{Z}} a^\eta \gamma a^{\eta \gamma}_{-k} I^\iota_{\lambda,k\mu_\gamma} \otimes I^*_{-\lambda k\mu_\gamma}(w) \]

\[= \sum_{k \in \mathbb{Z}} |a^\eta \gamma_a|^2 \hat{w}(k, -k), \]
where the last line defines \hat{w} and we have used the fact that $\hat{a}_{k}^{\gamma} = \overline{a_{k}^{-\gamma}}$.

Let (τ, V_{τ}) be another element of \hat{G}. According to [Mol79] there is a canonical G-invariant continuous functional

$$T_{\tau}^{\text{st}} : E \otimes V_{\tau}^{\infty} \to \mathbb{C},$$

and any other such functional is a scalar multiple of T_{τ}^{st}. This induces a canonical G-equivariant continuous map

$$T_{\tau}^{\text{aut}} : E \to V_{\tau}^{\infty}.$$

On the other hand we have $\Delta^{*} \circ \eta_{E} : E \to L^{2}(\Gamma \backslash G)^{\infty}$. For an automorphic representation $(\tau, V_{\tau}, \eta_{\tau})$ we have an orthogonal projection $\text{Pr}_{\eta_{\tau}} : L^{2}(\Gamma \backslash G) \to V_{\tau}$ and thus we get a map

$$T_{\eta_{\tau}}^{\text{aut}} = \text{Pr}_{\eta_{\tau}} \circ \Delta^{*} \circ \eta_{E}$$

from E to V_{τ}^{∞}. Hence there is a coefficient $c(\eta, \eta_{\tau}) \in \mathbb{C}$ such that

$$T_{\eta_{\tau}}^{\text{aut}} = c(\eta, \eta_{\tau})T_{\tau}^{\text{st}}.$$

Fix a complete family (η_{j}) of normalized, pairwise orthogonal automorphic representations $\eta_{j} : \pi_{j} \to L^{2}(\Gamma \backslash G)$. Then the spectral expansion of $\Delta^{*} \circ \eta_{E}$ is

$$\Delta^{*} \circ \eta_{E} = \sum_{j} c(\eta, \eta_{j})T_{\pi_{j}}^{\text{st}}.$$

And hence, for $w \in E$,

$$l_{\Delta(\gamma)}(w) = \sum_{j : \pi_{j} \notin \hat{G}_{\text{ds}}} c(\eta, \eta_{j})a_{0}^{\eta_{j}, \gamma} I_{\pi_{j}}^{\text{st}}(T_{\pi_{j}}^{\text{st}}(w))$$

$$+ \sum_{j : \pi_{j} \in \hat{G}_{\text{ds}} \atop \pi_{j} \cong D_{2n}} c(\eta, \eta_{j})b_{0}^{\eta_{j}, \gamma} \left(S_{[1],n-1}(T_{\pi_{j}}^{\text{st}}(w)) - S_{[w_{0},n-1]}(T_{\pi_{j}}^{\text{st}}(w)) \right),$$

where $\hat{G}_{\text{ds}} \subset \hat{G}$ is the set of all discrete series representations of G. So we conclude

Lemma 4.1.

$$\sum_{k \in \mathbb{Z}} |a_{k}^{\eta, \gamma}|^{2} \hat{w}(k, -k) = \sum_{j : \pi_{j} \notin \hat{G}_{\text{ds}}} c(\eta, \eta_{j})a_{0}^{\eta_{j}, \gamma} I_{\pi_{j}}^{\text{st}}(T_{\pi_{j}}^{\text{st}}(w))$$

$$+ \sum_{j : \pi_{j} \in \hat{G}_{\text{ds}} \atop \pi_{j} \cong D_{2n}} c(\eta, \eta_{j})b_{0}^{\eta_{j}, \gamma} \left(S_{[1],n-1}(T_{\pi_{j}}^{\text{st}}(w)) - S_{[w_{0},n-1]}(T_{\pi_{j}}^{\text{st}}(w)) \right).$$
Likewise, for ϕ set

$$\int_{\mathbb{R}^d} \text{FOURIER EXPANSION}$$

where

$$W_j(t, x) = \left(\frac{(e^{2t} + x)x}{(e^{2t} + x - 1)(x - 1)} \right)^{\frac{1}{2}} + \left(\frac{(e^{2t} + x)x}{(e^{2t} + x - 1)(x - 1)} \right)^{\frac{1}{2}} e^{(\lambda_j + 1)t|x|^\lambda - 1} e^{2t + x - \lambda - 1},$$

$$\hat{t}_x = \frac{1}{2} \log \frac{(e^{2t} + x)(x - 1)}{(e^{2t} + x - 1)x}.$$

Proof. Let $H_1 = \{1 - 1\}$. For $x \in \mathbb{R}$ write $n(x) = (1 \frac{1}{2})$. For $\varphi \in C_c^\infty(\mathbb{R})$ we set

$$f_\varphi(w_0 n(x)) = \varphi(-\frac{1}{2} \log |x|).$$

For given $\lambda \in \mathfrak{a}^*$ the function f_φ extends uniquely to an element of V_λ^∞. For $a = \exp(tH_1) \in A$ we have $a^\lambda = e^{\lambda t}$. We define $\tilde{\lambda} = \frac{\lambda}{2\pi i}$, so that $a^\lambda = e^{2\pi i \tilde{\lambda} t}$. We normalize the Haar measure da on A such that $\int_A g(a) da = \int_\mathbb{R} g(\exp(tH_1)) dt$. Assuming that $n_0 = (1 \frac{1}{2})$, we compute for $k \in \mathbb{Z}$,

$$I_{\tilde{\lambda}, k\mu_\gamma}(f_\varphi) = \int_A f_\varphi(w_0 n_0^a a^{-\lambda - 1 - k\mu_\gamma}) da$$

$$= \int_\mathbb{R} \varphi(t) e^{-t(2\pi i \tilde{\lambda} + 2\pi i k\mu_\gamma)} dt.$$

Likewise, for $\phi \in C_c^\infty(\mathbb{R}^2)$ let $w_\phi \in E$ be defined by $w_\phi(w_0 n(x), w_0 n(y)) = \phi(-\frac{1}{2} \log |x|, -\frac{1}{2} \log |y|)$. Here we identify E with $V_\lambda^\infty \otimes V_\lambda^\infty$. We get

$$\hat{w}_\phi(k, -k) = \int_{\mathbb{R}^2} \phi(t, s) e^{i(2\pi i \tilde{\lambda} + 2\pi i k\mu_\gamma) - (s + t)} dt ds.$$
Note that \(w_\phi(w_0n(x), w_0n(y)) \) vanishes in a neighborhood of \(\{xy = 0\} \) as well as in a neighborhood of \(\{x = \infty\} \cup \{y = \infty\} \), which means that \(w_\phi \) indeed lies in \(E \) and that

\[
S_{[1],n-1}(T_{\pi_j}^{st}(w_\phi)) = S_{[w_0],n-1}(T_{\pi_j}^{st}(w_\phi)) = 0
\]

for every \(n \in \mathbb{N} \) and every \(\pi_j \cong D_{2n} \). So for these test functions only the first sum on the right hand side of Lemma 4.1 is present.

Lemma 4.3. Let \(g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) and \(g' = \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} \) be in \(G \). If \(cc'd'd = 0 \), then \(w_\phi(g,g') = 0 \). Otherwise,

\[
w_\phi(g,g') = |c|^{-\lambda-1}|c'|^{\lambda-1} \phi \left(\frac{1}{2} \log \left| \frac{c}{d} \right|, \frac{1}{2} \log \left| \frac{c'}{d'} \right| \right).
\]

Proof. Replacing \(g \) by \(\begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix} g \) or \(g' \) by \(\begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix} g' \) does not change \(w_\phi(g,g') \).

We therefore can restrict our attention to the case \(g, g' \in G^0 \). The Ansatz \(g = anw_0n(x) \) with \(a = \left(\frac{y}{1/y} \right) \) and \(n = \left(\frac{1}{z} \right) \) leads to \(y = 1/c \) and \(x = d/c \) as well as \(z = ac \). This gives the claim. \(\square \)

With \(w = w_\phi \) as above, we want to compute \(T^{st}_{\pi_j}(\pi_j^\star(w)) \). We first consider the case \(\pi_j = \pi_{\lambda_j} \) for some \(\lambda_j \in \mathbb{C} \). Recall that the functional \(T^{st} : \pi \otimes \hat{\pi} \otimes \hat{\pi}_j \to \mathbb{C} \) maps a given \(\varphi = w \otimes f \) to

\[
T^{st}(\varphi) = \int_G \varphi(w_0n_0y, w_0y, y) dy = \int_{ANK} w(w_0n_0ank, w_0ank)f(ank) da dn dk = \int_K \int_{ANK} a^{-\lambda_j+1}w(w_0n_0ank, w_0ank)da dn f(k) dk.
\]

The induced map \(T^{st}_{\pi_j} : E \to \pi_j \) is defined via the pairing

\[
\hat{\pi}_j \otimes \pi_j = \pi_{-\lambda_j} \otimes \pi_{\lambda_j} \to \mathbb{C}
\]

given by

\[
(f \otimes h) \mapsto \int_K f(k)h(k) dk.
\]

The resulting map \(T^{st}_{\pi_j} : \pi \otimes \hat{\pi} \to \pi_j \) therefore is given by

\[
T^{st}_{\pi_j}(w)(k) = \int_{ANK} a^{-\lambda_j+1}w(w_0n_0ank, w_0ank)da dn.
\]
We have
\[T_0^\pi (T_\pi ^{st}(w)) = \int_A a(w_0n_0a_1)^{\lambda} w(w_0n_0an \hat{k}(w_0n_0a_1), w_0an \hat{k}(w_0n_0a_1)) \, da \]
which equals
\[\int_A \int_{AN} a(w_0n_0a_1)^{\lambda} a^{-\lambda} w(w_0n_0an, w_0an, w_0n_0a_1) \, da \, dn \, da_1. \]

We write \(\hat{k}(w_0n_0a_1) = \frac{an}{w_0n_0a_1} \) and use the change of variables \(an \mapsto \frac{an}{w_0n_0a_1} \) in the \(AN \)-integral. For this we use the formula
\[\int_H f(xy) \, dx = \Delta(y^{-1}) \int_H f(x) \, dx \]
for Haar integration over the group \(H = AN \) and the fact that the modular function \(\Delta \) of \(AN \) equals \(\Delta(a \mu n) = e^{-2t} \).

In this way we see that \(T_0^\pi (T_\pi ^{st}(w)) \) equals
\[\int_A \int_{AN} a(w_0n_0a_1)^{\lambda} \, da \, dn \, da_1. \]

Writing \(\overline{\pi}_x = \begin{pmatrix} 1 & 0 \\ -x & 1 \end{pmatrix} = w_0n_xw_0 \) this equals
\[\int_A \int_{AN} a(w_0n_0a_1)^{\lambda} a^{-\lambda} w(\overline{\pi}_0a^{-1}n_0a_1, \overline{\pi}_0n_0a_1) \, da \, dn \, da_1. \]

Writing \(a = \begin{pmatrix} e^t & -e^{-t} \\ e^{-t} & e^t \end{pmatrix}, \quad n = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad a_1 = \begin{pmatrix} e^s & -e^{-s} \\ e^{-s} & e^s \end{pmatrix} \) we get
\[\overline{\pi}_0^{-1}n_0a_1 = \begin{pmatrix} -e^{-t} & -e^{-t} \\ e^s(e^t x + e^{-t}) & e^{-s}(e^t(x-1) + e^{-t}) \end{pmatrix} \]
and
\[\overline{\pi}_0n_0a_1 = \begin{pmatrix} -e^s & -e^s \\ e^s x & e^{-s}(x-1) \end{pmatrix}. \]

By Lemma 4.3 we conclude that \(w_\phi(\overline{\pi}_0a^{-1}n_0a_1, \overline{\pi}_0n_0a_1) \) equals
\[e^{-2s}|e^t x + e^{-t} - \lambda|^{-1}|x|^{\lambda-1} \phi \left(s + \frac{1}{2} \log \left| \frac{e^{-2t} + x}{e^{-2t} + x - 1} \right|, s + \frac{1}{2} \log \left| \frac{x}{x - 1} \right| \right). \]

We now pick \(\alpha, \beta \in C^\infty_c(\mathbb{R}) \) and set
\[\phi(x, y) = \alpha(x - y) \beta \left(\frac{x + y}{2} \right). \]

With this choice, we get
\[\hat{w}_\phi(k, -k) = \hat{\alpha}(\lambda + k\mu)\beta \left(\frac{1}{\pi i} \right). \]
and \(w_\phi(p_\varphi a^{-1} a, n_\varphi a_1) \) equals
\[
e^{-2s} e^t x + e^{-t} e^{-\lambda-1} |x|^{\lambda-1} \alpha \left(\frac{1}{2} \log \left| \frac{(e^{-2t} + x)(x - 1)}{(e^{-2t} + x - 1)x} \right| \right)
\times \beta \left(s + \frac{1}{4} \log \left| \frac{(e^{-2t} + x)x}{(e^{-2t} + x - 1)(x - 1)} \right| \right).
\]
We conclude that \(I_0^\alpha (T^\alpha_T(w)) \) equals
\[
\int_{\mathbb{R}^3} (e^{2s} + e^{-2s}) \frac{\lambda - 1}{t} e^{(\lambda - \lambda_1)T} e^{-2s} e^t x + e^{-t} e^{-\lambda-1} |x|^{\lambda-1}
\times \alpha \left(\frac{1}{2} \log \left| \frac{(e^{-2t} + x)(x - 1)}{(e^{-2t} + x - 1)x} \right| \right)
\times \beta \left(s + \frac{1}{4} \log \left| \frac{(e^{-2t} + x)x}{(e^{-2t} + x - 1)(x - 1)} \right| \right) ds \, dx \, dt.
\]
After the change of variables \(s \mapsto s - \frac{1}{4} \log \left| \frac{(e^{-2t} + x)x}{(e^{-2t} + x - 1)(x - 1)} \right| \) we end up with
\[
\int_{\mathbb{R}^3} e^{2s} \left| \frac{(e^{-2t} + x)x}{(e^{-2t} + x - 1)(x - 1)} \right|^{\frac{1}{2}} + e^{-2s} \left| \frac{(e^{-2t} + x)x}{(e^{-2t} + x - 1)(x - 1)} \right|^{-\frac{1}{2}} \lambda \frac{1}{2}
\times e^{(\lambda - \lambda_1)T} |x|^{\lambda-1} e^t x + e^{-t} e^{-\lambda-1}
\times \alpha \left(\frac{1}{2} \log \left| \frac{(e^{-2t} + x)(x - 1)}{(e^{-2t} + x - 1)x} \right| \right) \beta(s) ds \, dt \, dx.
\]
Assuming \(\beta \geq 0 \) and \(\int_{\mathbb{R}} \beta(s) ds = 1 \) we replace \(\beta \) with \(\beta_T(x) = T \beta(Tx) \) and let \(T \to \infty \) to get the claim. The interchange of limit and sum resp. integral is justified by the Theorem of dominated convergence as follows. Using results from [BR04] one deduces that
\[
c(\eta, \eta_j) = O(|\lambda_j|^{2+\varepsilon}).
\]
Weyl’s asymptotic law says that \(|\lambda_j| = O(j) \) and with Theorem 2.5 we get
\[
a_{\eta_j}^{\eta_j} c(\eta, \eta_j) = O|\lambda_j|^3 = O(j^3).
\]
So we need an estimate \(O(|\lambda_j|^{-5}) \) of the above integral, with \(\beta = \beta_T \), which is uniform in \(T \). One achieves this by iterated use of the fact that \(2\lambda_j e^{2T\lambda_j} = \frac{d}{dx} e^{2T\lambda_j} \) and using integration by parts. This, actually, is the place where it is needed that \(\alpha \) be vanishing in a neighborhood of zero, as otherwise there would appear boundary terms of this integration by parts. The Theorem follows. □
References

[BR99] Joseph Bernstein and Andre Reznikov, *Analytic continuation of representations and estimates of automorphic forms*, Ann. of Math. (2) **150** (1999), no. 1, 329–352, DOI 10.2307/121105. MR1715328 (2001h:11053)

[BR04] ———, *Estimates of automorphic functions*, Mosc. Math. J. **4** (2004), no. 1, 19–37, 310 (English, with English and Russian summaries). MR2074982 (2005f:22009)

[Dei06] Anton Deitmar, *Invariant triple products*, Int. J. Math. Math. Sci., posted on 2006, Art. ID 48274, 22, DOI 10.1155/IJMMS/2006/48274. MR2251763 (2007g:22013)

[GV88] Ramesh Gangolli and V. S. Varadarajan, *Harmonic analysis of spherical functions on real reductive groups*, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 101, Springer-Verlag, Berlin, 1988. MR954385 (89m:22015)

[GR07] I. S. Gradshteyn and I. M. Ryzhik, *Table of integrals, series, and products*, 7th ed., Elsevier/Academic Press, Amsterdam, 2007. Translated from the Russian; Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger; With one CD-ROM (Windows, Macintosh and UNIX). MR2360010 (2008g:00005)

[HC75] Harish-Chandra, *Harmonic analysis on real reductive groups. I. The theory of the constant term*, J. Functional Analysis **19** (1975), 104–204. MR0399356 (53 #3201)

[IS95] H. Iwaniec and P. Sarnak, *L^∞ norms of eigenfunctions of arithmetic surfaces*, Ann. of Math. (2) **141** (1995), no. 2, 301–320, DOI 10.2307/2118522. MR1324136 (96d:11060)

[Iwa02] Henryk Iwaniec, *Spectral methods of automorphic forms*, 2nd ed., Graduate Studies in Mathematics, vol. 53, American Mathematical Society, Providence, RI, 2002. MR1942691 (2003k:11085)

[Kna01] Anthony W. Knapp, *Representation theory of semisimple groups*, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 2001. An overview based on examples; Reprint of the 1986 original. MR1880691 (2002k:22011)

[Lok01] Hung Yean Loke, *Trilinear forms of gl_2*, Pacific J. Math. **197** (2001), no. 1, 119–144, DOI 10.2140/pjm.2001.197.119. MR1810211 (2002b:22028)

[Mol79] V. F. Molčanov, *Tensor products of unitary representations of the three-dimensional Lorentz group*, Izv. Akad. Nauk SSSR Ser. Mat. **43** (1979), no. 4, 860–891, 967 (Russian). MR548507 (80i:22030)

[Oks73] A. I. Oksak, *Trilinear Lorentz invariant forms*, Comm. Math. Phys. **29** (1973), 189–217. MR0340478 (49 #5231)

[SS89] A. Seeger and C. D. Sogge, *Bounds for eigenfunctions of differential operators*, Indiana Univ. Math. J. **38** (1989), no. 3, 669–682, DOI 10.1512/iumj.1989.38.38031. MR1017329 (91f:58097)

Mathematisches Institut, Auf der Morgenstelle 10, 72076 Tübingen, Germany, deitmar@uni-tuebingen.de
