Enhancement of ferromagnetism by oxygen isotope substitution in strontium ruthenate SrRuO₃

Hirofumi Kawanaka¹, Yoshihiro Aiura¹, Takayuki Hasebe², Makoto Yokoyama², Takahiko Masui³, Yoshikazu Nishihara³ & Takashi Yanagisawa¹

The oxygen isotope effect of the ferromagnetic transition in itinerant ferromagnet strontium ruthenate SrRuO₃, with a Curie temperature T_C of 160 K is studied. We observed for the first time a shift of $\Delta T_C \approx 1$ K by oxygen isotope substitution of 16O → 18O in SrRuO₃ by precise measurements of DC and AC magnetizations. The results surprisingly lead to the noteworthy inverse isotope effect with negative coefficient $\alpha = -\partial \ln T_C / \partial \ln M$. The Raman spectra indicate that the main vibration frequency of 16O at 363 cm⁻¹ shifts to 341 cm⁻¹ following oxygen isotope substitution 18O. This shift is remarkably consistent with the Debye frequency being proportional to $\alpha 1/\sqrt{M}$ where M is the mass of an oxygen atom. The positive isotope shift of ΔT_C can be understood by taking account of the electron-phonon interaction.

Strongly correlated electron systems (SCES) exhibit many interesting quantum phenomena such as unconventional superconductivity and metal–insulator transitions. SCES include high-temperature superconductors¹–⁴, heavy fermions⁵–⁸, and organic conductors⁹. Electron–phonon interactions are important in metals and SCES. An unconventional isotope effect has been reported for high-temperature cuprate superconductors¹⁰,¹¹. Electron–phonon interactions are ubiquitous in materials so it is important to investigate the role of electron–phonon coupling in SCES.

The isotope effect of the ferromagnetic transition in La₁₋ₓCaₓMnO₃ has been investigated¹²,¹³. A large oxygen isotope effect was observed for La₁₋ₓCaₓMnO₃ upon 16O substitution with the largest Curie Temperature (T_C) shift of $T_C(16\text{O}) = 222.7$ K to $T_C(18\text{O}) = 202.0$ K observed when $x = 0.20$. This shift may be caused by strong electron–lattice coupling and has some relation with large magnetoresistance¹⁴,¹⁵. It has been suggested that the ferromagnetic transition of La₁₋ₓCaₓMnO₃ is caused by the double-exchange interaction¹⁶–¹⁸ and its strong electron–lattice interaction originating from the Jahn–Teller effect¹⁹.

The isotope effect in the ferromagnetic insulating state of Pr₁₋ₓCaₓMnO₃, which is also a material that exhibits colossal magnetoresistance, has been investigated²⁰. The T_C of Pr₁₋ₓCaₓMnO₃ was lowered upon isotope substitution 14O → 16O; for example, $T_C(18\text{O}) = 112$ K shifted to $T_C(16\text{O}) = 106$ K when $x = 0.2$. It is expected that this isotope effect arises from strong electron–phonon coupling²¹,²². The effect of isotope on T_C has also been examined for the ferromagnetic superconductor RuSr₂GdCu₂O₈²³. A small decrease of T_C of –0.35 K was obtained through the isotope effect, which also influenced superconducting transition temperature. As for strontium ruthenates, an anomalous isotope effect was observed for the superconducting transition temperature of the spin-triplet superconductor Sr₂RuO₄²⁴. Raman spectra of Sr₂RuO₄ films showed anomalous temperature dependence near the ferromagnetic transition temperature²⁵. This indicates that the electron–phonon interaction plays a role in the ferromagnetism of Sr₂RuO₄. There has been an attempt to measure the isotope effect in the weak itinerant ferromagnet ZrZn₂²⁶. However, the isotope effect of T_C was not determined because the shift of T_C was small and there was uncertainty arising from different impurity levels. To date, a distinct isotope effect of itinerant ferromagnets has not been observed.

In this article, we report the isotope effect of T_C of the itinerant ferromagnet Sr₂RuO₃, which is a metal²⁷,²⁸ and with T_C of ~160 K²⁹,³⁰. We observe for the first time that the ferromagnetic transition temperature of Sr₂RuO₃ is

¹Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan. ²Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito 310-8512, Japan. ³Department of Physics, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan. Correspondence and requests for materials should be addressed to H.K. (email: kawanaka.h@aist.go.jp)
increased about 1 K upon 18O isotope substitution. This positive isotope effect needs a new analogy to explain the ferromagnetic interaction in itinerant electron systems. A softening of the oxygen vibration modes is induced by isotope substitution (16O → 18O), which is clearly indicated by Raman spectroscopy. The Raman spectra also confirm that almost all the oxygen atoms (more than 80%) are substituted.

The increase of atomic mass caused by isotope substitution leads to a decrease of the Debye frequency ω_D. In fact, the Raman spectra of SrRuO$_3$ before and after oxygen isotope substitution clearly indicate that the main vibration frequency of 16O at 372 cm$^{-1}$ is lowered to 351 cm$^{-1}$ for 18O. This shift is consistent with ω_D being proportional to $1/\sqrt{M}$, where M is the mass of an oxygen atom. Thus, our experiments confirm that the isotope shift of T_c is induced by the decrease of the frequency of the oxygen vibration mode. Our results reveal a small increase of T_c on 18O substitution, which is in contrast to the typical oxygen isotope effects of materials showing colossal magnetoresistance. The oxygen isotope effect in SrRuO$_3$ arises from the electron–phonon interaction described by the electron–phonon coupled field theory because there is no lattice distortion such as the Jahn–Teller effect.

We present a theory to account for the isotope effect with the positive shift of T_c in itinerant ferromagnets by considering the spin-fluctuation theory for ferromagnets. The decrease of ω_D increases the relative strength of the Coulomb interaction U. This results in a positive isotope shift of T_c in accordance with our experimental results.

Experiment

The matrix of SrRuO$_3$ was synthesized by the conventional solid-state reaction method from a stoichiometric mixture of SrCO$_3$ and RuO$_2$. The starting materials were calcined at 800°C for 24 h and then sintered at 1000°C for 48 h in air, resulting in a dense pellet. Oxygen isotope substitution was performed by annealing. To ensure oxygen isotope substitution, samples were first annealed under the following conditions. Samples were placed in two independent quartz tubes in a furnace and exposed to 16O$_2$ or 18O$_2$ gas at atmospheric pressure. Samples in both 16O$_2$ and 18O$_2$ gas were annealed at 1000°C for 91 h, cooled in the furnace to room temperature and then annealed again at 1000°C for 90 h. Raman spectroscopy of the samples confirmed that >80% of the oxygen atoms were substituted (Fig. 1).

DC and AC magnetization measurements were conducted to determine T_c. DC magnetization measurements were carried out by a superconducting quantum interference device magnetometer (Quantum Design Inc., MPMS2) up to 5 Tesla at temperatures T from 5 to 300 K. AC magnetic susceptibility was measured using a Hartshorn bridge circuit. The AC magnetic field produced by the primary coil was 1 Oe and the frequency of the AC signal was 180 Hz.

The oxygen phonon modes are observed at room temperature. A softening of the oxygen vibration modes was confirmed by Raman spectroscopy. We resubstituted an 18O-substituted sample with 16O to produce a sample indicated as 16OR. The Raman spectrum of 16OR is also shown in Fig. 1.

The magnetic field dependence of magnetization of SrRuO$_3$ samples substituted with oxygen 16O, 18O, and 16OR at $T = 5$ K are presented in Fig. 2. These three magnetization curves show almost the same magnetization process.

The temperature dependences of AC magnetic susceptibility of SrRuO$_3$ samples substituted with 16O, 18O and 16OR are illustrated in Fig. 3. A shift of peak position caused by 18O substitution is clearly observed. The shift shows that ΔT_c is ~1 K. Therefore, the ferromagnetic transition temperature of SrRuO$_3$ was increased by about 1 K by 18O substitution. The temperature dependence of magnetization at 1 kOe for SrRuO$_3$ following oxygen isotope substitution is depicted in Fig. 4. The ferromagnetic transition temperature of SrRuO$_3$ is increased by 18O substitution.
substitution. Again, the shift indicates that ΔT_c is ~ 1 K. This agrees with the shift estimated from the AC magnetic susceptibility measurements.

Discussion

Let us examine the isotope effect theoretically. An important point is that the decrease of ω_D increases the relative strength of the Coulomb interaction U. This leads to the positive shift of T_c in accordance with experiments. This is stated theoretically as follows. In the study of magnetism, the Hubbard model is of fundamental importance. The isotope effect in an itinerant ferromagnet was investigated before using the RPA theory. We consider a model with Hubbard on-site Coulomb repulsion and electron–phonon interaction. T_c is determined through solution of the gap equation. The Hamiltonian is given by

$$H = \sum_{k\sigma} \xi_{k\sigma} c_{k\sigma}^+ c_{k\sigma} + \sum_k \omega_D \left(b_k^+ b_k + \frac{1}{2} \right) + U \sum_i n_i^+ n_i + \gamma \int d^3x \sum_{\alpha} \psi^\dagger_\alpha(X) \psi_\alpha(x) \psi(X),$$

(1)
where c_k and c_k^σ are Fourier transforms of the annihilation and creation operators c_i and c_i^σ at site i, respectively. Here, $n_i = c_i^\sigma c_i^\dagger$ is the number operator, and $\xi_k = \varepsilon_k - \mu$ is the dispersion relation measured from the chemical potential μ. The electron field ψ_σ and the phonon field ϕ are defined, respectively, as follows:

$$
\psi_\sigma(X) = \frac{1}{\sqrt{V}} \sum_k e^{i k \cdot x} c_{k\sigma},
$$

(2)

$$
\psi(X) = \frac{1}{\sqrt{V}} \sum_k \left(\frac{\hbar c}{2} \right)^{1/2} (b_k e^{i k \cdot x} + b_k^\dagger e^{-i k \cdot x}),
$$

(3)

where V is the volume of the system. We denote the number of electrons with spin σ as $n_\sigma = \langle \sum_i c_i^\sigma c_i^\dagger \rangle$, where N is the number of sites. In the mean-field theory, the magnetization is determined by $n_{\uparrow} - n_{\downarrow} = \frac{1}{N} \sum_k (f(E_k^\uparrow) - f(E_k^\downarrow))$, where E_k is the electron dispersion relation including the corrections in Fig. 5, which are given as

$$
E_{k\sigma} = \xi_k + Un_{\sigma} + Ug\rho(\mu_0) \frac{\omega_D}{2\varepsilon_F} \ln \left(\frac{\varepsilon_F}{\omega_D} \right) n_{-\sigma},
$$

(4)

where $g = -\gamma^2$, and $\rho(\mu_0)$ is the density of states at the Fermi level. The vertex correction is of the order of ω_D/ε_F in accordance with the Migdal theorem $^{40-42}$. For the magnetization $\Delta \equiv n_{\uparrow} - n_{\downarrow}$, we obtain the equation up to the

Figure 4. Magnetization as a function of temperature T for the original SrRuO$_3$ sample with 16O under an applied magnetic field $H = 1$ kOe. Inset is the temperature dependence of magnetization of SrRuO$_3$ following oxygen isotope substitution with 18O at $H = 1$ kOe.

Figure 5. Lowest-order electron self-energy corrections. The second term arises from the electron–phonon vertex correction. The dashed line indicates the Coulomb interaction and the wavy line shows the phonon propagator.
order of Δ, $\Delta = - U_{\text{eff}} \Delta \int d\xi \rho(\xi) f'(\xi)$, where $U_{\text{eff}} = U + U g(p(\mu_0)(\omega_p/2\varepsilon_F) \ln(\varepsilon_F/\omega_D)$. With the help of the Sommerfeld expansion, T_c in the mean-field approximation is given by

$$k_B T_c = \sqrt{R} \left[1 - \frac{1}{U_{\text{eff}} p(\mu_0)} \right],$$

where R is a constant. It has been suggested that the vertex correction like that shown in Fig. 6(b) is important in evaluating T_c.

We examined this by calculating the diagrams in Fig. 6(a,b) numerically, and found that the contribution in Fig. 6(b) is smaller than that in Fig. 6(a) by more than one order of magnitude. The sum of all particle–hole ladder diagrams will increase the term in Fig. 6(b), but this is restricted to a very small region just near the critical value of U. Thus, from the formula of T_c in Eq. (5) we obtain the positive isotope shift of $T_c \partial T_c/\partial M > 0$. The positive isotope shift of T_c is also obtained by taking the spin fluctuation effect into account. The isotope coefficient $\alpha = - \partial \ln T_c/\partial \ln M$ is given as

$$\alpha = - \frac{3}{8} \frac{U p(\mu_0)}{U_{\text{eff}} p(\mu_0)} - 1 - \frac{\omega_D}{2\varepsilon_F} \ln \left(\frac{\varepsilon_F}{\omega_D} \right) - 1.$$

This indicates that α is negative and T_c increases with M.

Conclusion

We examined the isotope effect of T_c in itinerant ferromagnet SrRuO$_3$. First, T_c was estimated from DC and AC magnetization measurements. We found that T_c increases upon oxygen isotope substitution of 16O for 18O. This results in an inverse isotope effect of $\partial \ln T_c/\partial \ln M < 0$. This finding is in contrast to the results obtained for Mn oxides that show colossal magnetoresistance. The isotope effect of T_c occurs through the electron–phonon interaction, especially the electron–phonon vertex correction.

We summarize the results and significance of our work as follows. (1) The inverse isotope effect of the Curie temperature was observed clearly in an itinerant ferromagnetic material for the first time. (2) Our result shows that the electron–phonon interaction is ubiquitous in the world, even in ferromagnetic materials. (3) The positive shift of the Curie temperature can be understood based on a theoretical model of the Coulomb interaction and the electron–phonon interaction. (4) We have established the experimental procedure to substitute isotope oxygen 16O for 18O. This technique would be helpful in searching new functional materials.

References

1. J. G. Bednorz & K. A. Müller, Possible high t superconductivity in the Ba-La-Cu-O, Z. Phys. B 64, 189 (1986).
2. The Physics of Superconductivity vol. I. and vol. II, edited by K. H. Bennemann & J. B. Ketterson (Springer, Berlin, 2003).
3. P. W. Anderson: The Theory of Superconductivity in the High-Tc Cuprates (Princeton University Press, Princeton, 1997).
4. E. Dagotto Correlated electrons in high-temperature superconductors, Rev. Mod. Phys. 66, 763 (1994).
5. G. R. Stewart Heavy-fermion systems, Rev. Mod. Phys. 56, 755 (1984).
6. H. R. Ott, Prog. Characteristic features in heavy electron materials, Low Temp. Phys. 11, 215 (1987).
7. M. B. Maple, Handbook on the Physics and Chemistry of Rare Earths Vol. 50 (North-Holland, Elsevier, Amsterdam, 2000).
8. J. Kondo, The Physics of Dilute Magnetic Alloys (Cambridge University Press, Cambridge, 2012).
9. T. Ishiguro, K. Yamaji & G. Saito, Organic Superconductors (Springer, Berlin, 1998).
10. K. A. Müller, On the oxygen isotope effect and apex anharmonicity in high-Tc cuprates, Z. Physik B 80, 193 (1990).
11. G.-M. Zhao, H. Keller & K. Conder, Unconventional isotope effects in the high-temperature cuprate superconductors, J. Phys. Condens. Matter 13, R569 (2001).
12. J. R. Franck et al. Isotope effect studies of the paramagnetic to ferromagnetic conducting transition the CMR compounds La$_{1-x}$Ca$_x$MnO$_3$, J. Phys. Chem. Solids 59, 2199 (1998).
13. J. R. Franck et al. Oxygen-isotope effect of the paramagnetic-insulating to ferromagnetic-metallic transition in La$_{1-x}$Ca$_x$MnO$_3$, Phys. Rev. B 58, 5189 (1998).
14. J. Volger, Further experimental investigations on some ferromagnetic oxidic compounds of manganese with perovskite structure, Physica 20, 49 (1954).
15. S. Jin et al. Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films, Science 264, 413 (1994).
16. C. Zener, Interaction between the d-shells in the transition metals II, Phys. Rev. 82, 403 (1951).
17. J. Goodenough, Theory of the role of covalence in the Perovskite-type manganites La, M(II),MnO$_3$, Phys. Rev. 100, 564 (1955).
Enhancement of ferromagnetism by oxygen isotope substitution in strontium ruthenate SrRuO$_3$.

H. Kawanaka and T. Yanagisawa wrote the main manuscript text. Y. Aiura and T. Masui prepared Figure 1, T. Hasebe and M. Yokoyama prepared Figure 3, H. Kawanaka prepared Figures 2 and 4, and T. Yanagisawa prepared Figures 5 and 6. All authors reviewed the manuscript.

Acknowledgements
This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author Contributions
H. Kawanaka and T. Yanagisawa wrote the main manuscript text. Y. Aiura and T. Masui prepared Figure 1, T. Hasebe and M. Yokoyama prepared Figure 3, H. Kawanaka prepared Figures 2 and 4, and T. Yanagisawa prepared Figures 5 and 6. All authors reviewed the manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Kawanaka, H. et al. Enhancement of ferromagnetism by oxygen isotope substitution in strontium ruthenate SrRuO$_3$, Sci. Rep. 6, 35150; doi: 10.1038/srep35150 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2016