Digital twins of nonlinear dynamical systems

Ling-Wei Kong,1 Yang Weng,1 Bryan Glaz,2 Mulugeta Haile,2 and Ying-Cheng Lai1,3,∗

1School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
2Vehicle Technology Directorate, CCDC Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783-1138, USA
3Department of Physics, Arizona State University, Tempe, Arizona 85287, USA

(Dated: October 13, 2022)

We articulate the design imperatives for machine-learning based digital twins for nonlinear dynamical systems subject to external driving, which can be used to monitor the “health” of the target system and anticipate its future collapse. We demonstrate that, with single or parallel reservoir computing configurations, the digital twins are capable of challenging forecasting and monitoring tasks. Employing prototypical systems from climate, optics and ecology, we show that the digital twins can extrapolate the dynamics of the target system to certain parameter regimes never experienced before, make continual forecasting/monitoring with sparse real-time updates under non-stationary external driving, infer hidden variables and accurately predict their dynamical evolution, adapt to different forms of external driving, and extrapolate the global bifurcation behaviors to systems of some different sizes. These features make our digital twins appealing in significant applications such as monitoring the health of critical systems and forecasting their potential collapse induced by environmental changes.

I. INTRODUCTION

The concept of digital twins originated from aerospace engineering for aircraft structural life prediction [1]. In general, a digital twin can be used for predicting dynamical systems and generating solutions of emergent behaviors that can potentially be catastrophic [2]. Digital twins have attracted a great deal of attention from a wide range of fields [3] including medicine and health care [4, 5]. For example, the idea of developing medical digital twins in viral infection through a combination of mechanistic knowledge, observational data, medical histories, and artificial intelligence has been proposed recently [6], which can potentially lead to a powerful addition to the existing tools to combat future pandemics. In a more dramatic development, the European Union plans to fund the development of digital twins of Earth for its green transition [7, 8].

The physical world is nonlinear. Many engineering systems, such as complex infrastructural systems, are governed by nonlinear dynamical rules, too. In nonlinear dynamics, various bifurcations leading to chaos and system collapse can take place [9]. For example, in ecology, environmental deterioration caused by global warming can lead to slow parameter drift towards chaos and species extinction [10, 11]. In an electrical power system, voltage collapse can occur after a parameter shift that lands the system in transient chaos [12]. The various climate systems in different geographic regions of the world are also nonlinear and the emergent catastrophic behaviors as the result of increasing human activities are of grave concern. In all these cases, it is of interest to develop a digital twin of the system of interest to monitor its “health” in real time as well as for predictive problem solving in the sense that, if the digital twin indicates a possible system collapse in the future, proper control strategies should and can be devised and executed in time to prevent the collapse.

What does it take to create a digital twin for a nonlinear dynamical system? For natural and engineering systems, there are two general approaches: one is based on mechanistic knowledge and another is based on observational data. In principle, if the detailed physics of the system is well understood, it should be possible to construct a digital twin through mathematical modeling. However, there are two difficulties associated with this modeling approach. First, a real-world system can be high-dimensional and complex, preventing the rules governing its dynamical evolution from being known at a sufficiently detailed level. Second, the hallmark of chaos is sensitive dependence on initial conditions. Because no mathematical model of the underlying physical system can be perfect, the small deviations and high dimensionality of the system coupled with environmental disturbances can cause the model predictions of the future state of the system to be inaccurate and completely irrelevant [13, 14]. These difficulties motivate the proposition that data-based approach can have advantages in many realistic scenarios and a viable method to develop a digital twin is through data. While in certain cases, approximate system equations can be found from data through sparse optimization [15–17], the same difficulties with the modeling approach arise. These considerations have led us to exploit machine learning to create digital twins for nonlinear dynamical systems.

Given a nonlinear dynamical system, its digital twin is also a dynamical system, rendering appropriate exploitation of recurrent neural networks that can be designed

∗Ying-Cheng.Lai@asu.edu
to generate self-dynamical evolution with memory. In this regard, reservoir computers (RC) [13] [20] that have been extensively studied in recent years [21][43] provide a starting point, which can be trained from observational data to generate closed-loop dynamical evolution that follows the evolution of the target system for a finite amount of time. Another advantage of RC is that no back-propagation is needed for optimizing the parameters - only a linear regression is required in the training so it is computationally efficient. A common situation is that the target system is subject to external driving, such as a driven laser, a regional climate system, or an ecosystem under external environmental disturbances. Accordingly, the digital twin must accommodate a mechanism to control or steer the dynamics of the RC neural network to account for the external driving. Introducing a control mechanism into the RC structure with an exogenous control signal acting directly onto the RC network distinguishes our work from existing ones in the literature of RC as applied to nonlinear dynamical systems. Of particular interest is whether the collapse of the target chaotic system can be anticipated from the digital twin. The purpose of this paper is to demonstrate that the digital twin so created can accurately produce the bifurcation diagram of the target system and faithfully mimic its dynamical evolution from a statistical point of view. The digital twin can then be used to monitor the present and future “health” of the system. More importantly, with proper training from observational data the twin can reliably anticipate system collapses, providing early warnings of potentially catastrophic failures of the system.

More specifically, using three prototypical systems from optics, ecology, and climate, respectively, we demonstrate that the RC based digital twins developed in this paper solve the following challenging problems: (1) extrapolation of the dynamical evolution of the target system into certain “uncharted territories” in the parameter space, (2) long-term continual forecasting of nonlinear dynamical systems subject to non-stationary external driving with sparse state updates, (3) inference of hidden variables in the system and accurate prediction of their dynamical evolution into the future, (4) adaptation to external driving of different waveform, and (5) extrapolation of the global bifurcation behaviors of network systems to some different sizes. These features make our digital twins appealing in applications.

II. METHODS

The basic construction of the digital twin of a nonlinear dynamical system [43] is illustrated in Fig. 1. It is essentially a recurrent RC neural network with a control mechanism, which requires two types of input signals: the observational time series for training and the control signal \(f(t) \) that remains in both the training and self-evolving phase. The hidden layer hosts a random or complex network of artificial neurons. During the training, the hidden recurrent layer is driven by both the input signal \(u(t) \) and the control signal \(f(t) \). The neurons in the hidden layer generate a high-dimensional nonlinear response signal. Linearly combining all the responses of these hidden neurons with a set of trainable and optimizable parameters yields the output signal. Specifically, the digital twin consists of four components: (i) an input subsystem that maps the low-dimensional \((D_{in})\) input signal into a (high) \(D_r\)-dimensional signal through the weighted \(D_r \times D_{in}\) matrix \(W_{in}\), (ii) a reservoir network of \(N\) neurons characterized by \(W_r\), a weighted network matrix of dimension \(D_r \times D_r\), where \(D_r > D_{in}\), (iii) an readout subsystem that converts the \(D_r\)-dimensional signal from the reservoir network into an \(D_{out}\)-dimensional signal through the output weighted matrix \(W_{out}\), and (iv) a controller with the matrix \(W_c\). The matrix \(W_c\) defines the structure of the reservoir neural network in the hidden layer, where the dynamics of each node are described by an internal state and a nonlinear hyperbolic tangent activation function.

The matrices \(W_{in}\), \(W_c\), and \(W_r\) are generated randomly prior to training, whereas all elements of \(W_{out}\) are to be determined through training. Specifically, the state updating equations for the training and self-evolving phases are, respectively,

\[
r(t+\Delta t) = (1 - \alpha)r(t) + \alpha \tanh [W_r r(t) + W_{in} u(t) + W_c f(t)],
\]

\[
r(t+\Delta t) = (1 - \alpha)r(t) + \alpha \tanh [W_r r(t) + W_{in} W_{out} r'(t) + W_c f(t)],
\]

where \(r(t)\) is the hidden state, \(u(t)\) is the vector of input training data, \(\Delta t\) is the time step, the vector \(\tanh (p)\) is defined to be \(\{\tanh (p_1), \tanh (p_2), ...\}^T\) for a vector \(p = [p_1, p_2, ...,]^T\), and \(\alpha\) is the leakage factor. During the training, several trials of data are typically used under different driving signals so that the digital twin can “sense, learn, and mingle” the responses of the target system.

We input these trials of training data, i.e., a few pairs of \(u(t)\) and the associated \(f(t)\), through the matrices \(W_{in}\) and \(W_c\) sequentially. Then we record the state vector \(r(t)\) of the neural network during the entire training phase as a matrix \(R\). We also record all the desired output, which is the one-step prediction result \(v(t) = u(t + \Delta t)\), as the matrix \(V\). To make the readout nonlinear and to avoid unnecessary symmetries in the system [24][60], we change the matrix \(R\) into \(R'\) by squaring the entries of even dimensions in the states of the hidden layer. \[The vector \(r'(t)\) in Eq. 2 is defined in a similar way.\] We carry out a linear regression between \(V\) and \(R'\), with a \(\ell-2\) regularzation coefficient \(\beta\), to determine the readout matrix:

\[
W_{out} = V \cdot R'^T (R' \cdot R'^T + \beta I)^{-1}.
\]

To achieve acceptable learning performance, optimization of hyperparameters is necessary. The four widely
FIG. 1. Basic structure of the digital twin of a chaotic system. It consists of three layers: the input layer, the hidden recurrent layer, an output layer, as well as a controller component. The input matrix W_{in} maps the D_{in}-dimensional input chaotic data to a vector of much higher dimension D_v, where $D_v \gg D_{in}$. The recurrent hidden layer is characterized by the $D_r \times D_r$ weighted matrix W_r. The dynamical state of the i^{th} neuron in the reservoir is r_i, for $i = 1, \ldots, D_r$. The hidden-layer state vector is $r(t)$, which is an embedding of the input [11]. The output matrix W_{out} readout the hidden state into the D_{out}-dimensional output vector. The controller provides an external driving signal $f(t)$ to the neural network. During training, the vector $v(t)$ is the input data, and the blue arrow exists during the training phase only. In the predicting phase, the output vector $v(t)$ is directly fed back to the input layer, generating a closed-loop, self-evolving dynamical system, as indicated by the red arrow connecting $v(t)$ to $u(t)$. The controller remains on in both the training and predicting phases.

used global optimization methods are genetic algorithm [47–49], particle swarm optimization [50, 51], Bayesian optimization [52, 53], and surrogate optimization [47–49, 54–56]. We use the surrogate optimization (the algorithm surrogateopt in Matlab). The hyperparameters that are optimized include d - the average degree of the recurrent network in the hidden layer, λ - the spectral radius of the recurrent network, k_{in} - the scaling factor of W_{in}, k_c - the scaling of W_c, c_0 - the bias in Eq. (1) and (2), α - the leakage factor, and β - the ℓ-2 regularization coefficient. In this paper, the validation of the RC networks are done with the same driving signals $f(t)$ as in the training data. We test driving signals $f(t)$ that are different from those generating the training data (e.g., with different amplitude, frequency, or waveform). To generate the predicted bifurcation diagrams, we let the RC networks make predictions for long enough periods to approach the asymptotic behavior. During the warming-up process to initialize the RC networks prior to making the predictions, we feed randomly chosen short segments of the training time series to feed into the RC network. That is, no data from the target system under the testing driving signals $f(t)$ are required for making the predictions.

III. RESULTS

For clarity, we present results on the digital twin for a prototypical nonlinear dynamical systems with adjustable phase-space dimension: the Lorenz-96 climate network model [57]. In the appendix, we present two additional examples: a chaotic laser (Appendix A) and a driven ecological system (Appendix B), together with a number of pertinent issues.

A. A low-dimensional Lorenz-96 climate network and its digital twin

The Lorenz-96 system [57] is an idealized atmospheric climate model. Mathematically, the toy climate system is described by m coupled first-order nonlinear differential equations subject to external periodic driving $f(t)$:

$$\frac{dx_i}{dt} = x_{i-1}(x_{i+1} - x_{i-2}) - x_i + f(t),$$

where $i = 1, \ldots, m$, is the spatial index. Under the periodic boundary condition, the m nodes constitute a ring network, where each node is coupled to three neighboring nodes. To be concrete, we set $m = 6$ (more complex high-dimensional cases are treated below). The driving force is sinusoidal with a bias F: $f(t) = A \sin(\omega t) + F$. We fix $\omega = 2$ and $F = 2$, and use the forcing amplitude A as
FIG. 2. Digital twin of the Lorenz-96 climate system. The toy climate system is described by six coupled first-order nonlinear differential equations (phase-space dimension \(m = 6 \)), which is driven by a sinusoidal signal \(f(t) = A \sin(\omega t) + F \). (A1,A2) Ground truth: chaotic and quasi-periodic dynamics in the system for \(A = 2.2 \) and \(A = 1.6 \), respectively, for \(\omega = 2 \) and \(F = 2 \). The sinusoidal driving signals \(f(t) \) are schematically illustrated. (B1, B2) The corresponding dynamics of the digital twin under the same driving signal \(f(t) \). Training of the digital twin is conducted using time series from the chaotic regime. The result in (B2) indicates that the digital twin is able to extrapolate outside the chaotic regime to generate the unseen quasi-periodic behavior. (C, D) True and digital-twin generated bifurcation diagrams of the toy climate system, where the four vertical red dashed lines indicate the values of driving amplitudes \(A \), from which the training time series data are obtained. The remarkable agreement between the two bifurcation diagrams attests to the strong ability of the digital twin to reproduce the distinct dynamical behaviors of the target climate system in different parameter regimes, even with training data only in the chaotic regime. Note that there are mismatches in the details such as the positions of some periodic windows.

the bifurcation parameter. For relatively large values of \(A \), the system exhibits chaotic behaviors, as exemplified in Fig. 2(A1) for \(A = 2.2 \). Quasi-periodic dynamics arise for smaller values of \(A \), as exemplified in Fig. 2(A2). As \(A \) decreases from a large value, a critical transition from chaos to quasi-periodicity occurs at \(A_c \approx 1.9 \). We train the digital twin with time series from four values of \(A \), all in the chaotic regime: \(A = 2.2, 2.6, 3.0, \) and \(3.4 \). The size of the random reservoir network is \(D_r = 1,200 \). For each value of \(A \) in the training set, the training and validation lengths are \(t = 2,500 \) and \(t = 12 \), respectively, where the latter corresponds to approximately five Lyapunov times. The warming-up length is \(t = 20 \) and the time step of the reservoir dynamical evolution is \(\Delta t = 0.025 \). The hyperparameter values (See Sec. 4 for their meanings) are optimized to be \(d = 843, \lambda = 0.48, k_{in} = 0.29, k_c = 0.113, \alpha = 0.41 \), and \(\beta = 1 \times 10^{-10} \). Our computations reveal that, for the deterministic version of the Lorenz-96 model, it is difficult to reduce the validation error below a small threshold. However, adding an appropriate amount of noise into the training time series \(10^{-3} \) can lead to smaller validation errors. We add an additive Gaussian noise with standard deviation \(\sigma_{noise} \) to each input data channel to the reservoir network [including the driving channel \(f(t) \)]. The noise amplitude \(\sigma_{noise} \) is treated as an additional hyperparameter to be optimized. For the toy climate system, we test several noise levels and find the optimal noise level giving the best validating performance: \(\sigma_{noise} \approx 10^{-3} \).

Figures 2(B1) and 2(B2) show the dynamical behaviors generated by the digital twin for the same values of \(A \) as in Figs. 2(A1) and 2(A2), respectively. It can be seen that not only does the digital twin produce the correct dynamical behavior in the same chaotic regime where the training is carried out, it can also extrapolate beyond the training parameter regime to correctly predict the unseen system dynamics there (quasiperiodicity in this case). To provide support in a broader parameter range, we calculate true bifurcation diagram, as shown in Fig. 2(C), where the four vertical dashed lines indicate
the four values of the training parameter. The bifurcation generated by the digital twin is shown in Fig. 2(D), which agrees remarkably well with the true diagram even at a detailed level. Note that there are mismatches in the details such as the positions of some periodic windows in Figs. 2(C) and 2(D). To predict all the features in a bifurcation diagram requires extensive interpolation and extrapolation of the system dynamics in the phase space.

Previously, it was suggested that RC can have a certain degree of extrapolability [40,39]. Figure 2 represents an example where the target system’s response is extrapolated to external sinusoidal driving with unseen amplitudes. In general, extrapolation is a difficult problem. Some limitations of the extrapolability with respect to the target system can improve the performance of the digital twin. To demonstrate this, we apply an additive noise to the external driving signal that is different than the one it has “seen” during the training phase? Note that, in the examples treated so far, it has been demonstrated that our digital twin can extrapolate the dynamical behavior of a target system under a driving signal of the same mathematical form but with a different amplitude. Here, the task is more challenging as the form of the driving signal has changed.

As a concrete example, we consider the Lorenz-96 climate network of 20 nodes is $f(t) = A\sin(\omega t) + F$ with $\omega = 2$, and $F = 2$. The structure of the digital twin consists of 20 small RC networks as illustrated in Fig. 3(A). Figures 3(B1) and 3(B2) show a chaotic and a periodic attractor for $A = 1.8$ and $A = 1.6$, respectively, in the (x_1, x_2) plane. Training of the digital twin is conducted by using four time series from four different values of A, all in the chaotic regime. The attractors generated by the digital twin for $A = 1.8$ and $A = 1.6$ are shown in Figs. 3(C1) and 3(C2), respectively, which agree well with the ground truth. Figure 3(D) shows the bifurcation diagram of the target system (the ground truth), where the four values of A: $A = 1.8, 2.2, 2.6$, and 3.0, from which the training chaotic time series are obtained, are indicated by the four respective vertical dashed lines. The bifurcation diagram generated by the digital twin is shown in Fig. 3(E), which agrees well with the ground truth in Fig. 3(D).

C. Digital twins under external driving with varied waveform

The external driving signal is an essential ingredient in our articulation of the digital twin, which is particularly relevant to critical systems of interest such as the climate systems. In applications, the mathematical form of the driving signal may change with time. Can a digital twin produce the correct system behavior under a driving signal that is different than the one it has “seen” during the training phase? Note that, in the examples treated so far, it has been demonstrated that our digital twin can extrapolate the dynamical behavior of a target system under a driving signal of the same mathematical form but with a different amplitude. Here, the task is more challenging as the form of the driving signal has changed.

As a concrete example, we consider the Lorenz-96 climate network of $m = 6$ nodes, where a digital twin is trained with a purely sinusoidal signal $f(t) = A\sin(\omega t) + F$, as illustrated in the left column of Fig. 4(A). During the testing phase, the driving signal has the form of the sum of two sinusoidal signals with different frequencies: $f(t) = A_1\sin(\omega_1 t) + A_2\sin(\omega_2 t + \Delta \phi) + F$, as illustrated in the right panel of Fig. 4(A). We set $A_1 = 2, A_2 = 1, \omega_1 = 2, \omega_2 = 1, F = 2$, and use $\Delta \phi$ as the bifurcation parameter. The RC parameter setting is the same as that in Fig. 2. The training and validating lengths for each driving amplitude A value are $t = 3,000$ and $t = 12$, respectively. We fine that this setting prevents the digital twin from generating an accurate bifurcation diagram, but a small amount of dynamical noise to the target system can improve the performance of the digital twin. To demonstrate this, we apply an additive noise term to the driving signal $f(t)$ in the training phase: $df(t)/dt = \omega A \cos(\omega t) + \delta_D(t)$, where $\xi(t)$ is a Gaussian white noise of zero mean and unit variance, and δ_D is the noise amplitude (e.g., $\delta_D = 3 \times 10^{-5}$). We use
FIG. 3. Digital twin consisting of a number of parallel RC neural networks for high-dimensional chaotic systems. The target system is the Lorenz-96 climate network of $m = 20$ nodes, subject to a global periodic driving $f(t) = A \sin(\omega t) + F$. (A) The structure of the digital twin, where each filled green circle represents a small RC network with the input dimension $D_{in} = 5$ and output dimension $D_{out} = 2$. (B1, B2) A chaotic and periodic attractor in a two-dimensional subspace of the target system for $A = 1.8$ and $A = 1.6$, respectively, for $\omega = 2$ and $F = 2$. (C1, C2) The attractors generated by the digital twin corresponding to those in (B1, B2), respectively, where the training is done using four time series from four different values of forcing amplitude A, all in the chaotic regime. The digital twin with a parallel structure is able to successfully extrapolate the unseen periodic behavior with completely chaotic training data. (D, E) The true and digital-twin generated bifurcation diagrams, respectively, where the four vertical dashed lines in (c) specify the four values of A from which the training time series are obtained. The remarkable agreement between the two bifurcation diagrams indicates that the digital twin so trained can faithfully generate the dynamical behaviors of the high-dimensional target system.

the 2nd-order Heun method [58] to solve the stochastic differential equations describing the target Lorenz-96 system. Intuitively, the noise serves to excite different modes of the target system to instill richer information into the training time series, making the process of learning the target dynamics more effective. Figures 4(B) and 4(C) show the actual and digital-twin generated bifurcation diagrams. Although the digital twin encountered driving signals in a completely “uncharted territory,” it is still able to generate the bifurcation diagram with a reasonable accuracy. The added dynamical noise is creating small fluctuations in the driving signal $f(t)$. This may yield richer excited dynamical features of the target system in the training data set, which can be learned by the RC network. This should be beneficial for the RC network to adapt to different waveform in the testing. Additional results with varying testing waves $f(t)$ are presented in Appendix E.

D. Extrapolability of digital twin with respect to system size

In the examples studied so far, it has been demonstrated that our RC based digital twin has a strong extrapolability in certain dimensions of the parameter space. Specifically, the digital twin trained with time series data from one parameter region can follow the dynamical evolution of the target system in a different parameter regime. One question is whether the digital twin possesses certain extrapolability in the system size. For example, consider the Lorenz-96 climate network of size m. In Fig. 3 we use an array of parallel RC networks to construct a digital twin for the climate network of a fixed size m, where the number of parallel RCs is $m/2$ (assuming that m is even), and training and testing/monitoring are carried out for the same system size. We ask, if a digital twin is trained for climate networks of certain sizes, will it have the ability to generate the correct dynamical behaviors for climate networks of different sizes? If yes, we say that the digital twin has the extrapolability with respect to system size.
FIG. 4. Effects of waveform change in the external driving on the performance of the digital twin. The time series used to train the digital twin are from the target system subject to external driving of a particular waveform. A change in the waveform occurs subsequently, leading to a different driving signal during the testing phase. (A) During the training phase, the driving signal is of the form \(f(t) = A \sin(\omega t) + F \) and time series from four different values of \(A \) are used for training the digital twin. The right panel illustrates an example of the changed driving signal during the testing phase. (B) The true bifurcation diagram of the target system under a testing driving signal. (C) The bifurcation diagram generated by the digital twin, facilitated by an optimal level of training noise determined through hyperparameter optimization.

As an example, we create a digital twin with a parallel structure based on time series data from the Lorenz-96 climate networks of sizes \(m = 6 \) and \(m = 10 \), i.e., with \(m/2 = 3 \) and \(m/2 = 5 \) numbers of identical RC networks coupled in a parallel fashion. Testing is done with the same individual RC networks that are coupled together to simulate the target system of different system sizes. We also test if the digital twins can make predictions of the system dynamics under driving signals with unseen amplitudes. The training data with \(m = 6 \) and \(m = 10 \) is shown in Fig. 5(A). For each system size in the training set, four values of the forcing amplitude \(A \) are used to generate the training time series: \(A = 1.5, 2.0, 2.5, \) and \(3.0 \), as marked by the vertical orange dashed lines in Figs. 5(A) and 5(B). As in Fig. 3, the digital twin consists of \(m/2 \) parallel RC networks, each taking input from two nodes in the target system and from the nodes in the network that are coupled to the two nodes. The optimized hyperparameter values are determined to be \(d = 927, \lambda = 0.71, \kappa_{in} = 0.076, \kappa_c = 0.078, \alpha = 0.27, \beta = 1 \times 10^{-11}, \) and \(\sigma_{noise} = 3 \times 10^{-3} \). Then we consider
climate networks of two different sizes: $m = 4$ and $m = 12$, and test if the trained digital twin can be adapted to the new systems. For the network of size $m = 4$, we keep only two parallel RC networks for the digital twin. For $m = 12$, we add one additional RC network to the trained digital twin for $m = 10$, so the new twin consists of six parallel RC networks of the same hyperparameter values. The true bifurcation diagrams for the climate system of sizes $m = 4$ and $m = 12$ are shown in Fig. 5(B) (the left and right panels, respectively). The corresponding bifurcation diagrams generated by the adapted digital twins are shown in Fig. 5(C), which agree with the ground truth reasonably well, demonstrating that our RC based digital twin possesses certain extrapolability in system size.

IV. DISCUSSION

We have articulated the principle of creating digital twins for nonlinear dynamical systems based on RCs that are recurrent neural networks. In general, RC is a powerful neural network framework that does not require back-propagation during training but only a linear regression is needed. This feature makes the development of digital twins based on RC computationally efficient. We have demonstrated that a well-trained RC network is able to serve as a digital twin for systems subject to external, time-varying driving. The twin can be used to anticipate possible critical transitions or regime shifts in the target system as the driving force changes, thereby providing early warnings for potential catastrophic collapse of the system. We have used a variety of examples from different fields to demonstrate the workings and the anticipating power of the digital twin, which include the Lorenz-96 climate network of different sizes (in the main text), a driven chaotic CO$_2$ laser system (Appendix A), and an ecological system (Appendix B). For low-dimensional nonlinear dynamical systems, a single RC network is sufficient for the digital twin. For high-dimensional systems such as the climate network of a relatively large size, parallel RC networks can be integrated to construct the digital twin. At the level of the detailed state evolution, our recurrent neural network based digital twin is essentially a dynamical twin system that evolves in parallel to the real system, and the evolution of the digital twin can be corrected from time to time using sparse feedback of data from the target system (Appendix C). In cases where direct measurements of the target system are not feasible or are too costly, the digital twin provides a way to assess the dynamical evolution of the target system. At the qualitative level, the digital twin can faithfully reproduce the attractors of the target system, e.g., chaotic, periodic, or quasiperiodic, without the need of state updating. In addition, we show that the digital twin is able to accurately predict a critical bifurcation point and the average lifetime of transient chaos that occurs after the bifurcation, even under a driving signal that is different from that during the training (Appendix F). The issue of robustness against dynamical and observational noises in the training data has also been treated (Appendix G).

To summarize, our RC based digital twins are capable of performing the following tasks: (1) extrapolating certain dynamical evolution of the target system beyond the training parameter regime, (2) making long-term continual forecasting of nonlinear dynamical systems under nonstationary external driving with sparse state updates, (3) inferring the existence of hidden variables in the system and reproducing/predicting their dynamical evolution, (4) adapting to external driving of different waveform, and (5) extrapolating the global bifurcation behaviors to systems of different sizes.

Our design of the digital twins for nonlinear dynamical systems can be extended in a number of ways.

1. Online learning. Online or continual learning is a recent trend in machine-learning research. Unlike the approach of batch learning, where one gathers all the training data in one place and does the training on the entire data set (the way by which training is conducted for our work), in an online learning environment, one evolves the machine learning model incrementally with the flow of data. For each training step, only the newest inputted training data is used to update the machine learning model. When a new data set is available, it is not necessary to train the model over again on the entire data set accumulated so far, but only on the new set. This can result in a significant reduction in the computational complexity. Previously, an online learning approach to RC known as the FORCE learning was developed [59]. An attempt to deal with the key problem of online learning termed “catastrophic forgetting” was made in the context of RC [60]. Further investigation is required to see if these methods can be exploited for creating digital twins through online learning.

2. Beyond reservoir computing. Second, the potential power of recurrent neural network based digital twin may be further enhanced by using more sophisticated recurrent neural network models depending on the target problem. We use the RC networks because they are relatively simple yet powerful enough for both low- and high-dimensional dynamical systems. Schemes such as knowledge-based hybrid RC [61] or ODE-nets [62] are worth investigating.

3. Reinforcement learning. Is it possible to use digital twins to make reinforcement learning feasible in situations where the target system cannot be “disturbed”? Particularly, reinforcement learning requires constant interaction with the target system during training so that the machine can learn from its mistakes and successes. However, for a real-world system, these interactions may be harmful, uncontrollable, and irreversible. As a result, reinforcement learning algorithms are rarely applied to safety-critical systems [63]. In this case, digital twins can be beneficial. By building a digital twin, the reinforcement learning model does not need to interact with the real system, but with its simulated replica for efficient
training. This area of research is called model-based reinforcement learning [64].

4. Potential benefits of noise. A phenomenon uncovered in our study is the beneficial role of dynamical noise in the target system. As briefly discussed in Fig. 4, adding dynamic noise in the training dataset enhances the digital twin’s ability to extrapolate the dynamics of the target system with different waveform of driving. Intuitively, noise can facilitate the exploration of the phase space of the target nonlinear system. A systematic study of the interplay between dynamical noise and the performance of the digital twin is worthy.

5. Extrapolability. The demonstrated extrapolability of our digital twin, albeit limited, may open the door to forecasting the behavior of large systems using twins trained on small systems. Much research is needed to address this issue.

6. Spatiotemporal dynamical systems with multistability. We have considered digital twins for a class of coupled dynamical systems: the Lorenz-96 climate model. When developing digital twins for spatiotemporal dynamical systems, two issues can arise. One is the computational complexity associated with such high-dimensional systems. We have demonstrated that parallel reservoir computing provides a viable solution. Another issue is multistability. Spatiotemporal dynamical systems in general exhibit extremely rich dynamical behaviors such as chimera states [65–73]. To develop digital twins of spatiotemporal dynamical systems with multiple coexisting states requires that the underlying recurrent neural networks possess certain memory capabilities. To develop methods to incorporate memories into digital twins is a problem of current interest.

DATA AVAILABILITY

All relevant data are available from the authors upon request.

CODE AVAILABILITY

All relevant computer codes are available from the authors upon request.

ACKNOWLEDGMENT

We thank Z.-M. Zhai for discussions. This work was supported by the Army Research Office through Grant No. W911NF-21-2-0055 and by the U.S.-Israel Energy Center managed by the Israel-U.S. Binational Industrial Research and Development (BIRD) Foundation.

AUTHOR CONTRIBUTIONS

All authors designed the research project, the models, and methods. L.-W.K. performed the computations. All analyzed the data. L.-W.K. and Y.-C.L wrote the paper.

COMPETING INTERESTS

The authors declare no competing interests.

CORRESPONDENCE

To whom correspondence should be addressed. E-mail: Ying-Cheng.Lai@asu.edu.

Appendix A: A driven chaotic laser system

We consider the single-mode, class B, driven chaotic CO$_2$ laser system [74,77] described by

\[
\frac{du}{dt} = -u[f(t) - z], \quad (A1)
\]

\[
\frac{dz}{dt} = \epsilon_1 z - u - \epsilon_2 z u + 1, \quad (A2)
\]

where the dynamical variables u and z are proportional to the normalized intensity and the population inversion, $f(t) = A \cos(\Omega t + \phi)$ is the external sinusoidal driving signal of amplitude A and frequency Ω, ϵ_1 and ϵ_2 are two parameters. Chaos is common in this laser system [74,75,77]. For example, for $\epsilon_1 = 0.09$, $\epsilon_2 = 0.003$, and $A = 1.8$, there is a chaotic attractor for $\Omega < \Omega_c \approx 0.912$, as shown by a sustained chaotic time series in Fig. 6(a1). The chaotic attractor is destroyed by a boundary crisis at Ω_c. For $\Omega > \Omega_c$, there is transient chaos, after which the system settles into periodic oscillations, as exemplified in Fig. 6(a2). Suppose chaotic motion is desired. The crisis bifurcation at Ω_c can then be regarded as a kind of system collapse.

To build a digital twin for the chaotic laser system, we use the external driving signal as the natural control signal for the RC network. Different from the examples in the main text, here the driving frequency Ω, instead of the driving amplitude A, serves as the bifurcation parameter. Assuming observational data in the form of time series are available for several values of Ω in the regime of a chaotic attractor, we train the RC network using chaotic time series collected from four values of $\Omega < \Omega_c$: $\Omega = 0.81$, 0.84, 0.87, and 0.90. The training parameter setting is as follows. For each Ω value in the training set, the training and validation lengths are $t = 2,000$ and $t = 83$, respectively, where the latter corresponds to approximately five Lyapunov times. The “warming up” length is $t = 0.5$. The time step of the reservoir system is $\Delta t = 0.05$. The size of the random RC network is...
FIG. 6. Performance of the digital twin of the driven CO\(_2\) laser system to extrapolate system dynamics under different driving frequencies. (A1, A2) True sustained and transient chaotic time series of \(\log_{10} u(t)\) of the target system, for driving frequencies \(\Omega = 0.905 < \Omega_c\) and \(\Omega = 0.925 > \Omega_c\), respectively, where the sinusoidal driving signal \(f(t)\) is schematically illustrated. In (A1), the system exhibits sustained chaos. In (A2), the system settles into a periodic state after transient chaos. (B1, B2) The corresponding time series generated by the digital twin. In both cases, the dynamical behaviors generated by the digital twin agree with the ground truth in (A1, A2): sustained chaos in (B1) and transient chaos to a periodic attractor in (B2). (C1, C2) The return maps constructed from the local minima of \(u(t)\) from the true dynamics, where the green dashed square defines an interval that contains the chaotic attractor (C1) or a nonattracting chaotic set due to the escaping region (marked by the red arrow) leading to transient chaos (C2). (D1, D2) The return maps generated by the digital twin for the same values of \(\Omega\) as in (C1, C2), respectively, which agree with the ground truth.

\[D_r = 800.\] The optimal hyperparameter values are determined to be \(d = 151, \lambda = 0.0276, k_{\text{in}} = 1.18, k_c = 0.113, \alpha = 0.33,\) and \(\beta = 2 \times 10^{-4}.\)

Figures 6(A1) and 6(A2) show two representative time series from the laser model (the ground truth) for \(\Omega = 0.905 < \Omega_c\) and \(\Omega = 0.925 > \Omega_c\), respectively. The one in panel (A1) is associated with sustained chaos (pre-critical) and the other in panel (A2) is characteristic of transient chaos with a final periodic attractor (post-critical). The corresponding time series generated by the digital twin are shown in Figs. 6(B1) and 6(B2), respectively. It can be seen that the training aided by the control signal enables the digital twin to correctly capture the dynamical climate of the target system, e.g., sustained or transient chaos. The true return maps in the pre-critical and post-critical regimes are shown in Figs. 6(C1) and 6(C2), respectively, and the corresponding maps generated by the digital twin are shown in Figs. 6(D1) and 6(D2). In the pre-critical regime, an invariant region (the green dashed square) exists on the return map in which the trajectories are confined, leading to sustained chaotic motion, as shown in Figs. 6(C1) and 6(D1). Within the invariant region in which the chaotic attractor lives, the digital twin captures the essential dynamical features of the attractor. Because the training data are from the chaotic attractor of the target system, the digital twin fails to generate the portion of the real return map that lies outside the invariant region, which is expected because the digital twin has never been exposed to the dynamical behaviors that are not on the chaotic attractor. In the post-critical regime, a “leaky” region emerges, as indicated by the red arrows in Figs. 6(C2) and 6(D2), which destroys the invariant region and leads to transient chaos. The remarkable feature is that the digital twin correctly assesses the existence of the leaky region, even when no such information is fed into the twin during training. From the point of view of predicting system collapse, the digital twin is able to anticipate the occurrence of the crisis and transient chaos. A quantitative result of these predictions are demonstrated in F.

As indicated by the predicted return maps in Figs. 6(D1) and 6(D2), the digital twin is unable to give the final state after the transient, because such state must necessarily lie outside the invariant region from which the training data are originated. In particular, the digital twin is trained with time series data from the chaotic attractors prior to the crisis. With respect to Figs. 6(D1) and 6(D2), the digital twin can learn the dynamics within the dash green box in the plotted return maps, but is unable to predict the dynamics outside the box, as it has never been exposed to these dynamics.

A comparison of the real and predicted bifurcation diagram is demonstrated in Fig. 7. The strong resemblance between them indicate the power of the digital twin in extrapolating the correct global behavior of the target sys-
FIG. 7. Comparison of the real (A) and predicted (B) bifurcation diagrams of the driven laser system with varying driving frequencies. The four vertical grey dashed lines indicate the values of driving frequencies Ω used for training the RC neural network. The strong resemblance between the two bifurcation diagrams indicates the power of the digital twin in extrapolating the correct global behavior of the target system, and demonstrates that not only can this approach extrapolate system dynamics to various driving amplitudes A, but also to varying driving frequency Ω.

Moreover, this demonstrates that not only can this approach extrapolate with various driving amplitudes A (as demonstrated in the main text), but the approach can also work with varying driving frequencies Ω.

Appendix B: A driven chaotic ecological system

We study a chaotic driven ecological system that models the annual blooms of phytoplankton under seasonal driving [79]. Seasonality plays a crucial role in ecological systems and epidemic spreading of infectious diseases [80], which is usually modeled as a simple periodic driving force on the system. The dynamical equations of this model in the dimensionless form are [79]:

\[
\frac{dN}{dt} = I - f(t)NP - qN, \quad (B1)
\]

\[
\frac{dP}{dt} = f(t)NP - P, \quad (B2)
\]

where N represents the level of the nutrients, P is the biomass of the phytoplankton, the Lotka-Volterra term NP models the phytoplankton uptake of the nutrients, I represents a small and constant nutrient flow from external sources, q is the sinking rate of the nutrients to the lower level of the water unavailable to the phytoplankton, and $f(t)$ is the seasonality term: $f(t) = A \sin(\omega_{eco} t)$. The parameter values are [79]: $I = 0.02$, $q = 0.0012$, and $\omega_{eco} = 0.19$.

Climate change can dramatically alter the dynamics of this ecosystem [81]. We consider the task of forecasting how the system behaves if the climate change causes the seasonal fluctuation to be more extreme. In particular, suppose the training data are measured from the system when it behaves normally under a driving signal of relatively small amplitude, and we wish to predict the dynamical behaviors of the system in the future when the amplitude of the driving signal becomes larger (due to climate change). The training parameter setting is as follows. The size of the RC network is $D_r = 600$ with $D_{in} = D_{out} = 2$. The time step of the evolution of the network dynamics is $\Delta t = 0.1$. The training and validation lengths for each value of the driving amplitude A in the training are $t = 1,500$ and $t = 500$, respectively. The optimized hyperparameters of the RC are $d = 350$, $\lambda = 0.42$, $k_{in} = 0.39$, $k_c = 1.59$, $\alpha = 0.131$, and
FIG. 8. Performance of the digital twin of an ecological system of the blooms of phytoplankton with seasonality. The effect of seasonality is modeled by a sinusoidal driving signal $f(t) = A \sin(\omega \text{eco} t)$. (A1, A2) Chaotic and periodic attractors of this system in the $(N, \log_{10} P)$ plane for $A = 0.45$ and $A = 0.56$, respectively. (B1, B2) The corresponding attractors generated by the digital twin under the same driving signals $f(t)$ as in (A1, A2). The digital twin has successfully extrapolated the periodical behavior outside the chaotic training region. (C) The ground-truth bifurcation diagram of the target system. (D) The digital-twin generated bifurcation diagram. In (C) and (D), the four vertical grey dashed lines indicate the values of driving amplitudes A used for training the RC network. The strong resemblance between the two bifurcation diagrams indicates the power of the digital twin in extrapolating the correct global behavior of the target system.

$\beta = 1 \times 10^{-7.5}$.

Figure 8 shows the results of our digital twin approach on this ecological model to learn from the dynamics under a few different values of the driving amplitude to generate the correct response of the system to a driving signal of larger amplitude. In particular, the training data are collected with the driving amplitude $A = 0.35, 0.4, 0.45$ and 0.5, all in the chaotic regions. Figures 8(A1) and 8(A2) show the true attractors of the system for $A = 0.45$ and 0.56, respectively, where the attractor is chaotic in the former case (within the training parameter regime) and periodic in the latter (outside the training regime). The corresponding attractors generated by the digital twin are shown in Figs. 8(B1) and 8(B2). The digital twin can not only replicate the chaotic behavior in the training data [Fig. 8(B1)] but also predict the transition to a periodic attractor under a driving signal with larger amplitudes (more extreme seasonality), as shown in Fig. 8(B2). In fact, the digital twin can faithfully produce the global dynamical behavior of the system, both inside and outside the training regime, as can be seen from the nice agreement between the ground-truth bifurcation diagram in Fig. 8(C) and the diagram generated by the digital twin in Fig. 8(D).

Appendix C: Continual forecasting under non-stationary external driving with sparse real-time data

The three examples (Lorenz-96 climate network in the main text, the driven CO$_2$ laser and the ecological system) have demonstrated that our RC based digital twin is capable of extrapolating and generating the correct statistical features of the dynamical trajectories of the target system such as the attractor and bifurcation diagram. That is, the digital twin can be regarded as a “twin” of the target system only on a statistical sense. In particular, from random initial conditions the digital twin can generate an ensemble of trajectories, and the statistics calculated from the ensemble agree with those of the original system. At the level of individual trajectories, if a target system and its digital twin start from the same initial condition, the trajectory generated by the twin can stay close to the true trajectory only for a short period of time (due to chaos). However, with infrequent state updates, the trajectory generated by the twin can shadow the true trajectory (in principle) for an arbitrarily long period of time [32], realizing continual forecasting of the state evolution of the target system.
FIG. 9. Continual forecasting of the chaotic ecological system under non-stationary external driving with sparse updates. (A) A non-stationary sinusoidal driving signal \(f(t) \) whose amplitude increases with time. The task for the digital twin is to forecast the response of the chaotic target system under this driving signal for a relatively long term (B) The trajectory generated by the digital twin (red) in comparison with the true trajectory (blue). For \(0 \leq t < \sim 400 \), the two trajectories match each other with small errors, but the digital-twin generated trajectory begins to deviate from the true trajectory at \(t \sim 400 \) (due to chaos). (C) With only sparse updates from real data at times indicated by the vertical lines (2.5% of the time steps in the given time interval), the digital twin can make relatively accurate predictions for a long term, demonstrating the ability to perform continual forecasting.

In data assimilation for numerical weather forecasting, the state of the model system needs to be updated from time to time \([82-84]\). This idea has recently been exploited to realize long-term prediction of the state evolution of chaotic systems using RC \([32]\). Here we demonstrate that, even when the driving signal is non-stationary, the digital twin can still generate the correct state evolution of the target system. As a specific example, we use the chaotic ecosystem in Eqs. (B1-B2) with the same RC network trained in Sec. B. Figure 9(A) shows the non-stationary external driving \(f(t) = A(t) \sin(\omega_{\text{eco}} t) \) whose amplitude \(A(t) \) increases linearly from \(A(t = 0) = 0.4 \) to \(A(t = 2500) = 0.6 \) in the time interval \([0, 2500]\). Figure 9(B) shows the true (blue) and digital-twin generated (red) time evolution of the nutrient abundance. Due to chaos, without state updates, the two trajectories diverge from each other after a few cycles of oscillation. However, even with rare state updates, the two trajectories can stay close to each other for any arbitrarily long time, as shown in Fig. 9(C). In particular, there are 800 time steps involved in the time interval \([0, 2500]\) and the state of the digital twin is updated 20 times, i.e., 2.5% of the available time series data. We will discuss the results further discussion in the next section.

Appendix D: Continual forecasting with hidden dynamical variables

In real-world scenarios, usually not all the dynamical variables of a target system are accessible. It is often the case that only a subset of the dynamical variables can be measured and the remaining variables are inaccessible or hidden from the outside world. Can a digital twin still make continual forecasting in the presence of hidden variables based on the time series data from the accessible variables? Also, Can the digital twin do this without knowing that there exists some hidden variables before training? In general, when there are hidden variables, the reservoir network needs to sense their existence, encode them in the hidden state of the recurrent layer, and constantly update them. As such, the recurrent structure of reservoir computing is necessary, because there must be a place for the machine to store and restore the implicit information that it has learned from the data. Compared with the cases where complete information about the dynamical evolution of all the observable is available, when there are hidden variables, it is significantly more challenging to predict the evolution of a target system driven by a non-stationary external signal using sparse observations of the accessible variables.

As an illustrative example, we again consider the ecosystem described by Eqs. (B1) and (B2). We assume that the dynamical variable \(N \) (the abundance of the nutrients) is hidden and \(P(t) \), the biomass of the phytoplankton, is externally accessible. Despite the accessibility to \(P(t) \), we assume that it can be measured only occasionally. That is, only sparsely updated data of the variable \(P(t) \) is available. It is necessary that the digital twin is able to learn some equivalent of \(N(t) \) as the time evolution of \(P(t) \) also depends on the value \(N(t) \), and to encode the equivalent in the reservoir network. In an actual application, when the digital twin is deployed,
FIG. 10. Continual forecasting and monitoring of a hidden dynamical variable in the chaotic ecological system under non-stationary external driving with sparse updates from the observable. The system is described by Eqs. (B1) and (B2). The dynamical variable \(N(t) \) is hidden, and the other variable \(P(t) \) is externally accessible but only sparsely sampled measurement of it can be performed. (A) The non-stationary sinusoidal driving signal \(f(t) \) with a time-varying amplitude. (B) Digital-twin generated time evolution of the accessible variable \(P(t) \) (red) in comparison with the ground truth (blue) in the absence of any state update of \(P(t) \). The predicted time evolution quickly diverges from the true behavior. (C) With sparse updates of \(P(t) \) at the times indicated by the purple vertical lines (10% of the times steps), the digital twin is able to make an accurate forecast of \(P(t) \). (D) Digital-twin generated time evolution of the hidden variable \(N(t) \) (red) in comparison with the ground truth (blue) in the absence of any state update of \(P(t) \). (E) Accurate forecasting of the hidden variable \(N(t) \) with sparse updates of \(P(t) \).

knowledge about the existence of such a hidden variable is not required.

Figure 10 presents a representative resulting trial, where Fig. 10(A) shows the non-stationary external driving signal \(f(t) \) (the same as the one in Fig. 9(A)). Figure 10(B) shows, when the observable \(P(t) \) is not updated with the real data, the predicted time series (red) \(P(t) \) diverges from the true time series (blue) after about a dozen oscillations. However, if \(P(t) \) is updated to the digital twin with the true values at the times indicated by the purple vertical lines in Fig. 10(C), the predicted time series \(P(t) \) matches the ground truth for a much longer time. The results suggest that the existence of the hidden variable does not significantly impede the performance of continual forecasting.

The results in Fig. 10 motivate the following questions. First, has the reservoir network encoded information about the hidden variable? Second, suppose it is known that there is a hidden variable and the training dataset contains this variable, can its evolution be inferred with only rare updates of the observable during continual forecasting? Previous results [24, 28, 85] suggested that reservoir computing can be used to infer the hidden variables in a nonlinear dynamical system. Here we show that, with a segment of the time series of \(N(t) \) used only for training an additional readout layer, our digital twin can forecast \(N(t) \) with only occasional inputs of the observable time series \(P(t) \). In particular, the additional readout layer for \(N(t) \) is used only for extracting information about \(N(t) \) from the reservoir network and its output is never injected back to the reservoir. Consequently, whether this additional task of inferring \(N(t) \) is included or not, the trained output layer for \(P(t) \) and the forecasting results of \(P(t) \) are not altered.

Figure 10(D) shows that, when the observable \(P(t) \) is not updated with the real data, the digital twin can infer the hidden variable \(N(t) \) for several oscillations. If \(P(t) \) is updated with the true value at the times indicated by the purple vertical lines in Fig. 10(C), the dynamical evolution of the hidden variable \(N(t) \) can also be accurately predicted for a much longer period of time, as shown in Fig. 10(E). It is worth emphasizing that during the whole process of forecasting and monitoring, no information about the hidden variable \(N(t) \) is required -
only sparse data points of the observable $P(t)$ are used.

The training and testing settings of the digital twin for the task involving a hidden variable are as follows. The input dimension of the reservoir is $D_{in} = 1$ because there is a single observable $\log_{10} P(t)$. The output dimension is $D_{out} = 2$ with one dimension of the observable $\log_{10} P(t+\Delta t)$ in addition to one dimension of the hidden variable $N(t+\Delta t)$. Because of the higher memory requirement in dealing with a hidden variable, a somewhat larger reservoir network is needed, so we use $D_r = 1,000$. The times step of the dynamical evolution of the neural network is $\Delta t = 0.1$. The training and validating lengths for each value of the driving amplitude in the training are $t = 3,500$ and $t = 350$, respectively. Other optimized hyperparameters of the reservoir are $d = 450$, $\lambda = 1.15$, $k_{in} = 0.32$, $k_o = 3.1$, $\alpha = 0.077$, $\beta = 1 \times 10^{-8.3}$, and $\sigma_{noise} = 10^{-3.0}$.

It is also worth noting that Figs. 9 and 10 have demonstrated the ability of the digital twin to extrapolate beyond the parameter regime of the target system from which the training data are obtained. In particular, the digital twin was trained only with time series under stationary external driving of the amplitude $A = 0.35, 0.4, 0.45$, and 0.5. During the testing phase associated with both Figs. 9 and 10, the external driving is non-stationary with its amplitude linearly increasing from $A = 0.4$ to $A = 0.6$. The second half of the time series $P(t)$ and $N(t)$ in Figs. 9 and 10 are thus beyond the training parameter regime.

The results in Figs. 9 and 10 help legitimize the terminology “digital twin,” as the reservoir computers subject to the external driving are dynamical twin systems that evolve “in parallel” to the corresponding real systems. Even when the target system is only partially observable, the digital twin contains both the observable and hidden variables whose dynamical evolution is encoded in the recurrent neural network in the hidden layer. The dynamical evolution of the output is constantly (albeit infrequently) corrected by sparse feedback from the real system, so the output trajectory of the digital twin shadows the true trajectory of the target system. Suppose one wishes to monitor a variable in the target system, it is only necessary to read it from the digital twin instead of making more (possibly costly) measurements on the real system.

Appendix E: Digital twins under external driving with varied waveform

In the main text, it is demonstrated that dynamical noise added to the driving signal during the training can be beneficial. Figure 11 presents a comparison between the noiseless training and the training with dynamical noise of a strength $\delta_{DB} = 3 \times 10^{-3}$ (as in the main text). The ground-truth bifurcation diagram is shown in Fig. 11A and three examples with different reservoir neural networks for the noiseless (B1, B2, B3) and noisy (C1, C2, C3) training schemes are shown. All the settings other than the noise level are the same as that in Fig. 1 in the main text. Though there are still fluctuations in the predicted results, adding dynamical noise into the training data can produce bifurcation diagrams that are in general closer to the ground truth than without noise.

The results shown in Fig. 11 also raises the issue of performance fluctuations in the predicted results among different randomly generated RC networks [10]. It is necessary to train an ensemble of RC networks to obtain a statistical quantification of the performance. An example is presented in Appendix F, where it is shown that the ensemble average of the predicted crisis point is accurate.

To further demonstrate the beneficial role of noise, we test the additive training noise scheme using the ecological system. The training process and hyperparameter values of the digital twin are identical to these in [13]. A dynamical noise of amplitude $\delta_{DB} = 3 \times 10^{-4}$ is added to the driving signal $f(t)$ during training in the same way as in Fig. 4 in the main text. During testing, the driving signals is altered to

$$ f_{test}(t) = A_{test} \sin(\omega_{eco} t) + \frac{A_{test}}{2} \sin \left(\frac{\omega_{eco}}{2} t + \Delta \phi \right) \quad (E1) $$

where $\omega_{eco} = 0.19$ as in [3]. Two sets of testing signals $f_{test}(t)$ are used, with $A_{test} = 0.3$ and 0.4, respectively. Figure 12 show the true and predicted bifurcation diagrams of $\log_{10} P_{max}$ versus $\Delta \phi$ for $A_{test} = 0.3$ (left column) and $A_{test} = 0.4$ (right column). It can be seen that the bifurcation diagrams generated by the digital twin with the aid of training noise are remarkably accurate. We also find that, for this ecological system, the amplitude δ_{DB} of the dynamical noise during training does not have a significant effect on the predicted bifurcation diagram. A plausible reason is that the driving signal $f(t)$ is a multiplicative term in the system equations.

Appendix F: Quantitative characterization of performance of digital twin

In the main text, we demonstrate the performance of the digital twin qualitatively based on visually comparing the predicted bifurcation diagram with the ground truth. Given the rich bifurcation structure, to quantify the similarities between two bifurcation diagrams is difficult. However, for a bifurcation diagram, the parameter values at which the various bifurcations occur are of great interest, as they define the critical points at which characteristic changes in the system can occur. In this section we focus on the crisis point at which sustained chaotic motion on an attractor is destroyed and replaced by transient chaos. And, accordingly, we use two quantities to characterize the performance of the digital twin in extrapolating the dynamics of the target system: the errors in the predicted critical bifurcation point and average lifetime of the chaotic transient after the bifurcation.
FIG. 11. Comparisons of the prediction performance between the noiseless (left) and noisy (right) cases on the task of predicting under external driving with different waveform. The target system is a six-dimensional Lorenz-96 system. Panel (A) shows the true bifurcation diagram. Panels (B1-B3) show the prediction results without any dynamical noise in the training data with three realizations of the reservoir network. Panels (C1-C3) show the prediction results with dynamical noise of a strength $\delta_{DB} = 3 \times 10^{-3}$ in the training data. The settings are the same as that in Fig. 4 in the main text.

As an illustrative example, we take the driven chaotic laser system in Appendix A where a crisis bifurcation occurs at the critical driving frequency $\Omega_c \approx 0.912$ at which the chaotic attractor of the system is destroyed and replaced by a non-attracting chaotic invariant set leading to transient chaos. We test to determine if the digital twin can faithfully predict the crisis point based only on training data from the parameter regime of a chaotic attractor. Let $\hat{\Omega}_c$ be the digital-twin predicted critical point. Figure 13(A) shows the distribution of $\hat{\Omega}_c$ obtained from 200 random realizations of the reservoir neural network. Despite the fluctuations in the predicted
FIG. 12. Performance of the digital twin with the ecological model under driving signals with waveform different from the training set. The testing driving signals are described by Eq. (E1) while the training driving signals are sinusoidal waves with small dynamical noise. (A1) The real bifurcation diagram for $A_{\text{test}} = 0.3$. (A2, A3) Predicted bifurcation diagrams for $A_{\text{test}} = 0.3$ with two random realizations of the reservoir networks. (B1-B3) Same as (A1-A3) but with $A_{\text{test}} = 0.4$.

The real bifurcation diagram for $A_{\text{test}} = 0.3$. A relative error ε_{Ω} of $\hat{\Omega}_{c}$ can then be defined as

$$\varepsilon_{\Omega} = \frac{|\hat{\Omega}_{c} - \Omega_{c}|}{D(\Omega_{c}, \{\Omega_{\text{train}}\})},$$

where $D(\Omega_{c}, \{\Omega_{\text{train}}\})$ denotes the minimal distance from Ω_{c} to the set of training parameter points $\{\Omega_{\text{train}}\}$, i.e., the difference between Ω_{c} and the closest training point. For the driven laser system, we have $D(\Omega_{c}, \{\Omega_{\text{train}}\}) \approx 10\%$.

The second quantity is the lifetime $\tau_{\text{transient}}$ of transient chaos after the crisis bifurcation [35, 39], as shown in Fig. 13(B). The average transient lifetime is the inverse of the slope of the linear regression of predicted data points in Fig. 13(B), which is $\langle \tau \rangle \approx 0.8 \times 10^{3}$. Compared with the true value $\langle \tau \rangle \approx 1.2 \times 10^{3}$, we see that the digital twin is able to predict the average chaotic transient lifetime to within the same order of magnitude. Considering that key to the transient dynamics is the small escaping region in Fig. 6(D2), which is sensitive to the inevitable training errors, the performance can be deemed as satisfactory.

Appendix G: Robustness of digital twin against combined dynamical/observational noises

Can our RC based digital twins withstand the influences of different types of noises? To address this question, we introduce dynamical and observational noises in the training data, which are modeled as additive Gaussian noises. Take the six-dimensional Lorenz-96 system in Sec. IIA in the main text as an example. Figure 14(A) shows the true bifurcation diagram under different amplitudes of external driving, where the vertical
FIG. 13. Quantitative performance of the digital twin for a chaotic driven laser system. (A) Distribution of the predicted values of the crisis bifurcation point $\hat{\Omega}_c$, at which a chaotic attractor is destroyed and replaced by a non-attracting chaotic invariant set leading to transient chaos. The blue and red vertical dashed lines denote the true value $\Omega_c \approx 0.912$ and the average predicted value $\langle \hat{\Omega}_c \rangle$, respectively, where 200 random realizations of the reservoir neural network are used to generate this distribution. Despite the fluctuations in the predicted crisis point, the ensemble average value of the prediction is quite close to the ground truth. (B) Exponential distribution of the lifetime of transient chaos slightly beyond the crisis point: true (blue) and predicted (red) behaviors. The predicted distribution is generated using 100 random reservoir realizations, each with 200 random initial “warming up” data.

dashed lines specify the training points. Figures 14(B1) and 14(B2) show two realizations of the bifurcation diagram generated by the digital twin under both dynamical and observational noises of amplitudes $\sigma_{\text{dyn}} = 10^{-2}$ and $\sigma_{\text{ob}} = 10^{-2}$. Two bifurcation diagrams for noise amplitudes of an order of magnitude larger: $\sigma_{\text{dyn}} = 10^{-1}$ and $\sigma_{\text{ob}} = 10^{-1}$, are shown in Figs. 14(C1) and 14(C2). It can be seen that the additional noises have little effect on the performance of the digital twin in generating the bifurcation diagram.

[1] E. J. Eric J. Tuegel, A. R. Ingraffea, T. G. Eason, and S. M. Spottswood, Reengineering aircraft structural life prediction using a digital twin, Int. J. Aerospace Eng. 2011, 154798 (2011).
[2] F. Tao and Q. Qi, Make more digital twins, Nature 573, 274 (2019).
[3] A. Rasheed, O. San, and T. Kvamsdal, Digital twin: Values, challenges and enablers from a modeling perspective, IEEE Access 8, 21980 (2020).
[4] K. Bruynseels, F. S. de Sio, and J. van den Hoven, Digital twins in health care: Ethical implications of an emerging engineering paradigm, Front. Gene. 9, 31 (2018).
[5] S. M. Schwartz, K. Wildenhaus, A. Bucher, and B. Byrd, Digital twins and the emerging science of self: Implications for digital health experience design and “small” data, Front. Comp. Sci. 2, 31 (2020).
[6] R. Laubenbacher, J. P. Sliuka, and J. A. Glazier, Using digital twins in viral infection, Science 371, 1105 (2021).
[7] P. Voosen, Europe builds ‘digital twin’ of earth to hone climate forecasts, Science 370, 16 (2020).
[8] P. Bauer, B. Stevens, and W. Hazeleger, A digital twin of earth for the green transition, Nat. Clim. Change 11, 80 (2021).
[9] Y.-C. Lai and T. Tel, Transient Chaos - Complex Dynamics on Finite Time Scales (Springer, New York, 2011).
[10] K. McCann and P. Yodzis, Nonlinear dynamics and population disappearances, Ame. Naturalist 144, 873 (1994).
FIG. 14. Robustness of digital twin against combined dynamical and observational noises. The setting is the same as that in Fig. 2 in the main text, except with additional noises in the training data. (A) A true bifurcation diagram of the six-dimensional Lorenz-96 system. (B1, B2) Two examples of the bifurcation diagram predicted by the digital twin with training data under dynamical noise of amplitude $\sigma_{\text{dyn}} = 10^{-2}$ and observational noise of amplitude $\sigma_{\text{ob}} = 10^{-2}$. (C1, C2) Two examples of the predicted bifurcation diagrams under the two kinds of noise with $\sigma_{\text{dyn}} = 10^{-1}$ and $\sigma_{\text{ob}} = 10^{-1}$. Both the dynamical and observational noises are additive Gaussian processes. It can be seen that though larger additional noises make the predicted details less accurate, the general shapes of the predicted results are not harmed significantly. The settings of the training data and reservoir neural networks are the same as those in Fig. 2 in the main text. The dynamical noises are added to the dynamical equations of the state variables. There is no noise in the sinusoidal external driving.

[11] A. Hastings, K. C. Abbott, K. Cuddington, T. Francis, G. Gellner, Y.-C. Lai, A. Morozov, S. Petrivskii, K. Scranton, and M. L. Zeeman, Transient phenomena in ecology, Science 361, eaat6412 (2018).
[12] M. Dhamala and Y.-C. Lai, Controlling transient chaos in deterministic flows with applications to electrical power systems and ecology, Phys. Rev. E 59, 1646 (1999).
[13] Y.-C. Lai, C. Grebogi, and J. Kurths, Modeling of deterministic chaotic systems, Phys. Rev. E 59, 2907 (1999).
[14] Y.-C. Lai and C. Grebogi, Modeling of coupled chaotic oscillators, Phys. Rev. Lett. 82, 4803 (1999).
[15] W.-X. Wang, R. Yang, Y.-C. Lai, V. Kovanis, and C. Grebogi, Predicting catastrophes in nonlinear dynamical systems by compressive sensing, Phys. Rev. Lett. 106, 154101 (2011).
[16] W.-X. Wang, Y.-C. Lai, and C. Grebogi, Data based identification and prediction of nonlinear and complex dynamical systems, Phys. Rep. 644, 1 (2016).
[17] Y.-C. Lai, Finding nonlinear system equations and complex network structures from data: A sparse optimization approach, Chaos 31, 082101 (2021).
[18] H. Jaeger, The “echo state” approach to analysing and training recurrent neural networks—with an erratum note, German National Research Center for Information Technology GMD Technical Report 148, 13 (2001).
[19] W. Mass, T. Nachtschläger, and H. Markram, Real-time computing without stable states: A new framework for neural computation based on perturbations, Neur. Comp. 14, 2531 (2002).

[20] H. Jaeger and H. Haas, Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication, Science 304, 78 (2004).

[21] N. D. Haynes, M. C. Soriano, D. P. Rosin, I. Fischer, and D. J. Gauthier, Reservoir computing with a single time-delay autonomous Boolean node, Phys. Rev. E 91, 020801 (2015).

[22] L. Larter, A. Baylón-Fuentes, R. Martinenghi, V. S. Udalskov, Y. K. Chembo, and M. Jacquot, High-speed photonic reservoir computing using a time-delay-based architecture: Million words per second classification, Phys. Rev. X 7, 011015 (2017).

[23] J. Pathak, Z. Lu, B. Hunt, M. Girvan, and E. Ott, Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data, Chaos 27, 121102 (2017).

[24] Z. Lu, J. Pathak, B. Hunt, M. Girvan, R. Brockett, and E. Ott, Reservoir observers: Model-free inference of unmeasured variables in chaotic systems, Chaos 27, 041102 (2017).

[25] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach, Phys. Rev. Lett. 120, 024102 (2018).

[26] T. L. Carroll, Using reservoir computers to distinguish chaotic signals, Phys. Rev. E 98, 052209 (2018).

[27] K. Nakai and Y. Saiki, Machine-learning inference of fluid variables from data using reservoir computing, Phys. Rev. E 98, 023111 (2018).

[28] Z. S. Roland and U. Parlitz, Observing spatio-temporal dynamics of excitable media using reservoir computing, Chaos 28, 043118 (2018).

[29] A. Griffith, A. Pomerance, and D. J. Gauthier, Forecasting chaotic systems with very low connectivity reservoir computers, Chaos 29, 123108 (2019).

[30] J. Jiang and Y.-C. Lai, Model-free prediction of spatiotemporal dynamical systems with recurrent neural networks: Role of network spectral radius, Phys. Rev. Research 1, 033056 (2019).

[31] G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa, S. Takeda, H. Numata, D. Nakano, and A. Hirose, Recent advances in physical reservoir computing: A review, Neur. Net. 115, 100 (2019).

[32] H. Fan, J. Jiang, C. Zhang, X. Wang, and Y.-C. Lai, Long-term prediction of chaotic systems with machine learning, Phys. Rev. Research 2, 012080 (2020).

[33] C. Zhang, J. Jiang, S.-X. Qu, and Y.-C. Lai, Predicting phase and sensing phase coherence in chaotic systems with machine learning, Chaos 30, 083114 (2020).

[34] C. Klos, Y. F. K. Kossio, S. Goedeke, A. Gilra, and R.-M. Memmesheimer, Dynamical learning of dynamics, Phys. Rev. Lett. 125, 088103 (2020).

[35] L.-W. Kong, H.-W. Fan, C. Grebogi, and Y.-C. Lai, Machine learning prediction of critical transition and system collapse, Phys. Rev. Research 3, 013090 (2021).

[36] D. Patel, D. Canaday, M. Girvan, A. Pomerance, and E. Ott, Using machine learning to predict statistical properties of non-stationary dynamical processes: System climate, regime transitions, and the effect of stochasticity, Chaos 31, 033149 (2021).

[37] J. Z. Kim, Z. Lu, E. Nozari, G. J. Pappas, and D. S. Bassett, Teaching recurrent neural networks to infer global temporal structure from local examples, Nat. Machine Intell. 3, 316 (2021).

[38] H. Fan, L.-W. Kong, Y.-C. Lai, and X. Wang, Anticipating synchronization with machine learning, Phys. Rev. Resesearch 3, 023237 (2021).

[39] L.-W. Kong, H. Fan, C. Grebogi, and Y.-C. Lai, Emergence of transient chaos and intermittency in machine learning, J. Phys. Complexity 2, 035014 (2021).

[40] E. Bollt, On explaining the surprising success of reservoir computing forecasters of chaos? the universal machine learning dynamical system with contrast to var and dmd, Chaos 31, 013108 (2021).

[41] D. J. Gauthier, E. Bollt, A. Griffith, and W. A. Barbosa, Next generation reservoir computing, Nat. Commun. 12, 1 (2021).

[42] A. Haluszczynski and C. Räth, Controlling nonlinear dynamical systems into arbitrary states using machine learning, Scientific reports 11, 1 (2021).

[43] T. L. Carroll, Optimizing memory in reservoir computers, Chaos 32, 023123 (2022).

[44] A. Hart, J. Hook, and J. Dawes, Embedding and approximation theorems for echo state networks, Neu. Net. 128, 234 (2020).

The codes of this work are shared at https://lw-kong/Digital_Twin_2021

[45] J. Herteux and C. Räth, Breaking symmetries of the reservoir equations in echo state networks, Chaos 30, 123142 (2020).

[46] D. E. Goldberg, Genetic Algorithms (Pearson Education India, 2006).

[47] A. R. Conn, N. I. Gould, and P. Toint, A globally convergent augmented lagrangian algorithm for optimization with general constraints and simple bounds, SIAM J. Numer. Anal. 28, 545 (1991).

[48] A. Conn, N. Gould, and P. Toint, A globally convergent lagrangian barrier algorithm for optimization with general inequality constraints and simple bounds, Math. Comput. 66, 261 (1997).

[49] J. Kennedy and R. Eberhart, Particle swarm optimization, in Proceedings of ICNN’95-International Conference on Neural Networks, Vol. 4 (IEEE, 1995) pp. 194-198.

[50] E. Mezura-Montes and C. A. C. Coello, Constraint-handling in nature-inspired numerical optimization: past, present and future, Swarm Evol. Comput. 1, 173 (2011).

[51] M. A. Gelbart, J. Snoek, and R. P. Adams, Bayesian optimization with unknown constraints, arXiv preprint arXiv:1403.5607 (2014).

[52] J. Snoek, H. Larochelle, and R. P. Adams, Practical bayesian optimization of machine learning algorithms, in NeurIPS (2012) pp. 2951-2959.

[53] H.-M. Gutmann, A radial basis function method for global optimization, J. Global Optim. 19, 201 (2001).

[54] R. G. Regis and C. A. Shoemaker, A stochastic radial basis function method for the global optimization of expensive functions, INFORMS J. Comput. 19, 497 (2007).

[55] Y. Wang and C. A. Shoemaker, A general stochastic algorithmic framework for minimizing expensive black box objective functions based on surrogate models and sensitivity analysis, arXiv preprint arXiv:1410.6271 (2014).
[57] E. N. Lorenz, Predictability: A problem partly solved, in Proc. Seminar on Predictability, Vol. 1 (1996).

[58] C. Van den Broeck, J. Parrondo, R. Toral, and R. Kawai, Nonequilibrium phase transitions induced by multiplicative noise, Phys. Rev. E 55, 4084 (1997).

[59] D. Sussillo and L. F. Abbott, Generating coherent patterns of activity from chaotic neural networks, Neuron 63, 544 (2009).

[60] T. Kobayashi and T. Sugino, Continuing learning exploiting structure of fractal reservoir computing, in International Conference on Artificial Neural Networks (Springer, 2019) pp. 35–47.

[61] J. Pathak, A. Wikner, R. Fussell, S. Chandra, B. R. Hunt, M. Girvan, and E. Ott, Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model, Chaos 28, 041101 (2018).

[62] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, Neural ordinary differential equations, Adv. Neu. Info. Proc. Sys. 31 (2018).

[63] F. Berkenkamp, M. Turchetta, A. P. Schoellig, and A. Krause, Safe model-based reinforcement learning with stability guarantees, arXiv preprint arXiv:1705.08551 (2017).

[64] T. M. Moerland, J. Broekens, and C. M. Jonker, Model-based reinforcement learning: A survey, arXiv preprint arXiv:2006.16712 (2020).

[65] Y. Kuramoto and D. Battogtokh, Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlin. Phenom. Complex Syst. 5, 380 (2002).

[66] D. M. Abrams and S. H. Strogatz, Chimera states for coupled oscillators, Phys. Rev. Lett. 93, 174102 (2004).

[67] I. Omelchenko, Y. Maistrenko, P. Hövel, and E. Schöll, Loss of coherence in dynamical networks: Spatial chaos and chimera states, Phys. Rev. Lett. 106, 234102 (2011).

[68] M. R. Tinsley, S. Nkomo, and K. Showalter, Chimera and phase-cluster states in populations of coupled chemical oscillators, Nat. Phys. 8, 662 (2012).

[69] A. M. Hagerstrom, T. E. Murphy, R. Roy, P. Hövel, I. Omelchenko, and E. Schöll, Experimental observation of chimeras in coupled-map lattices, Nat. Phys. 8, 658 (2012).

[70] I. Omelchenko, O. E. Omel’chenko, P. Hövel, and E. Schöll, When nonlocal coupling between oscillators becomes stronger: Patched synchrony or multichimera states, Phys. Rev. Lett. 110, 224101 (2013).

[71] I. Omelchenko, A. Zakharova, P. Hövel, J. Siebert, and E. Schöll, Nonlinearity of local dynamics promotes multichimera states, Chaos 25, 083104 (2015).

[72] I. Omelchenko, O. E. Omel’chenko, A. Zakharova, and E. Schöll, Optimal design of tweezer control for chimera states, Phys. Rev. E 97, 012216 (2018).

[73] L.-W. Kong and Y.-C. Lai, Scaling law of transient lifetime of chimera states under dimension-augmenting perturbations, Phys. Rev. Research 2, 023196 (2020).

[74] D. Dangoisse, P. Glorieux, and D. Hennequin, Laser chaotic attractors in crisis, Phys. Rev. Lett. 57, 2657 (1986).

[75] D. Dangoisse, P. Glorieux, and D. Hennequin, Chaos in a CO2 laser with modulated parameters: experiments and numerical simulations, Phys. Rev. A 36, 4775 (1987).

[76] H. G. Solari, E. Eschenazi, R. Gilmore, and J. R. Tredicce, Influence of coexisting attractors on the dynamics of a laser system, Opt. Commun. 64, 49 (1987).

[77] I. B. Schwartz, Sequential horseshoe formation in the birth and death of chaotic attractors, Phys. Rev. Lett. 60, 1359 (1988).

[78] C. Grebogi, E. Ott, and J. A. Yorke, Crises, sudden changes in chaotic attractors and chaotic transients, Physica D 7, 181 (1983).

[79] A. Huppert, B. Blasius, R. Olinky, and L. Stone, A model for seasonal phytoplankton blooms, J. Theo. Biol. 236, 276 (2005).

[80] L. Stone, R. Olinky, and A. Huppert, Seasonal dynamics of recurrent epidemics, Nature 446, 533 (2007).

[81] M. Winder and U. Sommer, Phytoplankton response to a changing climate, Hydrobiologia 698, 5 (2012).

[82] E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability (Cambridge university press, 2003).

[83] M. Asch, M. Bocquet, and M. Nodet, Data Assimilation: Methods, Algorithms, and Applications (SIAM, 2016).

[84] A. Wikner, J. Pathak, B. R. Hunt, I. Szunyogh, M. Girvan, and E. Ott, Using data assimilation to train a hybrid forecast system that combines machine-learning and knowledge-based components, Chaos 31, 053114 (2021).

[85] T. Weng, H. Yang, C. Gu, J. Zhang, and M. Small, Synchronization of chaotic systems and their machine-learning models, Phys. Rev. E 99, 042203 (2019).