Analysis of the Practicality of the PjBL Model for Biology Lectures

Ibnu Hajar¹,* Lufri² Ahmad Fauzan³

¹,²,³ Doctoral Program of Education, Universitas Negeri Padang
*Corresponding author. Email: ibnu@edu.ui.ac.id

ABSTRACT

Research and development have been carried out to find the practicality of the PjBL model for Biology courses developed in the Riau Islamic University (UIR) Biology education program. This study uses the R&D method with the Plomp model (2013). As the trial subject is a 5th-semester student of the UIR Biology education study program for the 2019/2020 academic year. The research instrument used was the model practicality, the model practicality instrument by the lecturer, the model practicality instrument by the students. Data collection techniques using observation and questionnaires. Data analysis with a descriptive analysis of kappa coefficient and percentage agreement validator, using windows application SPSS version. 20. The results of the study found that 1) the PjBL model for Biology lectures was carried out as a whole, 2) the practicality test by the lecturer obtained the results of the model being very easy to use in Biology lectures, and 3) The practicality test by students was obtained very practical or easy to implement in Biology lectures. Based on the research results, it can be concluded that the PjBL model for Biology lectures is very practical to be used in biology courses at the Islamic University of Riau.

Keywords: analysis, practicality, learning model.

1. INTRODUCTION

Challenges and duties of PT. including the Riau Islamic University (UIR) in the Industrial 4.0 era. making graduates as technopreneurs and adaptive sociopreneurs who can face changes in all fields including facing the 4.0 Industrial Revolution agenda. To deal with this condition is with the quality education that produces graduates with qualified skills. According to WEF (2015), students need 16 skills for the 21st century, which are divided into 3 groups, namely: 1) foundational literacies (basic literacy), namely how students apply skills for daily tasks, 2) competencies, namely how to approach Students to face complex challenges, and 3) character qualities, namely how students approach their changing environment.

Biology experienced very rapid development in the XXI century and influenced various aspects of human life. Therefore, it is not wrong for Naisbitt & Aburdene's opinion about the XXI century as the century of biology. Changing the position of biology is a challenge for biologists and biology educators (Rustaman, 2007: 1). Apart from the changes in biology's position above, biology is difficult for students to master.

The results above are reinforced by the results of preliminary research (preliminary research) by Hajar (2019) that the Biology education study program lecturers have used the learning model specified in the KKNI-based PT Curriculum, namely: small group discussion, cooperative learning, contextual instruction (63.16% each). Case study, discovery learning, collaborative learning, problem-based learning / PBL (52.63% each), project-based learning (31.58%). Another condition is that students have difficulty determining real problems in project assignments (42.86%), decreased interest in implementing projects and some even stopped, as a result, they asked for additional time (42.86%), there were differences in student perceptions in project assignments (57, 14%) lack of project manuals in biology courses.

Based on Hajar's findings above, a PjBL-based model was developed. This model is the PjBL model for Biology lectures, this model is called the PjBL model. Based on various opinions, the model when viewed based on task independence is a disciplined project, based on the nature and sequence of its activities, it is semi-structured, based on the scale it is a medium...
project. The PjBL model for Biology lectures has been tested for validity, according to 5 validators, one to one, and the FGD received a very valid assessment, suitable for use in the Biology education program of the Riau Islamic University for a little revision, therefore continued the practicality test.

Based on the explanation above, a study was conducted with the title "Practical Analysis of the PjBL Model for Biology Classes". Research questions What is the level of practicality of the PjBL model developed for biology lectures? The purpose of this study was to find the practical level of the PjBL model developed for biology lectures.

1.1. Theory

Adults who do the learning process are people who have experienced various events and experiences. What is needed in learning are things that can answer the various problems faced in his life so far (Tarno, 2017, 104). Kilpatrick (1920), Thomas (2000), Doppelt (2005), Dirjendikti Kemendikbud (2014) became the basis for developing the PjBL model for Biology courses. Practicality refers to the level that the user (or other experts) considers the intervention to be used and preferred under normal conditions (Akker, 1999: 10). Nieveen (1999) explains that "The developed model is said to be practical if experts and practitioners state that theoretically that the model can be applied in the field and the level of model implementation is in a good category. The term "good" still requires measurement with the indicators needed to determine the level of "practicality" of model implementation.

2. RESEARCH METHODS

This research method is the R & D method with the Plomp model (2013). Data collection was carried out from December 12, 2019, to January 25, 2020, for students of the Riau Islamic University Biology education study program semester 5 of the 2019/2020 academic year. The practicality of the PjBL model for biology courses is determined based on three indicators, namely 1) the implementation of the PjBL model for Biology lectures in medicinal plants courses, 2) The practicality of the PjBL model for Biology lectures according to the lecturer. And 3) the practicality of the PjBL model for Biology lectures by students. Before use, the instrument used was validated and reliable. Data collection techniques using observation techniques, and questionnaires. The data analysis technique used a practicality test by determining the coefficient of Cohen's Kappa and the level of the percentages of agreements formula put forward by Grinnell. Data analysis assisted by the Windows SPSS version 20.0 application.

3. DEVELOPMENT RESULTS AND DISCUSSION

The practicality of this model is seen and the implementation of learning, the practicality of the learning model according to the lecturer, and the practicality of the learning model according to the students.

3.1 Implementation of the PjBL Model for Biology Lectures

Based on the results of data analysis, it can be explained in the PjBL model trial for Biological recovery in the project as a whole (k = 3.5) in the limited trial of OTI material and (k = 3.8) simple material. The implementation of this model in learning is the implementation of 1) aspects of preliminary activities, 2) core activities, namely: the application of syntax, application of reaction principles, application of support systems, student involvement in learning, and 3) closing activities. The agreement between the two validators (percentage of agreements) in assessing the implementation of the model was 83.3% and 100% in the category of very good agreements. For more details, it can be seen in Table.

Table 1. Implementation of the PjBL Model for Biology Lectures

| No | Aspect Observed          | OTI Material Observer Average | Simpisia Material Observer Average |
|----|--------------------------|-------------------------------|-----------------------------------|
|    |                          | 1  | 2       | 1  | 2       | 1  | 2       |
| 1  | Preliminary activities   | 3.7| 3.7     | 3.7| 3.8     | 3.8| 3.8     |
| 2  | Core activities          |    |         |    |         |    |         |
|    | a. Application of the PjBL model syntax | 3.9| 3.9     | 3.9| 3.7     | 3.7| 3.7     |
|    | b. Application of the reaction principle in PjBL | 3.6| 3.6     | 3.6| 3.8     | 3.8| 3.8     |
|    | c. Utilization of the PjBL model support system | 4  | 4       | 4  | 3.7     | 3.7| 3.7     |
|    | d. Involving students in learning | 3.3| 3.3     | 3.3| 4       | 4  | 4       |
| 3  | Closing activities       | 3.5| 3.9     | 3.7| 4       | 4  | 4       |
|    | Average                  |    |         |    |         |    |         |
|    | Percentage of agreements | 83.3%| 100%     |    |         |    |         |

Opening learning is an important factor as the beginning of social interaction in learning and can determine success in learning. According to Hargie et
al. (2004: 261) about social interactions, the appropriate set of induction can be interpreted as a preliminary strategy used to establish a frame of reference, which is deliberately designed to facilitate the development of a communication relationship between the expectations of the participants and the reality of the situation”. Dalat (2013:2), explained that “the Induction Set has 5 main objectives: 1) to get attention, 2) to increase motivation, 3) to assess understanding of previous learning, 4) to provide an overview of the content that will follow, and 5) to determine participants' expectations”. The way individuals perceive and assimilate information is influenced by their initial motivation to attend (Hargie, et al., 2004. 270). Race (2005) has identified five factors that underlie successful learning, one of which, intrinsic motivation, is characterized by an inner desire or personal desire to learn.

The core activities of PjBL for Biology courses begin with the selection of groups with a heterogeneous pattern based on academic ability, namely high, medium, low learning outcomes, each group consisting of 4-5 people. According to Evans (2019), a project designed by the teacher also promotes academic success because students are placed in heterogeneous groups of four students. This allows students of all abilities to benefit from others.

3.2 Practical PjBL Model for Biology Lectures According to Lecturers

The results of the analysis of data on the responses of users of the PjBL model for biology lectures showed that the average cohen kappa coefficient (k = 0.81) in the limited trial this means that the developed model is easy to use in Biology recovery, namely the OTI material. Likewise, in the limited trial II the average cohen kappa coefficient (k = 0.87), means that the model developed is very easy to use in lectures on the simplicia material in the medicinal plant subject. For more details, it can be seen in Table 2.

Table 2. Practicality of the PjBL Model for Biology Lectures According to Lecturers

| No | Aspects Assessed | Trial 1 | Trial 2 |
|----|------------------|--------|--------|
|    | Average | Criteria | Average | Criteria |
| A  | Ease of use of the model | 0.75 | Hight | 0.82 | Hight |
| B  | The benefits of the PjBL model for Biology lectures | 0.82 | Hight | 0.95 | Very hight |
| C  | Usability of lecturers' books | 0.85 | Very hight | 0.89 | Very hight |
| D  | Time Allocation | 0.89 | Very hight | 0.89 | Very hight |
| E  | Language | 0.75 | Hight | 0.82 | Hight |
| Average | 0.81 | Hight | 0.87 | Very hight |

As explained by Woods, et al (2014) class reports can be used to help you differentiate your teaching to suit the learning needs of students working at different stages of understanding or skill. In short, class reports help teachers reflect on ways to organize their class in support of small group instruction. It can also be used to identify pairs of students who will be nurtured opportunities to guide and build on new knowledge with more capable peers, or to enable students at the same learning stage to work together to jointly support a problem or challenge.

3.3 Practical PjBL Model for Biology Lectures According to Students

Under the results of the practicality test by students, the average practicality value of the PjBL model for Biology courses is 0.75 with practical criteria or easy to implement in limited trials I. In Limited trial II the average practicality value is 0.85 with very criteria. practical. When viewed from each observed aspect, all have a large average value of 0.6. This means that all students who assess the practicality of this model state that the PjBL model for Biology courses is a very practical model or very easy to implement. For more details, see Table 3.

Table 3. Practical PjBL Model for Biology Lectures According to Students

| No | Aspects Assessed | Trial 1 | Trial 2 |
|----|------------------|--------|--------|
|    | Average | Criteria | Average | Criteria |
| 1  | Use | 0.78 | Practis | 0.88 | Very practis |
| 2  | Efficiency of Learning Time | 0.79 | Practis | 0.87 | Very practis |
| 3  | Benefits | 0.74 | Practis | 0.88 | Very practis |
| Average | 0.77 | Practis | 0.87 | Very practis |

The PKM book helps direct and equate student perceptions in carrying out project activity steps such as establishing project ideas, making plans, creating products, providing evidence, communicating, and reflecting on project activities. According to Nieven’s opinion, the level of practicality seen from the practitioner’s opinion, the learning model is concluded as practical if (1) the practitioner states the model can be applied in the field and (2) the level of feasibility of the learning model is in the “good” category (Plomp, 2013: 29). Based on this opinion, the PjBL model for biology lectures fulfills a practical aspect.

4. CONCLUSION

The results and discussion in this research can be concluded that the PjBL model for Biology lectures is a very practical model used in lectures of Indonesian traditional medicine (OTI) I and simplicity in the course of medicinal plants.
REFERENCES

[1] Ahmad, T. Y. 2019. Membangun Perguruan Tinggi Bermutu. (https://independent.academia.edu/), diakses 20 Maret 2019.

[2] Anto, F. 2019. Pengembangan Model Pembelajaran Berbasis Masalah untuk Pembelajaran Fisika. Disertasi. Padang: UNP (tidak dipublikasikan)

[3] Arikunto, S.1993. Prosedur Penelitian: Pendekatan Suatu Praktek. Jakarta: Rineka Cipta.

[4] Chiang and Lee. 2016. “The Effect of Project-Based Learning on Learning Motivation and Problem-Solving Ability of Vocational High School Students”. International Journal of Information and Education Technology, (Online), Vol. 6, No. 9, (http://www.ijiet.org/, diakses 15 Juli 2018).

[5] Creswell.J.W. Risearch Design: Pendekatan, Kualitatif, Kuantitatif, dan Mixet. Terjemahan oleh Ahmad Wafa id. 2010. Jogjakarta: Pustaka Pelajar.

[6] Daryanto, Tarno, H. 2017. Pendidikan Orang Dewasa. Jogjakarta: Gava Media.

[7] Depkes. 2012. Jamu dan Kesehatan. Penelitian dan Pengembangan Kesehatan Kementerian Kesehatan adalah Riset Tumbuhan Obat dan Jamu I (Ristoja). Jakarta: Depkes.

[8] Dewey, J. 1972. Experience and Education. Newyork: Collier Books.

[9] Doppelt, Y. 2003. Implementation and Assessment of Project-Based Learning in a Flexible Environment. International Journal of Technology and Design Education, (Online), Vol. 13, No. 3, (https://pdfs.semanticscholar.org/, diakses 6 Juli 2018).

[10] Faridah, Ramlah, Norhasbiah dan Ahmad. 2016. “The Effect Of Project-Based Learning Against Students’ Engagement”. International Journal of Development Research, (Online), Vol. 6, No. 02, https://www.researchgate.net/, diakses 15 Juli 2018).

[11] Fatmawati, B. 2011. Pembelajaran Berbasis Proyek Untuk Meningkatkan Keterampilan Berpikir Kreatif Mahasiswa. Jurnal Pengajaran MIPA, Volume 16, Nomor 2, Oktober 2011, hlm. 85-92.

[12] Fisher, A. 2008. Critical Thinking: An Introduction. USA: Cambridge University Press.

[13] FKIP UIR. 2014. Buku Kurikulum dan Penuntun Mahasiswa FKIP UIR Pekanbaru: UIR Press.

[14] Fry, H. Ketteridge, S.Marshall, S. 2009. The Handbook for Teaching and Learning in Higher Education. New York and London: Routledge.

[15] Gay, L.R. (1991). Educational Evaluation and Measurement: Competencies for Analysis and Application. (2nd). New York: Macmillan Publishing Company.

[16] Grant, S. 2017. “Implementing Project-Based Language Teaching in an Asian Context: A University EAP Writing Course Case Study From Macau”. Asian-Pacific Journal of Second and Foreign Language Education, (Online), Vol. 2, No. 3, (https://sfleducation.springeropen.com/, diakses 11 Juli 2018).

[17] Grow, D.B. 2015. Perangkat Pembelajaran. Jakarta: RajaGrafindo Persada

[18] Hajar, I, dan Aprianti, N. 2017. Pengembangan Modul Materi Sejarah dan Prospek Tanaman Obat. Proseding Nasional. Pendidikan Biologi FKIP Universitas Islam Riau, tanggal 24 April 2018.

[19] Hajar, I. Nurhasanah, H. 2017. Pengembangan Modul Budidaya Tanaman Obat Keluarga. Jurnal Pendidikan Biologi, 3 (5): 15 – 23.

[20] Hamzah. B.U. 2006. Paradigma Baru Psikologi Pembelajaran. Jakarta: Rineka Cipta.

[21] Han, S. Rosli, R. Mery, M. C., Robert, M. C. 2016. “The Effect Of Science, Technology, Engineering and Mathematics (STEM) Project-Based Learning (PBL) On Students’ Achievement In Four Mathematics Topics”. Journal of Turkish Science Education, (Online), Vol. 13, No. 28, (https://ukm.pure.elsevier.com/, diakses 30 Juli 2018).

[22] Haviz, M. 2012. Pengembangan Model Pembelajaran Integratif pada Biologi Perkembangan Hewan di Perguruan Tinggi Agama Islam. (Disertasi). Program Pascasarjana Universitas Negeri Padang.

[23] Hong, L.S, dan Rossini, P. 2015. “Effectiveness of Project-Based Learning as a Strategy for Property Education”. Journal Pacific Rim Property Research, (Online), Vol. 16, No. 3, (https://www.tandfonline.com/, diakses 10 Juli 2018).

[24] Joyce, B., and Weil, M. 1992. Models of Teaching. (9th Edition). Massachusetts: Allyn and Bacon Publisher.

[25] Jama, J. 2011. Filsafat Ilmu (Bahan Kajian Perkuliahan). Padang: Universitas Negeri Padang.

[26] Kizkapan, Bektas. 2017. “The Effect of Project-Based Learning on Seventh Grade Students’ Academic Achievement”. International Journal of
[27] Kokotsaki, Menzies, Wiggins. 2016. “Project-based learning: A review of the literature”. Sage Journals, (Online), Vol. 19, No. 3, (http://journals.sagepub.com/, diakses 17 Juli 2018).

[28] Kovalyova, Soboleva, Kerimkulov. 2016. “Project-Based Learning in Teaching Communication Skills in English as a Foreign Language to Engineering Students”. International Journal of Emerging Technologies in Learning, (Online), Vol. 11, No. 04, (http://journals.sfu.ca/, diakses 6 Juli 2018).

[29] Lembaga Pengembangan Pembelajaran Universitas Esa Unggul. Rencana Pembelajaran Semester. (http://ddp.esaunggul.ac.id/, diakses 15 Oktober 2017)

[30] Lufri. 2008. Pendidikan dan Pembelajaran Biologi Bermuansa IESQ. Padang: UNP Press.

[31] Lufri dan Ardi. 2017. Buku Ajar Metodologi Penelitian: Penelitian Kuantitatif, Penelitian Tindakan Kelas & Penelitian Pengembangan: Padang: UNP Press.

[32] Movahedzadeh, F. Patwell, R. Rieker, J.E. Gonzalez, T. 2012. “Project-Based Learning to Promote Effective Learning in Biotechnology Courses”. Hindawi Publishing Corporation Education Research International, (Online), Vol. 2012. (https://www.hindawi.com/, diakses 7 Juli 2018).

[33] Muliyardi. 2006. Pengembangan Model Pembelajaran Matematika Menggunakan Komik di Kelas 1 Sekolah Dasar. Disertasi. Program Pascasarjana Universitas Negeri Surabaya.

[34] Narvaez, D., Nucci, LP. 2014. Hand Book Pendidikan Moral dan Karakter. Bandung: Nusa Media.

[35] Nieven, N. 1999. Prototyping to Reach Product Quality. Dalam Plomp, T. Nieven, N. Gustafson, K. Branch, R.M. dan Van Den Akker, J (Ed). Design Approaches and Tool in Education and Training. London: Kluwer Academic Publisher.

[36] Nieven, N. 2010. Formative Evaluation in Education Design Research. Dalam Plomp, J. And Nieven, (Ed).An Introduction to Educational Design Research. The Netherlands in (http://www.slo.nl/, diakses 1 Agustus 2018).

[37] Plomp, T. 2013. Educational Design Research: an Introduction. Dalam Plomp, T. Nieven, N. (Ed). An Introduction Design Research. The Netherlands in (http://www.slo.nl/, diakses 1 Agustus 2018).

[38] Putra. H. 2016. Dasar Penelitian dan Pengembangan. Bandung: Nusa Media.

[39] Ristekdikti. 2015. Visi, Misi, Strategi Ristekdikti. (Online), (https://ristekdikti.go.id/, diakses 10 Oktober 2017).

[40] Ristekdikti. 2018. Pengembangan Iptek dan Pendidikan Tinggi di Era Revolusi Industri4.0. (Online), (https://www.ristekdikti.go.id/, diakses Oktober 2017).

[41] Rita C. Richey, J. D. K., Wayne A. Nelson. (2009). Developmental Research: Studies of Instructional Design and Development.

[42] Robert C. Bogdan, dan Biken. 1982. Qualitative Research for Education, An Introduction to Theory and Methods. Massachusetts: Allyn and Bacon.

[43] Roessingh, H dan Chambers, W. 2011. “Project-Based Learning and Pedagogy in Teacher Preparation: Staking Out the Theoretical Mid-Ground”. International Journal of Teaching and Learning in Higher Education, (Online), Vol. 23, No. 1, (http://www.isetl.org/, diakses 20 Juli 2018).

[44] Spradley, J.P. 1980. Participant Observation. Newyork: Holt, Rinehart, and Winston.

[45] Subramaniam, S. Fang Chua, F. Yee Chan, G. 2017. “Project-based Learning for Software Engineering - An Implementation”. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), (Online), Vol. 9, No.3-4, (http://journal.utem.edu.my/, diakses 16 Juli 2018).

[46] Thomas. J.W. 2000. A Review of Research on Project Based Learning, (Online), (http://www.bie.org/, diakses 18 December 2018).

[47] Turgut. H. 2008. Prospective Science Teachers’ Conceptualizations About Project-Based Learning. International Journal of Instruction, (Online), Vol. 1, No. 1, (https://core.ac.uk/, diakses 10 Juli 2018).

[48] Urwatin, W.I. 2014. Upaya Mendorong Kemampuan Berfikir Kreatif Mahasiswa dalam Inovasi Konservasi Pangan. Indonesian Journal of Conservation, Vol. 3 No. 1 - Juni 2014 [ISSN: 2252-9195]. Hlm. 75—82

[49] Warsono dan Hariyanto. 2013. Pembelajaran Akan Aktif. Bandung: Remaja Rosdakarya Offset.

[50] Wen, S. 2003. Future of Education (Masa Depan Pendidikan). Batam: Lucky Publisher.
[51] Wena.M. 2013. Strategi Pembelajaran Inovatif Kontemporer. Jakarta: Bumi Aksara.

[52] Zubaidah, S. 2017. Berpikir Kritis: Keterampilan Berpikir Tingkat Tinggi yang Dapat Dikembangkan melalui Pembelajaran Sains. (Online), (https://www.researchgate.net/, diakses 8 Juli 2018)