Chemical composition of evolved stars in the open cluster IC 4651

Šarūnas Mikolaitis, 1† Gražina Tautvaišienė, 1 Raffaele Gratton, 2 Angela Bragaglia 3 and Eugenio Carretta 3

1 Institute of Theoretical Physics and Astronomy, Vilnius University, Gotgauto 12, Vilnius 01108, Lithuania
2 INAF - Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova, Italy
3 INAF - Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna, Italy

Accepted 2011 January 4. Received 2011 January 4; in original form 2010 November 18

ABSTRACT
We present an analysis of high-resolution spectra of three core-helium-burning ‘clump’ stars and two first ascent giants in the open cluster IC 4651. Atmospheric parameters (T eff, log g, v t and [Fe/H]) were determined in our previous study by Carretta et al. In this study, we present abundances of C, N, O and up to 24 other chemical elements. Abundances of carbon were derived using the C 2 Swan (0, 1) band head at 5635.5 Å. The wavelength interval 7980–8130 Å, with strong CN features, was analysed in order to determine nitrogen abundances and 12 C/ 13 C isotope ratios. The oxygen abundances were determined from the [O i] line at 6300 Å. Compared with the Sun and other dwarf stars of the Galactic disc, mean abundances in the investigated clump stars suggest that carbon is depleted by about 0.3 dex, nitrogen is overabundant by about 0.2 dex and oxygen is close to solar. This has the effect of lowering the mean C/N ratio to 1.36 ± 0.11. The mean 12 C/ 13 C ratios are lowered to 16 ± 2. Other investigated chemical elements have abundance ratios close to the solar ones.

Key words: stars: abundances – stars: atmospheres – stars: horizontal branch – open clusters and associations: individual: IC 4651.

1 INTRODUCTION
This work is continuing our efforts in studying evolutionary abundance alterations in evolved stars of open clusters (Tautvaišienė et al. 2000, 2005; Mikolaitis et al. 2010, hereinafter Paper I). Our main aim is to determine detailed elemental abundances of carbon, nitrogen and oxygen, and carbon isotope 12 C/ 13 C ratios in stars of open clusters in order to better understand reasons of abundance alterations caused by stellar evolution. Information on abundances of heavier chemical elements will be used for deriving the time evolution of abundances in the Galactic disc under the Bologna Open Cluster Chemical Evolution (BOCCE) study (Bragaglia & Tosi 2006; Carretta, Bragaglia & Gratton 2007, and references therein).

In this work, our target of investigations is the open cluster IC 4651.

The open cluster IC 4651 is an intermediate-age (1.7 Gyr) open cluster located 140 pc below the Galactic plane and 7.1 kpc form the Galactic Centre (Meibom, Andersen & Nordström 2002; Pasquini et al. 2004). Meibom et al. (2002) provided calculations of the space motion and the Galactic orbit of the cluster. The orbital eccentricity is e = 0.19 and the mean radius of Galactocentric orbit is 8.6 kpc, its maximum distance from the Galactic plane is 190 pc (α 2000 = 17h24m, δ 2000 = −49°56.0′; l = 340.088, b = −07.907).

Results of extensive photometric studies were published first by Eggen (1971) and Lindoff (1972) and later on by Anthony-Twarog & Twarog (1987, 2000) and Anthony-Twarog et al. (1988). However, the most recent photometric study was performed by Meibom (2000) and Meibom et al. (2002). They combined photometric observations and radial velocity measurements for the 44 single member stars down to V = 14.5 mag and determined E(B − V) = 0.10 mag, the distance d = 1.01 ± 0.05 kpc and the mean radial velocity equal to −30.76 ± 0.20 km s −1. It was found that 37 per cent of giant members are spectroscopic binaries with periods up to 5000 d, and 52 per cent of the main-sequence (MS) and turn-off members are binaries with periods less than 1000 d. The estimated total mass of IC 4651 is ≃630 M ☉ (Meibom et al. 2002). The turn-off mass of the IC 4651 stars M = 1.69 M ☉ was obtained by Carretta et al. (2004) reading the turn-off values on the Girardi et al. (2000) isochrones for solar metallicity at the age of the cluster of 1.7 Gyr as determined by Meibom et al. (2002).

There were several photometric studies that evaluated the metallicity of IC 4651. Based on uvby – H β photometry, [Fe/H] = 0.23 ± 0.02 was found by Anthony-Twarog & Twarog (1987), [Fe/H] = 0.18 ± 0.05 by Nissen (1988) and [Fe/H] = 0.077 ± 0.012 by Anthony-Twarog & Twarog (2000).

High-resolution spectroscopic data started to appear in the beginning of the millennium. Bragaglia et al. (2001) determined the mean metallicity of five evolved stars [Fe/H] = 0.16 ± 0.01. Pasquini et al. (2004) provided the cluster metallicity [Fe/H] = 0.10 ± 0.03 from the analysis of 22 faint MS stars of the cluster. Abundances of the...
iron peak, α-elements and lithium were investigated in their study as well. Carretta et al. (2004) found the average $[\text{Fe/H}] = 0.11 \pm 0.01$ for five evolved stars of the cluster, which we analyse further in this paper. Pace, Pasquini & François (2008) provided the abundance measurements of Fe, Ca, Na, Ni, Ti, Al, Cr and Si for 20 solar-type stars belonging to IC 4651 and found $[\text{Fe/H}] = 0.12 \pm 0.05$. And finally, Santos et al. (2009) derived the mean metallicity $[\text{Fe/H}] = 0.15 \pm 0.02$ for IC 4651 from five dwarf stars.

In our work for the open cluster IC 4651, the detailed abundance analysis of almost 30 chemical elements is done. Abundances of such key chemical elements as ^{12}C, ^{13}C, N, O as well as representatives of s- and r-processes are determined.

The colour–magnitude diagram of IC 4651 with the stars analysed in three most comprehensive chemical abundance studies (Pasquini et al. 2004; Pace et al. 2008 and this work) indicated is presented in Fig. 1.

2 OBSERVATIONS AND METHOD OF ANALYSIS

The spectra of five cluster stars (IC 4651 27, 56, 72, 76 and 146) were obtained with the Fiber-fed Extended Range Optical Spectrograph (FEROS) mounted at the 1.5-m telescope in La Silla (Chile). The resolving power is $R = 48000$ and the wavelength range is $\lambda\lambda 3700$–8600 Å. Three stars (27, 76, 146) belong to the red clump of the cluster, the IC 4651 72 star is a first-ascent giant, and the star 56 is an red giant branch (RGB)-tip giant (see Fig. 1). The finding chart of the investigated stars is shown in Fig. 2. The log of observations and signal-to-noise ratio (S/N) are presented in the paper by Carretta et al. (2004).

In the same paper by Carretta et al. (2004), all the main atmospheric parameters for the observed stars were determined. For convenience, we present them in this paper as well (Table 1). The effective temperatures were derived by minimizing the slope of the abundances from neutral Fe i lines with respect to the excitation potential. Using the line-depth ratio (LDR) technique, Biazzo et al. (2007) have determined higher effective temperatures for other clump stars in NGC 4651 and have raised doubts that the temperature determinations by Carretta et al. were likely too low. We have checked dependences of the other chemical element lines with respect to the excitation potential and did not find slopes. Thus, we do not doubt in the correctness of effective temperature determinations for IC 4651 giants by Carretta et al.

The gravities ($\log g$) were derived by Carretta et al. from the iron ionization equilibrium. In our study, we found a very good agreement between neutral and singly ionized species of Cr and Ti, which strongly support the reliability of the atmospheric parameters, in particular the gravity values derived from the ionization equilibrium of Fe. The microturbulent velocities were determined assuming a relation between $\log g$ and v_t. The ATLAS models with overshooting were used for the analysis. The Fe i lines were restricted to the spectral range 5500–7000 Å in order to minimize problems of line crowding and difficulties in the continuum tracing bluewards. Two examples of spectra are presented in Fig. 3. For more details and error estimates, see Carretta et al. in this work.

In this work, we used the same method of analysis as in Paper I. Here we will remind only some details.

For the C_2 determination, we calculated the 5632–5636Å interval to compare with observations of C_2 Swan 0–1 band head at 5630.5Å. The interval 7980–8130Å contains strong $^{12}\text{C}^{14}\text{N}$ and $^{13}\text{C}^{14}\text{N}$ features, so it was used for the nitrogen abundance and $^{12}\text{C}/^{13}\text{C}$ ratio analysis. We derived the oxygen abundance from

Figure 1. The colour–magnitude diagram of the open cluster IC 4651. The stars investigated in this work are indicated by the filled squares. The stars of two other high-resolution spectral abundance studies are shown in this plot as well: the work of Pace et al. (2008) is marked by triangles and of Pasquini et al. (2004) by diamonds. The diagram is based on Strömgren photometry by Anthony-Twarog & Twarog (2000).

Figure 2. Field of 8 × 8 arcmin2 centred on IC 4651, with the programme stars indicated by their numbers according to Lindoff (1972).

Table 1. Adopted atmospheric parameters for observed stars in IC 4651.

Star	V (mag)	$B - V$ (mag)	T_{eff} (K)	log g	[A/H]	v_t (km s$^{-1}$)
27	10.86	1.23	4610	2.52	0.10	1.17
56	8.95	1.68	3950	0.29	−0.34	1.46
72	10.41	1.33	4500	2.23	0.13	1.21
76	10.94	1.17	4620	2.26	0.11	1.21
146	10.94	1.14	4730	2.14	0.10	1.21

aStar numbers, V and $B - V$ from Lindoff (1972).
synthesis of the forbidden \([\text{O} \, \lambda]\) line at 6300 Å. The \(gf\) values for \(^{56}\text{Ni}\) and \(^{60}\text{Ni}\) isotopic line components, which blend the oxygen line, were taken from Johansson et al. (2003). In the spectra of IC 4651 stars, the \([\text{O} \, \lambda]\) line was not contaminated by telluric lines.

The abundances of \(\text{Na}\) and \(\text{Mg}\) were determined with non local thermodynamical equilibrium (NLTE) taken into account as described by Gratton et al. (1999). Abundances of sodium were determined from equivalent widths of the \(\text{Na} \, \lambda\) lines at 5688.22, 6154.23 and 6160.75 Å, that of magnesium from the \(\text{Mg} \, \lambda\) lines at 4730.04, 5711.09, 6318.71 and 6319.24 Å, and that of aluminium from the \(\text{Al} \, \lambda\) lines at 6696.03, 6698.67, 7835.30 and 7836.13 Å.

The determination of zirconium, yttrium, barium, lanthanum, cerium, neodymium and europium abundances was performed by spectral synthesis method. The zirconium abundances were derived using the \(\text{Zr} \, \lambda\) lines at 4687.80 and 6127.48 Å. We adopted the barium hyperfine structure and isotopic composition for the \(\text{Ba} \, \lambda\) lines at 5853.68 and 6141.71 Å from McWilliam (1998) and for the line at 6496 Å from Mashonkina & Gehren (2000). The lanthanum abundances were determined from \(\text{La} \, \lambda\) lines at 6320.41 and 6390.48 Å, and cerium abundances from the \(\text{Ce} \, \lambda\) lines at 5274.22 and 6043.38 Å. The neodymium abundance was determined using atomic parameters presented by Den Hartog et al. (2003). Due to line crowding in the region of neodymium lines, only three \(\text{Nd} \, \lambda\) lines were chosen: 5092.81, 5249.57 and 5319.81 Å. The europium abundances were determined using the \(\text{Eu} \, \lambda\) line at 6645.10 Å. A hyperfine structure for the \(\text{Eu} \, \lambda\) line was also used for the line synthesis.

2.1 Estimation of uncertainties

The sources of uncertainty were described in detail in our Paper I.

The sensitivity of the abundance estimates to changes in the atmospheric parameters by the assumed errors \((\pm 100 \text{K for } T_{\text{eff}}, \pm 0.3 \text{ dex for } \log g \text{ and } \pm 0.3 \text{ km s}^{-1} \text{ for } \sigma_i)\) is illustrated for the star IC 4651 72 (Table 2). It is seen that possible parameter errors do not affect the abundances seriously; the element-to-iron ratios, which we use in our discussion, are even less sensitive. The sensitivity of iron abundances to stellar atmospheric parameters were described in Carretta et al. (2004).

The scatter of the deduced line abundances \(\sigma_i\) presented in Table 3, gives an estimate of the uncertainty due to the random errors, for example, in continuum placement and the line parameters (the mean value of \(\sigma_i\) is 0.06). Thus, the uncertainties in the derived abundances that are the result of random errors amount to approximately this value.

Since abundances of \(\text{C, N and O}\) are bound together by the molecular equilibrium in the stellar atmosphere, we have also investigated how an error in one of them typically affects the abundance determination of another. \(\Delta [\text{O/H}] = 0.10\) causes \(\Delta [\text{C/H}] = 0.05\) and \(\Delta [\text{N/H}] = -0.10\). \(\Delta [\text{C/H}] = 0.10\) causes \(\Delta [\text{N/H}] = -0.15\) and \(\Delta [\text{O/H}] = 0.02\), and \(\Delta [\text{N/H}] = 0.10\) has no effect on either the carbon or the oxygen abundances.

3 RESULTS AND DISCUSSION

The abundances relative to hydrogen \([\text{El/H}]\) and \(\sigma\) (the line-to-line scatter) derived for up to 27 neutral and ionized species (including \(^{13}\text{C}\)) for the programme stars are listed in Table 3. The average cluster abundances \([\text{El/Fe}]\) and dispersions about the mean values for IC 4651 are presented in Table 3 as well. They are calculated from the results determined for the stars 27, 72 and 146. Due to the different \([\text{Fe/H}]\) values which are 0.4 dex lower than that of other cluster stars, the star 56 was not used in the average calculations even though its values do not change the average abundances much. For the majority of the chemical elements the changes are just \(\pm 0.01–0.02\) dex, only for \(\text{Si}\) and \(\text{Sc}\) the difference is 0.04 dex, and for \(\text{V}\), the difference is 0.07 dex. From its element-to-iron ratios, \(\sigma\) could be estimated from the spread in the \([\text{El/Fe}]\) values of the programme stars.

Table 2. Effects on derived abundances resulting from model changes for the star IC 4651 72. The table entries show the effects on the logarithmic abundances relative to hydrogen, \(\Delta [\text{El/Fe}]\).

Species	\(\Delta T_{\text{eff}}\) \((\pm 100 \text{K})\)	\(\Delta \log g\) \((\pm 0.3)\)	\(\Delta \sigma\) \((\pm 0.3 \text{ km s}^{-1})\)
C(C)	-0.05	0.05	0.00
N(C)	0.05	0.00	0.05
O(OII)	-0.05	-0.05	0.00
NaI	0.09	-0.05	-0.04
MgI	0.03	0.00	-0.03
AlI	0.08	0.00	-0.03
SiI	-0.06	0.07	-0.02
CaI	0.11	-0.04	-0.06
ScII	-0.02	0.13	-0.05
TiI	0.16	-0.02	-0.08
TiII	-0.03	0.13	-0.06
V I	0.16	0.01	-0.09
CrI	0.10	0.00	-0.06
CrII	-0.09	0.14	-0.03
MnI	0.08	-0.04	-0.06
CoI	0.02	0.05	-0.07
NiI	0.00	0.07	-0.05
CuI	0.02	0.03	-0.06
ZrI	-0.05	0.07	-0.07
Y I	0.16	-0.02	-0.14
ZrII	0.00	0.12	-0.07
BaII	-0.03	0.14	-0.02
LaII	0.03	0.08	-0.10
CeII	0.02	0.12	-0.03
NdII	0.01	0.13	-0.04
EuII	0.03	0.13	-0.07
\(^{13}\text{C}/^{12}\text{C}\)	-2	-2	1

\(^1\) In this paper, we use the customary spectroscopic notation \([\text{X}/\text{Y}]\) = \(\log_{10}(N_{\text{X}}/N_{\text{Y}})_{\odot} - \log_{10}(N_{\text{X}}/N_{\text{Y}})_{\odot}\).
Table 3. Abundances relative to hydrogen [El/H]. The quoted errors, σ, are the standard deviations in the mean value due to the line-to-line scatter within the species. The number of lines used is indicated by n. The last two columns give the mean [El/Fe] and standard deviations for the cluster stars 27, 72, 76 and 146.

Species	[El/H]	σ	n	Mean σ El/Fe													
C(C_2)	-0.15	1	-0.64	1	-0.12	2	-0.17	1	-0.15	1	-0.26	0.02					
N(CN)	0.36	0.07	24	-0.09	0.11	18	0.35	0.07	24	0.30	0.06	24	0.27	0.09	23	0.21	0.04
O(O_i)	0.05	0.05	4	-0.22	0.07	4	0.13	0.02	4	0.17	0.04	4	0.09	0.03	4	0.02	0.03
NaI	0.09	0.05	3	-0.25	0.02	3	0.10	0.04	3	0.10	0.05	3	0.07	0.04	3	-0.02	0.01
MgI	0.05	0.07	4	-0.40	0.08	4	0.05	0.09	4	0.09	0.05	4	0.08	0.09	4	-0.04	0.03
AlI	0.11	0.05	4	-0.22	0.07	4	0.13	0.02	4	0.17	0.04	4	0.09	0.03	4	0.02	0.03
SiI	0.25	0.08	9	-0.35	0.09	6	0.25	0.10	8	0.20	0.07	9	0.21	0.09	9	0.12	0.03
CaI	0.17	0.05	9	-0.28	0.08	6	0.13	0.09	10	0.17	0.09	8	0.17	0.10	8	0.05	0.04
ScI	0.17	0.02	9	-0.50	0.05	9	0.14	0.06	8	0.15	0.06	9	0.18	0.05	9	0.05	0.03
TiI	0.25	0.08	24	-0.20	0.07	9	0.23	0.09	24	0.18	0.08	26	0.21	0.10	28	0.11	0.03
TiII	0.21	0.09	6	-0.30	0.09	8	0.19	0.07	7	0.23	0.09	11	0.14	0.09	11	0.08	0.04
V	0.20	0.07	9	-0.58	0.02	9	0.17	0.09	5	0.25	0.05	9	0.27	0.04	9	0.11	0.05
CrI	0.10	0.05	19	-0.51	0.06	11	0.08	0.09	25	0.10	0.09	24	0.10	0.09	24	-0.01	0.02
CrII	0.05	0.04	6	-0.50	0.05	6	0.00	0.09	9	0.08	0.09	6	0.07	0.04	6	-0.06	0.05
MnI	0.20	0.04	6	-0.47	0.01	6	0.21	0.05	5	0.15	0.01	6	0.18	0.06	6	0.07	0.03
CoI	0.25	0.07	8	-0.18	0.09	5	0.20	0.07	9	0.24	0.08	8	0.27	0.08	8	0.13	0.04
NiI	0.17	0.08	34	-0.25	0.10	30	0.20	0.09	34	0.17	0.07	36	0.17	0.08	36	0.07	0.01
CuI	0.05	0.06	3	-0.33	0.07	3	0.08	0.02	3	0.16	0.01	3	0.10	0.02	3	-0.01	0.05
ZnI	0.00	0.06	2	-0.28	0.02	2	0.10	0.09	2	0.07	0.07	2	0.07	0.08	2	-0.05	0.03
Y	0.07	0.05	6	-0.25	0.03	6	0.10	0.04	6	0.04	0.01	6	0.14	0.04	6	-0.02	0.05
ZrI	0.03	0.08	2	-0.34	0.01	2	0.00	0.05	2	0.04	0.02	2	0.00	0.05	2	-0.09	0.03
BaII	0.03	0.03	3	-0.29	0.04	2	0.08	0.07	3	0.05	0.05	3	0.05	0.05	3	-0.06	0.01
LaII	0.18	0.02	2	-0.33	0.02	2	0.10	0.05	2	0.15	0.03	2	0.15	0.05	2	0.03	0.05
CeII	0.22	0.08	2	-0.30	0.02	2	0.20	0.07	2	0.24	0.01	2	0.20	0.07	2	0.11	0.03
NdII	0.27	0.08	3	-0.18	0.04	2	0.28	0.06	3	0.15	0.05	3	0.15	0.06	3	0.11	0.06
EuII	0.14	0.25	1	-0.25	0.10	1	0.13	0.10	1	0.10	0.03	1	0.01	0.03	1	0.01	0.03
CN	1.23	1.12	1.34	1.35	1.5	1.36	1.11	18	16	2							
Figure 4. Fit to the forbidden [O i] line at 6300 Å in IC 4651 56. The observed spectrum is shown as a solid line with black dots. Synthetic spectra with [O/Fe] = 0.03, 0.08 and 0.13 are shown as solid grey lines.

Table 4. The mean [El/Fe] for giant (G) and MS stars of IC 4651 investigated in this work, Pasquini et al. (2004) and Pace et al. (2008).

Species	This work	Pasquini	Pace	
	[El/Fe]	[El/Fe]	[El/Fe]	[El/Fe]
Na i	0.00	0.19	−0.09	−0.03
Mg i	−0.05	0.09	0.13	
Al i	0.03	0.07	−0.07	−0.10
Si i	0.09	0.08	0.07	−0.02
Ca i	0.05	0.00	0.04	0.04
Sc ii	0.01	0.11	−0.11	
Ti i	0.11	0.12	0.08	−0.02
Ti ii	0.07	0.18	0.00	
Cr i	−0.05	−0.02	0.11	
Ni i	0.07	0.10	0.01	−0.02

C/N and 12C/13C ratios, this star within errors of uncertainties is indistinguishable from other evolved stars of this cluster. However, we think that with more adequate model atmospheres, this star can be investigated more accurately. In Fig. 4, we show an example of spectrum syntheses for the [O i] line in IC 4651 56. In Fig. 3, a sample of its spectrum is shown as well.

In IC 4651, the majority of the investigated chemical elements have abundance ratios close to the solar ones. The mean cluster $[\alpha$/Fe] = $(1/4)\Sigma[Mg/Fe] + [Si/Fe] + [Ca/Fe] + [Ti/Fe]) = 0.06 ± 0.07$ (s.d.), which is close to the solar value.

Abundances of Na i, Al i, Si i, Ca i, Ti i and Ni i were determined for the MS stars of IC 4651 by Pace et al. (2008). The mean [El/Fe] ratios in these stars are very close to solar as well.

Pasquini et al. (2004) investigated spectra of both giants and MS stars in IC 4651. The authors expressed their strong believe that [Na/Fe] ratio is comprehensively higher in the giants in comparison to the MS stars and that this is due to internal nucleosynthesis and mixing. However, neither Pace et al. (2008) nor our study may confirm this statement. In Table 4, we present the mean [El/Fe] for giant and MS stars of IC 4651 investigated in our work, Pasquini et al. (2004) and Pace et al. (2008). In our work, the abundances of Na and Mg were determined with NLTE taken into account, and we do not find an overabundance of these chemical elements.

In fig. 4 of Paper I, we presented the radial distribution of some elemental abundances for BOCCE clusters analysed so far and for others in recent studies. IC 4651 agrees well with results of other open clusters at the same R_{gc} of 7.1 kpc.

In the following sections, we will discuss in more detail the results of carbon and nitrogen abundance determinations.

3.1 Carbon and nitrogen abundances

The average value of carbon-to-iron ratio in IC 4651 is $[C/Fe] = −0.27 ± 0.02$. In Fig. 5, a fit to the IC 4651 27 spectrum at C_2 5635.5 Å is shown.

We compared the carbon abundance in IC 4651 with carbon abundances determined for dwarf stars in the Galactic disc. Shi, Zhao & Chen (2002) performed an abundance analysis of carbon for a sample of 90 F type and G type MS disc stars using C i and [C i] lines and found $[C/Fe]$ to be about solar at the solar metallicity. Roughly, solar carbon abundances were found by Gustafsson et al. (1999) who analysed a sample of 80 late F type and early G type dwarfs using the forbidden [C i] line. The ratios of $[C/Fe]$ in our stars lie about 0.3 dex below the values obtained for dwarf stars of the Galactic disc.

The mean nitrogen-to-iron abundance ratio in IC 4651 is $[N/Fe] = 0.21 ± 0.04$. This shows that nitrogen is overabundant in these evolved stars of IC 4651, since $[N/Fe]$ values in the Galactic MS stars are about solar at the solar metallicity (cf. Shi et al. 2002). Unfortunately, neither carbon nor nitrogen abundances were investigated in the MS stars of IC 4651 by Pace et al. (2008) and Pasquini et al. (2004).

The mean C/N ratios in IC 4651 is equal to 1.36 ± 0.11. The smallest value of C/N = 1.12 was obtained for the star IC 4651 56.

The 12C/13C ratios were determined for all programme stars from the $(2,0)$ 13C14N feature at 8004.728 Å. In Fig. 6, we show a small region of IC 4651 72 spectrum together with spectral syntheses obtained with three different values of the carbon isotopic ratio. We find that the mean 12C/13C ratios are about 16 ± 2 in the evolved stars investigated.

Figure 5. Small region of IC 4651 27 spectrum (solid black line with black dots) at C_2 Swan (0,1) band head 5635.5 Å, plotted together with synthetic spectra with $[C/Fe]$ values lowered by −0.2 dex (lower grey line), −0.25 dex (middle grey line) and −0.3 (upper grey line).
3.2 Comparison of \(^{12}\text{C}/^{13}\text{C}\) and C/N ratios with theoretical models

The carbon and nitrogen abundances, C/N, and especially the carbon isotope ratios, \(^{12}\text{C}/^{13}\text{C}\), are key tools for stellar evolution studies. Investigations of abundances of these chemical elements in atmospheres of clump stars of open clusters may provide a comprehensive information on chemical composition changes. The clump stars have accumulated all chemical composition changes that have happened during their evolution along the giant branch and during the helium flash.

In Figs 7 and 8, we compare the mean carbon isotope and C/N ratios of clump stars in different open clusters as a function of turn-off mass with the theoretical models of the first dredge-up, thermohaline mixing (TH), TH together with rotation-induced mixing for stars at the zero-age MS (ZAMS) having rotational velocities of \(110, 250\) and \(300\) km s\(^{-1}\) computed by Charbonnel & Lagarde (2010), and cool bottom processing (CBP) model by Boothroyd & Sackmann (1999).

The most recent modelling of extra-mixing processes was done by Charbonnel & Lagarde (2010). They are based on ideas of Eggleton, Dearborn & Lattanzio (2006) and Charbonnel & Zahn (2007). Eggleton et al. (2006) found a mean molecular weight (\(\mu\)) inversion in their 1 M\(_{\odot}\) stellar evolution model, occurring after the so-called luminosity bump on the RGB, when the H-burning shell source enters the chemically homogenous part of the envelope. The \(\mu\)-inversion is produced by the reaction \(^3\text{He}(^3\text{He}, 2p)^4\text{He}\), as predicted by Ulrich (1972). It does not occur earlier because the magnitude of the \(\mu\)-inversion is small and negligible compared to a stabilizing \(\mu\)-stratification. Following Eggleton et al. (2006), Charbonnel & Zahn (2007) have computed stellar models including the prescription by Ulrich (1972) and extended them to the case of a non-perfect gas for the turbulent diffusivity produced by that instability in a stellar radiative zone. They found that a double diffusive instability referred to as thermohaline convection, which has been discussed long ago in the literature (Stern 1960), is important in evolution of red giants. This mixing connects the convective envelope with the external wing of hydrogen-burning shell and induces surface abundance modifications in red giant stars.

Charbonnel & Lagarde (2010) also computed the models of rotation-induced mixing for stars at the ZAMS having rotational velocities of \(110, 250\) and \(300\) km s\(^{-1}\). Typical initial ZAMS rotation velocities were chosen depending on the stellar mass based on observed rotation distributions in young open clusters (Gaïgé 1993). The convective envelope was supposed to rotate as a solid body through the evolution. The transport coefficients for chemicals associated to thermohaline and rotation-induced mixings were
Table 5. $^{12}\text{C}/^{13}\text{C}$ and C/N ratios along with turn-off mass, age, Galactocentric distance and atmospheric parameters for clump stars.

Cluster	Star	M_{TO} (M$_{\odot}$)	Age (Gyr)	R_{gc} (kpc)	T_{eff} (K)	log g	[A/H]	$^{12}\text{C}/^{13}\text{C}$	C/N	Ref. a
NGC 752	1	1.60	2.0	8.75	5000	2.85	0.1	16	–	1
	75									
	77									1
	213									1
	295									1
NGC 2360	50	2.02	1.15	6.32	5015	2.90	−0.03	1.04	5	
	62									
	86									
	12									
NGC 2447	28	1.90	0.45	6.51	5060	2.70	−0.01	0.69	5	
	34									
NGC 2682	F84	1.20	5.0	9.05	4750	2.4	−0.02	20	1.15	3
	F141									
	F151									
	F164									
	F224									
	F226									
	F84									
	F141									
	F164									
NGC 2714	5	2.91	0.40	8.34	5070	2.70	0.12	–	0.83	5
	596									
NGC 3532	19	3.03	0.35	7.87	4995	2.65	0.11	12	1.02	5
	122									
	596									
HD95879										
HD96174										
HD96175										
HD96445										
NGC 5822	201	2.19	0.9	8.10	5035	2.85	0.05	13	0.87	5
	316									
NGC 6134	39	2.34	0.7	7.6	4980	2.52	0.24	9	1.48	6
	69									
	75									
	114									
	129									
	157									
	30									
NGC 6281	3	3.18	0.3	8.47	4915	2.30	0.01	12	0.64	5
	4									
NGC 6633	100	2.79	0.45	8.42	5015	2.85	0.11	21	0.91	5
NGC 7789	K605	1.60	1.4	9.43	4860	2.4	−0.02	10	1.05	4
	K665									
	K732									
IC 2714	5	2.85	0.40	8.34	5070	2.70	0.12	–	0.83	5
IC 4651	27	1.69	1.7	7.1	4610	2.52	0.10	17	1.23	7
	76									
	146									
IC 4756	12	2.37	0.7	7.23	5030	2.75	−0.01	11	0.91	5
	14									
	38									
	69									
	144									
	176									
	228									
	296									

a1 – Gilroy (1989), 2 – Luck (1994), 3 – Tautvaisiene et al. (2000), 4 – Tautvaisiene et al. (2005), 5 – Smiljanic et al. (2009), 6 – Mikolaitis et al. (2010) and 7 – this work.
simply added in the diffusion equation, and the possible interactions between the two mechanisms were not considered. The rotation-induced mixing modifies the internal chemical structure of MS stars although its signatures are revealed only later in the stellar evolution.

The models by Boothroyd & Sackmann (1999) include the deep circulation mixing below the base of the standard convective envelope, and the consequent ‘CBP’ of CNO isotopes. The theoretical models were compared to the observational data of $^{12}C/^{13}C$ and C/N listed in Table 5, which we collected for clump stars of open clusters investigated by Paper I, Smiljanic et al. (2009), Tautvaišienė et al. (2000, 2005), Luck (1994) and Gilroy (1989). From Gilroy (1989), we selected four clusters with well-defined red clump stars. Luck (1994) derived carbon isotope ratios for eight open clusters; however, only one cluster was included to our comparison since for other clusters it was very difficult to identify stars of red clump. The turn-off masses, ages and Galactocentric distances were chosen from the most recent studies and used for displaying of other $^{12}C/^{13}C$ and C/N investigations for the same cluster, if available.

In Figs 7 and 8, we can see that for clusters with stars of smaller turn-off masses, the $^{12}C/^{13}C$ and C/N values are in a good agreement with both models of extra mixing used for the comparison. However, $^{12}C/^{13}C$ values in the clump stars with turn-off masses of 2–3 M_\odot in most of the investigated clusters are lower than predicted by the available models and need modelling of larger extra mixing.

3.3 Final remarks
Carbon and nitrogen are important products of nucleosynthesis processes in stellar interiors, and the evidence of their abundance variation during stellar evolution is a signature of physical mixing processes between the atmosphere and deeper layers of a star. Such abundance alterations may be well traced in open clusters. They provide a unique possibility for investigation of a number of stars of nearly the same age, distance and origin, as open cluster stars are claimed to be formed in the same protocluster of gas and dust. Open clusters have a high reliability of mass, distance, evolutionary phase and abundance determinations.

Extra-mixing processes may become efficient on the RGB when stars reach the so-called RGB bump and may modify the surface abundances. It is known that alterations of $^{12}C/^{13}C$ and $^{12}C/^{14}N$ ratios depend on stellar evolutionary stage, mass and metallicity (see Charbonnel, Brown & Wallerstein 1998; Gratton et al. 2000; Chanamé, Pinsonneault & Ternard 2005; Cantelli & Langer 2010; Charbonnel & Lagarde 2010 for more discussion).

The comparison of the observational data with theoretical models of stellar evolution shows that processes of extra mixing in stars of open clusters with turn-off masses of 2–3 M_\odot are larger than predicted.

ACKNOWLEDGMENTS
This research has made use of SIMBAD, VALD and NASA ADS databases. Bertrand Plez (University of Montpellier II) and Guillermo Gonzalez (Washington State University) were particularly generous in providing us with atomic data for CN and C$_2$ molecules, respectively. SM and GT were supported by the Ministry of Education and Science of Lithuania via LitGrid programme and by the European Commission via FP7 Baltic Grid II project.

REFERENCES
Anthony-Twarog B. J., Twarog B. A., 1987, AJ, 94, 1222
Anthony-Twarog B. J., Twarog B. A., 2000, AJ, 119, 2282
Anthony-Twarog B. J., Mukherjee K., Twarog B. A., Caldwell N., 1988, AJ, 95, 1453
Biazko K. et al., 2007, A&A, 475, 981
Boothroyd A. L., Sackmann I. J., 1999, ApJ, 510, 232
Bragaglia A., Tosi M., 2006, AJ, 131, 1544
Bragaglia A. et al., 2001, AJ, 121, 327
Cantiello M., Langer N., 2010, A&A, 521, 9
Carretta E., Bragaglia A., Gratton R., Tosi M., 2004, A&A, 422, 951
Carretta E., Bragaglia A., Gratton R., 2007, A&A, 473, 129
Chanamé J., Pinsonneault M., Ternard D. M., 2005, ApJ, 631, 540
Charbonnel C., Lagarde N., 2010, A&A, 522, 10
Charbonnel C., Zahn J.-P., 2007, A&A, 467, 15
Charbonnel C., Brown J. A., Wallerstein G., 1998, A&A 332, 204
Coplen T. et al., 2002, Pure Applied Chemistry, 74, 1987
Den Hartog E. A., Lawler J. E., Sneden C., Cowan J. J., 2003, ApJS, 148, 543
Eggen O. J., 1971, ApJ, 166, 87
Eggleton P. P., Dearborn D. S. P., Lattanzio J. C., 2006, Sci, 314, 1580
Gaigé Y., 1993, A&A, 269, 267
Gilroy K. K., 1989, ApJ, 347, 835
Girardi L., Brown A. G., Twarog B. A., 1987, AJ, 94, 1222
Girardi L., Bressan A., Bertelli G., Chiosi C., 2000, A&A, 141, 371
Girardi L., Bressan A., Bertelli G., Chiosi C., 2000, A&A, 364, 249
Girardi L., Bressan A., Bertelli G., Chiosi C., 2000, A&A, 369, 1453
Gratton R. G., Carretta E., Eriksson K., Gustafsson B., 1999, A&A, 350, 955
Gratton R. G., Sneden C., Carretta E., Bragaglia A., 2000, A&A, 345, 169
Gresves N., Sauval A. J., 2000, in Manuel O., ed., Origin of Elements in the Solar System, Implications of Post-1957 Observations. Kluwer, Dordrecht p. 261
Gustafsson B., Karlsson T., Olsson E., Edvardsson B., Ryde N., 1999, A&A, 342, 426
Houtz U., Lindberg H., Zhang Z., 2003, ApJ, 584, 107
Lindoff U., 1972, A&AS, 7, 231
Luck R. E., 1994, ApJS, 91, 309
McWilliam A., 1998, AJ, 115, 1640
Mashonkina L., Gehren T., 2000, A&A, 364, 249
Meibom S., Anderson J., Nordström B., 2002, A&A, 386, 187
Mikolaitis Š., Tautvaišienė G., Gratton R., Bragaglia A., Carretta E., 2010, MNRAS, 407, 1866 (Paper I)
Nissen P. E., 1988, A&A, 199, 146
Pace G., Pasquini L., François P., 2008, A&A, 489, 403
Pasquini L., Randich S., Zoccali M., Hill V., Charbonnel C., Nordström B., 2004, A&A, 424, 951
Santos N. C., Lovis C., Pace G., Melendez J., Naef D., 2009, A&A, 493, 309
Shi J. K., Zhao G., Chen Y. Q., 2002, A&A, 381, 982
Smiljanic R., Gauderon R., North P., Barbuy B., Charbonnel C., Mowlavi N., 2009, A&A, 502, 267
Stern M. E., 1960, Tellus, 12, 172
Tautvaišienė G., Edvardsson B., Tuominen I., Ilyin I., 2000, A&A, 360, 499
Tautvaišienė G., Edvardsson B., Pužeras E., Ilyin I., 2005, A&A, 431, 933
Ulrich R. K., 1972, ApJ, 172, 165

This paper has been typeset from a T\textsc{e}X file prepared by the author.