Mass spectra of bottom-charm baryons

Zhen-Yu Li1, Guo-Liang Yu2, Zhi-Gang Wang2, Jian-Zhong Gu3, and Hong-Tao Shen4

1 School of Physics and Electronic Science, Guizhou Education University, Guiyang 550018, China
2 Department of Mathematics and Physics, North China Electric Power University, Baoding 071003, China
3 China Institute of Atomic Energy, Beijing 102413, China
4 Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, Guilin 541006, China

(Dated: March 29, 2023)

In this paper, we investigate the mass spectra of bottom-charm baryons systematically, where the relativistic quark model and the infinitesimally shifted Gaussian basis function method are employed. Our calculation shows that the \(\rho\)-mode appears lower in energy than the other excited modes. According to this feature, the allowed quantum states are selected and a systematic study of the mass spectra for \(\Xi_{bc}\) (\(\Xi_{bc}\)) and \(\Omega_{bc}\) (\(\Omega_{bc}\)) families is performed. The root mean square radii and quark radial probability density distributions of these baryons are analyzed as well. Next, the Regge trajectories in the \((J, M^2)\) plane are successfully constructed based on the mass spectra. At last, we present the structures of the mass spectra, and analyze the difficulty and opportunity in searching for the ground states of bottom-charm baryons in experiment.

Key words: Bottom-charm baryons, Mass spectra, Relativistic quark model.

PACS numbers: 13.25.Ft; 14.40.Lb

I. Introduction

Quantum chromodynamics (QCD) predicts the existence of baryons with two heavy quarks \((b, c)\) and one light quark, known as the doubly heavy baryons (DHBs). DHBs can be divided into three groups: double-charm baryons \((\Xi_{cc} \text{ and } \Omega_{cc})\), double-bottom baryons \((\Xi_{bb} \text{ and } \Omega_{bb})\), and bottom-charm baryons \((\Xi_{bc} \text{ and } \Omega_{bc})\). The study of DHBS contributes to an in-depth understanding of the heavy quark symmetry, chiral dynamics, fundamental theory of the strong interaction, and models inspired by QCD.
The experimental research of DHBs was full of twists and turns. The Ξ_{cc}^{++} baryon was first observed by the SELEX collaboration in 2002 [1]. But, other experiments have failed to confirm this so far. The experimental turning point for DHBS research occurred in 2017. Observations of Ξ_{cc}^{++} baryons were reported by the LHCb collaboration that year and have been confirmed several times since [2–4]. Now, the Ξ_{cc}^{++} baryon has become the first DHB collected in the new PDG data [5]. It opened the door to the experimental detection of DHBs, and people expected to find more DHBs experimentally. However, in the next experiments of searching for the Ξ_{bc}^{0}, Ω_{bc}^{0} and Ξ_{bb}^{+} baryons, the LHCb collaboration observed no significant signals in the invariant mass range of 6.7 \sim 7.3 GeV. So far, the DHB containing bottom quark has not yet been discovered experimentally.

The zero result of searching for the bottom-charm baryons has aroused great concern. Many theoretical efforts have been carried out to predict the production in the collider [9–16], the decay properties [17–29] and the accurate mass spectrum [30–63] of DHBs, so as to provide more powerful theoretical supports to the related experiments in the near future.

Recently, we have developed an approximate method [64, 65] to analyze the singly heavy baryon spectra systematically in which the relativistic quark model [66, 67] and the infinitesimally shifted Gaussian (ISG) basis function method [68] are employed. The result indicates that this method is reasonable and effective in the singly heavy baryon spectroscopy. Additionally, it is worth pointing out that these calculations are based on a uniform set of parameters [64, 65]. Then, we extended this method to study the mass spectra of the double charm baryons (Ξ_{cc} and Ω_{cc}) [69] and the double bottom baryons (Ξ_{bb} and Ω_{bb}) [70]. In the following sections, the systematic calculation of the bottom-charm baryon spectra by this method will be performed.

This paper is organized as follows. In Sect.II, the calculation method used in this work is briefly introduced. In Sect.III, we present the calculation results of the bottom-charm baryons, including the root mean square (r.m.s.) radii, mass spectra, quark radial probability density distributions, Regge trajectories and spectral structure, and give discussions about the results. Sect.IV is reserved for our conclusions.

II. Phenomenological methods adopted in this work

In our calculations, the relativistic quark model is employed to investigate the full mass spectra. In order to improve the computational accuracy and efficiency, the ISG method is also adopted in our studies. The relevant technical details can be found in references [64–68]. Next, we mainly introduce the selection of Jacobi coordinates and the structure of functions for bottom-charm baryons. The DHB is regarded as a three-quark system and the related calculation is performed in the Jacobi coordinates.
as shown in Fig.1. There are three channels of Jacobi coordinates, which are defined as

\[\rho_i = r_j - r_k, \]
\[\lambda_i = r_i - \frac{m_j r_j + m_k r_k}{m_j + m_k}, \]

where \(i, j, k = 1, 2, 3 \) (or replace their positions in turn). \(r_i \) and \(m_i \) stand for the position vector and the mass of the \(i \)th quark, respectively.

\[\Xi_{bc} = \frac{1}{\sqrt{2}} (bc - cb) q,\]
\[\Xi'_{bc} = \frac{1}{\sqrt{2}} (bc + cb) q.\]

Here \(q \) denotes up quark (u) or down quark (d). For \(\Omega_{bc} \) and \(\Omega'_{bc}, q \) is replaced by strange quark.

In channel 3, \(l_{\rho 3} \) (denoted in short as \(l_{\rho} \)) stands for the orbital angular momentum between the two heavy quarks, and \(l_{\lambda 3} \) (denoted in short as \(l_{\lambda} \)) represents the one between the bottom-charm quark pair and the light quark. For a quantum state in this work, the spatial wave function is combined with the spin function as follow,

\[|l_{\rho} l_{\lambda} L s j J M_J \rangle = \left\{ (|l_{\rho} m_{\rho}|l_{\lambda} m_{\lambda})L \times (|s_1 m_{s_1}|s_2 m_{s_2})s_J \right\} \times |s_3 m_{s_3}\rangle \}_{JM_J}. \]
III. Numerical results and discussion

3.1 \(\rho \)-mode

As usual, \(nL(J^P) \) is used to describe a baryon state. For the excited states \((L \neq 0) \), there exist several \(|l_\rho l_\lambda LsJMJJ \rangle \) states under the condition of \(L = l_\rho + l_\lambda \). They may be divided into the following three modes: (1) The \(\rho \)-mode with \(l_\rho \neq 0 \) and \(l_\lambda = 0 \); (2) The \(\lambda \)-mode with \(l_\rho = 0 \) and \(l_\lambda \neq 0 \); (3) The \(\lambda-\rho \) mixing mode with \(l_\rho \neq 0 \) and \(l_\lambda \neq 0 \). As an approximation, we take no account of the mixing of these modes, and note that the most likely mode to be observed experimentally should be that with lower energy. With this in mind, we need to analyze which mode has the lowest energy in our calculations.

Considering the excitation energies of the \(1D(\frac{3}{2}^+, \frac{5}{2}^+) \) states for \(\Xi_{QQ}^\prime \) and \(\Xi_{QQ} \) as functions of \(m_2 \), we investigate the trend of these three modes in the heavy quark limit. Meanwhile, the dependence of excitation energies on \(m_2 \) of the \(\rho \)-mode is compared with that of the other two modes. Being \(m_c = 1.628 \) GeV and \(m_b = 4.977 \) GeV in the actual calculations below, we set \(m_1 = (m_c/m_b)m_2 \) here to keep them in proportion. From Fig.2, one can see that the excitation energies of the \(\rho \)-mode are significantly lower than those of the other two modes when \(m_2 \) increases from 2.0 GeV to 5.0 GeV. This suggests that the \(\rho \)-mode appears lower in energy than the other two modes in the heavy quark limit for bottom-charm baryons. Therefore, we only study the \(\rho \)-mode in this work. Additionally, the excitation energy differences between the \(1D(\frac{3}{2}^+, \frac{5}{2}^+) \) states in the \(\rho \)-mode get closer to each other with increasing \(m_2 \) as shown in Fig.2, which is consistent with the heavy quark spin symmetry [71].

3.2 Mass spectra, r.m.s. radii and quark radial probability density distributions

In the \(\rho \)-mode, the complete mass spectra of the \(\Xi_{bc}^\prime, \Xi_{bc}, \Omega_{bc}^\prime \) and \(\Omega_{bc} \) baryons with quantum numbers up to \(n = 4 \) and \(L = 4 \) are calculated. The corresponding r.m.s. radii and part of the quark radial probability density distributions are computed as well. The detailed results are presented in Tables I-IV and Figs.3-6.

From Tables I-IV, one can find some general features as follows: (1) For the spin-doublet states with the same \(j \), the \(J = j + \frac{1}{2} \) state is higher in energy than the \(J = j - \frac{1}{2} \) state. (2) For the same \(L \), the mass splitting among different states becomes larger and larger with the increase of \(j \). For example, Table I shows the mass differences (splittings) of the \(1D \) doublets with \(j = 1, 2, 3 \) are 21 MeV, 35 MeV and 50 MeV, respectively. So, the mass splitting of the bottom-charm baryons shows the same feature as those of the double-charm and -bottom baryons [69, 70]. Moreover, by comparing the mass splittings of these three groups of the DHBs, one can find that this mass splitting is inversely
FIG. 2: (Color online) The dependence of excitation energies on \(m_2 \) for different modes of \(\Xi'_{QQ} \) and \(\Xi_{QQ}' \), where \(m_1 = (m_c/m_b)m_2 \) and \(m_3 = m_u(d) \). The excitation energies are measured from the ground states \(1S(\frac{1}{2})^+_{j=1} \) of \(\Xi'_{QQ} \) and \(1S(\frac{1}{2})^+_{j=0} \) of \(\Xi_{QQ}' \), respectively.

proportional to the total mass of the heavy quark pair. (3) The mass difference between two adjacent radial excited states gradually decreases with increasing \(n \). This is a general property for singly and doubly heavy baryons in our calculations.

The radial probability densities \(\omega(r_\rho) \) and \(\omega(r_\lambda) \) in a three-quark system can be defined below,

\[
\omega(r_\rho) = \int |\Psi(r_\rho, r_\lambda)|^2 dr_\lambda d\Omega_\rho, \\
\omega(r_\lambda) = \int |\Psi(r_\rho, r_\lambda)|^2 dr_\rho d\Omega_\lambda,
\]

where \(\Omega_\rho \) and \(\Omega_\lambda \) stand for the solid angles spanned by vectors \(r_\rho \) and \(r_\lambda \), respectively. Through the analyses of the quark radial probability density distributions in Figs.3-6 and the r.m.s. radii in Tables I-IV, one can find some interesting properties.

(1) The \(\langle r_\rho^2 \rangle^{1/2} \) value of a ground state is smaller than the corresponding \(\langle r_\lambda^2 \rangle^{1/2} \) value. This means that the two heavy quarks are bonded tightly. By using the results of our previous papers \cite{69, 70} and examining the r.m.s. radii of these three groups of DHBs, one can find the \(\langle r_\rho^2 \rangle^{1/2} \) value is also inversely proportional to the total mass of the heavy quark pair.

(2) Tables I-IV show that when \(n \) is fixed, \(\langle r_\rho^2 \rangle^{1/2} \) values become larger with increasing \(L \). Figs.3-6 also show a consistent change trend for the distribution of the \(r_\rho^2 \omega(r_\rho) \) (solid lines), especially in the case of \(n=1 \) or 3, where the peak of \(r_\rho^2 \omega(r_\rho) \) is significantly shifted outward with increasing \(L \).

(3) The curves in Fig.3 are very similar to those in Fig.4 and the values of the r.m.s. radii in Tables I and II are also very close to each other for the same \(nL(J^P)_j \) state. This suggests that the flavor
symmetry has only a little effect on the shapes of the bottom-charm baryons and their mass values.

(4) Although the difference of the curves in Fig.3 (or 4) and Fig.5 (or 6) is very small, for the same quantum state, the apparent differences can be seen in the $\langle r^2 \rangle^{1/2}$ values and the mass values for Ξ_{bc} and Ω_{bc} as shown in Table I and III. This reflects the different contributions to these physical quantities from up (down) quark and strange quark in bottom-charm baryons.

![Graph showing quark radial probability density distributions]

FIG. 3: (Color online) Quark radial probability density distributions for some nL states in the Ξ_{bc}' family. The solid line denotes the probability density with r_ρ, and the dash line the one with r_λ.

3.3 Regge trajectories

As an effective phenomenological approach, the Regge trajectory \[M^2 = \alpha J + \beta, \] can help ones to predict the evolution trend of hadron mass spectra. In turn, it could deepen our understanding of the hadron structure by testing the universality of the Regge theory.

In this paper, the following definition for the (J, M^2) Regge trajectories is used.

As shown in Fig.7, the group of $\Xi_{bc}'(NP)$ with the natural parity of $(-1)^{J-1/2}$ is composed of $S(1/2^+)_j=1$, $P(3/2^-)_j=1$, $D(5/2^+)_j=2$, $F(7/2^-)_j=3$ and $G(9/2^+)_j=4$ states. The group of $\Xi_{bc}'(UP)$ with the
l_p $l_\lambda L s j$	$nL(J^P)$	$\langle r_x^2 \rangle^{1/2}$	$\langle r_y^2 \rangle^{1/2}$	mass	l_p $l_\lambda L s j$	$nL(J^P)$	$\langle r_x^2 \rangle^{1/2}$	$\langle r_y^2 \rangle^{1/2}$	mass
0 0 0 1 1	1$S(\frac{1}{2}^+)$	0.379	0.469	6952	1$D(\frac{7}{2}^+)$	0.749	0.566	7470	
	2$S(\frac{1}{2}^+)$	0.691	0.555	7346		2$D(\frac{7}{2}^+)$	0.952	0.602	7747
	3$S(\frac{1}{2}^+)$	0.429	0.831	7455	2$D(\frac{7}{2}^+)$	0.792	0.925	7922	
	4$S(\frac{1}{2}^+)$	1.072	0.610	7673		4$D(\frac{7}{2}^+)$	1.521	0.685	8011
0 0 0 1 1	1$S(\frac{3}{2}^+)$	0.382	0.488	6980		1$F(\frac{3}{2}^-)$	0.888	0.549	7598
	2$S(\frac{3}{2}^+)$	0.694	0.574	7368		2$F(\frac{5}{2}^-)$	1.022	0.570	7862
	3$S(\frac{3}{2}^+)$	0.432	0.841	7470		3$F(\frac{5}{2}^-)$	0.941	0.922	8051
	4$S(\frac{3}{2}^+)$	1.080	0.628	7692		4$F(\frac{7}{2}^-)$	1.678	0.663	8199
1 0 1 0 1	1$P(\frac{1}{2}^-)$	0.566	0.504	7223		1$F(\frac{3}{2}^-)$	0.899	0.592	7642
	2$P(\frac{1}{2}^-)$	0.838	0.561	7538		2$F(\frac{3}{2}^-)$	1.035	0.611	7907
	3$P(\frac{1}{2}^-)$	0.609	0.872	7705		3$F(\frac{3}{2}^-)$	0.946	0.952	8082
	4$P(\frac{1}{2}^-)$	1.321	0.637	7840		4$F(\frac{3}{2}^-)$	1.668	0.700	8142
1 0 1 0 1	1$P(\frac{3}{2}^-)$	0.571	0.523	7247		1$G(\frac{3}{2}^+)$	1.029	0.572	7759
	2$P(\frac{3}{2}^-)$	0.841	0.579	7559		2$G(\frac{3}{2}^+)$	1.097	0.579	8024
	3$P(\frac{3}{2}^-)$	0.610	0.884	7719		3$G(\frac{3}{2}^+)$	1.078	0.946	8199
	4$P(\frac{3}{2}^-)$	1.326	0.654	7856		4$G(\frac{3}{2}^+)$	1.806	0.675	8236
2 0 2 1 1	1$D(\frac{1}{2}^-)$	0.728	0.534	7431		1$G(\frac{5}{2}^+)$	1.039	0.614	7800
	2$D(\frac{1}{2}^-)$	0.940	0.572	7708		2$G(\frac{5}{2}^+)$	1.121	0.621	8067
	3$D(\frac{1}{2}^-)$	0.777	0.902	7896		3$G(\frac{5}{2}^+)$	1.085	0.975	8228
	4$D(\frac{1}{2}^-)$	1.522	0.660	7986		4$G(\frac{5}{2}^+)$	1.786	0.710	8267
2 0 2 1 1	1$D(\frac{3}{2}^-)$	0.733	0.552	7452		1$G(\frac{7}{2}^+)$	1.030	0.566	7751
	2$D(\frac{3}{2}^-)$	0.943	0.590	7728		2$G(\frac{7}{2}^+)$	1.097	0.572	8017
	3$D(\frac{3}{2}^-)$	0.778	0.915	7909		3$G(\frac{7}{2}^+)$	1.080	0.942	8193
	4$D(\frac{3}{2}^-)$	1.521	0.676	8001		4$G(\frac{7}{2}^+)$	1.806	0.668	8229
2 0 2 1 2	1$D(\frac{1}{2}^-)$	0.731	0.528	7425		1$G(\frac{9}{2}^+)$	1.043	0.620	7803
	2$D(\frac{1}{2}^-)$	0.941	0.566	7703		2$G(\frac{9}{2}^+)$	1.129	0.628	8073
	3$D(\frac{1}{2}^-)$	0.781	0.899	7892		3$G(\frac{9}{2}^+)$	1.088	0.980	8230
	4$D(\frac{1}{2}^-)$	1.522	0.654	7981		4$G(\frac{9}{2}^+)$	1.780	0.714	8270
2 0 2 1 2	1$D(\frac{3}{2}^-)$	0.740	0.559	7460		1$G(\frac{11}{2}^+)$	1.032	0.560	7743
	2$D(\frac{3}{2}^-)$	0.946	0.596	7736		2$G(\frac{11}{2}^+)$	1.100	0.566	8011
	3$D(\frac{3}{2}^-)$	0.784	0.920	7915		3$G(\frac{11}{2}^+)$	1.083	0.939	8186
	4$D(\frac{3}{2}^-)$	1.521	0.681	8006		4$G(\frac{11}{2}^+)$	1.804	0.662	8223
2 0 2 1 3	1$D(\frac{5}{2}^-)$	0.737	0.523	7420		1$G(\frac{13}{2}^+)$	1.047	0.626	7807
	2$D(\frac{5}{2}^-)$	0.943	0.561	7700		2$G(\frac{13}{2}^+)$	1.141	0.634	8079
	3$D(\frac{5}{2}^-)$	0.788	0.896	7890		3$G(\frac{13}{2}^+)$	1.093	0.984	8232
	4$D(\frac{5}{2}^-)$	1.524	0.648	7976		4$G(\frac{13}{2}^+)$	1.769	0.717	8273
unnatural parity of $(-1)^{J+1/2}$ is composed of $P(\frac{1}{2}^-)_{J=1}$, $D(\frac{3}{2}^+)_{J=2}$, $F(\frac{5}{2}^-)_{J=3}$ and $G(\frac{5}{2}^+)_{J=4}$ states. For Ξ_{bc} family, the remaining states in Table I can also be put into these lines, because their mass values are very near those states with the same $L(J^P)$. The situation is similar for Ξ_{bc}, Ω'_{bc} and Ω_{bc} families. From Fig.7, one can see that most of the data points fall on the trajectory lines.
FIG. 6: (Color online) Same as Fig. 3, but for the Ω_{bc} family.

By comparing the slope values in Table V with those of the double-charm and -bottom baryons [69, 70], we find a phenomenon: The slopes of the two lines with $n = 1$ and $n = 3$ are roughly the same. However, the slope of the line with $n = 2$ is different from those of the other two lines, and this difference becomes bigger with increasing the total mass of the heavy quark pair.

FIG. 7: (Color online) (J, M^2) Regge trajectories for the Ξ_{bc}^\prime (Ξ_{bc}) and Ω_{bc}^\prime (Ω_{bc}) families and M^2 is in GeV2. NP denotes the natural parity, and UP the unnatural parity.
3.4 Shell structure of the mass spectra

The spectral structures of the Ξ_{bc}' (Ξ_{bc}) and Ω_{bc}' (Ω_{bc}) baryons with $L \leq 2$ are presented in Figs. 8 and 9, respectively. As shown in Fig. 8, there are 3 members of the $1S$-wave states for the Ξ_{bc} and Ξ_{bc}' families. The calculated masses are 6952 MeV for $1S(\frac{1}{2}^+)_{j=1}$ state, 6955 MeV for $1S(\frac{1}{2}^+)_{j=0}$ state, and 6980 MeV for $1S(\frac{3}{2}^+)_{j=1}$ state, respectively. One can see that the masses of these three states are relatively close, and the $1S(\frac{1}{2}^+)_{j=0}$ state of Ξ_{bc} lies between the $1S(\frac{3}{2}^+)_{j=1}$ doublet states of Ξ_{bc}'. This suggests that there is a certain difficulty in the identification of the three $1S$ states in experiment. On the other hand, good news is that there lies a big gap (about 240 MeV) between the $1S$ and $1P$ sub-shells as shown in Fig. 8. This implies the experimental measurement of the $1S$ states for the Ξ_{bc}' and Ξ_{bc} baryons could be done cleanly. The same is true for Ω_{bc}' and Ω_{bc} baryons as shown in Fig. 9, where the calculated masses are 7053 MeV for $1S(\frac{1}{2}^+)_{j=1}$ state, 7055 MeV for $1S(\frac{1}{2}^+)_{j=0}$ state and 7079 MeV for $1S(\frac{3}{2}^+)_{j=1}$ state, respectively.

At last, the calculated masses of the $1S$ states in this work are compared with those given by some other theoretical methods as shown in Table VI. From Table VI, one can see that the masses by the other methods are mainly distributed in the range of $6800\sim7100$ MeV for Ξ_{bc}' and Ξ_{bc} families, and $6900\sim7200$ MeV for Ω_{bc}' and Ω_{bc} families. With the above masses, the average value for each $1S$ state is calculated. Table VI shows that our calculated masses are close to the average values in general.

![FIG. 8: (Color online)Shell structure of the Ξ_{bc}' (Ξ_{bc}) family.](image-url)
IV. Conclusions

In this work, by using the relativistic quark model and the ISG method, we investigate the bottom-charm baryon spectra systematically. In the ρ-mode, we obtain the mass spectra of the Ξ_{bc}' (Ξ_{bc}) and Ω_{bc}' (Ω_{bc}) families. The related r.m.s. radii and quark radial probability density distributions are investigated as well, from which we learn more about the structure of bottom-charm baryons.

Based on the obtained mass spectra, we construct successfully the Regge trajectories in the (J, M²) plane. We find the slopes of the lines with n = 2 differ from those of the other lines with n = 1 and n = 3, and the difference changes regularly with increasing total mass of the two heavy quarks.

At last, the mass spectral structures of the Ξ_{bc}' (Ξ_{bc}) and Ω_{bc}' (Ω_{bc}) families are presented. We analyze the features of the mass spectral structures, and discuss the difficulty and opportunity of the experimental measurements for the 1S states in Ξ_{bc}' (Ξ_{bc}) and Ω_{bc}' (Ω_{bc}) families. We also compare our calculated masses of the 1S states with those given by some other theoretical methods. It turns out that our results are close to their average values in general.

FIG. 9: (Color online) Same as Fig.8, but for the Ω_{bc}' (Ω_{bc}) family.
Acknowledgements

This research is supported by the Central Government Guidance Funds for Local Scientific and Technological Development of China (No. Guike ZY202006024), the National Natural Science Foundation of China (Grant No. 11675265), the Continuous Basic Scientific Research Project (Grant No. WDJC-2019-13), and the Leading Innovation Project (Grant No. LC 192209000701).

[1] M. Mattson et al. [SELEX Collaboration], Phys. Rev. Lett. 89 (2002), 112001.
[2] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 119 (2017), 112001, [arXiv:1707.01621].
[3] R. Aaij et al. [LHCb Collaboration], Chin. Phys. C 44 (2020), 022001, [arXiv:1910.11316].
[4] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 121 (2018), 162002, [arXiv:1807.01919].
[5] P. A. Zyla, et al. [Pa Data Group], Prog. Theor. Exp. Phys. 8 (2020), 083C01.
[6] R. Aaij, et al. [LHCb Collaboration], JHEP 11 (2020), 095, [arXiv:2009.02481].
[7] R. Aaij, et al. [LHCb Collaboration], Chin. Phys. C 45 (2021), 093002, [arXiv:2104.04759].
[8] [LHCb Collaboration], [arXiv:2204.09541].
[9] S. Kosakhraev, Acta. Phys. Polon. B 48 (2017), 163, [arXiv:1610.06125v4 [hep-ph]].
[10] H. Y. Bi, R. Y. Zhang, X. G. Wu, W. G. Ma, X. Z. Li, O. Samuel, Phys. Rev. D 95 (2017), 7, [arXiv:1702.07181].
[11] A. Ali, A. Y. Parkhomenko, Q. Qin, W. Wang, Phys. Lett. B 782 (2018), 412-420, [arXiv:1805.02535v2 [hep-ph]].
[12] A. Ali, Q. Qin, W. Wang, Phys. Lett. B 785 (2018), 605-609, [arXiv:1806.09288 [hep-ph]].
[13] A. V. Bereznuy, A. K. Likhoded, A. V. Luchinsky, Phys. Rev. D 98 (2018) 11, 113004, [arXiv:1809.10058 [hep-ph]].
[14] J. J. Niu, L. Guo, H. H. Ma, X. G. Wu, X. C. Zheng, Phys. Rev. D 98 (2018) 9, 094021, [arXiv:1810.03834 [hep-ph]].
[15] J. M. Richard, A. Valcarce, J. Vijande, Bled Workshops Phys. 19 (2018) 24, [arXiv:1811.02863 [hep-ph]].
[16] X. Luo, H. B. Fu, H. J. Tian, [arXiv:2208.07520 [hep-ph]].
[17] R. H. Li, C. D. Lü, W. Wang, F. S. Yu, Z. T. Zou, Phys. Lett. B 767 (2017), 232-235, [arXiv:1701.03284 [hep-ph]].
[18] Z. X. Zhao, Eur. Phys. J. C 78 (2018) 9, 756, [arXiv:1805.10878 [hep-ph]].
[19] Q. A. Zhang, Eur. Phys. J. C 78 (2018) 12, 1024, [arXiv:1811.02199 [hep-ph]].
[20] Y. J. Shi, Y. Xing, Z. X. Zhao, Eur. Phys. J. C 80 (2020) 1, 56, [arXiv:1903.03921 [hep-ph]].
[21] H. Y. Cheng, F. R. Xu, Phys. Rev. D 99 (2019) 7, 073006, [arXiv:1903.08148 [hep-ph]].
[22] A. V. Luchinsky, A. K. Likhoded, Phys. Rev. D 102 (2020) 1, 014019, [arXiv:2007.04010 [hep-ph]].
[23] Z. P. Xing, Z. X. Zhao, Eur. Phys. J. C 81 (2021) 12, 1111, [arXiv:2109.00216 [hep-ph]].
[24] P. H. Zhang, L. Guo, X. C. Zheng, Q. W. Ke, Phys. Rev. D 105 (2022) 034016, [arXiv:2202.01579 [hep-ph]].
[25] X. H. Hu, Y. J. Shi, [arXiv:2202.07540 [hep-ph]].
[26] A. Kakadiya, C. Menapara, arXiv:2204.13438[hep-ph].
[27] T. M. Aliev, M. Savci, S. Bilmiş, Phys. Rev. D 106 (2022) 3, 034017, arXiv:2205.14012[hep-ph].
[28] Z. Ghalenovi, M. M. Sorkhi, arXiv:2208.07625[hep-ph].
[29] H. Liu, Z. P. Xing, C. Yang, arXiv:2210.10529[hep-ph].
[30] X. Z. Weng, X. L. Chen, W. Z. Deng, Phys. Rev. D 97 (2018) 5, 054008, arXiv:1801.08644[hep-ph].
[31] N. Mohajery, N. Salehi, H. Hassanabadi, Adv. High Energy Phys. 2018 (2018) 1326438, arXiv:1807.06800[hep-ph].
[32] Z. G. Wang, Eur. Phys. J. C 78 (2018) 10, 826, arXiv:1808.09820[hep-ph].
[33] Q. X. Yu, X. H. Guo, Nucl.Phys.B 947 (2019) 114727, arXiv:1810.00437[hep-ph].
[34] X. C. Zheng, C. H. Chang, T. F. Feng, Sci. China Phys. Mech. Astron. 63 (2020) 8, 281011, arXiv:1810.09393[hep-ph].
[35] Q. Li, C. H. Chang, S. X. Qin, G. L. Wang, Chin. Phys.C 44 (2020) 1, 013102, arXiv:1903.02282[hep-ph].
[36] T. M. Aliev, S. Bilmiş, Nucl. Phys. A 984 (2019) 99-111, arXiv:1904.11279[hep-ph].
[37] P. Mohanta, S. Basak, Phys. Rev. D 101 (2020) 9, 094503, arXiv:1911.03741[hep-ph].
[38] W. X. Zhang, H. Xu, D. J. Jia, Phys. Rev. D 104 (2021) 11, 114011, arXiv:2109.07040[hep-ph].
[39] H. Z. Tong, H. S. Li, Commun. Theor. Phys. 74 (2022) 8, 085201, arXiv:2110.01350[hep-ph].
[40] J. T. Castellà, EPJ Web Conf. 258 (2022) 04003, arXiv:2111.09783[hep-ph].
[41] Z. G. Wang, Q. Xin, Int. J. Mod. Phys. A 37 (2022) 2250074, arXiv:2202.03828[hep-ph].
[42] T. Aliyev, S. Bilmiş, Turk. J. Phys. 46 (2022) 1, 1-26, arXiv:2203.02905[hep-ph].
[43] Y. X. Song, D. J. Jia, W. X. Zhang, A. Hosaka, arXiv:2204.00363[hep-ph].
[44] Z. Ghalenovi, C. P. Shen, M. M. Sorkhi, Phys. Lett. B 834 (2022) 137405, arXiv:2204.02938[hep-ph].
[45] J. Oudichhya, K. Gandhi, A. K. Rai, Phys. Scripta 97 (2022) 5, 054001, arXiv:2204.10045[hep-ph].
[46] A. Kakadiya, C. Menapara, A. K. Rai, arXiv:2204.13438[hep-ph].
[47] V. V. Kiselev, A. K. Likhoded, O. N. Pakhomova, V. A. Saleev, Int. J. Mod. Phys. D 12 (2003) 1415-1430, arXiv:0206140[hep-ph].
[48] D. H. He, K. Qian, Y. B. Ding, X. Q. Li, P. N. Shen, Springer Proc. Phys. 99 (2005) 381-390, arXiv:0403301[hep-ph].
[49] E. Bagan, H. G. Dosch, P. Gosdzinsky, S. Narison, J. M. Richard, Z. Phys. C 64 (1994) 57-72, arXiv:9403208[hep-ph].
[50] D. Ebert, R. N. Faustov, V. O. Galkin, A. P. Martynenko, V. A. Saleev, Z. Phys. C 76 (1997) 111-115, arXiv:9607314[hep-ph].
[51] J. R. Zhang, M. Q. Huang, Chin. Phys. C 33 (2009) 1385-1388, arXiv:0904.3391[hep-ph].
[52] Z. G. Wang, Eur. Phys. J. A 45 (2010) 267-274, arXiv:1001.4693[hep-ph].
[53] Z. G. Wang, Eur. Phys. J. C 68 (2010) 459-472, arXiv:1002.2471[hep-ph].
[54] Z. G. Wang, Eur. Phys. J. A 47 (2011) 81, arXiv:1003.2838[hep-ph].
[55] B. Eakins, W. Roberts, Int. J. Mod. Phys. A 27 (2012) 1250039, arXiv:1201.4885[hep-ph].
[56] Z. G. Wang, Eur. Phys. J. C 72 (2012) 2099, arXiv:1205.0605[hep-ph].
[57] T. M. Aliev, K. Azizi, M. Savci, Nucl. Phys. A 895 (2012) 59-70, arXiv:1205.2873[hep-ph].
[58] T. M. Aliev, K. Azizi, M. Savci, Eur. J. Phys. G 40 (2013) 065003, arXiv:1208.1976[hep-ph].
[59] Z. Ghalenovi, A. A. Rajabi, S. X. Qin, D. H. Rischke, Mod. Phys. Lett. A 29 (2014) 1450106.
[60] M. Karliner, J. L. Rosner, Phys. Rev. D 90 (2014) 9, 094007, arXiv:1408.5877 [hep-ph].
[61] Z. Shah, K. Thakkar, A. K. Rai, Eur. Phys. J. C 76 (2016) 10, 530, arXiv:1609.03030 [hep-ph].
[62] H. Garcilazo, A. Valcarce, J. Vijande, Phys. Rev. D 94 (2016) 7, 074003, arXiv:1609.06886 [hep-ph].
[63] Z. Shah, A. K. Rai, Eur. Phys. J. C 77 (2017) 2, 129, arXiv:1701.02726 [hep-ph].
[64] G. L. Yu, Z. Y. Li, Z. G. Wang, J. Lu, M. Yan, arXiv:2206.08128 [hep-ph].
[65] Z. Y. Li, G. L. Yu, Z. G. Wang, J. Z. Gu, J. Lu, arXiv:2207.04167 [hep-ph].
[66] S. Godfrey and N. Isgur, Phys. Rev. D 32 (1985), 189.
[67] S. Capstick and N. Isgur, Phys. Rev. D 34, 2809 (1986).
[68] E. Hiyama, Y. Kino and M. Kamimura, Prog. Part. Nucl. Phys. 51 (2003), 223.
[69] G. L. Yu, Z. Y. Li, Z. G. Wang, J. Lu, M. Yan, arXiv:2211.00510 [hep-ph].
[70] Z. Y. Li, G. L. Yu, Z. G. Wang, J. Z. Gu, arXiv:2210.13085 [hep-ph].
[71] H. X. Chen, W. Chen, X. Liu et al., Rept. Prog. Phys. 80 (2017) 7, 076201, arXiv:1609.08928 [hep-ph].
[72] T. Regge, Nuovo Cim. 14 (1959), 951.
[73] T. Regge, Nuovo Cim. 18 (1960), 947-956.
[74] G. F. Chew and S. C. Frautschi, Phys. Rev. Lett. 7 (1961), 394-397.
[75] G. F. Chew and S. C. Frautschi, Phys. Rev. Lett. 8 (1962), 41-44.
\(l_\rho \)	\(l_\lambda \)	\(L \)	\(s \)	\(j \)	\(nL(J^P) \)	\(\langle r_{\rho}^2 \rangle^{1/2} \)	\(\langle r_{\lambda}^2 \rangle^{1/2} \)	Mass (MeV)
0 0 0 0				1S(\(\frac{1}{2}^+\))	0.370	0.479	6955	
				2S(\(\frac{3}{2}^+\))	0.683	0.569	7351	
				3S(\(\frac{1}{2}^+\))	0.422	0.834	7451	
				4S(\(\frac{1}{2}^+\))	1.060	0.621	7677	

\(l_\rho \)	\(l_\lambda \)	\(L \)	\(s \)	\(j \)	\(nL(J^P) \)	\(\langle r_{\rho}^2 \rangle^{1/2} \)	\(\langle r_{\lambda}^2 \rangle^{1/2} \)	Mass (MeV)
1 0 1 0				1P(\(\frac{1}{2}^+\))	0.559	0.514	7251	
				2P(\(\frac{1}{2}^+\))	0.835	0.572	7545	
				3P(\(\frac{1}{2}^+\))	0.599	0.878	7707	
				4P(\(\frac{1}{2}^+\))	1.315	0.648	7847	

\(l_\rho \)	\(l_\lambda \)	\(L \)	\(s \)	\(j \)	\(nL(J^P) \)	\(\langle r_{\rho}^2 \rangle^{1/2} \)	\(\langle r_{\lambda}^2 \rangle^{1/2} \)	Mass (MeV)
1 0 1 1				1P(\(\frac{3}{2}^+\))	0.562	0.503	7220	
				2P(\(\frac{3}{2}^+\))	0.836	0.561	7535	
				3P(\(\frac{3}{2}^+\))	0.604	0.871	7702	
				4P(\(\frac{3}{2}^+\))	1.317	0.637	7838	

\(l_\rho \)	\(l_\lambda \)	\(L \)	\(s \)	\(j \)	\(nL(J^P) \)	\(\langle r_{\rho}^2 \rangle^{1/2} \)	\(\langle r_{\lambda}^2 \rangle^{1/2} \)	Mass (MeV)
1 0 1 1				1P(\(\frac{5}{2}^+\))	0.566	0.522	7243	
				2P(\(\frac{3}{2}^+\))	0.839	0.578	7556	
				3P(\(\frac{3}{2}^+\))	0.605	0.883	7716	
				4P(\(\frac{3}{2}^+\))	1.322	0.654	7855	

\(l_\rho \)	\(l_\lambda \)	\(L \)	\(s \)	\(j \)	\(nL(J^P) \)	\(\langle r_{\rho}^2 \rangle^{1/2} \)	\(\langle r_{\lambda}^2 \rangle^{1/2} \)	Mass (MeV)
1 0 1 2				1P(\(\frac{7}{2}^+\))	0.572	0.499	7221	
				2P(\(\frac{3}{2}^+\))	0.841	0.556	7536	
				3P(\(\frac{5}{2}^+\))	0.616	0.869	7706	
				4P(\(\frac{5}{2}^+\))	1.327	0.632	7837	

\(l_\rho \)	\(l_\lambda \)	\(L \)	\(s \)	\(j \)	\(nL(J^P) \)	\(\langle r_{\rho}^2 \rangle^{1/2} \)	\(\langle r_{\lambda}^2 \rangle^{1/2} \)	Mass (MeV)
1 0 1 2				1P(\(\frac{7}{2}^+\))	0.580	0.530	7261	
				2P(\(\frac{7}{2}^+\))	0.846	0.585	7571	
				3P(\(\frac{7}{2}^+\))	0.618	0.890	7730	
				4P(\(\frac{7}{2}^+\))	1.334	0.660	7865	

\(l_\rho \)	\(l_\lambda \)	\(L \)	\(s \)	\(j \)	\(nL(J^P) \)	\(\langle r_{\rho}^2 \rangle^{1/2} \)	\(\langle r_{\lambda}^2 \rangle^{1/2} \)	Mass (MeV)
2 0 2 0				1D(\(\frac{1}{2}^+\))	0.733	0.529	7426	
				2D(\(\frac{1}{2}^+\))	0.942	0.567	7704	
				3D(\(\frac{1}{2}^+\))	0.783	0.899	7893	
				4D(\(\frac{1}{2}^+\))	1.523	0.654	7981	

\(l_\rho \)	\(l_\lambda \)	\(L \)	\(s \)	\(j \)	\(nL(J^P) \)	\(\langle r_{\rho}^2 \rangle^{1/2} \)	\(\langle r_{\lambda}^2 \rangle^{1/2} \)	Mass (MeV)
2 0 2 0				1P(\(\frac{5}{2}^+\))	0.742	0.559	7461	
				2P(\(\frac{5}{2}^+\))	0.948	0.596	7737	
				3P(\(\frac{5}{2}^+\))	0.786	0.920	7916	
				4P(\(\frac{5}{2}^+\))	1.521	0.681	8006	

TABLE II: The root mean square radii (fm) and mass spectra (MeV) of the \(\Xi_{bc}\) family.
TABLE III: The root mean square radii (fm) and mass spectra (MeV) of the Ω^+_c family.

l_ν l_λ L s j	$nL(J^P)$	$\langle r^2_{\text{rms}} \rangle^{1/2}$	$\langle r^2_{\text{bc}} \rangle^{1/2}$	Mass (MeV)	l_ν l_λ L s j	$nL(J^P)$	$\langle r^2_{\text{rms}} \rangle^{1/2}$	$\langle r^2_{\text{bc}} \rangle^{1/2}$	Mass (MeV)								
0 0 0 1 1	$1S(\frac{1}{2}^+)$	0.371	0.429	7053	\ldots	$1S(\frac{1}{2}^+)$	0.738	0.522	7578								
	$2S(\frac{1}{2}^+)$	0.675	0.526	7453	\ldots	$2D(\frac{3}{2}^+)$	0.942	0.558	7856								
	$3S(\frac{1}{2}^+)$	0.438	0.771	7554	\ldots	$3D(\frac{3}{2}^+)$	0.787	0.872	8022								
	$4S(\frac{3}{2}^+)$	1.039	0.581	7786	\ldots	$4D(\frac{3}{2}^+)$	1.521	0.639	8131								
0 0 0 1 1	$1S(\frac{1}{2}^+)$	0.375	0.446	7079	\ldots	$1F(\frac{1}{2}^−)$	0.877	0.510	7716								
	$2S(\frac{1}{2}^+)$	0.677	0.542	7474	\ldots	$2F(\frac{1}{2}^−)$	1.011	0.532	7979								
	$3S(\frac{1}{2}^+)$	0.441	0.782	7568	\ldots	$3F(\frac{1}{2}^−)$	0.933	0.871	8155								
	$4S(\frac{3}{2}^+)$	1.048	0.596	7803	\ldots	$4F(\frac{1}{2}^−)$	1.685	0.621	8286								
1 0 1 0 1	$1P(\frac{1}{2}^−)$	0.557	0.465	7331	\ldots	$1F(\frac{1}{2}^−)$	0.889	0.546	7754								
	$2P(\frac{1}{2}^−)$	0.829	0.524	7649	\ldots	$2F(\frac{1}{2}^−)$	1.021	0.567	8018								
	$3P(\frac{1}{2}^−)$	0.607	0.818	7806	\ldots	$3F(\frac{1}{2}^−)$	0.938	0.900	8183								
	$4P(\frac{1}{2}^−)$	1.301	0.599	7958	\ldots	$4F(\frac{1}{2}^−)$	1.678	0.652	8263								
1 0 1 0 1	$1P(\frac{3}{2}^−)$	0.561	0.481	7353	\ldots	$1G(\frac{1}{2}^−)$	1.019	0.532	7879								
	$2P(\frac{3}{2}^−)$	0.832	0.539	7666	\ldots	$2G(\frac{1}{2}^−)$	1.078	0.539	8141								
	$3P(\frac{3}{2}^−)$	0.608	0.830	7819	\ldots	$3G(\frac{1}{2}^−)$	1.069	0.896	8303								
	$4P(\frac{3}{2}^−)$	1.308	0.613	7973	\ldots	$4G(\frac{1}{2}^−)$	1.822	0.631	8364								
2 0 2 1 1	$1D(\frac{1}{2}^−)$	0.718	0.494	7543	\ldots	$1G(\frac{1}{2}^−)$	1.029	0.568	7914								
	$2D(\frac{1}{2}^−)$	0.932	0.534	7822	\ldots	$2G(\frac{1}{2}^−)$	1.095	0.575	8178								
	$3D(\frac{1}{2}^−)$	0.771	0.849	7997	\ldots	$3G(\frac{1}{2}^−)$	1.074	0.925	8330								
	$4D(\frac{1}{2}^−)$	1.516	0.618	8109	\ldots	$4G(\frac{1}{2}^−)$	1.808	0.661	8390								
2 0 2 1 1	$1D(\frac{3}{2}^−)$	0.723	0.510	7562	\ldots	$1G(\frac{1}{2}^−)$	1.020	0.526	7872								
	$2D(\frac{3}{2}^−)$	0.935	0.548	7839	\ldots	$2G(\frac{1}{2}^−)$	1.079	0.534	8135								
	$3D(\frac{3}{2}^−)$	0.773	0.862	8010	\ldots	$3G(\frac{1}{2}^−)$	1.070	0.892	8298								
	$4D(\frac{3}{2}^−)$	1.518	0.632	8122	\ldots	$4G(\frac{1}{2}^−)$	1.822	0.626	8359								
2 0 2 1 2	$1D(\frac{4}{2}^−)$	0.720	0.489	7538	\ldots	$1G(\frac{1}{2}^−)$	1.033	0.572	7917								
	$2D(\frac{4}{2}^−)$	0.933	0.529	7818	\ldots	$2G(\frac{1}{2}^−)$	1.102	0.580	8183								
	$3D(\frac{4}{2}^−)$	0.775	0.846	7994	\ldots	$3G(\frac{1}{2}^−)$	1.078	0.929	8332								
	$4D(\frac{4}{2}^−)$	1.518	0.613	8105	\ldots	$4G(\frac{1}{2}^−)$	1.803	0.665	8392								
2 0 2 1 2	$1D(\frac{5}{2}^−)$	0.729	0.516	7569	\ldots	$1G(\frac{1}{2}^−)$	1.038	0.577	7920								
	$2D(\frac{5}{2}^−)$	0.937	0.553	7847	\ldots	$2G(\frac{1}{2}^−)$	1.111	0.586	8189								
	$3D(\frac{5}{2}^−)$	0.778	0.866	8015	\ldots	$3G(\frac{1}{2}^−)$	1.082	0.933	8333								
	$4D(\frac{5}{2}^−)$	1.519	0.636	8126	\ldots	$4G(\frac{1}{2}^−)$	1.795	0.667	8394								
2 0 2 1 3	$1D(\frac{5}{2}^−)$	0.726	0.485	7535	\ldots	$1G(\frac{1}{2}^−)$	1.038	0.577	7920								
\(l_\rho \)	\(l_\lambda \)	\(L \)	\(s \)	\(j \)	\(nL(J^P) \)	\(\langle r_{\rho}^2 \rangle^{1/2} \)	\(\langle r_{\lambda}^2 \rangle^{1/2} \)	Mass	\(l_\rho \)	\(l_\lambda \)	\(L \)	\(s \)	\(j \)	\(nL(J^P) \)	\(\langle r_{\rho}^2 \rangle^{1/2} \)	\(\langle r_{\lambda}^2 \rangle^{1/2} \)	Mass
-----	-----	-----	-----	-----	------	-------	-------	------	-----	-----	-----	-----	-----	------	-------	-------	------
0 0 0 0	1S(\(\frac{1}{2}^+ \))	0.363	0.438	7055	1F(\(\frac{3}{2}^- \))	0.874	0.515	7722									
0 0 0 0	2S(\(\frac{1}{2}^- \))	0.666	0.538	7457	2F(\(\frac{5}{2}^- \))	1.010	0.537	7984									
0 0 0 0	3S(\(\frac{1}{2}^+ \))	0.433	0.774	7550	3F(\(\frac{1}{2}^- \))	0.929	0.875	8160									
0 0 0 0	4S(\(\frac{1}{2}^- \))	1.026	0.591	7788	4F(\(\frac{3}{2}^- \))	1.686	0.627	8241									
1 0 1 0	1P(\(\frac{1}{2}^- \))	0.549	0.474	7337	1F(\(\frac{3}{2}^- \))	0.882	0.541	7749									
1 0 1 0	2P(\(\frac{1}{2}^- \))	0.826	0.534	7655	2F(\(\frac{5}{2}^- \))	1.016	0.562	8011									
1 0 1 0	3P(\(\frac{1}{2}^- \))	0.597	0.824	7807	3F(\(\frac{1}{2}^- \))	0.933	0.895	8180									
1 0 1 0	4P(\(\frac{1}{2}^- \))	1.293	0.608	7964	4F(\(\frac{3}{2}^- \))	1.681	0.648	8261									
1 0 1 1	1P(\(\frac{1}{2}^- \))	0.552	0.464	7327	1F(\(\frac{3}{2}^- \))	0.876	0.510	7715									
1 0 1 1	2P(\(\frac{1}{2}^- \))	0.827	0.524	7647	2F(\(\frac{5}{2}^- \))	1.010	0.532	7978									
1 0 1 1	3P(\(\frac{1}{2}^- \))	0.602	0.817	7803	3F(\(\frac{1}{2}^- \))	0.932	0.871	8155									
1 0 1 1	4P(\(\frac{1}{2}^- \))	1.296	0.599	7957	4F(\(\frac{3}{2}^- \))	1.686	0.621	8236									
1 0 1 1	1P(\(\frac{3}{2}^- \))	0.557	0.480	7349	1F(\(\frac{3}{2}^- \))	0.887	0.546	7754									
1 0 1 1	2P(\(\frac{3}{2}^- \))	0.830	0.539	7665	2F(\(\frac{5}{2}^- \))	1.020	0.567	8017									
1 0 1 1	3P(\(\frac{3}{2}^- \))	0.603	0.829	7816	3F(\(\frac{3}{2}^- \))	0.937	0.900	8183									
1 0 1 1	4P(\(\frac{3}{2}^- \))	1.303	0.613	7971	4F(\(\frac{3}{2}^- \))	1.678	0.652	8263									
1 0 1 2	1P(\(\frac{5}{2}^- \))	0.563	0.460	7330	1F(\(\frac{3}{2}^- \))	0.880	0.505	7710									
1 0 1 2	2P(\(\frac{5}{2}^- \))	0.832	0.519	7648	2F(\(\frac{5}{2}^- \))	1.012	0.526	7974									
1 0 1 2	3P(\(\frac{5}{2}^- \))	0.614	0.816	7807	3F(\(\frac{5}{2}^- \))	0.936	0.868	8151									
1 0 1 2	4P(\(\frac{5}{2}^- \))	1.309	0.595	7957	4F(\(\frac{5}{2}^- \))	1.685	0.616	8231									
1 0 1 2	1P(\(\frac{7}{2}^- \))	0.571	0.488	7366	1F(\(\frac{3}{2}^- \))	0.894	0.552	7759									
1 0 1 2	2P(\(\frac{7}{2}^- \))	0.837	0.544	7679	2F(\(\frac{5}{2}^- \))	1.025	0.572	8024									
1 0 1 2	3P(\(\frac{7}{2}^- \))	0.616	0.835	7829	3F(\(\frac{7}{2}^- \))	0.943	0.904	8186									
1 0 1 2	4P(\(\frac{7}{2}^- \))	1.318	0.618	7981	4F(\(\frac{5}{2}^- \))	1.675	0.655	8266									
2 0 2 0	1D(\(\frac{1}{2}^+ \))	0.723	0.489	7539	1G(\(\frac{3}{2}^+ \))	1.021	0.526	7872									
2 0 2 0	2D(\(\frac{3}{2}^+ \))	0.934	0.529	7819	2G(\(\frac{5}{2}^+ \))	1.079	0.534	8135									
2 0 2 0	3D(\(\frac{5}{2}^+ \))	0.777	0.847	7995	3G(\(\frac{7}{2}^+ \))	1.071	0.892	8297									
2 0 2 0	4D(\(\frac{7}{2}^+ \))	1.519	0.613	8105	4G(\(\frac{9}{2}^+ \))	1.821	0.626	8358									
2 0 2 0	1D(\(\frac{3}{2}^+ \))	0.731	0.516	7570	1G(\(\frac{5}{2}^+ \))	1.034	0.573	7917									
2 0 2 0	2D(\(\frac{5}{2}^+ \))	0.938	0.554	7848	2G(\(\frac{7}{2}^+ \))	1.103	0.581	8183									
2 0 2 0	3D(\(\frac{7}{2}^+ \))	0.781	0.867	8016	3G(\(\frac{9}{2}^+ \))	1.078	0.929	8331									
2 0 2 0	4D(\(\frac{9}{2}^+ \))	1.519	0.636	8126	4G(\(\frac{11}{2}^+ \))	1.802	0.664	8392									
TABLE V: Fitted values of the slope (α) and intercept (β) of the Regge trajectories for the Ξ'_{bc} (Ξ_{bc}) and Ω'_{bc} (Ω_{bc}) families.

Trajectory	α(GeV2)	β(GeV2)	α(GeV2)	β(GeV2)
	Ξ'_{bc}	Ξ_{bc}	Ω'_{bc}	Ω_{bc}
$n = 1(NP)$	3.099 ± 0.191	47.409 ± 0.548	3.193 ± 0.198	48.800 ± 0.568
$n = 2(NP)$	2.780 ± 0.059	52.778 ± 0.170	2.832 ± 0.065	54.354 ± 0.187
$n = 3(NP)$	3.005 ± 0.179	54.660 ± 0.515	3.054 ± 0.181	56.129 ± 0.520
$n = 1(UP)$	2.632 ± 0.097	51.014 ± 0.222	2.739 ± 0.102	52.540 ± 0.234
$n = 2(UP)$	2.483 ± 0.009	55.595 ± 0.020	2.556 ± 0.016	57.256 ± 0.037
$n = 3(UP)$	2.581 ± 0.097	58.237 ± 0.222	2.637 ± 0.098	59.776 ± 0.225
	Ξ_{bc}	Ξ_{bc}	Ω_{bc}	Ω_{bc}
$n = 1(NP)$	3.097 ± 0.183	47.415 ± 0.526	3.193 ± 0.191	48.796 ± 0.550
$n = 2(NP)$	2.770 ± 0.048	52.812 ± 0.137	2.823 ± 0.055	54.379 ± 0.159
$n = 3(NP)$	3.021 ± 0.184	54.600 ± 0.527	3.068 ± 0.187	56.074 ± 0.537
$n = 1(UP)$	2.643 ± 0.107	50.984 ± 0.244	2.754 ± 0.113	52.496 ± 0.258
$n = 2(UP)$	2.495 ± 0.020	55.563 ± 0.046	2.562 ± 0.024	57.237 ± 0.054
$n = 3(UP)$	2.588 ± 0.110	58.210 ± 0.252	2.644 ± 0.111	59.749 ± 0.255
TABLE VI: The predicted masses (in MeV) of 1S states in this work and some other theoretical methods.
The average values (\(\bar{m}\)) are calculated based on the mass values referenced here. The difference values in the
brackets are calculated from \(\bar{m}\).

State	1S(\(\frac{1}{2}^+\)) (Ξ_{bc})	1S(\(\frac{1}{2}^+\)) (Ξ'_{bc})	1S(\(\frac{1}{2}^+\)) (Ω_{bc})	1S(\(\frac{1}{2}^+\)) (Ω'_{bc})	1S(\(\frac{1}{2}^+\)) (Ω'_{bc'})	
30	6948(35)	6973(-1)	6922(-9)	7047(27)	7066(-8)	7011(-15)
33	6880(-33)	6980(6)	6970(39)	6960(-60)	7060(-14)	7050(24)
35	6934(21)	-	-	7033(13)	-	-
37	6805(-108)	6835(-139)	6787(-144)	6906(-114)	6930(-144)	6893(-133)
38	6953(40)	7044(70)	7015(84)	7064(44)	7142(68)	7116(90)
39	-	-	6930(-1)	-	-	7017(-9)
41	6890(-23)	6930(-44)	6930(-1)	7010(-10)	7040(-34)	7040(14)
43	6958(45)	6991(17)	-	7137(117)	7170(96)	-
46	6915(2)	7003(29)	-	-	-	-
47	6820(-93)	6900(-74)	6850(-81)	6930(-90)	7000(-74)	6970(-56)
48	6800(-113)	6850(-124)	6870(-61)	6980(-40)	7020(-54)	7050(24)
50	6950(37)	7020(46)	7000(69)	7050(30)	7110(36)	7090(64)
55	7014(101)	7064(90)	7037(106)	-	-	-
59	6988(75)	7083(109)	-	7103(83)	7200(126)	-
60	6914(1)	-	6933(2)	-	-	-
63	6920(7)	6986(12)	-	-	-	-

\(\bar{m}\) 6913 6974 6931 7020 7074 7026

Our 6952(39) 6980(6) 6955(24) 7053(33) 7079(5) 7055(29)