Active site alanine mutations convert deubiquitinases into high-affinity ubiquitin-binding proteins

Marie E Morrow¹, Michael T Morgan¹, Marcello Clerici², Katerina Growkova³, Ming Yan¹, David Komander⁴†, Titia K Sixma², Michal Simicek³,⁴ & Cynthia Wolberger¹*,†

Abstract

A common strategy for exploring the biological roles of deubiquitinating enzymes (DUBs) in different pathways is to study the effects of replacing the wild-type DUB with a catalytically inactive mutant in cells. We report here that a commonly studied DUB mutation, in which the catalytic cysteine is replaced with alanine, can dramatically increase the affinity of some DUBs for ubiquitin. Overexpression of these tight-binding mutants thus has the potential to sequester cellular pools of monoubiquitin and ubiquitin chains. As a result, cells expressing these mutants may display unpredictable dominant negative physiological effects that are not related to loss of DUB activity. The structure of the SAGA DUB module bound to free ubiquitin reveals the structural basis for the 30-fold higher affinity of Ubp8Δ[1456] for ubiquitin. We show that an alternative option, substituting the active site cysteine with arginine, can inactivate DUBs while also decreasing the affinity for ubiquitin.

Keywords deubiquitinating enzyme; polyubiquitin; ubiquitin binding

Subject Categories Post-translational Modifications, Proteolysis & Proteomics; Structural Biology

DOI 10.15252/embr.201745680 | Received 20 December 2017 | Revised 24 July 2018 | Accepted 31 July 2018 | Published online 27 August 2018

EMBO Reports (2018) 19: e45680

Introduction

Deubiquitinating enzymes (DUBs) play fundamental roles in ubiquitin signaling through their ability to remove ubiquitin from target proteins and disassemble polyubiquitin chains [1]. These enzymes cleave the isopeptide linkage between the C-terminus of ubiquitin and the substrate lysine or, in some cases, the peptide bond between ubiquitin and a substrate protein N-terminus. The human genome encodes more than 90 DUBs [2,3], which can be grouped into families based on their fold: ubiquitin-specific protease (USP), ubiquitin carboxyl-terminal hydrolase (UCH), ovarian tumor family (OTU), Machado–Joseph domain (MJD) family, and JAMM/MPN domain (JAMM), as well as the recently discovered MINDY and ZUFSP families [4–6]. Studies of deletions as well as disease-causing mutations have revealed specific functions for individual DUBs in biological processes including proteasomal degradation, protein trafficking, transcription, DNA repair, infection, and inflammation [7]. The involvement of DUBs in a variety of oncogenic [8], inflammatory, and neurodegenerative pathways [9] has made these enzymes attractive targets for drug discovery [10].

A common approach to determining the role of a particular DUB in cellular pathways is to knock down expression of the endogenous DUB and express a catalytically inactive version of the enzyme [11–13]. With the exception of the JAMM domain family, which are metalloproteases, all other DUBs are cysteine proteases with a papain-like active site in which the catalytic cysteine is activated by an adjacent histidine [14]. Cysteine protease DUBs are typically inactivated by substituting the active site cysteine with another residue. Resulting changes in substrate ubiquitination or downstream signaling pathways in cells expressing the mutant DUB are generally assumed to be due to the absence of deubiquitinating activity, with the notable exceptions of OTUB1, which inhibits E2 enzymes by a mechanism independent of catalytic activity [15–17] and OTUD4, which serves as a scaffold for USP enzymes [18]. Whereas serine is the most conservative substitution for the active site cysteine, alanine substitutions are often used to avoid the possibility that mutants containing a serine substitution may retain some hydrolase activity.

We report here that some active site cysteine-to-alanine substitutions can dramatically increase the affinity of DUBs for either free ubiquitin or polyubiquitin chains. This increase in affinity can confound the interpretation of cell-based experiments, since the mutant DUB is not only incapable of cleaving ubiquitin from substrates but has gained the ability to sequester free ubiquitin and...
polyubiquitin chains. Altering levels of free ubiquitin has been shown to give rise to off-target effects [19]. In addition, these mutant DUBs may stably associate with (poly)ubiquitinated substrates and thereby protect ubiquitin chains from cleavage by other DUBs or prevent interaction with ubiquitin receptors. The effects of such tight-binding DUB mutants thus have the potential to confuse interpretation because of the gain of tight ubiquitin-binding function.

We show here that mutating the active site cysteine of human USP4 and yeast Ubp8 to alanine increases the affinity of the DUB for mono- or diubiquitin by 10–150-fold. A similar effect of alanine substitution was previously found for the OTU enzymes, Cezanne [20] and OTULIN [21]. The structure of the heterotetrameric SAGA DUB module containing Ubp8C146A bound to free ubiquitin reveals the molecular basis for the increased affinity of monoubiquitin for the mutant enzyme. The alanine substitution alleviates steric hindrance by the active site cysteine sulphydryl, allowing the C-terminal carboxylate of ubiquitin to form additional hydrogen bonds in the enzyme active site and thus accounting for the high affinity of the mutant enzyme for free ubiquitin. We show that substituting the active site cysteine with arginine in representative USP and OTU DUBs inactivates the enzymes while also disrupting binding to ubiquitin, generating an inert DUB. Based on these findings, we strongly recommend that cell-based and in vivo studies of DUBs avoid the use of active site alanine substitutions and to instead utilize substitutions such as arginine that ablate both enzymatic activity and ubiquitin binding.

Results and Discussion

Mutation of active site cysteine to alanine increases affinity of the SAGA DUB module for ubiquitin

The yeast SAGA complex is a transcriptional coactivator that is involved in transcription of all RNA polymerase II genes [22,23]. Among the SAGA activities are the removal of monoubiquitin from histone H2B, which promotes transcription initiation and elongation [24]. The deubiquitinating activity of SAGA resides in a four-protein complex known as the DUB module, which comprises the USP family catalytic subunit, Ubp8, as well as Sgf73, Sus1, and the N-terminal ~100 residues of Sgf73 [25,26]. Structural studies of the DUB module complexed with ubiquitin aldehyde [27] and with ubiquitinated nucleosomes [28] have revealed the overall organization of the DUB module and how it interacts with substrate. In addition to its ability to deubiquitinate histone H2B, the DUB module can also cleave a variety of ubiquitin substrates in vitro including ubiquitin-AMC and K48-linked diubiquitin [29]. The affinity of the DUB module for ubiquitinated nucleosome has been estimated at around 2 μM [28] and the K_M for the model substrate, ubiquitin-AMC, has been estimated at 24 μM [29]; however, neither the K_M nor binding affinity for other substrates is known.

In order to measure the affinity of the DUB module for other substrates using binding assays, we expressed and purified catalytically inactive versions of the DUB module containing Ubp8 with its active site cysteine, C146, substituted with either serine (C146S) or alanine (C146A). The absence of catalytic activity for both mutants was first verified in a ubiquitin-AMC cleavage assay (Fig EV1). We measured the affinity of both mutant complexes for K48-linked diubiquitin using isothermal titration calorimetry (ITC; Fig 1E and F). Whereas DUB module containing Ubp8C146A bound to K48 diubiquitin with a K_d of 4.6 μM, DUB module containing Ubp8C146A bound to K48-linked diubiquitin with a K_d of 0.47 μM, representing 10-fold tighter binding. We also measured the affinity of the reaction product, monoubiquitin, to DUB module containing either wild-type or mutant Ubp8 (Fig 1A–C). Whereas DUB module containing wild-type Ubp8 or Ubp8C146D bound ubiquitin with a K_d of 13.9 μM and 12.8 μM, respectively, the Ubp8C146A mutant bound ~30-fold more tightly to monoubiquitin with a K_d of 0.43 μM.

A Ubp8 C146A substitution enables hydrogen bonding with the ubiquitin C-terminus

To determine the structural basis for the marked increase in affinity for free ubiquitin when the active site cysteine is substituted with alanine, we solved the crystal structure of the SAGA DUB module containing Ubp8C146A bound to free ubiquitin at a resolution of 2.1 Å (Table 1 and Fig 2A). The overall fold and contacts with ubiquitin are virtually identical to those found in the structure of the wild-type enzyme bound to ubiquitin aldehyde, superimposing all atoms with an RMSD of 0.58 Å [27]. The active site of the C146A mutant is virtually identical to that in the wild-type apoenzyme [29], with no significant reordering of residues (Fig 2B) [29]. In the Ubp8C146A complex with free ubiquitin, the negatively charged carboxylate of the ubiquitin C-terminal Gly76 forms two hydrogen bonds with backbone amides from Ubp8 residues Thr145 and Ala146, as well as with active site residues, Asn141 and His427 (Figs 2B and EV2). Importantly, the observed position of the ubiquitin C-terminus would not be compatible with the presence of the wild-type active site residue, Cys146, since the sulphydryl group would clash with the C-terminal residue of ubiquitin, Gly76 (Fig 2C). The multiple hydrogen bonding interactions observed between the C-terminal carboxylate of ubiquitin and Ubp8 can therefore only occur when the active Cys146 is replaced with the smaller alanine side chain, thus explaining the higher affinity of DUB module-Ubp8C146A for free ubiquitin as compared to the wild-type enzyme.

Active site cysteine-to-alanine substitution increases the affinity USP4 for ubiquitin

Mutating the active site cysteine to alanine has a dramatic effect on the affinity of the human USP family DUB, USP4, for free ubiquitin. USP4 regulates a broad variety of cellular pathways, including TGF-β and NF-κB signaling as well as splicing [26,30,31]. The affinity of USP4 for free ubiquitin was measured by fluorescence polarization using ubiquitin labeled with an N-terminal fluorophore. As shown in Fig 3, the K_d of ubiquitin for the wild-type enzyme is 92 ± 21 nM, whereas USP4 containing an alanine substituted for the active site cysteine, C311, binds ubiquitin with 0.60 ± 0.17 nM affinity, a ~150-fold difference [32]. The pre-steady-state kinetics of ubiquitin dissociation measured by fluorescence polarization in a stopped-flow device shows that the greater affinity of the USP4C311A mutant is due to a dramatic decrease in off-rate (Fig EV3A). Interestingly, ubiquitin dissociation has been shown to be promoted by USP4N-terminal DUSP-Ubl domain and to regulate USP4 activity
The increase in affinity for the mutant enzyme is not unique to ubiquitin with a free C-terminus, as ubiquitin conjugated to either an 18-mer peptide or C-terminal fluorophore also binds with similar affinity to USP4C311A (Fig EV3C and D). Since the active sites of USP family DUBs are highly conserved, we speculate that the observed increase in binding affinity is due a relief of steric clash, as is the case for Ubp8.

Substitution of the catalytic cysteine with arginine disrupts ubiquitin binding in USP and OTU class DUBs

We sought to identify alternative active site mutations that would abrogate catalytic activity as well as reduce the affinity of the inactive DUB polyubiquitin chains or ubiquitinated substrates. We reasoned that substituting the active site cysteine with arginine could both inactivate...
the enzyme and prevent ubiquitin binding because of the bulky nature of the side chain compared to cysteine. To test this hypothesis, we mutated the catalytic cysteine of Ubp8 to arginine and first verified that SAGA DUB module containing the mutant Ubp8C146R protein was inactive in a Ub-AMC cleavage assay (Fig EV1). The affinity of the DUB module containing Ubp8C146R for monoubiquitin as measured by ITC was comparable to that of the wild-type protein (Fig 1D).

Substitution of the active cysteine with arginine similarly reduces the affinity for polyubiquitin chains by the OTU family member, OTUD1, which is also a cysteine protease. This DUB preferentially cleaves K63-linked polyubiquitin chains [20], has recently been shown to regulate the nuclear localization and transcriptional coactivator activity of the YAP oncoprotein [33], represses metastasis by deubiquitinating SMAD7 during TGF-β signaling [34], and negatively regulates RIG-I-like receptor (RLR) signaling during viral infection by deubiquitinating Smurf1 [35]. We measured the affinity of catalytic mutants of OTUD1 for fluorescently labeled K63-linked diubiquitin using a fluorescence polarization assay (Fig 4A). While OTUD1 with an alanine substituted for the active site cysteine (OTUD1C320A) binds K63-linked diubiquitin with a K_d of $\sim 40\mu M$, an arginine substitution, OTUD1C320R, not only inactivated the enzyme but also completely abolished detectable binding to K63-linked diubiquitin (Fig 4A).

Active site arginine substitutions can overcome artifacts of alanine substitution in cells

As mentioned above, active site cysteine-to-alanine substitutions that markedly increase DUB affinity for mono- or polyubiquitin may

Table 1. X-ray crystallographic data and refinement statistics.

Parameter	Value
Wavelength (Å)	0.979
Resolution (Å)	2.10
Unique reflections	54,195
Redundancy	5.7 (5.7)
Completeness (%)	99.2 (99.7)
Average I/σ (I)	133 (3.0)
R_{merge}	0.093 (0.572)
R_{mean}	0.103 (0.630)
R_{free}	0.043 (0.259)
CC1/2	0.998 (0.857)
Refinement statistics	
Space group	$P_{2_1}2_12_1$
Unit cell (Å)	a = 78.8, b = 103.2, c = 112.8
Molecules per asymmetric unit	1
R_{work} (%)	20.1
R_{free} (%)	24.9
Rmsd bonds (Å)	0.0198
Rmsd angles (°)	1.855
Protein atoms	6,302
Zinc ions	8
Average B (Å²)	40.3

Figure 2. X-ray crystal structure of SAGA DUB module mutant DUBm-Ubp8C146A bound to monoubiquitin.

A Overall structure of complex showing Ubp8 (green) with ubiquitin (yellow) bound to the USP domain.
B Hydrogen bonding contacts between the C-terminal carboxylate of ubiquitin and Ubp8.
C In blue spheres, van der Waals radii of C146 and A146 in steric proximity of ubiquitin’s C-terminal carboxylate (yellow). DUBm-Ubp8WT structure is shown in teal (PDB ID 3MHH) and DUBm-Ubp8C146A is shown in green.
render these mutants less suitable for physiological studies. Since such cysteine-to-alanine mutants are essentially high-affinity ubiquitin-binding proteins, these DUB mutants have the potential to stabilize modified substrates and preferred chain types by protecting them from digestion by other DUBs or proteases. For example, when OTULIN C129A is expressed in cells, there is a dramatic accumulation of Met1-linked linear polyubiquitin chains that is not seen when a mutant that abrogates ubiquitin binding, L259E, is expressed [21]. We hypothesized that substituting the active site cysteine with arginine could be a general approach in cell-based studies to inactivating cysteine protease DUBs while also preventing high-affinity binding to polyubiquitin. To test this idea, we expressed cysteine-to-alanine and cysteine-to-arginine mutants of two DUBs, OTUD1 and USP14, in cells and probed their effects on levels of polyubiquitin. HA-tagged wild-type OTUD1, OTUD1C320A, or OTUD1C320R was expressed in HEK293 cells and whole cell lysates were analyzed by immunoblotting with an antibody specific for K63-polyubiquitin chains. As compared to cells expressing the wild-type protein, cells expressing OTUD1C320A had increased levels of K63-linked polyubiquitin (Fig 4B). By contrast, cells expressing OTUD1C320R did not show enriched levels of K63-linked chains (Fig 4B).

We also tested the effects of expressing wild-type and mutant USP14, one of the chain-trimming DUBs that bind to the 26S proteasome [36,37]. HA-tagged USP14 containing the wild-type active site cysteine, Cys114, and C114A and C114R mutants were co-expressed in HEK293 cells along with FLAG-PSMD4, a ubiquitin receptor within the proteasome [38]. Proteasome-bound ubiquitinated proteins were co-immunoprecipitated by FLAG-PSMD4 and probed for ubiquitin (Fig 5). Proteasomes with USP14 C114A bind more polyubiquitin chains than USP14 C114R and also retain increased levels of higher molecular weight chains that are unable to be trimmed compared to wild-type USP14 (Fig 5). Both of these results are consistent with the idea that the increase in polyubiquitin chains observed with the cysteine-to-alanine mutants is due to the ability of this mutant to bind to polyubiquitin chains and protect them from cleavage by other DUBs. Our results also validate the benefit of using a Cys to Arg substitution to generate a catalytically inactive DUB that will neither protect nor sequester polyubiquitin chains and ubiquitinated substrates.

Implications for cell-based studies of cysteine protease DUBs

The surprisingly high affinity for ubiquitin exhibited by DUBs containing alanine substituted for the active site cysteine has important implications for cell-based assays in which catalytically inactive DUBs are expressed. We have found that cysteine-to-alanine

Figure 3. Equilibrium binding of USP4 WT and C311A to TAMRA-labeled monoubiquitin.

Binding was measured by fluorescence polarization using N-terminally TAMRA-labeled monoubiquitin. The dissociation constants for ubiquitin binding to USP4 WT and C311A are 92 ± 21 nM [32] and 0.60 ± 0.17 nM, respectively. Error bars are s.d. calculated on five measurements per point.

Figure 4. Enhanced binding of OTUD1 C320A to K63 diubiquitin in vitro and K63 polyubiquitin chains in cells.

A. Equilibrium binding of OTUD1 C320A and C320R to K63-linked diubiquitin was measured by fluorescence polarization using FlAsH-tagged K63-linked diubiquitin in which the proximal ubiquitin was fluorescently labeled. Error bars indicate s.d. and are based on three measurements per data point. One representative experiment of two is shown.

B. Whole cell lysates of HEK293 cells expressing HA-tagged OTUD1 WT, C320R, and C320A were immunoblotted with indicated antibodies. One representative experiment of three is shown.
We speculate that the ability of arginine substitutions to abolish the enzyme incapable of binding ubiquitin detectably (Figs 1D and nine inactivates ubiquitin hydrolase activity while also rendering OTUD1, we show that replacing the active site cysteine with arginine with proper protein folding due to steric clashes with the neighboring protein backbone. Since lysine can be ubiquitinated and is also subject to many other post-translational modifications, this substitution should also be avoided.

We recommend that all cell-based and in vivo studies of cysteine protease DUBs avoid alanine substitutions of the active site cysteine and instead utilize arginine substitutions to study effects of inactivating the enzyme. Although the arginine substitution was only tested here on DUBs from the USP and OTU class, it is likely that an arginine would similarly interfere with ubiquitin binding to members of the UCH, MJD, MINDY, and ZUFSP cysteine protease families. Ideally, DUBs with arginine substitutions should first be tested in vitro to ensure that this mutation indeed interferes with ubiquitin binding. Adopting this practice can mitigate spurious or dominant negative effects and ensure that any observed phenotypes or changes are due to loss of DUB activity alone rather than an increase in affinity for ubiquitin.

Materials and Methods

Cloning, protein expression, and purification

Rosetta 2(DE3) pLysS cells (EMD Millipore, Merck KGaA, Darmstadt, Germany) were transformed with three plasmids encoding (i) Ubp8 WT, Ubp8 C146A, Ubp8 C146S, or Ubp8 C146R (pET-32a, EMD Millipore), (ii) Sus1 (pRSF-1, EMD Millipore), and (iii) Sgf73 1-96 (pCDFDuet-1 MCSII, EMD Millipore) which was cloned into the same vector as Sgf11 (pCDFDuet-1 MCSI, EMD Millipore). All versions of the DUBm complex were co-expressed and purified using the previously reported protocol for the expression and purification of wild-type DUBm [27]. Untagged ubiquitin (pET3a) was expressed in Rosetta 2 cells and, after lysis, was treated with 1% v/v perchloric acid to precipitate cellular proteins. The supernatant, containing ubiquitin, was dialyzed overnight into 50 mM sodium acetate pH 4.5, then run on a HiTrap SP column, and eluted over a 0–600 mM NaCl gradient in 50 mM sodium acetate pH 4.5. Pure fractions were pooled and buffer exchanged by gel filtration on a HiLoad S75 column into 20 mM HEPES pH 7.5, 50 mM NaCl, and 1 mM DTT.

USP4 (8–925) wild-type and C311A mutant were expressed and purified as in [32].
50 mM NaCl, 5 mM DTT, pH 8.5), the lysate was cleared by centrifugation (44,000 × g for 30 min, 4°C) and subjected to a glutathione resin (GE Healthcare). The resin was washed with cold buffer B (50 mM Tris, 500 mM NaCl, 5 mM DTT, pH 8.5) and subsequently with cold buffer A. The GST-tag was removed by overnight incubation at 4°C with GST-tagged 3C Precision protease in buffer A. Eluted protein was further purified by anion-exchange chromatography and gel filtration in buffer A.

Fluorescence polarization assays

All USP4 pre-steady-state and equilibrium fluorescence polarization assays were performed as described in [32]. Ubiquitin conjugated to lysine-glycine and to a SMAD4-derived peptide [32] was a gift of Huib Ovaa.

Binding assays for OTUD1 interactions with Lys63-linked chains were performed using Lys63-linked diUb that was fluorescently labeled by a FlAsH tag on the proximal ubiquitin (21). For this, diUb chains were diluted to 80 nM in FlAsH buffer (50 mM NaCl, 0.1% b-mercaptoethanol, pH 7.6), and OTUD1 C320A and OTUD1 C320R were serially diluted in FlAsH buffer to the indicated concentration range. 10 μl of fluorescent diUb was mixed with equal volume of OTUD1 C320A and OTUD1 C320R at different concentrations and incubated in room temperature for 1 h before measurement. Fluorescence polarization was measured in 384-well format employing a Pherastar FS plate reader, using a fluorescence polarization module with excitation and emission wavelengths at 485 and 520 nm, respectively. A control was used for either linear di- or triUb molecules where 10 μl of FlAsH buffer was added instead. This control was also used for the normalization of anisotropy reading. All binding assays were performed in triplicate.

Ubiquitin-AMC hydrolysis assay

Assays were conducted in 384-well black polystyrene micro-plates at 30°C in a POLARstar Omega plate reader (BMG Labtech, Cary, NC) using an excitation wavelength of 385 nm and emission wavelength of 460 nm. Reactions were performed in DUBm assay buffer containing 50 mM HEPES, pH 7.6, 150 mM NaCl, 5 μM ZnCl2, 5 mM dithiothreitol (DTT), and 7.5% DMSO. The wild-type DUBm and Ubp8 mutant complexes were held at a concentration of 125 nM. Ubiquitin-AMC (Boston Biochem, Cambridge, MA) was diluted into assay buffer and incubated at 30°C for 10 min inside the plate reader. 3 μl of recombinant DUBm was also pre-incubated at 30°C for 10 min before mixing with diluted ubiquitin-AMC buffer to a total volume of 30 μl. The release of AMC was followed at 460 nm, and the first 0–60 s of data was used to fit initial rate.

Isothermal titration calorimetry (ITC)

Isothermal titration calorimetry measurements were performed using a Microcal (Amherst, MA) ITC200 calorimeter at 25°C. DUBm wild-type, Ubp8 mutant complexes, K48-linked diubiquitin and ubiquitin samples were buffered with 20 mM HEPES, pH 7, 150 mM NaCl, 5 mM ZnCl2, and 0.5 mM Tris (2-carboxyethyl) phosphine hydrochloride (TCEP) and thoroughly degassed before use. The protein concentrations were determined by amino acid analysis. The sample cell (0.22 ml) contained either 30 μM DUBm-Ubp8 WT or DUBm Ubp8 mutant. A total of 20 injections of 40 μl of 0.3 mM K48-linked diubiquitin or monoubiquitin were carried out at 180 s intervals. The heat generated due to dilution of the titrants was subtracted for baseline correction. The baseline-corrected data were analyzed with Microcal Origin Ver. 7.0 software. All experiments were duplicated.

Protein crystallization

Protein crystals were grown from a complex of 7 mg/ml DUBm-Ubp8 C146A and 1.8 mg/ml ubiquitin that was incubated on ice for 30 min prior to screening. Complex crystals were grown by hanging drop vapor diffusion using a 1:1 ratio of protein to mother liquor. Crystals grew within 2 days at 20°C in 17% PEG3350, 0.1 M HEPES pH 7.0, and 0.1 M ammonium sulfate. Crystals were looped and cryoprotected by stepwise incubation in mother liquor containing increasing concentrations of PEG3350 (17–33%), then flash-frozen in liquid nitrogen.

Data collection, structure determination, and refinement

X-ray diffraction data for the DUBm-Ubp8 C146A and ubiquitin complex were collected at Stanford Synchrotron Radiation Lightsource beamline BL12-2. Data were collected on a Pilatus detector using a 10 μm beam at 50% transmission taking 1 s exposures with 0.25° oscillations over 180°. During data collection, the crystal rotated out of the beam, therefore frames 200–300 out of 720 total frames were discarded during data reduction and scaling. Data reduction, scaling, and merging were done in XDS and Aimless [44]). A 2.1 Å structure was determined by molecular replacement in Phaser (Phenix) using the coordinates of the wild-type DUBm bound to ubiquitin aldehyde (PDB ID: 3MHS) as the search model [27,45]. The structure was refined in PHENIX and Coot was used for manual model building [45,46]. Data collection and refinement statistics are shown in Table 1. PyMOL Version 1.5.0.4 (Schrödinger, LLC) was used to generate all structure figures. Coordinates have been deposited in the Protein Data Bank with ID 6AQR.

Immunoblotting and immunoprecipitation

Full-length, N-terminally HA-tagged OTUD1 constructs (WT, C320A, C320R) were cloned into pcDNA3.1 vector and transiently expressed in HEK293 cells. Two days after, transfection cells were washed twice in cold PBS and scraped on ice in lysis buffer (50 mM Tris–HCl pH 7.5, 150 mM NaCl, 1% NP-40) containing protease inhibitor cocktail (Roche) and 20 mM N-ethylmaleimide, and incubated for 30 min on ice. Samples were subsequently cleared by centrifugation for 10 min at 16,000 × g at 4°C. For immunoblotting, equivalent amounts of cell lysates were separated on 4–12% Bis-Tris gel, transferred to nitrocellulose membranes, and incubated with the indicated antibodies. The signal was visualized with Pierce ECL Western Blotting Substrate (Thermo Scientific) and exposed on X-ray film.

Full-length USP14 (WT, C114A, C114R) and N-terminally Flag-tagged PSMD4 constructs were cloned into pcDNA3.1 vector and
transiently expressed in HEK293 cells. Two days after, transfection cells were washed twice in cold PBS and scraped on ice in lysis buffer (50 mM Tris–HCl pH 7.5, 150 mM NaCl, 1% NP-40) containing protease inhibitor cocktail (Roche) and 20 mM N-ethylmaleimide, and incubated for 30 min on ice. Samples were subsequently cleared by centrifugation for 10 min at 16,000 × g at 4°C. The cleared lysates were incubated with anti-Flag resin (Sigma-Aldrich) overnight at 4°C, subsequently washed four times with cold lysis buffer and eluted with Flag peptide. Eluted fractions were separated on 4–12% Bis-Tris gel, transferred onto PVDF membranes, and incubated with the indicated antibodies. The signal was visualized with Pierce ECL Western Blotting Substrate (Thermo Scientific) and exposed on X-ray film.

Antibodies

The following antibodies were used in immunoblotting or immunoprecipitation:

Ub K63, rabbit monoclonal Ab, clone Apu3, Millipore (cat # 05-1308); HA, rat monoclonal Ab, clone 3F10, Roche (cat # 11 867 423 001); GAPDH, mouse monoclonal Ab, clone GAPDH-71.1, Sigma-Aldrich (cat # G8795); Ub, mouse monoclonal Ab, clone P4D1, Santa Cruz (cat # sc-8017); Flag, mouse monoclonal Ab, clone M2, Sigma-Aldrich (cat # F1804); USP14, rabbit monoclonal Ab, clone D8Q6S, Cell Signaling Technology (cat # 11931).

Data availability

Coordinates and amplitudes have been deposited in the Protein Data Bank with accession code, 6AQR.

Expanded View for this article is available online.

Acknowledgements

We would like to thank Tycho E.T. Mevisen for help with OTU biophysics. Supported by grants GM095822 and GM109102 from the National Institute of General Medical Sciences (C.W.). The work in the T.K.S. lab has been supported by the European Research Council (249997). The D.K. lab is supported by the Medical Research Council (U105192732), the European Research Council (309756, 724804), the Michael J. Fox Foundation and the Lister Institute for Preventive Medicine. The M.S. lab is supported by the Institutional Development Plan of University of Ostrava and The Ministry of Education, Youth and Preventive Medicine. The M.S. lab is supported by the Institutional Development Plan of University of Ostrava and The Ministry of Education, Youth and Preventive Medicine. The M.S. lab is supported by the Institutional Development Plan of University of Ostrava and The Ministry of Education, Youth and Preventive Medicine. The M.S. lab is supported by the Institutional Development Plan of University of Ostrava and The Ministry of Education, Youth and Preventive Medicine.

Author contributions

Binding and structural studies of the SAGA DUB module were carried out by MEM, MTM, and MY, with input and guidance from CW. Studies of USP4 were carried out by MC, with input and guidance from TKS. Biophysical studies on OTUD1 were carried out by MS under guidance of DK. Cell biological studies on OTUD1 and USP14 were designed by MS and carried out by KG and MS. MEM and CW wrote the initial manuscript, with significant contributions from DK, TKS, and MS. All authors edited the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Clague MJ, Coulson JM, Urbe S (2012) Cellular functions of the DUBs. J Cell Sci 125: 272–286
2. Reyes-Turcu FE, Ventii KH, Wilkinson KD (2009) Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 78: 363–397
3. Clague MJ, Barsukov I, Coulson JM, Liu H, Rigden DJ, Urbe S (2013) Deubiquitylases from genes to organism. Physiol Rev 93: 1289–1315
4. Abdul Rehman SA, Kristaryanto YA, Choi SY, Nikosi PJ, Weidlich S, Labib K, Hofmann K, Kulathu Y (2016) MINDY-1 is a member of an evolutionarily conserved and structurally distinct family of deubiquitinating enzymes. Mol Cell 63: 146–155
5. Haahr P, Borgermann N, Guo X, Typas D, Achuthankutty D, Hoffmann S, Shearer R, Sixma TK, Mailand N (2018) ZUFSP deubiquitylates K63-linked polyubiquitin chains to promote genome stability. Mol Cell 70: 165–174 e166
6. Kwarsa D, Abdul Rehman SA, Natarajan J, Matthews S, Madden R, De Cesare V, Weidlich S, Virdee S, Ahel I, Gibbs-Seymour I et al (2018) Discovery and characterization of ZUFSP/ZUP1, a distinct deubiquitination class important for genome stability. Mol Cell 70: 150–164 e156
7. Rape M (2018) Ubiquitylation at the crossroads of development and disease. Nat Rev Mol Cell Biol 19: 59–70
8. Hussain S, Zhang Y, Galardy PJ (2009) DUBs and cancer: the role of deubiquitinating enzymes as oncogenes, non-oncogenes and tumor suppressors. Cell Cycle 8: 1688–1697
9. Fraile JM, Quesada V, Rodriguez D, Freije JM, Lopez-Otin C (2012) Deubiquitinases in cancer: new functions and therapeutic opportunities. Onco gene 31: 2373–2388
10. Harrigan JA, Jacq X, Martin NM, Jackson SP (2017) Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat Rev Drug Discov 17: 57–78
11. Li M, Chen D, Shiloh A, Luo J, Nikolaev AY, Qin J, Gu W (2002) Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 416: 648–653
12. Brummelkamp TR, Nijman SM, Dirac AM, Bernards R (2003) Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappB. Nature 424: 797–801
13. Kovalenko A, Chable-Bessia C, Cantarella G, Israel A, Wallach D, Courtois MC (2010) Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat Rev Drug Discov 9: 156–174
14. Komander D, Clague MJ, Urbe S (2009) Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10: 550–563
15. Nakada S, Tai I, Panier S, Al-Hakim A, Iemura S, Juang YC, O’Donnell L, Kumakubo A, Munro M, Sichen F et al (2010) Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1. Nature 466: 941–946
16. Juang YC, Landry MC, Sanches M, Vittal V, Leung CC, Cecarelli DF, Mateo AR, Pruneda JN, Mao DY, Szilard RK et al (2012) OTUB1 co-opts Lys48-linked ubiquitin recognition to suppress E2 enzyme function. Mol Cell 45: 384–397
17. Wiener R, Zhang X, Wang T, Wolberger C (2012) The mechanism of OTUB1-mediated inhibition of ubiquitination. Nature 483: 618 – 622

18. Zhao Y, Majid MC, Soll JM, Brickner JR, Dango S, Mosammaparast N (2015) Noncanonical regulation of alkylation damage resistance by the OTUD4 deubiquitase. EMBO J: 34: 1687 – 1703

19. Dantuma NP, Groothuis TA, Salomons FA, Neefjes J (2006) A dynamic ubiquitin equilibrium couples proteasomal activity to chromatin remodeling. J Cell Biol 173: 19 – 26

20. Mevisser TET, Kulathu Y, Mulder MPC, Geurink PP, Maslen SL, Gersch M, Elliott PR, Burke JE, van Tol BDM, Akutsu M et al (2016) Molecular basis of Lys11-polyubiquitin specificity in the deubiquitase Cezanne. Nature 538: 402 – 405

21. Keusekotten K, Elliott PR, Gockner L, Fili BK, Damgaard RB, Kulathu Y, Wauer T, Hospenthal MK, Cyrd-Hansen M, Krappmann D et al (2013) OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin. Cell 153: 1312 – 1326

22. Baptista T, Grunberg S, Minoungou N, Koster MJE, Timmers HTM, Hahn S, Devys D, Tora L (2017) SAGA is a general cofactor for RNA polymerase II transcription. Mol Cell 68: 130 – 143 e135

23. Warfield L, Ramachandran S, Baptista T, Devys D, Tora L, Hahn S (2017) Transcription is dependent on nearly all yeast RNA polymerase II-transcribed genes is dependent on transcription factor TFIID. Mol Cell 68: 118 – 129 e115

24. Henry KW, Wyce A, Lo WS, Duggan LJ, Emre NC, Kao CF, Pillus L, Shiellard A, Osley MA, Berger SL (2003) Transcriptional activation via sequential histone H2B ubiquitination and deubiquitylation, mediated by SAGA-associated Ubp9. Genes Dev 17: 2648 – 2663

25. Kohler A, Schneider M, Cabal GC, Nehrbass U, Hurt E (2008) Yeast Ataxin-7 links histone deubiquitination with gene gating and mRNA export. Nat Cell Biol 10: 707 – 715

26. Lee KK, Swanson SK, Florens L, Washburn MP, Workman JL (2009) Yeast Sg73/Ataxin-7 serves to anchor the deubiquitinating module into both SAGA and Slik(SALSA) HAT complexes. Epigenetics Chromatin 2: 2

27. Samara NL, Datta AB, Berndsen CE, Zhang X, Yao T, Cohen RE, Wolberger C (2010) Structural insights into the assembly and function of the SAGA deubiquitinating module. Science 328: 1025 – 1029

28. Morgan MT, Haj-Yahia M, Ringel AE, Bandi P, Brik A, Wolberger C (2016) Structural basis for histone H2B deubiquitylation by the SAGA DUB module. Science 351: 725 – 728

29. Samara NL, Ringel AE, Wolberger C (2012) A role for intersubunit interactions in maintaining SAGA deubiquitinating module structure and activity. Structure 20: 1414 – 1424

30. Song EJ, Werner SL, Neubauer J, Stegmeier F, Aspden J, Rio D, Harper JW, Elledge SJ, Kirschner MW, Rape M (2010) The Prp19 complex and the Usp45/atr3 deubiquitinating enzyme control reversible ubiquitination at the spliceosome. Genes Dev 24: 1434 – 1447

31. Zhang L, Zhou F, Drabscy G, Gao R, Snaar-Jagalska BE, Mickanin C, Huang H, Sheppard KA, Porter JA, Lu CK et al (2012) USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-beta type I receptor. Nat Cell Biol 14: 717 – 726

32. Clerici M, Luna-Vargas MP, Faesen AC, Sixma TK (2014) The DUSP-UBL domain of USP4 enhances its catalytic efficiency by promoting ubiquitin exchange. Nat Commun 5: 3999

33. Yao F, Zhou Z, Kim J, Hang Q, Xiao Z, Ton BN, Chang L, Liu N, Zeng L, Wang W et al (2018) SKP2- and OTUD1-regulated non-proteolytic ubiquitination of YAP promotes YAP nuclear localization and activity. Nat Commun 9: 2269

34. Zhang Z, Fan Y, Xie F, Zhou H, Jin K, Shao L, Shi W, Fang P, Yang B, van Dam H et al (2017) Breast cancer metastasis suppressor OTUD1 deubiquitinates SMAD7. Nat Commun 8: 2116

35. Zhang L, Liu J, Qian L, Feng Q, Wang X, Yuan Y, Zuo Y, Cheng Q, Miao Y, Guo T et al (2018) Induction of OTUD1 by RNA viruses potently inhibits innate immune responses by promoting degradation of the MAVS/TRAF3/TRAF6 signalosome. PLoS Pathog 14: e1007067

36. Borodovsky A, Kessler BM, Casagrande R, Overkleeft HS, Wilkinson KD, Ploegh HL (2003) A novel active site-directed probe specific for deubiquitylating enzymes reveals proteasome association of USP14. EMBO J 20: S187 – S196

37. Koulich E, Li X, DeMartino GN (2008) Relative structural and functional roles of multiple deubiquitylating proteins associated with mammalian 26S proteasome. Mol Biol Cell 19: 1072 – 1082

38. Elsasser S, Chandler-Militello D, Muller B, Hanna J, Finley D (2004) Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome. J Biol Chem 279: 26817 – 26822

39. Clague MJ, Heride C, Urbe S (2015) The demographics of the ubiquitin system. Trends Cell Biol 25: 417 – 426

40. Kaiser SE, Riley BE, Shaler TA, Trevino RS, Becker CH, Schulman H, Kopito RR (2011) Protein standard absolute quantification (PSAQ) method for the measurement of cellular ubiquitin pools. Nat Methods 8: 691 – 696

41. Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK, Bernards R (2005) A genomic and functional inventory of ubiquitin-dependent proteasome degradation. Cell 123: 773 – 786

42. Bekes M, Okamoto K, Crist SB, Jones MJ, Chapman JR, Brasher BB, Melandri FD, Ueberheide BM, Denchi EL, Huang TT (2013) DUB-resistant ubiquitin to survey ubiquitination switches in mammalian cells. Cell Rep 5: 826 – 838

43. Drag M, Mikolajczyk J, Bekes M, Reyes-Turcu FE, Ellman JA, Wilkinson KD, Salvesen GS (2008) Positional-scanning fluorogenic substrate libraries reveal unexpected specificity determinants of DUBs (deubiquitinating enzymes). Biochem J 415: 367 – 375

44. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AC, McCoy A et al (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67: 235 – 242

45. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW et al (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66: 213 – 221

46. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126 – 2132

License: This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.