Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Research paper

Risk factors and prediction nomogram model for psychosocial and behavioural problems among children and adolescents during the COVID-19 pandemic: A national multicentre study

Risk Factors of Childhood Psychosocial Problems

Lin Wang ¹, Li Chen ¹, Feiyong Jia ¹, Xinmiao Shi ¹, Yiwen Zhang ², Fei Li ³, Yan Hao ⁴, Yan Hou ⁵, Hongzhu Deng ⁶, Jie Zhang ⁷, Linjuan Huang ⁸, Xianghui Xie ⁹, Shuafeng Fang ¹⁰, Qi Xu ¹, Liang Xu ¹, Hongyan Guan ¹¹, Weijie Wang ¹², Jianna Shen ¹³, Feng Li ¹⁴, Ying Qian ¹⁵, Xi Wang ¹⁶, Ling Shan ¹⁷, Chuanxue Tan ¹⁸, Jianhong Wang ¹⁹, Yabin Yu ²⁰, Xiaoyan Wang ²¹, Lili Zhang ²², Xiaomeng Li ²³, Xiaoyan Ke ²⁴,²⁵, Tingyu Li ²⁶,²⁷,²⁸,²⁹,³⁰,³¹

¹ Department of Child Health Care, Children’s Hospital, Capital Institute of Pediatrics, Beijing, China
² National Clinical Research Center for Child Health and Disorder, Children’s Hospital of Chongqing Medical University, Chongqing, China
³ Department of Developmental-Behavioral Pediatrics, the First Hospital of Jilin University, Changchun, Jilin, China
⁴ Department of Developmental and Behavioral Pediatrics, Shanghai Children’s Medical Center Affiliated to Medical School of Shanghai Jiaotong University, Shanghai, China
⁵ Department of Developmental-Behavioral Pediatrics, Xinhu Hospital Affiliated to Medical School of Shanghai Jiaotong University, Shanghai, China
⁶ Department of Child Health Care, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
⁷ Department of Biostatistics, Peking University, Beijing, China
⁸ Child Development & Behavioral Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
⁹ Department of Child Health Care, Xi’an Children’s Hospital, Xi’an, Shaanxi, China
¹⁰ Health Management Center, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou, Fujian, China
¹¹ Children’s Hospital, Capital Institute of Pediatrics, Beijing, China
¹² Department of Child Health Care, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
¹³ WHO Collaborating Center for Research and Training in Child Mental health, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
¹⁴ Department of Early Childhood Development, Capital Institute of Pediatrics, Beijing, China
¹⁵ Shanghai Pudong Institute of Education Development, Shanghai, China
¹⁶ Chongqing educational science research academy, Chongqing, China
¹⁷ Jinning centre hospital, chongqing, China
¹⁸ Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders, NHC Key Laboratory of Mental Health (Peking University), Beijing, China

A R T I C L E I N F O

Keywords:
Coronavirus disease 2019
Risk factors
Psychosocial and behavioural problems
Children and adolescents

A B S T R A C T

Background: We aimed to explore the risk profiles attributable to psychosocial and behavioural problems during the coronavirus disease 2019 pandemic. To this end, we created a risk-prediction nomogram model.

Methods: A national multicentre study was conducted through an online questionnaire involving 12,186 children (6-11 years old) and adolescents (12-16 years old). Respondents’ psychosocial and behavioural functioning were assessed using the Achenbach Child Behaviour Checklist (CBCL). Data were analysed using STATA software and R-language.

Results: The positive detection rate of psychological problems within Wuhan was greater than that outside Wuhan. For schizoid (P = 0.005), and depression (P = 0.030) in children, and for somatic complaints (P = 0.046) in adolescents. After graded multivariable adjustment, seven factors associated with psychological problems in children and adolescents outside Wuhan

1 Corresponding author at: 136 Zhongshan Er Road, Chongqing 400014, China.
2 Corresponding author at: Guangzhou Road 264#, Nanjing 210029, China.
E-mail addresses: kexyji@hotmail.com (X. Ke), tyli@vip.sina.com (T. Li).
3 The first four authors contributed equally to this work.

https://doi.org/10.1016/j.jad.2021.06.077
Received 31 January 2021; Received in revised form 27 June 2021; Accepted 28 June 2021
Available online 6 July 2021
0165-0327/© 2021 Elsevier B.V. All rights reserved.
Introduction

Since the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, Hubei Province, China in December 2019 (Liu et al., 2020c; Wang et al., 2020; WHO, 2020), most governments have temporarily implemented social distancing measures by imposing citywide or nationwide lockdowns (Patrick et al., 2020). This included the temporary closure of schools, which has affected up to 1.4 billion students worldwide (UNESCO, 2020; Viner et al., 2020). In China, a nationwide school closure, implemented as an emergency measure, came into effect on 27 January 2020 and was extended until late April 2020. For practical reasons, measures undertaken to minimise the adverse socio-emotional effects of school closures included increased parent-child activities, peer communication and support, reduced academic load, and promotion of healthy habits, such as increased physical activity, balanced diet, regular sleeping pattern, and good personal hygiene, based on national and local guidelines (Ministry of Education of China, Ministry of Industry and Information Technology of China, 2020; Ministry of Education of China, 2020; Ministry of Civil Affairs, 2021). Although public activities were discouraged, children were required to wear a mask and maintain social distancing when going outside during physical activities. A large percentage of children in China live with their extended families in a single household; hence, grandparents often provide childcare during special periods. Measures were implemented online to assist students with mental health issues across cities in China.

Although citywide lockdowns have effectively slowed down the spread of COVID-19 (Pan et al., 2020; Tian et al., 2020), researchers have recognised that the disrupted school routines and long-term home confinement have had a negative impact on children’s physical and mental health (Brooks et al., 2020; Miu et al., 2020; Wang et al., 2020b). For instance, 22.6% and 18.9% students reported depressive and anxiety symptoms in a mental health survey during the early period of home confinement in Hubei Province (Xie et al., 2020). Since the majority of data were cross-sectional, Zhang et al. conducted a longitudinal cohort study that investigated psychological symptoms and suicide-related problems among children and adolescents prior to the outbreak (early November 2019) and 2 weeks after school reopened (during the second wave of the pandemic, in mid-May 2020). This study found a significant increase in the prevalence of anxiety, depression, suicidal ideation, and suicide attempts in Anhui Province, China (Zhang et al., 2020).

In the current medical literature, there is considerable interest in the prevalence and potential risk factors attributable to the development of psychosocial and behavioural problems. A large cross-sectional study that enrolled 4,805 female adolescents revealed that short sleep duration and physical inactivity represented independent factors for suffering from depression (Zhou et al., 2020a). Another online study consisting of 8,079 adolescents revealed that women and high school students were at greater risk for depressive and anxiety symptoms (Zhou et al., 2020b). However, results from the previous studies lack consistency as most of them were monocentre studies and focused on only some dimensions of mental health. Therefore, despite many research endeavours (Loades et al., 2020), we are still facing challenges in predicting children and adolescents who are more likely to be mentally ill. The most compelling reason might be due to the lack of experience and complicated processes underlying mental aetiology and pathogenesis. Therefore, it is of great importance to create a robust prediction model by incorporating multiple established risk factors in a multicentre study using a general scale to measure childhood psychosocial and behavioural status during the pandemic.

So far, the available literature on prediction models for mental problems associated with COVID-19 is scarce. To bridge this gap in the literature and generate more information for preventing negative outcomes, we conducted a multicentre investigation to assess multiple contributing factors among children and adolescents (6-16 years old) who were enrolled from 5 geographic regions of China by using a comprehensive scale of childhood psychosocial and behavioural problems. To further enhance the applicability of our findings, we aimed to create risk prediction nomogram models based on promising significant attributes.

Methods

Study design and ethical aspects

This was a multicentre study. An online survey was conducted from 20 May 2020 to 20 July 2020. The study was approved by the Institutional Review Board of the Capital Institute of Paediatrics (Number: SHERL2020019). Parents or guardians provided informed consent online for all participants.

Study participants

The study was prospectively sponsored by the Subspecialty Group of Developmental and Behavioural Paediatrics, the Society of Paediatrics, and the Chinese Medical Association. This study used a stratified cluster sampling strategy. North, East, West, South and Central geographical regions within mainland China, were selected to form a representative sample. Within each region, the city with the largest population and the city geographically located in the centre of the region were chosen. Therefore, 10 cities were selected from the North (Beijing and Changchun), East (Shanghai and Nanjing), West (Chongqing and Xi’an), South (Guangzhou and Fuzhou), and Central (Wuhan and Zhengzhou) regions. Subsequently, within each city, the district whose average income was closest to the region’s median was selected. One primary, one junior, and one high school were chosen from each district based on whether they were medium-sized public schools, had at least 1,000 students, had no more than 60% of their students belonging to the same gender, and were active for more than 10 years. In order to reach the necessary sample size, two classes from each grade were randomly selected from the schools.

At the end of survey, a total of 13,593 participants from five geographic regions of China were enrolled in the survey. The city of Zhengzhou was excluded from the survey because it did not reach the necessary sample size (only 122). Questionnaires with abnormal...
answers (contradictions and/or inconsistencies, e.g. inconsistence/contradictions of age and grade, such as if the children’s age was 8 years old while their grade was marked as sixth grade, or if some children were younger than 6 or older than 16 years) were excluded. The remaining questionnaires were carefully reviewed by trained staff, and 12,186 questionnaires were deemed eligible for inclusion. As the city that was first and most severely affected by COVID-19, which also made it the first city responses from the Wuhan group were analysed separately from the rest. Of the total sample, 1,114 children and adolescents belonged to Wuhan, while 11,072 children and adolescents belonged to other regions in China.

Questionnaire design and data collection

Questionnaires were designed to collect data from children’s parents/guardians through an online survey conducted through the Wenhua platform (https://dinalab.wjx.cn/jq-75239406.aspx). The questionnaire covered three thematic areas: (1) Demographic information: The demographic variables included students’ age and gender, parental education status (<12 years or ≥12 years), whether parents or relatives were infected with COVID-19 (Yes/No), family income status (Decreased/No change/Increased), and post-pandemic parent-child conflict (No change/Decreased or Increased); (2) Psychosocial impact of the pandemic: The variables included homework time (<2 hours, >2 hours per day), sedentary time (<6 hours, >6 hours per day), online study time (<4 hours, >4 hours per day), physical activity time (<1 hour, >1 hour per day), sleep problems (Yes/No), eating disorders (Yes/No), and the child’s number of close friends (≥4 or <4); (3) Psychological problems: The Child Behaviour Checklist score (CBCL), an widely used, empirically based measure widely used to assess psychopathological dimensions and adaptive functioning in children, with a high test-retest reliability and good internal consistency, was administered (Achenbach and Edelbrock, 1981, Achenbach, 1991). This 113-item scale uses a 3-point Likert scale (0 = not true, 1 = somewhat or sometimes true, and 2 = very often or always true) and is completed by parents who rate a wide range of behaviours displayed by the child in the past six months. The Chinese version of the CBCL contains 10 empirically-based syndrome subscales in different age and gender groups that are consistent with clinically diagnosed psychiatric difficulties: anxiety, social withdrawal, depression, somatic complaints, social problems, schizoid, rule-breaking behaviour, hyperactivity, sexual problems, and aggressive behaviour (Xin et al., 1992, Wang et al., 1999). The scoring system has different cut-off points for clinical significance for the various age groups and gender. The presence of a behavioural disorder was indicated when a participant’s score exceeded the threshold for clinical significance on any of the subscales (Supplementary Table 1).

Quality control

The survey was anonymised, and a device could be used only once to complete the questionnaire. The questionnaire was designed so it could not be submitted if some of the items were missing. This helped ensure a better completion rate. The questionnaire’s settings (e.g. required questions and limited scope of questions) offered the researchers greater control over its administration and prevented respondents from randomly selecting responses or completing the survey in a hurry.

Statistical analyses

The mean and standard deviation (SD) for normal continuous variables and the frequency and percentage per category for categorical variables were calculated to analyse the demographic and psychosocial characteristics of children and adolescents in each group (those who belonged to Wuhan and those who were from outside of Wuhan). Group differences in baseline characteristics were compared using chi-squared (χ^2) or t-tests. First, considering the fact that the score for psychosocial and behavioural problems is continuous in nature, linear regression analyses using the stepwise method were employed to identify factors significantly associated with psychosocial and behavioural problems. Second, the logistic regression analyses were employed to test factors identified through linear regression analyses that were significantly associated with the score on a categorical scale. In linear regression analyses, the independent variables were simultaneously incorporated into the model using the stepwise method, and the outcome was the score for psychosocial and behavioural problems on a continuous scale. Contrastingly, in the logistic regression analyses, the independent variables included the significant variants identified by the linear regression analyses, which were first modelled one by one, and the outcome was the score on a categorical scale. Next, after adjusting for age, gender, and region, and further adjusting for parental career and parental education level, the statistically significant factors were obtained. The significance was calculated using odds ratios (ORs) and at a 95% confidence interval (95% CI). To assess the possibility of non-random measurement error for observation across the cities in this study, the intraclass correlation coefficients (ICCs) were calculated for clustering within regions. In addition, ICCs can be used to assess whether models are not confounded by non-independent observations clustering in multicentre studies (Guthrie, 2012).

To test whether the contribution of significant factors identified by both linear and logistic regression analyses to the risk prediction for psychosocial and behavioural problems was indispensable, two models, i.e. the basic model and the full model were constructed. The basic and the full models were based on a multivariable logistic model. Variables in the basic model included age, gender, region, grade, career, paternal education status, maternal education status, height, weight, weight gain, family income, sedentary time per day, and homework time per day. Besides the above variables in the basic model, four significant factors (parent-child conflict, sleeping problems, online study time per day, and physical activity time per day) were added to the full model for the Wuhan group. Besides the variables in the basic model and the four significant factors mentioned above, number of close friends, videogame time per day, and eating disorders were also included in the full model for the non-Wuhan group. To assess the prediction performance, both calibration and discrimination analyses were performed. In order to calibrate and describe the closeness between the prediction probability and the actual observed risk, the Akaike information criterion (AIC), Bayesian information criterion (BIC), and the -2log likelihood ratio test were used. Alternately, for the discrimination analysis, the net reclassification improvement (NRI) (Pencina et al., 2008; Pencina et al., 2010) and integrated discrimination improvement (IDI) were calculated. Furthermore, the decision curve analyses (Vickers and Elkin, 2006) were also generated. Additionally, a correlation matrix was performed to display the pairwise correlation coefficients between the variables in this study.

Finally, risk prediction nomograms models for psychosocial and behavioural problems among children and adolescents, both within and outside Wuhan, were generated, in which the concordance index (C-index), defined as the area under the receiver operating characteristics curve, was used for reflecting predictive accuracy. In the nomogram, the points were derived based on the significant factors identified from the full prediction model including parent-child conflict, sleeping problems, online study time per day, physical activity time per day, number of close friends, videogame time per day, and eating disorders, as well as some conventional risk factors including age, gender, weight, and family history of COVID-19.

Statistical analyses were performed using STATA software (version 14.0, Stata Corp, TX), and statistical significance was defined as a two-sided p-value lower than 0.05. The nomogram models were constructed using the ‘rms’ package (Harrell, 2021) implemented in R software (version 4.0.2).
Results

Basic demographic characteristics

The basic demographic characteristics of 12,186 children and adolescents are shown in Table 1.

The CBCL score and total positive detection rate

The positive detection rate of psychological problems within Wuhan was greater than that outside Wuhan for schizophrenia (P = 0.005), depression (P = 0.030), and overall score (P = 0.002) in children, and somatic complaints (P = 0.048), immaturity (P = 0.023), delinquent behaviour (P = 0.046), and overall score (P < 0.001) in adolescents, as shown in Table 2.

The subscales, total CBCL scores, and positive detection rate of disorders within and outside Wuhan in different gender and age groups are shown in Supplementary Table 2. For male children (boys), the CBCL score and rate were 15.43 versus 13.34 and 15.3% versus 10.5% in adolescent girls the score and rate were 20.57 versus 14.04 and 20.5% versus 12.4%, and for adolescent girls the score and rate were 15.43 versus 13.34 and 15.3% versus 10.5%.

Identification of significant risk factors

Through linear regression analyses, 13 variables were found to be significant risk factors associated with psychosocial and behavioural problems. These included age, gender, grade, parent-child conflict, weight gain, parental education level, career, sleep problems, number of kids the child has, online study time per day, videogames time per day, physical activity time per day, and eating disorders (Supplementary Table 3). Subsequently, by conducting logistic regression analyses, eight factors were identified as significant risk factors among children and adolescents, both within and outside Wuhan. After adjusting for parental career and parental education level, the remaining seven factors were still statistically significant among children and adolescents outside Wuhan, namely parent-child conflict (OR: 4.942; 95% CI: 4.27 to 5.72; P < 0.001), sleeping problems (OR: 4.054; 95% CI: 3.77 to 4.36; P < 0.001), number of friends the child has (OR: 0.513; 95% CI: 0.44 to 0.6; P < 0.001), online study time per day (OR: 0.414; 95% CI: 0.37 to 0.47; P < 0.001), videogame time per day (OR: 2.258; 95% CI: 1.9 to 2.69; P < 0.001), physical activity time per day (OR: 0.51; 95% CI: 0.44 to 0.59; P < 0.001), and eating disorders (OR: 7.075; 95% CI: 2.35 to 3.11; P < 0.001).

However, for children and adolescents living in Wuhan, only four factors were identified as significant risk factors, namely parent-child conflict (OR: 5.953; 95% CI: 2.82 to 12.57; P < 0.001), sleeping problems (OR: 4.471; 95% CI: 3.06 to 6.54; P < 0.001), online study time per day (OR: 0.372; 95% CI: 0.22 to 0.64; P < 0.001), and physical activity time per day (OR: 0.416; 95% CI: 0.22 to 0.8; P = 0.009). All results are shown in Table 3. The ICCs ranged from 0 to 1, and the ICCs of all the significant factors were < 0.05 (Supplementary Table 4), indicating that our models are, at least to some extent, not confounded by non-independent observations.

Prediction accuracy assessment

As shown in Table 4, the basic model and full-model analyses were performed to evaluate the predictive accuracy of the significant factors identified. The full model included all 13 factors identified in the study, while the basic model included all factors, except for the final 7 factors identified for children and adolescents living outside Wuhan and the

Table 1
Baseline characteristics of children in different area during the COVID-19 pandemic.

Age (years)	Outside Wuhan (N=11072)	Wuhan (N=1114)	Total (N=12186)	Z/chi-square	P Value
6-11	9.1(1.33)	9.3(1.43)	9.1(1.35)	2.740	0.006
12-16	13.9 (1.40)	13.1 (1.08)	13.9(1.39)	0.311	0.577
Sex					
Boys, N (%)	5767	590	6357	9.903	0.007
Girls, N (%)	5305	524	5829		
Family income					
Decrease, N (%)	5478	589	6067		
No change, N (%)	5510	510	6020		
Increase, N (%)	84 (0.7%)	15 (1.3%)	99 (0.8%)		
Parental education status					
≤12 years, N (%)	6,633	125	6,758		
>12 years, N (%)	4,439	988	5,427		
Maternal education status					
No change, N (%)	90.098	<0.001			
Increase, N (%)	6,856	147	7,003		
≥12 years, N (%)	4,216	960	5,182		
≤12 years, N (%)	868 (38.1%)	868 (38.1%)	1636 (37.9%)		
>12 years, N (%)	510	510	1020		
Weight gain					
≤2kg, N (%)	4194	288	4482		
>2kg, N (%)	6878	826	7704		
≤2kg, N (%)	6878	826	7704		
>2kg, N (%)	826	826	1652		
Parent-child conflict					
Increase, N (%)	3168	460	3694		
No change, N (%)	7904	676	8580		
Decrease, N (%)	7904	676	8580		
Somatic					
No change, N (%)	98.929	<0.001			
Increase, N (%)	98.929	<0.001			
Decrease, N (%)	0.071	0.071	0.071		
Homework					
Time per day					
≤1h, N (%)	3709	299	4008		
>1h, N (%)	7963	815	8178		
Online study time per day					
≤1h, N (%)	3709	299	4008		
>1h, N (%)	7963	815	8178		
Sedentary time per day					
≤1h, N (%)	339 (3.1%)	53 (4.8%)	392 (3.2%)		
>1h, N (%)	10733 (96.9%)	1061 (95.2%)	11794 (96.8%)		
Videogames time per day					
≤1h, N (%)	3709	299	4008		
>1h, N (%)	7963	815	8178		

(continued on next page)
Table 1 (continued)

Physical activity	Out of Wuhan	N (%)	Wuhan	N (%)	Chi-Square	P Value	Out of Wuhan	N (%)	Wuhan	N (%)	Chi-Square	P Value
≤1h, N (%)	5832	720	6552				384	441	441			
>1h, N (%)	(52.7%)	(64.6%)	(53.8%)				(47.3%)	(35.4%)	(46.2%)			
Sleep problems												
No, N (%)	7784	680	8464				7629		<0.001			
Yes, N (%)	(70.3%)	(61.0%)	(69.5%)				(29.7%)	(39.0%)	(30.5%)			
Eating disorders												
No, N (%)	7677	729	8406				7629		<0.001			
Yes, N (%)	(69.3%)	(65.4%)	(69.0%)				(30.7%)	(34.6%)	(31.0%)			
Number of close friends												
<4, N (%)	6,394	632	7,026				7629		<0.001			
≥4, N (%)	(57.8%)	(56.8%)	(57.7%)				(42.3%)	(43.2%)	(42.3%)			

Data are expressed as mean (standard deviation) or count (percent). P value was calculated by the rank-sum test or the Chi-squared test where appropriate.

Table 2

The prevalence of disorders among Wuhan and outside Wuhan in different age groups during the COVID-19 pandemic.

Behavior Subscales	Outside Wuhan	N (%)	Wuhan	N (%)	Chi-Square	P Value	Outside Wuhan	N (%)	Wuhan	N (%)	Chi-Square	P Value
Somatic complaints	65 (1.24%)	11 (1.65%)	0.795		0.373	0.86	86 (1.48%)	12 (2.68%)	12.373	0.048		
Schizoid	203 (3.87%)	41 (6.16%)	7.822		0.005	237 (4.07%)	25 (5.58%)	2.373	0.124			
Depression	136 (2.59%)	27 (4.05%)	4.717		0.030	NA	NA	NA	NA	NA	NA	
Social problems	92 (1.7%)	17 (4.5%)	1.563		0.021	53 (1.16%)	11 (4.6%)	0.093	0.007	NA	NA	
Compulsive activity	122 (4.3%)	24 (6.8%)	4.461		0.035	185 (3.18%)	21 (4.69%)	0.093	0.007	NA	NA	
Hyperactivity	197 (3.75%)	19 (2.85%)	1.363		0.243	147 (5.0%)	25 (15.0%)	12.998	<0.001	NA	NA	
Aggressive behavior	106 (2.02%)	18 (2.70%)	1.343		0.247	146 (2.51%)	18 (4.02%)	3.730	0.053			
Delinquent behavior	87 (1.66%)	7 (1.05%)	1.391		0.238	114 (1.96%)	15 (3.35%)	3.995	0.046			
Social withdrawal	125 (2.38%)	12 (1.8%)	0.879		0.349	NA	NA	NA	NA	NA	NA	
Immature	NA	NA	NA		NA	144 (2.47%)	19 (4.24%)	5.140	0.023			
Total positive detection rate, N (%) 4, ≥ 0.001 (9.7%)	10 (13.51%)	9.447		0.002	669 (11.49%)	81 (18.08%)	17.178	<0.001				

Data are expressed as mean (standard deviation) or count (percent). And some data are expressed as boys/girls. P value was calculated by the Chi-squared test or the t-test where appropriate.

NA, means that this subscale does not exist in this sex and age subgroup.

Risk-prediction nomogram model

Based on the significant factors identified from the full prediction model and some conventional risk factors, separate risk prediction nomogram models were created for psychosocial and behavioural problems for children and adolescents living in and outside Wuhan (Fig. 2). The C-indexes over 80% indicated that the model’s predictive accuracy was good. In addition, the calibration curves also exhibited good predictive accuracy (Supplementary Figure 1).

An example of the risk-prediction nomogram model outside Wuhan is as follows: assuming a boy (9 points) aged 12 years (11 points), with a weight of 50 kg (7.5 points), with a harmonious parent-child relationship (0 points), with sleeping problems (100 points), with a family member with COVID-19 (47 points), with < 4 close friends (12 points), with ≤ 4 hours of daily study time (0 points), unable to reduce screen time (5 points), with ≤ 1 hours of daily physical activity (7 points), and loss of appetite (22 points); hence, the probability of childhood psychosocial and behavioural problems was estimated to be 69%.

Discussion

This study aimed to assess children and adolescents’ multiple contributing factors associated with psychosocial and behavioural problems caused by long-term home confinement. We created nomogram models to predict the probability of these risk factors. The common key factors within and outside Wuhan were parent-child conflict, sleep problems, online study time and physical activity time. Three additional factors outside Wuhan were number of close friends, videogame time, and eating disorders. To the best of our knowledge, this is the largest study that has explored the difference of risk factors for psychosocial and behavioural problems within and outside Wuhan.

Based on the study’s findings, the students’ psychosocial problems were more severe for children and adolescents living in Wuhan than for those living outside Wuhan. These manifestations included greater weight gain, prolonged sedentary time, sleeping problems, prolonged screen exposure time, increased videogame time, as well as physical inactivity or more time spent online studying. Moreover, the positive detection rates in CBCL scores of psychosocial and behavioural problems within Wuhan were significantly higher than those outside Wuhan, such as schizoid and depression in children, as well as somatic complaints, immaturity, and delinquient behaviour in adolescents. These findings were in line with previous studies on somatic and psychological disorders during the pandemic (Liu et al., 2020a, Saurabh and Ranjan, 2020, Xie et al., 2020), which can be attributed to the following reasons: first, the shock resulting from the unexpected announcement of the lockdown in Wuhan city could have probably caused panic, helplessness and concerns about becoming infected (Liu et al., 2020a, Xie et al., 2020), which may have gradually transformed into behavioral problems;
second, stress resulting from the higher incidence and rapid spread of COVID-19 infections (Ni et al., 2020). The results showed that the prevalence of COVID-19 in children’s family members and relatives in Wuhan was 2.78%, while it was 0.18% for other cities. Children and adolescents were exposed to overwhelming news from the media, which might have added to feelings of fear, distress, and loneliness. Third, the extended duration of home-confinement and consequently, online classes in Wuhan was greater than that of outside Wuhan. Being the centre of the COVID-19 outbreak, Wuhan imposed a lockdown that began on 23 January 2020. Thus, children in Wuhan experienced a longer and stricter quarantine than those outside of Wuhan. The mean length of online study for children in Wuhan was 4.5 months, which was much longer than that for children in other regions (3.3 months). A longer online study duration might have resulted in more negative consequences (Hossain et al., 2020; Lee, 2020).

Since children are more vulnerable to environmental risks, a great deal of effort has been made to curb the processing of mental illness, such as through the creation of online services to cope with mental health issues in most cities (Liu et al., 2020b). Meanwhile, the causes for childhood psychosocial and behavioural problems have been exhaustively investigated, yet the results are not often reproducible; however, a large multicentre study data on outbreak-associated psychosocial and behavioural problems and morbidity of children during long-term confinement and online study are not available. To bridge this gap, we explored the risk factors for psychosocial and behavioural problems among 12,186 children and adolescents in this large-scale multicentre study during long-term home confinement. Parent-child conflicts, sleeping problems, online study time per day, and physical inactivity time per day were significant risk factors that were common for both children and adolescents living within and outside Wuhan. This was partially in line with some previous studies, which also identified sleeping problems and physical inactivity as risk factors. For instance, Ghosh and colleagues deemed that the lack of outdoor activity and aberrant sleeping habits could alter neuropsychiatric manifestations (Ghosh et al., 2020). In this study we identified that parent-child conflict and online studying time (> 4 hours per day) were additional key factors contributing to psychological problems. Parent-child relationships play a vital role in children’s lives during times of hardship (Cluver et al., 2020). Dalton and colleagues reported that effective communication can protect the psychological health of children, such as listening to what children believe about COVID-19 transmission and providing them with accurate explanations that are meaningful, which will ensure that they do not feel unnecessarily frightened or guilty (Dalton et al., 2020). Conversely, parent-child conflict leading to less effective communication is a potential risk factor for psychological problems. Although online courses are helpful to ensure that school learning is largely uninterrupted, prolonged online study contributed to much longer screen time, which reduced their physical activity (Wang et al., 2020). Besides, online learning produced anxiety and depressive symptoms because of the stressful workload required (Fawaz and Samaha, 2021).
and eating disorders have also been identified as risk factors for psychological problems in children outside Wuhan but not in those living in Wuhan. There may be several reasons for this result. As the centre of the outbreak, children and adolescents in Wuhan suffered the most severe psychological stress caused by the pandemic, compared with the rest of China, which exacerbated several risk factors as shown by the OR ratios between Wuhan and the rest of China. Another possible reason was the sample size. Having a large sample size that represents all of China, the statistical power of our model allows the detection of small factors, such as screen-time per day, number of friends, and eating disorders.

The risk prediction nomogram models were created for psychosocial and behavioural problems identified in this study improve in the future as regular schooling progresses. Third, although ICCs have been reported to assure the models were not confounded by non-independent observations clustering in this multicentre study, our observations from the same class/school were most likely not independent. Finally, the basic demographic characteristics of children in and outside Wuhan did not match perfectly, which made it difficult to make a fair comparison of the psychological results in the two groups.

Conclusions

The psychological and behavioural symptoms of children and adolescents in Wuhan were more severe than in other regions of China. Parent-child conflict, sleeping problems, online study time per day, and physical inactivity time per day were common significant risk factors for children and adolescents both within and outside Wuhan during the home confinement and online study period. Furthermore, the risk prediction nomogram models created this study can be used for accurately predicting psychological and behavioural symptoms in children and adolescents.

These models are beneficial in identifying children who are at significant risk for developing psychosocial problems in the event of social isolation. These findings also suggest that besides virus control, health and education administrators need to address the challenges faced by children and adolescents. This requires attention from schools, families, mental health providers, and policy-makers—jointly explore how children’s mental health can be protected and any long-term consequences resulting from the COVID-19 pandemic. Since children’s physical health, mental health, and productivity in adult life are deeply rooted in their early experiences (Clark et al., 2020; Cluver et al., 2020), further research is necessary to include the voices of children and their families when addressing these emergency issues and to develop comprehensive strategies to protect the well-being of future generations.

Author contribution

T.L., L.W. and X.K. designed the study, had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. L.W., Y.Z., L.C., F.J., X.S. and T.L. drafted the paper. F.L., Y.H., H.D., J.Z., L.H., S.F., Q.X., L.X., H.G., W.W., J.S., F. L., Y.Q., X.W., L.W., Y.Z., L.C., F.J., X.S., X.K., and T.L. the data analysis, and all authors critically revised the manuscript for important intellectual content and gave final approval for the version to be published. L. W., C.T., J.W., Y.Y., X.W., L.Z., X.L., J.S., J.Z., H.D. and L.H. collected the data from 8 cities. All authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All authors read and approved the final manuscript prior to submission.

Funding

This research was supported by the General Program of National Natural Science Foundation of China (NSFC no.81771223), the Key Research and Development Project of Social Livelihood of Science Innovation and Application Demonstration Project of Chongqing Municipal Science and Technology Commission (no.csc2018jsx-md0023), the Public Service Development and Reform Pilot Project, the Beijing Municipal Health Commission (BM2019-11), and the Capital’s Funds for Health Improvement and Research (2020-2-2104). The sponsors had no role in the collection, management, analysis, and interpretation of the data, in the preparation, review, or approval of the
Declaration of Competing Interest

The authors declare no conflicts of interest.

Acknowledgments

We would like to thank all healthcare workers and the educational institution’s staff involved in the recruitment stage. We would also like to thank the parents of the students who participated in the survey. We express our appreciation to Mary Margaret Gleason (Children’s Hospital of the King’s Daughters, New Orleans, LA, USA) and Xinyin Chen (Graduate School of Education, University of Pennsylvania, Philadelphia, PA, USA) for their guidance in the study design, interpretation of the results, and review of the manuscript.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jad.2021.06.077.

References

Ministry of Civil Affairs of the People’s Republic of China. Notice on Improving Rescue and Protection for Children Lacking Effective Guardianship. http://www.mca.gov.cn/article/xw/tzgg/202002/20200200024310.shtml (accessed Jan 11, 2021).

Wang, XD, Wang, XL, Ma, H., 1999. Mental Health Assessment Scale (revised edition). Chinese Mental Health Journal, Beijing, p. 4552.

Achenbach, T.M., Edelbrock, C.S., 1981. Behavioral problems and competencies reported by parents of normal and disturbed children aged four through sixteen. Monogr. Soc. Res. Child Dev. 46, 1–82.

Brooks, S.K., Webster, R.K., Smith, L.E., Woodland, L., Wessely, S., Greenberg, N., Rubin, G.J., 2020. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet (London, England) 395, 912–920.

Clark, H., Coll-Seck, A.M., Banerjee, A., Peterson, S., Dalglish, S.L., Ameratunga, S., Balabanova, D., Bhan, M.K., Bhutta, Z.A., Borrazzo, J., Claeson, M., Doherty, T., El-Jardali, F., George, A.S., Gichaga, A., Gram, L., Hupgrave, D.B., Khwame, A., Meng, Q., Mercer, R., Nazain, S., Ntngwa-Sabiti, J., Olumide, A.O., Osnin, D., Powell-Jackson, T., Rasanathan, K., Rasul, I., Reid, P., Requejo, J., Rohde, S.S., Rollins, N., Romedina, M., Singh Sachdev, H., Saleh, R., Shawar, Y.R., Shifman, J., Simon, J., Sly, P.D., Stenberg, K., Tomlinson, M., Ved, R.R., Costello, A., 2020. A future for the world’s children? A WHO-UNICEF-Lancet Commission. Lancet (London, England) 395, 605–658.

Cluver, L., Lachman, J.M., Sherr, L., Wessels, I., Krug, E., Rakotomalala, S., Blyligh, S., Hills, S., Bachman, G., Green, G., Butchart, A., Tomlinson, M., Ward, C.L., Doubt, J., McDonald, K., 2020. Parenting in a time of COVID-19. Lancet (London, England) 395, e654.

Dalton, L., Raga, E., Stein, A., 2020. Protecting the psychological health of children through effective communication about COVID-19. Lancet Child Adolesc. Health 4, 346–347.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jad.2021.06.077.
