Impact of climate change on the hydrochemistry of Debaga unconfined aquifer, Kurdistan region, Iraq

Moutaz Al-Dabbas¹, Tariq Abed Hussain², Qusai Al-Kubaisi¹, and Hadeel
Moutaz Al-Dabbas³
¹ College of Science, University of Baghdad, Baghdad, Iraq
² Civil Engineering Department, University of Technology, Baghdad, Iraq
³ Al Iraqia University, Baghdad, Iraq.

Email: Moutaz.mohammed@sc.uobaghdad.edu.iq

Abstract. The available climate parameters data of the rainfall and temperature for the Iraqi meteorological stations: Mosul, Kirkuk, Baiji, Tuz, Tikrit, and Debaga were investigated. The findings indicate profound document of change in climateshown by the noticeable increase of the average mean annual temperature with the remarkable decrease of the yearly precipitation in the investigated meteorological locations. The impact of the climatic change on the hydrochemistry of Debaga unconfined aquifer was noticeable in increasing the water salinity as studied during the year 2014 and compared with the years before 2001. The Debaga unconfined aquifer has indicated two groups’ sulphate (79%) and chloride (21%) for the year 2014. It is clear that the climate change conditions increase the sulphate group in Debaga basin during 2014. It is recommended to overcome the water shortage by choosing an economical method of irrigation rather than the local traditional methods.

Keywords: Debaga unconfined aquifer, Climatic changes, hydrochemistry, Iraq.

1. Introduction:

The operation of any system of water resources should take into consideration the changes in rainfall and temperature. As it is expected that there are shortage of rainfall due to the global climate changes, therefore, there will be a shortage of the surface water resources and the groundwater will be important for people living. Accordingly the need of more groundwater resources may lead to the deterioration of the quality of the groundwater[1][2]. Many researches mentioned the vital challenges and alarming groundwater decreases in quantity and quality with in the Tigris and Euphrates Rivers basins due to the Global climatic warming that will therefore effect the expected sustainable development[3][4][5].

The Bai Hassan Formation in general and the Debaga unconfined aquifer in particular has more exploitation in groundwater resources for municipal activities and agricultural activities due to the surface water shortage [6], [7]. Groundwater in this layer is replenished from an average annual rainfall of approximately 400mm through gravels in dendritically-shaped valleys [8]. Many researches were carried out dealing with the aquifer properties, whereas few investigations are taking into consideration the global warming on the ground water development in Iraq [9][10][11]. The aquifer of Debaga that of silt, gravel and sand composition, is believed to supply vital groundwateramounts. The impact of the climatic change on the hydrochemistry of Debaga unconfined aquifer for the year 2014 and the comparison with their hydrochemical properties before 2001 was investigated as novelty of this research.

Many types of ionic relations could be used, chemical classification of the dominant cations and anions concentration and their interrelationships may throw light on the water quality changes with time[12]. The aims of this research are to indicate the evidence of climatic change in Iraq by studying the available historical climate parameters, rainfall, temperature, for the Iraqi meteorological stations (Mosul, Kirkuk, Baiji, Tuz, Tikrit, and Debaga). It also aims to investigate the effect of the global warming on the hydrochemistry of Debaga unconfined aquifer for the year 2014 with comparison to the hydrochemistry of the same wells for the years before 2001.
2. Location

Debaga watershed lies on the right side of Lesser Zab River between Avana and Qarachuq mountains, it has a longitudinal shape, its length is about 65 km while its width is about 22 km, and its total area is about 1500 km².

The area depends on groundwater for irrigation due to absence of any irrigation project in the area. It also depends on the rain fed. After 1991, the area suffered from demographic changes and this led to ignoring the groundwater exploitation until the year 2001 after the large campaign for wells drilling in the area. In that year, about 60 wells were drilled for agricultural purposes. The wells were mostly drilled in the older alluvium and BaiHasan formation. The Quaternary deposits (as older alluvium) thickness ranges between 50-130 m. The best water bearing layer belongs to BaiHasan formation, its thickness and its lithology let the formation has an importance to have a good quantity of water. The Debaga basin is situated between latitude 35°30'00"–36°07'30"N and longitude43°22'30"–44°15'00"E.

It is a high undulated terrain bounded by two geological structures (the Avana and the Qarachuk mountains) and two rivers, The Lower Zab and The Upper Zab. The plain area has rectangular shape (20*65) Km² oriented southeast to North West along the general direction of the major fold sin the north east corner of Iraq (Figure 1). The plain is higher in the middle slopping in opposite directions towards the two rivers The Upper (or Greater) Zab in the North West and The Lower (or Leaser) Zab in the southeast.

In addition, agriculture is the most common profession among the residents of the Debaga basin who in the last decade has augmented water wells drilling activities [12]. The Debaga basin lies in the low fold region in northern Iraq. Its topography is announced with variation in altitude between a low of 233 and a high of 875 m.a.s.l. The plain area is an undulated terrain cut by a parallel drainage system type [13].The center line of Debaga basin corresponds to annual average rainfall of 375 mm, (Figure 1) [9].

3. General Geological Setting

As can be seen, the Quaternary deposits (older alluvium) is a heterogeneous deposit of lenticular and commonly elongated bodies of sand, clay, secondary gypsum, and poorly sorted gravels mostly derived from topographic heights in the region. Younger alluvium is however a flood plain stream deposit composed of gravel and sand with considerable silt and clay. Pliocene underlies the Quaternary deposits represented here by the Bai Hassan formation which consists of brown mud stone and coarse poorly consolidated conglomerates. It overlies conformably an Upper Miocene formation of pebbly sand and clay beds named locally Al-Mukdadiaformation (Figure 2)[14].
4. Hydrogeological setting
The conglomerates of the Pliocene epoch of the Bai Hassan formation may be considered the most permeable horizon in the lithological column of the clastics sediments in the study area. The course sandstone and pebbly sandstone beds of the Upper Miocene-Pliocene sediments of the Mukdadiaare
the next ground water bearing horizon in the sequence. However, the formation contains important impermeable mudstone horizons. The fine sandstone beds of the Upper Miocene have the largest extent in the basin. They occur normally at several horizons separated by impermeable beds of siltstone and claystone which compose the Injana formation. More clay stone as well as gypsum beds are found with depth as the Fatha formation of the Middle Miocene is encountered. The shallow unconfined aquifer was recognized of the permeable beds of the Tertiary formations BaiHassan2003; [11][13].

The first unconfined aquifer has a variable saturated thickness ranging from 25 m to about 50 m. Groundwater generally flows to the southwest, and less relief is distributed with areas of permeability and effective porosity of gravel and sand of the Bai Hassan Formation and the Quaternary sediments (see Figure 3).

![Figure 3: Ground water flow pattern in the Debaga unconfined aquifer [13].](image)

5. **Groundwater quality**
Groundwater quality is variable in the Debaga basin spatially and vertically. This is probably due to the fact that the shallow aquifer is affected by the drainage water of the agricultural activities which take place in the low plain areas.

6. **The effect of carbon dioxide in Iraq**
The level and source of carbon dioxide in Iraqi is distributed from several ways, as burning of the liquid, solid, and gas fuel, flaring and the cement industry [15]. As it is known, the primary cause of global warming is elevation in the concentration of CO₂ in the atmosphere. This increase in surface temperature is called greenhouse effect. So, because CO₂ blocks heat from escaping much as the glass panes of a greenhouse does, a considerable increase in CO₂ level witnessed in Iraq between 1950 and 2018 had been detected. CDiac shows the relatively higher temperature between 1960 and 2018, which, it is believed to indicate the role of CO₂ in climate changes [16].
7. Materials and Methods

7.1. It is vital to consider the latitudes which is important for Climatic parameter analysis in Iraq. Accordingly the general climatic elements for Mosul, Kirkuk, Baiji, Tuz, and Tikrit, Debag meteorological stations were selected. The available data for the climatic elements were studied for the average mean annual temperature, and the average mean annual rainfall.

7.2. The hydrochemical analysis

Nineteen ground water samples were collected during summer season of year 2014, from Debaga unconfined aquifer according to Todd[17] procedure, as in Figure 4. These samples compared with historical analysis of ground water samples that were collected almost from the same locations during the summer season before year 2001 Following Hassan [18] hydrochemical classification [11]. The major ions (K\(^+\), Na\(^+\), Mg\(^{2+}\), Ca\(^{2+}\), Cl\(^-\), HCO\(_3\)\(^-\), SO\(_4\)\(^{2-}\), NO\(_3\)\(^-\)) in addition to Electric conductivity EC, Total dissolved salts TDS and pH were carried out. The analyses were done in the College of Science-University of Baghdad chemical laboratory according to Todd [17] procedure. EC, pH, Major ions and TDS, of Debaga unconfined aquifer water samples for years before 2001 and 2014 were shown in Tables 1 and 2 respectively.

Table 1: The groundwater samples Hydrochemical parameters of high flow conditions for Debaga unconfined aquifer before 2001.

S. No.	pH	EC	TDS	Ca\(^{2+}\)	Mg\(^{2+}\)	Na\(^+\)	K\(^+\)	HCO\(_3\)\(^-\)	SO\(_4\)\(^{2-}\)	Cl\(^-\)	NO\(_3\)\(^-\)
1	7.9	722	499	25	22	106	0	184	197	18	7
	1.25	1.8	4.61	0	3.0	4.1	0.5	6.44	3.0	0.5	6.44
2	7.5	935	726	74	22	31	1	138	161	35	19
	3.7	1.8	1.35	0.03	2.26	3.4	1	0.31	2.26	3.4	1.35
	53.6	26.54	19.52	0.38	32.68	48.45	14.45				
3	8	1151	789	153	56	37	0	355	320	28	44
	7.65	5.67	1.61	0	5.8	6.67	0.8	4.72	0.8	0.8	4.72
	54.9	33.5	11.55	0	41.6	47.6	5.72				
4	7	2825	2300	80	49	450	3	162	742	326	6
	4	4.1	19.57	0.08	2.66	15.46	9.6	0.1	2.66	15.46	9.6
	14.43	14.7	70.57	0.28	9.55	55.58	34.52				
5	7.7	1830	1582	91	84	153	0	255	550	30	106
	4.55	7	6.65	0	4.18	11.46	0.86	1.7	4.18	11.46	0.86
	40.5	16.3	42.5	0.7	16.1	24.7	50.7				
6	6.8	1988	1569	52	81	184	1	188	461	165	2
	2.6	6.75	8	0.03	3.1	9.6	4.7	0.03	3.1	9.6	4.7
	15.0	38.85	46.0	0.15	17.7	55.1	27.0				
7	7.2	1142	780	39	60	64	4	245	215	35	24
	1.95	5	2.78	0.1	4.0	4.5	1	0.39	4.0	4.5	1
	19.8	50.8	28.3	1.0	40.6	45.3	10.1				
8	7.5	2810	2420	83	20	100	3	100	121	181	54
	4.2	1.7	4.35	0.08	1.64	2.5	5.2	0.87			

Table 1: to be continued
Table 2: Hydrochemical parameters of the present groundwater samples of high flow conditions for Debaga unconfined aquifer during 2014.

S.No	pH	EC	TDS	Ca²⁺	Mg²⁺	Na⁺	K⁺	HCO₃⁻	SO₄²⁻	Cl⁻	NO₃⁻	Na/Cl molar ratio
1	7.8	772	502	82	23	66	0	189	188	50	50	0.39
2	7.3	1160	789	66	77	74	0	238	300	55	55	1.38
3	7.9	1285	991	98	76	80	0	70	540	32	32	0.87
4	7.5	3260	2300	69	37	417	16	255	480	361	361	1.29
5	8	1916	1569	100	136	196	0	128	800	67	67	1.00
6	7.2	2216	1898	181	95	218	8	170	482	460	460	1.25
7	7.7	2058	1599	120	69	98	0	298	293	150	150	0.73

Table 2: to be continued
	6	5.8	4.3	0	4.9	6.1	4.3	0.8	1
	37.5	35.9	26.6	0	30.4	38.0	26.7		
8	7.5	4040	3616	254	65	327	0	607	503
	12.7	5.47	14.2	0	10	10.5	11.4	0.5	1.25
	39.3	16.8	44	0	30.8	32.5	35.2		
9	7	2565	2180	50	16	462	1	157	606
	2.5	1.3	20.1	0.03	2.57	12.63	7.9	0.8	2.54
	10.44	5.57	83.9	0.11	10.77	52.82	33.1		
10	7.5	2448	1932	89	64	269	3	181	815
	4.45	5.3	11.7	0.08	2.97	17	1	0.6	11.7
	20.6	24.7	54.3	0.36	13.76	78.76	4.64		
11	7.2	2077	1898	99	61	315	1	570	525
	4.95	5.1	13.7	0.03	9.3	10.94	3	0.4	4.6
	20.84	21.4	57.66	0.1	39.4	46.2	12.67		
12	8	1049	643	165	17	127	0	164	263
	8.25	1.42	5.5	0	2.7	5.5	6.7	0.3	0.82
	54.32	9.33	36.36	0	17.7	36.1	44.3		
13	8	1855	1569	66	56	223	1	146	593
	3.3	4.67	9.7	0.03	2.4	12.35	2.63	0.3	3.7
	18.66	26.4	54.8	0.15	13.55	69.9	14.88		
14	7.4	1699	1179	140	60	164	1	158	607
	7	5	7.1	0.03	2.6	12.65	2.23	1.7	3.2
	36.5	26.1	37.2	0.14	13.5	66	11.63		

Min. PPM | 7 | 772 | 502 | 50 | 16 | 66 | 0 | 70 | 188 |
Max.PPT | 8 | 4040 | 3616 | 254 | 136 | 462 | 16 | 570 | 815 |

Figure 4: Location of groundwater sampling for Debaga unconfined aquifer.
8. Results and Discussion

8.1. Climate

8.1.1. The mean annual temperature. The relationship between the averages means annual temperature (°C) frequency curves and time seems positive in Kirkuk, and Debaga (Figure 5). Noticeable degrees of temperature were identified from the general trend line for these meteorological stations.

8.1.2. Rainfall Analysis. The relationship between the averages means annual rainfall and time-frequency curves seem negative in Mosul, Kirkuk, Baiji, Tuz and Tikrit meteorological stations, for the years 1981–2011 (Figure 6). A remarkable decrease in rainfall amounts was indicated from the general trend line for these meteorological stations.

Moreover, comparing the average mean annual rainfall (mm) for the years 1970-1980 and for the years 2000-2012 reflects that the higher average rainfall during the seventies was about 350 mm for the periods 1970-1980 and decreased to about 300 mm for the periods 2000-2012[19]. Mulder[20] concluded that the overall applied model shows that natural variation of groundwater and soil moisture have a share of about 25% of the total water mass decline in northern Iraq. Adamo [11], concluded in their investigation that the Climate Change affects lesser Zab River Basin, and that all applied models showed a decrease in mean annual precipitation in which the basin will see varying decreases in precipitation at different rates, reaching a reduction up to 30%. The results of this research are in agreement with Mulder[20], and [11]. They conclude that the climate change affect the groundwater due to decline of the annual rainfall and the reduction in the recharge water in northern Iraq in general and Debaga area in particular as it is a part of the Lesser Zab River Basin.

![Figure 5: The average means annual temperature (°C) frequency curves of Kirkuk and Debaga stations.](image)

![Figure 6: The annual rainfall data from 1980 to 2011 were obtained from Mosul, Kirkuk, Baiji, Tuz and Tikrit meteorological stations [21].](image)
8.2. The hydrochemistry of the Debaga unconfined aquifer

The Debaga unconfined aquifer water has noticeably showed that the Bicarbonate, Sulphate, and Chloride groups are of higher distribution before year 2001. According to Hassan[18] classification, the major group is the sulphate group that represent 57.12 %, with three families (sulphate-sodium, sulphate-calcium and sulphate-magnesium) the first family with three water types are Na > Mg > Ca; rSO4 > rCl > rHCO3, rNa > rMg > rCa; rSO4 > rHCO3, and rNa > rMg > rCa; rSO4 > rHCO3, the second family with only one major water type rCa > rMg > rNa; rSO4 > rHCO3 while the third family with one major water type as well which is rMg > rNa > rCa; rSO4 > rHCO3. The dominant groundwater facies indices are 13:33, 63:52 and 33:52. The second group is the Bicarbonate group that represent 21.42 %, which is with three families (Bicarbonate-Sodium, Bicarbonate-Calcium, Bicarbonate-Magnesium) each has only one water type, these are rNa > rMg > rCa; rHCO3 > rCl , rCa > rNa > rMg; rHCO3 > rSO4, and rNa > rMg > rCa; rHCO3 > rSO4 respectively. There is not dominated facies index within this group. The third group is the Chloride group that represent 21.42 %, which is with two families (Chloride-Sodium, Chloride-Calcium) each has only one water type, these are rNa > rMg > rCa; rCl > rSO4 > rHCO3 and rCa > rMg > rNa; rCl > rSO4 > rHCO3 respectively. The dominant groundwater facies index of this group is 23:13.

Two water groups are existed during 2014 survey that are: the sulphate, and chloride groups. The major group is the sulphate group that represent 78.58 %, with three families (sulphate-sodium, sulphate-calcium and sulphate-magnesium) the first family with four water types are Na > rMg > rCa; rSO4 > rCl > rHCO3, rNa > rMg > rCa; rSO4 > rHCO3, and rNa > rMg > rCa; rSO4 > rHCO3. The second family with two major water type rCa > rMg > rNa; rSO4 > rHCO3 > rCl and rCa > rNa > rMg; rSO4 > rHCO3 while the third family with one major water type which is rMg > rCa > rNa; rSO4 > rHCO3. The dominant groundwater facies indices are 13:52, 23:33 and 53:52. The second group is the Chloride group that represent 21.42 %, which is with two families (Chloride-Sodium, Chloride-Calcium) each has only one water type, these are rNa > rMg > rCa; rCl > rSO4 > rHCO3 and rCa > rNa > rMg; rCl > rSO4 > rHCO3 respectively. The dominant groundwater facies index of this group is 23:13.

8.3. Geochemical Control of Groundwater:

The Na/Cl molar ratio was applied to indicate the evaporation process in groundwater as well as if it is more than one reflects the continental origin of the groundwater [22]. The EC plot was applied against the molar ratio of Na/Cl to unravel the local geochemical processes in the Debaga unconfined aquifer water of during 2014. A straight lineindicated from the plot of EC means against Na/Cl ratio via evaporation (Figure 6) [23].

Therefore, electrical conductivity versus the molar ratio of Na/Cl displays a special trend that may indicate the effect of evaporation on geochemistry of groundwater in the Dammam unconfined aquifer [24].

Therefore, the variation of groundwater with time can be attributed to the impact of the climatic change on the hydrochemistry of Debaga unconfined aquifer that may indicated by increasing the sulphate water group percent to 78.58 % for year 2014 than 57.12% during the survey before 2001 and the extinction of the Bicarbonate group.

8.4. Suitability of Groundwater

The groundwater quality of 2014 sampling period reflect that they are unsuitable for human drinking purposes [25]. The low water quality of some wells was attributed to the impact of the climatic change on the hydrochemistry of Debaga unconfined aquifer. While, the groundwater hydrochemistry is ranging from very good to good for animal drinking according to Altoviski[26] classification. The groundwater is very satisfactory for all types of livestock and poultry, according to the classification given by Ayers and Westcot (1989)[27]. It is clear that the groundwater is good for building [26]. Moreover; the groundwater is located within the permissible limits [27]. However, the suitability of the groundwater for irrigation standard is affected by several agricultural factors such as soil and
crop types as well as the climate change conditions increase the sulphate group in Debaga basin during 2014 and deteriorate the water quality than before two decades. Therefore, it is recommended to overcome the water shortage choosing an economical method of irrigation rather than the local traditional methods.

Table 3: Hassan [18] hydrochemical classification of the Debaga unconfined aquifer before 2001.

Family	Group	Index	Water type	Well No.	%
Sulphate-Sodium	Sulphate	13:33	rNa>rMg>rCa; rSO4>rCl> rHCO3	4,6	14.28%
		23:52	rNa>rCa>rMg; rSO4>rHCO3	14	7.14%
		13:52	rNa>rMg>rCa; rSO4>rHCO3	1	7.14%
Sulphate-Calcium		63:52	rCa>rMg>rNa; rSO4>rHCO3	2,3	14.28%
Sulphate-Magnesium		33:52	rMg>rNa>rCa; rHCO3	5,7	14.28%
Bicarbonate-Sodium	Bicarbonate	13:42	rNa>rMg>rCa; rHCO3>rCl	13	7.14%
Bicarbonate-Calcium		43:62	rCa>rNa>rMg; rHCO3>rSO4	12	7.14%
Bicarbonate-Magnesium		53:62	rMg>rCa>rNa; rHCO3>rSO4	11	7.14%
Chloride-Sodium	Chloride	23:13	rNa>rCl>rMgCl>rSO4>rHCO3	8,9	14.28%
Chloride-Calcium		63:13	rCa>rNa>rMgCl>rCl>rSO4>rHCO3	10	7.14%

Table 4: Hassan [18] hydrochemical classification of the Debaga unconfined aquifer water of during 2014.

Family	Group	Index	Water type	Well No.	%
Sulphate-Sodium	Sulphate	13:33	rNa>rMg>rCa; rSO4>rCl> rHCO3	13	7.14%
		13:52	rNa>rMg>rCa; rSO4>rHCO3	5,10,11	21.4%
		23:53	rNa>rCa>rMg; rSO4>rHCO3	14	7.14%
		23:33	rNa>rCa>rMg; rSO4>rCl> rHCO3	4,9	14.28%
Sulphate-Calcium		63:53	rCa>rNa>rMg; rSO4>rHCO3>rCl	7	7.14%
Sulphate-Magnesium		43:53	rMg>rNa>rMg; rSO4>rHCO3	1	7.14%
Chloride-Sodium	Chloride	23:13	rNa>rCl>rMgCl>rSO4>rHCO3	8,6	14.28%
Chloride-Calcium		43:13	rCa>rNa>rMgCl>rSO4>rHCO3	12	7.14%

Figure 7: Distribution pattern of (Na / Cl) molar ratio against EC in groundwater of the Debaga unconfined aquifer water of during 2014.
9. Conclusions
a- The analysis of climate parameters for Mosul, Kirkuk, Baiji, Tuz, Tikrit, and Debaga stations show a remarkable increase of the annual temperature with noticeable lower amounts of the rainfall.

b- The impact of the climatic change on the hydrochemistry of Debaga unconfined aquifer was obvious in increasing the water salinity, increasing the sulphate group to 78.58 % and delete the bicarbonate group for 2014 survey.

c- Multi-geochemical ways were influenced the groundwater geochemistry. Fertilizers may provide additional ions to the groundwater aquifer. The source of sulfate is dissolving of evaporate rocks and secondary gypsum. The evaporation is effective process in the Debaga unconfined aquifer water during 2014.

d- The chemical analyses of groundwater during the 2014 survey reflect that they are not good for human drinking, good for animal drinking, within the permissible limits for irrigation purpose and suitable for building purposes.

e- It is recommended to overcome the water shortage choosing an economical method of irrigation rather than applying the local traditional methods, unless a new policy will involve in the area to prevent the deterioration of groundwater.

References
[1] Zhou, Yu, Zwahlen, François, Wang, Yanxin and Li, Yilian , 2010. Impact of climate change on irrigation requirements in terms of groundwater resources, Hydrogeology Journal, 18, pp. 1571–82.

[2] Jirjees S, Seeyan S, Fatah K K 2020 Climatic Analysis for Pirmam Area, Kurdistan Region, Iraq, Iraqi Geological Journal, 53(1E):75-92.

[3] Baba A, Gündüz O, Friedel M J, Tayfur G, Howard K and Chambel A 2009 Climate Change and its Effects on Water Resources, Issues of National and Global Security, Springer Published in cooperation with NATO Emerging Security Challenges Division.

[4] Kumar C P 2012 Climate Change and Its Impact on Groundwater Resources, International Journal of Engineering and Science, ISSN: 2278-4721, 1(5):43-60.

[5] Voss K A, Famiglietti J S, Lo M, de Linage C, Rodell M and Swenson S C 2013.Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region, Water Resour. Res., 49(2): 904-14, doi:10.1002/wrcr.20078.

[6] Abbas N, Wasimia S A and Al-Ansari N 2016.Assessment of climate change impact on water resources of Lesser Zab, Kurdistan, Iraq using SWAT Model, Engineering, 8: 697-715.

[7] Al-Ansari N, Adamo N and Sissakian V 2019. Hydrological characteristics of the Tigris and Euphrates Rivers, Journal of Earth Sciences and Geotechnical Engineering, 9(4):1-26.

[8] Al-Dabbas M A, David K K, Al-Shammar A and Jwad A M 2020, Management of Bai Hassan Unconfined Aquifer, LESSERZAB RIVER BASIN, KURDISTAN REGION, IRAQ USING A MODELING APPROACH, Iraqi geological journal, 53(2B):1-23.

[9] Al-Jiburi, H. K. S., and Al-Basrawi, N. H., 2012. Hydrogeology. In: geology of low folded zone. Iraqi Bull. Geol. Min., Special Issue, 5:133–157. ISSN 18114539.

[10] Al-Ansari N A, Abdellatif M, Ezeelden M, Ali S and Knutsson S 2014.Climate Change and Future Long-Term Trends of Rainfall at North-eastern Part of Iraq J. Civil Engineering and Architecture, 8(66):790-805.

[11] Adamo N, Al-Ansari N and Sissakian V K 2020 Global Climate Change Impacts on Tigris-Euphrates Rivers Basins, Journal of Earth Sciences and Geotechnical Engineering, 10(1):49-98ISSN:1792-9040 (print version),1792-9660(online).
[12] Jawad S B, Mohamed I J, Muhammed J, Kadhim J K and Hassan H G 2007 Groundwater Irrigated Agriculture Management in the Debaga Hydrogeological Basin (North East Iraq), Arab Science & Technology Foundation/Contract_33_06 WA71.
[13] Al-Sudany H I 2003 Hydrogeological System on Debagah Basin in North of Iraq, PhD Thesis, University of Baghdad, 2003.
[14] Jassim S Z and Goff J C 2006 Geology of Iraq. Dolin, Prague and Moravian Museum, Brno, 341.
[15] Blasing T J 2013. Information is our middle name, CDIAC, Carbon Dioxide Information Analysis Center, http://cdiac.ornl.gov
[16] Al-jaf S J and Al-Taai Osama Tareq 2019 Impact of carbon dioxide concentrations on atmospheric temperature changes over IRAQ AND SOME NEIGHBORING COUNTRIES, Plant Archives 19, Supplement (2):1450-6 e-ISSN:2581-6063 (online), ISSN:0972-5210.
[17] Todd, D.K., 2007: Ground water hydrology third edition, JohnWiley and Sons, Third Reprint. Inc. India. 535 p.
[18] Hassan, A. H., Al-Din, T.S. and Al- Sayyab, A., (1988) The (SS) hydrochemical model, Iraqi J. Sci., 29(1&2):109-121.
[19] Jassim N M, Eman S H and Tahir H H 2012 The variation in the Rainfall average counter lines and their effect in the dust storm frequency in Iraq, Proceeding of the 1st Conference on Dust Storms and their environmental effects, 17-18.
[20] Mulder G, Olsthoorn T N, Al-Manmi D A M A, Schrama E J O and Smidt E H 2015, Identifying water mass depletion in northern Iraq observed by GRACE, Hydrol. Earth Syst. Sci., 19, 1487–500, 2015.
[21] Al-Dabbas M A, Al- Khafaji R M and Hussain G A 2016 Evaluation of climate changes impact on the hydrological properties of unconfined aquifers: a case study from SAMARA-BAIJI AREA, IRAQ, International Journal of Advanced Scientific and Technical Research, 1(6) Jan. –Feb. 2016.
[22] Subramani T, Rajmohan N and Elango L 2010. Groundwater geochemistry and identification of hydrogeochemical processes in a hardrock region, Southern India, Environ Monit Assess., 162: 123-37.
[23] Jankowski J and Acworth R I 1997 Impact of debris-flow deposits on hydrogeochemical process and the development of dry land salinity in the Yass River catchment, New South Wales, Australia. Hydrogeol. J., 5(4): 71-88.
[24] Hem J D1985. Study and interpretation of the chemical characteristics of natural water. 3rd.ed.U.S.G.S. Water supply paper.2254.P.263.
[25] WHO, World Health Organization, 2007 Guidelines for Drinking-water Quality, 1st Addendum to the 3rd ed., volume I: Recommendations, World Health Organization, Geneva, 515p.
[26] Altovisiki ME 1962 Handbook of hydrogeology. Geologietzet, (Moscow: USSR) (In Russian), p614.
[27] Ayers R S and Westcot D W 1985 Water Quality for Agriculture, FAO, Irrigation and drainage paper 29, Rome,