Drug- and Gene-eluting Stents for Preventing Coronary Restenosis

Kamali Manickavasagam Lekshmi¹, Hui-Lian Che¹,², Chong-Su Cho³, and In-Kyu Park¹,∗
¹Department of Biomedical Sciences and BK21 PLUS Centre for Creative Biomedical Scientists, Chonnam National University Medical School, ²Heart Research Centre, Chonnam National University Hospital, Gwangju, ³Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea

Coronary artery disease (CAD) has been reported to be a major cause of death worldwide. Current treatment methods include atherectomy, coronary angioplasty (as a percutaneous coronary intervention), and coronary artery bypass. Among them, the insertion of stents into the coronary artery is one of the commonly used methods for CAD, although the formation of in-stent restenosis (ISR) is a major drawback, demanding improvement in stent technology. Stents can be improved using the delivery of DNA, siRNA, and miRNA rather than anti-inflammatory/anti-thrombotic drugs. In particular, genes that could interfere with the development of plaque around infected regions are conjugated on the stent surface to inhibit neointimal formation. Despite their potential benefits, it is necessary to explore the various properties of gene-eluting stents. Furthermore, multifunctional electronic stents that can be used as a biosensor and deliver drug- or gene-based on physiological condition will be a very promising way to the successful treatment of ISR. In this review, we have discussed the molecular mechanism of restenosis, the use of drug- and gene-eluting stents, and the possible roles that these stents have in the prevention and treatment of coronary restenosis. Further, we have explained how multifunctional electronic stents could be used as a biosensor and deliver drugs based on physiological conditions

Key Words: Biosensing Techniques; Coronary Artery Disease; Coronary Restenosis; DNA; Drug-Eluting Stents

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Coronary artery disease (CAD) is one of the leading causes of death worldwide.¹ According to the WHO, 17.5 million people died because of CAD in 2008.² The major cause for CAD is atherosclerosis; focal manifestations that hinder blood flow because of lesions in critical areas of the vasculature. Some clinical procedures to treat atherosclerosis include percutaneous transluminal coronary angioplasty (PTCA), coronary artery bypass graft (CABG), and stenting.³

In 1964, Dotter and Judkins were the first to attempt angioplasty by implanting first percutaneous coilspring graft in a dog’s femoral artery.⁴ Later, Andreas Gruntzing developed a polyvinyl chloride balloon fitted, double-lumen catheter in 1975 and performed the first angioplasty on human in 1977. Since then there have been many advancements in percutaneous coronary intervention (PCI), as an efficient and frequently performed invasive procedure despite restenosis.⁵ In the 1980s, an invasive method involving balloon angioplasty was superseded by the development of coronary stents.⁶ Coronary stenting along with aggressive antithrombotic and antiplatelet therapies became the most significant treatments, with improved angiographic and clinical outcomes.⁷ Different types of stents were developed for coronary interventions, such as bare metal stents (BMS), drug-eluting stents (DES) with metals, DES with biodegradable polymers, DES without a polymer coating, bifurcation stents, and self-expanding stents.⁸ During stent implantation, the target vessel is often injured, and the endothelial cells are denudated.⁹ Although stenting has become popular and accepted as a safer strategy because it is less invasive than that of other angioplasty procedures, postprocedural in-stent restenosis (ISR) remains a drawback.⁵ Implantation of coronary
stents reduces the rate of restenosis due to balloon angioplasty from \(~30-60\%\) to \(16-44\%\) by the advent of BMS and then development of DES further reduces it by up to \(<15\%\) depending on the lesion.\(^ {12}\) BMS has also been associated with undesirable effects such as inflammation, thrombogenesis, and hyper-proliferation of vascular smooth muscle cells, resulting in ISR.\(^ {9}\) Even though the occurrence of ISR has not been completely inhibited by the drugs, the possibility of ISR is lessened by the development of DES.\(^ {10}\) The negative clinical outcomes of all treatment procedures necessitate the urgent need for the development of an alternative procedure for coronary restenosis. As intramuscular gene delivery is regarded as a reliable approach to treat coronary diseases,\(^ {11}\) the occurrence of ISR could be controlled by delivering nucleic acids that could down regulate the proliferation of endothelial cells. In this review, we will discuss the mechanisms of coronary restenosis and ISR. We have mainly concentrated on gene-eluting stents which minimizes the occurrence of ISR with a brief introduction on DES. Furthermore, we have explained recent multifunctional electronic stents that could be used as biosensors and drug delivery methods based on physiological conditions.

MECHANISM OF RESTENOSIS AND ISR

Arterial restenosis has been a major drawback of coronary angioplasty for the past two decades and is a multifactorial healing response because of injury caused during transluminal coronary revascularization that involves several mechanisms.\(^ {12}\) The occurrence of restenosis and ISR due to angioplasty or stenting follows a similar process which includes Elastic recoil, Thrombus organization, Remodeling and Resolution of inflammation.\(^ {13}\) Overstretching causes within an hour after balloon deflation/stenting, elastic recoil is the phenomenon occurring due to overstretching of lumen at stent implanted area, which causes a loss of luminal area of about \(4\%\). However, compared to angioplasty, stenting has reduced elastic recoil significantly. One of the major factors responsible for ISR is neointimal formation which occurs three months after the procedure.\(^ {14}\) Fibrin and platelet association with neointimal accumulation and neovascularization at the site of ISR signifies the role of thrombus formation in ISR promotion. Thrombus organization is caused due to damage/tearing in the endothelial layer which results in medial dissection induction and exposure to intimal components such as collagen, fibronectin, etc, leading to deposition and aggregation of platelets.\(^ {15}\) Neointimal formation increases with little change for the first six months and reduces gradually from the sixth month to three years. Though cell proliferation is considered to be a chronic factor for neointimal formation, it does not correlate with medial disruption or with other factors such as the movement of the primary plaque. Remodeling results in lumen loss of about \(40\%\) at the restenosis lesions.\(^ {16}\)

PATHOPHYSIOLOGY OF RESTENOSIS AND ISR

Healthy blood vessels consist of three primary layers such as the tunica intima, tunica media, and tunica adventitia. The tunica intima is the innermost layer that is in contact with blood flowing through the artery. The middle layer or tunica media is composed primarily of SMC. The tunica adventitia is the outermost layer comprising collagen, and this layer is responsible for the structure and elasticity of blood vessels.\(^ {17}\) Removal of an atherosclerotic plaque results in platelet activation, adhesion, and aggregation. Activated platelets then release various cytokines, growth factors, and chemokines, thereby triggering SMC proliferation, leukocyte recruitment, and coagulation cascade activation. SMCs dedifferentiate because of a phenotypic modification, migrate into the intima, and later form the neointima.\(^ {18}\) The process of restenosis is similar to that of a wound healing as T cells and a few B cells are also involved in restenosis.

Although the occurrence of restenosis is highly minimized by stents, the risk of ISR remains a threat, while considering long-term success.\(^ {12}\) Unlike restenosis, ISR is mainly caused by neointimal formation alone.\(^ {19}\) The occurrence of ISR could be foretold by the characteristics of the vessels and lesions, such as size, location, calcification, occlusion, and tortuosity.\(^ {20}\) Based on the length of restenosis with respect to stent length, ISR has been relegated into four types. They have been defined as follows: [1] focal ISR \(< 10 \text{ mm}\), [2] diffuse (ISR \(> 10 \text{ mm}\); remains within the stent), [3] proliferative (ISR \(> 10 \text{ mm}\); lesion extends outside the stent), and [4] occlusive. ISR with greater severity is categorized as an aggressive ISR.\(^ {21}\) There are a few variables that are known to increase the risk of ISR, such as diabetes, previous restenosis history, and certain genetic factors.\(^ {22}\) Patients who have a positive allergic patch-test reaction to the stent components are also prone to ISR.\(^ {23}\)

The growth factors and cytokines involved in the restenosis process are important for the treatment of restenosis. Smooth muscle cell proliferation involves the action of fibroblast growth factor (FGF-2), platelet-derived growth factor (PDGF) A & B, transforming growth factor \(\beta\) (TGF-\(\beta\)), and insulin like growth factor-1 (IGF-1) that are produced by the smooth muscle cells themselves.\(^ {24}\) In addition, vascular endothelial growth factor (VEGF); monocyte chemokine protein-1 (MCP-1); interleukin (IL)-1, 6, and 8; adenosine diphosphate; thrombin; serotonin; and thromboxane A2 are also involved in endothelialization and other processes involved in restenosis.\(^ {25}\) The \(\beta\)-integrin molecule, Mac-1 (CD11b/CD18), which is responsible for the recruitment of monocytes, also plays a role in restenosis,\(^ {26}\) and several studies have shown that ISR could be controlled by regulating growth factors.\(^ {27}\)

Recent research has shown a higher expression of a large number of well-known genes in ISR tissue at the time of re-vascularization in patients with ISR.\(^ {28}\) These genes could be targeted for the suppression of neointimal formation using gene-based methodology, thereby reducing
the risk of ISR. Gene therapy for ISR is comparatively more effective than drug therapy.

STENT COATING

Drug- and gene-eluting stents require a foundation on the stent’s surface to incorporate the therapeutic moiety. Mostly natural and synthetic polymers have been used as reservoirs for the delivery of drugs/genes. However, the choice of polymer coating completely depends on the biocompatibility, sterility, and immunogenicity of the polymers. Polymers used for stent coating can be categorized as either biodegradable or non-biodegradable polymers, as shown in Table 1. As for biodegradable stents, they are designed to provide temporary structural support for the vessel wall, and they are completely biodegradable. They are usually composed of biodegradable polymers such as polycarbonate and PLA, which can be metabolized in 12 to 18 months. The characteristics of the representative biodegradable polymers used for stent coating are discussed in more detail in the following section.

HYALURONIC ACID (HA)

HA is a highly cyto-compatible and cellular matrix-compatible polymer. Hyaluronidase can degrade HA efficiently, and the degraded product could induce the production of ECM and formation of blood capillaries. The proliferation and migration of endothelial cells could be enhanced by HA, whereas the proliferation of SMCs was knocked down through the delivery of Akt siRNA using HA nanoparticles.

PLGA

PLGA is an FDA-approved biodegradable polymer that has been used in the medical sciences field. PLGA has the capability of releasing hydrophobic drugs and genes at a controlled rate. It has been reported that DNA could form a complex with PLGA nanoparticles that could be efficiently transfected, and it was expressed only in the stent-coated region, not in an adjacent stent region or a distal organ.

PLLA

PLLA is the most studied polymer that degrades over time. Its biodegradability helps to override poor biocompatibility and inflammatory response. PLLA was used as a coating in biolimus A9-, paclitaxel-, or sirolimus-eluting stents. It was reported to be effective and safe in both short-term and mid-term treatments. The Igaki-Tamai stent was made of a PLLA nanofilament with a zigzag helical design. The PLLA stent is biodegradable, and its degraded products are safe, whereas long-term follow-up is required to validate its efficacy.

POLYZENE-F

Polyzene-F is a biocompatible polymer that has anti-inflammatory, pro-healing, and bacterial resistance properties. Coating the stent with Polyzene-F reduced the risk of thrombosis by ensuring low surface thrombogenicity. Studies on Polyzene-F coated stents have so far demonstrated favorable efficacy and safety.

DRUG ELUTING STENTS (DES)

A DES treats restenosis and ISR by delivering anti-inflammatory, anti-proliferative, anti-thrombogenic, and immunosuppressant drugs, as well as certain inhibitors to the site of injury. Drugs delivered using these methods interfere with more than one pathway in the restenosis mechanism. Drugs that are used in DES are listed in Table 2.

Table 1. Lists of polymers used for stent coating
Biodegradable polymers
Poly lactic acid (PLA)
Poly vinyl pyrrolidone (PVP)
Poly lactic-co-glycolic acid (PLGA)
Poly lactic acid-co-caprolactone (PLC)
Poly (L-lactic acid) (PLLA)
Non-biodegradable polymers
Phosphorylcholine (PC)
C10 7 C19 PVP
Parylene C
Poly (ethylene-co-vinyl acetate) (PEVA)
Poly (n-butyl methacrylate) (PBMA)
Poly (styrene-b-isobutylene-b-styrene)
Poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)
Stents coated
Supralimus 181 and Infinium 181 stents
Excel stent
Endeavor stents
BioLinx polymer systems
CYPHER™ stent
TAXUS® stent
Xience V® stent
PROMUS
Xience V® stent
Abbott vascular
PROMUS™ element
TABLE 2. Drugs used for treating restenosis and ISR

Drugs	Mechanism of action
Cytarabine, doxorubicin, vincristine³⁷, dalteparin sodium, cyclosporine A, colchines, etoposide,³⁸ sirolimus,³⁹ paclitaxel⁴⁰ and ceramide⁴¹	Inhibition SMC growth
Cilostazol, eptifibatide, tirofiban⁴²	Antiplatelet agent
Clodronate, pamidronate, alendronate and ISA-13¹⁴³	Anti-inflammatory agent
Tyrophostin (AG-1295 and AGL-2034)	PDGF receptor specific drugs
Estrogens,⁴⁴ troglitazone,⁴⁵ tranilast,⁴⁶ valsartan,⁴⁷ statins,⁴⁸ heparin, hirudin⁴⁹ and Fab fragment inhibitor abeximab	Non specific drugs

TABLE 3. First, second and third generation DES based on the drug loaded⁵⁰

Stent	Stent material	Drug loaded	
Sirolimus eluting stents	SES		3-layer coating
Cypher (RAVEL, SIRIUS, SAPPHIRE)	316 L stainless steel bx velocity stent	1. Parylene C base-2 μm	
		2. Polyethylene vinyl acetate-10 μm	
		3. Poly(n-butyl methacrylate) with sirolimus-6 μm	
Yukon choice PC (ISAR-TEST 3, ISAR-TEST 4)	Microporous, 316 L stainless steel stent	5 μm thick coating of Abluminal coating with poly(lactic acid), shellac and sirolimus	
Orsiro stents (ORIENT)	Cobalt-chromium stent	60 μm and 80 μm thick struts coated with amorphous silicon carbamide coating and poly-L-lactate with sirolimus.	
Paclitaxel eluting stent	PES		
Taxus (ELUTES, TAXUS II, ASPECT)	316L stainless steel Express 2 stent	16 μm thick coating of styrene isoprene butadiene copolymer and paclitaxel	
Ion (PERSEUS)	316L stainless steel platinum-chromium alloy	Trilblock copolymer containing paclitaxel	
JACTAX (JACTAX trail DES)	316L stainless steel Liberte stent	Albunial surface premounted stent coated with bioabsorbable D-lactic poly(lactic acid) and paclitaxel.	
Everolimus eluting stent			
Promus (SPIRIT I and II)	L605 cobalt-chromium alloy ML vision stent	Coated with poly(n-butyl methacrylate); poly (vinylidene fluoride-co-hexa fluoropropylene) and Everolimus	
PROMUS element plus (DUTCH PEERS)	Platinum Chromium alloy stent	7 μm thick Fluoropolymer coating with everolimus	
Synergy (EVLOLVE, EVOLVE II)	Thin platinum-Chromium	On the abluminal stent surface bioabsorbable PLGA is applied with Everolimus	
Xience V (SPIRIT III, V and EXCELLENT)	L605 cobalt-chromium ML vision stent	Multilayer of 7.6 μm fluoropolymer and everolimus coating	
Absorb BVS (ABSORB Cohort A, ABSORB Cohort B, ABSORB II, ABSORB Extend)	Semicrystalline poly-L-lactic acid	Poly(d-lactic acid) polymer coating with everolimus	
Zotarolimus eluting stent	ZES		
Endeavor (ENDEAVOR I and II)	Cobalt-chromium driver stent	4.3 μm phosphorylcholine coating with 1 μm zotarolimus base coat	
Resolute (TWENTE RESOLUTE ALL-Comers RESOLUTE International)	Cobalt chromium stent, open-cell design in a continuous, sinusoidal-helical pattern	6 μm thick Biolinux polymer system with zotarolimus	
Resolute Integrity (DUTCH PEERS)	Cobalt chromium stent helically wrapped and laser fused wire stent	6 μm thick Biolinux polymer system with zotarolimus	
Biolimus A9 eluting stent			
Nobori (NOBORI I, NOBORI-JAPAN, NEXT, COMPARE II)	Stainless steel stent	Bioabsorbable poly(lactic acid) coating of 20 μm thickness and biolimus A9	
Biomatrix (LEADERS)	Stainless steel stent	Bioabsorbable PLA polymer applied over the abluminal surface of stent	
Based on advancements in stent coating and enhancement in drug elution profile DES, they were categorized as first, second and third generation DES. The brief summary of three generations of DES is given in Table 3.

Advancement in the field of nanotechnology created a new road for the improvement of DES as a controlled drug delivery system. Today, a DES is fabricated with a polymer coating that serves as a reservoir for therapeutic agents, and drugs are delivered using nanoformulations. The two strategies using nanoparticle DES involve an anti-restenosis strategy and a pro-healing strategy. The former strategy involves the inhibition of SMC proliferation by delivering anti-proliferative agents or anti-inflammatory agents to enable the inhibition of the formation of neointimal lesions. The latter strategy facilitates the re-endothelialization of Imatinib scaffolding that mimics the extracellular matrix environment.

NANOPARTICLE DES

The therapeutic drugs that are delivered using nanoparticles as a carrier for treating restenosis and ISR are discussed in this section.

PDGF RECEPTOR INHIBITORS

PDGF receptors have a crucial role in the proliferation of endothelial cells and inhibition of these receptors could prevent restenosis. In 1996, Banai et al. designed AG-1295-impregnated PLA nanoparticles for intravascular delivery. AG1295 is a potent PDGF blocker; it can either inactivate or block the migration and proliferation of SMCs. They reported that 50% of neointimal formation was inhibited in porcine femoral arteries.

In addition, Imatinib mesylate, a PDGF receptor tyrosine kinase inhibitor, could also prevent SMC proliferation by inhibiting the phosphorylation of PDGF receptor β. Imatinib mesylate-loaded bioabsorbable polymeric nanoparticles were coated on a stent and implanted into the coronary artery of a pig model. Masuda et al. reported that imatinib mesylate inhibited 50% of neointimal formation and that mitogen-activated protein kinase activity was hampered. However, it had no effect on inflammation or re-endothelialization.

SIROLIMUS (RAPAMYCIN)

Sirolimus is an immunosuppressive and anti-proliferative agent; it was the first drug used on cardiovascular stents from the Limus family of drugs. It is a macrocyclic lactone capable of binding to FKBP12 as a cytosolic protein, and it blocks cell cycle progression at the G1 phase by blocking the activation of mTOR. The inhibition of mTOR activity suppresses cytokine-derived T-cell proliferation by exerting its immunosuppressant ability.

Luderer et al. first evaluated the effects of sirolimus-loaded nanoparticles on restenosis. They developed biodegradable 250-nm sirolimus-loaded poly (D,L-lactide) (PDLLA) nanoparticles to prevent restenosis. They used 20-percent sirolimus-loaded PDLLA nanoparticles with their evident biphasic release kinetics with a 5-h initial burst release, and a 30-day sustained release was obtained. This system prevented restenosis by inhibiting SMC proliferation, although no enhancement in endothelialization was observed.

A post-hoc drug delivery system to coat an already implanted stent was designed by Räthel et al.; they have coupled rapamycin with superparamagnetic nanoparticles (MNPs) and confirmed the anti-proliferative properties of the drug. Drug-containing MNPs were loaded into magnetic microbubbles and were deposited at the stent struts with the help of an external magnet. The products were released by applying an ultrasound, and dose-dependent inhibition of cell proliferation was observed in the MNP-treated SMCs. They have reported that it is a promising strategy for coating an already implanted stent by magnetizing the stent in the circulating fluids using an external magnetic field.

PACLITAXEL

As a non-Limus-family-related drug, paclitaxel has been widely used because it has an effect on the stabilization of microtubules, thus resulting in the inhibition of cell division at the G0/G1 and G2/M phases. Paclitaxel is known to influence the motility, morphology, and migration of cells between organelles. Bhargava et al. designed a novel cobalt-chromium stent coated with paclitaxel-loaded porous carbon-carbon nanoparticles, and they evaluated it in a porcine coronary artery. Interestingly, both the porous carbon-carbon nanoparticles coating the cobalt-chromium stent that was loaded with low and medium paclitaxel doses exhibited significant effects on endothelialization, neointimal formation, thrombosis, and inflammatory responses, as compared with the CYPHER stent, which is an FDA-approved sirolimus-eluting stent (SES). Moreover, polymeric stents have no significant effect on endothelialization or neointimal formation, as compared with non-polymeric stents.

Chorny et al. used magnetic nanoparticles for the local delivery of paclitaxel. They hypothesized that release kinetics for encapsulated drugs could be significantly altered by simultaneously using magnetic targeting through induced magnetization with a uniform field. They observed significant inhibition of SMC proliferation with paclitaxel-loaded MNPs, as compared with those cells cultured with non-magnetic drug-loaded NPs, although they showed a significant localization of MNOs that were delivered locally to stented arteries using uniform field-controlled targeting, as compared with non-magnetic nanoparticles. Thus, they proved their hypothesis using uniform field-controlled targeting and MNPs, by delivering the drug in a site-specific manner, and demonstrated a promising strategy for preventing ISR.
PTAVASTATIN (PS)

PS is an HMG-CoA reductase inhibitor and is one of the most potent drugs among the statins that significantly affects SMC proliferation. Tsukie et al. designed a PS-eluting stent. It attenuates ISR, similar to that of SES. Interestingly, endothelial healing was not delayed by PS-eluting stents, unlike SES, suggesting that further development is necessitated to improve the safety and usefulness of the system.

S-NITROGLUTATHIONE (SN)

SN, a platelet selective donor and potential antithrombotic nitric oxide donor, is considered to be a restenosis-preventing agent because of its selective platelet inhibition properties. Most drugs that treat cardiovascular ailments interfere with the nitric oxide pathway because nitric oxide is a multifunctional molecule that could regulate thrombus formation and blood flow. Acharya et al. studied the effect of polymer coatings on SN-eluting stents. They reported on a stent loaded with SN (0.5% w/w) that had an optimal concentration of PCL coating 17.5% w/v for prolonged delivery of SN. They have also reported that PCL was a suitable carrier for SN than PLGA and poly (ethylene glycol) (PEG), although further optimization of coating methods would result in enhanced drug-release kinetics for PCL-coated stents.

GENE-ELUTING STENTS (GES)

The anti-proliferative drug delivery using DES showed a significant reduction in restenosis but questions as to its long term efficacy remain unanswered. DES has shown poor long-term outcomes. It has resulted in incomplete re-endothelialization due to inappropriate inhibition of endothelial and SMC proliferation by the anti-proliferative drugs. This has turned out to be a risk factor for late-stent thrombosis, demanding a better therapeutic agent. And so, gene therapy has emerged as an efficient method for ISR therapy (Table 4 and Fig. 1).

Cardiovascular gene therapy requires a therapeutic gene, a vector to encode the gene, and a carrier to deliver the vector. Carriers that are considered for vascular gene therapy are double-balloon catheters, porous and microporous catheters, hydrogel catheters, dispatch catheters, and infiltration catheters. Endovascular stents are an ideal platform for delivering genes to injured arteries because of their permanent scaffolding structures, although new studies should be conducted to help increase stent compatibility for gene delivery and overcome existing limitations.

For stent design, the coating on the stent surface is crucial as it acts as a reservoir for the therapeutic gene. The coating has to be biocompatible, and it should not cause any inflammatory or thrombogenic effects. After stent implantation, these coatings will be proximal to the circulatory system, and their usage as a reservoir is crucial for maintaining a prolonged local drug concentration. An ideal coating should possess certain characteristics such as excellent binding ability, targeted and sustained release, and sufficient vector capacity for significant transfection. Vectors for transfecting genes could be either viral vectors such as adenoviruses, retroviruses, or non-viral vectors such as liposomes and polymers. Naked plasmids are also transfected without vectors.

PLASMID DNA-ELUTING STENTS

Klugherz et al. first reported the successful delivery of green fluorescent protein (GFP) plasmid DNA into the coronary arteries of a pig using a DNA-eluting stent for cardiovascular disease treatment. They synthesized a coronary stent coated with a mixture of PLGA and DNA. They observed the sustained release of DNA and also obtained a structurally intact and functional DNA sample throughout their study. One of the major hindrances faced during this study was the biodistribution of DNA in downstream coronary sites and distal organs. They also studied the site-specific delivery of DNA by synthesizing a collagen-coated stent tethered with an antibody. Collagen-coated stents were conjugated with an adenoviral monoclonal antibody using covalent bonding, and a replication-deficient adenovirus-encoding GFP was conjugated to the

Table 4. Summary on therapeutic gene delivered via stent

Therapeutic gene	Outcome
GFP	Successful delivery, high localization and efficient transfection of DNA
VEGF, VEGF + Ang-1	Enhanced reendothelialization and significant inhibition of SMCs. Also, prevented the neointima formation
7ND	Inhibited the action of MCP-1 thereby prevented neointima formation. It does not show any effect on endothelial cell proliferation
eNOS	Proliferation of endothelial cells was inhibited and reendothelialization was accelerated. It does not show the effect on neointima formation
ENTPDase	Blocked ADP and causes platelet aggregation
miR21/miR221	Knock down resulted in the reduction of neointima formation
miR 145	Over expression resulted in suppression of neointima formation by targeting cMyc

GFP: green fluorescent protein, VEGF: vascular endothelial growth factor, miR: micro RNA.
Drug- and Gene-eluting Stents for Preventing Coronary Restenosis

FIG. 1. (A) Coronary artery with restenosis, (B) coronary artery with ISR after stent implantation, and (C) a scheme representing the mechanisms of gene- and drug-eluting for preventing ISR. This illustration was conceived and drawn by Kamali ML.

antibody. The delivery of DNA to the smooth muscle cells in a pig artery was obtained with excellent efficiency and localization. They did not detect any vectors in either the downstream sites or distal organs during a biodistribution study. Although they observed occasional tearing in the collagen coating with deployment, no detachment of the collagen coating from the stent occurred, and no evidence of thrombogenesis secondary to hemocompatibility of the collagen was observed.

However, the transfection efficiency was low, although it seemed to be promising. Therefore, in their consecutive study, they enhanced the transfection efficiency from 1% to approximately 10% by incorporating denatured collagen both in vitro and in vivo. It was based on a hypothesis involving adhesion molecule interaction through an integrin-related mechanism, as well as changes associated with the arterial smooth muscle cells through an actin-related mechanism.

Jin et al. synthesized a coronary artery stent that delivered plasmid DNA in a site-specific manner. They first reported the synthesis of a coronary artery stent coated with anti-DNA antibodies to which the plasmid DNA was bound. The successful delivery of plasmid DNA with a high efficiency and with a neointimal transfection of about 7% was achieved, demonstrating that the system could be used as a cardiovascular gene therapy.

Kim et al. synthesized a gene-eluting stent that could deliver plasmid DNA with structural integrity. They designed an HA-coated stent, and plasmid DNA was loaded onto the surface using ionic interactions in a polyplex formation with polyethyleneimine (PEI). This system has been demonstrated to have improved transfection effi-
ciency and biocompatibility. These stents have dual functionality with HA and plasmid DNA, and have shown efficiency against restenosis.

For the gene therapy method, the therapeutic efficiency and feasibility for the prevention of ISR was enhanced by coating the gene-eluting stents with dodecylated chitosan-plasmid DNA nanoparticles (DCDNPs). The DCDNPs were used for the local delivery of plasmid DNA into injured blood vessels over a longer time period. The sizes of the DCDNPs ranged from about 90 nm to 180 nm and were prepared by spray-coating dodecylated chitosan-plasmid DNA onto the stent. The target gene was released only in the arterial segment that was directly in contact with the stent, but not in an adjacent region or a distal organ, suggesting that coating the stents with DCDNPs is likely to be a reliable strategy for preventing ISR.

VEGF GENE-ELUTING STENTS

The delivery of phosphorylcholic (PC) polymer stents coated with naked plasmid DNA that encoded human vascular endothelial growth factor (pHVEGF)-2 was studied. The results showed a reduction in the formation of neointima by accelerating re-endothelialization, instead of inhibition. This was considered an alternative for preventing restenosis. The VEGF gene was also used in combination with the angiopoietin-1 (Ang-1) gene to prevent ISR. The VEGF and Ang-1 genes were loaded into nanoparticles to deliver the genes to the target site. The stent was designed as a nanohybrid hydrogel-based endovascular stent in which the therapeutic genes were carried using a fibrin hydrogel, and it was conjugated to a carbon nanotube coated onto the stent. The hydrogel acts as a reservoir and delivers the genes to the target site, thereby enhancing re-endothelialization, whereas carbon nanotubes aid in tuning the bioactivity of the stent. The results clearly showed enhancement in re-endothelialization, attenuation of stenosis, and prevention of neointimal formation. Yang et al. developed a PLGA nanoparticle-coated stent containing VEGF and paclitaxel as a combined therapeutic agent for ISR. The stent comprised a bilayer of paclitaxel in the inner core and a PLGA nanoparticle containing VEGF in the outer core. After stent deployment, VEGF genes were initially released, followed by paclitaxel. Thus, at first, endothelial healing occurred, followed by the inhibition of smooth muscle cell proliferation. The occurrence of ISR was significantly reduced, and complete re-endothelialization occurred within 1 month of implantation.

7ND GENE-ELUTING STENTS

The onset of neointimal formation was inhibited by the delivery of the 7ND gene (cDNA) using a gene-eluting stent because the 7ND gene inhibits the action of monocyte chemoattractant protein-1 (MCP-1), which is vital for neointimal formation, thereby preventing it without any undesirable effects. Further, it was reported that the 7ND did not show any effect on the proliferation of human endothelial cells, suggesting that arterial wall healing would not be impaired.

ENOS-ELUTING STENTS

The overexpression of eNOS is known to inhibit the proliferation of endothelial cells and accelerates re-endothelialization. Therefore, it could be utilized in the prevention of ISR. Sharif et al. first demonstrated that the delivery of eNOS using gene-eluting stents suppressed ISR and accelerated re-endothelialization. They used a PC-coated stent and delivered eNOS using an adenoviral vector. This may be considered an ideal strategy for managing the ISR problem. The non-viral delivery of eNOS has also been reported by Brito et al. The plasmid DNA encoding eNOS in a lipopolyplex formulation was immobilized on type B collagen-coated stainless steel stents; upon implantation, these stents were found to result in efficient transgene expression, suggesting that ISR could be inhibited and re-endothelialization could be achieved by delivering eNOS using non-viral vectors. In contrast, Sharif et al. reported that the non-viral delivery of eNOS did not reduce restenosis. They employed liposome-mediated gene delivery and observed that the lip/eNOS delivered to the injured blood vessel accelerated re-endothelialization, but it did not inhibit neointimal formation, as compared with that of viral-mediated eNOS delivery.

ENTPDase-ELUTING STENTS

Degradation or blocking of adenosine diphosphate (ADP) could help in preventing ISR because ADP is known to be a major factor in platelet aggregation. This was demonstrated by the local delivery of human placental ectonucleoside triphosphate diphosphohydrolase (pENTPDase) into diseased coronary arteries through gene-eluting stents because pENTPDase is an enzyme that could hydrolyze ADP rapidly and inhibit platelet aggregation, suggesting that neointimal hyperplasia and ISR were suppressed efficiently using this strategy.

INTERFERENCE RNA-ELUTING STENTS

Mitra and Agarwal reported that vascular, smooth muscle cells (VSMC) play a major role in ISR. Medial VSMCs underwent apoptosis because of injury caused by stent implantation, and the repair mechanism involved the coordination of thrombus deposition, leukocyte trafficking to the stent site, and VSMC mitogenic stimuli. ISR resulted because of dysregulation of the repair mechanism and increased VSMC proliferation.

After endothelial injury, three microRNAs such as miR-21, miR-145, and miR-221 are involved in modification of vessel restenosis. Ji et al. reported that the intensity of neointimal lesion formation was lessened if the antisense of miR-21 was knocked down. In addition, they identified an
enhancement in VSMC proliferation using miR-21 through Akt and Bel-2 activation, along with the inhibition of phospho-
tension homology deleted from chromosome 10, which is a common target for silencing miR-21. The over-expression of miR-145 secondary to carotid balloon inju-
ry resulted in the promotion of VSMC marker expression
with a reduction in neointimal formation. Platelet-de-
derived growth factor (PDGF) is one of the most potent
VSMC mitogens that induces miR-221 upon stimulation;
it also down-regulates CKit and inhibits p27kip1, which in
turn decreases and increases, respectively, SMC prolifera-
tion, thereby contributing to neointimal formation and
indicating that neointimal formation could be blocked by
the over-expression of miR145 and knockdown of miR-21 and miR-221.

Park and his coworkers developed a system to deliver
miR-145 using a polysorbitol-based osmotically active
transporter (POAST) to treat restenosis. They designed
a method to coat miR-145 over the stent surface, for which
miR-145 was made into a complex with PSOAT to form
PSOAT/miR-145 nanoparticles (PMN); then, it was immo-
bilized on the heparin/dopamine-conjugated stent surface.
From in vitro studies, the suppression of VSMC prolifera-
tion was evident after delivering miR-145 because of c-Myc
downregulation, as c-Myc is the target gene for miR-145;
heparin/dopamine-conjugated stents have demonstrated
high transfection efficiency with less toxicity.

Similar to microRNAs, short interfering RNA (siRNA)
could also induce RNA silencing and could be used for the
treatment of restenosis. It was also demonstrated to sup-
press restenosis using an Akt1 siRNA-embedded coronary
stent, suggesting that the inhibition of Akt1 protein, which
is responsible for cell proliferation, could reduce cell growth.
Furthermore, a coronary stent, coated with dopamine-con-
jugated HA and Akt1 siRNA, was loaded on the HA surface
using an electrostatic interaction. It was found that the
delivery of Akt1 siRNA suppressed VSMC proliferation,
and downstream Akt1 signaling proteins such as mTOR,
4E-BPI, and p70S6K were also downregulated. The ther-
apeutic efficiency of an Akt1 siRNA-loaded HA-coated
stent (ASN/HA) stent was investigated in a rabbit resto-
nession model with BMS as a control.

Micro-computed tomo-
graphy (micro-CT) imaging confirmed the suppression of
ISR at the stent-implanted region. Vascular growth
around the stent was thin with an ASN/HA stent and an
HA-coated stent that were implanted in an animal model;
however, in a BMS-implant model, thick vascular growth
was observed.

In addition, the ISR area, SMC deposition, and ISR rate
were significantly reduced with the ASN/HA stent, as com-
pared with the BMS stent. Histopathological analysis re-
vealed that neointima hyperplasia was completely absent
in the ASN/HA stent implant model, but BMS demon-
strated neointima formation to a large extent. The neo-
intima suppression by the BMS HA coated stent and the
ASN/HA stent were evaluated after 2 and 4 weeks post
implantation. The thickness and pathology of the stenotic
region were significantly reduced in arteries implanted
with an ASN/HA stent, as compared with BMS- and HA-co-
ated stents.

Verhoeff-Van Gieson staining of the arteries confirmed
the suppression of neointima formation with the ASN/HA
stent, and with a BMS-treated artery, neointima formation
was larger. Similarly, a microRNA 145 nanoparticle-im-
mobilized HA-coated coronary stent (Fig. 2) was also de-
veloped by them for targeting C-Myc protein. In this system,
disulfide-cross-linked PEI was used as a carrier to trans-
flect miR145. The miR145 was labeled with YOYO-1, a fluo-
rescent dye, which enabled the imaging of miR145 after
transfection. The stents were then implanted into the coro-
nary arteries of a rabbit model. CT imaging and histological
analyses revealed that SMC proliferation was inhibited
and resulted in the prevention of ISR secondary to the re-
lease of miR145. They have observed suppression of neo-
intimal formation, indicating that the RNA interference
strategy is promising for treating ISR.

BIOSENSOR INTEGRATED CARDIOVASCULAR STENTS

DES was created for treating restenosis and could also
be used as biosensors to monitor blood flow and arterial
pressure. Implantation of cardiovascular stents is known to
cause inflammation and neointimal formation that can
hinder blood flow. Therefore, when DES is implanted in to-
gether with a biosensor to monitor pulmonary artery pres-
sure, the treatment efficacy will be improved. Arterial pres-
sure load is a major problem in other cardiac ailments.
Implanting sensors in the heart and monitoring blood flow
could help in the diagnosis of a variety of cardiac ailments.
Chow et al. developed an implantable cardiac monitoring
system that was integrated with a cardiovascular stent.
The system consists of an FDA-approved stent tailored
with a miniature cardiac pressure sensor and wireless
transmitter. In this design, the stent serves as an antenna,
which transmits a quantified absorption to the surround-
ing region using a transmitter with wireless telemetry.
One of the major drawbacks reported in this study was that
the monitoring system was affected by electromagnetic in-
terference secondary to Bluetooth and Wi-Fi devices.

In their subsequent study, Chow et al. improved their
system by designing an application-specific integrated cir-
cuit (ASIC) made for wireless telemetry consisting of a volt-
Coronary artery stents have been widely used to treat restenosis. However, implantation of coronary stents could result in ISR (i.e., development of plaque that is secondary to stent deployment). Using stents, this issue is resolved by delivering drugs to prevent ISR. A DES was coated with various non-erodible and biodegradable polymers to achieve sustained drug release; the polymer coating also serves as a reservoir for drugs. Drugs such as tyrphostin AG1295, Imatinib mesylate, paclitaxel, pitavastatin, sirolimus, and S-nitrosoglutathione that could inhibit the proliferation of smooth muscle cells and thrombosis at the injured site were loaded onto polymeric stents to prevent ISR. However, because of a lack of understanding of the mechanism of DES and other significant technical hurdles, the use of DES in clinical practice has been hampered. Over the last 30 years, many studies have reported on the possible mechanism of action of stents, thus providing a biological rationale for their use. This issue pertains to the use of coronary stents as scaffolding for the targeted and sustained delivery of therapeutic genes. Gene-eluting stents have been under development for a while and are inherently capable of providing a permanent solution for ISR. Thus, gene therapy became an appealing strategy to prevent restenosis and ISR through the delivery of therapeutic genes into the coronary artery. Many studies were conducted on the delivery of therapeutic genes using balloon catheters and intravenous injections, although targeted delivery remains an obstacle for cardiovascular gene therapy. Therapeutic genes that encode VEGF, MCP-1, eNOS, and pENTPDase were delivered using stents and were reported as a promising strategy to prevent ISR, although significant technical limitations such as vector development, percutaneous deployment, and gene incorporation still necessitate resolution. Vector development has also led to the improvement of gene-eluting stents.

RNA interference technology could also be utilized for treating restenosis, which is currently not well exploited. The utilization of RNA interference to treat cardiovascular diseases is a significant discovery and will be employed in clinical practice in the near future. Future studies may incorporate novel strategies including miRNA- and siRNA-eluting stents to treat ISR with the evolution of DNA technology. Furthermore, multifunctional electronic stents could be used as biosensors and to deliver drugs or genes based on physiological conditions, and intravascular MRI combined with gene-eluting stents would be a promising treatment to prevent ISR.

CONCLUSION

The development in coronary stents has increasingly gained researchers’ interest over the past decade because coronary stent implantation is currently considered a safe and widely acceptable strategy to treat CAD, and it could treat restenosis resulting from coronary balloon or catheter implantation. However, a limitation of coronary stents is ISR that leads to the development of DES. To overcome ISR, many researchers have studied the delivery of drugs using a DES to inhibit the proliferation of SMCs, however, the current therapeutic approaches are still insufficient; therefore, a new strategy is required to prevent ISR. The development of gene-eluting stents was a breakthrough stent technology. The first gene-eluting stent was studied in the year 2000 for plasmid DNA delivery. An ideal gene-eluting stent should be non-inflammatory, non-thrombogenic, and biocompatible, and it should also facilitate vascular healing. The development of gene-eluting stents requires a clear understanding of the molecular mechanisms, cytokines, and growth factors involved in neointimal formation. Gene-eluting stents are a promising strategy that will be available for the treatment of restenosis within a few years. The disadvantages of DES could be overcome by employing gene-eluting stents. Gene-eluting stents use viral and non-viral vectors to carry genes to the target site. Plasmids encode genes with a specific protein that could interfere or completely inhibit the formation of ISR and have been studied by many researchers. In this review, we briefly discussed the current progress in the development of gene-eluting stents. Genes encoding growth factors or cytokines that are involved in the proliferation of smooth muscle cells were inserted into a plasmid and directed toward the diseased area using stents, although significant technical hurdles have to be overcome for use in clinical practice. Restenosis could also be prevented at the molecular level by administering either microRNA or siRNA that could directly inhibit the mRNA involved in the proliferation of vas-
cular smooth muscle cells, although future studies should focus on developing microRNA- or siRNA-eluting stents that could inhibit ISR via more than one pathway. Furthermore, the development of new multifunctional electronic stents that could be used as biosensors and deliver drugs or genes based on physiological conditions would be helpful in the future, and intravascular MRI should be combined with gene-eluting stents.

ACKNOWLEDGEMENTS

This work was financially supported by the Korea Healthcare Technology R&D Project, Ministry for Health, Welfare & Family Affairs, Republic of Korea (HI12C0810 & HI14C0187); the Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (MEST) (2011-0030034 & NRF-2013R1A2A2A01004668); and the Pioneer Research Center Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (2014M3C1A3053035). IKP acknowledges support from a grant (CR140773-3) by the Chonnam National University Hospital Research Institute of Clinical Medicine. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

CONFLICT OF INTEREST STATEMENT

None declared.

REFERENCES

1. Murray CJ, Lopez AD. Mortality by cause for eight regions of the world: Global Burden of Disease Study. Lancet 1997;349:1269-76.
2. WHO. World Health Statistics 2008. [Internet]. Geneva: World Health Organization; 2008 [cited 2015 Jun 26]. Available from: http://www.who.int/whosis/whostat/2008/en/.
3. Sharif F, Daly K, Crowley J, O’Brien T. Current status of catheter- and stent-based gene therapy. Cardiovasc Res 2004;64:208-16.
4. Dotter CT, Judkins MP. Transluminal treatment of arteriosclerotic obstruction. Description of a new technic and a preliminary report of its application. Circulation 1964;30:654-70.
5. Serruys PW, de Jaegere P, Kiemeneij F, Macaya C, Rutsch W, Heyndrickx G, et al. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group. N Engl J Med 1994;331:489-95.
6. Sigwart U, Puel J, Mirkovitch V, Joffre F, Kappenberger L. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N Engl J Med 1987;316:701-6.
7. Garg S, Serruys PW. Coronary stents: current status. J Am Coll Cardiol 2010;56(10 Suppl):S1-42.
8. Tamai H, Igaki K, Kyo E, Kosuga K, Kawashima A, Matsui S, et al. Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation 2000;102:399-404.
9. Regar E, Sianos G, Serruys PW. Stent development and local drug delivery. Br Med Bull 2001;59:227-48.
10. Venkatraman S, Boey F. Release profiles in drug-eluting stents: issues and uncertainties. J Control Release 2007;120:149-60.
11. Simons M, Edelman ER, DeKeyser JL, Langer R, Rosenberg RD. Antisense c-myc oligonucleotides inhibit intimal arterial smooth muscle cell accumulation in vivo. Nature 1992;359:67-70.
12. Mach F. Toward new therapeutic strategies against neointimal formation in restenosis. Arterioscler Thromb Vasc Biol 2000;20:1699-700.
13. Kibos A, Campeau A, Tintou I. Pathophysiology of coronary artery in-stent restenosis. Acute Card Care 2007;9:111-9.
14. Andersen HR, Maeng M, Thorwest M, Falk E. Remodeling rather than neointimal formation explains luminal narrowing after deep vessel wall injury: insights from a porcine coronary (re)stenosis model. Circulation 1996;93:1716-24.
15. Moreno PR, Palacios IF, Leon MN, Rhodes J, Fuster V, Fallon JT. Histopathologic comparison of human coronary in-stent and post-balloon angioplasty restenotic tissue. Am J Cardiol 1999;84:462-6, A9.
16. Mintz GS, Popma JJ, Pichard AD, Kent KM, Satler LF, Wong C, et al. Arterial remodeling after coronary angioplasty: a serial intravascular ultrasound study. Circulation 1996;94:35-43.
17. Brewster LP, Brey EM, Greisler HP. Cardiovascular gene delivery: the good road is waiting. Adv Drug Deliv Rev 2006;58:604-29.
18. Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation 2005;111:3481-8.
19. Schainfeld RM. Potential emerging therapeutic strategies to prevent restenosis in the peripheral vasculature. Catheter Cardiovasc Interv 2002;56:421-31.
20. Tsigkas GG, Karantalis V, Hahalis G, Alexopoulos D. Stent restenosis, pathophysiology and treatment options: a 2010 update. Hellenic J Cardiol 2011;52:149-57.
21. Byrne RA, Kastrati A, Kufner S, Massberg S, Birkeimier KA, Laugwitz KL, et al. Randomized, non-inferiority trial of three ilium agent-eluting stents with different polymer coatings: the Intracoronary Stenting and Angiographic Results: Test Efficacy of 3 Limus-Eluting Stents (ISAR-TEST-4) Trial. Eur Heart J 2009;30:2441-9.
22. Lowe HC, Oesterle SN, Khachigian LM. Coronary in-stent restenosis: current status and future strategies. J Am Coll Cardiol 2002;39:183-93.
23. Abizaid A, Kornowski R, Mintz GS, Hong MK, Abizaid AS, Mehran R, et al. The influence of diabetes mellitus on acute and late clinical outcomes following coronary stent implantation. J Am Coll Cardiol 1998;32:584-9.
24. Dangas G, Mehran R, Lansky AJ, Waksman R, Satler LF, Pichard AD, et al. Acute and long-term results of treatment of diffuse in-stent restenosis in aortocoronary saphenous vein grafts. Am J Cardiol 2000;86:777-9, A6.
25. Welt FG, Rogers C. Inflammation and restenosis in the stent era. Arterioscler Thromb Vasc Biol 2002;22:1769-76.
26. Scott NA. Restenosis following implantation of bare metal coronary stents: pathophysiology and pathways involved in the vascular response to injury. Adv Drug Deliv Rev 2006;58:358-76.

27. Costa MA, Simon DI. Molecular basis of restenosis and drug-eluting stents. Circulation 2005;111:2257-73.

28. Zohnhöfer D, Klein CA, Richter T, Brandl R, Murr A, Nührenberg T, et al. Gene expression profiling of human stent-induced neointima by cDNA array analysis of microscopic specimens retrieved by helix cutter athereectomy: detection of FK506-binding protein 12 upregulation. Circulation 2001;103:1396-402.

29. Sousa JE, Costa MA, Abizaid A, Abizaid AS, Feres F, Pinto IM, et al. Lack of neointimal proliferation after implantation of sirolimus-coated stents in human coronary arteries: a quantitative coronary angiography and three-dimensional intravascular ultrasound study. Circulation 2001;103:192-5.

30. Yin RX, Yang DZ, Wu JZ. Nanoparticle drug- and gene-eluting stents for the prevention and treatment of coronary restenosis. Theranostics 2014;4:175-200.

31. Remuzzi A, Mantero S, Colombo M, Morigi M, Binda E, Camozzi D, et al. Vascular smooth muscle cells on hyaluronic acid: culture and mechanical characterization of an engineered vascular construct. Tissue Eng 2004;10:699-710.

32. Jiang HL, Hong SH, Kim YK, Islam MA, Kim HJ, Choi YJ, et al. Aerosol delivery of spermine-based poly(amine ester)/Akt1 shRNA complexes for lung cancer gene therapy. Int J Pharm 2011;420:256-65.

33. Jensen DK, Jensen LB, Koocheki S, Bengtson L, Cun D, Nielsen HM, et al. Design of an inhalable dry powder formulation of DOTAP-modified PLGA nanoparticles loaded with siRNA. J Control Release 2012;157:141-8.

34. Zhu D, Jin X, Leng X, Wang H, Bao J, Liu W, et al. Catheter-based prostacyclin synthase gene transfer inhibits neointimal formation in the porcine coronary artery model. Catheter Cardiovasc Interv 2006;67:698-702.

35. Banai S, Wolf Y, Golomb G, Pearle A, Waltenberger J, Fishbein I, et al. Imatinib mesylate-incorporated nanoparticle-eluting stent attenuates in-stent stenosis without delayed endothelial healing effects in a porcine coronary artery model. J Atheroscler Thromb 2013;20:32-45.

36. La Manna A, Capodanno D, Cera M, Di Salvo ME, Sacchetta G, et al. Lack of delayed endothelial cell death in the neointima of paclitaxel-eluting stents: a biologic-cytologic study. Circulation 2001;103:192-5.

37. Acharya G, Lee CH, Lee Y. Characterization of nitric oxide-releasing microparticles for the mucosal delivery. J Biomed Mater Res A 2010;92:1233-43.

38. Ting Y, Zhang X, Zhou Z, Cao Y, Zhang L, Wu J, et al. Photodynamic therapy inhibited endothelial cell growth and reduced neointimal formation in the porcine coronary artery model. Theranostics 2014;4:175-200.

39. Li H, Zhang L, Wei J, Li X, Wu J, et al. Porous carbon-carbon nanoparticles coated with siRNA attenuate neointimal formation in the porcine coronary artery model. J Atheroscler Thromb 2013;20:32-45.

40. Yoo JW, Lee JS, Lee CH. Optimization of cardiovascular stent design with drug-eluting microparticles for the myocardial lesion. J Biomed Mater Res A 2010;92:1233-43.

41. Landau C, Pirwitz MJ, Willard MA, Gunther M, Meidell RS, et al. Use of a perforated balloon catheter to deliver concentrated heparin into the wall of the normal canine coronary artery. Am J Cardiol 2008;31:971-80.

42. Wolinsky H, Thung SN. Use of a perforated balloon catheter to deliver concentrated heparin into the wall of the normal canine coronary artery. Am J Cardiol 2008;31:971-80.

43. Masuda S, Nakano K, Funakoshi K, Zhao G, Meng W, Kimura S, et al. Imatinib mesylate-incorporated nanoparticle-eluting stent attenuates in-stent neointimal formation in porcine coronary arteries. J Atheroscler Thromb 2011;18:1043-53.

44. Shuchman M. Debating the risks of drug-eluting stents. N Engl J Med 2007;356:325-8.

45. Goldman B, Blanke H, Wolinsky H. Influence of pressure on permeability of normal and diseased muscular arteries to horse-radish peroxidase. A new catheter approach. Atherosclerosis 1987;65:215-25.

46. Yoo JW, Lee JS, Lee CH. Characterization of nitric oxide-releasing microparticles for the mucosal delivery. J Biomed Mater Res A 2010;92:1233-43.

47. Iakovou I, Schmidt T, Bonizzoni E, Ge L, Sangiorgi GM, Stankovic G, et al. Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. JAMA 2005;293:2126-30.

48. Goldman B, Blanke H, Wolinsky H. Influence of pressure on permeability of normal and diseased muscular arteries to horse-radish peroxidase. A new catheter approach. Atherosclerosis 1987;65:215-25.

49. Wolinsky H, Thung SN. Use of a perforated balloon catheter to deliver concentrated heparin into the wall of the normal canine coronary artery. J Am Coll Cardiol 1990;15:1051-7.

50. Banai S, Wolf Y, Golomb G, Pearle A, Waltenberger J, Fishbein I, et al. PDGF-receptor tyrosine kinase blocker AG1295 selectively attenuates smooth muscle cell growth in vitro and reduces neointimal formation after balloon angioplasty in swine. Circulation 1998;97:1960-9.

51. Masuda S, Nakano K, Funakoshi K, Zhao G, Meng W, Kimura S, et al. Lack of delayed endothelial cell death in the neointima of paclitaxel-eluting stents: a biologic-cytologic study. Circulation 2001;103:192-5.

52. Landau C, Pirwitz MJ, Willard MA, Gunther M, Meidell RS, et al. Use of a perforated balloon catheter to deliver concentrated heparin into the wall of the normal canine coronary artery. Am J Cardiol 2008;31:971-80.

53. Wolinsky H, Thung SN. Use of a perforated balloon catheter to deliver concentrated heparin into the wall of the normal canine coronary artery. J Am Coll Cardiol 1990;15:1051-7.

54. Iakovou I, Schmidt T, Bonizzoni E, Ge L, Sangiorgi GM, Stankovic G, et al. Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. JAMA 2005;293:2126-30.

55. Wolinsky H, Thung SN. Use of a perforated balloon catheter to deliver concentrated heparin into the wall of the normal canine coronary artery. J Am Coll Cardiol 1990;15:1051-7.

56. Wang K, Kessler PD, Zhou Z, Penn BS, Forudi F, Zhou X, et al. Local adenosine-mediated induced nitric oxide synthase gene transfer inhibits neointimal formation in the porcine coronary stented model. Mol Ther 2003;7:597-603.

57. Lapin TK, Utkan GG. Role of biomaterials in prevention of in-stent restenosis. J Biomed Mater Res B Appl Biomater
Drug- and Gene-eluting Stents for Preventing Coronary Restenosis

57. Guzman RJ, Lemarchand P, Crystal RG, Epstein SE, Finkel T. Efficient and selective adenovirus-mediated gene transfer into vascular neointima. Circulation 1993;88:2838-48.

58. Nabel EG, Plautz G, Nabel GJ. Site-specific gene expression in vivo by direct gene transfer into the arterial wall. Science 1990;249:1285-8.

59. Rolling F, Nong Z, Pisvin S, Collen D. Adeno-associated virus-mediated gene transfer into rat carotid arteries. Gene Ther 1997;4:757-61.

60. Flugelman MY, Jaklitsch MT, Newman KD, Casscells W, Bratthauer GL, Dichek DA. Low level in vivo gene transfer into the arterial wall through a perforated balloon catheter. Circulation 1992;85:1110-7.

61. Klugherz BD, Jones PL, Cui X, Chen W, Meneveau NF, DeFelice S, et al. Gene delivery from a DNA controlled-release stent in porcine coronary arteries. Nat Biotechnol 2000;18:1181-4.

62. Klugherz BD, Song C, DeFelice S, Cui X, Lu Z, Connolly J, et al. Gene delivery to pig coronary arteries from stents carrying anti-body-tethered adenovirus. Hum Gene Ther 2002;13:443-54.

63. Perlstein I, Connolly JM, Cui X, Song C, Li Q, Jones PL, et al. DNA delivery from an intravascular stent with a denatured collagen-poly lactide-poly glycolic acid-controlled release coating: mechanisms of enhanced transfection. Gene Ther 2003;10:1429-8.

64. Jin X, Mei L, Song C, Liu L, Leng X, Sun H, et al. Immobilization of plasmid DNA on an anti-DNA antibody modified coronary stent for intravascular site-specific gene therapy. J Gene Med 2008;10:421-9.

65. Kim TG, Lee Y, Park TG. Controlled gene-eluting metal stent fabricated by bio-inspired surface modification with hyaluronic acid and deposition of DNA/PEI polyplexes. Int J Pharm 2010;384:181-8.

66. Walter DH, Cejna M, Diaz-Sandoval L, Willis S, Kirkwood L, Stratford PW, et al. Local gene transfer of phVEGF-2 plasmid by gene-eluting stents: an alternative strategy for inhibition of restenosis. Circulation 2004;110:36-45.

67. Paul A, Shao W, Shum-Tim D, Prakash S. The attenuation of restenosis following arterial gene transfer using carbon nanotube-coated stent incorporating TAT/DNA(Ang1+Vegf) nanoparticles. Biomaterials 2012;33:7655-64.

68. Yang J, Zeng Y, Zhang C, Chen YX, Yang Z, Li Y, et al. Prevention of restenosis in vivo with a VEGF gene and paclitaxel co-eluting stent. Biomaterials 2013;34:1635-43.

69. Egashira K, Nakano K, Ohtani K, Funakoshi K, Zhao G, Ihara Y, et al. Local delivery of anti-monocyte chemoattractant protein-1 by gene-eluting stents attenuates in-stent restenosis in rabbits and monkeys. Arterioscler Thromb Vasc Biol 2007;27:2563-8.

70. Cooney R, Hynes SO, Sharif F, Howard L, O'Brien T. Effect of gene delivery of NOS isomers on intimal hyperplasia and endothelial regeneration after balloon injury. Gene Ther 2007;14:396-404.

71. Sharif F, Hynes SO, Cooney R, Howard L, McMahon J, Daly K, et al. Gene-eluting stents: adenovirus-mediated delivery of eNOS to the blood vessel wall accelerates re-endothelialization and inhibits restenosis. Mol Ther 2008;16:1674-80.

72. Brito LA, Chandrasekhar S, Little SR, Amiji MM. Non-viral eNOS gene delivery and transfection with stents for the treatment of restenosis. Biomed Eng Online 2010;9:56.

73. Sharif F, Hynes SO, McCullagh KJ, Ganley S, Greiser U, McHugh P, et al. Gene-eluting stents: non-viral, liposome-based gene delivery of eNOS to the blood vessel wall in vivo results in enhanced endothelialization but does not reduce restenosis in a hypercholesterolemic model. Gene Ther 2012;19:321-8.

74. Takemoto Y, Kawata H, Soeda T, Imagawa K, Somekawa S, Takeda Y, et al. Human placental ectonucleotide triphosphate diphosphohydrolase gene transfer via gelatin-coated stents prevents in-stent thrombosis. Arterioscler Thromb Vasc Biol 2009;29:857-62.

75. Mitra AK, Agrawal DK. In stent restenosis: bane of the stent era. J Clin Pathol 2006;59:232-9.

76. Isner JM, Kearney M, Bortman S, Passeri J. A apoptosis in human atherosclerosis and restenosis. Circulation 1995;91:2703-11.

77. Raines EW. PDGF and cardiovascular disease. Cytokine Growth Factor Rev 2004;15:237-54.

78. Komatsu R, Ueda M, Naruko T, Kojima A, Becker AE. Neointimal tissue response at sites of coronary stenting in humans: macroscopic, histological, and immunohistochemical analyses. Circulation 1998;98:224-33.

79. Schaer GL, Zhang C. Implementation of miRNAs to reduce in-stent restenosis in the future. J Am Coll Cardiol 2015;65:2328-30.

80. Ji R, Cheng Y, Yue J, Yang J, Liu X, Chen H, et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res 2007;100:1579-88.

81. Cheng Y, Liu X, Yang J, Lin Y, Xu DZ, Lu Q, et al. MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ Res 2009;105:158-66.

82. Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A. Induction of microRNA-221 by platelet-derived growth factor signaling is critical for modulation of vascular smooth muscle phenotype. J Biol Chem 2009;284:3728-38.

83. Muthiah M, Islam MA, Cho CS, Hwang JE, Chung JI, Park IK. Substrate-mediated delivery of microRNA-145 through a polysorbitol-based osmotically active transporter suppresses smooth muscle cell proliferation: implications for restenosis treatment. J Biomed Nanotechnol 2014;10:571-9.

84. Che HL, Bae IH, Lim KS, Song IT, Lee H, Muthiah M, et al. Suppression of post-angioplasty restenosis with an Akt1 siRNA-embedded coronary stent in a rabbit model. Biomaterials 2012;33:8548-56.

85. Che HL, Bae IH, Lim KS, Song IT, Lee H, Lee D, et al. Therapeutic Effect of Akt1 siRNA nanoparticle eluting coronary stent on suppression of post-angioplasty restenosis. J Biomed Nanotechnol 2016;12:1211-22.

86. Che HL, Bae IH, Lim KS, Uthaman S, Song IT, Lee H, et al. Novel fabrication of microRNA nanoparticle-coated coronary stent for prevention of post-angioplasty restenosis. Korean Circ J 2016;46:23-32.

87. Chow EY, Becker BL, Francino A, Chappell WJ, Iraquoii P. Toward an implantable wireless cardiac monitoring platform integrated with an FDA-approved cardiovascular stent. J Interv Cardiol 2009;22:479-87.

88. Chow EY, Chlebowski AL, Chakraborty S, Chappell WJ, Iraquoii P.
89. Son D, Lee J, Lee DJ, Ghaffari R, Yun S, Kim SJ, et al. Biodegradable electronic stent integrated with therapeutic nanoparticles for endovascular diseases. ACS Nano 2015;9:5937-46.