EXPONENTIAL DECAY OF CORRELATIONS FOR SURFACE SEMI-FLOWS WITHOUT FINITE MARKOV PARTITIONS

VIVIANE BALADI AND BRIGITTE VALLÉE

Abstract. We extend Dolgopyat’s bounds on iterated transfer operators to suspensions of interval maps with infinitely many intervals of monotonicity.

1. Statement of results

Let $0 < c_1 < \ldots < c_m < c_{m+1} < \ldots < 1$ be a finite or countable partition of $I = [0,1]$ into subintervals, and let $T : I \to I$ be so that $T|_{(c_m,c_{m+1})}$ is C^2 and extends to a homeomorphism from $[c_m,c_{m+1}]$ to I. We assume that T is piecewise uniformly expanding: there are $C \geq 1$ and $\hat{p} < 1$ so that $|h(x) - h(y)| \leq C\hat{p}^n|x-y|$ for every inverse branch h of T^n and all n. Let \mathcal{H} be the set of inverse branches $h : I \to [c_m,c_{m+1}]$ of T. We suppose (Renyi’s condition) that there is $K > 0$ so that every $h \in \mathcal{H}$ satisfies $|h'| \leq K|h'|$. Let $r : I \to \mathbb{R}^+$ be so that $r|_{(c_m,c_{m+1})}$ is C^1, and inf $r > 0$. Assume that there is $\sigma_0 > 0$ so that $\sum_{h \in \mathcal{H}} \sup \exp(-\sigma (r \circ h)|h'|) < \infty$ for all $\sigma > \sigma_0$, and that $|r' \circ h| \cdot |h'| \leq K$ for all $h \in \mathcal{H}$. For $n \geq 1$, write $r^{(n)}(x) = \sum_{k=0}^{n-1} r(T^k)(x)$.

We study the transfer operators, indexed by $s = \sigma + it$,

$$L_s f(x) = \sum_{T(y)=x} e^{-sr(y)} \frac{f(y)}{|T'(y)|} = \sum_{h \in \mathcal{H}} e^{-sr(h(x))} |h'(x)| \cdot (f \circ h)(x),$$

acting on $C^1(I)$, with norm $\|f\| = \sup |f| + \sup |f'|$. Note that $L_s = L_{s+htop}$, where L_s is the transfer operator associated to the suspension semi-flow on the branched surface $\{(x,s) \in I \times \mathbb{R}^+ \mid s \leq r(x)\}$, with $(x,r(x)) \sim (T(x),0)$, defined by $\phi^t(x,s) = (x,s+t)$, and $htop$ is the topological entropy of ϕ^t. See e.g. [5].

Finally, the following assumption is a translation of Dolgopyat’s ”uniform non-integrability of foliations” condition (see [11] for formulations closer to ours): we say that the pair (T,r) satisfies UNI if there exist $D > 0$ and $n_0 \geq 1$ such that, for every integer $n \geq n_0 \geq 1$, there are two elements h, k of the set \mathcal{H}_n of inverse branches of T^n so that the function on I defined by $\psi_{h,k}(x) := r^{(n)}(h(x)) - r^{(n)}(k(x))$ satisfies $\inf |\psi_{h,k}| \geq D$. (See also Remark 2.5.4)

To state our main result, we use the equivalent norms $\|f\|_{1,t} = \sup |f| + \sup |f'|$ for $|t| \geq \epsilon_0 > 0$, on $C^1(I)$:

Theorem 1.1. Let T and r satisfy the assumptions above (in particular UNI for D). Then there is $A \geq n_0$ and $\gamma < 1$ so that for all σ close enough to 0, all $|t| \geq \max(2\pi/D,4)$, and all $n \geq A \log |t|$, we have $\|L^n_s\|_{1,t} \leq \gamma^n$.
Theorem 1.1 was proved by Dolgopyat [3] when \(\mathcal{H} \) is finite. In [2], we considered the special case when \(T(x) = \{1/x\} \) (or analogues of the Gauss map) and \(r = \log |T'| \), working with a different version of UNI, adapted to “algebraic” situations. Note that the present UNI assumption also holds in the setting of [2]: if \(h \in \mathcal{H}_n \) is a linear fraction \((ax + b)/(cx + d)\) then \(h''(x)/h'(x) = -2c/(cx + d)\) so that \(|\psi_{h,h}(x)| = |2c/(cx + d) - \hat{c}/(\hat{c}x + \hat{d})|\). Write \(\mathcal{F}_n \) for the nth Fibonacci number and \(\hat{\mathcal{F}}_n \) for the sequence 0, 1, \(2 \mathcal{F}_{n-1} + \hat{\mathcal{F}}_{n-2} \). For \(h \) and \(h \) in \(\mathcal{H}_n \) associated to the sequence of digits 1, 1, \ldots, 1, and 2, 2, \ldots, 2, we get \(a = \mathcal{F}_{n-2}, b = c = \mathcal{F}_{n-1}, \) and \(d = \mathcal{F}_n \), while \(\hat{a} = \hat{\mathcal{F}}_{n-2}, \hat{b} = \hat{c} = \hat{\mathcal{F}}_{n-1}, \) and \(\hat{d} = \hat{\mathcal{F}}_n \). We conclude by using \(\lim_{n \to \infty} \mathcal{F}_n / \hat{\mathcal{F}}_{n-1} = (1 + \sqrt{5})/2 \) and \(\lim_{n \to \infty} \hat{\mathcal{F}}_n / \mathcal{F}_{n-1} = (1 + \sqrt{8})/2 \).

From Theorem 1.1 one easily gets (see e.g. [2]):

Corollary 1.2. For every \(0 < \alpha < 1 \) there is \(t_0 \) so that for all \(|t| > t_0\) and \(\sigma \) close to 0, we have \(\| (I - L_\sigma)^{-1} \|_{1,t} \leq |t|^{\alpha} \).

Theorem 1.1 implies [3] section 4] exponential decay of correlations for \(C^1 \) observables and the absolutely continuous invariant probability (SRB) measure of the semi-flow \(\phi^t \). We hope this will be a useful step towards proving exponential decay of correlations for (continuous-time) planar Sinai billiards, using [8]. (For the moment, only open continuous-time billiards have been considered [2]. They admit finite Markov sections.) See Remark 2.1 for extensions to other Gibbs states.

2. **Proof of Theorem 1.1**

We basically follow Dolgopyat’s proof, as detailed in [3]. A key point is the Federer property of any absolutely continuous measure \(\nu \) with continuous density bounded from above and from below: There are \(C, C'>0 \) so that if \(I, J \) are adjacent intervals with \(|I| \geq |J|/C \) then \(\nu(I) \geq \nu(J)/C' \). To exploit this information when considering \(L_\sigma \) for \(\sigma \neq 0 \), the arguments in [3] (e.g. last lines of p. 367) and [11] (e.g. first lines of p. 43) use that there is \(\alpha_\sigma \to 1 \) when \(\sigma \to 0 \) so that \(\tilde{L}_\sigma f(x) \leq \alpha_{\sigma} \tilde{L}_0 f(x) \), for the normalised operators in \(\tilde{L}_\sigma \) and positive \(f \). The above inequality uses that there are finitely many branches and is for example not true for the Gauss map. To bypass this problem, we exploit carefully the Cauchy-Schwartz decomposition in Lemma 2.1 below (see also [2], Lemma 2).

Remark 2.1. Beware that even when there are finitely many branches, the Federer property is not true for arbitrary Gibbs measures \(\nu \), in particular the measures \(\nu_{\sigma} \) introduced below for \(\sigma \neq 0 \), contrary to what is stated in [3] Proposition 7; [5] Lemma 1; and [6] Lemma 4. (Proposition 7 of [3] true e.g. if \(T \) is a \(C^2 \) circle map, and if \(r \) is \(C^1 \) on the circle, and not only piecewise \(C^1 \). For a counterexample, take \(T(x) = 2x \) modulo 1 with \(\exp(r) \equiv 3 \) on \([0,1/2]\) and \(\exp(r) \equiv 3/2 \) on \((1/2,1]\), and consider the intervals of size \(1/2^n \) to the right and to the left of \(1/2 \). By adding \(\epsilon \sin(2\pi x) \) to \(r \), this example can probably be made to satisfy the UNI condition [5] p. 537.) When there are finitely many branches, the Federer property does hold [1] for Gibbs measures and “most” adjacent intervals from the partitions in [3], [6], [1]. This is enough e.g. to recover the results in [3], in particular Theorem 1. When \(\mathcal{H} \) is infinite, the situation is more complicated but we expect that Theorem 1.1 will also hold for some general transfer operators \(L_{s,g} f(x) = \sum_{T(y)=x} e^{-sT(y)} g(y) f(y) \) associated to suitable positive \(g \).
Preliminary steps

Fix from now on $\hat{\rho} < \rho < 1$. The inverse branches of T^n satisfy $|h''| \leq K|h'|$ for all n and the distortion constant $K = K/(1 - \rho)$. Similarly for $(r^{(n)})' \circ h$. As a consequence it is easy to prove that, for every $n \geq 1$, and each pair h, k in H_n, the function $\psi_{h,k}(x) = r^{(n)} \circ h - r^{(n)} \circ k$ satisfies $\sup |\psi_{h,k}'| \leq 2K$. We next recall spectral properties of the L_s (see e.g. [2] and references therein). Let $\sigma > \sigma_0$ be real. The essential spectral radius λ^s_σ of L_s is strictly smaller than its spectral radius λ_σ (in fact $\lambda^s_\sigma \leq \rho \lambda_\sigma$). Since T is topologically mixing, the operator L_s has a unique (simple) eigenvalue λ_σ of maximal modulus, for a strictly positive C^1 eigenfunction f_σ, the rest of the spectrum is in the disc of radius $\rho \lambda_\sigma$ for some $\rho < 1$. The eigenvector μ_σ of L^*_σ for λ_σ is Lebesgue measure for $\sigma = 0$, and for all $\sigma > \sigma_0$ a positive Radon measure μ_σ. We may assume $\mu_\sigma(1) = 1$ and $\mu_\sigma(f_\sigma) = 1$ so that $\nu_\sigma = f_\sigma \mu_\sigma$ is a probability measure. Note that $L_s : C^1(I) \to C^1(I)$ depends continuously on σ, so that $\lambda^{s,1}_\sigma, \tau_\sigma, f^s_\sigma, f^s_\sigma$ depend continuously on σ (and therefore satisfy uniform bounds in any compact subset $\Sigma \subset (\sigma_0, \infty)$). Also, $\sigma \mapsto \lambda_\sigma$ is a nonincreasing function. Finally, the spectral radius of $L_{\sigma + it}$ is not larger than λ_σ and its essential spectral radius is not larger than $\rho \lambda_\sigma$ for all $t \in \mathbb{R}$.

It will be convenient to work with the normalised operators

$$
(2.1) \quad \overline{L}_s(f) = \frac{L_s(f_\sigma \cdot f)}{\lambda_\sigma f_\sigma}, \quad s = \sigma + it.
$$

If $s = \sigma > \sigma_0$, the operator \overline{L}_s acting on $C^1(I)$ has spectral radius 1, essential spectral radius $\leq \rho$, and fixes the constant function $\equiv 1$. Clearly \overline{L}^*_s preserves the probability measure $\nu_\sigma = f_\sigma \cdot \mu_\sigma$. Our starting point is a Lasota-Yorke inequality:

Lemma 2.2. (Lasota-Yorke) For every compact $\Sigma \subset (\sigma_0, \infty)$, there is a constant $C = C(\Sigma, K) > 0$, so that for all $n \geq 1$, all $s \in \Sigma$ and all $f \in C^1(I)$:

$$
(2.2) \quad |(\overline{L}_s^n f')(x)| \leq C(\Sigma, K) |s| \cdot \overline{L}_s^n (|f|)(x) + \rho^n \cdot \overline{L}_s^n (|f'|)(x).
$$

Proof. The Leibniz sum for the derivative of each term $\exp(-s(r^{(n)} \circ h))|h'| \cdot \frac{1}{\lambda_\sigma f_\sigma} \cdot (f_\sigma f) \circ h$ forming $(\overline{L}_s^n f)'$ $(h \in H_n)$ contains four terms. We can bound the first for all s using our “distortion” assumption on r since $|s||(r^{(n)})' \circ h||h'|e^{-s(r^{(n)}h)} \leq |s|K'e^{-s(r^{(n)}h)}$. The second one is controlled by the Renyi assumption on T. Compactness of Σ and continuity of $\sigma \mapsto \lambda_\sigma$ and $\sigma \mapsto f_\sigma$ imply $\sup_{\sigma \in \Sigma} |f_\sigma'| < \infty$ and $\inf_{\sigma \in \Sigma} f_\sigma > 0$, so that the third term may be controlled by $\frac{|f_\sigma'|}{\lambda_\sigma f_\sigma} \leq C_\Sigma \frac{1}{\lambda_\sigma f_\sigma}$ for some $C_\Sigma > 0$. Finally the last term can be estimated using

$$
|(f_\sigma \cdot f)' \circ h||h'| \leq \rho^n |\overline{L}_s^n (f_\sigma \cdot f)' \circ h + (f_\sigma \cdot |f'|)' \circ h|.
$$

We can ensure $K|s| + 2C_\Sigma + 2\rho C_\Sigma \leq C(\Sigma, K)|s|$ (for fixed Σ, if $|s|$ is large, i.e., if $|t|$ is large enough, then $C(\Sigma, K)$ is close to K).
We next state and prove an elementary lemma about complex numbers with almost opposite phases. Note that $2/3 < (\sqrt{7} - 1)/2 < 1$.

Lemma 2.3. (Calculus lemma) For each $\eta \in [(\sqrt{7} - 1)/2, 1)$ and every pair of complex numbers, $z_1 = r_1 \exp(i\theta_1)$ and $z_2 = r_2 \exp(i\theta_2)$,

\[
\cos(\theta_1 - \theta_2) \leq 1/2 \Rightarrow |z_1 + z_2| \leq \max(\eta r_1 + r_2, r_1 + \eta r_2).
\]

Proof. Up to exchanging z_1 and z_2, we can suppose that $r_1 \leq r_2$ so that $\eta r_1 + r_2 \geq r_1 + \eta r_2$. Our assumption on $\cos(\theta_1 - \theta_2)$ implies

\[
|z_1 + z_2|^2 = r_1^2 + r_2^2 + 2r_1r_2 \cos(\theta_1 - \theta_2) \leq r_1^2 + r_2^2 + r_2 r_1.
\]

Since $(\eta r_1 + r_2)^2 = \eta^2 r_1^2 + r_2^2 + 2\eta r_1 r_2$, we must show $r_1^2(1 - \eta^2) + 2r_1 r_2(1/2 - \eta) \leq 0$.

Since $\eta - 1/2 \geq 1 - \eta^2 \geq 0$ (use $3 \geq \sqrt{7} \geq 2$), we get

\[
r_2^2(1 - \eta^2) + 2r_1 r_2(1/2 - \eta) \leq r_2^2(\eta - 1/2) + r_1 r_2(1/2 - \eta) \leq r_1(\eta - 1/2)(r_1 - r_2) \leq 0.
\]

\[\square\]

Preparatory lemmas in view of L^2 contraction

In the next lemma, we combine UNI and Lemma 2.3 to obtain cancellation-type estimates on terms appearing when applying iterates of L_{σ} to a suitable pair (u, v) of initial test functions in $C^1(I)$. We first introduce the “cone” condition that (u, v) must satisfy: there are $C > 0$ and $t \in \mathbb{R}$ so that

\[
u > 0, \ 0 \leq |v| \leq u, \ \max(|u'(x)|, |v'(x)|) \leq 2C |t| u(x).
\]

Lemma 2.4. (Exhibiting cancellations) Assume that UNI holds for D and n_0. Then, for all $C > 0$, there are $n_1 \geq n_0$, $\delta > 0$ and $\Delta > 0$, so that for any $|t| > 2\pi/D$, and all $u, v \in C^1(I)$ satisfying (2.4) for C and t, we have the following:

Fix $n \geq n_1$, and let $h, k \in \mathcal{H}_n$ be the branches from UNI. For every $x_0 \in I$, there is $x_1 \in I$ with $|x_0 - x_1| < \Delta/|t|$, so that the function

\[
F(x) := e^{-\sigma t} \mathcal{F}^{(n)}(h(x)) |h'(x)| ((u \cdot f_\sigma) \circ h)(x) + e^{-\sigma t} \mathcal{F}^{(n)}(k(x)) |k'(x)| ((u \cdot f_\sigma) \circ k)(x)
\]

satisfies for all x s.t. $|x - x_1| < \delta/|t|$, all $\sigma > \sigma_0$, and all $\eta > (\sqrt{7} - 1)/2$

\[
|F(x)| \leq \max\left[\eta e^{-\sigma t} |h'(x)| (u \cdot f_\sigma) \circ h)(x) + e^{-\sigma t} |k'(x)| ((u \cdot f_\sigma) \circ k)(x),
\]

\[
e^{-\sigma t} |h'(x)| (u \cdot f_\sigma) \circ k)(x) + \eta e^{-\sigma t} |k'(x)| ((u \cdot f_\sigma) \circ k)(x)\right].
\]

When the maximum in (2.5) is attained by the expression where the η factor is attached to branch h we say we are “in case h,” and otherwise “in case k.”

It follows from the proof that $n_1 \geq n_0$ so that $3 \times 16 C\rho^{n_1} < 1/24$ works. In the application of Lemma 2.3 in Lemma 2.4 we require $C \geq C(\Sigma, K)$ from Lemma 2.3.

Proof. Let us fix $x_0 \in I$. Assume first (this case does not require UNI) that

\[
|e(h(x_0))| \leq \max(u(h(x_0))/2, u(k(x_0))/2).
\]

Let us suppose the maximum is realised for $u \circ h$ (the other case is symmetric). Then it is easy to see that for any $\epsilon > 0$, if $|x - x_0| < \delta_1/|t|$, with $\delta_1(2C\rho^{n\sigma}) = \epsilon$, we have $\exp(-\epsilon) \leq \frac{u(h(x_0))}{u(h(x_0))} \leq \exp(\epsilon)$. (Use $\exp(\log u(h(x)) - \log u(h(x_0))) dx \leq \exp h(x_0) |(\log u(y))'| dy$, the assumed bound on $|u'|/u$ from 2.4, and $n \geq n_0.$)
To prove (2.6), it is then enough to check that \(|x - x_0| < \delta_1/|t|\) implies \(|v(h(x)))| < \eta' u(h(x_0))\) for some \(\eta' > 2/3\) with \(\eta' \exp(\epsilon) \leq \eta\); indeed, we would then have \(|v(h(x)))| \leq \eta' \exp(\epsilon) u(h(x)) \leq \eta u(h(x))\) whenever \(|x - x_0| < \delta_1/|t|\), so that (2.6) would hold. Assume for a contradiction that no such \(\eta'\) exists, i.e. for each \(2/3 < \eta' \leq \eta \exp(-\epsilon)\) there is \(x_1\) with \(|x_1 - x_0| \leq \delta_1/|t|\) and \(|v(h(x_1)))| \geq \eta'(u(h(x_0)))\), so that (use (2.6)) \(|v(h(x_1)))| - v(h(x_1))| \geq (\eta' - 1/2)u(h(x_0)).\) On the other hand, (2.4) and the choice of \(\epsilon\) imply that there is \(y\) with \(|y - x_0| \leq \delta_1/|t|\) so that

\[|v(h(y))) - v(h(x_1))| \leq u(h(y)))2C|t|\rho^{n_0}\delta_1/|t| \leq u(h(x_0)))e^{\epsilon}2C\rho^{n_0}\delta_1 = u(h(x_0)))e^{\epsilon},\]

a contradiction if \(\epsilon \exp(\epsilon) < 1/6\). This ends the easy case, where we can take \(x_1 = x_0\) (i.e. \(\Delta_1 = 0\)) and \(\delta_1 = \epsilon/(2C\rho^{n_0})\) for small (independently of \(u, v, C, \text{etc.}\)) \(\epsilon > 0\). (The dependence of \(\delta_1\) on \(C\) can be removed by taking large enough \(n\).)

Let us now move to the more interesting situation when

\[(2.7)\]

\[|v(h(x)))| > \max(u(h(x)))2, u(k(x)))/2.\]

We shall use UNI to show that we are in a position to apply Lemma 2.3 to the sum forming \(F(x)\), for \(x\) in an \(\delta_2/|t|\)-interval around a point \(x_1\) which is \(\Delta_2/|t|\) close to \(x_0\). Since \(f_\sigma\) is real and positive, the difference \(\theta(x)\) between the argument of the two terms of \(F(x)\) can be decomposed as \(\theta(x) = tv_\theta h_\theta(x) + \arg(v(h(x)) - \arg(v(k(x)))).\)

Let us first show the claim by assuming that we found \(\delta_2, \Delta_2\) so that \(\cos \theta(x) \leq 1/2\), for all \(x\) with \(|x - x_1| \leq \delta_2/|t|\), some \(x_1\) with \(|x_1 - x_0| < \Delta_2/|t|\), leaving the (nontrivial) proof of this fact for the end. We have \(r_1(x) = e^{-\sigma \tau^{(n)}(h(x))}h'(x)((v \cdot f_\sigma)(h(x))\text{ and }r_2(x) = e^{-\sigma \tau^{(n)}(k(x))}k'(x)((v \cdot f_\sigma)(k(x))\). Fix \(x\) with \(|x - x_1| \leq \delta_2/|t|\), and assume (the other case is analogous) that \(r_1(x) \leq r_2(x).\) Lemma 2.3 then yields the claim:

\[|F(x)| \leq \eta e^{-\sigma \tau^{(n)}(h(x))}h'(x)((v \cdot f_\sigma)(h(x)) + e^{-\sigma \tau^{(n)}(k(x))}k'(x)((v \cdot f_\sigma)(k(x))\]

\[\leq \eta e^{-\sigma \tau^{(n)}(h(x))}h'(x)((u \cdot f_\sigma)(h(x)) + e^{-\sigma \tau^{(n)}(k(x))}k'(x)((u \cdot f_\sigma)(k(x))\].

It remains to prove that \(\cos \theta(x) \leq 1/2\) for \(x\) as above and some \(\delta_2, \Delta_2\). For this, the following consequence of (2.4) and (2.6) will be helpful: for all \(y, z\) with \(|z - x_0| \leq |y - x_0| \leq \xi/|t|\)

\[|v(h(y)))| \geq |v(h(x)))| - |v(h(x))) - v(h(y)))|\]

\[(2.8)\]

\[\geq u(h(x)))/2 - \rho^{n_0}\xi/2C|t|u(h(z))\]

\[\geq u(h(x)))/(1 - \exp(\epsilon)\rho^{n_0}\xi/2C) \geq u(h(x)))/4.\]

Next observe that, because of (2.4), \(V(x) = \arg(v(h(x))) - \arg(v(k(x)))\) does not vary too much around \(x_0\). More precisely:

\[(2.9)\]

\[|V(x) - V(x_0))| = |\log|v(h(x)))|/v(k(x)))| - \log|v(h(x)))|/v(k(x)))|\]

\[\leq |\log|v(h(x)))|/v(h(x)))| + |\log|v(k(x)))|/v(k(x)))|,\]

and, if \(|x - x_0| \leq \xi/|t|\),

\[|\log|v(h(x)))|/v(h(x)))| \leq h(x) - h(x_0)|v(h(y)))|/v(h(y)))| \leq \rho^n\xi/2C|t|e^\epsilon u(h(x_0)))e^\epsilon u(h(x))) \leq 8C\rho^n e^\epsilon.\]
(We used $|y-x_0| \leq |x-x_0|$ and (2.8). We may control $|\log(\frac{\|x\|}{\|x_0\|})|$, mutatis
mutandis, and we have for $|x-x_0| < \xi/|t|$;

\begin{equation}
|V(x) - V(x_0)| \leq \xi 16 C \exp(\epsilon) \rho^n.
\end{equation}

Recall that we have to show $\cos \theta(x) \leq 1/2$ in a suitable interval. We first find
x_1 with $|x_1 - x_0| < \Delta_2/|t|$ such that $|\theta(x_1) - \pi| \leq \pi/24$. For this, we use UNI which
ensures that, since $t(\psi(z) - \psi(x_0)) = t(z-x_0)\psi'(y)$ for $y \in I$, if $\Delta_2 = 2\pi/D$, then
$\{|t(\psi(z) - \psi(x_0))| \mod 2\pi : |z-x_0| \leq \Delta_2/|t|\} = [0, 2\pi)$. (We use here $|t| > 2\pi/D$.)
In particular there is $z = x_1$ so that $t(\psi(x_1) - \psi(x_0)) = \pi - \theta(x_0)$ (mod 2π).

Applying (2.10) to $x = x_1$, $\xi = \Delta_2$, we find

\begin{equation}
|\theta(x_1) - \pi| = |\theta(x_0) + t(\psi(x_1) - \psi(x_0)) + (V(x_1) - V(x_0)) - \pi|
\leq |V(x_1) - V(x_0)| < \Delta_2 16 C \exp(\epsilon) \rho^n < \pi/24,
\end{equation}

if n is large enough (depending on C and, via Δ_2, on D).

To conclude, we apply (2.10) and the “distorsion” upper bound, using $|x-x_0| < |x-x_1| + |x_1-x_0| < (\delta_2 + \Delta_2)/|t|$ and $|x-x_1| < \Delta_2/|t|$ to get, if n is large enough
(depending on C and D) and $0 < \delta_2 \leq \Delta_2$ is small enough (depending on K):

\begin{equation}
|\theta(x) - \pi| \leq \pi/24 + |\theta(x) - \theta(x_1)|
\leq \pi/24 + |t||\psi(x) - \psi(x_1)| + |V(x) - V(x_0)| + |V(x_1) - V(x_0)|
\leq \pi/24 + 2\delta_2 + 16 C \exp(\epsilon) \rho^n D|t|\frac{\delta_2 + 2\Delta_2}{|t|} < \pi/12.
\end{equation}

Taking $\delta = \min(\delta_1, \delta_2)$ and $\Delta = \Delta_2$, we have proved the lemma. \hfill \square

Remark 2.5. If we replace UNI by the assumption that there exist $D > 0$, n_0, and
two inverse branches h and k of T^{n_0} so that $\inf |\psi_{h,k}^{\prime}| \geq D$, then for every $n \geq n_0$
there are $\hat{h}, \hat{k} \in \mathcal{H}_n$ so that $\inf |\psi_{h,k}^{\prime}| \geq \rho^{n-n_0} D$. (Take $\hat{h} = h \circ \ell$, $\hat{k} = k \circ \ell$, for
$\ell \in \mathcal{H}_{n-n_0}$ and observe that $\psi_{\hat{h},\hat{k}}(x) = \psi_{h,k}(\ell(x))$.) However, this is not enough.

In (2.11) we would get (in view of the definition of Δ_2)
\begin{equation}
\frac{2\pi}{\rho^n} 8 C \exp(\epsilon) \rho^n = \frac{8 \pi}{\rho^n} \exp(\epsilon) \rho^n,
\end{equation}
which is independent of n and not necessarily smaller than $\pi/24$.

(The constant 16 can be reduced, but not below 1.) Unfortunately, the strategy presented on p. 545 of [6]
seems to suffer from the same problem.

The following consequence of Lemma 2.4 will be instrumental towards Lemma 2.8.

Corollary 2.6. Let T satisfy UNI for D. Let $C > 0$ and let $n_1 = n_1(C)$, $\delta = \delta(C)$,
$\Delta = \Delta(C)$ be given by Lemma 2.4. Fix $n \geq n_1$, let $h, k \in \mathcal{H}_n$ come from UNI, and
let $\rho_n, C = \min(\min |h^{\prime}|, \min |k^{\prime}|) (we have $0 < \rho_n, C \leq \rho^n$).

Then for every $|t| > 2\pi/D$, every u, $v \in C^1(I)$ satisfying (2.4) for C and $|t|$, and each $\eta > (\sqrt{7} - 1)/2$ (recall Lemma 2.3), there are:

- a finite set of (disjoint) intervals $[a_j, b_j + 1] = I_j \subset I$, $j = 0, \ldots, N - 1$, with
 $|I_j| \geq \delta/|t|$, $a_0 \leq \Delta/|t|$, and $b_N \geq 1 - \Delta/|t|$; also, setting $J_j = [b_j, a_j]$, we have
 $0 < |J_j| \leq 2\Delta/|t|$; to each I_j is associated type$(I_j) \in \{h, k\}$; we write \hat{I}_j for the
 middle third interval of I_j;
Lemma 2.7. (Invariance of “cone condition”) Let T satisfy UNI for D and fix Σ a compact subset of (σ_0, ∞). Let $C(\Sigma, K)$ be from Lemma 2.2 and fix $C > 1$ so that: $C \geq C(\Sigma, K) \cdot \max(1, \max_{\sigma \in \Sigma} |\sigma|D/(2\pi))$.

Then, there is $n_2 \geq n_1$ (n_1 from Lemma 2.4) so that for every large enough $|t| > 2\pi/D$, each u, v, satisfying [2.4] for C and t, and all $n \geq n_2$, taking $\eta = \eta(n) < 1$ close enough to 1, and $\chi = \chi(u, v, \eta)$ from Corollary 2.6 the pair $\hat{\nu} = \tilde{L}_n^\sigma(\chi u)$, $\tilde{\nu} = \tilde{L}_n^\sigma(v)$, satisfies [2.4], for the same $|t|$ and C, and for all $s = \sigma + it$ with $\sigma > \sigma_0$, we have $|\tilde{L}_n^\sigma(v)(x)| \leq \tilde{L}_n^\sigma(\chi u)(x)$, $\forall x \in I$.

Proof. Corollary 2.6 says that $|\hat{\nu}(x)| = |\tilde{L}_n^\sigma(v)(x)| \leq \tilde{L}_n^\sigma(\chi u)(x) = \hat{\nu}(x)$ for all $x \in I$. We also have inf $\hat{\nu} > 0$ since inf$(\chi u) > 0$ and \tilde{L}_σ preserves the cone of strictly positive functions. To check the condition on $\max(|\hat{\nu}|, |\tilde{\nu}|)$ we shall (finally!) invoke the Lasota-Yorke inequality from Lemma 2.2 (recalling also that \tilde{L}_σ is normalised so that sup $L_\sigma f \leq \sup |f|$). We first consider $\hat{\nu}$ and get, using $|u'| \leq 2C|t|u$, $\chi \geq \eta$ and $|\chi'| \leq 1$ ($\eta = \eta(C, n)$ is close to 1):

$$\left| \frac{d}{dx} L_n^\sigma(\chi u)(x) \right| \leq C(\Sigma, K)\sigma L_n^\sigma(\chi u)(x) + \rho^n L_n^\sigma(|\chi'| u + \chi u')(x),$$

if $n \geq n_2 \geq n_1$ and $C \geq C(\Sigma, K)$.

The computation for $|\tilde{\nu}|$ is similar:

$$\left| \frac{d}{dx} L_n^\sigma(v)(x) \right| \leq C(\Sigma, K)|s|L_n^\sigma(|v|)(x) + \rho^n L_n^\sigma(|v'|)(x)$$

$$\leq \frac{C(\Sigma, K)|s| + 2C|t|\rho^n L_n^\sigma(\chi u)(x)}{\eta} \leq 2C|t|\tilde{L}_n^\sigma(\chi u)(x),$$

if $n \geq n_2 \geq n_1$ and $C(\Sigma, K)|s| \leq C|t|$. \hfill \Box

Proof of the \mathcal{L}^2 contraction and proof of Theorem 1.1

We shall see below that the case $\sup|f'| > 2C|t|\sup |f|$ is easy. We next prove the key “\mathcal{L}^2 contraction lemma” (see [3] Lemma 4) to handle the other case:

Lemma 2.8. ($C^2(\nu)$ contraction) Assume UNI. Let Σ, C, $n \geq n_2$, $|t| > 2\pi/D$, be as in Lemma 2.7. There is $\beta < 1$ so that for all σ close enough to 0, and for all $0 \neq f \in C^1$ with $|f'| \leq 2C|t|\sup |f|$, $\forall m \geq 1$,

$$\int |\tilde{L}_{\sigma+it}^m f|^2 \, dv_0 < \beta^m \sup |f|^2, \forall m \geq 1.$$
Lemma 2.7 implies that all \((u_m, v_m)\) satisfy (2.4) for \(C, t,\) and all \(m.\) (Note also that \(u_m \leq 1\) for all \(m.\)) In particular, \(|L_m^n(f/\sup |f|)| = |v_m| \leq u_m,\) and to prove the lemma, it is enough to show that there is \(\beta_1 < 1,\) so that \(\int u_{m+1}^2 \, dv_0 \leq \beta_1 \int u_m^2 \, dv_0\) for all \(m\) (note that \(\int u_0^2 \, dv_0 = 1).\)

The definition of \(u_{m+1}\) and the Cauchy-Schwartz inequality imply

\[
\lambda_0^{2n} f_0^2(x) u_{m+1}^2(x) = \left(\sum_{\ell \in H_n} e^{-2\sigma \ell(n) \ell(x)} |\ell'(x)| (\chi_\sigma \cdot f_{\sigma} \cdot u_m)(\ell(x)) \right)^2 \\
\leq \max_{l} \frac{f_0}{f_0} \sum_{\ell \in H_n} |\ell'(x)| (f_0 \cdot u_m^2)(\ell(x)) \\
\cdot \max_{l} \frac{f_\sigma}{f_\sigma} \sum_{\ell \in H_n} e^{-2\sigma \ell(n) \ell(x)} |\ell'(x)| (\chi_\sigma \cdot f_{\sigma})(\ell(x)).
\]

Now, if \(x \in \hat{J}_j\) for \(\chi_m,\) of type \(h,\) say (type \(k\) is similar), we get

\[
\frac{1}{\lambda_0^{2n} f_0^2(x)} \sum_{\ell \in H_n} e^{-2\sigma \ell(n) \ell(x)} |\ell'(x)| (\chi_\sigma^2 \cdot f_{\sigma})(\ell(x)) \\
\leq 1 - (1 - \eta^2) e^{-2\sigma \ell(n) h(x)} |h'(x)| f_{\sigma}(h(x)) / (\lambda_0^{2n} f_{\sigma}(x)) \leq 1 - \epsilon (1 - \eta^2) = \eta' < 1
\]

(we used \(e^{-2\sigma \ell(n) h(x)} |h'(x)| f_{\sigma}(h(x)) / (\lambda_0^{2n} f_{\sigma}(x)) \geq \epsilon > 0\) if \(n\) and \(h\) are fixed; obviously, \(\eta'\) depends on \(n).\) Denote

\[
\xi(\sigma, n) = \frac{\lambda_0^{2n} f_0(x) f_{\sigma}(x)}{\lambda_0^{2n} f_0^2(x)} \cdot \max_{l} \frac{f_0}{f_0} \cdot \max_{l} \frac{f_\sigma}{f_\sigma}.
\]

We showed that for some \(\eta' < 1\) and all \(x \in \hat{J}_j\) (recall \(\lambda_0 = 1)\)

\[
u_{m+1}^2(x) \leq \eta' \xi(\sigma, n) \bar{L}_0^n(u_m^2)(x).
\]

If \(x \notin \cup_j \hat{J}_j,\) the Cauchy-Schwartz inequality just gives, since \(\chi_m \leq 1,\)

\[
u_{m+1}^2(x) \leq \xi(\sigma, n) \bar{L}_0^n(u_m^2)(x).
\]

We claim that there is \(\hat{\delta},\) independent of \(m, n,\) and \(t,\) so that if \(\hat{J}_j\) is the union of the rightmost third of \(I_j, J_j,\) and the leftmost third of \(\hat{J}_{j+1},\) then

\[
(2.15) \quad \int_{\hat{J}_j} \bar{L}_0^n(u_m^2) \, dv_0 \geq \hat{\delta} \cdot \int_{J_j} \bar{L}_0^n(u_m^2) \, dv_0.
\]
We finish the proof assuming (2.13); if \(\tilde{\delta}(\beta_2 - \eta') \geq (1 - \beta_2) \) (e.g., \(\beta_2 = \frac{1+\eta'\delta}{1+\delta} < 1 \)),
\[
\int_I u_{m+1}^2 \, d\nu_0 \leq \xi(\sigma, n) \sum_j \left(\eta' \int_{I_j} \tilde{L}_0^n(u_m^2) \, d\nu_0 + \int_{I_j} \tilde{L}_0^n(u_m^2) \, d\nu_0 \right)
\leq \xi(\sigma, n)\beta_2 \left(\sum_j \int_{I_j} \tilde{L}_0^n(u_m^2) \, d\nu_0 + \int_{I_j} \tilde{L}_0^n(u_m^2) \, d\nu_0 \right)
= \xi(\sigma, n)\beta_2 \int_I \tilde{L}_0^n(u_m^2) \, d\nu_0 = \xi(\sigma, n)\beta_2 \int_I u_m^2 \, d\nu_0.
\]
(In the last line we used that the dual of \(\tilde{L}_0^n \) leaves \(\nu_0 \) fixed.) By taking \(\sigma \) sufficiently close to 0 (depending on \(n \), which is fixed) we can assume that \(\xi(\sigma, n)\beta_2 < 1 \).

It remains to show (2.15). It suffices to prove that \(\int_I u^2 \, d\nu_0 \geq \tilde{\delta} \int_I u^2 \, d\nu_0 \) for all \(C^1 \) functions \(u \) with \(|u'| \leq 2C|t|u(z) \) (recall Lemma 2.7 and use Lemma 2.2 and \(\bar{L}_0^n \equiv 1 \)). Note that such \(u \) satisfy, for all \(x \in I_j, y \in \bar{J}_j \):
\[
w^2(y) = exp2(log w(x) - log w(y)) = exp2 \int_x^y (w'/w)(z) \, dz \leq exp(4C(2\Delta + \delta)).
\]
Applying the above inequality, and making use of the Federer property (for intervals with length-ratio \(3\Delta \)), of \(\nu_0 \) which has density \(f_0 \) (bounded from above and from below) with respect to Lebesgue measure, we find
\[
\int_{I_j} u^2 \, d\nu_0 \geq \nu_0(I_j) \min_{I_j} u^2 \geq \tilde{\delta} e^{-4C(2\Delta + \delta)} \nu_0(I_j) \max_{I_j} u^2 \geq \tilde{\delta} \int_{I_j} u^2 \, d\nu_0.
\]
\[\square\]

We are finally ready to prove the theorem:

Proof. Since there is \(B \) so that \((\lambda_\sigma \text{ is semisimple}) \|L_\sigma^n\|_{1,t} \leq B\lambda_\sigma^n \|\bar{L}_\sigma^n\|_{1,t} \) for all \(n \geq 1 \), and since \(\lambda_0 = 1 \) and \(\sigma \) is a neighbourhood of 0, it is enough to show that there is \(\sigma \) and \(\hat{\gamma} < 1 \) so that \(\|\tilde{L}_0^n\|_{1,t} \leq \gamma^n \), for \(n \geq A \log |t| \). Clearly, this will follow from the existence of \(n_4 \) and \(\hat{\gamma} \) so that \(\|\tilde{L}_0^n\|_{1,t} \leq \gamma^n \) for all \(m \geq A \log |t| \) (write \(n = qn_4 + r \), with \(q, r \in \mathbb{Z}^+ \) and \(0 \leq r < n_4 \), and use \(\|\tilde{L}_0^n\|_{1,t} \leq \bar{B} \)).

Let (see Lemma 2.1) \(C = \max(3/2, C(\Sigma, \bar{K}), \max(1, D/(2\pi))) \), and let \(n_2 \) be given by Lemma 2.1. Let \(n_3 \geq n_2 \) be so that \(\rho^{n_3} < 1/4 \).

Let us first deal with the easy case \(|f'| \geq 2C|t| \sup |f| \). Setting \(\gamma_1 = \max((2C|t|)^{-1}, \rho^{n_3} + 3/4) < 1 \), we have \(\sup |\tilde{L}_0^n\| \leq \sup |f| \leq \frac{1}{2C|t|} \sup |f'| \leq \gamma_1 \|f\|_{1,t} \), and, by Lemma 2.2,
\[
\left| \frac{(\tilde{L}_0^n f')'}{|t|} \right| \leq C(\Sigma, \bar{K}) \frac{|s|}{|t|} \sup |f| + \rho^{n_3} \sup |f'|
\leq \left(\sqrt{\max(|\sigma|^2 + |t|^2)} + \rho^{n_3} \right) \frac{\sup |f'|}{|t|} \leq \gamma_1 \|f\|_{1,t}.
\]

If \(\sup |g'| < 2C|t| \sup |g| \), then the function \(g^2 \) satisfies (2.14) for \(2C \max(1, \sup |g|) \) for which Lemmas 2.7, 2.8 hold. Note also that a slight modification of the Cauchy-Schwartz argument in the beginning of the proof of Lemma 2.8 yields
\[
|\tilde{L}_0^{n_3}(g)(x)|^2 \leq K \frac{\lambda_\sigma^{n_3}}{\lambda_\sigma^{n_3}} \tilde{L}_0^{n_3}(g^2)(x),
\]
for some K independent of mn_3 and f. Next, assume $\sup |f| < 2C|t|$ and assume $\|f\|_{1,t} = 1$. By the spectral properties of \tilde{L}_0 on the space of Lipschitz functions endowed with the norm $\sup |g| + \text{Lip}(g)$ (with $\text{Lip}(g)$ the smallest Lipschitz constant of g), there are $R_\sigma < \infty$, $\tau_\sigma^L < 1$ (independent of f and t), with:

$$\sup |\tilde{L}_s^{2mn_3}(f)|^2 \leq \sup |\tilde{L}_s^{mn_3}(\tilde{L}_s^{mn_3}(f))|^2 \leq K\frac{\lambda_{2}\lambda_{mn_3}}{\lambda_{\sigma}^2}\sup \tilde{L}_0^{mn_3}(|\tilde{L}_s^{mn_3}(f)|^2)$$

$$\leq K\frac{\lambda_{2}\lambda_{mn_3}}{\lambda_{\sigma}^2}\left(\int |\tilde{L}_s^{mn_3}(f)|^2 \, dv_0 + R_\sigma(\tau_\sigma^L)^{mn_3}\sup \text{Lip}(|\tilde{L}_s^{2mn_3}(f)|^2)\right)$$

$$\leq K\frac{\lambda_{2}\lambda_{mn_3}}{\lambda_{\sigma}^2}\left(\sup |f|^2 \beta^m + R_\sigma(\tau_\sigma^L)^{mn_3}\sup \text{Lip}(|\tilde{L}_s^{mn_3}(f)|^2)\right)$$

using Lemma 2.8 for $n = n_3$ and Cauchy-Schwartz). Lemma 2.7 gives

\begin{equation}
\sup |\tilde{L}_s^{mn_3}(f)|^2 = \sup |f|^2|v_m|^2 \leq \sup |f|^2|u_m|^2 \leq \|f\|^2 \leq 1,
\end{equation}

and $\text{Lip}(\tilde{L}_s^{mn_3}(f))^2 \leq 2\sup |f|^2 \cdot \sup |f| \sup |v_m'| \leq 2\sup |f|^22C|t| \leq 4C|t|$, since $\text{Lip}(|v_m'|) \leq \text{Lip}(|v_m|) = \sup |v_m'|$.

In order to find $\max(\beta, \tau_\sigma^m) = \frac{\lambda_{2}\lambda_{mn_3}}{\lambda_{\sigma}^2} < \gamma_2^m < 1$ so that (for all m)

$$K\frac{\lambda_{2}\lambda_{mn_3}}{\lambda_{\sigma}^2}\cdot \left(\beta^m + R_\sigma(\tau_\sigma^L)^{mn_3}(1 + 4C|t|)\right) \leq \gamma_3^m,$$

it is enough to require $m \geq \tilde{A}\log |t|$ for some $\tilde{A} > 0$ (and σ close enough to 0).

To control the derivative, invoke Lemma 2.2 exploiting the bounds just obtained:

$$\sup \left|\frac{(\tilde{L}_s^{2mn_3}(f))'}{|t|}\right| \leq \frac{C(\Sigma, \tilde{K})}{|t|}\sup (\tilde{L}_s^{2mn_3}|f|) + \frac{\rho^{mn_3}}{|t|}\sup (\tilde{L}_s^{2mn_3}|(f')|)$$

$$\leq \frac{C(\Sigma, \tilde{K})}{|t|}\gamma_2^m + 2C\rho^{mn_3}\sqrt{K}\frac{\lambda_{2}\lambda_{mn_3}}{\lambda_{\sigma}^2} \leq \gamma_3^m.$$

Take $n_4 = 2n_3$ and large enough $A \geq \tilde{A}$.

□

REFERENCES

1. N. Anantharaman, Travaux de Dolgopyat sur le mélange des mesures de Gibbs, Chapter 1 of “Géodésiques fermées d’une surface sous contraintes homogènes,” unpublished, 2000.

2. V. Baladi and B. Vallée, Euclidean algorithms are Gaussian, Preprint (2003), www.arxiv.org.

3. D. Dolgopyat, On decay of correlations in Anosov flows, Ann. of Math., 147, 1998 pp. 357–390.

4. D. Dolgopyat, Private communication (2003).

5. M. Pollicott, On the mixing of Axiom A attracting flows and a conjecture of Ruelle, Ergodic Theory Dynam. Systems, 19, 1999, pp. 535–548.

6. M. Pollicott and R. Sharp, Exponential error terms for growth functions on negatively curved surfaces, Amer. J. Math., 120, 1998, pp. 1019–1042.

7. L. Stoyanov, Spectrum of the Ruelle operator and exponential decay of correlations for open billiard flows, Amer. J. Math., 123, 2001, pp. 715–759.

8. L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math., 147, 1998, pp. 585–650.

CNRS, UMR 7586, INSTITUT DE MATHEMATIQUES DE JUSSIEU, 75251 PARIS, FRANCE
E-mail address: baladi@math.jussieu.fr

CNRS, GREYC, UNIVERSITÉ DE CAEN, 14032 CAEN, FRANCE
E-mail address: brigitte.vallee@info.unicaen.fr