Daily rhythmicity of clock gene transcript levels in fast and slow muscle fibers from Chinese perch (Siniperca chuatsi)

Ping Wu¹, Yu-Long Li¹, Jia Cheng¹, Lin Chen¹, Xin Zhu¹, Zhi-Guo Feng³, Jian-She Zhang¹,²* and Wu-Ying Chu¹,²*

Abstract

Background: Clock genes are considered to be the molecular core of biological clock in vertebrates and they are directly involved in the regulation of daily rhythms in vertebrate tissues such as skeletal muscles. Fish myotomes are composed of anatomically segregated fast and slow muscle fibers that possess different metabolic and contractile properties. To date, there is no report on the characterization of the circadian clock system components of slow muscles in fish.

Results: In the present study, the molecular clock components (clock, arntl1/2, cry1/2/3, cry-dash, npas2, nr1d1/2, per1/2/3, rora and tim genes) and their daily transcription levels were characterized in slow and fast muscles of Chinese perch (Siniperca chuatsi). Among the 15 clock genes, nr1d2 and per3 had no daily rhythmicity in slow muscles, and cry2/3 and tim displayed no daily rhythmicity in fast muscles of the adult fish. In the slow muscles, the highest expression of the most clock paralogs occurred at the dark period except arntl1, nr1d1, nr1d2 and tim. With the exception of nr1d2 and tim, the other clock genes had an acrophase at the light period in fast muscles. The circadian expression of the myogenic regulatory factors (mrf4 and myf5), mstr and pnca showed either a positive or a negative correlation with the transcription pattern of the clock genes in both types of muscles.

Conclusions: It was the first report to unravel the molecular clock components of the slow and fast muscles in vertebrates. The expression pattern differences of the clock genes between the two types of muscle fibers suggest that the clock system may play key roles on muscle type-specific tissue maintenance and function.

Keywords: Chinese perch, Clock genes, Skeletal muscle, Daily rhythmicity, Myogenic regulatory factors

Background

Fish skeletal muscles are the most abundant tissue in the body mass and play an important role in the process of certain physiological metabolism [1]. Similar to other peripheral tissues of the body, skeletal muscles have circadian rhythms [2]. These rhythms are regulated by a transcriptional-translational and post-translational feedback network termed as the molecular clock [3]. There are several major components in the molecular clock, including circadian locomotor output cycle protein 1 (arntl1 or bmal1), cryptochrome (cry), and period protein (per) etc. [4]. Two transcriptional activation proteins of the molecular clock, namely clock and arntl1, are the basic-helix-loop-helix (bHLH) transcription factors that form into a heterodimer in the nucleus. Together, they transactivate per and cry gene expression via binding to the E-box elements (CACGTG) at their promoter sequences [5–7]. Per and cry then translocate into the cell nucleus, in which they inactivate clock and arntl activity, thereby repressing their own transcription. The clock mechanism plays a pivotal role in myogenesis, gene transcription, and maintenance of muscle metabolism [8, 9]. The molecular clock components have been identified in skeletal muscles and showed a circadian rhythms of expression. In addition to these clock genes, more than 2300 other genes have circadian pattern of expression in skeletal muscles. These muscle genes with circadian pattern of expression are believed to be...
regulated by the major molecular clock genes and the clock-controlled transcription factors [10].

Fish are excellent model species for investigating the regulation of skeletal muscle physiology in vertebrates because it has several structural features making convenient to experimental analysis [11, 12]. The slow-contracting red and fast-contracting white muscles are the two main muscle fiber types in fish [13, 14]. Particularly, they are localized into physically distinct area of the fish body. The fast muscle fibers are the main component of skeletal muscles that distribute along the spine of the whole body. Their explosive force is strong for fast swimming using energy from glycolysis [15, 16]. Slow fibers, on the other hand, contain high contents of mitochondria and their metabolism is completely aerobic [16, 17]. These unique features enable slow fibers to maintain sustained swimming and support oxygen respiration [18].

Recently, several studies have been reported on the clock rhythmicity in fish. In zebrafish, the major clock genes showed similar circadian expression patterns in fast muscles compared with the central organs, such as retina and brain [19, 20]. It has been shown that insulin-like growth factor binding proteins (igfbp3 and igfbp5b) and myogenic regulatory factor 4 (mrf4) were controlled by the core clock genes in zebrafish skeletal muscles [20, 21]. In Atlantic cod fast muscles, similar circadian clock system has been identified [2]. Another myogenic regulatory factor myf5 exhibited a significant correlation with the core clock genes at the transcription levels [2]. However there is little information on the circadian clock system components in fish slow muscle. The Chinese perch (Siniperca chuatsi) is one of the most important species in aquaculture in China [22]. Its high nutritional value, high protein content and appealing taste have led to its expanded large-scale aquaculture in China [23]. In the present study, we report the characterization of circadian clock system in both fast and slow muscles of Chinese perch, and the correlation analysis between core clock gene expression and 11 myogenic related genes in the two types of muscles.

Results

Isolation of Chinese perch clock genes and their molecular characteristics

A total of 4 complete and 11 partial sequences of 15 clock genes were cloned from the skeletal muscles of Chinese perch. These include arntl1, arntl2, clock, cry1, cry2, cry3, cry-dash, npas2, nr1d1, nr1d2, per1, per2, per3, rora and tim (Additional file 1). The full-length cDNAs of clock, cry1, per1 and nr1d2 were 3698 bp, 3476 bp, 3406 bp and 2684 bp, respectively (Fig. 1). The clock gene contained the 5′-non-coding region (5′-UTR) of 412 bp, an open reading frame (ORF) of 2697 bp and the 3′-non-coding region (3′-UTR) of 589 bp. The cry1 gene contained the 5′-UTR of 837 bp, an ORF of 1866 bp and the 3′-UTR of 773 bp. The per1 gene included the 5′-UTR of 300 bp, an ORF of 4311 bp and the 3′-UTR of 795 bp. The nr1d2 gene contained the 5′-UTR of 380 bp, an ORF of 1770 bp and the 3′-UTR of 534 bp.

The conserved structural and functional domains were characterized based on the predicted protein sequences. The clock protein contains the conserved bHLH, Per-Arnt-Ser (PAS) A and PAS B domains. The amino acid sequences of these domains showed 100%, 98% and 100% similarities to those of Larimichthys crocea, respectively (Figs. 1 and 2). The per1 has a PAS domain, a G-box binding protein multifunctional mosaic region (MFMR) and a 2/3 C-terminal region of period protein. The amino acid sequences of these domains showed 99%, 91% and 93% similarities to those of L. crocea, respectively. The cry1 contains two functional domains, a flavin adenine dinucleotide (FAD)-binding domain and a DNA photolyase domain. The amino acid sequences of
these two domains showed 98% and 98% similarities to those of \emph{L. crocea}, respectively. The \emph{nr1d2} has two nuclear hormone receptors DNA-binding domains and the amino acid sequences of these domains showed 100% and 98% similarities to those of \emph{L. crocea}, respectively.

The rhythmicity of clock genes during a daily cycle in fast and slow muscles
The expression pattern of the clock genes was determined for daily rhythmicity in fast and slow muscle (Tables 1 and 2, and Figs. 3 and 4). Among the 15 clock genes, \emph{nr1d2} and \emph{per3} have no daily rhythmicity in slow muscles, while \emph{cry3}, \emph{napas2}, and \emph{tim} have no rhythmicity in fast muscle. \emph{Cry2} and \emph{cry-dash} have no daily rhythmicity in neither slow nor fast muscles. In contrast, \emph{arntl1}, \emph{arntl2}, \emph{clock}, \emph{cry1}, \emph{per1}, \emph{per2}, \emph{nr1d1} and \emph{ror} displayed the daily rhythmicity in both fast and slow skeletal muscles. In fast muscles, transcriptional activation factors \emph{arntl1}, \emph{arntl2} and \emph{clock} displayed the daily rhythmicity with an acrophase during the light phase (Fig. 3). There was no much temporal difference between \emph{arntl2} and \emph{clock} expression. In slow skeletal muscles, \emph{arntl1}, \emph{arntl2} and \emph{clock} still displayed the daily rhythmicity but \emph{arntl1} had an acrophase during the dark phase (Fig. 4). The temporal expression of \emph{arntl1} and \emph{clock} showed no apparent difference. Finally, \emph{napas2} showed the daily rhythmicity with an acrophase during the light phase only in slow muscles (Fig. 4).

The transcriptional repressors \emph{cry2}, \emph{cry3} and \emph{tim} were arrhythmic but \emph{cry1}, \emph{per1}, \emph{per2} and \emph{per3} were rhythmic in fast muscles. With the exception of \emph{tim}, the other clock genes were expressed with the acrophase during the light phase in fast muscles. In slow muscles, the \emph{cry2} and \emph{per3} were arrhythmic but \emph{cry1}, \emph{cry3}, \emph{per1}, \emph{per2} and \emph{tim} were rhythmic. The \emph{tim} was highly expressed during the light phase with the acrophase at Zeitgeber time (ZT) = 0.16 h, but the other genes were expressed with the acrophase during the dark phase in slow muscles.
The nuclear receptors *rora*, *nr1d1* and *nr1d2* displayed the daily rhythmicity in fast muscles. *rora* and *nr1d1* had an acrophase during the light phase (*ZT = 5.05 h*) but *nr1d2* had an acrophase during the dark phase (*ZT = 20.51 h*). In slow muscles, *rora* and *nr1d1* exhibited a daily rhythmic expression but *nr1d2* was arrhythmic. The *rora* and *nr1d1* genes had an acrophase during the light phase, but *nr1d2* exhibited a similar process during the dark phase (*ZT = 19.08 h*).

In fast muscles, the mRNA transcript levels of *clock* were positively correlated with the expression pattern of *per2* and *per3* in fast muscles with a higher correlation index (*r* > 0.8; Table 3). *Arntl2* also exhibited a positive correlation with *per2* and *per3*. *Nr1d2*, however, showed a moderate negative correlation to *arntl1*, *clock*, *npas2*, *nr1d1* and *rora*. In slow muscles, *clock* showed a moderate positive correlation to *per2* and *per3*. *Arntl2* also displayed a moderate positive correlation with *per2* expression. *Nr1d2* showed no correlation with other genes (Table 4).

Daily expression of myogenic related genes and the correlation with the clock components in fast and slow muscles

In fast muscles, *mbnl1*, *mrf4*, *mstn*, *myf5*, *myoD*, *myoG* and *pcna* displayed a daily rhythmic expression (Table 1 and Fig. 5), but only *pcna* had an acrophase during the dark phase (*ZT = 22.91 h*). In slow muscles, *foxk2*, *mrf4*, *mstn*, *myf5* and *pcna* exhibited a daily rhythmic expression (Table 2 and Fig. 6). *Mrf4* and *mstn* showed an acrophase during the light phase (*ZT = 2.67 h* and 3.32 h). In contrast, *foxk2* (*ZT = 21.32 h*), *myf5* (*ZT = 21.23 h*) and *pcna* (*ZT = 20.05 h*) had an acrophase during the dark phase.
The mRNA transcript levels of most myogenic related genes had either a positive or a negative correlation with the daily expression of clock genes in fast and slow muscles (Tables 5 and 6). In fast muscles, the transcript levels of pcna displayed a moderate negative correlation with arntl2, cry1 and per1 (-0.8 < r < -0.5). Mbnl1 showed a strong positive correlation with arntl2 and per2. In slow muscles, the transcript levels of pcna showed a moderate positive correlation with arntl2, cry1 and per1. Myf5, myf4, pcna and mstn showed a strong positive correlation with cry3 and npas2 in slow muscles. The foxk2 gene also showed a strong correlation with transcriptional activators, such as arm arnt12.

Discussion

In the present study, we identified for the first time 15 clock genes, including four transcriptional activation factors (arnt11, arnt12, clock and npas2), eight transcriptional repressors (cry1, cry2, cry3, cry-dash, per1, per2, per3 and tim), and three orphan nuclear receptors (nr1d1, nr1d2 and rora) in Chinese perch skeletal muscles. As expected, some of the clock genes exhibited a robust oscillation during the light–dark cycle in the slow or fast skeletal muscle.

The full length cDNA sequences of several key clock genes, such as clock, cry1, per1 and nr1d2, were cloned from Chinese perch. Silico structural analysis of the deduced amino acid sequences indicated that clock and per1 proteins contain the conserved PAS and bHLH domains [24]. These two domains are required for the circadian clock functions and are highly conserved in different species during evolution [25]. The transcriptional repressor cry1 has a typical DNA-photolyase and flavin adenine dinucleotide(FAD)-binding domains that are present in all cryptochrome genes [26, 27]. Together with photolyase DNA repair enzymes, FAD-binding domain containing proteins form the cryptochrome/photolyase complex. This active complex has been used in blue light-induced gene expression to affect biological rhythm [26, 28, 29]. In nr1d2 protein, two core nuclear domains were also identified from its deduced amino acid sequence. The nr1d2 binds to arnt11 and clock via a unique zinc finger structure domain to form a complex, which binds and blocks the protein complex formation by Circadian Locomotor Cycles [30, 31].
The daily rhythmicity was observed in many clock genes in fast muscles of several species, indicating a potential regulatory function in muscle physiology and metabolism ([2, 20, 32], and [33]). However, the circadian clock gene expression in slow muscles has not been reported. In the study, we analyzed the \textit{arntl1} and \textit{arntl2} gene expression in Chinese perch and showed that they exhibited a light-biased expression in fast muscles. Several earlier reports in rainbow trout and mouse suggested that the photosensitivity profile in fast muscles is regulated by their homologous expression in either central or peripheral clocks ([10, 34, 35]). However, their dark-biased expression in Chinese perch slow muscle is similar to that observed in Atlantic cod and zebrafish fast muscles. The correlation between \textit{arntl1/2} and \textit{clock/npas2} in Chinese perch slow muscles indicated that the mechanism underlying the transcriptional activation of the clock system may be similar to those reported from other fish species in slow muscles. \textit{Npas2} which shares a high sequence homology with \textit{clock} protein is able to substitute for \textit{clock} function in the master brain clock and regulates the circadian rhythmicity in the brain. The antiphase profile between \textit{arntl} and \textit{clock} in Chinese perch fast muscles suggested that \textit{arntl} may correlate with other bHLH-PAS factors in fish muscles.

Among the 3 period genes expressed in Chinese perch slow muscles, their dark-biased expression was in agreement with that reported from other fish species, such as goldfish, European sea bass and zebrafish [20, 28, 36, 37]. On the other hand, their light-biased expression in Chinese perch fast muscle is also consistent with the central and peripheral clocks in \textit{Senegalese sole} [24]. The three period genes with the daily rhythmic expression also displayed a positive correlation with the \textit{cry1} gene, the only cryptochrome gene with the daily rhythmicity in Chinese perch fast muscle. Of the period and \textit{cry} genes with the daily rhythmic expression in Chinese perch slow muscles, \textit{per1/2} showed the positive correlation with both \textit{cry1} and \textit{cry3}. These results suggested that \textit{per} may interact with \textit{cry} to control the transcriptional activation and function in the circadian feedback loop.

\textit{Nr1d1}, \textit{nr1d2} and \textit{rora} are members of nuclear receptor family, which are involved in stabilizing the circadian
clock loop [20, 38–40]. Nr1d1 and nr1d2 were identified as the constitutive transcriptional repressors of arntl1, whereas rora is the arntl1 transcriptional activator [2, 41]. In addition, nr1d1 was considered to be interwoven into the core clock mechanism via downregulating the clock expression. As reported in mammals, Npas2 expression was repressed by these nuclear receptors [40, 42]. In this study, the three nuclear receptors displayed a daily rhythmic expression in Chinese perch fast muscles and nr1d2 exhibited a negative correlation with the expression of rorα gene. This is reflected in their tight regulation with the circadian mechanism. Nr1d2 also showed a negative correlation with clock and npas2. Therefore, it is possible that nr1d2 may function by repressing npas2 and clock expression in fast muscles. However, nr1d2 had no daily rhythmic expression in Chinese perch slow muscles and nr1d1 showed a direct relationship with the rora expression. It could suggest that Chinese perch slow muscles may have a different circadian mechanism in maintaining the stabilization loop.

In this study, the transcription levels of eleven genes related to myogenesis during the daily cycle were investigated. The data revealed that seven genes had a daily rhythmic expression in fast muscles and five in slow muscles. Myogenic regulatory factors (MRFs) (such as myoD, myf5, mrf4 and myoG), belong to the same class of helix-loop-helix transcription factors that play distinct and overlapping roles in regulating muscle development and growth [43, 44]. It has been reported that the circadian regulation of myoD expression by lock/arntl was crucial for the skeletal muscle phenotype and function in mouse [32]. Our study confirmed that myoD in Chinese perch fast muscles exhibited a typical daily rhythmicity. Based on our observation, it is possible that the

Table 3 The expression correlations among different clock genes in fast muscle during a daily cycle

Correlations	Gene	Gene	r
Positive correlation	arntl1	arntl2	+0.64
	arntl1	cry1	+0.58
	arntl1	cry2	+0.93
	arntl1	npas2	+0.88
	arntl1	per1	+0.66
	arntl1	per3	+0.53
	arntl1	rora	+0.99
	arntl2	cry1	+0.94
	arntl2	cry2	+0.61
	arntl2	cry3	+0.66
	arntl2	npas2	+0.76
	arntl2	nr1d1	+0.74
	arntl2	per1	+0.83
	arntl2	per2	+0.86
	arntl2	per3	+0.83
	arntl2	clock	+0.82
	arntl2	rora	+0.64
	clock	npas2	+0.68
	clock	per1	+0.72
	clock	per2	+0.98
	clock	per3	+0.98
	clock	nr1d1	+0.98
	clock	cry1	+0.94
	cry1	npas2	+0.74
	cry1	nr1d1	+0.89
	cry1	per1	+0.79
	cry1	per2	+0.94
	cry1	per3	+0.93
	cry1	rora	+0.60
	cry2	cry3	+0.60
	cry2	npas2	+0.87
	cry2	per1	+0.58
	cry2	rora	+0.94
	cry3	per1	+0.54
	npas2	nr1d1	+0.69
	npas2	per1	+0.69
	npas2	per2	+0.66
	npas2	per3	+0.76
	npas2	rora	+0.90
	nr1d1	per1	+0.63
	nr1d1	per2	+0.95
	nr1d1	per3	+0.98
	per1	tim	+0.50

Note: Only correlations with $r > +0.5$ or $r < -0.5$ and including at least one gene with significant daily rhythmicity are shown in this table. The following values were set to define the degree of correlation: data are moderately correlated if $0.5 < r < 0.79$ and there is a strong correlation when $r \geq 0.80$ which are highlighted in bold.
circadian regulation of Chinese perch myoD may function in a similar way as reported in mouse. In contrast, we have not obtained any direct evidence for circadian expression of myoD in Chinese perch slow muscles. Therefore, it is possible that the differentially expressed MRFs may result from the lineage-specific differences by clock genes. However, our work demonstrated that one of the MRFs, mrf4, in Chinese perch slow muscles exhibited a rhythmic expression pattern similar to that described for myoD in fast muscles, suggesting that mrf4 may have a potential function in the maintenance of muscle phenotype and function.

Conclusion
In this study, we assayed the possible correlation of a functional clock system in Chinese perch slow and fast skeletal muscles. We demonstrated that 10 clock genes and 7 genes related to myogenesis exhibited the daily rhythmicity in fast muscles of Chinese perch. The 11 clock genes and 5 genes related to myogenesis have the daily rhythmicity in slow muscles (Fig. 7). The circadian expression of mrf4, myf5, mstn, and pcna may either positively or negatively regulate the transcription of the clock genes in both types of muscles. It is plausible that muscle type-specific maintenance and function is regulated by the core clock genes. This is based on the evidence of daily rhythmicity and apparent correlation of gene expression of clock genes and genes related to myogenesis. Taken together, our data provide new information on the rhythmic expression of clock genes and a better understanding of the circadian clocks in fish muscle phenotype maintaining and function.

Methods
Daily rhythm experiment
Adult Chinese perch (body weight 450 ± 10 g) were stocked in 250 m³ tanks. Fifteen testing fishes were kept in each tank and a total of six tanks were used in the experiment. To eliminate the fish disturbance during sampling, the fish were fed at the same time each day. During the experiment, water temperature was kept at 25 ± 0.8 °C, dissolved oxygen at 85 ± 2% and the light intensity of the water surface at 0.84 W*m⁻² (200 lx). The testing fishes were acclimated to the above described conditions for 2 weeks during a daily light–dark cycle before sample collection. Six individuals were randomly collected from the each tank in every three hours until 24 h (Zeitgeber time: ZT0, 3, 6, 9, 12, 15, 18, 21 and 24). Sampling of the light treatment at the different time points was basically followed as described by Lazada [2]. Briefly, samples at ZT0 were collected when the light reached to a maximum intensity, the samples at ZT24 were collected when it transited to the light phase; The ZT12 samples were collected at approximately

Table 4 The expression correlations among different clock genes in slow muscle during a daily cycle

Correlations	Gene	Gene	r
Positive correlation	arntl1	arntl2	0.84
	arntl1	cry2	0.51
	arntl1	clock	0.77
	arntl1	npas2	0.84
	arntl1	nr1d2	0.55
	arntl1	per1	0.74
	arntl1	per3	0.68
	arntl2	cry1	0.53
	arntl2	cry2	0.50
	arntl2	cry3	0.73
	arntl2	npas2	0.56
	arntl2	nr1d2	0.89
	arntl2	per1	0.85
	arntl2	per2	0.62
	arntl2	per3	0.84
	clock	cry1	0.75
	clock	cry3	0.62
	clock	npas2	0.56
	clock	per1	0.74
	clock	per2	0.61
	clock	per3	0.58
	clock	rora	0.54
	clock	tim	0.62
	cry1	per1	0.51
	cry1	per2	0.92
	cry2	per2	0.58
	cry3	nr1d2	0.78
	cry3	per1	0.64
	cry3	per2	0.83
	cry3	per3	0.55
	npas2	per1	0.54
	npas2	per3	0.62
	npas2	tim	0.63
	nr1d2	per1	0.72
	nr1d2	per2	0.56
	per1	per2	0.51
	per1	per3	0.88
	per1	rora	0.61
	rora	tim	0.61

Note: Only correlations with $r > +0.5$ or $r < -0.5$ and including at least one gene with significant daily rhythmicity are shown in this table. The following values were set to define the degree of correlation: data are moderately correlated if $0.5 < r < 0.79$ and there is a strong correlation when $r \geq 0.80$ which are highlighted in bold.
Fig. 5 Expression of myogenesis-related genes in fast skeletal muscles during a daily cycle. The values are mean ± SEM (n = 6) of the normalized transcript levels of each clock gene. Significant differences between time points are indicated by different letter notations. The line represents the periodic sinusoidal function of gene expression in a circadian cycle constructed from the periodicity parameters calculated using COSINOR. The photoperiod regime is represented by the composite block above the graph. White, black and gray represent the light, the dark and the light–dark transition phases, respectively.

Fig. 6 Expression of myogenesis-related genes in slow skeletal muscles during a daily cycle. The values are mean ± SEM (n = 6) of the normalized transcript levels of each clock gene. Significant differences between time points are indicated by different letter notations. The line represents the periodic sinusoidal function of gene expression in a circadian cycle constructed from the periodicity parameters calculated using COSINOR. The photoperiod regime is represented by the composite block above the graph. White, black and gray represent the light, the dark and the light–dark transition phases, respectively.
20 min later, while samples of ZT0-9 and ZT15-24 were collected at the time between the light and dark. The fast muscle was sampled from the dorsal muscle tissue, and slow muscle was collected under the body skin [16]. All of the collected muscle samples were washed with cold and sterilized 1 × PBS to remove contaminating blood and then immediately stored in liquid nitrogen at −80 °C for total RNA extraction.

Molecular cloning of Chinese perch clock genes

To amplify the cDNA fragments of the clock genes, the primers were designed based on the assembled EST sequences of the Chinese perch muscle database (accession nos: SRX1738860) or the clock gene sequences from several-related fish species (Table 1). The full length cDNAs of the four clock genes were amplified with the SMART RACE cDNA Amplification Kit.

Table 5 Correlation of expression levels of rhythmic clock and muscle-related genes in the fast muscle

Clock gene	mbnl1	mrf4	mstn	myf5	myoD	myoG	pcna
arntl1	0.53	0.11	0.09	-0.24	0.31	0.30	-0.49
arntl2	0.94	0.20	0.53	-0.23	0.74	0.80	-0.51
cry1	0.93	0.14	0.48	-0.20	0.61	0.73	-0.51
nrld1	0.82	-0.08	0.49	0.00	0.62	0.74	-0.40
nrld2	-0.49	-0.40	0.24	-0.25	-0.06	-0.41	0.41
per1	0.63	0.15	0.65	-0.29	0.56	0.56	-0.59
per2	0.90	-0.07	0.61	0.02	0.74	0.82	-0.30
per3	0.86	-0.12	0.59	-0.06	0.71	0.77	-0.40
rora	0.53	0.17	0.10	-0.31	0.30	0.28	-0.55
clock	0.86	-0.01	0.53	-0.01	0.63	0.77	-0.40

Note: The following values were set to define the degree of correlation: data are considered to be moderately correlated if $0.5 < r < 0.79$ or $-0.79 < r < -0.5$ and there is a strong correlation when $r \geq 0.80$. And moderate correlation is marked in bold and strong correlation in red color.

Table 6 Correlation of expression levels of rhythmic clock and muscle-related genes in the slow muscle

Clock genes	foxk2	mrf4	mstn	myf5	myoD	pcna
arntl1	0.76	0.67	0.64	0.47	0.28	
arntl2	0.84	0.34	0.44	0.76	0.59	
cry1	0.50	-0.27	-0.16	0.68	0.76	
cry3	0.51	-0.16	0.03	0.95	0.82	
npas2	0.58	0.91	0.87		0.18	0.02
nrld1	-0.45	0.41	0.44	-0.12	-0.25	
per1	0.76	0.47	0.38	0.68	0.66	
per2	0.44	-0.33	-0.23	0.73	0.68	
rora	0.18	0.45	0.27	0.23	0.48	
tim	0.52	0.68	0.76	0.25	0.36	
clock	0.79	0.41	0.42	0.65	0.62	

Note: The following values were set to define the degree of correlation: data are considered to be moderately correlated if $0.5 < r < 0.79$ or $-0.79 < r < -0.5$ and there is a strong correlation when $r \geq 0.80$. And moderate correlation is marked in bold and strong correlation in red color.
according to the manufacturer’s instruction (Clontech, Palo Alto, CA, USA). Specific nested PCR primers were designed based on the cloned partial sequences (Table 1). For 5′ RACE amplification, the protocols were conducted as follows: 35 cycles of 94 °C for 30 s, 60 °C for 30 s and 72 °C for 1 min. For 3′-RACE, two amplifications were conducted at the same parameters as 5′ RACE, the amplification described above.

Bioinformatic analysis of the clock genes

The cDNA fragment identity was confirmed with BLAST (http://blast.ncbi.nlm.nih.gov) and the deduced amino acid sequences were obtained using the ExPASy Proteomics Server (http://www.expasy.ch). The complete amino acid sequences of the clock, cry1, per1 and nr1d2 domains were analyzed through UniProt (http://www.uniprot.org) and the ExPASy proteomics Server (http://www.expasy.ch). The clock gene sequences of other teleosts were obtained from the NCBI databases and the protein accession numbers are listed in Additional file 2.

Gene expression analysis

Total RNAs were isolated from Chinese perch muscles using the TRizol® Reagent (Invitrogen, USA). The RNA samples were treated with RNAse-free DNAse I (Promega, USA) in the presence of RNAse inhibitor (Sigma, China Branch), and then precipitated with ethanol. The obtained RNA was reversely transcribed with Super-Script III RNase H-Reverse Transcriptase (Invitrogen, USA) following the manufacturer’s instruction. For a negative control, no cDNA sample was added in the PCR reaction.

Primers for the qRT-PCR assays were designed using the software Primer 5.0 (Table 7). The reverse transcribed cDNAs from skeletal muscles were used as templates for qRT-PCR assays with SYBR Green PCR reaction kit (Stratagene, Shanghai, China). The qRT-PCR amplification reaction was carried out using the Stratagene Mx3005 system (Stratagene, CA, USA). A total volume of 25 μL reaction was used for the qRT-PCR assays, containing 1 μL cDNA templates, 12.5 μL SYBR Green mix, and 1 μmol/L each of forward and reverse primers. The reaction protocol was used as the standard cycling of the qPCR. Each product identity was verified by dideoxy-mediated chain termination sequencing at Sangon Biotechnology Inc. (Shanghai, China). The relative expression ratio (R) of target mRNA was calculated by $R = 2^{-\Delta\Delta Ct}$ [45, 46], where Ct is the cycle threshold. The basic equation employed was $\Delta\Delta Ct = (Ct_{target\ gene} - Ct_{housekeeping\ gene})_{experiment} - (Ct_{target\ gene} - Ct_{housekeeping\ gene})_{control}$. The transcriptional levels of selected muscle-related genes in Chinese perch fast and slow muscles during a daily cycle were also quantitatively assayed using the same qRT-PCR protocol.

The stability of transcription of reference genes was assayed with GeNorm system and total six reference genes were analyzed including Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β-actin, 18 S rRNA gene, hypoxanthine phosphoribosyltransferase 1-like (hpirt1), epinephelus coioides ribosomal protein S29 (rps29) and ribosomal protein L13 (rpl13) [47–49]. GeNorm analysis revealed that rpl13 was the most stable control gene in skeletal muscles (GeNorm stability value M = 0.28). The geometric average of these genes were measured by absolute quantification within all samples.
Table 7 Primers used for genes cloning and quantitative real-time PCR

Primer name	Sequence (5′-3′)	Items
3′-RACE outer	RCTGATCTAGAGGTACCGAGATCC	3′-RACE
Clock 3′-RACE inner	AAGCGCCTGATGTCGCTG	3′-RACE
Clock 3′-RACE inner	AAGCGCCTGATGTCGCTG	3′-RACE
S′-RACE outer	GACTCTAGAGCTGACATCG	S′-RACE
Cry1 5′-RACE inner	TTGGCATTCTCTCTGAGCA	S′-RACE
Cry1 5′-RACE inner	GGCTTGGTTCAGTTTATTGA	S′-RACE
5′-RACE outer	GTGCTGGAGCCTGGCTG	3′-RACE
3′-RACE inner	CCAACACGGCACTGAGCAGC	3′-RACE
Per1 5′-RACE inner	AATTAGAGTGCTGGCGTGGC	3′-RACE
Per1 5′-RACE inner	GGGCGAACCTTCAGATCCTG	5′-RACE
Per1 3′-RACE inner	GAGAACGGTGAAACAAATGA	3′-RACE
Per1 3′-RACE inner	ACGCTTCACCGAGGAACAGA	3′-RACE
Nr1d2 5′-RACE inner	CAGTCTGAAGGGGCAGTGGT	5′-RACE
Nr1d2 5′-RACE inner	GACTGGTAGCTGCCGTTGGA	5′-RACE
Nr1d2 3′-RACE inner	AGTGCCGCTTCAAGAAATGC	3′-RACE
Nr1d2 3′-RACE inner	GGAGATGAGCCTCTTCACTGC	3′-RACE
Arntl1 RT-PCR	GGCTATCCCTACTCCAACCAGAG	RT-PCR
Arntl2 RT-PCR	TTGCTGGGGCTGCTGGAA	RT-PCR
Clock RT-PCR	TGGCTGGAGGCTCCTGGATGGTGG	RT-PCR
Npas2 RT-PCR	GGTTCTGGTCCACTAAGTCCGTC	RT-PCR
Cry1 RT-PCR	TGGAGAATGAAGGAGCGATGA	RT-PCR
Cry2 RT-PCR	GAATGCCAACTCACTGCTCG	RT-PCR
Cry3 RT-PCR	CGAAGCAGGGGCTGTTGGT	RT-PCR
Cry-dash RT-PCR	ATCTTGAAGGACTACCCGAACC	RT-PCR
Per1 RT-PCR	GGGTTATCGCTCTGGTTGG	RT-PCR
Nr1d2 RT-PCR	TTGCTGCCTCTGCGTGGTTA	RT-PCR
Ror α RT-PCR	GGTGCGGTCCTTCACATCG	RT-PCR
Tim RT-PCR	TGAAGGAGCAGTGACGGGATGAGGAA	RT-PCR
Foxk2 RT-PCR	RCTGCACTTCAGAATGACGGT	RT-PCR
Mbn1 RT-PCR	TGAGGCTGTGGTTGGAATGG	RT-PCR
Mr1 RT-PCR	CTTTAGGTGGGGAGGAGGG	RT-PCR
Mtn RT-PCR	AGACGCAGAAGACTCAGTGGT	RT-PCR
Murf1 RT-PCR	RCTGACGGCAGACTCATTCCCA	RT-PCR
Myf5 RT-PCR	GGTGGGTTCTACCTGGACTTCC	RT-PCR
myoD RT-PCR	GAAGGCTACAGCAAAGACGGA	RT-PCR
Jrn1d2 RT-PCR	CTGGCACCTTCAGAATGACGGT	RT-PCR
Atm1 RT-PCR	TGCTGGGGCTGCTGGAAG	RT-PCR
Atm2 RT-PCR	AGGACCGCCCTCTCTCTTGAGAAG	RT-PCR
Clock RT-PCR	TTGGGGAACAAACGGGAC	RT-PCR
Npas2 RT-PCR	GTGGCTGGCTTACCTAAGTCGAGC	RT-PCR
Cry1 RT-PCR	TGGAGAATGAAGGAGCGATGA	RT-PCR
Cry2 RT-PCR	GAATGCCAACTCACTGCTCG	RT-PCR
Cry3 RT-PCR	GGCTGGGGCTGCTTGGG	RT-PCR
Cry-dash RT-PCR	GCCGTAAGGCTTCCCAGAACC	RT-PCR
Rpl-13 internal reference	ATGGGCTGGCTTACCTGAGGAAAA	internal reference
β-actin internal reference	TTGGCTGCCTCTGCGTGGTTGG	internal reference
hprt1 internal reference	ATCAACAAAGCAATTGCAAGAG	internal reference
rps29 internal reference	RCACCTCGAGATCTTACAATAGTGCC	internal reference
GAPDH internal reference	TCCAAGAAGACGCTCGAGGAGG	internal reference
18 S rRNA internal reference	RCTCGGCAGATCCACTACAAG	internal reference
then calculated by one-way ANOVA procedures and
gene expression values are displayed as arbitrary units.

Statistical analysis
The transcripational expression levels of the clock and
muscle-related genes at each time points were analyzed
with the Sigma plot and then were calculated by
one-way ANOVA procedures using SPSS software. To
compare the difference between the control and experimental
groups, Duncan’s multiple range tests were used for
the analysis. The differences were considered to be
statistically significant when the \(P \) value was less than
0.05. Data are shown as means ± SE (\(n = 6 \)).

The daily rhythmicity in relation to the expression of
the clock and muscle-related genes was assayed with
Matlab 7.0 followed as described by early studies [2, 37].
To perform a COSINOR analysis, the formula \(f(t) = M +
\cos(t/\pi/12 – \phi) \) was used, where \(f(t) \) stands for the gene
expression level at a given time, mesor \((M) \) stands for
the mean value, \(A \) stands for is the oscillation amplitude, \(t \)
the time in hours and \(\phi \) stands for the acrophase. The \(P \)
value was defined by the noise/signal of the amplitude
\((SE(A)/A)\) and if \(P \) Value <0.3, the expression levels could
considered to display daily rhythmicity [2, 37]. Correlation
between the clock and muscle-related gene expression
was assayed with Pearson’s correlation test \((r)\).

Additional files

Additional file 1: The 15 clock genes sequences of Chinese perch
Genbank accession number. (DOC 36 kb)

Additional file 2: The clock genes protein sequences of other teleosts
Genbank accession number. (DOC 39 kb)

Abbreviations
bHLH: Basic-helix-loop-helix; FAD: Flavin adenine dinucleotide;
GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; L. crocea: Larimichthys
crocea; MFRM: Multifunctional mosaic region; MRFs: Myogenic regulatory
factors; MS-222: Tricaine methanesulfonate; ORF: Open reading frame;
PASS: Per-Amr-Set; UTR: Untranslated regions; ZT: Zeitgeber time

Acknowledgments
We thank Dr. Shaojun Du from University of Maryland USA for proofreading
and instruction during the manuscript preparation and The Collaborative
Innovation Center for Efficient and Health Production of Fisheries, Hunan
Province for supporting and assistance with the fish.

Funding
W.Y.C. is funded by the Nature and Science Foundation of China for the
skeletal muscle gene cloning and expression analysis (No. 31472256); J.S.Z is
also funded by the Nature and Science Foundation of China for the skeletal
muscle gene and function analysis (no 31230076 and No.31572592); J.C is
funded by the Nature and Science Foundation of China for the clock gene
identification (no 31502149). The funding bodies did not have a role in the
design of the study, data collection, analysis, interpretation of data, writing
the manuscript, nor the decision to publish.

Availability of data and materials
Chinese perch clock gene sequences were deposited in NCBI database, their
accession numbers and all other related data are all listed in Additional file 1.

Authors’ contributions
W.Y.C and J.S.Z conceived and designed the study and wrote the paper; P.W
performed the experiments including RNA extraction, cDNA synthesis, and
bioinformatics analysis; Y.L.Z. and F.Z.G worked for fish husbandry, sample
collecting and bioinformatics analysis; J.C and L.C were responsible for gene
rhythmic expression analysis. All authors were involved in preparing and
writing the manuscript and approved the final version.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
The protocol was approved by the Institutional Animal Care and Use
Committee (IACUC) of Changsha University (permit #20128945-1). All
surgeries were performed under sodium pentobarbital or tricaine
methanesulfonate (MS-222) anesthesia, and every effort was made to
minimize the animal suffering. All fish-handling procedures during the
studies were approved by the IACUC Committee.

Author details
1Department of Bioengineering and Environmental Science, Changsha
University, Changsha, Hunan 410003, China. 2Collaborative Innovation Center
for Efficient and Health Production of Fisheries in Hunan Province, Changde
415000, China. 3College of Life Sciences, Xinyang Normal University, Xinyang,
Henan 464000, China.

Received: 8 July 2016 Accepted: 2 December 2016
Published online: 08 December 2016

References
1. Wenger CB. The regulation of body temperature. In Rhoades RA, Tanner GA,
editors. Medical Physiology. New York: Little, Brown; 1995: 587-613.
2. Lazado CC, Kumaratunga HP, Nagasawa K, Babiak I, Giannetto A, Fernandes
JM. Daily rhythmicity of clock gene transcripts in Atlantic cod fast skeletal
muscle. PLoS One. 2014;9(6):e99172.
3. Kojima S, Shingle DL, Green CB. Post-transcriptional control of circadian
rhythms. J Cell Sci. 2011;124(3):311–20.
4. Lowrey PL, Takahashi JS. Mammalian circadian biology: elucidating
gene-wide levels of temporal organization. Annu Rev Genomics Hum
Genet. 2004;5:407.
5. Ueda HR, Hayashi S, Chen W, Sano M, Machida M, Shigeyoshi Y, Iino M,
Hashimoto S. System-level identification of transcriptional circuits
underlying mammalian circadian clocks. Nat Genet. 2005;37(2):187–92.
6. Pitsyn AA, Zvonco S, Conrad SA, Scott JK, Mynatt RL, Gimble JM. Circadian
clocks are resounding in peripheral tissues. PLoS Comput Biol. 2006;2(3):e61.
7. Hogensrieb JR, Gu YZ, Jain S, Bradfield CA. The basic-helix-loop-helix-PAS
orphan MOP3 forms transcriptionally active complexes with circadian and
hypoxia factors. Proc Natl Acad Sci. 1998;95(10):5474–9.
8. Froy O. Metabolism and circadian rhythms—implications for obesity. Endocr
Rev. 2010;31(1):1–24.
9. Braun T, Gautel M. Transcriptional mechanisms regulating skeletal muscle
differentiation, growth and homeostasis. Nat Rev Mol Cell Biol.
2011;12(6):349–61.
10. McCarthy JJ, Andrews JL, McDearmon EL, Campbell KS, Barber BK, Miller BH,
Walker JR, Hogensrieb JS, Takahashi JS, Esser KA. Identification of the
circadian transcriptome in adult mouse skeletal muscle. Physiol Genomics.
2007;31(1):86–95.
11. Ahammad AS, Asaduzzaman M, Asakawa S, Watabe S, Kinoshita S.
Regulation of gene expression mediating indeterminate muscle growth in
teleosts. Anat Embryol. 1978;153(2):137–55.
15. Barton-Davis ER, Shoturma DI, Musaro A, Rosenthal N, Sweeney HL. Viral infection and the circadian clock in human fibroblasts from Hunter syndrome and impact of iduronate-2-sulfatase treatment. BMC Med Genetics. 2013;6(1):37.

16. Whitmore D, Foulkes NS, Strähle U, Sassone-Corsi P. Zebrafish Clock rhythmic expression reveals independent peripheral circadian oscillators. Nat Neurosci. 1998;1(8):701–7.

17. Raghuram S, Stayrook KR, Huang P, Rogers PM, Nosie AK, McClure DB, Bennis LL, Khorasanzadeh S, Burris TP. Rastinejad F. Identification of heme as the ligand for the orphan nuclear receptors REV-ERβ and REV-ERβ. Nat Struct Mol Biol. 2007;14(12):107–13.

18. Mazzoccoli G, Tominan R, Mazza T, D’Avanzo F, Salvaio M, Rigon L, Zanetti A, Piazzenga V, Francavilla M, Giuliani F. Circadian transcriptome analysis in human fibroblasts from Hunter syndrome and impact of iduronate-2-sulfatase treatment. BMC Med Genetics. 2013;6(1):37.

19. Baggs JE, Price TS, DiTacchio L, Panda S, FitzGerald GA, Hoogenes JB. Network features of the mammalian circadian clock. PLoS Biol. 2009;7(3):563.

20. Liu J, Wang Q, Sun M, Zhu L, Yang M, Zhao Y. Selection of reference genes for quantitative real-time PCR normalization in panax ginseng at different stages of growth and in different organs. PLoS One. 2014(9(11):e112117.

21. Wu et al. BMC Genomics (2016) 17:1008