Quark Chromoelectric Dipole Moment Contribution to the Neutron Electric Dipole Moment

Tanmoy Bhattacharyaa,b
Vincenzo Ciriglianoa Rajan Guptaa
Boram Yoona

aLos Alamos National Laboratory

bSanta Fe Institute

July 25, 2016
Two sources of CP violation in the Standard Model.

- Complex phase in CKM quark mixing matrix.
 - Too small to explain baryon asymmetry
 - Gives a tiny ($\sim 10^{-32}$ e-cm) contribution to nEDM

 Dar arXiv:hep-ph/0008248.

- CP-violating mass term and effective $\Theta G \tilde{G}$ interaction related to QCD instantons
 - Effects suppressed at high energies
 - nEDM limits constrain $\Theta \lesssim 10^{-10}$

 Crewther et al., Phys. Lett. B88 (1979) 123.

Contributions from beyond the standard model

- Needed to explain baryogenesis
- May have large contribution to EDM
Introduction
Form Factors

Vector form-factors

Dirac F_1, Pauli F_2, Electric dipole F_3, and Anapole F_A

Sachs electric $G_E \equiv F_1 - (q^2/4M^2)F_2$ and magnetic $G_M \equiv F_1 + F_2$

\[
\langle N|V_{\mu}(q)|N\rangle = \bar{u}_N \left[\gamma_{\mu} F_1(q^2) + i \frac{[\gamma_{\mu}, \gamma_{\nu}]}{2} q_{\nu} \frac{F_2(q^2)}{2m_N} \right. \\
+ \left. (2i m_N \gamma_5 q_{\mu} - \gamma_{\mu} \gamma_5 q^2) \frac{F_A(q^2)}{m_N^2} \right. \\
+ \left. \frac{[\gamma_{\mu}, \gamma_{\nu}]}{2} q_{\nu} \gamma_5 \frac{F_3(q^2)}{2m_N} \right] u_N
\]

- The charge $G_E(0) = F_1(0) = 0$.
- $G_M(0)/2M_N = F_2(0)/2M_N$ is the (anomalous) magnetic dipole moment.
- $F_3(0)/2m_N$ is the electric dipole moment.
- F_A and F_3 violate P; F_3 violates CP.
Introduction
Effective Field Theory

- Energy
- TeV
- QCD
- nuclear
- atomic

fundamental CP–odd phases

- d_e
- C_{qe}, C_{qq}
- $\theta, d q, \tilde{d} q, w$
- $C_{S,P,T}$
- $g_{\pi NN}$
- neutron EDM

EDMs of paramagnetic atoms (Tl)
EDMs of diamagnetic atoms (Hg)

Pospelov and Ritz, *Ann. Phys.* 318 (2005) 119.
Standard model CP violation in the weak sector.
Strong CP violation from dimension 3 and 4 operators anomalously small.

- Dimension 3 and 4:
 - CP violating mass $\bar{\psi}\gamma_5\psi$.
 - Toplogical charge $G_{\mu\nu}\tilde{G}^{\mu\nu}$.

- Suppressed by v_{EW}/M_{BSM}^2:
 - Electric Dipole Moment $\bar{\psi}\Sigma_{\mu\nu}\tilde{F}^{\mu\nu}\psi$.
 - Chromo Dipole Moment $\bar{\psi}\Sigma_{\mu\nu}\tilde{G}^{\mu\nu}\psi$.

- Suppressed by $1/M_{BSM}^2$:
 - Weinberg operator (Gluon chromo-electric moment): $G_{\mu\nu}G_{\lambda\nu}\tilde{G}_{\mu\lambda}$.
 - Various four-fermi operators.
The quark chromo-EDM operator is a quark bilinear. **Schwinger source method:** Add it to the Dirac operator in the propagator inversion routine:

\[
\begin{align*}
\mathcal{D} + m - \frac{r}{2} D^2 + c_{sw} \Sigma^{\mu\nu} G_{\mu\nu} &\rightarrow \mathcal{D} + m - \frac{r}{2} D^2 + \Sigma^{\mu\nu} (c_{sw} G_{\mu\nu} + i\epsilon \tilde{G}_{\mu\nu}) \\
\end{align*}
\]

The fermion determinant gives a ‘reweighting factor’

\[
\frac{\det(\mathcal{D} + m - \frac{r}{2} D^2 + \Sigma^{\mu\nu} (c_{sw} G_{\mu\nu} + i\epsilon \tilde{G}_{\mu\nu}))}{\det(\mathcal{D} + m - \frac{r}{2} D^2 + c_{sw} \Sigma^{\mu\nu} G_{\mu\nu})}
= \exp \text{Tr} \ln \left[1 + i\epsilon \Sigma^{\mu\nu} \tilde{G}_{\mu\nu} (\mathcal{D} + m - \frac{r}{2} D^2 + c_{sw} \Sigma^{\mu\nu} G_{\mu\nu})^{-1} \right]
\approx \exp \left[i\epsilon \text{Tr} \Sigma^{\mu\nu} \tilde{G}_{\mu\nu} (\mathcal{D} + m - \frac{r}{2} D^2 + c_{sw} \Sigma^{\mu\nu} G_{\mu\nu})^{-1} \right].
\]
The chromoEDM operator is dimension 5.
Uncontrolled divergences unless $\epsilon \lesssim 4\pi a\Lambda_{QCD} \sim 1$.
Need to check linearity.
Two point functions

Tests on two MILC ensembles.

- $a \approx 0.12$ fm, $M_\pi \approx 310$ MeV,
 $\kappa \approx 0.1272103$, $c_{SW} = 1.05094$, $u_P^{HYP} = 0.9358574(29)$.
 400 Configurations, 64 LP + 4 HP calculations/configuration.

- $a \approx 0.09$ fm, $M_\pi \approx 310$ MeV,
 $\kappa \approx 0.1266265$, $c_{SW} = 1.04243$, $u_P^{HYP} = 0.9461130(10)$.
 270 Configurations, 64 LP + 4 HP calculations/configuration.

Use two CP violating operators that mix under renormalization.

- CEDM: $a^2 \bar{\psi} \tilde{G} \cdot \Sigma \psi$
- P: $\bar{\psi} \gamma_5 \psi$
Two point functions
Neutron Propagator

![Graphs showing two point functions and neutron propagator](image)

Preliminary; Connected Diagrams Only
Two point functions

Linearity

Preliminary; Connected Diagrams Only

Use $\epsilon \approx \frac{a}{30\text{fm}} \approx 6.6\text{MeV}$ $a \approx 0.36\text{ma}$ for experiments.
Two point functions

Connected γ_5

\[a(\not{D} + m) + i\epsilon \gamma_5 = e^{\frac{i}{2}\alpha_q \gamma_5} (a\not{D} + am\epsilon) e^{\frac{i}{2}\alpha_q \gamma_5} \]

where $\alpha_q \equiv \tan^{-1}\left(\frac{\epsilon}{am}\right)$

and $am\epsilon \equiv \sqrt{(am)^2 + \epsilon^2}$
Lattice Calculation

Two point functions

- \(a m^0 \equiv \frac{1}{2\kappa} - 4 \)
- \(a m_{cr} \equiv \frac{1}{2\kappa_c} - 4 \)
- \(a m \equiv a m^0 - a m_{cr} \)
- \(\epsilon \)
- \(a m_{\epsilon} \)

	a12m310	a09m310
\(a m^0 \)	-0.0695	-0.05138
\(a m_{cr} \)	-0.08058	-0.05943
\(a m \)	0.01108	0.00805
\(\epsilon \)	0.004	0.003
\(a m_{\epsilon} \)	0.01178	0.00859

Ensembles

- Neutron Propagator
- Linearity
- Connected \(\gamma_5 \)
- \(\alpha \ N \)

Connected \(\gamma_5 \)

\(a m_0 \equiv \frac{1}{2\kappa} - 4 \)

\(M_\pi^0 \)	0.1900(4)	0.1404(3)
\(M_{\pi CEDM} \)	0.1906(4)	0.1407(3)
\(M_\pi^{\gamma_5} \)	0.1961(4)	0.1450(3)

\(M_\pi^0 \times \sqrt{m_\epsilon} m \)

\(M_\pi^0 \times \sqrt{m_\epsilon} m \)	0.1959(4)	0.1450(3)
Two point functions

α_N
The three point function we calculate is

\[N \equiv \bar{d} c \gamma_5 \frac{1 + \gamma_4}{2} u d \]

\[\langle \Omega | N(\vec{0}, 0) V_\mu (\vec{q}, t) N^\dagger (\vec{p}, T) | \Omega \rangle = u_N e^{-m_N t} \langle N | V_\mu (q) | N' \rangle e^{-E_{N'} (T-t)} \bar{u}_N \]

We project onto only one component of the neutron spinor with

\[\mathcal{P} = \frac{1}{2} (1 + \gamma_4)(1 + i\gamma_5 \gamma_3) \]

Noting that in presence of CP violation \(u_N \bar{u}_N = e^{i\alpha_N \gamma_5 (ip + m_N)} e^{i\alpha_N \gamma_5} \)

and assuming \(N' = N \), we can extract:

\[\text{Tr} \mathcal{P} \langle \Omega | N V_3 N^\dagger | \Omega \rangle \propto \]

\[im_N q_3 G_E \]

\[+ \alpha_N m_N (E_N - m_N) F_1 + \alpha_N [m_N (E_N - m_N) + \frac{q_3^2}{2}] F_2 \]

\[- 2i (q_1^2 + q_2^2) F_A - \frac{q_3^2}{2} F_3 \]
\[\epsilon = 0.004, \ a \approx 0.12 \text{ fm}. \]
$\epsilon = 0.003$, $a \approx 0.09$ fm.
Three point functions

F_3 Form factor from γ_5

$\epsilon = 0.004, \ a \approx 0.12 \text{ fm}.$
\(\epsilon = 0.003, \ a \approx 0.09 \text{ fm} \).
Three point functions

$F_3(\gamma_5)$ and $F_3(\text{CEDM})$

\[a(\mathcal{D} + m) + i\epsilon\gamma_5 = e^{\frac{i}{2}\alpha_q\gamma_5} a(\mathcal{D} + m\epsilon) e^{\frac{i}{2}\alpha_q\gamma_5} \]

\[\rightarrow a(\mathcal{D}_L + m) + i\epsilon\gamma_5 = e^{\frac{i}{2}\alpha\gamma_5} e^{-\frac{i\phi}{2}\gamma_5 a(\mathcal{D} + m\epsilon)} a(\mathcal{D} + m\epsilon) e^{-\frac{i\phi}{2}\gamma_5 a(\mathcal{D} + m\epsilon)} e^{\frac{i}{2}\alpha\gamma_5} + O(a^3) \]

where

\[
\begin{align*}
\mathcal{D}_L &= \mathcal{D} + aD^2 - \frac{\kappa c_{SW}}{2} a\Sigma^{\mu\nu} G_{\mu\nu}; \\
\mathcal{D} &= \mathcal{D} + \zeta aD^2 - \chi a\Sigma^{\mu\nu} G_{\mu\nu} e^{i\xi\gamma_5} \\
\end{align*}
\]

\[
\begin{align*}
m\epsilon a &= \sqrt{m^2 a^2 + \epsilon^2}, & \phi &= \frac{\epsilon}{m\epsilon a}, & \xi &= \frac{2\phi}{\kappa c_{SW}}, & \chi &= \frac{\kappa c_{SW}}{2} \sqrt{1 + \left(\frac{2\phi}{\kappa c_{SW}}\right)^2}, \\
\zeta &= \frac{m}{m\epsilon}, & \alpha &= \tan^{-1} \left(\frac{\epsilon}{ma} + 2\epsilon\right) \\
\end{align*}
\]

\[e^{-\frac{i\phi}{2}\gamma_5 a(\mathcal{D} + m\epsilon)} \text{ does not contribute on shell.} \]
Introduction
Lattice Calculation
Two point functions
Three point functions
Conclusions

Projection
F_3 Form factor from CEDM
F_3 Form factor from γ_5
$F_3(\gamma_5)$ and $F_3(\text{CEDM})$

$nEDM$ from $qCEDM$
Introduction
Lattice Calculation
Two point functions
Three point functions
Conclusions

Projection
F_3 Form factor from CEDM
F_3 Form factor from γ_5
$F_3(\gamma_5)$ and F_3(CEDM)

Tanmoy Bhattacharya
nEDM from qCEDM
Conclusions

Future

- Signal in the connected diagram for $a = 0.12$ and $a = 0.09$ fm and $M_\pi = 310$ MeV.
- Mixing with lower dimensional operator not a problem.
- Need to calculate renormalization and mixing coefficients non-perturbatively.
- Fermions with better chiral symmetry does not avoid mixing.