NEW QUADRATIC FUNCTIONAL EQUATION AND ITS (HURS)

Emel BİÇER*, Department of Mathematics/Faculty of Arts and Sciences, Bingol University, Bingol, ebicer@bingol.edu.tr

Received 21.07.2020, Accepted: 01.10.2020

Abstract

The primary subject in the stability of differential equations is to answer the question of when is it real that a mapping which roundly satisfies a differential equation must be close to an exact solution of the equation. For this reason, the Hyers-Ulam and Hyers-Ulam Rassias stability of differential equations is fundamental. Currently, researchers have used various methods (open mapping, direct method, integral factor, fixed point method) to research that the Hyers-Ulam Rassias and Hyers-Ulam stability of differential equations. The direct method has been successfullly applied for investigate of the Hyers-Ulam Rassias stability of many different functional differential equations. But it does not enough for some important cases. The second most popular method is the fixed point method.

In this study, we make an attempt to establish the Hyers-Ulam Rassias stability (HURS) of a new quadratic type functional equation (QFE)

\[g(x + y + v + \xi) + g(x - y - v - \xi) = 4g(x) + g(\gamma + \xi) + g(\gamma + \xi + 2v) - g(x - v) - g(x + v) \]

by direct method and fixed point method. We consider that this research will contribute to the related literature and it may be useful for authors studying on the Hyers-Ulam Stability of the quadratic functional differential equations.

Keywords: (HURS), (QFE), fixed point method.

1. Introduction

In 1940, the concept of Hyers-Ulam stability (HUS) came to light as a result of the problem introduced by Ulam. In 1941, this problem was partially brightened, by Hyers. After then many mathematician have searched this topic. The following equation

\[g(x + y) + g(x - y) = 2g(x) + 2g(y) \] \hspace{1cm} (1)

is named a quadratic functional equation (QFE). Every solution of the (QFE) (1) is said to be a quadratic function.

F. Skof [1] seems to first author who investigated the (HUS) of a (QFE) for functions between \(X_1 \) and \(X_2 \), in which \(X_1 \) is a normed space and \(X_2 \) is a Banach space.
Assume g is quadratic. Letting $\chi = 0 = \gamma$ in (1) we obtain $g(0) = 0$. Taking $\chi = 0$ in (1) gives

$$g(\gamma) + g(-\gamma) = 2g(0) + 2g(\gamma)$$

and $g(\gamma) = g(-\gamma)$. Putting $\gamma = \chi$ in (1), we obtain that $$g(2\chi + \gamma) + g(\gamma) = 2g(\chi) + 2g(\chi + \gamma)$$

We substitute $\gamma = \chi + \gamma$ in (1) and then $\gamma = \chi - \gamma$ in (1) to obtain that

$$g(2\chi + \gamma) + g(\gamma) = 2g(\chi) + 2g(\chi + \gamma)$$

Adding (3) and (4), we get

$$g(2\chi + \gamma) + g(2\chi - \gamma) = 8g(\chi) + 2g(\gamma).$$

Substituting $\gamma = \gamma + \nu$, in equalities of

$$g(2\chi + \gamma) = g(\chi + \gamma + \chi),$$

and

$$g(2\chi - \gamma) = g(\chi - \gamma + \chi),$$

from (1), we obtain

$$g(2\chi + \gamma) = g(\chi + \gamma + \chi + \nu)$$

$$= 2g(\chi + \gamma) + 2g(\chi + \nu) - g(\gamma - \nu)$$

and

$$g(2\chi - \gamma) = g(\chi - \gamma + \chi - \nu$$

$$= 2g(\chi - \gamma) + 2g(\chi - \nu) - g(\nu - \gamma)$$.}

Adding (6) and (7) and using (5), we arrive at

$$g(\chi + \gamma) + g(\chi + \nu) + g(\chi - \gamma) + g(\chi - \nu)$$

$$= 4g(\chi) + g(\gamma + \nu).$$

Putting $\gamma = \gamma + \nu + \xi$, in (8), we obtain

$$g(\chi + \gamma + \nu + \xi) + g(\chi - \gamma - \nu - \xi)$$

$$= 4g(\chi) + g(\gamma + \xi) + g(\gamma + \xi + 2\nu) - g(\chi - \nu) - g(\chi + \nu).$$

(\Leftarrow) Substituting $\nu = 0 = \xi$ in (2) gives the identity

$$g(\chi + \gamma) + g(\chi - \gamma) = 2g(\chi) + 2g(\gamma)$$

for all $\chi, \gamma \in X_1$, which implies that g is quadratic. The proof is completed.

Given a mapping $g : X_1 \to X_1$, we define

$$Dg(\chi, \gamma, \nu, \zeta) = g(\chi + \gamma + \nu + \zeta) +$$

$$+ g(\chi - \gamma - \nu - \zeta) + g(\chi - \nu) +$$

$$+ g(\chi + \nu) - g(\gamma + \zeta + 2\nu)$$

$$- g(\gamma + \zeta - 4g(\chi))$$

for all $\chi, \gamma, \nu, \zeta \in X_1$, where X_1 is a real vector space and X_1 is a real Banach space.

We investigate the (HURS) of the (QFE) $Dg(\chi, \gamma, \nu, \zeta) = 0$.

Let $\phi : X_1^+ \to [0, \infty)$ be a function such that
\[
\lim_{n \to \infty} \alpha_p^{2n} \phi(\frac{X}{\alpha_p^n}, \frac{Y}{\alpha_p^n}, \frac{V}{\alpha_p^n}, \frac{\zeta}{\alpha_p^n}) = 0
\]
(10)

for all \(\chi, \gamma, \nu, \zeta \in X_1\), where \(\alpha_r = \frac{1}{2}\) for \(p = 0\) and \(\alpha_r = 2\) for \(p = 1\).

Theorem 2.2. For \(g(0) = 0\) let \(g : X_1 \to X_1\) be a mapping in which there exists a function \(\phi : X_1 \to [0, \infty)\) such that

\[
\|Dg(\chi, \gamma, \nu, \zeta)\| \leq \phi(\chi, \gamma, \nu, \zeta)
\]
(11)

for all \(\chi, \gamma, \nu, \zeta \in X_1\). If there exists \(L(p) < 1\) such that

\[
\phi(\nu) \leq \frac{1}{\alpha_r} L \phi(\nu)
\]
(12)

for all \(\nu \in X_1\), in which \(\phi(\nu) = \phi(0,0,0,0)\). Then there exists a unique quadratic mapping \(Q : X_1 \to X_1\), satisfying (2) and

\[
\|g(\nu) - Q(\nu)\| \leq \frac{L^r}{1-L} \phi(\nu)
\]
(13)

for all \(\nu \in X_1\).

Proof. Let \(M = \{h : X_1 \to X_1, h(0) = 0\}\) be a set and define the generalized metric on \(M : d(h,f) = \inf\{K > 0 : \|h(\nu) - f(\nu)\| \leq K \phi(0,0,0,0), \forall \nu \in X_1\}.\)

Then \((M, d)\) is complete.

Let \(\Lambda : M \to M\) be linear mapping such that

\[
\alpha_r g(\frac{\nu}{\alpha_r}) = \Lambda g(\nu)
\]

for all \(\nu \in X_1\). Then for all \(h, f \in M\), we obtain

\[
\|h(\nu) - f(\nu)\| \leq K \phi(\nu), \forall \nu \in X_1,
\]

\[
\alpha_r^{\gamma} h(\frac{\nu}{\alpha_r}) - \alpha_r^{\gamma} f(\frac{\nu}{\alpha_r}) \leq \alpha_r^{\gamma} K \phi(\frac{\nu}{\alpha_r}),
\]

\[
\alpha_r^{\gamma} h(\frac{\nu}{\alpha_r}) - \alpha_r^{\gamma} f(\frac{\nu}{\alpha_r}) \leq K \phi(\nu).
\]

Then, we obtain

\[
d(h, f) \leq Ld(h, f)
\]

for all \(h, f \in M\). So, \(\Lambda\) is a strictly self mapping on \(M\).

Putting \(\chi = \gamma = \nu = \zeta = 0\) in (11), we obtain

\[
\|g(2\nu) - 4g(\nu)\| \leq \phi(0,0,0,0)
\]
(14)

for all \(\nu \in X_1\). For the case \(p = 0\), from (12), we get

\[
\|g(\nu) - \frac{1}{4} g(2\nu)\| \leq \frac{1}{2} \phi(2\nu) \leq L \phi(\nu)
\]

for all \(\nu \in X_1\). That is,

\[
d(g, \Lambda g) \leq L.
\]

Letting \(\nu = \frac{\nu}{2}\) in (14), we get,

\[
\|g(\nu) - 2^r g(\frac{\nu}{2^r})\| \leq \phi(\nu)
\]

for all \(\nu \in X_1\). Using (12) with the case \(p = 1\), we get

\[
d(g, \Lambda g) \leq L^r = 1.
\]

For both situations, by Theorem 1.1, there exists a fixed point \(Q\) of \(\Lambda\) in \(M\) and from Theorem 1.1, \(d(\Lambda g, P) \to 0\) as \(n \to \infty\). This implies that,

\[
\lim_{n \to \infty} \alpha_r^{2n} g(\frac{\nu}{\alpha_r}) = Q(\nu)
\]
(15)

holds for all \(\nu \in X_1\).

Replacing \(\chi, \gamma, \nu, \zeta\) by \(\frac{X}{\alpha_p^n}, \frac{Y}{\alpha_p^n}, \frac{V}{\alpha_p^n}, \frac{\zeta}{\alpha_p^n}\) in (11) respectively and multiplying by \(\alpha_r^{2n}\), then from (10) and (15) we get

\[
\|DQ(\chi, \gamma, \nu, \zeta)\| = \lim_{n \to \infty} \alpha_r^{2n} Dg(\frac{X}{\alpha_p^n}, \frac{Y}{\alpha_p^n}, \frac{V}{\alpha_p^n}, \frac{\zeta}{\alpha_p^n})
\]

\[
\leq \lim_{n \to \infty} \alpha_r^{2n} \phi(\frac{X}{\alpha_p^n}, \frac{Y}{\alpha_p^n}, \frac{V}{\alpha_p^n}, \frac{\zeta}{\alpha_p^n}) = 0
\]

for all \(\chi, \gamma, \nu, \zeta \in X_1\). Hence \(Q\) satisfies the equation (2). So, \(Q\) is quadratic.

Because of \(Q\) is the unique fixed point of \(\Lambda\) in \(S = \{u \in M : d(g, u) < \infty, Q\}\) satisfies in the following inequality

\[
\|g(\nu) - Q(\nu)\| \leq K \phi(\nu)
\]

for all \(\nu \in X_1\), and some \(K > 0\). From Theorem 1.1, we can write

\[
d(g, Q) \leq \frac{1}{1-L} d(g, \Lambda g),
\]

and we get

\[
d(g, Q) \leq \frac{L^r}{1-L}.
\]

The proof is completed.

Corollary. Let \(X_1\) and \(X_1\) be normed spaces. Let \(r \geq 0\) be given. Suppose that \(\delta > 0\) is fixed. Let \(g : X_1 \to X_1\) be a mapping such that

\[
\|Dg(\chi, \gamma, \nu, \zeta)\| \leq \delta (\|\chi\| + \|\gamma\| + \|\nu\| + \|\zeta\|)
\]
(16)

for all \(\chi, \gamma, \nu, \zeta \in X_1\). Then the inequality

\[
\|g(\nu) - Q(\nu)\| \leq \frac{\delta}{2} \|\nu\|
\]

holds for all \(\nu \in X_1\), in which \(r > 2\), or

\[
\|g(\nu) - Q(\nu)\| \leq \frac{\delta}{4} \|\nu\|
\]
holds for all $\nu \in X$, where $r < 2$.

Proof. Let $\phi(\chi, \gamma, \nu, \xi) = \delta \left(\sum \left(\|\nu\|^2 + \|\nu\|^2 + \|\nu\|^2 + \|\nu\|^2\right)\right)$ for all $\chi, \gamma, \nu, \xi \in X$. Then $L = 2^{-1}$ for $p = 1$ or $L = \frac{1}{2^{-1}}$ for $p = 0$, and we get desired results.

3. (HURS) of equation (2) with direct method

Here, we investigate (HURS) of equation (2) by using the direct method.

Let $Dg(\chi, \gamma, \nu, \xi)$ defined as in (9).

Theorem 3.1. Let $\phi : X \to [0, \infty)$ be a mapping such that

$$\Psi(\chi, \gamma, \nu, \xi) = \sum_{j=0}^{\infty} \alpha_{p_j}^j \phi(\chi, \gamma, \nu, \xi) < \infty$$

for all $\chi, \gamma, \nu, \xi \in X$. Assume $g : X \to X$ satisfies inequality (11) for all $\chi, \gamma, \nu, \xi \in X$. Then

$$\lim_{\nu \to 0} \alpha_{r}^{-\nu} g(\nu) = Q(\nu)$$

exists for each $\nu \in X$, and describes unique quadratic mapping $Q : X \to X$, such that

$$\|g(\nu) - Q(\nu)\| \leq \alpha_{r}^{-\nu} \psi(0, 0, \nu, 0)$$

for all $\nu \in X$.

Proof. Since $\Psi(0, 0, 0, 0) = \sum_{j=0}^{\infty} \alpha_{p_j}^j \phi(0, 0, 0, 0) < \infty$, setting $\chi = \gamma = \nu = 0$ in (11) we have

$$\|4g(\nu) - g(2\nu)\| \leq \phi(0, 0, \nu, 0)$$

for all $\nu \in X$. Interchanging ν with ν in (19), we arrive at

$$\left|4g(\nu) - g(2\nu)\right| \leq \phi(0, 0, \nu, 0).$$

Replacing ν by ν and multiplying both sides by $\alpha_{r}^{-\nu}$, in formerly inequality, we get

$$\left\|4\alpha_{r}^{-\nu} g(\nu) - \alpha_{r}^{-\nu} g(\nu)\right\| \leq \alpha_{r}^{-\nu} \phi(0, 0, \nu, 0)$$

for all $\nu \in X$, and $n \in N$. Then from (20) and (21), we deduce that for $p = 1,$

$$\left\|\alpha_{r}^{-n} g(\nu) - g(\nu)\right\| \leq \sum_{k=1}^{\infty} \alpha_{r}^{-k} \phi(0, 0, \nu, 0)$$

and

$$\left\|4g(\nu) - \alpha_{r}^{-2(n-1)} g(\nu)\right\| \leq \sum_{k=1}^{\infty} \alpha_{r}^{-2k} \phi(0, 0, \nu, 0)$$

for $p = 0$. Replacing ν by ν in (23), we obtain

$$\left\|g(\nu) - \alpha_{r}^{-\nu} g(\nu)\right\| \leq \sum_{k=1}^{\infty} \alpha_{r}^{-k} \phi(0, 0, \nu, 0)$$

for all $\nu \in X$, and any positive integer n.

Now, we show that the sequence $\{\alpha_{r}^{-\nu} g(\nu)\}$ is a Cauchy sequence. For any $m \in N$, by (22) we have

$$\left\|\alpha_{r}^{-\nu} g(\nu) - \alpha_{r}^{-\nu} g(\nu)\right\| \leq \alpha_{r}^{-\nu} \phi(0, 0, \nu, 0)$$

and

$$\left\|4g(\nu) - \alpha_{r}^{-2(n-1)} g(\nu)\right\| \leq \sum_{k=1}^{\infty} \alpha_{r}^{-2k} \phi(0, 0, \nu, 0).$$

By condition (17), we obtain

$$\lim_{n \to \infty} \alpha_{r}^{-\nu} \phi(0, 0, \nu, 0) = 0,$$

for all $\nu \in X$. Consequently, $\{\alpha_{r}^{-\nu} g(\nu)\}$ is a Cauchy sequence.

Similarly, we can also show that $\{\alpha_{r}^{-2n} g(\nu)\}$ is a Cauchy sequence by considering of inequality (24).

Thus, we can set

$$Q(\nu) = \alpha_{r}^{-\nu} g(\nu)$$

for all $\nu \in X$.

Now, we show that Q is a solution of equation (2).

Replacing χ, γ, ν, ξ by χ, γ, ν, ξ in (11), respectively. If we multiply both sides of obtained equation by $\alpha_{r}^{-\nu}$, we get
\[\alpha_p^{2n} \left\| Dg(\frac{X}{\alpha_p^n}, \frac{\gamma}{\alpha_p^n}, \frac{V}{\alpha_p^n}, \frac{S}{\alpha_p^n}) \right\| \leq \alpha_p^{2n} \phi(\frac{X}{\alpha_p^n}, \frac{\gamma}{\alpha_p^n}, \frac{V}{\alpha_p^n}, \frac{S}{\alpha_p^n}).\]

Since \(\lim_{n \to \infty} \alpha_p^{2n} \phi(\frac{X}{\alpha_p^n}, \frac{\gamma}{\alpha_p^n}, \frac{V}{\alpha_p^n}, \frac{S}{\alpha_p^n}) = 0\), the mapping \(Q\) satisfies (2). From (22) we obtain

\[\lim_{n \to \infty} \alpha_p^{2n} g(\frac{V}{\alpha_p^n}) - g(\nu) \leq \lim_{n \to \infty} \frac{n-1}{\alpha_p^{n+1}} \phi(0,0, \frac{V}{\alpha_p^n}, 0).\]

We can also obtain above inequality using (24). So, above inequality holds both for \(p = 1\) and for \(p = 0\). Consequently, we get

\[\left\| g(\nu) - Q(\nu) \right\| \leq \alpha_p^{2(1-p)}\Psi(0,0, \frac{V}{\alpha_p^n}, 0)\]

for all \(\nu \in X_1\).

We should show that the uniqueness of \(Q\). Suppose that there exists \(Q' : X \to X\), such that \(Q(\nu)\) not equivalents to \(Q'(\nu)\). Then

\[\left\| Q(\nu) - Q'(\nu) \right\| = \alpha_p^{2n} \left\| Q(\frac{V}{\alpha_p^n}) - Q'(\frac{V}{\alpha_p^n}) \right\| \leq \alpha_p^{2n} \left\| Q(\frac{V}{\alpha_p^n}) - f(\frac{V}{\alpha_p^n}) \right\| + \left\| f(\frac{V}{\alpha_p^n}) - Q'(\frac{V}{\alpha_p^n}) \right\| \leq 2\alpha_p^{2n+1} \Psi(0,0, \frac{V}{\alpha_p^{n+p}}, 0) \leq \frac{2}{\alpha_p^{4p-2}} \alpha_p^{2n+p} \Psi(0,0, \frac{V}{\alpha_p^{n+p}}, 0).

Since \(\lim_{n \to \infty} \alpha_p^{2n+p} \Psi(0,0, \frac{V}{\alpha_p^{n+p}}, 0) = 0\), we get \(Q(\nu) = Q'(\nu)\), for all \(\nu \in X_1\).

4. Conclusion

A new quadratic functional equation was considered. The Hyers-Ulam Rassias stability of this quadratic equation was investigated. We benefited from fixed point method and direct method.

5. References

[1] Skof, F. "Proprieta locali e approssimazione di operatori", Rend. Sem. Mat. Fis. Milano, 53. No., 113-129, 1983.

[2] Cholewa, P.W. "Remarks on the stability of functional equations", Aequationes Math., 27, 76-86, 1984.

[3] Czerwik, S. Functional Equations and Inequalities in Several Variables, World Scientific, Singapore, 2002.

[4] Jung, S. M. "On the Hyers-Ulam-Rassias stability of a quadratic functional equation", J. Math. Anal. Appl., 232, 384-393, 1999.

[5] Jung, S. M. "On the Hyers-Ulam stability of the functional equations that have the quadratic property", J. Math. Anal. Appl., 222, 126-137, 1998.

[6] Lee, Y. W. "On the stability of a quadratic Jensen type functional equation", J. Math. Anal. Appl., 270, 590-601, 2002.

[7] Park, C. and Rassias, T.M. "Fixed Points and generalized Hyers-Ulam Stability of Quadratic Functional Equations", Journal of Mathematical Inequalities, 1.A., 515-528, 2007.

[8] Aoki, T. "On the stability of the linear transformation in Banach spaces", J. Math. Soc. Japan, 2, 64-66, 1950.

[9] Biçer, E. and Tunç, C. "On the Hyers-Ulam stability of certain partial differential equations of second order", Nonlinear Dyn. Syst. Theory. 17, 2., 150-157, 2017.

[10] Biçer, E. and Tunç, C. "On the Hyers-Ulam stability of Laguerre and Bessel equations by Laplace transform method", Nonlinear Dyn. Syst. Theory. 17, 4., 340-346, 2017.

[11] Biçer, E. and Tunç, C. "New Theorems for Hyers-Ulam Stability of Liendrow Equation with Variable Time Lags", International Journal of Mathematics and Computer Science, 13, 2, 231-242, 2018.

[12] Kenary, H. A., Rezaei, H., Gheisari, Y., Park, C. "On the stability of set-valued functional equations with the fixed point alternative", Fixed Point Theory Appl., 17 pages 2012.

[13] Diaz, J. B. and Margolis, B. "A fixed point theorem of the alternative for contractions on a generalized complete metric space", Bull. Amer. Math. Soc., 74, 305-309, 1968.

[14] Shen, H.Y. and Lan, Y. Y. "On the general solution of a quadratic functional equation and its Ulam stability in various abstract spaces", J. Nonlinear Sci. Appl., 7., 368-378, 2014.

[15] Ulam, S.M. Problems in Modern Mathematics, Wiley, New York, 1964.

[16] Tunç, C. and Biçer, E. "Hyers-Ulam stability of non-homogeneous Euler equations of third and fourth order", Scientific Research and Essays. 8,5, 220-226, 2013.

[17] Tunç, C. and Biçer, E. "Hyers-Ulam-Rassias stability for a first order functional differential equation", J. Math. Fundam. Sci., 1, 143-153, 2015.

[18] Rassias, T. M. "On the Stability of the Linear Mapping in Banach Spaces", Proc. Amer. Math. Soc., 72., 297-300, 1978.
[19] Hyers, D. H. “On the Stability of the Linear Functional Equation”, Proc. Nat. Acad. Sci. 27, 222-224, 1941.

[20] Başcı, Y., Öğrekçi, S., Mısır, A. “On Hyers-Ulam stability for fractional differential equations including the new Caputo Fabrizio fractional derivative”, Mediterranean Journal of Mathematics 16: 130-144, 2019.

[21] Başcı, Y., Mısır, A., Öğrekçi, S. “On the stability problem of differential equations in the sense of Ulam”, Results in Mathematics 75, 2020.