Data Article

Characterization of mineral coatings associated with a Pleistocene-Holocene rock art style: The Northern Running Figures of the East Alligator River region, western Arnhem Land, Australia

Penelope L. Kinga,*, Ulrike Troitzscha, Tristen Jonesb

a Research School of Earth Sciences, The Australian National University, Canberra, ACT 2601, Australia
b Department of Archaeology and Natural History, School of Culture, History and Language, The Australian National University, Canberra, ACT 2601, Australia

Article info

Article history:
Received 8 November 2016
Received in revised form
9 December 2016
Accepted 13 December 2016
Available online 20 December 2016

Keywords:
X-ray Diffraction
Scanning Electron Microscopy energy dispersive spectroscopy
Fourier Transform infrared spectroscopy

Abstract

This data article contains mineralogic and chemical data from mineral coatings associated with rock art from the East Alligator River region. The coatings were collected adjacent to a rock art style known as the “Northern Running Figures” for the purposes of radiocarbon dating (http://dx.doi.org/10.1016/j.jasrep.2016.11.016; (T. Jones, V. Levchenko, P.L. King, U. Troitzsch, D. Wesley, 2017) [1]). This contribution includes raw and processed powder X-ray Diffraction data, Scanning Electron Microscopy energy dispersive spectroscopy data, and Fourier Transform infrared spectral data.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specifications Table
Subject area
More specific subject area
Type of data
How data was acquired
2. Scanning Electron Microscope energy dispersive spectral (SEM-EDS) analysis (Hitachi 4300SE/N field emission scanning electron microscope equipped with an Oxford INCA Energy 350 EDS system at the Centre for Advanced Microscopy, Australian National University)
3. Fourier Transform Infrared (FTIR) spectroscopic analysis – mid-infrared spectral range (Bruker Tensor 27, Research School of Earth Sciences, Australian National University) |
| **Data format** | Raw and analysed |
| **Experimental factors** | Characterization of mineralogy and chemistry of mineral coatings associated with rock art |
| **Experimental features** | Analysis of minerals, their quantities and their chemical composition |
| **Data source location** | Eastern Alligator River, western Arnhem Land, Australia |
| **Data accessibility** | The data is available with this article. |

Value of the data

- Data presented here will be useful to other researchers as a benchmark for Powder X-ray Diffraction and Fourier Transform Infrared spectra of natural oxalate-bearing mineral coatings.
- The raw XRD data may be reanalyzed with a different set of phosphate, sulfate and oxalate standards, which may help constrain the uncertainty in the Rietveld refinement values.
- The raw FTIR data may be deconvolved using other appropriate mineral databases and the results compared with the XRD Rietveld refinement values.

1. **Data**

1.1. **Data from X-ray diffraction with Rietveld refinement fits**

The oxalate mineral, whewellite, is found in all mineral crusts sampled (13–26.4 wt.%), except RLL3-1-1 where it is not detected (Table 1, Supplementary Figs. 1 and 2, Supplementary Table 1). Samples RLL32-B-S1 to RLL32-B-S4, RLL3-1-2 and RLL3-1-3 have the same mineral assemblage: whewellite and tinsleyite, with lesser taranakite, quartz and gypsum (Table 1). Sample RLL32-B-2011 is dominated by quartz and whewellite, with a little gypsum, a 10 Å-mica and a 7.1 Å-clay. Sr-crandallite or goyazite may be present at low levels (Table 1).

1.2. **Data from Scanning Electron Microscope analysis**

Backscattered electron (BSE) imaging data (Fig. 8a and 8d in [1]) indicates that the mineral crust contains at least four intimately mixed minerals (< 1 μm to ~3 μm). As shown in Table 2, SEM-EDS data from the mineral crust indicates whewellite, and Ca–Al–(Sr)–phosphate(s) –crandallite, Sr–crandallite, or crandallite mixed with apatite.
1.3. Data from Fourier Transform Infrared spectroscopy

Fourier Transform Infrared spectra provide constraints for the presence of oxalates, sulfates, phosphates and clay minerals in the crusts (Fig. 1a and b). Infrared bands associated with the calcium oxalate (whewellite) are evident in the spectra at 1315–1320 and 780 cm\(^{-1}\) (C\(_2\)O\(_4\)\(\cdot\)H\(_2\)O) and 3420 cm\(^{-1}\) (OH). Phosphate minerals (crandallite, Sr-crandallite/goyazite and apatite) have bands at 1383, 1110 and 890 cm\(^{-1}\) related to PO\(_4\) vibrations and 3486 cm\(^{-1}\) related to OH. Bands due to silicate minerals are found at 3246 cm\(^{-1}\) (Al\(_2\)-OH, clay) and 1020 cm\(^{-1}\) (SiO\(_4\)). The FTIR data does not rule out sulfate (Supplementary Table 2). Bands at 3344 and 3062 cm\(^{-1}\) are assigned to OH groups in minerals.

The six FTIR spectra obtained from the RLL032B-B site ([1], Fig. 1a) are consistent with one another with only slight differences observed in the topmost sample (RLL032-B-2011). The latter shows slightly less defined OH bands at 3490–3420 cm\(^{-1}\) and a doublet in the area near 670 cm\(^{-1}\). The FTIR data is consistent with the XRD that shows RLL032-B-2011 differs from the rest of the samples (Fig. 1a).

RLL3-1-2 and RLL3-1-3 both contain strong oxalate bands, phosphate bands and H–O molecular species (Fig. 1b). RLL3-1-1 does not show detectable oxalate, but instead contains bands between 1000–1100 cm\(^{-1}\) and 1800–2100 cm\(^{-1}\) (Fig. 1b) due to Al–O and Si–O vibrations (e.g, variscite and quartz; Table 1, Supplementary Table 2).

Table 1
Quantitative data for minerals in the crusts based on Rietveld refinement fits of X-ray diffraction data.

Sample	RLL032-B-2011	RLL032-B-S1	RLL032-B-S2	RLL032-B-S3	RLL032-B-S4	RLL3-1-1	RLL3-1-2	RLL3-1-3
Scan No.	A24950	A25292	A25302	A25301	A25290	A24950	A25292	A25302
Mineral- wt.% (sd)								
Amorphous material	70.5 (5.0)	53.8 (5.0)	52.3 (5.0)	65.9 (5.0)	69.5 (5.0)	28.3 (3.0)	14.9 (3.0)	40.6 (5.0)
Quartz SiO\(_2\)	9.3 (0.7)	2.5 (0.1)	3.1 (0.1)	2.9 (0.2)	1.7 (0.2)	32.7 (0.6)	5.6 (0.3)	3.2 (0.2)
Gypsum CaSO\(_4\)2H\(_2\)O	1.1 (0.2)	3.7 (0.3)	3.0 (0.3)	0.8 (0.2)	1.7 (0.2)	1.8 (0.1)	3.1 (0.2)	2.0 (0.1)
Whewellite CaC\(_2\)O\(_4\)H\(_2\)O	13.0 (0.9)	20.3 (0.8)	20.1 (0.7)	17.4 (0.8)	15.1 (0.9)	26.4 (0.6)	17.4 (0.6)	
Tinsleyite K\(_2\)Al\(_2\)(PO\(_4\))\(_2\)OH\(_2\)H\(_2\)O	17.7 (1.0)	18.2 (0.8)	12.9 (0.8)	11.9 (0.9)	21.5 (0.5)	48.3 (0.8)	35.2 (0.9)	
Taranakite K\(_2\)Al\(_2\)(HPO\(_4\))\(_3\)(PO\(_4\))\(_2\)18H\(_2\)O	2.1 (0.1)	3.4 (0.3)	0.1 (0.2)	0.2 (0.2)	0.3 (0.1)	1.8 (0.2)	1.6 (0.3)	
Goyazite SrAl\(_2\)P\(_2\)O\(_7\)(OH)\(_7\)								
7.1 Å-clay\(^c\)	0.8 (0.4)							
10 Å-mica\(^c\)	3.8 (0.6)							
Variscite AlPO\(_4\)2H\(_2\)O								
Total	100	100	100	100	100	100	100	100

\(^a\) Goodness-of-fit indicator \(R_{wp}\) for the weighted profile: \(R_{wp} = \sqrt{[\sum w_i(y_o - y_{ic})^2/\sum w_i y^2_o]}^{1/2}\), where \(y_o\) is the observed intensity, \(y_{ic}\) the calculated intensity, and \(w_i\) the weight assigned to each observation based on counting statistics.

\(^b\) Refined variables included zero correction, scale factors, unit cell parameters of major phases and up to four peak shape parameters per mineral.

\(^c\) 7.1 Å-clay is likely kaolinite and 10 Å-mica is likely illite or muscovite.
2. Experimental design, materials and methods

2.1. Study area description

Mineral coatings were collected from rock walls adjacent to art described in detail by [1]. The locations are given in Table 3.

2.2. X-ray diffraction (XRD) methods

Samples were prepared as powders, mounted on a silicon low-background sample holder, and analyzed from 4 to 70° 2θ at a spacing of 0.02626° (Supplementary Table 1). Data was collected using Bragg Brentano geometry, fixed divergence slits with Cu Kα radiation and a PIXcel 1D detector (active length = 3.3473°, 255 channels, 542 s per step). Minerals were identified using the SIEMENS software package Diffracplus Eva 10 [2] (Supplementary Fig. 1) and quantified using Rietveld refinement [3,4] with the program Rietica [5] (Table 1, Supplementary Fig. 2). The background was fixed manually. The weight fraction of the amorphous material \(W_{AMORPH} \) was determined for each corundum-spiked

Mineral	Whewellite	Crandallite	Sr crandallite	Crandallite
SEM analysis of	> 1 phase	> 1 phase	1 phase	> 1 phase
Analysis #	#15	#7	#1	#26
wt% (norm C free)				
SiO₂	6.5	5.22	0	0.2
Al₂O₃	5.15	7.09	42.83	37.73
FeO	1.29	1.08	0.27	
MgO	0	0	0.01	0
CaO	79.36	68.48	9.87	11.23
SrO				43.65
Na₂O	0.74	1.13	0.57	0
K₂O	1.25	3.9	1.41	0.19
P₂O₅	5.37	11.06	37.56	29.64
SO₃	0	2.5	6.35	9.52
Cl	0.35	0.62	0.32	0.08
Atomic formula unit, based on:	4 O + 2 C	4 O + 2 C	13 O	13 O
Si	0.21	0.17	0	0.02
Al	0.2	0.27	3.84	3.8
Fe total	0.04	0	0.07	0.02
Mg	0	0	0	0
Ca	1.40*	1.18*	0.8	1.03
Sr			0.55	
Na	0.05	0.07	0.08	0
K	0.05	0.16	0.14	0.02
P	0.15	0.3	2.42	2.14
Cl	0.02	0.03	0.04	0.01
TOTAL	1.95	1.84	4.82	5.23
Ideal Formula	CaC₂O₄.H₂O	CaAl₃(PO₄)₂	(Ca,Sr)Al₃(PO₄)₂	Ca₃Al(PO₄)₂
Measured		(OH)₅H₂O	(OH)₅H₂O	(OH)₂H₂O
Formula				
Ca₅₀.9Al₃₅₄		(Ca,Sr)₁₅₈Al₃₈		
(PO₄)₄₂		(PO₄)₁₄		
(OH)₅H₂O		(OH)₅H₂O		
Fig. 1. FTIR spectra of bulk samples from the mineral crusts. The positions of the bands identified in Supplementary Table 2 are indicated. (A) RLL032-B powders. (B) RLL3-1 powders. RLL3-1-1 does not contain detectable oxalate.

Table 3
Sample identification and location.

Sample	Latitude	Longitude
RLL032-B-2011	12°23'49.55"S	133° 0'26.81"E
RLL032-B-S1	12°23'49.55"S	133° 0'26.81"E
RLL032-B-S2	12°23'49.55"S	133° 0'26.81"E
RLL032-B-S3	12°23'49.55"S	133° 0'26.81"E
RLL032-B-S4	12°23'49.55"S	133° 0'26.81"E
RLL3-1-1	12°24'7.59"S	133° 0'5.51"E
RLL3-1-2	12°24'7.59"S	133° 0'5.51"E
RLL3-1-3	12°24'7.59"S	133° 0'5.51"E
sample according to equation $W_{AMORPH} = 1 - y/x$, where $y =\%$ corundum, and x is the calculated % corundum given by the program Rietica [6]. Amorphous, poorly crystallized and/or very finely grained material is identified in all samples by elevated or undulating backgrounds.

2.3. Scanning electron microscopy – energy dispersive spectrometry (SEM-EDS) methods

Sample RLL032-B-2011 was mounted in epoxy perpendicular to the mineral crust surface and polished to a $1/4\mu$m diamond grit finish using kerosene, not water. SEM analysis was undertaken using a 15 kV accelerating voltage and 1 nA beam current with an approximately 2 μm beam diameter that overlapped multiple mineral phases.

2.4. Fourier Transform Infrared (FTIR) spectroscopy methods

Samples were ground, dried at \sim100°C, and mixed with KBr (sample:KBr = 0.6:1) and pressed into a 3 mm diameter disc held in a paper holder. Spectra were collected using a Bruker Tensor 27 with a Globar source, KBr beamsplitter and DTGS detector in transmission mode under a dry air purge from 400 to at least 4000 cm$^{-1}$, with 4 cm$^{-1}$ resolution and 100 scans. (Supplementary Table 3). FTIR bands were located using the OPUS software (v8.0) provided by Bruker and identified using data from the literature (Supplementary Table 2, [7–10]).

Acknowledgements

This research was supported by Australian Research Council grants to King (FT130101524 and DP150104604). The Centre for Advanced Microscopy is supported by the Australian Microscopy and Microanalysis Research Facility (AMMRF). We thank Lasse Noren from the Research School of Chemistry, Australian National University for assistance with the X-ray diffraction data collection.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2016.12.024.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2016.12.024.

References

[1] T. Jones, V. Levchenko, P.L. King, U. Troitzsch, D. Wesley, Radiocarbon age constraints for a Pleistocene – Holocene transition rock art style: the Northern Running Figures of the East Alligator River region, western Arnhem Land, Australia, J. Archeol. Sci.: Rpt. 11 (2017) 80–89. http://dx.doi.org/10.1016/j.jasrep.2016.11.016.

[2] Bruker, DIFFRACplus BASIC Evaluation Package EVA 10.0, User’s Manual, Bruker AXS GmbH, Karlsruhe, Germany, 2004.

[3] H.M. Rietveld, Line profiles of neutron powder-diffraction peaks for structure refinement, Acta Crystall 22 (1967) 151–152.

[4] H.M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Cryst. 2 (1969) 65–71.

[5] B. Hunter, Rietica — a visual Rietveld program, IUCR Comm. Powder Diffrac. News 20 (1998) 21.

[6] Sietronics, Siroquant Technical Manual, Sietronics Pty Ltd: Mitchell, ACT, Australia, 2006.

[7] H.W. van der Marel, H. Beutelspacher, Atlas of Infrared Spectroscopy of Clay Minerals and Their Admixtures, Elsevier Sci Publ Co, Amsterdam, 1976.
[8] P. Maravelaki-Kalaitzaki, Black crusts and patinas on Pentelic marble from the Parthenon and Erechtheum (Acropolis, Athens): characterization and origin, Anal. Chim. Acta 532 (2005) 187–198.

[9] S. Marinea, D. Dumitras, R. Gilbert, Tinsleyite in the “dry” Cioclovina Cave Sureanu Mountains, Romania: the second occurrence, Eur. J. Mineral. 14 (2002) 157–164.

[10] S. Weiner, P. Goldberg, O. Bar-Yosef, Three-dimensional distribution of minerals in the sediments of Hayonim Cave, Israel: diagenetic processes and archeological implications, J. Arch. Sci. 29 (2002) 1289–1308.