On existence of an x-integral for a semi-discrete chain of hyperbolic type

K Zheltukhin1 and N Zheltukhina2

1 Department of Mathematics, Middle East Technical University, Ankara, Turkey
2 Department of Mathematics, Bilkent University, Ankara, Turkey
E-mail: zheltukh@metu.edu.tr

Abstract. A class of semi-discrete chains of the form $t_{1x} = f(x, t, t_x, t_1)$ is considered. For the given chains easily verifiable conditions for existence of x-integral of minimal order 4 are obtained.

1. Introduction

In the present paper we consider the integrable differential-difference chains of hyperbolic type

$$t_{1x} = f(x, t, t_1, t_x),$$

(1)

where the function $t(n, x)$ depends on discrete variable n and continuous variable x. We use the following notations $t_x = \frac{\partial}{\partial x} t$ and $t_1 = t(n + 1, x)$. It is also convenient to denote $t[k] = \frac{\partial^k}{\partial x^k} t$, $k \in \mathbb{N}$ and $t_m = t(n + m, x)$, $m \in \mathbb{Z}$.

The integrability of the chain (1) is understood as Darboux integrability that is existence of so called x- and n-integrals [1, 4]. Let us give the necessary definitions.

Definition 1 Function $F(x, t, t_1, \ldots, t_k)$ is called an x-integral of the equation (1) if

$$D_x F(x, t, t_1, \ldots, t_k) = 0$$

for all solutions of (1). The operator D_x is the total derivative with respect to x.

Definition 2 Function $G(x, t, t_x, \ldots, t[m])$ is called an n-integral of the equation (1) if

$$DG(x, t, t_x, \ldots, t[m]) = G(x, t, t_x, \ldots, t[m])$$

for all solutions of (1). The operator D is a shift operator.

To show the existence of x- and n-integrals we can use the notion of characteristic ring. The notion of characteristic ring was introduced by Shabat to study hyperbolic systems of exponential type (see [11]). This approach turns out to be very convenient to study and classify the integrable equations of hyperbolic type (see [12] and references there in).

For difference and differential-difference chains the notion of characteristic ring was developed by Habibullin (see [3]-[8]). In particular, in [4] the following theorem was proved.
Theorem 3 (see [4]). A chain (1) admits a non-trivial \(x \)-integral if and only if its characteristic ring is of finite dimension.

A chain (1) admits a non-trivial \(n \)-integral if and only if its characteristic \(n \)-ring is of finite dimension.

For known examples of integrable chains the dimension of the characteristic ring is small. The differential-difference chains with three dimensional characteristic \(x \)-ring were considered in [6].

We consider chains with four dimensional characteristic \(x \)-ring, such chains admit \(x \)-integral of minimal order four. That is we obtain necessary and sufficient conditions for a chain to have a four dimensional characteristic \(x \)-ring. This conditions can be easily checked by direct calculations.

Note that if a chain (1) admits a nontrivial \(x \)-integral \(F(x, t, t, \ldots, t_k) \) and a non trivial \(n \)-integral \(G(x, t, t, \ldots, t_{[m]}) \) its solutions satisfy two ordinary equations

\[
F(x, t, t_1, \ldots, t_k) = a(n),
\]

\[
G(x, t, t, \ldots, t_{[m]}) = b(x)
\]

for some functions \(a(n) \) and \(b(x) \). This allows to solve (1) (see [9]).

The paper is organized as follows. In Section 2 we derive necessary and sufficient conditions on function \(f(x, t, t_1, t_x) \) so that the chain (1) has four dimensional characteristic ring and in Section 3 we consider some applications of the derived conditions.

2. Chains admitting four dimensional \(x \)-algebra.

Suppose \(F \) is an \(x \)-integral of the chain (1) then its positive shifts and negative shifts \(D^k F, \ k \in \mathbb{Z} \), are also \(x \)-integrals. So, looking for an \(x \)-integral it is convenient to assume that it depends on positive and negative shifts of \(t \).

To express \(x \) derivatives of negative shifts we can apply \(D^{-1} \) to the chain (1) and obtain

\[
t_x = f(x, t, t, t_x).
\]

Solving the above equation for \(t_{-1x} \) we get

\[
t_{-1x} = g(x, t, t, t_x).
\]

Let \(F(x, t, t_1, t_{-1}, \ldots) \) be an \(x \)-integral of the chain (1). Then on solutions of (1) we have

\[
D_x F = \frac{\partial F}{\partial x} + t_x \frac{\partial F}{\partial t} + t_{1x} \frac{\partial F}{\partial t_1} + t_{-1x} \frac{\partial F}{\partial t_{-1}} + t_{2x} \frac{\partial F}{\partial t_2} + t_{-2x} \frac{\partial F}{\partial t_{-2}} + \cdots = 0
\]

or

\[
D_x F = \frac{\partial F}{\partial x} + t_x \frac{\partial F}{\partial t} + f \frac{\partial F}{\partial t_1} + g \frac{\partial F}{\partial t_{-1}} + D_f \frac{\partial F}{\partial t_2} + D^{-1} g \frac{\partial F}{\partial t_{-2}} + \cdots = 0.
\]

Define a vector field

\[
K = \frac{\partial}{\partial x} + t_x \frac{\partial}{\partial t} + f \frac{\partial}{\partial t_1} + g \frac{\partial}{\partial t_{-1}} + D_f \frac{\partial}{\partial t_2} + D^{-1} g \frac{\partial}{\partial t_{-2}} + \cdots,
\]

then

\[
D_x F = K F.
\]

Note that \(F \) does not depend on \(t_x \) but the coefficients of \(K \) do depend on \(t_x \). So we introduce a vector field

\[
X = \frac{\partial}{\partial t_x}
\]
The vector fields K and X generate the characteristic x-ring L_x.

Let us introduce some other vector fields from L_x.

\[C_1 = [X, K] \quad \text{and} \quad C_n = [X, C_{n-1}] \quad n = 2, 3, \ldots \] \hfill (4)

and

\[Z_1 = [K, C_1] \quad \text{and} \quad Z_n = [K, Z_{n-1}] \quad n = 2, 3, \ldots \] \hfill (5)

Thus

\[C_1 = \frac{\partial}{\partial t} + f_{tt} \frac{\partial}{\partial t_1} + g_{tx} \frac{\partial}{\partial t_1} + \ldots \]

\[C_2 = f_{tx} t_x \frac{\partial}{\partial t_1} + g_{tx} t_x \frac{\partial}{\partial t_1} + \ldots \]

\[Z_1 = \left(f_{tx} x f_{tx} t_x + f f_{tx} t_x + f f_{tx} t_x + f f_{tx} t_x \right) \frac{\partial}{\partial t_1} + \left(g_{tx} t_x + t_x g_{tx} t_x + g g_{tx} t_x - g t_x g_{tx} \right) \frac{\partial}{\partial t_1} + \ldots \]

and so on.

It is easy to see that if $f_{tx} t_x \neq 0$ then the vector fields X, K, C_1 and C_2 are linearly independent and must form a basis of L_x provided $\dim L_x = 4$. By Lemma 3.6 in [6], if $f_{tx} t_x = 0$ and $(f_{tx} x + t_x f_{tx} + f f_{tx} t_x - f - f_{tx} f_{tx}) = 0$ then $\dim L_x = 3$. So in the case $f_{tx} t_x = 0$ we may assume $(f_{tx} x + t_x f_{tx} + f f_{tx} t_x - f - f_{tx} f_{tx}) \neq 0$. Then the vector fields X, K, C_1 and Z_1 are linearly independent and must form a basis of L_x provided $\dim L_x = 4$. We consider this two cases separately.

In the rest of the paper we assume that the characteristic ring L_x is four dimensional.

Remark 4 It is convenient to check equalities between vector fields using the automorphism $D(\cdot)D^{-1}$. Direct calculations show that

\[DXD^{-1} = \frac{1}{f_x} X, \]

\[DKD^{-1} = K - \frac{f_x + t_x f_t + f f_{tx} X}{f_{tx}}. \]

The images of other vector fields under this automorphism can be obtained by commuting DXD^{-1} and DKD^{-1}.

2.1. $f(x, t, t_1, t_x)$ is non linear with respect to t_x.

Let $f(x, t, t_1, t_x)$ be non linear with respect to t_x, $f_{tx} t_x \neq 0$. Then the vector fields X, K, C_1 and C_2 form a basis of L_x. For the algebra L_x to be spanned by X, K, C_1 and C_2 it is enough that C_3 and Z_1 are linear combinations of X, K, C_1 and C_2. From the form of the vector fields it follows that we must have

\[C_3 = \lambda C_2 \quad \text{and} \quad Z_1 = \mu C_2 \]

for some functions μ and λ. The conditions for the above equalities to hold are given by the following theorem.

Theorem 5 The chain (1) with $f_{tx} t_x \neq 0$ has characteristic ring L_x of dimension four if and only if the following conditions hold

\[D \left(\frac{f_{tx} t_x}{f_{tx} t_x} \right) = \frac{f_{tx} t_x f_{tx} - 3 f_{tx}^2}{f_{tx} f_{tx}^2}. \] \hfill (6)
The characteristic ring is generated by the vector fields X, K, C_1, C_2.

Proof. By Remark 4 we have

$$DC_2D^{-1} = \frac{1}{f_t^2} C_2 - \frac{f_{txt}f_t}{f_t^3} C_1 + \frac{f_{txt}f_t}{f_t^4} X$$

$$DC_3D^{-1} = \frac{1}{f_t^3} C_2 - \frac{3f_{txt}f_t}{f_t^4} C_2 - \frac{f_{txt}f_t f_t}{f_t^5} - \frac{3f_{txt}^2}{f_t^6} C_1 + \frac{f_{txt}f_t f_t}{f_t^7} - \frac{3f_{txt}^2}{f_t^8} X$$

$$DZ_1D^{-1} = \frac{1}{f_t} Z_1 - \left(\frac{mf_{txt} + p}{f_t^2} \right) \left(C_1 - \frac{f_t}{f_t^2} X \right),$$

where $p = \frac{f_x + t_x f_t + f f_{t}}{f_t}$ and $m = -\frac{(f_{tx} + t_x f_{tx} + f f_{t,t}) + f_t + f_{tx} f_t}{f_t}.

The equality $C_3 = \lambda C_2$ implies that

$$DC_3D^{-1} = (D\lambda) DC_2D^{-1}. \quad (8)$$

Substituting expressions for DC_2D^{-1} and DC_3D^{-1} into (8) and comparing coefficients of C_1, C_2 and X we obtain that λ satisfies

$$\lambda = f_{tx}(D\lambda) + \frac{3f_{txt}f_t}{f_t}$$

$$\lambda = \frac{f_{txt}f_t f_t - 3f_{txt}^2}{f_{txt} f_t^{2}}.$$

We can find λ and $D\lambda$ independently and condition that $D\lambda$ is a shift of λ leads to (6).

The equality $Z_1 = \mu C_2$ implies that

$$DZ_1D^{-1} = (D\mu) DC_2D^{-1}. \quad (9)$$

Substituting expressions for DC_2D^{-1} and DC_3D^{-1} into (9) and comparing coefficients of C_1, C_2 and X we obtain that μ satisfies

$$\mu - \frac{f_x + t_x f_t + f f_{t}}{f_t} = \frac{(D\mu)}{f_t}$$

and

$$-(f_{tx} + t_x f_{tx} + f f_{t,tx} - f_t - f_{tx} f_{t}) + \frac{f_x + t_x f_t + f f_{t}}{f_t} f_{tx} f_{tx} = -\frac{f_{tx}(D\mu)}{f_t}.$$

We can find μ and $D\mu$ independently and condition that $D\mu$ is a shift of μ leads to (7). □

Remark 6 Let $\dim L_x = 4$ and $f_{txx} \neq 0$. Then the characteristic ring L_x have the following multiplication table
where \(\rho = \lambda \mu + X(\lambda) \) and \(\eta = X(\rho) - K(\mu) \).

Example 7 Consider the following chain

\[
t_{1x} = \frac{tt_x - \sqrt{t^2_x - M^2(t_1 + t)}}{t_1}
\]

introduced by Habibullin and Zheltukhina [10]. We can easily check that the function

\[
f(t, t_1, t_x) = \frac{tt_x - \sqrt{t^2_x - M^2(t_1 + t)}}{t_1}
\]

satisfies the conditions of Theorem 5. Hence the corresponding \(x \)-algebra is four dimensional. The chain has the following \(x \)-integral

\[
F = \frac{(t^2_1 - t^2)(t^2_1 - t^2_2)}{t^2_1}.
\]

2.2. \(f(x, t, t_1, t_x) \) is linear with respect to \(t_x \).

Let \(f(x, t, t_1, t_x) \) be linear with respect to \(t_x \). Then vector fields \(X, K, C_1 \) and \(Z_1 \) form a basis of \(L_x \). The condition \(f_{t, t_x} = 0 \) also implies that the vector field \(C_2 = 0 \), see [6]. For the algebra \(L_x \) to be spanned by \(X, K, C_1 \) and \(Z \) it is enough that \(Z_2 \) is a linear combination of \(X, K, C_1 \) and \(Z_1 \). From the form of the vector fields it follows that we must have

\[
Z_2 = \alpha Z_1
\]

for some function \(\alpha \). The conditions for the above equality to hold given by the following theorem.

Theorem 8 The chain (1) with \(f_{t, t_x} = 0 \) has the characteristic ring \(L_x \) of dimension four if and only if the following condition hold

\[
D \left(\frac{K(m)}{m} - m + \frac{f_t}{f_{t_x}} \right) = \frac{K(m)}{m} + m - f_{t_1}, \tag{10}
\]

where \(m = \frac{-f_{tx} + f_{ttx} + f_{ttxt} + f_x + f_{tx}f_{t_1}}{f_{tx}} \). The characteristic ring is generated by the vector fields \(X, K, C_1, Z_1 \).

Proof. By Remark 4 we have

\[
DZ_1 D^{-1} = \frac{1}{f_{tx}} Z_1 - \left(\frac{mf_{tx} + p}{f_{tx}^2} \right) \left(C_1 - \frac{f_t}{f_{tx}} X \right),
\]

and

\[
DZ_2 D^{-1} = \left(K \left(\frac{1}{f_{tx}} \right) + \frac{\alpha + m}{f_{tx}} \right) Z_1 + \left(K \left(\frac{m}{f_{tx}} \right) + \frac{mf_t}{f_{tx}^2} - pX \left(\frac{m}{f_{tx}} \right) \right) \left(C_1 - \frac{f_t}{f_{tx}} X \right).
\]
The equality $Z_2 = \alpha Z_1$ implies that

$$DZ_2D^{-1} = (D\alpha) DZ_1D^{-1}. $$

Substituting expressions for DZ_1D^{-1} and DZ_2D^{-1} into (11) and comparing coefficients of C_1, Z_1 and X we obtain that α and $D(\alpha)$ satisfy

$$K \left(\frac{1}{ft_x} \right) + \frac{m}{ft_x} + \frac{\alpha}{ft_x} = \frac{D(\alpha)}{ft_x} \tag{11}$$

$$K \left(\frac{m}{ft_x} \right) + \frac{mf_t}{f^2_{tx}} = \frac{mD(\alpha)}{ft_x}$$

We can find α and $D(\alpha)$ independently and condition that $D(\alpha)$ is a shift of α leads to (10). □

Remark 9 Let $\dim L_x = 4$ and $f_{txx} = 0$. Then the characteristic ring L_x have the following multiplication table

	X	K	C_1	Z_1
X	0	0	C_1	0
K	$-C_1$	0	Z_1	αZ_1
C_1	0	$-Z_1$	0	$X(\alpha)Z_1$
Z_1	0	$-\alpha Z_1$	$-X(\alpha)Z_1$	0

Example 10 Consider the following chain

$$t_{1x} = t_x + e^{\frac{t_{1x}}{2}}$$

introduced by Dodd and Bullough [2]. We can easily check that the function

$$f(t, t_1, t_x) = t_x + e^{\frac{t_{1x}}{2}}$$

satisfies the conditions of Theorem 8. Hence the corresponding x-algebra is four dimensional.

The chain has the following x-integral

$$F = e^{\frac{t_{1x}}{2}} + e^{\frac{t_{1x}}{2}}$$

3. Applications

The conditions derived in the previous section can be used to determine some restrictions on the form of the function $f(x, t, t_1, t_x)$ in (1).

Lemma 11 Let the chain (1) have four dimensional characteristic x-ring. Then

$$f = M(x, t, t_x)A(x, t, t_1) + t_xB(x, t, t_1) + C(x, t, t_1), $$

where M, A, B and C are some functions.

Proof. Let $f_{t_x t_x} \neq 0$ (if $f_{t_x t_x} = 0$ then f obviously has the above form). Since characteristic x-ring has dimension four the condition (6) holds. It is easy to see that (6) implies that $\frac{f_{t_x t_x t_x}}{f_{t_x t_x}}$ does not depend on t_1. Hence

$$X(\ln |f_{t_x t_x}|) = M_1(x, t, t_x) \quad \text{and} \quad \ln |f_{t_x t_x}| = M_2(x, t, t_x) + A_1(x, t, t_1).$$

The last equality implies (12). □

We can also put some restrictions on the shifts of the function $f(x, t, t_1, t_x)$ in (1).
Lemma 12 Let the chain (1) have four dimensional characteristic x-ring and $f_{t_x t_x} \neq 0$. Then

$$Df = -H_1(x, t, t_1, t_2)t_x + H_2(x, t, t_1, t_2)f + H_3(x, t, t_1, t_2),$$

(13)

where H_1, H_2 and H_3 are some functions.

Proof. Note that the shift operator D and the vector field X satisfy

$$DX = \frac{1}{f_{t_x}} XD.$$

(14)

The condition (6) can be written as

$$DX(\ln |f_{t_x t_x}|) = \frac{1}{f_{t_x}} X(\ln |f_{t_x t_x}| - \ln |f_{t_x}|^3)$$

Using (14) we get

$$\frac{1}{f_{t_x}} XD(\ln |f_{t_x t_x}|) = \frac{1}{f_{t_x}} X(\ln |f_{t_x t_x}| - \ln |f_{t_x}|^3)$$

which implies that

$$X\left(\ln |f_{t_x}^3 D f_{t_x t_x} t_x| \right) = 0 \quad \text{or} \quad X\left(\frac{f_{t_x}^3 D f_{t_x t_x}}{f_{t_x}} t_x\right) = 0.$$

Thus $D f_{t_x t_x} = H_1(x, t, t_1, t_2)\frac{f_{t_x t_x}}{f_{t_x}^3}$. Since $D f_{t_x t_x} = DX(f_{t_x})$ and $\frac{f_{t_x t_x}}{f_{t_x}} = -\frac{1}{f_{t_x}} X(\frac{1}{f_{t_x}})$ we can rewrite previous equality using (14) as

$$X\left(D f_{t_x} + H_1(x, t, t_1, t_2)\frac{1}{f_{t_x}}\right) = 0$$

which implies

$$D f_{t_x} = -H_1(x, t, t_1, t_2)\frac{1}{f_{t_x}} + H_2(x, t, t_1, t_2).$$

Writing

$$DX(f) = -H_1(x, t, t_1, t_2)\frac{1}{f_{t_x}} + H_2(x, t, t_1, t_2)\frac{f_{t_x}}{f_{t_x}}$$

and applying (14) as before we get

$$X(Df + H_1(x, t, t_1, t_2)t_x - H_2(x, t, t_1, t_2)f) = 0.$$

The last equality gives (13). \Box

Note that the equality (13) can be written as

$$t_{2x} = H_2(x, t, t_1, t_2)t_{1x} - H_1(x, t, t_1, t_2)t_x + H_3(x, t, t_1, t_2).$$
References
[1] Darboux G 1915 *Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal* 2 (Paris: Gautier Villas)
[2] R K Dodd and R K Bullough 1976 *Proc. R. Soc. London* Ser. A 351 499
[3] Habibullin I T 2005 *SIGMA Symmetry Integrability Geom.: Methods Appl.* 1
[4] Habibullin I T and Pekcan A 2007 *Theoret. and Math. Phys.* 151 781790
[5] Habibullin I 2007 *Characteristic algebras of discrete equations. Difference equations, special functions and orthogonal polynomials* (Hackensack NJ World Sci. Publ.) 249-257
[6] Habibullin I, Zheltukhina N and Pekcan A 2008 *Turkish J. Math.* 32 277-292
[7] Habibullin I, Zheltukhina N and Pekcan A 2008 *J. Math. Phys.* 49 102702
[8] Habibullin I, Zheltukhina N and Pekcan A 2009 *J. Math. Phys.* 50 102710
[9] Habibullin I, Zheltukhina N and Sakieva A 2010 *J. Phys.* A 43 434017
[10] Habibullin I and Zheltukhina N 2014 *Discretization of Liouville type nonautonomous equations* Preprint nlin.SI:1402.3692v1
[11] Shabat A B and Yamilov R I 1981 *Exponential systems of type I and Cartan matrices* Preprint BBAS USSR Ufa
[12] Zhiber A B, Murtazina R D, Habibullin I T and Shabat A B 2012 *Ufa Math. J.* 4 17-85