Materials Research Express

PAPER

Synthesis and characterization of Zn doped WO₃ nanoparticles: photocatalytic, antifungal and antibacterial activities evaluation

M Arshad¹, S Ehtisham-ul-Haque², M Bilal¹, N Ahmad¹, A Ahmad¹, M Abbas⁶, J Nisar⁷, M I Khan⁸, A Nazir⁹, A Ghaffar¹⁰ and M Iqbal¹¹

¹ Department of Chemistry, Government Post Graduate Islamia College, Gujranwala, Pakistan
² Section of Microbiology, Department of Pathobiology, College of Veterinary and Animal Sciences (CVAS) Jhang, University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
³ Department of Chemistry, The University of Lahore, Lahore, Pakistan
⁴ Department of Chemistry, Minhaj University Lahore, Pakistan
⁵ Department of Biochemistry, Centre for Advanced Studies in Agriculture and Food Security (USPCASAFS), University of Agriculture, Faisalabad, Pakistan
⁶ Section of Biochemistry, Department of Basic Sciences, College of Veterinary and Animal Sciences (CVAS) Jhang, University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
⁷ National Center of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
⁸ Department of Physics, The University of Lahore, Lahore, Pakistan
⁹ Department of Biochemistry, Government College University, Faisalabad, Pakistan
¹⁰ Authors to whom any correspondence should be addressed.

E-mail: abdul.ghaffar@gcuf.edu.pk and bosalvee@yahoo.com

Keywords: Zn doped WO₃, antimicrobial activity, photocatalytic activities, precipitation, characterization, bioactivity

Abstract

In view of enhanced bioactivity and photocatalytic applications, the doped material has gained much attention and present study was focused on the preparation of Zn doped WO₃ (Zn–d–WO₃) via precipitation method. The prepared Zn–d–WO₃ was characterized by Scanning Electron Microscopy (SEM), x-ray diffraction (XRD), Energy-dispersive x-ray (EDX). The effect of Zn concentration was studied on antibacterial, antifungal and photocatalytic activities along with structural and morphological variation. The Zn–d–WO₃ was triclinic, spherical and rod shaped and particle size was decreased as the Zn concentration increased. The antimicrobial activity of Zn–d–WO₃ was evaluated against a panel of bacterial strains (Escherichia coli, Pasteurellamu itocida, Bacillus subtilis, Staphylococcus aureus) and fungal strain (Aspergillus niger, Aspergillus flavus, Penicillium notatum). The Zn–d–WO₃ showed promising antibacterial activity with minimum inhibitory concentration (MIC) values in the range of 211–387 (µg ml⁻¹), whereas the antifungal activity was less than the standard (Fluconazole), which revealed that the Zn–d–WO₃ are highly active against bacterial strains since activity was comparable with standard drug (Rifampicin). The photocatalytic activity (PCA) was evaluated by degrading methylene blue (MB) dye in an aqueous solution and dye degradation of 78% and 92% was achieved in 120 min under visible and UV irradiation, respectively. Results revealed that the Zn–d–WO₃ could be used as photocatalyst for the degradation of dyes in wastewater.

1. Introduction

The properties of materials at nano level are entirely different due to behavior and interaction of atoms in a unique manner. The properties at nanoscale changed as compared to the properties of bulk materials [1–4]. The selection of proper method for the preparation of nanoparticles (NPs) depends upon binding sites specificity, compatibility with bio-molecules, solubility, shape, size, surface properties and degree of biodegradability. For many decades, the NPs have been used widely for different purposes and doping of metal oxides have been used to enhance the properties for applications in different fields like solar cells, photocatalysis and photodegradation and sensors etc [5–7]. NPs have been synthesized using different approaches and table 1 shows summary of methods employed for synthesis of WO₃ NPs and their doping [8–17].
NPs	Methods	Characterization	Application	References
Tungsten oxide-doped zinc oxide nanoparticles	Hydrothermal		Photocatalyst, degradation of Direct Blue 15 dye	[18]
Tungsten-trioxide nanowire	Hydrothermal	Different size of NPs with hexagonal geometry	Photocatalyst, degradation of MB dye	[19]
WO₃ NPs	Acid catalyzed co-precipitation method.	Spherical particles with average size ∼55 nm	Photocatalyst, degradation of MB dye	[20]
Tungstate with divalent transition metals	Precipitation		Photocatalyst, degradation of Methylene Blue (MB) and Methyl Orange (MO)	[21]
W-ZnO nanocomposite	Sol-gel	Hexagonal wurtzite structure	Photocatalyst, degradation of MB dye	[22]
Zn-doped tungsten nanoparticles	Microwave irradiation	Spherical shape, 36–48 nm	Photocatalyst, degradation of MB and Rhodamine Blue	[23]
Sn-doped WO₃	Co-precipitation	Monoclinic, 22–44 nm		[24]
Transition metal co-doped WO₃	Precipitation		Photocatalyst, degradation of Gentamicin and antibacterial agent	[25]
Manganese doped tungsten oxide NPs	Microwave irradiation	Spherical, 35–40 nm	Photocatalyst, degradation of MB and Rhodamine Blue	[26]
ZnWO₃ nanoparticles	Microwave irradiation	Wolframite, 10 nm		[27]
ZnO nanorods with tungsten oxide	Hydrothermal	Monoclinic, 18–26 nm	Photocatalyst, degradation of endocrine disrupting chemicals	[28]
Zn-d-WO₃	Precipitation	Triclinic, spherical and rod shaped in nm range	Photocatalyst, degradation of MB dye, antimicrobial agent	Present study
Precipitation method is an efficient approach used to form many types of semiconductors, metal deposited NPs and film coated NPs. In this method, colloidal solution is formed which act as precursor and coagulated into NPs [29]. The size, structure, doping efficiency and many other characteristics are characterized by SEM, XRD, FTIR, UV/Visible spectroscopy, thermal gravimetric analysis (TGA) and transmission electron microscopy (TEM) [30–37]. Nanotechnology has makes immense applications in different fields. In the field of medicine, nano-capsule are used to transmit drugs in the body at targeted place. The most treatments done by nanotechnology are tissue regeneration, bone repair, immunity, cancer treatment, diabetes cure and NPs are also active antimicrobial agents [38]. The nanotubes and nano-capsule are concentrated at the tumor part of the body that help in destruction of the tumor cells [18–20,24,39]. The main drawback of ZnO as a photocatalyst is the absorption wavelength of material lies in ultra violet region. This causes excessive electron–hole recombination. Additionally, ZnO has the ability to promote photochemical corrosion [40]. The photocatalytic properties of ZnO may vary with particle size, morphology, and crystallinity of the materials. Modifications such as thermal treatment and/or doping the materials with other metals ions could enhance photocatalytic activity through limiting the recombination of electron–hole pairs and improving the absorption of light [41–47].

Under the current scenario of water pollution [48–55], there is need to prepare and utilized catalysts active under solar light to enhanced the cost effectiveness of catalytic process [56].

In view of aforementioned facts, the objective of the present study was to synthesize Zn–d–WO3 NPs using different concentrations Zn ions. The prepared Zn–d–WO3 was characterized by SEM, XRD and EDX techniques. Antibacterial, antifungal and photocatalytic activities were also evaluated.

2. Material and methods

2.1. Chemical and reagents

All the chemicals and reagents used during this research work were of analytical grade and were purchased from Merck and Sigma-Aldrich. Milli pure water (Milli Pure Water System) was used for the preparation of solutions.

2.2. Synthesis of Zn–d–WO3

Zn–d–WO3 was prepared by precipitation method. For this purpose, 0.1% solution of Zn(NO₃)₂ solution was prepared in 20 ml of 2-propanol and placed in a conical flask and stirred for 20 min at 70 °C on hot plate with moderate supply of water in condenser. After 20 min of stirring, 0.1 M solution of citric acid was added into the flask containing 0.1% solution of Zn(NO₃)₂ and again stirred for about 20 min. Then, 20 ml of distilled water was added to homogenize the mixture. Then NaOH solution was added to maintain the pH around 5. After 20 min when the solution was completely homogenized, 0.5 g of WO₃ was added and stirred it for 7 h at 70 °C,
cooled down and the solution was centrifuged for 20 min. The liquid portion was decanted and distilled water was added and centrifuged again for 20 min. After centrifugation, the solid material was filtered. The material was washed with water and then ethanol. The prepared material was dried in oven at 70 °C for 3 h and calcination was done at 700 °C for 5 h. To prepare Zn–d–WO3 at 0.2% and 0.3% concentration, the concentration of zinc nitrate and citric acid was 0.2 M and 0.3 M and the same procedure was adopted as used to prepare Zn–d–WO3 at 0.1% concentration (table 2).

Figure 2. XRD analysis of the synthesized Zn–d–WO3 using different Zn concentrations.

Figure 3. Scanning electron microscope (SEM) images of Zn–d–WO3 using different Zn concentrations.
2.3. Antibacterial activity evaluation

2.3.1. Selection of bacterial and fungal strains
For antibacterial activity, *Escherichia coli*, *Pasteurella multocida*, *Staphylococcus aureus* and *Bacillus subtilis* were used and for antifungal activity, *Aspergillus niger*, *Aspergillus flavus* and *Penicillium notatum* were employed. This was done by agar disc diffusion and minimum inhibitory concentration method.

2.3.2. Bacterial/fungal, cultures preparation
Fresh cultures were prepared using growth media for bacterial (nutrient broth, Oxoid, UK) and fungal growth (potato dextrose broth, Oxoid, UK). To avoid contamination standards sterilized condition were followed.

Figure 4. EDX analysis of the synthesized Zn-WO₃ showing the elemental composition.
Microbial cultures were stored at 4 °C and 1 × 10^8 CFU/ml of cell cultures were used for disc diffusion and minimum inhibitory concentration studies.

2.3.3. Antimicrobial assay by disc diffusion method
Antimicrobial activity of WO3 and Zn–d–WO3 (with different concentration of Zn) were tested against a panel of bacterial and fungal strains. Fresh growth media for bacterial and fungal growth were prepared and using wet sterilization method, media was autoclaved at 121 °C for 15 min to avoid the risk of contamination. Wicks paper discs of size 9 mm were prepared and also sterilized. In each petri plate, 20 ml autoclave media (Nutrient agar for bacteria and potato dextrose agar for fungal) were poured and 20 μl of fresh culture of each tested microorganism were also added and mixed well, poured in petri plates and media was solidified. 100 μl of positive control Rifampicin as an antibacterial and Fluconazole for antifungal, WO3 and Zn–d–WO3 were placed on sterilized disc separately and with the help of forceps discs were laid flat on growth medium. The Petri plates were then incubated at 37 °C for 24 h (for bacteria) and at 28 °C for 48 h (for fungal strains). Sample having antimicrobial activity, inhibited the bacterial and fungal growth, shows clear zones, which were measured using zone reader in mm [57].

2.3.4. Minimum inhibitory concentrations (MIC)
For minimum inhibition concentration, serial dilution method was used for all tested samples. In 96 well plate, a volume of 100 μl of test material was placed into the first row of the labeled well plate. In all other wells 50 μl of growth media for bacterial and fungal growth were added separately. Using serial dilutions method, test samples were diluted in descending order and in last well test sample were discarded. As an indicator, 10 μl resazurin
were added in each well and finally, 10 μl of tested microorganism culture (5 × 10⁶ CFU/ml) was added. In each plate one row for negative and positive controls were run. Finally, 96 well plates were rapped with aluminum foil to avoid dehydration and incubated separately for bacterial and fungal on their optimum temperature, 37 °C for 24 h for bacteria and 28 °C for 48 h for fungal growth. After stipulated time period, the absorbance was measured at 500 nm. Any color change from purple to pink or colorless was recorded as positive. The lowest concentration at which color changes occur was taken as MIC value.

2.4. Photocatalytic activity (PCA) evaluation

The PCA of WO₃ and Zn–d–WO₃ was evaluated by degrading MB dye (Figure 1) under UV and visible light irradiation. For visible light, solar stimulator 150 W Xe Lamp was used, whereas medium pressure mercury lamp was used for UV irradiation. A 15 mg of catalyst was mixed with 100 ml of dye solution (0.6 g l⁻¹) and irradiated to both UV and visible lights. Before irradiation, the dye-catalyst suspension was stirred for 30 min in dark followed by irradiation for 120 min. After 120 min of irradiation, 3 ml solution was taken, filtered and absorbance was recorded at 664 nm (CE Cecil 7200, UK) and percentage degradation was measured using relation shown in equation (1) (where C₀ and C_f are the dye initial and final concentrations). All the degradation experiments were performed in triplicate and data was averaged.

\[
\text{Degradation (\%)} = \left(1 - \frac{C_f}{C_0}\right) \times 100
\]
3. Results and discussion

3.1. Characterization

The present study is focused on the synthesis, characterization and application (antimicrobial and photocatalytic) of Zn–d–WO₃. The XRD patterns of Zn–d–WO₃ are shown in figures 2(a)–(c). It was noted that the diffraction peaks of the Zn–d–WO₃ indexed with PDF #83–0949. The obtained 2θ values with hkl values were observed at 16.75° (101), 23.63° (020), 24.92° (200), 27.67° (201), 29.75° (211), 32.52° (022), 34.46° (220), 36.16° (212), 43.45° (203), 47.28° (004), 52.17° (303), 57.13° (412), 60.04° (034), 62.97° (115), 64.06° (341). The lattice parameters of pure WO₃ were; a = 7.3721 Å, b = 7.5451 Å, c = 7.6142 Å and β = 90.892. XRD analysis revealed that the Zn–d–WO₃ structure was triclinic, particle shape (spherical and rod shaped mixed) and the particle size was decreased as the Zn concentration increased from 0.1 to 0.3%. Moreover, no secondary phase (Zn or ZnO or WO₃·H₂O) was observed, which indicate the purity of the sample. Therefore, the adopted synthesis route (precipitation) proved to be an excellent method for the synthesis of Zn–d–WO₃. The prepared Zn–d–WO₃ showed different morphology (the particle was spherical and rod shaped) and have very low grade of aggregation. In general, the catalyst formed is in well-ordered form and uniform. Other researchers also studied the surface morphology of Zn-WO₃ prepared by different methods and it has been reported with high grades of aggregation and disorder morphology [36, 37, 59, 60] and similar morphology was reported by Samerjai et al [61] for platinum loaded tungsten films. The SEM images of the Zn–d–WO₃ are shown in figure 3. It was observed that the concentration of the Zn...
affected the morphology and particle size of the Zn–d–WO3. The catalyst prepared at low concentration i.e., 0.1 M concentration showed less homogeneity, and at higher Zn concentration more homogeneity and less particle was observed, these findings are in line with reported observation by Liu et al [62]. At 0.3 M Zn concentration, the structure of Zn–d–WO3 was more regular with uniform morphology, which is also in line with Mohammidi et al [25]. These result showed the morphology of prepared material can be changed by changing the dopant concentration since smaller particle size and homogeneous morphology of Zn–d–WO3 was achieved at higher concentration of Zn. The activity and the selectivity of the synthesized particles are crucially depending on the microstructural modifications at different operational conditions [63]. The elemental composition of the Zn–d–WO3 was confirmed by EDX analysis. Three samples were prepared at 0.1 M, 0.2 M, and 0.3 M concentrations of Zn (figure 4). The elemental analysis revealed the presence of O, Zn, W, which is also an indication of sample purity. EDX analysis also revealed the change in concentration of elements in samples prepared at different concentration of Zn (0.1, 0.2 and 0.3%). Similar results was also reported in previous studies regarding synthesis of Mn-WO3 [26].

3.2. Antimicrobial activity
Antimicrobial activity of WO3 alone and with different combination of Zn (0.1%, 0.2% and 0.3%) was evaluated against Gram positive (Bacillus subtilis and Staphylococcus aureus) and Gram negative (Escherichia coli and Pasturella multocida) bacterial strains. Similarily, antifungal activity was also evaluated against fungal species i.e., Aspergillus niger, Aspergillus flavus and Penicillium notatum by disc diffusion. The MIC was also estimated of WO3 and Zn–d–WO3 (Zn 0.1%, 0.2% and 0.3%). Zn–d–WO3 showed promising antibacterial activity again panel of Gram-positive and Gram-negative strains. The antibacterial activity trend was in following order; Escherichia coli > Pasturella multocida > Staphylococcus aureus > Bacillus subtilis (figure 5). The values of zones of inhibition were recorded to be 26 ± 4.69 > 24 ± 6.18 > 21 ± 1.35 > 18 ± 1.34 for Escherichia coli > Pasturella multocida > Staphylococcus aureus > Bacillus subtilis, respectively for Zn(0.3%)-WO3, which is 25 to 30% more potent in inhibiting the bacterial growth versus WO3 alone. Similar result of antibacterial
activity of WO₃ nanodots were also reported by [64] and [25]. The antifungal analysis revealed that WO₃ alone and Zn–d–WO₃ did not show significant antifungal activity against selected fungal strains in comparison to standard (Fluconazole). The MIC of tested samples (WO₃ and Zn-WO₃ with Zn 0.1, 0.2 and 0.3%) were also estimated and it was observed that the Zn(0.3%)-WO₃ showed 20 to 25% lower concentration to inhibit bacterial growth as compared to WO₃ alone (figure 6). Results revealed that the antimicrobial activity of WO₃ can be enhanced by combining it with Zn metal since synergistic effect was observed to reduce the bacterial load. However, in case of antifungal activity, Zn-WO₃ did not show promising efficiency. Similar to present investigation, previous studies also documented similar findings i.e., Zn-doped SiO₂ NPs also showed excellent antibacterial activity, whereas the antifungal activity was low versus standard [36], which revealed the possible application of NPs as an bioactive agents [9, 65, 66].

3.3. Photocatalytic activity (PCA)
To evaluate the PCA of Zn-WO₃, methylene blue (MB) dye was degraded under UV and visible light and responses are shown in figures 7–8. The MB dye degradation under both UV and visible light was promising. Also, the PCA was changed as a function of Zn contents i.e., 0.1%–0.3% combination with WO₃. The maximum dye degradation of 78% and 92% was achieved for visible and UV irradiation in 120 min of reaction time. Results revealed that PCA of Zn-WO₃ was promising under both UV and visible light, however, the effect of UV was greater than the visible light. The Zn–d–WO₃ at different concentration of Zn showed different PCA for MB dye degradation. These findings are in line with previous studies that doping can enhanced the PCA of metal oxides i.e. Madhan [23] synthesized pure and Zn composite with tungsten NPs under microwave irradiation. MB and rhodamine B in aqueous solution was used to check the PCA of the pure and Zn composite with WO₃. The results show that the PCA of pure WO₃ was much less versus Zn (10 wt %) composites with WO₃. Similarly, Upadhyay [24] also prepared Sn-doped WO₃ materials using sodium tungstate dehydrate sodium.
Zn which was confirmed by advanced characterization techniques such as SEM, XRD, EDX. The prepared Zn–doped WO3 showed triclinic structure and particle size was decreased as the Zn concentration increased. The Zn–doped WO3 showed promising antimicrobial activity against E. coli, P. ltcocida, B. subtilis and S. aureus versus standard (Rifampicin). The MIC against set of bacterial strains was in the range of 211–387 μg ml⁻¹. The antifungal activity was also checked, but in comparison to standard (Fluconazole), the Zn–doped WO3 did not show considerable activity against A. niger, A. flavus and P. notatum. The PCA of Zn–doped WO3 was evaluated by degrading MB dye under UV and visible irradiation and showed promising PCA, which was slightly less under visible light irradiation. In view of promising PCA, Zn–doped WO3 could possibly be used as a photocatalyst for the degradation of dyes in wastewater.

References

1. Haghighatadeh A et al 2019 Improved photocatalytic activity of ZnO–TiO2 nanocomposite catalysts by modulating TiO2 thickness Mater. Res. Express 6 115060
2. Liang B and Zhang W 2019 SnCl2(OH)4Cl2: a promising novel photocatalyst for methyl orange degradation. Mater. Res. Express 6 115066
3. Zhang Z et al 2018 Synthesis and properties of Ag/ZnO/g–C3N4 ternary micro/nano composites by microwave-assisted method Mater. Res. Express 5 015021
4. Zou W et al 2019 Preparation of a graphene oxide membrane for air purification Mater. Res. Express 6 105624
5. dos Santos Junior V E et al 2017 Antimicrobial activity of silver nanoparticle colloids of different sizes and shapes against Streptococcus mutans Res. Chem. Intermed. 43 5889–99
6. Nadotoka O et al 2019 Photochemical synthesis and characterization of hydrogel–silver nanoparticle composites Res. Chem. Intermed. 45 1–12
7. Samson K et al 2015 Influence of the carrier and composition of active phase on physicochemical and catalytic properties of CuAg/oxide catalysts for selective hydrogenolysis of glycerol Res. Chem. Intermed. 41 9295–306
8. Samal S 2017 Synthesis of TiO2 nanoparticles from ilmenite through the mechanism of vapor-phase reaction process by thermal plasma technology J. Mater. Eng. Perform. 73 1–7
9. Awwad A M et al 2020 Green synthesis, characterization of silver sulfide nanoparticles and antibacterial activity evaluation Chem. Int. 6 42–4
10. Alasadi M et al 2019 Adsorption of Cu(I), Ni(II) and Zn(II) ions by nano kaolinite: thermodynamics and kinetics studies Chem. Int. 5 258–68
11. Iwuoha G N and Akinsaye A 2019 Toxicological symptoms and leachates quality in Elelenwo, Rivers State, Nigeria Chem. Int. 5 198–205
12. Hassan E B and Amsare A M 2019 Predictive performance modeling of Habesha brewery wastewater treatment plant using artificial neural networks Chem. Int. 5 87–96
13. Igwe O and Nwamezie F 2018 Green synthesis of iron nanoparticles using flower extract of Piliostigma thonningii and antibacterial activity evaluation Chem. Int. 4 60–6
14. Ibiyi N E and Asoluka C A 2018 Use of agro-waste (Musa paradisiaca peels) as a sustainable biosorbent for toxic metal ions removal from contaminated water Chem. Int. 4 52–9

ORCID iDs

A Nazir https://orcid.org/0000-0002-9412-6100
M Iqbal https://orcid.org/0000-0001-7393-8065
[15] Legrouni K et al 2017 Activated carbon from molasses efficiency for Cr (VI), Pb (II) and Cu (II) adsorption: a mechanistic study Chem. Int. 3 301–10
[16] Jafarinejad S 2017 Activated sludge combined with powdered activated carbon (PACT process) for the petroleum industry wastewater treatment: a review Chem. Int. 3 368–74
[17] Djhaf K et al 2017 Textile wastewater in Tlemcen (Western Algeria): impact, treatment by combined process Chem. Int. 3 414–9
[18] Ebrahimir et al 2019 Photocatalytic degradation of organic dyes using WO3-doped ZnO Nanoparticles fixed on a glass surface in aqueous solution. J. Ind. Eng. Chem. 73 297–305
[19] Shabestari et al 2013 Synthesis and characterization of WO3 nanowires and metal nanoparticle-WO3 nanowire composites. J. Mol. Struct. 1044 99–104
[20] Adhikari S et al 2017 Kinetics and mechanism of dye adsorption on WO3 nanoparticles. Appl. Surf. Sci. 420 472–82
[21] Montini T et al 2010 Synthesis, characterization and photocatalytic performance of transition metal tungsstates Chem. Phys. Lett. 498 113–9
[22] Moafi H F, Zainjanlgi M A and Shojai A F 2013 Tungsten-doped ZnO nanocomposite: synthesis, characterization, and highly active photocatalyst toward dye photodegradation Mater. Chem. Phys. 139 856–64
[23] Madhan D et al 2015 Influence of Zn doping on structural, optical and photocatalytic activity of WO3 nanoparticles by a novel microwave irradiation technique J. Mater. Sci., Mater. Electron. 26 6623–30
[24] Upadhyay S, Mishra R and Sahay P 2014 Structural and alcohol response characteristics of Sn-doped WO3 nanosheets. Sensors Actuators B 193 19–27
[25] Mohammadi S et al 2016 Preparation and characterization of zinc and copper co-doped WO3 nanoparticles: application in photocatalysis and photobiology J. Photochem. Photobiol., B 161 217–21
[26] Abdusahar M H S and Kandasamy J 2013 Synthesis and characterization of manganese doped tungsten oxide by microwave irradiation method Mater. Sci. Semicond. Process. 40 695–700
[27] Saradkar K et al 2013 A facile synthesis of ZnWO4 nanoparticles by microwave assisted technique and its application in photocatalysis. Mater. Res. Bull. 48 1105–9
[28] Lam S M et al 2013 ZnO nanorods surface-decorated by WO3 nanoparticles for photocatalytic degradation of endocrine disruptors under a compact fluorescent lamp Ceram. Int. 39 2343–52
[29] Costa C U et al 2012 Inkjet printing of sol–gel synthesized hydrated tungsten oxide nanoparticles for flexible electrochromic devices ACS Applied Materials & Interfaces 4 1330–40
[30] Alcaraz L et al 2019 New photocatalytic materials obtained from the recycling of alkaline and Zn/C spent batteries Journal of Materials Research and Technology 8 2809–18
[31] Khan M Y et al 2019 Visible light active indigo dye/graphene/WO3 nanocomposites with excellent photocatalytic activity. Journal of Materials Research and Technology 8 2616–9
[32] Khan N U H et al 2019 Decolorization of Basic Turquoise Blue X-GB and Basic Blue X-GRR by the Fenton’s Process and its Kinetics Z. Phys. Chem. 233 361–73
[33] Kamran U et al 2019 Green synthesis of metal nanoparticles and their applications in different fields: a review, in Z. Phys. Chem. 233 1325–49
[34] Hussain A et al 2019 Investigating the Antibacterial Activity of POMA Nanocomposites Polish Journal of Environmental Studies 28 4191–8
[35] Bibi I et al 2019 Structural, dielectric and magnetic studies of perovskite (Gd1−xMdxCrO3, (M = La, Co, Bi)) nanoparticles Photocatalytic Degradation of Dyes, Zeitschrift für Physikalische Chemie 233 1431–45
[36] Arshad M et al 2018 Zn-doped SiO2 nanoparticles preparation and characterization under the effect of various solvents: antibacterial, antifungal and photocatalytic performance evaluation. J. Photochem. Photobiol., B 185 176–83
[37] Arshad M et al 2018 Influence of different solvents on portrayal and photocatalytic activity of tin-doped zinc oxide nanoparticles J. Mol. Liq. 260 272–8
[38] Garnett E and Yang P 2010 Light trapping in silicon nanowire solar cells Nano Lett. 10 1082–7
[39] Nayak B, Nanda A and Bhat M A 2016 Integrating Biologically-inspired Nanotechnology Into Medical Practice (United States of America: IGI Global) pp 1–394
[40] Zhang C-L, Li J-J and Li S-Y 2017 Photocatalytic degradation of pefloxacin in water by modified nano-zinc oxide Mater. Lett. 206 146–9
[41] Nguyen L T T et al 2019 Preparation, characterization and photocatalytic activity of La-doped zinc oxide nanoparticles Materials (Basel, Switzerland) 12 1195
[42] Babitha N et al 2019 Enhanced antibacterial activity and photo-catalytic properties of ZnO nanoparticles: pedialium murex plant extract-assisted synthesis J. Nanosci. Nanotechnol. 19 2888–94
[43] Manikandan A et al 2018 Morphological, thermal, and blood-compatible properties of electropun nanocomposites for tissue engineering application Polym. Compus. 39 E132–9
[44] Manikandan A et al 2017 Formation of functional nanofibrous electropun polyurethane and muricuna oil with improved haemocompatibility for wound healing Polym. Test. 61 106–13
[45] Vellayappan M, Jaganathan S and Manikandan A 2016 Nanomaterials as a game changer in the management and treatment of diabetic foot ulcers RSC Adv. 6 114859–78
[46] Thema F et al 2016 Single phase Bunsenite NiO nanoparticles green synthesis by Agathosma betulina natural extract J. Alloys Compd. 657 655–61
[47] Kasiathanth K et al 2016 Photodegradation of organic pollutants RhB dye using UV simulated sunlight on ceria based TiO2 nanomaterials for antibacterial applications. Sci. Rep. 6 38064–38064
[48] Sasamaz M, Obek E and Sasamaz A 2018 The accumulation of La, Ce and Y by Lenna minor and Lenna gibba in the Keban gallery water, Elazig Turkey Water and Environment Journal 32 75–83
[49] Palatoglu M et al 2018 Photoremediation of cadmium by native plants grown on mining soil Bulletin of Environmental Contamination and Toxicology 100 293–7
[50] Sasamaz A et al 2017 The hematological and biochemical changes in rats exposed to britholite mineral Appl. Radiat. Isot. 129 185–8
[51] Sasamaz M et al 2016 Mercury uptake and phytotoxicity in terrestrial plants grown naturally in the Gumusksoy (Kutahya) mining area, Turkey Int. J. Phytoreen. 18 69–76
[52] Hamilton-Amachree A and Iroha N B 2020 Corrosion inhibition of API 3L X80 pipeline steel in acidic environment using aqueous extract of Thevetia peruviana Chem. Int. 6 117–28
[53] Alaager M M, Shammut M W and Awdad A M 2020 Nano platelets kaolinite for the adsorption of toxic metal ions in the environment Chem. Int. 6 49–55
[54] Iqbal M et al 2019 Bioassays based on higher plants as excellent dosimeters for ecotoxicity monitoring: a review Chem. Int. 5 1–80
[55] Alasadi A M, Khaili F I and Awad A M 2019 Adsorption of Cu(II), Ni(II) and Zn(II) ions by nano kaolinite: thermodynamics and kinetics studies Chem. Int. 5 258–68
[56] Ashar A et al 2016 Synthesis, characterization and photocatalytic activity of ZnO flower and pseudo-sphere: nonylphenol ethoxylate degradation under UV and solar irradiation J. Alloys Compd. 678 126–36
[57] Riaz M et al 2012 In vitro antimicrobial, antioxidant, cytotoxicity and GC-MS analysis of Mazus goodenifolius Molecules 17 14275–87
[58] Sarker S D, Nahar L and Kumarasamy Y 2007 Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals Methods 42 321–4
[59] Xu X et al 2016 Sol–gel synthesis and enhanced photocatalytic activity of doped bismuth tungsten oxide composite Mater. Res. Bull. 73 385–93
[60] Bibi I et al 2017 Green and eco-friendly synthesis of cobalt-oxide nanoparticle: characterization and photo-catalytic activity Adv. Powder Technol. 28 2035–43
[61] Samerjai T et al 2011 Selectivity towards H2 gas by flame-made Pt-loaded WO3 sensing films. Sensors Actuators B 157 290–7
[62] Liu H et al 2007 Preparation and photocatalytic activity of dysprosium doped tungsten trioxide nanoparticles Mater. Chem. Phys. 104 277–83
[63] Wilson R F 2006 Nanotechnology: the challenge of regulating known unknowns The Journal of Law, Medicine & Ethics 34 704–13
[64] Duan G et al 2019 Robust antibacterial activity of tungsten oxide (WO3-X) nanodots. Chem. Res. Toxicol. 32 1357–66
[65] Al Banna L S, Salem N M and Awad A M 2020 Green synthesis of sulfur nanoparticles using Rosmarinus officinalis leaves extract and anti-nematicidal activity against Meloidogyne javanica Chem. Int. 6 137–43
[66] Yeshiwas D and Mekonnen A 2018 Comparative study of the antioxidant and antibacterial activities of two guava (Psidium guajava) fruit varieties cultivated in Andasa Horticulture Site, Ethiopia Chem. Int. 4 154–62
[67] Bibi I et al 2017 Nickel nanoparticle synthesis using Camellia Sinensis as reducing and capping agent: growth mechanism and photocatalytic activity evaluation Int. J. Biol. Macromol. 103 783–90
[68] Soto-Robles C et al 2019 Study on the effect of the concentration of Hibiscus sabdariffa extract on the green synthesis of ZnO nanoparticles Results in Physica 15 102807
[69] Senthilkumar R et al 2019 Biogenic method of cerium oxide nanoparticles synthesis using wireweed (Sida acuta Burm. f.) and its antibacterial activity against Escherichia coli Mater. Res. Express 6 105026
[70] Bharathi D et al 2019 Preparation of chitosan coated zinc oxide nanocomposite for enhanced antibacterial and photocatalytic activity: as a bionanocomposite Int. J. Biol. Macromol. 129 989–96
[71] Ezhil Arasi S et al 2020 Electrochemical property analysis of zinc vanadate nanostructure for efficient supercapacitors Mater. Sci. Semicond. Process. 106 104785
[72] Ranjithkumar R et al 2019 Enhanced electrochemical studies of ZnO/CNT nanocomposite for supercapacitor devices Physica B 568 51–9
[73] Rajamani R, Kuppusamy S and Bellan C 2018 Biosynthesis, characterization and remedial aspect of silver nanoparticles against pathogenic bacteria MOJ Toxicology 4 103–9