NEW RESULTS FROM VES.

Valeri Dorofeev, VES collaboration

IHEP, Protvino, Russia, RU-142284

ABSTRACT

The results of the partial wave analysis(PWA) of the $\pi^+\pi^-\pi^-$ and $\omega\pi^-\pi^0$ systems are presented. The a_3 and $a_4(2040)$ signals are observed in the $\rho(770)\pi$ and $f_2(1270)\pi$ channels. Indications of the a_1' meson existence was found in the $1^{+}0^{+}\rho\pi$ S-wave. The decay branching ratio of the $a_2(1320)^-$ to $\omega\pi^-\pi^0$ was measured. The $2^{+}1^{+}$ wave shows a broad bump at $M \approx 1.7 GeV$. The decays of the $\pi_2(1670)$, $a_4(2040)$ and $\pi(1740)$ into $\omega\rho^-$ were found. The resonance in the $b_1(1235)\pi$ wave with exotic quantum numbers $J^{PC} = 1^{-+}$ at $M \approx 1.6 GeV$ is observed and the simultaneous analysis of the 1^{-+} wave in the $b_1(1235)\pi$, $\eta'\pi$ and $\rho\pi$ final states is presented.

1 Introduction

We present the results of the PWA of $\pi^+\pi^-\pi^-$, produced in reaction:

$$\pi^-Be \rightarrow \pi^+\pi^-\pi^-Be$$

(1)

and $\omega\pi^-\pi^0$ system, produced in:

$$\pi^-Be \rightarrow \omega\pi^-\pi^0Be, \quad \omega \rightarrow \pi^+\pi^-\pi^0$$

(2)

Our previous results of the analysis of reaction (1) were published in [1], [2], [3], and of reaction (2) were partially reported at the conferences [4], [5]. The measurements
Figure 1: Main \(J^{PC} = 1^{++} \) waves for \(t' < 0.06 \text{GeV}^2 \) (a-c) and \(0.06 < t' < 0.7 \text{GeV}^2 \) (d-f) were carried out using VES spectrometer exposed by the \(37 \text{GeV} \) momentum \(\pi^- \) beam. The description of the setup can be found in [5].

2 Results of the \(\pi^+\pi^-\pi^- \)-system PWA.

The selection criteria for reaction (1) and the description of the PWA procedure can be found in [3]. The relativistic covariant helicity formalism [7] is used to construct the amplitudes and the positively definite density matrix of the full rank. The largest waves of the \(J^P = 0^-, 1^+, 2^- \) channels are decoupled from the other waves with the same \(J^PM^\eta \) and are free to interfere with each other. The \(6 \cdot 10^6 \) events with \(|t'| < 0.06 \text{GeV}^2 \) [4] and \(2 \cdot 10^6 \) with \(0.06 < |t'| < 0.7 \text{GeV}^2 \) are analyzed separately.

We present the main features of the most significant waves in the high \(3\pi \) mass region.

\(J^PM^\eta = 1^{+0^+} \). A peak in the \(1^{+0^+}D\rho \) wave (Fig.1(b)) and the shoulder

\[^1 t' = t - t_{\min}, \text{ where } t- \text{ momentum transfer from the beam to the final state squared, } t_{\min}-\text{its minimum value.} \]
in the $1^+0^+ S \rho$ wave (Fig.2(a), (d)) are observed at $M \approx 1.7 \text{ GeV}$ and are considered to be the $a'_1(1700)$ decay into the $\rho \pi$. The peak was fitted with the coherent sum of the Breit-Wigner resonance and the exponential background. The fit results in the following $a'_1(1700)$ parameters:

$$M = 1.80 \pm 0.05 \text{ GeV} \quad \Gamma = 0.23^{+0.10}_{-0.03} \text{ GeV};$$

where the errors are dominated by systematics. The $a'_1(1700)$ branching ratios into the D-wave $\rho \pi$ and P-wave $f_2(1270)\pi$ are found to be:

$$\frac{Br(a'_1(1700) \rightarrow (\rho\pi)_D)}{Br(a'_1(1700) \rightarrow (\rho\pi)_S)} < 0.35 \quad \frac{Br(a'_1(1700) \rightarrow f_2\pi)}{Br(a'_1(1700) \rightarrow (\rho\pi)_S)} < 0.23 \text{ at 95\% CL}$$

$J^P M^n = 2^{-0}$. A complicated wave behaviour for low t' shown in Fig.2 is described by the interplay of the $\pi_2(1670)$ and $\pi'_2(2100)$ states 3\,8). A peak at $M \approx 1.7 \text{ GeV}$ in the F-wave $\rho \pi$ wave intensity is observed.

$J^P M^n = 3^+0^+$. A resonance-like signal is observed near $M \approx 1.8 \text{ GeV}$ in the $\rho \pi$ and $f_2\pi$ waves, see Fig.3. The phase of the $3^+0^+ D \rho$ as related to the $2^{-0} S f_2$ is shown in Fig.3(c) and is in accordance with the expectations for a resonance. The
simultaneous fit of the $f_2 \pi$ intensity with the relativistic Breit-Wigner function and the $\rho \pi$ intensity with the incoherent sum of the Breit-Wigner and the Chebyshev polynomial background results in the following parameters of the resonance:

$$M = 1.86 \pm 0.02 \text{GeV}, \quad \Gamma = 0.54 \pm 0.03 \text{GeV}.$$

The relative probability of decay into the $f_2(1270)\pi$ and $\rho(770)\pi$ is as follows:

$$\frac{Br(a_3 \rightarrow f_2(1270)\pi)}{Br(a_3 \rightarrow \rho\pi)} = 0.5 \pm 0.1.$$

$J^P M^\circ = 4^+1^+$. A bump near $M \approx 2\text{GeV}$ is found in the $4^+1^+G\rho$ and $4^+1^+Ff_2$ waves produced at high t' (Fig.3). The phase of the $4^+1^+G\rho$ relative to the $\pi_2(1670)$ is in accordance with the expectation for the resonance. The simultaneous fit of the $f_2\pi$ intensity with the relativistic Breit-Wigner function and the $\rho\pi$ intensity with the incoherent sum of the Breit-Wigner and the Chebyshev polynomial background results in the following parameters of the resonance:

$$M = 1.95 \pm 0.02 \text{GeV}, \quad \Gamma = 0.34 \pm 0.10 \text{GeV}.$$
Figure 4: The $4^{+}1^{+} D\rho$ (a) and $4^{+}1^{+} Ff_{2}$ (b) wave intensities and the phase difference $\phi (4^{+}\Gamma \rho) - \phi (2^{-}Sf_{2})$ for $0.06 < t' < 0.7 GeV^{2}$.

Figure 5: The $J^{P}M^{\eta} = 1^{-}1^{+} S\rho$ wave intensity for $t' < 0.06 GeV^{2}$ (a) and for $0.06 < t' < 0.7 GeV^{2}$ (b).

We identify this object with the $a_{4}(2040)$, having the following branching ratio:

$$\frac{Br(a_{4}(2040) \to f_{2}(1270)\pi)}{Br(a_{4}(2040) \to \rho\pi)} = 0.5 \pm 0.2.$$

$J^{P}M^{\eta} = 1^{-}1^{+}$. The observation of a signal in the $1^{-}1^{+} P(\rho)$ wave with $M = 1.62 \pm 0.02 GeV$, $\Gamma = 0.24 \pm 0.05 GeV$ was previously reported as preliminary by the VES [9]. Later, the observation of the state with $M = 1593 \pm 8^{+20}_{-17} MeV$, $\Gamma = 168 \pm 20^{+150}_{-12} MeV$ was declared by the E852 [10]. It was shown in [11] the model dependence of the signal behaviour. We do not observe such a narrow signal (Fig. 3) in the fit results with the applied PWA model. However there appears a peak at $M \approx 1.6 GeV$ with $\Gamma \approx 0.3 GeV$ in the $1^{-}1^{+}$ wave intensity, described by the leading term in the expansion of the density matrix in terms of the eigenvalues.
Figure 6: Wave intensities of: a) $0^+P\rho_{1}$, b) $2^+P\rho_{2}$ with $-t' < 0.08 GeV^2$, Wave intensities of: c) $3^+S\rho_{3}$, d) $2^+S\rho_{2}$, e) $4^+D\rho_{2}$, f) $1^+S\rho_{1}$.

3 The results of the $\omega\pi^-\pi^0$-system PWA

The selection criteria for reaction (2) and the description of the PWA procedure can be found in [12]. The results of the PWA are presented in Fig. 6.

$J^P\eta = 0^-0^+$. A peak in the region of 1.74 GeV with the flat background dominates in the wave $0^-0^+P\rho$ at low t' (Fig. 6(a)). The phase of this wave relative to the smooth $1^+0^+P\rho_{1}$ wave has the resonant behaviour. The resonance parameters were determined by the fit of the wave intensity with the incoherent sum of a relativistic Breit-Wigner function and a cubic polynomial and are as follows: the mass $M = 1.737 \pm 0.005 \pm 0.015 GeV$ and the width $\Gamma = 0.259 \pm 0.019 \pm 0.06 GeV$.

$J^P\eta = 2^-0^+$. A clear peak is observed at $M \sim 1.67 GeV$ with $\Gamma \sim 0.2 GeV$ (Fig. 6(b)). The resonant phase behaviour of the $2^-0^+P\rho_{1}$ and $2^-0^+P\rho_{2}$ waves relative to the $1^+0^+P\rho_{1}$ wave is observed. The resonance parameters of the $2^-0^+P\rho_{2}$ peak were estimated in the same way as for $\pi(1740)$: $M = 1.687 \pm$
0.009±0.015 GeV and \(\Gamma = 0.168±0.043±0.053 \) GeV. We identify this phenomenon with the decay of the \(\pi_2(1670) \) into \(\omega \rho \). The partial branching ratio was found by normalization to the decay \(\pi_2(1670) \to f_2(1270) \pi \), observed in the current experiment decay:

\[
Br(\pi_2(1670)^- \to \omega \rho^-) = 0.027 \pm 0.004 \pm 0.01
\]

The limits of the \(\pi_2(1670) \) decay branching ratios are set at the 2\(\sigma \) confidence level:

\[
Br(\pi_2(1670) \to \rho_1(1450) \pi) < 0.0036, \quad Br(\pi_2(1670) \to b_1 \pi) < 0.0019.
\]

\(J^P M^n = 3^+0^+ \). A peak at \(M_{3\pi} \sim 2 GeV \) and \(\Gamma \sim 0.35 GeV \) is clearly seen in the \(3^+0^+ S(\rho_3(1690)) \) wave for events with low \(t' \) (Fig. 3(c)). However the resonant phase motion was not found. Such wave behaviour can be attributed to the Deck effect process \(^{13} \). \(J^P M^n = 2^+1^+ \). The intensive production and decay of the \(a_2(1320) \) is the main process at low masses (Fig. 3(d)). The decay probability was found to be \(Br(a_2(1320) \to \omega \pi^0) = (5 \pm 1)\% \). We define the \(a_2(1320) \) partial width as that of a Breit-Wigner function with the S-wave \(\omega \pi^0 \) background. The nature of the 1.7 GeV mass structure is unknown. There may be another resonance or the opening of the \(\omega \rho \) channel \(^{14} \). We can not make preference to a particular hypothesis.

\(J^P M^n = 4^+1^+ \). The signal at \(M \approx 2 GeV \) (Fig. 3(e)) with the resonant phase behaviour can be identified as the \(a_4(2040) \). The \(a_4(2040) \) parameters are estimated by the fit with the incoherent sum of a D-wave relativistic Breit-Wigner function and a polynomial background to be: \(M = 1.944 \pm 0.008 \pm 0.050 GeV \) and \(\Gamma = 0.324 \pm 0.026 \pm 0.075 GeV \). The \(t' \)-dependence of the \(a_4(2040) \) is identical to that of the \(a_2(1320) \).

\(J^P M^n = 1^-1^+ \). The intensity of the \(1^-1^+ S(b_1) \) wave for events with high \(t' \) shows a wide bump with maximum at \(M \sim 1.6 \div 1.7 GeV \). The highest intensity of this wave does not exceed 15% of the \(2^+1^+ S2(\rho) \) wave intensity (Fig. 3(f)). The \(\omega \rho \) P-waves are included in turn along with the \(b_1 \pi \) wave. Their intensity distribution differs in form from that of the \(b_1 \pi \) wave and their inclusion in the fit do not influence on the \(b_1 \pi \) wave intensity behaviour.

4 The \(J^P M^n = 1^-1^+ \) wave analysis

The combined analysis of the \(J^P M^n = 1^-1^+ b_1 \pi \) and the \(J^P M^n = 2^+1^+ \omega \rho \) was carried out in order to understand the nature of the \(b_1 \pi \) wave. The results of the \(\omega \pi^0 \) system PWA were used for this analysis. The diagonal elements and the real
and imaginary parts of the non-diagonal element of the ρ-matrix corresponding to the $1^{-1}+ b_1\pi$ and $2^{+1}+ \omega\rho$ waves with high t' were simultaneously fitted. Fit results were used to predict the coherence parameter for cross checking. The $b_1\pi$ amplitude was saturated by the Breit-Wigner resonance and the coherent background. The $\omega\rho^-$ amplitude was saturated by the $a_2(1320)$-meson, a background and an a'_2 state has been also tried. The results of the fits with various ways of the $\omega\rho^-$ wave construction point out to the resonance nature of the $b_1\pi$ signal. The range of the parameters variation is large due to the freedom in the 2^{+1} state model.

The signal in the $J^P M^q = 1^{-1}+$ wave of the $\eta'\pi^-$-system with close parameters was observed earlier [15]. The simultaneous fit of the $b_1\pi$ and $\eta'\pi$ intensities with incoherent sum of a Breit-Wigner resonance and a background in each channel was carried out (Fig. 7). The fit results in the following parameters:

$$M = 1.58 \pm 0.03 \text{GeV}, \quad \Gamma = 0.30 \pm 0.03 \text{GeV}.$$

The form of the signal in the $1^{-1}+ \rho\pi$ wave is close to the Breit-Wigner function with these parameters. A fit of all three channels results in the resonance parameters changed within errors. All these facts indicate to the existence of a wide resonance $\Gamma = 0.29 \pm 0.03 \text{GeV}$ with the mass $M = 1.61 \pm 0.02 \text{GeV}$ and the relative branching ratio: $Br(b_1\pi) : Br(\eta'\pi) : Br(\rho\pi) = 1 : 1.0 \pm 0.3 : 1.6 \pm 0.4$.

Figure 7: Intensities of the $J^P M^q = 1^{-1}+$ waves in the channels: $b_1(1235)\pi$, $\eta'\pi$ and $\rho\pi$.
5 Conclusions

The PWA of the reaction $\pi^- Be \rightarrow \pi^+ \pi^- \pi^- Be$ and $\pi^- Be \rightarrow \pi^+ 2\pi^- 2\pi^0 Be$ was performed.

The mass and the width of the resonance structure in the $J^P M^\eta = 0^- 0^+$ $\omega \rho^-$ wave differs from that for $\pi(1800)$. There may exist two objects of the different nature: a hybrid $\pi(1800)$ and a $3^1 S_0$ $q\bar{q}$ state decaying into $\omega \rho$.

The indication of the existence of the resonance a'_1 mostly decaying to the $\rho \pi$ in the S-wave is found.

The $\pi_2(1670)$ decays into the $\omega \rho$ and $\rho \pi$ in the F-wave are found.

The $a_2(1320)^- \rightarrow \omega \pi^- \pi^0$ decay and a wide bump of unknown nature at $M \approx 1.7 \text{GeV}$ are observed in the $J^P M^\eta = 2^+ 1^+$ wave. The a_3 and $a_4(2040)$ decays to the $\rho \pi$ and $f_2 \pi$ are observed with the following relative branching ratio of the $a_4(2040)$ decays: $Br(f_2(1270)\pi) : Br(\rho \pi) : Br(\omega \rho) = 0.5 \pm 0.2 : 1.5 \pm 0.4$

The preliminary results of the $1^- +$ wave analysis point out to the existence of the resonance with exotic quantum numbers, which are forbidden for $q\bar{q}$ states, the mass $M = 1.61 \pm 0.02 \text{GeV}$, the width $\Gamma = 0.29 \pm 0.02 \text{GeV}$ and the following relative branching ratio: $Br(b_1 \pi) : Br(\eta' \pi) : Br(\rho \pi) = 1 : 1.0 \pm 0.3 : 1.6 \pm 0.4$.

References

1. G. Beladidze et al., Zeit. Phys. C54 (1992), 367.

2. A. Zaitsev, “Recent results from VES detector at IHEP,” Proc. of the IVth Int. Conf. on Hadron Spectroscopy (HADRON 91), 1991, 51.

3. D.I. Amelin et al., Phys. Lett. B356 (1995), 595.

4. D. Ryabchikov et al., Proc. of the 6th Int. Conf. on Hadron Spectroscopy, (1995) 192.

5. A. Zaitsev et al., Proc. of Int. Conf. on High Energy Physics, Warsaw, Poland, Jul. 1996

6. S. Bityukov et al., Phys. Lett. B268 (1991), 137.

7. S.U.Chung, Phys. Rev. D48 (1993), 1225; F.Filippini et al., Phys. Rev. D51 (1995), 2247.

8. C. Daum et al., Phys. Lett. B89 (1980), 285.
9. Yu. Gouz et al., Proc. of the XXVI International Conference on High Energy Physics, 1 1992, 572.

10. A. Ostrovidov et al., AIP Conf. Proc. 432, "Hadron Spectroscopy", Eds.S.-U. Chung and H. J. Willutzki, (Amer. Inst. Phys., New York, 1998), 263.

11. A. Zaitsev et al., AIP Conf. Proc. 432, "Hadron Spectroscopy", Eds.S.-U. Chung and H. J. Willutzki, (Amer. Inst. Phys., New York, 1998), 461.

12. D. Amelin et al., “Study of the reaction \(\pi^- Be \rightarrow \pi^+ 2\pi^- 2\pi^0 Be \)”, hep-ex/9810013

13. R.T.Deck, Phys. Rev. Lett. 13 (1964), 169.

14. K.M.Watson. Phys. Rev. 88 (1952), 1163; A.B.Migdal. Soviet Physics-JETP, 1 N. 1 (1955), 2.

15. G. Beladidze et al., Phys. Lett. B313 (1993), 276.