Intraperitoneal administration of lidocaine or tramadol alone or in combination on postoperative pain after ovariohysterectomy in dogs

Behnam Farokhzad | Soroush Sabiza | Mohammad Razi Jalali | Ali Baniadam

Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Correspondence
Soroush Sabiza, Department of clinical sciences, Faculty of veterinary medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
Email: s.sabiza@scu.ac.ir

Abstract
The present prospective randomized experimental study aimed to assess the intraperitoneal (ip) administration of lidocaine or tramadol, alone or in combination, on postoperative pain management following ovariohysterectomy in dogs. Eighteen healthy female mixed-breed dogs, aged 1–2 years, weighed 16.7 ± 3.8 kg, were used. Animals were sedated with acepromazine (0.1 mg/kg, intramuscular). Forty minutes later, anaesthesia was induced through intravenous titration with diazepam (0.5 mg/kg) and ketamine (10 mg/kg) and maintained with isoflurane 1.5%. Afterwards, ovariohysterectomy was performed, and prior to the closure of the linea alba, animals received lidocaine containing epinephrine (8.8 mg/kg, ip) in group L, tramadol (4 mg/kg, ip) in group T and lidocaine containing epinephrine (8.8 mg/kg, ip) plus tramadol (4 mg/kg, ip) in the LT group. Cortisol, vital signs and pain scoring systems were evaluated at different time points. Vital signs did not change among the groups. Cortisol level in the LT group significantly decreased compared to the L and T groups one, three and six hours after surgery. Pain scores also did not change among the groups based on Sammarco and Simple descriptive (SDS) scoring method. However, pain scores in the LT group were higher than the two other groups according to the University of Melbourne pain scale (UMPS) and the short form of Glasgow pain scale (CMPS-SF). According to the obtained results, the combination of lidocaine and tramadol seemed to be able to provide better analgesia compared with their separate administration. Therefore, combined intraperitoneal administration of lidocaine (8.8 mg/kg) and tramadol (4 mg/kg) with a final volume of (0.2 ml/kg) following ovariohysterectomy is recommended.

KEYWORDS
dog, intraperitoneal, lidocaine, ovariohysterectomy, tramadol
1 | INTRODUCTION

Ovariohysterectomy is one of the most common surgeries in small animals (Campagnol et al., 2012; Carpenter et al., 2004; Guerrero et al., 2016). Among the upsides of this surgery, mention can be made of population control, prevention of diseases related to the reproductive system and decrease in the unpleasant behaviours associated with sex hormones (Pereira et al., 2018). Ovariohysterectomy is classified as a major surgery (Hardie et al., 1997). Following this surgical procedure, mild to moderate pain occurs (Hardie et al., 1997; Campagnol et al., 2012). Over the recent years, there has been a growing interest in the use of drugs to improve analgesia (Campagnol et al., 2012). Postoperative pain (an acute and pathological pain) leads to many adverse effects, including reduced food intake, increased protein catabolism, impaired respiratory function, irregular heart rhythm, increased central sensitivity to painful stimuli, augmented postoperative stress, suppressed immune system, rise in arterial blood pressure, delayed wound healing, negative protein balance, reduced food intake and maladaptive behaviours such as self-harm. (Gwendolyn & Carrol, 1996; Gaynor, 1999; Flecknell & Watermen-Pearson, 2000). For pain control, topical anaesthetics and opioid analgesics are utilized (Carpenter et al., 2004; Yazbek and Fantoni, 2005; Campagnol et al., 2012; Morgaz et al., 2013). Lambertini et al., 2018; Chilkot et al., 2019). Furthermore, intraperitoneal administration has been employed to control abdominal postoperative pain in human and veterinary medicine. For intraperitoneal administration, a local anaesthetic or analgesic is applied to the surgical site and the viscera before suturing the abdominal wall (Carpenter et al., 2004; Ng et al., 2002; Golubovic et al., 2009; Campagnol et al., 2012; Guerrero et al., 2016; Lambertini et al., 2018; Chilkot et al., 2019). Today, intraperitoneal administration of topical anaesthetics is a valuable and approved method for controlling postoperative pain (Chilkot et al., 2019). Several studies have shown that the intraperitoneal administration of lidocaine or bupivacaine is sufficient for pain control after surgery in dogs (Campagnol et al., 2012; Carpenter et al., 2004; Chilkot et al., 2019; Guerrero et al., 2016; Lambertini et al., 2018). Furthermore, over the recent decades, several clinical studies have reported effective response to the combined use of opioid drugs such as tramadol or morphine and topical anaesthetics, such as bupivacaine, after open or laparoscopic abdominal surgery in humans. The drug combination has been found to result in a longer and deeper pain control in comparison to morphine (Mastrocinque and Fantoni, 2003). To the best of the author’s knowledge, no published paper has examined the analgesic effects of the combined intraperitoneal administration of topical anaesthetics and opioid analgesics. Accordingly, the objective of the present study was to investigate the effectiveness of the combined intraperitoneal use of lidocaine and tramadol on pain control after ovariohysterectomy in dogs.

2 | MATERIALS AND METHODS

The project was approved by the local Committee of the Institutional Animal Care and Use of *** (no. ***).

2.1 | Animals

This research was carried out on 18 clinically healthy female mixed-breed dogs with an age range of 1–2 years and weight of 16.7 ± 3.8 kg. The dogs were research animals which belonged to the ***. The health status of all animals was confirmed by clinical examination and blood cell count and determining the total protein level. The animals were kept in the same conditions and had access to enough water and food. They were randomly assigned to three equal groups, lidocaine (L), tramadol (T) and lidocaine-tramadol (LT) groups. The dogs were counted and the numbers were selected by withdrawing a lot from a box. The treatment was then randomly selected using the same method. The food and water were withheld for 12 and 2 hr, respectively, prior to the experiment. They were housed individually and fed on a commercial diet.

2.2 | Procedure

Initially, the dogs were sedated with intramuscular administration of acepromazine 1% (0.05 mg/kg) (Grimm et al., 2015). Thirty minutes later, an angiocatheter (No. 20) was inserted into both the cephalic vein, and the abdominal area was clipped to perform ovariohysterectomy. Following 10 min (40 min after sedation), anaesthesia was induced through titration with diazepam (0.5 mg/kg) and ketamine (10 mg/kg) (Grimm et al., 2015). Next, endotracheal intubation was done. To maintain anaesthesia, the animals were connected to an inhaled anaesthetic device equipped with an isoflurane vaporizer. Isoflurane was further administered at a concentration of 1.5% and an oxygen flow of 1.5 L. Anaesthesia continued until the skin was closed. To keep track of the condition and depth of anaesthesia, the vital parameters were evaluated every five minutes, but they were not recorded as work results. In addition, ketoprofen (2 mg/kg) (Lemke et al., 2002) and cefazolin (10 mg/kg) were administered intravenously immediately before surgery. Ringer’s solution was also administered at a rate of 10 ml kg⁻¹ hr⁻¹ hour during the surgery. Ovariohysterectomy was performed by a regular team. Before closing the linea alba, the drugs were intraperitoneally administered to each group as a splash on the viscera of the abdominal area. For
this purpose, lidocaine containing 0.08 mg/ml epinephrine (8.8 mg/kg) was administered in group L (Carpenter et al., 2004), tramadol (4 mg/kg) in group T (Evangelista et al., 2014) and lidocaine containing epinephrine (8.8 mg/kg) plus tramadol (4 mg/kg) in the LT group. The final injection volume was 0.2 ml/kg (Campagnol et al., 2012). Cefazolin (10 mg/kg, intramuscularly) was administered every 12 hr for three days after surgery. Pain was scored and vital signs (respiratory rate, heart rate and rectal temperature) were recorded 30 min, 1, 3, 6, 12 and 24 hr after extubation.

The following pain scoring systems were evaluated: modified form of subjective pain assessment system (Sammarco Method) (Sammarco et al., 1996; Groppetti et al., 2011), descriptive pain assessment methods simple descriptive score (SDS), the University of Melbourne pain scale (UMPS) (Saberi Afshar et al., 2017), and short-form Glasgow composite measure pain scale (CMPS-SF) (Reid et al., 2007). Dogs with a CMPS-SF score of more than 6 out of 24 or 5 among the three groups (Tables 2). Cortisol levels in the LT group exhibited a significant decrease compared to L group (p = .010) 3 hr and to the L and T groups, 1 (p = .004, 0.005) and 6 (p = .001, .006) hours after surgery (p ≤ .05) (Table 3). No statistically significant difference was observed in the serum glucose and total protein levels (Tables 3). No statistically significant difference was recorded in SDS and Sammarco method between the groups. (Tables 4). UMPS pain assessment showed significant changes during the study time. In this connection, 30 min (p = .004, 0.043), 1 (p = .000, 0.018) and 24 (p = .042, 0.043) hours after surgery, the pain scores in the LT group were significantly lower than in lidocaine (L) and the tramadol (T) groups. Furthermore, in the LT group, the pain scores were significantly reduced 3 (p = .001), 6 (p = .007), and (p = .020) 12 hr after surgery compared to the L group (p ≤ .05) (Tables 4). Statistically, CMPS-SF pain score was lower in the LT group than in L and T groups, 1 (p = .003, 0.013), 12 (p = .008, 0.003) and 24 (p = .026, 0.008) hours after surgery. The LT group had significantly reduced pain scores 30 min (p = .001), 3 (p = .005) and 6 (p = .003) hours post surgery compared to the L group (Tables 4). Morphone was not required in any of the groups during the first three evaluation periods (30 min, 1, and 3 hr following surgery). The frequency of morphine administration 6, 12 and 24 hr after surgery was not significant between the study groups. The general administration frequency of analgesics was significant regardless of the time of administration in the L group (eight times) compared to T group (three times), p = .011 and T group (one time), p = .001 (p ≤ .05). (Tables 5).

Statistical analysis

IBM SPSS software Version 23 (SPSS Inc.) was used for data analysis. To do so, one-way analysis of variance (ANOVA) and the Kruskal-Wallis test were performed to compare the data between the groups. A repeated-measures ANOVA test with least significant difference post hoc test and Friedman test were conducted to analyse the physiologic data and sedation scores within each treatment. Wilcoxon signed-rank tests on different combinations of related groups with a Bonferroni adjustment were also employed as Friedman post hoc. Data were presented as mean ± SE. The level of significance was defined as p < .05.

Parameter/Groups	L	T	LT
Weight (kg)	17.33 ± 4.00	15.02 ± 1.35	17.95 ± 4.12
Surgery duration (min)	29.00 ± 4.18	31.25 ± 2.93	30.40 ± 31.25
Recovery duration (min)	63.00 ± 17.88 LT	80.12 ± 14.14 LT	105.02 ± 11.18

Note: The name of the group listed at the top of the numbers indicates a significant difference with that group (p < .05).
TABLE 2 Vital signs result as mean ± SD in 18 dogs before and after intraperitoneal administration of 8.8 mg/kg of lidocaine (L), 4 mg/kg Tramadol (T) or lidocaine (8.8 mg/kg)-Tramadol (4 mg/kg) (LT) undergoing ovariohysterectomy

Parameters	Group/Times	Before surgery	After surgery					
		30 min (°C)	1 hr	3 hr	6 hr	12 hr	24 hr	
Heart rate (beats / min)	L	90.8 ± 11.3	112.6 ± 8.7	114.0 ± 12.2	116.8 ± 8.3 LTa	120.2 ± 7.5 LTa	113.0 ± 12.3	92.4 ± 14.8
	T	90.0 ± 13.2	109.7 ± 7.9	83.7 ± 6.9 Lb	98.2 ± 10.1	111.5 ± 6.6	106.1 ± 10.4	113.0 ± 11.7
	LT	92.0 ± 8.1	102.5 ± 10.2	94.3 ± 9.1 L	76.2 ± 12.0 L	100.0 ± 13.2 L	93.2 ± 11.3	96.6 ± 10.6
	T	220 ± 1.5	215 ± 4.0	24.0 ± 3.2	21.3 ± 3.0	24.6 ± 1.2	25.2 ± 4.4	26.0 ± 5.1
	LT	20.6 ± 1.2	17.5 ± 2.2	16.7 ± 1.8	19.5 ± 3.1	20.5 ± 1.9	21.4 ± 1.7	23.0 ± 1.2
		21.6 ± 1.3	23.1 ± 4.3	24.0 ± 7.1	26.0 ± 2.0	23.5 ± 6.1	21.3 ± 1.2	25.2 ± 4.8
Respiratory rate (rate / min)	L	37.76 ± 0.33b	36.62 ± 0.84a	36.56 ± 0.60a	37.00 ± 1.12	37.88 ± 0.42	38.08 ± 0.36b	38.06 ± 0.71b
	T	37.55 ± 0.60	37.34 ± 0.91	36.02 ± 1.00	36.47 ± 1.28	37.52 ± 1.83	38.21 ± 0.51	38.42 ± 0.92
	LT	37.66 ± 0.57	36.14 ± 1.34	36.60 ± 1.32	36.45 ± 1.21	37.36 ± 0.28	37.86 ± 0.42	38.32 ± 0.59b
Rectal Temperature (°C)	L	37.76 ± 0.33b	36.62 ± 0.84a	36.56 ± 0.60a	37.00 ± 1.12	37.88 ± 0.42	38.08 ± 0.36b	38.06 ± 0.71b
	T	37.55 ± 0.60	37.34 ± 0.91	36.02 ± 1.00	36.47 ± 1.28	37.52 ± 1.83	38.21 ± 0.51	38.42 ± 0.92
	LT	37.66 ± 0.57	36.14 ± 1.34	36.60 ± 1.32	36.45 ± 1.21	37.36 ± 0.28	37.86 ± 0.42	38.32 ± 0.59b

Note: The name of the group listed at the top of the numbers indicates a significant difference with that group (p < .05).

aDifferent letters in each row indicate a significant difference with the time before surgery in each group (p < .05).

bDifferent letters in each row indicate a significant difference with the time before ip in each group (p < .05).
intraperitoneal administration of bupivacaine and tramadol resulted in inadequate analgesia (Golubovic et al., 2009). In 2008, Akinci et al. showed that after the laparoscopic removal of the gallbladder by intravenous or intraperitoneal administration of tramadol, intravenous tramadol was more potent than intraperitoneal tramadol (Akinci et al., 2008). In this study, lidocaine was intraperitoneally administered with tramadol. Intraperitoneal administration of analgesics in combination with topical anaesthetics causes a good deal of awakening in humans. It was reported that the intraperitoneal addition of morphine to bupivacaine resulted in appropriate pain relief after

TABLE 3

Blood parameters result as mean ± SD in 18 dogs before and after intraperitoneal administration of 8.8 mg/kg of lidocaine (L), 4 mg/kg Tramadol (T) or lidocaine (8.8 mg/kg)-Tramadol (4 mg/kg) (LT) undergoing ovariohysterectomy

Parameters	Group/ Times	Before surgery	Before ip administration	After surgery		
		30 min (\(^a\))	5 min (\(^b\))	1 hr	3 hr	6 hr
Cortisol (µg/dl)	L	5.18 ± 1.80	11.60 ± 1.12	7.49 ± 2.36LT\(^b\)	8.17 ± 1.94 T, LT\(^b\)	8.10 ± 1.36LT\(^b\)
	T	4.07 ± 1.43\(^b\)	11.65 ± 2.71\(^a\)	7.29 ± 0.51LT	6.44 ± 0.86 L\(^b\)	6.90 ± 1.75LT
	LT	4.39 ± 1.37\(^b\)	10.55 ± 1.06\(^a\)	3.01 ± 0.68L, T\(^b\)	3.53 ± 1.11L\(^b\)	2.94 ± 0.91L\(^b\)
Glucose (mg/dl)	L	87.50 ± 5.97\(^b\)	101.00 ± 3.70\(^a\)	86.25 ± 9.81\(^a\)	90.66 ± 6.92	99.25 ± 7.40
	T	92.25 ± 6.83	106.75 ± 4.01	86.66 ± 7.63	92.00 ± 8.71	105.50 ± 8.31
	LT	87.75 ± 5.90	100.75 ± 7.24	83.50 ± 8.22	87.75 ± 6.72	104.25 ± 7.51
Total protein (g/dl)	L	6.30 ± 0.27	6.05 ± 0.58	5.82 ± 0.96	5.55 ± 0.94	5.92 ± 0.60
	T	6.54 ± 0.43	5.75 ± 0.91	5.02 ± 0.76\(^a\)	5.45 ± 0.68\(^a\)	6.02 ± 0.93
	LT	6.45 ± 0.85\(^b\)	5.52 ± 0.71a	5.12 ± 0.44\(^a\)	5.32 ± 0.34\(^a\)	5.47 ± 0.32\(^a\)

Note: The name of the group listed at the top of the numbers indicates a significant difference with that group (\(p < .05\)).

\(^a\)Different letters in each row indicate a significant difference with the time before surgery in each group (\(p < .05\)).

\(^b\)Different letters in each row indicate a significant difference with the time before ip in each group (\(p < .05\)).

TABLE 4

Pain Scoring results as mean ± SD in 18 dogs before and after intraperitoneal administration of 8.8 mg/kg of lidocaine (L), 4 mg/kg Tramadol (T) or lidocaine (8.8 mg/kg)-Tramadol (4 mg/kg) (LT) undergoing ovariohysterectomy

Parameters	After surgery						
	Group/ Times	30 min (\(^a\))	1 hr	3 hr	6 hr	12 hr	24 hr
SDS (0–3)	L	0 (0–1)	0 (0–0)	0 (0–0)	0 (0–2)	2 (0–3)	2 (0–3)
	T	0 (0–0)	0 (0–3)	0 (0–1)	0 (0–3)	1 (0–3)	1 (0–3)
	LT	0 (0–0)	0 (0–0)	0 (0–0)	0 (0–0)	0 (0–0)	0 (0–0)
Sammarco (0–24)	L	1 (0–1)	3 (0–6)	6 (4–9)\(^a\)	6 (5–7)\(^a\)	7 (5–7)\(^a\)	7 (6–8)\(^a\)
	T	0 (0–1)	1 (0–1)	6 (3–7)\(^a\)	6 (5–7)\(^a\)	6 (6–9)\(^a\)	6 (4–7)\(^a\)
	LT	0 (0–2)	1 (0–6)	5 (2–8)\(^a\)	6 (5–7)\(^a\)	5 (5–7)\(^a\)	6 (4–6)\(^a\)
UMPS (0–25)	L	3 (1–4)\(^LT\)	3.5 (3–6)\(^LT\)	4.5 (3–8)T, LT	4 (3–6)LT	4.5 (3–8)LT\(^a\)	3 (1–6)LT\(^a\)
	T	2.5 (1–3)\(^LT\)	2.5 (2–3)\(^LT\)	2.5 (2–3)L	2.5 (2–4)	2.5 (2–4)\(^L\)	4 (2–4)\(^LT\)
	LT	1 (0–2)\(^LT\)	1 (0–2)L, T	2 (1–2)L	2.5 (1–3)L	2.5 (2–4)\(^L\)	2 (1–2)\(^LT\)
Glasgow CMPS-SF	L	3.5 (2–4)\(^LT\)	3.5 (1–4)\(^LT\)	4 (2–5)\(^LT\)	4 (3–6)\(^LT\)	5.5 (0–9)\(^LT\)	3 (2–4)\(^LT\)
	T	2 (1–2)\(^LT\)	3 (2–3)\(^LT\)	2.5 (1–3)\(^LT\)	3 (1–5)	6 (4–9)\(^LT\)	3.5 (2–7)\(^LT\)
	LT	1 (1–2)\(^LT\)	1 (1–2)L, T	1 (1–3)\(^LT\)	0.5 (0–3)\(^LT\)	0 (0–3)L, T	0 (0–3)\(^LT\)

Note: The name of the group listed at the top of the numbers indicates a significant difference with that group (\(p < .05\)).

\(^a\)Different letters in each row indicate a significant difference with the time before surgery in each group (\(p < .05\)).

\(^b\)Different letters in each row indicate a significant difference with the time before ip in each group (\(p < .05\)).
The laparoscopic removal of the gallbladder (Hernandes-Palazon et al., 2003). Furthermore, tramadol intraperitoneally added to bupivacaine led to appropriate pain relief after laparoscopic uterine ligator surgery in humans (Memis, 2005). In several studies, researchers have reported tramadol local anaesthesia with very few side effects (Altunkaya et al., 2003; Altunkaya et al., 2004; Robaux et al., 2004). Intraperitoneal administration is a risk-free, inexpensive, and non-invasive procedure that can be easily performed. In the intraperitoneal method, higher doses can be administered compared with the intravenous method, possibly increasing the duration of the effect (Karsli et al., 2003; Wilson et al., 2004). Surgical procedures cause stress in living organisms as they involve tolerance, medication, anaesthesia, and hospitalization. The stress caused by pain has been evaluated by several clinical and hormonal markers, including cortisol measurement and behavioural assessments (Nenadović et al., 2017). In the current research, several analyses were performed to evaluate the effectiveness of the combined intraperitoneal administration of lidocaine and tramadol, which are discussed below.

Cortisol level assessment revealed no statistically significant difference between the groups at baseline and five minutes before drug administration. However, significant changes were detected at all times after the drug was administered. Cortisol levels in the LT group were significantly lower than that in other groups ($p < .05$). Tissue damage causes pain and increases the cortisol levels through activating the hypothalamic-pituitary-adrenal axis. (Fazio et al., 2015; Nenadović et al., 2017). As a common marker of surgical stress, cortisol has been reported to increase in various surgical procedures, including anaesthesia procedures. Increased cortisol levels during surgery are due to tissue damage, which is more prevalent in abdominal surgery than in surface surgery (Evangelista et al., 2014; Fazio et al., 2015; Fox et al., 1994; Gutiérrez-Bautista et al., 2018; Nenadović et al., 2017). Shutt et al. (2003) showed that plasma cortisol levels increased due to postoperative pain, which is consistent with the findings of the present study. The significant reduction in cortisol levels in the LT group at all time points after drug administration might be indicative of less pain perception, more pain suppression with administered medications, and greater patient relaxation in the current study.

Additionally, measuring and comparing the glucose levels among the studied groups did not reveal any statistically significant difference. As a stressor, pain can be associated with augmented glucose concentrations, and the changes in such concentrations can specify the effectiveness of analgesics (Martins et al., 2010). Pain increases the amount of glucose via upsetting the balance of the hypothalamic-pituitary-adrenal axis and impacting the adrenal glands; hence, this parameter can further be employed as an auxiliary tool for tracking pain. The increase in glucose levels also reduces pain tolerance (Morley et al., 1984) while increased glucose levels can raise the pain intensity (Cradock & Hawthorn, 2002). Cortisol did not significantly change in this study, so the comparison of cortisol levels can be disarmed. However, this study considered glucose to be an interfering factor which might make the results more valuable.

Moreover we measured the amount of total protein to assess the status of possible hydration/dehydration as an intervening factor so that its reduction would question the increase in other parameters. In a sense, this parameter indicates a patient’s health status. Measurement of total serum protein showed no statistically significant difference between the studied groups. Also, as mentioned earlier, it revealed the appropriate state of hydration/dehydration and confirmed the acceptability of other parameters. Meanwhile, one of the side effects of pain is the increased protein catabolism (Mastrocinque and Fantoni, 2003; Morgaz et al., 2014); no significant changes in this parameter indicates relatively stable pain conditions. Comparison of the heart rates displayed no statistically significant differences, except for one and three hours after surgery, where the L group had significantly higher rates than other groups. This increase in heart rate, although within the normal range of heart rate, may be attributed to greater pain tolerance in animals in this group. One point that reinforces this hypothesis is that at the same time, cortisol levels in the L group were higher than that in the LT group. Due to the concurrent rise in cortisol level and higher score of pain in UMPS and Glasgow scoring in some times, it was considered close to the fact that animals in the L group suffered from more pain. Furthermore, in the present study, changes in the respiratory rate did not show any statistically significant differences between the studied groups. Also, the changes in anal temperature did not have any statistically significant difference between the groups under study. No statistically significant differences were observed among the groups in terms of the changes in pain scoring with SDS and Sammarco methods. On the other hand, the changes in pain scoring with the UMPS and Glasgow methods in this study showed a significant reduction in pain scores in the LT group compared to other groups and at all evaluation time points. Details of these changes are presented in Table 4.

| Table 5: Numbers of dogs received morphine (0.5 mg/kg, IM) in 18 dogs before and after intraperitoneal administration of 8.8 mg/kg of lidocaine (L), 4 mg/kg tramadol (T) or lidocaine (8.8 mg/kg)-tramadol (4 mg/kg) (LT) undergoing ovariohysterectomy |
Groups/Times	30 min (a)	1 hr	3 hr	6 hr	12 hr	24 hr	Total
L	0	0	0	2	4	2	8T, LT
T	0	0	0	1	1	1	3 L
LT	0	0	0	0	1	0	1 L

Note: The name of the group listed at the top of the numbers indicates a significant difference with that group ($p < .05$).
In this study, the modified form of Sammarco et al.’s pain assessment system (1996) was employed to evaluate postoperative pain in the studied animals. In this pain assessment system, pain grading is based on six categories of behaviour, namely comfort, mobility, appearance, unreasonable and irrelevant behaviour, interaction and noise. Each category of behaviour is divided into smaller levels, rated from zero to 4 in line with the lowest to the highest pain rating. In this way, the maximum score available for each animal will be 24. We also evaluated the SDS scale which is easy to use but has a poor sensitivity (Holton et al., 2001). The main problem with SDS is that it is not a sensitive scale for measuring pain as it consists of four or five subgroups, and observer bias may play a key role in determining the pain scale (Saberi Afshar et al., 2017).

Hellyer et al. used UMPS, which is a more objective method as it uses such physiological data as heart rate and respiration. In 2007, Reid et al. claimed that the Melbourne scale was highly effective in assessing acute pain. This scale is more accurate than other methods of clinical use. The Glasgow pain scale is a behavioural approach to assessing pain because it is based on the principles of animal behaviour (Reid et al., 2007). Therefore, in several studies, Glasgow pain scale has been the ultimate criterion for assessing pain and prescribing analgesics (Gutiérrez-Bautista et al., 2018; Lambertini et al., 2018).

5 | CONCLUSION

According to the results, it seems that the combination of lidocaine and tramadol can provide better analgesia than their separate use. Meanwhile, in this study, no adverse effects were observed clinically or in vital signs. Hence, we recommend the combined intraperitoneal administration of lidocaine (8.8 mg/kg) and tramadol (4 mg/kg) with a final volume (0.2 ml/kg) following ovariohysterectomy in dogs.

ETHICAL ANIMAL RESEARCH

The project was approved by the local Committee of the Institutional Animal Care and Use of Shahid Chamran University of Ahvaz, Ahvaz, Iran.

ACKNOWLEDGEMENTS

The authors thank the members of surgery division, veterinary hospital, Faculty of veterinary medicine, Shahid Chamran University of Ahvaz, Iran.

CONFLICT OF INTERESTS

The authors declare that they have no competing interests.

AUTHOR CONTRIBUTION

Behnam Farokhzad: Investigation; Visualization. Soroush Sabiza: Methodology; Supervision. Mohammad Razi Jalali: Formal analysis; Methodology. Ali Baniadam: Data curation; Methodology.

References

Akinici, S. B., Ayyhan, B., Aycan, I. O., Tirkansiz, B., Basgul, E., Abbasoglu, O., Aypar, U., & Sayek, I. (2008). The postoperative analgesic efficacy of intraperitoneal tramadol compared to normal saline or intravenous tramadol in laparoscopic cholecystectomy. European Journal of Anaesthesiology, 25, 375–381. https://doi.org/10.1017/S026502150803694

Altunkaya, H., Ozer, Y., Kargi, E., & Babuccu, O. (2003). Comparison of local anesthetic effects of tramadol with prilocaine for minor surgical procedures. British Journal of Anaesthesia, 90, 320–322. https://doi.org/10.1016/S1754-3207(11)70280-2

Altunkaya, H., Ozer, Y., Kargi, E., Ozkocak, I., Hosnuter, M., Demirel, C. B., & Babuccu, O. (2004). The postoperative analgesic effect of tramadol when used as subcutaneous local anesthetic. Anesthesia Analgesia, 99, 1461–1464. https://doi.org/10.1213/ane.0000135640.21229.a0

Campagnol, D., Teixeira-Neto, F. J., Monteiro, E. R., Restiuttiti, F., & Minto, B. W. (2012). Effect of intraperitoneal or incisional bupivacaine on pain and the analgesic requirement after ovariohysterectomy in dogs. Veterinary Anaesthesia and Analgesia, 39(4), 426–430. https://doi.org/10.1111/j.1467-2995.2012.00728.x

Carpenter, R. E., Wilson, D. V., & Evans, A. T. (2004). Evaluation of intraperitoneal and incisional bupivacaine or bupivacaine for analgesia following ovariohysterectomy in the dog. Veterinary Anaesthesia and Analgesia, 31, 46–52. https://doi.org/10.1111/j.1467-2995.2004.00137.x

Chilkot, G. T., Kumar, M., Mohta, M. et al. (2019). Comparison of postoperative analgesic efficacy of low-dose bolus intravenous dexmedetomidine and intraperitoneal dexmedetomidine with bupivacaine in patients undergoing laparoscopic cholecystectomy: A randomised, controlled trial. Indian Journal of Anaesthesia, 63(2), 106.

Craddock, S., & Hawthorn, J. (2002). Pain, distress and blood glucose monitoring. Journal of Diabetes Nursing, 6, 188–191.

Evangelista, M. C., Silva, R. A., Cravanta, L. B., Kahvegian, M. A., Rossetto, T. C., Matera, J. M., & Fantoni, D. T. (2014). Comparison of preoperative tramadol and pethidine on postoperative pain in cats undergoing ovariohysterectomy. BMC Veterinary Research, 10, 252. https://doi.org/10.1186/s12917-014-0252-1

Fazio, E., Medica, P., Cravanta, C., Pupillo, A., & Ferlazzo, A. (2015). Effects of ovariohysterectomy in dogs and cats on adrenocortical, haematological and behavioural parameters. Acta Scientiae Veterinariae, 43, 1339.

Flecknell, P., & Waterman-Pearson, A. (2000). Pain management in animals, 1st ed. (pp. 53–58). W.B. Saunders.

Fox, S. M., Mellor, D. J., Firth, E. C., Hodge, H., & Lawoko, C. R. O. (1994). Changes in plasma cortisol concentrations before, during and after analgesia, anaesthesia and anaesthesia plus ovariohysterectomy in bitches. Research in Veterinary Science, 57, 110–118. https://doi.org/10.1016/0034-5288(94)90091-4

Guerrero, K. S. K., Campagna, I., Bruhl-Day, R., Hegamin-Younger, C., & Guerrero, T. G. (2016). Intraperitoneal bupivacaine with or without incisional bupivacaine for postoperative analgesia in dogs undergoing ovariohysterectomy. Veterinary Anaesthesia and Analgesia, 43(5), 571–578. https://doi.org/10.1111/vaa.12348

Gutiérrez-Bautista, Á. J., Morgaz, J., del Mar Granados, M., Gómez-Villamandos, R. J., Dominguez, J. M., Fernandez-Sarmiento, J. A., Aguilar-Garcia, D., & Navarrete-Calvo, R. (2018). Evaluation and
comparison of postoperative analgesic effects of dexketoprofen and methadone in dogs. *Veterinary Anaesthesia and Analgesia*, 45, 820–830. https://doi.org/10.1016/j.vaa.2018.06.016

Gwendolyn, L. C., & Carrol, M. S. (1996). How to manage perioperative pain. *Veterinary Medicine*, 51, 353–357.

Hama, A., & Sagen, J. (2007). Altered antinociceptive efficacy of tramadol over time in rats with painful peripheral neuropathy. *European Journal of Pharmacology*, 559, 32–37. https://doi.org/10.1016/j.ejphar.2006.11.047

Hansen, B. D. (2005). Analgesia and sedation in the critically ill. *Journal of Veterinary Emergency and Critical Care*, 15, 285–294. https://doi.org/10.1111/j.1476-4431.2005.00166.x

Hardie, E. M., Hansen, B. D., & Carroll, G. S. (1997). Behavior after ovariohysterectomy in the dog: What’s normal. *Applied Animal Behaviour Science*, 51, 111-128. https://doi.org/10.1016/S0168-1591(96)01078-7

Hernandez-Palazon, J., Tortosa, J. A., Nuno De La Rosa, V., Gimenez-Viudes, J., Ramirez, G., & Robles, R. (2003). Intraperitoneal application of bupivacaine plus morphine for pain relief after laparoscopic cholecystectomy. *European Journal of Anaesthesiology*, 20, 891–898.

Karsli, B., Kayacan, N., Zorlu, G., Arici, G., & Erman, M. (2003). The effects of intraperitoneal tramadol, tenoxicam and bupivacaine on pain relief after laparoscopic gynaecological procedures. *The Pain Clinic*, 15, 281–286.

Lambertini, C., Kluge, K., Lanza-Perea, M., Bruhl-Day, R., & Guerrero, K. S. K. (2018). Comparison of intraperitoneal ropivacaine and bupivacaine for postoperative analgesia in dogs undergoing ovariohysterectomy. *Veterinary Anaesthesia and Analgesia*, 45, 865–870. https://doi.org/10.1016/j.vaa.2018.06.012

Lemke, K. A., Runyon, C. L., & Horney, B. S. (2002). Effects of preoperative administration of ketoprofen on anaesthetic requirements and signs of postoperative pain in dogs undergoing ovariohysterectomy. *Journal of the American Veterinary Medical Association*, 221, 1268–1275.

Memis, D. (2005). Intraperitoneal tramadol and bupivacaine in total abdominal hysterectomy. *European Journal of Anaesthesiology*, 10, 804–805.

Morley, G. K., Mooradian, A. D., Levine, A. S., & Morley, J. E. (1984). Mechanism of pain in diabetic peripheral neuropathy: Effect of glucose on pain perception in humans. *The American Journal of Medicine*, 77, 79–82. https://doi.org/10.1016/0002-9343(84)90439-X

Nenadovic, K., Vunicic, M., Radenkovic-Damjanovic, B., Jankovic, L., Teodorovic, R., Voslarova, E., & Becskei, Z. (2017). Cortisol concentration, pain and sedation scale in free-roaming dogs treated with carprofen after ovariohysterectomy. *Veterinary World*, 10, 888. https://doi.org/10.14202/vetworld.2017.888-894

Pereira, M. A. A., Gonçalves, L. A., Evangelista, M. C., Thrulier, R. S., Campos, K. D., Formenton, M. R., Patricio, G. C., Matera, J. M., Ambrosio, A. M., & Fantoni, D. T. (2018). Postoperative pain and short-term complications after two elective sterilization techniques: Ovariohysterectomy or ovariecctomy in cats. *BMC Veterinary Research*, 14, 335. https://doi.org/10.1186/s12917-018-1657-z

Reid, J., Nolan, A. M., Hughes, J. M. L., Lascelles, D., Pawson, P., & Scott, E. M. (2007). Development of the short-form Glasgow Composite Measure Pain Scale (CMPS-SF) and derivation of an analgesic intervention score. *Animal welfare-potters Bar Then Wheathampstead*, 16, 97.

Robaux, S., Blunt, C., Viel, E., Cuvillon, P., Nouguier, P., Dauteil, G., Boileau, S., Girard, F., & Bouaziz, H. (2004). Tramadol added to 1.5% mepivacaine for axillary brachial plexus block improves postoperative analgesia dose-dependently. *Anesthesia and Analgesia*, 98, 1172–1177. https://doi.org/10.1213/01.ANE.0000108966.84797.72

Shutt, D. A., Fell, L. R., Connell, R., Bell, A. K., Wallace, C. A., & Smith, A. I. (2003). Stress-induced changes in plasma concentrations of immunoreactive ß-Endorphin and cortisol in response to routine surgical procedures in lambs. *Australian Journal of Biological Science*, 40, 97–104.

Wilson, D. V., Barnes, K. S., & Haupert, J. G. (2004). Pharmacokinetics of combined intraperitoneal and incisional lidocaine in the dog following ovariohysterectomy. *Journal of Veterinary Pharmacology and Therapeutics*, 27, 105–109. https://doi.org/10.1111/j.1365-2885.2004.00552.x