A novel method for creatinine adjustment makes the revised Lund-Malmö GFR estimating equation applicable in children

Supplementary material

Jonas Björk, Ulf Nyman, Anders Grubb, Anders Larsson, Anna Åkesson, Laura Vranken, Pierre Delanaye, Hans Pottel.

Figure S1 Median creatinine values in the Kortrijk (n=9 634), Liege (9 123) and Uppsala (n=64 410) cohorts in A) females and B) males.

Table S1 Measurement procedures used in the included cohorts

Table S2 Age and sex specific reference intervals for creatinine in Kortrijk, Liege and Uppsala in comparison with the estimated geometric means from the creatinine growth curves.

Table S3 Bias and accuracy of GFR equations stratified by measured glomerular filtration rate.

Table S4A Bias and accuracy of GFR equations stratified by age and measured glomerular filtration rate <75 mL/min/1.73 m²

Table S4B Bias and P₃₀ accuracy of GFR equations stratified by age and measured glomerular filtration rate ≥75 mL/min/1.73 m²

Table S5A Bias and accuracy of GFR equations stratified by cohort and measured glomerular filtration rate <75 mL/min/1.73 m²

Table S5B Bias and P₃₀ accuracy of GFR equations stratified by cohort and measured glomerular filtration rate ≥75 mL/min/1.73 m²
Origin, time of collection	Number (%)	Creatinine assay	Clearance method
Amsterdam (Netherlands), 2004-2012 [1-3]	399 (10)	Abbott enzymatic, Roche enzymatic	Inulin 4-points plasma clearance at 10, 30, 90 and 240 minutes
Leuven (Belgium), 2012-2015 [4]	421 (11)	Creatinine Plus, Roche enzymatic	51Cr-EDTA 4-points plasma clearance at 60, 120, 180 and 240 minutes
Lund (Sweden), 2008-2010 [5, 6]	434 (11)	Abbott enzymatic	Iohexol 1-point* (≥ 40 kg) and 2-points* (<40 kg) plasma clearance
Lyon (France), 2003-2011 [7]	1459 (36)	Jaffe before 2010, then Creatinine Plus, Roche enzymatic	Inulin renal clearance or iohexol 3-points plasma clearance at 120, 180 and 240 minutes, if eGFR <30 4^{th} point at 360 min
Stockholm (Sweden), 2011-2016 [6]	1284 (32)	Creatinine Plus, Roche enzymatic or Beckman-Coulter Jaffe	Iohexol 4-points* plasma clearance
Örebro (Sweden), 2004-2017 [8, 9]	8 (0.2)	Roche enzymatic and Ortho Clinical Diagnostics enzymatic	Iohexol 1-point* plasma clearance

An external quality assessment system was provided by Equalis AB (Uppsala, Sweden, www.equalis.se/en) for the iohexol measurements in Lund, Lyon, Stockholm and Örebro.

*Blood sampling time was based on estimated GFR or plasma/serum creatinine values.
Table S2. Age and sex specific reference intervals for serum creatinine concentrations (µmol/L) in Kortrijk, Liège and Uppsala in comparison with the estimated geometric means from the creatinine growth curves.

Age (years)	Kortrijk	Liège	Uppsala	Growth Curve	Kortrijk	Liège	Uppsala	Growth Curve
	Females				Males			
2<3	15-35	18-38	22-53	26	15-35	18-38	22-53	27
3<4	18-38	18-38	22-53	28	18-38	18-38	22-53	27
4<5	20-42	18-48	22-53	30	20-42	18-48	22-53	29
5<6	21-44	27-54	22-53	32	21-44	27-54	22-53	31
6<7	25-49	27-54	31-70	35	25-49	27-54	31-76	34
7<8	26-51	27-54	31-70	37	26-51	27-54	31-76	37
8<9	27-54	27-54	31-70	40	27-54	27-54	31-76	40
9<10	27-57	27-54	31-70	43	27-57	27-54	31-76	44
10<11	31-59	27-54	31-70	45	31-59	27-54	31-76	47
11<12	31-62	27-54	36-70	48	31-62	27-54	44-90	51
12<13	34-66	40-72	36-70	50	34-66	40-72	44-90	54
13<14	34-72	40-72	36-70	52	34-72	40-72	44-90	58
14<15	37-72	40-72	36-70	54	41-77	40-72	44-90	61
15<16	42-75	43-74	49-86	56	45-90	55-95	55-106	64
16<17	42-80	43-74	49-86	57	48-94	55-95	55-106	67
17<18	44-80	43-74	49-86	59	54-94	55-95	55-106	70
18-40	44-82	49-90	45-90	62*	57-100	65-104	60-105	79*

*Mean value across the estimates for the age interval 18-40 years.
mGFR intervals	N (%)	CKiD	Schwartz-Lyon	LMR	LMR18
Bias					
<30	95 (2.4)	5.7	2.8	6.1	0.9
30-44	134 (3.3)	6.4	2.7	15.1	1.8
45-59	264 (6.6)	6.9	2.2	15.2	4.3
60-74	439 (11)	8.1	2.1	15.4	6.9
75-89	679 (17)	6.3	-0.4	9.3	3.2
90-119	1606 (40)	3.6	-5.2	-2.8	-6.2
≥120	788 (20)	-0.4	-14.1	-27.4	-27.3
P_{30} (%)					
<30	51	56	49	61	
30-44	65	74	40	64	
45-59	75	86	52	75	
60-74	76	85	64	80	
75-89	79	87	87	90	
90-119	83	88	96	95	
≥120	84	84	77	80	

Median bias (eGFR-mGFR) expressed in mL/min/1.73 m² and accuracy in percentage of GFR estimates within ±30% of mGFR (P_{30}). CKiD = Chronic Kidney Disease in Children, LMR = Lund-Malmö revised, LMR18 = LMR based on creatinine values adjusted to age 18 years, eGFR = estimated glomerular filtration rate, mGFR = measured GFR.
Table S4A. Median bias and accuracy (P_{30}) of GFR estimating equations stratified by age and measured glomerular filtration rate (mGFR) <75 mL/min/1.73 m2 in children (n=932).

Age intervals (years)	N (%)	Median mGFR	CKiD	Schwartz-Lyon	LMR	LMR18
Bias						
2.0-7.9	211 (23)	57	12.4	5.8	17.8	2.1
8.0-12.9	262 (28)	58	7.3	1.2	17.7	4.7
13.0-17.9	459 (49)	59	4.7	1.8	10.0	6.3
P_{30} (%)						
2.0-7.9		61	72	46	72	
8.0-12.9		74	87	47	79	
13.0-17.9		76	81	65	73	

Median bias (eGFR-mGFR) expressed in mL/min/1.73 m2 and accuracy in percentage of GFR estimates within ±30% of mGFR (P_{30}). CKiD = Chronic Kidney Disease in Children, LMR = Lund-Malmö revised, LMR18 = LMR based on creatinine values adjusted to age 18 years, eGFR = estimated glomerular filtration rate, mGFR = measured GFR.
Age intervals (years)	N (%)	Median mGFR	CKiD	Schwartz-Lyon	LMR	LMR18
Bias	N (%)	Median mGFR	CKiD	Schwartz-Lyon	LMR	LMR18
2.0-7.9	839 (15)	111	12.6	-0.5	-16.7	-15.7
8.0-12.9	882 (16)	105	6.8	-5.6	0.9	-6.3
13.0-17.9	1352 (25)	101	-3.4	-7.7	-3.2	-5.8
P_{30} (%)	N (%)	Median bias				
2.0-7.9	74	83	79	82		
8.0-12.9	86	91	93	94		
13.0-17.9	85	86	92	93		

Median bias (eGFR-mGFR) expressed in mL/min/1.73 m² and accuracy in percentage of GFR estimates within ±30% of mGFR (P_{30}). CKiD = Chronic Kidney Disease in Children, LMR = Lund-Malmö revised, LMR18 = LMR based on creatinine values adjusted to age 18 years, eGFR = estimated glomerular filtration rate, mGFR = measured GFR.
Table S5A. Median bias and accuracy (P$_{30}$) of GFR estimating equations stratified by cohorts and measured glomerular filtration rate (mGFR) <75 mL/min/1.73 m2 in children (n=932).

Age intervals (years)	N (%)	CKiD	Schwartz-Lyon	LMR	LMR18
Bias					
Amsterdam	106 (11)	3.5	-0.8	9.1	2.2
Leuven	106 (11)	8.2	3.3	13.5	3.5
Lund	89 (10)	7.4	4.2	13.9	2.2
Lyon	400 (43)	7.0	2.1	16.1	6.3
Stockholm	229 (25)	8.5	3.3	14.3	4.3
Örebro	2 (0.2)	NA	NA	NA	NA
P$_{30}$ (%)					
Amsterdam	76	78	66	74	
Leuven	70	78	55	74	
Lund	63	70	51	71	
Lyon	75	86	53	76	
Stockholm	68	78	58	74	
Örebro	NA	NA	NA	NA	

Median bias (eGFR-mGFR) expressed in mL/min/1.73 m2 and accuracy in percentage of GFR estimates within ±30% of mGFR (P$_{30}$). CKiD = Chronic Kidney Disease in Children, LMR = Lund-Malmö revised, LMR18 = LMR based on creatinine values adjusted to age 18 years, eGFR = estimated glomerular filtration rate, mGFR = measured GFR.
Table S5B. Median bias and accuracy (P_{30}) of GFR estimating equations stratified by cohorts and measured glomerular filtration rate (mGFR) \geq75 mL/min/1.73 m2 in children (n=3 073).

Age intervals (years)	N (%)	CKiD	Schwartz-Lyon	LMR	LMR18
Bias					
Amsterdam	293 (10)	7.1	-1.3	-2.0	-5.3
Leuven	315 (10)	8.4	-0.5	-2.3	-5.2
Lund	345 (11)	2.9	-6.6	-11.4	-13.8
Lyon	1059 (34)	1.3	-7.9	-3.1	-8.4
Stockholm	1055 (34)	4.7	-3.8	-6.5	-8.0
Örebro	6 (0.2)	NA	NA	NA	NA
P_{30} (%)					
Amsterdam	76	80	90	90	90
Leuven	67	71	84	80	80
Lund	79	83	79	81	
Lyon	90	93	94	94	
Stockholm	82	88	89	93	
Örebro	NA	NA	NA	NA	NA

Median bias (eGFR-mGFR) expressed in mL/min/1.73 m2 and accuracy in percentage of GFR estimates within \pm30% of mGFR (P_{30}). CKiD = Chronic Kidney Disease in Children, LMR = Lund-Malmö revised, LMR18 = LMR based on creatinine values adjusted to age 18 years, eGFR = estimated glomerular filtration rate, mGFR = measured GFR.
References

1. Grubb A, Horio M, Hansson LO, Björk J, Nyman U, Flodin M, Larsson A, Bökenkamp A, Yasuda Y, Blufpand H, Lindström V, Zegers I, Althaus H, Blirup-Jensen S, Itoh Y, Sjöström P, Nordin G, Christensson A, Klima H, Sunde K, Hjort-Christensen P, Armbruster D, Ferrero C. Generation of a new cystatin C-based estimating equation for glomerular filtration rate by use of 7 assays standardized to the international calibrator. Clin Chem 2014;60:974-986.

2. den Bakker E, Gemke R, van Wijk JAE, Hubeek I, Stoffel-Wagner B, Grubb A, Bokenkamp A. Accurate eGFR reporting for children without anthropometric data. Clin Chim Acta 2017;474:38-43.

3. Westland R, Abraham Y, Bokenkamp A, Stoffel-Wagner B, Schreuder MF, van Wijk JA. Precision of estimating equations for GFR in children with a solitary functioning kidney: the KIMONO study. Clin J Am Soc Nephrol 2013;8:764-772.

4. Pottel H, Delanaye P, Schaeffner E, Dubourg L, Eriksen BO, Melsom T, Lamb EJ, Rule AD, Turner ST, Glassock RJ, De Souza V, Selistre L, Goffin K, Pauwels S, Mariat C, Flamant M, Ebert N. Estimating glomerular filtration rate for the full age spectrum from serum creatinine and cystatin C. Nephrol Dial Transplant 2017;32:497-507.

5. Nyman U, Grubb A, Larsson A, Hansson LO, Flodin M, Nordin G, Lindstrom V, Björk J. The revised Lund-Malmö GFR estimating equation outperforms MDRD and CKD-EPI across GFR, age and BMI intervals in a large Swedish population. Clin Chem Lab Med 2014;52:815-824.

6. Björk J, Nyman U, Berg U, Delanaye P, Dubourg L, Goffin K, Grubb A, Hansson M, Littmann K, Åsling-Monemi K, Bökenkamp A, Pottel H. Validation of standardized creatinine and cystatin C GFR estimating equations in a large multicentre European cohort of children. Pediatr Nephrol 2019;34:1087-1098.

7. Dantec A, Selistre L, Lemoine S, Buron F, de Souza VC, Rimmele T, Thaunat O, Badet L, Morelon E, Dubourg L, Sicard A. Performances of creatinine-based glomerular filtration rate estimating equations in simultaneous pancreas-kidney transplant recipients: a single center cohort study. Transpl Int 2019;32:75-83.

8. Björk J, Bäck SE, Ebert N, Evans M, Grubb A, Hansson M, Jones I, Lamb EJ, Martus P, Schäffner E, Sjöström P, Nyman U. GFR estimation based on standardized creatinine and cystatin C: a European multicenter analysis in older adults. Clin Chem Lab Med 2018;56:422-435.

9. Sundin PO, Sjöström P, Jones I, Olsson LA, Uдумyan R, Grubb A, Lindström V, Montgomery S. Measured glomerular filtration rate does not improve prediction of mortality by cystatin C and creatinine. Nephrol Dial Transplant 2017;32:663-670.