This article displays insect count data obtained in eleven field trials conducted between 2010 and 2019 in southeastern France. Winged insect abundances were monitored daily within melon crops during 8–11 weeks in May–July using a suction trap or a yellow pan trap. Aphids were identified under a stereomicroscope. In total, 29,709 winged aphids belonging to 216 taxa and 151,061 other flying insects were caught. Among possible uses, these data can populate larger multisite studies or larger time series investigating aphid community variations. They can also feed generic studies exploring temporal dependencies or species assemblages. They can stimulate new collaborations with entomologists keen on implementing molecular tools or taxonomic expertise on a large specimen collection.

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Data

Table 1 presents the melon crop details for each of the 11 field trials: location, date of planting, trial area, number of plants, number of rows, number of plants per row, row spacing and plant spacing. Table 2 presents the 216 aphid taxa recorded during the insect monitoring conducted in Avignon between 2010 and 2019.

* Corresponding author.
E-mail address: alexandra.schoeny@inrae.fr (A. Schoeny).

https://doi.org/10.1016/j.dib.2020.105132
2352-3409/© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Table 3 presents a summary of airborne insect monitoring in 11 field trials conducted in Avignon between 2010 and 2019. In total, 29,709 winged aphids and 151,061 other flying insects were caught. According to the dataset, the abundance of winged aphids varied between 431 and 4206; the abundance of other flying insects varied between 1169 and 23,139. Per dataset, aphids represented between 5 and 35% of the catch. Between 35 and 107 aphid taxa were recorded per dataset. A small proportion of aphids (0.3–2.5% per dataset) could not be assigned to a taxon because of i) limit of taxonomic expertise, ii) loss during storage, or iii) damage during trapping.

Fig. 1 illustrates the main trapping method used to monitor winged insects in each of the 11 trials (suction trap).

Fig. 2 illustrates a complementary trapping method (yellow pan trap) used in three of the 11 trials.

2. Experimental design, materials, and methods

1. Field experiments

Eleven field experiments were conducted between 2010 and 2019 at INRAE Avignon, southeastern France: nine at St Paul experimental station (43°54′53N, 4°52′59E) and two at St Maurice experimental station.
station (43°56′49″N, 4°51′52″E) (Table 1). The two sites are approximately 4 km apart and surrounded by a highly diversified environment consisting of discontinuous urban fabric, commercial units, arable land, permanent crops (vineyards, fruit trees, olive groves), pastures and mixed forest, according to CORINE land cover nomenclature [1].

The experimental design consisted of a Charentais-type melon crop which layout varied according to trials (Table 1). Seedlings were prepared in an insect-proof greenhouse three weeks before planting. Depending on the trial, plants at the 1–3 leaf stage were planted in late April or late May on dark brown plastic mulch with drip irrigation. Early plantings were protected from wind damage with Agryl P17 fleece (Fiberweb France, Biesheim) for 11–15 days. The crop comprised 120 to 240 plants (0.5–0.8 m plant spacing) organized in 6–16 rows (1.5–2 m row spacing) depending on the trial. No insecticides were applied during trials.

Table 1

Trial code	Experimental site	Planting date (dd/mm/yyyy)	Trial area (m²)	Number of plants	Number of rows	Number of plants per row	Row spacing (m)	Plant spacing (m)
M10	St Paul	28/05/2010	256	160	8	20	2	0.8
V11	St Paul	09/05/2011	120	120	6	20	2	0.5
V12	St Paul	11/05/2012	150	150	6	25	2	0.5
V13	St Paul	06/05/2013	150	150	6	25	2	0.5
P11	St Paul	24/05/2011	156	208	16	13	1.5	0.5
P12	St Paul	31/05/2012	180	240	16	15	1.5	0.5
P13	St Paul	24/05/2013	180	240	16	15	1.5	0.5
P14	St Paul	27/05/2014	180	240	16	15	1.5	0.5
P15	St Paul	28/05/2015	180	240	16	15	1.5	0.5
M18	St Maurice	25/05/2018	120	160	8	20	1.5	0.5
M19	St Maurice	28/05/2019	120	160	8	20	1.5	0.5

Agryl P17 fleece removal; fleece optimizes plant growth by increasing both air and soil temperatures and reducing wind damage.

A non-biased suction trap was designed to sample winged insects daily at the crop height [2]. It is made up of a vacuum chamber generating a downward suction, an air extractor (400 m³/h, 160B model, France Air), an insect collector and a chimney rain cap (Fig. 1). The insect collector is inserted in the vacuum chamber. Small insects flying above the vacuum chamber opening are caught and dragged in a collecting pot containing 100 ml of water with 5 µl/l detergent (Teepol 610 S, ref 86350, Sigma-Aldrich) to break the surface tension and prevent insects from escaping. Each trial was equipped with a suction trap set up in the melon crop. The trap runned daily for a 12-h sequence (8:00 a.m. - 8:00 p.m.) thanks to a timer. The collecting pot was changed daily before the start of the trapping.

For three of the 11 field trials, winged insects were also sampled with a yellow pan trap (model FLORA cultures basses, ref 058501, SigneNature) placed at 2–3 m from the suction trap (Fig. 2). The trap was filled with 1 l of water with 5 µl/l detergent and changed daily at 8:00 a.m.

Airborne insect monitoring started at crop planting or fleece removal to avoid bias caused by a possible visual repellent effect of the fleece on winged aphid behaviour. Depending on the trial, it was carried out for 55–80 days. Catches were collected daily, rinsed with tap water and stored in 70% ethanol until sorting (aphids vs other insects) and taxonomic identification (aphids only) under a stereomicroscope. Aphids were identified based on morphological characteristics using several dichotomous keys [3–5] and counted. Individuals which could not be identified to species were grouped at genus level.

Whenever possible, aphid species/genera were associated with their Rothamsted Insect Survey (RIS) codes (Table 2). For aphid taxa not yet referenced in the RIS system, INRA codes were assigned.
Table 2
List of aphid taxa recorded during the 2010–2019 monitoring and their corresponding INRA or Rothamsted Insect Survey (RIS) codes.

Taxon name	Taxon code
Acyrthosiphon caraganae	RIS-755
Acyrthosiphon loti	RIS-381
Acyrthosiphon malvae	RIS-382
Acyrthosiphon pisum	RIS-389
Acyrthosiphon primulae	RIS-392
Acyrthosiphon spp	RIS-1014
Adelges spp	RIS-2065
Amphorophora rubi	RIS-468
Anoecia corni	RIS-480
Anoecia spp	RIS-1012
Anuraphis farfarae	RIS-238
Anuraphis spp	RIS-1015
Anuraphis subterranea	RIS-239
Aphis (Protaphis) anuraphoides	INRA-001
Aphis (Protaphis) spp	RIS-1064
Aphis (Protaphis) terricola	INRA-002
Aphis armoraciae	INRA-003
Aphis craccivora	RIS-163
Aphis fabae	RIS-132
Aphis gossypii	RIS-181
Aphis nasturtii	RIS-152
Aphis nerii	RIS-787
Aphis pomi	RIS-153
Aphis salicariae	RIS-142
Aphis sambuci	RIS-125
Aphis spp	RIS-1005
Aphis verbasi	RIS-197
Aploneura lentisci	RIS-530
Appendiseta robiniae	RIS-793
Aspidaphis adjuvans	RIS-260
Atheroides serrulatus	RIS-59
Aulacorthum solani	RIS-376
Aulacorthum spyeri	RIS-377
Baizongia pistaceae	RIS-531
Betulaphis quadriruberculata	RIS-84
Brachycaudus cardui	RIS-241
Brachycaudus helichrysi	RIS-243
Brachycaudus populi	RIS-747
Brachycaudus rumexicolens	RIS-253
Brachycaudus schwartzi	RIS-745
Brachycaudus sedi	RIS-254
Brachycaudus spp	RIS-1016
Brachycaudus tragopogonis	RIS-252
Brachycoccus cucubali	RIS-262
Brevicoryne brassicae	RIS-264
Calaphis flava	RIS-82
Callipterinella minutissima	RIS-80
Capitophorus carduinus	RIS-341
Capitophorus elaeagni	RIS-342
Capitophorus hippophaes	RIS-343
Capitophorus horni	RIS-344
Capitophorus similis	RIS-346
Capitophorus spp	RIS-1018
Cavariella aegopodii	RIS-292
Cavariella archangelicae	RIS-293
Cavariella spp	RIS-1046
Cavariella theobaldi	RIS-298
Ceraphis eriophori	RIS-211
Chaetosiphon fragaefolii	RIS-287
Chaetosiphon tetrarhodum	RIS-289
Taxon name	Taxon code
-------------------------	------------
Chaitophorus leucomelas	RIS-50
Chaitophorus populeti	RIS-45
Chaitophorus populialbae	RIS-46
Chaitophorus salicti	RIS-47
Chaitophorus spp	RIS-1002
Chromaphis juglandicola	RIS-61
Chromaphis spp	RIS-1078
Clethrubius comes	RIS-87
Coloradoa rufomaculata	RIS-280
Coloradoa spp	RIS-1020
Coloradoa tanacetina	RIS-281
Corylobium avellaneae	RIS-403
Cryptomyzus ribis	RIS-340
Ctenocallis setosus	RIS-77
Diuraphis (Holcaphis) spp	RIS-1502
Diuraphis muehlei	RIS-259
Diuraphis noxia	RIS-809
Drepanosiphum platanoidis	RIS-91
Dysaphis plantaginea	RIS-234
Dysaphis pyri	RIS-235
Dysaphis spp	RIS-1006
Ericaphis ericae	RIS-284
Eriosoma lanigerum	RIS-497
Eriosoma spp	RIS-1010
Eriosoma ulmi	RIS-500
Essigella californica	INRA-005
Essigella spp	RIS-1518
Eucalipterus tiliae	RIS-70
Eucrazzia elegans	RIS-768
Eucrapsis punctipennis	RIS-88
Forda formicaria	RIS-527
Geoica setulosa	RIS-532
Geoica spp	RIS-1055
Hayhurstia atriplicis	RIS-261
Hayhurstia spp	RIS-1022
Hoplocallis pictus	RIS-772
Hyadaphis coriandri	RIS-808
Hyadaphis foeniculi	RIS-271
Hyadaphis spp	RIS-1023
Hyalopteroides humilis	RIS-276
Hyalopterus pruni	RIS-110
Hyalopterus spp	RIS-1065
Hyperomyzus lactucae	RIS-358
Hyperomyzus lampsanae	RIS-359
Hyperomyzus pallidus	RIS-360
Hyperomyzus picridis	RIS-362
Hyperomyzus spp	RIS-1007
Illinoia goldmargareae	RIS-475
Lipaphis erysimi	RIS-267
Macchiatiella rhamni	INRA-007
Macrosiphoniella absinthii	RIS-451
Macrosiphoniella oblonga	RIS-461
Macrosiphoniella persevens	RIS-462
Macrosiphoniella sanborni	RIS-456
Macrosiphoniella spp	RIS-1027
Macrosiphoniella tapuskae	RIS-732
Macrosiphum euphorbiae	RIS-410
Macrosiphum rosae	RIS-416
Macrosiphum spp	RIS-1009
Megoura viciae	RIS-470
Melanaphis bambusae	RIS-811
Taxon name	Taxon code
----------------------------	------------
Melanaphis luzulella	RIS-122
Melanaphis pyraria	RIS-727
Metopolophium albidum	RIS-395
Metopolophium dirhodum	RIS-396
Metopolophium festucae	RIS-397
Metopolophium friscum	RIS-398
Metopolophium spp	RIS-1008
Microlophium spp	RIS-2014
Mimeuria ulmiflora	RIS-510
Mindarus abietinus	RIS-491
Monelliopsis carcae	RIS-801
Myzocallis castanicola	RIS-63
Myzocallis coryi	RIS-64
Myzocallis komareki	INRA-009
Myzocallis occidentalis	INRA-010
Myzocallis spp	RIS-1003
Myzotoxoptera spp	RIS-1077
Myzotoxoptera winshurstae	RIS-364
Myzus cerasi	RIS-312
Myzus ligustri	RIS-320
Myzus lythri	RIS-314
Myzus ornatus	RIS-315
Myzus persicae	RIS-322
Myzus spp	RIS-1030
Myzus varians	RIS-740
Nasonovia pilosellae	RIS-354
Nasonovia ribisnigri	RIS-355
Nasonovia spp	RIS-1011
Neartaphis bakeri	RIS-733
Ovatus insitus	RIS-303
Ovatus spp	RIS-1025
Paracletus cimiciformis	RIS-525
Pemphigus spp	RIS-1506
Phorodon cannabis	RIS-812
Phorodon humuli	RIS-308
Phylloxera spp	RIS-2003
Pletrichophorus glandulosus	RIS-350
Pseudacaudella rubida	RIS-275
Pterocallis alni	RIS-75
Rhodobium porosum	RIS-401
Rhopalomyzus poae	RIS-309
Rhopalosiphonius ribesinus	RIS-367
Rhopalosiphum insertum	RIS-111
Rhopalosiphum maidis	RIS-112
Rhopalosiphum nymphaeae	RIS-113
Rhopalosiphum padi	RIS-114
Rhopalosiphum rufabdominale	RIS-2009
Rhopalosiphum rufulum	RIS-739
Rhopalosiphum spp	RIS-1045
Schizaphis graminum	RIS-116
Schizaphis palustris	RIS-115
Schizaphis pilipes	RIS-750
Schizaphis scirpi	RIS-121
Semiaphis dauci	RIS-728
Semiaphis spp	RIS-1088
Sipha elegans	RIS-52
Sipha maydis	RIS-54
Sitobion avenae	RIS-420
Sitobion fragariae	RIS-421
Sitobion spp	RIS-1031
Smylythruodes betae	RIS-526
Staegteriai necopinata	RIS-273
Table 2 (continued)

Taxon name	Taxon code
Subsaltusaphis picta	RIS-738
Taiwanaphis spp	INRA-012
Takecallis arundicolens	RIS-72
Takecallis arundinariae	RIS-73
Takecallis taiwanus	RIS-74
Tetaneura nigrabdominalis	RIS-2008
Tetaneura spp	RIS-1037
Tetaneura ulmi	RIS-503
Thelaxes dryophila	RIS-490
Thelaxes spp	RIS-1038
Therioaphis luteola	RIS-92
Therioaphis ononidis	RIS-93
Therioaphis riehmi	RIS-731
Therioaphis spp	RIS-1039
Therioaphis trifoli	RIS-94
Tinocallis kahawalukalani	RIS-795
Tinocallis takachihoensis	RIS-797
Tuberculatus (Tuberculoides) spp	RIS-1024
Tuberculatus annulatus	RIS-68
Tuberculatus borealis	RIS-758
Tuberculatus neglectus	RIS-759
Tuberculatus querceus	RIS-69
Tuberochlaenus salignus	RIS-23
Uroleucon (Uroleucon) spp	INRA-015
Uroleucon (Uromelan) spp	RIS-1504
Uroleucon ambrosiae	INRA-013
Uroleucon compositae	INRA-014
Uroleucon erigeronense	RIS-763
Uroleucon tussilaginis	RIS-439
Ulatophora humboldti	RIS-751
Wahlgreniella nervata	RIS-782
Wahlgreniella spp	RIS-1042
Wahlgreniella vaccinii	RIS-479

Table 3
Summary of airborne insect monitoring in 11 field trials conducted in Avignon between 2010 and 2019.

Dataset code	Trial code	Trapping method	Monitoring period (days)	Number of winged aphids	Number of other flying insects	Ratio aphids/total catch (%)	Number of aphid taxa identified	Number of aphids not assigned to a taxon \(^a\)
M10	M10	Suction	64	3532	14 871	19	107	81
V11	V11	Suction	74	3128	16 423	16	92	13
V12	V12	Suction	66	4206	23 139	15	95	106
V13	V13	Suction	80	2998	13 488	18	99	17
P11	P11	Suction	65	3306	17 924	16	91	19
P12	P12	Suction	56	3602	11 499	24	75	57
P13	P13	Suction	62	1848	7571	20	80	5
P14	P14	Suction	59	1457	9346	13	62	7
P15	P15	Suction	56	2245	7825	22	51	18
P15Y	P15	Yellow pan	56	518	1169	31	35	8
M18	M18	Suction	55	786	15 660	5	81	4
M18Y	M18	Yellow pan	55	431	2132	17	49	5
M19	M19	Suction	58	835	8476	9	76	6
M19Y	M19	Yellow pan	58	817	1538	35	52	7
MIN	MIN	Suction	55	431	1169	5	35	4
MAX	MAX	Suction	80	4206	23 139	35	107	106
TOTAL				29 709	151 061			

\(^a\) Aphids that could not be identified because of i) limit of taxonomic expertise, ii) loss during storage, or iii) damage during trapping.
Fig. 1. Suction trap used to monitor winged insects in eleven field trials conducted in Avignon between 2010 and 2019. (A) In situ in a melon crop (Photo credit: Alexandra Schoeny, INRAE) (B) Schematic representation of a suction trap adapted from Pascal et al., 2013 [2] showing its operating principle and its different parts: ➊ vacuum chamber, ➋ air extractor, ➌ insect collector, ➍ collecting pot, ❼ chimney rain cap.
Acknowledgments

We thank Joël Béraud, Michel Pascal and the team IE-PV for their involvement in field experiments; Frédéric Pascal for his technical assistance in suction trap setting-up; Grégory Girardot, Jonathan Gaudin, Antoine Lauvernay and trainees for their help in insect collecting; Loup Rimbaud for constructive comments on this manuscript. We also thank Lynda Alderson from Rothansted Research for providing updated list of RIS codes. This study was funded by INRA (AAP2010 Gestion durable des résistances-ParcelR), Agence Nationale de la Recherche (ANR-2010-STRAS-001-01 Viraphid) and Ministère de l’Agriculture, de l’Alimentation et de l’Environnement (CTPS 25-C-2011-09 and CASDAR 12–1278 Agath).

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2020.105132.
References

[1] Enhanced CLC nomenclature guidelines. https://land.copernicus.eu/user-corner/technical-library/corine-land-cover-nomenclature-guidelines/html/, (Accessed 22 July 2019).
[2] F. Pascal, J.M. Bastien, A. Schoeny, Fabrication d’un piège à aspiration pour la capture des pucerons ailes vecteurs de virus, Le Cahier des Techniques de l’Inra 79 (2) (2013) 1–13, https://doi.org/10.15454/QFCIRK.
[3] R.L. Blackman, V.F. Eastop, Aphids on the World’s Crops: an Identification and Information Guide, second ed., John Wiley and Sons, Chichester, 2000.
[4] G. Remaudière, M.V. Seco Fernandez, Claves para ayudar al reconocimiento de alados de pulgones trampeados en la region mediterranea (Homoptera Aphidoidea), Universidad de León, León, 1990.
[5] L.R. Taylor, A Handbook for Aphid Identification, second ed., Rothamsted Experimental Station, Harpenden, 1984.