Nanocrystal-Embedded-Insulator (NEI) Ferroelectric FETs for Negative Capacitance Device and Non-Volatile Memory Applications

Yue Peng 1*, Genquan Han 1, Wenwu Xiao 2, Jibao Wu 1, Yan Liu 1, Jincheng Zhang 1 and Yue Hao 1

Abstract

We report a novel nanocrystal-embedded-insulator (NEI) ferroelectric field-effect transistor (FeFET) with very thin unified-ferroelectric/dielectric (FE/DE) insulating layer, which is promising for low-voltage logic and non-volatile memory (NVM) applications. The ferroelectric nature of the NEI layers comprising orthorhombic ZrO₂ nanocrystals embedded in amorphous Al₂O₃ is proved by polarization voltage measurements, piezoresponse force microscopy, and electrical measurements. The temperature dependent performance and endurance behavior of a NEI negative capacitance FET (NCFET) are investigated. A FeFET with 3.6 nm thick FE/DE achieves a memory window larger than 1 V, paving a pathway for ultimate scaling of FE thickness to enable three-dimensional FeFETs with very small fin pitch.

Keywords: NEI, Ferroelectric, NC, Memory, Germanium, FeFET

Background

Field-effect transistors with a ferroelectric gate insulator layer (FeFETs) have attracted considerable interest for a variety of integrated circuit applications. Due to its inherent negative capacitance (NC) properties, a FeFET can achieve steeper switching behavior than a conventional MOSFET, enabling lower voltage operation [1]. Various channel structures [2–4] and materials [5–7] have obtained sub-60 mV/decade subthreshold swing (SS). Also, hysteresis in the current-voltage (I-V) characteristic due to remnant polarization (P_r) can be used for non-volatile memory (NVM) application [8]. Material development for FeFETs recently has focused on polycrystalline-doped HfO₂ due to its better thickness scalability [9] and CMOS process compatibility [2]. However, there still exists a fundamental limit for HfO₂ thickness scaling to avoid undesired gate leakage current; this in turn limits the FinFET [2]. Inspired by the nanocrystal MOS and memory device concept [10, 11], an insulating dielectric (DE) layer with embedded ferroelectric (FE) nanocrystals is introduced in this work. The resulting new device design illustrated in Fig. 1 is called the “Nanocrystal-Embedded-Insulator” (NEI) FeFET. The main advantage of this design is a thinner unified-FE/DE layer that meets the low-gate-leakage requirement.

In this work, NEI FeFETs are reported. Physical properties and ferroelectricity of the NEI layers with different physical thicknesses are characterized. Electrical performance of NEI FeFETs is investigated for low-voltage logic and NVM applications.

Methods

Key process steps for NEI FeFETs fabrication are shown in Fig. 1a. Four-inch n-type Ge(001) wafers with a resistivity of 0.088–0.14 Ω cm were used as the starting substrates. After pregate cleaning using diluted HF, Ge(001) wafers were loaded into an atomic layer deposition (ALD) chamber for the deposition of the NEI layer comprising ZrO₂ nanocrystals embedded in amorphous Al₂O₃ matrix. NEI layers with the various thicknesses were utilized in this work. TaN metal gate was deposited on the NEI FeFETs using the reactive sputtering. After the gate patterning and etching, BF₂⁺ ions were implanted...
into the source/drain regions at an energy of 20 keV and a dose of $1 \times 15 \text{ cm}^{-2}$. Thirty-nanometer nickel (Ni) was deposited in source/drain regions using the lift-off process. Finally, device fabrication was completed with rapid thermal annealing (RTA). Control metal-oxide-semiconductor field-effect transistors (MOSFETs) with a purely dielectric Al$_2$O$_3$ gate insulating layer also were fabricated.

Figure 1b shows the 3D schematic of the fabricated NEI FeFET, which comprises FE nanocrystals embedded in an amorphous DE gate insulating layer. Although the volume of FE material is small, it is sufficient for NCFET and NVM applications. The insulating DE material is key to achieving low gate leakage and low operating voltage; it should have both a large bandgap energy and high dielectric permittivity (κ). It also should provide for a high coercive field (E_c) of the embedded FE nanocrystals.

Polarization vs. voltage ($P-V$) and piezoresponse force microscopy (PFM) measurements were carried out on the NEI samples with the different thicknesses. To characterize the ferroelectricity of the NEI layer, $P-V$ curves of TaN/NEI (3.6 nm)/Ge, TaN/NEI (6 nm)/Si$_{0.7}$Ge$_{0.3}$, and TaN/NEI (10 nm)/TaN capacitors are shown in Fig. 4a, b, and c, respectively. The NEI layer exhibits a lower P than the reported values of HfZrO$_2$ (HZO) [14], which is due to the fact that the volume ratio of ZrO$_2$ nanocrystal in Al$_2$O$_3$ matrix is quite low. It is seen that the remnant polarization P_r of the NEI film increases with the increasing of film thickness. $P-V$ curves in Fig. 4c indicate that the ferroelectricity of the NEI layer degenerates while the annealing temperature increases from 450 to 550 °C. It is noted that the reason for the unclosed $P-V$ loops is because a leakage indeed exists.

Results and Discussion

NEI NCFET

Figure 7a shows measured $I_{DS}-V_{GS}$ curves of the NEI NCFETs with a NEI thickness of 3.6 nm annealed at 450
Fig. 3 HRTEM images showing nanocrystals embedded in amorphous Al₂O₃ for the samples with thicknesses of a 3.6 nm and b 6 nm. Insets show that the interplanar spacing d in the nanocrystal is 0.173 nm, corresponding to α-ZrO₂(111) phase.

Fig. 4 a–c Measured P-V curves of TaN/NEI (3.6 nm)/Ge, TaN/NEI (6 nm)/Si₀.₇Ge₀.₃, and TaN/NEI (10 nm)/TaN, respectively.
°C and 500 °C. The NCFETs exhibit little hysteresis indicating the good matching between the ferroelectric capacitance and the MOS capacitance in the transistors. The NCFETs show the NC effect induced clockwise $I-V$ loops, which is in contrast to the counterclockwise ones by charge trapping/detrapping [17]. The gate leakage I_G as a function of V_{GS} of the same pair of devices demonstrates that the formation of nanocrystals in Al$_2$O$_3$ does not increase the gate leakage. Figure 7b shows that the NCFETs achieve the sub-60 mV/decade steep SS points for the forward and reverse sweepings. The SS fluctuations in the NEI NCFET, also observed in NC FinFETs [2, 18], might be due to the polarization switching by the different ferroelectric nanocrystals or domains. The measured $I_{DS}-V_{DS}$ curves for the same pair of devices in Fig. 7c show that at $|V_{GS} - V_{TH}| = |V_{DS}| = 1.0$ V, the NCFET with RTA at 500 °C achieves 29% larger I_{DS} in comparison with the transistor annealed at 450 °C. This is attributed to the fact that the carrier mobility in channel and contact resistance characteristics can be improved with the increasing of annealing temperature [19]. The typical characteristic induced by the ferroelectric layer, negative differential resistance (NDR), is observed in the $I_{DS}-V_{DS}$ curves for the NCFETs annealed at the different temperatures.

Figure 8a shows measured $I_{DS}-V_{GS}$ curves of a NEI NCFET and a control MOSFET with the same insulator thickness of 2.1 nm. Devices have a L_G of 6 μm. The measured $I_{DS}-V_{DS}$ curves for the same pair of devices in Fig. 7c show that at $|V_{GS} - V_{TH}| = |V_{DS}| = 1.0$ V, the NCFET with RTA at 500 °C achieves 29% larger I_{DS} in comparison with the transistor annealed at 450 °C. This is attributed to the fact that the carrier mobility in channel and contact resistance characteristics can be improved with the increasing of annealing temperature [19]. The typical characteristic induced by the ferroelectric layer, negative differential resistance (NDR), is observed in the $I_{DS}-V_{DS}$ curves for the NCFETs annealed at the different temperatures.

Figure 8a shows measured $I_{DS}-V_{GS}$ curves of a NEI NCFET and a control MOSFET with the same insulator thickness of 2.1 nm. Devices have a L_G of 6 μm. The measured $I_{DS}-V_{DS}$ curves for the same pair of devices in Fig. 7c show that at $|V_{GS} - V_{TH}| = |V_{DS}| = 1.0$ V, the NCFET with RTA at 500 °C achieves 29% larger I_{DS} in comparison with the transistor annealed at 450 °C. This is attributed to the fact that the carrier mobility in channel and contact resistance characteristics can be improved with the increasing of annealing temperature [19]. The typical characteristic induced by the ferroelectric layer, negative differential resistance (NDR), is observed in the $I_{DS}-V_{DS}$ curves for the NCFETs annealed at the different temperatures.

Figure 8a shows measured $I_{DS}-V_{GS}$ curves of a NEI NCFET and a control MOSFET with the same insulator thickness of 2.1 nm. Devices have a L_G of 6 μm. The measured $I_{DS}-V_{DS}$ curves for the same pair of devices in Fig. 7c show that at $|V_{GS} - V_{TH}| = |V_{DS}| = 1.0$ V, the NCFET with RTA at 500 °C achieves 29% larger I_{DS} in comparison with the transistor annealed at 450 °C. This is attributed to the fact that the carrier mobility in channel and contact resistance characteristics can be improved with the increasing of annealing temperature [19]. The typical characteristic induced by the ferroelectric layer, negative differential resistance (NDR), is observed in the $I_{DS}-V_{DS}$ curves for the NCFETs annealed at the different temperatures.
NCFET exhibits the hysteresis-free characteristics. The inset shows the point SS vs. I_{DS} curves for the devices, demonstrating that improved SS is achieved in the NCFET compared to the control device, up to the threshold voltage. Figure 8b shows the I_{DS}-V_{DS} curves of the NEI NCFET and the control MOSFET. NCFET exhibits the NDR phenomenon for the low V_{GS}. The NDR effect corresponds to the improved drain-induced barrier lowering (DIBL) characteristics in NCFET compared to the control MOSFET, as shown in Fig. 8a. At $|V_{GS} - V_{TH}| = |V_{DS}| = 1.0$ V, a 16% I_{DS} enhancement is obtained in NCFET in comparison with the control device. NCFET with 2.1 nm NEI has the less significant NDR compared to the transistor with 3.6 nm NEI, which is consistent with the conclusion in [20].

The temperature dependence of the NCFET with 3.6-nm-thick NEI is investigated herein. Figure 9a shows I_{DS}-V_{GS} curves measured at 10 °C and 30 °C. Inset indicates that the SS performance of the transistor does not degrade at the elevated temperatures. As the temperature increases, the $I-V$ curve shifts to more negative V_{GS} due to the dominant effect of ferroelectricity, which is opposite to the trend for a conventional MOSFET. Figure 9b summarizes the shifts in hysteresis voltage and forward switching threshold voltage with temperature. Forward V_{GS} shifts to more negative values as temperature increases, which might be due to increased E_c of the NEI.

NEI FeFET for Non-Volatile Memory Application

By increasing the range of V_{GS} sweeping, the hysteresis voltage of a NEI FeFET can be increased to achieve a large and stable memory window (MW) for read and write operations. As shown in Fig. 10, a FeFET with 3.6-nm NEI demonstrates that the MW increases from 0.2 to 1.14 V as V_{GS} sweeping range varies from (0.1 V, −0.1 V) to (1 V, −2 V). DC sweep endurance of another FeFET memory device is shown in Fig. 11a, Fig. 11b illustrates the hysteresis characteristics as a function of number of DC sweeping cycles. Stable $I-V$ hysteresis window of ~0.65 V is seen.
Figure 12 benchmarks the NEI FeFET memory device against reported FeFETs, with regard to MW and FE layer thickness [8, 21–24]. It should be noted that the NEI FeFET device in this work achieves a sizable (> 1 V) MW with the thinnest reported FE thickness of 3.6 nm. We speculate that it is easier to achieve the stable FE phase in NEI with a smaller thickness, as compared to the doped HfO₂ [28–30].

Finally, the advantages of the NEI FeFET provided by ZrO₂ nanocrystals embedded in amorphous gate insulator are discussed. Figure 13 benchmarks the NEI layer against reported doped HfO₂ films [2, 3, 21, 25–27], with regard to E_c and P_r. NEI can achieve a much lower P_r compared to doped HfO₂ for similar...
Our experiments have demonstrated that a P_r below 1 $μC/cm^2$ can provide the required MW in the FeFETs. Excessive polarization could lead to greater depolarization, resulting in worse retention characteristics, which was reported in [25]. Furthermore, the FE and DE properties of the NEI layer can be adjusted separately: P_r is enhanced/reduced by increasing/decreasing the volume of FE nanocrystals, and $κ$ is increased by incorporating other elements in the amorphous matrix (e.g., LaAlO$_3$), to optimize FeFET performance.

Conclusions

Novel FeFETs with ZrO$_2$ nanocrystals embedded in an amorphous Al$_2$O$_3$ gate insulating layer are reported. Physical analyses indicate that less than 0.5% Zr in Al$_2$O$_3$ produces sufficient ferroelectricity for NCFET and NVM applications. Stable NC effect is observed at different measurement temperatures. Stable FeFET memory operation with record thin (3.6-nm total thickness) gate insulator is demonstrated. Stable MW is achieved over 1000 DC endurance cycles. The proposed NEI FeFET design provides a pathway for scaling down the thickness of the FE/DE gate insulator layer to be compatible with FinFETs with very small fin pitches.
Abbreviations
Al_2O_3: Aluminum oxide; ALD: Atomic layer deposition; B$_2$F$_6$: Boron fluoride ion; DC: Direct current; EC: Coercive field; FeFET: Ferroelectric field-effect transistor; Ge: Germanium; GeO$_2$: Germanium oxide; HF: Hydrofluoric acid; HRTEM: High-resolution transmission electron microscopy; I$_{DS}$: Drain current; MOSFETs: Metal-oxide-semiconductor field-effect transistors; MW: Memory window; NC: Negative capacitance; NDR: Negative differential resistance; NEI: Nanocrystal-embedded-insulator; Ni: Nickel; Pr: Remnant polarization; RTA: Rapid thermal annealing; SS: Subthreshold swing; TaN: Tantalum nitride; V_{GS}: Gate voltage; V_{TH}: Threshold voltage; ZrO_2: Zirconium dioxide

Acknowledgements
Not applicable.

Funding
The authors acknowledge support from the National Natural Science Foundation of China under Grant No. 61534004, 61604112, 61622405, 61874081, and 61851406. This work was also supported by the 111 Project (B12026).

Availability of Data and Materials
The datasets supporting the conclusions of this article are included within the article.

Authors’ contributions
YP carried out the experiments and drafted the manuscript. GQH, YP, and WWX designed the experiments. JBW helped to measure the device. GQH and YL helped to revise the manuscript. JCZ and YH supported the study. All the authors read and approved the final manuscript.

Authors’ information
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi’an 710071, People’s Republic of China.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi’an 710071, China.
2School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710071, China.

Received: 26 December 2018 Accepted: 15 March 2019
Published online: 01 April 2019

References
1. Salahuddin S, Datta S (2018) Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett 8:405–410
2. Krivokapic Z, Rana U, Galatage R, Razavieh A, Aziz A, Liu J, Shi J, Kim H, Schröder U, Müller S, Bräuhaus D, Böttger U, Frey L, Mikolajick T (2012) Ferroelectricity in simple binary ZrO$_2$ and HfO$_2$. Nano Lett 12:4318–4323
3. Zhou J, Han G, Li J, Liu Y, Peng Y, Zhang J, Sun Q-Q, Zhang DW, Hao Y (2018) Effects of the variation of V_{GS} sweep range on the performance of negative capacitance FETs. IEEE Elect Device Lett 39:618–621
4. Smith SW, Kitahara AR, Rodriguez MA, Heny MD, Brumbaugh MT, Illefeld JF (2017) Pyroelectric response in crystalline hafnium zirconium oxide (Hf$_x$Zr$_{1-x}$O$_2$) thin films. Appl Phys Lett 110:072901
5. Yurchuk E, Müller J, Müller S, Paul J, Pešek M, Bentum RV, Schroeder U, Mikolajick T (2016) Charge-trapping phenomena in HfO$_2$-based FeFET-type nonvolatile memories. IEEE Trans Electron Devices 63:3301–3307
6. Narasimha S, Jagannathan B, Ogino A, Jaeger D, Greene B, Sheraw C, Zhao K, Haran B, Kwon U, Mahalingam AM, Kannan B, Morganfeld B, Dechene J, Radens C, Tessier A, Hassan N, Narsetti H, Ahsan I, Amirpur M, An C, Aquilino M, Ayta A, Auger R, Baliga N, Bhelkar R, Biery G, Blauberg A, Böjarhult M, Bentum RV, Schroeder U, Mikolajick T (2013) Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories. IEEE Electron Device Lett 34:118–120
7. Zhou J, Han G, Li J, Liu Y, Peng Y, Zhang J, Sun Q-Q, Zhang DW, Hao Y (2018) Negative differential resistance in negative capacitance FETs. IEEE Electron Device Lett 39:621–625
8. Müller J, Böscke TS, Schröder U, Mueller S, Böscke TS, Müller S, Bräuhaus D, Böttger U, Frey L, Mikolajick T, Schröder U, Mikolajick T (2013) Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories. In: IEDM Tech Dig, pp 280–283
9. Chiu Y-C, Cheng C-H, Chang C-Y, Lee M-H, Hsu H-H, Yen S-S (2015) Low power 1T DRAM/NVM versatile memory featuring steep sub-60-mV/decade operation. In: VLSI Tech. Symp, p T185–L1391
10. Chiu Y-C, Cheng C-H, Chang C-Y, Lee M-H, Hsu H-H, Yen S-S (2015) Low power 1T DRAM/NVM versatile memory featuring steep sub-60-mV/decade operation. In: VLSI Tech. Symp, pp 150–151
11. Chatterjee K, Kim S, Karbasian G, Tan A-J, Yadav A-K, Khan A-I, Hu C, Salahuddin S (2017) Self-aligned gate last FDSOI ferroelectric gate memory
device with 5.5-nm Hf_{0.8}Zr_{0.2}O_{2} high endurance and breakdown recovery. IEEE Electron Device Letters 38:1379–1382

25. Müller J, Polakowski P, Reidel S, Mueller S, Yurchuk E, Mikolajick T (2013) Performance investigation and optimization of Si:HfO_{2} FeFETs on a 28 nm bulk technology. IISAF/PFM, pp 248–251

26. Chen K-Y, Huang Y-H, Kao P-W, Lin Y-X, Wu Y-H (2018) Dependence of reliability of ferroelectric HfZrOx on epitaxial SiGe film with various Ge content. In: VLSI Symp, pp 119–120

27. Martin D, Yurchuk E, Müller S, Müller J, Paul J, Sundquist J, Slesazeck S, Schloesser T, Bentum RV, Trentzsch M, Schroeder U, Mikojajick T (2012) Downscaling ferroelectric field effect transistors by using ferroelectric Si-doped HfO

28. Zhou J, Wu J, Han G, Kanyang R, Peng Y, Li J, Wang H, Liu Y, Zhang J, Sun Q, Zhang D, Hao Y (2017) Frequency dependence of performance in Ge negative capacitance PFETs achieving sub-30 mV/decade swing and 110 mV hysteresis at MHz. In: EDM Tech. Dig, pp 373–376

29. Lee MH, Fan S-T, Tang C-H, Chen P-G, Chou Y-C, Chen H-H, Kuo J-Y, Xie M-J, Liu S-N, Liao M-H, Jong C-A, Li K-S, Chen M-C, Liu CW (2016) Physical thickness 1.x nm ferroelectric HfZrO_{x} negative capacitance FETs. In: IEDM Tech. Dig, pp 370–373

30. Zhou H, Kwon D, Sachid AB, Liao Y, Chatterjee K, Tan AJ, Yadav AK, Hu C, Salahuddin S (2018) Negative capacitance, n-channel, Si FinFETs: bi-directional sub-60 mV/dec, negative DIBL, negative differential resistance and improved short channel effect. In: VLSI Symp, pp 53–54

Submit your manuscript to a SpringerOpen journal and benefit from:
► Convenient online submission
► Rigorous peer review
► Open access: articles freely available online
► High visibility within the field
► Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com