Innate Immunity and Cell Death in Alzheimer’s Disease

SangJoon Lee¹, Hyun-Jeong Cho², and Jin-Hyeob Ryu³,⁴

Abstract
The innate immune system plays key roles in controlling Alzheimer’s disease (AD), while secreting cytokines to eliminate pathogens and regulating brain homeostasis. Recent research in the field of AD has shown that the innate immune-sensing ability of pattern recognition receptors on brain-resident macrophages, known as microglia, initiates neuroinflammation, Aβ accumulation, neuronal loss, and memory decline in patients with AD. Advancements in understanding the role of innate immunity in AD have laid a strong foundation to elucidate AD pathology and devise therapeutic strategies for AD in the future. In this review, we highlight the present understanding of innate immune responses, inflammasome activation, inflammatory cell death pathways, and cytokine secretion in AD. We also discuss how the AD pathology influences these biological processes.

Keywords
alzheimer’s disease, amyloid-β, tau, innate immunity, inflammasome, NLRP3, MxA, ASC speck, IL-1β, IL-18, caspase-1, pyroptosis, apoptosis, necroptosis, neuroinflammation

Received July 14, 2021; Revised September 13, 2021; Accepted for publication September 21, 2021

Introduction
Alzheimer’s disease (AD), the most common dementing illness, is characterized by progressive memory decline and cognitive dysfunction. AD affects more than 44 million people worldwide, with a new patient diagnosed every 4 s. The number of patients with dementia, including AD, is expected to double every 20 years and reach 115 million by 2050, placing huge financial burdens on individuals and society.

The three pathological hallmarks of AD are deposition of extracellular β-amyloid (Aβ), intraneuronal aggregation of neurofibrillary tangles composed of the microtubule-associated protein tau, and neuronal loss called neurodegeneration (Nelson et al., 2012) (Figure 1). In mammalian hosts, Aβ and tau deposits as danger-associated molecular patterns (DAMPs) are recognized and cleared by multiple pattern-recognition receptors (PRRs) including Toll-like receptors (TLRs), retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), and nucleotide-binding oligomerization domain-like receptor family proteins (NLRs) (de Rivero Vaccari et al., 2014; Heneka et al., 2013; Ising et al., 2019; Tahara et al., 2006; Venegas et al., 2017).

In response to DAMPs, some PRRs can assemble large multiprotein complexes known as inflammasomes (Place & Kanneganti, 2018). Upon assembly, the inflammasomes induce membrane pore formation and proinflammatory cytokine processing, leading to a form of inflammatory cell death known as pyroptosis (He et al., 2015; Man et al., 2017; Shi et al., 2015). Innate immune signaling and inflammasome activation are key protective responses against AD (Heneka et al., 2013, 2014; Venegas et al., 2017). However, their activation must be tightly regulated, as excessive activation can lead to neuroinflammation and brain damage. Balancing the

¹Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
²Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, Daejeon, South Korea
³BIORCHESTRA Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon, Republic of Korea
⁴BIORCHESTRA Co. Ltd., 245 Main St, Cambridge, MA 02142, USA

Corresponding Authors:
Hyun-Jeong Cho, PhD, Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, Daejeon, South Korea. Tel: +82-42-600-8433
Email: hjcho@konyang.ac.kr
Jin-Hyeob Ryu, PhD, B615~619, 17, Techno 4-ro, Yuseong-gu, Daejeon, Korea.
Email: branden.ryu@biorchestra.com

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
host innate immune response has been considered in potential therapeutic approaches for AD, but this balance must be finely tuned to reduce excessive neuroinflammation, while clearing Aβ and tau deposits.

In this review, we discuss innate immune recognition, inflammasome activation, programmed cell death, and cytokine release that occur in response to AD, as well as how innate immune responses regulate the disease to resist development of AD pathology.

Pathogenesis of Alzheimer's Disease

AD is the most common type of dementia and neurodegenerative disease involving neuroinflammation, neuronal loss, and memory decline (Heneka et al., 2015; Nussbaum & Ellis, 2003). Aβ deposition can begin in the brain decades before the onset of clinical symptoms and stimulate tau-mediated AD pathogenesis such as tau hyperphosphorylation, tau aggregation, and triggering neuron-to-neuron spread (Figure 2).

As Aβ accumulation can induce the formation of neurofibrillary tangles that propagate to produce mild cognitive impairment and dementia, Aβ production has been extensively characterized (Jack et al., 2010). Aβ is a cleavage product of amyloid precursor protein (APP). APP expressed in neurons and glial cells has several physiological roles in mediating cell-to-cell adhesion for neuronal signaling and neurotransmitter release. APP cleavage by proteolytic secretases can generate amyloid peptides, including a peptide of 37–49 amino acids, Aβ, and released into the extracellular space in the brain (Chen et al., 2017). APP processing can follow the following two pathways: amyloidogenic and non-amyloidogenic. The amyloidogenic pathway involves a cleavage event induced by β-secretase such as BACE1, which releases soluble APPβ. The APP C-terminal fragment can then be cleaved by γ-secretases such as presenilin (PS) 1 and 2 at one of the several sites varying from 40 to 44

Figure 1. Aggregation of Aβ and tau. The Aβ precursor APP undergoes processing by proteases α-, β-, and γ-secretase. Aβ monomers can aggregate into Aβ oligomers, protofibrils, fibrils, and ultimately plaques, which are among the hallmarks of AD pathology. Loss of microtubule binding leads to elevated levels of cytosolic tau, thereby increasing the potential for tau-to-tau interactions. Aggregation of hyperphosphorylated tau protein leads to the assembly of neurofibrillary tangles followed by progressive cytoskeletal changes, disruption of axonal transport, and AD pathology.

Figure 2. Aβ and tau pathology in AD. Extracellular Aβ and tau contribute to enhanced bioactivity of microglia, which induces the secretion of proinflammatory cytokines including IL-1β and IL-18. Activated microglia further take up Aβ and tau and ultimately induce impaired immune responses in microglia and sterile inflammation. Several forms of tau contribute to neuron-to-neuron spreading, uptake, and aggregation of tau, thereby leading to tau-induced toxicity.
amino acid residues to generate neurotoxic Aβ peptides. Among Aβs of various lengths, soluble Aβ1−42 is a major component of plaque formation and initiates Aβ aggregation due to its hydrophobic C-terminus, which reduces the flexibility of transformation from α-helical to β-sheet structure. The non-amyloidogenic pathway is mediated by α-secretases such as ADAM 9, 10, and 17, and γ-secretase catalyzes further cleavages to produce non-toxic and possibly beneficial soluble APPα fragments with important neuroprotective functions (Chasseigneaux & Allinquant, 2012; Chen et al., 2017). The Aβ1−42 peptide can induce the production of higher-order assemblies of Aβ, wherein the monomers of Aβ peptide accumulate by misfolding into propagating conformations to freely diffuse through the brain (Chen et al., 2017). Aβ oligomers act as seeds to form insoluble Aβ aggregates know as plaques (Katzmarski et al., 2020). Aβ plaques disrupt cell-to-cell communication, lead to neuronal apoptosis, and activate immune cells such as microglia, thereby triggering inflammation and brain tissue damage (Heneka et al., 2015). Activated microglia further take up Aβ and tau and ultimately induce impaired immune responses in microgliosis and sterile inflammation (Busche & Hyman, 2020) (Figure 2).

Tau is a type II microtubule-associated protein that is highly expressed in neurons and moderately expressed in oligodendrocytes and astrocytes in the mammalian brain. Under normal condition, tau mainly modulates the stability of microtubules in axons by direct interaction with tubulin. Tau also has synaptic functions regulated by post-translational modifications (PTMs), including phosphorylation and proteolytic cleavage (Wesseling et al., 2020). However, abnormal PTMs induce tau hyperphosphorylation, which causes it to dissociate from microtubules and to enhance tau aggregation (self-assembly) (Alonso et al., 2018). Therefore, hyperphosphorylation of tau substantially impairs the stability of microtubules in nerve cells, which is involved in the pathogenesis of AD. The hyperphosphorylated tau is released by exosomal processes, which can be detected in the cerebrospinal fluid and blood of patients with AD (Fianiaca et al., 2015; Jia et al., 2019), with the amounts detected correlating with cognitive impairment. Although exosomal tau is a potential biomarker for AD, it is necessary to consider how to achieve high sensitivity with diagnostic tools early in the onset of AD. Extracellular misfolded tau released from pathological cells via exosomes can enter naive cells such as neurons and microglia, leading to tau-induced toxicity and convert monomeric physiological tau via endocytosis (Hardy & Selkoe, 2002; He et al., 2018; LaFerla et al., 1995; Selkoe & Hardy, 2016) (Figure 2).

Innate Immune Recognition in Alzheimer’s Disease

As resident immune effector cells of the central nervous system, microglia play a crucial role in regulating brain homeostasis and mediating innate immune responses in AD (Clayton et al., 2017; Hanisch & Kettenmann, 2007). Microglia sense a variety of microbial molecules known as pathogen-associated molecular patterns (PAMPs) as well as host-derived DAMPs via PRRs, including TLRs, RLRs, and NLRs (Kigerl et al., 2014) (Table 1). Microglia associated with AD are commonly in an activated state with upregulated expression of PRRs. PRRs drive signal transduction pathways that induce an inflammatory response and secretion of pro-inflammatory cytokines, including type I interferons (IFNs), thereby leading to the microglia-associated clearance of debris via phagocytosis in AD (Heneka et al., 2014; McDonough et al., 2017). Although microglia are integral for the phagocytosis and degradation of Aβ, their chronic activation can provoke impaired neuroinflammatory responses, with the potential to induce Aβ production and neuronal distress (Hansen et al., 2018; Hemmnot et al., 2019; Sarlus & Heneka, 2017).

TLR- and RLR-Mediated Alzheimer’s Disease Recognition

TLR- and RLR-mediated signaling leads to the secretion of type I IFNs and proinflammatory cytokines. TLRs are membrane-bound PRRs expressed in the microglia of mice, rats, and humans, and their activation can be beneficial or detrimental to the host (Bisbisi et al., 2002; Olson & Miller, 2004; Zhang et al., 2013). In microglia, the activation of TLR2 together with CD14, a coreceptor of TLR4, induces an immune response associated with fibrillar Aβ phagocytosis (Reed-Geaghan et al., 2009). Moreover, TLR2 and TLR4 activation in microglia enhances the production of Aβ peptides with 42 amino acids (Aβ1−42), which are key pathogenic species in AD (Chen et al., 2006). Some studies have shown that the inhibition of TLR2 activation attenuates glial cell reactivity, leading to reduced Aβ deposits and improved cognitive function in APP/PS1 double transgenic mice (McDonald et al., 2016). Furthermore, Thr2/4-deficient mice are protected from neurocognitive and behavior impairment after immunization with Aβ1−42 peptide (Vollmar et al., 2010). TLR4+ microglia induce proinflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 and enhance Aβ clearance (Jana et al., 2008; Liu et al., 2012).

APP/PS1 transgenic mice of an AD model deficient in TLR4 exhibit reduced microglial activation, reduced cognitive function, and increased Aβ deposition (Song et al., 2011). In a transgenic mouse model carrying a mutation in tau (P301S), mild and chronic stimulation of TLR4 with lipopolysaccharide reduced the levels of cerebral phosphorylated tau proteins and improved memory (Qin et al., 2016). In contrast, the activation of TLR4 reduced the clearance of microglial Aβ1−42 peptides by modulating the activity of the scavenger receptor CD36 (Li et al., 2015). Pronounced TLR4 expression in APP transgenic mice and increased TLR4 expression in the brains of patients with AD are
associated with Aβ plaques (Walter et al., 2007). The activation of TLR4 is necessary for glial cell activation, which resulted in memory impairment in a mouse model of AD (Balducci et al., 2017). A recent study suggested that alterations in microglial TLR4 signaling contribute to AD pathogenesis in APP/PS1 double transgenic mice (Go et al., 2016). Collectively, the activation of TLR2 and TLR4 in the initial stages of AD has beneficial effects in Aβ clearance, whereas chronic activation contributes to Aβ aggregation.

RIG-I is a cytosolic PRR that canonically senses 5′-triphosphate double-stranded RNA. Although one study revealed that RIG-I was elevated in the temporal cortex and plasma of patients with mild cognitive impairment (de Rivero Vaccari et al., 2014), the detailed molecular mechanism of how RIG-I is involved in AD pathology remains unclear. Thus, further studies are required to identify the in vivo dominant innate sensor in AD.

Aβ complexed with nucleic acids triggers TLR- and RLR-derived type I IFN responses in microglia, resulting in complement-mediated synapse destruction in AD (Roy et al., 2020). Therefore, IFNs constitute a pivotal element within the neuroinflammatory network of AD and critically contribute to neuropathogenic processes.

NLRP3 Inflammasomes in AD

Innate immune cells in the brain play major roles in cytokine production and inflammatory signaling. Among the proinflammatory cytokines, IL-1β and IL-18 are the key mediators of the inflammatory response; increased levels of these proteins correlate with the severity of AD in patients (Forlenza et al., 2009; King et al., 2018; Ng et al., 2018; Ojala et al., 2009). The release of IL-1β and IL-18 requires proteolytic maturation of pro-IL-1β and pro-IL-18. This process is mediated by inflammasome formation and protease caspase-1 activation (Man et al., 2017). Inflammasomes sensors can recognize PAMPs and/or DAMPs produced during pathogen infection and cellular instability, respectively (Kanneganti, 2010). Among the sensors, the most well-characterized sensor is the NLR family pyrin domain-containing 3 (NLRP3), which has been implicated in several diseases such as autoinflammatory diseases, obesity, colitis, and pathogen-mediated diseases including influenza A viruses and corona viruses (Gurung & Kanneganti, 2016; Kanneganti et al., 2006a, 2006b; Karki et al., 2015; Lee et al., 2020; Lee & Ryu, 2021; Stienstra et al., 2011; Thomas et al., 2009; Zaki et al., 2010).

The NLRP3 inflammasome has emerged as a trigger of AD pathogenesis. The mRNA and protein expressions of NLRP3 are upregulated in the monocytes of patients with AD (Saresella et al., 2016). Loss of the NLRP3 inflammasome (NLRP3/caspase-1) in APP/PS1 mice protects against long-term potentiation deficits and attenuates spatial memory deficits and the Aβ burden (Heneka et al., 2013).

Furthermore, exogenous-aggregated tau activates the NLRP3 inflammasome in the microglia (Stancu et al.,

Table 1. Effects and Functions of Innate Immune Sensor in AD.

Sensor	Extracellular Aβ deposits	Intracellular neurofibrillary tangles (pTau)	Inflammatory cytokines	Cognition function	Reference
TLR2	Increase	N/A	Increase (TNF-α, IL-1β, IL-8)	Impair	(Liu et al., 2012)
TLR4	Increase	N/A	Increase (IL-1β)	Impair	(Song et al., 2011)
	Decrease	N/A	Increase (TNF-α, IL-1β, IL-8)	Improve	(Qin et al., 2016)
	Increase	N/A	Increase (IL-1β)	Impair (AD patient)	(Balducci et al., 2017)
RIG-I	Increase	N/A	Increase (IL-1β)	Impair	(de Rivero Vaccari et al., 2014)
NLRP3	Increase	N/A	Increase (IL-1β)	N/A	(Heneka et al., 2013)
AIM2	Increase	N/A	No significant (IL-1β)	No significant	(Wu et al., 2017)
Extracellular ASC speck	Increase	N/A	Increase (IL-1β)	N/A	(Friker et al., 2020)

4 ASN Neuro
and the presence of MxA in reactive microglia could contribute to AD pathology (Yamada et al., 1994). Given that IL-1β and IL-18 are associated with the severity of AD in patients (Forlenza et al., 2009; King et al., 2018; Ng et al., 2018; Ojala et al., 2009), it will be interesting to reveal whether MxA inflammasome is required for AD exacerbation.

Extracellular ASC Specks in AD

Inflammasome sensors, such as NLRP3, are intracellular proteins expressed in macrophages and are activated by a wide variety of DAMPs, such as alum, silica, uric acid, and amyloid-β, following their engulfment by macrophages. Activated NLRP3 facilitates ASC oligomerization to form large, intracellular macromolecular aggregates known as ASC specks. It has been reported that ASC specks are released into the extracellular space, where ASC propagates inflammation via further production of IL-1β and IL-18 (Lee et al., 2014; Franklin et al., 2014). In AD pathology, in the extracellular space, ASC specks bind to Aβ aggregates to accelerate its oligomerization, indicating the cross-seeding activity of ASCs in Aβ aggregation, which boosts its toxicity in microglia (Friker et al., 2020; Venegas et al., 2017) (Figure 3). Recently, it has been reported that the extracellular ASC specks are engulfed by Arf6-deficient macrophages, and IL-1β production is reduced in Arf6−/− macrophages compared with that in wild-type macrophages (Lee et al., 2021a). Although detailed molecular mechanisms of how intracellular ASC specks are released into the extracellular space and the role of these molecules in neuroinflammation remain largely unknown, the extracellular ASC specks may induce Arf6 dependent-secondary inflammasomes in neighboring microglia and AD pathology.

Programmed Cell Death and Proinflammatory Cytokines in Alzheimer’s Disease

Cell death plays an important role in limiting disease progression. However, inflammatory cell death also results in the release of proinflammatory cytokines and cellular contents, including PAMPs and DAMPs, which can induce severe inflammation (Bergsbaken et al., 2009; Pasparakis & Vandenabeele, 2015) (Figure 4). Therefore, cell death is considered a double-edged sword during disease progression.

Pyroptosis in Alzheimer’s Disease

Pyroptosis is a form of inflammatory cell death mediated by inflammasomes and gasdermin (Shi et al., 2015). Inflammasome assembly leads to the activation of inflammasome caspases [caspase-1 (human and mouse), −4 (human), −5 (human), or −11 (mouse)], which proteolytically cleave and
release the N-terminal fragment of gasdermin D (GSDMD) to form pores in the plasma membrane (He et al., 2015; Man et al., 2017; Shi et al., 2015). Caspase-1-dependent GSDMD cleavage leads to the release of IL-1β and IL-18 (Man et al., 2017).

Recombinant Aβ1-42 can induce caspase-1 activation, GSDMD cleavage, and pyroptosis in mouse cortical neurons (Han et al., 2020; Tan et al., 2014). NLRP3 inflammasome and caspase-1 activation, along with IL-1β release, have also been observed when fibrillar Aβ is phagocytosed by microglia (Halle et al., 2008). Furthermore, recombinant tau protein can activate the NLRP3 inflammasome and induce IL-1β release from microglia (Stancu et al., 2019). A recent study revealed that microglia isolated from Tau22 mice, which express human tau mutations involved in fronto-temporal dementia, stimulate pyroptosis, as evidenced by NLRP3 inflammasome and caspase-1 activation and IL-1β release (Ising et al., 2019).

Necroptosis in Alzheimer’s Disease

Necroptosis is a form of inflammatory cell death mediated by mixed-lineage kinase domain-like pseudokinase (MLKL). MLKL is oligomerized by the phosphorylation of receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3; the oligomerized MLKL is translocated to the plasma membrane and forms channels (Dondelinger et al., 2014).

In the temporal gyrus of human patients with AD, RIPK1 and MLKL show robust expression, and necroptosis is associated with reduced brain weight of patients with AD (Caccamo et al., 2017). Furthermore, necroptosis exacerbates cognitive
deficits in APP/PS1 transgenic mice (Caccamo et al., 2017). Another study revealed that APP/PS1 mice treated with pharmacological inhibitors of RIPK1 or Ripk1D138N/D138N mice exhibit reductions in Aβ burden, inflammatory cytokine levels, and memory deficits (Ofengeim et al., 2017).

Apoptosis in Alzheimer’s Disease

Apoptosis is executed by caspase-3 and -7 following the activation of upstream initiator caspases including caspase-8/10 or -9. Pyroptosis and necroptosis are inflammatory and lytic cell death processes in which cytokines are released to induce inflammation and alert immune cells, whereas apoptosis has been historically considered to be immunologically silent. However, recent studies have suggested that apoptosis is not always immunologically silent, as cross-talk occurs between apoptotic proteins and the molecules executing lytic cell death (Lee et al., 2020; Place et al., 2021). The apoptotic protein caspase-3 has been reported to activate gasdermin E to induce lytic cell death (Rogers et al., 2019). Caspase-8 activates GSDMD under specific conditions (Lee et al., 2020; Place et al., 2021).

In the context of AD, APP is a substrate for caspase-3-mediated cleavage, which contributes to Aβ plaque formation, synaptic loss, and behavioral changes associated with AD (Gervais et al., 1999). Other studies have reported that the activation of caspase-3, -8, and -9 further induces Aβ plaque formation and AD progression (Rohm et al., 2001, 2002; Stadelmann et al., 1999; Su et al., 2001). Collectively, these studies suggest that the apoptotic pathways may also contribute to AD progression.

Recent studies have found extensive crosstalk between programmed cell death pathways, establishing the concept of PANoptosis (pyroptosis, apoptosis, necroptosis) (Gurung et al., 2014; Kuriakose et al., 2016; Lamkanﬁ et al., 2008; Lee et al., 2020, 2021b; Malireddi et al., 2010, 2021; Place et al., 2021). Although inﬂammosome activation is primarily associated with gasdermin D (GSMD)-mediated pyroptosis, there is emerging evidence of the contribution of inﬂammasome components in driving PANoptosis (Christgen et al., 2020; Gurung et al., 2014; Kesavardhana et al., 2020; Kuriakose et al., 2016; Lee et al., 2020, 2021b; Malireddi et al., 2020, 2021; Place et al., 2021; Zheng et al., 2020).

The AIM2 innate immune sensor, which is activated by double-stranded DNA, has been implicated in AD, that is, Aim2 deﬁciency reduces Aβ deposition and microglial activation (Wu et al., 2017). Recently, it has been reported that AIM2 regulates the innate immune sensors pyrin and ZBP1 to drive inﬂammatory signaling and PANoptosis (Lee et al., 2021b). It will be interesting to reveal whether AIM2 PANoptosis exerts beneﬁcial effects in AD.

Inflammatory Cytokines

Microglia-associated PRRs drive signal transduction pathways that induce inﬂammatory cell death pathways and secretion of pro-inﬂammatory cytokines, including type I IFNs, thereby leading to the microglia-associated clearance of debris via phagocytosis in AD (Heneka et al., 2014; McDonough et al., 2017). However, over activation of inﬂammatory cell death pathways can lead to critical brain damage and severe neuroinﬂammation (Bergsakoﬀ et al., 2009; Pasparakis & Vandenberghe, 2015). Inflammatory cell death leads to the release of proinflammatory cytokines and chemokines, which may contribute to AD pathology.

Indeed, Aβ-stimulated human monocytes release chemokines such as IL-8, monocyte chemoattractant protein-1 (MCP-1), macrophage inﬂammatory protein 1α (MIP-1α), and MIP-1β in vitro. Microglia cultured from rapid autopsies of patients with AD and nondemented patients revealed increased expression of IL-8, MCP-1, and MIP-1α after experimental exposure to Aβ (Xia & Hyman, 1999).

Many proinflammatory cytokines have been shown to be produced by neurons or microglia and the levels of IL-1α, IL-1β, IL-6, TNF-α, granulocyte-macrophage colony-stimulating factor, and IFN-γ are increased in AD brain tissue (Friker et al., 2020; Ising et al., 2019; Rubio-Perez & Morillas-Ruiz, 2012; Stancu et al., 2019; Venegas et al., 2017). Proinflammatory cytokines such as IL-1β-IL-1β, IL-6, and TNF-α are released by astrocytes and microglia in response to Aβ plaques or following tau hyperphosphorylation (Forloni et al., 1997; Wang et al., 2015). Recent studies revealed that the combination of TNF-α and IFN-γ induces inflammatory cell death, tissue damage, and cytokine shock syndromes (Karki & Kanneganti, 2021; Karki et al., 2021). Furthermore, treating with neutralizing antibodies against TNF-α and IFN-γ protected mice during SARS-CoV-2 infection, sepsis, hemophagocytic lymphohistiocytosis, and cytokine shock (Karki & Kanneganti, 2021; Karki et al., 2021). Therefore, it is important to identify the innate immune processes contributing to cytokine release and potential associations between cytokine signaling and inflammatory cell death in AD pathology.

Innate Immune Signals Regulate Adaptive Immunity

The innate immune and adaptive immune systems interact with each other. Although innate immune responses control the progression of AD, adaptive immune responses also contribute to restraining AD pathogenesis. B and T lymphocytes are the main cellular components of adaptive immunity that are responsible for antigen-specific antibody secretion and cell-mediated immunity, respectively. The adaptive immune response plays a key role in the development of adequate control against toxic molecules, such as misfolded tau and Aβ (Anderson et al., 2014; Cantrell, 2015). The triple transgenic (3xTg-AD) mouse model shows tau and Aβ accumulation in the brain increasing with age and changes in their...
immune system. A recent study has shown that CD4\(^+\)/CD8\(^+\) lymphocyte ratio in the blood of 3xTg-AD mice increased compared with that of WT mice (St-Amour et al., 2014), suggesting a universal deficit in the adaptive immune response; the finding is consistent with abnormal lymphocyte populations in patients with AD (Larbi et al., 2009; Pellicanò et al., 1992; Saresella et al., 2011; Schindowskì et al., 2006; Speciale et al., 2007).

Innate immune sensing by PRRs instructs adaptive immunity (Palm & Medzhitov, 2009). Therefore, innate and adaptive immune systems function cooperatively, and crosstalk between peripheral and central immunity such as cytokine and chemokine signaling likely plays an important albeit understudied role in AD. Recent studies have shown that peripheral neutrophils and T-regulatory cells profoundly affect AD pathogenesis (Baruch et al., 2015; Zenaro et al.,

Table 2. Target and Immunity Mechanism of Therapeutic Agents in Clinical Trials for Alzheimer’s Disease.

Agent	Target/ Mechanism\(^*\)	Mechanism of action	Clinical trial phase\(^*\)	Reference
Atuzaginstat (COR388)	Inflammation/ Infection	Small molecule; bacterial protease inhibitor targets gingipain produced by Porphyromonas gingivalis; reduces neuroinflammation	III	(Haditsch et al., 2020)
Azeliragon (TTP488)	Amyloid/ inflammation	Small molecule inhibitor; RAGE antagonist; reduces A\(\beta\) transport into the brain; mitigates toxic effects of oligomers and reduces inflammation	III	(Lue et al., 2001)
NE3107 (HE30286)	Inflammation	MAPK-1/3 inhibitor; reduces proinflammatory NF\(\kappa\)B activation	III	(Ahlem et al., 2009)
AL002 (anti-TREM2)	Inflammation	Immunotherapy; monoclonal antibody; targets microglial TREM2 receptors; promotes microglial clearance of A\(\beta\) and reduces neurotoxicity	II	(Wang et al., 2020)
ALZT-01 (cromolyn + ibuprofen)	Inflammation	Small molecule and combination therapy (cromolyn; approved anti-asthma drug, ibuprofen; approved anti-inflammatory drug); reduces aggregation of A\(\beta\) and induces neuroprotective microglial activation	II	(Brazier et al., 2017; Zhang et al., 2018)
Daratumumab (anti-CD38)	Inflammation/ Immunity	Immunotherapy (FDA-approved for the treatment of multiple myeloma); monoclonal antibody; targets CD38 on glia cells; regulates microglial activity	II	(Blacher et al., 2015; Guerreiro et al., 2020)
Dasatinib + quercetin	Inflammation/ Immunity	Senolytic therapy; tyrosine kinase inhibitor (dasatinib) and flavonoid (quercetin, nutritional supplement); reduces senescent cells and tau aggregation	II	(Zhang et al., 2019)
GB301	Inflammation/ Immunity	Cell therapy drug; autologous regulatory T cells; reduces neuroinflammation	II	(Dansokho et al., 2016; Plascencia-Villa and Perry, 2020)
Lenalidomide	Inflammation/ Immunity	FDA-approved cancer drug; reduces inflammatory cytokines; regulates innate and adaptive immune responses	II	(Decourt et al., 2020)
Montelukast (MK0476)	Inflammation	Small molecule; cysteinyi leukotiene type I (cysLT-1) receptor antagonist; affects inflammatory processes, neuronal injury, blood-brain-barrier integrity, and A\(\beta\) protein accumulation	II	(Lai et al., 2014; Morin et al., 2014)
Pepinemab (VX15)	Inflammation	Immunotherapy; monoclonal antibody inhibitor of semaphoring 4D (SEMA4D); reduces inflammatory cytokine release	II	(LaGanke et al., 2017)
AL003	Inflammation	Immunotherapy; monoclonal antibody targeting SIGLEC-3 (CD33); reactivates microglia and immune cells in the brain; improves microglial clearance of toxic proteins	I	(Estus et al., 2019)
Edicotinib	Inflammation	Small molecule; CSF-IR antagonist; blocks microglial proliferation and production of cytokines (IL1\(\beta\) and TNF\(\alpha\))	I	(Mancuso et al., 2019)
XPro1595	Inflammation	Protein biologic; soluble TNF\(\alpha\) inhibitor; reduces neuroinflammation	I	(MacPherson et al., 2017)

\(^*\)Target/mechanism and clinical trial phases are based on ClinicalTrials.gov (2021).
A recent study revealed Aβ plaque formation, neuro-inflammation, and microglial activation in 5XFAD mice (Marsh et al., 2016). Additionally, the loss of IgG-producing B cells impairs microglial phagocytosis, thereby inducing Aβ deposition and worsening AD pathology (Marsh et al., 2016). Adaptive immunity in AD pathology has not been studied using genetic deletion of key PRRs. The use of knockout mice lacking key innate sensors in specific immune cell subsets will reveal the cell type-specific requirements for these sensors in instructing various aspects of adaptive immunity in AD pathology.

Therapies for Alzheimer Disease

Currently, there is no effective therapy for AD except aducanumab; a new therapy for early AD was approved by the FDA in 2021. Aducanumab is a human monoclonal antibody that selectively targets aggregated Aβ (Sevigny et al., 2016). Given the increasing incidence of AD globally, effective treatment strategies for AD are urgently needed. Over the last two decades, several drugs that decrease Aβ production or increase Aβ clearance in the brain have been identified. Although Aβ plaques are the neuropathological hallmark of AD, they are poorly correlated with AD severity and cognitive dysfunction (Arriagada et al., 1992; Giannakopoulos et al., 2003). Patients with AD in whom brain Aβ plaques were cleared by anti-Aβ immunotherapy showed no cognitive benefit (Holmes et al., 2008).

One possible target for intervention is neuroinflammation. Indeed, neuroinflammatory biomarkers shed light on therapeutic target candidates such as soluble TREM2, RAGE, CD38, CD33, and TNF-α (Table 2). Several studies have consistently identified a link between the inflamasome and AD, and microglia play a central role in linking inflammation with neurodegeneration (Friker et al., 2020; Heneka et al., 2013; Salter & Stevens, 2017; Venegas et al., 2017). In contrast, an efficient adaptive immune system may prevent AD pathogenesis by modulating microglial function (Marsh et al., 2016). Further studies are needed to understand the role of the innate immune system and microglia to explore whether immune-based therapies can be designed for AD.

Tau-targeted therapies are another active area of investigation. As tau pathology correlates better with cognitive impairments than Aβ lesions, targeting tau is expected to be more effective than Aβ clearance once clinical symptoms are evident (Congdon & Sigurdsson, 2018). Unfortunately, most initial anti-tau therapies based on the inhibition of kinases or tau aggregation or on stabilization of microtubules have been discontinued due to their lack of efficacy and toxicity (Congdon & Sigurdsson, 2018). Currently, most tau-targeted therapies in clinical trials are immunotherapies, which have shown promise in numerous pre-clinical studies (Congdon & Sigurdsson, 2018).

Conclusions

Research in the past two decades have substantially expanded our understanding of innate immune responses in AD pathology. Emerging evidence suggests that aberrant microglial function in innate immune responses and cell death are inextricably linked to AD pathology. Therefore, innate immune responses and cell death must be finely controlled to reduce excessive neuroinflammation during the clearance of deposited Aβ and tau. Nevertheless, the following questions remain unanswered. What is the dominant innate immune sensor-derived signaling pathway that controls neuroinflammation and clearance of Aβ and tau deposition? What types of cell death are involved in neuroinflammation in AD? How can the innate immune response be balanced to reduce excessive neuroinflammation while retaining its support for the adaptive immune response? This association among inflamasome, inflammatory cell death, and neuroinflammation in AD is being actively pursued by numerous studies, and exploring the roles of these factors will help identify new drug targets for combating this devastating neurodegenerative disease.

Acknowledgments

We apologize to our colleagues in the field whose work could not be cited because of space limitations.

Author Contributions

S.L., H.C., and J.R. outlined the manuscript. S.L., H.C., and J.R. wrote the manuscript. S.L., H.C., and J.R. critically revised and approved the final version of the manuscript.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Ministry of Education, Culture, Sports, Science, and Technology of Japan (grant number 19K16665).

ORCID iD

SangJoon Lee https://orcid.org/0000-0001-7500-782X

References

Ahlem, C., Auci, D., Mangano, K., Reading, C., Frincke, J., Stickney, D., & Nicoletti, F. (2009). HE3286: A novel synthetic steroid as an oral treatment for autoimmune disease. *Annals of the New York Academy of Sciences, 1173*, 781–790. https://doi.org/10.1111/j.1749-6632.2009.04798.x

Alonso, A. D., Cohen, L. S., Corbo, C., Morozova, V., Eldrissi, A., Phillips, G., & Kleiman, F. E. (2018). Hyperphosphorylation of tau associates with changes in its function beyond microtubule...
Blacher, E., Dadali, T., Bespalko, A., Haupenthal, V. J., Grimm, M., Baruch, K., Rosenzweig, N., Kertser, A., Deczkowska, A., Sharif, Baroja-Mazo, A., Martín-Sánchez, F., Gomez, A. I., Martínez, C. M., Bsibsi, M., Ravid, R., Gveric, D., & Van Noort, J. M. (2002). Broad
Busche, M. A., & Hyman, B. T. (2020). Synergy between amyloid-
Balducci, C., Frasca, A., Zotti, M., La Vitola, P., Milhilaj, E., Grigoli, E., Iacobellis, M., Grandi, F., Messa, M., Colombo, L., Molteni, M., Trabace, L., Rossetti, C., Salmona, M., & Forloni, G. (2017). Toll-like receptor 4-dependent glial cell activation mediates the impairment in memory establishment induced by β-amyloid oligomers in an acute mouse model of Alzheimer’s disease. Brain Behavior and Immunity, 60, 188–197. https://doi.org/10.1016/j.bbi.2016.10.012
Baroja-Mazo, A., Martín-Sánchez, F., Gomez, A. I., Martínez, C. M., Amores-Iniesta, J., Compan, V., Barberá-Cremades, M., Yagüe, J., Ruiz-Ortiz, E., Antón, J., Buján, S., Couillin, I., Brough, D., Arostegui, J. I., & Pelegrín, P. (2014). The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nature Immunology, 15(8), 738–748. https://doi.org/10.1038/ni.2919
Baruch, K., Rosenzweig, N., Kertser, A., Deczkowska, A., Sharif, A. M., Spinrad, A., Tsitsou-Kampeli, A., Sarel, A., Cahalon, L., & Schwartz, M. (2015). Breaking immune tolerance by targeting Foxp3(-) regulatory T cells mitigates Alzheimer’s disease pathology. Nature Communications, 6, 7967. https://doi.org/10.1038/ncomms8967
Bergsbaken, T., Fink, S. L., & Cookson, B. T. (2009). Pyroptosis: Host cell death and inflammation. Nature Reviews Microbiology, 7(1), 99–109. https://doi.org/10.1038/nrmicro2070
Blacher, E., Dadali, T., Bespalko, A., Haupenthal, V. J., Grimm, M. O., Hartmann, T., Lund, F. E., Stein, R., & Levy, A. (2015). Alzheimer’s disease pathology is attenuated in a CD38-deficient mouse model. Annals of Neurology, 78(1), 88–103. https://doi.org/10.1002/ana.24425
Brazier, D., Perry, R., Keane, J., Barrett, K., & Elmaleh, D. R. (2017). Pharmacokinetics of cromolyn and ibuprofen in healthy elderly volunteers. Clinical Drug Investigation, 37, 1025–1034. https://doi.org/10.1007/s40261-017-0549-5
Bisbisi, M., Ravid, R., Gveric, D., & Van Noort, J. M. (2002). Broad expression of toll-like receptors in the human central nervous system. Journal of Neuropathology & Experimental Neurology, 61(11), 1013–1021. https://doi.org/10.1093/jnen/61.11.1013
Busche, M. A., & Hyman, B. T. (2020). Synergy between amyloid-β and tau in Alzheimer’s disease. Nature Neuroscience, 23(10), 1183–1193. https://doi.org/10.1038/s41593-020-0687-6
Caccamo, A., Branca, C., Piras, I. S., Ferreira, E., Huentelman, M. J., Liang, W. S., Readhead, B., Dudley, J. T., Spangenberg, E. E., Green, K. N., Belfiore, R., Winslow, W., & Oddo, S. (2017). Necroptosis activation in Alzheimer’s disease. Nature Neuroscience, 20(9), 1236–1246. https://doi.org/10.1038/nn.4608
Cantrell, D. (2015). Signaling in lymphocyte activation. Cold Spring Harbor Perspectives in Biology, 7(6). https://doi.org/10.1101/cshperspect.a018788
Chasseigneaux, S., & Allinquant, B. (2012). Functions of Aβ, sAPPα and sAPPβ : Similarities and differences. Journal of Neurochemistry, 120(Suppl 1), 99–108. https://doi.org/10.1111/j.1471-4159.2011.07584.x
Chen, G. F., Xu, T. H., Yan, Z., Zhou, Y. R., Jiang, Y., Melcher, K., & Xu, H. E. (2017). Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacologica Sinica, 38(9), 1205–1235. https://doi.org/10.1038/aps.2017.28
Chen, K., Iribarren, P., Hu, J., Chen, J., Gong, W., Cho, E. H., Lockett, S., Dunlop, N. M., & Wang, J. M. (2006). Activation of toll-like receptor 2 on microglia promotes cell uptake of Alzheimer disease-associated amyloid beta peptide. Journal of Biological Chemistry, 281(6), 3651–3659. https://doi.org/10.1074/jbc.M508125200
Christgen, S., Zheng, M., Kesavardhana, S., Karki, R., Malireddi, R. K. S., Banoth, B., Place, D. E., Briard, B., Sharma, B. R., Tuladhar, S., Samir, P., Burton, A., & Kanneganti, T. D. (2020). Identification of the PANoptosome: A molecular platform triggering pyroptosis, apoptosis, and necroptosis (PANoptosis). Frontiers in Cellular and Infection Microbiology, 10, 237. https://doi.org/10.3389/fcimb.2020.00237
Clayton, K. A., Van Enoo, A. A., & Ikezu, T. (2017). Alzheimer’s disease: The role of microglia in brain homeostasis and proteopathy. Frontiers in Neuroscience, 11, 680. https://doi.org/10.3389/fnins.2017.00680
Congdon, E. D., & Sigurdsson, E. M. (2018). Tau-targeting therapies for Alzheimer disease. Nature Reviews. Neurology, 14(7), 399–415. https://doi.org/10.1038/s41582-018-0013-z
Daniels, M. J., Rivers-Auty, J., Schilling, T., Spencer, N. G., Watremez, W., Fusolino, V., Booth, S. J., White, C. S., Baldwin, A. G., Freeman, S., Wong, R., Latta, C., Yu, S., Jackson, J., Fischer, N., Koziel, V., Pilot, T., Bagnall, J., Allan, S. M., …, D. Brough (2016). Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer’s disease in rodent models. Nature Communications, 7, 12504. https://doi.org/10.1038/ncomms12504
Dansokho, C., Ait Ahmed, D., Aid, S., Toly-Ndour, C., Chaigneau, T., Calle, V., Cagnard, N., Holzenberger, M., Piaggio, E., Aucouturier, P., & Dorothée, G. (2016). Regulatory T cells delay disease progression in Alzheimer-like pathology. Brain, 139(Pt 1), 1237–1251. https://doi.org/10.1093/brain/awv408
Decourt, B., Wilson, J., Ritter, A., Dardis, C., Difilippo, F. P., Zhuang, X., Cordes, D., Lee, G., Fulkerson, N. D., St Rose, T., Hartley, K., & Sabbagh, M. N. (2020). MCLENA-1: A Phase II clinical trial for the assessment of safety, tolerability, and efficacy of lenalidomide in patients with mild cognitive impairment Due to Alzheimer’s disease. Open Access Journal of Clinical Trials, 12, 1–13. https://doi.org/10.2147/OACTS.S221914
De Rivero Vaccari, J. P., Brand, F. J.3rd, Sedaghat, C., Mash, D. C., Dietrich, W. D., & Keane, R. W. (2014). RIG-1 receptor expression in the pathology of Alzheimer’s disease. Journal of Neuroinflammation, 11, 67. https://doi.org/10.1186/1742-2094-11-67
Dondelinger, Y., Declercq, W., Montessuit, S., Roelandt, R., Goncalves, A., Bruggeman, I., Hulpiau, P., Weber, K., Sehon, C. A., Marquis, R. W., Bertin, J., Gough, P. J., Savvides, S., Martinou, J. C., Bertrand, M. J., & Vandenameele, P. (2014).
MLKL Compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. *Cell Reports*, 7(4), 971–981. https://doi.org/10.1016/j.celrep.2014.04.026

Estus, S., Shaw, B. C., Devanney, N., Katsumata, Y., Press, E. E., & Fardo, D. W. (2019). Evaluation of CD33 as a genetic risk factor for Alzheimer’s disease. *Acta Neuropathologica*, 138(2), 187–199. https://doi.org/10.1007/s00401-019-02000-4

Fiandaca, M. S., Kapogiannis, D., Mapstone, M., Boxer, A., Eitan, E., Schwartz, J. B., Abner, E. L., Petersen, R. C., Federoff, H. J., Miller, B. L., & Goetzl, E. J. (2015). Identification of pre-clinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: A case-control study. *Alzheimer’s & Dementia*, 11(6), 600–607.e601. https://doi.org/10.1016/j.jalz.2014.06.0086

Forlenza, O. V., Diniz, B. S., Talib, L. L., Mendonça, V. A., Ojopi, E. B., Gattaz, W. F., & Teixeira, A. L. (2009). Increased serum cytokines and cytokine-like proteins in patients with clinical Alzheimer disease and mild cognitive impairment. *Dementia and Geriatric Cognitive Disorders*, 28(6), 507–512. https://doi.org/10.1159/000255051

Halle, A., Hornung, V., Petzold, G. C., Stewart, C. R., Mons, B. G., Reinheckel, T., Fitzgerald, K. A., Latz, E., Moore, K. J., & Golenbock, D. T. (2008). The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. *Nature Immunology*, 9(8), 857–865. https://doi.org/10.1038/ni.1636

Haller, O., Staeheli, P., Schewmmele, M., & Kochs, G. (2015). Mx2 TLR4 signaling in disease progression. *Journal of Alzheimer's Disease*, 75(4), 1361–1376. https://doi.org/10.3233/JAD-200393

Hansich, U. K., & Kettemann, H. (2007). Microglia: Active sensor and versatile effector cells in the normal and pathologic brain. *Nature Neuroscience*, 10(11), 1387–1394. https://doi.org/10.1038/nn1997

Hansen, D. W. (1999). The NALP3 inflammasomes. *Cellular and Molecular Medicine*, 24(14), 8078–8090. https://doi.org/10.1111/jcmm.15439

Hart, S., Ochs, E., & Kettenmann, H. (2019). Microglia: Active sensor and versatile effector cells in the normal and pathologic brain. *Frontiers in Aging Neuroscience*, 11, 233. https://doi.org/10.3389/fnagi.2019.00233

He, Z., Guo, J. L., Mchride, J. D., Narasimhan, S., Kim, H., Changolkar, L., Zhang, B., Gathagan, R. J., Yue, C., Dengler, C., Stieber, A., Nitla, M., Coulter, D. A., Abel, T., Brunden, K. R., Trojanowski, J. Q., & Lee, V. M. (2018). Amyloid-β plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. *Nature Medicine*, 24(1), 29–38. https://doi.org/10.1038/nm.4443

Hemmonot, A. L., Hua, J., Ullmann, L., & Hirbec, H. (2019). Microglia in Alzheimer disease: Well-known targets and new opportunities. *Frontiers in Aging Neuroscience*, 11, 233. https://doi.org/10.3389/fnagi.2019.00233

Hata, S., Hata, T., & Inokuma, M. (2008). The NALP3 inflammasomes. *Journal of Immunology*, 179(14), 727–737. https://doi.org/10.1074/jimmunol.081193

Frikker, L. L., Scheiblich, H., Hochheiser, I. V., Brinkskulte, R., Riedel, D., Latz, E., Geyer, M., & Heneka, M. T. (2020). β-Amyloid clustering around ASC fibrils boosts its toxicity in microglia. *Cell Reports*, 30(11), 3743–3754.e3746. https://doi.org/10.1016/j.celrep.2020.02.025

Gervais, F. G., Xu, D., Robertson, G. S., Vaillancourt, J. P., Zhu, Y., Huang, J., Leblanc, A., Smith, D., Rigby, M., Shearman, M. S., Clarke, E. E., Zheng, H., Van Der Ploeg, L. H., Ruffolo, S. C., Thornberry, N. A., Xanthoudakis, S., Zamboni, R. J., Roy, S., ... Nicholson, D. W. (1999). Involvement of caspase-1 in proteolytic cleavage of Alzheimer’s amyloid-beta precursor protein and amyloidogenic A beta peptide formation. *Cell*, 97(3), 395–406. https://doi.org/10.1016/S0092-8674(00)80748-5

Gianakopoulos, P., Herrmann, F. R., Bussière, T., Bouras, C., Kóvari, E., Perl, D. P., Morrison, J. H., Gold, G., & Hof, P. R. (2003). Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. *Neurology*, 60(9), 1495–1500. https://doi.org/10.1212/01.WNL.0000063311.58879.01

Go, M., Koi, J., Lim, J. E., Yang, J., & Fukuchi, K. I. (2016). Microglial response to LPS increases in wild-type mice during aging but diminishes in an Alzheimer’s mouse model: Implication of TLR4 signaling in disease progression. *Biochemical and Biophysical Research Communications*, 479(2), 331–337. https://doi.org/10.1016/j.bbrc.2016.09.073

Guerreiro, S., Privat, A. L., Bressac, L., & Toulorge, D. (2020). CD38 In neurodegeneration and neuroinflammation. *Cells*, 9(2). https://doi.org/10.3390/cells9020471

Gurung, P., Anand, P. K., Malireddi, R. K., Vande Walle, L., Van Opdenbosch, N., Dillon, C. P., Weinlich, R., Green, D. R., Lamkanfi, M., & Kanneganti, T. D. (2014). FADD And caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. *Journal of Immunology*, 192(4), 1835–1846. https://doi.org/10.4049/jimmunol.1302839

Gurung, P., & Kanneganti, T. D. (2016). Autoinflammatory skin disorders: The inflammasome in focus. *Trends in Molecular Medicine*, 22(7), 545–564. https://doi.org/10.1016/j.molmed.2016.05.003

Hed et al. 11

11

Alzheimer Involvement of caspases in proteolytic cleavage of fi

Acta Neuropathologica (new York, N Y), 22(2), 353–356. https://doi.org/10.1126/science.1072994

He, W. T., Wan, H., Chen, P., Wang, X., Huang, Z., Yang, Z. H., Zhong, C. Q., & Han, J. (2015). Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. *Cell Research*, 25(12), 1285–1298. https://doi.org/10.1038/cr.2015.139

He, Z., Guo, J. L., Mchride, J. D., Narasimhan, S., Kim, H., Changolkar, L., Zhang, B., Gathagan, R. J., Yue, C., Dengler, C., Stieber, A., Nitla, M., Coulter, D. A., Abel, T., Brunden, K. R., Trojanowski, J. Q., & Lee, V. M. (2018). Amyloid-β plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. *Nature Medicine*, 24(1), 29–38. https://doi.org/10.1038/nm.4443
Vitorica, J., Ransohoff, R. M., Herrup, K., Frautschy, S. A., Finsen, B., Brown, G. C., Verkhratsky, A., Yamazaki, K., Koistinaho, J., Latz, E., Halle, A., ..., M. P. Kummer (2015). Neuroinflammation in Alzheimer’s disease. The Lancet. Neurology, 14(4), 388–405. https://doi.org/10.1016/S1474-4225(15)70016-5

Heneka, M. T., Kummer, M. P., & Latz, E. (2014). Innate immune activation in neurodegenerative disease. Nature Reviews Immunology, 14(7), 463–477. https://doi.org/10.1038/nri3705

Heneka, M. T., Kummer, M. P., Stutz, A., Delekate, A., Schwartz, S., Vieira-Saecker, A., Griep, A., Axt, D., Remus, A., Tseng, T. C., Gelpi, E., Halle, A., Korte, M., Latz, E., & Golenbock, D. T. (2013). NLRP3 Is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature, 495(7434), 674–678. https://doi.org/10.1038/nature11729

Holmes, C., Boche, D., Wilkinson, D., Yadegarfar, G., Hopkins, V., Bayer, A., Jones, R. W., Bullock, R., Love, S., Neal, J. W., Zotova, E., & Nöcöl, J. A. (2008). Long-term effects of Abeta42 immunisation in Alzheimer’s disease: Follow-up of a randomised, placebo-controlled phase 1 trial. Lancet (London, England), 372(9634), 216–223. https://doi.org/10.1016/S0140-6736(08)6075-2

Ising, C., Venegas, C., Zhang, S., Scheiblich, H., Schmidt, S. V., Vieira-Saecker, A., Schwartz, S., Albasset, S., Mcmanus, R. M., Tejera, D., Griep, A., Santarelli, F., Brosseron, F., Opitz, S., Stunted, J., Merten, M., Kayed, R., Golenbock, D. T., Blum, D., ..., M. T. Heneka (2019). NLRP3 Inflammasome activation drives tau pathology. Nature, 575(7784), 669–673. https://doi.org/10.1038/s41586-019-1769-z

Jack, C. R. Jr., Knopman, D. S., Jagust, W. J., Shaw, L. M., Aisen, P. S., Weiner, M. W., Petersen, R. C., & Trojanowski, J. Q. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. The Lancet. Neurology, 9(1), 119–128. https://doi.org/10.1016/S1474-4225(09)70299-6

Jana, M., Palencia, C. A., & Pahan, K. (2008). Fibrillar amyloid-beta peptides activate microglia via TLR2: Implications for Alzheimer’s disease. Journal of Immunology, 181(10), 7254–7262. https://doi.org/10.4049/jimmunol.181.10.7254

Jia, L., Qiu, Q., Zhang, H., Chu, L., Du, Y., Zhang, J., Zhou, C., Liang, F., Shi, S., Wang, S., Qin, W., Wang, Q., Li, F., Wang, Q., Li, Y., Shen, L., Wei, Y., & Jia, J. (2019). Concordance between the assessment of Ab42, T-tau, and P-T181-tau in peripheral blood neuronal-derived exosomes and cerebrospinal fluid. Alzheimer’s & Dementia, 15(8), 1071–1080. https://doi.org/10.1016/j.jalz.2019.05.002

Kanaganti, T. D. (2010). Central roles of NLRs and inflammasomes in viral infection. Reviews in Immunology, 10(10), 688–698. https://doi.org/10.1038/tnri2851

Kanaganti, T. D., Body-Maloped, M., Amer, A., Park, J. H., Whitfield, J., Franchi, L., Taraporewala, Z. F., Miller, D., Patton, J. T., Inohara, N., & Núñez, G. (2006a). Critical role for cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. Journal of Biological Chemistry, 281(48), 36560–36568. https://doi.org/10.1074/jbc.M607394200

Kanaganti, T. D., Özören, N., Body-Maloped, M., Amer, A., Park, J. H., Franchi, L., Whitfield, J., Barchet, W., Colonna, M., Vandenabeele, P., Bertin, J., Coyle, A., Grant, E. P., Akira, S., & Núñez, G. (2006b). Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature, 440(7081), 233–236. https://doi.org/10.1038/nature04517

Karki, R., & Kaneganti, T. D. (2021). The ‘cytokine storm’: Molecular mechanisms and therapeutic prospects. Trends in Immunology, 42(8), 681–705. https://doi.org/10.1016/j.it.2021.06.001

Karki, R., Man, S. M., Malireddi, R. K. S., Gurung, P., Vogel, P., Lamkanfi, M., & Kaneganti, T. D. (2015). Concerted activation of the AIM2 and NLRP3 inflammasomes orchestrates host protection against Aspergillus infection. Cell Host & Microbe, 17(3), 357–368. https://doi.org/10.1016/j.chom.2015.01.006

Karki, R., Sharma, B. R., Tuladhar, S., Williams, E. P., Zalduvondo, L., Samir, P., Zheng, M., Sundaram, B., Banoth, B., Malireddi, R. K. S., Schreiner, P., Neale, G., Vogel, P., Webby, R., Jonsson, C. B., & Kaneganti, T. D. (2021). Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell, 184(1), 149–168.e117. https://doi.org/10.1016/j.cell.2020.11.025

Katzmarsi, N., Ziegler-Waldkirch, S., Scheffler, N., Witt, C., Abou-Ajram, C., Nuscher, B., Prinz, M., Haass, C., & Meyer-Luehmann, M. (2020). Aβ oligomers trigger and accelerate Aβ seeding. Brain Pathology, 30(1), 36–45. https://doi.org/10.1111/bpa.12734

Kesavardhana, S., Malireddi, R. K. S., Burton, A. R., Porter, S. N., Vogel, P., Pruett-Miller, S. M., & Kaneganti, T. D. (2020). The Za2 domain of ZBP1 is a molecular switch regulating influenza-induced PANoptosis and perinatal lethality during development. Journal of Biological Chemistry, 295(24), 8325–8330. https://doi.org/10.1074/jbc.RA120.013752

Kigerl, K. A., De Rivero Vaccari, J. P., Dietrich, W. D., Popovich, P. G., & Keane, R. W. (2014). Pattern recognition receptors and central nervous system repair. Experimental Neurology, 258, 5–16. https://doi.org/10.1016/j.expneurol.2014.01.001

King, E., O’Brien, J. T., Donaghy, P., Morris, C., Barnett, N., Olsen, K., Martin-Ruiz, C., Taylor, J. P., & Thomas, A. J. (2018). Peripheral inflammation in prodromal Alzheimer’s and Lewy body dementias. Journal of Neurology Neurosurgery & Psychiatry, 89(4), 339–345. https://doi.org/10.1136/jnnp-2017-317134

Kuriakose, T., Man, S. M., Malireddi, R. K., Karki, R., Kesavardhana, S., Place, D. E., Neale, G., Vogel, P., & Kaneganti, T. D. (2016). ZBP1/DAI Is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Science Immunology, 1(2). https://doi.org/10.1126/sciimmunol.aag2045

Laferla, F. M., Tinkle, B. T., Bieberich, C. J., Haudenschild, C. C., & Jay, G. (1995). The Alzheimer’s A beta peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nature Genetics, 9(1), 21–30. https://doi.org/10.1038/ng0195-21

Lagane, C., Samkoff, L., Edwards, K., Jung Henson, L., Repovic, P., Lynch, S., Stone, L., Mattson, D., Galluzzo, A., Fisher, T. L., Reilly, C., Winter, L. A., Leonard, J. E., & Zauderer, M. (2017). Safety/tolerability of the anti-semaphorin 4D antibody VX15/2503 in a randomized phase 1 trial. Neurology(R) Neuroimmunology & Neuroinflammation, 4(3), e367. https://doi.org/10.1212/NXI.0000000000000367

Lai, J., Mei, Z. L., Wang, H., Hu, M., Long, Y., Miao, M. X., Li, N., & Hong, H. (2014). Montelukast rescues primary neurons against...
Aβ1-42-induced toxicity through inhibiting CysLT1R-mediated NF-kB signaling. *Neurochemistry International*, 75, 26–31. https://doi.org/10.1016/j.neuint.2014.05.006

Lamkanfi, M., Kanneganti, T. D., Van Damme, P., Vandenberghe, T., Vanoverbergh, I., Vandekerckhove, J., Vandenabeele, P., Gevaert, K., & Nüße, G. (2008). Targeted peptidodecencentric proteomics reveals caspase-7 as a substrate of the caspase-1 inflammasomes. *Molecular and Cellular Proteomics*, 7(12), 2350–2363. https://doi.org/10.1074/mcp.M800132-MCP200

Larbi, A., Pawelec, G., Witkowska, J. M., Schipper, H. M., Derhovanessian, E., Golde, D., & Fulop, T. (2009). Dramatic shifts in circulating CD4 but not CD8 T cell subsets in mild Alzheimer’s disease. *Journal of Alzheimer’s Disease*, 17(1), 91–103. https://doi.org/10.3233/JAD-2009-1015

Lee, S., Channappanavar, R., & Kanneganti, T. D. (2020). Coronavirus: Innate immunity, inflammasome activation, inflammatory cell death, and cytokines. *Trends in Immunology*, 41(12), 1083–1099. https://doi.org/10.1016/jitim.2020.10.005

Lee, S., Hirohama, M., Noguchi, M., Nagata, K., & Kawaguchi, A. (2018). Influenza A virus infection triggers pyroptosis and apoptosis of respiratory epithelial cells through the Type I interferon signaling pathway in a mutually exclusive manner. *Journal of Virology*, 92(14). https://doi.org/10.1128/jvi.00396-18

Lee, S., Ishitsuka, A., Kuroki, T., Lin, Y. H., Shibuya, A., Hongu, T., Funakoshi, Y., Kanaho, Y., Nagata, K., & Kawaguchi, A. (2021a). Arf6 exacerbates allergic asthma through cell-to-cell transmission of ASC in inflammasomes. *JCI Insight*, 6(16). https://doi.org/10.1172/jci.insight.139190

Lee, S., Ishitsuka, A., Noguchi, M., Hirohama, M., Fujiyasu, Y., Petric, P. P., Schwemmle, M., Staeheli, P., Nagata, K., & Kawaguchi, A. (2019). Influenza restriction factor MxA functions as inflammasome sensor in the respiratory epithelium. *Science Immunology*, 4(40). https://doi.org/10.1126/sciimmunol.aau4643

Lee, S., Karki, R., Wang, Y., Nguyen, L. N., Kalathur, R. C., & Kanneganti, T. D. (2021b). AIM2 Forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence. *Science Immunology*, 185(6), 3127–3130. https://doi.org/10.4049/jimmunol.1001512

Malireddi, R. K., Ippagunta, S., Lamkanfi, M., & Kanneganti, T. D. (2010). Cutting edge: Proteolytic inactivation of poly(ADP-ribose) polymerase 1 by the Nlrp3 and Nlrc4 inflammasomes. *Journal of Immunology*, 185(6), 3127–3130. https://doi.org/10.4049/jimmunol.1001512

Malireddi, R. K. S., Gurung, P., Kesavardhana, S., Samir, P., Burton, A., Munnareddy, H., Vogel, P., Pelletier, S., Burgula, S., & Kanneganti, T. D. (2020). Innate immune priming in the absence of TAK1 drives RIPK1 kinase activity-independent pyroptosis, apoptosis, necroptosis, and inflammatory disease. *Journal of Experimental Medicine*, 217(3). https://doi.org/10.1084/jem.20191644

Malireddi, R. K. S., Karki, R., Sundaram, B., Kancharana, B., Lee, S., Samir, P., & Kanneganti, T. D. (2021). Inflammatory cell death, PANoptosis, Mediated by cytokines in diverse cancer lineages inhibits tumor growth. *ImmunoHorizons*, 5(7), 568–580. https://doi.org/10.1049/immunohorizons.2100059

Man, S. M., Karki, R., & Kanneganti, T. D. (2017). Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. *Immunological Reviews*, 277(1), 61–75. https://doi.org/10.1111/imr.12534

Mancuso, R., Fryatt, G., Cleal, M., Obst, J., Piip, E., Monzón-Sandoval, J., Ribe, E., Winchester, L., Webber, C., Nevado, A., Jacobs, T., Austin, N., Theunis, C., Grauwen, K., Monzón-Sandoval, J., Ribe, E., Winchester, L., Webber, C., & Wood, E. (2001). Aβ1-42 induces cognitive impairment in a mouse model of Alzheimer’s disease. *Science of America*, 117(50), 32145–32154. https://doi.org/10.1073/pnas.2009680117

Lue, L. F., Walker, D. G., Brachova, L., Beach, T. G., Rogers, J., Schmidt, A. M., Stern, D. M., & Yan, S. D. (2001). Involvement of microglial receptor for advanced glycation end-products (RAGE) in Alzheimer’s disease: Identification of a cellular activation mechanism. *Experimental Neurology*, 171(1), 29–45. https://doi.org/10.1006/exnr.2001.7732

Ma, S. L., Huang, W., Tang, N. L., & Lam, L. C. (2012). Msa polymorphisms are associated with risk and age-at-onset in Alzheimer disease and accelerated cognitive decline in Chinese elders. *Rejuvenation Research*, 15(5), 516–522. https://doi.org/10.1089/rej.2012.1328

Macpherson, K. P., Sompol, P., Kannamukkai, G. T., Chang, J., Sniffen, L., Wildner, M. E., Norris, C. M., & Tansey, M. G. (2017). Peripheral administration of the soluble TNF inhibitor XPro1595 modifies brain immune cell profiles, decreases beta-amyloid plaque load, and rescues impaired long-term potentiation in 5xFAD mice. *Neurobiology of Disease*, 102, 81–95. https://doi.org/10.1016/j.nbd.2017.02.010

Lee et al. 13
in Alzheimer’s disease. Molecular Neurodegeneration, 11, 23. https://doi.org/10.1186/s13024-016-0088-1

Sarlus, H., & Heneka, M. T. (2017). Microglia in Alzheimer’s disease. Journal of Clinical Investigation, 127(9), 3240–3249. https://doi.org/10.1172/JCI90606

Schindowski, K., Peters, J., Gorriz, C., Schramm, U., Weinandi, T., Leutner, S., Maurer, K., Frölich, L., Müller, W. E., & Eckert, A. (2006). Apoptosis of CD4+ T and natural killer cells in Alzheimer’s disease. Pharmacopsychiatry, 39(6), 220–228. https://doi.org/10.1055/s-2006-954591

Selkoe, D. J., & Hardy, J. (2016). The amyloid hypothesis of Alzheimer’s disease at 25 years. Embo Molecular Medicine, 8(6), 595–608. https://doi.org/10.15252/emmm.201606210

Sevigny, J., Chiao, P., Bussière, T., Weinreb, P. H., Williams, L., Maier, M., Dunstan, R., Salloway, S., Chen, T., Ling, Y., O’gorman, J., Qian, F., Arastu, M., Li, M., Chollate, S., Brennan, M. S., Quintero-Monzon, O., Scannevin, R. H., Arnold, H. M., … A. Sandrock (2016). The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature, 537(7618), 50–56. https://doi.org/10.1038/nature19323

Shi, J., Zhao, Y., Wang, K., Shi, X., Wang, Y., Huang, H., Zhuang, Y., Cai, T., Wang, F., & Shao, F. (2015). Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature, 526(7575), 660–665. https://doi.org/10.1038/nature15154

Song, M., Jin, J., Lim, J. E., Kou, J., Pattanayak, A., Rehman, J. A., Kim, H. D., Tahara, K., Lalone, R., & Fukuchi, K. (2011). TLR4 Mutation reduces microglial activation, increases Aβ deposits and exacerbates cognitive deficits in a mouse model of Alzheimer’s disease. Journal of Neuroinflammation, 8, 92. https://doi.org/10.1186/1742-2094-8-92

Speciale, L., Calabrese, E., Saresella, M., Tinelli, C., Mariani, C., Sanvito, L., Longhi, R., & Ferrante, P. (2007). Lymphocyte subset patterns and cytokine production in Alzheimer’s disease patients. Neurobiology of Aging, 28(8), 1163–1169. https://doi.org/10.1016/j.neurobiolaging.2006.05.020

Stadelmann, C., Deckwerth, T. L., Srivinasan, A., Bancher, C., Brück, W., Jellinger, K., & Lassmann, H. (1999). Activation of caspase-3 in single neurons and autophagic hunches of granulovacuolar degeneration in Alzheimer’s disease. Evidence for apoptotic cell death. American Journal of Pathology, 155(5), 1459–1466. https://doi.org/10.1016/S0002-9440(10)65460-0

St-Amour, I., Paré, I., Tremblay, C., Coulombre, K., Bazin, R., & Calon, E. (2014). IVIg protects the 3Xtg-AD mouse model of Alzheimer’s disease from memory deficit and Aβ pathology. Journal of Neuroinflammation, 11, 54. https://doi.org/10.1186/1742-2094-11-54

Stancu, I. C., Cremer, N., Vanruysset, H., Couturier, J., Vanoosthuyse, A., Kessels, S., Lodder, C., Bröne, B., Huaux, F., Octave, J. N., Terwel, D., & Dewachter, I. (2019). Aggregated Tau activates NLRP3-ASC inflammasome exacerbating exogenously and non-exogenously seeded Tau pathology in vivo. Acta Neuropathologica, 137(4), 599–617. https://doi.org/10.1007/s00401-018-01957-y

Stienstra, R., Van Diepen, J. A., Tack, C. J., Zaki, M. H., Van De Veerdonk, F. L., Perera, D., Neale, G. A., Hooiveld, G. J., Hijmans, A., Vroegrijk, I., Van Den Berg, S., Romijn, J., Rensen, P. C., Joosten, L. A., Netea, M. G., & Kanneganti, T. D. (2011). Inflammasome is a central player in the induction of obesity and insulin resistance. Proceedings of the National Academy of Sciences of the United States of America, 108(37), 15324–15329. https://doi.org/10.1073/pnas.1100255108

Su, J. H., Zhao, M., Anderson, A. J., Srinivasan, A., & Cotman, C. W. (2001). Activated caspase-3 expression in Alzheimer’s and aged control brain: Correlation with Alzheimer pathology. Brain Research, 898(2), 350–357. https://doi.org/10.1016/S0006-8993(01)02018-2

Tahara, K., Kim, H. D., Jin, J. J., Maxwell, J. A., Li, L., & Fukuchi, K. (2006). Role of toll-like receptor signalling in Abeta uptake and clearance. Brain, 129(Pt 11), 3006–3019. https://doi.org/10.1093/brain/awl249

Tan, M. S., Tan, L., Jiang, T., Zhu, X. C., Wang, H. F., Jia, C. D., & Yu, J. T. (2014). Amyloid-β induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer’s disease. Cell Death & Disease, 5(8), e1382. https://doi.org/10.1038/cddis.2014.348

Thomas, P. G., Dash, P., Aldridge, J. R. Jr., Ellebedy, A. H., Reynolds, C., Funk, A. J., Martin, W. J., Lammaki, M., Weobby, R. J., Boyd, K. L., Doherty, P. C., & Kanneganti, T. D. (2009). The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity, 30(4), 566–575. https://doi.org/10.1016/j.immuni.2009.02.006

Venegas, C., Kumar, S., Franklin, B. S., Dierkes, T., Brinkshulte, R., Tejera, D., Vieira-Saecker, A., Schwartz, S., Santarelli, F., Kummer, M. P., Grieb, A., Gelpi, E., Beilharz, M., Riedel, D., Golenbock, D. T., Geyer, M., Walter, J., Latz, E., Heneka, M. T., … (2017). Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature, 552(7685), 355–361. https://doi.org/10.1038/nature25158

Vollmar, P., Kullmann, J. S., Thilo, B., Claussen, M. C., Rothhammer, V., Jacobi, H., Sellner, J., Nessler, S., Korn, T., & Hemmer, B. (2010). Active immunization with amyloid-beta 1-42 impairs memory performance through TLR2/4-dependent activation of the innate immune system. Journal of Immunology, 185(10), 6338–6347. https://doi.org/10.4049/jimmunol.1001765

Walter, S., Letiembre, M., Liu, Y., Heine, H., Penke, B., Hao, W., Bode, B., Manietta, N., Walter, J., Schulz-Schiffer, W., & Fassbender, K. (2007). Role of the toll-like receptor 4 in neuroinflammation in Alzheimer’s disease. Cellular Physiology and Biochemistry, 20(6), 947–956. https://doi.org/10.1159/000110455

Wang, S., Mustafa, M., Yued, C. M., Salazar, S. V., Kong, P., Long, H., Ward, M., Siddiqui, O., Paul, R., Gılfillan, S., Ibrahim, A., Rhinn, H., Tassi, I., Rosenthal, A., Schwabe, T., & Colonna, M. (2020). Anti-human TREM2 induces microglia proliferation and reduces pathology in an Alzheimer’s disease model. Journal of Experimental Medicine, 217(9). https://doi.org/10.1084/jem.20200785

Wang, W. Y., Tan, M. S., Yu, J. T., & Tan, L. (2015). Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Annals of Translational Medicine, 3(10), 136. https://doi.org/10.3978/j.issn.2305-5839.2015.03.49

Wesseling, H., Mair, W., Kumar, M., Schlaffner, C. N., Tang, S., Beerepoop, P., Fatou, B., Guise, A. J., Cheng, L., Takeda, S., Muntel, J., Rotunno, M. S., Dujardin, S., Davies, P., Kosik, K. S., Miller, B. L., Berretta, S., Hedreen, J. C., Grinberg, L. T., … J. A. Steen (2020). Tau PTM profiles identify patient heterogeneity and stages of Alzheimer’s disease. Cell, 183(6), 1699–1713.e1613. https://doi.org/10.1016/j.cell.2020.10.029
Wu, P. J., Hung, Y. F., Liu, H. Y., & Hsueh, Y. P. (2017). Deletion of the inflammasome sensor Aim2 mitigates Aβ deposition and microglial activation but increases inflammatory cytokine expression in an Alzheimer disease mouse model. *Neuroimmunomodulation, 24*(1), 29–39. https://doi.org/10.1159/000477092

Xia, M. Q., & Hyman, B. T. (1999). Chemokines/chemokine receptors in the central nervous system and Alzheimer’s disease. *Journal of Neurovirology, 5*(1), 32–41. https://doi.org/10.3109/13550289909029743

Yamada, T., Horisberger, M. A., Kawaguchi, N., Moroo, I., & Toyoda, T. (1994). Immunohistochemistry using antibodies to alpha-interferon and its induced protein, MxA, in Alzheimer’s and Parkinson’s disease brain tissues. *Neuroscience Letters, 181*(1-2), 61–64. https://doi.org/10.1016/0304-3940(94)90560-6

Yin, J., Zhao, F., Chojnacki, J. E., Fulp, J., Klein, W. L., Zhang, S., & Zhu, X. (2018). NLRP3 Inflammasome inhibitor ameliorates amyloid pathology in a mouse model of Alzheimer’s disease. *Molecular Neurobiology, 55*(3), 1977–1987. https://doi.org/10.1007/s12035-017-0467-9

Zaki, M. H., Boyd, K. L., Vogel, P., Kastan, M. B., Lamkanfi, M., & Kanneganti, T. D. (2010). The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. *Immunity, 32*(3), 379–391. https://doi.org/10.1016/j.immuni.2010.03.003

Zenaro, E., Pietronigro, E., Della Bianca, V., Piacentino, G., Marongiu, L., Budui, S., Turano, E., Rossi, B., Angiari, S., Dusi, S., Montresor, A., Carlucci, T., Nani, S., Tosadori, G., Calciano, L., Catalucci, D., Berton, G., Bonetti, B., Constantin, G., … (2015). Neutrophils promote Alzheimer’s disease-like pathology and cognitive decline via LFA-1 integrin. *Nature Medicine, 21*(8), 880–886. https://doi.org/10.1038/nm.3913

Zhang, C., Griciuc, A., Hudry, E., Wan, Y., Quinti, L., Ward, J., Forte, A. M., Shen, X., Ran, C., Elmaleh, D. R., & Tanzi, R. E. (2018). Cromolyn reduces levels of the Alzheimer’s disease-associated amyloid β-protein by promoting microglial phagocytosis. *Scientific Reports, 8*(1), 1144. https://doi.org/10.1038/s41598-018-19642-1

Zhang, P., Kishimoto, Y., Grammatikakis, I., Gottimukkala, K., Cutler, R. G., Zhang, S., Abdelmohsen, K., Bohr, V. A., Misra Sen, J., Gorospe, M., & Mattson, M. P. (2019). Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. *Nature Neuroscience, 22*(5), 719–728. https://doi.org/10.1038/s41593-019-0372-9

Zhang, Y. K., Liu, J. T., Peng, Z. W., Fan, H., Yao, A. H., Cheng, P., Liu, L., Ju, G., & Kuang, F. (2013). Different TLR4 expression and microglia/macrophage activation induced by hemorrhage in the rat spinal cord after compressive injury. *Journal of Neuroinflammation, 10*, 112. https://doi.org/10.1186/1742-2094-10-112

Zheng, M., Karki, R., Vogel, P., & Kanneganti, T. D. (2020). Caspase-6 is a key regulator of innate immunity, inflammasome activation, and host defense. *Cell, 181*(3), 674–687.e613. https://doi.org/10.1016/j.cell.2020.03.040

Abbreviations

Abbreviation	Description
AD	Alzheimer’s disease
APP	amyloid precursor protein
ASC	apoptosis-associated speck-like protein containing a CARD
Aβ	β-amyloid
DAMP	danger-associated molecular pattern
GSDMD	N-terminal fragment of gasdermin D
IFN	interferon
IL	interleukin
MCP-1	monocyte chemoattractant protein-1
MLKL	mixed-lineage kinase domain-like pseudokinase
NLR	nucleotide-binding oligomerization domain-like receptor family protein
NLRP3	NLR family pyrin domain-containing 3
PAMP	pathogen-associated molecular pattern
PRR	pattern-recognition receptor
PTM	post-translational modification
RIG-I	retinoic acid-inducible gene I
RLR	retinoic acid-inducible gene I-like receptor
TLR	Toll-like receptor