Introduction

The most obvious sign that our brains function asymmetrically is the near-universal preference for the right hand, which goes back at least as far as the historical record takes us, and has long been a powerful source of symbolism, with the dexterous right associated with positive values and the sinister left with negative ones [1]. This has often led to stigmatization of left-handed individuals, sometimes forcing them to switch hand use, occasionally with grievous consequences. Superstitions about left and right were compounded by the discovery, in the 1860s, that speech was based predominantly in the left hemisphere of the brain [2]. Since language itself is uniquely human, this reinforced the idea that brain asymmetry more generally is a distinctive mark of being human [3]. Because the left hemisphere also controls the dominant right hand, it came to be widely regarded as the dominant or major hemisphere, and the right as nondominant or minor. Nevertheless, further evidence that the right hemisphere was the more specialized for perception and emotion also led to speculation, some of it far-fetched, about the complementary roles of the two sides of the brain in maintaining psychological equilibrium [4].

Interest flagged for a while, but was revived a century later, in the 1960s, with the study of patients who had undergone split-brain surgery, in which the main commissures connecting the two hemispheres were cut as a means of controlling intractable epilepsy. Testing of each disconnected hemisphere again revealed the left to be specialized for language and the right for emotional and nonverbal functions [5,6]. This work won Roger W. Sperry the Nobel Prize for Physiology and Medicine in 1981, but again led to speculation, most of it exaggerated or ill-founded, about the complementary functions of the two sides of the brain.

One popular example is Betty Edwards’ Drawing on the Right Side of the Brain, first published in 1979 but now in its fourth edition [7], which epitomizes the popular view that the right hemisphere is responsible for creativity. Brain imaging shows, though, that creative thought activates a widespread network, favoring neither hemisphere [8]. A more recent example is Iain McGilchrist’s 2009 book The Master and His Emissary, which draws on cerebral asymmetry in a sweeping account of the forces that shaped Western culture, and provocatively declares the right hemisphere to be the dominant one (“the master”) [9]. Although widely acclaimed, this book goes far beyond the neurological facts. Polarities of left and right brain are broadly invoked in art, business, education, literary theory, and culture, but owe more to the power of myth than to the scientific evidence [10].

Evolution of Brain Asymmetries, with Implications for Language

One myth that persists even in some scientific circles is that asymmetry is uniquely human [3]. Left-right asymmetries of brain and behavior are now known to be widespread among both vertebrates and invertebrates [11], and can arise through a number of genetic, epigenetic, or neural mechanisms [12]. Many of these asymmetries parallel those in humans, or can be seen as evolutionary precursors. A strong left-hemispheric bias for action dynamics in marine mammals and in some primates and the left-hemisphere action biases in humans, perhaps including gesture, speech, and tool use, may derive from a common precursor [13]. A right-hemisphere dominance for emotion seems to be present in all primates so far investigated, suggesting an evolutionary continuity going back at least 30 to 40 million years [14]. A left-hemisphere dominance for vocalization has been shown in mice [15] and frogs [16], and may well relate to the leftward dominance for speech—although language itself is unique to humans and is not necessarily vocal.

Summary: Handedness and brain asymmetry are widely regarded as unique to humans, and associated with complementary functions such as a left-brain specialization for language and logic and a right-brain specialization for creativity and intuition. In fact, asymmetries are widespread among animals, and support the gradual evolution of asymmetrical functions such as language and tool use. Handedness and brain asymmetry are inborn and under partial genetic control, although the gene or genes responsible are not well established. Cognitive and emotional difficulties are sometimes associated with departures from the “norm” of right-handedness and left-brain language dominance, more often with the absence of these asymmetries than their reversal.

“...That raven on yon left-hand oak
(Curse his ill-betiding croak)
Bodes me no good!”

—from Fables, by John Gay (1688–1732)

Citation: Corballis MC (2014) Left Brain, Right Brain: Facts and Fantasies. PLoS Biol 12(1): e1001767. doi:10.1371/journal.pbio.1001767

Published January 21, 2014

Copyright: © 2014 Michael C. Corballis. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Some of the research summarised in this article was funded by Contract UOA from the Marsden Fund of the Royal Society of New Zealand. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The author has declared that no competing interests exist.

* E-mail: m.corballis@auckland.ac.nz
Broca's area [19] and Wernicke's area [20] are the main language areas in humans—namely, in two cortical areas homologous to the language network [27]. Mirror neurons are so called because they are activated both by performing an action and by observing it in another individual. Some accounts of language evolution (e.g., [25]) have focused on mirror neurons, first identified in the monkey brain in area F5 [26], a region homologous to Broca’s area in humans, but now considered part of an extensive network more widely homologous to the language network [27]. Mirror neurons are so called...
because they respond when the monkey performs an action, and also when they see another individual performing the same action. This “mirroring” of what the monkey sees onto what it does seems to provide a natural platform for the evolution of language, which likewise can be seen to involve a mapping of perception onto production. The motor theory of speech perception, for example, holds that we perceive speech sounds according to how we produce them, rather than through acoustic analysis [28]. Mirror neurons in monkeys also respond to the sounds of such physical actions as ripping paper or dropping a stick onto the floor, but they remain silent to animal calls [29]. This suggests an evolutionary trajectory in which mirror neurons emerged as a system for producing and understanding manual actions, but in the course of evolution became increasingly lateralized to the left brain, incorporating vocalization and gaining grammar-like complexity [30]. The left hemisphere is dominant for sign language as for spoken language [31].

Mirror neurons themselves have been victims of hyperbole and myth [32], with the neuroscientist Vilayanur Ramachandran once predicting that “mirror neurons will do for psychology what DNA did for biology” [33]. As the very name suggests, mirror neurons are often taken to be the basis of imitation, yet nonhuman primates are poor imitators. Further, the motor theory of speech perception does not account for the fact that speech can be understood by those deprived of the ability to speak, such as those with damage to Broca’s area. Even chimpanzees [34] and dogs [35] can learn to respond to simple spoken instructions, but cannot produce anything resembling human speech. An alternative is that mirror neurons are part of a system for calibrating movements to conform to perception, as a process of learning rather than direct imitation. A monkey repeatedly observes its hand movements to learn to reach accurately, and the babbling infant calibrates the production of sounds to match what she hears. Babies raised in households where sign language is used “babble” by making repetitive movements of the hands [36]. Moreover, it is this productive aspect of language, rather than the mechanisms of understanding, that shows the more pronounced bias to the left hemisphere [37].

Inborn Asymmetries

Handedness and cerebral asymmetries are detectable in the fetus. Ultrasound recording has shown that by the tenth week of gestation, the majority of fetuses move the right arm more than the left [38], and from the 15th week most suck the right thumb rather than the left [39]—an asymmetry strongly predictive of later handedness [40] (see Figure 2). In the first trimester, a majority of fetuses show a leftward enlargement of the choroid plexus [41], a structure within the ventricles known to synthesize peptides, growth factors, and cytokines that play a role in neurocortical development [42]. This asymmetry may be related to the leftward enlargement of the temporal planum (part of Wernicke’s area), evident at 31 weeks [43].

In these prenatal brain asymmetries, around two-thirds of cases show the leftward bias. The same ratio applies to the asymmetry of the temporal planum in both infants and adults [44]. The incidence of right-handedness in the chimpanzee is also around 65–70 percent, as is a clockwise torque, in which the right hemisphere protrudes forwards and the left hemisphere rearwards, in both humans and great apes [45]. These and other asymmetries have led to the suggestion that a “default” asymmetry of around 65–70 percent, in great apes as well as humans, is inborn, with the asymmetry of human handedness and cerebral asymmetry for language increased to around 90 percent by “cultural literacy” [46].

Variations in Asymmetry

Whatever their “true” incidence, variations in handedness and cerebral asymmetry raise doubts as to the significance of the “standard” condition of right-handedness and left-cerebral specialization for language, along with other qualities associated with the left and right brains that so often feature in popular discourse. Handedness and cerebral asymmetry are not only variable, they are also...
imperfectly related. Some 95–99 percent of right-handed individuals are left-brained for language, but so are about 70 percent of left-handed individuals. Brain asymmetry for language may actually correlate more highly with brain asymmetry for skilled manual action, such as using tools [47,48], which again supports the idea that language itself grew out of manual skill—perhaps initially through pantomime.

Even when the brain is at rest, brain imaging shows that there are asymmetries of activity in a number of regions. A factor analysis of these asymmetries revealed four different dimensions, each mutually uncorrelated. Only one of these dimensions corresponded to the language regions of the brain; the other three had to do with vision, internal thought, and attention [49]—vision and attention were biased toward the right hemisphere, language and internal thought to the left. This multidimensional aspect throws further doubt on the idea that cerebral asymmetry has some unitary and universal import.

Handedness, at least, is partly influenced by parental handedness, suggesting a genetic component [50], but genes can’t tell the whole story. For instance some 23 percent of monozygotic twins, who share the same genes, are of opposite handedness [51]. These so-called “mirror twins” have themselves fallen prey to a Through the Looking-Glass myth; according to Martin Gardner [52], Lewis Carroll intended the twins Tweedledum and Tweedledee in that book to be enantiomers, or perfect three-dimensional mirror images in bodily form as well as in hand and brain function. Although some have argued that mirroring arises in the process of twinning itself [53,54], large-scale studies suggest that handedness [55,56] and cerebral asymmetry [57] in mirror twins are not subject to special mirroring effects. In the majority of twins of opposite handedness the left hemisphere is dominant for language in both twins, consistent with the finding that the majority of single-born left-handed individuals are also left-hemisphere dominant for language. In twins, as in the singly born, it is estimated that only about a quarter of the variation in handedness is due to genetic influences [56].

The manner in which handedness is inherited has been most successfully modeled by supposing that a gene or genes influence not whether the individual is right- or left-handed, but whether a bias to right-handedness will be expressed or not. In those lacking the “right shift” bias, the direction of handedness is a matter of chance; that is, left-handedness arises from the lack of a bias toward the right hand, and not from a “left-hand gene.” Such models can account reasonably well for the parental influence [50–60], and even for the relation between handedness and cerebral asymmetry if it is supposed that the same gene or genes biased the brain toward a left-sided dominance for speech [60,61]. It now seems likely that a number of such genes are involved, but the basic insight that genes influence whether or not a given directional bias is expressed, rather than whether or not it can be reversed, remains plausible (see Box 1).

Genetic considerations aside, departures from right-handedness or left-cerebral dominance have sometimes been linked to disabilities. In the 1920s and 1930s, the American physician Samuel Torrey Orton attributed both reading disability and stuttering to a failure to establish cerebral dominance [62]. Orton’s views declined in influence, perhaps in part because he held eccentric ideas about interhemispheric reversals giving rise to left–right confusions [63], and in part because learning-theory explanations came to be preferred to neurological ones. In a recent article, Dorothy Bishop reverses Orton’s argument, suggesting that weak cerebral lateralization may itself result from impaired language learning [64]. Either way, the idea of an association between disability and failure of cerebral dominance may be due for revival, as recent studies have suggested that ambidexterity, or a lack of clear handedness or cerebral asymmetry, is indeed associated with stuttering [65] and deficits in academic skills [66], as well as mental health difficulties [67] and schizophrenia (see Box 1).

Although it may be the absence of asymmetry rather than its reversal that can be linked to problems of social or educational adjustment, left-handed individuals have often been regarded as deficient or contrarian, but this may be based more on prejudice than on the facts. Left-handers have excelled in all walks of life. They include five of the past seven US presidents, sports stars such as Rafael Nadal in tennis and Babe Ruth in baseball, and Renaissance man Leonardo da Vinci, perhaps the greatest genius of all time.

Author Contributions
The author(s) have made the following declarations about their contributions: Conceived and written by: MC.
References

1. Hertz R (1960) Death and the right hand. Aberdeen (United Kingdom): Cohen & West.
2. Broca P (1865) Sur la siège de la faculté du langage articulé. Bull Mem Soc Anthropol Paris 6: 377–393.
3. Chance SA, Crow TJ (2007) Distinctive human: cerebral lateralization and language in Homo sapiens. Brain Cogn 65: 83–100.
4. Harrington A (1987) Medicine, mind, and the double brain. Princeton (New Jersey): Princeton University Press.
5. Sperry RW (1962) Some effects of disconnecting the cerebral hemispheres. Science 217: 1223–1227.
6. Gazzaniga MS, Bogen JE, Sperry RW (1965) Observations of visual perception after disconnection of the cerebral hemispheres in man. Brain 88: 221–230.
7. Edwards B (2012) Drawing on the right side of the brain. New York: Penguin Putnam.
8. EIHali D, Dobson C, Berman M, Christoff K (2012) Evaluative and generative modes of thought during the creative process. Neuroimage 59: 1783–1794.
9. McGilchrist I (2009) The master and his emissary. New Haven (Connecticut): Yale University Press.
10. Corballis MC (1999) Are we in our right minds? London: Weidenfeld & Nicolson.
11. Corballis MC (2002) From hand to mouth: the gestural origins of language. Princeton (New Jersey): Princeton University Press.
12. Hertz R (1960) Death and the right hand. Aberdeen (United Kingdom): Cohen & West.
13. MacNeilage PF (2013) Vertebrate whole-body-action asymmetries and the evolution of right-handness. Nat Rev Neurosci 14: 5–24.
14. Lindell AK (2013) Continuities in emotion lateralization in human and nonhuman primates. Front Hum Neurosci 7: 464.
15. Eber H (1887) Left hemisphere advantage in the mouse brain for recognizing ultrasonic communication calls. Nature 325: 249–251.
16. Bauer RH (1993) Lateralization of neural control. Behav Brain Sci 16: 103–150.
17. Rizzolatti G, Camarda R, Fogassi L, Gentilucci M, Luppino G, et al. (1988) Functional organization of inferior area 6 in the macaque monkey. II. Area F3 and the control of distal movements. Exp Brain Res 71: 491–507.
18. Rizzolatti G, Sinagoga C (2010) The functional role of the parieto-frontal mirror circuit: interpretations and interpretations. Nat Rev Neurosci 11: 264–274.
19. Liberman AM, Cooper FS, Shankweiler DP, Studdert-Kennedy M (1967) Perception of the speech stream. Psychol Rev 74: 131–160.
20. Kohler E, Keysers C, Umiltà MA, Fogassi L, Gallese V, et al. (2000) Hearing sounds, understanding actions: action representation in mirror neurons. Science 290: 1401–1404.
21. Corballis MC (2003) From mouth to hand: gesture, speech, and the evolution of right-handness. Behav Brain Sci 26: 196–208.
22. Pettino LA, Zatorre RJ, Gauna K, Nikelski EJ, Dostie D, et al. (2000) Speech-like cerebral activity in profoundly deaf people processing signed languages: implications for the neural basis of human language. Proc Natl Acad Sci U S A 97: 12582–12587.
23. Hickok GS (2008) Right problems for the mirror neuron theory of action understanding in monkeys and humans. J Cogn Neurosci 21: 1229–1243.
24. Ramachandran VS (2002) Mirror neurons and imitation learning as the driving force behind the “great leap forward” in human evolution. Edge Foundation. Available: http://edge.org/conversation/mirror-neurons-and-imitation-learning-as-the-driving-force-behind-the-great-leap-forward-in-human-evolution. Accessed 10 December 2013.
25. Savage-Rumbaugh SE, Marler P, Taylor TJ (1998) Ape, language, and the human mind. Oxford: Oxford University Press.
26. Pilleby JW, Reid AK (2011) Border collic comprehends object names as verbal referents. Behav Processes 86: 184–195.
27. Petitano LA, Holowka S, Levy B, Ostry D (2004) Baby hands that move to the rhythm of language: hearing babies acquiring sign language babble silently on the hands. Cognition 93: 45–73.
28. Hickok GS, Poeppel D (2007) The cortical organization of speech processing. Nat Rev Neurosci 8: 393–402.
29. Hickok GS, McCartney G, Shannon EA (1998) Lateralised behaviour in first trimester human fetuses. Neuropsychologia 36: 531–544.
30. Hickok PG, Shahidullah S, White R (1991) Handness in the human fetus. Neuropsychologia 29: 1101–1111.
31. Hepper PG, Wells DL, Lynch C (2005) Prenatal thumb sucking is related to postnatal handedness. Neuropsychologia 43: 313–315.
32. Abu-Rustum RS, Ziade MF, Abu-Rustum SE (2004) Mixed-handedness and fMRI brain imaging. J Anat 212: 235–248.
33. Corballis MC, Badzakova-Trajkov G, Ha¨berling IS, et al. (2012) Cerebral asymmetries in monorange and monorangeic twins: an fMRI study. Neuropsychologia 48: 3086–3093.
34. Arbib MA (2002) Handness and brain asymmetry: the right shift theory. Hove (United Kingdom): Psychology Press.
35. Klar AJ (1999) Genetic models for handedness, brain lateralization, schizophrenia, and manic-depression. Schizophrenia Res 39: 207–218.
36. Corballis MC (2002) Right hand, left brain: genetic and evolutionary bases of cerebral asymmetries for language and manual action. Wiley Interdiscip Rev Cogn Sci 3: 1–17.
37. Otton ST (1937) Reading, writing and speech problems in children. New York: Norton.
38. Corballis MC, Beale IL (1993) Orton revisited: dyslexia, laterality, and left-right confusion. In: Willows DM, Kruk RS, Corcos E, editors. Visual processes in reading and reading disabilities. Hilldale (New Jersey): Lawrence Erlbaum Associates. pp. 55–75.
39. Bishop DVM (2013) Cerebral asymmetry and language: cause, correlate, or consequence. Sci ence 340: 1230531.
40. Previc FH (1991) A general theory concerning the prenatal origins of cerebral lateralization in humans. Psychol Rev 98: 299–334.
41. Vingerhoets A, Ack, F, Heinefied A-S, Nuyj, Vandemeule P, et al. (2012) Cerebral lateralization of praxis in right- and left-handers: same pattern, different strength. Hum Brain Mapp 33: 762–773.
42. Xu J, Gannon PJ, Emmony C, Smith JF, Braun AR (2009) Symbolic gestures and spoken language are processed by a common neural system. Proc Natl Acad Sci U S A 106: 20664–20669.
43. Liu H, Stufflebeam SM, Sepulcre J, Hedden T, Buckner RL (2009) Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors. Proc Natl Acad Sci U S A 106: 20499–20503.
44. Corballis MC, Badzakova-Trajkov G, Haberling IS (2012) Right hand, left brain: genetic and evolutionary bases of cerebral asymmetries for language and manual action. Wiley Interdiscip Rev Cogn Sci 3: 1–17.
45. Otton ST (1937) Reading, writing and speech problems in children. New York: Norton.
46. Corballis MC, Beale IL (1993) Orton revisited: dyslexia, laterality, and left-right confusion. In: Willows DM, Kruk RS, Corcos E, editors. Visual processes in reading and reading disabilities. Hilldale (New Jersey): Lawrence Erlbaum Associates. pp. 55–75.
47. Bishop DVM (2013) Cerebral asymmetry and language: cause, correlate, or consequence. Science 340: 1230531.
48. Arbib MA (2002) Handness and brain asymmetry: the right shift theory. Hove (United Kingdom): Psychology Press.
49. Klar AJ (1999) Genetic models for handedness, brain lateralization, schizophrenia, and manic-depression. Schizophrenia Res 39: 207–218.
50. Corballis MC (2002) Right hand, left brain: genetic and evolutionary bases of cerebral asymmetries for language and manual action. Wiley Interdiscip Rev Cogn Sci 3: 1–17.
51. Otton ST (1937) Reading, writing and speech problems in children. New York: Norton.
52. Corballis MC, Beale IL (1993) Orton revisited: dyslexia, laterality, and left-right confusion. In: Willows DM, Kruk RS, Corcos E, editors. Visual processes in reading and reading disabilities. Hilldale (New Jersey): Lawrence Erlbaum Associates. pp. 55–75.
53. Bishop DVM (2013) Cerebral asymmetry and language: cause, correlate, or consequence. Science 340: 1230531.
is linked to mental health problems in children and adolescents. Pediatrics 125: e340–e348.

68. Eriksson N, Maapherson JM, Tunj Y, Hon LS, Naughton B, et al. (2010) Web-based, participant-driven studies yield novel genetic associations for common traits. PLoS Genet 6: e1000993. doi:10.1371/journal.pgen.1000993

69. McManus IC, Davison A, Armour JAL (2013) Multilocus genetic models of handedness closely resemble single-locus models in explaining family data and are compatible with genome-wide association studies. Ann N Y Acad Sci 1288: 48–58.

70. Armour JAL, Davison A, McManus IC (2013) Genome-wide association study of handedness excludes simple genetic models. Heredity (Edinb). E-pub ahead of print. doi:10.1038/hdy.2013.93

71. Scerri TS, Brandler WM, Paracchini S, Morris AP, Ring SM, et al. (2011) PCSK6 is associated with handedness in individuals with dyslexia. Hum Mol Genet 20: 608–614.

72. Arning L, Ocklenburg S, Schulz S, Ness V, Gerding WM, et al. (2013) PCSK6VNTR polymorphism is associated with degree of handedness but not direction of handedness. PLoS ONE 8: e67251. doi:10.1371/journal.pone.0067251

73. Brandler WM, Morris AP, Evans DM, Scerri TS, Kemp JP, et al. (2013) Common variants in left/right asymmetry genes and pathways are associated with relative hand skill. PLoS Genet 9: e1003751. doi:10.1371/journal.pgen.1003751

74. Francis C, Maegawa S, Lauren J, Abrahams BS, Velayos-Baeza A, et al. (2007) LRRM1 on chromosome 2p12 is a maternally suppressed gene that is associated paternally with handedness and schizophrenia. Mol Psychiatry 12: 1129–1139.

75. Ludwig KU, Mathiesen M, Muhleisen TW, Roese D, Schmal C, et al. (2009) Supporting evidence for LRRM1 imprinting in schizophrenia. Mol Psychiatry 14: 743–743.

76. DeLisi LE, Svetina C, Razi K, Shields G, Wellman N, et al. (2002) Hand preference and hand skill in families with schizophrenia. Laterality 7: 231–232.

77. Orr KG, Cannon M, Gillvary CM, Jones PB, Murray RM (1999) Schizophrenic patients and their first-degree relatives show an excess of mixed-handedness. Schizophr Res 39: 167–176.

78. Barnett KJ, Corballis MC (2002) Ambidexterity and magical ideation. Laterality 7: 73–94.

79. Somers M, Remm J, Koks MP, Kahn RS (2009) Hand-preference and population schizophrenia. Schizophr Res 108: 25–32.

80. Tsuang H-C, Chen WJ, Kuo S-Y, Hsiao P-C (2013) The cross-cultural nature of the relationship between schizotypy and mixed handedness. Laterality 18: 476–490.

81. Crow TJ (2008) The 'big bang' theory of the origin of psychosis and the faculty of language. Schizophr Res 102: 31–52.

82. Corballis MC (2009) The evolution of language. Ann N Y Acad Sci 1156: 19–43.

83. Dediu D, Levinson SC (2013) On the antiquity of language: the reinterpretation of Neandertal linguistic capacities and its consequences. Front Psychol 4: 397.

84. Johansson S (2013) The talking Neandertals: what do fossils, genetics, and archeology say? Bioarchaeology 7: 33–74.

85. Medland SE, Duffy DL, Spinullie AB, Wright MJ, Geffen GM, et al. (2005) Opposite effects of androgen receptor CAG repeat length on increased risk of left-handedness in males and females. Behav Genet 35: 735–744.

86. Crow TJ (2013) The XY gene hypothesis of psychotic origins and current status. Am J Med Genet B Neuropsychiatr Genet 9999: 1–25.

87. Bird A (2007) Perceptions of epigenetics. Nature 447: 396–398.

88. Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP (2001) A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 413: 519–523.

89. Liegeois F, Baldegov T, Connelly A, Gadian DG, Mishkin M, et al. (2003) Language MRI abnormalities associated with FOXP2 gene mutation. Nat Neurosci 6: 1230–1237.

90. Vargha-Khadem F, Watkins KE, Price CJ, Ashburner J, Alcock KJ, et al. (2013) Neural basis of an inherited speech and language disorder. Proc Natl Acad Sci U S A 95: 12695–12700.

91. Enard W, Przeworski M, Fisher SE, Lai CSL, Wiebe V, et al. (2002) Molecular evolution of FOXP2, a gene involved in speech and language. Nature 418: 869–871.

92. Krause J, Lalueza-Fox C, Orlando L, Enard W, Green RE, et al. (2007) The derived FOXP2 variant of modern humans was shared with Neandertals. Curr Biol 17: 1908–1912.