Asymptotic behavior of entire solutions for degenerate partial differential inequalities on Carnot-Carathéodory metric spaces and Liouville type results

Markasheva V.A.*

February 11, 2015

Abstract

This article is devoted to the study of the behavior of generalized entire solutions for a wide class of quasilinear degenerate inequalities modeled on the following prototype with p-Laplacian in the main part

\[ \sum_{i=1}^{m} X_i^*(|Xu|^{p-2}X_iu) \geq |u|^{q-2}u, \quad x \in \mathbb{R}^n, \quad q > 1, \quad p > 1, \]

where \( \mathbb{R}^n \) is a Carnot-Carathéodory metric space, generated by the system of vector fields \( X = (X_1, X_2, \ldots, X_m) \) and \( X_i^* \) denotes the adjoint of \( X_i \) with respect to Lebesgue measure. For the case where \( p \) is less than the homogeneous dimension \( Q \) we have obtained a sharp a priori estimate for essential supremum of generalized solutions from below which imply some Liouville-type results.

Keywords: entire solution, subelliptic inequality, Carnot-Carathéodory metric space, p-Laplacian, Liouville-type theorem, nonexistence theorem, a priori estimate

Contents

1 Introduction 2
2 Auxiliary results 4
3 Proof of a priori estimates for the case \( q \leq p \) 5
4 Proof of Theorem 1.3 9

*Research supported by the program "Erasmus Mundus Action 2 Lot 5 MID" provided by the European Commission and coordinated by the University of Turku (Finland), grant No. MID2012B207
1 Introduction

The research subject analyzed in this paper is the asymptotic behavior of entire solutions of the following subelliptic differential inequality

\[ \sum_{i=1}^{m} X_i^* A_i(x, u, Xu) \geq f(x, u), \quad x \in \mathbb{R}^n, \]  

(1.1)

under the conditions:

(A1) \( A(x, u, \xi) \) is a Carnot function, such that for all \( \xi \in \mathbb{R}^m : \nu_1 |\xi|^p \leq A(x, u, \xi) \xi \) on \( \mathbb{R}^n \),

(A2) \( A(x, u, \xi) \) is a Carnot function, such that for all \( \xi \in \mathbb{R}^m : A(x, u, \xi) \leq \nu_2 |\xi|^{p-1} \) on \( \mathbb{R}^n \),

(A3) \( f(x, u) \) is a Carnot function, such that for all \( u \in \mathbb{R} : f(x, u) \geq \nu_3 |u|^{q-2}u \) on \( \mathbb{R}^n \),

where \( q > 1, \ 1 < p < Q, \ \mathbb{R}^n \) is a Carnot-Carathéodory metric space of homogeneous dimension \( Q \), generated by the system of vector fields \( \mathbf{X} = (X_1, X_2, ..., X_m) \) and \( X_i^* \) denotes the adjoint of \( X_i \) with respect to Lebesgue measure. As it was mentioned in the abstract, a typical example of (1.1) is the following

\[ \sum_{i=1}^{m} X_i^* (|X u|^{p-2}X_i u) \geq |u|^{q-2}u, \quad x \in \mathbb{R}^n, \quad q > 1, \ 1 < p < Q. \]

To describe what kind of results we can expect from such type elliptic problems, it would be interesting to formulate in Euclidean settings some well-known facts. Let us consider the following equation

\[ \text{div}(|Du|^{p-2}Du) = \nu |u|^{q-2}u, \quad x \in \mathbb{R}^n, \quad 1 < q < p < n. \]  

(1.2)

Here \( \mathbb{R}^n \) is Euclidean space and \( Du \) means a gradient of a function \( u \). The simple consideration below illustrate the fact that the asymptotic behavior of entire solutions of this equation tightly depends on exponents \( p \) and \( q \).

Let \( q < p \). There exists a positive constant \( \nu \) such that \( u(x) = |x|^{p/(p-q)} \) is an entire solution of the equation (1.2) and \( \Delta_p u = \nu u^{q-1} \) a.e.(the last fact explains the assumption \( q > 1 \)). This trivial example becomes more interesting in comparison with some Liouville type results obtained by Serrin in [12] for \( C^1 \) smooth solutions: if \( 1 < q < p \) and \( u(x) = \tilde{\nu}(|x|^{p/(p-q)}) \) then \( u \equiv 0 \) (the description of these results is done according to the notations of this paper and to the case). The example shows that Serrin’s condition is sharp and cannot be improved. The closer to \( p \) we choose an exponent \( q \) in the equation the faster its solutions must grow at infinity.

In case \( q = p \) we could expect that solutions grow faster than any algebraic function and this fact was proved by Serrin in the same paper. Indeed, as examples of solutions, one can consider functions \( \exp (x_i), \ i = 1, 2, .., n \). The method used by Serrin is built on earlier ideas of Redheffer [11] and also the Serrin’s ideas and it supposes \( C^1 \) continuity of solutions as an important ingredient. A curious reader can find an additional information about
some preceded investigations in Euclidean settings also in papers of Farina [5], Tkachev [13], Brezis [2], Benguria, Lorca and Yarur [1], Haito, Usami [10].

For the case $q > p$ Serrin proved that there could be only trivial solution $u \equiv 0$. This result but for inequalities was treated also by Mitidieri, D’Ambrosio [4] as an auxiliary result under Euclidean settings and by D’Ambrosio [3] on Lie groups, but both under the restriction $u \geq 0$.

The method we are going to apply to prove Liouville type result for the case $q > p$ was introduced in the article of Kondrat’ev and Landis [8] and was carefully developed and generalized by Mitidieri and Pohozhaev in their seminal article [9] for the inequalities $-Lu \geq f(x, u)$.

Let us formulate our main results:

**Theorem 1.1** Let $1 < q < p < Q$ and let $u$ be a weak entire solution of the differential inequality (1.1) then

i) $\exists C_1 > 0$ and $R_0 > 0$ such that for $\forall R \geq R_0$

$$\|u\|_{\infty, A_{R/2}^2} \geq C_1 R^{\frac{p}{p-q}},$$

(1.3)

ii) if $u = \bar{u}(d_{CC}^{p/(p-q)}(x))$ as $d_{CC}(x) \to +\infty$ then $u \equiv 0$.

**Remark 1.1** When the a priori estimate (1.3) is proved it is evident that the second assertion of the theorem follows immediately.

**Theorem 1.2** Let $1 < q = p < Q$ and let $u$ be a weak entire solution of the differential inequality (1.1) then

i) $\exists C_2 > 0$ and $R_0 > 0$ such that for $\forall R \geq R_0$

$$\|u\|_{\infty, A_{R/2}^2} \geq C_2 R^{\frac{p}{p-1}},$$

(1.4)

ii) Let $\gamma : 0 < \gamma \leq p/(p-1)$ be an any fixed real number then if $u = \bar{u}(d_{CC}^{\gamma}(x))$ as $d_{CC}(x) \to +\infty$ then $u \equiv 0$.

**Remark 1.2** Thus, it is only left to prove the assertion ii) for the $\gamma \geq p/(p-1)$.

**Theorem 1.3** Let $1 \leq p < q$ and let $u$ be a weak entire solution of the differential inequality (1.1) then $u \equiv 0$.

**Remark 1.3** We added this theorem into the paper for the completeness of the picture with the exponents, from one point of view, and because the proof of this result is unexpectedly simple and short using the Kondrat’ev-Landis-Mitidieri-Pohozhaev method, from another point of view.

**Remark 1.4** It is also worth to mention that we can formulate Theorem 1.3 not only for $p$-Laplacian case ($1 \leq p < \infty$) but for all differential operators with non-negative characteristic forms, for example, the theorem is true for mean curvature operator and for total variation operator as well.
The example of solutions in Euclidean settings has illustrated that the a priori estimates obtained above are sharp in some sense, prove the existence for the appropriate inequalities as well and explain unexpected absence of the suitable estimate for the critical case \( p = q \).

The structure of the paper is as follows: in the second section we will present some auxiliary statements and introduce the notion of a generalized entire solution to the equation (1.1). The third section is devoted to the proof of statements i) both in Theorem 1.1 and in Theorem 1.2. In the fourth section, we prove Theorem 1.3. We are planning to add also the fifth section with the proof of the statement ii) which is unexpectedly not trivial under these general assumptions.

2 Auxiliary results

We consider in \( \mathbb{R}^n \) a system \( \mathbf{X} = (X_1, X_2, \ldots, X_m) \) of vector fields

\[
X_j = \sum_{k=1}^{n} b_{jk}(x) \frac{\partial}{\partial x_k}, \quad j = 1, \ldots, m,
\]

having real-valued, locally Lipschitz-continuous \( b_{jk} \). Through the paper if \( u \) is a non smooth then \( X_j u \) will be meant in the distributional sense. For the system \( \mathbf{X} = (X_1, X_2, \ldots, X_m) \) we denote by \( |\mathbf{X} u| = \left( \sum_{j=1}^{m} (X_j u)^2 \right)^{1/2} \) the length of the horizontal gradient

\[
\mathbf{X} u = (X_1 u, X_2 u, \ldots, X_m u).
\]

Thus let us consider also \( \mathbb{R}^n \) as a Carnot-Carathéodory metric space of a homogeneous dimension \( Q \) with a homogeneous distance \( d_{CC}(x) \) generated by the system of vector fields \( \mathbf{X} = (X_1, X_2, \ldots, X_m) \) as it was defined in [6].

Let us introduce \( \mathcal{L}_{1,p}(\Omega) \) for \( 1 \leq p < \infty \) as follows: it is a weak Sobolev space, which is a norm closure of a set of functions \( C^\infty(\overline{\Omega}) \) with the norm

\[
\|f\|_{\mathcal{L}_{1,p}(\Omega)} = \left( \int_{\Omega} \left( |\mathbf{X} f|^p + |f|^p \right) dz \right)^{1/p},
\]

which is an equivalent to the norm

\[
\left( \int_{\Omega} |\mathbf{X} f|^r dz \right)^{\frac{1}{r}} + \left( \int_{\Omega} |f|^r dz \right)^{\frac{1}{r}},
\]

where \( 0 < r \leq p \).

\( \mathcal{L}^\circ_{1,p}(\Omega) \) is a subspace of \( \mathcal{L}_{1,p}(\Omega) \), which is a norm closure of functions from \( C^\infty_0(\Omega) \) with the norm of \( \mathcal{L}^\circ_{1,p}(\Omega) \).

It is well known that for \( \mathcal{L}_{1,p}(\Omega) \) and \( \mathcal{L}^\circ_{1,p}(\Omega) \) under Carnot-Carathéodory spaces were proved embedding Sobolev type theorems and Nirenberg-Gagliardo type inequalities. We would refer the reader interested in the theory of Carnot-Carathéodory spaces to the survey [6], where one can find more useful references. Particularly, from the results of the survey [6] one can easy prove the following multiplicative Nirenberg-Gagliardo type inequality.
Proposition 2.1 For every function $f \in \mathcal{L}_{1,p}(\mathbb{R}^{N+M})$, the following inequality holds

$$
\int_{\mathbb{R}^{N+M}} |f|^p dz \leq C_{14} \left( \int_{\mathbb{R}^{N+M}} |Xf|^p dz \right)^{\beta_1} \left( \int_{\mathbb{R}^{N+M}} |f|^{\beta_2} dz \right)^{\frac{(1-\beta_1)p}{\beta_2}}.
$$

Here $0 < \beta_1 = \beta_1(\beta_2) < 1$.

Definition 2.1 We can say that a function $u(x)$ as a generalized entire solution (a weak solution) of the equation (1.1) if $u(x) \in \mathcal{L}_{1,p,loc}(\mathbb{R}^n)$ and satisfies the inequality

$$
\int_{\Omega} \sum_{i=1}^m A_i(x,u,Xu)X_i\varphi + f(x,u)\varphi dx \leq 0,
$$

for any $\varphi \in \tilde{\mathcal{L}}_{1,p}(\Omega)$ and $\Omega$ is an open bounded domain from $\mathbb{R}^n$.

3 Proof of a priori estimates for the case $q \leq p$

In this section we will prove results indicated by i) in Theorem 1.1 and Theorem 1.2. At first let us mention that using the simple change of the variable $u$ it is easy to check that conditions $(A_1)$, $(A_2)$, $(A_3)$ could be rewritten in the following form

$(A_1')$ $A(x,u-\tilde{b},\xi)$ is a Carnot function,

such that for all $\xi \in \mathbb{R}^m : \nu_1|\xi|^p \leq A(x,u-\tilde{b},\xi)$ on $\mathbb{R}^n$,

$(A_2')$ $A(x,u-\tilde{b},\tilde{\xi})$ is a Carnot function,

such that for all $\xi \in \mathbb{R}^m : A(x,u-\tilde{b},\xi) \leq \nu_2|\xi|^{p-1}$ on $\mathbb{R}^n$,

$(A_3')$ $f(x,u)$ is a Carnot function,

such that for all $u \in \mathbb{R} : f(x,u-\tilde{b}) \geq \nu_3|u-\tilde{b}|^{q-2}(u-\tilde{b})$ on $\mathbb{R}^n$.

Let us define the cutoff function $\xi_R$ from the space of $d_{CC}$-Lipschitz continuous functions such that $\xi_R \equiv 0$ if $d_{CC}(x) \leq R$ or $d_{CC}(x) \geq \mu R$ with $|X\xi_R| \leq C/\mu R a.e. in \mathbb{R}^n$ for any $R > 0, \mu > 1$. This function exists according to [7].

Then we can use $(u-\tilde{b})_+^s \xi_R^m (\tilde{b} > 0, m, s > 1$ we shall choose in what follows) as a test function for integral inequality (2.2) which together with the standard Young’s inequality yields basic for the case $p \neq q$ a priori estimate

Lemma 3.1 Let $u$ be a weak solution of the inequality (1.1). Then the following a priori estimate holds locally on any annulus $A_{\mu R}^R$, where $R > 0$ is big enough and $\mu > 1$ and for any level number $b > 0$ and exponents $m, s > 1$

$$
\int_{A_{\mu R}^R \cap \{u \geq b\}} (u-\tilde{b})_+^{q+s-1} \xi_R^m dx + \int_{A_{\mu R}^R \cap \{u \geq b\}} |X(u-\tilde{b})_+^{|s|p+1} \xi_R^m dx \\
\leq C \int_{A_{\mu R}^R \cap \{u \geq b\}} (u-\tilde{b})_+^{q+s-1} |X\xi_R|^p \xi_R^{m-p} dx,
$$

where $C = C(\varepsilon, m, p, s)$, $m > p$ and $\varepsilon > 0$ is small enough.
To investigate the case $p = q$ we will need the following

**Lemma 3.2** Let $u$ be a weak solution of the inequality (1.1) for $1 < q = p < Q$. Then the following a priori estimate holds locally on any annulus $A_R^p$, where $R > 0$ is big enough and $\mu > 1$ and for any level number $\tilde{b} > 0$

$$
\int_{A_R^p \cap \{u \geq \tilde{b}\}} (u - \tilde{b})_+^{p-1} \xi_R^m dx + \int_{A_R^p \cap \{u \geq \tilde{b}\}} |X(u - \tilde{b})_+|^{2(p-1)} \xi_R^m dx
\leq C \int_{A_R^p \cap \{u \geq \tilde{b}\}} (u - \tilde{b})_+^{2(p-1)} |X\xi_R|^{p\xi_R^m-p} dx,
$$

(3.2)

where $C = C(\varepsilon_1, m, p)$, $m > p$ and $\varepsilon_1 > 0$ is small enough.

Indeed, let us take $\frac{(u - \tilde{b})_+}{(u - \tilde{b})_+ + \bar{\varepsilon}} \xi_R$ ($\bar{\varepsilon} > 0$) as a test function, then using the same argument as in the previous lemma we obtain

$$
\int_{A_R^p \cap \{u \geq \tilde{b}\}} \frac{(u - \tilde{b})_+^p}{(u - \tilde{b})_+ + \bar{\varepsilon}} \xi_R^m dx + (\bar{\varepsilon} - \varepsilon_1) \int_{A_R^p \cap \{u \geq \tilde{b}\}} \frac{|X(u - \tilde{b})_+|^p}{(u - \tilde{b})_+ + \bar{\varepsilon}} \xi_R^m dx
\leq C(\varepsilon_1)m^p \int_{A_R^p \cap \{u \geq \tilde{b}\}} (u - \tilde{b})_+^p ((u - \tilde{b})_+ + \bar{\varepsilon})^{p-2} |X\xi_R|^{p\xi_R^m-p} dx.
$$

(3.3)

Throwing away the second term from the left and letting $\bar{\varepsilon} \to 0$ we obtain

$$
\int_{A_R^p \cap \{u \geq \tilde{b}\}} (u - \tilde{b})_+^{p-1} \xi_R^m dx \leq C(\varepsilon_1)m^p \int_{A_R^p \cap \{u \geq \tilde{b}\}} (u - \tilde{b})_+^{2(p-1)} |X\xi_R|^{p\xi_R^m-p} dx.
$$

(3.4)

Choosing $s = p - 1$ in (3.1) and taking into account that $q = p$ we can compose the required inequality from (3.1) and (3.3).

The assumptions of the next lemma are satisfied both for the case $p \neq q$ and $p = q$.

**Lemma 3.3** Suppose that for all weak solutions of the inequality (1.1) for some fixed $l > 0$ and $0 < \delta < 1$ the following a priori estimate holds locally on any annulus $A_R^p$, where $R > 0$ is big enough and $\mu > 1$ and for any level number $\tilde{b} > 0$

$$
\int_{A_R^p \cap \{u \geq \tilde{b}\}} (u - \tilde{b})_+^l \xi_R^m dx + \int_{A_R^p \cap \{u \geq \tilde{b}\}} |X(u - \tilde{b})_+|^{\delta(l+\delta)} \xi_R^m dx
\leq C \int_{A_R^p \cap \{u \geq \tilde{b}\}} (u - \tilde{b})_+^{l(1+\delta)} |X\xi_R|^{p\xi_R^m-p} dx.
$$

(3.5)

Here $p$ is the parameter of the inequality (1.1) and $p < Q$, $m$ is any fixed number greater than $2p$, $C = C(m, p, \delta, Q)$ is some constant usually larger than 1. Then for any $R > 0$, for
any fixed $\sigma_1$, $\sigma_2$, $\sigma_3 > 0$ and for any level numbers $b_1 > \tilde{b} > b_2 > 0$ and $0 < \nu < 1$ one can find proper $\beta_1 \in (0,1)$ which depends only on $p, l, \delta$ and $\nu$ such that

$$\int_{A_{R+\sigma_1 R+\sigma_2 R}} (u - b_1)^\nu \xi_R^m dx \leq C(\sigma_{\text{min}} R)^{-\frac{\beta_1}{\sigma}} \left( \int_{A_{R+\sigma_1 R+\sigma_2 R}} (u - b_2)^\nu \xi_R^m dx \right)^\frac{1+\delta}{\sigma}. \quad (3.6)$$

Suppose that $r_j^1 = R(1 + \sigma_1 2^{-j})$, $r_j^2 = R(1 + \sigma_1 + \sigma_2 + \sigma_3 - \sigma_3 2^{-j})$, $b_j = b_2 + (b_1 - b_2)2^{-j}$, $\tilde{b}_{j+1} = (b_j + b_{j+1})/2$, $j = 0, 1, 2, \ldots$ and let $\xi_{j+1}(x)$ be a $dCC$-Lipschitz continuous function such that $\xi_{j+1}(x) \in \mathcal{L}^1_{1,p}(\mathbb{R}^n)$, $\xi_{j+1} \equiv 1$ for all $x \in A_{r_{j+1}^1}^\nu$, $\xi_{j+1} \equiv 0$ for all $x$ if $r_{j+1}^r \leq dCC(x)$ or when $dCC(x) \leq r_{j+1}^r$, $|X\xi_{j+1}| = 2^j |X\xi_j|$, $|X\xi_{j+1}| \leq C/(r_j^r - r_{j+1}^r)$ for a.e. $x \in \mathbb{R}^n$. This function exists according to [7]. Setting in the inequality (3.5) $\check{R} = r_{j+1}^1$, $m\check{R} = r_{j+1}^1$, $\tilde{b} = \tilde{b}_{j+1}$, $\xi_{\check{R}} = \xi_{j+1}$, $A_{r_{j+1}^1}^\nu = A_{j+1}$, we obtain

$$\int_{A_{j+1} \cap \{u \geq \tilde{b}_{j+1}\}} (u - \tilde{b}_{j+1})^\nu \xi_{j+1}^m dx + \int_{A_{j+1} \cap \{u \geq \tilde{b}_{j+1}\}} |X(u - \tilde{b}_{j+1})_+^\nu|^{p \xi_{j+1}^m} dx \leq C \int_{A_{j+1} \cap \{u \geq \tilde{b}_{j+1}\}} (u - \tilde{b}_{j+1})^\nu \xi_{j+1}^m dx. \quad (3.7)$$

Denote $f_j = (u - b_j)^{\frac{(1+\delta)}{\sigma}} \xi_{j+1}^{\frac{m-p}{p}}$. Then using this and previous notations and listed above properties of cut-off functions $\xi_j$ and $\xi_{j+1}$, we can get

$$\int_{A_j} |f_j|^{\frac{m}{p}} dx + \int_{A_j} |Xf_j|^p dx \leq \int_{A_{j+1} \cap \{u \geq \tilde{b}_{j+1}\}} (u - \tilde{b}_{j+1})^\nu \xi_{j+1}^m dx + \int_{A_{j+1} \cap \{u \geq \tilde{b}_{j+1}\}} |X(u - \tilde{b}_{j+1})_+^{\frac{(1+\delta)}{\sigma}}|^{p \xi_{j+1}^m} dx + \int_{A_j} \left( \frac{m-p}{p} \right)^\nu \int_{A_j} (u - \tilde{b}_{j+1})^{(1+\delta)} |X\xi_{j+1}|^{p \xi_{j+1}^{m-p}} dx. \quad (3.8)$$

Then it follows from (3.7) and (3.8) that

$$\int_{A_j} |f_j|^{\frac{m}{p}} dx + \int_{A_j} |Xf_j|^p dx \leq C \left( \frac{2^{pj}}{\sigma_{\text{min}} R^p} \right) \int_{A_{j+1}} |f_{j+1}|^p dx \quad (3.9)$$

To estimate from above the integral on the right hand side of the inequality (3.9) we need to use the Nirenberg-Gagliardo type multiplicative inequality (2.1). Let us apply it to the function $f = f_{j+1}$ with $\beta_2 = p/(1+\delta)$. This yields

$$\int_{A_j} |f_j|^{\frac{m}{p}} dx + \int_{A_j} |Xf_j|^p dx \leq C \left( \frac{2^{pj}}{\sigma_{\text{min}} R^p} \right) \left( \int_{A_{j+1}} |Xf_{j+1}|^p dx \right)^{\beta_2} \left( \int_{A_{j+1}} \right)^{(1-\beta_2)/(1+\delta)} \left( \int_{A_{j+1}} |f_{j+1}|^{\frac{m}{p}} dx \right)^{\nu}, \quad (3.10)$$
where, after calculations, \( \beta_1 = \frac{1 + \frac{4}{p} - 1}{1 + \frac{2}{p} - 1} < 1 \).

Using the standard Young's inequality with exponents \( \beta_1^{-1} \) and \( 1 - \beta_1^{-1} \) together with Eq. (3.3), we have

\[
\int_{A_j} |f_j|^{\frac{p}{p+r}} dx + \int_{A_j} |X f_j|^p dx \leq \varepsilon_2 \int_{A_{j+1}} |X f_{j+1}|^p dx + \frac{C(\varepsilon_2)}{\min R} \left( \int_{A_{j+1}} |f_{j+1}|^{\frac{p}{p+r}} dx \right)^{\frac{1+\delta}{\nu}};
\]

where \( \varepsilon_2 > 0 \) is a small constant to be chosen later. By induction we obtain

\[
\int_{A_0} |f_0|^{\frac{p}{p+r}} dx + \int_{A_0} |X f_0|^p dx \leq \varepsilon_2^{j+1} \int_{A_{j+1}} |X f_{j+1}|^p dx + \frac{C(\varepsilon_2)}{\min R} \left( \int_{A_{j+1}} |f_{j+1}|^{\frac{p}{p+r}} dx \right)^{\frac{1+\delta}{\nu}}.
\]

Here we can cast aside the gradient term from the left. Then using the properties of weak solutions to realize that the integral \( \int_{A_{j+1}} |X f_{j+1}|^p dx \) is bounded above, choosing \( \varepsilon_2 \) so that \( \varepsilon_2^{2^{\frac{p}{p+r}}} = 1/2 < 1 \) and letting \( j \to \infty \), we obtain the required estimate.

**Lemma 3.4** Under the assumptions of the previous lemma the following inequality holds

\[
\|u\|_{\infty, A_{\tilde{R}+\tilde{R}+\tilde{R}+R}} \leq C(\tilde{\sigma}_0 R)^{-\frac{p}{p+r} - \frac{1}{1-\delta}} \left( \int_{A_{\tilde{R}+\tilde{R}+\tilde{R}+R}} |u|^{\nu} dx \right)^{\frac{1}{\nu}}.
\]  

Suppose that \( R_i = \tilde{R}(1+\tilde{\sigma}_i - \tilde{\sigma}_i 2^{-i}) \), \( \tilde{R}_i = (R_i + R_{i+1})/2 \), \( \tilde{R}_i = \tilde{R}(1+\tilde{\sigma}_i + \tilde{\sigma}_i 2^{-i}) \), \( \tilde{R}_i = (R_i^0 + R_{i+1}^0)/2 \), \( \tilde{\sigma}_{min} = \min(\tilde{\sigma}_i) \), \( h_i = k(1 - 2^{-i}) \), \( \tilde{h_i} = (h_i + h_{i+1})/2 \) for \( i = 0, 1, 2, \ldots \). Then under the settings \( R = R_i^0, R + \sigma R = \tilde{R}_i, R + \sigma R + \sigma R = \tilde{R}_i, R + \sigma R + \sigma R + \sigma R = R_i^0 \), \( b_1 = \tilde{h_i}, b_2 = h_i \), \( \tilde{\sigma}_0 = \min(\tilde{\sigma}_i) \), \( A_{\tilde{R}+\tilde{R}+\tilde{R}+R} = \tilde{A}_i \), \( A_{\tilde{R}+\tilde{R}+\tilde{R}+R} = \tilde{A}_i \), Lemma 3.3 implies

\[
\int_{A_{\tilde{R}+\tilde{R}+\tilde{R}+R}} (u - \tilde{h}_i)^+ dx \leq C(R_i^0 - R_i)^{-\frac{p}{p+r}} \left( \int_{A_{\tilde{R}+\tilde{R}+\tilde{R}+R}} (u - h_i)^+ dx \right)^{\frac{1+\delta}{\nu}}.
\]

Let us denote \( I_{i+1} = \int_{A_{i+1}} (u - h_{i+1})^+ dx \). Thus, from Eq. (3.12) one can get the following estimate

\[
I_{i+1} \leq C(R_i^0 - R_i)^{-\frac{p}{p+r}} (h_{i+1} - h_i)^{-l(1-\nu)} I_i^{1+\delta}.
\]

It means that the sequence \( \{I_i\} \) satisfies the assumptions of Ladizhenskaya’s Lemma and from the last inequality we have \( I_{i+1} \leq C_L d_i I_i^{1+\theta} \), denoting \( \theta = \frac{1+\delta}{\nu} - 1 > 0 \),

\[
C_L = C(\tilde{\sigma}_0 R)^{-\frac{p}{p+r}} (2^{\frac{p}{p+r} + l(1-\nu)})^{1+\delta} k^{-l(1-\nu)} > 0, \quad b = 2^{\frac{p}{p+r} + l(1-\nu)} > 1,
\]

8
where the constant $C_{Lad}$ is controlled by $k$. Then Ladizhenskay’s Lemma implies that $I_i \to 0$ as $i \to \infty$, and $\|u\|_{\infty,A_{\infty}} \leq k$ if $I_0 \leq C_{Lad}^{-1/\beta} b^{-1/\beta^2}$. Choosing

$$k = C(\tilde{\sigma}_{\min, \tilde{R}}) \left( \frac{p}{1-p_1} \right)^{1/(1-p)} \left( \frac{1}{\int_{A_{\tilde{R}}^{R+\tilde{R}+\tilde{R}} + \tilde{R}} |u|^{l\nu} dx} \right),$$

where constant $C$ is sufficiently large, we obtain the required estimate. The lemma 3.4 is proved.

Simple iteration process and the redenoting manifest that together with Lemma 3.4 we have proved the following inequality on any annulus $A_{\mu R}^R$ with suitably large $R > 0$

$$\|u\|_{\infty,A_{\mu R}^R} \leq C(\mu, Q) R^{1-p_1} R^{Q(1-\nu)-1} \int_{A_{\mu R}^R} |u|^{l\nu} dx.$$}

Now it is very easy to find the required bound of the maximum norm of the solution from below. Let us estimate the integral from the left hand side of the last inequality

$$\left( \int_{A_{\mu R}^R} |u|^{l\nu} dx \right) \leq C(\mu, Q) R^{Q(1-\nu)-1} \|u\|_{\infty,A_{\mu R}^R}^{1+\nu}.$$}

This yields

$$R^{1-p_1} R^{Q(1-\nu)-1} \leq C(\mu, Q) \|u\|_{\infty,A_{\mu R}^R}^{1+\nu},$$

and then, after the appropriate calculations, from (3.14) and (3.15) we have the desired estimate

$$R^p \leq C \|u\|_{\infty,A_{\mu R}^R}.$$}

Now, to obtain required estimates, we need only to choose appropriate $l$ and $\delta$ according to Lemma 3.1 for Theorem 1.1 or Lemma 3.2 for Theorem 1.2.

4 Proof of Theorem 1.3

Here we will get the a priori estimate with $p < q$. Let $u$ be a weak solution of the inequality (1.1). Following the same way as it was in the proof of Lemma 3.1 and using non-negativity of characteristic form of our differential operator, we can obtain

$$\int_{\Omega} |u|^{q+s-1} \xi_R^m dx \leq \frac{m^p}{s 2^p \nu} \int_{\Omega} |u|^{p+s-1} |X\xi_R|^p \xi_R^{m-p} dx.$$}

It gives us together with Holder inequality the following estimate

$$\int_{\Omega} |u|^{q+s-1} \xi_R^m dx \leq \frac{m^p}{s 2^p (R-r)^p} C(Q) R^{Q(q-s)} \left( \int_{\Omega} |u|^{q+s-1} \xi_R^{(m-p)(q+s-1)} dx \right)^{p+s-1}.$$
Let us fix $m = \frac{n(q+s-1)}{q-p}$ such that it satisfies $m = \frac{(m-p)(q+s-1)}{p+1}$ then integrals from both sides are equal. Hence, we have

$$\left( \int_{B_R} |u|^{q+s-1} \xi_R^{\frac{q+s-1}{q-p}} \, dx \right)^{\frac{q-p}{q+s-1}} \leq \frac{m^p C(Q) R^{\frac{Q(q-p)}{q+s-1}}}{s2^p (R-r)^p} = C \frac{R^{\frac{Q(q-p)}{q+s-1}}}{(R-r)^p} \frac{p^p}{(q-p)^p} \frac{1}{s} (q-s-1)^{p-1}.$$ 

This yields

$$\left( \int_{B_R} |u|^{q+s-1} \xi_R^{\frac{p(q+s-1)}{q-p}} \, dx \right)^{\frac{q-p}{q+s-1}} \leq \frac{C(p,q) R^{\frac{Q(q-p)}{q+s-1}}}{(R-r)^p} (q-s-1)^{p-1} (1 + \frac{q-1}{s}).$$

Let us choose $r = R/2$ and redenote $\bar{s} = q + s - 1$. Then we have

$$\left( \int_{B_{R/2}} |u|^\bar{s} \, dx \right)^{\frac{1}{\bar{s}}} \leq C(p,q) \left( \frac{R^{\frac{Q(q-p)}{s}} s^{p-1}}{R^p} \right)^{\frac{1}{q-p}} \left( 1 + \frac{q-1}{s-q+1} \right)^{\frac{1}{q-p}}.$$

Now, as $R \to +\infty$ then for all $\bar{s} > \frac{Q(q-p)}{p}$ we have $L_\bar{s}$-norms on $\mathbb{R}^n$ are zero. Thus, Theorem 1.3 is proved.

**References**

[1] R.D. Benguria, S. Lorca, C.S. Yarur, Nonexistence results for solutions of semilinear elliptic equations, Duke Math. J. 74 (1994) 615–634.

[2] H. Brezis, Semilinear equations in $\mathbb{R}^n$ without condition at infinity, Appl. Math. Optim. 12 (1984) 271–282.

[3] L. D’Ambrosio, Liouville theorems for anisotropic quasilinear inequalities. (English summary) Nonlinear Anal. 70 (2009), no. 8, 2855–2869.

[4] L. D’Ambrosio, E. Mitidieri, A priori estimates, positivity results, and nonexistence theorems for quasilinear degenerate elliptic inequalities. Adv. Math. 224 (2010), no. 3, 967–1020.

[5] A. Farina, Liouville-type theorems for elliptic problems, in: M. Chipot (Ed.), Handbook of Differential Equations, vol. 4, Stationary Partial Differential Equations, Elsevier, 2007, pp. 60–116.

[6] N. Garofalo, D. M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces. Comm. Pure Appl. Math., (1996) 49: 1081–1144.

[7] N. Garofalo, D. M. Nhieu, Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot-Carathéodory spaces, J. Anal. Math., 74 (1998), 67-97.
[8] V.A. Kondrat’ev, E.M. Landis, Qualitative properties of the solutions of a second-order nonlinear equation, Mat. Sb. (N.S.) 135(177) (3) (1988) 346–360, 415.

[9] E. Mitidieri, S.I. Pokhozhaev, A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities E Mitidieri, SI Pokhozhaev Trudy Matematicheskogo Instituta im. VA Steklova (2001) 234, 3-383.

[10] Y. Naito, H. Usami, Entire solutions of the inequality $\text{div}(A(|Du|)Du) = f(u)$. Math. Z. 225 (1997), no. 1, 167–175.

[11] R. Redheffer, On the inequality $\Delta u \geq f(u, |\nabla u|)$, J. Math. Anal. Appl. 1 (1960) 277–299.

[12] J. Serrin, Entire solutions of quasilinear elliptic equations. (English summary) J. Math. Anal. Appl. 352 (2009), no. 1, 3–14.

[13] V.G. Tkachev, Some estimates for the mean curvature of nonparametric surfaces defined over domains in $\mathbb{R}^n$, Ukrain. Geom. Sb. 35 (1992) 135–150, translated in: J. Math. Sci. (N.Y.) 72 (1994) 3250–3260.

Vira Markasheva
Dipartimento di Matematica, Università di Bologna, Italy

E-mail address: vira.markasheva@unibo.it, w9071981@gmail.com