Rising Novelties on Evolving Networks: Recent Behavior Dominant and Non-Dominant Model

Khushnood Abbasa,b,*

aBig Data Research Center, University of Electronic Science and Technology of China, Chengdu 611731, PR China
bBig Data mining and application center, Chongqing Institute of green and Intelligent Technology of China, Chinese Academy of Sciences, Chongqing, 401120, P.R. China.

Abstract

Novelty attracts attention like popularity. Hence predicting novelty is as important as popularity. Novelty is the side effect of competition and aging in evolving systems. Recent behavior or recent link gain in networks plays an important role in emergence or trend. We exploited this wisdom and came up with two models considering different scenarios and systems. Where recent behavior dominates over total behavior (total link gain) in the first one, and recent behavior is as important as total behavior for future link gain in second one. It suppose that random walker walks on a network and can jump to any node, the probability of jumping or making connection to other node is based on which node is recently more active or receiving more links. In our assumption random walker can also jump to node which is already popular but recently not popular. We are able to predict rising novelties or popular nodes which is generally suppressed under preferential attachment effect. To show performance of our model we have conducted experiments on four real data sets namely, MovieLens, Netflix, Facebook and Arxiv High Energy Physics paper citation. For testing our model we used four information retrieval indices namely Precision, Novelty, Area Under Receiving Operating Characteristic(AUC) and Kendal’s rank correlation coefficient. We have used four benchmark models for validating our proposed models. Although our model doesn’t perform better in all the cases but, it has theoretical significance in working better for recent behavior dominant systems.

Introduction

Every time we use the Internet (particularly social media platforms, search engines, email servers) we leave our traces behind which generates a huge volume of data (Hommes 2002), (Bouchaud, Matacz, and Potters 2001), (Haldane and May 2011). This huge data carrying a lot of opportunity for understanding the individual as well as collective behaviours. Collective behaviours are more important in many domain such as finance,
viral marketing, epidemic disease prevention and so on, by targeting or controlling individuals or communities when predicting their behaviour and / or events and trends in societies. For example from Google trend some researchers infer the real world phenomena such as geographical location of disease spread (Ginsberg et al. 2008), stock market prediction (Preis, Moat, and Stanley 2013), which product will be in demand or who is going to win this election. Likewise, social media platforms such as Twitter has been used to track human mobility, improve the response to disasters, etc. Therefore we can say this big data is carrying ample amount of opportunities for scientists and researchers from all disciplines to solve this complex world problem (Axtell 2001), (King 2011), (Vespignani 2009), (Perc 2012). Most of the big data of the interactions of people in the Internet can be modeled. The following two main different types of networks can be shaped from such data: a) monopartite, in which the nodes have similar types (i.e., only people or items) and links reflect a relationship among them; and b) bipartite, in which the nodes can be from different types (i.e., people and items) and links show a relationship between different types of nodes. By generally simply the latter type can be transformed to two different monopartite networks. Nevertheless, one of the main attributes in such network is the link formation among the nodes over time which can help to manage the dynamics of the network and make appropriate decision (Abbasi 2016).

Although the quality item or fit node always show some common characteristics i.e they compete to get attention. It may be possible in presence of popular nodes its strength forgotten. Researchers have also found that in network such as paper citation it may not get attention for long time (Ke et al. 2015), some gain popularity many times (Cheng et al. 2016). In all the cases we think as also been proven that recent activity of the node is one of the important feature of node for future activity (Gleeson et al. 2014), (ZENG et al. 2013). Popularity or future link gain prediction is a complex task depending on different factors like quality or nodes fitness and so on. Content popularity may fluctuate with time (Eisler, Bartos, and Kertész 2008), increase over time or be limited within communities. Most recently researchers have found that the popularity of online contents like news, blog posts, videos, mobile app download (Gleeson et al. 2014) in online discussion forums and product reviews exhibits temporal dynamics.

Emergence or first time occurrence is novelty for those who didn’t face it before, which can be innovation also. Innovation is special case of novelty in a sense it is entertained by collective attention, while novelty may not. The emergence, novelty , trend or future occurrence prediction models can be found since quite long time ago such as (Zanette and Montemurro 2005), (Hoppe 1984), (Simon 1955), (Tria et al. 2014). Emergence prediction theory applies in many areas of life such as economics (Simon 1955), biology (E. and Yule 1925), physics (Redner 1998) etc. (Simon 1955) has given stochastic model which fits to skewed or power law distribution or fit to rich-gets-richer phenomenon. It is obvious that popularity of any item on social media doesn’t last forever. In addition decay rate may vary from item to item. Every type of node have its own decay rate like (Parolo et al.
2015) have found research article citation rate decays after some time. Cumulative advantage is a well known phenomenon seen almost in every evolving networks, which states that popularity increases cumulatively; the rate of new link (Either item receives rating in case of Movielens, or a friend like or comments in case of Facebook wall post activity) formation for any node is proportional to the observed number of links which node has received in past. Authors in (D. Wang, Song, and Barabasi 2013) for quantifying long term prediction considered fitness of paper for future citation gain of the paper. The nature of paper citation distribution is also found fat tailed or skewed which tells only few papers carrying most of the citation while most of the papers no citation or very very low (Redner 1998).

We have solved the novelty problem using networks because of its wide application (Garlaschelli, Caldarelli, and Pietronero 2003), (Buldyrev et al. 2010). Almost everything shows aging effect, from biological organism to inanimate twitter “meme”. Trend is side effect of aging; some perform better and loose influence within few hours and some perform for years. Therefore aging is one of the important factor that we should taken into consideration while solving emergence phenomena. Novelty is in one sense unexpected event or occurrence in future temporal domain, therefore recent behavior is an important feature for predicting rising novelties on evolving networks. Emergence can also be considered as after product of competition and aging. Ranking index on the basis of action of interest is one of the best way to understand emergence and competition such as in our case action of interest is in link formation of the node. Therefore considering all above facts we have solved the problem of emergence or rising novelty considering; aging and recent behavior (recent link gain) as well as total behavior (total link gain), and tested performance of our model on ranking index based metrics.

The rest of the paper is organized as follows. In Section 2 we have introduced the benchmark models and also proposed our model. In section 3 we have given details about data sets and indexes that we have used for testing our model. In section 4 we have given the results. In Section 5 we have concluded the paper.

Materials and Methods

Before introducing our two proposed models for link prediction . first we briefly describe four existing prediction models (i.e., Node In-degree; PageRank(PR); Popularity Based Predictor(PBP); and Temporal Based Predictor(TBP)) which will be used to benchmark the models and compare their performance using the evaluation metrics which will be discussed in the last part of this Section.

PageRank

PageRank given by (Brin and Page 1998) was developed to rank webpages on internet for Google search engine optimization purpose. It can be applied in other networked architecture also where structural property of the node
plays an important role such as information diffusion, scientific paper/author ranking etc. PageRank algorithm can be given as follows:- If node n_i have link to node n_j there will be a directed link between them ($n_i \rightarrow n_j$). If node (i.e webpage) n_j has S_i set of link to other nodes then page will distribute its importance in $|I_j|$ (the number of nodes in set $|S_i|$). Generally, the transition matrix of the network or graph A can be given as follows-

$$A_{ij} = \begin{cases} 1/|I_j| & \text{if } n_j \in s_i \\ 0 & \text{Otherwise} \end{cases}$$

Since there can be nodes that do not have link to other nodes although they are being pointed by other nodes, also known as dangling nodes, so new transformed matrix (S) can be given as-

$$S = A + N_{cd}$$

Where N_{cd} matrix have all the elements zero except for dangling nodes’ column which are $1/N$ where N is the number of rows or nodes in the matrix. Easy to find that those columns are normalized that sums to one for making column stochastic matrix. Now the PageRank of dangling nodes will not be zero. Since random surfer will follow the link from one page to another, suppose that random surfer follows the PageRank (follows S) with probability (α) then there is $(1 - \alpha)$ probability that he will choose a random page. So now PageRank matrix also known as Google matrix M can be given as-

$$M = \alpha S + \frac{(1 - \alpha)}{n} I_n$$

Where I_n is matrix of size $n \times n$, it’s every element as one. PageRank vector PR can be calculated using power method as $PR^k = M.PR^{(k-1)}$ it will definitely converge to a static vector which is PageRank.

Popularity-based predictor (PBP)

(ZENG et al. 2013) came up with Popularity Based Predictor (PBP). It exploits the preferential attachment phenomenon, which states that popularity increases cumulatively; the rate of new link (either item receives rating in case of Movielens, or a friend like or comments in case of Facebook wall post activity) formation for any node is proportional to the observed number of links which node has received in past. If an item is popular at time t, then it will probably be popular due to the condition that current degree of an item $k_o(t)$ is a good predictor of its future popularity. (ZENG et al. 2013) proposes to calculate the prediction score of an item at time t can be given as follows-
\[s_o(t, T_P) = k_o(t) - \lambda k_o(t-T_P) \]

(1)

Where \(k_o(t) \) is the rating/links received up to time \(t \). \(\lambda \in [0, 1] \), note that \(\lambda = 0 \) gives the total popularity and for \(\lambda = 1 \) it gives recent popularity. Through out the manuscript by popularity we mean number of ratings or links received by item or node.

Temporal Base Predictor (TBP)

This model (Zhou, Zeng, and Wang 2015) considers decay effect only while collecting score of node for future probability of getting links.

\[s_o(t) = \sum_u A_{uo}(t) \exp(d(T_{uo} - t)) \]

(2)

where \(s_o(t) \) is prediction score for node \(o \) at time \(t \), \(A_{uo}(t) \) is the user object adjacency matrix, and \(T_{uo} \) is the time when object or node received link and \(d \) is the decay rate.

Proposed model 1: Recent Behaviour Dominant Model (RBDM)

In many systems such as human, herding or recent behavior followers are very common. Although it is well known that people go for popular items or follow rich-gets-richer behavior, but to understand emergence, recent behavior is one of the important factor. People follow the strength of the node also, with recent behaviours. We also know “congestion feeds itself” phenomena, meaning having more recent attractions(e.g recent new links) may lead to gaining more recent attractions. To quantify all these phenomena we came up with a model that gives weight to recency of link formation. If there are few attentions to node (e.g links) then will give weight to total popularity gain. Since we are modeling a system in which humans are core of its action for making link either user item bipartite network, Facebook friend ship network or paper citation network. And if people follow recent behavior in making links then recent degree gain must be a good predictor for future degree gain. In the same way if they follow total degree or popularity of the node then total degree would be a good predictor. But in reality people follow both therefore, we suppose people follow recent behavior with probability \(\alpha \), and with \(1 - \alpha \) they follow total degree or popularity of the items.

\[P_o(t, T_P) = (\alpha_o \frac{\Delta k_o(t, T_P)}{\sum_u \Delta k_o(t, T_P)} + (1 - \alpha_o) \frac{k_o(t)}{\sum_u k_o(t)}) \]

(3)
Where \(\Delta k_o(t, T_P) = k_o(t) - k_o(t - T_P), k_o(t) \) reflect the link gain upto time \(t \). \(\alpha_o \) is dominance factor. It depends on system to system how much recent behavior dominated system is, weak or strong. Such as for “bursty” behavior strong dominance should work. In our case \(\alpha_o \) is from Cumulative Distribution of \(\frac{\Delta k_o(t, T_P)}{\sum_u \Delta k_o(t, T_P)} \). It means \(\alpha_o \) is biased towards recent behaviours, the more recent behaviour, the higher \(\alpha_o \) will be. IF the recent behaviour probability \(\left(\frac{\Delta k_o(t, T_P)}{\sum_u \Delta k_o(t, T_P)} \right) \), is low then the model score will depends on total link gain. Which is why we call this model “Recent Behavior Dominant Model(RBDM)”.

Proposed model 2: Recent Behaviour Non-Dominant Model(RBNDM) for Emergence

In this model we think recent behavior is effect of long term past behavior. If a node is getting more link recently it is because it has already gained link in past. In other words people follow recent behaviours but also at the same time they concern about past links. In that system we need to give weightage to both behaviours. So to model this we think if a node is active in recent time and also it was popular then its probability of gaining link in future is high.

\[
P_o(t, T_P) = ((1 - \alpha_o) \frac{\Delta k_o(t, T_P)}{\sum_u \Delta k_o(t, T_P)} + \alpha_o \frac{k_o(t)}{\sum_u k_o(t)})
\]

(4)

Since we are considering evolving systems, we should consider the time as an important factor. Therefore to calculate total score of node, i.e \(k_o(t) \), we used aging effect similar to TBP model described above. \(\alpha_o \) is from cumulative distribution of \(\frac{\Delta k_o(t, T_P)}{\sum_u \Delta k_o(t, T_P)} \).

Data and Metrics

To test the performance and robustness of our model we have considered different data sets and evaluation metrics.

Evaluation metrics

Four evaluation metrics are adopted to measure the accuracy of the proposed model including precision\((P_n) \), novelty\((Q_n) \) and Area Under Recieving Operating Characteristic\((AUC) \) and rank correlation Kendall’s Tau\((\tau) \).
• **Precision** is defined as the fraction of objects that are predicted also lie in the top N object of true ranking (Herlocker et al. 2004).

$$p_n = \frac{D_n}{n}$$

Where D_n is the number of common objects between predicted and real ranking. n is the size of list to be ranked. Its value ranges in $[0,1]$, higher value of (P_n) is better.

• **Novelty**(Q_n) is a metric to measure the ability of a predictor to rank the items in top n position that was not in top n position in past (ZENG et al. 2013). These are the rising novelties in the system. If we denote the predicted object as (P_{po}) and potential true object as P_{ro}, then the novelty is given by-

$$Q_n = \frac{P_{po}}{P_{ro}}$$

• **AUC** measures the relative position of the predicted item and true ranked items. Suppose predicted item list is (L_{pn}) and real item list is (L_{rn}). if $s_{op} \in L_{pn}$ and $s_{rp} \in L_{rn}$ is score of object in predicted then AUC is given by-

$$\text{AUC} = \frac{\sum_{op \in L_{pn}} \sum_{rp \in L_{rn}} I(s_{pn}, s_{rn})}{|L_{pn}| |L_{rn}|}$$

where,

$$I(s_{pn}, s_{rn}) = \begin{cases}
0 & \text{if } s_{pn} < s_{rn} \\
0.5 & \text{if } s_{pn} = s_{rn} \\
1 & \text{if } s_{pn} > s_{rn}
\end{cases}$$

• **Kendal’s Tau**(τ) measures the correlation between predicted and actual ratings. It varies between -1 and $+1$. $\tau = 1$ when predicted and actual are identical, $\tau = 0$ when both ranking is independent and $\tau = -1$ shows they perfectly disagree. It can be given as-

$$\tau = \frac{C - D}{C + D}$$

where C is the number of concordant pairs and D is the number of discordant pairs.
To test the predictors accuracy we have used different data sets including MovieLens, Netflix, Facebook wall post and Arxiv paper citation. MovieLens and Netflix data sets contains movie ratings, Facebook data set contains users’ wall post relationships and arxiv citation data set contains paper citation information from arxiv database of High Energy Physics field (Gehrke, Ginsparg, and Kleinberg 2003). Movielens, Netflix and Facebook data is same as reported in paper (Zhou, Zeng, and Wang 2015). For Arxiv high energy physics citation data contains papers that were uploaded by scientists. It contains 34,546 papers from January 1993 to April 2003. There is an edge if paper \(i \) has cited paper \(j \). We have converted the time into number of months. We have considered the paper \(j \) has received link from paper \(i \) at the time paper \(i \) was submitted to arxiv server. For the three data sets Facebook, Movielens and Netflix the time is considered in days while for arxiv citation data set the time is in months since citation process is slower than the rest of the cases. The data description are as follows:

- **Netflix** data contains 4960 users, 16599 movies and 1249058 links, data was collected during (1st Jan 2000 – 31st Dec 2005).

- **MovieLens** data set contains 7533 movies, 864581 links and 5000 users and data was collected during (1st Jan 2002 – 1st Jan 2005).

- **Facebook** data contains 40981 set of users and their 38143 wall post activity and 855542 links, during period of (14 Sep 2004 – 22nd Jan 2009). If user has posted on a wall there will be a link between the user and the wall, self influenced is removed by removing the link between user and its own wall post.

- **Arxiv-HePh** data set contains 30500 number of papers and 347185 edges from January 1993 to April 2003.
Figure 1: The above figure shows temporal occurrence of event or link formation per unit of time, i.e.
for Movielens, Netflix, Facebook it is in days and for Citation dataset it is in Months.
Analysis and Results

The link prediction models often require to consider the creation (and decay) of the links in a network over time. In other words, observing the link formation behaviour during a given time (e.g., up to the models will predict (and rank) nodes’ link gain during a period of time window in future (>t). In order to compare different prediction models, first we have calculated the values for the evaluation metrics (Pn, Qn, AUC, tua), as shown in Figure 3, considering top 50, 100 and 200 items for all the four datasets.

Results on synthetic data

To prove our models’ theoretical relevance in [Figure 2] we have created data for recent degree gain and total degree gain. To achieve this we have sampled data from population of size n*n, where n is total system size. We have randomly sampled with replacement, recent degree gain and total degree gain from population of 1000000. In first column we have plotted the distribution of recent degree gain and in second column, distribution of α in our model. In third column we have plotted the correlation rank τ with recent degree gain and total degree gain and with our models. It can be seen the rank correlation for recent degree gain and Recent Behaviour Dominant Model (Recent:RBDM) is 1. It proves our hypothesis “Recent Behaviour Dominance” effect. In the same way we have plotted the rank correlation with recent degree gain and RBNDM. We have repeated the procedure with total degree gain also.

Figure 2: We have created random data for recent degree gain and total degree gain and then calculated our models correlation for varying system size. We have tested up to 1000 size. First figure from left is probability distribution of recent degree gain, the middle figure is distribution of α in our model and the right most is rank correlation τ. The x axis is the size of the system. Y-axis is the correlation value which can be between -1 to 1. Recent:RBDM means correlation between recent
degree gain and our proposed model RBDM. In same order Total:RBNDM is the rank correlation between our proposed model RBNDM and total degree gain, and so on.

Results on Real Data

To evaluate the performance of our models we have selected 10 random t for each data sets. Selection of t is considered in such a way that predictor have enough history information so we left one-third of the data from start and one-third from last. From middle one-third part we have randomly selected time and then calculated score. Since predictors are based on nodes’ history, we have selected only those node that have received at least one link before time t. Therefore the new nodes after randomly selected time t will be discarded in our analysis.

Accuracy comparison

For comparing our proposed predictors with benchmark predictors we have considered past time window (T_P) and future time window (T_F) as 30 days and for arxiv citation data set the time is 40 months for past and future time window both. For comparison we have selected the top n ranked items from predicted list and compare them against the real items for both the predictors. For pageRank teleportation parameter we have considered 0.90.

While comparing our predictor we have considered the past and future time windows as 30 days in case of Movielense, Netflix and Facebook respectively. Paper citation case is different, its evolution takes time so instead of day we have considered no of months. Thus in this case past and future time windows are 40 months. We did this to make sure we have enough random months so that we can take average of 10 without any bias. Because after cleaning the data all we have 121 months start from 0 month. 40 months is very short period for paper citation, generally decay effect cant be seen in this short period of time.
Figure 3: The performance comparison between proposed methods and benchmark methods for MovieLens, Netflix, Facebook and citation data set for top 50,100 and 200 items. The metrics used are; AUC, Pn , Qn and tau, higher the better all the four metrics gives result between 0 and 1 except tau which gives between -1 to 1.

We have compared our results with the benchmark methods considering top 50,100 and 200 items in list. For comparing we have considered past item window \((T_P)\) as 30 days and we have tested the predictor for the same future time length \(T_F = 30\) days. For arxiv citation network we have considered \(T_P, T_F = 40\) months. [Figure 3] shows the comparative performance of proposed method over benchmark method. This result is the best value achieved by predictors when \(T_F\) and \(T_P\) are same as 30 days. In case of citation data set the \(T_F\) and \(T_P\) are 40 months. The parameter value in case of TBP and in our case is as follows: Movielens,Netflix and \(\gamma = 0.06\) for Facebook and Citation it is 0.03. In case of PBP \(\lambda = 0.98\). The pageRank parameter is 0.9 for all the datasets except Facebook in this case 0.6 gives good precision. From the [Figure 3] have better performance with benchmark models. Our proposed model not outperforms in all the cases but there atleast one case in which it always out performs with respect to benchmark models.

Performance for fixed past \((T_P)\) and varying future \((T_F)\) time length

In the next phase of our analysis, for further comparison of the performance of different predicting models, we also investigate the effects of the length of past and future time windows, on the performance of models measured through Pn, Qn, AUC, and tau.
In Figure 4 we have shown the performance of our predictor against the benchmark predictors for different values of future time window T_F. The article columns are from right to left for AUC, P_n, novelty (Q_n) and rank correlation (τ). This result is for top 100 items performance except rank correlation τ which works on the whole data. Y-axis is for metrics, AUC, P_n, Q_n and τ results, higher the better.

In [Figure 4] we have shown the performance of our predictor against the benchmark predictors for different values of future time window. For TBP and PBP the parameter values are same as the TBP author has reported in their paper. Here we have considered past time window as fixed. We have calculated accuracy on the basis of varying future time window. In case of Movielens long term precision prediction is not good while Q_n prediction is good. We can find our proposed model’s performance is good. From precision analysis we can find our proposed models performance doesn’t get affected by future time window T_F for all the datasets. Rank correlation τ also gets better as future time window increases for all the data set. Novelty Q_n affected by future time window only in case of Facebook. Our proposed model may not out perform all the predictors in all the situation but it has theoretical significance.

The effects of T_p and T_f on the proposed models (RBDM and RBNDM) performance

In the [Figure 5] we have shown the effect of recent behavior dominance and recent behavior non dominance in making prediction. To see the performance we have selected top 100 items. ML-DOM implies, result for top 100 items considering AUC index for Movielense (ML) Data set and considering RBDM (DM-Dominant Model) and so on.
Figure 5: Performance of RBDM Vs RBNDM, considering past time window \((T_P)\) and future time window \((T_F)\) same upto 200 days. In case of Citation the number time is upto 40 months. Abbreviations: ML- Movielens, NF-Netflix, FB-Facebook and CIT- Citation dataset, DOM is for RBDM model and NON-DOM is for RBNDM. The y-axis shows the metrics value, higher the better all the three metrics; Precision \((P_n)\), Novelty\((Q_n)\) and AUC gives result between 0 and 1, rank correlation tau \((\tau)\) can give values between -1 to 1. The x-axis shows the time duration for past and future time window.

In AUC analysis we have found that in case of Movielens short term and long term prediction has no effect. Its performance doesn’t get affected by shorter and longer time window much. Specially in case of Movielens. In case of Netflix both the predictors has almost similar performance but after 100 days a slight deterioration in performance found. Similar effect have found for Facebook also. In case of Citation data set the time window is in terms of months, so up to 40 months its performance increases. In case of Movielens precision \((P_n)\) analysis the predictor have similar performance and its accuracy are also not getting affected. Past and future time window have negligible effect. In \(Q_n\) or novelty prediction analysis we have found that Netflix data has better performance over others, while both the predictor has similar performance. The novelty prediction much affected by past and future time window as compare to AUC and Precision. Only for predicting citation data the both predictors performance varies much in which predictor RBDM has better performance. In case of rank correlation both predictor have similar performance, only in case of citation RBNDM performs better.
Conclusions

In this manuscript we came up with two models to make prediction of node on online social media or evolving networks specially considering its temporal behavior. The first model (Recent Behavior Dominant Model(RBDM)) we have considered that people go for popular as well as follow recent behaviours but recent behavior dominates especially in case when node has recieved more links in recent past. It suppose that random walker walks on a network and can jump to any node, the probability of jumping to other nodes is based on which node is recently more active or receiving more link. The more recently node has received link the more it will dominate over total degree for future link gain. The second model (Recent Behavior Non-Dominant Model(RBNDM)) in which we think the node will gain more links if it is recently active and also have gained link in past. We have compared our results with state of the art models i.e popularity based predictor, pageRank , In-degree and TBP. To test the robustness of our model we have tested our models on different data sets which has different temporal distribution. we have found our proposed model performs better. Our models not always out performs the benchmarks models but in different cases on different data sets such as RBNDM doesn’t perform better than RBDM in other case but in case of citation data set it performs better in precision, novelty and rank correlation. Although with TBP some times it lacks. The merits of our model is it helps identifying novel entries without any significant cost of predicting already popular items. In this paper we have considered the recent behavior as the basis of identifying rising novelties with other combinations such as aging, dominant recent behavior as well as non dominant recent behavior. In all of these with respect to our data sets prediction accuracy is good. We have considered only temporal effects of the node’s attracting new link. We have found it one of the important feature for making prediction and considering other complex feature might increase accuracy but it increases computational complexity. So we can say our model computational resource efficient also. In our current work we have not considered any threshold when recent behavior will start dominating over total behavior in future work one can consider the threshold.

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61370150 and 61433014).

References

Abbasi, Alireza. 2016. “A Longitudinal Analysis of Link Formation on Collaboration Networks.” Journal of Informetrics. http://www.sciencedirect.com/science/article/pii/S1751157716300815. http://dx.doi.org/10.1016/j.
Axtell, R. L. 2001. “Zipf Distribution of U.S. Firm Sizes.” *Science* 293 (5536). American Association for the Advancement of Science (AAAS): 1818–20. doi:10.1126/science.1062081.

Bouchaud, Jean-Philippe, Andrew Matacz, and Marc Potters. 2001. “Leverage Effect in Financial Markets: The Retarded Volatility Model.” *Phys. Rev. Lett.* 87 (22). American Physical Society (APS). doi:10.1103/physrevlett.87.228701.

Brin, Sergey, and Lawrence Page. 1998. “The Anatomy of a Large-Scale Hypertextual Web Search Engine.” *Computer Networks and ISDN Systems* 30 (1-7). Elsevier BV: 107–17. doi:10.1016/s0169-7552(98)00110-x.

Buldyrev, Sergey V., Roni Parshani, Gerald Paul, H. Eugene Stanley, and Shlomo Havlin. 2010. “Catastrophic Cascade of Failures in Interdependent Networks.” *Nature* 464 (7291). Springer Nature: 1025–28. doi:10.1038/nature08932.

Cheng, Justin, Lada A. Adamic, Jon M. Kleinberg, and Jure Leskovec. 2016. “Do Cascades Recur?” In *Proceedings of the 25th International Conference on World Wide Web, WWW 2016, Montreal, Canada, April 11 - 15, 2016*, edited by Jacqueline Bourdeau, Jim Hendler, Roger Nkambou, Ian Horrocks, and Ben Y. Zhao, 671–81. ACM. doi:10.1145/2872427.2882993.

E., F. Y., and G. Udny Yule. 1925. “A Mathematical Theory of Evolution Based on the Conclusions of Dr. J. c. Willis, F.R.S.” *Journal of the Royal Statistical Society* 88 (3). JSTOR: 433. doi:10.2307/2341419.

Eisler, Zoltán, Imre Bartos, and János Kertész. 2008. “Fluctuation Scaling in Complex Systems: Taylors Law and Beyond1.” *Advances in Physics* 57 (1). Informa UK Limited: 89–142. doi:10.1080/00018730801893043.

Garlaschelli, Diego, Guido Caldarelli, and Luciano Pietronero. 2003. “Universal Scaling Relations in Food Webs.” *Nature* 423 (6936). Springer Nature: 165–68. doi:10.1038/nature01604.

Gehrke, Johannes, Paul Ginsparg, and Jon Kleinberg. 2003. “Overview of the 2003 KDD Cup.” *SIGKDD Explor. Newsl.* 5 (2). Association for Computing Machinery (ACM): 149. doi:10.1145/880972.8090992.

Ginsberg, Jeremy, Matthew H. Mohebbi, Rajan S. Patel, Lynnette Brammer, Mark S. Smolinski, and Larry Brilliant. 2008. “Detecting Influenza Epidemics Using Search Engine Query Data.” *Nature* 457 (7232). Springer Nature: 1012–14. doi:10.1038/nature07634.

Gleeson, James P, Davide Cellai, Jukka-Pekka Onnela, Mason A Porter, and Felix Reed-Tsochas. 2014. “A Simple Generative Model of Collective Online Behavior.” *Proceedings of the National Academy of Sciences* 111 (29). National Acad Sciences: 10411–15. doi:10.1073/pnas.1313895111.
Haldane, Andrew G., and Robert M. May. 2011. “Systemic Risk in Banking Ecosystems.” *Nature* 469 (7330). Springer Nature: 351–55. doi:10.1038/nature09659.

Herlocker, Jonathan L., Joseph A. Konstan, Loren G. Terveen, and John T. Riedl. 2004. “Evaluating Collaborative Filtering Recommender Systems.” *ACM Transactions on Information Systems* 22 (1). Association for Computing Machinery (ACM): 5–53. doi:10.1145/963770.963772.

Hommes, C. H. 2002. “Modeling the Stylized Facts in Finance Through Simple Nonlinear Adaptive Systems.” *Proceedings of the National Academy of Sciences* 99 (Supplement 3). Proceedings of the National Academy of Sciences: 7221–28. doi:10.1073/pnas.082080399.

Hoppe, Fred M. 1984. “Polya-Like Urns and the Ewens Sampling Formula.” *Journal of Mathematical Biology* 20 (1). Springer Nature: 91–94. doi:10.1007/bf00275863.

Ke, Qing, Emilio Ferrara, Filippo Radicchi, and Alessandro Flammini. 2015. “Defining and Identifying Sleeping Beauties in Science.” *Proceedings of the National Academy of Sciences* 112 (24). Proceedings of the National Academy of Sciences: 7426–31. doi:10.1073/pnas.1424329112.

King, G. 2011. “Ensuring the Data-Rich Future of the Social Sciences.” *Science* 331 (6018). American Association for the Advancement of Science (AAAS): 719–21. doi:10.1126/science.1197872.

Parolo, Pietro Della Briotta, Raj Kumar Pan, Rumi Ghosh, Bernardo A. Huberman, Kimmo Kaski, and Santo Fortunato. 2015. “Attention Decay in Science.” *Journal of Informetrics* 9 (4). Elsevier BV: 734–45. doi:10.1016/j.joi.2015.07.006.

Perc, M. 2012. “Evolution of the Most Common English Words and Phrases over the Centuries.” *Journal of The Royal Society Interface* 9 (77). The Royal Society: 3323–28. doi:10.1098/rsif.2012.0491.

Preis, Tobias, Helen Susannah Moat, and H. Eugene Stanley. 2013. “Quantifying Trading Behavior in Financial Markets Using Google Trends.” *Sci. Rep.* 3 (April). Nature Publishing Group. doi:10.1038/srep01684.

Redner, S. 1998. “How Popular Is Your Paper? An Empirical Study of the Citation Distribution.” *The European Physical Journal B* 4 (2). Springer Nature: 131–34. doi:10.1007/s100510050359.

Simon, Herbert A. 1955. “On a Class of Skew Distribution Functions.” *Biometrika* 42 (3/4). JSTOR: 425. doi:10.2307/2333389.

Tria, F., V. Loreto, V. D. P. Servedio, and S. H. Strogatz. 2014. “The Dynamics of Correlated Novelties.” *Sci. Rep.* 4 (July). Nature Publishing Group. doi:10.1038/srep05890.

Vespignani, A. 2009. “Predicting the Behavior of Techno-Social Systems.” *Science* 325 (5939). American Association for the Advancement of Science (AAAS): 425–28. doi:10.1126/science.1171990.
Wang, D., C. Song, and A.-L. Barabasi. 2013. “Quantifying Long-Term Scientific Impact.” *Science* 342 (6154). American Association for the Advancement of Science (AAAS): 127–32. doi:10.1126/science.1237825.

Zanette, Damián, and Marcelo Montemurro. 2005. “Dynamics of Text Generation with Realistic Zipf's Distribution.” *Journal of Quantitative Linguistics* 12 (1). Informa UK Limited: 29–40. doi:10.1080/09296170500055293.

ZENG, AN, STANISLAO GUALDI, MATÚŠ MEDO, and YI-CHENG ZHANG. 2013. “Trend Prediction in Temporal Bipartite Networks: The Case of Movielens, Netflix, and Digg.” *Advances in Complex Systems* 16 (04n05). World Scientific Pub Co Pte Lt: 1350024. doi:10.1142/s0219525913500240.

Zhou, Yanbo, An Zeng, and Wei-Hong Wang. 2015. “Temporal Effects in Trend Prediction: Identifying the Most Popular Nodes in the Future.” Edited by Xia Li. *PLOS ONE* 10 (3). Public Library of Science (PLoS): e0120735. doi:10.1371/journal.pone.0120735.