The Curious Case of Salicylidene based Fluoride Sensors: Chemosensors or Chemodosimeters or None of Them

Sandeep Kumar Dey,*a Christoph Janiak* b

a School of Chemical Sciences, Goa University, Taleigao Plateau, Goa 403206, India.
Email: sandeepdey@unigoa.ac.in Phone: +91-7387633550

b Institute for Inorganic Chemistry and Structural Chemistry, Heinrich-Heine University, Dusseldorf, 40225, Germany. Email: janiak@uni-duesseldorf.de, Phone: +49-2118111611580

1. Synthesis and Characterization of Salicylidene Schiff Base Compounds SL and CL1-3

(1A) Synthesis of tris(4-amino-N-ethylbenzamide)amine (AL): Tris(4-amino-N-ethylbenzamide)amine (AL) was synthesized by reduction of its nitro analogue (Tris(4-nitro-N-ethylbenzamide)amine, NL) which was synthesized by modification of the reported literature procedure (Scheme S1). NL was synthesized by the reaction of tris(2-aminoethyl)amine, (Tren) with 4-nitrobenzoyl chloride in 1 : 3.5 molar ratio at room temperature in dry chloroform. In a 100 mL flat bottom flask, 0.73 mL (5 mmol) of tris(2-aminoethyl)amine was dissolved in 25 mL of chloroform and 3.5 g of 4-nitrobenzoyl chloride (17.5 mmol) was added in portions into the above solution with constant stirring at room temperature. The reaction mixture was allowed to stir overnight at room temperature followed by the addition of 3 ml (excess) triethylamine and stirred for another 1 hrs. Reaction of tren with 4-nitrobenzoyl chloride generates HCl in the reaction medium, which eventually protonate the tertiary nitrogen of the formed NL. Triethylamine was added to basify the reaction mixture so that NL can be obtained in its neutral form. The precipitate obtained was then filtered, collected in a 250 ml flat bottom flask and washed with 50 ml of methanol in the presence of 1 ml of triethylamine under stirring. The compound was finally filtered again and washed with another 50 ml of methanol over the filter paper to ensure its purity for subsequent reduction reaction.

In a 250 ml flat bottom flask, 1 g of NL was dispersed in 100 ml of ethanol and 100 mg of Pd/C and 1 ml of hydrazine hydrate was added in to the flask. The reaction mixture was then refluxed overnight at about 80 °C and filtered to remove the heterogeneous Pd/C catalyst. The filtrate was then allowed to evaporate in a beaker at room temperature when colorless crystals of AL were obtained in quantitative yield within 2 days. The crystals were collected by decantation/filtration and washed with 10 ml of ethanol to ensure its purity for spectroscopy analysis. The compound was characterized by NMR and FT-IR spectroscopy.

Isolated yield of AL: 614 mg (percentage yield 72%). The compound is highly soluble in dimethylformamide, and dimethyl sulfoxide, soluble in methanol/ethanol on heating, and insoluble in tetrahydrofuran, chloroform and acetonitrile.

Characterization of AL: 1H-NMR (400 MHz, DMSO-d6) chemical shift in δ ppm: 2.50 (DMSO-CH3), 2.64 (t, 6xCH2), 3.30 (t, 6xCH2CH3), 3.37 (HOD), 5.56 (s, 3xNH2), 6.50 (d, 6xCH), 7.55 (d, 6xCH), 7.94 (t, 3xNH).
Scheme S1: Synthesis of AL from tris(2-aminomethylamine) and 4-nitrobenzoyl chloride.

(1B) Synthesis of tris-4-(2-hydroxybenzylideneamino)-N-(2-aminomethyl)benzamide (SL): Salicylidene based tripodal amide receptor SL was synthesized by Schiff base condensation reaction of AL with salicylaldehyde in methanol under reflux (Scheme 1, main manuscript). In a 250 ml flat bottom flask, 500 mg of AL (1.0 mmol) and 400 mg (350 μL) of 2-hydroxy benzaldehyde (3.5 mmol) were mixed in 100 ml of methanol. After overnight refluxing of the reaction mixture at 60 °C, the yellow precipitate formed was filtered and washed with 20 ml of methanol to ensure its purity for spectroscopy analysis. The compound was characterized by NMR, and FT-IR spectroscopy. Isolated yield of SL: 550 mg (percentage yield 67%). The compound is highly soluble in dimethylformamide, and dimethyl sulfoxide, soluble in methanol/ethanol on heating, and insoluble in tetrahydrofuran, chloroform and acetonitrile.

Characterization of SL: ¹H-NMR (400 MHz, DMSO-d₆) chemical shift in δ ppm: 2.75 (3xNCH₂), 3.42 (3xNCH₂CH₂), 6.95 (6xCH), 7.42 (9xCH), 7.57 (3xCH), 7.88 (6xCH), 8.40 (3xNH), 8.94 (3xCH=N), 12.84 (3xOH). ¹³C-NMR (100 MHz, DMSO-d₆) chemical shift in δ ppm: 31.16 (3xCH₃OH), 38.10 (3x-NCH₂), 53.63 (3x-NCH₂CH₂), 117.07 (3x-CH), 119.63 (3x-CH), 119.68 (3x-CH), 121.60 (3x-CH), 128.94 (3x-CH), 132.98 (3x-CH), 133.06 (3x-CH), 134.05 (3x-CH), 150.81 (3x-CH), 160.75 (3x-CH), 164.67 (3xC=N), 166.16 (3xC=O). HR-MS m/z 816.350 (SL+H⁺)

(1C) Synthesis of 4-(2-hydroxybenzylideneaminobenzoate (CL1): 1 g of 4-aminobenzonitrile (8.5 mmol) was dissolved in 25 ml of methanol and 1.25 g (1.06 ml) of 2-hydroxybenzaldehyde (10.15 mmol) was added into the solution. The solution mixture was then stirred for about 12 hrs. and the yellow precipitate formed was then filtered and washed with 15 ml (3 x 5 ml) of methanol to obtain CL1. The compound was then air dried at room temperature and characterized by ¹H-NMR, ¹³C NMR and FT-IR spectroscopy. Isolated yield of CL1: 1.5 g (percentage yield 85%). The compound is soluble in dimethylformamide, dimethyl sulfoxide, chloroform and tetrahydrofuran soluble in methanol/ethanol on heating.

¹H-NMR (400 MHz, DMSO-d₆) chemical shift in δ ppm: 2.50 (DMSO-CH₃), 3.35 (HOD), 7.00 (m, 2xCH), 7.46 (t, 1xCH), 7.54 (d, 2xCH), 7.70 (d, 1xCH), 7.91 (d, 2xN=CH), 12.43 (s, 1xOH). ¹³C-NMR (100 MHz, DMSO-d₆) δ ppm: 108.83, 116.72, 118.79, 119.30, 119.35, 122.46, 132.54, 133.64, 134.09, 152.57, 160.24, 165.39. HR-MS m/z 223.086 (CL1+H⁺)

(1D) Synthesis of 1,2-(2-hydroxybenzylideneaminobenzene (CL2): 1 g of 1,2-phenylenediamine (9.25 mmol) was dissolved in 25 ml of methanol and 1.35 g (1.15 ml) of 2-hydroxybenzaldehyde (11.10 mmol) was added into the solution. The solution mixture was then stirred for about 12 hrs. and the yellow precipitate formed was then filtered and washed with 15 ml (3 x 5 ml) of methanol to obtain CL2. The compound was then air dried at room temperature and characterized by ¹H-NMR, ¹³C NMR and FT-IR spectroscopy. Isolated yield of CL2: 2.15 mg (percentage yield 81%). The compound is soluble in dimethylformamide, dimethyl sulfoxide, chloroform and tetrahydrofuran.
H-NMR (400 MHz, DMSO-d$_6$) chemical shift in δ ppm: 2.51 (DMSO-CH$_3$), 3.35 (HOD), 6.98 (m, 4xCH), 7.42 (m, 6xCH), 7.68 (d, 2xCH), 8.94 (s, 2xN=CH), 12.95 (s, 2xOH). **C-NMR** (100 MHz, DMSO-d$_6$) δ ppm: 116.65, 119.05, 119.47, 119.72, 127.78, 132.44, 133.41, 142.24, 160.37, 164.01. HR-MS m/z 317.128 (CL$_2$+H$^+$)

(1E) Synthesis of 1,3-(2-hydroxybenzylideneamino)benzene (CL3): 1 g of 1,3-phenylenediamine (9.25 mmol) was dissolved in 25 ml of methanol and 1.35 g (1.15 ml) of 2-hydroxybenzaldehyde (11.10 mmol) was added into the solution. The solution mixture was then stirred for about 12 hrs. and the yellow precipitate formed was then filtered and washed with 15 ml (3 x 5 ml) of methanol to obtain CL3. The compound was then air dried at room temperature and characterized by **H-NMR, C NMR** and FT-IR spectroscopy. Isolated yield of CL3: 1.95 mg (percentage yield 74%). The compound is soluble in dimethylformamide, dimethyl sulfoxide, chloroform and tetrahydrofuran.

H-NMR (400 MHz, DMSO-d$_6$) chemical shift in δ ppm: 2.51 (DMSO-CH$_3$), 3.35 (HOD), 7.35 (m, 4xCH), 7.42 (d, 2xCH), 7.47 (m, 2xCH), 7.57 (m, 2xCH), 7.69 (d, 2xCH), 9.06 (s, 2xN=CH), 13.02 (s, 2xOH). **C-NMR** (100 MHz, DMSO-d$_6$) δ ppm: 113.85, 116.64, 119.18, 119.26, 120.15, 130.33, 132.63, 133.44, 149.26, 160.32, 164.12. HR-MS m/z 317.128 (CL3+H$^+$)

Fig. S1: **H-NMR** spectrum of AL in DMSO-d$_6$.
Fig. S2: FT-IR spectrum of AL (KBr).

Fig. S3: 1H-NMR spectrum of SL in DMSO-d_6.
Fig. S4: 13C-NMR spectrum of SL in DMSO-d_6 from 0-180 ppm (full spectrum).

Fig. S5: 13C-NMR spectrum of SL in DMSO-d_6 from 114-171 ppm (aromatic region).
Fig. S6: ESI HR-MS of SL in acetone. Peak at m/z 816.35 corresponds to (SL+H⁺).

Fig. S7: FT-IR spectrum of SL (KBr).
Fig. S8: H-NMR spectrum of CL1 in DMSO-d$_6$.

Fig. S9: 13C-NMR spectrum of CL1 in DMSO-d$_6$.
Fig. S10: ESI HR-MS of CL1 in acetone. Peak at m/z 223.06 corresponds to (CL1+H⁺).

Fig. S11: FT-IR spectrum of CL1 (KBr).
Fig. S12: 1H-NMR spectrum of CL2 in DMSO-d$_6$.

Fig. S13: 13C-NMR spectrum of CL2 in DMSO-d$_6$.
Fig. S14: ESI HR-MS of CL2 in acetone. Peak at m/z 317.12 corresponds to (CL2+H+).

Fig. S15: FT-IR spectrum of CL2 (KBr).
Fig. S16: 1H-NMR spectrum of CL3 in DMSO-d$_6$.

Fig. S17: 13C-NMR spectrum of CL3 in DMSO-d$_6$.
Fig. S18: ESI HR-MS of CL3 in acetone. Peak at m/z 317.12 corresponds to (CL3+H+).

Fig. S19: FT-IR spectrum of CL3 (KBr).
2. Experimental data (NMR and ESI-MS) for hydrolysis of SL in the presence of fluoride salts
Fig. S20: 1H-NMR spectra (DMSO-d$_6$) showing hydrolysis of SL in the presence of TBAF (10 equiv.) and compared with the 1H-NMR spectrum of AL. D1, D2,……D10 indicates spectrum of SL mixed with TBAF recorded on day1 (within an hour), day2 (after 24 hrs.),……day10 respectively. Signal labelled with blue star represents -OH proton which is upfield shifted in presence of TBAF and gradually disappears on successive days due to deprotonation. Signal labelled with red star represents amide -NH proton which first disappear in the presence of TBAF and later reappears on successive days, however, downfield shifted. Signals labelled with blue, green and black circles represents -NH$_2$, meta-CH and ortho-CH (ortho and meta with respect to the amide group of AL) protons of AL. Signals which are not labelled in D10 spectrum are the aromatic protons of salicylaldehyde. Peak integral values of -CHO and -N=CH protons are given to calculate the percentage of hydrolysis of SL, discussed in the main text.

Fig. S21: LC-MS spectrum of SL in acetonitrile mixed with TBAF recorded after 10 days of mixing. Peak at m/z 504.27 corresponds to (AL+H$^+$).
Fig. S22: LC-mass spectrum of SL in acetonitrile mixed with TBAF (expanded) recorded after 10 days of mixing. Peak at m/z 504.27, 505.27 and 506.27 corresponds to (AL+H+), (AL+2H+) and (AL+3H+) respectively.

Scheme S2: Hydrolysis of SL to form 2-formyl phenolate (deprotonated salicylaldehyde) and AL as observed in 1H-NMR and LC-MS experiments.
Fig. S23: 1H-NMR spectra (DMSO-d_6) showing hydrolysis of SL in the presence of CsF (10 equiv.) and compared with the 1H-NMR spectrum of AL. D1, D2,......D10 indicates spectrum of SL mixed with CsF recorded on day1 (within 1 hr.), day2 (after 24 hrs.),......day10 respectively. Signal labelled with red star represents amide -NH
proton which is initially downfield shifted in the presence of CsF and later experiences upfield shift on successive days, as hydrolysis of SL progress. Signals labelled with blue, green and black circles represents -NH\textsubscript{2}, meta-CH and ortho-CH (ortho and meta with respect to the amide group of AL) protons of AL. Signals which are not labelled in the spectra are the aromatic protons of salicylaldehyde (hydrolysis product) and SL. Peak integral values of -CHO and N=CH protons are given to calculate the percentage of hydrolysis of SL, as discussed in the main text.

Fig. S24: 1H-NMR spectrum (DMSO-d\textsubscript{6}) showing hydrolysis of SL in the presence of KF.

Fig. S25: 19F-NMR spectrum of SL mixed with TBAF in DMSO-d\textsubscript{6}, recorded after 10 days of mixing.
Fig. S26: 1H-NMR spectra (DMSO-d$_6$) showing hydrolysis of SL in the presence of Cs$_2$CO$_3$ (3 equiv.). D2, D3,D5 indicates spectrum of SL mixed with Cs$_2$CO$_3$ recorded on day2 (after 24 hrs.), day3 (after 48 hrs.)day5 respectively. Salicylidene -OH proton signal disappeared upon addition of Cs$_2$CO$_3$. 70% hydrolysis was observed to be completed in 5 days with 3 equiv. of Cs$_2$CO$_3$.
3. Experimental data (NMR and ESI-MS) for hydrolysis of CL1 in the presence of fluoride salts

Fig. S27: 1H-NMR spectra (DMSO-d_6) showing hydrolysis of CL1 in the presence of TBAF (2 equiv.). D1, D2 indicates spectrum of CL1 mixed with TBAF recorded on day1 (within 1 hr.), day2 (after 24 hrs.) respectively. Signals labelled with blue, green and black circles represents -NH$_2$, ortho-CH and meta-CH (ortho and meta with respect to -NH$_2$ group) protons of 2-aminobenzonitrile (hydrolysis product). Signals which are not labelled in the spectrum D2 are the aromatic protons of salicylaldehyde (hydrolysis product). Peak integral values of -CHO and N=CH protons are given to calculate the percentage of hydrolysis of CL1, as discussed in the main text. 100% hydrolysis was observed to be completed in 24 hours (D2).
Fig. S28: 1H-NMR spectrum (CDCl$_3$) showing hydrolysis of CL1 in the presence of TBAF (2 equiv.). 90% hydrolysis was observed to be completed in 1 hour.

Scheme S3: Hydrolysis of CL1 to form 2-formyl phenolate and 4-aminobenzonitrile as observed in NMR and LC-MS experiments.
Fig. S29: LC-MS spectrum of CL1 in acetonitrile mixed with TBAF recorded after 2 days of mixing. Peak at m/z 119.06 corresponds to \((\text{CL1}+\text{H}^+)\).
4. Experimental data (NMR and ESI-MS) for hydrolysis of CL2 in the presence of fluoride salts

Fig. S30: 1H-NMR spectra (DMSO-d$_6$) showing hydrolysis of CL2 in the presence of TBAF (2 and 5 equiv.). D1, D2,......D10 indicates spectrum of CL2 mixed with TBAF recorded on day1(within 1 hr.), day2 (after 24 hrs.),......day10 respectively. Peak integral values of -CHO and N=CH protons are given to calculate the percentage of hydrolysis of CL2, as discussed in the main text. No more than 50% hydrolysis was observed in presence of excess TBAF.
Fig. S31: 1H-NMR spectra (CDCl$_3$) showing hydrolysis of CL2 in the presence of TBAF (2 equiv.). D1, D2, D3 indicates spectrum of CL2 mixed with TBAF recorded on day1, day2, day3 respectively. Peak integral values of CHO and N=CH protons are given to calculate the percentage of hydrolysis of CL2.

Fig. S32: LC-MS spectrum of CL2 in acetonitrile mixed with TBAF recorded after 6 days of mixing.
Fig. S33: 19F-NMR spectrum of **CL2** mixed with TBAF in DMSO-d_6, recorded after 10 days of mixing.

Scheme S4: Partial hydrolysis of **CL2** to form 2-formyl phenolate and 2(2-aminophenylimino)phenolate as observed in 1H-NMR and LC-MS experiments. Formation of intramolecular H-bond between $-\text{NH}_2$ and phenolate oxygen in 2(2-aminophenylimino)phenolate might resist the hydrolysis of the second imine bond in **CL2**. HF$_2^-$ anion is formed in situ in the solution mixture of **CL2** and TBAF.
5. Experimental data (NMR and LC-MS) for hydrolysis of CL3 in the presence of fluoride salts
Fig. S34: 1H-NMR spectra (DMSO-d$_6$) showing hydrolysis of CL3 in the presence of TBAF (2 and 5 equiv.). D1, D2,...,D10 indicates spectrum of CL3 mixed with TBAF recorded on day1 within 1 hr., day2 (after 24 hrs.),...day10 respectively. Peak integral values of -CHO and N=CH protons are given to calculate the percentage of hydrolysis of CL3.

Fig. S35: LC-MS spectrum of CL3 in acetonitrile mixed with TBAF recorded after 6 days of mixing.

Scheme S5: Partial hydrolysis of CL3 to form 2-formyl phenolate and 2(3-aminophenylimino)phenolate as observed in H-NMR and LC-MS experiments.
Fig. S36: 19F NMR (DMSO-d$_6$) of TBAF, SL mixed with TBAF, and CL2 mixed with TBAF. The peak at -69 corresponds to free fluoride anion and the peak at -138 corresponds to hydrogen difluoride anion.

Fig. S37. UV-vis spectra of SL (1×10^{-5} mol/L) in the presence of TBAF (10 equiv.) recorded over a period of 6 days.
Fig. S38: UV-vis spectra of CL1 (1x10^{-5} mol/L) in the presence of TBAF (10 equiv.) recorded over a period of 2 days.

Fig. S39: UV-vis spectra of CL2 (1x10^{-5} mol/L) in the presence of TBAF (10 equiv.) recorded over a period of 5 days.
Fig. S40. UV-vis spectra of **CL3** (1x10^{-5} mol/L) in the presence of TBAF (10 equiv.) recorded over a period of 5 days.

Fig. S41: (a) Colour changes of DMSO solutions (1x10^{-4} M) of **SL** in the presence of 10 equivalents of CsF and TBAF, and (b) Colour changes of DMSO solutions (1x10^{-4} M) of **Salicylaldehyde (SA)** in the presence of 10 equivalents of CsF and TBAF.