The ocean sampling day consortium

Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; Schnetzer, Julia; Kostadinov, Ivaylo; Lehmann, Katja; Fernandez-Guerra, Antonio; Jeanthon, Christian; Rahav, Eyal; Ullrich, Matthias; Sonnenschein, Eva; Jackson, Stephen

Published in:
GigaScience

Link to article, DOI:
10.1186/s13742-015-0066-5

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Kopf, A., Bicak, M., Kottmann, R., Schnetzer, J., Kostadinov, I., Lehmann, K., ... Jackson, S. (2015). The ocean sampling day consortium. GigaScience, 4(27). DOI: 10.1186/s13742-015-0066-5
The ocean sampling day consortium

Anna Kopf1,2†, Mesude Bicak3†, Renzo Kottmann1, Julia Schnetzer1,2, Ivaylo Kostadinov2, Katja Lehmann4, Antonio Fernandez-Guerra1,3, Christian Jeannot1,5, Eyal Ravah6, Matthias Ulbrich7, Antje Wiche1,5, Gunnar Gerds2, Paraskevi Polymenakou6, Giorgios Kotoulas8, Rania Siam9, Rehab Z Abdallah9, Eva C Sonnenschein10, Thierry Cariou5, Fergal O’Gara11,12, Stephen Jackson10, Sandi Orlic14, Michael Steinke15, Julia Busch16, Bernardo Duarte17, Isabel Caçador17, João Canning-Clode17,18, Oleksandra Bobrova19, Viggo Marteinsson20, Eyjolfur Reynisson20, Clara Magalhães Loureiro21, Gian Marco Luna22, Grazia Marina Quero22, Carolin R Löscher23, Anke Kremp24, Marie E DeLorenzo25, Lise Øvreå26, Jennifer Tolman27, Julie LaRoche27, Antonella Penna28, Marc Frischer29, Timothy Davis30, Barker Katherine31, Christopher P Meyer31, Sandra Ramos32, Catarina Magalhães32, Florence Jude-Lemeilleur33, Ma Leopoldina Aguirre-Macedo34, Shiao Wang35, Nicole Poulton36, Scott Jones37, Rachel Collin38, Jed A Fuhrman39, Pascal Conan40, Cecilia Stabler42,43, Kelly Goodwin44, Michael M Yakimov45, Federico Baitar46, Levente Bodrossy47, Jodie Van De Kemp47, Dion MF Frampton47, Martin Ostrowski48, Paul Van Ruth49, Paul Malthouse49, Simon Claus50, Klaas Deneudt50, Jonas Mortelmans50, Sophie Pitois51, David Wallom3, Ian Salter60,52, Rodrigo Costa53, Declan C Schroeder54, Mahrous M Kandi55, Valentina Amaral41,56, Florence Biancalana57, Rafael Santana41, Maria Luiza Pedrotti56, Takashi Yoshida58, Hiroyuki Ogata59, Tim Ingleton60,64, Kate Munnik51, Naïara Rodríguez-Ezeleta52, Veronique Berteaux-Lecellier63, Patricia Wecker63, Ibon Cao65, Daniel Vaulot5, Christina Bienhold1,52, Hassan Ghaza67,68, Bouchra Chaouni70,71, Soumya Essayeh67, Sara Ettamimi68,70, El Houcine Zaid71, Souredeine Boukhatem68, Abderrahim Bouali68, Rajaa Chahboune67,72, Said Barrajal72, Mohammed Aguirre-Macedo73, Fatima El Otmani75, Mohamed Bennani74, Marriana Meiá, Nadezhda Todorova77, Ventzislav Karamfilov77, Petra ten Hoopen78, Guy Cochrane78, Stephane L’Haridon79, Kemal Can Bize1, Aleandro Vezza81, Federico M Lauro82, Patrick Martin83, Rachelle M Jensen84, Jamie Hinks1,82, Susan Gebbels85, Riccardo Rosselli81, Fabio De Pascale81, Riccardo Schiavon81, Antonina dos Santos98, Emilie Villar1,87, Stéphane Pesant1, Bruno Catabanlo88, Francesca Malafatti88, Ranjith Edirisinghe89, Jorge A Herrera Silvaere35, Michele Barbier92, Valentina Turk93, Tinkara Tinta93, Wayne J Fuller94, Ilkay Salihoglu94, Nedime Serakinci94, Mahmut Cerkez Ergoren94, Eileen Bresnan98, Juan Iribarne65, Paul Anders Fronth Nyhus102, Edvardsen Bente101, Hans Erik Karlenson102, Peter N Golyshin103, Josep M Gasol104, Snejana Moncheva105, Nina Dzhembekova105, Zackary Johnson106, Christopher David Singalilliano44, Maribeth Louise Gidley144,107, Adriana Zingone108, Roberto Danovaro108,109, George Tsimis110, Melody S Clark111, Ana Cristina Costa21, Monia El Bouri99, Ana M Martins21,95, R Eric Collins96, Anne-Lise Ducluzeau96, Jonathan Martinez97, Mark J Costello98, Linda A Amaral-Zettler90,91, Jack A Gilbert69,73,76,90, Neil Davies2,66, Dawn Field2,3 and Frank Oliver Glöckner1,2‡

*Correspondence: fog@mpi-bremen.de
†Equal contributors
1Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany
2Jacobs University Bremen gGmbH, Campus Ring 1, D-28759 Bremen, Germany
Full list of author information is available at the end of the article

© 2015 Kopf et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Abstract
Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits.

Keywords: Ocean sampling day, OSD, Biodiversity, Genomics, Health Index, Bacteria, Microorganism, Metagenomics, Marine, Micro B3, Standards

Background
Marine microbes inhabit all marine habitats, are the engines of the ocean’s major biogeochemical cycles, and form the basis of the marine food web [1]. Over the past decades scientists have aimed to understand marine microorganisms, but technical and computational limitations have restricted studies to a local scale. Fortunately, with technological advancements and decreasing sequencing costs, genomic studies have become feasible on a global scale. The first landmark marine metagenome studies were published by the J Craig Venter Institute, beginning with a pilot sampling project in the Sargasso Sea followed by the Global Ocean Sampling (GOS) expedition [2]. The Tara Ocean project expanded this further by integrating the marine genetic, morphological, and functional biodiversity in its environmental context at global ocean scale and at multiple depths [3]. The Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project now aims to investigate global marine microbial biodiversity and has pioneered the idea to do this on a single orchestrated Ocean Sampling Day (OSD).

Main text
Ocean Sampling Day
OSD is a simultaneous, collaborative, global mega-sequencing campaign to analyze marine microbial community composition and functional traits on a single day. On June 21st 2014 – the world’s first major OSD event – scientists around the world collected 155 16S/18S rRNA amplicon data sets, 150 metagenomes, and a rich set of environmental metadata. Standardized procedures, including a centralized hub for laboratory work and data processing via the Micro B3 Information System (Micro B3-IS), assured a high level of consistency and data interoperability [4]. Application of the Marine Microbial Biodiversity, Bioinformatics and Biotechnology (M2B3) standards ensures sustainable data storage and retrieval in respective domain-specific data archives [4]. OSD generated the largest standardized data set on marine microbes taken on a single day, which we consider complementary to other large-scale sequencing projects.

The solstice was chosen to test the hypothesis that diversity negatively correlates with day-length [5]. Data analysis will target three main areas: biodiversity, gene functions, and ecological models. OSD sampling sites are typically located in coastal regions within exclusive economic zones (EEZ). Therefore, the OSD data set provides a unique opportunity to test anthropogenic influences on microbial population ecology. We will perform a multi-level assessment of the human impact on microbial mediated biogeochemical cycles. Questions we would like to answer are: (i) what are the important factors (physical-chemical and biological) in structuring biodiversity patterns and range margins, and (ii) are functions associated with heavy metals, antibiotics or fecal indicators correlated with OSD sites exposed to higher human impact? We are confident that the simultaneous collection of samples will result in the discovery of new ecological patterns providing key information towards understanding environmental vulnerability and resilience.

Open access strategy and sharing of data
All OSD data are archived and immediately made openly accessible without an embargo period, following the Fort Lauderdale rules for sharing data [6]. Sequence and contextual data are publicly available via the International Nucleotide Sequence Database Collaboration (INSDC) umbrella study PRJEB5129 and at PANGAEA. A model agreement and OSD Data Policy [4] was developed in compliance with the Convention on Biological Diversity and the Nagoya Protocol on Access and Benefit Sharing (ABS) for the utilization on genetic resources in a fair and equitable way. An ABS Helpdesk exists to support OSD participants’ legal questions. Furthermore, the Mediterranean Science Commission (CIESM) developed the CIESM Charter on ABS, which has been endorsed by 391 scientists from 49 countries (as of April 2015).
The OSD Consortium
At the 16th Genomics Standards Consortium (GSC) meeting in 2014, the OSD community agreed to form the OSD Consortium. Led by the five OSD Coordinators and comprising of up to 130 OSD Site Coordinators and their teams, the OSD Consortium installed the infrastructure and expertise allowing coordinated OSD events to take place. Furthermore, the OSD Consortium aims to foster collaborations and share expertise among and beyond the OSD network, and to connect scientists in a worldwide environmental movement.

Membership and governance
OSD membership is open to anyone and is earned by participation. Registered participants are provided with privileged access to the OSD network of sites, as well as training activities. OSD samples are prioritized for all types of data generation (as funds and resources allow). In return, participants agree to provide samples according to OSD’s standardized procedures and to work under the umbrella of the OSD Data Policy, which requires open sharing of data and to respect the national legal sampling framework.

The OSD network of sites
Participants from 191 sampling sites signed up for the main OSD event; these sites range from tropical waters to polar environments (Fig. 1). All major oceanic divisions (Pacific, Atlantic, Indian, Antarctic and Arctic Ocean) and continents are covered with 81 and 37 sites in Europe and North America, respectively. The majority of sites are located in the Northern Hemisphere (172), including 36 sites in the Mediterranean and three sites in the Black Sea.

OSD partnerships
Endorsement of the community and fruitful partnerships are essential. Supported by the Argonne National Laboratory, the generous cooperation with the Earth Microbiome Project (EMP) [7] enabled us to perform amplicon sequencing for OSD pilot events; these were conducted on each of the solstices in 2012 and 2013. In return, OSD data is EMP compliant and contributes towards construction of a global catalog of microbial diversity [7]. Cooperation with the LifeWatch project secured additional 18S rRNA gene sequencing, while Pacific Bioscience contributed sequencing of near-full-length 16S rRNA gene amplicons and metagenomes from selected OSD sampling sites. Moreover, the partnership with the Smithsonian Institute’s Global Genome Initiative for long-term bioarchiving of all OSD samples enables the community to re-analyze the samples in the future.

Fig. 1 Map of registered sites for OSD 2014
OSD beyond 2014

The OSD Consortium aims to expand in terms of sites and methods, as well as towards multicellular organisms. Future key tasks are to align closely with the Genomic Observatories (GOs) Network [8] towards biocoding the ocean, as well as to secure long-term resources and commitments to create an OSD time-series. The midterm vision of the OSD Consortium is to generate microbial Essential Biodiversity Variables (EBV) data [9]. The envisioned regular OSD events would qualify for the candidate EBVs “Species populations” and “Community composition” to indicate, for example, vulnerability of ecosystems and climatic impacts on community composition. In the long term such indicators may be incorporated into the Ocean Health Index (OHI) [10], which currently excludes microorganisms from biodiversity assessment due to the lack of reliable data. OSD has the potential to close the gap that and expand EBV and OHI by expanding oceanic monitoring towards microbes. This could lead to a global system of harmonized observations to inform scientists and policy-makers.

Conclusions

This commentary outlines the process for creating, managing and formalizing the OSD Consortium and describes its vision for a sustainable study of marine microbes. As we move forward, we will continue to explore and expand the scope of OSD beyond 2014. The idea of an OSD time-series is still in its early days but incorporating the OSD data set as EBVs and in the OHI is a strong source of motivation since this could pave the way to prioritize scientific research and raise public awareness for the unenriched function of the world’s oceans.

Abbreviations

ABS: Access and benefit sharing; CIESM: Mediterranean Science Commission (Commission Internationale pour l’Exploration Scientifique de la Méditerranée); EBV: Essential biodiversity variables; EEZ: Exclusive economic zone; EMP: Earth microbiome project; GOs: Genomic observatories; GOSS: Global ocean sampling expedition; Micro B3: Marine Microbial Biodiversity, Bioinformatics, Biotechnology; Micro B3-IS: Micro B3 information system; M2B3: Marine microbial biodiversity, bioinformatics and biotechnology data reporting and service standards; EBV: Essential biodiversity variables; OHI: Ocean health index; OSD: Ocean sampling day; rRNA: ribosomal rRNA.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

AK drafted the original text with detailed input from MB, RK, JS, IK, KL and FOQ. All authors have read and approved the final manuscript and/or participated in OSD.

Acknowledgements

We wish to acknowledge our extensive range of Micro B3/OSD participants, partners, advisors and supporters who have made the OSD possible. The generosity and tremendous support from our partners and participants has not only enriched the data set but also allowed the OSD Consortium to save resources for future OSD activities. We would also like to thank Sandra Nowack, Hilke Döpke, Greta Reintjes, Timmy Schwerz and the technicians of the Max Planck Institute for Marine Microbiology for their tremendous support with on-site logistics. This work was supported by the Micro B3 project, which is funded from the European Union’s Seventh Framework Programme (FP7); Joint Call OCEAN2011-2: Marine microbial diversity – new insights into marine ecosystems functioning and its biotechnological potential) under the grant agreement no 287589. This manuscript is NOAA-CGELR contribution number 1763.

Author details

1Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany. 2Jacobs University Bremen gGmbH, Campus Ring 1, D-28759 Bremen, Germany. 3University of Oxford, 7 Keble Road, OX1 3QX Oxford, Oxfordshire, UK. 4Centre for Ecology & Hydrology, MacLean Building, Benson Lane, Crowmarsh Gifford, OX10 8BB Wallingford, Oxfordshire, UK. 5CNRS & Sorbonne Universités, UPMC Univ Paris 06, Station Biologique, Place Georges Teissier, F-29608 Roscoff, France. 6Israeli Oceanographic and Limnological Research, National Institute of Oceanography, Tel-Shikmona, POB 8030, 31080 Haifa, Israel. 7Alfred Wegener Institute, Biologische Anstalt Helgoland, 27572 Bremerhaven, Germany. 8Helix Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Gouves Pediados, 71500 Heraklion, Crete, Greece. 9Biology Department and Y-Science and Technology Research Center, American University in Cairo, New 11835, Cairo Governorate, Egypt. 10Department of Systems Biology, Technical University of Denmark, Matematiktorvet 301, 2800 Kgs. Lyngby, Denmark. 11National University of Ireland–University College Cork, Cork, Ireland. 12Curtin University, Biomedical Sciences, Perth, Western Australia, Australia. 13Aix Marseille Université, CNRS, IGS UMR 7256, 163 Avenue de Luminy, 13288 Marseille, France. 14Ruder Bošković Institute, Bijenička cesta 54, 10 000, Zagreb, Croatia. 15School of Biological Sciences, University of Essex, CO4 3SQ Colchester, Essex, UK. 16Institute for Chemistry and Biology of the Marine Environment (ICBM), Leibniz Institute of Oceanology Oldenburg, Schleusenstraße 1, 26383 Wilhelmshaven, Germany. 17Marine and Environmental Sciences Centre, Faculty of Sciences of the University of Lisbon, Campus Grande 1749-016, Lisbon, Portugal. 18Smithsonian Environmental Research Center, 21037 Edgewater, Maryland, USA. 19Department of Microbiology, Virology and Biotechnology, Odessa National II Mechnikov University, Dvoryanskaia str.2, 65028 Odessa, Ukraine. 20Mats Li, Vindlandskild 12, 113, Reykjavik, Iceland. 21Inbio/CIBIO, Departamento de Biologia da Universidade dos Açores, 9901-801 Ponta Delgada, Portugal. 22National Research Council, Institute of Marine Sciences (CNR-ISMAR), Castello 2737/A, Arsenale Tesa 10A, 30122 Venezia, Italy. 23Institute of Microbiology/ GEOMAR, Am Botanischen Garten 1-9, 24118 Kiel, Germany. 24Marine Research Centre, Finnish Environment Institute, Erik Palmmin aukio 1, 00560 Helsinki, Finland. 25NOAA/National Ocean Service/CCOOS/Center for Coastal Environmental Health & Biomedical Research Charleston, 29412 South Carolina, USA. 26Department of Biology, University of Bergen, Thornhelmegata 53B, 5002 Bergen, Norway. 27LaRoche Research Group, Department of Biology, Dalhousie University, B3H 4R2 Halifax, Nova Scotia, Canada. 28Department of Biomedical Sciences, University of Urbino, Viale Trieste 296, 61121 Pesaro, Italy. 29University of Georgia’s Skidaway Institute of Oceanography, 10 Ocean Science Circle, 31411 Savannah, Georgia, USA. 30NOAA-Great Lakes Environmental Research Laboratory, 4840 S State Road, 48108 Ann Arbor, Michigan, USA. 31National Museum of Natural History, Smithsonian Institution, 10th and Constitution Avenue NW, 20013 Washington, DC, USA. 32CIMAR, Interdisciplinary Center of Environmental and Marine Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal. 33Station Biologique d’Arcachon, CNRS & Univ Bordeaux, 2 rue Professor Joly Jard, F-33120 Arcachon, France. 34Centro de Investigación y de Estudios Avanzados (CINVESTAV), Unidad Mérida, Carretera Aníbal Ycaza a Progreso Km 6 Cordemex, C.P., 97310 Yucatan, Mexico. 35Department of Biological Sciences, University of Southern Mississippi, 39406 Hattiesburg, Mississippi, USA. 36Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, 04544 East Boothbay, Maine, USA. 37Smithsonian Marine Station, 701 Seaway Drive, 34049 Fort Pierce, Florida, USA. 38Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa Ancon, Panama. 39Wigley Institute for Environmental Studies and Department of Biological Sciences, University of Southern California, 90089-0371 Los Angeles, California, USA. 40Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR7621, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique, F-66651 Bouyon-sur-Mer, France. 41Microbial Ecology of Arctic Transitional Systems Research Group, Centro Universitario de la Región Este, Universidad de la República, Ruta 15, Km 28.500, Rocha, Uruguay. 42The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002 Ramat-Gan, Israel.
Projects: A System of Tripartite

- Flagship, 7000 Hobart, Tasmania, Australia.
- Plymouth, Devon, UK.
- University of the Azores, PT-9901-862 Horta, Portugal.
- Lwandle Technologies, Black River Park, Fir Road, 7925 Balfour, South Africa.
- Observatorio, Cape Town, South Africa.
- Soil and Water Science Department, Faculty of Agriculture and Biotechnology, University of Patras, 2 Seferi Street, 301 00 Irinoupoli, Greece.
- Cullercoats NE30 4PZ, Tyne and Wear, UK.
- E-48080 Bilbao, Basque Country, Spain.
- University of Miami, 4600 Rickenbacker Causeway, 33149 Miami, Florida, USA.
- University of Oslo, PO Box 1066, 0316 Blindern, Oslo, Norway.
- Antarctic and Southern Ocean Studies, University of Tasmania, 7004 Hobart, Tasmania, Australia.
- Plymouth Oceanography Institute, University of Plymouth, Drake Circus, PL4 8AA Plymouth, Devon, UK.
- University of the Basque Country, PO Box 644, E-48808 Bilbao, Basque Country, Spain.
- Erasmus Plus, Nr. 10.11.2014, 8005-139 Faro, Algarve, Portugal.
- Atkinson School of Earth and Environmental Sciences, University of Edinburgh, 10 George Square, Edinburgh, EH8 9JF, United Kingdom.
- Environment, Fisheries and Aquaculture, Chile.
- Marine Environmental Sciences Division, OSIP, 1170 W. 46th Avenue, 60637 Chicago, Illinois, USA.
- University of Göttingen, Goldschmidtstrasse 10, 37075 Göttingen, Germany.
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, 02543 Massachusetts, USA.
- Department of Earth, Environmental, and Planetary Sciences, Brown University, 02912 Providence, Rhode Island, USA.
- Marine Biology Station, National Institute of Biology, Forna 41, 6330 Piran, Slovenia.
- 11 Cove Drive, Sentosa Cove, 098497 Singapore, Singapore.
- Four Seasons Parkway, E08003 Barcelona, Catalunya, Spain.
- © 2014 Elsevier Ltd. All rights reserved.

References

1. Seymour JR. A sea of microbes: the diversity and activity of marine microorganisms. Microbiology Australia. 2014.
2. Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, et al. The Sargasso Sea microbiome. Science. 2013;338(6109):970–6.
3. Halpern BS, Longo AL, Terry MA, Hackett AL, McLeod KL, Samhouri JF, et al. An index to assess the health and benefits of the global ocean. Nature. 2012;488(7413):615–20.
4. Pereira HM, Ferrer S, Walters M, Geller GN, Scholes RJ, et al. Essential biodiversity variables. Science. 2013;339(6117):277–8.
5. Halpern BS, Longo AL, McLeod KL, Samhouri JF, Kautsky K, et al. The founding charter of the genomic observatories network. Gigascience. 2014;3(1):2.
6. Gilbert JA, Jansson JK, Knight K. The earth microbiome project: successes and aspirations. BMC Biol. 2015;13(1):69.