The complete genome sequence of the rumen bacterium *Butyrivibrio hungatei* MB2003

Nikola Palevich1,2*, William J. Kelly1, Sinead C. Leahy1, Eric Altermann1, Jasna Rakonjac2 and Graeme T. Attwood1

Abstract

Butyrivibrio hungatei MB2003 was isolated from the plant-adherent fraction of rumen contents from a pasture-grazed New Zealand dairy cow, and was selected for genome sequencing in order to examine its ability to degrade plant polysaccharides. The genome of MB2003 is 3.39 Mb and consists of four replicons; a chromosome, a secondary chromosome or chromid, a megaplasmid and a small plasmid. The genome has an average G+C content of 39.7%, and encodes 2983 putative protein-coding genes. MB2003 is able to use a variety of monosaccharide substrates for growth, with acetate, butyrate and formate as the principal fermentation end-products, and the genes encoding these metabolic pathways have been identified. MB2003 is predicted to encode an extensive repertoire of CAZymes with 78 GHs, 7 CEs, 1 PL and 78 GTs. MB2003 is unable to grow on xylan or pectin, and its role in the rumen appears to be as a utilizer of monosaccharides, disaccharides and oligosaccharides made available by the degradative activities of other bacterial species.

Keywords:

Rumen, Bacteria, Hemicellulose, Pectin, Degradation, *Butyrivibrio*, Genome

Introduction

Butyrivibrio are important rumen bacteria [1], and are among the small number of rumen genera capable of utilizing the complex plant structural polysaccharides xylan and pectin [2, 3]. They are classified as anaerobic, monotrichous, butyrate-producing, curved rods and have been isolated from the gastrointestinal tracts and feces of various ruminants, monogastric animals and humans [4, 5]. *Butyrivibrio* are metabolically versatile and are capable of growing on a range of carbohydrates, from simple mono- or oligosaccharides to complex plant polysaccharides such as pectins, mannans, starch and hemicelluloses [6]. Furthermore, xylans of diverse chemical and physical properties, from a range of forages are degraded by *Butyrivibrio* species [7]. Some *Butyrivibrio* species show strong proteolytic activity [8], and *Butyrivibrio* are thought to be the main butyrate producers in the rumen [9, 10]. The genus *Butyrivibrio* is classified within the family Lachnospiraceae, order Eubacteriales, and is phylogenetically diverse. The *Butyrivibrio* genus originally consisted of only one species, *Butyrivibrio fibrisolvens* [2]. In addition to phenotypic characterisations [11, 12], studies have utilized DNA-DNA hybridization [13, 14], 16S rRNA gene sequencing [15, 16] and 16S rRNA-based hybridization probes [17], to differentiate these organisms. To accommodate the observed diversity amongst the newly discovered bacterial strains, a new genus, *Pseudobutyrivibrio*, was described [18]. Four species are currently recognized: *B. fibrisolvens*, *B. hungatei*, *B. proteoclasticus* and *B. crosotus* [6], although *B. crosotus* is more distantly related to the other three. *B. hungatei* are common anaerobic rumen bacteria found in domestic and wild ruminants and the type strain is JK615T [19]. *Butyrivibrio hungatei* JK615T is non-proteolytic and non-fibrolytic, but is able to utilize oligo- and monosaccharides as substrates for growth. Gaining an insight into the role of these secondary degrader species in microbial plant polysaccharide breakdown is important for understanding rumen function. Here we present the...
complete genome sequence of Butyrivibrio hungatei MB2003, a strain isolated from a pasture-grazed dairy cow in New Zealand [20], and describe its comparison with genomes of closely related B. hungatei strains.

Organism information
Classification and features
MB2003 was isolated from the plant-adherent fraction of rumen contents from a New Zealand dairy cow grazing fresh forage [20, 21]. MB2003 cells are Gram positive, short rods, occurring singly or in pairs (Fig. 1). The morphological features of MB2003 cells were determined by electron microscopy of cells grown on RM02 medium [22], negatively stained with 1% phosphotungstic acid, mounted on Formvar-coated copper grids, and examined using a Philips model 201C electron microscope (Eindhoven, The Netherlands). MB2003 cells were observed to have a single polar flagellum (Fig. 2), although cells in growing cultures were non-motile. A phylogenetic analysis of the full-length 16S rRNA gene sequence placed MB2003 within the B. hungatei species, being 98% similar to the Butyrivibrio hungatei type strain JK615T [19] (Fig. 3). Additional characteristics of B. hungatei MB2003 are shown in Table 1.

Strain MB2003 grew to highest optical density (OD) at pH values of 6.1 to 6.5 and at a temperature of 39 °C, conditions which are typical of its rumen environment. VFA production was determined from triplicate broth cultures grown overnight in RM02 medium with cellobiose as substrate and analysed for formate, acetate, propionate, n-butyrate, iso-valerate and lactate on a HP 6890 series GC (Hewlett Packard) with 2-ethylbutyric acid (Sigma-Aldrich, St. Louis, MO, USA) as the internal standard. To derivatize formic, lactic and succinic acids, samples were mixed with HCl ACS reagent (Sigma-Aldrich, St. Louis, MO, USA) and diethyl ether, with the addition of N-methyl-N-t-butyldimethylsilyltri-fluoroacetamide (MTBSTFA) (Sigma-Aldrich, St. Louis, MO, USA) [23]. Under these conditions MB2003 produced 16.4 mM formate, 3.6 mM acetate and 4.7 mM butyrate. MB2003 was able to grow in CO2-containing media with various soluble carbon sources and the semi-soluble inulin (all tested at 0.5% w/v final concentration). Growth on soluble substrates was assessed as an increase in culture density OD600nm compared to cultures without carbon source added, whereas total VFA production was used as an indicator of substrate utilization and growth for insoluble polymers (Table 2). All strains tested were net producers of formate, acetate and n-butyrate, which is characteristic of Butyrivibrio. Cellobiose and glucose supported the growth of MB2003, JK615T and B316T to high cell densities. Therefore, cellobiose was used to examine the growth of MB2003 over a 24 h period. The exponential phase of growth was between 4 and 8 h, with the maximum cell density reached at 8 to 10 h, and stationary phase between 10 to 24 h (Fig. 4).

Genome sequencing information
Genome project history
Butyrivibrio hungatei MB2003 was selected for genome sequencing as a NZ strain of B. hungatei. A summary of the genome project information is shown in Table 3 and in Additional file 1: Table S1.

Growth conditions and genomic DNA preparation
MB2003 was grown in RM02 medium [22] with 10 mM glucose and 0.1% yeast extract but without rumen fluid. Culture purity was confirmed by Gram
stain and sequencing of the 16S rRNA gene. Genomic DNA was extracted from freshly grown cells by a modification of the standard cell lysis method of Saito and Miura [24], using lysozyme, proteinase K and sodium dodecyl sulphate, followed by phenol-chloroform extraction, and purification using the Qiagen Genomic-Tip 500 Maxi kit (Qiagen, Hilden, Germany). Genomic DNA was precipitated by the addition of a 0.7 volume of isopropanol, and collected by centrifugation at 12,000×g for 10 min at room temperature. The supernatant was removed, and the DNA pellet was washed in 70% ethanol, re-dissolved in TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 7.5) and stored at −20 °C until required.

Genome sequencing and assembly
The complete genome sequence of MB2003 was determined by pyrosequencing 3 kb mate paired-end sequence libraries using the 454 GS FLX platform with Titanium chemistry (Macrogen, Korea). Pyrosequencing reads provided 234× coverage of the genome and were assembled using the Newbler assembler (version 2.7, Roche 454 Life Sciences, USA) which resulted in 31 contigs across 7 scaffolds. Gap closure was managed using the Staden package [25] and gaps were closed using additional Sanger sequencing by standard and inverse PCR techniques. In addition, MB2003 genomic DNA was sequenced using shotgun sequencing of 2 kb paired-end sequence libraries using the Illumina MiSeq platform (Macrogen, Korea) which provided 800-fold sequencing coverage. Illumina reads were analysed using the Galaxy web-based platform [26] and de novo assembly was performed using the Velvet assembler, version 3.0 [27]. The Velvet assembled MB2003 genome MiSeq sequences were combined with the Newbler assembly using the Staden package and Geneious, version 8.1 [28]. Genome assembly was confirmed by pulsed-field gel electrophoresis.

Genome annotation
Annotation of the MB2003 genome was performed as described previously [29]. The MB2003 genome sequence was prepared for NCBI submission using Sequin [30], and the adenine residue of the start codon of the chromosomal replication initiator protein DnaA1 (bhn_I0001, bhn_RS00450) gene was chosen as the first base for the MB2003 genome.

Genome properties
The genome of B. hungatei MB2003 consists of four replicons [21, 31]; a single chromosome (3,143,784 bp, %G + C 39.91), a chromid or secondary chromosome (Bhull, 91,776 bp, %G + C 37.71), a megaplasmid (pNP144, 144,470 bp, %G + C 36.86) and a plasmid (pNP6, 6284 bp, %G + C 35.71). The total size of the closed genome is 3,386,314 bp with an overall %G + C content of 39.71%. A total of 3064 genes were predicted, of which 2983 (97.4%) were protein-coding genes. A putative function was assigned to 2225 of the protein-coding genes, while 775 protein coding genes were annotated as hypothetical proteins. The MB2003 chromosome encodes 2758 genes, and Bhull, pNP144 and pNP6 encode 89, 147 and 6 genes, respectively. The properties and statistics of the MB2003 genome are included in the supplementary material.
The nucleotide sequences of the MB2003 chromosome, chromid (BhuII), megaplasmid (pNP144) and plasmid (pNP6) have been deposited in Genbank under accession numbers CP017831, CP017830, CP017832 and CP017833. The genome atlas for *B. hungatei* MB2003 is shown in Fig. 5.

Table 1 Classification and general features of the rumen bacterium *B. hungatei* MB2003 in accordance with the MIGS recommendations [58]

MIGS ID	Property	Term	Evidence code^a
	Current classification	Domain: *Bacteria*	TAS [59]
		Phylum: *Firmicutes*	TAS [60, 61]
		Class: *Clostridia*	TAS [62]
		Order: *Eubacteriales*	TAS [63]
		Family: *Lachnospiraceae*	TAS [64]
		Genus: *Butyrivibrio*	TAS [4]
		Species: *hungatei*	TAS [19]
	Type strain: No		
	Strain: MB2003		TAS [20, 21]
	Gram stain	Positive	TAS [21, 31]
	Cell shape	Rod	TAS [21, 31]
	Motility	Non-motile	IDA
	Sporulation	Not reported	NAS
	Temperature range	37–39 °C	IDA
	Optimum temperature	39 °C	IDA
	pH range; Optimum	6.0–7.0; 6.4	IDA
	Carbon source	Variety of carbohydrates	IDA
	Energy metabolism	Fermentative metabolism	IDA
	Habitat	Bovine rumen	TAS [20]
	Salinity	Not reported	
	Oxygen requirement	Anaerobic	IDA
	Biotic relationship	Symbiont of ruminants	TAS [20]
	Pathogenicity	Non-pathogen	NAS
	Geographic location	Ruakura, Hamilton, New Zealand	TAS [20]
	Sample collection time	May 2009	TAS [20]
	Latitude	−37.77 (37°46′28″S)	IDA
	Longitude	+175.31 (175°18′31″E)	IDA
	Altitude	40 m	IDA

^aEvidence codes - IDA, Inferred from Direct Assay, NAS, Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). Evidence codes are from the Gene Ontology project [65]

Insights from the genome sequence

Comparison of the MB2003, *B. hungatei* JK615^T, and *B. proteoclasticus* B316^T genomes

A comparison of the *B. hungatei* MB2003 genome with the draft genome of *B. hungatei* JK615^T [32] and the complete *B. proteoclasticus* B316^T genome is shown in Table 7. The MB2003 genome is 8633 bp smaller than
JK615T and contains 27 fewer protein-coding genes. Although several plasmid replication genes have been identified in the JK615T draft genome, the presence of extrachromosomal elements requires experimental validation.

A novel feature of both the MB2003 and B316T genomes is the presence of chromids or secondary chromosomes [33]. Chromids are replicons that have %G + C content similar to that of their main chromosome, but have plasmid-type maintenance and replication systems, are smaller than the chromosome, but are usually larger than any other plasmids present. Chromids contain genes essential for growth and maintenance of the organism along with several core genus-specific genes that can be found on the chromosome in other species of bacteria [33]. The Bhu II replicon has most of these characteristics and therefore has been designated as a chromid of MB2003. In B316T, almost 10% of the genes encoding enzymes that have a role in carbohydrate metabolism and transport are found on the chromid [29]. The Bhu II chromid of MB2003 is smaller than the BPc2 chromid of B316T (186,325 bp), it is now the smallest chromid reported for bacteria. Comparison of MB2003, JK615T and B316T genomes based on COG category (Table 8) and synteny analysis (Fig. 6), show that these

| Table 2 Carbon source utilization of the Butyrivibrio strains |
|----------------|----------------|----------------|
Substrate	MB2003	JK615T	B316T
Monosaccharides			
Arabinose	++	++	++
Fructose	–	–	++
Galactose	++	–	++
Glucose	++	++	++
Mannose	–	++	++
Rhamnose	–	–	++
Ribose	–	–	–
Xylose	++	++	++
Disaccharides			
Cellobiose	++	++	++
Lactose	++	++	++
Maltose	++	++	++
Melibiose	–	–	+
Sucrose	++	++	++
Trisaccharides			
Melezitose	–	–	++
Raffinose	–	++	++
Trehalose	–	–	++
Sugar Alcohols			
myo-Inositol	–	–	–
Mannitol	–	–	+
Sorbitol	–	–	–
Glycosides			
Amygdalin	+	–	++
Esculin	–	++	++
Rutin	–	++	++
Salicin	++	++	++
Insoluble substrates			
Cellulose	–	–	–
Dextrin	–	–	++
Inulin	+	–	++
Starch	–	–	++
Pectin	–	–	++
Xylan	–	–	++

ΔO$_{600nm}$ readings of 0.5–1.0 were scored as ++, 0.2–0.5 scored as +, and 0–0.2 scored as –. Results for B. hungatei JK615T and B. proteoclasticus B316T are adapted from Kopečný et al. [19] and Moon et al. [6], respectively.
Butyrivibrio species and strains are genetically similar. Although the MB2003 and B316 genome sizes differ, the basic metabolism of these two rumen bacterial species is indicated to be similar.

Butyrate production
For the production of butyrate and H2 from glucose, the MB2003 genome possesses a pyruvate:ferredoxin oxidoreductase gene, nifJ (bhn_I2528) required for pyruvate conversion to acetyl-CoA, as well as a butyryl-CoA dehydrogenase/electron transferring flavoprotein bcd-etfAB (bhn_I2225, bhn_I2221 and bhn_I2222) to generate ATP by classic substrate level phosphorylation. In addition, MB2003 possesses genes that encode all six subunits of the Rnf (rfnA, rfnB, rfnC, rfnD, rfnE, rfnF) and Ech (echA, echB, echC, echD, echE, echF) hydrogenases. These pathways involve the transmembrane ion pumps Ech [34] or Rnf [35–38], that generate a transmembrane proton and/or sodium electrochemical potential from redox cofactors for ATP synthesis by ETP [34, 36]. The MB2003 genome does not possess genes for Por-ABDG, a pyruvate ferredoxin oxidoreductase similar in function to NifJ or genes for EhaA-R, EhbA-P, HydA-C, MbhLKJ, or MvhADG/HdrABC similar in function to the Fd-dependent Ech hydrogenase. In addition, an alternative pathway exists where formate is predicted to be the end product and involves the decarboxylation of acetyl-CoA by a pyruvate formate lyase pflB (bhn_I0124) instead of NifJ. It has been proposed that Ech and Rnf work in concert with NifJ and Bcd-Etf complex to drive ATP synthesis by ETP during glucose fermentation to butyrate [34, 36, 39]. Interestingly, the vast majority of anaerobic prokaryotes appear to possess either an Ech or Rnf but not both [40, 41]. However, a recent analysis of rumen prokaryotic genomes identified Butyrivibrio and Pseudobutyrivibrio as a rare group of bacteria that possess genes for both Ech and Rnf [42]. These findings warrant further biochemical investigation to determine the activity of Ech and Rnf in Butyrivibrio.

The MB2003 pathways for butyrate production presume the possession of a complete Embden-Meyerhof-Parnas glycolytic pathway. Enolase (eno, EC4.2.1.11), converts 2-phospho-D-glycerate to phosphoenolpyruvate in the second to last step of

Table 3 MB2003 genome project information

MIGS ID	Property	Term
MIGS-31	Finishing quality	High-quality, closed genome
MIGS-28	Libraries used	454 3 kb mate paired-end library
MIGS-29	Sequencing platforms	454 GS FLX Titanium chemistry
MIGS-31.2	Fold coverage	234x
MIGS-30	Assemblers	Newbler version 2.3
MIGS-32	Gene calling method	Glimmer and BLASTX
Locus Tag	bhn and bhn_RS	
Genbank ID	CP017830, CP017831, CP017832, CP017833	
Genbank Date of Release	31 October 2016	
GOLD ID	Ga0074201	
BIOPROJECT ID	PRUNA349214 and PRUNA224116	
BIOSAMPLE ID	SAMN05928573	
MIGS-13	Source Material Identifier	Butyrivibrio hungatei MB2003
Project relevance	Ruminant plant-fibre degradation	

Table 4 Summary of MB2003 genome replicon features

Replicon type	Size (bp)	Topology	INSDC identifier	RefSeq ID
Chromosome	3,143,784	circular	CP017831	NZ_CP017831
Chromid_Bhull	91,776	circular	CP017830	NZ_CP017830
Megaplasmid_pNP144	144,470	circular	CP017832	NZ_CP017832
Plasmid_pNP6	6284	circular	CP017833	NZ_CP017833
the EMP pathway. Previous work has shown that B316T lacks a detectable enolase [29], and the Methylglyoxal Shunt was proposed as a possible alternative to the EMP pathway. In this pathway the dihydroxyacetone phosphate is transformed to pyruvate via methylglyoxal and D-lactate dehydrogenase, encoded by \(\text{ldhA} \) [43]. The MB2003 genome possesses two methylglyoxal synthase genes, \(\text{mgsA} \) (bhn_I1328 and bhn_I1996), glyoxalase gene \(\text{gloA} \) (bhn_I1783) and an alternative L-lactate dehydrogenase, encoded by \(\text{ldh} \) (bhn_I0363). MB2003 has the same set of genes as B316T for the production of butyrate, formate, acetate and lactate, but also is the only \(B.\) hungatei reported to date that lacks a detectable enolase gene. Genome sequences from a wider range of \(B.\) hungatei and \(B.\) proteoclasticus strains are required to determine if these are common features in these organisms.

Polysaccharide degradation

The Carbohydrate-Active enZYmes database was used to identify glycoside hydrolases, glycosyl transferases, polysaccharide lyases, carbohydrate esterases and carbohydrate-binding protein module families within the MB2003 genome. MB2003 has a similar CAZyme profile to B316T [21, 31], and analysis of the functional domains of enzymes involved in the breakdown or synthesis of complex carbohydrates, has revealed the polysaccharide-degrading potential of this rumen bacterium.

Approximately 3% of the MB2003 genome (90 CDSs) is predicted to encode either secreted or intracellular proteins dedicated to polysaccharide degradation, similar to that found in B316T. The MB2003 genome is predicted to encode 19 secreted (16 GHs, two CEs and one CBP) and 65 intracellular (59 GHs, 5 CEs and one PL) proteins involved in polysaccharide breakdown (Table 9). The enzymatic profiles of MB2003 and JK615T are almost identical, as both possess the same genes encoding predicted secreted and intracellular CAZymes in their genomes (Table 9). Out of the 19 genes predicted to encode secreted polysaccharide-degrading enzymes, only two, lysozyme \(\text{lcy25B} \) (bhn_III074) and feruloyl esterase \(\text{est1A} \) (bhn_III076), are encoded by the MB2003 chromid (Bhu II). MB2003 has no secreted enzyme larger than 1000 aa in size, with the average size secreted enzymes being 510 aa. The majority (59) of MB2003 genes involved in polysaccharide breakdown (excluding GTs), had corresponding homologues in B316T and

Table 5 MB2003 genome statistics
Attribute
Genome size (bp)
DNA coding (bp)
DNA G + C (bp)
DNA scaffolds
Total genes
Protein coding genes
RNA genes
Pseudogenes
Genes in internal clusters
Genes with function predicted
Genes assigned to COGs
Genes with Pfam domains
Genes with signal peptides
Genes with transmembrane helices
CRISPR repeats

*The total is based on either the size of the genome in base pairs or the total number of genes or protein-coding genes in the annotated genome.

Table 6 Number of genes associated with the general COG functional categories
Code
J
A
K
L
B
D
V
T
M
N
U
O
C
G
E
F
H
I
P
Q
R
S
–

*The total is based on the total number of protein coding genes in the genome.
Three of the genes encoding intracellular proteins were found in the Bhu II chromid: a β-glucosidase bgl3A (bhn_III062), a β-galactosidase bga42A (bhn_III010) and a polysaccharide deacetylase est4A (bhn_III070). The analysis of the Pfam domains from the most abundant GH families (GH2, GH31, GH3, GH13 and GH43) showed they did not contain signal sequences and hence were predicted to be located intracellularly. Similarly, CAZymes with predicted roles in xylan and pectin degradation, the GH8, GH28, GH51, GH67, GH88, GH105, GH115, CE2 and CE10 families were also predicted to be intracellular. Of these, MB2003 contains CAZymes with homologues in B316T except for the α-L-arabinofuranosidase arf51C (bhn_I1509). These findings suggest that a variety of complex oligosaccharides resulting from extracellular hydrolysis are metabolized within the cell.

Growth experiments showed MB2003 to be a metabolically versatile bacterium able to grow on a wide variety of monosaccharides, disaccharides and glycosides (Table 2). However, unlike B316T, MB2003 and JK615T were unable to utilize the insoluble substrates pectin and xylan for growth (Table 2). In addition, MB2003, JK615T and B316T are unable to degrade cellulose, however among these organisms, only B316T is able to utilize a range of other insoluble plant polysaccharides. The ability of B316T to breakdown pectin, starch and xylan is predicted to be based on nine large (>1000 aa) cell-associated proteins shown to be significantly up-regulated in B316T cells grown on xylan [44]. These are: α-
amylase *amy13A* (bpr_I1087), arabinogalactan endo-1,4-β-galactosidase *agn53A* (bpr_I2041), carbohydrate esterase family 12 est12B (bpr_I1204), endo-1,3(4)-β-glucanase *lic16A* (bpr_I2326), pectate lyase *pel1A* (bpr_I2372), pectin methylesterase *pme8B* (bpr_I2473), and the cell wall binding domain-containing protein (bpr_I0264). These proteins contain multiple cell wall binding repeat domains (CW-binding domain, Pfam01473) at their C-termini that are predicted to anchor the protein to the peptidoglycan cell membrane. Among these secreted polysaccharidases, some contain single or combinations of catalytic activities: GH10 (endo-1, 4-β-xylanase, xyn10B), GH43 (xyllosidase/arabinofuranosidase, xsa43J (bpr_I12935), endo-1,4-β-xylanase xyn10B (bpr_I0026), and the cell wall binding domain-containing protein (bpr_I0264). These proteins contain multiple cell wall binding repeat domains (CW-binding domain, Pfam01473) at their C-termini that are predicted to anchor the protein to the peptidoglycan cell membrane. Among these secreted polysaccharidases, some contain single or combinations of catalytic activities: GH10 (endo-1, 4-β-xylanase, xyn10B), GH43 (xyllosidase/arabinofuranosidase, xsa43J), PL1 (pectate lyase, pel1A), CE8 and PL9 (pectin methylesterase, pme8B) [45, 46]. Neither MB2003 nor JK615T contain any genes encoding CW-binding domains and are thus are markedly different from B316T.

A curious feature of MB2003 was the presence of a single large (983 aa) carbohydrate binding protein (CBP, bhn_I1848), also present in JK615T (EJ23DRAFT_00192). The domain structures of bhn_I1848 and EJ23DRAFT_00192 are unusual, containing six CBM6 (Pfam03422) domains towards the N-terminus and a single C-terminal CBM2a (Pfam00553) domain. In contrast, B316T encodes two CBPs (bpr_I0736 and bpr_I1599) where both contain two CBM2a domains, and bpr_I1599 also contains two CBM6 domains [29]. CBM6 non-catalytic modules characteristically bind xylose and are associated with xylanase activity with ligand specificity for xylan [47, 48]. CBM2 domains, are divided into two sub-families: 2a, that bind to crystalline cellulose even when associated with xylanases [49], and 2b, that bind to xylan [50]. Recent studies have shown that in discrete regions of plant cell walls, initial enzymatic attack of pectin increases the access of CBMs to cellulose [51], effectively loosening the polysaccharide interactions to expose the xylan and xyloglucan substrates [52, 53]. This initial stage in enzymatic saccharification of plant cell walls termed amorphogenesis [54], and is a possible role for such CBPs containing multiple non-catalytic domains.

In the rumen, MB2003, B316T and JK615T may secrete these non-catalytic CBPs synergistically with
polysaccharide-active enzymes as a mechanism to disrupt the interface between polysaccharides to enhance the rate and extent of plant cell wall degradation.

Conclusion

The *B. hungatei* MB2003 genome sequence adds valuable information regarding the polysaccharide-degrading potential present in the genus *Butyrivibrio*. Genomic comparisons revealed that *B. hungatei* MB2003 shows a high level of similarity with *B. hungatei* JK615T and *B. proteoclasticus* B316T type strains, including genes involved in production of butyrate, formate, acetate and lactate. While MB2003 and JK615T encode a large repertoire of enzymes predicted to metabolize insoluble polysaccharides such as xylan and pectin, they are unable to grow on these substrates and instead appear to be equipped to utilize mainly oligo- and monosaccharides as substrates for growth. Although MB2003 has similar phenotypic characteristics and occupies the same habitat as other *Butyrivibrio* species, its genome encodes fewer extracellular polysaccharide-degrading enzymes, in particular, those that contain multiple cell wall binding repeat domains. The overall genome similarities, metabolic versatility and differences in the abundance of CAZymes observed in *B. proteoclasticus* and *B. hungatei* offers a new view of the genes required for polysaccharide degradation in the rumen. MB2003 appears to occupy a ruminal niche as a secondary degrader of oligosaccharides, in order to coexist with fibre-degrading organisms in this dynamic and competitive environment.

Additional file

Additional file 1: Table S1. Associated MIGS record for *B. hungatei* MB2003, which links to the SIGS supplementary content website. (DOCX 17 kb)
Locus tag	Name	Annotation	Size (aa)	CAZy	Binding domains
bhn_I2518	bga2A	β-galactosidase^b	1034	GH2	
bhn_I0827	bga2C	β-galactosidase^b	714	GH2	
bhn_I11587	bga2B	β-galactosidase^b	825	GH2	
bhn_I0200	gh2B	glycoside hydrolase family 2^b	641	GH2	
bhn_I1127	gh2A	glycoside hydrolase family 2^b	912	GH2	
bhn_I1849	gh2C	glycoside hydrolase family 2^b	776	GH2	
bhn_III062	bgI3A	β-glucosidase^b	803	GH3	
bhn_I0707	bgI3B	β-glucosidase^b	808	GH3	
bhn_I0180	bgI3C	β-glucosidase^b	671	GH3	
bhn_I0706	bgI3D	β-glucosidase^b	982	GH3	C-terminal TMH
bhn_I0189	xyI3A	β-xyllosidase^b	707	GH3	
bhn_I11640	bxI3A	β-N-acetylhexosaminidase^b	427	GH3	
bhn_I11693	celI5C	endo-1,4-β-glucanase^b	543	GH5	CBM2a
bhn_I0165	celI5A	endo-1,4-β-glucanase/xylanase^b	417	GH5	
bhn_I1756	xynI8A	reducing end xylose-releasing exo-oligoxylanase^b	383	GH8	
bhn_I0834	celI9B	cellobextrinase^b	552	GH9	
					CelD
bhn_I0568	xynI10B	endo-1,4-β-xylanase^b	425	GH10	
bhn_I0169	xynI10A	endo-1,4-β-xylanase^b	451	GH10	
bhn_I1158	glgI2	1,4-α-glucan branching enzyme^b	824	GH13	CBM48
bhn_I0053	glgI1	1,4-α-glucan branching enzyme^b	663	GH13	CBM48
bhn_I2702	amyI13A	α-amylose^b	697	GH13	CBM34
bhn_I0634	amyI13B	α-amylose^b	536	GH13	
bhn_I1680	amyI13C	α-amylose^b	434	GH13	
bhn_I0669	amyI13D	α-amylose^b	511	GH13	
bhn_I1153	glgX1	glycogen debranching enzyme^b	726	GH13	CBM48
bhn_I1315	glgX2	glycogen debranching enzyme^b	648	GH13	
bhn_I0652	sucI3P	sucrose phosphorylase^b	553	GH13	
bhn_I2526	chiI18A	chitinase^b	567	GH18	
bhn_I11254	lyc25A	lysozyme^b	362	GH25	
bhn_III074	lyc25B	lysozyme^b	515	GH25	
bhn_I0191	lyc25C	lysozyme^b	561	GH25	
bhn_I1763	lyc25D	lysozyme^b	242	GH25	
bhn_I0527	lyc25E	lysozyme^b	1213	GH25	
					Big2 (x2)
bhn_I11287	aga27A	α-galactosidase^b	577	GH27	
bhn_I1002	gh27A	glycoside hydrolase family 2^b	442	GH27	
bhn_I1152	pgl28A	polygalacturonase^b	531	GH28	
bhn_I02679	pgl28B	polygalacturonase^b	519	GH28	
bhn_I11087	suc29A	α-L-fucosidase^b	475	GH29	
bhn_I2734	gh30A	glycoside hydrolase family 30^b	575	GH30	
bhn_I11581	gh31A	glycoside hydrolase family 31^b	756	GH31	
bhn_I2191	gh31C	glycoside hydrolase family 31^b	674	GH31	
bhn_I0283	gh31B	glycoside hydrolase family 31^b	635	GH31	
bhn_I0582	scr32A	sucrose-6-phosphate hydrolase^b	493	GH32	
bhn_I0826	bga35A	β-galactosidase^b	622	GH35	
Locus tag	Name	Annotation	Size (aa)	CAZy	Binding domains
-----------	------	------------	----------	------	-----------------
bhn_11817	bga35B	β-galactosidase^b	735	GH35	
bhn_11044	aga36A	α-galactosidase^b	782	GH36	
bhn_11583	aga36B	α-galactosidase^b	620	GH36	
bhn_11945	aga36C	α-galactosidase^b	730	GH36	
bhn_10086	man38A	α-mannosidase^b	1053	GH38	
bhn_11010	bga42A	β-galactosidase^b	673	GH42	
bhn_0167	xso43A	xylosidase/arabinofuranosidase^b	543	GH43	CBM6
bhn_01981	xso43B	xylosidase/arabinofuranosidase^b	301	GH43	
bhn_12037	xso43C	xylosidase/arabinofuranosidase^b	302	GH43	
bhn_12111	xso43D	xylosidase/arabinofuranosidase^b	517	GH43	
bhn_12735	xso43E	xylosidase/arabinofuranosidase^b	352	GH43	
bhn_10032	xso43F	xylosidase/arabinofuranosidase^b	312	GH43	
bhn_0164	xso43G	xylosidase/arabinofuranosidase and esterase^b	925	GH43	
bhn_11509	arf51C	α-L-arabinofuranosidase^b	630	GH51	
bhn_12228	arf51A	α-L-arabinofuranosidase^b	502	GH51	
bhn_00100	arf51B	α-L-arabinofuranosidase^b	504	GH51	
bhn_01670	agn53A	arabinogalactan endo-1,4-β-galactosidase^b	439	GH53	
bhn_0183	agu67A	α-D-glucuronidase^b	662	GH67	
bhn_12177	mal77A	4-α-glucanotransferase^b	506	GH77	
bhn_01697	ugl88A	unsaturated glucuronyl hydrolase^b	385	GH88	
bhn_12381	ugl88B	unsaturated glucuronyl hydrolase^b	383	GH88	
bhn_12196	cbp94A	cellobiose phosphorylase^b	814	GH94	
bhn_11582	gh95A	glycoside hydrolase family 95^b	734	GH95	
bhn_12548	gh105A	unsaturated rhamnogalacturonyl hydrolase^b	349	GH105	
bhn_10090	gh105B	unsaturated rhamnogalacturonyl hydrolase^b	363	GH105	
bhn_12549	gnpA	D-galactosyl-β-1,4-L-rhamnose phosphorylase^b	722	GH112	
bhn_0185	gh115A	α-glucuronidase^b	947	GH115	
bhn_11083	xyl120A	xylosidase^b	861	GH120	
bhn_11738	xyl120B	xylosidase^b	664	GH120	
bhn_11076	est1A	feruloyl esterase^b	351	CE1	
bhn_11244	est2A	acetyl-xylan esterase^b	372	CE2	
bhn_11070	est4A	polysaccharide deacetylase^b	207	CE4	
bhn_10843	est4C	polysaccharide deacetylase^b	280	CE4	
bhn_08666	nagA	N-acetylgalactosamine-6-phosphate deacetylase^b	371	CE9	
bhn_11609	est12A	carbohydrate esterase family 12^b	584	CE12	
bhn_11927	est12B	carbohydrate esterase family 12^b	244	CE12	
bhn_11926	pil71A	polysaccharide lyase^b	746	PL11	
bhn_10657	pilP1	glycogen phosphorylase^b	769	GT35	
bhn_12673	pilP2	glycogen phosphorylase^b	824	GT35	
bhn_11848	–	carbohydrate binding protein^b	983	CBM2a (×1), CBM6 (×6)	

^aCAZy descriptions and classifications compiled from the CAZy database [68]. ^bIndicates homologues in the B. hungatei JK615⁷ draft genome. Genes encoding predicted secreted polysaccharide degrading enzymes are in bold.
Abbreviations
Bp: Base pair(s); C2Zymes: Carbohydrate-Active eZymes; CBMs: Carbohydrate-Binding Module(s); CE: Carbohydrate Esterase(s); Ech: Escherichia coli hydrogenase-3-type hydrogenase; Eta: Energy-convertling hydrogenase A; Etb: Energy-convertling hydrogenase B; EMP: Embden-Meyerhof-Parnas; ETP: Electron transport phosphorylation; Ghts: Glycoside Hydrolase(s); GTs: Glycosyl Transferase(s); Hyd: Ferredoxin hydrogenase; Mibh: Membrane-bound hydrogenase; MvhH/Drh: Methyl viologen hydrogenase/heterodisulfide reductase; Pl: Pyruvate formate lyase; PLS: Poly saccharide Lyase(s); Pr: Pyruvate ferredoxin oxidoreductase; Rnf: Rhodobacter nitrogen fixation

Acknowledgements
The MB2003 genome sequencing project was funded by the New Zealand Ministry of Business, Innovation and Employment New Economy Research Fund programme: Accessing the uncultured rumen microbiome, contract number C10X0083. Electron microscopy was conducted with the assistance of the Manawatū Microscopy and Imaging Centre at Massey University, Palmerston North, New Zealand.

Authors’ contributions
NP, WJK, GTA conceived and designed the experiments. NP performed the sequencing and assembly experiments. NP, WJK, GTA, SCL, EA performed the growth studies and polysaccharide utilization profiling. NP, WJK, GTA wrote the manuscript. All authors commented on the manuscript before submission. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 25 July 2017 Accepted: 23 November 2017
Published online: 04 December 2017

References
1. Henderson G, Cox F, Ganesh S, Jonker A, Young W, Collaborators CRC, Janssen PH. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep. 2015;5(14567):1–13.
2. Bryant MP, Small N. The anaerobic monotrichous butyric acid-producing curved rod-shaped bacteria of the rumen. J Bacteriol. 1956;72(1):16–21.
3. Hespell RB. The genera Butyrivibrio, Lachnospira, andRoseburia. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer K-H, editors. The prokaryotes: a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. New York: Springer; 1996. p. 927–37.
4. Hespell RB. The genera Butyrivibrio, Lachnospira, and Roseburia. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer K-H, editors. The prokaryotes: a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. New York: Springer; 1996. p. 2232–3.
5. Moon CD, Pacheco DM, Kelly WJ, Leahy SC, Li D, Kopecky J, Attwood GT. Redclassification of Clostridium proteoclasticum as Butyrivibrio proteoclasticus comb. nov., a butyrate-producing ruminal bacterium. Int J Syst Evol Microbiol. 2008;58(9):2041–5.
6. Hespell RB, Cotta MA. Degradation and utilization by Butyrinivibrio fibrisolvens H17c of xylans with different chemical and physical properties. Appl Environ Microbiol. 1995;61(9):3042–50.
7. Attwood GT, Reilly K. Characterization of proteolytic activities of rumen bacterial isolates from forage-fed cattle. J Appl Bacteriol. 1996;81(5):545–52.
8. Diez-Gonzalez F, Bond DR, Jennings E, Russell JB. Alternative schemes of butyrate production in Butyrivibrio fibrisolvens and their relationship to acetate utilization, lactate production, and phylogeny. Arch Microbiol. 1999;171(3):324–30.
9. Palillard D, McKinn N, Rincon MT, Shingfield KJ, Gvens DJ, Wallace RJ. Quantification of ruminal Clostridium proteoclasticum by real-time PCR using a molecular beacon approach. J Appl Microbiol. 2007;103(4):1251–61.
10. Shane BS, Gouws L, Kistner A. Cellulolytic bacteria occurring in the rumen of sheep conditioned to low-protein teff hay. J Gen Microbiol. 1969;53(3):445–57.
11. Hazlewood GP, Theodora MK, Hutchings A, Jordan DJ, Gaffre G. Preparation and characterization of monoclonal antibodies to a Butyrivibrio sp. and their potential use in the identification of rumen Butyrivibrios, using an enzyme-linked immunosorbent assay. J Gen Microbiol. 1986;132(1):43–52.
12. Mannarelli BM. Deoxyribonucleic acid relatedness among strains of the species Butyrivibrio fibrisolvens. Int J Syst Bacteriol. 1988;38(4):304–7.
13. Mannarelli BM, Stack RJ, Lee D, Ericsson L. Taxonomic relatedness of Butyrivibrio, Lachnospira, Roseburia, and Eubacterium species as determined by DNA hybridization and extracellular-polysaccharide analysis. Int J Syst Bacteriol. 1990;40(4):370–8.
14. Forster R, Eeather R, Gong J, Deng S-L. 16S rDNA analysis of Butyrivibrio fibrisolvens: phylogenetic position and relation to butyrate-producing anaerobic bacteria from the rumen of white-tailed deer. Lett Appl Microbiol. 1996;23(4):218–22.
15. Willems A, Amat-Marco M, Collins MD. Phylogenetic analysis of Butyrivibrio strains reveals three distinct groups of species within the Clostridium subphylum of the gram-positive bacteria. Int J Syst Bacteriol. 1996;46(1):195–9.
16. Forster RJ, Gong J, Teather RM. Group-specific 16S rRNA hybridization probes for determinative and community structure studies of Butyrivibrio fibrisolvens in the rumen. Appl Environ Microbiol. 1997;63(4):1256–60.
17. Van Gylswyk NO, Hippe H, Rainey FA. Pseudobutyrivibrio rumini gen. nov. sp. nov., a butyrate-producing bacterium from the rumen that closely resembles Butyrivibrio fibrisolvens in phenotype. Int J Syst Bacteriol. 1996;46(5):559–63.
18. Kopecky J, Zorec M, Mravek J, Kobayashi Y, Marinsek-Logar R. Butyrivibrio fibrisolvens sp. nov. and Pseudobutyrivibrio xylanivorans sp. nov., butyrate-producing bacteria from the rumen. Int J Syst Evol Microbiol. 2003;53(1):201–9.
19. Noel S. Cultivation and community composition analysis of plant-adherent rumen bacteria. PhD thesis. Massey University, Institute of Molecular Biosciences; 2013.
20. Palevich N. Genome sequencing of rumen bacteria involved in lignocellulose digestion. MSc thesis: Massey University, Institute of Molecular Biosciences; 2011.
21. Kentera N, Henderson G, Jeyanathan J, Kittellman S, Janssen PH. Isolation of previously uncultured rumen bacteria by dilution to extinction using a new liquid culture medium. J Microbiol Methods. 2011;84(1):52–60.
22. Richardson A, Calder A, Stewart C, Smith A. Simultaneous determination of volatile and non-volatile acidic fermentation products of anaerobes by capillary gas chromatography. Lett Appl Microbiol. 1989;9(1):5–8.
23. Saito H, Miura K-I. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta. 1963;72:29–30.
24. Staden R, Beal KF, Bonfield JK. The staden package. In: Misener S, Krawetz A, Markowitz S, Duran C. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2011;28(12):1647–9.
25. Staden R, Beal KF, Bonfield JK. The staden package. In: Misener S, Krawetz A, Markowitz S, Duran C. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2011;28(12):1647–9.
26. Bailey SR, Atwood GT, Keith LJ, Bond DR, Jennings E, Russell JB. Alternative schemes of butyrate production in Butyrivibrio fibrisolvens and their relationship to acetate utilization, lactate production, and phylogeny. Arch Microbiol. 1999;171(3):324–30.
27. Palillard D, McKinn N, Rincon MT, Shingfield KJ, Gvens DJ, Wallace RJ. Quantification of ruminal Clostridium proteoclasticum by real-time PCR using a molecular beacon approach. J Appl Microbiol. 2007;103(4):1251–61.
28. Keasey M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C. Genosources: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2013;29(18):2277–84.
29. Bailey SR, Atwood GT, Keith LJ, Bond DR, Jennings E, Russell JB. Alternative schemes of butyrate production in Butyrivibrio fibrisolvens and their relationship to acetate utilization, lactate production, and phylogeny. Arch Microbiol. 1999;171(3):324–30.
30. Benson DA, Clarke K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2015;43(D1):D30–5.
31. Palevich N. Comparative genomics of Butyrivibrio and Pseudobutyrivibrio from the rumen. PhD thesis. Massey University, Institute of Fundamental Sciences; 2016.
32. Kyrpides NC, Hugenholtz P, Eisen JA, Woyke T, Göker M, Parker CT, Amann R, Beck BJ, Church J, Amann R. Kyrpides NC. Hugenholtz P. Eisen JA. Woyke T. Göker M. Parker CT. Amann R. Beck BJ. Church J. Genomes of bacteria and archaea: a sequencing of type strain. PLoS Biol. 2014;12(8):e1001920.
