Variability in greenhouse gas emission intensity of semi-intensive suckler cow beef production systems

Stine Samsonstuen⁎, Bente A. Åbya, Paul Crossonb, Karen A. Beaucheminc, Marit S. Wetlesenad, Helge Bonesmoe, Laila Aassa

a Department of Animal Sciences, Norwegian University of Life Sciences, P.O. Box 5003 NO-1432 Ås, Norway
b Animal Grassland Research and Innovation Centre, Teagasc, Grange, Dunshaughlin, Co. Meath, Ireland
c Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, T1J 4B1, Canada
d Nord University, Kongens Gate 42, Steinkjer 7713, Norway
e Norwegian Institute of Bioeconomy Research, Postboks 4718 Torgard, Trondheim 7468

ARTICLE INFO

Keywords:
Beef cattle greenhouse gas emissions farm scale model regional differences soil carbon suckler cow production

ABSTRACT

Emission intensities from beef production vary both among production systems (countries) and farms within a country depending upon use of natural resources and management practices. A whole-farm model developed for Norwegian suckler cow herds, HolosNorBeef, was used to estimate GHG emissions from 27 commercial beef farms in Norway with Angus, Hereford, and Charolais cattle. HolosNorBeef considers direct emissions of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) from on-farm livestock production and indirect N2O and CO2 emissions associated with inputs used on the farm. The corresponding soil carbon (C) emissions are estimated using the Introductory Carbon Balance Model (ICBM). The farms were distributed across Norway with varying climate and natural resource bases. The estimated emission intensities ranged from 22.5 to 45.2 kg CO2 equivalents (eq) (kg carcass)−1. Enteric CH4 was the largest source, accounting for 44% of the total GHG emissions on average, dependent on dry matter intake (DMI). Soil C was the largest source of variation between individual farms and accounted for 6% of the emissions on average. Variation in GHG intensity among farms was reduced and farms within region East, Mid and North re-ranked in terms of emission intensities when soil C was excluded. Ignoring soil C, estimated emission intensities ranged from 21.5 to 34.1 kg CO2 eq (kg carcass)−1. High C loss from farms with high initial soil organic carbon (SOC) content warrants further examination of the C balance of permanent grasslands as a potential mitigation option for beef production systems.

1. Introduction

Globally, the agricultural sector accounts for 10-12% of greenhouse gas (GHG) emissions (Tubiello et al., 2014) with livestock production contributing a significant portion. It is estimated that food production will need to increase by 50% compared with 2012 levels to feed the global population in 2050 (FAO, 2017). As a consequence, beef consumption is expected to increase in both developed and developing countries (OECD/FAO, 2018) and, thus greenhouse gas (GHG) emissions from beef production are also likely to increase.

Beef products have been shown to have a relatively high GHG emission per kg food (Mogensen et al., 2012). However, there is substantial variation in emission intensities among countries (Gerber et al., 2013), and among farms within a country (Bonesmo et al., 2013). This variation in GHG intensity is partly due to methodological differences among studies, but fundamental differences in natural resource availability and farm management practices also contribute significantly (Alemu et al., 2017a; White et al., 2016). Exploring differences between farm systems in GHG intensity may help identify beef production systems and practices that are more efficient, which could lead to the development of mitigation options at farm level. Hristov et al., (2013) reviewed different management practices such as diet formulation, feed supplements, manure management, improved reproductive performance, and enhanced animal productivity to reduce GHG emissions from ruminant production and showed potential long term mitigating effects.

Globally, approximately 44% of livestock GHG emissions are in the form of CH4 (Gerber et al., 2013). In Norway, enteric CH4 accounts for 44-48% of total farm emissions from beef cattle production systems (Samsonstuen et al., 2019). The diet influences CH4 emissions through

⁎ Corresponding author.
E-mail address: stine.samsonstuen@nmbu.no (S. Samsonstuen).
https://doi.org/10.1016/j.livsci.2020.104091
Received 19 September 2019; Received in revised form 14 April 2020; Accepted 4 May 2020
Available online 20 May 2020
1871-1413/ © 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
the digestibility and fibre content of the feed. A high proportion of fiber in the diet yields a higher acetic-propionic acid ratio in rumen fluid, which leads to higher CH₄ emissions (Sveinbjörnsson, 2006). Enteric CH₄ emissions can be lowered through improved feed quality, use of inhibitors and by breeding animals for lower emissions (Difford et al., 2018).

Legesse et al. (2011) investigated the effect of management strategies for summer and winter feeding and found a 3 to 5% difference in CH₄ emissions across production systems. Concentrate-based beef production systems show lower GHG intensity compared with roughage based systems (de Vries et al., 2015). However, to ensure future food supply, grasslands less suitable for crop production might be preferred over highly productive cropland for production of feed for beef cattle. Beef production in Norway relies on use of pasture and forages because the total land in Norway is 90% ‘outfields’ (i.e. rough grazing in forest, mountain and coast areas), with half the outfield area suitable as pastures or for forage production (Rekdal et al., 2014). According to Norwegian laws and regulations, all must be kept on pasture for at least 8 weeks during the summer (Landbruks- og Matdepartementet, 2004). Grasslands have a large potential of storing C in plant biomass and soil organic matter through C sequestration (Wang et al., 2014). Grazing management influences the GHG emission intensity from beef production through diet quality (McCaughey et al., 2010), animal performance (Thornton and Herrero, 2010), nitrogen (N) fertilizer use (Merino et al., 2011), and soil C change (Alemu et al., 2017b). The effect of grazing management and stocking rate on C balance have been investigated by a number of studies (Reeder and Schuman, 2002; Soussana et al., 2007; Wang et al., 2014). Reeder and Schuman (2002) found significantly greater soil C content with light to moderate stocking rates compared with no grazing due to a more diverse plant community with fibrous rooting systems. Soussana et al. (2007) reported that managed grasslands in Europe are likely to act like atmospheric C sinks. However, when the study included C exports through grazing and harvesting and related emissions of CH₄ and N₂O, total GHG emissions from grazed European grasslands were not significantly different from zero. Alemu et al. (2017b) concluded that a whole-farm approach is important to evaluate the impacts of changes in farm management aimed at decreasing the environmental impact of beef production systems. Yet, soil C is not included in most whole-farm GHG studies (Crosson et al., 2011).

Samsonstuen et al. (2019) developed a whole farm model, HolosNorBeef, adapted to Norwegian conditions and estimated GHG emission intensities for average Norwegian beef cattle farms in two distinct geographical locations (low altitude flatlands suitable for grain production and high altitude mountains not suitable for grain production). The emission intensities in flatlands and mountains were 29.5 and 32.0 kg CO₂ eq kg⁻¹ carcass for British breeds, and 27.5 and 29.6 CO₂ eq kg⁻¹ for Continental breeds, respectively. However, the use of average farm scenarios did not account for variation in production systems, differences in resource base, breed differences, management practices, selection strategies, feed composition and feed quality that typically prevail among farms.

Thus, the aim of this study was to use the HolosNorBeef model to evaluate commercial herds of Aberdeen Angus, Hereford, and Charolais cattle in geographically different regions of Norway with different management practices, resources, and quality of feed available to establish the variability in emission intensities and corresponding soil carbon (C) balance from suckler cow beef production under Norwegian conditions.

2. Materials and methods

This analysis was based on a study of suckler cow efficiency and genotype × environment interactions. The project (Optbeef - Increased meat production from beef cattle herds) gathered comprehensive information from 2010 to 2014 on farm structure, herd management, animal production and economics for suckler cow herds with the breeds Aberdeen Angus (AA), Hereford (H) and Charolais (CH). To be included in the study the farms had to record a minimum of 60% of weaning weights (WW) and have a minimum of 10 purebred cows per herd. The requirements were met by 188 herds, and 27 farms (nine of each of the three breeds) were finally selected based on variety in geographical locations. The farms provided sufficient information to quantify whole-farm GHG emissions. Through market regulation and subsidies, farmers are encouraged to buy concentrates and sell grains produced on farm, rather than using it as feed in livestock production (LMD, 2018). Hence, other production enterprises on the farms not related to the cow-calf operation, such as production of natural resources, use of farm inputs (i.e. area, fertilizer, and pesticides) for grain production, ley area for horses, and finishing of calves not born on the farm, was excluded from the analysis.

The farms were distributed across Norway from Rogaland in the South to Troms in the North within climatic zones varying from 3 (good) to 8 (harsh) on the scale developed by the Norwegian Meteorological Institute and Det norske hageselskap 2006. The farms had a wide range of farm characteristics such as herd size, management practices, resource base and areas available for forage production. Thus, the farms were considered representatives of the broad spectrum of suckler cow farms in Norway.

2.1. Farm characteristics

The input data were farm specific production data, farm operational data and soil and weather data for the specific locations. The farm specific animal production data from the period 2010-2014 were obtained from the Norwegian Beef Cattle Recording System (Animalia, 2017; Table 1). Calving typically occurred in the period January-July, with an average calving date April 1st. However, three farms had a small proportion of the cows (0.18-0.41) calving during the autumn, with an average calving date October 1st. The feeding of each group of cattle throughout the year including type and proportion of concentrates, forage type and quality and time spent on pasture, were available through interviews with the respective farmers. The nutritive values of all forages, concentrates, and pastures (Table 2) were estimated using laboratory analysis information for the specific municipalities (Eurofins, Moss, Norway), information from the two largest feed manufacturers in Norway (Felleskjøpet SA, Oslo Norway; Norgesforsk AS, Oslo Norway) and from the chemical composition of forage, grains and pasture (NMBU, Norwegian Food Safety Authority 2008).

The manure was assumed to be deposited on pasture during the grazing period and during housing the manure handling system was deep bedding, solid storage or a combination set according to the management practices on the specific farm. All manure collected through the housing period was used for fertilizing ley areas. The areas (ha) and yields (kg ha⁻¹) of forage and use of fertilizers (kg N ha⁻¹; Table 2), were obtained through interviews with the farmers and the farm accounts. However, two farms had no grass silage production on the farm and buy grass silage from farms within the same area. Thus, the forage yield of the individual farms was assessed as the calculated forage requirement plus an additional 10% (DM basis) to account for losses due to ensilaging (DOW, 2012). The areas required for forage production on these specific farms were estimated based on yield statistics for the specific area (Statistics Norway, 2017) and the use of fertilizers was based on the Norwegian recommendations for N application levels for forage production (NIBIO, 2016).

The use of energy, fuel, and pesticides was calculated based on information from the respective farm accounts (Table 3). For each of the individual farms a cultivation factor

\[r_w \times r_T \] was calculated based on annual mean indices of soil temperature \(r_T \) and soil moisture \(r_w \) according to Skjelvåg et al. (2012; Table 4). The cultivation factor was used together with initial
soil C content in the Introductory Carbon Balance Model (ICBM; Andrén et al., 2004) to account for external effects such as soil moisture and temperature, and variation in resource base. Water filled pore space (WFPS) and soil temperature at 30 cm depth (ts30) for each individual was calculated according to Skjelvåg et al. (2012) using detailed soil-type recordings available through NIBIO, whereas ts30 was calculated based on air temperature according to Kätterer and Andrén (2009). Due to expansion of the herd and/or sales of breeding stock, the herd size was not stable in most of the farms. Thus, carcass production assuming a constant herd size was calculated based on the corresponding replacement rate, farm specific slaughter weights, and dressing percentages from culled cows, surplus heifers and finishing bulls. Bulls not born on the farm were excluded as they were purchased and sold for breeding purposes, and did not contribute to carcass output.

2.2. Modelling GHG emissions

2.2.1. The HolosNorBeef model

The GHG emissions were estimated using HolosNorBeef developed by Samsonstuen et al. (2019), HolosNorBeef is an empirical model based on the HolosNor model (Bonesmo et al., 2013), BEEFGEM (Foley et al., 2011), HOLOS (Little et al., 2008), and the Tier 2 methodology of the Intergovernmental Panel on Climate Change (IPCC, 2006) modified for suckler beef production systems under Norwegian conditions. The model estimates the GHG emissions on an annual time step for the land use and management changes and on a monthly time step for animal production, accounting for differences in diet, housing, and climate. HolosNorBeef estimates the whole-farm GHG emissions by considering direct emissions of methane (CH4) from enteric fermentation and manure, nitrous oxide (N2O) and carbon dioxide (CO2) from on-farm livestock production including soil carbon (C) changes, and indirect N2O and CO2 emissions associated with runoff, nitrate leaching, ammonia volatilization and from inputs used on the farm (Figure 1; adopted by Samsonstuen et al., 2019). All emissions are expressed as CO2 eq to account for the global warming potential (GWP) of the respective gases for a time horizon of 100 years: CH4 (kg) × 25 + N2O × 298 + CO2 (kg) (IPCC, 2007). Emission intensities from suckler cow beef production are related to the on farm beef production and expressed as kg CO2 eq (kg beef carcass)−1.

2.2.1.1. Methane emissions. Enteric CH4 emissions are estimated for each age and sex class of cattle using an IPCC (2006) Tier 2 approach. Estimation of gross energy (GE) intake is based on energy requirements for maintenance, growth, pregnancy, and lactation according to Refsgaard Andersen (1990). The DM intake (DMI; Table 5) depends on both the energy requirements of the animal and the animals’ intake capacity. The intake capacity is dependent on the fill value of the

Table 2

Mean (M) and standard deviation (SD; in parenthesis) for nutritive values of forages, concentrates and pastures for the 27 Norwegian beef cattle farms used to estimate GHG emission intensities (n = 9 for each breed; Animalia, 2017).

Unit	Angus			Hereford			Charolais													
	DM	%	FUm^a	CP	g/kg DM	%	DE	%	FUm	CP	g/kg DM	%	DE	%	FUm	CP	g/kg DM	%	DE	%
Concentrates^b	M (SD)																			
	0.88 (0.00)	1.07 (0.03)	163 (21)	77 (2)	0.88 (0.00)	1.05 (0.04)	165 (38)	76 (3)	0.88 (0.00)	1.08 (0.06)	157 (15)	78 (4)								
Siilage^c	0.37 (0.15)	0.83 (0.08)	141 (4)	60 (5)	0.38 (0.12)	0.85 (0.03)	159 (11)	62 (2)	0.38 (0.10)	0.84 (0.04)	152 (16)	61 (3)								
Straw, NH3^d	0.86	0.70	95	52	0.86	0.70	95	52	0.86	0.70	95	52								
Straw, dry^e	0.20	0.95	196	68	0.20	0.95	196	68	0.20	0.95	196	68								
Pasture^f	0.20	0.95	196	68	0.20	0.95	196	68	0.20	0.95	196	68								

DM = dry matter; FUm = feed units milk/kg DM; CP = crude protein; DE = digestible energy

^a 1FUm = 6.9 MJ net energy lactation

^b Information from the farmer

^c Forage analysis (Eurofins, 2015)

^d NMBU and Norwegian Food Safety Authority (2008)

^e Equal pasture quality on outfield pastures as cultivated pastures according to Rekdal (2014)
forage, as well as the substitution rate of the concentrates (Refsgaard Andersen, 1990). The GE intake to meet the energy requirements was estimated from the energy density of the diet (18.45 MJ kg⁻¹ DMI; IPCC, 2006; Table 6). Enteric CH₄ was estimated from the diet specific CH₄ conversion factor for each cattle group (Ym = 0.065; IPCC, 2006; Table 6). The Ym factor is adjusted for the digestibility of the diet (0.1058 × 0.0006 × DE) as suggested by Beauchemin et al. (2010; Table 6).

Manure CH₄ emissions are estimated from the organic matter (volatile solid; VS) content of the manure. The VS production is calculated based on IPCC (2006), taking the GE content and digestibility of the diet into account. The VS are multiplied by a maximum CH₄ producing capacity of the manure (Bₒ = 0.18 m³ CH₄ kg⁻¹), a CH₄ conversion factor (MCF = 0.01, 0.02, 0.17 kg CH₄ VS⁻¹ for manure on pasture, solid storage manure and deep bedding, respectively) and a conversion factor from volume to mass (0.67 kg m⁻³; IPCC, 2006; Table 6).

2.2.1.2. Nitrous oxide emissions. Direct manure N₂O emissions are calculated based on the N content of manure and an emission factor for the manure handling system (0.01, 0.02, 0.05 kg N₂O-N (kg N)⁻¹ for deep bedding, pasture manure, and solid storage, respectively; IPCC, 2006; Table 6). The N content of the manure is estimated according to IPCC (2006), based on the DMI, crude protein (CP; CP = 6.25 × N) of the manure and N retention by the animals (Table 6).

Direct soil N₂O emissions are estimated by multiplying the total N inputs with an emission factor of 0.01 kg N₂O-N kg⁻¹ N according to IPCC (2006). The total N inputs include above- and below ground crop residue N, using crop yields of Janzen et al. (2003), and mineralized N in addition to application of N fertilizer and manure. The derived C:N ratio of organic soil matter (0.1; Little et al., 2008) is used to calculate mineralization of N inputs (Table 6). The effect of location and seasonal variation was taken into account by including four seasons based on the local weather conditions and growing season; spring (April-May), summer (June-August), autumn (September-November) and winter (December-March), and the relative effects of percentage WFPS (0.0473 + 0.01102 × WFPS; Sozanska et al., 2002) of top soil and soil temperature at 30 cm depth (ts₃₀; 0.5762 + 0.03130 × ts₃₀; Sozanska et al., 2002; Table 6).

Indirect N₂O emissions from soil are estimated from the assumed losses of N from manure, crop residues, and fertilizer according to IPCC (2006). The emissions from run-off, leaching and volatilization are estimated based on the fraction of the loss for the manure handling system adjusted using emission factors (0.0075 and 0.01 kg N₂O-N kg⁻¹) for leaching and volatilized ammonia-N, respectively (IPCC, 2006; Table 6). The emissions were based on the assumed fraction of N lost adjusted for emission factors for leaching (0.0, 0.0, 0.3, 0.5 kg N (kg N)⁻¹ for deep bedding, solid storage, pasture manure and soil N inputs including land applied manure, grass residue, synthetic N fertilizer and mineralized N, respectively; IPCC, 2006; Table 6). Emissions from volatilization were adjusted for the emission factors for volatilized ammonia-N (0.1, 0.2, 0.3, 0.45 kg N (kg N)⁻¹ for soil N inputs, pasture manure, deep bedding, and solid storage, respectively; IPCC, 2006; Table 6).

Table 3	Farm inputs and land use for the 27 Norwegian beef cattle farms used to estimate GHG emission intensities.												
Farm	East (n = 16)	Southwest (n = 2)	Mid (n = 4)	North (n = 5)									
Input use	Mean	Min	Max										
Fuel (L year⁻¹)ᵇ	5681	34	15379	1709	804	2614	4364	1942	8780	4362	1392	6778	
Electricity (KWh year⁻¹)ᵇ	47642	0	154938	6620	4670	8571	33860	19194	53665	20772	0	30961	
Silage additive (kg CH₄O² year⁻¹)ᵇ	5962	0	37980	2250	0	4500	0	0	0	250	0	0	
Land use	Ley synthetic fertilizer (kg N ha⁻¹)ᵇ	9	0	18	15	8	22	5	0	11	12	4	18
	Ley synthetic fertilizer (kg N ha⁻¹)ᵇ	10.4	0	25.3	2.8	2.5	3.1	0	0	0	0.5	0	2.6
	Pasture synthetic fertilizer (kg N ha⁻¹)ᵇ	7	0	25	0	0	0	0	4	0	16	3	0
	Ley area (ha)	54.5	10.0	180.2	16.5	8.0	25.0	61.7	33.1	84.9	31.6	15.0	55.7
	Silage yield (kg DM year⁻¹)ᵇ	241197	96688	1040000	36855	27810	45900	190266	119119	271250	131486	66000	280800
	Cultivated pasture (ha)	14.5	0	53.1	6.3	5.6	7.0	16.9	2.5	50.1	14.3	0	30.0

Table 4	Mean, minimum (Min) and maximum (Max) natural resource data for the grasslands of 27 Norwegian suckler cow farms used to estimate GHG emission intensities of beef production.											
Farm	East (n = 16)	Southwest (n = 2)	Mid (n = 4)	North (n = 5)								
Input use	Mean	Min	Max									
Soil temperature at 30 cm depth, winter (°C)	-0.3	-1.5	1.2	1.9	1.8	2.0	0.7	-0.5	1.6	0.8	-0.3	1.9
Soil temperature at 30 cm depth, spring (°C)	6.2	3.4	8.1	6.9	6.8	6.9	5.6	5.6	4.7	6.3	5.3	4.4
Soil temperature at 30 cm depth, summer (°C)	13.7	11.1	15.6	13.1	12.8	13.4	12.2	11.7	12.8	12.4	12.1	12.8
Soil temperature at 30 cm depth, autumn (°C)	5.5	2.8	8.4	8.1	8.0	8.1	8.1	4.6	7.4	6.1	4.5	7.4
Water filled pore space, winter (%)	56.7	47.1	68.4	55.0	53.9	56.1	51.4	41.4	35.3	46.5	59.6	35.3
Water filled pore space, summer (%)	47.0	31.1	62.5	59.0	49.1	52.7	35.7	29.2	40.6	45.2	21.7	56.7
Water filled pore space, autumn (%)	68.1	50.7	79.8	66.1	64.4	67.9	50.5	42.2	55.6	65.8	42.6	94.5
Emissions from volatilization, and synthetic N fertilizer (kg N (kg N)⁻¹) for soil N inputs, pasture manure, deep bedding, and solid storage, respectively; IPCC, 2006; Table 6).												

n = number of farms; SOC = soil organic carbon
ᵃ Estimated according to Katterer and Andren (2009).
ᵇ Estimated according to Bonosmo et al. (2012).
ᶜ Estimated according to Andren et al. (2004).
2.2.1.3. Soil C change. Soil C change is estimated based on the Introductory Carbon Balance Model (ICBM) by Andrén et al. (2004), which estimates the change in soil C from total C inputs (i) from grass residues and manure. The fraction of the young (Y) C pool entering the old (O) C pool is estimated based on a humification coefficient of grass residue (h = 0.13; Kätterer et al., 2008; Table 6) and a humification coefficient of cattle manure (h = 0.31; Kätterer et al., 2008; Table 6). The degradation of the pools is determined by the respective decomposition rates (k_y = 0.8 year^{-1} and k_o = 0.007; Andrén et al., 2004; Table 6). The change in Y and O soil C stocks is estimated based on the humification rates and decomposition rates together with the relative effect of soil moisture and temperature r_w \times r_T to account for regional differences due to soil type and climate. The yearly fluxes of Y and O soil C are given by the differential equations of Andrén and Kätterer (1997):

\[
\frac{dY}{dt} = i - k_Y Y
\]

\[
\frac{dO}{dt} = h k_Y Y - k_O O
\]

2.2.1.4. Carbon dioxide emissions. Direct CO_2 emissions are estimated from on-farm use of diesel fuel using an emission factor (2.7 kg CO_2 eq L^{-1}; The Norwegian Environment Agency, 2017; Table 6). Off-farm emissions from production and manufacturing of farm inputs are estimated using emission factors for Norway or Northern-Europe; pesticides, 0.069 kg CO_2 eq (MJ pesticide energy)^{-1} (Audsley et al., 2014); electricity, 0.11 kg CO_2 eq (kWh)^{-1} (Berglund et al., 2009); diesel fuel, 0.3 kg CO_2 eq (L)^{-1} (Öko-Institut, 2010); silage additives, 0.72 kg CO_2 eq (kg CH_2O_2)^{-1} (Flysjö et al., 2008); and N-based synthetic fertilizer, 4 kg CO_2 eq (kg N)^{-1} (DNV, 2010; Table 6).

Figure 1. System boundaries of the suckler cow beef production system (Samsonstuen et al., 2019).

Table 5
Mean and standard deviation (SD; in parenthesis) for feed intake (kg DM/animal/year), crude protein (% DM) and digestible energy (% DM) for the 27 Norwegian beef cattle farms used to estimate GHG emission intensities (n=9 for each breed).

	A. Angus Cow	Heifer*	Bull**	Hereford Cow	Heifer*	Bull**	Charolais Cow	Heifer*	Bull**
Concentrates	12 (25)	477 (251)	680 (427)	13 (18)	520 (388)	845 (130)	185 (186)	896 (219)	1125 (214)
Grass silage	2150 (709)	1768 (419)	1605 (525)	1973 (571)	1278 (523)	1133 (320)	2325 (659)	1959 (460)	1565 (204)
Straw, NH_3	173 (518)	16 (48)	0 (0)	207 (337)	65 (114)	0 (0)	420 (543)	75 (174)	0 (0)
Straw, dry	0 (0)	0 (0)	0 (0)	21 (41)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
Grazing, cultivated	764 (426)	446 (224)	306 (153)	856 (527)	756 (375)	435 (252)	863 (434)	713 (400)	163 (489)
Grazing, outfield**	258 (286)	103 (165)	53 (104)	396 (285)	197 (173)	173 (208)	87 (151)	66 (124)	371 (206)
Total DMI	3357 (285)	2810 (292)	2644 (811)	3466 (147)	2816 (387)	2586 (394)	3880 (161)	3709 (329)	3224 (226)
CP (% DM)	15.85 (1.10)	15.52 (0.66)	16.29 (0.97)	16.83 (0.75)	17.18 (0.64)	16.64 (0.73)	15.93 (1.45)	16.42 (1.20)	15.94 (1.08)
DE (% DM)	61.79 (1.99)	65.22 (2.50)	66.01 (3.35)	63.93 (1.29)	67.11 (2.02)	69.08 (1.93)	63.10 (1.79)	66.72 (2.09)	67.51 (1.67)

DM = dry matter; DMI = dry matter intake; CP = crude protein; DE = digestible energy
* Birth to calving, milk intake not included
** Birth to slaughter, milk intake not included
*** Outfield includes permanent pastures, outfield areas with meadows, heath and marshlands

S. Samsonstuen, et al.Livestock Science 239 (2020) 104091
Emissions related to the use of concentrates are estimated according to Bonesmo et al. (2013). The concentrates are assumed to be supplied by barley and oats grown in Norway (0.62 kg CO$_2$ eq kg DM$^{-1}$; Bonesmo et al., 2012; Table 6) and soybean meal imported from South America (0.93 kg CO$_2$ eq kg DM$^{-1}$; Dalgaard et al., 2008; Table 6). Emissions from on-farm production of field crops are not included in the total farm emissions as they are sold and not used as feed by the beef enterprise.

2.3. Sensitivity analysis and comparisons

A sensitivity analysis was performed to investigate the evaluate possible errors in the estimated soil C balance. The sensitivity of the yearly effect of temperature and soil moisture ($r_W \times r_T$) and initial soil organic carbon (SOC) was estimated by changing the factors 1% and recalculating the emission intensities.

Breeds and regions were compared through mean comparison of the estimated emission intensities (CO$_2$ eq (kg beef carcass$^{-1}$) using the PROC GLM procedure of SAS® software, V9.4 (SAS Institute Inc., Cary, NC).
The total farm GHG emission intensities showed no significant difference across breeds (Table 7). However, N₂O emissions from manure (P ≤ 0.01) and emissions related to off-farm production of barley (P ≤ 0.05) and soya (P ≤ 0.01) differed across breeds. Angus showed most variation in total emission intensities. This variation decreased when soil C balance was ignored.

The farms showed wide variation in emission intensity (including soil C) with a mean estimate of 29.2 CO₂ eq (kg carcass)⁻¹ (median = 29.5, range 22.5 to 45.2; Table 7). Enteric CH₄ contributed most to the total GHG emissions, accounting for 44% of the total emissions. N₂O from soil and manure was the second largest source, accounting for 13% and 11%, respectively. Soil C balance accounted for 6% of the total emissions and had the largest variation across farms, ranging from -2.7 to 14.1 CO₂ eq (kg carcass)⁻¹ depending on location. On-farm emissions from burning of fossil fuels accounted for 9% and the indirect CO₂ emissions from manufacturing of farm inputs (i.e. N-fertilizers, fuels, electricity, pesticides) accounted for 8%.

Regions East and Mid had lowest mean emission intensities, whereas Southwest and North had greatest mean emission intensities (Table 8). Soil C differed across regions (P ≤ 0.05) and was the largest source of variation, on average accounting for 0.1 to 1.4 CO₂ eq (kg carcass)⁻¹ of the total emissions in East and Mid, and 3.4 to 6.2 CO₂ eq (kg carcass)⁻¹ of the total emissions in Southwest and North. North had greater emissions from indirect and direct energy. By excluding the soil C balance, the variation between individual farms decreased and the emission intensity across all farms had a mean estimate of 27.5 CO₂ eq (kg carcass)⁻¹ (median = 26.9, range 21.5 to 34.1). Excluding soil C led to re-ranking of individual farms in terms of GHG emission intensity (Table 9).

The comparison of the least square mean (LSM) differences of emission intensities showed that the differences in manure N₂O emissions were significant both across breeds and regions (P ≤ 0.01). Soil C differed across regions and direct energy differed across breeds (P ≤ 0.05 and P ≤ 0.05 respectively), while the difference between breeds and locations for other sources of emissions was not significant (Table 10).

Estimated GHG were moderately sensitive to changes in initial SOC and the yearly effect of soil temperature and soil moisture (r_w × r_t). The sensitivity elasticity had a linear response ranging from 0.14 to 0.23 CO₂ eq (kg carcass)⁻¹ across region, caused by 1% change in initial SOC (Table 11). Changing the r_w × r_t 1%, caused a 0.12-0.19 CO₂ eq (kg carcass)⁻¹ across regions (Table 11).

Table 7

Mean, minimum (Min), maximum (Max) and standard deviation (SD) estimates for greenhouse gas emission intensity (kg CO₂ eq kg⁻¹ carcass) (n = 9 for each breed).

Source of Variation	Mean (Min, Max, SD)
Enteric CH₄	12.95 (9.98, 16.09, 1.86)
Manure CH₄	1.33 (0.36, 3.18, 1.00)
Manure N₂O	2.96 (1.88, 3.63, 0.60)
Soil N₂O	3.53 (2.64, 4.11, 0.45)
Soil C	3.14 (-2.73, 14.11, 5.13)
Off-farm barley	0.62 (0.00, 0.90, 0.29)
Off-farm soya	0.71 (0.00, 1.10, 0.35)
Indirect energy	1.76 (0.24, 4.33, 1.49)
Direct energy	3.00 (1.13, 5.29, 1.64)

Table 8

Mean greenhouse gas (GHG) emission intensities and proportion of total emissions (in parenthesis) from average herds of beef cattle in four regions of Norway (kg CO₂ eq kg⁻¹ carcass).

Region	Enteric CH₄	Manure CH₄	Manure N₂O	Soil N₂O	Soil C	Off-farm barley	Off-farm soya	Indirect energy	Direct energy	Total emission	Total emission excluding soil C
East (n = 16)	12.76 (0.46)	1.76 (0.06)	3.19 (0.12)	3.65 (0.13)	0.06 (0.00)	0.88 (0.03)	0.95 (0.03)	2.13 (0.08)	2.30 (0.08)	27.67	27.61
Southwest (n = 2)	13.95 (0.43)	0.96 (0.03)	4.51 (0.14)	3.87 (0.12)	3.36 (0.10)	0.63 (0.02)	0.58 (0.02)	2.13 (0.08)	2.08 (0.06)	32.06	28.70
Mid (n = 4)	13.41 (0.47)	1.07 (0.04)	3.06 (0.11)	3.56 (0.13)	1.40 (0.05)	1.07 (0.04)	0.87 (0.03)	1.55 (0.05)	2.26 (0.08)	28.26	26.85
North (n = 5)	11.93 (0.36)	0.86 (0.03)	2.44 (0.07)	3.77 (0.11)	6.18 (0.18)	0.84 (0.03)	0.86 (0.03)	3.18 (0.09)	3.48 (0.19)	33.55	27.36

Sig = significance: ns = non significant
* = P ≤ 0.05
** = P ≤ 0.01.
the country and had a wide range of farm characteristics, representing the broad spectrum of suckler cow farms in Norway. Carcass weights used for estimating emission intensities from herds of Angus, Hereford, and Charolais were similar to carcass weights from intensive and extensive beef breed farming systems in Sweden and Denmark (Mogensen et al., 2015).

4.2. Greenhouse gas emissions

Under the current conditions for beef production in Norway, HolosNorBeef estimated mean emission intensities, including soil C, of 29.2 CO₂ eq (kg carcass)⁻¹ (median = 29.4, range 22.5 to 45.2) for 27 herds of Angus, Hereford, and Charolais. This range of emission intensities is similar to reports for other Nordic countries; Denmark 23.1 to 29.7 CO₂ eq (kg carcass)⁻¹ and Sweden 25.4 CO₂ eq (kg carcass)⁻¹ (Mogensen et al., 2015). Emissions related to off-farm production of soya differed in terms of emission intensities across breeds. Observed feed intake and use of concentrates showed variation both across breeds and between farms within breed as a consequence of diet composition and feed requirements. In general, farms with lower quality forage fed a larger proportion concentrates to the replacement heifers. Bulls were on average fed 33% concentrates and were usually fed good quality silage. However, as increased production follows increased feed intake, the observed variability did not cause differences in total emission intensities across breeds.

4.2.1. Methane emissions

Enteric CH₄ contributed most to the total GHG emissions, accounting for 44% of the total emissions on average. HolosNorBeef estimated enteric CH₄ emissions based on the GE intake while adjusting the Ym for the digestibility of the diet (i.e. DE%). Hence, as shown by Samsonstuen et al. (2019), variation in Ym would cause a linear change in emission intensities. At equal GE intake, increased DE% would result in a linear decrease in Ym and a corresponding decrease in enteric CH₄ emissions. Within breed, Angus showed the largest variation in both % DE, DMI and enteric CH₄ emissions. Enteric CH₄ emissions are mainly related to variation in DMI (Herd et al., 2014) and feed quality (Ominski et al., 2011), with improved quality associated with lower emissions as the proportion of easily digested organic matter in the feed increases (Wims et al., 2010). Diets with more starch and less fiber produce less CH₄ per kg DM (Haque, 2018). In Sweden and Denmark, enteric CH₄ was reported as the largest source of emissions, accounting for 45.1-50.4% of total GHG emissions (Mogensen et al., 2015), depending on feeding intensity. In the present study, the DMI varied between and within farms dependent on the production and diet composition as the location of the farm dictated the available feed resources and use of pastures. Diet composition and forage quality changed throughout the year due to differences in animal requirements (e.g. for maintenance, growth, pregnancy, lactation) and availability of feed resources (e.g. pasture, silage, concentrates). For suckler cows, the variation in DMI within breed is mainly due to forage quality and use of

Table 9

East (n=16)	Southwest (n=2)	Mid (n=4)	North (n=5)					
Incl. soil C	Ex. soil C	Incl. soil C	Ex. soil C	Incl. soil C	Ex. soil C			
H1	AA3	H17	H17	CH19	AA22	CH23	AA25	
CH2	H11	H18	H18	AA20	CH21	AA20	H24	H26
AA5	H1	CH21	AA22	CH19	H26	H24		
AA4	A10	CH2	H6	H6	AA20	CH21		
CH5	CH2	CH8	AA3	H17	CH19	AA22		
H6	H6	AA3	CH19	CH21	AA22	CH23		
AA7	AA7	CH21	AA22	CH23	AA25			
CH8	CH8	CH21	AA22	CH23				
CH9	CH9	CH14	CH23					
CH10	CH10	CH14						
H11	CH10	CH14						
H12	AA13	CH14						
A13	AA13	H12						
H15	H15	H12						
CH16	CH16							

n = number of farms in each region.

Table 10

East (n=16)	Southwest (n=2)	Mid (n=4)	North (n=5)							
Location	Breed	AA	H	CH	AA	H	CH	AA	H	CH
Enteric CH₄	13.07	13.13	12.19	13.95	14.23	12.58	12.45	12.05	ns	ns
Manure CH₄	1.85	1.77	1.67	0.96	0.99	1.15	0.40	1.53	0.45	ns
Manure N₂O	3.12	3.71	2.80	4.51	3.36	2.77	2.15	3.14	1.66	ns
Soil N₂O	3.39	3.61	3.90	3.87	3.70	3.42	3.71	3.74	3.94	ns
Soil C	0.46	0.39	0.53	3.36	2.31	0.50	10.68	4.55	3.36	ns
Off-farm barley	0.02	1.02	1.16	0.66	0.66	0.99	1.09	ns	ns	
Off-farm soya	0.60	0.71	1.26	0.63	1.09	1.05	0.62	0.96	1.06	ns
Indirect energy	1.79	1.90	2.60	0.36	2.73	3.07	2.49	4.80	ns	
Direct energy	2.06	1.89	2.84	0.80	3.10	1.43	5.25	3.14	1.88	ns
Total emission	26.94	28.13	27.89	32.06	29.80	26.72	37.84	31.71	28.63	ns
Total emission excluding soil C	26.48	27.75	28.42	28.70	27.49	26.22	27.16	27.16	28.17	ns

* Sig = significance: ns = non significant
** = P ≤ 0.05
*** = P ≤ 0.01.
creases the emissions from degradation (Monteny et al., 2001). Farms
emissions as increased organic matter (i.e., VS) content of manure in-
reached slaughter weight. Surplus heifers were fed the same diet until they
from birth to calving is influenced by the diet composition and re-
weight as it influences the feed required for growth. The DMI of heifers
from birth to slaughter is influenced by slaughter age and slaughter
cause confounding of breed within region. Differences in feed requirements
between breeds increases the difference between individual farms
within the region. The resource base in the East facilitates both good
quality silage and the use of straw as forage due to grain production in
the region, resulting in a great variety in diet composition and corre-
sponding emissions between farms.

4.2.3. Soil C balance
The GHG contribution from soil C balance accounted for 6% of the
total emission intensities on average and had the largest variation
among farms, ranging from -2.73 to 14.11 CO₂ eq (kg carcass)⁻¹ de-
pending on location. HolosNorBeef estimated the C balance between
the soil and atmosphere using the two-compartment ICBM model
(Andrén et al., 2004). The GHG contribution of soil C balance was in-
fluenced by the level of the initial SOC content, temperature and
moisture in addition to forage production, application of manure, and N
fertilizer. Inputs into ICBM are used to adapt the model to the local
management and weather conditions (Bolinder et al., 2011). This model
was previously calibrated to Norwegian conditions and used to estimate
soil C change in the 100th year with continuous grass and arable
cropping (Bonesmo et al., 2013; Skjelvåg et al., 2012). Skjelvåg et al.
(2012) investigated the farm specific natural resource base in six municipalities in different parts of Norway and found a wide
range in initial SOC content in top soil varying from 56.1 to 116.8 Mg
ha⁻¹. The 30 Norwegian dairy farms investigated by
Bonesmo et al. (2013) had an average initial SOC of 71.3 Mg ha⁻¹,
ranging from 40.3 to 99.5 Mg ha⁻¹. In comparison, the current study
had an average initial SOC of 75.7 Mg ha⁻¹, ranging from 44.8 to 168.4 Mg
ha⁻¹.

On average, the C balance accounted for 0.1 to 1.4 CO₂ eq (kg
carcass)⁻¹ of the total emissions in East and Mid, whereas in Southwest
and North the average C balance accounted for 3.4 to 6.2 CO₂ eq (kg
carcass)⁻¹ of the total emission. The resource base of the regions varies,
whereas the East and Mid are regions with a climate suitable for grain
production. The regions Southwest and North are less suitable for grain
production, and the arable lands have been used for forage production
or as pastures for decades, resulting in high initial SOC. The initial C in
topsoil is crucial for estimating C balance as a high initial SOC content
will lead to a decrease, and a low initial SOC will lead to an increase
(Andrén et al., 2015). Hence, the estimated C loss from farms in
Southwest and North is a result of high initial SOC. As the soil C content
is difficult to measure, Andrén et al. (2015) suggested to modify the
initial SOC if the changes between samplings are unrealistic. However,
in the present study there is only a single estimate of the SOC content
and modifying the initial SOC is not possible.

The ICBM model has been further developed into a multi-

Response	East (n=16)	Southwest (n=2)	Mid (n=4)	North (n=5)
Initial soil organic carbon	Linear	Non-linear	Linear	Linear
Mean	0.17	0.17	0.14	0.15
SD	0.09	0.04	0.10	0.15
Linear elasticity (%)	0.20	0.12	0.24	0.19
Mean elasticity (%)	0.23	0.19	0.23	0.03
Sig	ns	ns	ns	ns

* Sig = significance: ns = non significant

| Mean elasticity (%) | 0.14 | 0.02 | 0.00 | 0.03 |
| Sig | ns | ns | ns | ns |

A Sig = significance: ns = non significant

| Mean elasticity (%) | 0.10 | 0.19 | 0.19 | 0.03 |
| Sig | ns | ns | ns | ns |

| Sig | ns | ns | ns | ns |

A Sig = significance: ns = non significant

Table 11
Sensitivity elasticities for the effect of 1% change in soil C change external factor (rw × rΤ) and initial soil organic carbon (SOC) on the greenhouse gas (GHG) emission intensities CO₂ eq (kg carcass)⁻¹.
A whole-farm approach that included changes in soil C estimated GHG emission intensities of 22.5 to 45.2 CO₂ eq (kg carcass)⁻¹ from representative suckler cow beef farms in Norway with Angus, Hereford, and Charolais cattle. The variation in DMI and diet composition between farms influenced both enteric and manure CH₄ emissions, and contributed to variation in emission intensities between individual farms. Including soil C balance in the emission intensity of beef production increased variability in GHG emissions among individual farms and caused a significant difference in estimated GHG intensities between regions. In addition to level of forage production, application of manure, and N fertilizer, the soil C balance was influenced by the level of the initial SOC content, temperature and moisture. Arable lands used for forage production or as pastures for decades result in high initial SOC in soils of some farms, which warrants further examination and additional measurement as the ICBM model is sensitive to high initial SOC and does not account for the effect of grazing or stocking rate.

5. Conclusions

A multi-compartment model (ICBM/3) with several C pools to account for different decomposition rates of organic matter (Kätterer and Andrén, 2001). ICBM/3 divides the Y SOC pool into above ground residues, below ground residues and addition of manure and other organic matter. Multi-compartment models have pool-specific decomposition rates and humification factors, making the model more dynamic and adapted to various management practices. Future soil C balance estimations could possibly be improved by incorporating the newest version of ICBM/3 to HolosNorBeef, or by calibrating the existing ICBM model with multiple soil samples from areas with large initial SOC. However, the complexity of multi-compartment models (e.g. ICBM/3) increases the amount and detail level of the required input and decreases the transparency of the model. Such detailed input data for use in the multi-compartment model are not available at this point. According to Bolinder et al. (2011), single- and two-compartment models such as the ICBM model may replace more complex models in whole farm modelling and life cycle assessment (LCA) approaches as they are simple, transparent and can be programmed in a spreadsheet format. Kröbel et al., (2016) investigated the inclusion of both the two-compartment ICBM model and the multi-compartment Century model in the Canadian Holos model. The study indicated that the ICBM model allowed a more dynamic output of management and climate, increasing the flexibility and allowing more farm specific estimation compared with the more complex Century model (Kröbel et al., 2016). Hence, the two-compartment ICBM model may be sufficient for whole farm modelling of GHG emissions as it reflects the dynamics of the SOC stocks while taking the influence of crop yield, management, soil moisture and temperature into account.

Sensitivity elasticities showed an average change in emission intensities of 0.10 to 0.23 (SOC) and 0.12 to 0.19 CO₂ eq (kg carcass)⁻¹ (rₜ × rₕ) across regions. However, there were no significant different response in sensitivity elasticities between regions, implying that the estimated difference in soil C balance occurs due to more than just variation in the initial SOC and rₜ × rₕ.

Grazing influences plant production (Lee et al., 2010), plant diversity (Lim et al., 2018) and adds organic matter through manure (Baron et al., 2007). The influence of grazing management on C sequestration has been investigated in various studies (Pelletier et al., 2010; Reeder and Schuman, 2002; Soussana et al., 2010; Wang et al., 2015). The influence of grazing is complex, as the soil C dynamics are influenced by the animal, climate, soil, plant, management and their interactions (Bolinder et al., 2011; Schuman et al., 2002). HolosNorBeef does not include the effect of grazing management on C balance as the ICBM model does not account for the effect of grazing or stocking rate. Norwegian land contains approximately 60,000 (arable) to 100,000 kg C ha⁻¹ (pastures; NIBIO, 2019) and the potential for mitigation by sequestering C in outfields pastures under Norwegian conditions has not been scientifically documented. Applying Norwegian conditions to US studies, the estimated potential for C sequestration is 1000 to 6000 kg CO₂ ha⁻¹ year⁻¹ (NIBIO, 2019). When considering pasture management strategies, the corresponding ecosystem services directly or indirectly influenced by pasture management should be taken into account.

References

Alemu, A.W., Amiro, B.D., Bittman, S., MacDonald, D., Ominski, K.H., 2017a. Greenhouse gas emission of Canadian cow-calf operations: A whole-farm assessment of 295 farms. Agric. Syst. 10.1016/j.agsy.2016.11.013.
Alemu, A.W., Janzen, H., Little, S., Hao, X., Thompson, D.J., Baron, V., Iwaasa, A., Beauchemin, K.A., Kröbel, K., 2017b. Assessment of grazing management on farm greenhouse gas intensity of beef production systems in the Canadian Prairies using life cycle assessment. Agric. Syst. 10.1016/j.agsy.2017.08.003.
Amon, T., Amon, B., Kryvoruchko, V., Zollitsch, W., MAYER, K., Gruber, L., 2007. Biogas production from maize and dairy cattle manure-Influence of biomass composition on the methane yield. Agric. Ecosyst. Environ. 10.1016/j.agee.2006.05.007.
Andrén, O., Kätterer, T., 1997. ICBM: The introductory carbon balance model for exploration of soil carbon balances. Ecological Applications7, 1226-1236.
Amon, T., Kätterer, T., Juston, J., Wozwa, B., Rinig de Nowina, K., 2015. Soil carbon dynamics, climate, crops and soil type calculations using introductory carbon balance model (ICBM) and agricultural field trial data from sub-Saharan Africa. African J. Agric. Res. 10.5897/ajar12.205.
Appahamy, J.A.D.R.N., Moraes, L.E., Wagner-Riddle, C., Casper, D.P., Kebreab, E., 2017. Predicting manure volatile solid output of lactating dairy cows. J. Dairy Sci. 10.3168/jds.2017-12813.
Auddeley, E., Stacey, K., Parsons, D.J., Williams, A.G., 2014. Estimation of the greenhouse gas emissions from agricultural pesticide manufacture and use. Cranf. Univ. 10.1007/s13398-014-0173-7.2.
Beauchemin, K.A., Kröbel, R., 2017. Assessment of grazing management on farm greenhouse gas emission of Canadian cow-calf operations: A whole-farm assessment of 295 farms. Agric Syst. 10.1016/j.agsy.2016.11.013.
Baron, V.S., Mafumino, E., Dick, A.C., Naeth, M.A., Okine, E.K., Chaneyk, D.S., 2007. Grazing Intensity Impacts on Pasture Carbon and Nitrogen Flow. J. Range Manag. 10.2307/4003996.
Beauchemin, K.A., Hexen, G., Little, S.M., Mai, A., McNally, T.A., McGinn, S.M., 2010. Life cycle assessment of greenhouse gas emissions from beef production in western Canada: A case study. Agric. Syst. 10.1016/j.agsy.2010.03.008.

Bergh, M., Cederberg, C., Clason, C., Henriksson, M., Torner, L., 2009. Jordbruksklimatvåningsläsare: hälso- och hälsorisker på jordbruks- och någlesanalys av exponeringsdata. Delrapport i JOKER-projektet. Hushållningssäkretet, Sweden. 117p (in Swedish).

Bolinder, M.A., VandenBygaart, J., Gregorich, E.G., Angers, D.A., Janzen, H.H., 2011. The fate of nitrogen in agroecosystems: An illustration using regional scale models. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.0912890107.

Bolinder, M.A., VandenBygaart, J., Gregorich, E.G., Angers, D.A., Janzen, H.H., 2011. The fate of nitrogen in agroecosystems: An illustration using regional scale models. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.0912890107.

Bolinder, M.A., VandenBygaart, J., Gregorich, E.G., Angers, D.A., Janzen, H.H., 2011. The fate of nitrogen in agroecosystems: An illustration using regional scale models. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.0912890107.

Bolinder, M.A., VandenBygaart, J., Gregorich, E.G., Angers, D.A., Janzen, H.H., 2011. The fate of nitrogen in agroecosystems: An illustration using regional scale models. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.0912890107.
Wang, T., Richard Teague, W., Park, S.C., Bevers, S., 2015. GHG mitigation potential of different grazing strategies in the United States Southern Great Plains. Sustain. 10. 3390/su71013500.

Wang, X., Vandenbygaart, A.J., McConkey, B.C., 2014. Land management history of Canadian grasslands and the impact on soil carbon storage. Rangel. Ecol. Manag. 10. 2111/REM-D-14-00006.1.

White, T.A., Snow, V.O., King, W.M.G., 2010. Intensification of New Zealand beef farming systems. Agric. Syst. 10.1016/j.agsy.2009.08.003.

Wims, C.M., Deighton, M.H., Lewis, E., O'Loughlin, B., Delaby, L., Boland, T.M., O'Donovan, M., 2010. Effect of pregrazing herbage mass on methane production, dry matter intake, and milk production of grazing dairy cows during the mid-season period. J. Dairy Sci. 10.3168/jds.2010-3245.