Quantum statistics in time-modulated exciton-photon system

G. Yu. Kryuchkyan,1,2 A. R. Shahinyan,1 and I. A. Shelykh3,4,5

1 Institute for Physical Researches, National Academy of Sciences, Ashtarak-2, 0203, Ashtarak, Armenia
2 Yerevan State University, Centre of Quantum Technologies and New Materials, Alex Manoogian 1, 0025, Yerevan, Armenia
3 Science Institute, University of Iceland, Dunhagi-3, IS-107, Reykjavik, Iceland
4 Division of Physics and Applied Physics, Nanyang Technological University 637371, Singapore
5 ITMO University, St. Petersburg 197101, Russia

We consider a system consisting of a large individual quantum dot with excitonic resonance coupled to a single mode photonic cavity in the nonlinear regime when exciton-exciton interaction becomes important. We show that in the presence of time-modulated external coherent pumping the system demonstrates essentially non-classical behavior reflected in sub-Poissonian statistics of exciton- and photon-modes and the Wigner functions with negative values in phase-space for time-intervals exceeding the characteristic time of dissipative processes, $t \gg \gamma^{-1}$. It is shown that these results are cardinaly different from the analogous results in the regime of the monomode continuous-wave (cw) excitation.

PACS numbers: 42.50.Ct, 78.67.Hc, 42.55.Sa, 32.70.Jz

I. INTRODUCTION

When light interacts with matter one should discriminate between two qualitatively different regimes, namely weak and strong coupling. For the first of them the spectrum of the material system remains unchanged, and light-matter interaction results in single acts of the emission and absorption of the photons. On the contrary, in the regime of strong coupling light and matter can not be anymore treated independently from each other, and hybrid half-light half matter modes appear in the system. Those modes are known as polaritons. Nowadays the variety of polaritonic systems is impressive and include such widely studied cases as surface plasmon polaritons and cavity polaritons. In the latter case photonic mode is coupled with excitonic transition in the quantum well, quantum wire or individual quantum dot (QD).

Coupling between QD and photonic mode of zero dimensional cavity lies in heart of such rapidly developing branch of science as cavity quantum electrodynamics (cQED). The problem is important not only because of the fundamental aspects brought forward by the interaction of material systems with photons, but also because of the potential application of cQED to quantum information processing. From the point of view of experimental realization, excitons in individual QD can be brought to strong coupling with confined electromagnetic mode provided by a pillar (etched planar cavity), the defect of a photonic crystal or the whispering gallery mode of a microdisk, among others. In the regime of weak excitation such structures have demonstrated the Rabi doublet in their optical spectra, which is characteristic of the mode anticrossing that marks the overcome of dissipation by the coherent exciton-photon interaction.

These achievements open the way to new research area, namely investigation of the pure quantum effects originating from strong exciton-photon coupling. Although the system exhibits strong coupling, it is usually not known in which quantum state it is actually realized. To be useful for quantum information applications, one should be able to manipulate not just mean number of the particles in the system, but have a tool to monitor and control their statistics. In this context, the possibility to create the states different from essentially classical coherent and thermal states is highly desirable. If the energy of the system scales linearly with the number of particles, it is essentially classical, and adding or removing a single particle will not change its behaviour. Therefore, the analysis of the nonlinear effects is highly desirable.

With QDs in microcavities, two types of strong nonlinearities are expected, both associated with the excitons. The first one comes from Pauli exclusion, that arises from the fermionic character of the particles forming an exciton. It becomes extremely important for the case of the small size QDs where, similar to individual atoms, the excitation of more then one exciton becomes impossible. Pauli blocking leads to the radical transformation of the spectrum of the system, which changes from the Rabi doublet to Mollow triplet when the intensity of the external pump is increased.

The second is Coulomb repulsion between the excitons, again arising from their composite nature. This mechanism is important for the case of the excitons in the QWs and large QDs. In the former case it leads to the blueshift of the polaritonic modes increasing with the intensity of the external pump- the effect which can be satisfactory described within the frameworks of the mean-field approximation. The case of an individual large QD inside the cavity is, however, more tricky. Coulomb repulsion between the excitons in this configuration leads to the emergence of rich multiplet structure in the emission spectrum, which reveals the pure quantum nature of light-matter coupling.

In the present paper we analyze further the essentially quantum effects arising from nonlinearities in coupled QD-cavity system. The novelty of our scheme stems...
from the idea that quantum systems can display qualitatively new forms of behavior when driven by fast time-periodic modulations. Particularly, the application of a sequence of tailored pulses as well as time-modulated cw field leads to improving the degree of quantum effects in open cavity nonlinear systems and onset of qualitatively new quantum effects. This approach was recently exploited for the formation of a high degree continuous-variable entanglement in the nondegenerate optical parametric oscillator [20, 21], for generation of Fock states in Kerr nonlinear resonator (KNR) driven by a sequence of Gaussian pulses [22, 23] and for demonstration of multiphoton blockades in pulsed regimes of dissipative KNR beyond stationary limits [24, 25]. It has also demonstrated that amplitude modulation can improve the performance of single photon sources based on quantum dot [26]. The idea to enrich quantum physical systems by designing a time modulation has been explored in several other fields of research including periodically driven nonlinear oscillator [27] and periodically driven quantum matter [28].

Here we focus on consideration of cavity modes in the regimes of strong exciton-photon coupling and strong exciton-exciton interaction with respect to the rates of damping of the photonic- and exciton-modes. In these regimes the transition frequencies between energy levels of the systems without any interaction with external field are differently spaced in the quantum regime. Thus, we enable spectroscopic identification and selective excitation of transitions between combined exciton-photon number states. This consideration provides the framework of master equation and the numerical method of quantum trajectories on the base of excitation numbers, Q Mandel parameter or the second-order correlation function. We focus also on the Wigner functions of exciton and photonic modes that allow phase-space monitoring exciton-photon coupling in quantum treatment.

We show that in the presence of time-modulation the ensemble-averaged mean photon numbers, the population of photon-number and exciton-number states, and the Wigner functions are nonstationary and exhibit a periodic time dependent behavior, i.e. repeat the periodicity of the pump laser in an over transient regime. We demonstrate the possibility of the observation of purely quantum effects, namely sub-Poissonian statistics of exciton- and photon-modes and the Wigner functions with negative values in phase-space for time-intervals exceeding the characteristic time of dissipative processes, \(t \gtrsim \gamma^{-1} \). It is shown that these results are cardinally different from the analogous results in cw regime of excitation. Beside this we investigate temperature noisy effects for a cavity at finite temperatures. It leads to applications in simulating of more realistic exciton-photon systems as well as to study of unusual quantum phenomena connecting quantum engineering and temperature.

The paper is organized as follows. In Sec. II, we present the effective Hamiltonian for the periodically driven polariton system and describe the physical quantities of interest. In Sec. III we study time-evolution of the mean photon numbers as well as the exciton numbers, quantum statistics of excitonic and photonic modes on base of the Q Mandel parameter and the second-order correlation function for zero-delay time. We analyze also the distributions of photon-number states and the phase-space properties of photon-and exciton-modes on base of the Wigner functions. The effects coming from a thermal reservoir is also briefly analysed. We summarize our results in Sec. IV.

II. COUPLED EXCITON-PHOTON SYSTEM

The system consists of coupled fundamental photonic dot and exciton modes driven by cw field with mean frequency \(\omega \) and time-modulated amplitude. The Hamiltonian of driven photon-exciton system in the rotating wave approximation (RWA) reads:

\[
H = \Delta_{ph} a^\dagger a + \Delta_{ex} b^\dagger b + \chi b^{\dagger 2} b^2 + g (b a^\dagger + b^\dagger a) +
\frac{1}{2} (\Omega_1 + \Omega_2 \exp(-i\delta t)) a + H.c, \tag{1}
\]

where \(a^\dagger, a \) are creation and annihilation operators of the photon mode, \(b^\dagger, b \) are creation and annihilation operators for the exciton mode, \(g \) is the exciton-photon coupling constant, \(\chi \) is the strength of exciton-exciton interaction, \(\Delta_{ph} = \omega_{ph} - \omega \), \(\Delta_{ex} = \omega_{ex} - \omega \) are detunings between mean frequency of the driving field and the frequencies of the photonic and exciton modes. \(\Omega_1 \) and \(\Omega_2 \) are the components of complex amplitude of the driven field and \(\delta \) is the frequency of the modulation. The case \(\Omega_2 = 0 \) describes the exciton-photon cavity driven by cw monochromatic field treated within RWA. Such situation can be realized also if photon-exciton system is driven by two fields with different frequencies. In this case, the Hamiltonian of the system in RWA is reduced to Eq. II with \(\delta \) being the difference between frequencies of the driving fields.

In realistic systems one should necessarily take into account the dissipation, because the modes suffer from losses due to partial transmission of light through the mirrors of the photonic cavity, non-radiative decay of excitons and decoherence. We consider these effects by assuming that the interaction of driven photon-exciton system with heat reservoir gives rise to the damping rates of modes \(\gamma_{a} \) and \(\gamma_{b} \). We trace out the reservoir degrees of freedom in the Born-Markov limit assuming that system and environment are uncorrelated at initial time \(t = 0 \). This procedure leads to the master equation for the reduced density matrix in the Lindblad form. The master equation within the framework of the rotating-wave approximation, in the interaction picture corresponding to the transformation \(\rho \rightarrow e^{-i\omega a^\dagger a t} \rho e^{i\omega a^\dagger a t} \) reads as

\[
p = \begin{pmatrix}
\rho_{11} & \rho_{12} \\
\rho_{21} & \rho_{22}
\end{pmatrix}
\]

\[
\begin{align*}
\frac{d}{dt} \rho_{11} &= -\gamma_{a} \rho_{11} - \gamma_{a} \rho_{22} + \gamma_{a} \rho_{12} + \gamma_{a} \rho_{21} \\
\frac{d}{dt} \rho_{12} &= -\gamma_{a} \rho_{12} + \gamma_{a} \rho_{21} \\
\frac{d}{dt} \rho_{21} &= -\gamma_{a} \rho_{21} + \gamma_{a} \rho_{12} \\
\frac{d}{dt} \rho_{22} &= -\gamma_{a} \rho_{22} - \gamma_{a} \rho_{11} + \gamma_{a} \rho_{12} + \gamma_{a} \rho_{21}
\end{align*}
\]

\[\frac{d}{dt} \rho = -\gamma_{a} \rho - \gamma_{a} \rho + \gamma_{a} \rho + \gamma_{a} \rho + \gamma_{a} \rho, \tag{2}
\]

where \(\rho_{ij} \) are elements of the density matrix of the system.
\[\frac{dp}{dt} = -i[H, \rho] + \sum_{i=1,2,3,4} \left(L_i \rho L_i^\dagger - \frac{1}{2} L_i^\dagger L_i \rho - \frac{1}{2} \rho L_i^\dagger L_i \right), \]

where \(L_1 = \sqrt{n_{th} + 1} \gamma a, \quad L_2 = \sqrt{n_{th} \gamma} a^+, \quad L_3 = \sqrt{n_{th} + 1} \gamma b, \quad \text{and} \quad L_4 = \sqrt{n_{th} \gamma} b^+ \) are the Lindblad operators, \(\gamma \) is a dissipation rate, and \(n_{th} \) denotes the mean number of quanta of a heat bath. Here, for simplicity we assume that the decay rates and the mean numbers of quanta of a heat bath are equal for the both modes, \(\gamma_a = \gamma_b = \gamma \).

We analyze the mean values of excitation numbers as well as we probe the strength of quantum fluctuations of exciton and photonic modes via the Mandel factor and the normally ordered second-order correlation functions of the photon numbers and excitation numbers. Beside this we monitor phase properties of both modes by the Wigner function. These quantities of interest are calculated by using the reduced density operators of the photons \(\rho_a(t) \) and of the excitons \(\rho_b(t) \). These operators are constructed from the full density operator of the system \(\rho(t) \) by tracing out the excitonic or photonic modes respectively,

\[\rho_a(t) = \text{Tr}_b(\rho), \quad \rho_b(t) = \text{Tr}_a(\rho). \]

For the system under time modulated external pumping the ensemble-averaged mean oscillatory excitation numbers as well as the other physical quantities exhibit a periodic time-dependent behavior after initial transient time interval. Using the master equation above we calculate the time-evolution of the \(Q \) Mandel factor for the photonic and exciton modes. For photonic mode it is defined as

\[Q(t) = \frac{\langle (\Delta n(t))^2 \rangle - \langle n(t) \rangle}{\langle n(t) \rangle} \]

where \(\langle (\Delta n(t))^2 \rangle = \langle (a^\dagger a)^2 \rangle - \langle (a^\dagger a)^2 \rangle \) describes the deviation of the excitation number uncertainty from the Poissonian variance, \(\langle (\Delta n)^2 \rangle = \langle n \rangle \). The case \(Q = 0 \) corresponds to Poissonian statistics. If \(Q > 0 \), the statistics is super-Poissonian, if \(Q < 0 \) it is sub-Poissonian, and analogous for the exciton mode.

The Mandel factor is connected with the normalized second-order correlation function for zero delay time \(g^{(2)} \) defined (for the photonic mode) as:

\[g^{(2)}(t) = \frac{\langle a^\dagger(t) a^\dagger(t) a(t) a(t) \rangle}{\langle (a^\dagger(t) a(t))^2 \rangle}. \]

For a short counting time-intervals the approximate relation between these quantities reads as \(\langle (\Delta n)^2 \rangle = \langle n \rangle + \langle n \rangle^2 (g^{(2)} - 1) \). Thus, the condition \(g^{(2)} < 1 \) corresponds to the sub-Poissonian statistics, \(\langle (\Delta n)^2 \rangle < \langle n \rangle \).

We analyze the master equation numerically using well known quantum state diffusion method [29]. According to this method, the reduced density operator is calculated as the ensemble mean over the stochastic states describing evolution along a quantum trajectory.

It should be mentioned that exciton-photon system is actually presented as the model of driving coupled oscillators with anharmonic term. Such model has been focus of considerable attention and this interest is justified by many applications in different contexts. Particularly, in field of quantum devices for a few-photon level one application concerns to realization of strong photon blockade in photonic molecules with modest Kerr-nonlinearity of the photon using two coupled photonic cavities [30, 32].

III. IMPROVEMENT OF QUANTUM EFFECTS BY PERIODIC TIME-MODULATION

In our further consideration we concentrate on analysis of coupled exciton-photon in quantum regimes at low level of quanta. This analysis is performed by using the following set of dimensionless parameters \(\Delta / \gamma, \chi / \gamma, g / \gamma \), as well as parameters of amplitude modulation \(\Omega_1 / \gamma, \Omega_2 / \gamma \) and the frequency of modulation \(\delta \).

Let us discuss the operational regimes in more details. If energy levels of the coupled exciton-photon states are well resolved we can consider near to the resonant selective transitions between lower photon-exciton states. In this way, the detunings play an important role when identifying the spectral lines, thus we arrange the detunings of modes to reach a qualitative quantum effects. We estimate the detuning by using the results on the structure of energy levels of a quantum dot in a microcavity in the nonlinear regimes Ref. [19]. In this paper the optical spectrum at resonance transition was studied by diagonalizing the Hamiltonian [11] without the driving term. In this case the total number of excitations is conserved, and eigenstates of the total particle number \(a^\dagger + b^\dagger b \) with eigenvalue \(m \) can be used as the \(m \)th manifold of the system. Particularly, two-photon excitation of the system with \(m = 2 \) leads to the eigenvectors that involves triplet states \(|2, 0 \rangle, |1, 1 \rangle, |0, 2 \rangle \) with photonic and exciton number states. If we neglect the excitation-exciton interaction, the energy levels form the Rabi triplet \(E_+ = 2\omega_{ph} + 2g, \quad E_0 = 2\omega_{ph}, \quad E_- = 2\omega_{ph} - 2g \). In this way, two-photon resonant frequencies leading to excitation of the level \(E_- \) equals to \(2\omega_2 = E_- - E_g \), where \(E_g \) is the level of ground state. Therefore, \(\omega_2 = \omega_{ph} - g \) and hence the detunings \(\Delta_{ex} = \omega_{ex} - \omega_2, \quad \Delta_{ph} = \omega_{ph} - \omega_2 \) are \(\Delta_{ph} = \Delta_{ex} = g \). In this approach the effects of exciton-exciton interaction can be included by using numerical calculations Ref. [19]. For strong driving field the detunings can be also shifted due to Stark effects. Thus, for the concrete calculations, later we use the approximate value of detunings corresponding to the parameters \(g / \gamma \) and \(\chi / \gamma \). Note, that such analysis seems to be rather qualitative than quantitative but allows us to estimate the values of detunings. Indeed, considering strong analysis of the selective excitation of cavity modes we need in calculations of the other
from the case of Ω
quantum effects for zero temperature cavity. We start
and decoherence are taken into account considering pure
violated in the presence of driving.

cle numbers lead to anti-phase dynamics of mode that is
Note, also that in this case conservation of total parti-
ticities of excitation number states.
a manifestation of nonlinear exciton-exciton interaction
ing collapses and revival effects in the simplest model as
we conclude that for used parameters the system is op-
erative in strong quantum regime at level of small ex-
creations at the Figs. 1. We assume that at t = 0 the
exciton mode is in vacuum state (n(0))b = 0 while the
four-photon number state is injected into the resonator,
<n(0)>a = 4. As we see, without any driving the total
number of quanta is conserved and the dynamics of excita-
tion numbers display oscillatory behaviour, where are
observed the Rabi transitions between the modes with
collapses and revivals effects.
The collapses and revivals are well known phenom-
ena in quantum optics, particularly, in the context of the
Jaynes-Cummings model (see, for example [33]) and
for ion-trap system [34], [35]. Here, we obtain interest-
ing collapses and revival effects in the simplest model as
a manifestation of nonlinear exciton-exciton interaction
that leads to spaced energies of exciton number states.
Note, also that in this case conservation of total parti-
cle numbers lead to anti-phase dynamics of mode that is
violated in the presence of driving.

Now we turn to the realistic case where dissipation
and decoherence are taken into account considering pure
quantum effects for zero temperature cavity. We start
from the case of Ω2 = 0, which corresponds to the single
mode cw excitation, and the initial state corresponding
to no excitations in the cavity. The typical results for the
excitation numbers, the Mandel parameters and the con-
tour plots of the Wigner functions of two modes are de-
picted in Fig. 2. As we see, the mean excitation numbers
and the Mandel parameter show Rabi-like oscillations for
short time-intervals in the transient regime and reach the
equilibrium in the steady-state regime. From Fig. 2(a)
we conclude that for used parameters the system is op-
erated in strong quantum regime at level of small ex-
creations. In stationary, over-transition regime the exciton
Mandel parameter Qb > 0, while Qa = −0.2 in steady state
limit, i.e. photonic mode displays sub-Poissonian statistics.
The Wigner functions of both mode are positive in all phase
space but contours of the Wigner function for photonic mode have slightly squeezed form

one can see at the Figs. 3(a) and 3(b), for the coupling
constants: χ/γ = 1 and g/γ = 5, the mean excitation
numbers and the Mandel parameters repeat the periodic-
ity of the pump laser in an over transient regime. It is
remarkable that time-modulation of modes leads to for-
mation of highly sub-Poissonian statistics compared to
the case of monochromatic driving (see, results depicted
in Fig. 2). Indeed, in this case for the photonic mode
the values of Mandel parameter can reach the values of
Qa ≈ −0.65 and for the exciton mode Qb ≈ −0.45. If one
compare this numbers with those obtained earlier for a
single mode cw pumping, one can make a conclusion that
quantum effects in the behavior of exciton-photon system
becomes more pronounced for the case of the time-
modulated pumping. Note, that most negative values of the
Mandel parameters are realized for the time-intervals cor-
responding to the maximal values of the occupations of
the modes. The quantum effects are thus more essential
for the comparatively large number of the quanta.
contour plots of the Wigner functions for maximal and minimum values of photonic mode are presented in Figs. 3(c),(d), respectively. Note, that for the parameters considered when the photon excitation number corresponds to its maximum, the corresponding Wigner function has a region in phase-space where it is negatively defined (these regions are shown in black). On the contrary, for the times corresponding to the minimal photon occupancies the Wigner function is almost Gaussian and Mandel parameters are very close to zero. This indicates that in these moments the state of the system is very close to coherent and its behavior is essentially classical.

Increasing of the coupling constant of the exciton-photon coupling and the strength of exciton-exciton nonlinear interaction makes quantum effects more pronounced, as it is shown in Fig. 3 for both excitonic and photonic modes and the parameters: $\chi/\gamma = 3$, $g/\gamma = 7$. Note, that for these parameters the detunings $\Delta_{ph}/\gamma = 7.12$, $\Delta_{ex}/\gamma = 7.12$ approximately correspond to two-photon selective excitation of the level E_- from vacuum state as it has been shown above.

The time-evolution of averaged excitation numbers are depicted in Fig. 4(a). Comparing these results with analogous ones shown in Fig. 3(a) we conclude, that increasing of the parameters χ/γ and g/γ and leaving the other parameters without change, leads to increasing of the level of photon excitation numbers and decreasing the excitation numbers of excitonic mode. Considering quantum statistics of modes (see, Fig. 4(b)) we conclude that this regime displays a deeply sub-Poissonian statistics with Mandel parameter achieving the values of $Q_a \approx -0.8$ for photonic mode and $Q_b \approx -0.5$ for excitonic mode in their minima. It is also interesting to present results on quantum statistics of exciton-photon system within the framework of the normalized second-order correlation function by using the above formulas. The results for nonstationary correlation functions for photonic and excitonic modes versus dimensionless time intervals are depicted in Fig. 4(d). As we see, in this regime the results display photon anti-bunching as well as the exciton anti-bunching for all time-intervals. However, the antibunching for exciton mode is slightly stronger than for the photonic mode. Beside this, the correlation function of exciton-mode shows monotonous time-behaviour, with $g^{(2)} \approx 0.76$, while analogous result for photonic mode is non-monotonous with $g^{(2)} \approx 0.82$ at its minima at definite time intervals corresponding to the minimal values of the mean photon number. Note, for the comparison that for $|2\rangle$ pure Fock state the normalized second-order photon correlation function equals to 0.5. Thus, the obtained results reflect excitations of states with high-order $m > 2$th manifolds and probably describe nonclassically of photon-exciton states for moderate number of quanta. A more complete description of the system can be obtained by calculation of the Wigner function in phase space. In this way, the contour plots of the Wigner function for photonic mode depicted in Fig. 4(c) displays the typical form corresponding to light with sub-Poissonian statistics.

Additionally, the probability distributions of photon-number and exciton-number states for the definite time-intervals are presented in Fig. 5. These results show
that non-selective excitations of both photonic and excitonic modes are realized for the parameters used. Indeed, the distributions of photon numbers are relatively large and centred around the maximal and minimal values of mean photon numbers (see Figs. 1(a), (b)). Nevertheless, the distributions considerably differs from the Poissonian distribution. The distributions of exciton numbers correspond to excitations of mode at level of a few quanta in accordance with the results of mean exciton numbers.

It is interesting to analyse the minimal values of the Mandel factor in its time-evolution for various coupling constants of the exciton-photon coupling and the strengths of exciton-exciton nonlinear interaction. The results for photonic mode in dependence from the coupling constant g/γ are presented in Fig. 6 for three values of the parameter χ/γ and the fixed value of the amplitude of driving field. One can clearly see that for the definite parameters of driving time-dependent field, exciton-exciton interaction and the detunings there exist an optimal value of the ratio g/γ where the quantum effects in the behavior of the system becomes most pronounced. These results indicate the regime presented in Fig. 4 as most preferable for production of strong sub-Poissonian statistics. It should be mentioned that the parameters of the Gaussian pulses in above consideration are free parameters and they might be chosen in order to find optimal regimes producing high degree of sub-Poissonian statistics or photon antibunching.

At the end of this section we turn to thermal effects considering briefly the interaction of the exciton-photon system with the reservoir at finite temperatures. We investigate how the temperature affects the Mandel factor and the correlation function of photon mode in comparison to the case of zero-temperature reservoir. The effects coming from thermal reservoirs are interesting for performing more realistic approach to generate nonclassical states in exciton-photon systems and for study of phenomena connecting quantum engineering and temperature.

The results for thermal photons in the range $n_{th} = 0.01 – 1$ are shown in Figs. 7(a),(b). Taking into account that $T = \hbar \omega_{th}/k_B$, for the frequencies of thermal photons $\omega_{th} = 10\,\text{GHz}$ the temperature in this range corresponds to $10^{-1}K – 10K$. In order to illustrate the difference between the case of zero-temperature resonator we assume here the parameters as in the previous case depicted in Fig. 4. As our calculation shows, the maximal values of mean photon numbers and the mean exciton numbers are approximately the same as in the case of pure resonator, while quantum statistics of oscillatory modes is changed due to the thermal noise. The light inside the cavity remains sub-Poissonian and anti-bunched for all time intervals, if $n_{th} = 0.05$. In this case the minimal values of Q-parameter and the correlation function remains nearly to the case of vacuum reservoir. As expected, the further increasing of the temperature leads to decreasing of quantum effects.

IV. CONCLUSIONS

In conclusion, we considered the quantum effects in a system consisting of an individual large quantum dot containing interacting excitons and single mode photonic cavity. We have shown that the nature of the external driving can substantially change the behavior of the system. Namely quantum effects become more pronounced in the case of the time modulated two mode driving as compared to the simple single mode external pump.

We thank Prof. Yu. G. Rubo, Dr. A. Sheremet and Prof. O.V. Kibis for the discussions we had on the
FIG. 7: Time evolution of the Mandel factor for three values of thermal photon numbers n_{th} (a). The autocorrelation function versus time-intervals for the several numbers of thermal photons (b). The parameters are as follows: $\Delta_{ph}/\gamma = 7.12$, $\Delta_{ex}/\gamma = 7.12$, $\chi/\gamma = 1$, $g/\gamma = 5$, $\Omega_1/\gamma = 5$, $\Omega_2/\gamma = 5$, $\delta/\gamma = 2$.

[1] For the review see e.g. J.M. Pitarke, V.M. Silkin, E.V. Chulkov, P.M. Echenique, Rep. Prog. Phys. 70, 1 (2007)
[2] A. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities, Oxford University Press, New York (2007).
[3] H. Mabuchi and A. C. Doherty, Science 298, 1372 (2002).
[4] A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, D. S. Wharam, and A. Small, Phys. Rev. Lett. 83, 4204 (1999).
[5] C. H. Bennett and D. P. DiVincenzo, Nature 404, 247 (2000).
[6] D. E. Chang, V. Vuletic, and M. D. Lukin, Nat. Photonics 8, 685 (2014).
[7] J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecker, and A. Forchel, Oxford University Press, Nature 432, 197 (2004).
[8] T. Yoshie, A. Scherer, J. Heinrichsson, G. Khitrova, H. M. Gibbs, G. Rupper, C. E. K. M. Ell, O. B. Shchekin, and D. G. Deppe, Nature 432, 200 (2004).
[9] E. Peter, P. Senellart, D. Martrou, A. Lematre, J. Hours, J. M. Grard, and J. Bloch, Phys. Rev. Lett. 95, 067401 (2005).
[10] M. A. Kaliteevski, S. Brand, R. A. Abram, A. Kavokin, and L. S. Dang, Phys. Rev. B 75, 233309 (2007).
[11] G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, Nat. Phys. 2, 81 (2006).
[12] Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, Phys. Rev. Lett. 64, 2499 (1990).
[13] F. P. Laussy, A. Kavokin, and G. Malpuech, Solid State Commun. 135, 659 (2005).
[14] A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, Phys. Rev. Lett. 99, 187402 (2007).
[15] E. B. Flagg, A. Muller, J.W. Robertson, S. Foumta, D. G. Deppe, M. Xiao, W. Ma, G. J. Salamo, and C. K. Shih, Nature Phys. 5, 203 (2009).
[16] S. Ates, S. M. Ulrich, A. Ulhaq, S. Reitzenstein, A. Löffler, S. Hofling, A. Forchel, and P. Michler, Nature Photon. 3, 724 (2009).
[17] E. del Valle and F. P. Laussy, Phys. Rev. Lett. 105, 233601 (2010).
[18] F. P. Laussy, E. del Valle, and C. Tejedor, Phys. Rev. Lett. 101, 083601 (2008).
[19] E. del Valle, F. P. Laussy, F. M. Souza and I. Shelykh, Phys. Rev. B 78, 085304 (2008).
[20] H. H. Adamyian and G. Yu. Kryuchkyan, Phys. Rev. A 74, 023810 (2006).
[21] N. H. Adamyian, H. H. Adamyian, and G. Yu. Kryuchkyan, Phys. Rev. A 77, 023820 (2008).
[22] T. V. Gevorgyan, A. R. Shahinyan, and G. Yu. Kryuchkyan, Phys. Rev. A 79, 053828 (2009).
[23] T. V. Gevorgyan, A. R. Shahinyan, and G. Yu. Kryuchkyan, Phys. Rev. A 85, 053802 (2012).
[24] A. Faraon, A. Majumdar, and J. Vuckovic, Phys. Rev. A 81, 033838 (2010).
[25] G. H. Hovsepyan, A. R. Shahinyan, and G. Yu. Kryuchkyan, Phys. Rev. A 90, 013839 (2014).
[26] S. Ates, I. Agha, A. Gulinatti, I. Rech, A. Badolato and K. Srinivasan, Scientific Report 3, 1397 (2013).
[27] M. I. Dykman, Periodically modulated quantum nonlinear oscillators, in Fluctuating nonlinear oscillator, Oxford University press, (2012).
[32] A. Majumdar, A. Rundquist, M. Bajcsy, and J. Vuckovic, Phys. Rev. B 86, 045315 (2012).

[33] J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-Mondragon, Phys. Rev. Lett. 44, 1323 (1980); H. I. Yoo and J. H. Eberly, Phys. Rep. 118, 239 (1985).

[34] For the experimental observation of Jaynes-Cummings revivals in Paul traps, see D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, and D. J. Wineland, Phys. Rev. Lett. 76, 1796 (1996).

[35] M. Jakob and G. Yu. Kryuchkyan, Phys. Rev. A 59, 2111 (1999).