Incidence of hepatocellular carcinoma in outpatients with cirrhosis in Brazil: A 10-year retrospective cohort study

Marcelo Campos Appel-da-Silva, Suelen Aparecida da Silva Miozzo, Isabella de Azevedo Dossin, Cristiane Valle Tovo, Fernanda Branco, Angelo Alves de Mattos

AIM
To determine the incidence of hepatocellular carcinoma (HCC) and the impact of HCC surveillance on early diagnosis and survival of cirrhotic outpatients.

METHODS
In this retrospective cohort study, cirrhotic outpatients undergoing HCC surveillance between March 2005 and March 2014 were analyzed. Exclusion criteria were HIV coinfection; previous organ transplantation; diagnosis of HCC at first consultation; missing data in the medical chart; and less than 1 year of follow-up. Surveillance was carried out every six months using ultrasound and serum alpha-fetoprotein determination. Ten-year cumulative incidence and survival were estimated through Kaplan-Meier analysis.

RESULTS
Four hundred and fifty-three patients were enrolled, of which 57.6% were male. Mean age was 55 years. Hepatitis C virus and heavy use of alcohol were the main etiologic agents of cirrhosis. HCC was diagnosed in 75 patients (16.6%), with an estimated cumulative incidence of 2.6% in the 1st year, 15.4% in the 5th year, and 28.8% in the 10th year. Median survival was estimated at 17.6 mo in HCC patients compared to 234 mo in non-HCC patients (P < 0.001). Early-stage HCC was more often detected in patients who underwent...
surveillance every 6 mo or less (P = 0.05). However, survival was not different between patients with early stage vs non-early stage tumors [HR = 0.54 (0.15-1.89), P = 0.33].

CONCLUSION
HCC is a frequent complication in patients with cirrhosis and adherence to surveillance programs favors early diagnosis.

Key words: Liver cirrhosis; Hepatocellular carcinoma; Epidemiology; Surveillance; Survival

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: This retrospective cohort chart review study provides novel data regarding the incidence of hepatocellular carcinoma (HCC) in the South of Brazil. Of 453 patients with cirrhosis attending a specialized reference clinic between March 2005 and March 2014, 75 (16.6%) developed HCC, with a cumulative incidence of 2.6%, 15.4% and 28.8% in the 1st, 5th, and 10th year respectively. Early-stage HCC was more often detected in patients undergoing strict surveillance every 6 mo. Results from this study highlight the need for strict surveillance programs favoring early diagnosis and, probably, a better prognosis.

Appel-da-Silva MC, Miozzo SAS, Dossin IA, Tovo CV, Branco F, Mattos AA. Incidence of hepatocellular carcinoma in outpatients with cirrhosis in Brazil: A 10-year retrospective cohort study. World J Gastroenterol 2016; 22(46): 10219-10225 Available from: URL: http://www.wjgnet.com/1007-9327/full/v22/i46/10219.htm DOI: http://dx.doi.org/10.3748/wjg.v22.i46.10219

INTRODUCTION
Liver cancer is the second leading cause of cancer death worldwide; it is also the fifth most common cancer in men and the ninth in women. In 2012, an estimated 782000 new cases of liver cancer occurred in the world, with report of 745000 deaths[1]. Among primary liver malignancies, hepatocellular carcinoma (HCC) accounts for 70%-85% of cases, and is associated with chronic liver disease and/or cirrhosis in 70%-90% of cases[2,3].

The burden of HCC varies with geographic location, especially when associated with cirrhosis[3]. Around 80% of cases occur in developing countries, and 55% in China alone[4]. In highly endemic areas, such as sub-Saharan countries and Asia, the annual incidence rate is around 30/100000 population[4-6]. Mediterranean countries (Italy, Spain and Greece) report intermediate incidence rates, with 10-20 cases/100000/year. An increase in the burden of HCC in low-incidence areas (Australia, North America, South America, and United Kingdom), with fewer than 5 cases/100000/year, has also been recently noted. In these areas, the growing prevalence of hepatitis C virus (HCV) infection, alcohol consumption, and nonalcoholic fatty liver disease (NAFLD) are the main causes underlying the increasing number of HCC cases[2,3,7-11].

In Latin America, limited data are available on the incidence and population characteristics of patients with HCC[12]. In Brazil, a national epidemiological survey sponsored by the Brazilian Society for Hepatology[13] evaluated 1405 patients with HCC in 29 centers across the country. Using the Barcelona Clinic Liver Cancer (BCLC) staging classification[14], 43% of the individuals were diagnosed with early stage tumors; 35% with intermediate stage tumors; and 22% with advanced stage tumors. Also, 98% had cirrhosis, which was caused by HCV in 39% and heavy use of alcohol in 14%. In the South of Brazil, HCV has been identified as the main etiologic factor of cirrhotic outpatients[15].

Screening and surveillance of HCC using abdominal ultrasound have been shown to detect tumors at an earlier stage, increasing the odds of treatment and the adherence of health care services to current practice guidelines[16-19]. Nevertheless, epidemiological studies in the United States have shown that only 12% to 78.8% of patients receive routine surveillance[20,21]. Possible barriers to screening and surveillance include socioeconomic factors and the lack of specific health policies for HCC[22].

The objective of the present study was to determine the incidence of HCC and the impact of HCC surveillance on early diagnosis and survival of cirrhotic outpatients attending a tertiary hospital clinic in the South of Brazil.

MATERIALS AND METHODS
We carried out a retrospective cohort chart review study including all patients aged 18 years or older diagnosed with cirrhosis attending a specialized reference clinic (Complexo Hospitalar Santa Casa, Porto Alegre, Brazil) between March 2005 and March 2014. Exclusion criteria were HIV coinfection, previous organ transplantation, diagnosis of HCC at the first clinic appointment, incomplete medical records, or follow-up of less than 1 year. The diagnosis of cirrhosis was based on clinical, laboratory, and on ultrasonographic and/or upper GI endoscopic features. Those patients whose diagnosis remained inconclusive, percutaneous liver biopsy were carried out.

All patients underwent screening and surveillance for HCC, with abdominal ultrasound and serum alpha-fetoprotein (AFP) determination every 6 mo. Computed tomography (CT) or abdominal magnetic resonance imaging (MRI) with contrast were performed in all patients with evidence of nodular lesion measuring ≥ 1 cm in diameter on ultrasound[23].

HCC diagnosis was based on typical findings on contrast-enhanced CT or abdominal MRI - early arterial phase enhancement followed by rapid washout at the
The 10-year cumulative incidence of HCC was estimated at 2.6% in the 1st year, 15.4% in the 5th year, and 28.8% in the 10th year. Among 419 patients who reported not using statins, only 1 patient among 34 using statins (2.9%) had HCC, whereas 55.8% of the patients without HCC were still living (P < 0.001, Figure 3).

During follow-up, 75 patients (16.6%) were diagnosed with HCC. Median follow-up for this group was 15.7 mo. Among the 378 patients who did not develop HCC, median follow-up was 58.4 mo. Table 1 shows demographic and clinical data of the groups with and without HCC.

AFP levels were available for 343 patients, of which 57 had a diagnosis of HCC (16.7%). Baseline and end-of-study AFP levels were significantly different between patients with and without HCC. Stratification of serum AFP levels into four ranges (Figure 1 and Table 2) revealed a trend for AFP > 20 ng/mL to predict HCC. The highest diagnostic probability was observed for AFP ≥ 50 ng/mL (Table 2). Accuracy of AFP was measured by the area under the ROC curve, whose value was 0.769 (95% CI: 0.70-0.84).

The 10-year cumulative incidence of HCC was analyzed using a Kaplan-Meier curve (Figure 2). During this 10-year period, 453 patients were followed-up. The estimated incidence of HCC was 2.6% in the 1st year, 15.4% in the 5th year, and 28.8% in the 10th year.

Among 419 patients who reported not using statins, 73 (17.4%) had HCC, vs only 1 patient among 34 using statins (2.9%), P = 0.028.

Survival analysis showed median survival of 234 mo (19.5 years) for the group without HCC and 17.6 mo (1.5 year) for patients with HCC. At the end of 10 years, none of the HCC patients were alive, whereas 55.8% of the patients without HCC were still living (P < 0.001, Figure 3).

BCLC staging of HCC at the time of diagnosis showed early stage tumors in 40 (53.3%) patients, intermediate stage tumors in 26 (34.6%) patients, and advanced tumors in 9 (12%) patients. Only 50.7% of individuals with HCC had undergone ultrasound surveillance every
Table 1 Demographic and clinical characteristics of cirrhotic outpatients attending a hospital clinic in the South of Brazil n (%)

Characteristic	HCC	Without HCC	P value
Age (yr)	n = 75	n = 378	
Male sex	54.9 ± 10.7	53.2 ± 12.2	0.23
Cirrhosis etiology			0.27
HCV	35 (46.7)	32 (43.9)	
Alcohol	16 (21.3)	9 (12.4)	
HBV	2 (2.7)	3 (0.8)	
HBV + alcohol	0 (0.0)	5 (1.3)	
NAFLD	1 (1.3)	7 (1.8)	
Cryptogenic	1 (1.3)	12 (3.2)	
Other	5 (6.7)	52 (13.8)	
Baseline Child-Pugh	n = 74	n = 377	0.81
A	45 (60.8)	229 (60.7)	
B	22 (29.7)	119 (31.6)	
C	7 (9.5)	29 (7.7)	
End-of-study Child-Pugh	n = 75	n = 367	0.38
A	30 (40.0)	168 (45.8)	
B	25 (33.5)	127 (34.6)	
C	20 (26.7)	72 (19.6)	
Baseline MELD	n = 60	n = 292	
End-of-study MELD	n = 71	n = 330	
A	13.4 (6.31)	13.1 (6.45)	0.65
Base line AFP, ng/mL	n = 69	n = 261	
End-of-study AFP, ng/mL	n = 57	n = 286	

Other, autoimmune hepatitis, primary biliary cholangitis, hemochromatosis, primary sclerosing cholangitis, alpha-1 antitrypsin deficiency; MELD and AFP expressed as median and interquartile range (25%-75%). HCV: Hepatitis C virus; HBV: Hepatitis B virus; NAFLD: Nonalcoholic fatty liver disease; MELD: Model for End-Stage Liver Disease; AFP: Alpha-fetoprotein.

DISCUSSION

Given the impact of HCC incidence on patients with cirrhosis, as well as the scarcity of data regarding this population in Latin America, we set out to determine the incidence of HCC and the role of a surveillance program in a cohort of cirrhotic patients attending an outpatient clinic in the South of Brazil, region predominantly composed by European descendants.

In this study, 75 of 453 (16.6%) patients developed HCC over 10 years - a higher incidence than the 8.1% observed in a cohort followed-up in the Southeast of Brazil [26]. Data from other countries also reveal higher incidences in various populations, such as 17.5% in the United States [27] and 27% in an Italian cohort [28]. Because Brazil is a country of continental proportions, the higher incidence detected in the South may be explained by geographic and/or racial heterogeneity, as well as specificities related to risk factors and access to health care services for screening, diagnosis, and follow-up. The predominance of the male sex and the mean age at diagnosis were similar to those described in other national [13,29,30] and international [12,31,32] studies.

In the present study, the etiology of liver disease was similar in patients with or without HCC, with HCV and alcohol being the main etiologic agents. In Brazil, chronic HCV infection and alcohol consumption are a major public health problem [33,34]; nevertheless, in some regions HBV is still an important cause of cirrhosis and HCC [35]. Llovet et al [36] have shown that in Europe and North America, HCV and alcohol are more frequently associated with HCC than HBV, differently than what occurs in Asia and Africa.

The establishment of surveillance programs for patients with chronic liver disease gained momentum after the study by Zhang et al [37], which showed that...
performing abdominal ultrasound and AFP testing every 6 mo was capable of identifying patients in earlier stages of the disease, increasing survival in up to 37% of cases.

A major objective of follow-up of patients with cirrhosis is the screening and surveillance of HCC according to various consensus statements and guidelines[31,38-40]. Brazilian Society for Hepatology[41] has recently recommended the performance of abdominal ultrasounds every 6 mo, with measurement of AFP strictly in sites where physicians who are experienced in ultrasound are not available.

AFP was recognized in the 1970s as a tumor marker for diagnosis of HCC. This biomarker lost ground after many studies showed low sensitivity and specificity for detection of early stage tumors, leading to the exclusion of AFP dosing from the main consensus statements[31,38,40]. Despite the debate, the Asian Pacific Association for the Study of the Liver and the Japan Society of Hepatology kept the recommendation for serial AFP measurement, based on the understanding that this information could complement ultrasound surveillance[39,42]. In any case, it is well recognized that AFP may play an important prognostic role in the follow-up of these patients, since high AFP levels may signal more aggressive, multifocal tumors associated with venous portal thrombosis and/or metastases[43].

In the present study, serum AFP levels were higher in patients with HCC than in those without HCC. Nevertheless, the absence of a cutoff point with satisfactory sensitivity and specificity to detect HCC compromises the usefulness of this test. We believe that AFP dosing is more valuable to establish HCC prognosis than HCC diagnosis[44].

The incidence of HCC has been increasing globally, especially in the West, as a consequence of the obesity epidemic and of the growing number of patients with chronic liver disease[45]. In our cohort, cumulative HCC incidence was 2.6%, 15.4%, and 28.8% in the 1st, 5th, and 10th year respectively, which is similar to the data reported for other cirrhotic cohorts[28,46].

We observed that more patients were diagnosed with early stage HCC, as determined by BCLC criteria, in the presence of ultrasound monitoring at 6-mo intervals, even if survival was similar in this group, as compared to the group submitted to surveillance ultrasound at broader intervals. The difficulty in demonstrating increased survival associated with surveillance programs involves ethical issues relating to the performance of randomized, controlled trials. In this cohort, despite the lower survival of HCC patients vs those with cirrhosis and without HCC, there was no difference between those who underwent strict surveillance and those who did not. Sangiovanni et al[28] successfully demonstrated increased survival in cirrhotic patients with HCC undergoing surveillance between 1985 and 2011.

Interestingly, we observed a negative association between use of statins and development of HCC. Even though this might be a chance finding, given the low number of patients using this medication, previous studies have reported an effect of statins on patients with chronic liver disease[47-54]. All these previous works have described a protective effect. In fact, Chiu et al[48] described a reduction of 38% in the risk of HCC in patients from a surveillance program.

In conclusion, the findings of the present study underscore the high incidence of HCC in individuals with cirrhosis, highlighting the importance of stimulating the adherence of health care services and patients to surveillance programs.

COMMENTS

Background
Liver cancer is the second leading cause of cancer death worldwide and, among primary liver malignancies, hepatocellular carcinoma (HCC) accounts for 70%-85% of cases, and is associated with chronic liver disease and/or cirrhosis in 70%-90% of cases.

Research frontiers
All patients with chronic liver diseases are advised and guided to programmed screening and surveillance for HCC in order to allow early detection of nodular lesion.

Innovations and breakthrough
This study presents the incidence and impact of HCC in patients with cirrhosis in the South of Brazil and demonstrates that the adherence to surveillance programs are indeed effective for early diagnosis.

Applications
The present study underscore the high incidence of HCC in individuals with cirrhosis, highlighting the importance of stimulating the adherence of health care services and patients to surveillance programs.

Terminology
Screening and surveillance programs are usually done through periodic

Table 2: Pre-test probability, likelihood ratio, post-test probability, sensitivity, and specificity of alpha-fetoprotein ranges to predict hepatocellular carcinoma

AFP level (ng/mL)	Pre-test probability	LR+	Post-test probability	Sensitivity	Specificity
< 6.0	16.60%	0.50	9.1%	66.7%	66.3%
6-19.9	16.60%	1.00	16.6%	45.6%	89.3%
20-50	16.60%	1.31	20.8%	35.1%	96.1%
> 50	16.60%	10.03	66.8%	35.1%	96.1%

LR: Likelihood ratio; AFP: Alpha-fetoprotein.
REFERENCES

1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods, and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136: E359-E386 [PMID: 25220842 DOI: 10.1002/ijc.29210]

2. Cabibbo G, Ciraz A. Epidemiology, risk factors and surveillance of hepatocellular carcinoma. Eur Rev Med Pharmacol Sci 2010; 14: 352-355 [PMID: 20496547]

3. Mittal S, El-Serag HB. Epidemiology of hepatocellular carcinoma: consider the population. J Clin Gastroenterol 2013; 47 Suppl: S2-S6 [PMID: 23632345 DOI: 10.1097/MCG.0b013e3182872229]

4. Bosch FX, Ribes J, Diaz M, Cleries R. Primary liver cancer: worldwide incidence and trends. Gastroentology 2004; 127: S5-S16 [PMID: 15508102 DOI: 10.1053/j.gastro.2004.09.011]

5. Sherman M. Hepatocellular carcinoma: epidemiology, risk factors, and screening. Semin Liver Dis 2005; 25: 143-154 [PMID: 15918143 DOI: 10.1055/s-2005-871194]

6. Kew MC. Hepatocellular carcinoma surveillance and appropriate treatment options improve survival for patients with liver cirrhosis. Eur J Cancer 2010; 46: 744-751 [PMID: 20060710 DOI: 10.1016/j.ejca.2009.12.018]

7. Ave R, Okano J, Imamoto R, Fujise Y, Koda M, Murawaki Y. [Evaluation of the surveillance program for hepatocellular carcinoma]. Nihon Shokakibyo Gakkai Zasshi 2012; 109: 741-750 [PMID: 22688099]

8. El-Serag HB. Utilization of surveillance for hepatocellular carcinoma among hepatitis C virus-infected veterans in the United States. Ann Intern Med 2011; 154: 85-93 [PMID: 21242365 DOI: 10.7326/0003-4819-154-2-201101180-00006]

9. Abou-Khalil B, El-Serag HB. Hepatocellular carcinoma surveillance and appropriate treatment options improve survival for patients with liver cirrhosis. Eur J Cancer 2010; 46: 744-751 [PMID: 20060710 DOI: 10.1016/j.ejca.2009.12.018]

10. Davila JA, Henderson L, Kramer JR, Kanwali F, Richardson PA, Duan Z, El-Serag HB. Utilization of surveillance for hepatocellular carcinoma among hepatitis C virus-infected veterans in the United States. Ann Intern Med 2011; 154: 85-93 [PMID: 21242365 DOI: 10.7326/0003-4819-154-2-201101180-00006]

11. Crespo J, Chavalidhamrong D, Lu DS, Raman SS, Gomes A, Duffy JP, Hong JC, Busuttil RW. Survival in Asian Americans after treatments for hepatocellular carcinoma: a seven-year experience at UCLA. J Clin Gastroenterol 2010; 44: e63-e70 [PMID: 19745756 DOI: 10.1097/MCG.0b013e3181b4b66b]

12. Zhao C, Nguyen MH. Hepatocellular Carcinoma Screening and Surveillance: Practice Guidelines and Real-Life Practice. J Clin Gastroenterol 2016; 50: 120-133 [PMID: 26583266 DOI: 10.1097/MCG.0000000000000446]

13. Brusis J, Sherman M. Practice Guidelines Committee American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma. Hepatology 2005; 42: 1208-1236 [PMID: 12105842 DOI: 10.1001/jhpr.2002.36780]

14. Kemp W, Piipko S, Nguyen S, Bailey MJ, Roberts SK. Survival in hepatocellular carcinoma: impact of screening and etiology of liver disease. J Gastroenterol Hepatol 2005; 20: 873-881 [PMID: 15946134 DOI: 10.1111/j.1440-1746.2005.03844.x]

15. Bagianesi E, Leone N, Vanni E, Marchesini G, Brunello F, Carucci A, Cusumano LF, Del Ninno E, Fasani P, De Fazio C, Ronchi G, Romeo R, Morabito A, De Franchis R, Colombo M. Increased survival of cirrhotic patients with a hepatocellular carcinoma detected during surveillance. Gastroenterology 2004; 126: 10224

Appel-da-Silva MC et al. Incidence of HCC in cirrhotic patients abdominal ultrasound every 6 mo and may be associated with serum alpha-fetoprotein. Computed tomography or abdominal magnetic resonance imaging with contrast were performed in all patients with evidence of nodular lesion measuring ≥ 1 cm in diameter on ultrasound.

Peer-review

This retrospective cohort chart review study does a good job regarding the incidence of HCC in the South of Brazil and displays the need for strict surveillance programs favoring early diagnosis and prognosis. It is very well-written and the Discussion interprets the findings in view of the results obtained in this and in past studies on this topic. The study gives significant information and it may possibly help clinicians to develop further studies.
1005-1014 [PMID: 15057740 DOI: 10.1053/j.gastro.2003.12.049]

Gonçalves CS, Pereira FE, Gayotto LC. Hepatocellular carcinoma in Brazil: a report from a national survey (Florianópolis, SC, 1995). Rev Inst Med Trop Sao Paulo 1997; 39: 165-170 [PMID: 9460258 DOI: 10.1590/S0036-4665197000300008]

Teixeira A, Mentea E, Cantao C, Sankaranarkkuty A, Souza F, Motta T, Monsignore I, Elias Junior J, Muglia VF, Abud PER, Feria PM, Zucoloto S, SILVA OC, Martineili ACL. Clinical Characteristics of 130 Patients With Hepatocellular Carcinoma Followed at a Tertiary Hospital From Brazil. World J Oncol 2012; 2: 165-172

Méndez-Sánchez N, Villar AR, Vázquez-Elizondo G, Ponciano-Rodríguez G, Uribe M. Mortality trends for liver cancer in Mexico from 2000 to 2006. Ann Hepatol 2008; 7: 226-229 [PMID: 18753989]

Ferreira PR, Brandão-Mello CE, Este C, Gonçales Júnior FL, Coelho HS, Razavi H, Cheinquer H, Wolff FH, Ferraz ML, Pessoa MG, Mendes-Correa MC. Disease burden of chronic hepatitis C in Brazil. Braz J Infect Dis 2015; 19: 363-369 [PMID: 26051505 DOI: 10.1016/j.bjid.2015.04.004]

Portugal FB, Campos MR, de Carvalho JR, Flor LS, Schramm JM, Costa Mde F. Disease burden in Brazil: an investigation into alcohol and non-viral cirrhosis. Cien Saude Colet 2015; 20: 491-501 [PMID: 25715143 DOI: 10.1590/1413-8123201520211.42014]

Gonçalves PL, Zago-Gomes Mda P, Gonçalves CS, Pereira FE. Hepatitis virus and hepatocellular carcinoma in Brazil: a report from the State of Espirito Santo. Rev Soc Bras Med Trop 2014; 47: 559-563 [PMID: 25467255 DOI: 10.1590/0037-6682-0145-2014]

Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet 2003; 362: 1907-1917 [PMID: 14667750 DOI: 10.1016/S0140-6736(03)14964-1]

Zheng BH, Yang BH, Tang ZY. Randomized controlled trial of screening for hepatocellular carcinoma. J Cancer Res Clin Oncol 2004; 130: 417-422 [PMID: 15042359 DOI: 10.1007/s00432-004-0552-0]

European Association For The Study Of The Liver: The European Organisation For Research And Treatment Of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 2012; 56: 908-943 [PMID: 22424348 DOI: 10.1016/j.jhep.2011.12.001]

Omatea M, Lesmana LA, Taitesei R, Chen PJ, Lin SM, Yoshida H, Kudo M, Lee JM, Choi BI, Poon RT, Shima S, Cheng AL, Jia JD, Obi S, Han KH, Jafari W, Chow P, Lim SG, Chawla YK, Budhuisodo U, Gani RA, Lesmana CR, Putranto TA, Liaw YF, Sarin SK. Asia Pacific Association for the Study of the Liver consensus recommendations on hepatocellular carcinoma. Hepatol Int 2010; 4: 439-474 [PMID: 20827404 DOI: 10.1007/s12072-010-9165-7]

Bruix J, Sherman M. American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: an update. Hepatology 2011; 53: 1020-1022 [PMID: 21374666 DOI: 10.1002/hep.24199]

Carrillo JL, Mattos AA, Vianey AE, Vezozzo DC, Marinho F, Souto FJ, Cotrim HP, Coelho HS, Silva I, Garcia JH, Kikuchi L, Lefego P, Andras W, Strauss E, Silva G, Altikes I, Medeiros JE, Bittencourt PL, Parise ER. Brazilian society of hepatology recommendations for the diagnosis and treatment of hepatocellular carcinoma. Arq Gastroenterol 2015; 52 Suppl 1: 1-24 [PMID: 26959803 DOI: 10.1590/S0021-02472015000100001]

Kokudo N, Hasegawa K, Akahane M, Igaki H, Izumi N, Ichida T, Uemoto S, Kaneko S, Kawasaki S, Ku Y, Kudo M, Kubo S, Takayama T, Tateishi R, Fukuda T, Matsui O, Matsuyama Y, Murakami T, Arii S, Okazaki M, Makuuchi M. Evidence-based Clinical Practice Guidelines for Hepatocellular Carcinoma: The Japan Society of Hepatology 2013 update (3rd JSH-HCC Guidelines). Hepat Res 2015; 45: [PMID: 25625806 DOI: 10.1111/hepr.12464]

Chen SL, Chan AT, Yeow W. Role of alpha-fetoprotein in hepatocellular carcinoma: prognostication, treatment monitoring or both? Future Oncol 2009; 5: 889-899 [PMID: 19667377 DOI: 10.2217/fon.09.64]

Schorraier Ldos S, de Mattos AA, Zanotelli ML, Cantisani GP, Brandão AB, Marroni CA, Kiss G, Ertani L, Marcon Pdos S. Alpha-fetoprotein Level Predicts Recurrence After Transplantation in Hepatocellular Carcinoma. Medicine (Baltimore) 2016; 95: e2478 [PMID: 26817881 DOI: 10.1097/MD.0000000000002478]

Venook AP, Papandrew C, Furuse J, de Guevara LL. The incidence and epidemiology of hepatocellular carcinoma: a global and regional perspective. Oncologist 2010; 15 Suppl 4: 5-13 [PMID: 21115576 DOI: 10.1634/theoncologist.2010-S4-05]

Chiararamonte M, Stroffolini T, Vian A, Stazi MA, Floreani A, Lorenzoni U, Lobello S, Farinatti F, Nacarato R. Rate of incidence of hepatocellular carcinoma in patients with compensated viral cirrhosis. Cancer 1999; 85: 2132-2137 [PMID: 10326690 DOI: 10.1002/(SICI)1097-0424(19990515)85:10<2132::AID-CNCR6>3.0.CO;2-H>]

El-Serag HB, Johnson ML, Hachem C, Morgana RO. Statins are associated with a reduced risk of hepatocellular carcinoma in a large cohort of patients with diabetes. Gastroenterology 2009; 136: 1601-1608 [PMID: 19208359 DOI: 10.1053/j.gastro.2009.01.053]

Chiu HF, Ho SC, Chen CC, Yang CY. Statin use and the risk of liver cancer: a population-based case-control study. Am J Gastroenterol 2011; 106: 894-898 [PMID: 21157439 DOI: 10.1038/ajg.2010.475]

Tsan YT, Lee CH, Ho WC, Lin MH, Wang JD, Chen PC. Statins and the risk of hepatocellular carcinoma in patients with hepatitis C virus infection. J Clin Oncol 2013; 31: 1514-1521 [PMID: 23509319 DOI: 10.1200/JCO.2012.44.6831]

Singh S, Singh PP, Roberts LR, Sanchez W. Chemopreventive strategies in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2014; 11: 45-54 [PMID: 23938452 DOI: 10.1038/nrgastro.2013.143]

Singh S, Singh PP. Statins for prevention of hepatocellular cancer: one step closer? Hepatology 2014; 59: 724-726 [PMID: 23839991 DOI: 10.1002/hep.26614]

Lai SW, Liao KF, Lai HC, Moo CH, Sung FC, Chen PC. Statin use and risk of hepatocellular carcinoma. Eur J Epidemiol 2013; 28: 485-492 [PMID: 23681775 DOI: 10.1007/s10654-013-9806-y]

Björkhem-Bergman L. Statin treatment reduces the risk of hepatocellular carcinoma but not colon cancer-results from a nationwide case-control study in Sweden. Pharmacoepidemiol Drug Saf 2014; 23: 1101-1106 [PMID: 25074765 DOI: 10.1002/pds.3685]

McGlynn KA, Divine GW, SahasrabuddheVV, Engel LS, VanSlooten A, Wells K, Yood MU, Alford SH. Statin use and risk of hepatocellular carcinoma in a U.S. population. Cancer Epidemiol Biomarkers Prev 2014; 33: 523-527 [PMID: 25113938 DOI: 10.1097/MD.0000000000002478]

P- Reviewer: Lachenmeier DW, Zhang ZM, Zha X
S- Editor: Gong ZM L- Editor: A E- Editor: Zhang FF
