Elsevier has created a Monkeypox Information Center in response to the declared public health emergency of international concern, with free information in English on the monkeypox virus. The Monkeypox Information Center is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its monkeypox related research that is available on the Monkeypox Information Center - including this research content - immediately available in publicly funded repositories, with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the Monkeypox Information Center remains active.
Detection of *monkeypox virus* with real-time PCR assays

Yu Li a,1, Victoria A. Olson a,1, Thomas Lauer b, Miriam T. Laker a, Inger K. Damon a,∗

a Poxvirus Program, Division of Viral and Rickettsial Diseases, National Centers of Infectious Diseases, Centers for Disease Control and Prevention, Mail Stop G-43, 1600 Clifton Road, NE, Atlanta, GA 30333, United States

b Artus Biotech, Hamburg, Robert Koch Institute, Berlin, Germany

Received 7 September 2005; received in revised form 13 March 2006; accepted 17 March 2006

Abstract

Background: Human monkeypox, a zoonotic disease, was first reported outside of Africa during the 2003 US outbreak.

Objectives: We present two real-time PCR assays critical for laboratory diagnosis of monkeypox during the 2003 US outbreak.

Study design: A TaqMan-based assay (E9L-NVAR) targets the *orthopoxvirus* DNA polymerase gene and detects Eurasian *orthopoxviruses* other than *Variola*. A hybridization assay, utilizing a MGB EclipseTM (Epoch Biosciences) probe, targets an envelope protein gene (B6R) and specifically detects *monkeypox virus* (MPXV). Assays were validated using coded orthopoxvirus DNA samples and used to evaluate lesion samples from five confirmed US monkeypox cases.

Results: E9L-NVAR did not detect variola (48 strains), North American orthopoxviruses (2), or DNA derived from non-poxviral rash illnesses. The assay reproducibly identified various concentrations of 13 Eurasian orthopoxvirus strains and was sensitive to 12.5 vaccinia genomes. The B6R assay recognized 15 different MPXV strains, while other orthopoxvirus (9) and bacteria (15) strains did not cross-react. Of the 13 human samples tested from confirmed cases, both assays identified 100% as containing MPXV DNA.

Conclusions: E9L-NVAR and B6R assays demonstrate 100% specificity for non-variola Eurasian orthopoxvirus and MPXV, respectively. Using two discrete viral gene targets, these assays together provide a reliable and sensitive method for quickly confirming monkeypox infections.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Orthopoxvirus; Monkeypox virus (MPXV); Real-time PCR; Diagnostic

1. Introduction

Orthopoxvirus *monkeypox*, first isolated in 1958 from captive primate rash specimens (Magnus et al., 1959), was recognized to cause human illness in 1970 during smallpox eradication campaign intensification (Jezek and Fenner, 1988; Ladvany et al., 1972). Between 1970 and 1986, >400 monkeypox cases were reported in Africa, 95% within Zaire (now the Democratic Republic of Congo, DRC) (Jezek and Fenner, 1988). Until the 2003 US outbreak (Reed et al., 2004), no human cases had been reported outside of Africa.

Human monkeypox, as described in the Congo Basin, typically presents with symptoms similar to discrete, ordinary smallpox. After about a 2-week, asymptomatic incubation period, infected individuals develop fever followed by disseminated rash. Both illnesses are transmissible between humans and can result in death. The case fatality rate for monkeypox (~0–10%) (Jezek and Fenner, 1988) is much lower than for variola major (10–30%) (Fenner et al., 1998), as is the rate of human-to-human transmissibility. Control measures for these two diseases would differ, and recent events emphasize the need for monkeypox diagnostics. After discontinuation of smallpox vaccination, susceptibility to zoonotic monkeypox increased, likely contributing to increased disease reports in DRC (Hutin et al., 2001; Meyer et al., 2002; Mwanbal et al., 1997). The US monkeypox outbreak demonstrated the ability of the virus to exploit new hosts and move globally (Reed et al., 2004).
Several nucleic acid test methods have been developed for monkeypox virus (MPXV) detection and characterization (Kulesh et al., 2004; Meyer et al., 2004). Compared with other diagnostic methods, real-time PCR has the advantages of fast, high-quantity throughput and increased sensitivity. This is the first report of real-time PCR assays used to diagnose human monkeypox from clinical rash samples. The assays target different orthopoxvirus genes: DNA polymerase (E9L) and envelope protein (B6R). We report the analytic sensitivity and specificity of both assays and demonstrate their utility for US monkeypox outbreak human rash specimens. These assays represent two sensitive, rapid diagnostic tools for identification of orthopoxviral infection within clinical samples.

2. Materials and methods

2.1. Viruses, bacteria, and clinical samples homogenization

Origins, propagation, and harvesting procedures for viral and cellular isolates are documented (Esposito and Knight, 1985; Esposito et al., 1987; Frenkel et al., 1976; Gispen et al., 1967; Hanrahan et al., 2003; Likos et al., 2005; Loparev et al., 2001; Olson et al., 2004; Pulford et al., 2004; Regnery, 1971; Ropp et al., 1995; Sarmiento et al., 1979; Seki et al., 1990) or briefly described (Table 1). Viral samples were processed as described for clinical samples. Bacteria and Rickettsia (Table 2) were gifts (Holmes H and Massung R, CDC). Those bacteria with potential to contaminate clinical samples (Table 3) were propagated on blood agar plates, suspended in 0.85% sterile saline (0.5 McFarland turbidity), spotted (10^6/H9262L) onto slides, and processed to replicate conditions within a clinical sample.

Clinical samples were obtained from vesicular lesions as skin biopsies (scab or vesicle roof), vesicular fluid slide (“touch prep”), or vesicular fluid swab. Recommendations for lesion sampling can be found at http://www.bt.cdc.gov/agent/smallpox/response-plan/files/guide-d.pdf. In brief, samples were processed under biosafety containment conditions to form homogenates suitable for DNA extraction:

1. Skin biopsies were homogenized in sterile water or PBS (500/L) by freezing, disruption with a disposable pestle, and vortexing. If physical disruption was insufficient, the sample underwent further freeze–thaw/grinding cycles. Finally, samples, in closed tubes, were sonicated (cup-horn sonicator, 40% maximum output).

2. Nuclease-free water (100/L) was added to each spot on the slide, scraped, and recovered into a sterile tube. Water addition/scraping was repeated twice and pooled into the same tube.

3. Shafts of vesicular fluid swabs were broken near the top of the swab material. The swab was hydrated (300/L PBS) for 5–10 min in a sterile tube and then transferred to a Swab Extraction Tube System tube (Roche Applied Science, Indianapolis, IN). The swab tube was spun for 1 min to rinse the swab and collect the eluent.

2.2. DNA extraction

Crude virus (viral-infected cell lysates harvested 48 hpi), semi-purified virions (Esposito et al., 1981), purified virions, scabs, bacteria, and clinical samples were homogenized (as described above), and DNA extracted using the AquaPure Genomic DNA Isolation Kit (Bio-Rad, Hercules, CA), suspended in 50 L AquaPure DNA hydration buffer, and stored at −20 °C.

Table 1

Organism	Sample ID	Location	Year	Patient or supplier	Material sent to CDC
Variola V74-227	Congo 9	Somalia	1974	R. Gipsen	Chicken chorioallantoic membrane
Variola V77-1605	Somalia	1977	Female, 9 years old	Creutz	
Variola V78-4-903	Somalia	1978	Female camel	Creutz	
Camelopox V78-4-2370	Somalia	1978	Female camel	Creutz	
Monkeypox V77-4-813	Zaire	1977	Female, 7 years old	Creutz	
Monkeypox V77-4-823	Zaire	1977	Male, 15 years old	Creutz	
Monkeypox V70-266	Sierra Leone	1970	Male, 24 years old	Creutz	
Monkeypox V81-187	Zaire	1981	Male, 2 years old	Creutz	
Monkeypox V81-12-179	Ivory Coast	Côte d’Ivoire	1981	Female, 3 years old	Creutz
Monkeypox V82-167	Zaire	1982	Female, 29 years old	Swab	
Monkeypox V83-036	Zaire	1983	Female, 3 years old	Swab	
Monkeypox I2003ki-DRC	DRC, formally Zaire	1998			
Vaccinia	Lister	Great Britain			
Vaccinia	Temple of Heaven	China			
Vaccinia	Wyeth/Doyva	US			
Human-E lymphoblast	SUP-FVRI			ATCC CRCL-1942	
African Green Monkey	BS-C-40			ATCC #CCL-38	
Herpesvirus Varicella Zoster-OKa	ATCC # VR-795				
Herpesvirus Varicella-Webster	ATCC # VR-916				
Table 2

Organism Sample ID	DNA	2 ng	200 pg	20 pg	2 pg	200 fg	20 fg	2 fg
Eurasian orthopoxvirus*								
Camelpox E2379	Partially pure	21.26	24.60	29.01	34.18	ND	ND	ND
Camelpox v78-1-903	Crude	21.12	20.67	38.48	36.84	ND	ND	ND
Coopst Brighton	Partially pure	16.05	24.85	33.11	ND	ND	ND	ND
Ectromelia Moscow	Partially pure	17.10	20.55	25.54	28.57	31.48	37.43	ND
Taterapox Gerbitopsis	Partially pure	23.56	24.66	28.60	31.00	ND	39.25	ND
Monkeypox MPXV-ZAI-1986-016	Partially pure	15.29	19.94	22.49	37.10	ND	ND	ND
Monkeypox V70-286 Sierra Leone	Partially pure	16.71	28.23	33.73	ND	ND	ND	ND
Vaccinia Lister	Partially pure	17.48	26.34	34.55	ND	ND	ND	ND
Vaccinia Temple of Heaven	Partially pure	17.13	28.32	35.86	ND	ND	ND	ND
Vaccinia BE9	Crude	26.19	30.43	34.21	36.04	ND	ND	ND
Vaccinia Wyeth/Dryvax	Crude	26.69	38.19	ND	ND	ND	ND	ND
Vaccinia WYH pG68-5-v1-1-1	Partially pure	19.33	23.60	36.71	ND	ND	ND	ND
Variola SA6F5-102	Crude	ND						
Variola SA6F5-103	Crude	ND						
Variola 7124	Crude	ND						
Variola 7125	Crude	ND						
Variola Virolog 4	Crude	ND						
Variola Guccio	Crude	ND						
Variola BSH	Crude	ND						
Variola Butler	Crude	ND						
Variola ETH22-17	Crude	ND						
Variola Harper	Crude	ND						
Variola Harvey	Crude	ND						
Variola Heindberg	Crude	ND						
Variola Higgins	Crude	ND						
Variola Hinden	Crude	ND						
Variola Horo	Crude	ND						
Variola Jean 2602	Crude	ND						
Variola Juba	Crude	ND						
Variola K125	Crude	ND						
Variola Kali Mathu	Crude	ND						
Variola Hembula	Crude	ND						
Variola Minnesota 124	Crude	ND						
Variola Lee	Crude	ND						
Variola New Delhi	Crude	ND						
Variola Nur Islam	Crude	ND						
Variola Lahore	Crude	ND						
Variola Rambree	Crude	ND						
Variola Stulzmann	Crude	ND						
Variola Soliz	Crude	ND						
Variola Stubbell	Crude	ND						
Variola V66-39	Crude	ND						
Variola V68-258	Crude	ND						
Variola V68-59	Crude	ND						
Variola V70-222	Crude	ND						
Variola V70-228	Crude	ND						
Variola Congo	Crude	ND						
Variola V72-119	Crude	ND						
Variola V72-143	Crude	ND						
Variola Nepal 73	Crude	ND						
Variola V73-225	Crude	ND						
Variola V74-227 Congo 9	Crude	ND						
Variola V77-125	Crude	ND						
Variola V77-1665	Crude	ND						
Variola Yamala	Crude	ND						
Variola Bombay	Crude	ND						
Variola Hembula	Crude	ND						
Variola Maimun	Crude	ND						
Variola Kudano	Crude	ND						
Variola Parvin	Crude	ND						
Variola Soliz	Crude	ND						
2.3. E9L-non-virotela (NVAR) assay

The primer/probe sequences were selected from the DNA polymerase gene (E9L; GenBank L22579) with Primer Express (version 1.5; Applied Biosystems). These included E9L forward primer (5′-TCA.ACT.GGA.AAG.GC.CC.ATC.TAT.GA-3′), E9L reverse primer (5′-GAG.TAT.AGA.GCA.CTA.TTT.CTA.AAT.CCC.A-3′), and E9L-NVAR probe (5′-TET.CCA.TGC.AAT.ATA.CGT.ACA.AGA.TAG.TAG.CCA.AC-3′). Primers and probe were synthesized in the Biotechnology Core Facility (CDC, Atlanta GA), utilizing standard phosphoramidite chemistry. The detection probe contained 5′ amino group after synthesis.

2.4. B6R MPXV-specific assay

The primer sequences were selected from the extracellular enveloped virus protein gene (B6R; GenBank L22579) using Primer Express (version 1.5; Applied Biosystems, Foster City, CA). These included B6R forward primer (5′-ATT.GCT.CAT.TAT.TTT.TGT.CAC.AGG.AAC.A-3′), and B6R reverse primer (5′-AAT.GGC.GTG.TAT.GAC.AAT.TAT.GGG.TG-3′). The MPXV-specific probe (5′-MGB/DarkQuencher-MGA.GAT.TAG.AAA.TA.FAM-3′) was selected from the B6R sequence with the aid of MGB Eclipse™ By Design software (Epoch Biosciences, Bothell, WA) and has a conjugated minor groove binding (MGB) ligand and a dark quencher at the 5′-end, with the fluorophore at the 3′-end. Fluorescence of the single-stranded probe is efficiently quenched by the interaction of the terminal dye and quencher groups when not hybridized (Afonina et al., 2002a,b). Each reaction (20 μL) contained 1 x Eclipse Gene Expression Buffer (20 mmol/L Tris–HCl pH 8.7, 50 mmol/L NaCl, 5 mmol/L MgCl2), 200 nmol/L MGB Eclipse™ probe, 0.25 μL 100 nmol/L deoxynucleoside triphosphate mixture, 0.4 μmol/L each primer, 0.75 μL JumpStart TaqDNA polymerase (Sigma, St. Louis, MO), and 2 μL template DNA. Thermal cycling conditions for the iCycler (Bio-Rad, Hercules, CA): one cycle of 95 °C for 10 min, followed by 40 cycles of 95 °C for 10 s, and 60 °C for 40 s. PCR amplification is based on fluorescent emission after annealing/elongation (60 °C).
Eurasian orthopoxvirus	Sample ID	DNA	Average Ct for samples with different amounts of viral DNA						
			2 ng	200 pg	20 pg	2 pg	200 fg	20 fg	2 fg
Camelpox v78.1279	Purified	ND	ND	ND	ND	ND	ND	ND	ND
Cowpox CP58	Purified	ND	ND	ND	ND	ND	ND	ND	ND
Cowpox Brighton	Purified	ND	ND	ND	ND	ND	ND	ND	ND
Monkeypox MPXV-ZAI-1979-005	Purified	17.30b	21.01b	26.00b	29.79b	33.69b	36.74b	39.70b	ND
Vaccinia WythDryvax	Purified	ND	ND	ND	ND	ND	ND	ND	ND
Vaccinia BHDI	Purified	ND	ND	ND	ND	ND	ND	ND	ND
Vaccinia Wyth	Purified	ND	ND	ND	ND	ND	ND	ND	ND
Variola V73-143	Crude	ND	ND	ND	ND	ND	ND	ND	ND
Variola BSH	Purified	ND	ND	ND	ND	ND	ND	ND	ND
Variola Horn	Purified	ND	ND	ND	ND	ND	ND	ND	ND

Bacteria	Average Ct	
Streptococcus Pyogenes ATCC 19615	ND	
Diphtheria CDC8143-02	ND	
Peptostreptococcus anaerobius ATCC 15689	ND	
Propionibacterium acnes ATCC 6910	ND	
Staphylococcus aureus strain 1 ATCC 12600	ND	
E. coli ATCC 13867	ND	
S. epidermidis (strain 3) ATCC 12228	ND	
S. epidermidis (strain 1) ATCC 49134	ND	
Pseudomonas aeruginosa ATCC27853	ND	
Enterococcus faecalis ATCC 29212	ND	
Streptococcus hens (alpha-Strep) ATCC 49147	ND	
S. aureus (strain 3) CD003-06 (TSST1 positive)	ND	
S. aureus (strain 2) ATCC 2925	ND	
Escherichia coli 29222	ND	

* Each sample was tested in triplicate; all results were negative except as indicated. ND, not detected.
* All assays were positive and the average Ct value is shown.
* Each sample was spotted onto a slide to mimic a clinical sample (see Section 2). The slides were processed, DNA extracted, and each DNA tested in triplicate. ND, not detected.

Based on the fluorescent emission with annealed probe (57°C).

2.5. Statistical probit analysis

Analytical sensitivity was determined using purified, photometrically quantified vaccinia DNA diluted in water (24 replicates of 5 concentrations). Probit analysis as a model of non-linear regression was accomplished with commercial software (SPSS 11.0, for Mac® OS X; SPSS, Inc., Chicago, IL.). The software determines a continuous 95% confidence interval of the probability of achieving a positive result at any given input DNA concentration within the concentration range of the experiment.

3. Results and discussion

3.1. E9L-NVAR orthopoxvirus assay

Several TaqMan-based real-time PCR assays have been developed as rapid orthopoxvirus diagnostics. One diagnostic assay for orthopoxviral infections other than variola targets the viral DNA polymerase gene (E9L), amplifying a conserved gene segment within all Eurasian orthopoxviruses. The probe, however, targets 32 bases within the E9L gene containing a three nucleotide difference between variola and other orthopoxviruses (Fig. 1), and thus efficiently anneals to Eurasian orthopoxviruses other than variola. This orthopoxviral diagnostic can be used without raising concern that variola has been detected.

The specificity and sensitivity of the assay, designated E9L-NVAR, was determined utilizing a coded panel of multiple orthopoxviruses. Each sample was tested singly, and positive samples are denoted by the cycle where fluorescence crossed the threshold (Ct) (Table 2). E9L-NVAR identified all non-variola Eurasian orthopoxviruses (13 species) at concentrations between 2 pg and 20 fg of viral DNA, depending upon DNA quality. The assay detected 20 fg of partially purified MPXV DNA (~100 genomes). Partially purified cowpox, ectromelia, and vaccinia were identified at similar efficiencies (Table 2). Partially purified camelpox and taterapox demonstrated a diminished interaction with the E9L-NVAR probe (Table 2) due to a single base difference...
Fig. 1. Alignment of primers and probes with orthopoxviral DNA. The primers and probe for each of the real-time PCR assays are aligned with the targeted sequence of DNA within several orthopoxviral species. The E9L-NV AR primers and probe are completely homologous with the vaccinia Copenhagen DNA sequence. The B6R primers and probe are completely homologous with the monkeypox (CB) DNA sequence. Virus strains: monkeypox (CB) MPXV-ZAI-1996-016 (Genbank AF380138); monkeypox (US) MPXV-USA-2003-039 (Genbank DQ011154); vaccinia Copenhagen (Genbank M35027); cowpox Brighton (Genbank AF482758); ectromelia Moscow (Genbank AF012825); camelpox Kazakhstan M-96 (Genbank AF438165); taterapox (Smith GL, personal communication); variola major Bangladesh (Genbank L22579); variola minor Garcia (Genbank Y16780). CB, Congo Basin; US, United States.

between these viruses and variola in the probe target region (Fig. 1).

Vaccinia and MPXV sequences are identical in this region (Fig. 1), and serially diluted purified vaccinia DNA established linearity of the E9L-NV AR assay from 2 ng to 20 fg (83% reaction efficiency) (Table 2). Probit regression analysis determined assay sensitivity using the same preparation of purified DNA in 24 replicate amplification reactions. Amplification was positive in all 24 replicate reactions containing 20, 10, and 5 fg of vaccinia input DNA. Only 22 of 24 replicates containing 2.5 fg were detected, while no reactions containing 1.25 fg vaccinia DNA were positive (data not shown). Therefore, 2.5 fg viral DNA (∼12.5 genomes) is the calculated detection limit for 95% confidence.

The E9L-NV AR assay is specific for six non-variola Eurasian orthopoxviruses, not cross-reacting with variola (48 strains) or North American orthopoxviruses (2 strains). Furthermore, E9L-NV AR assay did not cross-react with any DNA derived from rash illnesses potentially confused with orthopoxviral infection, such as herpesvirus and rickettsial infections, or with human cellular DNA (Table 2), even at high concentrations (2 ng). Overall, the E9L-NV AR assay can reproducibly detect as few as 12.5 genomes of purified vaccinia or MPXV DNA without giving false positive results.

3.2. Monkeypox-specific B6R assay

Although the E9L-NVAR assay reliably detects Eurasian orthopoxviruses, other than variola, it is unable to make a species-specific identification. Due to the low G + C content (∼30%) and 90% sequence similarity to other Eurasian orthopoxviruses, it is difficult to design a monkeypox-specific TaqMan assay. To improve the reliability of a MPXV-specific assay, we utilized the MGB-based real-time PCR technology. Linking a DNA double helix MGB protein to the probe permits use of shorter probe sequences, which can detect single nucleotide polymorphisms (SNPs) (Afonina et al., 2002a,b; Belousov et al., 2004) such as within the MPXV envelope protein gene (B6R) (Fig. 1). The probe 5′-MGB molecule stabilizes probe-template interaction (Afonina et al., 2002a,b) and enhances assay specificity and sensitivity. A coded test panel containing orthopoxviral and bacterial DNAs was assayed in triplicate using the iCycler platform (Bio-Rad, Hercules, CA) to monitor reproducibility and specificity of the B6R assay (Table 3). MPXV DNA was reproducibly detected in a linear fashion to ∼10 viral copies (2 fg). The B6R assay did not cross-react with any other orthopoxviral DNA (variola, cowpox, camelpox, and vaccinia) or with 15 bacterial species. Although certain Gram-positive bacterial DNAs were less efficiently extracted, all
Table 4

Monkeypox strain	DNA	Geographic area	10 ng
Ivory Coast V81-4-179	Crude	Côte d’Ivoire (West Africa)	16.43
MPXV-LIB-1970-184	Purified	Liberia (West Africa)	14.30
Umohé	Crude	The Netherlands (original origin unknown)	22.87
MPXV-NIG-1978	Crude	Nigeria (West Africa)	17.17
V70-266 Sierra Leone	Crude	Sierra Leone (West Africa)	15.10
MPXV-CAM-1990	Crude	Cameroon (Congo Basin)	20.23
MPXV-GAB-1988-001	Crude	Gabon (Congo Basin)	22.53
1200/S-li-BEC-1998	Crude	Zaire (Congo Basin)	13.90
MPXV-ZAI-1979-005	Crude	Zaire (Congo Basin)	15.00
MPXV-ZAI-1996-016	Crude	Zaire (Congo Basin)	13.97
V77-823	Crude	Zaire (Congo Basin)	14.20
V77-813	Crude	Zaire (Congo Basin)	14.57
V81-187	Crude	Zaire (Congo Basin)	14.33
V82-187	Crude	Zaire (Congo Basin)	14.00
V83-036	Crude	Zaire (Congo Basin)	14.03

Sensitivity to purified DNAb	2 ng	200 pg	20 pg	2 pg	200 fg	20 fg	2 fg
MPXV-ZAI-1996-016 (old)	16.43	20.37	24.23	28.97	34.07	38.63	ND
MPXV-ZAI-1996-016 (fresh)	16.96	20.74	24.76	27.50	31.14	33.85	38.21

b | Ability of the assay to detect multiple strains of monkeypox virus. Each sample was tested in triplicate; all three assays were positive and the average Ct value is shown.

Assay limit of detection for various quantities of purified monkeypox DNA. Each sample was tested in triplicate using either freshly diluted DNA (fresh) or diluted DNA that had undergone multiple freeze-thaw cycles (old). Where all three assays were positive, the average Ct value is shown. ND, not detected.

b | Ability of the assay to detect multiple strains of monkeypox virus. Each sample was tested in triplicate; all three assays were positive and the average Ct value is shown.

Assay limit of detection for various quantities of purified monkeypox DNA. Each sample was tested in triplicate using either freshly diluted DNA (fresh) or diluted DNA that had undergone multiple freeze-thaw cycles (old). Where all three assays were positive, the average Ct value is shown. ND, not detected.

b | Ability of the assay to detect multiple strains of monkeypox virus. Each sample was tested in triplicate; all three assays were positive and the average Ct value is shown.

Assay limit of detection for various quantities of purified monkeypox DNA. Each sample was tested in triplicate using either freshly diluted DNA (fresh) or diluted DNA that had undergone multiple freeze-thaw cycles (old). Where all three assays were positive, the average Ct value is shown. ND, not detected.

b | Ability of the assay to detect multiple strains of monkeypox virus. Each sample was tested in triplicate; all three assays were positive and the average Ct value is shown.

Assay limit of detection for various quantities of purified monkeypox DNA. Each sample was tested in triplicate using either freshly diluted DNA (fresh) or diluted DNA that had undergone multiple freeze-thaw cycles (old). Where all three assays were positive, the average Ct value is shown. ND, not detected.

b | Ability of the assay to detect multiple strains of monkeypox virus. Each sample was tested in triplicate; all three assays were positive and the average Ct value is shown.

Assay limit of detection for various quantities of purified monkeypox DNA. Each sample was tested in triplicate using either freshly diluted DNA (fresh) or diluted DNA that had undergone multiple freeze-thaw cycles (old). Where all three assays were positive, the average Ct value is shown. ND, not detected.

b | Ability of the assay to detect multiple strains of monkeypox virus. Each sample was tested in triplicate; all three assays were positive and the average Ct value is shown.

Assay limit of detection for various quantities of purified monkeypox DNA. Each sample was tested in triplicate using either freshly diluted DNA (fresh) or diluted DNA that had undergone multiple freeze-thaw cycles (old). Where all three assays were positive, the average Ct value is shown. ND, not detected.

b | Ability of the assay to detect multiple strains of monkeypox virus. Each sample was tested in triplicate; all three assays were positive and the average Ct value is shown.

Assay limit of detection for various quantities of purified monkeypox DNA. Each sample was tested in triplicate using either freshly diluted DNA (fresh) or diluted DNA that had undergone multiple freeze-thaw cycles (old). Where all three assays were positive, the average Ct value is shown. ND, not detected.
Table 5

Analysis of clinical samples

Case number	Sample type	Lab diagnosis	Tissue culture	Standard PCR	
		HA	HA RFLP	ATI ATI RFLP	
Monkeypox					
2003-038 (Patient 7*)	Slide of vesicle fluid	MPX + (1 day)	+	MPX +	MPX
	Skin biopsy	MPX + (6 days)	-	NA -	NA
	Swab of vesicle fluid	MPX + (2 days)	+	Not done	Not done
	Vesicle roof	MPX + (3 days)	+	MPX +	MPX
	Swab of vesicle fluid	MPX + (6 days)	+	-	+
		NA	NA	Not done	
2003-039 (Patient 4*)	Slide of vesicle fluid	MPX + (3 days)	+	Inconclusive	MPX
	Skin biopsy	MPX + (3 days)	+	Inconclusive	MPX
	Swab of vesicle fluid	MPX + (3 days)	+	Inconclusive	MPX
	Swab of vesicle fluid	MPX + (6 days)	+	-	+
		NA	NA	Not done	
2003-040 (Patient 8*)	Slide of vesicle skin	MPX + (6 days)	+	Inconclusive	MPX
	Skin biopsy	MPX + (6 days)	+	Inconclusive	MPX
	Swab of vesicle fluid	MPX + (6 days)	+	Inconclusive	MPX
	Swab of vesicle fluid	MPX + (6 days)	+	-	+
		NA	NA	Not done	
2003-045 (Patient 11*)	Swab of vesicle skin	MPX + (2 days)	+	Inconclusive	MPX
2003-073 (Patient 6*)	Skin biopsy	MPX + (1 day)	+	MPX +	MPX
Varicella zoster virus	Vesicle skin	Negative	- (7 days)	-	NA
2003-072	Vesicle skin	Negative	- (7 days)	-	NA

Results from tissue culture, standard PCR, and real-time PCR assays are shown for each sample. MPX, monkeypox; OPX, orthopox; NA, not applicable; ND, not detected.

* Each sample was tested in triplicate and the average Ct for each positive sample is shown. Negative samples were not detected (ND).

Results from tissue culture, standard PCR, and real-time PCR assays are shown for each sample. MPX, monkeypox; OPX, orthopox; NA, not applicable; ND, not detected.

4. Summary

Two rapid real-time PCR assays for the detection of orthopoxvirus and MPXV DNA have been developed. The E9L-NVAR and B6R assays target orthopoxvirus DNA polymerase and extracellular enveloped protein genes, respectively. These assays are highly sensitive (2 fg or ~10 viral genomes) and specific. The E9L-NVAR assay detects 13 Eurasian orthopoxviruses but not variola or North American orthopoxviruses, and the B6R assay detects MPXV isolates but no other orthopoxviruses. Neither assay gave false positives with other rash illness-causing viruses or bacteria. The E9L-NVAR assay, initially developed upon the ABI7700, has provided similar results with other real-time PCR platforms such as the Lightcycler (Roche) and iCycler (data not shown). Similarly, the B6R assay, validated on the iCycler, is compatible with the ABI7700 real-time PCR technology.
Acknowledgments

The authors thank A. Michael Frace (CDC Biotechnol-
ogy Core Facilities Branch) and Hermann Meyer (Institute of
Microbiology of the Bundeswehr) for the B6R assay de-
digned to detect Congo Basin MPXV; West African/US MPXV has one SNP within
the B6R probe (Fig. 1). The lack of complete homology to the
US monkeypox isolates did not adversely affect the detection of
MPXV DNA within human samples (Table 5), confirming
the B6R assay diagnostic utility for both known MPXV
clades (Likos et al., 2005). Furthermore, monkeypox spread
outside of Africa suggests these diagnostic assays may be rel-
evant worldwide for identification of smallpox-like orthopox

diseases.

References

Alfonso IA, Reed MW, Lusby E, Shishkina IG, Belousov YS.
Minor groove binder-conjugated DNA probes for quantitative
DNA detection by hybridization-triggered fluorescence. Biotechniques
2002a;32:940–9.

Alfonso IA, Sanders S, Wolburger DK, Belousov YS. Accurate SNP
typing by real-time PCR: a comparison of minor groove binder-
conjugated DNA probes. Pharma Genomics 2002b:48–54.

Belousov YS, Welch RA, Sanders S, Walburger DK, Belousov YS.
Minor groove binder-conjugated DNA probes. Protein Gennomics 2002b:48–54.

Belousov YS, Welch RA, Sanders S, Walburger DK, Belousov YS.
Minor groove binder-conjugated DNA probes. Prog Nucleic Acid Res Mol Biol
2004;77:103–83.

Belousov YS, Welch RA, Sanders S, Walburger DK, Belousov YS.
Minor groove binder-conjugated DNA probes. Prog Nucleic Acid Res Mol Biol
2004;77:103–83.

Belousov YS, Welch RA, Sanders S, Walburger DK, Belousov YS.
Minor groove binder-conjugated DNA probes. Prog Nucleic Acid Res Mol Biol
2004;77:103–83.

Belousov YS, Welch RA, Sanders S, Walburger DK, Belousov YS.
Minor groove binder-conjugated DNA probes. Prog Nucleic Acid Res Mol Biol
2004;77:103–83.

Belousov YS, Welch RA, Sanders S, Walburger DK, Belousov YS.
Minor groove binder-conjugated DNA probes. Prog Nucleic Acid Res Mol Biol
2004;77:103–83.

Belousov YS, Welch RA, Sanders S, Walburger DK, Belousov YS.
Minor groove binder-conjugated DNA probes. Prog Nucleic Acid Res Mol Biol
2004;77:103–83.

Belousov YS, Welch RA, Sanders S, Walburger DK, Belousov YS.
Minor groove binder-conjugated DNA probes. Prog Nucleic Acid Res Mol Biol
2004;77:103–83.
Regnery DC. The epidemic potential of Brazilian myxoma virus (Lausanne strain) for three species of North American cottontails. Am J Epidemiol 1971;94:514–9.

Ropp SL, Jin Q, Knight JC, Massung RF, Esposito JJ. PCR strategy for identification and differentiation of small pox and other orthopoxviruses. J Clin Microbiol 1995;33:2069–76.

Sarmiento M, Haffey M, Spear PG. Membrane proteins specified by herpes simplex viruses. III. Role of glycoprotein VP7(B2) in virion infectivity. J Virol 1979;29:1149–58.

Seki M, Oie M, Ichihashi Y, Shida H. Hemadsorption and fusion inhibition activities of hemagglutinin analyzed by vaccinia virus mutants. Virology 1990;175:372–84.