Glucocerebrosidase mutations and Parkinson disease

Sophia R. L. Vieira1 · Anthony H. V. Schapira1

Received: 27 May 2022 / Accepted: 7 July 2022 / Published online: 6 August 2022 © The Author(s) 2022

Abstract
The discovery of glucocerebrosidase (GBA1) mutations as the greatest numerical genetic risk factor for the development of Parkinson disease (PD) resulted in a paradigm shift within the research landscape. Efforts to elucidate the mechanisms behind GBA1-associated PD have highlighted shared pathways in idiopathic PD including the loss and gain-of-function hypotheses, endoplasmic reticulum stress, lipid metabolism, neuroinflammation, mitochondrial dysfunction and altered autophagy–lysosomal pathway responsible for degradation of aggregated and misfolded a-synuclein. GBA1-associated PD exhibits subtle differences in phenotype and disease progression compared to idiopathic counterparts notably an earlier age of onset, faster motor decline and greater frequency of non-motor symptoms (which also constitute a significant aspect of the prodromal phase of the disease). GBA1-targeted therapies have been developed and are being investigated in clinical trials. The most notable are Ambroxol, a small molecule chaperone, and Venglustat, a blood–brain-barrier-penetrant substrate reduction therapy agent. It is imperative that further studies clarify the aetiology of GBA1-associated PD, enabling the development of a greater abundance of targeted therapies in this new era of precision medicine.

Keywords GBA1 · Parkinson disease · Neurodegeneration · Genetics · Gaucher disease · Ambroxol

Introduction
Biallelic (homozygous or compound heterozygous) mutations in the GBA1 gene, encoding the lysosomal enzyme glucocerebrosidase (GCase; EC 3.2.1.45), are pathognomonic for the commonest lysosomal storage disorder (LSD) Gaucher disease (GD) (Grabowski 2008). Heterozygous GBA1 variants account for the most significant genetic risk factor for Parkinson disease (PD), the second most common neurodegenerative disease following Alzheimer’s disease with a reported prevalence rate of 315 per 100,000 persons worldwide (Sidransky et al. 2009; Pringsheim et al. 2014). Approximately, 5–30% of PD patients carry GBA1 mutations; variations in the prevalence rate of GBA1 mutations can be attributed to the population studied and extent of exome sequencing (Sidransky et al. 2009; Duran et al. 2013; Schapira 2015; Cilia et al. 2016, Senkevich and Gan-Or 2020). Clinically, GBA1-associated PD (GBA1-PD) mirrors idiopathic PD (iPD), albeit significant differences include an earlier age of disease onset, greater frequency of non-motor symptoms (NMSs) and cognitive impairment (Petrucci et al. 2020; Avenali et al. 2021). GBA1 mutation-positive individuals exhibit an increased risk of developing Dementia with Lewy Bodies (DLB; odds ratio, OR ~ 8), notably higher than that for PD (OR 3.5–6) (Neumann et al. 2009; Sidransky et al. 2009; McKeith et al. 2017). In this review, we provide an update on the association between GBA1 mutations and PD and how future neuroprotective therapies may target the GBA1 pathway.

GBA1 mutations and Gaucher disease
Biallelic GBA1 mutations cause GD, the commonest LSD, characterised by GCase deficiency. The enzyme GCase is involved in glycosphingolipid and ganglioside metabolism, cleaving glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph) into ceramide and glucose, and sphingosine and glucose, respectively (Brady et al. 1965). Reduced GCase activity leads to GlcCer and GlcSph accumulation in the Gaucher cells (lysosomes of macrophages) within the liver, bone marrow and spleen (Rosenbloom and Weinreb...
GD is particularly prevalent in the Ashkenazi Jewish (AJ) population (118 per 100,000) compared to non-AJ populations (1–2 per 100,000) (Mistry et al. 2011). GD presents with variable symptomatology; the highly heterogeneous disease can be stratified into three types according to severity and neurological involvement. Type I (non-neuronopathic) GD accounts for 95% of cases with a spectrum of clinical presentations from subclinical patients to hallmark symptoms of hepatosplenomegaly, pancytopenia and osteoporosis (Grabowski et al. 2015). Neuronopathic GD is categorised into patient subgroups demonstrating rapid (type 2 GD) and slower (type 3 GD) neurological deterioration (Mistry et al. 2015). Neurological involvement can include myoclonic or generalised seizures and eye movement abnormalities (saccades and supranuclear ophthalmoplegia) (Mistry et al. 2015).

Different GBA1 mutations are more represented in specific phenotypes of GD. The ‘mild’ GD type 1 is found with the N370S GBA1 mutation and a proportion of homozygous N370S GBA1 mutation-positive patients remain asymptomatic (Hruska et al. 2008). The L444P GBA1 mutation has been reported in patients exhibiting severe neurological symptoms, accounting for over 40% of mutations in neuronopathic forms of GD (Koprivica et al. 2000; Stone et al. 2000). Such ‘mild’ and ‘severe’ GBA1 mutations are associated with an in vitro residual GCase enzymatic activity of 32–38% and 13–24%, respectively (Alfonso et al. 2004; Sidransky and Lopez 2012; Malini et al. 2014). Others have failed to replicate such findings, instead reporting an overlap in the range of GCase enzymatic activity for severe and mild GBA1 mutations (Sidransky 2004). Analyses of Gcase activity within the lysosome only may offer more accurate and consistent readings. The wide spectrum of clinical manifestations of GD hinders a clear-cut classification of GD in practice, particularly for neuronopathic forms of GD (Goker-Alpan et al. 2003). Mounting evidence supports the notion that GD is likely to be a spectrum disorder instead (Beavan et al. 2015). Current treatments for GD aim to enhance GCase activity via enzyme replacement therapy (ERT) and substrate reduction therapy (SRT). Newer techniques, such as, chaperone molecules are under current investigation (Parenti 2009). Administered intravenously, ERT supplies recombinant GCase enzymes, modified to facilitate efficient uptake via macrophages. ERT is a treatment option in type 1 GD, but since ERT cannot penetrate the blood–brain barrier (BBB), its potential use in ameliorating neurological involvement in GD is limited (Valayannopoulos 2013; Jung et al. 2016). A more upstream therapy, SRT, utilises GlcCer synthase inhibitors to reduce GlcCer accumulation (Lukina et al. 2019).

The GBA1 gene localises to chromosome 1q21, comprising 7 kb with 11 exons and 10 introns. A highly homologous pseudogene, GBA1P (with 96% exonic sequence homology), is located 12 kb downstream, enabling recombination events between GBA1P and GBA1 which generate multiple complex alleles (Hruska et al. 2008). Over 300 GBA1 mutations have been reported; more than 100 GBA1 variants, not termed mutations as they are not pathogenic for GD, are associated with PD (Guo et al. 2015; Fan et al. 2016; O’Regan et al. 2017). 90% of GBA1 mutations in AJ patients are N370S (or N409S according to the latest nomenclature), L444P (L483P), IVS2 + 1G > A or 84insG (Gomez et al. 2017). Interestingly, GBA1 mutations exhibit ethnic heterogeneity (Zhang et al. 2018a). N370S and L444P GBA1 mutations are frequently detected in AJ GD patients and non-AJ Caucasians, respectively (Grabowski and Horowitz 1997; Hruska et al. 2008). Asian ethnic groups frequently harbour L444P and F252I GBA1 mutations in neuronopathic GD subtypes, with N370S rarely found (Hruska et al. 2008; Riboldi and Di Fonzo 2019). Over the last two decades, an association between GD and PD has been noticed, initially through case reports of parkinsonian symptoms among GD patients (Tayebi et al. 2003; Aharon-Peretz et al. 2004; Beavan et al. 2015) and confirmed by a large multicentre study (Sidransky et al. 2009).

The mature GCase protein is a 497-amino-acid protein assembled on endoplasmic reticulum (ER) and trafficked to the lysosome by binding to the LIMP2 receptor where it is activated by its cofactor, Saposin C (Grabowski et al. 1990). Three structural domains of GCase have been identified using X-crystallography: domain I contains an antiparallel beta-sheet and structural loop (residues 1–27 and 383–414); domain II made up of eight beta-sheets, resembling an immunoglobulin fold (residues 30–75 and 431–497) and domain III harbours the active site within a (β/α)₈ triosephosphate isomerase (TIM) barrel (residues 76–381 and 416–430) (Kacher et al. 2008).

**GBA1 mutations and Parkinson disease**

PD is a common neurodegenerative disorder characterised by a progressive loss of dopaminergic neurones in the substantia nigra pars compacta (SNpc) and intracytoplasmic inclusions predominantly composed of aggregated α-synuclein (Lewy bodies) (Pellicano et al. 2007). PD is clinically defined by the presence of the cardinal motor symptoms of rigidity, bradykinesia and tremor (Postuma et al. 2015). NMSs, such as neuropsychiatric symptoms, autonomic dysfunction, hyposmia, rapid eye movement sleep disorder (RBD) and cognitive impairment, are a prominent feature of PD but remain largely resistant to dopaminergic therapy given the involvement of other neurotransmitters (Schapira et al. 2017). Recent studies have highlighted a prodromal phase, characterised by NMSs and mild motor signs, which may precede clinical diagnosis of PD by up to 20 years (Gustafsson et al. 2015; Schrag et al. 2015; Fereshtehnejad et al. 2013).
2019). Accurate identification of the prodromal phase will be critical for the efficacy of potential neuroprotective therapies given that 50–70% of SNpc dopaminergic neurones have already undergone degeneration prior to the onset of motor symptoms (Dauer and Przedborski 2003; Ross et al. 2004).

The association between GBA1 mutations and PD was first observed in clinic over 20 years ago following reports of parkinsonian features in GD patients and GBA1 mutation carriers (Neudorfer et al. 1996; Machaczka et al. 1999). Tayebi et al. (2003) revealed the presence of non-neuronal pathic N370S GBA1 mutations in GD patients with Parkinsonism. Autopsy studies of GD brains added further support to the GD–PD association through findings of a significant loss of substantia nigra dopaminergic neurones alongside extensive cytotoxic Lewy body aggregation (Tayebi et al. 2003; Wong et al. 2004). Confirmation of this genetic link was later provided by a large multicentre study of 5691 PD patients and 4898 controls, with an OR of 5.43 for GBA1 (Sidransky et al. 2009). Subsequent genetic analyses replicated such results, demonstrating that GBA1 mutations represent the greatest numerical genetic risk factor for PD (Chen et al. 2014; Nalls et al. 2014; Robak et al. 2017). Both homozygous and heterozygous GBA1 mutations have similar ORs for PD (Alcalay et al. 2014). Penetrance of GBA1 mutations is variable and age dependent; a cumulative risk of developing PD of 5% and 10–30% is observed by 60 and 80 years of age, respectively, in heterozygous mutation carriers (Neudorfer et al. 1996; Machaczka et al. 1999). Interestingly, non-pathogenic GBA1 variants may indeed affect motor symptomatology, with polymorphisms also associated with a greater risk of motor deterioration (Winder-Rhodes et al. 2013; Jesus et al. 2016). Motor complications, wearing off, delayed on and dyskinesias, are more prevalent in GBA1-PD, especially in those harbouring severe mutations, and occur earlier than in GBA1 mutation-negative PD patients (Jesus et al. 2016; Zhang et al. 2018b).

NMSs form a significant aspect of the GBA1-PD disease course. PD patients with GBA1 mutations exhibit a three-fold increased risk of cognitive decline, affecting working memory, executive and visuospatial functions (Alcalay et al. 2012; Zokaei et al. 2014; Mata et al. 2016; Leocadi et al. 2022). The degree of cognitive impairment is correlated with the severity of GBA1 mutations (Petrucci et al. 2020; Szwedo et al. 2022). Deficient clearance mechanisms of α-synuclein in GBA1 mutants leading to accelerated α-synuclein pathology in cortical areas is thought to underlie the increased rates of cognitive impairment and ultimately, dementia in GBA1-PD patients (Jesus et al. 2016). Partial support exists for a subtle alteration in cognitive functioning in GBA1 mutation-positive individuals without PD (Avenali et al. 2019; Moran et al. 2021). Ongoing longitudinal studies aim to identify cognitive decline, other NMS and motor abnormalities in individuals harbouring GBA1 mutations prior to the onset of PD symptoms (Higgins et al. 2021). Data suggest that GBA1-PD has a stronger association with depression than iPD (Brockmann et al. 2011; Swan et al. 2016), albeit conflicting findings have been obtained (Zhang et al. 2015). Anxiety risk has been less extensively investigated in GBA1-PD, with only partial evidence supporting an increased risk in this patient cohort (Wang et al. 2014). Further, autonomic symptoms have been frequently reported in GBA1-PD patients including hyposmia, constipation, orthostatic hypotension and urogenital dysfunction (Brockmann et al. 2011).

Features of GBA1-associated Parkinson disease

Clinical features

Initial studies reported no significant differences in clinical trajectories between iPD and GBA1-PD (Aharon-Peretz et al. 2005). Key subtle traits of GBA1-PD have since emerged notably, an earlier age of onset by ~1.7–6.0 years, higher Unified Parkinson’s Disease Rating Scale Part III (UPDRS-III) scores, greater frequency of dementia, visual hallucinations and severity of NMSs, particularly depression (Neumann et al. 2009; Hu et al. 2010; Winder-Rhodes et al. 2013; Asselta et al. 2014; Zhang et al. 2018b). Notably, there is no apparent correlation between PD clinical phenotype or severity and GCase activity (Alcalay et al. 2020; Omer et al. 2022), although cognitive dysfunction may be an exception to this (see below).

Clinically, GBA1-PD patients exhibit motor symptoms of tremor, rigidity, and bradykinesia, with the latter more commonly observed in the earliest phases of disease in this cohort (Ziegler et al. 2007; Lesage et al. 2011). A faster progression and deterioration in disease course in GBA1-PD patients has been reported extensively in literature, concomitant with a reduced survival rate, compared to iPD (Winder-Rhodes et al. 2013; Brockmann et al. 2015). Thicker cerebral cortex, orthostatic hypotension, and urogenital dysfunction (Tayebi et al. 2003) revealed the presence of non-neuronal pathic N370S GBA1 mutations in GD patients with Parkinsonism. Autopsy studies of GD brains added further support to the GD–PD association through findings of a significant loss of substantia nigra dopaminergic neurones alongside extensive cytotoxic Lewy body aggregation (Tayebi et al. 2003; Wong et al. 2004). Confirmation of this genetic link was later provided by a large multicentre study of 5691 PD patients and 4898 controls, with an OR of 5.43 for GBA1 (Sidransky et al. 2009). Subsequent genetic analyses replicated such results, demonstrating that GBA1 mutations represent the greatest numerical genetic risk factor for PD (Chen et al. 2014; Nalls et al. 2014; Robak et al. 2017). Both homozygous and heterozygous GBA1 mutations have similar ORs for PD (Alcalay et al. 2014). Penetrance of GBA1 mutations is variable and age dependent; a cumulative risk of developing PD of 5% and 10–30% is observed by 60 and 80 years of age, respectively, in heterozygous mutation carriers when compared to controls (Anheim et al. 2012; Rana et al. 2013; Balestrino et al. 2020). Causes underlying the relatively low rate of PD phenoconversion in individuals with biallelic or heterozygous GBA1 mutations remain elusive (Anheim et al. 2012). Ethnicity also influences the extent by which GBA1 mutations result in an increased PD risk (Zhang et al. 2018a). PD risk is associated with the following GBA1 mutations: R496H and 84insGG in AJ populations; L444P, R120W, IVS2 + 1G > A, H255Q, D409H, RecNcil, E326K, T369M in non-AJ populations; N370S, H255Q, D409H, E326K in European/West Asians; R120W in East Asians, while N370S conveys a pan-ethnic PD risk (Zhang et al. 2018a).
Imaging

It is not currently possible to differentiate GBA1-PD from iPD based on neuroimaging alone (Barrett et al. 2013). Non-manifesting GBA1 mutation carrier status is not associated with reduced striatal dopaminergic tone (Goker-Alpan et al. 2012; Lopez et al. 2020; Simuni et al. 2020; Mullin et al. 2021). Utilising fluorodopa PET and transcranial sonography, no significant difference in nigrostriatal imaging has been reported between iPD and GBA1-PD patients (Kono et al. 2007; Kraoua et al. 2009; Goker-Alpan et al. 2012; Barrett et al. 2013; Lopez et al. 2020). Longitudinal investigations using single-photon emission computerised tomography (SPECT) and structural MRI have revealed a more accelerated disease course in GBA1-PD compared to iPD (Caminiti et al. 2022; Leocadi et al. 2022). Of note, iPD patients demonstrated similar patterns of cortical thinning to GBA1-PD 5 years post baseline MRI scans (Leocadi et al. 2022). The finding of a more aggressive progression in GBA1-PD cases has also been supported by cerebral blood flow (Goker-Alpan et al. 2012; Cilia et al. 2016) and FDG-PET studies (Greuel et al. 2020; Schindlbeck et al. 2020). Imaging in GBA1-PD has recently been reviewed (Filippi et al. 2022).

Neuropathology

Neuropathology studies of GBA1-PD brains have reported Lewy body aggregates in cortical regions, notably including the hippocampal regions CA2–4, in addition to the substantia nigra which is classically affected in iPD (Wong et al. 2004; Clark et al. 2009). Of note, others have not replicated such results (Parkkinnen et al. 2011). Further reports indicate an increased rate of co-aggregation of GCase and a-synuclein in Lewy bodies in GBA1-PD brains (Goker-Alpan et al. 2010). Enhanced microglial activation in GBA1 mutation carriers without PD or dopaminergic loss has recently been reported (Mullin et al. 2021).

Mechanisms of GBA1-associated Parkinson disease

GCase activity is reduced to 58%, 67% and <15% of normal function in GBA1-PD, iPD and GD patients, respectively (Gegg et al. 2012, Sidransky 2012). A minority of GD patients develop PD, indicating that PD risk is not proportional to GCase activity (Sidransky 2012). Numerous research efforts are underway to elicit pathways which may interact with GCase to increase PD risk in GBA1 mutation carriers, and whether such pathways are relevant to iPD patients. Proposed mechanisms include ER stress, autophagic lysosomal dysfunction, abnormal lipid homeostasis, mitochondrial dysfunction and neuroinflammation (Smith and Schapira 2022).

GBA1 gain-of-function mutations may lead to misfolded GCase being sequestered in the ER, impairing ER-associated degradation (ERAD) and triggering ER stress (Fernandes et al. 2016)). A-synuclein accumulation in the ER further impedes ER–Golgi transport (Cooper et al. 2006), upregulating the unfolded protein response (UPR) (Maor et al. 2013; Sanchez-Martinez et al. 2016). Induced pluripotent stem cell (iPSC)-derived neurones harbouring GBA1 mutations showed an increase in a-synuclein release following the activation of ER stress (Schondorf et al. 2014). Interestingly, GCase inhibitor, conduritol B epoxide (CBE), also produced cellular changes indicative of ER stress, providing support for both the loss and gain-of-function hypotheses in GBA1-PD pathogenesis (Kurzawa-Akanbi et al. 2012). Further, evaluations of GBA1-PD post-mortem brains have revealed altered levels of UPR-associated proteins, BiP, CHOP and HERP (Gegg et al. 2012; Kurzawa-Akanbi et al. 2012). GCase chaperone, Ambroxol, reversed the activation of UPR and was subsequently investigated as a disease-modifying therapy for PD in clinical trials (Suzuki et al. 2015b; Maor et al. 2016; Sanchez-Martinez et al. 2016). Moreover, it is noteworthy that ER stress may be an important therapeutic target in several neurodegenerative diseases (Kanekura et al. 2006; Yang et al. 2010; Liu et al. 2013).

GCase is involved in lysosomal clearance of a-synuclein (Mazzulli et al. 2011). GCase knockdown compromised lysosomal degradation of proteins, resulting in a 40% reduced rate of proteolysis (Mazzulli et al. 2011). Lysosomal/autophagic dysfunction contributes to the development of PD in GBA1 mutation carriers (Mazzulli et al. 2011; Magalhaes et al. 2016). Accumulation of a-synuclein and alterations in autophagy–lysosomal pathways occur concurrently in GCase deficient models (Cullen et al. 2011; Chiasserini et al. 2015; Rocha et al. 2015b). Autophagic impairment has also been noted in iPD brains (Alvarez-Erviti et al. 2010). A recent study reported that 50% of GCase in GBA-PD brain was present on the lysosomal surface and impaired chaperone-mediated autophagy, thereby increasing a-synuclein levels (Kuo et al. 2022).

GlcCer and GlcSph accumulation has been found in various GCase deficient models (Sardi et al. 2011; Xu et al. 2011; Farfel-Becker et al. 2014; Srikanth et al. 2021; Galvagnion et al. 2022). Serum ceramide, monohexosylceramide and sphingomyelin levels were raised in GBA1-PD patients compared to iPD (Guedes et al. 2017). GlcCer promotes the formation of proteinase K-resistant a-synuclein, suggesting it is involved in aggregating misfolded a-synuclein (Suzuki et al. 2015a). Lipids from GBA1-L444P fibroblasts accelerated a-synuclein aggregation compared to controls, with a-synuclein–lipid co-assembly indicating an active role for lipids in a-synuclein pathology (Galvagnion et al. 2022). Indeed, increased GlcSph
levels are associated with increased substantia nigra p129/total α-synuclein ratios (Gundner et al. 2019). Ser129 phosphorylation of α-synuclein is present in >90% of Lewy bodies, correlating with the progression of PD pathology (Fujiiwa et al. 2002; Lue et al. 2012). Further, a link between lipid accumulation and worsening cognition in iPD patients has been suggested (Mielke et al. 2013). Normalising lipid levels in a GBA1-PD mouse model improved cognitive deficits (Sardi et al. 2017). However, whilst GlcCer and GlcSph accumulation has been observed in iPD and GD brains (Orvisky et al. 2012; Huebecker et al. 2020), it remains absent from the putamen and cerebellum of GBA1-PD patients (Gegg et al. 2012).

Mitochondrial dysfunction and oxidative stress play a key role in PD (Schapira et al. 1989). Reports of impaired mitochondrial function and morphology have emerged in numerous GCase deficient animal and cell models (Osellame et al. 2013; Garcia-Sanz et al. 2017; Li et al. 2019). Post CBE exposure, SHSY-5Y cells showed a progressive decline in mitochondrial membrane potential, increased free radical generation and α-synuclein levels (Cleeter et al. 2013). Similar findings were observed in iPSC-derived neurones from GBA1-PD patients, albeit no gene dosage effect on mitochondrial function was apparent in iPSC-derived neurones from GBA1-PD patients, and α-synuclein levels (Cleeter et al. 2013). Similar findings have been observed in iPD and GD brains (Orvisky et al. 2012; Huebecker et al. 2020), but a phase 1 clinical trial showed no clinical benefit, with poorer performance in motor function observed following administration in a GBA1-PD cohort (Peterschmitt et al. 2021). However, it is known that specific GBA1 mutations affect the GCase protein differently, perhaps some therapies may be more beneficial when stratifying mutation carriers (Gan-Or et al. 2018).

**Potential GBA1-targeting therapies for PD**

**Enzyme replacement therapy and substrate reduction therapy**

ERT and SRT has FDA approval for the treatment of GD. Preclinical work reported diminished α-synuclein pathology in human midbrain dopamine neurons post SRT administration (Zunke et al. 2018). However, the inability of such therapies to cross the BBB has limited its potential use. Alternative delivery methods to enhance neural GCase are under investigation (Poewe et al. 2017). Methods including BBB-penetrating peptides, exosome-mediated delivery and transport vehicle modified recombinant GCase may improve delivery of ERT (Gramalich et al. 2016; Hall et al. 2016; Ysselstein et al. 2021). Experimental BBB-penetrating SRT Venglustat was safe, well tolerated and demonstrated sufficient target engagement with a reduction in α-synuclein levels reported in the Phase I MOVES-PD clinical trial (Peterschmitt et al. 2022). A recent Phase II study of Venglustat revealed no such clinical benefit, with poorer performance in motor function observed following administration in a GBA1-PD cohort (Peterschmitt et al. 2021). However, it is known that specific GBA1 mutations affect the GCase protein differently, perhaps some therapies may be more beneficial when stratifying mutation carriers (Gan-Or et al. 2018).

**Gene therapy**

Replacement of mutant GBA1 gene via the adeno-associated virus (AAV) may be a therapeutic option in GBA1-PD (Hudry and Vandenberghe 2019). AAVs do not integrate into host genomes and possess a strong safety profile (Hudry and Vandenberghe 2019). AAV-GBA1 delivery in animal models has been reported to enhance GCase levels, reduce neuroinflammation and the accumulation of GlcSph, a-synuclein, ubiquitin and tau (Sardi et al. 2013; Rocha et al. 2015a; Massaro et al. 2018; Sucunza et al. 2021). Improved motor and memory function were also observed in mice and macaques following AAV-GBA1 administration (Sardi et al. 2013; Massaro et al. 2018). A Phase I/IIa clinical trial is currently underway to ascertain the safety, tolerability and clinical efficacy of AAV-GBA1 vector PR001 (LY3884961) in GBA1-PD patients and children with type 2 GD (ClinicalTrials.gov Identifier: NCT04127578 and NCT04411654, respectively).

**Molecular chaperones**

Chaperone therapy to disentangle misfolded GCase in ER and stabilise for transport to the lysosome is a promising
therapeutic avenue in GBA1-PD (Fig. 1) (Ambrosi et al. 2015). The mucolytic ambroxol is a small molecule inhibitory chaperone capable of increasing GCase activity in mice, non-human primates and GBA1-PD patient cells (McNeill et al. 2014; Migdalska-Richards et al. 2016, 2017). Clinical trials are currently evaluating the efficacy of oral ambroxol in type 1 GD, PD dementia and GBA1-PD (ClinicalTrials.gov Identifier: NCT03950050, NCT02914366 and NCT02941822, respectively). Interestingly, ambroxol therapy achieved sufficient CSF penetration and target engagement, augmenting GCase protein levels (Mullin et al. 2020).

Non-inhibitory chaperones, such as LTI-291, do not interact with an enzyme’s active site, and have been found to increase GCase activity and half-life in a phase I clinical trial (Trialregister.nl ID: NTR7299) (den Heijer et al. 2021).

Conclusion

Significant insights into the pathogenesis of PD have been obtained following the finding of GBA1 mutations as the greatest numerical risk factor for PD. This link highlighted ER stress, lipid metabolism and autophagy–lysosomal pathways as key disease-causing mechanisms. GBA1-targeted therapies have been developed, with their clinical efficacy being evaluated in trials. It remains imperative to understand why only a minority of GBA1 mutation carriers progress to PD phenoconversion. Understanding more about the GBA1-PD link may help elucidate better treatments and methods of predicting who will develop the disease prior to symptom onset.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aharon-Peretz J, Rosenbaum H, Gershoni-Baruch R (2004) Mutations in the glucocerebrosidase gene and Parkinson’s disease in Ashkenazi Jews. N Engl J Med 351:1972–1977. https://doi.org/10.1056/NEJMoa033277

Aharon-Peretz J, Badarny S, Rosenbaum H, Gershoni-Baruch R (2005) Mutations in the glucocerebrosidase gene and Parkinson disease: phenotype-genotype correlation. Neurology 65:1460–1461. https://doi.org/10.1212/01.wnl.0000176987.47875.28
Glucocerebrosidase mutations and Parkinson disease

Alcalay RN, Dinur T, Quinn T, Sakanaka K, Levy O, Waters C, Fahn S, Dorovski T, Chung WK, Paucuito M, Nichols W, Rana HQ, Baltwani M, Bier L, Elstein D, Zimran A (2014) Comparison of Parkinson risk in Ashkenazi Jewish patients with Gaucher disease and GBA heterozygotes. Jama Neurol 71:752–757. https://doi.org/10.1001/jamaneurol.2014.313

Alcalay RN, Wolf P, Chiang MSR, Hellescoiva K, Zhang XK, Merchant K, Hutten SJ, Scherzer C, Cappell-Garcia C, Bлавоведраа K, Foroud T, Nudelman K, Fan Or Z, Simuni T, Chahine LM, Levy O, Zheng D, Li G, Sardi SP, Parkinson’s Progression Markers, I (2020) Longitudinal measurements of glucocerebrosidase activity in Parkinson’s patients. Ann Clin Transl Neurol 7:1816–1830. https://doi.org/10.1002/acn3.51164

Alcalay RN, Caccappolo, E., Mejia-Santana, H., Tang, M., Rosado, L., Orbe Reilly, M., Ruiz, D., Ross, B., Verbitsky, M., Kisselev, S., Louis, E., Comella, C., Colcher, A., Jennings, D., Nance, M., Bressman, S., Scott, W. K., Tanner, C., Mickel, S., Andrews, H., Waters, C., Fahn, S., Cote, L., Frucht, S., Ford, B., Rezak, M., Novak, K., Friedman, J. H., Pfeiffer, R., Marsh, L., Hiner, B., Siderowf, A., Payami, H., Molho, E., Factor, S., Ottman, R., Clark, L. N. & Marder, K. (2012) Cognitive performance of GBA mutation carriers with early-onset PD: the CORE-PD study. Neurology 78:1434–40. https://doi.org/10.1212/WNL.0b013e318253d54b

Alfonso P, Rodriguez-Rey JC, Ganan A, Perez-Calvo JJ, Giralt M, Giraldo P, Pascovi M (2004) Expression and functional characterization of mutated glucocerebrosidase alleles causing Gaucher disease in Spanish patients. Blood Cells Mol Dis 32:218–225. https://doi.org/10.1002/bcmd.2003.10.010

Alvarez-Erviti L, Rodriguez-Oroz MC, Cooper JM, Caballero C, Ferrer I, Obeso JA, Schapira AHV (2010) Chaperone-mediated autophagy markers in Parkinson disease brains. Arch Neurol 67:1446–1472. https://doi.org/10.1001/archneur.2010.198

Ambrosi G, Ghezzi C, Zangaglia R, Levandis G, Pacchetti C, Blandini F (2015) Ambroxol-induced rescue of defective glucocerebrosidase is associated with increased LIMP-2 and saposin C levels in GBA1 mutant Parkinson’s disease cells. Neurobiol Dis 82:235–242. https://doi.org/10.1016/j.nbd.2015.06.008

Anheim M, Elbaz A, Lesage S, Durr A, Condroyer C, Vialet F, Pollak P, Bonaiti B, Bonaiti-Pellie C, Brice A, French Parkinson disease Genetic, G (2012) Penetration of Parkinson disease in glucocerebrosidase gene mutation carriers. Neurology 78:417–420. https://doi.org/10.1212/WNL.0b013e318254f476

Asselta R, Rimoldi V, Siri C, Cilia R, Guella I, Tesei S, Solda G, Pezzoli G, Duga S, Goldwurm S (2014) Glucocerebrosidase mutations in primary Parkinsonism. Parkinsonism Relat Disord 20:1215–1220. https://doi.org/10.1016/j.parkreldis.2012.09.007

Beavan M, McNeill A, Proukakis C, Hughes DA, Mehta A, Schapira AH (2015) Evolution of prodromal clinical markers of Parkinson disease in a GBA mutation-positive cohort. JAMA Neurol 72:201–208. https://doi.org/10.1001/jamaneurol.2014.2950

Brady RO, Kanfer J, Shapiro D (1965) The metabolism of glucocerebrosides. I. Purification and properties of a glucocerebrosidase-cleaving enzyme from spleen tissue. J Biol Chem 240:39–43

Brockmann K, Sruilijes K, Hauser AK, Chulte C, Czoti I, Gasser T, Berg D (2011) GBA-associated PD presents with nonmotor characteristics. Neurology 77:276–280. https://doi.org/10.1212/WNL.0b013e318225ab77

Brockmann K, Sruilijes K, Pflederer S, Hauser AK, Chulte C, Maetzler W, Gasser T, Berg D (2015) GBA-associated Parkinson’s disease: reduced survival and more rapid progression in a prospective longitudinal study. Mov Disord 30:407–411. https://doi.org/10.1002/mds.26071

Bruniata L, Villa A, Mekhaiel M, Mornata F, Vegeto E, Maggi A, di Monte DA, Ciana P (2021) Inhibition of microglial beta-glucocerebrosidase hampers the microglia-mediated antioxidative and protective response in neurons. J Neuroinflammation 18:220. https://doi.org/10.1186/s12974-021-02272-2

Caminiti SP, Carli G, Avenali M, Blandini F, Perani D (2020) Clinical and dopaminergic transporter imaging trajectories in a cohort of Parkinson’s disease patients with GBA mutations. Mov Disord 35:106–118. https://doi.org/10.1002/mds.29818

Chen J, Li W, Zhang T, Wang YJ, Jiang XJ, Xu ZQ (2014) Glucocerebrosidase gene mutations associated with Parkinson’s disease: a meta-analysis in a Chinese population. PLoS ONE 9:e115747. https://doi.org/10.1371/journal.pone.0115747

Chiassineri D, Paciotti S, Eusebi P, Persichetti E, Tasegian A, Kurokawa-akabn M, Chinnery PF, Morris CM, Calabresi P, Parpetti L, Beccari T (2015) Selective loss of glucocerebrosidase activity in sporadic Parkinson’s disease and dementia with Lewy bodies. MOL Neurodegener 10:15. https://doi.org/10.1186/s13024-010-0010-2

Cilia R, Tunesi S, Marotta G, Cereda E, Sici R, Tesei S, Zecchinelli AL, Canesi M, Mariani CB, Meucci N, Saciloto G, Zini M, Barichella M, Magnani C, Duga S, Assetta R, Solda G, Seresini A, Seia M, Pezzoli G, Goldwurm S (2016) Survival and dementia in GBA-associated Parkinson’s disease: the mutation matters. Ann Neurol 80:662–673. https://doi.org/10.1002/ana.24777

Clark LN, Kartsaklis LA, Wolf Gilbert R, Dorado B, Ross BM, Kisselv S, Verbitsky M, Mejia-Santana H, Cote L, Andrews H, Vonsattel JP, Fahn S, Mayeux R, Honig LS, Marder K (2009) Association of glucocerebrosidase mutations with dementia with Lewy bodies. Arch Neurol 66:578–83. https://doi.org/10.1001/archneurol.2009.54

Cleeter MW, Chau KY, Gluck C, Mehta A, Hughes DA, Duchen M, Wood NW, Hardy J, Mark Cooper J, Schapira AH (2013) Glucocerebrosidase inhibition causes mitochondrial dysfunction and free radical damage. Neurochem Int 62:61–7. https://doi.org/10.1002/nci.2012.10.010

Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B, Liu K, Xu K, Strathearn KE, Liu F, Cao S, Caldwell KA, Caldwell GA, Marsischky G, Kolodner RD, Labaer J, Rochet JC, Bonini NM, Lisiquist S (2006) Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313:324–328. https://doi.org/10.1126/science.1129462

Cullen V, Sardi SP, Ng J, Xu YH, Sun Y, Tomlinson JJ, Kolodziej P, Kahn L, Saftig P, Woulfe J, Rochet JC, Glickman MA, Cheng SH, Grabowski GA, Shihabuddin LS, Schlossmacher MG (2011) Acid beta-glucocerebrosidase mutants linked to Gaucher disease, Parkinson disease, and Lewy body dementia alter alpha-synuclein}
processing. Ann Neurol 69:940–953. https://doi.org/10.1002/ana.22400
Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909. https://doi.org/10.1016/S0896-6273(03)00568-3

den Heijer JM, Kruijthof AC, van Amerongen G, de Kam ML, Thijsen E, Grievink HW, Moerland M, Walker M, Been K, Skerlj R, Justman C, Dudgeon L, Lansbury P, Cullen VC, Hilt DC, Groeneveld GJ (2021) A randomized single and multiple ascending dose study in healthy volunteers of LTI-291, a centrally penetrant glucocerebrosidase activator. Br J Clin Pharmacol. https://doi.org/10.1111/bcp.14772
Duran R, Mencacci NE, Angeli AV, Shaoi M, Deas E, Houliden H, Mehta A, Hughes D, Cox TM, Deegan P, Schapira AH, Lees AJ, Limousin P, Jarman PR, Bhatia KP, Wood NW, Hardy J, Foltynie T (2013) The glucocerebrosidase E326K variant predisposes to Parkinson’s disease, but does not cause Gaucher’s disease. Mov Disord 28:232–236. https://doi.org/10.1002/mds.25248
Fan K, Tang BS, Wang YQ, Kang JF, Li K, Liu ZH, Sun QY, Xu Q, Yan XX, Gagnon JF, Postuma RB (2019) Evolution of prodromal Parkinson’s disease status by increasing alpha-synuclein levels. J Neurol 266:1–13. https://doi.org/10.1007/s00415-018-9004-9
Farfel-Becker, T., Vinther, E. B., Kelly, S. L., Barnekow, J. R., Duan, J., Shinder, V., Merril, A. H., JR., Dobrenis, K. & Futerman, A. H. (2014) Neuronal accumulation of glucosylceramide in a mouse model of neuronopathic Gaucher disease leads to neurodegeneration. Hum Mol Genet 23: 843–854. https://doi.org/10.1093/hmg/ddt468
Fereshtehnejad SM, Yao C, Pelletier A, Montplaisir JY, Gagnon JF, Fan K, Tang BS, Wang YQ, Kang JF, Li K, Liu ZH, Sun QY, Xu den Heijer JM, Kruithof AC, van Amerongen G, de Kam ML, Thijs-Fernandes HJ, Hartfield EM, Christian HC, Emmanoulidou E, Zheng 1112 S. R. L. Vieira, A. H. V. Schapira Filippi M, Balestrino R, Basaia S, Agosta F (2022) Neuroimaging
Galvagnion C, Marlet FR, Cerri S, Schapira AHV, Blandini F, di Monte Gegg ME, Burke D, Heales SJ, Cooper JM, Hardy J, Wood NW, Schapira AH (2012) Glucocerebrosidase deficiency in substantia nigra of Parkinson disease brains. Ann Neurol 72:455–463. https://doi.org/10.1002/ana.23614
Goker-Alpan O, Schiﬀmann R, Park JK, Stubbleﬁeld BK, Tayebi N, Sidransky E (2003) Phenotypic continuum in neuronopathic Gaucher disease: an intermediate phenotype between type 2 and type 3. J Pediatr 143:273–276. https://doi.org/10.1016/S0022-3476(03)03002-0
Goker-Alpan O, Stubbleﬁeld BK, Giasson BI, Sidransky E (2010) Glucocerebrosidase is present in alpha-synuclein inclusions in Lewy body disorders. Acta Neuropathol 120:641–649. https://doi.org/10.1007/s00401-010-0741-7
Goker-Alpan O, Masdeu JC, Kohn PD, Ianni A, Lopez G, Groden C, Chapman MC, Crop B, Eisenberg DP, Maniwa NG, Davis J, Wiggs E, Sidransky E, Berman KF (2012) The neurobiology of glucocerebrosidase-associated Parkinsonism: a positron emission tomography study of dopamine synthesis and regional cerebral blood flow. Brain 135:2440–2448. https://doi.org/10.1093/brain/aws174
Gomez G, Arias S, Cardenas L, Zoghbi D, Paradisi I (2017) GBA mutations in Gaucher type I Venezuelan patients: ethnic origins and frequencies. J Genet 96:583–589. https://doi.org/10.1007/s12041-017-0821-8
Grabowski GA (2008) Phenotype, diagnosis, and treatment of Gaucher’s disease. Lancet 372:1263–71. https://doi.org/10.1016/S0140-6736(08)61522-6
Grabowski GA, Horowitz M (1997) Gaucher’s disease: molecular, genetic and enzymological aspects. Baillieres Clin Haematol 10:635–656. https://doi.org/10.1016/S0950-3536(97)80032-7
Grabowski GA, Gatt S, Horowitz M (1990) Acid beta-glucosidase-enzymology and molecular biology of Gaucher disease. Crit Rev Biochem Mol Biol 25:385–414. https://doi.org/10.3109/1049239009090616
Grabowski GA, Zimran A, Ida H (2015) Gaucher disease types 1 and 3: phenotypic characterization of large populations from the ICGG Gaucher registry. Am J Hematol 90(Suppl 1):S12–S18. https://doi.org/10.1002/ajh.24061
Gralnick PA, Westbrook W, Feldman RA, Awad O, Mello N, Remington MP, Sun Y, Zhang W, Sidransky E, Betenbaugh MJ, Fishman PS (2016) A peptide-linked recombinant glucocerebrosidase for targeted neuronal delivery: design, production, and assessment. J Biotechnol 221:1–12. https://doi.org/10.1016/j.jbiotec.2016.01.015
Greller A, Trezzi JP, Glaab E, Ruppert MC, Maier F, Jager H, Hodak Z, Lohmann K, Ma Y, Eidelberg D, Timmermann L, Hiller K, Tittgemeyer M, Drzezga A, Diederich N, Eggers C (2020) GBA variants in Parkinson’s disease: clinical, metabolic, and multimodal neuroimaging phenotypes. Mov Disord 35:2201–2210. https://doi.org/10.1002/mds.29225
Guedes LC, Chanut RN, Gomes MA, Conceicao VA, Machado RB, Soares T, Xu Y, Gaspar P, Carroca JI, Alcalay RN, Ferreiraa JJ, Outeiro TF, Miltenberger-Miltenyi G (2016) Serum lipid alterations in GBA-associated Parkinson’s disease. Parkinsonism Relat Disord 44:58–65. https://doi.org/10.1016/j.parkreldis.2017.08.026
Gundner AL, Duran-Pacheco G, Zimmermann S, Ruf I, Moors T, Baumann K, Jagasia R, van de Berg WD, Kremer T (2019) Path mediation analysis reveals GBA impacts Lewy body disease status by increasing alpha-synuclein levels. Neurobiol Dis 121:205–213. https://doi.org/10.1016/j.nbd.2018.09.015
Guo JF, Li K, Yu RL, Sun QY, Wang L, Yao LY, Hu YC, Lv ZY, Luo LZ, Shen L, Jiang H, Yan XX, Pan Q, Xia K, Tang BS (2015) Polygenic determinants of Parkinson’s disease in a Chinese population. Neurobiol Aging 36:17651–17656. https://doi.org/10.1016/j.neurobiolaging.2014.12.030
Gustafsson H, Nordstrom A, Nordstrom P (2015) Depression and subsequent risk of Parkinson disease: a nationwide cohort study. Neurology 84:2422–2429. https://doi.org/10.1212/wnl.000000000001684

Springer
Hall J, Prabhakar S, Balaj L, Lai CP, Cerione RA, Breakefield XO (2016) Delivery of therapeutic proteins via extracellular vesicles: review and potential treatments for Parkinson’s disease, Glioma, and Schwannoma. Cell Mol Neurobiol 36:417–427. https://doi.org/10.1007/s10571-015-0309-0

Higgins AL, Toffoli M, Mullin S, Lee CY, Kolesi S, Avenali M, Blan-dini D, Schapira AH (2021) The remote assessment of parkin-sonism supporting the ongoing development of interventions in Gaucher disease. Neurodegener Dis Manag 11:451–458. https://doi.org/10.2217/nmd-2021-0032

Hruska KS, Lamarca ME, Scott CR, Sidransky E (2008) Gaucher disease: mutation and polymorphism spectrum in the glucocerebro-sidase gene (GBA). J Hum Mutat 29:567–583. https://doi.org/10.1002/humu.20679

Hu FY, Xi J, Guo J, Yu LH, Liu L, He XH, Liu ZL, Zou XY, Xu YM (2010) Association of the glucocerebrosidase N370S allele with Parkinson’s disease in two separate Chinese Han populations of mainland China. Eur J Neurol 17:1476–1478. https://doi.org/10.1111/j.1468-1331.2010.03097.x

Hudry E, Vandenbergh LE (2019) Therapeutic AAV gene transfer to the nervous system: a clinical reality. Neurotin 101:839–862. https://doi.org/10.1016/j.neuron.2019.02.017

Huebecker M, Moloney EB, van der Spoel AC, Priestman DA, Isacson M, Hu FY, Xi J, Guo J, Yu LH, Liu L, He XH, Liu ZL, Zou XY, Xu YM (2010) Association of the glucocerebrosidase N370S allele with Parkinson’s disease in two separate Chinese Han populations of mainland China. Eur J Neurol 17:1476–1478. https://doi.org/10.1111/j.1468-1331.2010.03097.x

INTERNATIONAL PARKINSON’S DISEASE GENOMICS, C., WELLCOME TRUST CASE CONTROL, C. (2011) A two-stage meta-analysis identifies several new loci for Parkinson’s disease. PLoS Genet 7:e1002142. https://doi.org/10.1371/journal.pgen.1002142

Jung O, Patnaik S, Marugan J, Sidransky E, Westbrook W (2016) Progress and potential of non-inhibitory small molecule chaperones for the treatment of Gaucher disease and its implications for Parkinson disease. Expert Rev Proteomics 13:471–479. https://doi.org/10.1080/14789450.2016.1174583

Kacher Y, Brunsstein B, Boldin-Adamsky S, Toker L, Shainskaya A, Silman I, Sussman JL, Futerman AH (2008) Acid beta-glucosi-dase: insights from structural analysis and relevance to Gaucher disease. J Biol Chem 283:30223–30233. https://doi.org/10.1074/jbc.M605049200

Kanekura K, Nishimoto I, Aiso S, Matsuoka M (2006) Characterization of amyotrophic lateral sclerosis-linked P56S mutation of vesi-cle-associated membrane protein-associated protein B (VAPB/ A5LS). J Biol Chem 281:30223–30233. https://doi.org/10.1074/jbc.M605049200

Kono S, Shirakawa K, Ouchi Y, Sakamoto M, Ida H, Sugita T, Tomiyama H, Suzuki H, Takahashi Y, Miyajima H, Hattori N, Mizuno Y (2007) Dopaaminergic neuronal dysfunction associated with parkinsonism in both a Gaucher disease patient and a carrier. J Neurosci 27:181–184. https://doi.org/10.1523/JNEUROSCI.0090-06.2010

Koprivica V, Stone DL, Park JK, Callahan M, Frisch A, Cohen IJ, Tayebi N, Sidransky E (2000) Analysis and classification of 304 mutant alleles in patients with type 1 and type 3 Gaucher disease. Am J Hum Genet 66:1777–1786. https://doi.org/10.1086/302925

Kraoua I, Stirnemann J, Ribeiro MJ, Rouaud T, Verin M, Annic A, Rose C, Defebvre L, Remienras L, Schupbach M, Belmatouq N, Vidalhiet M, Sedel F (2009) Parkinsonism in Gaucher’s disease type 1: ten new cases and a review of the literature. Mov Disord 24:1524–1530. https://doi.org/10.1002/mds.22593

Kuo SH, Tasset I, Cheng MM, Diaz A, Pan MK, Lieberman OJ, Hut ten SJ, Alcalay RN, Kim S, Ximenez-Emburn P, Fan L, Kim D, Ko HS, Yacoubian T, Kanter E, Liu L, Tang G, Munoz J, Sardi SP, Li A, Gan L, Cuervo AM, Sulzer D (2022) Mutant glucocerebro-sidase impairs alpha-synuclein degradation by blockade of chaperone-mediated autophagy. Sci Adv 8:eabm6393. https://doi.org/10.1126/sciadv.abm6393

Kurzawa-Akanbi M, Hanson PS, Blain PG, Lett DJ, McKeith IG, Chinnery PF, Morris CM (2012) Glucocerebrosidase mutations alter the endoplasmic reticulum and lysosomes in Lewy body disease. J Neurochem 123:298–309. https://doi.org/10.1111/j.1471-4159.2012.07879.x

Leocadi M, Canu E, Donzuso G, Stojkovic T, Basaia S, Kresojevic N, Stankovic I, Sarasso E, Piramide N, Tomic A, Markovic V, Petrovic I, Stefanova E, Kostic VS, Filippi M, Agosta F (2022) Longitudinal clinical, cognitive, and neuroanatomical changes over 5 years in GBA-positive Parkinson’s disease patients. J Neurol 269:1485–1500. https://doi.org/10.1007/s00415-021-10713-4

Lesage S, Anheim M, Condroyer C, Pollak P, Durif F, Dupuis C, Viallet F, Lohmann E, Corvol JC, Honore A, Rivaud S, Vidalhiet M, Durr A, Brice A, FRENCH PARKINSON’S DISEASE GENET-ICS STUDY, G (2011) Large-scale screening of the Gaucher’s disease-related glucocerebrosidase gene in Europeans with Par kinson’s disease. Hum Mol Genet 20:202–210. https://doi.org/10.1093/hmg/ddq54

Li H, Ham A, Ma TC, Kuo SH, Kanter E, Kim D, Ko HS, Quan Y, Sardi SP, Li A, Arancio O, Kang UI, Sulzer D, Tang G (2019) Mitochondrial dysfunction and mitophagy defect triggered by heterozygous GBA mutations. Autophagy 15:113–130. https://doi.org/10.1002/ajh.25300

Liu SY, Wang W, Cui ZY, Yao LF, Chen ZW, Wang CY, Zhao B, Li KS (2013) Polymorphism -116C/G of human X-box-binding protein 1 promoter is associated with risk of Alzheimer’s disease. CNS Neurosci Ther 19:229–234. https://doi.org/10.1111/cns.12064

Lopez G, Eisenberg DP, Gregory MD, Ianni AM, Grogans SE, Masdeu JC, Kim J, Groden C, Sidransky E, Berman NF (2020) Longi- tudinal positron emission tomography of dopamine synthesis in subjects with GBA1 mutations. Ann Neurol 87:652–657. https://doi.org/10.1002/ana.25692

Lue LF, Walker DG, Adler CH, Shiril H, Tran H, Akimaya H, Sue LI, Cawiness J, Sabbagh MN, Beach TG (2012) Biochemical increase in phosphorylated alpha-synuclein precedes histopathology of Lewy-type synucleinopathies. Brain Pathol 22:745–756. https://doi.org/10.1111/j.1553-2472.2012.00585.x

Lukina E, Wattman N, Drasovsky M, Lau H, Avila Arreguin E, Rosenbaum H, Zimmer A, Foster MC, Gaemers SJM, Peterschmitt MJ (2019) Outcomes after 8 years of eliglustat therapy for Gaucher disease type 1: final results from the Phase 2 trial. Am J Hematol 94:29–38. https://doi.org/10.1002/ajh.25300

Machaczka M, Rucinska M, Skotnicka AB, Jurczak W (1999) Parkin-son’s syndrome preceding clinical manifestation of Gaucher’s disease. Am J Hum Genet 61:216–217. https://doi.org/10.1002/ (stci)1096-8652(199907)65:3<3c16::aid-ajhg1%3e3.0.co;2-b

Magalhaes J, Gegg ME, Migdaliska-Richards A, Doherty MK, Whitfield PD, Schapira AH (2016) Autophagic lysosome reformation dysfunction in glucocerebrosidase deficient cells: relevance to Parkinson disease. Hum Mol Genet 25:3432–3445. https://doi.org/10.1093/hmg/ddw185

Malini E, Grossi S, Degunato M, Rosano C, Parini R, Dominisini S, Cariati R, Zampieri S, Bembi M, Filocamo M, Dardis A (2014) Functional analysis of 11 novel GBA alleles. Eur J Hum Genet 22:511–516. https://doi.org/10.1038/ejhg.2013.182

Maor G, Rencus-Lazar S, Filocamo M, Steller H, Segal D, Horowitz M (2013) Unfolded protein response for Parkinson disease: from
human to Drosophila. Orphanet J Rare Dis 8:140. https://doi.org/10.1186/1750-1172-8-140

Maor G, Cabasso O, Krivoruk O, Rodriguez J, Steller H, Segal D, 1114 S. R. L. Vieira, A. H. V. Schapira

Mazzulli JR, Xu YH, Sun Y, Knight AL, Caldwell GA, McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor JP, Weinberg M, Miliukhina IV, Usenko TS, Senkevich KA, Nikolaev MA, Timofeev A, Bezard E, Schapira AHV

Mata IF, Leverenz JB, Weintraub D, Trojanowski JQ, Chen-Plotkin A, van Deert VM, Fritz R, Factor SA, Wood-Sive rio C, Quinn JF, Chung KA, Peterson-Hiller AL, Goldman JG, Stebbins GT, Bernard B, Espay AJ, Revilla FJ, Devoto J, Rosenthal LS, Dawson TM, Albert MS, Tsuang D, Huston H, Yee roudt D, Hu SC, Cholerton BA, Montine TJ, Edwards KL, Zabietan CP (2016) GBA Variants are associated with a distinct pattern of cognitive deficits in Parkinson’s disease. Mov Disord 31:95–102. https://doi.org/10.1002/mds.26359

Mazzulli JR, Xu YH, Sun Y, Knight AL, McLean PJ, Caldwell GA, McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor JP, Weintraub D, Trojanowski JQ, Chen-Plotkin A, van Deert VM, Fritz R, Factor SA, Wood-Sive rio C, Quinn JF, Chung KA, Peterson-Hiller AL, Goldman JG, Stebbins GT, Bernard B, Espay AJ, Revilla FJ, Devoto J, Rosenthal LS, Dawson TM, Albert MS, Tsuang D, Huston H, Yee roudt D, Hu SC, Cholerton BA, Montine TJ, Edwards KL, Zabietan CP (2016) GBA Variants are associated with a distinct pattern of cognitive deficits in Parkinson’s disease. Mov Disord 31:95–102. https://doi.org/10.1002/mds.26359

MeCkell JG, Boo e BF, Dickson DW, Halliday G, Taylor JP, Weintraub D, Aarsland D, Galvin J, Attens I, Ballard JG, Bayst on A, Beach TG, Blanc F, Bohnen N, Bonanni L, Bra s J, Brundin P, Burn D, Chen-Plotkin A, Duda J, El-Agnaf O, Feldman H, Fer mi J, Frytche D, Fuji shiro H, Galasko D, Goldman JG, Gomperts SN, Graff-Radford NR, Hogan LS, Iranzo A, Kantar ci K, Kaufer D, Kul kkit W, Lee VMY, Leverenz JB, Lewis S, Lipca C, Lunde A, Maselli M, Masliah E, McLean P, Mollenhauer B, Montine TJ, Moreno E, Mori E, Murray M, O'Brien JT, Orimo S, Postuma RB, Ramaswamy S, Ross OA, Salmon DP, Singleton A, Taylor A, Thomas A, Tiraboschi P, Toledo JB, Trojanowski JQ, Tsuang D, Walker D, Yamada M, Kosaka K (2017) Diagnosis and management of dementia with Lewy bodies: four consensus report of the D LB consortium. Neurology 89:88–100. https://doi.org/10.1212/21.690000.000000000058

McNeil A, Magalhaes J, Shen C, Chau KY, Hughes D, Mehta A, Foltynie T, Cooper TM, Abramov AY, Gegg M, Schapira AH (2014) Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells. Brain 137:1481–1495. https://doi.org/10.1093/brain/awu020

Mielke MM, Maetzler W, Haughey NJ, Bandaru VV, Savica R, Kosaka K (2017) Diagnosis and management of dementia with Lewy bodies: four consensus report of the D LB consortium. Neurology 89:88–100. https://doi.org/10.1212/21.690000.000000000058

Migda 1ska-Richards A, Daly L, Bezzard E, Schapira AH (2016) Ambroxol effects in glucocerebrosidase and alpha-synuclein transgenic mice. Ann Neurol 80:766–775. https://doi.org/10.1002/ana.24790

Migda 1ska-Richards A, Ko WKD, Li Q, Bezzard E, Schapira AHV (2017) Oral ambroxol increases brain glucocerebrosidase activity in a nonhuman primate. Synapse. https://doi.org/10.1002/syn.21967

Miliukhina IV, Usenko TS, Senkevich KA, Nikolaev MA, Timo feeva AA, Agapova EA, Semenov AV, Lubimova NE, Totolyan AA, Pchelina SN (2020) Plasma cytokines profile in patients with Parkinson’s disease associated with mutations in GBA gene. Bull Exp Biol Med 168:423–426. https://doi.org/10.1007/s10517-020-04723-x

Mistry PK, Cappellini MD, Lukina E, Oszan H, Mach Pas cual S, Rosenbaum H, Helena Solano M, Spigelman Z, Villarrubia J, Watman NP, Massenkeil G (2011) A reappraisal of Gaucher disease-diagnosis and disease management algorithms. Am J Hematol 86:110–5. https://doi.org/10.1002/ajh.21888

Mistry PK, Belmatoug N, von Dahl S, Giugliani R (2015) Understanding the natural history of Gaucher disease. Am J Hematol 90(su ppl 1):s6–11. https://doi.org/10.1002/ajh.24055

Moran EE, Bressman SB, Ortega RA, Raymond D, Ni kolaus WC, Palm ese CA, Elango S, Swan M, Shanker V, Perera I, Wang C, Zimmer man ME, Saunders-Pullman R (2021) Cognitive Functioning of Glucocerebrosidase (GBA) Non-manifesting Carriers. Front Neurol 12:635958. https://doi.org/10.3389/fneur.2021.635958

Mullin S, Smith L, Lee K, D’Souza G, Woodgate P, Elifein J, Hallqvist J, Toffoli M, Streeter A, Hosking J, Heywood WE, Khengar R, Campbell P, Heir J, Cable S, Mills K, Zetterberg H, Limousin P, Libri V, Folyntiec T, Schapira AHV (2020) Ambroxol for the Treatment of Patients With Parkinson Disease With and Without Glucocerebrosidase Gene Mutations: A Nonrandomized, Non-controlled Trial. JAMA Neurol 77:427–434. https://doi.org/10.1001/jama neur 1.2019.4611

Mullin S, Stoholm MG, Hughes D, Mehta A, Parbo P, Hin z R, Pavese N, Brooks DJ, Schapira AHV (2021) Brain microglial activation increased in glucocerebrosidase (GBA) mutation carriers without Parkinson’s disease. Mov Disord 36:774–779. https://doi.org/10.1002/mds.28375

Nalls MA, Pankratz N, Lil CM, Do CB, Hernandez DG, Saad M, Deste foco AF, Kara E, Brus J, Sharma M, Schulte C, Keller MF, Arepalli S, Letson C, Edsall C, Stefanflos H, Liu X, Pliner H, Lee JH, Cheng R, Ikram MA, Ioannidis JP, Hadji georgiou GM, Bis JC, Martinez M, Perlmutter JS, Goate A, Marder K, Fiske B, Sutherland M, Xiromerisiou G, Myers RH, Clark LN, Stefanski K, Hardy JA, Heutink P, Chen H, Wood NW, Houlden H, Payami H, Brice A, Scott WK, Gasser T, Bertram L, Erikss on N, Foroud T, Singleton A, International Parkinson’s Disease Genomics, C., Parkinson’s Study Group Parkinson’s Research: The Organized, G. I., Andme, Genepd, Neurogenetics Research, C., Hussman Institute Of Human, G., Ashkenazi Jewish Dataset, L, Cohorts For, H., Aging Research IN Genetic, E., North Ameri can Brain Expression, C., United Kingdom Brain Expression, C., Greek Parkinson’s Disease, C., Alzheimer Genetic Analysis, G. (2014) Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet 46:989–93. https://doi.org/10.1038/ng.3043

Neu dorfer O, Giladi N, Elstein D, Abrahamov A, Turezkite T, Aghai E, Reches A, Bembì B, Zimmer M (1996) Occurrence of Parkinson’s disease in type I Gaucher disease. QJM 89:691–694. https://doi. org/10.1093/qjmmed/89.9.691

Neumann J, Bras J, Deas E, O’Sullivan SS, Parkkinnen L, Lachmann RH, Li A, Holton J, Guerreiro R, Paudel R, Segaran B, Singleton A, Lees A, Hardy J, Houlden H, Revesz T, Wood NW (2009) Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain 132:1783–1794. https://doi. org/10.1093/brain/awp044

Omer N, Giladi N, Gurevich T, Bar-Shira A, Gana-Weisz M, Glinka T, Goldstein O, Kestenbaum M, Cedarbaum JM, Mabrouk OS, Fraser KB, Shriv in JC, Orr-Utregue A, Mirelman A, Thaler A (2022) Glucocerebrosidase Activity is not Associated with Parkinson’s Disease Risk or Severity. Mov Disord 37:190–195. https://doi.org/10.1002/mds.28792

O’Regan G, Desouza RM, Balestrino R, Schapira AH (2017) Glu cocerebrosidase Mutations in Parkinson Disease. J Parkinsons Dis 7:411–422. https://doi.org/10.3233/JPD-171092

S. R. L. Vieira, A. H. V. Schapira

© Springer
Orvisky E, Park JK, Lamarca ME, Ginnis EI, Martin BM, Tayebi N, Sidransky E (2002) Glucosylsphingosine accumulation in tissues from patients with Gaucher disease: correlation with phenotype and genotype. Mol Genet Metab 76:262–270. https://doi.org/10.1016/s1096-7192(02)00117-8

Osellame LD, Rahim AA, Hargeaves IP, Gegg ME, Richard-Londt A, Brandner S, Waddington SN, Schapira AHV, Duchen MR (2013) Mitochondria and quality control defects in a mouse model of Gaucher disease—links to Parkinson’s disease. Cell Metab 17:941–953. https://doi.org/10.1016/j.cmet.2013.04.014

Parente G (2009) Treating lysosomal storage diseases with pharmacological chaperones: from concept to clinics. EMBO Mol Med 1:268–79. https://doi.org/10.1002/emmm.200900036

Parkkinnen L, Neumann J, O’Sullivan SS, Holton JL, Revesz T, Hardy J, Lees AJ (2011) Glucocerebrosidase mutations do not cause increased Lewy body pathology in Parkinson’s disease. Mol Genet Metab 103:410–412. https://doi.org/10.1016/j.ymgme.2011.04.015

Pellicano C, Benincasa D, Pisani V, Buttarrelli FR, Giovannelli M, Pontieri FE (2007) Prodromal non-motor symptoms of Parkinson’s disease. Neuropsychiatr Dis Treat 3:145–152. https://doi.org/10.2147/ndt.2007.3.1.145

Peterschmitt MJ, Saiki H, Hatano T, Gasser T, Isaacsen SH, Gaemers SJM, Minini P, Saubadu S, Sharma J, Walbillec S, Alcalay RN, Cutter G, Hattori N, Hoglinger GU, Marek K, Schapira AHV, Scherzer CR, Simuni T, Giladi N, Sardi SP, Fischer TZ, Investigators M-P (2022) Safety, pharmacokinetics, and pharmacodynamics of oral venglustat in patients with Parkinson’s disease and a GBA mutation: results from part 1 of the randomized, double-blinded, placebo-controlled MOVES-PD trial. J Parkinsons Dis 12:557–570. https://doi.org/10.3233/JPD-212714

Peterschmitt, J., Giladi, N., Alcalay, R., Cutter, G., Høglørger, G., Schapira, A., Scherzer, C., Simuni, T., Gurevich, T., Gasser, T., Pacchetti, C., Marek, K., Minini, P. & Sardi, S. (2021) Effect of venglustat by GBA mutation severity in patients with Parkinson’s disease. Neuropsychiatr Dis Treat 3:145–152. https://doi.org/10.2147/ndt.2007.3.1.145

Sardi SP, Clarke J, Kinnefors C, Tamsett TJ, Li L, Stanek LM, Passini MA, Grabowski GA, Schlossmacher MG, Sidman RL, Cheng SH, Shihabuddin LS (2011) CNS expression of glucocerebrosidase corrects alpha-synuclein pathology and memory in a mouse model of Gaucher-related synucleinopathy. Proc Natl Acad Sci USA 108:12101–12106. https://doi.org/10.1073/pnas.1011897108

Sardi SP, Clarke J, Viel C, Chan M, Tamsett TJ, Treleaven CM, Bu J, Sweet L, Passini MA, Dodge JC, Yu WH, Sidman RL, Cheng SH, Shihabuddin LS (2013) Augmenting CNS glucocerebrosidase activity as a therapeutic strategy for parkinsonism and other Gaucher-related synucleinopathies. Proc Natl Acad Sci USA 110:3537–3542. https://doi.org/10.1073/pnas.1220464110

Sardi SP, Viel C, Clarke J, Treleaven CM, Richards AM, Park H, Olisewski MA, Dodge JC, Marshall J, Makino E, Wang B, Sidman RL, Cheng SH, Shihabuddin LS (2017) Glucocerebrosidase synapse inhibition alleviates aberrations in synucleinopathy models. Proc Natl Acad Sci USA 114:2699–2704. https://doi.org/10.1073/pnas.1616152114

Schapira AH (2015) Glucocerebrosidase and Parkinson disease: recent advances. Mol Cell Neurosci 66:37–42. https://doi.org/10.1016/j.mcn.2015.03.013

Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD (1989) Mitochondrial complex I deficiency in Parkinson's disease. Lancet 1:1269. https://doi.org/10.1016/s0140-6736(89)92366-0

Schapira AHV, Chaudhuri KR, Jenner P (2017) Non-motor features of Parkinson disease: a systematic review and meta-analysis. Cereb Cortex 30:2867–2878. https://doi.org/10.1093/cercor/bhz280

Schindlbeck KA, Vo A, Nguyen N, Tang CC, Nietherman M, Dhwani V, Brandt V, Saunders-Pullman R, Bressman SB, Eidelberg D (2020) LRRK2 and GBA variants exert distinct influences on Parkinson’s disease-specific metabolic networks. Cereb Cortex 30:2867–2878. https://doi.org/10.1093/cercor/bhz280

Schondorf DC, Aureli M, McAllister FE, Hindley CJ, Mayer F, Schmid B, Sardi SP, Valsecchi M, Hoffmann S, Schwarz LK, Hedrich U, Berg D, Shihabuddin LS, Hu J, Pruszak J, Gyggi SP, Sonnino S, Gasser T, Deleidi M (2014) iPSC-derived neurons from
GBA1-associated Parkinson’s disease patients show autophagic defects and impaired calcium homeostasis. Nat Commun 5:4028. https://doi.org/10.1038/ncomms5028

Schondorf DC, Ivanyuk D, Baden P, Sanchez-Martinez A, de Cicco S, Yu C, Giunta I, Schwarz LK, di Napoli G, Panagiotakopoulou V, Nestel S, Keatinge M, Pruszak J, Bandmann O, Heimrich B, Gasser T, Whitworth AJ, Deleidi M (2018) The NAD+ precursor nicotinamide ribose rescues mitochondrial defects and neuronal loss in iPSC and fly models of Parkinson’s disease. Cell Rep 23:2976–2988. https://doi.org/10.1016/j.celrep.2018.05.009

Suzuki M, Fujikake N, Takeuchi T, Koyama-Koganeya A, Nakajima K, Hirabayashi Y, Wada K, Nagai Y (2015a) Glucocerebrosidase deficiency accelerates the accumulation of proteinase K-resistant alpha-synuclein and aggravates neurodegeneration in a Drosophila model of Parkinson’s disease. Hum Mol Genet 24:6675–6686. https://doi.org/10.1037/hmgd.19973

Suzuki T, Shimoda M, Ito K, Hanai S, Aizawa H, Kato T, Kawasaki K, Yamaguchi T, Ryoo HD, Goto-Inoue N, Setou M, Tsuji S, Ishida N (2015b) Correction: expression of human Gaucher disease gene GBA generates neurodevelopmental defects and ER stress in drosophila eye. PLoS ONE 10:e0135619. https://doi.org/10.1371/journal.pone.0135619

Swan M, Doan N, Ortega RA, Barrett M, Nichols W, Ozelius L, Soto-Velacho J, Boschung S, Deik A, Sarva H, Cabassa J, Johannes B, Raymond D, Marder K, Giladi N, Miravitlles J, Severt W, Schneider R, Shanker V, Bressman S, Saunders-Pullman R (2016) Neuropsychiatric characteristics of GBA-associated Parkinson disease. J Neurol Sci 370:63–69. https://doi.org/10.1016/j.jns.2016.08.059

Szwedow AA, Dalen I, Pedersen KS, Camacho M, Backstrom D, Forsgren L, Tzoulis C, Winder-Rhodes S, Hudson G, Liu G, Scherzer CR, Lawson RA, Yarnall AJ, Williams-Gray CH, Macleod AD, Counsell CE, Tynnes OB, Alves G, Maple-Groden J, Parkinson’s Incidence Cohorts, C. (2022) GBA and APOE impact cognitive decline in Parkinson’s disease: a 10-year population-based study. Mov Disord. https://doi.org/10.1002/mds.29832

Tayebi N, Walker J, Stubblefield B, Orvisky E, Lamarcia ME, Wong K, Rosenbaum H, Schiffmann R, Bembii B, Sidransky E (2003) Gaucher disease with Parkinsonian manifestations: does glucocerebrosidase deficiency contribute to a vulnerability to parkinsonism? Mol Genet Metab 79:104–109. https://doi.org/10.1016/s1096-7192(03)00071-4

Valayannopoulos V (2013) Enzyme replacement therapy and substrate reduction therapy in lysosomal storage disorders with neurological expression. Handb Clin Neurol 113:1851–7. https://doi.org/10.1016/B978-0-444-59565-2.00055-1

Wang C, Cai Y, Gu Z, Ma J, Zheng Z, Tang BS, Xu Y, Zhou Y, Feng T, Wang T, Chen SD, Chan P, Chinese Parkinson Study, G (2014) Clinical profiles of Parkinson’s disease associated with common leucine-rich repeat kinase 2 and glucocerebrosidase genetic variants in Chinese individuals. Neurobiol Aging 35(725):e1-6. https://doi.org/10.1016/j.neurobiolaging.2013.08.012

Winder-Rhodes SE, Evans JR, Ban M, Mason SL, Williams-Gray CH, Foltynie T, Duran R, Menacchi NE, Sawyer SJ, Barker RA (2013) Glucocerebrosidase mutations influence the natural history of Parkinson’s disease in a community-based incident cohort. Brain 136:392–399. https://doi.org/10.1093/brain/aws318

Wong K, Sidransky E, Verma A, Mixon T, Sandberg GD, Wakefield LK, Morrison A, Lwin A, Colegial C, Allman JM, Schiffman R (2014) Neuropathology provides clues to the pathophysiology of Gaucher disease. Mol Genet Metab 82:192–207. https://doi.org/10.1016/j.ymgme.2004.04.011

Xu YH, Sun Y, Ran H, Quinn B, Witte D, Grabowski GA (2011) Accumulation and distribution of alpha-synuclein and ubiquitin in the CNS of Gaucher disease mouse models. Mol Genet Metab 102:436–447. https://doi.org/10.1016/j.ymgme.2010.12.014

Yang H, Liu C, Zhong Y, Luo S, Monteiro MJ, Fang S (2010) Huntington interacts with the cue domain of gp78 and inhibits gp78 binding to ubiquitin and p97/VCP. PLoS ONE 5:e8905. https://doi.org/10.1371/journal.pone.0008905

Ysselstein D, Young TJ, Nguyen M, Padmanabhan S, Hirst WD, Dzamko N, Kraic D (2021) Evaluation of strategies for...
Glucocerebrosidase mutations and Parkinson disease

measuring lysosomal glucocerebrosidase activity. Mov Disord 36:2719–2730. https://doi.org/10.1002/mds.28815

Yun SP, Kim D, Kim S, Kim S, Karuppagounder SS, Kwon SH, Lee S, Kam TI, Lee S, Ham S, Park JH, Dawson VL, Dawson TM, Lee Y, Ko HS (2018) alpha-Synuclein accumulation and GBA deficiency due to L444P GBA mutation contributes to MPTP-induced parkinsonism. Mol Neurodegener 13:1. https://doi.org/10.1186/s13024-017-0233-5

Zhang Y, Sun QY, Zhao YW, Shu L, Guo JF, Xu Q, Yan XX, Tang BS (2015) Effect of GBA mutations on phenotype of Parkinson’s disease: a study on Chinese population and a meta-analysis. Parkinsons Dis 2015:916971. https://doi.org/10.1155/2015/916971

Zhang Y, Shu L, Sun Q, Zhou X, Pan H, Guo J, Tang B (2018a) Integrated genetic analysis of racial differences of common GBA variants in Parkinson’s disease: a meta-analysis. Front Mol Neurosci 11:43. https://doi.org/10.3389/fnmol.2018.00043

Zhang Y, Shu L, Zhou X, Pan H, Xu Q, Guo J, Tang B, Sun Q (2018b) A meta-analysis of GBA-related clinical symptoms in Parkinson’s disease. Parkinsons Dis 2018:3136415. https://doi.org/10.1155/2018/3136415

Ziegler SG, Eblan MJ, Gutti U, Hruska KS, Stubblefield BK, Goker-Alpan O, Lamarca ME, Sidransky E (2007) Glucocerebrosidase mutations in Chinese subjects from Taiwan with sporadic Parkinson disease. Mol Genet Metab 91:195–200. https://doi.org/10.1016/j.ymgme.2007.03.004

Zokaei N, McNeill A, Proukakis C, Beavan M, Jarman P, Korlipara P, Hughes D, Mehta A, Hu MT, Schapira AH, Husain M (2014) Visual short-term memory deficits associated with GBA mutation and Parkinson’s disease. Brain 137:2303–2311. https://doi.org/10.1093/brain/awu143

Zunke F, Moise AC, Belur NR, Gelyana E, Stojkovska I, Dzaferbegovic H, Toker NJ, Jeon S, Fredriksen K, Mazzulli JR (2018) Reversible conformational conversion of alpha-synuclein into toxic assemblies by glucosylceramide. Neuron 97(92–107):e10. https://doi.org/10.1016/j.neuron.2017.12.012

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.