Adding a masonry floor on top of a reinforced concrete high building in a seismic area

S Constantinescu1*

1 Department of civil engineering, Technical University of Construction, Bucharest, Romania

* sorina.constantinescu@yahoo.com

Abstract. The paper studies the influence of adding an aerated autoclaved concrete (AAC) masonry walls story above a reinforced concrete structure of a high building. This structure is situated in a high seismic area (0.30\(g \), where \(g \) is the gravity acceleration) in Bucharest, Romania. The new story will be lightweight because of the AAC. It is necessary to establish if the existing structure can bare the new story gravity loads and to determine the new building’s seismic behaviour. It is also determined if the new AAC masonry walls can bare the seismic loads they are to be subjected to. Both elastic and plastic analysis are present in the study.

1. Introduction

The paper presents the effect of adding a confined masonry (CM) walls story on top of an existing building. The existing structure is a dwelling building with reinforced concrete (RC) walls. The added story contains aerated autoclaved concrete (AAC) confined masonry walls. This is only a study. It is not about an already erected building. According to literature, masonry-partitioning walls contribute significantly to the buildings seismic behaviour [1]. Masonry can also be used in bearing walls. In confined masonry walls, the number of confining columns has an important influence on the energy dissipation capacity, ductility, cracking pattern and strength of the walls. It is preferred to use more confining columns [2]. Confined masonry is a suitable solution for building low to medium rise buildings. Both earthquakes and tests show the effectiveness of confined masonry systems. This performance is also influenced by the masonry properties and structure configuration, reinforcement detailing in tie beams, beams and slender columns [3]. Masonry walls failure is consisted mostly of diagonal cracking and out of plane displacements according to finite element analysis [4]. An AAC story on top of a RC building becomes a soft story. A soft story presents lower stiffness than the others. It may be called flexible story [5]. Aerated autoclaved concrete walls crack through the aerated concrete blocks, showing that the full strength capacity of the blocks was reached. The effect of the glue mortar is expected to be most significant in enhancing the flexural strength of the AAC walls under loading [6]. In multi-story residential building, the AAC load bearing blocks can reduce the buildings weight and improve the seismic behavior, as the AAC blocks have smaller volume density and are homogenous [7]. The results of AAC building seismic analysis point out that for 1-2 story buildings and for low to medium seismic areas, the damage limit may not be reached. For high seismic areas and multi-story buildings, significant damage can be expected. It is recommended to use geometrical regularity in plan to improve AAC structures performance [8]. According to linear and nonlinear analysis, autoclaved concrete walls can be used as bearing elements for low buildings in...
According to shaking table tests, AAC masonry walls have a great energy dissipation capacity [10]. Walls slenderness is also important to take into account as it may lower the masonry walls lateral load bearing capacity [11].

2. Building description
This is a study used for a building that will have a penthouse built over the top story. The structure is situated in Bucharest, Romania. The codes in force used to design the building are: [12–18]. This is considered a high seismic area as the seismic acceleration is 0.30 g (g is the gravity acceleration) [18]. The building contains a ground floor and 7 stories above it. Story height is 3 m. It is a reinforced concrete walls dwelling building. The penthouse will have confined masonry bearing walls made of AAC. The analysis is done for two stages. Stage 1 is without the penthouse (figure 1) and stage 2 is with the penthouse (figure 2). Reinforced concrete walls plan is in figure 3 and confined masonry walls plan is in figure 4. Walls are red, beams and tie beams are blue, slender columns are green and slabs are grey. The program used to design is ETABS 2017.

The masonry walls will be made of autoclaved concrete bricks, because this material is light weight. These walls will be placed on top of the reinforced concrete walls. The confining elements are concrete slender columns and tie beams. According to the masonry design code in force autoclaved concrete blocks can be used for bearing walls [12].
Figure 4. AAC walls names and bays dimensions.

For the reinforced concrete walls, the class is C25/30 [16], with elasticity modulus $E_c = 31000 \text{ N/mm}^2$. For the masonry aerated autoclaved concrete walls, the blocks are 600·100·240 (mm) with standard strength $f_b = 8 \text{ N/mm}^2$, mortar M10 and elasticity modulus $E_M = 3760 \text{ N/mm}^2$ [12]. Concrete C16/20 is used for the confining elements at the top story, $E_c = 29000 \text{ N/mm}^2$. Reinforcement bars are S345 with elasticity modulus $E_S = 210000 \text{ N/mm}^2$ [16].

3. Theory elements used

3.1. Seismic load

The seismic load is introduced by coefficient c_s. The base force F_b in (1) is calculated using [17-18].

$\gamma_{I,e} = 1.2$ is the building’s importance-exposure coefficient, $\beta_0 = 2.5$ is the maximum value in the elastic spectrum and q is the structure’s behavior factor, $q = 3.5 \cdot 1.15$ [18], $m =$ building’s mass [18]. $\eta = 1$ is the reduction factor, $\lambda = 0.85$, $a_g = 0.30g$ [18].

$$F_b = \gamma_{I,e} \cdot \beta_0 \cdot a_g \cdot q \cdot m \cdot \eta \cdot \lambda = c_s \cdot m \cdot g = 0.22 \cdot m \cdot g \text{ (kN)} \quad (1)$$

3.2. Materials design strengths

The stresses analyzed for masonry penthouse walls are σ_x, σ_z, τ_{xy}, τ_{xz} and τ_{yz}. They are compared to the masonry design strengths in (2) to (6) [12]: horizontal compression f_{dh}, vertical compression f_d, shear strength for horizontal direction $f_{vd,0}$, horizontal and vertical strengths perpendicular to the wall f_{dx1} and f_{dx2}. The design strengths are determined from their characteristic values: f_{kh}, f_k, $f_{vk,0}$, f_{xk1} and f_{xk2}. The masonry strengths insurance factor is $\gamma_M = 1.9$ [12]. The concrete compression design strength f_{cd} in (7) is determined using the characteristic strength f_{ck}. For steel, f_{yd} in (8) is the design strength and f_{yk} is the characteristic value. $\gamma_C = 1.5$, for concrete and $\gamma_S = 1.15$ for steel [16].

$$f_{dh} = f_{dk}/\gamma_M = 2.09/1.9 = 1.1 \text{ N/mm}^2 \quad (2)$$
$$f_d = f_k/\gamma_M = 4.7/1.9 = 2.47 \text{ N/mm}^2 \quad (3)$$
$$f_{vd,0} = f_{vk,0}/\gamma_M = 0.25/1.9 = 0.13 \text{ N/mm}^2 \quad (4)$$
$$f_{dx1} = f_{xk1}/\gamma_M = 0.1/1.9 = 0.05 \text{ N/mm}^2 \quad (5)$$
$$f_{dx2} = f_{xk2}/\gamma_M = 0.2/1.9 = 0.10 \text{ N/mm}^2 \quad (6)$$
$$f_{cd} = f_{ck}/\gamma_C = 25/1.5 = 16.67 \text{ N/mm}^2 \quad (7)$$
$$f_{yd} = f_{yk}/\gamma_S = 345/1.15 = 300 \text{ N/mm}^2 \quad (8)$$
3.3. Concrete walls design theory

N_{Ed} is the axial force from the seismic loads combinations. $M_{Ed,0}$ (9) and $M_{Ed,s}$ (10) are the ground floor and upper floors design bending moments and M_{Ed} (15) is the wall’s bearing bending moment. M'_{Ed} is the bending moment value given by the seismic loads combination for any story [16]. l_w is the walls length. A_S is the vertical reinforcement area at the walls edges. It is determined form (13) for the ground floor and from (14) for the other floors. A_c is the walls compressed area. $b=250$ mm is the walls width. $k_M =1.15$ for DCM (medium ductility buildings). S is the seismic direction.

$$M_{Ed,0} = M'_{Ed}$$ \hspace{1cm} (9)

$$M_{Ed,s} = k_M \cdot \Omega \cdot M_{Ed} \leq \Omega \cdot M'_{Ed}$$ \hspace{1cm} (10)

$$\Omega = M_{Ed,0} / M_{Ed,0}$$ \hspace{1cm} (11)

$$A_c = N_{Ed} / f_{cd}$$ \hspace{1cm} (12)

$$A_S = (M_{Ed,0} \cdot N_{Ed} \cdot 0.9 \cdot l_w / 2) / (f_{cd} \cdot 0.9 \cdot l_w)$$ \hspace{1cm} (13)

$$A_S = (M_{Ed,s} \cdot N_{Ed} \cdot 0.9 \cdot l_w / 2) / (f_{cd} \cdot 0.9 \cdot l_w)$$ \hspace{1cm} (14)

$$M_{Ed} = A_c \cdot f_{cd} \cdot 0.9 \cdot l_w + N_{Ed} \cdot 0.9 \cdot l_w / 2$$ \hspace{1cm} (15)

Figure 5. Reinforced concrete wall section.

3.4. Concrete beams design theory

Reinforcement in beams, detailed in figure 6, is designed according to M_{Ed} (16) [16]. λ_c is the beam section compressed area height [16]. $A_{s,min}$ is the minimum horizontal reinforcement area for beams. $f_{ctm} = 2.6$ N/mm2 is the medium value of the concrete tensile strength. Reinforcement for tie beams and slender columns at the top story is designed using the minimum reinforcement percentage 1% for $a_g=0.30g$ seismic areas.

$$M_{Ed} = b \cdot \lambda_c \cdot f_{cd} \cdot (d-\lambda_c / 2) = A_s f_{cd} z \ (kNm)$$ \hspace{1cm} (16)

$$m = M_{Ed} (b \cdot d^2 f_{cd})$$ \hspace{1cm} (17)

$$z = d-\lambda_c / 2 = d-d \cdot (1-(1-2m)^{0.5}) / 2 \ (mm)$$ \hspace{1cm} (18)

$$A_{s,min} = \min \{0.26 \cdot f_{ctm} / f_{cd} \cdot b \cdot d; \ 0.0013 \cdot b \cdot d\}$$ \hspace{1cm} (19)

Figure 6. Reinforced concrete beam section.
3.5. Confined masonry walls design theory

M_{Rd} (20) is the wall’s bearing bending moment [12]. $M_{Rd(M)}$ (22) and $M_{Rd(As)}$ (23) are the bearing bending moments from the masonry area and from the slender columns reinforcements respectively [12]. A_c is the wall’s compressed area [12].

$$M_{Rd} = M_{Rd(M)} + M_{Rd(As)} \text{ (kNm)} \quad (20)$$

$$A_c = \frac{N_{Ed}}{(0.85 \cdot f_{d}}) \text{ (mm}^2) \quad (21)$$

$$M_{Rd(M)} = N_{Ed} \cdot y_c \text{ (kNm)} \quad (22)$$

In figure 7 y_c is the distance between the compressed masonry area weight center and the wall’s area weight center [12]. l_s is the distance between the slender columns at the wall’s edges. A_s is the slender columns horizontal reinforcement area.

$$M_{Rd(As)} = l_s \cdot A_s \cdot f_{yd} \text{ (kNm)} \quad (23)$$

![Figure 7. Confined masonry wall section.](image)

A_c is the compressed area gravity center. G is the wall section gravity center. S is the earthquake action. $t = 250$ mm is the wall’s width. [12]. V_{Rd} is the masonry wall bearing shear force and V_{Ed} is the horizontal shear force from the seismic loads combination.

$$V_{Rd} = V_{Rd1} + V_{Rd2} \text{ (kN)} \quad (24)$$

$$V_{Rd1} = 0.4 \cdot (N_{Ed} + 0.8 \cdot V_{Ed} \cdot h_{pan}/l_{pan}) \text{ (kN)} \quad (25)$$

$$V_{Ed} \leq l_{pan} \cdot t \cdot f_{vd,0} \quad (26)$$

$$V_{Rd2} = \lambda_c \cdot A_s \cdot f_{yd} \text{ (kN)} \quad (27)$$

where h_{pan} is the story height – 30 cm (tie beam height) and $l_{pan} = l_s - t$ are the height and length of the masonry area panel. V_{Rd2} (27) is the bearing horizontal shear force from the reinforcement in the slender column at walls compressed edge [12]. A_s is the reinforcement area in the slender column at the walls compressed edge. λ_c is the reinforcement participation factor. Here, $\lambda_c = 0.25$, for longitudinal reinforcement $\Phi 14$ mm. The load combination used to design the structure is $1.0 \cdot$ permanent loads + $0.4 \cdot$ variable loads + $1.0 \cdot$ seismic loads [14].

4. Elastic analysis results

The beams, tie beams and slender columns dimensions and longitudinal reinforcement are seen in table 1. A_s is the longitudinal reinforcement area [16]. The bars are seen as red discs and the diameter (Φ) of bars (in mm) is written for each element.

Table 1. Beams, tie beams and slender columns dimensions and reinforcements.
Beam 25x50 $A_s \rightarrow 2\Phi 22$ and 1 $\Phi 20$ up and down
4.1. Concrete walls efforts

The autoclaved walls effect to the existing structure will increase the efforts in the concrete walls. It is important to establish if the concrete walls can withstand the new efforts. In figures 8 to 15 N_{Ed1} and N_{Ed2} (in kN) are the axial forces in the concrete walls in the initial stage 1 and the final stage, after the autoclaved walls story has been built, stage 2. M_{Ed1}, M_{Ed2} and M_{Rd} (in kNm) are the bending moments in the concrete walls in stages 1 and 2. The axial forces and bending moments analyzed are from the seismic loads combinations. No AAC wall will be built on top of P9.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig8.png}
\caption{P1 efforts.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig9.png}
\caption{P2 efforts.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig10.png}
\caption{P3 efforts.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig11.png}
\caption{P4 efforts.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig12.png}
\caption{P5 efforts.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig13.png}
\caption{P6 efforts.}
\end{figure}
Figures 8 to 15 help compare the piers efforts values. Both axial forces and bending moments values decrease from story 1 to 8 for all piers. The axial forces decrease is faster for shorter walls (P2, P3, P4 and P5), slower for longer walls (P6, P7 and P8) and very slow for the longest wall P1. This can be caused by the walls weights. The bending moments decrease in a linear pattern and M_{Ed1} remains lower than M_{Ed2} for short walls (P2, P3, P4 and P5). The bending moments decrease more rapidly for the other piers. For P6, P7, P8 and P1, the M_{Ed1} values are significantly lower than M_{Ed2} for lower stories. In some cases the bending moments values slightly increase form story 1 to story 2. This is caused by the design formula, more specifically by the great difference between M_{Rd} and M_{Ed} for story 1.

The forces transmitted to the foundation in stage 1 are: base axial force $N_1=45642$ kN, base shear force $V_1=9751$ kN for stage 1 and $N_2=50398$ kN, $V_2=9928$ kN for stage 2. The base bending moments for the load combination with seism on direction X are $M_{1X}=292709$ kNm and $M_{2X}=323517$ kNm. On direction Y the values are $M_{1Y}=292709$ kNm and $M_{2Y}=323517$ kNm. For the load combination with seism on direction Y, $M_{1X}=454846$ kNm and $M_{2X}=490625$ kNm. On direction Y the values are $M_{1Y}=855788$ kNm and $M_{2Y}=949676$ kNm. The axial loads and bending moments transmitted to the foundations increase by approximately 10%. The shear forces increase by about 2%.

4.2. Concrete walls compression lengths, stresses and strength

The compression lengths (l_c) and axial stresses (σ_{cp}) reached at the bottom story (S_1) increase from stage 1 to stage 2 [16-18]. The l_c appears due to the seismic loads combinations and σ_{cp} due to the axial loads for the ultimate limit state combination. l_c should not surpass the maximum compression length x_u, thus the walls will have a ductile behavior and σ_{cp} values need to remain smaller than f_{cd} thus the concrete will not be crushed at the walls bottoms. Table 2 contains these values for stages 1 and 2 [16].

	P1	P2	P3	P4	P5	P6	P7	P8
l_c	1	2	954	125	93	127	152	228
(mm)			1046		93		127	
x_u	1	2	3876	577	626	754	928	1248
(mm)			3956		582		640	
σ_{cp}	1	1.85	1.71	1.73	1.66	1.73	1.	1.
(N/mm²)		1.85	1.71	1.73	1.66	1.73	1.	1.
f_{cd}	16.67	16.67	16.67	16.67	16.67	16.67	16.67	16.67
4.3. Masonry walls efforts, stresses and strength

The autoclaved concrete walls need to bear the efforts they are subjected to, as seen in table 3. The axial stresses at the walls base σ_d need to be lower than the vertical masonry strength f_d [12].

	N_{Ed}	M_{Ed}	M_{Rd}	V_{Ed}	V_{Rd}	σ_d	f_d
P1	402	776	3831	130	218	0.22	2.47
P2	58	9	239	2	71	0.19	2.47
P3	65	26	352	6	76	0.21	2.47
P4	57	32	409	12	75	0.16	2.47
P5	85	37	573	12	85	0.16	2.47
P6	113	71	831	20	80	0.22	2.47
P7	66	133	945	27	106	0.20	2.47
P8	138	86	953	38	159	0.26	2.47

4.4. Natural periods of vibration

Natural periods of vibration for the first 3 vibration modes: T_1, T_2 and T_3 are seen in table 4. They increase by up to 16% from stage 1 to stage 2.

	T_1=0.285s	T_2=0.220s	T_3=0.187s
Stage 1			
Stage 2	T_1=0.335s	T_2=0.258s	T_3=0.215s

5. Plastic analysis results

The building’s behavior in the plastic stage is analyzed by using the pushover diagrams for stages 1 and 2 for both directions X and Y. Pushover cases used are PX1, PY1, PX2 and PY2. The pushover diagrams are shown in figure 16. The maximum displacements considered are 700 mm for stage 1 and 800 mm for stage 2.

5.1. Pushover diagrams

For direction X, the base force is twice the one reached for direction Y for both stages 1 and 2. The structure is stiffer on X. This may be caused by the 2 long walls seen on that direction. The maximum base forces reached in stage 2 are lower than these in stage 1 by 100 MN for direction X and 50 MN for Y. This means the added masonry walls affect the existing concrete structure more on direction X.

Figure 16. Pushover diagrams.
In all cases, the structures mostly maintain the same rigidity, as the diagrams are all straight lines. Rigidity is regarded as base force/displacement. The diagrams for direction X do show some waves, thus there are some slight stiffness decreases.

5.2. Plastic hinges development

The final stages analyzed are seen in figures 17 to 20. The plastic hinges in beams and slender columns need to be shown clearly thus only these appear in the figures. The plastic hinges color code is: green means the plastic hinge is formed, blue is for the plastic hinge reaching the limit, pink represents the load being redistributed and red means collapse.

Figures 17 to 20 show more plastic hinges reach collapse on X than on Y when the same top displacement is reached. The top displacement is greater for stage 2, as the building is higher, but the plastic hinges are less developed in this stage. This is because in stage 2, the masonry walls at the top story help to dissipate the seismic energy, as they are flexible compared to the concrete walls. This is in accordance with the pushover curves that show a reduced rigidity for stage 2. It is clear that the plastic hinges at the masonry walls story are less developed. This is explained as the AAC walls are more flexible than concrete ones, thus they can bend easier and not get thus much damage.

Figure 17. PX1 step 182 $d=70$ cm.

Figure 18. PY1 step 233 $d=70$ cm.

Figure 19. PX2 step 195 $d=80$ cm.

Figure 20. PY2 step 198 $d=80$ cm.
5.3. **Walls stresses in the plastic stage**

It is important to study the masonry walls stresses in the plastic stage. Figures 21 to 30 show the stress values at stages when they surpass the masonry strengths. Stresses σ_x and σ_z from PX2, reach high values at the walls corners. The masonry gives out by being crushed there. The high stresses are distributed more evenly among walls for PX2. Higher stress values are seen in walls on direction Y.

Stresses σ_x and σ_z from PY2 are focused mostly on the 2 long walls on direction X. They reach high values at the walls tops and bottoms. This means the walls are subjected more to bending perpendicular to their plane.

Stresses τ_{xz} reach high values in walls placed on the same direction as the pushover case. The highest stresses can be found at the walls corners.
Stresses τ_{xy} clearly surpass the masonry strength at steps 145 and 165. The walls would give in to this stress long after many plastic hinges have been formed. An explanation may be that the walls can bend as the plastic mechanism is formed. Stresses τ_{yz} reach high values in walls perpendicular to the pushover case direction, because this is a perpendicular stress.

Both stresses reach the highest values in slender walls with high axial loads. This can happen because walls with lower axial forces can bend more perpendicular to their plane and not get that much damage.

6. Conclusions

- The additional story can be built above the existing structure as the old structure can bare it. The design efforts remain below the bearing efforts after the additional story has been built. The compression lengths and axial stresses at the walls bottoms stay below the maximum compression length and the vertical compression strength respectively for both stages 1 and 2. The AAC walls can bare the efforts they are subjected to.

- The new story changes the structures plastic behavior. The new story helps dissipate the seismic energy. The top displacement is greater in stage 2. The building is higher, but the plastic hinges are less developed in this stage. In stage 2, the masonry walls at the top story help dissipate the seismic energy, because the AAC story can bend easier and not get as damaged as the concrete stories. The pushover diagrams show a reduced rigidity for stage 2. The plastic hinges at the masonry walls story are less developed.

- In the plastic stage, stresses σ_x and σ_z from PX2, reach high values at the walls corners and the masonry is crushed there. High stresses are distributed more evenly among walls for PX2. Stresses σ_x and σ_z from PY2 are focused mostly on P1. P1 walls are long and situated on direction X. They are subjected mostly to bending perpendicular to their plane. Stresses τ_{xz} reach high values in piers situated on their direction. Both stresses τ_{xy} and τ_{yz} reach the highest stress values in slender walls with high axial loads because walls with lower axial forces can bend perpendicular to their plane without giving in.
References

[1] Teguh M 2017 Experimental Evaluation of Masonry Infill Walls of RC Frame Buildings Subjected to Cyclic Loading *Sustainable Civil Engineering Structures and Construction Materials, SCESCM 2016, Elsevier Procedia Engineering* 171 p 191–200 DOI 10.1016/j.proeng.2017.01.326

[2] Marinilli A and Castillia E 2004 Experimental Evaluation of Confined Masonry Walls with Several Confining Columns *13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada*, paper No.1597

[3] Strength Behavior of Mud Brick in Building Construction. *Open Journal of Civil Engineering* 6, 482–94 DOI 10.4236/ojce.2016.63041

[4] Ahimbisibwe A and Ndibwami A 2016 Demystifying Fired Clay Brick: Comparative analysis of different materials for walls, with fired clay brick *PLEA Los Angeles-32nd International Conference on Passive and Low Energy Architecture Cities, Buildings, People: Towards Regenerative Environments*

[5] Chourasia A, Bhattacharyya S K, Bharagava P K and Bhandari N M 2013 Influential aspects on seismic performance of confined masonry construction, *Natural Science* 5 No.8A1 56–62 DOI 10.4236/ns.2013.58A1007

[6] Alexandris A, Protopapa E and Psycharis I 2004 Collapse mechanisms of masonry buildings derived by the distinct element method *13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada*, paper No.1597

[7] Guevara-Perez T 2012 Soft Story and Weak Story in Earthquake Resistant Design: A multidisciplinary Approach *15 World Conferences on Earthquake Engineering (WCEE)* Lisbon

[8] Al-Mudhaf H A and Attiogbe E K 1996 Performance of autoclaved aerated-concrete masonry walls in Kuwait *Materials and Structures* 29, August /September p 448–52 DOI 10.1007/BF02485996

[9] Jinghai Y, Jianfeng C and Tianhui F 2013 Experimental study on improving seismic behavior of load-bearing masonry wall made of autoclaved aerated concrete *Transactions Tianjin Univ.* 19 Issue 6 pp 419-24 DOI 10.1007/s12209-013-2121-6

[10] Costa A A, Penna A, Magenes G and Galasco A 2008 Seismic performance assessment of autoclaved aerated concrete (AAC) masonry buildings *Proc. The 14th World Conference on Earthquake Engineering*, October 12-17 Beijing

[11] Costa A A, Penna A and Magenes G 2011 Seismic Performance of Autoclaved Aerated Concrete (AAC) Masonry: From Experimental Testing of the in-Plane Capacity of Walls to Building Response Simulation *Journal of Earthquake Engineering*, 15:1–31 ISSN: 1363-2469 DOI 10.1080/13632461003642413

[12] Tomaževič M, and Gams M 2010 Seismic Behaviour of Confined Autoclaved Aerated Concrete Masonry Buildings: a Shaking Table Study, *Mauerwerk European Journal of Masonry, 14*(3) p 153–60 DOI 10.1002/dama.201002047

[13] Vermeltfoort A T and Martens D R W 2017 Preliminary tests on the lateral load-bearing capacity of slender masonry walls. *Proceedings 13th Canadian Masonry Symposium*, 1–12

[14] CEN EN 1996-1-1 2006 Eurocode 6: Design of masonry structures - Part 1-1: General rules for reinforced and unreinforced masonry structures

[15] CEN EN 1991-1-1 2004 EC 1 Actions on structures - Part 1-1: General actions- Densities, self-weight, imposed loads for buildings

[16] CEN EN 1990 2004 Eurocode 0: Basics of structural design

[17] CEN EN 1991-1-3 2005 EC 1 Actions on structures 1-3 General actions Snow loads

[18] CEN EN 1992-1-1 2004 EC 2 Design of concrete structures. General rules for buildings

[19] CEN EN 1998-1 2004 Eurocode 8: Design of structures for earthquake resistance. Part 1: General rules, seismic actions and rules for buildings

[20] P100-1 2013 Seismic design code – Part 1- General rules for buildings