Exercise alters mouse sperm small noncoding RNAs and induces a transgenerational modification of male offspring conditioned fear and anxiety

AK Short1,2, S Yeshurun1, R Powell1, VM Perreau1, A Fox1, JH Kim1, TY Pang1,3,4 and AJ Hannan1,3,4

There is growing evidence that the preconceptual lifestyle and other environmental exposures of a father can significantly alter the physiological and behavioral phenotypes of their children. We and others have shown that paternal preconception stress, regardless of whether the stress was experienced during early-life or adulthood, results in offspring with altered anxiety and depression-related behaviors, attributed to hypothalamic–pituitary–adrenal axis dysregulation. The transgenerational response to paternal preconception stress is believed to be mediated by sperm-borne small noncoding RNAs, specifically microRNAs. As physical activity confers physical and mental health benefits for the individual, we used a model of voluntary wheel-running and investigated the transgenerational response to paternal exercise. We found that male offspring of runners had suppressed reinstatement of juvenile fear memory, and reduced anxiety in the light–dark apparatus during adulthood. No changes in these affective behaviors were observed in female offspring. We were surprised to find that running had a limited impact on sperm-borne microRNAs. The levels of three unique microRNAs (miR-19b, miR-455 and miR-133a) were found to be altered in the sperm of runners. In addition, we discovered that the levels of two species of tRNA-derived RNAs (tDRs)—tRNA-Gly and tRNA-Pro—were also altered by running. Taken together, we believe this is the first evidence that paternal exercise is associated with an anxiolytic behavioral phenotype of male offspring and altered levels of small noncoding RNAs in sperm. These small noncoding RNAs are known to have an impact on post-transcriptional gene regulation and can thus change the developmental trajectory of offspring brains and associated affective behaviors.

INTRODUCTION

Current evidence strongly supports a role for physical exercise in the maintenance of our physical health and well being, as well as sustained mental health and cognitive capacity. There have been numerous clinical studies consistently demonstrating the broad benefits of exercise on mental health. One population-based study found that individuals who regularly exercise more than 60 min a week were less anxious or depressed than those who did not regularly exercise within their age group. A meta-analysis of 60 min a week were less anxious or depressed than those who did not regularly exercise within their age group. 3 A meta-analysis of

1 Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia; 2 Department of Pediatrics and Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA and 3 Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia. Correspondence: Dr TY Pang or Professor AJ Hannan, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3010, Australia.

E-mail: terence.pang@florey.edu.au or anthony.hannan@florey.edu.au

4 Joint last authors.

Received 23 February 2017; accepted 23 February 2017

Translational Psychiatry (2017) 7, e1114; doi:10.1038/tp.2017.82; published online 2 May 2017

Original Article

OPEN

Citation: Transl Psychiatry (2017) 7, e1114; doi:10.1038/tp.2017.82

www.nature.com/tp
running is highly stressful; therefore, the findings may reflect paternal stress rather than paternal exercise per se. Finally, the offspring of control fathers exhibited below-chance performance on the Morris water maze probe trial, thus bringing those findings into question. Nevertheless, paternal exercise could influence offspring susceptibility for disease, as evidenced by the abnormal fat accumulation and weight gain observed in offspring of male mice that ran for a 12-week period prior to mating.20

Our laboratory has previously reported on the transgenerational influence of paternal stress on offspring anxiety, in association with altered levels of sperm small noncoding RNAs.21 In the present study, we hypothesized that paternal voluntary wheel-running (PR) would (1) alter anxiety- and depression-related behaviors of progeny and (2) alter the small noncoding RNA content of sperm. We found that paternal exercise was associated with changes in the offspring's anxiety and depression behaviors, as well as reduced anxiety during adulthood. Small RNA sequencing identified miRNAs and transfer-derived RNAs with altered expression in the sperm of runners compared to standard-housed controls. Bioinformatics analysis identified key biochemical signaling and cellular plasticity pathways that are targeted by miR-19b, miR-133a and miR-455. Our findings, to our knowledge, are the first lines of evidence that paternal exercise exerts a transgenerational influence on offspring emotional health in association with altered sperm small RNA content.

MATERIALS AND METHODS

Mice

All F0 C57BL/6 breeders were purchased from the Animal Resources Centre (Murdoch, WA, Australia) and habituated to the core animal facility in standard open-top laboratory mouse cages (15 x 30 x 12 cm) for 2 weeks prior to use. Standard housing comprises cages lined with sawdust and two tiers for nesting. Food and water access was *ad libitum*. Cage changes were conducted weekly. The temperature and humidity of the holding room were regulated at 22 °C and 45%, respectively. Mice were maintained on a 12 h light/dark cycle (lights on at 0700 hours). After 2 weeks of habituation, male mice were randomly allocated to 4 weeks of exercise and 4 weeks of sedentary behavior with observation of the male offspring displaying more robust extinction memory as juveniles and reduced anxiety during adulthood. Small RNA sequencing identified miRNAs and transfer-derived RNAs with altered expression in the sperm of runners compared to standard-housed controls. Bioinformatics analysis identified the key biochemical signaling and cellular plasticity pathways that are targeted by miR-19b, miR-133a and miR-455. Our findings, to our knowledge, are the first lines of evidence that paternal exercise exerts a transgenerational influence on offspring emotional health in association with altered sperm small RNA content.

Behavioral Testing

Behavioral testing of F0 males was conducted after paired matings and 12-week period prior to mating.20 All F0 C57BL/6 breeders were purchased from the Animal Resources Centre (Murdoch, WA, Australia) and habituated to the core animal facility in standard open-top laboratory mouse cages (15 x 30 x 12 cm) for 2 weeks prior to use. Standard housing comprises cages lined with sawdust and two tiers for nesting. Food and water access was *ad libitum*. Cage changes were conducted weekly. The temperature and humidity of the holding room were regulated at 22 °C and 45%, respectively. Mice were maintained on a 12 h light/dark cycle (lights on at 0700 hours). After 2 weeks of habituation, male mice were randomly allocated to 4 weeks of exercise and 4 weeks of sedentary behavior with observation of the male offspring displaying more robust extinction memory as juveniles and reduced anxiety during adulthood. Small RNA sequencing identified miRNAs and transfer-derived RNAs with altered expression in the sperm of runners compared to standard-housed controls. Bioinformatics analysis identified the key biochemical signaling and cellular plasticity pathways that are targeted by miR-19b, miR-133a and miR-455. Our findings, to our knowledge, are the first lines of evidence that paternal exercise exerts a transgenerational influence on offspring emotional health in association with altered sperm small RNA content.

Mice that ran for a 12-week period prior to mating.20

Elevated-plus maze testing was conducted in a room with dimmed lighting (175 lux). Movement of mice within a light-colored Perspex maze with two open arms (5 x 30 cm) and two enclosed arms (5 x 30 x 14 cm) was tracked using TopScan tracking software (CleverSys, Reston, VA, USA) over a 5-min period. Total time spent in the open arms of the maze was expressed as a percentage of the test duration. Mice were excluded from analysis if they jumped off the maze.

Light–dark test was conducted using locomotor cells (ENV-510, Med Associates, Fairfax, VT, USA) fitted with a dark box insert (ENV-511, Med Associates). The light half had a luminance of 700 lux. Mice started each 10-min test session in the dark half. Time spent in each half was automatically tabulated using the activity monitor software (Med Associates). Total time spent in the light half of the apparatus was expressed as a percentage of the test duration.

Forced-swim test was used as a measure of depression-related behavior as previously described.23 Briefly, 2.5 l Perspex beakers were filled with water (23–25 °C) and mice were placed inside for 5 min. Each test session was video-recorded. Total immobility time over the last 240 s was manually scored by an experienced experimenter (AS), and independently verified by a second experimenter (TP). The Depression Scan software (CleverSys) was used to automatically score the immobility time. The data were verified against times manually scored by an experienced experimenter (TP) using regression analysis, and where scores lay outside 99% confidence interval that mouse was excluded.

Fear conditioning. Separate groups of behaviorally naive mice were subjected to fear conditioning. F1 offspring at PND15 ± 1 day and 8-week-old F1 offspring were tested as previously described.24 Chambers were rectangular (31.8 x 25.4 x 26.7 cm; Med Associates), with stainless steel grid floors with 36 rods (3.2 x 7.9 mm), equipped with a Med Associates VideoFreeze system (Med Associates). Two different contexts were created as described previously.25 A constant-current shock generator was used to deliver electric shock (0.7 mA; 1 s; unconditioned stimulus, US) to the floor of the chambers as required. A programmable tone generator, speaker and sound calibration package was used to deliver auditory tone (volume: 80 dB; frequency: 5000 Hz; conditioned stimulus, CS). During conditioning, mice were placed in an experimental chamber for 79 s in total. During the first 2-min period, baseline freezing measurement was collected. Following this, all animals received six tone-foot-shock (CS–US) pairings. Each pairing consisted of a 10 s tone that co-terminated with a 1 s shock. Intertrial intervals ranged from 85 to 135 s, with an average of 110 s. Freezing was calculated from the first 9 s of each CS presentation to avoid confounding effects of the shock presentation on movement.26 Two minutes following the last presentation, the mouse was removed from the experimental chamber and placed back into the home cage.

The day following conditioning, mice were tested for their CS memory by being placed in a different context to that in which they were conditioned. Mice were allowed a 2 min period, during which baseline freezing was measured. They then received 45 presentations of a 10 s tone in the absence of the shock with intertrial interval of 10 s (that is, extinction). Percentage freezing reported is based on 10 s of tone blocked into average freezing of 15 tones to represent early, middle and late extinction. Two-week-old mice received 2 days of extinction because of high levels of freezing.

The day after extinction the mice were placed into the extinction context for 3 min and received a single reminder shock (0.7 mA) without presentation of the tone. Twenty-four hours following the reminder shock, the animals were tested for reinstatement in the same context. Mice were allowed a 2 min period, during which baseline freezing was measured. They then received 45 presentations of a 10 s tone in the absence of the shock with intertrial interval of 10 s. Data presented are representative of the first 15 presentations of the tone.

Small RNA extraction and Illumina sequencing

Small RNA sequencing, mature spermatozoa were collected using the swim-up method.22 For each treatment group, three pools each consisting of sperm collected from four individual mice were collected (that is, total 12 animals per treatment group). Samples were homogenized using QIAzol lysis reagent (QIAGEN, Melbourne, VIC, Australia). Quantification and quality control were performed on the total RNA using the Agilent Bioanalyzer 2100 with the Small RNA Kit (#5067-1548, Life Technologies, Sydney, NSW, Australia). Library preparation and sequencing were performed using the Illumina HiSeq2000 workflow (Australian Genome Research Facility). Total RNA (500 ng) was used for library prep with 15
cycles of polymerase chain reaction (PCR). Quality control was performed following complementary DNA conversion using Agilent 2100 Bioanalyzer (Agilent Technologies, Melbourne, VIC, Australia). All samples were run on a single flow cell lane using 50 bp single-end reads. Following removal of dimer and adapter sequences, this was adjusted to between 2.3 and 7.7 M reads. Validation of the sequencing results was performed on sperm samples collected from five control and five running mice (not pooled).

Real-time semi-quantitative PCR
Total RNA (1000 ng) was reverse-transcribed using miScript II RT kit (QIAGEN) according to the manufacturer’s instructions. Reverse transcription PCR was performed in a thermalcycler (E-1448, TaKaRa BIO, Otsu, Japan) under the following conditions: 37 °C for 60 min, 95 °C for 5 min. Samples were diluted 10-fold in RNase-free water and then stored at ~20 °C until required. Targeted miRNA expression was determined using miScript SYBR green PCR kit (Cat #218073, QIAGEN) in conjunction with miScript Primer assays. Reactions were performed in a ViiA 7 Real-time PCR system (Applied Biosystems, Foster City, CA, USA). miRNA expression was analyzed using the comparative Ct (ΔΔCT) method and normalized to the mean expression of the control group. SNORD95 was used as the endogenous control for sperm samples as previously reported.24

Sequencing analysis
Read quality was assessed using FastQC and were trimmed against known common dimer and adapter sequences using trimmomatic.26 All reads were then aligned to mouse genome mm10 using the Subjunc aligner within the Subread package.27 Sequencing data were then summarized into Reads per transcript using Featurecounts28 and the Gencode M2 gene models for the mouse mm10 genome build (July 2013 freeze). Normalization and statistical analysis were executed using EdgeR.29–32

Functional annotation and gene ontology analyses
For analysis of predicted targets only the functionally described small RNAs were used. Initially, small RNA transcripts that were significantly increased by log2 fold change of 2 or more were included. From that list the top 20 significantly changed small RNAs were inputted into the miRWalk program.33 To obtain a list of downstream gene targets of the miRNAs, miRWalk 2.0 Validated Target Module was used, limited to only genes returned by miRWalk, miRanda, miRDB and Targetscan. Functional annotation of the gene list was performed using DAVID v6.7 in order to map genes to annotated KEGG pathways.34 The list of validated miR-interacting genes was further subject to gene ontology analysis using PANTHER Overrepresentation test version 11.0 (Released 2016-07-15)35 to determine classifications based on protein–protein interactions (pathways) or biological processes at the level of the cell or organism (for example, synaptic transmission). To map, name and quantify trRNA-derived RNAs (tDRs), we analyzed the trimmed reads by using tDRmapper.36 To predict tDR-targeted genes, we used TargetScan v5.0, which allowed us to enter custom small RNA sequences two to eight nucleotides in length (http://www.targetscan.org/vert_50/seedmatch.html). We further used Enrichr (http://amp.pharm.mssm.edu/Enrichr/)37,38 in order to determine significantly enriched ontologies of MGI Mammalian Phenotype Level 4 (http://www.informatics.jax.org/)39 of both tDRs and miRNA-targeted genes.

Statistical analysis
Student’s t-tests (unpaired) were used to determine differences between two means where appropriate. Analyses of variance were used to examine main effects (for example, paternal running treatment) and/or interactions. Repeated-measures analyses of variance (ANOVA) were used to analyze data collected from multiple time points (for example, USVs, maternal observations). Bonferroni post hoc tests were used to determine specific differences in the event of significant interactions. Significance was set at \(P < 0.05 \). Sequencing data were corrected for false discovery rate (\(P < 0.1 \)) using Benjamini–Hochberg false discovery rate (\(q < 0.1 \)) was applied to tDR data by converting \(P \)-values to \(q \)-values. Statistical analyses were performed using SPSS statistics version 22.0 (IBM, Armonk, NY, USA) and GraphPad prism 6.0 (GraphPad software, LA Jolla, CA, USA). All graphs presented as mean ± s.e.m.

RESULTS
Running did not alter male behavior, mating parameters or maternal care
No significant effect of running was detected by the elevated-pluss maze for time in the open arms (\(t_{(18)} = 0.343, P = 0.736 \)) and total distance traveled (\(t_{(18)} = 1.14, P = 0.270 \)). Similarly, there was no difference between the groups in the light–dark box for total time in the light half (\(t_{(18)} = 0.443, P = 0.663 \)) or exploratory distance (\(t_{(18)} = 1.54, P = 0.141 \)). There was no effect of exercise on the total immobility time (\(t_{(18)} = 1.54, P = 0.140 \)) nor the latency to the first bout of immobility (\(t_{(18)} = 0.6912, P = 0.498 \)) in the forced-swim test. There was no effect of running on the success rate of paired matings or on litter sizes (data not shown). Postpartum maternal behavior (nurturing, neglect, self-maintenance) was scored twice daily for the first 7 days with no differences observed (data not shown).

Male offspring conceived following paternal exercise do not reinstate conditioned fear memory as juveniles and have reduced anxiety as adults
No significant differences were detected between paternal exercise conditions for the overall number of vocalizations made by male pups (\(F_{(1,16)} = 0.150, P = 0.706 \); Figure 1a). There was an overall effect of time (\(F_{(4,64)} = 3.83, P = 0.0075 \)) but no paternal treatment × time interaction (\(F_{(4,64)} = 0.180, P = 0.946 \)). The body weights of PND3 pups did not significantly differ between groups (\(P = 0.323 \); Figure 1b). Male offspring also did not differ in body weights at 8 weeks of age (\(P = 0.804 \); Figure 1c).

At 2 weeks of age, there was no effect of paternal exercise during fear conditioning in male offspring (\(F_{(1,34)} = 2.68, P = 0.111 \)), with all animals learning to associate the tone with the foot shock over time (\(F_{(5,170)} = 10.2, P = 0.001 \); Figure 1a), but no treatment × time interaction (\(F_{(5,170)} = 0.480, P = 0.793 \). Freezing significantly reduced across extinction trials Day 1 (\(F_{(4,63)} = 10.1, P < 0.001 \)) but there was no overall effect of paternal treatment (\(F_{(1,34)} = 0.950, P = 0.337 \), and no significant trial × paternal treatment interaction (\(F_{(2,66)} = 1.38, P = 0.259 \)). Freezing levels did not change during Day 2 (\(F_{(2,68)} = 0.11, P = 0.892 \); however, there was a trend toward an overall effect of paternal treatment (\(F_{(1,34)} = 4.06, P = 0.0518 \). There was no significant trial × paternal treatment interaction for Day 2 data (\(F_{(2,68)} = 0.870, P = 0.425 \). The day after extinction, in order to assess reinstatement, half the mice then received a single reminder shock in the extinction context, and freezing was recorded the next day. There was a significant effect of reminder shock (\(F_{(1,32)} = 17.48, P = 0.0002 \), a significant effect of paternal treatment (\(F_{(1,32)} = 5.67, P = 0.0234 \) and a shock × paternal treatment interaction (\(F_{(1,32)} = 5.3, P = 0.0279 \). Owing to the significant interaction, post hoc tests were carried out per factor, which revealed a significant increase in freezing following the reminder shock in control animals (\(P < 0.001 \), but not in PR offspring (\(P > 0.05 \).)

At weeks of age, fear conditioning of male offspring was not affected by paternal treatment (\(F_{(1,27,186)} = 0.360, P = 0.552 \); Figure 1c). As expected, overall freezing behavior increased with repeated CS trials (\(F_{(5,175)} = 53.5, P < 0.001 \) and there was a significant paternal exercise × CS interaction (\(F_{(5,175)} = 4.07, P = 0.00160 \). Post hoc analysis of this interaction revealed a significant difference between the groups only in the fourth CS–US trial (\(t_{(210)} = 3.52, P = 0.00320 \), with both groups showing comparable freezing by the sixth presentation of the CS (\(t_{(210)} = 2.08, P = 0.230 \). During extinction, there was an overall effect of trial (\(F_{(2,70)} = 60.8, P < 0.001 \), but no effect of paternal exercise (\(F_{(1,33)} = 0.640, P = 0.429 \), nor a paternal exercise × trial interaction (\(F_{(2,70)} = 0.450, P = 0.641 \). Reinstatement was also assessed in 8-week-old offspring. There was an overall effect of shock (\(t_{(1,31)} = 7.54, P = 0.0100 \), but no effect of paternal exercise.
No differences were observed in the time spent exploring the open arms of the elevated-plus maze ($t_{(50)} = 0.0856, P = 0.932$; Figure 1d) and distance traveled ($t_{(50)} = 0.596, P = 0.554$; data not shown). In the light–dark box, male PR offspring spent significantly more time in the light zone ($t_{(50)} = 2.49, P = 0.0161$; Figure 1e) and recorded greater distance moved ($t_{(50)} = 2.21, P = 0.0319$; data not shown). In the forced-swim test, there was no effect of paternal treatment on immobility time ($t_{(50)} = 0.394, P = 0.696$; Figure 1f) and latency to the first bout of immobility ($t_{(50)} = 0.457, P = 0.650$; data not shown).

No transgenerational effects of paternal running on female offspring conditioned fear and anxiety

In contrast to male pups, there was a significant difference in the overall number of USVs made by female PR offspring ($F_{(1,17)} = 9.62, P = 0.0045$; Figure 1. Transgenerational response of male offspring to paternal exercise. Ultrasonic vocalizations recorded over a 5 min separation period at postnatal day 3 (a; $n = 10$ per group). Offspring body weights at postnatal day 3 (b) and 8 weeks of age (c). Freezing response of 2-week-old offspring during fear conditioning, extinction and reinstatement (d; $n = 18$ per group for conditioning and extinction, $n = 8–10$ per group for reinstatement). A separate cohort of 8-week-old offspring was used for fear memory testing (e; $n = 15–22$ per group for conditioning and extinction, $n = 7–11$ per group for reinstatement. Anxiety assessed on the elevated-plus maze (f; $n = 25–27$ per group) and light-dark apparatus (g; $n = 25–27$ per group). Depression-related behavior assessed with the forced-swim test (h; $n = 25–27$ per group). *$P < 0.05$, **$P < 0.01$, ***$P < 0.001$. Data presented as group mean ± s.e.m.
indicating that paternal exercise decreases USVs in female pups. No overall effect of time on the number of calls made ($F(4,68) = 2.07, P = 0.0944$) and no paternal treatment × time interaction ($F(4,68) = 0.390, P = 0.818$). There was no difference in pup body weight at PND3 ($P = 0.475$; Figure 2b). There was also no difference in body weights at 8 weeks of age ($P = 0.570$; Figure 2c).

Juvenile female offspring showed increased freezing across conditioning ($F(5,170) = 13.38, P < 0.001$; Figure 2d), with no effect of paternal treatment ($F(1,34) = 1.80, P = 0.189$) nor a trial × paternal treatment interaction ($F(5,170) = 0.480, P = 0.794$). For extinction, CS-elicited freezing decreased across trials on day 1 ($F_{(2,68)} = 8.37, P = 0.0006$) and day 2 ($F_{(2,68)} = 6.07, P = 0.0037$), but no other effects of interactions on those days were observed. Following reinstatement, there was a significant effect of reminder shock ($F_{(1,32)} = 13.3, P = 0.0009$), but no effect of paternal treatment ($F_{(1,32)} = 0.0004, P = 0.984$) nor a shock × paternal treatment interaction ($F_{(1,32)} = 0.330, P = 0.570$).

At 8 weeks of age, female offspring showed increased freezing across conditioning trials ($F_{(5,120)} = 36.3, P < 0.0001$; Figure 2e), but no effect of paternal treatment ($F_{(1,24)} = 0.350, P = 0.559$), nor a time × paternal treatment interaction ($F_{(5,120)} = 0.120, P = 0.987$).
Freeing also significantly decreased over extinction trials ($F_{(2,46)} = 45.4, P < 0.0001$), without any effects of paternal treatment ($F_{(1,22)} = 1.64, P = 0.180$), or trial \times paternal treatment interaction ($F_{(2,46)} = 1.71, P < 0.193$). Following reinstatement, there was a significant effect of shock presentation ($F_{(1,22)} = 19.0, P = 0.0002$) but no effect of paternal treatment ($F_{(1,22)} = 1.64, P = 0.213$) nor a shock \times paternal treatment interaction ($F_{(2,46)} = 0.600, m = 0.445$).

No differences were detected in the elevated-plus maze based on time spent in the open arms ($t_{(52)} = 0.695, P = 0.490$; Figure 2f) and total distance traveled ($t_{(52)} = 0.745, P = 0.456$; data not shown). In the light–dark box, no differences were observed in the time spent in the light zone ($t_{(51)} = 1.45, P = 0.154$; Figure 2g) and total distance traveled ($t_{(51)} = 0.0084, P = 0.993$; data not shown). In the forced-swim test, no differences were found for total immobility time ($t_{(52)} = 0.804, P = 0.425$; Figure 2h) and latency to first bout of immobility ($t_{(52)} = 0.0136, P = 0.989$; data not shown).

Running alters miRNA and tRNA content of sperm

Small RNA sequencing of sperm collected from wheel-running and control mice yielded a total of 849 mapped genes (Figure 3a). After correction for false discovery rate, 84 genes (9.9%) were differentially expressed between runners and controls (Figure 3b). The expression of 76 genes (9.0%) was increased in the sperm of runners, while 8 genes (0.9%) decreased expression. Only four miRNAs were differentially expressed in runners (Figure 3c). miR-190b and miR-19b-2 were increased and miR-133a-1, miR-133a-2 (same gene sequences mapped to different chromosomes) and miR-455 were decreased. We confirmed that running resulted in differential expression of three of the four miRNAs by validating these candidate genes using RNA isolated from a separate group of running and control mice (Figure 3d). We confirmed that miR-455 was significantly decreased ($t_{(52)} = 3.16, P = 0.0134$) in sperm of runners. Surprisingly, miR-133a was upregulated ($t_{(52)} = 2.59, P = 0.0320$) and miR-19b was downregulated ($t_{(52)} = 2.75, P = 0.0250$) in the validation study. There was a 40% decrease in miR-190b, but this was not significant ($t_{(52)} = 1.59, P = 0.151$).

In addition to differentially expressed miRNAs, we discovered that of 299 genes that mapped for tRNAs, 51 (17%) were significantly altered—all increased. Small RNAs of 29–33 nt are 5′ tRNA halves (5′-tRH) and those of 16–22 nt are tRNA fragments (tRF). Thus, we probed the data to determine the contribution of tRFs with different nucleotide lengths. We found that 16 nt ($q = 0.0112$) and 22 nt ($q = 0.0498$) fragments were significantly reduced, while 30 nt ($q < 0.001$) and 33 nt ($q = 0.052$) fragments were significantly increased (Figure 3e). This corresponded to significantly increased levels of 5′-tRHs ($q < 0.001$) and significantly decreased levels of 3′-tRFs ($q = 0.001$) in the sperm of runners compared to controls (Figure 3f). We further looked into the species of tDRs by separating them into the amino acid they carry and their anticodon sequences. This analysis showed significantly elevated levels of tDRs that carry Gly (5′-tRH; $q < 0.001$) and significantly reduced levels of tDRs that carry Pro (3′-tRF; $q = 0.001$; Figure 3g). Furthermore, among the altered tRNA-derived fragments, only tRNA-Gly-GCC was significantly altered from multiple comparisons of 45 different anticodons ($q < 0.001$; Figure 3h).

Functional annotation and gene ontology analysis

On the basis of the three miRNAs that were validated to be differentially regulated by running, and as most miRNAs have pleiotropic functions, we used the miRWalk 2.0 Validated Target Module to obtain a list of 355 unique and validated downstream gene targets. Only one gene—trinucleotide repeat-containing gene 6B, Tmcrc6b—was the common target of two or more miRNAs (miR-19b and miR-133a). DAVID analysis identified pathways regulated by the gene targets, revealing 24 annotated KEGG pathways (Supplementary Table 1), four of which passed corrections for false discovery rate (Figure 4a). These were axon guidance (fold-enrichment 3.6, $P = 0.0350$), endocytosis (fold-enrichment 2.9, $P = 0.050$), chemokine signaling pathway (fold-enrichment 2.9, $P = 0.0777$) and dilated cardiomyopathy (fold-enrichment 4.0, $P = 0.0824$).

We used gene ontology PANTHER analysis to identify relationships between all the predicted target genes of the three miRNAs. Enriched pathways predicted to be regulated were the GnRH receptor pathway (fold-enrichment 4.8, $P < 0.001$), phosphatidylinositol 3 kinase (fold-enrichment 8.3, $P = 0.00435$) and Ras-signaling pathways (fold-enrichment 6.0, $P = 0.0312$), as well as the heterotrimeric G-protein signaling pathway (fold-enrichment 3.98, $P = 0.0424$; Figure 4b). When the gene list was sorted by biological processes, there was over-representation of biochemical pathways related to sensory perception (fold-enrichment 0.25, $P = 0.00891$), synaptic transmission (fold-enrichment 3.14, $P = 0.0173$) and Trk-signaling pathway (fold-enrichment $P = 0.0201$; Figure 4c). Further categorization by molecular function revealed significant over-representation of G-protein modulators (20/446; $P = 0.00849$), with the majority being guanylnucleotide exchange factors (including members of the Ras super family GTPases).

We conducted a GeneMANIA analysis using a limited list of the 29 unique genes implicated in the four significantly represented KEGG pathways based on co-expression, physical interactions and co-localization (Figure 4d). Interestingly, we noted similarities with the gene ontology analysis with the central cluster including elements of phosphatidylinositol 3 kinase-signaling (Pik3r3, Pik3kca and Pik3cd), Ras superfamily signaling (Rhoa, Cdc42, Rab11b, Pak3 and Rtkn), G-protein-coupled receptors (B1-adrenergic receptor, Adrb1 and insulin-like growth factor receptor 1, Igrp1) and regulators of cytoskeletal dynamics (Ctnln, Stat1, Pias, Sgcb, Ephb2 and Robo1).

Comparison of the predicted gene targets of the top-ranked altered tDRs Gly(C/G)GCC (only 5′-tRHs have a similar role and function as miRNAs) was generated by custom TargetScan. The predicted gene targets of the miRNAs and tDRs targets revealed no commonalities, suggesting that the miRNA and tDRs have distinct downstream gene targets. Comparison of both gene lists against the Mouse Genome Informatics database by Enrichr generated an expanded scope of regulated pathways, revealing 118 potential significant ontologies for the miRNA target list and 41 significant ontologies for the Gly(C/G)GCC target list. Remarkably, both lists demonstrated strikingly similar ontologies related to brain function and behavior, as well as motor capabilities. There were 23 significant ontologies common to both miRNA and Gly(C/G)GCC lists. Interestingly, common significant ontologies included abnormal affective behavior, learning and memory, and neuron morphology.

DISCUSSION

The findings of this study reveal novel transgenerational responses to voluntary wheel-running, which manifest in male offspring, and are likely to involve a running-induced alteration of small noncoding RNAs contained in sperm. We show that male offspring of runners display lower anxiety levels and more robust fear extinction memory. Running changed the miRNA and tRNA content of sperm, and we speculate that these epigenetic alterations elicit the transgenerational response observed in the male offspring. Recent work has drawn much attention to how parental stress21,25,40,41 and diet13,42,43 separately alter offspring responses to voluntary wheel-running, which manifest in male offspring. Recent work has drawn much attention to how parental stress21,25,40,41 and diet13,42,43 separately alter offspring.
Figure 3. Running-induced changes to microRNAs (miRNAs) and tRNA-derived fragments revealed by small RNA sequencing of sperm. Small RNA biotype from genomic annotation presented as percentage of the total mapped reads (a). Volcano plot depicting the fold changes in small RNAs as being differentially expressed in the sperm of runners compared with controls (b). Blue dots represent small RNAs that are significantly altered (false discovery rate, FDR < 0.1) with log fold change of more than 1.5. List of the significantly altered miRNAs (c); note that 133a-1 and 133a-2 map to different locations in the genome. An independent group of animals was used to conduct quantitative PCR (qPCR) validation of the differentially expressed miRNAs (d). Size distribution of tRNA-derived RNA fragments (tDRs) in the sperm (e). Classification of tDRs by type (f). Amino acid carry distribution of tDRs (g). Heatmap of tDRs in each sample by their anticodon profile (h). FDR: *p < 0.1, **p < 0.01, ***p < 0.001.
health outcomes, adding to its previously described impact on offspring physical health and disease susceptibility.\(^{20,44}\)

Epidemiological evidence indicates that regular physical activity reduces the risk for a range of diseases\(^{45-47}\) and is also important for good mental health.\(^{48}\) While the benefits for oneself are long established, the transgenerational influence of exercise on offspring behavior and mental health remains unknown. Addressing this issue in the human population would be a challenging task.

Figure 4. Functional annotation and gene ontology based on differentially expressed miRNAs in sperm. Functional annotation of the downstream target genes of the differentially expressed miRNAs that were validated revealed over-representation of four pathways (a). Gene ontology analysis revealed four significantly represented molecular signaling pathways (b), related to three biological classifications (c). A diagrammatic representation of the molecular network connectivity based on the four over-represented KEGG pathways (d).
endeavor, as such a study would have to be stringently designed in order to take into account the numerous genetic variables and non-genetic factors across both generations. Even parental attitudes toward exercise could be a significant factor, as one study of preschool-aged children has reported that paternal support for physical activity is positively correlated to their offspring’s own engagement in physical activity,59 which in turn influences their mental and physical health. Nonetheless, it would be interesting to attempt a prospective study of preconceptual paternal exercise and its relationship with the mental health outcomes of their children.

The collective evidence based on the few preclinical studies attempted to-date, including the present findings, indicates that parental (preconception) physical exercise alters the physical and behavioral phenotypes of offspring. However, there is some controversy pertaining to the directionality of the paternally behavioral phenotypes of offspring. However, there is some parental (preconception) exercise changes occurring in specific brain regions. For example, transgenic mice with a forebrain-specific disruption of calcineurin signaling spend a decreased amount of time in the light half of the light–dark box but an increased amount of time in the open arms of the elevated-plus maze.64 In a similar vein, forebrain-specific knockouts of the glucocorticoid receptor spend increased time in the open arms of the elevated-plus maze but do not differ in the light–dark box.65 The forebrain (the medial prefrontal cortex in particular) regulates innate anxiety behavior and is heavily implicated in the pathophysiology of anxiety disorders.66,67 Even though our observed behavioral phenotype is not identical to other rodent models of sexually dimorphic anxiety, there is sufficient similarity to lead us to hypothesize an involvement of differential glucocorticoid receptor and/or calcineurin-dependent signaling activity in the forebrain in the male phenotype. The involvement of calcineurin potentially extends beyond anxiety behavior, as a separate study has reported that the manipulation of forebrain calcineurin activity also influences the extinction of contextual fear memory.68 The molecular regulation of forebrain activity should therefore be subject to further study in order to determine whether these brain regions are involved in the manifestation of the anxiolytic phenotype.69

Wheel-running is closely associated with increased hippocampal neurogenesis and improved cognitive performance.70–72 Both of which are negatively influenced by social isolation stress73,74 and corticosterone treatment.75 As running is anxiolytic for the fathers and the offspring, it would be of interest to investigate whether paternal voluntary exercise also exerts a transgenerational influence over offspring cognition and hippocampal neurogenesis.

There is still much to be discovered and understood about the underlying biological mechanisms regulating transgenerational responses. Studies of mouse models of paternal stress have revealed a role of miRNAs.71,72,75 The epigenomic profile of sperm is also subject to modification by exercise. In humans, 3 months of exercise alter DNA methylation levels in sperm,76 however, changes to the small noncoding RNAs have not been investigated. A recent study that provided male mice with 12 weeks of voluntary wheel-running reported changes in the expression levels of miR-483, miR-431, miR-21 and miR-221 in sperm.77 These miRNAs regulate developmental and metabolic gene signaling pathways, which the authors link to the resulting metabolic phenotype of offspring. We have taken an unbiased broader approach to identify the effects of exercise on the small noncoding RNA population by utilizing RNA sequencing. Interestingly, RNA sequencing did not identify any of the miRNAs targeted by Murashov et al.20 Instead, we were surprised that a minimal number of miRNAs were altered, while a much larger number of tRNAs were changed. One key difference between the present study and that of Murashov et al. is that we provided male breeders with 4 weeks of wheel-running compared to 12 weeks. It is unclear whether an additional 8 weeks of running confers additional changes to miRNA expression in sperm. One way to determine this could be to profile the metabolic phenotype of the offspring in our study.

Associated with these positive effects of exercise, numerous cellular and molecular changes in the brain in response to running have been described in rodents.77 A molecular level, changes in gene expression have been described, including upregulation of neurotrophic factors such as vascular endothelial growth factor78 and BDNF.79–82 In addition to a role in learning and memory after exercise,83 levels of BDNF protein have been associated with an alteration of anxiety levels following exercise.79,80

Besides miRNAs, the probable regulatory role of other species of small noncoding RNAs cannot be overlooked. We found that the abundance of two subsets of tRNA-derived fragments was changed in the sperm of runners, namely a downregulation of tRF-3′ (22 nt) and an upregulation of tRF-5′ (tRNA halves, 30 and
33 nt). tRNAs are the most abundant of all small noncoding RNA molecules and are fundamental to mRNA-to-protein translation. However, tRNA-derived fragments and halves are biologically distinct (see reviews by Kirchner and Ignatova,84 and Keam and Huttlinger85) and are involved in highly conserved molecular responses to heat stress, oxidative stress and aging.86,87 tRNA-derived fragments are enriched in mature mouse sperm, in particular those that are derived from tRNA-Glu and tRNA-Gly.88 Our results are consistent with the current literature, as tDRs from Glu and Gly tRNAs were mapped for almost 50% of the reads in the sperm of control sedentary mice. However, while the percentage of reads is almost identical for tRFs (both 3’ and 5’) and tRNA halves (5’), running resulted in an enrichment of tRNA halves, which accounted for 80% of the tRNA reads. The vast majority of these reads are tRH-5’-Gly-GCC, which were significantly elevated in the exercise group compared to controls.

We now know that tRFs also have a role in the transgenerational modification of offspring phenotypes via the male germ line. Maturing sperm in the epididymis acquire their tRNA content from exosomes secreted by epithelial cells.90 Chen et al90 discovered that a high-fat diet altered the abundance of tRNA-derived fragments in mature mouse sperm, and when the subpopulation of RNAs ranging from 30 to 40 nt was injected into zygotes (at a concentration equivalent to 10 sperm), it yielded offspring with offspring phenotype.88 In addition, it was observed that tRH-Gly-GCC, which were signifi-
cantly elevated in the exercise group compared to controls.

We now know that tRFs also have a role in the transgenerational modification of offspring phenotypes via the male germ line. Maturing sperm in the epididymis acquire their tRNA content from exosomes secreted by epithelial cells.90 Chen et al90 discovered that a high-fat diet altered the abundance of tRNA-derived fragments in mature mouse sperm, and when the subpopulation of RNAs ranging from 30 to 40 nt was injected into zygotes (at a concentration equivalent to 10 sperm), it yielded offspring with offspring phenotype.88 In addition, it was observed that tRH-Gly-GCC, which were signifi-
cantly elevated in the exercise group compared to controls.

We now know that tRFs also have a role in the transgenerational modification of offspring phenotypes via the male germ line. Maturing sperm in the epididymis acquire their tRNA content from exosomes secreted by epithelial cells.90 Chen et al90 discovered that a high-fat diet altered the abundance of tRNA-derived fragments in mature mouse sperm, and when the subpopulation of RNAs ranging from 30 to 40 nt was injected into zygotes (at a concentration equivalent to 10 sperm), it yielded offspring with offspring phenotype.88 In addition, it was observed that tRH-Gly-GCC, which were signifi-
cantly elevated in the exercise group compared to controls.

We now know that tRFs also have a role in the transgenerational modification of offspring phenotypes via the male germ line. Maturing sperm in the epididymis acquire their tRNA content from exosomes secreted by epithelial cells.90 Chen et al90 discovered that a high-fat diet altered the abundance of tRNA-derived fragments in mature mouse sperm, and when the subpopulation of RNAs ranging from 30 to 40 nt was injected into zygotes (at a concentration equivalent to 10 sperm), it yielded offspring with offspring phenotype.88 In addition, it was observed that tRH-Gly-GCC, which were signifi-
cally elevated in the exercise group compared to controls.

We now know that tRFs also have a role in the transgenerational modification of offspring phenotypes via the male germ line. Maturing sperm in the epididymis acquire their tRNA content from exosomes secreted by epithelial cells.90 Chen et al90 discovered that a high-fat diet altered the abundance of tRNA-derived fragments in mature mouse sperm, and when the subpopulation of RNAs ranging from 30 to 40 nt was injected into zygotes (at a concentration equivalent to 10 sperm), it yielded offspring with offspring phenotype.88 In addition, it was observed that tRH-Gly-GCC, which were signifi-
cantly elevated in the exercise group compared to controls.

We now know that tRFs also have a role in the transgenerational modification of offspring phenotypes via the male germ line. Maturing sperm in the epididymis acquire their tRNA content from exosomes secreted by epithelial cells.90 Chen et al90 discovered that a high-fat diet altered the abundance of tRNA-derived fragments in mature mouse sperm, and when the subpopulation of RNAs ranging from 30 to 40 nt was injected into zygotes (at a concentration equivalent to 10 sperm), it yielded offspring with offspring phenotype.88 In addition, it was observed that tRH-Gly-GCC, which were signifi-
cantly elevated in the exercise group compared to controls.
17 McPherson NO, Owens JA, Fullston T, Lane M. Preconception diet or exercise intervention in obese fathers normalizes sperm microRNA profile and metabolic syndrome in female offspring. *Am J Physiol Endocrinol Metab* 2015; 308: E805–E821.

18 McPherson NO, Bakos HW, Owens JA, Setchell BP, Lane M. Improving metabolic health in obese male mice via diet and exercise restores embryo development and fetal growth. *PLoS ONE* 2013; 8: e71459.

19 Yin MM, Wang W, Sun J, Liu S, Liu XL, Niu YM et al. Paternal treadmill exercise enhances spatial learning and memory related to hippocampus among male offspring. *Behav Brain Res* 2013; 253: 297–304.

20 Murashov AK, Pak ES, Koury M, Ajmerra A, Jeyakumar M, Parker M et al. Paternal long-term exercise programs offsets for low energy expenditure and increased risk for obesity in mice. *FASEB J* 2016; 30: 775–784.

21 Short AK, Fennell KA, Perreau VM, Fox A, O’Brian MK, Kim JH et al. Elevated paternal glucocorticoid exposure alters the small noncoding RNA profile in sperm and modifies anxiety and depressive phenotypes in the offspring. *Transl Psychiatry* 2016; 6: e837.

22 Scattoni ML, Gandhy SU, Riccier L, Crawley JW. Unusual repertoire of vocalizations in the BTBR T+tf/J mouse model of autism. *PLoS ONE* 2008; 3: e3067.

23 Pang TY, Du X, Catchlove WA, Renour T, Lawrence AJ, Hannan AJ. Positive environmental modification of depressive phenotype and abnormal hypothalamic-pituitary-adrenal axis activity in female C57BL/6J mice during abstinent from chronic ethanol consumption. *Front Pharmacol* 2013; 4: 93.

24 Handford CE, Tan S, Lawrence AJ, Hannan AJ. Positive environmental modification of depressive phenotype and abnormal hypothalamic-pituitary-adrenal axis activity in female C57BL/6J mice during abstinent from chronic ethanol consumption. *Front Pharmacol* 2013; 4: 93.

25 Rodgers AB, Morgan CP, Bronson SL, Revello S, Bale TL. Paternal stress exposure alters sperm microRNA content and expression programs offspring HPA stress axis regulation. *J Neurosci* 2013; 33: 9003–9012.

26 Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequencing data. *Bioinformatics* 2014; 30: 2114–2120.

27 Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. *Bioinformatics* 2014; 30: 923–930.

28 Harrow J, Denoeud F, Frankish A, Reymond A, Chen CK, Chrast J et al. PANTHER version 11: a comprehensive gene ontology annotation database: prediction of possible functional evolution. *Nucleic Acids Res* 2016; 44: D183–D190.

29 Durinck S, Spellman PT, Birney E, Huber W. Mapping identiﬁcation and functional enrichment analysis of RNA-seq data. *FASEB J* 2016; 30: 9003–9012.

30 Eclarinal JD, Zhu S, Baker MS, Pyarathna DB, Coarfa C, Fiorotto ML et al. Maternal exercise during pregnancy promotes physical activity in adult offspring. *FASEB J* 2016; 30: 2541–2548.

31 Kelly SA, Hua K, Wallace JN, Wells SE, Nehrenberg DL, Pomp D. Maternal exercise before and during pregnancy does not impact offspring exercise or body composition in male mice. *J Negat Results Biomed* 2014; 14: 13.

32 Almeida-Suhett CP, Graham A, Chen Y, Deuster P. Behavioral changes in male mice fed a high-fat diet are associated with IL-1beta expression in specific brain regions. *Physiol Behav* 2017; 169: 130–140.

33 Ejlacina JD, Zhu S, Baker MS, Pyarathna DB, Coarfa C, Fiorotto ML et al. Maternal exercise during pregnancy promotes physical activity in adult offspring. *FASEB J* 2016; 30: 2541–2548.

34 Mueller NT, Mao G, Bennett WL, Hourigan SK, Dominguez-Bello MG, Appel LJ et al. Does vaginal delivery mitigate or strengthen the intergenerational association of overweight and obesity? Findings from the Boston Birth Cohort. *Int J Obes* 2017; 41: 497–501.

35 Guth LM, Ludlow AT, Witkowski S, Marshall MR, Lima LC, Venezia AC et al. Sex-specific effects of exercise ancestry on metabolic, morphological and gene expression phenotypes in multiple generations of mice offspring. *Exp Physiol* 2013; 98: 1469–1484.

36 Friedenreich CM. Physical activity and breast cancer: review of the epidemiologic evidence and biologic mechanisms. *Recent Results Cancer Res* 2011; 188: 125–139.

37 Knight JA. Physical inactivity: associated diseases and disorders. *Ann Clin Lab Sci* 2012; 42: 320–337.

38 Pemberton VL, Crandell BW,arkin S, Daniels SR, Barlow SE, Binns HJ et al. Report of the National Heart, Lung, and Blood Institute’s Working Group on obesity and other cardiovascular risk factors in congenital heart disease. *Circulation* 2010; 121: 1153–1159.

39 Schoeppe S, Trost SG. Maternal and paternal support for physical activity and healthy eating in preschool children: a cross-sectional study. *BMC Public Health* 2015; 15: 97.

40 Baker KD, Reichelt AC. Impaired fear extinction retention and increased anxiety-like behaviours induced by limited daily access to a high-fat/high-sugar diet in male rats: Implications for Interventions-induced prefrontal cortex dysregulation. *Neurobiol Learn Mem* 2016; 136: 127–138.

41 Gapp K, Soldado-Magraner S, Alvarez-Sanchez M, Bohacek J, Vernaz G, Shu H et al. Early life stress in fathers improves behavioural ﬂexibility in their offspring. Nat Commun 2014; 5: 5466.

42 Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D et al. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and naming, and quantifying tRNA-derived RNAs from human small RNA-sequencing data. *Bioinformatics* 2015; 31: 354.

43 Ng SF, Lin RC, Laybutt DR, Barres R, Owens JA, Morris MJ. Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. *Nature* 2010; 467: 963–966.
68. Havekes R, Nijholt IM, Visser AK, Eisel UL, Van der Zee EA. Transgenic inhibition of neuronal calcineurin activity in the forebrain facilitates fear conditioning, but inhibits the extinction of contextual fear memories. *Neurobiol Learn Mem* 2008; 89: 595–598.

69. Leitermann RJ, Sajdyk TJ, Urban JH. Cell-specific expression of calcineurin immunoreactivity within the rat basolateral amygdala complex and colocalization with the neuropeptide Y Y1 receptor. *J Chem Neuroanat* 2012; 45: 50–56.

70. Van der Borgh K, Havekes R, Bos T, Egggen BJ, Van der Zee EA. Exercise improves memory acquisition and retrieval in the Y-maze task: relationship with hippocampal neurogenesis. *Behav Neurosci* 2007; 121: 324–334.

71. Snyder JS, Glover LR, Sanzzone KM, Karnhi JF, Cameron HA. The effects of exercise and stress on the survival and maturation of adult-generated granule cells. *Hippocampus* 2009; 19: 898–906.

72. Gebara E, Sultan S, Kocher-Braissant J, Toni N. Adult hippocampal neurogenesis inversely correlates with microglia in conditions of voluntary running and aging. *Front Neurosci* 2013; 7: 145.

73. Stranahan AM, Khalil D, Gould E. Social isolation delays the positive effects of running on adult neurogenesis. *Nat Neurosci* 2006; 9: 526–533.

74. Leasure JL, Decker L. Social isolation prevents exercise-induced proliferation of hippocampal progenitor cells in female rats. *Hippocampus* 2009; 19: 907–912.

75. Mo C, Pang TY, Ransome MI, Hill RA, Renoir T, Hannan AJ. High stress hormone levels accelerate the onset of memory deficits in male Huntington’s disease mice. *Neurobiol Dis* 2014; 69: 248–262.

76. Denham J, O’Brien BJ, Harvey JT, Charchar FJ. Genome-wide sperm DNA methylation changes after 3 months of exercise training in humans. *Epigenomics* 2015; 7: 717–731.

77. van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. *Science* 1999; 287: 2191–2195.

78. Fabel K, Fabel K, Tam B, Kaufer D, Baiker A, Simmons N et al. VEGF is necessary for exercise-induced adult hippocampal neurogenesis. *Hippocampus* 2009; 19: 898–906.

79. Duman CH, Schlesinger L, Russell DS, Duman RS. Voluntary exercise produces antidepressant and anxiolytic behavioral effects in mice. *Brain Res* 2008; 1199: 148–158.

80. Fuss J, Ben Abdallah NM, Vogt MA, Tourma C, Pacifici PG, Palme R et al. Voluntary exercise induces anxiety-like behavior in adult C57BL/6J mice correlating with hippocampal neurogenesis. *Hippocampus* 2010; 20: 364–376.

81. Zajac MS, Pang TY, Wong N, Weinrich B, Leang LS, Craig JM et al. Wheel running and environmental enrichment differentially modify exon-specific BDNF expression in the hippocampus of wild-type and pre-motor symptomatic male and female Huntington’s disease mice. *Hippocampus* 2010; 20: 621–636.

82. Zoladz JA, Pilc A. The effect of physical activity on the brain derived neurotrophic factor: from animal to human studies. *J Physiol Pharmacol* 2010; 61: 533–541.

83. Vivar C, Potter MC, van Praag H. All about running: synaptic plasticity, growth factors and adult hippocampal neurogenesis. *Curr Topics Behav Neurosci* 2013; 15: 189–210.

84. Kirchner S, Ignatova Z. Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. *Nat Rev Genet* 2015; 16: 98–112.

85. Keam SP, Huttuganger G. tRNA-derived fragments (tRFs): emerging new roles for an ancient RNA in the regulation of gene expression. *Life* 2015; 5: 1638–1651.

86. Thompson DM, Lu C, Green PJ, Parker R. tRNA cleavage is a conserved response to oxidative stress in eukaryotes. *RNA* 2008; 14: 2095–2103.

87. Saikia M, Krokowski D, Guan BJ, Ivanov P, Parisien M, Hu GF et al. Genome-wide identification and quantitative analysis of cleaved tRNA fragments induced by cellular stress. *J Biol Chem* 2012; 287: 42708–42725.

88. Peng H, Shi J, Zhang Y, Zhang H, Liao S, Li W et al. A novel class of tRNA-derived small RNAs extremely enriched in mature mouse sperm. *Cell Res* 2012; 22: 1609–1612.

89. Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG, Bing XY et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. *Science* 2016; 351: 391–396.

90. Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi J et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. *Science* 2016; 351: 397–400.

91. Copley JE, Eaton SA, Aiken A, Young PE, Giannoulatou E, Ho JW et al. Male-lineage transmission of an acquired metabolic phenotype induced by grand-paternal obesity. *Mol Metab* 2016; 5: 699–708.

92. Cools W, De Martelaer K, Samaey C, Andries C. Fundamental movement skill factor: from animal to human studies. *J Physiol Pharmacol* 2010; 61: 51–60.

93. Menken M, Borghs K, Demuynck K, D’haeseleer V, Van Houdt R et al. Male lineages are more metabolically fitness than female lineages in the rat. *Life Sci* 2013; 92: 210–216.

94. Menken M, Borghs K, Demuynck K, D’haeseleer V, Van Houdt R et al. Male lineages are more metabolically fitness than female lineages in the rat. *Life Sci* 2013; 92: 210–216.

95. Menken M, Borghs K, Demuynck K, D’haeseleer V, Van Houdt R et al. Male lineages are more metabolically fitness than female lineages in the rat. *Life Sci* 2013; 92: 210–216.

96. Menken M, Borghs K, Demuynck K, D’haeseleer V, Van Houdt R et al. Male lineages are more metabolically fitness than female lineages in the rat. *Life Sci* 2013; 92: 210–216.

97. Menken M, Borghs K, Demuynck K, D’haeseleer V, Van Houdt R et al. Male lineages are more metabolically fitness than female lineages in the rat. *Life Sci* 2013; 92: 210–216.

98. Menken M, Borghs K, Demuynck K, D’haeseleer V, Van Houdt R et al. Male lineages are more metabolically fitness than female lineages in the rat. *Life Sci* 2013; 92: 210–216.

99. Menken M, Borghs K, Demuynck K, D’haeseleer V, Van Houdt R et al. Male lineages are more metabolically fitness than female lineages in the rat. *Life Sci* 2013; 92: 210–216.

100. Menken M, Borghs K, Demuynck K, D’haeseleer V, Van Houdt R et al. Male lineages are more metabolically fitness than female lineages in the rat. *Life Sci* 2013; 92: 210–216.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2017
Author/s:
Short, AK; Yeshurun, S; Powell, R; Perreau, VM; Fox, A; Kim, JH; Pang, TY; Hannan, AJ

Title:
Exercise alters mouse sperm small noncoding RNAs and induces a transgenerational modification of male offspring conditioned fear and anxiety

Date:
2017-05-02

Citation:
Short, A. K., Yeshurun, S., Powell, R., Perreau, V. M., Fox, A., Kim, J. H., Pang, T. Y. & Hannan, A. J. (2017). Exercise alters mouse sperm small noncoding RNAs and induces a transgenerational modification of male offspring conditioned fear and anxiety. TRANSLATIONAL PSYCHIATRY, 7 (5), https://doi.org/10.1038/tp.2017.82.

Persistent Link:
http://hdl.handle.net/11343/259093

File Description:
Published version

License:
CC BY