Overlapped Gate-Source/Drain H-shaped TFET: Proposal, Design and Linearity Analysis

Utkarsh Upadhyay
NIT Jalandhar: Dr BR Ambedkar National Institute of Technology

Ashish Raman
NIT Jalandhar: Dr BR Ambedkar National Institute of Technology

RAVI RANJAN (✉ ranjan.ravi80@gmail.com)
Dr BR Ambedkar National Institute of Technology https://orcid.org/0000-0003-4423-3474

Naveen Kumar
NIT Jalandhar: Dr BR Ambedkar National Institute of Technology

Research Article

Keywords: TFET, Nanotube TFET, high-k dielectric, Linearity parameters

DOI: https://doi.org/10.21203/rs.3.rs-822598/v1

License: ©️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Overlapped Gate-Source/Drain H-shaped TFET: Proposal, Design and Linearity Analysis

Utkarsh Upadhyay1, Ashish Raman1, Ravi Ranjan1*, and Naveen Kumar1

* ranjan.ravi80@gmail.com Electronics and Communication Engineering, Dr.B.R. Ambedkar NIT Jalandhar, India 144011
1Electronics and Communication Engineering, Dr.B.R. Ambedkar NIT Jalandhar, India 144011

Abstract

In this paper, the proposed design of H-shaped TFET has been discussed. This design is providing a high Ion/Ioff ratio with better Ion. HfO₂ is used for better tunneling current. With this device, Different parameters such as unit parameter, analogue parameter, and linearity parameter have been studied and investigated the output of the H-TFET. As unit parameters, the electric field, electric potential, energy band diagram, and non-local band-to-band tunneling rate (BTBT) have all been observed. Second and third-order harmonics distortion (HD₂, HD₃), third-order current intercept point (IIP₃), third-order intermodulation distortions (IMD₃), and second and third-order voltage intercept point (VIP₂, VIP₃) are evaluated as linearity parameters that characterize the device’s distortions and linearity. We obtained \(I_{\text{on}} = 1.6 \times 10^{-4} \, \text{A/μm} \), \(I_{\text{off}} = 2.1 \times 10^{-19} \, \text{A/μm} \), \(\frac{I_{\text{on}}}{I_{\text{off}}} = 7.6 \times 10^{14} \), threshold voltage \(V_t = 0.3449 \, \text{V} \).

© 2017 Elsevier Inc. All rights reserved.

Keywords: TFET, Nanotube TFET, high-K dielectric, Linearity parameters

I. Introduction

We all required a device which has low power consumption, high speed and low area. This requirement is done by scaling of device. Scaling below nanoscale has some drawbacks ex. high power dissipation, short channel effect (SCE) \cite{1}. So, we need a device which have less affected from SCE. Scaling the supply voltage in the case of MOSFETs will reduce power consumption \cite{2}. The effective voltage determines the drain to source current, which can be improved by scaling the threshold voltage. The leakage current increases exponentially as the threshold voltage (Vth) is scaled up \cite{3}. Owing to the inability to scale the subthreshold swing (SS) under the boltzmann limit of 60 mV/decade at room temperature \cite{4}, the physical geometry of the devices is quickly scaled down, but the power supply of the devices is not scaled down in the very same manner \cite{3}. To address the shortcomings of traditional MOSFETs, a new operating theory has been tested using a particular kind of transistor construction, non-silicon-based materials \cite{3}. So we take TFET for that which have a good Ion /Ioff \cite{5} ratio with low subthreshold swing. Because of the band-to-band tunneling (BTBT) process in TFETs, they have a lower ON-current (Ion) than traditional MOSFETs \cite{1}. Low Ion, high SSavg, high Vt, small Ion/Ioff, ambipolar currents, and drain driven current improvement due to large silicon bandgap are all disadvantages of standard Si-TFETs \cite{6}\cite{7}. Nanotube TFETs have good RF performance. In respect of drive current capacity, energy loss, and area, the NT structure is superior \cite{8}\cite{9}. However, if it is to be used in digital devices, the reverse gate bias condition, i.e. ambipolar current, must be reduced \cite{10}. Due to indirect bandgap \cite{6} semiconductor and scattering phenomena, the band-to-band tunneling (BTBT) efficiency in silicon is lower. The current in a MOSFET \cite{1} is measured by the thermionic emission of free charge carriers.

\[I_{\text{thermionic}} = e^{\frac{V_{gs}/\eta}{V_T}}. \] \[1\]

But It is primarily from BTBT in TFET \cite{5}.

\[I_{\text{BTBT}} = AE^2e^{-B/\varepsilon}. \] \[2\]

Here from the above equation (2), we understand that the band-to-band tunneling (BTBT) current is exponentially dependent on electric field.

Different novel architectures \cite{11}, such as dual gate architecture TFETs, have been developed to enhance the existing drive capabilities (Ion) of TFETs \cite{1}. For the improvement in current in TFET, we use different types of structures and architectures of TFET, H-shaped TFET is also one of those structure. The current in TFET is mainly dependent on band to band tunneling current.
II. DEVICE STRUCTURE AND SIMULATION PARAMETERS

The proposed structure of Overlapped gate-source/drain H-shaped TFET is shown in fig1. In this design, we have gate is surrounded by channel for more tunneling. Gate is controlling tunneling in both directions. Tunneling is occurring in vertical direction. HfO$_2$ [12] is used instead of SiO$_2$ for better I_{off} current. When a gate voltage is applied, electrons are start tunneling from source to channel. Gate is overlapped by the channel. Overlapped area by gate on channel is responsible for the controllability of gate and hence it effects the tunneling rate of carriers.

Parameters	Symbols	Values
Source concentration	N_s	1×10^{20} cm$^{-3}$
Channel concentration	N_C	1×10^{15} cm$^{-3}$
Drain concentration	N_D	2×10^{19} cm$^{-3}$
Source Thickness	w_c	2 nm
Gate oxide thickness	t_{ox}	1 nm
Channel thickness	w_c	2 nm
Gate thickness	g_t	5 nm
Drain length	L_D	20 nm
Channel length	L_C	30 nm
Source length	L_S	20 nm
Gate length	L_G	30 nm
HfO$_2$ length		70 nm
The doping parameters for this device for different sections are shown in Table 1. We take heavily doped p+ source for enhancing I_{on} current, with lightly doped p-channel and moderately doped n+ drain to reduce leakage current. The gate electrode work function is about 4.5 eV. The device parameters channel thickness (w_c), source/drain thickness and gate oxide thickness (t_{ox}), Source/drain length (L_S/L_D), channel length (L_C) are shown in Table I.

We use ATLAS Silvaco TCAD tool for the simulation of this design [13]. The tunnelling current for a degenerated P-N junction can be correctly modelled using the non-local BTBT approach in both forward and reverse bias conditions. In the “MODEL” sentence, we used “BBT.NONLOCAL” to allow this model. In addition to the “BBT.NONLOCAL” parameter being defined in the “MODEL” argument, In the region containing a single P-N junction, where quantum tunnelling is required, a mesh must be specified. The non-local BTBT model depicts correct charge carrier tunnelling [14] in the system, with tunnelling occurring at the Source-Channel interface. For proper tunnelling, fine (light) meshing is needed at the Source-Channel interface. At the Source-Channel terminal, quantum meshing (qt mesh) is also performed. For proper tunnelling, the effective mass of an electron is taken 0.22me and the effective mass of a hole is 0.12mh [13]. Quantum meshing is carried out in both the x and y directions. In Fermi–Dirac carrier diffusion equations, the Fermi formula is used.

III. SIMULATION RESULTS AND DISCUSSION

The exact type of behaviour of H-TFET can be seen in device parameters like electron/hole concentration, electric field variation, potential variation energy band diagram, and nonlocal band to band tunnelling rate (BTBT).

It is obvious that no tunnelling is feasible in the OFF state, so I_{off} is very weak, while tunnelling is possible in the ON state. In fig.2(a), energy band diagram [15] is shown which describes where the tunnelling is possible. At $V_{DS} = 0.5$ V. The OFF state [$V_{DS} > 0$ V and $V_{GS} = 0$ V] is seen in red, while the ON state [$V_{DS} > 0$ V and $V_{GS} > 0$ V] is seen in blue. Caused by the sudden transition in the doping profile from the source to the channel area, the electric field is high [16].

Tunneling range is larger in the OFF state than it is in the ON state. As supply voltage ($V_{DS} = 0.5$ V) is applied, the energy band diagram on the source side is higher than on the drain side. In the ON condition, the drain to source voltage (V_{DS}) raises the valance band (VB) just above conduction band (CB) at the source, tunnelling distance narrows, and further tunnelling at the source-channel interface is possible. The electric potential change along the channel of the H-TFET is seen in fig. 2(b). Source side potential is low, while at the drain, it is high. The power supply and work function of the source and drain metal contacts determine the potential variance through the system. The electric field variations for the Off and ON states is seen in fig. 2(c). At the source-channel terminal, the electric field is at its peak. For the Off state, the tunnelling width is larger and the depletion width is also larger, resulting in a smaller electric field than in the ON state. The electron Band-To-Band Tunneling (e-BTBT) together with channel length can be seen in fig. 2(d). This plot is straight around zero for the Off, indicating that there is no tunnelling occurs, whereas in the ON-state, there is still a significant rise in tunnelling rate near the source channel contact. The figure shows why I_{off} is still so low and I_{on} is really high.

We can get the transfer characteristics by the help of ATLAS Silvaco TCAD tool. The transfer characteristics is shown in fig.2(e). The figure illustrates the drain field is current (I_{DS}) Vs. gate voltage (V_{GS}) at $V_{DS} = 0.5$ V. When the switch is turned on, the drain current is 1.6×10^{-4} A/μm. The tunnelling width is very short and the electric field is very large at the source channel interface, therefore current is higher. The output characteristics of the proposed device is shown in fig.2(f). Figure 4 depicts the relationship between drain current (I_{on}) and V_{DS}. In the log scale, the I_{on} varies in accordance with the drain voltage. The I_{ON} current value is 1.6×10^{-4} A/μm. The I_{on}/I_{off} current ratio is in the order of 10^{14}.

First we took some default parameters like oxide material, channel length (L_C), channel thickness(w_c), oxide thickness(t_{ox}). Further we modified parameters to get better results in I_{on} current, I_{off} current and I_{on}/I_{off} ratio.

A. Effect of variation of Oxide Material

First we change oxide material and see which material gives best result. We keep other parameters as unchanged like channel length is 25nm, channel thickness is 10nm, oxide thickness is 2nm for this analysis. In fig.3(c), we can see how transfer character characteristics changes with the oxide materials. Since oxide materials are dielectric and have different dielectric constants, the current value can change. HfO_x($k=25$), Al_2O_3($k=8$), SiO_2($k=3.6$). For HfO_2, we found that the optimal values of I_{on}, I_{off} and I_{on}/I_{off} are 3.41×10^{-6} A/μm, 5.76×10^{-10} A/μm and 5.92×10^{12} A/μm respectively.
After oxide material, we change the channel length from 20nm to 40 nm with 5 nm step and optimized result. For this analysis we take HfO$_2$ as oxide material and keep other parameters constant w_c and t_{ox} as 10nm and 2nm respectively. I_d – V_{gs} characteristics graph for different values of channel length(L_c) is shown in fig.3(a). By increasing the L_c, I_{off} current will decrease for low V_{gs} values from 0.0 to 0.2 V. The overall I_{on}/I_{off} is also increased till L_c=30 nm. the highest I_{on}/I_{off} obtained at L_c=30 nm shown in fig.3(b). For L_c=30nm, we obtained optimal value for I_{on}, I_{off} and I_{on}/I_{off} as 3.46×10^{-06} A/μm, 7.8×10^{-19} A/μm and 4.43×10^{12} A/μm respectively.

B. Effect of variation of Channel Length

![Graphs showing energy band diagram, potential, electric field, nonlocal BBT e- Tunneling Rate, transfer characteristics, and output characteristics of proposed TFET](image-url)
C. Effect of variation of Channel Width

We try to optimize channel width after we got optimized value for channel length $L_c = 30$ nm, keep this constant for this analysis. We varies w_c from 2 to 6nm and 10 nm. In fig.4(a), we can see the transfer characteristics of current for different value of w_c. The optimized values at $w_c = 2$nm for I_{on}, I_{off} and I_{on}/I_{off} are 6.25×10^{-5} A/μm, 1.45×10^{-18} A/μm and 4.28×10^{13} A/μm respectively.

D. Effect of variation of Oxide Thickness

We also check optimize value of oxide thickness (t_{ox}) after we got optimized value for channel width. We keep all parameters constant for this analysis. We take two values for t_{ox}, 1nm and 2nm, and see the variation in drain current in fig.4(b), we can see the transfer characteristics of current for different value of t_{ox}. The optimized values at $t_{ox} = 1$nm for I_{on}, I_{off} and I_{on}/I_{off} are 1.6×10^{-4} A/μm, 2.1×10^{-19} A/μm, 7.6×10^{14} respectively.

E. Effect of variation of Work Function

We further vary the work function of metal for optimizing the value of I_{on}/I_{off} and SS_{avg} (Subthreshold slope). We found that at work function equal to 4.5 eV, we obtained optimized value for I_{on}/I_{off} and SS_{avg} as 7.6×10^{14} and 32.34 mV/dec respectively. The variation of I_{on}/I_{off} ratio and Subthreshold slope (SS_{avg}) as a function of work function is given in fig.4(c) and fig.4(d) respectively.

Table.2 present a comparison of analog parameters for the various TFET configurations proposed earlier. As we add more improved techniques to get the improved results in our proposed structure, the table shows the increase in I_{on}, I_{off}, I_{on}/I_{off} and SS_{avg}.

![Fig.3](image_url) (a) Effect of gate length on $I_{DS}-V_{GS}$ curve. (b) Effect of gate length on I_{on}/I_{off} ratio. (c) Effect of oxide material on $I_{DS}-V_{GS}$ curve.
F. RF Parameter Analysis

The parasitic capacitance of the device, including gate capacitance (C_{gg}), gate-drain capacitance (C_{gd}), and cut off frequency (f_T), have been used to assess Frequency response. A rate over which the short circuit current gain

| Table 2. COMPARISON OF ANALOG PARAMETERS OF VARIOUS TFET |
|---------------------------------|--------|--------|-----------------|------------------|
| **Parameters** | **I_{on}** (A/μm) | **I_{off}** (A/μm) | **I_{on}/I_{off}** | **SS_{avg}** (mV/déc) |
| Proposed structure | 1.6×10^{-4} | 2.1×10^{-19} | 7.6×10^{14} | 32.34 |
| GAA-TFET[17] | 2.58×10^{-8} | 7.59×10^{-17} | 3.41×10^{8} | 36.24 |
| NT-TFET[18] | 5.0×10^{-6} | 4.3×10^{-19} | 1.1×10^{13} | 60 |
| CSNT-TFET [19] | 3.1×10^{-6} | 4.4×10^{-13} | 7.0×10^{8} | 33 |
| GAA-TFET [20] | 5.0×10^{-5} | 5.0×10^{-10} | 10^{5} | 70 |
| LG-TFET [21] | 4.7×10^{-7} | 8.7×10^{-15} | 5.4×10^{7} | 45.7 |
| L-TFET [11] | 1.0×10^{-6} | 7.3×10^{-15} | 1.3×10^{8} | 42.8 |
| TMG-TFET [22] | 8.9×10^{-6} | 9.3×10^{-14} | 9.6×10^{7} | 39.4 |
achieves unit value is known as the cut-off frequency. This reflects the device's transit time. A connection among \(f_T \), \(C_{gs} \), and \(g_m \) becomes \(f_T = \frac{g_m}{2C_{gs}} \). \(C_{gs} \) is really the gate to gate capacitor, whereas \(g_m \) seems to be the transconductance. Some visual fluctuations of the suggested TFET's cut-off frequency \((f_T) \) or 3-dB frequency are shown in Fig.5. The efficiency for a device at higher frequency being restricted with its cut-off frequency; therefore, the high cut-off frequency will always be desirable. With such a higher cut-off frequency, such device may easily be used for wider band uses. For moreover, its cut-off frequency changes in proportion to the transconductance. Since the improvement in \(g_m \) overrides the small increase in \(C_{gs} \), our figure showed how \(f_T \) rises as \(V_{GS} \) proceeds. The \(f_T \) graph, meanwhile, continues to decline once attaining a peak due to a decline in \(g_m \) as well as an increase in \(C_{gs} \) value. In analogue circuit applications, transconductance \((g_{m1}) \) is used to relate changes in output current to changes in applied voltage. At constant drain voltage, transconductance \((g_{m1}) \) is defined as the rate of change of drain current w.r.t gate to source voltage. The benefit of a higher transconductance value is that the device's amplification gain would be higher [23]. The expression for \(g_{m1} \), \(g_{m2} \) and \(g_{m3} \) are given below [16],

\[
\begin{align*}
g_{m1} &= \frac{dI_D}{dV_{GS}} \quad \text{at constant } V_{DS} \\
g_{m2} &= \frac{d(g_{m1})}{dV_{GS}} \quad \text{at constant } V_{DS} \\
g_{m3} &= \frac{d(g_{m2})}{dV_{GS}} \quad \text{at constant } V_{DS}
\end{align*}
\]

In Fig.6, transconductance \((g_{m1}) \), second order transconductance \((g_{m2}) \) and third order transconductance \((g_{m3}) \) are shown which are taken at different values of \(V_{GS} \) from -0.3V to 1.0V. This analysis is observed at two \(V_{DS} \) values i.e. 0.1V and 0.5V.
The distortions, and linearity of the system for analogue circuit application are shown by linearity parameters such as HD2, HD3, IIP3, IMD3, VIP2, and VIP3. To see the proper behaviours of proposed device, linearity parameters are very important parameters. The harmonics distortion (HD2, HD3) is high in the transition field, i.e. when switching from ON to OFF. After switching HD2 and HD3 are decreases with increments in V_{GS} value. Variation of HD2 and HD3 at two drain voltage values i.e. $V_{DS} =0.1$V and 0.5V is shown in fig.7(a) and fig.7(b). We can see that distortion is more at higher V_{DS} value.

The equation for HD2 and HD3 are given below [24]:

$$HD2 = \frac{1}{2} \times V_i \times \frac{d^2g_{m1}}{dV_G^2} \ dBm$$ \hspace{1cm} (6)

$$HD3 = \frac{1}{4} \times V_i^2 \times \frac{d^2g_{m1}}{dV_G^2} \ dBm$$ \hspace{1cm} (7)

Here V_i and g_{m1} are input signal amplitude and transconductance respectively. R_S is source resistance.

At a given operating frequency, the voltage intercept point (VIP) reflects the input voltage during which the 1st and 3rd harmonics can have the same amplitude. VIP2 and VIP3 are 2nd and 3rd order voltage intercept points respectively. Their expression for calculation are shown below:

$$VIP2 = 4 \times \frac{g_{m1}}{g_{m2}} V$$ \hspace{1cm} (8)

$$VIP3= \sqrt{24} \times \frac{g_{m1}}{g_{m3}} V$$ \hspace{1cm} (9)
By the help of VIP3, we can calculate IMD3 (3rd order intermodulation modulation distortion). The amplitude modulation (AM) of a signal with more than one frequency, also known as multi-tone modulation, is defined by IMD3. IMD3 has a value of -14.7561 dBm in our design. By the help of IIP3, we can examine whether the 3rd order harmonics distortions signal amplitude is the same as the reference signal. The IIP3 should have a high value. In our design, IIP3 has a value of -53.8426 dBm at V_{DS}=0.5V. The expression for IMD3 and IIP3 are shown below [24]:

$$\text{IMD3} = \left(\frac{9}{2} \times (\text{VIP3})^3 \times g_{m3} \right) 2 \times R_s \text{ dBm} \quad (10)$$

$$\text{IIP3} = \frac{2}{3} \times \frac{g_{m1} g_{m3}}{g_{m3} \times R_S} \text{ dBm} \quad (11)$$

The linearity parameters are shown in fig. 7.

Fig.7. Variations in (a) HD2, (b) HD3, (c) IMD3, (d) IIP3, (e) VIP2, (f) VIP3 with V_{GS} at drain voltage V_{DS}=0.1V and 0.5V.
IV. CONCLUSION

This paper reveals the proposed H-shaped nanotube tunnel field effect transistor (H-NT-TFET) architecture, which has a higher drain current than other TFET architectures. The device's drain current (I_{on}) is 1.6×10^{-4} A/μm, and its OFF current (I_{off}) is 2.1×10^{-19} A/μm. This proposed design exhibits a high I_{on}/I_{off} current ratio of 7.6×10^{14} and threshold voltage $V_t = 0.3449$ V at $V_{DS} = 0.5$ V. By the help of linear parameters, we can say that this proposed design is also used in analog application. This device exhibits harmonic distortion parameters HD2 and HD3 values about 6.69×10^{-3} dBm and 6.8×10^{-4} dBm respectively. Other parameters IMD3 and IIP3 having value about -14.7561 dBm and -53.8426 dBm respectively at $V_{DS} = 0.5$ V. VIP2 and VIP3 has value of 7.466667 V and 1.912366 V respectively at $V_{DS} = 0.5$ V.

Declarations section

Ethics approval and consent to participate: NA
Consent for publication: NA
Availability of data and materials: YES
Competing interests: NA
Funding: The author(s) received no financial support for the research, authorship, and/or publication of this article.

Authors' contributions
Utkarsh Upadhyay: Simulation, TCAD Software, Writing- Original draft preparation.
Ashish Raman: TCAD Software, Writing- Original draft preparation.
Ravi Ranjan: Simulation, Data curation and Revision.
Naveen Kumar: Simulation, TCAD Software, Logical-Methodology, conceptualization.

Acknowledgements: NA

Compliance with Ethical Standards section

Disclosure of potential conflicts of interest: No conflicts to report.
Research involving Human Participants and/or Animals: NA
Informed consent: NA

REFERENCES

[1] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc, “Design of ion-implanted MOSFET’s with very small physical dimensions,” IEEE J. Solid-State Circuits, vol. SSC-9, no. 5, pp. 256–258, Oct. 1974.
[2] Y. Taur et al., “CMOS scaling into the nanometer regime,” Proc. IEEE, vol. 85, no. 4, pp. 486–504, Apr. 1997.
[3] Gupta, Ashok & Raman, Ashish. (2020). Electrostatic Dopant Nanotube TFET: Proposal, Design, and Investigation with Linearity Analysis. Silicon. 10.1007/s12633-020-00584-1.
[4] W. Y. Choi, B.-G. Park, J. D. Lee, and T.-J. K. Liu, “Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec,” IEEE Electron Device Lett., vol. 28, no. 8, pp. 743–745, Aug. 2007.
[5] Singh, S., Raj, B. "Analysis of ONOFIC Technique Using SiGe Heterojunction Double Gate Vertical TFET for Low Power Applications," Silicon, pp.1-10, 2020.
[6] J. Knoch and J. Appenzeller. "A novel concept for field-effect transistors - the tunneling carbon nanotube FET," 63rd Device Research Conference Digest, 2005. DRC '05., Santa Barbara, CA, 2005, pp. 153-156.
[7] U. E. Avci, D. H. Morris, and I. A. Young, “Tunnel field-effect transistors: Prospects and challenges,” IEEE J. Electron Devices Soc., vol. 3, no. 3, pp. 88–95, May 2015.
[8] Fahad HM, Hussain MM (Mar. 2013) High- performance silicon nanotube tunneling FET for ultralow-power logic applications. IEEE Trans. Electron Devices 60(3):1034–1039
[9] Fahad HM, Hussain MM (Jun. 2012) Are nanotube architectures more advantageous than nanowire architectures for field effect transistors. Sci Rep 2(2):1–7
[10] B. Raad, K. Nigam, D. Sharma, and P. Kondekar, “Dielectric and work function engineered TFET for ambipolar suppression and RF performance enhancement,” Electron. Lett., vol. 52, no. 9, pp. 770–772, Apr. 2016.
[11] S. W. Kim, J. H. Kim, T. K. Liu, W. Y. Choi and B. Park, “Demonstration of L-Shaped Tunnel Field-Effect Transistors,” in IEEE Transactions on Electron Devices, vol. 63, no. 4, pp. 1774-1778, April 2016, doi: 10.1109/TED.2015.2472496.
[12] K. Boucart and A. Ionescu, “Double Gate Tunnel FET with ultrathin silicon body and high-k gate dielectric,” 2006 European Solid-State Device Research Conference, Sept. 19-21, 2006, Montreux, Switzerland.

[13] ATLAS device simulator software user manual, Jun. 2019, Santa Clara, CA, Silvaco Int.

[14] K.-H. Kao, A. S. Verhulst, W. G. Vandenberghe, B. Sorée, G. Groeseneken, and K. De Meyer, “Direct and indirect band-to-band tunneling in germanium-based TFETs,” IEEE Trans. Electron Devices, vol. 59, no. 2, pp. 292–301, Feb. 2012.

[15] Roy K., Mukhopadhyay S., Mahmoodi-Meimand H. (1995) Leakage current mechanisms and leakage reduction techniques in deepsubmicrometer CMOS circuits. Proc IEEE 91(2):305–327

[16] Streetman BG, Banerjee S (1995) Solid state electronic devices, vol. 4. Prentice Hall, Englewood Cliffs

[17] Patel J, Sharma D, Yadav S, Lemtou A, Suman P (2019) Performance improvement of nano wire TFET by heterodielectricand heteromaterial: at device and circuit level. Microelectron. J. 85:72–82. doi:10.1016/j.mejo.2019.02.004

[18] Kumar N, Mushtaq U, Amin SL, Anand S (2019) Design and performance analysis of dual-gate all around core-shell nanotube TFET. Superlattice. Microst. 125:356–364. doi:10.1016/j.spmi.2018.09.012

[19] Musalgaonkar G, Sahay S, Saxena RS, Kumar MJ (2019) Nanotube tunneling FET with a core source for ultrasteeepsubthreshold swing:a simulation study. IEEE Trans. Electron Devices:1–8. doi:10.1109/ted.2019.2933756.

[20] Dewey G et al (2011) Fabrication, characterization, and physics of III–V heterojunction tunneling Field Effect Transistors (H-TFET) for steep sub-threshold swing. EDM Tech. Dig.:33.6.1–33.6.4. doi:10.1109/IEDM.2011.6131666

[21] Z. Yang, “Tunnel field-effect transistor with an L-shaped gate,” IEEE Electron Device Lett., vol. 37, no. 7, pp. 839–842, Jul. 2016.

[22] E. Ko, H. Lee, J.-D. Park, and C. Shin, “Vertical tunnel FET: Design optimization with triple metal-gate layers,” IEEE Trans. Electron Devices, vol. 63, no. 12, pp. 5030–5035, Dec. 2016.

[23] Kumar N, Raman A (2019) Performance Assessment of the Charge-Plasma-Based Cylindrical GAA Vertical Nanowire TFET With Impact of Interface Trap Charges. IEEE Transactions on Electron Device66(10):4453–4460

[24] Kumar N, Raman A (2019) Design and investigation of chargeplasma-based work function engineered dual-metal-heterogeneousgate Si-Si0.55Ge0.45 GAA-cylindrical NWTFET for ambipolaranalysis. IEEE Trans. Electron Devices 66(3):1468–1474. doi:10.1109/TED.2019.2893224

[25] A. K. Gupta, A. Raman and N. Kumar, “Cylindrical Nanowire-TFET with Core-Shell Channel Architecture: Design and Investigation”. Silicon, pp.1–8., 2019. doi:10.1007/s12633-019-00331-1