ARTICLE
Clinical Study

The impact of immediate breast reconstruction on the time to delivery of adjuvant therapy: the iBRA-2 study

Rachel L O’Connell1, Tim Rattay2, Rajiv V Dave3, Adam Trickey4, Joanna Skillman5, Nicola L. P. Barnes3, Matthew Gardiner6,7, Adrian Harnett8, Shelley Potter9,10 and Chris Holcombe10 on behalf of the iBRA-2 Steering Group and the Breast Reconstruction Research Collaborative

BACKGROUND: Immediate breast reconstruction (IBR) is routinely offered to improve quality-of-life for women requiring mastectomy, but there are concerns that more complex surgery may delay adjuvant oncological treatments and compromise long-term outcomes. High-quality evidence is lacking. The iBRA-2 study aimed to investigate the impact of IBR on time to adjuvant therapy.

METHODS: Consecutive women undergoing mastectomy ± IBR for breast cancer July–December, 2016 were included. Patient demographics, operative, oncological and complication data were collected. Time from last definitive cancer surgery to first adjuvant treatment for patients undergoing mastectomy ± IBR were compared and risk factors associated with delays explored.

RESULTS: A total of 2540 patients were recruited from 76 centres; 1008 (39.7%) underwent IBR (implant-only \(n = 675 \), 26.6%; pedicled flaps \(n = 105,4.1\% \) and free-flaps \(n = 228, 8.9\% \)). Complications requiring re-admission or re-operation were significantly more common in patients undergoing IBR than those receiving mastectomy. Adjuvant chemotherapy or radiotherapy was required by 1235 (48.6%) patients. No clinically significant differences were seen in time to adjuvant therapy between patient groups but major complications irrespective of surgery received were significantly associated with treatment delays.

CONCLUSIONS: IBR does not result in clinically significant delays to adjuvant therapy, but post-operative complications are associated with treatment delays. Strategies to minimise complications, including careful patient selection, are required to improve outcomes for patients.

British Journal of Cancer (2019) 120:883–895; https://doi.org/10.1038/s41416-019-0438-1

BACKGROUND
Breast cancer is the most common female cancer worldwide with 1.7 million new cases diagnosed each year.1 Despite improvements in treatment, however, mastectomy remains the primary surgical treatment for almost 40% of women2,3 and immediate breast reconstruction (IBR) is offered with the aim of improving quality-of-life.4

Although psychosocial outcomes are an important consideration when planning treatment, oncological safety remains paramount. Breast reconstruction is associated with more complications than simple mastectomy,5 and concerns have been raised that the increased complication rate may lead to the delay or omission of adjuvant chemotherapy or radiotherapy,6 which may compromise oncological outcomes. The clinical significance of short delays is unclear, but two recent large population-based studies have shown that patients experiencing delays of more than 90 days in the delivery of chemotherapy experienced worse overall and cancer-specific survival.7,8 Furthermore, a recent meta-analysis suggests a 15% decrease in overall survival for every four-week delay in the delivery of adjuvant chemotherapy.9 Delays to radiotherapy have similarly adverse effects but the time-frames are less well-established. A meta-analysis including 21 retrospective breast cancer studies suggested an increased risk of loco-regional recurrence if radiotherapy was delayed by more than 8 weeks following surgery,10 but other large cohort studies have demonstrated no deleterious effects with delays of up to 20 weeks.11

Evidence regarding the impact of IBR on the delivery of adjuvant therapy, however, is inconsistent.8 A recent systematic review8 failed to demonstrate a clinically significant delay in the initiation of chemotherapy but included 14 mainly single-centre studies with
significant heterogeneity and these results cannot be relied upon. Two large population-based studies, however, have recently reported delays to the start of chemotherapy in the patients undergoing IBR. One study did not differentiate between types of breast reconstruction and the second used patients undergoing breast conserving surgery as a control group and demonstrated delays in patients undergoing mastectomy without reconstruction as well as those undergoing immediate autologous reconstruction procedures making these findings difficult to interpret.

High-quality evidence regarding the impact of IBR on the delivery of adjuvant therapy compared with mastectomy alone is therefore lacking. Randomised trials (RCTs) provide the best evidence of treatment effect but are inappropriate in this context. A large-scale prospective cohort study is therefore required to generate high-quality data to allow patients and surgeons to make more informed decisions about potential treatment options. The trainee research collaborative model has recently emerged as a time and cost-effective method for delivering large-scale prospective studies in reconstructive breast surgery. This network of breast and plastic surgeons was utilised to deliver the iBRA-2 study to determine the impact of IBR on the delivery of adjuvant treatment.

METHODS

Study design and participants

A prospective multicentre cohort study was used to determine whether IBR influenced time to delivery of adjuvant therapy compared to mastectomy alone.

All breast or plastic surgical units performing mastectomy with or without IBR were invited to participate through the UK Trainee Collaborative Research Network (the Mammary Fold Academic and Research Collaborative and the Reconstructive Surgery Trials Network) and the UK professional associations (Association of Breast Surgery [ABS] and the British Association of Plastic Reconstructive and Aesthetic Surgeons [BAPRAS]).

Consecutive women aged 18 or over undergoing mastectomy with or without IBR using any technique for invasive or pre-invasive (ductal carcinoma in situ, DCIS) breast cancer with curative intent at participating centres between 1st July and 31st December 2016 were recruited to the study. Excluded were patients undergoing risk-reducing surgery (without a therapeutic mastectomy for breast cancer), partial mastectomy including wide local excision with volume replacement (lattisimus dorsi mini-flaps; lateral intercostal perforator [LICAP] or thoracodorsal artery perforator [TDAP] flaps) or displacement techniques (therapeutic mammoplasty), and those with distant metastatic disease.

This study was classified as service evaluation by the UK National Health Service Research Authority Decision Tool (http://www.hra-decisiontools.org.uk/research/index.html), hence individual patient consent was not required. Each participating centre registered the study and obtained local clinical governance approvals before commencing patient recruitment. The study protocol was published in 2016.

Procedures

Patients were identified prospectively from clinics, multidisciplinary team (MDT) meetings, and operating theatre lists. Simple demographic, comorbidity, operative and oncology data were collected for each participant. Decisions regarding the recommendation for adjuvant treatment were identified from the post-operative MDT meeting.

For patients in whom adjuvant therapy was recommended, data were collected on whether the offer was accepted and in patients electing to receive adjuvant therapy, date of the first treatment was recorded.

Data regarding post-operative complications were collected prospectively until the patient commenced adjuvant therapy or it was decided that adjuvant therapy would be omitted due to post-operative complications. Preliminary work suggested that adjuvant therapy was unlikely to commence earlier than 6 weeks post-operatively. Data collection in patients not requiring adjuvant treatment therefore continued from the last definitive cancer surgery until 6 weeks following surgery either by clinical assessment or note-review in those not attending for follow-up.

The REDCap electronic data-capture system (http://www.projectredcap.org/) was used in data collection.

The study processes were piloted over a 4-week period to ensure the feasibility of the study and to refine the case report forms before commencing national recruitment.

For the purposes of the analysis, patients were categorised into four groups according to the most complex procedure received as: (i) mastectomy only without reconstruction; (ii) mastectomy and IBR with implant-only techniques; (iii) mastectomy and IBR with pedicled flaps and (iv) mastectomy and IBR with free-flap techniques. Implant-based procedures included any reconstruction in which only expanders/implants were used to reconstruct the breast. This included one or two-stage procedures with or without biological (e.g. acellular dermal matrix) or synthetic (e.g. titanium-coated polypropylene) mesh irrespective of whether the implant/expander was placed in a pre- or subpectoral position. Pedicled flap procedures included any pedicled flap used to reconstruct the breast with or without an implant/expander and included lattisimus dorsi (LD) and transverse rectus abdominus myocutaneous (TRAM) flaps. Free-flap procedures included any technique in which a microvascular free-flap was used for IBR and included deep inferior epigastric perforator (DIEP), superficial inferior epigastric perforator (SIEA), superior and inferior gluteal artery perforator (SGAP and IGAP) and transverse upper gracilis (TUG) procedures.

Outcome measures

The primary outcome was time in days from last definitive cancer surgery to the first adjuvant treatment. The last definitive cancer surgery included any additional procedures recommended by the MDT for oncological reasons (e.g. axillary clearance) but did not include any surgery for post-operative complications (e.g. debridement of skin-flap necrosis). First adjuvant therapy was defined as the first dose of chemotherapy or the first fraction of radiotherapy. Time to endocrine therapy was not included. In patients for whom more than one modality of adjuvant treatment was recommended, only the start date for the first adjuvant therapy was recorded. Significant treatment delays to (i) chemotherapy and (ii) radiotherapy were defined based on the best available evidence as delays of >90 days for chemotherapy and >8 weeks for radiotherapy.

Secondary outcomes included post-operative complications, re-admission to hospital following discharge and unplanned re-operation for complications within 6 weeks of the last definitive cancer surgery or prior to the start of adjuvant therapy. All complications were defined a priori. Major complications were defined as any complication requiring re-admission or re-operation. Minor complications were defined as those managed conservatively.

Quality assurance

For quality assurance (QA) purposes, the principal investigator at each participating site was asked to independently validate 5–10% of the submitted data for each unit and to check complete case ascertainment. If concordance between the data entered on REDCap and that independently validated was <90%, the unit’s data were excluded from the analysis consistent with the QA procedure used in other collaborative projects.

Statistical analysis

Descriptive summary statistics were calculated for each variable for the cohort overall and split by operative procedure. Categorical
Table 1. Demographics of participants in the iBRA-2 study by procedure type
Age (years): median (IQR) (range)
All patients (n = 2540)
Mastectomy only (n = 1532, 60.3%)
Implant (n = 675, 26.6%)
Pedicled flap (n = 105, 4.1%)
Free-flap (n = 228, 8.9%)
P-value
58 (48–69) (21–96)
65 (54–75) (26–96)
50 (43–57) (23–82)
52 (47–60) (25–74)
50 (44.5–56) (21–72)
<0.001
BMI (median) kg/m²
(IQR) (range)
All patients
Mastectomy only
Implant
Pedicled flap
Free-flap
26.4 (23.2–30.7)
27.3 (<13.4–32.2)
24.4 (16.0–16.4)
26.6 (18.5–39.2)
27.4 (15.6–31.1)
<0.001
Underweight
55 (2.2)
33 (2.2)
20 (3.0)
0 (0.0)
2 (0.9)
Normal
880 (34.7)
445 (29.0)
328 (48.6)
37 (35.2)
70 (30.7)
Overweight
769 (30.3)
457 (29.8)
191 (28.3)
35 (33.3)
86 (37.7)
Obese
380 (15.0)
252 (16.4)
65 (9.6)
22 (21.0)
41 (18.0)
Severely obese
277 (10.9)
221 (14.4)
35 (5.2)
5 (4.8)
16 (7.0)
Not reported
179 (7.1)
124 (8.1)
36 (5.3)
6 (5.7)
13 (5.7)
Smoking status
1829 (71.6)
1082 (70.6)
499 (73.9)
75 (71.4)
163 (71.5)
0.015
Diabetes
232 (9.1)
189 (12.3)
25 (3.7)
7 (6.7)
11 (4.8)
<0.001
Ischaemic heart disease
140 (5.5)
133 (8.7)
3 (0.4)
2 (1.9)
2 (0.9)
<0.001
Other comorbidity
1186 (46.7)
848 (55.3)
222 (32.9)
36 (34.3)
80 (35.1)
<0.001
Previous oncological therapy
Radiotherapy to ipsilateral breast
240 (9.5)
158 (10.3)
40 (5.9)
16 (15.2)
26 (11.4)
0.011
Neoadjuvant chemotherapy
422 (16.6)
230 (15.0)
128 (19.0)
21 (20.0)
43 (18.9)
0.001
Neoadjuvant endocrine therapy
186 (7.3)
136 (8.9)
28 (4.1)
8 (7.6)
14 (6.1)
<0.001
Previous surgery to ipsilateral breast
Any surgery
546 (21.5)
299 (19.5)
147 (21.8)
37 (35.2)
63 (27.6)
0.001
Cosmetic surgery
32 (1.3)
7 (0.5)
17 (2.5)
1 (1.0)
7 (3.1)
<0.001
Oncological surgery
477 (18.7)
271 (17.7)
119 (17.6)
33 (31.4)
54 (23.7)
0.001
Previous surgery to ipsilateral axilla
Any axillary surgery
502 (19.8)
230 (15.0)
148 (21.9)
40 (38.1)
84 (36.8)
<0.001
Auxillary clearance
102 (4.0)
70 (4.6)
15 (2.2)
10 (9.5)
7 (3.1)
<0.001
Laterality of surgery
Unilateral Mx ± BR
2235 (88.0)
1427 (93.2)
528 (78.2)
96 (91.4)
184 (80.7)
Bilateral Mx ± BR
189 (7.4)
71 (4.6)
98 (14.5)
1 (1.0)
19 (8.3)
Unilateral procedure + contralateral symmetrisation
91 (3.6)
19 (1.2)
43 (6.4)
8 (7.6)
21 (9.2)
25 (1.0)
15 (1.0)
6 (0.9)
0 (0.0)
4 (1.8)

The impact of immediate breast reconstruction on the time to delivery of... R.L. O'Connell et al.
The impact of immediate breast reconstruction on the time to delivery of... R.L. O’Connell et al.

RESULTS

In total, 2652 patients were recruited to the study from 76 centres across the UK (n = 66), Europe (n = 9) and North Africa (n = 1). Of these, 112 (4.4%) were excluded; 19 (0.7%) had surgery outside of the study period; 55 (2.1%) had risk-reducing surgery only; 6 (0.2%) did not undergo a mastectomy and 24 (0.9%) had incorrect or important missing data (e.g. operation date or procedure type). Eight (0.3%) patients had ‘other’ forms of reconstruction. These could not be appropriately categorised, hence were excluded.

2540 patients were therefore included in the analysis. Of these, 1008 (39.7%) underwent IBR with implant-based (n = 675), pedicled flaps (n = 105) or free-flap (n = 228) techniques.

Patient demographics

Patient demographics are summarised in Table 1. Women undergoing IBR were younger and had fewer comorbidities than patients undergoing mastectomy only. More patients undergoing IBR received NAC than those undergoing simple mastectomy and patients undergoing IBR were more likely to have undergone an up-front SNB before their reconstruction, particularly if they were undergoing tissue-based procedures. Bilateral surgery for risk reduction or symmetry was more common in patients undergoing implant-based or free-flap reconstruction (Table 1).

Post-operative complications

The 2540 patients underwent 2732 procedures including 773 implant-based reconstructions (157 subpectoral expanders; 410 subpectoral reconstructions with biological or synthetic mesh; 105 dermal-sling procedures and 98 prepectoral reconstructions), 106 pedicled flaps (62 autologous LD, 39 LD with implant, 2 pedicled TRAM and 2 other) and 247 free-flap procedures (219 DIEPs, 16 free TRAMs, 4 SIEA, 7 TUG flaps and 1 other). Details of complications by procedure are summarised in supplementary table 1.

Overall, 929 (36.6%) of patients in the study experienced at least one post-operative complication (Table 2). Univariable analysis identified age, BMI, IHD, diabetes, having other comorbidities, smoking, ASA grade and undergoing an ANC but not IBR as risk factors associated with developing a post-operative complication (Table 2). Age, BMI, having other comorbidities, smoking and undergoing an ANC remained strongly associated with post-operative complications in the multivariable model, whereas undergoing bilateral surgery and free-flap reconstruction were also identified as independent risk factors for complications in the multivariable analysis.

Major complications which required re-admission to hospital or further surgery (Table 2) were experienced by 221 (8.7%) of patients. Implant-based and free-flap reconstruction, age, BMI, smoking and bilateral surgery were associated with major complications in the univariable analysis. All of these variables except for age, remained strongly associated with major complications in the multivariable model but implant-based (adjusted odds ratio [aOR] 4.34, 95% confidence interval [CI] 2.35–7.99) and free-flap reconstruction (aOR 4.88, 95% CI 2.63–9.04) were the strongest predictors for major complications in this analysis (Table 2).

Table 1 continued

Indication for bilateral surgery	All patients (n = 2540)	Mastectomy only (n = 1532, 60.3%)	Implant (n = 675, 26.6%)	Pedicled flap (n = 105, 4.1%)	Free-flap (n = 228, 8.9%)	P-value
Unilateral procedure + contralateral oncological procedure	<0.001^b	<0.001^b	<0.001^b	<0.001^b	<0.001^b	<0.001^b
Bilateral malignancy	82 (26.9)	39 (37.1)	36 (24.5)	0 (0.0)	7 (15.9)	0.034
Unilateral malignancy/contralateral risk reduction	116 (38.0)	35 (33.3)	66 (44.9)	2 (22.2)	13 (29.6)	0.012
Unilateral malignancy/contralateral symmetrisation	93 (30.5)	20 (19.1)	42 (28.6)	7 (77.8)	24 (54.6)	0.034
Unilateral malignancy/other	14 (4.6)	11 (10.5)	3 (2.0)	0 (0.0)	0 (0.0)	0.034

ASA American Society of Anaesthesiologists, BCS breast conserving surgery, BMI body mass index, BR breast reconstruction, IQR interquartile range, Mx mastectomy, SNB sentinel node biopsy

^aKruskal–Wallis test
^bChi-squared test
^cIncludes simple mastectomy/reduction mammoplasty/mastopexy/augmentation and contralateral reconstruction
Table 2. Univariable and multivariable logistic regression for any post-operative complication and major complications

	Any complication	Major complications
	Univariable	Multivariable (n = 2191)
N (events, %)	Odds ratio (95% confidence intervals)	P-value (95% confidence intervals)
Procedure type	2517 (929, 37%)	2540 (221, 9%)
Mastectomy only	Reference	Reference
Implant-based	667 (223, 33%)	675 (100, 15%)
Pedicled flap	105 (42, 40%)	105 (7, 7%)
Free-flap	228 (94, 41%)	228 (38, 17%)
Age	2506 (926, 37%)	2529 (221, 9%)
BMI	2339 (869, 37%)	2361 (208, 9%)
Underweight	54 (15, 28%)	55 (4, 7%)
Normal weight	872 (261, 30%)	880 (72, 8%)
Overweight	760 (297, 39%)	769 (57, 7%)
Obese	379 (169, 45%)	380 (46, 12%)
Severe obesity	274 (127, 46%)	277 (29, 10%)
Comorbidities		
IHD	2494 (922, 37%)	2515 (220, 9%)
No	2356 (859, 36%)	2375 (212, 9%)
Yes	138 (63, 46%)	140 (8, 6%)
Diabetes	2457 (907, 37%)	2479 (216, 9%)
No	2227 (797, 36%)	2247 (191, 9%)
Yes	230 (110, 48%)	232 (25, 11%)
Other	2500 (925, 37%)	2522 (220, 9%)
No	1319 (4200, 32%)	1336 (105, 8%)
Yes	1181 (505, 43%)	1186 (115, 10%)
Smoking status	2474 (915, 37%)	2496 (220, 9%)
Non-smoker	1800 (630, 35%)	1819 (147, 8%)
Ex-smoker	399 (178, 45%)	401 (40, 10%)
Current smoker	275 (107, 39%)	276 (33, 12%)
Previous surgery to ipsilateral breast	2511 (927, 37%)	2534 (221, 9%)
No	1968 (728, 37%)	1988 (170, 9%)
Yes	543 (199, 37%)	546 (51, 9%)
Previous radiotherapy	2498 (924, 37%)	2521 (221, 9%)
No	2258 (834, 37%)	2281 (198, 9%)
Yes	240 (90, 38%)	241 (23, 10%)
Table 2 continued

	Any complication	Major complications		
	Univariable	Multivariable	Univariable	Multivariable
	(n = 2191)	(n = 2206)	(n = 2191)	(n = 2206)
	Odds ratio	Odds ratio	Odds ratio	Odds ratio
	(95% confidence intervals)	(95% confidence intervals)	(95% confidence intervals)	(95% confidence intervals)
	P-value	P-value	P-value	P-value
Neoadjuvant chemotherapy				
No	2078 (782, 38%)	Reference	Reference	Reference
Yes	419 (141, 34%)	0.84 (0.64, 1.10)	0.86 (0.64, 1.14)	0.292
ASA grade				
1	702 (214, 30%)	Reference	Reference	Reference
2	1487 (571, 38%)	1.42 (1.15, 1.74)	1.00 (0.78, 1.28)	0.996
3	312 (138, 44%)	1.81 (1.37, 2.39)	<0.001	0.99 (0.66, 1.48)
4	6 (3, 50%)	2.28 (0.45, 11.53)	0.319	0.91 (0.15, 5.59)
Bilateral surgery				
No	2214 (803, 36%)	Reference	Reference	Reference
Yes	303 (126, 42%)	1.25 (0.94, 1.69)	1.47 (1.08, 2.00)	0.015
Axillary surgery				
None	416 (136, 33%)	Reference	Reference	Reference
Sentinel node biopsy/Axillary sample				
No	1410 (499, 35%)	1.13 (0.91, 1.39)	1.23 (0.92, 1.63)	0.156
Yes	691 (294, 43%)	1.52 (1.17, 1.98)	1.78 (1.29, 2.45)	<0.001

HMD Ischaemic heart disease
Adjuvant treatment recommendations and time to adjuvant therapy

Table 3 summarises the post-operative pathology for the 2607 mastectomies performed for oncological indications. IBR was more likely to be performed following mastectomy for extensive DCIS or multifocal disease and in node-negative patients than simple mastectomy resulting in fewer patients in the IBR group requiring adjuvant chemotherapy or radiotherapy.

Overall, 1235 (48.6%) patients were offered and accepted adjuvant treatment (Table 4). Time to adjuvant treatment differed between the groups, with those undergoing free-flap procedures having longer time to adjuvant therapy than those undergoing

Table 3. Post-operative histology in procedures performed for malignancy	All procedures performed for cancer (n = 2607)	Mastectomy only (n = 1564)	Implant (n = 707)	Pedicled flap (n = 105)	Free-flap (n = 231)	P-value
Patients having NAC with a complete pathological response (n = 408)	135 (32.0)	66 (29.1)	52 (41.9)	9 (42.9)	8 (22.2)	0.031
Invasive status	<0.001					
Pre-invasive disease	388 (14.8)	141 (9.0)	163 (23.1)	26 (24.8)	58 (25.1)	
Invasive disease	2186 (83.9)	1413 (90.4)	533 (75.4)	77 (73.3)	163 (70.6)	
Not reported	33 (1.3)	10 (0.63)	11 (1.6)	2 (1.9)	10 (4.3)	
Focality	0.001					
Unifocal disease	1740 (66.7)	1091 (69.8)	446 (63.1)	72 (68.6)	131 (56.7)	
Multifocal disease	836 (32.1)	455 (29.1)	251 (35.5)	33 (31.4)	97 (42.0)	
Not reported	31 (1.2)	18 (1.2)	10 (1.4)	0 (0.0)	3 (1.3)	
Invasive disease (n = 2186) grade	0.045					
Grade 1	179 (8.2)	98 (6.9)	58 (10.9)	7 (9.1)	16 (9.8)	
Grade 2	1187 (54.3)	759 (53.7)	285 (53.5)	47 (61.0)	96 (58.9)	
Grade 3	800 (36.6)	543 (38.4)	186 (24.1)	21 (27.3)	50 (30.7)	
Not reported	20 (0.9)	13 (0.9)	4 (0.8)	2 (2.6)	1 (0.6)	
Histological type	0.489					
Ductal	1540 (70.5)	986 (69.8)	382 (71.7)	55 (71.4)	117 (71.8)	
Lobular	373 (17.1)	246 (17.4)	89 (16.7)	10 (13.0)	28 (17.2)	
Mixed	121 (5.5)	80 (5.7)	26 (4.9)	4 (5.2)	11 (6.8)	
Other	141 (6.5)	95 (6.7)	34 (6.4)	6 (7.8)	6 (3.7)	
Not reported	11 (0.5)	6 (0.4)	2 (0.4)	2 (2.6)	1 (0.6)	
Tumour stage	<0.001					
Tis	388 (14.9)	141 (9.0)	163 (23.1)	26 (24.8)	58 (25.1)	
T1a (<0.5 cm)	187 (7.2)	88 (5.6)	71 (10.0)	9 (8.6)	19 (8.2)	
T1b (0.5–1 cm)	179 (6.9)	89 (5.7)	63 (8.9)	13 (12.4)	14 (6.1)	
T1c (1–2 cm)	578 (22.2)	359 (23.0)	156 (22.1)	17 (16.2)	46 (19.9)	
T2 (2–5 cm)	948 (36.4)	672 (43.0)	185 (26.2)	28 (26.7)	63 (27.3)	
T3 (>5 cm)	272 (10.4)	190 (12.2)	55 (7.8)	9 (8.6)	18 (7.8)	
Not reported	55 (2.1)	25 (1.6)	14 (2.0)	3 (2.9)	13 (5.6)	
Lymphovascular invasion	637 (29.1)	435 (30.8)	134 (25.1)	22 (28.6)	46 (28.2)	
ER	<0.001					
Positive	1738 (79.5)	1106 (78.3)	445 (83.5)	56 (72.7)	131 (80.4)	
Negative	433 (19.8)	298 (21.1)	86 (16.1)	18 (23.4)	31 (19.0)	
Unknown	15 (0.7)	4 (0.3)	2 (0.4)	3 (3.9)	1 (0.6)	
HER-2	0.871					
Positive	422 (19.3)	273 (19.3)	109 (20.5)	12 (15.6)	28 (17.2)	
Negative	1686 (77.1)	1087 (76.9)	408 (76.6)	61 (79.2)	130 (79.8)	
Unknown	78 (3.6)	53 (3.8)	16 (3.0)	4 (5.2)	5 (3.1)	
Nodal status	<0.001					
N0	1663 (63.8)	905 (57.9)	523 (74.0)	71 (67.6)	164 (71.0)	
N1	944 (36.2)	659 (42.1)	184 (26.0)	34 (32.4)	67 (29.0)	
Pre-invasive disease (n = 388)	0.396					
Low grade	27 (7.0)	7 (5.0)	12 (7.4)	1 (3.8)	7 (12.1)	
Intermediate grade	90 (23.2)	38 (27.0)	38 (23.3)	5 (19.2)	9 (15.5)	
High grade	269 (69.3)	95 (67.4)	112 (68.7)	20 (76.9)	42 (72.4)	
Not reported	2 (0.5)	1 (0.7)	1 (0.6)	0 (0.0)	0 (0.0)	
mastectomy only, adjusted hazard ratio (aHR) 0.84 (95% CI 0.71–0.99) (Table 5, Fig. 1a). The absolute differences between the median time to adjuvant treatment across the groups, however, were small; 52 (IQR 41–66) days for mastectomy only vs 57 (IQR 46–72) days for free-flap reconstruction (Table 5). The development of complications (Fig. 1b) and obesity were also associated with longer time to adjuvant therapy (Table 5). Median time to first chemotherapy was 47 days, (IQR 37–59). There were no significant differences in median time to chemotherapy or in the proportions of patients experiencing delays of greater than 90 days between the treatment groups (Table 4) but free-flap reconstruction (aHR 0.79, [95% CI 0.65–0.96]), major complications (aHR 0.72, [95% CI 0.54–0.94]) and obesity (aHR 0.75, [95% CI 0.57–0.99]) were associated with having longer time to chemotherapy in the multivariable model (Supplementary table 2). Median time to first fraction of radiotherapy was 60 days (IQR 48–73) with no differences in either the median time to radiotherapy or the proportion of patients experiencing significant treatment delays, defined as >8 weeks; between procedure types (Table 4). Major complications (aHR 0.70, [95% CI 0.53–0.93]) and smoking (aHR 0.73, [95% CI 0.57–0.94]) were associated with longer time to adjuvant radiotherapy in the multivariable model with older patients and those who had received neoadjuvant chemotherapy proceeding to radiotherapy more rapidly than other patient groups (Supplementary table 3).

Time to first adjuvant therapy (P < 0.001), time to chemotherapy (P < 0.0001) and time to radiotherapy (P = 0.026), however all differed by whether the patient had no, minor or major complications, with an increasing trend seen across the three groups (no complications 50 days [IQR 39–63]; minor complications 56 days [IQR 42.5–69]; major complications 57 days [IQR 46–73], Supplementary table 4). Furthermore, patients experiencing complications were significantly more likely to experience significant treatment delays, defined as delays of >90 days for chemotherapy (n = 14, 3.6% of patients with no complications vs n = 7, 13% of patients with major complications; P = 0.011) and >8 weeks for radiotherapy (n = 222, 58.7% of patients with no complications vs n = 29, 70.7% of patients with major complications; P = 0.016, Supplementary table 4) than those whose procedures were uncomplicated.

DISCUSSION

Although free-flap reconstruction was associated with a longer time to adjuvant therapy than other procedure types, the absolute differences in time to treatment between the surgical groups is small. This study therefore suggests that IBR does not result in clinically significant delays in the delivery of adjuvant therapy compared to mastectomy alone. Complications, especially those requiring re-admission or further surgery however, are important and patients developing problems, irrespective of the procedure performed, were more likely to experience significant delays to both chemotherapy and radiotherapy in this analysis. The apparent paradox of no treatment delay despite the higher rate of major post-operative complications in the IBR group can be explained by careful patient selection for reconstructive surgery. Patients undergoing IBR were significantly younger and fitter, with fewer ‘risk factors’ for complications than patients undergoing mastectomy only and were less likely to require adjuvant treatment than the mastectomy only group. This is because IBR was more likely to be performed following mastectomy for extensive DCIS than for high-risk invasive disease with upfront axillary staging used to determine the likelihood that patients would require adjuvant treatment before their reconstructive surgery.
procedure. This suggests that surgeons are cautious in offering IBR to patients likely to require adjuvant treatment. These concerns may reflect the impact of radiotherapy on the cosmetic outcome of reconstruction, but may also highlight anxiety about potential delays to adjuvant treatment with surgeons only opting to perform IBR in patients considered low risk. This study provides much-needed evidence to suggest that IBR does not lead to clinically significant delays in carefully selected low risk patient groups but does highlight that major complications can result in significant treatment delays. This study therefore strongly supports the need for careful patient selection to minimise complications and careful communication of the risks of post-operative problems and the potential oncological implication of complications on treatment delays with patients considering surgery. The higher risk of complications in patients undergoing bilateral surgery will particularly inform discussions with patients.

Table 5. Cox univariable and multivariable survival analyses for time to adjuvant treatment

Procedure type	N (%)	Univariable	P-value	Multivariable (N = 1018)	P-value
N (95% confidence intervals)	**Hazard ratio**		**Hazard ratio**		
Procedure type					
Mastectomy only	1131	738 (65.3%)	Reference	Reference	
Implant-based	260 (23.0%)	1.08 (0.90, 1.29)	0.42	1.07 (0.88, 1.31)	0.496
Pedicled flap	48 (4.2%)	0.74 (0.49, 1.11)	0.149	0.72 (0.47, 1.08)	0.114
Free-flap	85 (7.5%)	0.84 (0.73, 0.97)	0.019	0.84 (0.71, 0.99)	0.036
Post-operative complications					
None	685 (60.6%)	Reference	Reference		
Minor complications	360 (31.8%)	0.80 (0.70, 0.92)	0.002	0.85 (0.73, 1.00)	0.046
Major complications	86 (7.6%)	0.68 (0.54, 0.86)	0.001	0.63 (0.49, 0.82)	0.001
Chemotherapy as first adjuvant treatment	1131	1.79 (1.55, 2.06)	<0.001	2.42 (2.09, 2.81)	<0.001
Age					
Underweight	28 (2.6%)	1.03 (0.67, 1.59)	0.878	0.98 (0.66, 1.47)	0.933
Normal weight	387 (35.9%)	Reference	Reference		
Overweight	354 (32.8%)	0.99 (0.85, 1.15)	0.867	1.00 (0.85, 1.17)	0.953
Obese	188 (17.4%)	0.74 (0.65, 0.84)	<0.001	0.76 (0.64, 0.89)	0.001
Severely obese	121 (11.2%)	0.72 (0.61, 0.85)	<0.001	0.81 (0.67, 0.97)	0.023
Comorbidities					
Ischaemic heart disease	1128	1079 (95.7%)	Reference	Reference	
Yes	49 (4.3%)	0.69 (0.53, 0.89)	0.005	0.82 (0.57, 1.18)	0.279
Diabetes	1103	1002 (90.8%)	Reference	Reference	
Yes	101 (9.2%)	0.78 (0.68, 0.90)	0.001	0.94 (0.79, 1.13)	0.53
Other comorbidity	1123	638 (56.8%)	Reference	Reference	
Yes	485 (43.2%)	0.88 (0.75, 1.03)	0.109	0.86 (0.70, 1.07)	0.17
Smoking status					
Non-smoker	1115	805 (72.2%)	Reference	Reference	
Ex-smoker	170 (15.3%)	1.11 (0.92, 1.34)	0.275	1.18 (0.96, 1.44)	0.111
Current smoker	140 (12.6%)	0.95 (0.81, 1.11)	0.496	0.88 (0.72, 1.07)	0.186
Neoadjuvant chemotherapy					
No	1121	829 (74.0%)	Reference	Reference	
Yes	292 (26.1%)	0.99 (0.87, 1.11)	0.808	1.71 (1.44, 2.03)	<0.001
ASA grade					
1	1126	357 (31.7%)	Reference	Reference	
2	654 (58.1%)	0.90 (0.78, 1.04)	0.154	1.09 (0.89, 1.33)	0.389
3	113 (10.0%)	0.85 (0.67, 1.08)	0.183	1.13 (0.78, 1.62)	0.524
4	2 (0.2%)	0.73 (0.61, 0.87)	0.001	1.37 (0.87, 2.14)	0.176
Bilateral surgery (vs none)	1131	0.92 (0.77, 1.10)	0.374	0.93 (0.75, 1.17)	0.546

ASA American Society of Anaesthesiologists, BMI body mass index

aHR < 1 = increased time to adjuvant treatment aHR > 1 = shorter time to adjuvant treatment
wishing to undergo simultaneous contralateral risk-reducing mastectomy and gives a sound rationale for delaying such surgery if adjuvant therapy is anticipated, particularly in implant-based reconstruction.

The findings of this study are consistent with other work suggesting that post-operative complications, rather than procedure type, are the main predictor of adjuvant treatment delays.\(^8\) This focuses attention on the need to reduce complications to improve outcomes for patients and is particularly relevant as reconstruction rates are increasing.\(^17\) Despite more procedures being performed, however, complications rates appear to be rising with re-operation for complications more than double that seen in the UK National Mastectomy and Breast Reconstruction Audit (NMBRA).\(^5\) This is a cause for concern as complications not only delay delivery of adjuvant treatments but may also adversely impact long-term oncological outcomes by promoting a systemic inflammatory response.\(^16\) Implant-based procedures are now the most commonly performed technique\(^23\) and although data from the NMBRA and the National Surgical Quality Improvement Program\(^21\) suggest implant reconstruction may be associated with fewer complications than other techniques, this study suggests that complications following implant-based and autologous reconstruction are broadly comparable. Reasons for this require further evaluation but may reflect the recent adoption of single-stage direct-to-implant mesh-assisted reconstruction in the UK,\(^22\) which may be associated with higher complication rates than the traditional two-stage procedures\(^23\) favoured in the US.\(^20\) Risk factors for complications, including smoking and high BMI are consistent with those previously reported\(^24,26\) and highlight the importance of careful patient selection if post-operative problems are to be avoided.

This is the first large prospective multicentre study to explore the impact of IBR on time to adjuvant therapy, but it has limitations. Firstly, this is an observational study and risk of bias must be considered. Consecutive patients undergoing mastectomy were recruited from participating centres but there were baseline differences in the treatment groups. Although it was possible to adjust for confounding factors such as age, BMI, smoking and ASA grade in the regression analyses, it is acknowledged that it is not possible to identify and control for all potential confounders which may have impacted the results. The study included patients from 76 centres across the UK and Europe and it is the largest study of its kind, but it is possible that participating units differed from those not taking part. However, this is unlikely, as almost half of all the breast and plastic surgical units in the UK elected to participate. A further consideration is that by only reporting delay to initiation of treatment, this study may underestimate the overall complication rate of IBR and the true impact of reconstruction on the delivery of adjuvant therapy. This is particularly relevant for patients having implant reconstruction who may develop infection while receiving chemotherapy requiring treatment to be modified or stopped completely and the implant removed. Following patients during adjuvant treatment was not feasible with the trainee collaborative study design, but new collaborations with oncology trainees will allow these issues to be addressed in the future. Finally, this short-term study does not allow the long-term oncological impact of post-operative complications or any delays in the delivery of adjuvant therapy to be assessed. A data-linkage study to explore long-term oncological outcomes at 5 and 10 years is planned, allowing these important questions to be addressed. Therefore, although it is not possible to establish causality with an observational study design, RCTs in this setting are not possible and the IBRA-2 study provides much-needed evidence to support decision-making for IBR when adjuvant treatments may be needed.

The development of post-operative complications rather than the type of procedure performed has emerged as the key determinant of delays to the delivery adjuvant therapy in this study. Immediate implant-based and free-flap reconstructions, however, are associated with significantly higher rates of major complications than mastectomy alone and this is an important finding that should be fully discussed with patients considering reconstructive surgery. Avoiding IBR in high-risk patients including smokers and those with a high BMI and not performing unnecessary bilateral surgery may represent a simple strategy for reducing post-operative problems but this approach needs balanced against patients’ desire for IBR. Accurate and balanced communication of risks and benefits is a vital part of shared decision-making.\(^26\) and this study provides further evidence to inform this discussion. Major complications, irrespective of the procedure performed, result in delays to adjuvant treatments, hence strategies to minimise complications are needed for all patients undergoing breast cancer surgery to improve oncological outcomes,\(^18\) quality-of-life\(^27\) and minimise the overall cost of
care.28 Standardising care may be one strategy by which outcomes may be improved and standardisation is the focus of the UK ‘Getting it Right First Time’ initiative. http://gettingitrightfirsttime.co.uk/surgical-specialty/breast-surgery/. Other strategies include altering treatment sequencing and routinely using neoadjuvant rather than adjuvant chemotherapy in patients electing to undergo IBR. This approach is safe, and these data show that those having neoadjuvant therapy start their adjuvant therapy sooner. It may also allow patients to address modifiable risk factors such as obesity or smoking before surgery although it is appreciated that these changes may be challenging. Increased use of neoadjuvant endocrine therapy may also have utility in high-risk groups. Neoadjuvant radiotherapy is a novel approach, which may provide an alternative treatment pathway in patients in whom radiotherapy is likely to be required.29 More accurately determining which patients may benefit from adjuvant therapy before the start of their breast cancer treatment, however, may be the optimal solution and work to develop a more personalised approach using molecular markers and gene signatures is likely to reduce the number of future patients in whom adjuvant treatment may be indicated.30,31 IBR does not delay the delivery of adjuvant therapy, but implant-based and free-flap reconstructions are associated with higher rates of post-operative complications which are associated with treatment delays. Careful patient selection combined with accurate communication of risk are therefore vital if patients are to make fully informed decision about IBR when adjuvant therapy is likely to be needed. Further strategies to minimise the risk of complications such as increased use of neoadjuvant treatment may also be beneficial in this group. This study provides important information about the risk and impact of complications in IBR to help patients and surgeons make more informed decisions about their treatment options.

ACKNOWLEDGEMENTS
We would like to thank the following for their contributions to the study. This work received no specific grant from any funding agency in the public, commercial or not-for-profit sectors. Shelley Potter is an NIHR Clinician Scientist (CS-2016-16-019). Tim Ratty has received support from the NIHR through a Doctoral Research Fellowship (DRF-2014-07-079) and Academic Clinical Lectureship. This work was undertaken with the support of the National Health and Medical Research Council University Health Board; Simon Davey, Terry Ann Curran, Matilda Svenning, Sasirekha Govindarajulu, Zenon Rayter, Rachel Ainsworth, Simon Cawthorn, Ajay Sahu, Sherif Wilson, Elena Proussakia. Breast Unit Department. University of Naples “Federico II”, Naples, Italy; Antonello Accurso, Nicola Rocco, Rosa Di Micco, Antonello Accurso, Gennaro Limite. Breast Unit Department S. Maria delle Grazie ASL Na 2 Pozzuoli; Raffaele Ceccarino, Raffaele Liccardo, Guido Coco. Broomfield Hospital, Mid Essex Hospital Services NHS Trust; Metin Nizamoglu, Mary Morgan, Venkat Ramakrishnan. Campbell Breast Unit, Catania; Support of the NHRR and the QE II Centre for Breast Cancer Research at Castle Hill Hospital, Castle Hill Hospital NHS Foundation Trust; Kirupa Bathla, Joanna Seward, Claudia Harding-MacKean. Darent Valley Hospital, Dartford and Gravesham NHS Trust; Risha Lane, Kothandaraman Murali, Bashishtha Biswas, Pavel Trapszo, Seema Seetharam. Dorset County Hospital NHS Foundation Trust; Katriny Kennedy, Louise Alder, Tomasz Graja. East Cheshire NHS Trust; Khalid Amin, Jalal Kukan, Chandeenia Roshanlili. Edinburgh Breast Unit, Western General Hospital, NHS Lothian; Emma Gill, Dhananjay Kulkarni, Jim Dixon, Oliver Young, Talha Saleem. Glasgow Royal Infirmary, NHS Greater Glasgow and Clyde; M Biddle, Marie Kearns, Eva Weiler-Mihthoff, Ben Chew, Andy Malyon, John Scott, David McGill, Iain Mackay. Glenfield Hospital, NHS Hospitals of Leicester; Salena Bains, Sara Barrow, Tim Ratty, Simon Pilgrim, Sheila Shoklu, Kelly Lambert, Frances Kenny, Kalloloee Valiassadou, Monika Kauksis, Jaroslav Krupa, Dimitris Dragoumis. Good Hope Hospital, Heart of England NHS Foundation Trust; Quratulain, Parvinder Amalouls, Sarah Moss, Hasmnth Khall, Anasayk, Balbhiathan Balasubramanian. Guy’s and St Thomas’ NHS Foundation Trust; Petros Charalampous, Hisam Hamed, Ashutosh Kothari, Ibor Kovacs, Michael Doek. Harrogate and District NHS Foundation Trust; Ifikhar Mehmoon, Biswajit Ray, Matthew Adelekan. Homerton University Hospital NHS Foundation Trust; Laura Humphreys, Salim Tayeh, Christine Choy, Lalita Parvanta. Istituto Oncologico Veneto, Padova, Italy; Silvia Michieliello, Tania Sabine. James Paget University Hospitals NHS Foundation Trust; James O’Brien, Sue Down, Sarah Downey, Jerome Pereira. Lincoln County Hospital, United Lincolnshire Hospitals NHS Trust; A Sami, Anzors Gvaramadze, Jibriel A Jibril, Dinesh Thekkinkattil. Llanelli Peony Breast Unit; S Udayasankar, Sija Khawaja, Yousef Shariat, Simon Holt. Luton and Dunstable University Hospital; Ruth James, Harra Richotti, Katharine Kirkpatrick, Duraisamy Ravichandran, Deepak Shrestha. Maidstone and Tunbridge Wells NHS Trust; Claire Curran, Murtagh Barua, Deepika Akonda. Maidstone and Tunbridge Wells NHS Trust; Ahmed Hamad, Eleftheria Kleidi, Susan Higgett, Vanessa Pope, Salma Naseem. Milton Keynes University Hospital NHS Foundation Trust; Jennifer Isherwood, Rachel Soulsby, Amanda Taylor, Khan Chin. Morrison Hospital, Abertawe Bro Morganwg NHS University Health Board: Dai Nguyen. Musgrove Park Hospital, Taunton and Somerset NHS Foundation Trust; Francesca Guest, Amanda Thorne. Nevill Hall Hospital, Avenir Bevan University Health Board; Valentina Lefemine. Norfolk and Norwich University Hospitals NHS Foundation Trust; Chris Kirchhoff, Declan C Murphy, Michelle Lo, Ruth Harcourt, Simon J Pain, Maged I Hussien, Katalin Zechmeister, E.M. Sassoon, Andrea Figus, Richard M Haywood, Rozina Ali, Susannas Alexander, Adam Harnett, Konstantinos Geropantzas, Daniel Epureescu. North Middlesex University Hospital; Rebecca Lewis, Oladapo Fafermi, Jasdeep Gahir, Tasha Gandamharhaja. Nottingham Breast Institute, Nottingham University Hospitals NHS Trust; Charley; Jennifer Kelsall, Naithi Mullbult, Tracey Eloi, Fayyaz Mazari, Marta Dauria, Lisa Whisker, Douglas Macmillan, Eleanor Gutteridge, Tuabin Rasheed, Hazem Khout, Kristjan Asgeirsson, Stephen Mc Culley. Ospedale Santa Chiara, University of Pisa, Italy; Maria Donatella Marinelli, Manuela Roncella, Matteo Ghilli, Livio Collazzi, Elena Rossetti, Lo Russo Marzia, Loredana Fustaino, Alessandro Quattrini Li. Oxford University Hospitals NHS Foundation Trust; Kate L Harvey, Rebecca Windle, Dionysios Denis Remoudos, Pankaj Roy, Gae McLean, Asha Adwani. Peterborough City Hospital, North West Anglia NHS Foundation Trust; Elen Popa, Steven Goh, Geeta Shetty, Poole Hospital NHS Foundation Trust; Sarah Clark. Portsmouth Hospitals NHS Trust; Lorenzo Bernaudo, Avi Agrawal, Lucy Mansfield, Princess Alexander Hospital NHS Trust; Sally Tebolbi, Ashraf Patel, Veronica Grassi. Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust; Ojas Pujji, Kathryn Harrett, Naren Basu. Royal Bolton Hospital, Bolton NHS Foundation Trust; Emily Granger, Michael Durbar, Panagiotis Pikoulas, Clare Garnessy, Philip Walker, Angela J Vollermeier, Ioannis Malichakis. Royal Devon and Exeter NHS Foundation Trust; Robin Jones, Mina Yousef, Charlotte Ives, Mohammad Masood, Julie Dunn, Sissie Olsen, Douglas Ferguson, Rachel Tillett. Royal Free London NHS Foundation Trust; Anna Allan, Alex Woollard, Rebecca Canny, Alexander Wogdal. Afsin Misashehi, Stephen Hamilton, Shadi Ghali, Daniel Marsh, Jagdeep Chana, Nilesh Sojitra, Ibbi Younis. Royal Hampshire County Hospital, Hampshire Hospitals NHS Foundation Trust; Dick Rainsbury, Natalie Chand, Vasileios Kalles, Anne Stebbing, Kevin Harris, Siobhan Laws. Royal Liverpool and Broadgreen University Hospitals NHS Trust; Chi Holcombe, Anne Tansley, Geraldine Mitchell, Emma de Sousa, Julia Henderson, Mysore Chandrashekar. Royal Marsden NHS Foundation Trust; Bernadette Pereira, Chloe Constantinn, Dalia Elaid, Foivos
Ethical approval and consent to participate: This study was classified as service evaluation by the UK National Health Service Research Authority Decision Tool (http://www.hra-decisiontools.org.uk/research/index.html), hence individual patient consent was not required. Local audit department approvals were obtained at each participating centre before commencing patient recruitment.

Data availability: The datasets generated during and/or analysed during the current study are not publicly available due to ongoing analyses but are available from the corresponding author on reasonable request.

Note: This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

REFERENCES

1. https://www.wcrf.org/int/cancer-facts-figures/data-specific-cancers/breast-cancer-statistics. Accessed 16 April 2018 (2018).

2. Matala, C. M., McIntosh, S. A. & Purushotham, A. D. Immediate breast reconstruction after mastectomy for cancer. Br. J. Surg. 87, 1455–1472 (2000).

3. Kummerow, K. L., Du, L., Pensom, D. F., Shyr, Y. & Hooks, M. A. Nationwide trends in mastectomy for early-stage breast cancer. JAMA Surg. 150, 9–16 (2015).

4. Harcourt, D. & Runsey, N. Psychological aspects of breast reconstruction: a review of the literature. J. Adv. Nurs. 35, 477–487 (2001).

5. Jeevan, R., Crowell, D. A., Browne, J. P., Caddy, C. M., Pereira, J., Sheppard, C. et al. Findings of a national comparative audit of mastectomy and breast reconstruction surgery in England. J. Plast. Reconstr. Aesthet. Surg. 67, 1333–1344 (2014).

6. Harmeling, J., Kouwenberg, C., Bijlard, E., Burger, K., Jager, A. & Mureau, M. A. M. The impact of immediate breast reconstruction on the time to delivery of... R.L. O’Connell et al.

7. Chavez-MacGregor, M., Clarke, C., A., Lichtensztajn, D. Y. & Giordano, S. H. Delayed initiation of adjuvant chemotherapy among patients with breast cancer. JAMA Oncol. 16, 322–329 (2016).

8. Ribas, I. A., Gruner, R. A., Fleishman, A. & James, T. A. Surgical Risk Factors for the Delayed Initiation of Adjuvant Chemotherapy in Breast Cancer. Ann. Surg. Oncol. 25, 1904–1911 (2018).

9. Yu, K. D., Huang, S., Zhang, J. X., Liu, G. Y. & Shao, Z. M. Association between delayed initiation of adjuvant CMF or anthracycline-based chemotherapy and survival in breast cancer: a systematic review and meta-analysis. BMC Cancer 13, 240 (2013).

10. Huang, J., Barbera, L., Brouwers, M., Browman, G. & Mackillop, W. J. Does delay in starting treatment affect the outcomes of radiotherapy? A systematic review. J. Clin. Oncol. 21, 555–563 (2003).

11. Mikeljevic, J. S., Haward, R., Johnston, C., Crollin, A., Dodwell, D., Jones, A. et al. Trends in postoperative radiotherapy delay and the effect on survival in breast cancer patients treated with conservation surgery. Br. J. Cancer 90, 1343–1348 (2004).

12. Potter, S., Conroy, E. J., Williamson, P. R., Thrush, S., Whisker, L. J., Skillman, J. M. et al. The iBRA (implant breast reconstruction evaluation) study: protocol for a prospective multi-centre cohort study to inform the feasibility, design and conduct of a pragmatic randomised clinical trial comparing new techniques of implant-based breast reconstruction. Pilote Feasibility Stud. 2, 41 (2016).

13. Dave, R. O., Connell, R., Ratay, T., Tolken, Z., Barnes, N., Skillman, J. et al. The iBRA-2 (immediate breast reconstruction and adjuvant therapy audit) study: protocol for a prospective national multicentre cohort study to evaluate the impact of immediate breast reconstruction on the delivery of adjuvant therapy. BMJ Open 6, e012678 (2016).

14. Harris, P. A., Taylor, R., Thielke, R., Payne, J., Gonzalez, N., Conde, J. G. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 42, 377–381 (2009).

15. Duxbury, P. J., Gandhi, A., Kirwan, C. C., Jain, Y. & Harvey, J. R. Current attitudes to breast reconstruction surgery for women at risk of post-mastectomy radiotherapy: A survey of UK breast surgeons. Breast 24, 502–512 (2015).

16. Ho, A. Y., Hu, Z. I., Mehrara, B. J. & Wilkins, E. G. Radiotherapy: A survey of UK breast surgeons. Breast 24, 502–512 (2015).

17. Jeevan, R., Mennie, J. C., Mohanna, P. N., O'Donoghue, J. M., Rainsbury, R. M., Crowell, D. A. National trends and regional variation in immediate breast reconstruction rates. Br. J. Surg. 103, 1147–1156 (2016).
18. Beecher, S. M., O’Leary, D. P., McLaughlin, R., Sweeney, K. J. & Kerin, M. J. Influence of complications following immediate breast reconstruction on breast cancer recurrence rates. *Br. J. Surg.* **103**, 391–398 (2016).
19. Mennie, J. C., Mohanna, P. N., O’Donoghue, J. M., Rainsbury, R. & Cromwell, D. A. National trends in immediate and delayed post-mastectomy reconstruction procedures in England: a seven-year population-based cohort study. *Eur. J. Surg. Oncol.* **43**, 52–61 (2017).
20. Ilonzo, N., Tsang, A., Tsantes, S., Estabrook, A. & Thu, M. A. M. Breast reconstruction after mastectomy: a ten-year analysis of trends and immediate post-operative outcomes. *Breast* **32**, 7–12 (2017).
21. Fischer, J. P., Nelson, J. A., Au, A., Tuggle, C. T. 3rd, Serletti, J. M. & Wu, L. C. Complications and morbidity following breast reconstruction—a review of 16,063 cases from the 2005-2010 NSQIP datasets. *J. Plast. Surg. Hand Surg.* **48**, 104–114 (2014).
22. Mylvaganam, S., Conroy, E., Williamson, P. R., Barnes, N. L. P., Cutress, R. I. & Gardiner, M. D. et al. Variation in the provision and practice of implant-based breast reconstruction in the UK: Results from the iBRA national practice questionnaire. *Breast* **35**, 182–190 (2017).
23. Dikmans, R. E., Negenborn, V. L., Bouman, M. B., Winters, H. A., Twisk, J. W., Ruhe, P. Q. et al. Two-stage implant-based breast reconstruction compared with immediate one-stage implant-based breast reconstruction augmented with an acellular dermal matrix: an open-label, phase 4, multicentre, randomised, controlled trial. *Lancet Oncol.* **18**, 251–258 (2017).
24. Wilkins, E. G., Hamill, J. B., Kim, H. M., Kim, J. Y., Greco, R. J., Qi, J. et al. Complications in postmastectomy breast reconstruction: one-year outcomes of the mastectomy reconstruction outcomes consortium (MROC) study. *Ann. Surg.* **267**, 164–170 (2018).
25. Potter, S., Conroy, E. J., Cutress, R. I., Williamson, P. R., Whisker, L., Thrush, S. et al. Short-term safety outcomes of mastectomy and immediate implant-based breast reconstruction with and without mesh (iBRA): a multicentre, prospective cohort study. *Lancet Oncol.* **20**, 254–266 (2019).
26. Hasak, J. M., Myckatyn, T. M., Grabinski, V. F., Philpott, S. E., Parikh, R. P., Politi, M. C. Stakeholders’ perspectives on postmastectomy breast reconstruction: recognizing ways to improve shared decision making. *Plast. Reconstr. Surg. Glob. Open* **5**, e1569 (2017).
27. Browne, J. P., Jeevan, R., Gulliver-Clarke, C., Pereira, J., Caddy, C. M. & van der Meulen, J. H. P. The association between complications and quality of life after mastectomy and breast reconstruction for breast cancer. *Cancer* **123**, 3460–3467 (2017).
28. Fischer, J. P., Fox, J. P., Nelson, J. A., Kovach, S. J. & Serletti, J. M. A longitudinal assessment of outcomes and healthcare resource utilization after immediate breast reconstruction-comparing implant- and autologous-based breast reconstruction. *Ann. Surg.* **262**, 692–699 (2015).
29. di Summa, P. G., Tay, S. K., Stevens, R., Doughty, J. C. & Bramhall, R. J. Neo-adjuvant radiotherapy (NART) in breast reconstruction - The future for autologous reconstruction in locally advanced disease? *J. Plast. Reconstr. Aesthet. Surg.* **71**, 935–937 (2018).
30. Curigliano, G., Criscitiello, C., Esposito, A. & Pruneri, G. Over-using chemotherapy in the adjuvant setting. *Breast* **31**, 303–308 (2017).
31. Russell, N. S., Kunkler, I. H. & van Tienhoven, G. Determining the indications for post mastectomy radiotherapy: moving from 20th century clinical staging to 21st century biological criteria. *Ann. Oncol.* **26**, 1043–1044 (2015).