Word Embeddings with Limited Memory

Shaoshi Ling\textsuperscript{1} and Yangqiu Song\textsuperscript{2} and Dan Roth\textsuperscript{1}
\textsuperscript{1}Department of Computer Science, University of Illinois at Urbana-Champaign
\textsuperscript{2}Department of Computer Science and Engineering, HKUST
\textsuperscript{1}\{sling3,danr\}@illinois.edu, \textsuperscript{2}yqsong@gmail.com

Abstract

This paper studies the effect of limited precision data representation and computation on word embeddings. We present a systematic evaluation of word embeddings with limited memory and discuss methods that directly train the limited precision representation with limited memory. Our results show that it is possible to use and train an 8-bit fixed-point value for word embedding without loss of performance in word/phrase similarity and dependency parsing tasks.

1 Introduction

There is an accumulation of evidence that the use of dense distributional lexical representations, known as word embeddings, often supports better performance on a range of NLP tasks (Bengio et al., 2003; Turian et al., 2010; Collobert et al., 2011; Mikolov et al., 2013a; Mikolov et al., 2013b; Levy et al., 2015). Consequently, word embeddings have been commonly used in the last few years for lexical similarity tasks and as features in multiple, syntactic and semantic, NLP applications.

However, keeping embedding vectors for hundreds of thousands of words for repeated use could take its toll both on storing the word vectors on disk and, even more so, on loading them into memory. For example, for 1 million words, loading 200 dimensional vectors takes up to 1.6 GB memory on a 64-bit system. Considering applications that make use of billions of tokens and multiple languages, size issues impose significant limitations on the practical use of word embeddings.

This paper presents the question of whether it is possible to significantly reduce the memory needs for the use and training of word embeddings. Specifically, we ask “what is the impact of representing each dimension of a dense representation with significantly fewer bits than the standard 64 bits?” Moreover, we investigate the possibility of directly training dense embedding vectors using significantly fewer bits than typically used.

The results we present are quite surprising. We show that it is possible to reduce the memory consumption by an order of magnitude both when word embeddings are being used and in training. In the first case, as we show, simply truncating the resulting representations after training and using a smaller number of bits (as low as 4 bits per dimension) results in comparable performance to the use of 64 bits. Moreover, we provide two ways to train existing algorithms (Mikolov et al., 2013a; Mikolov et al., 2013b) when the memory is limited during training and show that, here, too, an order of magnitude saving in memory is possible without degrading performance. We conduct comprehensive experiments on existing word and phrase similarity and relatedness datasets as well as on dependency parsing, to evaluate these results. Our experiments show that, in all cases and without loss in performance, 8 bits can be used when the current standard is 64 and, in some cases, only 4 bits per dimension are sufficient, reducing the amount of space required by a factor of 16. The truncated word embeddings are available from the papers web page at https://cogcomp.cs.illinois.edu/page/publication_view/790.

2 Related Work

If we consider traditional cluster encoded word representation, e.g., Brown clusters (Brown et al., 1992), it only uses a small number of bits to track the path on a hierarchical tree of word clusters to represent each word. In fact, word embedding
generalized the idea of discrete clustering representation to continuous vector representation in language models, with the goal of improving the continuous word analogy prediction and generalization ability (Bengio et al., 2003; Mikolov et al., 2013a; Mikolov et al., 2013b). However, it has been proven that Brown clusters as discrete features are even better than continuous word embedding as features for named entity recognition tasks (Ratinov and Roth, 2009). Guo et al. (Guo et al., 2014) further tried to binarize embeddings using a threshold tuned for each dimension, and essentially used less than two bits to represent each dimension. They have shown that binarization can be comparable to or even better than the original word embeddings when used as features for named entity recognition tasks. Moreover, Faruqui et al. (Faruqui et al., 2015) showed that imposing sparsity constraints over the embedding vectors can further improve the representation interpretability and performance on several word similarity and text classification benchmark datasets. These works indicate that, for some tasks, we do not need all the information encoded in “standard” word embeddings. Nonetheless, it is clear that binarization loses a lot of information, and this calls for a systematic comparison of how many bits are needed to maintain the expressivity needed from word embeddings for different tasks.

3 Value Truncation

In this section, we introduce approaches for word embedding when the memory is limited. We truncate any value $x$ in the word embedding into an $n$ bit representation.

3.1 Post-processing Rounding

When the word embedding vectors are given, the most intuitive and simple way is to round the numbers to their $n$-bit precision. Then we can use the truncated values as features for any tasks that word embedding can be used for. For example, if we want to round $x$ to be in the range of $[-r, r]$, a simple function can be applied as follows.

$$R_d(x, n) = \begin{cases} \lfloor x \rfloor & \text{if } |x| \leq \lfloor x \rfloor + \frac{\epsilon}{2} \\ \lfloor x \rfloor + \epsilon & \text{if } \lfloor x \rfloor + \frac{\epsilon}{2} < x \leq \lfloor x \rfloor + \epsilon \\ \lfloor x \rfloor & \text{if } x > \lfloor x \rfloor + \epsilon \\ \lfloor x \rfloor + \epsilon & \text{if } x < \lfloor x \rfloor \\ \end{cases}$$

(1)

where $\epsilon = 2^{1-n}r$. For example, if we want to use 8 bits to represent any value in the vectors, then we only have 256 numbers ranging from -128 to 127 for each value. In practice, we first scale all the values and then round them to the 256 numbers.

3.2 Training with Limited Memory

When the memory for training word embedding is also limited, we need to modify the training algorithms by introducing new data structures to reduce the bits used to encode the values. In practice, we found that in the stochastic gradient descent (SGD) iteration in word2vec algorithms (Mikolov et al., 2013a; Mikolov et al., 2013b), the updating vector’s values are often very small numbers (e.g., $< 10^{-3}$). In this case, if we directly apply the rounding method to certain precisions (e.g., 8 bits), the update of word vectors will always be zero. For example, the 8-bit precision is $2^{-7} = 0.0078$, so $10^{-5}$ is not significant enough to update the vector with 8-bit values. Therefore, we consider the following two ways to improve this.

Stochastic Rounding. We first consider using stochastic rounding (Gupta et al., 2015) to train word embedding. Stochastic rounding introduces some randomness into the rounding mechanism, which has been proven to be helpful when there are many parameters in the learning system, such as deep learning systems (Gupta et al., 2015). Here we also introduce this approach to update word embedding vectors in SGD. The probability of rounding $x$ to $\lfloor x \rfloor$ is proportional to the proximity of $x$ to $\lfloor x \rfloor$:

$$R_s(x, n) = \begin{cases} \lfloor x \rfloor & \text{w.p. } 1 - \frac{x - \lfloor x \rfloor}{\epsilon} \\ \lfloor x \rfloor + \epsilon & \text{w.p. } \frac{x - \lfloor x \rfloor}{\epsilon} \\ \end{cases}$$

(2)

In this case, even though the update values are not significant enough to update the word embedding vectors, we randomly choose some of the values being updated proportional to the value of how close the update value is to the rounding precision.

Auxiliary Update Vectors. In addition to the method of directly applying rounding to the values, we also provide a method using auxiliary update vectors to trade precision for more space. Suppose we know the range of update value in SGD as $[-r', r']$, and we use additional $m$ bits to store all the values less than the limited numerical precision $\epsilon$. Here $r'$ can be easily estimated by running SGD for several examples. Then the real precision is $\epsilon' = 2^{1-m}r'$. For example, if $r' = 10^{-4}$ and $m = 8$, then the numerical precision is $7.8 \cdot 10^{-7}$ which can capture much higher precision than the SGD update values have. When
the cumulated values in the auxiliary update vectors are greater than the original numerical precision $\epsilon$, e.g., $\epsilon = 2^{-7}$ for 8 bits, we update the original vector and clear the value in the auxiliary vector. In this case, we can have final $n$-bit values in word embedding vectors as good as the method presented in Section 3.1.

4 Experiments on Word/Phrase Similarity

In this section, we describe a comprehensive study on tasks that have been used for evaluating word embeddings. We train the word embedding algorithms, word2vec (Mikolov et al., 2013a; Mikolov et al., 2013b), based on the Oct. 2013 Wikipedia dump.\footnote{https://dumps.wikimedia.org/} We first compare levels of truncation of word2vec embeddings, and then evaluate the stochastic rounding and the auxiliary vectors based methods for training word2vec vectors.

4.1 Datasets

We use multiple test datasets as follows.

Word Similarity. Word similarity datasets have been widely used to evaluate word embedding results. We use the datasets summarized by Faruqui and Dyer (Faruqui and Dyer, 2014): wordsim-353, wordsim-sim, wordsim-rel, MC-30, RG-65, MTurk-287, MTurk-771, MEN 3000, YP-130, Rare-Word, Verb-143, and SimLex-999.\footnote{http://www.wordvectors.org/} We compute the similarities between pairs of words...
Table 1: The detailed average results for word similarity and paraphrases of Fig. 1.

|        | Average | CBOW |        |        | Skipgram |        |        |
|--------|---------|------|--------|--------|----------|--------|--------|
|         |         |      | Original | Binary | 4-bits | 6-bits | 8-bits | Original | Binary | 4-bits | 6-bits | 8-bits |
| wordsim (25) | 0.5331 | 0.4534 | 0.5223 | 0.5235 | 0.5242 | 0.4894 | 0.4128 | 0.4333 | 0.4877 | 0.4906 |
| wordsim (200) | 0.5818 | 0.5598 | 0.4542 | 0.5805 | 0.5825 | 0.5642 | 0.5588 | 0.4681 | 0.5621 | 0.5637 |
| bigram (25)  | 0.3023 | 0.2553 | 0.3164 | 0.3160 | 0.3153 | 0.3110 | 0.2146 | 0.2498 | 0.3050 | 0.3082 |
| bigram (200) | 0.3864 | 0.3614 | 0.2954 | 0.3802 | 0.3858 | 0.3565 | 0.3562 | 0.2868 | 0.3529 | 0.3548 |

and check the Spearman’s rank correlation coefficient (Myers and Well., 1995) between the computer and the human labeled ranks.

Paraphrases (bigrams). We use the paraphrase (bigram) datasets used in (Wieting et al., 2015), ppdb_all, bigrams_vn, bigrams_nn, and bigrams_jnn, to test whether the truncation affects phrase level embedding. Our phrase level embedding is based on the average of the words inside each phrase. Note that it is also easy to incorporate our truncation methods into existing phrase embedding algorithms. We follow (Wieting et al., 2015) in using cosine similarity to evaluate the correlation between the computed similarity and annotated similarity between paraphrases.

4.2 Analysis of Bits Needed

We ran both CBOW and skipgram with negative sampling (Mikolov et al., 2013a; Mikolov et al., 2013b) on the Wikipedia dump data, and set the window size of context to be five. Then we performed value truncation with 4 bits, 6 bits, and 8 bits. The results are shown in Fig. 1, and the numbers of the averaged results are shown in Table 1. We also used the binarization algorithm (Guo et al., 2014) to truncate each dimension to three values; these experiments are denoted using the suffix “binary” in the figure. For both CBOW and skipgram models, we train the vectors with 25 and 200 dimensions respectively.

The representations used in our experiments were trained using the whole Wikipedia dump. A first observation is that, in general, CBOW performs better than the skipgram model. When using the truncation method, the memory required to store the embedding is significantly reduced, while the performance on the test datasets remains almost the same until we truncate down to 4 bits. When comparing CBOW and skipgram models, we again see that the drop in performance with 4-bit values for the skipgram model is greater than the one for the CBOW model. For the CBOW model, the drop in performance with 4-bit values is greater when using 200 dimensions than it is when using 25 dimensions. However, when using skipgram, this drop is slightly greater when using 25 dimensions than 200.

We also evaluated the binarization approach (Guo et al., 2014). This model uses three values, represented using two bits. We observe that, when the dimension is 25, the binarization is worse than truncation. One possible explanation has to do merely with the size of the space; while $3^{25}$ is much larger than the size of the word space, it does not provide enough redundancy to exploit similarity as needed in the tasks. Consequently, the binarization approach results in worse performance. However, when the dimension is 200, this approach works much better, and outperforms the 4-bit truncation. In particular, binarization works better for skipgram than for CBOW with 200 dimensions. One possible explanation is that the binarization algorithm computes, for each dimension of the word vectors, the positive and negative means of the values and uses it to split the original values in that dimension, thus behaving like a model that clusters the values in each dimension. The success of the binarization then indicates that skipgram embeddings might be more discriminative than CBOW embeddings.

4.3 Comparing Training Methods

We compare the training methods for the CBOW model in Table 2. For stochastic rounding, we scale the probability of rounding up to make sure that small gradient values will still update the values. Both stochastic rounding and truncation with auxiliary update vectors (shown in Sec. 3.2) require 16 bits for each value in the training phase. Truncation with auxiliary update vectors finally produces 8-bit-value based vectors while stochastic rounding produces 16-bit-value based vectors. Even though our auxiliary update algorithm uses smaller memory/disk to store vectors, its performance is still better than that of stochastic rounding. This is simply because the update values in SGD are too small to allow the stochastic round-
Table 2: Comparing the training CBOW models: We set the average value of the original word2vec embeddings to be 1, and the values in the table are relative to the original embeddings baselines. “avg. (w.)” represents the average values of all word similarity datasets. “avg. (b.)” represents the average values of all bigram phrase similarity datasets. “Stoch. (16 b.)” represents the method using stochastic rounding applied to 16-bit precision. “Trunc. (8 b.)” represents the method using truncation with 8-bit auxiliary update vectors applied to 8-bit precision.

| Bits  | CBOW | Skipgram |
|-------|------|----------|
| Original | 88.58% | 88.15%   |
| Binary  | 89.25% | 88.41%   |
| 4-bits  | 87.56% | 86.46%   |
| 6-bits  | 88.62% | 87.98%   |
| 8-bits  | 88.63% | 88.16%   |

The results shown in Table 3 for dependency parsing are consistent with word similarity and paraphrasing. First, we see that binarization for CBOW and skipgram is again better than the truncation approach. Second, for truncation results, more bits leads to better results. With 8-bits, we can again obtain results similar to those obtained from the original word2vec embedding.

6 Conclusion

We systematically evaluated how small can the representation size of dense word embedding be before it starts to impact the performance of NLP tasks that use them. We considered both the final size of the vectors we provide it while learning it. Our study considers both the CBOW and the skipgram models at 25 and 200 dimensions and showed that 8 bits per dimension (and sometimes even less) are sufficient to represent each value and maintain performance on a range of lexical tasks. We also provided two ways to train the embeddings with reduced memory use. The natural future step is to extend these experiments and study the impact of the representation size on more advanced tasks.

Acknowledgment

The authors thank Shyam Upadhyay for his help with the dependency parser embeddings results, and Eric Horn for his help with this write-up. This work was supported by DARPA under agreement numbers HR0011-15-2-0025 and FA8750-13-2-0008. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of any of the organizations that supported the work.

References

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. 2003. A neural probabilistic language model. Journal of Machine Learning Research, 3:1137–1155.

Peter F. Brown, Vincent J. Della Pietra, Peter V. de Souza, Jennifer C. Lai, and Robert L. Mercer.
1992. Class-based n-gram models of natural language. *Computational Linguistics*, 18(4):467–479.

Sabine Buchholz and Erwin Marsi. 2006. Conll-x shared task on multilingual dependency parsing. In *CoNLL*, pages 149–164.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel P. Kuksa. 2011. Natural language processing (almost) from scratch. *Journal of Machine Learning Research*, 12:2493–2537.

Manaal Faruqui and Chris Dyer. 2014. Improving vector space word representations using multilingual correlation. In *EACL*, pages 462–471.

Manaal Faruqui, Yulia Tsvetkov, Dani Yogatama, Chris Dyer, and Noah A. Smith. 2015. Sparse overcomplete word vector representations. In *ACL*, pages 1491–1500.

Jiang Guo, Wanxiang Che, Haifeng Wang, and Ting Liu. 2014. Revisiting embedding features for simple semi-supervised learning. In *EMNLP*, pages 110–120.

Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng Wang, and Ting Liu. 2015. Cross-lingual dependency parsing based on distributed representations. In *ACL*, pages 1234–1244.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayan. 2015. Deep learning with limited numerical precision. In *ICML*, pages 1737–1746.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Improving distributional similarity with lessons learned from word embeddings. *TACL*, 3:211–225.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. 2013a. Distributed representations of words and phrases and their compositionality. In *NIPS*, pages 3111–3119.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. 2013b. Linguistic regularities in continuous space word representations. In *NAACL-HLT*, pages 746–751.

Jerome L. Myers and Arnold D. Well. 1995. *Research Design & Statistical Analysis*. Routledge.

Lev Ratinov and Dan Roth. 2009. Design challenges and misconceptions in named entity recognition. In *Proceedings of CoNLL-09*, pages 147–155.

Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio. 2010. Word representations: A simple and general method for semi-supervised learning. In *ACL*, pages 384–394.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. 2015. From paraphrase database to compositional paraphrase model and back. *TACL*, 3:345–358.