Supplementary Appendix 1 for

A Pareto approach to resolve the conflict between
information gain and experimental costs:
Multiple-criteria design of carbon labeling experiments

Measurement Models

Katharina Nöh, Sebastian Niedenführ, Martin Beyß, Wolfgang Wiechert
k.noeh@fz-juelich.de

Contents

1. Analytical platforms – overview...3
2. Compilation of calibrated device-specific measurement error models..............................5
3. Gas Chromatography-Mass Spectrometry (GC-MS)..7
 3.1 Measurement specification..7
 3.2 Measurement model ..11
 3.3 Measurement error model..11
4. Liquid Chromatography-Mass Spectrometry (LC-MS)..12
 4.1 Measurement specification ..12
 4.2 Measurement model ..15
 4.3 Measurement error model..15
5. Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)16
 5.1 Measurement specification ..16
 5.2 Measurement model ...20
 5.3 Measurement error model..20
6. 13C-Nuclear Magnetic Resonance Spectrometry (13C-NMR) ...21
 6.1 Measurement specification ..21
 6.2 Measurement model ...25
 6.3 Measurement error model ..25
7. 1H-Nuclear Magnetic Resonance Spectrometry (1H-NMR)26
 7.1 Measurement specification ..26
 7.2 Measurement model ...28
 7.3 Measurement error model ..28
8. Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometry (GC-C-IRMS)29
 8.1 Measurement specification ..29
 8.2 Measurement model ...31
 8.3 Measurement error model ..31
9. References ...32
1. Analytical platforms – overview

This section briefly introduces relevant terminology used throughout, while the interested reader is referred to extensive expert reviews and textbooks for more details [1,2].

NMR is a noninvasive technology that distinguishes isotopes by their magnetic properties. The separation relies on frequency shifts induced by protons (¹H-NMR), carbon nuclei (¹³C-NMR) separately or in combination (heteronuclear NMR). ¹H-NMR measures the positional fractional enrichment in a single carbon position and therewith provides specific relative label information [3]. ¹³C-NMR quantifies local patterns of neighboring labeled carbon atoms [4,5]. NMR based technologies deliver measurement information with high chemical specificity, but devices are high-priced and suffer from low sensitivity implying the need for large sample sizes and comparably long acquisition times.

Complementary to NMR, (tandem) MS instruments measure sums of isotopomers or isotopomer fragments sharing identical masses (“cumulative enrichments”) [6]. In particular, in the collision-induced fragmentation step within tandem MS procedures, molecules (precursor ions) are cleaved into smaller parts (product ions) which can deliver positional labeling information [7–9]. Typically, MS/(MS) is coupled with a preceding chromatographic separation step, such as gas and liquid chromatography (GC/LC) to increase measurement selectivity. In the field of ¹³C MFA, GC-MS is the predominant platform applied. GC-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is a highly specialized technique to quantify the total fraction of labeled and unlabeled carbon content per molecule [10–12], with detection levels two orders of magnitude lower than GC-MS while requiring only very small sample sizes [13]. Besides these hyphenated techniques, also “direct” matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS and Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR-MS) have been applied in ¹³C MFA, although use cases are rare [14,15].

NMR and MS based analytical platforms differ in their ability to resolve certain chemical classes of metabolites, detectable analyte concentrations and achievable fragmentation patterns (S1 Table A).

Table A. Analytical platforms typically used in ¹³C MFA studies along with the reported target analyte classes.

Analyte spectrum	Organic acids	Sugars	Amino acids	Comment
¹H-NMR	-	-	[3]	Fine structures; mostly from hydrolyzed cellular proteins due to limited sensitivity (> 1-2 nmol); non-destructive technology; costly instruments; long acquisition times and complex analysis
¹³C-NMR	-	-	[4,16–20]	Fine structures; mostly from hydrolyzed cellular proteins due to low sensitivity; nucleosides; non-destructive technology; costly instruments; long acquisition times and complex analysis
Technique	Refs.	Details		
-----------------	----------------------	--		
GC-MS	[21,22] [23] [17,23–31]	Mass isotopomers; derivatization and bias correction step for natural abundant isotopes mandatory; indirect fragment labeling information; very robust and reproducible; easy analysis; most abundant technique for 13C MFA; good analytical cost-benefit ratio		
GC-C-IRMS	- [-] [10,32]	Fractional enrichment; especially suited for low labeling content; extensive isolation; small metabolite spectrum		
LC-MS	[33–35] [34,35] [7,34,36]	Mass isotopomers; non-trivial data analysis; measures against ion suppression required; high sensitivity and selectivity; direct labeling information		
LC-MS/MS	[7,37] [34,35,37] [7,37]	Tandem mass isotopomers; non-trivial and time-consuming data analysis; measures against ion suppression required; highest sensitivity and selectivity; direct fragment labeling information		
MALDI-TOF-MS	- [14] [14]	Crude extracts; direct introduction method; more tolerant to higher salt content samples than electrospray ionization methods; new MALDI matrices minimize the issue of matrix inference; fast analysis		
FT-ICR-MS	- [38] [15,39]	Ultra-high resolution and mass accuracies better than 0.2 ppm; fast analysis < 5 min per sample		

With respect to their use in the context of 13C MFA, comparative investigations on the inter-platform information content of CLEs for 13C MFA are scarce. Jeffrey et al. compared 13C-NMR, GC-MS, and GC-MS/MS for measuring the 13C-fractional enrichment of glutamate resulting in the statement that flux results benefit from the increased number of MS/MS measurement as compared to those obtained by 13C-NMR and GC-MS [40]. Single and tandem LC- and GC-MS, respectively, have been applied in a network-wide manner in [7,41] and it was shown that tandem MS indeed gives a better overall flux determinacy compared to single MS. On the other hand, different analytical techniques have been combined to increase the coverage of the metabolite and isotopomer spectrum. For instance, GC-MS, 1H- and 13C-NMR by McKinlay et al. for the capnophilic bacterium *Actinobacillus succinogenes* [42], GC-MS, LC-MS and 13C-NMR for 13C MFA in *Saccharomyces cerevisiae* [35], and LC-MS with 13C-NMR in *Penicillium chrysogenum* [43]. Recently, GC- and LC-MS derived labeling data were jointly used to resolve metabolic fluxes in *Pseudomonas fluorescens* [44].
2. Compilation of calibrated device-specific measurement error models

To arrive at realistic error approximations for the measurement covariance matrix, data from studies featuring different organisms, platforms and various labeling contents are collected [3,10,19,20,23,25,27,34,36,37,42,45–49]. For six analytical platforms, namely GC-MS, LC-MS, LC-MS/MS, 13C-NMR, 1H-NMR, and GC-C-IRMS, published measurements and their corresponding standard deviations were extracted (cf. Sec. 3-8). The measurements are assumed to be corrected for natural abundance. Each measurement group was considered only once, also if it is acquired by different analytical methods. In order to prevent over-optimistic predictions, we used conservative, i.e., on average higher error estimates than reported in, e.g., [15,45]. For the same reason, very specialized setups are not considered in the survey (e.g.[38]).

Not unexpectedly, the reported data showed large variances. Similar to the approach in Dauner et al. for 13C-NMR [18], we proposed a linear regression between the measurements’ standard deviation and the observed signal:

$$\sigma_{meas}^{dev,li} = b_1^{dev} \cdot \eta + b_2^{dev}$$

where the device-specific regression coefficients b_1^{dev}, b_2^{dev} are calibrated with all data collected for the device, i.e., across all measurement groups. For 1H-NMR and GC-C-IRMS only few labeling data sets are publicly available, all with only low label incorporation levels questioning the validity of the error models for these two platforms for higher levels of fractional enrichments.

Results of the linear regressions are shown in S1 Fig A, including the values for the coefficient pairs. In summary, the regression lines of the different platforms show only minor differences in their slopes. Roughly, in regions with low label enrichment GC-C-IRMS and LC-MS/MS errors are modeled to be most accurate while for 13C-NMR the error remains nearly constant over the whole possible labeling range. With these measurement error models at hand, errors become predictable in dependence of the analytes’ labeling states. As a consequence, the variances in the main diagonal of the measurement covariance matrix depend on the labeling fraction and are, thus, heteroscedastic.
Fig A. Comparison of device-specific error models for fractional labeling measurements. Underlying data are collected from studies utilizing different organisms and labeling contents (see S1 Sec. 3-8 for the specifications). Standard deviations are determined by linear regression, i.e., by fitting a linear error model $\sigma = a \cdot \eta + b$ with slope (a) and y-axis intercept (b). Here, b represents the baseline error. For 1H-NMR only data sets with a low abundance of 13C labeling content are available. Therefore, the error model is considered realistic only for labeling fractions of less than 30% 13C incorporation, while errors of measurements with higher labeling content are linearly extrapolated, as indicated by the change in line thickness.
3. Gas Chromatography-Mass Spectrometry (GC-MS)

3.1 Measurement specification

Table B. GC-MS measurement group specification.

Metabolite	# Carbons	Measurement specification	Fragment and/or mass	References (exemplary)
Alanine ALA	3	ALA#M0,1,2,3	M-57, 260	[23], [45], [27], [25], [46], [42], [47]
		ALA[2-3]#M0,1,2	M-85, 232	[23], [45], [27], [25], [46], [42], [47]
			M-159	[25]
Arginine ARG*	6	ARG#M0,1,2,3,4,5	442	[23]
Aspartate ASP	4	ASP#M0,1,2,3,4	M-57, 418	[23], [45], [27], [46], [47]
			M-15, 460	[27]
		ASP[2-4]#M0,1,2,3	M-85, 390	[23], [45], [46], [47]
			M-159, 316	[23], [27]
		ASP[1-2]#M0,1,2	f302, 302	[45], [46], [47]
Aspartate/Asparagine ASX*	4	ASX#M0,1,2,3,4	M-57, 418	[25], [42]
		ASX[2-4]#M0,1,2,3	M-85, 390	[25], [42]
			M-159, 316	[25], [42]
		ASX[1-2]#M0,1,2	f302, 302	[25], [42]
Fumarate FUM*	4	FUM#M0,1,2,3,4	M-57	[42]
Glycine GLY	2	GLY#M0,1,2	M-57, 246	[23], [45], [27], [25], [46], [42], [47]
		GLY[2]#M0,1*	M-85, 218	[23], [45], [27], [25], [46], [42], [47]
Glutamate GLU	5	GLU#M0,1,2,3,4,5	M-57, 432	[23], [45], [27], [46], [47]
		GLU[2-5]#M0,1,2,3,4	M-85, 404	[45], [27], [46], [47]
			M-159, 330	[23], [27], [46]
Glutamate/Glutamine GLX*	5	GLX#M0,1,2,3,4,5	M-57	[25], [42]
		GLX[2-5]#M0,1,2,3,4	M-85	[25], [42]
			M-159	[25], [42]
		GLX[1-2]#M0,1,2	f302, 302	[25]
Amino Acid	Short Form	N Terminals	M-Terminals	References
------------	------------	-------------	-------------	------------
Glutamine	GLN*	5	GLN#M0,1,2,3,4,5	M-57, 431 [46]
Histidine	HIS*	6	HIS[2-6]#M0,1,2,3,4,5	n.a. [45]
Isoleucine	ILE	6	ILE#M0,1,2,3,4,5,6	n.a. [45], [47]
			ILE[2-6]#M0,1,2,3,4,5	M-85, 274 [45], [27], [25], [46], [42], [47]
				M-159, 200 [27], [25], [46], [42]
Leucine	LEU	6	LEU#M0,1,2,3,4,5,6	[47]
			LEU[2-6]#M0,1,2,3,4,5	M-85, 274 [45], [27], [25], [46], [42], [47]
				M-159, 200 [27], [25], [42]
Lysine	LYS	6	LYS#M0,1,2,3,4,5,6	M-57 [25], [47]
			LYS[2-6]#M0,1,2,3,4,5	M-159, 329 [27], [25], [47]
			LYS[1-2]#M0,1	f302, 302 [25]
Methionine	MET	5	MET#M0,1,2,3,4,5	M-57, 320 [27], [25], [46], [42]
			MET[2-5]#M0,1,2,3,4	M-85, 292 [27], [25], [46], [42]
				M-159, 218 [27], [25], [46]
Phenylalanine	PHE	9	PHE#M0,1,2,3,4,5,6,7,8,9	M-57, 336 [23], [45], [27], [46], [42], [47]
			PHE[2-9] #M0,1,2,3,4,5,6,7,8	M-85, 308 [45], [27], [25], [46], [42], [47]
				M-159, 234 [23], [27], [25], [46]
			PHE[3-9] #M0,1,2,3,4,5,6,7	sc [25]
			PHE[1-2]#M0,1,2	f302, 302 [23], [45], [25], [46], [42], [47]
Proline	PRO	5	PRO#M0,1,2,3,4,5	M-57 [45], [25], [47]
			PRO[2-5]#M0,1,2,3,4	M-85 [45], [25], [47]
				M-159, 184 [27], [25], [42]
Serine	SER	3	SER#M0,1,2,3	M-57, 390 [23], [45], [27], [25], [46], [42], [47]
			SER[2-3]#M0,1,2	M-85, 362 [23], [45], [27], [46], [42], [47]
				M-159, 27 [27], [25], [46], [42], [47]
Metabolite	MS Measurement	Carbons	MS Measurement	Ref.
------------	----------------	---------	----------------	--------
Succinate	SUC*	4	SUC#M0,1,2,3,4	M-15
				[42]
Threonine	THR	4	THR#M0,1,2,3,4	M-57,
				404,
				[23],
				[45],
				[47],
				[42],
Tyrosine	TYR	9	TYR#M0,1,2,3,4,5,6,7,8,9*	M-159
				[25]
				[45]
				[47]
	TYR[2-9]#M0,1,2,3,4,5,6,7,8	M-85	[23], [45], [47]	
				[25]
	TYR[1-2]#M0,1,2	f302,302	[23], [45], [46], [47]	
				[42],
				[47]
	VAL#M0,1,2,3,4,5	M-57	[23], [45], [47]	
				[27],
				[25]
				[46],
				[42],
	VAL[2-5]#M0,1,2,3,4	M-85	[23], [45], [47]	
				[27],
				[25]
				[46],
				[47]
				[23],
				[27]
				[42]
	VAL[1-2]#M0,1,2*	f302,302	[45], [47]	

*: metabolite not present in the reaction network or not used in the study
n.a.: information not available

The MS measurement specification METAB#M0,1,2,3 describes a MS measurement of the full molecule of the metabolite pool METAB having three carbon atoms. If only a certain molecule fragment is observed, the carbon-range is specified that contains the labeling positions, e.g., METAB[2-3]#M0,1,2.
Fig B. Network and GC-MS labeling measurements. Each measurement group is represented by a circle giving the number of measured fractions. All metabolic network diagrams were drawn with the software OMIX [50]. Visualization of data was done with tailored OVL scripts.
3.2 Measurement model

Mass isotopomers can be expressed – up to a normalization factor – as a linear combination of isotopomer fractions [51], as shown here for the C3 metabolite pyruvate as an example:

\[
\begin{pmatrix}
PYR # M0 \\
PYR # M1 \\
PYR # M2 \\
PYR # M3
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
\cdot
\begin{pmatrix}
\mathbf{x}_{\infty} \\
\mathbf{x}_{\infty}
\end{pmatrix}
=
\mathbf{M}_{PYR,MS} \cdot \mathbf{x}_{PYR}
\]

where \(\mathbf{x}_{PYR} \) denotes the vector of isotopomer fractions of the metabolite PYR.

3.3 Measurement error model

Fig C. Error model for GC-MS based labeling measurements compiled from published data sets (S1 Table B). Standard deviations were determined by linear regression, i.e., by fitting the linear error model \(\sigma = b + m \cdot \eta \) with slope (m) and y-axis intercept (b) to the data resulting in \(\sigma = 0.006653 + 0.04119 \cdot \eta \).
4. Liquid Chromatography-Mass Spectrometry (LC-MS)

4.1 Measurement specification

Table C: LC-MS measurement group specification.

Metabolite	# Carbons	Measurement specification	References (exemplary)
2-P-Glycerate + 3-P-Glycerate	23PG*	23PG#M0,1,2,3	[47], [49], [34]
6-Phosphogluconate	6PG*	6PG#M0,1,2,3,4,5,6	[47], [49], [34]
2-oxoglutarate	AKG	AKG# M0,1,2,3,4,5	[47]
Alanine	ALA	ALA#M0,1,2,3	[46], [36]
Arginine	ARG	ARG#M0,1,2,3,4,5,6	[52]
Asparagine	ASN	ASN#M0,1,2,3,4	[46], [36]
Aspartate	ASP	ASP#M0,1,2,3,4	[46]
Cysteine	CYS	CYS#M0,1,2,3	[37]
Dihydroxyacetone-phosphate	DHAP	DHAP#M0,1,2,3	[37]
Erythrose-4-phosphate	E4P	E4P#M0,1,2,3,4	[34]
Fructose-6-phosphate	F6P	F6P#M0,1,2,3,4,5,6	[47], [34]
Fructose-1,6-phosphate	FBP	FBP#M0,1,2,3,4,5,6	[47], [49], [34]
Fumarate	FUM	FUM# M0,1,2,3,4	[47]
Glucose-1-phosphate	G1P*	G1P#M0,1,2,3,4,5,6	[34]
Glucose-6-phosphate	G6P	G6P#M0,1,2,3,4,5,6	[47], [34]
Glutamine	GLN	GLN#M0,1,2,3,4,5	[36]
Glutamate	GLU	GLU#M0,1,2,3,4,5	[46], [36]
Glyceraldehyde-3-phosphate	GAP	GAP#M0,1,2,3	[37]
Glycine	GLY	GLY#M0,1,2	[46], [36]
Histidine	HIS	HIS#M0,1,2,3,4,5,6	[37]
Isoleucine	ILE	ILE#M0,1,2,3,4,5,6	[37]
Leucine	LEU	LEU#M0,1,2,3,4,5,6	[37]
Lysine	LYS	LYS#M0,1,2,3,4,5,6	[37]
Malate	MAL	MAL# M0,1,2,3,4	[47]
Methionine	MET	MET#M0,1,2,3,4,5	[46]
Oxaloacetate	OAA	OAA#M0,1,2,3,4,5	[37]
Ribose-5-phosphate + Ribulose-5-phosphate +	RU5P	RU5P#M0,1,2,3,4,5	[47], [49], [34]
Xylulose-5-phosphate			
Phosphoenolpyruvate	PEP	PEP# M0,1,2,3	[47]
Phenylalanine	PHE	PHE# M0,1,2,3,4,5,6,7,8,9	[46], [36]
Proline	PRO	PRO#M0,1,2,3,4,5	[37]
Pyruvate	PYR	PYR# M0,1,2,3	[37]
Metabolite	Code	Value	MS Measurement Specification
--------------------------	------	-------	-------------------------------
Sedoheptulose-7-phosphate	S7P	7	S7P#M0,1,2,3,4,5,6,7
Serine	SER	3	SER#M0,1,2,3
Succinate	SUC	4	SUC# M0,1,2,3,4
Threonine	THR	4	THR# M0,1,2,3,4
Tryptophane	TRP*	11	TRP# M0,1,2,3,4,5,6,7,8,9,10,11
Tyrosine	TYR	9	TYR# M0,1,2,3,4,5,6,7,8,9
Valine	VAL	5	VAL# M0,1,2,3,4,5

*: metabolite not present in the reaction network or not used in the study

The MS measurement specification METAB#M0,1,2,3 describes a MS measurement of the full molecule of the metabolite pool METAB having three carbon atoms.
Fig D. Network and LC-MS labeling measurements. Each measurement group is represented by a circle giving the number of measured fractions.
4.2 Measurement model
same as in S1 Sec 3.2.

4.3 Measurement error model

Fig E. Error model for LC-MS based labeling measurements compiled from published data sets (S1 Table C). Standard deviations were determined by linear regression, i.e., by fitting the linear error model \(\sigma = b + m \cdot \eta \) with slope \(m \) and y-axis intercept \(b \) to the data resulting in \(\sigma = 0.008839 + 0.018934 \cdot \eta \).
5. Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)

5.1 Measurement specification

Table D. LC-MS/MS measurement group specification.

Metabolite	# Carbons	Measurement specification	Reference (exemplary)		
2-phosphate-glycerate + 3-phosphate-glycerate	23PG*	23PG[1-3:1-3]#M(0,0)(1,1)(2,2)(3,3)	[37]		
6-phosphogluconate	6PG*	6PG[1:6:1:6]#M(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)	[37]		
2-oxoglutarate	AKG	AKG[1-5:1-4]#M(0,0)(1,1)(2,1)(2,2)(3,3)(4,3) (4,4) (5,4)	[37]		
Alanine	ALA	ALA[1-3:2-3]#M(0,0)(1,1)(2,1)(2,2)(3,2)	[37]		
Arginine	ARG	ARG[1-6:1-5]#M(0,0)(1,0)(1,1)(2,1)(2,2)(3,3)(4,3) (4,4) (5,4) (5,5) (6,5)	[37]		
Asparagine	ASN	ASN[1-4:2-4]#M(0,0)(1,0)(1,1)(2,1)(2,2)(3,3)(4,3)	[37]		
Aspartate	ASP	ASP[1-4:1-2]#M(0,0)(1,0)(1,1)(2,0)(2,1)(2,2)(3,1)(3,2) (4,2)	[37]		
Citrate + Isocitrate	CIT*	CIT[1-6:2-6]#M(0,0)(1,0)(1,1)(2,1)(2,2)(3,2)(3,3)(4,3) (4,4) (5,4) (5,5) (6,5)	[37]		
Cysteine	CYS	CYS[1-3:2-3]#M(0,0)(1,0)(1,1)(2,1)(2,2)(3,2)	[37]		
Dihydroxyacetone-phosphosphate	DHAP	DHAP[1-3:1-3]#M(0,0)(1,1)(2,2)(3,3)	[37]		
Erythrose-4-phosphate	E4P	E4P[1-4:1-4]#M(0,0)(1,1)(2,2)(3,3)(4,4)	[37]		
Fumarate	FUM	FUM[1-4:1-3]#M(0,0)(1,0)(1,1)(2,1)(2,2) (3,2)(3,3)(4,3) (1-3)=2-4	[37]		
Fructose-6-phosphate	F6P	F6P[1-6:1-6]#M(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)	[37]		
Fructose-1,6-phosphate	FBP	FBP[1-6:1-6]#M(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)	[37]		
Glucose-6-phosphate	G6P	G6P[1-6:1-6]#M(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)	[37]		
Glycer-aldehyde-3-phosphate	GAP	GAP[1-3:1-3]#M(0,0)(1,1)(2,2)(3,3)	[37]		
Amino Acid	Abbreviation	Count	Formula	Spectrum	
------------------	--------------	-------	---------	----------	
Glutamine	GLN	5	GLN[1-5:2-5]#M(0,0)(1,0)(1,1)(2,1)(2,2)(3,2)(3,3)(4,3)(4,4)(5,4)	[37]	
Glutamate	GLU	5	GLU[1-5:2-5]#M(0,0)(1,0)(1,1)(2,1)(2,2)(3,2)(3,3)(4,3)(4,4)(5,4)	[37]	
Glycine	GLY	2	GLY[1-2:1]#M(0,0)(1,0)(1,1)(2,1)	[37]	
Histidine	HIS	6	HIS[1-6:2-6]#M(0,0)(1,0)(1,1)(2,1)(2,2)(3,2)(3,3)(4,3)(4,4)(5,4)(5,5)(6,5)	[37]	
Isoleucine	LEU	6	LEU[1-6:2-6]#M(0,0)(1,0)(1,1)(2,1)(2,2)(3,2)(3,3)(4,3)(4,4)(5,4)(5,5)(6,5)	[37]	
Leucine	ILEU	6	ILEU[1-6:2-6]#M(0,0)(1,0)(1,1)(2,1)(2,2)(3,2)(3,3)(4,3)(4,4)(5,4)(5,5)(6,5)	[37]	
Lysine	LYS	6	LYS[1-6:1-6]#M(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)	[37]	
Malate	MAL	4	MAL[1-4:1-4]#M(0,0)(1,1)(2,2)(3,3)(4,4)	[37]	
Methionine	MET	5	MET[1-5:2-5]#M(0,0)(1,0)(1,1)(2,1)(2,2)(3,2)(3,3)(4,3)(4,4)(5,4)	[37]	
Oxaloacetate	OAA	4	OAA[1-4:1-3]#M(0,0)(1,0)(1,1)(2,1)(2,2)(3,2)(3,3)(4,3)	[37]	
Phosphoenolpyruvate	PEP	3	PEP[1-3:1-3]#M(0,0)(1,1)(2,2)(3,3)	[37]	
Phenylalanine	PHE	9	PHE[1-9:2-9]#M(0,0)(1,0)(1,1)(2,1)(2,2)(3,2)(3,3)(4,3)(4,4)(5,4)(5,5)(5,6)(5,5)(6,6)(6,6)(7,7)(7,7)(7,7)(7,7)(7,8)(8,8)(9,8)	[37]	
Proline	PRO	5	PRO[1-5:2-5]#M(0,0)(1,0)(1,1)(2,1)(2,2)(3,2)(3,3)(4,3)(4,4)(5,4)	[37]	
Pyruvate	PYR	3	PYR[1-3:2-3]#M(0,0)(1,0)(1,1)(2,1)(2,2)(3,2)	[37]	
Ribose-5-P	R5P*	5	R5P[1-5:1-5]#M(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)	[37]	
Ribulose-5-P + Xylulose-5-P	RU5P	5	RU5P[1-5:1-5]#M(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)	[37]	
Sedoheptulose-7-phosphate	S7P	7	S7P[1-7:1-7]#M(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)(7,7)	[37]	
Serine	SER	3	SER[1-3:2-3]#M(0,0)(1,0)(1,1)(2,1)(2,2)(3,2)	[37]	
Succinate	SUC	4	SUC[1-4:1-3]#M(0,0)(1,0)(1,1)(2,1)(2,2)(3,2)(3,3)(4,3)(1-3)=[2-4]	[37]	
Homoserine/Threonine	THR	4	THR[1-4:2-4]#M(0,0)(1,0)(1,1)(2,1)(2,2)(3,2)(3,3)(4,3)	[37]	
Metabolite	Abbreviation	Charge	Mass Spectrum	Mass Increments	Reference
---------------	--------------	--------	---------------	-----------------	-----------
Tryptophane	TRP*	11	TRP[1-11:1-11]	#M(0,0)(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)(7,7)(8,8)(9,9)(10,10)(11,11)	[37]
Tyrosine	TYR	9	TYR[1-9:2-9]	#M(0,0)(1,0)(1,1)(2,1)(2,2)(3,2)(3,3)(4,3)(4,4)(5,4)(5,5)(6,5)(6,6)(7,6)(7,7)(8,7)(8,8)(9,8)	[37]
Valine	VAL	5	VAL[1-5:2-5]	#M(0,0)(1,0)(1,1)(2,1)(2,2)(3,2)(3,3)(4,3)(4,4)(5,4)	[37]

*: metabolite not present in the reaction network or not used in the study

The tandem-MS measurement group specification METAB[1-3:2,3]#M0,1,2,3 of a C3 metabolite METAB describes a tandem-MS measurement on the full (mother) molecule METAB and on its (daughter) fragment consisting of the second and third atom position. The list of pairs of mass traces following #M denotes the mass-increments of the mother and daughter fragments.
Fig F. Network and LC-MS/MS labeling measurements. Each measurement group is represented by a circle giving the number of measured fractions.
5.2 Measurement model

Tandem mass isotopomers can be expressed – up to a normalization factor – as a linear combination of isotopomer fractions [7], as shown here for the C3 metabolite pyruvate as an example:

\[
\begin{align*}
&PYR[1 - 3 : 2 - 3] \# M(0,0) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_{\infty} \\ x_{\infty} \\ x_{\infty} \\ x_{\infty} \\ x_{\infty} \\ x_{\infty} \end{pmatrix} = M_{PYR,MSMS} \cdot x_{PYR}
\end{align*}
\]

where \(x_{PYR} \) denotes the vector of isotopomer fractions of the metabolite PYR. In this case C1-3 denotes the mother ion and C2-3 the daughter ion.

5.3 Measurement error model

Fig G. Error model for LC-MS/MS based labeling measurements compiled from published data sets (S1 Table D). Standard deviations were determined by linear regression, i.e., by fitting the linear error model \(\sigma = b + m \cdot \eta \) with slope \(m \) and y-axis intercept \(b \) to the data resulting in \(\sigma = 0.001696+0.016496 \cdot \eta \).
6. 13C-Nuclear Magnetic Resonance Spectrometry (13C-NMR)

6.1 Measurement specification

Table E. 2D-13C NMR measurement group specification.

Metabolite	Analytical technique	Measurement specification	References	
Alanine	ALA	1H-13C HSQC ALA#S2,DL2,DR2,DD2 ALA#S3,DL3	[20], [48]	
		1H-13C COSY ALA#S2,DL2,DR2,DD2 ALA#S3,DL3	[47], [19]	
Arginine	ARG	1H-13C HSQC ARG#S3,DL3,T3 ARG#S5,DL5	[48]	
		1H-13C COSY ARG#S3,DL3,DD3 ARG#S4,DL4,DD4 ARG#S5,DL5	[19]	
		ARG#S3,DL3,T3 ARG#S5,DL5	[47]	
Aspartate	ASP	1H-13C HSQC ASP#S2,DL2,DR2,DD2 ASP#S3,DL3,DR3,DD3	[20], [48]	
		1H-13C COSY ASP#S2,DL2,DR2,DD2 ASP#S3,DL3,DR3,DD3	[47]	
Aspartate/ Asparagine	ASX*	1H-13C COSY ASX#S2,DL2,DR2,DD2 ASX#S3,DL3,DR3,DD3	[19]	
Cysteine	CYS	1H-13C COSY CYS#S2,DL2,DR2,DD2 CYS#S3,DL3	[47]	
Glutamate	GLU	1H-13C HSQC GLU#S2,DL2,DR2,DD2 GLU#S3,DL3,DD3 GLU#S4,DL4,DR4,DD4	[20]	
		1H-13C COSY GLU#S2,DL2,DR2,DD2 GLU#S3,DL3,T3 GLU#S4,DL4,DR4,DD4	[47]	
Glutamate/ Glutamine	GLX*	1H-13C COSY GLX#S2,DL2,DR2,DD2 GLX#S3,DL3,DD3 GLX#S4,DL4,DR4,DD4	[19]	
Glycine	GLY	1H-13C HSQC GLY#S2,DL2	[20], [48]	
		1H-13C COSY GLY#S2,DL2	[47], [19]	
Histidine	HIS	1H-13C HSQC HIS#S2,DL2,DR2,DD2 HIS#S3,DL3,DR3,DD3 HIS#S5,DL5	[20]	
		HIS#S3,DL3,DR3,DD3 HIS#S5,DL5	[48]	
		1H-13C COSY HIS#S2,DL2,DR2,DD2 HIS#S3,DL3,DR3,DD3	[47], [19]	
		HIS#S5,DL5		
Isoleucine	ILE	1H-13C HSQC ILE#S2,DL2,DR2,DD2 ILE#S4,DL4,DD4 ILE#S5,DL5 ILE#S6,DL6	[48]	
		1H-13C COSY ILE#S2,DL2,DR2,DD2 ILE#S4,DL4,DD4 ILE#S5,DL5	[19]	
Protein	Residue	Experiment	Assignment	References
-----------	---------	---------------------	--------------------------	------------
Leucine	LEU	1H-13C HSQC	LEU#S2,DL2,DR2,DD2	[20]
			LEU#S3,DL3,DD3	[47]
			LEU#S5,DL5	[48]
		1H-13C COSY	LEU#S2,DL2,DR2,DD2	[19]
			LEU#S3,DL3,T3	[47]
			LEU#S5,DL5	[19]
			LEU#S6,DL6	[47]
Lysine	LYS	1H-13C HSQC	LYS#S3,DL3,T3	[48]
			LYS#S4,DL4,T4	[48]
			LYS#S5,DL5,T5	[48]
		1H-13C COSY	LYS#S3,DL3,DD3	[19]
			LYS#S4,DL4,DD4	[47]
			LYS#S5,DL5,DD5	[19]
			LYS#S6,DL6	[47]
Methionine	MET	1H-13C COSY	MET#S2,DL2,DR2,DD2	[47], [19]
Phenylalanine	PHE	1H-13C HSQC	PHE#S2,DL2,DR2,DD2	[20]
			PHE#S3,DL3,DD3	[48]
		1H-13C COSY	PHE#S2,DL2,DR2,DD2	[19]
			PHE#S3,DL3,DD3	[47]
Proline	PRO	1H-13C HSQC	PRO#S2,DL2,DR2,DD2	[20]
			PRO#S3,DL3,T3	[48]
		1H-13C COSY	PRO#S2,DL2,DR2,DD2	[19]
			PRO#S3,DL3,DD3	[47]
			PRO#S4,DL4,DD4	[19]
			PRO#S5,DL5	[47]
Serine	SER	1H-13C HSQC	SER#S2,DL2,DR2,DD2	[20], [48]
		1H-13C COSY	SER#S2,DL2,DR2,DD2	[47], [19]
			SER#S3,DL3	[48]
Threonine	THR	1H-13C HSQC	THR#S4,DL4	[20], [48]
		1H-13C COSY	THR#S2,DL2,DR2,DD2	[19]
			THR#S3,DL3,DD3	[47]
			THR#S4,DL4	[19]
			THR#S2,DL2,DR2,DD2	[47]
			THR#S3,DL3,T3	[47]
Tyrosine	THR#S4,DL4			
----------	------------			
	THR#S5,DL5,T5 [48]			
	THR#S5,DL5,DD5			
	THR#S6,DL6,DD6 [20]			
	TYR#S2,DL2,DR2,DD2 [47], [19]			
	TYR#S3,DL3,DR3,DD3			

Valine	VAL#S2,DL2,DR2,DD2 [20]
	VAL#S3,DL3,DD3,DD3
	VAL#S4,DL4
	VAL#S5,DL5 [48]
	VAL#S2,DL2,DR2,DD2 [19]
	VAL#S4,DL4
	VAL#S5,DL5
	VAL#S2,DL2,DR2,DD2 [47]
	VAL#S4,DL4

*: metabolite not represented in the reaction network or used in the study

1H-13C HSQC: two-dimensional heteronuclear single-quantum coherence (13C, 1H)-correlation NMR

1H-13C COSY: two dimensional heteronuclear correlation spectroscopy

NMR fine structures are specified by singlet (S), doublets (D), double doublets (DD), and triplets (T), where DL and DR denote the left and right doublet, respectively, followed by the measured position.
Fig H. Network and 13C-NMR labeling measurements. Each measurement group is represented by a circle giving the number of measured fractions.
6.2 Measurement model

Multiplet resonances can be expressed – up to a normalization factor – as a linear combination of isotopomer fractions [51], as shown here for the C3 metabolite pyruvate as an example:

\[
\begin{align*}
\begin{pmatrix}
PYR\#S2 \\
PYR\#DL2 \\
PYR\#DR2 \\
PYR\#DD2
\end{pmatrix}
&=
\begin{pmatrix}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
\cdot
\begin{pmatrix}
x \\
x \\
x \\
x
\end{pmatrix}
\end{align*}
\]

where \(x_{\text{PYR}}\) denotes the vector of isotopomer fractions of the metabolite PYR. PYR[2] indicates that the second carbon atom is observed.

6.3 Measurement error model

Fig I. Error model for \(^{13}\text{C}-\text{NMR}\) based labeling measurements compiled from published data sets (S1 Table E). Standard deviations were determined by linear regression, i.e., by fitting the linear error model \(\sigma = b + m \cdot \eta\) with slope (m) and y-axis intercept (b) to the data resulting in \(\sigma = 0.005959 + 0.000717 \cdot \eta\).
7. 1H-Nuclear Magnetic Resonance Spectrometry (1H-NMR)

7.1 Measurement specification

Table F. 1H-NMR measurement group specification.

Metabolite	#carbons	Measurement specification	References
Acetate	ACE*	2 ACE#P1,2	[42]
Alanine	ALA	3 ALA#P2,3	[42], [53]
Aspartate	ASP	4 ASP#P2,3	[53]
Glutamate	GLU	6 GLU#P2,3,4	[53]
Glycine	GLY	2 GLY#P1,2	[53]
Isoleucine	ILE	6 ILE#P2,5,6	[53]
Leucine	LEU	6 LEU#P2,3,4,5,6	[53]
Lysine	LYS*	6 LYS#P2,3,4,5,6	[53]
Phenylalanine	PHE	9 PHE#P2,3,4,5,6,7,8,9	[53]
Serine	SER	3 SER#P2,3	[53]
Succinate	SUC*	4 SUC#P1,2; [1]=[4], [2]=[3]	[47]
Threonine	THR	4 THR#P2,3,4	[53]
Valine	VAL	5 VAL#P4,5	[53]

*: metabolite not represented in the reaction network or used in the study

One-dimensional 1H-NMR allows for the measurement of positional 13C-enrichments. The observed positional enrichments are denoted by a leading "P" followed by the position(s). An example for the corresponding measurement model is given in S1 Sec 7.2.
Fig J. Network and 1H-NMR labeling measurements. Each measurement group is represented by a circle giving the number of measured fractions.
7.2 Measurement model

Positional enrichments can be expressed – up to a normalization factor – as a linear combination of isotopomer fractions [51], as shown here for the C3 metabolite pyruvate as an example:

\[
P Y R \# P 1 : \begin{pmatrix} P Y R [1] \# 0 \\ P Y R [1] \# 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix},
\]

where \(x_{PYR} \) denotes the vector of isotopomer fractions of the metabolite PYR. P1 indicates the first C atom position is observed.

7.3 Measurement error model

Up to now, for \(^1\)H-NMR only data-points having a low abundance of \(^{13}\)C labeling content have been published. Errors of observables with high labeling content were linearly extrapolated from these data.

Fig K. Error model for \(^1\)H-NMR based labeling measurements compiled from published data sets (S1 Table F). Standard deviations were determined by linear regression, i.e., by fitting the linear error model \(\sigma = b + m \cdot \eta \) with slope (m) and y-axis intercept (b) to the data resulting in \(\sigma = 0.007267 + 0.004941 \cdot \eta \) (blue line). For data with higher labeling incorporation than 30%, standard deviations were linearly extrapolated (red dotted line).
8. Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometry (GC-C-IRMS)

8.1 Measurement specification

Table G. GC-C-IRMS measurement group specification.

Metabolite	# Carbons	Measurement specification	Reference	
Alanine	ALA	3	ALA#M0,1	[10]
Aspartate	ASP	4	ASP#M0,1	[10]
Glutamate	GLU	6	GLU#M0,1	[10]
Glycine	GLY	2	GLY#M0,1	[10]
Histidine	HIS	6	HIS#M0,1	[10]
Isoleucine	ILE	6	ILE#M0,1	[10]
Leucine	LEU	6	LEU#M0,1	[10]
Phenylalanine	PHE	9	PHE#M0,1	[10]
Proline	PRO	5	PRO#M0,1	[10]
Serine	SER	3	SER#M0,1	[10]
Threonine	THR	4	THR#M0,1	[10]
Valine	VAL	5	VAL#M0,1	[10]

GC-C-IRMS permits the measurement of the 13C/12C ratio. Typically, measurements are given in δ^{13}C, denoting the 13C content (expressed in per mill) which is converted into 13C enrichment. Thus, METAB#M0,1 denotes the content of 12C to 13C isotope fractions for a metabolite METAB. An example for the corresponding measurement model is given in S1 Sec 8.2.
Fig L. Network and GC-C-IRMS labeling measurements. Each measurement group is represented by a circle giving the number of measured fractions.
8.2 Measurement model

GC-C-IRMS enrichments can be expressed as a linear combination of isotopomer fractions weighted by the ratio of (un)labeled carbon atoms and total number of carbon atoms, as shown here for the C3 metabolite pyruvate as an example:

\[
\begin{pmatrix}
PYR #0 \\
PYR #1
\end{pmatrix} = \begin{pmatrix}
1 & 2/3 & 1/3 & 2/3 & 1/3 & 2/3 & 1/3 & 1/3 & 0 \\
0 & 1/3 & 1/3 & 2/3 & 1/3 & 2/3 & 2/3 & 1
\end{pmatrix} \cdot \begin{pmatrix}
x_\text{000} \\
x_\text{001} \\
x_\text{010} \\
x_\text{011} \\
x_\text{100} \\
x_\text{101} \\
x_\text{110} \\
x_\text{111}
\end{pmatrix} = \mathbf{M}_{\text{PYR.CIRMS}} \cdot \mathbf{x}_{\text{PYR}}
\]

where \(\mathbf{x}_{\text{PYR}} \) denotes the vector of isotopomer fractions of the metabolite PYR.

8.3 Measurement error model

![Error model for GC-C-IRMS based labeling measurements compiled from published data sets (S1 Table G). Standard deviations were determined by linear regression, i.e., by fitting the linear error model \(\sigma = b + m \cdot \eta \) with slope (m) and y-axis intercept (b) to the data resulting in \(-0.000991 + 0.092765 \cdot \eta \). Since only metabolomics data with a low labeling incorporation were available, instead of this error model a defensive constant error model was chosen, determined by the largest error value: \(\sigma = 0.0231 \).](image-url)

Fig M. Error model for GC-C-IRMS based labeling measurements compiled from published data sets (S1 Table G). Standard deviations were determined by linear regression, i.e., by fitting the linear error model \(\sigma = b + m \cdot \eta \) with slope (m) and y-axis intercept (b) to the data resulting in \(-0.000991 + 0.092765 \cdot \eta \). Since only metabolomics data with a low labeling incorporation were available, instead of this error model a defensive constant error model was chosen, determined by the largest error value: \(\sigma = 0.0231 \).
9. References

1. Watson JT, Sparkman OD. Introduction to Mass Spectrometry. 4th ed. Introduction to Mass Spectrometry: Instrumentation, Applications and Strategies for Data Interpretation: Fourth Edition. Chichester, UK: John Wiley & Sons, Ltd; 2007. doi:10.1002/9780470516898

2. Siuzdak G. The Expanding Role of Mass Spectrometry in Biotechnology. 2nd ed. San Diego, CA: MCC Press; 2006.

3. Marx A, de Graaf AA, Wiechert W, Eggeling L, Sahm H. Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing. Biotechnol Bioeng. 1996;49: 111–129. doi:10.1002/(SICI)1097-0290(19960120)49:2<111::AID-BIT1>3.0.CO;2-T

4. Szyperski T. Biosynthetically directed fractional 13C-labeling of proteinogenic amino acids. An efficient analytical tool to investigate intermediary metabolism. Eur J Biochem. 1995;232: 433–448. doi:10.1111/j.1432-1033.1995.433zz.x

5. Massou S, Nicolas C, Letisse F, Portais J-C. NMR-based fluxomics: quantitative 2D NMR methods for isotopomers analysis. Phytochemistry. 2007;68: 2330–2340. doi:10.1016/j.phytochem.2007.03.011

6. Wittmann C, Heinzle E. Mass spectrometry for metabolic flux analysis. Biotechnol Bioeng. 1999;62: 739–750. doi:10.1002/(SICI)1097-0290(19990320)62:6<739::AID-BIT13>3.0.CO;2-E

7. Rühl M, Rupp B, Nöh K, Wiechert W, Sauer U, Zamboni N. Collisional fragmentation of central carbon metabolites in LC-MS/MS increases precision of 13C metabolic flux analysis. Biotechnol Bioeng. 2012;109: 763–771. doi:10.1002/bit.24344

8. Choi J, Antoniewicz MR. Tandem mass spectrometry: a novel approach for metabolic flux analysis. Metab Eng. 2010/12/08. 2011;13: 225–233. doi:10.1016/j.ymben.2010.11.006

9. McCloskey D, Young JD, Xu S, Palsson BO, Feist AM. MID Max: LC-MS/MS method for measuring the precursor and product mass isotopomer distributions of metabolic intermediates and cofactors for metabolic flux analysis applications. Anal Chem. 2016;88: 1362–1370. doi:10.1021/acs.analchem.5b03887

10. Yuan Y, Hoon Yang T, Heinzle E. 13C metabolic flux analysis for larger scale cultivation using gas chromatography-combustion-isotope ratio mass spectrometry. Metab Eng. 2010;12: 392–400. doi:10.1016/j.ymben.2010.02.001

11. Higashi RM, Fan TW, Lorkiewicz PK, Moseley HNB, Lane AN. Stable isotope-labeled tracers for metabolic pathway elucidation by GC-MS and FT-MS. In: Raftery D, editor. Mass Spectrometry in Metabolomics. New York, NY: Springer New York; 2014. pp. 147–167. doi:10.1007/978-1-4939-1258-2

12. Godin JP, Faure M, Breuille D, Hopfgartner G, Fay LB. Determination of 13C isotopic enrichment of valine and threonine by GC-C-IRMS after formation of the N(O,S)-ethoxycarbonyl ethyl ester derivatives of the amino acids. Anal Bioanal Chem. 2007;388: 909–918. doi:10.1007/s00216-007-1275-2

13. Wong WW, Hachev DL, Zhang S, Clarke LL. Accuracy and precision of gas chromatography/combustion isotope ratio mass spectrometry for stable carbon isotope ratio measurements. Rapid Commun Mass Spectrom. 1995;9: 1007–1011. doi:10.1002/rcm.1290091107

14. Wittmann C, Heinzle E. Application of MALDI-TOF MS to lysine-producing Corynebacterium glutamicum: a novel approach for metabolic flux analysis. Eur J Biochem. 2001;268: 2441–2455. doi:10.1046/j.1432-1327.2001.02129.x

15. Tang Y, Pingitore F, Mukhopadhyay A, Phan R, Hazen TC, Keasling JD. Pathway confirmation and flux analysis of central metabolic pathways in Desulfovibrio vulgaris hildenborough using gas chromatography-mass spectrometry and Fourier transform-ion cyclotron resonance mass spectrometry. J Bacteriol. 2007;189: 940–949. doi:10.1128/JB.00948-06

16. Szyperski T, Glaser RW, Hochuli M, Fiaux J, Sauer U, Bailey JE, et al. Bioreaction
network topology and metabolic flux ratio analysis by biosynthetic fractional 13C labeling and two-dimensional NMR spectroscopy. Metab Eng. 1999;1: 189–197. doi:10.1006/mben.1999.0116

17. Emmerling M, Dauner M, Ponti A, Fiaux J, Hochuli M, Szyperski T, et al. Metabolic flux responses to pyruvate kinase knockout in *Escherichia coli*. J Bacteriol. 2002;184: 152–164. doi:10.1128/JB.184.1.152-164.2002

18. Dauner M, Bailey JE, Sauer U. Metabolic flux analysis with a comprehensive isotopomer model in *Bacillus subtilis*. Biotechnol Bioeng. 2001;76: 144–156. doi:10.1002/bit.1154

19. Schmidt K, Nielsen J, Villadsen J. Quantitative analysis of metabolic fluxes in *Escherichia coli*, using two-dimensional NMR spectroscopy and complete isotopomer models. J Biotechnol. 1999;71: 175–189. doi:10.1016/S0168-1656(99)00021-8

20. Flores S, Gosset G, Flores N, de Graaf AA, Bolivar F. Analysis of carbon metabolism in *Escherichia coli* strains with an inactive phosphotransferase system by 13C labeling and NMR spectroscopy. Metab Eng. 2002;4: 124–137. doi:10.1006/mben.2001.0209

21. Fischer E, Sauer U. Metabolic flux profiling of *Escherichia coli* mutants in central carbon metabolism using GC-MS. Eur J Biochem. 2003;270: 880–891. doi:10.1046/j.1432-1033.2003.03448.x

22. Ahn WS, Antoniewicz MR. Metabolic flux analysis of CHO cells at growth and non-growth phases using isotopic tracers and mass spectrometry. Metab Eng. 2011;13: 596–609. doi:10.1016/j.ymben.2011.07.002

23. Becker J, Klopprogge C, Wittmann C. Metabolic responses to pyruvate kinase deletion in lysine producing *Corynebacterium glutamicum*. Microbiol Cell Fact. 2008;7: 8. doi:10.1186/1475-2859-7-8

24. Christensen B, Nielsen J. Isotopomer analysis using GC-MS. Metab Eng. 1999;1: 282–290. doi:10.1006/mben.1999.0117

25. Dauner M, Sauer U. GC-MS analysis of amino acids rapidly provides rich information for isotopomer balancing. Biotechnol Prog. 2000;16: 642–649. doi:10.1021/bp000058h

26. Wittmann C. Fluxome analysis using GC-MS. Microbiol Cell Fact. 2007;6: 6. doi:10.1186/1475-2859-6-6

27. Suthers PF, Burgard AP, Dasika MS, Nowroozi F, van Dien S, Keasling JD, et al. Metabolic flux elucidation for large-scale models using 13C labeled isotopes. Metab Eng. 2007;9: 387–405. doi:10.1016/j.ymben.2007.05.005

28. Antoniewicz MR, Kelleher JK, Stephanopoulos G. Accurate assessment of amino acid mass isotopomer distributions for metabolic flux analysis. Anal Chem. 2007;79: 7554–7559. doi:10.1021/ac0708893

29. Fischer E, Zamboni N, Sauer U. High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13C constraints. Anal Biochem. 2004;325: 308–316. doi:10.1016/j.ab.2003.10.036

30. Fiaux J, Çakar ZP, Sonderegger M, Wüthrich K, Szyperski T, Sauer U. Metabolic-flux profiling of the yeasts *Saccharomyces cerevisiae* and *Pichia stipitis*. Eukaryot Cell. 2003;2: 170–180. doi:10.1128/EC.2.1.170

31. Crown SB, Indurthi DC, Ahn WS, Choi J, Papoutsakis ET, Antoniewicz MR. Resolving the TCA cycle and pentose-phosphate pathway of *Clostridium acetobutylicum* ATCC 824: Isotopomer analysis, in vitro activities and expression analysis. Biotechnol J. 2011;6: doi:10.1002/biot.201000282

32. Heinzle E, Yuan Y, Kumar S, Wittmann C, Gehre M, Richnow H-H, et al. Analysis of 13C labeling enrichment in microbial culture applying metabolic tracer experiments using gas chromatography-combustion-isotope ratio mass spectrometry. Anal Biochem. 2008;380: 202–210. doi:10.1016/j.ab.2008.05.039

33. Nöh K, Grönke K, Luo B, Takors R, Oldiges M, Wiechert W, et al. Metabolic flux analysis at ultra short time scale: isotopically non-stationary 13C labeling experiments. J Biotechnol. 2007;129: 249–267. doi:10.1016/j.jbiotec.2006.11.015

34. van Winden WA, van Dam JC, Ras C, Kleijn RJ, Vinke JL, van Gulik WM, et al. Metabolic-flux analysis of CEN.PK113-7D based on mass isotopomer measurements of 13C-labeled primary metabolites. FEMS Yeast Res. 2005;5: 559–568.
35. Kleijn RJ, Geertman J-MA, Nfor BK, Ras C, Schipper D, Pronk JT, et al. Metabolic flux analysis of a glycerol-overproducing *Saccharomyces cerevisiae* strain based on GC-MS, LC-MS and NMR-derived 13C-labelling data. FEMS Yeast Res. 2007;7: 216–231. doi:10.1111/j.1567-1364.2006.00180.x

36. Iwatani S, van Dien S, Shimbo K, Kubota K, Kagayama N, Iwashita D, et al. Determination of metabolic flux changes during fed-batch cultivation from measurements of intracellular amino acids by LC-MS/MS. J Biotechnol. 2007;128: 93–111. doi:10.1016/j.jbiotec.2006.09.004

37. van Ooyen J, Noack S, Bott M, Reth A, Eggeling L. Improved L-lysine production with *Corynebacterium glutamicum* and systemic insight into citrate synthase flux and activity. Biotechnol Bioeng. 2012;109: 2070–2081. doi:10.1002/bit.24486

38. Moseley HNB, Lane AN, Belshoff AC, Higashi RM, Fan TWM. A novel deconvolution method for modeling UDP-N-acetyl-D-glucosamine biosynthetic pathways based on 13C mass isotopologue profiles under non-steady-state conditions. BMC Biol. 2011;9: 37. doi:10.1186/1741-7007-9-37

39. Pingitore F, Tang Y, Kruppa GH, Keasling JD. Analysis of amino acid isotopomers using FT-ICR MS. Anal Chem. 2007;79: 2483–2490. doi:10.1021/ac061906b

40. Jeffrey FMH, Roach JS, Storey CJ, Sherry AD, Malloy CR. 13C isotopomer analysis of glutamate by tandem mass spectrometry. Anal Biochem. 2002;300: 192–205. doi:10.1006/abio.2001.5457

41. Okahashi N, Kawana S, Iida J, Shimizu H, Matsuda F. GC-MS/MS survey of collision-induced dissociation of tert-butyldimethylsilyl-derivatized amino acids and its application to 13C-metabolic flux analysis of *Escherichia coli* central metabolism. Anal Bioanal Chem. Analytical and Bioanalytical Chemistry; 2016;408: 6133–6140. doi:10.1007/s00216-016-9724-4

42. McKinlay JB, Shachar-Hill Y, Zeikus JG, Vieille C. Determining *Actinobacillus succinogenes* metabolic pathways and fluxes by NMR and GC-MS analyses of 13C-labeled metabolic product isotopomers. Metab Eng. 2007;9: 177–192. doi:10.1016/j.ymben.2006.10.006

43. Kleijn RJ, Liu F, van Winden WA, van Gulik WM, Ras C, Heijnen JJ. Cytosolic NADPH metabolism in penicillin-G producing and non-producing chemostat cultures of *Penicillium chrysogenum*. Metab Eng. 2007;9: 112–123. doi:10.1016/j.ymben.2006.08.004

44. Lien SK, Sletta H, Ellingsen TE, Valla S, Correa E, Goodacre R, et al. Investigating alginate production and carbon utilization in *Pseudomonas fluorescens* SBW25 using mass spectrometry-based metabolic profiling. Metabolomics. 2012;9: 403–417. doi:10.1007/s11306-012-0454-0

45. Alonso AP, Val DL, Shachar-Hill Y. Central metabolic fluxes in the endosperm of developing maize seeds and their implications for metabolic engineering. Metab Eng. 2011;13: 96–107. doi:10.1016/j.ymben.2010.10.002

46. Antoniewicz MR, Kelleher JK, Stephanopoulos G. Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab Eng. 2007;9: 68–86. doi:10.1016/j.ymben.2006.09.001

47. Kleijn RJ. Development and Application of 13C-Labeling Techniques: Analyzing the Pentose Phosphate Pathway of *Penicillium chrysogenum*. Delft University of Technology. 2007.

48. Choudhary MK, Yoon JM, Gonzalez R, Shanks J V. Re-examination of metabolic fluxes in *Escherichia coli* during anaerobic fermentation of glucose using 13C labeling experiments and 2-dimensional nuclear magnetic resonance (NMR) spectroscopy. Biotechnol Bioprocess Eng. 2011;16: 419–437. doi:10.1007/s12257-010-0449-5

49. Schaub J, Mauch K, Reuss M. Metabolic flux analysis in *Escherichia coli* by integrating isotopic dynamic and isotopic stationary 13C labeling data. Biotechnol Bioeng. 2008;99: 1170–1185. doi:10.1002/bit.21675

50. Droste P, Nöh K, Wiechert W. Omix - A visualization tool for metabolic networks with highest usability and customizability in focus. Chemie Ing Tech. 2013;85: 849–862.
51. Möllney M, Wiechert W, Kownatzki D, de Graaf AA. Bidirectional reaction steps in metabolic networks: IV. Optimal design of isotopomer labeling experiments. Biotechnol Bioeng. 1999;66: 86–103. doi:10.1002/(SICI)1097-0290(1999)66:2<86::AID-BIT2>3.0.CO;2-A

52. Toya Y, Ishii N, Nakahigashi K, Hirasawa T, Soga T, Tomita M, et al. 13C-metabolic flux analysis for batch culture of *Escherichia coli* and its pyk and pgi gene knockout mutants based on mass isotopomer distribution of intracellular metabolites. Biotechnol Prog. 2010;26: 975–992. doi:10.1002/btpr.420

53. Marx A, Striegel K, de Graaf AA, Sahm H, Eggeling L. Response of the central metabolism of *Corynebacterium glutamicum* to different flux burdens. Biotechnol Bioeng. 1997;56: 168–180. doi:10.1002/(SICI)1097-0290(19971020)56:2<168::AID-BIT6>3.0.CO;2-N