Aims: Although intensive statin therapy reduced cardiovascular risks, cardiovascular events have not been completely prevented. Probucol is a potent antioxidant and reduces tendon xanthomas in familial hypercholesterolemia patients despite reduction of high-density lipoprotein (HDL)-cholesterol (HDL-C). We investigated whether probucol can reduce cardiovascular events on top of conventional lipid-lowering therapy in patients with coronary heart disease (CHD).

Methods: PROSPECTIVE is a multicenter, randomized, prospective study that recruited 876 Japanese patients with CHD and dyslipidemia with a low-density lipoprotein (LDL)-cholesterol (LDL-C) level of ≥ 140 mg/dL without medication or those treated with lipid-lowering drugs. Lipid-lowering agents were administered during the study period in the control group (n=438), and probucol 500 mg/day was added to lipid-lowering therapy in the probucol group (n=438). Patients were randomly assigned to two treatment groups by adjusting the LDL-C level and presence of diabetes and hypertension and followed up for more than 3 years. The primary end point was a composite of cerebrovascular and cardiovascular events (cardiovascular disease death including sudden death, nonfatal myocardial infarction, nonfatal stroke, hospitalization for unstable angina, hospitalization for heart failure, or coronary revascularization). The secondary end point was carotid intima–media thickness in a subset of patients.

Results: The incidence of the primary end point showed a trend to be lower in the probucol group compared with that in the control group despite reduced HDL-C without serious adverse events. Anti-atherogenic effects of probucol may be attributed to its potent antioxidative function and enhancement of reverse cholesterol transport.

Conclusion: Since there was no statistical significance between the probucol and control groups despite a marked reduction of HDL-C, further studies on the clinical outcomes of probucol on top of conventional therapy may be necessary in the future (UMIN000003307).

Key words: Probucol, Coronary heart disease, Prevention, Reverse cholesterol transport, Antioxidants
Introduction

Although intensive low-density lipoprotein (LDL)-lowering therapy using statins15, in combination with an intestinal cholesterol transporter inhibitor (ezetimibe)23 and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors such as evolocumab313 and alirocumab3, could significantly reduce the event rate of atherosclerotic cardiovascular diseases, these events have not been completely prevented. Therefore, additional effective pharmacological intervention is necessary to mitigate “residual risks” in combination with statins.

Probucol is a diphenolic compound with potent antioxidant and anti-inflammatory properties5, 6. Probucol was developed to reduce LDL-cholesterol (LDL-C) levels before the development of statins7-10 and has been used for hypercholesterolemic patients in Japan, especially those with familial hypercholesterolemia (FH) and Achilles tendon xanthomas11. Probucol reduces LDL-C levels even in LDL receptor-deficient Watanabe heritable hyperlipidemic (WHHL) rabbits12 and in patients with homozygotes and heterozygotes of FH who are deficient in LDL receptor13-14. Thus, the LDL-C reduction by probucol was attributed to enhanced catabolism of LDL independent of an LDL receptor14 and increased excretion of cholesterol into bile15. Furthermore, probucol has a potent antioxidative effect, inhibits LDL oxidation16, and reduces skin and tendon xanthomas in patients with FH11 despite a marked reduction in HDL-C due to enhancement of cholesteryl ester transfer protein activity17 and hepatic expression of scavenger receptor class B type I (SR-BI)18. Probucol attenuated atherosclerosis in WHHL rabbits independent of its lipid-lowering effect19. Probucol, but not α-tocopherol or ubiquinone-10, protected WHHL rabbits against atherosclerosis20.

Probucol Quantitative Regression Swedish Trial (PQRST)21, a randomized controlled trial, was carried out in Sweden to elucidate whether 3 years’ administration of probucol to hypercholesterolemic patients may reduce femoral atherosclerosis. Treatment of patients with probucol lowered LDL-C by 12% and HDL-C by 24%; however, lumen volume did not show a significant increase in the probucol-treated group. Thus, most of the Western countries quit using probucol after the launch of statins. Probucol was withdrawn partly because of the reduction of serum HDL-C levels and possible QT interval prolongation, which might increase the possibility of ventricular arrhythmias.

Probucol Observational Study Illuminating Therapeutic Impact on Vascular Events (POSI-TIVE)20 evaluated the long-term effects of probucol treatment on the risk of cardiovascular events in 410 patients with heterozygous FH. The primary outcome was the time to the first cardiovascular event involving hospitalization, and multivariate Cox regression analysis demonstrated that the hazard ratio of probucol use was 0.13 (95% confidence interval 0.05 to 0.34; \textit{p} < 0.001) in patients for secondary prevention. Although the hazard ratio was not significant in patients for primary prevention because significantly higher LDL-C levels were in the probucol group than in the non-probucol group, this retrospective study has strongly suggested that long-term treatment with probucol may prevent the secondary cardiovascular events in a very high-risk population such as FH. Thus, a current multicenter, randomized, prospective study has been designed to test the hypothesis that the addition of probucol to other lipid-lowering drugs prevents cerebrovascular and cardiovascular events in Japanese patients with coronary heart disease (CHD) and high LDL-C levels.

Patients and Protocol

Study Design and Recruiting Patients

The current PROSPECTIVE study is a randomized (1:1), prospective, open-label, multicenter clinical trial conducted in patients with hyper-LDL-cholesterolemia with a prior history of coronary events as CHD. The rationale and design of this study were already published elsewhere21. The two arms of the trial are a control group of patients on conventional lipid-lowering therapy (LLT) and a test group of patients on conventional LLT plus probucol treatment. The protocol was initially reviewed and approved by the institutional review board (IRB) of Osaka University Hospital and thereafter by the IRBs of the participating institutions. Investigators obtained IRB approval and permission from the head of each institution before conducting the study. This study is registered with UMIN (UMIN000003307, March 3, 2010). Participating facilities and study organization are described in detail in the Appendix.

The current study enrolled male and female
patients older than 20 years with all of the following seven clinical statuses: 1) diagnosis of dyslipidemia with high LDL-C level (≥ 140 mg/dL) without any medication or those treated with any lipid-lowering drugs including statins before providing informed consent; 2) serum LDL-C level less than 200 mg/dL within 8 weeks before providing informed consent, as calculated by Friedewald’s formula (LDL-C= total cholesterol – HDL-cholesterol – triglycerides (TG)/5); 3) history of acute myocardial infarction or angina pectoris more than 3 months before providing informed consent, old myocardial infarction, coronary artery bypass grafting (CABG) more than 3 months earlier, percutaneous coronary intervention (PCI) more than 9 months earlier, or PCI with no restenosis that was diagnosed by follow-up coronary angiography at 6–9 months after PCI; 4) normal cardiac function, mild or moderate heart failure (NYHA classification I or II); 5) older than 20 years at the time of informed consent; 6) no severe hepatic and renal dysfunction (AST < 100 IU/L, ALT < 100 IU/L, serum creatinine < 1.5 mg/dL) within 4 weeks before providing informed consent; and 7) signed written informed consent for participation in the current study. The exclusion criteria were the presence of the following clinical statuses at the time of informed consent: 1) ongoing treatment with probucol within 6 months before the time of informed consent; 2) ongoing treatment with cyclosporine; 3) history of hypersensitivity reactions to probucol; 4) diagnosis of FH based on the NICE Clinical Guideline 71; 2) 5) very high TG level (>400 mg/dL) within 8 weeks before providing informed consent; 6) markedly high HbA1c level (≥8%) on the most recent blood test; 7) frequent multifocal ventricular arrhythmia; 8) atrial fibrillation (Af) including paroxysmal Af; 9) long QTc interval on a resting electrocardiogram (>450 ms in males or >470 ms in females); 10) congestive heart failure (NYHA III or IV) or unstable angina; 11) participation in other clinical trials; 12) women who are pregnant, are lactating, might become pregnant, or wish to become pregnant within the study period; or 13) inappropriate candidate for participation as assessed by the doctors in the current study.

Randomization and Treatment

After the inclusion and exclusion criteria were screened and patient’s consent was gained, a Web-based central registration system automatically and randomly assigned patients to either the control group (conventional LLT continued) or the test group (LLT with probucol) with 1:1 allocation rate based on the registered patient’s data. In randomization, LDL-C level (140 mg/dL and more vs. less than 140 mg/dL), diabetes (with vs. without), and hypertension (with vs. without) were dynamically balanced between the two groups as adjusted allocation factors. As a protocol treatment, each of the lipid-lowering agents is administered continuously during the study period in the control group, and probucol (500 mg/day, 250 mg twice daily after breakfast and dinner) was added to the LLT in the test group within 6 weeks after the registration.

End Points

The primary efficacy end point was the presence and the time from registration until the first occurrence of cerebrovascular and cardiovascular events. Cerebrovascular and cardiovascular events were recognized as follows: 1) cardiovascular death including cardiac sudden death; 2) nonfatal myocardial infarction; 3) nonfatal cerebral stroke excluding transient ischemic attack; 4) hospital admission due to unstable angina; 5) hospital admission due to heart failure; and 6) all coronary revascularizations with either PCI or CABG.

The secondary efficacy and safety end points were as follows: 1) all death; 2) all cerebrovascular and cardiovascular disease; 3) event-free survival time; 4) levels of the mean intima–media thickness (IMT) of carotid arteries and their changes; 5) levels of max IMT in common or internal carotid arteries and their changes; and 6) severe adverse events and their frequency.

Measurements and Reporting Serious Adverse Events (SAEs)

All data were input to the case report after the protocol treatment was started. During the study period, patient’s background, all cerebrovascular and cardiovascular events, all adverse events, and the confirmation of being alive were determined before the protocol treatment and at 3 months; at 1, 2, and 3 years after registration; and at the time of termination and the simultaneous outcome. At the same time points, the levels of total cholesterol, TG, and HDL-C were determined by the measurement method of each facility, and the data were input to the system. High-sensitivity CRP (hsCRP) and adiponectin levels were measured at the center laboratory (SRL Inc. Tokyo, Japan) using the specimen from the facility where it was available. In maximum (max)/minimum (min) IMT of the carotid arteries, doctors and clinical technologists at each facility used the same protocol to depict the same site as much as possible using echography, submitted the images to the Imaging Evaluation Committee, which evaluated their values before the protocol treatment and at 1, 2, and 3 years after
SAEs were graded according to NCI-CTCAE by each doctor. SAEs included death, events that could lead to death, events that require hospital admission or extended hospitalization, disorders, events that could lead to disorders, others that are serious as well as the former adverse events, or congenital disease or abnormality in post-generations. The efficacy and safety evaluation committee evaluated these to make recommendation of early termination or study changes to the principal investigator.

Statistical Design and Analyses

There have been no secondary prevention studies of probucol in dyslipidemic patients in Japan except for a retrospective study of patients with FH. On sample size consideration in the study, we assumed that the morbidity of cerebrovascular and cardiovascular events in the control group would be 10.7% on the basis of the results from the statin-treated group of the Japan EPA Lipid Intervention Study (JELIS). In the test group, we assumed that the rate would be 5.4%, almost half of that in the statin-treated group, because the addition of probucol to conventional LLT might improve the morbidity of cardiovascular events as well as the primary prevention shown in the Fukuoka Atherosclerosis Trial (FAST). Sample size per group was calculated as 408 patients with a two-tailed significance level of 0.05 and a power of 0.8 in 4 years’ accrual period and 3 years’ follow-up. Considering that several patients will be dropped out from the analysis, we decided that the target number of patients in one group would be 430 and total target number of patients in the current study would be 860.

The patient population in statistical analysis was a full analysis set based on the intention-to-treat principle. The characteristics of patients’ demographics and baseline values were compared between the two groups. For the primary efficacy end point, the presence of and time from registration until the first cerebrovascular and cardiovascular events were analyzed. By estimating event-free survival curves using the Kaplan–Meier method and the 95% confidence interval (CI) at 1, 2, and 3 years, event-free survival curves for the two groups were compared using the log-rank test stratified with random allocation factors: LDL-C level (140 mg/dL and more vs. less than 140 mg/dL), diabetes (with vs. without), and hypertension (with vs. without). The secondary end points of the period until all death and period until all cardiovascular and cerebrovascular disease and event-free survival time were analyzed in the same way as the primary end point. Levels of the mean and max IMT of carotid arteries from baseline to 1, 2, and 3 years were analyzed by a mixed-effects model with repeated measurements with baseline value (included only if the change from baseline was the response variable), allocation group, visit, and interaction between allocation group and visit as fixed effects and patient as a random effect. Comparison of groups was performed. The frequency of SAEs was summarized by preferred term and intensity, and compared using Fisher’s exact test. The two-tailed significant level in statistical analysis was 0.05. All statistical analyses were done with SAS version 9.3.

Results

Patients

A total of 876 patients with CHD underwent randomization at 82 sites in Japan from June 2010 through February 2014, and after evaluations for safety and full analysis sets, 831 of 876 patients were assigned to either the control group (conventional LLT continued, 431 patients) or the test group (LLT plus probucol 500 mg/day, 400 patients) (Supplemental Fig. 1). The mean age of the patients was 70 years, and 26.6% of the patients were women; 35.9% of the patients had a history of myocardial infarction, 63.1% angina pectoris, 6.3% cerebrovascular disease, and 3.7% peripheral artery disease. Most of the patients (97.0%) qualified with an LDL-C level of less than 140 mg/dL. Of the patients, 80.3% were accompanied by hypertension and 42.0% by diabetes mellitus. The rate of use of secondary preventive therapies was high, at the trial entry, with 99.0% (unknown eight patients were treated as not used), 93.5%, 82.3%, and 34.4% of the patients taking lipid-lowering, antiplatelet, antihypertensive, and antidiabetic agents, respectively. Lipid-lowering agents included statins (92.7%) and resins (1.4%). After randomization using the LDL-C levels and the presence or absence of diabetes or hypertension, there were no significant differences in the background characteristics between the control group and the test group except for the NYHA classification (p=0.0433) and smoking status (p=0.0119). However, both NYHA classification and smoking status were not prognostic factors. The baseline characteristics of the patients in the two groups were well balanced except for the NYHA classification and smoking status, and these are shown in Tables 1 and 2. Lipid-lowering agents other than probucol included statins, an intestinal cholesterol transporter inhibitor, and resins. Lipid-lowering agents were continuously administrated during the study period in the control group, and probucol (500 mg/ day, 250 mg twice daily) was added to LLT in the test group.
Table 1. Baseline demographics and other characteristics (qualitative variable)

Characteristics	Control group (N=431)	Test group (N=400)	P value
Gender			
Male	319 (74.0)	291 (72.8)	0.695
Female	112 (26.0)	109 (27.3)	
NYHA classification			
I	418 (97.0)	376 (94.0)	0.043*
II	13 (3.0)	24 (6.0)	
LDL-C			
<140 mg/dL	418 (97.0)	388 (97.0)	1.000
≥ 140 mg/dL	13 (3.0)	12 (3.0)	
Diabetes mellitus			
No	250 (58.0)	232 (58.0)	1.000
Yes	181 (42.0)	168 (42.0)	
Hypertension			
No	89 (20.6)	75 (18.8)	0.542
Yes	342 (79.4)	325 (81.3)	
Cerebrovascular disease			
No	404 (93.7)	375 (93.8)	1.000
Yes	27 (6.3)	25 (6.3)	
Peripheral artery disease			
No	417 (96.8)	385 (96.3)	0.710
Yes	14 (3.2)	15 (3.8)	
Smoking status			
Current smoker	34 (7.9)	15 (3.8)	0.012*
Ex-smoker	177 (41.1)	193 (48.3)	
Never	219 (50.8)	192 (48.0)	
Unknown	1 (0.2)	0 (0.0)	
Coronary heart disease			
Myocardial infarction	160 (37.1)	138 (34.5)	0.728
Angina pectoris	266 (61.7)	258 (64.5)	
Others	5 (1.2)	4 (1.0)	
Unknown	0 (0.0)	0 (0.0)	
Lipid-lowering agents			
No	2 (0.5)	0 (0.0)	0.500
Yes	428 (99.3)	393 (98.3)	
Statin	404 (93.7)	366 (91.5)	
Fibrate	18 (4.2)	13 (3.3)	
Nicotinic acid and derivatives	2 (0.5)	1 (0.3)	
Anion exchange resin	2 (0.5)	4 (1.0)	
Others	56 (13.0)	48 (12.0)	
Unknown	1 (0.2)	7 (1.8)	
Antihypertensive agents			
No	77 (17.9)	69 (17.3)	0.855
Yes	353 (81.9)	331 (82.8)	
Ca channel blockers	208 (48.3)	183 (45.8)	
ARB	186 (43.2)	207 (51.8)	
Diuretics	47 (10.9)	51 (12.8)	
ACE inhibitors	68 (15.8)	58 (14.5)	
β-blockers	135 (31.3)	141 (35.3)	
Others	28 (6.5)	33 (8.3)	
Unknown	1 (0.2)	0 (0.0)	
Table 2. Baseline demographics and other characteristics (quantitative variable)

Characteristics	Control group	Test group	P value
	(N=431)	(N=400)	
No. of patients (%)			
Antidiabetic agents			
No	33 (7.7)	32 (8.0)	0.891
Yes	149 (34.6)	137 (34.3)	
Sulfonlurea	44 (10.2)	56 (14.0)	
Insulin preparations	16 (3.7)	20 (5.0)	
Insulin resistance improving	53 (12.3)	43 (10.8)	
agents	39 (9.0)	34 (8.5)	
α-Glucosidase inhibitors	95 (22.0)	77 (19.3)	
Unknown	249 (57.8)	231 (57.8)	
Antiplatelet agents			
No	30 (7.0)	23 (5.8)	0.482
Yes	400 (92.8)	377 (94.3)	
Cilostazol	30 (7.0)	21 (5.3)	
Ticlopidine	35 (8.1)	38 (9.5)	
Dipyridamole	5 (1.2)	2 (0.5)	
Aspirin	350 (81.2)	334 (83.5)	
Sarpogrelate	9 (2.1)	8 (2.0)	
Clopidogrel	124 (28.8)	115 (28.8)	
Others	25 (5.8)	25 (6.3)	
Unknown	1 (0.2)	0 (0.0)	
AST (IU/L)	431	400	
ALT (IU/L)	431	400	
Serum creatinine (mg/dL)	431	400	
HbA1c (%)	431	400	
No. of cigarettes smoked on			
average daily (only current			
smokers)			
Time from enrollment until the			
first onset of CAD (months)			

In case of "yes", multiple choices were allowed.
Fisher’s exact test was used to evaluate the significance of differences between groups.
*: The level of significance was set at \(p \leq 0.05 \) (2-sided).

ACE, angiotensin converting enzyme; ARB, angiotensin II receptor blockers; LDL-C, low-density lipoprotein cholesterol; NYHA, New York Heart Association

Two-sample Wilcoxon test was used to evaluate the significance of differences between groups.
AST, aspartate transaminase; ALT, alanine transaminase; CAD, coronary artery disease; hs-CRP, high-sensitive C-reactive protein; Hb, hemoglobin; HDL-C, high-density lipoprotein cholesterol; IQR, interquartile range; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; TG, triglyceride
Withdrawal of consent occurred in 3 and 12 patients in the control and test groups, respectively. Premature permanent discontinuation of the study regimen (probucol) occurred in 21 patients in the test group. The durations of follow-up were 3.90 (3.12–4.77) (median [IQR]) years and 3.82 (3.15–4.79) years in the control group and the test group, respectively.

Lipid Data

The LDL-C levels at baseline were 90.4 ± 23.5 (mean ± standard deviation) mg/dL and 89.6 ± 22.7 mg/dL in the control group and the test group, respectively (Table 2). At 3 months, the absolute reduction of least square mean in LDL-C levels in the test group, as compared with that in the control group, was 7.3 mg/dL (95% CI, 4.7 to 9.9; \(p < 0.0001 \)). The reduction in LDL-C levels was maintained over time (Fig. 1a). At 36 months, the absolute reduction of least square mean in LDL-C levels in the test group, as compared with that in the control group, was 8.5 mg/dL (95% CI, 5.4 to 11.7; \(p < 0.0001 \)).

The baseline levels in the control group and the test group were 169.5 ± 28.7 and 169.0 ± 28.6 mg/dL for total cholesterol, 54.4 ± 14.4 and 53.6 ± 13.6 mg/dL for HDL-C, and 107 (80–154) and 114 (83–158) mg/dL for TG. Total cholesterol, HDL-C, or triglycerides levels in the test group at 3 and 48 months were consistently and significantly lower than those in the control group, except for the TG levels at 3 months (no difference between the two groups) (Fig. 1b, c, and d). At 3 months, the absolute reductions of least square means in total cholesterol, HDL-C, and TG levels in the test group, as compared with those in the control group, were 22.9 mg/dL (95% CI, 19.7 to 26.2; \(p < 0.0001 \)), 14.9 mg/dL (95% CI, 13.7 to 16.2; \(p < 0.0001 \)), and 2.6 mg/dL (95% CI, 6.2 to 11.5; \(p = 0.5601 \)), respectively. At 36 months, the absolute reductions of least square means in total cholesterol, HDL-C, and TG levels in the test group, as compared with those in the control group, were 27.5 mg/dL (95% CI, 23.8 to 31.2; \(p < 0.0001 \)), 16.3 mg/dL (95% CI, 14.8 to 17.7; \(p < 0.0001 \)), and 10.8 mg/dL (95% CI, 2.3 to 19.3; \(p = 0.0126 \)), respectively.

Efficacy End Points

The primary end point occurred in 44 patients (10.2%) in the control group and in 31 patients (7.8%) in the test group (adjusted hazard ratio, 0.746; 95% CI, 0.471 to 1.182; stratified log-rank test, \(p = 0.1839 \)) (Table 3 and Fig. 2). We observed no significant difference between the control group and the test group in the incidence of primary endpoint of cerebrovascular and cardiovascular events. Additionally, there were no significant differences in the incidence of the key composites of the primary end point of cerebrovascular and cardiovascular events; death because of cardiovascular diseases including sudden death, nonfatal myocardial infarction, nonfatal stroke excluding transient ischemic attack, hospitalization for unstable angina, and hospitalization for heart failure or coronary revascularization such as PCI or CABG after at least 3 years of follow-up. As a note, although the differences did not reach statistical significance, the numbers of patients (%) tended to be decreased in the test group, compared with those in the control group, in the incidence of the key composites of the primary end point of cerebrovascular and cardiovascular events except nonfatal stroke excluding transient ischemic attack; death because of cardiovascular diseases including sudden death (0.8 vs. 1.2), nonfatal myocardial infarction (0.3 vs. 0.9), nonfatal stroke excluding transient ischemic attack (1.3 vs. 0.9), hospitalization for unstable angina (0.8 vs. 1.4), and hospitalization for heart failure (1.3 vs. 1.6) or coronary revascularization such as PCI or CABG after at least 3 years of follow-up (4.0 vs. 5.6).

There were no significant differences between the control group and the test group in the secondary efficacy and safety end points either; all death, all cerebrovascular and cardiovascular disease, event-free-survival time, levels of the mean IMT of carotid arteries and their changes, or levels of max IMT in common or internal carotid arteries and their changes (Supplemental Fig. 2a–d). In the current study, the number of patients for whom ultrasonography of carotid arteries was performed was small. There may be a limitation in the accurate measurement of mean and max IMT at the same point in each patient. Therefore, the tendency of reduction of IMT in the control group and slight increase of IMT in the probucol-treated group may reflect these limitations. Furthermore, the changes of IMT may not be related to the cerebrovascular and cardiovascular event rate.

In a limited number of patients, the serum concentrations of hsCRP and adiponectin were measured and compared between the control group and the test group. There were no significant differences in the changes of serum hsCRP and adiponectin concentrations between the control group and the test group (data not shown).

Safety

The SAEs occurred in 14 patients (3.2%; 95% CI, 1.8 to 5.3) in the control group and in 12 patients (3.0%; 95% CI, 1.6 to 5.2) in the test group (Table 4). There was no significant difference in the frequencies of SAEs between the two groups (\(p = 1.0000 \)).
The incidence of any adverse events was significantly higher in the test group than in the control group (55.9% vs 46.7%; \(p = 0.0085 \)): note that the frequencies of ventricular arrhythmia and each composite of laboratory examination (other than increase in serum creatine phosphokinase) tended to be high in both groups, because all reports of no examination with the grade level of unknown were evaluated as
adverse events. The incidence of ventricular arrhythmia, gastrointestinal disturbances, infectious or para-
site diseases, metabolic or nutritional disturbances, benign or malignant neoplasms, mental disorders, and
vascular diseases did not differ significantly between
the two groups. However, the incidence of QT elon-
gation on the electrocardiogram, a composite of labo-
ratory examinations, was more frequent in the test
group than the control group (35.9% vs. 25.3%; \(p \) 0.0009).

Discussion

Intensive therapies with statins and PCSK9
inhibitors have been shown to significantly reduce
atherosclerotic cardiovascular events; however, these
events have not completely been prevented even if
LDL-C levels were lowered to less than 50 mg/dL.
Therefore, additional effective pharmacological ther-
apy intervention may be necessary to mitigate “resid-
ual risks” in combination with statins. The residual
risks related to dyslipidemia include increased rem-
nant lipoproteins and reduced HDL-C levels as well
as oxidative stress and inflammation associated with
dyslipidemia. In the current PROSPECTIVE study,
we could not demonstrate that probucol can signifi-
cantly reduce cardiovascular events in CHD patients
treated with statins. However, we also showed that
probucol treatment in the high-risk patients treated
with statins was well tolerated and safe despite reduc-
tion of serum HDL-C. Probucol reduced LDL-C by
7.3 mg/dL at 3 months compared with control ther-
apy, which was maintained over time (Fig. 1). There-
fore, there might be a possibility that the reduction of
LDL-C by probucol may be one of the reasons for a
tendency to lower cardiovascular events.

Although we determined the sample size of this
randomized controlled trial based on our retrospective

Table 3. The incidence of cerebro- and cardiovascular events

	Control group (N=431)	Test group (N=400)	P value*
Cerebro- and cardiovascular events	44 (10.2)	31 (7.8)	0.228
Cardiovascular death including sudden cardiac death	5 (1.2)	3 (0.8)	0.727
Nonfatal myocardial infarction	4 (0.9)	1 (0.3)	0.375
Nonfatal stroke excluding TIA	4 (0.9)	5 (1.3)	0.745
Unstable angina requiring hospitalization	6 (1.4)	3 (0.8)	0.508
Heart failure requiring hospitalization	7 (1.6)	5 (1.3)	0.775
Coronary revascularization (PCI and CABG)	24 (5.6)	16 (4.0)	0.332

Fisher’s exact test was used to evaluate the significance of differences between groups.
*: The level of significance was set at \(p < 0.05 \) (2-sided).

![Fig. 2. Kaplan–Meier curves for the primary efficacy end point](image)

Survival curves were estimated using the Kaplan–Meier method, and the stratified log-rank test was performed to compare the survival rates, using levels of LDL-C, presence or absence of diabetes, and presence or absence of hypertension as the stratified factors. The level of significance was set at \(p < 0.05 \) (two-sided). The hazard ratio (HR) and 95% CI were estimated using the Cox proportional hazards model adjusted by allocation factors (levels of LDL-
C, presence or absence of diabetes, and presence or absence of hypertension). Blue and red markers with bars and lines show the control group (conventional LLT continued) and the test group (LLT plus probucol), respectively.
Many CETP inhibitors have been developed to increase serum HDL-C levels as well as to decrease serum LDL-C levels. However, most of CETP inhibitors such as torcetrapib\(^2\), dalcetrapib\(^3\), and evacetrapib\(^4\) that can increase serum HDL-C levels have failed to show cardiovascular risk reduction in patients treated with statins. Although anacetrapib has shown some benefits on top of statins\(^5\), the pharmaceutical company (Merck) has quitted its development possibly because of its prolonged accumulation in adipose tissues\(^6\) and relatively small event risk reduction. The failure of CETP inhibitors may be attributed partly to their strategy to increase serum HDL-C levels by inhibiting the transfer of cholesteryl ester from HDL particles, which resulted in the formation of very large cholesteryl ester-rich HDL particles with impaired antiatherogenic functions\(^7\). Thus, the strategies for observational study, the study results may indicate that the sample size is underpowered to address the hypothesis. Other large-scale clinical studies that tried to show non-statin benefits, such as IMPROVE-IT\(^8\), FOURIER\(^9\), and ODYSSEY OUTCOMES\(^10\), have recruited more than 10,000 patients. Therefore, we might need another trial to show the benefit of probucol in high-risk patients for cardiovascular disease with a larger sample size. Indeed, Kang \textit{et al.} have also tried to investigate the effect of probucol on carotid IMT and the rate of cerebrovascular and cardiovascular events in Korea and China (IMPACT Trial) with a similar regimen\(^2\). We are planning to conduct a meta-analysis by combining the data in these three countries.

Probucol was withdrawn from the market because of its HDL-C lowering effect and QT elongation. Many CETP inhibitors have been developed to increase serum HDL-C levels as well as to decrease serum LDL-C levels. However, most of CETP inhibitors such as torcetrapib\(^2\), dalcetrapib\(^3\), and evacetrapib\(^4\) that can increase serum HDL-C levels have failed to show cardiovascular risk reduction in patients treated with statins. Although anacetrapib has shown some benefits on top of statins\(^5\), the pharmaceutical company (Merck) has quitted its development possibly because of its prolonged accumulation in adipose tissues\(^6\) and relatively small event risk reduction. The failure of CETP inhibitors may be attributed partly to their strategy to increase serum HDL-C levels by inhibiting the transfer of cholesteryl ester from HDL particles, which resulted in the formation of very large cholesteryl ester-rich HDL particles with impaired antiatherogenic functions\(^7\). Thus, the strategies for

Table 4. Adverse events

Adverse events	Control group (N=435)	Test group (N=401)	P value
Any adverse events	203 (46.7)	224 (55.9)	0.009\(^*\)
Serious adverse events	14 (3.2)	12 (3.0)	1.000
Aortic valve stenosis	0 (0.0)	1 (0.2)	0.480
Haematemesis	1 (0.2)	0 (0.0)	1.000
Salivary gland calculus	0 (0.0)	1 (0.2)	0.480
Large intestine polyp	1 (0.2)	0 (0.0)	1.000
Death	2 (0.5)	1 (0.2)	1.000
Cholecystitis acute	0 (0.0)	1 (0.2)	0.480
Disseminated tuberculosis	1 (0.2)	0 (0.0)	1.000
Septic shock	0 (0.0)	1 (0.2)	0.480
Tibia fracture	1 (0.2)	0 (0.0)	1.000
Lumbar spinal stenosis	1 (0.2)	0 (0.0)	1.000
Bladder cancer	0 (0.0)	1 (0.2)	0.480
Breast cancer female	0 (0.0)	1 (0.2)	0.480
Gastric cancer	1 (0.2)	2 (0.5)	0.610
Lung cancer	1 (0.2)	1 (0.2)	1.000
Malignant pleural effusion	0 (0.0)	1 (0.2)	0.480
Pancreatic cancer	1 (0.2)	1 (0.2)	1.000
Renal cancer	1 (0.2)	0 (0.0)	1.000
Tongue neoplasm malignant stage unspecified	1 (0.2)	0 (0.0)	1.000
Hepatocellular carcinoma	1 (0.2)	1 (0.2)	1.000
Cerebral hemorrhage	1 (0.2)	0 (0.0)	1.000
Depression	1 (0.2)	0 (0.0)	1.000
Hypoxia	1 (0.2)	0 (0.0)	1.000
Aspiration pneumonia	0 (0.0)	1 (0.2)	0.480
Blue toe syndrome	1 (0.2)	0 (0.0)	1.000

\(^*\): The level of significance was set at \(p < 0.05\) (2-sided).
increasing serum HDL-C levels have not been shown to be effective to reduce the cardiovascular risk in statin-treated patients.

In contrast to CETP inhibitors, probucol has been shown to decrease serum HDL-C levels through enhancement of plasma CETP activity\(^{17, 34}\) and hepatic expression of SR-BI\(^{18, 35}\). Probucol was shown to enhance hepatic SR-BI protein expression, possibly through species-specific stabilization of the protein\(^{18}\). The reduction of HDL-C by probucol may be explained by both an enhanced CETP-mediated transfer of cholesteryl esters from HDL to apolipoprotein B-containing lipoproteins and an increased hepatic selective uptake of cholesteryl esters from HDL via SR-BI. Probucol also enhanced the formation of lipid-poor prebeta1-HDL involved in cellular cholesterol efflux\(^{36}\). The reduction of serum HDL-C may reflect the enhancement of the reverse cholesterol transport\(^{37, 38}\).

The HDL particles from probucol-treated patients are small and poor in cholesteryl ester and were shown to possess a more potent antiatherogenic activity against foam cell formation\(^{39}\) and a more marked antioxidative activity partly due to an increase in antioxidative paroxonase 1 (PON1) activity\(^{40}\). The LDL particles from probucol-treated patients were strongly protected from oxidation\(^{41}\). Probucol was also demonstrated to have anti-inflammatory effects\(^{41, 42}\) and enhance xanthoma regression in patients with FH despite reduction in serum HDL-C levels along with the attenuated progression of atherosclerosis in animal models\(^{43, 44}\).

Furthermore, clinical studies on the effects of probucol on xanthomas, restenosis after PCI, and atherosclerosis extensively reviewed in Yamashita et al.\(^{10}\) demonstrated antiatherogenic effects of probucol in clinical settings. As described above, a retrospective POSITIVE study\(^{45}\) in patients with heterozygous FH has implicated that long-term probucol treatment may reduce secondary cerebrovascular and cardiovascular events in a very high-risk population such as FH. The effect of probucol therapy on long-term survival following complete revascularization was also reported in 1,694 patients after complete revascularization with PCI and/or CABG by a propensity score analysis\(^{46}\), in which the use of probucol was associated with a markedly significant decrease in all-cause death in a propensity score-adjusted model (hazard ratio = 0.57; \(p = 0.008\)). In post-match patients, the risk of all-cause mortality was markedly lower in the probucol group than in the non-probucol group (hazard ratio = 0.45; \(p = 0.002\)). Although probucol use was not an independent predictor of long-term survival from cardiac death, cardiac death tended to be lower, whereas non-cardiac death was significantly reduced in the probucol group than in the non-probucol group. Thus, probucol was demonstrated to significantly reduce all-cause mortality in CHD patients following complete revascularization.

A multicenter, randomized controlled trial (PICASSO)\(^{46}\) has recently been reported; it evaluated the efficacy and safety of cilostazol versus aspirin, with and without probucol, in patients with ischemic stroke with a high risk of cerebral hemorrhage. In this randomized, controlled, 2 × 2 factorial trial, patients with ischemic stroke with a history of or imaging findings of intracerebral hemorrhage or two or more microbleeds were enrolled in three Asian countries. Patients were randomly assigned to receive, 1) cilostazol (200 mg/day), 2) aspirin (100 mg/day), 3) cilostazol plus probucol (500 mg/day), or 4) aspirin plus probucol. The co-primary outcomes were the incidence of a composite of stroke, myocardial infarction, or vascular death and the incidence of hemorrhagic stroke. Interestingly, the incidence of vascular events was significantly lower in the probucol group than in the non-probucol group (hazard ratio 0.69; 95% CI 0.50 to 0.97; \(p = 0.0316\)). In patients with ischemic stroke at high risk of cerebral hemorrhage, cilostazol was not inferior to aspirin for the prevention of cardiovascular events, but it did not reduce the risk of hemorrhagic stroke. Thus, probucol on top of aspirin or cilostazol may be beneficial to reduce the incidence of cardiovascular events in patients with ischemic stroke.

Another important finding in the current study may be that the reduction of serum HDL-C by probucol does not increase cerebrovascular and cardiovascular events, but rather it tended to decrease them. After the report of PQRST\(^{21}\), the reduction of serum HDL-C by probucol was supposed to be harmful and probucol disappeared from the market in the United States and Europe. PQRST was performed in Sweden to investigate whether 3 years’ treatment of hypercholesterolemic patients with probucol may affect femoral atherosclerosis. The primary end point was the change in atheroma volume estimated as a change in lumen volume of femoral artery assessed by quantitative angiography. Probucol-treated patients showed 12% lower LDL-C and 24% lower HDL-C levels than did control subjects, but no significant change was observed in lumen volume between the probucol-treated and control groups. However, changes in atheroma volume may occur without changes in the lumen because of vessel remodeling. Therefore, we should be very careful when we evaluate the results of PQRST since probucol may retard the compensatory remodeling observed in de novo atherosclerosis in apolipoprotein E-deficient mice because of the inhibition of macrophage accumulation and decrease in MMP-2.
and MMP-9 \(^{47}\). Furthermore, regression of xanthoma or xanthelasma may be the most well-established effect of probucol\(^{11}\). A close correlation was observed between the extent of regression in Achilles tendon xanthoma and the reduction of serum HDL-C levels in patients with heterozygous FH \(^{48}\). Probucol may also prevent lipid storage in macrophages by suppressing the uptake and stimulating the release of cholesterol and other lipids from macrophages \(^{49, 50}\). Thus, the reduction of serum HDL-C by probucol may not be harmful but might rather suggest the enhancement of reverse cholesterol transport via increased CETP and hepatic SR-BI. Although the current study only showed a trend of probucol to reduce cerebrovascular and cardiovascular events, other previous studies using probucol have already shown antiatherogenic effects of probucol in high-risk patients \(^{9, 10, 22, 42}\). Therefore, administering probucol to reduce the residual risk on top of other LLTs such as statins might be an option for such patients.

Regarding the safety issues of probucol, no significant difference was observed in the frequencies of SAEs between the probucol-treated and control groups. Additionally, our data have shown no increase in ventricular arrhythmias in probucol-treated patients in spite of the fact that probucol significantly prolonged the QT interval. Similarly, previous studies including POSITIVE \(^{22}\), PICASSO \(^{46}\), and a study by Kasai et al. \(^{45}\) as well as those reviewed by Yamashita and Matsuzawa \(^{9}\) and Yamashita et al. \(^{10}\) demonstrated no significant increases in severe ventricular arrhythmia. Therefore, QT prolongation by probucol may not enhance the occurrence of lethal ventricular arrhythmias.

In conclusion, in the current PROSPECTIVE study, we could not demonstrate that probucol can significantly reduce cardiovascular events in CHD patients treated with statins, but probucol showed a tendency to lower cardiovascular events. We could also demonstrate that probucol treatment in the high-risk patients treated with statins was well tolerated and safe despite a marked reduction of serum HDL-C due to enhancement of reverse cholesterol transport. The results of IMPACT Trial \(^{17}\) in patients with CHD performed in Korea and China with a similar protocol has been published in the same issue of J Atheroscler Thromb. However, the primary end point of IMPACT is the changes in carotid IMT; and the secondary end point is the rate of cerebrovascular and cardiovascular events. A meta-analysis of PROSPECTIVE and IMPACT in the future may elucidate whether probucol on top of conventional LLTs could prevent cerebrovascular and cardiovascular events in patients with CHD.

Acknowledgements

Shizuya Yamashita, Hidenori Arai, Hideaki Bujo, Daisaku Masuda, and Tohru Ohama were all involved in the planning and management of the study. Toshiyuki Ishibashi, Koji Yanagi, and Yusui Doi played an important role in the recruitment of patients. Satoshi Nakagawa and Koichi Yamashiro were engaged in the management of patient recruitment and communications with participating hospitals. Kenichiro Tanabe performed statistical analyses. Masanori Fukushima was responsible for all the performances at Translational Research Center for Medical Innovation (TRI), Foundation for Biomedical Research, and Innovation at Kobe, Kobe, Hyogo, Japan. Toru Kita, Masunori Matsuzaki, Yasushi Saito, and Yuji Matsuzawa contributed as an advisory to the promotion of this study. The authors (greatly) appreciate the editorial review of the manuscript by Mikio Yoshidomi and Hideaki Kaneda at the TRI (Kobe, Japan). The TRI undertook the data management, statistical analysis, and site management. This study was funded by the Foundation for Biomedical Research and Innovation at Kobe, a third-party organization that is independent of investigators’ institution and was responsible for on-site monitoring in addition to data collection, data management, and data analysis. The Foundation for Biomedical Research and Innovation at Kobe has received a research grant from several pharmaceutical companies (AstraZeneca K.K., Dai-ichi Sankyo Co, Ltd., Astellas Pharma Inc., Novartis Pharma K.K., Chugai Pharmaceutical Co., Ltd., Otsuka Pharmaceutical Co., Ltd., and Sanofi K.K.), which was not specific for this study. This study was partly supported by the members of Japan Atherosclerosis Society for patient recruitment.

Conflict of Interest

Dr. Yamashita reports grants and personal fees from Kowa Company, Ltd., Bayer Yakuhin, Ltd., MSD K.K., Takeda Pharmaceutical Company, Ltd., Astellas Pharma Inc., grants from Kyowa Medex Co., Ltd., Hayashibara Co., Ltd., and personal fees from Skylight Biotec, Inc., Astellas Amgen, Sanofi, Aegerion, outside the submitted work. Dr. Arai reports personal fees from MSD, Pfizer, Kowa, Daiichi Sankyo, Astellas, during the conduct of the study. Dr. Bujo has nothing to disclose. Dr. Masuda reports grants and personal fees from Nippon Boehringer Ingelheim Co., Ltd., MSD K.K., Takeda Pharmaceutical Company, Ltd., Daiichi-Sankyo Company, Ltd., Mochida Pharmaceutical Company, Ltd., Kowa Company Ltd., Kowa Company Ltd., Kissei Pharmaceuticals.
cal Co., Ltd.; grants from Otsuka Pharmaceutical Co Ltd.; personal fees from Kowa Company, Ltd., Bayer Yakuhin, Ltd., Kyowa Medex Co., Ltd., Sanwa Kagaku Kenkyusho Co., Ltd., Ono Pharmaceutical Company, Ltd., Astellas Pharma Inc., AstraZeneca K.K., non-financial support from Skylight Biotec, Inc., Pfizer Japan Inc., Amgen Astellas Biopharma K.K., Sanofi K.K., grants from Shionogi & Co., Ltd., grants from Bayer Yakuhin, Ltd., grants from Sanwa Kagaku Kenkyusho Co., Ltd., grants from Astellas Pharma Inc., grants from Hayashibara Co., Ltd., Teijin Pharma Limited, Kaken Pharmaceutical Co., Ltd., Teijin Pharma, Kowa, Sumitomo Dainippon Pharma, to disclose. Dr. Matsuzawa reports personal fees from Matsuzaki, Dr. Saito and Dr. Fukushima have nothing to disclose. Dr. Doi is now also an employee (an occupational health physician) of Takeda Pharmaceutical Company Limited, Osaka, Japan. Mr. Nakagawa, Mr. Yamashiro, Mr. Tanabe, Dr. Kita, Dr. Matsuzaki, Dr. Saito and Dr. Fukushima have nothing to disclose. Dr. Matsuzawa reports personal fees from Teijin Pharma, Kowa, Sumitomo Dainippon Pharma, outside the submitted work.

References
1) Cholesterol Treatment Trialists’ (CTT) Collaboration, Fulcher J, O’Connell R, Voysey M, Emberson J, Blackwell L, Mihaylova B, Simes J, Collins R, Kirby A, Colhoun H, Braunwald E, La Rosa J, Pedersen TR, Tonkin A, Davis B, Sleight P, Franzosi MG, Gaïnet C, Keech A: Efficacy and safety of LDL-lowering therapy among men and women: meta-analysis of individual data from 174,000 participants in 27 randomised trials. Lancet, 2015; 385: 1397-1405
2) Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, Darius H, Lewis BS, Oprius TO, Jukema JW, De Ferrari GM, Ruzillow D, De Luca P, Im K, Bohula EA, Reist C, Wiviott SD, Tershakovec AM, Musliner TA, Braunwald E, Califf RM; IMPROVE-IT Investigators: Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med, 2015; 372: 2387-2397
3) Sabatine MS, Giugliano RP, Keech AC, Honparour N, Wiviott SD, Murphy SA, Kuder JF, Wang H, Liu T, Waserman SM, Sever PS, Pedersen TR; FOURIER Steering Committee and Investigators: Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med, 2017; 4: 376: 1713-1720
4) Schwartz GG, Steg PG, Szarek M, Bhatt DL, Bittner VA, Diz A, Edelberg JM, Goodman SG, Hanotin C, Harrington RA, Jukema JW, Lecorps G, Mahaffey KW, Moryusef A, Pordy R, Quintero K, Roe MT, Sasiela WJ, Tamby JB, Tricoci P, White HD, Zeiher AM; ODYSSEY OUTCOMES Committee and Investigators: Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med, 2018; 379: 2097-2107
5) Parthasarathy S, Young SG, Witztum JL, Pittman RC, Steinberg D: Probucol inhibits oxidative modification of low density lipoprotein. J Clin Invest, 1986; 77: 641-644
6) Fruebis J, Gonzalez V, Silvestre M, Palinski W: Effect of probucol treatment on gene expression of VCAM-1, MCP-1, and M-CSF in the aortic wall of LDL receptor-deficient rabbits during early atherogenesis. Arterioscler Thromb Vasc Biol, 1997; 17: 1289-1302
7) Barnhart JW, Sfranaka JA, McIntosh DD: Hypocholesterolemic effect of 4,4’-(isopropylidenedithio)-bis(2,6-di-t-butylphenol) (probucol). Am J Clin Nutr, 1970; 23: 1229-1233
8) Heel RC, Brogren RN, Speight TM, Avery GS: Probucol: a review of its pharmacological properties and therapeutic use in patients with hypercholesterolaemia. Drugs, 1978; 15: 409-428
9) Yamashita S, Matsuzawa Y: Where are we with probucol: a new life for an old drug? Atherosclerosis, 2009; 207: 16-23
10) Yamashita S, Masuda D, Matsuzawa Y: Did we abandon probucol too soon? Curr Opin Lipidol, 2015; 26: 304-316
11) Yamamoto A, Matsuzawa Y, Yokoyama S, Funahashi T, Yamamura T, Kishino B: Effects of probucol on xanthomatization in familial hypercholesterolemia. Am J Cardiol, 1986; 57: 29H-35H
12) Naruszewicz M, Carew TE, Pittman RC, Witztum JL, Steinberg D: A novel mechanism by which probucol lowers low density lipoprotein levels demonstrated in the LDL receptor-deficient rabbit. J Lipid Res, 1984; 25: 1206-1213
13) Durrington PN, Miller JP: Double-blind, placebo-controlled, cross-over trial of probucol in heterozygous familial hypercholesterolaemia. Atherosclerosis, 1985; 55: 187-194
14) Baker SG, Joffe BI, Mendelsohn D, Settel HC: Treatment of homozygous familial hypercholesterolaemia with probucol. S Afr Med J, 1982; 62: 7-11
15) Tawara K, Tomikawa M, Abiko Y: Mode of action of probucol in reducing serum cholesterol in mice. Jpn J Pharmacol, 1986; 40: 123-133
16) Cristol LS, Jialal I, Grundy SM: Effect of low-dose probucol therapy on LDL oxidation and the plasma lipoprotein profile in male volunteers. Atherosclerosis, 1992; 97: 11-20
17) Franceschini G, Sirtori M, Vaccarino V, Gianfranceschi G, Rezzonico L, Chiesa G, Sirtori CR: Mechanisms of HDL reduction after probucol. Changes in HDL subfractions and increased reverse cholesteryl ester transfer. Arteriosclerosis, 1989; 9: 462-469
18) Hirano K, Ikemami C, Tsuji K, Zhang Z, Matsuura F, Nakagawa-Toyama Y, Koskei M, Masuda D, Maruyama T, Shimomura I, Ueda Y, Yamashita S: Probucol enhances the expression of human hepatic scavenger receptor class B type I, possibly through a species-specific mechanism. Arterioscler Thromb Vasc Biol, 2005; 25: 2422-2427
19) Kita T, Nagano Y, Yokode M, Ishii K, Kume N, Ooshima A, Yoshida H, Kawai C: Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia. Proc Natl Acad Sci U S A, 1987; 84: 5928-5931

Probucol for Patients with CHD

115
20) Bräsen JH, Koenig K, Bach H, Kontush A, Heinle H, Witting PK, Yla-Herttuala S, Stocker R, Beisiegel U: Comparison of the effects of alpha-tocopherol, ubiquinone-10 and probucol at therapeutic doses on atherosclerosis in WHHL rabbits. Atherosclerosis, 2002; 163: 249-259

21) Walldius G, Eriksson U, Olsson AG, Bergstrand L, Hådell K, Johansson J, Kaijser L, Lassvik C, Mölgaard J, Nilsson S, Schäfer-Elinder L, Stenport G, Holme I: The effect of probucol on femoral atherosclerosis: the Probucol Quantitative Regression Swedish Trial (PQRST). Am J Cardiol, 1994; 74: 875-883

22) Yamashita S, Bujo H, Arai H, Harada-Shiba M, Matsu S, Fukushima M, Saito Y, Saito T, Matsuzawa Y: Long-term probucol treatment prevents secondary cardiovascular events: a cohort study of patients with heterozygous familial hypercholesterolemia in Japan. J Atheroscler Thromb, 2008; 15: 292-303

23) Yamashita S, Masuda D, Ohama T, Arai H, Bujo H, Kagimura T, Kita T, Matsuizaki M, Saito Y, Fukushima M, Matsuzawa Y: PROSPECTIVE Study Group: Rationale and design of the PROSPECTIVE trial: Probucol Trial for Secondary Prevention of Atherosclerotic Events in Patients with Prior Coronary Heart Disease. J Atheroscler Thromb, 2016; 23: 746-756

24) Marks D, Thorrogood M, Neil HA, Humphries SE: A review on the diagnosis, natural history, and treatment of familial hypercholesterolaemia. Atherosclerosis, 2003; 168: 1-14

25) Yokoyama M, Origasa H, Matsuizaki M, Matsuzawa Y, Saito Y, Ishikawa Y, Oikawa S, Sasaki J, Hishida H, Itakura H, Kita T, Kitabatake A, Nakaya N, Sakata T, Shimada K, Shirato K: Japan EPA lipid intervention study (JELIS) Investigators: Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients. Eur J Clin Invest, 2007; 37: 610-616

26) Sawayaama Y, Shimizu C, Maeda N, Tatsukawa M, Kinukawa N, Koyanagi S, Kashwagi S, Hayashi J: Effects of probucol and pravastatin on common carotid atherosclerosis in patients with asymptomatic hypercholesterolemia. Fukuoka Atherosclerosis Trial (FAST). J Am Coll Cardiol, 2002; 39: 610-616

27) Kang HJ, Kim MH, Sung J, Kim SH, Kim CH, Park JE, Ge J and Oh BH: On behalf of IMPACT on IMT investigators: Effect of probucol and/or cilostazol on carotid intima media thickness in patients with coronary heart disease: a randomized, multicenter, multinational study. J Atheroscler Thromb, 2021; 28: 124-136

28) Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M, Lopez-Sendon J, Mosca L, Tardif JC, Waters DD, Sear CL, Revkin JH, Buhr KA, Fisher MR, Tall AR, Brewer B: ILLUMINATE Investigators: Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med, 2007; 357: 2109-2122

29) Schwartz GG, Olson AG, Abt M, Ballantyne CM, Barter PJ, Brunn J, Chaitman BR, Holme IM, Kallend D, Leiter LA, Leitersdorf E, McMurray JJ, Mundl H, Nichols SJ, Shah PK, Tardif JC, Wright RS; dal-OPTIMIST Investigators: Effects of dalcepaib in patients with a recent acute coronary syndrome. N Engl J Med, 2012; 367: 2089-2099

30) Lincoff AM, Nicholls SJ, Riesmeier JS, Barter PJ, Brewer HB, Fox KAA, Gibson CM, Granger C, Menon V, Montalescot G, Rader D, Tall AR, McEerle E, Wolski K, Ruotolo G, Vangero B, Weerakkody G, Goodman SG, Conde D, McGuire DK, Nicolaou JC, Leiva-Pons JL, Pesant Y, Li W, Kandath D, Kozu S, Tibaharkeli N, Mason D, Nissen SE; ACCELERATE Investigators: Evacetrapib and cardiovascular outcomes in high-risk vascular disease. N Engl J Med, 2017; 376: 1933-1942

31) HPS3/TIMI55–REVEAL Collaborative Group, Bowman L, Hopewell JC, Chen F, Wallendszus K, Stevens W, Collins R, Wiviott SD, Cannon CP, Braunwald E, Sammons E, Landray MJ: Effects of anacetrapib in patients with atherosclerotic vascular disease. N Engl J Med, 2017; 377: 1217-1227

32) Krishna R, Gheyas F, Liu Y, Hagen DR, Walker B, Chawla A, Cote J, Blaustein RO, Gutstein DE: Chronic administration of anacetrapib is associated with accumulation in adipose and slow elimination. Clin Pharmacol Ther, 2017; 102: 832-840

33) Ishigami M, Yamashita S, Sakai N, Arai T, Hirano K, Hiraoka H, Kameda-Takemura K, Matsuzawa Y: Large and cholesteryl ester-rich-high-density lipoproteins in cholesteryl ester transfer protein (CETP) deficiency can not protect macrophages from cholesterol accumulation induced by acetylated low-density lipoproteins. J Biochem, 1994; 116: 257-262

34) Franceschi G, Chiesa G, Sirtori CR: Probucol increases cholesteryl ester transfer protein activity in hypercholesterolaemic patients. J Clin Invest, 1991; 21: 384-388

35) Hong SC, Zhao SP, Wu ZH: Effect of probucol on HDL metabolism and class B type I scavenger receptor (SR-BI) expression in the liver of hypercholesterolemic rabbits. Int J Cardiol, 2007; 115: 29-35

36) Miida T, Seino U, Miyazaki O, Hanyu O, Hirayama S, Saito T, Ishikawa Y, Akamatsu S, Nakano T, Nakajima K, Okazaki M, Okada M: Probucol markedly reduces HDL metabolism in adipose and slow elimination. Clin Pharmacol Ther, 2017; 102: 329-335

37) Yamashita S, Matsuzawa Y: Re-evaluation of cholesteryl ester transfer protein function in atherosclerosis based upon genetics and pharmacological manipulation. Curr Opin Lipidol, 2016; 27: 459-472

38) Yamashita S, Ruscica M, Macchi C, Corsini A, Matsuzawa Y, Sirtori CR: Cholesteryl ester transfer protein: An enigmatic pharmacology - Antagonists and agonists. Atherosclerosis, 2018; 278: 286-298

39) Ishigami M, Yamashita S, Sakai N, Hirano K, Arai T, Maruyama T, Takami S, Koyama M, Kameda-Takemura K, Matsuzawa Y: High-density lipoproteins from probucol-treated patients have increased capacity to promote delayed conversion into alpha-migrating HDL: putative role of angiopoietin-like protein 3 in probucol-induced HDL remodeling. Atherosclerosis, 2008; 200: 329-335

40) Inagaki M, Nakagawa-Toyama Y, Nishida M, Nakatani K, Nakaoka H, Kawase M, Kawase R, Tsubakio-Yamamoto K, Masuda D, Ohsama T, Matsuyama A, Ishigami M, Komuro I, Yamashita S: Effect of probucol on antioxidant
properties of HDL in patients with heterozygous familial hypercholesterolemia. J Atheroscler Thromb, 2012; 19: 643-656
41) Zucoloto AZ, Manchope MF, Staurengo-Ferrari L, Pinho-Ribeiro FA, Zarpelon AC, Saraiva ALL, Cecilio NT, Alves-Filho JC, Cunha TM, Menezes GB, Cunha FQ, Casagrande R, Verri WA Jr: Probucol attenuates lipopoly-saccharide-induced leukocyte recruitment and inflammatory hyperalgesia: effect on NF-κB activation and cytokine production. Eur J Pharmacol, 2017; 809: 52-63
42) Li T, Chen W, An F, Tian H, Zhang J, Peng J, Zhang Y, Guo Y: Probucol attenuates inflammation and increases stability of vulnerable atherosclerotic plaques in rabbits. Tohoku J Exp Med, 2011; 225: 23-34
43) Yoshikawa T, Mitani K, Kotosai K, Nozako M, Miyakoda G, Yabuuchi Y: Antiatherogenic effects of cilostazol and probucol alone, and in combination in low density lipopro-tein receptor-deficient mice fed with a high fat diet. Horm Metab Res, 2008; 40: 473-478
44) Li S, Liang J, Niimi M, Bilal Waqar A, Kang D, Koike T, Wang Y, Shiomi M, Fan J: Probucol suppresses macrophage infiltration and MMP expression in atherosclerotic plaques of WHHL rabbits. J Atheroscler Thromb, 2014; 21: 648-658
45) Kasai T, Miyauchi K, Kubota N, Kajimoto K, Amano A, Daida H: Probucol therapy improves long-term (> 10-year) survival after complete revascularization: a propensity analysis. Atherosclerosis, 2012; 220: 463-469
46) Kim BJ, Lee EJ, Kwon SU, Park JH, Kim YJ, Hong KS, Wong LKS, Yu S, Hwang YH, Lee JS, Lee J, Rha JH, Heo SH, Ahn SH, Seo WK, Park JM, Lee JH, Kwon JH, Sohn SI, Jung JM, Navarro JC, Kang DW; PICASSO investigators: Prevention of cardiovascular events in Asian patients with ischaemic stroke at high risk of cerebral haemorrhage (PICASSO): a multicentre, randomised controlled trial. Lancet Neurol, 2018; 17: 509-518
47) Wu BJ, Di Girolamo N, Beck K, Hanratty CG, Choy K, Hou Y, Ward MR, Stocker R: Probucol [4,4’-[(1-methylethylidene)bis(thio)]bis-[2,6-bis(1,1-dimethylethyl)phenol]] inhibits compensatory remodeling and promotes lumen loss associated with atherosclerosis in apolipoprotein E-deficient mice. J Pharmacol Exp Ther, 2007; 321: 477-484
48) Matsuzawa Y, Yamashita S, Funahashi T, Yamamoto A, Tarui S: Selective reduction of cholesterol in HDL2 fraction by probucol in familial hypercholesterolemia and hyperHDL2 cholesterolemia with abnormal cholesteryl ester transfer. Am J Cardiol, 1988; 62: 66B-72B
49) Yamamoto A, Takaichi S, Hara H, Nishikawa O, Yokoyama O, Yamamura T, Yamaguchi T: Probucol pre vents lipid storage in macrophages. Atherosclerosis, 1986; 62: 209-217
50) Yamamoto A, Matsuzawa Y, Yokoyama S, Funahashi T, Yamamura T, Kishino B: Effects of probucol on xantho-mata regression in familial hypercholesterolemia. Am J Cardiol, 1986; 57: 29H-35H
Supplemental Fig. 1. Trial profile of PROSPECTIVE
Supplemental Fig. 2. Levels in mean (a) and max (c) IMT and changes from baseline in mean (b) and max (d) IMT over time by treatment group (FAS)

Measured values at each visit were shown as least square mean with bars of standard error and analyzed using a mixed-effects model with repeated measures (MMRM) with allocation group, visit (at baseline and 12, 24, and 36 months), and interactions between allocation group and visit defined as fixed effects and patient as a random effect. Comparisons between treatment groups at each visit were made using the least square mean of each group. The MMRM analyses were performed using the Kenward–Roger method for adjusting degrees of freedom in an unstructured (UN) covariance structure.
Inclusion Criteria
This study included male and female patients older than 20 years with all of the following eight clinical statuses:

1) diagnosis of dyslipidemia with high LDL-C level (≥140 mg/dL) without any medication;
2) treatment using any lipid-lowering drugs including statins for more than 8 weeks before providing informed consent;
3) serum LDL-C level less than 200 mg/dL within 8 weeks before providing informed consent, as calculated by Friedewald’s formula (LDL-C = total cholesterol – HDL-cholesterol – triglycerides (TG)/5);
4) history of acute myocardial infarction or angina pectoris more than 3 months before providing informed consent, old myocardial infarction, CABG more than 3 months earlier, PCI more than 9 months earlier, or PCI with no restenosis that was diagnosed by follow-up coronary angiography at 6–9 months after PCI;
5) normal cardiac function and mild or moderate heart failure (NYHA classification I or II);
6) older than 20 years at the time of informed consent;
7) no severe hepatic and renal dysfunction (AST <100 IU/L, ALT <100 IU/L, and serum creatinine <1.5 mg/dL) within 4 weeks before providing informed consent; and
8) signed written informed consent for participation in this study.

Exclusion Criteria
The exclusion criteria were the presence of the following clinical statuses at the time of informed consent:

1) ongoing treatment with probucol within 6 months before the time of informed consent;
2) ongoing treatment with cyclosporine;
3) history of hypersensitivity reactions to probucol;
4) diagnosis of FH based on the NICE Clinical Guideline1;
5) very high TG level (>400 mg/dL) within 8 weeks before providing informed consent;
6) markedly high HbA1c level (≥8%) on the most recent blood test;
7) frequent multifocal ventricular arrhythmia;
8) Af including paroxysmal Af;
9) long QTc interval on a resting electrocardiogram (>450 ms in males or >470 ms in females);
10) congestive heart failure (NYHA III or IV) or unstable angina;
11) participation in other clinical trials;
12) women who are pregnant, are lactating, might become pregnant, or wish to become pregnant within the study period; and
13) inappropriate candidate for participation as assessed by the doctors in the current study.

Serious Adverse Events (SAEs)
SAEs were designated as death, events that could lead to death, events that require hospital admission or extended hospitalization, disorders, events that could lead to disorders, others that are serious as well as the former adverse events, or congenital disease or abnormality in post-generations.

End Points
The primary efficacy end point was the presence and the time from registration until the first occurrence of cerebrovascular and cardiovascular events, as follows:

1) cardiovascular death including cardiac sudden death;
2) nonfatal myocardial infarction;
3) nonfatal cerebral stroke excluding transient ischemic attack;
4) hospital admission due to unstable angina;
5) hospital admission due to heart failure; and
6) all coronary revascularizations with either PCI or CABG.

The secondary efficacy and safety end points are as follows:

1) all death;
2) all cerebrovascular and cardiovascular disease;
3) event-free survival time;
4) levels of the mean IMT of carotid arteries and their changes;
5) levels of max IMT in common or internal carotid arteries and their changes; and
6) severe adverse events and their frequency.

Statistical Design and Analysis
As shown in the randomized prospective study of primary prevention for common carotid atherosclerosis in Japan using probucol, the Fukuoka Atherosclerosis Trial (FAST)2 (a randomized prospective study), the morbidity of cerebrovascular and cardiovascular events within 2 years of the observation period was 2.4% in the probucol-treated group, which was half that in the lipid-lowering agent-treated group (4.8%). At the same time, there are no secondary prevention studies in dyslipidemic patients who had a prior history of cardiovascular events in Japan, except for the report evaluating the effect of probucol on secondary
prevention in patients with FH). Therefore, when we referred to the result of the Japan EPA Lipid Intervention Study (JELIS) that compared the effect of eicosapentaenoic acid (EPA) in addition to statins on the secondary prevention of cardiovascular events, the morbidity of cardiovascular events in patients treated with statins (pravastatin or simvastatin) for the secondary prevention of cardiovascular diseases was 10.7% for 5 years.

On sample size consideration in the study, we assumed that the morbidity of cerebrovascular and cardiovascular events in the control group would be 10.7% on the basis of the results from the statin-treated group of the JELIS study. In the test group, we assume that the rate would be 5.4%, almost half of that in the statin-treated group because the addition of probucol to conventional LLT might improve the morbidity of cardiovascular events as well as the primary prevention shown in the FAST study. On the condition, sample size per group was calculated as 408 patients with a two-tailed significance level of 0.05 and a power of 0.8 in 4 years’ accrual period and 3 years’ follow-up. Considering that several patients will be dropped out from the analysis, we decided that the target number of patients in one group would be 430 and total target number of patients in this study would be 860.

The patient population in statistical analysis was a full analysis set based on the intention-to-treat principle. The characteristics of patients’ demographics and baseline values were compared between the two groups. For the primary efficacy end point, the presence of and the time from registration until the first cerebrovascular and cardiovascular events were analyzed. By estimating event-free survival curves using the Kaplan–Meier method and the 95% confidence interval at 1, 2, and 3 years, event-free survival curves for the two groups were compared using the log-rank test stratified with random allocation factors: LDL-C level (140 mg/dL and more vs. less than 140 mg/dL), diabetes (with vs. without), and hypertension (with vs. without). The secondary end points of the period until all death and period until all cardiovascular and cerebrovascular disease and event-free survival time were analyzed in the same way as the primary end point. Levels of the mean- and max-IMT of carotid arteries from baseline to 1, 2, and 3 years were analyzed by a mixed-effects model with repeated measurements with baseline value (included only if the change from baseline was the response variable), allocation group, visit, and interaction between allocation group and visit as fixed effects and patient as a random effect. Comparison of groups was performed. Frequency of SAEs was summarized by preferred term and intensity, and compared using Fisher’s exact test. The two-tailed significant level in statistical analysis was 0.05. All statistical analyses were done with SAS version 9.3.

Study Organization and Their Works

Executive Committee:

Principal Investigator: Shizuya Yamashita. Professor, Department of Cardiovascular Medicine, Department of Community Medicine, Osaka University Graduate School of Medicine, Osaka, Japan (Present address: Department of Cardiology, Rinku General Medical Center, Izumisano, Osaka, Japan)

Vice Principal Investigator:

Hidenori Arai. President, The National Center for Geriatrics and Gerontology, Obu, Japan.

Hideaki Bujo. Professor, Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University, Sakura Medical Center, Sakura, Japan

The executive committee is working on the study design, execution, protocol amendments, and the supervision of the study. It must adjust the various problems that might occur during the execution of the study and review the process of the study at appropriate time points to maintain the safety of patients and the integrity of the study.

Project Director: Daisaku Masuda. Assistant Professor, Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan (Present address: Department of Cardiology, Rinku General Medical Center, Izumisano, Osaka, Japan)

Project Manager: Tohru Ohama. Assistant Professor, Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Japan

The project director manages the review of the protocol in the IRB of Osaka University Hospital, communicates the approved protocol to participating institutions, and addresses every unexpected complication that might occur during the execution of the study by making various adjustments for more appropriate progression.

Advisory Board:

Yuji Matsuzawa. President, Sumitomo Hospital, Osaka, Japan

Toru Kita. President, Kobe City Medical Center General Hospital, Kobe, Japan (Present address: President, Kobe City College of Nursing, Kobe, Hyogo,
The efficacy and safety evaluation committee evaluates the following reports to recommend early termination or study changes to the principal investigator: 1) the report of severe adverse events that is sent from the principal investigator at appropriate time points; 2) related reports from other studies such as papers and conference presentations at an appropriate time point; 3) the report of study progress from the data center every 3 months during the registration period or every 6 months after registration; and 4) total results of the safety information.

Cerebro- and Cardiovascular Events Evaluation Committee:
Takeshi Kimura. Professor, Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
Akira Sumitsuji. Associate Professor, Department of Advanced Cardiovascular Therapeutics, Osaka University Graduate School of Medicine, Suita, Japan
Kazuo Kitagawa. Professor, Department of Neurology, Graduate School of Medicine, Tokyo Women’s Medical University, Tokyo, Japan
The cerebro- and cardiovascular events evaluation committee determines whether the reported problem corresponds to the cerebro- and cardiovascular event recognized as a primary end point in this study unless it appears to be clearly relevant.

Participants and Support:

Efficacy and Safety Evaluation Committee:
Chairperson: Jun Sasaki*. Professor, Graduate School of Health and Welfare Sciences, International University of Health and Welfare Graduate School, Ohtawara, Japan
Deceased
Seiji Umemoto. Deputy Director, Center for Clinical Research, Yamaguchi University Hospital, Ube, Japan
Shigeyuki Matsui. Professor, Department of Data Sciences, The Institute of Statistical Mathematics, Tachikawa, Japan
Hidenao Fukuyama. Professor, Human Brain Research Center, Graduate School of Medicine Kyoto University, Kyoto, Japan

The efficacy and safety evaluation committee evaluates the following reports to recommend early termination or study changes to the principal investigator: 1) the report of severe adverse events that is sent from the principal investigator at appropriate time points; 2) related reports from other studies such as papers and conference presentations at an appropriate time point; 3) the report of study progress from the data center every 3 months during the registration period or every 6 months after registration; and 4) total results of the safety information.

Cerebro- and Cardiovascular Events Evaluation Committee:
Takeshi Kimura. Professor, Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
Akira Sumitsuji. Associate Professor, Department of Advanced Cardiovascular Therapeutics, Osaka University Graduate School of Medicine, Suita, Japan
Kazuo Kitagawa. Professor, Department of Neurology, Graduate School of Medicine, Tokyo Women’s Medical University, Tokyo, Japan

The cerebro- and cardiovascular events evaluation committee determines whether the reported problem corresponds to the cerebro- and cardiovascular event recognized as a primary end point in this study unless it appears to be clearly relevant.
References of Appendix

1) Marks D, Thorogood M, Neil HA, Humphries SE: A review on the diagnosis, natural history, and treatment of familial hypercholesterolaemia. Atherosclerosis, 2003; 168: 1-14

2) Sawayama Y, Shimizu C, Maeda N, Tatsukawa M, Kinukawa N, Koyanagi S, Kashiwagi S, Hayashi J: Effects of probucol and pravastatin on common carotid atherosclerosis in patients with asymptomatic hypercholesterolemia. Fukuoka Atherosclerosis Trial (FAST). J Am Coll Cardiol, 2002; 39: 610-616

3) Yamashita S, Bujo H, Arai H, Harada-Shiba M, Matsui S, Fukushima M, Saito Y, Kitahara C, Matsuzawa Y: Long-term probucol treatment prevents secondary cardiovascular events: a cohort study of patients with heterozygous familial hypercholesterolaemia in Japan. J Atheroscler Thromb, 2008; 15: 292-303

4) Yokoyama M, Orihashi H, Matsuzaki M, Matsuzawa Y, Saito Y, Ishikawa Y, Oikawa S, Sasaki J, Hishida H, Itakura K, Kitabatake A, Nakaya N, Sakata T, Shima K, Shirato K: Japan EPA lipid intervention study (JELIS) Investigators: Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet, 2007; 369: 1090-1098