Prevalence of readily detected amyloid blood clots in ‘unclotted’ Type 2 Diabetes Mellitus and COVID-19 plasma

Ethesia Pretorius (resiap@sun.ac.za)
Stellenbosch University https://orcid.org/0000-0002-9108-2384

Chantelle Venter
Stellenbosch University

Gert Jacobus Laubscher
Clinician Private Practice

Petrus Johannes Lourens
Clinician Private Practice

Janami Steenkamp
PathCare

Douglas B Kell
University of Liverpool

Original investigation

Keywords: COVID-19, coagulopathies, amyloid, pathologies

DOI: https://doi.org/10.21203/rs.3.rs-64855/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract

Background

Type 2 Diabetes Mellitus (T2DM) is a well-known comorbidity to COVID-19 and coagulopathies are a common accompaniment to both T2DM and COVID-19. In addition, patients with COVID-19 are known to develop micro-clots within the lungs. The rapid detection of COVID-19 uses genotypic testing for the presence of SARS-CoV-2 virus in nasopharyngeal swabs, but it can have a poor sensitivity. A rapid, host-based physiological test that indicated clotting severity and the extent of clotting pathologies in the individual who was infected or not would be highly desirable.

Methods

We show here that microclots can be detected in the native plasma of COVID-19, as well as T2DM patients, without the addition of any clotting agent, and in particular that such clots are amyloid in nature as judged by a standard fluorogenic stain.

Results

In COVID-19 plasma these microclots are significantly increased when compared to the levels in T2DM.

Conclusions

This fluorogenic test may provide a rapid and convenient test with 100% sensitivity (P < 0.0001), and is consistent with the recognition that the early detection and prevention of such clotting can have an important role in therapy.

Background

The standard method for detecting infection with SARS-CoV-2 leading to COVID-19 disease involves a genotypic (PCR) test for the virus on nasopharyngeal swabs, but it is unpleasant, requires specific training, and can have poor sensitivity [1–7]. What would be desirable is a rapid and phenotypic test on the host that indicates the presence, and if possible the severity, of clotting pathologies, which is one of the consequences of infection. Presently, the standard method for this is based on CT chest scans for pneumonia, which have high sensitivity but lower specificity (see [7–10] and below), but this is neither cheap nor universally available.

A poor prognosis for recovery, is linked to various comorbidities, of which Type 2 Diabetes Mellitus (T2DM) is probably the most frequently mentioned comorbidity. It is widely recognised [11–21] that extensive blood clotting has a major role in the pathophysiology of COVID-19 disease severity and
progression, yet so can excessive bleeding [22, 23]. The solution to this apparent paradox lies in the recognition [24] that these phases are separated in time: the later bleeding is mediated by the earlier clotting-induced depletion of fibrinogen and of von Willebrand factor (VWF). This first phase of hypercoagulability is accompanied by partial fibrinolysis of the formed clots, and an extent of D-dimer formation that is predictive of clinical outcomes [25]. These features, together with the accompanying decrease in platelets (thrombocytopenia), leads to the subsequent bleeding. Thus it is suggested that the application of suitably monitored levels of anti-clotting agents in the earlier phase provides for a much better outcome [13, 24].

As well as the extent of clotting, including states similar to the life-threatening disseminated intravascular coagulation (DIC) [15], a second issue pertains to its nature. Some years ago, we discovered that in the presence of microbial cell wall components [26, 27], and in a variety of chronic, inflammatory diseases [28–30] (including sepsis [31]), blood fibrinogen can clot into an anomalous, amyloid form [32]. These forms are easily detected by a fluorogenic stain such as thioflavin T, or the so-called Amytracker stains [33]. In all cases, however, these experiments were performed in vitro using relevant plasma, with clotting being induced by the addition of thrombin. In our preliminary experiments this was also the case for plasma from COVID-19 patients, but the signals were so massive that they were essentially off the scale. However, as we report here, the plasma of COVID-19 patients carries a massive load of preformed amyloid clots (with no thrombin being added), and this therefore provides a rapid and convenient test for COVID-19. As the presence of T2DM is a well-known co-morbidity, that significantly decreases survival and a positive outcome for COVID-19 patients, we included such a group in our sample cohort too.

Methods

Ethical considerations

Ethical approval for blood collection and analysis of the patients with COVID-19, T2DM and healthy individuals, was given by the Health Research Ethics Committee (HREC) of Stellenbosch University (reference number: 9521). This laboratory study was carried out in strict adherence to the International Declaration of Helsinki, South African Guidelines for Good Clinical Practice and the South African Medical Research Council (SAMRC), Ethical Guidelines for research. Oral consent was obtained from all participants prior to any sample collection.

Patient Sample

Covid-19 patients

20 COVID-19-positive samples (11 males and 9 females) were obtained and blood samples collected before treatment was embarked upon. Blood samples were collected by JS. Platelet poor plasma (PPP) prepared and stored at -80 °C, until fluorescent microscopy analysis.
Type 2 Diabetes Mellitus (T2DM)

Stored Platelet poor plasma samples were randomly selected from our Laboratory’s stored sample repository. 10 age-matched T2DM (6 Males and 4 females), collected in 2018, were used in this analysis.

Healthy samples

Our healthy sample was 10 age-matched controls (4 males and 6 females), previously collected and stored in our plasma repository. They were non-smokers, with CRP levels within healthy ranges, and not on any anti-inflammatory medication.

Lung CT scans

Amongst the COVID-19 patient sample 10 patients were admitted, but stabilized and blood drawn and sent home for observation. Where patients were clinically deemed as moderate or severely ill, CT scans of the patients were performed to determine the severity of the lung pathology. We divided our sample into mild disease (no CT scan) and moderate to severely ill. The CT scan and severity score [34] confirmed moderate to severely ill patients according to the ‘ground glass’ opacities in the lungs.

Fluorescent Microscopy of patient whole blood and platelet poor plasma (PPP)

A simple fluorescence assay was developed by comparing fluorescent (anomalous) amyloid signals present in PPP from COVID-19 patients, T2DM and those from healthy age-matched individuals, all of whom were studied using PPP that had been stored at -80 °C. On the day of analysis, PPP was thawed and incubated with the dye thioflavin T (ThT; 5 µM final concentration), which detects amyloid-like structures [35]. Following this, the sample was incubated for 30 min (protected from light) at room temperature. PPP smears were then created by transferring a small volume (5 µl) of the stained PPP sample to a microscope slide (similar methods were followed to create a blood smear). A cover slip was placed over the prepared smear and viewed using a Zeiss AxioObserver 7 fluorescent microscope with a Plan-Apochromat 63x/1.4 Oil DIC M27 objective. For ThT quantification, the excitation was set at 406 to 440 nm and emission at 546 to 564 nm. Unstained samples were also prepared with both healthy and COVID-19 PPP, to assess any autofluorescence. Micrograph analysis was done using ImageJ (version 2.0.0-rc-34/1.5a). The % area of amyloid were calculated using the thresholding method. This methods allows a measurement of area of amyloid signal. The RGB images are opened in ImageJ, each image is calibrated by setting the scale (calculated using the image pixel size and the known size of the scale bar). Each image is then converted to black and white ((8 bit, this is adjusted under the image type setting). The next step is to threshold the image by adjusting the background intensity to white (255) and then thresholding the now black amyloid signal (in these images between 11 and 15). We used the Huang setting during thresholding. Huang's method is a optimization method which finds the optimal threshold value by minimizing the measures of fuzziness. The black amyloid area is then analyzed using the analyze particle setting where we use the particle size that is measured from 1 to infinity. The particle size
setting allows us to exclude any background signal that might not be true amyloid signal. The area per
data per particle size that is generated is then copied into a spreadsheet (see our raw data). Statistical
analysis was done using Graphpad Prism 8 (version 8.4.3).

Results

Age-matched COVID-19 (average age 49.9y) and healthy individuals (58.8y), and T2DM (62.1y) were used
in this analysis (p = 0.0609 Kruskal-Wallis test). Figure 1 shows representative CT scans of four of the
COVID-19 patients. Raw data are shared in https://1drv.ms/u/s!AgoCOmY3bkKHirZOu5YKPlq1x5f1AQ?e=xmWGKm

Figure 2 to 5 show representative fluorescence micrographs of PPP from healthy, T2DM and COVID-19
individuals. In healthy PPP smears (Fig. 2), very little ThT fluorescent signal is visible. In plasma smears
from T2DM (Fig. 3), individuals, there were a significant increase in signal, compared to controls, and an
even more pronounced increase in signal in COVID-19 individuals (Fig. 4), where abundant amyloid signal
is noted. Note that these signals were as received; no thrombin was added to induce clotting. Figure 5
shows the additional presence of fibrous or cellular deposits in the PPP smears of COVID-19 patients.
From their appearance, some of these deposits seem to have originated from endothelial cells. There
have been reports of extensive endotheliopathy in COVID-19 patients [36, 37]. Figure 6A and B show box
plots of the % area of amyloid signal calculated from representative micrographs of each individual. A
nonparametric one-way ANOVA test (Kruskal-Wallis test) between all groups showed a highly significant
difference (p = < 0.0001). However, a Mann-Whitney analysis between the mild and the moderate to severe
COVID-19 individuals showed no significant difference (p = 0.554). Amyloid formation in plasma is
therefore present in the early stages of COVID-19, when the patients are sufficiently unwell to visit the
hospital and in need of stabilization.

Discussion

Strongly bound up with the coagulopathies accompanying severe COVID-19 disease is the presence of
hyperferritinaemia (in cases such as the present it is a cell damage marker [38]) and a cytokine storm,
[39–43] which usually occurs in the later phase of the disease [24]. In addition, there has been reports of
pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19 [37]. In addition, excess
iron has long been known to cause blood to clot into an anomalous form [44], later shown to be amyloid
in nature [26–32]. Increased serum ferritin levels are also known to be present in T2DM [45–48]. These
kinds of phenomena seem to accompany essentially every kind of inflammatory disease (e.g. [49]), but
the amyloidogenic coagulopathies are normally assessed following the ex vivo addition of thrombin to
samples of plasma.

Many clinical features of COVID-19 are unprecedented, and here we demonstrate yet another: the
presence in PPP to which thrombin has not been added of amyloid microclots. These microclots are also
an pathological feature of PPP from T2DM patients, however there is a significant increase of the
microclots in COVID-19 patients. This kind of phenomenon explains at once the extensive microclotting that is such a feature of COVID-19 [11], and adds strongly to the view that its prevention via anti-clotting agents should lie at the heart of therapy. In addition, it explains why individuals with T2DM are more prone to develop severe COVID-19. Although fluorescence microscopy is a specialized laboratory technique, TEG is a well-known point of care technique, which is cheap and reliable. All told, the relative ease, speed (40 minutes including 30 minutes ThT incubation time) and cheapness of the assay we describe might be of considerable prognostic utility in assessing the clinical status of COVID-19 patients.

Of course this must also be monitored (e.g. via Thromboelastography [50–53]) lest the disease enters its later phase in which bleeding rather than clotting is the greater danger [24]. An important consideration is that TEG can be used to study the clotting parameters of both whole blood and PPP. Whole blood TEG gives information on the clotting potential affected by the presence of both platelets and fibrinogen, while PPP TEG only presents evidence of the clotting potential of the plasma proteins [50–53].

Point-of-care devices and diagnostics like TEG are also particularly useful to assess fibrinolysis. In COVID-19 patients, Wright and co-workers reported fibrinolysis shutdown, confirmed by complete failure of clot lysis at 30 minutes on the TEG [54]. Thus TEG can therefore predict thromboembolic events in patients with COVID-19 [54].

Conclusion

What we have shown here is that the clotting that is commonly seen in COVID-19 patients is in an amyloid form; this alone would explain the complete shutdown of fibrinolysis and the decreased ability to pass O₂ into the blood that is such a feature of the disease. As T2DM is a significant comorbidity to COVID-19, exceptional care must be taken when such patients are diagnosed with COVID-19. Consequently, the prevention of coagulopathies must lie at the heart of successful therapies.

Abbreviations

SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2
COVID-19
Coronavirus disease
PCR
Polymerase chain reaction
T2DM
Type 2 Diabetes Mellitus
CT scan
Computed tomography
VWF
Willebrand factor
Declarations

Ethics approval and consent to participate

Ethical approval for blood collection and analysis of the patients with COVID-19, T2DM and healthy individuals, was given by the Health Research Ethics Committee (HREC) of Stellenbosch University (reference number: 9521). This laboratory study was carried out in strict adherence to the International Declaration of Helsinki, South African Guidelines for Good Clinical Practice and the South African Medical Research Council (SAMRC), Ethical Guidelines for research. Oral consent was obtained from all participants prior to any sample collection. Patients or the public WERE NOT involved in the design, or conduct, or reporting, or dissemination plans of our research.

Consent for publication

All authors approved submission of the paper.

Availability of data and materials

The datasets generated as well as figure micrographs analyzed during the current study are available: The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

https://1drv.ms/u/s!AgoCOmY3bkKHirZOu5YKPlq1x5f1AQ?e=xmWGKm

Competing interests

The authors have no competing interests to declare.

Funding

We thank the Medical Research Council of South Africa (MRC) (Self-Initiated Research Program: A0X331) for supporting this collaboration. DBK thanks the Novo Nordisk Foundation for funding (grant
NNF10CC1016517). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Authors' contributions

EP: Sample analysis, edited the paper, funding, co-corresponding author; CV: Sample analysis and technical assistance; GJV and PJL: Clinicians and patient sample identification; JS: Haematopathologist: sample collection and screening: DBK: Wrote the paper, funding, co-corresponding author.

Acknowledgements

We would like to thank the patients and their families who participated in this study.

References

1. Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, Tan W: Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA 2020.
2. Watson J, Whiting PF, Brush JE. Interpreting a covid-19 test result. BMJ. 2020;369:m1808.
3. Xiao AT, Tong YX, Gao C, Zhu L, Zhang YJ, Zhang S. Dynamic profile of RT-PCR findings from 301 COVID-19 patients in Wuhan, China: A descriptive study. J Clin Virol. 2020;127:104346.
4. Woloshin S, Patel N, Kesselheim AS. False Negative Tests for SARS-CoV-2 Infection - Challenges and Implications. N Engl J Med 2020.
5. Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, Niemeyer D, Jones TC, Vollmar P, Rothe C, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581(7809):465–9.
6. Jamal AJ, Mozafarihashjin M, Coomes E, Powis J, Li AX, Paterson A, Anceva-Sami S, Barati S, Crowl G, Faheem A, et al: Sensitivity of nasopharyngeal swabs and saliva for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 2020.
7. Xie X, Zhong Z, Zhao W, Zheng C, Wang F, Liu J. Chest CT for Typical Coronavirus Disease 2019 (COVID-19) Pneumonia: Relationship to Negative RT-PCR Testing. Radiology. 2020;296(2):E41–5.
8. Fang Y, Zhang H, Xie J, Lin M, Ying L, Pang P, Ji W. Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR. Radiology. 2020;296(2):E115–7.
9. Meng H, Xiong R, He R, Lin W, Hao B, Zhang L, Lu Z, Shen X, Fan T, Jiang W, et al. CT imaging and clinical course of asymptomatic cases with COVID-19 pneumonia at admission in Wuhan, China. J Infect. 2020;81(1):e33–9.
10. Xu B, Xing Y, Peng J, Zheng Z, Tang W, Sun Y, Xu C, Peng F. Chest CT for detecting COVID-19: a systematic review and meta-analysis of diagnostic accuracy. Eur Radiol 2020.
11. Willyard C. Coronavirus blood-clot mystery intensifies. Nature. 2020;581(7808):250.
12. Matacic C. Blood vessel injury may spur disease's fatal second phase. Science. 2020;368(6495):1039–40.

13. Kander T. Coagulation disorder in COVID-19. Lancet Haematol 2020.

14. Liao D, Zhou F, Luo L, Xu M, Wang H, Xia J, Gao Y, Cai L, Wang Z, Yin P, et al: Haematological characteristics and risk factors in the classification and prognosis evaluation of COVID-19: a retrospective cohort study. Lancet Haematol 2020.

15. Teuwen LA, Geldhof V, Pasut A, Carmeliet P. COVID-19: the vasculature unleashed. Nat Rev Immunol. 2020;20(7):389–91.

16. Yuriditsky E, Horowitz JM, Merchan C, Ahuja T, Brosnahan SB, McVoy L, Berger JS. Thromboelastography Profiles of Critically Ill Patients With Coronavirus Disease 2019. Crit Care Med 2020.

17. Thachil J, Tang N, Gando S, Falanga A, Cattaneo M, Levi M, Clark C, Iba T. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020;18(5):1023–6.

18. Levi M, Thachil J, Iba T, Levy JH. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020;7(6):e438–40.

19. Iba T, Levy JH, Levi M, Thachil J. Coagulopathy in COVID-19. J Thromb Haemost 2020.

20. Levi M, Thachil J: Coronavirus Disease 2019 Coagulopathy: Disseminated Intravascular Coagulation and Thrombotic Microangiopathy—Either, Neither, or Both. Semin Thromb Hemost 2020.

21. Iba T, Levy JH, Connors JM, Warkentin TE, Thachil J, Levi M. The unique characteristics of COVID-19 coagulopathy. Crit Care. 2020;24(1):360.

22. Al-Samkari H, Karp Leaf RS, Dzik WH, Carlson JC, Fogerty AE, Waheed A, Goodarzi K, Bendapudi P, Bornikova L, Gupta S, et al: COVID and Coagulation: Bleeding and Thrombotic Manifestations of SARS-CoV2 Infection. Blood 2020.

23. Dorgalaleh A. Bleeding and Bleeding Risk in COVID-19. Semin Thromb Hemost 2020.

24. Grobler C, Maphumulo SC, Grobbelaar LM, Bredenkamp J, Laubscher J, Lourens PJ, Steenkamp J, Kell DB, Pretorius E. COVID-19: The Rollercoaster of Fibrin(ogen), D-dimer, von Willebrand Factor, P-selectin and Their Interactions with Endothelial Cells, Platelets and Erythrocytes. Int J Mol Sci. 2020;21:5168.

25. Zhang L, Yan X, Fan Q, Liu H, Liu X, Liu Z, Zhang Z. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J Thromb Haemost. 2020;18(6):1324–9.

26. Pretorius E, Mbotwe S, Bester J, Robinson CJ, Kell DB. Acute induction of anomalous and amyloidogenic blood clotting by molecular amplification of highly substoichiometric levels of bacterial lipopolysaccharide. J R Soc Interface. 2016;123(13):20160539.

27. Pretorius E, Page MJ, Hendricks L, Nkosi NB, Benson SR, Kell DB. Both lipopolysaccharide and lipoteichoic acids potently induce anomalous fibrin amyloid formation: assessment with novel Amytracker™ stains. bioRxiv preprint. bioRxiv 2017:143867.
28. de Villiers S, Bester J, Kell DB, Pretorius E. Erythrocyte health and the possible role of amyloidogenic blood clotting in the evolving haemodynamics of female migraine-with-aura pathophysiology: Results from a pilot study. Frontiers Neurol. 2019;10:1262.

29. Pretorius E, Page MJ, Engelbrecht L, Ellis GC, Kell DB. Substantial fibrin amyloidogenesis in type 2 diabetes assessed using amyloid-selective fluorescent stains. Cardiovasc Diabetol. 2017;16:141.

30. Pretorius E, Bester J, Page MJ, Kell DB. The potential of LPS-binding protein to reverse amyloid formation in plasma fibrin of individuals with Alzheimer-type dementia. Frontiers Aging Neurosci. 2018;10:257.

31. Kell DB, Pretorius E. To what extent are the terminal stages of sepsis, septic shock, SIRS, and multiple organ dysfunction syndrome actually driven by a toxic prion/amyloid form of fibrin? Semin Thromb Hemost. 2018;44:224–38.

32. Kell DB, Pretorius E. Proteins behaving badly. Substoichiometric molecular control and amplification of the initiation and nature of amyloid fibril formation: lessons from and for blood clotting. Progr Biophys Mol Biol. 2017;123:16–41.

33. Pretorius E, Page MJ, Hendricks L, Nkosi NB, Benson SR, Kell DB. Both lipopolysaccharide and lipoteichoic acids potently induce anomalous fibrin amyloid formation: assessment with novel Amytracker™ stains. J R Soc Interface. 2018;15(139):20170941.

34. Francone M, Iafrate F, Masci GM, Coco S, Cilia F, Manganaro L, Panebianco V, Andreoli C, Colaiacomo MC, Zingaropoli MA, et al: Chest CT score in COVID-19 patients: correlation with disease severity and short-term prognosis. Eur Radiol 2020.

35. Malmos KG, Blancas-Mejia LM, Weber B, Buchner J, Ramirez-Alvarado M, Naiki H, Otzen D. ThT 101: a primer on the use of thioflavin T to investigate amyloid formation. Amyloid. 2017;24(1):1–16.

36. Goshua G, Pine AB, Meizlish ML, Chang CH, Zhang H, Bahel P, Baluha A, Bar N, Bona RD, Burns AJ, et al: Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol 2020.

37. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, Vanstapel A, Werlein C, Stark H, Tzankov A, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med. 2020;383(2):120–8.

38. Kell DB, Pretorius E. Serum ferritin is an important disease marker, and is mainly a leakage product from damaged cells. Metallomics. 2014;6(4):748–73.

39. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, Wang T, Zhang X, Chen H, Yu H, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(5):2620–9.

40. Gómez-Pastora J, Weigand M, Kim J, Wu X, Strayer J, Palmer AF, Zborowski M, Yazer M, Chalmers JJ. Hyperferritinemia in critically ill COVID-19 patients - Is ferritin the product of inflammation or a pathogenic mediator? Clin Chim Acta. 2020;509:249–51.

41. Vargas-Vargas M, Cortés-Rojo C. Ferritin levels and COVID-19. Rev Panam Salud Publica. 2020;44:e72.
42. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, Speciality HA. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–4.

43. Ruscitti P, Berardicurti O, Barile A, Cipriani P, Shoenfeld Y, Iagnocco A, Giacomelli R. Severe COVID-19 and related hyperferritinaemia: more than an innocent bystander? Ann Rheum Dis 2020.

44. Pretorius E, Vermeulen N, Bester J, Lipinski B, Kell DB. A novel method for assessing the role of iron and its functional chelation in fibrin fibril formation: the use of scanning electron microscopy. Toxicol Mech Methods. 2013;23(5):352–9.

45. Buys AV, Van Rooy MJ, Soma P, Van Papendorp D, Lipinski B, Pretorius E. Changes in red blood cell membrane structure in type 2 diabetes: a scanning electron and atomic force microscopy study. Cardiovascular diabetology. 2013;12(1):25.

46. Pretorius E. The adaptability of red blood cells. Cardiovascular diabetology. 2013;12:63.

47. Pretorius E, Bester J, Vermeulen N, Alummoottil S, Soma P, Buys AV, Kell DB. Poorly controlled type 2 diabetes is accompanied by significant morphological and ultrastructural changes in both erythrocytes and in thrombin-generated fibrin: implications for diagnostics. Cardiovascular diabetology. 2015;14:30.

48. Pretorius E, Bester J, Vermeulen N, Lipinski B. Oxidation inhibits iron-induced blood coagulation. Curr Drug Targets. 2013;14(1):13–9.

49. Kell DB, Pretorius E. No effects without causes. The Iron Dysregulation and Dormant Microbes hypothesis for chronic, inflammatory diseases. Biol Rev. 2018;93:1518–57.

50. Nielsen VG, Audu P, Cankovic L, Lyerly RT 3rd, Steenwyk BL, Armstead V, Powell G. Qualitative thrombelastographic detection of tissue factor in human plasma. Anesth Analg. 2007;104(1):59–64.

51. Nielsen VG, Kirklin JK, Hoogendoorn H, Ellis TC, Holman WL. Thrombelastographic method to quantify the contribution of factor XIII to coagulation kinetics. Blood Coag Fibrinol. 2007;18(2):145–50.

52. Nielsen VG. Beyond cell based models of coagulation: analyses of coagulation with clot "lifespan" resistance-time relationships. Thromb Res. 2008;122(2):145–52.

53. Nielsen VG. Effects of purified human fibrinogen modified with carbon monoxide and iron on coagulation in rabbits injected with Crotalus atrox venom. J Thromb Thrombolysis. 2017;44(4):481–8.

54. Wright FL, Vogler TO, Moore EE, Moore HB, Wohlauer MV, Urban S, Nydam TL, Moore PK, McIntyre RC Jr. Fibrinolysis Shutdown Correlation with Thromboembolic Events in Severe COVID-19 Infection. J Am Coll Surg. 2020;231(2):193–203. e191.

Figures
Figure 1

Representative CT scans of a COVID-19 patient. Yellow arrows show ground glass opacities.
Figure 2

Representative fluorescence micrographs of platelet poor plasma from healthy individuals. Most signals are very weak, as shown by the arrows in A).
Figure 3

Representative fluorescence micrographs of platelet poor plasma from Type 2 Diabetes Mellitus (T2DM) patients.
Figure 4

Representative fluorescence micrographs of platelet poor plasma from COVID-19 patients.
Figure 5

Fibrous or cellular deposits in the plasma smears from COVID-19 patients.
Figure 6

Amyloid % area in platelet poor plasma smears with mean and SEM (p = <0.0001). A) All controls, Type 2 Diabetes Mellitus (T2DM) and all COVID-19 patients. B) All controls vs T2DM vs 10 mild and 10 moderate to severely ill patients.