Bacteriocins are ribosomally synthesized antimicrobial peptides produced by microbes owned by different eubacterial taxonomic branches. Most of them are small cationic membrane-active compounds that form pores in the targeted cells, disrupting membrane possibilities, and triggering cell fatality. The availability of small cationic peptides with antimicrobial activity is a protection strategy found not only in bacteria but also in plants and animals. The antibiotics which have extensive applications in the treatment of various bacterial diseases have developed alarming resistance against them in many pathogens due to improper use besides this antibiotics have adverse side effects also. There are an extensive variety of bacteriocins made by different bacterial genera have promising alternative to antibiotics that need to be further studied to show the no existence of undesirable effects, which must be performed both in vitro and in vivo experimental systems. Most of the bacteriocin have narrow spectrum of their activity and effective only on the related species. There is an urgent need for the identification of broad-spectrum bacteriocins isolated from the species from different habitats that can be effective against both Gram-positive and Gnm-negative pathogens. In this review, we focus on the main physical and chemical characteristics of broad-spectrum bacteriocin and discuss their application as an alternative option to antibiotics.

**ABSTRACT**

Bacteriocins are ribosomally synthesized antimicrobial peptides produced by microbes owned by different eubacterial taxonomic branches. Most of them are small cationic membrane-active compounds that form pores in the targeted cells, disrupting membrane possibilities, and triggering cell fatality. The availability of small cationic peptides with antimicrobial activity is a protection strategy found not only in bacteria but also in plants and animals. The antibiotics which have extensive applications in the treatment of various bacterial diseases have developed alarming resistance against them in many pathogens due to improper use besides this antibiotics have adverse side effects also. There are an extensive variety of bacteriocins made by different bacterial genera have promising alternative to antibiotics that need to be further studied to show the no existence of undesirable effects, which must be performed both in vitro and in vivo experimental systems. Most of the bacteriocin have narrow spectrum of their activity and effective only on the related species. There is an urgent need for the identification of broad-spectrum bacteriocins isolated from the species from different habitats that can be effective against both Gram-positive and Gnm-negative pathogens. In this review, we focus on the main physical and chemical characteristics of broad-spectrum bacteriocin and discuss their application as an alternative option to antibiotics.
wide range of disease-causing bacteria. Bacteriocins also have many antibacterial properties just like antibiotics.

Use of antibiotics possesses many side effects such as malabsorption characterized by celiac like syndrome, no proper absorption of medications, altered metabolism and absorption of vitamins, colonization of resistant organisms, and changed susceptibility to infections. Another most common side effect of antibiotic intake is antibiotic-associated diarrhea causing frequent watery bowel movements [28].

With the growing use of antibiotics, another threat to health has come into effect, i.e., antibiotic resistance. Antimicrobial resistance is the failure of the therapy with a specific agent for an organism. Resistance is related to a trait inherent in microorganism which can be intrinsic or acquired. One of the largest factors which are leading to antibiotic resistance is indiscriminate and inappropriate use of antibiotics [29]. Hence, there is a need for some natural antibacterial peptides, such as bacteriocins, which can be used as an alternative to antibiotics.

There are few differences between bacteriocins and antibiotics in terms of the host cell immunity, mechanism of target cell resistance or tolerance, mode of action, toxicity and side effect mechanisms. Bacteriocins are antimicrobial peptides (AMPs) produced by bacteria which can also have either a broad or narrow spectrum of inhibition such as antibiotics (Table 2).

Most of the bacteriocins are considered as narrow spectrum which can only inhibit or kill the bacteria with close genetic relationship. The bacteriocins produced from Gram-positive bacteria are mostly broad spectra that show an inhibitory effect which is directed against bacteria of the same species as the bacteriocin producer and also against other species and genera different from that of the producer [35]. Very few bacteriocins are broad spectrum while bacteriocins with antibacterial action against multidrug-resistant strains are quite rare [36] (Table 1).

An example of broad host range bacteriocin is Lacticin 3147 which is produced by the GRAS organism Lactococcus lactis subsp. Lactis DPC3147 is a strain which is isolated from an Irish Kefir grain [37]. A number of broad host range bacteriocins which are termed as lantibiotics, a class of bacteriocins which is produced by Gram-positive bacteria, could be an interesting alternative to antibiotics to either prevent or treat bacterial infectious diseases which includes bovine mastitis, since these substances generally have a broad spectrum of activity against Gram-positive pathogens. The lantibiotics undergo substantial post-translational modifications, e.g., nisin, which is a 34-amino acid peptide containing a number of modified amino acids which includes dehydrated residues and 5 cross-linking lanthionine or beta-methyl-lanthionine residues [38].

In this review paper, an emphasis has been given to highlight and discuss exclusively on the application of broad-spectrum bacteriocins as an alternative to classical antibiotics. The mechanisms of some broad-spectrum bacteriocins and antibiotics have also been discussed and an attempt has been made to emphasize the effectiveness of bacteriocins as an effective alternative to the antibiotics having least harmful effects against the host organism in contrast to antibiotics.

**AMPs**

The search for novel AMPs involves the identification of active peptides from natural sources which are followed by the design of synthetic peptide analogs for structure-function studies. *De novo* peptide design approaches have also been used for various purposes such as structure-based modeling, predictive algorithms, and introduction of non-coded modifications to conventional peptide chemistry [39].

**Structure and charge distribution**

Generally, two physical features are common for AMPs: A cationic charge and a significant proportion of hydrophobic residues. The formerly property enhances selectivity for negatively charged microbial cytoplasmic membranes whereas the latter facilitates interactions with the fatty acyl chains [40]. There are also few anionic AMPs, such as dermcidin, although other biological activities seem to be more important for these peptides [41].

**LI-F type AMP**

*Poenibacillus polymyx* strain 3a-9, a soil isolate that displays antibacterial and antifungal activities in vitro, has been found to produce LI-F type AMPs named AMP-3a-9. LI-F type peptides are a group of broad-spectrum cyclic lipodepsipeptide antibiotic effective against Gram-positive bacteria and filamentous fungi. AMP-3a-9 are a group of cyclic lipides/peptide antibiotics which are composed of a peptide ring that consists of a six amino acid residues and a 15-guanidino-3-hydroxypentadecanoic acid moiety and exhibit a broad antimicrobial spectrum with particularly high potency against Gram-positive bacteria and fungi [42,43]. Earlier studies suggested that the positively charged guanidinum group at the end of the 12-carbon lipidic tail and the presence of hydrophobic amino acids in the depsipeptide sequence of LI-Fs are important for the antibacterial activity [44].

**Mechanism of tigecycline**

Some antibiotics are broad spectrum such as tigecycline is a semi-synthetic derivative of minocycline. It is mechanistically similar to aminoglycosides, macrolides, streptogamins, and oxazolidinones in that it binds to the 30 S seconds ribosomal subunit [45]. This blocks the entry of aminoacyl tRNA to its acceptor site which prevents the bacterial protein synthesis and its growth. It overcomes two types of genetic mechanisms which are primarily responsible for clinical tetracycline resistance. Efflux and ribosomal protection [33,45]. However, it remains vulnerable to the multidrug efflux pumps of *Proteus* and *P. aeruginosa* and less frequently, *Bacteroides* spp. through a different mechanism [46].

** Doripenem monohydrate**

Doripenem monohydrate is another broad-spectrum carbapenem antibiotic which derives its bactericidal action from inhibition of bacterial enzymes called penicillin-binding proteins (PBPs) [47-50]. These enzymes are responsible for synthesis of the bacterial cell wall, i.e., cross-linking of the peptidoglycan. The primary PBPs which are inhibited by the carbapenems are the high-molecular weight enzymes 1a, 1b, 2, and 3 [50,51]. The inhibition of PBP 1a and 1b results in the formation of spheroplasts and rapid bacterial killing [52]. The inhibition

**Table 1: Potent narrow- and broad-spectrum bacteriocins**

| Bacteriocins                  | Narrow/broad spectrum | Activities          |
|------------------------------|-----------------------|---------------------|
| Cerein 7 [19]                | Broad spectrum        | Antibacterial       |
| Bilidocin A [20]             | Broad spectrum        | Antibacterial       |
| Lantibiotic lacticin 3147 [21]| Broad spectrum       | Antimicrobial       |
| Acidocin [22]                | Narrow spectrum       | Antimicrobial       |
| AmylovirinL471 [23]          | Narrow spectrum       | Antibacterial       |

![Fig. 1: Major activity profile of broad-spectrum bacteriocins](image-url)
of PBP 2 causes the rod-shaped organisms to become spherical and inhibition of PBP 3 results in the formation of filamentous-shaped organisms [53]. The PBP preferentially bound by doripenem which vary with the organism. In the case of Escherichia coli, doripenem preferentially binds to PBP 2, followed by PBP 1a, 1b, and 3. For P aeruginosa, doripenem binds preferentially to PBP 2 and 3, followed by PBP 1a and 1b. With Streptococcus pneumonia, doripenem shows high affinity for PBP 1a, 2b, and 2x.

Mode of action of bacteriocins

Bacteriocins show different modes of action. In some cases, the target of action is the bacterial membrane. Other bacteriocins, however, inhibit essential enzymes within the cell such as leucocin S or pediocin [D] [54] and colicin E9 [55]. Some bacteriocins, such as nisin, show two common killing mechanisms sharing a common denominator [56-58]. It disrupts the integrity of cell membrane by forming pores leading to efflux of small metabolites due to dissipation of membrane potential, resulting in termination of biosynthetic processes and cell death. At lower concentrations, it binds with lipid II molecule of peptidoglycan layer resulting in prevention of proper cell wall synthesis, whereas at higher concentrations, this complex initiates membrane insertion creating pores in the bacterial cell wall. Hence, the nisin-lipid II complex facilitates the dual prevention mode of action involving cell wall synthesis and membrane pore formation [57]. Bacteriocin, such as cerein 7, is a peptidic antibiotic which is produced by Bacillus cereus. Be? (CET 5148) shows a broad spectrum of activity against Gram-positive bacteria but is inactive against Gram-negative bacteria [59].

Lacticin Q

A unique killing mechanism of leaderless bacteriocins, such as lacticin Q, has been well characterized [60]. It causes membrane permeabilization of strains without need of any specific receptors [61]. It forms a huge toroidal pore (HTP) causing leakage of intracellular components and large molecules which result in the cell death. HTP is formed due to electrostatic interaction of cationic lacticin Q molecule with negatively charged membranes, coupled with flip-flop. Another mechanism for selective antimicrobial activity of lacticin Q is the accumulation of hydroxyl radicals through Fenton reaction, with variations within species and even within strains. The selective toxicity of lacticin Q molecule depends on strains' ability to scavenge hydroxyl radicals [62].

These interactions can be either non-specific in the case of bacteriocins which show a broad activity spectrum (i.e., pediocin Ach/P41 or nisin) or receptor-mediated in the case of species or strain-specific bacteriocins such as lacticin B. In some cases, there is an absolute need for the presence of the proton motive force which allows the successful interaction of the bacteriocin with the target membrane. In other cases, the interaction of the bacteriocin with the membrane is spontaneous. The result of this interaction is the generation of non-specific pores that allow an efflux of protons, ions, and amino acids but not cytoplasmic proteins. This efflux causes dissipation of the membrane potential and the collapse of the energy generation cellular machinery [63].

CONCLUSION

The effectiveness of bacteriocins as food preservatives is well demonstrated. Although nisin is the only purified bacteriocin used commercially, others are inhibitory against foodborne pathogens such as Listeria monocytogenes, their synthesis, and mode of action distinguish them from clinical antibiotics. Some of the mechanisms of broad-spectrum bacteriocins, such as lacticin, showed the effectiveness of bacteriocins against Gram-positive and Gram-negative bacteria. In addition, organisms that show resistance to antibiotics are generally not cross-resistant with bacteriocins, and unlike antibiotic resistance, bacteriocin resistance is not usually genetically determined. As the bacteriocin possesses much advantages over antibiotics could be considered as a potential safe alternative antimicrobial agent.

ACKNOWLEDGMENT

Authors sincerely acknowledge Accendere KMS research coordinators team for their support in drafting the manuscript.

REFERENCES

1. Tagg JR, Hajani AS, Wannamaker LW. Bacteriocins of gram-positive bacteria. Bacteriol Rev 1976;40(3):722.
2. Klaenhammer TR. Bacteriocins of lactic acid bacteria. Biochimie 1988;70(3):337-49.
3. Abriouel H, Valdivia E, Marti M, Maqueda M, Gálvez A. A simple method for semi-preparative-scale production and recovery of enterocin AS-48 derived from Enterococcus faecalis subsp. Liquefaciens A-48-32. J Microbiol Methods 2003;55(3):599-605.
4. Zacharof MP, Lovitt RW. Bacteriocins produced by lactic acid bacteria a review article. APCBEE Procedia 2012;2(3):50-6.
5. Jarvis B, Jeffcoat J, Cheseman GC. Molecular weight distribution of Nisin. Biochim Biophys Acta BBA Protein Struct 1968;168(1):153-5.
6. Broadbent JR, Zhou Z, Gillies K, Kondo J. Nisin inhibits several Gram-positive, mastitis-causing pathogens. J Dairy Sci 1989;72(12):342-5.
7. Venema K, Chikindas ML, Seegers JF, Haandrikman AJ, Leenhouts KJ, Venema G, et al. Rapid and efficient purification method for small, hydrophobic, cationic bacteriocins: Purification of lactococcin B and pediocin PA-1. Appl Environ Microbiol 1997;63(1):305-9.
8. Joerger MC, Klaenhammer TR. Characterization and purification of helvetican J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J Bacteriol 1986;167(2):439-46.
9. Jack RW, Tagg JR, Ray B. Bacteriocins of gram-positive bacteria. Microbiol Rev 1995;59(2):171-200.
10. Balasubramanayam BV, Varadaraj MC. Cultural conditions for the production of bacteriocin by a native isolate of Lactobacillus delbrueckii ssp. Bulgaricus CFR 2028 in milk medium. J Appl Microbiol 1998;84(1):97-102.

Table 2: Broad-spectrum bacteriocins and antibiotics with similar activities

| Activity          | Broad-spectrum bacteriocins | Antibiotics with similar activity | Mode of action (bacteriocin and antibiotics) |
|-------------------|-----------------------------|----------------------------------|------------------------------------------|
| Antibacterial     | AS-48                       | 2-Naphthylcarbapenems            | AS-48 acts through permeation of the cell membrane leading to cell death [30] |
| Antimicrobial     | Lactocin XN8-A              | Tigecycline                      | 2-Naphthylcarbapenems: Appropriate positioning of cationic group has been found to lead to enhanced activity against methicillin-resistant Staphylococcus aureus and multiply resistant coagulase-negative staphylococci while maintaining a good spectrum of Gram-negative activity [31] |
| Antimicrobial     | Bifidocin A                 | Doripenem monohydrate            | Lactocin XN8-A: It induces membrane permeability and lead to pore formation of target cells [32] |

Bifidocin A causes leakage of K+ & release of adenosine triphosphate causing collapse of transmembrane electrical potential [20] |

Doripenem Monohydrate: It inhibits the bacterial enzymes called PBP which inhibits cell wall synthesis [34] |
that
, arising from its simultaneous binding to penicillin-LPCO10 isolated from a green olive producing a novel
36. Ryan MP, Rea MC, Hill C, Ross RP. An application in cheddar cheese
35. De Vuyst L, Leroy F. Bacteriocins from lactic acid bacteria: Production,
33. Zhanel GG, Homenuik K, Nichol K, Noreddin A, Vercaigne L, Embil J,
32. Chopra I. Glycylcyclines: Third-generation tetracycline antibiotics.
31. Greenlee ML, DiNinno F, Herrmann JJ, Jaworsky C, Muthard DA,
30. Jiménez-Díaz R, Rios-Sanchez RM, Desmazeaud M, Ruiz-Barba JL,
26. Rossolini GM, Arena F, Pecile P, Pollini S. Update on the antibiotic
21. McAuliffe O, Ryan MP, Ross RP, Hill C, Breeuwer P, Abee T. Lacticin
18. Lewus CB, Montville TJ. Further characterization of bacteriocins
17. Bharti V, Mehta A, Singh S, Jain N, Ahirwal L, Mehta S. Bacteriocin: A novel approach for preservation of food. Int J Pharm Sci 2015;7(9):20-9.
16. Lewus CB, Montville TJ. Further characterization of bacteriocins plantaricin BN, bacinvin MN and pediocin A. Food Biotechnol 1992;6(2):153-74.
15. Felgner S, Kocijancic D, Frahm M, Weiss S. Bacteria in cancer therapy: Renaissance of an old concept. Int J Microbiol 2016;13:1-11.
14. Coley WB. II. Contribution to the knowledge of sarcoma. Ann Surg 1891;14(3):199-220.
13. Sabitha I. Bacteriocin: An alternative to antibiotics. World J Pharm Res 2015;4(10):337-43.
12. Larsen AG, Vegansen FK, Josefsen J. Antimicrobial activity of lactate acid bacteria isolated from fruit juice: Purification and characterization of bacteriocin B from Lactobacillus bavariensis M410. J Appl Bacteriol 1993;75(2):113-22.
11. Sanni AI, Onilude AA, Ogunbanwo ST, Smith SI. Antagonistic activity of bacteriocin produced by Lactobacillus acidophilus strain CRL 024 isolated from the caecum of Malaysian non-broiler chicken on cancer cell lines. Int J Pharm Pharm Sci 2015;7(2):334-7.
10. Bhatti V, Mehta A, Singh S, Jain N, Ahirwal L, Mehta S. Bacteriocin: A novel approach for preservation of food. Int J Pharm Sci 2015;7(9):20-9.
9. Livermore DM. Tigecycline: What is it, and where should it be used? J Antimicrob Chemother 2005;56(4):611-4.
8. Pharmaceutical OM. Doribax (Doripenem) Package Insert. Raritan, NJ: Ortho-McNeil Pharmaceutical; 2007.
7. Creditio KL, Ednie LM, Appelbaum PC. Comparative antianerobic activities of doripenem determined by MIC and time-kill analysis. Antimicrob Agents Chemother 2008;52(1):365-73.
6. Wagenlehner FM, Wagenlehner C, Weider N, Nabeg KR. Urinary bactericidal activity of doripenem versus levofloxacin in patients with complicated urinary tract infections or pyelonephritis. Eur Urol Suppl 2008;7(3):268.
5. Bush K, Macielag M. New approaches in the treatment of bacterial infections. Curr Opin Chem Biol 2000;4(4):453-9.
4. Livermore DM, Tigecycline: What is it, and where should it be used? J Antimicrob Chemother 2005;56(4):611-4.