Comparative Experimental Investigation of Flexure and Shear Strength in Hybrid - Trapezoidal Reinforced Concrete Sections

Majid Jafar Sada1*, Sa'ad Fahad Resan1
1 Civil Engineering Department, Engineering College, University of Misan, Amarah, Iraq
*E-mail: majid.jafer.sada@uomisan.edu.iq

Abstract. The structural behavior of the hybrid reinforced concrete beams of the trapezoidal section is investigated in this paper. This study aims mainly to investigate the interaction effect of hybrid concrete compressive strength for section has geometry variation upon beam strength characteristics. Throughout the considered experimental program, 10 simply supported reinforced concrete beams were prepared and tested using a four-point load setting. All specimens had equal cross-sectional area. These specimens were divided into two groups, each group contain 5 beams. The first group deals with flexural behavior and the second group concerned with shear behavior. In addition to hybrid compressive strength considerations, two types of concrete with different compressive strengths of (25 and 50 MPa) were used and three trapezoidal geometries with different alignment side angles (75, 80, and 85) are adopted. The experimental testing showed that the effectiveness of the hybrid trapezoidal force formation maintained the strength of the samples decreased more than the hybrid effect force. As for the flexural behavior, the ultimate strength decreased by (2.82%) and the deflection increased by (56.81%) with respect to rectangular specimens. For shear behavior, the ultimate load was close or identical to the control specimens with deflection increment ranging from (9% to 60%) with respect rectangular specimen. The effect of area distribution within section (section shape sides orientation) was clearly on the first crack load where the angle (80) recorded a highest value of crack load.

Keywords: Flexural Strength, High Strength Concrete, Hybrid Concrete, Shear Strength, and Trapezoidal Section.

1. Introduction.
The smart distribution of section area and the optimum selection of proper strength are powerful factors used in the design philosophy for economic structural members. In addition to determining the factors of complexity, durability, economy, and construction time are the main elements considered in measuring successful construction. The adoption of these elements for each part of the project ultimately leads to a reduction in construction cost with the least possible time. Moreover, the most important part of the
construction project is the concrete members; thus, improving their properties, increase their strength, using certain additives, and employing simple construction methods effectively contribute to the success of the project [1]. Numerous ways of improving the properties of concrete include those related to increasing its strength by using additives and implementing concrete in certain forms that are generally appropriate to the facility and contribute to increasing its durability. Meanwhile, the use of hybrid concrete (with two strengths) effectively contributes to the reduction in construction cost [2]. The effective use of concrete in beam members in the compression region within the beam section and its quality and efficiency requirements are relatively reduced in the tension region. This phenomenon fulfills the requirements of global codes, of which the most important is ACI 318 cod [3]. Obtaining high-strength concrete beams with low costs is possible by using hybrid concrete with certain forms of beam cross-sections. Moreover, the trapezoidal shape is proportionate to the compressive and tensile strengths, which increases the compression area. Thus, the compression strength is increased, whereas the opposite is observed for the tensile area, wherein the rebar strength distributed tensile stresses. Many researchers have studied the structural behavior of hybrid concrete beams. The use of composite or hybrid concrete is one of the advanced technologies in modern constructions, especially in concrete beams. Researchers have benefited from the stress distribution within the beam cross-section. Thus, finding the optimal section of the concrete beam is necessary; that is, the concrete with high strength is in the upper part of the beam, while that with low strength is under the section, thus producing concrete with high efficiency and low cost [4-13]. Other researchers have benefited from the theory of varying stress distribution within the cross-section based on its shape. The redistribution of areas inside the cross-section increased the compression area and reduced the tensile area, resulting in a triangular or trapezoidal shape [14-17]. The effect of the non-prismatic shape on the structural behavior of concrete beams was also investigated [18-25]. Most of the above-mentioned studies considered one aspect of modern technologies for the production of concrete beams and the general effect of these techniques on structural behavior. More than one technique was incorporated in this study, that is, hybrid concrete was used with a trapezoidal cross-section within reinforced concrete beams. The effect of these techniques on flexural stresses generated inside the concrete was also investigated. Many scholars and researchers addressed the issue of bending performance in reinforced concrete beams and the extent of the effect of the cross-section shape and hybrid concrete on flexural stresses.

2. Experimental methodology

2.1 Experimental Program
The experimental work of this study includes the testing of 10 reinforced concrete beams divided to two groups. Group one (GR1) contains 5 specimens with length 2100 mm for flexural behavior study. While group two (GR2) contain 5 specimens with 1000 mm length for shear behavior study. In every group there were two specimens beams with homogenous concrete as a references beams. One of them have a rectangular cross-section, while the other beam has a trapezoidal cross-section with 75 side angles. The remain specimens had trapezoidal cross-section of hybrid concrete $f_c(bottom)/f_c(top)= 0.5$ with side angle (75, 80, and 85), respectively, as shown in Figure (1). The concrete used compressive strengths of 50, and 25 MPa as shown in Table (1). Figure (2) shows the details of the reinforcement used for each beam.
Figure 1. Geometrical details of developed specimens.

Figure 2. Reinforcement details.
4

2.2. Materials
The following materials are utilized throughout the current study:

1- Cement type I: Iraqi cement (Karasta cement), which is produced by Lafarge company, was used (5R.42-L-A / II C) for all concrete mixtures in the experiment. The test results complied with American Society for Testing and Materials (ASTM) and Iraqi standard specifications (IQS No.5/1984) [26].

2- Fine aggregate: Natural sand was used in all concrete mixtures as a fine aggregate. The maximum grain size is 4.75 mm, and the coefficient of smoothness is 2.82. Laboratory tests for sand were performed following the Iraqi specifications (No. 45/1984) [27].

3- Coarse aggregate: Crushed gravel with a maximum particle size of 19 mm was used as a coarse aggregate for normal strength concrete mixes. Sampling was conducted by ASTM C702-98 (reapproved 2003) [28]. The obtained grading curve lies within the ranges defined by IQR NO.45/1984.

4- Water: Reverse Osmosis (RO) water was used in the manufacture and treatment of concrete and proven through laboratory testing to conform to the limits of Iraqi Standard No. 1703/1992 [29].

5- Additive: Superplasticizer (Sika ViscoCrete-225 S) was added to concrete admixtures to improve workability and compressive strength which is compatible with ASTM C 1240-03 [30].

6- Reinforcing Steel Bars: Ukrainian steel bars were used in manufacturing considering reinforced concrete beams. Steel bars with diameters of Ø12 and Ø8 mm were respectively used as longitudinal and stirrups reinforcements and tested following ASTM 370-0 [31].

2.3. Concrete Mixes

Table 1. Description of the tested specimens

Group No.	Stricture behavior	Specimen symbol	Concrete compressive strength \((f_{cu}) \) (MPa)	Main longitudinal steel bars reinforced	Stirrups	Cross-section width (mm)	Side* angle (degree)
GR1	Flexural	BL6	50 50 2Ø12 Ø8@50mm 175 90	top 50 bottom 50 top 2012 bottom 4Ø12	Ø8@50mm	175 175	75.96
		BL7	50 50 2Ø12 Ø8@50mm 250 75.96	top 50 bottom 50 top 2012 bottom 4Ø12	Ø8@50mm	250 100	75.96
		BL8	50 25 2Ø12 Ø8@50mm 250 75.96	top 50 bottom 25 top 2012 bottom 4Ø12	Ø8@50mm	250 100	75.96
GR2	Shear	BL9	50 25 2Ø12 Ø8@50mm 225 80.54	top 50 bottom 25 top 2012 bottom 4Ø12	Ø8@50mm	225 125	80.54
		BL10	50 25 2Ø12 Ø8@50mm 200 85.24	top 50 bottom 25 top 2012 bottom 4Ø12	Ø8@50mm	200 150	85.24
		BS6	50 50 2Ø12 Ø8@50mm 175 90	top 50 bottom 50 top 2012 bottom 4Ø12	Ø8@50mm	175 175	75.96
		BS7	50 50 2Ø12 Ø8@50mm 250 75.96	top 50 bottom 50 top 2012 bottom 4Ø12	Ø8@50mm	250 100	75.96
		BS8	50 25 2Ø12 Ø8@50mm 225 80.54	top 50 bottom 25 top 2012 bottom 4Ø12	Ø8@50mm	225 125	80.54
		BS9	50 25 2Ø12 Ø8@50mm 250 75.96	top 50 bottom 25 top 2012 bottom 4Ø12	Ø8@50mm	250 100	75.96
		BS10	50 25 2Ø12 Ø8@50mm 225 80.54	top 50 bottom 25 top 2012 bottom 4Ø12	Ø8@50mm	225 125	80.54

* The side angle measure is calculated considering the horizontal axis as shown in Fig. (1).
Several mix designs were originally considered using the British design method (BS 5328 – 2:1997) [32]. Moreover, several trial mixes were performed. The final mixes used are shown in Table (2), while Table (3) presents the concrete properties.

No	Compression strength	Max aggregate size (mm)	Cement kg/m³	Sand kg/m³	Gravel kg/m³	Superplasticizer %	Water/cement %	
1	25	19	300	650	1150	0	0	54
2	50	19	433	628	1190	0.5	2.17	38

Table 3. Concrete properties

Batch	Compressive strength, (f₅₀) Mpa	Modulus of elasticity (fₑ) Mpa	Splitting strength, (fₗ) Mpa	Rupture modulus (fᵣ) Mpa
1	25	29962	3.8	3.381
2	50	35273	3	4.845

2.4. Preparation of Test Specimens

All molds comprised timber with a plywood face. These molds were made following the required sizes that fit the standard dimensions of the beams considering length, depth, and upper and lower widths. All molds were prepared, cleaned, and lubricated before casting, and the reinforcing steel cages were installed inside considering the provision of the appropriate cover for the rebar using plastic spacers. The concrete pouring process was performed after preparing all the work requirements. The concrete mixture was gradually placed in half of the mold. The mixture was then compressed by the vibrator, and the second layer was cast and compacted with a vibrator. Afterward, the outer surface was leveled with a hand trowel. The formwork was removed when the concrete hardened, and the water curing process started when the concrete was covered with a cloth to preserve moisture.

2.5 Test Setup

The testing process was conducted by supporting the beams simply from both ends. Then, a two-point center load was applied by a 600 KN capacity test machine. The load was gradually increased, with increment rates ranging from 5 kN until ultimate failure was realized. Observations, such as deflections, strains, and crack patterns, were recorded with each load increment. The change in strains was measured at mid-span in the tensile and compression regions, and these strain gauges were connected electrically to the data logger and personal computer.

3. Results and Discussion

3.1 Ultimate loads

Table (4) and Table (5) summarized test results. In general, the result shows that the ultimate load increases with the compression area, and the reduction in concrete strength in the tensile area negatively affects the ultimate load. However, this decrease is relatively smaller compared with that in the strength of the concrete in half. The results revealed that the effectiveness of hybrid strength trapezoidal configuration
maintained specimen strength, demonstrating reductions more than that of the hybrid strength influence compared with the last ratios. The test results indicated the absence of slipping failure. The best result for all hybrid strength trapezoidal sections are indicated in the specimens of $\theta = 76^\circ$. Figure (3) shows mode failure and crack pattern of all tested specimens.

3.1.1 Flexural strength
Table (6) briefly shows the moment strength capacity of tested specimens and the comparative analysis of reference specimens. The comparison of results with the hybrid strength reduction index shows that the average rating varies between 0.83–0.93 and 0.78–0.87 considering rectangular specimens and the trapezoidal section of uniform strength, respectively.

Table 4. Test results of specimens dominated by flexural failure mode

Group	Specimen	Description	Ultimate Load (kN)	Deflection (mm)	Crack Load (kN)	Strain (mm/mm)		
			Ultimate	Elastic		Tension	Compression	
GR1	BL6	Rectangular ($f_c = 50$ MPa reference (3)) Trapezoidal, 76°	310	14.1	9.5	65.5	0.000175	0.003168
	BL7	angle, ($f_c = 50$ MPa, reference (4)) Trapezoidal, 76°	331	19.35	11.6	55.7	0.000196	0.004401
	BL8	angle, ($f_{ct} = 50$ MPa, $f_{cb} = 25$ MPa) Trapezoidal, 80°	289	22.11	14.6	54.2	0.00019	0.004577
	BL9	angle, ($f_{ct} = 50$ MPa, $f_{cb} = 25$ MPa) Trapezoidal, 85°	268	21	14	55	0.000105	0.005393
	BL10	angle, ($f_{ct} = 50$ MPa, $f_{cb} = 25$ MPa)	257	17	14.1	52.4	0.000272	0.004839

3.1.2 Shear strength
Table (6) shows the shear capacity of tested specimens, along with a comparison of results with the hybrid strength reduction index. The average rating varied between 0.97 and 0.99 for rectangular specimens and from 0.93 to 0.96 for trapezoidal sections of uniform strength.

3.2 Load–deflection response
Figure (3) shows the load–deflection curves for all tested specimens, which depict that specimen behavior is distinguished by three portions. The first straight portion exhibits specimen response in the elastic range, which is of identical slope and stiffness for all beams. The second portion begins after the initiation of the first cracks and depicts the steel yielding level. This portion is characterized by a slight variation in the progression of load–deformation increment. The last portion represents the plastic response, which corresponds to strain hardening of the provided steel reinforcement and the extension to the ultimate strength. This condition is similar for all trends and different in corresponding load levels. The assigned regions of the load–deflection curve have been varied following section type and considered parametric.
3.2.1 Specimens dominated by flexural failure mode
The geometry analysis results revealed that when the cross-section of the beam was changed from rectangle (BL1) to trapezoid with a homogeneous concrete (BL2), the deflection results respectively increased by 37.23%. The result analysis considering the interaction effect of hybrid strength and section shape indicated that when the cross-section of the beam was changed from rectangle BL1 to trapezoid...
with a hybrid concrete BL3, the deflection results increased by 56.81%. Table (6) briefly exhibits the mid-span deflection and comparison analyses of tested and reference specimens. The comparison of results with the hybrid strength reduction index shows that the average ratings varied between 1.2-1.57 and 0.88-1.14 respectively considering rectangular specimens and the trapezoidal section of uniform strength. The best result for all hybrid strength trapezoidal sections are indicated in the specimens of $\Theta = 76^\circ$.

3.2.2 Specimens dominated by shear failure mode
The results showed that specimens with a trapezoidal section and with uniform concrete, BS2 gave better results than specimens with a rectangular section and uniform concrete, BS1. Table (6) offers the mid-span deflection analysis of tested specimens, and a comparison analysis with reference specimens. The comparison of results showed the average rating varies between 1.22-1.60 with respect to rectangular specimens, and from 0.87-1.14 with respect to the trapezoidal sections of uniform strength. The best result for all hybrid strength-trapezoidal sections was found in specimens of $\Theta=80^\circ$.

3.3 Ductility
Ductility is one of the most important features to be taken into account in the designs of structures exposed to a large number of inelastic deformations resulting from different loading conditions [33]. The shear degradation and the concrete contribution to the shear strength of RC members have been predicted as a function of ductility demand [34–42], deflection capacity [43] and drift ratio [44]. Ductility of a beam is its ability to sustain inelastic deformation without any loss in its load carrying, prior to failure. The flexural ductility is measured in terms of a ductility index, given by:

$$\mu = \frac{\Delta u}{\Delta y}$$ \hspace{1cm} (1)

Where:
- μ: ductility index, unitless
- Δu: Maximum deflection corresponding to maximum strength, mm
- Δy: Deflection corresponding to elastic or yield behavior limit, mm
3.3.1 Specimens dominated by flexural failure mode
Table (6) briefly exhibited moment strength capacity of tested specimens, besides; comparison analysis in scope of references specimens. The ductility index varies between (0.8-1.018) in respect to rectangular specimens and from (0.7-0.903) in respect to trapezoidal section of uniform strength. The best result for all hybrid strength-trapezoidal section are indicated in specimens of \(\Theta=76^\circ\) and \(\Theta=85^\circ\). The assigned flexural ductility of tested specimens has been varied according to section type.

3.3.2 Specimens dominated by shear failure mode
The comparison of results with hybrid strength reduction index shows that as the average rating varies between (0.94-1.19) in respect to rectangular specimens and from (0.74-0.94) in respect to trapezoidal section of uniform strength. Best result for all hybrid strength-trapezoidal section are indicated in specimens of \(\Theta=76^\circ\).

Table (6) briefly exhibited ductility index analysis of tested specimens, besides; comparison analysis in scope of references specimens.

3.4 Trapezoidal Section Area Distribution Effectiveness and Hybrid Strength Reduction Index Effect
Figure 4. clearly denotes that the effectiveness of trapezoidal section area of distribution on ultimate shear strength and ultimate flexural strength. For all tested beams of hybrid strength, ultimate shear strength and ultimate flexural strength are upgrade with section compression zone extension (\(\Theta\) exchange from 76 to 85). This observation confirmed the compatibility of trapezoidal section to developed efficient compression stress block with proper tension zone, without any significant effect of hybrid strength upon tension zone performance where the predicate failure modes likewise traditional failure mode. Figure 5. shows the effectiveness of trapezoidal section of hybrid section up on plastic deformation ability predicted by ductility improvement for deep beams. Although they are dominated by shear failure mode due to distributed stress which is associated with brittleness response, they are exhibited ductility indexes close up to specimens that failed by flexural mode and this observation could be contributed hybrid strength-trapezoidal interaction effect.

Table 6. Result Analysis

Group	Speci.	\(\Psi\)	Ultimate load (kN)	\(\alpha_1\)	\(\alpha_2\)	Deflection (mm)	\(\gamma_1\)	\(\gamma_2\)	Ductility	\(\beta_1\)	\(\beta_2\)
G1	BL6	1	310	1	1	14.1	1	1	1.484	1	1
	BL7	1	331	1	1	19.35	1	1	1.668	1	1
	BL8	0.5	289	0.9323	0.8731	22.11	1.568	1.1426	1.51	1.018	0.905
	BL9	0.5	268	0.8645	0.8097	21	1.4894	1.0853	1.5	1.011	0.899
	BL10	0.5	257	0.829	0.7764	17	1.2057	0.8786	1.206	0.813	0.723
G2	BS6	1	410	1	4.7	1	1.25				
	BS7	1	425	1	6.6	1	1.586				
	BS8	0.5	406.1	0.991	0.9555	7.55	1.6063	1.1439	1.49	1.192	0.939
	BS9	0.5	400	0.9756	0.9412	7.16	1.5234	1.0848	1.42	1.136	0.895
	BS10	0.5	397	0.9683	0.9341	5.76	1.2255	0.8727	1.18	0.944	0.744
4. Conclusion

1- For all tested beams of hybrid strength, ultimate shear strength and ultimate flexural strength are upgrade with section compression zone extension (θ exchange from 76 to 85). This observation confirmed the compatibility of trapezoidal section to developed efficient compression stress block with proper tension zone, without any significant effect of hybrid strength upon tension zone performance where the predicate failure modes likewise traditional failure mode.

2- Specimens of flexural mode are more response to section alignment side angle than those of shear mode.

3- In flexural behavior, the ultimate strength decreased by (2.82%) and the deflection increased by (56.81%) with respect to rectangular specimens. In shear, behavior gave an ultimate load close or
identical to the control specimens and increasing in deflection by average from (9% to 60%) with respect rectangular specimen. The effect of area distribution within section (section shape sides orientation) clearly affects the first crack load where the angle (90°) recorded a highest value of crack load.

4- The ultimate failure load of hybrid trapezoidal sections of reinforced concrete beams recorded a reduction ranging from 6.77% to 17% for the flexural failure mode, while the reduction ranging in shear failure mode was from 0.95% to 3.17%, compared with that of control specimens. This result indicates a slight reduction in strength, which depicts the positive effect of hybrid strength trapezoidal sections with the reduction in compression strength to half in the tension region. However, the homogeneous specimen with a trapezoidal cross-section achieved an increase in failure load by 6.77% for the flexural failure mode, and by 3.66% for the shear failure mode compared with the specimen with a rectangular cross-section.

5- The results reveal that the effectiveness of hybrid strength trapezoidal configuration maintained considerable specimen strength reduction compared with that of hybrid strength.

6- The results showed that the hybrid strength trapezoidal section yielded high deflection results. The increase rates were 20% to 57% for the flexural failure mode, and from 22% to 60% for the shear failure mode compared with that of control specimens. This result confirms the powerful effect of hybrid strength trapezoidal section in improving section ductility compared with those in the rectangular section or uniform strength.

Notation

Codes used throughout this research:

- f'_c: Concrete compressive strength, MPa
- E_c: Modulus of elasticity, MPa
- f_s: Splitting strength, MPa
- f_r: Rupture modulus, MPa
- α_i: Ultimate load rating considering reference specimen i
- β_i: Ductility rating considering reference specimen i
- γ_i: Deflection rating considering reference specimen i

5. References

1- Bentz, Dale P., Edward J. Garboczi, and E. Schlangen. Computer Simulation of Interfacial Zone Microstructure and Its Effect on the Properties of Cement-Based Composites. No. American Ceramic Society, Materials Science of Concrete. Volume 6. 1995.

2- R. Whittle and H. Tylor. “Design of Hybrid Concrete Buildings”, CCIP-030- ISBN 978-1-904482-55-0, 2009

3- ACI Committee 318, “Building Code Requirements for Structural Concrete (318-11) and Commentary”, American Concrete Institute, Detroit, (2011).

4- Kheder, Ghazi F., Jasim M. Al Kafaji, and Raad M. Dhiab. "Flexural Strength and Cracking Behavior of Hybrid Strength Concrete Beams." Materials and Structures 43.8 (2010): 1097-1111.

5- Abbas. “Shear Behavior of Hybrid Reinforced Concrete Beams” Al-Qadisiya Journal For Engineering Sciences (2011)

6- Fahmy, Ezzat H., et al. "Applying The ferrocement Concept in Construction of Concrete Beams Incorporating Reinforced Mortar Permanent Forms." International Journal of Concrete Structures and Materials 8.1 (2014): 83-97.

7- Al-Hassani, Hisham Mohammed, Jasim Mahmood Al-Kafaji, and Asst Lect Murtada Ameer Ismael. "Flexural Behavior of Hybrid Tee Beams (Containing Reactive Powder Concrete and Normal Strength Concrete).” Journal of Engineering and Sustainable Development 19.2 (2015): 123-140.

8- Khan, M. Iqbal, and Wasiq Abbass. "Flexural Behavior of High-Strength Concrete Beams Reinforced with A
strain Hardening Cement-Based Composite Layer." Construction and Building Materials 125 (2016): 927-935.

9- Abtan, Yaarub G., and Hind T. Jaber. "Behavior of Hybrid Reinforced Concrete Beams Combining Reactive Powder Concrete and Varying Types of Lightweight Concrete." Journal of Engineering and Sustainable Development 20.2 (2016): 204-223.

10- Fang, Zhuangchong, et al. "Horizontal Shear Behaviors of Normal Weight and Lightweight Concrete Composite T-beams." International Journal of Concrete Structures and Materials 12.1 (2018): 55.

11- Alawsh, Nameer A., and Teeba Haider Mehdi. "Behavior of Reinforced Concrete Hybrid Trapezoidal Box Girders Using Ordinary and Highly Strong Cement." Journal of University of Babylon for Engineering Sciences 26.5 (2018): 272-278.

12- Mohammed, Azad A., and Taghreed K. Mohammed Ali. "Flexural Behavior of Composite Concrete–Epoxy–Reinforced Concrete Beams." Iranian Journal of Science and Technology, Transactions of Civil Engineering (2019): 1-15.

13- Adnan. “Flexure Behaviour and Properties of Reinforced Concrete Beams Using Recycled Plastic Wastes” Thesis, College of Engineering of the University of Misran,(2019).

14- AL ANSARI, M. S. "Flexural Safety Cost of Optimized Reinforced Concrete Beams." (2001): 15-35.

15- Tito, Jorge A., and Alberto Gomez-Rivas. "Design, Construction, and Test of a Posttensioned Segmental Beam." Ninth LACCEI Latin American and Caribbean Conference (LACCEI’2011), Medellín, Colombia,(August 2011). 2011.

16- Khalil, Ayman Hussein, Mohamed Nabil, and Moukhtar Mohamed. "Shear Behavior of Trapezoidal Beams." Journal of Al-Azhar University Engineering Sector 12.42 (2017): 37-53.

17- Shafeeq, S. B. S. Al-Shathr, and M. Al-Hussnawi. "Effects of Trapezoidal Cross-Section Dimensions on The behaviours of CFRP SCC Beams." MS&E 433.1 (2018): 012012.

18- Tan, K.H., 2004. Design of Non-Prismatic RC Beams Using Strut-and-Tie Models. Journal of Advanced Concrete Technology, 2(2), pp.249-256.

19- Tena-Colunga, A., et al. "Cyclic Shear Behavior of Reinforced Concrete Haunched Beams." Memorias, Ninth Canadian Conference on Earthquake Engineering (9CCEE), Ottawa, Canada, CD-ROM, junio. 2007.

20- Al-Maliki, Hadi Nasir Ghadhban Mohammed. "Experimental Behavior of Hollow Non-Prismatic Reinforced Concrete Beams Retrofit with CFRP Sheets." Journal of Engineering and Sustainable Development 17.5 (2013): 224-237.

21- Vuggumudi, Sreelatha. “Experimental Study on Shear strengthening of RC T-beams with Web Openings Using FRP Composites”. Diss. 2013.

22- Jabbar, Sarah, Farzad Hejazi, and H. Mahir Mahmod. "Effect of An pening on Reinforced Concrete Hollow Beam Web Under Torsional, Flexural, and Cyclic Loadings." Latin American Journal of Solids and Structures 13.8 (2016): 1576-1595.

23- Nawawy, O. A. E., Talaat, A. A., & Onsy, H. (2019). Effect of Cross-Section Shape on Shear Behavior of Reinforced Concrete Beams, 8(04), 1–8.

24- Al-Ansari, Mohammed Salem, and Muhammad Shekaib Afzal. "Simplified Irregular Beam Analysis and Design." Civil Engineering Journal 5.7 (2019): 1577-1589.

25- Tayfur, Yadgar, et al. "Serviceability of Non-Prismatic Concrete Beams: Combined-Interaction Method." Engineering Structures 191 (2019): 766-774.

26- Iraqi Specifications, I. Q. S. "No. 5, 1984, “” Properties of Normal Portland Cement.

27- Central Organization for Standardization and Quality Control, “Iraqi Standard Specification (IQS) No.45/1984 Natural Aggregate Using in Concrete and Building”, Baghdad, Iraq.

28- ASTM, C. "702-98, Standard Practice for Reducing Samples of Aggregate to Testing Size." ASTM Annual Book of ASTM Standards 4 (2003).

29- Iraqi specifications - No (1703), Water used in concrete; 1992.

30- ASTM C 1240 – 03, “Standard Specification for Use of Silica Fume as a Mineral Admixture in Hydraulic-Cement Concrete, Mortar, and Grout1,” Annual Book of ASTM Standards, vol. 15.02.

31- ASTM Designation C370-05a “Standard Specification for Testing Method and Definitions for Mechanical Testing of Steel Products,” 2005 Annual Book of ASTM Standards, American Society for Testing.

32- BS 5328: Part 2:1997, Method for specify of Concrete mix.
33- Kamal, A.Y., “Encased beam with variable upper steel flange position.” International Journal of Application or Innovation in Engineering & Management (IJAEM) 4, no. 4, 2015, pp 60-66.
34- Ang BG, Priestley MJN, Paulay T, Seismic shear strength of circular reinforced concrete columns, ACI Structural Journal, 86(1), (1989), 45-59.
35- Aschheim M, Moehle JP, Shear strength and deformability of RC bridge columns subjected to inelastic displacements, UCB/EERC 92/04, University of California; Berkeley, 1992.
36- Priestley MJN, Verma R, Xiao Y, Seismic shear strength of reinforced concrete columns, Journal of Structural Engineering, 120(8), (1994), 2310–2329.
37- Lehman DE, Lynn AC, Aschheim MA, Moehle JP, Evaluation methods for reinforced concrete columns and connections, In: Proc. 11th World Conf. on Earthquake Engineering; 673, Elsevier Science Ltd., Acapulco, Mexico, 1996.
38- ATC32, Improved Seismic Design Criteria for California Bridges: Provisional Recommendations, Applied Tech. Council; Redwood City, CA, USA, 1996.
39- Perez BM, Pantazopoulou SJ, Mechanics of concrete participation in cyclic shear resistance of RC, Journal of Structural Engineering, 124(6), (1998), 633–641.
40- FEMA273, NEHRP guidelines for the seismic rehabilitation of buildings. Publication, Federal Emergency Management Agency; Washington D.C., 1997.
41- Sezen H, Moehle JP, Shear strength model for lightly reinforced concrete Influence of Displacement Ductility on Concrete Contribution to Shear Strength 2016 60 3 385 columns, Journal of Structural Engineering, 130(11), (2004), 1692-1703.
42- Howser R, Laskar A, Mo YL, Seismic Interaction of Flexural Ductility and Shear Capacity in Normal Strength Concrete, Final Report, Department of Civil and Environmental Engineering, University of Houston; Houston, Texas, 2007.
43- Lee J Y, Watanabe F, Shear deterioration of reinforced concrete beams subjected to reversed cyclic loading, ACI Structural Journal, 100(4), (2003), 480-489.
44- 18 Elwood KJ, Moehle JP, Axial capacity model for shear- damaged columns, ACI Structural Journal, 102(4), (2005), 578-587.