A Different Encryption System Based on the Integer Factorization Problem

Karima Djebailia, Lamine Melkemb

Departments of Computer Science and Information Technologies, University of Ouargla, Ouargla, Algeria

Corresponding author: djebaili.karima@univ-ouargla.dz

Received: 12/12/2019, Accepted: 29/04/2020
http://dx.doi.org/10.37231/myjcam.2020.3.1.43

Abstract

We present a new computational problem in this paper, namely the order of a group element problem which is based on the factorization problem, and we analyze its applications in cryptography. We present a new one-way function and from this function we propose a homomorphic probabilistic scheme for encryption. Our scheme, provably secure under the new computational problem in the standard model.

Keywords: Public key encryption, factorization problem, order of a group element problem.

INTRODUCTION

The idea of public-key encryption was introduced by Diffie and Hellman (1976). Several cryptographic schemes take place in the multiplicative group \(\mathbb{Z}_n^* \), under the assumption that it is difficult to invert the one-way function of an encryption process without the knowledge of the factorization of the composite number \(n = pq \) where \(p \) and \(q \) are two large prime numbers. Real examples of such schemes [Rivest et al. (1978), Rabin (1979), Cohen and Fischer (1985), Kurosawa et al. (1991), Paillier (1999)] and digital signatures [Cramer and Shoup (2000), Camenisch and Lysyanskaya (2003)]. In this paper we propose two schemes; public key encryption scheme and a signature scheme and we will demonstrate their security under the order of a group element problem which is based on the factorization problem.

NOTATIONS

Consider an RSA-modulus \(n = pq \), where \(p \) and \(q \) are large primes. Assume that \(x \in \mathbb{Z}_n^* \), the order of \(x \) is defined to be the least positive integer \(z \) such that \(x^z \equiv 1 \pmod{n} \), (see Menezes et al. (1996)). In our case such an integer \(z \) \((x^z \equiv 1 \pmod{n})\) always exists. We denote by |\(x \)\| the order of \(x \). Moreover, the subgroup generated by \(x \) denoted by \(\langle x \rangle \). It is well known that the order |\(x \)\| divides the Euler totient function \(\phi(n) = (p - 1)(q - 1) \).

A. Key Generation and Cryptographic Scheme

Depending on the security parameter, a one-way function defines the public and secret keys of a public key encryption (PKE) scheme for each user: a G key generation algorithm takes as argument the security
parameter k, then randomly sets public key pk and secret key sk: $(pk, sk) \leftarrow G(1^k)$. We denote m and c for the message and ciphertext respectively.

B. The Order of a Group Element Problem

Let x be an element in \mathbb{Z}_n^*. Given $x^z \equiv 1 \pmod{n}$, the Assumption 1 define the order of a group element problem as the computational problem of computing z. We assume this problem is difficult without the knowledge of factorization of the modulus n.

Assumption 1 (The order of a group element problem). For every probabilistic polynomial time (PPT) adversary A, there exists a negligible function $\text{negl}(\cdot)$ and a security parameter k_0 such that the following holds for all $k > k_0$:

$$
\Pr[z \leftarrow A(x, \mathbb{Z}_n^*)|x^z = 1 \mod{n}] = \text{negl}(k),
$$

(1)

C. Semantic security

Semantic security (see Goldwasser and Micali (1984)) also known as indistinguishability of ciphertexts or polynomial security, it is like perfect security but we only allow an adversary with polynomially bounded computing power.

Definition 1 (Semantic security). A PKE scheme is said to be semantically secure (or IND-CPA secure) if for any adversary A uses a pair of PPT algorithms (A_1, A_2) the following advantage Adv holds for $n,k \in \mathbb{N}$ and some state information:

$$
\text{Adv}^{\text{IND-CPA}} = \Pr[b \leftarrow A_2(c, \text{state})|(pk, sk) \leftarrow G(1^k), (m_0, m_1, \text{state}) \leftarrow A_1, c \leftarrow \text{Encrypt}(m_b, pk)] < \frac{1}{2} + \frac{1}{n^k}
$$

(2)

ENCRIPTING PROTOCOL

This section describes the encryption scheme proposed in this paper which consists of three algorithms:

1. **Key generation:** Select an RSA modulus $n = pq$ where p and q are co-prime and select $\alpha, \beta \in \mathbb{Z}_n^*$ where $\alpha = \frac{p-1}{2}$ and $\beta = \frac{q-1}{2}$, that is $\alpha + \beta = 1$ for two integers δ and γ. Now select a and b such that $|a| = a$ and $|b| = b$. The public key $pk = (n, a, b)$ and the secret key $sk = (p, q, \delta, \gamma)$. Each public key is associated with a message space $\text{MsgSp}(pk)$ and a ciphertext space $\text{CipSp}(pk)$.

2. **Encryption:** We wish to encrypt a message $m \in \text{MsgSp}(pk)$. The ciphertext is $c_1 = ax^m \mod{n}$ and $c_2 = by^m \mod{n}$, for two random values x and $y \in \mathbb{Z}_n$.

3. **Decryption:** Given a ciphertext $(c_1, c_2) \in \text{CipSp}(pk)$ we output $m = c_1^{\delta} c_2^{\beta} \mod{n}$.

Proof of Decryption Validity

At the time of decryption, the receiver computes:

$$
c_1^{\delta} c_2^{\beta} \mod{n} = (a^x)\delta m^{\delta} (b^y)\gamma m^{\gamma} \mod{n} = (a^x)^\delta x^\delta m^{\delta} (b^y)^\gamma y^\gamma m^{\gamma} \mod{n} = m^{\delta x + \gamma y} \mod{n} = m \mod{n} = m.
$$

(3)
A. Security Analysis
This section discusses the security results of the cryptosystem proposed in this paper.

i) One-Wayness

Theorem 1 The proposed encryption function provides one-wayness if there is no adversary who can recover \(p \) and \(q \).

Proof. It is easy to see that if the problem of factorization is not intractable in \(\mathbb{Z}_n^* \), it is easy to recover the secret key (i.e., \(\alpha \) and \(\beta \)), from which the determination of \(m \) is obvious.

ii) IND-CPA Security

Definition 2 (Decisional generator problem). Select an RSA-modulus \(n = pq \). Define the formulation:

\[
\text{determine if } f \in \langle a \rangle \text{ and } g \in \langle b \rangle .
\]

We call this the decisional generator problem (DGP) which is based on the integer factorization problem.

The Proposed Cryptosystem is at Least as Hard as The DGP

Theorem 2 If the proposed cryptosystem is not secure in the sense of IND-CPA attacks, then there is an adversary that solves the DGP with non-negligible advantage.

Proof. Assume that \(A \) is an adversary that can break the proposed cryptosystem in the sense of IND-CPA with a non-negligible advantage \(\epsilon \), we will use this to create a new adversary \(B \) which breaks the DGP. The following discussion describes the construction of \(B \):

Algorithm B:

The algorithm is given \(\mathbb{Z}_n^* \), \(a,b,f,g \) as input.

- Set \(\text{pk} = (n,a,b) \) and run \(A(\text{pk}) \) to obtain two messages \(m_0,m_1 \).
- Choose a random bit \(b \in \{0,1\} \), and set:
 - (a) \(c_1 = fm_b \mod n \).
 - (b) \(c_2 = gm_b \mod n \).
- Give the ciphertext \((c_1,c_2)\) to \(A \) and obtain an output bit \(b' \). If \(b' = b \) output 1; otherwise output 0.

We analyze the behavior of \(B \). There are two cases.

Case 1. If \(f \in \langle a \rangle \) and \(g \in \langle b \rangle \) then \((c_1,c_2)\) is a valid encryption, so \(A \) will guess correctly \(b \) with non-negligible probability, therefore:

\[
\Pr[B \text{ output}=1] = \frac{1}{2} + \epsilon .
\]

Case 2. If \(f \) and \(g \) are random numbers then in this case, \(b \) is independent of the adversary’s view, therefore:

\[
\Pr[B \text{ output}=0] = \frac{1}{2} .
\]

The DGP is at Least as Hard as the Proposed Cryptosystem

Theorem 3 If there exists an oracle \(O \) which solves the DGP with nonnegligible probability, then the proposed cryptosystem is not secure in the sense of IND-CPA.

Proof. We assume that we have an oracle \(O \) which solves the DGP such that solving this problem permits the adversary \(A \) to distinguish the ciphertext for messages \(m_0 \) and \(m_1 \). If \(f \) (or \(g \)) (\(f \) and \(g \) are the input of this oracle), \(e < a \) (or \(e < b \)), \(O \) outputs 1; otherwise it output 0. \(A \) should run in two stages:

- Find stage: At this stage \(A \) asked the encryption oracle on two messages \(m_0, m_1 \), such that \(\gcd(m_i,\varphi) = 1 \), the outputs of this oracle is:
 \[
 [fm_i \varphi], [gm_i \varphi] \text{ where } i \in \{0,1\}.
 \]
- Guess stage: At this stage \(A \) asked the oracle \(O \) on:
 \[
 [fm_i m_0^{-1}, gm_i m_0^{-1}]
 \]
If the output of the oracle \(O \) is 1 (i.e., \(f \in < a > \) or \(g \in < b > \)) with probability non-negligibly, then \(m_i = m_0 \). Otherwise \(m_i = m_1 \).

Because the hardness assumption of the integer factorization problem it is difficult to find \(\alpha \) and \(\beta \), so the probability of determine whether or not \(f \in < a > \) and \(g \in < b > \) is negligible, which means that the proposed cryptosystem is IND-CPA secure and this concludes the proof.

SIGNING PROTOCOL

Let \(m \) be a message which the sender wishes to sign. He performs the following signing protocol which consists of three algorithms.

- **Key generation:** Select an RSA-modulus \(n = pq \) where \(p \) and \(q \) are co-prime and select \(\alpha, \beta \in \mathbb{Z}_n^* \) where \(\alpha = \frac{p-1}{2} \) and \(\beta = \frac{q-1}{2} \), that is \(\delta \alpha + \gamma \beta = 1 \) for two integers \(\delta \) and \(\gamma \). Now select \(a \) and \(b \) such that \(|a| = \alpha \) and \(|b| = \beta \). Public verification key \(vk = (n,a,b) \). Private signature key \(sk = (p,q,\delta,\gamma) \). Each public verification key is associated with a message space \(MsgSp(vk) \) and a signing-message space \(SigSp(vk) \).

- **Signature:** To sign a message \(m \in MsgSp(vk) \), choose at random \(\phi \in < a > \) and \(\psi \in < b > \). Compute \(c_1 = (\phi h(m))^\beta \mod n \), \(c_2 = (\psi h(m))^\alpha \mod n \) and \(\omega = (\phi \psi)^{-1} \mod n \), where \(h(\cdot) \) is a cryptographic hash function. The signature on \(m \) is \((c_1,c_2,\omega) \in SigSp(vk)\).

- **Verification:** Given a signature \((c_1,c_2,\omega)\) on \(m \in MsgSp(vk) \). Accept if:

\[
h(m) = c_1^\gamma c_2^\delta \omega \mod n.
\]

A. Proof of Verification Validity

At the time of verification the receiver computes:

\[
c_1 c_2 \mod n = \varphi^\gamma \psi^\delta h(m)^{\gamma \beta} \varphi^\delta h(m)^{\delta \alpha} \mod n = \varphi^\gamma \psi^\delta h(m)^{\delta \alpha + \gamma \beta} \mod n = \varphi^\gamma \psi^\delta h(m) \mod n.
\]

and because:

\[
\varphi \psi \mod n = (\varphi \psi)^{\delta \alpha + \gamma \beta} \mod n = \varphi^{\delta \alpha + \gamma \beta} \psi^{\delta \alpha + \gamma \beta} \mod n = \varphi^{\gamma \beta} \psi^{\delta \alpha} \mod n.
\]

From 4 and 5, he finds \(h(m) = c_1 c_2 \omega \mod n \), so the verification condition holds.

B. Security Analysis

An adversary might attempt to forge user's signature on \(m \) by selecting a random integers \(\phi \in < a > \) and \(\psi \in < b > \). The adversary must then determine \(c_1 = (\phi h(m))^\beta \mod n \) and \(c_2 = (\psi h(m))^\alpha \mod n \). If the order of a group element problem is computationally infeasible in \(\mathbb{Z}_n^* \), the adversary can do no better than to choose a \(c_1 \) and \(c_2 \) at random, this forgery only occurs with negligible probability.
CONCLUSIONS AND FURTHER RESEARCH

We constructed two systems that are provably secure under the order of a group element problem which is based on the factorization problem. The first construction is a public key cryptosystem and the second construction is a signature scheme. As future work we look to improve our main schemes to ensure security in the sense of NM-CCA2 (see Djebaili and Melkemi (2018)). However, these schemes are quite practical and more efficient compared with other schemes.

References

Camenisch J. and Lysyanskaya A. (2003). A signature scheme with efficient protocols. In Security in communication networks, pp. 268–289. Springer.
Cohen J D and Fischer M J. (1985). A robust and verifiable cryptographically secure election scheme. Yale University. Department of Computer Science.
Cramer, R. and V. Shoup (2000). Signature schemes based on the strong RSA assumption. ACM Transactions on Information and System Security, 3(3), 161–185.
Diffie W and Hellman M E. (1976). New directions in cryptography. Information Theory, IEEE Transactions on 22(6), 644–654.
Djebaili K and Melkemi L. (2018). Security and robustness of a modified El-gamal encryption scheme. International Journal of Information and Communication Technology 13(3), 375–387.
Goldwasser S and Micalli S. (1984). Probabilistic encryption. Journal of computer and system sciences 28(2), 270–299.
Kurosawa K, Katayama Y, Ogata W and Tsujii S. (1991). General public key residue cryptosystems and mental poker protocols. In Advances in Cryptology-EUROCRYPT’90, pp. 374–388. Springer.
Menezes A J, Van Oorschot P C, and Vanstone S A. (1996). Handbook of applied cryptography. CRC press.
Paillier P. (1999). Public-key cryptosystems based on composite degree residuosity classes. In Advances in cryptology-EUROCRYPT’99, pp. 223–238. Springer.
Rabin M O. (1979). Digitalized signatures and public-key functions as intractable as factorization.
Rivest R L, Shamir A, and Adleman A. (1978). A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21(2), 120–126.