Simultaneous versus staged major hepatectomy (≥3 liver segments) for outcomes of synchronous colorectal liver metastases: A systematic review and meta-analysis

Jianwei Liu | Yong Xia | Xiaorong Pan | Zhenlin Yan | Lei Zhang | Zhao Yang | Yeye Wu | Hui Xue | Shilei Bai | Feng Shen | Kui Wang

1Department of Hepatic Surgery II, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, China
2Department of Hepatic Surgery IV, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, China
3Shanghai Baoshan District Songnan Town Community Health Center, Shanghai, China

Correspondence
Feng Shen, Department of Hepatic Surgery (IV), Eastern Hepatobiliary Surgery Hospital, Navy Medical University, #225 Changhai Road, Shanghai 200438, China. Email: shenfengehbh@sina.com
Kui Wang, Department of Hepatic Surgery (II), Eastern Hepatobiliary Surgery Hospital, Navy Medical University, #225 Changhai Road, Shanghai 200438, China. Email: wangkuiykl@163.com

Funding Information
Foundation of Shanghai Health and Family Planning Commission, Grant/Award Number: 201540381; Natural Science Foundation of Shanghai, Grant/Award Number: 16ZR140010; The Joint Tackling Project of Emerging Frontier Technologies in Shanghai Hospitals in 2017, Grant/Award Number: SHDC12017122; The State Key Project on Infectious Diseases of China, Grant/Award Number: 2018ZX1072304-001

Abstract

Background: Hepatectomy is an effective treatment for synchronous colorectal liver metastases (SCLM) patients. However, whether to choose simultaneous hepatectomy (SIH) or staged hepatectomy (STH) is still controversial, especially during major hepatectomy (≥3 liver segments).

Aims: Compare the difference between the SCLM patients underwent SIH and STH, especially during major hepatectomy (≥3 liver segments).

Methods and Results: A meta-analysis was conducted by analyzing the published data on the outcomes of SCLM patients underwent SIH or STH from January 2010 to December 2020 from the electronic databases. A random-effects model was used to derive pooled estimates of odds ratio (OR) with 95% confidence interval (CI) for the explored outcomes. Eventually, 18 studies, including 5101 patients, were included this study. The result of meta-analysis showed that SIH did not increase postoperative complications (pooled OR: 1.037; 95% CI: 0.897–1.200), perioperative mortality (pooled OR: 0.942; 95% CI: 0.552–1.607), 3-year mortality (pooled OR: 1.090; 95% CI: 0.903–1.316) or 5-year mortality (pooled OR: 1.077; 95% CI: 0.926–1.253), as compared with STH. Subgroup analysis showed that, simultaneous major hepatectomy (SIMH) also did not increase postoperative complications (pooled OR: 0.863; 95% CI: 0.627–1.188) or perioperative mortality (pooled OR: 0.689; 95% CI: 0.290–1.637) as compared with staged major hepatectomy (STMH).

Conclusion: Postoperative complications, perioperative mortality and long-term prognosis had no significant difference between SIH and STH for SCLM patients. Besides, postoperative complications and perioperative mortality also had no significant difference between SIMH and STMH.

Keywords
colorectal, complications, liver metastases, mortality, prognosis, simultaneous hepatectomy, staged hepatectomy
INTRODUCTION

Colorectal cancer is the most common malignant tumor in the world, which seriously threatens human health. According to the latest global tumor statistics, colorectal cancer is the fourth most common cancer and the second leading cause of cancer related death in the world.\(^1\) About 15%–25% of colorectal cancer is accompanied with synchronous colorectal liver metastases (SCLM),\(^2\)–\(^5\) and only one quarter of them are eligible for surgical resection.\(^6\) The simultaneous hepatectomy (SIH) and staged hepatectomy (STH) are effective surgical methods.\(^7,8\) According to articles, the 5-year overall survival (OS) rate of surgical treatment for SCLM can reach more than 50%.\(^9,10\) However, the timing of surgery remains controversial.\(^11\)–\(^19\) Some studies suggested that SIH could increase the risk of postoperative complications and perioperative mortality,\(^11\)–\(^13\) while other studies did not support this conclusion.\(^14\)–\(^16\) In addition, the difference in long-term survival is also unclear between the SIH and STH.\(^17\)–\(^19\)

By reviewing the previous articles, we found that major hepatectomy (≥3 liver segments) is rarely reported in SIH for SCLM before 2010. However, articles on major hepatectomy in SIH have significantly increased in the past decade.\(^10\)–\(^15,20\)–\(^26\) Whether more patients received major hepatectomy can lead to differences in postoperative complications and perioperative mortality between simultaneous major hepatectomy (SIMH) and staged major hepatectomy (STMH) is unclear. And no meta-analysis has been performed to investigate this issue.

In this study, we reviewed large number of articles published after 2010 to compare the difference in postoperative complications, perioperative mortality and long-term prognosis between SIH and STH. Besides, stratified meta-analyses were performed to compare postoperative complications and perioperative mortality between SIMH and STMH.

MATERIALS AND METHODS

2.1 Search strategy

Relevant articles published from January 2010 to December 2020 was searched by Medline, Embase, Ovid and Cochrane. The search terms included “colorectal cancer”, “liver metastases”, “simultaneous resection”, “staged resections”, “delayed resections” and “liver surgery”. All relevant titles, abstracts, conference and so on were evaluated independently by two investigators to determine whether they meet our research objectives and requirements. Then the full-text of related articles were carefully reviewed and independent quality assessment was done by the two investigators. A third scholar would be consulted and make the decision when disagreement occurred.

FIGURE 1 Flow chart of this study
Author & time	n (SR/DR)	Male, %	Age	Colon/rectum	Transfusion (%)	Hepatectomy (≥3 segments) (%)	Study design	Area	Ref				
Luo Y, 2010	405 (129/276)	58.9	56.5	58 (42–69)	60 (43–70)	NR	NR	56.8	57.1	Re	China	20	
Kaibori M, 2010	74 (32/42)	64.3	53.1	65.0 ± 9.9	62.3 ± 9.3	NR	NR	11.0	15.0	Re	Japan	17	
Brouquet A, 2010	115 (43/72)	53.5	61.1	56 (25–81)	58 (31–77)	NR	NR	16.0	13.0	Re	American	10	
de Haas RJ, 2010	228 (55/173)	50.9	61.8	56.0 ± 12.0	58.0 ± 11.0	43/140	NR	NR	35.0	66.0	Re	India	16
Mou et al., 2010	64 (32/32)	56.3	65.6	59 (53–79)	67 (37–82)	NR	NR	21.9	21.9	Re	English	22	
Abbott DE, 2012	144 (60/84)	66.7	58.3	58 (46–64)	53 (46–61)	57/87	0	13.1	33.3	75.0	Re	American	14
Alexandrescu S, 2012	142 (117/25)	45.3	36.0	59.0 ± 10.8	56.7 ± 11.6	103/39	NR	NR	18.0	36.0	Re	Romania	23
Mayo SC, 2013	976 (329/647)	56.2	60.7	60.0 ± 30.1	61.0 ± 17.8	713/261	NR	NR	23.7	35.7	Re	American	15
Patrono D, 2014	106 (46/60)	52.2	61.2	63.6 ± 11.5	60.9 ± 9.1	85/21	NR	NR	28.3	46.7	Re	Italy	13
Fukami Y, 2015	63 (41/22)	43.9	54.5	65 ± 9	65 ± 7	35/28	NR	NR	22.0	31.8	Re	Japan	21
Yuan L, 2016	73 (60/13)	63.0	77.0	55.4 ± 11.6	54.5 ± 10.1	40/33	18.3	7.7	36.7	34.4	Re	China	19
Chan W, 2017	149 (96/53)	81.3	66.0	59.0 ± 9	59.0 ± 10.0	88/61	NR	NR	21.0	79.0	Re	Canada	24
Nanji S, 2017	226 (100/126)	54.0	56.0	61 (20–87)	62 (22–87)	NR	NR	21.0	79.0	Re	Canada	24	
Alexandrescu S, 2017	300 (234/66)	56.4	53.0	61 ± 11	59 ± 9	207/93	NR	NR	18.9	30.3	Re	Romania	25
Silberhumer GR, 2017	429 (320/109)	53.1	62.4	58.6 ± 13.6	59.4 ± 12.3	233/196	NR	NR	33.4	72.5	Pr	American	26
Bogach J, 2019	1166 (442/724)	58.8	63.2	>60y:67.2	>60y:56.2	837/218	NR	NR	17.0	64.50	Re	Canada	12
Kye BH, 2019	208 (143/65)	66.2	71.3	>65y:35	>65y:21.5	108/100	NR	NR	18.9	30.3	Re	Korea	18
Wang LJ, 2020	233 (86/147)	52.3	67.3	57 (33–82)	59 (32–77)	147/86	NR	NR	33.7	34.4	Re	China	11

Abbreviations: DR, delayed resection; n, number; n, number of included population in study; NR, no report; Pr, prospective; Re, retrospective; Ref, references; SR, synchronous resection.
Figure 1 showed the flow-diagram of this study. And the study design conformed to the PRISMA guideline.

2.2 | Study selection

To ensure the quality of our study, only studies with complete articles were included, and abstracts, case reports and reviews were excluded. The inclusion criteria were: (1) English articles published from January 2010 to December 2020; (2) the patients were diagnosed with SCLM at the first diagnosis; (3) SCLM was confirmed by pathology; (4) SCLM patients underwent SIH or STH in the same study; (5) There was at least one clearly reported including postoperative 3-year OS, postoperative complications or perioperative mortality. Studies that did not meet the inclusion criteria were excluded.

2.3 | Data extraction

After downloaded the full texts of related articles, data regarding the following aspects were extracted and recorded: authors, countries or regions, population, type of study (prospective or retrospective), number of patients underwent SIH and STH; sex and age of patients, location of the primary tumor (colon or rectum), number of transfusions, proportion of patients underwent major hepatectomy (≥3 liver segments), postoperative complications, perioperative mortality, 3-year, 5-year OS and the corresponding mortality. Ethics committee approval not received for this study as there are no human or animal subjects directly recruited.

2.4 | Quality assessment

Two researchers independently evaluated the quality of articles according to the quality in prognosis studies (QUIPS) tool. 28,29 The authenticity and bias were evaluated through six aspects: participation; attrition; prognostic factor measurement; confounding measurement and account; outcome measurement; analysis and reporting.

2.5 | Outcomes

Surgical safety which included postoperative complications and perioperative mortality was the primary focus of this study. Long-term survival which included 3-year and 5-year mortality was the secondary focus. Postoperative complications or perioperative mortality were defined as adverse events or death within 90 days after surgery, and complications were classified according to Clavien classification. 30 Stratified meta-analyses was performed on patients who underwent SIMH and STMH.
2.6 | Statistical analysis

Stata 12.0 software (Corp. STATA, Station college, TX) was used for data analysis. The pooled estimates of odds ratio (OR) and 95% confidence interval (CI) were obtained by random-effects model. Chi-squared test was used to analyze the heterogeneity and I^2 was used to analyze the degree of data inconsistency. A value of $p < 0.05$ was considered as significant difference and $I^2 > 50\%$ was considered as significant heterogeneity.21 In addition, sensitivity analyses were performed to investigate potential sources of bias in the results.

3 | RESULTS

3.1 | Literature search

Figure 1 shows the complete selection process of this study. A total of 615 studies were obtained after the preliminary search in Medline, Embase and other electronic databases using the keywords. Five hundred and sixty-two articles were excluded after the initial screening and review of the titles and abstracts. The full-texts of the remaining 53 articles were downloaded and re-evaluated, and 35 studies were excluded due to irrelevance to the research purpose ($n = 21$), failure to clarify inclusion criteria for patients ($n = 9$), and failure to report the results of surgery including postoperative complications, perioperative mortality and postoperative OS ($n = 5$). The remaining 18 studies that included 5101 patients underwent SIH or STH were included and further analyzed.$^{10-26,32}$

3.2 | Characteristics of the included studies

Of the 18 articles included in this study, 17 were retrospective studies,$^{10-25,32}$ and one was prospective study.26 The geographical distribution of the included studies was America ($n = 4$),10,14,15,26 China ($n = 3$),2,11,19 Canada ($n = 2$),12,24 Japan ($n = 2$),17,21 Korea ($n = 2$),18,32 Romania ($n = 2$),23,25 Italy ($n = 1$),13 England ($n = 1$),22 and India ($n = 1$). For the 5101 patients, 2365 (46.4%) patients underwent SIH and 2736 (53.6%) patients underwent STH. Of the 18 articles, 15 articles reported postoperative complications,$^{10-23,25}$ 14 articles reported perioperative mortality,$^{10-17,19-23,25}$ and 16 articles reported long-term survival after SIH or STH.$^{10-13,15-19,21-26,32}$ (Tables 1 and 2).

3.1 | Literature search

Figure 1 shows the complete selection process of this study. A total of 615 studies were obtained after the preliminary search in Medline, Embase and other electronic databases using the keywords. Five hundred and sixty-two articles were excluded after the initial screening and review of the titles and abstracts. The full-texts of the remaining 53 articles were downloaded and re-evaluated, and 35 studies were excluded due to irrelevance to the research purpose ($n = 21$), failure to clarify inclusion criteria for patients ($n = 9$), and failure to report the results of surgery including postoperative complications, perioperative mortality and postoperative OS ($n = 5$). The remaining 18 studies that included 5101 patients underwent SIH or STH were included and further analyzed.$^{10-26,32}$

3.2 | Characteristics of the included studies

Of the 18 articles included in this study, 17 were retrospective studies,$^{10-25,32}$ and one was prospective study.26 The geographical distribution of the included studies was America ($n = 4$),10,14,15,26 China ($n = 3$),2,11,19 Canada ($n = 2$),12,24 Japan ($n = 2$),17,21 Korea ($n = 2$),18,32 Romania ($n = 2$),23,25 Italy ($n = 1$),13 England ($n = 1$),22 and India ($n = 1$). For the 5101 patients, 2365 (46.4%) patients underwent SIH and 2736 (53.6%) patients underwent STH. Of the 18 articles, 15 articles reported postoperative complications,$^{10-23,25}$ 14 articles reported perioperative mortality,$^{10-17,19-23,25}$ and 16 articles reported long-term survival after SIH or STH.$^{10-13,15-19,21-26,32}$ (Tables 1 and 2).
3.3 Quality of the included studies

Table S1 listed the quality score of each article. Six articles scored 6–7 points, which were considered low risk of bias. Seven articles scored 8–9 points, which were considered medium risk of bias. Five articles scored ≥10 points and considered high risk of bias.

3.4 Primary outcome: compare the surgical safety between SIH and STH

Table 2 shows the postoperative complications and perioperative mortality. We performed meta-analysis on 4307 patients for postoperative complications from 15 studies \(^{10,20-23,25}\) and 4099 patients for perioperative mortality from 14 studies \(^{10,17,19,21-23,25}\). In 14 studies, five studies reported the perioperative mortality was zero for both SIH and STH. \(^{11,17,19,21,22}\)

The complication rates were 575/1849 (31.1%) for SIH and 720/2458 (29.3%) for STH, and the corresponding perioperative mortalities were 59/1706 (3.5%) and 43/2393 (1.8%), respectively. The results of meta-analysis showed that SIH did not increase the risk of postoperative complications (pooled OR: 1.037; 95%CI: 0.897–1.200; \(p = .622\)) or perioperative mortality (pooled OR: 1.482; 95% CI: 0.693–3.169; \(p = .310\)) as compared with STH (Figure 2A,B). In this analysis, there were mild and high heterogeneities for postoperative complications and perioperative mortality, respectively (\(I^2 = 6.3\%\); \(p = .029\); \(I^2 = 53.3\%\)). The sensitivity analysis showed that there was little difference among the 15 studies for postoperative complications (Figure S1A). However, for perioperative mortality, there was one article that was significantly different as other articles, \(^{12}\) while the others were relatively similar (Figure S1B).

The subgroup meta-analysis for postoperative complication (five articles \(^{13,15,20,23,25}\)) and perioperative mortality (seven articles \(^{11,13,15,21-23,25}\)) was performed between SIMH and STMH. The postoperative complication rate was 91/194(46.9%) for SIMH and 180/457(39.4%) for STMH, and the perioperative mortality rate was 11/195 (5.6%) for SIMH and 12/390 (3.1%) for STMH. The results of subgroup meta-analysis showed that, compared to STMH, SIMH did not increase the risk of postoperative complications (0.863; 95%CI: 0.627–1.188; \(p = .365\)) or perioperative mortality (pooled OR: 0.689; 95%CI: 0.290–1.637; \(p = .399\)) (Figure 3A,B). There was no heterogeneity in this analysis (\(p = .941\); \(I^2 = 0\); \(p = .412\); \(I^2 = 0\)).

3.5 Secondary outcome: compare the long-term survival between SIH and STH

There are 16 articles that reported the long-term survival of patients who underwent SIH or STH. \(^{10,13,15,19,21-26,32}\) Table 2 shows the 3-year, 5-year OS and the corresponding mortality rates. In the 13 articles reporting 3-year OS, the 3-year OS rates range of SIH and STH were 51.3%–74.5% and 10%–85.0%, respectively, and the corresponding 3-year mortality rates were 816/2012 (40.6%) and...
For more than 40 years, whether SIH or STH should be performed for SCLM patients has always been under clinical debate since it was proposed that surgery was suitable for these patients. For more than 40 years, whether SIH or STH should be performed for SCLM patients has always been under clinical debate since it was proposed that surgery was suitable for these patients. For more than 40 years, whether SIH or STH should be performed for SCLM patients has always been under clinical debate since it was proposed that surgery was suitable for these patients. For more than 40 years, whether SIH or STH should be performed for SCLM patients has always been under clinical debate since it was proposed that surgery was suitable for these patients. For more than 40 years, whether SIH or STH should be performed for SCLM patients has always been under clinical debate since it was proposed that surgery was suitable for these patients. For more than 40 years, whether SIH or STH should be performed for SCLM patients has always been under clinical debate since it was proposed that surgery was suitable for these patients.

In addition, the pathology of lymph node metastasis was not a treatment option for SCLM patients, and the life expectancy of these patients was only 6–12 months. For these patients, systemic chemotherapy or interventional therapy were attempted to improve the prognosis, but the effect was poor. Thus, some surgeons began to try to implement surgery for the SCLM patients. Although the incidence of postoperative complications was high at that time, some patients still achieved satisfactory long-term prognosis. Gradually, SCLM were no longer the absolute taboo of surgery.

However, the timing of surgery for SCLM patients has always been under clinical debate since it was proposed that surgery was suitable for these patients. For more than 40 years, whether SIH or STH should be performed for SCLM patients has always been under clinical debate since it was proposed that surgery was suitable for these patients. For more than 40 years, whether SIH or STH should be performed for SCLM patients has always been under clinical debate since it was proposed that surgery was suitable for these patients. For more than 40 years, whether SIH or STH should be performed for SCLM patients has always been under clinical debate since it was proposed that surgery was suitable for these patients. For more than 40 years, whether SIH or STH should be performed for SCLM patients has always been under clinical debate since it was proposed that surgery was suitable for these patients.

There are two limitations in this study. Firstly, there is a lack of sufficient data on postoperative complications of major hepatectomy. Thus, more data is needed to analyze the differences in long-term prognosis between SIMH and STMH. In addition, due to the limitations of the included articles, we cannot well distinguish the differences in preoperative and postoperative chemotherapy between SIH and STH. Fortunately, our sensitivity analysis showed that the heterogeneity among include literatures is small. Therefore, we have reason to believe that there is little difference in preoperative or postoperative chemotherapy among include literatures. Of course, our research needs further prospective researches to confirm.

5 | CONCLUSION

There is no significant difference in postoperative complications, perioperative mortality and long-term prognosis between SIH and STH for SCLM patients. Furthermore, postoperative complications and...
perioperative mortality also had no significant difference between SIMH and STMH. According to recent articles, the proportion of major hepatectomy in SIH was much lower than that in STH. Therefore, for patients who need major hepatectomy, STH is still the main method, and some patients may be considered for SIH after a comprehensive assessment of the patient's age, physical condition and other factors.

AUTHOR CONTRIBUTIONS

Jianwei Liu: Data curation (lead); formal analysis (lead); writing – original draft (lead); writing – review and editing (lead). **Yong Xia:** Data curation (equal); formal analysis (equal); writing – original draft (lead); writing – review and editing (lead). **Xiaorong Pan:** Data curation (equal); formal analysis (equal); writing – original draft (lead); writing – review and editing (lead). **Shilei Bai:** Data curation (equal); formal analysis (supporting). **Zhao Yang:** Data curation (equal); formal analysis (supporting). **Yeye Wu:** Data curation (equal); formal analysis (supporting). **Lei Zhang:** Data curation (equal); formal analysis (supporting). **Hui Xue:** Data curation (equal); formal analysis (supporting). **Feng Shen:** study concept (lead), design (lead), Data curation (lead); formal analysis (lead); writing – original draft (lead); writing – review and editing (lead). **Kui Wang:** study concept (lead), design (lead), Data curation (lead); formal analysis (lead); writing – original draft (lead); writing – review and editing (lead).

ACKNOWLEDGMENT

None.

CONFLICT OF INTEREST

The authors have stated explicitly that there are no conflicts of interest in connection with this article.

DATA AVAILABILITY STATEMENT

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

ETHICAL APPROVAL

Not applicable.

ETHICS COMMITTEE APPROVAL

Ethics committee approval not received for this study as there are no human or animal subjects directly recruited.

CONSENT FOR PUBLICATION

Not applicable.

INFORMED CONSENT

None.

ORCID

Jianwei Liu https://orcid.org/0000-0001-8467-2274

Feng Shen https://orcid.org/0000-0002-8904-9745

REFERENCES

1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin. 2021;71(3): 209-249.

2. Manfredi S, Lepage C, Hatem C, Coatmeur O, Faire J, Bouvier AM. Epidemiology and management of liver metastases from colorectal cancer. Ann Surg. 2006;244:254-259.

3. Adam R. Colorectal cancer with synchronous liver metastases. Br J Surg. 2007;94:129-131.

4. McMillan DC, McArdle CS. Epidemiology of colorectal liver metastases. Surg Oncol. 2007;16:3-5.

5. Leporrier J, Maurel J, Chiche L, Bara S, Segol P, Launoy G. A population-based study of the incidence, management and prognosis of hepatic metastases from colorectal cancer. Br J Surg. 2006;93:465-474.

6. Adam R, Delvart V, Pascal G, et al. Rescue surgery for unresectable colorectal liver metastases downstaged by chemotherapy: a model to predict long-term survival. Ann Surg. 2004;240:644-657. discussion 657-8.

7. Gallinger S, Biagi JJ, Fletcher GG, Nhan C, Ruo L, McLeod RS. Liver resection for colorectal cancer metastases. Curr Oncol. 2013;20:e255-265.

8. Abdalla EK, Adam R, Bilchik AJ, Jaeck D, Vauthey JN, Mahvi D. Improving resectability of hepatic colorectal metastases: expert consensus statement. Ann Surg Oncol. 2006;13:1271-1280.

9. Brouquet A, Abdalla EK, Kopetz S, et al. High survival rate after two-stage resection of advanced colorectal liver metastases: response-based selection and complete resection define outcome. J Clin Oncol. 2011;29:1083-1090. PMID: 21263087.

10. Brouquet A, Mortenson MM, Vauthey JN, et al. Surgical strategies for synchronous colorectal liver metastases in 156 consecutive patients: classic, combined or reverse strategy? J Am Coll Surg. 2010;210:934-941.

11. Wang LJ, Wang HW, Jin KM, Li J, Xing BC. Comparison of sequential, delayed and simultaneous resection strategies for synchronous colorectal liver metastases. BMC Surg. 2020;20:16.

12. Bogach J, Wang J, Griffiths C, et al. Simultaneous versus staged resection for synchronous colorectal liver metastases: a population-based cohort study. Int J Surg. 2020;74:68-75.

13. Patrono D, Paraluippi G, Perino M, et al. Posthepatectomy liver failure after simultaneous versus staged resection of colorectal cancer and synchronous hepatic metastases. G Chir. 2014;35:86-93.

14. Abbott DE, Cantor SB, Hu CY, et al. Optimizing clinical and economic outcomes of surgical therapy for patients with colorectal cancer and synchronous liver metastases. J Am Coll Surg. 2012;215:262-270.

15. Mayo SC, Pulitano C, Marques H, et al. Surgical management of patients with synchronous colorectal liver metastasis: a multicenter international analysis. J Am Coll Surg. 2013;216:707-716. discussion 716-8.

16. de Haas RJ, Adam R, Wicherts DA, et al. Comparison of simultaneous or delayed liver surgery for limited synchronous colorectal metastases. Br J Surg. 2010;97:1279-1289.

17. Kaibori M, Iwamoto S, Ishizaki M, et al. Timing of resection for synchronous liver metastases from colorectal cancer. Dig Dis Sci. 2010; 55:3262-3270.

18. Kye BH, Lee SH, Jeong WK, et al. Which strategy is better for resectable synchronous liver metastasis from colorectal cancer, simultaneous surgery, or staged surgery? Multicenter retrospective analysis. Ann Surg Treat Res. 2019;97:184-193.

19. Li Y, Bi X, Zhao J, et al. Simultaneous hepatic resection benefits patients with synchronous colorectal cancer liver metastases. Chin J Cancer Res. 2016;28:528-535.

20. Luo Y, Wang L, Chen C, et al. Simultaneous liver and colorectal resections are safe for synchronous colorectal liver metastases. J Gastrointest Surg. 2010;14:1974-1980.
21. Fukami Y, Kaneoka Y, Maeda A, Takayama Y, Onoe S, Isogai M. Simultaneous resection for colorectal cancer and synchronous liver metastases. Surg Today. 2016;46:176-182.
22. Mougi SJ, Smith D, Leen E, Roxburgh C, Horgan PG. Evidence for a synchronous operative approach in the treatment of colorectal cancer with hepatic metastases: a case matched study. Eur J Surg Oncol. 2010;36:365-370.
23. Alexandrescu S, Hrehoreţ D, Ionel Z, Croitoru A, Anghel R, Popescu I. Simultaneous resection of the primary colorectal tumor and liver metastases—a safe and effective operation. Chirurgia (Bucur). 2012;107:298-307.
24. Nanji S, Mackillop WJ, Wei X, Booth CM. Simultaneous resection of primary colorectal cancer and synchronous liver metastases: a population-based study. Can J Surg. 2017;60:122-128.
25. Alexandrescu S, Diaconescu A, Ionel Z, et al. Comparative analysis between simultaneous resection and staged resection for synchronous colorectal liver metastases – a single center experience on 300 consecutive patients. Chirurgia (Bucur). 2017;112: 278-288.
26. Silberhumer GR, Paty PB, Denton B, et al. Long-term oncological outcomes for simultaneous resection of synchronous metastatic liver and primary colorectal cancer. Surgery. 2016;160:67-73.
27. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151:264-269, W64.
28. Hayden JA, Côté P, Bombardier C. Evaluation of the quality of prognostic studies in systematic reviews. Ann Intern Med. 2006;144:427-437.
29. Hayden JA, van der Windt DA, Cartwright JL, Côté P, Bombardier C. Assessing bias in studies of prognostic factors. Ann Intern Med. 2013;158:280-286.
30. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240:205-213.
31. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557-560.
32. Kim CW, Lee JL, Yoon YS, et al. Resection after preoperative chemotherapy versus synchronous liver resection of colorectal cancer liver metastases a propensity score matching analysis. Medicine (Baltimore). 2017;96:e1174.
33. Foster JH. Survival after liver resection for secondary tumors. Am J Surg. 1978;135:389-394.
34. Nims TA. Resection of the liver for metastatic cancer. Surg Gynecol Obstet. 1984;158:46-48.
35. Daly JM, Kemeny N, Oderman P, Botet J. Long-term hepatic arterial infusion chemotherapy. Anatomic considerations, operative technique, and treatment morbidity. Arch Surg. 1984;119:936-941.
36. Mühe E, Gall FP, Angermann B. Resection of liver metastases. World J Surg. 1982;6:210-215.
37. Vogt P, Raab R, Ringe B, Pichlmayr R. Resection of synchronous liver metastases from colorectal cancer. World J Surg. 1991;15:62-67.
38. Tanaka K, Shimada H, Matsu K, et al. Outcome after simultaneous colorectal and hepatic resection for colorectal cancer with synchronous metastases. Surgery. 2004;136:650-659.
39. Jamagin WR, Gonen M, Fong Y, et al. Improvement in perioperative outcome after hepatic resection: analysis of 1,803 consecutive cases over the past decade. Ann Surg. 2002;236:397-406.
40. Eggermont AM, Steller EP, Sugarbaker PH. Laparotomy enhances intraperitoneal tumor growth and abrogates the antitumor effects of interleukin-2 and lymphokine-activated killer cells. Surgery. 1987;102:71-78.
41. Chen J, Li Q, Wang C, Zhu H, Shi Y, Zhao G. Simultaneous vs. staged resection for synchronous colorectal liver metastases: a meta analysis. Int J Colorectal Dis. 2011;26:191-199.
42. Yoshidome H, Kimura F, Shimizu H, et al. Interval period tumor progression: does delayed hepatectomy detect occult metastases in synchronous colorectal liver metastases? J Gastrointest Surg. 2008;12:1391-1398.
43. Reddy SK, Pawlik TM, Zorzi D, et al. Simultaneous resections of colorectal cancer and synchronous liver metastases: a multi-institutional analysis. Ann Surg Oncol. 2007;14:3481-3491.
44. Thelen A, Jonas S, Benckert C, et al. Simultaneous versus staged liver resection of synchronous liver metastases from colorectal cancer. Int J Colorectal Dis. 2007;22:1269-1276.

SUPPORTING INFORMATION
Additional supporting information may be found in the online version of the article at the publisher’s website.

How to cite this article: Liu J, Xia Y, Pan X, et al. Simultaneous versus staged major hepatectomy (≥3 liver segments) for outcomes of synchronous colorectal liver metastases: A systematic review and meta-analysis. Cancer Reports. 2022;5(8):e1617. doi:10.1002/cnr2.1617