Superconducting energy gap in $\text{Ba}_{1-x}\text{K}_x\text{BiO}_3$: Temperature dependence

F. Szabóa, P. Samuelya, N.L. Bobrovb, J. Marcusc, C. Escribe-Filippinic, and M. Affrontec

aInstitute of Experimental Physics, Slovak Academy of Sciences, CS-04353 Košice, Slovakia
bInstitute for Low Temperature Physics and Engineering, Ukrainian Academy of Sciences, Kharkov, Ukraine
cLaboratoire d’Etudes des Propriétés Electroniques des Solides CNRS, BP 166, F-38042 Grenoble Cedex 9, France

Email address: bobrov@ilt.kharkov.ua

(Dated: April 4, 2018; Published Physica C, 235-240, 1873 (1994))

The superconducting energy gap of $\text{Ba}_{1-x}\text{K}_x\text{BiO}_3$ has been measured by tunneling. Despite the fact that the sample was macroscopically single phase with very sharp superconducting transition T_c at $32\, K$, some of the measured tunnel junctions made by point contacts between silver tip and single crystal of $\text{Ba}_{1-x}\text{K}_x\text{BiO}_3$ had lower transition at $20\, K$. Local variation of the potassium concentration as well as oxygen deficiency in $\text{Ba}_{1-x}\text{K}_x\text{BiO}_3$ at the place where the point contact is made can account for the change of T_c. The conductance curves of the tunnel junctions reveal the BCS behavior with a small broadening of the superconducting-gap structure. A value of the energy gap scales with T_c. The reduced gap amounts to $2\Delta/kT_c = 4 \div 4.3$ indicating a medium coupling strength. Temperature dependence of the energy gap follows the BCS prediction.

PACS numbers: 74.20.Fg; 74,45+c; 74.50.+r; 74.70.-b; 74.70.Dd

Bismuthate superconductors, in contrast to the cuprates with a quasi twodimensional lattice, are fully 3-dimensional with cubic symmetry and diamagnetism in the normal state. Their superconducting properties seem to be understood within the classical theory. Tunneling studies on $\text{Ba}_{1-x}\text{K}_x\text{BiO}_3$ have shown a full superconducting energy gap Δ with the reduced value $2\Delta/kT_c$ ranging from the weak coupling limit [1, 2] to the medium coupling [3]. It is generally accepted that the electron-phonon interaction plays a role in the superconductivity here [1, 3]. There is on the other hand some similarity with the cuprates. Both perovskites are near the metal-insulator transition triggered by doping. Namely, for $\text{Ba}_{1-x}\text{K}_x\text{BiO}_3$ the system becomes metallic (superconducting) at $x \sim 0.35$. The highest transition temperature $T_c = 32\, K$ is achieved near the metal-insulator transition and then it is decreased down to $20\, K$ for $x = 0.5$, the solubility limit. Asymmetric linear background of the tunneling conductance may indicate strong electronic correlations in the normal state.

The $\text{Ba}_{1-x}\text{K}_x\text{BiO}_3$ crystals used in this experiment were grown by electrochemical method [4]. They are characterized by the high and sharp superconducting transition at $T_c = 32\, K$. They are macroscopically single phase. The point-contact technique has been used to make the tunnel junctions with a silver single crystal as a tip.

![FIG. 1: Tunneling conductance at 4.2 K of the $\text{Ba}_{1-x}\text{K}_x\text{BiO}_3$ – Ag junction with $T_c = 32\, K$ and the fit by the BCS density of states.](image-url)
FIG. 2: Temperature dependence of the spectrum for the tunnel junction with $T_c = 20$ K.

FIG. 3: Temperature dependence of the superconducting energy gap. Dashed line - BCS curve.

by $E' + i\Gamma$ as the only extra parameter (Dynes formula). Actually, the superconducting energy gap Δ equals to 6 meV and very small smearing factor $\Gamma = 0.35 \text{ meV}$, T_c of the tunnel junction was 32 K.

We measured also the temperature dependence of the tunneling effect. In few cases we found the transition temperature of the tunnel junction different from the bulk T_c. As shown in Fig. 2, the transition T_c was achieved at about 20 K. Lower local T_c can be caused by a presence of microphases of different stoichiometry, e.g. by variation in the concentration of potassium and/or the oxygen deficiency. Local deviations in stoichiometry seem to be a general problem of the bismuthates. It is worth noticing that our sample does not show multiphase character in ac susceptibility and it has a high metallic conductance above T_c [4]. We fitted the experimental data by the Dynes formula with resulting values: $\Delta_0 = 3.5 \text{ meV}$, $\Gamma = 0.5 \text{ meV}$.

In Fig. 3 the temperature dependence of the superconducting energy gap obtained from the data of three different junctions is displayed in the reduced coordinates to account for different T_c, resp. Δ_0. In all three cases the data follow the BCS prediction.

The reduced superconducting energy gap $2\Delta/kT_c$ amounts to $4 \div 4.3$ for all junctions. Hence the gap scales with the T_c in $\text{Ba}_{1-x}\text{K}_x\text{BiO}_3$. Presence of microdomains of different phases observed by our point-contact method may affect several physical properties measured in the system.

This work was partially supported by the Commision of the European Communities Contract No.CIPA-CT93-0183.

[1] Q. Huang, J. F. Zasadzinski, N. Tralshawala, K. E. Gray, D.G. Hinks, J. L. Peng, and R. L. Greene, Nature (London) 347, 369 (1990).
[2] F. Sharifi, A. Pargelis, R. C. Dynes, B. Miller, E. S. Hellman, J. Rosamiña, and E. H. Hartford, Jr., Phys. Rev. B 44, 12521 (1991).
[3] E. S. Hellman and E. H. Hartford, Jr. Phys. Rev. B 47, 11346 (1993).
[4] M. Affronte, J. Marcus, C. Escribe-Filippini, A. Sulpice, H. Rakoto, J. M. Broto, J. C. Ousset, S. Askenazy, and A. G. M. Jansen Phys. Rev. B 49, 3502 (1994).