Enhancement the sensitivity of CdS nano structure by adding of rare earth materials

Isam M. Ibrahim¹, Ali A. Safi¹, Naif H. M. Al-Hardan²

¹ Department of Physics, College of Science, University of Baghdad
² School of physics, University of Science Malaysia, Penang Malaysia

Corresponding Author E-mail: dr.ahmedphysics@uofallujah.edu.iq

Abstract. Thin films of Cerium (Ce³⁺) doped Cadmium Sulfide (CdS) were successfully deposited on glass and silicon substrates by Chemical Spray Pyrolysis Method at different ratios with temperature 200 oC. The results shown a high quality nanoparticles and a strong orientation to the (002) plane of the wurtzite (hexagonal) phase. The fast rise and decay times of the photocurrent were confirmed that the best quality of the fabricate photodetector device. Light responsivity was at (460, 550 and 680 nm), and the device showed a good specific detectivity and quantum efficiency when illuminated by (460, 550 and 680 nm). CdS:Ce at 10% clarity higher responsivity (0.144 A/W), quantum efficiency (38.58%), and specific detectivity (2.7×10¹¹ Jones) at 460 nm illumination (3.108 mW/cm²), also the device for CdS:Ce at 10% reveals the fast with 800 ms rise time and 860 ms decay time and the sensitivity reach to 5523.

1. Introduction

Cadmium sulfide (CdS) is attracts the attention of several research groups [1]. It has a direct energy gap of 2.42 eV at room temperature [2] with a low work function of approximately 4.2 eV [3]. It was found that the doping process and the type of dopants play crucial roles in the enhancements of the electrical and optical properties of the CdS. Several dopants specifically the rare earth metals were studied intensively [4]. The electronic structure of rare earth elements are the same in their outer of (5s² 5p⁶ 6s²) and differ only by electrons occupying the inner partially filled 4f shell [5], and their Ionization occurs when they lose two 6s and one 4f electrons and form a stable trivalent state [6]. Doping of rare earth element like cerium clearly affects the particle size where it is reduce and also increases surface area [7]. One of the most common element among rare elements is cerium, which has strong acidity, strong oxidation, high mechanical and optical properties and it's retractable [8]. Recently, large numbers of CdS nanostructures [9-14], have been used to fabricate photodetectors by using different methods except chemical spray pyrolysis method. In this work we report the effect of Ce doping on the photodetector (in UV - Visible range), performance based on CdS will be explore, and synthesized by chemical Spray Pyrolysis Method, which characterized by no vacuum system need for deposition, consider inexpensive and simplicity method, quite the opposite of the complexity of other methods of preparation [15,16,17].

2. EXPERIMENTAL WORK

To prepare chemical solution for pure and doped CdS, 0.1 M from cadmium chloride (CdCl₂·H₂O) and 0.2 M from thiourea (NH₂SCNH₂) as a source of sulphur ion were separately dissolved in 50 ml of distilled water and 10 ml ethanol. The material supply from THOMAS BAKER company with purity 99.9%. Cadmium chloride solution is mixed with thiourea using a magnetic stirrer at room temperature for 30 minutes to complete the solubility process. For doping process Cerium Oxide (CeO₂) is dissolved at doping ratios of (10, 20 and 30) wt.% with cadmium source using a magnetic stirrer for 30 minutes and the
mixture is added to sulphur ion solution to get CdS:Ce solution. This final solution is transferred to spray container. To thin films preparation, chemical spray pyrolysis method (CSP) was used to prepare the thin films with parameters: substrate temperature at 200°C, the distance between the nozzle and substrates was set at 20 cm, flow rate was 0.6 ml/min. The spray process continued until getting the required thickness of 200 nm.

For electrical contact, aluminium deposited on the surface of CdS pure and CdS:Ce thin films by thermal evaporation technique under vacuum (10-5 mbar), using Edward coating unit model (306 A).

The prepared thin films were characterized for their phase identification using X-Ray diffraction unit model MiniFlex II (from Rigaku) and the surface morphology was characterized via field emission scanning electron microscope (FESEM) (from Field Electron and Ion, FEI) (Nova nanoSEM 450) the Netherlands. The optical absorbance spectra were measured using UV/Visible SP – 8001 spectrophotometer over the range 190–1100 nm. The output data of wavelength and absorbance are used in a computer program to deduce the optical energy band gap and transmission. The photoluminescence and the photoconductivity investigated by (RF-551) spectrofluorometric detector (Shimadzu, Japan) and the measurements are done by using sensitive digital electrometer type Keithley (2400).

3. RESULTS AND DISCUSSION

Thin films structural properties were examined by the XRD as shown in Fig. (1). CdS sample has polycrystalline structure with the reflection planes of (100), (002), (101), (110), (103), and (112), all those reflection planes noted also for CdS:Ce, and all patterns show the film exhibited hexagonal (wurtzite) crystal structure as indicated by the absence of characteristic (200) and (311) peaks of the cubic CdS structure, with a preferential orientation along the (002) plane. From the XRD spectra it was also observed that no diffraction peaks corresponding to the impurity phases were detected and this rule out Ce deposition or secondary phases, which similar to Sreenivas et al.[7] and that confirmed the successful incorporation of Ce ions into the crystal lattice of CdS particles[18]. The average crystallite size calculated by Debye Scherrer’s equation [19]:

\[D = \frac{0.89 \lambda}{\beta \cos \theta} \]

where \(\lambda \) is a wavelength of the X rays, \(\beta \) is the full width at half and \(\theta \) is the diffraction angle.

The averages crystallite size were found to be decrease with increase of doping and the data of pure and doped CdS listed in Table (1).

Thin films morphological properties were tested by the FESEM images. Fig.(2)(a-d) show the images of FESEM for CdS and doped CdS:Ce at 10, 20 and 30%. Image (a) thin film, grains are somewhat homogeneous in both shape and size and grain boundaries are very clear because of the big grain size growth is due to the agglomeration of individual particles and the surface covered by big grains.

For minimum and maximum (10 and 30%) Ce doped CdS as show in images (b,d), it is observed the topography is different than that of pure CdS, with a compact and dense structure and better in grain correlation, the incorporation of cerium caused the grain size to decrease with almost uniform distribution over the surface, and the grain boundaries to disappear significantly, which refer to better for CdS thin films for photovoltaic applications [20] and this agreement with hurma [21].

While in image (c) has different topography content grains like rods ordered randomly and the grain size bigger with vacancies appeared clearly.

UV-visible transmission spectrum for all simples are revealed in Fig.(3). It is observed that the transmission for all simples are high in visible and near IR region, the value of the transmission was (95%, 90%, 84% and 60%) CdS:Ce at (30, 10 and 20%) and pure CdS respectively, that mean highly transparent is found for doped thin film, it can be used in solar cell as transparent window.
The optical band gap of the doped and undoped CdS thin films, as shown in Fig. (4) was estimated by Tauc plot. For pure CdS optical band gap equal to (2.57 eV), while CdS:Ce at (10, 20 and 30%) equal to (2.65, 2.62 and 2.66 eV), this slightly increase in the energy gap is refers to the nano phase for undoped and doped CdS. The Increase band gap value may be due to increasing in quantum effect which it result of decreasing in the particle size [22].

Figure (5) shows the PL results of CdS and CdS:Ce at excitation wavelength 400 nm. For pure CdS there is a broad defect emission because the present of point defects such as cadmium vacancies (V_{Cd}), sulfur vacancies (V_{S}), cadmium interstitials (I_{Cd}) and sulphur interstitials (I_{S}), which act as luminescent centers [23]. It is observed that three peaks, a broad peak between (320 and 480) nm, which centered at 440 nm. The strong PL emission indicates the high crystallinity of CdS sample, and consistent with the XRD results[24], the second peak centered at 530, and the third peak centered at 610nm, with UV, green and orange emission respectively. The UV emission for the first peak as shown in figure, attributed to transitions from the deep and shallow states [25]. The green emission band of the second peak is due to electronic transition from conduction band to an acceptor level due to interstitial sulphur ions (I_{S}) [26]. The origin of orange band is originating from the transition from the donor levels, created by the occupation interstitial sites of Cd atoms (I_{Cd}), to the valence band [27]. The peaks position of CdS:Ce emission slightly shifts toward longer wavelength region with higher intensity are associated with increase of doping concentrations, Thus it confirms that luminescence property of CdS nanoparticles enhanced when Ce+3 was introduced into the CdS. Maleki et al. [28].

The characteristic of time I–t curves for the undoped and doped CdS photodetector as shown in Fig. (6) was studied by periodic exposed under the selected wavelengths of (460, 550 and 680nm) with an illumination intensities (3.108, 2.970 and 3.044 mW/cm²) respectively under bias voltage (0 V). In the dark the current value decreased and jumped to a steady higher value under illumination, CdS:Ce at 10% has the highest value of (I_{on}/I_{off}) ratios (56.18, 38.46 and 10) at wavelengths (460, 550 and 680 nm) respectively. The average rise and decay times for all samples are (0.8000 and 0.8060s) respectively and this fast response is reported by Zhao et al. [29], and Liang Guo et al. [30]. The short decay time refers to the high surface to volume ratio, which caused dangling bonds and defects and results of that increase in recombine between electron and hole pairs in dark [24]. The sensitivity of the fabricated device calculated by the following relationship [31]:

\[S = \frac{I_{light} - I_{dark}}{I_{dark}} \times 100\% \quad (2) \]

where \(I_{light}\) and \(I_{dark}\) represent the photocurrents under illumination and in the dark respectively. In our work the sensitivity was higher than reported by Liang Guo et al. [30] and Mahdi et al.[24], and proved photodetector can generate photocurrent by light exposure without applying any bias voltage as solar cell.

Fig. (7) shows the responsivity (R_{λ}) of the photodetectors which calculated by equation[29]:

\[R_{λ} = \frac{I_{light} - I_{dark}}{P_{exc}} \quad (3) \]

\[P_{exc} = I_{light} \cdot A \quad (4) \]

Where \(P_{exc}, I_{light}\) and \(A\) are the excitation power, illumination density, and the illuminated device area respectively.

It can be observed the maximum value of the spectral responsivity is for device content 10%Ce at 460 nm. Also we noted that the spectral responsivity began decreasing with the increase of doping concentration and wavelength. Because of the band gap structure for undoped and doped CdS (2.57 – 2.66 eV) we notes that the responsivity indicated that the 460 nm have a better response wavelength than 550 and 680 nm, revealing that the response
spectrum is directly related to the band gap values [32]. The responsivity value of CdS:Ce at 10% is high than that reported in ref.[33].

Figure (8) shows the quantum efficiency (QE) of undoped and doped CdS with Ce different ratios, which is determined as a function of wavelength by using the following relationship [29]:

\[\text{QE} = \frac{h \cdot c \cdot R_a}{e \cdot \lambda} \quad \text{(5)} \]

The photodetector CdS:Ce at 10% has maximum value of the (QE), it's equal to 38.58% at 460 nm wavelength, this value is high comparable to that reported in ref.[34].

The specific detectivity (D*) for pure CdS and CdS:Ce at different concentration ratios, using the following equation to calculate the (D*)[29]:

\[D^* = \frac{R_s \sqrt{R}}{2 \pi I_{dark}} \quad \text{(6)} \]

The maximum value of (D*) is for CdS:Ce at 10%, is equal to \(2.83 \times 10^{11}\) Jones as shown in Fig. (9). Specific detectivity of our device is much higher compared to the detectivity which reported photodetector based on inorganic ZnS hybrid system \(1 \times 10^{-10}\) Jones [35]. All data of sensitivity (S), responsivity (R), quantum efficiency (QE) and specific detectivity (D*) for CdS:Ce photodetector were listed in Table (2).

4. Conclusions

CdS and CdS:Ce at different Ce ratios prepared by chemical spray pyrolysis method are used as photodetectors. X-ray diffraction measurements show polycrystalline with hexagonal structural, the FESEM images point to the surface is covered by big grains with a triangular shape, and the optical measurements explain enhancement in transmission and photoluminescence for doped CdS compared with pure CdS, and all samples have direct energy gap. The photoconductance of the photodetectors were studied, which showed higher response at 460, 550, and 680 nm. The device for CdS:Ce at 10% clarifies higher responsivity, quantum efficiency and specific detectivity at 460 nm with fast response and decay time compared with the other Ce concentrations. The stability of these devices for a long period of time could be good candidates for high performance photodetectors in various applications.

Reference

[1] Sonika Khajuria, Sumit Sanotra, Heena Khajuria, Anuraag Singh and Haq Nawaz Sheikh "Synthesis, Structural and Optical Characteriza-tion of Copper and Rare Earth doped CdS Nanoparticles" Acta Chim. Slov. 63, (2016), 104–112.
[2] Saravanan L., Jayavel R., Pandurangan A., Liu Jih-Hsin, Miao Hsin-Yuan " Influence of Sm doping on the microstructural properties of CdS nanocrystals" Powder Technology 266 (2014) 407–411.
[3] Xuemin Qian, HuiBiao Liu, Yanbing Guo, Shiqun Zhu, Yingli Song, and Yuliang Li "Field Emission Properties and Fabrication of CdS Nanotube Arrays" Nanoscale Res Lett. 2009; 4(8): 955–961.
[4] L. Saravanan, A. Pandurangan, R. Jayavel, "Synthesis and luminescence enhancement of cerium doped CdS nanoparticles", Mater. Lett. 66 (2012)343–345.
[5] Urquhart, P., "Review of Rare-Earth Doped Fiber Lasers and Amplifiers". Iee Proceedings-J Optoelectronics, Vol. 135, Pt. J, No. 6, (1988), 385-402.
[6] Hang Li " Structural and Optoelectronic Properties of Rare Earth Doped Silicon Photonic Materials". A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy (PhD) in the Faculty of Engineering and Physical Sciences, (2013), p 5.
[7] M. Sreenivas, G.S. Harish, P. Sreedhara Reddy, " Synthesis and Raman Studies of Ce doped CdS nanoparticles", International Journal of Advanced Research (2014), Volume 2, Issue 11, 468–472.
[8] Robert H, Kretsinger, Vladimir N, Uversky Eugene A, Permyakov "Encyclopedia of Metalloproteins" Springer Science and Business Media New York (2013), 588-589.
[9] L. Yingkai, Z. Xiangping, H. Dedong, W. Hui, "The photoconductance of a single CdS nanoribbon", J. Mater. Sci. 41 (19) (2006) 6492–6496.
[10] L. Li, P. Wu, X. Fang, T. Zhai, L. Dai, M. Liao, Y. Koide, H. Wang, Y. Bando, D. Golberg, "Single-crystalline CdS nanobelts for excellent field-emitters and ultrahigh quantum-efficiency photodetectors", Adv. Mater. 22 (29) (2010) 3161–3165.
[11] G. Li, Y. Jiang, Y. Zhang, X. Lan, T. Zhai, G.-C. Yi, "High-performance photodetectors and enhanced field-emission of CdS nanowire arrays on CdSe singlecrystalline sheets", J. Mater. Chem. C 2 (39) (2014) 8252–8258.
[12] L. Zhu, C. Feng, F. Li, D. Zhang, C. Li, Y. Wang, Y. Lin, S. Ruan, Z. Chen, "Excellent gas sensing and optical properties of single-crystalline cadmium sulfide nanowires", RSC Adv. 4 (106) (2014) 61691–61697.
[13] L. Zhu, C. Li, Y. Li, C. Feng, F. Li, D. Zhang, Z. Chen, S. Wen, S. Ruan, "Visible-light photodetector with enhanced performance based on a ZnO@CdS heterostructure", J. Mater. Chem. C 3 (10) (2015) 2231–2236.
[14] Junwen Li, Yunsong Zhu, Mingling Li, Hongbing Cai, Huaizhi Ding, Nan Pan, Xiaoping Wang " One-step fabrication of CdS nanoflake arrays and its application for photodetector " International Journal for Light and Electron Optics 169 (2018) 190–195.
[15] Filipovic, Lado; Selberherr, Siegfried; Mutinati, Giorgio C.; Brunet, Elise; Steinhauer, Stephan; Köck, Anton; Teva, Jordi; Kraft, Jochen; Siegert, Jörg; Schrank, Franz; Gspan, Christian; Grogger, Werner " A Method for Simulating Spray Pyrolysis Deposition in the Level Set Framework" Engineering Letters . 2013, Vol. 21 Issue 4, p224-240. 17p.
[16] Abdulhadi Kadhim, Farah T.M. Noori, Nawres D. Hamza "Optical and Structural Properties of (In2O3:ZnO:Au) Nanocomposite Thin Films Prepared by Spray Pyrolysis Method" Engineering and Technology Journal. Vol. 36, Part B, No. 1, 2018.
[17] G. Korotcenkov, B.K. Cho, "Spray pyrolysis deposition of undoped SnO2 and In2O3 films and their structural properties" Prog. Cryst. Growth Charact. Mater. 63 (2017), 1-47.
[18] L. Saravanam, A. Pandurangan, R. Jayavel, "Synthesis and luminescence enhancement of cerium doped CdS nanoparticles", Mater. Lett. 66 (2012)334–345.
[19] P. Verma and A. C. Pandey, "Organic Capping-Effect and Mechanism in Mn-Doped CdS Nanocomposites", Physica B: Condensed Matter, (2010), 405 (5), 1253-1257.
[20] A. Podesta, N. Armani, G. Salviani, N. Romeo, A. Bosio, M. Prato, "Influence of the fluorine doping on the optical properties of CdS thin films for photovoltaic applications", Thin Solid Films 511-512 (2006) 448-452.
[21] T. Hurma, "Effect of cerium incorporation on the structural and optical properties of CdS film" Optik 127 (2016) 10670–10675.
[22] I. M. IBRAHIM, A. S. MOHAMMED, A. RAMIZY "Responsibility Enhancement of Lutetium Oxide Doped – NiO Thin Films" Journal of Ovonic Research, Vol. 14, No. 1, (2018), p. 17 – 25.
[23] Sheo K. Mishra, Rajneesh K. Srivastava, S.G. Prakash, Raghvendra S. Yadav, A.C. Panday "Structural, optical and photoconductivity characteristics of manganese doped cadmium sulfide nanoparticles synthesized by co-precipitation method", Journal of Alloys and Compounds 513 (2012) 118– 124.
[24] M. A.Mahdi, J. J.Hassan, S. S. Ng, Z.Hassan,N.M. Ahmed “Synthesis and characterization of single-crystal CdS nanosheet for high-speed photodetection”, Physica E 2012, 44, 1716-1721.
[25] R. Kumar, R. Das, M. Gupta, V. Ganesan, “Compositional effect of antimony on structural, optical, and photoluminescence properties of chemically deposited (Cd1–xSbx)S thin films" , Super lattices microstruct. 59 (2013) 29-37.
[26] T. Sivaraman, A.R. Balu, V.S. Nagarethim, “Effect of magnesium incorporation on the structural, morphological, optical and electrical properties of CdS thin films" Mater. Sci. Semicond. Process. 27, (2014), 915-923.
[27] M. Tomakin, Y. Öncel, E.F. Keskenler, V. Nevruzoğlu, Z. Onuk, O. Görür, "Investigation of Cd1−xCoxS diluted magnetic semiconductor thin films fabricated by chemical bath deposition method", J. Alloys Compd. 616 (2014) 166-172.

[28] Maleki M, Ghamsari M, Sasani M, Mirdamadi SH. Ghasemzadeh R. “A facile route for preparation of CdS nanoparticles”. Semicond Phys Quant Elect & Opto Ele 2007;10:30–2

[29] Wu Zhao, Lin Liu, Manzhang Xu, Xuewen Wang, Ting Zhang, Yinguan Wang, Zhiyong Zhang, Sujie Qin, and Zheng Liu " Single CdS Nanorod for High Responsivity UV– Visible Photodetector" Advanced Optical Materials 2017, VOL, 1700159.

[30] Liang Guo, Hong Zhang, Dongxu Zhao, Binghui Li, Zhenzhong Zhang, Mingming Jiang, Dezhen Shen, " High responsivity ZnO nanowires based UV detector fabricated by the dielectrophoresis method" Sensors and Actuators B 166– 167 (2012) 12– 16.

[31] Isam M. Ibrahim, Ismail K. Jasim and Marwan K. Alyas "Photo Responsivity Of In2O3-ZnO Composite Detector" Transylvanian Review: Vol XXV, No. 22, November 2017, 5799-5805.

[32] Hou Dedong, Liu Ying-Kai and De-Peng Yu "Multicolor Photodetector of a Single Er3+-Doped CdS Nanoribbon" Nanoscale Research Letters (2015) 10:285, 1-10.

[33] Fang XS, Bando Y, Liao MY, Gautam UK, Zhi CY, Dierre B, et al. "Single-crystalline ZnS nanobelts as ultraviolet-light sensors", Adv Mater. 2009;21:2034–9.

[34] Raid A. Ismail, Abdul-Majeed E. Al-Samarai, Alaa Y. Ali "Preparation and characteristics study of CdS/macroporous silicon/c-Si double heterojunction photodetector by spray pyrolysis technique", Optik 168 (2018) 302–312.

[35] Fang X. S., Bando Y., Liao M. Y., Zhai T. Y. and Gautam U. K., “An efficient way to assemble ZnS nanobelts as ultraviolet-light sensors with enhanced photocurrent and stability”, Adv. Funct. Mater, 20, (2010), 500–508.
Table 1: Structural parameters for pure CdS and CdS:Ce at different ratio

Sample	2θ (Deg.)	FWHM (Deg.)	dhkl	Exp.(Å)	G.S (nm)	dhkl Std.(Å)	Phase	hkl
	25.0525	0.1690	3.5516	48.2	3.5940	Hex. CdS	(100)	
Pure	26.7571	0.2010	3.3291	40.6	3.3685	Hex. CdS	(002)	
	28.4310	0.2457	3.1368	33.4	3.1710	Hex. CdS	(101)	
	43.9724	0.2457	2.0575	34.9	2.0750	Hex. CdS	(110)	
	48.1495	0.3013	1.8883	28.9	1.9045	Hex. CdS	(103)	
	52.1577	0.3072	1.7522	28.8	1.7667	Hex. CdS	(112)	
Ce 10%	24.9450	0.2304	3.5667	35.3	3.5940	Hex. CdS	(100)	
	26.6650	0.2611	3.3404	31.3	3.3685	Hex. CdS	(002)	
	28.3542	0.2610	3.1451	31.4	3.1710	Hex. CdS	(101)	
	43.8649	0.3071	2.0623	27.9	2.0750	Hex. CdS	(110)	
	48.0727	0.3379	1.8912	25.7	1.9045	Hex. CdS	(103)	
	52.0502	0.3072	1.7556	28.8	1.7667	Hex. CdS	(112)	
Ce 20%	25.0316	0.2848	3.5545	28.6	3.5940	Hex. CdS	(100)	
	26.7880	0.2848	3.3253	28.7	3.3685	Hex. CdS	(002)	
	28.4494	0.2848	3.1348	28.8	3.1710	Hex. CdS	(101)	
	43.9715	0.2848	2.0576	30.1	2.0750	Hex. CdS	(110)	
	48.0538	0.3797	1.8919	22.9	1.9045	Hex. CdS	(103)	
	52.1361	0.2848	1.7529	31.1	1.7667	Hex. CdS	(112)	
Ce 30%	24.9367	0.2848	3.5679	28.6	3.5940	Hex. CdS	(100)	
	26.6930	0.2848	3.3370	28.7	3.3685	Hex. CdS	(002)	
	28.3544	0.2848	3.1451	28.8	3.1710	Hex. CdS	(101)	
	43.8766	0.3323	2.0618	25.8	2.0750	Hex. CdS	(110)	
	48.1013	0.3798	1.8901	22.9	1.9045	Hex. CdS	(103)	
	52.0886	0.3797	1.7544	23.3	1.7667	Hex. CdS	(112)	

Table (2) S%, Rλ, QE and D* for pure CdS and CdS:Ce at different Ce ratios at selected wavelengths.

Details	400 nm	550 nm	600 nm	
	S%	R(A/W)	QE %	D* Jones
	560	0.0097	0.0092	3.3×1010
	5523	0.1440	0.1250	2.7×1011
	331	0.0245	0.0240	1.26×1011
	84	0.0153	0.0137	1.9×1010
	45	0.0137	0.0133	1.9×1010
	550	4.19	4.19	1.7×1010
	45	2.37	2.37	1.7×1010

	163	0.082	2.9×1010
	827	0.114	2.2×1011
	521	0.0230	1.19×1010
	28	4.19	1.7×1010
	2.37	4.19	1.7×1010
	4.19	4.19	1.7×1010
Fig. (1): X-Ray diffraction patterns for CdS and CdS:Ce with doping ratio 10, 20 and 30%.

Fig. (2): FESEM image of (a) pure CdS (b) CdS:Ce 10% (c) CdS:Ce 20% (d) CdS:Ce 30%.
Fig. (3) : Transmission for CdS and CdS:Ce thin films at different ratio.

Fig. (4) optical energy gap for CdS and CdS:Ce at different ratio.

Fig. (5) PL spectrum of pure CdS and CdS:Ce at excitation wavelength 400 nm.
Fig. (6) I–t curves for the undoped and doped CdS photodetector at selected wavelengths.
Fig. (7) Responsivity of CdS and CdS:Ce at different Ce ratios.

Fig. (8) Quantum Efficiency of CdS and CdS:Ce at different Ce ratios.

Fig. (9) Specific Detectivity of CdS and CdS:Ce at different Ce ratios.