Two-axis spin squeezing in two cavities

Caifeng Li,1,2 Jingtao Fan,1 Lixuan Yu,3,1 # Gang Chen,1 # Tian-Cai Zhang,4 and Suotang Jia1

1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
2 Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, P. R. China
3 Department of Physics, Shaoguan University, Shaoguan 512200, China
4 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China

Ultracold atoms in an ultrahigh-finesse optical cavity are a powerful platform to produce spin squeezing since photon of cavity mode can induce nonlinear spin-spin interaction and thus generate a one-axis twisting Hamiltonian $H_{\text{OAT}} = q J_x^2$, whose corresponding maximal squeezing factor scales as $N^{-2/3}$, where N is the atomic number. On the contrary, for the other two-axis twisting Hamiltonian $H_{\text{TAT}} = q(J_x^2 - J_y^2)$, the maximal squeezing factor scales as N^{-1}, approaching the Heisenberg limit.

In this paper, inspired by recent experiments of cavity-assisted Raman transitions, we propose a scheme, in which an ensemble of ultracold six-level atoms interacts with two quantized cavity fields and two pairs of Raman lasers, to realize a tunable two-axis spin Hamiltonian $H = q(J_x^2 + \chi J_y^2) + \omega_0 J_z$. For proper parameters, the above one- and two-axis twisting Hamiltonians are recovered, and the scaling of N^{-1} of the maximal squeezing factor can occur naturally. On the other hand, in the two-axis twisting Hamiltonian, spin squeezing is usually reduced when increasing the effective atomic resonant frequency ω_0. Surprisingly, we find that by combined with the dimensionless parameter $\chi(> -1)$, the effective atomic resonant frequency ω_0 can enhance spin squeezing largely. These results are benefit for achieving the required spin squeezing in experiments.

PACS numbers: 42.50.Dv, 42.50.Pq

I. INTRODUCTION

Squeezed spin states, which were firstly introduced by Kitagawa and Ueda [1], are quantum correlated states with reduced fluctuations in one of the collective spin components [2, 3]. Such states have attracted considerable interest because they not only play significant roles in investigating many-body entanglement [4, 5], but also have important applications in atom interferometers and high-precision atom clocks [6, 8]. In general, there are two methods to produce spin squeezing. One is based on a one-axis twisting Hamiltonian $H_{\text{OAT}} = q J_x^2$, where q is the nonlinear spin-spin interaction strength and J_z is the collective spin operator in the z direction. When the initial state is prepared as $\ket{J_z = -j}$ for $q > 0$ ($\ket{J_z = j}$ for $q < 0$), the maximal squeezing factor for this one-axis twisting Hamiltonian scales as $N^{-2/3}$ [1], where N is the total atomic number and $J = N/2$. On the contrary, for the other two-axis twisting Hamiltonian $H_{\text{TAT}} = q(J_x^2 - J_y^2)$, the maximal squeezing factor scales as N^{-1} with the same initial state [1]. Since the scaling of N^{-1} approaches the Heisenberg limit, implementing the two-axis twisting Hamiltonian in current experimental setups is very important and necessary [2, 11]. A proposing scheme is to transform the one-axis twisting Hamiltonian into the two-axis twisting Hamiltonian by applying pulse sequences or continuous driving in the two-component Bose-Einstein condensates [12, 13]. However, the experimental realization of such two-axis twisting Hamiltonian is still challenging.

Ultracold atoms in an ultrahigh-finesse optical cavity are also a powerful platform to produce spin squeezing since photon of cavity mode can induce nonlinear spin-spin interaction and thus generate the required one-axis twisting Hamiltonian [16, 23]. Recently, multi-mode cavities [24] have attracted much attention both experimentally and theoretically [25, 26]. On one hand, these setups can be used to explore novel physics, such as the spin-orbit-induced anomalous Hall effect [30, 31], the crystallization and frustration [32, 33], the spin glass [34, 37], and the gapless Nambu-Goldstone-type mode without rotating-wave approximation [38]. Moreover, two-mode field squeezing [39] and unconditional preparation of a two-mode squeezed state of effective bosonic modes [40] have also been achieved by introducing two cavities. In the present paper, inspired by recent experiments of cavity-assisted Raman transitions [41, 42], we mainly realize a generalized two-axis spin Hamiltonian by two cavities to enhance spin squeezing largely.

When an ensemble of ultracold six-level atoms interacts with two quantized cavity fields and two pairs of Raman lasers, we first realize a two-mode Dicke model. In the dispersive regime, we obtain a generalized two-axis spin Hamiltonian $H = q(J_x^2 + \chi J_y^2) + \omega_0 J_z$, where χ is a dimensionless parameter and ω_0 is an effective atomic resonant frequency. This realized Hamiltonian has a distinct property that the interaction strength q, the dimensionless parameter χ, and the effective atomic resonant frequency ω_0 can be tuned independently. For reason-
able parameters, the one- and two-axis twisting Hamiltonians are recovered. Numerical results reveal that for the standard two-axis twisting Hamiltonian ($\chi = -1$ and $\omega_0 = 0$), the corresponding maximal squeezing factor scales as N^{-1}, as expected. On the other hand, in the two-axis twisting Hamiltonian H_{TA}, spin squeezing is usually reduced when increasing the effective atomic resonant frequency ω_0. Surprisingly, we find that by combined with the dimensionless parameter $\chi(> -1)$, the effective atomic resonant frequency ω_0 can enhance spin squeezing largely. These results are benefit for achieving the required spin squeezing in experiments.

This paper is organized as follows. Section II is devoted to realizing the generalized two-axis spin Hamiltonian with independently-tunable parameters. Section III is devoted to introducing the spin squeezing factor. Section IV is devoted to numerically investigating the maximal squeezing factor since for the two-axis spin Hamiltonian, analytical results are very hard to be obtained \[2\]. The parts of Discussions and Conclusions are given in sections V and VI.

II. MODEL AND HAMILTONIAN

A. Proposed experimental setup

Motivated by recent experiments of cavity-assisted Raman transitions [42], here we propose a scheme, in which an ensemble of ultracold six-level atoms interacts with two quantized cavity fields and two pairs of Raman lasers [see Fig. 1(a)], to realize a generalized two-axis spin Hamiltonian with independently-tunable parameters. As shown in Fig. 1(b), six levels consist of two stable ground states ($|0\rangle$ and $|1\rangle$) and four excited states ($|r_1\rangle$, $|r_1\rangle$, $|s_1\rangle$, and $|s_2\rangle$). Two independent photon modes, whose creation and annihilation operators are a (b) and a (b), mediate the $|0\rangle \leftrightarrow |s_1\rangle$ and $|1\rangle \leftrightarrow |r_1\rangle$ ($|0\rangle \leftrightarrow |s_2\rangle$ and $|1\rangle \leftrightarrow |r_2\rangle$) transitions (red and blue solid lines) with atom-photon coupling strengths g_{s_1} (g_{s_2}) and g_{r_1} (g_{r_2}), respectively. Whereas two pairs of Raman lasers govern the other transitions ($|0\rangle \leftrightarrow |r_1\rangle$, $|1\rangle \leftrightarrow |s_1\rangle$) and ($|0\rangle \leftrightarrow |r_2\rangle$, $|1\rangle \leftrightarrow |s_2\rangle$) (red and blue dashed lines) with Rabi frequencies Ω_{s_1}, Ω_{s_2}, and Ω_{r_1}, Ω_{r_2}, respectively. $\Delta_{r_1,2}$ and $\Delta_{s_1,2}$ are the detunings from the excited states.

B. Total Hamiltonian

The total Hamiltonian illustrated in Fig. 1 can be written as

$$H_T = H_C + H_A + H_I,$$ \hspace{1cm} (1)

where

$$H_C = \omega_a a^\dagger a + \omega_b b^\dagger b,$$ \hspace{1cm} (2)

$$H_A = \sum_{j=1}^N \left\{ \omega_{s_1} |s_1\rangle_j \langle s_1|_j + \omega_{s_2} |s_2\rangle_j \langle s_2|_j + \omega_{r_1} |r_1\rangle_j \langle r_1|_j + \omega_{r_2} |r_2\rangle_j \langle r_2|_j + \frac{1}{2} \left[\Omega_{s_1} |s_1\rangle_j \langle 1|_j \ e^{-i(\omega_{s_1} t - \varphi_{s_1})} + \Omega_{s_2} |s_2\rangle_j \langle 1|_j \ e^{-i(\omega_{s_2} t - \varphi_{s_2})} + \Omega_{r_1} |r_1\rangle_j \langle 0|_j \ e^{-i(\omega_{r_1} t - \varphi_{r_1})} + \Omega_{r_2} |r_2\rangle_j \langle 0|_j \ e^{-i(\omega_{r_2} t - \varphi_{r_2})} + \text{H.c.} \right] \right\},$$ \hspace{1cm} (3)

$$H_I = \sum_{j=1}^N \left[g_{s_1} |s_1\rangle_j \langle 0|_j + g_{r_1} |r_1\rangle_j \langle 1|_j + g_{s_2} |s_2\rangle_j \langle 0|_j + g_{r_2} |r_2\rangle_j \langle 1|_j + \text{H.c.} \right].$$ \hspace{1cm} (4)

In the Hamiltonians (2)-(4), $\omega_{s_1,2}$, $\omega_{r_1,2}$, and ω_1 are the atomic frequencies, $\varphi_{s_1,2}$ and $\varphi_{r_1,2}$ are the frequencies (phases) of Raman lasers, respectively, and H.c. denotes the Hermitian conjugate.
C. Two-mode Dicke model

By means of the Hamiltonian (1), we first realize a two-mode Dicke model with independently-tunable parameters. In the interaction picture with respect to the free Hamiltonian

\[H_0 = \tilde{\omega}_a a^\dagger a + \tilde{\omega}_b b^\dagger b + \sum_{j=1}^N \left(\tilde{\omega}_{r_1} |r_1\rangle_j \langle r_1|_j + \tilde{\omega}_{r_2} |r_2\rangle_j \langle r_2|_j + \tilde{\omega}_1 |1\rangle_j \langle 1|_j \right), \]

where \(\tilde{\omega}_a = \omega_{r_1} = (\omega_{0r_1} + \omega_{1s_1})/2, \tilde{\omega}_b = \omega_{r_2} = (\omega_{0r_2} + \omega_{1s_2})/2, \tilde{\omega}_1 = (\omega_{0r_1} - \omega_{1s_1})/2 = (\omega_{0r_2} - \omega_{1s_2})/2, \tilde{\omega}_r = \tilde{\omega}_1 + \tilde{\omega}_a, \) and \(\tilde{\omega}_r = \tilde{\omega}_1 + \tilde{\omega}_b, \) the Hamiltonian (1) can be rewritten as

\[\tilde{H} = \Delta_a a^\dagger a + \Delta_b b^\dagger b + \sum_{j=1}^N \left\{ \Delta_{r_1} |r_1\rangle_j \langle r_1|_j + \Delta_{r_2} |r_2\rangle_j \langle r_2|_j + \Delta_1 |1\rangle_j \langle 1|_j \right\}, \]

where \(\Delta_a = \omega_a - \omega_r, \Delta_b = \omega_b - \omega_r, \Delta_{r_1} = \omega_{r_1} - \omega_r, \Delta_{r_2} = \omega_{r_2} - \omega_r, \) and \(\Delta_1 = \omega_1 - \omega_r. \)

In the large-detuning limit, i.e., \(|\Delta_{r_1,2,s_1,2} | \gg |\Omega_{r_1,2}, \Omega_{s_1,2}, g_{r_1,2}, g_{s_1,2} |, \) all excited states can be eliminated adiabatically [43], and an effective Hamiltonian is obtained by

\[\tilde{H} = \omega_A a^\dagger a + \omega_B b^\dagger b + \omega_0 J_z + \eta a^\dagger a J_z \]
\[+ \left[\Delta_{r_1} |r_1\rangle_j \langle r_1|_j + \Delta_{r_2} |r_2\rangle_j \langle r_2|_j + \Delta_1 |1\rangle_j \langle 1|_j \right] \]
\[+ \left[\Omega_{r_1} e^{-i\varphi_1} + \Omega_{r_2} e^{-i\varphi_2} \right] J_+ \]
\[+ \left[\Omega_{s_1} e^{-i\varphi_1} + \Omega_{s_2} e^{-i\varphi_2} \right] J_- + \text{H.c.,} \]

where \(\eta = g_{r_1}^2/\Delta_{r_1} + g_{r_2}^2/\Delta_{r_2} - g_{s_1}^2/\Delta_{s_1} - g_{s_2}^2/\Delta_{s_2}, \)
\(J_+ = \sum_{j=1}^N |1\rangle_j \langle 0|_j, J_- = \sum_{j=1}^N |0\rangle_j \langle 1|_j, \) and \(J_z = \sum_{j=1}^N (|1\rangle_j \langle 0|_j - |0\rangle_j \langle 1|_j)/2 \) are the collective spin operators,

\[\tilde{\omega}_0 = \Delta_1 + \frac{1}{4} \left(\frac{\Omega_{s_1}^2}{\Delta_{s_1}} + \frac{\Omega_{s_2}^2}{\Delta_{s_2}} - \frac{\Omega_{r_1}^2}{\Delta_{r_1}} - \frac{\Omega_{r_2}^2}{\Delta_{r_2}} \right), \]

\[\omega_A = \Delta_a + \frac{1}{2} \left(\frac{N g_{r_1}^2}{\Delta_{r_1}} + \frac{N g_{s_1}^2}{\Delta_{s_1}} \right), \]

\[\omega_B = \Delta_b + \frac{1}{2} \left(\frac{N g_{r_2}^2}{\Delta_{r_2}} + \frac{N g_{s_2}^2}{\Delta_{s_2}} \right), \]

are the effective atomic resonant frequency and the effective frequencies of two photon modes \(a \) and \(b \), respectively, and

\[\lambda_{r_1} = \frac{1}{2} \frac{g_r \Omega_{r_1}}{\Delta_{r_1}}, \lambda_{s_1} = \frac{1}{2} \frac{g_r \Omega_{s_1}}{\Delta_{s_1}}, (i = 1, 2) \]

are the effective atom-photon coupling strengths.

When choosing \(g_{r_1}^2/\Delta_{r_1} = g_{s_1}^2/\Delta_{s_1}, \Omega_{r_1} g_{r_1}/\Delta_{r_1} = \Omega_{s_1} g_{s_1}/\Delta_{s_1}, \) and \(\varphi_{s_1} = -\varphi_{r_1} = \varphi_1, \) the Hamiltonian (1) turns into

\[\tilde{H} = \omega_A a^\dagger a + \omega_B b^\dagger b + \omega_0 J_z + \lambda_1 (a^\dagger a + b^\dagger b + \omega_0 J_z) \]
\[+ \lambda_2 (J_+ e^{-i\varphi_1} + J_- e^{i\varphi_2}) \]
\[+ \lambda_3 (J_- e^{-i\varphi_2} + J_+ e^{i\varphi_1}) (b^\dagger b + b), \]

where the effective atom-photon coupling strengths become

\[\lambda_1 = \frac{1}{2} \frac{\Omega_{r_1} g_{s_1}}{\Delta_{r_1}}, \]
\[\lambda_2 = \frac{1}{2} \frac{\Omega_{s_1} g_{r_1}}{\Delta_{s_1}}, \]

\[\lambda_3 = \frac{1}{2} \frac{\Omega_{r_1} g_{s_1}}{\Delta_{s_1}}, \]

If setting \(\varphi_1 = 0 \) and \(\varphi_2 = -\pi/2, \) the Hamiltonian (12) becomes

\[\tilde{H} = \omega_A a^\dagger a + \omega_B b^\dagger b + \omega_0 J_z \]
\[+ \lambda_1 J_z (a^\dagger + a) + \lambda_2 J_y (b^\dagger + b). \]

The Hamiltonian (15) is our required two-mode Dicke model, based on recent experiments of cavity-assisted Raman transitions [41, 42]. In contrast to the convolutional two-mode Dicke model achieved in the two-level atoms,
the Hamiltonian \(H \) has a distinct property that all parameters can be tuned independently. For example, the effective cavity frequencies \(\omega_A \) and \(\omega_B \) depend on the detunings \(\Delta_a \) and \(\Delta_b \), respectively; see Eqs. (9) and (10). Thus, they can range from the positive to the negative. The choice of the different cavity frequencies \(\omega_A \) and \(\omega_B \) help us to create a tunable two-axis spin Hamiltonian, as will be shown below. The effective atomic resonant frequency \(\omega_0 \) can also be controlled by the detuning \(\Delta_1 \); see Eq. (8). In addition, the effective atom-photon coupling strengths \(\lambda_1 \) and \(\lambda_2 \) can be driven by the Rabi frequencies of Raman lasers; see Eqs. (13) and (14).

D. Generalized two-axis spin Hamiltonian

In the following, we mainly consider the dispersive regime, i.e., \(\{|\omega_A|,|\omega_B|\} \gg \{\lambda_1,\lambda_2\} \). In such case, the photons are virtually excited, and we can use the Heisenberg equations of motion \[\dot{a} = -i(\lambda_1 J_x + \omega_A) = 0 \] and \[\dot{b} = -i(\lambda_2 J_y + \omega_B) = 0 \], to obtain \(a = -\lambda_1 J_x/\omega_A \) and \(b = -\lambda_2 J_y/\omega_B \). As a result, the Hamiltonian (16) becomes

\[
H = q(J_x^2 + J_y^2) + \omega_0 J_z,
\]

where

\[
q = -\frac{\lambda_1^2}{\omega_A},
\]

\[
\chi = \frac{\omega_A \lambda_2^2}{\omega_B \lambda_1^2}.
\]

In the Hamiltonian (10), the parameter \(q \) determines the nonlinear spin-spin interaction \(J_x^2 \) induced by the virtual photon, and the dimensionless parameter \(\chi \) reflects the ratio between the different nonlinear spin-spin interactions \(J_x^2 \) and \(J_y^2 \). Due to existence of these nonlinear spin-spin interactions with the dimensionless parameter \(\chi \) and the effective atomic resonant frequency \(\omega_0 \), here we call the Hamiltonian (10) as a generalized two-axis spin Hamiltonian. In addition, equations (8), (17), and (18) show clearly that all the parameters, including the interaction strength \(q \), the dimensionless parameter \(\chi \), and the effective atomic resonant frequency \(\omega_0 \), can also be tuned independently in experiments.

When chosen reasonable parameters, the generalized two-axis spin Hamiltonian (10) can reduce to some well-studied Hamiltonians. For example, when \(\chi > 0 \), the Hamiltonian (10) is a standard Lipkin-Meshkov-Glick model \[H_{\text{LMG}} = q(J_x^2 + \chi J_z^2) \]. When \(\omega_0 = 0 \), the Hamiltonian (10) reduces to a generalized two-axis twisting Hamiltonian \(H_{\text{GTAT}} = q(J_x^2 + \chi J_z^2) \). If further setting \(\chi = -1 \), a standard two-axis twisting Hamiltonian \(H_{\text{GTAT}} = q(J_x^2 - J_y^2) \) is derived. Finally, when \(\chi = 0 \), the Hamiltonian (10) turns into a generalized one-axis twisting Hamiltonian \(H_{\text{GOAT}} = qJ_x^2 + \omega_0 J_z \) \[H_{\text{GOAT}} = qJ_x^2 \] for \(\omega_0 = 0 \). These results imply that the Hamiltonian (10) has an important application in achieving the required spin squeezing.

Notice that when \(\omega_A < 0 \), the effective spin-spin interaction strength \(q > 0 \). Thus, we can use the initial state \(|J_z = -j\rangle \) to discuss spin squeezing of the generalized two-axis spin Hamiltonian (10). This initial state \(|J_z = -j\rangle \) can be easily prepared in experiments. In addition, combined with the effective atomic resonant frequency \(\omega_0 \), the dimensionless parameter \(\chi \) plays an important role in spin squeezing, as will be shown.

III. SPIN SQUEEZING FACTOR

In order to investigate spin squeezing, it is very necessary to consider the following time-dependent squeezing factor (11):

\[
\xi_S^2(t) = \frac{4}{N} \min \left| \Delta J_{\tilde{n}\perp}^2(t) \right|,
\]

where \(\tilde{n}_{\perp} \) refers to an axis, which is perpendicular to the mean-spin direction \(\tilde{n}_0 = \bar{J}/|J| \) with \(|J| = \sqrt{\langle J_x \rangle^2 + \langle J_y \rangle^2 + \langle J_z \rangle^2} \), and \(\Delta A^2 = \langle A^2 \rangle - \langle A \rangle^2 \) is the standard deviation. If \(|\xi_S^2(t)| < 1 \), the spin state is squeezed, and vice versa.

In the spherical coordinates, \(\tilde{n}_0 = (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta) \), where \(\theta = \arccos(\langle J_z \rangle / |J|) \), and \(\varphi = \arccos(\langle J_y \rangle / |J| \sin \theta) \) for \(\langle J_y \rangle > 0 \) or \(\varphi = 2\pi - \arccos(\langle J_y \rangle / |J| \sin \theta) \) for \(\langle J_y \rangle \leq 0 \). Two orthogonal bases are given by \(\tilde{n}_{1\perp} = (-\sin \varphi, \cos \varphi, 0) \) and \(\tilde{n}_{2\perp} = (-\cos \theta \cos \varphi, \cos \theta \sin \varphi, -\sin \theta) \). Thus, \(J_{\tilde{n}_{1\perp}} = \bar{J} \cdot \tilde{n}_{1\perp}, J_{\tilde{n}_{2\perp}} = \bar{J}_{\tilde{n}_{1\perp}} \cos \phi + \bar{J}_{\tilde{n}_{2\perp}} \sin \phi, \) and...
min(ΔJ^2_{n,±}) could be achieved when φ varies from 0 to 2π in the plane that is perpendicular to the mean-spin direction \(\mathbf{n}_0 \). It should be noticed that in experiments, the maximal squeezing factor \(\xi^2_M \) is usually measured as a function of \(\omega_0 \). Thus, in the following discussions, we mainly focus on this physical quantity.

Before proceeding, we check the validity of the Hamiltonian (16), when the initial state is chosen as \(|J_z = -j⟩ \). For the generalized two-axis spin Hamiltonian, it is very hard to obtain analytical result of the spin squeezing factor \(\xi(t) \). In Fig. 2, we numerically plot the corresponding spin squeezing factors \(\xi(t) \) of the Hamiltonians (15) and (16). It can be seen clearly that the results of the Hamiltonian (16) are almost identical to those of the Hamiltonian (15). Therefore, we will apply the Hamiltonian (16) to discuss the experimentally-measurable maximal squeezing factor \(\xi^2_M \) in the rest of this paper.

IV. MAXIMAL SQUEEZING FACTOR

We first address a simple case without the effective atomic resonant frequency (\(\omega_0 = 0 \)), in which the generalized two-axis spin Hamiltonian (16) reduces to the generalized two-axis twisting Hamiltonian \(H_{GTAT} = q(J_z^2 + \chi J_x^2) \). In Fig. 3, we numerically plot the maximal squeezing factor \(\xi^2_M \) of the Hamiltonian \(H_{GTAT} \) as a function of the atomic number \(N \) for the different dimensionless parameters \(\chi \), when the initial state is chosen as \(|J_z = -j⟩ \). This figure shows clearly that when \(\chi = 0 \), the generalized two-axis twisting Hamiltonian \(H_{GTAT} \) becomes the standard one-axis twisting Hamiltonian \(H_{OAT} = qJ_z^2 \), whose maximal squeezing factor \(\xi^2_M \) scales as \(N^{-2/3} \) [1]. When increasing the dimensionless parameter \(\chi \), the maximal squeezing factor \(\xi^2_M \) decreases, i.e., spin squeezing is enhanced. In particular, when \(\chi = -1 \), the Hamiltonian \(H_{GTAT} \) turns into the standard two-axis twisting Hamiltonian \(H_{TAT} = q(J_z^2 - J_y^2) \), whose maximal squeezing factor \(\xi^2_M \) scales as \(N^{-1} \) [1], as expected. In addition, the maximal squeezing factor \(\xi^2_M \) as a function of the dimensionless parameter \(\chi \) is also plotted in the insert part of Fig. 5. This figure shows that \(\chi = -1 \) is an optimal point to achieve the maximal squeezing factor \(\xi^2_M \) of the generalized two-axis twisting Hamiltonian \(H_{GTAT} \).

In real experiments, the effective atomic resonant frequency \(\omega_0 \) always exists. In Fig. 4, we numerically plot the maximal squeezing factor \(\xi^2_M \) of the Hamiltonian \(H = q(J_z^2 - J_y^2) + \omega_0 J_z \) as a function of the effective atomic resonant frequency \(\omega_0 \), when the the initial state is chosen as \(|J_z = -j⟩ \). It can be seen from this figure that with the increasing of the effective atomic resonant frequency \(\omega_0 \) in the standard two-axis twisting Hamiltonian \(H_{TAT} \), the maximal squeezing factor \(\xi^2_M \) increases, i.e., spin squeezing is reduced.

From the above discussions, we argue that when increasing the dimensionless parameter \(\chi \) (from \(\chi = -1 \)) or introducing the effective atomic resonant frequency \(\omega_0 \) in the standard two-axis twisting Hamiltonian \(H_{TAT} \), the maximal squeezing factor \(\xi^2_M \) increases, i.e., spin squeezing is reduced. Surprisingly, when we control these two parameters simultaneously, spin squeezing can be enhanced largely. To see this clearly, in Fig. 6, we numerically plot the maximal squeezing factors \(\xi^2_M \) of the generalized two-axis spin Hamiltonian (16), i.e., \(H = q(J_z^2 + \chi J_x^2) + \omega_0 J_z \), as a function of the effective atomic resonant frequency \(\omega_0 \) for the different dimensionless parameters \(\chi \), when the initial state is chosen as \(|J_z = -j⟩ \). This figure shows that in the case of \(\chi = -0.05 \) or \(\chi = -0.5 \), when increasing the effective atomic resonant frequency \(\omega_0 \), the maximal squeezing factor \(\xi^2_M \) first de-
creases largely and then increases, i.e., spin squeezing is first enhanced largely and then reduced. For the generalized one-axis twisting model $H_{\text{GOAT}} = qJ_f^2 + \omega_0 J_z$, the maximal squeezing factor ξ_2^s has a similar behavior (see green dash-dot line in Fig. 5) [18], but its magnitude cannot arrive at the order of our considered two-axis spin Hamiltonian [10] because these two Hamiltonians have different scalings with respect to the atomic number N. These results are benefit for achieving the required spin squeezing in experiments.

V. DISCUSSIONS

Finally, we estimate the relative parameters, based on recent experiments. Two stable ground states are chosen respectively as $|G_0\rangle = |F = 1, m_F = 1\rangle$ and $|G_1\rangle = |F = 2, m_F = 2\rangle$ of ultracold rubidium 87 atoms, where F is the total angular momentum and m_F is the magnetic quantum number. It means that the atomic decay rate is $\gamma/2\pi = 3.0$ MHz, which is the same order as the photonic decay rate $\kappa/2\pi = 1.3$ MHz [11, 12]. In such system, the atom-photonic coupling strengths can reach $g_{s_1}/2\pi = 20$ MHz and $g_{s_2}/2\pi = 15$ MHz, respectively. When $\Omega_{s_1}/2\pi = 20$ MHz and $\Delta_{s_1}/2\pi = 100$ MHz, which is responsible for deriving Eq. (11), $\lambda_1/2\pi = 2$ MHz, and thus $q/2\pi = 0.2$ MHz for $\omega_A/2\pi = -20$ MHz. This choice of the detuning ω_A also satisfies the dispersive condition, which is a key condition to realize our generalized two-axis spin Hamiltonian [10]. For the dimensionless parameter χ, it can be easily controlled by tuning both the detuning ω_B and the Rabi frequency Ω_{s_2}. When $N = 100$, numerical result shows that the shortest time for generating the maximal squeezing factor ξ_2^s is about $t_m \simeq 20$ ns [see, for example, in the insert part of Fig. 4], which is shorter than both the atomic and photonic life-times γ^{-1} and κ^{-1}. With the increasing of the atomic number N and the atom-photonic coupling strength g_{s_1}, t_m becomes shorter and shorter. This indicates that our proposal can be accessible in the current experimental setups.

VI. CONCLUSIONS

In summary, we have proposed an experimentally-feasible system, in which an ensemble of ultracold six-level atoms interacts with two quantized cavity fields and two pairs of Raman lasers, to realize a generalized two-axis spin Hamiltonian $H = q(J_f^2 + \chi J_z^2) + \omega_0 J_z$. We have numerically calculated the experimentally-measurable maximal squeezing factor and revealed that when $\omega_0 = 0$ and $\chi = -1$, the maximal squeezing factor ξ_2^s scales as N^{-1}. More importantly, we have found that by combined with the dimensionless parameter $\chi (> -1)$, the effective atomic resonant frequency ω_0 can enhance spin squeezing largely. Our results are benefit for achieving the required spin squeezing in experiments, and have a potential application in quantum information and quantum metrology.

VII. ACKNOWLEDGEMENTS

This work is supported in part by the 973 program under Grant No. 2012CB921603; the NNSFC under Grant No. 11422433, No. 11434007, No. 11447028, No. 61227902, and No. 61275211; the PCSIRT under Grant No. IRT13076; the NCET under Grant No. 13-0882; the FANEDD under Grant No. 201316; ZJNSF under Grant No. LY13A040001; OYTPSP; and SSCC.

[1] M. Kitagawa and M. Ueda, *Squeezed spin states*, Phys. Rev. A **47**, 5138 (1993).
[2] J. Ma, X. Wang, C. P. Sun, and F. Nori, *Quantum spin squeezing*, Phys. Rep. **509**, 89 (2011).
[3] N. P. Robins, P. A. Altin, J. E. Debs, and J. D. Close, *Atom lasers: production, properties and prospects for precision inertial measurement*, Phys. Rep. **529**, 265 (2013).
[4] L. -M. Duan, A. Sørensen, J. I. Cirac, and P. Zoller, *Squeezing and entanglement of atomic beams*, Phys. Rev. Lett. **85**, 3991 (2000).
[5] A. Sørensen, L. -M. Duan, J. I. Cirac, and P. Zoller, *Many-particle entanglement with Bose-Einstein condensates*, Nature (London) **409**, 63 (2001).
[6] R. J. Sewell, M. Koschorreck, M. Napolitano, B. Dubost, N. Behbood, and M. W. Mitchell, *Magnetic sensitivity beyond the projection noise limit by spin squeezing*, Phys. Rev. Lett. **109**, 253605 (2012).
[7] G. Santarelli, P. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N. Luiten, and C. Salomon, *Quantum projection noise in an atomic fountain: a high stability cesium frequency standard*, Phys. Rev. Lett. **82**, 4619 (1999).
[8] K. Hammerer, A. S. Sørensen, and E. S. Polzik, *Quantum interface between light and atomic ensembles*, Rev. Mod. Phys. **82**, 1041 (2010).
[9] K. Helmerson and L. You, *Creating massive entanglement of Bose-Einstein condensed atoms*, Phys. Rev. Lett. **87**, 170402 (2001).
[10] I. Bouchoule and K. Mølmer, *Spin squeezing of atoms by the dipole interaction in virtually excited Rydberg states*, Phys. Rev. A **65**, 041803 (2002).
[11] M. Zhang, K. Helmerson, and L. You, *Entanglement and spin squeezing of Bose-Einstein-condensed atoms*, Phys. Rev. A **68**, 043622 (2003).
[12] Y. C. Liu, Z. F. Xu, G. R. Jin, and L. You, *Spin squeezing: transforming one-axis twisting into two-axis twisting*, Phys. Rev. Lett. **107**, 013601 (2011).
[13] C. Shen and L. M. Duan, *Efficient spin squeezing with optimized pulse sequences*, Phys. Rev. A **87**, 051801 (2013).
[14] J. Y. Zhang, X. F. Zhou, G. C. Guo, and Z. W. Zhou, *Dy-
Section of text from the document.