FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: COLD OUTER DISKS ASSOCIATED WITH SUN-LIKE STARS

Jinyoung Serena Kim,1 Dean C. Hines,2 Dana E. Backman,3 Lynne A. Hillenbrand,4 Michael R. Meyer,1 Jens Rodmann,5 Amaya Moro-Martín,6 John M. Carpenter,4 Murray D. Silverstone,1 Jeroen Bouwman,5 Eric E. Mamajek,7 Sebastian Wolf,4 Renu Malhotra,3 Ilaria Pascucci,1 Joan Najita,9 Deborah L. Padgett,10 Thomas Henning,5 Timothy Y. Brooke,4 Martin Cohen,11 Stephen E. Strom,9 Elizabeth B. Stobie,1 Charles W. Engelbracht,1 Karl D. Gordon,1 Karl Misselt,1 Jane E. Morrison,2 James Muzerolle,1 and Kate Y. L. Su1

Received 2005 March 2; accepted 2005 June 17

ABSTRACT

We present the discovery of debris systems around three Sun-like stars based on observations performed with the Spitzer Space Telescope as part of a Legacy Science Program, “The Formation and Evolution of Planetary Systems” (FEPS). We also confirm the presence of debris around two other stars. All the stars exhibit infrared emission in excess of the expected photospheres in the 70 µm band but are consistent with photospheric emission at ≤33 µm. This restricts the maximum temperature of debris in equilibrium with the stellar radiation to T < 70 K. We find that these sources are relatively old in the FEPS sample, in the age range 0.7–3 Gyr. On the basis of models of the spectral energy distributions, we suggest that these debris systems represent materials generated by collisions of planetesimal belts. We speculate on the nature of these systems through comparisons to our own Kuiper Belt, and on the possible presence of planet(s) responsible for stirring the system and ultimately releasing dust through collisions. We further report observations of a nearby star HD 13974 (d = 11 pc) that are indistinguishable from a bare photosphere at both 24 and 70 µm. The observations place strong upper limits on the presence of any cold dust in this nearby system (L_{IR}/L_* < 10^{-3.2}).

Subject headings: circumstellar matter — planetary systems: formation — stars: formation

1. INTRODUCTION

Studying the formation of our own solar system and observing the frequency of similar systems associated with other stars are two ways in which we seek to understand our origins. Through remote observation and direct exploration, we have developed a much clearer understanding of our solar system. However, many questions about the processes involved in the initial formation and subsequent evolution toward the present configuration cannot be addressed directly. Therefore, we need to study other stars to help place our solar system in context.

There are two major zones of debris in the solar system: the asteroid belt at 2–4 AU composed of rocky material that is ground up by collisions to produce most of the zodiacal dust and the Kuiper Belt (KB) that consists of small bodies orbiting beyond Neptune’s orbit at 30–50 AU. Since their discovery over a decade ago (Jewitt & Luu 1993), KB objects have played an increasingly important role in understanding the formation and evolution of our planetary system (e.g., Malhotra 1993; Kenyon & Bromley 2004). While direct detection of in situ debris from collisions among KB objects has yet to be confirmed, of order 10% of the solar system’s far-IR luminosity could be emitted by KB dust (e.g., Backman et al. 1995). Searching for KB-like debris around other Sun-like stars as a function of age will both determine the frequency of such systems and provide important insight into the formation of our solar system.

Most debris disks were found by their mid-to-far infrared emission in excess of the expected photosphere (e.g., Auman et al. 1984; Backman & Paresce 1993; Mannings & Barlow 1998; Habing et al. 1999; Silverstone 2000; Spangler et al. 2001; Decin et al. 2003; Zuckerman & Song 2004). The majority of these debris disks are also associated with hot, luminous stars, since observatories such as Infrared Astronomical Satellite (IRAS) and Infrared Space Observatory (ISO) did not have the necessary sensitivities to detect debris disks around lower luminosity solar-type stars at distances greater than a few parsecs.

The increased sensitivity afforded by the Spitzer Space Telescope (Spitzer; Werner et al. 2004) has the potential to identify and investigate debris systems that were not detectable with previous observatories. Using data from the Formation and Evolution of Planetary Systems (FEPS) Spitzer Legacy Program, we have conducted a search for outer dust disks dominated by temperatures characteristic of the KB (T ~ 30–60 K). The earliest results from our validation observations are presented in Meyer et al. (2004), where we identified such debris disks (exo-KBs) surrounding the 30 Myr old Sun-like star HD 105 and the 0.4–1 Gyr old star HD 150706. Here we present five more Sun-like stars that exhibit characteristics of exo-KBs and...
discuss their properties in the context of the evolution of our own solar system. We also present one star that has a firm detection at 70 \(\mu \)m, but the measurement is consistent with photospheric emission from the star. In this case, we place unprecedented low upper limits on the presence of KB-like debris in this system.

In \(\S \) 2, we describe the observations and data reduction. In \(\S \) 3, we discuss the methodology for identifying the five exo-KB candidate stars from the FEPS sample, and we present the resulting spectral energy distributions (SEDs). We outline our interpretation of the SEDs in terms of physical models in \(\S \) 4. We discuss the implications of our results in \(\S \) 5 and summarize our findings in \(\S \) 6.

2. OBSERVATIONS AND DATA REDUCTION

The FEPS program is described by Meyer et al. (2004) and M. R. Meyer et al. (2005, in preparation), and a detailed description of the data acquisition and data reduction for the FEPS program is given in the FEPS Version 1.1 Explanatory Supplement (Hines et al. 2004). In this section, we present a condensed description as it applies to the five targets investigated herein. Observational details are listed for each star in Table 1. Imaging data were obtained with the Multiband Imaging Photometer for Spitzer (MIPS; Rieke et al. 2004) in the 24 and 70 \(\mu \)m bands using small field photometry mode with 2–10 cycles of 3 and 10 s integration times, respectively; each piece of such a data set is a data collection event (DCE). After initial processing by the Spitzer Science Center (SSC) version S10.5.0 pipeline to provide reconstructed pointing information, we used the MIPS Data Analysis Tool (DAT) software (Gordon et al. 2004, 2005) to process the data.

For the 24 \(\mu \)m data, read-2 correction, dark subtraction, droop correction, electronic nonlinearity correction, scan mirror–dependent flat fields, cosmic-ray rejection, and distortion correction were applied. We produced both individual DCE frames and a mosaic image using all DCE frames. Outlier rejection of each pixel was performed for a mosaic image. The typical number of total DCE frames per source used for photometry was 28 for 2 cycles. For the 70 \(\mu \)m data, dark subtraction, illumination correction, and cosmic-ray identification/rejection were applied. The electronic nonlinearity of the detector was corrected. Gordon et al. (2004, 2005) note in their investigation that this nonlinearity is \(\lesssim 1\% \), much smaller than absolute calibration uncertainties of 20\% (see the Spitzer Observers Manual 4.6 [SOM 4.6] and the MIPS Data Handbook 2004). A “time-filtering” algorithm as described by Gordon et al. (2004, 2005) was used to eliminate time-dependent gain drifts. All 70 \(\mu \)m flux measurements were performed on the distortion-corrected final mosaic image.

We used the IDL-based software package IDP3 (Schneider & Stobie 2002) to perform aperture photometry on the 24 and 70 \(\mu \)m data. IDP3 was developed by the Instrument Definition Team for the Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) and has been further optimized for the Spitzer IRAC and MIPS data. Object fluxes were measured using standard aperture photometry techniques. For the 24 \(\mu \)m photometry, we adopted a 14.7 aperture radius and a background annulus from 29.7 to 41.7 to perform aperture photometry on the distortion-corrected individual DCE frames. For the 70 \(\mu \)m photometry we used a target aperture radius of 29.7 and a background annulus of 39.6–79.2 on the single mosaic image. Aperture correction factors, listed in SOM 4.6, were then applied.

For HD 8907, we used a smaller target aperture (19.7) with the same background annulus at 70 \(\mu \)m to avoid contamination by a nearby source. We also placed a mask on the nearby source to minimize any contribution from the wings of the point-spread function to the background annulus. The aperture correction for this smaller aperture was derived relative to the standard aperture using 70 \(\mu \)m observations from other bright and isolated FEPS stars. The uncertainty in this small-aperture correction is \(\sim 1.2\% \).

The 24 \(\mu \)m flux uncertainties are reported in Table 2 and include both the standard deviation of the mean flux density for

Source	IRAC Obs. Date	IRAC AOR key	MIPS Obs. Date	MIPS AOR key
HD 6963	2004 8/06	5387776	2004 8/07	5395968
HD 8907	2004 7/25	5361920	2005 1/02	5362176
HD 13974	2004 8/14	5410816	2004 8/07	5411072
HD 122652	2004 6/29	5427112	2004 6/06	5427837
HD 145229	2004 7/19	5387264	2004 7/17	5387530
HD 206374	2004 7/04	5414656	2004 6/06	5414912

Notes.—Photometry in units of mJy. Uncertainties include both internal and absolute calibration uncertainties. See \(\S \) 2 for more discussion.

* 33 \(\mu \)m synthetic photometry from IRS low-resolution spectra.
individual DCEs, which is an estimate of the internal precision of our measurement, and the absolute calibration uncertainty. The 70 μm internal uncertainty is estimated by the rms pixel-to-pixel dispersion inside the background annulus measured on the mosaic image and scaled to the area of the target aperture. The total uncertainty for both bands is the internal uncertainty combined (i.e., added in quadrature) with the calibration uncertainty. The calibration uncertainties for 24 and 70 μm photometry are 10% and 20%, respectively (see SOM 4.6 and MIPS Data Handbook 2004). Note that the 70 μm internal uncertainties are much smaller than absolute calibration uncertainty, and the internal signal-to-noise ratio is very high for our detected objects. It is our knowledge of the absolute flux density in physical units that retains the large uncertainties in Table 2.

Infrared Array Camera (IRAC; Fazio et al. 2004) observations at 3.6, 4.5, and 8.0 μm were also obtained for each object using the 32 x 32 pixel subarray mode with an effective integration time of 0.01 s per image (frame time of 0.02 s). Sixty-four images of the object were obtained at four different positions in a random dither pattern on the array. This gives a total of 256 images (2.56 s total integration time) per band. We used the basic calibrated data (BCD) products produced by the SSC S10.5.0 data pipeline as described in SOM 4.6. Aperture photometry was performed with IDP3 using a 3 pixel radius aperture centered on the target. The background was estimated using the 820 pixels that lie beyond a 5–6 pixels in the center of the orders. Residual “sky” emission was subtracted using adjacent pixels. Random errors were calculated from the difference between the two independent spectra, then added in quadrature with an estimated 14% uncertainty in absolute flux calibration. A more detailed discussion of the IRS data reduction and extraction is presented in J. Bouwman et al. (2005, in preparation).

3. SPECTRAL ENERGY DISTRIBUTIONS OF FIVE EXO-KUIPER BELTS

As part of the ongoing analysis of the FEPS database, we have looked for stars that are detected at 70 μm but show no significant excesses above the stellar photospheres for λ ≤ 33 μm. This criterion restricts the equilibrium temperature and inner radius of a significant dust component to $T < 70$ K and $R_m \geq 10$ AU for dust in thermal equilibrium around a star with $1 L_\odot$. Three other parallel investigations based on FEPS observations will concentrate on stars that have (1) young optically thick disks detected by IRAC, which focus on determining the evolutionary timescale of the inner disks (Silverstone et al. 2005); (2) strong emission at 24 μm but weak emission at 70 μm, indicating material at temperatures approaching those of our solar system’s asteroid belt and terrestrial planets (Hines et al. 2005); and (3) infrared excess indicating a broad range of temperatures characteristic of both terrestrial zones and KBs (J. Bouwman et al. 2005, in preparation).
et al. 2005, in preparation). The focus of this study is on stars that are dominated by excess infrared emission suggestive of KB-like disks.

Five stars were selected from the FEPS data obtained between 2004 May 28 (MIPS campaign 8) and 2004 September 25 (MIPS campaign 13), that have \(\geq 3 \sigma \) excess at 70 \(\mu \)m, but that are consistent with photospheric emission \((<3 \sigma \) excess\) \(\leq 33 \mu \)m. Three of the objects are newly discovered debris systems (HD 6963, HD 145229, and HD 206374), while two of the objects were previously identified as having an infrared excess (HD 8907 and HD 122652; Silverstone 2000; Zuckerman & Song 2004, respectively) from \textit{IRAS} observations. We note that one object, HD 8907, is one of 10 stars with known excess sources, which was included in the FEPS targets for the purposes of a gas emission line search. A sixth star, HD 13974, was also detected at 70 \(\mu \)m with a high signal-to-noise ratio, but in this case the 70 \(\mu \)m flux density is consistent with emission from the photosphere to within 1 \(\sigma \) uncertainty.

\textit{Spitzer} photometry for the five stars is presented in Table 2, and the SEDs are shown in Figures 1 and 2. Mid-infrared spectra are also displayed for all the objects. We use the “average weighted” wavelengths of IRAC and MIPS bands as suggested by SOM. Color corrections have not been applied. The magnitudes of these corrections are expected to be smaller than the present absolute calibration uncertainties (see the IRAC and MIPS data handbooks\(^{12}\)).

The expected photospheric emission for each star was determined by fitting Kurucz model atmospheres with convective overshoot to published optical photometry including, if available, Johnson \textit{BV}, Strömgren \textit{vby}, \textit{Tycho BV}, \textit{Hipparcos Hp},

\(^{12}\) See http://ssc.spitzer.caltech.edu.
Cousins RI, and 2MASS JHK_s measurements. Predicted magnitudes in each filter were computed by multiplying the Kurucz model with the combined system response of the filter, the atmospheric transmission (for ground-based observations), and the spectral response function of the detector as outlined in a series of papers by Cohen et al. (2003a, 2003b), and references therein. The Johnson U and Strömgren u filters were excluded from the model fits because the observed photometry shows large deviations from the model values explained in part by chromospheric activity common in young late-type stars. The best-fit Kurucz model was computed in a least-squares sense with the effective temperature and normalization constant as free parameters. The metallicity was fixed at $\frac{[Fe/H]}{C_{138}} = 0.0$ and the surface gravity at $\log(g/\text{cm s}^{-2}) = 4.5$. In addition, each of the stars is within the Local Bubble (see, e.g., Welsh et al. 1998), and the visual extinction was fixed at $A_V = 0$ mag. The stellar parameters used in the Kurucz models, and additional properties of the stars, including their distance and estimated ages, are listed in Table 3.

The deviation from the stellar photospheres at $\lambda \sim 70 \mu\text{m}$ is readily apparent for HD 6963, HD 8907, HD 122652, HD 145229, and HD 206374 (Fig. 1). The $70 \mu\text{m}$ emission from HD 13974 is consistent with the stellar photosphere (Fig. 2) within the uncertainty of $70 \mu\text{m}$ flux. Figure 3 shows the significance of the $70 \mu\text{m}$ excesses relative to the Kurucz model atmospheres for the five excess stars compared with the distribution for the other stars in the FEPS version 1.1 data release. Figure 4 also illustrates the excess in a color-color space that is sensitive to the color temperature of the excess ($f_{24\mu\text{m}}/f_{K_s}$ vs. $f_{70\mu\text{m}}/f_{K_s}$). Large filled circles in Figure 4 are sources with $70 \mu\text{m}$ detections, and small open circles with arrows are 1σ upper limits for nondetections. This plot has the virtue of also capturing the lack of strong $24 \mu\text{m}$ excesses in these targets.

Note that the $24 \mu\text{m}$ excess of HD 12039 is well separated from the other targets; this star is unique within the FEPS program in exhibiting only warm debris dust and is discussed in detail in Hines et al. (2005). The location of HD 13974 in this plot agrees well with 1σ upper limits of $70 \mu\text{m}$ nondetections.

The deviation from the stellar photospheres at $\lambda \sim 70 \mu\text{m}$ is readily apparent for HD 6963, HD 8907, HD 122652, HD 145229, and HD 206374 (Fig. 1). The $70 \mu\text{m}$ emission from HD 13974 is consistent with the stellar photosphere (Fig. 2) within the uncertainty of $70 \mu\text{m}$ flux. Figure 3 shows the significance of the $70 \mu\text{m}$ excesses relative to the Kurucz model atmospheres for the five excess stars compared with the distribution for the other stars in the FEPS version 1.1 data release. Figure 4 also illustrates the excess in a color-color space that is sensitive to the color temperature of the excess ($f_{24\mu\text{m}}/f_{K_s}$ vs. $f_{70\mu\text{m}}/f_{K_s}$). Large filled circles in Figure 4 are sources with $70 \mu\text{m}$ detections, and small open circles with arrows are 1σ upper limits for nondetections. This plot has the virtue of also capturing the lack of strong $24 \mu\text{m}$ excesses in these targets. Note that the $24 \mu\text{m}$ excess of HD 12039 is well separated from the other targets; this star is unique within the FEPS program in exhibiting only warm debris dust and is discussed in detail in Hines et al. (2005). The location of HD 13974 in this plot agrees well with 1σ upper limits of $70 \mu\text{m}$ nondetections.

In the next section we use the observed SEDs to constrain the properties of the detected debris systems. For HD 13974 the $70 \mu\text{m}$ detection is consistent the photosphere, placing stringent limits on any KB-like excess. For those objects that were not

Table 3

Adopted Stellar Properties

Source	R.A. (J2000.0)	Decl. (J2000.0)	Distance (pc)	Age (Gyr)	Spectral Type	T_{eff} (K)	L (L_\odot)
HD 6963	01 10 41.91	+42 55 54.50	27	1–3	K0	5517	0.55
HD 8907	01 28 34.35	+42 16 03.70	34	0.3–1	F8	6250	2.05
HD 13974	02 17 03.23	+34 13 27.32	11	1–3	G0/(G9–K4)a	6215/4493b	1.18c
HD 122652	14 02 31.63	+31 39 39.09	37	1–3	F8	6157	1.55
HD 145229	16 09 26.63	+11 34 28.25	33	0.3–1	G0	5893	0.96
HD 206374	21 41 06.19	+26 45 02.25	27	1–3	G6.5	5580	0.74c

a From Duquennoy & Mayor (1988), Hummel et al. (1995).

b See § 5.3 for more discussion.

c Stellar luminosity was estimated from V_{mag}, distance, and bolometric correction for the star’s temperature and spectral class.
detected at 70 μm, we are still able to place upper limits on the presence of a debris system.

4. DEBRIS DISK MODELS

We model our debris disks assuming optically thin dust in thermal equilibrium with the stellar radiation field. In this case, the temperature of a dust grain with a given chemical composition and grain size depends on the radial distance to the central star only. The fact that the SEDs do not significantly deviate from the photosphere for λ ≤ 33 μm places the maximum temperature for the detected dust grains at ~100 K. This suggests a minimum equilibrium distance from the stars ≥10 AU, assuming grains similar in size or larger than those found in our own zodiacal dust cloud (radius a ~ 10–100 μm; Reach et al. 2003).

The dust grains are subject to radiation pressure and Poynting-Robertson (P-R) drag, and the action of both mechanisms places limits on the time that the dust remains in the system. Very small grains will be ejected from the system by radiation pressure, while larger grains will suffer P-R drag and spiral toward the central star. A detailed prescription for computing “blowout” sizes and P-R drag timescales is given in Burns et al. (1979) for the solar system and are derived for a range of extrasolar systems by Artymowicz (1988) and Backman & Paresce (1993). Particles smaller than ~1 μm have a blown out time <10^2 yr. We consider grains to be no longer important contributors to the SED when they travel a factor of 4 farther from the star than their position of creation in the main dust belt. At these distances, the grain temperature is one-half the initial temperature, and the grain emits at a twice the initial wavelength.

We consider such a grain to no longer be contributing to the main excess SED, and it in effect has left the system. Grains blown out from points of origins a few tens of AU from a solar type star will leave a system by this definition in at most a few hundred years.

Particles larger than ~1 μm will be subject to slow P-R inward drift and will be destroyed on timescales of 10^6–10^7 yr for particle sizes of ~1–10 μm (timescale linearly proportional to particle size) starting from distances of order r ~ 10 AU (timescale proportional to r^2). This timescale is very short compared to the age of the systems (see Table 3), which suggests that the debris in these systems is being replenished by a parent population of objects, a putative KB.

From these arguments, we can build simple models of the debris systems. Below we develop models for five of the objects that have limited photometry beyond 24 μm. For HD 8907, where we have more photometric constraints on the SED, we explore a more comprehensive model.

4.1. Simple Blackbody Grain Models

Blackbody models of the detected debris disks were based on excess color temperature (Tc), estimated from the two shortest broadband wavelengths with ≥1 σ excess (including the synthetic band at 33 μm using IRS long-low data)—blackbody grains by definition absorb and emit radiation efficiently at all relevant wavelengths. For each object, the solid angle, Ω, subtended by the emitting material as seen from the central star was calculated from Tc and excess Fc, using the Planck formula. This value for Ω in turn was converted to (1) total grain emitting cross-sectional area, A, (2) grain luminosity using A, using the system distance, (2) grain luminosity using A, and T in the Stefan-Boltzmann formula for blackbody luminosity, and (3) grain mass assuming a constant per-grain mass density of 2.5 g cm^{-3} for solid "astronomical silicate" (Draine & Lee 1984) and grain radius 10 μm for efficient emission at 70 μm. The 10 μm radius grain is the smallest size that acts as a blackbody at 70 μm. The uncertainty in blackbody temperature estimate (Tc) is about 10%.

In all cases, the flux densities between 33 and 70 μm are increasing, suggesting that we are observing the Wien side of the dust excess SED; thus, Tc is interpreted as an estimate of the maximum dust temperature. The corresponding minimum distance from the star of the emitting material Rm was found from the estimated maximum Tc and the relevant Lc using the formula for blackbody grains in Backman & Paresce (1993). The relationship between grain temperature, position (Rm), and primary star luminosity (eq. [3] of Backman & Paresce 1993) for grains larger than a ~ 10 μm that emit efficiently at 70 μm and have negligible albedo is

\[T_c = \frac{278 L_*^{1/4} R_m^{-1/2}}{K}, \]

(1)

where L* is in units of L☉, 3.9 × 10^{33} ergs s^{-1}. The model fit parameters and masses are presented in Table 4, and Figure 1 shows simple model SEDs.

The blackbody models also allow estimates of the mass in the radiating grains. Because (1) these calculations made use of a maximum dust temperature and corresponding inner radius (Rm), (2) lack of photometric measurements or even useful upper limits beyond the apparent peak of excess emission (70 μm) prevents useful characterization of the dust outer boundary radius, and (3) grains larger than the minimum size assumed here would radiate the same blackbody SED but would have a higher ratio of mass to surface area, the values of LIR/Lc and Md in Table 4 characterize the portion of the SED observable out to 70 μm; future observations at longer wavelengths could conceivably indicate more luminosity and dust mass.

We note that debris disk models comprised of grains slightly larger than the blowout size (~1 μm) cannot be ruled out based on simple fits to the SED. Such a model (based on a temperature vs. position function given in eq. [5] of Backman & Paresce 1993) requires an Rm of ~270 AU for a solar luminosity star and

\[\text{A density of 2.5 g cm}^{-3} \text{ was chosen to represent generic silicate fragments of asteroid-like planetesimals, to compare to the mean value of densities determined for 10 asteroids ~2.4 g cm}^{-3}; \text{http://aa.usno.navy.mil/hilton/asteroid...masses.htm.} \]
a dust mass ~3 larger than the lower limit given above. We
comment on the likelihood of this model in § 5.4.

4.2. Detailed Modeling of HD 8907

The simple blackbody grain model yields \(T_c = 48 \) K, the
inner radius \(R_{in} = 48 \) AU, a dust to stellar luminosity ratio
\(\log(L_{BR}/L_\star) = -3.64 \), and a dust mass \(\log(M_{d}/M_\star) = -3.08 \)
for 10 \(\mu \)m radius blackbody grains with grain density 2.5 g cm\(^{-3}\).

The detection of significant excess emission from HD 8907
at several wavelengths allows us to conduct a more thorough
analysis of that system. Therefore we modeled the SED of HD
8907 using the dust disk models of Wolf & Hillenbrand (2003,
hereafter WH03, 2005). We used the Levenberg-Marquardt al-
algorithm to solve the least-squares problem, giving a best-fit
model to the data. The fit for three parameters simultaneously in a
constrained fit for three parameters simultaneously in a
dust disk model (Marquardt 1963; see also the Markwardt IDL
algorithm) to solve the least-squares problem, giving a best-fit
model to the data. The fit for three parameters simultaneously in a
dust disk model (Marquardt 1963; see also the Markwardt IDL
algorithm) to solve the least-squares problem, giving a best-fit
model to the data. The fit for three parameters simultaneously in a
dust disk model (Marquardt 1963; see also the Markwardt IDL
algorithm) to solve the least-squares problem, giving a best-fit
model to the data. The fit for three parameters simultaneously in a
dust disk model (Marquardt 1963; see also the Markwardt IDL
algorithm) to solve the least-squares problem, giving a best-fit
model to the data. The fit for three parameters simultaneously in a
dust disk model (Marquardt 1963; see also the Markwardt IDL
algorithm) to solve the least-squares problem, giving a best-fit
model to the data. The fit for three parameters simultaneously in a
dust disk model (Marquardt 1963; see also the Markwardt IDL
algorithm) to solve the least-squares problem, giving a best-fit
model to the data. The fit for three parameters simultaneously in a
dust disk model (Marquardt 1963; see also the Markwardt IDL
algorithm) to solve the least-squares problem, giving a best-fit
model to the data. The fit for three parameters simultaneously in a
dust disk model (Marquardt 1963; see also the Markwardt IDL
algorithm) to solve the least-squares problem, giving a best-fit
model to the data. The fit for three parameters simultaneously in a
dust disk model (Marquardt 1963; see also the Markwardt IDL
algorithm) to solve the least-squares problem, giving a best-fit
model to the data. The fit for three parameters simultaneously in a
dust disk model (Marquardt 1963; see also the Markwardt IDL
algorithm) to solve the least-squares problem, giving a best-fit
model to the data. The fit for three parameters simultaneously in a
dust disk model (Marquardt 1963; see also the Markwardt IDL
algorithm) to solve the least-squares problem, giving a best-fit
model to the data. The fit for three parameters simultaneously in a
dust disk model (Marquardt 1963; see also the Markwardt IDL
algorithm) to solve the least-squares problem, giving a best-fit
model to the data. The fit for three parameters simultaneously in a
dust disk model (Marquardt 1963; see also the Markwardt IDL
algorithm) to solve the least-squares problem, giving a best-fit
model to the data. The fit for three parameters simultaneously in a

4.3. On the Presence of Warm Dust Mass Within \(R_{in} \)

The selection of debris disks for this investigation is purposely
biased against objects with debris at temperatures warmer than
~100 K. However, in our own solar system we observe a warm
component associated with debris from the asteroid belt. Such
a warm component, albeit faint, has also been verified in other
debris systems, e.g., around an A-star HR 4796A (e.g., Koerner
et al. 1998), and recently with high-resolution imaging of the five Sun-like stars presented herein.

![Figure 5](http://cow.physics.wisc.edu/~craigm/idl/fitting.html)
so we have to rely on the SEDs to place upper limits on the warm dust components. Table 5 presents upper limits to the amount of dust located interior to the outer disk inner boundaries (\(R_{\text{in}}\)) in each system. These were evaluated by assuming that dust in these locations would be drifting in from the denser outer source zones via P-R radiation drag and thus would extend with constant surface density from \(R_{\text{in}}\) inward to a radius corresponding to the vaporization temperature of silicates at \(T = 1500\) K at \(\sim 0.1\) AU from the star. For each system a surface density (\(\Sigma\)) upper limit was calculated for dust between sublimation radius, \(R_{\text{sub}}(T = 1500\) K) and \(R_{\text{in}}\) of the outer disk model such that the summed SEDs of inner dust model plus outer dust model plus stellar photosphere was less than the upper limit to the observed SED, i.e., observations plus 1 \(\sigma\) uncertainty including calibration, as defined above. This was then converted to dust limits assuming \(a \sim 10\) \(\mu\)m grains with material density of \(2.5\) g cm\(^{-3}\) as for the blackbody models of the cool outer disks. These masses are of order \(10^{-6} \, M_{\odot}\), the mass of a single asteroid only a few hundred km in diameter and are generally 2–3 orders of magnitude below the lower limits for the masses we derive for the outer cool dust. Note that our Spitzer observations of HD 13974, which shows photospheric emission up to 70 \(\mu\)m, yield an upper limit on warm dust surface density equivalent to only about 20 times that of the zodiacal cloud in our solar system (i.e., 20 “zodis”).

5. DISCUSSION

A primary goal of the FEPS project is to place our solar system in context with other debris disk systems (M. R. Meyer et al. 2005, in preparation). To date, most disk systems identified with IRAS and ISO have been associated with either stars more luminous than the Sun (typically A stars) or very young systems (\(t_{\text{age}} \lesssim 30\) Myr). A recent census of Sun-like stars with KB-like disks that have been identified with IRAS and ISO has been presented by Decin et al. (2003) and Zuckerman & Song (2004), but these studies were only able to identify the brightest systems and did not cover a large range of ages that encompass stars approaching the age of our Sun.

The FEPS sample is a coherent effort to understand the debris systems around Sun-like stars over a large range of ages from 3 Myr to 3 Gyr. We are beginning to assemble a sufficiently large sample of objects over a range of ages to start to answer fundamental questions about the evolution of dust disks surrounding Sun-like systems with Spitzer data.

5.1. Age Determination

The age determination of all of the stars in the full FEPS sample is discussed in L. A. Hillenbrand et al. (2005, in preparation). Age bins given for the five stars (Table 3) in this study are inferred from the level of chromospheric and coronal activity. The chromospheric activity is indicated by Ca ii H and K emission. Values of the fractional luminosity emitted in the H and K lines, \(L'_{\text{HK}}\), were derived by D. R. Soderblom (2000, private communication). Here we adopt the calibration of Donahue (1993) between \(L'_{\text{HK}}\) and age. Coronal activity, on the other hand, is indicated by X-rays. The fractional X-ray luminosity, \(L_X = L_X/L_{\text{bol}}\), in general tracks \(L'_{\text{HK}}\) for HD 8907 in particular, relative youth is indicated by both activity indicators. We use coarse age bins rather than specific ages due to the uncertainty in the age estimates.

5.2. Solar System Evolutionary Model

The total mass of the KB in the solar system is highly uncertain; however, some recent studies (e.g., Luh & Jewitt 2002; Teplitz et al. 1999) suggest its total mass is in the range \(\sim 0.01–1.0\) \(M_{\odot}\), mostly in large planetesimal bodies. From COBE observations at wavelengths 150 and 240 \(\mu\)m, Backman et al. (1995) estimated upper limits on KB dust luminosity of \(L_{\text{IR}}/L_{\text{bol}} \lesssim 10^{-6}\). This corresponds to a KB infrared dust mass limit of \(M_{\text{d,KB}} \lesssim 10^{-5} \, M_{\odot}\), assuming grains with \(a = 10\) \(\mu\)m and \(\rho = 2.5\) g cm\(^{-3}\) as in the present paper’s models of exo-KBs. For comparison, Moro-Martín & Malhotra (2003) estimate a KB mass of about \(4 \times 10^{-6} \, M_{\odot}\) in particles with sizes between 2.4 and 160 \(\mu\)m based on flux of KB dust detected drifting toward Jupiter’s orbit (Landgraf et al. 2002). We see that the systems considered in this paper contain more massive and luminous dust ensembles than does the KB. But what would our own KB have looked like at the younger evolutionary stages represented by these five objects?

D. E. Backman et al. (2005, in preparation) have devised a simple evolutionary model of the KB based on the model of the current KB in Backman et al. (1995) that can be used to estimate what our system would have looked like at the ages, distances and stellar luminosities of our targets.

The model assumes the planetesimal population in the KB of these solar systems extends from \(R_{\text{in}} = 40\) AU to \(R_{\text{out}} = 50\) AU at the ages of our targets, after migration of the outer planets and KB had been completed (Malhotra 1993; Levison et al. 2004), and the influence by Neptune (at 30 AU) had eroded the belt substantially inward of the 3:2 resonance at \(R = 40\) AU. The model also assumes that the starting mass of the KB was \(10\, M_{\odot}\), the minimum necessary to yield a high enough density to build the observed large KB bodies accretionally in the allowed timespan (Stern & Colwell 1997). The model evolution is not very sensitive to the starting mass because a purely collisional system evolves asymptotically toward a state in which the collision timescale is approximately equal to the age of the system. For example, a wide range of starting masses evolve in this model to a KB with a mass of about \(0.5\) \(M_{\odot}\) at age 4.5 Gyr. This means
that, in a dissipative system such as this, evidence of the original state is mostly erased and cannot be inferred by modeling backward.

A parent body size of 10 km and maximum fragment size of 5 km were parameters tuned to yield a KB dust population at an age 4.5 Gyr consistent with present limits on KB dust emission (Backman et al. 1995; Teplitz et al. 1999) and inference of the KB dust production rate from dust impact rates in the outer solar system (Landgraf et al. 2002). The dust distribution and thermal emission were calculated for 30 logarithmically spaced size bins between 1 \(\mu \)m and 1 mm diameter. An equilibrium spatial distribution of dust was calculated, as in Backman et al. (1995), balancing the dust between production in planetesimal collisions, inward drift of dust via P-R radiation drag, and destruction by mutual collisions of dust yielding fragments smaller than the blowout size. The dust distribution was modeled both within the planetesimal zone at 40–50 AU and in a P-R induced “zodiacal” dust cloud extending inward and assumed completely truncated at \(R_{\text{out}} = 30 \) AU.

Results of the KB evolutionary model runs are presented in Table 6, where the third and fourth columns are, respectively, the predicted and observed 70 \(\mu \)m excess fluxes of each source. Remarkably, although the solar system evolutionary model was tuned only to represent our KB, the results are within a factor of only 2–3 from the targets’ observed 70 \(\mu \)m excesses, except for the HD 13974.

The solar system KB evolution model predicts a 70 \(\mu \)m excess of \(\sim 21 \) mJy for the Sun observed from \(d = 30 \) pc at an age of \(t = 4.6 \times 10^9 \) yr (on top of 5 mJy photosphere). This predicted excess flux is less than any of the 5 detected excess sources, e.g., about 30% of the dust flux at 70 \(\mu \)m observed for HD 145229 with 0.96 \(L_\odot \) observed at 33 pc. Therefore, the solar system present-day KB model has about 30% of the dust mass of the HD 145229 cold dust.

These calculations indicate the possibility that the target systems represent snap shots of the history of our own solar system suggesting that systems like our own might be common among G stars in the Galactic disk.

5.3. HD 13974

HD 13974 is a short-period binary system (period = 10 days; Duquennoy & Mayor 1988) with a G0 V primary (Duquennoy & Mayor 1988) and a companion with spectral type between G9 V (Duquennoy & Mayor 1988) and K4 V (Hummel et al. 1995). HD 13974 at 11 pc is the only star in our FEPS sample to date with a 70 \(\mu \)m detection that is consistent with “bare” photospheres within the calibration and Kurucz model uncertainties (Fig. 2). A two-component Kurucz model was fitted to the observed SED with derived temperatures of 6215 and 4493 K for the primary and secondary components respectively. The semimajor axes of these stars are \(a_1 \sin i = 1.45 \pm 0.03 \times 10^6 \) km and \(a_2 \sin i = 1.62 \pm 0.04 \times 10^6 \) km (Duquennoy & Mayor 1988). Such a close (<1 AU) binary star system should not have a dramatic effect on the evolution of the circumbinary disk at distances greater than roughly twice the semimajor axis (e.g., Jensen et al. 1996; Artymowicz & Lubow 1994).

Adopting the blackbody grain model we have used the 1 \(\sigma \) uncertainty in the observed flux density at 70 \(\mu \)m compared with the predicted Kurucz model flux to place an upper limit on the mass of dust log \((M_d/M_\odot) = -5.1 \) at \(T_c = 55 \) K. The lower limit on \(R_{\text{in}} \) is about 28 AU. The fractional dust luminosity log \((L_{\text{Dust}}/L_\star) \) is \(-5.2\) of this system is interesting, as it is similar to the estimates for the current solar system KB. The solar system KB evolutionary model predicts 70 \(\mu \)m excess flux density of HD 13974 at its age (1–3 Gyr) to be about 300 mJy, while the observed excess flux density limit is <20 mJy (Table 6). This system may not contain KB bodies, or perhaps there is not a perturbing planet like Neptune to stir up the system and cause collisional cascades.

5.4. Possible Planetary Architectures in the Five IR-Excess Stars

For the five systems in which 70 \(\mu \)m excesses have been detected, the comparison between the disk mass estimate (\(M_d \) in Table 4), and the upper limit to the amount of warm dust (\(M_{\text{d,warm}} \) in Table 5) located interior to the inner boundary of the dust (\(R_{\text{in}} \) in Table 4), indicates that the dust depletion inside \(R_{\text{in}} \) is significant. Because grains not directly ejected by radiation pressure tend to spiral toward the star due to P-R drag, a central depletion would be filled in by dust on P-R timescales (Table 5) much shorter than the ages of these systems, unless some other mechanism intervenes to eliminate grains. We argue that ice sublimation and grain “blowout” both fail to explain the \(R_{\text{in}} \) locations in these systems, and that a possible explanation for the dust spatial distribution is a sizable planet in each system limiting the inward drift of the grains by ejecting them out of the system via gravitational scattering.

An upper limit of the location (\(R_{\text{sub}} \)) at which grains will sublimate can be calculated by assuming that they are composed of water ice with sublimation temperature \(T_{\text{sub}} = 100 \) K. The maximum grain temperatures (\(T_c \)) observed in these systems presented in Table 4 are all well below the ice sublimation temperature. The presence of grains large enough to radiate efficiently at 70 \(\mu \)m implies that their temperature will scale as \(T_c \propto R^{-0.5} \) (Backman & Paresce 1993). The radius of ice sublimation \(R_{\text{sub}} \) will be 1/4–1/3 of \(R_{\text{in}} \) for \(T_c \) in the range 50–70 K, and thus sublimation is not a likely explanation for the inner depletion of the disk. The uncertainties in the temperature estimate are about 10% for individual sources.

Can these central zones that are relatively free of dust be explained as the result of dust grains in the outer rings being controlled by mutual collisions rather than P-R drag? Thus, the inner edge of the dust distribution might be explained without invoking the existence of a planet to consume inward drifting grains. In their study of the age dependence of Vega-like excesses, Dominik & Decin (2003) argued that in dense enough disks, the collision timescale is much shorter than the P-R drag timescale. If grain collisions actually dominate P-R drag as the dominant dynamical process then grains could be grounded to the blowout size, and would not drift radially. In that case, the inner edge to the dust distribution could represent the inner edge of the source bodies. The dust collision timescale (\(t_{\text{coll}} \)) for the disks can be estimated as \(P_{\text{orb}}/9\Sigma \), where \(P_{\text{orb}} \) is the orbital...
period at \(R_{\mbox{in}} \) and \(\Sigma \) is the fractional surface density of the disks that is of order the value of \(L_{\mbox{IR}}/L_* \) (Backman & Paresce 1993; Backman 2004). The timescales for particles to drift via P-R drag over distances equal to 10% of the \(R_{\mbox{in}} \) values in Table 4 (i.e., an estimate of the time for grains to move from populated to relatively unpopulated regions) are about \(\log(t_{\mbox{P-R}}/\mbox{yr}) \approx 5.5-6.0 \). The grain-grain collision timescales for the same systems are about \(\log(t_{\mbox{coll}}/\mbox{yr}) \approx 5.0-5.5 \). For ratios of this sort between \(t_{\mbox{P-R}} \) and \(t_{\mbox{coll}} \), a substantial fraction of grains would survive enough collision lifetimes to be able to drift from the disk into a central void. Note also that without knowing more about the disks (especially their vertical extents) we do not know if grain-grain collisions would be at high enough speeds to destroy the grains. Thus, we conclude that P-R drag is important in controlling the structures of these systems, especially in that a planetary barrier would be a plausible explanation for a central depletion.

Could these cold disks arise from grains generated recently from planetesimals located near \(R_{\mbox{in}} \) and then ejected by radiation pressure from the system, again without needing a planet to explain the inner boundary of the disk? We note that these debris belts can be self-stirred without needing a planet to explain the collisional cascade itself (e.g., also Kenyon & Bromley 2004). Recent Spitzer observations of Vega at 24, 70, and 160 \(\mu \)m show that the Vega debris disk has an inner boundary at \(\approx 86 \) AU and extends to distances much larger than those observed at submillimeter and millimeter wavelengths (Su et al. 2005). The authors suggest that the grains in the Vega far-IR disk are produced close to the inner disk boundary and are unbound, flowing away from the star. In this scenario, the inner gap in the disk would simply represent a limit to the location of the parent bodies, rather than the location of a perturbing planet. However, Vega’s luminosity to mass ratio (\(L/M \)) is 24 in solar units, which makes even relatively large grains (like the 18 \(\mu \)m grains) to be unbound, with \(\beta > 0.5 \), if the grain’s porosity is >0.56 (\(\beta \) is the ratio of the radiation pressure force to the gravitational force). In contrast, for the G star systems we consider here with \(L/M \approx 1 \), the 10 \(\mu \)m silicate grains that dominate the dust emission at 70 \(\mu \)m have \(\beta = 0.02 \). Therefore, we argue that grains in the five disks discussed here are bound and thus will drift toward the star due to P-R drag.

One explanation for the inner empty zones is that one or more massive planets dynamically deplete the dust generated by an outer belt of planetesimals (e.g., Liou & Zook 1999; Moro-Martin & Malhotra 2003; 2005). If we assume a single planet in a circular orbit about each of the five stars, then this mechanism can account for the large dust depletion factors inferred for the inner parts of these dust disks if the planet is \(> M_{\mbox{Jupiter}} \) (Moro-Martin & Malhotra 2005). The inner edge of the dust disk would be located between 0.8\(a_{\mbox{pl}} \) and 1.25\(a_{\mbox{pl}} \), where \(a_{\mbox{pl}} \) is the semimajor axis of the planet. Therefore, a possible explanation is that the dust disk surrounding each of these five systems harbors a planet with an orbital radius of approximately 10–20 AU, together with a belt of dust-production planetesimals exterior to the planet’s orbit, and no asteroid belt with significant dust production interior to the planet’s orbit.

As noted in \(\S \) 4.1, the data are also consistent with a debris disk comprised of 1 \(\mu \)m sized grains, inconsistent with the assumptions required for blackbody emission discussed above, yet larger than the blowout size. In such a model, the timescale for mutual collisions is more than 100 times shorter than the timescale for P-R drag to significantly affect the orbital radius. This suggests that a ring such as inferred from the model could be maintained through mutual collisions with dust removal dominated by radiation pressure blowout of the smallest particles <1 \(\mu \)m on short timescales. However, this requires the formation of a Sun-like star lacking an inner disk, with a remnant planetesimal belt capable of generating dust through mutual collisions only outside of 200 AU with dust only at the smallest possible stable particle size. While the presence of a low mass companion could in principle explain such a large gap in the circumstellar environment, no wide stellar companions are known in these systems, and we do not expect many brown dwarfs (due to the observed lack of such systems) or giant planets (given current formation scenarios) at these radii. We believe that models requiring larger grains (\(\sim 10 \) \(\mu \)m) at smaller radii (\(\sim 30 \) AU) with the possible presence of a planet (or planetary system) interior to 30 AU are favored as they are consistent with the structure and extent of circumstellar disks observed around pre–main sequence stars during the epochs when planetary systems are thought to form. We hope to distinguish between these two hypotheses in the future through direct imaging of the outer edge of the disks in scattered light and placing strong constraints on the presence of very low mass companions at large separations (e.g., with NICMOS coronagraphy on Hubble Space Telescope (HST) and ground–based AO observations).

6. SUMMARY

We have presented Spitzer observations of five Sun-like stars that possess Kuiper Belt–like (KB-like) debris systems (HD 6963, HD 8907, HD 122652, HD 145229, and HD 206374). Of these, two were previously suggested to have debris disks (HD 8907 and HD 122652), and three are newly discovered. The fractional luminosity (\(L_{\mbox{IR}}/L_* \)) and ages of these newly identified disks illustrates the potential of the FIES program to measure fainter debris systems, which will allow a more detailed census of their nature and evolution.

We summarize our results:

1. The five excess sources have SEDs that are consistent with photospheric models out to 33 \(\mu \)m but show clear excesses at 70 \(\mu \)m, which was the selection criterion. We find that these stars are all “old” (three sources are in our 1–3 Gyr age bin, while two are in the 0.3–1 Gyr age bin).

2. As seen in Figure 3, the improved sensitivity of Spitzer allows us to detect debris disk systems that are much fainter than those detected by IRAS and ISO. The overall impression is that KB-like systems detectable by Spitzer and considered in this paper are less massive and more distant than systems detected with IRAS and ISO.

3. Another star, HD 13974, has a MIPS 70 \(\mu \)m flux consistent with photospheric emission within 1 \(\sigma \) total uncertainty. The upper limit of \(\log(L_{\mbox{IR}}/L_*) \) is \(< -5.2 \), similar to that of inferred for the solar systems’ KB.

4. Simple blackbody grain modeling of our five excess SEDs yielded log (\(L_{\mbox{IR}}/L_* \)) \(\lesssim -4.5 \) to \(-3.5 \), color temperatures between 55 and 58 K, and inner radii of outer disks between 18 and 46 AU.

5. A solar system KB evolution model predicts Spitzer 70 \(\mu \)m fluxes (Table 6) from hypothetical planetesimal assemblages around our target stars that are within factors of \(\sim 2–3 \) of the observed fluxes. We infer that these systems have outer remnant planetesimal belts that are consistent in scale and starting masses to our KB.

6. The absence of a disk around the \(\sim 1 \) Gyr old star HD 13974 suggests that either this object does not contain the parent bodies that produce infrared-emitting debris, or perhaps the debris has been cleared out already.

7. We placed upper limits on warm dust masses interior to \(R_{\mbox{in}} \) for each of these systems and showed that the depletion of...
the disk $<R_{\text{in}}$ is significant. We commented on several possible causes for R_{in}. We speculate that the R_{in} of exo-KBs presented in this study could be explained by the existence of one or more Jupiter mass planets at 10–20 AU from each star.

We thank the rest of the FEPS team members and Spitzer Science Center help desk. We thank David Soderblom and Jeff Valenti for helpful discussions. We also thank Ben Zuckerman for carefully reading an earlier version of this manuscript and pointing out an error concerning the age of HD 8907. We have used the SIMBAD database. This work is based (in part) on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407. FEPS is pleased to acknowledge support through NASA contracts 1224768, 1224634, and 1224566 administered through JPL. S. W. was supported by the German Research Foundation (DFG) through the Emmy Noether grant WO 857/2-1. E. E. M. is supported by a Clay Fellowship from the Smithsonian Astrophysical Observatory. The MPIA team is supported through the European Planet Network.

REFERENCES

Artymowicz, P. 1988, ApJ, 335, L79
Artymowicz, P., & Lubow, S. H. 1994, ApJ, 421, 651
Aumann, H. H., et al. 1984, ApJ, 278, L23
Backman, D. E. 2004, in ASP Conf. Ser. 324, Debris Disks and the Formation of Planets, ed. L. Caroff, L. J. Moon, D. E. Backman, & E. Praton (San Francisco: ASP), 9
Backman, D. E., Dasgupta, A., & Stencil, R. E. 1995, ApJ, 450, L35
Backman, D. E., & Paresce, F. 1993, in Protostars and Planets III, ed. E. Levy & J. I. Lunine (Tucson: Univ. Arizona Press), 1253
Burns, J. A., Lamy, P. L., & Soter, S. 1979, Icarus, 40, 1
Carpenter, J. M., Wolf, S., Schreyer, K.,Launhardt, R., & Henning, T. 2005, AJ, 129, 1049
Cohen, M., Megeath, S. T., Hammersley, P. L., Martin-Luis, F., & Stauffer, J. 2003a, AJ, 125, 1090
Cohen, M., Wheaton, W., & Megeath, S. T. 2003b, AJ, 126, 1090
Decin, G., Dominik, C., Waters, L. B. F. M., & Waalkens, C. 2003, ApJ, 598, 636
Dohnanyi, J. W. 1969, J. Geophys. Res., 74, 2531
Dominik, C., & Decin, G. 2003, ApJ, 598, 626
Donahue, R. A. 1993, Ph.D. thesis, Univ. New Mexico
Draine, B. T., & Lee, H.-M. 1984, ApJ, 285, 89
Duquennoy, A., & Mayor, M. 1988, A&A, 195, 129
Fazio, G. G., et al. 2004, ApJS, 154, 10
Gordon, K. D., et al. 2005, Proc. SPIE, 5487, 177
———. 2005, PASP, 117, 503
Habing, H., et al. 1999, Nature, 401, 456
Higdon, S. J. U., et al. 2004, PASP, 116, 975
Hines, D. C., et al. 2004, FEPS Explanatory Supplement V1.1 (Pasadena: SSC)
———. 2005, ApJ, submitted
Houck, J. R., et al. 2004, ApJS, 154, 18
Hummel, C. A., Armstrong, J. T., Buscher, D. F., Mozurkewich, D., Quirrenbach, A., & Vivekanand, M. 1995, AJ, 110, 376
Jensen, E. L. N., Koerner, D. W., & Mathieu, R. D. 1996, AJ, 111, 2431
Jewitt, D., & Luu, J. 1993, Nature, 362, 730
Kenyon, S. J., & Bromley, B. C. 2004, ApJ, 602, L133
Koerner, D. W., Ressler, M. E., Werner, M. W., & Backman, D. E. 1998, ApJ, 503, L83
Landgraf, M., Liou, J.-C., Zook, H. A., & Grün, E. 2002, AJ, 123, 2857
Laor, A., & Draine, B. T. 1993, ApJ, 402, 441
Levison, H. F., Morbidelli, A., & Dones, L. 2004, AJ, 128, 2553
Liu, J.-C., & Zook, H. A. 1999, AJ, 118, 580
Luu, J. X., & Jewitt, D. C. 2002, ARA&A, 40, 63
Malhotra, R. 1993, Nature, 365, 819
Mannings, V., & Barlow, M. J. 1998, ApJ, 497, 330
Marcuardt, D. W. 1963, J. Soc. Industrial Appl. Math., 11, 431
Meyer, M. R., et al. 2004, ApJS, 154, 422
Moro-Martín, A., & Malhotra, R. 2003, AJ, 125, 2255
———. 2005, ApJ, in press
Reach, W. T., Morris, P., Boulanger, F., & Okumura, K. 2003, Icarus, 164, 384
Rieke, G. H., et al. 2004, ApJS, 154, 25
Schneider, G., & Stobie, E. 2002, in ASP Conf. Ser. 281, Astronomical Data Analysis Software and System XI, ed. D. A. Bohlender, D. Durand, & T. H. Handley (San Francisco: ASP), 382
Silverstone, M. D. 2000, Ph.D. thesis, UCLA
Silverstone, M. D., et al. 2005, ApJ, submitted
Spangler, C., Sargent, A. I., Silverstone, M. D., Becklin, E. E., & Zuckerman, B. 2001, ApJ, 555, 923
Stapelfeldt, K. R., et al. 2004, ApJS, 154, 458
Stern, S. A., & Colwell, J. E. 1997, AJ, 114, 841
Su, K. Y. L., et al. 2005, ApJ, 628, 487
Tanaka, H., Inaba, S., & Nakazawa, K. 1996, Icarus, 123, 450
Teplitz, V. L., Stern, S. A., Anderson, J. D., Rosenbaum, D., Scalise, R. I., & Wentzler, P. 1999, ApJ, 516, 425
Weingartner, J. C., & Draine, B. T. 2001, ApJ, 548, 296
Welsh, B. Y., Crifo, F., & Lallement, R. 1998, A&A, 333, 101
Werner, M. W., et al. 2004, ApJS, 154, 1
Wolf, S., & Hillenbrand, L. A. 2003, ApJ, 596, 603 (WH03)
———. 2005, Comput. Phys. Commun., in press
Zuckerman, B., & Song, I. 2004, ApJ, 603, 738