Stabilizing nanoprecipitates in Al-Cu alloys for creep resistance at 300°C

Y. H. Gaoa, C. Yanga, J. Y. Zhanga, L. F. Caob, G. Liua, J. Suna and E. Mac,d

aState Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, P.R. People’s Republic of China; bCollege of Materials Science and Engineering, Chongqing University, Chongqing, P.R. People’s Republic of China; cCenter for Advancing Materials Performance from the Nanoscale (CAMP-Nano), State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, People’s Republic of China; dDepartment of Materials Science and Engineering, Johns Hopkins University, Baltimore, USA

\section*{ABSTRACT}
Commercial precipitation-hardened Al-Cu alloys are normally used at temperatures below its ageing temperature of \(\sim 225°C\), to avoid thermally induced precipitate coarsening and resultant softening. Making such popular Al alloys creep resistant at or above 300°C is thus challenging. Here we present a modified precipitation protocol, exploiting Sc-microalloying and a carefully designed three-step heat treatment to enhance Sc segregation at the matrix/\(\theta'\)-\(\text{Al}_2\text{Cu}\) precipitate interfaces. The stabilized nanoprecipitates enable an order-of-magnitude reduction in creep rate at 300°C, demonstrating the room for microstructure improvement and the potential for property elevation in traditional engineering alloys through innovative processing coupled with synergetic alloying elements.

\section*{IMPACT STATEMENT}
A carefully designed precipitation protocol produces stable nanoprecipitates in Sc-microalloyed Al-Cu alloys, rendering an order-of-magnitude elevation of creep resistance at 300°C.

\section*{1. Introduction}
Precipitation-hardened Al alloys are arguably the most popular lightweight engineering material for structural applications at room temperature [1–3]. They are also highly desirable for applications at elevated temperatures (such as 300°C) [4], for example in fuselage bulkheads and wing skins in high-performance military aircrafts, automotive engines, and heat-resistant conductors in power transmission, if the microstructure of these Al alloys can remain stable under moderately hot conditions. However, the challenge is that such a desired service temperature is considerably above the age-hardening temperature, which is \(< \sim 225°C\) for conventional Al alloys to acquire strengthening precipitates [5–8], such as the \(\theta'\)-\(\text{Al}_2\text{Cu}\) in the commercial 2000-series Al alloy based on Al-Cu [8–12]. This classical precipitation strengthening system is the basis for a wide range of age-hardening Al alloys used in cast conditions, and will be the base alloy of our study. At service temperatures such as 300°C, thermally induced diffusion of the alloying element (Cu, etc.) becomes so rampant that the \(\theta'\)-\(\text{Al}_2\text{Cu}\) precipitates coarsen rapidly, leading to severe loss in strength [13,14].

A sensible approach is to add another minor alloying element, such as Sc, Zr and Er, that forms coarsening-resistant \(\text{Al}_3\text{X}\) (e.g. \(X = \text{Sc}, \text{Er}, \text{etc.}\)) precipitates [3,15–17].
However, the formation of strengthening Al3Sc requires an ageing temperature of 300–350°C, which is ~100°C higher than the θ'-Al2Cu-precipitation temperature, thus coarsening and dissolving away the θ'-Al2Cu precipitates. Owing to the rather limited solubility of Sc in Al, the Al3Sc population is usually too low (volume fraction, $f_v < 1\%$) to make up for the yield strength drop due to the loss of the θ'-Al2Cu precipitates ($f_v > 2\%$) [3,14,16–19]. Previously, several microstructural designs have been put forward in Al-Cu-based alloys, including more coarsening-resistant Ω phase [6,7,13] via Mg/Ag co-addition and synergistic coupling among multiple precipitates [8,12]. Recently, Sc segregation at the α-Al/θ' interfaces has been shown to effectively suppress the coarsening of the θ'-Al2Cu precipitates [18,19]. However, if the ageing temperature is kept low using the normal precipitation protocol for θ'-Al2Cu precipitates, the precipitation time allowable before over-ageing would not be sufficiently long for the vast majority of the slowly segregating Sc atoms to reach the α-Al/θ' interfaces to stabilize the fast-coarsening θ'-Al2Cu precipitates (see below). By the time the Al3Sc form throughout the alloy upon heat treating, the fast-appearing θ'-Al2Cu precipitates would have already formed some time earlier and coarsened.

As such, the traditional precipitation hardening routine falls short, when it comes to exploiting the majority of Sc solutes in the supersaturated Al-Cu-Sc solution, in binding them to θ'-Al2Cu precipitates to suppress coarsening. To come up with a solution, we have been inspired by the process originally developed for the 7000-series Al alloys to achieve an optimal balance between strength and corrosion resistance, known as the Retrogression and Re-ageing (RRA) heat treatment [20,21], and multi-step/isochronal ageing in Al-Sc based alloys [3,16]. The highlight of our strategy is to apply a regression step to re-precipitate the θ'-Al2Cu, after re-dissolving (akin to solution treatment) the θ'-Al2Cu precipitates back into the matrix at an elevated temperature, a temperature high enough for the θ'-Al2Cu precipitates to dissolve, but low enough such that the Al3Sc precipitates stay put. Afterwards, the θ'-Al2Cu precipitates are

Figure 1. (a) Schematic showing the processing protocol. (b) Particle size distribution of θ'-Al2Cu precipitates, comparing different heat treatments, as well as creep test versus heating at 300°C. The precipitate sizes (L) were measured using TEM after each treatment, with the average size L_{aver} marked for each distribution curve. The x-axis is in reduced unit, using normalized precipitate dimension L/L_{aver}.

deployed a second time at a lowered ageing temperature, re-precipitating heterogeneously and preferentially on the Al3Sc precipitates. We can simultaneously achieve the following three goals by manipulating the nano-precipitates: (i) a high density of \(\theta' \)-Al2Cu precipitates of the right sizes as dislocation obstacles for strength at both room temperature and elevated temperatures, (ii) narrow size distribution of the \(\theta' \)-Al2Cu precipitates to reduce the driving force for their coarsening, and most notably (iii) affluent segregation of Sc that quickly accrues from nearby regions to effectively enclose the \(\theta' \)-Al2Cu precipitates to suppress their coarsening. We will show a much reduced steady-state creep rate at 300°C and under stresses (30–60 MPa) in uniaxial tension. This finding opens a new opportunity for the selection of popular Al-Cu based alloys at moderately elevated temperatures.

2. Experimental

Al-0.3 wt.%Sc and Al-2.5 wt.%Cu-X wt.%Sc (\(X = 0, 0.3 \)) alloys were melted and cast in an argon stream, see composition in Table S1. Microstructures of the alloys were characterized using transmission electron microscopy (TEM), high-resolution TEM (HRTEM) and atom probe tomography (APT). Due to space limitation, experimental details are presented in Supplemental Information.

![Figure 2](image-url)

Figure 2. Microstructural features of the Al-Cu-Sc alloy after each heat-treatment step and after creep test. Top row: schematic showing the microstructure developed in Step-I (a), Step-II (e), Step-III (i) and after creep test (m), with corresponding TEM images in (b), (f), (j) and (n), respectively. SAED pattern of Sc-enriched heterogeneities signed by red circle in (b) was given in top right corner. Corresponding 3D-APT maps showing Sc segregation at the \(\alpha \)-Al/\(\theta' \) interface are in (c), (k) and (p), and Al3Sc precipitates in (g) and (h), respectively. The bottom row are 3D-APT maps, showing Sc-enriched heterogeneities after Step I in (d), \(\theta' \)-Al2Cu precipitates nucleated on the Al3Sc particles in (l) after Step III, and (p) Al3Sc-PDZ after creep test. Note that an Al3Sc forming on the \(\alpha \)-Al/\(\theta' \) interface after crept was marked by arrow in (o).
3. Result and discussions

3.1. Step I (AA treatment)

The first and beginning step of our processing protocol, see Figure 1(a), after the solution treatment, was artificial ageing (AA) at 250°C, akin to the traditional T6 treatment for conventional Al alloy. This Step I forms θ'-Al$_2$Cu precipitates with an average size (half plate length) $L = 330$ nm, see Figure 2(a–b) and Table S2, smaller than in the Sc-free Al-Cu alloy under the same AA condition ($L = 539$ nm). Figure 1(b) compares the size distribution of θ'-Al$_2$Cu precipitates after different treatments (and tests), and indicates that the size distribution of θ'-Al$_2$Cu precipitates is the most uniform after applying our new precipitation protocol (see results later). A high density of Sc-enriched heterogeneities (precursors of Al$_3$Sc) were evident within the matrix (see Figure 2(d), referred to as ‘Sc clusters’ [18]), with core Sc concentration similar to Al$_3$Sc in previous investigations [15,17], see APT results in Figure 3(a). No coherency strain (Ashby–Brown contrast [16]) or lattice change was observed under TEM and HRTEM, nor diffraction spots indicative of Al$_3$Sc precipitates in the SAED pattern, see Figures 2(b) and 4(a). This is in contrast with the well-developed Al$_3$Sc particles that have easily identifiable crystal structure (Figure 4(b)). However, some weak diffraction patterns were observed in the FFT images, see Figure 4(a), possibly originating from some already formed Al$_3$Sc precipitate that are very small in size. This is in accord with the slow Al$_3$Sc transformation at 250°C [17]. The proxigram was displayed in Figure 3(b) to show the solute concentration across an α-Al/θ' interface in the Al-Cu-Sc AA alloy. The solid vertical line represents the position of the coherent interface between the Al matrix and the θ'-Al$_2$Cu precipitate. A peak Sc concentration of about 0.8 at.% is detected at the α-Al/θ' interface, about 10 times greater than in the matrix [18,19]. The interfacial Sc segregation layer is about 1–2 nm wide (FWHM of the concentration profile). However, the Al-Cu-Sc AA alloy still displays a rather low creep resistance (Figure 5) because Sc atoms segregated at the matrix/precipitate interfaces constitute of only about 2.6% of the total Sc atoms added in the alloy; see Table S3. Nearly 90% Sc atoms remain far away from the θ'-Al$_2$Cu precipitates, as in numerous locations the Sc atoms are accrued into precursors of Al$_3$Sc not in the close proximity of θ'-Al$_2$Cu precipitates. Sc diffusion is so slow such that during AA only a small number of Sc atoms manage to reach and deposit at the matrix/precipitate interfaces. As such, AA alone is insufficient for effective blocking of precipitate coarsening for satisfactory creep resistance.

![Figure 3](image-url) Figure 3. Representative proxigrams of Al, Cu, Sc and Si across (a) Sc-enriched heterogeneities, and α-Al/θ' interface in the (b) Al–Cu–Sc AA alloy, and (c) Al-Cu-Sc RR alloy. The inset is the corresponding 3D-APT image with dimensions of $20 \times 20 \times 30$ nm3.

3.2. Step II (Regression)

During Step II, a regression treatment at elevated temperature of 450°C (Figure 1(a)), the θ'-Al$_2$Cu precipitates formed during the lower-temperature AA treatment would decompose, letting the Cu atoms dissolve back into the matrix (which was depleted to only ~ 0.2 at.% Cu after Step I), to get set to re-do their distribution in a subsequent step that takes them to the numerous Al$_3$Sc precipitates that form during this Step II. Now nano-sized coherent Al$_3$Sc precipitates are created at a high density from the Sc-enriched heterogeneities (Figure 2(d)). Figure 2(e–f) present a schematic and a TEM image, respectively, to show the Al$_3$Sc precipitates at a high number density. Corresponding 3D-APT images were...
Figure 4. HRTEM image showing (a) Sc-enriched heterogeneities with no clearly identifiable crystal structure and (b) a representative coherent Al$_3$Sc particle. Corresponding FFT images were given in the upper right corner. (c) Statistical size evolution of Al$_3$Sc and θ'-Al$_2$Cu precipitates after Step II, Step III, and creep testing. (d) Size distribution of the Al$_3$Sc precipitates in the Al-Cu-Sc alloy after different treatment or creep test for ~ 350 h.

displayed in Figure 2(g and h). These Al$_3$Sc particles have an average radius of about 3.4 ± 0.8 nm, see Figure 4(d) and uniformly distribute in the matrix. A fraction of them will serve as potential preferred sites for nucleating copious θ'-Al$_2$Cu precipitates later on in Stage III, see Figure 2(l) and Figure S1.

We now point out that one cannot omit Step I and directly go to Step II. The necessity of Step I is because the lower-temperature AA pulls the Sc solutes out of its original uniform distribution in the matrix to become spread-out and populous precursors of Al$_3$Sc in the matrix. This happens because during AA, at the large undercooling the driving force is high for the resultant Sc-enriched heterogeneities to be small but numerous. During Step II at 450°C, the majority of the Sc-enriched heterogeneities rapidly grow to nano-sized Al$_3$Sc precipitates. In contrast, if one goes straightly to 450°C without Step I, the nucleation rate of Al$_3$Sc is low due to smaller undercooling such that the particles are lower in number density but grow to fairly large sizes, jeopardizing the targeted copious heterogenous θ'-Al$_2$Cu precipitation in Step III (see next paragraph). This is why the Step I is a prerequisite for the ensuing steps.

3.3. Step III (Re-ageing)

We are then in the position to reform the θ'-Al$_2$Cu precipitates in Step III, a re-ageing treatment at 250°C. As seen in the sketch and TEM image in Figure 2(i–j), the re-precipitated θ'-Al$_2$Cu plates have a number density more than twice that of the AA treatment, because of the high density of (Sc-)heterogeneous nucleation sites sowed in Step II, see Figure 2(l) and Figure S1. In detail, a clear orientation relationship can be detected when the θ'-Al$_2$Cu heterogeneously nucleate on the Al$_3$Sc [8,12,19]. Such nucleation assistance is efficient, whereas during AA there are only occasional clusters with neither clear crystal structure nor orientation
Figure 5. (a) The tensile creep curves of Al-Cu-Sc AA and Al-Cu-Sc RR alloys, all tested at 300°C/30MPa. The \(\theta' \)-precipitates remain largely stable, as seen in the TEM images (insets) after different creep time periods. (b) Stress-dependent steady-state tensile creep rates of Al-Cu-Sc RR alloy tested at 300°C are highlighted using red stars, in comparison with Al-Cu-Sc AA alloy (blue circles), Al-Cu AA (olive left triangles) and Al-Sc AA (\(r_{\text{Al}_3\text{Sc}} = 4.4\text{nm}, \) orange squares). Available literature data of Al-Cu-based alloys crept at 300°C under tensile loading are given for comparison, including 2024 Al alloy (powder metallurgy, PM) \[9\] or reinforced with 15 vol.%SiC \[25\] (pink diamonds and purple triangles, respectively).

3.4. Stabilized nanoprecipitates contribute to much reduced creep rates

As seen in Figure 1(b) and Table S2, our three-step treatment makes the \(\theta' \)-Al\(_3\)Cu precipitates far more stable than conventional AA counterpart due to improved Sc availability and segregation. Estimates using thermodynamic calculations in SI suggest a \(\sim 65\% \) reduction in the interfacial energy due to interfacial Sc segregation, reducing precipitate coarsening \[22,23\] in the Al-Cu-Sc RR alloy, in comparison with the \(\sim 24\% \) in its AA counterpart. For plate-like \(\theta' \)-Al\(_3\)Cu precipitates to grow, the interface-controlled thickening \[23\] fed by the flux of Cu from the matrix to the migrating ledge now necessarily requires the redistribution of Sc. During the creep
test, the average size of θ'-Al$_2$Cu precipitates was in fact almost unchanged, remaining at about 250 nm at 300°C/30 MPa for ~220 h, see Figures 1(b) and 5(a). TEM examinations also reveal that the half length of θ'-Al$_2$Cu actually decreased to ~180 nm after creep test for 350 h, as a result of splitting in some of the θ'-Al$_2$Cu precipitates, with only a slight drop of volume fraction f_v from 2.13 ± 0.19% to 1.97 ± 0.10%.

The secondary stage of the Al-Cu-Sc RR alloy now holds on for as long as ~350 h, a 10-fold rise in endurance time than its AA counterpart, see Figure 5(a) at 30 MPa. Figure 5(b) summarizes the creep rate data in the tensile stress range of 30–60 MPa; the present Al-Cu-Sc RR alloy sustains a creep rate several orders of magnitude slower when compared with binary Al-Cu or Al-Sc alloys, and Al-Cu based alloys and composites. Additional discussions are presented in SI on precipitate stability, creep mechanism (Fig. S4) and high-temperature tensile properties. For the latter, regular tensile test of the Al-Cu-Sc RR alloy shows a yield strength of 127 ± 12 MPa at 300°C, which is much higher than that of the Al-Cu AA (59 ± 5 MPa) and Al-Sc AA (34 ± 2 MPa) alloys, and close to some commercial alloys (i.e. 7075, 2219 Al). This short-term strength of the present Al-Cu-Sc RR alloy is nevertheless lower than the ~200 MPa yield strength at ~300°C for Al-Cu alloys with high Cu content, such as Al-6.3Cu-0.5Mg-0.5Ag-0.5Mn-0.2Zr (their long-term microstructure stability and creep rates at 300°C are not available for a direct comparison) [6,13].

We note that in addition to θ'-Al$_2$Cu (protected by Sc segregation), important contribution to strengthening also arises from the Al$_3$Sc particles (see an estimate in the SI). Our RR protocol combines these two contributing factors and exploits both types of precipitates.

4. Conclusions

In summary, for Al-Cu based alloys we have modified the precipitation protocol to boost the thermal stability of strengthening precipitates at preferred sizes for creep resistance at 300°C under relatively high tensile stresses. Specifically, our deliberate integration of three heat-treatment steps, taking advantage of the interaction and synergy between the main alloying element Cu and minor alloying element Sc, generates dispersion of θ'-Al$_2$Cu precipitates with a combination of high density, uniform size distribution, and efficient use of Sc sources to quickly collect Sc to the α-Al/θ' interfaces to stabilize the θ'-Al$_2$Cu precipitates at desirable sizes to delay runaway coarsening. The mechanistic insight gained through this work is that one can strategically exploit two different alloying elements to deliver a coexisting and coupled (θ'-Al$_2$Cu precipitates + Al$_3$Sc particles) nano-precipitate microstructure that performs better in terms of creep resistance. These unconventional microstructures give rise to order-of-magnitude reduction in creep rate, over previous Al-Cu based alloys. Our discovery extends the repertoire of cast Al-Cu alloys for potential use at service temperatures as high as ~300°C.

Acknowledgements

This work is supported by the International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies. We thank Dr. R.H. Wang at XAUT and Dr. J. Li at the Instrument Analysis Center of XJTU for their great assistance of TEM analysis.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the National Natural Science Foundation of China [Grant Numbers. 51621063, 51625103, 51722104, and 51790482], and the 111 Project of China [Grant Number BP20180008]. E.M. acknowledges support from U.S. DoE-BES-DMSE under [Contract No. DE-FG02-16ER46056]. L.F.C. thanks the financial support by the National Natural Science Foundation of China [Grant No. 51871033] and the National Key Research and Development Program of China [Grant Number 2016YFB0700403].

References

[1] Polmear I.J. 4 – Cast aluminium alloysLight alloys. 4th ed. Oxford, UK: Elsevier; 2005. p. 205–235.
[2] Ovid’ko IA, Valiev RZ, Zhu YT. Review on superior strength and enhanced ductility of metallic nanomaterials. Prog Mater Sci. 2018;94:462–540.
[3] Knipling KE, Dunand DC, Seidman DN. Criteria for developing castable, creep-resistant aluminum-based alloys – A review. Z Für Met. 2006;97:246–265.
[4] Wadsworth J, Nieh TG, Stephens JJ. Recent advances in aerospace refractory metal alloys. Int Mater Rev. 1988;33:131–150.
[5] Sherby OD, Burke PM. Mechanical behavior of crystalline solids at elevated temperature. Prog Mater Sci. 1968;13:323–390.
[6] Lumley RN, Morton AJ, Polmear IJ. Enhanced creep performance in an Al–Cu–Mg–Ag alloy through underaging. Acta Mater. 2002;50:3597–3608.
[7] Hutchinson CR, Fan X, Pennycook SJ, et al. On the origin of the high coarsening resistance of Ω plates in Al–Cu–Mg–Ag alloys. Acta Mater. 2001;49:2827–2841.
[8] Kumar Makineni S, Sugathan S, Meher S, et al. Enhancing elevated temperature strength of copper containing aluminium alloys by forming L12 Al3Zr precipitates and nucleating θ/′ precipitates on them. Sci Rep. 2017;7:11154.
[9] Kloc L, Spigarelli S, Cerri E, et al. Creep behavior of an aluminum 2024 alloy produced by powder metallurgy. Acta Mater. 1997;45:529–540.

[10] Nie JF, Muddle BC. Strengthening of an Al–Cu–Sn alloy by deformation-resistant precipitate plates. Acta Mater. 2008;56:3490–3501.

[11] Bourgeois L, Dwyer C, Weyland M, et al. The magic thicknesses of θ' precipitates in Sn-microalloyed Al–Cu. Acta Mater. 2012;60:633–644.

[12] Mondol S, Kashyap S, Kumar S, et al. Improvement of high temperature strength of 2219 alloy by Sc and Zr addition through a novel three-stage heat treatment route. Mater Sci Eng, A. 2018;732:157–166.

[13] Polmear IJ, Couper MJ. Design and development of an experimental wrought aluminum alloy for use at elevated temperatures. Metall Trans A. 1988;19:1027–1035.

[14] Starink MJ, Wang SC. A model for the yield strength of overaged Al–Zn–Mg–Cu alloys. Acta Mater. 2003;51:5131–5150.

[15] Marquis EA, Seidman DN, Asta M, et al. Mg segregation at Al/Al3Sc heterophase interfaces on an atomic scale: experiments and computations. Phys Rev Lett. 2003;91:036101.

[16] Seidman DN, Marquis EA, Dunand DC. Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys. Acta Mater. 2002;50:4021–4035.

[17] Røyset J, Ryum N. Scandium in aluminium alloys. Int Mater Rev. 2005;50:19–44.

[18] Chen BA, Liu G, Wang RH, et al. Effect of interfacial solute segregation on ductile fracture of Al-Cu-Sc alloys. Acta Mater. 2013;61:1676–1690.

[19] Yang C, Zhang P, Shao D, et al. The influence of Sc solute partitioning on the microalloying effect and mechanical properties of Al-Cu alloys with minor Sc addition. Acta Mater. 2016;119:68–79.

[20] Marlaud T, Deschamps A, Bley F, et al. Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al–Zn–Mg–Cu alloy. Acta Mater. 2010;58:4814–4826.

[22] Greenwood GW. The growth of dispersed precipitates in solutions. Acta Metall. 1956;4:243–248.

[23] Boyd JD, Nicholson RB. A calorimetric determination of precipitate interfacial energies in two Al-Cu alloys. Acta Metall. 1971;19:1101–1109.

[24] Dregia SA, Wynblatt P. Equilibrium segregation and interfacial energy in multicomponent systems. Acta Metall Mater. 1991;39:771–778.

[25] Spigarelli S, Cabibbo M, Evangelista E, et al. Creep properties of an Al-2024 composite reinforced with SiC particulates. Mater Sci Eng, A. 2002;328:39–47.