A Highly Selective Fluorescent Probe for the Detection of Nitroreductase Based on a Naphthalimide Scaffold

Han Li1 · Feng Jintao1 · Zhen Wang1 · Yan Jia2 · Peng Li2 · Cuixia Yao1 · Zongjin Qu1

Received: 19 April 2022 / Accepted: 27 May 2022 / Published online: 21 June 2022 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

The development of fluorescent probes for nitroreductase (NTR) has received intense attention because of its biological significance and wide application. In this work, a novel fluorescent probe for the detection of NTR in aqueous solution was designed and synthesized on a 1,8-naphthalimide scaffold. In the presence of NTR and nicotinamide adenine dinucleotide (NADH) under physiological conditions, the probe was converted into a 4-hydroxy-1,8-naphthalimide derivative and exhibited a sharp fluorescence enhancement at 550 nm, with a high selectivity for NTR over various analytes. The detection limit for NTR was determined to be 9.8 ng/ml by this probe. Due to its low signal background, this probe showed > 70-fold fluorescence enhancement. Theoretical calculations revealed that the reason for the fluorescence quenching of this probe is the photoinduced electron transfer (PET) from both the nitrobenzene and morpholine groups to the naphthalimide fluorophore.

Keywords Fluorescence · Probe · Naphthalimide · Nitroreductase · Photoinduced electron transfer

Introduction

Nitroreductase (NTR) is a kind of flavin-containing enzyme with an effective function of reducing aromatic nitro compounds into the corresponding hydroxy-amino or amino derivatives [1–3]. Meanwhile, the completion of the -NO₂ reduction catalyzed by NTR relies on the presence of electron donors, such as nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH) [4]. In particular, because of its oxygen sensitivity, the NTR level in human tumors is a biomarker for evaluating hypoxia [5]. Beside the overexpression in hypoxic human tumors, NTR could also be produced by a variety of bacteria, especially Escherichia coli, for various applications such as bioremediation, degration of pervasive nitroaromatic pollutants [6], and promoting chemotherapy [7]. Moreover, NTR also plays important roles in detoxification, pro-drug activation, cancer radiation therapy and gene therapy [8–14]. In this regard, the detection of NTR is of great importance.

So far, a variety of small-molecule fluorescent probes for the detection of NTR have been reported [15–21]. The principle for detecting the level of NTR by these probes is based on the measurement of the drastic fluorescence change of the sample before and after the NTR-catalyzed chemical reaction. The strategy for the conversion of NTR probes into the reaction products can be classified into two categories: one is the reduction of -NO₂ into -NH₂ without any other variation, and the other is a domino decomposition reaction induced by the reduction of -NO₂ for the activation of a fluorophore [5]. It is worth noting that the above strategy for NTR fluorescent probes had also been used extensively in the case of fluorescent probes for hydrogen sulfide (H₂S) [22–25], which indicates that the existence of H₂S under physiological conditions could act as a potential interference that can not be ignored in the accurate determination of NTR activity. Thus, we believe that when testing the selectivity of a new NTR fluorescent probe, the interference of H₂S must be checked. However, fluorescent probes for NTR were commonly reported without the H₂S interference investigation.
[6]. Hence, it is still important to develop fluorescent probes with high selectivity for nitroreductase (NTR), especially without the interference from H₂S.

In this work, we designed and synthesized a NTR fluorescent probe (MNI-NTR) based on a naphthalimide scaffold and investigated the fluorescence quenching mechanism of the probe by theoretical calculations. MNI-NTR was easily synthesized and well characterized. The results show that the probe MNI-NTR is non-fluorescent and exhibits a high selectivity for NTR without the interference from H₂S. With the presence of NTR and NADH, MNI-NTR is converted into a 4-hydroxy-1,8-naphthalimide derivative under physiological conditions, showing a strong fluorescence peak at 550 nm. Theoretical calculations reveal that the reason for the fluorescence quenching of MNI-NTR is the photoinduced electron transfer (PET) from the -NO₂ and morpholine groups to the naphthalimide fluorophore.

Experimental Section

Materials and Instruments

Unless otherwise stated, all reagents were obtained from commercial source of analytical reagent grade and used without further purification. ¹H and ¹³C nuclear magnetic resonance (NMR) data were measured by a Bruker 400 MHz NMR spectrometer. High resolution mass spectra (HRMS) were obtained by an Agilent Q-TOF 6540 spectrometer. Fluorescence spectra were obtained from Fluoromax-4 spectrofluorometer (Horiba Jobin Yvon) and steady-state UV–Vis absorption spectra were measured by a Lambda 35 UV–Vis absorption spectrometer (Perkin Elmer) with a 1.0 cm quartz cuvette. 96-well black flat bottom polystyrene microplate (Corning® Product #3650, USA) with a microplate reader Varioskan Flash (Thermo Fisher Scientific, USA) was used in kinetic measurements and assay. Nitroreductase (NTR) is an Abcam product. Ultrapure water was used throughout.

Synthesis and Characterization of Compounds

Synthesis of N-Ethylmorpholine-4-Hydroxy-1, 8-Naphthalimide (Compound 1)

Compound 1 was synthesized following procedures described in the literature [7]. ¹H NMR (400 MHz, d⁶-DMSO)δ(ppm): 8.53 (dd, 1H, J = 8.2 Hz), 8.46 (dd, 1H, J = 7.2 Hz), 8.35 (d, J = 8.4 Hz, 1H), 7.77–7.73 (m, 1H), 7.13 (d, J = 8.0 Hz), 4.17 (t, 2H, J = 4.6 Hz), 2.60–2.50 (m, 6H). ¹³C NMR (d⁶-DMSO, 100 MHz) δ(ppm): 164.20, 163.47, 161.26, 134.13, 131.93, 130.77, 129.48, 125.96, 123.02, 122.21, 112.65, 100.75, 100.42, 78.90, 49.18, 37.03, 36.91. HRMS (ESI) Calcd for C₁₈H₁₉N₂O₄ [MH⁺] 327.1345, found 327.1358.

Synthesis of 2–(2–Morpholin-4-yl-Ethyl)–7–(4–Nitro–Benzyloxy)–3a, 9b–Dihydro–Benzo [De] Isoquinoline–1, 3–Dione (MNI-NTR)

To a 250 mL three-necked flask were added compound 1 (0.33 g, 1 mmol), potassium carbonate (1.00 g) and p-nitrobenzyl bromide (0.43 g, 2 mmol). After 3 times of vacuum/argon replacements, 150 mL of anhydrous acetonitrile was added, after which the mixture was stirred and heated to reflux for 4 h under argon protection. Then, the reaction solution was evaporated under reduced pressure and the crude product was purified by column chromatography to obtain a white solid (0.37 g, 80%). ¹H NMR (400 MHz, CDCl₃) δ(ppm): 8.63 (d, J = 8.0 Hz, 2H), 8.54 (d, J = 8.0 Hz, 1H), 8.33 (d, J = 8.4 Hz, 2H), 7.78 – 7.72 (m, 3H), 7.10 (d, J = 8.0 Hz, 1H), 5.49 (s, 1H), 4.34 (t, J = 7.0 Hz, 2H), 3.70 (t, J = 4.2 Hz, 4H), 2.73 (t, J = 6.8 Hz, 2H), 2.63 (s, 4H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm): 14.27, 29.71, 31.93, 37.03, 53.77, 56.17, 66.94, 69.46, 106.42, 115.93, 122.55, 124.15, 126.41, 127.86, 128.45, 131.83, 133.14, 134.72, 148.00, 159.0, 163.76, 164.37. HRMS: m/z, calcd for C₂₅H₂₃N₃O₆, [MH⁺]: 462.1665, found 462.1661.

Results and Discussion

Design and Synthesis of the Fluorescent Probe

The N-substituted 1, 8- naphthalimide fluorophore enjoys good photochemical and thermal stability, and it is easy to make a structure modification with a satisfactory reaction yield. Thus, this scaffold is effectively and extensively used in the design of fluorescent probes [26–30]. In this work, the probe MNI-NTR comprises p-nitrobenzyl as the unique recognition group and 1,8-naphthalimide as fluorophore. In the presence of NADH, MNI-NTR undergoes an elimination reaction triggered by NTR to produce the fluorescent molecule N-ethylmorpholine-4-hydroxy-1, 8-naphthalimide (Compound 1) (Scheme 1). A similar idea of the NTR fluorescent probe Na-NO₂ had already been implemented [18], and the only structural difference between Na-NO₂ and our probe is the group connected to the nitrogen atom of the 1, 8-naphthalimide fluorophore. By substituting the butyl group of Na-NO₂ into morpholine group, MNI-NTR was easily synthesised and well characterized by ¹H NMR, ¹³C NMR and HRMS. Comparing to Na-NO₂, compound 1 was devised as the fluorescent product, because it is a more hydrophilic dye with a higher fluorescence quantum yield than N-butyl-4-hydroxy-1, 8-naphthalimide, which might
be helpful for improving the performance of the probe in aqueous solution.

Absorption and Emission Spectral Response of the Probe MNI-NTR Towards NTR

The absorption and fluorescence emission response of MNI-NTR towards NTR was investigated at 37 °C in phosphate buffer saline (PBS) (Fig. 1). Various amounts of NTR were taken by a pipette into centrifuge tubes containing solutions of MNI-NTR (5 μM) and NADH (0.5 mM) to catalyse the proposed chemical reaction for 60 min. Then, the absorption and emission spectra of the above samples were measured. As shown in Fig. 1a, MNI-NTR emitted almost no fluorescence in aqueous buffer under the excitation wavelength (λex) of 445 nm, giving negligible background noise. Upon the addition of NTR, a fluorescence band (F445) arose substantially with a maximum emission wavelength (λem) of 550 nm, and the fluorescence enhancement was more than 70-fold in the presence of 30 μg/mL NTR. The relationship between the fluorescence signal of the reaction solution at 550 nm (F550) and the concentration of NTR ([NTR]) is given in Fig. 1b. Under the given conditions, F550 was linearly proportional to [NTR] in the range of 0–3.0 μg/mL (linear correlation coefficient of 0.9929), and the detection limit for NTR was estimated to be 9.8 ng/mL based on S/N = 3. Meanwhile, as shown in Fig. 1c, the titration of MNI-NTR with NTR also caused the rise of the absorption band peaked at 445 nm, and the color of the solution changed from transparent to light yellow. The absorption and emission spectra is consistent with compound 1 in phosphate buffer [31], which suggests that compound 1 is indeed the fluorescent product of the NTR catalyzed reaction. In the presence of NADH (0.5 mM) in PBS, the yield of compound 1 was 60% by the NTR (25 μg/mL) catalyzed decomposition of MNI-NTR (5 μM), which was calculated by Lambert–Beer’s Law with the absorption value at 445 nm and the extinction coefficient of compound 1.

Kinetic Study

The enzymatic kinetic study of the above reaction was performed to evaluate the probe’s affinity for NTR and the catalytic efficiency. A series of concentrations (from 0 to 25 μM) of MNI-NTR were added to a 96-well microplate containing NTR and NADH, and the fluorescence signals were collected by a microplate reader for 1 h. Figure 2 suggests that the reaction at all the concentrations of MNI-NTR was completed within half an hour. Furthermore, beside the above kinetic data, the solutions containing various concentrations of compound 1 were prepared and a standard fluorescence curve was obtained under the same conditions, which was used to fit the Michaelis–Menten equation of the enzymatic reaction [32] to get parameters (Vmax = 0.017 μM/s, Km = 43.7 μM). The results of the kinetic study indicate that MNI-NTR is a reactive fluorescent probe for NTR with moderate affinity and low catalytic efficiency in PBS (10 mM, pH = 7.2,) with 5% DMSO as co-solvent.

Selectivity of MNI-NTR

We examined the selectivity of the fluorescent probe MNI-NTR in PBS, and the experimental results are shown in Fig. 3. A variety of substances, including a number of
Fig. 1 The response of the fluorescence and absorption spectra of MNI-NTR (5 μM) to various concentrations of NTR (0, 0.5 μg/mL, 1.0 μg/mL, 2.0 μg/mL, 3.0 μg/mL, 6.0 μg/mL, 10.0 μg/mL, 15.0 μg/mL, 20.0 μg/mL, 25.0 μg/mL, 30.0 μg/mL) in PBS (10 mM, pH 7.2, 1% DMSO as co-solvent) at 37 °C.

a Fluorescence spectra. b The fluorescence titration curve. c Absorption spectra
reactive oxygen species (ROS), reactive sulfur species (RSH) and other species commonly involved in evaluating the selectivity of a NTR probe, were tested in the experiment. The addition of hydrogen peroxide (H$_2$O$_2$, 1 mM), sodium hypochlorite (NaOCl, 100 μM), reduced glutathione (GSH, 1 mM, 5 mM), sodium sulfide (Na$_2$S, 1 mM, an H$_2$S donor), dithiothreitol (DTT, 1 mM), homocysteine (1 mM), arginine (1 mM), cysteine (1 mM), vitamin C (Vc, 1 mM), human serum albumin (HSA, 1 mg/mL), calcium chloride (CaCl$_2$, 1 mM), and magnesium chloride (MgCl$_2$, 1 mM) all failed to make the fluorescence of MNI-NTR enhanced. Only NTR could induce a remarkable fluorescence augmentation, while negligible fluorescence was observed when the probe was treated with other species. In terms of probe selectivity, our results showed that this probe is one of the best in the published literature. Meanwhile, this probe showed the largest signal amplification among all the NTR probes based on the 1,8-naphthalimide scaffold (Table S1), mainly due to its low background. Furthermore, the fluorescence of MNI-NTR kept quenched under various pH values; whereas in the presence of NTR, the signal remarkably increased within the biologically relevant pH range (Fig. S1).

Theoretical Study on Fluorescence Quenching Mechanism of MNI-NTR

The experiment shows that MNI-NTR displays no fluorescence. To reveal the fluorescence quenching mechanism of MNI-NTR, density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations were performed by Gaussian 09 software. Taking into account the solvent effect of water, the configuration of MNI-NTR at the ground state was optimized using the polarization continuum model (PCM) with the B3LYP hybrid functional and TZVP basis set [33, 34]. Based on the ground-state stable conformation without and imaginary vibrational frequency, the vertical excited energies of MNI-NTR were obtained (Table 1). The oscillator strengths (f) of the three lowest singlet excited states (S_1, S_2 and S_3) are 0.0000, 0.0000 and 0.0012 respectively, so the three states...
are non-radiative, while the singlet excited state S_4 is a light state ($f = 0.3948$).

At the same time, we also obtained the electron transfer related molecular orbitals, as shown in Fig. 4. The calculation results in Table 1 and the shapes of the molecular orbitals plotted in Fig. 4 suggest that there is electron transfer in the excited state from both the nitrobenzene group and the morpholine group to the 1, 8-naphthalimide fluorophore. Thus, it can be concluded that fluorescence quenching of MNI-NTR is due to photoinduced electron transfer (PET).

Conclusion

In summary, we have developed a highly selective fluorescent probe (MNI-NTR) for the detection of NTR by attaching the morpholine moiety and the nitrobenzene group to a naphthalimide fluorophore. MNI-NTR is non-fluorescent, and in the presence of NADH in PBS, the fluorescence signal is significantly enhanced by NTR via a decomposition reaction, which produces a fluorescent dye with a fluorescence band peaked at 550 nm. Other

Table 1 Vertical excited energies of MNI-NTR at the optimized ground state geometry calculated at the TD-DFT/B3LYP/TZVP level (water was employed as solvent in all the calculations)

Transition	Excitation Energy (eV)	Oscillator Strength	CI Expansion Coefficients
S_0-S_1	2.97 (417 nm)	0.0000	90.6% ($H - 1$ \rightarrow L)
S_0-S_2	2.91 (425 nm)	0.0000	90.9% (H \rightarrow L)
S_0-S_3	2.93 (423 nm)	0.0012	99.6% (H \rightarrow $L + 1$)
S_0-S_4	2.95 (420 nm)	0.3948	97.0% ($H - 1$ \rightarrow $L + 1$)

a The calculated excitation energy
b Oscillator strength
c H stands for HOMO and L stands for LUMO. Only the main contributions of each transition and their relevant MOs are listed
species including H$_2$S is not able to turn on the signal. Theoretical calculations by DFT/TDDFT reveal that the fluorescence quenching of MNI-NTR is due to PET from both the morpholine moiety and the nitrobenzene group to the naphthalimide fluorophore.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10895-022-02974-7.

Author Contributions Han Li and Jintao Feng contributed equally to this work. The first draft of the manuscript was written by Jintao Feng, Han Li and Zhen Wang. Zongjin Qu and Cuixia Yao contributed to the study conception and design. Material preparation, data collection and analysis were performed by Zongjin Qu, Han Li, Yan Jia and Peng Li. All authors read and approved the final manuscript.

Funding This work was supported by Project of Shandong Province Higher Educational Science and Technology Program, China (J17KA119) and Major Scientific and Technological Innovation Project of Shandong Province (2019JZZY021003).

Availability of Data and Material/Data Availability The authors declare that [the/all other] data supporting the findings of this study are available within the article.

Declarations

Ethics Approval Not applicable.

Consent to Participate Not applicable.

Consent for Publication Not applicable.

Conflicts of Interest/Competing Interests The authors have declared that there is no competing financial and/or non-financial interests.

References

1. Spain JC (1995) Biodegradation of nitroaromatic compounds. Annu Rev Microbiol 49:523–555
2. Padla RS, Wang C, Hughes JB, Kutty R, Bennett GN (2003) Mutagenicity of nitroaromatic degradation compounds. Environ Toxicol Chem 22:2293–2297
3. Roldan MD, Perez-Reinado E, Castillo F, Moreno-Vivian C (2008) Reduction of polynitroaromatic compounds: the bacterial nitroreductases. FEMS Microbiol Rev 32:474–500
4. Bryant DW, McCalla DR, Leeksma M, Laneuville P (1981) Type I nitroreducatases of Escherichia coli. Can J Microbiol 27:81–86
5. Li YH, Sun Y, Li JC, Su QQ, Yuan W, Dai Y, Han CM, Wang QH, Feng W, Li FY (2015) Ultrasonic near-infrared fluorescence-enhanced probe for in vivo nitroreductase imaging. J Am Chem Soc 137:6407–6416
6. Li Z, Gao XH, Shi W, Li XM, Ma HM (2013) 7-((5-Nitrothiophen-2-yl)methoxy)-3Hphenoxazin-3-one as a spectroscopic off–on probe for highly sensitive and selective detection of nitroreductase. Chem Commun 49:5859–5861
7. Wong RH, Kwong T, Yau KH, Au-Yeung HY (2015) Real time detection of live microbes using a highly sensitive bioluminescent nitroreductase probe. Chem Commun 51:4440–4442
8. Sharma A, Arambula JF, Koo S, Kumar R, Singh H, Sessler JL, Kim JS (2019) Hypoxia-targeted drug delivery. Chem Soc Rev 48:771–813
9. Green LK, Storey MA, Williams EM, Patterson AV, Smaill JB, Copp JN, Ackerley DF (2013) The flavin reductase MsuE is a novel nitroreductase that can efficiently activate two promising next-generation prodrugs for genedirected enzyme prodrug therapy. Cancers 5:985–997
10. Chen Y, Hu LQ (2009) Design of anticancer prodrugs for reductive activation. Med Res Rev 29:29–64
11. Bhauamik S, Sekar TV, Depuy J, Klimash J, Paulmurugan R (2012) Noninvasive optical imaging of nitroreductase genedirected enzyme prodrug therapy system in living animals. Gene Ther 19:295–302
12. Celik A, Yetis N (2012) An unusually cold active nitroreductase for prodrug activations. Bioorg Med Chem 20:3540–3550
13. Sharma K, Sengupta K, Chakrapani H (2013) Nitroreductase-activated nitric oxide (NO) prodrugs. Bioorg Med Chem Lett 23:5964–5967
14. Voak AA, Gobalakrishnapillai V, Seifert K, Balcoz E, Hu L, Hall BS, Wilkinson SR (2013) An essential type I nitroreductase from leishmania major can be used to activate leishmanicidal prodrugs. J Biol Chem 288:28466–28476
15. Li MG, Zhang Y, Ren XJ, Niu WC, Yuan Q, Cao K, Zhang JC, Gao XY, Su DD (2022) Activatable fluorogenic probe for accurate imaging of ulcerative colitis hypoxia in vivo. Chem Commun 58:819–822
16. Kumari R, Sunil D, Ngunthoujam RS, Pandey BN, Kulkarni SD, Varadavenkatesan T, Venkatachalam G (2021) A nitronaphthalimide probe for fluorescence imaging of hypoxia in cancer cells. J Fluoresc 31:1665–1673
17. Qi YL, Guo L, Chen LL, Li H, Yang YS, Jiang AQ, Zhu HL (2020) Recent progress in the design principles, sensing mechanisms, and applications of smallmolecule probes for nitroreductases. Coord Chem Rev 421:213460
18. Zhang ZZ, Lv T, Tao BB, Wen ZF, Xu YQ, Li HJ, Liu FY, Sun SG (2020) A novel fluorescent probe based on naphthalimide for imaging nitroreductase (NTR) in bacteria and cells. Bioorg Med Chem 28
19. Xu SG, Wang QH, Zhang QY, Zhang LL, Zuo LM, Jiang JD, Hu HY (2017) Real time detection of ESKAPE pathogens by a nitroreductase-triggered fluorescence turn-on probe. Chem Commun 53:11177–11180
20. Li HD, Yao QC, Xu F, Xu N, Duan R, Long SR, Fan JL, Du JJ, Wang JY, Peng XJ (2018) Imaging gamma-Glutamyltranspeptidase for tumor identification and resection guidance via enzyme-triggered fluorescent probe. Biomaterials 179:1–14
21. Xue JL, Liu YX, Li L, Xu J, Chen T, Li YL, Chen G (2021) Visualizing the hypoxic heterogeneity for distinguishing the cancer tissues with a two-photon nitroreductase-H2S logic probe via intramolecular isomerization. Sens Actuator B Chem 348
22. Wu MY, Li K, Hou JT, Huang Z, Yu XQ (2012) A selective colormetric and ratiometric fluorescent probe for hydrogen sulfide. Org Biomol Chem 10:8342–8347
23. Montoya LA, Pluth MD (2012) Selective turn-on fluorescent probes for imaging hydrogen sulfide in living cells. Chem Comm 48:4767–4769
24. Zhang L, Meng WQ, Lu L, Xue YS, Li C, Zou F, Liu Y, Zhao J (2014)Selective detection of endogenous H2S in living cells and the mouse hippocampus using a ratiometric fluorescent probe. Sci Rep 4:5870
25. Wang R, Yu FB, Chen LX, Chen H, Wang LJ, Zhang WW (2012) A highly selective turn-on near-infrared fluorescent probe for hydrogen sulfide detection and imaging in living cells. Chem Commun 48:11757–11759
26. Liu TL, Xu ZC, Spring DR, Cui JN (2013) A Lysosome-Targetable Fluorescent Probe for Imaging Hydrogen Sulfide in Living Cells. Org Lett 15:2310–2313

27. Ren J, Wu Z, Zhou Y, Li Y, Xu ZX (2011) Colorimetric fluoride sensor based on 1,8-naphthalimide derivatives. Dyes Pigm 91:442–445

28. Zhu BC, Gao CC, Zhao YZ, Liu CY, Li YM, Wei Q, Ma ZM, Du B, Zhang XL (2011) A 4-hydroxynaphthalimide-derived ratiometric fluorescent chemodosimeter for imaging palladium in living cells. Chem Commun 47:8656–8658

29. Xu M, Han JM, Zhang Y, Yang XM, Zang L (2013) A selective fluorescence turn-on sensor for trace vapor detection of hydrogen peroxide. Chem Commun 49:11779–11781

30. Wen Y, Liu KY, Yang HR, Li Y, Lan HC, Liu Y, Zhang XY, Yi T (2014) A highly sensitive ratiometric fluorescent probe for the detection of cytoplasmic and nuclear hydrogen peroxide. Anal Chem 86:9970–9976

31. Qu ZJ, Li P, Zhang XX, Wang ED, Wang YN, Zhou PZ (2016) Excited-state proton transfer of 4-hydroxy-1,8-naphthalimide derivatives: A combined experimental and theoretical investigation. J Lumin 177:197–203

32. Zhang XX, Wu H, Li P, Qu ZJ, Tan MQ, Han KL (2016) A versatile two-photon fluorescent probe for ratiometric imaging E. coli β-galactosidase in live cells and in vivo. Chem Commun 52:8283–8286

33. Meng ZZ, Yang L, Yao CX, Li H, Fu Y, Wang XH, Qu ZJ, Wang ZH (2020) Development of a naphthlimide-based fluorescent probe for imaging monoamine oxidase A in living cells and zebrafish. Dyes Pigm 176:108208

34. Miao LF, Yao YL, Yang F, Wang ZD, Li W, Hu JM (2008) A TDDFT and PCM-TDDFT studies on absorption spectra of N-substituted 1,8-naphthalimides dyes. J Mol Struct THEOCHEM 865:79–87

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.