3 months postTx. RESULTS/ANTICIPATED RESULTS: We hypothesize that those patients with protective immunity to live vaccines prior to cancer therapy will lose it at the end of therapy. DISCUSSION/SIGNIFICANCE OF IMPACT: Loss of protective immunity to live vaccines has been reported in patients with hematologic malignancies after cancer therapy. This lack of protective immunity, which puts patients at higher risk of acquiring vaccine-preventable diseases, has been limited studied in patients with solid tumors. The Center for Diseases Control has been established that it is safe to immunize cancer survivors with live vaccines 3 months post Tx. However, no clear guidelines for revaccination have been provided for this population. Understanding the protective immunity variation against live vaccines in children with solid tumors will allow us to identify the need for revaccination with live vaccines in this vulnerable population.

A pilot study: Using computational fluid dynamics to model physiologic airflow through an ovine tissue engineered tracheal graft

Nakeha King, Victoria Pepper, Cameron Best, Ekene Onwuka, Chengyu Li, Eric Heuer, Jed Johnson, Kai Zhao, Christopher K. Breuer and Tengxiang Chang

The Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA

OBJECTIVES/SPECIFIC AIMS: Tissue engineered tracheal grafts (TETG) could provide a life-saving cure for children with long segment airway defects. Computational fluid dynamics (CFD) is a novel and promising technique used to evaluate TETG performance. This pilot study examines the correlation of objective CFD simulations with subjective respiratory symptoms in a TETG large animal model. METHODS/STUDY POPULATION: Three-dimensional geometries of 1 TETG implanted sheep trachea were reconstructed from serial fluoroscopic images, allowing analysis with CFD simulations. Peak flow velocity (PFV) and peak wall shear stress (PWSS) across the graft as well as changes secondary to stenting were determined. CFD metrics were compared with respiratory symptoms seen on exam. RESULTS/ANTICIPATED RESULTS: Two weeks after implantation, the animal developed an obstructive respiratory distress, which correlated with PFV and PWSS elevations. Although the intraluminal graft appearance changed minimally after dilation, PFV and PWSS decreased across the graft (4.5 – 0.8 m/s and 0.9 – 0.1 Pa, respectively). Long-term TETG stenting with dilation returned PFV and PWSS to baseline (0.8 – 0.3 m/s and 0.1 – 0.01 Pa, respectively), which correlated with immediate symptom resolution. DISCUSSION/SIGNIFICANCE OF IMPACT: CFD is a noninvasive modality, which allows the evaluation of airflow metrics of symptomatic TETG recipients. This diagnostic tool will permit planned interventions and graft design optimization.

Alcohol reduces the ability to regulate emotion when exposed to evocative partner stimuli in individuals with a history of intimate partner violence

Brandi Fink, Eric D. Claus, James F. Cavanagh, Derek A. Hamilton and Sarah Salway

OBJECTIVES/SPECIFIC AIMS: The objective of this research was to investigate the effect of alcohol and evocative stimuli on heart rate variability (HRV) in partners with a history of intimate partner violence in a placebo-controlled alcohol administration study with an emotion-regulation task. METHODS/STUDY POPULATION: In total, 17 partners (9 females, 8 males) with a history of partner violence participated in a placebo-controlled alcohol administration study with an emotion-regulation task during which HRV measures were performed by cross-linking proteins to DNA with 1% formaldehyde for 10 minutes, then Protein A magnetic beads were washed and centrifuged to a DNA that was 1000 base pairs, then Protein A magnetic beads were washed and centrifuged to a DNA that was 1000 base pairs. NEXT, using the optimized NLOM imaging modality in bacteria biofilm isolates and subsequently a rabbit ear model of wound infection, as well as the underlying tissue was performed throughout the onset, development, treatment, and resolution of wound biofilm infection. Specific microbiological, micro structural, oxygenation, and pH parameters were mapped at defined surface and subsurface locations and time-points. Findings included the determination that some standard antimicrobial formulations provide a supportive environment for wound infection, and that micro-channels within the biofilm and their interface with the tissues serve as an important predictor and indicator of wound infection establishment, progression, and response. DISCUSSION/SIGNIFICANCE OF IMPACT: The novel multimodality in vivo NLOM imaging approach establishes imaging protocols for earlier and more specific diagnosis of wound infection risk, virulence, and invasiveness along with markers of successful treatment, and a simple clinical imaging tool for improving wound infection prevention and treatment.

ETV6 represses Pax5 in early B-cell development

Greg Kirkpatrick, Courtney Jones, Susan Fosmire, Christopher Porter and Jorge DiPaola

University of Colorado at Denver, Denver, CO, USA

OBJECTIVES/SPECIFIC AIMS: The goal of this project is to determine the role of ETV6 in early B-cell development and define how germine ETV6 mutations result in predisposition to leukemia. METHODS/STUDY POPULATION: Gene expression common were sequenced for expression of ETV6 and Pax5 at different stages of hematopoiesis. Mouse bone marrow was isolated and fractioned into cells committed to the B cell lineage via B220+ and CD43+ staining by flow cytometry and then separated into the following fractions: Fraction A (CD24low, CD19+) and Fraction B (CD19+, CD43+, B1+). Wild-type or germine mutant mice. ETV6 repressed Pax5 in an MIG vector and expressed in B–TAc3 cells. ChIP-PCR was performed by cross-linking proteins to DNA with 1% formaldehyde for 10 minutes at room temperature, followed by cell lysis with RIPA buffer. Lysates were sonicated to shear DNA to a length of 200–1000 base pairs, then Protein A agarose beads were washed to clean and immunoprecipitate chromatin. RESULTS/ANTICIPATED RESULTS: We observed that ETV6 is highly expressed in hematopoietic stem and lymphoid progenitor cells through the pre-pro-B stage (FrA), but its expression is significantly reduced in fraction B and...
thereafter ($p < 0.0001$). Etv6 expression decreases as B cells develop and is negatively correlated with Pax5 expression ($r^2 = 0.9993$, $p = 0.0167$). We next compared the expression patterns of ETV6 and Pax5 during B cell development in human samples. We found that ETV6 expression was higher in the early B cell fraction (CD10+, CD34+, CD19−, and CD20−) compared to the pre-B cell fraction (CD10+, CD34+, CD19+, and CD20+). Conversely, we observed that Pax5 expression was higher in the pre-B cell fraction compared with the early B cell fraction. In Ba/F3 cells expressing ETV6 constructs, ETV6, but not ETV6 P214L, overexpression significantly decreased Pax5 expression ($p < 0.05$). ETV6 is associated with the proximal GGAA site 72 base pairs upstream of the Pax5 TSS, but not GGAA sites further from the TSS. In addition, the transcriptional repressors Sin3a and Hdad3 were detected on the same regions of the Pax5 locus. We detected association of ETV6, Sin3a, and Hdad3 with the proximal GGAA site upon deletion of ETV6, but not ETV6 P214L.

SIGNIFICANCE OF IMPACT: Our results provide a mechanism of interaction for ETV6 and Pax5, 2 genes often disrupted in B-cell leukemia. These findings are significant because Pax5 misregulation results in a B cell development halt, lineage infidelity, and leukemogenesis. In continuing our studies, we have generated a transgenic mouse endogenously expressing the ETV6 P214L mutation by CRISPR/Cas9 editing, and these mice appear to have a thymoblastropic phenotype similar to that observed in patients carrying the ETV6 P214L mutation. These animals will be the focus of our continued investigation of the mechanism by which ETV6 germline mutation results in a predisposition to leukemia. Our ultimate goal is a comprehensive understanding of how this process may be targeted more efficiently in patients with both heritable and sporadic forms of leukemia involving ETV6.

2486

Sleep, biological stress, and health in a community sample of toddlers living in socioeconomically disadvantaged homes

Monica Roorda Ornday, Nancy Redeker and Lois Sadler
Yale School of Medicine, New Haven, CT, USA

OBJECTIVES/SPECIFIC AIMS: The purposes of this study are to examine the relationships among sleep characteristics (duration, efficiency), stress biomarkers, and child behavior problems among toddlers living in socioeconomically disadvantaged homes and how these characteristics change over time from age of 12 months to 24 months. Aiman Itfikhar and Bryan Brown
University of Pittsburgh, Pittsburgh, PA, USA

OBJECTIVES/SPECIFIC AIMS: Mesh properties, such as stiffness, porosity, and weight have been shown to correlate with the degree of mesh integration with the surrounding tissue. Previous research in rhesus macaques implanted with polypropylene mesh demonstrated in stiffness and porosity with acute and chronic inflammatory responses. The current study investigates chronic inflammatory responses following mesh implantation. These differences were correlated with a foreign body response, consisting primarily of activated, proinflammatory M1 macrophages. Previous studies have determined that the early macrophage polarization profile following biomaterial implantation is a strong indicator of overall tissue integration downstream. However, these early responses have not been previously observed in the appropriate surgical models. Prior work from our laboratory in developing a cytokine delivery system has shown that shifting the macrophage response at the host-implant interface from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype in the first 14 days postimplantation resulted in enhanced integration of the mesh with the surrounding tissues. The present study develops an in vivo model clinically relevant surgical model to investigate the modulation of the host response to mesh. Utilizing a moderately-sized animal, we can feasibly implant mesh using the “gold standard” abdominal sacrocolpopexy procedure and evaluate the changes in the host immunologic response at early (14d) and tissue remodeling outcomes at late stages (90 and 180d) of implantation. METHODS/STUDY POPULATION: Commercially available lightweight and lightweight mesh was used to investigate the modulation of the immune response. A custom MTI Silar Automated Dip coating machine is used to uniformly coat the mesh in a reproducible manner. An adapted radio frequency glow discharge method is used to create a stable negative charge on the surface of the mesh, followed by the sequential deposition of polycationic and polyanionic polymers to provide a stable, conformal, nanoscale coating. Chitosan served as the polymer, chosen because of its known antimicrobial and biocompatibility properties. Dermatan sulfated as the polymer, chosen for its important role in regulating extracellular matrix results will inform future intervention development that may address the role of parenting behavior in promoting health sleep early in life.

2493

GABA-A receptor binding is abnormal in sensory-motor integration brain regions in Cervical Dystonia

Brian Berman, Erika Shelton and Yubin Miao
University of Colorado at Denver, Denver, CO, USA

OBJECTIVES/SPECIFIC AIMS: Determine whether GABA-A receptor binding is abnormal and linked to dystonia symptoms in cervical dystonia (CD). METHODS/STUDY POPULATION: There is increasing evidence that a key pathophysiologic mechanism in adult-onset focal dystonia is a reduction in inhibitory control over the sensorimotor network. Results from a recent 11C-flumazenil PET imaging study suggest that abnormal inhibitory signaling in genetic and sporadic forms of dystonia may be due to reduced GABA-A binding. It remains unknown whether CD, the most common form of adult-onset focal dystonia, is associated with abnormal GABA-A binding. The goal of this research is to determine if GABA-A receptor binding is abnormal and linked to dystonia symptoms in CD. RESULTS/ANTICIPATED RESULTS: We investigated whole brain GABA-A binding in 15 CD patients (11F; 64 ± 8y) and 15 healthy controls (10F; 64 ± 9y) using 60-minute dynamic 11C-flumazenil PET scans. GABA-A receptor binding potential (BP) was estimated using a simplified reference tissue model. A 2-sample t-test was used to identify voxel-wise GABA-A BP differences between groups, and a regression analysis used to test for correlations between GABA-A BP and disease severity as measured with the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS). PET analysis was also conducted to quantify BP changes within the sensorimotor network using the automated anatomical labeling atlas. DISCUSSION/SIGNIFICANCE OF IMPACT: CD patients have reduced GABA-A receptor binding compared with healthy controls, with the greatest reduction seen within the sensorimotor region of the thalamus. Furthermore, reductions in GABA-A binding in brain regions associated with controlling sensory and motor information predict motor severity. These findings support that reduced GABAergic signaling within sensorimotor integration regions is a key mechanism underlying dystonic symptoms in CD and could help inform the development of better, more targeted treatment options.

2518

Development of a clinically relevant rabbit surgical model for investigation of the host response to polypropylene mesh for pelvic organ prolapse

Aiman Itfikhar and Bryan Brown
University of Pittsburgh, Pittsburgh, PA, USA