An Example of the Curvature Tensor for a Quantum Space

Vida Milani
Department of Mathematics, Faculty of math. Sciences, Shahid Beheshti university, Tehran, Iran
e-mail: v-milani@cc.sbu.ac.ir

Seyed M.H. Mansourbeigi
Department of Electrical Engineering, Polytechnic University, NY, USA
e-mail: s.mansourbeigi@ieee.org

Farzaneh Falahati
Department of Mathematics, Science and Research Branch,Islamic Azad University, Tehran, Iran

Abstract

The paper is constructed in two parts. In the first part we introduce the concept of the algebra \mathbb{R}^2_Q of Q-meromorphic functions on the quantum plane. The $A_1(q)$-algebra of Q-analytic functions considered in [6] is seen as a proper subalgebra.

In the second part we find a formula for the curvature tensor on \mathbb{R}^2_Q. It is seen that when the quantization parameter tends to 1, then this formula gives the flatness of the usual \mathbb{R}^2.

1 Introduction

Non-commutative geometry and quantum groups are applied to problems of physics in different ways. Classical and quantum mechanics on the Manin quantum plane have been studied in [1,4,5].

A non-commutative framework for calculus and differential geometry from point of view of discrete calculus has been introduced by Kauffman [2]. In his work he modeled the notions of derivations and derivatives with respect to different parameters by commutators.

Our main objection is to transfer classical mechanics on a Poisson algebra to its functional quantization in the sense of [6].

More precisely we want to define an analogue of the poisson bracket on \mathbb{R}^2_Q and develop an appropriate classical mechanics on \mathbb{R}^2_Q parallel to that on \mathbb{R}^2.
On the first step, following the new interpretation of the Manin quantum plane in [6] and by a completion of [7], we provide the necessary tools which enable us to introduce the notions of covariant derivative and curvature tensor on \mathbb{R}^2_Q.

In order that we can apply Kauffman modeling of derivations we have to deal with a sufficiently large class of functions. This is done in part two of this paper, where the formula for the curvature tensor on \mathbb{R}^2_Q is obtained showing that when the quantization parameter goes to 1, this gives us the flatness of \mathbb{R}^2. Also a generalized formula for the Poisson bracket of two elements in \mathbb{R}^2_Q is given and properties are studied.

2 The algebra of the Q-Meromorphic Functions

Let $D=\{q \in \mathbb{C} : |q| \leq 1\}$ be the unit disk in \mathbb{C}. Recalling from [6], $A_1(q)$ will be the \mathbb{C}-algebra of all absolutely convergent power series $\sum_{i=0}^{\infty} a_i q^i$ in D with values in \mathbb{C}. Also we denote by $A_0(q)$ the \mathbb{C}-algebra of all absolutely convergent power series $\sum_{i=0}^{\infty} c_i q^i$ on $D - \{0\}$ with values in \mathbb{C}. We can generalize the concept of Q-analytic functions on the 2-intervals of \mathbb{R}^2 with values in $A_1(q)$ to the algebra of Q-analytic functions on the 2-interval of \mathbb{R}^2 with values in $A_0(q)$ without any difficulty. Assume now that $\Omega = \mathbb{R} - \{0\} \times \mathbb{R} - \{0\}$ and let

$$f = \sum_{i,j,k>_{-\infty}} a_{ijk} q^i t_1^j t_2^k$$ \hspace{1cm} (2-1)

be an absolutely convergent power series on $D - \{0\} \times \Omega$ with values in \mathbb{C}. (The sign $>$ under the second \sum indicates j, k are bounded below). Clearly we can consider f as a function from Ω into $A_0(q)$ admitting the absolutely convergent Laurent expansion

$$f = \sum_{i,j,k>_{-\infty}} a_{ij}(q) t_1^i t_2^j$$ \hspace{1cm} (2-2)

on Ω. Since the above series is absolutely convergent on Ω, we can also write it as

$$f = \sum_{i,j=0}^{\infty} t_1^{-i} \alpha_{ij}(t_1, t_2) t_2^{-j}$$ \hspace{1cm} (2-3)

where the α_{ij}'s are absolutely convergent power series on \mathbb{R}^2 with values in $A_0(q)$ and the sing - over the \sum means that the indices are bounded above.

Definition 2-1: With the above notations and conventions let

$$\hat{f} = \sum_{i,j=0}^{\infty} x^{-i} \hat{\alpha}_{ij}(x, p) p^{-j}$$ \hspace{1cm} (2-4)

be obtained from f by the correspondence
\[t^i_1 t^j_2 = t^j_2 t^i_1 \rightarrow x^i p^j. \]

We call \(\hat{f} \) a Q-meromorphic function on \(\Omega \) with values in \(A_0(q) \) or simply a Q-meromorphic function on \(\Omega \).

The two functions \(\frac{1}{x} \) and \(\frac{1}{p} \) are Q-meromorphic functions on \(\Omega \) satisfying the following commutation relations

\[
\begin{align*}
\frac{1}{x} &= \frac{1}{x} = 1, \quad \frac{1}{p} = \frac{1}{p}p = 1 \\
\frac{1}{p} &= q^{-1} \frac{1}{x}p, \quad \frac{1}{x} = q^{\frac{1}{2}}x \\
\frac{1}{p} &= q^{\frac{1}{2}} \frac{1}{p}, \quad \left(\frac{1}{x} \right)^i = \frac{1}{x}, \quad \left(\frac{1}{p} \right)^j = \frac{1}{p}.
\end{align*}
\]

By using these commutation relations we always follow the order \((x^ip^j)_{i,j,i,j,i,j} \rightarrow -\infty \) in writing the Q-meromorphic functions as above.

Remark 2-1: If \(\hat{f}(x,p) \) is a Q-analytic on \(\Omega \) with values in \(A_0(q) \), then for \(k,l \in \mathbb{Z} \), \(\hat{f}(q^k x, q^l p) \) is also a Q-analytic function on \(\Omega \) with values in \(A_0(q) \).

Definition 2-2: The product of two Q-meromorphic functions

\[
\hat{f} = \sum_{i_1, i_2 = 0}^{\infty} x^{-i_1} \hat{a}_{i_1 i_2}(x, p) p^{-i_2}
\]

\[
\hat{g} = \sum_{j_1, j_2 = 0}^{\infty} x^{-j_1} \hat{b}_{j_1 j_2}(x, p) p^{-j_2}
\]

on \(\Omega \) will be defined by

\[
\hat{f} \cdot \hat{g} = \sum_{i_1, i_2 = 0}^{\infty} \sum_{j_1, j_2 = 0}^{\infty} q^{i_2 j_1} x^{-i_1 - j_1} (\hat{a}_{i_1 i_2}(x, q^{-j_1} p) \cdot \hat{b}_{j_1 j_2}(q^{-i_2} x, p)) p^{-i_2 - j_2}
\]

where the above product between \(\hat{a}_{i_1 i_2} \) and \(\hat{b}_{j_1 j_2} \) is the product of two Q-analytic functions with values in \(A_0(q) \) in the sense of [6].

Lemma 2-1: With the above notations the product of two Q-meromorphic functions \(\hat{f} \) and \(\hat{g} \) on is Q-meromorphic function on \(\Omega \)

proof. The proof is easily seen from the fact that \(\hat{a}_{i_1 i_2}(x, q^{-j_1} p) \cdot \hat{b}_{j_1 j_2}(q^{-i_2} x, p) \) is a Q-analytic function on the quantum plane with values in \(A_0(q) \).

From the above lemma we can see that the set of all Q-meromorphic functions on \(\Omega \) with values in \(A_0(q) \) is a non-commutative, associative, unital \(A_0(q) \)-algebra. This algebra which we denote hereafter by \(\mathbb{R}_Q^2 \), contains \(A_Q \), the \(A_1(q) \)-algebra of Q-analytic functions on the
quantum plane with values in $A_1(q)$, as its subalgebra. It is clear that \mathbb{R}_Q^2 is the (1, D-0, $A_0(q)$) functional quantization of M: the \mathbb{C}-algebra of all absolutely convergent power series \[\sum_{i,j>\infty} a_{ij} t_i t_j \] on Ω with values in \mathbb{C} in the sense of [6], and if we denote by A the \mathbb{C}-algebra of all entire functions of the form \[\sum_{i,j=0} a_{ij} t_i t_j^2 \] on \mathbb{R}^2 with values in \mathbb{C}, then $i_A \Phi_A = \Phi_M i_{AQ}$

Where Φ_A and Φ_M are the quantization maps defined in [6], $A_Q \longrightarrow \mathbb{R}_Q^2$ and $A \longrightarrow M$ are the canonical injections and $i_A : A \rightarrow M$ and $i_{AQ} : A_Q \rightarrow \mathbb{R}_Q^2$ are the inclusions.

3 Derivative and the curvature tensor

Following Wess and Zumino [3,8] we can generalize the differential calculus by defining differential operators ∂_x and ∂_y as follows:

\[\frac{\partial}{\partial x} x = 1 + q^2 x \frac{\partial}{\partial x} + (q^i - 1) y \frac{\partial}{\partial y} \]

\[\frac{\partial}{\partial x} y = q y \frac{\partial}{\partial x} \]

\[\frac{\partial}{\partial y} x = q^{-1} x \frac{\partial}{\partial y} \]

\[\frac{\partial}{\partial y} y = 1 + q^2 y \frac{\partial}{\partial y} \]

from above relations, it’s easy to see that:

\[\frac{\partial}{\partial y} (y^n x^m) = y^{n-1} x^m \frac{1 - q^{2n}}{1 - q} \]

Definition 3-1: For a fixed element $H \in \mathbb{R}_Q^2$, the derivative of an arbitrary element $f \in \mathbb{R}_Q^2$ with respect to the time parameter t is defined by $\frac{df}{dt} := [f, H]$. From this definition it is seen that H is independent of t.

(for a mechanical system, H can be considered as the Hamiltonian function of the system.)

In classical differential geometry the Levi-civita connection on \mathbb{R}^2 gives us the following covariant derivatives on functions on \mathbb{R}^2:

\[\nabla_x f := \frac{\partial f}{\partial x} = \partial_x f \]

\[\nabla_y f := \frac{\partial f}{\partial y} = \partial_y f \]
Definition 3-2: for each \(f \in \mathbb{R}_Q^2 \) we define the following covariant derivatives with respect to \(x \) and \(y \) by:

\[
\nabla_x f := [f, H] \frac{1}{[x,H]}
\]

\[
\nabla_y f := [f, H] \frac{1}{[y,H]}
\]

\[
\nabla_{xy} f := [f, H] \frac{1}{[xy,H]}
\]

Proposition 3-1: the following properties of the covariant derivative is obtained:

a) \(\nabla_{\lambda x} f = \frac{1}{\lambda} \nabla_x f \)

b) \(\nabla_{[x,y]} f = (1 - q)^{-1} \nabla_{xy} f \)

c) \(\frac{1}{\nabla_{xy}} = \frac{x}{\nabla_y} + \frac{y}{\nabla_x} \)

proof:

a) It’s obvious by using definition 3-2.

b) Now, we compute \(\nabla_{[x,y]} f \) as follow:

\[
\nabla_{[x,y]} f = \nabla_{xy} - yx f = \nabla_{xy} - qyx f = \nabla_{xy(1-q)} f
\]

\[
= (1 - q)^{-1} \nabla_{xy} f
\]

c) \(\nabla_{xy} f = [f, H] \frac{1}{x[y,H] + [x,H]y} \)

\[
\Rightarrow \frac{1}{\nabla_{xy}} = (x[y,H] + [x,H]y) \frac{1}{[H,H]}
\]

\[
x \frac{1}{\nabla_y} + \frac{1}{\nabla_x} * y
\]

And by abuse of notation we can write it as

\[
\frac{1}{\nabla_{xy}} = \frac{x}{\nabla_y} + \frac{y}{\nabla_x}
\]

Definition 3-3: The curvature tensor of \(\mathbb{R}_Q^2 \) is defined as follows:
$R(x, y) : \mathbb{R}^2_Q \rightarrow \mathbb{R}$

$R(x, y)f = [\nabla_x, \nabla_y]f - \nabla_{[x,y]}f$ \hspace{1cm} (3-11)

Now, we compute both $[\nabla_x, \nabla_y]f$ and $\nabla_{[x,y]}f$ separately:

$[\nabla_x, \nabla_y] = [\partial_x, \partial_y] = \partial_x \partial_y - \partial_y \partial_x$

$= \partial_x \partial_y - q \partial_y \partial_x$

$= (1 - q) \partial_x \partial_y$ \hspace{1cm} (3-12)

Now, let $f \in \mathbb{R}^2_Q$ and $f = \sum_{i,j} a_{ij}(q)x^i y^j$ then

$[\partial_x, \partial_y]f = (1 - q) \partial_x \partial_y(\sum_{i,j} a_{ij}(q)x^i y^j)$

$(1 - q) \sum_{i,j} a_{ij}(q) \partial_x \partial_y(x^i y^j)$ \hspace{1cm} (3-13)

$[\partial_x, \partial_y]f = \frac{1}{(1+q)^2(1-q)} \sum_{i,j} q^{i+j+1}(1 - q^{2j})(1 - q^{2i})a_{ij}(q)y^{i-1}x^{j-1}$ \hspace{1cm} (3-14)

In this way we obtain the following formula for the curvature of \mathbb{R}^2_Q

$R(x, y)f = \frac{1}{(1+q)^2(1-q)} \sum_{i,j} q^{i+j+1}(1 - q^{2j})(1 - q^{2i})a_{ij}(q)y^{i-1}x^{j-1} - (1 - q)^{-1}(\frac{x}{\nabla y} + \frac{y}{\nabla x})$

References

[1] Arefeva, I. Ya, Volovich. I.V., 1991 , Quantum group particles and non-archimedean geometry, Phys. Letter B, volume 268, issue 2, page 179-187.

[2] Kauffman, Louis H., 2004 , Non-commutative worlds, New Journal of physics 6, 173.

[3] Manin, Yu. I., 1996 , Selected papers of Yu. I., World scientific.

[4] Schwenk. J., Wess. J., 1992, a q-deformed quantum mechanical toy model, Phys. letter B, volume 291, page 273.

[5] Shabanov. S.V., 1993, J.Phys.A :Math. Gen. 26, page 2583.

[6] Shafei deh abad. A., Milani. V., 1994, J.M.P, volume 35, page 5074.

[7] Shafei deh abad. A., Milani. V., 1994, Q-meromorphic functions, quantum sets and homomorphisms of the quantum plane, No. IPM-1994-049.
[8] Wess J. and Zumino B., 1990, Covariant differential calculus, Nuclear Phys. B, volume 18, page 302.