Recognition of Evamy Et Al P-Zones in the Tertiary Sediments of F- Well, Niger Delta

LUCAS, F A; *ONONEME O E

Department of Geology, University of Benin, Benin City, Nigeria

*Corresponding Author Email: oghalomeno.ononeme@physci.uniben.edu; other Author Email: frank.lucas@uniben.edu,

ABSTRACT: Sedimentological description was carried out on 679 ditch cutting samples which aided the erection of 103 lithozones. Palynological evaluation of Tertiary sediments in F- Well, Niger Delta Basin was carried out using Fifty (50) Ditch Cutting samples from a well at different intervals between 2,010ft and 10,170ft. The samples were prepared using standard palynological sample processing technique and analyzed under the microscope. They were about twenty-three (23) diagnostic palynomorphs recognized. The evaluation of these palynomorphs species enabled us to recognize the zones. The presence of diagnostic palynomorphs such as Praedapollis africanaus, Peregrinipollis nigericus, Retibrevitolcolporites oboendensis and Cicatrisosporites dorogenesis aided in the establishment of the age and P-zones. The recognized P-zones are P560, P580 and P620 zones. P 560 zone was defined at depth 9,585ft to 9,960ft with increase Retibrevitolcolporites oboendensis and the Quantitative Base of Peregrinipollis nigericus P 580 zone was defined at depth 9,585ft to 7,830ft with Quantitative Base of Peregrinipollis nigericus and Top of Cicatrisosporites dorogenesis and P620 zone was defined at depth 7,830ft to 6,690ft with Top Praedapollis africanaus and Top Cicatrisosporites dorogenesis. Palynological events and zones gotten from the studied sedimentary succession suggest Oligocene – Early Miocene Age, with numerical value of 32.7 – 22.3 Ma when aligned with the Niger Delta Chronostratigraphic Chart.

DOI: https://dx.doi.org/10.4314/jasem.v23i12.14

Copyright: Copyright © 2019 Lucas and Ononeme. This is an open access article distributed under the Creative Commons Attribution License (CCL), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Dates: Received: 30 November 2019; Revised: 20 December 2019; Accepted: 23 December 2019

Keywords: Palynology, First Downhole Occurrence, Last Downhole Occurrence, P-zones

The Niger Delta Basin is economically important because of its petroliferous nature and the economy of Nigeria depends largely on the oil and gas derived from it. Geologically, it is found in the Tertiary period in the geologic column. It lies mainly in the Gulf of Guinea to the southwest of the Benue Trough and constitutes the most important Cenozoic deltaic construction in the South Atlantic. The combination of source rock, lithologic types, structures and thermal history of the basin are favorable for the generation, accumulation and preservation of hydrocarbons (Whiteman, 1982), (Stacher P. 1995). The use of lithofacie and palynology as tools and components in evaluating sedimentary pile and basin analysis has become increasingly important in recent times as seen in works by (Germeraad et al., 1968; Oloto, 1994; Chiaghnam et al., 2013; Lucas, 2017). Palynology is the study of palynomorphs and is an essential tool for dating rocks and identifying the biotic record through time. Palynological study is necessary for correlation, paleoenvironmental reconstruction, paleogeography and calculating rates of geologic processes. It is essential to the petroleum industry as a tool for defining geologic constraints on prediction of exploration risk and modeling reservoir simulation. Palynomorphs are acid resistant organic-walled Microscopic plants and animals remains preserved in rocks. These include pollen, spores, Dinoflagellate cysts (dinocysts), acritarchs etc. By the term acid resistant we mean they survive the HF, HCl and HNO3 acid treatment used to demineralized rocks samples in which these forms could be possibly contained or preserved. This study is aimed at establishing a palynological zonation and age of deposition of the sediments.

Location Of Well: F-Well is a well drilled to a total depth of 10,185 feet. It is located in the Greater Ughelli Depo belt of Niger Delta basin defined by the following coordinates: Between Longitude 6°E and 7° E and Latitude 5° N and 6° N.

Sedimentology: The sedimentologic description of F-Well was carried out on 679 Ditch Cutting samples with the aid of both visual and a reflected light

*Corresponding Author Email: oghalomeno.ononeme@physci.uniben.edu
microscope with the guide of a standard textural comparison chart showing grain sizes, shapes and degree of sorting. The Sedimentological analysis allowed the erection of one hundred and three (103) lithozones of Clayey Sandstone, Sandstone, Sandy Shale, Shale and Shaly Sandstone lithofacies based on the textural properties observed and the identification of minerals which include: Quartz, Iron oxide, and Mica. Fifty (50) Shale and Sandy Shale lithofacies were sampled for Standard Palynology analysis.

Table 1: Lithology and Lithozones with Depth

Depth(ft)	Lithology	Lithozoones
15 – 1,995	Sandstone	1
2,010 – 2,175	Clay	2
2,190 – 2,535	Clayey sandstone	3
2,550 – 2,959	Shaly sandstone	4
2,610 – 2,970	Sandstone	5
2,905 – 3,015	Sandy shale	6
3,030 – 3,105	Shaly sandstone	7
3,120 – 3,150	Sandstone	8
3,165 – 3,315	Shaly sandstone	9
3,330 – 3,345	Sandstone	10
3,360 – 3,405	Shaly sandstone	11
3,420	Sandstone	12
3,435 – 3,495	Shaly sandstone	13
3,510	Sandy shale	14
3,525 – 3,600	Shaly sandstone	15
3,615 – 3,660	Sandstone	16
3,675 – 3,705	Shaly sandstone	17
3,720 – 3,765	Sandy shale	18
3,780 – 3,795	Shaly sandstone	19
3,810	Sandy shale	20
3,825 – 3,885	Sandstone	21
3,900 – 3,930	Shaly sandstone	22
3,945 – 4,155	Sandstone	23
4,170	Clay	24
4,184 – 4,785	Sandstone	25
4,800 – 4,845	Shaly sand	26
4,860	Sandstone	27
4,875	Shaly sandstone	28
4,890	Sandstone	29
4,905 – 5,280	Sandstone	30
5,295	Shaly sandstone	31
5,310 – 5,385	Sandy shale	32
5,400 – 5,505	Sandstone	33
5,520 – 5,550	Shaly sandstone	34
5,565 – 5,595	Sandstone	35
5,610 – 5,715	Shaly sandstone	36
5,730 – 5,985	Sandstone	37
6,000	Shaly sandstone	38
6,015 – 6,030	Sandstone	39
6,045	Shaly sandstone	40
6,060	Sandy shale	41
6,075 – 6,090	Sandstone	42
6,105 – 6,180	Shaly sandstone	43
6,195 – 6,225	Sandstone	44
6,240	Shaly sandstone	45
6,255 – 6,330	Sandstone	46
6,345	Shaly sandstone	47
6,360 – 6,525	Sandstone	48
6,540 – 6,600	Shaly sandstone	49
6,615 – 6,635	Sandy shale	50
6,630 – 6,690	Shale	51
6,705 – 6,735	Sandstone	52
6,750 – 6,810	Shaly sandstone	53
6,825 – 6,900	Sandstone	54
6,915 – 6,960	Shaly sandstone	55
6,975 – 6,990	Sandstone	56
7,005 – 7,020	Shale	57
7,035	Sandy shale	58
7,050 – 7,065	Shaly sandstone	59

MATERIALS AND METHOD

Fifty (50) Ditch Cutting samples at different intervals between 2,010ft and 10,170ft of F-Well were prepared using standard palynological sample processing technique and analyzed for further studies.

Sample Preparation and Analysis: The sample preparation was carried out following the international standards given below: 10g of sample was crushed between aluminum pie dishes, collected and tested for limestone (CaCO₃) using HCl, while effervescence occurred, the limestone was eliminated by further addition treatment with concentrated HCl. After two or three hours, the sample was decanted and the waste solution transferred to one special waste container bottle. The broken-down mineral material and fossils were removed and centrifuged for about 1-2 minutes and decanted repeatedly until a neutral reaction was reached. Concentrated HNO₃ was used for oxidation and heated over bunsen burner. KOH of 10% solution was added to the sample and transferred to styrofoam cups and HF added and let to stand overnight. The sample was then washed.

LUCAS, F A; ONONEME O E
with water until a neutral reaction was reached and decanted. Sodium hypochlorite (Purex) as well as some drops of HCl was added, agitated and let for about 15 minutes. Two drops of Ammonium Hydroxide concentrate was added and diluted with water. At this stage, separation of the organic matter from the inorganic material (silica) was done by floatation using diluted zinc bromide (ZnBr). The samples were transferred to a flexible plastic tubes, already prepared (cut and mount immersed into warm water); such plastic tubes are set into centrifuge tubes with water around them. Zinc bromide has a specific gravity of 2.2 thus, everything with a specific gravity of more than 2.2 will settle down. The process of centrifugation using zinc bromide took about 15 minutes. A small portion of the supernatant liquid was observed under the microscope. Then, a clip across the flexible plastic tube was inserted so that the supernatant liquid would be easy to take out by pipette decantation or eye dropper. Microscopic view of the supernatant liquid decided how to clean, run acetolysis or stain. Add acetic anhydride and three of four drops of H$_2$SO$_4$ to take out the water, then immerse test tube in boiling water for about ten minutes. The sample was properly washed at each stage. Here, it was ready for cleaning and mounting; during this stage several views under the microscope accomplished with some attempts to get mainly fossil material was done. The palynomorph counting and logging were done by straight transects across each slide and coordinates. The recovered palynomorph species were identified with the aid of Shell palynological photo album, other relevant publications and manuals such as web-based albums. Morphological characters of the pollens and spores such as the size, exine, structure, shape, sculpture and aperture type provided the basis for the identification of the forms. Species name and their abundance were recorded in the analysis data sheets.

RESULT AND DISCUSSION

Diagnostic Palynomorphs that were important and environmentally indispensable were recovered in the analyzed samples and plotted in order to interpret the P-zones, age and paleoenvironment of deposition of sediments. The pollen and spores recovered are relatively moderate in abundance.

Palynomorphs Distribution Chart A thorough distribution chart showing the stratigraphic ranges of the palynomorph in the Well was established based on the First Appearance Datum (Last Downhole Occurrence) and the Last Appearance Datum (First Downhole Occurrence) of each palynomorph recognized in the well section. The recovered palynomorphs are listed thus: the Miospore recovered are: *Acrostichum aureum* (smooth trilete spore), *Aletespores* sp, *Arecipites exilimuratus*, *Bombacidites* sp, *Cicatricosispores dorogenesis*, *Cingulatisporites ornatus*, *Cingulatisporites cingulatus*, *Cinctiperiporites mulleri*, *Classopollis* sp, *Crassoreitritelles vanraadshooveni*, *Cupaniotes reticularis*, *Cyperoceapollis* sp, *Dichthyphildes Harassi*, *Dualaidites laevigatus*, *Dualaidites* sp, *Echimonocolpites rarispinosus*, *Echiperiporites aestae*, *Echistephanopores echinatus*, *Echitrilocolpites spinosus*, *Echitriletes plicenicus*, *Elaeis guineenses*, *Ericipites* sp, *Filtrotriletes nigeriensis*, *Foveoirifites margaritae*, *Gemmassonocolpites gematus* sp, *Gemmamonocolpites* sp, *Gemmatricolpites* sp, *Gemmatriporites* sp, *Laevigatosporites*, *Lycopodium* sp, *Marginipollis concinna*, *Monoporites annulatus*, *Nympeapolllis clarus*, *Omnipites africanaus*, *Pachydermites diederixi*, *Perforoticolpites digitus*, *Perysycopilos pokorini*, *Peregrinipollis nigericus*, *Poladapollotes vancampori*, *Polypedaceispores* sp, *Praedapollis africanaus*, *Praedapollis flexibilis*, *Proteacolpites longispinosus*, *Proxapertites operculatus*, *Psilaheterocolpites* sp, *Psilatricolpites* crassus, *Psilatricolpites operculatus*, *Psilatricolpites rotundiporis*, *Psilatriporites* sp, *Psilamonocolpites marginatus*, *Racemonocolpites hians*, *Retibrevicotricolpites obodoensis*, *Retibrevicotricolpites protrudens*, *Retistephanocolpites williamsii*, *Retritricolpites crassireticulatus*, *Retiricolpites irregularis*, *Retiricolpites* sp, *Rugulatisporites caperatus*, *Sapotaceae pollinites*, *Scabratriporites simpliformis*, *Spirosyncopiles brunni*, *Stereisopores* sp, *Striatmonocolpites rectostriattus*, *Striaticolpites catatumbus*, *Striaticolpites pimus*, *Syncolpites marginatus*, *Triorites africanus*, *Triorites usimensis*, *Verrucatopores rotundiporis*, *Zonocosistites ramonae*. Recovered Palynomorphs that were stratigraphically significant and environmentally necessary were plotted in order to interpret the P-zones and zonal age dating of the well See plate 1 and tables 1.

Plate 1: Cross section of some recovered diagnostic miospores ((1) *Arecipites exilimuratus* (2) *Retibrevicotricolpites obodoensis* (3) *Pachydermites diederixi* (4) *Peregrinipollis nigericus* (5) *Praedapollis africanaus* (6) *Crassoreitritelles vanraadshooveni*
Recognition of Evamy Et Al P-Zones..... 2074

Table 2: Palynomorph Distribution Chart of the Well Section

Depth (ft)	Zones/Zone Number	Palynomorphs Present
2,025	P560	Retibrevitricolporites oboendensis
		2
2,178	P580	Peregrinopollis nigericus
		2
3,600	P620	Cicatricosisporites dorogenesis
		2
5,220		Praedapollis africanus
		2
5,910		Retibrevitricolporites oboendensis
		2
5,178		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2
5,155		Retibrevitricolporites oboendensis
		2

Palynological Zonation and Age Dating: Three (3) palynological zones: P560, P580 and P620 have been established using index/age diagnostic marker palynomorph; Retibrevitricolporites oboendensis/prorudens, Peregrinopollis nigericus, Cicatricosisporites dorogensis and Praedapollis africanus. These index markers were delineated using the standard palynological zonation scheme from the interpreted palynological distribution chart of the well above.

P560 zone: This zone is defined at depth 9,585ft to 9,960ft with increase Retibrevitricolporites oboendensis and the Quantitative Base of Peregrinopollis nigericus.

P580 zone: This zone is defined at depth 9,585ft to 7,830ft with the Quantitative Base of Peregrinopollis nigericus and Top of Cicatricosisporites dorogensis.

P620 zone: This zone is defined at depth 7,830ft to 6,690ft with Top Praedapollis africanus and Top Cicatricosisporites dorogensis.

LUCAS, F A; ONONEME O E

Age Determination: The palynological events and zones gotten from the studied sedimentary successions suggest Oligocene – Early Miocene Age, which has a numerical age of 32.7 – 22.3 Ma when aligned with the Niger Delta Chronostratigraphic Chart and concurs with the Oligocene to Early Miocene Age of paralic sequence Doust and Omatsola, (1990).

Conclusion: The Palynological analysis of the studied samples was used to determine the Palynological zonation and age of the sediments penetrated by the drill. The pollen and spores recovered are relatively moderate in abundance with the presence of diagnostic palynomorphs such as Praedapollis africanus, Peregrinopollis nigericus, Retibrevitricolporites oboendensis aided in the establishment of the age and P-zones in the studied well section.

Acknowledgement: The authors are grateful to Nigerian Petroleum Development Company (NPDC) Benin and Earth Probe Ltd Lagos for their assistance in this research.

REFERENCES

Allmon, WD (1993). In Defense of Paleontology. Geotimes. p. 1-5.

Chiaghanam, OI; Nwozor, KK; Chidikobi, KC; Omoboririowo, AO; Soronnnadi-Ononiuw, CG; Onuba, LN; Ofoma, AE (2013). Lithofacies, Palynology and Paleoenvironmental Study of Early Campanian to Mid-Maastrichtian Deposits of Udi and Environs. Int. J. Sci. Tech, Vol. 2, p. 14-16.

Doust, H; Omatsola, E (1990). Niger Delta. In: Edwards, JD; Santogrossi, PA (ed) Divergent/passive Margin Basins. Am. Assoc. Petr. Geol. Bulletin. 48 201-238.

Germeraad, JH; Hopings, CA; Muller, J (1968). Palynology of Tertiary Sediments from tropical areas. Review of Paleobotany and Palynology. Elsevier
Lucas, FA (2017). Microphytoplankton and Geological Boundaries in Maastrichtian to Lutetian Succession of Ajire-1 well, Anambra Basin, Nigeria. *Int. J. Sci. and Adv. Inn. Res.* 2(1). 189-348.

Lucas, FA (2017). Miospores and Geological Boundaries in Maastrichtian to Lutetian Succession of Ajire-1 well, Anambra Basin, Nigeria. *Int. J. Sci. and Adv. Inn. Res.* 2(1). 74-84.

Nwozor, KR; Omudu, MI; Ozumba, BM; Egbuachor, CJ; Onwuemesi, AG; Anike, OL (2013). Quantitative evidence of secondary mechanisms of overpressure generation: Insights from parts of Onshore Niger Delta, Nigeria. *Petr. Techn. Dev. J.* 3(1). 64-83.

Oloto, IN (1994). Nigerian Maastrichtian to Miocene Dinoflagellate and Miospore Biozonation- A summary, *J. Min. and Geosci.* 30. 61-73.

Stacher, P (1995). Present understanding of the Niger Delta hydrocarbon habitat, In: Oti, MN. and Postma, G (eds.), *Geology of Deltas*: Rotterdam, AA Balkema, p. 257-267.

Whiteman, AJ (1982). Nigeria: Its Petroleum Geology, Resources and Potential. Graham and Trotman, London. p. 1-394.

LUCAS, F A; ONONEME O E