Association of Genomic Features with Integration

June 22, 2007

Contents

1 Introduction 2

2 Preference for Genes 3
 2.1 Acembly Genes 3
 2.2 refGenes 5
 2.3 ensGenes 7
 2.4 genScan Genes 9
 2.5 uniGenes 11
 2.6 oncogenes 13

3 CpG Island Neighborhoods 14
 3.1 1 kilobase neighborhoods 14
 3.2 5 kilobase neighborhoods 15
 3.3 10 kilobase neighborhoods 16
 3.4 25 kilobase neighborhoods 17
 3.5 50 kilobase neighborhoods 18

4 Gene Density, Expression 'Density', and CpG Island Density 19
 4.1 25 kiloBase Window 20
 4.2 50 kiloBase Window 26
 4.3 100 kiloBase Window 31
 4.4 100 kiloBase Window 35
 4.5 250 kiloBase Window 40
 4.6 500 kiloBase Window 45
 4.7 500 kiloBase Window 49
 4.8 1 megabase Window 54
 4.9 1 megaBase Window 58
 4.10 2 megabase Window 63
 4.11 2 megaBase Window 67
 4.12 4 megaBase Window 72
 4.13 8 megaBase Window 77
 4.14 16 megaBase Window 82
 4.15 32 megaBase Window 87
Section	Page
Juxtaposition with Gene Start and End Positions	92
5.1 Acembly Annotations	92
5.2 RefSeq Annotations	96
5.3 genScan Annotations	100
5.4 uniGene Annotations	104
GC content	108
Cytobands	125
1 Introduction

In this document, I examine the association of integration siting with various genomic features.

The numbers are shown below:

Origin.of.data.set	MRC-inVivo	Meekings-inVivo
	3110	313

The distribution of relative frequency of insertions across the chromosomes is given in this barplot:

Are there chromosomes that are particularly favored for integration by one group over the other? This was tested for statistical significance. The test performed used the likelihood ratio statistic for the logistic regression model (reviewed in [1]) as implemented by the \texttt{glm} function of R using the \texttt{binomial} family. The null hypothesis tested is the ratio of true integration events in the two groups is constant across all chromosomes. This test attains a p-value of 0.0011709.
2 Preference for Genes

2.1 Acembly Genes

Here we examine the relative preference that integration events in the two groups have for genes. In the following plot we show the relative frequency of integrations in genes according to the 'Acembly' annotation. The bars grouped over the label “In Gene” give the relative frequency of integration events (compared to control sites) between bases located within Acembly gene annotations, while the label “Not in Gene” give the relative frequency of integration events (compared to control sites) between bases not located within Acembly gene annotations.

Is there a difference in the tendency for insertions to occur in genes? A formal test of significance yields a p-value of 0.89336. In the following plot we show the relative frequency of insertions in exons according to the 'Acembly' annotation. The bars grouped over the label “In Exon” give the relative frequency of integration events (compared to control sites) between bases located in exons according to the Acembly annotation, while the label “Not in Exon” give the relative frequency of integration events (compared to control sites) between bases not located in exons according to the Acembly gene annotation.
Here is the table of coefficients of the log ratio of intensities along with their standard errors, z statistics, and p-values:

	coef	se	z	p
Intercept	-2.290	0.0854	-26.800	4.47e-158
in.gene	-0.0427	0.1230	-0.347	7.28e-01
in.exon	0.2280	0.2470	0.920	3.58e-01

The model on which these coefficients are based include terms for whether the site is in a gene or not. Thus, the effect shown as 'in.exon' is net of that due to being in a gene. Note that in the barplot above the 'Not in Exon' bars include the both introns and intergenic regions, so the impression given by the table may differ from that for the barplot.
2.2 refGenes

Here we examine the relative preference that insertions of the two types have for genes. In the following plot we show the relative frequency of insertions in genes according to the ‘refGene’ annotation.

Is there a tendency for insertions to occur in genes? A formal test of significance yields a p-value of 0.80619.

In the following plot we show the relative frequency of insertions in exons according to the ‘refGene’ annotation.
Here is the table of coefficients of the log ratio of intensities for along with their standard errors, z statistics, and p-values:

	coef	se	z	p
(Intercept)	-2.3100	0.0743	-31.000	1.69e-211
in.gene	0.0176	0.1250	0.140	8.89e-01
in.exon	0.2750	0.4460	0.616	5.38e-01

The model on which these coefficients are based include terms for whether the site is in a gene or not. Thus, the effect shown as 'in.exon' is net of that due to being in a gene. Note that in the barplot above the 'Not in Exon' bars include the both introns and intergenic regions, so the impression given by the table may differ from that for the barplot.
2.3 ensGenes

Here we examine the relative preference that insertions of the two types have for genes. In the following plot we show the relative frequency of insertions in genes according to the 'ensGene' annotation.

Is there a tendency for insertions to occur in genes? A formal test of significance yields a p-value of 0.93144.

In the following plot we show the relative frequency of insertions in exons according to the 'ensGene' annotation.
Here is the table of coefficients of the log ratio of intensities for along with their standard errors, z statistics, and p-values:

	coef	se	z	p
Intercept	-2.2900	0.0757	-30.3000	3.03e-201
in.gene	-0.0113	0.1230	-0.0919	9.27e-01
in.exon	0.0211	0.4790	0.0439	9.65e-01

The model on which these coefficients are based include terms for whether the site is in a gene or not. Thus, the effect shown as 'in.exon' is net of that due to being in a gene. Note that in the barplot above the 'Not in Exon' bars include the both introns and intergenic regions, so the impression given by the table may differ from that for the barplot.
2.4 genScan Genes

Here we examine the preference that insertions have for genes. In the following plot we show the relative frequency of insertions in genes according to the ‘genScan’ annotation.

In Gene	Not in Gene
MRC–inVivo	Meekings–inVivo
proportion of sites	proportion of sites
0.0	0.0
0.1	0.1
0.2	0.2
0.3	0.3
0.4	0.4
0.5	0.5
0.6	0.6
0.7	0.7

Is there a tendency for insertions to occur in genes? A formal test of significance yields a p-value of 0.37354.

In the following plot we show the relative frequency of insertions in exons according to the ‘genScan’ annotation.
Here is the table of coefficients of the log ratio of intensities along with their standard errors, z statistics, and p-values:

	coef	se	z	p
Intercept	-2.220	0.107	-20.700	2.38e-95
in.gene	-0.127	0.129	-0.985	3.25e-01
in.exon	0.397	0.385	1.030	3.03e-01

The model on which these coefficients are based include terms for whether the site is in a gene or not. Thus, the effect shown as 'in.exon' is net of that due to being in a gene. Note that in the barplot above the 'Not in Exon' bars include the both introns and intergenic regions, so the impression given by the table may differ from that for the barplot.
2.5 uniGenes

Here we examine the preference that insertions have for genes. In the following plot we show the relative frequency of insertions in genes according to the 'uniGene' annotation.

Is there a tendency for insertions to occur in genes? A formal test of significance yields a p-value of 0.97151.

In the following plot we show the relative frequency of insertions in exons according to the 'uniGene' annotation.
Here is the table of coefficients of the log ratio of intensities along with their standard errors, z statistics, and p-values:

	coef	se	z	p
(Intercept)	-2.2900	0.0773	-29.700	2.29e-193
in.gene	-0.0342	0.1250	-0.273	7.85e-01
in.exon	0.2920	0.2920	1.000	3.17e-01

The model on which these coefficients are based include terms for whether the site is in a gene or not. Thus, the effect shown as ‘in.exon’ is net of that due to being in a gene. Note that in the barplot above the 'Not in Exon' bars include the both introns and intergenic regions, so the impression given by the table may differ from that for the barplot.
2.6 oncogenes

Here we examine the preference that insertions have for oncogenes. In the following plot we show the relative frequency of insertions within 50kb of an oncogene 5’ end.

It seems evident that there is a strong tendency for insertions to occur near oncogenes. A formal test of significance bears this out with a p-value of 0.055964.

Here is the table of coefficients of the log ratio of intensities for true insertion sites versus control insertion sites along with their standard errors, z statistics, and p-values for each data set:

	coef	se	z	p
(Intercept)	-2.330	0.0618	-37.7	0.0000
eval(the.gene)TRUE	0.448	0.2230	2.0	0.0451
3 CpG Island Neighborhoods

Here we study the effect of being in the neighborhood of CpG Islands. Following Wu et al [2], who found that the neighborhoods within ±1kb of CpG islands are enriched for MLV insertions, we study such neighborhoods.

3.1 1 kilobase neighborhoods

The following plot shows the effect of being in or within ±1kb of a CpG island:

A formal test of significance comparing the difference attains a p-value of $6.4805e^{-08}$.
3.2 5 kilobase neighborhoods

The following plot shows the effect of being in or within ±5kb of a CpG island:

A formal test of significance comparing the difference attains a p-value of $1.0465e^{-10}$.
3.3 10 kilobase neighborhoods

The following plot shows the effect of being in or within ±10kb of a CpG island:

A formal test of significance comparing the difference attains a p-value of $4.9409e-11$.
3.4 25 kilobase neighborhoods

The following plot shows the effect of being in or within ±25kb of a CpG island:

A formal test of significance comparing the difference attains a p-value of 1.2228e − 05.
3.5 50 kilobase neighborhoods

The following plot shows the effect of being in or within ±50kb of a CpG island:

A formal test of significance comparing the difference attains a p-value of 0.00019175.
4 Gene Density, Expression 'Density’, and CpG Island Density

In this section the association with gene density is examined. The 'genes' that are counted are the genes represented on the microarray. In addition, we the number of such genes expressed at various levels. The levels are

- **low.ex** Count genes whose expression is in the upper half and divide by number of bases
- **med.ex** Count genes whose expression is in the upper half $1/8^{th}$ and divide by number of bases
- **high.ex** Count genes whose expression is in the upper half $1/16^{th}$ and divide by number of bases

The bolded terms are used as abbreviations in what follows. The abbreviation **dens** is used to indicate gene density as number of genes per base.
4.1 25 kiloBase Window

In the barplot that follows we examine the association of insertion sites with gene density in a 25 kilobase window surrounding each locus. More such plots will follow and the method of their construction is always to try to divide the data according to the deciles of density. However, it often happens that there is a very skewed distribution of density and often even the 90th percentile is zero. In that case, the barplots simply show the sites for which the density is zero and those for which it is non-zero. If there are fewer than ten groups of bars, then the groupings contain ten percent of the sites each except for the leftmost grouping which will contain all of the remaining sites.

Also note that the title of the plot contains clues as to its content; the prefix indicates the type of variable studied while the suffix indicates the window width in the number of bases. The p-value given is the result of fitting a cubic polynomial to the gene density values.

The following expression data and probe set were used for this report:

[1] "Jurkat-HU133Plus2"
[1] "HG-U133"

Category limits

lower	category	upper
-0.2551140	group.1	0.6040327
0.6040327	group.2	0.7632963
0.7632963	group.3	0.9997078
rescale(dens.25k) \quad \text{p-value} = 2.0885\times 10^{-05}

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{chart.png}
\caption{Proportion of sites for different groups.}
\end{figure}

- Group 1: MRC-inVivo
- Group 2: Meekings-inVivo
- Group 3: MRC-inVivo

Proportion of sites range from 0.0 to 0.8.
Here are the results for expression density. First, we count just genes that are in the upper half.

Category limits

lower category	upper category
-0.1417300	group.1 0.7925190
0.7925190	group.2 0.9994155

rescale(low.ex.25k) – p-value = 8.9446e−05
Now we count genes in the upper 1/8th:

Category limits

lower category	upper
1 -0.078609	group.1 0.8930450
2 0.893045	group.2 0.9997078

rescale(med.ex.25k) – p–value = 0.16157
And here we count genes in the upper $1/16^{th}$:

Category limits

lower category	upper
1	-0.04441847 group.1 0.9450614
2	0.94506137 group.2 0.9997078

rescale(high.ex.25k) − p−value = 0.79848

![graph showing proportion of sites for group 1 and group 2 with MRC-inVivo and Meekings-inVivo categories]
Here the effect of density of CpG islands is studied:

Category limits

lower category	upper
-0.2857978	group.1
0.6019871	group.2
0.8369375	group.3

rescale(cpg.dens.25k) – p-value = 1.2022e−06

![Bar chart showing the proportion of sites for each group with MRC-inVivo and Meekings-inVivo data.](chart.png)
4.2 50 kiloBase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 50 kilobase window surrounding each locus. First, we count just the number of genes on the represented on the chip.

Category limits

lower category	upper
-0.3924605	group.1
0.4021333	group.2
0.5558153	group.3
0.8158971	group.4

rescale(dens.50k) − p−value = 0.00011908
Here are the results for expression density. First, we count just genes that are in the upper half.

Category limits

lower category	upper category
-0.2270602	group.1 0.5996493
0.5996493	group.2 0.7808299
0.7808299	group.3 0.9997078

rescale(low.ex.50k) – p-value = 0.00035368
Now we count genes in the upper $1/8$:

Category limits

lower category	upper category	lower limit	upper limit
group.1	0.8027469	0.8027469	0.9997078
group.2	0.8027469	0.9997078	

rescale(med.ex.50k) – p−value = 0.048838
And here we count genes in the upper $1/16^{th}$:

Category limits

lower category	upper
1 -0.08503799	group.1 0.8971362
2 0.89713618	group.2 0.9997078

rescale(high.ex.50k) – p–value = 0.13316
Here the effect of density of CpG islands is studied:

Category limits

lower category	upper category
-0.4272355	group.1 0.3547633
0.3547633	group.2 0.6636470
0.6636470	group.3 0.8080070
0.8080070	group.4 0.9997078

rescale(cpg.dens.50k) – p-value = 0.00028388
4.3 100 kilobase Window

Here are gene densities for the various gene calls

Category limits

lower category	upper category
1 -0.4029807	group.1 0.4111631
2 0.4111631	group.2 0.8334307
3 0.8334307	group.3 0.9997078

rescale(ref.100k) – p–value = 0.0035839
Category limits

lower category	upper
1 -0.4812975	group.1 0.2337814
2 0.2337814	group.2 0.5464641
3 0.5464641	group.3 0.8290473
4 0.8290473	group.4 0.9997078

rescale(ens.100k) – p-value = 0.0078706
Category limits

lower category	upper
1 -0.75336061	group.1 -0.75336061
2 -0.75336061	group.2 -0.34687317
3 -0.34687317	group.3 -0.07188778
4 -0.07188778	group.4 0.12887200
5 0.12887200	group.5 0.41729982
6 0.41729982	group.6 0.62887200
7 0.62887200	group.7 0.78112215
8 0.78112215	group.8 0.99970777

rescale(uni.100k) – p-value = 0.50888
Category limits

lower category	upper
1	-0.8232028 group.1 -0.2308591
2	-0.2308591 group.2 0.4164231
3	0.4164231 group.3 0.7495617
4	0.7495617 group.4 0.9997078

rescale(gen.100k) \(\text{p-value} = 0.041221\)

![Bar chart showing the proportion of sites for each group and the rescale value.](chart.png)
4.4 100 kiloBase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 100 kilobase window surrounding each locus. First, we count just the number of genes on the represented on the chip.

Category limits

lower category	upper
1 -0.5505552	group.1 0.000000
2 0.0000000	group.2 0.2469316
3 0.2469316	group.3 0.4000877
4 0.4000877	group.4 0.5850380
5 0.5850380	group.5 0.7998247
6 0.7998247	group.6 0.9997078

rescale(dens.100k) – p-value = 0.00046877
Here are the results for expression density. First, we count just genes that are in the upper half.

Category limits

lower category	upper category	upper limit
-0.3451198	group.1	0.3998247
0.3998247	group.2	0.6092928
0.6092928	group.3	0.8275862
0.8275862	group.4	0.9997078

rescale(low.ex.100k) – p-value = 0.0049601

![Bar chart showing expression density](image-url)
Now we count genes in the upper 1/8th:

Category limits

lower category	upper		
1	-0.2375804	group.1	0.5990649
2	0.5990649	group.2	0.7983635
3	0.7983635	group.3	0.9997078

rescale(med.ex.100k) – p−value = 0.021697
And here we count genes in the upper $1/16^{th}$:

Category limits

lower category	upper
1	-0.150789 group.1 0.8053770
2	0.805377 group.2 0.9997078

```
rescale(high.ex.100k) – p-value = 0.15141
```

![Graph showing proportion of sites for group.1 and group.2]
Here the effect of density of CpG islands is studied:

Category limits

lower category	upper
1 -0.5829924	group.1 0.0371128
2 0.0371128	group.2 0.3696669
3 0.3696669	group.3 0.5824079
4 0.5824079	group.4 0.7857978
5 0.7857978	group.5 0.9997078

`rescale(cpg.dens.100k) – p-value = 0.0018141`
4.5 250 kiloBase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 250 kilobase window surrounding each locus. First, we count just the number of genes on the represented on the chip.

Category limits

lower category	upper category
-0.75862069	group.1 -0.39970777
-0.39970777	group.2 -0.26154296
-0.26154296	group.3 0.06896552
0.06896552	group.4 0.19783752
0.19783752	group.5 0.40385739
0.40385739	group.6 0.59964933
0.59964933	group.7 0.79544126
0.79544126	group.8 0.99970777

rescale(dens.250k) − p−value = 0.048673
Here are the results for expression density. First, we count just genes that are in the upper half.

Category limits

lower category	upper
1 -0.5219170076	group.1 0.0005844535
2 0.0005844535	group.2 0.2650496786
3 0.2650496786	group.3 0.3991817650
4 0.3991817650	group.4 0.6005260082
5 0.6005260082	group.5 0.8009935710
6 0.8009935710	group.6 0.9997077732

Fig. 2. Rescaling of low expression sites (rescale (low.ex.250k)) with a $	extit{p}$-value of 0.037146.
Now we count genes in the upper $1/8^{th}$:

Category limits

lower category	upper category
1 -0.3977206	group.1 0.3661601
2 0.3661601	group.2 0.5622443
3 0.5622443	group.3 0.7995324
4 0.7995324	group.4 0.9997078

rescale(med.ex.250k) – p-value = 0.35041
And here we count genes in the upper $1/16^{th}$:

Category limits

lower category	upper
1 -0.2849211	group.1 0.6072472
2 0.6072472	group.2 0.7665108
3 0.7665108	group.3 0.9997078

\[
\text{rescale(high.ex.250k)} \quad -p\text{-value} = 0.461
\]
Here the effect of density of CpG islands is studied:

Category limits

lower category	upper
-0.76914085	group.1 -0.39392168
-0.39392168	group.2 -0.13471654
-0.13471654	group.3 0.06779661
0.06779661	group.4 0.23436587
0.23436587	group.5 0.38427820
0.38427820	group.6 0.57510228
0.57510228	group.7 0.79602572
0.79602572	group.8 0.99970777

\[\text{rescale(cpg.dens.250k)} \] \implies $p\text{-value} = 0.0028035$
4.6 500 kilobase Window

Here are gene densities for the various gene calls

Category limits

lower category	upper
1 -0.75891292	group.1 -0.35563998
2 -0.35563998	group.2 -0.07568673
3 -0.07568673	group.3 0.12507306
4 0.12507306	group.4 0.41642314
5 0.41642314	group.5 0.62068966
6 0.62068966	group.6 0.81180596
7 0.81180596	group.7 0.99970777

rescale(ref.500k) – p-value = 0.14602
Category limits

lower category	upper category
1 -0.81531268	group.1 -0.51315020
2 -0.51315020	group.2 -0.13179427
3 -0.13179427	group.3 0.01899474
4 0.01899474	group.4 0.15926359
5 0.15926359	group.5 0.37463472
6 0.37463472	group.6 0.59877265
7 0.59877265	group.7 0.80099357
8 0.80099357	group.8 0.99970777

rescale(ens.500k) - p-value = 0.13899
Category limits

lower category	upper category
-0.96610169	group.1 -0.80187025
-0.80187025	group.2 -0.57334892
-0.57334892	group.3 -0.38924605
-0.38924605	group.4 -0.22618352
-0.22618352	group.5 0.02016365
0.02016365	group.6 0.21420222
0.21420222	group.7 0.38018703
0.38018703	group.8 0.59292811
0.59292811	group.9 0.79193454
0.79193454	group.10 0.99970777

rescale(uni.500k) − p-value = 0.83311

![Bar chart showing proportion of sites with comparison of MRC-inVivo and Meekings-inVivo results](chart.png)

- MRC-inVivo
- Meekings-inVivo

48
Category limits

lower category	upper
1 -0.99853887	group.1 -0.74663939
2 -0.74663939	group.2 -0.57860900
3 -0.57860900	group.3 -0.39596727
4 -0.39596727	group.4 -0.18994740
5 -0.18994740	group.5 0.02571596
6 0.02571596	group.6 0.22998247
7 0.22998247	group.7 0.39947399
8 0.39947399	group.8 0.63471654
9 0.63471654	group.9 0.78784337
10 0.78784337	group.10 0.99970777

rescale(gen.500k) - p-value = 0.00012258

![Bar chart with proportion of sites and comparison between MRC-inVivo and Meekings-inVivo](chart.png)
4.7 500 kiloBase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 500 kilobase window surrounding each locus. First, we count just the number of genes on the represented on the chip.

Category limits

lower category	upper
1	-0.877849211 group.1 -0.612507306
2	-0.612507306 group.2 -0.391291642
3	-0.391291642 group.3 -0.186440678
4	-0.186440678 group.4 0.004675628
5	0.004675628 group.5 0.199941555
6	0.199941555 group.6 0.401811806
7	0.401811806 group.7 0.597019287
8	0.597019287 group.8 0.799532437
9	0.799532437 group.9 0.999707773

rescale(dens.500k) – p-value = 0.077383

![Graph showing the proportion of sites](image-url)
Here are the results for expression density. First, we count just genes that are in the upper half.

Category limits

lower category	upper category
-0.66861485	group.1 -0.66861485
-0.66861485	group.2 -0.20192870
-0.20192870	group.3 -0.07685564
-0.07685564	group.4 0.20572764
0.20572764	group.5 0.40911748
0.40911748	group.6 0.60005845
0.60005845	group.7 0.79976622
0.79976622	group.8 0.99970777

rescale(low.ex.500k) – p-value = 0.090553
Now we count genes in the upper 1/8th:

Category limits

lower category	upper
1 -0.5520163647	group.1 -0.0005844535
2 -0.0005844535	group.2 0.2530683811
3 0.2530683811	group.3 0.3998831093
4 0.3998831093	group.4 0.6002337814
5 0.6002337814	group.5 0.7995324372
6 0.7995324372	group.6 0.9997077732

rescale(med.ex.500k) – p-value = 0.41287
And here we count genes in the upper $1/16^{th}$:

Category limits

Lower	Upper
-0.4327878	group.1 0.1999416
0.1999416	group.2 0.4004968
0.4004968	group.3 0.5368206
0.5368206	group.4 0.8005552
0.8005552	group.5 0.9997078

rescale(high.ex.500k) – p-value = 0.89577
Here the effect of density of CpG islands is studied:

Category limits

lower	category	upper
1	group.1	-0.88749269
2	group.2	-0.68527177
3	group.3	-0.33781414
4	group.4	0.03857393
5	group.5	0.23202805
6	group.6	0.39479836
7	group.7	0.59672706
8	group.8	0.80508475
9	group.9	0.99970777

rescale(cpg.dens.500k) – p-value = 0.05832
4.8 1 megabase Window

Here are gene densities for the various gene calls

Category limits

lower category	upper
1 -0.88544711	group.1 -0.66072472
2 -0.66072472	group.2 -0.46113384
3 -0.46113384	group.3 -0.17825833
4 -0.17825833	group.4 -0.04412624
5 -0.04412624	group.5 0.19316189
6 0.19316189	group.6 0.36645237
7 0.36645237	group.7 0.61542957
8 0.61542957	group.8 0.80420807
9 0.80420807	group.9 0.99970777

rescale(ref.1M) – p-value = 0.23804
Category limits

lower category	upper category
-0.92255991	group.1 -0.77586207
-0.77586207	group.2 -0.63354763
-0.63354763	group.3 -0.38924605
-0.38924605	group.4 -0.19082408
-0.19082408	group.5 0.01578025
-0.01578025	group.6 0.20601987
0.20601987	group.7 0.40064290
0.40064290	group.8 0.60198714
0.60198714	group.9 0.79777908
0.79777908	group.10 0.99970777

rescale(ens.1M) – p-value = 0.26432

![Bar chart showing proportions of sites for different groups](image-url)
Category limits

lower category	upper
1	-0.9929866 group.1 -0.7986558
2	-0.7986558 group.2 -0.5999416
3	-0.5999416 group.3 -0.4038574
4	-0.4038574 group.4 -0.2098188
5	-0.2098188 group.5 0.0000000
6	0.0000000 group.6 0.2025132
7	0.2025132 group.7 0.3994740
8	0.3994740 group.8 0.6043250
9	0.6043250 group.9 0.8015780
10	0.8015780 group.10 0.9997078

rescale(uni.1M) – p–value = 0.7399

![Bar chart showing proportion of sites across different groups](chart.png)
Category limits

lower category	upper category
-0.99970777	-0.82437171
-0.82437171	-0.56428989
-0.56428989	-0.45616598
-0.45616598	-0.23056692
-0.23056692	0.01490357
0.01490357	0.23962595
0.23962595	0.43366452
0.43366452	0.58620690
0.58620690	0.79748685
0.79748685	0.99970777

rescale(gen.1M) – p-value = 0.031267
4.9 1 megaBase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 1 megabase window surrounding each locus. First, we count just the number of genes on the represented on the chip.

Category limits

lower category	upper
1 -0.9590883	group.1 -0.8002922
2 -0.8002922	group.2 -0.5990649
3 -0.5990649	group.3 -0.3997662
4 -0.3997662	group.4 -0.2013442
5 -0.2013442	group.5 0.0000000
6 0.0000000	group.6 0.2019287
7 0.2019287	group.7 0.3997662
8 0.3997662	group.8 0.5987726
9 0.5987726	group.9 0.7997662
10 0.7997662	group.10 0.9997078

rescale(dens.1M) – p–value = 0.14307
Here are the results for expression density. First, we count just genes that are in the upper half.

Category limits

lower limits	category	upper limits
-0.8097604	group.1	-0.6002922
-0.6002922	group.2	-0.4140853
-0.4140853	group.3	-0.1914085
-0.1914085	group.4	0.0000000
0.0000000	group.5	0.1999416
0.1999416	group.6	0.3994740
0.3994740	group.7	0.5998247
0.5998247	group.8	0.7997370
0.7997370	group.9	0.9997078

Graph

rescale(low.ex.1M) – p-value = 0.2745

- **MRC−inVivo**
- **Meekings−inVivo**

![Graph showing proportion of sites for different groups](image-url)
Now we count genes in the upper $1/8^{th}$:

Category limits

lower category	upper category
-0.716540035	group.1 -0.391291642
-0.391291642	group.2 -0.199941555
-0.199941555	group.3 -0.001461134
-0.001461134	group.4 0.194038574
0.194038574	group.5 0.401022794
0.401022794	group.6 0.600526008
0.600526008	group.7 0.800292227
0.800292227	group.8 0.999707773

rescale(med.ex.1M) – p-value = 0.52943
And here we count genes in the upper 1/16th:

Category limits

lower category	upper
1 -0.61250731	group.1 -0.19935710
2 -0.19935710	group.2 -0.02220923
3 -0.02220923	group.3 0.21595558
4 0.21595558	group.4 0.39988311
5 0.39988311	group.5 0.59292811
6 0.59292811	group.6 0.79018118
7 0.79018118	group.7 0.99970777

rescale(high.ex.1M) – p-value = 0.31669

![Graph showing proportion of sites with MRC-inVivo and Meekings-inVivo across different groups.](image)
Here the effect of density of CpG islands is studied:

Category limits

lower category	upper category
-0.96668615	group.1 -0.79485681
-0.79485681	group.2 -0.62507306
-0.62507306	group.3 -0.37288136
-0.37288136	group.4 -0.19783752
-0.19783752	group.5 0.03419053
0.03419053	group.6 0.20017534
0.20017534	group.7 0.38398597
0.38398597	group.8 0.60695500
0.60695500	group.9 0.79953244
0.79953244	group.10 0.99970777

rescale(cpg.dens.1M) – p-value = 0.16784
4.10 2 megabase Window

Here are gene densities for the various gene calls

Category limits

lower category	upper category
-0.96580947	group.1
-0.77966102	group.2
-0.60753945	group.3
-0.43220339	group.4
-0.16715371	group.5
0.01344243	group.6
0.18965517	group.7
0.39713618	group.8
0.59438925	group.9
0.80157802	group.10

rescale(ref.2M) – p-value = 0.49978
Category limits

lower category	upper
1 -0.9774985	group.1 -0.8202805
2 -0.8202805	group.2 -0.5768556
3 -0.5768556	group.3 -0.3994740
4 -0.3994740	group.4 -0.2124489
5 -0.2124489	group.5 0.0000000
6 0.0000000	group.6 0.1861485
7 0.1861485	group.7 0.4070719
8 0.4070719	group.8 0.5885447
9 0.5885447	group.9 0.7986558
10 0.7986558	group.10 0.9997078

rescale(ens.2M) – p−value = 0.53909
Category limits

lower category	upper
1 -0.9994155465	group.1 -0.7983635301
2 -0.7983635301	group.2 -0.5990648743
3 -0.5990648743	group.3 -0.4035651666
4 -0.4035651666	group.4 -0.2051431911
5 -0.2051431911	group.5 -0.0002922268
6 -0.0002922268	group.6 0.2036820573
7 0.2036820573	group.7 0.4035651666
8 0.4035651666	group.8 0.6014026885
9 0.6014026885	group.9 0.8012857978
10 0.8012857978	group.10 0.9997077732

rescale(uni.2M) – p-value = 0.857
Category limits

lower category	upper category
-0.99970777	group.1
-0.80683811	group.2
-0.58591467	group.3
-0.41057861	group.4
-0.21887785	group.5
0.02425482	group.6
0.18819404	group.7
0.42022209	group.8
0.60783168	group.9
0.80546464	group.10

rescale(gen.2M) – p-value = 0.13965

![Graph showing the rescale(gen.2M) with p-value = 0.13965](image)

- MRC-inVivo
- Meekings-inVivo
4.11 2 megaBase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 2 megabase window surrounding each locus. First, we count just the number of genes on the represented on the chip.

Category limits

lower category	upper
-0.9995324372 group.1	-0.9995324372
-0.7995324372 group.2	-0.5998246639
-0.5998246639 group.3	-0.4000876680
-0.4000876680 group.4	-0.1999415546
-0.1999415546 group.5	0.0005844535
0.0005844535 group.6	0.2002922268
0.2002922268 group.7	0.3997077732
0.3997077732 group.8	0.5998246639
0.5998246639 group.9	0.7997662186
0.7997662186 group.10	0.9997077732

rescale(dens.2M) – p−value = 0.52343
Here are the results for expression density. First, we count just genes that are in the upper half.

Category limits

lower category	upper category	upper
-0.9193454120	group.1	-0.8012857978
-0.8012857978	group.2	-0.6005260082
-0.6005260082	group.3	-0.4021040327
-0.4021040327	group.4	0.2001753361
-0.2001753361	group.5	0.3998831093
0.2001168907	group.6	0.5998246639
0.3998831093	group.7	0.7997662186
0.5998246639	group.8	0.9997077732
0.7997662186	group.9	0.9997077732

rescale(low.ex.2M) – p−value = 0.7954

![Bar chart showing proportions of sites for different groups.](chart.png)
Now we count genes in the upper $1/8^{th}$:

Category limits

lower category	upper category
-0.8664524	group.1 -0.5990649
-0.5990649	group.2 -0.3994740
-0.3994740	group.3 -0.1998831
-0.1998831	group.4 0.0000000
0.0000000	group.5 0.1999416
0.1999416	group.6 0.3997662
0.3997662	group.7 0.6000584
0.6000584	group.8 0.7997370
0.7997370	group.9 0.9997078

rescale(med.ex.2M) $- \ p−value = 0.54457$
And here we count genes in the upper $1/16^{th}$:

Category limits

lower category	upper
-0.793395675	group.1 -0.433956750
-0.433956750	group.2 -0.228521333
-0.228521333	group.3 0.002630041
0.002630041	group.4 0.200116891
0.200116891	group.5 0.400642899
0.400642899	group.6 0.599941555
0.599941555	group.7 0.798071303
0.798071303	group.8 0.999707773

rescale(high.ex.2M) – p-value = 0.92981
Here the effect of density of CpG islands is studied:

Category limits

lower category	upper category
-0.99649328	group.1 -0.79514904
-0.79514904	group.2 -0.61572180
-0.61572180	group.3 -0.40882525
-0.40882525	group.4 -0.21741672
-0.21741672	group.5 -0.01431911
0.20017534	group.6 0.20017534
0.39392168	group.7 0.39392168
0.60081823	group.8 0.60081823
0.80040912	group.9 0.80040912
0.99970777	group.10 0.99970777

\[\text{rescale}(\text{cpg.dens.2M}) - p-value = 0.30641\]
4.12 4 megaBase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 4 megabase window surrounding each locus. First, we count just the number of genes on the represented on the chip.

Category limits

lower category	upper
-0.9994155	group.1 -0.7995324
-0.7995324	group.2 -0.5996493
-0.5996493	group.3 -0.3998831
-0.3998831	group.4 -0.1992987
-0.1992987	group.5 0.0000000
0.0000000	group.6 0.1999416
0.1999416	group.7 0.3998831
0.3998831	group.8 0.5998247
0.5998247	group.9 0.7997662
0.7997662	group.10 0.9997078

rescale(dens.4M) – p–value = 0.56955

- MRC−inVivo
- Meekings−inVivo

proportion of sites

0.00 0.02 0.04 0.06 0.08 0.10 0.12

group.1 group.3 group.5 group.7 group.9
Here are the results for expression density. First, we count just genes that are in the upper half.

Category limits

lower category	upper category	lower limit	upper limit
group.1	-0.9795441262	-0.8000292227	
group.2	-0.8000292227	-0.5996493279	
group.3	-0.5996493279	-0.3997954413	
group.4	-0.3997954413	-0.1998246639	
group.5	-0.1998246639	0.0002922268	
group.6	0.0002922268	0.1999415546	
group.7	0.1999415546	0.3998831093	
group.8	0.3998831093	0.5998246639	
group.9	0.5998246639	0.7997662186	
group.10	0.7997662186	0.9997077732	

rescale(low.ex.4M) – p-value = 0.73729
Now we count genes in the upper $1/8^{th}$:

Category limits

lower category	upper
1 -0.9605494	group.1 -0.7995324
2 -0.7995324	group.2 -0.5997078
3 -0.5997078	group.3 -0.3994740
4 -0.3994740	group.4 -0.2001753
5 -0.2001753	group.5 0.0000000
6 0.0000000	group.6 0.1995909
7 0.1995909	group.7 0.3997662
8 0.3997662	group.8 0.5999416
9 0.5999416	group.9 0.8000292
10 0.8000292	group.10 0.9997078

rescale(med.ex.4M) – p-value = 0.84206
And here we count genes in the upper 1/16th:

Category limits

lower category	upper
-0.9292811	group.1
-0.7863822	group.2
-0.6022794	group.3
-0.3804793	group.4
-0.1999416	group.5
0.0000000	group.6
0.2004676	group.7
0.3998331	group.8
0.5998247	group.9
0.7997662	group.10

rescale(high.ex.4M) – p-value = 0.81526
Here the effect of density of CpG islands is studied:

Category limits

lower category	group.1	upper category	group.10
1 -0.9997077732	-0.8067212157		
2 -0.8067212157	-0.6028638223		
3 -0.6028638223	-0.3886616014		
4 -0.3886616014	0.0002922268		
5 -0.1946230275	0.2019286967		
6 0.0002922268	0.3974284044		
7 0.2019286967	0.5967270602		
8 0.3974284044	0.8009935710		
9 0.5967270602	0.9997077732		
10 0.8009935710	0.9997077732		

rescale(cpg.dens.4M) – p–value = 0.55987

![Bar chart showing the proportion of sites for different groups with MRC-inVivo and Meekings-inVivo data. The bars are color-coded for each group and the y-axis represents the proportion of sites ranging from 0.00 to 0.12.]
4.13 8 megaBase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 8 megabase window surrounding each locus. First, we count just the number of genes on the represented on the chip.

Category limits

lower category	upper	
-0.9997078	group.1	-0.7995324
-0.7995324	group.2	-0.5996493
-0.5996493	group.3	-0.3998831
-0.3998831	group.4	-0.1999416
-0.1999416	group.5	0.0000000
0.0000000	group.6	0.1999416
0.1999416	group.7	0.4000877
0.4000877	group.8	0.5998247
0.5998247	group.9	0.7997662
0.7997662	group.10	0.9997078

rescale(dens.8M) – p-value = 0.74495
Here are the results for expression density. First, we count just genes that are in the upper half.

Category limits

lower category	upper
1 -0.9985389	group.1 -0.7995324
2 -0.7995324	group.2 -0.6000000
3 -0.6000000	group.3 -0.3998831
4 -0.3998831	group.4 -0.1999416
5 -0.1999416	group.5 0.0000000
6 0.0000000	group.6 0.2002922
7 0.2002922	group.7 0.3998831
8 0.3998831	group.8 0.5998247
9 0.5998247	group.9 0.7997370
10 0.7997370	group.10 0.9997078

`rescale(low.ex.8M) – p-value = 0.89444`
Now we count genes in the upper $1/8$th:

Category limits

lower category	upper
1 -0.9950321	group.1 -0.8002922
2 -0.8002922	group.2 -0.5998247
3 -0.5998247	group.3 -0.3998831
4 -0.3998831	group.4 -0.1998831
5 -0.1998831	group.5 0.0000000
6 0.0000000	group.6 0.1999416
7 0.1999416	group.7 0.4000877
8 0.4000877	group.8 0.5998247
9 0.5998247	group.9 0.7997662
10 0.7997662	group.10 0.9997078

(rescale(med.ex.8M) − p−value = 0.78164)

![Graph showing proportions of sites for different groups](image-url)
And here we count genes in the upper $1/16^{th}$:

Category limits

lower category	upper
1 -0.9845120	group.1 -0.8013442
2 -0.8013442	group.2 -0.5998247
3 -0.5998247	group.3 -0.3998831
4 -0.3998831	group.4 -0.2001753
5 -0.2001753	group.5 0.0000000
6 0.0000000	group.6 0.1999416
7 0.1999416	group.7 0.4003507
8 0.4003507	group.8 0.5998247
9 0.5998247	group.9 0.8000292
10 0.8000292	group.10 0.9988311

rescale(high.ex.8M) – p-value = 0.97374
Here the effect of density of CpG islands is studied:

Category limits

lower category	upper
-0.999707773	group.1
-0.794564582	group.2
-0.596434833	group.3
-0.395382817	group.4
-0.203682057	group.5
0.001168907	group.6
0.196084161	group.7
0.399766219	group.8
0.59357101	group.9
0.799824664	group.10

rescale(cpg.dens.8M) – p-value = 0.38886
4.14 16 megaBase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 16 megabase window surrounding each locus. First, we count just the number of genes on the represented on the chip.

Category limits

lower category	upper
1 -0.9997078	group.1 -0.7997370
2 -0.7997370	group.2 -0.5998247
3 -0.5998247	group.3 -0.3994740
4 -0.3994740	group.4 -0.1998247
5 -0.1998247	group.5 0.0000000
6 0.0000000	group.6 0.1999416
7 0.1999416	group.7 0.3998831
8 0.3998831	group.8 0.5998247
9 0.5998247	group.9 0.7997662
10 0.7997662	group.10 0.9997078

rescale(dens.16M) – p–value = 0.62955
Here are the results for expression density. First, we count just genes that are in the upper half.

Category limits

lower category	upper category
-0.9994155465	group.1 -0.7997662186
-0.7997662186	group.2 -0.5993571011
-0.5993571011	group.3 -0.4007013442
-0.4007013442	group.4 -0.1998831093
-0.1998831093	group.5 0.1998246639
0.1998246639	group.6 0.3997662186
0.3997662186	group.7 0.6000584454
0.6000584454	group.8 0.8000292227
0.8000292227	group.9 0.9997077732

\[\text{rescale} (\text{low.ex.16M}) \quad p-value = 0.9669\]
Now we count genes in the upper $1/8^{th}$:

Category limits

lower category	upper
1 -0.9997078	group.1 -0.8005552
2 -0.8005552	group.2 -0.5996493
3 -0.5996493	group.3 -0.3998831
4 -0.3998831	group.4 -0.2001753
5 -0.2001753	group.5 0.0000000
6 0.0000000	group.6 0.1999416
7 0.1999416	group.7 0.3997954
8 0.3997954	group.8 0.6000584
9 0.6000584	group.9 0.7997662
10 0.7997662	group.10 0.9997078

Diagram

![Diagram showing proportion of sites with p-value = 0.9901]
And here we count genes in the upper $1/16^{th}$:

Category limits

lower category	upper
-0.9991233197	group.1
-0.7986557569	group.2
-0.5997077732	group.3
-0.3997662186	group.4
-0.1998831093	group.5
0.1997077732	group.6
0.3994739918	group.8
0.6000000000	group.9
0.7997077732	group.10

rescale(high.ex.16M) – p−value = 0.80965

![Graph showing proportion of sites for different groups with MRC-inVivo and Meekings-inVivo data.]
Here the effect of density of CpG islands is studied:

Category limits

lower category	upper
group.1	-0.796317943
group.2	-0.597311514
group.3	-0.395967271
group.4	-0.201052016
group.5	-0.003214494
group.6	0.199006429
group.7	0.399883109
group.8	0.600058445
group.9	0.799736996
group.10	0.999707773

rescale(cpg.dens.16M) – p-value = 0.43136
4.15 32 megaBase Window

In the barplot that follows we examine the association of insertion sites with expression density in a 32 megabase window surrounding each locus. First, we count just the number of genes on the represented on the chip.

Category limits

lower category	upper
-0.9994155	group.1 -0.7995324
-0.7995324	group.2 -0.5996493
-0.5996493	group.3 -0.3998831
-0.3998831	group.4 -0.1999416
-0.1999416	group.5 0.0000000
0.0000000	group.6 0.1999416
0.1999416	group.7 0.3998831
0.3998831	group.8 0.5998247
0.5998247	group.9 0.7997662
0.7997662	group.10 0.9997078

Graph showing the proportion of sites with rescaled densities and a p-value of 0.32979.

Legend:
- MRC-inVivo
- Meekings-inVivo
Here are the results for expression density. First, we count just genes that are in the upper half.

Category limits

lower category	upper
-0.9994155	group.1 -0.7995324
-0.7995324	group.2 -0.5998247
-0.5998247	group.3 -0.3998831
-0.3998831	group.4 -0.1998831
0.0000000	group.5 0.0000000
0.1998831	group.6 0.1998831
0.3998831	group.7 0.3998831
0.5998247	group.8 0.5998247
0.7997662	group.9 0.7997662
0.9997078	group.10 0.9997078

rescale(low.ex.32M) \rightarrow p-value = 0.52421

89
Now we count genes in the upper $1/8^{th}$:

Category limits

lower category	upper
1	-0.9997078 group.1 -0.8000292
2	-0.8000292 group.2 -0.6000584
3	-0.6000584 group.3 -0.3998831
4	-0.3998831 group.4 -0.1998831
5	-0.1998831 group.5 0.0000000
6	0.0000000 group.6 0.1999416
7	0.1999416 group.7 0.4011105
8	0.4011105 group.8 0.5998247
9	0.5998247 group.9 0.7997662
10	0.7997662 group.10 0.9997078

`rescale(med.ex.32M) - p-value = 0.55183`
And here we count genes in the upper $1/16^{th}$:

Category limits

lower category	upper
1 -0.9997077732	group.1
2 -0.8012857978	group.2
3 -0.6002922268	group.3
4 -0.399754413	group.4
5 -0.1996493279	group.5
6 0.0002922268	group.6
7 0.2004675628	group.7
8 0.3998831093	group.8
9 0.5998246639	group.9
10 0.7997662186	group.10

rescale(high.ex.32M) – p-value = 0.5201
Here the effect of density of CpG islands is studied:

Category limits

lower category	upper category
-0.9997078	group.1
-0.8013442	group.2
-0.5987726	group.3
-0.3998831	group.4
0.0000000	group.5
0.1999416	group.6
0.3998831	group.7
0.5998247	group.8
0.7997662	group.9
0.9997078	group.10

[rescale(cpg.dens.32M) – p–value = 0.36235]
5 Juxtaposition with Gene Start and End Positions

5.1 Acembly Annotations

In this section we study the effect of juxtaposition in terms of gene start and end positions. The first barplot shows the effect of gene width for those insertions that are located within an Acembly gene.

Category limits

lower category	upper
1 362.0	group.1
2 14914.4	group.2
3 29293.0	group.3
4 45850.6	group.4
5 67381.6	group.5
6 96615.0	group.6
7 135059.4	group.7
8 192917.6	group.8
9 276257.4	group.9
10 437224.0	group.10

acembly gene.width – p–value = 0.021366
The next plot uses the width of a non-gene region for insertions that fall into such regions.

Category limits

lower	category	upper
1	group.1	18615.4
2	group.2	34325.6
3	group.3	54458.8
4	group.4	80337.2
5	group.5	111311.0
6	group.6	150976.0
7	group.7	207108.6
8	group.8	269094.0
9	group.9	400207.2
10	group.10	4780755.0

acembly non-gene width − p-value = 0.32581
The next plot studies the distance to the nearest boundary between a gene and a non-gene region. The distance is expressed as a fraction of the length of the region. Thus, ‘0.25’ refers to one quarter of the distance from the site to nearest boundary divided by the total width of the region.

Category limits

lower category	upper category
1 0.0001599620	group.1 0.05065485
2 0.0506548472	group.2 0.09966634
3 0.0996663360	group.3 0.15153387
4 0.1515338748	group.4 0.20717075
5 0.2071707490	group.5 0.25591354
6 0.2559135379	group.6 0.30305987
7 0.3030598670	group.7 0.35197197
8 0.3519719675	group.8 0.40495750
9 0.4049575012	group.9 0.44935206
10 0.4493520561	group.10 0.49995258

acembly boundary.dist – p-value = 0.35582
This plot studies the effect of nearness to the beginning of a transcript. For sites in genes, it is the distance to the start of the gene divided by the width of the gene. For other sites it is the distance from the site to the nearer gene if that gene boundary is also a transcription starting point. Locations near ‘0’ are relatively near the beginning of transcription, while those near ‘1’ are near the termination of the transcript.

Category limits

lower category	upper category	proportion of sites
1 0.0001599620	group.1 0.08509283	0.00
2 0.0850928327	group.2 0.17859766	0.02
3 0.1785976559	group.3 0.26783265	0.04
4 0.2678326511	group.4 0.35353832	0.06
5 0.3535383217	group.5 0.44178535	0.08
6 0.4417853523	group.6 0.53280485	0.10
7 0.5328048532	group.7 0.65234180	0.12
8 0.6523418049	group.8 0.76360265	0.00
9 0.7636026508	group.9 0.88528320	0.02
10 0.8852831985	group.10 0.99982891	0.04

acembly start.dist – p-value = 0.14684
5.2 RefSeq Annotations

Category limits

lower category	upper
1 534.0	group.1
24949.6	group.2
47982.4	group.3
71734.4	group.4
101679.6	group.5
138009.0	group.6
193518.6	group.7
285423.8	group.8
409350.4	group.9
666493.0	group.10
2304258.0	

refSeq gene.width – p-value = 0.0070099

Category limits

lower category	upper
342.0	group.1
46756.7	group.2
109550.0	group.3
202096.0	group.4
337935.0	
proportion of sites

refSeq non-gene width - p-value = 0.016072

Category limits

lower category	upper
1 3.758743e-05	group.1 0.04931092
2 4.931092e-02	group.2 0.10066226
3 1.006623e-01	group.3 0.14852379
4 1.485238e-01	group.4 0.20063881
5 2.006388e-01	group.5 0.24959863
6 2.495986e-01	group.6 0.29747416
7 2.974742e-01	group.7 0.34532485
8 3.453248e-01	group.8 0.39764028
9 3.976403e-01	group.9 0.44942186
10 4.494219e-01	group.10 0.49978476
refSeq boundary.dist - p-value = 0.15168

Category limits

lower category	upper
1 7.536931e-05	group.1 0.09052848
2 9.052848e-02	group.2 0.17487493
3 1.748749e-01	group.3 0.27143775
4 2.714377e-01	group.4 0.35091628
5 3.509163e-01	group.5 0.44012697
6 4.401270e-01	group.6 0.53356580
7 5.335658e-01	group.7 0.65260764
8 6.526076e-01	group.8 0.76085987
9 7.608599e-01	group.9 0.88028788
10 8.802879e-01	group.10 0.99967333
refSeq start.dist – p-value = 0.15972

![Bar chart showing proportion of sites for different groups](chart.png)
5.3 genScan Annotations

Category limits

	lower category	upper
1	819.0	group.1 26121.5
2	26121.5	group.2 43886.0
3	43886.0	group.3 59298.5
4	59298.5	group.4 77203.0
5	77203.0	group.5 99598.0
6	99598.0	group.6 122996.0
7	122996.0	group.7 156757.0
8	156757.0	group.8 206318.0
9	206318.0	group.9 285581.5
10	285581.5	group.10 1232888.0

genScan gene.width – p-value = 0.016407

![Bar chart showing proportion of sites for different groups](chart.png)

Category limits

	lower category	upper
1	971.0	group.1 8898.8
2	8898.8	group.2 14437.0
3	14437.0	group.3 19813.7
4	19813.7	group.4 27396.4
5 27396.4 group.5 34843.0
6 34843.0 group.6 42776.2
7 42776.2 group.7 55423.9
8 55423.9 group.8 78447.4
9 78447.4 group.9 140444.5
10 140444.5 group.10 4642660.0

genScan non-gene width – **p-value = 0.73069**

Category limits

lower category	upper
1 8.927774e-05	group.1 0.04877858
2 4.877858e-02	group.2 0.09413327
3 9.413327e-02	group.3 0.14633880
4 1.463388e-01	group.4 0.20036384
5 2.003638e-01	group.5 0.25211606
6 2.521161e-01	group.6 0.30236608
7 3.023661e-01	group.7 0.35404268
8 3.540427e-01	group.8 0.40136239
9 4.013624e-01	group.9 0.44856371
10 4.485637e-01	group.10 0.49979502
Category limits

lower category	upper category
0.0001007711	0.08329964
0.0832996419	0.18644323
0.1864432298	0.28778984
0.2877898382	0.37790327
0.3779032695	0.47018927
0.4701892733	0.57020018
0.5702001837	0.67418080
0.6741807976	0.78785037
0.7878503693	0.89779058
0.8977905804	0.99991072
genScan start.dist – p-value = 0.29059

- MRC-inVivo
- Meekings-inVivo

proportion of sites

- group.1
- group.3
- group.5
- group.7
- group.9

- genScan start.dist – p-value = 0.29059
5.4 uniGene Annotations

Category limits

lower category	upper
1 819.0	group.1 26121.5
2 26121.5	group.2 43886.0
3 43886.0	group.3 59298.5
4 59298.5	group.4 77203.0
5 77203.0	group.5 99598.0
6 99598.0	group.6 122996.0
7 122996.0	group.7 156757.0
8 156757.0	group.8 206318.0
9 206318.0	group.9 285581.5
10 285581.5	group.10 1232888.0

uniGene gene.width − p-value = 0.016407

Category limits

lower category	upper
1 971.0	group.1 8898.8
2 8898.8	group.2 14437.0
3 14437.0	group.3 19813.7
4 19813.7	group.4 27396.4
5 27396.4 group.5 34843.0
6 34843.0 group.6 42776.2
7 42776.2 group.7 55423.9
8 55423.9 group.8 78447.4
9 78447.4 group.9 140444.5
10 140444.5 group.10 4642660.0

uniGene non–gene width – p–value = 0.73069

Category limits

lower category	upper
8.927774e-05	group.1 0.04877858
4.877858e-02	group.2 0.09413327
9.413327e-02	group.3 0.14633880
1.463388e-01	group.4 0.20036384
2.003638e-01	group.5 0.25211606
2.521161e-01	group.6 0.30236608
3.023661e-01	group.7 0.35404268
3.540427e-01	group.8 0.40136239
4.013624e-01	group.9 0.44856371
4.485637e-01	group.10 0.49979502
uniGene boundary.dist – p-value = 0.25923

Category limits

lower	category	upper
1	0.0001007711	group.1 0.08329964
2	0.0832996419	group.2 0.18644323
3	0.1864432298	group.3 0.28778984
4	0.2877898382	group.4 0.37790327
5	0.3779032695	group.5 0.47018927
6	0.4701892733	group.6 0.57020018
7	0.5702001837	group.7 0.67418080
8	0.6741807976	group.8 0.78785037
9	0.7878503693	group.9 0.89779058
10	0.8977905804	group.10 0.99991072
uniGene start.dist – p-value = 0.29059
6 GC content

Here we study the effect of GC content on insertion. The GC content is taken from the Mouse Genome Draft at GoldenPath from the table.

Following the plot is a table of fitted coefficients based on splitting the GC percent data at the median.

Category limits

lower category	upper
1	0.25
2	0.30
3	0.35
4	0.40
5	0.45
6	0.50
7	0.55
8	0.60
9	0.85

gc20 − p-value = 0.036325

proportion of sites	MRC−inVivo	Meekings−inVivo
group.1		
group.3		
group.5		
group.7		
group.9		
coef se z p
(Intercept) -2.510 0.0858 -29.20 9.33e-188
eval(the.gene) 0.443 0.1190 3.73 1.94e-04

Category limits

lower	category	upper
1	group.1	0.26
2	group.2	0.32
3	group.3	0.34
4	group.4	0.38
5	group.5	0.42
6	group.6	0.44
7	group.7	0.48
8	group.8	0.52
9	group.9	0.58
10	group.10	0.84

gc50 $- p$-value $= 0.62597$
Category limits

lower category	upper
1	0.03
2	0.29
3	0.32
4	0.35
5	0.38
6	0.41
7	0.44
8	0.47
9	0.51
10	0.56
group.1	0.29
group.2	0.32
group.3	0.35
group.4	0.38
group.5	0.41
group.6	0.44
group.7	0.47
group.8	0.51
group.9	0.56
group.10	0.87

```
(coef | se    | z     | p      
(Intercept) -2.510 0.0858 -29.20 9.33e-188
eval.the.gene) 0.443 0.1190 3.73 1.94e-04
```

$gc100 - p-value = 0.19553$
Category limits

lower	category	upper
1	0.056	group.1 0.308
2	0.308	group.2 0.340
3	0.340	group.3 0.364
4	0.364	group.4 0.388
5	0.388	group.5 0.408
6	0.408	group.6 0.436
7	0.436	group.7 0.460
8	0.460	group.8 0.492
9	0.492	group.9 0.528
10	0.528	group.10 0.820

coef	se	z	p	
(Intercept)	-2.510	0.0858	-29.20	9.33e-188
eval(the.gene)	0.443	0.1190	3.73	1.94e-04

MRC−inVivo
Meekings−inVivo

proportion of sites

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

gc250 − p−value = 0.014672

112
Category limits

lower	category	upper	
1	0.210	group.1	0.316
2	0.316	group.2	0.348
3	0.348	group.3	0.370
4	0.370	group.4	0.390
5	0.390	group.5	0.408
6	0.408	group.6	0.430
7	0.430	group.7	0.452
8	0.452	group.8	0.478
9	0.478	group.9	0.516
10	0.516	group.10	0.818

\[
\begin{array}{cccc}
\text{coef} & \text{se} & z & p \\
(\text{Intercept}) & -2.510 & 0.0858 & -29.20 & 9.33e-188 \\
\text{eval(the.gene)} & 0.443 & 0.1190 & 3.73 & 1.94e-04 \\
\end{array}
\]

\[\text{gc500} \quad \text{p-value} = 0.00012707\]
Category limits

lower	category	upper	
1	0.228	group.1	0.330
2	0.330	group.2	0.353
3	0.353	group.3	0.373
4	0.373	group.4	0.389
5	0.389	group.5	0.406
6	0.406	group.6	0.423
7	0.423	group.7	0.443
8	0.443	group.8	0.469
9	0.469	group.9	0.506
10	0.506	group.10	0.751

\[
\text{coef} \quad \text{se} \quad z \quad p
\]

(Intercept) -2.510 0.0858 -29.20 9.33e-188
eval(the.gene) 0.443 0.1190 3.73 1.94e-04

\[
\text{gc1000} - p-value = 5.7214e-07
\]
Category limits

lower	category	upper
1	0.2460	group.1 0.3370
2	0.3370	group.2 0.3580
3	0.3580	group.3 0.3730
4	0.3730	group.4 0.3865
5	0.3865	group.5 0.4015
6	0.4015	group.6 0.4195
7	0.4195	group.7 0.4415
8	0.4415	group.8 0.4645
9	0.4645	group.9 0.5019
10	0.5019	group.10 0.7275

\[
\begin{array}{cccc}
\text{coef} & \text{se} & \text{z} & \text{p} \\
(\text{Intercept}) & -2.510 & 0.0858 & -29.20 & 9.33\times10^{-188} \\
eval(\text{the.gene}) & 0.443 & 0.1190 & 3.73 & 1.94\times10^{-04} \\
\end{array}
\]

\text{gc2000} \quad \text{p-value} = 3.4973\times10^{-08}
Category limits

lower category	upper category	lower category	upper category
1 0.27340	group.1 0.34464	2 0.34464	group.2 0.36260
3 0.36260	group.3 0.37572	4 0.37572	group.4 0.38840
5 0.38840	group.5 0.40160	6 0.40160	group.6 0.41640
7 0.41640	group.7 0.43588	8 0.43588	group.8 0.45920
9 0.45920	group.9 0.49796	10 0.49796	group.10 0.66960

coef	se	z	p	
(Intercept)	-2.510	0.0858	-29.20	9.33e-188
eval(the.gene)	0.443	0.1190	3.73	1.94e-04

\[
gc5000 \quad p\text{-value} = 1.9638e-09
\]
Category limits

lower category	upper
1	0.29850
2	0.34920
3	0.36520
4	0.37676
5	0.38880
6	0.40100
7	0.41572
8	0.43270
9	0.45632
10	0.49310

coef	se	z	p	
(Intercept)	-2.510	0.0858	-29.20	9.33e-188
eval(the.gene)	0.443	0.1190	3.73	1.94e-04

gc10000 – p-value = 6.0445e–09

![Bar graph showing proportion of sites for different groups](image)
Category limits

lower category	upper
1	0.316240
2	0.353720
3	0.366560
4	0.377064
5	0.388320
6	0.400320
7	0.414408
8	0.430816
9	0.454448
10	0.492464

coef	se	z	p	
(Intercept)	-2.510	0.0858	-29.20	9.33e-188
eval(the.gene)	0.443	0.1190	3.73	1.94e-04

gc25000 – p-value = 7.8662e-07
Category limits

lower	category	upper	
1	0.321620	group.1	0.355196
2	0.355196	group.2	0.367404
3	0.367404	group.3	0.377936
4	0.377936	group.4	0.388740
5	0.388740	group.5	0.401840
6	0.401840	group.6	0.414488
7	0.414488	group.7	0.431584
8	0.431584	group.8	0.452096
9	0.452096	group.9	0.489072
10	0.489072	group.10	0.632940

coef	se	z	p	
(Intercept)	-2.510	0.0858	-29.20	9.33e-188
eval(the.gene)	0.443	0.1190	3.73	1.94e-04

gc50000 – *p*-value = 1.3819e−05

![Proportion of sites graph]

- MRC-inVivo
- Meekings-inVivo
Category limits

lower category	upper
1	0.326490
2	0.356060
3	0.368334
4	0.379076
5	0.388854
6	0.402000
7	0.415332
8	0.430426
9	0.450908
10	0.485204

coef	se	z	p	
(Intercept)	-2.510	0.0858	-29.20	9.33e-188
eval(the.gene)	0.443	0.1190	3.73	1.94e-04

\[gc100000 \quad p\text{-value} = 0.00026947 \]
Category limits

lower category	upper	1	0.3327160	group.1	0.3567352
2	0.3567352	group.2	0.3693504		
3	0.3693504	group.3	0.3805856		
4	0.3805856	group.4	0.3906432		
5	0.3906432	group.5	0.4030120		
6	0.4030120	group.6	0.4152456		
7	0.4152456	group.7	0.4296512		
8	0.4296512	group.8	0.4500852		
9	0.4500852	group.9	0.4811648		
10	0.4811648	group.10	0.6238080		

coef	se	z	p	
(Intercept)	-2.510	0.0858	-29.20	9.33e-188
eval(the.gene)	0.443	0.1190	3.73	1.94e-04

MRC−inVivo
Meekings−inVivo

proportion of sites

gc250000	p−value = 0.0039688

MRC−inVivo
Meekings−inVivo

proportion of sites

group.1	group.3	group.5	group.7	group.9

- MRC−inVivo
- Meekings−inVivo

121
Category limits

lower category	upper
0.3360480	group.1: 0.3569236
0.3569236	group.2: 0.3706316
0.3706316	group.3: 0.3817764
0.3817764	group.4: 0.3916436
0.3916436	group.5: 0.4040080
0.4040080	group.6: 0.4155932
0.4155932	group.7: 0.4298860
0.4298860	group.8: 0.4494324
0.4494324	group.9: 0.4776624
0.4776624	group.10: 0.6081040

coef	se	z	p	
(Intercept)	-2.510	0.0858	-29.20	9.33e-188
eval(the.gene)	0.443	0.1190	3.73	1.94e-04

gc500000
\[p\text{-value} = 0.0039919 \]
Category limits

lower category	upper
1 0.3373960	group.1 0.3583892
2 0.3583892	group.2 0.3712814
3 0.3712814	group.3 0.3826826
4 0.3826826	group.4 0.3934876
5 0.3934876	group.5 0.4053140
6 0.4053140	group.6 0.4158462
7 0.4158462	group.7 0.4292004
8 0.4292004	group.8 0.4478976
9 0.4478976	group.9 0.4740026
10 0.4740026	group.10 0.5973310

coef	se	z	p	
(Intercept)	-2.510	0.0858	-29.20	9.33e-188
eval(the.gene)	0.443	0.1190	3.73	1.94e-04

gc1000000 - p-value = 0.015963
Category limits

lower category	upper
1	0.3431200 group.1 0.3655166
2	0.3655166 group.2 0.3761426
3	0.3761426 group.3 0.3867794
4	0.3867794 group.4 0.3959494
5	0.3959494 group.5 0.4050850
6	0.4050850 group.6 0.4157468
7	0.4157468 group.7 0.4275466
8	0.4275466 group.8 0.4428030
9	0.4428030 group.9 0.4676686
10	0.4676686 group.10 0.5723870

coef	se	z	p	
(Intercept)	-2.510	0.0858	-29.20	9.33e-188
eval(the.gene)	0.443	0.1190	3.73	1.94e-04

MRC−inVivo
Meekings−inVivo

proportion of sites

\[gc5000000 \] − p−value = 0.19206

![Graph showing proportion of sites for different groups](image-url)
Category limits

lower category	upper
1 0.3465080	group.1 0.3689412
2 0.3689412	group.2 0.3792824
3 0.3792824	group.3 0.3888328
4 0.3888328	group.4 0.3972814
5 0.3972814	group.5 0.4061530
6 0.4061530	group.6 0.4149304
7 0.4149304	group.7 0.4239636
8 0.4239636	group.8 0.4396482
9 0.4396482	group.9 0.4606730
10 0.4606730	group.10 0.5545020

coef se	z	p	
(Intercept)	-2.510 0.0858	-29.20	9.33e-188
eval(the.gene)	0.443 0.1190	3.73	1.94e-04

gc10000000 – p-value = 0.29282
7 Cytobands

Here we study the association of cytoband with insertion intensity. The data are obtained from

http://genome.ucsc.edu/goldenPath/hg17/database/cytoBand.txt.gz.

A formal test of significance attains a p-value of 0.044387.

References

[1] P. McCullagh and John A. Nelder. *Generalized linear models.* (Chapman & Hall ltd, 1999).

[2] Xiaolin Wu, Yuan Li, Bruce Crise, Shawn M. Burgess “Transcription Start Regions in the Human Genome Are Favored Targets for MLV Integration,” *Science, 300*(5626), (June 2003): 1749-1751.