238. Direct identification of Bacterial Species with MinION Nanopore Sequencer In Clinical Specimens Suspected of Polymbacterial Infection
Kang Il Jun, MD1; Jangsup Moon, MD2; Taek Soo Kim, MD3; Chang Kyung Kang, MD4; Song Mi Moon, MD5, PhD6; Kyoung Ho Song, MD, PhD7; Pysyng Guyn Choe, MD8; Ji Hwan Bae, MD9; Sung Won Park, MD, PhD9; Eun Suk Kim, MD, PhD9; Nam-Joong Kim, MD, PhD9; Myoung-don Oh, MD, PhD9; Kon Chu, MD, PhD10 and Wan Beom Park, MD11; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea, Seoul; Seoul-t’ukpyols, Republic of Korea, 12Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seoul, Seoul-t’ukpyols, Republic of Korea

Session: 39. Diagnostics: Sequencing and Typing
Thursday, October 3, 2019: 12:15 PM

Background. Conventional culture tests usually identify only a few bacterial species, which can grow well in the culture system, in the cases of polymbacterial infection. 16S rRNA gene nanopore sequencing enables semi-quantitative identification of bacterial genetic materials. We aimed to evaluate usefulness of 16S rRNA gene nanopore sequencing in the cases suspected of polymbacterial infection.

Methods. The research was conducted in a single university hospital for one year. Conventional bacterial culture identification and nanopore sequencing of 16S rRNA gene were carried out simultaneously for cases where polymbacterial infection is strongly suspected. Blood agar plate was used for conventional culture, and Microscan (Beckman Coulter, United States) and Vitek 2 (Biomerieux, FR) automated systems were used for identification. For nanopore sequencing, 16S rRNA gene PCR was performed from the clinical specimens, and sequencing libraries were generated from the PCR products using the rapid barcoding sequencing kit (Oxford nanopore technologies, UK). MinION sequencing was performed for 1-3 days and the generated reads were analyzed using the EPJ2ME 16S BLAST worklow.

Results. Specimens were obtained from 15 patients; 6 liver abscess, 2 psoas abscess, 2 thigh abscess, 1 paraspinal abscess, 1 myotic aneurysm, 1 necrotizing fasciitis, 1 fingerpangrene and 1 abscess in coinex area. 16S rRNA gene nanopore sequencing showed monocobacterial organism in 8 (53.3%) specimens and polymbacterial organisms in 7 (46.6%) specimens. In three (37.5%) cases of 8 cases with monocyobacterial infections identified by 16S rRNA gene sequencing, no organism was grown in conventional culture, possibly due to previous antibiotic administration. For polymbacterial infection, 16S rRNA gene PCR was performed from the clinical specimens, and sequencing libraries were generated from the PCR products using the rapid barcoding sequencing kit. MinION sequencing was performed for 1-3 days and the generated reads were analyzed using the EPJ2ME 16S BLAST worklow.

Conclusion. Nanopore sequencing of 16S rRNA gene using the MinION sequencer may be useful for identification of microbes that are difficult to identify by conventional methods. It can be used in the cases suspected of polymbacterial infection to identify the causative organisms.

Disclosures. All authors: No reported disclosures.

239. Epidemiologic Analysis of a Worldwide Collection of Escherichia coli ST131 Using the 1928D Core Genome (cg) Multilocus Sequence Type (MLST) Reveals Country Specific and Globally Disseminated Clades
Litalgaui M. Deshpande, PhD1; Andrew P. Davis, BS2; F. Fredrik Dyrekell3; Dimitrios Amellos1 and Mariana Castanheira, PhD1; 1JMI Laboratories, North Liberty, Iowa; 21928D Diagnostics, Gotteborg, Hallands Lan, Sweden

Session: 39. Diagnostics: Sequencing and Typing
Thursday, October 3, 2019: 12:15 PM

Background. Increasing antimicrobial resistance (R) among Escherichia coli (EC) isolates can be associated with the expansion of the pandemic sequence type (ST) 131 that harbors virulence factors and causes more severe infections when compared with other antimicrobial-R EC. We evaluated the core genome MLST (cgMLST) profiles and R genes using the bioinformatics tool 1928D tool to evaluate the epidemiology of a global ST131 EC collection and unrelated STs.

Methods. A total of 259 EC clinical isolates belonging to ST131 (n = 206), ST131 single loci variant (SLV; n = 25), and 28 non-ST131 isolates collected from 27 countries during 2016-2018 were selected. Whole-genome sequencing FASTQ files were uploaded to the 1928D pipeline to generate MLST cgMLST and R gene prediction. cgMLST assignment was based on comparing >2,500 genes.

Results. Among 231 ST131 and SLV EC isolates, 7 clades were identified (3 major [178 isolates]; Table) applying cgMLST allele distance (ad) of ≤50 as a cutoff. A total of 21 isolates were not assigned to clades (>50 ad from ST131 and SLV). Based on >95% concordance, 11 alleles differentiated clades II and III from clade I, while 6 alleles separated clades I and III from clade II. Isolates in clades I to IV were ciprofloxacin (MIC, 24 mg/L); ciprofloxacin (MIC, 24 mg/L); and tigecycline (MIC, 2 mg/L). These findings suggest that these clades might have acquired R genes at different points in their genetic evolution. A threshold of ≤50 (cgMLST distance) was useful for classifying isolates into clades.

Conclusion. 1928D is a robust platform for epidemiological analysis of isolates, providing additional granularity when compared with MLST. Clades I and II were closely related, but carried different bls genes, while clades I and III were not as closely related, but both carried bs and bs. These findings suggest that these clades might have acquired R genes at different points in their genetic evolution. A threshold of ≤50 (cgMLST distance) was useful for classifying isolates into clades.

Disclosures. All authors: No reported disclosures.

240. The Clinical Utility of Molecular Testing in the Diagnosis and Management of Infectious Diseases: Plasma-based Next-Generation Sequencing (PNGS) Nomi H. Nomura, MD, PhD1; Toshiro Tsai, MD, PhD2; Southern California Permanente Medical Group, Los Angeles, California

Session: 39. Diagnostics: Sequencing and Typing
Thursday, October 3, 2019: 12:15 PM

Background. Molecular diagnostic tests can provide microbiologic results rapidly and with greater sensitivity than traditional methods. However, these tests come with considerable costs, so thoughtful diagnostic stewardship is essential to ensure that resources and outcomes are optimized. We sought to evaluate the impact of PNGS testing on patient management.

Methods. From February 2017 to January 2019, physicians in our group ordered 164 PNGS tests (Karius, Redwood City CA) on 125 patients. A retrospective chart review was performed to determine the clinical indication and utility of the test.

Results. The assay failure rate was 4.9% (8/164). Positive (pos) results were noted in 34% (53/156), of which 23 (43.4%) represented false pos results; 28 were true pos (52.8%) but 2 were unnecessary (also had pos blood cultures). The most common reason for testing was to evaluate for Mycobacterium chimaera (Mc) infection, representing 94 of 156 (60.3%) tests. Of the 21 patients with known Mc, only 10/21 had pos initial tests (47.6%); if patients with Mc localized to the sternum were excluded (8 patients), 76.9% with deep organ involvement had pos initial tests. Five patients with deep Mc infection had persistently pos results while on therapy; 4 of these had not had surgery; 1 was 6 months s/p valve replacement for Mc. The next most common indication was to r/o endocarditis in 18/156 (11.5%) and had an impact in 8/18 (44.4%), including 4 patients whose PNGS results led to a likely pathogen in culture negative endocarditis (CNE). Of the 62 tests done for non-Mc patients, 33.9% (21/62) were useful for management decisions. Among patients who eventually had a diagnosis made but had negative PNGS results included patients with Whipple’s (1), CNS infection (2), and fungal infections (5).

Conclusion. Overall, only 17.9% (28/156) of tests yielded true pos results. The most common reason was to evaluate for Mc infection. PNGS did not detect Mc in patients with proven local disease and was pos in >75% with deep/disseminated disease. However, a negative result did not exclude significant Mc infection. Repeat testing can be considered if clinical suspicion is high but should not be done before standard blood cultures are negative. While more than 60% of the non-Mc tests were not clinically useful, there was modest added utility where infection is high on the differential especially patients with CNE.

Disclosures. All authors: No reported disclosures.

241. Molecular patterns of Streptococcus agalactiae (GBS) Strains Associated with Different Clinical Syndromes: Early-Onset Disease in Neonates, Intracerebral Infection, and Vaginal Colonization, an Orthodox Jewish Community (OJC) Residing in Bney Brak Yulla Shindler, Msc1; Galia Rahav, MD2; Liora Madar-Shapiro, Msc1; Julia Abtibol, Msc1; Moti Ravid, MD3 and Yamin Maor, MD3; 1Maayaney Hayeshua Medical Center and Tel Aviv University, Bney Brak, Tel Aviv; 2Shahe Medical Center and Tel Aviv University, Ramat Gan, HaMerka, Israel; 3Maayaney Hayeshua Medical Center, Bney Brak, HaMerka, Israel; 4Maayaney Hayeshua Medical center and Tel Aviv University, Bney Brak, HaMerka, Israel; 5Wolfson Medical Center and Tel Aviv University, Holon, HaMerka, Israel

Session: 39. Diagnostics: Sequencing and Typing
Thursday, October 3, 2019: 12:15 PM

Background. Rectovaginal colonization during pregnancy with Group B Streptococcus (GBS) is a risk factor for early neonatal sepsis, and may also cause choorio-amnionitis and fetal death. In Israel, the reported colonization rate in pregnant women is low, and therefore routine screening of pregnant women for GBS colonization is not recommended. We noticed higher rates of early-onset disease (EOD) due to GBS in newborns of women hospitalized in Maayaney Hayeshua Medical Center, which serves an Orthodox Jewish Community (OJC) in Israel. Therefore, our aim was to...