Abstract: We carry out a comprehensive analysis of letter frequencies in contemporary written Marathi. We determine sets of letters which statistically predominate any large generic Marathi text, and use these sets to estimate the entropy of Marathi.

Contents

1. Introduction 1
2. The Canonical Letter Sets 6
3. The \(k \)-gram Entropies 12

References 15
Appendix: The Table of Probabilities 16

1. Introduction

1.1. The concept of entropy for a random variable was introduced in a foundational paper by Shannon [8]. He went on to investigate the ‘entropy of printed English’ in [9] and arrived at an estimate of 0.6 to 1.3 bits/letter. There have been several later attempts to
calculate this value using a variety of techniques; *inter alia* by Cover and King [2], Guerrero [4], Pit-Claudel [6], and Teahan and Cleary [10]. Although these approaches do not point towards a single precise number, there is a broad consensus that it lies somewhere between 1 and 2 bits/letter.

In this paper, we attempt a similar task for written Marathi. Since its orthography is rather more intricate, one must come to terms with new complications not encountered in English. Our strategy is to find ‘canonical letter sets’ for Marathi, and then to approximate a text using these sets. It will be clear that analogous methods should be applicable to nearly all Indic languages, if not more generally.

The underlying definition of entropy presupposes a specific model of a written language. Given a large generic text, we treat its string of letters as the outcome of a stationary random process, and then take the limiting value of a certain conditional entropy as the length of the string tends to infinity. Since the precise definition is somewhat technical, we begin with a series of examples which convey the intuition behind it. The canonical letter sets \(\mathcal{L}_r \) will be introduced in Section 2, and the entropy calculations will be carried out in Section 3. These sets together with the probabilities assigned to their elements are given in an Appendix at the end of this article. All the programs necessary for calculations were written in Python; they can be freely downloaded from:

https://github.com/mihirskulkarni/Marathi_entropy

Readers are encouraged to write to the second named author should they need any assistance in the use of these programs.

An engaging and accessible introduction to the basic notions in information theory can be found in Applebaum [1]. We refer the reader to the treatises by Cover and Thomas [3], and Reza [7] for more comprehensive accounts of this subject.

1.2. **Entropy as the expected quantity of information.** Let us suppose that our protagonist Rasika has an appointment with a complete stranger named Robyn. At the outset, Rasika knows nothing beyond the fact that Robyn is a Dutch politician. Although Rasika does not know Robyn’s gender (since the name is androgynous), she believes that Robyn is more likely to be a male (since politicians are predominantly male, even in the Netherlands). We can model this situation by a random variable \(X \), which takes values in the set

1Paruchuri [5] makes an attempt to calculate the entropy of Telugu, but his method involves transliterating the source text into Roman script and working with the latter. We are sceptical of this approach.
\{\text{male, female}\} \text{ with respective probabilities}
\[
p(\text{male}) = 0.6, \quad p(\text{female}) = 0.4. \tag{1}
\]

If Rasika eventually learns that Robyn is indeed a male, then the ‘quantity of information’
she receives\footnote{If an event E will occur with probability p, then the information that it has actually occurred is counted as $-\log_2(p)$ bits. This follows from a set of intuitively appealing and natural axioms first written down by Shannon (see [1, §6.6] or [7, §3-1 ff]). Henceforth, we will always use ‘bit’ as the unit without mentioning it explicitly.} is $-\log_2(0.6) \approx 0.7370$, and similarly it is $-\log_2(0.4) \approx 1.3219$ if Robyn
turns out to be female. In this context, the phrase ‘quantity of information’ has a meaning
somewhat akin to ‘degree of surprise’. Thus, Rasika ‘receives more information’ in the
latter event, since \textit{a priori} she had believed it less likely that Robyn would be a female.

In any event, before their meeting, the \textit{expected} quantity of information for Rasika is equal
to
\[
- \left[0.6 \times \log_2(0.6) + 0.4 \times \log_2(0.4) \right] \approx 0.9710.
\]
By definition, this is the entropy of the random variable X, denoted by $H(X)$.

1.3. Similarly, Rasika does not know whether Robyn is tall or short, but believes that the
former is likely (since the Dutch are generally tall). We model this situation by another
random variable Y, which takes values in the set \{tall, short\} with respective probabilities
\[
p(\text{tall}) = 0.7, \quad p(\text{short}) = 0.3. \tag{2}
\]
As before,
\[
H(Y) = - \left[0.7 \times \log_2(0.7) + 0.3 \times \log_2(0.3) \right] \approx 0.8813.
\]
Since Y has a more ‘uneven’ distribution compared to X, we have $H(Y) < H(X)$.

1.4. \textbf{Conditional entropy.} Now our model should incorporate the fact that males have
a propensity to be taller. Let us assume that the probability distribution for the pair of
variables (X, Y) is given by the following table:
\[
p(\text{tall and male}) = 0.5, \quad p(\text{short and male}) = 0.1, \\
p(\text{tall and female}) = 0.2, \quad p(\text{short and female}) = 0.2. \tag{3}
\]
Notice that this is compatible with the values in (1) and (2); for instance
\[
p(\text{male}) = p(\text{tall and male}) + p(\text{short and male}) = 0.5 + 0.1 = 0.6,
\]
and similarly in other cases. We have chosen the probabilities in such a way that
\[p(\text{tall and male}) = 0.5 > p(\text{tall}) \times p(\text{male}) = 0.42, \]
making \(X \) and \(Y \) into dependent random variables. The pair \((X, Y)\) has entropy
\[H(X, Y) = -[0.5 \log_2(0.5) + \cdots + 0.2 \log_2(0.2)] \approx 1.7610, \]
which is less than \(H(X) + H(Y) \approx 1.8522 \). This reflects the fact that there is an overlap between the information conveyed by \(X \) and \(Y \). Now the conditional entropy
\[H(Y|X) = H(X, Y) - H(X) \approx 0.7900 \]
is a measure of the information in \(Y \) which is not already implicit in \(X \); or what is the same, the information in \(Y \) residual to \(X \).

If \(X \) and \(Y \) had been independent random variables (for instance, standing for gender and eye colour), then one would have \(H(Y|X) = H(Y) \) since \(X \) tells us nothing about \(Y \). The lack of independence implies that \(H(Y|X) < H(Y) \).

Broadly speaking, the same considerations apply when \(X \) and \(Y \) correspond to successive letters in a text.

1.5. The entropy of the text. Now assume that Rasika opens an English text\(^3\), and reads a single letter at random. We can model the outcome by a random variable \(X_1 \) taking values in the set \(\mathcal{A} = \{a, \ldots, z\} \). If all the letters were equally likely, then \(H(X_1) = \log_2(26) \approx 4.7004 \). However, it is well-known that their probabilities are unequal; for instance, \(e \) or \(t \) occur more often than \(x \) or \(z \). From the table in Wikipedia\(^4\), we have the estimated probabilities
\[p(a) = 0.0817, \ldots, p(e) = 0.1270, \ldots, p(z) = 0.0007, \]
which give the value \(H(X_1) \approx 4.1758 \). This is called the 1-gram entropy\(^5\) of English by Shannon\(^5\), p. 51, and denoted by \(F_1 \).

Now let \(X_2 \) be the random variable corresponding to the next letter in the text. Again, it is well-known that \(X_1 \) and \(X_2 \) are not independent; for instance, the letter \(q \) is almost always followed by a \(u \). In other words, the probability of a randomly chosen two-letter block being ‘\(qu \)’ is substantially higher than \(p(q) \times p(u) \). Hence the conditional entropy \(H(X_2|X_1) \) is less than \(H(X_2) = F_1 \).

\(^3\)which we treat as a continuous sequence of letters, ignoring blank spaces and punctuation.

\(^4\)Shannon gives a value of 4.14 based upon a different probability table, but the discrepancy between the two is not worrisome.

\(^5\)Shannon gives a value of 4.14 based upon a different probability table, but the discrepancy between the two is not worrisome.
In general, if X_k denotes the random variable corresponding to the k-th letter, then

$$E_k = H(X_k, \ldots, X_1), \quad (4)$$

is the expected quantity of information in a k-gram (i.e., a sequence of k letters). Now the k-gram entropy of the text is defined to be

$$F_k = H(X_k | X_{k-1}, X_{k-2}, \ldots, X_1) = H(X_k, X_{k-1}, \ldots, X_1) - H(X_{k-1}, \ldots, X_1) = E_k - E_{k-1}. \quad (5)$$

It captures the quantity of information in X_k which is not already implicit in X_1, \ldots, X_{k-1}. The statistical tendencies of English are such that X_1, \ldots, X_k are pairwise dependent random variables, hence we have inequalities

$$F_1 > F_2 > F_3 > \ldots.$$

Finally, the ‘entropy of the text’ is defined to be the limit

$$F_\infty = \lim_{k \to \infty} F_k. \quad (6)$$

It is an idealisation of the information remaining in the next unread letter, when Rasika has already read a long way into the text. Thus, F_∞ is the extent to which the next letter remains uncertain to the reader when all the previous letters are known. This is also the intuition behind the ‘gambling approach to entropy’ discussed at length in [2, §III] and [3, §6.6].

As mentioned above, our model assumes that the random process $(X_m)_{m \geq 1}$ is stationary, which intuitively means that the specific point at which Rasika starts reading the text is immaterial. This is of course an oversimplification, since word boundaries are an obvious source of discontinuities.

1.6. It is straightforward to estimate the E_k by counting the block frequencies in a text (see Section 3.1); however, the procedure becomes computationally expensive and unreliable for large k. This has the practical consequence that the limit in (6) is difficult to estimate with any degree of confidence.

5 Notice that several English words begin with the sequence ‘qu’, but hardly any end with it.
6 One salient reason behind this is that any text written by a single author will usually carry some selection bias arising from the nature of the topic and the style of the author. A legal thriller could contain several uses of an otherwise uncommon word such as ‘codicil’, or the author might have a tendency to overuse intensifiers such as ‘very’ or ‘quite’. There are innumerable possibilities of this kind, any of which will distort the block frequencies. One can tentatively get around this difficulty by combining different texts into one, but it will rear its head again for larger k.

5
It is a defect of the model that the definition of \(F_\infty \) has a very tenuous connection to the psychological process which lies beneath the act of reading. The average length of a word in a Marathi text is between 3 to 4 letters, and most words are smaller than 6 letters (see Section 2.2). It is reasonable to suppose that the reader usually anticipates the next unread letter \textit{within an individual word}, but only seldom beyond it. If so, this means that our model retains at least some degree of affinity to this process for \(k \leq 6 \). However, with increasing \(k \), the sequence \(X_1, \ldots, X_{k-1} \) will span across not only words and sentences but entire paragraphs and chapters. It is then no longer meaningful to ask to what extent an isolated letter \(X_k \) depends on the previous \(X_i \), and consequently the quantity \(F_k \) has little intelligible meaning outside the model.

Hence, in this paper, we only report the values of \(F_k \) for \(k \leq 6 \), and make no attempt to calculate \(F_\infty \). An explained in the next two sections, this involves the intermediate step of approximating a text depending on a parameter.

2. The Canonical Letter Sets

2.1. The letters which can occur in an English text make a reasonably well-defined set, which remains within manageable size even if one decides to include punctuation, blank spaces and accented Roman letters.

This is not so for Marathi. It uses the \textit{Devanagari} script, which is an abugida writing system. Since its orthography allows vowel diacritics as well as ligatures between potentially indefinite number of consonants, the number of possible letters is infinite in theory and very large in practice.\[3

However, the bulk of a generic text is usually comprised of a much smaller number of letters which occur several times. As an illustration, we present some data on a newspaper editorial, taken from the daily \textit{Divya Marathi} (दिव्य मराठी), dated 28 April, 2014. It contains altogether 2266 letters (coming from 727 words), but only 308 distinct letters. We can order the latter by decreasing frequency of their occurrence, as in

\[
(1) \text{ त} : 86 \text{ times}, \quad (2) \text{ र} : 84 \text{ times}, \quad (3) \text{ स} : 69 \text{ times}, \quad \ldots \quad (308) \text{ क} : \text{ once.}
\]

Then the overall pattern is that the top \(n \) distinct letters in this list account for a much larger share of the text compared to \(n/308 \). This is shown in the left-hand plot in Figure [1] with

\[7For example, 'व्यामची आई', a well-known fictionalised memoir by Sane Guruji, contains almost one thousand distinct letters notwithstanding its simple prose style. This number will only be greater for a book which frequently uses Sanskritisms or transliterations of English words.
distinct letters on the horizontal axis and the percentage share of the text on the vertical axis. For example, the point (50, 65.66) is on the curve indicating that the top 50 distinct letters in \(\text{Fig. 1} \) account for 65.66% of the text (i.e., \(2266 \times 0.6566 \approx 1488 \) letters).

Any reasonably large Marathi text will produce a plot very similar to Figure 1. Moreover, the most frequently occurring letters are by and large common to all texts. Hence, it seems sensible to determine these letter sets once and for all.

Let \(r \) denote any of the following values:

\[
0.60, \ 0.65, \ 0.70, \ 0.75, \ 0.80, \ 0.85, \ 0.90, \ 0.95. \tag{8}
\]

We are aiming to find a ‘canonical letter set’ \(\mathcal{L}_r \) which will account for about \(r \times 100\% \) of any generic Marathi text. This turns out to be a sensible choice for the range of \(r \); since such a set would not be useful for low values of \(r \) (say \(r = 0.40 \)), and would become unwieldy for values very close to 1 (say \(r = 0.99 \)).

2.2. **Word lengths.** Although a study of word lengths in Marathi is rather extraneous to this article, it is indirectly related to the range of \(k \) in the context of Sections 1.5-1.6. The distribution of word lengths for the same editorial is displayed in the right-hand plot in Figure 1, where the tallest bar shows that there are 229 words of length 3. The average word length is 3.1 for this sample, but we have found that it mostly remains within 3 and 4 for all texts and the overall shape of the bar graph remains essentially the same.
2.3. **The textual corpus.** We have chosen the *Marathi Vishwakosh* (मराठी विश्वकोश), i.e., the Marathi encyclopædia, as our corpus. It was serially published in twenty volumes during the years 1976-2015, and is now available online. This choice can be justified on several grounds. Since the range of subjects in MV is very large (indeed, encyclopædic), and several hundred authors have contributed to it, there is little danger of a sample bias arising from either source. Secondly, the articles have been carefully edited to ensure that they adhere to the accepted rules of Marathi writing.

In order to obliterate any potential bias arising from the alphabetical listing of entries, we have divided the entire MV into twenty ‘books’ B^0, \ldots, B^{19} using the following rule. The m-th article in any volume of MV was put into B^t, where $m \equiv t \pmod{20}$. For instance, B^3 contains the 3rd, 23rd and in general $20i + 3$rd article from any of the volumes in MV. Each B^t consists of approximately 2.2 million letters and more than three thousand distinct letters. We have used the first ten books B^0, \ldots, B^9 for the letter frequency calculations in this section, and reserved the rest for the entropy calculations in the next section.

2.4. **The sets L_r.** For $t = 0, \ldots, 9$, let L_r^t denote the set of most frequently occurring letters in B^t which form just over $r \times 100\%$ of the text (exactly as in Section 2.1). Now define L_r to be the set of letters which occur in at least seven of the ten sets L_r^t. This ‘two-thirds majority rule’ is a compromise between either taking the union $U_r = \bigcup_t L_r^t$ (which would have been too permissive), or the intersection $I_r = \bigcap_t L_r^t$ (which would have been too stringent).

As an illustration, the sets $U_{0.70}$ and $I_{0.70}$ have 88 and 77 elements respectively, which is a deviation of only $\pm 7\%$ from their mean. Of course, $L_{0.70}$ is sandwiched between the two. In fact, it is true of all r that U_r and I_r remain close to each other. This indicates that the L_r are quite robust, in the sense that their contents are not very sensitive to a variation in the defining rule.

8These are alphabetically arranged, with volume 1 ranging from अ to आनुष्ठानिक and volume 20 from एक to आत्मनिर्भर. The complete text is available at: https://marathivishwakosh.maharashtra.gov.in/

9These rules were drafted by the ‘Akhil Bharateeya Marathi Sahitya Mahamandal’ and ratified by the Maharashtra State Government in 1962 (with a few minor changes in 1972). They have remained in general acceptance since then.

10We have entirely ignored punctuation, blank spaces, numerals and Roman letters. Thus, henceforth each ‘letter’ strictly belongs to the Devanagari script.
These sets are nested in the obvious way, i.e., \(N_{0.60} \subset N_{0.65} \subset \cdots \subset N_{0.95} \). Their sizes \(N_r = \text{card}(L_r) \) are:

\[
\begin{align*}
N_{0.60} &= 54, & N_{0.65} &= 66, & N_{0.70} &= 83, & N_{0.75} &= 104, \\
N_{0.80} &= 134, & N_{0.85} &= 177, & N_{0.90} &= 251, & N_{0.95} &= 408.
\end{align*}
\] (9)

It is easy to notice a ‘law of diminishing returns’ in these numbers. One needs only 54 letters to capture 60% of a text, but 80 additional letters in order to increase this share by 20%. This is even more visible from the sharply rising plot in Figure 2, which shows the change in \(N_r \) with \(r \).

We will represent the set \(L_{0.95} \) as \(\{x_1, x_2, \ldots, x_{408}\} \), with the convention that \(\{x_1, \ldots, x_{N_r}\} = L_r \) for any smaller value of \(r \).

2.5. Letter frequencies. As we saw earlier in Section 1.5, one can assign statistically stable probabilities to the letters \(a, \ldots, z \) in English. This cannot be carried out for all the letters in Marathi orthography, since some rare letters occur unpredictably. For instance, to the best of our knowledge, the letter ‘व’ only occurs in the word ‘विभिन्न’ indirectly borrowed from French via English. The word carries a distinctly pejorative connotation of ‘middle-class complacency’, especially in a phrase such as ‘विभिन्न मनोवृत्ति’ (‘the bourgeois mindset’). It follows that, depending on the subject of the text and the political leanings of the author, such a letter will occur either frequently or not at all. Hence no meaningful probability can be assigned to it.
However, such a project does turn out to be possible for the smaller set of letters $L_{0.95} = \{x_1, \ldots, x_{408}\}$. We simply count the occurrence of each x_i in each of the books $B^{(0)}, \ldots, B^{(9)}$. For $0 \leq t \leq 9$, let

$$q_i^{(t)} = \frac{\text{Number of occurrences of } x_i \text{ in the book } B^{(t)}}{\text{Total number of letters in } B^{(t)}},$$

and define $p(x_i)$ to be the arithmetic mean of the numbers $q_i^{(0)}, \ldots, q_i^{(9)}$. As seen in Figure 3, the coefficient of variation (CV) for these ten data points (defined as the ratio of their standard deviation to mean) is less than 30% for almost all x_i. Since the $q_i^{(t)}$ have rather low variability from book to book, we are justified in assigning the probability $p(x_i)$ to x_i.

The first seven letters with the largest probabilities are:

\begin{align*}
\text{त: 0.0366, र: 0.0341, क: 0.0280, न: 0.0276, व: 0.0257, अ: 0.0205, स: 0.0203.}
\end{align*}

The rest are less that 0.02. It is noteworthy that these seven make up for 19.3%, i.e., almost one fifth of a text. The ligatures are naturally lower down in the list; the highest amongst them is 'ञ', with a probability of 0.0118, and the next highest is 'ञ' with a probability of 0.0093.

One test of correctness of the $p(x_i)$ is that the quantity $\frac{\sum_{i=1}^{N_r} p(x_i)}{r}$ should be close to 1. We have found that it lies between 0.9886 and 0.9958 for all r.

Figure 3. The bar graph for the CV of $q_i^{(0)}, \ldots, q_i^{(9)}$
A complete listing of the L_r together with values of $p(x_i)$ may be found at the end of this article.

2.6. Approximating a text. We will use these sets to approximate a given Marathi text T. Introduce a placeholder symbol □, and let $\alpha_r(T)$ denote the text obtained by replacing each letter not in L_r by □. The rationale behind this construction is that since only the infrequent letters have been replaced, the ‘quantity of information’ in the text should suffer only a small amount of loss. This will be borne out by the following two examples.

Given below is an instance of $\alpha_{0.75}(T_1)$:

वाजारेवात ही फ्यासी संकलना एर महंची असते. मूळ म्हणून हकाला बांधी □ □ □ मत बाटते ती □ मत. ही □ मत हकाल्या मनात असते आणि ती □ नसते. ती अनेकविध घटकांच्या एकत्र परिणामावर हकाल्या मनात साकार होते. अशाासार एहा बाला □ असण्यासाठी एक तर ती वा □ हकाल्या उपलब्ध असावला हा आणि □ रे म्हणून ती माध्यम प्रमाणात उपलब्ध असावला हा. एेण गरेणाऱ्यास क्रमाने प्रमाणात उपलब्ध असलेल्या वेगा □ मत नसते □या □ अकाला उपयोग नाही त्या बाला □ मत नसते.

A seasoned Marathi reader would probably find this passage annoying, but should have no difficulty understanding its overall drift. It is possible to guess most of the missing letters if they are isolated, but this may well be harder if they occur consecutively.

Our second example is that of $\alpha_{0.90}(T_2)$:

तरीहि पेशकावण्या अखेरीम असे विसेच की राजकीय वा महत्त्यूली प्रकारचा पत्रयवाहर आणि काही बखर वाचालो सोडले तर या लेखनाची काही जिंक मराठीमध्ये विकसित झाली नाही. कोकणातील, देशावर्गी, विद्याली, खानवेशी अशी मराठीची जी अनेक लघुप्रमाणे लघुप्रमाणी भाषेचे वापरत होती त्यांची प्रमाण मराठीभाषा असे कोणास म्हणून आणि संदक्षिप्त मराठीची विचाराला ह्या स्वीकारावर होती. ह्याचे कारण म्हणजे लेखनात अशा बाला □ असलेल्या □ विद्वंद्वी जवळजवळ संगमधुळ्यांना अपमने लक्ष संप्रती अणि त्या भाषेतील पारंपरिक जान ह्यावर्क केल्या कल्या होता. मराठी भाषा विकास, तिथी शैली, व्यक्तरण, प्रमाणनिर्णय झाकडेंचे लक्ष दाखवून असे कोणाच पारंपरिक विभागाचा जाणन नसते.

The loss of meaning in this case is very slight, and the passage is almost entirely comprehensible. We now enclose the original passages T_1 and T_2:

बाजारे वसेत ही म्हणंची संकलना फार महत्त्यूली असते. मूळ म्हणजे ग्राहकाला बसून बी योग्य किंमत बाटते ती किंमत. ही किंमत ग्राहकाल्या मनात असते आणि ती स्थिर नसते. ती अनेकविध घटकांच्या एकत्र परिणामातून ग्राहकाल्या मनात साकार होते. अर्थात अभावासार एंडवर बसून मूळ असण्यासाठी एक तर ती बसू हकाल्या उपलब्ध असावला हवी आणि दुसरे म्हणजे ती माध्यम प्रमाणात उपलब्ध असावला हवी. एेण गरेणाऱ्यास क्रमाने प्रमाणात उपलब्ध असलेल्या बसून किंमत नसते किवा नवीन कुर्णाला उपयोग नाही त्या बसून किंमत नसते.
We have carried out similar experiments with several passages and varying values of \(r \). It seems safe to assert that almost all the semantic content of \(T \) is retained in \(\alpha_r(T) \), whenever \(r \geq 0.85 \). Notice that for a given text \(T \), the proportion of missing letters in \(\alpha_r(T) \) may be more or less than \(1 - r \) depending on the type of vocabulary used. A passage which uses obscure Sanskritisms will lose more of its letters, whereas a children’s story written in simple ligature-free words will lose fewer of them.

In the next section, we will perform all of our entropy calculations on \(\alpha_r(T) \) instead of \(T \) itself.

3. The k-gram Entropies

3.1. In the situation of Section 1.5, assume that our text \(S \) is a sequence of \(s \) letters from an alphabet \(A \). In particular, if \(S \) is the result of applying \(\alpha_r \) to a text, then the operative alphabet is \(A = L_r \cup \{ \square \} \). By a \(k \)-block we mean a subsequence of \(k \) consecutive letters in \(S \); thus we have altogether \(s - k + 1 \) blocks. Let \(\{ C_1, C_2, \ldots \} \) denote the distinct \(k \)-blocks, and assume that \(C_i \) occurs altogether \(m_i \) times somewhere in \(S \). Of course, one must have \(\sum m_i = s - k + 1 \). Let

\[
\rho_i = \frac{m_i}{s - k + 1},
\]

which is a proxy for the probability that a randomly chosen \(k \)-block equals \(C_i \). Then we have the formula

\[
E_k(S) = -\sum_i \rho_i \log_2(\rho_i).
\]

By convention, \(E_0(S) = 0 \).
3.2. As stated earlier, the books $B^{(t)}$, $t = 10, \ldots, 19$ had been set aside for entropy calculations. We have constructed the approximating texts $S_r^{(t)} = \alpha_r(B^{(t)})$ for all r-values in (8) and used the procedure above to find $E_k(S_r^{(t)})$ for $1 \leq k \leq 6$.

For each pair (r, k), let $E_k^{(r)}$ denote the arithmetic mean of $E_k(S_r^{(t)})$ for $t = 10, \ldots, 19$. The CV for these ten data points is smaller than 3% in all cases, which shows that the entropy values are very stable across the books. Finally, let

$$F_k^{(r)} = E_k^{(r)} - E_k^{(r)}_{k-1}, \quad \text{for } 1 \leq k \leq 6.$$

The results are given in Table 1, and the same data are plotted in Figure 4.

As remarked earlier, the value of $F_k^{(r)}$ monotonically decreases with k. Since the quantity of information retained in $\alpha_r(T)$ increases with r, it is also natural that $F_k^{(r)}$ should increase with r at least for low values of k.

However, as k moves beyond the typical word length of 4, several of the k-blocks tend to occur only once in the text. This is intuitively plausible, since a phrase longer than a word is less likely to appear frequently in a text compared to a word. Hence X_k is entirely determined by X_1, \ldots, X_{k-1} for at least those blocks, and this tends to reduce the value of $F_k^{(r)}$. However, this effect is less pronounced for small r, since in that case two k-blocks which are unequal in the text have more of a chance of becoming equal after applying α_r. This is very likely the explanation for the fact that $F_k^{(r)}$ decreases with increasing r beyond $k \geq 4$. One consequence of this inversion is that we have a mesh of lines above the region $3 \leq k \leq 4$ roughly corresponding to the average word length.

3.3. It should be mentioned in passing that we have experimented with the calculations of $F_k^{(r)}$ for other samples besides the $B^{(t)}$. Although the plot is visually similar to Figure 4.
in all cases, the mesh seems to move leftward for a small sample and rightward for a large one. This is consistent with the intuition that the k-block selection bias is more severe for a smaller sample, which brings about an earlier onset of the inversion mentioned above. The movement of the mesh is not very pronounced in either direction, and it always remains approximately within the band $2.5 \leq k \leq 4.5$.

3.4. The parameter r mirrors a fundamental conflict between fidelity to the original text and the reliability of our calculated result. As r increases, the approximating text $\alpha_r(T)$ approaches T itself. On the other hand, the size of the alphabet also increases with r, which renders the calculation more prone to selection bias at the level of k-blocks.
In light of the examples in Section 2.6, the point $r = 0.85$ is perhaps a fair compromise between these two disparate ends. Given this choice,

$$F_1^{(0.85)} = 6.2096,$$

should be seen as the Marathi analogue of the value 4.1758 for English (cf. Section 1.5). To the extent that the reader anticipates the next letter within a word, the values $F_k^{(0.85)}$ for $k = 3, 4$, aim to capture the average level of uncertainty in this anticipation. However, it cannot be emphasized too strongly that no single value can do justice to the cognitive and semantic complexities involved in the act of reading a text.

3.5. **Concluding Remarks.** Since the canonical letter sets L_r are stable structural features of written Marathi, they should be of interest beyond their use in calculations of entropy. It is a common theme in text compression algorithms (e.g., Huffman coding) that one should identify the most frequently occurring symbols in the source data and encode them by strings of small length. Since the elements of L_r play precisely this role in a Marathi text, it is natural to speculate whether they can be harnessed to a similar use.

Several Indic languages besides Marathi (such as Konkani and Hindi) use the Devanagari script, and those which do not (such as Bengali, Punjabi or Tamil) nevertheless use variant forms of abugida writing systems. It would be a worthwhile undertaking to see whether analogous letter sets can be found for these languages as well.

References

[1] Applebaum D. *Probability and Information: an Integrated Approach* (2nd ed), Cambridge University Press, 2008.

[2] Cover T. M. and King R. C. A convergent gambling estimate of the entropy of English. *IEEE Trans. Inform. Theory*, vol. IT-24, pp. 413–421, 1978.

[3] Cover T. M. and Thomas J. *Elements of Information Theory*, Wiley-Interscience, Hoboken, NJ, 2006.

[4] Guerrero F. A new look at the classical entropy of written English. arXiv: 0911.2284.

[5] Paruchuri V. Entropy of Telugu. arXiv: 1106.5973 [cs.CL].

[6] Pit-Claudel C. An experimental estimation of the entropy of English, in 50 lines of Python code (Accessed on June 10, 2017).

URL: http://pit-claudel.fr/clement/blog/an-experimental-estimation-of-the-entropy-of-english-in-50-lines-of-python-code/

[7] Reza F. *An Introduction to Information Theory*. McGraw-Hill, New York, 1961.

[8] Shannon C. E. A mathematical theory of communication. *Bell Syst. Tech. J.*, vol. 27, pp. 379–423, 623–656, 1948.

[9] Shannon C. E. Prediction and entropy of printed English. *Bell Syst. Tech. J.*, vol. 30, pp. 50–64, 1951.
Appendix: The Table of Probabilities

We enclose a listing of the letters

\[\mathcal{L}_{0.95} = \{x_1, \ldots, x_{408}\}, \]

along with their assigned probabilities \(p(x_i) \), as explained on page 8 of the article. For instance, the first entry means that the letter \(x_1 = 'त' \) has assigned probability \(p(x_1) = 3.657388 \times 10^{-2} \).

There is a dividing line after the 54th entry, 66th entry, 83rd entry and so on. These are consistent with the nesting

\[\mathcal{L}_{0.60} \subset \mathcal{L}_{0.65} \subset \cdots \subset \mathcal{L}_{0.95}. \]

Thus

\[\mathcal{L}_{0.60} = \{x_1, \ldots, x_{54}\} \]

and similarly for other values of \(r \).

\(i \)	\(x_i \)	unicode point sequence for \(x_i \)	\(p(x_i) \)
1	त	U+0924	3.657388e-02
2	र	U+0930	3.413344e-02
3	क	U+0915	2.803426e-02
4	न	U+0928	2.760335e-02
5	ब	U+0935	2.572512e-02
6	अ	U+0905	2.054680e-02
7	म	U+0938	2.025884e-02
8	प	U+092a	1.692714e-02
9	ल	U+0932	1.661258e-02
10	आ	U+0906	1.647714e-02
11	का	U+0915 U+093e	1.497261e-02
12	म	U+092e	1.377602e-02
13	व्य	U+091a U+094d U+092f U+093e	1.175195e-02
14	ना	U+0924 U+093e	1.136662e-02
15	ले	U+0932 U+0947	1.078432e-02
16	वि	U+0935 U+093f	1.063895e-02
17	वा	U+0935 U+093e	1.04438e-02
18	ती	U+0924 U+0940	1.010055e-02
19	ला	U+0932 U+093e	1.001658e-02
20	ना	U+0928 U+093e	9.621307e-03
21	भा	U+0938 U+093e	9.589073e-03
22	मा	U+092e U+093e	9.513163e-03
23	या	U+092f U+093e	9.304941e-03
24	प्र	U+092a U+094d U+0930	9.295019e-03
25	रा	U+0930 U+093e	9.254720e-03
26	ग	U+0917	9.247231e-03
27	य	U+092f	9.079185e-03
28	ते	U+0924 U+0947	8.888165e-03
29	ण	U+0923	8.453581e-03
30	चा	U+091a U+093e	8.041628e-03
31	चे	U+091a U+0947	7.987749e-03
32	हे	U+0939 U+0947	7.545709e-03
33	ने	U+0928 U+0947	7.147505e-03
34	ज	U+091c	6.942665e-03
35	च	U+091a	6.800206e-03
36	द	U+0926	6.661848e-03
37	वी	U+091a U+0940	6.595762e-03
38	या	U+092a U+093e	6.47924e-03
39	उ	U+0909	6.353647e-03
40	ही	U+0939 U+0940	6.246438e-03
41	एं	U+0938 U+0902	6.006461e-03
42	नि	U+0928 U+093f	5.926775e-03
43	ब	U+092c	5.865630e-03
44	व्य	U+0924 U+094d U+092f U+093e	5.823814e-03
45	हो	U+0939 U+094b	5.767016e-03
46	क	U+0921	5.718959e-03
47	ली	U+0932 U+0940	5.695079e-03
48	मी	U+0930 U+0940	5.619677e-03
49	घा	U+0923 U+093e	5.441562e-03
50	ज	U+0936	5.369520e-03
51	ट	U+091f	5.287323e-03
52	ड	U+0933	5.187229e-03
53	ढ	U+0939	5.040355e-03
54	हां	U+0939 U+093e	4.999221e-03
55	ल्य	U+0932 U+094d U+092f U+093e	4.655049e-03
56	के	U+0915 U+0947	4.509967e-03
57	जा	U+091c U+093e	4.412430e-03
58	भा	U+092d U+093e	4.408843e-03
59	ए	U+090f	4.187229e-03
60	घ्य	U+0923 U+094d U+092f U+093e	4.100178e-03
61	इ	U+0907	3.974145e-03
62	मु	U+092e U+0941	3.971823e-03
63	नी	U+0928 U+0940	3.816529e-03
64	झा	U+0936 U+093e	3.814070e-03
65	झ	U+0926 U+093e	3.668584e-03
66	ठो	U+0924 U+094b	3.642839e-03
67	वे	U+092f U+0947	3.485317e-03
68	मू	U+0938 U+0942	3.479668e-03
69	रि	U+0930 U+093f	3.477957e-03
70	द	U+0927	3.453459e-03
71	णि	U+0923 U+093f	3.450840e-03
72	या	U+092f U+093e U+0902	3.391220e-03
73	रु	U+0930 U+0942	3.313950e-03
74	में	U+0938 U+0947	3.307027e-03
75	ति	U+0924 U+093f	3.286694e-03
76	रै	U+0930 U+0947	3.151157e-03
77	णै	U+0923 U+0947	3.111452e-03
78	वे	U+0935 U+0947	3.017336e-03
79	त्यां	U+0924 U+094d U+092f U+093e U+0902	2.964957e-03
80	मा	U+0917 U+093e	2.942437e-03
81	दे	U+0926 U+0947	2.933073e-03
82	ख	U+0916	2.911625e-03
83	भ	U+092e U+093f	2.820485e-03
84	वि	U+0936 U+093f	2.811291e-03
85	हा	U+091d U+093e	2.754705e-03
86	छे	U+0927 U+094d U+092f U+0947	2.615522e-03
87	हि	U+0939 U+093f	2.528147e-03
88	बा	U+092c U+093e	2.502101e-03
89	जे	U+0933 U+0947	2.486873e-03
90	पृ	U+092a U+0941	2.415607e-03
91	मी	U+092e U+0940	2.379287e-03
92	व	U+0924 U+094d U+0930	2.376319e-03
93	ध	U+0915 U+094d U+0937	2.312695e-03
94	हि	U+0926 U+093f	2.281731e-03
95	ढ	U+0922	2.269693e-03
96	सु	U+0938 U+0941	2.263429e-03
97	की	U+0915 U+0940	2.257253e-03
98	मह	U+092e U+094d U+0939	2.245389e-03
99	जी	U+0936 U+0940	2.244994e-03
100	घा	U+0927 U+093e	2.108764e-03
101	घ	U+0937	2.080513e-03
102	रे	U+0930 U+094b	2.078140e-03
103	ठी	U+0920 U+0940	2.077803e-03
104	घ	U+0918	2.051672e-03
105	को	U+0915 U+094b	2.030955e-03
106	पू	U+092a U+0942	1.890996e-03
107	जी	U+0923 U+0940	1.878765e-03
108	लि	U+0932 U+093f	1.859826e-03
109	खा	U+0916 U+093e	1.808284e-03
110	ऊ	U+090a	1.771184e-03
111	का	U+0933 U+093e	1.752087e-03
112	ना	U+0931 U+094d U+092f U+093e	1.723443e-03
अक्षर	विषय	अंश	संख्या
-------	-------	------	--------
र	U+0930 U+0902	1.712288e-03	
मो	U+092f U+094b	1.695707e-03	
भ	U+092d	1.679965e-03	
को	U+0915 U+093e U+0902	1.621287e-03	
सि	U+0938 U+093f	1.610573e-03	
तू	U+0924 U+0942	1.578732e-03	
व्य	U+0935 U+0940	1.573697e-03	
व	U+0926 U+0940	1.557280e-03	
अं	U+0935 U+0940	1.541094e-03	
दी	U+0926 U+0940	1.533521e-03	
श	U+0926 U+0940	1.526110e-03	
डं	U+0915 U+093f U+0902	1.435810e-03	
बी	U+0926 U+0940	1.437526e-03	
दो	U+092f U+0941	1.443253e-03	
गो	U+0926 U+094d U+0927	1.442163e-03	
जो	U+0938 U+094d U+0925 U+093e	1.435810e-03	
ठ	U+0930 U+094d U+0935	1.425979e-03	
डी	U+0908	1.41142e-03	
धी	U+091c U+0947	1.398205e-03	
को	U+0932 U+094b	1.396542e-03	
ढे	U+0921 U+0947	1.382865e-03	
धं	U+0921 U+0947	1.359452e-03	
ढि	U+091a U+093f	1.356059e-03	
दी	U+0921 U+0940	1.306748e-03	
कि	U+0915 U+093f U+0902	1.292923e-03	
दो	U+0926 U+094b	1.286898e-03	
ठ	U+0920	1.251411e-03	
वं	U+092c U+0902	1.251270e-03	
णु	U+0923 U+0942	1.229206e-03	
द्व	U+0926 U+094d U+0930	1.227272e-03	
148	शे	U+0936 U+0947	1.226076e-03
149	टा	U+091f U+093e	1.197967e-03
150	नु	U+0928 U+0941	1.186060e-03
151	धि	U+0927 U+093f	1.174406e-03
152	ढी	U+0933 U+0940	1.157310e-03
153	गो	U+0917 U+094b	1.151472e-03
154	स्व	U+0938 U+094d U+0935	1.145167e-03
155	अं	U+0905 U+0902	1.131263e-03
156	मू	U+092e U+0942	1.107721e-03
157	तु	U+0924 U+0941	1.092187e-03
158	पं	U+092a U+0947	1.090012e-03
159	जु	U+0917 U+0941	1.077573e-03
160	रं	U+0930 U+093e U+0902	1.074798e-03
161	नं	U+0928 U+0902	1.057957e-03
162	थे	U+0925 U+0947	1.041376e-03
163	क़	U+0915 U+094d U+0924	1.028358e-03
164	जा	U+091c U+094d U+091e U+093e	1.023034e-03
165	हू	U+0930 U+0941	1.020169e-03
166	ढं	U+0930 U+094d U+0923	1.015437e-03
167	पि	U+092a U+093f	1.010738e-03
168	भू	U+092d U+0942	1.003810e-03
169	स्त	U+0938 U+094d U+0924	1.003810e-03
170	बा	U+0926 U+094d U+092f U+093e	1.003401e-03
171	भी	U+0917 U+0940	9.995399e-04
172	ने	U+0917 U+0947	9.924893e-04
173	ठु	U+0926 U+0941	9.693678e-04
174	ओ	U+0911	9.634635e-04
175	खा	U+0915 U+094d U+0937 U+093e	9.513745e-04
176	कृ	U+0915 U+0943	9.201014e-04
177	ठी	U+091f U+0940	9.172285e-04
178	ऐ	U+0930 U+094d U+092f	9.137319e-04
179	ओ	U+0913	9.135991e-04
180	घे	U+0918 U+0947	9.067191e-04
181	क्र	U+0915 U+094d U+0930 U+093f	8.935280e-04
182	द्र	U+0937 U+094d U+091f	8.906519e-04
183	द्र	U+0939 U+094d U+092f U+093e	8.871830e-04
184	टि	U+091f U+093f	8.571785e-04
185	स्र	U+0928 U+093e U+0902	8.536182e-04
186	जि	U+091c U+093f	8.516657e-04
187	त्	U+0924 U+0902	8.463402e-04
188	स्म	U+0938 U+094d U+092a	8.285075e-04
189	नी	U+0938 U+094b	8.238033e-04
190	ख्या	U+0916 U+094d U+092f U+093e	8.235977e-04
191	न	U+0924 U+094d U+0924	8.022542e-04
192	व्य	U+0928 U+094d U+092f	8.022079e-04
193	श्यो	U+0936 U+094b	7.938889e-04
194	इं	U+0907 U+0902	7.897199e-04
195	था	U+0925 U+093e	7.744666e-04
196	पी	U+092a U+094b	7.64973e-04
197	लां	U+0932 U+093e U+0902	7.650179e-04
198	पी	U+092a U+0940	7.641254e-04
199	कु	U+0915 U+0941	7.362792e-04
200	र्म	U+0930 U+094d U+0925	7.301794e-04
201	डि	U+0921 U+093f	7.255221e-04
202	मं	U+092e U+0902	7.182698e-04
203	क्रेद	U+0915 U+094d U+0937 U+0947	7.114714e-04
204	क्र	U+0915 U+094d U+0930	7.101724e-04
205	व्रा	U+0924 U+094d U+0930 U+093e	7.1055124e-04
206	स्य	U+0924 U+094d U+092f	6.957022e-04
207	मां	U+0930 U+094d U+092e U+093e	6.928328e-04
208	भि	U+092d U+093f	6.907657e-04
209	फा	U+092b U+093e	6.864620e-04
210	बी	U+092c U+0940	6.829675e-04
211	छ्य	U+0927 U+094d U+092f	6.813111e-04
212	द्वेद	U+0920 U+0947	6.629373e-04
213	मां	U+092e U+093e U+0902	6.579398e-04
214	बेद	U+0916 U+0947	6.542353e-04
215	य	U+0917 U+094d U+0930	6.489028e-04
216	यं	U+092f U+0902	6.465844e-04
217	ठा	U+0920 U+093e	6.375066e-04
218	दि	U+0924 U+094d U+0930 U+093f	6.315878e-04
219	पा	U+0918 U+093e	6.245179e-04
220	हू	U+0926 U+0942	6.203794e-04
221	बे	U+0935 U+0948	6.195761e-04
222	मं	U+0930 U+094d U+092e	6.193139e-04
223	टे	U+091f U+0947	6.164124e-04
224	हू	U+0921 U+0942	6.129222e-04
225	क्या	U+0933 U+094d U+092f U+093e	6.081229e-04
226	स्थि	U+0938 U+094d U+0925 U+093f	6.067235e-04
227	मी	U+0938 U+0940	6.046919e-04
228	वे	U+092c U+0947	6.023578e-04
229	यां	U+0930 U+094d U+092f U+093e	6.008597e-04
230	सां	U+0938 U+093e U+0902	5.985771e-04
231	मं	U+0930 U+094d U+0917	5.958771e-04
232	हृ	U+0935 U+0943	5.975661e-04
233	कूं	U+0915 U+0942	5.968740e-04
234	त्	U+0924 U+094d	5.816545e-04
235	दु	U+0926 U+0943	5.770472e-04
236	खं	U+0938 U+094d U+0924 U+094d U+0930	5.751610e-04
237	जो	U+091c U+094b	5.739565e-04
238	तः	U+0924 U+0903	5.737528e-04
239	ज्ञत	U+091c U+094d U+092f U+093e	5.709583e-04
240	दि	U+0917 U+093f	5.621468e-04
241	रं	U+0930 U+094d U+0936	5.586509e-04
242	यां	U+0917 U+093e U+0902	5.563543e-04
243	यं	U+0930 U+094d U+092f U+0902	5.562485e-04
244	यां	U+0936 U+093e U+0902	5.477564e-04
245	ज्ञत	U+0935 U+094d U+0939 U+093e	5.454220e-04
246	शी	U+0925 U+0940	5.431162e-04
247	ज्ञ	U+0928 U+094d U+0928	5.416427e-04
248	लं	U+0932 U+0902	5.358638e-04
249	हूं	U+0939 U+0941	5.244398e-04
250	तां	U+0924 U+093e U+0902	5.240902e-04
251	ढु	U+0926 U+094d U+092f U+0941	5.180537e-04
252	द्रा	U+0926 U+094d U+0930 U+093e	5.170950e-04
253	यू	U+092f U+0942	5.134925e-04
254	यृ	U+092a U+0943	5.112637e-04
255	यं	U+0932 U+094d U+092a	5.095946e-04
256	यं	U+0917 U+094d U+0930 U+0902	5.095733e-04
257	या	U+0928 U+094d U+092f U+093e	5.078778e-04
258	यू	U+0935 U+0942	5.012532e-04
259	कं	U+0915 U+0902	4.835992e-04
260	क़	U+0915 U+094d U+0924 U+0940	4.829771e-04
261	लू	U+0933 U+0942	4.790124e-04
262	बो	U+0926 U+094d U+092f U+094b	4.786634e-04
263	ता	U+0924 U+094d U+092a U+093e	4.753833e-04
264	नो	U+0928 U+094b	4.716525e-04
265	यी	U+092f U+0940	4.715160e-04
266	क्रपा	U+0921 U+094d U+092f U+093e	4.706225e-04
267	टे	U+0922 U+0947	4.688745e-04
268	तीं	U+0924 U+0940 U+0902	4.611397e-04
269	के	U+0915 U+0947 U+0902	4.610359e-04
270	घि	U+0915 U+094d U+0937 U+093f	4.593169e-04
271	घि	U+092c U+093f	4.565454e-04
272	जू	U+091c U+0942	4.557565e-04
273	णं	U+0923 U+093e U+0902	4.556220e-04
274	पै	U+092a U+0948	4.536566e-04
275	पं	U+092a U+0902	4.524576e-04
276	बो	U+092c U+094b	4.506822e-04
277	त्वा	U+0924 U+094d U+0924 U+094d U+0935 U+093e	4.410859e-04
278	वं	U+0935 U+0902	4.356101e-04
279	ब	U+091d	4.260437e-04
280	मि	U+0930 U+094d U+092e U+093f	4.252365e-04
281	खं	U+0916 U+0902	4.222682e-04
282	छी	U+0937 U+094d U+091f U+0940	4.206081e-04
283	घा	U+0937 U+093e	4.159934e-04
284	घी	U+0922 U+0940	4.141359e-04
285	दो	U+091f U+094b	4.118945e-04
286	घी	U+0916 U+0940	4.063354e-04
287	तं	U+0930 U+094d U+0924	3.966103e-04
288	ढ	U+0937 U+094d U+0920	3.956403e-04
289	फ	U+092b U+093f	3.936879e-04
290	खे	U+0924 U+094d U+092f U+0947	3.915053e-04
291	त्व	U+0924 U+094d U+0924 U+094d U+0935	3.898629e-04
292	यां	U+092a U+093e U+0902	3.868452e-04
293	बां	U+092c U+093e U+0902	3.827041e-04
294	कं	U+0915 U+0945	3.818322e-04
295	घू	U+0927 U+0942	3.783440e-04
296	ठि	U+0920 U+093f	3.767786e-04
297	भ्व	U+0935 U+094d U+0939	3.762222e-04
298	भ	U+0936 U+094d U+0930	3.761525e-04
299	ख्व	U+0916 U+094d U+092f	3.732798e-04
300	प्	U+092a U+094d U+0930 U+0947	3.720216e-04
301	ग्त	U+092a U+094d U+0924	3.696942e-04
302	खो	U+0916 U+094b	3.650234e-04
303	छ्व	U+0936 U+094d U+091a U+093f	3.593230e-04
304	त्व	U+0924 U+094d U+0935	3.587317e-04
305	ह्ह	U+0939 U+0942	3.578619e-04
306	जो	U+0914	3.575919e-04
307	स्ट	U+0938 U+094d U+091f	3.558441e-04
308	ब्व	U+0924 U+094d U+092e	3.546704e-04
309	शु	U+0936 U+0941	3.509728e-04
310	घ	U+0926 U+094d U+092f	3.506052e-04
311	घ्व	U+0927 U+094d U+092f U+093e	3.459948e-04
312	घ्य	U+0936 U+094d U+092f	3.449968e-04
313	हू	U+0932 U+0942	3.445081e-04
314	न्ती	U+0924 U+094d U+0924 U+0940	3.437925e-04
315	ध्व	U+092d U+094d U+092f U+093e	3.426495e-04
316	दं	U+0926 U+0902	3.413673e-04
317	स्ल्व	U+0938 U+094d U+0925 U+0947	3.391332e-04
318	ब्ड	U+0921 U+094b	3.374135e-04
319	मू	U+092e U+0943	3.372865e-04
320	जु	U+091c U+0941	3.351072e-04
321	ओं	U+0906 U+0902	3.342616e-04
322	ऊं	U+0909 U+0902	3.339408e-04
Page	Symbol	Value	Value
------	--------	-------	-------
323	षक	U+0937 U+094d U+0915	3.316084e-04
324	णण	U+091c U+094d U+092f	3.246780e-04
325	पर	U+0928 U+094d U+0938	3.241711e-04
326	भं	U+0930 U+094d U+0937	3.225897e-04
327	डे	U+0924 U+094d U+0930 U+0947	3.213323e-04
328	फे	U+092b U+0947	3.207459e-04
329	फु	U+092b U+0941	3.164002e-04
330	ता	U+0924 U+094d U+0924 U+093e	3.154381e-04
331	बु	U+092c U+0941	3.152924e-04
332	स्वा	U+0938 U+094d U+0935 U+093e	3.148166e-04
333	क्य	U+0920 U+094d U+092f U+093e	3.130627e-04
334	को	U+0915 U+0949	3.101536e-04
335	घु	U+0927 U+0941	3.005843e-04
336	में	U+0938 U+0947 U+0902	3.002396e-04
337	गाँ	U+0930 U+094d U+0917 U+093e	2.988736e-04
338	भण	U+0937 U+094d U+0923	2.987154e-04
339	भो	U+092d U+0947	2.932702e-04
340	स्तू	U+0938 U+094d U+0924 U+0942	2.914441e-04
341	बीं	U+0930 U+094d U+0935 U+0940	2.817926e-04
342	घर	U+0936 U+094d U+0935	2.805251e-04
343	भो	U+092d U+094b	2.802767e-04
344	क्ष	U+0915 U+094d U+092f	2.791464e-04
345	स्ता	U+0938 U+094d U+0924 U+093e	2.790282e-04
346	ढा	U+0926 U+094d U+0927 U+093e	2.760233e-04
347	ढम	U+0915 U+094d U+0937 U+094d U+092e	2.735249e-04
348	ढा	U+0926 U+094d U+0935 U+093e	2.725872e-04
349	बो	U+091a U+093e U+0902	2.688451e-04
350	बो	U+091a U+0902	2.635774e-04
351	त्प	U+0924 U+094d U+092a	2.622522e-04
352	बू	U+092c U+0942	2.621631e-04
353	गं	U+0917 U+0902	2.611373e-04
354	क्षु	U+0938 U+094d U+0915 U+0943	2.609832e-04
355	क्ष	U+0932 U+094d U+092f	2.589700e-04
356	चो	U+091a U+094c	2.564296e-04
357	ढो	U+0937 U+094d U+091f U+094d U+0930 U+0940	2.560307e-04
358 कं	U+0930 U+094d U+0915	2.557724e-04	
359 चं	U+0930 U+094d U+091a	2.553882e-04	
360 ०	U+0972	2.551663e-04	
361 यं	U+0917 U+094d U+092f	2.547179e-04	
362 बों	U+0935 U+093e U+0902	2.541402e-04	
363 बो	U+0925 U+094b	2.520394e-04	
364 दों	U+091f U+093e U+0902	2.473285e-04	
365 खों	U+0938 U+094d U+0924 U+094d U+0930 U+0940	2.437484e-04	
366 फि	U+0939 U+093f U+0902	2.426824e-04	
367 फि	U+0925 U+093f	2.397451e-04	
368 पणं	U+0923 U+094d U+092f U+093e U+0902	2.396047e-04	
369 फि	U+0937 U+093f	2.392504e-04	
370 जों	U+091c U+093e U+0902	2.379549e-04	
371 जिं	U+0935 U+094d U+0939 U+093f	2.369047e-04	
372 भे	U+0937 U+0947	2.36632e-04	
373 क्ष्या	U+0915 U+094d U+092f U+093e	2.361620e-04	
374 मं	U+092e U+0945	2.352250e-04	
375 त्वा	U+0924 U+094d U+0935 U+093e	2.351950e-04	
376 वां	U+0924 U+094d U+0930 U+093e U+0902	2.338291e-04	
377 गी	U+0917 U+094d U+0930 U+0940	2.332148e-04	
378 जच	U+091a U+094d U+091a	2.329602e-04	
379 ज्म	U+0931 U+094d U+092f U+093e U+0902	2.315615e-04	
380 ख्ल	U+0932 U+094d U+0932 U+0947	2.311707e-04	
381 खिं	U+092c U+094d U+0930 U+093f	2.302448e-04	
382 नाण	U+0928 U+094d U+0939 U+0940	2.298708e-04	
383 प्रा	U+0917 U+094d U+0930 U+093e	2.293336e-04	
384 अं	U+0905 U+0901	2.286675e-04	
385 ब्र	U+0930 U+094d U+0935 U+093e U+0902	2.265347e-04	
386 ह्र	U+0939 U+094d U+092f U+093e U+0902	2.226971e-04	
387 वा	U+0930 U+094d U+0925 U+093e	2.222954e-04	
388 पु	U+0923 U+0941	2.206283e-04	
389 क्ष	U+0922 U+093e	2.201793e-04	
390 जी	U+0936 U+0948	2.186492e-04	
391 क्ल	U+0915 U+094d U+0924 U+093f	2.184093e-04	
392 पं	U+0910	2.143018e-04	
393	न्व	U+0924 U+094d U+0938	2.139978e-04
394	न्वी	U+0938 U+094d U+0935 U+0940	2.139558e-04
395	न्भ	U+0930 U+094d U+092d	2.124561e-04
396	नं	U+0937 U+093e U+0902	2.120543e-04
397	न्खा	U+0938 U+094d U+0924 U+094d U+0930 U+093e	2.110849e-04
398	नै	U+0928 U+0948	2.107411e-04
399	नौं	U+0930 U+094d U+091c U+093e	2.105189e-04
400	नं	U+091c U+0902	2.101618e-04
401	सि	U+0938 U+093f U+0902	2.100975e-04
402	स्ना	U+0928 U+094d U+0939 U+093e	2.067588e-04
403	स्व्ध	U+092c U+094d U+0927	2.029806e-04
404	स्वि	U+092c U+093f U+0902	2.002168e-04
405	स्ट	U+0926 U+094d U+0926	1.989715e-04
406	स्न्वै	U+0938 U+094d U+0924 U+0940	1.921736e-04
407	स्नां	U+0926 U+094d U+0927 U+093e U+0902	1.897260e-04
408	स्नो	U+0927 U+094b	1.892809e-04