Effect of Vaginal Trichomoniasis on Women who Suffer from Delayed Pregnancy

Khadeeja Abees Hmood AL-Khalidy¹, Hiba Riyadh Al-abodi²

INTRODUCTION

Trichomonas vaginalis is a protozoan, has a simple life cycle, characterized by the presence of one phase only is trophozoite, which infected the genital path of the human male and female without need an intermediate host. Sexual contact is the common method of transmission between people (Yazaz et al., 2002), vaginal genitalia are characterized by a series of gaps and folds, it is an environment suitable for many pathogens, T. vaginitis is the leading cause of Trichomoniasis. Symptoms of the disease in females were yellowish, whitish or greenish secretions and sometimes smelly, containing on trichomonas, bacteria, cells epithelial, as well as itching, burning, dyspareunia, dysuria and ache in abdomen (Secor et al., 2014; Mairiga et al., 2011), vulva also there redness, the walls of the vagina may be congested and hemorrhagic appear in the vaginal and cervical mucosa of the uterus (Hyun et al., 2010).

Gonadotropin Hormone, which contains two hormones (Luteinizing Hormone LH and Follicle Stimulating Hormone FSH), secretion of these hormones is under the control of hormones under the hypothalamus and by mechanization of reverse feeding, which include the hormones of the basic gonads, LH is responsible for the production of corpus Lutium and it controls the reproductive system of both men and women, its plays a large role in women in the process of menstruation and ovulation, and stimulates the ovaries to produce estradiol's responsible, LH is responsible of increasing blood flow in the ovaries, leading to ovulation, sometimes called the ovulation hormone (Thackeray et al., 2010), Follicle stimulating hormone (FSH) is very necessary in the initiation of the stage of ovulation and stimulates the ovaries to produce ova and reach the appropriate size in the female, it is a hormone is responsible for the increase proteins activity of granular cells represented by progesterone and estrogen secretion which contribute to the growth and secretion of the endometrial membrane of the uterus endometrial and also it is necessary for the contractions that move sperm to the fallopian tube (Schubert et al., 2003).

This study is aimed to investigate the incidence of Trichomoniasis in women with delayed pregnancy (despite a previous pregnancy) whom a reviews to the women and children hospital in AL-Diwaniyah city/Al-Qadisiyah governorate/ middle of Iraq, also determination the level of the sex hormones associated with pregnancy.

MATERIALS AND METHODS

Sample collection

The current study included the following methods:

1. Vaginal fluid 200 sample were collected using vaginal fold swabs by a specialist doctor at period (September 2017 to October 2018) from the infected women and they suffer from vaginal secretions, itching in the vaginal area, redness and delayed pregnancy despite previous pregnancy, these women were aged between 15 to 40 years, to investigate Trichomonas
vaginalis, one a drop of normal saline solution was put on a dry and sterile slide, the cotton piece containing the sample was put on slide and mix well together with the normal salt solution, after that its examined microscopically under a 400X force to ensure and detect of T. vaginalis (Sowmya and Mohan, 2007).

2- Determination the level of the sex hormones associated with pregnancy:

(5) ml of venous blood was collected from each women, the sample was placed in a sterile dry tube. It was kept for 15 min for clotting, the serum was then separated by using a centrifuge and immediately tested for some important female sex hormones that control pregnancy in women, LH and follicle stimulating hormone (FSH) by using serological method ELISA Assay.

A- Determination the level of Luteinizing Hormone (LH) in a blood serum: (LH) hormone level concentration was estimated using the special solutions kit of Calibrators: LHLH, (LH) enzyme reagent and (LH) Streptavidin coated, Center Wash Solution, Substrate A (tetra methyl pentazin), Substrate B (hydrogen Peroxide (H2O2)), and Stop solution (hydrochloric acid HC11), according to manufacturer’s instructions and according ELISA method in study of (Al-Samarral, 2013).

B- Determination the level of follicle stimulating hormone (FSH) in a blood serum: FSH was estimated by using the special solutions kit: FSHFSH solutions, Substrate A (tetra methyl pentazin), Calibrators, Streptavidin Coated, H2O2 (substrate B), Stop solution (hydrochloric acid HC11) according to ELISA method in the study (Al-Samarral, 2013).

3- R-time PCR method was based from described protocol in study of (Caliendo et al., 2005) by PCR primers F-5’-CATTGACCAACACGGCACAAAAAG-3’with R-5’-CGAAGTCTCTGA ATGCGA-3’(200) samples were amplified in this molecular method with 2 negative and a positive control, the master mix of R-time PCR was prepared as following reagents: (10μl) of the SYBR green mix, (0.6μl) of forward, reverse primer of (10μl), (3.8μl) of deionized water in addition (5μl) of DNA template (Nangambibi et al., 2013).

4- Statistically: The results were statistically tested according to (5.04) software (2010) Inc. (USA) at probability level (P <0.05).

RESULTS AND DISCUSSION

Trichomoniasis is disease spread in worldwide, transmitted by sexual, infection with T. vaginalis includes a range of symptoms that may not be clearly visible to the affected person, including premature birth, low birth weight in newborns, cancer of cervical, infertility, and increase the risk of other serious pathogens such as (HIV) human immunodeficiency virus (Wiwanitkit, 2008; Hillier, 2013), the current study on the spread of the Trichomoniasis in women who suffer from delayed pregnancy, despite the presence of a previous pregnancy in Al-Qadisiyah province, recorded infection rate of T. vaginalis was(25.5%) 51/200 samples using wet swap method as in a figure (1), this results is more than the reported prevalence of infection among women in (Al-Obaidi, 2010). When recorded (13.3%) positive infection in Tikrit, also (Khalil et al.,2012). Trichomoniasis was detected in 18/250 (7.2%) in women who revisons the tuck care of family unit in Al-Liqa hospital in Baghdad, and study of (Al-Tikrity and Al-Badry,2014), about Trichomoniasis distributed among a women who go to the health centers in Samarra governorate and recorded positive infection rate (14.76%), and the current incidence rate in this study is higher than that recorded in a study (Al-Kazrakee, 2013) in Thi-Qar governorate in Iraq, which recorded a ratio of parasitic infection amounted to 5.23% While studying epidemiology of T. vaginalis in the governorate, as well as study of (Oyeyemi et al.,2015), when recorded rate of T. vaginalis in Nigerian pregnant women (18.7%), also a study (Nangambibi et al., 2013) which recorded (16.891%) in her study in Baghdad governorate, but the current results was lower than infection rate recorded by study of (Jarallah, 2013) for women who live in marsh villages of Al-Basrah governor south of Iraq as researcher noticed that the total prevalence of Trichomoniasis infection was (57.85%) and (53%) for Al-Mashab and Al-Nawsha villages, and study of (Al-Hussuny,2015), through examination 120 vaginal samples for Al-batool educational hospital in Baquba city/Diya/ governorate and showed to (41.6%) positive rate infection with Trichomoniasis, as for infection with T. vaginalis in some Arab countries such as (Mahmoud et al.,2015) when studies rate of T. vaginalis parasite infection between Egyptian married women by two methods and recorded infection rate (33.3%), the differences in the current results compared with other studies may be due to variation in steps diagnosis methods or delay diagnosis in some cases and environmental condition in laboratory, and may become patients use Flagyl treatment before reviewing a doctor and causes an error in diagnosis (Al-Kazrakee, 2013; Al-Tikrity and Al-Badry,2014). This diagnostic method is a quick test and is used in many of medical clinics despite the less of accuracy and sensitivity when compared with the other methods because a parasite fast loses its characteristic locomotion if exposure for any delay before examination lead to change the environment and differences in temperature and humidity leads to the loss of the parasite movement and leading to diagnostic error because its take form closest to the pus cells (Caliendo et al.,2005), so that samples should be tested within (1 hour) of collection and mention that parasite locomotion was 100% at 30 minutes of taking the sample and 99% after 60m of collected the samples and decreased by (3-15%) every subsequent hour (Al-Kazrakee, 2013; Oyeyemi et al.,2015). Therefore, the current study is based on the use of molecular test in the identified of the parasite under study to reach more accurate.
2- The results of R-time PCR method shows that the percentage of infection with T. vaginalis is 29.5% (59/200) as shown a figure (2). molecular methods are newer and more accurate in diagnosing microorganisms depending on the very small amount of DNA, this ratio (29.5%) is large, a clear indication of the relationship between the prevalence of parasitic infection in women who had a normal pregnancy previously but they now suffering from delayed pregnancy, and its consistent with what researchers (Hillier, 2013; El-Shazly, 2001) reported in their study that the parasite has the potential to cause infertility and cervical cancer in some cases, as well as the T. vaginalis was found to be able to pass through Fallopian tubes and transmit many pathogens that cause inflammation and infertility. It is worth mentioning that the parasite analyzes the red blood cells to obtain the bioparticles due to having a virulence factor (H aerolysin) so the parasite plays a role in the destruction of the vaginal cells (Lehker et al., 1990) as well as that the parasite own the cell detaching factor, which affects the adhesion of the parasite to the cells of the vagina and leads to separate the cells and aggregation in the middle leading to the dissection of the lining of the vagina (Garber et al., 1987), the ratio 29.5% (59/200 which record in our study more than 20/1478 (1.3%) that recorded in a study (Leli et al., 2016) on childbearing women using the R-time PCR, and more than results of a study (Shahnazi, 2017), whom recorded positive rate infection (11.1%) of patients were infected with Trichomoniasis by used PCR technique, also more than results of a study (RYU and MIN, 2006) between women in the republic of Korea when they using (PCR) technique for diagnostic depending on primers based on the repetitive sequence cloned from T. vaginalis (TV-E650), and a study of (Brotman et al., 2012), which detected of T. vaginalis and recorded (2.8%) 11/394 by PCR based the 18S rRNA with β-tubulin genes, the differences of percentages that mention in the our study and with the other studies because of the difference in the size of samples collected and the uncontrolled conditions in Lab. that affect on the PCR (Al-Abodi, 2018).

3- Determination the level of the sex hormones associated with pregnancy

The results of the present work showed a decrease in the level of LH hormone between the group of infected women with...
parasite and the healthy control group at a probability level
(p ≤0.05), where the concentration of this hormone in the
infected women was (17.313± 11.221) MUI/ml compared
with the control group (21.623± 17.156) MUI/ml, a table (1)
shows the values of hormone (LH)

Table 1: The concentration of stimulating hormone (LH) MUI/ml for infected women and a control group

Group (non-infected)	Ex. No.	LH (MUI/ml) Average ± standard error
Control	20	21.623 ± 17.156
Patients	59	17.313 ± 11.221

* Significant (P ≤ 0.05).

The data of the present work noticed a decrease in the
concentration of LH hormone between the infected women
with parasite and the healthy control group at (p ≤0.05),
where the level of this hormone in the infected women was
(17.313± 11.221) MUI/ml compared with the non-infected
women (21.623± 17.156) MUI/ml, a table (1) shows the values of hormone (LH)

Table 2: The concentration of FSH and (FSH) for infected women compared with a control group

Groups	Ex. No.	FSH (MUI/ml) Average ± standard error
Control (non-infected)	20	10.388 ± 9.835
Patients	59	8.011 ± 7.001*

* Significant (P ≤0.05).

The data of the present study showed a significant reduction
for the level of LH, FSH in the sera of the group of patients
compared with the non-infected group, the concentration of
these hormones in patients was (17.313± 11.221) MUI / ml
and (8.011± 7.001) MUI / ml respectively, where its
concentration (21.623± 17.156) MUI /ml and (10.388
±9.835) in the control groups, these results disagree with [8]
when targeted in his study the T. vaginalis in men in Tikrit
governorate/ Iraq with a therapeutic attempt it using
medicinal plants, and pointed to there are a slight decrease in
the level of LH and FSH in men with Trichomoniasis, has
indicated that the infection with T. vaginalis is not a major
reason to prevent the sperm from fertilizing the ovum and
does not directly affect the vitality of sperms because its lack
of acute impact on the most important sex hormones control
of the vitality of reproductive sex cells, which are LH and
FSH, and the researcher has supported the results of the study
(Khalaf et al.,2010) which indicated that (1.9%) only of men
with Trichomoniasis suffer at the same time of infertility, as
well as in the study (Ozdemir et al.,2011) recorded a rate of
infection slightly higher than the previous study (2.5%), and
both studies indicated that the incidence of Trichomoniasis
is a rare cause of infertility in men except for chronic and
acute cases because they will affect in the long term on the
regulation of the glands attached to the male reproductive
system and the maintenance of the function of the
reproductive canal and regulate the process of production of
sperm (Andrews et al.,2009). Low levels of LH and FSH refer
to uterine and ovarian disorders (Thackeray et al.,2010;
Schubert et al.,2003), low values of the hormone level in
the patients under study indicate that the T. vaginalis parasite
can cause disorders beyond the vagina and reach of the
female genital tract thus affect the uterus and ovary and
hormonal imbalance during the period of infection is the
reduction of the level of the hormone LH leads to the
disruption of the process of ovulation, and low level of
hormone FSH of the body and thus adversely affect the
growth of ovum and maturity, leading to prevent pregnancy
because of unavailability ovum can be zygote specifications
by sperms.

CONCLUSION

Summarize the results that the prevalence of Trichomoniasis
in women is one of the important reasons to prevent
pregnancy, even if there is a normal pregnancy in advance, as
the infection T. vaginalis affect the location of the settlement
of the parasite (vagina), which is the portal of sperms to the
female reproductive system and reach the egg and beyond the
impact of the parasite to the rest of the parts of the
reproductive system of female is the cervix, uterus and
ovaries resulting in a hormonal imbalance represented by the
low level of feeder hormones (LH and FSH) in the blood of
patients infected with parasite.

ACKNOWLEDGMENT

We thank the specialist doctor at the women’s and children’s
hospital in Al-Qadisiyah governorate for his help in
obtaining samples from women with Trichomoniasis.

REFERENCES

1. Yazar, S.; Dagel, I.; Aksoy, U.; Ustun ,S.; Daldal, N. (2002). Frequency Trichomonas vaginalis among
women having vaginal discharge, Izmir, Turkey, Inonu University Tip Fakultesi Dergisi. 9(3):159-161.
2. Secor, W. E.; M etes, E.; Starr, M. C.; Wor kowski, K. A. (2014). Neglected parasitic infections in the United
States: trichomoniasis. Am J Trop. Med Hyg. 90:800-4.
3. Mailiga, A., Balla, M. and Ahmade, M. (2011). Prevalence of Trichomonas vaginalis infections among antenatal clients in Maiduguri Nigeria. J. Int. Biol. Med. Res. 2:998 - 1002.

4. Hyun, S., Youn, S.L.,Sun, M. & Jae. S.R(2010). Delayed human neutrophil apoptosis by Trichomonas Vaginalis Lysate Korean, J. paras. 48(1):1-7.

5. Thackray, V.G., P.L., Mellon, and D. Coss. (2010). Hormones in synergy: regulation of the pituitary gonadotropin genes. Mol Cell Endocrinol 314(2):192-203.

6. Schubert, R.L.; Narayan, P. & Puett, D 2003 Specificity of cognate ligand--receptor interaction: fusion proteins of hCG and the heptahedral receptors for human luteinizing hormone, thyroid-stimulating hormone, and follicle-stimulating hormone. Endocrinology 144 129-137.

7. Sowmya, K. and Mohan, T. D. (2007). Methods of specimen collection for the diagnosis of STIs. Indian. J. Dermatol. Venereol. Leprol., 73: 129-132.

8. Al-Samarral, A. S. M. (2013). An epidemiological study of the Trichomonas vaginalis in men with a therapeutic attempt with medicinal plants. Ph.D., Faculty of Education, University of Tikrit.

9. Caliendo, A.; Jordan, J.A.; Green, A.M.; Ingersoll J.; Diclemente, R.J.; W Ingood, G.M. (2005). Real-time PCR improves detection of Trichomonas vaginalis infection compared with culture using self-collected vaginal swabs. Infection Diseases Obstetrics Gynaecol. 13:145-150.

10. Nangammbi, T. C.; Mukhani, S. T. and Samie, A. (2013). Real-time polymerase chain reaction (PCR) detection of Trichomonas vaginalis from urine samples of human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS) patients in Limpopo Province, South Africa. African journal of microbiology research, Vol. 7(49), pp:5596-5605.

11. Wiwanitkit,V. (2008). Counteraction during movement of spermatozoa by Trichomonas vaginalis observed by video image analysis: a possible cause of female infertility. Fertil Steril, 90(3):528-30.

12. Hillier, S. L. (2013). Prevalent, treatable and significant: barriers to the control of Trichomonas vaginalis in women. Sex Transm Infect, 89(6):415.

13. Al-Obaidi, I. G. Y. A.(2010). A epidemiological and immunological study on women with Trichomonas vaginalis in Tikrit and Beiji. MA in the Faculty of Education, Tikrit University.

14. Khalil, M. I.; Al-Kurashi, A. H.; Al-Naimi, U. A. M. and Al-Naimi, S. A. (2012). Trichomoniasis Vaginalis in Women Attending Family Planning Unit in AL-Liq'a Hospital. Iraqi Journal of Science. 53(2):746-753.

15. Al-Tikrity, I. A. A. and Al-Bady, M. S. M. (2014). The Trichomoniasis spread between married women revisions to the health center in Samarra. Kerbala Journal of Pharmaceutical Sciences, 7(271-276).

16. Al-Kazargee, Z. A. H. (2013). Epidemiologically and Diagnostic studies for Trichomonas vaginalis with some Immunological parameters in infected women in Thi – Qar Province. M.sc thesis, College of Education for Pure Science University of Thi-Qar.

17. Oyejemi, O. T.; Fadipe, O. and Oyejemi, I. T. (2015). Trichomonas vaginalis infection in Nigerian pregnant women and risk factors associated with sexually transmitted diseases. International Journal of STD & AIDS, 0(0):1-7. DOI: 10.1177/0955646215611292.

18. Jarallah, H. M. (2013). Trichomonas vaginalis infections among women in Basrah marshes villages south Iraq. The Egyptian Society of Experimental Biology, 9(1): 71 – 74.

19. Entsar M. Al-Hussunya, E. M. (2015). An epidemiological study of Trichomonas vaginalis in among women living in Baquba City, Diyala Province, Iraq. Diyala journal for pure sciences, 11(3): 13-25.

20. Mahmoud, A.; Sherif, N. A.; Abdelia, R.; Amira R El-Genedy; A. R.; El Kateb, A. Y. and Askalan, A. N.H. (2015). Prevalence of Trichomonas vaginalis infection among Egyptian women using culture and Latex agglutination: cross-sectional study. BMC Women’s Health, 15(7). DOI 10.1186/s12905-015-0169-2.

21. Hillier,S.L. (2013). Sex Transm. Infect, 89(6):415

22. El- Shazly, A.; El-Naggar, H.; Soliman, M.; El-Negri, M.; El-Nemr. H., Handouse, A. and Morsy, T. 2001. A study on Trichomoniasis vaginalis and female infertility. J. Egypt. Soc. Parasitol. 31:545-53.

23. Lehker, M.; Chang, T.; Dailey, D. and Alder, J. (1990). Specific erythrocyte binding is an additional nutrient acquisition system for Trichomonas vaginalis. J. Eperimen. Med 171: 2165-2170.

24. Garber, G., Shaw, W., Bowie, W. (1987). Cell culture compared with broth for detection of Trichomonas vaginalis. J. Clin. Microbiol. 25: 1275-1279.

25. Leli, C.; Gastronari, R.; Levorato, L.; Luciano, E.; Pistoni, E.; Perito, S.; Bossa, S. and Mencacci, A. (2016). Molecular sensitivity threshold of wet mount and an immunochromatographic assay evaluated by quantitative real-time PCR for diagnosis of Trichomonas vaginalis infection in a low-risk population of childbearing women. Le Infezioni in Medica, NO. 2, 112-116.

26. Shahnazi, E.; Mhammadzadeh, H.; Daneshyar, C.; Chavshin, A.; and Khademvatan, S. (2017). Frequency and molecular diagnosis of Trichomoniasis in symptomatic women referred to laboratories in uremia north west Iran. Journal A cute Diseases, 6(4): 175-180. doi: 10.12980/jad.6.20170405.

27. RYU, J.S. and MIN, D.Y. (2006). Trichomonas vaginalis and Trichomoniasis in the Republic of Korea. Korean Journal of Parasitology, 44(2): 101-116.

28. Brotman, R. M.; M.PH., Bradford, L.; M elissa Conrad, M.; Gajer, P.; Ault, K.; Peralta, L.; Forney, L. J.; Carlton, J. M.; Abd, Z. and Ravel, J. (2012). Association between Trichomonas vaginalis and vaginal bacterial community composition among reproductive - age women. Sex Transm Dis ; 39 (10) : 807 – 812. doi:10.1097/OLQ.0b013e3182631c79.

29. Al-Abodi, H. R. J. (2018). Suspicion in the form of infection is the basis for selecting the appropriate
method for examining the toxoplasmosis disease of bends that have no symptoms from patients. Int. J. Adv. Res. 6(9), 655-662.

30. Khalaf, A.K.; Al-Asadi, SA; Al-Yaqub, AJ.; Al-Mayah, SH. (2010). Use PCR technique to detect Trichomonas vaginalis among men in Basrah province. Thi-Qar Med J (TQM J); 4:29-36.

31. Ozdemir, A.E.; Kelestemur, N. & Kaplan, M. (2011). Trichomonas vaginalis as a rare cause of male factor infertility at a hospital in East. Andrologia. 43, 283-285.

32. Andrews, H.K.; Giagtzoglou, N.; Yamamoto, S.; Schulze, K.L.; Bellen, H.J. (2009). Sequoia regulates cell fate decisions in the external sensory organs of adult Drosophila. EMBO Rep., 10(6): 636-641.

Cite this article: Khadeeja Abees Hmood Al – Khaldy. 2020. Effect of Vaginal Trichomoniasis on Women who Suffer from Delayed Pregnancy. European Journal of Molecular & Clinical Medicine, 7(1), pp. 45 – 50, DOI: https://doi.org/10.5334/ejmc.278