Explicit Calculations of Tensor Product Coefficients for E_7

Gungormez M* and Karadayi HR

Department of Physics, Faculty of Sciences and Letters, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey

Abstract

We propose a new method to calculate coupling coefficients of E_7 tensor products. Our method is based on explicit use of E_7 characters in the definition of a tensor product.

When applying Weyl character formula for E_7, Lie algebra, one needs to make sums over 2903040 elements of E_7 Weyl group. To implement such enormous sums, we show we have a way which makes their calculations possible. This will be accomplished by decomposing an E_7 character into 72 participating A_7 characters.

Keywords: Coupling coefficients; Lie algebra; Irreducible representations; Subdominants; Tensor coupling coefficients

Introduction

Let $G = E_7$, Λ, Λ' be two dominant weights of G, where $R(\Lambda)$ and $R(\Lambda')$ are corresponding irreducible representations. For general terms, we follow the book of Humphreys [1] as ever.

Tensor product of these two irreducible representations is defined by,

$$R(\Lambda) \otimes R(\Lambda') = R(\Lambda + \Lambda') + \sum_{\lambda \in \Lambda + \Lambda'} t(\lambda < \Lambda + \Lambda') \ (\lambda) \ (1.1)$$

where $S(\lambda + \lambda')$ is the set of $\Lambda + \Lambda'$ subdominants and $t(\lambda < \Lambda + \Lambda')$ s are tensor coupling coefficients. Though Steinberg formula is the best known way, a natural way to calculate tensor coupling coefficients is also to solve the equation

$$Ch(\Lambda) \otimes Ch(\Lambda') = Ch(\Lambda + \Lambda') + \sum_{\lambda \in \Lambda + \Lambda'} t(\lambda < \Lambda + \Lambda') \ (\lambda) \ (1.2)$$

for tensor coupling coefficients. $Ch(\lambda)$ here is the character of an irreducible representation $R(\lambda)$ which corresponds to a dominant weight λ and it is defined by the famous Weyl Character formula:

$$Ch(\lambda') = \frac{A(\lambda')}{A(\rho)} \ (1.3)$$

where for a weight μ in general

$$A(\mu) = \sum_{\sigma \in G/\sigma} \epsilon(\sigma) e^{n(\mu)} \ (1.4)$$

$W(G)$ is the Weyl Group of G, and each and every element σ is the so-called Weyl reflection while $\epsilon(\sigma)$ denotes its sign and $e^{n(\mu)}$’s here are known as formal exponentials. Throughout this work, we assume $\lambda' \otimes \lambda''$ denotes a strictly dominant weight defined for a dominant λ' by

$$\lambda'{}^+ = \rho_{\lambda'} + \lambda' \ (1.5)$$

where $\rho_{\lambda'}$ is the Weyl vector of $G_{\lambda'}$.

The crucial fact here is that

$$||W(E_7)|| = 2903040 \ (1.6)$$

where $|S|$ denotes order of set S. It is easy to see then to implement the sum in (1.4) would not be realizable explicitly. We, instead, propose 72 specifically chosen Weyl reflections which give us A_7 dominant weights participating within the same E_7 Weyl orbit $W(\Lambda')$ for any E_7 dominant weight Λ'. As it is shown in the next section, this makes the evaluation of (1.4) realizable for E_7 but in terms of 72 A_7 characters and hence easily implementable.

A. Decomposition of E_7 Lie Algebra

For $i = 1, 2, \ldots, 7$, let λ_i’s and α_i’s be respectively the fundamental dominant weights and simple roots of A_7 Lie algebra with the following Dynkin diagram (Figure 1).

![Figure 1: Dynkin diagram 1.](image1)

where $\rho_{\lambda_i} = \lambda_i + \ldots + \lambda_i$ is A_7 Weyl vector and Λ is fundamental dominant weight of E_7 Lie algebra in according with the following Dynkin diagram, (Figure 2).

![Figure 2: Dynkin diagram 2.](image2)

where $\rho_{\lambda_i} = \lambda_i + \ldots + \lambda_i$ is A_7 Weyl vector. We suggest following relations allows us to embed A_7 subalgebra into E_7 algebra:

*Corresponding author: Gungormez M, Department of Physics, Faculty of Sciences and Letters, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey, Tel: +90 212 2853220; Fax: +90 212 2856386; E-mail: gungorm@itu.edu.tr

Received October 28, 2016; Accepted February 17, 2017; Published February 27, 2017

Citation: Gungormez M, Karadayi HR (2017) Explicit Calculations of Tensor Product Coefficients for E_7, J Generalized Lie Theory Appl 11: 254. doi:10.4172/1736-4337.1000254

Copyright: © 2017 Gungormez M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
\[\lambda_1 = \lambda_2 \]
\[\lambda_2 = \lambda_1 + \lambda_3 \]
\[\lambda_3 = 2 \lambda_3 \]
\[\lambda_4 = 2 \lambda_3 + \lambda_4 \]
\[\lambda_5 = \lambda_5 + \lambda_5 \]
\[\lambda_6 = \lambda_4 \]
\[\lambda_7 = \lambda_2 + \lambda_5 \quad (II.1) \]

This essentially means
\[\frac{||W(E_7)||}{||W(A_7)||} = 72 \quad (II.2) \]

which tells us that there are at most 72 \(A_7 \) dominant weights inside a Weyl orbit \(W(\Lambda^+) \). Note here that it is exactly 72 when \(\Lambda^+ \) is a strictly dominant weight. From the now on, \(W(\mu) \) will always denotes the Weyl orbit of a weight \(\mu \).

As the main point of view of this work, we present in appendix, 72 Weyl reflections to give 72 \(A_7 \) dominant weights participating in the same \(E_7 \) Weyl orbit \(W(\Lambda^+) \) when they are exerted on the dominant weight \(\Lambda^+ \). To this end, the Weyl reflections with respect to simple roots \(\alpha_i \) will be called simple reflections \(\sigma_i \). We extend multiple products of simple reflections trivially by
\[\sigma_{\frac{1}{2}}(\lambda) = \sigma_i(\sigma_{\frac{1}{2}}(\lambda)). \]

For \(s = 1, \ldots, 72 \), \(\Sigma(s) \)'s are 72 Weyl reflections mentioned above. As will also be seen by their definitions that,

1. \(e(\Sigma(s)) = +1 \quad s = 1, 2, \ldots, 36 \)
2. \(e(\Sigma(s)) = -1 \quad s = 37, 38, \ldots, 72 \)

Calculating Tensor Coupling Coefficients

Let us proceed in the instructive example
\[R(\Lambda_1) \otimes R(\Lambda_3) = R(\Lambda_1 + \Lambda_3) + \sum_{j=1}^{36} m(j)(\theta_j) (III.1) \]
of (I.1). One can see that there are 39 sub-dominant weights \(\theta_j \) of \(\Lambda_1 + \Lambda_3 \):
\[\theta_1 = \Lambda_1 + 2 \Lambda_3 \]
\[\theta_2 = \Lambda_2 + \Lambda_3 + \Lambda_4 \]
\[\theta_3 = \Lambda_1 + 2 \Lambda_2 \]
\[\theta_4 = 2 \Lambda_1 + \Lambda_3 \]
\[\theta_5 = \Lambda_1 + 2 \Lambda_2 \]
\[\theta_6 = \Lambda_1 + \Lambda_3 + \Lambda_4 \]
\[\theta_7 = \Lambda_1 + \Lambda_3 + 2 \Lambda_4 \]
\[\theta_8 = \Lambda_1 + \Lambda_4 + \Lambda_5 \]
\[\theta_9 = \Lambda_1 + \Lambda_5 + \Lambda_6 \]
\[\theta_{10} = \Lambda_2 + \Lambda_3 + \Lambda_5 \]
\[\theta_{11} = \Lambda_2 + \Lambda_3 + \Lambda_6 \]
\[\theta_{12} = \Lambda_2 + \Lambda_3 + \Lambda_7 \]

To this end, we should care about specialization of formal exponentials [2]. Let us consider the so-called Fundamental Weights \(\mu_i \) which are defined for \(i = 1, \ldots, 8 \) as in the following [3]:
\[a_i \equiv \mu_i - \mu_i, \quad (i = 1, \ldots, 7) \quad (III.2) \]
a\'s here are \(A_i \) simple roots mentioned above and the best way to calculate, and hence \(E_i \) characters is to use the specialization in terms of parameters \(u_i = e^{i \theta_i} \) which are subjects of the condition \(\mu_i + \mu_i + \cdots + \mu_i = 0 \) or
\[u_i u_j u_k \cdots u_i = 1. \]

To exemplify (I.3) for \(E_7 \), we would like to give detailed calculation of \(Ch(\Lambda_1 + \Lambda_3) \). By applying 72 specifically chosen Weyl reflections on strictly dominant weight \(\rho_{\varepsilon_7} + \Lambda_1 + \Lambda_4 \), one can see we have the following decompositions:
\[A(\rho_{\varepsilon_7} + \Lambda_1 + \Lambda_4) = \sum_{k=1}^{36} Ch(v_k) - \sum_{j=37}^{72} Ch(v_j) (III.3) \]

where
\(v_1 = 2 \lambda_1 + 4 \lambda_6 + 2 \lambda_9 + 12 \lambda_3 + 12 \lambda_6 + 2 \lambda_{12}
\)
\(v_2 = 3 \lambda_1 + 2 \lambda_6 + 4 \lambda_9 + 12 \lambda_3 + 12 \lambda_6 + 2 \lambda_{12}
\)
\(v_3 = 2 \lambda_1 + 2 \lambda_6 + 4 \lambda_9 + 12 \lambda_3 + 12 \lambda_6 + 2 \lambda_{12}
\)
\(v_4 = 4 \lambda_1 + 12 \lambda_3 + 2 \lambda_6 + 4 \lambda_9 + 12 \lambda_3 + 12 \lambda_6 + 2 \lambda_{12}
\)
\(v_5 = 2 \lambda_1 + 2 \lambda_6 + 4 \lambda_9 + 12 \lambda_3 + 12 \lambda_6 + 2 \lambda_{12}
\)
\(v_6 = 7 \lambda_1 + 2 \lambda_6 + 3 \lambda_9 + 12 \lambda_3 + 12 \lambda_6 + 2 \lambda_{12}
\)
\(v_7 = 7 \lambda_1 + 2 \lambda_6 + 3 \lambda_9 + 12 \lambda_3 + 12 \lambda_6 + 2 \lambda_{12}
\)
\(v_8 = 7 \lambda_1 + 2 \lambda_6 + 3 \lambda_9 + 12 \lambda_3 + 12 \lambda_6 + 2 \lambda_{12}
\)
\(v_9 = 7 \lambda_1 + 2 \lambda_6 + 3 \lambda_9 + 12 \lambda_3 + 12 \lambda_6 + 2 \lambda_{12}
\)

Note here that \(W(A_3)\) is the permutation group of 8 objects.

To display our result here, we use the following specialization of formal exponentials with only one free parameter \(x\):

\[u_1 = 1\]

\[u_2 = 2\]

\[u_3 = 3\]

\[u_4 = 4\]

\[u_5 = 5\]

\[u_6 = 6\]

\[u_7 = x\]

\[u_8 = 1/ (720 x)\] (III. 5)

In this specialization, one obtains the following one-parameter characters:

\[A(\rho_{u_n}) = -\frac{1}{2^2 \times 3 \times 5^2 \times 7^2} x \times \]

\[(-6 + x) \times (-5 + x) \times (-4 + x) \times (-3 + x) \times (-2 + x) \times \]

\[(-1 + x) \times (-1 + 720 x) \times (-1 + 1440 x) \times (-1 + 2160 x) \times \]

\[(-1 + 2880 x) \times (-1 + 3600 x) \times (-1 + 4320 x) \times (-1 + 720 x^2)\]
\(\Delta(r) = \frac{7}{2} n(n+1) + \frac{5}{2} n(n-1) + \frac{3}{2} n(n-2) + \frac{1}{2} n(n-3) \)
\((r = x, y, z) \)

\(\chi(\Lambda) = \frac{1}{2} \times \begin{cases} 2 \cdot \chi(x)^2 & \text{if } \Lambda = \chi(x)^2 \\ 2 \cdot \chi(y)^2 & \text{if } \Lambda = \chi(y)^2 \\ 2 \cdot \chi(z)^2 & \text{if } \Lambda = \chi(z)^2 \end{cases} \)

\(\chi(\theta) = \frac{1}{2^n \cdot 3^m \cdot 5^p} \chi(x) \)

\(\chi(\theta) = \frac{1}{2^n \cdot 3^m \cdot 5^p} \chi(x) \)

\(\chi(\theta) = \frac{1}{2^n \cdot 3^m \cdot 5^p} \chi(x) \)

\(\chi(\theta) = \frac{1}{2^n \cdot 3^m \cdot 5^p} \chi(x) \)
\[
ch(\theta_l) = \frac{7}{2^3 \times 3^2 \times 5^2 \times x} (\text{for } x = 70782069928080 + 2^3 \times 3 \times 7 \times 19 \times 101 \times 2437 \times 7883 \times 45307 \times x + 3^3 \times 839 \times 2591 \times 5665016976003 \times x^2 + 5^2 \times 127 \times 74352660418728544311 \times x^3 + 2^3 \times 5 \times 83 \times 263 \times 6791 \times 13901 \times 522761 \times 27245893 \times x^4 + 2^2 \times 1439 \times 6833 \times 57110377 \times 29440768222739 \times x^5 + 2^2 \times 3 \times 7 \times 2833 \times 5453185631 \times 1412153017963 \times x^6 + 2^2 \times 3 \times 5 \times 7 \times 37577587 \times 1652664511 \times 109347145543 \times x^7 + 2^2 \times 3 \times 5 \times 7 \times 2923 \times 5453185631 \times 1412153017963 \times x^8 + 2^2 \times 3 \times 5^4 \times 1439 \times 6833 \times 57110377 \times 29440768222739 \times x^9 + 2^4 \times 3^2 \times 5 \times 83 \times 263 \times 6791 \times 13901 \times 522761 \times 27245893 \times x^{10} + 2^4 \times 3^5 \times 5 \times 7 \times 127 \times 74352660418728544311 \times x^{11} + 2^3 \times 5^2 \times 839 \times 2591 \times 5665016976003 \times x^{12} + 2^3 \times 5^2 \times 5 \times 7 \times 19 \times 101 \times 2437 \times 7883 \times 45307 \times x^{13} + 2^3 \times 3^5 \times 5^2 \times 19 \times 101 \times 2437 \times 7883 \times x^{14})
\]

\[
ch(\theta_l) = \frac{1}{2^3 \times 3 \times 5^2 \times x} (\text{for } x = 5 \times 11 \times 1730263 \times 475374719 + 3 \times 5 \times 7 \times 111 \times 4933 \times 15316029186509 \times x + 5 \times 7 \times 13 \times 17283128778277827303 \times x^3 + 3 \times 7^2 \times 205820307755599239132761 \times x + 2^2 \times 3^3 \times 41 \times 707660359 \times 113581475950821 \times x + 2^3 \times 3^4 \times 41 \times 707660359 \times 113581475950821 \times x^2 + 2^3 \times 3^5 \times 41 \times 1252496251 \times 205416650707448 \times x + 2^3 \times 3^6 \times 41 \times 169031 \times 2819023 \times 22718868350084081 \times x + 2^3 \times 3^7 \times 41 \times 1252496251 \times 205416650707448 \times x^2 + 2^3 \times 3^8 \times 41 \times 707660359 \times 113581475950821 \times x^3 + 2^2 \times 3^2 \times 5^2 \times 7 \times 111 \times 4933 \times 15316029186509 \times x^2 + 2^3 \times 3^3 \times 5^2 \times 11 \times 1730263 \times 475374719 \times x^3)
\]

\[
ch(\theta_r) = \frac{1}{2^3 \times 3 \times 5^2 \times x} (\text{for } x = 2^3 \times 3 \times 5 \times 7 \times 6311 \times 700299 + 3 \times 7^2 \times 45307 \times 6311 \times 700299 \times x + 3 \times 5^2 \times 7 \times 17 \times 191 \times 30444055140860819 \times x^2 + 2^3 \times 13 \times 8540249266566531445399 \times x^3 + 2^2 \times 3^2 \times 5 \times 7 \times 137 \times 1619903 \times 40109150434499081 \times x^4 + 2^4 \times 3^3 \times 5 \times 7 \times 13 \times 17283128778277827303 \times x^5 + 2^4 \times 3^4 \times 5 \times 7 \times 11 \times 4933 \times 15316029186509 \times x^6 + 2^4 \times 3^5 \times 5 \times 7 \times 19 \times 101 \times 2437 \times 7883 \times 45307 \times x^7 + 2^4 \times 3^6 \times 5 \times 7 \times 19 \times 101 \times 2437 \times 7883 \times x^8)
\]
\[ch(\theta_s) = \frac{1}{2^s \times 3^s \times 5^s \times x^7} \]
\[ch(\theta_s) = \frac{7}{2^s \times 3^s \times 5^s \times x^7} \]
\[
\begin{align*}
\text{ch}(\theta_3) &= \frac{7}{2^n \cdot 3^n \cdot 5^n \cdot x^n} (2^s \cdot 5^s \cdot 11^s \cdot 163450973 + 7^{10} \cdot 11^{18} \cdot 163450973 + 5^{10} \cdot 7^{17} \cdot 2^{11} \cdot 8^{20} \cdot 6^{22} + 2^{12} \cdot 7^{14} \cdot 3^{20} \cdot 11^{23} + 2^{13} \cdot 5^{17} \cdot 3^{21} + 2^{14} \cdot 5^{17} \cdot 7^{21} + 2^{15} \cdot 5^{17} \cdot 11^{21} + 2^{16} \cdot 5^{17} \cdot 17^{21}) \\
\text{ch}(\theta_4) &= \frac{1}{2^n \cdot 3^n \cdot 5^n \cdot x^n} (2^s \cdot 3^s \cdot 5^s \cdot 7^s \cdot 11^s \cdot 14^s \cdot 5^s + 3^s \cdot 5^s \cdot 7^s \cdot 11^s \cdot 16^s \cdot 17^s + 5^s \cdot 7^s \cdot 13^s \cdot 17^s + 7^s \cdot 11^s \cdot 13^s \cdot 17^s + 11^s \cdot 13^s \cdot 17^s + 17^s \cdot 13^s \cdot 17^s + 13^s \cdot 17^s) \\
\end{align*}
\]
\(ch(\theta_2) = \frac{7}{2 \times 3 \times 5 \times x} \)

\[
3 \times 7 \times 41 \times 13449 + 5 \times 25841 \times 172357 \times x + \\
2^8 \times 3 \times 7 \times 17 \times 151 \times 229 \times 76637 \times x^2 + \\
2^3 \times 3^3 \times 7 \times 41 \times 8271569177 \times x^3 + \\
2^3 \times 3^3 \times 5 \times 7 \times 17 \times 151 \times 229 \times 76837 \times x^4 + \\
2^3 \times 3^3 \times 5^3 \times 25841 \times 172357 \times x^5 + \\
2^7 \times 3^3 \times 5^3 \times 7 \times 41 \times 13469 \times x^6.
\]

\(ch(\theta_3) = \frac{1}{2 \times 3 \times 5 \times x} \)

\[
3 \times 7 \times 37 \times 87365639293 + \\
3^2 \times 7 \times 17 \times 25158739 \times 163675601 \times x + \\
2^7 \times 3^7 \times 293207 \times 1532112833 \times x^2 + \\
2^3 \times 3^3 \times 5 \times 7 \times 19 \times 4966016564031243349 \times x^3 + \\
2^7 \times 3^7 \times 5 \times 7 \times 39411116 \times 1532112833 \times x^4 + \\
2^3 \times 3^3 \times 5 \times 7 \times 71 \times 15185739 \times 163675601 \times x^5 + \\
2^3 \times 3^3 \times 5 \times 7 \times 37 \times 87365639293 \times x^6.
\]

\(ch(\theta_4) = \frac{1}{2 \times 3 \times 5 \times x} \)

\[
2^8 \times 3 \times 3 \times 5 \times 7 \times 25841 \times 45307 \times x + \\
5 \times 7 \times 25841 \times 115259 \times 66653 \times x^2 + \\
3 \times 7 \times 55717 \times 2804293 \times 133115567 \times x^3 + \\
2 \times 3^3 \times 8 \times 86399 \times 95972373277265 \times x^4 + \\
2^3 \times 3^3 \times 5 \times 7 \times 5 \times 71 \times 19 \times 372825737 \times 955373927 \times x^5 + \\
2^3 \times 3^3 \times 5 \times 7 \times 71 \times 38241 \times 162705053 \times 3733221 \times x^6 + \\
2^3 \times 3 \times 5 \times 7 \times 39411116 \times 1532112833 \times x^7 + \\
2^3 \times 3 \times 5 \times 7 \times 42 \times 7 \times 13 \times 705053 \times 3733221 \times x^8 + \\
2^3 \times 3 \times 5 \times 7 \times 42 \times 7 \times 13 \times 705053 \times 3733221 \times x^9 + \\
2^3 \times 3 \times 5 \times 7 \times 25841 \times 45307 \times x^{10}.
\]

\(ch(\theta_5) = \frac{1}{2 \times 3 \times 5 \times x} \)

\[
2^8 \times 3 \times 3 \times 5 \times 7 \times 25841 \times 45307 \times x + \\
5 \times 7 \times 25841 \times 115259 \times 66653 \times x^2 + \\
3 \times 7 \times 55717 \times 2804293 \times 133115567 \times x^3 + \\
2 \times 3^3 \times 8 \times 86399 \times 95972373277265 \times x^4 + \\
2^3 \times 3 \times 5 \times 7 \times 5 \times 71 \times 19 \times 372825737 \times 955373927 \times x^5 + \\
2^3 \times 3 \times 5 \times 7 \times 71 \times 38241 \times 162705053 \times 3733221 \times x^6 + \\
2^3 \times 3 \times 5 \times 7 \times 42 \times 7 \times 13 \times 705053 \times 3733221 \times x^7 + \\
2^3 \times 3 \times 5 \times 7 \times 42 \times 7 \times 13 \times 705053 \times 3733221 \times x^8 + \\
2^3 \times 3 \times 5 \times 7 \times 25841 \times 45307 \times x^{10}.
\]

\(ch(\theta_6) = \frac{7}{2 \times 3 \times 5 \times x} \)

\[
2^3 \times 3 \times 5 \times 7 \times 25841 \times 45307 \times x + \\
2^3 \times 3 \times 5 \times 7 \times 17 \times 45307 \times x + \\
3 \times 7 \times 17 \times 115259 \times 66653 \times x^2 + \\
5 \times 2512868354279147 \times x^3 + \\
2^3 \times 3 \times 5 \times 7 \times 1061 \times 218249 \times 31482709 \times x^4 + \\
2^3 \times 3 \times 5 \times 7 \times 2069 \times 634759 \times 1884431 \times x^5 + \\
2^3 \times 3 \times 5 \times 7 \times 1061 \times 218249 \times 31482709 \times x^6 + \\
2^3 \times 3 \times 5 \times 7 \times 2512868354279147 \times x^7 + \\
2^3 \times 3 \times 5 \times 7 \times 17 \times 115259 \times 66653 \times x^8 + \\
2^3 \times 3 \times 5 \times 7 \times 17 \times 45307 \times x^9 + \\
2^3 \times 3 \times 5 \times 7 \times 17 \times x^{10}.
\]

\(ch(\theta_7) = \frac{1}{2 \times 3 \times 5 \times x} \)

\[
2^3 \times 5 \times 25841 \times 45307 \times x + \\
3 \times 7 \times 19 \times 83 \times 2459 \times 45307 \times x^2 + \\
2^3 \times 3 \times 7 \times 43 \times 53841866849 \times x^3 + \\
2^3 \times 3 \times 5 \times 7 \times 109 \times 401 \times 1543 \times 1789 \times x^4 + \\
2^3 \times 3 \times 5 \times 7 \times 43 \times 53841866849 \times x^5 + \\
2^3 \times 3 \times 5 \times 7 \times 19 \times 83 \times 2459 \times 45307 \times x^6 + \\
2^3 \times 3 \times 5 \times 7 \times 25841 \times 45307 \times x^7 + \\
2^3 \times 3 \times 5 \times 7 \times 25841 \times x^8.
\]
Now, one can see that the characters above fulfill the following equation:

$$\chi(\lambda) + \chi(\Lambda) = \chi(\mu_1 + \mu_2).$$

One should note however that, the 1-parameter specialization (III.5) above is not enough to find all the tensor coupling coefficients completely so we saw that at least 3-parameters specializations will be sufficient, which we used the following one.

$$u_1 = 1$$
$$u_2 = 2$$
$$u_3 = 3$$
$$u_4 = 4$$
$$u_5 = x$$
$$u_6 = y$$
$$u_7 = z$$
$$u_8 = 1/(24 \times y \times z)$$

References

1. Humphreys JE (1972) Introduction to Lie Algebras and Representation Theory, Springer-Verlag.
2. Kac V (1982) Infinite Dimensional Lie Algebras, Cambridge University Press.
3. Karadayi HR, Gungormez M (1999) Fundamental Weights, Permutation Weights and Weyl's Character Formula. J Phys A 32: 1701-1707.