An analytical approach to light scattering from small cubic and rectangular cuboidal nanoantennas - Supplementary data

Enrico Massa, Stefan A. Maier, Vincenzo Giannini

E-mail: enrico.massa08@imperial.ac.uk
Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, UK
0.1 Definitions

In the following it is shown how to calculate the scattering, extinction and absorption cross sections of a rectangular cuboid embedded into a medium using the Green’s function formalism, showing also expressions for the scattered field. Consider a cuboid of volume V placed with its centre at the origin with length equal to $L_a = 2a$, width equal to $L_b = 2b$ and height equal to $L_c = 2c$. The cuboid is composed of a material with a complex, wavelength dependent, dielectric constant ϵ and is surrounded by a background with a dielectric constant ϵ_B. The incident electromagnetic field is a plane wave $E(r) = E_0 e^{ik_B z}$, where, in all the following, it will be assumed the time varying dependence of the field is given by $e^{-i\omega t}$. The electric field E_0 is along the x direction and the wave-vector in the background is $k_B = \sqrt{\epsilon_B k_0} = \sqrt{\epsilon_B \omega / c}$.

0.2. Scattered field

The starting point is to consider the Green’s function formula in the far field, which can be written as:

$$G_{FF} = \frac{e^{ik_B R}}{4\pi R} \left[\frac{I - RR}{R^2} \right],$$

(1)
where $R = r - r'$ and $R = |r - r'|$. The scattered field in the far field is therefore:

$$E_{sca}^{FF} = \int_V \frac{1}{4\pi R} \frac{e^{ik_B R}}{R^2} k_0^2 \Delta \epsilon \mathbf{E}(r') \cdot \mathbf{r}' \, dr' = \int_V \frac{1}{4\pi R} \frac{e^{ik_B R}}{R^2} k_0^2 \Delta \epsilon \mathbf{E}(r').$$

(2)

The geometrical symmetry of the scatterer gives rise to the following relationships for the electric field:

$$E_x(x) = E_x(-x); \quad E_y(y) = E_y(-y); \quad E_z(z) = E_z(-z),$$

(3)
which are valid for each $z = \text{constant}$ plane. If we consider the case of a constant electric field E_{int} inside the scatterer, than the symmetry relationships give the following expressions for E_{int} in the volume of the scatterer:

$$\begin{cases} \text{For } x > 0, y > 0 \\
E_{int} = (E_{x,int}, E_{y,int}, E_{z,int}) \end{cases}; \quad \begin{cases} \text{For } x < 0, y > 0 \\
E_{int} = (E_{x,int}, -E_{y,int}, -E_{z,int}) \end{cases},$$

$$\begin{cases} \text{For } x > 0, y < 0 \\
E_{int} = (E_{x,int}, -E_{y,int}, E_{z,int}) \end{cases}; \quad \begin{cases} \text{For } x < 0, y < 0 \\
E_{int} = (E_{x,int}, E_{y,int}, -E_{z,int}) \end{cases}.$$
By doing the approximation in formula (2) of $1/R \approx 1/r$ and $R \approx r - r' \cos \gamma$, where γ is the angle between \mathbf{r} and \mathbf{r}', and by taking out from the integral the term $[1 - \frac{RR}{R^2}] \approx [1 - \frac{rr}{r^2}]$ since the higher order terms generate contributions that go to zero faster than $1/r^2$ which are negligible in the far field, one obtains:

$$E_{FF}^{sc} = \frac{e^{ikBr^2}k_0^2\Delta\epsilon}{4\pi r} \left(I - \frac{rr}{r^2} \right) \int_V \, dr' e^{-ikBr'\cos\gamma} \mathbf{E}_{int}.$$ \hspace{1cm} (5)

By writing Eq. 5 using the symmetry relationship given by Eq. 4 one obtains for the x component of the electric field:

$$E_{FF}^{sc} = \frac{e^{ikBr^2}k_0^2\Delta\epsilon}{4\pi r} \left\{ \int_{V,x',0,y',0} \, dr' e^{-ikBr'\cos\gamma} \left\{ \left[1 - \frac{x'^2}{r'^2} \right] E_{x,\text{int}} - \frac{xy}{r'^2} E_{y,\text{int}} - \frac{xz}{r'^2} E_{z,\text{int}} \right\} + \frac{xz}{r'^2} E_{z,\text{int}} \right\}.$$ \hspace{1cm} (6)

By doing the change of variable $x' \to -x'$ and $y' \to -y'$ in order to express all the integrals in terms of $\int_{V,x',0,y',0} = \int_{V,+}$, by putting together the common terms and by using also the identity $\cos \gamma = (xx' + yy' + zz')/(rr')$, one obtains:

$$E_{FF}^{sc} = \frac{e^{ikBr^2}k_0^2\Delta\epsilon}{4\pi r} \left\{ \left[1 - \frac{x'^2}{r'^2} \right] E_{x,\text{int}} \left(\int_{V,+} \, dr' e^{-ikB(xx' + yy' + zz')/r} + \int_{V,+} \, dr' e^{-ikB(-xx' + yy' + zz')/r} \right) + \int_{V,+} \, dr' e^{-ikB(-xx' + yy' + zz')/r} \right\} + \int_{V,+} \, dr' e^{-ikB(-xx' + yy' + zz')/r} \right\}$$ \hspace{1cm} (7)

Since we are considering small particles the term $e^{-ikBr'\cos\gamma}$ can be approximated further by using the definition of the exponential, which gives:

$$e^{-ikBr'\cos\gamma} = 1 - ikBr'\cos\gamma - \frac{1}{2}k^2Br'^2\cos^2\gamma + O((kBr')^3).$$ \hspace{1cm} (8)

We are left with the evaluation of integrals of the type $\int_V \, dr' r'^d \cos^l \gamma$, which can be evaluated using the definition of the scalar product as:

$$\int_V \, dr' r'^d \cos^l \gamma = \frac{1}{r^l} \int_V \, dr'(xx' + yy' + zz')^l.$$ \hspace{1cm} (9)
Therefore Eq. 7 can be expressed as:

\[
E^{FF}_{x,sea} = \frac{e^{ik_B r} k_B^2 \Delta \epsilon}{4 \pi r} \left\{ \left[1 - \frac{x^2}{r^2} \right] E_{x,\text{int}} \left(8abc - \frac{4k_B^2}{3r^2} \left[a^3 bc x^2 + ab^3 cy^2 + abc^3 z^2 \right] \right) + \frac{4k_B^2 a^2 bc \frac{x^2 y^2}{r^3} E_{y,\text{int}} + 4ik_B a^2 bc \frac{x^2 z}{r^3} E_{z,\text{int}} + O(k_B)}{r^3} \right\}.
\]
By using Eq. 5 and the symmetry relationship given by Eq. 4 one obtains for the y component of the electric field:

\[
E_{y, sca}^{FF} = \frac{e^{ik_BT_0^2} \Delta \epsilon}{4\pi r} \left\{ \int_{V, x' > 0, y' > 0} dV \frac{e^{-ik_BT_0^2 \cos \gamma} \left\{ -\frac{yx}{r^2} E_{x, int} + \left[1 - \frac{y^2}{r^2} \right] E_{y, int} \right\}}{4\pi r} - \frac{yz}{r^2} E_{z, int} \right\} + \\
\int_{V, x' > 0, y' < 0} dV \frac{e^{-ik_BT_0^2 \cos \gamma} \left\{ -\frac{yx}{r^2} E_{x, int} - \left[1 - \frac{y^2}{r^2} \right] E_{y, int} + \frac{yz}{r^2} E_{z, int} \right\}}{4\pi r} + \\
\int_{V, x' < 0, y' > 0} dV \frac{e^{-ik_BT_0^2 \cos \gamma} \left\{ -\frac{yx}{r^2} E_{x, int} + \left[1 - \frac{y^2}{r^2} \right] E_{y, int} + \frac{yz}{r^2} E_{z, int} \right\}}{4\pi r} \right\}.
\]

By doing the change of variable \(x' \to -x' \) and \(y' \to -y' \) in order to express all the integrals in terms of \(\int_{V, x' > 0, y' > 0} = \int_{V_+} \), by putting together the common terms and by using also the identity \(\cos \gamma = (xx' + yy' + zz')/(rr') \), one obtains:

\[
E_{y, sca}^{FF} = \frac{e^{ik_BT_0^2} \Delta \epsilon}{4\pi r} \left\{ \int_{V_+} dV \frac{e^{-ik_BT_0^2 (xx' + yy' + zz')/r} + \\
\int_{V_+} dV \frac{e^{-ik_BT_0^2 (xx' - yy' + zz')/r} + \\
\int_{V_+} dV \frac{e^{-ik_BT_0^2 (-xx' - yy' + zz')/r} + \\
\int_{V_+} dV \frac{e^{-ik_BT_0^2 (-xx' + yy' + zz')/r} - \\
\int_{V_+} dV \frac{e^{-ik_BT_0^2 (-xx' - yy' + zz')/r} - \\
\int_{V_+} dV \frac{e^{-ik_BT_0^2 (-xx' + yy' + zz')/r} - \\
\int_{V_+} dV \frac{e^{-ik_BT_0^2 (-xx' - yy' + zz')/r} - \\
\int_{V_+} dV \frac{e^{-ik_BT_0^2 (-xx' + yy' + zz')/r})} {4\pi r} + \\
\int_{V_+} dV \frac{e^{-ik_BT_0^2 (-xx' + yy' + zz')/r})} \right\} \right\}.
\]

The integrals in parenthesis have already been evaluated, therefore the scattered field in the y direction is:

\[
E_{y, sca}^{FF} = \frac{e^{ik_BT_0^2} \Delta \epsilon}{4\pi r} \left\{ \int_{V_+} dV \frac{e^{-ik_BT_0^2 (xx' + yy' + zz')/r} + \\
\int_{V_+} dV \frac{e^{-ik_BT_0^2 (xx' - yy' + zz')/r} + \\
\int_{V_+} dV \frac{e^{-ik_BT_0^2 (-xx' - yy' + zz')/r} + \\
\int_{V_+} dV \frac{e^{-ik_BT_0^2 (-xx' + yy' + zz')/r} - \\
\int_{V_+} dV \frac{e^{-ik_BT_0^2 (-xx' - yy' + zz')/r} - \\
\int_{V_+} dV \frac{e^{-ik_BT_0^2 (-xx' + yy' + zz')/r} - \\
\int_{V_+} dV \frac{e^{-ik_BT_0^2 (-xx' - yy' + zz')/r})} {4\pi r} + \\
\int_{V_+} dV \frac{e^{-ik_BT_0^2 (-xx' + yy' + zz')/r})} \right\} \right\}.
\]

Finally, by using Eq. 5 and the symmetry relationship given by Eq. 4 one obtains for the z component of the electric field:

\[
E_{z, sca}^{FF} = \frac{e^{ik_BT_0^2} \Delta \epsilon}{4\pi r} \left\{ \int_{V_+} dV \frac{e^{-ik_BT_0^2 (xx' + yy' + zz')/r} + \\
\int_{V_+} dV \frac{e^{-ik_BT_0^2 (xx' - yy' + zz')/r} + \\
\int_{V_+} dV \frac{e^{-ik_BT_0^2 (-xx' - yy' + zz')/r} + \\
\int_{V_+} dV \frac{e^{-ik_BT_0^2 (-xx' + yy' + zz')/r} - \\
\int_{V_+} dV \frac{e^{-ik_BT_0^2 (-xx' - yy' + zz')/r} - \\
\int_{V_+} dV \frac{e^{-ik_BT_0^2 (-xx' + yy' + zz')/r})} {4\pi r} + \\
\int_{V_+} dV \frac{e^{-ik_BT_0^2 (-xx' + yy' + zz')/r})} \right\} \right\}.
\]
\[E_{z,\text{sca}}^{\text{FF}} = \frac{e^{ik_B r_0^2} \Delta \epsilon}{4\pi r} \left\{ \int_{V,x'>0,y'>0} dr' e^{-ik_B r' \cos \gamma} \left\{ \frac{-zx}{r^2} E_{x,\text{int}} + \frac{-zy}{r^2} E_{y,\text{int}} + \left[1 - \frac{z^2}{r^2} \right] E_{z,\text{int}} \right\} + \left[1 - \frac{z^2}{r^2} \right] E_{z,\text{int}} \right\} + \int_{V,x'>0,y'<0} dr' e^{-ik_B r' \cos \gamma} \left\{ \frac{-zx}{r^2} E_{x,\text{int}} + \frac{zy}{r^2} E_{y,\text{int}} + \left[1 - \frac{z^2}{r^2} \right] E_{z,\text{int}} \right\} + \int_{V,x'<0,y'>0} dr' e^{-ik_B r' \cos \gamma} \left\{ \frac{-zx}{r^2} E_{x,\text{int}} - \frac{zy}{r^2} E_{y,\text{int}} - \left[1 - \frac{z^2}{r^2} \right] E_{z,\text{int}} \right\} \right\} \]

By doing the change of variable \(x' \rightarrow -x' \) and \(y' \rightarrow -y' \) in order to express all the integrals in terms of \(\int_{V,x'>0,y'>0} = \int_{V_+} \), by putting together the common terms and by using also the identity \(\cos \gamma = (xx' + yy' + zz')/(rr') \), one obtains:

\[E_{z,\text{sca}}^{\text{FF}} = \frac{e^{ik_B r_0^2} \Delta \epsilon}{4\pi r} \left\{ \int_{V_+} dr' e^{-ik_B (xx' + yy' + zz')/r} + \int_{V_+} dr' e^{-ik_B (-xx' - yy' + zz')/r} + \int_{V_+} dr' e^{-ik_B (-xx' - yy' + zz')/r} + \frac{zy}{r^2} E_{y,\text{int}} - \int_{V_+} dr' e^{-ik_B (xx' + yy' + zz')/r} + \int_{V_+} dr' e^{-ik_B (-xx' - yy' + zz')/r} + \left[1 - \frac{z^2}{r^2} \right] E_{z,\text{int}} \left(\int_{V_+} dr' e^{-ik_B (xx' + yy' + zz')/r} - \int_{V_+} dr' e^{-ik_B (-xx' - yy' + zz')/r} \right) + \int_{V_+} dr' e^{-ik_B (xx' - yy' + zz')/r} - \int_{V_+} dr' e^{-ik_B (-xx' - yy' + zz')/r} \right\} \]

The integrals in parenthesis have already been evaluated and are given by Eq. 10, 11, 12, therefore the scattered field in the \(z \) direction is:

\[E_{z,\text{sca}}^{\text{FF}} = \frac{e^{ik_B r_0^2} \Delta \epsilon}{4\pi r} \left\{ \int_{V_+} dr' e^{-ik_B r' \cos \gamma} \left\{ \frac{-zx}{r^2} E_{x,\text{int}} + \frac{4k_B^2}{3r^2} \left[a^2bcx^2 + ab^3cy^2 + abc^3z^2 \right] + 4k_B^2 a^2b^2c \frac{xy^2 z^2}{r^4} E_{y,\text{int}} - 4ik_B a^2bc \left[1 - \frac{z^2}{r^2} \right] E_{z,\text{int}} + O(k_B^3) \right\} \right\} \]

0.3. Scattering cross section

The scattering cross section can be calculated using the formula:

\[\sigma = \frac{1}{E_0^2} \int_S dS \frac{1}{r^2} |E_{z,\text{sca}}^{\text{FF}}|^2 = \frac{1}{E_0^2} \int_S dS \frac{1}{r^2} \left(|E_{x,\text{sca}}^{\text{FF}}|^2 + |E_{y,\text{sca}}^{\text{FF}}|^2 + |E_{z,\text{sca}}^{\text{FF}}|^2 \right) \]
where S is a spherical surface in the limit with \(r \to +\infty \). Therefore by using Eq. 13, 16 and 19 one obtains:

\[
\sigma_{sca} = \frac{k_0^2 |\Delta \epsilon|^2}{16\pi^2 E_0^2} \int_S \left[1 - \frac{x^2}{r^2} \right] E_{x,\text{int}} \left(8abc - \frac{4k_B^2}{3r^2} \left[a^3bcr^2 + ab^3cy^2 + abc^3z^2 \right] \right) +
\]

\[
+4k_B^2 a^2b^2c \frac{x^2y^2}{r^4} E_{y,\text{int}} + 4ik_Ba^2bc \frac{x^2z}{r^3} E_{z,\text{int}} + O(k_B^3)
\]

\[
+ \left| \frac{-y}{r} E_{x,\text{int}} \right| \left(8abc - \frac{4k_B^2}{3r^2} \left[a^3bcr^2 + ab^3cy^2 + abc^3z^2 \right] \right) -
\]

\[
-4k_B^2 a^2b^2c \left[1 - \frac{y^2}{r^2} \right] \frac{xy}{r^2} E_{y,\text{int}} + 4ik_Ba^2bc \frac{xz}{r^3} E_{z,\text{int}} + O(k_B^3)
\]

\[
+ \left| \frac{-z}{r} E_{x,\text{int}} \right| \left(8abc - \frac{4k_B^2}{3r^2} \left[a^3bcr^2 + ab^3cy^2 + abc^3z^2 \right] \right) +
\]

\[
+4k_B^2 a^2b^2c \frac{x^2y^2}{r^4} E_{y,\text{int}} - 4ik_Ba^2bc \left[1 - \frac{z^2}{r^2} \right] \frac{x}{r} E_{z,\text{int}} + O(k_B^3)
\]

\[
(21)
\]

The squared moduli inside the integral term can be expanded using the identity:

\[
|z_1 + z_2 + z_3|^2 = |z_1|^2 + |z_2|^2 + |z_3|^2 + z_1z_2 + z_1z_3 + z_2z_3 + z_1z_2 + z_1z_3 + z_2z_3.
\]

\[
(22)
\]

For the first term \(|E_{x,\text{sca}}|^2 \) \(z_1, z_2, z_3 \) are expressed by:

\[
z_1 = \left[1 - \frac{x^2}{r^2} \right] E_{x,\text{int}} \left(8abc - \frac{4k_B^2}{3r^2} \left[a^3bcr^2 + ab^3cy^2 + abc^3z^2 \right] \right)
\]

\[
z_2 = 4k_B^2 a^2b^2c \frac{x^2y^2}{r^4} E_{y,\text{int}}
\]

\[
z_3 = 4ik_Ba^2bc \frac{x^2z}{r^3} E_{z,\text{int}}.
\]

The integrals for each term can be expressed in spherical coordinates. The first term gives:

\[
\int_S dS|z_1|^2 = \int_S dS \left[1 - \frac{x^2}{r^2} \right]^2 \left(8abc - \frac{4k_B^2}{3r^2} \left[a^3bcr^2 + ab^3cy^2 + abc^3z^2 \right] \right)^2
\]

\[
\int_S \left[1 - \sin^2 \theta \cos^2 \phi \right]^2 \left\{ 8abc - \frac{4k_B^2}{3} \left[a^3bc \sin^2 \theta \cos^2 \phi + ab^3 \sin^2 \phi \sin^2 \phi + abc^3 \cos^2 \theta \right] \right\}^2 \sin \theta d\theta d\phi,
\]

which can be carried out analytically to give the following expression:

\[
\int_S dS|z_1|^2 = \frac{512}{2835} \pi [a^2b^2c^2 (756 - k_B^2 (36a^2 + 108b^2 + 108c^2)) +
\]

\[
+ k_B^2 (a^4 + 6b^4 + 6c^4 + 2a^2b^2 + 2a^2c^2 + 4b^2c^2))]|E_{x,\text{int}}|^2.
\]

\[
(25)
\]

The second term can be calculated as:

\[
\int_S dS|z_2|^2 = \int_S dS \left| 4k_B^2 a^2b^2c \frac{x^2y^2}{r^4} E_{y,\text{int}} \right|^2
\]

\[
= 16k_B^4 a^4b^2c^2 |E_{y,\text{int}}|^2 \int_S d\theta d\phi \sin^6 \theta \sin^4 \phi \cos^4 \phi = \frac{64}{105} \pi k_B^4 a^4b^4c^2 |E_{y,\text{int}}|^2.
\]

\[
(27)
\]
The third term can be calculated as:

\[\int dS |z_3|^2 = \int dS \left| 4i k_B a^2 b c \frac{x^2 z}{r^3} E_{z,int} \right|^2 = 16 k_B^2 a^4 b^2 c^2 |E_{z,int}|^2 \int d\theta d\phi \sin^3 \theta \sin^4 \phi \cos^2 \theta = \frac{64}{35} \pi k_B^2 a^4 b^2 c^2 |E_{z,int}|^2. \]

(28)

The terms \(z_1 \bar{z}_3, z_2 \bar{z}_3, \bar{z}_1 z_3, \bar{z}_2 \bar{z}_3\) give identically 0. The term \(z_1 \bar{z}_2\) gives:

\[\int dS z_1 \bar{z}_2 = \frac{128}{945} \pi k_B^2 a^3 b^3 c^2 \left[36 - k_B^2 (2a^2 + 3b^2 + c^2) \right] E_{x,int} E_{y,int}, \]

(29)

whereas the term \(\bar{z}_1 z_2\) gives:

\[\int dS z_1 \bar{z}_2 = \frac{128}{945} \pi k_B^2 a^3 b^3 c^2 \left[36 - k_B^2 (2a^2 + 3b^2 + c^2) \right] E_{x,int} E_{y,int}. \]

(30)

For the second term \(|E_{y,scal}|^2\), \(z_1, z_2, z_3\) are expressed by:

\[z_1 = -\frac{y x}{r^2} E_{x,int} \left(8abc - \frac{4 k_B^2}{3r^2} \left[a^3 b c x^2 + a^3 b c y^2 + a b^3 c z^2 \right] \right) \]

\[z_2 = -4 k_B^2 a b c \left[1 - \frac{y^2}{r^2} \right] \frac{x y}{r^2} E_{y,int} \]

\[z_3 = 4 i k_B a^2 b c \frac{x y z}{r^3} E_{z,int}. \]

(31)

The integrals, expressed in spherical coordinates, give for the first term:

\[\int dS |z_1|^2 = \int dS \left\{ -\frac{y x}{r^2} \left(8abc - \frac{4 k_B^2}{3r^2} \left[a^3 b c x^2 + a^3 b c y^2 + a b^3 c z^2 \right] \right) \right\}^2 |E_{x,int}|^2 = \frac{64}{2835} \pi |a^2 b^2 c^2 (756 - k_B^2 (108a^2 + 108b^2 + 36c^2) + k_B^2 (5a^4 + 5b^4 + c^4 + 6a^2 b^2 + 2a^2 c^2 + 2b^2 c^2))||E_{x,int}||^2. \]

(32)

The second term can be calculated as:

\[\int dS |z_2|^2 = \int dS \left| -4 k_B^2 a^2 b^2 c \left[1 - \frac{y^2}{r^2} \right] \frac{x y}{r^2} E_{y,int} \right|^2 = \frac{512}{315} \pi k_B^4 a^4 b^4 c^2 |E_{y,int}|^2. \]

(33)

The third term can be calculated as:

\[\int dS |z_3|^2 = \int dS \left| 4 i k_B a^2 b c \frac{x y z}{r^3} E_{z,int} \right|^2 = \frac{64}{105} \pi k_B^2 a^4 b^2 c^2 |E_{z,int}|^2. \]

(34)

The terms \(z_1 \bar{z}_3, z_2 \bar{z}_3, \bar{z}_1 z_3, \bar{z}_2 \bar{z}_3\) give identically 0. The term \(z_1 \bar{z}_2\) gives:

\[\int dS z_1 \bar{z}_2 = \frac{128}{945} \pi k_B^2 a^3 b^3 c^2 \left[36 - k_B^2 (3a^2 + 2b^2 + c^2) \right] E_{x,int} E_{y,int}, \]

(35)

whereas the term \(\bar{z}_1 z_2\) gives:

\[\int dS \bar{z}_1 z_2 = -\frac{128}{945} \pi k_B^2 a^3 b^3 c^2 \left[36 - k_B^2 (3a^2 + 2b^2 + c^2) \right] E_{x,int} E_{y,int}. \]

(36)
For the third term \(|E_{z,\text{sca}}| \), \(z_1, z_2, z_3 \) are expressed by:

\[
z_1 = -\frac{zx}{r^2} E_{x,\text{int}} \left(8abc - \frac{4k_B^2}{3r^2} \left[a^3bcx^2 + ab^3cy^2 + abc^3z^2 \right] \right)
\]

\[
z_2 = 4k_B^2a^2b^2c \frac{x^2y^2z}{r^4} E_{y,\text{int}}
\]

\[
z_3 = -4i k_B a^2 bc \left[1 - \frac{z^2}{r^2} \right] x E_{z,\text{int}}.
\]

The integrals, expressed in spherical coordinates, give for the first term:

\[
\int_S dS |z_1|^2 = \int_S dS \left\{ -\frac{zx}{r^2} E_{x,\text{int}} \left(8abc - \frac{4k_B^2}{3r^2} \left[a^3bcx^2 + ab^3cy^2 + abc^3z^2 \right] \right) \right\}^2 |E_{x,\text{int}}|^2 = \frac{64}{2835} \pi [a^2b^2c^2(756 - k_B^2(108a^2 + 36b^2 + 108c^2) + k_B^4(5a^4 + b^4 + 5c^4 + 2a^2b^2 + 6a^2c^2 + 2b^2c^2))]|E_{x,\text{int}}|^2.
\]

(37)

The second term can be calculated as:

\[
\int_S dS |z_2|^2 = \int_S dS \left\{ 4k_B^2a^2b^2c \frac{x^2y^2z}{r^4} E_{y,\text{int}} \right\}^2 = \frac{64}{315} \pi k_B^4a^4b^2c^2 |E_{y,\text{int}}|^2.
\]

(39)

The third term can be calculated as:

\[
\int_S dS |z_3|^2 = \int_S dS \left\{ 4i k_B a^2 bc \frac{x^2y^2z}{r^4} E_{z,\text{int}} \right\}^2 = \frac{512}{35} \pi k_B^2a^4b^2c^2 |E_{z,\text{int}}|^2.
\]

(40)

The terms \(\overline{z}_1z_3, \overline{z}_2z_3, \overline{z}_1z_2, \overline{z}_2z_2 \) give identically 0. The term \(\overline{z}_1z_2 \) gives:

\[
\int_S dS \overline{z}_1z_2 = -\frac{128}{945} \pi k_B^2a^3b^2c^2 \left[36 - k_B^2(2a^2 + 2b^2 + 2c^2) \right] E_{x,\text{int}} \overline{E_{y,\text{int}}},
\]

(41)

whereas the term \(\overline{z}_1z_2 \) gives:

\[
\int_S dS \overline{z}_1z_2 = -\frac{128}{945} \pi k_B^2a^3b^2c^2 \left[36 - k_B^2(2a^2 + 2b^2 + 2c^2) \right] \overline{E_{x,\text{int}}} E_{y,\text{int}}.
\]

(42)

Finally the scattering cross section can be written as:

\[
\sigma_{\text{sca}} = \frac{k_0^4 |\Delta c|^2}{15\pi E_0^2} \left\{ \frac{8}{63} [a^2b^2c^2(1260 - k_B^2(84a^2 + 168b^2 + 168c^2) + k_B^4(3a^4 + 9b^4 + 9c^4 + 4a^2b^2 + 4a^2c^2 + 6b^2c^2))]|E_{x,\text{int}}|^2 + 16k_B^2a^4b^2c^2 (k_B^2b^2|E_{y,\text{int}}|^2 + |E_{z,\text{int}}|^2) + \frac{4}{63} \pi k_B^2a^3b^3c^2 [18 + k_B^2(3a^2 - b^2 + c^2)] (E_{x,\text{int}} E_{y,\text{int}} + E_{x,\text{int}} \overline{E_{y,\text{int}}}) + O(k_B^3) \right\}.
\]

(43)

0.4. Extinction cross section

The extinction cross section can be calculated using the optical theorem:

\[
\sigma_{\text{ext}} = \frac{4\pi}{k_B^2} \Re[\mathbf{X} \cdot \mathbf{n}_{E_0}]_{z \to +\infty; x, y = 0},
\]

(44)

where \(\mathbf{n}_{E_0} \) is a unit vector in the direction of the polarization of the incoming wave (x direction) and the scattering amplitude \(\mathbf{X} \) is defined as:

\[
\mathbf{E}_{\text{sca}} = -\frac{e^{ik_B r}}{ik_B r} \mathbf{X} E_0.
\]

(45)
Therefore by using Eq. (13) the extinction cross section can be expressed as:

\[
\sigma_{ext} = -\frac{k_0^2}{k_B E_0} \Re[i \Delta \epsilon E_{x,int} \left(8abc - \frac{4k_B^2}{3} abc^3 \right)].
\] (46)

0.5. Absorption cross section

The absorption cross section can be expressed as:

\[
\sigma_{abs} = \frac{k_B}{E_0^2} \int_V \Im(\epsilon)|E(r)|^2 dV.
\] (47)

Given the constant field inside the cuboid the absorption cross section readily calculate as:

\[
\sigma_{abs} = \frac{8k_B}{E_0^2} \Im(\epsilon)(|E_{x,int}|^2 + |E_{y,int}|^2 + |E_{z,int}|^2)abc,
\] (48)

otherwise can be expressed simply as \(\sigma_{abs} = \sigma_{ext} - \sigma_{sca}\).

0.6. Internal electric field

If we assume that the polarization of the cuboid is homogeneous in its volume the following equation applies:

\[
P = \epsilon_0 (\epsilon - \epsilon_B)(E_0 + E_{dep}),
\] (49)

where \(E_{dep}\) is the depolarization field generated by the matter surrounding a point in the volume.

The field \(E_{dep}\) can be determined by assigning a dipole moment \(dp(r) = P dV\) to each volume element, calculating the retarder dipolar field \(dE_{dep}\) generated at the specific point and integrating over the entire volume. The electric field produced by a retarded dipole \(dp(r)\) oriented along \(x\) in spherical coordinates can be expressed as:

\[
E_r = \frac{2 \cos \theta}{4\pi \epsilon_0 \epsilon_B} \frac{e^{ik_B r}}{r} \left[\frac{1}{k_B^2 r^2} - \frac{i}{k_B r} \right] |dp|,
E_\theta = \frac{\sin \theta}{4\pi \epsilon_0 \epsilon_B} \frac{e^{ik_B r}}{r} \left[\frac{1}{k_B^2 r^2} - \frac{i}{k_B r} - 1 \right] |dp|,
\] (50)

with \(E_\phi = 0\).

The projection of the electric field along the \(x\) direction is:

\[
E_\parallel = E_r \cos \theta - E_\theta \sin \theta.
\] (51)

In particular if we consider the point in the centre of the cuboid and the \(dE_{dep}\) parallel to the \(x\) axis, the expression is:

\[
dE_{dep,x} = \frac{1}{4\pi \epsilon_0 \epsilon_B} \left[\frac{1}{r^3} (3 \cos^2 \theta - 1) + \frac{k_B^2}{2r} (\cos^2 \theta + 1) + \frac{2}{3} i k_B^3 \right] P_x dV.
\] (52)

By integrating this expression over the cube we are left with three terms. The first term diverges as \(1/r^3\), and it is precisely the divergent part of the Green’s function. Its expression is tabulated and it is given by \(-2\Omega\) where \(\Omega\) is the solid angle subtended by a side of the cuboid orthogonal to the \(x\) axis.
The expression of the solid angle of a cuboid subtended by the side perpendicular to the x axis can be written as:

$$\Omega = 4 \arcsin \left(\frac{bc}{\sqrt{(a^2 + b^2)(a^2 + c^2)}} \right).$$ \hfill (53)

The second term is integrable but with a rather long expression, and can be written as:

$$\frac{k_B^2 \beta}{2} = \int_{-c}^{c} \int_{-b}^{b} \int_{-a}^{a} \frac{k_B^2}{2 \sqrt{x^2 + y^2 + z^2}} \left(1 + \frac{x^2}{x^2 + y^2 + z^2} \right) dx dy dz =$$

$$= k_B^2 \left\{ 4c \left[a \arctanh \left(\frac{\sqrt{a^2 + b^2 + c^2}}{b} \right) - c \arctan \left(\frac{ab}{c\sqrt{a^2 + b^2 + c^2}} \right) \right] +$$

$$+ b \arctanh \left(\frac{\sqrt{a^2 + b^2 + c^2}}{a} \right) \right] - 4b^2 \arctan \left(\frac{ac}{b\sqrt{a^2 + b^2 + c^2}} \right) +$$

$$+ 2ab \log \left(c + \sqrt{a^2 + b^2 + c^2} \right) + 2ac \log \left(b + \sqrt{a^2 + b^2 + c^2} \right) + 4bc \log \left(a + \sqrt{a^2 + b^2 + c^2} \right) -$$

$$- 4ac \arctanh \left(\frac{\sqrt{a^2 + b^2 + c^2}}{b} \right) - 4bc \arctan \left(\frac{\sqrt{a^2 + b^2 + c^2}}{a} \right) - 2ab \log \left(\sqrt{a^2 + b^2 + c^2 - c} \right) -$$

$$- 2ac \log \left(\sqrt{a^2 + b^2 + c^2 - b} \right) - 4bc \log \left(\sqrt{a^2 + b^2 + c^2 - a} \right) \right\},$$

which in case of a cube gives:

$$\beta_{cube} = a^2 \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} \frac{1}{\sqrt{x^2 + y^2 + z^2}} \left(1 + \frac{x^2}{x^2 + y^2 + z^2} \right) dx dy dz \approx 12.6937a^2. \hfill (55)$$

The integral is therefore just a function of the aspect ratio of the cuboid.

The third term can be integrated in a simple way to give $\frac{16}{3}ik_B^3abc$, therefore the expression of the depolarizing field is:

$$E_{dep,x} = \frac{1}{4\pi \varepsilon_0 \varepsilon_B} \left[-2\Omega + \frac{k_B^2}{2} \beta + \frac{16}{3}ik_B^3abc \right] P_x. \hfill (56)$$

By inserting Eq. 56 into 49 we obtain an expression for the field inside the particles $E_{int} = E_0 + E_{dep}$ along the x direction:

$$E_{int,x} = \frac{E_0}{1 - \frac{c - \varepsilon_B}{4\pi \varepsilon_B} \left[-2\Omega + \frac{k_B^2}{2} \beta + \frac{16}{3}ik_B^3abc \right]}.$$

By considering also the effect of polarization charges at the planar ends of the cuboid orthogonal to the x direction, another term in the expression of $E_{dep,x}$ appears. Using equation $\mathbf{P} \cdot \mathbf{n} = \sigma$ where σ is the surface charge at the planar ends and \mathbf{n} is the external normal vector, we obtain that the charge at the surfaces, which we consider concentrated at each of the eight vertices, is given by $q = P_x bc$, where q is positive in the $x = a$ and negative in the $x = -a$ planar surfaces. The contribution to the field along x at the centre of the cuboid given by the charges at the vertices is:

$$E_{vert,x} = -\frac{8}{4\pi \varepsilon_0 \varepsilon (a^2 + b^2 + c^2)^{3/2}} abc P_x.$$ \hfill (58)
where we have taken into account the projection of the electric field along x generated by the charges. Therefore the expression of the depolarizing field becomes:

$$E_{dep,x}^\prime = E_{dep,x} + E_{vert,x} = \frac{1}{4\pi\epsilon_0\epsilon_B} \left[-2\Omega + \frac{k_B^2}{2}\beta + \frac{16}{3}ik_B^3abc - \frac{8abc}{(a^2 + b^2 + c^2)^{3/2}} \right] \frac{\epsilon_B}{\epsilon} P_x,$$

where we have assumed a polarization charge at each vertex polarization charges at the planar ends of the cuboid orthogonal to the x direction. Using the previous expression and defining δ as:

$$\delta = \frac{8abc}{(a^2 + b^2 + c^2)^{3/2}} \frac{\epsilon_B}{\epsilon},$$

Eq. 59 gives as a final expression:

$$E_{int,x} = \frac{E_0}{1 - \frac{\epsilon - \epsilon_B}{4\pi\epsilon_B} \left[-2\Omega - \delta + \frac{k_B^2}{2}\beta + \frac{16}{3}ik_B^3abc \right]}.$$