A MODEL FOR IMPROVING SOFT SKILLS OF STUDENTS IN EFFECTIVE EMPLOYMENT

Toni Soklevski
Business academy Smilevski-Skopje, Republic of North Macedonia
sokle2000@yahoo.com

Lidija Stefanovska
Business academy Smilevski-Skopje, Republic of North Macedonia
l_stefanovska@yahoo.com

Abstract: The main objective of the model is to strengthen and improve soft and problem solving skills of teachers and students in vocational and technical secondary schools. The model allows employers to recruit future workers to be ready for work, while reducing recruitment and training costs. The model is actually a cooperative - competitive simulation set up in a virtual business environment consisting of multiple team challenges. At the beginning of simulation the participants set up their own virtual companies. The success of the virtual company in each challenge brings in adequate revenue that it needs to reinvest in future challenges, but also to use it to further improve its employees (training), increase the value of the company (fixed assets), reimburse its employees (salaries), promotion of the company in the virtual market (investing in the brand) and consulting in the planning or execution of the challenges. The expected benefits of this interactive business simulation are multiple. On one hand, this is an opportunity for students who have no business experience to transfer their knowledge into real situations through planning, organizing, negotiating, persuading and teamwork. Business Academy Smilevski has been perfecting this model with its students for ten years, and has adapted this model to the needs of vocational schools for several years and successfully implemented it with the support of the Ministry of Education and the World Bank.

Keywords: soft skills, education, employment

1. INTRODUCTION
The model for improving soft skills is highly useful for both teachers and students, and they acquire a large number of skills that increase their competitiveness. Students and teachers achieve significant improvements in the following areas: problem solving skills, project management, teamwork, job analysis, developing creativity and innovation, developing confidence and decision making, planning and organizing, motivation, communication and evaluation skills. Everyone who implemented this model knows how to organize their work well, plan commitments, manage resources and staff and prepare projects. The development of students' soft skills with this model is important for future employments and inclusion in the business community, and for teachers preparation new perspective in implementing curricula and the opportunity for a new approach in developing these types of skills and competences.

2. MODEL'S STRUCTURE IN IMPROVING SOFT SKILLS
All project activities of the model are cooperative - competitive by their nature, although some of the activities presuppose inevitably opposing ideas, attitudes and intentions. At its core these are activities in which employees (students) need to collaborate or compete with each other for a higher purpose - the success of their company. However, in order to give a complete overview of the business venture management process at the end of the challenge, and before the plenary reflective discussion of the lessons learned, an internal evaluation of the virtual company's performance in the specific challenge is performed, with each employee ranks the others according to their contribution to the challenge. This is called team ranking.
Team ranking results are transformed into personal points of excellence that are part of each participant's personal score. This element, together with the level of remuneration (salary), is one of the two elements of individual competitiveness that is introduced at a level of virtual company. This enables differentiation of the individual results of the employees.
Finally, after completing all the team challenges, the final rankings of participants with a summary of the funds won, personal points of excellence, company’s success ratio and the final score of the participant are published. Thus, all participants in the game - students employed in virtual companies - aim to achieve the highest possible personal score.
A student's personal score is an aggregate of two variables - personal earnings in the form of personal remuneration (salary), which is awarded by consensual agreement between employees at the beginning of each challenge and personal excellence points that are distributed among team employees after team ranking at the end of the challenge. The final success of each participant is calculated as the product of the virtual company's success rate and the employee's personal score. In this way, both the company's success and the employee's personal performance are taken into account, according to which the final rankings of the game participants are made. The highest ranked company and participant receive the appropriate honors.

The basic approach of the methodology in the design, planning and realization of the planned courses is to use the David Kolb experiential learning model known as the Colby’s cycle. At its core, the Colby’s Cycle involves elaborating and reflecting on the experience gained, in order to learn lessons or future mechanisms for dealing with the same experiences and crucial experimenting with them. Briefly explained, the model will enable participants to gain relevant experience, in the direction of the intended goal of acquiring soft skills, in addition to the experience they will gain an adequate theoretical input, and then the students will themselves, under the mentorship of trainers and teachers, try to apply it to the challenge foreseen in the design of the program itself. The specific methodological approach of the program actually encompasses the aforementioned Colby’s model and in its essential form which is applied in so-called DRA methodology developed for the needs of the DETRA Center and has been applied for over 25 years. In its most basic form, the DRA methodology is a three-component training model that includes D - Diagnosis of the current situation and/or future desired states; R – Resourcement of trained people, i.e. enables interactive acquisition of required or diagnosed theoretical or vocational education requirements and, ultimately, A - Activating an interactive simulated environment for direct application of acquired resources.

3. MENTORING APPLIED IN THE MODEL
Mentoring in this model is realized as follows: Students’ Teams participating in the training between each one-day workshop receive a task that will serve as preparation for the next meeting. During that time, between the two meetings, the teachers under the supervision and mentorship of the trainers will be engaged as mentors to the teams for better and more appropriate understanding and preparation for the next meeting. Furthermore, during each of the planned workshops, i.e. meetings, teachers and trainers will be in the role of mentors who can directly influence the acquisition of relevant experiences and the extraction of real lessons or future concepts. As mentors, they will, through the program and simulation mechanics, be directly involved in the performance and creation of an appropriate virtual business environment and compare BASTION’s activities with the real business world. This direct involvement of teachers directly impacts two key indicators of this project: (1) Developing soft skills in students through simulated management and problem solving environments and (2) Developing soft skills in teachers along with mentoring and dissemination skills. interactive environment.

3. RESEARCH RESULTS BY USING THIS MODEL
Studies conducted from 2008 - 2019 with 324 students as well as surveys from 2017-2019 with 1021 students and 223 high school teachers show a number of benefits of using the model in the process of adopting soft skills that are a prerequisite for more effective employment and inclusion in the business community. Tables 1 and 2 and Chart 1 show the differences in the adoption of these skills.
Based on the applied univariate analysis (ANOVA) of the variables, a statistically significant difference can be found at the level of 0.05 between students, students and teachers in the research with significance’s coefficient of F (2,221) = 62.43, and p = .000 (Sig. = .000).

ANOVA	Sum of Squares	df	Mean Square	F	Sig.		
a. soft skills	Pupils	Between Groups	2,528	1021	1,264	62,430	.000
		Within Groups	4,475	324	.020		
		Total	7,004	223			
	Students	Between Groups	6,749	1021	3,375	80,572	.000
		Within Groups	9,256	324	.042		
	Teachers	Total	16,006	223			
Table 2: Differences in arithmetic skills of teachers, students and teachers

a) competences	N	1	2	3
1.pupils	1021		3,63	
3. students	324			3,79
2. teachers	223			3,92

Of course, teachers as employees adopt quicker the skills and transfer them to their students for inclusion in the business sector. In second place with the degree of acceptance are the students who in the first year of studying at BAS are already included in the practical classes through which they directly establish their connections with the mentors in the BAS partner organizations and practice as future employees. Although students are third in adoption, research has shown that they have significantly acquired soft skills and employability skills through this model.

4. CONCLUSION
To summarize the analysis of partner companies, schools, MES and the World Bank:
The students developed the technical competences in all five challenges of the BASTION’S program through team problem solving and specific realization of the assigned tasks. There are a number of examples of students applying good estimation and gaining the necessary technical competencies for the assignment: team building the highest tower, formula designing when they were in the role of a tourism agency, in role building shelters and their group takeovers before groups of students and teachers. Especially in the preparation of projects that were presented in front of other schools at the final presentation in BAS Bitola.
The students worked quickly, thoroughly and efficiently on the following tasks: practicing communication skills development, designing specific products and products, purchasing and planning resources and materials, etc. Significant improvements have been made by students in developing presentation skills, team problem solving approaches, project work, crisis management development processes, research skills and job evaluation.
The BASTION program allowed participants to gain relevant experience in order to acquire soft skills. In addition to the experience, the students gained an adequate theoretical input and sublimated the theory with practice.
In terms of content, the program is built on BAS’s many years of experience in designing and delivering interactive problem solving courses in simulated conditions, on the one hand, and identifying students’ real needs as a basis for designing practical exercises.
We would strongly support and recommend students for future employment in our partner organizations where we perform student internships in a variety of activities: product, service, commercial, and so on. We would bridge the gap between students and those organizations we have been working with for over a decade in the interest of improving employability and realizing young individuals.
Over 1,000 vocational high school students and about 300 teachers implementing this model have improved their soft skills for more effective inclusion in real life and their employment, and BAS students over a decade are directly involved in implementation of this model in their first year studying.
REFERENCES
BAS, (2017). Guidelines for developing skills in teamwork problem solving, Bitola:Grafoprom.
Cooper, K. C.(2000). Effective Competency Modeling and Reporting, New York: Amacom.
Group of authors, (2017). New approaches to the system of lifelong learning, Split: College of Inspection and Personnel Management.
Kerzner, H. (2017). Project Management: A Systems Approach to Planning, Scheduling, and Controlling. 12th edition. Hoboken, NJ: John Wiley & Sons.
Kerzner, H. (2017). Project Management: A Systems Approach to Planning, Scheduling, and Controlling. 12th edition. Hoboken, NJ: John Wiley & Sons.
Kerzner, H. (2017). Project Management: A Systems Approach to Planning, Scheduling, and Controlling. 12th edition. Hoboken, NJ: John Wiley & Sons.
Kerzner, H. (2017). Project Management: A Systems Approach to Planning, Scheduling, and Controlling. 12th edition. Hoboken, NJ: John Wiley & Sons.
Hamel, G. and Prahalad, C. K. (1994). Competing for the Future, Cambridge: Harvard Business School Press.
Smilevski, C. (2000). The challenge and mastery of organizational changes, Skopje:DETRA center.
Soklevski, T. (2014). The common and special competences of operations managers in Republic of Macedonia, Skopje: ISPI.
Soklevski, T. (2015). Tasks, activities and responsibilities of operations managers in the companies of the Republic of Macedonia, Researchjournali’s Journal of Management, India, RJ Factor: 3.03 ISSN 2347-8217.
Soklevski, T. (2015). The role of educational institutions in developing applicable skills and competences, Fourth Symposium, Skopje: Business Academy Smilevski;
Soklevski, T. (2019). Building managerial competences through the system of higher education in the Republic of Macedonia, Bitola: Macedonian Scientific Society.
Stefanovska L. (2014). Fundamentals of Strategic Management, Skopje: Business Academy Smilevski;
Stefanovska L., Soklevski T. (2014). Benefits of Using Balanced Scorecard in Strategic and Operational Planning, SAN JOSE, USA: Universal Journal of Management Vol. 2(4), pp. 165 – 171.