This paper has considered improving the management of energy consumption by a photovoltaic system with a storage device for a local object connected to the network. The aim of the study is to reduce expenditures when paying for electricity consumed from the network, when loading an object, independent of the time of year, and to eliminate energy generation to the grid. An energy generation control algorithm has been improved whereby the state of battery charge during the day is based on a forecast. That could reduce electricity consumption at night with better utilization of rechargeable battery and photovoltaic battery power during the day. It is proposed to use autonomous operation by disconnecting from the network during peak tariff hours and during the day with enough energy generation by a photovoltaic battery. This would ensure the normal functioning of an object in the event of a possible deterioration in the quality of voltage in the network while reducing the loss of energy in the inverter. Predictive control of the expected battery charge at the next checkpoint (at 0.5 hours or less between control points) has been proposed. A control system structure has been developed whereby a rechargeable battery current is set depending on an operational mode, the tariff zone, and the projected generation by a photovoltaic battery while reducing the modulation frequency under an autonomous mode. In this case, the modes are switched and the structure is changed taking into consideration the state of battery charge. Simulation in the daily cycle has shown the possibility of reducing the cost of electricity consumed from the network by 1.7–8 times at two or three tariff rates. Simulation of electromagnetic processes in the system confirms acceptable regulation indicators when switching the structure, as well as a decrease in the energy loss in an inverter under an autonomous mode by up to 40%.

Keywords: energy redistribution, rechargeable battery charge state, control structure, predictive control, autonomous mode, battery current regulation, multi-zone pricing.

References

1. Pro vnesennia zmin do deiakykh zakoniv Ukrainy shchodo udos-konalennia umov pidtrymky vyrobnytstva elektychnoi enerhiyi z alternatyvnykh dzherel enerhiyi. Zakon Ukrainy vid 21 lypnia 2020 r. No. 810-ІХ. Available at: https://zakon.rada.gov.ua/laws/show/810-20

2. Rao, B. H., Selvan, M. P. (2020). Prosumer Participation in a Trans-active Energy Marketplace: A Game-Theoretic Approach. 2020 IEEE International Power and Renewable Energy Conference. doi: https://doi.org/10.1109/ipecon.2014.708905

3. Nicolson, M., Fell, M., Huchener, G. (2018). Consumer demand for time of use electricity tariffs: A systematized review of the empirical evidence. Renewable and Sustainable Energy Reviews, 97, 276–289. doi: https://doi.org/10.1016/j.rser.2018.08.040

4. Product manual REACT-3.6/4.6-TL (from 3.6 to 4.6 kW). ABB solar inverters. Available at: https://seasolargroup.com/wp-content/uploads/2018/08/REACT-3.6_4.6-TL-Product-manual-EN-RevBM00000023BG.pdf

5. Conext SW. Hybrid Inverter. Available at: https://www.wcse.com/www.cn/product-range-presentation/61645-conext-sw/

6. Ma, T.-T. (2012). Power Quality Enhancement in Micro-grids Using Multifunctional DG Inverters. Proceedings of the International Multi-Conference of Engineers and Computer Scientists. Vol. II, IMECS 2012. Hong Kong, 996–1001.

7. Vigneysh, T., Kumarappan, N. (2017). Grid interconnection of renewable energy sources using multifunctional grid-interactive converters: A fuzzy logic based approach. Electric Power Systems Research, 151, 359–368. doi: https://doi.org/10.1016/j.epsr.2017.06.010

8. Guerrero-Martinez, M., Milanes-Montero, M., Barrero-Gonzalez, F., Moñambres-Marcos, V., Romero-Cadaval, E., Gonzalez-Romera, E. (2017). A Smart Power Electronic Multiconverter for the Residential Sector. Sensors, 17 (6), 1217. doi: https://doi.org/10.3390/s17061217

9. Roncerro-Clemente, C., Gonzalez-Romera, E., Barrero-Gonzalez, F., Milanes-Montero, M. L. Romero-Cadaval, E. (2021). Power-Flow-Based Secondary Control for Autonomous Droop-Controlled AC Nanogrids With Peer-to-Peer Energy Trading. IEEE Access, 9, 22339–22350. doi: https://doi.org/10.1109/access.2021.3056451

10. Slama, F., Radjeai, H., Moussa, S., Chauder, A. (2021). New algorithm for energy dispatch scheduling of grid-connected solar photovoltaic system with battery storage system. Electrical Engineering & Electromechanics, 1, 27–34. doi: https://doi.org/10.20998/2074-272X.2021.1.05

11. Mellit, A., Pavan, A. M., Lughi, V. (2021). Deep learning neural networks for short-term photovoltaic power forecasting. Renewable Energy, 172, 276–288. doi: https://doi.org/10.1016/j.renene.2021.02.166

12. Forecast.Solar. Available at: https://forecast.solar/

13. Iyengar, S., Sharma, N., Irwin, D., Shenoy, P., Ramamritham, K. (2014). SolarCast - an open web service for predicting solar power generation in smart homes. Proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings. doi: https://doi.org/10.1145/2674061.2675020

14. Sangrody, H., Zhou, N., Zhang, Z. (2020). Similarity-Based Models for Day-Ahead Solar PV Generation Forecasting. IEEE Access, 8, 104469–104478. doi: https://doi.org/10.1109/access.2020.2999903

15. Michaelson, D., Mahmood, H., Jiang, J. (2017). A Predictive Energy Management System Using Pre-Emptive Load Shedding for Islanded Photovoltaic Microgrids. IEEE Transactions on Industrial Electronics, 64 (7), 5440–5448. doi: https://doi.org/10.1109/tie.2017.2677317

16. Traore, A., Taylor, A., Zohdy, M. A., Peng, F. Z. (2017). Modeling and Simulation of a Hybrid Energy Storage System for Residential Grid-Tied Solar Microgrid Systems. Journal of Power and Energy Engineering, 05 (05), 28–39. doi: https://doi.org/10.4236/jpee.2017.55003
17. Shavolkin, O., Shvedchykova, I., Kravchenko, O. (2019). Three-phase Grid Inverter for Combined Electric Power System with a Photovoltaic Solar Battery. 2019 IEEE International Conference on Modern Electrical and Energy Systems (MEES). doi: https://doi.org/10.1109/mees.2019.8896661

18. Shavolkin, O., Shvedchykova, I. (2020). Improvement of the Three-Phase Multifunctional Converter of the Photoelectric System with a Storage Battery for a Local object with Connection to a Grid. 2020 IEEE Problems of Automated Electrodriive. Theory and Practice (PAEP). doi: https://doi.org/10.1109/paep49887.2020.92040789

19. Sotnyk, I., Zavadovyeva, Y., Zavadovye, A. (2014). Multi-rate Tariffs in the Management of Electricity Demand. Mechanism of Economic Regulation, 2, 106 – 115. Available at: https://mer.fem.sumdu.edu.ua/content/articles/issue_21/IRYNA_M_SOTNYK_YULIA_N_ZAVADOYEVA_ALEXANDER_I_ZAVADOYEV Multi_Rate_Tariffs_in_the_Management_of_Electricity_Demand.pdf

20. OPrV12-100 (12V100Ah). Hengyang Ritar Power CO., LTD. Available at: https://www.ritarpower.com/uploads/ueditor/spec/OPrV12-100.pdf

21. Shavolkin, O., Shvedchykova, I. (2020). Improvement of the multifunctional converter of the photoelectric system with a storage battery for a local object with connection to a grid. 2020 IEEE KhPI Week on Advanced Technology (KhPWeek). Kharkiv. 267 – 292.

22. Shavolkin, O., Shvedchykova, I. (2018). Forming of Current of the Single-Phase Grid Inverter of Local Combined Power Supply System with a Photovoltaic Solar Battery. 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS). doi: https://doi.org/10.1109/ieps.2018.8539540

23. Shavolkin, A., Jasm, J. M. J., Shvedchykova, I. (2019). Improvement of the current control loop of the single-phase multifunctional grid-tied inverter of photovoltaic system. Eastern-European Journal of Enterprise Technologies, 6 (5 (102)), 14–22. doi: https://doi.org/10.15587/1729-4061.2019.185391

24. Photovoltaic geographical information system. Available at: https://re.jrc.ec.europa.eu/pgv-tools/en/tools.html?SA

25. Shavolkin, A., Shvedchykova, I. (2020). Management of generation and redistribution electric power in grid-tied photovoltaic system of local object. Tekhnichna Elektrodynamika, 4, 55–59. doi: https://doi.org/10.15407/techned2020.04.055

DOI: 10.15587/1729-4061.2021.230218

IMPROVEMENT OF METHODS OF COMPREHENSIVE ASSESSMENT OF THE OPERATION EFFICIENCY OF CENTRALIZED HEAT SUPPLY SYSTEMS IN MUNICIPAL HEAT POWER ENGINEERING (p. 16–22)

Igor Kozlov
Odessa National Polytechnic University, Odessa, Ukraine
ORCID: https://orcid.org/0000-0003-0435-6373

Vyacheslav Kovalechuk
Odessa National Polytechnic University, Odessa, Ukraine
ORCID: https://orcid.org/0000-0001-8696-4414

Oleksandr Klymchuk
Odessa National Polytechnic University, Odessa, Ukraine
ORCID: https://orcid.org/0000-0002-5207-7259

Katerina Sova
Odessa National Polytechnic University, Odessa, Ukraine
ORCID: https://orcid.org/0000-0001-8775-745X

Inna Aksyonova
Odessa State Academy of Civil Engineering and Architecture, Odessa, Ukraine
ORCID: https://orcid.org/0000-0002-3210-3405

Krystyna Borysenko
Odessa State Academy of Civil Engineering and Architecture, Odessa, Ukraine
ORCID: https://orcid.org/0000-0002-6179-6271

The possibility of a comprehensive assessment of the efficiency of the operation of a district heating system based on the indicator of the overall efficiency of the equipment OEE (overall equipment efficiency) and its extension to the system as a whole is considered. The disunity of the direction of existing approaches in assessing the efficiency of operation of district heating systems does not allow a comprehensive assessment of the overall efficiency of the functioning of the technological sequence of the entire system. It is proposed to consider efficiency as the probability of full functioning of all elements of the heat supply system. It is shown that the heat output of the boiler house is proportional to the power consumption of the boiler house and is approximated by a periodic function. It is shown that the main element of the heat supply system, which determines its efficiency, is the heat-generating source. As a result of the study, it is determined that the efficiency of the heat-generating source functioning increases as the maximum value of its efficiency is reached. Numerical modeling has shown that the flexible use of the installed heat generator capacity contributes to an increase in the efficiency factor from 0.53 to 0.70 and the overall efficiency of the heat supply system can be increased by more than 30%. When designing a boiler house, it was recommended to provide for the installation of capacities with gradation 1: 0.5: 0.25.

It is shown that the OEE indicator allows one to characterize the efficiency of both the heat supply system as a whole and its individual components, and can be used in the design and analysis of the operation of systems.

Keywords: heat supply system, heat supply modes, central boiler houses, efficiency criterion, efficiency assessment.

References

1. Zhou, Y., Yu, W., Zhu, S., Yang, B., He, J. (2021). Distributionally robust chance-constrained energy management of an integrated retailer in the multi-energy market. Applied Energy, 286, 116516. doi: https://doi.org/10.1016/j.apenergy.2021.116516

2. Zhirkova, M. V., Kolodeznikova, A. N. (2017). Performance indicators of the heat supply system’s operational condition. International Research Journal, 1 (55), 67–69. doi: https://doi.org/10.23670/IRJ.2017.55.164

3. Mazurenko, A., Klimchuk, A., Yurkovsky, S., Omeko, R. (2015) Development of the scheme of combined heating system using seasonal storage of heat from solar plants. Eastern-European Journal of Enterprise Technologies, 1 (8 (73)), 15–20. doi: https://doi.org/10.15587/1729-4061.2015.36902

4. Zavyts, O. N., Lapina, E. A. (2017). Increasing the efficiency of the condensing boiler. Journal of Physics: Conference Series, 891, 012158. doi: https://doi.org/10.1088/1742-6596/891/1/012158

5. Wang, Z., Luo, M., Geng, Y., Lin, B., Zhu, Y. (2018). A model to compare convective and radiant heating systems for intermittent space heating. Applied Energy, 215, 211–226. doi: https://doi.org/10.1016/j.apenergy.2018.01.088

6. Klymchuk, O., Denysova, A., Balasanian, G., Ivanova, L. (2020). Enhancing efficiency of using energy resources in heat supply sys-
tems of buildings with variable operation mode. EUREKA: Physics and Engineering, 3, 59–68. doi: https://doi.org/10.21303/2461-4262.2020.001252
7. Schlosser, F., Jesper, M., Vogelsang, J., Walmsley, T. G., Arpagaus, C., Hesselbach, J. (2020). Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration. Renewable and Sustainable Energy Reviews, 133, 110219. doi: https://doi.org/10.1016/j.rser.2020.110219
8. Pan, E., Li, H., Wang, Z., Peng, D., Zhao, L., Fan, L. et. al. (2020). Operation optimization of integrated energy systems based on heat storage characteristics of heating network. Energy Science & Engineering, 9 (2), 223–238. doi: https://doi.org/10.1002/esce.842
9. Klymchuk, O., Denysova, A., Shramenko, A., Borysenko, K., Ivanova, L. (2019). Theoretical and experimental investigation of the efficiency of the use of heat-accumulating material for heat supply systems. EUREKA: Physics and Engineering, 3, 32–40. doi: https://doi.org/10.21303/2461-4262.2019.00901
10. Bertoldi, P., de Raveschoot, R. P., Paina, F., Melica, G., Janssens-Maenhout, I. G. G. et. al. (2014). How to develop a Sustainable Energy Action Plan (SEAP) in the Eastern Partnership and Central Asian cities. EUR 26741. Luxembourg: Publications Office of the European Union. doi: https://doi.org/10.2790/33989
11. Savchenko, O., Voznyak, O., Myroniuk, K., Dobvash, O. (2020). Thermal Renewal of Industrial Buildings Gas Supply System. Proceedings of ECOCom 2020, 385–392. doi: https://doi.org/10.1007/978-3-030-57340-9_57
12. Ganzha, A. M., Zaiets, O. M., Marchenko, N. A., Kollarov, O. J., Njemecev, E. M. (2018). Methodology of calculation of multiplex heat exchanger apparatus with cross flow and mixing in heat carriers. Journal of new technologies in environmental science, 2 (1), 26–35.
13. Myroniuk, K., Voznyak, O., Yuriyevych, Y., Gulay, B. (2020). Technical and Economic Efficiency After the Boiler Room Renewal. Proceedings of ECOCom 2020, 311–318. doi: https://doi.org/10.1007/978-3-030-57340-9_38
14. Lutsenko, I. A. (2012). Osnovy teorii effektivnosti. Alaspera Publishing & Literary Agency Inc., 71. Available at: https://ua1lib.org/book/3031189/438b46?id=3031189&secret=438b46
15. Li, X., Gui, D., Zhao, Z., Li, X., Wu, X., Hua, Y. et. al. (2021). Operation optimization of electrical-heating integrated energy system based on concentrating solar power plant hybridized with combined heat and power plant. Journal of Cleaner Production, 289, 125712. doi: https://doi.org/10.1016/j.jclepro.2020.125712
16. Rachkov, M. R., Melnikov, V. M. (2017). Development of the method of operational efficiency assessment for centralized heat supply systems in small towns. Vestnik IGEU, 4, 13–20. doi: https://doi.org/10.17588/2072-2672.2017.4.013-020
17. Ryabtsev, G. A., Ryabtsev, I. V. (2003). Noviy obschii pokazatel’ efektivnosti raboty teplopteli. Novosti teplosnabzheniya, 9, 56–59.
18. Kuznik, I. V. (2011). Otsenka effektivnosti transportirovaniya teplovoy energii. Energosberezhenie, 3, 42–47.
19. Nakajima, S. (1988). Introduction to TPM: Total Productive Maintenance (Preventative Maintenance Series). Productivity Pr, 129.
20. De Ron, A. J., Rooda, J. E. (2006). OEE and equipment effectiveness: an evaluation. International Journal of Production Research, 44 (23), 4987–5003. doi: https://doi.org/10.1080/00207540600575402
21. de Ron, A. J., Rooda, J. E. (2005). Equipment Effectiveness: OEE Revisited. IEEE Transactions on Semiconductor Manufacturing, 18 (1), 190–196. doi: https://doi.org/10.1109/tsm.2004.836657
22. Morozyn, L., Sokolovska-Yefymenko, V., Gayduk, S., Moskhativuk, A. (2018). Entropybased methods applied to the evaluation of a real refrigeration machine. Eastern-European Journal of Enterprise Technologies, 6 (8 (96)), 49–56. doi: https://doi.org/10.15587/1729-4061.2018.147710
23. OEE. Available at: https://ru.wikipedia.org/wiki/OEE
24. Chernousenko, O., Butovsky, L., Rindyuk, D., Granovska, O., Moroz, O. (2017). Analysis of residual operational resource of high-temperature elements in power and industrial equipment. Eastern-European Journal of Enterprise Technologies, 1 (8 (85)), 20–26. doi: https://doi.org/10.15587/1729-4061.2017.92459
25. Monitoring effektivnosti ispol’zovaniya provodovstvennogo oborudovaniya. Available at: http://www.up-pro.ru/library/information_systems/toir/monitoring-effektivnosti.html
26. Narula, K., De Oliveira Filho, F., Chambers, J., Romano, E., Holmluller, P., Patel, M. K. (2020). Assessment of techno-economic feasibility of centralised seasonal thermal energy storage for decarbonising the Swiss residential heating sector. Renewable Energy, 161, 1209–1225. doi: https://doi.org/10.1016/j.renene.2020.06.099
27. Klymchuk, A. A., Lozhechnikov, V. S., Mykhailenko, V. S., Lozhechnikova, N. V. (2019). Improved Mathematical Model of Fluid Level Dynamics in a Drum-Type Steam Generator as a Controlled Object. Journal of Automation and Information Sciences, 51 (5), 65–74. doi: https://doi.org/10.1615/jautomatinfscien.v51.i5.00
28. Zhong, J., Li, Y., Cao, Y., Tan, Y., Peng, Y., Zeng, Z., Cao, L. (2020). Stochastic optimization of integrated energy system considering network dynamic characteristics and psychological preference. Journal of Cleaner Production, 275, 122992. doi: https://doi.org/10.1016/j.jclepro.2020.122992

DOI: 10.15587/1729-4061.2021.229515
DEVELOPMENT OF A METHOD TO IMPROVE THE CALCULATION ACCURACY OF SPECIFIC FUEL CONSUMPTION FOR PERFORMANCE MODELING OF AIR-BREATHING ENGINES (p. 23–30)

Oleksandr Ksidov
National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0003-4819-3988

Maya Ambrozhevich
National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0003-8856-8234

Mykhailo Shevchenko
National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine
ORCID: https://orcid.org/0000-0002-8806-6632

Determination of specific fuel consumption of air-breathing engines is one of the problems of modeling their performance. As a rule, the estimation error of the specific fuel consumption while calculating air-breathing engine performance is greater than that of thrust. In this work, this is substantiated by the estimation error of the fuel-air ratio, which weakly affects thrust but significantly affects the specific fuel consumption. The presence of a significant error in the fuel-air ratio is explained by the use of simplified methods, which use the dependence of enthalpy as a function of mixture temperature and composition without taking into account the effect of pressure. The developed method to improve the calculation accuracy of specific fuel consumption of air-breathing engines is based on the correction of the fuel-air ratio in the combustor, determined by the existing mathematical models. The correction of the fuel-air ratio is made using the dependences of enthalpy on mixture temperature, pressure and composition. The enthalpy of the mixture is calculated
through the average isobaric heat capacity obtained by integrating the isobaric heat capacity, depending on mixture temperature, pressure and composition. The calculation accuracy of the fuel-air ratio was verified by comparing it with the known experimental data on the combustion chamber of the General Electric CF6-80A engine (USA). The average calculation error of the fuel-air ratio does not exceed 3%. The developed method was applied for correcting the specific fuel consumption for calculating the altitude-airspeed performance of the D436-148B turbofan engine (Ukraine), which made it possible to reduce the estimation error of the fuel-air ratio and specific fuel consumption to an average of 3%.

Keywords: fuel-air ratio, specific fuel consumption, combustor, isobaric heat capacity, air-breathing engine.

References

1. Khoreva, E. A., Ezrokhii, Yu. A. (2017). Ordinary Mathematical Models in Calculating the Aviation GTE Parameters. Aerokosmicheskii nauchnyi zhurnal, 3 (1), 1–14.
2. Boldyrev, O. I., Gorynov, I. M. (2012). Influence of thermal dissociation of hydrocarbonic fuel combustion products parameters of working process perspective gas-turbine engines. Modern problems of science and education, 1. Available at: https://www.science-education.ru/pdf/2012/1/15.pdf
3. Abdelwahid, M. B., Cherkasov, A. N., Fedorov, R. M., Fedorchuk, C. S. (2014). Numerical investigation of erosion effect on altitude-speed characteristics of a turbojet engine. Vestnik UGATU, 18 (3), 16–22. Available at: http://journal.ugatu.ac.ru/index.php/Vestnik/article/view/1758/1637
4. Walsh, P. P., Fletcher, P. (2004). Gas Turbine Performance. Blackwell Science Ltd. doi: 10.1002/9780470775453
5. Rahman, M. M., Ibrahim, T. K., Abdulla, A. N. (2011). Thermodynamic performance analysis of gas-turbine power-plant. International Journal of the Physical Science, 6 (14), 3539–3550. Available at: https://www.sagepub.com/doi/10.5430/jisp.v6n14p3539
6. Oyedopo, S. O., Kilanko, O. (2014). Thermodynamic Analysis of a Gas Turbine Power Plant Modelled with an Evaporative Cooler. International Journal of Thermodynamics, 17 (1). doi: 10.1051/ijot/201404080
7. Kotowicz, J., Job, M., Brzęczek, M., Nawrat, K., Męgrych, J. (2016). The methodology of the gas turbine efficiency calculation. Archives of Thermodynamics, 37 (4), 19–35. doi: 10.1515/aet-2016-0025
8. Andrei, I.-C., Rotaru, C., Fadgyas, M.-C., Stroe, G., Leonida, Niculescu, M. (2017). Numerical investigation of turbojet engine thrust correlated with the combustion chamber's parameters. Scientific Research and Education In The Air Force, 19 (1), 23–34. doi: 10.19062/2247-3173.2017.19.1.2
9. Qi, L., Zhao, N., Wang, Z., Yang, J., Zheng, H. (2018). Pressure Gain Characteristic of Continuously Rotating Detonation Combustion and its Influence on Gas Turbine Cycle Performance. IEEE Access, 6, 70236–70247. doi: 10.1109/ACCESS.2018.2880994
10. Hashimi, M. B., Lemma, T. A., Abdul Karim, Z. A. (2019). Investigation of the Combined Effect of Variable Inlet Guide Vane Drift, Foul ing, and Inlet Air Cooling on Gas Turbine Performance. Entropy, 21 (12), 1186. doi: 10.3390/e21121186
11. Udeh, G. T., Udeh, P. O. (2019). Comparative thermo-economic analysis of multi-fuel fired gas turbine power plant. Renewable Energy, 133, 295–306. doi: 10.1016/j.renene.2018.10.036
12. Dobromirescu, C., Világ, V. (2019). Energy conversion and efficiency in turbo shaft engines. E3S Web of Conferences, 85, 01001. doi: 10.1051/e3scconf/20198501001
13. Kofman, V. (2016). Methodology of experimental and estimated determination of performance indicators of the main gte combustion chambers based on the results of their autonomous tests on the chamber stands. Perm National Research Polytechnic University Aerospace Engineering Bulletin, 46, 6–39. doi: https://doi.org/10.15593/2224-9982/2016.46.01
14. Il’ichev, Ya. T. (1975). Termodynamichicheskij raschet vozduushno reaktivnyh dvigateley. Moscow: Tsentr’nyi institut aviationnogo motorostroenia, 126.
15. Kuznetsov, V. I., Shpakovsky, D. D. (2020). Methodology for estimating the specific fuel consumption of a two-circuit turbojet engine. Journal of «Almaz – Antey» Air and Defense Corporation, 2, 93–102. doi: https://doi.org/10.38013/2542-0542-2020-2-93-102
16. Rivkin, S. L. (1987). Termodynamichicheskie svoystva gazov. Moscow: Energoatomizdat, 288.
17. Kishalov, A. E., Markina, K. V. (2017). Research and prediction of thermal gas parameters flow combustion chambers of aviation GTE. Vestnik voronezhskogo gosudarstvennogo tehnickhicheskogo universiteta, 13 (1), 60–68.
18. Kyprianidis, K. G., Sethi, V., Ogaji, S. O. T., Pilidis, P., Singh, R., Kalas, A. I. (2009). Thermo-Fluid Modelling for Gas Turbines – Part I: Theoretical Foundation and Uncertainty Analysis. Volume 4: Cycle Innovations; Industrial and Cogeneration; Manufacturing Materials and Metallurgy. Marine. doi: 10.1115/gt2009-60092
19. Gazzetta Junior, H., Brighenti, C., Barbosa, J. R., Tomita, J. T. (2017). Real-Time Gas Turbine Model for Performance Simulations. Journal of Aerospace Technology and Management, 9 (3), 346–356. doi: 10.5028/jatm.v9i3.693
20. NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP). Version 10. Available at: https://www.nist.gov/srd/refprop
21. Li, H., Huang, H., Xu, G., Wen, J., Wu, H. (2017). Performance analysis of a novel compact air-air heat exchanger for aircraft gas turbine engine using LMTD method. Applied Thermal Engineering, 116, 445–455. doi: 10.1016/j.applthermaleng.2017.01.003
22. Klein, S. A. (2015). Engineering Equation Solver (EES). F-Chart Software. Madison, W1.
23. Boldyrev, O. I. (2012). Metodika rascheta ravnovesnogo sostoyaniya gomogennyi smesi produktov sгорания uglevodorodnogo topliva v kamerah sgoraniya GTD. Vestnik Ufimskogo gosudarstvennogo avia- tionshnogo tehnickhicheskogo universiteta, 16 (2 (47)), 106–112. Available at: http://journal.ugatu.ac.ru/index.php/Vestnik/article/view/701/535
24. Dolmatov, D. A. (2011). Management of air hydrocarbon flames by short arc. Visnyk dvyhunobuduvannia, 2, 41–51.
25. Ambrozhevich, M. V., Shevchenko, M. A. (2019). Analytical determination of isobaric heat capacity of air and combustion gases with influence of pressure and effect of thermal dissociation. Aerospace technology and engineering, 1 (153), 4–17. doi: 10.2514/6.1983-1138
26. Dodds, W., Ekstedt, E., Bahr, D. (1983). Methanol combustion in a CF6-80A engine combustor. 19th Joint Propulsion Conference. doi: https://doi.org/10.2514/6.1983-1138
27. Dodds, W., Ekstedt, E., Bahr, D., Fear, J. (1982). NASA/General Electric broad-spectrum fuels combustion technology program - Phase I results and status. 18th Joint Propulsion Conference. doi: https://doi.org/10.2514/6.1982-1089
28. Dvigatel’ D-436-148. Rukovodstvo po tehnicheskoy ekspluatatsii. Available at: https://www.studmed.ru/dvigatel-d-436-148-rukovodstvo-po-tehnicheskoy-ekspluatatsii_e8106eb83e.html
29. Ambrozhevich, M. V., Shevchenko, M. A. (2019). Equations of average isobaric heat capacity of air and combustion gases with influence of pressure and effect of thermal dissociation. Aerospace and Technology, 2, 18–29. doi: https://doi.org/10.32620.atk.2019.2.02
30. Glushko, V. P. (Ed.) (1978). Termodinamicheskie svoystva individual'nyh veschestv. Vol. 1. Kn. 2. Moscow: «Nauka», 328.
31. ASTM D1655-20d. Standard Specification for Aviation Turbine Fuels (2020). ASTM International, West Conshohocken, PA. doi: https://doi.org/10.1520/D1655
32. Druzhinin, L. N., Shvets, L. I., Malinina, N. S. (1983). Metod i podprogramma rascheta termodinamicheskikh parametrov vozduha i produkтов spol'uzovaniya uglavodorodnyh topliv. Rukovodstvayushchiy tehn. material aviasionnomy tehnik. RTM 1677–83. Dvigateli aviasion- nye i gazoturbiny. Moscow, 68.
33. Demenchonok, V. P., Druzhinin, L. N., Parhomov, A. L. et. al.; Shilyalenko, S. M., Sosunova, V. A. (Eds.) (1979). Teoriya dvukhkon- turnyh turboreaktivnyh dvigateley. Moscow: Mashinostroenie, 432.
34. Druzhinin, L. N., Shvets, L. I., Lanshin, A. I. (1979). Matematiches- koe modelirovanie GTD na sovremennyh EVM pri issledovaniy parametrov i karakteristik aviasionnomy dvigateley. Moscow: Trudy TSIAM, 45.

DOI: 10.15587/1729-4061.2021.229545

IMPROVING ENERGY EFFICIENCY OF THE SYSTEMS FOR OBTAINING WATER FROM ATMOSPHERIC AIR (p. 31–40)

Natalia Bilenko
Odessa National Academy of Food Technologies, Odessa, Ukraine
ORCID: https://orcid.org/0000-0002-6164-7954

Oleksandr Titlov
Odessa National Academy of Food Technologies, Odessa, Ukraine
ORCID: https://orcid.org/0000-0003-1908-5713

This paper outlines the prospect of obtaining water from atmospheric air by cooling it to the dew point temperature using refrigeration machines in order to partially reduce water scarcity in the arid regions of our planet. To minimize energy costs in the systems for obtaining water from atmospheric air, it is proposed to utilize solar energy with absorption refrigeration units (ARUs) acting as a source of artificial cold.

The characteristic thermodynamic processes have been analyzed in a modernized ARU, capable of working at a lower thermal energy source’s temperature than its analogs. The possibility has been studied to reduce the temperature of the heat source by including a solution vaporizer in the ARU scheme. The analysis involved an authentic method based on the balance of specific streams of ARU working body components and actual boundary conditions at characteristic points of the cycle. A limit was shown for the level of a minimum boiling temperature in the ARU generator (from 90 °C) when the systems for obtaining water from atmospheric air are operated under current climatic conditions.

The simulation of heat-and-mass exchange processes during contact interaction between a steam-gas mixture and ammonia water solution was carried out.

Based on variant calculations, it has been shown that the proposed ARU structure with an adiabatic solution vaporizer could work as part of systems to obtain water from atmospheric air at a hot spring temperature above 100 °C and constructively enough fits into the element base of standard models.

It has been proposed to use two types of solar thermal energy sources to operate ARU. In a tropical climate, with vacuum solar collectors or solar energy hubs; in a temperate climate zone, with solar collectors with water as a heat carrier.

Keywords: water from atmospheric air, refrigeration machines, absorption refrigeration units, solar energy.

References

1. Mehanizm «OON – vodnye resurсы» Mezhdonarodnoe desyatiletie deystvij «Voda dlya zhyzni», 2005-2015 gody. Available at: http://www.un.org/ru/waterforlifedecade/unwater.shtml
2. Thimmajaru, M., Sreepada, D., Babu, G. S., Dasari, B. K., Velpu, L. S., K. (2018). Desalination of Water. Desalination and Water Treatment. doi: https://doi.org/10.5772/intechopen.78659
3. Al’ Maytami Valid Abdullahvad Mohammed, Frumin, G. T. (2007). Directions of perfection of water supply in the countries of the arabian peninsula. Modern problems of science and education, 6, 13–17. Available at: https://www.science-education.ru/ru/article/view?id=769
4. Salehi, A. A., Ghannadi-Maragheh, M., Torab-Mostaedi, M., Torka- man, R., Asadollahzadeh, M. (2020). A review on the water-energy nexus for drinking water production from humid air. Renewable and Sustainable Energy Reviews, 120, 109627. doi: https://doi.org/10.1016/j.rser.2019.109627
5. Al’ Maytami Valid Abdullahvad Mohammed, Frumin, G. T. (2008). Ecologically safe technologies of water supply in the countries of arabian peninsula. Modern problems of science and education, 3, 111–115. Available at: https://www.science-education.ru/ru/article/view?id=764
6. Tu, Y., Wang, R., Zhang, Y., Wang, J. (2018). Progress and Expecta- tion of Atmospheric Water Harvesting. Joule, 2 (8), 1452–1475. doi: https://doi.org/10.1016/j.joule.2018.07.015
7. Srivastava, S., Yadav, A. (2018). Water generation from atmospheric air by using composite desiccant material through fixed focus con- centrating solar thermal power. Solar Energy, 169, 302–315. doi: https://doi.org/10.1016/j.solener.2018.03.089
8. Zollaghorkhani, S., Zamen, M., Shalamardan, M. M. (2018). Thermodynamic analysis and evaluation of a gas compression refrigeration cycle for fresh water production from atmospheric air. Energy Conversion and Management, 170, 97–107. doi: https://doi.org/10.1016/j.enconman.2018.05.016
9. The European Solar Thermal Industry Federation (ESTIF). Available at: http://www.estif.org/
10. Thermal solar line. Rotartica, air conditioning appliances: Solar Line, single effect 4,5kW. Available at: http://andyschroder.com/static/pdf/Rotartica/Rotartica_Product_Description.pdf
11. Perel’sh’tyn, B. H. (2008). Novye energeticheskie sistemy. Kazan: Izd-vo Kazan. gos. teh. un-ta, 208.
12. Vasylyv, O. B., Kovalenko, O. O. (2009). Struktura ta shliakhy rat- sionalnoho vykorystannya vody na kharchovykh pidpryiemstvakh. Naukovi pratsi ONAKIT, 35, 54–58.
13. Elsheniti, M. B., Elsammi, O. A., Al-dahh Raya K., Mahmoud, S., El- sayed, E., Saleh, K. (2018). Absorption Refrigeration Technologies. Sustainable Air Conditioning Systems. doi: https://doi.org/10.5772/ intechopen.73167
14. Vasylyv, O. B., Titlov, O. S., Osadchuk, Ye. O. (2015). Pat. No. 100195 UA. Sposob-oderzhannia vody z atmosfernoho povitria. No. u2015001512, declared: 20.02.2015; published: 10.07.2015, Bul. No. 13. Available at: https://uapatents.com/?7-100195-sposob-oderzhannia-vody-z-atmosfernoho-povitria.html
15. Busso, A., Franco, J., Sogari, N., Cáceres, M. (2011). Attempt of integration of a small commercial ammonia-water absorption refrig- erator with a solar concentrator: Experience and results. Interna- tional Journal of Refrigeration, 34 (8), 1760–1775. doi: https://doi. org/10.1016/j.ijrefrig.2011.07.004
16. Gutiérrez, F. (1988). Behavior of a household absorption-diffusion refrigerator adapted to autonomous solar operation. Solar Energy, 40 (1), 17–23. doi: https://doi.org/10.1016/0038-092x(88)90067-9
17. Osadchuk, E. A., Titlov, A. S., Mazurenko, S. Yu. (2014). Determina- tion of power efficient operating conditions of absorption water-
ammonia refrigerating machine in the systems for obtaining water from atmospheric air. Refrigerating and accompanying technologies, 50 (4), 54–57. doi: https://doi.org/10.15673/0453-8307.4.2014.28054

18. Osadchuk, E., Titlov, A., Kuzakon, V., Shlapak, G. (2015). Development of schemes of pump and gasoline-pump absorption water-ammonia refrigeration machines to work in a system of water production from the air. Technology audit and production reserves, 3 (3 (23)), 30–37. doi: https://doi.org/10.15587/2312-8372.2015.4.41319

19. Osadchuk, E. A., Titlov, A. S., Vasylyv, O. B., Mazurenko, S. Yu. (2014). Poisk energeticheskikh efektivnostnykh rezhimov raboty absorbtsionnyh vodoammiachnyh holodil'noy mashin v sistemakh polucheniya vody iz atmosfernogo vozduha. Naukovi pratsi ONAKhIT, 1 (45), 65–69.

20. Gerhard, K. (1999). Pat. No. 57849 UA. Absorption cooling machine. No. 2001031479; declared: 03.09.1999; published: 15.07.2003, Bul. No. 7. Available at: https://upatents.com/7-57849-absorbcijnaya-kholodilnaya-mashina.html

21. Natural Refrigerants. Available at: https://www.linde-gas.com/en/products_and_supply/refrigerants/natural_refrigerants/index.html

22. Hobin, V. A., Titlova, O. A. (2014). Energoeffektivnoe upravlenie absorbtsionnymi holodil'nymi hakymi. Kherson: GruD, S. 216.

23. Truhaih, D. S. (1999). Poshuk enerhogerhauchnykh rezhymiv roboty absorbtsionnyh-dyfuzionnyh tekhniky na bazi unifikovannoi ADKhM. Naukovyi zhurnal NTsNTNT, 20, 229–234.

24. Osadchuk, Ye., Titlov, O. (2020). Search for energy efficient modes of systems operation for obtaining water from atmospheric air on the basis of absorption water-ammonia thermal transformers of heat and solar collectors. Refrigeration Engineering and Technology, 56 (3-4), 78–91. doi: https://doi.org/10.15673/ret.v563-4.1951

25. Titlov, A. S. (2008). Povyshenie energeticheskoy efektivnosti absorbtsionnyh holodil'nih pribov. Naukovyi pratsi ONAKhIT, 1 (34), 295–303.

26. Isechenko, I. M., Titlov, O. S. (2018). Improvement of regime parameters of water-absorbing ammonia refrigeration units operating in a wide range of ambient temperatures. Refrigeration Engineering and Technology, 54 (3), 10–20. doi: https://doi.org/10.15673/ret.v543.1096

27. Galimova, L. I. (1997). Absorbtsionnye holodil'nye mashiny i teplovye nasyosi: Astraehan’, 226.

28. Isechenko, I. N. (2010). Modelirovanie tsiklov nasosnyh i beznasosnyh absorbtsionnyh holodil'nih agregatov. Naukovyi pratsi ONAKhIT, 2 (38), 393–405.

29. Morozukh, T. V. (2006). Teorija holodil'nih mashin i teplovyh nasyosov: Odessa: Studija «Negotsiant», 712.

30. Mazouz, S., Mansouri, R., Bellaggi, A. (2014). Experimental and thermodynamic investigation of an ammonia/water diffusion absorption machine. International Journal of Refrigeration, 45, 83–91. doi: https://doi.org/10.1016/j.ijrefrig.2014.06.002

31. Jemaa, R. B., Mansouri, R., Boukholda, I., Bellaggi, A. (2016). Experimental investigation and exergy analysis of a triple fluid vapor absorption refrigerator. Energy Conversion and Management, 124, 84–91. doi: https://doi.org/10.1016/j.enconman.2016.07.008

32. Mansouri, R., Bourouis, M., Bellaggi, A. (2017). Experimental investigations and modelling of a small capacity diffusion-absorption refrigerator in dynamic mode. Applied Thermal Engineering, 113, 653–662. doi: https://doi.org/10.1016/j.applthermaleng.2016.11.078

33. Yildiz, A., Ersöz, M. A. (2013). Energy and exergy analyses of the diffusion absorption refrigeration system. Energy, 60, 407–415. doi: https://doi.org/10.1016/j.energy.2013.07.062

34. Ben Jemaa, R., Mansouri, R., Boukholda, I., Bellaggi, A. (2017). Experimental characterization and performance study of an ammonia–water–hydrogen refrigerator. International Journal of Hydrogen Energy, 42 (15), 8394–8401. doi: https://doi.org/10.1016/j.ijhydene.2016.06.150

35. Taib, A., Mej bri, K., Bellaggi, A. (2016). Detailed thermodynamic analysis of a diffusion-absorption refrigeration cycle. Energy, 115, 418–434. doi: https://doi.org/10.1016/j.energy.2016.09.002

36. Ersöz, M. A. (2015). Investigation the effects of different heat inputs supplied to the generator on the energy performance in diffusion absorption refrigeration systems. International Journal of Refrigera tion, 54, 10–21. doi: https://doi.org/10.1016/j.ijrefrig.2015.02.013

37. Jelinek, M., Levy, A., Borde, I. (2016). The influence of the evaporator inlet conditions on the performance of a diffusion absorption refrigeration cycle. Applied Thermal Engineering, 99, 979–987. doi: https://doi.org/10.1016/j.applthermaleng.2016.01.152

38. Srikhirin, P., Aphornratana, S. (2002). Investigation of a diffusion absorption refrigerator. Applied Thermal Engineering, 22 (11), 1181–1193. doi: https://doi.org/10.1016/s1359-4311(02)00489-2

39. Bogdanov, S. N., Burtsev, S. I., Ivanov, O. P., Kupriyanova, A. V. (1999). Holodil'naya tehnika. Konditsionirovanie vozduha. Sovjetv vveschestv. Sankt-Peterburg: SPbGATHT (Sankt-Peterburgskaya gosudarstvennaya akademii holoda i piscyevykh tehnologii), 320.

40. Osadchuk, E. A., Titlov, A. S. (2011). Analiticheskie zavisimosti dlya masovoobmen pri absorbtsii ammiaka vodoammiachnym rastvorom v vodoammiachnom smesi. Naukovyi pratsi ONAKhIT, 1 (39), 178–182.

41. Titlov, A. S., Vasylyv, O. B., Adambaev, D. B. (2018). Modeling of the manual non-stopped current modes of the liquid phase of the working body in the elements of absorption refrigerating devices. Refrigeration Engineering and Technology, 54 (3), 21–32. doi: https://doi.org/10.15673/ret.v543.1108

42. Ospov, Yu. V., Tret’yakov, N. P., Nekrasov, N. V. (1971). Teplo- i massoobmen pri absolzitsii ammiaka vodoammiachnym rastvorom iz vodoammiachnogo smesi. Holodil’naya tehnika, 9, 47–50.

43. Du, S., Wang, R. Z., Lin, P., Xu, Z. Z., Pan, Q. W., Xu, S. C. (2012). Experimental studies on an air-cooled two-stage NH3-H2O solar absorption air-conditioning prototype. Energy, 45 (1), 581–587. doi: https://doi.org/10.1016/j.energy.2012.07.041

44. Galimova, L. V., Vedeneeva, A. I. (2014). Scientific and practical foundations of removal of application to serving absorption water-ammonia chiller. Nanchnyi zhurnal NIU ITMO. Seriya «Holodil’naya tehnika i konditsionirovanie», 1. Available at: https://cyberleninka.ru/article/n/nauchno-prakticheskie-osnovy-protsessa-absorbtsii-s-primeneniem-k-deystvuyuschemu-absorbativnyh-vodoammiachnyh-holodilnyh-mashin

45. Kaynakli, O., Yaman Karadeniz, R. (2007). Thermodynamic analysis of absorption refrigeration system based on entropy generation. Current Science, 92 (4), 472–479.

DOI: 10.15587/1729-4061.2021.230211 DETERMINING THE THERMAL MODE OF BIO-BASED RAW MATERIALS COMPOSTING PROCESS IN A ROTARY-TYPE CHAMBER (pq. 41–52)

Gennadii Golub
National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-3388-0405

Ivan Grabar
Polissia National University, Zhytomyr, Ukraine
ORCID: https://orcid.org/0000-0002-7193-0690

Dmytro Derevyanko
Polissia National University, Zhytomyr, Ukraine
ORCID: https://orcid.org/0000-0003-1408-6274

Anna Holubenko
Polissia National University, Zhytomyr, Ukraine
ORCID: https://orcid.org/0000-0001-5018-5312
One of the promising methods to dispose of agricultural bio-based raw materials is to produce compost by aerobic fermentation in rotary chambers. High efficiency of the composting process is achieved when a proper temperature mode is maintained at each phase of the process. Changes in temperature are directly related to the effective transformation of organic substrates by microorganisms and are the reason for the low quality of produced compost in terms of its agrochemical and microbiological parameters.

It was established that a high-temperature regime is achieved on the condition that the amount of heat released during the bio-degradation of raw materials by microorganisms is greater than the heat loss associated with the substrate aeration and surface cooling. Therefore, the time during which the fermented mass remains warm depends entirely on the substrate’s physical-chemical characteristics, the parameters of the equipment, and the modes of its operation.

To describe the established conditions, based on the equation of thermal balance, a mathematical model has been built. The model relates the thermal costs necessary to maintain the optimal temperature regime of the process to the substrate’s moisture content and specific active heat generation, as well as to such an important thermal physical parameter of the chamber as the coefficient of heat transfer of the wall material.

A rotary chamber was manufactured to investigate the thermal mode of the bio-based raw materials composting process. It has been experimentally established that the chamber walls’ heat transfer coefficient of 1.6 W/(m²·°C), a value of the substrate’s specific active heat generation of 9.2 W/kg, and a moisture content of 58 % provide for the thermal needs for the process with the release of 140 MJ of excess heat.

The reported study could be the basis for the modernized methodology of thermal calculations of the bio-based raw materials composting process in closed fermentation chambers.

Keywords: heat transfer coefficient, specific active heat generation, substrate, composting, fermentation, rotary chamber.

References
1. Hemati, A., Aliasgharzad, N., Khakvar, R., Khoshmanzar, E., Asgari Lajayer, B., van Hullebusch, E. D. (2021). Role of lignin and thermophilic lignocellulolytic bacteria in the evolution of humification indices and enzymatic activities during compost production. Waste Management, 119, 122–134. doi: https://doi.org/10.1016/j.wasman.2020.09.042
2. Arora, S., Rani, R., Ghosh, S. (2018). Bioreactors in solid state fermentation technology: Design, applications and engineering aspects. Journal of Biotechnology, 269, 16–34. doi: https://doi.org/10.1016/j.jbiotec.2018.01.010
3. Jaramillo, A. C., Cubas, M., Hormaza, A., Sanromán, M. Á. (2017). Degradation of Adsorbed Azo Dye by Solid-State Fermentation: Improvement of Culture Conditions, a Kinetic Study, and Rotating Drum Bioreactor Performance. Water, Air, & Soil Pollution, 228 (6). doi: https://doi.org/10.1007/s11270-017-3389-2
4. Kauser, H., Pal, S., Haq, I., Khwairakpam, M. (2020). Evaluation of rotary drum composting for the management of invasive weed Mikania micrantha Kunth and its toxicity assessment. Bioresource Technology, 313, 123678. doi: https://doi.org/10.1016/j.biortech.2020.123678
5. Shikata, A., Sermsathanaswadi, J., Thiamheng, P., Baramee, S., Tachampaikoon, C., Waoonkul, R. et. al. (2018). Characterization of an Anaerobic, Thermophilic, Alkaliphilic, High Lignocellulosic Biomass-Degrading Bacterial Community, ISH-3, Isolated from Biocompost. Enzyme and Microbial Technology, 118, 66–75. doi: https://doi.org/10.1016/j.enmic.2018.07.001
6. Radziemska, M., Mazur, Z. (2015). Effect of compost from by-product of the fishing industry on crop yield and microelement content in maize. Journal of Ecological Engineering, 16, 168–175. doi: https://doi.org/10.29111/22990963/59378
7. Jiang, Z., Li, X., Li, M., Zhu, Q., Li, G., Ma, C. et. al. (2021). Impacts of red mud on lignin depolymerization and humic substance formation mediated by laccase-producing bacterial community during composting. Journal of Hazardous Materials, 410, 124557. doi: https://doi.org/10.1016/j.jhazmat.2020.124557
8. Duan, Y., Awasthi, S. K., Liu, T., Verma, S., Wang, Q., Chen, H. et. al. (2019). Positive impact of biochar alone and combined with bacterial consortium amendment on improvement of bacterial community during cow manure composting. Bioresource Technology, 280, 79–87. doi: https://doi.org/10.1016/j.biortech.2019.02.026
9. Liu, H., Wang, L., Lei, M. (2019). Positive impact of biochar amendment on thermal balance during swine manure composting at relatively low ambient temperature. Bioresource Technology, 273, 25–33. doi: https://doi.org/10.1016/j.biortech.2018.10.033
10. Wang, Y., Pang, L., Liu, X., Wang, Y., Zhou, K., Luo, F. (2016). Using thermal balance model to determine optimal reactor volume and insulation material needed in a laboratory-scale composting reactor. Bioresource Technology, 206, 164–172. doi: https://doi.org/10.1016/j.biortech.2016.01.097
11. Ahn, H. K., Richard, T. L., Choi, H. L. (2007). Mass and thermal balance during composting of a poultry manure – Wood shavings mixture at different aeration rates. Process Biochemistry, 42(2), 215–223. doi: https://doi.org/10.1016/j.procbio.2006.08.005
12. Smith, B. A. M., Eudoxie, G., Stein, R., Ramnaree, R., RagHAVAN, V. (2020). Effect of neem leaf inclusion rates on compost physico-chemical, thermal and spectroscopic stability. Waste Management, 114, 136–147. doi: https://doi.org/10.1016/j.wasman.2020.06.026
13. He, X., Han, L., Huang, G. (2020). Analysis of regulative variables on greenhouse gas emissions and spatial pore gas concentrations with modeling during large-scale trough composting. Journal of Cleaner Production, 277, 124066. doi: https://doi.org/10.1016/j.jclepro.2020.124066
14. Korolev, S. A., Maykov, D. V. (2012). Identification of a mathematical model and research of the various modes of methanogenesis in mesophilic...
15. Uvarov, R., Briukhanov, A., Spesivtsev, A., Spesivtsev, V. (2017). Mathematical model and operation modes of drum-type biofermenter. Proceedings of 16th International Scientific Conference “Engineering for Rural Development”. Jelgava, 1006–1011. doi: https://doi.org/10.22616/erdev2017.16.n212

16. Malakov, Yu. F., Sokolov, A. V. (2008). Model’ protsesa raboty ustroystva dlya pererabotki organicheskih othodov: Aktual’nye problemy nauki v APK: Materialy 59-y mezhdunarodnoy nauchno-prakticheskoy konференцii: Vol. 3. Kostroma: Izd. KGSHA, 166–169.

17. Irvine, G., Lamont, E. R., Antizar-Ladislao, B. (2010). Energy from Waste: Reuse of Compost Heat as a Source of Renewable Energy. International Journal of Chemical Engineering, 2010, 1–10. doi: https://doi.org/10.1155/2010/627930

18. Kaya, K., Ak, E., Yaslan, Y., Oktug, S. F. (2021). Waste-to-Energy Framework: An intelligent energy recycling management. Sustainable Computing: Informatics and Systems, 30, 100548. doi: https://doi.org/10.1016/j.suscom.2021.100548

19. Ghaly, A. E., Alkoaik, F., Snow, A. (2006). Thermal balance of invessel composting of tomato plant residues. Canadian Biosystems Engineering, 48, 6.1–6.11.

20. Bach, P. D., Nakasaki, K., Shoda, M., Kubota, H. (1987). Thermal balance in composting operations. Journal of Fermentation Technology, 65 (2), 199–209. doi: https://doi.org/10.1016/0385-6380(87)90165-8

21. Alkoaik, F., Abdel-Ghany, A., Rashwan, M., Fulleros, R., Ibrahim, M. (2018). Energy Analysis of a Rotary Drum Bioreactor for Composting Tomato Plant Residues. Energies, 11 (2), 449. doi: https://doi.org/10.3390/en11020449

22. Santos, D. A., Dadalto, F. O., Scatena, R., Duarte, C. R., Barrozo, M. A. S. (2015). A hydrodynamic analysis of a rotating drum operating in the rolling regime. Chemical Engineering Research and Design, 94, 204–212. doi: https://doi.org/10.1016/j.cherd.2014.07.028

23. Toundou, O., Pallier, V., Feuillade-Cathalifaud, G., Tizo, K. (2021). Impact of agronomic and organic characteristics of waste composts from Togo on Zea mays L. nutrients contents under water stress. Journal of Environmental Management, 285, 112158. doi: https://doi.org/10.1016/j.jenvman.2021.112158

24. Hryshchuk, Yu. S. (2008). Osnovy naukovykh doslidzhen. Kharkiv: NTU «KhPI», 232.

25. Mel’nikov, S. V., Atselkin, V. R., Roschin, P. M. (1980). Planirovanie eksperimenta v isledovaniyah sel’skohozyaystvennyh protsessov. Leningrad: Kolos, 168.

26. Krishna, C. (2005). Solid-State Fermentation Systems – An Overview. Critical Reviews in Biotechnology, 25 (1-2), 1–30. doi: https://doi.org/10.1080/07388550390925388
Розглянуто вдосконалення управління енергоспоживанням фотоелектричної системи з накопичувачем для локального об’єкта, підключеного до мережі. Метою дослідження є зниження витрат на оплату електроенергії, споживаної з мережі, при навантаженні об’єкта, що не залежить від пори року, і виключенні генерації енергії в мережу. Удосконалено алгоритм управління генерацією з формування ступеня заряду батареї протягом доби за даними прогнозу. Це дозволить знизити споживання електроенергії в нічний час при більш повному використанні енергії акумулятора і фотоелектричної батареї. Запропоновано використовувати автоматичне функционування з відключенням від мережі в години піків тарифів і вдень при достатній генерації фотоелектричної батареї. Це забезпечить нормальне функціонування об’єкта при можливому погіршенні якості напруги в мережі при зниженні втрат енергії в інверторі. Запропоновано використовувати автономний режим роботи в автономному режимі до 40 відсотків.

Ключові слова: перерозподіл енергії, ступінь заряду акумулятора, структура управління, предиктивний контроль, автономний режим, регулювання струму батареї, багатозонна тарифікація.

DOI: 10.15587/1729-4061.2021.230218

ВДОСКОНАЛЕННЯ МЕТОДІВ КОМПЛЕКСНОЇ ОЦІНКИ ЕФЕКТИВНОСТІ ЕКСПЛУАТАЦІЇ СИСТЕМ ЦЕНТРАЛІЗОВАНОГО ТЕПЛОПОСТАЧАННЯ В КОМУНАЛЬНІЙ ТЕПЛОЕНЕРГЕТИЦІ (с. 16–22)

І. Л. Козлов, В. І. Ковальчук, О. А. Климчук, К. О. Сова, І. М. Аксюнова, К. І. Борисенко

Розглянуто можливість комплексної оцінки ефективності експлуатації системи централізованого теплопостачання, заснованої на загальному показнику ефективності роботи обладнання OEE (overall equipment effectiveness) і поширення його на систему в цілому. Розрізненість спрямованості існуючих підходів в оцінці ефективності експлуатації систем централізованого теплопостачання не дозволяє оцінити загальну ефективність функціонування технологічної послідовності всієї системи.

Показано, що продуктивність котельних по теплової енергії пропорційна споживанню електроенергії котельних і апроксимується періодичною функцією.

Показано, що основним елементом системи теплопостачання, визначаючим її ефективність, є теплогенеруюче джерело.

Чисельне моделювання показало, що гнучке використання встановлених потужностей, тобто використання потужності котлів у режимі, близькому до оптимального, коефіцієнт продуктивності ділянки генерації тепла зростає від 0,53 до 0,70 і загальний показник ефективності системи теплопостачання від 0,44 до 0,59 можна підвищити більш ніж на 30 %.

Ключові слова: система теплопостачання, режими теплопостачання, центральні котельні, критерій ефективності, оцінки ефективності.

DOI: 10.15587/1729-4061.2021.229515

РОЗРОБКА МЕТОДУ ПІДВИЩЕННЯ ТОЧНОСТІ РОЗРАХУНКУ ПИТОМОЇ ВИТРАТІ ПАЛИВА ПРИ МОДЕЛЮВАННІ ХАРАКТЕРИСТИК ПОВІТРЯНО-РЕАКТИВНИХ ДВИГУНІВ (с. 23–30)

О. В. Кіслов, М. В. Амброжевич, М. А. Шевченко

Визначена питома витрата палива повітряно-реактивних двигунів є однією із задач математичного моделювання їх характеристик. Як правило, при розрахунку показників повітряно-реактивних двигунів похіба визначення питомої витрати палива більше ніж тяги. У даній роботі обґрунтовується, що це пояснюється похібкою визначення відносної витрати палива, яка слабко впливає на параметри потоку і тяги, але сильно – на питому витрату палива. Наявність істотної похибки відносної витрати палива пояснюється застосуванням спрощених методів, в яких використовується залежність ентальпії тільки від температури і складу смузи без урахування впливу тиску.

Розроблений метод підведення точності розрахунку питомої витрати палива повітряно-реактивних двигунів за-
снований на коригуванні величини відносної витрати палива в камері згоряння, яка отримана за допомогою існуючих математичних моделей. Коригування відносної витрати палива ґрунтується на використанні залежностей ентальпії від температури, тиску і складу суміші. Ентальпійні залежності розраховуються через середню ізобарну теплоємність, отриману за допомогою інтегрування дійсної ізобарної теплоємності, яка залежить від температури тиску і складу суміші. Верифікація точності розрахунку відносної витрати палива виконувалася шляхом порівняння з відомими експериментальними даними під час звичайного аеробного і біодеградації, а також з важливим теплофізичним параметром камери – коефіцієнтом теплопередачі матеріалу стінки.

Для проведених досліджень теплового режиму процесу компостування біосировини в обертових камерах виготовлено паяльну лампу «General Electric» (США). Середня похібка розрахунку відносної витрати палива не перевищує 3 %. За схемою розроблено методику коригування відносної витрати палива, яка використовується для досліджень величин відносної витрати палива в обертових камерах. Редуктор для розрахунку відносної витрати палива, який використовується для досліджень величин відносної витрати палива, запропонований використовувати за даними відносної витрати палива в обертових камерах (до середнього до 3 %).

Ключові слова: відносна витрата палива, питома витрата палива, аеробна ферментація, обертова реактивна двигун.

DOI: 10.15587/1729-4061.2021.229545

ПІДВИЩЕННЯ ЕНЕРГЕТИЧНОЇ ЕФЕКТИВНОСТІ СИСТЕМ ОТРИМАННЯ ВОДИ З АТМОСФЕРНОГО ПОВІТРЯ (с. 31–40)

Н. О. Біленко, О. С. Тітлов

Для часткового скорочення дефіциту води в посухливих регіонах планети показана перспектива отримання води з атмосферного повітря методом охолодження до температурі точки роси за допомогою холодильних машин. Для мінімізації енерговитрат в системах отримання води з атмосферного повітря запропоновано використовувати сонячну енергію, а в якості джерела штучного холода – холодильні абсорбційні агрегати (АХА).

Проведено аналіз характеристик термодинамічних процесів модернізованого АХА, здатного працювати при знижених температурах джерела теплої енергії. Визначено можливість зниження рівня температур джерела теплої енергії за рахунок виходу від ізотерми до складу схема АХА випарника розчинів. При аналізі був використаний оригінальний метод, заснований на розрахунках, з якіх випливає можливість розрахунку рівня температур джерела теплої енергії від повітряно-сиринговому теплоносії. Випарники АХА з адіабатних випарником розчину може працювати в складі систем роботи води з атмосферного повітря.

Проведено моделювання процесів тепло- і масообміну при контактній взаємодії парогазової суміші і водноаміачного розчину. На основі варіантних розрахунків показано, що запропонована конструкція АХА з адіабатних випарником розчину може працювати в складі систем роботи води з атмосферного повітря при температурах джерел теплої енергії від 100 °C і в інтервалі зміни температури джерел теплої енергії від 100 до 100 °C.

Проведено аналіз характерних термодинамічних процесів модернізованого АХА, здатного працювати при зменшенні температури джерела теплої енергії від повітряно-сиринговому теплоносії. Випарники АХА з адіабатних випарником розчину може працювати в складі систем роботи води з атмосферного повітря.

Ключові слова: вода з атмосферного повітря, холодильні машини, абсорбція холодильні агрегати, сонячна енергія.

DOI: 10.15587/1729-4061.2021.230211

ВИЗНАЧЕННЯ ТЕПЛОВОГО РЕЖИМУ ПРОЦЕСУ КОМПОСТУВАННЯ БІОСИРОВИНИ В КАМЕРІ ОБЕРТОВОГО ТИПУ (с. 41–52)

Г. А. Голуб, Г. А. Голубенко, О. В. Медведенський, В. В. Чуба, Т. О. Білько, О. О. Соларьов, І. Г. Грабар, Д. А. Дерев’янко

Одним з перспективних методів утилізації сільськогосподарської біосировини є виробництво компостів шляхом аеробної ферментації за допомогою обертових камер. Висока ефективність процесу компостування досягається при умові забезпечення належного температурного режиму на кожній з фаз процесу. Зміни температури і залежності відносної витрати палива в камері згоряння, яка отримана за допомогою існуючих математичних моделей, визначають відносною витрату палива в камерах згоряння, яка отримана за допомогою існуючих математичних моделей.

Встановлено, що високий температурний режим досягається при умові забезпечення належного температурного режиму на кожній з фаз процесу. Зміни температури і залежності відносної витрати палива в камерах згоряння, яка отримана за допомогою існуючих математичних моделей, визначають відносною витрату палива в камерах згоряння, яка отримана за допомогою ісуючих математичних моделей. Запропоновано використовувати два типи джерела теплої енергії для роботи АХА: У тропічному кліматі – з вакуумними концентраторами або концентраторами сонячної енергії, а в зоні помірного клімату – з концентраторами або концентраторами сонячної енергії.

Ключові слова: вода з атмосферного повітря, холодильні машини, абсорбція холодильні агрегати, сонячна енергія.

DOI: 10.15587/1729-4061.2021.230211