CORRELATION OF GLYCOSYLATED HEMOGLOBIN LEVELS WITH AUDITORY AND VISUAL REACTION TIME IN DIABETICS

Shweta Patil, Sangita Phatale, Basavaraj Malipatil

DOI: https://doi.org/10.32345/2664-4738.3.2021.05
UDC: 616.379-008.64

Relevance. Diabetes mellitus is a group of metabolic disorders wherein hyperglycemia occurs either due to lack of insulin secretion and/or reduced insulin sensitivity of the tissues. One of the commonest complications of diabetes is neuropathy and its severity will depend on how long and how high the hyperglycemia has been prevalent. Chronic hyperglycemia in diabetes affects the peripheral nerves and slows psychomotor responses in persons who do not have proper glycemic control. This decreased psychomotor response because of improper glycemic control affects the reaction time in diabetics.

Objective: to assess and compare the auditory and visual reaction time in group-1 and group-2 diabetics and to correlate it with glycosylated hemoglobin (HbA1c) levels in both the groups.

Methods. The study was conducted on 60 subjects aged between 40-50 years after obtaining the permission of the ethical committee of our institution. The group consisted of 60 well controlled diabetic patients (HbA1c < 7%) with history of diabetes for 1-10 years attending the medical OPD of Basaveshwar teaching and general hospital, Gulbarga. Diabetics with HbA1c 5-6% were grouped as group-1 and those with HbA1c 6-7% as group 2. The visual reaction time for green and red light and auditory reaction time for tone and click sound was measured by using reaction time apparatus 2x4, Anand agencies Pune. HbA1c was done by micro-column method.

Results. The visual and auditory reaction time of diabetics with HbA1c 5-6% was faster as compared to the diabetics with HbA1c 6-7% with P< 0.001 and a statistically significant positive correlation was found between HbA1c levels and the visual and auditory reaction time.

Conclusion. Poor glycemic control slows psychomotor responses and thus affects the visual and auditory reaction time.

Key words: Diabetes, Hyperglycemia, Glycemic control, Reaction time, HbA1c, Diabetic Neuropathy.
Peripheral nerve dysfunction have been excluded. The incidence of DN in India is not well known but a study from South India showed that 19.1% type II diabetic patients had peripheral neuropathy [6]. One of the commonest causes of peripheral neuropathy is DN and it requires more frequent hospitalisation than any other complications of diabetes. It is also one of the commonest causes of non-traumatic amputation. All types of diabetic patients—insulin dependent diabetes mellitus (IDDM), noninsulin dependent diabetes mellitus (NIDDM), and secondary diabetic patients—can develop neuropathy. The prevalence of diabetic neuropathy varies in various studies due to inconsistency in the definition of neuropathy. The best data regarding prevalence of neuropathy came from the extensive study of nearly 4400 clinic patients undertaken by Pirart. According to his study the prevalence rate of DN ranges from 7% to 50% depending on the duration of diabetes, with 7% within one year of diagnosis to 50% for those with more than 25 years of diabetes. Males were more affected than females. The risk for the complication of neuropathy increases with increasing duration and severity of hyperglycemia.

The development of diabetic neuropathy is probably due to vascular lesions and it was first considered in 1893 and was supported by the pathologic studies of Wolpert and Wolder in 1929. They concluded that “atherosclerosis of nutrient vessel of the nerve plays a leading part in the production of diabetic neuritis”.

Pathogenesis of diabetic neuropathy is multifactorial. Pathologic changes inherent to neurons caused by hyperglycemia [7] and ischemic damage to the neurons caused by decreased neurovascular blood flow [8] both factors are responsible. Because of these vascular elements, diabetic neuropathy is considered to be a microvascular complication.

Chronic hyperglycemia in diabetes affects peripheral nerves in the somato-sensory system. It also slows psychomotor responses in those individuals without proper glycemic control, which may affect reaction time.

Reaction time (RT) is the elapsed time between the presentation of a sensory stimulus and the subsequent behavioral response. Different types of stimuli can be tried to elicit a particular response such as light, sound, etc. The measure of reaction time has been used to evaluate the processing speed [9] of Central Nervous System, the co-ordination between the sensory and motor systems [10] and performance of an individual.

Glycosylated hemoglobin is widely accepted and the most reliable test for assessing glycemic control. Persistent hyperglycemia causes non-enzymatic glycosylation of polypeptides and proteins, including hemoglobin. Of all the Glycosylated form of hemoglobin, HbA1c is the most stable, more than 80 per cent of the Glycosylated form is HbA1c. Glycosylated hemoglobin is an index of long-term blood glucose concentrations and it also helps to assess the risk for the development of complications in patients with diabetes mellitus [11].

Lowering of HbA1c reduces the risk of neuropathic, microvascular and possibly macrovascular complications of diabetes [12]. So strict glycemic control is important in delaying the onset and progression of microvascular complications of diabetes including neuropathy. Hence, it is recommended that HbA1c testing be used as a preventive measure to reduce morbidity and mortality due to complications of diabetes in the community.

Diabetic neuropathy is the most common complication in diabetes, chronic hyperglycemia being the important cause for it. Studies with comparison between diabetic patients and control groups have been done, our study involves only the controlled diabetic patients in order to highlight the importance of glycemic control in reducing the morbidity and mortality in diabetics due to neuropathy. The current study is done by measuring the auditory and visual reaction time, and HbA1c. The auditory and visual reaction time is correlated with HbA1c levels.

Objective: to assess and compare the auditory and visual reaction time in group-1 and group-2 diabetics and to correlate it with HbA1c levels in both the groups.

METHODS

After obtaining the permission from the ethical committee of our institution (M R medical college, Gulbarga) the study was conducted on 60 subjects aged between 40-50 years. The group consisted of 60 well controlled diabetic patients (HbA1c < 7%) with history of diabetes for 1-10 years attending the medical OPD of Basaveshwar teaching and general hospital, Gulbarga. Diabetics with HbA1c 5-6% were grouped as group-1 and those with HbA1c 6-7% as group 2. Diabetics with auditory or visual disturbance, Alcoholics, hypertensives, smokers, Clinical evidence of peripheral neuropathy, Muscle weakness, myopathy, Mental or psychological disorders, Neurovascular complications, any pathology or injury to the upper limb and Clinical evidence of any other illnesses which effect the reaction time were excluded from the study.

HbA1c is done by micro column method which contains a pre-weighted amount of resin equilibrated with phosphate buffer 72mmol/L, pH 6.5. Sodium azide 0.95g/L. After preparing the hemolysate, where the labile fraction is eliminated. HbA1c is specifically eluted after washing away the HbA1a+b fraction and is quantified by direct photometric reading at 415 nm.

The Auditory and visual reaction time was measured using reaction time apparatus. This apparatus is a portable research reaction timer with 2 response choices. It has an inbuilt chronoscope—4 digit chronoscope with least count of 1/1000 seconds and works on 230 volts AC. The apparatus has two sides, one ‘S’s (Subject) and the other ‘E’s (Examiner). There are 4 keys, and 4 selector switches on ‘E’s side for selecting ‘S’s left or right key. When the key marked green light is pressed on the ‘E’s side ‘S”
will see the same on his side. Similarly, for the red light, buzzer and click. The push button on E’s side rings the bell. This is a signal for S to press the right or left key as selected by E with the selector switch. Then E presses any of the keys giving the required stimulus. The stimulus key is double key. It gives the stimulus and also starts the chronoscope. As soon as the stimulus is received S lifts his finger from the right or left key. This stops the chronoscope and thus reaction time to any of the stimuli is obtained. All the subjects are thoroughly acquainted with apparatus and 3 readings were taken after practice trials for 4 stimuli i.e; Red and Green colour for visual reaction time, Tone and Click for Auditory reaction time. Reaction time was recorded using the dominant hand.

Statistical method used: Student t test and Pearson’s correlation co-efficient were used wherever appropriate to analyse the data. P Value <0.001 – Highly Significant, P Value <0.01 – Moderately significant. P Value <0.05 – Significant, P Value >0.05 – Not Significant.

RESULTS AND DISCUSSION

Table-1 and Figure-1 depict comparison of VRT and ART with HbA1c levels in diabetics. The table shows that the VRT for green and red light stimuli and ART for tone and click sound stimuli is prolonged in group-2 diabetics than in group-1 diabetics with P<0.001 which is statistically extremely significant.

Table-2 shows significant positive correlation with P<0.001 between HbA1c 5-6% and visual green light and a significant positive correlation with auditory click sound reaction times P value being< 0.05.

Table 1

Reaction Time, msec	Group-1	Group-2	t-test	P-Value
Visual				
Green	0.199±0.014	0.2445±0.021	t=11.37	P<0.001
Red	0.214±0.009	0.2442±0.023	t=6.04	P<0.001
Auditory				
Tone	0.174±0.0129	0.203±0.0144	t=7.38	P<0.001
Click	0.170±0.0073	0.1992±0.0166	t=8.78	P<0.001

Table 2

Reaction time, msec	Correlation coefficient, (R)	P-Value
Visual		
Green	0.662	P<0.001
Red	0.295	P>0.05
Auditory		
Tone	0.356	P>0.05
Click	0.428	P<0.05
Table 3 shows highly significant correlation between HbA1c 6-7% and visual green and red light and auditory tone and click sound reaction times.

In our study, we found that diabetics with HbA1c 5-6% performed better than diabetics with HbA1c 6-7% with a significant positive correlation between HbA1c levels and visual and auditory reaction time. Improper glycemic control reduces psychomotor efficiency, motor speed and attention. The enzyme aldose reductase is activated by the intracellular hyperglycemia which in turn increases the formation of sorbitol. Thus, sorbitol gets accumulated. It is neurotoxic and reduces the Na-K ATPase activity of the cell. As a result of uncontrolled hyperglycemia, the sodium-dependent myo-inositol uptake is competitively inhibited. It is hypothesized that this decreased uptake leads to the decreased concentration of myo-inositol in peripheral nerves and also decrease in the sodium potassium ATPase activity which leads to decrease in nerve conduction.

Longstanding hyperglycemia causes an increased flux of the polyol pathway, enhanced advanced glycation end-products formation, excessive release of cytokines, activation of protein kinase C and exaggerated oxidative stress all of which leads to peripheral nerve injury. Extremely long axons which originate in the small neuronal body are more likely to be affected on their most distal side because of malnourishment axonal support or environmental insults. Deficient vascular supply with impaired autoregulation is the most likely cause of hypoxic damage in the nerve. Such effects caused by long-term hyperglycemia are critical for peripheral nerve damage, resulting in distal-predominant nerve fiber degeneration. The axonal degeneration of both the myelinated and unmyelinated fibers, axonal shrinkage, thickening of the basement membrane and microthrombi are responsible for delayed motor nerve conduction and hence, the increased reaction time.

The DCCT has documented that there is a direct relation between blood glucose concentrations as measured by HbA1c and the risk of complications. The risk of microvascular complications varies continuously with HbA1c concentration below which risk is eliminated. Analogous correlations between HbA1c and complications were observed in patients with diabetes type 2 mellitus in the UKPDS trial. Each 1% reduction in HbA1c (e.g. from 8% to 7%) was associated with risk reduction of 37% for micro vascular complications. An increase of 1% in HbA1c was associated with a 28% increase in the risk of death [13]. Based on the DCCT and UKPDS the ADA recommends that a primary treatment goal in adults with diabetes should be near-normal glycemia with HbA1c less than 7%.

Graf RJ et al. found baseline HbA1c levels correlated with the incidence of peripheral neuropathy. But study by Susenko et al. found no correlation between HbA1c levels and peripheral neuropathy. In a study by Padilla-Medina JA et al, the diabetic patients simple reaction times (SRT) were an average 24% longer than the reaction time in non-diabetic group and a significant average difference of 41% was obtained in choice reaction time studied through performance indexes (d’). A positive correlation of 0.6594 between the duration of diabetes and SRT of diabetic patients was obtained [14, 15]. On the contrary, Dey J et al, found no correlation between the duration of diabetes and cognitive function in those with NIDDM less than 18 years. S Venkataraman, V S Ganesan and others found that a reduction in the glycemic levels from the hyperglycemic range resulted in a significant improvement in VRT, one of the indices of cognitive skills routinely performed in diabetic subjects.

The study conducted by Christoper M Ryan and Theresa M Williams to examine learning and memory processes in a group of 82 younger adults with a long-standing history of childhood-onset IDDM, showed that they performed worse on measures of psychomotor efficiency, with degree of chronic hyperglycemia being the best predictor of psychomotor slowing.

Clarrisa Smith Holmes et al, found that the rapid motor responses following a visual stimulus was delayed in diabetic subjects at extremes of glucose levels compared to euglycemic state. Paradoxically, Flender and Lifshitz observed improved fine motor coordination at elevated blood glucose levels. Franklin GM, Kahan LB, Baxter J, Marshall JA, Hamman RE found neuropathy to be significantly associated with duration of diabetes, glycemic control, age, height and male gender.

Limitations. The major drawback of our study is that we have examined only auditory and visual reaction time for demonstrating correlation between HbA1c levels and neuropathy. Since auditory and visual reaction time can be affected by so many other factors it is practically impossible to exclude all of them in these patients. Hence, additional pathological and functional tests have to be done in order to substantiate the mechanisms responsible.
for the differences in auditory and visual reaction time that we have seen in these two groups.

CONCLUSION

We found a positive correlation between HbA1c levels and visual and auditory reaction times in our study. This shows that poor glycemic control slows psychomotor responses. We conclude our study with the observation that, glycemic control (HbA1c levels) affects the visual and auditory reaction time in diabetics.

REFERENCES

1. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care. 2004; 27 (5): 1047-53. DOI: 10.2337/diacare.27.5.1047
View at: Publisher Site: https://care.diabetesjournals.org/content/27/5/1047

2. PubMed: https://pubmed.ncbi.nlm.nih.gov/15111519/
The Diabetes Atlas. Ninth Edition. Brussels: International Diabetes Federation, 2019.
View at: Publisher Site: https://idf.org/e-library/epidemiology-research/diabetes-atlas.html
URL: https://www.diabetesatlas.org/upload/resources/material/20200302_133351_IDFATLAS9e-final-web.pdf

3. Joshi SR, Parikh RM. India – diabetes capital of the world: now heading towards hypertension. J Assoc Physicians India. 2007;55:323-4.
View at: Publisher Site: https://www.japi.org/t2f45494-
diabetes-capital-of-the-world-now-heading-towards-hypertension
PubMed: https://pubmed.ncbi.nlm.nih.gov/17844690/

4. Kumar A, Goel MK, Jain RB, Khanna P, Chaudhary V. India towards diabetes control: Key issues. Australas Med J. 2013;6(10):524-31. DOI: 10.4066/AMJ.2013.1791
View at: PubMed: https://pubmed.ncbi.nlm.nih.gov/24223071/
PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3821052/

5. Brownlee M. The pathobiology of diabetic complications. A unifying mechanism. Diabetes. 2005; 54(6):1615-25. DOI: 10.2337/diabetes.54.6.1615
View at: Publisher Site: https://diabetes.diabetesjournals.org/content/54/6/1615
PubMed: https://pubmed.ncbi.nlm.nih.gov/15919781/

6. Ashok S, Ramu M, Deepa R, Mohan V. Prevalence of neuropathy in type 2 diabetes patients attending diabetes center in South India. J Assoc Physicians India. 2002; 50: 546-50.
View at: PubMed: https://pubmed.ncbi.nlm.nih.gov/12164406/

7. Eichberg J. Protein kinase C changes in diabetics: is the concept relevant to neuropathy? Int rev neurobiol. 2002; 50:61-82. DOI: 10.1016/s0077-7742(02)50073-8
View at: Publisher Site: https://www.sciencedirect.com/science/article/pii/S0074774202000738?via%3Dihub
PubMed: https://pubmed.ncbi.nlm.nih.gov/12198821/

8. Sugimoto K, Murakawa Y, Sima AA. Diabetic neuropathy-A continuing enigma. Diabetes Metab Res Rev. 2000; 16(6):408-33. DOI: 10.1002/1520-7560(200011/12)16:6<408::AID-DMRR158>3.0.CO;2-R
View at: Publisher Site: https://onlinelibrary.wiley.com/doi/10.1002/1520-7560(200011/12)16:6<408::AID-DMRR158>3.0.CO;2-R
PubMed: https://pubmed.ncbi.nlm.nih.gov/11114101/

9. Jensen A. Clocking the mind: Mental chronometry and individual differences. Amsterdam: Elsevier, 2006. – 286 p.
View at: Publisher Site: https://www.elsevier.com/books/clocking-the-mind/jensen/978-0-08-044939-5
URL: https://lesacreduprintemps19.files.wordpress.com/2012/11/clocking-the-mind-mental-chronometry-and-individual-differences.pdf

10. Venkatesh D, Rmamachandra DL, Baboo NS, Rajan BK. Impact of psychological stress, gender and color on visual response latency. Indian J Physiol Pharmacol. 2002;46(3):333-7.
View at: PubMed: https://pubmed.ncbi.nlm.nih.gov/12613397/

11. Goldstein DE, Little RR, Lorenz RA, Malone JI, Nathan D, Charles M, Peterson CM, Sacks DB. Tests of glycemia in diabetes. Diabetes care. 2004; 27(7):1761-73. DOI: 10.2337/diarec.27.7.1761
View at: Publisher Site: https://care.diabetesjournals.org/content/27/7/1761
PubMed: https://pubmed.ncbi.nlm.nih.gov/15220264/

12. American Diabetes Association. Standards of Medical Care in Diabetes – 2014. Diabetes Care. 2014; 37 (Suppl. 1): S14-S80. DOI: 10.2337/dc14-S014.
View at: Publisher Site: https://care.diabetesjournals.org/content/37/Supplement_1/S14
PubMed: https://pubmed.ncbi.nlm.nih.gov/24357209/

13. Khaw KT, Wareham N, Luben R, Bingham S, Oakes S, Welch A, Day N. Glycated hemoglobin, diabetes, and mortality in men in Norfolk cohort of European prospective investigation of cancer and nutrition (EPIC-NORFOLK). BMJ. 2001; 322(7277):15-8. DOI: 10.1136/bmj.322.7277.15
View at: Publisher Site: https://bmj.com/research
PubMed: https://pubmed.ncbi.nlm.nih.gov/1114143/
PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC26599/

14. Padilla-Medina JA, Prado-Olivarez J, Amador-Licona N, Cardona-Torres LM, Galicia-Resendiz D, Diaz-Carmona J. Study on simple reaction and choice times in patients with type I diabetes. Comput Biol
CORRELATION OF GLYCOSYLATED HEMOGLOBIN LEVELS WITH AUDITORY AND VISUAL REACTION TIME IN DIABETICS

Med. 2013 May 1; 43(4):368-76. DOI: 10.1016/j.compiomed.2013.01.010
View at: Publisher Site: https://www.sciencedirect.com/science/article/abs/pii/S0010482513000243?via%3Dihub
PubMed: https://pubmed.ncbi.nlm.nih.gov/23402936/
16. Sanchez-Marin FJ, Padilla-Medina JA. Simple reaction times and performance in the detection of visual stimuli of patients with diabetes. Comput Biol Med. 2010 Jun; 40(6):591-6. DOI: 10.1016/j.compiomed.2010.04.003

ВЗАЄМОЗВ'ЯЗОК РІВНЯ ГЛІКОЗИЛЬОВАНОГО ГЕМОГЛОБІНУ І ЧАСУ СЛУХОВОЇ ТА ЗОРОВОЇ РЕАКЦІЙ ПРИ ДІАБЕТЕ

1Швета Патіл, 2Сангіта Фатале, 3Басаваратх Маліпатіл
1 Медичний коледж імені С. Ніджлінгпаппи та лікарня Ханагал Шрі Кумарешвар, Багалкот, Карнатака, Індія
2 Медичний коледж місії Махатми Ганді, Аурангабад, Махараджа, Індія
3 Медичний коледж Махадеваппі Рампуре, Гулбарга, Карнатака, Індія
patilshw@gmail.com

Актуальність. Цукровий діабет є групою метаболічних порушень, при яких гіперглікемія виникає або через недостатній секреції інсуліну, або через зниження чутливості тканин до інсуліну. Одним з найбільш поширених ускладнень діабету є нейропатія, і її тяжкість буде залежати від ступеня і тривалості гіперглікемії. Хронічна гіперглікемія при діабеті призводить до ураження периферичних нервів і уповільнює швидкість реакції у людей, у яких відсутній належний глікемічний контроль. Зниження психомоторної реакції через недостатність глікемічного контролю впливає на час реакції у діабетіків.

Ціль: оцінити і порівняти час слухової і зорової реакцій у хворих на діабет в групах 1 та 2, і провести кореляцію з рівнем глікозильованого гемоглобіну (HbA1c) в обох групах.

Методи. Дослідження проводилося за участью 60 осіб у віці від 40 до 50 років після отримання дозволу етичного комітету нашого інституту. Група складалась з 60 пацієнтів з добре контролюваним діабетом (HbA1c <7%) в анамнезі від 1 до 10 років, які відвідували медичний центр OPD в Басаешвар, Гулбарга. Пацієнти з рівнем гемоглобіну HbA1c 5-6% були згруповані в групу 1, а пацієнти з HbA1c 6-7% - до групи 2. Час зорової реакції на зелений і червоний світло, і час слухової реакції на звук і клапанували за допомогою приладу визначення часу реакції 2x4, Anand agencies Pune. HbA1c визначали методом мікроколонки.

Результати. Час зорової та слухової реакцій у хворих на діабет групи 1 (HbA1c 5-6%) було швидше P <0,001 у порівнянні з хворими групи 2 (HbA1c 6-7%). Також була виявлена статистично значуща позитивна кореляція між рівнем HbA1c і часом зорової та слухової реакцій.

Висновки. Поганий глікемічний контроль уповільнює швидкість реакції і таким чином впливає на час зорової та слухової реакцій.

Ключові слова: діабет, гіперглікемія, глікемічний контроль, час реакції, HbA1c, діабетична нейропатія.

ВЗАЙМОСВЯЗЬ УРОВНЯ ГЛІКОЗИЛИРОВАННОГО ГЕМОГЛОБИНА И ВРЕМЕНИ СЛУХОВОЙ И ЗРИТЕЛЬНОЙ РЕАКЦИИ ПРИ ДИАБЕТЕ

1Швета Патил, 2Сангита Фатале, 3Басаварджа Малипатил
1 Медицинский колледж С. Ниджлингаппа и больница Ханагал Шри Кумарешвар, Багалкот, Карнатака, Индия
2 Медицинский колледж миссии Махатмы Ганди, Аурангабад, Махараджа, Индия
3 Медицинский колледж Махадеваппы Рампуре, Гулбарга, Карнатака, Индия
patilshw@gmail.com

Актуальность. Сахарный диабет представляет собой группу метаболических нарушений, при которых гипергликемия возникает либо из-за недостаточной секреции инсулина, либо из-за снижения чувствительности тканей к инсулину. Одним из наиболее распространенных осложнений диабета является нейропатия, и ее тяжесть будет зависеть от степени и продолжи-
тельности гипергликемии. Хроническая гипергликемия при диабете приводит к поражению периферических нервов и замедляет психомоторные реакции у людей, у которых отсутствует надлежащий гликемический контроль. Снижение психомоторной реакции из-за недостаточности гликемического контроля влияет на время реакции у диабетиков.

Цель: оценить и сравнить время слуховой и зрительной реакций у больных диабетом в группах 1 и 2, и провести корреляцию с уровнем гликозилированного гемоглобина (HbA1с) в обеих группах.

Методы. Исследование проводилось с участием 60 человек в возрасте от 40 до 50 лет после получения разрешения этического комитета нашего института. Группа состояла из 60 пациентов с хорошо контролируемым диабетом (HbA1с <7%) в анамнезе от 1 до 10 лет, посещавших медицинский центр OPD в Басаешвар, Гулбарг. Пациенты с уровнем гемоглобина HbA1с 5-6% были сгруппированы в группу 1, а пациенты с HbA1с 6-7% - в группу 2. Время зрительной реакции на зеленый и красный свет, и время слуховой реакции на звук и щелчок измеряли с помощью прибора определения времени реакции 2x4, Anand agencies Pune. HbA1с определяли методом микроколонки.

Результаты. Время зрительной и слуховой реакций у больных диабетом группы 1 (HbA1с 5-6%) было быстрее P <0,001 по сравнению с больными группы 2 (HbA1с 6-7%). Также была обнаружена статистически значимая положительная корреляция между уровнем HbA1с и временем зрительной и слуховой реакций.

Выводы. Плохой гликемический контроль замедляет психомоторные реакции и таким образом влияет на время зрительной и слуховой реакций.

Ключевые слова: диабет, гипергликемия, гликемический контроль, время реакции, HbA1с, диабетическая нейропатия.