Direct measurement of resonances in $^7\text{Be}(\alpha, \gamma)^{11}\text{C}$ relevant to νp–process nucleosynthesis

A. Psaltis, ¹,², *, A.A. Chen, ¹,² R. Longland, ³,⁴ D.S. Connolly, ⁵,¹ C.R. Brune, ⁶ B. Davids, ⁵,⁷ J. Fallis, ⁸ R. Giri, ⁶ U. Greife, ² D.A. Hutchison, ² L. Kroll, ¹,² A. Lennartz, ⁵ J. Liang, ¹,¹ M. Lovely, ⁹ M. Luo, ¹⁰ C. Marshall, ³,⁴, ⁸ S.N. Paneru, ⁶,⁷ A. Parikh, ¹¹ C. Ruiz, ⁵,¹² A.C. Shotton, ¹³ and M. Williams ⁵,¹⁴

¹ Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
² The NuGrid collaboration https://wugrid.github.io/
³ Department of Physics, North Carolina State University, Raleigh, NC, 27695, USA
⁴ Triangle Universities Nuclear Laboratory, Duke University, Durham, NC, 27710, USA
⁵ TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
⁶ Department of Physics & Astronomy, Ohio University, Athens, Ohio 45701, USA
⁷ Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
⁸ North Island College, 2300 Ryan Rd, Courtenay, BC V9N 8N6, Canada
⁹ Department of Physics, Colorado School of Mines, Golden, Colorado 80401, USA
¹⁰ Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
¹¹ Department de Física, Universitat Politècnica de Catalunya, E-08036 Barcelona, Spain
¹² Department of Physics & Astronomy, University of Victoria, Victoria, BC V8W 2Y2, Canada
¹³ School of Physics, University of Edinburgh EH9 3JZ Edinburgh, United Kingdom
¹⁴ Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom

We have performed the first direct measurement of two resonances of the $^7\text{Be}(\alpha, \gamma)^{11}\text{C}$ reaction with unknown strengths using an intense radioactive ^7Be beam and the DRAGON recoil separator. We report on the first measurement of the 1155 and 1110 keV resonance strengths of reactions, the reaction flow proceeds to core-collapse supernovae (νp–process). We find no effect of the new, constrained reaction rate on νp–process nucleosynthesis. The mentioned scenario has been proposed as a possible production mechanism for the light p–nuclei, a subset of the around 35 neutron deficient nuclei with $A \geq 74$ [8-10]. At first, the ejected material from the proto–neutron star (PNS) is very hot and consists mainly of protons and neutrons, with an excess of the former, since $Y_e > 0.5$. Expansion causes the ejecta to cool down and $Z = N$ nuclei are assembled – mainly ^{56}Ni and ^{4}He – via the Nuclear Statistical Equilibrium (NSE). At $T \sim 3$ GK, the excess of protons interacts with the electron antineutrinos that are streaming from the PNS, producing a small amount of neutrons, which can be immediately captured by ^{56}Ni. By a series of (n, p) and (p, γ) reactions, the reaction flow proceeds to heavier nuclei, until the ejecta temperature falls to $T \sim 1.5$ GK, where the (p, γ) reactions freeze–out due to the Coulomb barrier.

The aforementioned scenario has been proposed as a possible production mechanism for the light p–nuclei, a subset of the around 35 neutron deficient nuclei with $A \geq 74$, which cannot be synthesized by either the s– or the r–process [11, 12]. In particular, $^{92,94}\text{Mo}$ and $^{96,98}\text{Ru}$ that are underproduced in the astrophysical γ–process [13], could be synthesized via the νp–process. Furthermore, the νp–process could also explain the high abundance of Sr, Y and Zr relative to Ba in metal–poor stars and has been proposed as a candidate of the light–element primary process (LEPP) [6, 14].

Despite its successes, the νp–process exhibits many uncertainties that have already been identified since it was first proposed. Its efficiency strongly depends on the characteristics of the neutrino–driven wind (e.g. electron fraction Y_e and entropy s) and the underlying nuclear physics input (e.g. reaction rates and Q values) [6, 15, 16].

One of the most important reactions affecting the nu-
cleosynthesis output of the νp–process is the triple–α reaction, which controls the relative abundances of protons, α–particles, and 56Ni seed nuclei before the onset and during the νp–processing [16]. In particular, a high rate of the triple–α reaction decreases the efficiency of the νp–process since it creates more seed nuclei, acting as a “proton poison” by decreasing the ratio of neutrons to seed nuclei, Δ_ν. However, Wanajo et al. [15] identified a couple of two–body breakout reaction sequences between $A < 12$ (pp–chain region) and $A \geq 12$ (CNO region) that can have a similar effect to the triple–α reaction and compete with it in the temperature range of the νp–process, namely $7^\text{Be}(\alpha, \gamma)^{11}\text{C}(\alpha, p)^{14}\text{N}$ and $^{7}\text{Be}(\alpha, p)^{10}\text{B}(\alpha, p)^{13}\text{C}$. The most important reaction for each sequence is $7^\text{Be}(\alpha, \gamma)^{11}\text{C}$ and $^{10}\text{B}(\alpha, p)^{13}\text{C}$ respectively, and for this reason they were included in a nucleosynthesis sensitivity study by Wanajo et al. [15]. Their results suggest that species with $90 < A < 110$ are sensitive to variations of the $7^\text{Be}(\alpha, \gamma)^{11}\text{C}$ reaction rate. Their abundances can vary up to an order of magnitude when varying the $7^\text{Be}(\alpha, \gamma)^{11}\text{C}$ reaction rate by factors between 0.1 and 10, and for this reason it needs to be well constrained experimentally.

In the relevant energy region for νp–process nucleosynthesis there are three experimental studies of the $7^\text{Be}(\alpha, \gamma)^{11}\text{C}$ reaction [17–19]. The two low–lying resonances at $E_r = 561$ and 876 keV were studied by Hardie et al. [17] in forward kinematics using a radioactive 7^Be target and their strengths were measured. For the $E_r = 1110$ and 1155 keV resonances Wiescher et al. [18] used the $^{10}\text{B}(p, \gamma)^{11}\text{C}$ reaction and calculated their Γ_{γ}/Γ from the cross section ratio $\sigma_{(p, \gamma)}/\sigma_{(p, \alpha)}$, but their strengths remain unknown. The most recent relevant study was performed by Yamaguchi et al. [19]. The authors performed a $7^\text{Be} + \alpha$ resonant scattering and $7^\text{Be}(\alpha, p)$ reaction measurement using the thick–target method in inverse kinematics and measured the excitation functions for $E_x = 8.7–13.0$ MeV on ^{11}C. Their R–matrix analysis revealed a new state at $E_x = 8.9$ MeV ($E_r = 1356$ keV) which could have a 10% contribution to the total $7^\text{Be}(\alpha, \gamma)^{11}\text{C}$ reaction rate in the relevant energy region. However, the authors argue that due to their large uncertainty in the low energy region, this level might be the $E_x = 8.699$ MeV ($E_r = 1155$ keV) state.

The current rate for the $7^\text{Be}(\alpha, \gamma)^{11}\text{C}$ reaction is adopted from NACRE (I and II) [20, 21] and includes contributions only from the two low–lying (561 and 876 keV) narrow resonances, for which experimentally measured strengths exist. In the work of Angulo et al. [20] (NACRE–I), whose rate was used as a baseline in the sensitivity study of Wanajo et al. [15], Hauser–Feshbach contributions were added for $T \geq 2$ GK. In the most recent evaluation of the rate by Xu et al. [21] (NACRE–II), the authors included contributions from four broad resonances at higher energies. Descouvemont [22] also suggests that the sub–threshold resonance at $E_x = 7.4997$ MeV ($E_r = -43.9$ keV) can dominate the reaction rate at low temperatures, below $T = 0.3$ GK, which could impact the destruction of the important radionuclide ^{7}Be in astrophysical sites such as classical novae and PopIII stars. The NACRE–II thermonuclear reaction rate is uncertain by factors of 1.76–1.91 for $T = 1.5–3$ GK [21]. In addition to that, contributions from higher energy resonances with unknown strengths are expected to influence the reaction rate for $T > 1.5$ GK [15].

In this Letter, we present the first experimental study of the $7^\text{Be}(\alpha, \gamma)^{11}\text{C}$ reaction in inverse kinematics utilizing an intense 7^Be radioactive ion beam (RIB) to measure two key resonances at $E_r = 1110$ and 1155 keV, with unknown strengths, and determine their contribution to the reaction rate at νp–process nucleosynthesis energies. In addition, we re–measured the $E_r = 876$ keV resonance strength.

The measurements were performed using the DRAGON (Detector of Recoils and Gammas of Nuclear reactions) recoil separator [23] at the ISAC–I (Isotope Separator and Accelerator) experimental hall of TRIUMF, Canada’s particle accelerator centre in Vancouver, BC, Canada. Intense beams of 7^Be ($I \sim 1.3 - 5.8 \times 10^7$ pps) were produced using the ISOL technique, by bombarding thick ZrC and graphite targets with 55 μA 500 MeV protons from the TRIUMF cyclotron. The 7^Be content of the beam was enhanced compared to the main $A = 7$ isobar ^{7}Li using the TRIUMF Resonant Ionization Laser Ion Source (TRILIS) [24]. The radioactive beams were then accelerated through the ISAC–I Radio–Frequency Quadrupole (RFQ) and Drift–Tube Linac (DTL) to energies, so that each resonance was centered in the gas target. To ensure a pure RIB, an additional 20 μg/cm2 carbon stripping foil was placed upstream of the DTL to select a specific charge state (4+) to completely eliminate the main isobaric contaminant ^{7}Li. Finally, $^{7}\text{Be}^{4+}$ was delivered to the helium–filled DRAGON windowless gas target with effective length of 12.3(1) cm [23]. In Table I we present an overview of the beam and gas target parameters for our measurements.

E_{beam} (MeV)	E_{lab} (MeV)	P_{target} (pps)	$E_{\text{c.m.}}$ (MeV)	$t_{\text{irrad.}}$ (h)	$N^{7}\text{Be}$ (×1013)
464.2(3)	3.249(2)	7.9(1)	1157 ± 24	25.4	1.07(2)
442.2(3)	3.098(1)	4.92(7)	1111 ± 13	34.2	2.93(5)
351.8(3)	2.463(2)	5.75(4)	878 ± 17	27.8	2.12(4)

a The 1110 keV resonance was studied in two independent measurements, due to a low recoil yield in the first measurement. We quote the weighted average values for the presented quantities.

An array of 30 highly efficient bismuth germanate (BGO) detectors surrounding the gas target detected the prompt γ rays of the ^{11}C recoil de–excitation and provided γ tagging for the coincidence analysis. The most intense charge state of the recoils ($^{11}\text{C}^{2+}$) was tuned through the separator to a 66 μm thick, gridded Double–
Sidéron et al. (DSUSSD) – Micron W1(G) model – placed near the focal plane of DRAGON, with a typical rate of 5–15 Hz. The 11C recoils were detected both in singles and coincidences modes. In the former, we employed Time–of–Flight (TOF) measurements between a microchannel plate detector (MCP) close to the DRAGON focal plane and the DSSSD, and in the latter we used the detected γ rays in the BGO array and hits on the DSSSD (see the PID plot in Figure 1).

According to the reaction kinematics for the 7Be(α,γ)11C reaction in the energy range of interest, the recoil angular distribution greatly exceeds the nominal DRAGON acceptance ($\theta_{r,max} \sim 43 - 47$ mrad compared to $\theta_{DRAGON}= 21$ mrad). For this reason, we performed detailed simulations using the standard DRAGON GEANT package\(^1\) [25] to calculate the efficiency of the BGO array (η_{BGO}) and the transmission of the recoils through the separator (η_{separ}), which are used in the data analysis and the calculation of the resonance strengths. This procedure has already been employed successfully in DRAGON experiments and more recently with a benchmark measurement of a resonance with a known strength of the 6Li(α,γ)10B reaction, whose products also had a maximum angular cone larger than DRAGON nominal acceptance [26, 27]. A more detailed discussion about these simulations can be found in the accompanying publication [28]. We observe a very good agreement between the GEANT simulations and the experimental data. In particular, Figure 2 shows a spectrum of the highest energy γ ray per coincident event versus the position along the beam axis for the 1155 keV resonance.

The number of the incident beam particles was determined by using the elastically scattered target particles, using two silicon surface barrier (SSB) detectors placed at well–defined lab angles of 30° and 57° with respect to the beam axis. The beam stopping power through helium gas and the recoil charge state distribution, which are used for the calculation of the experimental resonance strength, were measured using 7Be and 12C beams respectively.

\(^1\) The GEANT simulation package of DRAGON can be found at https://github.com/DRAGON-Collaboration/G3_DRAGON.
(\(E_r = 876\) keV). Smaller contributions to the systematic uncertainty arise from the MCP detection efficiency (5.5–10.7\%) and the stopping power measurements (3.7–4.3\%) [see also the discussion and Table VIII in Ref. 28]. The statistical uncertainties in turn are due to the low detection yield, caused by the very low transmission of the recoils through the separator. However, even though the transmission is small, it is a parameter that is well understood and quantified [26]. The detected recoil uncertainties for the 1110 and 876 keV resonances were determined using the prescription of Feldman and Cousins [31] for a poissonian signal with zero background, as it is evident in Figure 1.

We determined the resonance strengths of the 1155, 1110 and 876 keV resonances to be 1.73 ± 0.25(stat.) ± 0.40(syst.) eV, 125\(+32\)\(-25\)(stat.) ± 15(syst.) meV and 3.00\(+0.81\)\(-0.72\)(stat.) ± 0.61(syst.) eV, respectively. For the 1110 keV resonance strength, since we performed two independent measurements, we created a combined statistical uncertainty distribution, accounting for the asymmetric statistical uncertainties from the prescription of Feldman and Cousins [31]. We provide a detailed discussion of this procedure in Psaltis et al. [28].

Using the results from the present experiment, we evaluated the \(^7\)Be(\(\alpha, \gamma\))\(^{11}\)C reaction rate using the RatesMC code\(^2\) [32]. Figure 3 shows the new reaction rate in comparison with both the NACRE rates [20, 21] and the compilation of Caughlan and Fowler [33] (CF88). The new \(^7\)Be(\(\alpha, \gamma\))\(^{11}\)C reaction rate differs less than \(\sim 2\%\) at temperatures between \(T = 1.5-3\) GK with the NACRE-II rate, but it is now constrained to \(\sim 9.4 - 10.7\%\), which is sufficient for astrophysical applications. It is worth noting that the decrease in the rate uncertainty mainly originates from properly propagating the relevant errors within the RatesMC framework, and the newly measured resonance strengths contribute \(\lesssim 10\%\) to the total rate in \(\nu\nu\)-process temperatures [see the discussion in Ref. 28, Sec. E].

Furthermore, we performed nucleosynthesis calculations using the new \(^7\)Be(\(\alpha, \gamma\))\(^{11}\)C reaction rate and parametric neutrino–driven wind trajectories from Ref. [34] to study the impact on the production of heavy elements. Despite the fact that the new \(^7\)Be(\(\alpha, \gamma\))\(^{11}\)C thermonuclear reaction rate is more constrained compared to NACRE–II, we did not observe any differences in the production of heavy elements via the \(\nu\nu\)-process. For completeness, and to note the sensitivity of \(\nu\nu\)-process nucleosynthesis to this rate, we did find that the \(^7\)Be(\(\alpha, \gamma\))\(^{11}\)C reaction rate \(\sim 2\) times lower than the NACRE–II increased the production of \(A = 55 - 130\) nuclei by as much as a factor of 100 in specific astrophysical conditions of the neutrino–driven wind [34], which is significantly larger than the typical abundance changes observed by Wanajo et al. [15]. Such a rate reduction is beyond our determined rate uncertainty, however. That said, a future detailed study of this nucleosynthesis scenario will examine if such discrepancies also exist for other important \(\nu\nu\)-process rates and include the results from recent measurements of such reactions [35–37].

In addition to the nuclear physics uncertainties, the \(\nu\nu\)-process is strongly dependent on the local astrophysical conditions of the neutrino–driven wind and more specifically on the combination of \(Y_e, s\) and expansion timescale \(\tau\). Given that the state–of–the–art multi–dimensional simulations of ccSNe support proton–rich outflows [1–4], the \(\nu\nu\)-process should be a very common nucleosynthesis scenario and its yields need to be included in Galactic Chemical Evolution (GCE) models. Nevertheless, as Kobayashi et al. [38] have argued, the inclusion of such yields leads to an overproduction for elements between strontium (Sr) and tin (Sn), compared to observations. For this reason, we argue for a coordinated effort between experimental nuclear physicists, stellar modellers and observational astronomers to constrain the most common conditions for the \(\nu\nu\)-process and its role in the origin of the heavy elements in the universe.

To recapitulate, in this Letter we presented the first inverse kinematics study of the \(^7\)Be(\(\alpha, \gamma\))\(^{11}\)C reaction using the DRAGON recoil separator and an intense \(^7\)Be beam from ISAC. We successfully measured for the first time the strength of two resonances at 1155 and 1110 keV (\(\omega\gamma = 1.73 \pm 0.25\) (stat.) ± 0.40 (syst.) eV) and 125\(+32\)\(-25\)(stat.) ± 15(syst.) meV, and remeasured one at 876 keV (\(\omega\gamma = 3.00\pm0.81\) (stat.) ± 0.61 (syst.) eV), which agrees within uncertainty with the measurement of Hardie et al. [17] (\(\omega\gamma = 3.80(57)\) eV). The uncertainty of the \(^7\)Be(\(\alpha, \gamma\))\(^{11}\)C reaction rate in now reduced to \(\sim 9.4 - 10.7\%\) at the temperature region relevant to \(\nu\nu\)-process nucleosynthesis, \(T = 1.5-3\) GK. According to our results, the new reaction rate is well constrained for astrophysical calculations, and our initial nucleosynthesis

\(^2\) The RatesMC code to calculate thermonuclear reaction rates can be found at https://github.com/rongland/RatesMC.
calculations suggest that it does not affect the production of neutron-deficient heavy elements \((p \text{-nuclei}) \). This experiment is a major technical achievement, being the first radiative capture reaction measurement using a RIB and a recoil separator, in which the angular distribution of the reaction products exceeds the nominal acceptance of the separator by more than a factor of two. In addition, the intense \(^7\text{Be} \) radioactive beams produced with the use of graphite targets, can be employed for other challenging measurements, such as the \(^7\text{Be}(p, \gamma)^8\text{B} \) and \(^7\text{Be}(\alpha, \alpha)^7\text{Be} \) reactions.

The authors gratefully acknowledge the beam delivery and ISAC operations groups at TRIUMF. In particular, we thank F. Ames, T. Angus, A. Gottberg, S. Kiy, J. Lassen and O. Shelbaya for all their help during the experiment. The core operations of TRIUMF are supported via a contribution from the federal government through the National Research Council of Canada, and the Government of British Columbia provides building capital funds. Authors from McMaster University are supported by the National Sciences and Engineering Research Council of Canada (NSERC). DRAGON is funded through NSERC grant SAPPJ-2019-00039. AP also acknowledges support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)-Project No. 279384907-SFB 1245, and the State of Hesse within the Research Cluster ELEMENTS (Project ID 500/10.006). RL and CM acknowledge support from the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Grant Nos. DE-SC0017799 and DE-FG02-97ER41042. CRB, RG and SP acknowledge support from the U.S. Department of Energy Office of Science DE-FG02-88ER40387 and DE-NA0003883. Authors from the Colorado School of Mines acknowledge support from U.S. Department of Energy Office of Science DE-FG02-93ER40789 grant.

This work benefited from discussions at the “Nuclear Astrophysics at Rings and Recoil Separators” Workshop supported by the National Science Foundation under Grant No. PHY-1430152 (JINA Center for the Evolution of the Elements).

[1] A. Burrows and D. Vartanyan, Nature 589, 29 (2021).
[2] B. Müller, PASA 33, e048 (2016).
[3] S. Wanajo et al., Astrophys. J 852, 40 (2018).
[4] D. Vartanyan et al., Mon. Notices Royal Astron. Soc. 482, 351 (2019).
[5] Y.-Z. Qian and G. Wasserburg, Phys. Rep. 442, 237 (2007).
[6] A. Arcones and F. Montes, Astrophys. J 731, 5 (2011).
[7] S. Wanajo, Astrophys. J Lett 770, L22 (2013).
[8] C. Fröhlich et al., Phys. Rev. Lett 96, 142502 (2006).
[9] J. Pruet et al., Astrophys. J 644, 1028 (2006).
[10] S. Wanajo, Astrophys. J 647, 1323 (2006).
[11] M. Arnould and S. Goriely, Phys. Rep. 384, 1 (2003).
[12] T. Rauscher et al., Rep. Prog. Phys 76, 066201 (2013).
[13] M. Pignatari et al., International Journal of Modern Physics E 25, 1630003 (2016).
[14] F. Montes et al., Astrophys. J 671, 1685 (2007).
[15] S. Wanajo et al., Astrophys. J 729, 46 (2011).
[16] N. Nishimura et al., Mon. Notices Royal Astron. Soc. 489, 1379 (2019).
[17] G. Hardie et al., Phys. Rev. C 29, 1199 (1984).
[18] M. Wiescher et al., Phys. Rev. C 28, 1431 (1983).
[19] H. Yamaguchi et al., Phys. Rev. C 87, 034303 (2013).
[20] C. Angulo et al., Nucl. Phys. A 656, 3 (1999).
[21] Y. Xu et al., Nucl. Phys. A 918, 61 (2013).
[22] P. Descouvemont, Nucl. Phys. A 584, 532 (1995).
[23] D. Hutcheon et al., Nucl. Instrum. Methods Phys. Res A 498, 190 (2003).
[24] J. Lassen et al., Hyperfine Interact 162, 69 (2005).
[25] D. G. Gigliotti et al., Nucl. Instrum. Methods Phys. Res A 204, 671 (2003).
[26] A. Psaltis et al., Nucl. Instrum. Methods Phys. Res A 987, 164828 (2021).
[27] A. Psaltis, Radiative alpha capture on \(^7\text{Be} \) with DRAGON at \(\nu p \)-process nucleosynthesis energies, Ph.D. thesis, McMaster University (2020).
[28] A. Psaltis et al. (2022), Phys. Rev. C (Accepted).
[29] S. Sjue et al., Nucl. Instrum. Methods Phys. Res A 700, 179 (2013).
[30] C. Ruiz et al., Eur. Phys. J. A 50, 99 (2014).
[31] G. J. Feldman and R. D. Cousins, Phys. Rev. D 57, 3873 (1998).
[32] R. Longland et al., Nucl. Phys. A 841, 1 (2010).
[33] G. R. Caughlan and W. A. Fowler, At. Data Nucl. Data Tables 40, 283 (1988).
[34] M. Jacobi, Influence of astrophysical and nuclear physics uncertainties on the nucleosynthesis in proton-rich neutrino-driven winds, Master’s thesis, Technische Universität Darmstadt (2018).
[35] Q. Liu et al., Phys. Rev. C 101, 025808 (2020).
[36] T. Kibédi et al., Phys. Rev. Lett. 125, 182701 (2020).
[37] J. S. Randhawa et al., Phys. Rev. C 104, L042801 (2021).
[38] C. Kobayashi, A. I. Karakas, and M. Lugaro, Astrophys. J. 900, 179 (2020).