New distribution record, ecology and tail trifurcation of *Cyrtodactylus mamanwa* (Gekkonidae) on Dinagat Islands, Philippines

Erl Pfian T. Maglangit¹,², Riza Jane C. Tapdasan¹, Rico C. Medija Jr.¹, Maria Fe P. De Alba¹, Liza A. Adamat¹, Olive A. Amparado¹, Olga M. Nuñeza¹,², Mae Lowe L. Diesmos³, Arvin C. Diesmos⁴

¹ Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Andres Bonifacio Avenue, Iligan City 9200, Philippines
² Premier Research Institute of Science and Mathematics (PRISM), Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines
³ Biological Science Department, College of Science and Research Center for Natural and Applied Sciences, University of Santo Tomas, España Boulevard, Manila 1015, Philippines
⁴ Herpetology Section, Zoology Division, Philippine National Museum, Rizal Park, Burgos Street, Ermita 1000, Manila, Philippines

http://zoobank.org/AF1357D3-F4C7-4EB8-B4CA-04BA54F2D5E9

Corresponding author: Erl Pfian T. Maglangit (erlpfianmaglangit@gmail.com)

Abstract

This study highlights the ecology, natural history, and a new distribution record by providing a unique habitat occurrence record in karst ecosystem and describes a tail anomaly of the endemic Mamanwa Bent-toed Gecko *Cyrtodactylus mamanwa* in the province of Dinagat. The detection of a new population on Unib Island in the southwestern Dinagat extends the previously known distribution of this gekkonid by approximately 100 km south from its known distribution.

Key Words

Dinagat Islands, gekkonid, new island record, reptile, tail abnormality

Introduction

Gekkonidae is one of the most comprehensively studied reptilian families in the Philippines. It is widespread, species-rich, charismatic, and includes many iconic species popular with the general public. Philippine gekkonids are mostly arboreal, ground, and rock dwellers, with a few species demonstrating extraordinary commensal behavior living in close association with humans (Parves and Alam 2015). Mostly nocturnal, they feed on insects and small arthropods and play a vital role in pest control (Newbery and Jones 2007; Tkaczenko et al. 2014; Meiri 2019). They inhabit a range of environments from built-up areas, mixed agricultural plantations, and lowland forests (Siler et al. 2012; Sanguila et al. 2016; Supsup et al. 2016, 2020).

Recent taxonomic revisions and discoveries reveal 55 species of Philippine gekkonids from eight genera: *Cyrtodactylus* (9), *Gehyra* (1), *Gekko* (14), *Hemidactylus* (5), *Hemiphyllodactylus* (2), *Lepidodactylus* (6), *Luperosaurus* (8), and *Pseudogekko* (10) (Taylor 1915; Taylor 1922; Brown and Alcala 1978; Gaulke et al. 2007; Brown et al. 2007, 2011, 2020; Welton et al. 2009; Welton et al. 2010; Wood et al. 2020). The genus *Cyrtodactylus* comprises *C. agusanensis* (eastern Mindanao Island), *C. annulatus* (Mindanao Island and Western Visayas), *C. gubaot* (western Leyte Island), *C. jambagan* (western Mindanao Island), *C. mamanwa* (northern...
Dinagat Island), *C. philippinicus* (Northern and Central Philippines), *C. redimiculus* (Palawan Island), *C. sumotor* (eastern Samar Island) and *C. tautbatorum* in Palawan Island (Welton et al. 2010).

The Mamanwa Bent-toed Gecko *C. mamanwa* is a recently described cryptic species of lizard endemic to the province of Dinagat, split from the *C. agusansensis* complex (Welton et al. 2010). A nocturnal, arboreal, and medium-sized lizard, it occurs in ultramafic habitats (e.g., large boulders, fallen logs on stream banks) from sea level up to 195 m elevation in northeastern Dinagat islands (Welton et al. 2010; Sanguila et al. 2016). Females (maximum snout to vent length, SVL = 92 mm) are larger than males (maximum SVL = 67.5 mm) (Welton et al. 2010). However, its ecology and distribution remain understudied since its discovery.

For most lizards including gekkonids, an intact tail plays a vital role in locomotion, e.g., balance, locomotor performance, ecological flexibility, foraging, predation avoidance, obstacle evasion (Ballinger 1973; Garland and Losos 1994; Iversen et al. 2004; Ofori et al. 2018), storage of nutrients (Daniels 1984), and intraspecific interaction, e.g., courtship, mating, social status, territory defense (Bateman and Fleming 2009; McElroy and Bergmann 2013; Jagnandan et al. 2014). However, their ability to shed the tail and regenerate it does not always function perfectly and may result in unusual tail malformation during regeneration.

Tail anomalies (e.g., bifurcation, trifurcation) have been widely documented. Bifurcation is noted among multiple lizard families: Agamidae (Ofori et al. 2018), Anguidae (Conzendey et al. 2013), Corytophanidae (Cervera and Novelo 2020), Dactyloidae (Najbar and Shimwewa 2016; Hofer and Robinson 2020), Gekkonidae (De Andrade et al. 2015; Gogo et al. 2018; Maria and Al-Razi 2018; Bhattari et al. 2020), Gymnophthalmidae (The Reptile Database Uetz et al. 2020). Captured *C. mamanwa* were humanely preserved (euthanized with aqueous chloralose, fixed in 10% buffered formalin and subsequently transferred to 70% ethanol), following a standard preservation protocol (Heyer et al. 1994; Simmons 2002) and were deposited in Mindanao State University-Iligan Institute of Technology Natural Science Museum (MSU-IIT NSM).

Materials and methods

We conducted a field survey of the herpetofauna at the limestone karst Unib Island (10°01'12.55"N, 125°30'55.90"E, datum WGS 84, 5–120 m elevation), part of the southwestern Dinagat Islands, Barangay Lombus, Municipality of Basilisa, Dinagat Province on 4–15 September 2019. We surveyed 5 transects into each of two habitats (mixed agricultural areas and mature secondary growth forests). Transects were 100 m long by 10 m wide (Heyer et al. 1994; Diesmos 2008; Supsup et al. 2016), marked with luminous ribbon strips placed 10 m apart. We employed visual encounters, opportunistic catching, and microhabitat searches (e.g., limestone crevices, tree trunks, and decaying logs), during daytime (07:30–11:30 h) and night time (18:30–23:30 h). We specifically noted natural history and behavioral observations of *C. mamanwa* during our 10-day sampling (720 person-hours by 6 individuals).

Previous distribution records of *C. mamanwa* were summarized (Welton et al. 2010; Sanguila et al. 2016). All captured individuals were measured using a digital caliper (e.g., SVL), weighed using an electronic weighing scale (± 0.1 g), were identified using published references by Taylor (1922), Welton et al. (2010), Sanguila et al. (2016), and we followed the taxonomic arrangements of The Reptile Database (Uetz et al. 2020). We documented 51 individuals of *C. mamanwa* during our 10-day sampling (720 person-hours by 6 individuals).

Results

We documented 51 individuals of *C. mamanwa* in our survey on Unib Island. We observed adults, subadults, and juvenile individuals. We collected 18 adult individuals as voucher specimens (12 males, SVL: 55.5–90.1 mm, mean = 77.01 ± 13.9 SD, weight range: 2.64–11.9 g; 6 females, SVL: 76.5–94.2 mm, mean = 88.7 ± 7.1 SD, weight range: 9.05–12.9 g; vouchers ## 3982–3985, 4019–4023, 4027–4028, 4030–4032, 4038, 4041, 4044, 4049). Specimens from this population were all collected from microhabitats in the proximity of limestone karst outcrops, rock crevices, karst walls and caves, and tree trunks.

This gekkonid displays a variable dorsal color pattern, from canary-yellow to dark-brown depending on the environment it inhabits. It had a distinct red lining with irregular patterns of branching streaks at the cornea and...
distinctive eyelashes with yellow coloration. The dorsum portrays moderate longitudinal dark bands projecting from the anterior to the posterior (Welton et al. 2010), with hindlimbs and forelimbs forming an asymmetrical stripe extending to its digits. We observed lizards actively foraging and feeding on cockroaches, termites, and small arthropods at night. We located them in limestone outcrops, rock crevices, and tree trunks in mixed agricultural areas and secondary growth forests over limestone karst habitat at night, and found them utilizing cave walls, tree branches, and underneath a decaying log for shelter and refuge during the day.

The individuals we collected were visibly in good physical condition except for one male (MSU-IIT NSM 4020; SVL = 89.1 mm; weight = 11.7 g, Fig. 1), which had an unusual tail trifurcation. The original regenerated tail measured 71 mm. It presented a pronounced asymmetrically forked tail split near the tip of the regenerated autotomized tail (59 mm, posterior to the base of the original regenerated tail), with a distinct pale-greyish color pattern and exhibited a terminated regenerated tail end. The supernumerary tails were of different lengths. The secondary tail axis (bifurcated tail) measured 13.5 mm, forming a 67° angle with the main tail axis while the under-developed offshoot and less noticeable tertiary branch (trifurcated tail extension) measured 2.3 mm and created a 10° angle from the tip of the main tail axis (Fig. 1). The re-grown tail after autotomy varied distinctively from the original tail based on its color pattern and replacement of the bone and cartilage (Fig. 2). This observation suggests complete autotomy with incomplete tail regeneration possibly due to tail development injuries that may have triggered unparalleled growth of secondary tail, and subsequently with the tertiary tail. More than half of the collected specimens had regenerated tails (n = 11, 57.9%). Caudal autotomy was mostly detected in collected males (n = 9, 81.8%) rather than females (n = 2, 25.0%). We used three voucher specimens to represent the whole population documented on Unib Island and present tail features, patterns of sexual dimorphism, and a tail trifurcation anomaly of C. mamanwa (MSU-IIT NSM; ## 3982, 4020 and 4021).

Table 1. Distribution records of Cyrtodactylus mamanwa on Dinagat Islands, Philippines.

Sites	Locality	Municipality	Coordinates	Elevation	Reference
1	Esperanza	Loreto	10°23’06.0”N, 125°36’50.4”E	48 m	Welton et al. 2010
2	Kawayanan	Loreto	10°21’00.0”N, 125°36’57.6”E	255 m	Sanguila et al. 2016
3	Esperanza	Loreto	10°22’53.8”N, 125°36’57.6”E	5–116 m	Sanguila et al. 2016
4	San Juan	Loreto	10°21’31.0”N, 125°34’48.0”E	26–72 m	Sanguila et al. 2016
5	Santiago	Loreto	10°20’37.0”N, 125°37’04.8”E	No data	Sanguila et al. 2016
6	Columbus	Basilisa	10°01’12.6”N, 125°30’55.9”E	5–120 m	This work

Figure 1. Tail trifurcation in Cyrtodactylus mamanwa on Unib Island. Note the distinct appearance, color, and pattern of the regenerated secondary tail (top), and the supernumerary tail at the tip of the original regenerated tail.
Figure 2. Differences in the morphology of male and female *Cyrtodactylus mamanwa*, emphasizing tail features (A. female, original tail; B. male, trifurcated tail; C. male, regrown tail) documented on Unib Island.

Figure 3. Map of Dinagat Islands with other numerous adjacent islands including Bucas Grande and Siargao (right) within the Philippines (left). Previously known distribution (blue dots) and new distribution record (right triangle) of *Cyrtodactylus mamanwa* in Dinagat Islands. Numbers refer to records presented in Table 1.
Discussion

Cyrtodactylus mamanwa is endemic to the province of Dinagat. Published reports on its distribution are concentrated on the northern part of Dinagat Island (Municipality of Loreto; Sanguila et al. 2016). The detection of a seemingly numerous and healthy population of *C. mamanwa* on the island of Unib, approximately 25 km east of the large Dinagat Island, extends its known distribution by approximately 100 km southwest. It occupies diverse macro- and micro-habitats (e.g., ultramafic forest, forest over limestone or karst).

The present work provides an additional distribution record of *C. mamanwa* from the Dinagat Islands. It is not surprising that the distribution of *C. mamanwa* extends to the southwestern part of Dinagat islands since previous records suggest that it might be present on the neighboring islands of Bucas Grande and Siargao (Welton et al. 2010; Sanguila et al. 2016). However, the population on which we report here illustrates unique habitat occurrence where they are found to inhabit limestone karst ecosystem.

Tropical gekkonids demonstrate a high rate of tail autotomy (Arnold 1984). It is an important defensive strategy of lizards in escaping predators (Gogoi et al. 2018). However, this limits locomotion performance, decreases social status, and reduces mating opportunities (Chapple and Swain 2002; Bateman and Fleming 2009). The individuals we collected that exhibited caudal autotomy might have survived predatory attacks (e.g., birds, snakes) represented by a trifurcated regenerated tail. However, tail malformation may hamper locomotory ability and fitness which attracts putative predatory encounters reducing the survival of the lizards and affects them negatively (Bateman and Fleming 2009; Camper and Camper 2017). We presume that *C. mamanwa* is a natural prey item of predators such as the snakes *Chrysopelea paradisi variabilis*, *Stegonotus muelleri*, *Dendrelaphis marenae*, the birds *Ceyx argentatus*, *Halcyon coronamanda*, *Penelopides panini* that are present on Unib Island. We have documented a *Chrysopelea paradisi variabilis* preying on *Lepidodactylus herrei* (Maglangit et al. 2021), a closely related gekkonid species to *C. mamanwa*. The higher occurrence of caudal autotomy in males than in females may suggest intraspecific aggression during mating and territorial fights (Iversion et al. 2004; Koleska et al. 2017) and male-male competition over food resources (Koleska 2018). Although the cause of autotomy of these gekkonids is unknown, this species may be a good model for predator-prey interaction studies.

To further understand the process of tail regeneration and the incidence of tail malformations, we encourage herpetologists and biologists to focus on areas of developmental biology (e.g., mechanisms of tail regeneration), histology (e.g., anatomical and histological cause of tail breakage), and physiology (e.g., signals that trigger tail autotomy, effects on fitness and locomotion).

Acknowledgements

We are grateful to the Department of Science and Technology-Science Education Institute (DOST-SEI) through Accelerated Science and Technology Human Resource Development Program (ASTHRDP). We thank the Philippine Department of Environment and Natural Resources through DENR CARAGA Region XIII for providing a research permit (Wildlife Gratuitous Permit No: R13-2019-49). We thank The Provincial Environment and Natural Resource Office (PENRO) of Dinagat Islands for their technical support in logistics and transportation, to the local government unit of Municipality of Basilsa for their active support, to our enthusiastic field colleagues R.B. Caballero, M.A. Alcular, J.R. Rondina, C. Badelles, R.L. Calago, K.M. Calago, R.Y. Sayson, E.M. Flores, J. Degoma, D.R. Calumba, D.N. Razo and our field assistants and guides C. Caballes, J. Hiponan, N. Hipolan, B. Glico, N. Glico, F. Glico, E. Baptisma, and S. Baptisma. We extend our appreciation to Mr. Emerito B. Batara and Ms. Alyana O. Macapayag of Mindanao State University - Iligan Institute of Technology Natural Science Museum (MSU-IIT NSM) for facilitating herpetofaunal specimen collection. We thank R.E. Venturina, Y.L. Del Prado, and N.A.A. Caguimbal for their comments and suggestions on an earlier draft of this manuscript. We are grateful to Y. Kornilev and M. Sanguila for their constructive comments and critical inputs in reviewing the manuscript.

References

Álvarez JA, Valdéz-Villavicencio JH, Wilcox JT, García AP (2020) Bifurcation in the tail of Black-tailed Brush Lizard (*Urosaurus nigricaudus*) in northern Baja California, Mexico. Sonoran Herpetologist 33(3): 81.

Arnold EN (1984) Evolutionary aspects of tail shedding in lizards and their relatives. Journal of Natural History 18: 127–169. https://doi.org/10.1080/0022336400770131

Baeckens S, Leirs W, Scholliers J (2018) *Podarcis melisellensis* (Dalmatian Wall Lizard) Tail bifurcation. Herpetology Review 49(4): 746.

Ballinger RE (1973) Experimental evidence of the tail as balancing organ in the lizard *Anolis carolinensis*. Herpetologica 29: 65–66.

Bateman PW, Fleming PA (2009) To cut a long tail short: a review of lizard caudal autotomy studies carried out over the last 20 years. Journal of Zoology 277(2009): 1–14. https://doi.org/10.1111/j.1469-7998.2008.00484.x

Bhattari S, Lamichhane BR, Subedi N (2020) Tail bifurcation in a yellow-bellied house gecko, *Hemidactylus flaviviridis* Rüppel 1835, in Chitwan, Nepal. IRCF Reptiles and amphibians 27(1): 48–49. https://doi.org/10.17161/irrf.2071.14448

Brown RM, Diesmos AC, Duya MV (2007) A new *Luperosaurus* (*Squamata: Gekkonidae*) from the Sierra Madre of Luzon Island, Philippines. Raffles Bulletin of Zoology 55: 167–174.

Brown RM, Diesmos AC, Oliveros CH (2011) New Flap-Legged Forest Gecko (*Gehyra Luperosaurus*) from the Northern Philippines. Journal of Herpetology 45(2): 202–210. https://doi.org/10.1670/10-123.1
Brown RM, Meneses CG, Wood PL, Fernandez JB, Cuesta MA, Clores MA, Tracy C, Buehler MD, Siler CD (2020) Unexpected discovery of another newborn species of Philippine false gekko (Gekkonidae: Pseudegkeko) from the Bicol Peninsula of Luzon Island. Herpetologica 76(3): 315–329. https://doi.org/10.1655/Herpetologica-D-19-00029.1

Brown WC, Alcala AC (1978) Philippine Lizards of the Family Gekkonidae. Siliman University Press, Dumaguete City, Philippines.

Camper BT, Camper JD (2017) Anolis equestris (Knight Anole) Tail bifurcation. Herpetological Review 48: 634.

Cervera PE, Novelo JR (2020) Basiliscus vittatus (Brown Basilisk) Habitat use and tail bifurcation. Herpetological Review 51(3): 595–596.

Chapple D, Swain R (2002) Effect of caudal autotomy on locomotor performance in a viviparous skink, Niveoscincus metallicus. Functional Ecology 16: 817–825. https://doi.org/10.1046/j.1365-2435.2002.00687.x

Conzendey P, Campos SPS, Lanna FM, De Amorim JDCG, De Sousa Costa SM, Dos Reis Dias EJ (2019) Phyllopezus pollicaris (Striped Worm Lizard). Bifurcated (Brazilian Mabuya) Tail. Herpetology Notes 13: 337–334.

Diesmos AC (2008) Ecology and diversity of herpetofaunal communities in fragmented lowland rainforests in the Philippines. PhD Thesis. National University of Singapore.

Filadelfo T, Soeiro M, Coelho DP, Hamdan B (2017) Phyllopezus pollicaris (Brazilian Gecko) Tail Bifurcation. Herpetological Review 48(3): 656.

Garland T, Losos JB (1994) Ecological morphology of locomotor performance in squamate reptiles. In [book]: Ecological morphology: Integrative organismal biology. Publisher: University of Chicago Press, Chicago.

Gaulke MH, Roesler H, Brown RM (2007) A new species of Luperosaurus (Squamata: Gekkonidae) from Panay Island, Philippines, with comments on the taxonomic status of Luperosaurus cunningii (Gray, 1845). Copeia 2007(2): 413–425. https://www.jstor.org/stable/25140644

Gogoi M, Kundu S, Goswami J, Saikia D, Pandey N (2018) First record of tail bifurcation in Ascaccus gallagheri from the United Arabian Emirates. Herpetology Notes 11: 115–116.

Kolesa D, Jablonski D (2015) Tail bifurcation recorded in Algyroides nigripunctatus (Duméril and Bibron, 1839). Ecologica Montenegri 3: 26–28. https://doi.org/10.37828/em.2015.3.4

Kolesa D, Kulma M, Vrabec V (2017) Teira dagessi (Madeiran Wall Lizard) Tail bifurcation. Herpetology Review 48(2): 440–441.

Kolesa D, Svobodova V, Húsák T, Kulma M, Jablonski D (2017) Tail bifurcation recorded in Sauromalus ater. Herpetology Notes 13: 483–484.

Kornilev YV, Popgeorgiev G, Vacheva E, Tzankov N (2018) First records of melanism (including tail bifurcation) of lacertid lizards (Reptilia: Lacertidae) in Bulgaria. North-western Journal of Zoology 14(1): 142–144.

Lozano JA, Siro DP (2020) Regenerate tail bifurcation in the Green Iguana (Iguana iguana Linnaeus, 1758). Herpetology Notes 13: 483–484.

Magalhães FM, Camurugi F, Silveira-Filho RR, Mângia S, Da Conceição BM (2015) Brasiliscincus heathi (Brazilian Mabuya) Tail bifurcation in. Herpetological Review 46(4): 624–625.

Maglangit EPT, Medija Jr RB, Tapdasan RJC, De Alba MFF, Adamat LA, Amparado OA, Nuñeza OM, Diesmos MLL, Diesmos AC, Carter RL, Hayes WK, Martins EP (Eds) Iguanas: Biology and Conservation. University of California Press, Berkeley, 176–192.

Iverson JB, Smith GR, Pieper L (2004) Factors affecting long term growth of the Allen Cays rock iguana in the Bahamas. In: Alberts AC, Carter RL, Hayes WK, Martins EP (Eds) Iguanas: Biology and Conservation. University of California Press, Berkeley, 176–192. https://doi.org/10.1525/california/9780520238541.003.0015

Jablonski D (2016) Tail bifurcation in a Desert lidless skink (Ablepharus deserti) from Kyrgyzstan. IRCF Reptiles and Amphibians 23(3): 171–172. https://doi.org/10.17161/iranda.v23i3.14126

Jagnandan K, Russell AP, Higham TE (2014) Tail autotomy and subsequent regeneration alter the mechanics of locomotion in lizards. Journal of Experimental Biology 217: 3891–3897. https://doi.org/10.1242/jeb.110916

Kolesa D (2018) First record of tail bifurcation in Ascaccus gallagheri from Kyrgyzstan. International Herpetology Notes 7: 71–72.

Maria M, Al-Razi H (2017) Observation of tail bifurcation in Hemidactylus frenatus. International Herpetology Notes 7: 71–72.

Mata-Silva V, Rocha A, Gandara A, Johnson JD (2010) Observations on the taxonomic status of Pseudogekko (Squamata: Gekkonidae) from Panay Island, Philippines, with comments on the taxonomic status of Luperosaurus cunningii (Gray, 1845). Copeia 2010: 413–425. https://doi.org/10.1111/j.1749-466X.2010.01534.x

McElroy EJ, Bergmann PJ (2013) Tail autotomy, tail size, and locomotor performance in a viviparous skink, Niveoscincus metallicus. Herpetologica 76(3): 315–329. https://doi.org/10.1525/california/9780520238541.003.0015

Meiri S (2019) What gekkos are – an ecological-biogeographic perspective. Israel Journal of Ecology & Evolution 66(3–4): 1–11. https://doi.org/10.17161/randa.v23i3.14126
Newbery B, Jones DN (2007) Presence of Asian House Gecko Hemi-
dactylus frenatus across an urban gradient in Brisbane: influence of
habitat and potential for impact on native gecko species. Royal Zo-
ological Society of New South Wales Forum Proceedings, 59:65.
https://doi.org/10.7882/FS.2007.009

Ofori BY, Martin P, Musah Y, Attuquayefio D (2018) Tail bifurcation
in the African Rainbow lizard (Agama picticauda Peters 1877) from
Ghana, West Africa. Herpetology Notes 11: 843–845.

Parves N, Alam SM (2015) Hemidactylus flaviviridis (Reptilia: Gek-
konidae): Predation on congeneric Hemidactylus frenatus in Dhaka,
Bangladesh. The Herpetological Bulletin 132(132): 28–29.

Passos DC, Fonseca PHM, Romeo De Vivar PR, Kanayama CY, Teix-
eira VPA, Martinelli AG (2016) Tail trifurcation in the lizard Salt-
vator merianae (Squamata: Teiidae) investigated by computer to-
ography. Phyllomedusa 15(1): 79–83. https://doi.org/10.11606/
issn.2316-9079.v15i1p79-83

Passos DC, Pinheiro LT, Galdino CAB, Rocha CFD (2014) Tropidurus
semitseniatus (Calango de Lagedo) Tail bifurcation. Herpetological
Review 45(1): 138.

Pheasey H, Smith P, Brouard JP, Atkinson K (2014) A new bent-toed
gecko (Genus Cyrtodactylus) from southeastern Mindanao and
adjacent islands. Zookeys 624: 1–132. https://doi.org/10.3897/zoo-
keys.624.9814

Simmons J (2002) Herpetological collecting and collections manage-
ment. Utah: Society for the Study of Amphibians and Reptiles 31: 1–153.

Sorlin MV, Gangloff EJ, Kouyoumdjian L, Cordero GA, Darne E, Aub-
ret F (2019) Podarcis muralis (Common Wall Lizard) Tail bifurca-
tion. Herpetological Review 50(4): 780.

Sy EY, Dalabajan AC (2018) Tail bifurcation in Eutropis indeprensa
on Palawan Island, Philippines. Southeast Asian Vertebrate Records
2018: 006–007.

Taylor EH (1915) New species of Philippine lizards. Philippine Journal
of Science 10: 89–108.

Taylor EH (1922) The Lizards of the Philippine Islands. Philippine
Bureau of Science Monograph 17. https://doi.org/10.5962/bhl.tit-	le.55346

Tkaczewski GK, Fischer AC, Weterings R (2014) Prey preference of the
Common House Geckos Hemidactylus frenatus and Hemidactylus
platyurus. Herpetology Notes 7: 483–488.

Turner H, Griffiths RA, Garcia G, Outerbridge ME (2017) Plestiodon
longirostris (Bermuda Skink) Tail bifurcation. Herpetological Re-
view 48(1): 198–199.

Tzoras E, Papaioannou S, Monas M, Panagiotopoulos A (2020) Taren-
tola mauritiana (Moorish Gecko) Tail bifurcation. Herpetological
Review 51(2): 336.

Uetz P, Freed P, Hošek J (2020) The Reptile Database.

Vergilov V, Natchev N (2017) First record of tail bifurcations in the
snake-eyed skink Ablepharus kitaibelii Bibron & Bory de Saint-Vin-
cent, 1833 from Pastrina hill (northwestern Bulgaria). Arxius de
Mislcel-lània Zoològica 15: 224–228. https://doi.org/10.32800/
amz.2017.15.0224

Vreibradic D, Niemeyer J (2013) Maibuya frenata, M. macrorhyncha:
Tail bifurcation. Herpetological Review 44: 510–511.

Welton LJ, Siler CD, Diesmos AC, Brown RM (2009) A new bent-toed
gecko (Genus Cyrtodactylus) from southern Palawan Island, Phil-
ippines, and clarification of the taxonomic status of C. annulatus.
Herpetologica 65(3): 323–343. https://doi.org/10.1655/08-057R1.1

Welton LJ, Siler CD, Linkem CW, Diesmos AC, Brown RM (2010)
Philippine bent-toed geckos of the Cyrtodactylus agusanensis com-
xplex: multilocus phylogeny, morphological diversity, and descrip-
tions of three new species. Herpetological Monographs 24: 55–85.
https://doi.org/10.1655/HERP_MONOGRAPHS-D-10-00005.1

Wood PL, Xianguang G, Travers SL, Su YC, Olson KV, Bauer AM,
Grismer LL, Siler CD, Moyle RG, Andersen MJ, Brown RM (2020)
Parachute geckos free fall into synonymy: Gekko phylogeny, and
a new subgeneric classification, inferred from thousands of ul-
traconserved elements. Molecular Phylogenetics and Evolution.
146(2020): 106731. https://doi.org/10.1016j.ympev.2020.106731