Exploring walking behavior in SU(3) gauge theory with 4 and 8 HISQ quarks

Yasumichi Aokia, Tatsumi Aoyamaa, Masafumi Kurachia, Toshihide Maskawaa, Kei-ichi Nagaia,∗,†, Hiroshi Ohkia, Akihiro Shibatab, Koichi Yamawakia and Takeshi Yamazakia

\textbf{LatKMI Collaboration}

aKobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya University, Nagoya, 464-8602, Japan
bComputing Research Center, High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan

We present the report of the LatKMI collaboration on the lattice QCD simulation for the cases of 4 and 8 flavors. The Nf=8 in particular is interesting from the model-building point of view: The typical walking technicolor model with the large anomalous dimension is the so-called one-family model (Farhi-Susskind model). Thus we explore the walking behavior in LQCD with 8 HISQ quarks by comparing with the 4-flavor case (in which the chiral symmetry is spontaneously broken). We report preliminary results on the spectrum, analyzed through the chiral perturbation theory and the finite-size hyperscaling, and we discuss the availability of the Nf=8 QCD to the phenomenology.

∗Speaker.
†E-mail: keiichi.nagai@kmi.nagoya-u.ac.jp
1. Introduction

The origin of mass is the most urgent issue of the particle physics today. One of the candidates for the theory beyond the Standard Model is the walking technicolor which is the strongly coupled gauge theory having a large anomalous dimension $\gamma_m \simeq 1$ and approximate scale invariance due to the almost non-running (walking) coupling [1, 2]. The walking behavior is in fact realized in the QCD with large number of (massless) flavors N_f which possesses Caswell-Banks-Zaks infrared fixed point (IRFP) [3] in the two-loop beta function. The exact IRFP would be washed out by the dynamical generation of a quark mass m in the very infrared region $\mu < m$ for $N_f < N_{cr}^f$, N_{cr}^f being the critical number. However, for N_f very close to N_{cr}^f, m could be much smaller than the intrinsic scale $\Lambda (\gg m)$, an analogue of Λ_{QCD}, beyond which the coupling runs as the asymptotically free theory, so that the coupling remains almost walking for the wide infrared region $m < \mu < \Lambda$ as a remnant of the would-be IRFP. The case $N_f > N_{cr}^f$ is called conformal window, although conformality is broken in the ultraviolet asymptotically free region beyond Λ.

Although the results from the two-loop and ladder approximation of Schwinger-Dyson equation analysis [4] are very suggestive, the relevant dynamics is obviously of non-perturbative nature, we would need fully non-perturbative studies. Among others the lattice simulations developed in the lattice QCD would be the most powerful tool for that purpose. The above two-loop and ladder studies suggest that the walking theory if existed would be in between $N_f = 8$ and $N_f = 12$. The $N_f = 8$ in particular is interesting from the model-building point of view: The typical technicolor model [5] is the so-called one-family model (Farhi-Susskind model) which has a one-family of the colored techni-fermions (techni-quarks) and the uncolored one (techni-leptons) corresponding to the each family of the SM quarks and leptons. Thus if the $N_f = 8$ turns out to be a walking theory, it would be a great message for the phenomenology to be tested by the on-going LHC.

Since the pioneering works on the lattice [6, 7] were carried out, a lot of groups have been doing lattice studies nowadays. (See Refs. [8] for a review of recent developments.)

2. Simulation

2.1 Simulation details

In our simulation, we use the tree level Symanzik gauge action and the highly improved staggered quark (HISQ) action [9] without the tadpole improvement and the mass correction in the Naik term. It is expected that the flavor symmetry in the staggered fermion and the behavior towards the continuum limit are improved by HISQ action. We carried out the simulation by using the standard Hybrid Monte-Carlo (HMC) algorithm. We computed the hadron spectrum as the global survey in the parameter region and we obtained M_π, M_{ρ}, f_π and $\langle \bar{\psi} \psi \rangle$ as the basic observable.

The simulation for $N_f = 4$ is carried out at $\beta (= 6/g^2) = 3.6, 3.7$ and 3.8 for various quark masses on $12^3 \times 16$ and $16^3 \times 24$. We took over 1000 trajectories on the small lattice and about 600 trajectories on the large lattice in $N_f = 4$ case. The simulation for $N_f = 8$ is carried out at $\beta (= 6/g^2) = 3.6, 3.7, 3.8, 3.9$ and 4.0 for various quark masses on $(12^3 \times 32, 18^3 \times 24, 24^3 \times 32, 30^3 \times 40$ and $36^3 \times 48$ for various quark masses. We took about 800 trajectories on each size.
2.2 Analysis methods

In this section, we show preliminary results of the chiral perturbation analysis (ChPT) and the finite-size hyperscaling analysis (FSHS) in 4- and 8-flavor case.

If the system is in the chiral symmetry broken phase (χ_{SB}), physical quantities, M_H, are described by the chiral perturbation theory (ChPT); the polynomial behavior. In particular, about the pion decay constant $f_{\pi} = F + c_1 m_f + c_2 m_f^2 + \cdots$. (Here we don’t discuss the existence of the chiral log.) If $F \neq 0$ in the above Eq., it is regarded as the χ_{SB}.

On the other hand, if the system is in the conformal window, M_H are described by the finite-size hyperscaling relation (FSHS) [10] ; $L M_H = F(X)$ where $X = L m_f^{1+\gamma}$. The γ in this equation is defined as the anomalous mass-dimension. We carry out the hyperscaling analysis with our data of $M_H = \{M_\pi, f_{\pi}, M_\rho\}$ by the following fit function; $L M_H = c_0 + c_1 X$.

In the following, we analyze $N_f = 4$ and 8 by these methods.

3. Spectrum

3.1 $N_f = 4$

In this subsection, we analyze $N_f = 4$ system by the ChPT and the finite-size hyperscaling relation. The result of $N_f = 4$ is shown in Fig. 1, in which the pion mass squared, the decay constant and the chiral condensate are plotted on the panel from the left to the right respectively. M_π^2 is proportional to m_f. f_{π} and $\langle \bar{\psi} \psi \rangle$ have the non zero value in the chiral limit. Thus, the $N_f = 4$ has the property of the χ_{SB} phase and this is regarded as the signal of the chiral broken phase in the dynamical case of lattice QCD. Also, if the FSHS test is applied to $N_f = 4$ which is χ_{SB} phase (the ordinary QCD), what happens? The result of this attempt for f_{π} is shown in Fig. 2. From these Figs., there is no data alignment in the region $0 \leq \gamma \leq 2$. This is the property of QCD when the finite size hyperscaling is applied to. These properties (ChPT and FSHS) in $N_f = 4$ may hint whether $N_f = 8$ is χ_{SB}/walking or conformal.

Figure 1: In $N_f = 4$ SU(3) gauge theory on $16^3 \times 24$ at $\beta = 3.7$; Left: M_π^2 as functions of m_f, Center: f_{π} as functions of m_f, Right: $\langle \bar{\psi} \psi \rangle$ as functions of m_f. The blue-solid line in the left panel is the linear fit and the lines in other panels are the quadratic fit.
and Gell-Mann-Oakes-Renner (GMOR) relation, the power fit, the chiral limit by the quadratic fit gives the non-zero value of polynomial fit (quadratic fit) and the power fit are plotted.

In our simulation, therefore, our result in Nf = 8 is consistent with ChPT. Thus, it seems that the Nf = 8 is in the χSB phase.

Here we discuss the validity of the CHPT fit. We used the expansion parameter defined as \(\beta = N_f \left(\frac{M_\pi(m_f)}{4\pi F} \right)^2 \), where F is the pion decay constant in the chiral limit and M_\pi(m_f) is the pion mass at m_f. In our simulation, \(\beta \simeq 1.2 - 2.5 = O(1) \) at the minimum value of M_\pi \simeq 0.2 in our simulation. Therefore, our result in Nf = 8 is consistent with CHPT.

Next we consider the chiral condensate by the direct calculation, \(\langle \bar{Q}Q \rangle = \text{Tr}[D_{HISQ}^1(x, x)] \), and Gell-Mann-Oakes-Renner (GMOR) relation, \(\Sigma = f_\pi^2 M_\rho^2 / (4m_f) \). In the result of the direct calculation, \(\langle \bar{Q}Q \rangle \sim m_f/2 \) and then the chiral limit is very small in the lattice unit. In GMOR relation, the solid line is the combination of the quadratic fit results of M_\pi^2 and f_\pi. This chiral limit is \(\Sigma \simeq 0.0005 \) in good coincidence with the direct measurement. Thus the chiral limit of the chiral condensate is very small in the lattice unit. This means the chiral condensate of the techniquark, \(\langle \bar{Q}Q \rangle \), is tiny value compared with the mass deformation m_f. Therefore, in the following, we attempt to find the tail (the remnant) of the conformal.

3.2 Nf = 8

In this subsection, we analyze Nf = 8 system by the CHPT and the FSHS test. The panels in Fig. 3 are \(M_\pi, f_\pi \) and \(M_\rho \) at \(\beta = 3.8 \) in particular as a function of the quark mass m_f, and the polynomial fit (quadratic fit) and the power fit are plotted.

In \(M_\pi \) and \(M_\rho \), the plateau appears in m_f \(\lesssim 0.06 \) on small lattice \((12^3 \times 32)\) and in m_f \(\lesssim 0.02 \) on large lattice \((24^3 \times 32)\) at \(\beta = 3.8 \). In the corresponding region of the plateau, \(f_\pi \) behaves like the linear toward the zero. Since these might be the effect of the finite size effect or might be in a different vacuum, these data are not included in the following analyses.

In Fig. 3 to take the infinite volume limit is difficult. Then we take the data on the largest volume at each m_f for the fitting. The fit range is 0.0 \(\leq m_f \leq 0.1 \). The fit result of \(M_\pi^2 \) is obtained as follows: \(M_\pi^2 = 2.31(2)m_f + 12.5(1)m_f^2, (\chi^2 / \text{dof} = 17.9) \) and \(M_\pi^2 = 5.43(4)m_f^{1.197}(3), (\chi^2 / \text{dof} = 34.0) \). For \(f_\pi, \chi^2(f_\pi) / \text{dof} = 14.7 \) in the power fit and \(\chi^2(f_\pi) / \text{dof} = 6.1 \) in the quadratic fit, then \(f_\pi \rightarrow F = 0.0295(3) \) in the limit \(m_f \rightarrow 0 \) as the quadratic fit result. For \(M_\rho, \chi^2(M_\rho) / \text{dof} = 6.5 \) in the power fit and \(\chi^2(M_\rho) / \text{dof} = 1.3 \) in the quadratic fit, then \(M_\rho = 0.191(8) \) in the limit \(m_f \rightarrow 0 \) as the quadratic fit result. In all cases, since the \(\chi^2 / \text{dof} \) in the quadratic fit is better than that in the power fit, the chiral limit by the quadratic fit gives the non-zero value of \(f_\pi \) and \(M_\rho \). Thus, it seems that the Nf = 8 is in the \(\chi SB \) phase.

Figure 2: Finite size hyperscaling test of \(f_\pi \) in Nf = 4 SU(3) gauge theory; Left: at \(\gamma = 0.0 \), Center: at \(\gamma = 1.0 \), Right: at \(\gamma = 2.0 \).
Exploring walking behavior in SU(3) gauge theory with 4 and 8 HISQ quarks

Kei-ichi Nagai

4. Discussion and Summary

We have made simulations of lattice QCD with 4 and 8 flavors by using the HISQ action. We obtained the following preliminary result: The $N_f = 4$ QCD is in good agreement with the chiral broken phase and the f_π data is not aligned in $0 \leq \gamma \leq 2$, which is the characteristics of QCD applied to the FSHS test. The $N_f = 8$ is consistent with ChPT (ξ-parameter) and is not inconsistent with FSHS particularly for the data of the relatively large $m_f > F$. We extracted the
Exploring walking behavior in SU(3) gauge theory with 4 and 8 HISQ quarks

Kei-ichi Nagai

Figure 5: Finite size hyperscaling test of f_π in $N_f=8$ SU(3) gauge theory; Left: at $\gamma = 0.6$, Center: at $\gamma = 1.0$, Right: at $\gamma = 1.4$.

Figure 6: Finite size hyperscaling fit by the linear ansatz of f_π in $N_f=8$ SU(3) gauge theory; Left: M_π, Center: f_π, Right: M_ρ. The open symbol is not included in the fit data.

γ-value from the FSHS test; non-universal γ and $\gamma(f_\pi) \sim 1.0$. We show the table for various βs as the very preliminary result (which is revised from that in Ref. [11]). To understand the behavior of

β	γ in M_π	γ in f_π	γ in M_ρ
3.6	0.64(1)	0.98(2)	1.02(2)
3.7	0.63(1)	0.99(1)	0.91(4)
3.8	0.61(1)	0.95(1)	0.84(3)
3.9	0.56(1)	0.92(1)	0.79(4)
4.0	0.56(1)	0.91(1)	0.77(6)

Table 1: Preliminary. The statistical error only

$N_f=8$, we compare with our simulation of $N_f=12$ which is consistent with the conformal [12] and the Schwinger-Dyson equation analysis on the finite size and mass [13]. According to SD-eq. analysis, it is $\gamma \simeq 1.0$ for the near conformal in χSB phase. This might indicate that the system with $\gamma \sim 1.0$ is near conformal (walking). Therefore, $N_f = 8$ would be a good candidate of the walking theory.

We should mention, however, that there are several possible systematic uncertainties not considered in this report; As pointed out in Ref. [13], there exists the mass correction in the hyper-
scaling relation for the heavy quark region. Then the linear ansatz adopted in Fig. 8 may not be sufficient to fit our data. To improve the situation for better understanding, we will accumulate more data for various fermion masses and βs on larger lattices, and carry out detailed analysis using those data.

Acknowledgments

Numerical simulation has been carried out on the supercomputer system φ at KMI in Nagoya university. This work is supported by the JSPS Grant-in-Aid for Scientific Research (S) No.22224003, (C) No.23540300 (K.Y.) and (C) No.21540289 (Y.A.), and also by Grants-in-Aid of the Japanese Ministry for Scientific Research on Innovative Areas No. 23105708 (T.Y.).

References

[1] K. Yamawaki, M. Bando and K. -i. Matumoto, Phys. Rev. Lett. 56 (1986) 1335.
[2] Subsequent similar works without notion of anomalous dimension and scale symmetry were done: T. Akiba and T. Yanagida, Phys. Lett. B 169 (1986) 432; T. W. Appelquist, D. Karabali and L. C. R. Wijewardhana, Phys. Rev. Lett. 57 (1986) 957. See also the earlier work on pure numerical analysis: B. Holdom, Phys. Lett. B 150 (1985) 301.
[3] W. E. Caswell, Phys. Rev. Lett. 33 (1974) 244; T. Banks and A. Zaks, Nucl. Phys. B 196 (1982) 189.
[4] T. Maskawa and H. Nakajima, Prog. Theor. Phys. 52 (1974) 1326; R. Fukuda and T. Kugo, Nucl. Phys. B 117 (1976) 250;
[5] See for a review: E. Farhi and L. Susskind, Phys. Rept. 74 (1981) 277.
[6] Y. Iwasaki, K. Kanaya, S. Sakai and T. Yoshiie, Phys. Rev. Lett. 69 (1992) 21; Y. Iwasaki, K. Kanaya, S. Kaya, S. Sakai and T. Yoshiie, Phys. Rev. D 69 (2004) 014507 [arXiv:hep-lat/0309159].
[7] T. Appelquist, G. T. Fleming and E. T. Neil, Phys. Rev. Lett. 100 (2008) 171607 [Erratum-ibid. 102 (2009) 149902] [arXiv:0712.0609 [hep-ph]]; T. Appelquist, G. T. Fleming and E. T. Neil, Phys. Rev. D 79 (2009) 076010 [arXiv:0901.3766 [hep-ph]].
[8] J. Giedt, PoS LATTICE 2012 (2012) 006; E. T. Neil, PoS LATTICE 2011 (2011) 009 [arXiv:1205.4706 [hep-lat]]. References therein.
[9] E. Follana *et al.* [HPQCD Collaboration and UKQCD Collaboration], Phys. Rev. D 75 (2007) 054502 [arXiv:hep-lat/0610092]; A. Bazavov *et al.* [MILC collaboration], Phys. Rev. D 82 (2010) 074501 [arXiv:1004.0342 [hep-lat]].
[10] L. Del Debbio and R. Zwicky, Phys. Rev. D 82 (2010) 014502 [arXiv:1005.2371 [hep-ph]].
[11] Y. Aoki, T. Aoyama, M. Kurachi, T. Maskawa, K. -i. Nagai, H. Ohki, A. Shibata and K. Yamawaki and T. Yamazaki [LatKMI Collaboration], PoS LATTICE 2011 (2011) 080 [arXiv:1202.4712 [hep-lat]].
[12] Y. Aoki, T. Aoyama, M. Kurachi, T. Maskawa, K. -i. Nagai, H. Ohki, A. Shibata and K. Yamawaki and T. Yamazaki [LatKMI Collaboration], Phys. Rev. D 86 (2012) 054506 [arXiv:1207.3060 [hep-lat]]; PoS LATTICE 2012 (2012) 029 [arXiv:1211.6651 [hep-lat]].
[13] Y. Aoki, T. Aoyama, M. Kurachi, T. Maskawa, K. -i. Nagai, H. Ohki, A. Shibata and K. Yamawaki and T. Yamazaki [LatKMI Collaboration], Phys. Rev. D 85 (2012) 074502 [arXiv:1201.4157 [hep-lat]]; PoS LATTICE 2012 (2012) 059.