Latest Minimum Bias and Underlying Event measurements with the ATLAS Detector

Valentina Maria Martina Cairo – on behalf of the ATLAS Collaboration
State University of New York at Albany
E-mail: valentina.maria.cairo@cern.ch

Abstract. The modelling of Minimum Bias and Underlying Event is a crucial component in the description of soft Quantum Chromodynamics processes. They are both described by multi-parton interaction models, the result of proton collisions containing more than one partonic interaction due to collective and beam remnant effects. Recent studies by the ATLAS Experiment at the LHC aiming at measuring Charged-Particle distributions and the properties of the Underlying Event are presented.

1. Introduction
Hard Quantum Chromodynamics (QCD) events constitute only a tiny fraction of the total proton-proton (pp) cross-section, which is dominated by soft QCD events (peripheral processes). While hard QCD processes can be studied by means of perturbative approaches, this is not possible for the soft QCD events. The development of Monte Carlo (MC) event generators began shortly after the discovery of the partonic structure of hadrons and the formalisation of QCD as the theory of strong interactions. Models have to be developed with a set of tunable parameters to describe the hadron-level properties of final states dominated by soft QCD. Inclusive charged-particle and underlying event (UE) measurements in pp collisions are the ideal test bed to provide insight into the soft QCD region: they are crucial for the tuning of the MC event generator, essential to understand and correctly simulate any other more complex phenomena and ideal to study tracking performance in the early stage of a new data taking.

2. Charged-particle multiplicity
The measurements of inclusive charged-particle spectra provide insight into the low energy non-perturbative region of QCD. A description of low-energy processes within a perturbative framework is not possible in this regime, thus charged-particle interactions are typically described by QCD-inspired models implemented in MC event generators. Measurements are used to constrain the free parameters of these models. Furthermore, soft processes, arising from additional pp interactions per beam crossing (pile-up) at high luminosity may also affect the topologies of events triggered by a specific hard-scattering interaction. An understanding of soft QCD processes is therefore important both in its own right and as a means of reducing systematic uncertainties in measurements of high transverse momentum phenomena. Charged-particle distributions have been measured previously in hadronic collisions at various centre-of-mass energies, see Refs. [1–7] and references therein. This note describes the most recent
charged-particle spectra measured by using data collected with the ATLAS detector [8] at the centre-of-mass energy of 13 TeV [9, 10], with a particular emphasis on the tracking-related aspects. Some highlights from the high charged-particle multiplicity regions studied at the 8 TeV [11] centre-of-mass energy are also given. The average primary charged-particle densities at central pseudorapidity are compared to measurements at lower centre-of-mass energies.

2.1. Methodology

The methodology used in the 8 and 13 TeV analyses is similar to that used at lower centre-of-mass energies in ATLAS [1]. The events collected correspond to minimum-bias datasets based on inelastic pp interactions. The term minimum bias is taken to refer to trigger and event selections which are as unrestrictive as possible for the pp-induced final state. The data were recorded during special fills with low beam currents and reduced focusing to give a mean number of interactions per bunch crossing below 0.005. This procedure guarantees that the contribution from pile-up in these analyses is negligible. The measurements use tracks from primary charged-particles, corrected for detector effects to the particle level, and presented as inclusive distributions in a fiducial phase space region. Primary charged-particles are defined as charged-particles with a mean lifetime $\tau > 300$ ps, either directly produced in pp interactions or from subsequent decays of directly produced particles with $\tau < 30$ ps. Particles produced from decays of particles with $\tau > 30$ ps, called secondary particles, are excluded. This definition differs from earlier analyses in which charged-particles with a mean lifetime $30 < \tau < 300$ ps were included. Most of these are charged strange baryons and they have been removed due to the low reconstruction efficiency of their decay products and to large variations in the predicted rates which would lead to a significant model dependence of the results presented here.

The following distributions are presented for data and compared to MC predictions:

$$\frac{1}{N_{ev}} \cdot \frac{dN_{ch}}{d\eta}, \frac{1}{N_{ev}} \cdot \frac{d^2N_{ch}}{d\eta d\phi_{PT}}, \frac{1}{N_{ev}} \cdot \frac{dN_{ch}}{dn_{ch}}, \langle p_T \rangle vs n_{ch},$$

where p_T is the track momentum component that is transverse to the beam direction1, η is the track pseudorapidity, n_{ch} is the number of primary charged particles in an event, N_{ev} is the number of selected minimum bias events, N_{ch} is the total number of primary charged particles in the data sample and $\langle p_T \rangle$ is the average p_T for a given number of charged-particles2. In order to make a more complete study of particle properties in minimum-bias events, results are given for different multiplicity and kinematic selections (referred to as phase spaces). In the most inclusive phase spaces, a minimum $n_{ch} \geq 2$ or 1 is required and the primary charged-particle must have $\eta < 2.5$ and $p_T > 100$ MeV (referred to as extended phase space) or 500 MeV (referred to as nominal phase space), respectively. In the 13 TeV case, the spectra are also measured in a phase space that is common to the ATLAS, CMS [12] and ALICE [13] detectors in order to ease comparison between experiments. For this purpose an additional requirement of $\eta < 0.8$ (referred to as reduced phase space) is made for all primary charged-particles with $p_T > 500$ MeV and the results can be found in [9].

The PYTHIA 8 [14] (used as a baseline), EPOS [15] and QGSJET-II [16] MC models of inclusive hadron–hadron interactions were used to generate event samples and compare their distributions to data. Different parameter settings in the models are used in the simulation

1 The ATLAS reference system is a Cartesian right-handed coordinate system, with the nominal collision point at the origin. The anti-clockwise beam direction defines the positive z-axis, while the positive x-axis is defined as pointing from the collision point to the center of the LHC ring and the positive y-axis points upwards. The azimuth angle ϕ is measured around the beam axis, and the polar angle θ is measured with respect to the z-axis. The pseudorapidity is defined as $\eta = -\ln(\tan(\theta/2))$.

2 The factor $2\pi p_T$ in the p_T spectrum comes from the Lorentz invariant definition of the cross-section in terms of d^3p. Furthermore, the mass-less approximation is used: $y \approx \eta$.
to reproduce existing experimental data and are referred to as tunes. For PYTHIA 8, the A2 [17] tune is based on the MSTW2008LO PDF [18] while the Monash [19] UE tune uses the NNPDF2.3LO PDF [20] and incorporates updated fragmentation parameters, as well as SPS and Tevatron data to constrain the scaling with energy. For EPOS, the LHC [21] tune is used, while for QGSJET-II the default settings of the generator are applied. Detector effects are simulated using the GEANT4-based [22] ATLAS simulation framework [23]. The simulation also takes into account inactive and inefficient regions of the ATLAS detector. The resulting datasets were used to derive corrections for detector effects, evaluate systematic uncertainties and compare to the data corrected to particle level.

2.2. Charged-particle measurements at 13 TeV

2.2.1. Event Selection Collision events were selected using a trigger which required one or more minimum-bias trigger scintillators counters (MBTS) above threshold on either side of the detector. Each event is required to contain a primary vertex, reconstructed from at least two tracks with a minimum \(p_T\) of 100 MeV, as described in [24]. A veto is applied on additional primary vertices arising from split vertices or secondary interactions. A special configuration of the track reconstruction algorithms was used for this analysis to reconstruct low-momentum tracks with good efficiency and purity. Similar configurations were already used in Run 1, but a more robust and efficient low-\(p_T\) track reconstruction program is available in Run 2 thanks to the installation of an insertable B-layer, IBL [25], which provides a fourth measurement point in the pixel detector. In the nominal phase space, events are required to contain at least one selected track, passing the following criteria: \(p_T > 500\) MeV and \(|\eta| < 2.5\); at least one pixel hit and at least six SCT hits (two, four or six SCT hits for \(p_T < 300\) MeV, \(p_T < 400\) MeV or \(p_T > 400\) MeV, respectively, in the case of the extended phase space), with the additional requirement of an innermost-pixel-layer hit if expected\(^3\) (if a hit in the innermost layer is not expected, the next-to-innermost hit is required if expected); \(|d_{BL}^B| < 1.5\) mm, where the transverse impact parameter, \(d_{BL}^B\), is calculated with respect to the measured beam line position; and \(|z_{BL}^B \cdot \sin \theta| < 1.5\) mm, where \(z_{BL}^B\) is the difference between the longitudinal position of the track along the beam line at the point where \(d_{BL}^B\) is measured and the longitudinal position of the primary vertex, and \(\theta\) is the polar angle of the track. Finally, in order to remove tracks with mismeasured \(p_T\) due to interactions with the material or other effects, the track-fit \(\chi^2\) probability is required to be greater than 0.01 for tracks with \(p_T < 10\) GeV.

Approximately 9 million events are selected, containing a total of \(\sim 100\) million reconstructed tracks. While the overall number of particles in the kinematic acceptance of the extended phase space is nearly double that in the nominal phase space, the measurements are more difficult for \(p_T < 500\) MeV, due to multiple scattering and imprecise knowledge of the material in the detector. These systematic uncertainties at low \(p_T\) need therefore to be carefully evaluated. The performance of the Inner Detector (ID) track reconstruction in the 13 TeV data and its simulation is described in Ref. [26]. Overall, good agreement between data and simulation is observed.

2.2.2. Analysis strategy The main steps of the analysis are related to the trigger, vertex and track reconstruction efficiencies, which need to be evaluated together with their uncertainties. The background contributions to the tracks from primary particles, which include fake tracks (those formed by a random combination of hits), strange baryons and secondary particles, need to be estimated as well. Observables of interest can be evaluated and, by means of an unfolding procedure, can be corrected to account for detector effects. The details can be found in Refs. [9,10], while, in the next section, a few insights will be given on the track reconstruction

\(^3\) A hit is expected if the extrapolated track crosses a known active region of a pixel module.
efficiency by highlighting the importance of a precise evaluation of the amount of material in the ATLAS ID, which represents the main source of systematic uncertainty for this analysis.

2.2.3. Track reconstruction efficiency

The analysis is a track-based analysis and the evaluation of the track reconstruction efficiency and of the related systematics is crucial. The dominant uncertainty in the track reconstruction efficiency arises from imprecise knowledge of the amount of material in the ID. The primary track reconstruction efficiency ε_{trk} is determined from simulation. The efficiency is parameterised in two-dimensional bins of p_T and η, and is defined as:

$$\varepsilon_{\text{trk}}(p_T, \eta) = \frac{N_{\text{matched}}(p_T, \eta)}{N_{\text{gen}}(p_T, \eta)},$$

where p_T and η are defined at generator level, $N_{\text{matched}}(p_T, \eta)$ is the number of reconstructed tracks matched to a generated primary charged-particle and $N_{\text{gen}}(p_T, \eta)$ is the number of generated primary charged-particles in the kinematic region of interest. A track is matched to a generated particle if the weighted fraction of track hits originating from that particle exceeds 50%. In the analysis performed in the nominal phase space, a data-driven correction to the efficiency was applied in order to account for material effects in the $|\eta| \geq 1.5$ region. The track reconstruction efficiency depends on the amount of material in the detector, due to particle interactions that lead to efficiency losses. The relatively large amount of material between the pixel and SCT detectors in the region $|\eta| \geq 1.5$ has changed between Run 1 and Run 2 due to the replacement of some pixel services, which are difficult to simulate accurately.
The track reconstruction efficiency in this region is corrected using a method, referred to as track-extension efficiency [27], that compares data and simulation for the efficiency to extend a track reconstructed in the pixel detector (referred to as pixel track segment) into the SCT. Differences in track-extension efficiency are quite sensitive to differences in the amount of material in this region, as can be seen in Figure 1(a). The correction, together with the systematic uncertainty, coming predominantly from the uncertainty of the particle composition in the simulation used to make the measurement, is shown in Figure 1(b). The uncertainty in the track reconstruction efficiency resulting from this correction is ±0.4% in the region |η| > 1.5. The resulting reconstruction efficiency as a function of η integrated over PT is shown in Figure 1(c). The data-driven correction allows for a large reduction of the systematic uncertainty in the measurement with respect to previous studies but it cannot be applied in the reduced phase space due to the large uncertainties of this method for low-momentum tracks. In this case, the total uncertainty on the track reconstruction efficiency due to the amount of material is calculated as the linear sum of the contributions of 5% additional material in the entire ID, 10% additional material in the IBL and 50% additional material in the pixel services region for |η| > 1.5, as described in detail in [28].

The Track-extension efficiency only probes the material between the pixel and SCT detectors, but a good understanding of the material in the other regions of the ID is needed for good description of the track reconstruction efficiency. The material in the ID was studied extensively during Run 1 [29, 30], where the amount of material was known to ±5%. This gives rise to a systematic uncertainty in the track reconstruction efficiency of ±0.6% (±1.2%) in the most central (forward) region. Between Run 1 and Run 2, the IBL was installed, and its simulation was optimised with the Run 2 data. Two data-driven methods were used [27]: a study of secondary vertices from photon conversions and a study of secondary vertices from hadronic interactions, where the radial position of the vertex and the invariant mass of the outgoing particles are measured. Comparisons between data and simulation indicate that the material in the IBL is constrained to within ±10%. This leads to an uncertainty in the track reconstruction efficiency of ±0.1% (±0.2%) in the central (forward) region. This uncertainty is added linearly to the uncertainty from constraints from Run 1, to cover the possibility of missing material in the simulation in both cases. The resulting uncertainty is added in quadrature to the uncertainty from the data-driven correction.

The total uncertainty on the track reconstruction efficiency due to the imperfect knowledge of the detector material is ±0.7% in the most central region and it grows to ±1.5% in the most forward region. There is a small difference in efficiency, between data and simulation, due to the detector hit requirements described in Section 2.2.1. This difference is assigned as a further systematic uncertainty, amounting to ±0.5% for PT < 10 GeV and ±0.7% for PT > 10 GeV. The total uncertainty due to the track reconstruction efficiency determination, shown in Figure 1(c), is obtained by adding all effects in quadrature and is dominated by the uncertainty from the material description.

2.2.4. Corrections and final results

To produce unfolded distributions at particle level, all distributions are first corrected for the loss of events due to the trigger and vertex requirements. The η and PT distributions of selected tracks are then corrected using a track-by-track weight, as described in Refs. [9-11]. No additional corrections are needed for the η distribution because the resolution is smaller than the bin width. For the PT distribution, an iterative Bayesian unfolding [31] is applied to correct the measured track PT distribution to that for primary particles. After applying the event weight, the Bayesian unfolding is also applied to the multiplicity distribution. The total number of events, N_{ev}, used to normalise the distributions, is defined as the integral of the n_{ch} distribution, after all corrections are applied. The dependence of ⟨PT⟩ on n_{ch} is obtained by first separately correcting the total number of tracks and \sum_i PT(i)
(summing over the p_T of all tracks and all events), both versus the number of primary charged-particles. After applying the correction to all events using the event and track weights, both distributions are unfolded separately. The bin-by-bin ratio of the two unfolded distributions gives the dependence of $\langle p_T \rangle$ on n_{ch}.

The corrected distributions for primary charged-particles in events with $n_{ch} \geq 1$ in the kinematic range of the nominal phase space are shown in Figure 2, while, for the extended phase space, they can be seen in Figure 3.

![Figure 2](image)

Figure 2. 13 TeV data [9]: Primary charged-particle multiplicities as a function of (a) pseudorapidity η and (b) transverse momentum p_T, (c) the primary charged-particle multiplicity n_{ch} and (d) the mean transverse momentum $\langle p_T \rangle$ versus n_{ch} for events with at least one primary charged-particles with $p_T > 500$ MeV, with $|\eta| < 2.5$, and with a lifetime $\tau > 300$ ps.

Figures 2(a) and 3(a) show the multiplicity of charged-particles as a function of η. In the nominal phase space, the mean particle density is roughly constant at 2.9 for $|\eta| < 1.0$ and decreases at higher values of $|\eta|$. EPOS describes the data well for $|\eta| < 1.0$, and predicts a slightly larger multiplicity at large $|\eta|$ values. QGSJET-II and PYTHIA 8 - Monash predict multiplicities that are too large by approximately 15% and 5% respectively. PYTHIA 8 - A2 predicts a multiplicity that is 3% too low in the central region, but describes the data well in the forward region. The total systematic uncertainty, dominated by the uncertainty on the track reconstruction efficiency, is below 1.5% in the entire η range. When moving to lower track-p_T, the situation changes and PYTHIA 8 - Monash, EPOS and QGSJET-II give a good description.
for $|\eta| < 1.5$. The prediction from PYTHIA 8 - A2 has the same shape as the predictions from the other generators, but lies below the data. It can be immediately noticed that much bigger systematic uncertainties affect the distribution in the high η region in the extended phase space (up to $\sim 7\%$ with respect to $\sim 1.5\%$ in the nominal phase space). They mainly come from the uncertainty in the amount of material in the ID, which was differently treated in the two phase spaces, as described above.

Figures 2(b) and 3(b) show the charged-particle transverse momentum distributions. EPOS describes the data well for $p_T > 300$ MeV. The PYTHIA 8 tunes describe the data reasonably well, but they are below the data in the low-p_T region. QGSJET-II gives a poor prediction over the entire spectrum, overshooting the data in the low-p_T region.

Figures 2(c) and 3(c) show the charged-particle multiplicity. PYTHIA 8 - A2 describes the data reasonably well in the low-n_{ch} region, but predicts too few events at larger n_{ch} values. PYTHIA 8 - Monash, EPOS and QGSJET-II describe the data reasonably well in the low-n_{ch} region but predict too many events in the mid-n_{ch} region, with PYTHIA 8 - Monash and EPOS predicting too few events in the high-n_{ch} region while QGSJET-II, which implements a model without colour-reconnection, describes the data poorly in this case also.

Figures 2(d) and 3(d) show how the mean transverse momentum, $\langle p_T \rangle$, rises versus the
charged-particle multiplicity. This rise is expected because of colour coherence effects in dense parton environments and is modelled by a colour reconnection mechanism in PYTHIA 8 or by the hydrodynamical evolution model used in EPOS. EPOS describes the data better than PYTHIA 8, which predicts a steeper rise of $\langle p_T \rangle$ with n_{ch} than the data. If the high-n_{ch} region is assumed to be dominated by events with a large number of parton interactions within the same pp collision (MPI), without colour coherence effects, the $\langle p_T \rangle$ should be independent of n_{ch}, as predicted by QGSJET-II.

2.3. Highlights from 8 TeV measurements

![Figure 4. 8 TeV data [11]: Primary charged-particle multiplicities as a function of pseudorapidity η for events with at least (a) 20 or (b) 50 primary charged-particles with $p_T > 500$ MeV, with $|\eta| < 2.5$, and with a lifetime $\tau > 300$ ps.](image)

In the context of the 8 TeV analysis, high multiplicity phase spaces with $n_{ch} \geq 20$ and 50 were studied for the first time. Figure 4 shows the multiplicity of charged-particles as a function of η for multiplicity phase spaces with $n_{ch} \geq 20$ or 50. For $n_{ch} \geq 20$, the generator which describes data best is PYTHIA 8 - A2. In the $n_{ch} \geq 50$ case, PYTHIA and EPOS give similar descriptions for $|\eta| > 1.5$ and overestimate the data, while for $|\eta| < 1.5$ the best description is given by EPOS.

The spectra for the other phase spaces studied at $\sqrt{s} = 8$ TeV can be found in [11].

2.4. Charged-particle measurements at different \sqrt{s}

Figure 5 shows the mean number of primary charged-particles in the central region of the detector as a function of \sqrt{s}. It is obtained by averaging over $|\eta| < 0.2$ and by correcting the 8 and 13 TeV data for the contribution from strange baryons in order to compare the results with lower centre-of-mass energies at which these particles were included. The mean number of primary charged-particles increases by a factor of 2.2 when \sqrt{s} increases by a factor of about 14 from 0.9 TeV to 13 TeV. EPOS describes the dependence on \sqrt{s} very well in several phase spaces, while PYTHIA 8 - A2 and PYTHIA 8 - Monash give a reasonable description, respectively for $p_T > 500$ MeV and $p_T > 100$ MeV. QGSJET-II predicts a steeper rise in multiplicity with \sqrt{s} than that shown by the data.
Figure 5. The average primary charged-particle multiplicity in pp interactions per unit of pseudorapidity η for $|\eta| < 0.2$ as a function of the centre-of-mass energy \sqrt{s} [10]. The results at 8 and 13 TeV have been extrapolated to include charged strange baryons in order to compare the values with previous studies.

3. Pythia 8 - A3 tune
These results have been already used by the ATLAS Collaboration in order to produce a new PYTHIA 8 tune, referred to as PYTHIA 8 - A3 [33]. The A2 tune of PYTHIA 8 gives reasonable results in the prediction of the charged-particle multiplicity at 13 TeV, but an overestimation of the fiducial inelastic cross-section [32] was found compared to 13 TeV data. Since both measurements are important in order to define an optimal setup for the pile-up simulation, the PYTHIA 8 - A3 tune was developed with the aim of improving the prediction of the visible inelastic cross-section and, in the mean time, keeping a good prediction of the charged-particle multiplicity. All the details can be found in [33], where it can be seen that the results are promising, because as wanted, the prediction of the visible inelastic cross-section has improved and the charged-particle multiplicity is still reasonably described, even though discrepancies in the very low and very high n_{ch} region remain.

4. Track-based Underlying Event
The activity accompanying any hard scattering in a collision event is generally referred to as the Underlying Event. This can include partons not participating in a hard-scattering process (beam remnants), multiple parton interactions, initial and final state gluon radiation. It is impossible to uniquely separate the UE from the hard scattering process on an event-by-event basis, but observables can be defined which are particularly sensitive to the properties of the UE. The most recent results released by the ATLAS collaboration are charged-particle distributions sensitive to the UE [34], measured in pp collisions at a centre-of-mass energy of 13 TeV on the same data set described earlier. These distributions characterise the angular distribution of energy and particle flows with respect to the charged particle with highest transverse momentum, as a function of both that momentum and of charged-particle multiplicity. The analysis strategy follows closely the one described above in terms of event selection, data-driven correction to the tracking efficiency, strange baryons treatment and unfolding of detector effects. The selected events were additionally required to contain at least one track with a transverse momentum above 1 GeV.

This measurement uses the established form of UE observables in which the azimuthal plane of the event is segmented into several distinct regions with differing sensitivities to the UE, as shown in Figure 6: the towards ($|\Delta\phi| < 60^\circ$), away ($|\Delta\phi| > 120^\circ$) and transverse regions
Figure 6. Definition of regions in the azimuthal angle with respect to the leading (highest-p_T) charged particle, with arrows representing particles associated with the hard scattering process and the leading charged particle highlighted in red. Conceptually, the presence of a hard-scatter particle on the right-hand side of the transverse region, increasing its $\sum p_T$, typically leads to that side being identified as the trans-max and hence the left-hand side as the trans-min, with maximum sensitivity to the UE [34].

$(60^\circ < |\Delta\phi| < 120^\circ)$. As the scale of the hard scattering increases, the leading charged particle acts as a convenient indicator of the main flow of hard-process energy. The towards and away regions are dominated by particle production from the hard process and are hence relatively insensitive to the softer UE. In contrast, the transverse region is more sensitive to the UE, and observables defined inside it are the primary focus of UE measurements.

Figure 7. Unit-normalised distribution of the transverse momentum of the leading charged particle, $p_T^{lead} > 1$ GeV, compared to various generator models. The error bars on data points represent statistical uncertainty and the blue band the total combined statistical and systematic uncertainty [34].

Figure 7 shows the unit-normalised distribution of events with respect to the transverse momentum of the leading charged particle, p_T^{lead}. This is a steeply falling distribution, with a
change of slope for $p_{T}^{lead} > 5$ GeV: a form which is broadly modelled by all generators. The Pythia 8 - A14 and Monash tunes, as well as EPOS, model the distribution within 15% out to $p_{T}^{lead} = 30$ GeV, while the Pythia 8 - A2 minimum-bias tune predicts too hard a spectrum in the high lead tail. Herwig 7 peaks strongly at the lowest带头 and alternates between under- and over-shooting the data at higher scales, finally producing a softer tail than seen in data.

Figure 8 shows the mean multiplicity and p_{T} distributions as a function of azimuthal angle with respect to the leading particle for different p_{T}^{lead} requirements. Two event selections are shown here: the $p_{T}^{lead} > 1$ GeV cut common to all observables, and a harder $p_{T}^{lead} > 10$ GeV requirement. The difference between these two selections illustrates the transition from relatively isotropic minimum-bias scattering to the emergence of hard partonic scattering structure and hence a dominant axis of energy flow. This event structure with least activity perpendicular to the leading-object axis, i.e. away from $\Delta \phi = 0^\circ$ and $\Delta \phi = 180^\circ$, is seen for both selections and both observables but is much stronger for the event subset with the higher $p_{T}^{lead} > 10$ GeV requirement: this demonstrates the evolution of event shape as a hard scattering component develops. There is no clear best MC model for these observables. EPOS performs best in the more inclusive $p_{T}^{lead} > 1$ GeV selection, followed by Pythia 8 - A14; Herwig 7 significantly undershoots while Pythia 8 - Monash is everywhere above the data. But in the hard-scattering $p_{T}^{lead} > 10$ GeV event selection, Herwig 7 and Monash perform best, with a slight undershoot from Pythia 8 - A14 and a large one from EPOS. These orderings apply to both distributions, although to different extents.

Many other distributions at the centre-of-mass energy of 13 TeV can be found in [34], while previous results can be found in the references therein.

5. Conclusion

The ATLAS collaboration published a number of soft QCD results in pp collisions at the centre-of-mass energy of 13 TeV at the LHC. Among them, charged-particle distributions, including those sensitive to the UE, were presented and the detector performance related to track...
reconstruction were highlighted. A multitude of MC event generators and tunes was investigated. For the charged particle distributions, the results highlight clear differences between MC models and the measured distributions. Among the models considered EPOS reproduces the data the best, PYTHIA 8 - A2 and MONASH give reasonable descriptions of the data and QGSJET-II provides the worst description of the data. These discrepancies, together with those observed in the measurement of the fiducial inelastic cross-section, motivated a new ATLAS tune of the Pythia 8 event generator, the Pythia 8 - A3 tune. The current models in use for UE modelling typically describe this data to 5% accuracy, compared with data uncertainties of less than 1%. The model defects are particularly acute in the transition from generic soft inelastic interactions to secondary interactions in the presence of hard partonic scattering. Some improvement to MC tunes in light of these data will hence be of benefit to physics studies in LHC Run 2 and beyond.

References
1. ATLAS Collaboration, New J. Phys. 13, 053033 (2011).
2. CMS Collaboration, JHEP 1101, 079 (2011).
3. CMS Collaboration, Phys. Rev. Lett. 105 (2010) 022002.
4. CMS Collaboration, JHEP 1002 (2010) 041.
5. ALICE Collaboration, Eur. Phys. J. C 68, 3457354 (2010).
6. CDF Collaboration, Phys. Rev. D 79 (2009) 112005.
7. CMS Collaboration, Phys. Lett. B 751 (2015) 143.
8. ATLAS Collaboration, JINST 3 (2008) S08003.
9. ATLAS Collaboration, Phys. Lett. B 758 (2016) 67.
10. ATLAS Collaboration, Eur. Phys. J. C (2016) 76: 502.
11. ATLAS Collaboration, Eur. Phys. J. C (2016) 76:403.
12. CMS Collaboration, JINST 3 (2008) S08004.
13. ALICE Collaboration, JINST 3 (2008) S08002.
14. T. Sjstrand, S. Mrenna and P. Z. Skands, Comput. Phys. Commun. 178 (2008) 852.
15. S. Porteboeuf, T. Pierog and K. Werner, arXiv:1006.2967 [hep-ph].
16. S. Ostapchenko, Phys. Rev. D 83 (2011) 014018.
17. ATLAS Collaboration, ATL-PHYS-PUB-2011-014 (2011), http://cds.cern.ch/record/1400677.
18. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63, 189 (2009).
19. P. Skands, S. Carrazza, J. Rojo, Eur. Phys. J. C 74, 3024 (2014).
20. NNPDF Collaboration, R.D. Ball et al., Nucl. Phys. B 867, 244 (2013).
21. T. Pierog, J. Karpenko, J.M. Katzy, E. Yatsenko, K. Werner, Phys. Rev. C 92, 34906 (2015).
22. S. Agostinelli et al., GEANT4 Collaboration, Nucl. Instrum. Methods A 506, 250 (2003).
23. ATLAS Collaboration, Eur. Phys. J. C 70, 8237874 (2010).
24. G. Piaucquio, K. Prokofiev, A. Wildauer, J. Phys. Conf. Ser. 119, 032033 (2008).
25. ATLAS Collaboration, CERN-LHCC-2010-013. ATL-PHYS-PUB-2010-013. ATL-TDR-19 (2010), http://cdsweb.cern.ch/record/1291633.
26. ATLAS Collaboration, ATL-PHYS-PUB-2015-018 (2015), http://cdsweb.cern.ch/record/2037683.
27. ATLAS Collaboration, JINST 12 (2017) P12009.
28. ATLAS Collaboration, ATL-PHYS-PUB-2015-051 (2015), https://cds.cern.ch/record/2110140.
29. ATLAS Collaboration, JINST 7 (2012) P01013.
30. ATLAS Collaboration, JINST 11 (2016) P11020.
31. G. D’Agostini, Nucl. Instrum. Methods A 362, 4877498 (1995).
32. ATLAS Collaboration, Phys. Rev. Lett. 117 (2016) 182002.
33. ATLAS Collaboration, ATLAS-PHYS-PUB-2016-017, https://cds.cern.ch/record/2206955.
34. ATLAS Collaboration, JHEP 03 (2017) 157.

© 2018 CERN for the benefit of the ATLAS Collaboration. Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.