Cell-penetrating, antioxidant SELENOT mimetic protects dopaminergic neurons and ameliorates motor dysfunction in Parkinson’s disease animal models

Ifat Alsharifa,b,c,1, Loubna Boukhzara,b,1, Benjamin Lefranca,b,d, David Godefroya,b, Juliette Aury-Landase, Jean-Luc de Regob,f, Jean-Claude de Regob,f, Frédéric Naudetg, Arnaud Araboh, Abdelhamid Chagraouia,b1, David Maltêtea,b, Abdelhamid Benazzoug, Catherine Baugée, Jérôme Leprincee, bd, Abdel G. Elkahloun1, Lee E. Eideni, Youssef Anouara,b,1.

a UNIROUEN, Inserm U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Rouen Normandie University, 76821, Mont-Saint-Aignan, France
b Institute for Research and Innovation in Biomedicine, 76000, Rouen, France
c Biology department, Jamioun University College, Umm Alqura University, Saudi Arabia
d PRIMACEN, Cell Imaging Platform of Normandie, UNIROUEN, 76000, Rouen, France
e UNICAEN, BioConnect EA7451, 14000, Caen, France
f Behavioral Analysis Platform SCAC, Rouen Medical School, Rouen Normandie University, 76183, Rouen, France
g Institut des Maladies Neurodégénératives, CNRS, UMR 5293, Bordeaux University, F-33000, Bordeaux, France
h Biological Resource Service (SRB), Faculty of Sciences and Techniques, Rouen Normandie University, 76821, Mont-Saint-Aignan, France
i Comparative Genomics and Cancer, Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
1 Section on Molecular Neuroscience, National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA

A R T I C L E I N F O

Keywords:
Selenoprotein
Peptide therapy
Neurodegenerative disease
Oxidative stress
Neuron

A B S T R A C T

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by motor dysfunction for which there is an unmet need for better treatment options. Although oxidative stress is a common feature of neurodegenerative diseases, notably PD, there is currently no efficient therapeutic strategy able to tackle this multi-target pathophysiological process. Based on our previous observations of the potent antioxidant and neuroprotective activity of SELENOT, a vital thioredoxin-like selenoprotein, we designed the small peptide PSELT from its redox active site to evaluate its antioxidant properties in vivo, and its potential polyfunctional activity in PD models. PSELT protects neurotoxin-treated dopaminergic neurons against oxidative stress and cell death, and their fibers against neurotoxic degeneration. PSELT is cell-permeable and acts in multiple subcellular compartments of dopaminergic neurons that are vulnerable to oxidative stress. In rodent models of PD, this protective activity prevented neurodegeneration, restored phosphorylated tyrosine hydroxylase levels, and led to improved motor skills.

Transcriptomic analysis revealed that gene regulation by PSELT after MPP+ treatment negatively correlates with that occurring in PD, and positively correlates with that occurring after resveratrol treatment. Mechanistically, a major impact of PSELT is via nuclear stimulation of the transcription factor EZH2, leading to neuroprotection. Overall, these findings demonstrate the potential of PSELT as a therapeutic candidate for treatment of PD, targeting oxidative stress at multiple intracellular levels.

1 Corresponding author. Lab. Neuronal and Neuroendocrine Differentiation and Communication, INSERM U1239, University of Rouen Normandie, 25 rue Tensièrè, 76821, Mont-Saint-Aignan, France.

E-mail address: youssef.anouar@univ-rouen.fr (Y. Anouar).

1 Contributed equally and should be considered joint first authors.
1. Introduction

Parkinson’s disease (PD) is an idiopathic chronic movement disorder of adults that affects 1–2% of persons over 65 years of age [1]. Cardi...
2.4. Assessment of caspase-3-like activity

Caspase-3-like activity in cell culture was measured using the Apo-ONE Homogeneous Caspase-3/7 Assay Kit (Promega) according to the manufacturer’s instructions. Briefly, cells in poly-l-lysine-coated 96-well plates (2 × 10⁴ cells/well) were homogenized in the Homogeneous Caspase-3/7 buffer containing the caspase-3 substrate Z-DEVD-rhodamine 110, and the fluorescence intensity (excitation at 498 nm and emission at 521 nm) was measured in cell lysates during 3 h, using a Flexstation II spectrofluorophotometer (Molecular Devices).

2.5. Measurement of reactive oxygen species

SH-SY5Y cells cultured on coverslips in 12-well culture plates and the levels of intracellular ROS were measured using the DCFDA Cellular ROS Detection Assay Kit (Abcam, Cambridge, UK) following the manufacturer’s instructions. The fluorescence of ROS-oxidized 2′,7′-dichlorofluorescein (DCF) was measured at 530 nm using a Flexstation II spectrofluorophotometer (Molecular Devices).

2.6. RNA extraction and gene expression analysis

RNA was extracted using the TRIzol™ Reagent following the manufacturer’s instructions (Sigma-Aldrich). Standard procedures for labeling, hybridization, washing and staining were as per manufacturer’s recommendation (Affymetrix, Santa Clara, CA, USA). Briefly, the RNA was purified using a Ribopure Kit (Ambion, Austin, TX, USA) according to the manufacturer’s protocol. The quality and quantity of RNA were ensured using the Bioanalyzer (Agilent, Santa Clara, CA, USA) and NanoDrop (Thermo Scientific, Waltham, MA, USA), respectively. For RNA labeling, total RNA (300 ng) was used in conjunction with the Affymetrix-recommended protocol with the WT Plus Reagent Kit. The hybridization cocktail containing the fragmented and labeled complementary DNAs (cDNAs) was hybridized to the Human GeneChip 2.0 ST chips. The chips were washed and stained by the Affymetrix Fluidics Station using the standard format and protocols from Affymetrix. The probe arrays were stained with streptavidin phycoerythrin solution (Molecular Probes, Carlsbad, CA, USA) and enhanced by using an antibody solution containing 0.5 mg/ml biotinylated anti-streptavidin (Vector Laboratories, Burlingame, CA, USA). The probe arrays were scanned using an Affymetrix Gene Chip Scanner 3000. Gene expression intensities were calculated using the Gene Chip Operating software 1.2 (Affymetrix). A GC-corrected robust multichip analysis (RMA) normalization model was used to correct for background, and nonspecific binding. All analyses were performed using Partek Genomics Suite. The raw data was submitted to Gene Expression Omnibus (GEO) under accession number GSE151808.

2.7. Dataset description and microarray data mining

Published microarray datasets in GEO (Gene Expression Omnibus) (http://www.ncbi.nlm.nih.gov/geo/) were mined to reveal phenotypes that may correlate with the present dataset using the broad institute Gene Set Enrichment Analysis program (GSEA) (http://www.broadinstitute.org/GSEA) according to the methods previously described [32–34]. Raw transcriptomic data was downloaded from the National Center for Biotechnology Information (NCBI) GEO database and imported into Partek Genomics Suite software (Partek, Inc., St. Louis, MO). After RMA normalization, log2 transformation and gene summarization, differentially expressed gene sets were generated based on ANOVA (p < 0.05 and 2-fold change). The GSEA algorithm computes a ranked list of all genes from our microarray and compare them to biologically well-defined and published gene signatures to determine whether individual genes of an a priori functionally defined gene set are enriched or randomly distributed across the whole ranked gene list, using a modified Kolmogorov-Smirnov statistic and generating an enrichment score. FDR q-value was set at p < 0.05, and statistical significance adjusted for multiple hypothesis testing was p < 0.05. A gene set-based permutation test of 1000 permutations was applied, and genes were ranked according to Student’s t statistic. All other parameters were set to GSEA defaults.

Ingenuity Pathway Analysis (IPA) (http://www.ingenuity.com) (Ingenuity Systems, Redwood City, CA) was used to identify regulators associated with the differentially expressed genes.

2.8. Animals

All experimental procedures were approved by the Normandy Regional Ethics Committee (Authorization No. N/05-02-13/13–02–16) and were carried out in accordance with the European Committee on Animal Care. Male C57BL/6J mice (24–27 g) or Wister rats (310–330 g) were housed under a 12-h light/12-h dark cycle (light on at 07:00 a.m.) and had free access to food and water. Ambient temperature was maintained at 22 ± 2 °C.

2.9. MPTP or 6-OHDA and peptide treatments

MPTP-HCl (Sigma-Aldrich) was dissolved in sterile 0.9% saline and intraperitoneally injected to 12-week-old male C57BL/6J mice. MPTP at 30 mg/kg was injected daily during five days. Control animals were intraperitoneally injected with sterile 0.9% saline. Mice received intranasal administration of 30 μg of PSELT per animal in 10 μl saline (5 μl per nostril) for 6 days, while control animals received saline only. After the different treatments, the animals were anesthetized with sodium pentobarbital (120 mg/kg; Ceva Santé Animale, Libourne, France), heparinized and perfused through an intracardiac cannula with 0.9% NaCl in 0.1 M phosphate buffer (pH 7.4), followed by 4% paraformaldehyde (PFA) in PBS. Brains were removed and post-fixed in the same fixative at 4 °C during 24 h. Then, brains were conserved at 4 °C in PBS azide.

In the 6-OHDA model, animals were anesthetized with 4% chloral hydrate (Sigma-Aldrich, Paris, France) (300 mg/kg, i.p.) and mounted in a stereotactic apparatus. Free base 6-OHDA hydrochloride (8 μg; Sigma-Aldrich) was dissolved, immediately before use, in 4 μl saline containing 0.01% ascorbic acid and injected into the SNc at the following stereotaxic coordinates: AP: 5.3 mm posterior to bregma; L: 2.3 mm from the midline; D: 7.0–7.3 mm from the dura. The injection was made at a rate of 0.5 μl/min using a cannula connected by polyethylene tubing to a 25 μl Hamilton microsyringe and driven by an infusion pump. At the end of each injection the syringe needle was left in place for an additional 10 min and then withdrawn slowly to prevent reflux of the solution. PSELT was administered daily also by stereotaxis in the SNc at 1 μl in 2 μl during 8 days, and the animals were sacrificed 7 days later. Brains were then collected as described above.

2.10. Immunofluorescence

Fixed tissues were sectioned into 40-μm slices with a vibratome. The sections were incubated with 1% donkey serum diluted in 1% bovine serum albumin and 0.3% Triton X-100 in PBS for 2 h at room temperature, and then exposed overnight at 4 °C to primary antibodies, including anti-TH diluted 1:200 (Millipore, Guyancourt, France), anti-TAT diluted 1:200 (Sigma-Aldrich), anti-EZH2 diluted 1:200 (Ozyme, Saint-Cyr-l’Ecole, France), or anti-active caspase 3 (Cell Signaling, Danvers, USA) diluted 1:400. Immunostaining was visualized using Alexa Fluor 488 or 594 conjugated secondary antibodies diluted 1:200 (Invitrogen, Saint Aubin, France). Nuclei were stained with 1 μg/ml 4,6-diamino-2-phenylindole (DAPI, Sigma-Aldrich) or 1 μM TO-PRO3 in PBS prior to mounting the slides with PBS/glycerol 50/50. Samples were analyzed with a Leica TCS SP8 confocal microscope (Leica Microsystems, Nanterre, France).
2.11. Western blot analysis

Animals were anesthetized by isoflurane inhalation, and the brains were immediately recovered after decapitation and quickly placed in dry ice. Tissue and cell samples were homogenized in a lysis buffer (Ozyme, Saint-Quentin-en-Yvelines, France) or RIPA buffer (Sigma-Aldrich) and analyzed by electrophoresis and protein transfer onto a PVDF membrane (Thermo Fisher Scientific). For all experiments, 30 μg of proteins was used. Membranes were probed with polyclonal antibodies against TH (Millipore) diluted 1:200, anti-active caspase 3 diluted 1:200 (Cell Signaling, Danvers, USA), phosphoTH-Ser31 diluted 1:500, phosphoTH-Ser40 (Ozyme) diluted 1:400, Bip/GRP78 (Sigma-Aldrich) diluted 1:100, DJ-1/PARK7 (Millipore) diluted 1:100, α-synuclein (Sigma-Aldrich) diluted 1:250, anti-H3K27me diluted 1:500 (Diagenode, Ougrée, Belgium) and anti-H3 diluted 1:500 (Abcam). After incubation with Alexa conjugated secondary antibodies (Thermo Fisher Scientific) diluted at 1:1000, the resulting immune complexes were visualized using the ECL chemiluminescence system (Thermo Fischer Scientific). An antibody against α-tubulin (Sigma-Aldrich) or GAPDH (Sigma-Aldrich) diluted at 1:1000, was used as a control to ensure equal protein loading.

2.12. Dopamine assay

Dopamine concentrations in striatum homogenates from the different animal groups were determined using a mouse dopamine Elisa kit following the manufacturer’s instructions (Mybiosource, San Diego, CA).

2.13. Behavioral tests

2.13.1. Open-field locomotor activity

Locomotor activity was assessed automatically in a computerized actimeter (Versamax, AccuScan Instruments, Inc., Ohio, USA) which monitored horizontal displacements and vertical movements, including rearing, leaning and jumping. The animals were placed individually in 20 x 20 x 30 cm compartments in a dimly illuminated and quiet room. The activities were measured during three consecutive periods of 10 min each.

2.13.2. Rotarod

The Rotamex-5 (Columbus Instruments, OH, USA) was used for the evaluation of motor coordination. Mice were placed onto the rod of the apparatus. Rotation was started at 2 rpm to allow the mice to balance and then increased by about 0.4 rpm/s, up to a maximum of 10 rpm. The latency at which the mice were able to maintain their balance on the bar was then recorded automatically by Columbus instruments Rotamex software, using photobeam break technology. The average latency of the last two trials in each day was used for analyses.

2.14. MALDI-TOF mass spectrometry

Brain extracts or cell lysates were pre-purified using SEP-PAK C18 cartridges (Waters Associates, Milford, MA). Before adding the samples, the cartridges were conditioned in 100% of acetonitrile followed by 0.12% trifluoroacetic acid in water. The elution was carried out using a gradient of acetonitrile. The fraction eluted at 50% was recovered for analysis by MALDI-TOF mass spectrometry. Eluates were analyzed by MALDI-TOF mass spectrometry on an UltraflexXtreme (Bruker, Strasbourg, France) operating in positive reflector mode. Spectra were recorded using α-cyano-4-hydroxycinnamic acid as a matrix. The instrument was calibrated with peptides of known molecular mass in the 1–2 kDa range.

2.15. Statistics

Results are expressed as mean ± SEM and represent data from a minimum of three independent experiments in vitro or from groups of 5-12 animals. Statistical analysis of the data was performed with GraphPad Prism 6 software. Statistical significance of difference between groups was determined by the Student’s t-test or after one-way ANOVA with Tukey’s multiple comparisons test.

3. Results

3.1. PSELТ protects dopaminergic cells by inhibiting MPP⁺-induced ROS production

To test the potential protective effect of PSELТ in neurodegenerative conditions, we first used the neuroblastoma cell line SH-SY5Y as a model of dopaminergic neurons where degeneration can be induced in the presence of 1-methyl-4-phenylpyridinium (MPP⁺), the active form of the dopamine system-targeting neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPP⁺ acts on mitochondrial complex I and induces massive oxidative stress in vitro and in vivo. We found that PSELТ at 1 μM is able to promote neuroblastoma cell survival against MPP⁺ (1 mM) toxicity (Fig. 1A and B). A dose-response curve revealed that PSELТ is maximally effective at 1 μM (Fig. 1C). When a control peptide ([Ser₄⁶,₄₉]PSELТ), where the Sec and the Cys residues of PSELТ were replaced by isosteric Ser moieties was used, no protective effect was observed (Fig. 1D), indicating that PSELТ exerts its protective action most likely through a redox mechanism involving the formation of a selenyl-sulfide bridge. The pro-survival effect of PSELТ was confirmed by its inhibitory effect on MPP⁺-induced caspase 3/7 activity (Fig. 1E). To determine whether PSELТ could control the oxidative stress provoked by MPP⁺ treatment, we used the DCF probe whose intracellular fluorescence reflects free radical levels. The results showed that PSELТ treatment significantly reduces ROS levels generated in the presence of MPP⁺ (Fig. 1F), indicating that PSELТ is able to counteract oxidative stress and to impact redox regulation in order to protect dopaminergic cells.

3.2. PSELТ is cell-permeable

To gain insight into the mechanism of action of PSELТ, we wished to determine if its effects occur at different cellular compartments and if so, do these effects occur at sites of action within the cell, or possibly via actions initiated at the plasma membrane from the extracellular space. We first compared the effect of PSELТ to that of PSELТ attached to a TAT cell-penetrating peptide, which revealed that the TAT peptide does not modify or improve the effect of PSELТ since the two peptide forms were evaluated at intracellular events associated with dopaminergic cell function. In particular, alterations in the disease. This analysis revealed that PSELТ is able to inhibit dopamine production (Fig. 2F), where the Sec and the Cys residues of PSELТ were replaced by isosteric Ser moieties was used, no protective effect was observed (Fig. 1D), indicating that PSELТ exerts its protective action most likely through a redox mechanism involving the formation of a selenyl-sulfide bridge. The pro-survival effect of PSELТ was confirmed by its inhibitory effect on MPP⁺-induced caspase 3/7 activity (Fig. 1E). To determine whether PSELТ could control the oxidative stress provoked by MPP⁺ treatment, we used the DCF probe whose intracellular fluorescence reflects free radical levels. The results showed that PSELТ treatment significantly reduces ROS levels generated in the presence of MPP⁺ (Fig. 1F), indicating that PSELТ is able to counteract oxidative stress and to impact redox regulation in order to protect dopaminergic cells.
several PSELT-dansyl fluorescent dots within the cells (Fig. 3A). After 15 min of incubation, the labeling was more intense in the cytoplasm and exhibited an ER-like shape (Fig. 3A). Several fluorescent dots were also observed in the nuclei at this time of incubation (Fig. 3A). At 6 h of incubation, the fluorescent peptide was still observed in the cytoplasm and the nuclei, and also in the nucleoli (Fig. 3A). In order to confirm the penetration of the peptide per se (without dansyl) into the cells, we performed mass spectrometry analysis of extracts from cells incubated with and without the free PSELT for different times, and compared the mass spectrum profiles obtained to the mass profile of the peptide analyzed separately (Fig. 3B–E). At all times examined, this analysis revealed the presence in the cell extracts of a PSELT mass spectrometry pattern comparable to that observed for the free peptide analyzed alone, with similar mass and isotopic profiles (Fig. 3B–E), supporting the previous confocal microscopy results and demonstrating that PSELT is able to cross the biological membranes and is thus cell-permeable. Of note, PSELT was still detected in the cells after 48 h of incubation (Fig. 3E). As expected, control cells which were not incubated with the peptide did not show the PSELT mass profile (Fig. 3F). Together, these data revealed that PSELT has the capacity to penetrate cells and to reach several intracellular organelles, where it can affect different targets.

3.3. Intranasal delivery of PSELT to the nigrostriatal pathway in mice

To determine whether PSELT can be targeted to the nigrostriatal dopaminergic system in vivo, we used the intranasal route to deliver PSELT into the brain and to assess its destination to dopaminergic neurons and fibers of the SNC and striatum (Str), respectively. In order to detect PSELT in the brain after intranasal administration, we used PSELT combined with the TAT peptide, for which an antibody was available and could be employed to localize PSELT in the dopaminergic pathway, which was labeled with antibodies against tyrosine hydroxylase (TH).
Two hours after intranasal administration, the peptide-TAT signal exhibited a diffuse localization in the SNc area and a strong intensity in the Str (Fig. 4A and B). After 4 h, the immunofluorescent PSELT-TAT signal was more concentrated in the dopaminergic neurons of the SNc (Fig. 4A, A and C) and in dopaminergic fibers along with other cells in the Str (Fig. 4B and C). Higher magnification revealed that PSELT-TAT immunofluorescence is localized inside the cells including the nuclei (Fig. 4C), as was observed in neuroblastoma cells in culture (Fig. 3). To confirm the presence of the free PSELT peptide in the dopaminergic system in vivo, we analyzed, by mass spectrometry, PSELT occurrence in the Str after its intranasal administration. This experiment revealed that free PSELT is indeed present in the Str in vivo after intranasal administration (Fig. 4D). Together, these data showed that PSELT is able to reach and accumulate in dopaminergic cells and fibers of the nigrostriatal pathway within few hours after its intranasal administration.

3.4. PSELT protects the dopaminergic system in vivo

In order to test its potential protective effect in vivo, PSELT was administered daily through the intranasal route (30 μg/10 μl) to mice that were treated in parallel with MPTP (30 mg/kg) intraperitoneally for 5 days. Immunohistochemical labeling of TH showed that MPTP provokes a marked degeneration of dopaminergic neurons in the SNc (Fig. 5A) and dopaminergic fibers in the Str (Fig. 5B), which was largely prevented by PSELT (Fig. 5A and B). This result was confirmed by assessing active caspase 3 immunoreactivity whose MPTP-induced increase was prevented by PSELT (Fig. 5A and B). Western blot analysis revealed that PSELT is able to significantly attenuate the MPTP-induced decrease of TH levels (Fig. 5C and D) and the MPTP-induced increase in active caspase-3 levels (Fig. 5, C and E). Interestingly, PSELT was also able to attenuate the MPTP-induced decrease in DJ-1 levels (Fig. 5, C and F), a protein implicated in the control of oxidative stress in PD [35]. In addition, PSELT also reversed the MPTP-induced increase in Ser31–34-phosphorylated TH, the active forms of the enzyme (Fig. 5G–I). Finally, PSELT showed a clear tendency to preserve dopamine levels in the Str measured at day 7 post-treatment, but the difference between the PSELT/MPTP- and MPTP-treated groups did not reach a statistical significance (Fig. 5J).

Next, we sought to further demonstrate efficacy of PSELT action using a second PD rodent model based on stereotactic administration of the neurotoxin 6-hydroxydopamine (6-OHDA) in the rat nigral pathway. In this other model of PD, PSELT administered stereotactically along with 6-OHDA also protected both the SNc and the Str against 6-OHDA-induced degeneration as revealed by TH and caspase 3 immunolabelings and their quantification (Fig. 6A–D). Western blot analysis confirmed the protective effect of PSELT against 6-OHDA-triggered neurodegeneration in the rat nigral pathway as assessed by TH quantification in the Str (Fig. 6E and F).

3.5. Molecular effects and pathways associated with PSELT action in dopaminergic cells

To define PSELT molecular and functional impact more globally, we performed a transcriptomic analysis of SH-SY5Y cells after treatment
with MPP⁺ (1 mM) in the presence or absence of PSELT (1 μM) for 6 h. The transcriptomic response to treatment with MPP⁺ was strongly affected by co-administration of PSELT as revealed by microarray data analysis. An unsupervised hierarchical clustering of the top 500 differentially expressed genes (P value < 0.05) revealed that PSELT is able to reverse the expression of genes up- or down-regulated by MPP⁺ as shown in Fig. 7A, indicating that PSELT protection of dopaminergic neurons extends globally to reversal of transcriptomic changes.
indicative of oxidative distress accompanying neurodegeneration elicited by MPP\(^+\) in these cells. Using gene set enrichment analysis (GSEA) with all genes for the comparison of MPP\(^+\) and MPP\(^+\)+PSELT conditions, we found that genes up-regulated by MPP\(^+\) and down-regulated by PSELT are also up-regulated in PD as described in a study reported by Dumitriu et al. [36] who profiled 29 PD patients and compared them to 44 neurologically normal controls (Fig. 7B and Fig. S1A for more correlative analyses with PD gene sets). Similarly, genes down-regulated in gene sets associated with neurogenesis and aging/caloric restriction pathways were correlated to genes down-regulated by MPP\(^+\) and up-regulated by PSELT (Fig. 7C and D, and Fig. S1B for more correlative analyses with neurogenesis gene sets). The gene set most highly correlated with PSELT action is the one for treatment with the antioxidant and anti-inflammatory compound resveratrol [37] (Fig. 7E and Fig. S1C for more correlative analyses with resveratrol-regulated gene sets). For instance, genes that were described as down-regulated by resveratrol in peripheral blood mononuclear cells were also down-regulated by PSELT in neuroblastoma cells and reciprocally, genes up-regulated by resveratrol are also up-regulated by PSELT (Fig. 7E).

In a search of a master gene whose dysregulation by oxidative distress might trigger a widespread transcriptional response mitigated by treatment with PSELT, we found that genes described in the NCBI database as associated/interacting with the EZH2 protein, a master transcription regulator acting epigenetically, are significantly correlated with PSELT treatment (Fig. 7F and Fig. S1D for more correlative analyses), and that genes up-regulated after EZH2 knockout with a

Fig. 4. Intranasal delivery of PSELT to the nigrostriatal pathway.

A: TH and TAT immunostaining was performed in the SNc after intranasal administration of PSELT-TAT, at 2 and 4 h post-treatment. Note that there is no PSELT-TAT signal in control nigral tissue while a strong signal was detected at 4 h in this area (dashed). Nuclei were stained in blue with DAPI. Scale bar: 100 \(\mu\)m.

B: TH and TAT immunostaining was performed in the Str after intranasal administration of PSELT-TAT, at 2 and 4 h post-treatment. Note that there is no PSELT-TAT signal in control striatal tissue while a strong signal was detected at 2 and 4 h in this area. Nuclei were stained in blue with DAPI. Scale bar: 100 \(\mu\)m.

C: Higher magnification in the SNc and Str areas 4 h after intranasal administration of PSELT showing that the peptide is present in dopaminergic neurons and fibers and reaches the nuclei. Scale bar: 20 \(\mu\)m.

D: Mass spectrometry analysis of a striatal extract after intranasal administration of PSELT for 5 consecutive days as described in the present study in PD models (see below). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
Fig. 5. PSELT protects the nigrostriatal dopaminergic pathway against MPTP insult.

A: Exposure to MPTP provoked the degeneration of dopaminergic neurons in the SNc as revealed by TH and caspase 3 immunolabelings of tissue sections at 7 days post-treatment. Scale bar: 50 μm.

B: Exposure to MPTP provoked a degeneration of dopaminergic fibers in the Str as revealed by TH and caspase 3 immunolabelings of tissue sections at 7 days post-treatment. Scale bar: 50 μm.

C: Western blot analysis of TH, caspase 3 and DJ-1 levels in the striatum of control and MPTP-treated mice in the presence or absence of PSELT. Alpha-tubulin was used as a protein loading control to normalize the data.

D: Quantification of TH level after Western blot analysis of striatal samples from control and MPTP-treated animals in the presence or absence of PSELT (*p < 0.05; n = 10).

E: Quantification of caspase 3 level after Western blot analysis of striatal samples from control and MPTP-treated animals in the presence or absence of PSELT (*p < 0.05; n = 10).

F: Quantification of DJ-1 level after Western blot analysis of striatal samples from control and MPTP-treated animals in the presence or absence of PSELT (**p < 0.01; n = 10).

G: Western blot analysis of TH-Ser 40, TH-Ser 31 and TH levels levels in the striatum of control and MPTP-treated mice in the presence or absence of PSELT. Alpha-tubulin was used as a protein loading control to normalize the data.

H: Quantification of TH-Ser 40 level after Western blot analysis of striatal samples from control and MPTP-treated animals in the presence or absence of PSELT (*p < 0.05; n = 10).

I: Quantification of TH-Ser 31 level after Western blot analysis of striatal samples from control and MPTP-treated animals in the presence or absence of PSELT (**p < 0.01; n = 10).

J: Striatal dopamine level of control and MPTP-treated animals in the presence or absence of PSELT (n = 5). This experiment was repeated 3 times with similar results.
H3K27me3 mark [38] correlate with genes up-regulated by MPP+ and down-regulated by PSELT (Fig. 7G). These gene expression correlation analyses support the notion that PSELT may promote redox homeostasis and cell survival through epigenetic regulation.

3.6. PSELT regulates EZH2/H3K27 expression to promote cell survival

In order to test the possibility that PSELT could act at the epigenetic level, i.e. alteration of EZH2 expression, that would explain at least in part the large transcriptomic effects observed, we focused on this pathway by analyzing first the effect and localization of PSELT and EZH2 in neuroblastoma cells. Although EZH2 was barely detectable by immunohistochemistry in these cells in control conditions, its levels were markedly increased in the nuclei after 15 min and 6 h of treatment with PSELT (Fig. 8A and B). At both times, PSELT and EZH2 colocalized in the nuclei which were labeled by the TO-PRO dye (Fig. 8A). Since EZH2 is responsible for the trimethylation of the histone H3K27 [39], we sought to determine whether PSELT also affects the levels of H3K27me3 mark in neuroblastoma cells. Western blot analysis showed that PSELT also increased the levels of H3K27me3 and this effect was abolished by EPZ6438, a selective inhibitor of EZH2 activity (Fig. 8C and D). More over, the H3K27me3 mark was repressed by MPP+, but EZH2 inhibitor had no significant effect on the level of the methylation mark in this condition (Fig. 8C and D), suggesting that MPP+ and EZH2 inhibitor both act on EZH2 to inhibit H3K27me3 levels. In the presence of MPP+, PSELT no longer stimulated the histone methylation mark, whose level was further reduced by EZH2 inhibitor (Fig. 8C and D). These results indicate that PSELT exerts epigenetic effects in SH-SY5Y cells through EZH2 and H3K27me3 regulation. To determine whether PSELT-induced effect on EZH2/H3K27me3 levels is involved in cell survival, we measured cell viability under MPP+/PSELT treatment in the absence or presence of EPZ6438. Cell viability measurements revealed that EZH2
Fig. 7. PSELT effect on gene expression levels in SH-SY5Y cells correlates with different gene sets.

A: Unsupervised clustering based on gene expression profiling of the different experimental conditions indicated under the dendrogram (n = 3 per condition). Genes with a relatively higher level of expression are shown in red, and those with a lower level are shown in blue according to the color scale at the bottom.

B: Gene set enrichment analysis of a ranked list of all genes comparing MPP+ and PSELT treatment versus MPP+ with those up-regulated in Parkinson’s disease (p value = 0, enrichment score = 1.15). Genes up-regulated in Parkinson’s disease positively correlate with genes up-regulated by MPP+ and down-regulated by PSELT. Data were taken from GSE68719_Parkinson disease [36] or from GSE78757_Gaucher disease, GSE20292_Parkinson substantia nigra and GSE9397_Parkinson MSN [36,61,62] in supplementary Fig.S1A.

C: Gene set enrichment analysis of a ranked list of all genes comparing MPP+ and PSELT treatment versus MPP+ with those down-regulated in cortical neurogenesis (p value = 0, enrichment score = −1.29). Genes down-regulated during impaired corticogenesis correlate with genes up-regulated by PSELT. Data were taken from GSE74683_Cortex Neurogenesis (ELP3 knockout) [63] or from GSE42904_HIPPO [64], GSE8425_RASGRF1 KO [65] and the orphan nuclear receptor TLX targets [66] in supplementary Fig.S1B.

D: Gene set enrichment analysis of a ranked list of all genes comparing MPP+ and PSELT treatment versus MPP+ with those up-regulated during caloric restriction (p value = 0, FDR = 0, enrichment score = 1.30). Genes that are up-regulated by caloric restriction are also up-regulated by PSELT. Data were taken from GSE75569 [67].

E: Gene set enrichment analysis of a ranked list of all genes comparing MPP+ and PSELT treatment versus MPP+ with those up-regulated by resveratrol (p value = 0, enrichment score = 1.23). Genes that are up-regulated by resveratrol are also up-regulated by PSELT and inversely, genes down-regulated by resveratrol are also down-regulated by PSELT. Data were taken from GSE36930 [68] or from GSE36930 [68] and GSE42432 [69] in supplementary Fig.S1C.

F: Gene set enrichment analysis of a ranked list of all genes comparing MPP+ and PSELT treatment versus MPP+ with those associated/interacting with the transcription regulator EZH2 (p value = 0, enrichment score = −1.25). The EZH2-interacting genes are mostly correlated with PSELT treatment. Data were taken from the NCBI database (https://www.ncbi.nlm.nih.gov). G: Gene set enrichment analysis of a ranked list of all genes comparing MPP+ and PSELT treatment versus MPP+ with those up-regulated by EZH2 knockout (p value = 0, enrichment score = 1.14). Genes that are up-regulated by EZH2 knockout and have a H3K27me3 mark correlate with genes up-regulated by MPP+ and are down-regulated by PSELT. Data were taken from GSE36930 [38] and from several other studies [70–72] in supplementary Fig.S1D. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
Fig. 8. PSELT regulates EZH2/H3K27me3 levels to promote cell survival.

A: SH-SY5Y cells were incubated with PSELT-dansyl for 15 min or 6 h and immunolabeled for EZH2. The nuclei were labeled by the TO-PRO dye. Scale bars: 10 and 20 μm.

B: Quantification of EZH2 immunoreactivity after exposure to PSELT-dansyl. Data are expressed as mean ± SEM and are compared using Student t-test, ***p < 0.001 (n = 3 per condition).

C: Western blot analysis of H3K27me3 levels in SH-SY5Y cells treated or not with PSELT in the presence or absence of EPZ6438. The histone H3 levels were used as a protein loading control to normalize the data.

D: Quantification of H3K27me3 level after Western blot analysis of SH-SY5Y cells treated or not with PSELT in the presence or absence of EPZ6438. Data are expressed as mean ± SEM and are compared using ANOVA and Tukey’s test, *p < 0.05, **p < 0.01, ***p < 0.001 (n = 3 per condition).

E: SH-SY5Y cells were treated by PSELT and MPP+ in the presence or absence of EPZ6438. Scale bar: 100 μm.

F: Quantification of cell survival after PSELT and MPP+ treatment in the presence or absence of EPZ6438. Data are expressed as mean ± SEM and are compared using ANOVA and Tukey’s test, *p < 0.05, **p < 0.01 (n = 3 per condition). Experiments were repeated at least twice with similar results.
inhibitor significantly attenuates the pro-survival effect exerted by PSELT in the presence of MPP⁺, indicating that the epigenetic regulator EZH2 is involved in the PSELT-promoted cell survival most likely by regulating histone methylation and chromatin remodeling.

3.7. PSELT ameliorates effects of MPTP on locomotor activity in mouse PD models

With these data showing an efficient dopaminergic neuron protection in vitro and in vivo, we explored possible motor benefits of PSELT after a progressive treatment with MPTP to model chronic neurodegeneration observed in PD. For this, we first analyzed mice coordination in the rotarod performance test at days 0, 2 and 7 when MPTP was injected daily at 30 mg/kg for 5 days and SLELT was simultaneously administered during 6 days as shown in Fig. 9A. Data analysis showed a clear beneficial effect of PSELT on motor coordination in the MPTPtreated animals at day 2 (Fig. 9B). At day 7, MPTP-treated animals recovered a coordination level comparable to that of controls and no effect of PSELT could be observed (Fig. S2A) in accordance with previous studies showing that PD animal models exhibit central compensatory phenomena after few days [40,41]. To further ascertain the beneficial effect of PSELT on motor skills, we assessed spontaneous locomotor activity of mice after MPTP treatment in the presence or absence of PSELT at days 0, 2, and 7 as described above (Fig. 9 C-H and Fig. S2). Thus, horizontal and vertical activities, and total distance traveled were recorded for the different animal groups using an automated device during 30 min in three 10-min periods, (Fig. 9 and Fig. S2, B-D). Data analysis of spontaneous activity during the 30 min period of recording revealed that control groups exhibit a slight, non-significant decrease of their activity due to habituation (Fig. 9, C, E and G) as previously reported [42]. Administration of MPTP (30 mg/kg) provoked a marked decrease in locomotor activity at day 2 of treatment (Fig. 9, D, F and H). Importantly, these MPTP-induced locomotor deficits observed at day 2 were significantly reduced after intranasal PSELT (30 μg/10 μl) treatment (Fig. 9, D, F and H), thus demonstrating that PSELT has motor benefits in this neurotoxin-induced Parkinson-like mouse model. At day 7, MPTP-treated mice recovered normal locomotor activity and no effect of PSELT could be observed (Fig. S2, B-D).

4. Discussion

Since its introduction in the 1960s, dopamine-replacement therapy (e.g., L-DOPA) has remained the leading treatment for PD. However, the effects of L-DOPA fade with disease progression and often result in side effects, including dyskinesias and motor fluctuations [43]. Various putative neuroprotective agents, including glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor, transforming growth factor β and other small molecule compounds, have been assessed in different models of PD [44,45]. However, most of these compounds failed in either pre-clinical trials or human trials due to their inability to cross the blood-brain barrier or due to limited bioavailability. Moreover, they also caused adverse side effects. Therefore, effective minimally invasive treatment options that would slow or halt PD progression are still needed. Here, we believe the present study lends critical preclinical support for the use of PSELT as a new approach to protect dopaminergic neurons and to improve motor dysfunction in PD. Indeed, our results demonstrate that PSELT has several advantages in terms of efficacy and bioavailability since it targets oxidative stress at multiple intracellular sites and it easily crosses cell membranes after intranasal administration to protect dopaminergic neurons and their terminals, thus translating in motor skill improvement in a PD model.

Our previous findings showed that SELENOT, the selenoprotein from which PSELT was derived, exerts a potent protective effect on dopaminergic neurons and fibers of the nigrostriatal pathway, and that its conditional gene knockout in the mouse brain causes hyperactivity and higher vulnerability to neurotoxins such as rotenone and MPTP which profoundly affected this pathway and caused severe motor deficits [21,27]. We demonstrated in these previous studies that vector-based expression of SELENOT and not a selenocysteine-mutant form of the protein is able to promote cell survival, to restore TH levels and to prevent oxidative stress in neurotoxin-treated dopaminergic neurons, thus laying the way for the present study aimed at therapeutic application in PD. In addition, our earlier studies also showed that SELENOT is involved in the regulation of misfolded protein accumulation [29], mitochondrial function [46], calcium homeostasis and neurotransmitter release [21,26,28,47], different key cellular processes affected in PD [1] that could be improved by a SELENOT-based therapy.

To avoid the difficulties that may arise from the therapeutic use of a recombinant SELENOT protein which needs to cross the hema-toencephalic barrier and could thus be rapidly degraded before it reaches the nigrostriatum in the brain, we reasoned that a short mimetic of the protein, namely PSELT, encompassing the active site with the CVSU heritage is required, for instance, for insertion in the ER membrane where it normally resides. We thus generated PSELT which was tested for its potential protective effect against MPP⁺ toxicity. PSELT harboring the Sec and Cys residues was effective in promoting cell survival, inhibiting caspase 3 and preventing oxidative stress, indicating that PSELT is indeed able to mimic SELENOT and that the activity of this short peptide relies on the Sec/Cys-containing redox motif since the control peptide [Ser43,46]PSELT was devoid of effect. Although we have systematically seen a small increase in cell number following treatment by PSELT in basal condition, this effect was not significant. Therefore, PSELT does not seem to exert a significant effect on cell proliferation in contrast to the effect of SELENOT recently reported in SK-N-SH neuroblastoma cells [48]. This property of SELENOT observed in neuroblastoma cells is obviously not or poorly mimicked by PSELT.

Much to our surprise, confocal cell imaging and mass spectrometry analysis revealed that PSELT was able to cross the plasma membrane and to regulate the levels of various proteins located in the cytoplasm and within different subcellular compartments including the ER and the nuclei. This interesting finding indicated that PSELT is cell-permeable and could target oxidative stress in different cellular compartments, implying a multi-level redox impact. It should be noted that PSELT alone was as effective as PSELT conjugated with the cell-penetrating peptide TAT that we have also synthesized and tested for neuroprotective action, indicating that PSELT has a great intrinsic capacity to cross the plasma membrane. This property of PSELT represents an enormous advantage for its use as a therapeutic agent since the peptide could have access to various molecular targets in different compartments in vivo without the need for any additional vector. Indeed, our present results showed that PSELT is present in intracellular compartments of dopaminergic neurons in the SNC after intranasal administration, suggesting that the peptide acts at multiple subcellular levels in vivo as well. The structural basis of the cell-penetrating capacity of PSELT is not known yet and will be further investigated in future studies.

It is now recognized that oxidative stress is associated not only with the aging brain but may also play an important pathophysiological role in the development of PD [7,49,50]. For instance, the relevance of oxidative stress to the pathogenesis of PD is supported by the fact that genes whose mutation causes the disease such as α-synuclein, DJ-1, LRRK2 and parkin [51] are all linked to oxidative stress [52,53]. However, attempts to exploit the systemic oxidative stress therapeutically and to improve disease outcome by using antioxidants have been ineffective or even harmful [12]. The reasons for these failures are starting to be understood and involve the undefined nature of pathological oxidative stress and the dysregulation of complex networks of proteins and other macromolecules leading to irreversible degradation of neurons and synapses in the brain of affected subjects. In this context, current approaches to tackle harmful oxidative stress is to target disease-relevant enzymatic sources of ROS or alternatively to
functionally repair oxidatively damaged proteins [12]. In this regard, PSELT which derives from the ROS-inhibiting and proteostasis-supporting enzyme SELENOT and which could regenerate active macromolecules in oxidative stress conditions through its reducing activity mediated by the selenyl-thiol bridge may represent an attractive therapeutic candidate. This implies that PSELT would exert its protective effects by reducing different cellular components that would recover their function, a hypothesis that will need to be substantiated in future studies. Nevertheless, our previous findings showing that SELENOT contributes to the posttranslational maturation of ER-transiting proteins through its redox activity and probably covalent bridge alteration in the client proteins [29] support the idea that PSELT could exert such effect in multiple subcellular compartments. In accordance, our microarray analyses showed that PSELT treatment leads to the modulation of the expression of a number of genes associated with PD, probably by affecting the regulatory function of several factors via redox mechanisms. Among these, PSELT could trigger a transcriptional adaptive response through epigenetic regulation led by EZH2/H3K27me3 to promote cell survival. Indeed, inhibition of this regulatory pathway interfered with PSELT-induced cell survival. This latter finding is in line with recent reports demonstrating the importance of epigenetic regulation in neurodegeneration and neuroprotection [54] and highlights a previously unknown relationship between antioxidant activity and epigenetic regulation of cell survival. It should be noted that MPP+ has its own inhibitory effect on H3K27me3 and that addition of E2H2 inhibitor had no additional effect in the presence of MPP+, which indicates that the effect of the latter on H3K27me3 level is independent of E2H2 and is probably not involved in cell survival. Indeed, administration of E2H2 inhibitor did not modify MPP+-induced cell death, while the inhibitor which down-regulates H3K27me3 reversed the effect of PSELT on both H3K27me3 and cell survival, thus supporting our conclusion that PSELT regulates E2H2/H3K27me3 levels to promote cell survival although PSELT did not revert the effect of MPP+ on H3K27me3 which is probably not related to cell survival. Proteomic studies will be required to determine how PSELT modifies directly or via other factors E2H2 in order to trigger neuroprotection under oxidative stress condition. It is important to note that PSELT adaptive response in MPP+-treated neuroblastoma cells correlated with expression of gene sets associated with different neurodegenerative diseases or neurogenesis (present data and other unpublished observations), indicating that PSELT and probably epigenetic regulation also could represent useful therapeutic options in various brain pathologies.

Most importantly, PSELT treatment protected against nigral dopaminergic neuronal damage and motor deficits in animal models of PD. Routing of PSELT to the nigrostriatal pathway in the MPTP animal model could be achieved upon intranasal administration, thus bypassing the blood-brain barrier and therefore offering a non-invasive way of treatment for this novel therapy in PD. This therapeutic route [55] and similar doses compared to the one chosen for PSELT in the present study (30 μg /10 μl/animal) were successfully used in preclinical models for the treatment of different brain diseases with appropriate agents including insulin-like growth factor for Huntington disease [56], granulocyte colony-stimulating factor for ischemia [57] or EGF for neonatal brain injury [58]. No toxicity or behavioral impairments compared to control mice were observed upon treatment with the dose used of PSELT, although additional studies will be required to further document PSELT pharmacological properties. The peptide was effective in improving motor function in mice treated with MPTP in the early phase of neurodegeneration, supporting the potential therapeutic efficacy of this peptide. However, in the protocols used to induce neurodegeneration in mice, there are inevitably compensatory mechanisms that take place in the brain after few days of neurotoxin treatment [40, 59] which mask the long-term effect of PSELT and the potential to alleviate durably motor impairments. In fact, PSELT exhibited a clear trend to normalize dopamine levels in the striatum after 7 days of treatment but the differences were not statistically significant likely due to the compensation phenomena. Nevertheless, PSELT was able to normalize TH and phosphorylated TH levels, which should impact dopamine synthesis at the long term but other processes such as storage and exocytosis of the neurotransmitter may also be affected in this disease model.

Despite the limitations of the animal model, it is interesting to note that PSELT regulates the levels of proteins that are mutated in PD such as α-synuclein and DJ-1, suggesting that PSELT could impact pathways that are affected in human disease. Given the complexity of the effects of oxidative stress-induced neurodegeneration, the elucidation of these pathways is challenging at this point although pinpointing E2H2 as a major target is an important finding towards this goal.

In conclusion, our study provides direct evidence that targeting dopaminergic neurons and terminals using the small mimetic PSELT is feasible and potentially applicable to the treatment of PD. Because PSELT is a cell-penetrating, multifunctional peptide that targets cell-wide oxidative stress, it is a promising therapeutic candidate for PD and probably other neurodegenerative diseases. It is tempting to speculate that PSELT, and not other antioxidants, is also acting to prevent misfolding of oxidized biomolecules, thus attenuating oxidative and ER stress. In fact, PSELT is probably acting as an efficient thioredoxin-like entity that helps proteins to cope with oxidative stress. It is noteworthy that PSELT displayed comparable effects on gene expression to those of resveratrol as revealed by the microarray analysis. Resveratrol is a widely used antioxidant and anti-inflammatory phytoalexin which holds several health-promoting activities [60]. However, since resveratrol exhibits rapid metabolism and limited systemic bioavailability [60], PSELT may represent an interesting therapeutic alternative that can be applied to combat the major culprit in neurodegeneration represented by oxidative stress.

Author contributions

I.A. and L.B. carried out most experiments. B.L. and J.L. performed peptide synthesis and mass spectrometry analyses. D.G. helped with imaging experiments. J.A.-L. and C.B. performed epigenetic studies. J.L.-dR., J-C.dR. and D.M. helped with behavioral studies and their interpretation. A.A., F.N., A.B. and A.C. helped with in vivo experiments. A.E.
Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.redox.2020.101839.

References

[1] A. Obeso, M. Stanenol, C.G. Goetz, W. Poewe, A.E. Lang, D. Weintraub, D. Burn, G.M. Halliday, E. Bezard, S. Przedborski, S. Lehericy, D.J. Brooks, J.C. Rothwell, M. Hallett, M.R. Delong, C. Muras, C.M. Tanner, G.W. Ross, J.W. Langston, C. Klein, V. Boulton, J. Tsumori, A.M. Lorzano, G. De Strooper, J. Berge, E. Tolosa, M. Rodriguez-Violante, S. Fahn, R.B. Postuma, D. Berg, K. Marek, D.G. Standaert, D.J. Surmeier, W.C. Olafsson, J.H. Kordower, P. Calabresi, A.H.V. Schapira, A. J. Stocum, Past, present, and future of Parkinson’s disease: a special essay on the 20th Anniversary of the Shaking Palsy, Mov. Disord. 32 (2017) 1264–1310.

[2] N. Patterson, J.P. Mesirov, T.R. Golub, P. Tamayo, E.S. Lander, J.P. Mesirov, Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 15545–15550.

[3] H. Arike, K. Takahashi-Niki, E. Kato, H. Hatam, T. Niki, S.M. Iyaghi-Ariga, Neuroprotective Function of DJ-1 in Parkinson’s Disease, 2013, 683920.

[4] V.K. Mootha, C.M. Lindgren, K.F. Eriksson, A. Subramaniam, S. Sihag, J. Lehar, P. Puigserver, E. Caruso, M. Riddlestede, E. Laurila, N. Houlist, M.J. Daly, N. Patterson, J.P. Mesirov, P. Tamayo, T. Riehmann, E.S. Lander, J. N. Hirschhorn, A. Althuler, L.C. Groop, PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes, Nat. Genet. 34 (2003) 267–273.

[5] A. Subramanian, P. Tamayo, V.K. Mootha, S. Mukherjee, B.L. Ebert, M.A. Gillette, A. Paulovich, S.L. Pomeroy, T.R. Golub, E.S. Lander, J.P. Mesirov, Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 15545–15550.
A. Batool, C. Jin, Y.-X. Liu, Role of EZH2 in cell lineage determination and relative
X. Feng, A.H. Juan, H.A. Wang, C.-Y. Ko, H. Zare, V. Sartorelli, Polycomb Ezh2
J.H. Kordower, M.E. Emborg, J. Bloch, S.Y. Ma, Y. Chu, L. Leventhal, J. McBride, E.
X. Su, A.P. Kells, E.J. Huang, H.S. Lee, P. Hadaczek, J. Beyer, J. Bringas,
H. Abid, D. Cartier, A. Hamieh, A.M. François-Bellan, C. Bucharles, H. Pothion, D.
C. Lopes, M. Ribeiro, A.I. Duarte, S. Humbert, F. Saudou, L. Pereira de Almeida,
I. Alsharif et al.
I. Liu, A.P. Singh, R. Singh, S.S. Verma, V. Rai, C.H. Kaschula, P. Matti, S.C. Gupta, Health
J. Blesa, I. Trigo-Damas, M. Dielen, N.L. Del Rey, J.F. Hernandez, A.J. Oboe,
Compensatory mechanisms in Parkinson’s disease: circuits adaptations and role in disease modification. Exp. Neurol. 298 (2017) 148-161.
A.P. Singh, R. Singh, S.S. Verma, V. Rai, C.H. Kaschula, P. Matti, S.C. Gupta, Health benefits of resveratrol: evidence from clinical studies, Med. Res. Rev. 39 (2019) 1851–1891.
A. Vardi, H. Zigdon, A. Medchicheriakova, A.D. Klein, C. Yazobci, B.M. Kenwood, A. A. Rahim, G. Massaro, A.H. Merrill, E.B. Viner, A.H. Fatemar, Delineating pathological pathways in a chemically induced mouse model of Gauher disease, J. Pathol. 239 (2016) 496-509.
D.C. Duke, L.B. Moran, R.K. Pearce, M.B. Grecher, The medial and lateral substantia nigra in Parkinson’s disease: mRNA profiles associated with higher brain tissue vulnerability, Neurogenetics 8 (2007) 83–94.
S. Laguessa, C. Creppe, D.D. Neldalkova, P.P. Prévot, Borgs, S. Huyseuene, B. Franco, G. Duyvens, N. Kruzy, G. Lee, N. Theelen, M. Thiry, P. Close, A. Chariot, B. Malgrange, S.A. Leidel, J.D. Godin, L Nguyen, A dynamic unfolded protein response contributes to the control of cortical neurogenesis, Dev. Cell 35 (2015) 553–567.
B. Juliani, K. Tanemura, K. Igarashi, T. Tominaga, Y Furukawa, M. Otaka, D. Igekami, M. Abematua, T. Sanosaka, K. Naita, J. Kanno, N. Nakashima, Reduced adult hippocampal neurogenesis and cognitive impairments following preatnatal treatment of the antiipieplike drug valproic acid, Stem. Cell. Rep. 5 (2015) 596–1009.
A. Fernández-Medarde, A. Porteras, J. de las Rivas, A. Náuiz, J.J. Fuster, E. Santos, Laser microdissection and microarray analysis of the hippocampus of Ras-GF1 knockout mice reveals gene expression changes affecting signal transduction pathways related to memory and learning, Neuroscience 146 (2007) 272–285, D.A. Koazera, O.F. O’Leary, J.F. Cryan, Y.M. Nolan, Deletion of TLX and social isolation impairments exercise-induced neurogenesis in the adolescent hippocampus, Hippocampus 28 (2018) 3–11.
J.J. Barger, J.M. Vann, N.L. Gray, T.D. Pugh, A. Mataloudis, S.N. Hester, S. M. Wood, M.A. Newton, R. Weindruch, T.A. Prolla, Identification of tissue-specific transcriptional markers of caloric restriction in the mouse and their use to evaluate caloric restriction mimetics, Aging Cell 16 (2017) 750–766.
J. Tomé-Carneiro, M. González, M. Larrosa, F.J. Yáñez-Gascón, J.A. Ruíz-Ros, F. A. Tomás-Barberán, M.T. García-Conesa, J.C. Espín, Grape resveratrol increases serum adiponectin and downregulates inflammatory genes in peripheral blood mononuclear cells: a triple-blind, placebo-controlled, one-year clinical trial in patients with stable coronary artery disease, Cardiovasc Ther. 27 (2013) 37–48.
E. Konings, S. Timmers, M.V. Boekschoten, G.H. Goossens, J.W. Jocken, L. A. Afman, M. Müller, P. Schrauwwen, L.A. Mariman, E.E. Blaak, The effects of 30 days resveratrol supplementation on adipose tissue morphology and gene expression patterns in obese men, Int. J. Obes. (2013) 470–473.
M. Nuyttten, L. Beke, A. Van Eynde, H. Culemans, M. Beuille, P. Van Hummelen, F. Fuku, M. Bollen, The transcriptional repressor NIPP1 is an essential player in expression patterns in obese men, Int. J. Obes. 38 (2014) 470–479.
M.A. Nalls, V. Plagnol, D.G. Hernandez, M. Sharma, U.M. Sheerin, M. Saad, J. Simon-Sánchez, C. Schulte, S. Lezage, S. Sveinbjörnsmóti, K. Stefansson, P. Heutink, J. Hardy, P. Heutink, A. Bricé, T. Gainer, A.B. Singleton, N.W. Wood, Impulation of sequence variants for identification of genetic risks for Parkinson’s disease: a meta-analysis of genome-wide association studies, Lancet 377 (2011) 641–649.
T. Jiang, Q. Sun, S. Chen, Oxidative stress: a major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease. Prog. Neurobiol. 147 (2016) 1-15.
Yeung, A.W.K., Traveptov, N.T., Georgieva, M.G., Ognyanov, I.V., Kordos, K., Joziwik, A., Kühl, T., Perry, G., Petralia, M.C., Mazzon, E., and Atanassov, A. Reactive oxygen species (ROS) and their impact in neurodegenerative diseases: literature landscape analysis. Antioxidants Redox Signal. (Epub ahead of print 2020). PMID: 32039995 DOI: 10.1089/ars.2019.792.