Inflationary Correlation Functions without Infrared Divergences

Mischa Gerstenlauer

Byrnes, M.G., Hebecker, Nurmi, Tasinato (1005.3307)
M.G., Hebecker, Tasinato (1102.0560)
IR divergences in \(\delta N \) - formalism

Starobinsky '85, Sasaki/Stewart '95, Wands/Malik/Lyth/Liddle '00
Lyth/Malik/Sasaki '04, Lyth/Rodriguez '05

- Consider some late constant energy-density surface (reheating surface)

\[
ds^2 = e^{2\zeta(x)} dx
dx
\]

- The curvature perturbation \(\zeta \) can be interpreted as perturbation in the \textit{local} number of e-foldings \(N(\phi(x)) \)

\[
\zeta(x) = \delta N(x) = N(\phi_0 + \delta \phi(x)) - N(\phi_0)
\]

\[
= N_\phi \delta \phi(x) + \frac{1}{2} N_{\phi \phi} \delta \phi(x)^2 + \ldots
\]

- Yields 2-point correlator in Fourier space:

\[
\langle \zeta_k \zeta_p \rangle \sim N_\phi^2 \langle \delta \phi_k \delta \phi_p \rangle + \frac{1}{4} N_{\phi \phi}^2 \langle (\delta \phi^2)_k (\delta \phi^2)_p \rangle + N_\phi N_{\phi \phi \phi \phi} \ldots
\]
Infrared Divergences in Inflation

- Focus on the second term

\[N_{\phi\phi}^2 \langle (\delta \phi^2)_k (\delta \phi^2)_p \rangle \sim N_{\phi\phi}^2 \int_{q,l} \langle \delta \phi_q \delta \phi_{k-q} \delta \phi_l \delta \phi_{p-l} \rangle . \]

- use

\[\delta \phi_k \sim \frac{H}{k^{3/2}} a_k \]

- to yield leading-log contribution from \(q, l \ll k, p \):

\[N_{\phi\phi}^2 H^4 \int \frac{d^3q}{q^3} \sim N_{\phi\phi}^2 H^4 \ln(kL) , \]

with cut-off \(1/L \).

- \(L \approx \) side-length of observable patch

Lyth ’07
Fluctuations of the Hubble scale H

Byrnes, MG, Hebecker, Tasinato, Nurmi ’10

- Origin of IR effects is the dependence of $N(\phi(x))$ on $\delta\phi_q$ with $q \ll k$

- A similar dependence appears in the Hubble function $H(\phi(x))$.

- The Hubble scale $H(\phi(x))$ should be modified analogously!

- This has not been taken into account in (higher-order) δN-calculations.
Define local background of the scalar field:

\[\delta \phi(x) = \int_{q \ll k} e^{-iqx} \delta \phi_q \]

Hubble function should be evaluated at horizon exit of mode \(k \).

Local scalar field value at horizon exit: \(\phi_0 + \delta \phi(x) \)

\[\delta \phi(x) \sim \int_{k} e^{-ikx} \frac{1}{k^{3/2}} H(\phi_0 + \delta \phi(x)) \ a_k \]

Using this modified \(\delta \phi \) in \(\zeta = N(\phi_0 + \delta \phi) - N(\phi_0) \) and expanding in both, \(\delta \phi \) and \(\delta \phi \), yields

\[\langle \zeta_k \zeta_p \rangle \sim \frac{\delta^{(3)}(k + p)}{k^3} \left[N^2 H^2 + \frac{1}{2} (H^2 \ln kL) \frac{d^2}{d\phi^2}(N^2 H^2) + \ldots \right] \]
Geometry of the Reheating Surface

With $H^2 \ln kL \sim \langle \delta \phi^2 \rangle$ and $\mathcal{P}_\zeta^{(0)} \sim N_\phi^2 H^2$ this gives

$$\mathcal{P}_\zeta(k) = \mathcal{P}_\zeta^{(0)}(k) + \frac{1}{2} \langle \delta \phi^2 \rangle \frac{d^2}{d\phi^2} \mathcal{P}_\zeta^{(0)} \ldots$$

Replace $\delta \phi$ by $\bar{\zeta} \sim \int_q \ll k e^{-iqx} \zeta_q$ and use $\frac{d}{d\phi} = N_\phi \frac{d}{d\ln k}$ to write this as

$$\mathcal{P}_\zeta(k) = \left(1 - \langle \bar{\zeta} \rangle \frac{d}{d\ln k} + \frac{1}{2} \langle \bar{\zeta}^2 \rangle \frac{d^2}{(d\ln k)^2} \right) \mathcal{P}_\zeta^{(0)}(k)$$

see also Giddings/Sloth '10

Obviously, these are the first terms of the Taylor expansion of

$$\mathcal{P}_\zeta(k) = \langle \mathcal{P}_\zeta^{(0)}(k e^{-\bar{\zeta}}) \rangle$$

where $\langle \ldots \rangle$ is the average in $\bar{\zeta}$ over a box of size L
According to its definition

\[\langle \zeta_k \zeta_p \rangle \sim \frac{\delta(k + p)}{k^3} \mathcal{P}_\zeta(k) \]

the power spectrum may be written as

\[\mathcal{P}_\zeta(k) \sim k^3 \int_y e^{iky} \langle \zeta(x) \zeta(x + y) \rangle \]

The average \(\langle \ldots \rangle \) is over pairs of points separated by a coordinate vector \(y \).

In other words, we are averaging over the location \(x \) of such pairs.
Infrared-safe Correlator

- At each location there is a local background due to long-wavelength modes
 \[\tilde{\zeta}(x) = \int_{q \ll k \sim 1/y} dq \ e^{-iqx} \zeta_q \]

- The physical separation \(z = e^{\tilde{\zeta}(x)}y \) of the pairs is \(x \)-dependent and therefore different for each pair.

- Moreover, this mismatch between \(y \) and the true distance \(z \) grows with \(L \). More precise: \(\langle \bar{\zeta}^2 \rangle \sim P_0^{(0)} \ln(kL) \).

⇒ Select pairs separated by same physical distance \(z \) \(\Rightarrow \)
IR-safe Correlator

- The correlator

\[
\langle \zeta(x) \, \zeta(x + e^{-\tilde{\zeta}(x)}z) \rangle
\]

averages over pairs of points **ALL** separated by the same physical distance \(z\).

(Note: Now the coordinate vector \(y(x) = e^{-\tilde{\zeta}(x)}z\) is different for each pair.)

- The \(z\)-dependence of this correlator is then a **background-independent** and, hence, **IR-safe** object.

- Consequently, the Fourier transform is the desired **IR-safe** power spectrum

\[
\mathcal{P}_{\zeta}^{(0)}(k) \sim k^3 \int e^{ikz} \langle \zeta(x) \, \zeta(x + ze^{-\tilde{\zeta}}) \rangle
\]

related to Urakawa/Tanaka ’10?

see also Giddings/Sloth ’11
IR-safe Power Spectrum

- The conventional IR-sensitive power spectrum is obtained via

\[P_\zeta(k) \sim k^3 \int e^{iky} \langle \zeta(x) \zeta(x+y) \rangle \]

\[\sim k^3 \int e^{iky} \langle \zeta(x) \zeta(x + ye^{-\zeta}) \rangle \]

\[\sim \langle (ke^{-\zeta})^3 \int \exp(ike^{-\zeta} z) \zeta(x) \zeta(x + ze^{-\zeta}) \rangle \]

\[\sim \langle P_\zeta^{(0)}(ke^{-\zeta}) \rangle \]

i.e. in a resummed, all-orders form.

- This is in absolute agreement with the previous result!!!
Tensor modes γ

- Include tensor modes in the metric (γ: transverse, traceless)

$$ds^2 = e^{2\zeta(x)} \left(e^{\gamma(x)} \right)_{ij} dx^i dx^j$$

- Generalization yields (\hat{k}: unit vector in k-direction)

$$\mathcal{P}_\zeta(k) = \langle (e^{-\bar{\gamma}/2 \hat{k}})^{-3} \mathcal{P}_\zeta^{(0)}(e^{-\bar{\zeta}-\bar{\gamma}/2 \hat{k}}) \rangle$$

- Expanding to first non-trivial order yields:

$$\mathcal{P}_\zeta(k) = \left(1 - \frac{1}{20} \langle \text{tr} \bar{\gamma}^2 \rangle \frac{d}{d \ln k} + \frac{1}{2} \langle \bar{\zeta}^2 \rangle \frac{d^2}{(d \ln k)^2} \right) \mathcal{P}_\zeta^{(0)}(k)$$

in agreement with Giddings/Sloth ’10
Conclusions

- A wide class of inflationary IR divergences comes from long-wavelength background modes.

- This can be seen in an (appropriately modified) δN formalism as well as from the ‘geometry of the reheating surface’.

- It is possible to define IR-safe correlators.

- Conventional correlators (with their IR-dependence) can be easily calculated.

- Inclusion of tensor modes is straightforward.

Beyond this talk: n-point correlators, all-orders evaluation, convergence of perturbative expansion