BARROW’S INEQUALITY AND SIGNED ANGLE BISECTORS

BRANKO MALEŠEVIĆ, MAJA PETROVIĆ

Submitted to arXiv.org

Abstract. In this paper we give one extension of Barrow’s type inequality in the plane of the triangle $\triangle ABC$ introduce signed angle bisectors.

1. Introduction

Let triangle $\triangle ABC$ be given in Euclidean plane. Denote by R_A, R_B and R_C the distances from the arbitrary point M in the plane of $\triangle ABC$ to the vertices A, B and C respectively, and denote by $\ell_a = |MA|$, $\ell_b = |MB|$ and $\ell_c = |MC|$ the length of angle bisectors of $\angle BMC$, $\angle CMA$ and $\angle AMB$ from the point M respectively (Fig. 1).

Barrow’s inequality [2]:

$$R_A + R_B + R_C \geq 2 (\ell_a + \ell_b + \ell_c)$$

(1)

is true when M is arbitrary point in the interior of triangle $\triangle ABC$. The equality holds iff triangle ABC is equilateral and point M is its circumcenter. In this paper we consider a Barrow’s type inequality when M is arbitrary point in the plane of the triangle $\triangle ABC$ introduce signed angle bisectors. Let us notice that inequalities with angle bisectors recently are considered in papers [1], [6], [7], [15].

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{Barrow.pdf}
\caption{Barrow’s inequality (point M into $\triangle ABC$)}
\end{figure}

\textit{Mathematics subject classification} (2010): 51M16, 51M04, 14H50.

\textit{Keywords and phrases}: Signed distance; Barrow’s inequality.

Research is partially supported by the Ministry of Science and Education of the Republic of Serbia, Grant No. III 44006 and ON 174032.
Inequality of Erdös-Mordell [4]:

\[R_A + R_B + R_C \geq 2(r_a + r_b + r_c) \]

(2)

is a consequence of inequality of Barrow, where \(r_a, r_b \) and \(r_c \) are distances of interior point \(M \) of triangle to the sides \(BC, CA \) and \(AB \) respectively.

Let us notice that topic of the Erdös-Mordell inequality is current, as it has been shown in recent papers. V. Pambuccian proved that, in the plane of absolute geometry, the Erdös-Mordell inequality is an equivalent to non-positive curvature [12]. In the paper [11] is given an extension of the Erdös-Mordell inequality on the interior of the Erdös-Mordell curve. In relation to the Erdös-Mordell inequality N. Der gia des in the paper [3] proved one extension of the Erdös-Mordell type inequality

\[R_A + R_B + R_C \geq \left(\frac{c}{b} + \frac{b}{c} \right) r'_a + \left(\frac{a}{c} + \frac{c}{a} \right) r'_b + \left(\frac{b}{a} + \frac{a}{b} \right) r'_c \]

(3)

where \(r'_a, r'_b \) and \(r'_c \) are signed distances of arbitrary point \(M \) in the plane triangle to the sides \(BC, CA \) and \(AB \) respectively.

2. The Main Results

Proof of Barrow’s inequality in the paper of Z. Lu [10] is based on the next theorem.

Statement 1. Let \(p, q, r \geq 0 \) and \(\alpha + \beta + \gamma = \pi \). Then we have the inequality

\[p + q + r \geq 2\sqrt{qr} \cos \alpha + 2\sqrt{pr} \cos \beta + 2\sqrt{pq} \cos \gamma. \]

(4)

Peculiarity of Barrow’s and Lu’s proofs are, that is, primarily algebraic. In Lu’s proof, Barrow’s inequality follows from positivity of quadratic function \(f(x) = x^2 - 2(\sqrt{r} \cos \beta + \sqrt{q} \cos \gamma) x + q + r - 2\sqrt{qr} \cos \alpha \) in the point \(x = \sqrt{p} \) with an appropriate geometric interpretation for \(p, q, r \) and \(\alpha, \beta, \gamma \) (for details see [10]).

In this paper we also give one algebraic proof with geometric interpretation for points outside of the triangle \(\triangle ABC \). The following theorems are true.

Statement 2. Let \(p, q, r \geq 0 \) and \(\alpha = \beta + \gamma \). Then we have the inequality

\[p + q + r \geq -2\sqrt{qr} \cos \alpha + 2\sqrt{pr} \cos \beta + 2\sqrt{pq} \cos \gamma. \]

(5)

Proof. Let us consider the quadratic function

\[g(x) = x^2 - 2(\sqrt{r} \cos \beta + \sqrt{q} \cos \gamma) x + q + r + 2\sqrt{qr} \cos \alpha. \]

(6)

Then a quarter of the discriminant is

\[\frac{1}{4} \delta = (\sqrt{r} \cos \beta + \sqrt{q} \cos \gamma)^2 - (q + r + 2\sqrt{qr} \cos \alpha). \]

(7)
Based on $\alpha = \beta + \gamma$ we have $\cos \alpha = \cos (\beta + \gamma) = \cos \beta \cos \gamma - \sin \beta \sin \gamma$ and hence
\[
\frac{1}{4} \delta = r \cos^2 \beta + q \cos^2 \gamma + 2\sqrt{rq} \cos \beta \cos \gamma - q - r - 2\sqrt{rq} \cos \alpha
\]
\[
= r \cos^2 \beta + q \cos^2 \gamma + 2\sqrt{rq} \cos \beta \cos \gamma - q - r - 2\sqrt{rq} \cos (\beta + \gamma)
\]
\[
= -r \sin^2 \beta - q \sin^2 \gamma + 2\sqrt{rq} \cos \beta \cos \gamma - 2\sqrt{rq} \cos \beta \cos \gamma + 2\sqrt{rq} \sin \beta \sin \gamma.
\]
Using previous identity we obtained
\[
\delta = -4 \left(\sqrt{r} \sin \beta - \sqrt{q} \sin \gamma \right)^2 < 0,
\]
hence $g(x) \geq 0$. Finally, letting $x = \sqrt{\rho}$ we obtained (5). □

Remark 1. Let us emphasize that for term $A = p + q + r + 2\sqrt{qr} \cos \alpha - 2\sqrt{pq} \cos \beta - 2\sqrt{pq} \cos \gamma$, when $\gamma = \alpha - \beta$, follows inequality
\[
A = \left(\sqrt{r} - \sqrt{p} \cos \beta + \sqrt{q} \cos \alpha \right)^2 + \left(\sqrt{p} \sin \beta - \sqrt{q} \sin \alpha \right)^2 \geq 0,
\]
alogously using the LAGRANGE's complete square identity from [8], [9]. Therefore we have second proof of inequality (5).

Statement 3. Let $p, q, r \geq 0$ and $\alpha = \beta + \gamma$. Then we have the inequality
\[
p + q + r \geq 2\sqrt{qr} \cos \alpha - 2\sqrt{pq} \cos \beta - 2\sqrt{pq} \cos \gamma.
\] (8)

Proof. Let us consider the term $A = p + q + r + 2\sqrt{qr} \cos \alpha + 2\sqrt{pq} \cos \beta + 2\sqrt{pq} \cos \gamma$, for $\gamma = \alpha - \beta$. Notice that for the term A, by the LAGRANGE's complete square identity, the following two representations are true.

1° If $\frac{\pi}{2} \leq \alpha < \pi$, then $\cos \alpha \leq 0$, and therefore
\[
A = \left(\sqrt{r} + \sqrt{p} \cos \beta + \sqrt{q} \cos \alpha \right)^2 + \left(\sqrt{p} \sin \beta + \sqrt{q} \sin \alpha \right)^2 - 4\sqrt{qr} \cos \alpha \geq 0. \tag{9}
\]

2° If $0 < \alpha < \frac{\pi}{2}$, then $\cos \alpha > 0$. From $\alpha = \beta + \gamma$ follows $\cos \beta > 0$, and therefore
\[
A = \left(\sqrt{r} - \sqrt{p} \cos \beta - \sqrt{q} \cos \alpha \right)^2 + \left(\sqrt{p} \sin \beta + \sqrt{q} \sin \alpha \right)^2 + 4\sqrt{pq} \cos \beta \geq 0. \tag{10}
\]

Let us introduce the division of the plane of triangle $\triangle ABC$ to following areas $\lambda_0 = (+, +, +)$, $\lambda_1 = (-, +, +)$, $\lambda_2 = (+, -, +)$, $\lambda_3 = (+, +, -)$, $\lambda_4 = (+, -, -)$, $\lambda_5 = (-, +, -)$, $\lambda_6 = (-, -, +)$, (Fig. 2), via signs of homogenous barycentric coordinates of a point as given in the paper [14] (see also the Section 7.2 in [5]). Then λ_0 is the interior area of the triangle $\triangle ABC$. Let us notice that $(\lambda_0 \cup \lambda_1) \cup (BC)$ is the interior area of the angle $\angle A$, and λ_4 is the interior area of the opposite angle. Analogously $(\lambda_0 \cup \lambda_2) \cup (AC)$ is the interior area of the angle $\angle B$, λ_5 is the interior area of the opposite angle and $(\lambda_0 \cup \lambda_3) \cup (AB)$ is the interior area of the angle $\angle C$, λ_6 is the interior area of the opposite angle.
The following auxiliary statement is true.

Lemma 0. Let B and C be fixed points in the plane and let M be arbitrary point in the plane. For ℓ length of angle bisector of $\angle BMC$ from point M following formulas are true:

$$\ell = \frac{2R_BR_C}{R_B + R_C} \cos \frac{\alpha_M}{2} = \frac{\sqrt{R_BR_C}}{R_B + R_C} \sqrt{(R_B + R_C)^2 - |BC|^2},$$ \hspace{2cm} (11)

where $R_B = |MB|$, $R_C = |MC|$ and $\alpha_M = \angle BMC$. Especially, for φ line throughout points B and C is true:

$$\ell = \begin{cases} 0 & : M \in [BC], \\ \frac{2R_BR_C}{R_B + R_C} & : M \in \varphi \setminus [BC]. \end{cases}$$ \hspace{2cm} (12)

In further considerations let $p = R_A$, $q = R_B$, $r = R_C$. Then, Z. Lu, in the paper [10], proved the following Barrow’s type inequality.

Theorem 0. [10] In the area λ_0 the following inequality is true:

$$R_A + R_B + R_C \geq \left(\frac{\sqrt{R_C}}{\sqrt{R_B}} + \frac{\sqrt{R_B}}{\sqrt{R_C}} \right) \ell_a + \left(\frac{\sqrt{R_C}}{\sqrt{R_A}} + \frac{\sqrt{R_A}}{\sqrt{R_C}} \right) \ell_b + \left(\frac{\sqrt{R_A}}{\sqrt{R_B}} + \frac{\sqrt{R_B}}{\sqrt{R_A}} \right) \ell_c.$$ \hspace{2cm} (13)

Remark 2. Barrow’s inequality is a consequence of the previous inequality.

From previous Lemma follows next auxiliary statement.

Lemma 1. (i) If $M = A$, i.e. $R_A = 0$ then:

$$R_B + R_C \geq \left(\frac{\sqrt{R_C}}{\sqrt{R_B}} + \frac{\sqrt{R_B}}{\sqrt{R_C}} \right) \ell_a.$$ \hspace{2cm} (14)

(ii) If $M = B$, i.e. $R_B = 0$ then:

$$R_A + R_C \geq \left(\frac{\sqrt{R_C}}{\sqrt{R_A}} + \frac{\sqrt{R_A}}{\sqrt{R_C}} \right) \ell_b.$$ \hspace{2cm} (15)

(iii) If $M = C$, i.e. $R_C = 0$ then:

$$R_A + R_B \geq \left(\frac{\sqrt{R_B}}{\sqrt{R_A}} + \frac{\sqrt{R_A}}{\sqrt{R_B}} \right) \ell_c.$$ \hspace{2cm} (16)
Denote with \(\text{cl} \) closure of a plane set. The following theorem is true.

Theorem 1. In the area \(\text{cl} (\lambda_1) \setminus \{B, C\} \) the following inequality is true:

\[
R_A + R_B + R_C \geq \left(\frac{\sqrt{R_C}}{\sqrt{R_B}} + \frac{\sqrt{R_B}}{\sqrt{R_C}} \right) (\ell_a) + \left(\frac{\sqrt{R_C}}{\sqrt{R_A}} + \frac{\sqrt{R_A}}{\sqrt{R_C}} \right) \ell_b + \left(\frac{\sqrt{R_A}}{\sqrt{R_B}} + \frac{\sqrt{R_B}}{\sqrt{R_A}} \right) \ell_c. \tag{17}
\]

Proof. Let \(M \in \text{cl} (\lambda_1) \setminus \{B, C\} \), then \(\alpha_M = \beta_M + \gamma_M \) i.e. \(\frac{\alpha_M}{2} = \frac{\beta_M}{2} + \frac{\gamma_M}{2} \) (Fig. 3).

![Figure 3: Extension of the Barrow’s inequality](image)

Based on the Statement 2 the following inequality holds

\[
R_A + R_B + R_C \geq -2 \sqrt{R_B R_C} \cos \frac{\alpha_M}{2} + 2 \sqrt{R_A R_C} \cos \frac{\beta_M}{2} + 2 \sqrt{R_A R_B} \cos \frac{\gamma_M}{2} \tag{18}
\]

and based on the Lemma from previous inequality we obtained

\[
R_A + R_B + R_C \geq - \frac{R_B + R_C}{\sqrt{R_B R_C}} \ell_a + \frac{R_A + R_C}{\sqrt{R_A R_C}} \ell_b + \frac{R_A + R_B}{\sqrt{R_A R_B}} \ell_c \\
= \left(\frac{\sqrt{R_C}}{\sqrt{R_B}} + \frac{\sqrt{R_B}}{\sqrt{R_C}} \right) (-\ell_a) + \left(\frac{\sqrt{R_C}}{\sqrt{R_A}} + \frac{\sqrt{R_A}}{\sqrt{R_C}} \right) \ell_b + \left(\frac{\sqrt{R_A}}{\sqrt{R_B}} + \frac{\sqrt{R_B}}{\sqrt{R_A}} \right) \ell_c. \tag{19}
\]

Next two theorems are direct consequence of the Statement 2 by following cyclic replacements \(\alpha_M \mapsto \beta_M, \beta_M \mapsto \gamma_M, \gamma_M \mapsto \alpha_M \) and \(R_A \mapsto R_B, R_B \mapsto R_C, R_C \mapsto R_A \) respectively.

Theorem 2. In the area \(\text{cl} (\lambda_2) \setminus \{A, C\} \) the following inequality is true:

\[
R_A + R_B + R_C \geq \left(\frac{\sqrt{R_C}}{\sqrt{R_B}} + \frac{\sqrt{R_B}}{\sqrt{R_C}} \right) \ell_a + \left(\frac{\sqrt{R_C}}{\sqrt{R_A}} + \frac{\sqrt{R_A}}{\sqrt{R_C}} \right) (\ell_b) + \left(\frac{\sqrt{R_A}}{\sqrt{R_B}} + \frac{\sqrt{R_B}}{\sqrt{R_A}} \right) \ell_c. \tag{20}
\]
THEOREM 3. In the area $\text{cl} \left(\lambda_3 \right) \setminus \{A, B\}$ the following inequality is true:

$$R_A + R_B + R_C \geq \left(\frac{\sqrt{R_C}}{\sqrt{R_A}} + \frac{\sqrt{R_B}}{\sqrt{R_A}} \right) \ell_a + \left(\frac{\sqrt{R_C}}{\sqrt{R_B}} + \frac{\sqrt{R_A}}{\sqrt{R_B}} \right) \ell_b + \left(\frac{\sqrt{R_A}}{\sqrt{R_B}} + \frac{\sqrt{R_{10}}}{{\sqrt{R_A}}} \right) (-\ell_c). \quad (21)$$

The following theorem is true.

THEOREM 4. In the area λ_4 the following inequality is true:

$$R_A + R_B + R_C \geq \left(\frac{\sqrt{R_C}}{\sqrt{R_B}} + \frac{\sqrt{R_B}}{\sqrt{R_C}} \right) \ell_a + \left(\frac{\sqrt{R_C}}{\sqrt{R_A}} + \frac{R_A}{\sqrt{R_C}} \right) (-\ell_b)_c + \left(\frac{\sqrt{R_A}}{\sqrt{R_B}} + \frac{\sqrt{R_B}}{\sqrt{R_A}} \right) (-\ell_c). \quad (22)$$

Proof. Let $M \in \lambda_4$, then $\alpha_M = \beta_M + \gamma_M$ i.e. $\frac{\alpha_M}{2} = \frac{\beta_M}{2} + \frac{\gamma_M}{2}$. Based on the Statement[3] the following inequality is true

$$R_A + R_B + R_C \geq 2 \sqrt{R_BR_C} \cos \frac{\alpha_M}{2} - 2 \sqrt{R_AR_C} \cos \frac{\beta_M}{2} - 2 \sqrt{R_AR_B} \cos \frac{\gamma_M}{2}. \quad (23)$$

Substitutions

$$\ell_a = |MA'| = 2 \frac{R_BR_C}{R_B + R_C} \cos \frac{\alpha_M}{2}, \quad (24)$$
$$\ell_b = |MB'| = 2 \frac{R_AR_C}{R_A + R_C} \cos \frac{\beta_M}{2}, \quad (25)$$
$$\ell_c = |MC'| = 2 \frac{R_AR_B}{R_A + R_B} \cos \frac{\gamma_M}{2} \quad (26)$$

in (23) give

$$R_A + R_B + R_C \geq \frac{R_B + R_C}{\sqrt{R_B R_C}} \ell_a - \frac{R_A + R_C}{\sqrt{R_A R_C}} \ell_b - \frac{R_A + R_B}{\sqrt{R_A R_B}} \ell_c$$

$$= \left(\frac{\sqrt{R_C}}{\sqrt{R_B}} + \frac{\sqrt{R_B}}{\sqrt{R_C}} \right) \ell_a + \left(\frac{\sqrt{R_C}}{\sqrt{R_A}} + \frac{\sqrt{R_A}}{\sqrt{R_C}} \right) (-\ell_b) + \left(\frac{\sqrt{R_A}}{\sqrt{R_B}} + \frac{\sqrt{R_B}}{\sqrt{R_A}} \right) (-\ell_c). \quad □ \quad (27)$$

Next two theorems are direct consequence of the Statement[3] by following cyclic replacements $\alpha_M \mapsto \beta_M$, $\beta_M \mapsto \gamma_M$, $\gamma_M \mapsto \alpha_M$ and $R_A \mapsto R_B$, $R_B \mapsto R_C$, $R_C \mapsto R_A$ respectively.

THEOREM 5. In the area λ_5 the following inequality is true:

$$R_A + R_B + R_C \geq \left(\frac{\sqrt{R_C}}{\sqrt{R_B}} + \frac{\sqrt{R_B}}{\sqrt{R_C}} \right) (-\ell_a) + \left(\frac{\sqrt{R_C}}{\sqrt{R_A}} + \frac{\sqrt{R_A}}{\sqrt{R_C}} \right) \ell_b + \left(\frac{\sqrt{R_A}}{\sqrt{R_B}} + \frac{\sqrt{R_B}}{\sqrt{R_A}} \right) (-\ell_c). \quad (28)$$

THEOREM 6. In the area λ_6 the following inequality is true:

$$R_A + R_B + R_C \geq \left(\frac{\sqrt{R_C}}{\sqrt{R_B}} + \frac{\sqrt{R_B}}{\sqrt{R_C}} \right) (-\ell_a) + \left(\frac{\sqrt{R_C}}{\sqrt{R_A}} + \frac{\sqrt{R_A}}{\sqrt{R_C}} \right) (-\ell_b) + \left(\frac{\sqrt{R_A}}{\sqrt{R_B}} + \frac{\sqrt{R_B}}{\sqrt{R_A}} \right) \ell_c. \quad (29)$$
Now, we give definition of the signed angle bisector for the point \(M \) in the plane of the triangle \(\triangle ABC \). Let be \(A \) fixed vertex and let \(p \) be line through vertices \(B \) and \(C \). Denote \(d = |MA| \) distance of the point \(M \) to the line \(p \) and let \(\ell = |MA'| \) be length of the bisector of the angle \(\angle BMC \). If \(d' \) be signed distance of the point \(M \) to the line \(p \) related to the vertex \(A \) [13] (p. 308.), then \(d' = +d \) if \(M \) and \(A \) with same side of line \(p \), otherwise \(d' = -d \). Let us define signed angle bisector \(\ell' \) analogously \(\ell' = +\ell \) if \(M \) and \(A \) with same side of line \(p \), otherwise \(\ell' = -\ell \) (Fig. 4). In the case \(M \in p \) then \(d' = 0 \) and then \(\ell' \) given by formula (12).

\[
\begin{align*}
 d_a' &= +d_a \\
 \ell_a' &= +\ell_a
\end{align*}
\]

\[
\begin{align*}
 d_b' &= -d_a \\
 \ell_b' &= -\ell_a
\end{align*}
\]

\[
\begin{align*}
 d_c' &= +d_a \\
 \ell_c' &= +\ell_a
\end{align*}
\]

Figure 4: Signed distances and signed angle bisectors

Let us denote \(\mu_1 = \text{cl}(\lambda_1) \setminus \{B,C\} \), \(\mu_2 = \text{cl}(\lambda_2) \setminus \{A,C\} \), \(\mu_3 = \text{cl}(\lambda_3) \setminus \{A,B\} \), \(\mu_4 = \lambda_4 \), \(\mu_5 = \lambda_5 \) and \(\mu_6 = \lambda_6 \). Then \(\bigcup_{i=1}^{6} \mu_i \cup \{A,B,C\} \) is a complete division of the plane of the triangle \(\triangle ABC \). Finally, analogously to DERGIADIES extension of the Erdős-Mordell inequality [3], from previous theorems, an extension of BARROW’s type inequality (13) is obtained by the following theorem.

Statement 4. For the point \(M \in \bigcup_{i=1}^{6} \mu_i \) the following inequality is true:

\[
R_A + R_B + R_C \geq \sum_{i=1}^{6} \left(\frac{\sqrt{R_C}}{\sqrt{R_B}} + \frac{\sqrt{R_B}}{\sqrt{R_C}} \right) \ell'_a + \left(\frac{\sqrt{R_C}}{\sqrt{R_A}} + \frac{\sqrt{R_A}}{\sqrt{R_C}} \right) \ell'_b + \left(\frac{\sqrt{R_A}}{\sqrt{R_B}} + \frac{\sqrt{R_B}}{\sqrt{R_A}} \right) \ell'_c ; \quad (30)
\]

otherwise for points \(M = A, M = B, M = C \) following inequalities [14], [15], [16] are true respectively.

References

[1] G.W.I.S. AMARASINGHE, *On the standard lengths of Angle Bisectors and Angle Bisector Theorem*, Global Journal of Advanced Research on Classical and Modern Geometries, 1, 1 (2012), 15–27.

[2] D. F. BARROW, L. J. MORDELL, *Solution of Problem 3740*, Amer. Math. Monthly, 44, (1937), 252–254.

[3] N. DERGIADIES, *Signed distances and the Erdős-Mordell inequality*, Forum Geom., 4, (2004), 67–68.

[4] P. ERDŐS, *Problem 3740*, Amer. Math. Monthly, 42, (1935), 396.
[5] R. FAROUKI, Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable, Series: Geometry and Computing, Vol. 1, Springer 2008.

[6] W-D. JIANG, An Inequality Involving the Angle Bisectors and an Interior Point of a Triangle, Forum Geometricorum, 8 (2008) 73-76.

[7] W-D. JIANG AND M. BENCZE, Some geometric inequalities involving angle bisectors and medians of a triangle, Journal of Mathematical Inequalities, 5, 3 (2011), 363-369.

[8] H. LEE, Topics in Inequalities - Theorems and Techniques, Korea Institute for Advanced Study, Seoul, (http://www.normalesup.org/~kortchem/olympiades/Cours/Inegalites/tin2006.pdf)

[9] Z. LU, Erdős-Mordell inequality and beyond, Educational Talk at the UCI Math Club (28.11.2007), (http://www.math.uci.edu/~zlu/talks/2007-uci-mathclub/ucimathclub.pdf)

[10] Z. LU, Erdős–Mordell–type inequalities, Elemente der Mathematik, 63, (2008), 23–24.

[11] B. MALEŠEVIĆ, M. PETROVIĆ, M. OBRADOVIĆ AND B. POPKOSTANTINOVIĆ, On the Extension of the Erdős-Mordell Type Inequalities, Mathematical Inequalities and Applications forthcoming articles, MIA-3109, (2013), http://mia.ele-math.com/forthcoming/

[12] V. PAMBUCIAN, The Erdős-Mordell inequality is equivalent to non-positive curvature, Journal of Geometry, 88, (2008), 134 – 139.

[13] M. E. SAUL, Hadamard’s Plane Geometry: A Reader’s Companion, American Mathematical Soc., 2010.

[14] P. YIU, Conic Construction of a Triangle from the Feet of Its Angle Bisectors, Journal of Geometry and Graphics, 12, 2 (2008), 172–182. (http://math.fau.edu/yiu/YiuFromBisectors.pdf)

[15] SH-H. WU AND ZH-H. ZHANG, A class of inequalities related to the angle bisectors and the sides of a triangle, J. Inequal. Pure Appl. Math., 7, 3 (2006), Article 108.

Branko Malešević, Faculty of Electrical Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000 Belgrade, Serbia
e-mail: malesevic@etf.rs

Maja Petrović, Faculty of Transport and Traffic Engineering, University of Belgrade, Vojvode Stepe 305, 11000 Belgrade, Serbia
e-mail: majapet@sf.bg.ac.rs

Corresponding Author: Branko Malešević