Language Models

- Modeling variants
 - feed-forward neural network
 - recurrent neural network
 - long short term memory neural network

- May include input context
Feed Forward Neural Language Model

- **Input Words (Wi)**
 - Embedding
 - Wi-4
 - Wi-3
 - Wi-2
 - Wi-1

- **Hidden Layer (h)**
 - FF

- **Softmax**
 - Output Word

- **Embedding**
 - History
Recurrent Neural Language Model

Predict the first word of a sentence
Recurrent Neural Language Model

Predict the second word of a sentence
Re-use hidden state from first word prediction
Recurrent Neural Language Model

Predict the third word of a sentence
... and so on
Recurrent Neural Language Model

\[
\begin{align*}
&\text{Input Word} \\
&\text{Embedding} \\
&\text{RNN} \\
&\text{Softmax} \\
&\text{Output Word} \\
&\text{Prediction} \\
&\text{Recurrent State} \\
&\text{Input Word Embedding} \\
&\text{Input Word} \\
\end{align*}
\]
Recurrent Neural Translation Model

- We predicted the words of a sentence

- Why not also predict their translations?
• Obviously madness

• Proposed by Google (Sutskever et al. 2014)
What is Missing?

• Alignment of input words to output words

⇒ Solution: attention mechanism
neural translation model with attention
• Inspiration: recurrent neural network language model on the input side
Hidden Language Model States

- This gives us the hidden states

- These encode left context for each word

- Same process in reverse: right context for each word
• Input encoder: concatenate bidirectional RNN states

• Each word representation includes full left and right sentence context
• Input is sequence of words x_j, mapped into embedding space $\bar{E} x_j$

• Bidirectional recurrent neural networks

$$
\bar{h}_j = f(\bar{h}_{j+1}, \bar{E} x_j)
$$
$$
\hat{h}_j = f(\hat{h}_{j-1}, \bar{E} x_j)
$$

• Various choices for the function $f()$: feed-forward layer, GRU, LSTM, ...
• We want to have a recurrent neural network predicting output words
• We want to have a recurrent neural network predicting output words

• We feed decisions on output words back into the decoder state
We want to have a recurrent neural network predicting output words

- We feed decisions on output words back into the decoder state
- Decoder state is also informed by the input context
Decoder is also recurrent neural network over sequence of hidden states s_i

$$s_i = f(s_{i-1}, Ey_{i-1}, c_i)$$

Again, various choices for the function $f()$: feed-forward layer, GRU, LSTM, ...

Output word y_i is selected by computing a vector t_i (same size as vocabulary)

$$t_i = W(U s_{i-1} + V Ey_{i-1} + Cc_i)$$

then finding the highest value in vector t_i

If we normalize t_i, we can view it as a probability distribution over words

Ey_i is the embedding of the output word y_i
Attention

• Given what we have generated so far (decoder hidden state)
• ... which words in the input should we pay attention to (encoder states)?
• Given: – the previous hidden state of the decoder s_{i-1}
 – the representation of input words $h_j = (\overleftarrow{h}_j, \overrightarrow{h}_j)$

• Predict an alignment probability $a(s_{i-1}, h_j)$ to each input word j
 (modeled with a feed-forward neural network layer)
- Normalize attention (softmax)

\[\alpha_{ij} = \frac{\exp(a(s_{i-1}, h_j))}{\sum_k \exp(a(s_{i-1}, h_k))} \]
• Relevant input context: weigh input words according to attention: $c_i = \sum_j \alpha_{ij} h_j$
Attention

- Use context to predict next hidden state and output word
training
Comparing Prediction to Correct Word

\[y_i \quad <s> \quad \text{Output Word Prediction} \]

- \[\log t_i[y_i] \]

\[t_i \quad \text{Softmax} \quad \text{Cost} \]

- Current model gives some probability \(t_i[y_i] \) to correct word \(y_i \)
- We turn this into an error by computing cross-entropy: \(-\log t_i[y_i] \)
Math behind neural machine translation defines a computation graph.

Forward and backward computation to compute gradients for model training.
Unrolled Computation Graph

\[
\begin{align*}
E_{y_i} &\xrightarrow{\text{Embed}} \quad \text{Embed} \\
y_i &\xrightarrow{<s>} \quad \text{das} \\
- \log t_i [y_i] &\xrightarrow{\text{Cost}} \quad \text{Cost} \\
t_i &\xrightarrow{\text{Softmax}} \quad \text{Softmax} \\
s_i &\xrightarrow{\text{RNN}} \quad \text{RNN} \\
c_i &\xrightarrow{\text{Weighted Sum}} \quad \text{Weighted Sum} \\
\alpha_{ij} &\xrightarrow{\text{Attention}} \quad \text{Attention} \\
\bar{h}_{ij} &\xrightarrow{\text{RNN}} \quad \text{RNN} \\
h_{ij} &\xrightarrow{\text{RNN}} \quad \text{RNN} \\
E_{x_j} &\xrightarrow{\text{Embed}} \quad \text{Embed} \\
x_j &\xrightarrow{<s>} \quad \text{the} \\
\text{Output Word Embeddings} &\xrightarrow{\text{Output Word}} \quad \text{Output Word} \\
\text{Error} &\xrightarrow{\text{Softmax}} \quad \text{Softmax} \\
\text{Output Word Prediction} &\xrightarrow{\text{Decoder State}} \quad \text{Decoder State} \\
\text{Input Context} &\xrightarrow{\text{Attention}} \quad \text{Attention} \\
\text{Right-to-Left Encoder} &\xrightarrow{\text{Left-to-Right Encoder}} \quad \text{Left-to-Right Encoder} \\
\text{Input Word Embedding} &\xrightarrow{\text{Input Word}} \quad \text{Input Word}
\end{align*}
\]
Batching

- Already large degree of parallelism
 - most computations on vectors, matrices
 - efficient implementations for CPU and GPU

- Further parallelism by batching
 - processing several sentence pairs at once
 - scalar operation \rightarrow vector operation
 - vector operation \rightarrow matrix operation
 - matrix operation \rightarrow 3d tensor operation

- Typical batch sizes 50–100 sentence pairs
Batches

- Sentences have different length
- When batching, fill up unneeded cells in tensors

⇒ A lot of wasted computations
Mini-Batches

- Sort sentences by length, break up into mini-batches

- Example: Maxi-batch 1600 sentence pairs, mini-batch 80 sentence pairs
Overall Organization of Training

- Shuffle corpus
- Break into maxi-batches
- Break up each maxi-batch into mini-batches
- Process mini-batch, update parameters
- Once done, repeat
- Typically 5-15 epochs needed (passes through entire training corpus)
deeper models
Deeper Models

- Encoder and decoder are recurrent neural networks
- We can add additional layers for each step
- Recall shallow and deep language models

- Adding residual connections (short-cuts through deep layers) help
Deep Decoder

- Two ways of adding layers
 - deep transitions: several layers on path to output
 - deeply stacking recurrent neural networks

- Why not both?
Deep Encoder

- Previously proposed encoder already has 2 layers
 - left-to-right recurrent network, to encode left context
 - right-to-left recurrent network, to encode right context

⇒ Third way of adding layers