EMERGENCE OF HYPERONS IN FAILED SUPERNOVAE: TRIGGER OF THE BLACK HOLE FORMATION

K. Sumiyoshi, C. Ishizuka, A. Ohnishi, S. Yamada, and H. Suzuki

1 Numazu College of Technology, Ooka 3600, Numazu, Shizuoka 410-8501, Japan; sumi@numazu-ct.ac.jp
2 Department of Cosmosciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan; chikako@nucl.sci.hokudai.ac.jp
3 Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan; ohnishi@yukawa.kyoto-u.ac.jp
4 Science and Engineering & Advanced Research Institute for Science and Engineering, Waseda University, Okubo, 3-4-1, Shinjuku, Tokyo 169-8555, Japan; shoichi@heap.phys.waseda.ac.jp
5 Faculty of Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510, Japan; suzukih@ph.noda.tus.ac.jp

Received 2008 August 14; accepted 2008 November 7; published 2008 December 8

ABSTRACT

We investigate the emergence of strange baryons in the dynamical collapse of a nonrotating massive star to a black hole using neutrino-radiation hydrodynamical simulations in general relativity. By following the dynamical formation and collapse of a nascent proto-neutron star from the gravitational collapse of a 40 \(M_\odot \) star adopting a new hyperonic equation-of-state (EOS) table, we show that the hyperons do not appear at the core bounce but populate quickly \(\sim 0.5-0.7 \) s after the bounce to trigger the recollapse to a black hole. They start to show up off center owing to high temperatures and later prevail at center when the central density becomes high enough. The neutrino emission from the accreting proto-neutron star with the hyperonic EOS stops much earlier than the corresponding case with a nucleonic EOS, while the average energies and luminosities are quite similar in the two cases. These features of the neutrino signal are a potential probe of the emergence of new degrees of freedom inside the black hole forming collapse.

Key words: black hole physics – equation of state – hydrodynamics – neutrinos – stars: neutron – supernovae: general

1. INTRODUCTION

The fate of gravitational collapse of massive stars in the mass range \(\gtrsim 20 M_\odot \) has attracted much attention recently in an attempt to reveal the origin of diversity of supernovae (SNe; Nomoto et al. 2007). Their collapse will lead to the formation of black holes and provide us with the test bed for the appearance of exotic particles at high density and temperature.

There appear to be at least two types of massive stellar death in this mass range. Faint SNe (or failed SNe) are one of them, having very low explosion energies as observed in SN 1997D and SN 1999br (Nomoto et al. 2007). In contrast to the other branch, sometimes referred to as the hypernova branch because of their high explosion energies, their progenitors are supposed to be slowly rotating and collapse to a black hole with no bright optical display. Such a quiet death may consist of a significant fraction (\(\sim 30\% \)) of all massive stellar collapses and may be detected in the near future, for example by the planned survey of the disappearance of the supernovae (Kochanek et al. 2008).

Recent studies by Sumiyoshi et al. (2006, 2007) demonstrated that the neutrino burst from these quiet collapses of massive stars can be used not only as a hallmark of black hole formation but also as a probe of dense matter. In fact, the profile of the neutrino burst emitted from the collapsing proto-neutron star born temporarily in the failed explosion has unique characteristics to distinguish it from ordinary SN neutrinos (see also Burrows 1988; Liebendoerfer et al. 2004). The duration of the neutrino burst is short (\(\sim 1 \) s) because the neutrino emission is terminated shortly after the black hole formation via the recollapse of a proto-neutron star with intense accretions. The energies and luminosities of neutrinos increase quickly thanks to the rapid contraction of the accreting proto-neutron star. These characteristics have been used to search for black hole formation in the archive of the terrestrial neutrino detector (Ikeda et al. 2007) with no positive detection so far.

The future observation of short neutrino bursts, however, would constrain the stiffness of the equation of state (EOS) and the appearance of new particles, on which we focus in the current study. The EOS crucially determines when the critical mass is reached by an ever-fattening proto-neutron star and, therefore, the duration of the neutrino burst. It should be noted that the previous works (Sumiyoshi et al. 2006, 2007) took into account only the nucleonic degree of freedom. If new degrees of freedom such as hyperons (series of strange baryons) appear at some point of the evolution owing to high densities or temperatures, however, then the EOS will become softer (Glendenning 2000), triggering the earlier recollapse of the proto-neutron star, and the neutrino burst may become even shorter.

In this Letter, we report the first serious numerical study of the dynamical collapse of a nonrotating massive star adopting a new EOS with hyperons (Ishizuka et al. 2008). We reveal when the hyperons appear during the stages from the initial collapse of progenitor stars, through core bounce and proto-neutron star evolution until the black hole formation. Using neutrino-radiation hydrodynamical simulations, we demonstrate the outcome of hyperon emergence in the dynamics and the neutrino emission. The hyperonic EOS we adopt here is based on the same framework as the nucleonic EOS of Shen et al. (1998a, 1998b). As a natural extension of the former, the latter enables us to extract clearly the effect of hyperons.

We stress that the current scenario of black hole formation is entirely different from the delayed collapse of meta-stable proto-neutron stars and the associated termination of neutrino signals in \(\sim 1-100 \) s (Keil & Janka 1995; Pons et al. 1999; Baumgarte et al. 1996). In fact, the proto-neutron star mass is fixed in successful explosions while it increases continuously and rapidly by accretion in the failed explosion considered in the current study. The rapid appearance of hyperons in the dynamical collapse accompanied by a short neutrino burst is, therefore, clearly different from the characteristics seen in the
quasistatic cooling of proto-neutron stars (Pons et al. 1999, 2001a, 2001b), in which the emergence of new compositions (hyperons or any other forms) occurs much later when the matter becomes neutron-rich through the deleptonization except for rather extreme choices of interactions. Accordingly, the effect of the hyperon mixture on the neutrino signal manifests itself only in the exponential tail of time evolution and hence is hard to detect in observations.

2. HYPERON EQUATION OF STATE

We employ sets of EOS both with and without hyperons to explore their influence. As the reference nucleonic EOS, we adopt the Shen EOS (Shen et al. 1998a, 1998b), which describes the mixture of neutrons, protons, alpha particles, and nuclei in relativistic mean field theory. The hyperonic EOS we adopt here was recently developed by Ishizuka et al. (2008), extending the Shen EOS to SU(3) symmetry to include the octet baryons. It was recently developed by Ishizuka et al. (2008), extending the relativistic mean field theory. The hyperonic EOS we adopt here the mixture of neutrons, protons, alpha particles, and nuclei in

It should be stressed that the nucleon sector is not changed from the Shen EOS and, as a result, the low density ($< 10^{14} \text{ g cm}^{-3}$) part of the hyperonic EOS is connected smoothly with the Shen EOS. The interactions of hyperons are determined by recent experimental data on hypernuclei. As for the Σ-potential in symmetric nuclear matter in particular, we choose a repulsive value ($+30 \text{ MeV}$), which is currently preferred. The maximum masses of cold neutron stars by the Shen EOS and the hyperonic EOS are $2.2 M_\odot$ and $1.6 M_\odot$, respectively. The latter value does not change much even for other choices of interactions and/or the inclusion of thermal pions (Ishizuka et al. 2008). The other sets of hyperonic EOS, therefore, are expected to give results not much different from the current ones.

In order to discuss the dependence on the EOS within the nucleonic degree of freedom, we also utilize the profiles of neutrino bursts previously obtained by the Lattimer–Swesty EOS (Lattimer & Swesty 1991) with an incompressibility of 180 MeV, which is softer than the Shen EOS. Its maximum neutron star mass is $1.8 M_\odot$. Although other new degrees of freedom such as quarks may appear near the black hole formation, we concentrate here on the hyperon mixture and refer readers to Nakazato et al. (2008), who suggest that the quark mixture may occur only at the last moment of black hole formation. Needless to say, it is important to describe the phase transitions from hyperonic matter to quark matter as well as the meson condensations consistently (Glendenning 2000). Such a task is being undertaken currently to implement in the numerical simulations.

3. NUMERICAL SIMULATIONS

We perform the numerical simulations of neutrino-radiation hydrodynamics in general relativity under spherical symmetry in the same manner as Sumiyoshi et al. (2006, 2007). We follow the dynamics from the onset of gravitational collapse of a progenitor star, through the core bounce and the post-bounce evolution of compact objects by the accretion of outer layers, up to the formation of the apparent horizon (Nakazato et al. 2006). As an initial model, we employ the central part of the progenitor model of a $40 M_\odot$ star of Woosley & Weaver (1995). We refer to the model with the Shen EOS as model SH and the corresponding model with the Lattimer–Swesty EOS as model LS. We name the new model using the Ishizuka EOS as model IS, which we report mainly in this Letter. For detailed information on the numerical settings and results of models SH and LS, refer to Sumiyoshi et al. (2007).

We adopt the conventional weak interaction rates as in the previous numerical simulations (Sumiyoshi et al. 2005). In the current study, we ignore the neutrino–hyperon interactions entirely. This is not so bad an approximation as it seems, however. In fact, owing to the hyper-accretion of outer layers, the neutrino emissions occur dominantly near the surface of the proto-neutron star, where hyperons are scarce. Moreover, since hyperons appear only for $\sim 200 \text{ ms}$ before the black hole formation, the possible modifications of diffusion rates in the central region, where hyperons are mostly populated, do not have enough time to affect the neutrino fluxes. This reflects the sharp contrast in the durations of neutrino emissions: $\sim 1 \text{ s}$ in the present case and $\sim 20 \text{ s}$ for the quasistatic proto-neutron star cooling.

4. NUMERICAL RESULTS

It is of particular interest to see when hyperons first appear in the collapse of massive stars, since this is the first quantitative investigation utilizing a realistic dynamics and hyperonic EOS. We found that hyperons do not appear at the core bounce, since the central density and temperature are simply not high enough as shown in Figure 1. In fact, the central density at the core bounce is just above the nuclear matter density. Accordingly, the core bounce and the launch of a shock wave followed by the recession occur in exactly the same way as in model SH. The proto-neutron star without hyperons is born by $t_{pb} = 300 \text{ ms}$, where t_{pb} denotes the time after the bounce.

As the density and temperature increase in the contracting proto-neutron star with the growing mass by the accretion, hyperons first appear off center at $t_{pb} \sim 500 \text{ ms}$. They soon populate in substantial amounts at center and become major compositions by $t_{pb} = 680 \text{ ms}$, at which the central density exceeds three times the nuclear matter density as seen in Figure 1. This quick appearance of hyperons in the black hole forming collapse is different from what happens in nonaccreting proto-neutron stars, where hyperons appear gradually over $\geq 10 \text{ s}$ (Pons et al. 1999) through the cooling and deleptonization. The dynamical collapse to the black hole ensues immediately when the proto-neutron star mass reaches its critical value owing to the softening of EOS by the production of hyperons. The black hole is formed at $t_{pb} = 682 \text{ ms}$ in model IS, which is much earlier than $t_{pb} = 1345 \text{ ms}$ in model SH.

We show two snapshots of the compositions inside the proto-neutron star in Figure 2. At $t_{pb} = 500 \text{ ms}$ (left panel), the mass fraction of hyperons, mostly Λ and Σ^-, particles, is a few percent at the maximum around 10 km ($0.7 M_\odot$ in mass coordinate). The abundance of hyperons becomes significant at $t_{pb} = 680 \text{ ms}$ (right panel), since the central density becomes high enough by this time. A particle exists as a major component ($\gtrsim 10\%$) and Σ^- particles are the next most abundant. Σ^- particles are suppressed at the central region because of the repulsive potential we have chosen. This hierarchy is different from that for attractive potentials, where negatively charged Σ^- particles are favored (Pons et al. 1999).

It is remarkable that hyperons appear initially off center owing to high temperatures. Although the density at 10 km is not so high at $t_{pb} = 500 \text{ ms}$, the temperature exceeds 50 MeV at the peak (see Figure 1), where the shock wave is produced and the entropy is generated. The conversion to hyperons occurs through the high-energy tail above the hyperon mass of thermal nucleons. This temperature effect keeps the fraction of hyperons
Figure 1. Density (left), temperature (center), and electron fraction (right) profiles for IS at $t_{pb} = 0$, 500, and 680 ms are shown by dotted, dashed, and solid curves, respectively, as a function of radius.

Figure 2. Mass fractions of hyperons in model IS are shown as a function of radius at $t_{pb} = 500$ (left) and 680 ms (right).

around 10 km large even at late stages. The appearance of other particles or phase transitions may also occur owing to the same temperature effect and lead to similar consequences. It is also interesting to note that the hyperon emergence is not controlled by the deleptonization as in the proto-neutron star cooling but driven by the rapid increase of density and temperature in the contracting proto-neutron star. The electron fraction at center remains high (~ 0.3) up to the end whereas it decreases at the outer part due to neutronization as seen in Figure 1.

Whether the emergence of hyperons described above can be probed by the neutrino signal is a matter of great concern. We found that the duration of the neutrino burst in model IS is clearly shorter than that in model SH as a result of the earlier black hole formation. We display the time profiles of average energies and luminosities of neutrinos for models IS and SH in Figure 3. It is apparent that these quantities are quite similar between the two models\(^7\) and only the duration is different. This similarity in neutrino emissions is a direct consequence of the almost identical accretion history irrespective of the presence of hyperons inside the proto-neutron star. In fact, we found that the mass of the proto-neutron star in model IS increases in exactly the same way as in model SH as a function of time. The critical (gravitational) mass, $2.1 M_\odot$, is reached earlier in model IS, which is smaller than $2.4 M_\odot$ in model SH. We remark here that these critical masses are for the hot proto-neutron stars with neutrinos, being different from those for the cold and neutrino-less neutron stars. It is noticeable that the average energy of $\nu_{\mu/\tau}$ increases faster in model IS than in model SH after $t_{pb} = 500$ ms.

\(^7\) The slight oscillations in the curves occur owing to insufficient numerical resolutions at the final phase of computations.

Because of the hyperon emergence, the contraction of the proto-neutron star is accelerated and leads to the quicker temperature increase.

The intense and short neutrino burst may be used to infer the properties of the hyperonic matter. Since the hyperon
appearance in the proto-neutron star triggers its earlier collapse to a black hole, we would be able to estimate from the duration of neutrino emissions the critical mass for the conversion to the hyperonic matter. Extra information on the progenitor would be extremely helpful (Sumiyoshi et al. 2008) and will be plausible. It should be noted, however, that new degrees of freedom other than hyperons may also result in similar neutrino bursts. A further complication may arise from the uncertainties in the nucleonic EOS. We show the neutrino emissions for model LS in Figure 3 to elucidate this. The softer LS EOS terminates in the nucleonic EOS. We show the neutrino emissions for model bursts. A further complication may arise from the uncertainties of the spectra in order to disentangle the degeneracy. The differences in $v_{\nu/\tau}$ will be important to distinguish them from one another when neutrino oscillations are taken into account.

5. SUMMARY AND DISCUSSIONS

We demonstrated that the hyperon emergence in the collapse of a nonrotating massive star will produce an intense but short neutrino burst that may be used as a probe into the hyperonic matter. By following the neutrino-radiation hydrodynamics, we revealed that hyperons appear off center at first and prevail also at center just before the black hole formation occurs from the ever-accreting proto-neutron star. The resulting neutrino emissions are quite similar to those for the purely nucleonic case and differ only in the earlier termination of the neutrino burst. Once hyperons appear during the contraction of the proto-neutron star through the mass accretion, they soon trigger the gravitational instability by lowering the critical mass and give rise to even more rapid increases of neutrino energies and luminosities, which are then terminated at the black hole formation.

In order to claim conclusively the appearance of hyperons from observed neutrino signals, further systematic studies must be done. One must discriminate this from other possibilities such as phase transitions to meson condensations and softer EOSs of nucleonic matter, which may produce similar short neutrino bursts. We remark in passing that the appearance of quarks may not change significantly the duration of the neutrino burst (Nakazato et al. 2008) while the density profile of progenitors may affect the behavior of accretion luminosities (Sumiyoshi et al. 2008). The prediction of event rates at neutrino detector facilities with the neutrino oscillations during the propagation being taken into account is currently under way for the models studied so far.

The current numerical results suggest that the appearance of whatever new degrees of freedom in the black hole forming collapse will be reflected in the energetic neutrino signals that might be detected as a disappearance of massive stars in nearby galaxies in the planned monitoring survey (Kochanek et al. 2008) or in large neutrino facilities (Ando et al. 2005). It will also be interesting to investigate the hyperon emergence in the black hole formations in gamma ray bursts and neutron star mergers.

The numerical simulations were performed at CfCA in NAOJ, JAEA, YITP (Kyoto University), and RCNP (Osaka University). This work is partially supported by the Grants-in-Aid for the Scientific Research (18540291, 18540295, 19104006, 19540252) of the MEXT of Japan, Academic Frontier Project of the MEXT, KEK LSSP (07-05), and the 21st-Century COE Program “Holistic Research and Education Center for Physics of Self-organization Systems” in Waseda University.

REFERENCES

Ando, S., Beacom, J. F., & Yuksel, H. 2005, Phys. Rev. Lett., 95, 171101
Baumgarte, T. W., Janka, H.-T., Keil, W., Shapiro, S. L., & Teukolsky, S. A. 1996, ApJ, 468, 823
Burrows, A. 1998, ApJ, 334, 891
Glendenning, N. K. 2000, Compact Stars: Nuclear Physics, Particle Physics, and General Relativity (Berlin: Springer)
Ikeda, M., et al. 2007, ApJ, 669, 519
Ishizuka, C., Ohnishi, A., Tsukikawa, K., Sumiyoshi, K., & Yamada, S. 2008, J. Phys. G, 35, 085201
Keil, W., & Janka, H.-T. 1995, A&A, 296, 145
Kochanek, C. S., et al. 2008, ApJ, 684, 1336
Lattimer, J. M., & Swesty, F. D. 1991, Nucl. Phys. A, 535, 331
Luebendoerfer, M., et al. 2004, ApJS, 150, 263
Nakazato, K., Sumiyoshi, K., & Yamada, S. 2006, ApJ, 645, 519
Nakazato, K., Sumiyoshi, K., & Yamada, S. 2008, Phys. Rev. D, 77, 103006
Nomoto, K., et al. 2007, in AIP Conf. Proc. 937, Supernova 1987A: 20 Years After Supernovae and Gamma-Ray Bursters (Melville, NY: AIP), 412
Pons, J. A., Mironalles, J. A., Prakash, M., & Lattimer, J. M. 2001a, ApJ, 553, 382
Pons, J. A., Reddy, S., Prakash, M., Lattimer, J. M., & Miralles, J. A. 1999, ApJ, 513, 780
Pons, J. A., Steiner, A. W., Prakash, M., & Lattimer, J. M. 2001b, Phys. Rev. Lett., 86, 5223
Shen, H., Toki, H., Oyamatsu, K., & Sumiyoshi, K. 1998a, Nucl. Phys. A, 637, 435
Shen, H., Toki, H., Oyamatsu, K., & Sumiyoshi, K. 1998b, Prog. Thoer. Phys., 100, 1013
Sumiyoshi, K., Yamada, S., & Suzuki, H. 2007, ApJ, 667, 382
Sumiyoshi, K., Yamada, S., & Suzuki, H. 2008, ApJ, 688, 1176
Sumiyoshi, K., Yamada, S., Suzuki, H., & Chiba, S. 2006, Phys. Rev. Lett., 97, 091101
Sumiyoshi, K., Yamada, S., Suzuki, H., Shen, H., Chiba, S., & Toki, H. 2005, ApJ, 629, 922
Woosley, S. E., & Weaver, T. 1995, ApJS, 101, 181