Benchmarking available bacterial promoter prediction tools: potentialities and limitations

by

Murilo Henrique Anzolini Cassiano and Rafael Silva-Rocha*

FMRP - University of São Paulo, Ribeirão Preto, SP, Brazil

Running Title: Benchmarking promoter prediction tools

Keywords: promoter prediction, bacterial promoters, cis-regulatory elements, bioinformatics

*Correspondence to: Rafael Silva-Rocha
Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo
Av. Bandeirantes, 3.900. CEP: 14049-900.
Ribeirão Preto, São Paulo, Brazil
Tel.: +55 16 3602 3107; Fax: +55 16 3633 6840
E-mail: silvarochar@gmail.com
Abstract

Background

The promoter region is a key element required for the production of RNA in bacteria. While new high-throughput technology allows massive mapping of promoter elements, we still mainly relay on bioinformatic tools to predict such elements in bacterial genomes. Additionally, despite many different prediction tools have become popular to identify bacterial promoters, there is no systematic comparison of such tools.

Results

Here, we performed a systematic comparison between several widely used promoter prediction tools (BPROM, bTSSfinder, BacPP, CNNProm, IBBP, Virtual Footprint, IPro70-FMWin, 70ProPred, iPromoter-2L and MULTiPly) using well-defined sequence data sets and standardized metrics to determine how well those tools performed related to each other. For this, we used datasets of experimentally validated promoters from *Escherichia coli* and a control dataset composed by randomly generated sequences with similar nucleotide distributions. We compared the performance of the tools using metrics such as specificity, sensibility, accuracy and Matthews Correlation Coefficient (MCC). We show that the widely used BPROM presented the worse performance among compared tools, while four tools (CNNProm, IPro70-FMWin, 70ProPreda and iPromoter-2L) offered high predictive power. From these, iPro70-FMWin exhibited the best results for most of the metrics used.

Conclusions

Therefore, we exploit here some potentials and limitations of available tools and hope future works can be built upon our effort to systematically characterize such quite useful class of bioinformatics tools.

Introduction

Promoter regions are intrinsic DNA elements located upstream of genes and required for its transcription by the RNA polymerase (RNAP) [1]. Thus, the correct mapping of promoters is a critical step when studying gene expression dynamics in bacteria. While the definition of promoters could vary widely, we will consider here as the core elements recognized by the sigma subunit of the RNAP. In *Escherichia coli*, seven alternative sigma factors are responsible for gene expression, while sigma70 is the most important one as it is required for the expression of housekeeping genes [2,3]. Therefore, this sigma factor recognizes a consensus region about 35 bp in length with two key elements, the -10 box (with consensus motif TATAAT) and the -35 box (TTGACA) which are separated by 17 ± 2 bp [1,2]. In addition to the core promoter region, other cis-regulatory elements can play relevant roles in the regulation of gene expression [4]. In this sense, the production of RNA at the transcription start site (TSS) is the result of the interplay between the core promoter region and the cis-regulatory elements [5]. Mapping of functional promoter elements have been performed mostly using low-throughput techniques (such as promoter probing, primer extension, DNA footprinting, etc.) or more recently, by high-throughput experimental approaches (RNA-seq, Genome SELEX, Sort-seq, etc.) [6–11]. However, the rapidly growing number of fully sequenced bacterial genomes greatly exceeds our ability to map promoter elements experimentally. Therefore, diverse computational tools have been created to predict promoters/TSSs at specific genes or at genomic levels.
Some of the first approaches to map promoters have been based on the use of position-weighted matrices of -10 and -35 box motifs, taking into account the distribution of the spacer length between them and their distance from TSS [12,13]. Yet, over the past years, a growing number of computational strategies have evolved in complexity. Notable novel approaches raised, such as sequence alignment-base kernel for support vector machine [14,15], profiles of hidden Markov models combined with artificial neural networks [16] or weighted rules extracted from neural network models [17]. Also, new ways to extract information from DNA sequences to perform predictions have appeared. Thus, there are now several numerical representations of DNA sequences which each one carry its own properties [18–20], such as methods that uses k-mer frequencies or variations [21,22] and other methods that includes physicochemical properties of DNA [23].

Recently, machine learning (ML) techniques have been used to obtain insight from different sources from diverse biology fields (an extensive survey can be seen in Libbrecht and Noble, 2015; Camacho et al., 2018; Zou et al., 2019), and in the past few years this has been applied to the recognition of promoters, TSSs and regulatory sequences. Among most of the ML algorithms used for this purpose we can mention Support Vector Machine [27], Neural Networks [28], Logistic Regression [29], Decision Trees [30], and Hidden Markov models [31,32]. Despite the existence of all these modern techniques, promoters cannot always be inferred based on their sequence only, and, currently, we have no clue on how efficient these tools indeed are. This occurs since each new tool is validated without the use of standardized datasets or methods, making difficult to compared novel emerging alternatives with the current state of art. In this work, we summarize general aspects of the available promoter prediction tools, exposing in a comparative manner their main strong and weak features. For this, we compared the performance of these tools using experimentally-validated promoters from E. coli. Unexpectedly, we show that some very popular tools such as BPROM performed very poorly compared to tools created over the last two years. We hope our results can help both community users to choose a suitable tool for their specific applications, as well as developers to construct novel tools overcoming key limitations reported here.

Results and discussion

Describing the tools: methods, availability and usability

In this section, we present a succinct explanation of each methodology (Table 1) as well as the usability information about their use requirements, acceptable file types, etc. (Table 2). Below, we described briefly for each tool how they have been built and some of the main features.

BPROM [33] was developed as a module of an annotation pipeline for microbial sequences in order to find promoters in upstream regions of predicted ORFs. To train the model the authors used a dataset of experimentally validated promoters from elsewhere [14]. They applied linear discriminant analysis to discriminate between those promoters and inner regions of protein-coding sequences. As attributes they used 5 position weighted matrices of promoter conserved motifs and they also consider the distance between the –10 and –35 boxes and the ratio of densities of octa-nucleotides overrepresented in known bacterial transcription factor binding site (TFBS) relative to their occurrence in coding regions. This tool is available as a web application and users can submit a local file or past the sequence in the web form. It quickly returns the results in the screen with the possible –10 and –35 boxes of predicted promoters and its position in the submitted sequence.
bTSSfinder [23] is a tool that predicts putative promoters for different sigma factors in *E. coli* and Cyanobacteria. Its positive dataset consists of experimentally validated *E. coli* TSS from Regulon DB and different experimentally mapped Cyanobacteria TSS provided by several works. Its negative dataset consists of genomic regions where there is no experimental evidence for the presence of TSS. They started with 30 features distributed between these types: promoter element motifs (PWMs), distance between the elements, oligomer scores, TFBS density and physicochemical properties. The final set of features were selected by evaluating the predictive power of these features by calculating Mahalanobis distance and used to training a neural network. This tool is available as a web application or as a stand-alone tool for Linux. In the website, an email is needed to login and the results are saved for a week.

BacPP [17] is a prediction tool to find *E. coli* and other Enterobacteriaceae promoters. As positive dataset the authors used promoter sequences from Regulon DB for 6 different sigma factors in *E. coli* and other Enterobacteriaceae promoter sequences obtained from several works. In its negative dataset they used 2 approaches: a) random sequences generated with a probability of 28% for nucleotides adenine and thymine and 22% for cytosine and guanine; b) random selected intergenic regions. Each nucleotide of these sequences was transformed in binary digits and used to train neural networks. To use this tool, the user must create a login in the website then past the sequences or fasta file according their model and select the sigma factors of interest.

CNNProm [34] is a web tool that can predict prokaryotic and eukaryotic promoters from big genomic sequences or multifasta files. In the case of *E. coli* promoters, authors took the sequences from Regulon DB and the negative control (non-promoter sequences) were randomly selected from the opposite chain of coding regions in genomes. Each of these sequences were transformed in a binary four-dimensional vector and used directly as features to train a convolutional neural network. To use this predictor, users must enter the sequences or the file in the website and choose the organism model.

IBBP [35] is a stand-alone application that implements a new approached called “image-based promoter prediction”. This approach consists in generating multiple “images”: template strings carrying possible features/elements presented in promoters and their spatial relationships. The image generation and selection are made by applying an evolutionary approach and calculating the similarity of these images in a set of *E. coli* sigma70 promoters. The authors measured the accuracy of the tool by analyzing the set of promoters and protein-coding sequences. To use this software, it is necessary to download the executable files, execute the evolutionary algorithm with the promoters of interest and then implement the classifier software, which uses the result model generated in the previous step.

Virtual Footprint [36] is a web framework for prokaryotic regulon prediction. This framework makes use of several PWM provided by PRODORIC [37] and other PWM from other sources. To make the prediction, it is necessary to upload a DNA sequence or a fasta file, select different PWM for core promoter elements or other transcription factor binding sites and set some parameters.

IPro70-FMWin [38] is a web application for sigma 70 promoter prediction. Its training dataset consists of sigma 70 promoter sequences from dataset Regulon DB 9.0 and sequences randomly chosen from coding and intergenic regions of *E. coli*, as positive and negative datasets, respectively. For feature extraction, 22,595 sequence-based features were generated for “multiple windows”, i.e., different regions of the promoter sequence. These features include, for example, different kinds of k-mer and g-gapped k-mer compositions, statistical and nucleotide frequency measures. Among the machine learning methods tested...
be the authors, logistic regression achieved better results. They also applied AdaBoost technique for feature selection in order to improve prediction.

70ProPred [39] was built using sigma 70 promoter sequences from Regulon DB 9.0 and randomly generated sequences from coding and non-coding regions of E. coli genome to train a support-vector machine (SVM) model. The attributes generated from the sequences were position-specific trinucleotide propensity and electron-ion interaction pseudopotentials of nucleotides, considering single or double stranded DNA, to reveal trinucleotide distribution differences between the samples and represent interaction of trinucleotides, respectively.

iPromoter-2L [40] is an online tool that provides prediction for all E. coli sigma promoters. This method has two “layers” of classification applying random forests, first it resolves whether a given sequence is a promoter and then it selects the sigma factor class. For model training, the authors used experimentally confirmed promoter sequences from Regulon DB 9.3, as positive dataset, and randomly extracted sequences from the middle regions of long coding sequences and convergent intergenic regions, as negative dataset. It is important to emphasize that sequences with more than 0.8 pairwise sequence identity, for a given sigma factor promoter dataset, were removed in order to reduce identity biases. Their feature extraction was based on multi-window-based pseudo K-tuple nucleotide composition, which consists in a sliding window, extracting and encoding physicochemical attributes of different regions of a given sequence.

MULTiPly [41] web application provides promoter prediction for all E. coli sigmas. To train their model, the authors used experimentally validated promoter sequences from Regulon DB for all type of sigma factor in E. coli. Their feature extraction was divided in two types, the first one was used to represent global features, applying bi-profile bayes and KNN features, and the second-one to represent local features, applying k-tuple nucleotide composition (sequence-based feature) and dinucleotide-based auto-covariance (which considers physicochemical properties). This method also performs two steps of classification: first it resolves whether a given sequence is a promoter or not, then it decides which class of sigma promoter it belongs. The authors used SVM method for classification and F-score method for feature selection.

These last 4 web tools (iPro70-FMWin, 70ProPred, iPromoter-2L and MULTiPly) have a similar way to use, accepting multifasta formatted sequences on a simple web form and returning the results on the screen. Particularities and a summarization of the approaches discussed above are present on Table 1 and 2.

Analyzing the performance of promoter prediction tools

In order to compare the performance of the promoter prediction tools presented above, we analyzed the positive and negative datasets as described in the methods section. From the ten algorithms selected, BacPP could not be tested with our entire dataset, because multifasta files were not supported, and Virtual FootPrint produces a large number of predicted –10 box for sigma 70 in both positive and negative datasets, a number that greatly exceeds the number of sequences analyzed. Thus, these two tools were not considered in further analyses. Among the remaining 8 algorithms, 5 achieved more than 50% of correct classification on positive dataset, while 6 correctly classified 50% of the negative dataset (Figure 1A). The best performance was observed for CNNProm (94.8% TP), followed by iPromoter-2L (83.8% TP), 70ProPred (89.7% TP), iPro70-FMWin (94.5% TP) and MulTiPly (81.2% TP). When we compared the
performance parameters (accuracy, MCC, sensitivity and specificity), we observed that four of them (CNNProm, iPromoter-2L, 70ProPred and iPro70-FMWin) presented the best performance, while MultiTiPly only scores high for sensitivity (Figure 1B). Therefore, we can observe MCC values close to zero for the remaining 4 tools (MultiTiPly, bTSSFinder, BPROM and IBPP), indicating that these tools performed close to random classifications. It is interesting to notice that BPROM, a widely cited and used tool, presented the worst results together with bTSSFinder and the IBPP, but also presented the fewer FPs. We also found that IBPP’s method based in evolutionary approach classified random sequences as promoters more than in real promoter dataset (i.e., it displays higher FP rate than TP). From the analysis presented in Figure 1, we can observe that iPro70-FMWin performed best due to a small number of FP and the overall bests results of all metrics used (Figure 1B).

We next performed a hierarchical clustering analysis using the results from the five tools that presented the best results. As can be seen in Figure 2A for the positive dataset, results obtained with iPromoter-2L were more correlated with CNNProm outcomes, since both produced the larger set of TP predictions, while iPro70-FMWin was more related to 70ProPred. In general, 573 sequences (62.2%) where correctly classified by all 5 algorithms (Figure 2B). When we analyzed the negative dataset (constructed with random sequences), we do not observe a clear clustering since each tool presented a different level of FP, with the lowest level observed for iPro70-FMWin (Figure 3A). In this case, only 102 sequences (10.2%) were incorrectly classified as promoter by all tools, indicating that each algorithm has specific features to equivocally classify the random sequences. It is worth mentioning that the best three tools (CNNProm, iPro70-FMWin and 70ProPred) are from 2017 to 2019, indicating that, as expected, promoter prediction algorithms are evolving through the years. Taken together, these results indicate that 4 out of 8 tools analyzed here display equivalent predicting power to identify true promoter sequences, while widely used tool BPROM exhibit a reduced predictive capability.

Identification of promoter features identified during the analyses

As presented above, we observed a high degree of similarity between the best tools for the identification of true promoters, but a lower overlap on random sequences equivocally classified as promoters. This could indicate that each algorithm might identify different features to assign a sequence as promoter. In order to further investigate this process, we analyze the information content from the sequences identified as promoters from the positive and negative dataset for the top 5 tools analyses here. The results of these analyses are presented as sequence Logo on Figure 4 and 5 for positive and negative dataset, respectively. As can be seen on Figure 4, TP sequences identified by all 5 algorithms display the same consensus sequence that resembles a strong canonical -10 box from sigma70 promoters [2]. It is worth noticing that the information content was higher for iPro-70-FMWin (up to 0.4 bits), which also displayed the best performance according to the metrics used here. However, when we analyzed the data from promoters identified in the random sequences, we could see a much fuzzy signal for MultiTiPly, iPromoter-2L and CNNProm, which were the three tools with the highest FP rate from the top five tools (Figure 5), indicating that the rich A (adenine) and T (thymine) frequencies play a role on false positive classification. We also could observe that, in the case of random sequences predicted as promoters for all algorithms, we obtained a more evident -10 box motif and it still shows high A and T influences (Figure S1). This implies that these tools are sensitive to AT content, which makes sense since iPromoter-2L and CNNProm were trained on coding sequences as negative controls [34,40]. On the other hand, 70ProPred and iPro-70FMWin, which presented the lower FP rate, presented a clearer -10-like signals similar to those identified on the positive sequences, although with lower information content. This could reveal that
these tools are classifying sequences which resemble true promoters, and we could not rule out the possibility that some of these random sequences could in fact display promoter activity in *E. coli* if tested experimentally. Taken together, these results indicate that high rates of FP observed for some of these algorithms could be due to the use of unrealistic control sequences (such as coding regions) that could make the algorithms sensitive to AT-rich regions, highlighting the importance of choosing appropriated non-promoter sequences to train these tools.

Conclusions

In this work, we performed a benchmark analysis of promoter prediction tools performance using well-characterized promoter sequence and random sequences. As can be seen from the results above, new tools have emerged with enhanced performance compared to widely used ones. Although best performing tool uses just sequence based features (a result that corroborates with Abbas, Mohie-Eldin and EL-Manzalawy, 2015), in general, algorithms using feature extraction that combines attributes derivate from sequence together with physicochemical properties of DNA achieved better results. It is also clear from our results that choosing the appropriate control (or negative) dataset to construct these algorithms is crucial to avoid false positives. Therefore, coding sequences or sequences with different features renders the tools AT-sensitive, increasing the false positive rate. Furthermore, we still need an experimentally well-validate non-promoter dataset to faithfully use as negative controls in these predictions, but these sequences are not available yet. In this sense, we expect that the growing number of high-throughput experiments could become a great source of data to create novel datasets to train new tools for promoter prediction in the future. Another complication to this subject comes from recent evidence showing that just one mutation in random sequences could lead to constitutive transcription *in vivo*, indicating that transcription is indeed a robust process [43]. Therefore, future attempts have to be made to create complete datasets with very similar promoter/non-promoter sequences in order to train next generation tools.

Additionally, several prior information could be incorporate in prediction methods to improve the final tools. For instance, interrelation between the UP element and a subunit of RNAP were found to play a role on transcription initiation and promoter activity [44] and switch preference of sigma factors in promoters [45]. In addition, specific nucleotide composition and motifs between -10 and -35 boxes leading to different DNA curvatures were found to influence transcription initiation and promoter activity [46,47]. Additionally, more than 300 proteins in *E. coli* are predicted to bind DNA and half of them have their function experimentally characterized [1]. These proteins could thus impact promoter activity *in vivo* and their binding sequence preferences could influence promoter discovery. Finally, recent studies with genomic SELEX show that the number of transcription factor binding sites (TFBS) annotated in databases is underestimated [11]. Thus, it is worth to notice that a promoter is a complex entity that requires a large number of elements, making the transcription observed *in vivo* for a specific DNA element could be due to a number of interplaying factors which perhaps could not be predicted using a single tool (*Figure 6*). One final remark is that the extensive majority of algorithms have been created using datasets of promoters from just one bacterium: *E. coli*. Consequently, since each organism has its particularities in terms of DNA binding proteins and sigma-factor elements, we are still far away from having a prediction tool that can be used for several organisms. In order to accomplish that, we would require extensive promoter datasets from several microorganisms to construct multipurpose prediction tools. Lastly, we hope the approach and metrics used here can contribute to future studies aimed to construct improved promoter prediction tools.
Material and methods

Selecting promoter prediction tools

We started this work by searching in the literature recent and available prediction tools for *E. coli* promoters. For each case, when a tool was available online or by software download, we selected it to posterior analysis. Table 1 shows the summarized information about the tool methodology (i.e. implementation, approach used, or process performed), the sigma factors it can predict, the available format and the access links. All these descriptions have been extracted from the original papers describing the tools. Next, we analyzed some usability features of the tools (such as the file format accepted as input, maximal allowed file size, the output format of results, etc.) as summarized in Table 2. Then, we selected the ones that accepted our complete dataset in multifasta format as input to perform a comparative analysis.

Promoter datasets used for the analyses

In order to compare each selected tool, we used an experimentally validated promoter dataset for the well-studied *E. coli* K12 (?) which are dependent on sigma70, as available in the curated database Regulon DB 10.5 [48]. We used only sigma70-dependent promoters since they are mostly well-characterized in bacteria, and consequently most tools have been developed to recognize this class of elements. Thus, our so-called positive dataset was formed by 865 natural sequences extracted from Regulon DB and classified as having a strong evidence/confidence level. Additionally, we used a negative promoter set consisting of 1000 randomly generated sequences with a nucleotide distribution similar to that encountered in the 865 natural sequences, which was constructed with an *ad hoc* script written in Python. We chose this strategy for two reasons: (i) generating a negative dataset with this approach allows us to assess the tools’ capacity to distinguish real promoters from random sequences, and, (ii) to the best of our knowledge, there are no experimentally validated negative promoter dataset available. Also, it is important to stress that many tools, such as BPROM, 70ProPred and iPro-70FMWin, used coding and intergenic regions as control (negative) sequences, but this is not appropriated since coding and non-coding regions have clearly different nucleotides compositions and structural properties [49,50]. In our datasets, the sequences have 81 bp, since most tools consider and requires as input 60 bp upstream and 20 bases downstream the putative TSS (the region interval [-60, +20]). In the case were the tool required the entire genome, we used *E. coli* K12 MG1655 genome (GenBank U00096.3) and when a tool required a bigger interval than [-60, +20] bp, we extracted the additional sequence from this same genome. The two datasets (natural and random) used here are available as Supplementary data.

Defining the metrics for promoter analysis

The true promoter (positive) and random (negative) datasets were used to measure the current tools’ capacity to make correct identification of promoter sequences (it is important to emphasize that we are not using our datasets to re-train and test each methodology). Thus, the results were evaluated comparing accuracy and Matthews Correlation Coefficient (MCC, [51]), calculated as the following equations, respectively:

\[
\text{Accuracy} = \frac{(TP+TN)}{(TP+TN+FP+FN)}
\]
where TP (true positive) are the natural sequences classified as promoters, TN (true negative) are the random sequences classified as non-promoters, FP (false positive) are the random sequences classified as promoters and FN (false negative) are the natural sequences classified as non-promoters. We adopted MCC because it is a metric that deals with unbalanced datasets (i.e. differences in the number of instances in negative and positive datasets), avoiding biases. It achieves high scores only if TP and TN are high, considering both types of correct classification in a single metric, and it has been shown that for this type of binary classification (e.g. promoter/non-promoter) it is more efficient and less over-optimistic [52].

Sensitivity and specificity scores were also used to give a sense of correct classification of promoters and non-promoters, and are defined as follows:

\[
\text{Sensitivity} = \frac{TP}{TP + FN} \\
\text{Specificity} = \frac{TN}{TN + FP}
\]

Unlike accuracy, sensitivity and specificity that range from 0 to 1, MCC ranges from –1 (the worst predictor) to 1 (the best predictor) and 0 corresponds to a ‘random’ predictor. By testing the tools with our synthetic random dataset, we can measure whether those tools have overfitting with their test datasets and by testing our positive dataset (with a strong experimental evidence) we are measuring underfitting, once some of our positive sequences probably have already used to train the tools algorithms [24]. As some of the tools also predict promoters for other sigma factors, to be able to classify all predictions as correct or wrong, we considered random sequences classified as any sigma class promoter as FP and a sigma70 sequence classified as any other class of sigma promoter as FN. This does not mean that a sigma70 promoter classified as another sigma factor cannot respond this sigma or even to sigma 70, \textit{in vivo}, as we discuss later.

\textbf{Data representation}

For data representation, heatmaps were created by using the R package Heatmap.2 [53], with default method and using Jaccard distance method to deal with our binary characteristic vector of 1 (correctly classified) and 0 (wrongly classified) obtained from the tools’ results. The Venn diagrams were made by using the Python library matplotlib-venn (https://pypi.org/project/matplotlib-venn/). The logos of count matrices, probability matrices, position weight matrices and information matrices were constructed by using Logomaker Python library [54]. As every result generated by the tools has different formats, these were pre-processed using a text editor or \textit{ad hoc} Python scripts. All the scripts we used to generate our data and perform the analysis as well as the datasets used are available for download as supplemental files.

\textbf{Additional files}

Additional file 1: Fasta sequence of natural promoters.

Additional file 2: Fasta sequence of random promoters.
Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Availability of data and materials
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests
The authors declare that they have no competing interests

Funding
This work was supported by the Sao Paulo Research Foundation (FAPESP, award # 2012/22921-8). MHCA was supported by FAPESP Fellowship (award # 2019/06672-7).

Authors' contributions
MHCA and RSR conceived the work. MHCA performed the analysis. MHCA and RSR analyzed the results and written the manuscript. All authors read and approved the final manuscript.

Acknowledgements
The authors are thanks to lab colleagues for insightful comments on this work, and to Dr. María Eugenia Guazzaroni for comments on the final version of the manuscript.

References
1. Browning DDF, Busby SJWS. The regulation of bacterial transcription initiation. Nat Rev Microbiol. 2004;2:57–65.
2. Paget M, Helmann J. Protein family review: The σ70 family of sigma factors. Genome Biol [Internet]. 2003;4:1–6. Available from: http://dx.doi.org/10.1186/gb-2003-4-1-203
3. Lee DJ, Minchin SD, Busby SJW. Activating Transcription in Bacteria. Annu Rev Microbiol [Internet]. 2012;66:125–52. Available from: http://www.annualreviews.org/doi/abs/10.1146/annurev-micro-092611-150012
4. Ishihama A. Functional modulation of Escherichia coli RNA polymerase. Annu Rev Microbiol [Internet]. 2000/10/06. 2000;54:499–518. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11018136
5. Browning DF, Busby SJW. Local and global regulation of transcription initiation in bacteria. Nat Rev Microbiol [Internet]. Nature Publishing Group; 2016;14:638–50. Available from: http://www.nature.com/doifinder/10.1038/nrmicro.2016.103
6. Kinney JB, Murugan A, Callan CG, Cox EC. Using deep sequencing to characterize the biophysical mechanism of a transcriptional regulatory sequence. Proc Natl Acad Sci U S A. 2010;107:9158–63.
7. Sharon E, Kalma Y, Sharp A, Raveh-Sadka T, Levo M, Zeevi D, et al. Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters. Nat Biotechnol.
8. Belliveau NM, Barnes SL, Ireland WT, Jones DL, Sweredoski MJ, Moradian A, et al. Systematic approach for dissecting the molecular mechanisms of transcriptional regulation in bacteria. Proc Natl Acad Sci. 2018;115:E4796–805.

9. Shimada T, Yamazaki Y, Tanaka K, Ishihama A. The whole set of constitutive promoters recognized by RNA polymerase RpoD holoenzyme of Escherichia coli. PLoS One. 2014;9.

10. Urtecho G, Insigne KD, Tripp AD, Brinck M, B. Lubock N, Kim H, et al. Genome-wide Functional Characterization of Escherichia coli Promoters and Regulatory Elements Responsible for their Function. 2020;

11. Ishihama A, Shimada T, Yamazaki Y. Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors. Nucleic Acids Res. 2016;44:2058–74.

12. Huerta AM, Collado-Vides J. Sigma70 Promoters in Escherichia coli: Specific Transcription in Dense Regions of Overlapping Promoter-like Signals. J Mol Biol. 2003;333:261–78.

13. Hertz GZ, Stormo GD. [2] Escherichia coli promoter sequences: Analysis and prediction. 1996. p. 30–42.

14. Gordon L, Chervonenkis AY, Gammerman AJ, Shahmuradov IA, Solovyev V V. Sequence alignment kernel for recognition of promoter regions. Bioinformatics. 2003;19:1964–71.

15. Gordon JJ, Towsey MW, Hogan JM, Mathews SA, Timms P. Improved prediction of bacterial transcription start sites. Bioinformatics. 2006;22:142–8.

16. Mann S, Li J, Chen Y-PP. A pHMM-ANN based discriminative approach to promoter identification in prokaryote genomic contexts. Nucleic Acids Res. 2007;35:e12–e12.

17. de Avila e Silva S, Echeverrigaray S, Gerhardt GJL. BacPP: Bacterial promoter prediction—a tool for accurate sigma-factor specific assignment in enterobacteria. J Theor Biol. 2011;287:92–9.

18. Mendizabal-Ruiz G, Román-Godínez I, Torres-Ramos S, Salido-Ruiz RA, Morales JA. On DNA numerical representations for genomic similarity computation. Ouzounis CA, editor. PLoS One. 2017;12:e0173288.

19. Kwan HK, Arniker SB. Numerical representation of DNA sequences. 2009 IEEE Int Conf Electro/Information Technol. IEEE; 2009. p. 307–10.

20. Song K. Recognition of prokaryotic promoters based on a novel variable-window Z-curve method. Nucleic Acids Res. 2012;40:963–71.

21. Rani TS, Bapi RS. Analysis of n-Gram based Promoter Recognition Methods and Application to Whole Genome Promoter Prediction. In Silico Biol. 2009;9:S1–16.

22. Ghandi M, Lee D, Mohammad-Noori M, Beer MA. Enhanced Regulatory Sequence Prediction Using Gapped k-mer Features. Morris Q, editor. PLoS Comput Biol. 2014;10:e1003711.

23. Shahmuradov IA, Mohammad Razali R, Bougouffa S, Radovanovic A, Bajic VB. bTSSfinder: a novel tool for the prediction of promoters in cyanobacteria and Escherichia coli. Bioinformatics. 2016;btw629.

24. Libbrecht MW, Noble WS. Machine learning applications in genetics and genomics. Nat Rev Genet. 2015;16:321–32.

25. Camacho DM, Collins KM, Powers RK, Costello JC, Collins JJ. Next-Generation Machine Learning...
for Biological Networks. Cell. 2018.

26. Zou J, Huss M, Abid A, Mohammadi P, Torkamani A, Telenti A. A primer on deep learning in genomics. Nat Genet. 2019;51:12–8.

27. Noble WS. What is a support vector machine? Nat Biotechnol. 2006;24:1565–7.

28. Krogh A. What are artificial neural networks? Nat Biotechnol. 2008;26:195–7.

29. Lever J, Krzywinski M, Altman N. Logistic regression. Nat Methods. 2016;13:541–2.

30. Kingsford C, Salzberg SL. What are decision trees? Nat Biotechnol. 2008;26:1011–3.

31. Eddy SR. What is a hidden Markov model? Nat Biotechnol. 2004;22:1315–6.

32. Huang W, Umbach DM, Ohler U, Li L. Optimized mixed Markov models for motif identification. BMC Bioinformatics. 2006;7:279.

33. Solovyev V, Salamov a. Automatic annotation of microbial genomes and metagenomic sequences. Metagenomics its Appl Agric Biomed Environ Stud (Ed RW Li), Nov Sci Publ. 2011;

34. Umarov RK, Solovyev V V. Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks. Rogozin IB, editor. PLoS One. 2017;12:e0171410.

35. Wang S, Cheng X, Li Y, Wu M, Zhao Y. Image-based promoter prediction: a promoter prediction method based on evolutionarily generated patterns. Sci Rep. 2018;8:17695.

36. Münch R, Hiller K, Grote A, Scheer M, Klein J, Schober M, et al. Virtual Footprint and PRODORIC: An integrative framework for regulon prediction in prokaryotes. Bioinformatics. 2005;21:4187–9.

37. Grote A, Klein J, Retter I, Haddad I, Behling S, Bunk B, et al. PRODORIC (release 2009): a database and tool platform for the analysis of gene regulation in prokaryotes. Nucleic Acids Res. 2009;37:D61–5.

38. Rahman MS, Aktar U, Jani MR, Shatabda S. iPro70-FMWin: identifying Sigma70 promoters using multiple windowing and minimal features. Mol Genet Genomics. 2019;294:69–84.

39. He W, Jia C, Duan Y, Zou Q. 70ProPred: a predictor for discovering sigma70 promoters based on combining multiple features. BMC Syst Biol. 2018;12:44.

40. Liu B, Yang F, Huang D-S, Chou K-C. iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC. Hancock J, editor. Bioinformatics. 2018;34:33–40.

41. Zhang M, Li F, Marquez-Lago TT, Leier A, Fan C, Kwoh CK, et al. MULTiPly: a novel multi-layer predictor for discovering general and specific types of promoters. Hancock J, editor. Bioinformatics. 2019;

42. Abbas MM, Mohie-Eldin MM, EL-Manzalawy Y. Assessing the Effects of Data Selection and Representation on the Development of Reliable E. coli Sigma 70 Promoter Region Predictors. Gupta D, editor. PLoS One. 2015;10:e0119721.

43. Yona AH, Alm EJ, Gore J. Random sequences rapidly evolve into de novo promoters. Nat Commun. 2018;9:1530.

44. Estrem ST, Ross W, Gaal T, Chen ZWS, Niu W, Ebright RH, et al. Bacterial promoter architecture: subsite structure of UP elements and interactions with the carboxy-terminal domain of the RNA polymerase alpha subunit. Genes Dev. 1999;13:2134–47.

45. Typas A, Hengge R. Differential ability of σ_s and σ_70 of Escherichia coli to utilize promoters
containing half or full UP-element sites. Mol Microbiol. 2004;55:250–60.

46. Hook-Barnard IG, Hinton DM. The promoter spacer influences transcription initiation via σ_{70} region
1.1 of Escherichia coli RNA polymerase. Proc Natl Acad Sci. 2009;106:737–42.

47. Singh SS, Typas A, Hengge R, Grainger DC. Escherichia coli σ_{70} senses sequence and conformation
of the promoter spacer region. Nucleic Acids Res. 2011;39:5109–18.

48. Santos-Zavaleta A, Salgado H, Gama-Castro S, Sánchez-Pérez M, Gómez-Romero L, Ledezma-
Tejeida D, et al. RegulonDB v 10.5: tackling challenges to unify classic and high throughput knowledge
of gene regulation in E. coli K-12. Nucleic Acids Res. 2019;47:D212–20.

49. Bohlin J, Eldholm V, Pettersson JHO, Brynildsrud O, Snipen L. The nucleotide composition of
microbial genomes indicates differential patterns of selection on core and accessory genomes. BMC
Genomics. 2017;18:151.

50. Bentley SD, Parkhill J. Comparative Genomic Structure of Prokaryotes. Annu Rev Genet.
2004;38:771–91.

51. Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme.
Biochim Biophys Acta - Protein Struct. 1975;405:442–51.

52. Chicco D, Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 score
and accuracy in binary classification evaluation. BMC Genomics. 2020;21:6.

53. Warnes GR, Bolker B, Gentleman B, Liaw L, Andy R, Huber W, et al. gplots: Various R
Programming Tools for Plotting Data. R package version 2.17.0. 2015.

54. Tareen A, Kinney JB. Logomaker: beautiful sequence logos in Python. Valencia A, editor.
Bioinformatics. 2019;

55. Solovyev V, Salamov A. Automatic Annotation of Microbial Genomes and Metagenomic Sequences.
Metagenomics its Appl Agric Biomed Environ Stud (Ed RW Li). Nova Science; 2011. p. 61–78.

56. Munch R, Hiller K, Grote A, Scheer M, Klein J, Schobert M, et al. Virtual Footprint and PRODORIC:
an integrative framework for regulon prediction in prokaryotes. Bioinformatics [Internet]. 2005;21:4187–
9. Available from: https://www.ncbi.nlm.nih.gov/pubmed/16109747

57. Dall’Alba G, Casa PL, Notari DL, Adami AG, Echeverrigaray S, Avila e Silva S. Analysis of the
nucleotide content of <scp> Escherichia coli </scp> promoter sequences related to the alternative sigma
factors. J Mol Recognit. 2019;32:e2770.

58. Miksch G, Bettenworth F, Friehs K, Flaschel E, Saalbach A, Twellmann T, et al. Libraries of
synthetic stationary-phase and stress promoters as a tool for fine-tuning of expression of recombinant
proteins in Escherichia coli. J Biotechnol. 2005;120:25–37.
Table 1. General information of the tools used here.

Name	Method	Training sequence data set	E. coli sigma factors	Availability	Year	Reference	Citations (Google Scholar)*	
BPROM	Weight matrices of different motifs combined with Linear Discriminant Analysis	Positive: Experimentally validated promoters from E. coli [gordon et al [20]] Negative: Inner regions of protein coding ORFs	70	Web server [55]	2011	[23]	427	
bTSSfinder	Position Weight Matrices for promoter elements, oligomer frequencies, physicochemical properties as features and Mahalanobis distance for feature selection and with Neural Network for classification	Positive: Experimentally validated TSS from Regulon DB [-200, +51] Negative: Genomic regions with no experimental evidence for the presence of TSS	24, 28, 32, 38, 70	Stand alone and Web server [23]	2016	[17]	26	
BacPP	Weighted rules extracted from Neural Network	Positive: Regulon DB available promoters [-60, +20] Negative: randomly generated sequences (with established nucleotide frequencies) and intergenic sequences	24, 28, 32, 38, 54, 70	Web server [17]	2011	[17]	22	
Virtual Footprint	PWM from different available databases	-	-	Web server [56]	2005	[56]	370	
IBBP	Image-based and Evolutionary approach which generates “images” (template-image strings that keep features of spatial sequence relationships)	Positive: sigma70 promoters from Regulon DB [-60, +20] Negative: randomly generated from protein-coding sequences	70 (expandable approach)	Source Code [35]	2018	[35]	1	
iPro70-FMWin	22,595 features extracted from sequence and AdaBoost to select the most representatives among them; Logistic Regression Classifier	Positive: Regulon DB annotated promoters [-60, 20] Negative: randomly generated from protein-coding and intergenic region sequences	70	Web server	http://ipro70.pythonanywhere.com/	2019	[38]	4
70ProPred	Support Vector Machine using Position-specific tendencies of trinucleotide and electron-ion interaction pseudopotentials as features	Positive: promoters from Regulon DB [-60, 20] Negative: randomly generated from coding and non-coding sequences	70	Web server	http://server.malab.cn/70ProPred/	2017	[39]	33
CNNProm	Convolutional Neural Networks	Positive: promoters from Regulon DB [-60, 20] Negative: the opposite chain of randomly selected protein-coding genes	70	Web server	http://www.softberry.com/berry.phtml?topic=index&group=programs&subgroup=deeplearn	2017	[34]	60
MULTiPly	Support Vector Machine using Bi-profile Bayes, KNN features, k-tuple nucleotide compositions and dinucleotide-based auto-covariance as features	Positive: promoters from Regulon DB [-60, 20]	24, 28, 32, 38, 54, 70	Web server and standalone	http://flagshipnt.erc.monash.edu/MULTiPly/	2019	[41]	30
iPromoter-2L	Multi-window-based pseudo k-tuple nucleotide composition With physicochemical properties as features and Random Forest as predictor	Positive: promoters from Regulon DB [-60, 20] Negative: randomly extracted from the middle regions of long coding sequences and convergent intergenic regions (none of the promoters in each set has more than 0.8 pairwise sequence identity)	24, 28, 32, 38, 54, 70	Web server	http://bioinformatics.hitsz.edu.cn/iPromoter-2L/	2018	[40]	180

Positive sequences: sequences expected to be promoters;

Negative sequences: sequences expected to not include promoters;
[−60, +20], [−60, +19] or [−200, +51]: interval of the sequence with the boundary numbers related to TSS;

* Citations checked on May 3, 2020.

Table 2. Usage characteristics of the tools analyzed here.

Tool	Multifasta	Big files	Shows promoter core	Score Or Probability	Uppercase only	Output Format	Execution time	Follow up	Interface
BPROM	No	Yes	Yes	Yes	No	Text on screen	Fast	Progress on screen	Web form, simple, intuitive
									Multifasta not supported and sequence boxes are not shown, difficult to process the results
bTSSfinder	Yes	Yes	Yes	Yes	No	Text file, GFF file, BED file	Fast	Progress on screen	Login needed, Web form, simple, intuitive
									Flexible configurations of cutoff values Results saved for one week It needs a large promoter sequence (-200, +50, related to the putative TSS
BacPP	Yes	No	No	Yes	No	Text on screen or text file	Fast	No	Login needed, web form, simple, intuitive
									Short tests per time
Virtual Footprint	No	Yes	Yes	Yes	No	Test on Screen	Medium fast	Progress on screen	Web form, many fields and option in the screen
									Integrated with a large PWM database of TFBS Applicable to many species Limited to the position weight matrix available
IBBP	No	Yes	Yes	Yes	No	Text file	Fast	Progress on screen	Command line
									It shows the putative TSS
Method	Windows SO only execution	Fast for big files	Fast						
-------------------	---	--	------						
	It requires the manual input files	It can be used as an approach to initial prediction of any type of promoters							
	Training and test procedures are separated								

Method	High accuracy	Fast for big files	Fast
IPro70-FMWin	High accuracy	Fast for big files	Fast
70ProPred	High accuracy	Fast for big files	Fast
CNNProm	High accuracy	Fast for big files	Fast
	Useful for large sequences (genomes)		
Multiply	Good accuracy	Good accuracy	
	It saves the result	Good accuracy	
iPromoter2L	Good accuracy	Good accuracy	

Method	Text on screen	Web form, simple, intuitive	
IPro70-FMWin	Text on screen	Web form, simple, intuitive	
70ProPred	Text on screen	Web form, simple, intuitive	
CNNProm	It doesn’t accept file as input, just text on a form	Web form, simple, intuitive	
	Long time (for genomes), fast for multifasta	Web form, simple, intuitive	
	Without a follow up display	Web form, simple, intuitive	
	Multifasta not supported and sequence boxes are not shown: difficult to process the results	Web form, simple, intuitive	
Multiply	Medium time Progress	Web form, simple, intuitive	
	Progress on screen Job ID to find the result later	Web form, simple, intuitive	
iPromoter2L	Text on screen	Web form, simple, intuitive	
	Fast for big files	Web form, simple, intuitive	

Method	Text on screen	Web form, simple, intuitive	
IPro70-FMWin	Text on screen	Web form, simple, intuitive	
70ProPred	Text on screen	Web form, simple, intuitive	
CNNProm	It doesn’t accept file as input, just text on a form	Web form, simple, intuitive	
	Long time (for genomes), fast for multifasta	Web form, simple, intuitive	
	Without a follow up display	Web form, simple, intuitive	
	Multifasta not supported and sequence boxes are not shown: difficult to process the results	Web form, simple, intuitive	
Multiply	Medium time Progress	Web form, simple, intuitive	
	Progress on screen Job ID to find the result later	Web form, simple, intuitive	
iPromoter2L	Text on screen	Web form, simple, intuitive	
Figures

A

![Percentage of sequences predicted as sigma 70-dependent promoters in both datasets.](image)

Tool	Natural	Random
CNNProm	94.80	48.60
iPro70-FMWin	83.82	30.90
70ProPred	89.71	39.90
iPromoter-2L	94.45	54.20
Multiply	81.16	50.20
bTSSfinder	47.98	25.20
BPROM	20.12	12.60
IBPP	26.13	29.20

B

![Metrics used to evaluate the performance of the tools.](image)

- **Accuracy**: 0.72, 0.76, 0.74, 0.64, 0.50, 0.46, 0.50, 0.56, 0.50
- **MCC**: 0.50, 0.53, 0.51, 0.37, 0.05, -0.07, 0.10, -0.03
- **Sensitivity**: 0.95, 0.84, 0.90, 0.94, 0.81, 0.48, 0.20, 0.26
- **Specificity**: 0.51, 0.69, 0.60, 0.37, 0.23, 0.45, 0.87, 0.71

Figure 1. Analysis of the performance of promoter prediction tools. A) Percentage of sequences predicted as sigma 70-dependent promoters in both datasets. The percentage of correct classifications of experimental promoters (blue) and percentage of misclassified random sequences (gray) are presented. Vertical bashed line separates the five best to the three worse tools analyzed. B) Metrics used to evaluate the performance of the tools. Note that MCC values range from -1 to 1. It is important to emphasize that two tools presented highest sensitivity associated with a low specificity, i.e., tools usually perform good classifications for real promoters and high misclassification of random sequences. Vertical dashed line divides the four best from the four worse tools.
Figure 2. Analysis of tool performance in positive dataset (natural sequences). A) Hierarchical clustering of DNA sequences classified as promoters (blue) or non-promoters (black). B) Venn diagram representing the number of sequences predicted as promoters from panel A.
Figure 3. Analysis of tool performance on negative dataset (random sequences). Hierarchical clustering of DNA sequences classified as promoters (blue) or non-promoters (black). B) Venn diagram representing the number of sequences predicted as promoters from panel A.
Figure 4. Analysis of information content of DNA sequences identified as promoters on the positive dataset (natural sequences). The sequence logos are shown for sequences predicted as sigma 70-dependent promoters by A) MulTiPly, B) iPromoter-2L, C) iPro70-FMWin, D) 70ProPred and E) CNNProm.
Figure 5. Analysis of information content of sequences identified as promoters on the negative dataset (random sequences). The sequence logos are shown for DNA sequences predicted as sigma 70-dependent promoters by A) MulTiPly, B) iPromoter-2L, C) iPro70-FMWin, D) 70ProPred and E) CNNProm.
Figure 6. A putative model for a bacterial promoter region, including a range of experimental attributes.

i) More than 300 proteins (TFs) in *E. coli* are predicted to bind DNA and there is a lack in experimental characterization [1].

ii) Recently, high-throughput studies, such as genomic SELEX, are showing a large number of possible TFBS on genomes [11], which may impact on the composition of promoter sequences. These regions can have positive (blue regions) or negative (red regions) effect on promoter activity.

iii) RNAP requires a sigma factor to be recruited to the promoter sequence and each sigma factor possess a preference for a specific motif on DNA [1].

iv) Nucleotide composition and motifs between -10 and -35 boxes influences transcription initiation and promoter activity [46,47].

v) Interrelation between the UP element and a subunit of RNAP were found to play a role on transcription initiation and promoter activity [44], and the UP element can switch preference of sigma factors in promoters [45].

vi) The same promoter sequence can possibly respond to diverse sigma factors, according experimental characterizations and *in silico* approaches [36,57,58].
Figure S1. Analysis of information content of sequences predicted as promoters. Sequence logo of the A) natural sequences and B) random sequences predicted as sigma 70 promoters by all tools. Note that, in the case of natural sequences we observe the same motif pattern that we found in Figure 4, and, in the case of random sequences, the bits range had improved and a -10 box motif become more evident.