SHORT

COMMUNICATIONS

On the Convergence of Mappings with k-Finite Distortion

S. K. Vodop’yanov1,2* and N. A. Kudryavtseva3**

1Sobolev Mathematical Institute, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Peoples’ Friendship University of Russia (RUDN), Moscow, Russia
3Novosibirsk State University, Novosibirsk, Russia

Received May 21, 2017

DOI: 10.1134/S0001434617110281

Keywords: mapping with k-finite distortion, distortion coefficient, passage to the limit, differential form.

It is well known that the limit of a uniformly converging sequence of analytic functions is an analytic function. Reshetnyak generalized this result to mappings with bounded distortion: the limit of a locally uniformly converging sequence of mappings with bounded distortion is a mapping with bounded distortion.

Reshetnyak used the weak convergence of Jacobians to prove the following theorem on the limit of a sequence of mappings with bounded distortion.

Theorem 1 ([1]). Let $f_m : \Omega \to \mathbb{R}^n$, $m = 1, 2, \ldots$, be an arbitrary sequence of mappings with bounded distortion locally converging in $L^p(\Omega)$ to a mapping $f_0 : \Omega \to \mathbb{R}^n$. Assume that the sequence of distortion coefficients $K(f_m)$, $m = 1, 2, \ldots$, is bounded. Then the limit mapping f_0 is a mapping with bounded distortion and the following inequality holds:

$$K(f_0) \leq \lim_{k \to \infty} K(f_m).$$

(1)

The weighted mappings with bounded (p, q)-distortion, which generalize the mappings with bounded distortion, were defined and studied in [2]. It was shown in [3] that the locally uniform limit of mappings with bounded $(\theta, 1)$-weighted (p, q)-distortion is also a mapping with bounded $(\theta, 1)$-weighted (p, q)-distortion, and an estimate similar to (1) was obtained. The proofs of theorems in both [3] and the present paper are based on a new method developed in [4] for generalizing Reshetnyak’s results to the Carnot groups.

In the present paper, we generalize these assertions to classes of mappings with k-finite distortion which naturally arise in the problem of pull-backs of differential forms of degree k (see [5]).

1. PRELIMINARIES

Let U be a domain in \mathbb{R}^n. We consider the Banach space $\mathcal{L}_p(U, \Lambda^k)$ of differential forms ω of degree k with measurable coefficients which have the following finite norm:

$$\|\omega\|_p = \left(\int_U |\omega|^p \, dx \right)^{1/p}.$$
A mapping \(f: U \to \mathbb{R}^n \) is said to be \emph{approximate differentiable} at a point \(x \in U \) [6] if there exists a linear mapping \(L: \mathbb{R}^n \to \mathbb{R}^n \) such that
\[
\lim_{r \to 0} \left| \frac{\left(\{ y \in B(x, r) : |f(y) - f(x) - L(y-x)| > \varepsilon \} \right)}{r^n} \right| = 0
\]
for any \(\varepsilon > 0 \). It is well known that the approximate differential is unique [6] if \(x \) is a density point. In what follows, it is denoted by the symbol \(\text{ap} \, Df(x) \).

Let a mapping \(f = (f_1, \ldots, f_n): U \to W \) of Euclidean domains \(U, W \subset \mathbb{R}^n \) be approximate differentiable almost everywhere in \(U \). The differential
\[
\text{ap} \, Df(x): T_x U \to T_{f(x)} W
\]
canonicaly generates a linear mapping
\[
\Lambda_k f(x): \Lambda_k T_x U \to \Lambda_k T_{f(x)} W
\]
of spaces of \(k \)-vectors and the following operation \(f^* \) of pull-back of \(k \)-forms. Namely, any \(k \)-form
\[
\omega = \sum \omega_\beta \, dy^\beta
\]
in \(W \) with continuous coefficients \(\omega_\beta: W \to \mathbb{R} \), where the summation is performed over all \(k \)-dimensional ordered multi-indices \(\beta = (\beta_1, \ldots, \beta_k), \, 1 \leq \beta_1 < \cdots < \beta_k \leq n \), and where
\[
dy^\beta = dy_{\beta_1} \wedge dy_{\beta_2} \wedge \cdots \wedge dy_{\beta_k},
\]
can be pulled back to the domain \(U \) so that one obtains a \(k \)-form
\[
f^* \omega(x) = \sum_\beta \omega_\beta(f(x)) \, df_{\beta_1} \wedge df_{\beta_2} \wedge \cdots \wedge df_{\beta_k} = \sum_\alpha \sum_\beta \omega_\beta(f(x)) M_{\alpha}^{\beta}(x) \, dx^\alpha
\]
with measurable coefficients defined for almost all \(x \in U \). Here
\[
df_{\beta_k} = \sum_{i=1}^n \left(\frac{\partial f_\beta}{\partial x_i} \right) \, dx_i,
\]
the partial derivatives are understood in an approximate sense, and \(M_{\alpha}^{\beta}(x) \) are \(k \times k \) minors of the matrix
\[
\text{ap} \, Df(x) = \left(\frac{\partial f_i}{\partial x_j} \right), \quad i, j = 1, \ldots, n,
\]
with ordered rows and columns. We denote the norm of this linear mapping by the symbol \(|\Lambda^k f(x)| \).

The minimal analytic and geometric properties of the mapping \(f \) generating a bounded operator
\[
f^*: \mathcal{L}_p(W, \Lambda^k) \cap \mathcal{C}(W, \Lambda^k) \to \mathcal{L}_q(U, \Lambda^k), \quad 1 \leq q \leq p \leq \infty,
\]
of pull-back of differential forms of degree \(k \) were obtained in [5].

Further, let \(Z = \{ x \in U : \text{det} \, \text{ap} \, Df(x) = 0 \} \). We shall say that an approximate differentiable mapping \(f: U \to W \) has a \(k \)-finite distortion\(^1\) (briefly, \(f \in \mathcal{C} \mathcal{D}^k(U; W) \)) if \(|Z| = 0 \) for \(k = 0 \) and \(\text{rank} \, \text{ap} \, Df(x) < k \) for a.a. \(x \in Z \) for \(1 \leq k \leq n \) [5].

In addition to the property of \(k \)-finite distortion, the mapping in (3) must also exhibit a certain behavior of a distortion characteristic containing the ratios \(|\Lambda^k f(x)|^q / |J(x, f)| \), where \(J(x, f) = \text{det} \, \text{ap} \, Df(x) \) (for details, see [5]). Here we formulate a simpler version of this result for homeomorphic mappings.

\textbf{Proposition ([5])}. \textit{Let} \(f: U \to W \) \textit{be an approximate differentiable homeomorphism. An operator}
\[
f^*: \mathcal{L}_p(W, \Lambda^k) \cap \mathcal{C}(W, \Lambda^k) \to \mathcal{L}_q(U, \Lambda^k), \quad 1 \leq q \leq p \leq \infty,
\]
\textit{is bounded if and only if the following conditions are satisfied:}

\[^1\text{This notion generalizes the notion (which is well known in the literature for } k = 1 \text{) of family of mappings with finite distortion of the Sobolev class } W^1_{1, \text{loc}}(U), \text{ which are characterized by the following property: } Df(x) = 0 \text{ almost everywhere on the set } Z.\]
Theorem 2. \(f : U \to W \) has a \(k \)-finite distortion;

(2) the function

\[
K_{k,p}(x) = \begin{cases}
\frac{|A^k f(x)|}{|J(x,f)|^{1/p}} & \text{if } x \notin \mathbb{Z}, \\
0 & \text{otherwise},
\end{cases}
\]

belongs to \(L_\infty(U) \), where \(1/\infty_0 = 1/q - 1/p. \)

In this case, the norm of the operator \(f^* \) is comparable with \(\|K_{k,p}(\cdot) \|_{L_\infty(U)} \).

In our paper, we consider the mappings differentiable in the sense of Sobolev. Such mappings are unconditionally approximate differentiable.

We say that a homeomorphism \(f \in CD^k(U;W) \) has a \((q,p) \)-bounded distortion \(f \in CD^k_{q,p}(U;W) \) if it satisfies condition (2) of the proposition stated above.

2. MAIN RESULT

Theorem 2. Let \(f_m : U \to W \) be homeomorphisms of Sobolev class \(W^1_{1,\text{loc}}(U) \) with \(k \)-finite distortions which are locally bounded in \(W^1(U) \), have a \((q,p) \)-bounded distortion \(f_m \in CD^k_{q,p}(U;W) \).

\(k < q, k < l, 1 < q \leq p \leq \infty, \) and locally uniformly converge to a homeomorphism \(f : U \to W. \) Assume also that there exists a function \(M(x) \in L_\infty(U), 1/\infty_0 = 1/q - 1/p, \) such that

\[
K_{k,p}^m(x) = K_{k,p}(f_m)(x) \leq M(x) \quad \text{for all } m \in \mathbb{N}
\]

almost everywhere in \(U. \) Then the limit mapping \(f \) is also a mapping with \(k \)-finite distortion and has a \((q,p) \)-bounded distortion, and the inequality \(K_{k,p}(f)(x) \leq M(x) \) holds for its distortion coefficient.

Proof. It follows from the conditions of the theorem that \(f \in W^1_{1,\text{loc}}(U). \) First, we show that the limit mapping \(f \) is also a mapping with \(k \)-finite distortion and has a \((q,p) \)-bounded distortion. For this, we first show that the mapping \(f \) induces a bounded operator

\[
f^* : \mathcal{L}_p(W, \Lambda^k) \cap \mathcal{E}(W, \Lambda^k) \to \mathcal{L}_q(U, \Lambda^k), \quad 1 < q \leq p \leq \infty.
\]

Since each mapping \(f_m \) is a mapping with \(k \)-finite and \((q,p) \)-bounded distortion, it follows from the assumption that the homeomorphism \(f_m : U \to W \) induces a bounded operator

\[
f^*_m : \mathcal{L}_p(W, \Lambda^k) \cap \mathcal{E}(W, \Lambda^k) \to \mathcal{L}_q(U, \Lambda^k), \quad 1 < q \leq p \leq \infty.
\]

Moreover, the norms of the operators \(f^*_m \) are totally bounded

\[
\|f^*_m\| \leq \|K_{f_m,p}(\cdot) \|_{L_\infty(U)} \leq \|M(x)(\cdot) \|_{L_\infty(U)} \leq \tilde{M} < \infty, \quad m \in \mathbb{N}.
\]

Take a \(k \)-form \(\omega \in \mathcal{L}_p(W, \Lambda^k) \cap \mathcal{E}(W, \Lambda^k) \) and set \(u_m = f^*_m(\omega). \) Since \(\|f^*_m\| \leq \tilde{M} \), the sequence of forms \(u_m \) is bounded in \(\mathcal{L}_q(U, \Lambda^k). \) Therefore, we can extract a weakly converging subsequence.

We assume that the sequence \(u_m \) weakly converges in \(\mathcal{L}_q(U, \Lambda^k) \) to a form \(u_0. \) The weak convergence of forms means that the coefficients of the forms \(u_m \) weakly converge in \(L_q(U) \) to the corresponding coefficients of the form \(u_0. \)

Since the sequence \(u_m \) weakly converges to \(u_0 \) in \(\mathcal{L}_q(U, \Lambda^k), \) we have

\[
\|u_0 \|_{L_q(U)} \leq \lim_{m \to \infty} \|u_m \|_{L_q(U)} = \lim_{m \to \infty} \|f^*_m \omega \|_{L_q(U)} \leq \lim_{k \to \infty} \|f^*_m \| \|\omega \|_{L_p(U)} \leq \|M(x)(\cdot) \|_{L_\infty(U)} \|\omega \|_{L_p(U)}.
\]

The following lemma is proved in the book [1, Chap. 2, Sec. 4].
Lemma. Suppose U is an open subset in \mathbb{R}^n, and suppose that $\varphi_m = (\varphi_{m1}, \varphi_{m2}, \ldots, \varphi_{mk})$, $1 \leq k \leq n$, $m = 1, 2, \ldots$, be a sequence of vector functions of class $W^1_{p, \text{loc}}(U)$, $p \geq k$, locally bounded in $W^1_p(U)$. Assume that, as $m \to \infty$, the functions φ_m converge in $L^1_{k, \text{loc}}$ to a vector function $\varphi_0 = (\varphi_{01}, \varphi_{02}, \ldots, \varphi_{0k})$ and set $\omega_m = d\varphi_{m1} \wedge d\varphi_{m2} \wedge \cdots \wedge d\varphi_{mk}$. Then the sequence of forms ω_m weakly converges in $L^{p/k, \text{loc}}$ to a form ω.

Since the homeomorphisms f_m locally uniformly converge to f and the form ω has continuous coefficients, the functions $\omega_m(f_m(x))$ converge to $\omega(f(x))$ locally uniformly. The lemma implies that the minors of the matrices Df_m weakly converge in $L^1_{k, \text{loc}}$ to minors of the matrix Df. Therefore, the forms u_m weakly converge to $f^*(\omega)$ and hence the mapping f induces a bounded operator

$$f^*: \mathcal{L}_p(W, \Lambda^k) \to \mathcal{L}_q(U, \Lambda^k), \quad 1 < q \leq p \leq \infty.$$

Now we estimate the distortion coefficient of the limit mapping f. Let $\theta \in C^\infty_0(U)$ be a test function. Let Z_m be the set of zeros of the Jacobian of the mapping f_m. Since the rank of the matrix Df_m on the set Z_m is less than k, it follows that all kth-order minors are equal to zero on the set Z_m. First, we consider the case $q < p$. We apply Hölder’s inequality to derive

$$\int_U |\Lambda^k f_m(x)|^q \theta(x) \, dx = \int_{U \setminus Z_m} \frac{|\Lambda^k f_m(x)|^q}{|J(x, f_m)|^{q/p}} |J(x, f_m)|^{q/p} \theta(x) \, dx$$

$$\leq \left(\int_U (K_{k,p}(f_m) \theta(x) \, dx \right)^{q/\infty} \left(\int_U |J(x, f_m)| \theta(x) \, dx \right)^{q/p}$$

$$\leq \left(\int U M^\infty(x) \theta(x) \, dx \right)^{q/\infty} \left(\int_U |J(x, f_m)| \theta(x) \, dx \right)^{q/p}.$$

Hölder’s inequality can be used, because $q/\infty + q/p = 1$.

It follows from the lemma that the elements of the matrix $\Lambda^k(f_m)(x)$, i.e., the kth-order minors of the mapping f_m, weakly converge in $L^1_{k, \text{loc}}$ to the elements of the matrix $\Lambda^k(f)(x)$. Since the norm is semicontinuous in the Banach space $L^1_{k, \text{loc}}$, the left-hand side of the inequality can be estimated as

$$\int_U |\Lambda^k f(x)|^q \theta(x) \, dx \leq \lim_{j \to \infty} \int_U |\Lambda^k f_m(x)|^q \theta(x) \, dx.$$

Let $x_0 \in U$, and let $r \leq R$ be such that the ball $B(x_0, R)$ lies in the domain U. We consider the following family of functions $\theta_{r, \varepsilon, y} \in C^\infty_0(U)$:

$$\theta_{r, \varepsilon, x_0}(x) = \begin{cases} 1 & \text{if } x \in B(x_0, r - \varepsilon), \\ 0 & \text{if } x \notin B(x_0, r), \\ 0 < \theta_{r, \varepsilon, x_0}(x) < 1 & \text{otherwise}. \end{cases}$$

As the test function $\theta(x)$, we take the function $\theta_{r, \varepsilon, x_0}(x)$. Then we have the inequality

$$\int_U |\Lambda^k f(x)|^q \theta_{r, \varepsilon, x_0}(x) \, dx \leq \left(\int_{B(x_0, r)} M^\infty(x) \, dx \right)^{q/\infty} \left(\int_{B(x_0, r)} |J(x, f_m)| \, dx \right)^{q/p}. \quad (4)$$

Since $|\theta_{r, \varepsilon, x_0}(x)| \leq 1$, it follows from Lebesgue’s dominated convergence theorem that an arbitrary function $g \in L^1_{k, \text{loc}}(\Omega)$ satisfies the relation

$$\int_{B(x_0, r)} g(x) \, dx = \lim_{\varepsilon \to 0} \int_{\Omega} g(x) \theta_{r, \varepsilon, x_0}(x) \, dx.$$

Since the mapping f_m is differentiable, there is a set Σ_m of measure zero [6], [7] such that

$$\int_{B(x_0, r)} |J(x, f_m)| \, dx = \int_{f_m(B(x_0, r) \setminus \Sigma_m)} dy = |f_m(B(x_0, r) \setminus \Sigma_m)|.$$
Therefore,

\[\int_{B(x_0, r)} |J(x, f_m)| \, dx \leq |f_m(B(x_0, r)|. \]

Let us show that

\[|f_m(B(x_0, r)| \to |f(B(x_0, r)| \quad \text{as} \quad m \to \infty \quad \text{for almost all} \quad r. \]

Since \(|f_m(B(x_0, r)| < \infty \), the mappings \(f_m \) are homeomorphisms, so that the images of the spheres \(f_m(S(x_0, r)) \) do not intersect, it follows that the measure of the image of any sphere is zero for almost all \(r \),

\[|f_m(S(x_0, r))| = 0. \]

We fix \(r \) so that

\[|f(S(x_0, r))| = 0 \quad \text{and} \quad |f_m(S(x_0, r))| = 0 \]

and surround the image of the sphere \(f(S(x_0, r)) \) by an \(\varepsilon \)-neighborhood \(U_\varepsilon \). Since the mappings \(f_m \) locally uniformly converge to the mapping \(f \), it follows that, starting from a number \(M \), the images of the spheres \(f_m(S(x_0, r)), m \geq M \), are contained in this \(\varepsilon \)-neighborhood. It is clear that \(|U_\varepsilon| \to 0 \) as \(\varepsilon \to 0 \), and hence

\[|f_m(B(x_0, r)| \to |f(B(x_0, r)| \quad \text{as} \quad m \to \infty. \]

Thus, passing to the limit as \(m \to \infty \) and then as \(\varepsilon \to 0 \) in inequality (4), we obtain

\[\int_{B(x_0,r)} |\Lambda^k f(x)|^q \, dx \leq \left(\int_{B(x_0,r)} M^\varepsilon(x) \, dx \right)^{q/p} |f(B(x_0,r)|^q/p. \]

Dividing the result by the measure of the ball \(B(x_0, r) \), we obtain the inequality

\[\frac{1}{|B(x_0, r)|} \int_{B(x_0,r)} |\Lambda^k f(x)|^q \, dx \leq \left(\frac{1}{|B(x_0, r)|} \int_{B(x_0,r)} M^\varepsilon(x) \, dx \right)^{q/p} \left(\frac{|f(B(x_0,r)|}{|B(x_0, r)|} \right)^{q/p}. \]

Since the homeomorphism \(f \) is differentiable in the Sobolev sense, by formula (2.5) in [8, Sec. 2.3], we can write

\[\frac{|f(B(x_0,r)|}{|B(x_0, r)|} \to |J(x_0, f)| \quad \text{as} \quad r \to 0 \quad \text{a.e. in} \quad U. \]

For a function \(g \in L_{1,\text{loc}}(U) \), we use the Lebesgue fundamental theorem to derive (for details, see [9])

\[g(x_0) = \lim_{r \to 0} \frac{1}{|B(x_0, r)|} \int_{B(x_0,r)} f(x) \, dx \quad \text{for a.a.} \quad x_0 \in U. \]

Let us use this property, and let \(r \) tend to 0. Almost everywhere in \(U \), we obtain the inequality

\[|\Lambda^k f(x)|^q \leq M^q(x)|J(x, f)|^{q/p}. \]

Therefore, the distortion coefficient of the limit mapping \(f \) satisfies the estimate

\[K_{k,p}(f)(x) \leq M(x) \quad \text{for almost all} \quad x \in U. \]

In the case \(q = p \), we have

\[\int_U |\Lambda^k f_m(x)|^q \theta(x) \, dx \leq M \left(\int_U |J(x, f_m)| \theta(x) \, dx \right). \]

Further, proceeding as in the case \(q < p \), we obtain the desired estimate

\[K_{k,p}(f)(x) \leq M \quad \text{for almost all} \quad x \in U. \]

Therefore, applying Theorem 2, we use the Lebesgue fundamental theorem to derive (for details, see [9])

\[g(x_0) = \lim_{r \to 0} \frac{1}{|B(x_0, r)|} \int_{B(x_0,r)} f(x) \, dx \quad \text{for a.a.} \quad x_0 \in U. \]

Let us use this property, and let \(r \) tend to 0. Almost everywhere in \(U \), we obtain the inequality

\[|\Lambda^k f(x)|^q \leq M^q(x)|J(x, f)|^{q/p}. \]

Therefore, the distortion coefficient of the limit mapping \(f \) satisfies the estimate

\[K_{k,p}(f)(x) \leq M(x) \quad \text{for almost all} \quad x \in U. \]

In the case \(q = p \), we have

\[\int_U |\Lambda^k f_m(x)|^q \theta(x) \, dx \leq M \left(\int_U |J(x, f_m)| \theta(x) \, dx \right). \]

Further, proceeding as in the case \(q < p \), we obtain the desired estimate

\[K_{k,p}(f)(x) \leq M \quad \text{for almost all} \quad x \in U. \]

For applications of Theorem 2, see [10].
ACKNOWLEDGMENTS

The work of the first author was supported by the Ministry of Education and Science of the Russian Federation (grant no. 02.a03.21.0008). The work of the second author was supported by the Russian Foundation for Basic Research under grant 17-01-00801.

REFERENCES

1. Yu. G. Reshetnyak, *Spatial Mappings with Bounded Distortion* (Nauka, Novosibirsk, 1982) [in Russian].
2. A. N. Baikin and S. K. Vodop’yanov, Sibirsk. Mat. Zh. 56 (2), 290 (2015) [Sib. Math. J. 56 (2), 237 (2015)].
3. S. K. Vodop’yanov and A. O. Molchanova, Sibirsk. Mat. Zh. 57 (5), 999 (2016) [Sib. Math. J. 57 (5), 778 (2016)].
4. S. K. Vodop’yanov, Mat. Tr. 5 (2), 92 (2002).
5. S. K. Vodop’yanov, Izv. Ross. Akad. Nauk Ser. Mat. 74 (4), 5 (2010) [Izv. Math. 74 (4), 663 (2010)].
6. H. Federer, *Geometric Measure Theory* (Springer-Verlag, Berlin, 1969).
7. Hajlach, Colloq. Math. 64 (1), 93 (1993).
8. S. K. Vodop’yanov, Mat. Sb. 203 (10), 3 (2012) [Sb. Math. 203 (9–10), 1383 (2012)].
9. E. M. Stein, *Singular Integrals and Differentiability Properties of Functions* (Princeton Univ. Press, Princeton, 1970; Mir, Moscow, 1973).
10. A. O. Molchanova and S. K. Vodopyanov, *Injectivity Almost Everywhere and Mappings with Finite Distortion in Nonlinear Elasticity*, arXiv: 1704.08022v2 (2017).