Temperature effects on the C–H symmetric stretching vibrational frequencies of guest hydrocarbon molecules in 5^{12}, $5^{12}6^{2}$ and $5^{12}6^{4}$ cages of sl and sII clathrate hydrates†

Go Fuseya, Satoshi Takeya and Akihiro Hachikubo

C–H symmetric stretching vibrational frequencies of CH$_4$, C$_2$H$_4$ and C$_2$H$_6$ molecules encapsulated in 5^{12}, $5^{12}6^{2}$ and $5^{12}6^{4}$ cages of structures I (sl) and II (sII) clathrate hydrates measured by Raman spectroscopy in the temperature range of 93–183 K was analysed. The slopes of the symmetric stretch vibrational frequencies under changing temperatures (Δv/ΔT) for CH$_4$, C$_2$H$_4$ and C$_2$H$_6$ molecules encapsulated in sII $5^{12}6^{4}$ cages were smaller than those for molecules in sI $5^{12}6^{2}$ cages, although sI $5^{12}6^{2}$ cages are smaller than sII $5^{12}6^{4}$ cages. We compared the results of Δv/ΔT in this study with the geometrical properties of each host water cage, and these comparisons suggest that the geometry of host water cages affects Δv/ΔT.

Introduction

Clathrate hydrates, commonly known as gas hydrates, are crystalline inclusion compounds consisting of guest molecules of suitable sizes and shapes encapsulated in well-defined cages formed by water molecules. Gas hydrates with encapsulated hydrocarbon gases, which exist in sea/lake bottom sediments, have attracted considerable interest as a potential source of hydrocarbon gases, which exist in sea/lake bottom sediments, formed by water molecules. Gas hydrates with encapsulated hydrocarbon gases, which exist in sea/lake bottom sediments, have attracted considerable interest as a potential source of hydrocarbon gases, which exist in sea/lake bottom sediments.

Clathrate hydrates, commonly known as gas hydrates, are crystalline inclusion compounds consisting of guest molecules of suitable sizes and shapes encapsulated in well-defined cages formed by water molecules. Gas hydrates with encapsulated hydrocarbon gases, which exist in sea/lake bottom sediments, have attracted considerable interest as a potential source of hydrocarbon gases, which exist in sea/lake bottom sediments, formed by water molecules. Gas hydrates with encapsulated hydrocarbon gases, which exist in sea/lake bottom sediments, have attracted considerable interest as a potential source of hydrocarbon gases, which exist in sea/lake bottom sediments.

There are three common crystallographic structures of hydrates, structure I (sl), structure II (sII) and structure H (sH). For sl hydrates, the unit cell is formed by sixteen 5^{12} cages and six tetraakidaecahedral ($5^{12}6^{2}$) water cages. For sII hydrates, the unit cell is formed by sixteen 5^{12} cages and eight hexakidaecahedral ($5^{12}6^{4}$) water cages. Small guest molecules such as methane (CH$_4$), ethylene (C$_2$H$_4$) and ethane (C$_2$H$_6$) form sl hydrates, whereas larger molecules such as propane (C$_3$H$_8$) or 2-methylpropane (C$_4$H$_{10}$) form sII hydrates. C$_2$H$_4$ and C$_2$H$_6$ are encapsulated in sl $5^{12}6^{2}$ cages, while sl 5^{12} cages remain almost empty at equilibrium pressure except at high-pressure conditions (~100 MPa). A mixture of CH$_4$ + C$_2$H$_6$ hydrates can form both sl and sII hydrates, depending on the gas composition of CH$_4$ and C$_2$H$_6$.

Coexisting states of both sl and sII CH$_4$ + C$_2$H$_6$ hydrates have also been observed in natural settings. Moreover, in environments where larger hydrocarbons, e.g., C$_3$H$_8$ or C$_4$H$_{10}$ are present, smaller hydrocarbon molecules can also be encapsulated in the sII hydrate. Thus, accumulating knowledge about hydrocarbon hydrates in sl and sII structures is important.

Raman spectroscopy has been frequently used for gas hydrates to identify the type of crystal structure or to analyse cage occupancy and type of guest molecule. The Raman spectra of the C–H symmetric stretch region of encapsulated CH$_4$ and C$_2$H$_4$ have been used to identify the types of crystal structures and guest molecules. Raman spectra of hydrocarbon hydrates have shown that the C–H stretching frequencies of hydrocarbon molecules in large cages are generally lower than those of molecules in small cages. In earlier studies, the temperature dependence of the C–H symmetric stretching frequencies of encapsulated CH$_4$ as a guest molecule were investigated using Raman spectroscopy. In the case of sl CH$_4$ hydrate, the thermal variation in the frequencies of CH$_4$ in larger cages (sl $5^{12}6^{2}$ cages) is greater than that of frequencies of CH$_4$ in smaller cages (sl 5^{12} cages). In another earlier study, the neutron diffraction experiments for...
sI deuterated CD4 hydrate showed that CD4 in the sI 51262 cage distributes longitudinally within the cage at temperatures higher than 80 K, whereas CD4 in the 513 cage distributes spherically around the center of the cage even at higher temperatures. These results suggest that the distance between the guest and host molecules in the sI 51262 cage is smaller than that in the sI 512 cage. We proposed the idea that the difference in the thermal variations of the C–H symmetric stretching frequencies of CH4 in sI 512 and 51362 cages is caused by the difference in distribution changes of guest CH4 under changing temperature. The trend of the variations of the C–H vibrational frequencies of the encapsulated hydrocarbon molecules in the gas hydrate under changing temperature is useful for better understanding the trends of the temperature change of the distribution of guest molecules. However, these trends for hydrocarbons encapsulated in sII hydrate have not been investigated. It has also been reported that the distribution of guest molecules differs depending on the geometry of guest molecules. Hence, additional investigation for the C–H vibrational frequencies of encapsulated hydrocarbon molecules in various combinations of host cages and guest molecules are expected.

In this study, we observed the variations in the Raman shift of C–H symmetric stretching vibrations for various guest hydrocarbon molecules in sI 512 and 51262 cages and in sII 512 and 51262 cages under changing temperatures. Gas hydrates of sI C2H4 hydrate, sII Kr + C2H4 hydrate, sI C2H6 hydrate, sII CH4 + C2H4 hydrate and sII CH4 + C2H6 hydrate were investigated. From these results, we discuss the variations in the Raman shift of the C–H symmetric stretching vibrations and the geometric dependence of the intermolecular interaction energies within the water cages of sI and sII hydrates with varying temperature.

Experimental section
Sample preparation
To synthesise gas hydrate samples, research-grade CH4, C2H4 and C2H6 (purities of 99.99, 99.9 and 99.99%, respectively; Takachiho Chemical Industry, Japan) and Kr (99.9% purity; Air Liquide Japan Ltd.) were used as the guest gases. These gas hydrate samples were formed from fine ice powder at 273.2 K and high-pressure conditions. For C2H4 hydrate and C2H6 hydrate, 1.2 MPa of C2H4 and C2H6 gas pressure was applied. The Kr + C2H4 hydrate was prepared from a gas mixture containing 9 mol% C2H4 and 91 mol% Kr at 1.6 MPa. sI CH4 + C2H6 hydrates were prepared from a gas mixture containing 70 mol% C2H4 and 30 mol% CH4 at 2.0 MPa.

Fine ice powder (1.0 g) was prepared for preparing high-purity hydrate sample and was loaded into a high-pressure cell (internal volume: ~30 mL), which was precooled in a freezer at 253 K. After loading at 253 K, the high-pressure cell was cooled to below 90 K, and pure CH4, C2H4, C2H6 or Kr gas was slowly introduced into the cell. The high-pressure cell was then transferred into a water bath kept at 273.2 K for hydrate formation. As the hydrates formed, the pressure decreased. When the pressure stabilised more than 12 hours later, the cell was cooled below 90 K, and the sample was retrieved from the cell.

Raman spectroscopy
A Raman spectrometer (Jasco Corporation, RMP-210) equipped with a 532 nm excitation source (100 mW), a single holographic diffraction grating (1800 grooves per mm) and a CCD detector were used. The spectrum pixel resolution, which is the sampling interval of the spectrum, was 0.9 cm−1 per pixel in the range of 2500–3100 cm−1. The wave number was calibrated using atomic emission lines from a neon lamp. The Raman spectra for the C–H symmetric stretch region (2500–3100 cm−1) of the encapsulated hydrocarbon molecules in the gas hydrate water cages were obtained at ambient pressure within a temperature range of 93–183 K at 15 K intervals. The measured temperature was confirmed by using a thermocouple (Type T, 01-T, Ninomiya Electric Wire Co. Ltd., Japan). The calibrated thermocouple had an accuracy within 0.1 K. The peak positions could be rigorously analysed by fitting the data to a mixed Gaussian–Lorentzian function, which allowed us to obtain a high positional accuracy.

We measured the C–H symmetric stretch of the sI C2H4 hydrate 18 times at 123 K at the same sample position. From these measurements, the standard deviation of the peak positions was found to be approximately 0.1 cm−1.

Powder X-ray diffraction (PXRD)
Temperature-dependent PXRD measurements were performed using an X-ray diffractometer (40 kV, 40 mA; Rigaku model Ultima-III) with parallel beam optics and a low-temperature chamber. Finely powdered hydrate samples were mounted on a PXRD sample holder made of 2.5 mm thick Cu at a temperature of around 100 K. Each measurement was performed in a θ/2θ step scan mode with a step width of 0.02° using Cu Kα radiation (λ = 1.541 Å).

Gas chromatography
Molecular compositions of CH4 and C2H6 in gas hydrate samples were determined using a gas chromatograph (Shimadzu Corporation, GC-2014) equipped with a packed column (Shimadzu Corporation, Sunpak-S), along with a thermal conductivity detector and flame ionisation detector.

Results and discussion
Fig. 1 depicts the Raman spectra of the C–H stretching region of sI C2H4 hydrate, sII Kr + C2H4 hydrate, sI C2H6 hydrate, sI CH4 + C2H4 hydrate and sII CH4 + C2H6 hydrate at a temperature range of 93–183 K. We confirmed the crystal structures of sI C2H4 hydrate and sII Kr + C2H4 hydrate and their lattice constants by the PXRD method (Fig. S1 and S2†).

The Raman spectra of the C–H symmetric stretch of encapsulated CH4 in sI CH4 + C2H6 hydrate and sII CH4 + C2H6 hydrate were observed at 2912.7 cm−1 (in sI 512 cages) and 2901.6 cm−1 (in sI 51262 cages); 2913.5 cm−1 (in sII 512 cages) and 2902.2 cm−1 (in sII 51262 cages) at 93 K. Here, each pC2H6...
(bulk guest composition of C$_2$H$_6$) of sI and sII CH$_4$ + C$_2$H$_6$ hydrates were 79.7% and 35.3%, respectively.

For sI C$_2$H$_4$ hydrate, the Raman spectrum of the C–H symmetric stretch of encapsulated C$_2$H$_4$ in sI 51262 cages were observed at 3011.3 cm$^{-1}$ at 93 K. This result was consistent with an earlier study. The Raman shift of the C–H symmetric stretch of encapsulated C$_2$H$_4$ in larger sII 51264 cages (3007.0 cm$^{-1}$ at 93 K) was red-shifted relative to that of the encapsulated C$_2$H$_4$ in smaller sI 51262 cages. Furthermore, the Raman shift of the C=C symmetric stretch of the encapsulated C$_2$H$_4$ in sII 51264 cages of sII Kr + C$_2$H$_4$ hydrate (1340.7 ± 0.4 cm$^{-1}$ at 93 K) was red-shifted relative to that of sI 51262 cages of sI C$_2$H$_4$ hydrate (1342.6 ± 0.4 cm$^{-1}$ at 93 K) (Fig. 2). These results agree with the LCTC model. This is also the first report of the Raman spectrum of C$_2$H$_4$ encapsulated in sII hydrate.

In the case of sI C$_2$H$_6$ hydrate, sI CH$_4$ + C$_2$H$_6$ hydrate and sII CH$_4$ + C$_2$H$_6$ hydrate, the Raman spectrum of the C–H symmetric stretch of encapsulated C$_2$H$_6$ in the water cages of gas hydrate were observed at 2942.1 cm$^{-1}$, 2941.9 cm$^{-1}$ and 2940.1 cm$^{-1}$ at 93 K, respectively. The attribution of this vibrational mode was
based on the previous literature. Furthermore, structures of sI C$_2$H$_6$ hydrate, sI CH$_4$ + C$_2$H$_6$ hydrate and sII CH$_4$ + C$_2$H$_6$ hydrate samples were confirmed from the Raman spectra of the C–C symmetric stretch of encapsulated C$_2$H$_6$ in each gas hydrate (1002.2 ± 0.4 cm$^{-1}$, 1001.9 ± 0.4 cm$^{-1}$ and 992.4 ± 0.4 cm$^{-1}$, respectively, at 93 K; see Fig. 2).11

Here, the notation $\Delta v/\Delta T$ refers to the temperature-dependent slope of the Raman shifts of the C–H symmetric stretching vibrations in guest hydrocarbon molecules encapsulated in the gas hydrate water cages. Fig. 3 shows $\Delta v/\Delta T$ of the encapsulated CH$_4$, C$_2$H$_4$ and C$_2$H$_6$ in water cages of various gas hydrates in a temperature range of 93–183 K. In the case of CH$_4$, $\Delta v/\Delta T$ of encapsulated CH$_4$ in sI 51262 cages (sI CH$_4$ + C$_2$H$_6$ hydrate) were greater than that of encapsulated CH$_4$ in sII 512 and 51264 cages. We observed that $\Delta v/\Delta T$ of CH$_4$ in the larger sI 51262 cages was greater than that of CH$_4$ in 512 cages of sI hydrates.24 Our measurements for the encapsulated CH$_4$ in the sI CH$_4$ + C$_2$H$_6$ hydrate agree with this trend. In the case of C$_2$H$_4$, $\Delta v/\Delta T$ of C$_2$H$_4$ in sI 51262 cages (sI C$_2$H$_4$ hydrate) was greater than that of C$_2$H$_4$ in sII 51264 cages (sII Kr + C$_2$H$_4$ hydrate). Furthermore, in the case of C$_2$H$_6$, $\Delta v/\Delta T$ of C$_2$H$_6$ in sI 51262 cages (sI C$_2$H$_6$ hydrate and sI CH$_4$ + C$_2$H$_6$ hydrate) was greater than that of C$_2$H$_6$ in sII 51264 cages (sII CH$_4$ + C$_2$H$_6$ hydrate). For CH$_4$, C$_2$H$_4$ and C$_2$H$_6$ as guest molecules, $\Delta v/\Delta T$ for molecules in the sI 51262 cages were greater than that for molecules in sII 51264 cages. Moreover, we found that $\Delta v/\Delta T$ of CH$_4$ in sII 512 cages was almost the same as that of CH$_4$ in sII 51264 cages. Specific values of $\Delta v/\Delta T$ from Fig. 3 are summarised in Table 1.

The Raman spectra of sI and sII CH$_4$ + C$_2$H$_6$ hydrates having different cage occupancies of large cages were obtained for verification of the effect of cage occupancies of large cages on $\Delta v/\Delta T$. The cage occupancies of large cages of sI and sII CH$_4$ + C$_2$H$_6$ hydrates were estimated from γC$_2$H$_6$ (see Table S1‡). The Raman spectra of sI and sII CH$_4$ + C$_2$H$_6$ hydrates which have different guest composition are shown in Fig. 1 and S3,‡ and these $\Delta v/\Delta T$ are compared in Fig. S4.‡ We observed the consistent trends of $\Delta v/\Delta T$ of encapsulated CH$_4$ and C$_2$H$_6$ in sI and sII CH$_4$ + C$_2$H$_6$ hydrates regardless of different cage occupancies of large cages: $\Delta v/\Delta T$ for guest molecules in the 51262 cages were greater than that for molecules in sII 512 and 51264 cages (see Fig. S4 and Table S1‡). Although different distortion and thermal expansion in sII hydrates dependent on the guest
species encapsulated in $5^{12}\cdot6^4$ cages were reported,31 it turned out to that the effect of cage occupancies of large cages have very little impact on $\Delta v/\Delta T$.

We compared the geometrical properties of 512, $5^{12}\cdot6^2$ and $5^{12}\cdot6^4$ cages. sI 5^{12}, sII 5^{12} and $5^{12}\cdot6^4$ cages are known to be almost spherical, although they are slightly distorted, depending on the type of guest molecule. sI $5^{12}\cdot6^2$ cages, however, are known to be spheroidal and extend along the equatorial plane (Fig. 4). $\Delta v/\Delta T$ values of CH$_4$ in both sII 5^{12} and $5^{12}\cdot6^4$ cages were equivalent, although these two host water cages were the smallest and largest cages in this study, respectively (see Table 1). $\Delta v/\Delta T$ of guests in the sI $5^{12}\cdot6^2$ cages was greater compared with the 5^{12} cages and sII $5^{12}\cdot6^4$ cages. The earlier study indicated that distributions and reorientations of guest molecules were affected by the distortion of the shapes of the host cages. For instance, C$_2$H$_6$ and carbon dioxide (CO$_2$) molecules within the sI $5^{12}\cdot6^2$ cage lie near the equatorial plane of the cages, with the long axis of the guest molecules lying in the plane.9,10 By contrast, the spherically extended distribution of C$_3$H$_8$ and C$_4$H$_{10}$ molecules in the sII $5^{12}\cdot6^4$ cages obtained by the X-ray diffraction structure analysis was apparent.26,27 In addition, in the case of sI CD$_4$ hydrate, the CD$_4$ in sI 5^{12} cages showed a spherical density distribution at the centre of the 5^{12} cage at temperatures of 7.7–185 K, while CD$_4$ in sI $5^{12}\cdot6^2$ cages showed only a longitudinal density distribution between the two hexagonal faces of the sI $5^{12}\cdot6^2$ cages.25 These differences in the distributions of guest molecules encapsulated in the different host water cages of gas hydrates may cause thermal vibrations in the guest molecules and variations in guest–host and guest–guest interactions due to varying temperatures.

In our previous study, we considered the effect of the size of the host cages on $\Delta v/\Delta T$ and found that the slope increased with

Table 1 Raman shifts of C–H symmetric stretch of CH$_4$ in sI 5^{12}, $5^{12}\cdot6^2$, sII 5^{12} and $5^{12}\cdot6^4$ cages; C$_2$H$_4$ and C$_2$H$_6$ in sI $5^{12}\cdot6^2$ and sII $5^{12}\cdot6^4$ cages; and their variations with temperature changes. The errors are the standard deviations of nine measurements at different sample positions.

Guest molecule	Cage	Structure	Hydrate	Raman shift at 93 K [cm$^{-1}$]	Slope of Raman shift between 93 K and 183 K (Δν/ΔT) [10$^{-2}$ cm$^{-1}$/K]
CH$_4$	5^{12}	sI	CH$_4$ + C$_2$H$_6$ (γC$_2$H$_6$: 79.7%)	2912.7 ± 0.1	+0.9 ± 0.1
	$5^{12}\cdot6^2$	sI	CH$_4$ + C$_2$H$_6$ (γC$_2$H$_6$: 79.7%)	2901.6 ± 0.1	+2.0 ± 0.3
	5^{12}	sII	CH$_4$ + C$_2$H$_6$ (γC$_2$H$_6$: 35.3%)	2913.5 ± 0.1	+1.3 ± 0.2
	$5^{12}\cdot6^4$	sII	CH$_4$ + C$_2$H$_6$ (γC$_2$H$_6$: 35.3%)	2902.2 ± 0.1	+1.2 ± 0.1
C$_2$H$_4$	$5^{12}\cdot6^2$	sI	C$_2$H$_4$	3011.3 ± 0.1	+2.4 ± 0.1
C$_2$H$_6$	$5^{12}\cdot6^4$	sII	Kr + C$_2$H$_4$	3007.0 ± 0.1	+1.0 ± 0.2
	$5^{12}\cdot6^2$	sI	C$_2$H$_6$	2942.1 ± 0.2	+3.1 ± 0.1
	5^{12}	sII	C$_2$H$_6$ (γC$_2$H$_6$: 79.7%)	2941.9 ± 0.1	+3.2 ± 0.1
	$5^{12}\cdot6^4$	sII	C$_2$H$_6$ (γC$_2$H$_6$: 35.3%)	2940.1 ± 0.1	+1.6 ± 0.1

Fig. 4 Geometry of water cages of sI and sII hydrates: (a) 5^{12} cage, (b) $5^{12}\cdot6^2$ cage, (c) $5^{12}\cdot6^4$ cage, (d) 5^{12} cage vs. $5^{12}\cdot6^2$ cage and (e) 5^{12} cage vs. $5^{12}\cdot6^4$ cage.
increasing host water cage volume. In this study, we revealed that $\Delta v/\Delta T$ depends on the geometry as well as the volume of host water cages. For a discussion about the effect of the conformation of guest molecules on $\Delta v/\Delta T$, more studies of various combinations of guest molecules and host water cages are required. These experimental trends of $\Delta v/\Delta T$ for the various water cages of gas hydrates may advance our understanding of the fundamental properties of sl and sI1/I2 hydrocarbon gas hydrates.

Conclusions

In this work, we investigated the slopes of C–H symmetric stretching vibrational frequencies under changing temperatures ($\Delta v/\Delta T$) for various hydrocarbon molecules in $^{5}_{12}I$, $^{5}_{12}I$ and 51264 cages of sl and sI1 hydrates. $\Delta v/\Delta T$ values of CH4, C2H6 and C3H8 molecules encapsulated in sl1 $^{5}_{12}I$ cages were smaller than those for molecules in sl $^{5}_{12}I$ cages. In our previous study, we suggested that $\Delta v/\Delta T$ is greater with increasing volume of host water cages. In this study, we revealed that $\Delta v/\Delta T$ is dependent on the geometry, as well as the volume of host water cages and guest molecules.

In the future, we intend to investigate the effects of the conformation of guest molecules on $\Delta v/\Delta T$. For a discussion about the effect of the conformation of guest molecules on $\Delta v/\Delta T$, more studies of various combinations of guest molecules and host water cages are required.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This study was supported by the Grant-in-Aid for Scientific Research (B) 26303021 of the Japan Society for the Promotion of Science (JSPS).

References

1 E. D. Sloan, Nature, 2003, 426, 353–359.
2 Y. F. Makogon, S. A. Holditch and T. Y. Makogon, J. Pet. Sci. Eng., 2007, 56, 14–31.
3 R. Boswell and T. S. Collett, Energy Environ. Sci., 2011, 4, 1206–1215.
4 H. R. Müller and M. V. Stackelberg, Naturwissenschaften, 1952, 39, 20.
5 M. V. Stackelberg and H. R. Müller, Naturwissenschaften, 1951, 38, 456.
6 J. A. Ripmeester, J. S. Tse, C. I. Ratcliffe and B. M. Powell, Nature, 1987, 325, 135–136.
7 T. Sugahara, K. Morita and K. Ohgaki, Chem. Eng. Sci., 2000, 55, 6015–6020.
8 K. Morita, S. Nakano and K. Ohgaki, Fluid Phase Equilib., 2000, 169, 167–175.
9 K. A. Udachin, C. I. Ratcliffe and J. A. Ripmeester, J. Supramol. Chem., 2002, 2, 405–408.
10 S. Takeya, K. A. Udachin, I. L. Moudrakovski, R. Susilo and J. A. Ripmeester, J. Am. Chem. Soc., 2010, 132, 524–531.
11 S. Subramanian, R. A. Kini, S. F. Dec and E. D. Sloan, Chem. Eng. Sci., 2000, 55, 1981–1999.
12 M. Kida, O. Khlystov, T. Zemskaya, N. Takahashi, H. Minami, H. Sakagami, A. Krylov, A. Hachikubo, S. Yamashita, H. Shoji, J. Poort and L. Naudts, Geophys. Res. Lett., 2006, 33, L24603.
13 C. Bourry, B. Chazallon, J. L. Charlou, J. P. Donval, L. Ruffine, P. Henry, L. Géli, M. N. Çagatay, S. İnan and M. Moreau, Chem. Geol., 2009, 264, 197–206.
14 A. K. Sum, R. C. Burruss and E. D. Sloan, J. Phys. Chem. B, 1997, 101, 7371–7377.
15 S. Subramanian and E. D. Sloan, J. Phys. Chem. B, 2002, 106, 4348–4355.
16 S. Subramanian and E. D. Sloan, Ann. N. Y. Acad. Sci., 2000, 912, 583–592.
17 M. M. Murshed and W. F. Kuhs, J. Phys. Chem. B, 2009, 113, 5172–5180.
18 G. C. Pimentel and S. W. Charles, Pure Appl. Chem., 1963, 7, 111–124.
19 Y. Liu and L. Ojamäe, J. Phys. Chem. C, 2015, 119, 17084–17091.
20 K. C. Hester, Z. Huo, A. L. Ballard, C. A. Koh, K. T. Miller and E. D. Sloan, J. Phys. Chem. B, 2007, 111, 8830–8835.
21 S. Takeya and J. A. Ripmeester, Angew. Chem., Int. Ed., 2008, 47, 1276–1279.
22 Y. Jin, M. Kida and J. Nagao, J. Phys. Chem. C, 2019, 123, 17170–17175.
23 J. Min, Y. H. Ahn, S. Baek, K. Shin, M. Cha and J. W. Lee, J. Phys. Chem. C, 2019, 123, 20705–20714.
24 G. Fuseya, S. Takeya and A. Hachikubo, RSC Adv., 2020, 10, 17473–17478.
25 A. Hoshikawa, N. Igawa, H. Yamauchi and Y. Ishii, J. Chem. Phys., 2006, 125, 034505.
26 K. A. Udachin, H. Lu, G. D. Enright, C. I. Ratcliffe, J. A. Ripmeester, N. R. Chapman, M. Riedel and G. Spence, Angew. Chem., Int. Ed., 2007, 46, 8220–8222.
27 S. Takeya, H. Fujihisa, A. Hachikubo, Y. Sakagami and Y. Gotoh, Chem. – Eur. J., 2014, 20, 17207–17213.
28 G. Magnotti, U. KC, P. L. Varghese and R. S. Barlow, J. Quant. Spectrosc. Radiat. Transfer, 2015, 163, 80–101.
29 H. Ohno, M. Kida, T. Sakurai, Y. Iizuka, T. Hondo, H. Narita and J. Nagao, ChemPhysChem, 2010, 11, 3070–3073.
30 M. Kida, H. Sakagami, N. Takahashi, A. Hachikubo, H. Shoji, Y. Kamata, T. Ebinuma, H. Narita and S. Takeya, J. Ipn. Pet. Inst., 2007, 50, 132–138.
31 S. Takeya, S. Alavi, S. Hashimoto, K. Yasuda, Y. Yamauchi and R. Ohmura, J. Phys. Chem. C, 2018, 122, 18134–18141.