ABSTRACTS AND REFERENCES

METALLURGICAL TECHNOLOGY

DOI: 10.15587/2706-5448.2022.263428

REVEALING THE SIGNIFICANCE OF THE INFLUENCE OF VANADIUM ON THE MECHANICAL PROPERTIES OF CAST IRON FOR CASTINGS FOR MACHINE-BUILDING PURPOSE

pages 6–10

Lilia Frolova, Postgraduate Student, Department of Foundry, National Technical University «Kharkiv Polytechnic Institute», Kharkiv, Ukraine; Researcher, Scientific department, PC TECHNOLOGY CENTER, Kharkiv, Ukraine, ORCID: https://orcid.org/0000-0001-7090-3647, e-mail: frolova@entc.com.ua

Andriy Barsuk, Head of IT department, PC TECHNOLOGY CENTER, Kharkiv, Ukraine, ORCID: https://orcid.org/0000-0001-7978-4407

Denys Nikolaiev, Systems analyst, Analytical department, PC TECHNOLOGY CENTER, Kharkiv, Ukraine, ORCID: https://orcid.org/0000-0002-8324-1760

The object of study in this work is cast iron with lamellar graphite, modified with two types of modifiers – FeSi75 and FeSi40V7. In this work, the influence of vanadium on the mechanical properties of cast iron used for castings for engineering purposes was determined.

The existing problem lies in the fact that ignorance of the influence of the alloying element on the mechanical properties of the alloy does not allow determining its consumption rates during the melting process. This can lead to unnecessary costs for materials for melting and casting, and not be justified in terms of the expected improvement in properties.

To determine the effect of vanadium on properties, three indicators of the quality of cast iron are considered: tensile strength, stiffness, and a generalized quality index for mechanical properties. A decision is proposed on the procedure for checking the significance of the influence of vanadium within the considered range of variation $V=0.04–0.078\%$ on these indicators.

It has been established that the introduction of vanadium into cast iron as part of the FeSi40V7 modifier leads to a decrease in the tensile strength by 4%, but an increase in rigidity by 2%. A significant influence of vanadium with a probability of 95% was also established with respect to the generalized quality indicator for mechanical properties – the introduction of vanadium contributes to a drop in this indicator by about 5%.

As a result, it was concluded that the use of vanadium in the composition of FeSi40V7 within the final content in cast iron at the level of 0.04–0.078% can be expedient only if it is necessary to increase the hardness of cast iron due to the promotion of carbide formation during alloy crystallization.

The presented study will be useful for machine-building enterprises that have foundries in their structure, where cast iron is smelted for the manufacture of castings.

Keywords: cast iron for machine-building castings, modifier, alloying, vanadium, mechanical properties.

References
1. Roberts, D. G., Hodge, E. M., Harris, D. J., Stubington, J. F. (2010). Kinetics of Char Gasification with CO under Regime II Conditions: Effects of Temperature, Reactant, and Total Pressure. Energy & Fuels, 24 (10), 5300–5308. doi: http://doi.org/10.1021/ef100980h
2. Kim, S. K., Park, C. Y., Park, J. Y., Lee, S., Rhu, J. H., Han, M. H. et. al. (2014). The kinetic study of catalytic low-rank coal gasification under CO2 atmosphere using MVRM. Journal of Industrial and Engineering Chemistry, 20 (1), 356–361. doi: http://doi.org/10.1016/j.jiec.2013.03.027
3. Demin, D. A. (1998). Change in cast iron’s chemical composition in inoculation with a Si-V-Mn master alloy. Liteynoe Proizvodstvo, 6, 35.
4. Fourlakidis, V., Diószegi, A. (2014). A generic model to predict the ultimate tensile strength in pearlitic lamellar graphite iron. Materials Science and Engineering: A, 618, 161–167. doi: http://doi.org/10.1016/j.msea.2014.08.061
5. Endö, M., Yanase, K. (2014). Effects of small defects, matrix structures and loading conditions on the fatigue strength of ductile cast irons. Theoretical and Applied Fracture Mechanics, 69, 34–43. doi: http://doi.org/10.1016/j.tafmec.2013.12.005
6. Demin, D. A., Polikh, V. F., Ponomarenko, O. I. (1995). Optimization of the method of adjustment of chemical composition of flake graphite iron. Liteynoe Proizvodstvo, 7-8, 42–43.
7. Demin, D. (2018). Investigation of structural cast iron hardness for castings of automobile industry on the basis of construction and analysis of regression equation in the factor space «carbon (C) – carbon equivalent (Ceq)». Technology Audit and Production Reserves, 3 (1 (41)), 29–36. doi: http://doi.org/10.15587/2312-8372.2018.109097
8. Demin, D. (2017). Strength analysis of lamellar graphite cast iron in the «carbon (C) – carbon equivalent (Ceq)» factor space in the range of C=(3.425–3.563) % and Ceq=(4.214–4.372) %. Technology Audit and Production Reserves, 1 (1 (33)), 24–32. doi: http://doi.org/10.15587/2312-8572.2017.93178
9. Demin, D. (2017). Synthesis of nomogram for the calculation of suboptimal chemical composition of the structural cast iron on the basis of the parametric description of the ultimate strength response surface. ScienceRise, 8 (37), 36–45. doi: http://doi.org/10.15587/2313-8416.2017.109175
10. Popov, S., Frolova, L., Rebrov, O., Naumenko, Y., Postupna, O., Zubkov, V., Shlevets, P. (2022). Increasing the mechanical properties of structural cast iron for machine-building parts by combined Mn–Al alloying. EUREKA: Physics and Engineering, 1, 118–130. doi: http://doi.org/10.21303/2461-4262.2022.002243
11. Frolova, L., Shevchenko, R., Shysh, A., Khoshohailo, V., Antonenko, Y. (2021). Selection of optimal Al–Si combinations in cast iron for castings for engineering purposes. EUREKA: Physics and Engineering, 2, 99–107. doi: http://doi.org/10.21303/2461-4262.2021.001694
12. Kharchenko, S., Barsuk, A., Karimova, N., Nanka, A., Pelypenko, Y., Shevtsov, V., Morozov, I., Morozov, V. (2021). Mathematical model of the mechanical properties of Ti-alloyed hypoeutectic cast iron for mixer blades. EUREKA: Physics and Engineering, 3, 99–110. doi: http://doi.org/10.21303/2461-4262.2021.001830

DOI: 10.15587/2706-5448.2022.263408

INFLUENCE OF CAST IRON VACUUMING ON THE LEVEL OF MECHANICAL CHARACTERISTICS OF THE MATERIAL OF THE WORKING LAYER OF DOUBLE-LAYER CHROMIUM-NICKEL ROLLS

pages 11–14

Anatolii Actukhov, Doctor of Technical Sciences, Professor, Department of Service Engineering and Materials Technology in Mechanical Engineering named after A. I. Sidashenko, State Biotechnological University, Kharkiv, Ukraine, e-mail: a.a.actukhov@gmail.com, ORCID: https://orcid.org/0000-0002-7613-1803

Oleksandr Martynenko, PhD, Associate Professor, Department of Service Engineering and Materials Technology in Mechanical Engineering named after A. I. Sidashenko, State Biotechnological University, Kharkiv, Ukraine, ORCID: https://orcid.org/0000-0002-3047-8254

TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 4(1(66)), 2022

55
The object of research is the problem of torsion for a radially inhomogeneous transversally isotropic sphere and the study based on this three-dimensional stress-strain state.

To establish the scope of applicability of existing applied theories and to create more refined applied theories of inhomogeneous shells, it is important to study the stress-strain state of inhomogeneous bodies based on three-dimensional equations of elasticity theory.

Keywords: chromium-nickel cast iron, vacuuming, working layer, physical and mechanical properties, crack resistance, thermal resistance, rolling shafts.

References

1. Skoblo, T. S., Sidashenko, A. I., Aleksandrova, N. M., Belkin, E. L., Vlasovte, V. M., Klochko, O. Iu., Martynenko, A. D. (2013). *Proizvodstvo i primenenie prokatnykh valkov*. Kharkiv: TcD No. 1, 572.

2. Isledovaniia vlianiia vakuumirovaniia chuguna na ego struktur i svoistva. Available at: http://metal-archive.ru/gazy-v-litom-metalle/302-isledovanyi-vlyaniya-vakuumirovaniya-chuguna-na-ego-struktur-i-svoistva.html

3. Diniukin, D. A., Kislenko, V. V. (2008). *Proizvodstvo stali*. Vol. 2. Vypredanaya obrabotka zhul'chego chuguna. Moscow: Teplotekhnika, 400.

4. Samarin, A. M. (1962). *Vladametallurgiya*. Moscow: Gosudarstvenno naucho-tekhnicheskoe izdatelstvo po chernoi i tevetnoi metallurgii, 512.

5. Migai, V. P. (1963). O vazoomirovanii serogo chuguna. *Literno proizvodstvo*, 1, 7–9.

6. Kuzmin, I. V. (1962). Vlianie vakuuma i gazov na khimicheskii sostav i strukturnu vysokougodroistych splavov. Moscow: Metallurgiya, 336.

7. Skoblo, T. S., Vorontcov, N. M., Radiuk, S. I. (1994). *Prokatnye valki iz voskougodirostyh splavov*. Moscow: Metallurgiya, 62.

8. Skoblo, T. S., Avtukhov, A. K., Pasko, N. S. (2013). Isledovaniia vliiai vakaumirovaniiia na kachestvo prokatnykh valkov. *Promyshlennost i fokuse*, 7, 54–58.

9. Magau, M., Rudu, M., Šerjaa, S., Zgripgec, L. (2018). Research regarding the vacuuming of liquid steel on steel degassing. IOP Conference Series: Materials Science and Engineering, 294, 012005. doi: http://doi.org/10.1088/1757-899x/294/1/012005

10. Steneholm, K. (2016). The effect of ladle treatment on steel cleanliness in tool steels: Swedish perspective. Stockholm, 52.

11. Žulhan, Z., Schrade, C. (2014). *Vacuum Treatment of Molten Steel: RH (Rathstahl Heraeus) versus VTD (Vakuum Tank Degasser)*. SEAISI Conference and Exhibition. Kuala Lumpur, 7.

12. Maslov, A. A. (1978). Ustanovka dla ispytaniy metallov v usloviiakh teplomest. Zavodskia laborator, 5, 622–623.

13. GOST 25.506. (1985). Raschet i ispytaniy na prochnost. Metody mekhanicheskikh ispytaniy materialov: Opredelenie khudravostocheskich特性 properties of the radius of the sphere. It is assumed that the lateral surface of the sphere is free from stresses, and arbitrary stresses are given on the cone sections, leaving the sphere in equilibrium.

The formulated boundary value problem is reduced to a spectral problem. After fulfilling the homogeneous boundary conditions specified on the side surfaces of the sphere, a characteristic equation is obtained with respect to the spectral parameter. The corresponding solutions are constructed depending on the roots of the characteristic equation. It is shown that the solution corresponding to the first group of roots is penetrating, and the stress state determined by this solution is equivalent to the torques of the stresses acting in an arbitrary section. The solutions corresponding to the countable set of the second group of roots have the character of a boundary layer localized in conic slices. In the case of significant anisotropy,
some boundary layer solutions decay weakly and can cover the entire region occupied by the sphere.

On the basis of the performed three-dimensional analysis, new classes of solutions (solutions having the character of a boundary layer) are obtained, which are absent in applied theories. In contrast to an isotropic radially inhomogeneous sphere, for a transversely isotropic radially inhomogeneous sphere, a weakly damped boundary layer solution appears, which can penetrate deep far from the conical sections and change the picture of the stress-strain state.

Keywords: torsion problem, elastic moduli, Legendre equations, penetrating solutions, boundary layer solutions, torque.

References

1. Birman, V. Byrd, L. W. (2007). Modeling and analysis of functionally graded materials and structures. Applied Mechanics Reviews, 60 (3), 195–215. doi: http://doi.org/10.1115/1.2777164

2. Tokovyy, Y., Ma, C. C. (2019). Elastic analysis of inhomogeneous solids: history and development in brief. Journal of Mechanics, 35 (3), 613–626. doi: http://doi.org/10.1017/jmch.2018.57

3. Love, A. E. (1927). A treatise on the mathematical theory of elasticity. Cambridge: Cambridge University Press.

4. Galerkin, B. G. (1942). Ravnovesie uprugoi sfericheskoi obolochki. Prikladnaia matematika i mekhanika, 6 (6), 487–496.

5. Luie, A. I. (1942). Ravnovesie uprugoi simmetrichnoi nagruzhennoi sfericheskoi obolochki. Prikladnaia matematika i mekhanika, 7 (6), 393–404.

6. Vilenskiaia, T. V., Vorovich, I. I. (1966). Asimptoticheskoe povedenie reshenia zadachi teorii uprugosti dlia sfericheskoi obolochki maloi tolschchiny. Prikladnaia matematika i mekhanika, 30 (2), 278–295.

7. Mekhtiyev, M. F. (2019). Asymptotic analysis of spatial problems in elasticity. Advanced Structured Materials. Springer. doi: http://doi.org/10.1007/978-0-306-21081-9

8. Boev, N. V., Ustinov, Iu. A. (1985). Prostranstvennoe napriazhennoto deformatsirovannoe sostojanie trekhholznoi sfericheskoi obolochki. Izv. AN SSSR. Mekhanika tverdogo tela, 3, 136–143.

9. Akhmedov, N. K., Ustinov, Y. A. (2009). Analysis of the structure of the boundary layer in the problem of the torsion of a laminated spherical shell. Journal of Applied Mathematics and Mechanics, 73 (3), 296–303. doi: http://doi.org/10.1016/j.jappmathmech.2009.07.010

10. Oostao, Y., Ishihara, M. (2011). Transient Thermal Stress Problem of a Functionally Graded Magneto-Electro-Thermoelectric Hollow Sphere. Materials, 4 (12), 2136–2150. doi: http://doi.org/10.3390/ma4122136

11. Poulitangari, G., Jabari, M., Eslami, M. R. (2008). Functionally graded hollow spheres under non-axisymmetric thermo-mechanical loads. International Journal of Pressure Vessels and Piping, 85 (5), 295–305. doi: http://doi.org/10.1016/j.ijpvp.2008.01.002

12. Eslami, M. R., Babaei, M. H., Poulitangari, R. (2005). Thermal and mechanical stresses in a functionally graded thick sphere. International Journal of Pressure Vessels and Piping, 82 (7), 522–527. doi: http://doi.org/10.1016/j.ijpvp.2005.01.002

13. Grigorenko, A. Y., Yaremchenko, N. P., Yaremchenko, S. N. (2018). Analysis of the Axisymmetric Stress–Strain State of a Continuously Inhomogeneous Hollow Sphere. International Applied Mechanics, 54 (5), 577–583. doi: http://doi.org/10.1007/s10812-018-0911-1

14. Akhmedov, N. K., Sofiyev, A. H. (2019). Asymptotic analysis of three-dimensional problem of elasticity theory for radially inhomogeneous transversally-isotropc thin hollow spheres. Thin-Walled Structures, 139, 232–241. doi: http://doi.org/10.1016/j.tws.2019.03.022

15. Akhmedov, N. K., Gasanova, N. S. (2020). Asymptotic behavior of the solution of an axisymmetric problem of elasticity theory for a sphere with variable elasticity modules. Mathematics and Mechanics of Solids, 25 (12), 2231–2251. doi: http://doi.org/10.1177/1081286520932363

16. Akhmedov, N. K., Yusubova, S. M. (2022). Investigation of elasticity problem for the radially inhomogeneous transversely isotropic sphere. Mathematical methods in the applied sciences. doi: http://doi.org/10.1002/mma.9325

17. Lurie, A. I. (2005). Theory of Elasticity. Berlin: Springer.

ELECTRICAL ENGINEERING AND INDUSTRIAL ELECTRONICS

The object of research is the processes of the emergence and glow of a discharge around biological structures in a pulsed electric field. Such processes have found use in the method of gas discharge visualization. In medical diagnostics, the general state of human health is assessed by the characteristics of gas-discharge images of fingers. One of the most problematic areas of the correctness of medical diagnostics is the dependence of the visual components of the image on the electrical characteristics of the discharge and the physical and chemical characteristics of the surrounding environment.

In the course of the study, methods of modeling the electric discharge current circuit and electrical properties of biostructures were used.

The proposed solution allows taking into account: the amplitude of the impulse voltage of the discharge, the frequency of the impulses, the duration and intensity of the impulses, the polarity, which act as additional diagnostic parameters of the gas-discharge visualization process. Physical processes are considered, and a model of a chain of gas discharge around a biological object in a pulsed electric field is proposed. It is shown that the occurrence of a discharge and the characteristics of the glow depend on the amplitude, duration, frequency, and polarity of the pulse voltage. These additional parameters determine the correctness of further visual diagnostics. Their quantitative measurement and the possibility of objective comparison should be attributed to the advantages of registering the proposed parameters of gas discharge visualization. The specified properties of these parameters provide an additional opportunity to digitally describe the condition of the object under study, and subsequently to automate...
diagnostics. The structural diagrams of the device for conducting research using the method of gas discharge visualization, the high-voltage impulse voltage generator unit for the hardware consideration of additional gas discharge parameters and their connection with medical and biological indicators have been developed.

The use of the method and means of gas discharge visualization to assess the functional state of the flight crew in the pre- and post-flight period requires the development of special equipment. The proposed technical solutions require experimental verification. Comparative studies of diagnostic conclusions by the method of gas-discharge visualization with traditional medical diagnostics are necessary.

Keywords: biological object, gas discharge, visualization, electric discharge circuit model, structural diagram, gas-discharge sensor.

References

1. Korotkov, K. G. (2001). *Osnovy GRV bioelektrokardiografii*. Saint Petersburg: SPbGITMO. 354.
2. Korotkov, K. G. (2007). *Printsevy analiz v GRV Bioelektrografii*. Saint Petersburg: Renome. 286.
3. Korotkov, K. G., Matravers, P., Orlov, D. V., Williams, B. O. (2010). Application of Electrophotonic Capture (EPC) Analysis Based on Gas Discharge Visualization (GDV) Technique in Medicine: A Systematic Review. *The Journal of Alternative and Complementary Medicine, 16* (1), 13–25. doi: http://doi.org/10.1089/acm.2008.0285
4. Korotkov, K. G. (1982). *Issledovanie fizicheskih protsessov, protekaiahshhikh pri gazorozriadnoi vizualizatsii razlichnyh obektov*. Leningrad, 227.
5. Bsta, S., Jasti, N., Bhargav, H., Sinha, S., Gupta, S., Ramarao, P., Chaturvedi, S. K., Gangadhar, B. N. (2022). Applications of Gas Discharge Visualization Imaging in Health and Disease: A Systematic Review: Alternative Therapies in Health and Medicine.
6. Gruzdeva, D., Dikova, T. (2018). Gas discharge visualization — historical developments, research dynamics and innovative applications. *Scripta Scientifica Salutis Publicae, 4*, 21–33. doi: http://doi.org/10.14748/sssp.v4i0.5448
7. Kolomiets, R. O. (2005). Zakallny prynypsy doslidzheniam biologicnih ob`iektiv za dopomohoi metodu hazorozriadnoi vizualizatsii. *Vzvyj KhODT Seria - Tekhichni nauky, 4* (35), 61–67.
8. Korotkov, K. G. et. al. (2012). Patent No.: US 8,321,010 B2. Method for Determining the Condition of a Biological Object and Device for Making Same. Published: 27.10.2012. Available at: https://patentimages.googleapis.com/4c/4c/11/795f701416496/US8321010.pdf
9. Korotkov, K. H., Yusubov, R. R.-O. (2011). Sposob operednelynya sostojaniia byolohicheskih obiektov na osnovi effekta Kirlian. *Minsk* (2006). G03B41/00. No. a 2005 11572; declareted: 05.12.2005; published: 15.11.2006, Bul. No. 11, 4.
10. Korotkov, K. G. (2001). *Osnovy GRV bioelektrokardiografii*. Saint Petersburg: SPbGITMO. 354.
11. Kolomiets, R. O. (2005). Zakallny prynypsy doslidzheniam biologicnih ob`iektiv za dopomohoi metodu hazorozriadnoi vizualizatsii. *Vzvyj KhODT Seria - Tekhichni nauky, 4* (35), 61–67.
12. Korotkov, K. G. et. al. (2012). Patent No.: US 8,321,010 B2. Method for Determining the Condition of a Biological Object and Device for Making Same. Published: 27.10.2012. Available at: https://patentimages.googleapis.com/4c/4c/11/795f701416496/US8321010.pdf
13. Korotkov, K. G. et. al. (2012). Patent No.: US 8,321,010 B2. Method for Determining the Condition of a Biological Object and Device for Making Same. Published: 27.10.2012. Available at: https://patentimages.googleapis.com/4c/4c/11/795f701416496/US8321010.pdf
14. Pavliuk, O. A. (2015). Metod i zasib hazorozriadnoi vizualizatsii dlia analiza vidgnoeuzhnykh bioobiektyv: Vinnytsya, 240.
15. Aronov, M. A. (1969). Elektrozhezhnoe rasqryzd v vznakeh pri napriazheni vysokoi chastoty. Moscou: Energiozatanizdat, 248.
16. Raizer, Iu. P. (2009). *Fizika gazovogo rasshira*. Dolgoruadnyy: Intellekt, 725.
17. Olinykh, V. P., Babushenko, S. S. (2020). Vybir dodatkovykh parametrov protsesu hazorozriadnoi vizualizatsii dlia zastosuvannia v medytsyni. *Izvestiya adykom. un-ta. M. Ye. Zhukovskoho - Kharkiv avitats. in-ta*, 195–197.
18. Kostyuk, N., Cole, P., Meghanathan, N., bokpehi, R. D., Coblh, H. H. P. (2011). Gas Discharge Visualization: An Imaging and Modeling Tool for Medical Biometrics. *International Journal of Biomedical Imaging, 2011*, 1–7. doi: http://doi.org/10.1155/2011/196460
19. Korotkov, K. G. (1982). *Issledovanie fizicheskih protsessov, protekaiahshhikh pri gazorozriadnoi vizualizatsii razlichnyh obektov*. Leningrad, 227.

Abstracts and References: Technology and System of Power Supply

Technology Audit and Production Reserves — № 4/1(66), 2022

ISSN 2664-9969

Copyright © 2022, All rights reserved.

DOI: 10.15587/2706-5448.2022.263747

APPROVAL OF THE COMBINED RESERVE CALCULATION METHOD (CHERNOVOZAYARSKE GAS FIELD AS AN EXAMPLE)

Pages 30–36

Michail Lubkov, Doctor of Physical and Mathematical Sciences, Director of Poltava Geophysical Observatory within S. I. Subbotin of the Institute of Geophysics of the National Academy of Sciences of Ukraine, Poltava, Ukraine, ORCID: https://orcid.org/0000-0002-2680-9508

Technology and System of Power Supply

Ivan Zezekalo, Doctor of Technical Sciences, Professor, Department of Oil and Gas Engineering and Technology, National University «Yuri Kondratyuk Poltava Polytechnic», Poltava, Ukraine, ORCID: https://orcid.org/0000-0002-9962-6905, e-mail: ivan.g.zezekalo@gmail.com

Venniam Soolochov, Doctor of Chemical Sciences, Professor, Head of the Department of Chemistry and Physics, National University «Yuri Kondratyuk Poltava Polytechnic», Poltava, Ukraine, ORCID: https://orcid.org/0000-0002-5774-0869
The object of the study is the calculation of the producing reserves of the gas-bearing reservoir. Increasingly, published studies provide justification for the possibility of restoring reserves in old depleted gas fields by gas flow from deep horizons. Given the possibility of resuming producing gas reserves, the issue of clarifying their volume in the reservoirs of fields at a late stage of development is promising.

In the course of the study, theoretical research methods were used: a system analysis of the reservoir used, numerical modeling based on a combined finite element-difference method, methods for visualizing the inreservoir obtained, and analytical methods.

The method proposed in the paper for refining gas reserves combines the volumetric method and modeling of filtration processes using a combined finite element-difference method. The latter makes it possible to take into account the reservoir structure that is heterogeneous in terms of permeability and adequately describe the distribution of non-stationary reservoir pressure around the production well on a quantitative level. By applying an analytical formula based on the values of average reservoir and bottomhole pressures, the radii of the well feed contour were calculated for different periods of reservoir development. Thus, the active area (and volume) of the reservoir is determined, according to which the calculations of the producing reserves of the field are carried out.

The study was carried out on the example of the Chervonoza-Gas Field (Ukraine) for the reservoir V-26-T-1a, discovered by one production well 468-B(D). The recoverable reserves of the V-26-T-1a reservoir calculated in this way are 597.69 million m³ of gas. At the same time, the error relative to the value indicated in the Atlas of Ukrainian Fields is 4.63 %.

The method of calculating reserves proposed in this study is useful for refining the reserves of depleted fields. The combination of the volumetric method with the results of simulation of filtration processes is an operational method for calculating the reserves of a reservoir discovered by one production well. At the same time, the use of a combined finite element-difference method makes it possible to take into account the complex heterogeneous structure of the reservoir and predict the distribution of reservoir non-stationary pressures around the production well.

Keywords: reserves calculation, volumetric method, gas-bearing reservoirs, filtration processes, depleted fields, reservoir pressure.

References
1. Wei, Y., Jia, A., Xu, X., Fang, J. (2021). Progress on the different methods of reserves calculation in the whole life cycle of gas reservoir development. *Journal of Natural Gas Geoscience*, 6 (1), 55–63. doi: http://doi.org/10.1016/j.jnggs.2021.04.001
2. Feng, Y., Chen, Y., Zhao, Z., Liu, T., Lei, J., Zhong, S. et al. (2021). Migration of natural gas controlled by faults of majiagou formation in central orobas basin: Evidence from fluid inclusions. *Deput Kezue – Zhongguo Dichi Daxue Xuebao/Earth Science – Journal of China University of Geosciences*, 46 (10), 3601–3614. doi: http://dx.doi.org/10.3790/dqxk.2020.384
3. Lee, J., Siddle, R. (2010). Gas-Reserves Estimation in Resource Plays. *SPE Economics & Management*, 2 (2), 86–91. doi: http://doi.org/10.2118/130102-PA
4. King, G. R. (1993). Material-Balance Techniques for Coal-Seam and Devonian Shale Gas Reservoirs With Limited Water Influx. *SPE Reservoir Engineering*, 8 (1), 67–72. doi: http://dx.doi.org/10.2118/20730-PA
5. Zhang, L. H., Chen, G., Zhao, Y. L., Liu, Q. F., Zhang, H. C. (2015). A modified material balance equation for shale gas reservoirs and a calculation method of shale gas reserves. *Gas Industry*, 33, 66–70.
6. Pratami, F. L. P., Chandra, S., Angtony, W. (2019). A new look on reserves prediction of unconventional shale gas plays: moving from static parameters to dynamic, operation-based reserves' calculation.

DOI: 10.15587/2706-5448.2022.263562

ANALYSIS OF THE INFLUENCE OF THE HYDRATE-BEARING ROCKS PROPERTIES ON THE PROSPECTS THEIR INDUSTRIAL DEVELOPMENT

pages 37–41

Angela Yelchenko-Lobovska, Assistant, Postgraduate Student, Department of Oil and Gas Engineering and Technology, National University «Yuri Kondratyuk Poltava Polytechnic», Poltava, Ukraine, e-mail: bomas.boboma88@gmail.com, ORCID: https://orcid.org/0000-0002-4308-9129

Oleksandr Lukin, Academician of the Ukrainian National Academy of Sciences, Doctor of Geological and Mineralogical Sciences, Professor, Department of Drilling and Geology, National University «Yuri Kondratyuk Poltava Polytechnic», Poltava, Ukraine, ORCID: https://orcid.org/0000-0003-4844-1617

Vasyl Sarych, PhD, Associate Professor, Department of Oil and Gas Engineering and Technology, National University «Yuri Kondratyuk Poltava Polytechnic», Poltava, Ukraine, ORCID: https://orcid.org/0000-0002-0706-0589

Victoria Dmytrychenko, PhD, Associate Professor, Department of Oil and Gas Engineering and Technology, National University «Yuri Kondratyuk Poltava Polytechnic», Poltava, Ukraine, ORCID: https://orcid.org/0000-0002-1678-2575
Along with renewable energy and hydrogen, gas hydrates may become the most significant energy resource in the coming years. The reserves of gas in the hydrate state exceed all the combined world reserves of traditional energy resources. At the same time, the gas hydrates properties in the conditions their natural occurrence in the composition of hydrate-containing rock cause significant difficulties in their extraction. In this regard, the industrial use of colossal renewable gas resources in the gas hydrate state is just beginning. Based on this, the methods of developing gas hydrate deposits are the object of research. Based on the analysis and generalization of the currently known examples results of experimental and industrial development of gas hydrate deposits, as well as the results of studying the hydrate-bearing rocks properties, an assessment of the prospects for the industrial implementation of gas hydrate deposit development methods is given. Extraction of methane from gas hydrate deposits causes difficulties due to their solid form. Existing promising methods of their development involve the dissociation of gas hydrate into gas and water.

Currently implemented research and industrial development projects of gas hydrate deposits have shown a number of problems related, first of all, to the instability of the hydrate-bearing rock after dissociation of the gas hydrate (at the same time, in the vast majority, the natural gas hydrate becomes metastable and weakly cemented). Therefore, there is still no commercially attractive technology for obtaining natural gas from gas hydrate deposits. At the same time, the depressurization method is considered the most promising. Based on this, the improvement of the technology of influence on the hydrate-bearing rock for the natural gas extraction should concern the provision of the rock removal into the well. At the same time, effective and competitive development of marine gas hydrates deposits can be realized only if taking into account the geological features of the distribution of hydrate-bearing rocks, as well as the gas hydrates properties in their natural occurrence.

Keywords: gas hydrate, hydrate-bearing rock, gas hydrate deposits development, destruction of hydrate-bearing rock, gas extraction.

References

1. Lukin, O. Yu. (2008). Vuhlevodnevyi potencial nadr Ukrainy ta osnovni napramy yoho osvojenia. Visnyk NAN Ukrainy, 4, 56–67.
2. Lukin, A. E. (2010). Slantcevyi gas i perspektivy ego dobychi v Ukraini. Statia 1. Sovremennoe sostoyanie problemy slantcevogo gaza (v svete opytia osvojenia ego resursov v SShA). Geologichni zhurnal, 3, 17–33.
3. Lukin, O. Yu. (2011). Hazovi resursy Ukrainy: suchasnyi stan i perspektivy. Visnyk NAN Ukrainy, 3, 40–48.
4. Makogon, Y. F. (2010). Natural gas hydrates – A promising source of energy. Journal of Natural Gas Science and Engineering, 2 (1), 49–59. doi: http://dx.doi.org/10.1016/j.jngse.2009.12.004
5. Makogon, Yu. F. (2010). Gazoghidraty. Istoriia izuchenia i perspektivy osvojenia. Geologiya i poleznye iskopaemye mira, 2, 5–21.
6. Shniukov, E. F., Kraisinskii, V. P., Klockho, V. P. (2007). Nakanune mirovoi submarnoi metanogidratodobychi. Dopolnenie Natsionalnoi akademii nauk Ukrainy, 6, 125–134.
7. Rodgers, R. E., Zhong, Y., Arulkummar, R., Etheridge, J. A., Pearson, L. E., Mc. Cowen, J., Hogancamp, K. (2005). Gas Hydrate Storage Process for Natural Gas. GasTIPS. Winter, 54.
8. Lu, S.-M. (2015). RETRACTED: A global survey of gas hydrate development and reserves: Specifically in the marine field. Renewable and Sustainable Energy Reviews, 41, 884–900. doi: http://dx.doi.org/10.1016/j.rser.2014.08.063
9. Pro alternativnyi vydii ridikho ta hazovoho palyva (2000). Zakon Ukrainy No.1391-XIV. 14.01.2000. Vidomosti Verkhovnoi Rady (VVR), 12, st. 94. Available at: https://zakon.rada.gov.ua/laws/show/1391-14Text
10. Nemokonov, V. P., Suputak, S. N. (1988). Priznaki gazogidratnykh za-lezhei v Chernom more. Izvestia razved. Geologii i razvedki, 3, 72–82.
11. Shniukov, E. F., Kraisinskii, V.A. (1999). Priroda, struktura, usloviia zaleganiia i zapasy morskih metanogidravit. Geologiya i poleznye iskopaemye Chernozi moria. Kiev: Karbon LTD, 107–116.
12. Kvenvalden, K. A. (1993). Gas hydrates-geological perspective and global change. Reviews of Geophysics, 31 (2), 173–187. doi: http://dx.doi.org/10.1093/93g00268
13. Mohd, Y. (2016). Natural gas hydrates: the future’s fuel. Journal of Environmental Research And Development, 10 (4), 738–746.
14. Collett, T. S. (2002). Energy resource potential of natural gas hyd- rates Bull. AAPG Bulletin, 11 (86), 1971–1992. doi: http://doi.org/10.1306/61eeddd2-173e-11d7-8645000102c1865d
15. Collett, T. S. (2014). Geologic implications of gas hydrates in the offshore of India: Results of The Natural Gas Hydrate Program Expedition 01. Marine and Petroleum Geology, 58, 1–2. doi: http://dx.doi.org/10.1016/j.marpetgeo.2014.07.020
16. Zhou, S. W., Chen, W., Li, Q. P., Zhou, J. L., Shi, H. S. (2017). Research on the solid fluidization well testing and production for shallow non-diagenetic natural gas hydrate in deep water area. China Offshore Oil and Gas, 29, 1–8.
17. Max, M. D., Johnson, A. H. (2016). Exploration and Production of Oceanic Natural Gas Hydrate. Cham. Springer. doi: http://dx.doi.org/10.1007/978-3-319-43855-1
18. Egawa, K., Furukawa, T., Saeke, T., Suzuki, K., Narita, H. (2013). Three-dimensional paleomorphologic reconstruction and turbidite distribution prediction revealing a Pleistocene confined basin system in the northeast Nankai Trough area. AAPG Bulletin, 97 (5), 781–798. doi: http://dx.doi.org/10.1306/10161212014
19. Boswell, R., Collett, T. S., Frye, M., Shedd, W., McConnell, D. R., Shelander, D. (2012). Subsurface gas hydrates in the northern Gulf of Mexico. Marine and Petroleum Geology, 34 (4), 4–30. doi: http://dx.doi.org/10.1016/j.marpetgeo.2011.10.003
20. Sung-Rock, L. (2011) 2nd ulleung basin gas hydrate expedition (UBGH2) findings and implications. Fire in the Ice, 11 (4), 6–9.
21. Boswell, R. (2009). Is Gas Hydrate Energy Within Reach? Science, 325 (5943), 957–958. doi: http://dx.doi.org/10.1126/science.1175074
22. Ruan, X., Song, Y., Zhao, J., Liang, H., Yang, M., Li, Y. (2012). Numerical Simulation of Methane Production from Hydrates Induced by Different Depressurizing Approaches. Energies, 5 (2), 438–458. doi: http://dx.doi.org/10.3390/en50200438
23. Zhao, J., Zhu, Z., Song, Y., Liu, W., Zhang, Y., Wang, D. (2015). Analyzing the process of gas production for natural gas hydrate using depressurization. Applied Energy, 142, 125–134. doi: http://dx.doi.org/10.1016/j.apenergy.2014.12.071
24. Song, Y., Cheng, C., Zhao, J., Zhu, Z., Liu, W., Yang, M., Xue, K. (2015). Evaluation of gas production from methane hydrates using depressurization, thermal stimulation and combined methods. Applied Energy, 145, 263–277. doi: http://dx.doi.org/10.1016/j.apenergy.2015.02.040
25. Sun, X., Liao, T., Wang, L., Wang, H., Song, Y., Li, Y. (2019). Numerical simulation of gas recovery from a low-permeability hydrate reservoir by depressurization. Applied Energy, 250, 7–18. doi: http://dx.doi.org/10.1016/j.apenergy.2019.05.035
26. Johnson, A. H. (2013). Unconventional Energy Resources: 2013. Annual Review: Natural Resources Research, 23 (1), 19–98. doi: http://dx.doi.org/10.1146/annurev.s1053-013-9224-6
27. Feng, J.-C., Wang, Y., Li, X.-S. (2017). Entropy generation analysis by Different Depressurizing Approaches. Entropy, 19 (1), 781–798. doi: http://dx.doi.org/10.1306/10161212014
28. Japan Oil, Gas and Metals National Corporation (GOGMEC). Gas Produced from Methane Hydrate (Provisional) (2013). Available at: http://www.jogmec.go.jp/english/news/release/news_01_000006
The object of research in the paper is the process of fluid transfer through the pore space of the reservoir rock. In this paper, using an expert method, the shortcomings of the Ukrainian methodology for assessing the reservoir properties of the reservoir were highlighted. In particular, the sources of uncertainty accumulation in determining the absolute values of the reservoir's filtration parameters have been identified. The existing problem is that the algorithms of actions, which are the basis of the Ukrainian method of assessing reservoir properties, introduce a significant degree of uncertainty into the assessment results.

In order to reduce uncertainty, the introduction of the concept of a representative elemental volume is considered when conducting laboratory research and the construction of a three-dimensional digital model of this elementary volume. It is suggested to improve the Ukrainian method of assessing the collector properties of the deposit based on current Western research.

It was established that the standard methods of assessing the reservoir properties of the deposit are a source of accumulation of uncertainty in the development of technological documentation for the development of the deposit. The work is aimed at the development of an improved methodology for assessing the collector properties of the deposit. It is proposed to add to the action algorithm the stage of determining the representative volume of the sample, building its three-dimensional model, and digitizing it. At the final stage, the connectivity of the pores inside the sample is determined using the Minkowski function to improve the quality of the project documentation for the development of deposits. Guidelines have been developed to improve standard methods for assessing the collector properties of the deposit. The use of an improved methodology for assessing the reservoir properties of the deposit leads to a significantly lower degree of uncertainty and helps to form a more reliable picture of the operation of the reservoir at the design stage of its development. The presented study will be useful for the engineering personnel of foreign contractor companies, as it justifies the need to collect additional core material and sets the quality criteria of the information obtained about the collector properties of the deposit.

Keywords: fluid transfer, pore space, reservoir rock, uncertainty degree, representative elementary volume, Minkowski functions.

References

1. Vogel, H.-J., Weller, U., Schlüter, S. (2010). Quantification of soil structure based on Minkowski functions. Computers & Geosciences, 36 (10), 1236–1245. doi: http://doi.org/10.1016/j.cageo.2010.03.007
2. Vogel, H. J., Roth, K. (1998). A new approach for determining effective soil hydraulic functions. European Journal of Soil Science, 49 (4), 547–556. doi: http://doi.org/10.1046/j.1365-2389.1998.490454.x
3. Cvetkovic, B. (2009). Well Production Decline, 113–125.
4. Blunt, M. J. (2017). Multiphase flow in permeable media: A pore-scale perspective. Cambridge university press, 16–56. doi: http://doi.org/10.1017/9781131614590
5. Cnudde, V., Boone, M. N. (2013). High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications. Earth-Science Reviews, 123, 1–17. doi: http://doi.org/10.1016/j.earscirev.2013.04.003
6. Wildenschild, D., Sheppard, A. P. (2013). X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Advances in Water Resources, 51, 217–246. doi: http://doi.org/10.1016/j.advwatres.2012.07.018
7. Schlüter, S., Sheppard, A., Brown, K., Wildenschild, D. (2014). Image processing of multiphase images obtained via X-ray microtomography: A review. Water Resources Research, 50 (4), 3615–3639. doi: http://doi.org/10.1029/2014wr015256
8. Blunt, M. J., Bijeljic, B., Dong, H., Gharbi, O., Iglauser, S., Mostaghimi, P. et. al. (2013). Pore-scale imaging and modelling. Advances in Water Resources, 51, 197–216. doi: http://doi.org/10.1016/j.advwatres.2012.03.003
9. Oren, P.-E., Bakke, S., Arntzen, O. J. (1998). Extending Predictive Capabilities to Network Models. SPE Journal, 3 (4), 324–336. doi: http://doi.org/10.2118/52052-pa
10. Guises, R., Xiang, J., Latham, J.-P., Munjiza, A. (2009). Granular packing: numerical simulation and the characterisation of the effect of particle shape. Granular Matter, 11 (5), 281–292. doi: http://doi.org/10.1007/s10035-009-0148-0
11. Oren, P.-E., Bakke, S., Held, R. (2007). Direct pore-scale computation of material and transport properties for North Sea reservoir rocks. Water Resources Research, 43 (12), 44–53. doi: http://doi.org/10.1029/2006wr005754
12. Strebelle, S. (2002). Conditional simulation of complex geological structures using multiple-point statistics. Mathematical geology, 34 (1), 1–21. doi: http://doi.org/10.1023/a:1014009426274
13. Adler, P. M., Jacquin, C. G., Quiblier, J. A. (1990). Flow in simulated porous media. International Journal of Multiphase Flow, 16 (4), 691–712. doi: http://doi.org/10.1016/0301-9322(90)90025-e
14. Latief, F. D. E., Biswal, B., Fauzi, U., Hilfer, R. (2010). Continuum reconstruction of the pore scale microstructure for Fontainebleau sandstone. Physica A: Statistical Mechanics and Its Applications, 389 (8), 1607–1618. doi: http://doi.org/10.1016/j.physa.2009.12.006
15. Hilfer, R., Zauner, T. (2011). High-precision synthetic computed tomography of reconstructed porous media. Physical Review E, 84 (6). doi: http://doi.org/10.1103/physreve.84.062301
16. Hilfer, R., Lemmer, A. (2015). Differential porosimetry and permeametry for random porous media. Physical Review E, 92 (1). doi: http://doi.org/10.1103/physreve.92.013305
17. Hilpert, M., Miller, C. T. (2001). Pore-merophy-based simulation of drainage in totally wetting porous media. Advances in Water Resources, 24 (3-4), 243–255. doi: http://doi.org/10.1016/s0309-1708(00)00056-7
18. Serra, J. (1986). Introduction to mathematical morphology. Computer Vision, Graphics, and Image Processing, 35 (3), 283–305. doi: http://doi.org/10.1016/0734-189x(86)90002-2
19. Vogel, H.-J., Roth, K. (2001). Quantitative morphology and network representation of soil pore structure. Advances in Water Resources, 24 (3-4), 233–242. doi: http://doi.org/10.1016/s0309-1708(00)00055-5
20. Vogel, H. J. (2002). Topological characterization of porous media. Morphology of condensed matter. Springer, Berlin, Heidelberg, 75–92. doi: http://doi.org/10.1007/3-540-45782-8_3
The object of the study is the process of operation of traction and external power supply systems as objects of inextricable interconnection while reducing energy costs in the cost of railway transportation in real time. One of the most problematic areas is the technology for choosing energy-efficient power supply schemes for railway traction networks in real time. The methods of forming and transforming graphs of complex schemes of traction and external power supply systems and building expert control systems for the implementation of energy-saving technologies of electrified railways were further developed in the work.

In the course of the study, to increase the efficiency of simulation modeling of electric traction networks, the statistical characteristics of the loads of feeders that supply the final boundary sections, stations, depot access tracks, railway junctions and idle voltages on the traction substation tires were obtained. Methods of calculation and modeling of traction power supply have been developed, which allow minimizing power flows and power losses by adjusting load flow parameters and voltage levels of traction substations. And also to increase the energy efficiency of electrified railway lines.

The technique of technical and economic feasibility of power supply schemes of traction networks and evaluation of the possibility of switching to cantilever or loop power supply schemes with parallel connection points has been developed. The implemented recommendations save about 25 thousand kWh per 1 km of two-track section.

Keywords: energy saving technologies, traction networks, power flows, energy losses, knowledge bases, expert systems.

References
1. Kornienko, V. V., Kotelnikov, A. V., Domanski, V. T. (2022). Elektrifikatsiia zheleznykh dorog. Miroshnichenko, R. I. (1982). Moskva: Mir, 528.
2. Kornienko, V. V., Domanski, V. T. (2022). Elektrifikatsiia zheleznykh dorog. Moskva: Transport, 528.
3. Kornienko, V. V., Domanski, V. T. (2022). Elektrifikatsiia zheleznykh dorog. Moskva: Transport, 528.
METALLURGICAL TECHNOLOGY

DOI: 10.15587/2706-5448.2022.263428

ВИЯВЛЕННЯ СУТТЄВОСТІ ВПЛИВУ ВАНАДІЮ НА МЕХАНІЧНІ ВЛАСТИВОСТІ ЧАВУНУ ДЛЯ ВИЛИВКІВ МАШИНОБУДІВНОГО ПРИЗНАЧЕННЯ сторінки 6–10

Фролова Л. В., Барсук А. С., Ніколаєв Д. А.

Об’єктом дослідження у роботі є чавун з пластинчастим графітом, модифікований двома типами модифікаторів – FeSi75 та FeSi40V7. У цій роботі було визначено вплив ванадію на механічні властивості чавуну, що використовується для вилівок машинобудівного призначення.

Існуюча проблема полягає в тому, що незнання впливу легуючого елементу на механічні властивості сплаву не дає можливості визначити норм його витрати в процесі плавки. Це може призвести до зайвих витрат на матеріали для плавки та удорожчання литва, та не бути обґрунтованим з точки зору очікуваного покращення властивостей.

Для визначення впливу ванадію на властивості розглядається три показники якості чавуну: межа міцності на розтягування, твердість та узагальнений показник якості за механічними властивостями.

Встановлено, що введення ванадію в чавун у складі модифікатора FeSi40V7 призводить до зменшення межі міцності на 4 %, але до збільшення твердості на 2 %. Суттєвий вплив ванадію на властивості чавуну з рівнем концентрації V=0.04–0.078 % може бути доцільним лише за умови необхідності підвищення твердості чавуну через сприяння карбідоутворенню.

У підсумку зроблено висновок щодо того, що використання ванадію в складі FeSi40V7 в межах остаточного вмісту в чавуні на рівні 0.04–0.078 % може бути доцільним лише за умови необхідності підвищення твердості чавуну через сприяння карбідоутворенню.

Ключові слова: чавун для вилівок машинобудівного призначення, модифікатор, легування, ванадій, механічні властивості.

DOI: 10.15587/2706-5448.2022.263408

ВПЛИВ ВАКУУМУВАННЯ ЧАВУНУ НА РІВЕНЬ МЕХАНІЧНИХ ХАРАКТЕРИСТИК МАТЕРІАЛУ РОБОЧОГО ШАРУ ДВОШАРОВИХ ХРОМОНИКЕЛЕВИХ ВАЛКІВ сторінки 11–14

Автухов А. К., Мартиненко О. Д., Бантковський В. А., Ковалевський Є. В.

Об’єктом дослідження є хромонікелевий чавун робочого шару двошарових листопрокатних валків виготовлення ЛПХNd. В даний час хромонікелевий чавун знаходить широке застосування для виготовлення валків листопрокатних та сортопрокатних станів.

Одним із напрямів підвищення експлуатаційних властивостей виробів з хромонікелевого чавуну є рафінування розплавленого металу вакуумування. Існуюча проблема полягає в тому, що інформація про вплив вакуумування на експлуатаційні характеристики хромонікелевого чавуну дуже обмежена.

Для дослідження були обрані валки з найбільш характерною для виготовлення ЛПХNd концентрацією легуючих елементів. При оцінці властивостей вакуумованого чавуну та чавуну відлитого за традиційною технологією визначали рівень міцності, твердості, а також спеціальні властивості, дослідження яких сприяє поглибленому розумінню прокатних валків (термозносостійкість та тріщиностійкість).

Встановлено, що істотної відмінності у структурі валків, виготовлених із вакуумованого і не вакуумованого чавуну, не спостерігається. Структура валків складається з мартенситу, бейніту та карбідів. З із збільшенням вмісту графітоутворюючих елементів (C, Si, Ni) у структурі відбувається зменшення межі міцності.

Тріщиностійкість вибіленої зони чавуну варіюється від 11,96 до 14,95 %, а перехідної зони – від 12,35 до 14,56 %. Збільшення показників тріщиностійкості може сприяти зниженню викрашування робочого шару хромонікелевих валків під час інтенсивної експлуатації.

Отримані результати дослідження свідчать про позитивний вплив вакуумування на окремі показники (тріщиностійкість та термічна стійкість) робочого шару формуючих інструментів листопрокатних станів.

Ключові слова: хромонікелевий чавун, вакуумування, робочий шар, фізико-механічні властивості, тріщиностійкість, термічна стійкість, прокатні валки.

DOI: 10.15587/2706-5448.2022.263238

ПОБУДОВА ОДНОРІДНИХ РІШЕНЬ У ЗАДАЧІ КРУЧЕННЯ ДЛЯ ТРАНСВЕРСАЛЬНО-ІЗОТРОПНОЇ СФЕРИ ЗІ ЗМІННИМИ МОДУЛЯМИ ПРУЖНОСТІ сторінки 15–20

Юсубова С. М.

Об’єктом дослідження є завдання кручення для радіально-неоднорідної трансверально-ізотропної сфери та дослідження на основі тривимірних рівнянь теорії пружності.
Дослідження проводилось на прикладі Червонозярського газового родовища (Україна) для пласта В-26-Т-1а, розкритого однією видобувною свердловиною 468-B(D). Розраховані таким чином видобувні запаси пласта В-26-Т-1а становлять 597,69 млн. м³ газу.

При цьому, похибка відносно значення, вказаного в Атласі родовищ України, становить 4,63 %.

Запропонований в роботі спосіб уточнення запасів газу поєднує об’ємний метод та моделювання фільтраційних процесів із застосуванням комбінованого східно-елементно-різницевого методу, методи візуального подання отриманої інформації, аналітичні методи.

Запропонований в роботі спосіб уточнення запасів газу поєднує об’ємний метод та моделювання фільтраційних процесів із застосуванням комбінованого східно-елементно-різницевого методу, методи візуального подання отриманої інформації, аналітичні методи.

Ці додаткові параметри визначають коректність подальшої візуальної діагностики. До переваг реєстрації запропонованих параметрів газорозрядної візуалізації слід віднести їх кількісне вимірювання та можливість об’єктивного порівняння. Зазначені властивості цих параметрів дають додаткову можливість цифрового опису стану досліджуваного об’єкта, а в подальшому автоматизації проведення діагностики. Розроблені структурні схеми пристрою проведення досліджень за методом газорозрядної візуалізації, блоку генератора високовольтної імпульсної напруги для апаратного врахування додаткових параметрів газового розряду та їх зв’язку з медико-біологічними показниками. Розглянуто завдання кручення радіально-неоднорідної трансверсально-ізотропної незамкнутої сфери, що не містить жодного заряду. Показано, що рішення, що відповідає першій групі коренів, є проникним, і напружений стан, що викликає цим рішенням, еквівалентно крутому перерізі та θ = const.

Відсутність неоднорідності сфери викликає слабко загасаюче прикордонне рішення, яке може проникати близько далеко від конічних перерізів.

Я вважаю, що модулі пружності є лінійними функціями від радіуса сфери. Це означає, що бічна поверхня сфери вільна від напруги, а на конічних перерізах задані довільні напруги, що залишають сферу в рівновазі.

Ключові слова: завдання кручення, модулі пружності, рівняння Лежандра, проникні рішення, прикордонні рішення, крутний момент.
АНОТАЦІЇ

Поряд з відповільнованою та водним, найбільш значущими енергетичним ресурсом протягом найближчих років можуть стати газові гідрати. Запаси газу в гідратному стані перевищують усі суккупні світові запаси традиційних енергетичних ресурсів. У той же час, властивості газових гідратів в умовах їх природного залищення у складі гідратомісної породи обумовлюють значні складності їх вибутку. У зв'язку з цим, промислове використання колосальних відповільнованих ресурсів газу у газогідратному стані тільки починяється. Виходячи з цього, об'єктом дослідження є методи розробки газогідратних покладів. На основі аналізу та узагальнення результатів підходів на даній час прикладів дослідно-промислової розробки газогідратних покладів, а також результатів вивчення властивостей гідратомісних порід дано оцінку перспектив промислового впровадження методів розробки газогідратних покладів. Вибуток метану з газогідратних покладів викликає труднощі внаслідок інших твердих форми. Існуючі на даній перспективні методи їх розробки передбачають дисоціацію газогідрату на газ і воду.

Реалізовані на даній час проекті дослідно-промислової розробки газогідратних покладів показали ряд проблем, пов'язаних, перш за все, із нестабільністю гідратомісної породи після дисоціації газогідрата (при цьому у переважній більшості природних газогідрат стає метастабільним і слабозцементованим). Тому, до сих пір немає жодної комерційно відповідної технології отримання природного газу з родовищ газових гідратів. При цьому метод розгерметизації розглядається як найбільш перспективний. Виходячи з цього, удосконалення технології впливу на гідратомісну породу для вилучення природного газу повинно, поміж іншими, стосуватися забезпечення видаляння породи у свердловину. При цьому, ефективна та конкурентоздатна розробка морських покладів газових гідратів може бути реалізована лише за умови врахування геологічних особливостей розповсюдження газогідратомісних порід, а також властивостей газових гідратів у їх природному залищенні.

Ключові слова: газогідрат, гідратомісна порода, розробка газогідратних покладів, руйнування гідратомісної породи, видобуття газу.

DOI: 10.15587/2706-5448.2022.263562

АНАЛІЗ ВЛАСТИВОСТЕЙ ГІДРАТОМІСНИХ ПОРІД ПОДІЛЯМ ПЕРСПЕКТИВИ ЇХ ПРОМІСЛОВОЇ РОЗРОБКИ

Елченко-Лобовська А. С., Лукін О. Ю., Савик В. М., Дмитренко В. І.

ЗАЛІЗНИЦЬ РОЗРОБКА ТЕХНОЛОГІЇ ВИБОРИ ЕНЕРГОЕФЕКТИВНИХ СХЕМ ЕЛЕКТРОПОСТАЧАННЯ ТЯГОВИХ МЕРЕЖ ЗАЛИЗНИЦІ

Доманський В. Т., Доманський І. В., Закурдай С. О., Любовський Д. В.

Об'єктом дослідження є процес роботи систем тягового та локоміції на електроучасникови, як об'єкті нерозривного взаємозв'язку - при зниженні енергетичних витрат в собівартості перевезення залізниць в режимі реального часу. Одним з найбільш проблемних місць є технології вибору енергоефективних схем електроучасникови тягових мереж залізниць в режимі реального часу. У роботі
одержали подальший розвиток способи формування та перетворення графів складних схем систем тягового та зовнішнього електропостачання та побудови експертних систем управління для реалізації технологій енергозбереження електрифікованих залізниць.

В ході дослідження для підвищення ефективності імітаційного моделювання електротягових мереж отримано статистичні характеристики навантажень фідерів, які живлять кінцеві гранічні ділянки, станції, під'їзди депо, залізничні вузли та напруги холостого ходу на шинах тягових підстанцій. Розроблено методи розрахунку та моделювання тягового електропостачання, що враховують нерозривний взаємозв'язок з енергосистемами та дозволяють вибрати раціональні режими з мінімальними перетоками потужності та втратами енергії. Запропоновані методи управління режимами роботи системи тягового електропостачання на основі нечіткого опису їх станів та експертної системи, що дозволяють вирішити нові задачі. В тому числі, вибір енергозберігаючих схем живлення при перетоках потужності, економічних режимів роботи мережі при інтенсифікації процесу перевезень. Завдяки цьому запропоновані шляхи зниження електропобожування та мінімізації втрат енергії систем тягового електропостачання, які дозволяють за рахунок регулювання параметрів вантажопотоку та рівнів напруги тягових підстанцій мінімізувати перетоки потужності та втрати електроенергії. Інші завдання підвищують енергетичну ефективність роботи електрифікованих ліній залізниць.

Розроблена методика техніко-економічної доцільності схем живлення тягових мереж і оцінки можливості переходу на консольні схеми живлення або велетні з пунктами паралельного з'єднання. Впроваджені рекомендації заощаджують близько 25 тис. кВт·г на 1 км двоколійної ділянки.

Ключові слої: технології енергозбереження, тягові мережі, перетоки потужності, втрати енергії, бази знань, експертні системи.