The contribution of each of the pro-inflammatory cytokines to specific components of the host response to infection remains unclear. Therefore, the effects of single doses of cytokines were studied in dwarf goats. The present study was carried out to investigate the effects of r.BoIL$_1$, r.BoIL$_2$ and r.BoIFN$_{y}$ on plasma zinc and iron concentrations, white blood cell counts, and body temperature. The i.v. injection of r.BoIL$_1$ (1 µg kg$^{-1}$) resulted in an immediate fever which reached peak values 45 and 180 min after injection. Compared with fever induced by r.BoIL$_1$, that caused by r.BoIFN$_{y}$ (2 µg kg$^{-1}$) was delayed in onset. Although the biphasic fever after r.BoIFN$_{y}$ was more pronounced than after r.BoIL$_1$, the reduction in plasma trace metal concentrations was less than after r.BoIL$_2$. r.BoIL$_2$ (1 µg kg$^{-1}$ i.v.) did not induce changes in these parameters. The haematologic changes observed revealed a cell type and cytokine specific pattern. The delayed onset of the effects induced by IFN$_{y}$ suggests that they may be mediated through the induction of other mediators of inflammation.

Key words: Acute phase response, Dwarf goat, Fever, Hypoferraemia, Hypozincæmia, r.BoIL$_1$, r.BoIL$_2$, r.BoIFN$_{y}$, WBC

Introduction

In mammals, tissue damage, inflammation or invasion by pathogenic micro-organisms induces systemic changes, collectively known as the acute phase response. Among the varied alterations, which together produce this response, are fever, decreased plasma iron and zinc concentrations and changes in white blood cell counts. Bacteria require large amounts of iron and zinc for cell growth, particularly at elevated temperature, and the ability of the host to remove these trace elements from tissue fluids seems to be a fundamental host defence mechanism. The intensity of the body temperature response, the decrease in trace metal concentrations and the change in white blood cell counts (WBC) may vary depending on the type of invading micro-organism or bacterial toxin given. Such host responses to infection or injury are thought to be caused by the endogenous synthesis and release of a variety of cytokines, including tumour necrosis factor$_a$ (TNF$_a$), interleukins (IL$_1$, IL$_6$), and interferons (IFN$_a$, IFN$_y$). These cytokines have been detected in serum and cerebrospinal fluid in several diseases. Moreover, they have been found to be pyrogenic. Furthermore, cancer patients undergoing treatment with high dose recombinant IL$_2$ develop serious side effects including profuse sweats and fever. In vivo, high doses of r.IL$_2$ induce TNF in cancer patients; in vitro, r.IL$_2$ induces both TNF and IFN$_y$ from human mononuclear cells. The contribution of each of these individual cytokines to specific components of the host response to infection, inflammation and endotoxaemia remains unclear. We examined, therefore, the effects of single doses of cytokines on body temperature, food intake, gastric function, heart rate, plasma zinc and iron concentrations, and on white blood cell counts. In previous studies, the effects of dwarf goats to Escherichia coli endotoxins, r.HuIFN$_{e}$, r.BoTNF$_a$ and r.HuTNF$_a$ have been reported. In this study, we present the effects of r.BoIL$_1$, r.BoIL$_2$ and r.BoIFN$_{y}$ on body temperature, WBC and plasma Fe and Zn levels. The data on heart rate, gastric function and food intake will be reported elsewhere.

Materials and Methods

Animals: For the present studies, eighteen healthy dwarf goats—females and castrated males—were used. The animals were trained to stand quietly during recording sessions by repeatedly placing them in conventional goat restraint boxes for several hours daily. Thereafter, the goats were allocated to three groups; group I goats (n = 6) weighed between 20 and 35.5 kg (mean ± SE: 27.2 ± 2.25 kg), group II goats (n = 6) weighed between 20.5 and 34.5 kg (mean ± SE: 26.90 ± 2.03 kg), and group III goats (n = 6) weighed...
between 41.4 and 45 kg (mean ± SE: 43.3 ± 0.59 kg). Group I goats were treated i.v. with r.BoIL₁β (1 µg kg⁻¹ or 3.45 × 10⁶ IU kg⁻¹), group II goats were treated i.v. with r.BoIL₂ (1 µg kg⁻¹ or 2.28 × 10⁶ IU kg⁻¹), and r.BoIFNγ was given as an i.v. infusion over 30 min (total dose 2 µg kg⁻¹ or 6.0 × 10³ U kg⁻¹) into group III goats. All animals were kept indoors and fed a diet of hay and pelleted concentrate. Water was provided freely.

Rectal temperature measurements: Rectal temperature of the goats was measured with a thermistor-based electronic thermometer (Scanning tele-thermometer, model 47, Yellow Springs Instrument Corp. Inc., Yellow Springs, OH, USA); the appropriate thermistors (probe no. 401) were inserted at least 8 cm into the rectum. Temperatures were read at 15 min intervals for a minimum of 6 h.

Blood analyses: WBC and plasma zinc and iron concentrations were determined by methods described previously. Samples of blood were collected in vacutainer tubes (Venoject®, Terumo Corp., Tokyo, Japan) by puncture of the jugular vein. The blood from these samples was heparinized (143 USP units sodium heparin per tube) and, after centrifugation, the plasma was stored at −20°C until analysed for zinc and iron concentrations. Blood samples (5 ml each) were obtained before, and at 1, 3.5, 8, 12 and 24 h after the cytokines were given. Results were expressed in percentages of the pre-injection values.

Recombinant bovine cytokines: Although two IL₁ species, IL₁a and IL₁b, have been identified, they act on similar target cells via common receptors. IL₁b is the principal secreted form, whereas IL₁a remains cell associated. Both IL₁a and IL₁b bind to IL₁ receptors with equal affinity and induce similar biological responses when injected in vivo. In the present study, r.BoIL₁b was used. The r.BoIL₁b and r.BoIL₂ were obtained from American Cyanamid Company, Princeton, NJ, USA (Immunex, Seattle, WA, USA). These stock solutions (lot no. 7818 c-166 W and 051289, respectively) contained 6.8 mg protein per ml with a titre of 3.45 × 10⁶ IU per mg protein, and 3.945 mg protein per ml with a titre of 2.28 × 10⁷ IU per mg protein, respectively. The r.BoIFNγ was synthesized in E. coli by recombinant DNA technology and purified to homogeneity as determined by high-pressure liquid chromatography and sodium dodecyl sulphate–polyacrylamide gel electrophoresis (Ciba-Geigy Ltd, Basel, Switzerland). The stock solutions (code CGA 212244, lot no. 3-2328) contained 5 mg protein per ml with a titre of 3.0 × 10⁵ U per mg protein when titrated on MDBK cells challenged with vesicular stomatitis virus and calibrated to laboratory reference standards. To obtain adequate information about the biological effects of r.BoIL₁b, r.BoIL₂ and r.BoIFNγ, we used doses similar to those reported to be effective in rabbits and cattle. Due to a limited number of goats, we did not perform dose–effect titration studies, as r.Bo cytokines may induce specific antibodies when repeatedly used in goats.

Statistical analysis: Significance of differences was tested with Student’s paired t-test or independent t-test, where appropriate.

Results

After i.v. administration, r.BoIL₁b and r.BoIFNγ caused shivering, occurring as two different episodes, and biphasic temperature responses. As shown in Figure 1, a bolus injection of 1 µg kg⁻¹ r.BoIL₁b induced immediate fever which reached peak values 45 min and 180 min after the injection. Thereafter, the temperature responses gradually returned to normal values. Shivering accompanied the onset of fever occurring after 3 to 9 min (mean ± SEM: 6 ± 0.8 min). In contrast, r.BoIFNγ (2 µg kg⁻¹) induced shivering after 18 to 40 min (mean ± SEM: 26 ± 3.5 min). Although the temperature responses were biphasic, peaks occurred much later than after r.BoIL₁b at 90 min and 315 min after r.BoIFNγ administration (Figure 1). Injection of r.BoIL₂ at a dose of 1 µg kg⁻¹ was nonpyrogenic in dwarf goats.

Within 4 h of giving r.BoIL₁b to the goats, significant decreases were seen in plasma zinc and iron concentrations (mean ± SE in % from baseline values: 65 ± 4 and 82 ± 4 at 3.5 h, respectively; Figure 1), with lowest values occurring after 8 h (Zn: 34 ± 3%) and 12 h (Fe: 33 ± 3%), respectively. The decrease in plasma concentrations of these trace metals was less pronounced in goats given r.BoIFNγ, with lowest values occurring after 12 h (Zn: 61 ± 3%, Fe: 72 ± 8%). Thus, the reduction in both plasma Zn and Fe concentrations was less clear (p < 0.05) and less persistent after r.BoIFNγ injection than after r.BoIL₁b administration; at 24 h, in per cent from baseline values, plasma Zn and Fe values were: 93 ± 4 and 76 ± 3 after r.BoIFNγ, and 67 ± 5 and 43 ± 8 after r.BoIL₁b, respectively; p < 0.05. In contrast, the febrile reactions after i.v. r.BoIFNγ were more pronounced (p < 0.05; Figure 1) than after r.BoIL₁b which indicates that, in goats, IFNγ is a potent pyrogenic cytokine. These results suggest that there is no causal relationship between body temperature responses and the alterations in trace metal concentrations in plasma. No significant changes in plasma Zn and Fe values were found after i.v. r.BoIL₂ administration (Figure 1).
Acutephaseresponsestocytokinesingoats

Table 1 summarizesthe changes in thenumber ofthecirculatingwhitebloodcells after i.v. injection ofthecytokines tested. Only r.BoIL-1β caused a short-lastingleukopenia, which was followed by a significant and long-lasting increase in thenumber of circulating leukocytes. Between 8 and 12 h after treatment with r.BoIL-2 or r.BoIFN-γ, leukocyte counts increased above pretreatment values. Lymphocyte counts decreased after administration of all cytokines tested with lowest values occurring at 3.5 h after r.BoIL-1β or r.BoIL-2 administration. r.BoIFN-γ lowered lymphocyte counts to a mean (± SEM) of 53 ± 8.1% of pretreatment values at 8 h. Only r.BoIL-2 caused a short-lasting leukopenia; lymphocyte counts returned to pretreatment values within 24 h after exposure to r.BoIL-1β and r.BoIFN-γ.

Analysis of neutrophil counts and band forms before and after injection of cytokines revealed a different pattern (Table 1). The most prominent changes were observed after treatment with r.BoIL-1β. The short-lasting neutropenia at 1 h was followed by a marked and long-lasting increase in neutrophil counts. Treatment with all cytokines led to an increase of neutrophil counts peaking at 12 h after injection. Increments after administration of r.BoIL-2 and r.BoIFN-γ were not accompanied by an increase in the numbers of band forms in the peripheral blood. In contrast, r.BoIL-1β induced a significant increment of band forms with highest values occurring between 8 and 12 h (absolute counts × 10³ per µl at 8 h; 0.89 ± 0.11; at 12 h, 0.97 ± 0.35; and before cytokine injection, 0.05 ± 0.03). Thus, the haematologic changes
Table 1. Counts of total white blood cells (WBC), lymphocytes and neutrophils in goats (in each group n=6) treated intravenously with r.BoIL.1 (1 μg·kg⁻¹·b.w.), r.BoIL.2 (1 μg·kg⁻¹·b.w.) or r.BoIFN.α (2 μg·kg⁻¹·b.w.)

	Per cent from baseline values
	(0 h) (Baseline) 1 h 3.5 h 8 h 12 h 24 h
WBC (Baseline × 10³ per µl)	
r.BoIL.1	8.52 ± 0.92 56 ± 4.3* 95 ± 7.3 171 ± 17.1* 191 ± 20.8* 178 ± 15.0*
r.BoIL.2	7.87 ± 0.79 95 ± 3.6 106 ± 11.9 128 ± 8.1* 129 ± 9.0* 100 ± 9.1
r.BoIFN.α	7.83 ± 0.71 85 ± 5.3* 91 ± 7.8 122 ± 10.7 138 ± 14.0* 129 ± 13.6
Lymphocytes (Baseline × 10³ per µl)	
r.BoIL.1	4.43 ± 0.73 72 ± 9.1* 50 ± 9.2* 71 ± 7.2* 74 ± 10.1* 98 ± 18.8
r.BoIL.2	4.40 ± 0.51 89 ± 4.9 81 ± 5.9* 121 ± 13.7 98 ± 10.3 100 ± 12.9
r.BoIFN.α	4.15 ± 0.30 75 ± 4.5* 60 ± 7.3* 53 ± 8.1* 68 ± 9.4* 96 ± 6.7
Neutrophils (Baseline × 10³ per µl)	
r.BoIL.1	3.83 ± 0.25 44 ± 5.7* 144 ± 14.3* 242 ± 43.3* 301 ± 49.8* 259 ± 35.1*
r.BoIL.2	3.22 ± 0.78 107 ± 12.1 186 ± 56.5 149 ± 31.8 190 ± 23.1* 105 ± 13.9
r.BoIFN.α	3.46 ± 0.44 101 ± 8.3 133 ± 14.7 209 ± 19.2* 221 ± 27.8* 171 ± 25.4*

Data are expressed as mean ± SEM; *p < 0.05.

observed in dwarf goats after r.BoIL.1β, r.BoIL.2 and r.BoIFN.α revealed a cell type and cytokine specific pattern.

Discussion

The acute phase response to bacterial infection is associated with the production of a complex cascade of cytokines that direct metabolic and immunological responses in the host. Attention has been focused on defining the precise biological functions of individual cytokines, with TNF-α, IL-1 and IL-6 increasingly emerging as key components of this cascade. In goats, we have previously studied the effects of E. coli endotoxins, r.BoTNF-α, r.HuTNF-α, r.HuIFN-αα as well as some interferon-inducers. Both TNF-α and IL-1 are proximal mediators in the cytokine cascade, appearing in the circulation of several species as early peaks after infusion of bacteria or endotoxin. This transient appearance is sufficient to induce a cascade of secondary cytokines, including IL-6, platelet activating factor and transforming growth factor beta. The regulation of cytokines is complex and poorly understood. To improve our understanding of the biology and pathophysiology of primary and secondary cytokines, the usage of specific neutralizing antibodies is therefore of special interest.

Once released into the circulation, pyrogenic cytokines travel from peripheral sites of infection to the brain, where they act on structures in the thermoregulatory centre of the hypothalamus to initiate fever. TNF-α and IFN-α induce fever via the same mechanism as that shown for IL-1; synthesis of brain prostaglandin-E₂.

In the present study, the rate of rise and time of peak elevation in fever induced by r.BoIFN.α differed from these parameters in r.BoIL.1β (Figure 1) or r.BoTNF-α fever and were similar to the values obtained after injection of low doses of endotoxin. No data are available on whether IFN-γ induces the production of IL-1 or TNF-α, IL-1β and IFN-γ synthesis from rabbit hypothalamic tissue in vitro. The rapid rise in body temperature that occurred in dwarf goats after i.v. injection of r.BoIL.1β is indistinguishable from that produced by r.BoTNF-α and r.BoIL.2. Similar results have been reported for rabbits.

Injecting intravenously into rabbits and dwarf goats, r.BoIFN.α induced monophasic fevers that peaked later (after 80–90 min) than those after r.IL-1 or r.TNF-α. The delayed onset of fever induced by r.BoIFN.α, which was also observed in rabbits, and its rather persistent character (at 8 h after injection), suggest that fever associated with IFN-γ may be mediated through the induction of other endogenous pyrogens.

Although high doses of r.HuIL-2 (120 μg·kg⁻¹) caused fever in rabbits, low doses (3 μg·kg⁻¹·i.v.) were nonpyrogenic. In sheep, high doses of r.IL-2 (100 μg·kg⁻¹·i.v.) induced side effects and increased plasma levels of prostaglandin-F₂α, 6-keto-PGF₁α and thromboxane-B₂. These effects were probably due to
Acutephase responses to cytokines in goats

Inducible pyrogens. The present study, low doses of r.BoIL-1 (1 μg·kg⁻¹ i.v.) were nonpyrogenic in dwarf goats (Figure 1).

Animals infected with Gram-negative bacteria characteristically exhibit in addition to fever, a lowering of plasma Zn and Fe concentrations. Similar effects can be induced by i.v. injection or intramammary administration of endotoxin. Endotoxins and infectious agents activate polymorph neutrophils to release antibacterial factors including lactoferrin, and macrophages to produce cytokines like TNF-α and IL-1. Once released into the circulation, these cytokines travel from peripheral sites of infection to the brain, liver, spleen and other tissues. Within the brain they induce fever, whereas in the liver they stimulate de novo synthesis of serum transferrin, and metallothionein, and increase zinc and iron uptake by the hepatocyte. In laboratory animal species, cytokines such as TNF-α, IL-1 and IFN-γ induce hypoferremia and hypozincemia with lowest values occurring after 8 h.

In concert, in the present study plasma Zn and Fe levels were markedly decreased in goats after i.v. injection of r.BoIL-1 (Figure 1). Interestingly, r.BoIFN-γ induced only a slight reduction in plasma concentration of these trace metals, while the temperature responses were more pronounced than those after r.BoIL-1. Furthermore, neither crude caprine endogenous pyrogen nor i.v. r.HuIFN-α induced changes in plasma Zn and Fe concentrations in dwarf goats.

In contrast to i.v. administration, i.m. injection of r.HuIFN-α (at a 10 times greater dose) caused hypoferremia and hypozincemia. It is likely that local irritation at the injection site and the much higher dose of r.HuIFN-α used in that study, might have caused the synthesis and release of other pyrogenic cytokines. The decreases in plasma trace metal concentrations induced by r.BoIL-1 were essentially the same as those described previously for r.BoTNF-α and E. coli endotoxin. However, the time of onset of these changes after the injection of E. coli endotoxin was markedly longer than after r.BoIL-1 or r.BoTNF-α administration. Taken together, these results suggest that IL-1β and TNF-α rather than IFN-α and IFN-γ are likely to be the cytokines responsible for hypoferremia and hypozincemia. Based on these observations, it seems unlikely that fever induced by r.BoIFN-γ is due to the synthesis and release of IL-1 and TNF-α.

In the present study, the haematological changes were cell-type and cytokine specific. Transient lymphopenia was observed after administration of all three cytokines, reaching a nadir 3.5 to 8 h after i.v. injection. Neutrophilia developed after i.v. injection of r.BoIL-2 and r.BoIFN-γ, similar results have been reported for man. The haematological changes induced by r.BoIL-1β were characterized by lymphopenia and initial neutropenia that was followed by neutrophilia (Table 1). In a previous study, similar results have been obtained with E. coli endotoxin. In comparison with r.BoTNF-α, r.BoIL-1β induced less lymphopenia, a shorter initial neutropenia and a greater neutrophilia in dwarf goats. Moreover, only r.BoIL-1β induced a significant increase in the number of circulating immature neutrophils. Since endotoxin causes mononuclear cells to release both TNF-α and IL-1, these cytokines may be presumed to be important mediators of endotoxin-induced haematological changes. It seems likely that the endotoxin-induced neutropenia is mainly caused by TNF-α whereas the endotoxin-induced neutrophilia and associated increases in immature neutrophils are due to the combined effects of IL-1 and TNF-α.

In summary, we conclude that r.BoIL-1β induces many of the biological changes that characterize the acute phase response to endotoxins or Gram-negative bacterial infections. In dwarf goats, the effects induced by r.BoIL-1β, as described above (biphasic fever, reduction in plasma Zn and Fe concentrations and haematologic changes), together with the clinical effects reported elsewhere (changes in feeding behaviour, forestomach motility and heart rate, see Ref. 23), resemble those observed after i.v. injection of r.BoTNF-α. However, the time of onset of the effects after injection of these cytokines was significantly shorter than after endotoxin. These findings are in accordance to the well-documented role of IL-1 and TNF-α as pivotal mediators of endotoxin toxicity. The biological activities of r.BoIL-1β in dwarf goats may indicate that r.BoIL-1β has some homology with caprine IL-1. Furthermore, we conclude that r.BoIFN-γ induces effects which resemble those observed after i.v. injection of interferon inducers and IFN-α. These biological changes are characteristic for the acute phase response to infection. However, latency time, intensity and duration of these effects are markedly different from those observed after IL-1 and TNF-α. The delayed onset of IFN-induced effects suggests that they may be mediated through the induction of other mediators of inflammation. Further investigations remain to be completed before the role of each cytokine, or combinations of cytokines, can be established in a comprehensive explanation for the pathogenesis of febrile conditions to viral, protozoal and bacterial infections.

References
1. Dinarello CA. Interleukin-1. Rev Infect Dis 1984; 6: 51-95.
2. Dinarello CA. Interleukin-1 and its biologically related cytokines. Adv Immunol 1989; 44: 153-205.
3. Van Miert ASJPAM, Van Duin CTM, Verheijden JHM, Schotman AJH, Nieuwenhuis J. Fever and changes in plasma zinc and iron concentrations in the goat: the role of leukocyte pyrogen. J Comp Path 1984; 94: 543-557.

4. Van Miert ASJPAM. Acute phase response and non cellular defence mechanisms. Butterwicz G, Vanduinee-van Meeusen G, Hill JW, eds. New Insights Into The Pathogenesis of Mastitis. Ghent: Vlaamse Diergeneeskundige Tijdschriften, 1991; 69-91.

5. Kluger MJ. The febrile response. In: Stress Proteins in Biology and Medicine. Cold Spring Harbour Lab. Press, 1990; 61-78.

6. Weinberg ED. Cellular iron metabolism in health and disease. Drug Metab Rev 1990; 22: 531-579.

7. Beutler B, Miljusk IW, Cerami A. Cachectin/tumour necrosis factor: production, distribution, and metabolic fate in vivo. J Immunol 1985; 135: 3972-3977.

8. Astemborski J., Semd SD, Gaupinski Cj. Administration of bacterial lipopoly saccharide elicits circulating tumour necrosis factor-alpha in neonatal calves. J Clin Microbiol 1990; 28: 998-1003.

9. Goidin D, Brui GE, Dayer JM, et al. Tumour necrosis factor-alpha, interleukin-1 and interleukin-6 in the serum of children with severe infectious diseases. NEngl J Med 1988; 319: 397-400.

10. Henriksen BI, Benjamin WR, Vogel SN. Differential cytokine induction by doses of lipopolysaccharide. Prostaglandin E2 and effector lymphocyte activity. J Immunol 1988; 141: 3299-3305.

11. Kurz A, Horenstein MA, Haussmann C, Meding-Slae S, Lomhorg J. Galactose intolerance, fever and tumour necrosis factor-alpha in mice. J Infect 1991; 21: 94-106.

12. Minnaardsma I, Olga S, Iishi I, et al. Sepsis meningitis in children: correlation between fever and interferon-gamma level. Pediatr Res 1991; 28: 155-157.

13. Kluger MJ. Fever: role of pyrogens and cryogens. Physiol Rev 1991; 71: 93-127.

14. Lewis F, Ziemani PT, Ronshelle D, Raspadori D, Benfari D, Turia CS. Biochemical changes in interleukin-2 in two unrelated high grade non-Hodgkin lymphoma patients: effectiveness and tolerability. Tumor J 1991; 17: 321-325.

15. Renommee SA, Lowit MT, Muul IM, et al. A progress report on the treatment of 157 patients with advanced usinglymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. NEngl J Med 1987; 316: 889-897.

16. Mier JW, Vachino G, Van der Mee JW, et al. Induction of circulating tumour necrosis factor (TNF-α) as the mechanism for the febrile response to interleukin-2 (IL-2) in cancer patients. J Clin Immunol 1988; 8: 426-437.

17. Driessen CA, Cannen JP, Wolf SM. New concepts on the pathogenesis of fever. Rev Infect Dis 1988; 10: 168-189.

18. Van Miert ASJPAM, Van Duin CTM, Wensing T. Fever and changes in plasma zinc and iron concentrations in the goat. The effects of interferon-induced and recombinant IFNα-2a. J Comp Path 1990; 103: 289-300.

19. Van Miert ASJPAM, Van Duin CTM, Koot M. Effects of IL-6 on endotoxin, some interferon-induced, recombinant interferonγ, and Trypanosoma brucei infection in feed intake in dwarf goats. J Vet Med A 1990; 37: 337-342.

20. Koot M, Van Duin CTM, Wensing T, Van Miert ASJPAM. Comparative observations of fever and associated clinical, haematological and blood biochemical changes after parenteral administration of Poly I: C, Interferon α, Interferon β and Lipopolysaccharide in goats. Vet Quarterly 1987; 11: 41-50.

21. Van Miert ASJPAM, Kaya F, Van Duin CTM. Changes in feed intake and forestomach motility of dwarf goats by recombinant-deprived bovine IL-1α, IL-1β and IFNα. Submitted for publication.

22. Van Miert ASJPAM, Van Duin CTM, Verheijden JHM, Schotman AJH. Endotoxin-induced fever and associated haematological and blood biochemical changes in the goat. The effect of repeated administration and the influence of azithromycin. Rev Vet Sci 1982; 33: 248-255.

23. Van Miert ASJPAM, Van Duin CTM, Verheijden JHM, Schotman AJH. Physical and changes in plasma zinc and iron concentrations in the goat: the role of leukocyte pyrogen. J Vet Med A 1990; 37: 327-336.

24. Koot M, Van Duin CTM, Wensing T, Van Miert ASJPAM. Comparative observations in goats on fever and associated clinical haematological and blood biochemical changes after iv. and intramuscular administration. J Vet Med A 1990; 37: 430: 395-403.

25. Fischer E, Marano MA, Barber AI, et al. Comparison between effects of interleukin-1α administration and sublethal endotoxin in primates. J Vet Med A 1991; 38: 244-245.

26. Koivuranta-Varas P, Banda D, Goldstein IM. Bacterial lipopolysaccharide-induced fever in rabbits. J Physiol (London) 1990; 428: 299-312.

27. Lofthus DG, Van Miert ASJPAM, Schotman AJH. Zinc concentration in plasma during experimental Salmonella dublin infection and endotoxin-induced fever in calves. Vet Res 1991; 20: 176-177.

28. Sato JA, J. M. Cohen, J. Renier F, et al. Febrile response in calves following experimental infection with virulent Escherichia coli. J Anim Sci 1991; 69: 235-240.

29. Goldblatt SH, Cohen DA, Jay M, McClain J. Interleukin-β-induced depression of insulin and leucopenia in pigs. J Physiol (London) 1987; 385: 227-312.

30. Kuo Van Vusa-P, Banda D, Goldstein IM. Bacterial lipopolysaccharide-induced fever in calves on the pharmacokinetics of lipopolysaccharide. J Vet Med A 1991; 38: 174-184.

31. Goffinet T, Riake O, Andersen O, Jorgensen T. Lactoferrin as an indicator of sepsis and endotoxaemia in pigs. Stand J Infect Dis 1988; 20: 659-666.

32. Goldblatt SH, Cohen DA, Jay M, McClain J. Interleukin-α-induced depression of insulin and leucopenia in pigs. J Physiol (London) 1987; 385: 227-312.

33. Kuo Van Vusa-P, Banda D, Goldstein IM. Bacterial lipopolysaccharide-induced fever in calves on the pharmacokinetics of lipopolysaccharide. J Vet Med A 1991; 38: 174-184.

34. Beaumier DJ, Caldwell MS, Hollebeke RE. Inflammation triggers hypothermia and de novo synthesis of serum transferase and ceruloplasmin in mice. Infect Immun 1984; 46: 485-494.

35. Cooper RJ. Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiol Rev 1985; 65: 238-309.

36. Liu J, Liu YP, Schonheidt JH, Klasezon CD. Endotoxin induction of hepatic metallothionein is mediated through cytokines. Toxicol Appl Pharmacol 1991; 109: 235-240.

37. Potter B, Bladen B, McHugh TA, et al. Effects of endotoxin on insulin uptake by the hepatocyte. J Physiol (London) 1989; 8: 275-281.

38. Wada M, Morimoto A, Watanabe T, Sakata Y, Marikami N. Effects of physical training on fed and fasted phase responses induced in rats by bacterial endotoxin or interleukin-1α. J Vet Med A 1991; 38: 595-603.

39. Fischer E, Marano MA, Barber AI, et al. Comparison between effects of interleukin-1α administration and sublethal endotoxin in primates. J Vet Med A 1991; 38: 244-245.

40. Aultzky WII, Tlg H, Vogel W, et al. Acute hematologic effects of interleukin alpha, interferon gamma, tumour necrosis factor alpha and interleukin. J Vet Med A 1991; 62: 25-31.

ACKNOWLEDGEMENTS. We are grateful to Ciba-Geigy Ltd, Basle, Switzerland (Dr R.P. Steiger) and American Cyanamid Company, Princeton, NJ, USA (Dr T. J. Williams) for their generous gifts of rBoIFNγ, rBoIFNα, and rBoIFNβ, respectively. The technical assistance of Mrs E. Smits and Mr J. M. Eyndhoven in preparing the manuscript is greatly appreciated.

Received 28 February 1992; accepted with revision 7 April 1992.