Extraction of $R = \frac{\sigma_T}{\sigma_L}$ from CCFR ν_μ-Fe and $\bar{\nu}_\mu$-Fe differential cross sections

U. K. Yang, T. Adams, A. Alton, C. G. Arroyo, S. Avvakumov, L. de Barbaro, P. de Barbaro, A. O. Bazarko, R. H. Bernstein, A. Bodek, T. Bolton, J. Brau, D. Buchholz, H. Budd, L. Bugel, J. Conrad, R. B. Drucker, B. T. Fleming, J. A. Formaggio, R. Frey, J. Goldman, M. Goncharov, D. A. Harris, R. A. Johnson, J. H. Kim, B. J. King, T. Kinnel, S. Koutsouliotas, M. J. Lamm, W. Marsh, D. Mason, K. S. McFarland, C. McNulty, S. R. Mishra, D. Napoles, P. Nienaber, A. Romsosan, W. K. Sakumoto, H. Schellman, F. J. Sciulli, W. G. Seligman, M. Vakili, M. H. Shaevitz, W. H. Smith, P. Spentzouris, E. G. Stern, N. Suwonjandee, A. Vaitaitis, M. Vakili, J. Yu, G. P. Zeller, and E. D. Zimmerman
(The CCFR/NuTeV Collaboration)

1 University of Cincinnati, Cincinnati, OH 45221
2 Columbia University, New York, NY 10027
3 Kansas State University, Manhattan, KS 66506
4 Northwestern University, Evanston, IL 60208
5 University of Oregon, Eugene, OR 97403
6 University of Rochester, Rochester, NY 14627
7 University of Wisconsin, Madison, WI 53706

(August 20, 2019)

We report on the extraction of $R = \frac{\sigma_T}{\sigma_L}$ from CCFR ν_μ-Fe and $\bar{\nu}_\mu$-Fe differential cross sections. The CCFR differential cross sections do not show the deviations from the QCD expectations that are seen in the CDHSW data at very low and very high x. R as measured in ν_μ scattering is in agreement with R as measured in muon and electron scattering. All data on R for $Q^2 > 1$ GeV2 are in agreement with a NNLO QCD calculation which uses NNLO PDFs and includes target mass effects. We report on the first measurements of R in the low x and $Q^2 < 1$ GeV2 region (where an anomalous large rise in R for nuclear targets has been observed by the HERMES collaboration).

PACS numbers:12.38.Qk, 13.15.+g, 24.85.+p, 25.30.Pt

The ratio of longitudinal and transverse structure function, $R (=F_L/2xF_T)$ in deep inelastic lepton-nucleon scattering experiments is a sensitive test of the quark parton model of the nucleon. In leading order QCD, R for the scattering from spin 1/2 constituents (e.g. quarks) is zero, while R for the scattering from spin 0 or spin 1 constituents is very large. The small value of R originally measured in electron scattering experiments provided the initial evidence for the spin 1/2 nature of the nucleon constituents. However, a non-zero value of R can also originate from processes in which the struck quark has a finite transverse momentum. These include Quantum Chromodynamics (QCD) processes involving emissions of gluons, processes involving the production of heavy quarks, target mass corrections and higher twist effects. Recently, there has been a renewed interest in R at small values of x and Q^2, because of the large anomalous nuclear effect that has been reported by the HERMES experiment. A large value of R in nuclear targets could be interpreted as evidence for non spin 1/2 constituents, such as ρ mesons in nuclei. In this letter, we report on an extraction of R in neutrino scattering (R^ν), extending to low x and Q^2. We also compare the CCFR differential cross sections with previous CDHSW ν_μ-Fe and $\bar{\nu}_\mu$-Fe data.

Previous measurements of R in muon and electron scattering ($R^{\mu/e}$) were fit using $R^{\mu/e}_{world}$ (a QCD inspired empirical form). The $R^{\mu/e}_{world}$ fit is also in good agreement with recent NMC muon data for R at low x, and with theoretical predictions for $R^{\mu/e}_{NNLO+TM}$ (a Next to Next to Leading (NNLO) QCD calculation using NLO Parton Distribution Functions (PDFs), and including target mass effects). Very recently the NNLO-QCD calculations for F_L have been updated to include estimates of the contribution from NNLO PDFs. In addition, the NLO-QCD calculations have been updated to include $ln(1/x)$ resummation terms which are important at small x. A full QCD calculation which includes both the NNLO and the $ln(1/x)$ resummation terms is not yet available. We evaluate $R^{\mu/e}_{NNLOpdfs+TM}$ and $R^{\mu/e}_{NNLOresum+TM}$ by adding target mass effects to these calculations of F_L.

For $x > 0.1$ it is expected that R^ν should be the same as $R^{\mu/e}$. However, for $x < 0.1$ and low Q^2 (in leading order), R^ν is expected to be larger than $R^{\mu/e}$ because of the production of massive charm quarks in the final state. We calculate a correction to $R^{\mu/e}_{world}$ for this difference using a leading order slow rescaling model with a charm mass, $m_c(=1.3$ GeV) and obtain an effective
The CCFR experiment collected data using the Fermilab Tevatron Quad-Triplet wide-band ν_μ and $\overline{\nu}_\mu$ beam. The CCFR detector \cite{13} consists of a steel-scintillator target calorimeter instrumented with drift chambers, followed by a toroidally magnetized muon spectrometer. The hadron energy resolution is $\Delta E_h/E_h = 0.85/\sqrt{E_h}$ (GeV), and the muon momentum resolution is $\Delta p_\mu/p_\mu = 0.11$. By measuring the hadronic energy (E_h), momentum (p_μ), and muon angle (θ_μ), we construct three independent kinematic variables x, Q^2, and y. The relative flux at different energies, obtained from the events with low hadron energy ($E_h < 20$ GeV), is normalized so that the neutrino total cross section equals the world average $\sigma_{\nu N}/E = (0.677 \pm 0.014) \times 10^{-38} \text{cm}^2/\text{GeV}$ and $\sigma_{\bar{\nu}N}/\sigma_{\nu N} = 0.499 \pm 0.005$ \cite{14}. After fiducial and kinematic cuts ($p_\mu > 15$ GeV, $\theta_\mu < 0.150$, $E_h > 10$ GeV, and 30 GeV $< E_\nu < 360$ GeV), the data sample used for the extraction of structure functions consists of 1,030,000 ν_μ and 179,000 $\overline{\nu}_\mu$ events. Dimuon events are removed because of the ambiguous identification of the leading muon for high-y events.

The raw differential cross sections per nucleon on iron are determined in bins of x, y, and E_ν ($0.01 < x < 0.65$, $0.05 < y < 0.95$, and $30 < E_\nu < 360$ GeV). Over the entire x region, differential cross sections are in good agreement with NLO QCD calculation using the Thorne and Roberts Variable Flavor Scheme (TR-VFS) \cite{15} with MRST99 \cite{16} extended \cite{17} PDFs (with $R = R_{\text{eff}}$). This calculation includes an improved treatment of massive charm production. The QCD predictions, which are on free neutrons and protons, are corrected for nuclear \cite{18}, higher twist \cite{19} and radiative effects \cite{20}.

Figure \ref{fig:1} shows some bins of the differential cross sections extracted at $E_\nu = 85$ GeV (complete tables of the differential cross sections at all other energy bins are available \cite{12}). Also shown are the prediction of the NLO QCD TR-VFS calculation using extended MRST99 PDFs, and the prediction from a CCFR leading order Buras-Gaemers (LO-BG) QCD inspired fit \cite{12} used for calculation of acceptance and resolution smearing corrections (uncertainties in these corrections are included in the systematics). As expected from the parton model and QCD, the CCFR data exhibit a quadratic y dependence at small x for ν_μ and $\overline{\nu}_\mu$, and a flat y distribution at high x for the ν_μ cross sections. Also shown are differential cross sections reported by the CDHSW collaboration. A disagreement between the CCFR data and CDHSW data is observed in the slope of the y distribution at small x, and in the level of the cross sections at large x. This difference is crucial in any QCD analysis which uses the CDHSW data. For example, at the lowest x bin the CDHSW ν_μ-Fe data continues to increase with y, in contrast to the small decrease at large y which is expected from the antiquark component in the nucleon. In addition, at the highest value of x ($x = 0.65$), the level of CDHSW ν_μ-Fe data does not agree with CCFR or with the QCD predictions. A recent QCD analysis \cite{20} which includes these CDHSW data, extracts an anomalously large asymmetry between the s and \overline{s} quark distribution at high x from the CDHSW data. Since the u and d quark
distributions are very well constrained at this value of x (from muon data on hydrogen and deuterium), the only way to accommodate the high x CDHSW data is by the introduction of an asymmetric strange sea at high x. The CCFR data do not show this anomaly.

The raw differential cross sections are corrected for electroweak radiative effects [19], the W boson propagator, and for the 5.67% non-isoscalar excess of neutrons over protons in iron (only important at high x). Values of R (or equivalently F_L) and $2xF_1$ are extracted from the sums of the corrected ν_e-Fe and ν_μ-Fe differential cross sections at different energy bins according to Eq. (1). An extraction of R using Eq. (1) requires a knowledge of ΔxF_3 term. We obtain ΔxF_3 from theoretical predictions for massive charm production using the TRVSFS NLO calculation with the extended MRST99 and the suggested scale $\mu = Q$. This prediction is used as input to Eq. (1) in the extraction of R^ν. This model yields ΔxF_3 values similar to the NLO ACOT Variable Flavor Scheme [2], (implemented with CTEQ4HQ [22] and the recent ACOT [23]) suggested scale $\mu = m_c$ for $Q < m_c$, and $\mu^2 = m_c^2 + 0.5Q^2(1 - m_c^2/Q^2)^n$ for $Q > m_c$ with $n = 2$. A discussion of the various theoretical calculations for ΔxF_3 can be found in references [24,25]. Because of the positive correlation between R and ΔxF_3, the uncertainty in ΔxF_3 introduces a model systematic error at low x. However, for $x > 0.1$, the ΔxF_3 term is small, and the extracted values of R^ν are not sensitive to ΔxF_3. For the systematic error on the assumed level of ΔxF_3, we vary the strange sea and charm sea simultaneously by $\pm 50\%$ (ΔxF_3 is directly sensitive to the strange sea minus charm sea). Note that the extracted value of R is larger for a larger input ΔxF_3 (i.e. a larger strange sea).

Figure 2 shows typical extractions of R (or F_L) and $2xF_1$ for a few values of x and Q^2. The extracted values of R^ν are sensitive to the energy dependence of the neutrino flux ($\sim y$ dependence), but are insensitive to the absolute normalization. The uncertainty on the flux shape is estimated by constraining F_2 and xF_3 to be flat over y (or E_ν) for each x and Q^2 bin.

The extracted values of R^ν are shown in Fig. 3 for fixed x versus Q^2. The inner errors include both statistical and experimental systematic errors (of similar magnitude on average [12]) added in quadrature. The outer errors include the additional ΔxF_3 model errors (added linearly). Also shown are the HERMES results for R_{NN14} at small x and Q^2.

Figure 3. CCFR measurements of R^ν as a function of Q^2 for fixed x, compared with electron and muon data, with the R^ν_{world} and R^ν_{eff} ($m_c = 1.3$) fits, with $R^\nu_{NNLOpdfs+TM}$ QCD calculation including NNLO PDFs (dashed), and with $R^\nu_{NNLOresum+TM}$ (dotted). The inner errors include both statistical and experimental systematic errors added in quadrature. The outer errors include the additional ΔxF_3 model errors (added linearly). Also shown are the HERMES results for R_{NN14} at small x and Q^2.
CCFR data do not clearly show a large anomalous in-multiplying by the values from the nuclear effect in \(R_{\nu} \) versus target with respect to the nitrogen target in HERMES. The CCFR differential cross section data with the predictions from a QCD inspired leading order fit to \(Q^2 \) calculation should include both the NNLO and the resummation terms. The calculations including either of these higher order terms yield values of \(R_{\nu/e}^{NNLOpdfs+TM} \) (mostly from the NNLO gluon distribution).

Also shown are the HERMES electron scattering results in nitrogen at low values \(x \). The HERMES data [1] for \(R \) are extracted from their ratios for \(R_{\nu/e}^{NNLOpdfs+TM} \) at low \(Q^2 \) which are lower than \(R_{\nu/e}^{world} \) and are in better agreement with the data. However, at low \(x \) for \(Q^2 < 5 \text{ GeV}^2 \) there are large uncertainties in \(R_{\nu/e}^{NNLOpdfs+TM} \) (dotted line). Note that a complete calculation should include both the NNLO and the \(\ln(1/x) \) resummation terms. The calculations including either of these higher order terms yield values of \(R \) at small \(x \) and low \(Q^2 \) which are lower than \(R_{\nu/e}^{world} \). This is expected that any nuclear effect in \(R \) would be enhanced in the CCFR iron target with respect to the nitrogen target in HERMES. However, depending on the origin, the effects in electron versus \(\nu_e \) charged current scattering could be different.

The CCFR measurements of \(F_L \) and \(2xF_1 \) as a function of \(Q^2 \) for \(x < 0.05 \) are shown in Fig. 4. The curves are the predictions from a QCD inspired leading order fit to the CCFR differential cross section data with \(R = R_{\nu/e}^{eff} \). The extracted values at the very lowest \(x \) and \(Q^2 \) do not show any anomalous increase in \(R \) in our iron target. At the lowest values of \(x \), the disagreement between the QCD inspired fit and the data is because \(R = R_{\nu/e}^{eff} \) was assumed (but our data and the most recent theoretical calculations favor smaller values of \(R \) in this region).

In conclusion, over the \(x \) and \(Q^2 \) range where perturbative QCD is expected to valid, \(R_{\nu/e}^{NNLOpdfs+TM} \) (dotted) and \(R_{\nu/e}^{NNLOresum+TM} \) (dotted) are in good agreement with the NNLO QCD calculation including NNLO PDFs and target mass effects. A very large nuclear enhancement in \(R \) (as reported by the HERMES experiment in electron scattering on nitrogen) is not clearly observed in \(\nu_e \)-Fe scattering. A comparison between CCFR and CDHSW differential cross section indicates that although the cross sections agree over most of the kinematic range, the CCFR data do not show the deviations from the QCD expectations that are seen in the CDHSW data at very low and very high \(x \).

[1] A. Bodek et al., Phys. Rev. D20, 1471 (1979).
[2] H. Georgi and H. D. Politzer, Phys. Rev. D14, 1829 (1976).
[3] U. K. Yang and A. Bodek, Phys. Rev. Lett. 82, 2467 (1999).
[4] U. K. Yang and A. Bodek, Eur. Phys. Jour. C13, 241 (2000).
[5] K. Ackerstaff et al., Phys. Lett. B475, 386 (1999).
[6] G. Miller, S. Brodsky, and M. Karliner, Phys. Lett. B481, 245 (2000).
[7] P. Berge et al., Z. Phys. C49, 607 (1991).
[8] L. W. Whitlow et al., Phys. Lett. B250, 193 (1990).
[9] M. Arneodo et al., Nucl. Phys. B483, 3 (1997).
[10] A. D. Martin et al., Eur. Phys. Jour. C18, 117 (2001).
[11] R. S. Thorne, Phys. Lett. B474, 372 (2000); A. M. Cooper-Sarkar, hep-ph/0102151 (Feb. 2001).
[12] http://www-e815.fnal.gov/~ukyang/ukyang, University of Rochester [UR-1583, 2001] (/thesis/thesis.ps)
[13] W. K. Sakamoto et al., Nucl. Instr. Meth. A294, 179 (1991); B. King et al., ibid A302, 254 (1991).
[14] W. G. Seligman et al., Phys. Rev. Lett. 79, 1213 (1997).
[15] R. S. Thorne and R. G. Roberts, Phys. Lett. B421, 303 (1998); Eur. Phys. Jour. C19, 339 (2001).
[16] A. D. Martin et al., Eur. Phys. Jour. C4, 463 (1998).
[17] For \(Q^2 < 1.2 \text{ GeV}^2 \), the MRST99 PDFs are extended according to the \(Q^2 \) dependence of GRV94 PDFs (M. Gluck et al., Z. Phys. C67, 433 (1995)).
[18] We use a fit to all \(\mu \) and \(e \) data on iron and deuterium.
[19] D. Yu. Bardin, V. A. Dokuchaeva, JINR-E2-86-260 (1986).
[20] V. Barone, C. Pascaud, and F. Zomer, Eur. Phys. Jour. C12, 243 (2000).
[21] M. Aivazis, F. Olness, and W. K. Tung, Phys. Rev. Lett. 65, 2339 (1990).
[22] H. Lai et al., Z. Phys. C74, 463 (1997).
[23] M. Aivazis, J. Collins, F. Olness, and W. K. Tung, Phys. Rev. D50, 3102 (1994).
[24] U. K. Yang et al., Phys. Rev. Lett. 86, 2742 (2001).
[25] S. Kretzer et al., hep-ph/0101088.
[26] K. Abe et al., Phys. Lett. B452, 194 (1999).
[27] L. H. Tao et al., Z. Phys. C70, 387 (1996); S. Dasu et al., Phys. Rev. D49, 5641 (1994).
[28] J. Aubert et al., Nucl. Phys. B293, 740 (1987); A. Benvenuti et al., Phys. Lett. B237, 592 (1990).