Remote Health Coaching System and Human Motion Data Analysis for Physical Therapy with Microsoft Kinect

Qifei Wang & Gregorij Kurillo
University of California, Berkeley
Berkeley, CA 94720, USA
{qifei.wang, gregorij}@eecs.berkeley.edu

Ferda Ofli
Qatar Computing Research Institute
Doha, Qatar
fofli@qf.org.qa

Ruzena Bajcsy
University of California, Berkeley
Berkeley, CA 94720, USA
bajcsy@eecs.berkeley.edu

Abstract

This paper summarizes the recent progress we have made for the computer vision technologies in physical therapy with the accessible and affordable devices. We first introduce the remote health coaching system we build with Microsoft Kinect. Since the motion data captured by Kinect is noisy, we investigate the data accuracy of Kinect with respect to the high accuracy motion capture system. We also propose an outlier data removal algorithm based on the data distribution. In order to generate the kinematic parameter from the noisy data captured by Kinect, we propose a kinematic filtering algorithm based on Unscented Kalman Filter and the kinematic model of human skeleton. The proposed algorithm can obtain smooth kinematic parameter with reduced noise compared to the kinematic parameter generated from the raw motion data from Kinect.

1. Introduction

In the last decade, we witness increasing interests for remote monitoring technologies in health care. Remote monitoring captures the activity and other anthropometric data from the subjects. It can perform online analysis of these data, provide health-care feedback to the subjects monitored, and also represent the data to the doctor for further analysis. One typical application is in the physical therapy, especially for the elderly subjects, the doctors need to monitor the subjects physical performance at home during the training sessions and provide further treatments based on the subjects performance.

Human performance capture systems have been widely studied and applied in many applications. However, traditional motion capture systems require particular system setup and markers attached to the subjects monitored which make it impractical for recording motion data at home. Other motion sensors, like the inertia sensors are sensitive to the noise make them also not suitable for motion capture in human daily activities. The emerging accessible and affordable sensing technologies, e.g. the depth sensor, such as Microsoft Kinect, make it possible to capture the humans motion data at home [1].

Recently, we built an interactive exercise coaching system based on Microsoft Kinect [2] intended to encourage elderly adults to perform physical therapy at home. Since this type of sensors were not designed for medical purpose, the acquired motion data are usually noisy with low fidelity for the motion analysis. For example, the joint position data from Microsoft Kinect usually exhibits significant jitters caused by low depth accuracy, occlusions, ambiguity, and loss of tracking. The body segment lengths are also vary during the motion. In order to perform online analysis of subjects performance and feedback to the subjects, we further studied the motion data accuracy from Microsoft Kinect. We also studied the kinematic parameter extraction from the motion data captured by Kinect.

This paper is organized as following: Section 2 introduces the interactive system we have built for the remote physical therapy; Section 3 introduces the work we have done on motion data accuracy evaluation of Microsoft Kinect; Section 4 describes our work on the human kinematic parameters extraction from Kinect motion data; Conclusions are summarized in Section 5.
2. Interactive Exercise Coaching System

This system is built for automated exercise coaching of elderly users that would motivate them and track their physical performance when they perform physical therapy at home. The system contains four main modules: data acquisition, data processing, performance evaluation, and feedback. The pipeline of this system is shown in Fig. 1.

In the data acquisition module, we use the Microsoft Kinect camera to record the subjects' motion. Microsoft Kinect captures both the texture and depth information of the scene and provides real-time human skeletal joint data. Based on the skeletal data estimated by Microsoft Kinect SDK, the data processing module removes the outlier data caused by loss tracking with the joint Gaussian and uniform distribution model introduced in Section 3. It further extracts the kinematic parameters from the skeletal motion data. The performance evaluation module does real-time motion analysis, including repetition counting, most moving joints, reachable range, and moving time, which can be further used to measure the flexibilities, endurance, strength, and balance of the subjects. The feedback module can illustrate the evaluation results in the user interface on the screen and also provide both the system automatically generated suggestions and doctors' suggestions to the subject. Moreover, the system stores the subjects' motion data in the database for further reference in the future.

3. Kinect Data Accuracy Evaluation

3.1. Data accuracy evaluation

In order to quantify the fidelity of the motion data captured by Microsoft Kinect, we evaluated its pose tracking with respect to the motion capture system. In this study, we evaluate both the first and second generations of Microsoft Kinect which are called Kinect 1 and Kinect 2, respectively, in the following of this section. The motion capture system we use in this evaluation is the PhaseSpace optical motion capture system which can provide high-precision motion capture data at 120 Hz. The Kinect 1 and Kinect 2 capture the motion data at 20 Hz. During the evaluation, all these three systems capture the human motion simultaneously. The motion data from these three devices are temporally synchronized using Network Time Protocol (NTP). The skeletal joint data from Kinect 1 and Kinect 2 are extracted based on the latest SDK of them. The skeletal joint data from motion capture system are obtained by the Recap2 software. We picked 20 common joints and 14 common segments among the three systems. The joints and segments picked in the evaluation are demonstrated in Fig. 2.

During the evaluation, we perform 12 different exercises that six of them are in the sitting pose which are designed by the physical therapist for the elderly people with physical problems. The other six are in the standing pose which is the most common motion that people may perform in their daily life. Each exercise is performed by the subjects five times and captured in three different view angles, including the frontal view, right side view with 30 degree and 60 degree. The degree here means the angle between the subjects' frontal direction and the optical axis of the Kinect cameras.

For the joint position, we evaluate the offset and variance of the joint positions obtained by Kinect 1 and Kinect 2 with respect to the corresponding joint position captured by motion capture system. All the joint positions from these three systems are transformed into a unified coordinate system by the camera calibration performed before the motion capture.

Tables 1 and 2 show the average joint offset and variance of the offset in the sitting and standing exercise, respectively.

We also evaluate the segment length based on the motion data. Tables 3 and 4 demonstrate the average segment length error and variance of the segment length in the sitting
Table 1. Joint position offsets in sitting exercises.

Joint	Kinect 1			Kinect 2		
	Mean (mm)	SD (mm)	Mean (mm)	SD (mm)		
ROOT	256 262 263	25 20 25	100 102 106	17 18 16		
SPINE	91 97 100	24 20 21	110 117 126	13 14 11		
NECK	79 65 62	25 21 23	84 78 73	14 16 14		
HEAD	74 70 67	26 21 21	50 51 50	13 15 12		
SHO_L	90 89 97	26 24 33	76 76 82	16 24 29		
ELB_L	81 86 98	27 29 35	87 103 114	17 28 25		
WRI_L	76 90 118	33 48 55	59 84 115	25 53 44		
HAN_L	85 106 134	41 60 68	64 95 125	31 60 53		
SHO_R	78 74 69	28 24 23	80 83 78	17 20 17		
ELB_R	95 93 89	28 38 34	88 77 70	21 25 19		
WRI_R	64 93 110	30 53 65	61 64 71	25 28 24		
HAN_R	83 113 130	35 65 80	74 71 75	24 28 26		
HIP_L	188 200 215	25 20 22	115 122 139	16 17 15		
KNE_L	96 95 93	24 24 27	76 95 114	16 18 25		
ANK_L	54 77 81	17 25 32	93 103 113	16 18 29		
FOO_L	66 74 86	19 26 38	93 105 119	18 25 39		
HIP_R	207 210 211	25 21 24	133 128 132	15 18 16		
KNE_R	123 118 128	23 23 34	120 117 119	15 17 24		
ANK_R	67 75 91	17 21 27	112 122 132	15 19 27		
FOO_R	67 74 84	17 20 26	126 134 139	19 20 28		

Table 2. Joint position offsets in standing exercises.

Joint	Kinect 1			Kinect 2		
	Mean (mm)	SD (mm)	Mean (mm)	SD (mm)		
ROOT	245 256 267	23 25 25	76 81 93	24 19 18		
SPINE	79 89 102	22 22 24	112 129 144	17 16 17		
NECK	82 91 102	23 24 23	113 129 143	18 16 16		
HEAD	89 84 87	30 29 26	79 82 90	26 22 20		
SHO_L	76 76 80	33 36 38	68 72 78	29 31 31		
ELB_L	98 112 134	46 52 66	112 137 159	37 41 57		
WRI_L	85 93 110	56 57 71	66 84 111	47 52 73		
HAN_L	85 96 114	62 65 80	77 94 121	49 55 80		
SHO_R	76 76 74	30 30 26	96 106 109	26 24 22		
ELB_R	98 89 80	38 39 34	96 91 80	33 32 31		
WRI_R	80 82 80	43 43 38	78 88 87	33 32 31		
HAN_R	85 83 77	46 49 44	81 79 74	33 34 32		
HIP_L	186 205 228	28 27 27	106 125 150	23 19 21		
KNE_L	101 111 124	33 38 52	107 129 148	26 34 51		
ANK_L	119 144 135	43 61 58	135 168 174	33 51 58		
FOO_L	115 135 122	42 60 59	130 170 180	33 56 63		
HIP_R	188 195 207	25 24 23	103 104 109	25 17 17		
KNE_R	105 102 101	31 29 26	115 119 118	26 25 27		
ANK_R	111 113 108	38 39 28	146 158 157	32 33 35		
FOO_R	97 93 86	36 37 29	146 157 150	32 33 38		
and standing exercises.

The results show that overall Microsoft Kinect 2 generates more stable skeletal joint tracking with less offset and variance as compared to Microsoft Kinect 1. The variance of the joint position and segment length are both increasing with the view angle increasing. Some joints usually have larger offset and variance than the other joints, e.g. hip and knee joints in Kinect 1, the ankle and foot joints in Kinect 2.

3.2. Outlier data removal

The joint position offsets and variance in general depend on various sources of error, such as systematic errors, noise from depth quantization, occlusions, and ambiguity, etc. Compared to the multi-view motion capture system, the Kinect camera captures the motion data from a single viewpoint [7]. The occlusions and ambiguity from a single viewpoint will cause loss of tracking. Although the Kinect can infer the joint position based on the related body part [3], it is not reasonable to perform motion data analysis based on the inferred motion data due to tracking loss. Therefore, we analyze the error distribution to discriminate between the random errors and the errors due to tracking loss.

Generally, the random systematic errors follow the Gaussian distribution while the errors due to tracking loss can

Table 3. Mean and SD of the bone length difference, sitting pose

Joint	Kinect 1 (Mean mm)	SD (mm)	Kinect 2 (Mean mm)	SD (mm)
ARM_UP_L	-76 -74 -81	17 18 21	-67 -62 -68	14 17 20
ARM_LO_L	-46 -40 -32	17 22 27	-39 -30 -24	14 19 23
HAND_L	-3 -4 -3	22 19 20	-20 -17 -17	20 24 25
ARM_UP_R	-68 -70 -69	17 17 18	-67 -67 -69	15 14 13
ARM_LO_R	-37 -30 -29	17 20 21	-35 -28 -30	13 15 16
HAND_R	2 3 3	21 24 24	-15 -13 -9	20 19 17
PELVIC_L	-28 -28 -36	6 5 8	-54 -62 -75	3 3 4
LEG_UP_L	49 38 38	30 32 34	9 5 5	16 18 18
LEG_LO_L	-90 -100 -81	23 28 31	-80 -79 -75	17 18 21
FOOT_L	-13 -4 1	8 10 13	36 38 32	12 14 19
PELVIC_R	-29 -33 -41	6 5 7	-52 -47 -49	3 3 4
LEG_UP_R	44 46 53	31 28 31	1 9 18	16 18 18
LEG_LO_R	-86 -88 -95	25 26 31	-76 -82 -74	17 19 23
FOOT_R	-8 -2 8	7 9 11	41 44 40	12 11 12

Table 4. Mean and SD of the bone length difference, standing pose

Joint	Kinect 1 (Mean mm)	SD (mm)	Kinect 2 (Mean mm)	SD (mm)
ARM_UP_L	-60 -62 -65	19 22 23	-54 -54 -51	15 18 20
ARM_LO_L	-30 -31 -34	16 18 20	-34 -33 -32	17 17 18
HAND_L	-7 -5 0	21 21 23	-32 -32 -27	20 21 23
ARM_UP_R	-53 -58 -59	21 19 18	-59 -66 -66	17 14 14
ARM_LO_R	-22 -22 -22	17 18 20	-30 -27 -25	18 18 17
HAND_R	-1 4 6	23 21 19	-21 -16 -14	19 18 18
PELVIC_L	-27 -30 -37	9 7 8	-52 -63 -75	5 5 5
LEG_UP_L	113 119 137	28 33 39	-13 -10 -4	19 21 25
LEG_LO_L	-64 -66 -65	29 29 31	-79 -85 -86	21 23 25
FOOT_L	-6 -1 2	9 12 12	43 42 34	9 12 14
PELVIC_R	-28 -34 -41	7 6 8	-47 -44 -44	7 4 5
LEG_UP_R	103 115 128	29 27 29	-25 -18 -6	18 18 20
LEG_LO_R	-61 -57 -58	26 25 25	-79 -79 -77	20 20 20
FOOT_R	-2 1 4	8 9 10	48 45 32	9 11 16
be treated as outliers belonging to a uniform distribution. Therefore, we use a mixture model of a Gaussian distribution and a uniform distribution to approximate the distribution of the joint position offsets, as defined in equation (1).

\[p(\theta) = \rho \times N(\mu, \sigma) + (1 - \rho) \times U(x_1, x_2). \]

(1)

In equation (1), \(p \) denote the mixture distribution of joint position, \(\theta \), \(N(\mu, \sigma) \) and \(U(x_1, x_2) \) denote the Gaussian and uniform distribution respectively, \(\rho \) denotes the weighting parameter. Fig. 3 demonstrates the distribution fitting results for the right elbow in the exercise. The results show the mixture model of the Gaussian and uniform distributions overlaid on the data histograms.

By applying the mixture model and maximal likelihood estimation, we can remove the outlier data which satisfy the uniform distribution and make cleaner data for the further analysis. Table I demonstrates the joint offset of both standing and sitting exercises without the outlier data.

Table 5. Average joint position offsets without outliers.

	Mean (%)	SD (%)				
	0°	30°	60°	0°	30°	60°
Kinect 1						
Sitting	5	8	6	35	38	35
Standing	8	7	8	39	36	33
Kinect 2						
Sitting	2	5	3	23	36	23
Standing	8	5	6	49	46	43

4. Kinematic parameter estimation

The kinematic parameters, such as the segment length, joint quaternion, and positions are widely used in human motion analysis and human robotic interaction. For the high fidelity motion data, the kinematic parameters can be directly estimated from the skeletal joint position. However, generating the kinematic parameters from the noisy motion data captured by Kinect will propagate the noise into the following processing and analysis steps. In order to reduce the noise in the derived kinematic parameters from the Kinect noise motion data, we propose a kinematic filtering approach in this section.

4.1. Kinematic model

In motion analysis, the humans skeleton can be represented as a series joints which are connected by bones. Therefore, the each joint position can be derived by its parent joint position, the corresponding segment orientation and length. The humans skeleton can thus be represented as a kinematic chain. In this paper, we treat the root joint as the root of each kinematic chain. Based on the skeletal structure shown in Fig. 2, the SPINE, NECK, SHO_L, SHO_R, HIP_L, and HIP_R are modeled as the 3-DoF joints and their parent joints are ROOT, SPINE, NECK, NECK, ROOT, ROOT, respectively; The ELB_L, ELB_R, KNE_L, KNE_R are treated as the 1-DoF joints whose parent joints are SHO_L, SHO_R, HIP_L, HIP_R, respectively; The WRIST, WRIST, ARM_L, and ARM_R are the 2-DoF joints that their parent joints are ELB_L, ELB_R, KNE_L, KNE_R, respectively. For each joint, its position can be derived by its parent joint position, \(T_p \), the segment length of its corresponding segment, \(l_c \), the relative rotation matrix of its corresponding segment, \(R_p \), with respect to its parent segment, the rotation matrix of its parent segment, \(R_p \), as the following function \(F \):

\[[T_c, 1]^T = F(T_p, l_c, R_t, R_p) =
\begin{bmatrix}
R_t \times R_p \\
0 \\
1
\end{bmatrix}
\times
\begin{bmatrix}
0 \\
0 \\
l_c \\
1
\end{bmatrix} \]

(2)

4.2. Kinematic filtering

With the kinematic model presented in the last section, we propose a kinematic filtering algorithm based on Kalman filtering to generate the kinematic parameter from the Kinect motion data. The input state vector is constituted by the root joint position, the segment length, and the segment rotation quaternion. The observation vector is constituted by the rest joint positions. The state transition is modeled by a random-walk process. The observation measuring function is a set of the kinematic model function as defined by equation (2). Since the state transition and the observation measuring functions are nonlinear, we apply the Unscented Kalman Filter (UKF) for the filtering. Since the segment lengths for a certain person are constants, we propose a four-pass UKF to meet with this constraints. In the first forward pass, the UKF is defined by the following functions

\[x(t) = x(t - 1) + \delta(t) \]

(3)

\[y(t) = F(x(t)) + \varepsilon(t) \]

(4)
In equations 3 and 4, the $x(t)$ and $x(t + 1)$ denote the state vector at time t and $t + 1$, respectively. δ denote the random term in the random walk process, y denote the observation vector, ϵ denotes the observation noise. In the first backward pass, the observation measuring function is the same as equation 4. The state transition function is defined as

$$x(t) = x(t + 1) + \delta(t) \quad (5)$$

After the first two pass, the length of each segment are assigned as a constant in the following forward and backward passes. The covariance and the random terms in the random walk process of the segment lengths are all set to zeros.

Fig. 4 demonstrates the filtering results of UKF for the motion data from Kinect 1. The segment quaternion curves after filtering are much smoother than the input noisy data and also demonstrate strong periodic pattern which is in accordance to the input motion. Therefore, the UKF based on the kinematic model is a practical solution to extract kinematic parameters.

5. Conclusions

This paper summarize the recent progress in the motion analysis for physical therapy with the affordable and accessible device like Microsoft Kinect. Based on preliminary studies, our remote health coaching system receive positive feedback from the users for its accessibility and interaction. Since the motion data captured by Microsoft Kinect is noisy, we further studied the data fidelity of each joint position and segment length. We also propose a mixture model to distinguish the outlier data caused by loss of tracking. It can helps to reduce the noise in the further motion data analysis. Finally, the kinematic filtering based on UKF provide a solution to extract smooth kinematic parameters from the noisy motion data.

References

[1] H. M. Hondori and M. Khademi. A review on technical and clinical impact of microsoft Kinect on physical therapy and rehabilitation. Journal of Medical Engineering, 2014:16, 2014.
[2] F. Ofli, G. Kurillo, S. Obdrzalek, R. Bajcsy, H. Jimison, and M. Pavel. Design and evaluation of an interactive exercise coaching system for older adults: Lessons learned. IEEE Journal of Biomedical and Health Informatics, page 15, Epub ahead of print. 2015.
[3] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and A. Blake. Real-time human pose recognition in parts from single depth images. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1297–1304, 2011.
[4] E. Wan, R. Van Der Merwe, et al. The unscented kalman filter for nonlinear estimation. In Proceedings of IEEE Adaptive Systems for Signal Processing, Communications, and Control Symposium (AS-SPCC), pages 153–158, 2000.
[5] Q. Wang, G. Kurillo, F. Ofli, and R. Bajcsy. Evaluation of pose tracking accuracy in the first and second generations of microsoft kinect. arXiv preprint arXiv:1512.04134, 2015.
[6] Q. Wang, G. Kurillo, F. Ofli, and R. Bajcsy. Unsupervised temporal segmentation of repetitive human actions based on kinematic modeling and frequency analysis. In International Conference on 3D Vision (3DV), pages 562–570, 2015.
[7] Z. Zhang. Microsoft Kinect sensor and its effect. MultiMedia, IEEE, 19(2):4–10, Feb 2012.