Abstract. CWH, CWN stand for collectionwise Hausdorff and collectionwise normal respectively. We analyze the statement “there is a $\lambda - CWH$ not CWH first countable (Hausdorff topological) space”. We prove the existence of such a space under various conditions, show its equivalence to: there is a λ-CWN not CWN first countable space and give an equivalent set theoretic statement; the nicest version we can obtain is in §4. The author had a flawed proof of the existence of such spaces in ZFC, for some $\lambda > \aleph_1$, in June of 1992; still we decided that there is some interest in the correct part and some additions.

I would like to thank Alice Leonhardt for the beautiful typing.
My thanks also go to Franklin Tall for showing me the problem in 1992, for the participants of the seminar in Jerusalem in July ’92 and Fall ’93 for their remarks, and to Mirna Džamonja for many corrections.

Publ. No. E9
Done - §1,§2,§3 June of 1992 - Toronto;§4 - Oct. 1993.
This version typed 6/24/94
We shall deal mainly with first countable topological spaces. All spaces will be Hausdorff.

0.1 Definition. 1) A space X is metrizable if the topology on X is induced by a metric.

2) A space X is $(< \lambda)$-metrizable if for each $Y \subseteq X$, $|Y| < \lambda$, the induced topology on Y is metrizable. Let μ-metrizable mean $(< \mu^+)$-metrizable.

3) A space X is CWH (collectionwise Hausdorff) if for every subspace Y on which the induced topology is discrete (i.e. every subset is open) there is a sequence $\langle u_y : y \in Y \rangle$ of pairwise disjoint open subsets of X, such that for every $y \in Y$ we have $y \in u_y$.

4) A space X is $(< \lambda)$-CWH if for every $Y \subseteq X$ of cardinality $< \lambda$, Y (with the induced topology) is CWH.

μ-CWH means $(< \mu^+) – CWH$.

5) A space is CWN (collectionwise normal) when: if $\langle Y_i : i < \alpha \rangle$ is a sequence of pairwise disjoint subsets of X, and each Y_i is clopen in $X \upharpoonright (\bigcup_{j<\alpha} Y_j)$, then we can find pairwise disjoint open $\langle U_i : i < \alpha \rangle$ in X such that $Y_i \subseteq U_i$.

6) A space is $(< \lambda)^-*$ CWN if every subspace with $< \lambda$ points is CWN (we use the $*$ because there may be a bound $\alpha < \lambda$ such that all relevant subspaces are of size $< \alpha$).

n^-* CWN means $(< \mu^+)^-*$ CWN.

0.2 Question. (ZFC) 1) Are there \aleph_1-metrizable not metrizable (first countable Hausdorff topological) spaces?

2) Are there $\aleph_1 – CWH$ not CWH first countable spaces?

We shall also consider analogous questions with \aleph_1 replaced by any $\lambda > \aleph_0$.

Note: λ-metrizable $\implies \lambda – CWH$. Also, metrizable \implies CWN \implies CWH.

0.3 Observation. 1) Assume X is a space with character $\chi \leq \lambda$ (i.e. every point has a neighborhood basis of cardinality $\leq \chi$).

Then:

(a) X is $\lambda – CWH$ if and only for every subspace Y of cardinality $\leq \lambda$ on which the induced topology is discrete there is a sequence $\langle u_y : y \in Y \rangle$ of pairwise disjoint open subsets of X, $y \in u_y$.

(b) In (a), for any fixed $\mu \leq r$, we can restrict ourselves (on both sides) to discrete subsets of cardinality μ.

2) If X is CWN then X is CWH.

Proof. 1) The implication \iff is immediate. For the implication \Rightarrow assume that $Y \subseteq X$, $|Y| \leq \lambda$ and $X \upharpoonright Y$ is the discrete topology. Let $\langle U_i^y : i < i^y \leq \chi \rangle$ be a neighborhood basis in X for $y \in Y$; choose for $y^1, y^2 \in Y, i_1 < i^{y^1}, i_2 < i^{y^2}$ a point $z[y^1, y^2, i_1, i_2]$ which is in $U_{i_1}^{y_1} \cap U_{i_2}^{y_2}$, if this intersection is non-empty. By the assumption $X \upharpoonright Y_1$ is CWH, where $Y_1 = Y \cup \{ z[y^1, y^2, i_1, i_2] : y^1 \in Y, y^2 \in Y, i_1 < i^{y^1}, i_1 < i^{y^2} \}$.
§1 Analysis of “$\aleph_1 - CHW$ but not CHW”

1.1 Lemma. 1) Assume

$(\ast)_\lambda \ cf(\lambda) = \aleph_0 < \lambda, \eta_\alpha \in \omega_\lambda$ for $\alpha < \lambda^+$, and for each $\beta < \lambda^+$, we can find pairwise disjoint end segments for $\langle \eta_\alpha : \alpha < \beta \rangle$

(e.g. $\exists h_\beta : \beta \rightarrow \omega$ such that

$\alpha_1 < \alpha_2 < \beta \land k > h_\beta(\alpha_1) \land k > h_\beta(\alpha_2) \Rightarrow \eta_{\alpha_1} \upharpoonright k \neq \eta_{\alpha_2} \upharpoonright k$).

Then 1) the space $\omega_\lambda \cup \{ \eta_\alpha : \alpha < \lambda^+ \}$ with the topology given below is

(α) first countable and Hausdorff

(β) $\lambda - CHW$, even λ-metrizable

(γ) not λ^+-CHW.

The topology is the obvious one each $\eta \in \omega_\lambda$ is isolated, and for each $\alpha < \lambda^+$, the neighborhood basis of η_α is $\{\{\eta_\alpha \upharpoonright \ell : k < \ell \leq \omega \} : k < \omega\}$.

2) Moreover, the space is not metrizable but is λ-metrizable.

Proof. Straightforward. $\square_{1.1}$

1.2 Conclusion. 1) If the answer to 0.2(1) or 0.2(2) is “no”, then $(\ast)_\lambda$ of 1.1 is not true for any λ.

2) If $(\ast)_\lambda$ of 1.1 fails for all λ, then

$(\ast) \ cf(\lambda) = \aleph_0 < \lambda \Rightarrow pp(\lambda) = \lambda^+$

(by [Sh355,1.5A]).

3) If 2)'s conclusion holds, then for every λ singular we have $pp(\lambda) = \lambda^+$. (By [Sh371, 1.10] or [Sh371, 1.10A(6)] or [Sh355, 2.4(1)]), hence for $\theta < \mu$

$
\text{cov}(\mu, \theta^+), \theta^+, 2) \leq \mu^+$ (by [Sh430, 1.1]).

4) If 3)'s conclusion holds then:

(\ast) if λ is singular strong limit then

(a) $2^\lambda = \lambda^+$

hence

(b) \diamond^+_S, where $S_\lambda = \{ \delta < \lambda^+ : cf(\delta) \neq cf(\lambda) \}$, and \diamond^+_S means that there is a $\langle P_\delta : \delta \in S \rangle$, $P_\alpha \subseteq [\alpha]^\lambda$, $|P_\alpha| = \lambda$ such that

$(\forall X \subseteq \lambda^+) \exists \text{club } C \left[\bigwedge_{\delta \in S \cap C} (X \cap \delta) \in P_\delta \right]$

(by [Sh108] and see there on earlier work of Gregory).

So clearly $\diamond^+_S \ & S_1 \subseteq S \Rightarrow \diamond^+_S$.

(5) Not only $pp(\lambda) > \lambda^+$ and $\lambda > \aleph_0 = cf(\lambda)$ implies $(\ast)_\lambda$ (from 1.11); but assume we have $\langle \lambda_n : n < cf(\lambda) \rangle$, $\sum_n \lambda_n = \lambda$, $\lambda_n = cf(\lambda_n)$, tcf($\Pi \lambda_n / J^b_\omega$) = λ^+ exemplified by $\bar{f} = f_{\lambda \downarrow \alpha} < \lambda^+$ such that
⊕ if \(\aleph_0 < \text{cf}(\delta) = \kappa < \lambda \), then there is a closed unbounded \(A \subseteq \delta \) and
\(n_\alpha < \text{cf}(\lambda) \) for \(\alpha \in A \) such that
\(n_\alpha, n_\beta < n < \text{cf}(\lambda) \Rightarrow f_\alpha(n) < f_\beta(n) \).

Then using \(\oplus \) rather than \((*)_\lambda\), in 1.1 we get a \(\kappa^+\)-CWH, \(\kappa^+\)-metrizable first countable space (see [Sh:355,§6]). \(\square_{1.2} \)

1.3 Construction. Assume \(\lambda = \beth_\omega \) (or just \(\lambda \) is a strong limit, \(\text{cf}(\lambda) \neq \aleph_0 \)),
\(2^\lambda = \lambda^+ \) and \(S \) is a stationary subset of \(\lambda^+ \),
\(S \subseteq \{ \delta < \lambda^+ : \text{cf}(\delta) = \aleph_0 \) and \(\omega^2 \) divides \(\delta \} \) (the existence of an \(S \) like that such that \(\diamond_S \) suffices).

We shall build a space with the set of points \(\{ x_\alpha, y_\alpha : \alpha < \lambda^+ \} \). Each \(x_\alpha \) will be isolated in \(X \) and each \(y_\beta \) will have a countable neighborhood basis in \(X \). We shall have \(\{ u_{\alpha,n} : n < \omega \} \) as a neighborhood base of \(y_\alpha \) with \(u_{\alpha,n} \) decreasing in \(n \) and
\(u_{\alpha,n} = \{ y_\alpha \} \cup \{ x_\beta : f_\alpha(\beta) > n \} \) where \(f_\alpha(\beta) \in \omega \).

Note that each \(Y_\alpha \) is isolated in the space restricted to \(\{ Y_\alpha : \alpha < \lambda^+ \} \).

The only thing left is to define \(f \).

We set \(f_\alpha(\beta) = 0 \) except in some specified cases. For the space to be Hausdorff it is enough to have:

for \(\alpha < \beta \) there is an \(m = m(\alpha, \beta) < \omega \) such that
\(\neg(\exists \gamma)[f_\alpha(\gamma) \geq m \& f_\beta(\gamma) \geq m] \). We shall make a stronger condition:

\((*) \quad \alpha < \beta \Rightarrow (\exists \lambda < 1)(f_\alpha(\gamma) \geq 1 \& f_\beta(\gamma) \geq 1] \).

Remember that \(\diamond_S \) holds as \(2^\lambda = \lambda^+ \) and \(\text{cf}(\lambda) > \aleph_0 \). So there is a \(\langle g_\alpha : \alpha \in S \rangle \) \(g_\alpha : \alpha \to \omega \) such that

\((\forall g \in \lambda^+)(\exists \alpha \in S)(g_\alpha = g | \alpha) \).

Now, if the space is CWH then there is a \(g : \lambda^+ \to \omega \) such that \(\langle u_{\alpha,g(\alpha)} : \alpha < \lambda^+ \rangle \) are pairwise disjoint.

We define by induction on \(\alpha \) a limit \(\alpha < \lambda^+\), \(f_i(j) \) for \(i, j < \alpha \). Call the sequence \(\langle f_i : i < \alpha \rangle \) in \(\alpha^\omega \to ^\alpha \), so if \(\alpha < \beta \), then \(f_\alpha \) is an initial segment of \(f_\beta \). Usually we just give value zero to \(f_i(j) \).

If \(\alpha \in S \), and \(g_\alpha \) looks as a candidate for \(g \), i.e. \(\langle u_{i,g_\alpha(i)} : i < \alpha \rangle \) are pairwise disjoint, where \(u_{i,k}^\alpha = \{ \beta < \alpha : f_i(\beta) > k \} \), and if for some \(m = m_\alpha \),
\(\text{otp}(\{ \beta < \alpha : g_\alpha(\beta) = m \}) = \alpha \), then choose

(a) \(\beta_\alpha^n < \beta_\alpha^{n+1} \cdots < \alpha = \bigcup_n \beta_\alpha^n \)
(b) \(g_\alpha(\beta_\alpha^n) = m \)

and define \(f_\alpha^{\alpha+\omega} \) (extending \(f_\alpha \)) by

\(f_\alpha^{\alpha+\omega}(\alpha + n) = n \)

and

\(f_\beta^{\alpha+\omega}(\alpha + n) = m + 1 \)

(other values of \(f_\alpha^{\alpha+\omega} \) are zero). If \(g_\alpha \) fails the conditions above, choose \(m_\alpha = 0 \),
\(\beta_\alpha^n \) satisfying conditions (a) above and extend \(f_\alpha \) as just described.

So we cannot extend \(g_\alpha \) to \(\alpha^+ \) if \(g(\alpha) = k \). We get
So the space is not CWH (hence not metrizable). For simplicity, we can request that $\beta_n^\alpha \notin \bigcup_{\gamma \in S} [\gamma, \gamma + \omega)$. Suppose the space is not $\aleph_1 - CWH$. So for some $U \in [\lambda^+]^{\aleph_1}$,

$$X \upharpoonright \{x_\alpha, y_\alpha : \alpha \in U\}$$

is not CWH.

So without loss of generality if

$$\alpha \in S \cap U$$

then

$$\alpha + n \in U \text{ and } \beta_n^\alpha \in U.$$

So

$$\otimes \text{ for every } g : U \to \omega \text{ (candidate to give the separation), we get: for some } \alpha \in S \cap U, (\exists n) g(\beta_n^\alpha) \leq m_\alpha.$$

This is a contradiction. \qed

1.4 Comments.

(1) The space constructed in 1.3 does not have neighborhood bases consisting of countable sets, so is not excluded by the earlier consistency results from [JShS320].

(2) But $\Vdash_{\text{Levy}(\aleph_1, \lambda^+)} "X \text{ is not } \aleph_1 - \text{CWH}"$ may fail unless we put more restrictions on the β_n^α. See (3).

(3) If we build X as above, let $P = \text{Levy}(\aleph_1, \lambda^+)$ and we build a P-name \dot{g} such that

$$\Vdash_P "\dot{g} : \lambda \to \omega \text{ witnesses that } X \text{ is CWH},"$$

then X is \aleph_1-CWH.

[Why? given a $Y \in [\lambda^+]^{\aleph_1}$, we can find $(p_i : i < \omega_1)$ increasing in P such that

$$\bigwedge_{\alpha \in Y} \bigvee_i p_i \Vdash \dot{g}(\alpha) = \text{something}.$$

1.5 Definition. We say that the space X is $\lambda - WCH$ if for any discrete set of λ points, some subset of cardinality λ can be separated by disjoint open sets.

1.5A Remark. By a theorem of Foreman and Laver for first countable spaces we have the consistency of: $\aleph_1 - WCH \Rightarrow \aleph_2 - WCH$.

On the other hand, e.g. namely in [FoLa], starting with a huge embedding $j : V \to M$ with critical point κ and $j(\kappa) = \lambda$, the following is obtained:
There is a forcing notion $P \ast R$ such that P is κ-c.c., $|P| = \kappa, V[G_P] \models \kappa = \omega_1$, $R \in V[G_P]$ is λ-c.c., of cardinality λ and $(<\kappa)$-closed and $V[G_{P \ast R}] \models \lambda = \omega_2$. In addition, there is a regular embedding $h : (P \ast R) \rightarrow j, P$ with $h(p) - p$ for all $p \in P$ and the master condition property holds for h, j. $P \ast R$. Finally, if G is $(P \ast R)$-generic, then in $V[G], j_P/h''(G)$ is κ-centered.

The consistency of $\aleph_1 - WCWH \rightarrow \aleph_2 - WCWH$ for first countable spaces clearly follows from the above result of [FoLa]. For the convenience of the reader we include the following easy Claim 1.5B which shows this implication.

1.5B Claim. Suppose X is a first countable topological space and $|X| = \kappa^+$, while $Y_0 \subseteq X$ is a discrete subspace of X, with $|Y_0| = \kappa^+$. If P is a κ^+-c.c., even κ-centered forcing notion such that $\Vdash P \{\bar{x}_\gamma : \gamma < \lambda\}$ is separated, then in V, there is a $Y \subseteq Y_0, |Y| = |Y_0|$ and Y is separated in X.

Proof. Without loss of generality, the set of points of Y_0 in V_P is κ^+, and we denote $\lambda = \kappa^+$. We may fix a set $\{\bar{x}_\gamma : \gamma < \lambda\}$ of P-names such that $\Vdash P \{\bar{x}_\gamma : \gamma < \lambda\}$ is separated.

We can also assume that there are no repetitions among the x_γ, and that $x_\gamma \geq \gamma$. Suppose that in V, the neighborhood bases for points in Y_0 are given by

$$\langle \langle u^n_y : n < \omega : y \in Y_0 \rangle :$$

So, without loss of generality $\{u^n_y : n < \omega : y \in Y_0\}$ are pairwise disjoint, in V^P.

Now, let $P = \bigcup_{i < \kappa} P_i$ where each P_i is directed.

For each $\alpha < \lambda$, there is a forcing value to x_α, say β_α. So, there is an $i(*) < \kappa$ such that $A = \{\alpha : \beta_\alpha \in P_i(*)\}$ is unbounded in λ.

Therefore, $\{\beta_\alpha : \alpha \in A\}$ is separated by

$$\{u^n_{\beta_\alpha} : \alpha \in A\}.$$ (So, having that any two members of P_i are compatible, or that out of any λ elements of P there are λ pairwise compatible, i.e. P is λ-Knaster, suffices). □

1.6 Claim. There is a first countable Hausdorff space X which is $(2^{\aleph_1})^+ - WCWH$ but is not $WCWH$.

Proof. Let $\lambda = \sum_{n<\omega} \lambda_n, \lambda_n^{\aleph_0} < \lambda_{n+1}. Let \langle \eta_\alpha : \alpha < \lambda^+\rangle, \eta_\alpha \in \omega \lambda, \alpha < \beta and \eta_\alpha < J_{\text{post}} \eta_\beta.$

Topology: as in 1.1.
Proof of not $\lambda^+ - WCWH$: if $\mathcal{U} \in [\lambda^+]^{\lambda^+}$, $\langle \eta_\alpha : \alpha \in \mathcal{U} \rangle$ cannot be separated as $|\{ \eta_\alpha \upharpoonright \ell : \ell < \omega, \alpha \in \mathcal{U} \}| \leq \lambda$.

If $\mathcal{U} \in [\lambda^+]^{(2^{\aleph_0})^+}$, without loss of generality $\text{otp}(\mathcal{U}) = (2^{\aleph_0})^+$; set $\mathcal{U} = \{ \alpha_\zeta : \zeta < (2^{\aleph_0})^+ \}$. Now for some $Y \in [(2^{\aleph_0})^+][(2^{\aleph_0})^+]$ and n, $\langle \eta_{\alpha_\zeta} \upharpoonright [n, \omega) : \zeta \in Y \rangle$ is strictly increasing (not just modulo J^b_ω but in every coordinate (see [Sh355,§6], [Sh400,§5], [Sh430,§6]).

1.7 Remark. We can prove other Claims like 1.6 (see the references above).
2.1 Definition. For an ordinal γ let us define

\((\ast)^1_\gamma\) there is a $S \subseteq \{\delta < \gamma : cf(\delta) = \aleph_0\}$ and, for $\delta \in S$, a sequence $\langle \beta^\delta_n : n < \omega \rangle$ strictly increasing with limit δ, and a $m_\delta < \omega$, such that $(\forall g \in \gamma)(\exists \delta \in S)(\exists \infty n) [g(\beta^\delta_n) \leq m_\delta]$.

2.2 Claim. (1) If the answer to 0.2 is no (or much less), then for some $\gamma < \omega_2$, $(\ast)^1_\gamma$ holds.

(2) If $\text{MA} + \neg \text{CH}$, then $\gamma < 2^{\aleph_0} \Rightarrow \neg (\ast)^1_\gamma$.

(3) Without loss of generality, in $(\ast)^1_\gamma$, each β^δ_n is a successor ordinal.

Proof. 1) By the proof of 1.3 and 1.2.

(2) Check. Use the natural forcing $\{p : p \text{ is a finite function from } \gamma \text{ to } \omega\}$ with $p \leq g$ iff $p \subseteq g$ & $(\forall \delta)(\delta \in S \cap \text{Dom}(p) \rightarrow (\forall n) [\beta_n \in \text{Dom}(g) \setminus \text{Dom}(p) \rightarrow g(\beta_n) > n_\delta])$. (3) Check.

2.2A Conclusion. If $\text{MA} + \neg \text{CH}$ then the answer to 0.2 is yes. In fact, there is an \aleph_1-metrizable (hence \aleph_1-CWH) not CWH (hence not metrizable) first countable space.

Proof. By 2.2(1) and 2.2(2).

2.3 Claim. If $(\ast)^1_\gamma$ for some $\gamma < \omega_2$, then $(\ast)^1_{\omega_1}$.

Proof. Choose $\gamma^* < \omega_2$ minimal such that $(\ast)^1_{\gamma^*}$. Clearly $\gamma^* \geq \omega_1$.

If $\gamma^* = \omega_1$ we are done. So assume $\gamma^* > \omega_1$, and we shall get a contradiction. We fix an $S \subseteq \gamma$ and mJ, $\langle \beta^J_n : n < \omega \rangle$ for $J \in S_1$, which exemplify $(\ast)^1_{\gamma^*}$. Note that for every $\gamma < \gamma^*$ there is a $g_\gamma \in \gamma^\omega$ such that:

$$\otimes \text{ if } \delta \in S \cap \gamma \text{ then } \{n : g_\gamma(\beta^\delta_n) \leq m_\delta\} \text{ is finite.}$$

Case 1. $\gamma^* = \gamma + 1$, $\gamma \notin S$.

Extend g_γ by $\{\langle \gamma, 0 \rangle\}$.

Case 2. $\gamma^* = \gamma + 1$, $\gamma \in S$:

define $g \in \gamma^* \omega$:

- if $\beta \in \gamma, \beta \notin \{\beta^\gamma_n : n < \omega\}$ then $g(\beta) = g_\gamma(\beta)$
- if $\beta = \gamma$ then $g(\beta) = 0$
- if $\beta = \beta^\gamma_n$ then $g(\beta) = \text{Max}\{g_\gamma(\beta), n + 8, m_\gamma + 8\}$.

So g gives a contradiction.
Case 3. \(\text{cf}(\gamma^*) = \aleph_0 \).

Let \(\gamma^* = \bigcup_{n<\omega} \gamma_n \), \(\gamma_0 = 0 \), \(\gamma_n < \gamma_{n+1} \), and each \(\gamma_{n+1} \) is a successor of a successor ordinal.

Let \(g = \bigcup \{ g_{\gamma_{n+1}} \restriction [\gamma_n, \gamma_{n+1}) : n < \omega \} \) - it gives a contradiction.

Case 4. \(\text{cf}(\gamma^*) = \omega_1 \).

Let \(\langle \gamma_i : i < \omega_1 \rangle \) be increasing continuous with limit \(\gamma^* \), \(\gamma_0 = 0 \), \(\gamma_{i+1} \) a successor of a successor ordinal.

Let \(S' = \{ \gamma_i : \gamma_i \in S \) (so \(i \) is a limit ordinal)\}.

Subcase A. \(\gamma^*, \langle < \beta_n^i : n < \omega > : \gamma \in S' \rangle, \langle m_\gamma : \gamma \in S' \rangle \) does not exemplify \((*)_{\gamma^*}^\gamma\).

So some \(g^* \in \gamma^* \omega \) shows this. Define \(g \) by:

\[
\text{if } \beta \in [\gamma_i, \gamma_{i+1}) \text{ then } g(\beta) = \max \{ g_{\gamma_{i+1}}(\beta), g^*(\beta) \}
\]

So \(g \) gives a contradiction.

Subcase B. \(\langle < \beta_n^i : n < \omega > : \gamma \in S' \rangle, \langle m_\gamma : \gamma \in S' \rangle \) exemplifies \((*)_{\gamma^*}^\gamma\).

Let \(S^* = \{ i < \omega_1 : i \) a limit, \(\gamma_i \in S \) \} (necessarily stationary).

Let \(\gamma^* = \bigcup_{i < \omega_1} a_i, a_i \) countable increasing continuous, such that \(a_0 = \emptyset \),

\[
a_i \cap \{ j : j < \omega_1 \} = \{ j : j < i \}, a_i \subseteq \gamma_i \text{ and } \gamma_j \in a_i \land j \in S^* \Rightarrow \bigwedge_n \beta_n^j \in a_i.
\]

For \(i \in S^* \) let \(u_i = \{ n < \omega : \beta_n^i \in a_i \} \).

Note

\(\odot \) if \(i \in S^* \) and \(j < i \), then \(\{ n \in u_i : \beta_n^j \in a_j \} \) is finite, as it is included in \(\{ n < \omega : \beta_n^i < \gamma_j \} \). [Why? Remember \(a_j \subseteq \gamma_j \).]

Let \(S^{**} = \{ i \in S^* : u_i \) is infinite and \(i \) is a limit ordinal\} \). So we already know

\(\oplus \) for every \(g \in \gamma^* \omega \), for some \(i \in S^* \), for infinitely many \(n < \omega \), \(g(\beta_n^i) \leq m_{\gamma_i} \).

We claim

\(\oplus^+ \) for every \(g \in \gamma^* \omega \) for some \(i \in S^{**} \), for infinitely many \(n \in u_i \) we have \(g(\beta_n^i) \leq m_{\gamma_i} \).

Otherwise, for some \(g^* \in \gamma^* \omega \) this fails and we define \(g \):

\[
\text{let } \beta \in a_{i+1} \setminus a_i \text{ (there is one and only one such } i) ,
\text{ then } g(\beta) = \max \{ g^*(\beta), m_{\gamma_i} + 8, m_{\gamma_{i+1}} + 8 \}
\]

As \(g \) gives a contradiction to \(\oplus \), clearly \(\oplus^+ \) holds.

Now let \(h \) be a one to one function from \(\omega_1 \) onto \(\gamma^* \) such that for \(i \) limit, \(h \) maps \(\{ j : j < i \} \) into \(a_i \).

Let for \(i \in S^{**} \), \(\{ j_n^i : n < \omega \} \) enumerate \(\{ j < i : h(j) \in \{ \beta_n^i : n \in u_i \} \} \), and \(m_i^* = m_{\gamma_i} \) for \(i \in S^{**} \).

Now \(\langle < j_n^i : n < \omega > : i \in S^{**} \rangle, \langle m_i^* : i \in S^{**} \rangle \) exemplifies that \(\gamma^* \) could have been chosen to be \(= \omega_1 \), as required. \(\square_{2.3} \)

We define the combinatorial property we actually use.
2.4 Definition. 1) $\text{INCWH}(\lambda) = \text{INCWH}^1(\lambda)$ means:

λ is regular $> \aleph_0$ and for some stationary $S \subseteq \{\delta < \lambda : \text{cf}(\delta) = \aleph_0\}$ we have $\langle m_\delta < \beta^\delta_n : n < \omega : \delta \in S \rangle$ such that:

$m_\delta < \omega$, $\beta^\delta_n < \beta^\delta_{n+1} < \delta = \bigcup_{n<\omega} \beta^\delta_n$, β^δ_n is a successor and:

(a) for every $g \in \lambda$, for some $\delta \in S$, for infinitely many n, $g(\beta^\delta_n) \leq m_\delta$

(b) for every $U \subseteq \lambda$, $|U| < \lambda$, for some $g \in U$, for every $\delta \in S \cap U$, for every $n < \omega$ large enough, $g(\beta^\delta_n) > m_\delta$.

2) We can replace m_δ by $\langle m^\delta_n : n < \omega \rangle$, requesting $q(\beta^\delta_n) \leq m^\delta_n$ in (a) and $q(\beta^\delta_n) > m^\delta_n$ in (b). In this way we obtain a weaker property, which we call $\text{INCWH}^2(\lambda)$.

For other versions of the principle, as well as the connections between the various versions, see §3.

2.4A Discussion. 1) If $\text{INCWH}(\lambda)$, then there is a space (as in 1.3) which is Hausdorff first countable with λ points, not metrizable, not even CWH, but every subspace of smaller cardinality is metrizable.

2) So if we prove $(\exists \lambda > \aleph_1)\text{INCWH}(\lambda)$ we have solved the original problem 0.2.

3) $(b)_\kappa$ means that we require $|U| < \kappa$. Note that $(b)_{\aleph_1}$ holds trivially and that $n \leq \kappa \& (b)_\kappa \Rightarrow (b)_n$.

More formally

2.5 Claim. If $\text{INCWH}(\lambda)$ then $\text{SINCWH}(\lambda)$ (even exemplified by a $(< \lambda)$-metrizable space) where:

2.6 Definition. $\text{SINCWH}(\lambda)$ means that there is a first countable T_2-space X with λ points which is $(< \lambda)$-CWH (i.e. for every discrete subset of cardinality $< \lambda$ we can choose pairwise disjoint open neighborhoods) but not λ-CWH.

Proof of 2.5. The points of X are y_α $(\alpha < \lambda)$ and $x_{\alpha,\beta}$ $(\beta < \alpha < \lambda)$ which have neighborhood bases $\langle u_{\alpha,n} : n < \omega \rangle$:

If $\alpha \in S$: $u_{\alpha,n} = \{y_\alpha\} \cup \{x_{\alpha,\beta} : \text{for some } k > n, \beta = \beta^\alpha_k\}$

If $\alpha \notin S$: $u_{\alpha,n} = \{y_\alpha\} \cup \{x_{\delta,\alpha} : \alpha < \delta \in S, \text{ for some } k, \alpha = \beta^\delta_k, \text{ and } n \leq m^\delta\}$.

Here, S is a fixed stationary $\subseteq \{\delta < \lambda : \text{cf}(\delta) = \aleph_0\}$ which exemplifies $\text{INCWH}(\lambda)$, together with $\langle m_\delta, (\beta^\delta_n : n < \omega : \delta \in S) \rangle$.

Checking of “X not CWH”

Let $Y = \{Y_\alpha : \alpha < \lambda\}$. Note that $X \upharpoonright Y$ is a discrete subspace of X. Let $\{u_{\alpha,n} : n < \omega\}$ be the neighborhood basis of y_α, there is $\langle y_{\alpha} \subseteq \{x_{\alpha,\beta} : \beta < \lambda\} \rangle$ a sequence of pairwise disjoint sets, for
some $g \in \lambda^\omega$. As $u_{\alpha,g(\alpha)} \cap u_{\beta,g(\beta)} = \emptyset$ for $\alpha \neq \beta(< \lambda)$ clearly for $\alpha \in S, \beta = \beta^2_n$ we get $n > g(\alpha) \Rightarrow g(\beta) > m_\alpha$ (since otherwise $x_{\alpha,\beta} \in u_{\alpha,g(\alpha)} \cap u_{\beta,g(\beta)}$).

So g contradicts (a) of $INCW(H)(\lambda)$.

Checking of “X is $(< \lambda) - CWH$”

Let $Z \subseteq X$, $|Z| < \lambda$ and $X \upharpoonright Z$ is discrete. Let

$Z_0 = \{x_{\alpha,\beta} : \beta < \alpha < \lambda\} \cap Z, Z_1 = \{y_\alpha : \alpha \in \lambda \setminus S\} \cap Z, Z_2 = \{y_\alpha : \alpha \in S\} \cap Z,$

so $\langle Z_1, Z_2, Z_3 \rangle$ is a partition of Z. Let $U = \{\alpha \in S : y_\alpha \in Z_2\}$, so $|U| < \lambda, U \subseteq \lambda$

hence by the assumption, there is a $g_0 \in \lambda^\omega$ as in $(b)_\lambda$.

We define u_z, a neighborhood of z for $z \in Z$:

\[
\begin{align*}
&\text{if } z \in Z_0, u_z = \{x_{\alpha,\beta}\} \\
&\text{if } z = y_\alpha \in Z_1, u_z = u_{\alpha,n(\alpha)} \text{ where } \\
&\quad n(\alpha) = \text{Min}\{n : n \geq g(\alpha) + 8 \text{ and } u_{\alpha,n} \cap Z_0 = \emptyset\} \\
&\text{if } z = y_\delta \in Z_2, u_z = u_{\delta,n(\delta)} \text{ where } \\
&\quad n(\delta) = \text{Min}\{n : n \geq m_\delta + 8 \text{ and } u_{\delta,n} \cap Z_0 = \emptyset\}.
\end{align*}
\]

Now check. $\square_{2.5}$

2.7 Claim. Assume $\lambda, \langle m_\delta, \langle \beta^\delta_n : n < \omega \rangle : \delta \in S \rangle$, are as in 2.4 but we require λ just to be an ordinal, and weaken $(b)_\lambda$ to

$(b)_\kappa$ for every $U \subseteq \lambda$; $|U| < \kappa$, for some $g \in U^\omega$

for every $\delta \in S \cap U$, for every n large enough $g(\beta^\delta_n) > m_\delta$.

Then for some regular μ, $\kappa \leq \mu \leq \lambda$ we have $INCW(H)(\mu)$.

Proof. If we allow μ in the definition of $INCW(H)(\mu)$ to be an ordinal: straightforward (and suffices for our main interest). Namely, we choose a U such that

\[
\begin{align*}
&(\alpha) \quad U \subseteq \lambda, \\
&(\beta) \quad \text{there is no } g \in \lambda^\omega \text{ such that for every } \delta \in S \cap U \text{ for every } n \text{ large enough } \\
&\quad g(\beta^\delta_n) > m_\delta, \\
&(\gamma) \quad \text{under } (\alpha) + (\beta) \text{ the order type of } U \text{ is minimal.}
\end{align*}
\]

Clearly $\text{otp}(U) \leq \lambda$ and $\text{otp}(U) \geq \kappa$. By the same proof of 2.3, $\text{otp}(U)$ is a regular cardinal, we call it μ and with the a_i’s as in the proof of 2.3, we get $INCW(H)(\mu)$. $\square_{2.7}$

2.8 Conclusion. If $\lambda = cf(\lambda) > \aleph_0$, $\diamondsuit_{\delta < \lambda : cf(\delta) = \aleph_0}$ then for some regular uncountable $\lambda' \leq \lambda$, $INCW(H)(\lambda')$. This follows by the proof of 1.3 and $(b)_{\aleph_1}$ and 2.7.

2.9 Observation. If $S_1 \subseteq S_2 \subseteq \{\delta < \lambda : cf(\delta) = \aleph_0\}$, $\langle m_\delta, \langle \beta^\delta_n : n < \omega \rangle : \delta \in S_1 \rangle$ witness $INCW(H)(\lambda)$, then we can find a $\langle m'_\delta, \langle \gamma^\delta_n : n < \omega \rangle : \delta \in S_2 \rangle$ witnessing $INCW(H)(\lambda)$.

2.10 Remark. 1) We can replace in our discussion \aleph_0 by θ. Toward this we define a family of spaces.
2.11 Definition. \(X \in T^\ell_\theta \) if \(X \) is a Hausdorff space with each point \(x \) having a neighborhood basis \(\{u_{x,\alpha} : \alpha < \alpha^*\} \) such that:

1. (a) \(\ell = 0 \) and \(\alpha^* \leq \theta \)
2. (b) \(\ell = 1, \alpha^* \leq \theta \) and \(\langle u_{x,\alpha} : \alpha < \alpha^* \rangle \) is decreasing.
3. (c) \(\ell = 2, \alpha^* = \theta \), and \(\langle u_{x,\alpha} : \alpha < \alpha^* \rangle \) is decreasing.

2.12 Definition. We define also the principles
\(INCWH(\lambda, \theta) = INCWH^1(\lambda, \theta) \) and \(INCWH^2(\lambda, \theta) \) as in 2.4.

2.13 Claim.

\((\alpha) \) if \(\lambda > cf(\lambda) = \theta, pp(\lambda) > \lambda^+ \) (or the parallel of 1.2(5)), then

\(\otimes \) there is an \(X \in T^2_\theta, |X| = \lambda^+, X \) is \(\lambda - CWH \), \(X \) has a discrete subspace of size \(\lambda^+ \), but for some \(X' \subseteq X, |X'| = \lambda, cl(X') = X \) (so \(|cl(X')| > \lambda \) (this is a strong form of \(X \) is not \(\lambda^+ - CWH \)).

\((\beta) \) if \(\lambda > cf(\lambda) = \theta, \lambda \) is a strong limit and \(2^\lambda = \lambda^+ \), then: \(INCWH(\lambda', \theta) \) for some \(\lambda' = cf(\lambda') \in [\theta^+, \lambda^+] \).

Proof. Similar to the above. \(\square_{2.13} \)
§3 Variants of Freeness

3.1 Definition. 1) \(\text{INCwh}(\lambda) = \text{INCwh}^1(\lambda)\) is defined as in 2.4 except that \(\langle \beta_n^\delta : n < \omega \rangle\) is not required to be increasing with limit \(\delta\), just \([n \neq m \Rightarrow \beta_n^\delta \neq \beta_m^\delta]\). 2) \(\text{INCwh}^2(\lambda)\) is defined as in (1) but we use \(\langle m_n^\delta : n \in \omega \rangle\) rather than a single \(m_\delta^\delta\).

3.2 Claim. 0) \(\text{INCWH}^\ell(\lambda) \Rightarrow \text{INCwh}^\ell(\lambda), \text{INCWH}^1(\lambda) \Rightarrow \text{INCWH}^2(\lambda),\)
(1) \(\text{INCwh}^1(\lambda) \Rightarrow \text{INCwh}^2(\lambda)\).
1) \(\text{INCwh}^2(b)\) (where \(b = \operatorname{Min}\{|F| : f \subseteq \omega \omega \) and for no \(g \in \omega \omega \) for every \(f \in F, f <^* g\}\).
2) Assume \(\lambda \leq 2^{\aleph_0}\) and for \(\alpha < r\), \(f_\alpha\) is a partial function from \(\omega\) to \(\omega\), \(\text{Dom}(f_\alpha)\) is infinite and \(U \subseteq \lambda \& |u| < \lambda \Rightarrow (\exists f \in \omega \omega) \bigwedge_{\alpha \in U} f_\alpha \leq^* f\) but for no \(f \in \omega \omega\),

\[
\bigwedge_{\alpha < \lambda} f_\alpha <^* f, \\
\text{then } \text{INCwh}^2(\lambda).
\]
3) It does not matter in 3.1 if we demand “\(\beta_n^\delta\) is a successor ordinal”.

Proof. 0) Check.
1) By 2).
2), 3) Check. \(\square_{3.2}\)

Questions. 1) Are there such examples for \(\lambda\) singular?
2) Suppose in the definition we allow for each \(\alpha\) a filter on \(\text{Dom}(f_\alpha)\) generated by \(\aleph_0\) sets; do we get an equivalent principle?

3.3 Claim. Assume \(\text{INCwh}^2(\kappa), \lambda > \kappa, \lambda = cf(\lambda), S \subseteq \{\delta < \lambda : cf(\delta) = \aleph_0\}\) is stationary and \(\diamondsuit_S\) holds.
Then (1) there is a \(\langle (m_n^\delta, \beta_n^\delta : n < \omega) : \delta \in S \rangle\) as in 2.4(2), but only (a) and (b) hold.
2) For some regular \(\lambda' \in [\kappa, \lambda]\), we have \(\text{INCWH}^2(\lambda')\).
3) We can replace \(\text{INCwh}^2(\lambda'), \text{INCWH}^2(\lambda)\) by \(\text{INCwh}^1(\lambda), \text{INCWH}^1(\lambda')\) respectively.

Proof. Now (2) follows from (1) as in 2.7 and we leave (3) to the reader. The proof of 3.3(1) is like the proof of 1.3 with one twist. Let \(h : \lambda \rightarrow \kappa\) be such that for every \(\zeta < \kappa, h^{-1}(\{\zeta\})\) has cardinality \(\lambda\). Let \(\langle (m_n^\delta, * \beta_n^\delta : n < \omega) : \delta \in S^* \rangle\) witness \(\text{INCwh}^2(\kappa)\).

Let \(\langle g_\delta : \delta \in S \rangle\) witnesses \(\diamondsuit_S\) i.e. \(g_\delta \in \delta \omega\) and for every \(g \in \lambda \omega\) for stationarily many \(\delta \in S, g_\delta = g \upharpoonright \delta\).
For each \(\delta \in S\) we define a function \(g_\delta^* \in \kappa \omega:\)

\[
g_\delta^*(\zeta) = \operatorname{Min}\left\{m : \text{for arbitrarily large } \alpha < \delta \text{ we have } : m = g_\delta(\alpha) \text{ and } h(\alpha) = \zeta\right\}, \text{ if defined.}
\]
If for some $\zeta < \kappa$, $g_\delta^*(\zeta)$ is not defined (i.e. there is no such m) - we do nothing. If $g_\delta^* \in \kappa$ is defined we know that for some $\zeta(\delta) \in S^*$, $(\exists \infty n)(g_\delta^*(\beta_n^\zeta(\delta)) \leq m_n^\delta)$. (Such a $\zeta(\delta)$ exists by the choice of $\langle m_n^\delta, * \beta_n^\zeta : n < \omega : \zeta \in S^* \rangle$). We fix such a δ.

For each $n < \omega$ choose $\xi(\delta, n) < \kappa$ such that:

\begin{itemize}
 \item[\begin{itemize}
 \item[(*)] for arbitrarily large $\gamma < \delta$ we have
 \begin{itemize}
 \item[\begin{itemize}
 \item[(\text{\textup{*}})_1] \text{for arbitrarily large } \gamma < \delta \text{ we have}
 \begin{itemize}
 \item[\begin{itemize}
 \item[(\text{\textup{*}})_2] \text{Choose } \gamma^\delta \text{ such that:}
 \begin{itemize}
 \item[(a)] $\gamma_n^\delta < \delta, h(\gamma_n^\delta) = \beta_n^\zeta(\delta) \land h_0(\gamma) = \beta_n^\zeta(\delta) \land h_1(\gamma) = \xi(\delta, n)$
 \item[(b)] $\delta = \bigcup_{n<\omega} \gamma_n^\delta$ and $\gamma_n^\delta < \gamma_n^\delta + 1$.
 \end{itemize}
 \end{itemize}
 \end{itemize}
 \end{itemize}
 \end{itemize}
 \end{itemize}
 \end{itemize}
\end{itemize}

We claim $\langle m_n^\zeta(\delta), \gamma_n^\delta : n < \omega : \delta \in S \rangle$ witness the conclusion. Looking at Definition 2.4, the preliminary properties hold.

We have to prove clause (a) of 2.7.

Proof of (a). Let $g \in \lambda \omega$. For each $\zeta < \kappa$, $\{\alpha < \lambda : h(\alpha) = \zeta\}$ has cardinality λ, so

$$g^*(\zeta) = \text{Min}\{m : (\exists \lambda \alpha)[h(\alpha) = \zeta \land g^\zeta(\alpha) = m]\}$$

is well defined. Let

$$A =: \{ (\zeta, m) : (\exists \lambda \alpha < \lambda)[g(\alpha) = m \land h(\alpha) = \zeta] \text{ and } \zeta < \kappa, m < \omega \}.$$

Then

$$E =: \\{ \delta < \lambda : \text{for every } (\zeta, m) \in A, \text{ for } \lambda \text{ many}
\begin{align*}
\alpha < \lambda, g^\zeta(\alpha) &= m, h(\alpha) = \zeta, \text{ and for every } \\
(\zeta, m) &\in (\kappa \times \omega) \setminus A, \text{ we have } \\
\delta &> \sup \{ \alpha < \lambda : g^\zeta(\alpha) = g^*(\zeta) \land h(\alpha) = \zeta \}
\end{align*}
\}$$

is a club of λ.

For stationarily many $\delta \in S$, $g_\delta \subseteq g$ so there is such a $\delta \in E \cap S$.

Now check: $g_\delta^* = g^*(g_\delta^* \text{ was defined earlier})$. The rest is also easy to check.

Proof of (b) i.e. $(< \kappa)$-freeness. Let $u \subseteq \lambda$, $|u| < \kappa$, hence $v = \{h(\alpha) : \alpha \in u\}$ is a subset of κ of cardinality κ, so by the choice of $\langle m_\delta^\zeta, * \beta_\delta^\zeta : n < \omega, \delta \in S \rangle$ there is a $f^* : v \rightarrow \omega$ as required.

Choose $f : u \rightarrow \omega$ by $f(\alpha) = f^*(h(\alpha))$, now f is as required. \qed

3.4 Discussion

1) Probably $\text{INCWH}(\lambda)$ should mean just there is a first countable $(< \lambda)$-CWH not λ-CWH, as this is actually the two notions which speak on $m_\alpha, \beta_\delta^\zeta(n < \omega)$ or $m_\alpha^\delta, \beta_\delta^\zeta(n < \omega)$ and they should be named $\text{INCWH}^\ell(\lambda), \ell = 1, 2$, respectively.

So, $(\exists \lambda \geq \mu)\text{INCWH}^\ell(\lambda)$ is equivalent to $(\exists \lambda \geq \mu)\text{INCWh}^\ell(\lambda)$ (for $\ell = 1, 2$).
3.5 Definition. 1) $\text{INCWH}^3(\lambda)$ means: there are $S \subseteq \lambda$ and $f : \lambda \times \lambda \to \omega$ such that if we define the spaces as before, i.e.

the points of X are $y_\alpha, x_{\alpha,\beta}, (\alpha < \beta < \lambda)$

each $x_{\alpha,\beta}$ is isolated

$$u_{\alpha,n} = \{y_\alpha\} \cup \{x_{\alpha,\beta} : f(\alpha,\beta) \leq n, \alpha < \beta, \alpha \notin S, \beta \in S\}$$

$$\cup \{x_{\beta,\alpha} : f(\beta,\alpha) \leq n, \beta < \alpha, \beta \notin S, \alpha \in S\}$$

for $n \in \omega$ is a neighborhood base at Y_α such that:

(a) $\alpha < \beta < \lambda$, $u_{\alpha,n} \cap u_{\beta,m} \neq \emptyset \Rightarrow \beta \in S \land \alpha \notin S$

(b) for every $\alpha < \beta \in S$ and for some n we have: $\alpha < \gamma < \beta \Rightarrow u_{\beta,n} \cap u_{\gamma,0} = \emptyset$,

then

(c) the space X is not CWH but is $(< \lambda)$-CWH.

2) $\text{INCWH}^4(\lambda)$ means: there is a symmetric two-place function f from λ to

$\{v : v \subseteq \omega \times \omega \text{ is finite, and } (n, m) \in v, n', m' \leq n, m' \leq m \Rightarrow (n', m') \in v\}$

which is not free (i.e. for any $g : \lambda \to \omega$ for some $\alpha < \beta$, $(g(\alpha), g(\beta)) \in f(\alpha, \beta)$), but is λ-free (i.e. for every $A \subseteq \lambda$, $|A| < \lambda$, there is a $g : A \to \omega$ with no such $\alpha < \beta$ which are from A.

The point is that

3.6 Claim. 1) $\text{INCWH}^1(\lambda) \Rightarrow \text{INCWH}^2(\lambda) \Rightarrow \text{INCWH}^3(\lambda) \Rightarrow \text{INCWH}^4(\lambda)$.

2) If $\lambda = \text{cf}(\lambda) > \aleph_0$ and $S \subseteq \{\delta < \lambda : \text{cf}(\delta) = \aleph_0\}$ is stationary not reflecting, then $\text{INCWH}^3(\lambda)$.

3.7 Lemma. In 2.5 we can weaken INCWH^1_λ to $\text{INCWH}^3(\lambda)$.

Comment. The $\text{INCWH}^\ell(\lambda)$ are not so artificial: we can translate $\text{INCWH}(\lambda)$ to a similar statement.

3.8 Claim. $\text{SINCWH}(\lambda) \Rightarrow \text{INCWH}^4(\lambda)$.

Proof. Let the space X exemplify $\text{SINCWH}(\lambda)$. Let $\{y_\alpha : \alpha < \lambda\} \subseteq X$ exemplifies “X not λ-CWH” i.e. it is discrete not separated and $\alpha \neq \beta \Rightarrow y_\alpha \neq y_\beta$.

Let $u_{\alpha,n} \supseteq u_{\alpha,n+1}, \{u_{\alpha,n} : n < \omega\}$ be a neighborhood basis of y_α. Now for each α, n, β, m choose if possible $x_{\alpha,n,\beta,m} \in u_{\alpha,n} \cap u_{\beta,m}$. Let $f(\alpha, \beta) = \{(n, m) : x_{\alpha,n,\beta,m} \text{ is defined}\}$. This f exemplifies $\text{INCWH}^4(r)$. $\square_{3.8}$

3.8A Remark. The \Leftarrow holds as well.
4.0 Definition. For $\lambda > cf(\lambda) = \theta$ let $(\ast)_\lambda$ means: there is a $\{\eta_\alpha : \alpha < \lambda^+\} \subseteq \theta \lambda$ which is λ-free (see (c) in 4.1(1) below).

4.1 Definition. 1) For θ a regular cardinal and $\sigma \geq 1$ (if $\sigma = 1$ we omit it) let:

$$SP_{\theta,\sigma} = \left\{ \lambda : \text{there is a family } H \text{ such that:} \right\}$$

(a) every $h \in H$ is a partial function from ordinals to θ
(b) $h \in H \Rightarrow |Dom(h)| = \theta$
(c) every $H' \subseteq H$ of cardinality $< \lambda$ is σ-free which means that it can be represented as a union $\bigcup_{i<i(\ast)} H'_i$, $i(\ast) < 1 + \sigma$, and each H'_i is free. For H'_i to be free means that there is a g, a function from ordinals to θ such that

$$\forall h (\exists \xi < \theta)[h \in H'_i \rightarrow (\forall \alpha \in \text{Dom}(h)[h(\alpha) \leq g(\alpha) \lor h(\alpha) \leq \xi])]$$

(d) H is not σ-free, $|H| = \lambda$

2)

$$SP_{d_{\theta,\sigma}} = \{ \lambda : \text{there is an } H \text{ satisfying (a)-(d) above and (e) each } h \in H \text{ is one to one}\}.$$
3) \[SP_{\theta, \sigma} = \left\{ \lambda : \text{there is a family } H \text{ such that} : \right\]

(a) if \((h, \bar{u}) \in H\) then \(h\) is a function from ordinals to \(\theta\)
(b) if \((h, \bar{u}) \in H\), then \(\bar{u} = \langle u_\varepsilon : \varepsilon < \theta \rangle\) is a decreasing sequence of subsets of \(\text{Dom}(h)\)
(c) every pair \((H^1, Z^1)\), with \(Z^1 \subseteq \text{ordinals}, |Z^1| < r\) and \(H^1 \subseteq H\) of cardinality \(< \lambda\) is \(\sigma\)-free, which means it can be represented as \(\bigcup_{i < i(\ast)} (H^1_i, Z^1_i), i(\ast) < 1 + \sigma\) and each \(H' \cap Z\) is free. This means that there are functions \(g, f\) with \(g : H' \to \theta\) and \(f\) from ordinals to \(\theta\)

such that for every \((h, \bar{u}) \in H', \) for every \(\alpha \in Z' \cap \text{Dom}(h)\) we have \(h(\alpha) \leq \max\{f(\alpha), g(h)\}\).

(d) \(H\) is not \(\sigma\)-free, \(|H| = \lambda\)

4.2 Observation. 0) In Definition 4.1, if each \(h \in H\) converges to \(\theta\), in clause (c) of 4.1(1) we can just demand \(\bigcup_{h \in H} \text{Dom}(h) \subseteq \lambda\) and in 4.1(3) without loss of generality \(\bigcup_{(h, u) \in H} \text{Dom}(h) \subseteq \lambda\). Also, without loss of generality \(\text{Dom}(g) = \lambda\).

1) In Definition 4.1(1) without loss of generality \(\bigcup_{h \in H} \text{Dom}(h) \subseteq \lambda\) and in 4.1(3) without loss of generality \(\bigcup_{(h, u) \in H} \text{Dom}(h) \subseteq \lambda\).

2) Note \(\theta^+ \cap SP_\theta = \emptyset\) [why? if \(H = \{h_\zeta : \zeta < \zeta^* \leq \theta\}, \bigcup_{\zeta} \text{Dom}(h_\zeta) = \{\alpha_i : i < \theta\}, \) let \(g(\alpha_i) = \sup\{h_\zeta(\alpha_i) : \zeta < i, \alpha_i \in \text{Dom}(h_\zeta)\}\). This also follows from 4.1(B1) and 4.2(2).

3) \(SP_\theta \cap [\theta^+, 2^\theta] \neq \emptyset\) [this follows from 4.2(4) below].
4) We let
\[b[\theta] = \text{Min}\{|F| : F \subseteq \theta, \text{ and for no } g \in \theta \text{ do we have } (\forall f \in F)(\exists \zeta < \theta)(f \upharpoonright \zeta, \theta) < g \upharpoonright [\zeta, \theta])\} \]
if \(\sigma \leq \theta^+ \) then clearly \(b[\theta] \in SP_{\theta, \sigma} \).

5) In Definition 4.1(3) without loss of generality for \((h, \overline{u}) \in H, \bigcap_{\zeta < \theta} u_\zeta = \emptyset \). Also without loss of generality, for \((k, \overline{u}) \in H, u_\zeta = \{ \alpha \in \text{Dom}(h) : h(\alpha) \geq \zeta \} \) (we say: \(\overline{u} \) is standard for \(h \)).

6) Suppose that \(H \) is as in 4.1(3). In c), if we set \(Z' = \theta \) and assume that \(\overline{u} \) is standard, we obtain:
For every \(H' \subseteq H \) with \(|H'| < \lambda \), there are sets \(H'_i \) for \(i < i(*) < 1 + \sigma \) such that \(H' = \bigcup_{i < i(*)} H'_i \) and for each \(i < i(*) \), there is a function \(g_i : H'_i \rightarrow \theta \) with the following property.
For every \((k, \overline{u}) \in H'_i \)
\[\exists \xi < \theta, \exists \zeta < \theta, \forall \alpha \in u_\zeta[k(\alpha) \leq \max\{\xi, g_i(\alpha)\}] \].

7) Note also that we can without loss of generality assume that \(Z' \subseteq \bigcup_{k \in H'} \text{Dom}(k) \), for 4.1.3c).

8) We restrict our attention to the case \(\sigma \leq \theta^+ \). Actually, the main interest is in \(\sigma = 1 \). For \(\sigma \) large enough the definition of \(\sigma \)-free sets as it stands would imply that all relevant \(H \) are \(\sigma \)-free, if \(|H| = \lambda \).

Notation. For \(a \subseteq \theta \times \theta : a \) is pic if \((\zeta_1, \xi_1) \neq (\zeta_2, \xi_2) \in a \Rightarrow \neg(\zeta_1, \xi_1) \leq (\zeta_2, \xi_2)\) coordinatewise.

Pic\((\theta \times \theta) = \{a : a \subseteq \theta \times \theta \text{ and } a \text{ is pic (hence finite)}\}\)
CL\((a) = \{((\zeta, \xi) \in (\theta \times \theta) : (\exists x \in a)(x \leq (\zeta, \xi) \text{ coordinatewise})\}, \text{ for } a \subseteq \theta \times \theta.\)
4.1A Definition. 1) For \(\theta \) a regular cardinal and \(\sigma \geq 1 \) (if \(\sigma = 1 \) we omit it) let:

\[
SQ_{\theta,\sigma} = \left\{ \lambda : \text{there is a family } H \text{ such that :} \right. \\
(a) \text{ every } h \in H \text{ is a partial function from the ordinals} \\
(b) h \in H \Rightarrow |Dom(h)| = \theta, Rang(h) \subseteq Pic(\theta \times \theta) \\
(c) \text{ every } H' \subseteq H \text{ of cardinality } < \lambda \text{ is } \sigma\text{-free which means that} \\
\text{it can be represented as a union } \bigcup_{i<\iota(\sigma)} H'_i, i(\sigma) < 1 + \sigma, \\
\text{and each } H'_i \text{ is free. For } H'_i \text{ to be free means that there is a } g, \text{ a function from ordinals to } \theta \text{ such that} \\
(\forall h)(\exists \xi < \theta)[h \in H'_i \rightarrow (\forall \alpha \in Dom(h))[(g(\alpha), \Xi) \in Cl(k(\alpha))] \\
(d) H \text{ is not } \sigma\text{-free, } |H| = \lambda \left. \right\}.
\]

2)

\[
SQ_{d,\theta,\sigma} = \left\{ \lambda : \text{there is an } H \text{ satisfying (a)-(d) above and} \right. \\
(e) \text{ each } h \in H \text{ is simple, which means: there is an} \\
\text{enumeration } \text{Dom}(h) = \{\alpha_\zeta : \zeta < \theta\} \text{ with no repetitions,} \\
\text{such that } h(\alpha_g) = \{(\zeta_1, \zeta_2) : (\zeta_1, \zeta_2) \not\in (\beta_\zeta, \gamma_\zeta)\} \\
\text{for some } \langle \gamma_\zeta : \zeta < \theta \rangle \text{ which are strictly increasing and} \\
\bigcup_{\zeta < \zeta} \beta_\zeta < \gamma_\zeta \left. \right\}.
\]
3)

\[\text{SQ}_{\theta, \sigma} \lambda = \left\{ \lambda : \text{there is a family } H \text{ such that :} \right\} \]

(a) if \((h, \bar{u}) \in H\) then \(h\) is a function from ordinals to \(\text{Pie}(\theta \times \theta)\)

(b) if \((h, \bar{u}) \in H\), then \(\bar{u} = \{u_\varepsilon : \varepsilon < \theta\}\) is a decreasing sequence of subsets of \(\text{Dom}(h)\)

(c) every pain \((H^1, Z^1)\), with \(Z^1 \leq\) ordinals, \(|Z^1| < r\) and \(H' \subseteq H\) of cardinality \(< \lambda\) is \(\sigma\)-free, which means it can be represented as \(\bigcup_{i<i(\ast)} (H'_i, Z'_i)\), \(i(\ast) < 1 + \sigma\) and each \((H'_i, Z'_i)\) is free. This means that there are functions \(g, f\) with \(g : H'_i \to \theta\) and \(f\) from ordinals to \(\theta\) such that for every \((h, \bar{u}) \in H'_i\), for every \(\bar{z} \in Z'_i \cap \text{Dom}(h)\) we have \((g(h), f(z)) \in c\ell(k(z))\)

(d) \(H\) is not \(\sigma\)-free, \(|H| = \lambda\)

(e) \((k, \bar{u}) \in H \Rightarrow \bigcap_{\varepsilon < \theta} u_\varepsilon = \emptyset\) \]

Note: 1) In 4.1A3)c), we can assume that \(Z' \subseteq \bigcup_{h \in H'} \text{Dom}(h)\).

2) As in 4.1, we consider only the case \(\sigma \leq \theta +\).

3) \(SP_{x\theta, \sigma}\) can be understood as a particular case of \(SQ_{x\theta, \sigma}\), where \(\text{Rang}(h)\) is restricted to \(\{(\zeta, \zeta) : \zeta < \theta\}\). Here, \(x \in \{w, d\}\) or \(x\) is omitted.

4.1B Fact. 1) \(\lambda \in SP_{\theta, \sigma}\) implies that \(\lambda \in SQ_{\theta, \sigma}\)

\(\lambda \in SPd_{\theta, \sigma}\) implies that \(\lambda \in SQd_{\theta, \sigma}\), and

\(\lambda \in SPw_{\theta, \sigma}\) implies that \(\lambda \in SQw_{\theta, \sigma}\).

2) \(\lambda \in SQt_{\theta, \sigma}\) implies that \(\lambda \in SP_{\theta, \sigma}\).

Proof. \(H\) exemplifies that \(\lambda \in SP_{\theta, \sigma}\), let \(H^\odot = \{h^\times : h \in H\}\), where for \(h \in H\), \(h^\odot\)

is a function with domain \(\text{Dom}(h)\) and

\(h^\odot(\alpha) = \{(h(\alpha), h(\alpha))\}\).

Similarly for \(SPd_{\theta, \sigma}\).

If \(H\) exemplifies that \(\lambda \in SQw_{\theta, \sigma}\), let \(H^\odot = \{(h^\odot, \bar{u}) : (h, \bar{u}) \in H\}\).

2) Let \(H = \{h_j : j < \lambda\}\) exemplifies that \(\lambda \in SQd_{\theta, \sigma}\), Let us enumerate \(\text{Dom}(h_j) \leq \{\alpha^j_\zeta : \zeta < \theta\}\) for \(j < \lambda\), as in clause (e) of 4.1A(2).

Then we know that

\(h_j(\alpha^j_\zeta) = \left\{ (\varepsilon_1, \varepsilon_2) : \varepsilon_1 < \theta \text{ and } \varepsilon_2 < \theta \text{ and } (\varepsilon_1, \varepsilon_2) \notin (\beta^j_\gamma, \gamma^j_\delta) \right\}\)
for some $(\gamma_\zeta : \zeta < \theta)$ which is strictly increasing and $\gamma_\zeta > \bigcup_{\xi < \zeta} \beta_\xi$.

Let h_j^\oplus be the function with domain $\text{Dom}(h_j') = \{\alpha_\zeta : \zeta < \theta\}$ and defined by $h_j^\oplus(\alpha_\zeta) = \beta_\zeta$. Then $H^\oplus = \{h_j^\oplus : j < \lambda\}$ exemplifies that $\lambda \in \text{SP}_{\theta, \sigma}$.

Notation. For a function h from a subset of ordinals to $P_i \epsilon(\theta \times \theta)$, we say that h converges to θ, if

$$(\forall \beta < \theta)(\exists \alpha)(\forall \gamma \in \text{Dom}(h) \setminus \alpha) \left[(\varepsilon_1, \varepsilon_2) \in h(\gamma) \Rightarrow \varepsilon_1 > \beta \text{ and } \varepsilon_2 > \beta \right].$$

4.2A Observation. 0) In Definition 4.1A, if each $h \in H$ converges to θ, in clause (c) of 4.1A(2) we can just demand $$(\forall h)[h \in H' \Rightarrow \theta \supseteq \{\alpha : \exists (\varepsilon_1, \varepsilon_2) \in h(\alpha)[\varepsilon_1 > g(\alpha) \lor \varepsilon_2 > g(\alpha)]\}].$$

1) In Definition 4.1(1) without loss of generality $\bigcup_{h \in H} \text{Dom}(h) \subseteq \lambda$ and in 4.1A(3) without loss of generality $\bigcup_{\langle h(\bar{u}) \in H \rangle} \text{Dom}(h) \subseteq \lambda$. Also, without loss of generality, $\text{Dom}(g) = \lambda$.

2) Note $\theta^+ \cap SQ_\theta = \emptyset$ [why? if $H = \{h_\zeta : \zeta < \zeta^* \leq \theta\}, \bigcup_{\zeta} \text{Dom}(h_\zeta) = \{\alpha_i : i < \theta\}$, let $g(\alpha_i) = \sup\{\max h_\zeta(\alpha_i) : \zeta < i, \alpha_i \in \text{Dom}(h_\zeta)\}]$.

3) $SQ_\theta \cap [\theta^+, 2^\theta] \neq \emptyset$ [this follows from 4.2.3) and 4.1B1)]. Actually, $b[\theta] \in SQ_\theta$.

4) In 4.1A3c), if we set $Z' = \theta$, we obtain the following property.

For every $H' \subseteq H$ of cardinality $< \lambda$, there are sets H'_i for $i < i(*) < 1 + \sigma$, such that there are functions $(q_i : i < i(*)), q_i : H'_i \rightarrow \theta$ satisfying: if $(h, \bar{u}) \in H'_i$, then $(\exists \xi < \theta)(\exists \xi < \theta)(\forall \alpha \in \zeta_\xi)[(q_i(\alpha), \xi) \in c\ell(h(\alpha))].$

4.3 Claim. 1) If there is an H as in (a), (b) of 4.1(1) which is $(< \mu) - \sigma$-free not $\lambda - \sigma$-free then there is a $\lambda' \in [\mu, \lambda] \cap \text{SP}_{\theta, \sigma}$. Similarly for 4.1(2), 4.1(3).

2) If $pp_{\Gamma(\theta)}(\lambda) > \lambda^\sigma$, $\lambda > cf(\lambda) = \theta$ (or just $(*)_\lambda$ of 4.0) and $\lambda \geq \sigma$ then $\text{SP}_{\theta, \sigma} \cap [\lambda^\sigma, \lambda^\theta] \neq \emptyset$.

Proof. 1) Straightforward.

2) Let for $\{\eta_\alpha : \alpha < \lambda^+\} \subseteq \lambda$ be θ-free, without loss of generality $(\{\eta_\alpha(\zeta) : \alpha < \lambda^+\} : \zeta < \theta)$ are pairwise disjoint and let

$$H = \left\{h : \text{ for some } \alpha < \lambda^+ \text{ and } a \subseteq \lambda^+, \text{otp}(a) = \theta, \text{Dom}(h) = a, \text{h is strictly increasing and for } \beta \in a \Rightarrow h(\beta) = \sup\{\varepsilon : \eta_\alpha(\varepsilon) = \eta_\beta(\varepsilon)\} \right\}.$$
with \(\zeta \) such that
\[\cup \{ \text{Rang}(\eta_\alpha) : \alpha \in A \cap \alpha^*_\zeta \} = \cup \{ \text{Rang}(\eta_\alpha) : \alpha \in A \setminus \alpha^*_\zeta \}. \]
Next choose \(\alpha \in A \cap \alpha^*_\zeta \) and \(\beta \in A \cap \alpha^*_\zeta \) such that \(\eta_\beta(\zeta) = \eta_\alpha(\zeta) \) and let \(a = \{ \beta, \zeta < \theta \}, h \in a, h(\beta) = \sup \{ \varepsilon : \eta_\alpha(\varepsilon) = \eta_\beta(\varepsilon) \} \geq \zeta \), so \(h \in H \). As \(\beta \in A \), \(g(\beta) = \varepsilon = \text{constant} \), so if \(\zeta < \theta \), \(\{ \beta : \beta \in \text{Dom}(h) : h(\beta) \geq g(\beta), \zeta \} \) include \(\{ \beta : \zeta, \varepsilon < \zeta < \theta \} \), which is a contradiction.

On the other hand, \(H \) is \(\lambda^+ \)-free. For suppose \(H' \subseteq H \), \(|H'| \leq \lambda \). For \(h \in H' \) choose \(\alpha_h, a_h \) witnessing \(h \in H \). Then \(h = \cup \{ \{ \alpha_h \} \cup a_h : h \in H' \} \) is a subset of \(\lambda^+ \) of cardinality \(\leq \lambda \), hence we can find \((\varepsilon_\alpha : \alpha \in b) \) such that \((\text{Rang}(\eta_\alpha \upharpoonright [\varepsilon_\alpha, \theta])) : \alpha \in b \) is a sequence of pairwise disjoint subsets of \(\lambda \). Let us define a \(g : \lambda^+ \rightarrow \theta \) such that \(\alpha \in b \Rightarrow g(\alpha) = \varepsilon_\alpha \). Now if \(h \in H' \), let \(a_h = \{ \beta : \zeta < \theta \} \) (increasing with \(\zeta \)), so
\[
\begin{align*}
P(\beta) &= \sup \{ \varepsilon : \eta_\alpha(\varepsilon) = \eta_\beta(\varepsilon) \} \\
&= \max \{ \varepsilon_\alpha, \varepsilon_\beta \} = \max \{ g(\alpha), g(\beta) \}
\end{align*}
\]
So choose \(\xi = g(\alpha) \) and we get the desired conclusion.
To finish we use part (1).
\(\square_{4.3} \)

4.3A Claim. 1) If there is an \(H \) as in (a), (b) of 4.1A(1) which is \((\mu) - \sigma \)-free not \(\lambda - \sigma \)-free then there is a \(\lambda' \in [\mu, \lambda] \cap \text{SQ}_{\theta, \sigma} \). Similarly for 4.1A(2), 4.1A(3).
2) If \(pp_{\Gamma(\theta)}(\lambda) > \lambda^+ \), \(\lambda > cf(\lambda) = \theta \) (or just \((\ast)_\lambda \) of 4.0) and \(\lambda \geq \sigma \) then \(\text{SQ}_{\theta, \sigma} \cap [\lambda^+, \lambda^0] \neq \emptyset \).

Proof. 1) Straightforward.
2) This follows from 4.3.2) and 4.1B1.
\(\square_{4.3A} \)

4.4 Claim. 1) The following implications hold for any \(\lambda \):
\[
(a) \Rightarrow (b) \Leftrightarrow (b)^+ \Leftrightarrow (c) \Rightarrow (c)^+ \Rightarrow (d),
\]
where
\[
\begin{align*}
(a) & : \lambda \in \text{SQ}_{\lambda_{\emptyset}} \\
(b) & : \text{There is a} \ (<\lambda) \text{-CWH not} \ \lambda \text{-CWH first countable space} \\
(b)^+ & : \text{There is a space like in} \ (b), \text{which is in addition} \ (<\lambda) \text{-metrizable} \\
(c) & : \text{There is a} \ (<\lambda)^{-*} \text{CWN first countable space with} \ \lambda \text{ points.} \\
(c)^+ & : \text{There is a space like in} \ (c), \text{which is in addition} \ (<\lambda) \text{-metrizable} \\
(d) & : \lambda \in \text{SQ}_{\lambda_{\emptyset}}.
\end{align*}
\]
2) \(\lambda \in \text{SQ}_{\theta, \sigma} \Rightarrow \lambda \in \text{SQ}_{\lambda_{\emptyset}} \Rightarrow [\lambda, \lambda^0] \cap \text{SQ}_{\theta, \sigma} \neq \emptyset \) for \(\sigma \leq \theta^+ \).
3) \(\lambda \in \text{SP}_{\theta, \sigma} \Rightarrow \lambda \in \text{SP}_{\lambda_{\emptyset}} \Rightarrow [\lambda, \lambda^0] \cap \text{SP}_{\theta, \sigma} \neq \emptyset \) for \(\sigma \leq \theta^+ \).
4) Similarly for \(\theta_{\emptyset} \).

Proof. 1) 4(a) implies (b), (b)^+, (c), (c)^+. First implication - assume \(H \) exemplifies that \(\lambda \in \text{SQ}_{\theta} \), we can use the space
\[
X = \{ y_i : i < \lambda \} \cup \{ z_h : h \in H \} \cup \{ x_{h,i} : h \in H, i \in \text{Dom}(h) \},
\]
and for \(\zeta < \theta \) let \(u_\zeta(z_h) = \{ z_h \} \cup \{ x_{h,i} : i \in \text{Dom}(h), (\zeta, \zeta) \notin cf(h(i)) \} \), \(u_\zeta = u_\zeta \upharpoonright \mathcal{P} \cup \{ h \in H : h \in \text{Dom}(h), (\zeta, \zeta) \notin cf(h(i)) \} \), and \(x \) is isolated.
Suppose $H' \subseteq H$, $|H'| < \lambda$ and let
\[X[H'] = \{y_i : i < \lambda\} \cup \{z_h : h \in H'\} \cup \{x_{h,i} : h \in H, i \in \text{Dom}(h)\}. \]
Let $g : \lambda \to \theta$ be such that for every $h \in H'$, for some $\zeta[h] < \theta$ we have
\[i \in \text{Dom}(h) \Rightarrow g(i), \zeta[h] \in \text{cl}(h(i)). \]
Let us choose for $t \in X[H']$ a neighborhood v_t:
\[
\begin{align*}
\text{if} & \quad t = x_{h,i} \quad \text{then} \quad v_t = \{x_{h,i}\} \\
\text{if} & \quad t = y_i \quad \text{then} \quad v_t = u_{g(i)}[y_i] \\
\text{if} & \quad t = z_h \quad \text{then} \quad v_t = u_{\zeta[h]}[z_h].
\end{align*}
\]
Now
\[
\langle v_{y_i} : i < \lambda \rangle \setminus \langle v_{z_h} : h \in H' \rangle \setminus \langle v_{x_{h,i}} : i < \lambda, h \in H \text{ and } x_{h,i} \notin \bigcup_{j < \lambda} v_{y_j} \cup \bigcup_{h \in H'} v_{h} \rangle
\]
is a partition of $X[H']$ to pairwise disjoint open sets. In each basic open set there is at most one point which is not isolated, and if so it has a neighborhood base consisting of a decreasing sequence of (open) sets of length θ.
This suffices to show that X is ($< \lambda$)-metrizable when $\theta = \aleph_0$ and as required generally (for 4)).

As for showing that X is not CWH (hence not metrizable and not normal), note that $\{y_i : i < \lambda\} \cup \{z_h : h \in H\}$ is a discrete subspace.
If it is separated, we have a sequence of pairwise disjoint neighborhoods:
\[
\langle u_{g(i)}[y_i] : i < \lambda \rangle \setminus \langle u_{\zeta(h)}[z_h] : h \in H \rangle.
\]
But H is not free (in the sense of Definition 4.1.4.1)) and we get a contradiction.

$\quad (b)^+ \Rightarrow (b)$.
Trivial.

$(b) \Rightarrow (b)^+$. Let X exemplify the second clause so without loss of generality $|X| = \lambda$. Let Y be a discrete subspace of cardinality λ which cannot be separated. Let X^+ be the topology X on the set of points of X generated by basic open sets of X and $\{\{x\} : x \in X \setminus Y\}$.
Now X^+ is not $\lambda - CWH$ (Y still exemplifies it). But X^+ is ($< \lambda$)-metrizable as:

If $Z \subseteq X$, $|Z| < \lambda$, then we can find a sequence $\langle u_z : z \in Z \cap Y \rangle$ of pairwise disjoint open sets, and in $X \upharpoonright u_z$, every point is isolated except z, which has a neighborhood basis of cardinality \aleph_0, and every $x \in Z \setminus \bigcup_{z \in Z \cap Y} u_z$ is isolated.
This is enough.

$(b)^+ \Rightarrow (c)^+$
Trivial (as ($< \lambda$)-metrizable $\Rightarrow (\lambda)^{- \ast} CWN$).

$(c)^+ \Rightarrow (c)$
Trivial.
(c) ⇒ (b)⁺

If $X, \langle Y_i : i < \alpha \rangle$ exemplifies clause (c) in (1) with $\langle u_\zeta(y) : \zeta < \theta \rangle$ a decreasing neighborhood basis of y; we can get another example X' to the third clause, as follows.

We are, without loss of generality, assuming that $|X| = \lambda$. Then

$$X' = \bigcup_{i<\alpha} Y_i \cup \left\{ x_{y,z,\zeta,\xi} : \text{for some } i \neq j < \alpha, y \in Y_i, z \in Y_j, u_\zeta[y] \cap u_\zeta[z] \neq \emptyset \right\}$$

with the neighborhood bases for $y, z \in \bigcup_{i<\alpha} Y_i$ given by

$$u_\zeta'[t] = \{ y \} \cup \left\{ x_{y,z,\zeta,\xi} : x_{y,z,\zeta,\xi} \in X', t = y \wedge \varepsilon \leq \zeta \text{ or } t = z \wedge \varepsilon \leq \xi \right\}$$

and $x_{y,z,\zeta,\xi}$ isolated.

Clearly $Y =: \bigcup_{i<\alpha} Y_i$ is discrete. Assume that $\langle u_\varepsilon'[y] : y \in Y \rangle$ is a sequence of pairwise disjoint open sets. Then let

$$U_i = \bigcup \{ u_\varepsilon(y) : y \in Y_i \}.$$

So in X, U_i is an open set (as a union of open sets),

$$Y_i \subseteq U_i \text{ as } y \in u_\varepsilon(y)[y]$$

$$i \neq y \Rightarrow U_i \cap U_j = \emptyset \Rightarrow \exists y \in U_i, \exists z \in U_j (U_\varepsilon(y) \cap U_\varepsilon(z) \neq \emptyset)$$

$$\Rightarrow X_{y,\varepsilon(y),\varepsilon(\zeta)} \text{ is well defined}$$

$$\Rightarrow \text{ in } X' \text{ we have that } U_\varepsilon'[y] \cap U_\varepsilon'[z] \neq \emptyset.$$

This is a contradiction.

So we conclude that y cannot be separated in X', so X' is not $X - CW H$.

Next, assume that $Z \subseteq X', |Z| < \lambda$, so in $Z, \langle Y_i \cap Z : i < \alpha, y_i \cap z \neq \emptyset \rangle$ can be separated, say by $\langle U_i : i < \alpha, Y_i \cap Z \neq \emptyset \rangle$. So for $y \in Y \cap Z$, there is an $\varepsilon(y)$, such that $U_\varepsilon'[y] \in U_i$ (the isolated points in $X' \cap Z \setminus Y$ can be taken care of easily so we ignore them).

Now, if $Y_1 \neq z \in Y \cap Z$ then:

$$\text{if } (\exists i)(y, z \in X) \text{ then } x_i' \cap x_i' = \emptyset$$
(for any choice of $\varepsilon(y), \varepsilon(z)$ if)
\[y \in Y_i, z \in Y_j, i \neq j, \text{ if } u'_{\varepsilon(y)} \cap u'_{\varepsilon(z)} \neq \emptyset \]
then \(X_{y,z,\varepsilon(y),\varepsilon(z)} \) exists, so
\[\emptyset \neq u_{\varepsilon(y)} \cap U_{\varepsilon(z)} \subseteq U_i \cap U_j \]
which is a contradiction.
That \(X' \) is \((< \lambda)\)-metrizable now follows as in \((b) \Rightarrow (b)^+\).

\((c) \Rightarrow (d)\).
Assume that \(X \) is a normal first countable \((< \lambda)\) - *CW-N not \(\lambda - * \) CW-N-space, without loss of generality with the set of points \(\lambda \), so there is a sequence \(\langle Y_i : i < \alpha \rangle \) of pairwise disjoint subsets of \(X, Y_i \neq \emptyset, Y_i \) is clopen in \(X \upharpoonright (\bigcup_{j < \alpha} Y_j) \) and
\[\langle Y_i : i < \alpha \rangle \]
cannot be separated. For \(y \in Y =: \bigcup_{i < \lambda} Y_i \) let \(\bar{u}Y = \langle u_{\zeta}[y] : \zeta < \theta \rangle \) be a neighborhood basis of the topology for \(y \), and without loss of generality \(\varepsilon < \zeta < \theta \Rightarrow u_{\zeta}[y] \subseteq u_{\varepsilon}[y] \). Let
\[H = \left\{(h, \bar{u}) : \text{for some } i < \alpha \text{ and for some } y \in Y_i, \right. \]
\[(k, \bar{u}) = (y, \bar{u}_y), \text{ which means :} \]
\[\text{Dom}(h) = \bigcup_{j \neq i} Y_j, c\ell(h(z)) = \{((\zeta, \xi) \in \theta \times \theta : u_{\zeta}[y] \cap u_{\xi}[z] = \emptyset \} \]
\[\text{and } \bar{u} \text{ is } \langle u_{\xi}(y) \cap \text{Dom}(h) : \zeta < \theta \rangle \left\} \right. \]
Note that \(h(z) \) is uniquely determined by \(c\ell(h(z)), c\ell_Q(k(z)) \). As we check that \(H \) exemplifies \(SQ_{w_{\aleph_0}}, \) i.e. the clauses in 4.1A(3). Clauses \((a), (b)\) are immediate. As for clause \((c)\), let \(H' \subseteq H, |H'| < \lambda, \) and \(Z' \subseteq \bigcup \{\text{Dom}(h) : (h, \bar{u}) \in H\}, |Z'| < \lambda, \) let \(Y' =: \{y : y \in \bigcup_{i < \alpha} Y_i, \text{ and } y \in Z' \text{ or } (h, \bar{u}_y) \in H'\}, \) so \(|Y'| < \lambda; \) we can find
\[X' \subseteq X, |X'| \leq |Y'| + \theta < \lambda \text{ such that } Y' \subseteq X', \text{ and for every } y, z \in Y', \zeta < \theta, \xi < \theta, \]
we have \(u_{\zeta}[y] \cap u_{\xi}[z] \neq \emptyset \Rightarrow u_{\zeta}[y] \cap u_{\xi}[z] \cap X' \neq \emptyset \). As \(|X'| < \lambda \) we know that \(X' \) (i.e. \(X \cap X' \)) is CW-N, and \(\langle Y_i \cap X' : i < \alpha \rangle \) is a discrete sequence of closed sets in \(X' \) hence there is a function \(g : Y' \to \theta \) such that
\[(*) \text{ if } i < j < \alpha, y \in Y' \cap Y_i, z \in Y' \cap Y_j, \text{ then } \]
\[u_{g(y)}[y] \cap u_{g(z)}[z] = \emptyset \text{ (intersecting with } X' \text{ is immaterial).} \]
Hence by the choice of \(g \)
\[(** \text{ if } i \neq j(i < \alpha, j < \alpha), y \in Y' \cap Y_i, z \in Y' \cap Y_j \]
then \(\langle g(y), g(z) \rangle \in c\ell(h(z)) \).
This is enough.

We are left with proving that H is not free, so suppose $f, g : Y \to \theta$ satisfies

\[\forall y \in Y, \quad \forall z \in \text{Dom}(h_y), (g(y), f(z)) \in c\ell(h_y(z)), \]

so without loss of generality $f = g$.

For $i < \alpha$ let

\[U_i = \bigcup \{ U_{g(y)}[y] : y \in Y_i \}. \]

So U_i, being the union of open sets is open.

If $i < j, y \in Y_i, z \in Y_j$ then

\[u_{g(y)}[y] \cap u_{g(z)}[z] \neq \emptyset \Rightarrow (g(y), g(z)) \in c\ell(h_y(z)) \]

\[\Rightarrow (g(y), f(z)) = (g(y), g(z)) \in c\ell(h_y(z)). \]

Contradiction, by the choice of f and g.

So $u_{g(y)}[y] \cap u_{g(z)}[z] = \emptyset$, as $y \in Y_i, z \in Y_j$ were arbitrary, $U_i \cap U_j = \emptyset$.

We conclude that $\langle Y_i : i < \lambda \rangle$ can be separated, which is a contradiction.

2) We prove each implication

(A) $\lambda \in SQd_{\theta, \sigma} \Rightarrow \lambda \in SQ_{\theta, \sigma} \Rightarrow \lambda \in SQw_{\theta, \sigma}$. Obvious.

(B) $\lambda \in SQw_{\theta, \sigma} \Rightarrow SQd_{\theta, \sigma} \cap [\lambda, \theta^\omega] \neq \emptyset$ when $\sigma \leq \theta^+$.

Assume that H exemplifies $\lambda \in SQw_{\theta, \sigma}$. By the definition $(h, u) \in H \Rightarrow u_\xi \subseteq \text{Dom}(h)$ & $\bigcap_{\xi < \theta} u_\xi = \emptyset$. Let for each $(h, u) \in H$,

\[H^*_{(h, u)} = \left\{ f : f \text{ is a function from ordinals to } Pie(\theta \times \theta) \text{ and } \text{Dom}(f) = \nu \right\} \]

for some set $v, v \subseteq \text{Dom}(h), |v| = \theta$, but $\zeta < \theta \Rightarrow |v \setminus u_\zeta| < \theta$, and

\[(\forall \alpha \in \nu)[c\ell(f(\alpha)) \supseteq c\ell(h(\alpha))], \text{ and } f \text{ is simple} \]

and $H^* = \bigcup \{ H^*_{(h, u)} : (h, u) \in H \}$.

It is easy to check that H^* satisfies clauses (a) and (b) from 4.1A(1) and (e) of 4.1A(2) and $|H^*| = \lambda^\theta$.

As for clause (c) of 4.1A(1), let $H' \subseteq H, |H'| < \lambda$, let $H' = \{ f_j : j < j(*) \}, j(*) < \lambda$, and (h_j, v_j) as in the definition of $H^*_{(h, u)}$ for some $(h_j, u_j) \in H$. Define $H'' = \{(h_j, u_j) : j < j(*)\}, Y = \bigcup_{j < j(*)} v_j$. Now H'' is a subset of H of cardinality $< \lambda$, $Y \subseteq \text{Ord}$ and $|Y| < \lambda$ so as H exemplifies $\lambda \in SQw_{\theta, \sigma}$, we can find a $\langle g_i : i < i(*) \rangle$, $i(*) < \sigma, g_i \in \lambda^\theta$ and for every $(h_j, u_j) \in H''$ for some $i = i(j) < i(*)$ we have

\[(\exists \xi < \theta)(\exists \xi < \theta)(\forall \alpha \in u_{j, \zeta} \cap Y)[(g_i(\alpha), \xi) \in c\ell(h_j(\alpha))]. \]

Now $\langle g_i : i < i(*) \rangle$ are O.K. for H', too, as $c\ell(f_j(\alpha)) \supseteq c\ell(h_j(\alpha))$ and $|v_j \setminus u_{i, \zeta}| < \theta$.
We are left with clause (d) of 4.1A(1), so assume \(i(*) < \sigma \) and \(g_i \in {}^\lambda \theta \) for \(i < i(*) \) exemplifies \(H^* \) is \(\sigma \)-free. By the choice of \(H \) for some \((h, \bar{u}) \in H \) we have \(\bigwedge_i \neg (\exists \zeta < \theta)(\exists \xi < \theta)(\forall \alpha \in u_\zeta)[(g_i(\alpha), \xi) \in c\ell(h(\alpha))]. \)

Let \(\langle a_i : i < i(*) \rangle \) be a partition of \(\theta \) to unbounded subsets, and we choose by induction on \(\zeta < \theta \), an ordinal \(\alpha_\zeta \in u_\zeta \) and \(\gamma_\xi < \theta \) such that if \(\alpha_\zeta \in a_i \) then

\[
\Upsilon_\zeta \in \theta \setminus \left[\bigcup_{i < \sigma} \left(g_i(\Upsilon_\xi) \cup \Upsilon_\epsilon \right) + 1 \right]
\]

\[(g_i(\alpha_\zeta), \Upsilon_\zeta) \notin c\ell(h(\alpha_\zeta))\]

and let \(f(\alpha_\zeta) \) be such that

\[
\text{c}\ell(f(\alpha_\zeta)) = \{(\gamma_1, \gamma_2) : \gamma_1 < \theta, \gamma_2 < \theta, \text{ and } (\gamma_1, \gamma_2) \notin (g_i(\alpha_\zeta), \Upsilon_\zeta)\}.
\]

Let \(v = \{\alpha_\eta : \zeta < \theta\} \), so \(f \in H^*(h, \bar{u}) \subseteq H^* \) exemplifies that \(\langle g_i : i < i(*) \rangle \) exemplify that \(H^* \) is \(\sigma \)-free. We can finish by 4.3A(1).

(3) As in 2), \(\lambda \in SP\theta,\sigma \Rightarrow \lambda \in SP\theta,\sigma \Rightarrow \lambda \in SPw_{\theta,}\sigma \) is obvious.

We need to prove that \(\lambda \in SPw_{\theta,}\sigma \Rightarrow SP\theta,\sigma \cap [\lambda, \lambda^\theta] \neq \emptyset \) when \(\sigma \leq \theta^+ \).

The proof if similar to that of (2). We start with \(H \) exemplifying that \(\lambda \in SPw_{\theta,}\sigma \).

We assume that for each \((h, \bar{u}) \in H, \bar{u} \) is standard. So for \((h, \bar{u}) \in H, \) we define

\[
H^*_\langle h, \bar{u} \rangle = \left\{ f : f \text{ is a function from ordinals to } \theta \text{ and } f \text{ is } 1 - 1, \right. \\
\left. \text{ and for some set } v \subseteq \text{Dom}(h), \text{ we have that } |v| = \theta, \text{ but } \zeta < \theta \Rightarrow |v \setminus u_\zeta| < \theta, \text{ while } (\forall \alpha \in v)f(\alpha) \leq h(\alpha) \right\}.
\]

Let \(H^* = \cup\{H^*_\langle h, \bar{u} \rangle : (h, \bar{u}) \in H \} \).

Checking that this \(H^* \) is as required is similar to (2). For example, to see 4.1.1)d), suppose that \(i(*) < \sigma \) and \(\langle g_i : i < i(*) \rangle \) exemplify that \(H^* \) is free. By the choice of \(H^* \), there is an \((h, \bar{u}) \in H \) such that

\[
\bigwedge_i \neg (\exists \zeta < \theta)(\exists \xi < \theta)(\forall \alpha \in u_\zeta)[h(\alpha) \leq \max\{g_i(\alpha), \xi\}] .
\]

Let \(\langle a_i : i < i(*) \rangle \) be as in (2), and we choose by induction on \(\zeta < \theta \), an ordinal \(\alpha_\zeta \in u_\zeta \) and \(\Upsilon_\zeta \in \theta \) such that

\[
\alpha_\zeta \in a_i \Rightarrow \Upsilon_\zeta \in \theta \setminus \left[\bigcup_{i < \sigma} \left(g_i(\alpha_\xi) \cup \Upsilon_\xi \right) + 1 \right]
\]

and

\[
h(\alpha_\zeta) > \max\{g_i(\alpha_\xi), \Upsilon_\xi\}.
\]
Then we let \(f(\alpha \zeta) \) be such that
\[
f(\alpha \zeta) \leq \max\{g_i(\alpha \zeta, \gamma \zeta) \}
\]
but
\[
f(\alpha \zeta) \notin \{f(\alpha \xi) : \xi < \zeta \}.
\]

4) Included in the proof of (1).

4.5 Claim. Assume \(\lambda \in SP_{\theta, \sigma}, \mu \) is a strong limit with \(cf(\mu) > \theta \), and \(2^\mu = \mu^+ > \lambda \).
Then there is a \(\kappa \in [\lambda, \mu^+] \), a regular cardinal such that \(\kappa \in SP_{\theta, \sigma}^+ \) where

4.6 Definition. 1) \(\kappa \in SP_{\theta, \sigma}^+ \) means that \(\kappa \) is regular > \(\theta \) and we can find an \(S \subseteq \{\delta < \kappa : cf(\delta) = \theta \} \) stationary, \(\bar{\eta} = \langle \eta_\delta : \delta \in S \rangle, \bar{h} = \langle h_\delta : \delta \in S \rangle \), such that

(a) \(\eta_\delta \) is a strictly increasing sequence of ordinals
of length \(\theta \) with limit \(\delta \)
(b) \(h_\delta : Rang(\eta_\delta) \to \theta \) is strictly increasing
(c) \(H = \{h_\delta : \delta \in S \} \) is \((< \kappa)-\sigma \)-free not \(\sigma \)-free (in 4.1’s sense).

2) \(\kappa \in SP_{\theta, \sigma}^* \) if in the above we add:
(d) \(h_\delta(\eta_\delta(\varepsilon)) \) depend on \(\eta_\delta(\varepsilon) \) only
(e) \(\bar{\eta} \) is tree like, i.e. \(\eta_{\delta_1}(\varepsilon_1) = \eta_{\delta_2}(\varepsilon_2) \Rightarrow \varepsilon_1 = \varepsilon_2 \) & \(\eta_{\delta_1} \upharpoonright \varepsilon_1 = \eta_{\delta_2} \upharpoonright \varepsilon_2 \).

Remark. The assumption “\(\mu^+ = 2^\mu \)” (in 4.5) is very reasonable because of 4.2(2) (and 4.2(3) from the topological point of view).

4.6A Observation. 1) \(SP_{\theta, \sigma}^* \subseteq SP_{\theta, \sigma}^+ \subseteq SP_{\theta, \sigma} \).
2) If \(\langle h_\delta, \eta_\delta : \delta \in S \rangle, \kappa \) satisfies the preliminary requirements and clauses (a), (b) of 4.5 and \(H \) is \((< \kappa_1)-\)free, \(\kappa_1 > \theta \) then for some \(\mu \in [\kappa_1, \kappa], \mu \in SP_{\theta}^+ \).
3) Similarly for \(SP_{\theta, \sigma}^* \).

Proof. Like 2.3 or 2.4.

4.6B Conclusion. For \(\lambda > \theta = cf(\theta), \chi = \beth_\chi > \lambda \), the following are equivalent:

(a) for some \(\mu \in [\lambda, \chi], \mu \in SP_{\theta} \)
(b) for some \(\mu \in [\lambda, \chi], \mu \in SP_{\theta}^+ \).
(c) for some \(\mu \in [\lambda, \chi], \mu \in SP_{\theta}^* \).

Proof. By 4.5, (b) \(\Rightarrow \) (a), as for (a) \(\Rightarrow \) (b), let \(\mu = \beth_{\lambda^+(\theta^+)} \), if \(pp(\mu) > \mu^+ \) use 4.2(2) and if \(pp(\mu) = \mu^+ \) use 4.4.

Proof of 4.5. Use \(\diamond_{\{\delta < \mu^+: cf(\delta) = \theta \}} \) and imitate 3.3.
4.7 Claim. Assume $\theta = \theta^{< \theta}$ or $\exists F \subseteq \theta \theta$ which is cofinal in $\theta \theta$ and $|\{f \mid \zeta : f \in F, \zeta < \theta\}| \leq \theta$. Let $\langle h_\delta, \eta_\delta : \delta \in S \rangle$ exemplify $\lambda \in SP^*_\theta$ (even omitting “η_δ converge to δ, η_δ strictly increasing”). Then any θ^+-complete forcing preserves the non-freeness of $\{h_\delta : \delta \in S\}$.

Proof. Instead of the domain of the functions h_δ being a subset of λ, we can assume that it is $T = \{\eta_\delta \cup \zeta : \delta \in S, \zeta < \theta$ a successor} (identify $\eta_\delta(\zeta)$ with $\eta_\delta \upharpoonright (\zeta + 1)$, so $\text{Dom}(h_\delta) = \{\eta_\delta \cup \zeta : \zeta < \theta$ is a successor ordinal $\}$). Suppose Q is a θ^+-complete forcing notion, $p \in Q$ and $p \Vdash "g : T \to \theta$ exemplifies $\{h_\delta : \delta \in S\}$ is free”. We now define by induction on $\ell g(\eta) < \theta$ a sequence $\langle p_{\eta,t}, \varepsilon_{\eta,t}, \nu : t \in T_\eta \rangle$ for $\eta \in T$ such that:

\begin{itemize}
 \item[(a)] $T_\eta \subseteq \ell g(\eta) \geq \theta$, is closed under initial segments
 \item[(b)] $t \triangleleft s \in T_\eta \Rightarrow p_{\eta,t} \leq_Q p_{\eta,s}$
 \item[(c)] If $t \in T_\eta$, either $\bigwedge_{\zeta < \theta} t^\zeta < \zeta > \in T_\eta$ or $\bigwedge_{\zeta < \theta} t^\zeta < \zeta > \notin T_\eta$
 \item[(d)] If $t \in \ell g(\eta) \geq \theta, \ell g(t)$ is a limit ordinal and $(\forall \zeta < \ell g(t))(t \upharpoonright \zeta \in T_\eta)$, then $t \in T_\eta$.
 \item[(e)] If $\nu \triangleleft \eta$ then $T_\nu \subseteq T_\eta$ and $t \in T_\nu \Rightarrow (p_{\eta,t}, \varepsilon_{\eta,t}) = (p_{\nu,t}, \varepsilon_{\nu,t})$
 \item[(f)] If $\ell g(\eta)$ is a limit ordinal then $T_\eta = \{t : t \in \bigcup_{\nu \triangleleft \eta} T_\nu \text{ or } \ell g(t) \text{ is a limit ordinal and } (\forall s)[s \triangleleft t \Rightarrow s \in \bigcup_{\nu \triangleleft \eta} T_\nu]\}$
 \item[(\eta)] Assume $\eta = \nu^\dagger \triangleleft \alpha > s$ is a \triangleleft-maximal element of T_ν, then:
 \begin{itemize}
 \item[(a)] if $\{\zeta < \theta : p_{\eta,s} \not\leq_Q "g(\eta) \neq \zeta\"\}$ is bounded in θ
 then s is a \triangleleft-maximal element of T_η.
 \item[(b)] if $A = \{\zeta < \theta : p_{\eta,s} \not\leq_Q "g(\eta) \neq \zeta\"\}$ is unbounded in θ, then for every
 $\zeta < \theta, s^\dagger \triangleleft \zeta > is a maximal member of T_η, and $p_{s^\dagger \triangleleft \zeta}> forces a value$
 $\varepsilon_{s^\dagger \triangleleft \zeta} > \ell g(\eta)$ to $g(\eta)$.
 \end{itemize}
\end{itemize}

We can carry this definition.

\begin{itemize}
 \item[(*)] if $\delta \in S$ then for some $\zeta = \zeta_\delta < \theta$ and $t = t_\delta \in T_{\eta_\delta \upharpoonright \zeta}$ we have: t is a \triangleleft-maximal member of $T_{\eta_\delta \upharpoonright \zeta}$ for every $\zeta \in [\zeta, \theta)$.
\end{itemize}

[why? otherwise we can construct a $t \in \theta \theta$ such that $(\forall s)[s \triangleleft t \Rightarrow s \in \bigcup_{\xi \triangleleft \theta} T_{\eta_\delta \upharpoonright \xi}]$, $t(\varepsilon) > \varepsilon$ and for unboundedly many $\xi < \theta$, for some $s^\dagger \triangleleft \zeta > \triangleleft t$ we have $s^\dagger \triangleleft \zeta > \in T_{\eta_\delta \upharpoonright (\xi + 1)} \setminus T_{\eta_\delta \upharpoonright \xi}, s^\dagger \triangleleft \zeta > > h_\delta(\eta_\delta \upharpoonright (\xi + 1)), \xi$.

Now $\{p_{\nu,s} : \nu \triangleleft \eta_\delta, s \triangleleft t, s \in T_\nu\}$ has an upper bound in Q, p^*. Then p^* forces for $g(\eta \upharpoonright (\xi + 1))$ a value $> h_\delta(\eta \upharpoonright (\xi + 1)), \xi$; this is a contradiction to $p \Vdash "g$ exemplifies the freeness of $\{h_\delta : \delta \in S\}".$

\[\square_{4.7}\]
4.8 Theorem. Assume $\lambda < \mu$, $(\forall \kappa < \mu)[\chi^{\aleph_0} < \mu]$ (possibly $\mu = \infty$). Then the following are equivalent:

(A) There is a space X such that:
 (a) X is $(< \lambda)$-metrizable
 (b) X is not metrizable
 (c) X has $< \mu$ points.

(B) There is a first countable Hausdorff space X such that:
 (a) X is $(< \lambda)$-CWH
 (b) X is not λ-CWH
 (c) X has $< \mu$ points.

(B)\(^+\) There is a space X like in (B), and in addition
 (a)\(^+\) X is $(< \lambda)$-metrizable.

(C) There is a first countable Hausdorff space X such that:
 (a) X is $(< \lambda)$- CWN
 (b) X is not λ- CWN
 (c) X has $< \mu$ points.

(C)\(^+\) There is an X like in (C), and in addition,
 (a)\(^+\) X is $(< \lambda)$-metrizable.

(D) there is a family H of functions with domains countable sets of ordinals and range $\subseteq \omega$ such that:
 (a) H is $(< \lambda)$-free
 (b) H is not free
 (c) $|H| < \mu$.

(D)\(^+\) as in (D) and
 (d) $\cup \{\text{Dom}(h) : h \in H\} = \lambda' \in [\lambda, \mu)$
 (e) each h is one to one.

(D)\(^{'}) [\mu, \lambda] \cap SP_{\aleph_0} \neq \emptyset$
(D)\(^{''}) [\mu, \lambda] \cap SP_{w\aleph_0} \neq \emptyset$
(D)\(^{'''}) [\mu, \lambda] \cap SP_{d\aleph_0} \neq \emptyset$

(E) there is a $\bar{u} = (\langle u_{\alpha, n} : n < \omega > : \alpha \in v\rangle, u_{\alpha, n+1} < u_{\alpha, n} \subseteq v$, such that:
 (a) \bar{u} is not free
 (b) for $v' \in [v]^{< \lambda}$, $\bar{u} \upharpoonright v'$ is free
 (c) $|v| < \mu$.

(E)\(^{'}) [\mu, \lambda] \cap SQ_{\aleph_0} \neq \emptyset$
(E)\(^{''}) [\mu, \lambda] \cap SQ_{w\aleph_0} \neq \emptyset$
(E)\(^{'''}) [\mu, \lambda] \cap SQ_{d\aleph_0} \neq \emptyset$.
4.8A Theorem. In 4.8 if \((\forall \kappa < \mu)(\beth_\kappa^+(\kappa) < \mu) \) (really \((\forall \kappa < \mu)(\beth_{\omega_1}(\kappa) < \mu) \)) is O.K. Equivalently \(\mu = \beth_\delta = \theta^+(\delta) \) then we can add

\[(F) \] for some regular \(\kappa \in [\lambda, \mu) \) we have \(\text{INCWH}(\kappa) \)
\[(F)' \] \(\lambda \in SP_{\mathcal{N}_0}^+ \)
\[(F)'' \] \(\lambda \in SP_{\mathcal{N}_0}^- \)

Proof of 4.8A. By 4.4(1) (the \((b) \iff (b)^+ \iff (c) \iff (c)^+\) part) we know the equivalence of (A), (B), (B)' \iff (C) \iff (C)^+.
By x.x \((D) \iff (D)\)'.
By 4.4(3) we have \((D)' \implies (D)^{''} \implies (D)^{'''}\).
By x.x \((E) \iff (E)\)'.
By 4.4(3A) \((E)^{'} \implies (E)^{''} \implies (E)^{'''}\).
By 4.1A(2) \((E)^{''} \implies (D)\)'.
By 4.1A(1) \((D)^{'} \implies (E)^{'} \implies (D)^{''} \implies (E)^{''} \implies (D)^{'''} \implies (E)^{''}\).

Together we get the equivalence of \((D), (E), (D)^{'} \implies (E)^{''} \implies (D)^{''} \implies (E)^{''}\).
By 4.4(1) \((E)^{'} \implies (A) \implies (E)^{''}\), so by the last sentence and the first paragraph we have finished the proof of 4.8. For 4.8A use 4.6B.

4.4 Fact. Let \(\lambda = \text{cf}(\lambda) > \theta = \text{cf}(\theta) \).

(A) There is \(H = \bigcup_{i<\lambda} H_i \) such that:
\[(\alpha) \] \(H_i \) is increasing continuous
\[(\beta) \] \(H_\theta \) is a family of functions \(h \), \(\text{Dom}(h) \) is a set of \(\theta \) ordinals, \(h \) is one to one
\[(\gamma) \] each \(H_i \) is free, but \(H \) is not free.

(B) = \((B)^{r,\theta}\). Let \(X = X_{\lambda,\theta} = : \lambda \theta \)

\[F = F_{\lambda,\theta} =: \left\{ f : f \text{ a partial function from } X \text{ to } \theta, |\text{Dom } f| = \theta \text{ and } \begin{align*} (\forall^* i < \lambda) (\forall^* \eta \in \text{Dom}(f))[f(\eta) \leq \eta(i)] \end{align*} \text{ and } f \text{ is one to one} \right\}. \]

Then there is no \(G : X \to \omega \) such that
\[f \in F \implies f(\forall^* \eta \in \text{Dom}(f))[f(\eta) \leq G(\eta)]. \]
Then
\[(A) \iff (B). \]

Proof. \((A) \implies (B)\).
Let $H, H_i (i < \lambda)$ exemplifies (A), let $A = \cup\{\text{Dom}(h) : h \in H\}$, and let $g_i : A = \theta$ exemplify “H_i is free”.

We define an equivalence relation E on $A : \alpha \exists_\beta \iff \bigwedge_{i < \lambda} g_i(\alpha) = g_i(\beta)$. If for some $h \in H$ and $\alpha, (\alpha/E) \cap \text{Dom}(h)$ has cardinality θ, choose $i < \lambda$ such that $h \in H_i$, and g_i cannot satisfy the requirement. let h^\otimes be a function with domain $\text{Dom}(h)$, $h^\otimes(\alpha) = \sup\{h(\beta) : \beta \in \alpha/E\}$. Now $H' := \{h^\otimes : h \in H\}, H''\{h^\otimes : h \in H'_i\}$ exemplifies (A) too. So without loss of generality E is the equality on A.

Next for each $\alpha \in A$ let $\eta_\alpha \in \lambda \theta (= X)$ be defined by $\eta_\alpha(i) = g_i(\alpha)$, so $\alpha \neq \beta \Rightarrow \eta_\alpha \neq \eta_\beta$. For $h \in H$ let $\text{Dom}(h) = \{\alpha_{h, \zeta} : \zeta < \theta\}$ such that $\langle h(\alpha_{h, \zeta}) : \zeta < \theta\rangle$ is strictly increasing. For $h \in H$ let the function f_h be defined by:

$$\text{Dom}(f_h) = \{\eta_{\alpha_{h, \zeta}} : \zeta < \theta\}, f_h(\eta_{\alpha_{h, \zeta}}) = h(\alpha_{h, \zeta}).$$

Now

$$(*) \quad h \in H \Rightarrow f_h \in F.$$

[Why? Let $i(*) = \min\{i : h \in H_i\}$ (well defined as $H = \bigcup_{i < \lambda} H_i$), so $i \in [i(*), \lambda)$ implies $h \leq^* (g_i \restriction \text{Dom}(h))$. So for some $\zeta(*) < \theta$, for every $\zeta \in [\zeta(*), \theta]$ we have $h(\alpha_{h, \zeta}) \leq g_i(\alpha_{h, \zeta})$, but $f_h(\eta_{\alpha_{h, \zeta}}) = h(\alpha_{h, \zeta})$ and $g_i(\alpha_{h, \zeta}) = \eta_\alpha(i)$ so: for every $i < \lambda$ large enough for all but θ members $\eta = \eta_{\alpha_{h, \zeta}}$ of $\text{Dom} \ f_h$, $f_h(\eta) = h(\alpha_{h, \zeta}) \leq g_i(\alpha_{h, \zeta}) = \eta_{\alpha_{h, \zeta}}(i) = \eta(i)$ as required.]

So assume G is a function from X to ω such that

$$(**) \quad f \in F \Rightarrow (\forall^* \eta \in \text{Dom}(f))[f(\eta) \leq G(\eta)]$$

and we should get a contradiction. Let us define $g \in A\theta$ by $g(\alpha) = G(\eta_\alpha)$. So for $h \in H$, we have $f_h \in F$ hence by $(*) + (**) \Rightarrow \exists \zeta(*) < \theta, \zeta \in [\zeta(*), \theta) \Rightarrow f_h(\eta_{\alpha_{h, \zeta}}) \leq G(\eta_{\alpha_{h, \zeta}})$. But $f_h(\eta_{\alpha_{h, \zeta}}) = h(\alpha_{h, \zeta})$, and $g(\alpha_{h, \zeta}) = G(\eta_{\alpha_{h, \zeta}})$ so $\zeta \in [\zeta(*), \theta) \Rightarrow h(\alpha_{h, \zeta}) \leq g(\alpha_{h, \zeta})$. So g shows that H is free, contradiction. We have proved (B).

$(B) \Rightarrow (A)$

The demand $A = \bigcup_{h \in H} \text{Dom}(h) \subseteq \text{Ord}$ is immaterial, so let $A = X, H = F_{\lambda, \theta}$.

Lastly for $i < \lambda$ let $g_i : A \to \theta$ be $g_i(\eta) = \eta(i)$, and

$$H_i = \{f \in F : \text{for every } j \in [i, \lambda) \text{ we have } (\forall^* \eta \in \text{Dom}(f))[f(\eta) \leq \eta(i)]\}.$$

4.10 Conclusion. $\text{INCWH}(\lambda)$ implies $(B)_{\lambda, \theta}$ of Fact 4.9 implies $(\exists \mu)[\lambda \leq \mu \leq 2^\lambda \land \text{INCWH}(\mu)].$

4.11 Remark. It is well known that

$(*)$ if there is a real valued measure m on $P(\lambda), \theta = \aleph_0$

$$G(f) = \min\{n : m(f^{-1}(\{n\}) > 0\}$$

then G contradicts $(B)_{\lambda, \aleph_0}$.

Also, it is consistent that $\text{SP}_{\aleph_0} \subseteq (2^{\aleph_0})^+$. This follows from the consistency of the PMEA (Product Measure Extension Axiom) and Fact 4.9.

The consistency of PMEA is due to Kunen. See [Fl] for an exposition.
References

[FoLa] M. Foreman and R. Laver, Some Downward Transfer Properties for λ_2 Advances in Mathematics, NA? 67 (1988), 230–238.

[Fl] W.G. Fleisner, The Normal Moore Space Conjecture in Handbook of Set-Theoretic Topology, NA? (1984), 733-760.

[JSSh] S. Shelah and L. Soukup, More on Countably Compact, Locally Countable Spaces, Israel Journal of Mathematics 62 (1989), 302–310.

[Sh] Saharon Shelah, Cardinal Arithmetic, in press, Oxford University Press (1994).

[Sh108] , On Successors of Singular Cardinals, in Logic Colloquium 1978 (Mons 1978), of Stud. Logic Foundations Math, North Holland 97 (1979), 357-380.

[Sh355 = Sh-g,II] , cute a Jonsson Algebra, in Cardinal Arithmetic, in press, Oxford University Press (1994).

[Sh371 = Sh-g,III] , Cofinalities of Reduced Products, in Cardinal Arithmetic, in press, Oxford University Press (1994).

[Sh400 = Sh-g,IV] , Cardinal Arithmetic, in Cardinal Arithmetic, in press, Oxford University Press (1994).

[Sh430], Further Cardinal Arithmetic, accepted, Israel Journal of Math.