Nitrated monoaromatic hydrocarbons (nitrophenols, nitrocatechols, nitrosalicylic acids) in ambient air: levels, mass size distributions and inhalation bioaccessibility

Zoran Kitanovski1 · Jan Hovorka2 · Jan Kuta3 · Cecilia Leoni2 · Roman Prokeš3 · Ondřej Sáňka3 · Pourya Shahpoury1,4 · Gerhard Lammel1,3

Received: 29 December 2019 / Accepted: 1 June 2020 / Published online: 11 June 2020 © The Author(s) 2020

Abstract

Nitrated monoaromatic hydrocarbons (NMAHs) are ubiquitous in the environment and an important part of atmospheric humic-like substances (HULIS) and brown carbon. They are ecotoxic and with underresearched toxic potential for humans. NMAHs were determined in size-segregated ambient particulate matter collected at two urban sites in central Europe, Ostrava and Kladno, Czech Republic. The average sums of 12 NMAHs (Σ12NMAH) measured in winter PM10 samples from Ostrava and Kladno were 102 and 93 ng m−3, respectively, and 8.8 ng m−3 in summer PM10 samples from Ostrava. The concentrations in winter corresponded to 6.3–7.3% and 2.6–3.1% of HULIS-C and water-soluble organic carbon (WSOC), respectively. Nitrocatechols represented 67–93%, 61–73% and 28–96% of NMAHs in PM10 samples collected in winter and summer at Ostrava and in winter at Kladno, respectively. The mass size distribution of the targeted substance classes peaked in the submicrometre size fractions (PM1), often in the PM0.5 size fraction especially in summer. The bioaccessible fraction of NMAHs was determined by leaching PM3 samples in two simulated lung fluids, Gamble’s solution and artificial lysosomal fluid (ALF). More than half of NMAH mass is found bioaccessible, almost complete for nitrosalicylic acids. The bioaccessible fraction was generally higher when using ALF (mimics the chemical environment created by macrophage activity, pH 4.5) than Gamble’s solution (pH 7.4). Bioaccessibility may be negligible for lipophilic substances (i.e. log KOW > 4.5).

Keywords Air pollution · Nitroaromatic compounds · Bioaccessibility · Aerosol

Introduction

Nitrated monoaromatic hydrocarbons (NMAHs) are an important part of humic-like substances (HULIS), which in turn constitute a large mass fraction of particulate matter (PM) water-soluble organic carbon (WSOC; Graber and Rudich 2006) and brown carbon (Laskin et al. 2015). NMAHs are primarily emitted into the atmosphere or formed by secondary processes. Gas- and aqueous-phase oxidation and nitration of lignin thermal decomposition products (m-cresol, phenols, methoxyphenols, catechols, salicylic acid, etc.) are major formation pathways for 4-nitrocatechol (4-NC), methylnitrocatechols (MNCs), nitroguaiacols (NGs) and nitrosalicylic acids (NSAs; Inumata et al. 2010; Kelly et al. 2010; Kroflíč et al. 2015; Frka et al. 2016; Teich et al. 2017; Xie et al. 2017; Finewax et al. 2018; Wang et al. 2019). Traffic and coal and wood combustion, as well as industry and agricultural use of pesticides, are considered as main primary emission sources of nitrophenols (NPs), which can also be secondarily formed in the atmosphere (Harrison et al. 2005; Inumata et al. 2007; Kitanovski et al. 2012; Inomata et al. 2015; Wang et al. 2018). 4-NC and MNCs are well-established tracers for biomass burning secondary organic aerosols (Inumata et al. 2010; Kitanovski et al. 2012; Kahnt et al. 2016;...
Organic chemicals in ambient PM contribute significantly to air pollution and its adverse health effects (Lewtas 1993; Jones 1999; Shiraiwa et al. 2017). Extracts of ambient wood burning aerosol induce mutagenicity and intracellular production of ROS more than road traffic aerosol (Velali et al. 2019). Polar fractions of organic PM extracts show higher toxicities than apolar ones (Nováková et al. 2020). The complete pollutant mass in the air may not be bioaccessible upon inhalation as the dissolution of the substance in the epithelial lung lining fluid (LLF) is a prerequisite for biological activity. However, this prerequisite is not needed, when the substances are carried by ultrafine particles which may penetrate membranes completely (Oberdörster et al. 2004; Li et al. 2017). Unlike heavy metals in PM (Wiseman and Zereini 2014; Wiseman 2015; Kastury et al. 2017; Polezer et al. 2019), the organic matter (OM) fraction of PM that is potentially soluble in LLF has hardly been studied. The most common approach for in vitro assessment of the bioaccessibility of PM chemicals in LLF is by determining the fraction of the total concentration of a chemical leached from PM deposited filters immersed in simulated LLFs, under controlled conditions (Wiseman 2015). The two most commonly used simulated LLFs are artificial lysosomal fluid (ALF; Colombo et al. 2008; Wiseman 2015) and Gamble’s solution (Marques et al. 2011; Wiseman 2015). ALF mimics the chemical environment around inhaled particles after being phagocytized by lung alveolar and interstitial macrophages. It is an acidic aqueous electrolyte without lipids, pH 4.5 (Table S1). Gamble’s solution is the most common simulated LLF and represents the interstitial fluid in the lung. It is a neutral aqueous electrolyte without lipids, proteins and antioxidants, pH 7.4 (Table S1). The bioaccessible fraction of a chemical in PM is calculated as $f_{bio,p} = c_p,LLF/c_p,MeOH \times 100\%$, where c_p,LLF is the leached concentration in LLF and $c_p,MeOH$ is the total concentration (from extraction in methanol) of the substance in PM samples used for leaching.

The aim of this present study was to determine levels and mass size distributions of NMAHs in the atmospheric PM collected at two urban locations in the Czech Republic. Inhalation bioaccessibility of semivolatile organic compounds so far has been mostly focusing on PAHs (Wei et al. 2018). For the first time, we quantify the inhalation bioaccessibility of NMAHs in PM. PAHs’ and nitro- and oxy-PAHs’ abundances and bioaccessibility in the same PM samples (Lammel et al. 2020a, b), as well as simultaneously in the gas phase (Lammel et al. 2020a), are presented in companion papers. Toxicities of these PM samples, as well as the mixture toxicity of the substance classes addressed (reconstituted mixtures), are published elsewhere (Nováková et al. 2020).

Materials and methods

Sampling sites

Air samples were collected at two urban and one rural site in the Czech Republic, Kládno-Švermov (50° 10’ 01” N/14° 06’ 15”E) during 10–14 February 2016 and Ostrava-Přívoz (49°51’23” N/18°16’11”E) during 15–27 February and 5–17 September 2016, respectively (Fig. S1). In Kládno, an industrial town (≈70,000 inhabitants), a heat plant but no major industries were working during the campaign. The Ostrava site is located quite central in the industrial area (≈500,000 inhabitants). It is a station of the Czech Hydrometeorological Institute (CHMI). A major cokery with 200 furnaces, a major metallurgical plant, a waste burner and other industries are within 3 km from the site. Ostrava is a hot spot of air pollution in Europe (Pokorná et al. 2015, 2016; Kozáková et al. 2019). For example, abundance of polycyclic aromatic hydrocarbons (PAHs) is high in Ostrava and the biological effects of PM are evident, in particular during winter time (Libalová et al. 2012; Šram et al. 2013; Topinka et al. 2015; Pokorná et al. 2015; Leoni et al. 2016).

Sampling

Particulate and gas phase samples were collected side by side by a high-volume air sampler Digitel DH77 (Digitel, Hegnau, Switzerland) and a high-volume 6-stage slot impactor Baghirra HV-100P (Baghirra, Prague). All samplers had PM$_{10}$ inlets. Only the particulate phase samples were used for this study, i.e. 6 and 12 Digitel samples collected at Kládno and Ostrava winter campaigns, respectively, and 1, 3 and 3 impactor samples collected at Kládno and Ostrava winter and summer campaigns, respectively. The Digitel sampler was equipped with a quartz fibre filter (QFF, Whatman, Little Chalfont, UK), and the Baghirra sampler equipped with a multi-stage cascade impactor (Tisch Environmental Inc., Cleves, USA, series 230, model 235) with five impactor stages, corresponding to 10–7.2, 7.2–3, 3–1.5, 1.5–0.95 and 0.95–0.49 μm of aerodynamic particle size, D_s (spaced roughly equal $\Delta\log(D)$ and a backup filter collecting particles < 0.49 μm. In the impactor, PM was collected on a slotted quartz fibre filter (QFFs, TE-230-QZ, Tisch Environmental Inc., Cleves, USA, series 230, model 235) with five impactor stages, corresponding to 10–7.2, 7.2–3, 3–1.5, 1.5–0.95 and 0.95–0.49 μm of aerodynamic particle size, D_s (spaced roughly equal $\Delta\log(D)$ and a backup filter collecting particles < 0.49 μm. In the impactor, PM was collected on a slotted quartz fibre filter (QFFs, TE-230-QZ, Tisch Environmental Inc.,

$$\textit{Bioaccessibility} = \frac{c_p,LLF}{c_p,MeOH} \times 100\%$$
Cleves, USA, 14.3 × 13.7 cm) and the backup filter was a QFF (Whatman). The samplers were operated at constant flow rates of ≈ 29 (Digitel, 24 h sampling) and ≈ 68 m³ h⁻¹ (Baghirra, 96-h sampling).

Filter samples were kept on-site and during transport cool (≈ 0 °C), then stored at temperatures below – 18 °C.

Leaching of NMAHs in simulated lung fluids and chemical analysis

Two LLFs were used, i.e. artificial lysosomal fluid (ALF; Colombo et al. 2008) and Gamble’s solution (Marques et al. 2011). Their compositions are given in the supplementary material (SM) (Table S1). The bioaccessible fractions of NMAHs in PM₃ (f_bio) were obtained by-leaching the slotted and backup PM deposited QFFs with particles < 3 μm in 20 mL of simulated LLF by shaking (60 revolutions min⁻¹) in a 100-mL flask during 24 h in an incubator at 37 °C, in the dark. Dependent on NMAH load, 1.5-cm² cuts up to one strip (out of 10 strips of length 12 cm) of each slotted QFF were leached, while 1.5–20-cm² cuts were leached from backup QFFs. The leachates were filtered through 0.45-μm cellulose acetate membrane, acidified with formic acid (1.0 mL 98–100% formic acid per 20 mL leachate), spiked with 4-nitrophenol-d₄ (internal standard (IS); spiked mass 100 ng) and loaded on solid-phase extraction disks (SPE disks; BakerBond SPEEDISK DVB H₂Ophilic, J.T. Baker). Targeted compounds were eluted from SPE disks sequentially with methanol/tetrahydrofuran/water (30/15/55, v/v/v) mixture containing 5 mM ammonium formate buffer pH 3 at a flow rate of 0.2 mL min⁻¹. The column temperature and injection volume were 30 °C and 10 μL, respectively (Kitanovski et al. 2012). For the detection and quantification of NMAHs, the mass spectrometer was operated in single ion monitoring (SIM) and negative ESI mode. The optimised ESI-MS parameters were as follows: 1000 V for the ESI capillary voltage, 30 psig for the nebuliser pressure and 12 L min⁻¹ and 340 °C for the drying gas flow and temperature, respectively. High-purity nitrogen was used as a nebulizer and drying gas. 3-Methyl-4-nitrocatechol (3-M-4-NC) concentrations were calculated based on the calibration curve of 4-methyl-5-nitrocatechol (4-M-5-NC) due to the lack of a reference standard for 3-M-4-NC and its structural similarity to 4-M-5-NC. LC/MSD ChemStation (Agilent Technologies) was used for data acquisition and analysis.

Field blanks (n = 3) were prepared during sample collection by mounting the pre-baked filters on the sampler without switching it on. These filters were subsequently retrieved and processed along with the rest of the samples. The mean of two or three field blank values was subtracted from the sample values (in both methanol extracts and leachates). Values below the mean + 3 standard deviations of the field blank values were considered to be below the limit of quantification (<LOQ). LOQs for the various campaigns are listed in Table S4. Heavy metal content, aerosol number and mass size distributions (MSDs), meteorological and trace gases were also covered by respective methods, described in the supplementary material (SM) (S1.4).

Results and discussion

Concentration levels and mass size distributions

The levels of the targeted substance classes in PM₁₀ are listed in Table 1, and the time series are shown in Fig. S2. With PM₂,₅ ranging 15–34 μg m⁻³ (Table 1), the sites were considerably polluted. The pollution by heavy metals in Ostrava air was found very high, independently of season (Table 1; Fig. S3) and must be seen in the context of the local metallurgical
industries and coal production and burning (Pokorná et al., 2015; Vossler et al., 2015). The pollution at the urban sites was less reflected by the levels of the secondary inorganic aerosol (SO_4^{2-}, NO_3^{-}, NH_4^+), because these are regionally distributed pollutants, exhibiting a low urban-to-rural gradient (Lammel et al., 2003).

The NMAH levels at the Kladno and Ostrava (winter) sites corresponded to 2.6 and 3.1% of the WSOC, respectively, and 6.3 and 7.3% of the HULIS-C, respectively (Voliotis et al., 2017). NMAHs were dominated by 4-NC and MNCs (Fig. S4a). The patterns in PM$_1$ and PM$_{10}$ are rather similar unlike typical for many other aerosol constituents (Putaud et al., 2010).

Mass size distributions of NMAHs are shown in Fig. 1 and S6. PM$_1$ accounts for 80–90% of NCs, 70–80% of NSAs (as well as the NMAHs in total) and 40–60% of NPs. For all NMAH substance classes, the significance of the smallest size, PM$_{0.49}$, was higher in summer than that in winter (in Ostrava). In contrast, the significance of a super-μm mode (3–7 μm) of NPs and NMAHs decreased in summer, completely in the case of NSAs. A high fraction of NPs, 30–50%, was associated with the coarse fraction (PM$_{10}$–PM$_3$) in winter (Fig. 1). These results are in agreement with previous reports from other urban sites in central and southern Europe (Kitanovski et al., 2020) and China (Li et al., 2016). The aerosol number size distributions (characterised in Fig. S5) indicated close combustion sources and are consistent with the possible influence of wood burning. The MSDs peaking in the sub-micrometre size range highlight the significance of NMAHs’ inhalation exposure of the deep lung (Kitanovski et al., 2020).

Table 1: NMAH concentration and (a) mass mixing ratio (in PM$_{10}$ (ppmm)), ambient PM mass concentrations (PM$_{2.5}$, PM$_{10}$) and chemical composition, inorganic gaseous pollutants and meteorological data, and (b) individual NMAHs and substance classes in PM$_{10}$/PM$_3$	Kladno winter	Ostrava winter	Ostrava summer
(a)			
Σ_{12}NMAH (ng m$^{-3}$) (Σ_{12}NMAH (ppmm))	93 (4940)	102 (2519)	8.8 (205)
PM$_{10}$/PM$_{2.5}$ (µg m$^{-3}$)	16.9/15.4	39.9/34.2	40.2/30.1
Σ_{10}OPAH (ng m$^{-3}$) (Σ_{10}OPAH (ppmm))a	5.6 (380)	10.0 (250)	4.0 (99)
HULIS-C (µg m$^{-3}$)b	1.47	1.39	n.d.
WSOC (µg m$^{-3}$)b	3.62	3.30	n.d.
EC/OC (µg m$^{-3}$)	0.9/6.9	1.4/7.1	1.4/6.0
NO$_x$/CO (ppbv)	15.4/320	45.1/496	41.3/375
SO_4^{2-}/NO$_3^{-}$/NH$_4^+$ (µg m$^{-3}$)b	1.1/3.9/1.8	2.2/4.2/3.2	n.d.
Fe/Pb (ng m$^{-3}$)	186/6.8	977/21	1285/20
Temperature (°C)	0.9 (−6–10)	4.1 (−4–15)	20 (11–29)
Rel. humidity (%)	79 (47–95)	80 (41–97)	70 (35–95)
(b) Analyte			
3-NSA	0.30/0.28	0.37/0.33	0.32/0.31
5-NSA	0.50/0.44	0.73/0.62	0.79/0.73
Σ_2NSA	0.80/0.72	1.10/0.95	1.11/1.04
4-M-5-NC	20.5/19.9	21.9/21.2	1.44/1.44
3-M-5-NC	14.6/14.2	14.0/13.98	0.70/0.70
3-M-4-NC	3.77/3.67	3.79/3.68	0.19/0.23
4-NC	42.8/41.5	38.3/37.2	3.89/3.88
Σ_3NC	81.8/79.3	78.4/76.1	6.27/6.24
4-NP	5.54/3.01	9.06/5.35	1.12/0.85
4-NG	< 0.061/0.061	1.23/0.38	< 0.026/0.026
DNOC	< 0.006/0.006	0.034/0.006	< 0.0065/0.0065
2,4-DNP	< 0.006/0.006	0.14/0.077	0.0088/0.00065
3-M-4-NP	2.40/1.43	5.45/3.58	0.15/0.15
2-M-4-NP	2.91/1.81	7.24/4.97	0.26/0.26
Σ_4NP	10.9/6.24	21.9/14.0	1.64/1.26
Σ_4NMAH	93.4/86.2	101.8/91.1	8.84/8.37

a Lammel et al. (2020b)
b Voliotis et al. (2017)

OPAH, oxygenated polycyclic aromatic hydrocarbons; HULIS-C, humic-like substances; WSOC, water-soluble organic carbon; n.d., no data
et al. 2020), similar to other aromatic combustion byproducts like the parent PAHs (Ringuet et al. 2012) and polychlorinated dibenzodioxins and -furans (Zhang et al. 2016).

Bioaccessibility

The lowermost 4 impactor stage filters of the campaigns at Kladno (1 winter-time sample set) and Ostrava (3 winter- and 3 summer-time sample sets), encompassing PM$_3$, were leached in ALF. Only one sample set encompassing PM$_3$ per location and season (3 sample sets in total) was leached in Gamble’s solution (GS; Table 2; Table S5; Fig. 2).

Using ALF, more than half of NMAH mass was found bioaccessible in winter, and almost complete, 94%, in summer (Table 2a). This could be related to a higher content of hydrophobic substances in PM in winter. In central Europe, fossil fuel combustion byproducts, in particular PAHs, are much higher concentrated in winter, also in urban air, and also in Ostrava (Lammel et al. 2010; CHMI 2013; Vossler et al. 2015). The difference of $f_{\text{bio,p}}$ found when using ALF across the campaigns (Table 2) was not pronounced as compared with when using GS to leach samples (insignificant differences for $p < 0.05$, t test). Often lower $f_{\text{bio,p}}$ was found for all NMAH species when using the neutral GS than when using the acidic ALF (Table 2 and Table S5a; note that due to less samples leached by GS than ALF, directly comparable $f_{\text{bio,p}}$ data are given in Table 2, but not in Table S5), but also the opposite was found (Kladno sample, Table 2, Table S5b).

	Kladno winter	Ostrava winter	Ostrava summer
NMAHs			
NPs			
NCs			
NSAs			

Fig. 1 Time-weighted mean Σ_{12}NMAHs and sub-classes’ mass size distributions. The error bars show the standard deviation from the campaign mean ($n = 3$ for Ostrava, $n = 1$ for Kladno).
NSAs were almost completely bioaccessible, i.e. $f_{\text{bio,p}}$ \approx 100% in both LLFs. Bioaccessible fractions $> 100\%$ most likely reflect leaching procedure artefacts. They are more pronounced for NSAs and NCs when leached in ALF (Table S5). Therefore, we investigated the stability of NMAHs during the leaching procedure by spiking the LLFs with NMAH standard mix and carrying out the usual 24-h leaching. The results from stability study (Table S7) showed $> 100\%$ recoveries for NSAs in both LLFs, but usually $< 100\%$ recoveries for NCs. Neither NCs nor methylnitrophenols (MNPs) or dinitrophenols (DNPs) were found more stable in ALF than in GS (not significant, $p < 0.05$, t test). With a pK_a (acidity constant) of 6.78 at 35 °C (Gelb et al. 1989), the majority of 4-NC (but also MNC) molecules will be deprotonated in GS (pH 7.4) at 37 °C. In deprotonated form, NCs are more susceptible to oxidation (e.g. by the dissolved oxygen in LLFs) and formation of nitrated 1,2-benzoquinones, which could not be measured by the analytical method employed here. In ALF at pH 4.5, NCs are in neutral form and more stable, hence their higher recoveries from ALF. This could also explain their higher $f_{\text{bio,p}}$ in ALF (significant at the $p < 0.05$ level, t test; Table S5). For MNPs and DNPs, however, their lower stability in ALF is unexplained, having in mind their pK_a values around 7.3 and 4.0, respectively (Schwarzenbach et al. 1988), as well as their high recoveries during the SPE clean-up after the leaching process (Table S3). Only for summer samples from Ostrava, the NMAHs’ bioaccessible fractions in ALF are much higher than 100% (range, 99–187%; Table S5b), suggesting the possible aqueous-phase formation of NMAHs from their precursors in the PM during the leaching process (positive artefact) under mild acidic conditions (pH 4.5; Kroflik et al. 2018). This hypothesis is supported by the high levels of PM$_{10}$ (PM$_{2.5}$), NO$_x$ and Fe (Fig. S3) measured during the summer sampling campaign (Table 1a) which could facilitate the oxidation and nitration of NMAH precursors. Interestingly, for the same sample sets, very low bioaccessibility in GS was observed for NCs (range, 9–77%; Table S5b) that cannot be solely explained by the NC stability results (50–99%; Table S7). Due to high Fe content in samples, NCs could partly exist as monocomplexes of Fe$^{3+}$ and enhance the production of reactive species by Fenton or Fenton-like systems (Salgado et al. 2017). During these processes, NCs can be oxidised or degraded by the formed reactive species, thus diminishing their leached concentrations (negative artefact), as well as their measured bioaccessible fractions.

For both LLFs, $f_{\text{bio,p}}$ was found independent of particle size, i.e. do not differ significantly between sub-micrometre particles and the PM$_3$ size fraction ($p < 0.05$, t test; Table 2). This is also reflected as similar (statistically not different, $p < 0.05$, test) for Ostrava winter (Table S5) and Kladno winter (Table S5b), respectively (listed in Table S2). The respective data for Ostrava winter (Table S5) are shown together with data for 7 oxygenated polycyclic aromatic hydrocarbons (OPAHs; Lammel et al. 2020b), hence, s and K_{OW} across the two substance classes ranging 5 and 4 orders of magnitude, respectively (Fig. 2, Fig. S7). The bioaccessible fractions of NMAHs, $f_{\text{bio,p}}$, were similar in winter and summer (Fig. S7), reflecting that ambient aerosol chemical composition in

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure.png}
\caption{Figures and tables from the text.}
\end{figure}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
 & Kladno winter & Ostrava winter & Ostrava summer \\
\hline
Σ_{2}NMAH & 55 (54) & 75 (75) & 94 (81) \\
Σ_{2}NSA & 95 (90) & 123 (124) & 140 (115) \\
Σ_{2}NC & 58 (54) & 78 (75) & 92 (79) \\
Σ_{2}NP & 45 (42) & 66 (67) & 83 (68) \\
\hline
\end{tabular}
\caption{Table 2 Fractions (%) of the PM$_3$ (PM$_1$) size fractions being leached in simulated lung fluids, $f_{\text{bio,p}} = c_p^{LLF}/c_p^{MOHS}$, i.e. (a) artificial lysosomal fluid (ALF, pH 4.5) and (b) Gamble’s solution (GS, pH 7.4). One impactor sample per campaign.}
\end{table}
source areas (anthropogenic sources) is subject to little sea-
sonal variation (Putaud et al. 2010). It decreased with the
compound’s increasing K_{ow} (Fig. 2) and decreasing water
solubility (Fig. S7). Bioaccessibility may be negligible for
lipophilic substances (i.e. log $K_{ow} > 4.5$). A lack of a clear
trend in Fig. S7 reflects the aqueous electrolyte nature of the
LLFs.

The MSDs of the bioaccessible fractions were only slightly
shifted against the MSDs of the PM methanol extracts. For
example, for GS, the bioaccessible sub-micrometre mass frac-
tion in PM$_3$, i.e. PM$_1$/PM$_3$, deviated typically only within 2%
in the total sub-micrometre mass fraction in PM$_3$
(Table S6b), while for ALF these shifts were up to ≈ 10
% (Table S6a), in the sense that the sub-micrometre fraction
was less bioaccessible than the coarse size fraction. This is
possibly related to a higher hydrophobicity of PM$_1$ particles
as compared with coarse PM. Hydrophobicity may limit the
leachability of particles. Hydrophobicity was not determined,
but more than 60% of EC and OC, which often represent
hydrophobic constituents, were associated with the PM$_1$, mass
fraction, more than in coarse PM (cumulative MSDs, Fig. S5).

Conclusions and suggestions for research

Inhalation bioaccessibility of the nitrated monoaromatic pol-
lutants in PM as operationally defined by leaching filter sam-
ples in simulated lung fluids was found very high for both an
aqueous acidic (pH 4.5, ALF) and a neutral electrolyte (pH
7.4, Gamble’s solution). This emphasises the human inhala-
tion exposure to polar constituents of particulate organic mat-
ter. Bioaccessibility of a given PM constituent will depend on
not only the substance properties but also the aerosol matrix
(e.g. its hydrophobicity). Here, a limited number of samples
have been analysed. Among aerosol types, only urban aeros-
ols, strongly influenced by fossil fuel burning sources
(metallurgical industries and coal production and burning,
road traffic; Lammel et al. 2020b) were covered. More such
data should be gained from other aerosol types and extended
to other organic pollutants, abundant in aerosols, such as poly-
cyclic aromatic compounds. The determination of bioaccessi-
bility based on leaching with simulated lung fluids may even
be an underestimate, as ultrafine particles may penetrate
through the membrane and thus deliver pollutants without
dissolution in the lung fluid. On the other hand, the presence
of false-positive ($f_{bio} > 50\%$) and false-negative artefacts
($f_{bio} < 50\%$) during the in vitro tests of bioaccessibility
should be avoided by (a) optimization of the duration of the
tests (allowing less time for unwanted reactions to occur), (b)
using degassed LLFs and performing the tests in inert atmo-
sphere for analytes that could be easily oxidised (which is
opposite to the real conditions in the lung) and (c) by using
more realistic LLF models that contain lipids, proteins and?

antioxidants (e.g. Boïsa et al. 2014). The presence of organic
constituents and antioxidants in LLFs would serve as “buffer”
for PM and potentially in situ formed ROS during the leaching
procedure. Only the bioaccessible fraction of pollutants can
become biologically effective, such as ROS active. While the
reduction potential as an indicator for redox reactivity is avail-
able for a number of NMAHs such as nitrobenzenes
(Uchimiya et al. 2010), determination of the oxidative poten-
tial (OP) of organic pollutants has so far been limited to qui-
nones (Charrier and Anastasio 2012; Yu et al. 2018; Lammel
et al. 2020b) and N-heterocycles (Dou et al. 2015). Finally,
the inhalation exposure to the targeted NMAHs is in fact higher,
because part of the NMAH mass will be distributed to the gas-
phase of ambient aerosols, not considered in this study.

Acknowledgements Open access funding provided by Projekt DEAL.
We thank Libor Čermíkovský, Blanka Krejci, Jana Schováňková, Pavel
Smolík (Czech Hydrometeorological Institute) and Rostislav Červenka
(Masaryk University) for meteorological and trace gas data and carbon
fraction analysis. We also thank Sergej Grebenuk and Anna Honcza for
the help during sample preparation. This research was supported by the
Max Planck Society, by the Czech Science Foundation (503/16/11537S,
503/12/G147) and by the ACTRIS-CZ (CZ.02.1.01/0.0/0.0/16_013/
0001315) and RECETOX (LM2018121) Research Infrastructures funded
by the Ministry of Education, Youth and Sports of the Czech Republic.

Compliance with ethical standards

Conflict of interests The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons Attribution
4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Boïsa N, Elom N, Dean JR, Deary ME, Bird G, Entwistle JA (2014)
Development and application of an inhalation bioaccessibility meth-
od (IBM) for lead in the PM$_{10}$ size fraction of soil. Environ Int 70:
132–142. https://doi.org/10.1016/j.envint.2014.05.021

Brüning T, Their R, Bolt H (2002) Nephrotoxicity and
nephrocarcinogenicity of dinitrotoluene: new aspects to be consid-
ered. Rev Environ Health 17:163–172. https://doi.org/10.1515/
REVEH.2002.17.3.163

Caumo SES, Cleaëys M, Maenhaut W, Vermeulen R, Shabanam B,
Shalamzari MS, Vasconcellos PC (2016) Physicochemical charac-
terization of winter PM$_{10}$ aerosol impacted by sugarcane burning
from São Paulo city. Atmos Environ 145:272–279. https://doi.org/10.1016/j.atmosenv.2016.09.046

Charrier JG, Anastasio C (2012) On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: evidence for the importance of soluble transition metals. Atmos Chem Phys 12:9321–9333

CHMI (2013) Graphic yearbook 2014. Czech Hydrometeorological Institute. Prague. URL: http://portal.chmi.cz/files/portal/docs/ucoo/iskofograf/groc/gr13e/V3_OKFM_GB.html. Accessed 30 Sept 2019

Chow KS, Hilda XHH, Yu JZ (2016) Quantification of nitroaromatic compounds in atmospheric fine particulate matter in Hong Kong over 3 years: field measurement evidence for secondary formation derived from biomass burning emissions. Environ Chem 13:665–673. https://doi.org/10.1071/EN15174

Claeys M, Vermeulen R, Yasmien F, Gómez-González Y, Chi X, Maenhaut W, Meszáros T, Salma I (2012) Chemical characterisation of humic-like substances from urban, rural and tropical biomass burning environments using liquid chromatography with UV/vis photodiode array detection and electrospray ionisation mass spectrometry. Environ Chem 9:273–284. https://doi.org/10.1071/EN11163

Colombo C, Monhemius AJ, Plant JA (2008) Platinum, palladium and rhodium release from vehicle exhaust catalysts and road dust exposed to simulated lung fluids. Ecotox Environ Safety 71:722–730. https://doi.org/10.1016/j.ecoenv.2007.11.011

Dou J, Lin P, Kuang BY, Yu JZ (2015) Reactive oxygen species production mediated by humic-like substances in atmospheric aerosols: enhancement effects by pyridine, imidazole, and their derivatives. Environ Sci Technol 49:6457–6465

Finewax Z, de Gouw JA, Ziemann PJ (2018) Identification and quantification of 4-nitrocatechol formed from OH and NO3 radical-initiated reactions of catechol in air in the presence of NOx: implications for secondary organic aerosol formation from biomass burning. Environ Sci Technol 52:1981–1988. https://doi.org/10.1021/acs.est.7b05864

Frika S, Šala M, Kroflič A, Huš M, Čusak A, Grigí I (2016) Quantum chemical calculations resolved identification of methylnitrocatechols in atmospheric aerosols. Environ Sci Technol 50:5526–5535. https://doi.org/10.1021/acs.est.6b00823

Gelb RI, Lauffer DA, Schwartz LM, Wairimu K (1989) Acid dissociation of aqueous 4-nitrocatechol. J Chem Eng Data 34:82–83. https://doi.org/10.1021/je00055a023

Graber ER, Rudich Y (2006) Atmospheric HULIS: How humic-like are they? A comprehensive and critical review. Atmos Chem Phys 6:729–753. https://doi.org/10.5194/acp-6-729-2006

Gründlingh J, Paul I, el Zanfaly M, Wood D (2011) 2,4-Dinitrophenol

Kahnt A, Behrouzi S, Vermeulen R, Shalamzari MS, Vercauteren J, Roekens E, Claeyss M, Maenhaut W (2013) One-year study of nitro-organic compounds and their relation to wood burning in PM10 aerosol from a rural site in Belgium. Atmos Environ 81:561–568. https://doi.org/10.1016/j.atmosenv.2013.09.041

Karim K, Gupta S (2001) Biotransformation of nitrophenols in upflow anaerobic sludge blanket reactors. Bioresearch Technol 8:179–186. https://doi.org/10.1016/S0960-8524(00)00092-X

Kastury F, Smith E, Juhasz AL (2017) A critical review of approaches and limitations of inhalation bioaccessibility and bioaccessibility of metal(loid)s from ambient particulate matter or dust. Sci Total Environ 574:1054–1074. https://doi.org/10.1016/j.scitotenv.2016.09.056

Kelly JL, Michalengeli DV, Makar PA, Hastie DR, Mozhurzewich M, Auld J (2010) Aerosol speciation and mass prediction from toluene oxidation under high NOx conditions. Atmos Environ 44:361–369. https://doi.org/10.1016/j.atmosenv.2009.10.035

Kitanovski Z, Grigí I, Vermeulen R, Claeyss M, Maenhaut W (2012) Liquid chromatography tandem mass spectrometry method for characterisation of monoaromatic nitro-compounds in atmospheric particulate matter. J Chromatogr A 1268:35–43. https://doi.org/10.1016/j.chroma.2012.10.021

Kovočič K, Shaphoury P, Samara C, Voliotiis A, Lammel G (2020) Composition and mass size distribution of nitrated and oxygenated aromatic compounds in ambient particulate matter from southern and central Europe – implications for the origin. Atmos Chem Phys 20:2471–2487. https://doi.org/10.5194/acp-20-2471-2020

Kovacic P, Somanathan R (2014) Nitroaromatic compounds: environmental toxicity, carcinogenicity, mutagenicity, therapy and mechanisms. J Appl Toxicol 34:810–824. https://doi.org/10.1002/jat.2980

Kožáková J, Pokorná P, Vodička P, Ondráčková L, Ondráček J, Krůmal K, Mikůška P, Hovorka J, Moravec P, Schwarz J (2019) The influence of local emissions and regional air pollution transport on a European air pollution hot spot. Environ Sci Pollut Res 26:1675–1692. https://doi.org/10.1007/s11356-018-3670-y

Kroflič A, Grilc M, Grigí I (2015) Unraveling pathways of guaiacol nitration in atmospheric waters: Nitrite, a source of reactive nitronium ion in the atmosphere. Environ Sci Technol 49:9150–9158. https://doi.org/10.1021/acs.est.5b01811

Kroflič A, Huš M, Grilc M, Grigí I (2018) Underappreciated and complex role of nitrous acid in aromatic nitration under mild environmental conditions: the case of activated methoxyphenols. Environ Sci Technol 52:13756–13765. https://doi.org/10.1021/acs.est.8b01903

Lammel G, Brüggemann E, Gnaud T, Müller K, Neusüß C, Röhr A (2003) A new method to study aerosol source contributions along the tracts of air parcels and its application to the near-ground level aerosol chemical composition in central Europe. J Aerosol Sci 34:1–25. https://doi.org/10.1016/S0021-8502(02)00134-9

Lammel G, Novák J, Landlová L, Dvorská A, Klánová J, Čupr P, Kohoutek J, Reimer E, Škráliková L (2010) Sources and distributions of polycyclic aromatic hydrocarbons and toxicity of polluted atmosphere aerosols. In: Zereini F, Wiseman CLS (eds) Urban Airborne Particulate Matter: Origins, Chemistry, Fate and Health Impacts. Springer, Berlin, pp 39–62

Lammel G, Shaphoury P, Berkemeier T, Hilschrová K, Kitanovski Z, Kukučka P, Kyprianou M, Novák J, Pöschl U, Přibylová P, Prokeš R, Sáňka O, Stepňanová E, Wietzorek M (2020a) Inhalation exposure to PAHs dominated by the gaseous mass fraction even if minute, submitted manuscript

Lammel G, Kitanovski Z, Kukučka P, Novák J, Arangio A, Codling GP, Filippi A, Hovorka J, Kuta J, Leoni C, Přibylová P, Prokeš R, Sáňka

Environ Sci Pollut Res (2021) 28:59131–59140

https://doi.org/10.1007/s11356-018-3670-y

https://doi.org/10.1021/acs.est.5b01811

https://doi.org/10.1021/acs.est.8b01903

https://doi.org/10.1016/S0021-8502(02)00134-9

https://doi.org/10.1016/j.atmosenv.2015.03.043

https://doi.org/10.1016/j.atmosenv.2015.03.043
northern China: concentrations, source apportionment, and secondary formation. Atmos Chem Phys 18:4349–4359. https://doi.org/10.5194/acp-18-4349-2018

Wang Y, Hu M, Wang Y, Zheng J, Shang D, Yang Y, Liu Y, Li X, Tang R, Zhu W, Du Z, Wu Y, Guo S, Wu Z, Lou S, Hallquist M, Yu J (2019) The formation of nitro-aromatic compounds under high NOx-anthropogenic VOCs dominated atmosphere in summer in Beijing, China. Atmos Chem Phys 19:7649–7665. https://doi.org/10.5194/acp-19-7649-2019

Wei WJ, Bonvallot N, Gustafsson Å, Raffy G, Glorenc P, Krais A, Ramalho O, le Bot B, Mandin C (2018) Bioaccessibility and bioaccessibility of environmental semi-volatile organic compounds via inhalation: a review of methods and models. Environ Int 113:202–213. https://doi.org/10.1016/j.envint.2018.01.024

Wiseman CLS (2015) Analytical methods for assessing metal bioaccessibility in airborne particulate matter: a scoping review. Anal Chim Acta 877:9–18. https://doi.org/10.1016/j.aca.2015.01.024

Wiseman CLS, Zereini F (2014) Characterizing metal(loid) solubility in airborne PM10, PM2.5 and PM1 in Frankfurt, Germany, using simulated lung fluids. Atmos Environ 89:282–289. https://doi.org/10.1016/j.atmosenv.2014.02.055

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.