Comparison of oropharyngeal leak pressure and clinical performance of LMA ProSeal™ and i-gel® in adults: Meta-analysis and systematic review

Hye Won Shin¹, Hae Na Yoo¹, Go Eun Bae¹, Jun Chul Chang¹, Min Kyung Park¹, Hae Seun You¹, Hyun Jung Kim² and Hyung Sik Ahn²

Abstract
Background: A meta-analysis and systematic review of randomized controlled trials to compare the oropharyngeal leak pressure (OLP) and clinical performance of LMA ProSeal™ (Teleflex® Inc., Wayne, PA, USA) and i-gel® (Intersurgical Ltd, Wokingham, UK) in adults undergoing general anesthesia.
Methods: Searches of MEDLINE®, EMBASE®, CENTRAL, KoreaMed and Google Scholar® were performed. The primary objective was to compare OLP; secondary objectives included comparison of clinical performance and complications.
Results: Fourteen RCTs were included. OLP was significantly higher with LMA ProSeal™ than with i-gel® (mean difference [MD] −2.95 cmH₂O; 95% confidence interval [CI] −4.30, −1.60). The i-gel® had shorter device insertion time (MD −3.01 s; 95% CI −5.80, −0.21), and lower incidences of blood on device after removal (risk ratio [RR] 0.32; 95% CI 0.18, 0.56) and sore throat (RR 0.56; 95% CI 0.35, 0.89) than LMA ProSeal™.
Conclusion: LMA ProSeal™ provides superior airway sealing compared to i-gel®.

¹Department of Anesthesiology and Pain Medicine, College of Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
²Institute for Evidence-based Medicine, Department of Preventive Medicine, College of Medicine, Korea University, Seoul, Republic of Korea

Corresponding author:
Hye Won Shin, Department of Anesthesiology and Pain Medicine, College of Medicine, Korea University Anam Hospital, 126-1 Anam-dong 5-ga, Seongbuk-gu 136-705, Seoul, Republic of Korea.
Email: hwshin99@yahoo.com

Creative Commons CC-BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 License (http://www.creativecommons.org/licenses/by-nc/3.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Keywords
Airway sealing, equipment, i-gel®, laryngeal mask airway proseal, leak, meta-analysis

Date received: 29 May 2015; accepted: 19 August 2015

Introduction
Use of supraglottic airway (SGA) devices is increasingly common in clinical anesthesia.1 Second-generation SGAs including LMA ProSeal™ (Teleflex® Inc., Wayne, PA, USA) and i-gel® (Intersurgical Ltd, Wokingham, UK) were introduced in 2000 and 2007, respectively. These devices provide better airway sealing characteristics than classic LMA™, have an additional drainage tube for stomach decompression to reduce the risk of pulmonary aspiration, and are designed for use with spontaneous or positive pressure ventilation (PPV).2

Oropharyngeal leak pressure (OLP), measured by closing the expiratory valve of the anesthetic circle system at a fixed gas flow rate and noting the equilibrium airway pressure, is used to quantify the efficacy of airway sealing in SGA devices.3 Importantly, OLP indicates airway protection, successful SGA placement, and PPV.3,4 Several methods are used to quantify OLP, including audible noise detection, oral capnography, stethoscopic noise and manometric stability.3,4

The clinical performance and safety of both LMA ProSeal™ and i-gel® have been studied extensively,5–19 but reports vary as to which device offers superior OLP. Studies have shown LMA ProSeal™ to have comparable OLP to i-gel®,5,9,11,12,14 or significantly higher7,8,10,13,15,17 or lower19 OLP than i-gel®.

The present meta-analysis of published randomized controlled trials (RCTs) was performed to compare the clinical performance and airway-sealing characteristics, including OLP, of LMA ProSeal™ and i-gel® in adult patients undergoing general anesthesia.

Materials and methods
This meta-analysis was performed based upon the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statements.20

Literature search
The electronic databases MEDLINE®, EMBASE®, CENTRAL (Cochrane Central Register of Controlled Trials) and KoreaMed, as well as the web search engine Google Scholar®, were searched for eligible studies. All searches were conducted in April 2014 and updated in December 2014. The Medical Subject Heading search terms and text words included ‘LMA ProSeal’, ‘ProSeal LMA’, ‘PLMA’, and ‘i-gel’. The search was performed across all languages. The title and abstract of each paper were screened by two reviewers (H.W.S. and H.J.K.) and potentially relevant references retrieved.

Study selection
Prospective RCTs that compared LMA ProSeal™ and i-gel® for general anesthesia in patients aged >18 years were included in the analysis. Studies were selected according to predetermined inclusion criteria by two independent reviewers (H.N.Y. and G.E.B.). Any discrepancies were resolved through discussion or consultation with a third independent investigator (H.S.A).

Data extraction
Data were extracted independently and in duplicate by two reviewers (G.E.B. and H.S.Y.) and were recorded using a
predefined form that included: name of the first author; year of publication; total number of patients studied; OLP; time required for device insertion; rate of insertion on the first attempt without assistance; fiber-optic view of the glottis (glottis visualization); ease of gastric tube insertion; incidence of blood on the device after removal; and incidence of patient sore throat. The primary objective was to compare OLP between the two devices; secondary objectives were to compare their clinical performance and rate of complications. Attempts were made to contact the authors of studies that had insufficient or missing data; if attempts were unsuccessful, data were extrapolated from the study text or tables to obtain the target information.

Risk of bias assessment

The quality of the RCTs was independently assessed by two authors (H.N.Y. and M.K.P.) using the risk-of-bias tool in RevMan version 5.2 (The Cochrane Collaboration, London, UK). Quality was evaluated using the following potential sources of bias: random sequence generation; allocation concealment; blinding; incomplete outcome data; selective outcome reporting; other sources of bias. The methodology for each RCT was graded as ‘high,’ ‘low’ or ‘unclear,’ to reflect either a high, low or uncertain risk of bias, respectively.

Statistical analyses

RevMan 5.2 software was used for statistical analyses. The mean difference (MD) with 95% confidence interval (CI) was computed for continuous variables; risk ratio (RR) with corresponding 95% CI was calculated for dichotomous outcome data. Statistical heterogeneity was estimated using the I^2 statistic, which was deemed significant when $I^2 > 50\%$. Due to the relatively small number of RCTs and the resulting clinical heterogeneity in our meta-analysis, the Mantel–Haenszel or inverse variance random effects model was used instead of the fixed effect model. In the absence of heterogeneity, a Mantel–Haenszel or inverse variance fixed effects model was used. Subgroup analysis for OLP was performed to determine the influence of the use of neuromuscular blocker (NMB; without or with NMB) and type of surgery (non-laparoscopic or laparoscopic). Sensitivity analysis was performed for OLP to evaluate the sequential effect of excluding studies. Subgroup analysis for device insertion time was performed according to the use of NMB (without or with NMB) and study publication year (2009–2012 or 2013–2014). Differences were considered statically significant if $P < 0.05$. Publication bias was assessed by visual inspection of funnel plots. If the funnel plot was visually asymmetrical, the Egger’s linear regression test was used.

Results

The initial electronic publication search identified 699 potential studies (267 from MEDLINE®, 282 from EMBASE®, 136 from CENTRAL, 12 from KoreaMed and 2 from Google Scholar®). After exclusions, the analysis included 14 RCTs published between 2009 and 2014, comprising 1104 patients (545 with LMA ProSeal™ and 559 with i-gel®). No records were obtained from ClinicalTrials.gov. The study selection strategy is shown in Figure 1.

The studies included in this analysis originated from eight countries (Austria, Belgium, China, Germany, India, Japan, Korea and the UK). Patients had undergone various modes of surgery, including laparoscopic, gynecological, orthopedic and ambulatory surgery. Methods used to evaluate OLP included audible noise, stethoscopic noise and manometric stability. Intracuff LMA ProSeal™

Shin et al. 407
pressures were maintained at 30 cmH$_2$O6 or 60 cmH$_2$O5,7,13,15,16 The studies included spontaneously breathing anesthetized patients without the use of NMB5,7,9,12,13 and paralyzed anesthetized patients with the use of NMB8,10,11,14,15,17 during anesthesia. Details of studies included in the analysis are shown in Table 1.

All studies mentioned randomization, but only seven6,8,11,13,15 included details of concealed allocation. However, the operator inserting the device and the OLP assessors were not blinded in any of the studies (due to the impossibility of blinding their use). Risk of bias in individual studies is summarized in Figure 2. There were no funnel asymmetries in OLP, time required for device insertion, insertion on the first attempt without assistance, fiber-optic view of the glottis, ease of gastric tube insertion, blood on device after removal or sore throat (data not shown).

Data from RCTs that quantified OLP5,7,15,17 indicated significantly lower OLP with i-gelR compared to LMA
Table 1. Characteristics of randomized controlled trials comparing LMA ProSeal™ and i-gel® for oropharyngeal leak pressure, clinical performance and rate of complications.

First author, year	n	Type of surgery	Neurromuscular blocker	Ventilation	Outcome variables	Cuff pressure cmH2O	OLP measurement method
Kini G, 2014⁵	24	24	None	Spontaneous	Insertion time, effective seal, fiber-optic view, ease of gastric tube, sore throat	60	Audible noise
Das A, 2014⁶	30	30	Atracurium	Controlled	Hemodynamics, stress response, ease of insertion, insertion time, number of attempts, complications	30	Not checked
Bosley NJ, 2014⁷	51	47	None	Spontaneous and controlled in non-paralyzed patients		60	Manometric stability
Chauhan G, 2013⁸	40	40	Rocuronium	Controlled	Ease of insertion, insertion attempt, fiber-optic assessment, airway sealing pressure, ease of gastric tube placement, complications	60	Manometric stability, audible noise
Hayashi K, 2013⁹	50	50	None	Spontaneous	Insertion time, success rate at first attempt, necessity of finger insertion, leak pressure, success rate of gastric tube placement, complications	60	Manometric stability

(continued)
First author, year	n	Type of surgery	Neuromuscular blocker	Ventilation	Outcome variables	Cuff pressure/cmH₂O	OLP measurement method
Shi YB, 2013¹⁰	30	Elective laparoscopic gynecological surgery. Excluded difficult airway and BMI > 35 kg/m²	Rocuronium	Controlled	Insertion time, airway sealing pressure, complications	60	Not reported
Jeon WJ, 2012¹¹	15	Elective laparoscopic gynecological surgery. Excluded difficult airway and BMI > 35 kg/m²	Rocuronium	Controlled	Insertion time, leak pressure, number of attempts	60	Manometric stability
van Zundert TC, 2012¹²	50	Elective peripheral or superficial surgery. Excluded difficult airway and BMI > 35 kg/m²	None	Spontaneous	Ease of insertion, anatomical position, OLP, change in OLP	60	Manometric stability, audible noise
Gasteiger L, 2010¹³	75	Elective gynecological or orthopedic surgery. Excluded difficult airway and BMI > 35 kg/m²	None	Spontaneous and controlled in non-paralyzed patients	Insertion success rate, insertion time, OLP	60	Manometric stability
Shin WJ, 2010¹⁴	64	Elective orthopedic surgery. Excluded difficult airway and BMI > 35 kg/m²	Rocuronium	Controlled	Hemodynamics, airway leak pressure, leak volume, success rate, complications	Unclear	Stethoscopic noise
Sharma B, 2010¹⁵	30	Elective laparoscopic cholecystectomy. Excluded difficult airway and BMI > 35 kg/m²	Vecuronium	Controlled	Insertion time, easy insertion, gastric tube insertion, dynamic compliance, OLP, airway resistance, work of breathing, minute ventilation	60	Manometric stability, audible noise

(continued)
First author, year	n	Type of surgery	Neurovascular blocker	Ventilation	Outcome variables	Cuff pressure cmH₂O	OLP measurement method
Heuer JF, 2009¹⁶	40	Elective ambulatory surgery. Excluded difficult airway	None	Controlled	Insertion time, easy insertion,	60	Not checked
					tightness, patient comfort,		
					respiratory morbidity		
Singh I, 2009¹⁷	30	Elective orthopedic surgery and laparoscopic cholecystectomy. Excluded difficult	Rocuronium	Controlled	Airway sealing pressure, ease of	Unclear	Manometric stability,
		airway			insertion, success rate of		audible noise,
					insertion, ease of gastric tube		stethoscopic noise
					placement, complications.		
Trivedi V, 2009¹⁸	30	Elective surgery under general anesthesia	Vecuronium	Controlled	Insertion time, Aldrete recovery	Unclear	Not checked
					score, complications.		

BMI, body mass index; OLP, oropharyngeal leak pressure.
Figure 2. Risk of bias for randomized controlled trials comparing oropharyngeal leak pressure, clinical performance and rate of complications of LMA ProSeal™ and i-gel®. The color version of this figure is available at: http://imr.sagepub.com.
ProSealTM (MD -2.95 cmH\textsubscript{2}O; $I^2 = 71\%$; \(P < 0.0001 \)) with high heterogeneity. Subgroup analyses revealed significantly lower OLP with i-gel\textregistered compared with LMA ProSealTM with the use of NMB and laparoscopic surgery (\(P < 0.0001 \) and $I^2 = 0\%$ for both analyses; Figure 3A and Table 2). There were no between-subgroup differences in OLP with respect to use of NMB and type of surgery (Table 2). Sensitivity analyses revealed no interactions for OLP. There was no funnel plot asymmetry.

Device insertion time (5,6,8,13,15,16,18) was significantly shorter for i-gel\textregistered than for LMA ProSealTM, with high heterogeneity (MD -3.01 s; $I^2 = 97\%$; \(P = 0.03 \)). Subgroup analysis indicated significantly
shorter insertion time for i-gel® than for LMA ProSeal™ in studies published in 2013–2014, with sustained high heterogeneity (MD −6.20 s; I² = 96%; P < 0.00001; Figure 3B). Subgroup analyses revealed significant differences based on study publication year (P = 0.002) but not on use of NMB. There was no funnel plot asymmetry.

Blood on the device after removal5–10,12,14,15,17 and sore throat5–10,12,14,15,18 were significantly more common with LMA ProSeal™ than with i-gel® (for blood RR 0.32, I² = 0%, P < 0.00001; for sore throat RR 0.56, I² = 18%, P = 0.01; Figures 4A and 4B). There were no between-device differences with respect to insertion on the first attempt without assistance5–7,9,11-18, fiber-optic view of the glottis5,8,12,15 or ease of gastric tube insertion.8–10,15,17

Discussion

The present meta-analysis indicated that i-gel® results in lower OLP, shorter insertion times, lower incidences of blood on device after removal, and sore throat, than LMA ProSeal™.

A potential risk of SGA use is incomplete airway sealing, which may cause gastric insufflation; inflation of airways at pressures above 20cmH₂O can induce opening of the esophageal sphincter.22 Case reports have noted regurgitation and aspiration in patients with both LMA ProSeal™ and i-gel® during anesthesia.23–25 However, a cadaver study reported fast drainage of esophageal fluid using SGAs with gastric channels.26

Airway sealing in SGA is characterized by OLP as assessed via an audible noise from the mouth or in the neck using a stethoscope, sampling of end-tidal carbon dioxide in the mouth or manometer equilibrium pressure at fixed fresh gas flow rates. OLP is also referred to as airway sealing pressure or airway leak pressure.3 All four OLP evaluation methods provide similar OLP values, with good correlation in children,4 and the manometric stability test has been shown to accurately measure OLP in adults.3 An airway sealing study using a cadaver aspiration model reported that the lack of an inflatable cuff may reduce the airway sealing ability of i-gel® compared with that of LMA ProSeal™.26

Other factors that may affect OLP include the use of NMB, intra-abdominal pressure during surgery and intracuff pressure of the SGA device.15,26,27 In our meta-analysis, the substantial overall heterogeneity (I² = 71%) was reduced by subgroup analysis based on NMB use (I² = 0%) and laparoscopic surgery (I² = 0%). Our findings suggest that OLP may be variable during surgery without NMB and non-laparoscopic surgery.

Table 2. Subgroup meta-analysis for oropharyngeal leak pressure with LMA ProSeal™ and i-gel®.

Oropharyngeal leak pressure	MD	95% CI	I²	Statistical significance	I²	Statistical significance
Total	−2.95	−4.30, −1.60	71%	P < 0.0001		
Without NMB	−3.04	−6.31, −0.23	87%	NS		
With NMB	−2.84	−3.74, −1.97	0%	P < 0.0001		
Non-laparoscopic surgery	−3.03	−5.04, −1.02	81%	P < 0.0003		
Laparoscopic surgery	−2.85	−4.17, −1.52	0%	P < 0.0001		

MD, mean difference; CI, confidence interval; I², I-square heterogeneity statistic; NMB, neuromuscular blocker; NS, not statistically significant (P ≥ 0.05).
Device insertion time was shorter for i-gel® than for LMA ProSeal™ in the studies published in 2013–2014. There appears to be a preference for i-gel® over LMA ProSeal™, possibly due to the convenience of a disposable device, ease of insertion by stiff bite block and the natural oropharyngeal curvature of i-gel® compared with LMA ProSeal™. Device insertion time showed high heterogeneity after subgroup analysis with use of NMB and publication year; this was possibly due to differences in measurement standards among the studies included in our analysis.

It is possible that the fiber-optic view is better with i-gel® than with LMA ProSeal™ due to interference from folding of the LMA ProSeal™ cuff after insertion, but the absence of a between-group difference in this parameter suggests that both devices might function similarly as a conduit during airway management. The ease of gastric tube insertion was similar with each device in our review. The esophageal drain tube of i-gel® is smaller than that of LMA ProSeal™ (12 F versus 16 F for size 4, respectively). Correct SGA positioning is important to prevent gastric aspiration; the i-gel®, with its good positional stability, may be superior to LMA ProSeal™. The gastric channels of both devices allow early identification of regurgitation and prompt response to prevent aspiration. The inflated cuff of LMA ProSeal™ may contribute to the higher incidence of sore throat seen with this device compared with i-gel® (which has no cuff).

Meta-analyses comparing LMA ProSeal™ and i-gel® have reported similar OLP for both devices. This is in contrast...
to our findings, which showed that LMA ProSeal™ provided higher OLP than i-gel®. This disparity may be due to differences in data collection. OLP is also referred to as airway sealing pressure and airway leak pressure.3,4 We included ‘OLP’, ‘airway sealing pressure’ and ‘airway leak pressure’ as search terms, but other studies searched only for ‘OLP’.29,30 Subgroup analysis for OLP including ‘OLP’, ‘oropharyngeal seal pressure’ and ‘airway sealing pressure’ as search terms found that second-generation LMAs (ProSeal™, Supreme™) had lower OLP than i-gel®.30 This partially incomplete search strategy would have omitted several studies that were included in the present meta-analysis.10,16–18

There are many situations in which SGA devices are required to maintain high OLP against increased intra-abdominal pressure in laparoscopic surgery, obese patients and patients with restrictive lung disease. A meta-analysis of pediatric studies found higher OLP with i-gel® than with LMA ProSeal™.19 This contradictory finding may be explained by the lack of dorsal cuffs in sizes 1.5–2.5 for LMA ProSeal™.4,19 Anesthetists must weigh up the clinical performance and airway sealing safety of SGAs in clinical practice. The LMA ProSeal™ is regarded as a choice for airway sealing in adults that has a good safety profile, but i-gel® is preferred for pediatric procedures because it has a good safety profile in children.5–19

A limitation of this review is the clinical heterogeneity without power analysis or sample-size determination of the included studies. Other limitations are the performance and detection bias arising from the impossibility of blinding to device insertion, measurement of OLP and clinical performances.

In conclusion, our findings are that LMA ProSeal™ provides superior airway sealing (higher OLP) compared to i-gel®, while i-gel® offers rapid insertion time, and lower incidences of blood on the device after removal and sore throat compared to LMA ProSeal™ in anesthetized adult patients.

Declaration of conflicting interest
The authors declare that there are no conflicts of interest.

Funding
This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

References
1. Jolliffe L and Jackson I. Airway management in the outpatient setting: new devices and techniques. Curr Opin Anaesthesiol 2008; 21: 719–722.
2. Kim YH. Pulmonary aspiration associated with supraglottic airways: ProSeal laryngeal mask airway and I-Gel™. Korean J Anesthesiol 2012; 63: 489–490.
3. Keller C, Brimacombe JR, Keller K, et al. Comparison of four methods for assessing airway sealing pressure with the laryngeal mask airway in adult patients. Br J Anaesth 1999; 82: 286–287.
4. Lopez-Gil M, Brimacombe J and Keller C. A comparison of four methods for assessing oropharyngeal leak pressure with the laryngeal mask airway (LMA) in paediatric patients. Paediatr Anaesth 2001; 11: 319–321.
5. Kini G, Devanna GM, Mukkapati KR, et al. Comparison of I-gel with proseal LMA in adult patients undergoing elective surgical procedures under general anesthesia without paralysis: A prospective randomized study. J Anaesthesiol Clin Pharmacol 2014; 30: 183–187.
6. Das A, Majumdar S, Mukherjee A, et al. I-gel™ in ambulatory surgery: a comparison with LMA-ProSeal™ in paralyzed anaesthetized patients. J Clin Diagn Res 2014; 8: 80–84.
7. Bosley NJ, Burrows LA, Bhayani S, et al. A randomised comparison of the performance of ProSeal laryngeal mask airway with the
i-gel for spontaneous and controlled ventilation during routine anaesthesia in European population. J Anesth Clin Res 2014; 5: 459.

8. Chauhan G, Nayar P, Seth A, et al. Comparison of clinical performance of the i-gel with LMA ProSeal. J Anesthesiol Clin Pharmacol 2013; 29: 56–60.

9. Hayashi K, Suzuki A, Kunisawa T, et al. A comparison of the single-use i-gel with the reusable laryngeal mask airway proseal in anesthetized adult patients in Japanese population. Masui 2013; 62: 134–139. [in Japanese, English Abstract].

10. Shi YB, Zuo MZ, Du XH, et al. Comparison of the efficacy of different types of laryngeal mask airways in patients undergoing laparoscopic gynecological surgery. Zhonghua Yi Xue Za Zhi 2013; 93: 1978–1980. [in Chinese, English Abstract].

11. Jeon WJ, Cho SY, Baek JS, et al. Comparison of the proseal LMA and intersurgical I-gel during gynecological laparoscopy. Korean J Anesthesiol 2012; 63: 510–514.

12. van Zundert TC and Brimacombe JR. Similar oropharyngeal leak pressure during anaesthesia with i-gelTM, LMA-ProSealTM and LMA-SupremeTM laryngeal masks. Acta Anaesth Belg 2012; 63: 35–41.

13. Gasteiger L, Brimacombe J, Perkhofer D, et al. Comparison of guided insertion of the LMA ProSealTM vs the i-gelTM. Anaesthesia 2010; 65: 913–916.

14. Shin WJ, Cheong YS, Yang HS, et al. The supraglottic airway I-gel in comparison with ProSeal laryngeal mask airway and classic laryngeal mask airway in anaesthetized patients. Eur J Anaesthesiol 2010; 27: 598–601.

15. Sharma B, Sehgal R, Sahai C, et al. PLMA vs. I-gel: a comparative evaluation of respiratory mechanics in laparoscopic cholecystectomy. J Anesthesiol Clin Pharmacol 2010; 26: 451–457.

16. Heuer JF, Stiller M, Rathgeber J, et al. Evaluation of the new supraglottic airway devices Ambu auraone and intersurgical i-gel Positioning, sealing, patient comfort and airway morbidity. Anaesthesist 2009; 58: 813–820. [in German, English Abstract].

17. Singh I, Gupta M and Tandon M. Comparison of clinical performance of I-gel with LMA-Proseal in elective surgeries. Indian J Anaesth 2009; 53: 302–305.

18. Trivedi V and Patil B. A clinical comparative study of evaluation of proseal LMA V/S I-GEL for ease of insertion and hemodynamic stability; a study of 60 cases. Internet J Anesthesiol 2009; 27.

19. Maitra S, Baidya DK, Bhattacharjee S, et al. Evaluation of i-gel(TM) airway in children: a meta-analysis. Paediatr Anaesth 2014; 24: 1072–1079.

20. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 2009; 6: e1000100.

21. Higgins JP and Green S. Cochrane handbook for systemic reviews of interventions. The Cochrane Collaboration 2011; Version 5.1.0.

22. Devitt JH, Wenstone R, Noel AG, et al. The laryngeal mask airway and positive-pressure ventilation. Anesthesiology 1994; 80: 550–555.

23. Barker P, Langton JA, Murphy PJ, et al. Regurgitation of gastric contents during general anaesthesia using the laryngeal mask airway. Br J Anaesth 1992; 69: 314–315.

24. Liew G, John B and Ahmed S. Aspiration recognition with an i-gel airway. Anaesthesia 2008; 63: 786.

25. Schmidbauer W, Bercker S, Volk T, et al. Oesophageal seal of the novel supralaryngeal airway device I-Gel in comparison with the laryngeal mask airways classic and ProSeal using a cadaver model. Br J Anaesth 2009; 102: 135–139.

26. Levitan RM and Kinkle WC. Initial anatomic investigations of the I-gel airway: a novel supraglottic airway without inflatable cuff. Anaesthesia 2005; 60: 1022–1026.

27. Goldmann K, Hoch N and Wulf H. Influence of neuromuscular blockade on the airway leak pressure of the ProSeal laryngeal mask airway. Anestesiol Intensivmed Notfallmed Schmerzther 2006; 41: 228–232. [in German, English Abstract].
28. Gibbison B, Cook TM and Seller C. Case series: protection from aspiration and failure of protection from aspiration with the i-gel airway. *Br J Anaesth* 2008; 100: 415–417.

29. Park SK, Choi GJ, Choi YS, et al. Comparison of the i-gel and the laryngeal mask airway proseal during general anesthesia: a systematic review and meta-analysis. *PLoS One* 2015; 10: e0119469.

30. de Montblanc J, Ruscio L, Mazoit JX, et al. A systematic review and meta-analysis of the i-gel(®) vs laryngeal mask airway in adults. *Anaesthesia* 2014; 69: 1151–1162.