Engineering Multilevel Graph Partitioning Algorithms

Peter Sanders, Christian Schulz

Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
{anders,christian.schulz}@kit.edu

Abstract. We present a multi-level graph partitioning algorithm using novel local improvement algorithms and global search strategies transferred from multigrid linear solvers. Local improvement algorithms are based on max-flow min-cut computations and more localized FM searches. By combining these techniques, we obtain an algorithm that is fast on the one hand and on the other hand is able to improve the best known partitioning results for many inputs. For example, in Walshaw’s well known benchmark tables we achieve 317 improvements for the tables 1%, 3% and 5% imbalance. Moreover, in 118 out of the 295 remaining cases we have been able to reproduce the best cut in this benchmark.

1 Introduction

Graph partitioning is a common technique in computer science, engineering, and related fields. For example, good partitionings of unstructured graphs are very valuable in the area of high performance computing. In this area graph partitioning is mostly used to partition the underlying graph model of computation and communication. Roughly speaking, vertices in this graph represent computation units and edges denote communication. Now this graph needs to be partitioned such there are few edges between the blocks (pieces). In particular, if we want to use \(k \) PEs (processing elements) we want to partition the graph into \(k \) blocks of about equal size. In this paper we focus on a version of the problem that constrains the maximum block size to \((1 + \epsilon)\) times the average block size and tries to minimize the total cut size, i.e., the number of edges that run between blocks.

A successful heuristic for partitioning large graphs is the multilevel graph partitioning (MGP) approach depicted in Figure 1 where the graph is recursively contracted to achieve smaller graphs which should reflect the same basic structure as the initial graph. After applying an initial partitioning algorithm to the smallest graph, the contraction is undone and, at each level, a local refinement method is used to improve the partitioning induced by the coarser level.

Although several successful multilevel partitioners have been developed in the last 13 years, we had the impression that certain aspects of the method are not well understood. We therefore have built our own graph partitioner KaPPa \([18]\) (Karlsruhe Parallel Partitioner) with focus on scalable parallelization. Somewhat astonishingly, we also obtained improved partitioning quality through rather simple methods. This motivated us to make a fresh start putting all aspects of MGP on trial. Our focus is on solution quality and sequential speed for large graphs. We defer the question of parallelization since it introduces complications that make it difficult to try out a large number of alternatives.
for the remaining aspects of the method. This paper reports the first results we have obtained which relate to the local improvement methods and overall search strategies. We obtain a system that can be configured to either achieve the best known partitions for many standard benchmark instances or to be the fastest available system for large graphs while still improving partitioning quality compared to the previous fastest system.

We begin in Section 2 by introducing basic concepts. After shortly presenting Related Work in Section 3 we continue describing novel local improvement methods in Section 4. This is followed by Section 5 where we present new global search methods. Section 6 is a summary of extensive experiments done to tune the algorithm and evaluate its performance. We have implemented these techniques in the graph partitioner KaFFPa (Karlsruhe Fast Flow Partitioner) which is written in C++. Experiments reported in Section 6 indicate that KaFFPa scales well to large networks and is able to compute partitions of very high quality.

2 Preliminaries

2.1 Basic concepts

Consider an undirected graph \(G = (V, E, c, \omega) \) with edge weights \(\omega : E \to \mathbb{R}_{\geq 0} \), node weights \(c : V \to \mathbb{R}_{\geq 0} \), \(n = |V| \), and \(m = |E| \). We extend \(c \) and \(\omega \) to sets, i.e., \(c(V') := \sum_{v \in V'} c(v) \) and \(\omega(E') := \sum_{e \in E'} \omega(e) \). \(\Gamma(v) := \{ u : \{ v, u \} \in E \} \) denotes the neighbors of \(v \).

We are looking for blocks of nodes \(V_1, \ldots, V_k \) that partition \(V \), i.e., \(V_1 \cup \cdots \cup V_k = V \) and \(V_i \cap V_j = \emptyset \) for \(i \neq j \). The balancing constraint demands that \(\forall i \in 1..k : c(V_i) \leq L_{\text{max}} := (1 + \epsilon)c(V)/k + \max_{v \in V} c(v) \) for some parameter \(\epsilon \). The last term in this equation arises because each node is atomic and therefore a deviation of the heaviest node has to be allowed. The objective is to minimize the total cut \(\sum_{i<j} \omega(E_{ij}) \) where \(E_{ij} := \{ \{ u, v \} \in E : u \in V_i, v \in V_j \} \). An abstract view of the partitioned graph is the so called quotient graph, where vertices represent blocks and edges are induced by connectivity between blocks. An example can be found in Figure 2. By default, our initial inputs will have unit edge and node weights. However, even those will be translated into weighted problems in the course of the algorithm.

A matching \(M \subseteq E \) is a set of edges that do not share any common nodes, i.e., the graph \((V, M) \) has maximum degree one. Contracting an edge \(\{ u, v \} \) means to replace the nodes \(u \) and \(v \) by a new node \(x \) connected to the former neighbors of \(u \) and \(v \). We
set \(c(x) = c(u) + c(v) \) so the weight of a node at each level is the number of nodes it is representing in the original graph. If replacing edges of the form \(\{u, w\}, \{v, w\} \) would generate two parallel edges \(\{x, w\} \), we insert a single edge with \(\omega(\{x, w\}) = \omega(\{u, w\}) + \omega(\{v, w\}) \).

Uncontracting an edge \(e \) undos its contraction. In order to avoid tedious notation, \(G \) will denote the current state of the graph before and after a (un)contraction unless we explicitly want to refer to different states of the graph.

The multilevel approach to graph partitioning consists of three main phases. In the contraction (coarsening) phase, we iteratively identify matchings \(M \subseteq E \) and contract the edges in \(M \). This is repeated until \(|V| \) falls below some threshold. Contraction should quickly reduce the size of the input and each computed level should reflect the global structure of the input network. In particular, nodes should represent densely connected subgraphs.

Contraction is stopped when the graph is small enough to be directly partitioned in the initial partitioning phase using some other algorithm. We could use a trivial initial partitioning algorithm if we contract until exactly \(k \) nodes are left. However, if \(|V| \gg k \) we can afford to run some expensive algorithm for initial partitioning.

In the refinement (or uncoarsening) phase, the matchings are iteratively uncontracted. After uncontracting a matching, the refinement algorithm moves nodes between blocks in order to improve the cut size or balance. The nodes to move are often found using some kind of local search. The intuition behind this approach is that a good partition at one level of the hierarchy will also be a good partition on the next finer level so that refinement will quickly find a good solution.

2.2 More advanced concepts

This section gives a brief overview over the algorithms KaFFPa uses during contraction and initial partitioning. KaFFPa makes use of techniques proposed in [18] namely the application of edge ratings, the GPA algorithm to compute high quality matchings, pairwise refinements between blocks and it also uses Scotch [23] as an initial partitioner [18].

Contraction The contraction starts by rating the edges using a rating function. The rating function indicates how much sense it makes to contract an edge based on local information. Afterwards a matching algorithm tries to maximize the sum of the ratings of the contracted edges looking at the global structure of the graph. While the rating functions allows us a flexible characterization of what a “good” contracted graph is, the simple, standard definition of the matching problem allows us to reuse previously developed algorithms for weighted matching. Matchings are contracted until the graph is “small enough”. We employed the ratings \(\text{expansion}^2(\{u, v\}) := \omega(\{u, v\})^2 / c(u)c(v) \) and \(\text{innerOuter}(\{u, v\}) := \omega(\{u, v\}) / (\text{Out}(v) + \text{Out}(u) - 2\omega(u, v)) \) where \(\text{Out}(v) := \sum_{x \in \Gamma(v)} \omega(\{v, x\}) \), since they yielded the best results in [18]. As a further measure to avoid unbalanced inputs to the initial partitioner, KaFFPa never allows a node \(v \) to participate in a contraction if the weight of \(v \) exceeds \(1.5n/20k \).

We used the Global Path Algorithm (GPA) which runs in near linear time to compute matchings. The Global Path Algorithm was proposed in [20] as a synthesis of
the Greedy algorithm and the Path Growing Algorithm [9]. It grows heavy weight paths and
and even length cycles to solve the matching problem on those optimally using dynamic
programming. We choose this algorithm since in [18] it gives empirically considerably
better results than Sorted Heavy Edge Matching, Heavy Edge Matching or Random
Matching [25].

Similar to the Greedy approach, GPA scans the edges in order of decreasing weight
but rather than immediately building a matching, it first constructs a collection of paths
and even length cycles. Afterwards, optimal solutions are computed for each of these
paths and cycles using dynamic programming.

Initial Partitioning The contraction is stopped when the number of remaining nodes is
below \(\max (60k, n/(60k)) \). The graph is then small enough to be initially partitioned
by some other partitioner. Our framework allows using kMetis or Scotch for initial
partitioning. As observed in [18], Scotch [23] produces better initial partitions than
Metis, and therefore we also use it in KaFFPa.

Refinement After a matching is uncontracted during the refinement phase, some lo-
cal improvement methods are applied in order to reduce the cut while maintaining the
balancing constraint.

We implemented two kinds of local improvement schemes within our framework.
The first scheme is so called quotient graph style refinement [18]. This approach uses
the underlying quotient graph. Each edge in the quotient graph yields a pair of blocks
which share a non empty boundary. On each of these pairs we can apply a two-way
local improvement method which only moves nodes between the current two blocks.
Note that this approach enables us to integrate flow based improvement techniques
between two blocks which are described in Section 4.1.

Our two-way local search algorithm works as in KaPPa [18]. We present it here for
completeness. It is basically the FM-algorithm [13]: For each of the two blocks \(A, B \)
under consideration, a priority queue of nodes eligible to move is kept. The priority is
based on the gain, i.e., the decrease in edge cut when the node is moved to the other
side. Each node is moved at most once within a single local search. The queues are
initialized in random order with the nodes at the partition boundary.

There are different possibilities to select a block from which a node shall be moved.
The classical FM-algorithm [13] alternates between both blocks. We employ the Top-
Gain strategy from [18] which selects the block with the largest gain and breaks ties
randomly if the the gain values are equal. In order to achieve a good balance, TopGain

Fig. 2. A graph which is partitioned into five blocks and its corresponding quotient graph \(Q \) which
has five nodes and six edges. Two pairs of blocks are highlighted in red and green.
adopts the exception that the block with larger weight is used when one of the blocks is overloaded. After a stopping criterion is applied we rollback to the best found cut within the balance constraint.

The second scheme is so call \textit{k-way local search}. This method has a more global view since it is not restricted to moving nodes between two blocks only. It also basically the FM-algorithm \cite{Fiduccia91}. We now outline the variant we use. Our variant uses only one priority queue \(P \) which is initialized with a subset \(S \) of the partition boundary in a random order. The priority is based on the max gain \(g(v) = \max_P g_P(v) \) where \(g_P(v) \) is the decrease in edge cut when moving \(v \) to block \(P \). Again each node is moved at most once. Ties are broken randomly if there is more than one block that will give max gain when moving \(v \) to it. Local search then repeatedly looks for the highest gain node \(v \). However a node \(v \) is not moved, if the movement would lead to an unbalanced partition. The \(k \)-way local search is stopped if the priority queue \(P \) is empty (i.e. each node was moved once) or a stopping criteria described below applies. Afterwards the local search is rolled back the lowest cut fulfilling the balance condition that occurred during this local search. This procedure is then repeated until no improvement is found or a maximum number of iterations is reached.

We adopt the stopping criteria proposed in KaSPar \cite{Osipov10}. This stopping rule is derived using a random walk model. Gain values in each step are modelled as identically distributed, independent random variables whose expectation \(\mu \) and variance \(\sigma^2 \) is obtained from the previously observed \(p \) steps since the last improvement. Osipov and Sanders \cite{Osipov10} derived that it is unlikely for the local search to produce a better cut if

\[p\mu^2 > \alpha\sigma^2 + \beta \]

for some tuning parameters \(\alpha \) and \(\beta \). The Parameter \(\beta \) is a base value that avoids stopping just after a small constant number of steps that happen to have small variance. We also set it to \(\ln n \).

There are different ways to initialize the queue \(P \), e.g. the complete partition boundary or only the nodes which are incident to more than two partitions (corner nodes). Our implementation takes the complete partition boundary for initialization. In Section 4.2 we introduce multi-try \(k \)-way searches which is a more localized \(k \)-way search inspired by KaSPar \cite{Osipov10}. This method initializes the priority queue with only a single boundary node and its neighbors that are also boundary nodes.

The main difference of our implementation to KaSPar is that we use only one priority queue. KaSPar maintains a priority queue for each block. A priority queue is called eligible if the highest gain node in this queue can be moved to its target block without violating the balance constraint. Their local search repeatedly looks for the highest gain node \(v \) in any eligible priority queue and moves this node.

3 Related Work

There has been a huge amount of research on graph partitioning so that we refer the reader to \cite{DiBenedetto91, Hagerup86, Vazirani99} for more material. All general purpose methods that are able to obtain good partitions for large real world graphs are based on the multilevel principle outlined in Section 2. The basic idea can be traced back to multigrid solvers for solving
systems of linear equations [26] but more recent practical methods are based on mostly graph theoretic aspects in particular edge contraction and local search. Well known software packages based on this approach include Chaco [17], Jostle [31], Metis [25], Party [10], and Scotch [23].

KaSPar [22] is a new graph partitioner based on the central idea to (un)contract only a single edge between two levels. It previously obtained the best results for many of the biggest graphs in [28].

KaPPa [18] is a "classical" matching based MGP algorithm designed for scalable parallel execution and its local search only considers independent pairs of blocks at a time.

DiBaP [21] is a multi-level graph partitioning package where local improvement is based on diffusion which also yields partitions of very high quality.

MQI [19] and Improve [11] are flow-based methods for improving graph cuts when cut quality is measured by quotient-style metrics such as expansion or conductance. Given an undirected graph with an initial partitioning, they build up a completely new directed graph which is then used to solve a max flow problem. Furthermore, they have been able to show that there is an improved quotient cut if and only if the maximum flow is less than \(ca \), where \(c \) is the initial cut and \(a \) is the number of vertices in the smaller block of the initial partitioning. This approach is currently only feasible for \(k = 2 \). Improve also uses several minimum cut computations to improve the quotient cut score of a proposed partition. Improve always beats or ties MQI.

Very recently an algorithm called PUNCH [7] has been introduced. This approach is not based on the multilevel principle. However, it creates a coarse version of the graph based on the notion of natural cuts. Natural cuts are relatively sparse cuts close to denser areas. They are discovered by finding minimum cuts between carefully chosen regions of the graph. Experiments indicate that the algorithm computes very good cuts for road networks. For instances that don’t have a natural structure such as road networks, natural cuts are not very helpful.

The concept of iterated multilevel algorithms was introduced by [27][29]. The main idea is to iterate the coarsening and uncoarsening phase and use the information gathered. That means that once the graph is partitioned, edges that are between two blocks will not be matched and therefore will also not be contracted. This ensures increased quality of the partition if the refinement algorithms guarantees not to find a worse partition than the initial one.

4 Local Improvement

Recall that once a matching is uncontracted a local improvement method tries to reduce the cut size of the projected partition. We now present two novel local improvement methods. The first method which is described in Section 4.1 is based on max-flow min-cut computations between pairs of blocks, i.e. improving a given 2-partition. Since each edge of the quotient graph yields a pair of blocks which share a non empty boundary, we integrated this method into the quotient graph style refinement scheme which is described in Section 2.2. The second method which is described in Section 4.2 is called multi-try FM which is a more localized \(k\)-way local search. Roughly speaking, a \(k\)-way
local search is repeatedly started with a priority queue which is initialized with only
one random boundary node and its neighbors that are also boundary nodes. At the end
of the section we shortly show how the pairwise refinements can be scheduled and how
the more localized search can be incorporated with this scheduling.

4.1 Using Max-Flow Min-Cut Computations for Local Improvement

We now explain how flows can be used to improve a given partition of two blocks and
therefore can be used as a refinement algorithm in a multilevel framework. For simplic-
ity we assume $k = 2$. However it is clear that this refinement method fits perfectly into
the quotient graph style refinement algorithms.

To start with the description of the constructed max-flow min-cut problem, we need
a few notations. Given a two-way partition $P : V \rightarrow \{1, 2\}$ of a graph G we define
the boundary nodes as $\delta := \{u \mid \exists (u, v) \in E : P(u) \neq P(v)\}$. We define left
boundary nodes to be $\delta_l := \delta \cap \{u \mid P(u) = 1\}$ and right boundary nodes to be
$\delta_r := \delta \cap \{u \mid P(u) = 2\}$. Given a set of nodes $B \subset V$ we define its border $\partial B :=
\{u \in B \mid \exists (u, v) \in E : v \notin B\}$. Unless otherwise mentioned we call B corridor
because it will be a zone around the initial cut. The set $\partial_l B := \partial B \cap \{u \mid P(u) = 1\}$
is called left corridor border and the set $\partial_r B := \partial B \cap \{u \mid P(u) = 2\}$ is called
right corridor border. We say an B-corridor induced subgraph G' is the node induced
subgraph $G[B]$ plus two nodes s, t and additional edges starting from s or edges ending
in t. An B-corridor induced subgraph has the cut property C if each (s,t)-min-cut in G'
induces a cut within the balance constrained in G.

The main idea is to construct a B-corridor induced subgraph G' with cut property C.
On this graph we solve the max-flow min-cut problem. The computed min-cut yields
a feasible improved cut within the balance constrained in G. The construction is as
follows (see also Figure 4).

First we need to find a corridor B such that the B-corridor induced subgraph will
have the cut property C. This can be done by performing two Breadth First Searches
(BFS). Each node touched during these searches belongs to the corridor B. The first
BFS is initialized with the left boundary nodes δ_l. It is only expanded with nodes that
are in block 1. As soon as the weight of the area found by this BFS would exceed
$(1 + \epsilon)c(V)/2 - w(\text{block 2})$, we stop the BFS. The second BFS is done for block 2 in
an analogous fashion.

In order to achieve the cut property C, the B-corridor induced subgraph G' gets
additional $s-t$ edges. More precisely s is connected to all left corridor border nodes $\partial_l B$
and all right corridor border nodes $\partial_r B$ are connected to t. All of these new edges get the edge weight ∞. Note that this are directed edges.

The constructed B-corridor subgraph G' has the cut property C since the worst case new weight of block 2 is lower or equal to $w(\text{block 2}) + \frac{1 + \epsilon}{2} c(V) - w(\text{block 2}) = \frac{(1 + \epsilon)c(V)}{2}$. Indeed the same holds for the worst case new weight of block 1.

There are multiple ways to improve this method. First, if we found an improved edge cut, we can apply this method again since the initial boundary has changed which implies that it is most likely that the corridor B will also change. Second, we can adaptively control the size of the corridor B which is found by the BFS. This enables us to search for cuts that fulfill our balance constrained even in a larger corridor (say $\epsilon' = \alpha \epsilon$ for some parameter α), i.e. if the found min-cut in G' for ϵ' fulfills the balance constraint in G, we accept it and increase α to $\min(2\alpha, \alpha')$ where α' is an upper bound for α. Otherwise the cut is not accepted and we decrease α to $\max(\frac{\alpha}{2}, 1)$. This method is iterated until a maximal number of iterations is reached or if the computed cut yields a feasible partition without an decreased edge cut. We call this method adaptive flow iterations.

Most Balanced Minimum Cuts Picard and Queyranne have been able to show that one (s, t) max-flow contains information about all minimum (s, t)-cuts in the graph. Here finding all minimum cuts reduces to a straight forward enumeration. Having this in mind the idea to search for min-cuts in larger corridors becomes even more attractive. Roughly speaking, we present a heuristic that, given a max-flow, creates min-cuts that are better balanced. First we need a few notations. For a graph $G = (V, E)$ a set $C \subseteq V$ is a closed vertex set iff for all vertices $u, v \in V$, the conditions $u \in C$ and $(u, v) \in E$ imply $v \in C$. An example can be found in Figure 5.

Lemma 1 (Picard and Queyranne [24]). There is a 1-1 correspondence between the minimum (s, t)-cuts of a graph and the closed vertex sets containing s in the residual graph of a maximum (s, t)-flow.

To be more precise for a given closed vertex set C containing s of the residual graph the corresponding min-cut is $(C, V \backslash C)$. Note that distinct maximum flows may produce different residual graphs but the set of closed vertex sets remains the same. To enumerate all minimum cuts of a graph [24] a further reduced graph is computed which is described below. However, the problem of finding the minimum cut with the best balance (most balanced minimum cut) is NP-hard [22].
Fig. 5. A small graph where \(C = \{ s, u, v, w \} \) is a closed vertex set.

The minimum cut that is identified by the labeling procedure of Ford and Fulkerson [15] is the one with the smallest possible source set. We now define how the representation of the residual graph can be made more compact [24] and then explain the heuristic we use to obtain closed vertex sets on this graph to find min-cuts that have a better balance. After computing a maximum \((s, t)\)-flow, we compute the strongly connected components of the residual graph using the algorithm proposed in [4,16]. We make the representation more compact by contracting these components and refer to it as minimum cut representation. This reduction is possible since two vertices that lie on a cycle have to be in the same closed vertex set of the residual graph. The result is a weighted, directed and acyclic graph (DAG). Note that each closed vertex set of the minimum cut representation induces a minimum cut as well.

As proposed in [24] we make the minimum cut representation even more compact: We eliminate the component \(T \) containing the sink \(t \), and all its predecessors (since they cannot belong to a closed vertex set not containing \(T \)) and the component \(S \) containing the source, and all its successors (since they must belong to a closed vertex set containing \(S \)) using a BFS.

We are now left with a further reduced graph. On this graph we search for closed vertex sets (containing \(S \)) since they still induce \((s, t)\)-min-cuts in the original graph. This is done by using the following heuristic which is repeated a few times. The main idea is that a topological order yields complements of closed vertex sets quite easily. Therefore, we first compute a random topological order, e.g. using a randomized DFS. Next we sweep through this topological order and sequentially add the components to the complement of the closed vertex set. Note that each of the computed complements of closed vertex sets \(\tilde{C} \) also yields a closed vertex set \((V \setminus \tilde{C})\). That means by sweeping through the topological order we compute closed vertex sets each inducing a min-cut having a different balance. We stop when we have reached the best balanced minimum cut induced through this topological order with respect to the original graph partitioning problem. The closed vertex set with the best balance occurred during the repetitions of this heuristic is returned. Note in large corridors this procedure may finds cuts that are not feasible, e.g. if there is no feasible minimum cut. Therefore the algorithm is combined with the adaptive strategy from above. We call this method balanced adaptive flow iterations.
Fig. 6. In the situation on the top it is not possible in the small corridor around the initial cut to find the dashed minimum cut which has optimal balance; however if we solve a larger flow problem on the bottom and search for a cut with good balance we can find the dashed minimum cut with optimal balance but not every min cut is feasible for the underlying graph partitioning problem.

4.2 Multi-try FM

This refinement variant is organized in rounds. In each round we put all boundary nodes of the current block pair into a todo list. The todo list is then permuted. Subsequently, we begin a k-way local search starting with a random node of this list if it is still a boundary node and its neighboring nodes that are also boundary nodes. Note that the difference to the global k-way search described in Section 2.2 is the initialisation of the priority queue. If the selected random node was already touched by a previous k-way search in this round then no search is started. Either way, the node is removed from the todo list (simply swapping it with the last element and executing a pop_back on that list). For a k-way search it is not allowed to move nodes that have been touched in a previous run. This way we can assure that at most n nodes are touched during one round of the algorithm. This algorithm uses the adaptive stopping criteria from KaSPar which is described in Section 2.2.

4.3 Scheduling Quotient Graph Refinement

There are two possibilities to schedule the execution of two way refinement algorithms on the quotient graph. Clearly the first simple idea is to traverse the edges of Q in a random order and perform refinement on them. This is iterated until no change occurred or a maximum number of iterations is reached. The second algorithm is called active block scheduling. The main idea behind this algorithm is that the local search should be done in areas in which change still happens and therefore avoid unnecessary local search. The algorithm begins by setting every block of the partition active. Now the scheduling is organized in rounds. In each round, the algorithm refines adjacent pairs of blocks, which have at least one active block, in a random order. If changes occur during this search both blocks are marked active for the next round of the algorithm. After each pair-wise improvement a multi-try FM search (k-way) is started. It is initialized with the boundaries of the current pair of blocks. Now each block which changed during this search is also marked active. The algorithm stops if no active block is left. Pseudocode for the algorithm can be found in the appendix in Figure 11.
5 Global Search

Iterated Multilevel Algorithms where introduced by [27,29] (see Section 3). For the rest of this paper Iterated Multilevel Algorithms are called V-cycles unless otherwise mentioned. The main idea is that if a partition of the graph is available then it can be reused during the coarsening and uncoarsening phase. To be more precise, the multilevel scheme is repeated several times and once the graph is partitioned, edges between two blocks will not be matched and therefore will also not be contracted such that a given partition can be used as initial partition of the coarsest graph. This ensures increased quality of the partition if the refinement algorithms guarantees not to find a worse partition than the initial one. Indeed this is only possible if the matching includes non-deterministic factors such as random tie-breaking, so that each iteration is very likely to give different coarser graphs. Interestingly, in multigrid linear solvers Full-Multigrid methods are generally preferable to simple V-cycles [3]. Therefore, we now introduce two novel global search strategies namely W-cycles and F-cycles for graph partitioning. A W-cycle works as follows: on each level we perform two independent trials using different random seeds for tie breaking during contraction, and local search. As soon as the graph is partitioned, edges that are between blocks are not matched. A F-cycle works similar to a W-cycle with the difference that the global number of independent trials on each level is bounded by 2. Examples for the different cycle types can be found in Figure 7 and Pseudocode can be found in Figure 10. Again once the graph is partitioned for the first time, then this partition is used in the sense that edges between two blocks are not contracted. In most cases the initial partitioner is not able to improve this partition from scratch or even to find this partition. Therefore no further initial partitioning is used if the graph already has a partition available. These methods can be used to find very high quality partitions but on the other hand they are more expensive than a single MGP run. However, experiments in Section 6 show that all cycle variants are more efficient than simple plain restarts of the algorithm. In order to bound the runtime we introduce a level split parameter d such that the independent trials are only performed every d'th level. We go into more detail after we have analysed the run time of the global search strategies.

Fig. 7. From left to right: A single MGP V-cycle, a W-cycle and a F-cycle.
Analysis We now roughly analyse the run time of the different global search strategies under a few assumptions. In the following the shrink factor names the factor the graph shrinks during one coarsening step.

Theorem 1. If the time for coarsening and refinement is \(T_{cr}(n) := bn \) and a constant shrink factor \(a \in [1/2, 1) \) is given. Then:

\[
T_{W,d}(n) = \begin{cases}
\frac{1-a^d}{1-2a^d} T_V(n) & \text{if } 2a^d < 1 \\
O(n \log n) & \text{if } 2a^d = 1 \\
O(n^{ \frac{\log 2}{\log 2 - \log a^d} }) & \text{if } 2a^d > 1
\end{cases}
\]

\[
T_{F,d}(n) \leq \frac{1}{1-a^d} T_V(n)
\]

where \(T_V \) is the time for a single V-cycle and \(T_{W,d}, T_{F,d} \) are the time for a W-cycle and F-cycle with level split parameter \(d \).

Proof. The run time of a single V-cycle is given by \(T_V(n) = \sum_{i=0}^{l} T_{cr}(a^i n) = bn \sum_{i=0}^{l} a^i = bn(1-a^{l+1})/(1-a) \). The run time of a W-cycle with level split parameter \(d \) is given by the time of \(d \) coarsening and refinement steps plus the time of the two trials on the created coarse graph. For the case \(2a^d < 1 \) we get

\[
T_{W,d}(n) = bn \sum_{i=0}^{d-1} a^i + 2T_{W,d}(a^d n) \leq bn \frac{1-a^d}{1-a} \sum_{i=0}^{\infty} (2a^d)^i \\
\leq \frac{1-a^d}{(1-a^{l+1})(1-2a^d)} T_V(n) \approx \frac{1-a^d}{1-2a^d} T_V(n).
\]

The other two cases for the W-cycle follow directly from the master theorem for analyzing divide-and-conquer recurrences. To analyse the run time of a F-cycle we observe that

\[
T_{F,d}(n) = \sum_{i=0}^{l} T_{cr}(a^i n) \leq \frac{bn}{1-a} \sum_{i=0}^{\infty} (a^d)^i = \frac{1}{1-a^d} T_V(n)
\]

where \(l \) is the total number of levels. This completes the proof of the theorem.

Note that if we make the optimistic assumption that \(a = 1/2 \) and set \(d = 1 \) then a F-cycle is only twice as expensive as a single V-cycle. If we use the same parameters for a W-cycle we get a factor \(\log n \) asymptotic larger execution times. However in practice the shrink factor is usually worse than \(1/2 \). That yields an even larger asymptotic run time for the W-cycle (since for \(d = 1 \) we have \(2a > 1 \)). Therefore, in order to bound the run time of the W-cycle the choice of the level split parameter \(d \) is crucial. Our default value for \(d \) for W- and F-cycles is 2, i.e. independent trials are only performed every second level.
6 Experiments

Implementation We have implemented the algorithm described above using C++. Overall, our program consists of about 12,500 lines of code. Priority queues for the local search are based on binary heaps. Hash tables use the library (extended STL) provided with the GCC compiler. For the following comparisons we used Scotch 5.1.9., DiBaP 2.0.229 and kMetis 5.0 (pre2). The flow problems are solved using Andrew Goldbergs Network Optimization Library HIPR \[5\] which is integrated into our code.

System We have run our code on a cluster where each node is equipped with two Quad-core Intel Xeon processors (X555) which run at a clock speed of 2.667 GHz, has 2x4 MB of level 2 cache each and run Suse Linux Enterprise 10 SP 1. Our program was compiled using GCC Version 4.3.2 and optimization level 3.

Instances We report experiments on two suites of instances summarized in the appendix in Table 5. These are the same instances as used for the evaluation of KaPPa \[18\]. We present them here for completeness. \(r_{ggX}\) is a random geometric graph with \(2^X\) nodes where nodes represent random points in the unit square and edges connect nodes whose Euclidean distance is below \(0.55\sqrt{\ln n/n}\). This threshold was chosen in order to ensure that the graph is almost connected. \(D_{elaunayX}\) is the Delaunay triangulation of \(2^X\) random points in the unit square. Graphs \(bc_stk29\ldots\text{feto}th\text{t}\) and \(fer\text{tor}\ldots\text{auto}\) come from Chris Walshaw’s benchmark archive \[30\]. Graphs \(bel\), \(nld\), \(deu\) and \(eur\) are undirected versions of the road networks of Belgium, the Netherlands, Germany, and Western Europe respectively, used in \[8\]. Instances \(af_shell9\) and \(af_shell10\) come from the Florida Sparse Matrix Collection \[6\]. For the number of partitions \(k\) we choose the values used in \[30\]: 2, 4, 8, 16, 32, 64. Our default value for the allowed imbalance is 3 % since this is one of the values used in \[30\] and the default value in Metis.

Configuring the Algorithm We currently define three configurations of our algorithm: Strong, Eco and Fast. The configurations are described below.

KaFFPa Strong: The aim of this configuration is to obtain a graph partitioner that is able to achieve the best known partitions for many standard benchmark instances. It uses the GPA algorithm as a matching algorithm combined with the rating function \(\text{expansion}^2\). However, the rating function \(\text{expansion}^2\) has the disadvantage that it evaluates to one on the first level of an unweighted graph. Therefore, we employ \(\text{innerOuter}\) on the first level to infer structural information of the graph. We perform \(100/\log k\) initial partitioning attempts using Scotch as an initial partitioner. The refinement phase first employs \(k\)-way refinement (since it converges very fast) which is initialized with the complete partition boundary. It uses the adaptive search strategy from KaSPar \[22\] with \(\alpha = 10\). The number of rounds is bounded by ten. However, the \(k\)-way local search is stopped as soon as a \(k\)-way local search round did not find an improvement. We continue by performing quotient-graph style refinement. Here we use the active block scheduling algorithm which is combined with the multi-try local search (again \(\alpha = 10\)) as described in Section 4.3. A pair of blocks is refined as follows: We start with a pairwise FM search which is followed by the max-flow min-cut algorithm (including the most balancing cut heuristic). The FM search is stopped if more than 5%...
of the number of nodes in the current block pair have been moved without yielding an improvement. The upper bound factor for the flow region size is set to $\alpha' = 8$. As global search strategy we use two F-cycles. Initial Partitioning is only performed if previous partitioning information is not available. Otherwise, we use the given input partition.

KaFFPa Eco: The aim of KaFFPa Eco is to obtain a graph partitioner that is fast on the one hand and on the other hand is able to compute partitions of high quality. This configuration matches the first $\max(2, 7 - \log k)$ levels using a random matching algorithm. The remaining levels are matched using the GPA algorithm employing the edge rating function \exp^2. It then performs $\min(10, 40/\log k)$ initial partitioning repetitions using Scotch as initial partitioner. The refinement is configured as follows: again we start with k-way refinement as in KaFFPa-Strong. However, for this configuration the number of k-way rounds is bounded by $\min(5, \log k)$. We then apply quotient-graph style refinements as in KaFFPa Strong; again with slightly different parameters. The two-way FM search is stopped if 1% of the number of nodes in the current block pair has been moved without yielding an improvement. The flow region upper bound factor is set to $\alpha' = 2$. We do not apply a more sophisticated global search strategy in order to be competitive regarding runtime.

KaFFPa Fast: The aim of KaFFPa Fast is to get the fastest available system for large graphs while still improving partitioning quality to the previous fastest system. KaFFPa Fast matches the first four levels using a random matching algorithm. It then continues by using the GPA algorithm equipped with \exp^2 as a rating function. We perform exactly one initial partitioning attempt using Scotch as initial partitioner. The refinement phase works as follows: for $k \leq 8$ we only perform quotient-graph refinement: each pair of blocks is refined exactly once using the pair-wise FM algorithm. Pairs of blocks are scheduled randomly. For $k > 8$ we only perform one k-way refinement round. In both cases the local search is stopped as soon as 15 steps have been performed without yielding an improvement. Note that using flow based algorithms for refinement is already too expensive. Again we do not apply a more sophisticated global search strategy in order to be competitive regarding runtime.

Experiment Description We performed two types of experiments namely normal tests and tests for effectiveness. Both are described below.

Normal Tests: Here we perform 10 repetitions for the small networks and 5 repetitions for the other. We report the arithmetic average of computed cut size, running time and the best cut found. When further averaging over multiple instances, we use the geometric mean in order to give every instance the same influence on the final score.

Effectiveness Tests: Here each algorithm configuration has the same time for computing a partition. Therefore, for each graph and k each configuration is executed once and we remember the largest execution time t that occurred. Now each algorithm gets time $3t$ to compute a good partition, i.e. taking the best partition out of repeated runs. If a variant can perform a next run depends on the remaining time, i.e. we flip a coin with

\[1\] Because we have multiple repetitions for each instance (graph, k), we compute the geometric mean of the average (Avg.) edge cut values for each instance or the geometric mean of the best (Best.) edge cut value occurred. The same is done for the runtime t of each algorithm configuration.
corresponding probabilities such that the expected time over multiple runs is $3t$. This is repeated 5 times. The final score is computed as in the normal test using these values.

6.1 Insights about Flows

We now evaluate how much the usage of max-flow min-cut algorithms improves the final partitioning results and check its effectiveness. For this test we use a basic two-way FM configuration to compare with. This basic configuration is modified as described below to look at a specific algorithmic component regarding flows. It uses the Global Paths Algorithm as a matching algorithm and performs five initial partitioning attempts using Scotch as initial partitioner. It further employs the active block scheduling algorithm equipped with the two-way FM algorithm described in Section 2.2. The FM algorithm stops as soon as 5% of the number of nodes in the current block pair have been moved without yielding an improvement. Edge rating functions are used as in KaFFPa Strong. Note that during this test our main focus is the evaluation of flows and therefore we don’t use k-way refinement or multi-try FM search. For comparisons this basic configuration is extended by specific algorithms, e.g. a configuration that uses Flow, FM and the most balanced cut heuristics (MB). This configuration is then indicated by (+Flow, +FM, +MB).

In Table 1 we see that by Flow on its own, i.e. no FM-algorithm is used at all, we obtain cuts and run times which are worse than the basic two-way FM configuration. The results improve in terms of quality and runtime if we enable the most balanced minimum cut heuristic. Now for $\alpha' = 16$ and $\alpha' = 8$, we get cuts that are 0.81% and 0.41% lower on average than the cuts produced by the basic two-way FM configuration. However, these configurations have still a factor four ($\alpha' = 16$) or a factor two ($\alpha' = 8$) larger run times. In some cases, flows and flows with the MB heuristic are not able to produce results that are comparable to the basic two-way FM configuration. Perhaps, this is due to the lack of the method to accept suboptimal cuts which yields small flow problems and therefore bad cuts. Consequently, we also combined both methods to fix this problem. In Table 1 we can see that the combination of flows with local

Variant	(+Flow, -MB, -FM)	(+Flow, +MB, -FM)	(+Flow, -MB, +FM)	(+Flow, +MB, +FM)												
α'	Avg.	Best.	Bal.	t												
16	-1.88	-1.28	1.03	4.17	0.81	0.35	1.02	3.92	6.14	5.44	1.03	4.30	7.21	6.06	1.02	5.01
8	-2.30	-1.86	1.03	2.11	0.41	-0.14	1.02	2.07	5.99	5.40	1.03	2.41	7.06	5.87	1.02	2.72
4	-4.86	-3.78	1.02	1.24	-2.20	-2.80	1.02	1.29	5.27	4.70	1.03	1.62	6.21	5.36	1.02	1.76
2	-11.86	-10.35	1.02	0.90	-9.16	-8.24	1.02	0.96	3.66	3.37	1.02	1.31	4.17	3.82	1.02	1.39
1	-19.58	-18.26	1.02	0.76	-17.09	-16.39	1.02	0.80	1.64	1.68	1.02	1.19	1.74	1.75	1.02	1.22
Ref.	-2974	2851	1.025	1.13	-2974	2851	1.025	1.13								

Table 1. The final score of different algorithm configurations compared against the basic two-way FM configuration. The parameter α' is the flow region upper bound factor. All average and best cut values except for the basic configuration are improvements relative to the basic configuration in %.
search produces up to 6.14% lower cuts on average than the basic configuration. If we enable the most balancing cut heuristic we get on average 7.21% lower cuts than the basic configuration. Since these configurations are the basic two-way FM configuration augmented by flow algorithms they have an increased run time compared to the basic configuration. However, Table 2 shows that these combinations are also more effective than the repeated execution of the basic two-way FM configuration. The most effective configuration is the basic two-way FM configuration using flows with $\alpha' = 8$ and uses the most balanced cut heuristic. It yields 4.73% lower cuts than the basic configuration in the effectiveness test. Absolute values for the test results can be found in Table 6 and Table 7 in the Appendix.

6.2 Insights about Global Search Strategies

In Table 3 we compared different global search strategies against a single V-cycle. This time we choose a relatively fast configuration of the algorithm as basic configuration since the global search strategies are at focus. The coarsening phase is the same as in KaFFPa Strong. We perform one initial partitioning attempt using Scotch. The refinement employs k-way local search followed by quotient graph style refinements. Flow algorithms are not enabled for this test. The only parameter varied during this test is the global search strategy.

Clearly, more sophisticated global search strategies decrease the cut but also increase the runtime of the algorithm. However, the effectiveness results in Table 3 indicate that repeated executions of more sophisticated global search strategies are always superior to repeated executions of one single V-cycle. The largest difference in best cut effectiveness is obtained by repeated executions of 2 W-cycles and 2 F-cycles which produce 1.5% lower best cuts than repeated executions of a normal V-cycle.

The increased effectiveness of more sophisticated global search strategies is due to different reasons. First of all by using a given partition in later cycles we obtain a very good initial partitioning for the coarsest graph. This initial partitioning is usually much better than a partition created by another initial partitioner which yields good start points for local improvement on each level of refinement. Furthermore, the increased effectiveness is due to time saved using the active block strategy which converges very

Table 2. Three effectiveness tests each one with six different algorithm configurations. All average and best cut values except for the basic configuration are improvements relative to the basic configuration in %.

Effectiveness	(+Flow, +MB, -FM)	(+Flow, -MB, +FM)	(+Flow, +MB, +FM)
$\alpha' = 1$	-16.41	-16.35	1.62
	1.52	1.65	1.63
2	-8.26	-8.07	3.02
	2.83	3.36	3.25
4	-3.05	-3.08	4.04
	3.82	4.63	4.36
8	-1.12	-1.34	4.16
	4.13	4.74	4.64
16	-1.29	-1.27	3.70
	3.86	4.28	4.36
(-Flow, -MB, +FM)	2 833	2 803	2 831
	2 801	2 827	2 799
quickly in later cycles. On the other hand we save time for initial partitioning which is only performed the first time the algorithm arrives in the initial partitioning phase.

It is interesting to see that although the analysis in Section 5 makes some simplified assumptions the measured run times in Table 3 are very close to the values obtained by the analysis.

Algorithm	Avg.	Best	Bal.	t	Eff. Avg.	Eff. Best
2 F-cycle	2.69	2.45	1.023	2.31	2.806	2.760
3 V-cycle	2.69	2.34	1.023	2.49	2.810	2.766
2 W-cycle	2.91	2.75	1.024	2.77	2.810	2.760
1 W-cycle	1.33	1.10	1.024	1.38	2.815	2.773
1 F-cycle	1.09	1.00	1.024	1.18	2.816	2.783
2 V-cycle	1.88	1.61	1.024	1.67	2.817	2.778
1 V-cycle	2.973	2.841	1.024	0.85	2.834	2.801

Table 3. Test results for normal and effectiveness tests for different global search strategies. The average cut and best cut values are improvements in % relative to the basic configuration (1 V-cycle). For F- and W-cycles \(d = 2 \). Absolute values can be found in Table 8 in the Appendix.

6.3 Removal / Knockout Tests

We now turn into two kinds of experiments to evaluate interactions and relative importance of our algorithmic improvements. In the component removal tests we take KaFFPa Strong and remove components step by step yielding weaker and weaker variants of the algorithm. For the knockout tests only one component is removed at a time, i.e. each variant is exactly the same as KaFFPa Strong minus the specified component.

In the following, KWay means the global \(k \)-way search component of KaFFPa Strong, Multitry stands for the more localized \(k \)-way search during the active block scheduling algorithm and -Cyc means that the F-Cycle component is replaced by one V-cycle. Furthermore, MB stands for the most balancing minimum cut heuristic, and Flow means the flow based improvement algorithms.

In Table 4 we see results for the component removal tests and knockout tests. More detailed results can be found in the appendix. First notice that in order to achieve high quality partitions we don’t need to perform classical global \(k \)-way refinement (KWay). The changes in solution quality are negligible and both configurations (Strong without KWay and Strong) are equally effective. However, the global \(k \)-way refinement algorithm converges very quickly and therefore speeds up overall runtime of the algorithm; hence we included it into our KaFFPa Strong configuration.

In both tests the largest differences are obtained when the components Flow and/or the Multitry search heuristic are removed. When we remove all of our new algorithmic components from KaFFPa Strong, i.e global \(k \)-way search, local multitry search, F-Cycles, and Flow we obtain a graph partitioner that produces 9.3% larger cuts than KaFFPa Strong. Here the effectiveness average cut of the weakest variant in the removal test is about 6.2% larger than the effectiveness average cut of KaFFPa Strong. Also note that as soon as a component is removed from KaFFPa Strong (except for the global \(k \)-way search) the algorithm gets less effective.
Variant	Avg. Best. t	Eff. Avg. Eff. Best.
Strong	2 683 2 617 8.93	2 636 2 616 9.23
-KWay	0.04 0.00 9.23	0.00 0.08 9.23
-Multity	1.71 1.21 5.55	1.49 1.30 5.55
-Cyc	2.42 1.25 3.27	1.95 1.41 3.27
-MB	3.35 1.82 2.92	2.64 1.91 2.92
-Flow	9.36 6.18 1.66	7.87 6.08 1.66

Table 4. Removal tests (top): each configuration is same as its predecessor minus the component shown at beginning of the row. Knockout tests (bottom): each configuration is same as KaFFPa Strong minus the component shown at beginning of the row. All average cuts and best cuts are shown as increases in cut (%) relative to the values obtained by KaFFPa Strong.

6.4 Comparison with other Partitioners

We now switch to our suite of larger graphs since that’s what KaFFPa was designed for and because we thus avoid the effect of overtuning our algorithm parameters to the instances used for calibration. We compare ourselves with KaSPar Strong, KaPPa Strong, DiBaP Strong, Scotch and Metis.

Figure 8 summarizes the results. We excluded the European and German road network as well as the Random Geometric Graph for the comparison with DiBaP since DiBaP can’t handle singletons. In general, we excluded the case $k = 2$ for the European road network for the comparison since it runs out of memory for this case. As recommended by Henning Meyerhenke DiBaP was run with 3 bubble repetitions, 10 FOS/L consolidations and 14 FOS/L iterations. Detailed per instance results can be found in Appendix Table 13.

kMetis produces about 33% larger cuts than the strong variant of KaFFPa. Scotch, DiBaP, KaPPa, and KaSPar produce 20%, 11%, 12% and 3% larger cuts than KaFFPa respectively. The strong variant of KaFFPa now produces the average best cut results of KaSPar on average (which where obtained using five repeated executions of KaSPar). In 57 out of 66 cases KaFFPa produces a better best cut than the best cut obtained by KaSPar.

The largest absolute improvement to KaSPar Strong is obtained on $af_shell10$ at $k = 16$ where the best cut produced by KaSPar-Strong is 7.2% larger than the best cut produced by KaFFPa Strong. The largest absolute improvement to kMetis is obtained on the European road network where kMetis produces cuts that are a factor 5.5 larger than the edge cuts produces by our strong configuration.

The eco configuration of KaFFPa now outperforms Scotch and DiBaP being than DiBaP while producing 4.7 % and 12% smaller cuts than DiBap and Scotch respectively. The run time difference to both algorithms gets larger with increasing number of
blocks. Note that DiBaP has a factor 3 larger run times than KaFFPa Eco on average and up to factor 4 on average for $k = 64$.

On the largest graphs available to us (delaunay, rgg, eur) KaFFPa Fast outperforms KMetis in terms of quality and runtime. For example on the european road network kMetis has about 44% larger run times and produces up to a factor 3 (for $k = 16$) larger cuts.

We now turn into graph sequence tests. Here we take two graph families (rgg, delaunay) and study the behaviour of our algorithms when the graph size increases. In Figure 9, we see for increasing size of random geometric graphs the run time advantage of KaFFPa Fast relative to kMetis increases. The largest difference is obtained on the largest graph where kMetis has 70% larger run times than our fast configuration which still produces 2.5% smaller cuts. We observe the same behaviour for the delaunay based graphs (see appendix for more details). Here we get a run time advantage of up to 24% with 6.5% smaller cuts for the largest graph. Also note that for these graphs the improvement of KaFFPa Strong and Eco in terms of quality relative to kMetis increases with increasing graph size (up to 32% for delaunay and up to 47% for rgg for our strong configuration).

6.5 The Walshaw Benchmark

We now apply KaFFPa to Walshaw’s benchmark archive [30] using the rules used there, i.e., running time is no issue but we want to achieve minimal cut values for $k \in \{2, 4, 8, 16, 32, 64\}$ and balance parameters $\epsilon \in \{0, 0.01, 0.03, 0.05\}$. We tried all combinations except the case $\epsilon = 0$ because flows are not made for this case.

We ran KaFFPa Strong with a time limit of two hours per graph and k and report the best result obtained in the appendix. KaFFPa computed 317 partitions which are better that previous best partitions reported there: 99 for 1%, 108 for 3% and 110 for 5%. Moreover, it reproduced equally sized cuts in 118 of the 295 remaining cases. The complete list of improvements is available at Walshaw’s archive [30]. We obtain only a few improvements for $k = 2$. However, in this case we are able to reproduce the currently best result in 91 out of 102 cases. For the large graphs (using 78000 nodes as
Fig. 9. Graph sequence test for Random Geometric Graphs.

We obtained cuts that are lower or equal to the current entry in 92% of the cases. The biggest absolute improvement is observed for instance add32 (for each imbalance) and \(k = 4 \) where the old partitions cut 10% more edges. The biggest absolute difference is obtained for m14b at 3% imbalance and \(k = 64 \) where the new partition cuts 3183 less edges.

After the partitions were accepted, we ran KaFFPa Strong as before and took the previous entry as input. Now in 560 out of 612 cases we were able to improve a given entry or have been able to reproduce the current result.

7 Conclusions and Future Work

KaFFPa is an approach to graph partitioning which currently computes the best known partitions for many graphs, at least when a certain imbalance is allowed. This success is due to new local improvement methods, which are based on max-flow min-cut computations and more localized local searches, and global search strategies which were transferred from multigrid linear solvers.

A lot of opportunities remain to further improve KaFFPa. For example we did not try to handle the case \(\epsilon = 0 \) since this may require different local search strategies. Furthermore, we want to try other initial partitioning algorithms and ways to integrate KaFFPa into other metaheuristics like evolutionary search.

Moreover, we would like to go back to parallel graph partitioning. Note that our max-flow min-cut local improvement methods fit very well into the parallelization scheme of KaPPa [18]. We also want to combine KaFFPa with the \(n \)-level idea from KaSPar [22]. Other refinement algorithms, e.g., based on diffusion or MQI could be tried within our framework of pairwise refinement.

The current implementation of KaFFPa is a research prototype rather than a widely usable tool. However, we are planning an open source release available for download.
Acknowledgements

We would like to thank Vitaly Osipov for supplying data for KaSPar and Henning Meierhenke for providing a DiBaP-full executable. We also thank Tanja Hartmann, Robert Görke and Bastian Katz for valuable advice regarding balanced min cuts.

References

1. R. Andersen and K.J. Lang. An algorithm for improving graph partitions. In Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, pages 651–660. Society for Industrial and Applied Mathematics, 2008.
2. P. Bonsma. Most balanced minimum cuts. Discrete Applied Mathematics, 158(4):261–276, 2010.
3. W.L. Briggs and S.F. McCormick. A multigrid tutorial. Society for Industrial Mathematics, 2000.
4. J. Cheriyan and K. Mehlhorn. Algorithms for dense graphs and networks on the random access computer. Algorithmica, 15(6):521–549, 1996.
5. B.V. Cherkassky and A.V. Goldberg. On Implementing the Push-Relabel Method for the Maximum Flow Problem. Algorithmica, 19(4):390–410, 1997.
6. T. Davis. The University of Florida Sparse Matrix Collection, http://www.cise.ufl.edu/research/sparse/matrices, 2008.
7. D. Delling, A.V. Goldberg, I. Razenshteyn, and R.F. Werneck. Graph Partitioning with Natural Cuts. Technical report, Microsoft Research, MSR-TR-2010-164, 2010.
8. D. Delling, P. Sanders, D. Schultes, and D. Wagner. Engineering route planning algorithms. In Algorithmics of Large and Complex Networks, volume 5515 of LNCS State-of-the-Art Survey, pages 117–139. Springer, 2009.
9. D. Drake and S. Hougardy. A simple approximation algorithm for the weighted matching problem. Information Processing Letters, 85:211–213, 2003.
10. R. Preis et al. PARTY partitioning library. http://wwwcs.uni-paderborn.de/fachbereich/AG/monien/RESEARCH/PART/party.html.
11. R. P. Fedorenko. A relaxation method for solving elliptic difference equations. USSR Comput. Math. and Math. Phys, 5(1):1092–1096, 1961.
12. U. Feige and M. Mahdian. Finding small balanced separators. In Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, pages 375–384. ACM, 2006.
13. C. M. Fiduccia and R. M. Mattheyses. A Linear-Time Heuristic for Improving Network Partitions. In 19th Conference on Design Automation, pages 175–181, 1982.
14. P.O. Fjallstrom. Algorithms for graph partitioning: A survey. Linkoping Electronic Articles in Computer and Information Science, 3(10), 1998.
15. L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press, 1962.
16. H.N. Gabow. Path-Based Depth-First Search for Strong and Biconnected Components. Information Processing Letters, 74(3-4):107–114, 2000.
17. B. Hendrickson. Chaco: Software for partitioning graphs, http://www.sandia.gov/~bahendr/chaco.html.
18. M. Holtgrewe, P. Sanders, and C. Schulz. Engineering a Scalable High Quality Graph Partitioner. 24th IEEE International Parallel and Distributed Processing Symposium, 2010.
19. K. Lang and S. Rao. A flow-based method for improving the expansion or conductance of graph cuts. Integer Programming and Combinatorial Optimization, pages 383–400, 2004.
20. J. Maue and P. Sanders. Engineering algorithms for approximate weighted matching. In 6th Workshop on Exp. Algorithms (WEA), volume 4525 of LNCS, pages 242–255. Springer, 2007.
21. H. Meyerhenke, B. Monien, and T. Sauerwald. A new diffusion-based multilevel algorithm for computing graph partitions of very high quality. In *IEEE International Symposium on Parallel and Distributed Processing, 2008. IPDPS 2008.*, pages 1–13, 2008.

22. V. Osipov and P. Sanders. n-Level Graph Partitioning. *18th European Symposium on Algorithms* (see also arxiv preprint arXiv:1004.4024), 2010.

23. F. Pellegrini. Scotch home page. http://www.labri.fr/pelegrin/scotch.

24. J.C. Picard and M. Queyranne. On the structure of all minimum cuts in a network and applications. *Mathematical Programming Studies, Volume 13*, pages 8–16, 1980.

25. K. Schloegel, G. Karypis, and V. Kumar. Graph partitioning for high performance scientific simulations. In J. Dongarra et al., editor, *CRPC Par. Comp. Handbook*. Morgan Kaufmann, 2000.

26. R. V. Southwell. Stress-calculation in frameworks by the method of “Systematic relaxation of constraints”. *Proc. Roy. Soc. Edinburgh Sect. A*, pages 57–91, 1935.

27. M. Toulouse, K. Thulasiraman, and F. Glover. Multi-level cooperative search: A new paradigm for combinatorial optimization and an application to graph partitioning. *Euro-Par 99 Parallel Processing*, pages 533–542, 1999.

28. C. Walshaw. The Graph Partitioning Archive, http://staffweb.cms.gre.ac.uk/~c.walshaw/partition/, 2008.

29. C. Walshaw. Multilevel refinement for combinatorial optimisation problems. *Annals of Operations Research*, 131(1):325–372, 2004.

30. C. Walshaw and M. Cross. Mesh Partitioning: A Multilevel Balancing and Refinement Algorithm. *SIAM Journal on Scientific Computing*, 22(1):63–80, 2000.

31. C. Walshaw and M. Cross. JOSTLE: Parallel Multilevel Graph-Partitioning Software – An Overview. In F. Magoules, editor, *Mesh Partitioning Techniques and Domain Decomposition Techniques*, pages 27–58. Civil-Comp Ltd., 2007. (Invited chapter).
procedure \textit{W-Cycle}(G) \\
\hspace{1em} G' = \text{coarsen}(G) \\
\hspace{1em} \text{if } G' \text{ small enough then} \\
\hspace{2em} \text{initial partition } G' \text{ if not partitioned} \\
\hspace{2em} \text{apply partition of } G' \text{ to } G \\
\hspace{2em} \text{perform refinement on } G \\
\hspace{1em} \text{else} \\
\hspace{2em} \text{W-Cycle}(G') \text{ and apply partition to } G \\
\hspace{2em} \text{perform refinement on } G \\
\hspace{1em} \text{W-Cycle}(G'') \text{ and apply partition to } G \\
\hspace{2em} \text{perform refinement on } G \\
procedure \textit{F-Cycle}(G) \\
\hspace{1em} G' = \text{coarsen}(G) \\
\hspace{1em} \text{if } G' \text{ small enough then} \\
\hspace{2em} \text{initial partition } G' \text{ if not partitioned} \\
\hspace{2em} \text{apply partition of } G' \text{ to } G \\
\hspace{2em} \text{perform refinement on } G \\
\hspace{1em} \text{else} \\
\hspace{2em} \text{F-Cycle}(G') \text{ and apply partition to } G \\
\hspace{2em} \text{perform refinement on } G \\
\hspace{1em} \text{if no. trails. calls on cur. level < 2 then} \\
\hspace{2em} G'' = \text{coarsen}(G) \\
\hspace{2em} \text{F-Cycle}(G'') \text{ and apply partition to } G \\
\hspace{2em} \text{perform refinement on } G \\

\textbf{Fig. 10.} Pseudocode for the different global search strategies.

procedure \textit{activeBlockScheduling}() \\
\hspace{1em} \text{set all blocks active} \\
\hspace{1em} \text{while there are active blocks} \\
\hspace{2em} A := \langle \text{edge } (u, v) \text{ in quotient graph : } u \text{ active or } v \text{ active} \rangle \\
\hspace{2em} \text{set all blocks inactive} \\
\hspace{1em} \text{permute } A \text{ randomly} \\
\hspace{1em} \text{for each } (u, v) \text{ in } A \text{ do} \\
\hspace{2} \text{pairWisImprovement}(u,v) \\
\hspace{2} \text{multittry FM search starting with boundary of } u \text{ and } v \\
\hspace{2} \text{if anything changed during local search then} \\
\hspace{3} \text{activate blocks that have changed during pairwise} \\
\hspace{3} \text{or multittry FM search} \\

\textbf{Fig. 11.} Pseudocode for the active block scheduling algorithm. In our implementation the pair-wise improvement step starts with a FM local search which is followed by a max-flow min-cut based improvement.
Medium sized instances		
graph	n	m
rgg17	2^{17}	1 457 506
rgg18	2^{18}	3 094 566
Delaunay17	2^{17}	786 352
Delaunay18	2^{18}	1 572 792
bcsstk29	13 992	605 496
4elt	15 606	91 756
fesphere	16 386	98 304
cti	16 840	96 464
memplus	17 758	108 384
cs4	33 499	87 716
pwt	36 519	289 588
bcsstk32	44 609	1 970 092
body	45 087	327 468
f60k	60 005	178 880
wing	62 032	243 088
finan512	74 752	522 240
rotor	99 617	1 324 862
bel	463 514	1 183 764
nld	893 041	2 279 080
af_shell9	504 855	1 708 420

Large instances		
graph	n	m
rgg20	2^{20}	13 783 240
Delaunay20	2^{20}	12 582 744
fetooth	78 136	905 182
598a	110 971	1 483 868
ocean	143 437	819 186
144	144 649	2 148 786
wave	156 317	2 118 662
m14b	214 765	3 358 036
auto	448 695	6 629 222
deu	4 378 446	10 967 174
eur	18 029 721	44 435 372
af_shell10	1 508 065	51 164 260

Table 5. Basic properties of the graphs from our benchmark set. The large instances are split into four groups: geometric graphs, FEM graphs, street networks, sparse matrices. Within their groups, the graphs are sorted by size.
Variant	(+Flow, -MB, -FM)	(+Flow, +MB, -FM)	(+Flow, -MB, +FM)	(+Flow, +MB, +FM)
α ′ = 1	Avg. 3 031 4.17 1.025	Best. 3 031 4.17 1.025	Avg. 2 950 4.30 1.023	Best. 2 950 4.30 1.023
8	Avg. 3 044 4.17 1.025	Best. 3 044 4.17 1.025	Avg. 2 962 4.30 1.023	Best. 2 962 4.30 1.023
4	Avg. 3 126 4.17 1.025	Best. 3 126 4.17 1.025	Avg. 2 983 4.30 1.023	Best. 2 983 4.30 1.023
2	Avg. 3 374 4.17 1.025	Best. 3 374 4.17 1.025	Avg. 2 999 4.30 1.023	Best. 2 999 4.30 1.023
1	Avg. 3 698 4.17 1.025	Best. 3 698 4.17 1.025	Avg. 3 031 4.17 1.025	Best. 3 031 4.17 1.025

Table 6. The final score of different algorithm configurations compared against the basic two-way FM configuration. Here α ′ is the flow region upper bound factor. The values are average values as described in Section 6.

Effectiveness	(+Flow, +MB, -FM)	Avg.	Best.	Bal.
α ′ = 1	3 389	3 351	1.016	
2	3 088	3 049	1.017	
4	2 922	2 892	1.022	
8	2 865	2 841	1.023	
16	2 870	2 839	1.023	

Effectiveness	(+Flow, -MB, +FM)	Avg.	Best.	Bal.
α ′ = 1	2 786	2 759	1.024	
2	2 748	2 724	1.024	
4	2 721	2 698	1.025	
8	2 718	2 690	1.025	
16	2 730	2 697	1.025	

Table 7. Each table is the result of an effectiveness test for six different algorithm configurations. All values are average values as described in Section 6.
Algorithm	Avg.	Best.	Bal.	t	Eff. Avg.	Eff. Best.
2 F-cycle	2.895	2.773	1.023	2.31	2.806	2.760
3 V-cycle	2.895	2.776	1.023	2.49	2.810	2.766
2 W-cycle	2.889	2.765	1.024	2.77	2.810	2.760
1 W-cycle	2.934	2.810	1.024	1.38	2.815	2.773
1 F-cycle	2.941	2.813	1.024	1.18	2.816	2.783
2 V-cycle	2.918	2.796	1.024	1.67	2.817	2.778
1 V-cycle	2.973	2.841	1.024	0.85	2.834	2.801

Table 8. Test results for normal and effectiveness tests for different global search strategies and different parameters.

k	Strong	-Kway	-Multitry	-Cyc	-MB	-Flow
Avg.	Avg. Best.					
2	561	548	2.87	564	549	2.68
4	1286	1242	5.13	1287	1236	5.28
8	2164	2244	7.52	2314	2241	7.82
16	3833	3746	11.26	3829	3735	11.73
32	6070	5936	16.36	6064	5949	17.12
64	9606	9466	25.09	9597	9449	26.09
Avg.	2.683	2.617	8.93	2.682	2.614	9.23

Table 9. Removal tests: each configuration is same as left neighbor minus the component shown at the top of the column. The first table shows detailed results for all k in a normal test. The second table shows the results for an effectivity test.
Table 10. Removal tests: each configuration is same as its left neighbor minus the component shown at the top of the column. The first table shows detailed results for all \(k \) in a normal test. The second table shows the results for an effectivity test. All values are increases in cut are relative to the values obtained by KaFFPa Strong.

\(k \)	Strong	-Kway	-Multitry	-Cyc	-MB	-Flow		
	Avg. Best.	\(t \)						
2	561 548 2.85	0.00 0.00 2.87	0.53 0.18 2.68	1.72 1.01 2.87	560 559 1.94	3.06 0.37 5.64	11.76 6.20 0.85	
4	1286 1242 5.13	0.08 0.48 5.28	0.32 0.48 4.20	0.96 0.97 5.02	0.49 0.49 4.67	560 559 1.94	3.06 0.37 5.64	11.76 6.20 0.85
8	2314 2244 7.52	0.00 0.13 7.82	1.34 1.29 5.34	1.82 1.56 3.11	2.64 2.27 2.70	9.46 8.78 1.32	9.05 8.14 1.80	
16	3833 3746 11.26	0.10 0.29 11.73	1.93 1.79 6.40	2.71 2.22 3.79	3.57 3.23 3.32	9.05 8.14 1.80	9.05 8.14 1.80	
32	6070 5936 16.36	0.10 0.22 17.12	2.47 2.54 7.72	3.28 3.40 4.77	4.17 4.06 4.20	8.29 8.27 2.60	8.29 8.27 2.60	
64	9606 9466 25.09	0.09 0.18 26.09	3.04 2.92 9.69	3.91 3.77 6.35	4.79 4.69 5.71	7.84 7.74 3.94	7.84 7.74 3.94	
Avg.	2683 2617 8.93	0.04 0.11 9.23	1.71 1.49 5.55	3.35 2.64 2.92	9.36 7.87 1.66	7.51 7.43 1.94	7.51 7.43 1.94	

Table 11. Knockout tests: each configuration is the same as KaFFPa Strong minus the component shown at the top of the column. The first table shows detailed results for all \(k \) in a normal test. The second table shows the results for an effectivity test.

\(k \)	Strong	-Kway	-Multitry	-MB	-Flows	
	Avg. Best.	\(t \)	Avg. Best.	\(t \)	Avg. Best.	\(t \)
2	550 547	0.00 0.18 0.18	0.18 0.18 0.36	5.64 4.75	2617 2542 4.85	
4	1251 1240	0.00 0.24 0.48	0.32 0.40 0.96	5.02 4.76	2617 2542 4.85	
8	2263 2242	0.31 0.75 1.12	0.62 0.94 1.15	6.41 6.47	2617 2542 4.85	
16	3773 3745	0.11 0.81 1.34	1.46 1.44 1.93	6.79 6.70	2617 2542 4.85	
32	6000 5943	0.02 0.07 1.93	2.32 2.62 3.81	6.72 7.17	2617 2542 4.85	
64	9523 9463	0.22 0.27 2.53	3.02 3.08 3.76	6.47 6.57	2617 2542 4.85	
Avg.	2636 2616	0.00 0.11 1.21	1.25 1.41 1.82	6.18 6.08	2617 2542 4.85	
Table 12. Knockout tests: each configuration is the same as KaFFPa Strong minus the component shown at the top of the column. The first table shows detailed results for all k in a normal test. The second table shows the results for an effectivity test. All values are increases in cut relative to the values obtained by KaFFPa Strong.						
graph	KaFFPa Strong	KaFFPa Eco	KaFFPa Fast	KaFFPar Strong	DiLLap	Sochez
-------	--------------	-----------	------------	----------------	--------	--------
fa_tech7	3.24	4.18	4.01	3.63	3.74	3.55
fa_tech8	4.68	5.94	6.26	5.83	6.14	5.94
fa_tech9	17.38	20.46	21.09	19.81	20.62	20.52
fa_tech10	39.47	55.97	57.32	37.33	39.64	39.43
9thka	7.96	7.93	7.67	7.48	7.45	7.38
9thfa	20.61	20.61	21.49	20.74	21.69	21.35
9thsc	5.96	5.97	6.14	6.15	6.24	6.24
9thcc	7.30	7.40	7.86	7.87	8.14	8.14
9thmet	3.51	3.51	3.52	3.52	3.52	3.52
9thscal	6.04	6.04	6.14	6.14	6.24	6.24
9thavg	16.94	16.90	17.08	16.92	17.32	17.17
9thhigh	16.94	16.90	17.08	16.92	17.32	17.17
9thlow	16.94	16.90	17.08	16.92	17.32	17.17

Table 13. Detailed per-instance results for the large testset.
	KaFFPa Strong	KaFFPa Eco	KaFFPa Fast	KaSPar Strong								
k	Best. Avg. t	Best. Avg. t	Best. Avg. t	Best. Avg. t								
2	3.988	4.001	22.68	4.117	4.178	0.79	4.573	4.459	0.40	4.013	4.047	24.94
4	10.467	10.559	50.18	10.878	10.969	1.42	11.897	12.732	0.43	10.548	10.610	32.09
8	19.288	19.553	76.39	20.612	21.061	2.06	23.026	24.295	0.50	19.332	19.507	44.11
16	31.474	31.953	111.49	33.284	33.858	2.82	35.952	36.730	0.64	31.676	32.000	65.43
32	48.195	48.506	145.04	51.117	51.686	3.94	54.725	55.685	0.80	48.770	49.254	94.42
64	69.936	70.363	199.84	73.946	74.661	5.09	78.553	79.305	1.03	71.506	72.024	126.59
Avg.	20.986	21.172	80.93	22.088	22.393	2.25	23.952	24.742	0.60	21.185	21.364	54.97

	KaFFPa Strong	DiBaP	Scotch	Metis								
k	Best. Avg. t	Best. Avg. t	Best. Avg. t	Best. Avg. t								
2	4.089	4.180	11.63	4.285	5.155	2.25	4.238	4.430	0.71	4.543	4.722	0.39
4	10.940	11.168	19.76	11.133	11.341	2.79	11.336	11.581	1.53	11.906	12.355	0.40
8	20.255	20.609	25.46	20.980	21.451	4.31	21.391	21.805	2.46	22.416	23.195	0.42
16	32.821	33.219	26.66	33.859	34.389	7.19	35.007	35.562	3.54	36.275	37.066	0.43
32	50.085	50.573	21.84	51.088	51.773	12.14	53.628	54.323	4.75	54.669	55.437	0.46
64	72.837	73.316	16.44	74.144	74.676	21.17	77.379	78.042	6.14	78.415	79.200	0.50
Avg.	21.839	22.163	19.56	22.460	23.461	6.07	23.033	23.505	2.56	23.945	24.568	0.44

Table 14. Results for our large benchmark suite. The table on top contains average values for the comparison with DiBaP on our large testsuite without road networks and rgg. The table on the bottom contains average value for the comparisons with other general purpose partitioners on our large testsuite without the road network Europe for the case $k = 2$. The average values are computed as described in Section 6.
Fig. 12. Graph sequence test for Delaunay Graphs.
Graph/k	2	4	8	16	32	64
3elt	89	89	199	199	342	342
add20	678	594	1197	177	1740	1704
data	188	188	378	383	659	660
uk	19	19	40	41	82	84
add32	10	10	30	33	66	66
bcsstk33	10097	10097	21556	21508	34183	34178
whittaker3	126	126	380	380	655	656
crack	183	183	362	362	677	678
wing_nodal	1695	1696	3576	3572	5445	5443
fe_4elt2	130	130	349	349	605	605
vibbox	11538	10310	19155	19199	24702	24553
bcsstk29	2818	2818	8070	8035	14291	13965
4elt	138	138	320	321	534	534
fe_sphere	386	386	766	766	1152	1152
cti	318	318	944	944	1752	1802
memplus	5596	5489	9805	9559	12126	11785
cs4	366	367	938	940	1455	1467
bcsstk31	2699	2701	7296	7444	13274	13371
fe_pwt	340	340	704	704	1437	1441
bcsstk32	4667	4667	9208	9247	21253	20855
fe_body	262	262	598	599	1040	1079
t60k	75	75	208	211	454	465
wing	784	787	1616	1666	2509	2589
brack12	708	708	3013	3027	7110	7144
finan512	162	162	324	324	648	648
fe_tooth	3815	3815	6870	6938	11492	11650
fe_rotor	2031	2045	7538	7405	13032	12959
598a	2388	2388	7956	7992	16050	16179
fe_ocean	387	387	1831	1856	4140	4251
144	6478	6479	15635	15196	25281	25455
wave	8665	8682	16881	16891	29124	29207
m14b	3826	3826	12981	13034	25854	25921
auto	9958	10004	26669	26941	45892	45733

Table 15. Computing partitions from scratch $\epsilon = 1\%$. In each k-column the results computed by KaFFPa are on the left and the current Walshaw cuts are presented on the right side.
Graph/\(k\)	2	4	8	16	32	64
3elt	87	87	198	198	335	336
add20	702	576	1,186	1,158	1,724	1,690
data	185	185	369	378	640	650
uk	18	18	39	40	78	81
add32	10	10	30	33	66	66
bcsstk33	10,064	10,064	20,865	21,035	34,078	34,078
whitaker3	126	126	378	378	652	655
crack	182	182	360	360	673	676
wing_nodal	1,678	1,680	3,545	3,561	5,374	5,401
fe_4elt2	130	130	342	343	597	598
vibrobox	11,538	10,310	18,975	18,775	24,268	24,171
bcsstk29	2,818	2,818	7,993	7,983	13,867	13,817
4elt	137	137	319	319	523	523
fe_sphere	384	384	764	764	1,152	1,152
cti	318	318	916	917	1,714	1,716
memplus	5,466	5,355	9,593	9,418	12,085	11,628
cs4	360	361	928	936	1,439	1,467
bcsstk31	2,676	2,676	7,150	7,181	13,020	13,246
fe_pwt	340	340	700	704	1,411	1,416
bcsstk32	4,667	4,667	8,742	8,778	20,223	20,035
fe_body	262	262	598	598	1,016	1,033
t60k	71	71	203	207	449	454
wing	773	773	1,605	1,636	2,471	2,551
brack2	684	684	2,834	2,839	6,871	6,980
finan512	162	162	324	324	648	648
fe_tooth	3,788	3,792	6,796	6,862	11,313	11,422
fe_rotor	1,959	1,960	7,128	7,182	12,479	12,546
598a	2,367	2,367	7,842	7,873	15,740	15,820
fe_ocean	311	311	1,696	1,698	3,921	3,974
144	6,438	6,438	15,128	15,122	25,119	25,301
wave	8,594	8,616	16,668	16,822	28,513	28,664
m14b	3,823	3,823	12,948	12,977	25,522	25,550
auto	9,683	9,716	25,836	25,979	44,841	45,109

Table 16. Computing partitions from scratch \(\epsilon = 3\%\). In each \(k\)-column the results computed by KaFFPa are on the left and the current Walshaw cuts are presented on the right side.
Table 17. Computing partitions from scratch $\epsilon = 5\%$. In each k-column the results computed by KaFFPa are on the left and the current Walshaw cuts are presented on the right side.