INTRODUCTION

Hypertension is an elevation of systolic blood pressure (SBP) to 140 mm Hg or more, and/or an elevation of diastolic blood pressure (DBP) to 90 mm Hg or more. Hypertension classified into different types of hypertension, such as systolic-diastolic hypertension, isolated systolic hypertension or isolated diastolic hypertension [1]. Isolated systolic hypertension (ISH) is an increase in systolic blood pressure (SBP) without an increase in diastolic blood pressure (DBP). It is more common in older adults than systolic-diastolic hypertension (SDH), but both contribute similarly to cardiovascular events [2].

Blood pressure determined by cardiac output and vascular resistance. An increase in cardiac output and/or vascular resistance may result in hypertension. Chronic hypertension can cause changes in the physiology of the heart. This can be measured using electrocardiogram.

Hypertension is a common disease and a major risk factor for stroke, myocardial infarction, vascular disease, and chronic kidney disease [3]. Modern lifestyle might be one of the prime causes of hypertension. High fructose diet in our lifestyle may induce hypertension [4]. Animal and human study has shown that a high fructose diet increased blood pressure [5-7]. As we are aware that hypertension is a silent killer if left untreated may result in a cardiovascular and cerebrovascular complication. In the general population, a tight control of blood pressure can prevent the cardiovascular complications of hypertension. Antihypertensive agents are one of the choices for control of high blood pressure. The drugs used in hypertension have a variety of mechanisms of action including diuresis, vasodilation, and antagonism of the renin-angiotensin-aldosterone system. Antihypertension agents should be carefully provided to prevent the evidence of adverse events, because adverse events may induce non-adherence to medication.

Herbal medicine empirically used by Indonesian people to cure many diseases including high blood pressure. One of promising herbal medicine as antihypertension is the bulb of Eleutherine americana Merr. The bulb of Eleutherine americana Merr which belongs to the family Iridaceae, a plant originated from West Kalimantan, is known as a Dayak onion. This plant has been used by the Dayak community for generations as a remedy for some types of diseases including breast cancer, gastrointestinal cancer, diabetes, cholesterol, and high blood pressure [8].

Dayak onion contained naphthoquinone compounds and its derivatives such as elecanacine, eleutherine, eleutherol, eleutheronine. Naphthoquinones compounds are known as antimicrobial, antifungal, and antiparasitic. Moreover, naphthoquinones showed antioxidant activity, that protecting the body against free radicals that trigger many diseases, including cardiovascular diseases [7, 8].

This study aimed to determine the role of the ethanolic extract of bulb Eleutherine americana Merr in regulating blood pressure as well as its influence on the electrocardiogram profile in fructose-induced hypertensive rats.

MATERIALS AND METHODS

Plants materials

This study was conducted in the Pharmacology Laboratory, Bandung School of Pharmacy, Indonesia. Bulb of Eleutherine americana Merr (EA) was collected from Manoko, Lembang, Bandung, West Java, Indonesia and botanically identified at Biology Faculty, Padjadjaran University, Indonesia. The bulb were cut into small pieces, dried, and extracted with ethanol 96% (analytical grade, purchased from Brataco, Indonesia) for 3 d. The extracts were filtered and concentrated by rotary evaporator. Phytochemical analysis was carried out on the dry extract. Doses of Eleutherine americana Merr bulb extracts were 25, 50, 100 mg/kg.
Animals

Male Wistar rats of 2 mo age and weighed about 200-250 gram were used in this study. Before treatment, animals were adapted to a cage room temperature (25 °C) and were given access to food and drink for a week. This study was conducted in the Laboratory of Pharmacology, Bandung School of Pharmacy, Bandung, West Java, Indonesia. All experiment procedure was approved by the local animal ethics committee (no. 315/UN6. C.1.3.2/KEPK/PN/2016).

Diuretic study

Eighteen male Wistar rats were divided randomly into 6 groups of 3 animals in each group. Group 1 and 2 received vehicle of the drug, group 3 received Furosemide (generic drug purchased from a local pharmacy) dose of 3.6 mg/kg, group 4-6 received an ethanolic extract of bulb Eleutherine americana Merr doses of 25, 50, 100 mg/kg respectively. Thirty minutes after a given test drug, a group of 2-6 received 5 ml drinking waters orally. Rats were placed in metabolic cages to separate urine and faeces. The volume of urine collected was measured at the end of 24 h. During this period, no food was made available for all animals. Diuretic activity determined by urine volume compares to control group.

Animal model hypertension

Eighteen male Wistar rats were divided randomly into 6 groups of 3 animals in each group. Hypertension was induced by fructose 66% in the diet for 21 d. Test drug was given for 21 d along with a high fructose diet. Group 1 and 2 received vehicle of the drug, group 3 received captopril (generic drug purchased from a local pharmacy) dose of 2.5 mg/kg, group 4-6 received Eleutherine americana Merr extract doses of 25, 50, 100 mg/kg respectively. Group 1 received standard diet while group 2-6 received 66% fructose (purchased from Brataco, Indonesia) diet for 21 d. Systolic and diastolic blood pressure were measured at 0 and 21 d by noninvasive blood pressure instrument for rodents (CODA® Kent Scientific, USA).

Phytochemical screening

The result of phytochemical analysis of an ethanolic extract of bulb Eleutherine americana Merr revealed the presence of flavonoids, saponin, and phenolic compounds.

Effect on urine volume

Group 3-6 showed increased in urine output statistically significant compared to normal and positive groups (p<0.05). The diuretic effect of group 4 and 5 showed significant different compared to group 3, while a group 6 showed comparable to group 3.

Table 2: Effect of furosemide and ethanolic extract of bulb Eleutherine americana Merr on urine volume for 24 h of rats

Group of treatment	Urine volume±SD (ml)
Normal control	0.4±0.1
Water	2.8±0.2
Water+furosemide (3.6 mg/kg)	5.3±0.2*
Water+bulp Eleutherine americana Merr (25 mg/kg)	4.2±0.2*
Water+bulp Eleutherine americana Merr (50 mg/kg)	3.5±0.1*
Water+bulp Eleutherine americana Merr (100 mg/kg)	5.2±0.2*

Values are expressed as means±SD from three rats. Significant at *p<0.05, when compared to high fructose group.

Systolic and diastolic blood pressure

Fructose diet for 21 d in the animal study showed increased in systolic and diastolic blood pressure (group 2). Administration of bulb Eleutherine americana Merr extract for 21 d revealed a reduction in systolic, diastolic blood pressure and heart rate (group 4-6) that statistically significant compared to group 2. Group 4 and 5 that received extract dose of 25, 50 mg/kg showed a comparable effect in systolic blood pressure reduction but significantly different in diastolic blood pressure compared to group 3 (received captopril 2.5 mg/kg) (table 3).
Table 3: Effect of captopril and ethanolic extract of bulb Eleutherine americana Merr on systolic blood pressure of rats

Group of treatment	Systolic blood pressure±SD (mmHg)
Normal control	111.67±0.6
High fructose	148.67±1.53
High fructose+captopril (2.5 mg/kg)	103.3±2.52 *
High fructose+bulb Eleutherine americana Merr (25 mg/kg)	104.33±2.52 *
High fructose+bulb Eleutherine americana Merr (50 mg/kg)	104.67±2.52 *
High fructose+bulb Eleutherine americana Merr (100 mg/kg)	129.67±2.08 *

Values are expressed as mean±SD from three rats. Significant at *p<0.05, when compared to high fructose group

Table 4: Effect of captopril and ethanolic extract of bulb Eleutherine americana Merr on diastolic blood pressure of rats

Group of treatment	Diastolic blood pressure±SD (mm Hg)
Normal control	80.3±1.53
High fructose	102.67±2.52
High fructose+captopril (2.5 mg/kg)	78.0±2.00 *
High fructose+bulb Eleutherine americana Merr (25 mg/kg)	85.67±2.08 *
High fructose+bulb Eleutherine americana Merr (50 mg/kg)	86.7±2.52 *
High fructose+bulb Eleutherine americana Merr (100 mg/kg)	113.3±2.52 *

Values are expressed as mean±SD from three rats. Significant at *p<0.05, when compared to high fructose group

Table 5: Effect of captopril and ethanolic extract of bulb Eleutherine americana Merr on electrocardiogram (ECG) profile of rats

Group of treatment	Mean of interval wave±SD (minutes)			
	R-R	P-R	QRS	S-T
Normal control	0.11±0.006*	0.03±0.006*	0.03±0.008	0.03±0.01
High fructose	0.10±0.002	0.02±0.003	0.04±0.008	0.03±0.004
High fructose+captopril (2.5 mg/kg)	0.12±0.006*	0.03±0.006*	0.03±0.003	0.03±0.006
High fructose+bulb Eleutherine americana Merr (25 mg/kg)	0.12±0.004*	0.03±0.004*	0.03±0.004	0.03±0.009
High fructose+bulb Eleutherine americana Merr (50 mg/kg)	0.11±0.005*	0.03±0.002*	0.03±0.006	0.04±0.01
High fructose+bulb Eleutherine americana Merr (100 mg/kg)	0.12±0.004*	0.03±0.004*	0.04±0.003	0.03±0.006

Values are expressed as mean±SD from three rats. Significant at *p<0.05, when compared to high fructose group

DISCUSSION

High-fructose diets increase the activity of sodium and chloride transporters, resulting in a state of salt overload in an animal study. This condition increases blood pressure. Moreover, Excess fructose can activate vasoconstrictors, inactivate vasodilators, and overstimulate the sympathetic nervous system, these can contribute to hypertension [10]. In accordance with our study that fructose diet for 21 d showed elevated in systolic and diastolic blood pressure and increased heart rate (table 3 and 4). Fructose diet showed changed in electrocardiogram profile (table 5).

Extract of bulb Eleutherine americana Merr dose of 25, 50 and 100 mg/kg showed diuretic activity. The dose of 100 mg/kg was the

![Fig. 1: Effect of captopril and ethanolic extract of bulb Eleutherine americana Merr on the heart rate of rats. Values are expressed as mean±SD from three rats. Significant at *p<0.05, when compared to high fructose group](image-url)
higher diuretic effect comparable to furosemide 3.6 mg/kg. Diuretic
furosemide increased the urinary output as well as an increase of
sodium, potassium and chloride ions concentration in urine. This
effect is valuable in the treatment of hypertension and enhancing
the effect of others antihypertensive agents [11]. Moreover, increase in
urine output result in systolic and diastolic blood pressure reduction and
heart rates reduction. Our study showed that provision of bulb
Eleutherine americana Merr extract dose of 25,50, and 100 mg/kg for
21 d reduced systolic and diastolic blood pressure, and heart rates
compared to control group (table 3 and 4, fig. 1).

The electrocardiogram (ECG) is an important tool for the study of
cardiac electrophysiology [12]. The fluid loss during diuretic therapy
results in a change of ECG including an increase in the amplitudes of
P-waves, QRS complexes, and T waves; durations of P waves, QRS
complexes, and QT intervals [13]. The hazard of diuretic-induced
ventricular ectopic activity warrants correction of hypokalemia.
Furosemide increased the risk of hypokalemia [14] results in
increased heart rate.

In the present study showed that high fructose diet decreased of RR
and PR intervals, and increased the heart rates. Administration
extract of bulb Eleutherine americana Merr for 21 d improved ECG
profile, RR, and PR intervals, and increased the heart rates. Administration
of bulb Eleutherine americana Merr extract dose of 25,50, and 100 mg/kg for
21 d reduced systolic and diastolic blood pressure, and heart rates
compared to control group (table 3 and 4, fig. 1).

Heart rate variability has been used as an important tool for the
study of cardiac autonomic control [15]. Variability in heart rate can
increase the risk for ventricular arrhythmia event [16]. Our study
suggested that role of bulb Eleutherine americana Merr in preventing
ventricular arrhythmia by controlling the heart rates.

The Multiple Risk Factor Intervention Trial found that for any level
of diastolic and systolic blood pressure was the major determinant of
cardiovascular risk in aged over 50 y. The elevation of systolic
blood pressure raises left ventricular afterload and myocardial work.
Left ventricular hypertrophy is a known risk factor for congestive
heart failure and cardiovascular events that associated with arterial
stiffness (correlated with atherosclerosis) [17]. The present study
showed that administration of bulb Eleutherine americana Merr
reduced systolic and diastolic blood pressure. It suggested that bulb
Eleutherine americana Merr has important role in ameliorating
the arterial stiffness. Further study needed.

CONCLUSION

The bulb of Eleutherine americana Merr showed antihypertensive
activity in fructose-induced hypertension animal model. It has a
potential role in regulating systolic, diastolic blood pressure and
heart rate. Proposed mechanism of bulb Eleutherine americana Merr
in lowering blood pressure are stimulating urine output (diuretic)
and improvement of heart rate.

AUTHOR CONTRIBUTION

Patonah Hasimun directed the entire series of research and
evaluates the overall research results.

Hashallah Zakaria developed a test method and validated the results
of electrocardiogram measurements.

Elis Susilawati evaluated the results of the diuretic test and animal
handling treatment.

Jeany Dwiyulia Wardiono is a technical executive in anti-
hypertensive research.

CONFLICT OF INTERESTS

Declared none

REFERENCES

1. LL Tin, DG Beevers, GY H Lip. Systolic vs diastolic blood pressure and the burden of hypertension. J Hum Hypertens 2002;16:147-50.

2. Raya E Kheirbek, Ross Fletcher, Prakash Deedwania, Nawar Shara, Gregg C Fonarow, Maciej Banach, et al. Abstract 186:49:
comparative impact of isolated systolic hypertension vs systolic-diastolic hypertension on incident heart failure and all-
cause mortality in community-dwelling older adults. Circulation 2014;130:A18649.

3. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, et al. The seventh report of the joint national committee
on prevention, detection, evaluation, and treatment of high blood pressure. J Natl Cardio 2003;289:2560–72.

4. Alice Victoria Klein, Hosen Kat. The mechanisms underlying Fructose-induced hypertension: a review. J Hypertens 2015;
33:912–20.

5. Richard J Johnson, Mark S Segal, Yuri Sautin, Takahiko Nakagawa, Daniel I Feg, Duk-Hee Kang, et al. Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am J Clin Nutr 2007;86:899–906.

6. Brown Clive M, Dulloo Abdul G, Yepuri G, Montani JP. Fructose ingestion acutely elevates blood pressure in healthy young
humans. Am J Physiol: Regul Integr Comp Physiol 2005;29:R730–7.

7. Fiti Y, Rosidah, Suwarso E. Effects of inhibition cell cycle and apoptosis of sabrang onion extract (Eleutherine bulbosa (MILL.)
Urb.) on breast cancer cells. Pharmacy Faculty of Universitas Sumatera Selat. Skripsi; 2014.

8. Daryono BS, Rahmadani WD, Sadursono. Identification of bawang sabrang (Eleutherine americana Merr Ex K. Heyne) in
Indonesia based on chromosome characters. Indonesian J Pharmas 2012;24:22–9.

9. Tran LT, Yuen VG, McNeill JH. The fructose-fed rat: a review on the mechanisms of fructose-induced insulin resistance and
hypertension. Mol Cell Biochem 2009;332:145–59.

10. Pedro P Pereim-Junior, Moacir Marocco, Fabricio P Rodrigues, Emiliano Medei, José HM Nascimento. Noninvasive method for
electrocardiogram recording in conscious rats: feasibility for heart rate variability analysis. An Acad Bras Cienc 2010;82:2.

11. Sreelakshmi R, Shan P Mohammed, Jyoti Harinndran, Sriganesan P. Evaluation of diuretic activity of Massuaenda frondosa. Asian J
Pharm Clin Res 2015;8:117–9.

12. Mandeep R Mehra, MD Hector O, Ventura MD. EGG changes in response to diuresis in an ambulatory patient with congestive
heart failure. CHF 2006;12:277–83.

13. Task Force of The European Society of Cardiology and The North American Society of Pacing and Electrophysiology. Heart
rate variability-Standards of measurement, physiological interpretation, and clinical use. Circulation 1996;93:1043–65.

14. Mohandas Rai, Chandrashokar R, Manohar VR, Ramya Kateel. Potent and Efficacious diuretic activity with the potassium-
sparing effect of Terminalia bellerica pulp fruit pulp aqueous extract in Wistar albino rats. Asian J Pharm Clin Res 2016;9 Suppl
1:241-3.

15. James Nolan, MD Phillip D, Batin MD, Richard Andrews, MRCP, et al. Prospective study of heart rate variability and mortality in
chronic heart failure—Results of the united kingdom heart failure evaluation and assessment of risk trial (UK-Heart). Circulation
1998;98:1510–6.

16. Leonetti G, Cuspidi C, Facchini M, Stramba-Badiale M. Is systolic pressure a better target for antihypertensive treatment than
diastolic pressure? J Hypertens Suppl 2002;28:409–12.

17. Charalambos Vlachopoulos, Konstantinos Zannou, Christodoulos Stefanadis. Prediction of cardiovascular events and all-
cause mortality with arterial stiffness. J Am Coll Cardiol 2010;55:1518–27.

How to cite this article

• Patonah Hasimun, Hashallah Zakaria, Elis Susilawati, Jeany Dwiyulia Wardiono. Antihypertensive activity ethanolic extract of bulb
Eleutherine americana Merr on fructose-induced hypertension rats. Int J Pharm Pharm Sci 2017;9(8):25-28.