An intron variant of the GLI family zinc finger 3 (GLI3) gene differentiates resistance training-induced muscle fiber hypertrophy in younger men

Christopher G. Vann1,2 | Robert W. Morton3 | Christopher B. Mobley4,5 |
Ivan J. Vechetti6 | Brian K. Ferguson1 | Cody T. Haun7 | Shelby C. Osburn1 |
Casey L. Sexton1 | Carlton D. Fox1 | Matthew A. Romero1 | Paul A. Roberson1 |
Sara Y. Oikawa3 | Chris McGlory3 | Kaelin C. Young1,8 | John J. McCarthy4,5 |
Stuart M. Phillips3 | Michael D. Roberts1,8

1School of Kinesiology, Auburn University, Auburn, AL, USA
2Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC, USA
3Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
4Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
5The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
6Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
7Fitomics, LLC, Birmingham, AL, USA
8Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Auburn, AL, USA

Correspondence
Michael D. Roberts, Associate Professor, School of Kinesiology, Director, Molecular and Applied Sciences Laboratory, Director, Applied Physiology Laboratory, Auburn

Abstract
We examined the association between genotype and resistance training-induced changes (12 wk) in dual x-ray energy absorptiometry (DXA)-derived lean soft tissue mass (LSTM) as well as muscle fiber cross-sectional area (fCSA; vastus lateralis; n = 109; age = 22 ± 2 y, BMI = 24.7 ± 3.1 kg/m²). Over 315 000 genetic polymorphisms were interrogated from muscle using DNA microarrays. First, a targeted investigation was performed where single nucleotide polymorphisms (SNP) identified from a systematic literature review were related to changes in LSTM and fCSA. Next, genome-wide association (GWA) studies were performed to reveal associations between novel SNP targets with pre- to post-training change scores in mean fCSA and LSTM. Our targeted investigation revealed no genotype-by-time interactions for 12 common polymorphisms regarding the change in mean fCSA or change in LSTM. Our first GWA study indicated no SNP were associated with the change in LSTM. However, the second GWA study indicated two SNP exceeded the significance level with the change in mean fCSA (\(P = 6.9 \times 10^{-7}\) for rs4675569, \(1.7 \times 10^{-6}\) for rs10263647). While the former target is not annotated (chr2:205936846 (GRCh38.p12)), the latter target (chr7:41971865 (GRCh38.p12)) is an intron variant of the GLI Family Zinc Finger 3 (GLI3) gene. Follow-up analyses indicated fCSA increases were greater in the T/C and C/C GLI3 genotypes than the T/T GLI3 genotype.
In response to exercise training, phenotypic heterogeneity was elegantly demonstrated by data from the HERITAGE study, which was a large multisite trial which sought to determine the genetic contributors to exercise adaptation. A follow-up analysis determined numerous single nucleotide polymorphisms (SNP) were associated with the heterogeneity response. Specifically, 21 SNP accounted for 49% of the shared variance in VO₂max changes, and subjects who carried ≤9 of these alleles improved their absolute VO₂max by ~221 mL/min, whereas those who carried ≥19 of these alleles improved by ~604 mL/min. Genetics may also play a role in the hypertrophic response to resistance training given that numerous studies suggest low, moderate, and high responders exist. The Functional Single Nucleotide Polymorphisms Associated with Human Muscle Size and Strength (FAMuSS) multicenter trial was a targeted analysis that provided novel insight into polymorphisms that may affect the hypertrophic response to resistance training. Other research groups have also determined that polymorphisms of the bradykinin type 2 receptor (BDKRB2), insulin-like growth factor 1 (IGF1), IL-15 receptor α (IL15RA), and myostatin (MSTN) genes may also influence skeletal muscle hypertrophy in response to resistance training.

Despite these key research findings, no study to date has utilized a genome-wide association (GWA) study to determine if polymorphisms, or novel gene variants, are associated with resistance training given that numerous studies suggest low, moderate, and high responders exist. The Functional Single Nucleotide Polymorphisms Associated with Human Muscle Size and Strength (FAMuSS) multicenter trial was a targeted analysis that provided novel insight into polymorphisms that may affect the hypertrophic response to resistance training. Other research groups have also determined that polymorphisms of the bradykinin type 2 receptor (BDKRB2), insulin-like growth factor 1 (IGF1), IL-15 receptor α (IL15RA), and myostatin (MSTN) genes may also influence skeletal muscle hypertrophy in response to resistance training.

Despite these key research findings, no study to date has utilized a genome-wide association (GWA) study to determine if polymorphisms, or novel gene variants, are associated with resistance training. Therefore, the current study had multiple aims. First, we determined if previously examined SNP, determined from a systematic search of published studies, were associated with hypertrophic outcomes. Importantly, we sought to determine if any of these SNP-differentiated changes in vastus lateralis mean fiber cross sectional area (fCSA) or whole-body (bone-free) lean/soft tissue mass (LSTM) assessed by dual x-ray absorptiometry (DXA) in 109 college-aged males that had undergone 12 wk of full-body resistance training. Additionally, we performed GWA studies to identify novel genetic markers associated with changes in these hypertrophic outcomes. We hypothesized that genes related to muscle growth (eg, MSTN, IGF1, etc.) would exhibit polymorphisms that were associated with hypertrophic outcomes.

2 | METHODS

2.1 | Participants and training regimens

Participants were involved in studies approved by each respective Institutional Review Board (Auburn University; Hamilton Integrated Research Ethics Board). All participants provided verbal and written consent to participate, and this study conformed to the standards set by the latest revision of the Declaration of Helsinki. In the Auburn University study, screening forms ensured all eligible participants were healthy and recreationally active but: (a) had not engaged in structured resistance training for at least 6 months before study initiation (<2 resistance training exercise or high-intensity aerobic exercise sessions/week), (b) were not currently consuming a high-protein diet (>2.0 g/kg/d), (c) were not using anabolic agents (eg, anabolic steroids, supplemental protein, creatine monohydrate, or prohormones). In the McMaster University study, participants self-reported being recreationally trained for at least two years (performing at least 1 d/wk of lower-body training) and were not using anabolic agents.

In both studies, the training regimens involved full-body workouts (3-4 d/wk), and participants were instructed to refrain from any additional exercise outside of the studies. Participants in the Auburn University study trained using a daily undulating periodization training model (3 d/wk).
Free-weight barbell back squats, bench press, deadlifts, and supinated-grip bent-over rows were performed for 4 sets of 10 repetitions (Monday or Tuesday), 6 sets of 4 repetitions (Wednesday or Thursday), and 5 sets of 6 repetitions (Friday or Sunday). Laboratory staff members supervised all training, and progressive overload was implemented daily in response to participants’ ratings of perceived exertion. Participants in the McMaster University study performed resistance training 4 d/wk (Monday, Tuesday, Thursday, and Friday). Each day included five exercises, consisting of two separate supersets and one additional exercise. Exercises were performed for three sets, with each set executed until volitional failure. Each workout was repeated twice per week [Monday/Thursday: inclined leg press with seated row (superset 1), barbell bench press with cable hamstring curl (superset 2), and front planks (exercise 5). Tuesday/Friday: machine-guided shoulder press with bicep curls (superset 1), triceps extension with wide-grip pull downs (superset 2), and machine-guided knee extension (exercise 5)]. Laboratory staff members supervised all training to ensure that each set was performed to volitional failure with correct technique. Participants’ load was increased with subsequent training sessions when they could perform more repetitions than their designated repetition range.

Auburn University participants consumed one of five dietary supplements during the 12-week intervention including a maltodextrin placebo (89 g/d), leucine (6 g/d) + maltodextrin (86 g/d), whey protein concentrate (52 g/d), whey protein hydrolysate (51 g/d), or soy protein concentrate (78 g/d) group. Pre- to post-training changes in DXA LSTM and mean fCSA between supplement groups were similar (two-way ANCOVA P-values > .100). More details about the Auburn University study can be found in Mobley et al.9 In the McMaster University study, participants engaged in either a high repetition or low repetition full body training paradigm and all participants were administered 60 g of whey protein to consume per day. Notably, both training paradigms were shown to similarly increase DXA LSTM and mean fCSA (two-way ANOVA P values > .05). For more details about the McMaster University study, readers are referred to Morton et al.10

2.2 Testing sessions

Pre- and post-training testing sessions in both studies occurred following an overnight fast. Additionally, these sessions occurred prior to the 12-week training intervention (Pre), and 72 hours following the last training bout (Post). Other testing procedures occurred specific to each study, but only the DXA, muscle biopsy procedures, and relevant downstream assays are discussed.

2.2.1 Dual x-ray absorptiometry (DXA) for body composition assessment

Body composition was assessed in both studies using a GE Lunar iDXA total body scanner (GE Medical Systems Lunar, Madison, WI). Briefly, participants wore athletic clothing and were placed in a supine position within the machines’ scanning frame. Scans typically lasted between 7-12 minutes, and LSTM was analyzed with associated software (Lunar enCORE version 14.1; GE Medical Systems Lunar). The Auburn University iDXA scanner has been reported to produce an intraclass correlation coefficient of 0.998 for LSTM during a calibrate/scan/re-calibrate/re-scan on 10 human participants.11 Using a whole-body phantom, the McMaster University iDXA scanner produced intrascan (without repositioning) and interscan (on different occasions separated by 10-12 wk) variability coefficients of <1.6% for LSTM.10

2.2.2 Muscle tissue collection and immunohistochemistry for mean fCSA

Vastus lateralis muscle biopsies from both studies were collected using a 5-gauge needle under local anesthesia. Immediately following tissue procurement, tissue was teased of excess blood and fat, and embedded in cryomolds containing optimal cutting temperature (OCT) media (Tissue-Tek, Sakura Finetek Inc; Torrence, CA, USA). Cryomolds were then frozen using liquid nitrogen-cooled isopentane and subsequentially stored at −80°C until histology. Methods related to sectioning, histology, image capture details, and fiber typing as well as satellite cell quantification are explained in greater detail elsewhere.9,10

2.3 DNA isolation and analyses

2.3.1 DNA isolation and SNP array

DNA isolation for all samples occurred at Auburn University using skeletal muscle embedded in OCT. Briefly, samples were allowed to equilibrate to room temperature, and muscle (~8–20 mg) was removed and rinsed in 1x phosphate-buffered saline. Subsequently, a column-based DNA isolation kit and reagents (DNeasy Blood & Tissue Kit; Qiagen, Venlo, Netherlands) were used to isolate high fidelity DNA per the manufacturer’s recommendations including RNase treatment. Following precipitation and pelleting, DNA was eluted with 100 µL of elution buffer from the kit, and DNA concentrations were determined in duplicate at an absorbance of 260 nm by using a NanoDrop Lite (Thermo Fisher Scientific, Waltham, MA, USA). DNA was then stored at −80°C until
shipment to Thermo Fisher Scientific for quality assessment and DNA SNP array assays. Genome-wide interrogation of 315,505 SNPs for each sample was performed using the Axiom PMDA.r6 array (Thermo Fisher Scientific, Waltham, MA, USA). Following data procurement, raw data files were analyzed at Auburn University using the Axiom Analysis Suite v4.0.3.3 (Thermo Fisher Scientific) by creating a workflow that contained all participants and querying individual targets. Notably, raw data files were deposited to the National Institutes of Health (NIH) Gene Expression Omnibus (GEO) repository, and can be found online (https://www.ncbi.nlm.nih.gov/geo/).

Gene	SNP ID	Alleles	Location	Past results in training studies	On array?	Reference(s)
Alpha actinin-3 (ACTN3)	rs1815739	C,T	Exon 16	Not conclusive	Yes	[18,19,34]
Angiotensin I converting enzyme (ACE)	rs4343	I/D	Intron 16, insertion of 287-bp repeat sequence	D allele favors hypertrophy	Yes	[13,39]
Ankyrin repeat domain 6 (ANKRD6)	rs61739327	C,T	Exon 16	T allele favors hypertrophy	No	[31]
Beta2-adrenergic receptor (ADRB2)	rs1042714	C,G	Present on sole exon	G allele favors hypertrophy	Yes	[25]
Bone morphogenic protein 2 (BMP2)	rs15705	A,C	Distal promoter	CC genotype favors hypertrophy	No	[21]
Bradykinin receptor B2 (BDKRB2)	rs5810761	+9(I)/-9(D)	Exon 1	-9/-9 genotype favors hypertrophy	No	[30]
Calcineurin B (PPP3R1)	rs3039851	I/D	Promoter, 5-bp insertion	I/I genotype favors hypertrophy	No	[14]
Fat mass and obesity-associated (FTO)	rs9939609	A,T	Intron 1	Not conclusive	Yes	[15]
	rs1421085	C,T			Yes	
	rs17817449	G,T			No	
	rs8050136	C,A			Yes	
Follistatin (FST)	rs722910	A,C	3’ UTR	Not conclusive	Yes	[22]
Glucocorticoid receptor (NR3C1)	rs4634384	T,C	5’ UTR	T allele favors hypertrophy	No	[38]
IL-15 receptor-α (IL15RA)	rs2296135	C,A	Exon 7	AA genotype favors hypertrophy	Yes	[6]
Insulin-like growth factor 1 (IGF-1)	rs10665874	192 allele (I)/-(-D)	Promoter, 16-22 CA repeats	I allele favors hypertrophy	No	[16]
	rs28357094	T,G	Promoter	G allele favors hypertrophy	Yes	[32]

Note: This list was compiled from a systematic literature review that yielded 183 records, and 30 studies fitting our criteria. While some of these studies interrogated other polymorphisms (CCL2, CCR4, CNTF, MCR4, PTK2, SLC30A8, and UCP2), these variants were not included in our list because the associated polymorphisms did not differentiate hypertrophic responses.24,26,28,29,35-37

Indicates rs5742692 for IGF-1 was interrogated.;
Indicates rs72909336 for MSTN was interrogated.
2.4 | Systematic literature review for previously identified muscle hypertrophy-associated polymorphisms candidates

A systematic literature review was performed to query hypertrophy-associated polymorphisms for the current analysis. Specifically, Medline was queried using the search terms “polymorphism” and “resistance exercise”, and EndNote v.X8 (Thomson Reuters; Philadelphia, PA, USA) was used to screen and filter relevant studies. Polymorphisms were included in our candidate list if the following criteria were met: (a) the study involved interrogating the polymorphism associated with hypertrophic outcomes following a resistance training intervention in non-diseased, college-aged or older populations, and (b) the gene polymorphism was shown to be associated with hypertrophic outcomes. We also ensured that all relevant studies performed from the FAMuSS multicenter trial were considered when developing our candidate list.12 Using these search criteria we identified 183 records dating from 1994-2019, and of these, 158 records were removed for not meeting the inclusion criteria. Additional search tools (i.e., searching relevant search terms through Google Scholar and hand-searching reference lists of identified papers) were used to add 5 additional records,8,13-16 and this resulted in a total of 30 scientific studies containing relevant criteria.6-8,13-39 From these studies, 20 gene candidates were identified, and of these, the 10 polymorphisms present on the array were interrogated in the current study (Table 1). Given that the IGF-1 and MSTN polymorphisms were not on the array, and numerous studies have implicated these genes being involved in the hypertrophic response to resistance training, we examined one IGF-1 probe set as well as one MSTN probe set that detected intron polymorphisms of these genes that were present on the array. Thus, a total of 12 polymorphisms were interrogated with our targeted analysis.

2.5 | GWA for novel SNP identification

As previously mentioned, Axiom Analysis Suite v4.0.3.3 (Thermo Fisher Scientific) was used to filter raw data files and identify candidates that passed all quality control (QC) checkpoints established by the manufacturer. Following data normalization, QC of genotype data was implemented at both individual and SNP levels, using Plink (version 1.9).40 We controlled for high levels of missingness, indicative of poor DNA quality or technical problems (--geno 0.02 and --mind 0.02 for SNPs and individuals, respectively); we also controlled for minor allele frequency (--maf 0.05). Lastly, we controlled for Hardy-Weinberg equilibrium (HWE) rule (P value < 1.0 × 10^{-5}). All individuals and SNPs that did not pass the QC were removed from further analysis. We used quantile-quantile (Q-Q) plots of observed versus expected −log_{10} (P-value) to examine the genome-wide distribution of P-values and Manhattan plots to report genome-wide P-values, using R qqman package (https://doi.org/10.1101/005165) with annotatePval set to 0.00001. Given the exploratory nature of this analysis and with limited sample size (n = 106) for GWA studies (typical sample size being 2500-250 000), we set a P-value cutoff of P < 1 × 10^{-5} a priori, which is less stringent than that of normal GWA studies (P < 5 × 10^{-8}).

2.6 | Statistics

Independent samples t-tests were performed on mean fCSA and DXA LSTM change scores between training site cohorts. Changes in certain dependent variables between genotypes were examined using two-way ANOVAs (genotype × time). LSD post hocs were used to decompose the model within and between genotype groups. Statistical significance for these analyses was established as P < .05. Cohen’s d effect sizes within each genotype were calculated under certain circumstances by taking the mean difference between Pre and Post and dividing it by the pooled standard deviation at both time points. Cohen’s d values between 0.500-0.799 were considered moderate effects, and d values above 0.800 were considered large effects as we have previously reported.41 For GWA studies, statistical significance was established a priori at P < .105 as described above. All data are presented either means ± standard deviation values (in text), or as box and whisker plots including the median (line), interquartile range (boxes), and range (whiskers indicating minimum and maximum values).

3 | RESULTS

3.1 | General characteristics of participants

Participants’ mean age was 22 ± 2 y, mean height was 1.80 ± 0.07 meters, mean weight was 80.3 ± 12.1 kg, and mean body mass index (BMI) was 24.7 ± 3.1 kg/m².

3.2 | Comparison of fCSA changes between study sites

Participants from both sites demonstrated significant Pre to Post increases in mean fCSA (both sites P < .001), and changes from an absolute or percentage basis were not significantly different between sites (P = .125 and P = .359, respectively; Table 2). Participants from both sites also demonstrated significant Pre to Post increases in DXA LSTM (both sites; P < .001). However, changes in LSTM from an
absolute or percentage basis were significantly greater in Auburn University versus McMaster University participants \((P < .001)\) (Table 2).

3.3 Mean fCSA and DXA LSTM changes with training relative to SNP candidates identified through the systematic literature review

Mean fCSA and DXA LSTM changes with training relative to SNP candidates is depicted in Table 3. None of the SNP candidates from our targeted analysis demonstrated genotype \(\times\) time interactions for mean fCSA or DXA LSTM.

3.4 Genome-wide association with changes in mean fCSA and DXA LSTM

Our GWA studies in 109 participants indicated that two SNP exceeded the threshold of significance for change in mean fCSA \((P = 6.9 \times 10^{-7}\) for rs4675569, and \(P = 1.7 \times 10^{-6}\) for rs10263647) (Figure 1A). We used Q–Q plots to illustrate observed versus expected \(-\log_{10}(P)\) value to evaluate the genome-wide distribution of \(P\) values, which presented as normal, demonstrating a lack of skewness in the data. The former target (chr2:205936846 (GRCh38.p12)) is not annotated. The latter target (chr7:41971865 (GRCh38.p12)) is an intron variant of the GLI Family Zinc Finger 3 (GLI3) gene. Given that the former target was not annotated, we focused our statistical analysis on the GLI3 variant. There was a genotype \(\times\) time interaction for number myonuclei per type I fiber \((P = .237,\) Figure 2A\), number of myonuclei per type IIa fiber \((P = .206,\) Figure 2b\), and satellite cell number \((P = .402,\) Figure 2c\). However, given that each variable demonstrated significant time effects \((P < .001)\), we implemented forced post hoc tests within each genotype from Pre to Post. Interestingly, these post hoc tests indicated that all three of these variables increased in the GLI3 T/C and C/C genotypes \((P < .05)\), whereas none of these variables increased in the T/T genotype. Moreover, Cohen’s \(d\) effect sizes indicated increases in these variables yielded large effects in the GLI3 T/C and C/C genotypes, whereas only small effects were observed in the T/T genotype.

3.5 Changes in myonuclear and satellite cell numbers between GLI3 genotypes

Given that the GLI3 gene has been linked to muscle progenitor cell physiology as discussed below, we sought to determine if the myonuclear and satellite cell responses to training were different between GLI3 genotypes. Notably, we had these data on hand from our previous publication in the Auburn participants\(^4\); thus, only the Auburn participants were included in this analysis. There were no significant genotype \(\times\) time interactions for number myonuclei per type I fiber \((P = .237,\) Figure 2A\), number of myonuclei per type IIa fiber \((P = .206,\) Figure 2b\), and satellite cell number \((P = .402,\) Figure 2c\). However, given that each variable demonstrated significant time effects \((P < .001)\), we implemented forced post hoc tests within each genotype from Pre to Post. Interestingly, these post hoc tests indicated that all three of these variables increased in the GLI3 T/C and C/C genotypes \((P < .05)\), whereas none of these variables increased in the T/T genotype. Moreover, Cohen’s \(d\) effect sizes indicated increases in these variables yielded large effects in the GLI3 T/C and C/C genotypes, whereas only small effects were observed in the T/T genotype.

4 DISCUSSION

This is the first GWA study examining how polymorphisms are related to change in hypertrophy measures following a resistance training program. Interestingly, our targeted analysis revealed that none of the common SNP identified from the scientific literature review were associated with hypertrophic outcomes. While this is difficult to reconcile, differences between our data and others may be attributed to differences in study design, particularly the type and length of training. It should also be noted that conflicting results exist between various gene candidate studies. For example, some have reported that the ACTN3 gene is associated with strength outcomes\(18,45\), while others have not\(46,47\). There are also equivocal findings when examining the effects of the ACE I/D genotype on endurance performance\(48\). However, while no targets exceeded the level of significance for change

Table 2 Pre-to-post-training changes in mean fCSA and DXA LSTM between study sites

Variable	Auburn study \((n = 66)\)	McMaster study \((n = 43)\)	\(P\) value between sites
Δmean fCSA (μm\(^2\))	+614 ± 1026	+938 ± 1134	\(P = .125\)
Δmean fCSA (%)	+9.8 ± 18.5	+12.9 ± 16.0	\(P = .359\)
ΔDXA LSTM (kg)	+2.6 ± 2.0	+1.2 ± 1.4	\(P < .001\)
ΔDXA LSTM (%)	+4.2 ± 3.2	+1.9 ± 2.1	\(P < .001\)

Note: Δ, pre- to post-training change.
Abbreviation: fCSA, fiber cross-sectional area.
in whole-body LSTM, we discovered an intron variant of the GLI3 gene as a potential marker that may differentiate the training-induced change in mean fCSA.

The GLI3 gene encodes a DNA-binding transcription factor that mediates Sonic hedgehog (Shh) signaling.49 It has also been demonstrated in Hela cells that GLI3 nuclear localization is regulated in an mTORC1-dependent manner, and GLI3 DNA binding increases Cyclin D1 mRNA expression.50 These findings are interesting given the role that mTORC1 has in promoting muscle protein synthesis.51 Moreover, the ability of GLI3 to drive Cyclin D1 mRNA expression is intriguing given that cyclin D1 has been shown

Gene	SNP ID	n-size for genotype	Genotype × time P value (fCSA changes)	Genotype × time P value (DXA LSTM changes)
Alpha actinin-3 (ACTN3)	rs1815739	TT: 18, TC: 51, CC: 40	.922	.111
Angiotensin I converting enzyme (ACE)	rs4343	Ins/Ins: 27, Ins/Del: 55, Del/Del: 27	.130	.918
Beta2-adrenergic receptor (ADRB2)	rs1042714	CC: 37, CG: 49, GG: 23	.375	.667
Fat mass and obesity-associated (FTO)	rs9939609	AA: 24, AT: 46, TT: 39	.896	.596
	rs1421085	TT: 39, TC: 45, CC: 25	.897	.423
	rs8050136	AA: 23, AC: 47, CC: 39	.972	.325
Follistatin (FST)	rs7229102	AA: 109, AC: 0, CC: 0	ND	ND
IL-15 receptor-α (IL15RA)	rs2296135	AA: 41, AC: 45, CC: 23	.336	.239
Insulin-like growth factor 1 (IGF-1)	rs5742692	AA: 104, AG: 5, GG: 0	.275	.976
Leptin receptor (LEPR)	rs1137101	TT: 0, TC: 1, CC: 108	.453	.506
Myostatin (MSTN)	rs72909336	AA: 0, AG: 22, GG: 87	.170	.262
Vitamin D Receptor (VDR)	rs1544410	TT: 15, TC: 53, CC: 41	.657	.462

Note: This table provides genotype × time interaction P values for each single nucleotide polymorphism for pre- to post-training changes in mean fiber cross sectional area (fCSA) values as well as DXA lean soft tissue mass (LSTM) values. Abbreviation: ND, not defined due to all participants having one genotype.
To promote ribosome biogenesis in skeletal muscle cells. To our knowledge, no studies have primarily sought to determine how GLI3 mRNA expression, protein expression, and/or DNA binding are affected in response to one or multiple bouts of resistance training. Using available microarray data, we examined how GLI3 mRNA levels responded both acutely and chronically with resistance training in younger men. Transcript levels were not altered 24 hours following the first bout of training (expression value units at Acute Pre = 4.75 ± 0.12, values at 24-hours Post = 4.91 ± 0.31; \(P = .167 \)), or after 10 weeks of chronic training (expression value units at Chronic Pre = 4.75 ± 0.12, values at Chronic Post = 4.74 ± 0.203; \(P = .910 \)). Nonetheless, a relationship between GLI3 gene expression and skeletal muscle processes related to hypertrophy has been reported. For instance, Chaillou et al. examined the time-course response in the plantaris muscle transcriptome following synergist ablation, and GLI3 mRNA levels were elevated at 3, 5, 7, 10 and 14 days following surgery compared to muscle from mice that underwent sham operations. Renault et al. have also demonstrated that the Gli3 gene is essential for muscle repair following a hypoxic insult in Gli3-knockout mice. These authors also reported that the Gli3 gene regulates satellite cell differentiation and fusion by affecting the expression of myogenic regulatory factors (ie, Myf5, Myog, and Myod1). Others have shown the Gli3 gene is involved with skeletal muscle development in utero, and

FIGURE 1 Manhattan plot for mean fCSA change in all participants. *Note:* These data show a Manhattan plot for mean fCSA change in all participants (panel A) as well as mean fCSA changes in the GLI3 intron variant (panel B). *, increase from pre- to post-training within the T/C or C/C genotype (\(P < .05 \)).

FIGURE 2 Type I/IIa myonuclear number and satellite cell changes in the Auburn cohort based on GLI3 genotype. *Note:* These data illustrate the Auburn cohort only for pre- to post-training changes in type I fiber myonuclear number (panel A), type Ia fiber myonuclear number (panel B), and total (type I/II fiber) satellite cell number (panel C) according to GLI3 genotype (rs10263647). While there were no significant interactions, forced post hoc tests were performed within each genotype given that significant time effects were observed for these three variables. Moreover, Cohen’s d values indicated that the T/C and C/C genotypes exhibited large effects for increases in type I/II myonuclear number as well as satellite cell number with training. *, increase from pre- to post-training within the T/C or C/C genotype (\(P < .05 \)).
this gene was found to operate by increasing the expression of certain myogenic regulatory factors in muscle progenitor cells.56 Thus, the aforementioned studies have shown that the GLI3 gene may be critical for skeletal muscle hypertrophy given that it is a downstream effector of mTORC1, and the GLI3 transcription factor has been shown to drive the expression of cyclin D1 as well as myogenic regulatory factors which, in turn, increase ribosome biogenesis and satellite cell proliferation.

While speculative, individuals harboring the GLI3 T/T genotype may have an altered expression of this gene in satellite cells in response to resistance training. Such an impairment may cause a diminished satellite cell response and myonuclear accretion to resistance training, and we propose this might affect exercise-induced changes in mean fCSA. It is notable that data in Figure 2C provide supporting evidence for this hypothesis, given that those with T/T alleles showed a diminished satellite cell response to training compared to the T/C and C/C genotypes who showed increases. In addition, the T/C and C/C genotypes achieved myonuclear addition in response to training, whereas the T/T cohort did not (Figure 2A,B). It is notable that the GLI3 rs10263647 polymorphism exists in an intron region. Thus, the transcript and resulting protein may not be functionally affected. However, it is notable that other intron polymorphisms have been linked to phenotype outcomes. For instance, while the ACE I/D allele is located in intron 16 of the gene, there is evidence to suggest that the presence of the D allele increases ACE enzyme activity and leads to the higher production of blood angiotensin II levels.57 There is also recent evidence from sequencing endeavors to suggest that intronic nucleotide variation in the ERCC8 gene can alter splicing events and lead to the differential insertion of exons in the mature mRNA transcript.58 Therefore, it remains possible that the GLI3 rs10263647 polymorphism could alter the protein structure and activity of the encoded transcription factor. While provocative, these data are preliminary and warrant future research into the potential role that the GLI3 intron variant has on the myofiber response to resistance training. Additionally, future studies that isolate and grow primary human muscle cells from participants harboring the C/C and T/T GLI3 genotypes will yield informative data regarding whether differences in satellite cell proliferation and/or myotube formation are impaired in response to anabolic stimuli in vitro.

It should finally be noted that our laboratory and others have taken an interest in molecular attributes that delineate the hypertrophic response to resistance training,59 and several biomarkers from the Auburn cohort were examined in a previous publication.44 In our prior publication, participants who experienced greatest localized hypertrophy (ie, increases in vastus lateralis thickness) were classified as high responders, whereas those who experienced minimal changes in vastus lateralis thickness with training were classified as low responders. We back-tested the current GLI3 findings to that dataset, and found that 40% (4/10) of subjects in the T/T genotype were in the low responder group, whereas 33% (7/21) of C/C genotype were in the high responder group. It is logical to assume that higher percentages of participants would be in each respective group given the T/T genotype in the current study did not experience mean fCSA increases, whereas the C/C genotype did. However, it should be noted that these disparate findings are likely due to methodological differences between studies in determining hypertrophy (ie, histology versus ultrasound). In this regard, we authored a recent review that provides ample data to suggest histology and ultrasound measures show poor agreement in terms of tracking skeletal muscle hypertrophy.59 Thus, the current data should be interpreted with these collective findings in mind. Specifically, the identified GLI3 allele may delineate the hypertrophic response in relation to histological attributes (ie, mean fCSA, myonuclear number, satellite cells), but this polymorphism may be relatively poor at predicting the hypertrophic response if other methods are being used to track training adaptations (eg, ultrasound or DXA).

4.1 Limitations

A limitation to the current study, along with previous GWA studies using chip-based assays, is the limited availability of probe sets to interrogate inter-individual base differences across genomes. Indeed, half of the previously interrogated polymorphisms related to skeletal muscle hypertrophy identified in our literature search were not present on our utilized array. Further, while our array was relatively extensive in the number of targets contained on the array, this limitation speaks to the need to perform whole-genome sequencing to identify novel polymorphisms linked to various traits as has been done in other areas.60 Thus, next-generation sequencing efforts with larger and more diverse sample sizes may have improved our ability to detect SNP associations (particularly those of less-common frequencies) with exercise-induced phenotype variation. Readers should also be aware that the sample size in the current study is relatively small compared to other SNP interrogations or GWA studies, but this is a function largely of the logistics of running supervised resistance training studies with multiple muscle biopsies. It is notable that other training interventions have performed GWA studies using less than 150 participants,61,62 and these studies have yielded insightful information. Finally, we lacked enough sample from the McMaster University cohort to perform histological assays seen in Figure 2 from the Auburn cohort. Indeed, the relationship between GLI3 genotype and satellite cell as well as myonuclear adaptations with training would have been strengthened with the inclusion of both
coauthors. Given these limitations, we posit that the current results are preliminary and require further validation.

5 | CONCLUSIONS

This is the first study to adopt a genome-wide analytical approach to validate previously identified SNP candidates while identifying a new potential gene candidate that may affect the hypertrophic response to resistance training. More research is needed to validate if different variants of the GLI3 gene differentially affect the hypertrophic responses to resistance training.

ACKNOWLEDGMENTS

We thank the participants who volunteered to take part in both studies. We also acknowledge the technical assistance of Todd Prior and Joshua Nederveen (McMaster University) as well as Petey Mumford and Wes Kephart (Auburn University). We thank Rob Schleifer (Thermo Fisher Scientific) for providing tremendous insight into our genome analyses. Funding for participant compensation and fCSA analyses for the Auburn University Study were provided to M.D. Roberts by Hilmar Ingredients (Hilmar, CA, USA) and Bionutritional Research Group (Irvine, CA, USA), and said funds were solicited by Dr. Christopher Lockwood (Lockwood, LLC; Belton, TX, USA). Additionally, a portion of C. G. Vann’s effort was funded through the National Institute of Health (R01AG054840), and P.A.R. is currently supported through the National Institute of Health (F32DK126312). The project at McMaster University was supported by an operating grant to S. M. Phillips from the Natural Science and Engineering Research Council of Canada. Funding for genotyping and publication costs were provided through discretionary laboratory funds from M. D. Roberts.

CONFLICT OF INTEREST

No authors have financial or other conflicts of interest to report with regard to these data.

AUTHOR CONTRIBUTIONS

C. G. Vann, S. M. Phillips, and M. D. Roberts designed the research; R. W. Morton and C. B. Mobley were study coordinators of the Auburn University and McMaster studies, respectively, and C. T. Haun, P. A. Roberson, S. Y. Oikawa, and C. McClory were critically involved in executing the training aspects of said studies; I. J. Vechetti and C. B. Mobley performed GWA analyses; B. K. Ferguson and M. D. Roberts performed SNP analyses; C. G. Vann, S. C. Osburn, C. L. Sexton, C. D. Fox, M. A. Romero performed pilot and scaled experiments to ensure appropriate DNA isolation; J. J. McCarthy, and K. C. Young provided critical insight regarding the writing of the manuscript. All co-authors reviewed the preliminary draft of the manuscript and approved the submission.

ORCID

Ivan J. Vechetti http://orcid.org/0000-0003-1024-1011
Stuart M. Phillips http://orcid.org/0000-0002-1956-4098
Michael D. Roberts http://orcid.org/0000-0002-7359-5362

REFERENCES

1. Bouchard C, Rankinen T. Individual differences in response to regular physical activity. Med Sci Sports Exerc. 2001;33:S446-S451; discussion S452-443.
2. Bouchard C, Sarzynski MA, Rice TK, et al. Genomic predictors of the maximal O(2) uptake response to standardized exercise training programs. J Appl Physiol (1985). 2011;110:1160-1170.
3. Roberts MD, Haun CT, Mobley CB, et al. Physiological differences between low versus high skeletal muscle hypertrophic responders to resistance exercise training: current perspectives and future research directions. Front Physiol. 2018:9:834.
4. Lavin KM, Roberts BM, Fry CS, Moro T, Rasmussen BB, Bamman MM. The importance of resistance exercise training to combat neuromuscular aging. Physiology (Bethesda). 2019;34:112-122.
5. Pescatello LS, Devaney JM, Hubal MJ, Thompson PD, Hoffman EP. Highlights from the functional single nucleotide polymorphisms associated with human muscle size and strength or FAMuSS study. Biomed Res Int. 2013;2013:643575.
6. Riechman SE, Balasekaran G, Roth SM, Ferrell RE. Association of interleukin-15 protein and interleukin-15 receptor genetic variation with resistance exercise training responses. J Appl Physiol (1985). 2004;97:2214-2219.
7. Li X, Wang SJ, Tan SC, et al. The A55T and K153R polymorphisms of MSTN gene are associated with the strength training-induced muscle hypertrophy among Han Chinese men. J Sports Sci. 2014;32:883-891.
8. Ivey FM, Roth SM, Ferrell RE, et al. Effects of age, gender, and myostatin genotype on the hypertrophic response to heavy resistance strength training. J Gerontol A Biol Sci Med Sci. 2000;55:M641-M648.
9. Mobley CB, Haun CT, Roberson PA, et al. Effects of whey, soy or leucine supplementation with 12 weeks of resistance training on strength, body composition, and skeletal muscle and adipose tissue histological attributes in college-aged males. Nutrients. 2017;9:972.
10. Morton RW, Oikawa SY, Wavell CG, et al. Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. J Appl Physiol (1985). 2016;121:129-138.
11. Kephart WC, Wachs TD, Thompson RM, et al. Ten weeks of branched-chain amino acid supplementation improves select performance and immunological variables in trained cyclists. Amino Acids. 2016;48:779-789.
12. Thompson PD, Moyna N, Seip R, et al. Functional polymorphisms associated with human muscle size and strength. Med Sci Sports Exerc. 2004;36:1132-1139.
13. Pescatello LS, Kostek MA, Gordish-Dressman H, et al. ACE ID genotype and the muscle strength and size response to unilateral resistance training. Med Sci Sports Exerc. 2006;38:1074-1081.
14. Hand BD, Kostek MC, Ferrell RE, et al. Influence of promoter region variants of insulin-like growth factor pathway genes on the strength-training response of muscle phenotypes in older adults. J Appl Physiol (1985). 2007;103:1678-1687.
15. Antonio J, Knafo S, Kenyon M, et al. Assessment of the FTO gene polymorphisms (rs1421085, rs17817449 and rs9939609) in exercise-trained men and women: the effects of a 4-week hypocaloric diet. J Int Soc Sports Nutr. 2019;16:36.
16. Kostek MC, Delmonico MJ, Reichel JB, et al. Muscle strength response to strength training is influenced by insulin-like growth factor 1 genotype in older adults. J Appl Physiol (1985). 2005;98:2147-2154.
17. Thomis MA, Huygens W, Heuninckx S, et al. Exploration of myostatin polymorphisms and the angiotensin-converting enzyme insertion/deletion genotype in responses of human muscle to strength training. Eur J Appl Physiol. 2004;92:267-274.
18. Clarkson PM, Devaney JM, Gordish-Dressman H, et al. ACTN3 genotype is associated with increases in muscle strength in response to resistance training in women. J Appl Physiol (1985). 2005;99:154-163.
19. Delmonico MJ, Kostek MC, Doldo NA, et al. Alpha-actinin-3 (ACTN3) R577X polymorphism influences knee extensor peak power response to strength training in older men and women. J Gerontol A Biol Sci Med Sci. 2007;62:206-212.
20. Orkunoglu-Suer FE, Gordish-Dressman H, Clarkson PM, et al. INSIG2 gene polymorphism is associated with increased subcutaneous fat in women and poor response to resistance training in men. BMC Med Genet. 2008;9:117.
21. Devaney JM, Tosi LL, Fritz DT, et al. Differences in fat and muscle mass associated with a functional human polymorphism in a post-transcriptional BMP2 gene regulatory element. J Cell Biochem. 2009;107:1073-1082.
22. Kostek MA, Angelopoulos TJ, Clarkson PM, et al. Myostatin and follistatin polymorphisms interact with muscle phenotypes and ethnicity. Med Sci Sports Exerc. 2009;41:1063-1071.
23. Murakami S, Otsuki T, Maeda M, et al. Effects of vitamin D receptor gene polymorphisms on low-resistance training using exercise machines: the ‘Power Rehabilitation’ program. Int J Mol Med. 2009;23:81-88.
24. Walsh S, Kelsey BK, Angelopoulos TJ, et al. CNTF 1357 G -> A polymorphism and the muscle strength response to resistance training. J Appl Physiol (1985). 2009;107:1235-1240.
25. Bea JW, Lohman TG, Cussler EC, Going SB, Thompson PA. Lifestyle modifies the relationship between body composition and adrenergic receptor gene polymorphisms, ADRB2, ADRB3 and ADRAR2B: a secondary analysis of a randomized controlled trial of physical activity among postmenopausal women. Behav Genet. 2010;40:649-659.
26. Harmon BT, Orkunoglu-Suer EF, Adham K, et al. CCL2 and CCR2 variants are associated with skeletal muscle strength and change in strength with resistance training. J Appl Physiol (1985). 2010;109:1779-1785.
27. Rankinen T, Rice T, Teran-Garcia M, Rao DC, Bouchard C. FTO genotype is associated with exercise training-induced changes in body composition. Obesity (Silver Spring). 2010;18:322-326.
28. Orkunoglu-Suer FE, Harmon BT, Gordish-Dressman H, et al. MC4R variant is associated with BMI but not response to resistance training in young females. Obesity (Silver Spring). 2011;19:662-666.
29. Erskine RM, Williams AG, Jones DA, Stewart CE, Degens H. Do PTK2 gene polymorphisms contribute to the interindividual variability in muscle strength and the response to resistance training? A preliminary report. J Appl Physiol (1985). 2012;112:1329-1334.
30. Popadic Gacesa JZ, Momcilovic M, Veselinovic I, Brodie DA, Grujc NG. Bradykinin type 2 receptor -9/-9 genotype is associated with triceps brachii muscle hypertrophy following strength training in young healthy men. BMC Musculoskelet Disord. 2012;13:217.
31. Van Deveire KN, Scraton SK, Kostek MA, et al. Variants of the ankyrin repeat domain 6 gene (ANKRD6) and muscle and physical activity phenotypes among European-derived American adults. J Strength Cond Res. 2012;26:1740-1748.
32. Walsh S, Haddad CJ, Kostek MA, et al. Leptin and leptin receptor genetic variants associate with habitual physical activity and the arm body composition response to resistance training. Gene. 2012;510:66-70.
33. Hoffman EP, Gordish-Dressman H, McLane VD, et al. Alterations in osteopontin modify muscle size in both humans and mice. Med Sci Sports Exerc. 2013;45:1060-1068.
34. Erskine RM, Williams AG, Jones DA, Stewart CE, Degens H. The individual and combined influence of ACE and ACTN3 genotypes on muscle phenotypes before and after strength training. Scand J Med Sci Sports. 2014;24:642-648.
35. Hong AR, Hong SM, Shin YA. Effects of resistance training on muscle strength, endurance, and motor unit according to ciliary neurotrophic factor polymorphism in male college students. J Sports Sci Med. 2014;13:680-688.
36. Sprouse C, Gordish-Dressman H, Orkunoglu-Suer EF, et al. SLC30A8 non-synonymous variant is associated with recovery following exercise and skeletal muscle size and strength. Diabetes. 2014;63:363-368.
37. Keogh JW, Palmer BR, Taylor D, Kilding AE. ACE and UCP2 gene polymorphisms and their association with baseline and exercise-related changes in the functional performance of older adults. PeerJ. 2015;3:e980.
38. Ash GI, Kostek MA, Lee H, et al. Glucocorticoid receptor (NR3C1) variants associate with the muscle strength and size response to resistance training. PLoS One. 2016;11:e0148112.
39. He L, Zhang X, Lv Y, Gu B, Zhao L. Effects of 8 weeks of moderate-intensity resistance training on muscle changes in postmenopausal women with different angiotensin-converting enzyme insertion/deletion polymorphisms of interest. Menopause. 2019;26:899-905.
40. Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559-575.
41. Haun CT, Vann CG, Mobley CB, et al. Effects of graded whey supplementation during extreme-volume resistance training. Front Nutr. 2018;5:84.
42. Kent WJ, Sugnet CW, Furey TS, et al. The human genome browser at UCSC. Genome Res. 2002;12:996-1006.
43. Karolichik D, Hinrichs AS, Furey TS, et al. The UCSC Table Browser data retrieval tool. Nucleic Acids Res. 2004;32:D493-D496.
44. Mobley CB, Haun CT, Roberson PA, et al. Biomarkers associated with low, moderate, and high vastus lateralis muscle hypertrophy following 12 weeks of resistance training. PLoS One. 2018;13:e0195203.
45. Pereira A, Costa AM, Izquierdo M, Silva AJ, Bastos E, Marques MC. ACE I/D and ACTN3 R/X polymorphisms as potential factors in modulating exercise-related phenotypes in older women.
in response to a muscle power training stimuli. Age (Dordr). 2013;35:1949-1959.

46. Norman B, Esbjornsson M, Rundqvist H, Osterlund T, von Walden F, Tesch PA. Strength, power, fiber types, and mRNA expression in trained men and women with different ACTN3 R577X genotypes. J Appl Physiol (1985). 2009;106:959-965.

47. Gineviciene V, Jakaitiene A, Aksenov MO, et al. Association analysis of ACE, ACTN3 and PPARGC1A gene polymorphisms in two cohorts of European strength and power athletes. Biol Sport. 2016;33:199-206.

48. Ma F, Yang Y, Li X, et al. The association of sport performance with ACE and ACTN3 genetic polymorphisms: a systematic review and meta-analysis. PLoS One. 2013;8:e54685.

49. Fu L, Wu H, Cheng SY, Gao D, Zhang L, Zhao Y. Set7 mediated Gli3 methylation plays a positive role in the activation of Sonic Hedgehog pathway in mammals. eLife. 2016;5:e15690.

50. Krauss S, Foerster J, Schneider R, Schweiger S. Protein phosphatase 2A and rapamycin regulate the nuclear localization and activity of the transcription factor GLI3. Cancer Res. 2008;68:4658-4665.

51. Goodman CA. The role of mTORC1 in regulating protein synthesis and skeletal muscle mass in response to various mechanical stimuli. Rev Physiol Biochem Pharmacol. 2014;166:43-95.

52. Nader GA, McLoughlin TJ, Esser KA. mTOR function in skeletal muscle hypertrophy: increased ribosomal RNA via cell cycle regulators. Am J Physiol Cell Physiol. 2005;289:C1457-C1465.

53. Damas F, Ugrinowitsch C, Libardi CA, et al. Resistance training in young men induces muscle transcriptome-wide changes associated with muscle structure and metabolism refining the response to exercise-induced stress. Eur J Appl Physiol. 2018;118:2607-2616.

54. Chaillou T, Lee JD, England JH, Esser KA, McCarthy JJ. Time course of gene expression during mouse skeletal muscle hypertrophy. J Appl Physiol (1985). 2013;115:1065-1074.

55. Renault MA, Vandierdonck S, Chapouly C, et al. Gli3 regulation of myogenesis is necessary for ischemia-induced angiogenesis. Circ Res. 2013;113:1148-1158.

56. McDermott A, Gustafsson M, Elsam T, Hui CC, Emerson CP Jr, Borycki AG. Gli2 and Gli3 have redundant and context-dependent function in skeletal muscle formation. Development. 2005;132:345-357.

57. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest. 1990;86:1343-1346.

58. Schalk A, Greff G, Drouet N, et al. Deep intronic variation in splicing regulatory element of the ERCC8 gene associated with severe but long-term survival Cockayne syndrome. Eur J Hum Genet. 2018;26:527-536.

59. Haun CT, Vann CG, Roberts BM, Vigotsky AD, Schoenfeld BJ, Roberts MD. A critical evaluation of the biological construct skeletal muscle hypertrophy: size matters but so does the measurement. Front Physiol. 2019;10:247.

60. Rivas MA, Beaudoin M, Gardet A, et al. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat Genet. 2011;43:1066-1073.

61. Yoo J, Kim BH, Kim SH, Kim Y, Yim SV. Genetic polymorphisms to predict gains in maximal O2 uptake and knee peak torque after a high intensity training program in humans. Eur J Appl Physiol. 2016;116:947-957.

62. Klimentidis YC, Bea JW, Lohman T, Hsieh PS, Going S, Chen Z. High genetic risk individuals benefit less from resistance exercise intervention. Int J Obes (Lond). 2015;39:1371-1375.

How to cite this article: Vann CG, Morton RW, Mobley CB, et al. An intron variant of the GLI family zinc finger 3 (GLI3) gene differentiates resistance training-induced muscle fiber hypertrophy in younger men. The FASEB Journal. 2021;35:e21587. https://doi.org/10.1096/fj.202100113RR