Duality and bosonization of \((2+1)d\) Majorana fermions

Max A. Metlitski,\(^1,2\) Ashvin Vishwanath,\(^3\) and Cenke Xu\(^4\)

\(^1\)Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5, Canada
\(^2\)Kavli Institute for Theoretical Physics, Santa Barbara, CA 93106, USA
\(^3\)Department of Physics, Harvard University, Cambridge, MA 02138, USA
\(^4\)Department of Physics, University of California, Santa Barbara, CA 93106, USA

We construct a dual bosonized description of a massless Majorana fermion in \((2+1)d\). In contrast to Dirac fermions, for which a bosonized description can be constructed using a flux attachment procedure, neutral Majorana fermions call for a different approach. We argue that the dual theory is an \(SO(N)\) Chern-Simons gauge theory with a critical \(SO(N)\) vector bosonic matter field \((N \geq 3)\). The monopole of the \(SO(N)\) gauge field is identified with the Majorana fermion. We provide evidence for the duality by establishing the correspondence of adjacent gapped phases and by a parton construction. We also propose a generalization of the duality to \(N_f\) flavors of Majorana fermions, and discuss possible resolutions of a caveat associated with an emergent global \(Z_2\) symmetry. Finally, we conjecture a dual description of an \(N = 1\) supersymmetric fixed point in \((2+1)d\), which is realized by tuning a single flavor of Majorana fermions to an interacting (Gross-Neveu) critical point.

PACS numbers:

I. INTRODUCTION

Recently, there has been a resurgence of interest in dualities in \((2+1)d\) quantum field theories\(^1-6\), building on prior work on particle-vortex dualities of bosons\(^7,8\) and dualities between Dirac fermions and bosonic theories\(^9-15\). In this paper we will discuss how analogous dualities for Majorana fermions can be constructed.

Let us first recall the well known \((1+1)d\) case of the quantum Ising model which admits a dual description in terms of fermionic variables. The fermions may be viewed as the bound state of a local spin flip and a domain wall topological defect. These new variables allow for a direct solution of the Ising model in terms of free Majorana fermions. In particular, the critical point separating the Ising ordered and disordered phases can be described either as a gapless Majorana fermion, or in terms of bosonic variables as a critical point of a real scalar field. Schematically:

\[
(\partial_\mu \phi)^2 + \phi^4 = \mathcal{L}_b^{(1+1)d} \leftrightarrow \mathcal{L}_f^{(1+1)d} = \tilde{\xi}_\mu \partial_\mu \xi
\]

which is understood to hold in the infrared (long distance/time) limit and the absence of mass terms on both sides represent tuning to the critical point. This may be viewed as a bosonization of \((1+1)d\) free Majorana fermions. How does this generalize to \(2+1\) dimensions? In \((2+1)d\), a Majorana mode \(L_f^{(2+1)d}\) when described in terms of a bosonic field will require a Chern-Simons (CS) gauge field to implement the statistical transmutation. We will argue that an \(SO(N)\) gauge theory coupled to a bosonic matter field, and supplemented by a level one CS term provides the requisite dual description. In the dual language, the monopoles of the gauge theory, which have a \(Z_2\) character, will be identified with the original Majorana fermions.

A. Review of bosonic dual of \((2+1)d\) Dirac fermions

It is well known that in \((2+1)d\) a CS gauge theory allows a “bosonic” description of fermions. A CS gauge theory binds together a particle and a gauge flux, thereby changing the statistics of the particle. This flux-attachment procedure certainly applies when the particles are gapped, but it may also imply a dual description of certain critical points. For instance, it was proposed that a single two-component Dirac fermion in \((2+1)d\)

\[
\mathcal{L}_\psi = \bar{\psi} \gamma_\mu (\partial_\mu - iA_\mu) \psi + m \bar{\psi} \psi
\]

has an equivalent description\(^5,6,9-11\):

\[
\mathcal{L}_\phi = |(\partial_\mu - ia_\mu) \phi|^2 + r|\phi|^2 + g|\phi|^4 + \frac{1}{4\pi} (a - A)d(a - A) + 2\text{CS}_g
\]

where \(\phi\) is a complex boson, \(a_\mu\) is a dynamical \(U(1)\) gauge field, and \(A_\mu\) is a background \(U(1)\) gauge field. The term \(\text{CS}_g\) (with coefficient 1) is a gravitational Chern-Simons term (see appendix B) encoding chiral central charge \(c_- = 1/2\). The Dirac fermion \(\psi\) in \(\mathcal{L}_\psi\) is regularized in such a way that for \(m > 0\) one gets a trivial insulator with \(\sigma^A_{xy} = c_- = 0\), and for \(m < 0\) a Chern insulator with Chern-number 1, \(i.e. \sigma^A_{xy} = c_- = 1\). Such a regularization can be obtained by starting with two gapless Dirac cones on a 2d lattice and gapping one of them out.

The strong interpretation of the duality is that \(\mathcal{L}_\phi\) in Eq. (2) at \(r = 0\) flows in the infra-red to a conformal field theory which we call the \(U(1)\)-Wilson-Fisher-Chern-Simons (WFCS) fixed point, and it is identical to a single noninteracting massless Dirac fermion \(\mathcal{L}_\psi\) at \(m = 0\). Though not proven, this conjecture is consistent with various observations:
(i) The Hilbert spaces and symmetries of the two theories match. The operator dictionary between the theories \(\mathcal{L}_\phi \) and \(\mathcal{L}_\psi \) is as follows: the electric current of fermions \(\psi \gamma^\mu \psi \) maps to the flux current of a, \(\frac{1}{2\pi}ie^{\mu\nu\lambda}\partial_\nu a_\lambda \). Moreover, the fermion operator \(\psi \) is the flux \(2\pi \) space-time monopole of \(a \), which indeed creates a \(A \) charge of 1. To see that this object is a fermion, imagine that the system is placed on a sphere \(S^2 \), with a uniform flux \(2\pi \) of \(a \) piercing the sphere. Because of the self-CS term for \(a \), this configuration carries a \(A \) charge 1 (in addition to a \(A \) charge \(-1 \)). Since \(a \) is a dynamical gauge field, any state in a finite volume must carry zero \(A \) charge. The \(A \) charge can be neutralized by adding a boson \(\phi \) to the system. Because of the presence of the flux, the angular momentum of \(\phi \) will be half-odd-integer. Thus, this state has the same \(A \) charge and angular momentum as the fermion \(\psi \).

(ii) The mean field phase diagram of (2) matches the phase diagram of the Dirac fermion (1). Let’s recall the phase diagram of \(\mathcal{L}_\phi \). For \(r > 0 \), \(\phi \) is gapped, and \(a \) is gapped due to the CS term. Since the level of CS term of \(a \) is 1, there is no intrinsic topological order: \(a \) attaches flux \(2\pi \) to \(\phi \) turning it into a fermion, which is identified with \(\psi \) - so there are no anyons present. Furthermore, integrating \(a \) out, we obtain the Hall conductivity \(\sigma^\alpha_\mu = 0 \), and also see that the background gravitational CS term in \(\mathcal{L}_\phi \) is precisely cancelled out, so the final gravitational response is \(c_- = 0 \). Thus, the \(r > 0 \) phase exactly matches the trivial insulator realized by \(\mathcal{L}_\psi \) for \(m > 0 \). Turning to \(r < 0 \), the \(\phi \) field condenses, so a Higgs mass will be generated for \(a \); at low energy, one may effectively set \(a_\mu = 0 \) in \(\mathcal{L}_\phi \). Thus, we are left with a level \(k = 1 \) CS term for the background gauge field \(A \) and a gravitational response with \(c_- = 1 \). This is a real Chern insulator, which matches the \(m < 0 \) phase of \(\mathcal{L}_\psi \).

B. Parton approach to Dirac duality

Let us take a 2d lattice model of spinless fermion \(c_j \) which carries a \(U(1) \) global symmetry that we label \(U(1)_A \), and represent the fermion \(c_j \) with the standard parton (slave particle) construction: \(c_j = f_j b_j \), where \(f_j \) and \(b_j \) are slave fermion and boson operators. All operators have the correct commutation relation, with the following constraint on the Hilbert space on every site: \(f_j^\dagger f_j + b_j^\dagger b_j = 1 \). Besides the \(U(1)_A \) global symmetry, \(f_j \) and \(b_j \) must also carry a \(U(1) \) gauge symmetry \(U(1)_a \) due to the gauge constraint:

\[
U(1)_A : c_j \rightarrow e^{i\theta} c_j, \quad f_j \rightarrow e^{i\theta} f_j, \\
U(1)_a : b_j \rightarrow e^{i\theta} b_j, \quad f_j \rightarrow e^{-i\theta} f_j. \tag{3}
\]

Now we design the mean field band structure of \(f_j \) to be a Chern insulator with Chern number 1. Let us assume that the mean field band structure of \(f_j \) is always gapped, so we can safely integrate out \(f_j \), and generate a CS term for \(a - A \) at level 1, as well as a gravitational CS term corresponding to \(c_- = 1 \), as in \(\mathcal{L}_\phi \) in Eq. (2). The slave boson \(b_j \) can be either in a Mott insulator, or condensed. Coarse-graining \(b_j \) into a continuum field \(\phi \), the transition between these two phases is described by \(\mathcal{L}_\phi \). While we have already discussed the bulk phase diagram of \(\mathcal{L}_\phi \), the parton construction gives us additional insight into edge physics. At the mean field level, a Chern insulator of \(f_j \) has a chiral edge mode with chiral central charge \(c_- = 1 \). When \(b_j \) is gapped, after coupling the edge to the dynamical \(U(1) \) gauge field \(a \), there are no gauge invariant degrees of freedom left at the boundary (or in technical terms the coset conformal field theory at the boundary is trivial): this is consistent with the conclusion that the \(r > 0 \) phase is a trivial insulator of the physical fermion \(c_j \). On the other hand, when \(b_j \) condenses, the gauge field \(a \) is Higgsed, so the edge mode of \(f_j \) survives; in fact, when \(b \) is condensed, \(c_j \sim f_j \), so this is just a \(c_- = 1 \) mode of \(c_j \) as should be present in a Chern-insulator.

II. DUALITY OF A SINGLE MAJORANA FERMION

The main purpose of this paper is to propose a bosonized dual description of a single two-component massless Majorana fermion in \((2 + 1)\)d,

\[
\mathcal{L}_\xi = \bar{\xi} \gamma_\mu \partial_\mu \xi + m\bar{\xi} \xi. \tag{4}
\]

Let us consider the two phases of the Majorana fermion on tuning the mass term \(m \) from positive to negative value. We regularize (4) so that for \(m > 0 \), \(\xi \) realizes a trivial phase with \(c_- = 0 \), while for \(m < 0 \) it realizes a \(p_x + ip_y \) superconductor with \(c_- = 1/2 \). Such a regularization can be provided by starting with a lattice model with two gapless Majorana cones and initially gapping one of them out to produce (4) with \(m = 0 \). Thus, the massless Majorana cone corresponds to the critical point between a trivial phase and a \(p_x + ip_y \) superconductor. Now, the idea is to produce a dual theory that realizes the same two phases on tuning a parameter. Then at
the critical point we may conjecture the dual theory has the same infrared behavior as (4), given the paucity of available fixed points. Observe that we can also capture the same pair of gapped phases with the following theory of a boson coupled to an $SO(N)_1$ CS gauge field:

$$\mathcal{L}_b = (\partial_\mu - i a_\mu) \phi |^2 + r |\phi|^2 + g |\phi|^4 + \text{CS}_{SO(N)}[a]_1 + \text{N-C}\text{S}_g$$

(5)

Here, ϕ is an N-component real vector, a is an $SO(N)$ gauge field and

$$\text{CS}_{SO(N)}[a]_1 = \frac{i}{2 \cdot 4\pi} \text{tr}_{SO(N)} \left(a \wedge da - \frac{2i}{3} a \wedge a \wedge a \right).$$

(6)

The trace in Eq. (6) is in the vector representation of $SO(N)$ (for a more precise definition of the CS term, see appendix B).

Let’s analyze the mean field phase diagram of (5). When $r > 0$, ϕ is gapped. The theory $SO(N)_1$ coupled to gapped bosonic matter gives a state with no intrinsic topological order; the vector boson ϕ is transmuted to a fermion by the CS field. The $SO(N)_1$ CS gauge theory itself has a chiral central charge $c_-=N/2$, which exactly cancels the background gravitational CS term in Eq. (5). So the $r > 0$ phase is a trivial state with $c_- = 0$. On the other hand, for $r < 0$, ϕ condenses, which breaks the gauge group $SO(N)$ to $SO(N - 1)$. At low energies, we can then take a to be an $SO(N - 1)$ gauge field, obtaining an $SO(N - 1)_1$ CS theory. Again, this is a state with no intrinsic topological order, but the background gravitational term in (5) is no longer fully cancelled, rather: $c_- = N/2 - (N - 1)/2 = 1/2$. So the $r < 0$ phase is a $p_x + ip_y$ superconductor.

A. Parton approach to Majorana duality

To further motivate the dual theory (5) we utilize a parton construction. The simplest construction is:

$$c = \sum_{\alpha = 1}^N \tilde{\phi}_\alpha \tilde{\chi}_\alpha,$$

where the Majorana parton $\tilde{\chi}_\alpha$ and slave boson $\tilde{\phi}_\alpha$ have an $O(N)$ redundancy. However, to recover the $SO(N)$ gauge structure from this construction requires further discussion, which we provide in appendix C. Instead, here we turn to a slightly different parton representation. Consider a lattice model for Majorana fermion c_j ($c_j^\dagger = c_j$). This time we introduce on each site j, N colors of slave Majorana fermions $\chi_{j,\alpha}$ ($\alpha = 1 \ldots N$) for odd N such that

$$c_j = (i)^{\frac{N-1}{2}} \prod_{\alpha=1}^N \chi_{j,\alpha}.$$

(7)

By construction χ_α is coupled to a dynamical $SO(N)$ gauge field. Now we design an identical mean field $p_x + ip_y$ superconductor band structure for each color of χ_α. At the mean field level, there are N chiral Majorana fermions at the boundary, which in total leads to chiral central charge $c_- = N/2$. However, if the $SO(N)$ gauge symmetry is unbroken, after coupling to the $SO(N)$ gauge field there will be no gauge invariant degrees of freedom left at the boundary, so we are left with $c_- = 0$. Also, integrating out χ_α would generate a CS term at level $k = 1$ for the $SO(N)$ gauge field, as well as a gravitational CS term at level N, as in Eq. (5).

As already discussed, there is no topological order in the bulk, thus this state is again a trivial state of the physical Majorana fermion c_j.

Using the slave particles $\chi_{j,\alpha}$ we can also define a $SO(N)$ vector boson $\tilde{\phi}_{j,\alpha}$:

$$\tilde{\phi}_{j,\alpha} \sim (i)^{\frac{N-1}{2}} \epsilon_{\alpha \alpha_1 \ldots \alpha_{N-1}} \chi_{j,\alpha_1} \ldots \chi_{j,\alpha_{N-1}}.$$

(8)

When $\tilde{\phi}_\alpha$ condenses, it breaks the $SO(N)$ gauge group down to $SO(N - 1)$, and one of the slave fermions (say χ_N) is no longer coupled to any gauge field, thus its topological band structure implies that the entire system is equivalent to one copy of $p_x + ip_y$ topological superconductor. Likewise, the edge mode associated to χ_N sees no gauge field and survives as a true $c_- = 1/2$ edge mode of a $p_x + ip_y$ superconductor. All other edge modes are, as before, eliminated by $SO(N - 1)$ gauge field fluctuations. Thus, by coarse-graining ϕ into a continuum field ϕ, we can describe a transition between a trivial state and a $p_x + ip_y$ superconductor by Eq. (5).

Notice that the integer N in the dual theory (5) needs not be odd. We could adjust our mean field construction, and take the band structure of $\chi_1, \ldots, \chi_{N-1}$ to be an identical $p_x + ip_y$ superconductor, while placing χ_N into a trivial band structure. Then the mean field band structure already breaks the $SO(N)$ gauge symmetry to $O(N - 1)$ gauge symmetry, and $\tilde{\phi}_\alpha$, $\alpha = 1 \ldots N - 1$, reduces to a $SO(N - 1)$ vector. The extra Z_2 subgroup of the $O(N - 1)$ gauge symmetry can be broken by condensing the $SO(N - 1)$ gauge singlet bosonic operator

$$\tilde{\phi}_N = (i)^{\frac{N-1}{2}} \prod_{\alpha=1}^{N-1} \chi_\alpha.$$

Now condensing the $SO(N - 1)$ vector $\tilde{\phi}_\alpha$ also drives a transition from the trivial state of c_j to a $p_x + ip_y$ superconductor of c_j, and this time the transition is described by a $SO(N - 1)$ vector field coupled to a $SO(N - 1)$ gauge field with a CS term at level 1.

B. The dictionary

How do we represent the physical Majorana fermion in the dual theory (5)? In the case of Dirac duality (1) ↔ (2) the physical electric charge in the Dirac theory mapped to the magnetic flux of the $U(1)$ gauge field a in the dual theory. Likewise, the fermion parity of the Majorana fermion ξ maps to the magnetic flux of the $SO(N)$ gauge field a in Eq. (5). Recall that the magnetic flux is classified by $\pi_1(SO(N)) = Z_2$. Indeed, imagine the system on a spatial sphere S^2. As usual, we place a magnetic flux through the sphere by dividing it into two hemispheres, and gluing the fields in the two hemispheres along the
equator with a gauge transformation \(g(\theta), \theta \in [0, 2\pi] \). Such gauge transformations are classified by \(\pi_1 \) of the gauge group. In the case of the \(SO(N) \) group, a simple representative for the single non-trivial magnetic flux sector on \(S^2 \) is obtained by considering an ordinary flux \(2\pi m \) Dirac monopole in the \(SO(2) \) subgroup of \(SO(N) \) with \(m = 1 \). Note that by an \(SO(N) \) rotation we can invert the magnetic flux in the \(SO(2) \) subgroup, so \(m \) is, indeed, only defined modulo 2. The magnetic flux breaks the \(SO(N) \) group down to \(SO(2) \times SO(N-2) \) and the state on \(S^2 \) must be neutral under this reduced gauge group. As in the abelian case, the CS term in Eq. (5) leads to the monopole carrying an \(SO(2) \) charge 1, so to make the monopole neutral we must act on it with the boson \(\phi_1 + i\phi_2 \). As before, the boson angular momentum is half-odd-integer because of the \(SO(2) \) flux, so the angular momentum of the resulting state is half-odd-integer. We conclude that the \(SO(N) \) monopole on \(S^2 \) carries charge under fermion parity, and identify the \(SO(N) \) space-time monopole \(V_M \) with the Majorana fermion operator \(\xi \). In particular, this discussion means that dynamical \(Z_2 \) \(SO(N) \) monopoles are prohibited in the partition function of dual theory (5), as they violate fermion parity conservation.

One can also see that the \(SO(N) \) monopole on \(S^2 \) will have a non-trivial fermion parity from the parton construction. Indeed, when there is a \(2\pi \) flux of \(SO(2) \) through the sphere, it will be seen by partons \(\chi_1, \chi_2 \), while \(\chi_\alpha, \alpha = 3, \ldots, N \) will see no flux. The ground state will then have \(SO(2) \) charge 1. Since \(\chi_\alpha \) carry fermion parity, the ground state also carries \((-1)^F = -1\). The \(SO(2) \) charge gets neutralized by adding a boson \(\phi_1 + i\phi_2 \). However, since \(\phi \)'s carry no fermion parity, \((-1)^F = -1\) is not affected.

More generally, for a spatial manifold \(\Sigma \), a gauge field configuration \(a \) and boundary conditions \(\sigma \) for the physical Majorana fermion \(\xi \), the fermion parity in the dual theory (5) is expressed as:\[\epsilon_1^1 \cdots \epsilon_1^k (2) \text{ charge gets neutralized by adding a boson } \phi_1 + i\phi_2. \text{ However, since } \phi \text{'s carry no fermion parity, } (-1)^F = -1 \text{ is not affected.}\]

More generally, for a spatial manifold \(\Sigma \), a gauge field configuration \(a \) and boundary conditions \(\sigma \) for the physical Majorana fermion \(\xi \), the fermion parity in the dual theory (5) is expressed as:\[\epsilon_1^1 \cdots \epsilon_1^k (2) \text{ charge gets neutralized by adding a boson } \phi_1 + i\phi_2. \text{ However, since } \phi \text{'s carry no fermion parity, } (-1)^F = -1 \text{ is not affected.}\]

Here, \(W_2 \in H^2(\Sigma, Z_2) \) is the obstruction to lifting the \(SO(N) \) gauge bundle to \(Spin(N) \). \(Arf(\Sigma, \sigma) = \pm 1 \) is the \(Arf \) invariant, which computes the fermion parity of a \(p_x + ip_y \) superconductor on \(\Sigma \) with spin-structure \(\sigma \).\footnote{Ref. 17,18} Thus, only the first term in (9) depends on the gauge field, the second term is fixed once the boundary conditions for \(\xi \) are fixed. The first and second terms in Eq. (9) are correspondingly secretly encoded in the spin-structure dependence of CS action (6) and the gravitational CS term in (5).

Having established the equivalence of phases and operators in the free Majorana theory (4) and the dual theory (5), we conjecture that they are actually dynamically equivalent at their respective IR fixed points.

We note that the level-rank duality of Chern-Simons-matter gauge theories with \(O(N)_k \) gauge group in the large-\(N \), large-\(k \) limit has been proven in Ref. 14. Our conjecture (4) \(\leftrightarrow \) (5) amounts to a statement that the duality continues to hold when \(k = 1 \) and \(N \) is finite (with a clarification that the precise form of the gauge group for \(k = 1 \) is \(SO(N) \)).

C. \(Z_2 \) global symmetry of the bosonic theory

One potential subtlety of the proposed duality (4) \(\leftrightarrow \) (5) is that the dual theory actually has a global \(Z_2 \) symmetry. Indeed, (5) is invariant under \(\phi \rightarrow O\phi \), with \(O \in O(N) \); while for \(O \in SO(N) \) this is a gauge transformation, \(Z_2 = O(N)/SO(N) \) remains as a global symmetry. We can write down an “Ising order parameter” \(\Phi \) for this global \(Z_2 \) symmetry,

\[
\Phi(x) = \epsilon_{\alpha_1 \alpha_2 \cdots \alpha_N} (W(x, x_1) \phi(x_1))_{\alpha_1} (W(x, x_2) \phi(x_2))_{\alpha_2} \cdots (W(x, x_N) \phi(x_N))_{\alpha_N} \tag{10}
\]

where \(W(x, y) \) is an \(SO(N) \) Wilson line and \(\Phi(x) \) is obtained by taking the limit \(x_i \rightarrow x \) and keeping the leading surviving terms. For instance, for \(N = 3 \), we have a Lorentz scalar, \(\Phi = \epsilon^{\alpha \beta \gamma} \phi_\alpha (D^\beta \phi)(D^\gamma \phi) \), where \(D_\mu = \partial_\mu - i\epsilon_\mu \). The presence of an extra global \(Z_2 \) symmetry in the dual theory is problematic, since the only obvious symmetry of the Majorana cone is fermion parity \((-1)^F \). Clearly, the \(Z_2 \) symmetry of the dual theory is \(-1)F \) since the local boson \(\Phi \) transforms non-trivially under it. We conjecture the following resolution to this puzzle: the gap to \(Z_2 \) charged excitations in (5) remains finite across the critical point, i.e. \(\Phi \) actually has exponentially decaying correlation functions at \(r = 0 \). Here’s the evidence for this conjecture:

(i) Neither phase in the phase diagram has spontaneous \(Z_2 \) symmetry breaking, i.e. \(\langle \Phi \rangle = 0 \). Indeed, when \(\phi \) develops an expectation value, the \(O(N) \) symmetry is broken to \(O(N-1) \) and the gauge symmetry \(SO(N) \) to \(SO(N-1) \), so \(Z_2 = O(N)/SO(N) \rightarrow O(N-1)/SO(N-1) \) survives.

(ii) While \(Z_2 \) remains unbroken for both \(r > 0 \) and \(r < 0 \), these two regions could potentially realize different \(Z_2 \) symmetry protected phases. Closing of a \(Z_2 \) charge gap is then required at the transition. However, it can be shown that both \(r > 0 \) and \(r < 0 \) realize the same (trivial) \(Z_2 \) symmetry protected topological (SPT) phase. To see this, observe that our parton construction gives no \(Z_2 \) carrying edge modes on either side of the transition, which means that both phases realize a trivial \(Z_2 \) SPT (see appendix C for further details).

Given (i) and (ii), there is no requirement that the \(Z_2 \) charge gap closes at the transition, so we make the mini-
There is a generalization of our proposed duality to the case of N_f Majorana fermions with $SO(N_f)$ flavor symmetry. Take N_f Majorana fermions,

$$\mathcal{L} = \sum_{I} (\bar{\xi}_{I}\gamma_{\mu}\partial_{\mu}\xi_{I} + m\bar{\xi}_{I}\xi_{I})$$ \hspace{1cm} (13)

where $I = 1 \ldots N_f$. For $m > 0$, we have a trivial insulator with no $SO(N_f)$ response and $c_- = 0$; for $m < 0$, we have chiral central charge $c_- = N_f/2$ and CS $SO(N_f)$ response at level $k = 1$:

$$\mathcal{L} = \text{CS}_{SO(N_f)}[A]_{1} + N_f \cdot \text{CS}_{g}$$ \hspace{1cm} (14)

where A is the background $SO(N_f)$ gauge field.

We propose that the above theory is dual to N_f flavors of real bosons ϕ_i^α coupled to an $SO(N)$ gauge field a_{μ} at level $k = 1$ (as before, $\alpha = 1 \ldots N$ is the color gauge index):

$$\mathcal{L} = \sum_{I} (|\partial_{\mu}a_{\mu}|^2 + r(\text{tr}M) + u(\text{tr}M)^2 + v\text{tr}(M^2) + \text{CS}_{SO(N)}[a]_{1} + N \cdot \text{CS}_{g})$$ \hspace{1cm} (15)

where $M_{IJ} = \phi_i^\alpha \phi_j^{\alpha*}$. The physical $SO(N_f)$ flavor symmetry simply acts on the flavor indices I of ϕ_i^α. We will assume $N \geq N_f + 2$. We further assume that either N is even and N_f is arbitrary, or N and N_f are both odd.\(^{36}\) When $r > 0$, ϕ is not condensed, so integrating out gauge field a cancels out the gravitational CS term and gives rise to a trivial insulator.

We assume that $v > 0$ in Eq. 15.\(^{37}\) In this case, in the phase $r < 0$, the energy is minimized when $\langle \phi_i^\alpha \phi_j^{\alpha*} \rangle = (M_{I,J}) \sim \delta_{I,J}$ - i.e. this gauge invariant observable suggests that the flavor symmetry remains unbroken (as we will see more explicitly below) by the condensate of ϕ_i^α, or equivalently $\langle \phi_i^\alpha \rangle$ are N_f orthogonal $SO(N)$ vectors.

With $v > 0$, in the condensed phase of ϕ_i^α we can choose $\langle \phi_i^\alpha \rangle \sim \delta_i^f$. The gauge group $SO(N)$ is broken down to $SO(N - N_f)$ (acting on $\alpha = N_f + 1 \ldots N$). Furthermore, the combination of an identical $SO(N_f)$ flavor rotation and an $SO(N_f)$ color rotation acting on $\alpha = 1 \ldots N_f$ leaves $\langle \phi_i^\alpha \rangle$ invariant, which means that the physical $SO(N_f)$ global symmetry remains unbroken. In
the presence of a background $SO(N_f)$ gauge field A_μ, the components of the dynamical gauge field $a_\mu^{\alpha\beta}$ with $\alpha, \beta = 1 \ldots N_f$ get Higgsed to $a_\mu^{\alpha\beta} = A_\mu^{\alpha\beta}$, similarly $a_\mu^{\alpha\beta} = 0$ for $\alpha = 1 \ldots N_f$, $\beta = N_f + 1 \ldots N$. Finally, $a_\mu^{\alpha\beta}$ with $\alpha, \beta = N_f + 1 \ldots N$ is not Higgsed - let’s refer to this non-Higgsed field as b_μ. Therefore, our effective action takes the form:

$$\mathcal{L} = CS_{SO(N−N_f)}[b] + CS_{SO(N_f)}[A] + N \cdot CS_g.$$ (16)

Integrating b out, we recover Eq. (14).

Just like in the $N_f = 1$ case, let us discuss a parton construction for the case with $SO(N_f)$ flavor symmetry. On every lattice site, we use the parton decomposition:

$$c_I = (i)^{N^2} \chi_I \prod_{\alpha=1}^N \chi^\alpha,$$ (17)

with even integer N. The site index is hidden. Under flavor symmetry

$$O(N_f): c_I \rightarrow R_{IJ} c_J, \quad \chi_I \rightarrow R_{IJ} \chi_J, \quad \chi^\alpha \rightarrow \chi^\alpha.$$ (18)

There is also an $O(N)$ gauge symmetry:

$$O(N): \chi^\alpha \rightarrow V^{\alpha\beta} \chi^\beta, \quad \chi^I \rightarrow (\det V) \chi^I.$$ (19)

In order to get Eq. (15), we still design the mean field band structure of all χ^α to be an identical $p_x + ip_y$ topological superconductor. On the other hand, χ^I are chosen to have identical trivial band structures. Then the phase transition of Eq. (15) is the order-disorder transition of the bosonic operator $\phi_I^\alpha = i\chi_I \chi^\alpha$, which is a vector of both $O(N_f)$ and $O(N)$. The field ϕ_I^α in Eq. (15) is the coarse-grained field of operator ϕ_I^α.

Notice that the gauge symmetry in the above construction is $O(N)$. To match with our definition of the continuum theory (15), we want to break it to $SO(N)$. Just like in the $N_f = 1$, even N case, we can simply condense $\prod_\alpha \chi^\alpha$ (and keep it condensed throughout the phase diagram of Eq. (15)). The $O(N_f)$ flavor symmetry and the $SO(N)$ part of the gauge symmetry are preserved, but the reflection part of the $O(N)$ gauge symmetry is broken, as needed. A modified mean field band structure with one of χ^α’s forming a trivial band allows us to realize Eq. (15) with odd N and odd N_f.

IV. DISCUSSION

Our dual theory Eq. (5) obviously breaks time-reversal symmetry, while the single Majorana cone (4) could preserve the time-reversal symmetry, if the system is defined on the 2d boundary of a 3d topological superconductor in class DIII (the topological phase with index $\nu = 1$ is believed to be realized by the B-phase of superfluid He3). For the Dirac fermion, the dual U(1)-WFCS theory (2) is believed to have an emergent time-reversal symmetry in the IR, which transforms the matter field ϕ into its vortex. However, this simple solution does not apply to our $SO(N)$ gauge theory, as there is no known analogue of the boson-vortex duality for an $SO(N)$ matter field with $N \geq 3$. Thus, we do not yet understand how time-reversal is hidden in the dual theory (5). Moreover, in the case of the Dirac fermion, a manifestly T-invariant description is provided by another dual theory: QED$_3$ with a single Dirac fermion matter field. \uparrow Again, a manifestly T-invariant dual description of a Majorana cone is currently missing. Such a theory could provide a derivation of the surface topological order of class DIII topological phases with odd ν, such as the proposed $SO(3)_3$ non-abelian topological order with just two nontrivial particles23–25. We recall that in the Dirac context, the pairing of composite Dirac fermions led to an explicit derivation of the T-Paffian state, a surface topological order for the topological insulator1–3,26,27. We leave these questions to future work.

The authors thank Maissam Barkeshli, Meng Cheng, Chao-Ming Jian, Mike Mulligan, Chetan Nayak and Ryan Thorngren for very helpful discussions. Through private communication, the authors have learned that N. Seiberg et al. are also studying dualities of $SO(N)$ CS-matter theory using different approaches. The authors thank the organizers of the KITP program “Symmetry, Topology, and Quantum Phases of Matter: From Tensor Networks to Physical Realizations” during which this work was initiated. AV was supported by a Simons Investigator Grant. C. Xu is supported by the David and Lucile Packard Foundation and NSF Grant No. DMR-1151208. Research at Perimeter Institute for Theoretical Physics (MM) is supported by the Government of Canada through the Department of Innovation, Science and Economic Development and by the Province of Ontario through the Ministry of Research and Innovation. This research was supported in part by the National Science Foundation under Grant No. NSF PHY-1125915.

Appendix A: U(N) duality.

A generalization14,16 of the dual description (2) of a free Dirac fermion (1) is the U(N)-WFCS theory:

$$\mathcal{L} = |(\partial_\mu - ia_\mu)\phi|^2 + |r|\phi|^2 + u|\phi|^4 + CS_{U(N)}[a−A] + 2N\cdot CS_g$$ (A1)

where ϕ is an N-component complex vector, a is a $U(N)$ gauge field, A as before is a background $U(1)$ gauge field, and

$$CS_{U(N)}[a] = \frac{i}{4\pi} \text{tr}_N \left(a \wedge da - \frac{2i}{3} a \wedge a \wedge a \right).$$ (A2)

The trace above is taken in the fundamental representation of $U(N)$ and $a−A$ in Eq. (A1) should be understood as $a−A·1$, where 1 is the identity matrix. Surprisingly, the theory (A1) is conjectured to be dual to a single free Dirac cone (1) for any N.16 Again, the symmetries and operators match: the electric current $\psi^\gamma \gamma^\mu \phi$
maps to the flux current $\frac{1}{2\pi} e^{\mu\lambda} \text{Tr}(f_{\mu\nu})$. Recalling that $\pi_1(U(N)) = \mathbb{Z}$, we see that the quantization of electric charge matches, and the fermion ψ maps to the monopole of $U(N)$. The phase diagram also matches. When ϕ is gapped, we have a $U(N)$ CS gauge theory at level 1, which carries no intrinsic topological order. Integrating over a, we find that $\sigma^A_{xy} = 0$. Moreover, since the chiral central charge of $U(N)$ CS gauge theory at level 1 is $c_- = -N$, the background gravitational CS term in Eq. (A1) is exactly cancelled to give $c_- = 0$. On the other hand, when $r < 0$, ϕ condenses and $U(N)$ is broken down to a $U(N-1)$ subgroup. At low energies, we may keep only the components of a in this subgroup, so that a is now an $N - 1$ component Hermitian matrix. Then \mathcal{L} effectively takes the form:

$$\mathcal{L} = \text{CS}_{U(N-1)}[a - A]_1 + \frac{i}{4\pi} A dA + 2N \cdot CS[g]$$

(A3)

Again, because the level of a is 1 , there is no topological order. Integrating over a, we are left with $\sigma^A_{xy} = 1$, and $c_- = N - (N-1) = 1$, i.e., this phase is a Chern insulator.

We can again obtain the theory (A1) through a parton construction. Represent the physical fermions $\psi = \sum_\alpha b^\dagger_{\alpha,j} f_{\alpha,j}$ where $\alpha = 1 \ldots N$. There is a $U(N)$ gauge redundancy in this description:

$$U(N)_a : \quad b_j \rightarrow U_j b_j, \quad f_j \rightarrow U_j f_j$$

(A4)

which will lead to the emergence of a $U(N)$ gauge field a. As before, we make f carry the $U(1)_A$ global charge (Eq. (3), first line). Now, choose an identical Chern-number 1 band structure for each f_{a_α}. Integrating f_{a_α} out, we obtain the CS term for $a - A$ in Eq. (A1) as well as a gravitational CS term with coefficient $2N$, corresponding to the chiral central charge N. The slave-boson field b can be in a gapped or condensed phase, the transition between these phases is described by (A1). While we already discussed the nature of the two phases above, further insight is provided by the edge structure. At the mean field level, the edge has N chiral $c = 1$ fermions. However, when b is gapped, there are no $U(N)$ invariant degrees of freedom on the edge, so including fluctuations of a, the edge becomes a trivial theory with $c = 0$. On the other hand, when b condenses, for instance along the Nth direction $\langle b_\alpha \rangle \sim \delta_{\alpha,N}$, then the $U(N)$ gauge group is broken down to $U(N - 1)$. As a result, the $c = 1$ chiral mode of f_N now becomes a physical electron mode, while the modes $f_{a_\alpha}, \alpha = 1 \ldots N - 1$ are still gapped by fluctuations of a. Thus, the edge is now a $c = 1$ A-charged mode, as one expects in a Chern insulator.

Appendix B: SO(N) Chern-Simons gauge theory.

In this appendix, we give a more careful definition of the SO(N) CS gauge theory in Eq. (6). Strictly speaking, Eq. (6) is only meaningful when a is a 1-form. However, there can be non-trivial SO(N) bundles over our space-time manifold: we have to sum over such bundles. In general, following our parton construction below Eq. (7), we will define the CS action for the SO(N) connection a as the partition function of N identical copies of a $p + ip$ superconductor coupled to an SO(N) gauge field. Representing the $p + ip$ superconductor by a Majorana fermion χ with $m < 0$,

$$\mathcal{L} = \bar{\chi}(D_a + m)\chi$$

(B1)

where χ is an N-color Majorana fermion, $D_a = \gamma^\mu(\partial_\mu + i\omega_\mu - ia_\mu)$, and ω_μ is the spin connection, we define:

$$\exp\left(-\text{CS}_{SO(N)}[a]_1 - N \cdot \text{CS}_g\right) = \lim_{m \rightarrow -\infty} \frac{Z_f(-m)}{Z_f(m)} = e^{-\pi i \eta(iD_a)}$$

(B2)

where

$$\eta = \frac{1}{2}(\eta(0) + N_0)$$

(B3)

and

$$\eta(s) = \sum_{\lambda \neq 0} \text{sgn}(\lambda)|\lambda|^{-s}$$

(B4)

where λ’s are eigenvalues of iD_a, N_0 is the number of zero modes of iD_a and $\eta(0)$ is obtained by analytic continuation from large real s. The ratio of partition functions with $m < 0$ and $m > 0$ in (B2) is taken to cancel out any “non-topological” dependence of the action on the gauge field and the metric.

Implicity, in defining the Dirac operator D_a, we have given the fermions χ not only an SO(N) connection, but also a spin-structure. In our parton construction (7) such a spin-structure will be inherited from the physical electron c. In general, the action (B2) depends on the spin-structure, which is a sign that the underlying microscopic theory has a local electron operator.

We can use Atiyah-Patodi-Singer (APS) theorem to rewrite $\eta(iD_a)$ as:

$$\eta = \int_{X_4} \left(\frac{1}{2} \cdot (2\pi)^2 \text{tr}_{SO(N)} f \wedge f
ight)$$

$$+ \frac{N}{8 \cdot 24\pi^2} \text{tr} R \wedge R \right) \quad (\text{mod} \ 2)$$

(B5)

Here, X_4 is a four-dimensional (Euclidean) manifold that extends our physical three-dimensional (Euclidean) manifold M, i.e. $\partial X_4 = M$. Furthermore, both a and the spin-structure on M are assumed to extend to X_4. R is the Riemann tensor on X_4. It follows from the APS theorem that the right-hand-side of Eq. (B5) is independent of the particular extension, i.e. it vanishes mod 2 when X_4 has no boundary. Another way to see this without directly appealing to the APS theorem is as follows. When X_4 is closed, we have

$$p_1 = \frac{1}{2} \cdot (2\pi)^2 \int_{X_4} \text{tr}_{SO(N)} f \wedge f$$

(B6)
and
\[\sigma = -\frac{1}{24\pi^2} \int_{X_4} \text{tr} R \wedge R \quad (B7) \]
p_1 is the Pontryagin number of the $SO(N)$ bundle over X_4. On a general manifold, it is an integer. However, on a spin manifold it is an even integer. σ is the signature of the manifold. On a general manifold it is an integer. However, on a spin manifold it is a multiple of 16. This implies that if our three-manifold M is endowed with a spin-structure, we can separately define
\[\text{CS}_{SO(N)}[a]_1 = \frac{i}{2(4\pi)} \int_{X_4} \text{tr}_{SO(N)} f \wedge f \quad (B8) \]
and
\[\text{CS}_g = -\frac{i}{192\pi} \int_{X_4} \text{tr} R \wedge R \quad (B9) \]
Neither (B8) nor (B9) depend on the extension to X_4 as long as the spin-structure is also extended. Eq. (B8) is the standard definition of $SO(N)$ gauge theory; for level k - simply multiply Eq. (B8) by k. From the preceding discussion we see that the action (B8) generally depends on the spin-structure for odd k, but not even k. Physically, when the theory has bosonic a-matter fields, the odd k theories always have transparent fermions in the spectrum, while even k theories are consistent theories of microscopic bosons. In this paper, we are principally interested in the case $k = 1$: it is consistent that our dual theory has a local fermion in its spectrum.

We note that for even N and odd k one can still make the theory live in a purely bosonic Hilbert space, if one combines both the CS term for a and the gravitational CS term via the definition (B2) or equivalently through Eq. (B5). Physically, in this case one must restrict to fermionic a-matter only. Indeed, for even N, the center of $SO(N)$ is $Z_2 = \{1,-1\}$. The transition functions for the fermionic matter field χ live in the group $(SO(N) \times Spin(3))/Z_2$, i.e. χ feels only the combination of spin-structure and $SO(N)$ connection. Thus, if one includes only fermionic a-matter, one does not need to give a spin-structure as an input and we get a theory of microscopic bosons. However, if we allow for bosonic matter ϕ (as our dual theory does), then the ϕ action depends on the $SO(N)$ connection, but not on spin-structure, so the entire action depends on both the $SO(N)$ connection and the spin-structure. So in this case, we still have microscopic fermions in the Hilbert space.

We conclude by reviewing our notation for the case $N = 3$. In this case, one may attempt to lift the $SO(3)$ bundle over M to an $SU(2)$ bundle. The lift does not always exist, so the two theories are generally different in their global properties (although local properties will be identical). When the lift does exist, the $SO(3)$ action becomes,
\[\text{CS}_{SO(3)}[a]_k = 2 \times \frac{ik}{4\pi} \int \text{tr}_{SU(2)} \left(\hat{a} \wedge \hat{a} - \frac{2i}{3} \hat{a} \wedge \hat{a} \wedge \hat{a} \right) \quad (B10) \]
Here the trace is over the spin 1/2 representation of $SU(2)$ and \hat{a} is the corresponding lift of a. (We can write the action directly in 3d, because $SU(2)$ in $d = 3$ does not admit non-trivial bundles). That is $SO(3)_k$ goes to $SU(2)_{2k}$.

Appendix C: Z_2 symmetry.

In this section, we discuss the issue of the “extra” global Z_2 symmetry of the dual theory (5) in more detail. We will argue that this symmetry is realized in the same way in both phases of (5), thus, it is natural that the Z_2 gap remains finite across the transition.

It is useful to have an explicitly Z_2 symmetric parton construction as a starting point for the analysis. Imagine we use the parton decomposition
\[c = \sum_{\alpha=1}^{N} \phi_{\alpha} \chi_{\alpha} \quad (C1) \]
with c - the electron, ϕ_{α} - slave bosons and χ_{α} - slave fermions. This decomposition has an $O(N)$ gauge symmetry. As before, we place χ_{α} into identical $p_x + ip_y$ superconductor band structures, and ϕ_{α} into a trivial paramagnet. This yields the effective theory (5) with an $O(N)$ gauge group. Now, imagine further that the system has some Ising spin degrees of freedom σ (not related to the electrons c) that transform under a global Z_2 symmetry:
\[Z_2: \sigma \rightarrow -\sigma, \quad c \rightarrow c \quad (C2) \]
Imagine we condense the bosonic operator $\Phi \sigma$, with Φ defined by Eq. (10). This breaks the $O(N)$ gauge symmetry down to $SO(N)$. However, the physical global Z_2 symmetry is not broken, since its combination with an $O(N)$ reflection leaves $\Phi \sigma$ invariant. Thus, we conclude that after $\Phi \sigma$ condensation, the global Z_2 symmetry acts as an $O(N)$ reflection of ϕ_{α} and χ_{α}. This is precisely the “extra” global symmetry of theory (5).

We would like to show that from the point of view of this global Z_2 symmetry, both $r > 0$ and $r < 0$ phases of (5) realize the same SPT. To argue this, let us look at the edge of the system: a Z_2 SPT would possess non-trivial Z_2 carrying gapless edge modes. At the mean field level, χ_{α} has N chiral $c = 1/2$ modes f_{α} transforming under the $O(N)$ symmetry. However, after coupling to the $SO(N)$ gauge field, all these modes are eliminated. Therefore, the $r > 0$ phase must realize a trivial Z_2 SPT. Let's now turn to $r < 0$. Suppose ϕ condenses along the N’th direction, $(\phi_{\alpha}) = \delta_{\alpha,N}$. The $SO(N)$ group is broken to $SO(N - 1)$ acting on $\chi_{\alpha} = 1 \ldots N - 1$. Moreover, the global Z_2 symmetry (after potentially combining with an $SO(N)$ gauge rotation) now acts as $O(N - 1)$ on $\alpha = 1 \ldots N - 1$. Therefore, the edge mode f_{α} is not coupled to the $SO(N - 1)$ gauge field and, moreover, is neutral under the global Z_2. On the other hand, the edge modes
with \(\alpha = 1 \ldots N - 1 \) are eliminated by fluctuations of the \(SO(N - 1) \) gauge field. So for \(r < 0 \), there are no \(Z_2 \) carrying edge modes, which means that this phase is also trivial from the \(Z_2 \) SPT standpoint.

Another way to diagnose the presence of a \(Z_2 \) SPT is to look at the bulk response to \(Z_2 \) fluxes, e.g. at the partition function of the theory on some closed manifold in the presence of background \(Z_2 \) gauge field \(b \). Let us consider the case of odd \(N \), so \(O(N) = Z_2 \times SO(N) \). For \(r > 0 \), the \(Z_2 \) symmetry simply acts on partons \(\chi_\alpha \) as \(Z_2 : \chi_\alpha \rightarrow -\chi_\alpha \). This coincides with the action of fermion parity on \(\chi_\alpha \). But we know that our system is a trivial \(c_- \) = 0 superconductor. Therefore, its partition function does not depend on spin-structure, and consequently, on the background \(Z_2 \) gauge field \(b \). So the \(r > 0 \) phase realizes a trivial \(Z_2 \) SPT.

Next, we turn to the phase \(r < 0 \). As we already discussed, the fermion \(\chi_\alpha \) now forms a \(p_x + ip_y \) superconductor and is neutral under \(Z_2 \). It, therefore, does not contribute any \(b \) dependence to the partition function. We are thus left with the contribution of fermions \(\chi_\alpha \), \(\alpha = 1 \ldots N - 1 \) coupled to an \(SO(N - 1) \) gauge field and charged under the \(O(N - 1)/SO(N - 1) \) global symmetry. We note that because \(N - 1 \) is even (and all bosonic charge matter is trivial and gapped), this system can effectively be thought as living in a bosonic microscopic Hilbert space (see appendix B). Therefore, as a \(Z_2 \) SPT, it must realize either a trivial phase or the Chen-Liu-Wen-Levin-Gu (CLWLG) bosonic SPT phase.\(^{30,31} \) These can be distinguished by their partition functions on \(RP^3 \) in the presence of a background \(Z_2 \) flux. In section C1, we will explicitly compute this partition function for \(N - 1 = 2 \) and show that, indeed, a trivial \(Z_2 \) SPT phase is realized. For other \(N \), we don’t have an explicit bulk partition function computation and have to rely on the edge argument above.

Despite the above arguments, from a mean field viewpoint it appears surprising that the operator \(10 \) can have exponentially decaying correlation functions at the critical point \(r = 0 \). We now give an example of a theory where a similar phenomenon takes place. Consider the WFCS theory \(2 \), which is an \(SO(2) \) cousin of our non-Abelian theory \(5 \). This theory has a \(Z_2 = O(2)/SO(2) \) symmetry, which acts as \(\phi \rightarrow \phi^T \). On the original \(\phi \) side \(1 \), this symmetry is precisely the charge-conjugation symmetry \(Z_2 : \psi \rightarrow C\psi^T \). The gap to this symmetry vanishes at the critical point: for instance, the physical electric current operator \(\psi^\dagger \gamma^\mu \gamma^5 \psi \) is odd under \(C \). Now, imagine perturbing the Dirac fermion by a superconducting mass term (which breaks the global \(U(1) \) symmetry):

\[
H = \psi^\dagger \left(-i \sigma \partial x \right) \psi + m \psi^\dagger \sigma^\mu \psi + \frac{1}{2} \Delta \psi^\dagger \sigma^\mu \psi^* + \frac{1}{2} \Delta^* \psi^T \sigma^\mu \psi
\]

Here, we’ve written the real-time Hamiltonian and made a choice of \(\gamma \) matrices. For \(\Delta = \Delta^* \), the charge-conjugation symmetry \(Z_2 : \psi \rightarrow \psi^\dagger \) is preserved. We see that the Dirac transition splits into two Majorana transitions. Indeed, writing \(\psi = \xi_1 + i \xi_2 \),

\[
H = \xi_1^T \left(-i \partial x \sigma^\mu \partial y \sigma^\nu \right) \xi_1 + (m + \Delta) \xi_1^T \sigma^\mu \xi_1
+ \xi_2^T \left(-i \partial x \sigma^\mu \partial y \sigma^\nu \right) \xi_2 + (m - \Delta) \xi_2^T \sigma^\mu \xi_2
\]

The Majorana fermion \(\xi_1 \) becomes massless at \(m = -\Delta \), and \(\xi_2 \) becomes massless at \(m = \Delta \). The \(Z_2 \) symmetry acts as, \(\xi_1 \rightarrow \xi_1, \xi_2 \rightarrow -\xi_2 \). Since at finite \(\Delta \), \(\xi_1 \) and \(\xi_2 \) are never simultaneously gapless, all bosons charged under \(Z_2 \) remain gapped throughout the phase diagram. Now, on the WFCS side, the superconducting mass perturbation maps to a double monopole of \(a \). Therefore, in this perturbed WFCS theory, the \(Z_2 \) charge gap (for bosons) also never closes, just as we expect in the non-Abelian theory \(5 \). Of course, in the perturbed Abelian theory, an even more dramatic effect is that the transition at \(r = 0 \) splits into two; in the non-Abelian case \(5 \) there is no reason to expect such a splitting. We note that the perturbed Abelian WFCS theory can be thought as arising by starting with the \(N = 3 \) non-Abelian WFCS theory \(5 \), going to the \(r < 0 \) phase where \(SO(3) \) gauge symmetry is broken to \(SO(2) \); the Abelian WFCS transition then corresponds to further breaking the \(SO(2) \) gauge group to trivial. Note that in such a construction, the \(SO(2) \) theory will be naturally perturbed by double monopole operators, as they are allowed in the original \(SO(3) \) theory. Our assumption is that the gap to \(Z_2 = O(3)/SO(3) \) bosons remains finite throughout the above sequence of phase transitions.

1. \(O(2)_1 \) theory.

In this section, we focus on the theory \(5 \) with \(N = 3 \) in the regime \(r < 0 \) and compute its partition function on \(RP^3 \) in the presence of a background \(Z_2 \) flux \(b \). This will serve as a check that this phase is not a \(Z_2 \) SPT. Indeed, as we argued above, the \(r < 0 \) phase (apart from a \(Z_2 \) neutral \(p_x + ip_y \) superconductor) is at most a CLWLG bosonic \(Z_2 \) SPT. The partition function of the CLWLG phase on a manifold \(M \) in the presence of a background \(Z_2 \) flux \(b \in H^1(M,Z_2) \) is given by

\[
\mathcal{Z}[b] = \exp \left(\pi i \int_M b \right)
\]

On \(RP^3 \), \(H^1(RP^3,Z_2) = Z_2 \), and for the non-trivial \(b \), we have \(\mathcal{Z}[b] = -1 \). On the other hand, for a trivial \(Z_2 \) SPT, we will have \(\mathcal{Z}[b] = 1 \) on any manifold.

From the parton construction below Eq. \(\text{(C1)} \) the background flux \(b \) and the dynamical \(SO(2) \) gauge field \(a \) combine to an \(O(2) = SO(2) \times Z_2 \) gauge field: the action is the partition function of the partons \(\chi_1, \chi_2 \) coupled to this \(O(2) \) gauge field - it is given by Eq. \(\text{(B2)} \). (Here, we ignore the third parton \(\chi_3 \), which sees no dynamical gauge field or background \(Z_2 \) gauge field). Thus, the partition function takes the form:
Once the Z_2 gauge field b is fixed, a becomes a $u(1)$ gauge field, but its transition functions satisfy a cocycle condition twisted by b. Topologically distinct $u(1)$ gauge fields correspond to elements of $\mathbb{H}^2(X,\tilde{Z}_b)$, where the coefficients are in the local system twisted by b. The path integral is over gauge fields a in each such class and the factor in front, $\text{vol}(G)$, corresponds to the volume of (twisted) $u(1)$ gauge group. $\eta[a]$ is the η-invariant (B3) of the Dirac operator in the background of the $O(2)$ gauge field a. A standard computation gives,

$$Z[b] = \frac{1}{\text{vol}(G)} \sum_{\eta[a]} \int Da e^{-\pi i \eta[a]} \quad (C4)$$

Here a, b are topologically non-trivial $u(1)$ bundles twisted by b - these are in one-to-one correspondence with the torsion subgroup $T = \text{Tor}(\mathbb{H}^2(M,\tilde{Z}_b))$ and $|T|$ denotes the order of T. $\eta[\ast d]$ is the η-invariant of the operator $\ast d$ acting on (twisted) 1-forms and 3-forms - it vanishes for manifolds with an orientation-reversing isometry, such as RP^3.

Let’s compute the partition function on RP^3. As already noted, $\mathbb{H}^1(RP^3, Z_2) = Z_2$, so there is only one non-trivial b-flux sector. In the untwisted ($b = 0$) sector, we have $\mathbb{H}^3(RP^3, Z_2)$ which correspond to two spin-structures for slave-fermions χ_α on RP^3. Explicitly, working on the double-cover S^3 and using the stereographic coordinates, $(\frac{4\tilde{u}}{u^2 + 4}, \frac{u^2 - 4}{u^2 + 4})$, we have under the anti-podal map:

$$\chi_\alpha(\tilde{u}) = \pm \frac{i u^\gamma u^i}{|\tilde{u}|} \chi_\alpha \left(-\frac{4\tilde{u}}{u^2} \right) \quad (C6)$$

Note that χ_1 and χ_2 have the same spin-structure. Now, one of the spin-structures has $\eta = 1/8$ and the other $\eta = -1/8$ (for a single fermion, say χ_1). Adding contributions of χ_1 and χ_2, $\eta = \pm 1/4$. So, we get

$$Z_0(RP^3) = \frac{1}{\sqrt{2}} e^{\pi i/4} e^{-\pi i/4} = 1 \quad (C7)$$

This is the correct partition function of a trivial superconductor on RP^3, as needed.

Now, in the twisted sector, $\mathbb{H}^3(RP^3, \tilde{Z}) = Z_1$, there is just a single twisted $u(1)$ bundle that can be chosen to be:

$$\chi_\alpha(\tilde{u}) = \tau^\alpha_\beta \frac{i u^\gamma u^i}{|\tilde{u}|} \chi_\beta \left(-\frac{4\tilde{u}}{u^2} \right) \quad (C8)$$

So χ_1 and χ_2 now have opposite spin-structures, so together they give $\eta = 0$. So, we get

$$Z_{\text{twist}}(RP^3) = 1 \quad (C9)$$

Since the partition function in the twisted sector is trivial, this phase must realize a trivial Z_2 SPT as claimed.
33 E. Vicari, PoS(Lattie 2007):023 (2007).
34 The $SO(3)_1$ example might be the most familiar: this theory is the same as $SU(2)_2 = \{1, \sigma, f\}$ restricted to integer spin, i.e. to $\{1, f\}$. The chiral central charge is $c_- = -3/2$.
35 Strictly speaking, $\hat{\phi}_\alpha$ satisfy $\prod_{\alpha=1}^N \hat{\phi}_\alpha = 1$, but this constraint is assumed to be softened in the infrared.
36 The case of odd N and even N_f requires working with an $O(N)$ gauge group.
37 If the gauge field is ignored, with large N and fixed N_f, there does exists a stable fixed point with $u > 0$ and $v > 0$.33.