Spontaneous CP violation by modulus τ

in A_4 model of lepton flavors

Hiroshi Okada a,b,* and Morimitsu Tanimoto c†

aAsia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea

bDepartment of Physics, Pohang University of Science and Technology, Pohang 37673, Republic of Korea

cDepartment of Physics, Niigata University, Niigata 950-2181, Japan

Abstract

We discuss the modular A_4 invariant model of leptons combining with the generalized CP symmetry. In our model, both CP and modular symmetries are broken spontaneously by the vacuum expectation value of the modulus τ. The source of the CP violation is a non-trivial value of $\text{Re} [\tau]$ while other parameters of the model are real. The allowed region of τ is in very narrow one close to the fixed point $\tau = i$ for both normal hierarchy (NH) and inverted ones (IH) of neutrino masses. The CP violating Dirac phase δ_{CP} is predicted clearly in $[98^\circ, 110^\circ]$ and $[250^\circ, 262^\circ]$ for NH at 3σ confidence level. On the other hand, δ_{CP} is in $[95^\circ, 100^\circ]$ and $[260^\circ, 265^\circ]$ for IH at 5σ confidence level. The predicted $\sum m_i$ is in $[82, 102]$ meV for NH and $\sum m_i = [134, 180]$ meV for IH. The effective mass $\langle m_{ee} \rangle$ for the $0\nu\beta\beta$ decay is predicted in $[12.5, 20.5]$ meV and $[54, 67]$ meV for NH and IH, respectively.
1 Introduction

The non-Abelian discrete symmetries are attractive ones to understand flavors of quarks and leptons. The S_3 flavor symmetry was a pioneer for the quark flavor mixing [1,2]. It was also discussed to understand the large mixing angle in the oscillation of atmospheric neutrinos [3]. For the last twenty years, the non-Abelian discrete symmetries of flavors have been developed, that is motivated by the precise observation of flavor mixing angles of leptons [5–14]. Among them, the A_4 flavor model is an attractive one because the A_4 group is the minimal one including a triplet irreducible representation, which allows for a natural explanation of the existence of three families of quarks and leptons [15–21]. However, it is difficult to obtain clear predictions of the A_4 flavor symmetry because of a lot of free parameters associated with scalar flavon fields.

Recently, a new approach to the lepton flavor problem has been put forward based on the invariance under the modular transformation [22], where the model of the finite modular group $\Gamma_3 \simeq A_4$ has been presented. In this approach, fermion matrices are written in terms of modular forms which are holomorphic functions of the modulus τ. This work inspired further studies of the modular invariance approach to the lepton flavor problem.

The finite groups S_3, A_4, S_4, and A_5 are realized in modular groups [23]. Modular invariant flavor models have been also proposed on the $\Gamma_2 \simeq S_3$ [24], $\Gamma_4 \simeq S_4$ [25] and $\Gamma_5 \simeq A_5$ [26]. Phenomenological discussions of the neutrino flavor mixing have been done based on A_4 [27–29], S_4 [30–32] and A_5 [33]. A clear prediction of the neutrino mixing angles and the CP violating phase was given in the simple lepton mass matrices with the A_4 modular symmetry [28]. On the other hand, the Double Covering groups T' [34,35] and S'_4 [36,37] were realized in the modular symmetry. Furthermore, modular forms for $\Delta(96)$ and $\Delta(384)$ were constructed [38], and the extension of the traditional flavor group was discussed with modular symmetries [39]. The level 7 finite modular group $\Gamma_7 \simeq PSL(2, Z_7)$ was also presented for the lepton mixing [40]. Based on those works, phenomenological studies have been developed in many works [41–80] while theoretical investigations have been also proceeded [81–86].

In order to test the modular symmetry of flavors, the prediction of the CP violating Dirac phase is important. The CP transformation is non-trivial if the non-Abelian discrete flavor symmetry is set in the Yukawa sector of a Lagrangian. Then, we should discuss so called the generalized CP symmetry in the flavor space [87–91]. It can predict the CP violating phase [92]. The modular invariance has been also studied combining with the generalized CP symmetry in flavor theories [93,94]. It provides a powerful framework to predict CP violating phases of quarks and leptons.

In our work, we present the modular A_4 invariant model with the generalized CP symmetry. Both CP and modular symmetries are broken spontaneously by the vacuum expectation value (VEV) of the modulus τ. We discuss the phenomenological implication of this model, that is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing angles [95,96] and the CP violating Dirac phase of leptons, which is expected to be observed at T2K and NOνA experiments [97,98].

The paper is organized as follows. In section 2, we give a brief review on the generalized CP transformation in the modular symmetry. In section 3, we present the CP invariant lepton mass matrix in the A_4 modular symmetry. In section 4, we show the phenomenological implication of our model. Section 5 is devoted to the summary. In Appendix A, we present the tensor product of the A_4 group. In Appendix B, we show the modular forms for weight 2 and 4. In Appendix C, we show how to determine the coupling coefficients of the charged lepton sector. In Appendix D, we present how to obtain the Dirac CP phase, the Majorana phases and the effective mass of the $0\nu\beta\beta$ decay.
2 Generalized CP transformation in modular symmetry

2.1 Generalized CP symmetry

Let us start with discussing the generalised CP symmetry \[92, 99\]. The CP transformation is non-trivial if the non-Abelian discrete flavor symmetry \(G\) is set in the Yukawa sector of a Lagrangian. Let us consider the chiral superfields. The CP is a discrete symmetry which involves both Hermitian conjugation of a chiral superfield \(\psi(x)\) and inversion of spatial coordinates,

\[\psi(x) \rightarrow X_r \overline{\psi}(x_P) , \] (1)

where \(x_P = (t, -x)\) and \(X_r\) is a unitary transformations of \(\psi(x)\) in the irreducible representation \(r\) of the discrete flavor symmetry \(G\). If \(X_r\) is the unit matrix, the CP transformation is the trivial one. This is the case for the continuous flavor symmetry \[99\]. However, in the framework of the non-Abelian discrete family symmetry, non-trivial choices of \(X_r\) are possible. The unbroken CP transformations of \(X_r\) form the group \(H_{CP}\). Then, \(X_r\) must be consistent with the flavor symmetry transformation,

\[\psi(x) \rightarrow \rho_r(g) \psi(x) , \quad g \in G , \] (2)

where \(\rho_r(g)\) is the representation matrix for \(g\) in the irreducible representation \(r\).

The consistent condition is obtained as follows. At first, perform a CP transformation \(\psi(x) \rightarrow X_r \overline{\psi}(x_P)\), then apply a flavor symmetry transformation, \(\overline{\psi}(x_P) \rightarrow \rho^*_r(g) \overline{\psi}(x_P)\), and finally perform an inverse CP transformation. The whole transformation is written as \(\psi(x) \rightarrow X_r \rho^*_r(g) X^{-1}_r \psi(x)\), which must be equivalent to some flavor symmetry \(\psi(x) \rightarrow \rho_r(g') \psi(x)\). Thus, one obtains \[100\]

\[X_r \rho^*_r(g) X^{-1}_r = \rho_r(g') , \quad g, g' \in G . \] (3)

This equation defines the consistency condition, which has to be respected for consistent implementation of a generalized CP symmetry along with a flavor symmetry \[101, 102\]. This chain \(CP \rightarrow g \rightarrow CP^{-1}\) maps the group element \(g\) onto \(g'\) and preserves the flavor symmetry group structure. That is a homomorphism \(v(g) = g'\) of \(G\). Assuming the presence of faithful representations \(r\), Eq. (3) defines a unique mapping of \(G\) to itself. In this case, \(v(g)\) is an automorphism of \(G\) \[101\].

It has been also shown that the full symmetry group is isomorphic to a semi-direct product of \(G\) and \(H_{CP}\), that is \(G \rtimes H_{CP}\), where \(H_{CP} \simeq \mathbb{Z}_2^C\), is the group generated by the generalised CP transformation under the assumption of \(X_r\) being a symmetric matrix \[102\].

2.2 Modular symmetry

The modular group \(\bar{\Gamma}\) is the group of linear fractional transformations \(\gamma\) acting on the modulus \(\tau\), belonging to the upper-half complex plane as:

\[\tau \rightarrow \gamma \tau = \frac{a \tau + b}{c \tau + d} , \quad \text{where} \quad a, b, c, d \in \mathbb{Z} \quad \text{and} \quad ad - bc = 1 , \quad \text{Im}[\tau] > 0 , \] (4)

which is isomorphic to \(PSL(2,\mathbb{Z}) = SL(2,\mathbb{Z})/\{I, -I\}\) transformation. This modular transformation is generated by \(S\) and \(T\),

\[S : \tau \rightarrow -\frac{1}{\tau} , \quad T : \tau \rightarrow \tau + 1 , \] (5)
which satisfy the following algebraic relations,
\[S^2 = 1, \quad (ST)^3 = 1. \]

We introduce the series of groups \(\Gamma(N) \), called principal congruence subgroups, where \(N \) is the level 1, 2, 3, \ldots. These groups are defined by
\[\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z}) \mid \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{N} \right\}. \]

For \(N = 2 \), we define \(\bar{\Gamma}(2) \equiv \Gamma(2)/\{I, -I\} \). Since the element \(-I\) does not belong to \(\Gamma(N) \) for \(N > 2 \), we have \(\bar{\Gamma}(N) = \Gamma(N) \). The quotient groups defined as \(\Gamma_N \equiv \bar{\Gamma}/\bar{\Gamma}(N) \) are finite modular groups. In these finite groups \(\Gamma_N \), \(T^N = 1 \) is imposed. The groups \(\Gamma_N \) with \(N = 2, 3, 4, 5 \) are isomorphic to \(S_3, A_4, S_4 \) and \(A_5 \), respectively [23].

Modular forms \(f_i(\tau) \) of weight \(k \) are the holomorphic functions of \(\tau \) and transform as
\[f_i(\tau) \longrightarrow (c\tau + d)^{-k}\rho(\gamma)_{ij}f_j(\tau), \quad \gamma \in G, \]
under the modular symmetry, where \(\rho(\gamma)_{ij} \) is a unitary matrix under \(\Gamma_N \).

Superstring theory on the torus \(T^2 \) or orbifold \(T^2/Z_N \) has the modular symmetry [103–108]. Its low energy effective field theory is described in terms of supergravity theory, and string-derived supergravity theory has also the modular symmetry. Under the modular transformation of Eq. (4), chiral superfields \(\psi_i \) (\(i \) denotes flavors) transform as [109],
\[\psi_i \longrightarrow (c\tau + d)^{-ki}\rho(\gamma)_{ij}\psi_j. \]

We study global supersymmetric models, e.g., minimal supersymmetric extensions of the Standard Model (MSSM). The superpotential which is built from matter fields and modular forms is assumed to be modular invariant, i.e., to have a vanishing modular weight. For given modular forms this can be achieved by assigning appropriate weights to the matter superfields.

The kinetic terms are derived from a Kähler potential. The Kähler potential of chiral matter fields \(\psi_i \) with the modular weight \(-k\) is given simply by
\[K^{\text{matter}} = \frac{1}{[i(\bar{\tau} - \tau)]^k} \sum_i |\psi_i|^2, \]
where the superfield and its scalar component are denoted by the same letter, and \(\bar{\tau} = \tau^* \) after taking VEV of \(\tau \). Therefore, the canonical form of the kinetic terms is obtained by changing the normalization of parameters [28]. The general Kähler potential consistent with the modular symmetry possibly contains additional terms [110]. However, we consider only the simplest form of the Kähler potential.

For \(\Gamma_3 \approx A_4 \), the dimension of the linear space \(\mathcal{M}_k(\Gamma(3)) \) of modular forms of weight \(k \) is \(k + 1 \) [111,113], i.e., there are three linearly independent modular forms of the lowest non-trivial weight 2, which form a triplet of the \(A_4 \) group, \(Y_{3}^{(2)}(\tau) = (Y_1(\tau), Y_2(\tau), Y_3(\tau))^T \). As shown in Appendix A, these modular forms have been explicitly obtained [22] in the symmetric base of the \(A_4 \) generators \(S \) and \(T \) for the triplet representation:
\[S = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}, \]
where \(\omega = \exp(i\frac{2}{3}\pi) \).
2.3 CP transformation of the modulus τ

The CP transformation in the modular symmetry was given by using the generalized CP symmetry $[93]$. We summarize the discussion in Ref. $[93]$ briefly. Consider the CP and modular transformation γ of the chiral superfield $\psi(x)$ assigned to an irreducible unitary representation r of Γ_N. The chain $CP \rightarrow \gamma \rightarrow CP^{-1} = \gamma' \in \Gamma$ is expressed as:

$$\psi(x) \xrightarrow{CP} X_r \psi(x_P) \xrightarrow{\gamma} (c\tau^* + d)^{-k} X_r \rho_r^*(\gamma) \psi(x_P) \xrightarrow{CP^{-1}} (c\tau_{CP^{-1}}^* + d)^{-k} X_r \rho_r^*(\gamma) X_r^{-1} \psi(x),$$

(12)

where $\tau_{CP^{-1}}$ is the operation of CP^{-1} on τ. The result of this chain transformation should be equivalent to a modular transformation γ' which maps $\psi(x)$ to $(c'\tau + d')^{-k} \rho_r(\gamma') \psi(x)$. Therefore, one obtains

$$X_r \rho_r^*(\gamma) X_r^{-1} = \left(\frac{c\tau^* + d}{c\tau_{CP^{-1}}^* + d}\right)^{-k} \rho_r(\gamma').$$

(13)

Since X_r, ρ_r and $\rho_{r'}$ are independent of τ, the overall coefficient on the right-hand side of Eq. (13) has to be a constant (complex) for non-zero weight k:

$$\frac{c'\tau + d'}{c\tau_{CP^{-1}}^* + d} = \frac{1}{\lambda^*},$$

(14)

where $|\lambda| = 1$ due to the unitarity of ρ_r and $\rho_{r'}$. The values of λ, c' and d' depend on γ.

Taking $\gamma = S$ ($c = 1, d = 0$), and denoting $c'(S) = C$, $d'(S) = D$ while keeping $\lambda(S) = \lambda$, we find $\tau = (\lambda\tau_{CP^{-1}}^* - D)/C$ from Eq. (14), and consequently,

$$\tau \xrightarrow{CP^{-1}} \tau_{CP^{-1}} = \lambda(\tau^* + D), \quad \tau \xrightarrow{CP} \tau_{CP} = \frac{1}{C}(\lambda\tau^* - D).$$

(15)

Let us act with chain $CP \rightarrow T \rightarrow CP^{-1}$ on the modular τ itself:

$$\tau \xrightarrow{CP} \tau_{CP} = \frac{1}{C}(\lambda\tau^* - D) \xrightarrow{T} \frac{1}{C}(\lambda(\tau^* + 1) - D) \xrightarrow{CP^{-1}} \tau + \frac{\lambda}{C}.$$

(16)

The resulting transformation has to be a modular transformation, therefore λ/C is an integer. Since $|\lambda| = 1$, we find $|C| = 1$ and $\lambda = \pm 1$. After choosing the sign of C as $C = \mp 1$ so that $\text{Im}[\tau_{CP}] > 0$, the CP transformation of Eq. (15) turns to

$$\tau \xrightarrow{CP} n - \tau^*,$$

(17)

where n is an integer. The chain $CP \rightarrow S \rightarrow CP^{-1} = \gamma'(S)$ imposes no further restrictions on τ_{CP}. It is always possible to redefine the CP transformation in such a way that $n = 0$ by using the freedom of T transformation. Therefore, we define that the modulus τ transforms under CP as

$$\tau \xrightarrow{CP} -\tau^*,$$

(18)

without loss of generality.
The same transformation of τ was also derived from the higher dimensional theories [94]. The four-dimensional CP symmetry can be embedded into $(4+d)$ dimensions as higher dimensional proper Lorentz symmetry with positive determinant. That is, one can combine the four-dimensional CP transformation and d-dimensional transformation with negative determinant so as to obtain $(4 + d)$ dimensional proper Lorentz transformation. For example in six-dimensional theory, we denote the two extra coordinates by a complex coordinate z. The four-dimensional CP symmetry with $z \rightarrow z^*$ or $z \rightarrow -z^*$ is a six-dimensional proper Lorentz symmetry. Note that $z = x + \tau y$, where x and y are real coordinates. The latter transformation $z \rightarrow -z^*$ maps the upper half plane $\text{Im}[\tau] > 0$ to the same half plane. Hence, we consider the transformation $z \rightarrow -z^*(\tau \rightarrow -\tau^*)$ as the CP symmetry.

2.4 CP transformation of modular multiplets

Chiral superfields and modular forms transform in Eqs. (8) and (9), respectively, under a modular transformation. Chiral superfields also transform in Eq. (1) under the CP transformation. The CP transformation of modular forms were given in Ref. [93] as follows. Define a modular multiplet of the irreducible representation r of Γ_N with weight k as $Y_r^{(k)}(\tau)$, which is transformed as:

$$ Y_r^{(k)}(\tau) \xrightarrow{\text{CP}} Y_r^{(k)}(-\tau^*), \quad (19) $$

under the CP transformation. The complex conjugated CP transformed modular forms $Y_r^{(k)*}(-\tau^*)$ transform almost like the original multiplets $Y_r^{(k)}(\tau)$ under a modular transformation, namely:

$$ Y_r^{(k)*}(-\tau^*) \xrightarrow{\gamma} Y_r^{(k)*}(-(\gamma \tau)^*) = (c\tau + d)^k \rho_r^{\gamma}(u(\gamma))Y_r^{(k)*}(-\tau^*), \quad (20) $$

where $u(\gamma) \equiv CP\gamma CP^{-1}$. Using the consistency condition of Eq. (3), we obtain

$$ X_r^T Y_r^{(k)*}(-\tau^*) \xrightarrow{\gamma} (c\tau + d)^k \rho_r(\gamma)X_r^T Y_r^{(k)*}(-\tau^*). \quad (21) $$

Therefore, if there exist a unique modular multiplet at a level N, weight k and representation r, which is satisfied for $N = 2 - 5$ with weight 2, we can express the modular form $Y_r^{(k)}(\tau)$ as:

$$ Y_r^{(k)}(\tau) = \kappa X_r^T Y_r^{(k)*}(-\tau^*), \quad (22) $$

where κ is a proportional coefficient. Since $Y_r^{(k)}(-(\tau^*)^*) = Y_r^{(k)}(\tau)$, Eq. (22) gives $X_r^T X_r = |\kappa|^2 1_r$. Therefore, the matrix X_r is symmetric one, and $\kappa = e^{i\theta}$ is a phase, which can be absorbed in the normalization of modular forms. In conclusion, the CP transformation of modular forms is given as:

$$ Y_r^{(k)}(\tau) \xrightarrow{\text{CP}} Y_r^{(k)}(-\tau^*) = X_r Y_r^{(k)*}(\tau). \quad (23) $$

It is also emphasized that $X_r = 1_r$ satisfies the consistency condition Eq. (3) in a basis that generators of S and T of Γ_N are represented by symmetric matrices because of $\rho_r^*(S) = \rho_r(S) = \rho_r(S^{-1}) = \rho_r(S)$ and $\rho_r^*(T) = \rho_r(T) = \rho_r(T^{-1})$.

The CP transformations of chiral superfields and modular multiplets are summarized as follows:

$$ \tau \xrightarrow{\text{CP}} -\tau^*, \quad \psi(x) \xrightarrow{\text{CP}} X_r \psi(x^c), \quad Y_r^{(k)}(\tau) \xrightarrow{\text{CP}} Y_r^{(k)}(-\tau^*) = X_r Y_r^{(k)*}(\tau), \quad (24) $$

where $X_r = 1_r$ can be taken in the base of symmetric generators of S and T. We use this CP transformation of modular forms to construct the CP invariant mass matrices in the next section.
3 CP invariant mass matrix in A_4 modular symmetry

Let us discuss the CP invariant lepton mass matrix in the framework of the A_4 modular symmetry. We assign the A_4 representation and weight for superfields of leptons in Table 1, where the three left-handed lepton doublets compose a A_4 triplet L, and the right-handed charged leptons e^c, μ^c and τ^c are A_4 singlets. The weights of the superfields of left-handed leptons and right-handed charged leptons are -2 and 0, respectively. Then, the simple lepton mass matrices for charged leptons and neutrinos are obtained [75].

	$SU(2)$	(e^c, μ^c, τ^c)	H_u	H_d	$Y_r^{(2)}$, $Y_r^{(4)}$
A_4	3	$(1, 1''', 1')$	1	1	3, $\{3, 1, 1'\}$
k	-2	$(0, 0, 0)$	0	0	2, 4

Table 1: Representations and weights k for MSSM fields and modular forms of weight 2 and 4.

The superpotential of the charged lepton mass term is given in terms of modular forms of weight 2, $Y_3^{(2)}$. It is given as:

$$w_E = \alpha_e e^c H_d Y_3^{(2)} L + \beta_e \mu^c H_d Y_3^{(2)} L + \gamma_e \tau^c H_d Y_3^{(2)} L,$$

where L is the left-handed A_4 triplet leptons. We can take real for α_e, β_e and γ_e. Under CP, the superfields transform as:

$$e^c \xrightarrow{CP} X_1^* \bar{e}^c, \quad \mu^c \xrightarrow{CP} X_1^* \bar{\mu}^c, \quad \tau^c \xrightarrow{CP} X_1^* \bar{\tau}^c, \quad L \xrightarrow{CP} X_3 \bar{L}, \quad H_d \xrightarrow{CP} \eta_d \bar{H},$$

and we can take $\eta_d = 1$ without loss of generality. Since the representations of S and T are symmetric as seen in Eq. (23), we can choose $X_3 = 1$ and $X_1 = X_1' = X_1'' = 1$.

Taking (e_L, μ_L, τ_L) in the flavor base, the charged lepton mass matrix M_E is simply written as:

$$M_E(\tau) = v_d \begin{pmatrix} \alpha_e & 0 & 0 \\ 0 & \beta_e & 0 \\ 0 & 0 & \gamma_e \end{pmatrix} \begin{pmatrix} Y_1(\tau) & Y_3(\tau) & Y_2(\tau) \\ Y_2(\tau) & Y_1(\tau) & Y_3(\tau) \\ Y_3(\tau) & Y_2(\tau) & Y_1(\tau) \end{pmatrix}_{RL},$$

where v_d is VEV of the neutral component of H_d, and coefficients α_e, β_e and γ_e are taken to be real without loss of generality. Under CP transformation, the mass matrix M_E is transformed following from Eq. (24) as:

$$M_E(\tau) \xrightarrow{CP} M_E(-\tau^*) = M_E^*(\tau) = v_d \begin{pmatrix} \alpha_e & 0 & 0 \\ 0 & \beta_e & 0 \\ 0 & 0 & \gamma_e \end{pmatrix} \begin{pmatrix} Y_1(\tau)^* & Y_3(\tau)^* & Y_2(\tau)^* \\ Y_2(\tau)^* & Y_1(\tau)^* & Y_3(\tau)^* \\ Y_3(\tau)^* & Y_2(\tau)^* & Y_1(\tau)^* \end{pmatrix}_{RL}.$$

Let us discuss the neutrino mass matrix. Suppose neutrinos to be Majorana particles. By using the Weinberg operator, the superpotential of the neutrino mass term, w_ν is given as:

$$w_\nu = -\frac{1}{\Lambda} (H_u H_u L L Y_r^{(4)})_1,$$
where \(\Lambda \) is a relevant cutoff scale. Since the left-handed lepton doublet has weight \(-2\), the superpotential is given in terms of modular forms of weight 4, \(Y_3^{(4)} \), \(Y_1^{(4)} \) and \(Y_1^{(4)} \).

By putting \(v_\alpha \) for VEV of the neutral component of \(H_u \) and using the tensor products of \(A_4 \) in Appendix A, we have

\[
w_\nu = \frac{v_\nu^2}{\Lambda} \left[\left(\frac{2\nu_\nu \nu_e - \nu_\mu \nu_\tau - \nu_\tau \nu_\mu}{2\nu_\nu \nu_\mu - \nu_\tau \nu_e - \nu_e \nu_\tau} \right) \otimes Y_3^{(4)} \right. \\
+ \left(\nu_\nu \nu_e + \nu_\mu \nu_\tau + \nu_\tau \nu_\mu \right) \otimes g_1^* Y_1^{(4)} \left. + \left(\nu_\nu \nu_e + \nu_\mu \nu_\mu + \nu_\tau \nu_e \right) \otimes g_2^* Y_1^{(4)} \right]
\]

\[
= \frac{v_\mu^2}{\Lambda} \left[\left(2\nu_\nu \nu_e - \nu_\mu \nu_\tau - \nu_\tau \nu_\mu \right) Y_1^{(4)} \right. \\
+ \left(2\nu_\nu \nu_\nu - \nu_\mu \nu_\mu - \nu_\mu \nu_\tau \right) Y_3^{(4)} \left. + \left(2\nu_\nu \nu_\mu - \nu_\mu \nu_\mu - \nu_\tau \nu_\tau \right) Y_2^{(4)} \right. \\
+ \left. \left(\nu_\nu \nu_e + \nu_\mu \nu_\mu + \nu_\tau \nu_e \right) g_1^* Y_1^{(4)} \left. + \left(\nu_\nu \nu_e + \nu_\mu \nu_\mu + \nu_\tau \nu_e \right) g_2^* Y_1^{(4)} \right]
\]

where \(Y_3^{(4)} \), \(Y_1^{(4)} \) and \(Y_1^{(4)} \) are given in Eq. (47) of Appendix B, and \(g_1^* \), \(g_2^* \) are complex parameters in general. The neutrino mass matrix is written as follows:

\[
M_\nu(\tau) = \frac{v_\nu^2}{\Lambda} \left[\left(\frac{2\nu_\nu \nu_\nu - \nu_\mu \nu_\tau - \nu_\tau \nu_\mu}{2\nu_\nu \nu_\mu - \nu_\tau \nu_e - \nu_e \nu_\tau} \right) \otimes Y_3^{(4)} \right. \\
+ \left(\nu_\nu \nu_e + \nu_\mu \nu_\tau + \nu_\tau \nu_\mu \right) \otimes g_1^* Y_1^{(4)} \left. + \left(\nu_\nu \nu_e + \nu_\mu \nu_\mu + \nu_\tau \nu_e \right) \otimes g_2^* Y_1^{(4)} \right]
\]

which is the same one in Ref. \cite{ref}. Under CP transformation, the mass matrix \(M_\nu \) is transformed following from Eq. (24) as:

\[
M_\nu(\tau) \xrightarrow{\text{CP}} M_\nu(-\tau^*) = M_\nu^*(\tau)
\]

\[
= \frac{v_\nu^2}{\Lambda} \left[\left(\frac{2\nu_\nu \nu_\nu - \nu_\mu \nu_\tau - \nu_\tau \nu_\mu}{2\nu_\nu \nu_\mu - \nu_\tau \nu_e - \nu_e \nu_\tau} \right) \otimes Y_3^{(4)} \right. \\
+ \left(\nu_\nu \nu_e + \nu_\mu \nu_\tau + \nu_\tau \nu_\mu \right) \otimes g_1^* Y_1^{(4)} \left. + \left(\nu_\nu \nu_e + \nu_\mu \nu_\mu + \nu_\tau \nu_e \right) \otimes g_2^* Y_1^{(4)} \right]
\]

\[
M_\nu(\tau) \xrightarrow{\text{CP}} M_\nu(-\tau^*) = M_\nu^*(\tau)
\]

In a CP conserving modular invariant theory, both CP and modular symmetries are broken spontaneously by VEV of the modulus \(\tau \). However, there exist certain values of \(\tau \) which conserve CP while breaking the modular symmetry. Obviously, this is the case if \(\tau \) is left invariant by CP, i.e.

\[
\tau \xrightarrow{\text{CP}} -\tau^* = \tau,
\]

which indicates \(\tau \) lies on the imaginary axis, \(\text{Re}[\tau] = 0 \). In addition to \(\text{Re}[\tau] = 0 \), CP is conserved at the boundary of the fundamental domain. Then, one has

\[
M_E(\tau) = M_E^*(\tau), \quad M_\nu(\tau) = M_\nu^*(\tau)
\]

which leads to \(g_1^* \) and \(g_2^* \) being real. Since parameters \(\alpha, \beta, \gamma \) are also real, the source of the CP violation is only non-trivial \(\text{Re}[\tau] \) after breaking the modular symmetry. In the next section, we present numerical analysis of the CP violation by investigating the value of the modulus \(\tau \).
4 Numerical results of leptonic CP violation

We have presented the CP invariant lepton mass matrices in the A_4 modular symmetry. These mass matrices are the same ones in Ref. [75] except for parameters g_1^ν and g_2^ν being real. If the CP violation will be confirmed at the experiments of neutrino oscillations, the CP symmetry should be broken spontaneously by VEV of the modulus τ. Thus, VEV of τ breaks the CP symmetry as well as the modular invariance. The source of the CP violation is only the real part of τ. This situation is different from the previous work in Ref. [73], where imaginary parts of g_1^ν and g_2^ν also break the CP symmetry explicitly. Our phenomenological concern is whether the spontaneous CP violation is realized due to the value of τ, which is consistent with observed lepton mixing angles and neutrino masses. If this is the case, the CP violating Dirac phase and Majorana phases are predicted clearly under the fixed value of τ.

Parameter ratios α_e/γ_e and β_e/γ_e are given in terms of charged lepton masses and τ as shown in Appendix C. Therefore, the lepton mixing angles, the Dirac phase and Majorana phases are given by our model parameters g_1^ν and g_2^ν in addition to the value of τ.

As the input charged lepton masses, we take Yukawa couplings of charged leptons at the GUT scale 2×10^{16} GeV, where $\tan \beta = 5$ is taken as a bench mark [114,115]:

$$y_e = (1.97 \pm 0.024) \times 10^{-6}, \quad y_\mu = (4.16 \pm 0.050) \times 10^{-4}, \quad y_\tau = (7.07 \pm 0.073) \times 10^{-3}, \quad (35)$$

where lepton masses are given by $m_\ell = y_\ell v_H$ with $v_H = 174$ GeV.

observable	best fit $\pm 1 \sigma$ for NH	best fit $\pm 1 \sigma$ for IH
$\sin^2 \theta_{12}$	$0.304^{+0.012}_{-0.012}$	$0.304^{+0.013}_{-0.012}$
$\sin^2 \theta_{23}$	$0.573^{+0.016}_{-0.020}$	$0.575^{+0.016}_{-0.019}$
$\sin^2 \theta_{13}$	$0.2219^{+0.00062}_{-0.00063}$	$0.02238^{+0.00063}_{-0.00062}$
Δm_{sol}^2	$7.42^{+0.21}_{-0.20} \times 10^{-5} eV^2$	$7.42^{+0.21}_{-0.20} \times 10^{-5} eV^2$
Δm_{atm}^2	$2.517^{+0.026}_{-0.028} \times 10^{-3} eV^2$	$-2.498^{+0.028}_{-0.028} \times 10^{-3} eV^2$

Table 2: The best fit $\pm 1 \sigma$ of neutrino parameters from NuFIT 5.0 for NH and IH [116].

We also input the lepton mixing angles and neutrino mass parameters which are given by NuFit 5.0 in Table 2 [116]. In our analysis, δ_{CP} is output because its observed range is too wide at 3σ confidence level. We investigate two possible cases of neutrino masses m_i, which are the normal hierarchy (NH), $m_3 > m_2 > m_1$, and the inverted hierarchy (IH), $m_2 > m_1 > m_3$. Neutrino masses and the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix U_{PMNS} [95,96] are obtained by diagonalizing $M_1^H M_E$ and $M_2^H M_\nu$. We also investigate the effective mass for the $0\nu\beta\beta$ decay, $\langle m_{ee} \rangle$ (see Appendix D) and the sum of three neutrino masses $\sum m_i$ since it is constrained by the recent cosmological data, which is the upper-bound $\sum m_i \leq 120$ meV obtained at the 95% confidence level [117,118].

4.1 Case of normal hierarchy of neutrino masses

Let us discuss numerical results for NH of neutrino masses. The ratios α_e/γ_e and β_e/γ_e are given after fixing charged lepton masses and τ as shown in Appendix C. However, in practice, we scan
\(\alpha_e/\gamma_e\) and \(\beta_e/\gamma_e\) to obtain the observed charged lepton mass ratio and include them in \(\chi^2\) fit as well as three mixing angles and \(\Delta m_{atm}^2/\Delta m_{sol}^2\).

We have already studied the lepton mass matrices in Eqs. (27) and (31) phenomenologically at the nearby fixed points of the modulus because the spontaneous CP violation in Type IIB string theory is possibly realized at nearby fixed points, where the moduli stabilization is performed in a controlled way \([119,120]\). There are two fixed points in the fundamental domain of \(PSL(2, \mathbb{Z})\), \(\tau = i\) and \(\tau = \omega\). Indeed, the viable \(\tau\) of our lepton mass matrices is found around \(\tau = i\) \([75]\).

Based on this result of Ref. \([75]\), we scan \(\tau\) around \(i\) while neutrino couplings \(g_1^\nu\) and \(g_2^\nu\) are scanned in the real space of \([-10, 10]\). As a measure of good-fit, we adopt the sum of one-dimensional \(\chi^2\) function for four accurately known dimensionless observables \(\Delta m_{atm}^2/\Delta m_{sol}^2\), \(\sin^2 \theta_{12}\), \(\sin^2 \theta_{23}\) and \(\sin^2 \theta_{13}\) in NuFit 5.0 \([116]\). In addition, we employ Gaussian approximations for fitting \(m_e/m_\tau\) and \(m_\mu/m_\tau\) by using the data of PDG \([121]\).

In Fig. 1 we show the allowed region on the \(\text{Re}\left[\tau\right] - \text{Im}\left[\tau\right]\) plane, where three mixing angles and \(\Delta m_{atm}^2/\Delta m_{sol}^2\) are consistent with observed ones. The green, yellow and red regions correspond to 2\(\sigma\), 3\(\sigma\) and 5\(\sigma\) confidence levels, respectively.

The allowed region of \(\tau\) is restricted in the narrow regions. This result is contrast to the previous one in Ref. \([75]\), where non-trivial phases of \(g_1^\nu\) and \(g_2^\nu\) enlarged the allowed region of \(\tau\). The predicted range of \(\tau\) is in \(\text{Re}\left[\tau\right] = \pm[0.073, 0.083]\) and \(\text{Im}\left[\tau\right] = [1.006, 1.014]\) at 3\(\sigma\) confidence level (yellow), which are close to the fixed point \(\tau = i\).

The allowed region of \(g_1^\nu\) and \(g_2^\nu\) is also shown in Fig. 2, where \(g_1^\nu\) is in the rather wide region of \([-0.18, 0.18]\) while \(g_2^\nu\) is restricted in \([-0.87, -0.79]\) at 3\(\sigma\) confidence level (yellow).

Due to restricted \(\text{Re}\left[\tau\right]\), the CP violating Dirac phase \(\delta_{CP}\), which is defined in Appendix D, is predicted clearly. In Fig. 3, we show prediction of \(\delta_{CP}\) versus the sum of neutrino masses \(\sum m_i\). It is remarked that \(\delta_{CP}\) is almost independent of \(\sum m_i\). The predicted ranges of \(\delta_{CP}\) are narrow such as \([98^\circ, 110^\circ]\) and \([250^\circ, 262^\circ]\) at 3\(\sigma\) confidence level (yellow). The predicted ranges \([98^\circ, 110^\circ]\) and \([250^\circ, 262^\circ]\) correspond to \(\text{Re}\left[\tau\right] = (0.073-0.083)\) and \(\text{Re}\left[\tau\right] = -(0.073-0.083)\), respectively.
predicted $\sum m_i$ is in [82, 102] meV for 3 σ confidence level (yellow). The minimal cosmological model, ΛCDM + $\sum m_i$, provides the upper-bound $\sum m_i < 120$ meV [117, 118]. Thus, our predicted sum of neutrino masses is consistent with the cosmological bound 120 meV.

In Fig. 4, we show the allowed region on the $\sin^2 \theta_{23} - \sum m_i$ plane. Since $\sum m_i$ depends on the value of $\sin^2 \theta_{23}$ significantly, the crucial test of our prediction will be available in the near future.

In Fig. 5, we show the prediction of Majorana phases α_{21} and α_{31}, which are defined by Appendix D. The predicted $[\alpha_{21}, \alpha_{31}]$ are around [30°, 20°] and [330°, 340°] since the source of the CP violation, Re $[\tau]$ is in the narrow range Re $[\tau] = \pm[0.073, 0.083]$.

We can calculate the effective mass $\langle m_{ee} \rangle$ for the $0\nu\beta\beta$ decay by using the Dirac phase and Majorana phases as seen in Appendix D. We show the predicted value of $\langle m_{ee} \rangle$ versus $\sin^2 \theta_{23}$ as seen in Fig. 6. The predicted $\langle m_{ee} \rangle$ is in [12.5, 20.5] meV for 3 σ confidence level (yellow). The prediction of $\langle m_{ee} \rangle \simeq 20$ meV will be testable in the future experiments of the neutrinoless double beta decay.

Figure 3: The prediction of δ_{CP} versus $\sum m_i$ for NH. Colors denote same ones in Fig. 1.

Figure 4: The allowed region on $\sin^2 \theta_{23} - \sum m_i$ plane for NH. Colors denote same ones in Fig. 1.

Figure 5: Predicted Majorana phases α_{21} and α_{31} for NH. Colors denote same ones in Fig. 1.

Figure 6: The predicted $\langle m_{ee} \rangle$ versus $\sin^2 \theta_{23}$ for NH. Colors denote same ones in Fig. 1.
4.2 Case of inverted hierarchy of neutrino masses

We discuss the case of IH of neutrino masses. In Fig. 7, we show the allowed region on the $\text{Re} \left[\tau \right] - \text{Im} \left[\tau \right]$ plane, where the red region corresponds to 5σ confidence level like in Fig. 1. However, there are no green and yellow regions of 2σ and 3σ confidence levels.

![Figure 7: Allowed regions of \(\tau \) for IH. Red corresponds to 5\(\sigma \) confidence level.](image)

Figure 7: Allowed regions of \(\tau \) for IH. Red corresponds to 5\(\sigma \) confidence level.

![Figure 8: The allowed region of \(g'_{\nu_1} \) and \(g'_{\nu_2} \), which are real parameters, for IH.](image)

Figure 8: The allowed region of \(g'_{\nu_1} \) and \(g'_{\nu_2} \), which are real parameters, for IH.

The range of \(\tau \) is in $\text{Re} \left[\tau \right] = \pm [0.009, 0.012]$ and $\text{Im} \left[\tau \right] = [1.076, 1.087]$ at 5σ confidence level, which are close to $\tau = i$.

The allowed region of \(g'_{\nu_1} \) and \(g'_{\nu_2} \) is also shown in Fig. 8, where \(g'_{\nu_1} \) is restricted in the narrow range of $[-1.20, -1.15]$ while \(g'_{\nu_2} \) is rather large as in $[4, 9.6]$ for 5σ.

![Figure 9: The prediction of \(\delta_{CP} \) versus $\sum m_i$ for IH.](image)

Figure 9: The prediction of δ_{CP} versus $\sum m_i$ for IH.

![Figure 10: The allowed region on $\sin^2 \theta_{23} - \sum m_i$ plane for IH.](image)

Figure 10: The allowed region on $\sin^2 \theta_{23} - \sum m_i$ plane for IH.

In Fig. 9, we show prediction of δ_{CP} versus $\sum m_i$. It is remarked that δ_{CP} is almost independent of $\sum m_i$. The predicted range of δ_{CP} is in $[95^\circ, 100^\circ]$ and $[260^\circ, 265^\circ]$ at 5σ confidence level while the sum of neutrino masses are in the range of $[134, 180]$ meV. In our numerical result, there is no region
of the sum of neutrino masses less than 120 meV. The upper-bound of the minimal cosmological model, ΛCDM + $\sum m_i$, is $\sum m_i < 120$ meV \cite{17, 18}, however, it becomes weaker when the data are analysed in the context of extended cosmological models \cite{21}. The predicted sum of neutrino masses of IH may be still consistent with the cosmological bound.

We show the allowed region on the $\sum m_i - \sin^2 \theta_{23}$ plane in Fig.~10. The precise measurement of $\sin^2 \theta_{23}$ will provide a severe test for our prediction since $\sin^2 \theta_{23} > 0.55$ is obtained for IH.

In Fig.~11, we show the prediction of Majorana phases α_{21} and α_{31}. The predicted $[\alpha_{21}, \alpha_{31}]$ are restricted around $[3^\circ, 182^\circ]$ and $[356^\circ, 178^\circ]$. We also show the predicted value of $\langle m_{ee} \rangle$ versus $\sin^2 \theta_{23}$ as seen in Fig.~12. The predicted $\langle m_{ee} \rangle$ is in $[54, 67]$ meV for 5σ confidence level.

![Figure 11: Predicted Majorana phases α_{21} and α_{31} for IH.](image1)

![Figure 12: The predicted $\langle m_{ee} \rangle$ versus $\sin^2 \theta_{23}$ for IH.](image2)

	NH	IH
τ	$-0.0796 + 1.0065 i$	$0.0103 + 1.0812 i$
g_1^ν	0.124	-1.17
g_2^ν	-0.802	6.79
α_e/γ_e	6.82×10^{-2}	6.76×10^{-2}
β_e/γ_e	1.02×10^{-3}	1.02×10^{-3}
$\sin^2 \theta_{12}$	0.290	0.291
$\sin^2 \theta_{23}$	0.564	0.579
$\sin^2 \theta_{13}$	0.0225	0.0219
δ^e_{CP}	258°	262°
$[\alpha_{21}, \alpha_{31}]$	$[330^\circ, 338^\circ]$	$[3.24^\circ, 182^\circ]$
$\sum m_i$	97.9 meV	153 meV
$\langle m_{ee} \rangle$	19.2 meV	59.1 meV
χ^2	1.98	4.12

Table 3: Numerical values of parameters and observables at the sample points of NH and IH.
4.3 Parameter samples of NH and IH

We show the numerical result of two samples for NH and IH, respectively. In Table 3, parameters and outputs of our calculations are presented for both NH and IH.

We also present the mixing matrices of charged leptons U_E and neutrinos U_ν for the samples of Table 3. For NH, those are:

$$U_E \approx \begin{pmatrix}
0.983 & -0.020 + 0.158 i & -0.011 + 0.092 i \\
0.016 + 0.130 i & 0.958 & -0.255 + 0.001 i \\
0.016 + 0.129 i & 0.239 + 0.001 i & 0.962 \\
\end{pmatrix},$$

$$U_\nu \approx \begin{pmatrix}
0.838 & -0.541 + 0.068 i & -0.008 + 0.031 i \\
0.450 + 0.076 i & 0.688 & 0.564 - 0.0008 i \\
-0.299 - 0.021 i & -0.478 - 0.020 i & 0.825 \\
\end{pmatrix},$$

which are given in the diagonal base of the generator S in order to see the hierarchical structure of flavor mixing \cite{75}. The PMNS mixing matrix is given as $U_{PMNS} = U_E^\dagger U_\nu$. The diagonal base of S is obtained by using the following unitary matrix:

$$V_S \equiv \begin{pmatrix}
-\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & \frac{\sqrt{3}}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
\frac{\sqrt{2}}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
\end{pmatrix},$$

which leads to $V_S S V_S^\dagger = \text{diag}(1, -1, -1)$ \cite{75}. Then, the charged lepton and neutrino mass matrices are transformed as $V_S M_f V_S^\dagger (f = E, \nu)$.

For IH, the mixing matrices are:

$$U_E \approx \begin{pmatrix}
0.983 & 0.155 + 0.019 i & 0.091 + 0.011 i \\
0.127 + 0.015 i & 0.956 & -0.264 - 0.001 i \\
-0.128 + 0.016 i & 0.248 - 0.001 i & 0.960 \\
\end{pmatrix},$$

$$U_\nu \approx \begin{pmatrix}
0.840 & 0.0007 + 0.542 i & 0.032 - 0.001 i \\
-0.022 + 0.445 i & 0.691 & 0.570 - 0.002 i \\
-0.016 - 0.310 i & -0.478 - 0.023 i & 0.821 \\
\end{pmatrix},$$

which are also given in the diagonal base of the generator S.

For both NH and IH, the mixing matrix of charged leptons U_E is hierarchical one, on the other hand, two large mixing angles of 1–2 and 2–3 flavors appear in the neutrino mixing matrix U_ν.

In our numerical calculations, we have not included the RGE effects in the lepton mixing angles and neutrino mass ratio $\Delta m^2_{\text{sol}}/\Delta m^2_{\text{atm}}$. We suppose that those corrections are very small between the electroweak and GUT scales. This assumption is justified well in the case of $\tan \beta \leq 5$ unless neutrino masses are almost degenerate \cite{27}.

5 Summary

The modular invariant A_4 model of lepton flavors has been studied combining with the generalized CP symmetry. In our model, both CP and modular symmetries are broken spontaneously by VEV
of the modulus τ. The source of the CP violation is a non-trivial value of $\text{Re}[\tau]$ while parameters of neutrinos g_1^ν and g_2^ν are real.

We have found allowed region of τ close to the fixed point $\tau = i$, which is consistent with the observed lepton mixing angles and lepton masses for NH at 2σ confidence level. The CP violating Dirac phase δ_{CP} is predicted clearly in $[98^\circ, 110^\circ]$ and $[250^\circ, 262^\circ]$ at 3σ confidence level. The predicted $\sum m_i$ is in $[82, 102]$ meV with 3σ confidence level. There is also allowed region of τ close to the fixed point $\tau = i$ for IH at 5σ confidence level. The predicted δ_{CP} is in $[95^\circ, 100^\circ]$ and $[260^\circ, 265^\circ]$ at 5σ confidence level. The sum of neutrino masses is predicted in $\sum m_i = [134, 180]$ meV.

By using the predicted Dirac phase and the Majorana phases, we have obtained the effective mass $\langle m_{ee}\rangle$ for the $0\nu\beta\beta$ decay, which are in $[12.5, 20.5]$ meV for NH at 3σ confidence level and in $[54, 67]$ meV for IH at 5σ confidence level. Since KamLAND-Zen experiment \cite{122} presented the upper bound on the effective Majorana mass as $\langle m_{ee}\rangle < 61–165$ meV by using a variety of nuclear matrix element calculations, the prediction of $[54, 67]$ meV for IH will be tested in the near future. Furthermore, the prediction of $\langle m_{ee}\rangle \simeq 20$ meV for NH will be also testable in the future experiments of the neutrinoless double beta decay.

In our model, the modulus τ dominates the CP violation. Therefore, the determination of τ is the most important work. Although we have constrained τ by observables of leptons phenomenologically, one also should pay attention to the recent theoretical work of the moduli stabilization from the viewpoint of modular flavor symmetries \cite{123}. The study of modulus τ is interesting to reveal the flavor theory in both theoretical and phenomenological aspects.

Acknowledgments

This research was supported by an appointment to the JRG Program at the APCTP through the Science and Technology Promotion Fund and Lottery Fund of the Korean Government. This was also supported by the Korean Local Governments - Gyeongsangbuk-do Province and Pohang City (H.O.). H. O. is sincerely grateful for the KIAS member.

Appendix

A Tensor product of A_4 group

We take the generators of A_4 group for the triplet as follows:

$$S = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}, \quad (39)$$
where $\omega = e^{i\frac{2}{3}\pi}$ for a triplet. In this base, the multiplication rule is

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}_3 \otimes \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}_3 = (a_1 b_1 + a_2 b_3 + a_3 b_2)_1 \oplus (a_2 b_2 + a_1 b_3 + a_3 b_1)_1 \oplus (a_2 b_2 + a_1 b_3 + a_3 b_1)_1',$$

$$\oplus (a_2 b_2 + a_1 b_3 + a_3 b_1)_1',$$

$$\frac{1}{3} \begin{pmatrix} 2a_1 b_1 - a_2 b_3 - a_3 b_2 \\ 2a_2 b_2 - a_1 b_3 - a_3 b_1 \\ 2a_3 b_3 - a_1 b_2 - a_2 b_1 \end{pmatrix}_3 \oplus \frac{1}{2} \begin{pmatrix} a_2 b_2 - a_1 b_3 \\ a_1 b_2 - a_2 b_1 \\ a_3 b_1 - a_1 b_3 \end{pmatrix}_3,$$

$$1 \otimes 1 = 1, \quad 1' \otimes 1' = 1'', \quad 1'' \otimes 1' = 1', \quad 1' \otimes 1'' = 1,$$ \hfill (40)

where

$$T(1') = \omega, \quad T(1'') = \omega^2.$$ \hfill (41)

More details are shown in the review [6,7].

B Modular forms in \(A_4\) symmetry

For \(\Gamma_3 \cong A_4\), the dimension of the linear space \(\mathcal{M}_k(\Gamma(3))\) of modular forms of weight \(k\) is \(k + 1\) [11,113], i.e., there are three linearly independent modular forms of the lowest non-trivial weight 2. These forms have been explicitly obtained [22] in terms of the Dedekind eta-function \(\eta(\tau)\):

$$\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n), \quad q = \exp (i2\pi \tau),$$ \hfill (42)

where \(\eta(\tau)\) is a so called modular form of weight 1/2. In what follows we will use the following base of the \(A_4\) generators \(S\) and \(T\) in the triplet representation:

$$S = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix},$$ \hfill (43)

where \(\omega = \exp(i\frac{2}{3}\pi)\). The modular forms of weight 2 \((k = 2)\) transforming as a triplet of \(A_4\), \(Y_3^{(2)}(\tau) = (Y_1(\tau) Y_2(\tau), Y_3(\tau))^T\), can be written in terms of \(\eta(\tau)\) and its derivative [22]:

$$Y_1(\tau) = \frac{i}{2\pi} \left(\frac{\eta'((\tau)/3)}{\eta(\tau/3)} + \frac{\eta'((\tau + 1)/3)}{\eta((\tau + 1)/3)} + \frac{\eta'((\tau + 2)/3)}{\eta((\tau + 2)/3)} - \frac{27\eta'(3\tau)}{\eta(3\tau)} \right),$$

$$Y_2(\tau) = -\frac{i}{\pi} \left(\frac{\eta'((\tau)/3)}{\eta(\tau/3)} + \omega^2 \frac{\eta'((\tau + 1)/3)}{\eta((\tau + 1)/3)} + \omega \frac{\eta'((\tau + 2)/3)}{\eta((\tau + 2)/3)} \right),$$

$$Y_3(\tau) = -\frac{i}{\pi} \left(\frac{\eta'((\tau)/3)}{\eta(\tau/3)} + \omega \frac{\eta'((\tau + 1)/3)}{\eta((\tau + 1)/3)} + \omega^2 \frac{\eta'((\tau + 2)/3)}{\eta((\tau + 2)/3)} \right).$$ \hfill (44)
The overall coefficient in Eq. (44) is one possible choice. It cannot be uniquely determined. The triplet modular forms of weight 2 have the following q- expansions:

\[
Y_3^{(2)}(\tau) = \begin{pmatrix}
Y_1(\tau) \\
Y_2(\tau) \\
Y_3(\tau)
\end{pmatrix} = \begin{pmatrix}
1 + 12q + 36q^2 + 12q^3 + \ldots \\
-6q^{1/3}(1 + 7q + 8q^2 + \ldots) \\
-18q^{2/3}(1 + 2q + 5q^2 + \ldots)
\end{pmatrix}.
\] (45)

They satisfy also the constraint [22]:

\[
Y_2(\tau)^2 + 2Y_1(\tau)Y_3(\tau) = 0.
\] (46)

The modular forms of the higher weight, k, can be obtained by the A_4 tensor products of the modular forms with weight 2, $Y_3^{(2)}(\tau)$, as given in Appendix A. For weight 4, that is $k = 4$, there are five modular forms by the tensor product of $3 \otimes 3$ as:

\[
Y_1^{(4)}(\tau) = Y_1(\tau)^2 + 2Y_2(\tau)Y_3(\tau), \quad Y_1^{(4)}(\tau) = Y_3(\tau)^2 + 2Y_1(\tau)Y_2(\tau),
\]

\[
Y_1^{(4)}(\tau) = Y_2(\tau)^2 + 2Y_1(\tau)Y_3(\tau) = 0, \quad Y_3^{(4)}(\tau) = \begin{pmatrix}
Y_1^{(4)}(\tau) \\
Y_2^{(4)}(\tau) \\
Y_3^{(4)}(\tau)
\end{pmatrix} = \begin{pmatrix}
Y_1(\tau)^2 - Y_2(\tau)Y_3(\tau) \\
Y_3(\tau)^2 - Y_1(\tau)Y_2(\tau) \\
Y_2(\tau)^2 - Y_1(\tau)Y_3(\tau)
\end{pmatrix},
\] (47)

where $Y_1^{(4)}(\tau)$ vanishes due to the constraint of Eq. (46).

C Determination of α_e/γ_e and β_e/γ_e

The coefficients α_e, β_e, and γ_e in Eq. (27) are taken to be real positive without loss of generality. We show these parameters are described in terms of the modular parameter τ and the charged lepton masses. We rewrite the mass matrix of Eq. (27) as

\[
M_E = v_d\gamma_e \begin{pmatrix}
\hat{\alpha}_e & 0 & 0 \\
0 & \hat{\beta}_e & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
Y_1(\tau) & Y_3(\tau) & Y_2(\tau) \\
Y_2(\tau) & Y_1(\tau) & Y_3(\tau) \\
Y_3(\tau) & Y_2(\tau) & Y_1(\tau)
\end{pmatrix},
\] (48)

where $\hat{\alpha}_e \equiv \alpha_e/\gamma_e$ and $\hat{\beta}_e \equiv \beta_e/\gamma_e$. Denoting charged lepton masses $m_1 = m_e$, $m_2 = m_\mu$ and $m_3 = m_\tau$, we have three equations as:

\[
\sum_{i=1}^{3} m_i^2 = \text{Tr}[M_E^\dagger M_E] = v_d^2\gamma_e^2 (1 + \hat{\alpha}_e^2 + \hat{\beta}_e^2) C_1^e,
\] (49)

\[
\prod_{i=1}^{3} m_i^2 = \text{Det}[M_E^\dagger M_E] = v_d^6\gamma_e^6 \hat{\alpha}_e^2\hat{\beta}_e^2 C_2^e,
\] (50)

\[
\chi = \frac{\text{Tr}[M_E^\dagger M_E]^2 - \text{Tr}[(M_E^\dagger M_E)^2]}{2} = v_d^4\gamma_e^4 (\hat{\alpha}_e^2 + \hat{\alpha}_e^2 \hat{\beta}_e^2 + \hat{\beta}_e^2) C_3^e,
\] (51)
where $\chi \equiv m_1^2 m_2^2 + m_2^2 m_3^2 + m_3^2 m_1^2$. The coefficients C_1^e, C_2^e and C_3^e depend only on $Y_i(\tau)$'s, where $Y_i(\tau)$'s are determined if the value of modulus τ is fixed. Those are given explicitly as follows:

\[
\begin{align*}
C_1^e &= |Y_1(\tau)|^2 + |Y_2(\tau)|^2 + |Y_3(\tau)|^2, \\
C_2^e &= |Y_1(\tau)|^3 + Y_2(\tau)^3 + Y_3(\tau)^3 - 3Y_1(\tau)Y_2(\tau)Y_3(\tau)|^2, \\
C_3^e &= |Y_1(\tau)|^4 + |Y_2(\tau)|^4 + |Y_3(\tau)|^4 + |Y_1(\tau)Y_2(\tau)|^2 + |Y_2(\tau)Y_3(\tau)|^2 + |Y_1(\tau)Y_3(\tau)|^2 \\
&\quad - 2\Re \left[Y_1^{*}(\tau)Y_2^{*}(\tau)Y_3^{*}(\tau) + Y_1^{*}(\tau)Y_2^{*}(\tau)Y_3^{*}(\tau) + Y_1^{*}(\tau)Y_2^{*}(\tau)Y_3^{*}(\tau) \right].
\end{align*}
\]

Then, we obtain two equations which describe $\hat{\alpha}_e$ and $\hat{\beta}_e$ in terms of masses and τ:

\[
\frac{(1 + s)(s + t)}{t} = \frac{(\sum m_i^2/C_i^e)(\chi/C_3^e)}{\prod m_i^2/C_2^e}, \quad \frac{(1 + s)^2}{s + t} = \frac{(\sum m_i^2/C_i^e)^2}{\chi/C_2^e},
\]

where we redefine the parameters $\hat{\alpha}_e^2 + \hat{\beta}_e^2 = s$ and $\hat{\alpha}_e \hat{\beta}_e = t$. After fixing charged lepton masses and τ, we obtain s and t numerically. They are related as follows:

\[
\hat{\alpha}_e^2 = \frac{s \pm \sqrt{s^2 - 4t}}{2}, \quad \hat{\beta}_e^2 = \frac{s \mp \sqrt{s^2 - 4t}}{2}.
\]

D. Majorana and Dirac phases and $\langle m_{ee} \rangle$ in $0\nu\beta\beta$ decay

Supposing neutrinos to be Majorana particles, the PMNS matrix U_{PMNS} is parametrized in terms of the three mixing angles θ_{ij} ($i, j = 1, 2, 3; i < j$), one CP violating Dirac phase δ_{CP} and two Majorana phases α_{21}, α_{31} as follows:

\[
U_{\text{PMNS}} = \begin{pmatrix}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta_{\text{CP}}} \\
-s_{12} c_{23} - c_{12} s_{23} s_{13} e^{i \delta_{\text{CP}}} & c_{12} c_{23} - s_{12} s_{23} s_{13} e^{i \delta_{\text{CP}}} & s_{23} c_{13} \\
s_{12} s_{23} - c_{12} c_{23} s_{13} e^{i \delta_{\text{CP}}} & -c_{12} s_{23} - s_{12} c_{23} s_{13} e^{i \delta_{\text{CP}}} & c_{23} c_{13}
\end{pmatrix}
\]

where c_{ij} and s_{ij} denote $\cos \theta_{ij}$ and $\sin \theta_{ij}$, respectively.

The rephasing invariant CP violating measure of leptons is defined by the PMNS matrix elements U_{ai}. It is written in terms of the mixing angles and the CP violating phase as:

\[
J_{\text{CP}} = \text{Im} \left[U_{e1} U_{\mu2} \bar{U}_{e2} U_{\mu1}^{*} \right] = s_{23} c_{23} s_{12} c_{12} s_{13} c_{13}^2 \sin \delta_{\text{CP}},
\]

where U_{ai} denotes the each component of the PMNS matrix.

There are also other invariants I_1 and I_2 associated with Majorana phases:

\[
I_1 = \text{Im} [U_{e1}^{*} U_{e2}] = c_{12} s_{12} c_{13}^2 \sin \left(\frac{\alpha_{21}}{2} \right), \quad I_2 = \text{Im} [U_{e1}^{*} U_{e3}] = c_{12} s_{12} c_{13} \sin \left(\frac{\alpha_{21}}{2} - \delta_{\text{CP}} \right).
\]

We can calculate $\delta_{\text{CP}}, \alpha_{21}$ and α_{31} with these relations by taking account of

\[
\cos \delta_{\text{CP}} = \frac{|U_{\tau 1}|^2 - s_{12}^2 s_{23}^2 - c_{12}^2 s_{23}^2 s_{13}^2}{2 c_{12} s_{12} c_{23} s_{23} s_{13}}, \quad \text{Re} \left[U_{e1}^{*} U_{e2} \right] = c_{12} s_{12} c_{13}^2 \cos \left(\frac{\alpha_{21}}{2} \right), \quad \text{Re} \left[U_{e1}^{*} U_{e3} \right] = c_{12} s_{12} c_{13} \cos \left(\frac{\alpha_{31}}{2} - \delta_{\text{CP}} \right).
\]

In terms of this parametrization, the effective mass for the $0\nu\beta\beta$ decay is given as follows:

\[
\langle m_{ee} \rangle = \left| m_1^2 c_{12}^2 c_{13}^2 + m_2^2 s_{12}^2 c_{13}^2 e^{i \alpha_{21}} + m_3 s_{13}^2 e^{i(\alpha_{31} - 2\delta_{\text{CP}})} \right|.
\]
References

[1] F. Wilczek and A. Zee, Phys. Lett. 70B (1977) 418 Erratum: [Phys. Lett. 72B (1978) 504].

[2] S. Pakvasa and H. Sugawara, Phys. Lett. 73B (1978) 61.

[3] M. Fukugita, M. Tanimoto and T. Yanagida, Phys. Rev. D 57 (1998) 4429 [hep-ph/9709388].

[4] Y. Fukuda et al. [Super-Kamiokande Collaboration], Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003].

[5] G. Altarelli and F. Feruglio, Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211 [hep-ph]].

[6] H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada and M. Tanimoto, Prog. Theor. Phys. Suppl. 183 (2010) 1 [arXiv:1003.3552 [hep-th]].

[7] H. Ishimori, T. Kobayashi, H. Ohki, H. Okada, Y. Shimizu and M. Tanimoto, Lect. Notes Phys. 858 (2012) 1, Springer.

[8] D. Hernandez and A. Y. Smirnov, Phys. Rev. D 86 (2012) 053014 [arXiv:1204.0445 [hep-ph]].

[9] S. F. King and C. Luhn, Rept. Prog. Phys. 76 (2013) 056201 [arXiv:1301.1340 [hep-ph]].

[10] S. F. King, A. Merle, S. Morisi, Y. Shimizu and M. Tanimoto, New J. Phys. 16, 045018 (2014) [arXiv:1402.4271 [hep-ph]].

[11] M. Tanimoto, AIP Conf. Proc. 1666 (2015) 120002.

[12] S. F. King, Prog. Part. Nucl. Phys. 94 (2017) 217 [arXiv:1701.04413 [hep-ph]].

[13] S. T. Petcov, Eur. Phys. J. C 78 (2018) no.9, 709 [arXiv:1711.10806 [hep-ph]].

[14] F. Feruglio and A. Romanino, arXiv:1912.06028 [hep-ph].

[15] E. Ma and G. Rajasekaran, Phys. Rev. D 64, 113012 (2001) [arXiv:hep-ph/0106291].

[16] K. S. Babu, E. Ma and J. W. F. Valle, Phys. Lett. B 552, 207 (2003) [arXiv:hep-ph/0206292].

[17] G. Altarelli and F. Feruglio, Nucl. Phys. B 720 (2005) 64 [hep-ph/0504165].

[18] G. Altarelli and F. Feruglio, Nucl. Phys. B 741 (2006) 215 [hep-ph/0512103].

[19] Y. Shimizu, M. Tanimoto and A. Watanabe, Prog. Theor. Phys. 126 (2011) 81 [arXiv:1105.2929 [hep-ph]].

[20] S. T. Petcov and A. V. Titov, Phys. Rev. D 97 (2018) no.11, 115045 [arXiv:1804.00182 [hep-ph]].

[21] S. K. Kang, Y. Shimizu, K. Takagi, S. Takahashi and M. Tanimoto, PTEP 2018, no. 8, 083B01 (2018) [arXiv:1804.10468 [hep-ph]].

[22] F. Feruglio, in From My Vast Repertoire ...: Guido Altarelli’s Legacy, A. Levy, S. Forte, Stefano, and G. Ridolfi, eds., pp.227–266, 2019, [arXiv:1706.08749 [hep-ph]].
[23] R. de Adelhart Toorop, F. Feruglio and C. Hagedorn, Nucl. Phys. B 858, 437 (2012) [arXiv:1112.1340 [hep-ph]].

[24] T. Kobayashi, K. Tanaka and T. H. Tatsuishi, Phys. Rev. D 98 (2018) no.1, 016004 [arXiv:1803.10391 [hep-ph]].

[25] J. T. Penedo and S. T. Petcov, Nucl. Phys. B 939 (2019) 292 [arXiv:1806.11040 [hep-ph]].

[26] P. P. Novichkov, J. T. Penedo, S. T. Petcov and A. V. Titov, JHEP 1904 (2019) 174 [arXiv:1812.02158 [hep-ph]].

[27] J. C. Criado and F. Feruglio, SciPost Phys. 5 (2018) no.5, 042 [arXiv:1807.01125 [hep-ph]].

[28] T. Kobayashi, N. Omoto, Y. Shimizu, K. Takagi, M. Tanimoto and T. H. Tatsuishi, JHEP 1811 (2018) 196 [arXiv:1808.03012 [hep-ph]].

[29] G. J. Ding, S. F. King and X. G. Liu, JHEP 1909 (2019) 074 [arXiv:1907.11714 [hep-ph]].

[30] P. P. Novichkov, J. T. Penedo, S. T. Petcov and A. V. Titov, JHEP 1904 (2019) 005 [arXiv:1811.04933 [hep-ph]].

[31] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto and T. H. Tatsuishi, JHEP 02 (2020), 097 [arXiv:1907.09141 [hep-ph]].

[32] X. Wang and S. Zhou, JHEP 05 (2020), 017 [arXiv:1910.09473 [hep-ph]].

[33] G. J. Ding, S. F. King and X. G. Liu, Phys. Rev. D 100 (2019) no.11, 115005 [arXiv:1903.12588 [hep-ph]].

[34] X. G. Liu and G. J. Ding, JHEP 1908 (2019) 134 [arXiv:1907.01488 [hep-ph]].

[35] P. Chen, G. J. Ding, J. N. Lu and J. W. F. Valle, [arXiv:2003.02734 [hep-ph]].

[36] P. P. Novichkov, J. T. Penedo and S. T. Petcov, [arXiv:2006.03058 [hep-ph]].

[37] X. G. Liu, C. Y. Yao and G. J. Ding, [arXiv:2006.10722 [hep-ph]].

[38] T. Kobayashi and S. Tamba, Phys. Rev. D 99 (2019) no.4, 046001 [arXiv:1811.11384 [hep-th]].

[39] A. Baur, H. P. Nilles, A. Trautner and P. K. S. Vaudrevange, Phys. Lett. B 795 (2019) 7 [arXiv:1901.03251 [hep-th]].

[40] G. J. Ding, S. F. King, C. C. Li and Y. L. Zhou, JHEP 08 (2020), 164 [arXiv:2004.12662 [hep-ph]].

[41] T. Asaka, Y. Heo, T. H. Tatsuishi and T. Yoshida, JHEP 2001 (2020) 144 [arXiv:1909.06520 [hep-ph]].

[42] T. Asaka, Y. Heo and T. Yoshida, [arXiv:2009.12120 [hep-ph]].

[43] M. K. Behera, S. Mishra, S. Singirala and R. Mohanta, [arXiv:2007.00545 [hep-ph]].
[44] S. Mishra, [arXiv:2008.02095 [hep-ph]].

[45] F. J. de Anda, S. F. King and E. Perdomo, Phys. Rev. D 101 (2020) no.1, 015028 [arXiv:1812.05620 [hep-ph]].

[46] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto and T. H. Tatsuishi, arXiv:1906.10341 [hep-ph].

[47] P. P. Novichkov, S. T. Petcov and M. Tanimoto, Phys. Lett. B 793 (2019) 247 [arXiv:1812.11289 [hep-ph]].

[48] I. de Medeiros Varzielas, S. F. King and Y. L. Zhou, Phys. Rev. D 101 (2020) no.5, 055033 [arXiv:1906.02208 [hep-ph]].

[49] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto, T. H. Tatsuishi and H. Uchida, Phys. Lett. B 794 (2019) 114 [arXiv:1812.11072 [hep-ph]].

[50] H. Okada and M. Tanimoto, Phys. Lett. B 791 (2019) 54 [arXiv:1812.09677 [hep-ph]].

[51] H. Okada and M. Tanimoto, arXiv:1905.13421 [hep-ph].

[52] T. Nomura and H. Okada, Phys. Lett. B 797 (2019) 134799 [arXiv:1904.03937 [hep-ph]].

[53] H. Okada and Y. Orikasa, Phys. Rev. D 100 (2019) no.11, 115037 [arXiv:1907.04716 [hep-ph]].

[54] Y. Kariyazono, T. Kobayashi, S. Takada, S. Tamba and H. Uchida, Phys. Rev. D 100 (2019) no.4, 045014 [arXiv:1904.07546 [hep-th]].

[55] T. Nomura and H. Okada, arXiv:1906.03927 [hep-ph].

[56] H. Okada and Y. Orikasa, arXiv:1908.08409 [hep-ph].

[57] T. Nomura, H. Okada and O. Popov, Phys. Lett. B 803 (2020) 135294 [arXiv:1908.07457 [hep-ph]].

[58] J. C. Criado, F. Feruglio and S. J. D. King, JHEP 2002 (2020) 001 [arXiv:1908.11867 [hep-ph]].

[59] S. F. King and Y. L. Zhou, Phys. Rev. D 101 (2020) no.1, 015001 [arXiv:1908.02770 [hep-ph]].

[60] G. J. Ding, S. F. King, X. G. Liu and J. N. Lu, JHEP 1912 (2019) 030 [arXiv:1910.03460 [hep-ph]].

[61] I. de Medeiros Varzielas, M. Levy and Y. L. Zhou, [arXiv:2008.05329 [hep-ph]].

[62] D. Zhang, Nucl. Phys. B 952 (2020) 114935 [arXiv:1910.07869 [hep-ph]].

[63] T. Nomura, H. Okada and S. Patra, arXiv:1912.00379 [hep-ph].

[64] T. Kobayashi, T. Nomura and T. Shimomura, Phys. Rev. D 102 (2020) no.3, 035019 [arXiv:1912.00637 [hep-ph]].

[65] J. N. Lu, X. G. Liu and G. J. Ding, Phys. Rev. D 101 (2020) no.11, 115020 [arXiv:1912.07573 [hep-ph]].
[66] X. Wang, Nucl. Phys. B 957 (2020), 115105 [arXiv:1912.13284 [hep-ph]].
[67] S. J. D. King and S. F. King, JHEP 09 (2020), 043 [arXiv:2002.00969 [hep-ph]].
[68] M. Abbas, [arXiv:2002.01929 [hep-ph]].
[69] H. Okada and Y. Shoji, Phys. Dark Univ. 31 (2021), 100742 [arXiv:2003.11396 [hep-ph]].
[70] H. Okada and Y. Shoji, Nucl. Phys. B 961 (2020), 115216 [arXiv:2003.13219 [hep-ph]].
[71] G. J. Ding and F. Feruglio, JHEP 06 (2020), 134 [arXiv:2003.13448 [hep-ph]].
[72] T. Nomura and H. Okada, [arXiv:2007.04801 [hep-ph]].
[73] T. Nomura and H. Okada, [arXiv:2007.15459 [hep-ph]].
[74] H. Okada and M. Tanimoto, [arXiv:2005.00775 [hep-ph]].
[75] H. Okada and M. Tanimoto, [arXiv:2009.14242 [hep-ph]].
[76] K. I. Nagao and H. Okada, [arXiv:2008.13686 [hep-ph]].
[77] K. I. Nagao and H. Okada, [arXiv:2010.03348 [hep-ph]].
[78] C. Y. Yao, X. G. Liu and G. J. Ding, [arXiv:2011.03501 [hep-ph]].
[79] X. Wang, B. Yu and S. Zhou, [arXiv:2010.10159 [hep-ph]].
[80] M. Abbas, Phys. Atom. Nucl. 83 (2020) no.5, 764-769.
[81] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto and T. H. Tatsuishi, Phys. Rev. D 100 (2019) no.11, 115045, Erratum: [Phys. Rev. D 101 (2020) no.3, 039904] [arXiv:1909.05139 [hep-ph]].
[82] H. P. Nilles, S. Ramos-Sánchez and P. K. S. Vaudrevange, JHEP 02 (2020), 045 [arXiv:2001.01736 [hep-ph]].
[83] H. P. Nilles, S. Ramos-Sánchez and P. K. S. Vaudrevange, Nucl. Phys. B 957 (2020), 115098 [arXiv:2004.05200 [hep-ph]].
[84] S. Kikuchi, T. Kobayashi, S. Takada, T. H. Tatsuishi and H. Uchida, Phys. Rev. D 102 (2020) no.10, 105010 [arXiv:2005.12642 [hep-th]].
[85] S. Kikuchi, T. Kobayashi, H. Otsuka, S. Takada and H. Uchida, [arXiv:2007.06188 [hep-th]].
[86] K. Ishiguro, T. Kobayashi and H. Otsuka, [arXiv:2010.10782 [hep-th]].
[87] G. Ecker, W. Grimus and W. Konetschny, Nucl. Phys. B 191 (1981), 465-492.
[88] G. Ecker, W. Grimus and H. Neufeld, Nucl. Phys. B 247 (1984), 70-82.
[89] G. Ecker, W. Grimus and H. Neufeld, J. Phys. A 20 (1987), L807.
[90] H. Neufeld, W. Grimus and G. Ecker, Int. J. Mod. Phys. A 3 (1988), 603-616.
[91] W. Grimus and M. N. Rebelo, Phys. Rept. 281 (1997), 239-308 [arXiv:hep-ph/9506272 [hep-ph]].
[92] W. Grimus and L. Lavoura, Phys. Lett. B 579 (2004) 113. [hep-ph/0305309].
[93] P. P. Novichkov, J. T. Penedo, S. T. Petcov and A. V. Titov, JHEP 1907 (2019) 165 [arXiv:1905.11970 [hep-ph]].
[94] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto, T. H. Tatsuishi and H. Uchida, Phys. Rev. D 101 (2020) no.5, 055046 [arXiv:1910.11553 [hep-ph]].
[95] Z. Maki, M. Nakagawa and S. Sakata, Prog. Theor. Phys. 28 (1962) 870.
[96] B. Pontecorvo, Sov. Phys. JETP 26 (1968) 984 [Zh. Eksp. Teor. Fiz. 53 (1967) 1717].
[97] K. Abe et al. [T2K Collaboration], Nature 580 (2020) 339.
[98] P. Adamson et al. [NOvA Collaboration], Phys. Rev. Lett. 118 (2017) no.23, 231801 [arXiv:1703.03328 [hep-ex]].
[99] G. C. Branco, R. G. Felipe and F. R. Joaquim, Rev. Mod. Phys. 84 (2012) 515 [arXiv:1111.5332 [hep-ph]].
[100] M. Holthausen, M. Lindner and M. A. Schmidt, JHEP 1304 (2013) 122 [arXiv:1211.6953 [hep-ph]].
[101] M. C. Chen, M. Fallbacher, K. T. Mahanthappa, M. Ratz and A. Trautner, Nucl. Phys. B 883 (2014) 267 [arXiv:1402.0507 [hep-ph]].
[102] F. Feruglio, C. Hagedorn and R. Ziegler, JHEP 07 (2013), 027 [arXiv:1211.5560 [hep-ph]].
[103] J. Lauer, J. Mas and H. P. Nilles, Phys. Lett. B 226, 251 (1989); Nucl. Phys. B 351, 353 (1991).
[104] W. Lerche, D. Lust and N. P. Warner, Phys. Lett. B 231, 417 (1989).
[105] S. Ferrara, D. Lust and S. Theisen, Phys. Lett. B 233, 147 (1989).
[106] D. Cremades, L. E. Ibanez and F. Marchesano, JHEP 0405, 079 (2004) [hep-th/0404229].
[107] T. Kobayashi and S. Nagamoto, Phys. Rev. D 96, no. 9, 096011 (2017) [arXiv:1709.09784 [hep-th]].
[108] T. Kobayashi, S. Nagamoto, S. Takada, S. Tamba and T. H. Tatsuishi, Phys. Rev. D 97, no. 11, 116002 (2018) [arXiv:1804.06644 [hep-th]].
[109] S. Ferrara, D. Lust, A. D. Shapere and S. Theisen, Phys. Lett. B 225, 363 (1989).
[110] M. Chen, S. Ramos-Sánchez and M. Ratz, Phys. Lett. B 801 (2020), 135153 [arXiv:1909.06910 [hep-ph]].
[111] R. C. Gunning, Lectures on Modular Forms (Princeton University Press, Princeton, NJ, 1962).
[112] B. Schoeneberg, *Elliptic Modular Functions* (Springer-Verlag, 1974).

[113] N. Koblitz, *Introduction to Elliptic Curves and Modular Forms* (Springer-Verlag, 1984).

[114] S. Antusch and V. Maurer, JHEP 1311 (2013) 115 [arXiv:1306.6879 [hep-ph]].

[115] F. Björkeroth, F. J. de Anda, I. de Medeiros Varzielas and S. F. King, JHEP 1506 (2015) 141 [arXiv:1503.03306 [hep-ph]].

[116] I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou, JHEP 09 (2020), 178 [arXiv:2007.14792 [hep-ph]].

[117] S. Vagnozzi, E. Giusarma, O. Mena, K. Freese, M. Gerbino, S. Ho and M. Lattanzi, Phys. Rev. D 96 (2017) no.12, 123503 [arXiv:1701.08172 [astro-ph.CO]].

[118] N. Aghanim et al. [Planck], Astron. Astrophys. 641 (2020), A6 [arXiv:1807.06209 [astro-ph.CO]].

[119] H. Abe, T. Kobayashi, S. Uemura and J. Yamamoto, Phys. Rev. D 102 (2020) no.4, 045005 [arXiv:2003.03512 [hep-th]].

[120] T. Kobayashi and H. Otsuka, Phys. Rev. D 102 (2020) no.2, 026004 [arXiv:2004.04518 [hep-th]].

[121] P. A. Zyla et al. [Particle Data Group], PTEP 2020 (2020) no.8, 083C01.

[122] A. Gando et al. [KamLAND-Zen], Phys. Rev. Lett. 117 (2016) no.8, 082503, [Addendum: Phys. Rev. Lett.117 (2016) no.10, 109903], [arXiv:1605.02889 [hep-ex]].

[123] K. Ishiguro, T. Kobayashi and H. Otsuka, [arXiv:2011.09154 [hep-ph]].

[124] C. Jarlskog, Phys. Rev. Lett. 55 (1985) 1039.

[125] P. I. Krastev and S. T. Petcov, Phys. Lett. B 205 (1988) 84.