De-escalation strategies of dual antiplatelet therapy in patients undergoing percutaneous coronary intervention for acute coronary syndrome

Young Bin Song

Division of Cardiology, Department of Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

Antithrombotic therapy is important for reducing systemic and local thrombotic events in patients undergoing percutaneous coronary intervention (PCI) for acute coronary syndrome (ACS). Antithrombotic treatment regimens, along with dual antiplatelet therapy consisting of aspirin and a P2Y12 inhibitor for patients receiving PCI, have frequently changed over the years. With improvements in the understanding of the prognostic relevance of bleeding events in patients with PCI, as well as the safety and efficacy of drug-eluting stents, several randomized controlled trials (RCTs) have been conducted on antithrombotic treatment strategies associated with a more favorable balance between ischemic and bleeding risks. Several key RCTs for appropriate antithrombotic therapy in patients receiving PCI for ACS have been reported, and practical guidelines have been updated. This manuscript presents the results of major RCTs on de-escalation strategies of dual antiplatelet treatment in patients receiving PCI for ACS.

Keywords: Antiplatelet drugs; Percutaneous coronary intervention; Acute coronary syndrome

INTRODUCTION

Antithrombotic therapy is fundamental for preventing thrombotic events in patients with acute coronary syndrome (ACS), particularly those undergoing percutaneous coronary intervention (PCI) [1]. Over the past few decades, advances have been made in antithrombotic therapies developed to alleviate the risk of systemic and local thrombotic events. The current standard antithrombotic therapy after PCI with drug-eluting stents (DESs) is dual antiplatelet therapy (DAPT) with aspirin and a P2Y12 inhibitor [1,2]. However, prolonged and potent DAPT increases the risk of bleeding, which offsets the benefit from reducing recurrent ischemic events [3–5]. Newer-generation DESs require less aggressive antithrombotic drugs to prevent ischemic events. Furthermore, there is increasing recognition of the prognostic relevance of bleeding events in patients undergoing PCI [6,7]. For these reasons, several key randomized controlled trials (RCTs) have been recently conducted to identify antithrombotic therapies associated with a more favorable balance between ischemic and bleeding risks (Table 1) [8–13]. This review presents newer evidence regarding de-escalation strategies of DAPT for ACS patients receiving PCI, focusing on recent clinical trials and their implications.
Table 1. Key clinical trials on the de-escalation of DAPT therapy in ACS patients

Study	No. of patients	Design	Timing of randomization	Treatment groups	Primary endpoint	Key findings
TOPIC [8]	645	Single-center, open-label, randomized trial in ACS patients	1 mo post-ACS	Switched DAPT (from prasugrel or ticagrelor to clopidogrel) vs. continued DAPT with prasugrel or ticagrelor	Composite of cardiovascular death, urgent revascularization, stroke, and BARC ≥2 bleeding at 1 yr	Primary endpoint: 13.4% in the switched DAPT group vs. 26.3% in the unchanged DAPT (HR, 0.48; 95% CI, 0.34–0.68; P<0.01)
HOST-REDUCE-POLYTECH-ACS [9]	2,338	Multicenter, open-label, randomized trial in ACS patients	1 mo post-ACS	De-escalation (prasugrel 5 mg) vs. conventional (prasugrel 10 mg)	Composite of all-cause death, nonfatal MI, stent thrombosis, repeat revascularization, stroke, and BARC ≥2 bleeding at 1 yr	Primary endpoint: 7.2% in the de-escalation group vs. 10.1% in the conventional group (HR, 0.70; 95% CI, 0.52–0.92; P=0.012)
TALOS-AMI [10]	2,697	Multicenter, open-label, randomized trial in AMI patients	1 mo post-AMI	De-escalation (from ticagrelor to clopidogrel) vs. active control (continued ticagrelor)	Composite of cardiovascular death, MI, stroke, or BARC 2, 3, or 5 bleeding at 1 yr post-AMI	Primary endpoint: 4.6% in the de-escalation group and 8.2% in the active control group (HR, 0.55; 95% CI, 0.40–0.76; P=0.0001)
TROPICAL-ACS [11,12]	2,610	Multicenter, open-label, randomized trial in biomarker-positive ACS patients with successful PCI	2 wk post-ACS	PFT guided de-escalation to clopidogrel vs. continued prasugrel	Composite of cardiovascular death, MI, stroke, and BARC ≥2 bleeding at 1 yr	Primary endpoint: 7% in the guided de-escalation group vs. 9% in the continued prasugrel group (HR, 0.81; 95% CI, 0.62–1.06; P=0.0004 for noninferiority; P=0.12 for superiority)
POPular Genetics [13]	2,488	Multicenter, open-label, randomized trial in STEMI patients undergoing primary PCI	1–3 day after primary PCI	Genotype-guided therapy (ticagrelor or prasugrel in LOF alleles or carriers and clopidogrel in non-carriers) vs. standard treatment with ticagrelor or prasugrel	Composite of death from any cause, MI, definite stent thrombosis, stroke, or PLATO major bleeding at 1 yr	Primary endpoint: 5.1% in the genotype-guided group vs. 5.9% in the standard-treatment group (HR, 0.87; 95% CI, 0.62–1.21; P<0.001 for noninferiority; P=0.40 for superiority)

DAPT, dual antiplatelet therapy; ACS, acute coronary syndrome; TOPIC, Timing of Platelet Inhibition after Acute Coronary Syndrome; BARC, Bleeding Academic Research Consortium; HR, hazard ratio; CI, confidence interval; HOST-REDUCE-POLYTECH-ACS, Harmonizing Optimal Strategy for Treatment of Coronary Artery Diseases-Comparison of Reduction of Prasugrel Dose or Polymer Technology in Acute Coronary Syndrome Patients; MI, myocardial infarction; TALOS-AMI, Ticagrelor versus Clopidogrel in Stabilized Patients with Acute Myocardial Infarction; AMI, acute myocardial infarction; TROPICAL-ACS, Testing Responsiveness To Platelet Inhibition On Chronic Antiplatelet Treatment For Acute Coronary Syndromes; PCI, percutaneous coronary intervention; PFT, platelet function testing; POPular Genetics, CYP2C19 Genotype-Guided Antiplatelet Therapy in ST-Segment Elevation Myocardial Infarction Patients — Patient Outcome after Primary Percutaneous Coronary Intervention; STEMI, ST-segment elevation myocardial infarction; LOF, loss of function; PLATO, PLATElet inhibition and patient Outcomes.

DE-ESCALATION STRATEGIES

Potent P2Y12 inhibitors, such as prasugrel and ticagrelor, show stronger and more consistent platelet inhibition and have been shown to reduce major adverse cardiovascular events when compared to clopidogrel [4,5]. Therefore, current guidelines support the preferred use of prasugrel and ticagrelor over clopidogrel due to their significant ischemic benefit in patients with ACS [1,14]. However, these potent P2Y12 inhibitors carry a higher risk of bleeding [15]. Considering that the risk of ischemic events after PCI for ACS is more prominent in the early phase, de-escalation after short-term DAPT with a potent P2Y12 inhibitor could achieve an optimal balance between ischemia and bleeding risks [16–19]. Therefore, the challenge of coordinating P2Y12 receptor inhibitor therapy has been intensively studied to prevent ischemic events with an acceptable bleeding risk in patients with ACS. Three different methods of de-escalation have
recently been investigated: unguided de-escalation, platelet function testing-guided de-escalation, and genotype-guided de-escalation (Fig. 1).

UNGUIDED P2Y12 INHIBITOR DE-ESCALATION

The Timing of Platelet Inhibition after Acute Coronary Syndrome (TOPIC) trial investigated unguided de-escalation from prasugrel or ticagrelor to clopidogrel and evaluated long-term treatment with aspirin and clopidogrel (de-escalation of DAPT) compared with aspirin and a potent P2Y12 inhibitor (unchanged DAPT) after 1 month of initial treatment with aspirin and a potent P2Y12 inhibitor for ACS [8]. Patients who were event-free for 1 month after ACS were randomized to de-escalation of DAPT (n=323) or unchanged DAPT (n=323). The risk of the combined primary endpoint, defined as a composite of death, urgent revascularization, stroke, and Bleeding Academic Research Consortium (BARC) ≥2 bleeding dropped by half in patients with de-escalation of DAPT therapy (26.3% vs. 13.4%; hazard ratio [HR], 0.48; 95% confidence interval [CI], 0.34–0.68). While there was no significant difference in ischemic endpoints between the groups (11.5% vs. 9.3%; HR, 0.80; 95% CI, 0.50–1.29), BARC ≥2 bleeding was significantly lower in the de-escalation group (14.9% vs. 4.0%; HR, 0.30; 95% CI, 0.18–0.50). All BARC and Thrombolysis in Myocardial In-
De-escalation of DAPT for ACS

Young Bin Song

Vascular death, MI, stroke, or BARC ≥2 bleeding was almost halved in patients in the de-escalation group compared with the continued group (4.6% vs. 8.2%; HR, 0.55; 95% CI, 0.40–0.76), which was mainly driven by less bleeding (3.0% vs. 5.6%; HR, 0.52; 95% CI, 0.35–0.77). There was no significant difference in ischemic events between the groups (2.1% vs. 3.1%; HR, 0.69; 95% CI, 0.42–1.14). Per-protocol and subgroup analyses were consistent with the primary results. Like the HOST-REDUCE-POLYTECH-ACS trial, the TALOS-AMI trial only included East Asian patients, so its generalizability to Western populations is unclear.

PLATELET FUNCTION TESTING-GUIDED P2Y12 INHIBITOR DE-ESCALATION

The Testing Responsiveness To Platelet Inhibition On Chronic Antiplatelet Treatment For Acute Coronary Syndromes (TROPICAL-ACS) trial evaluated guided de-escalation of antiplatelet treatment in patients with acute coronary syndrome undergoing percutaneous coronary intervention, testing a guided de-escalation strategy based on platelet function tests in ACS patients undergoing PCI. Patients were randomized to de-escalation of antiplatelet therapy (n=1,304) or continued prasugrel for 12 months (n=1,306). In the de-escalation group, patients received prasugrel for 1 week, then clopidogrel for 1 week at which time platelet function testing was performed. Patients without high platelet reactivity (HPR) continued clopidogrel, whereas those with HPR were switched to prasugrel. The rate of cardiovascular death, MI, stroke, or BARC grade ≥2 bleeding was 7.3% in the guided de-escalation group and 9.0% in the control group (P=0.0004 for noninferiority). The rates of BARC grade ≥2 bleeding and composite ischemic outcomes did not significantly differ between the groups. A prespecified analysis of the TROPICAL-ACS trial assessed the impact of age on clinical outcomes following guided de-escalation of antiplatelet treatment in ACS patients. There was significant treatment interaction when age was analyzed as a continuous variable (P for interaction=0.02). The net clinical benefit was due to a reduction in major bleeding among younger patients receiving de-escalation therapy.

GENOTYPE-GUIDED DE-ESCALATION

Clopidogrel is a prodrug that is converted to its active me-
tabolite in the liver via two oxidative steps that involve the cytochrome P450 superfamily enzyme system, of which the CYP2C19 enzyme is the most important component. Patients who have a loss of function (LOF) variant of the CYP2C19 gene are unable to fully metabolize the prodrug into the active metabolite, reducing its effectiveness and increasing the risk of ischemic events. The most common LOF alleles are CYP2C19*2 and CYP2C19*3. Previous studies have shown that patients who carry these LOF alleles have a higher incidence of ischemic events when they take clopidogrel than those without the alleles [20,21]. It is unknown whether routinely genotyping for CYP2C19 LOF alleles and prescribing antiplatelet therapy based on the results can reduce the incidence of ischemic events.

The CYP2C19 Genotype-Guided Antiplatelet Therapy in ST-Segment Elevation Myocardial Infarction Patients — Patient Outcome after Primary Percutaneous Coronary Intervention (POpulation Genetics) trial evaluated a genotype-guided strategy for selection of a P2Y12 inhibitor compared to standard DAPT with ticagrelor or prasugrel [13]. Patients undergoing primary PCI for STEMI were randomized to a genotype-guided strategy for selection of an oral P2Y12 inhibitor (n=1,242) versus standard therapy with ticagrelor or prasugrel (n=1,246). In the genotype-guided group, patients with LOF received either ticagrelor (97%) or prasugrel (3%). Otherwise, patients received clopidogrel. The genotype-guided strategy was noninferior to standard care with respect to the primary composite endpoint of all-cause death, MI, definite stent thrombosis, stroke, and PLATElet inhibition and patient Outcomes (PLATO) major bleeding (5.1% vs. 5.9%; P for noninferiority <0.001). Additionally, genetic testing was associated with less major or minor bleeding (9.8% vs. 12.5%; HR, 0.78; 95% CI, 0.61–0.98; P=0.04). There were no significant differences between the cohorts regarding any other thrombotic secondary outcomes. The results were maintained in both per-protocol and sensitivity analyses.

The use of a genotype-guided de-escalation strategy to select P2Y12 inhibitors has been proven to be beneficial by reducing bleeding risk without increasing ischemic events in STEMI patients undergoing primary PCI.

The Tailored Antiplatelet Initiation to Lesson Outcomes Due to Decreased Clopidogrel Response After Percutaneous Coronary Intervention (TAILOR-PCI) study tested the hypothesis that altering antiplatelet therapy based on CYP2C19 LOF status would lead to improved outcomes [22]. Patients undergoing PCI for stable or unstable angina were randomized to a genotype-guided strategy (n=2,652), in which patients without CYP2C19 LOF alleles received clopidogrel and patients with the LOF alleles received ticagrelor or prasugrel. The standard therapy (n=2,650) group received clopidogrel without prospective genotyping. The primary analysis cohort, based on a prespecified analysis plan, consisted of 946 patients in the conventional group and 903 patients in the genotype-guided group, who were identified as being carriers, at 12 months. Among patients who carried the genetic variant, the primary endpoint occurred in 4.0% of the genotype-guided group, compared with 5.9% in the conventional group (HR, 0.66; 95% CI, 0.43–1.02; P=0.056). No significant difference was seen in the safety endpoint of TIMI major bleeding or minor bleeding (1.9% vs. 1.6%, respectively). A prespecified sensitivity analysis for the primary endpoint found a 40% reduction for cumulative primary endpoint events that occurred during the study period (95% CI, 0.41–0.89; P=0.011). Therefore, when the time to multiple recurrent events was considered, there was a possible benefit to a genotype-guided strategy to identify patients with LOF.

CONCLUSIONS

With improvements in the understanding of the prognostic relevance of bleeding events in ACS patients with PCI, as well as the safety and efficacy of DESs, clinicians’ focus has shifted more towards preventing bleeding events. Although current guidelines do not recommend elective de-escalation of antiplatelet therapy, there is a growing body of evidence supporting a de-escalation strategy for antiplatelet therapy in ACS patients undergoing PCI. The most important consideration is to identify patient groups that might benefit more from de-escalation of potent antiplatelet therapy.

ARTICLE INFORMATION

Ethical statements
Not applicable.

Conflicts of interest
The author has no conflicts of interest to declare.
REFERENCES

1. Levine GN, Bates ER, Bittl JA, Brindis RG, Fihn SD, Fleisher LA, et al. 2016 ACC/AHA guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines: an update of the 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention, 2011 ACCF/AHA guideline for coronary artery bypass graft surgery, 2012 ACC/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease, 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction, 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes, and 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery. Circulation 2016;134:e123–55.

2. Valgimigli M, Bueno H, Byrne RA, Collet JP, Costa F, Jeppsson A, et al. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: the Task Force for dual antiplatelet therapy in coronary artery disease of the European Society of Cardiology (ESC) and of the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J 2018;39:213–60.

3. Palmerini T, Benedetto U, Bacchi-Reggiani L, Della Riva D, Bi- ondi-Zoccai G, Feres F, et al. Mortality in patients treated with extended duration dual antiplatelet therapy after drug-eluting stent implantation: a pairwise and Bayesian network meta-analysis of randomized trials. Lancet 2015;385:2371–82.

4. Wallentin L, Becker RC, Budaj A, Cannon CP, Emanuellsen H, Held C, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 2009;361:1045–57.

5. Wiviott SD, Braunwald E, McCabe CH, Montalescot G, Ruzyllo W, Gottlieb S, et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 2007;357:2001–15.

6. Mehran R, Pocock SJ, Stone GW, Clayton TC, Dangas GD, Feit F, et al. Associations of major bleeding and myocardial infarction with the incidence and timing of mortality in patients presenting with non-ST-elevation acute coronary syndromes: a risk model from the ACUITY trial. Eur Heart J 2009;30:1457–66.

7. Ndrepepa G, Schuster T, Hadamitzky M, Byrne RA, Mehilli J, Neumann FJ, et al. Validation of the Bleeding Academic Research Consortium definition of bleeding in patients with coronary artery disease undergoing percutaneous coronary intervention. Circulation 2012;125:1424–31.

8. Cuisset T, Deharo P, Quilici J, Johnson TW, Deffarges S, Bassez C, et al. Benefit of switching dual antiplatelet therapy after acute coronary syndrome: the TOPIC (timing of platelet inhibition after acute coronary syndrome) randomized study. Eur Heart J 2017;38:3070–8.

9. Kim HS, Kang J, Hwang D, Han JK, Yang HM, Kang HJ, et al. Prasugrel-based de-escalation of dual antiplatelet therapy after percutaneous coronary intervention in patients with acute coronary syndrome (HOST-REDUCE-POLYTECH-ACS): an open-label, multicentre, non-inferiority randomised trial. Lancet 2020;396:1079–89.

10. Kim CJ, Park MW, Kim MC, Choo EH, Hwang BH, Lee KY, et al. Unguided de-escalation from ticagrelor to clopidogrel in stabilised patients with acute myocardial infarction undergoing percutaneous coronary intervention (TALOS-AMI): an investigator-initiated, open-label, multicentre, non-inferiority, randomised trial. Lancet 2021;398:1305–16.

11. Sibbing D, Aradi D, Jacobshagen C, Gross L, Trenk D, Geisler T, et al. Guided de-escalation of antiplatelet treatment in patients with acute coronary syndrome undergoing percutaneous coronary intervention (TROPICAL-ACS): a randomised, open-label, multicentre trial. Lancet 2017;390:1747–57.

12. Sibbing D, Gross L, Trenk D, Jacobshagen C, Geisler T, Hadamitzky M, et al. Age and outcomes following guided de-escalation of antiplatelet treatment in patients with acute coronary syndrome undergoing percutaneous coronary intervention: results from the randomized TROPICAL-ACS trial. Eur Heart J 2018;39:2749–58.

13. Claassen DS, Vos GJ, Bergmeijer TJ, Hermanides RS; van ’t Hof AW, van der Harst P, et al. A genotype-guided strategy for oral P2Y12 inhibitors in primary PCI. N Engl J Med 2019;381:1621–31.

14. Collet JP, Thiele H, Barbato E, Barthelemy O, Bauersachs J, Bhatt DL, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J 2021;42:1289–367.

15. Franchi F, Angiolillo DJ. Novel antiplatelet agents in acute coronary syndrome. Nat Rev Cardiol 2015;12:30–47.
16. Morrow DA, Wiviott SD, White HD, Nicolau JC, Bramucci E, Murphy SA, et al. Effect of the novel thienopyridine prasugrel compared with clopidogrel on spontaneous and procedural myocardial infarction in the Trial to Assess Improvement in Therapeutic Outcomes by Optimizing Platelet Inhibition with Prasugrel-Thrombolysis in Myocardial Infarction 38: an application of the classification system from the universal definition of myocardial infarction. Circulation 2009;119:2758–64.

17. Velders MA, Abtan J, Angiolillo DJ, Ardissino D, Harrington RA, Hellkamp A, et al. Safety and efficacy of ticagrelor and clopidogrel in primary percutaneous coronary intervention. Heart 2016;102:617–25.

18. Becker RC, Bassand JP, Budaj A, Wojdyla DM, James SK, Cornel JH, et al. Bleeding complications with the P2Y12 receptor antagonists clopidogrel and ticagrelor in the PLATElet inhibition and patient Outcomes (PLATO) trial. Eur Heart J 2011;32:2933–44.

19. Antman EM, Wiviott SD, Murphy SA, Voitk J, Hasin Y, Widimsky P, et al. Early and late benefits of prasugrel in patients with acute coronary syndromes undergoing percutaneous coronary intervention: a TRITON-TIMI 38 (TRial to Assess Improvement in Therapeutic Outcomes by Optimizing Platelet Inhibition with Prasugrel-Thrombolysis In Myocardial Infarction) analysis. J Am Coll Cardiol 2008;51:2028–33.

20. Harmsze AM, van Werkum JW, Ten Berg JM, Zwart B, Bouman HJ, Breet NJ, et al. CYP2C19*2 and CYP2C9*3 alleles are associated with stent thrombosis: a case-control study. Eur Heart J 2010;31:3046–53.

21. Angiolillo DJ, Fernandez-Ortiz A, Bernardo E, Alfonso F, Macaya C, Bass TA, et al. Variability in individual responsiveness to clopidogrel: clinical implications, management, and future perspectives. J Am Coll Cardiol 2007;49:1505–16.

22. Pereira NL, Farkouh ME, So D, Lennon R, Geller N, Mathew V, et al. Effect of genotype-guided oral P2Y12 inhibitor selection vs conventional clopidogrel therapy on ischemic outcomes after percutaneous coronary intervention: the TAILOR-PCI randomized clinical trial. JAMA 2020;324:761–71.