Consanguinity and reproductive health among Arabs
Ghazi O Tadmouri1, Pratibha Nair1, Tasneem Obeid1, Mahmoud T Al Ali1, Najib Al Khaja1 and Hanan A Hamamy*1,2

Address: 1Centre for Arab Genomic Studies, Dubai, United Arab Emirates and 2Geneva Foundation for Medical Education and Research, Geneva, Switzerland

Email: Ghazi O Tadmouri - tadmouri@hotmail.com; Pratibha Nair - pratibha.nair@gmail.com; Tasneem Obeid - obaid_tasneem@yahoo.ca; Mahmoud T Al Ali - mtaiali@gmail.com; Najib Al Khaja - dmajib@emirates.net.ae; Hanan A Hamamy* - hananhamamy@yahoo.com

* Corresponding author

Abstract
Consanguineous marriages have been practiced since the early existence of modern humans. Until now consanguinity is widely practiced in several global communities with variable rates depending on religion, culture, and geography. Arab populations have a long tradition of consanguinity due to socio-cultural factors. Many Arab countries display some of the highest rates of consanguineous marriages in the world, and specifically first cousin marriages which may reach 25-30% of all marriages. In some countries like Qatar, Yemen, and UAE, consanguinity rates are increasing in the current generation. Research among Arabs and worldwide has indicated that consanguinity could have an effect on some reproductive health parameters such as postnatal mortality and rates of congenital malformations. The association of consanguinity with other reproductive health parameters, such as fertility and fetal wastage, is controversial. The main impact of consanguinity, however, is an increase in the rate of homozygotes for autosomal recessive genetic disorders. Worldwide, known dominant disorders are more numerous than known recessive disorders. However, data on genetic disorders in Arab populations as extracted from the Catalogue of Transmission Genetics in Arabs (CTGA) database indicate a relative abundance of recessive disorders in the region that is clearly associated with the practice of consanguinity.

Introduction
Linguistically, consanguinity is a term that is derived from two Latin words "con" meaning common, or of the same and "sanguineus" meaning blood, hence, referring to a relationship between two people who share a common ancestor or blood. In other words, consanguineous marriage refers to unions contracted between biologically-related individuals. In clinical genetics, a consanguineous marriage means union between couples who are related as second cousins or closer [1,2]. Among Arabs, this would include double first cousins, first cousins, first cousins once removed, and second cousins. Uncle-niece marriage is prohibited in Islam and so is absent among Arabs. In population genetics, consanguinity may also refer to unions of individuals with at least one common ancestor such as those occurring within population isolates, small towns, and tribes; intra-community or endogamous marriages. The custom of endogamy among individuals belonging to the same tribe (hamula or kabeela) is and has been strongly favored among Arabs, with the consequence of unequal distribution of founder mutations among the population. A large number of studies into the effects of consanguinity on health and disease have not taken such discrepancies into consideration.
Consanguinity in World Populations
Consanguineous marriages have been practiced since the early existence of modern humans. At present, about 20% of world populations live in communities with a preference for consanguineous marriage [2]. Consanguinity rates vary from one population to another depending on religion, culture, and geography. Noticeably, many Arab countries display some of the highest rates of consanguineous marriages in the world ranging around 20-50% of all marriages, and specifically favoring first cousin marriages with average rates of about 20-30% (Table 1, Figure 1, Additional file 1).

Consanguinity in Arab Populations
Socio-cultural factors, such as maintenance of family structure and property, ease of marital arrangements, better relations with in-laws, and financial advantages relating to dowry seem to play a crucial role in the preference of consanguinity in Arab populations [3]. Consanguineous marriages are generally thought to be more stable than marriages between non-relatives, though there are no studies to compare divorce rates of consanguineous and non-consanguineous marriages among Arabs. It is generally believed that the husband’s family would side with the consanguineous wife in marital disputes since she is considered part of the extended family. When there are children with disabilities, more family members share in caring for these children. Unlike what is thought, consanguinity in the Arab World is not only confined to Muslim communities. Several other communities, including the Lebanese, Jordanian, and Palestinian Christian populations, have also practiced consanguinity, but to a lesser extent than Muslims [4-7].

Consanguinity rates show wide variations among Arab countries, as well as within the same country (Table 1, Additional file 1). However, reports from Arab countries on consanguinity rates may sometimes include marriages between third cousins or far relatives within the consanguineous category. Although this discrepancy affects the total consanguinity rate, it does not markedly alter the average inbreeding coefficient. Therefore, for comparison of consanguinity rates among populations, two parameters are best used; the mean inbreeding coefficient (F) and marriages between first cousins. However, Arab societies have a long tradition of consanguinity, and the cumulative estimate of (F) may exceed the estimated value which is calculated for a single generation [8].

Secular changes in the consanguinity rates have been noticed in some Arab populations. In Jordan [9], Lebanon [5], Bahrain [10], and among Palestinians [11-13], the frequency of consanguineous marriage is decreasing. Several factors may be playing a role in decreasing the consanguinity rates in Arab countries. Amongst these factors are the increasing higher female education levels, the declin-
ing fertility resulting in lower numbers of suitable relatives to marry, more mobility from rural to urban settings, and the improving economic status of families. Moreover, genetic diseases may be feared more now that infectious diseases are on the decline as causes of severe morbidity and mortality.

Generally, the highest rates of marriages to close relatives are consistently reported in the more traditional rural areas and among the poorest and least educated in society [8]. Reports from some Arab countries have shown that consanguinity rates are lower in urban when compared to rural settings. Urban to rural first cousin rates in Algeria were 10% and 15% [14], in Egypt, 8.3% and 17.2% [15], and in Jordan, 29.8% and 37.9% [6], respectively. Likewise the mean inbreeding coefficient was lower in urban as compared to rural settings in Syria (0.0203 versus 0.0265) [16]. In Jordan, it was evident that the higher the level of education of the female partner, the lower the consanguinity rate. Only 12% of university educated females would marry their first cousins, whereas 25% of university educated males tend to marry first cousins [6].

Table 1: Consanguinity rates in Arab populations. Minimum and maximum reported rates are indicated when available

Country	>1C, 1C	Overall consanguinity	References
Algeria	11.3	22.6-34	[14,100]
Bahrain	24.5	39.4-45.5	[10,101]
Egypt	14.3-23.2	20.9-32.8	[15,70,102-104]
Egypt (Nubia)	39-47.2	60.5-80.4	[105,106]
Iraq	29-33	47-60	[86,107-109]
Jordan	19.5-39	28.5-63.7	[6,9,43,110-113]
Kuwait	16.9-31.7	22.5-64.3	[114-117]
Lebanon	6.7-31.6	12.8-42	[4,5,118-120]
Libya		48.4	[121]
Mauritania		47.2	[93]
Morocco	8.6-10	19.9-28	[21,122-124]
Oman	24.1	56.3	[125]
Palestine	13.6-34.2	17.5-66.3	[7,11-13,71,126-129]
Qatar	34.8	54	[19]
Saudi Arabia	24.6-42.3	42.1-66.7	[67,84,99,130,131]
Sudan	44.2-49.5	44.2-63.3	[66,132,133]
Syria	28.7	30.3-39.8	[16,134]
Tunisia	17.4-23	20.1-39.3	[18,9,135,136]
United Arab Emirates	20.7-28.2	40-54.2	[20,36,137]
Yemen	32-34	40-44.7	[17,138]

For comprehensive details and additional data, see Additional File 1. Abbreviations: [>1C] = Double first-cousin marriage; [1C] = First-cousin marriage.
Similar trends of lower consanguinity rates among educated women, but not educated men, were noticed in Yemen [17] and Tunisia [18].

On the other hand, social, religious, cultural, political and economic factors still play roles in favoring consanguineous marriages among the new generations just as strongly as they did among the older generations, particularly in rural areas. Consanguinity rates seem to be increasing at a higher pace in Qatar [19], Yemen [17], the United Arab Emirates (UAE) [20], and Tlemcen in Algeria [14]. In Morocco, a study indicated an increasing consanguinity rate from the previous (21.5%) to the present (25.4%) generation [21], while another study indicated a decreasing consanguinity rate [22]. Consanguinity rates are not declining in some Arab countries because it is generally accepted that the social advantages of consanguinity outweigh the disadvantages [23], and consanguinity is regarded as a deeply rooted cultural trend. It is believed that the practice of consanguinity has significant social and economic advantages. Consanguineous marriages among Arabs are respected because it is thought that they promote family stability, simplify financial premarital negotiations, offer a greater compatibility between the spouses and other family members, offer a lesser risk of hidden financial and health issues, and maintain the family land possessions [3,24,25]. Among 390 women attending reproductive health clinics in Jordan, consanguinity was protective against violence during pregnancy [26]. In all cases, reports on secular trends in consanguinity need to be treated with some caution because in countries where consanguinity is favored, major regional and ethnic differences in prevalence are commonly observed [3].

Consanguinity and Reproductive Health

Research on the association of consanguinity with different parameters of reproductive health in Arab countries is limited, both in quantity and in quality. Many studies fail to indicate clearly the different categories of consanguineous marriages in their methodology and thus the results are presented for consanguineous marriages as a single entity with the conclusions relying on a simple consanguineous versus non-consanguineous dichotomy. Given the wide range of F values in the ‘consanguineous’ group ($F = 0.0156-0.125$), with second cousin offspring ($F = 0.0156$) closer to non-consanguineous ($F = 0$) than to first cousins ($F = 0.0625$) or double first cousins ($F = 0.125$), such comparisons between consanguineous and non-consanguineous are thus not accurate. However, owing to the dearth of publications in the field among Arabs, this review will mention these studies with clear indication of the categories of consanguinity that are being compared.

Negative Effects of Consanguinity on Reproductive Health

Consanguinity and Congenital Malformations

Approximately 3-5% of all live newborns have a medically significant birth defect. The recent report by March of Dimes estimated birth defects to be >69.9/1000 live births in most Arab countries, as opposed to <52.1/1000 live births in Europe, North America and Australia [27]. Lower observed rates of 7.92/1000 births and 12.5/1000 births were registered in the UAE and Kuwait, respectively [28,29]. In Oman, among 21,988 births, 24.6 per 1000 births had major malformations [30]. Differences in birth defect rates in different countries and studies could be attributed to true differences among different populations or to different definitions of birth defects, different methods, and different time periods for ascertainment. The risk of birth defects in first-cousin marriages may be estimated to be 2-2.5 times the general population rate, mainly due to the expression of autosomal recessive disorders [23,31-33]. Another estimate puts the offspring of first cousin unions at a 1.7-2.8% increased risk for congenital defects above the population background risk [34]. However, these risk figures need validation for Arab countries through further well controlled evidence based and standardized research.

Frequency of consanguineous marriages was higher among parents of offspring with congenital malformations compared with the figures for the general population in all studies reported among Arabs, including in the UAE [28,35-37], Kuwait [29], Oman [30,38,39], Iraq [40,41], Jordan [42,43], Egypt [44], Lebanon [4,45], Tunisia [46], Arabs in Jerusalem [33], and Saudi Arabia [47]. After controlling for confounders, first cousin consanguinity remained significantly associated with an increased risk of congenital heart defects (CHD), where infants born to consanguineous parents had a higher risk of having a CHD diagnosed at birth compared to those born to unrelated parents in Lebanon [48,49], Saudi Arabia [47,50,51], Egypt [52], and Arabs in Israel [53]. Conversely, the overall incidence of CHD among 140,000 newborns in Oman, a country with high consanguinity rate, was similar to that reported from developed countries in Europe and America, insinuating that consanguinity is not a risk factor for CHD [54]. It could be argued, however, that although the overall incidence is not increased, the rates among consanguineous and non-consanguineous marriages may be different, a point that was not investigated in the study.

Consanguinity rates were noted to be higher among parents of newborns with congenital hydrocephalus [55] and neural tube defects [56,57] than in the general population in some studies, but not in others [58]. A positive association of consanguinity with cleft lip and/or palate was
Consanguinity and Postnatal Mortality
Countries with high rates of consanguineous marriages generally report smaller effects of consanguinity on mortality than populations with low rates of consanguineous marriages [63]. This finding is unsurprising, given the limited control for concomitant variables such as socioeconomic status, maternal education, birth intervals and public health facilities and practices in most consanguinity studies.

The most recent mortality estimate derived from a multinational study of over 600,000 pregnancies and live births, is that first cousin progeny experience 4.4% more pre-reproductive deaths than the offspring of non-consanguineous unions [64]. Most studies among Arabs have indicated that postnatal mortality is higher among offspring of consanguineous parents than among non-related parents [4,42,65-71]. Few studies have not detected this increase in postnatal mortality [35,68]. The increased postnatal mortality among the offspring of consanguineous parents may be related to the action of deleterious recessive genes and multi-locus complexes inherited from a common ancestor. The higher parity rate among consanguineous couples counterbalances the higher infant mortality; as a result, there may be equality in the number of living children among consanguineous and non-consanguineous couples.

Consanguinity and Autosomal Recessive Disorders
In mathematical terms, consanguinity does not alter the allele frequencies of common disorders, but increases the probability of a mating between two individual heterozygotes for the same recessive mutant allele. In this regard, the risk for birth defects in the offspring of first-cousin marriage is expected to increase sharply compared to non-consanguineous marriages particularly for rare autosomal recessive disease genes, because for common recessive conditions, there is a high chance that the abnormal gene may be carried by unrelated spouses and may be expressed in their progeny.

In Arab populations and Diasporas, the deep-rooted norm of consanguineous marriage has been widely accused of being an important factor contributing to the preponderance of autosomal recessive genetic disorders [35,47,72-76]. In many parts of the Arab world, the society is still tribal. This has made the epidemiology of genetic disorders complicated, as many families and tribal groups are descended from a limited number of ancestors and some conditions are confined to specific villages, families, and tribal groups, leading to an unusual burden of genetic diseases in these communities [77]. Thus the extended family structure, commonly present in Arab societies and mostly associated with consanguinity, tends to display unique distribution patterns for genetic diseases that are not present in many other societies. There are disorders that are specifically prevalent among the Arabs, either uniformly or in certain locations, such as Bardet-Biedl syndrome, Meckel-Gruber syndrome, spinal muscular atrophy, osteopetrosis and renal tubular acidosis, Sanjad-Sakati syndrome, and congenital chloride diarrhea [78,79]. In an Arab society, mutation carriers mostly remain concentrated within the extended family and consanguineous marriages increase the probability of expression of autosomal recessive disorders when both mother and father are carriers of the mutation. Sometimes, autosomal recessive genes stay hidden within the family for generations and then show on the surface in a new consanguineous marriage within the family.

An analysis of data in the Catalogue for Transmission Genetics in Arabs (CTGA), a database on genetic disorders in Arab populations maintained by the Centre for Arab Genomic Studies, indicates that in contrast to international databases, the overwhelming proportion of the disorders in the CTGA Database follows a recessive mode of inheritance (63%) compared to the smaller proportion of dominantly inherited traits (27%). A detailed study of countries for which surveys on the occurrence of genetic disorders have been completed (United Arab Emirates, Bahrain, and Oman) indicates that recessive disorders are more in number than the dominant ones [80-82]. As explained above, given the high rates of consanguinity in these countries, this pattern is not entirely surprising. In a study from Jordan, the consanguinity rate among parents of affected with autosomal recessive conditions was around 85%, while it was 25-30% among parents of affected with other genetic conditions such as X-linked recessive, chromosomal and autosomal dominant [76].

Neutral or Positive Effects of Consanguinity on Reproductive Health
Parallel to the huge body of literature detailing the negative effects of consanguinity on human health, there also exists a considerable amount of data that suggests that the practice of consanguinity is not the great evil that it is generally thought to be.

Fetal Wastage
Multiple studies in highly consanguineous world populations have noted that fetal loss has no significant association with consanguinity. In Sudan, among 4,471 pregnancies, no significant difference in the reproductive loss was observed between the inbred and outbred groups [66]. In a study in Saudi Arabia, total prenatal losses were essentially the same among consanguineous and non-consanguineous couples [67]. Among 1867 married cou-
Consanguinity was generally not found to be associated with a significant positive or negative effect on fertility [83,88,89], although some international studies report a higher fertility among consanguineous couples [90,91]. Among Arabs, higher fertility rates and higher rates of live births were reported among first cousin couples than non-consanguineous couples in Qatar [87], Kuwait [92], Saudi Arabia [84], and Tunisia [69]. Similarly, in various ethnic groups from Mauritania (including: Soninkes, Poulard, Maures, Wolofs, and black Maures) consanguineous couples had averages of fertility significantly higher than those of non-consanguineous couples [93]. Researchers tend to think that this increase in fertility could be a biological means of compensating for the increased risk of postnatal loss expected in related marriages or possibly to the earlier age at marriage, earlier first maternity and longer reproductive span among consanguineous as compared to non-consanguineous couples [88].

Effects of consanguineous marriages on couples' fertility and on offspring mortality were investigated in Beirut through a population-based health survey of 2,752 households. Total pregnancies, live births, and living children were significantly higher among consanguineous couples than among non-consanguineous ones, as was the proportion of dead among children ever born. However, no difference remained in either fertility or mortality, when allowance was made for socioeconomic status, religious affiliation, and marriage duration. The lack of significant pattern in the final analysis is interpreted as resulting from a long-term practice of consanguineous marriages [4].

Reports on the association of consanguinity with infertility are scarce among Arabs; a recent study from Lebanon pointed to a positive association between consanguinity and male factor infertility among 120 infertile males indicating the important contribution of recessive genetic factors to the etiology of male infertility [94].

Consanguinity and Birth Anthropometric Measurements Studies among Arabs related to the effect of consanguinity on anthropometric measurements such as birth weight gave conflicting results [84,95-99]. Studies from Jordan [43] and Arabs in Israel [85] detected a significant reduction in birth weight with consanguinity.

It seems that there is no definite correlation between consanguinity and anthropometric measurements in populations with high consanguinity rates. More studies using standardized methodology are recommended to verify any such correlation taking into consideration the changing socioeconomic and nutritional parameters among Arabs.

Conclusive Remarks Consanguineous marriages are widely practiced in several global populations, with some of the highest rates observed in the Arab World. Reports abound on both the negative and positive biological effects of consanguinity. In net terms, the reproductive criteria related to consanguineous versus non-consanguineous couples include earlier parental age at marriage, younger maternal age at first live birth, higher number of infants born to consanguineous parents, similar rates of abortions, and higher rates of postnatal mortality and birth defects in offspring of consanguineous parents. Furthermore, consanguineous unions lead to increased expression of autosomal recessive disorders. The CTGA Database on genetic disorders in Arab populations offers a clear evidence for a direct correlation between these two factors.

Studies on the association of consanguinity with chromosomal abnormalities such as Down syndrome and association with non-communicable disorders such as diabetes, hypertension, and psychiatric disorders among Arabs are presently not conclusive with the recommendation of performing standardized research in the future. Likewise, studies on the association of consanguinity with traits such as intelligence quotient and stature are scanty among Arabs and results of studies performed in Western countries cannot be applied directly to societies with high consanguinity rates such as the Arab society.

Scientifically, a considerable number of genes causing autosomal recessive conditions have been structurally and functionally determined at the molecular level through the joint collaboration of international and Arab scientists; these efforts should continue and expand given the high number of rare recessive disorders in the region.

Young Arabs contemplating marriage are nowadays seeking a scientifically sound answer to their questions: “Will our children be physically or mentally abnormal if I marry my cousin?” “How can we prevent having abnormal children?” Research on inbreeding is considered a priority in societies with high consanguinity rates to help understand and prevent the deleterious impact of consanguinity on health, and to provide standardized and evidence-based guidelines for health care providers to assist them in counseling for consanguinity.

Conflicting interests The authors declare that they have no competing interests.
Authors’ contributions

GOT: Initiated the concept of the paper, collected partial data on consanguinity (Table 1 and additional file 1), made the illustration used in the paper, supervised all the primary text authoring written by co-authors in Dubai.

PN: Authored the review on the positive aspects of consanguinity and collected partial data on consanguinity (Table 1 and additional file 1).

TO: Authored the review on the negative aspects of consanguinity and collected partial data on consanguinity (Table 1 and additional file 1).

MTA: Facilitated the collection of published data on consanguinity by offering services available at government medical bibliographic facilities and reviewed the final version of the manuscript.

NA: Discussed and approved the primary text of the manuscript as prepared by the team of the Centre for Arab Genomic Studies in Dubai.

HAH: Enriched the primary content of the paper co-authored in Dubai with extensively detailed data (Table 1 and additional file 1), and modified, revised, and added text content in different sections of the manuscript and made it reach to the present level.

Additional material

Additional file 1
Consanguinity rates in Arab populations.
Click here for file [http://www.biomedcentral.com/content supplementary/1742-4755-6-17-S1.DOC]

References

1. Alwan A, Modell B: Community control of genetic and congenital disorders. EMRO Technical Publication Series 24: WHO Regional Office for the Eastern Mediterranean Region, Egypt; 1997.
2. Modell B, Darr A: Science and society: genetic counselling and customary consanguineous marriage. Nat Rev Genet 2002, 3:225-229.
3. Bittles AH: A community genetics perspective on consanguineous marriage. Community Genet 2008, 11:324-330.
4. Khlat M: Consanguineous marriage and reproduction in Beir ut, Lebanon. Am J Hum Genet 1988, 43:188-196.
5. Khlat M: Consanguineous marriages in Beirut: time trends, spatial distribution. Soc Biol 1988, 35:324-330.
6. Khouyri SA, Massad D: Consanguineous marriage in Jordan. Am J Med Genet 1992, 43:769-775.
7. Vardi-Saliternik R, Friedlander Y, Cohen T: Consanguinity in a population sample of Israeli Muslim Arabs, Christian Arabs and Druze. Ann Hum Biol 2002, 29:422-431.
8. Bittles AH, Grant JC, Shami SA: Consanguinity as a determinant of reproductive behaviour and mortality in Pakistan. Int J Epidemiol 1993, 22:463-467.
9. Hamamy H, Jamhawi L, Al-Darawshesh J, Ajlouni K: Consanguineous marriages in Jordan: why is the rate changing with time? Clin Genet 2005, 67:511-515.
10. Al Arrayed SS: The frequency of consanguineous marriages in the State of Bahrain. Bahrain Medical Bull 1995, 17(2):63-6.
11. Jaber L, Halpern GJ, Shohat T: Trends in the frequencies of consanguineous marriages in the Israeli Arab community. Clin Genet 2000, 58:106-110.
12. Sharkia R, Zaid M, Ashamna A, Cohen D, Azem A, Zalan A: The changing pattern of consanguinity in a selected region of the Israeli Arab community. Am J Hum Biol 2008, 20:72-77.
13. Assaf S, Khawaja M: Consanguinity trends and correlates in the Palestinian Territories. J Biosoc Sci 2009, 41:107-124.
14. Zsou S, Biemont C: [Frequency of consanguineous unions in the Tiemcen area [West Algeria]]. Sante 2002, 12:289-295.
15. Hafez M, El-Tahan H, Awadalla M, El-Khayat H, Abdel-Gafar A, Ghoneim M: Consanguineous matings in the Egyptian population. J Med Genet 1986, 23:58-60.
16. Othman H, Saadat M: Prevalence of consanguineous marriages in Syria. J Biosoc Sci 2009, 41:685-692.
17. Jurdí R, Saxena PC: The prevalence and correlates of consanguineous marriages in Yemen: similarities and contrasts with other Arab countries. J Biosoc Sci 2003, 35:1-11.
18. Kerkeni E, Monastiri K, Saket B, Rudan D, Zgaga L, Ben CH: Association among education level, occupation status, and consanguinity in Tunisia and Croatia. Croat Med J 2006, 47:656-661.
19. Bener A, Alali KA: Consanguineous marriage in a newly developed country: the Qatari population. J Biosoc Sci 2006, 38:239-246.
20. al-Gazali LI, Bener A, Abdulrazzaq YM, Micallef R, al-Khayat AI, Gaber T: Consanguineous marriages in the United Arab Emirates. J Biosoc Sci 1997, 29:491-497.
21. Talbi J, Khadmaoui AE, Soukhiymani AEM, Chaïfik AEA: Etude de la consanguinité dans la population marocaine. Impact sur le profil de la santé. Antropo 2007, 15:1-11.
22. Lamdouni BN: [Consanguinity and public health in Morocco]. Bull Acad Nat Med 1999, 181:1013-1024.
23. Jaber L, Halpern GJ, Shohat M: The impact of consanguinity worldwide. Community Genet 1998, 1:12-17.
24. Bittles A: Consanguinity and its relevance to clinical genetics. Clin Genet 2001, 60:89-98.
25. Bittles AH: Endogamy, consanguinity and community genetics. J Genet 2002, 81:91-98.
26. Clark CJ, Hill A, Jabbar K, Silverman JG: Violence during pregnancy in Jordan: its prevalence and associated risk and protective factors. Violence Against Women 2009, 15:720-735.
27. Christianson A, Howson C, Modell B: Global Report on Birth Defects. The Hidden Toll of Dying and Disabled Children. March of Dimes Birth Defects Foundation White Plains, New York; 2006.
28. Al Hosani H, Salih M, Abu-Zeid H, Farag HM, Saade D: The National Congenital Anomalies Register in the United Arab Emirates. East Mediterr Health J 2005, 11:690-699.
29. Madi SA, Al-Naggar RL, Al-Awadi SA, Bastaki LA: Profile of major congenital malformations in neonates in Al-Jahra region of Kuwait. East Mediterr Health J 2005, 11:700-706.
30. Sawardekar KP: Profile of major congenital malformations at Nizwa Hospital, Oman: 10-year review. J Paediat Child Health 2005, 41:323-330.
31. Stoltenberg C, Magnus P, Lie RT, Dalteit AK, Irgens LM: Birth defects and parental consanguinity in Norway. Am J Epidemiol 1997, 145:439-448.
32. Zlotogora J: What is the birth defect risk associated with consanguineous marriages? Am J Med Genet 2002, 109:70-71.
33. Bromiker R, Glam-Baruch M, Gofin R, Hammerman C, Amitai Y: Association of parental consanguinity with congenital malformations among Arab newborns in Jerusalem. Clin Genet 2004, 66:63-66.
34. Bennett R, Motulsky A, Bittles A, Hudgins L, Uhrich S, Doyle D, Silvey K, Scott R, Cheng E, McGillivray B, Steiner R, Olson D: Genetic counseling and screening of consanguineous couples and their offspring: recommendations of the National Society of genetic Genetic Counselors. J of Genetic Counseling 2002, 11:97-119.
35. Abdulrazzaq YM, Bener A, al-Gazali LI, al-Khayat AI, Micallef R, Gaber T: A study of possible deleterious effects of consanguinity. Clin Genet 1997, 51:167-173.
36. al-Gazali LI, Dawodu AH, Sabarinathan K, Varghese M: The profile of major congenital abnormalities in the United Arab Emirates. (UAE) J Med Genet 1995, 32:7-13.
37. Dawodu A, al-Gazali L, Varady E, Varghese M, Nath K, Rajan V: Genetic contribution to high neonatally lethal malformation rate in the United Arab Emirates. Community Genet 2005, 8:31-34.
38. Hassab A, Jaffer A: Congenital anomalies among Omani births: a case control approach. Bull High Inst Public Health 1997, 27(Supp I):93-9.
39. Patel PK: Consanguinity and reproductive health in Iraq. Hum Hered 1989, 39:271-275.
40. Mahdi A: Consanguinity and its effect on major congenital malformations. Iraqi Med J 1992:170-176.
41. Khoury SA, Massad DF: Consanguinity, fertility, reproductive outcome in Saudi Arabia. Ann Trop Paediatr 2001, 21:150-154.
42. Asendi A, Shehri A: Neural tube defects in the Asir region of Saudi Arabia. Ann Saudi Med 2007, 27:106-111.
43. Hasab A, Jaffer A: Genetics and reproductive health in Saudi Arabia. J Med Genet 1995, 32:19-123.
44. Rajab A, Vaishnav A, Freeman NV, Patton MA, al-Bustan SA, el-Zawahri MM, al-Adsani AM, Bang RL, Ghunaim I, Maher BS, et al: Epidemiological and genetic study of 121 cases of cleft lip and palate in Kuwait. Orthod Craniofac Res 2002, 5:154-160.
45. Kanaan ZM, Khoury M: Inbreeding and diseases: demographic, genetic, and epidemiologic perspectives. Epidem Rev 1991, 13:28-41.
46. al-Bustan SA, el-Zawahri MM, al-Adsani AM, Bang RL, Ghunaim I, Maher BS, et al: Epidemiological and genetic study of 121 cases of cleft lip and palate in Kuwait. Orthod Craniofac Res 2002, 5:154-160.
47. Bittles AH, Neel JV: The costs of human inbreeding and their implications for variations at the DNA level. Nat Genet 1994, 8:117-121.
48. Nesher A, Nevo E: Consanguinity and advanced paternal age as risk factors for reproductive losses in Alexandria. J Trop Pediatr 2003, 49:256-260.
49. Nabulsi MM, Tamim H, Sabbagh M, Obeid MY, Yunis KA, Bitar FF: Effects of consanguinity. Am J Med Genet A 2003, 116A:342-347.
50. Kanaan ZM, Mahfouz R, Tamim H: The prevalence of consanguineous marriages in an underserved area in Lebanon and its association with congenital anomalies. Genet Test 2008, 12:367-372.
51. Kirk M, Vaishnav A, Freeman NV, Patton MA, Rajab A, Asindi A, Shehri A: Neural tube defects in the Asir region of Saudi Arabia. Ann Saudi Med 2001, 21:26-29.
52. Zlotogora J: Genetic disorders among Palestinian Arabs: I. Effects of consanguinity. Am J Med Genet 1997, 68:472-475.
53. Hamamy HA, Masri AT, Al-Hadidy AM, Ajlouni KM: Consanguinity and major genetic disorders in Saudi children: a community-based cross-sectional study. Ann Saudi Med 2008, 28:169-173.
54. el-Shafei A, Rao PS, Sandhu AK: Congenital malformations in 10,000 consecutive births in Oman. Acta Paediatr Scand 1986, 75:34-59.
55. El Mouzan MI, Al Sabriya A, Al Herbish AS, Quarci MM, Al Omair AA: Consanguinity and major genetic disorders in Saudi children: a community-based cross-sectional study. Ann Saudi Med 2008, 28:169-173.
56. Nabulsi MM, Tamim H, Sabbagh M, Obeid MY, Yunis KA, Bitar FF: Parental consanguinity and congenital heart malformations in a developing country. Am J Med Genet A 2003, 116A:342-347.
57. Aljohar A, Ravichandran K, Subhani S: Pattern of cleft lip and palate in hospital-based population in Saudi Arabia: retrospective study. Cleft Palate Craniofac J 2008, 45:592-596.
58. Massad DF, al-Gazali LI, Sabarinathan K, Varghese M, Nath K, Rajan V: Genetic contribution to high neonatally lethal malformation rate in the United Arab Emirates. Community Genet 2005, 8:31-34.
59. al-Husain M, al Bunyan M: Consanguineous marriages in Lebanon and its implications for variations at the DNA level. Nat Genet 1994, 8:117-121.
60. Bittles AH, Neel JV: The costs of human inbreeding and their implications for variations at the DNA level. Nat Genet 1994, 8:117-121.
61. Kanaan ZM, Mahfouz R, Tamim H: The prevalence of consanguineous marriages in an underserved area in Lebanon and its association with congenital anomalies. Genet Test 2008, 12:367-372.
62. al-Bustan SA, el-Zawahri MM, al-Adsani AM, Bang RL, Ghunaim I, Maher BS, et al: Epidemiological and genetic study of 121 cases of cleft lip and palate in Kuwait. Orthod Craniofac Res 2002, 5:154-160.
63. Khrouf N, Spang R, Podgorna T, Miled SB, Moussaoui M, Chibani M: First-cousin matings and congenital heart disease among school children in Alexandria. J Trop Pediatr 2003, 49:256-260.
64. al-Husain M, al Bunyan M: Consanguineous marriages in a Saudi population and the effect of inbreeding on prenatal and postnatal mortality. Ann Trop Paediatr 1997, 17:155-160.
65. Saha N, Hamad RE, Mohamed S: Consanguineous marriage and advanced maternal age as risk factors for reproductive losses in Alexandria. J Trop Pediatr 2003, 49:256-260.
66. Pedersen J: The effect of consanguineous marriage on infant and child mortality among Palestinians in the West Bank and Gaza, Jordan, Lebanon and Syria. Community Genet 2002, 5:178-181.
67. Mokhtar MM, Korb SM, Ismail SR: Autosomal recessive disorders among patients attending the genetic clinic in Alexandria. East Mediterr Health J 1998, 4:470-479.
68. Kanaan ZM, Mahfouz R, Tamim H: The prevalence of consanguineous marriages in an underserved area in Lebanon and its association with congenital anomalies. Genet Test 2008, 12:367-372.
69. al-Bustan SA, el-Zawahri MM, al-Adsani AM, Bang RL, Ghunaim I, Maher BS, et al: Epidemiological and genetic study of 121 cases of cleft lip and palate in Kuwait. Orthod Craniofac Res 2002, 5:154-160.
70. Kanaan ZM, Mahfouz R, Tamim H: The prevalence of consanguineous marriages in an underserved area in Lebanon and its association with congenital anomalies. Genet Test 2008, 12:367-372.
71. al-Bustan SA, el-Zawahri MM, al-Adsani AM, Bang RL, Ghunaim I, Maher BS, et al: Epidemiological and genetic study of 121 cases of cleft lip and palate in Kuwait. Orthod Craniofac Res 2002, 5:154-160.
72. Kanaan ZM, Mahfouz R, Tamim H: The prevalence of consanguineous marriages in an underserved area in Lebanon and its association with congenital anomalies. Genet Test 2008, 12:367-372.
73. al-Bustan SA, el-Zawahri MM, al-Adsani AM, Bang RL, Ghunaim I, Maher BS, et al: Epidemiological and genetic study of 121 cases of cleft lip and palate in Kuwait. Orthod Craniofac Res 2002, 5:154-160.
74. Kanaan ZM, Mahfouz R, Tamim H: The prevalence of consanguineous marriages in an underserved area in Lebanon and its association with congenital anomalies. Genet Test 2008, 12:367-372.
75. al-Bustan SA, el-Zawahri MM, al-Adsani AM, Bang RL, Ghunaim I, Maher BS, et al: Epidemiological and genetic study of 121 cases of cleft lip and palate in Kuwait. Orthod Craniofac Res 2002, 5:154-160.
86. Hamamy H, Al-Bayati N, Al-Kubaisy W: Consanguineous marriages in Iraqi urban population and the effect on pregnancy outcome and infant mortality. Iran Med J 1985, 27:167-80.

87. Binser A, Hussen R: Consanguineous unions and child health in the State of Qatar. Paediatr Perinat Epidemiol 2006, 20:372-378.

88. Bittles AH, Grant JC, Sullivan SG, Hussen R: Does inbreeding lead to decreased human fertility? Ann Hum Biol 2002, 29:111-130.

89. Hussen R, Bittles AH: Assessment of association between consanguinity and fertility in Asian populations. J Health Popul Nutr 2004, 22:11-12.

90. Fuster V: Inbreeding pattern and reproductive success in a rural community from Galicia (Spain). J Biosoc Sci 2003, 35:93-93.

91. Helgason A, Palsson S, Gudbjartsson DF, Kristjansson T, Stefansson K: An association between the kinship and fertility of human couples. Science 2008, 319:813-816.

92. Kandari Y: Fertility and its relationship with sociocultural factors in rural society. East Mediterr Health J 2007, 13(6):1364-1371.

93. Hammami A, Chalbi N, Ben AM, Elgazzeh M: [Effects of consanguinity and social factors on mortality and fertility in Mauritania]. Tuns Med 2005, 83:221-226.

94. Mohamed MS: Consanguinity and family clustering of male factor infertility in Lebanon. Fertil Steril 2009, 91:1104-1109.

95. El-Eissa YA, Ba’Aqeel HS, Haque KN: Low birthweight in Riyadh, Saudi Arabia: incidence and risk factors. Ann Trop Paediatr 1991, 11:75-82.

96. El-Sekait MA: Consanguinity and public health in Morocco. Bull Acad Natl Med 1994, 178:1013-1025.

97. Cherkaoui M, Baali A, Larrouy G, Sevin A, Boetsch G: Consanguinity, fertility of couples and mortality of children in the high Atlas population (commons of Anougal and Azgour, Marrakesh, Morocco). Int J Anthropol 2005, 20:199-206.

98. Rahim H, Khogali M, Beydoun H, Melki I, Yunis K: Consanguinity and apnea of prematurity. Am J Epidemiol 2003, 158:942-946.

99. Barbour B, Salameh P: Consanguinity in Lebanon: prevalence, distribution and determinants. J Biosoc Sci 2009, 41:505-517.

100. Mansour R, Mansour I, Nasser A: Consanguineous marriages and genetic anomalies in East Libya. Garyounis Med J 2001, 4:13-43.

101. Baali A: Etude anthropobiologique d’une population semi-isolée du Hgaut-Atlas: Valle d’Azgour, cercle d’Amizmiz, Marrakech. Thesis Semila Faculte of Sciences, Marrakech 1994.

102. Lamdoun BN: [Consanguinity and public health in Morocco]. Bull Acad Natl Med 1994, 178:1013-1025.

103. Mohamed MS: Consanguineous marriage among rural Arabs in Israel. Br J Med Sci 1984, 20:1035-1038.

104. Jaber L, Bailey-Wilson JE, Haj-Yehia M, Hernandez J, Shohat M: Consanguineous matings in an Israeli-Arab community. Arch Pediatr Adolesc Med 1994, 148:412-415.

105. Zlotogora J, Habiballa H, Odatalla A, Barges S: Changing family structure in a modernizing society: a study of marriage patterns in a single Muslim village in Israel. Am J Hum Biol 2002, 14:680-682.

106. Bashi J: Effects of inbreeding on cognitive performance. Nature 1989, 342:640-642.

107. El-Hamzi MA, Al-Swailem AR, Warsi A, Al-Swailem AM, Sulaimani R, Al-Meshari AA: Consanguinity among the Saudi Arabian population. J Med Genet 1995, 32:623-626.

108. El-Mouzani M, Al-Salloum AA, Al-Herbish AS, Qarachi MM, Al-Omar AA: Regional variations in the prevalence of consanguinity in Saudi Arabia. Saudi Med J 2007, 28:1881-1884.

109. Ahmed AH: Consanguinity and schizophrenia in Sudan. Br J Psychiatry 1979, 134:635-636.

110. Saha N, el Sheikh FS: Inbreeding levels in Khartoum. East Mediterr Health J 2009, 15:267-275.

111. Prothro ET, Diab LN: Changing family patterns in the Arab East. Beirut: American University of Beirut; 1974.

112. Ben AS, Masmoudi S, Beltaief N, Haghicha S, Ayed H: Consanguinity and endogamy in Northern Tunisia and its impact on non-syndromic deafness. Genet Epidemiol 2004, 27:74-79.

113. Fahmy NA, Benson PF, Al-Garrah DB: Consanguinity in UAE: Prevalence and analysis of some risk factors. Emirates Med J 1993, 12:39-41.

114. Guinaid AA, Hummad NA, Tamim KA: Consanguineous marriage in the capital city Sana’a, Yemen. J Biosoc Sci 2004, 36:111-121.

115. Bittles AH: The global prevalence of consanguinity [http://www.con- sang.net].

116. Al-Awadi SA, Moussa MA, Nugib KK, Farag TI, Teebi AS, el-Khalifa M, et al: Consanguinity among the Kuwaiti population. Clin Genet 1985, 27:483-486.

117. Al-Kandari YY: Fertility and its relationship with sociocultural factors in Kuwait society. East Mediterr Health J 2007, 13:1364-1371.

118. Radovanicov Z, Shah N, Behbehani J: Prevalence and social correlates to consanguinity in Kuwait. Ann Saudi Med 1999, 19:206-210.

119. Khlat M, Halabi S, Khudr A, Der Kaloustian VM: Perception of consanguineous marriages and their genetic effects among a sample of couples from Beirut. Am J Med Genet 1986, 25:299-306.

120. Tamim H, Khogali M, Beydoun H, Melki I, Yunis K: Consanguinity and apnea of prematurity. Am J Epidemiol 2003, 158:942-946.

121. Barbour B, Salameh P: Consanguinity in Lebanon: prevalence, distribution and determinants. J Biosoc Sci 2009, 41:505-517.

122. Kandari Y: Fertility and its relationship with sociocultural factors in rural society. East Mediterr Health J 2007, 13(6):1364-1371.

123. El-Awadi SA, Moussa MA, Nugib KK, Farag TI, Teebi AS, el-Khalifa M, et al: Consanguinity among the Kuwaiti population. Clin Genet 1985, 27:483-486.

124. Al-Kandari YY: Fertility and its relationship with sociocultural factors in Kuwait society. East Mediterr Health J 2007, 13:1364-1371.

125. Radovanicov Z, Shah N, Behbehani J: Prevalence and social correlates to consanguinity in Kuwait. Ann Saudi Med 1999, 19:206-210.

126. Khlat M, Halabi S, Khudr A, Der Kaloustian VM: Perception of consanguineous marriages and their genetic effects among a sample of couples from Beirut. Am J Med Genet 1986, 25:299-306.