Swirling Flow Effect in Off-center Immersion Nozzle on Bulk Flow in Billet Continuous Casting Mold

Shinichiro YOKOYA, Shigeo TAKAGI, Motoki KANEKO, Manabu IGUCHI, Katsukiyo MARUKAWA and Shigeta HARA

Department of Mechanical Engineering, Nippon Institute of Technology, Miyashiro, Minami-saitama, Saitama 345-8501 Japan.
1) Division of Materials Science and Engineering, Graduate School of Engineering, Hokkaido University, North 13, West 8, Kitaku, Sapporo, Hokkaido 060-8628 Japan.
2) Sumitomo Metal Industries, Ltd., 16-1, Sunayama, Hazakichou, Kasimagun, Ibaraki 314-02 Japan.
3) Department of Materials Science and Processing, Osaka University, Yamadaoka, Suta, Osaka 565 Japan.

(Received on March 7, 2001; accepted in final form on July 25, 2001)

It often occurs that setting up an immersion nozzle on the mold, nozzle axis does not coincide with the mold-axis. In this study, under the off-center nozzle with the mold-axis, bulk mold flow was investigated, and following issues were obtained:

1) For the case without swirl, the peak of the flow moves near the mold-wall with flowing down from the outlet of the nozzle due to the Coanda effect (shown in Appendix). On the other hand, peak of the flow moves near the mold-axis with flowing down from the nozzle-outlet within considerable short distance, namely axisymmetric velocity distribution can be obtained within very short distance from the nozzle-outlet.

2) The surface flow patterns between coaxial and off-center nozzles are quite different. The flow pattern with coaxial nozzle is axisymmetric and simple, while the flow from one side to other side can be observed, with off-center nozzle.

KEY WORDS: off-center immersion nozzle; swirling flow in immersion nozzle; uniform velocity; billet continuous casting mold.

1. Introduction

Recently, it was acknowledged that imparting a swirl to the flow in the immersion nozzle, improvement of productivity and quality of steel ingot concerning CC process are promoted in a trial stage for the practical application. (1) By changing swirl strength, it is easy to control the flow pattern as well as the direction of the flow, (2) Uniform velocity distribution can be obtained within a short distance from the outlet of the immersion nozzle, (3) Heat and mass transfer near the meniscus can be remarkably activated compared with a conventional straight type immersion nozzle without swirl, (4) Swirl helps the superheat in the melt dissipate, (5) Penetration depth of the nozzle outlet flow is decreased remarkably by the application of swirling. Those findings mentioned above are very useful to control the flow pattern in the billet and bloom continuous casters. (2-4) It is considered that setting an immersion nozzle on the billet mold, it is often occurred for the immersion nozzle-axis to not coincide with the billet-mold. In those cases, it is important to investigate how to have an effect on imparting a swirl to the fluid flow in the immersion nozzle.

2. Experimental Apparatus

Figure 1 shows a schematic of the experimental apparatus used in the water model, where the off-center distance of the nozzle axis from the mold axis are 15 mm and 30 mm, respectively. A constant fluid velocity was obtained through the nozzle using an over flow tank. The desired swirl flow was established using a fixed swirl blade placed at the upstream end of the nozzle tube. In order to eliminate swirl from the system the swirl blade could be removed, without changing the system.

The axial, radial and tangential velocity profiles were measured every 3 mm in the axial direction using a laser Doppler velocimeter (LDV) mounted on a traversing device. The LDV used a 2-dimensional 4 W Ar laser made by Dantec Inc. The water was seeded with 3 micron alumina powder to facilitate the measurements. The mean velocity through the tube was measured by an electro-magnetic velocimeter and was found to be 2 m/s. The resulting Reynolds number was 38 000 (for water temperature of 20°C) giving a moderately turbulent flow.

3. Results

Continuity, momentum equations, RNG $k-\varepsilon$ model for the case without swirl and RSM model for the case with swirl are adopted at the following calculations using the FLUENT-code. (5,6) Boundary conditions: wall function at solid wall; k and ε are those derived from the assumption of...
an equilibrium boundary layer; uniform axial component velocity and radial profiles of tangential velocity described later are assumed, at the nozzle inlet; a constant pressure is assumed at exit boundary; no shear stress is assumed at the free surface; small grid spacing was employed near the domain. In order to ensure the numerical accuracy of the results, the mass and momentum equations are required to be satisfied to within 0.1% of the integrated flow of the quantity through the domain.

A radial profile of the tangential velocity at 20 mm downwards from the nozzle entrance is shown in Fig. 2, which is stirred by the swirling blade installed at the entrance of the nozzle. It is noted that Rankin-vortex having both the forced vortex (namely, tangential velocity $w = r \omega$) in the inner region ($r < 15 \text{ mm}$) and free vortex (namely, tangential velocity $w = K/r$) in the outer region ($r > 15 \text{ mm}$) can be seen in Fig. 2, and its mean tangential velocity equals 1.72 m/s. From now on, the tangential mean velocity W is denoted by the mean tangential velocity across the nozzle entrance.

Fig. 1. Experimental apparatus with off-center nozzle; V_z, mean axial velocity in nozzle; W, mean inlet tangential velocity in nozzle; δ, off-center distance.

Fig. 2. Radial profile of tangential velocity measured at position of 20 mm downwards from the nozzle entrance.

Fig. 3. Uneven velocity defined.

$$Uneven\ velocity = \frac{\Delta u}{V} \times 100\ (%)$$

$$r^* = \frac{r}{R}$$

Fig. 4. Radial profiles of axial velocity vs. several axial positions from the outlet of the immersion nozzle under the off-center distance of 15 mm; without (a) and with swirl velocity $W' 1.7 \text{ m/s}$ (b), V_z in nozzle 2 m/s.
3.1. Uneven Flow

Figure 3 shows an uneven velocity defined in this study. A magnitude of uneven flow is defined as follows:

\[
\text{Uneven velocity} = \frac{|\Delta u|}{V} \times 100\%
\]

where \(\Delta u\) denotes velocity difference, and \(V\) represents the mean velocity across the mold.

The development of axial velocity with flowing down from the nozzle-outlet are shown for the cases with and without swirl under the off-center distance of 15 to 30 mm, in Figs. 4 and 6, respectively. It can be seen that, for the case without swirl, the flow has a maximum, which is very high on the nozzle axis and considerable velocity fluctuation because of separation of boundary layer. And hence, the accordance between the calculated and experimental results with swirl is much better compared with that without swirl. Numerical model does not reproduce the experimental results for the case having the boundary-separation between the flow and curved wall of the nozzle-outlet.

Figure 8 shows the velocity variations near the immersion nozzle outlet for the cases with and without swirl. For the case near the nozzle outlet-wall-curve without swirl, considerable magnitude of variation can be observed, on the other side, at the radial positions of 0 and 60 mm from the mold axis where the outlet flow do not directly operate, those variations are neglected. The outlet flow is considerably fragile because that may be easily affected by a kind of Coanda effect and outer disturbance such as downward flow passing near the outlet of the nozzle. In contrast, the fluctuations are remarkably suppressed for the case with swirl, because the outlet flow always surely follows the curved wall of the nozzle-outlet.

Figure 9 shows the relationship between maximum uneven velocity without swirl is observed at 200 mm downwards from the nozzle-outlet. In contrast, uneven velocity is nearly zero at 100 mm downstream of the nozzle-outlet. In other words within 100 mm from the nozzle-outlet an almost calm and axi-symmetric flow can be obtained. Therefore, accordance between the experimental and calculated results with swirl is much better compared with that without swirl. Numerical model does not reproduce the experimental results for the case having the boundary-separation between the flow and curved wall of the nozzle-outlet.
velocity and off-center distance for the cases without and with swirl. Figure 10 shows the relationships between maximum relative uneven velocities (maximum uneven velocity with swirl/maximum uneven velocity without swirl) and off-center distances.

At the downstream distance of over 100 mm from the nozzle outlet, the maximum uneven velocity is a tenth less than that without swirl. Imparting a swirl to the flow in the immersion nozzle, calm and axisymmetric bulk mold flow can be obtained within a short distance from the immersion nozzle outlet. Figure 11 shows the surface flows for the off-center distances δ of 0 to 30 mm. The surface flow pattern between coaxial and off-center nozzle is quite different. The flow pattern with coaxial nozzle is axisymmetric and simple, while the flow from one side to other side can be observed, with off-center nozzle as shown in Fig. 12.
4. Conclusion

(1) Axisymmetric flow can be obtained within 100 mm downwards from the outlet of the immersion nozzle, with swirl, even with the off-center distance of 30 mm between the axis of nozzle and mold.

(2) The peak of axial velocity distribution without swirl moves near the mold wall with streaming down from the outlet of the nozzle.

(3) Numerical analysis can reproduce well the experimental results for the case imparting a swirl flow in the immersion nozzle, however, don’t well for the case without swirl because of the boundary separation between the curved wall of the nozzle outlet and flow.

(4) The surface flow patterns between coaxial and off-center nozzle are quite different. The flow pattern with coaxial nozzle is axisymmetric and simple, while the flow from one side to other side can be observed, with off-center nozzle.

REFERENCES

1) M. Iguchi, K. Sasaki, K. Nakajima and H. Kawabata: ISIJ Int., 38 (1998), 1297.
2) S. Yokoya, Y. Asako, S. Hara and J. Szekely: ISIJ Int., 34 (1994), 883.
3) S. Yokoya, R. Westoff, Y. Asako, S. Hara and J. Szekely: ISIJ Int., 34 (1994), 889.
4) S. Yokoya, S. Takagi, M. Iguchi, Y. Asako, R. Westoff and S. Hara: ISIJ Int., 38 (1998), 827.
5) B. E. Launder and D. B. Spalding: Computer Method in Applied Mechanics and Engineering, Vol. 3, (1974), 269.
6) Fluent User’s Manual Version 4.4, ed. by Fluent Inc., Tokyo, (1996).

Appendix

A two-dimensional or three-dimensional single-phase jet moving near a wall is pulled towards the wall, attaches to it and finally moves along it. This phenomenon is caused through the Coanda effect, as explained briefly in the following.

We consider, for example, an axisymmetrical, vertical single phase jet. If there is no wall around the jet, the pres-
sure of fluid surrounding the jet is uniform in any horizontal plane because the fluid is uniformly entrained into the jet from all direction in that plane. As a result, the jet moves straight downward. On the other hand, if a wall exists besides the jet, the pressure of fluid between the jet and the wall decreases compared with the pressure of fluid located on the opposite side of the wall as the jet develops in the vertical direction. According to this pressure difference, the jet is pulled towards the wall and attaches to it.

Fig. 12. Flow patterns at the sections of AA and BB for the various off-center distances of \(\delta \) shown in Fig. 11: \(V_z \) in nozzle 2 m/s, swirl velocity 1.7 m/s.