TOTAL ANKLE ARTHROPLASTY: BRAZILIAN EXPERIENCE WITH THE HINTEGRA PROSTHESIS

Caio Nery¹, Túlio Diniz Fernandes², Cibile Réssio³, Mauro Luiz Fuchs⁴, Alexandre Leme de Godoy Santos⁵, Rafael Trevisan Ortiz⁶

ABSTRACT
Ankle arthrosis is becoming more and more common. The search for solutions that preserve joint function has led to a new generation of prosthesis with three components and more degrees of freedom. This paper presents the results achieved for ten patients treated with the HINTEGRA Prosthesis (Integra, New Deal), through collaborative action between the Foot and Ankle Groups of the Orthopedics and Traumatology divisions of Escola Paulista de Medicina, Unifesp, and the School of Medicine of the University of São Paulo (USP). The ten patients (six women and four men, aged between 29 and 66 years), underwent a surgical procedure consisting of Hintermann’s technique, between January and June 2005. They were evaluated at prearranged intervals, and the data were subjected to statistical analysis. The surgery led to a significant improvement in ankle mobility. Radiological evaluation showed no signs of loosening or failure in the prosthetic components in any of the patients studied. Although the complication rate in our sample was high, it was equivalent to the rates found by other authors, and directly represents the learning curve associate with this kind of procedure. Four years after the procedure, it was found that the patients’ pain levels had significantly decreased, and that their functional patterns had significantly improved, with AOFAS and Hintermann scores indicating results that were excellent for 20%, good for 70% and poor for 10%. Treatment of ankle arthritis by means of total arthroplasty using the HINTEGRA prosthesis was capable of providing good results over an average observation period of four years.

Keywords – Ankle joint; Arthrodesis; Osteoarthritis; Arthroplasty; Prostheses and implants

INTRODUCTION
Although the frequency of primary arthrosis of the ankle is not a matter of special concern within our setting, its post-traumatic and inflammatory forms are presenting increasing incidence here in Brazil and around the world. Ankle arthrodesis, which is considered to be the gold standard for treating arthrosis of any etiology, has been increasingly questioned, especially when we have been faced with occurrences of bilateral cases and cases among young individuals. Our work always involves a spectrum of overload on adjacent joints and the sequelae resulting from this, with consequent deterioration of patients’ functional quality(1).

Despite the high failure rates experienced with the first generations of total ankle prostheses(2), several groups continued to conduct research. Today, a variety of implants are available, and their refinements come close to the anatomical and functional requirements of this joint.

Analysis of the literature indicates that the most important advance has been the concept of “mobile support”, in which the prosthetic components correlate with various degrees of freedom, without involving joint constriction. Third-generation prostheses consist-

1 – Full Associate Professor of the Department of Orthopedics and Traumatology, Escola Paulista de Medicina, Unifesp. Head of the Foot Medicine and Surgery Sector of Unifesp.
2 – PhD. Professor in the School of Medicine of the University of São Paulo. Head of the Foot and Ankle Group of the Institute of Orthopedics and Traumatology, Hospital das Clínicas, FMUSP.
3 – MSc in Orthopedics from Escola Paulista de Medicina, Unifesp. Member of the Foot Medicine and Surgery Sector of Unifesp.
4 – Orthopedist at Hospital Novo Mundo, Curitiba, PR. Titular Member of SBOT and the Brazilian Foot and Ankle Association.
5 – Attending Physician at the Institute of Orthopedics and Traumatology, Hospital das Clínicas, FMUSP.

Work performed in the Department of Orthopedics and Traumatology, Escola Paulista de Medicina, Unifesp, and at the Institute of Orthopedics and Traumatology, Hospital das Clínicas, School of Medicine of the University of São Paulo.

Correspondence: Av. Albert Einstein, 620, Bloco A1, Sala 317, Morumbi, São Paulo, SP. E-mail: caionerymd@gmail.com

We declare that there is no conflict of interest in this paper

Rev Bras Ortop. 2010;45(1):92-100

© 2010 Sociedade Brasileira de Ortopedia e Traumatologia. Open access under CC BY-NC-ND license.
ing of the three elements of tibial, talar and intermediate components have been the most successful prostheses so far (3-5).

Within this scenario, which is highly unfavorable for third-world countries because of the high cost and complexity of the production, distribution and commercialization of surgical material of such sophistication, the Foot and Ankle Groups of the Department of Orthopedics and Traumatology, Escola Paulista de Medicina, Unifesp, and the Institute of Orthopedics and Traumatology, School of Medicine of the University of São Paulo, joined forces to seek deeper knowledge, achieve desirable training and introduce total ankle arthroplasty into our setting. The HINTEGRA prosthesis (Integra Group, USA, and New Deal, France) was chosen as the one that we would work with, because of its quality, performance, ease of access and availability (5).

The aim of this study was to present the results obtained from the first ten cases treated with the HINTEGRA total ankle prosthesis in Brazil.

METHODS

Between January and June 2005, ten total ankle arthroplasty procedures were performed by the surgical groups in the two institutions. The patients were reassessed in April 2009, and clinical and radiographic data was obtained from all of them. With these observations, a mean follow-up period of four years was attained.

Our sample was composed of six women and four men, with ages ranging from 29 to 66 years and a mean age of 50.2 years. The side affected was evenly distributed. The mean length of time for which the patients had been suffering pain and the disease was 10.1 years, with a range from two to 29 years.

With regard to the etiology of the ankle arthrosis, there were three cases of post-traumatic arthrosis, six cases of inflammatory arthrosis and one case of post-infection arthrosis. In this last case, the patient had suffered a condition of septic arthritis 28 years earlier.

Table 1 presents the demographic data relating to the patients of our sample.

All of the patients were enrolled in a study protocol and underwent surgical treatment that strictly followed the technique devised and disseminated by Beat Hintermann for the HINTEGRA prosthesis (New Deal, France) (6).

The patients’ records were consulted to obtain data relating to immediate and late-stage complications, and a series of radiographs was evaluated and measured in order to search for signs of misalignment, wear and loosening of the prosthetic components. In addition, the conditions of bone specimens and specimens of tissue from around the prostheses were evaluated.

We used the criterion of “three weeks” to analyze the integrity of the soft-tissue envelope in the ankle region and to determine occurrences of complications of the surgical wound (7). According to this criterion, minor complications include small-scale dehiscence of the wound, necrosis limited to the edge of the incision and signs of superficial infection that can treated by means of a series of dressings. Major complications include all complications that require some type of surgical treatment for debridement, drainage or skin coverage.

Table 1 – Order, date of operation, length of follow-up, service of origin, initials, age, sex, color, side, length of time with disease and type of arthrosis, among the patients who underwent the operation

No.	Date	Length of follow-up	Service	Name	Age	Sex	Color	Side	Length of time with disease	Type
1	20/01	4y2m	Unifesp	EDS	66	F	white	R	2y	Post-traumatic
2	28/01	4y2m	Unifesp	ARR	29	M	white	L	14y	Inflammatory
3	03/02	4y2m	Unifesp	ADC	49	M	white	R	4y	Post-traumatic
4	10/02	4y1m	Unifesp	SRH	43	F	white	F	28y	Inflammatory
5	02/03	4y1m	Unifesp	LMTR	52	F	white	R	3y	Inflammatory
6	11/03	4y1m	USP	MMRR	53	F	black	R	5y	Inflammatory
7	18/03	4y1m	USP	CL	57	M	white	L	9y	Inflammatory
8	01/04	4y	USP	MLM	58	F	black	L	29y	Inflammatory
9	27/04	4y	USP	NGB	45	F	white	L	2y	Post-traumatic
10	29/06	3y9m	Unifesp	RAF	50	M	mixed	L	5y	Inflammatory
										Mean
Mean										50.2

Rev Bras Ortop. 2010;45(1):93-100
In the clinical evaluation, we used a visual analog scale for pain, Hintermann’s clinical criterion for total ankle arthroplasty (8) (Table 2) and the AOFAS scale for the ankle and rear part of the foot (9).

The radiographic evaluation was performed using radiographs of the ankle in anteroposterior and lateral views that were obtained with the patient in the orthostatic position. The parameters suggested by Hintermann et al. were measured (5, 8, 10).

Distance “a”: Distance in millimeters measured between the anterior extremity of the talar component of the prosthesis and the line tangential to the upper edge of the navicular and the upper eminence of the posterior tuberosity of the calcaneus.

Distance “b”: Distance in millimeters measured between the posterior extremity of the talar component of the prosthesis and the line tangential to the upper edge of the navicular and the upper eminence of the posterior tuberosity of the calcaneus.

The real mobility of the ankle was measured in our patients. This was defined as the range of motion measured between the tibial and talar components on lateral radiographs, at maximum flexion and extension.

Radiolucent lines were defined as dark lines of variable width that appeared around the prosthesis components. Their occurrence was not directly associated with loosening of the components and could resolve spontaneously.

Loosening of the tibial component of the HINGE prosthesis was diagnosed when there were changes of more than two degrees in the alpha and beta angles, or when radiolucent lines of more than 2 mm in thickness appeared.

Loosening of the talar component of the HINGE prosthesis was diagnosed when deepening of the talus body greater than 5 mm occurred (distances “a” and “b”), or when the theta angle underwent changes greater than five degrees. It is very difficult to evaluate radiolucent lines around the talar component.

The intermediate component, which is made of polyethylene, may become worn. This is characterized by tapering or fracturing, with loss of support and locking or instability of the prosthesis. The radiographs on all the patients in this series were examined to look for such signs.

Table 2 – Hintermann’s clinical criteria (8)

Grade	Pain	Limitation on recreational activities	Limitation on daily activities	Need for support	Use of footwear
EXCELLENT	None	None	None	None	Free
GOOD	Slight/occasional	Slight	None	None	Slight restriction
REGULAR	Moderate/frequent	Yes	Yes	One crutch	Serious restriction
POOR	Intense/daily	Significant	Important	Walking frame/orthosis	Orthopedic shoes

Figure 1 – Radiological parameters for evaluating the HINGE model of total ankle prosthesis – see text
The initial and final numerical data from the angular and linear measurements on all the patients were subjected to statistical analysis using Student’s t test. We defined the level for rejection of the nullity hypothesis as 5% (alpha error = 5; p = 0.05).

RESULTS

Table 3 presents the range-of-motion values for the ankles before the operation and at the final postoperative assessment (four years). The real mobility was positive in 80% of the patients, who improved by an average of 17 degrees.

The statistical analysis did not detect any significant differences in the other parameters evaluated (alpha, beta and theta angles and distances “a” and “b”), which only underwent small changes within the acceptable limits that had been defined previously, after four years of follow-up.

For two patients (20%), other surgical procedures had to be performed in association with the main procedure of total ankle arthroplasty. For patient #6, arthrodesis of the subtalar joint and stretching of the Achilles tendon were performed; and for patient #10, only stretching of the Achilles tendon was needed.

Analysis on the radiographs that were obtained at preestablished intervals from all the patients indicated that radiolucent lines appeared in four patients (40%): in patient #1, the lines appeared in the fibula and talus on radiographs produced after two years; in patient #3, the lines were around the tibial component on radiographs produced after four years; in patient #4, the lines were in the contact area between the tibial component and fibula on radiographs produced after three months (Figure 2); and in patient #5, the lines were around the talus and tibia on radiographs produced after one year. These lines did not progress with time and did not represent signs of loosening of prosthetic components in the patients of this sample.

Three cases (30%) of radiographic misalignment of the prosthetic components were identified: in patient #1, misalignment between the components in the coronal and transverse planes was noted on radiographs produced after two years of follow-up; in patient #2, slight misalignment of the talar component in the transverse plane was already noted on the initial radiographs, and this positioning did not change with time; in patient #5, there was deepening of the tibial and talar components without any perceptible change to their alignments on radiographs produced four years after the operation (Figure 3).

Table 4 brings together the final results from the ten patients included in this study. Arthroplastic replacement of the ankle gave rise to a significant reduction in pain levels, which went from an average of 7.9 before the operation to 2.0, four years after the operation.

According to the clinical scores, good results (70%) predominated over excellent results (20%) and poor results (10%).

The differences between the initial values measured on radiographs produced one month after the operation and the final values measured on radiographs produced at the end of the observation period, with regard to alpha, beta and theta angles and the distances “a” and “b”, are also presented.

There was a significant difference in the mean value for range of ankle motion, from before to after the surgery, thus indicating that the procedure gave rise to a substantial improvement. Except for one patient (#3), the others presented range-of-motion values that were considered functional for total ankle arthroplasty (30 degrees).

Although not presented in the table, comparative analysis on subtalar mobility and rear foot valgus did not show any significant difference from before to after the surgery (p = 0.343).
Figure 2 – Patient #4: Radiographs in anteroposterior and lateral views of the right ankle at four different times: initial, three months after the operation, one year after the operation and four years after the operation. Despite good positioning of the prosthetic components, a radiolucent line appeared three months after the operation, in the contact area between the tibial component and the medial edge of the fibula. This line continued to be present one year after the operation and had regressed by the time of the fourth-year assessment, while the patient presented a clinical result that was considered good. See also the joint mobility of this patient demonstrated in Figure 6.

Table 4 – Final results according to evolution of pain, AOFAS score and Hintermann's clinical criterion for PTT

No.	Initial pain	Final pain	AOFAS before	AOFAS after	Clinical result
1	8	4	37	71	Good
2	9	2	42	81	Good
3	8	1	27	85	Good
4	8	0	40	85	Good
5	9	3	34	74	Good
6	7	0	51	92	Excellent
7	7	2	58	88	Good
8	8	5	24	0	Poor
9	7	0	63	98	Excellent
10	8	3	37	81	Good
	Mean test	7.9	2	41	76 P < 0.001*

* 20% Exc / 70% Good / 10% Poor

COMPLICATIONS

There were large numbers of complications among the patients included in this study. As already stated, the complications were divided into two types (minor and major), depending on their severity and the need for interventions.

Among the minor complications, there were two patients with dermolysis and dehiscence of the operative wound, who responded well to treatment with a series of dressings. Another patient presented superficial infection of the surgical wound that was treated by means of local cleansing alone. Two patients were diagnosed as presenting transoperative malleolar fractures (one in the lateral malleolus and the other in the medial malleolus), and these were treated with load suppression alone, for four weeks.

Among the major complications, there were two patients with necrosis of the edges of the operative wound, with exposure of tendons and part of the prosthesis. These patients were treated by means of grafts: one patient with a skin-free graft (fourth postoperative week) and the other patient with the myocutaneous graft from the vascularized brachial triceps (third postoperative week) (Figure 4).

results (10%). Despite the large number of radiological findings potentially indicative of unsatisfactory or unfavorable evolution, the clinical and functional observations pointed in exactly the opposite direction.
Figure 3 – Patient #5: Radiographs in anteroposterior and lateral views of the right ankle at three different times: initial, one year after the operation and four years after the operation. The deepening of the tibial and talar components can be clearly seen, especially in terms of the positioning of the fixation screws of the tibial component. Nevertheless, there was no angulation of loss of functional pattern, and the patient progressed without complaints.

Figure 4 – Patient #2: Shortly after the operation, this patient presented signs of ischemia on the edges of the surgical wound that evolved to necrosis. In the fourth postoperative week, this patient underwent pedunculated grafting (brachial triceps). Here, the clinical appearance after one year of evolution is shown.
One patient presented rupture of the long extensor tendon of the hallux, which was repaired in the eighth postoperative week.

One patient presented joint locking because of the presence of a bone fragment resulting from cutting the talus, which had inadvertently been abandoned in the posterior portion of the tibiotarsal joint. This problem was corrected by means of simple resection of the free bone fragment, through posterolateral miniarthrotomy.

The most severe complication was in patient #8, who presented difficult-to-control rheumatoid arthritis, and consisted of extensive vasculitis that affected the entire lower limb. The attempts to save the limb were in vain and, at the end of the eighth postoperative week, a salvage measure consisting of transtibial amputation of the left leg was performed.

Table 5 summarizes the complications found among our sample.

Table 5 – Complications and the treatments used

No.	Complication	Treatment
1	Dehiscence of suture	Skin-free graft
	Fracture of medial malleolus	Load suppression for 4 weeks
2	Necrosis of wound edges	Pedunculated triceps graft
3	Fracture of lateral malleolus	Load suppression for 4 weeks
4	Dehiscence of suture	Dressings
	ELH rupture	Tenorrhaphy
5	Superficial infection	Surgical drainage
6	None	None
7	Necrosis of wound edges	Dressings
8	Vasculitis of lower limb	Transtibial amputation (PTB)
9	None	None
10	Free bone fragment	Resection
	80% with minor and major complications	

DISCUSSION

Stimulated by successes achieved with arthroplasty on large load-bearing joints of the lower limbs (knees and hips), many researchers have sought the ideal formula for achieving similar results in relation to the ankle joint(1).

As an additional stimulus, along with the present-day trends towards preserved activity levels and quality of life, unequivocal observations have appeared regarding the complications associated with ankle arthrodesis(1) and the functional superiority of arthroplasty, compared with fusion, over the long term(11-13).

Recent advances in understanding the biomechanics and physiology of the human ankle, along with the accumulated experience from successive failures in the designs of prostheses in the past, have led to the development of unconstrained three-component prostheses that are stable under inversion and eversion, and have freedom to perform axial rotation and flexion-extension.

The HINTEGRA prosthesis, created by Beat Hintermann (Basel, Switzerland), Greta Dereymaeker (Pallenberg, Belgium), Ramon Viladot (Barcelona, Spain) and Patrice Diebold (Maxeville, France), has anatomically designed components that practically cover the anatomical surfaces. This prosthesis is supported on the most resistant zones of the tibia and talus (subchondral bone and cortical ring), thus requiring minimal bone resection. Thus, it very effectively reproduces normal ankle function (Figure 5).

However, its implantation is full of technical details and delicate steps, from which difficult-to-correct errors or serious complications may arise.

There is a large volume of literature referring to complications relating to ankle arthroplasty, independent of the prosthesis model chosen. High incidence of problems has been demonstrated in the initial cases of each series(5,7,14,15). Based on comparative analysis between different authors’ reports, it has been established that the average learning curve is around 50 cases(14-20).

Malleolar fractures and minor problems with the soft-tissue envelope of the ankle tend to diminish in frequency
as surgeons and their teams become familiarized with the pace of the technique and the intraoperative tension reduces. Among our sample, the incidence of such complications was close to that of other authors but, unfortunately, because of the number of cases, we have not yet experienced the natural reduction in the complication rate\(^{(20)}\).

The major complications exhibit a similar pattern and also tend to become less frequent as the case series progresses. Among our sample, both of the patients who presented complications of greater severity (vascularized graft and severe vasculitis that necessitated transtibial amputation) presented rheumatoid arthritis with aggressive evolution, which alerted us to establish extreme care rules for treating such cases.

Having a multidisciplinary team with the skills to support and resolve cases with the most frequent complications is essential for all services that intend to start performing total ankle arthroplasty.

Both the minor and the major complications were concentrated in the immediate postoperative period. This finding coincides with other authors’ experiences: the first postoperative year has been seen to present the highest concentration of significant occurrences\(^{(14,16,19,20)}\). Thereafter, patients’ evolution is very uneventful and a stable and long-lasting functional pattern becomes established. Among our sample, this state continued for four years.

Curiously, once the most turbulent period had passed by, during which we dealt with the abovementioned complication and worked on rehabilitating and reintegrating the patients, the clinical and radiological assessments improved and the efficacy of the treatment method crystallized.

Our numbers attest to this assertion. The low intensity of pain complaints, the functional joint mobility and the maintenance of the alignment and stability of the segment operated ensured a very adequate quality of life for these patients, including the possibility of undertaking light, non-impacting exercise (Figure 6). Even in the case in which deepening of the prosthetic components was observed, the alignment and mobility pattern were maintained, and for this reason, this patient considered that the result was good, at the assessment four years after the operation.

We did not observe any cases of failure of the intermediate component, or of loosening or failure of the prosthesis as a whole. There was no need to exchange or remove any component up to the time of our final observations.

In subjective discussions with our patients about the procedure that was performed, we received comments expressing enthusiasm, satisfaction and gratitude for the treatment received and the results achieved, even among those who suffered major complications.

By presenting our small case series, we hope to be contributing towards providing hope and encouragement for patients with severe arthrosis of the ankle. We also hope to stimulate and provide information for our specialist colleagues who, like us, have the ever-present aim of progress, seeking new solutions for old problems. This study also provides technical support for the Brazilian authorities, which have not yet given the go-ahead for the procedure of total ankle arthroplasty within our setting.

CONCLUSIONS

Based on our observations, we can conclude that despite the technical difficulties and long learning curve of total ankle arthroplasty performed using the HINTEGRA prosthesis, this is an adequate procedure that provides good functional results over a medium term of observation of four years.

ACKNOWLEDGEMENTS

The authors are grateful for the inestimable cooperation of the companies Integra (USA), New Deal (France) and Tellus (Brazil), which manufacture and distribute the HINTEGRA prosthesis, for their support for education and training of the teams and donation of the implants used in this study.

![Figure 6 – Patient #4: range of motion of the right ankle, affected by post-infection arthrosis, compared with the normal side at the final evaluation, four years after the operation](image-url)
REFERENCES

1. Fuchs S, Sandmann C, Skwara A, Chylarecki C. Quality of life 20 years after arthrodesis of the ankle. A study of adjacent joints. J Bone Joint Surg Br. 2003;85(7):994-8.

2. Hintermann B. History of total ankle arthroplasty. In: Total ankle arthroplasty: historical overview, current concepts and future perspectives. New York: Springer-Verlag; 2005. p. 53-63.

3. Hintermann B. Short and mid-term results with STAR total ankle prosthesis. Ortopade. 1999;28:792-803.

4. Buchuel FF Sr, Buchuel FF Jr, Pappas MJ. Eighteen-year evaluation of cementless meniscal bearing total ankle replacements. Instruct Course Lect. 2002;51:14351.

5. Hintermann B, Valderrabano V, Dereymaeker G, Dick W. The HINTEGRA ankle: rationale and short-term results of 122 consecutive ankles. Clin Orthop Rel Res. 2004;(424):57-68.

6. Hintermann B. Surgical techniques. In: Total ankle arthroplasty: historical overview, current concepts and future perspectives. New York: Springer-Verlag; 2005. p. 11531.

7. Myerson MS, Broczek K. Perioperative complications of total ankle arthroplasty. Foot Ankle Int. 2003;24(1):17-21.

8. Hintermann B. Postoperative care and follow-up: radiographic measurements. In: Total ankle arthroplasty: historical overview, current concepts and future perspectives. New York: Springer-Verlag; 2005. p. 137-43.

9. Kitaoka HB, Alexander IJ, Adelaar RS, Nunley JA, Myerson MS. Clinical rating systems for the ankle-hindfoot, midfoot, hallux and lesser toes. Foot Ankle. 1994;15(7):34953.

10. Hintermann B, Valderrabano V, Knupp M, Horisberger M. The HINTEGRA ankle: short- and mid-term results. Ortopade. 2006;35(5):533-45.

11. Kofed H, Störup J. Comparison of ankle arthroplasty and arthrodesis. A prospective series with long-term follow-up. Foot. 1994;4(1):6-9.

12. Kofed H, Sorensen TS. Ankle arthroplasty for rheumatoid arthritis and osteoarthritis: prospective long-term study of cemented replacements. J Bone Joint Surg Br. 1998;80(2):328-32.

13. Kofed H, Lundberg J. Ankle arthroplasty in patients younger and older than 50 years: a prospective series with long-term follow-up. Foot Ankle Int. 1999;20(8):501-6.

14. Haskell A, Mann RA. Perioperative complications rate of total ankle replacement is reduced by surgeon experience. Foot Ankle Int. 2004;25(5):283-9.

15. Saltzman CL. Perspective on total ankle replacement. Foot Ankle Clin. 2000;5(4):76175.

16. Pyevich MT, Saltzman CL, Callaghan JJ, Alvine FG. Total ankle arthroplasty: a unique design. Two to twelve-year follow-up. J Bone Joint Surg Am. 1998;80(10):1410-20.

17. Saltzman CL, Amendola A, Anderson R. Surgeon training and complications in total ankle arthroplasty. Foot Ankle Int. 2003;24:514-8.

18. Schubert JM, Patel S, Zarutsky E. Perioperative complications of the agility total ankle replacement in 50 initial, consecutive cases. J Foot Ankle Surg. 2006;45(2):13946.

19. Wood PL, Deakin S. Total ankle replacement. The results in 200 ankles. J Bone Joint Surg Br. 2003;85(3):334-41.

20. Lee KB, Cho SG, Hur CI, Yoon TR. Perioperative complications of HINTEGRA Total Ankle Replacement: our initial 50 cases. Foot Ankle Int. 2008;29(10):97884.