Bifurcation in ground-state fidelity and universal order parameter for two-dimensional quantum transverse Ising model

Sheng-Hao Li,1 Hong-Lei Wang,1 Qian-Qian Shi,1 and Huan-Qiang Zhou1

1Centre for Modern Physics and Department of Physics, Chongqing University, Chongqing 400044, The People’s Republic of China

We establish an intriguing connection between quantum phase transitions and bifurcations in the ground-state fidelity per lattice site, and construct the universal order parameter for quantum Ising model in a transverse magnetic field on an infinite-size square lattice in two spatial dimensions, a prototypical model with symmetry breaking order. This is achieved by computing ground-state wave functions in the context of the tensor network algorithm based on the infinite projected entangled-pair state representation. Our finding is applicable to any systems with symmetry breaking order, as a result of the fact that, in the conventional Landau-Ginzburg-Wilson paradigm, a quantum system undergoing a phase transition is characterized in terms of spontaneous symmetry breaking captured by a local order parameter. In addition, a bifurcation in the reduced fidelity between two different reduced density matrices is also discussed.

PACS numbers: 74.20.-z, 02.70.-c, 71.10.Fd

I. INTRODUCTION

In recent years, a novel approach to quantum phase transitions (PQ Ts) [1, 2] in quantum many-body lattice systems emerges, based on the fact that fidelity, a basic notion in quantum information science, is a measure of quantum state distinguishability [3–12]. As argued in Refs. [4–9], the ground-state fidelity per lattice site captures drastic changes of the ground-state wave functions around a critical point for a quantum system in any spatial dimensions. That is, it is a universal marker to detect QPTs, regardless of what type of the internal order is present. In fact, quantum many-body lattice systems with either spontaneous symmetry breaking (SSB) order or topological order, have been specifically studied: for the former, the examples include quantum transverse Ising [8] and Potts chains [13], quantum Ising [7] and XYX models [14] on a square lattice, while for the latter, the Kitaev model [15] on a honeycomb lattice. Remarkably, there is a smoking-gun signature for SSB order in the fidelity per site approach: SSB order implies a bifurcation, arising from degenerate ground-state wave functions due to broken symmetry, in the ground-state fidelity per lattice site.

In fact, it was shown that, for a QPT arising from an SSB, a bifurcation appears in the ground-state fidelity per site, with a critical point identified as a bifurcation point. This in turn results in a novel concept of the universal order parameter, which appears as the ground-state fidelity per lattice site between a ground state and its symmetry-transformed counterpart. The advantage of the ground-state fidelity per lattice site and the universal order parameter [16] over local order parameters lies in the fact that both of them are universal, in the sense that it is not model-dependent, in contrast to model-dependent order parameters in characterizing QPTs in quantum lattice many-body systems. Similarly, a bifurcation occurs in the ground-state reduced fidelity [17] between the one-site reduced density matrices and the two-site reduced density matrices, with a critical point identified as a bifurcation point. However, all specific examples, up to now, have been restricted to quantum many-body lattice systems in one spatial dimension.

In this paper, we take one step further to see if these novel ideas are practical to quantum many-body lattice systems in two spatial dimensions. We establish, by exploiting the tensor network algorithm based on the infinite projected entangled-pair states (iPEPS) algorithm [18], an intriguing connection between a QPT and a bifurcation in the ground-state fidelity per lattice site, and construct the universal order parameter for quantum transverse Ising model on a square lattice, a prototypical model with symmetry breaking order. Our finding is applicable to any systems with symmetry breaking order, as a result of the fact that, in the conventional Landau-Ginzburg-Wilson paradigm, a quantum system undergoing a phase transition is characterized in terms of SSB captured by a local order parameter. In addition, a bifurcation in the reduced fidelity between two different reduced density matrices is also discussed.

II. MODEL

We consider quantum Ising model in a transverse magnetic field on an infinite-size square lattice in two spatial dimensions. It is described by the Hamiltonian:

\[H = -\sum_{\langle ij \rangle} \sigma^x_i \sigma^x_j + \lambda \sum_i \sigma^z_i, \]

where \(\sigma^\alpha_i \) (\(\alpha = x, z \)) are the spin 1/2 Pauli operators at site \(i \), \(\langle ij \rangle \) runs over all the possible nearest-neighbor pairs on a square lattice, and \(\lambda \) is the transverse magnetic field, which we choose as a control parameter. The model is invariant under the symmetry operation: \(\sigma^x_i \to -\sigma^x_i \) and \(\sigma^z_i \to \sigma^z_i \) for all sites simultaneously, which yields the \(\mathbb{Z}_2 \) symmetry. As is well known, the system undergoes a second-order QPTs at the critical field \(\lambda_c \sim 3.044 \) [18, 19].
III. BIFURCATION IN THE GROUND-STATE FIDELITY PER LATTICE SITE

For two ground-state wave functions $|\Psi(\lambda_1)\rangle$ and $|\Psi(\lambda_2)\rangle$ corresponding to two different values λ_1 and λ_2 of the control parameter λ, the ground-state fidelity $F(\lambda_1, \lambda_2) = \langle \Psi(\lambda_2) | \Psi(\lambda_1) \rangle$ asymptotically scales as $F(\lambda_1, \lambda_2) \sim d(\lambda_1, \lambda_2)^{N/4}$, with N being the number of sites in the lattice. Here, $d(\lambda_1, \lambda_2)$ is the scaling parameter, introduced for one-dimensional quantum systems [4–6] and for two and higher-dimensional quantum systems [7]. Note that it characterizes how fast fidelity goes to zero when the thermodynamic limit is approached. Physically, the scaling parameter $d(\lambda_1, \lambda_2)$ is the averaged fidelity per lattice site, which is well defined in the thermodynamic limit:

$$\ln d(\lambda_1, \lambda_2) \equiv \lim_{N \to \infty} \ln \frac{F(\lambda_1, \lambda_2)}{N}. \quad (2)$$

As noted in Refs. [4–6, 7], it satisfies the properties inherited from the fidelity $F(\lambda_1, \lambda_2)$: (i) normalization $d(\lambda, \lambda) = 1$; (ii) symmetry $d(\lambda_1, \lambda_2) = d(\lambda_2, \lambda_1)$; and (iii) range $0 \leq d(\lambda_1, \lambda_2) \leq 1$.

In the Z_2 symmetric phase, the ground-state wave function is non-degenerate, while in the Z_2 symmetry-broken phase, two degenerate ground-state wave functions arise. If we choose $|\Psi(\lambda_2)\rangle$ as a reference state, with λ_2 in the Z_2 symmetric phase, then the ground-state fidelity per lattice site, $d(\lambda_1, \lambda_2)$, is not able to distinguish two degenerate ground-state wave functions in the Z_2 symmetry-broken phase. However, if we choose $|\Psi(\lambda_2)\rangle$ as a reference state, with λ_2 in the Z_2 symmetry-broken phase, then the ground-state fidelity per lattice site, $d(\lambda_1, \lambda_2)$, can be used to distinguish two degenerate ground-state wave functions. Therefore, a bifurcation occurs in the ground-state fidelity per lattice site, $d(\lambda_1, \lambda_2)$, as a function of λ_1, for a fixed λ_2. As argued in Refs. [8, 9], for a given truncation dimension D, a pseudo-phase-transition point λ_D manifests itself as a bifurcation point [20].

In Fig. 1 we plot the ground-state fidelity per lattice site, $d(\lambda_1, \lambda_2)$, for quantum Ising model in a transverse magnetic field on an infinite-size square lattice in two spatial dimensions, with the transverse magnetic field λ as the control parameter. Note that a bifurcation does occur for the ground-state fidelity per lattice site, $d(\lambda_1, \lambda_2)$. Here, we have chosen $\lambda_2 = 2.1$ as a specific example. The pseudo-phase-transition point locates at $\lambda_D = 3.100$ for the truncation dimension $D = 2$, at $\lambda_D = 3.065$ for the truncation dimension $D = 3$, and at $\lambda_D = 3.050$ for the truncation dimension $D = 4$. We mention that the ground-state fidelity per lattice site, $d(\lambda_1, \lambda_2)$, is computed from the iPEPS representation of the ground-state wave functions, following the transfer matrix approach described in Ref. [7].

A remarkable feature of the bifurcation points for the ground-state fidelity per lattice site, $d(\lambda_1, \lambda_2)$, as seen in Fig. 1 is that $d(\lambda_1, \lambda_2)$ between different symmetry breaking ground-state wave functions in the same phase appears less than that between two ground-state wave functions from different phases. This is due to the fact that two degenerate symmetry breaking ground states in the same symmetry-broken phase are more distinguishable than two ground states from different phases.

IV. THE GROUND-STATE REDUCED FIDELITY BETWEEN TWO REDUCED DENSITY MATRICES

For quantum Ising model in a transverse magnetic field on an infinite-size square lattice, the one-site reduced density matrix in the Z_2 symmetric phase takes the form,

$$\rho = \frac{1}{2} + 2 \langle S_z \rangle S_z, \quad (3)$$

where $\langle S_z \rangle$ is the ground-state expectation value of S_z in the Z_2 symmetric phase, while the two-site reduced density matrix is,

$$\rho = \frac{1}{4} I + 4 \gamma_{xx} S_x \otimes S_x + 4 \gamma_{yz} S_z \otimes S_z + \gamma_{xz} I \otimes S_z + \gamma_{zy} S_z \otimes I. \quad (4)$$

Here, $\gamma_{xx} = \langle S_x \otimes S_x \rangle$, $\gamma_{zz} = \langle S_z \otimes S_z \rangle$, $\gamma_{zy} = \langle I \otimes S_z \rangle$, $\gamma_{xz} = \langle S_z \otimes I \rangle$, and I is the identity matrix.

In the Z_2 symmetry-broken phase, the one-site reduced density matrix becomes,

$$\rho = \frac{1}{2} + 2 \langle S_x \rangle S_x + 2 \langle S_z \rangle S_z, \quad (5)$$

whereas the two-site reduced density matrix is

$$\rho = \frac{1}{4} I + 4 \gamma_{xx} S_x \otimes S_x + 4 \gamma_{yz} S_z \otimes S_z + \gamma_{xz} I \otimes S_z + \gamma_{zy} S_z \otimes I + 4 \gamma_{xz} S_z \otimes S_z + \gamma_{oz} I \otimes S_x + \gamma_{ox} S_x \otimes I, \quad (6)$$

FIG. 1: (color online) The ground-state fidelity per lattice site, $d(\lambda_1, \lambda_2)$, for quantum Ising model in a transverse field on a square lattice in two spatial dimensions, with the transverse magnetic field λ as the control parameter. If we choose $|\Psi(\lambda_2)\rangle$ as a reference state, with λ_2 being in the Z_2 symmetry-broken phase, then $d(\lambda_1, \lambda_2)$ distinguishes two degenerate ground-state wave functions, with a pseudo-phase-transition point λ_D as a bifurcation point. Here, we have chosen $\lambda_2 = 2.1$. The pseudo-phase-transition point is identified at $\lambda_D = 3.100$ for the truncation dimension $D = 2$, at $\lambda_D = 3.065$ for the truncation dimension $D = 3$, and at $\lambda_D = 3.050$ for the truncation dimension $D = 4$, respectively.
with $\gamma_{xx} = \langle S_x \otimes S_x \rangle$, $\gamma_{zz} = \langle S_z \otimes S_z \rangle$, $\gamma_{xx} = \langle I \otimes S_x \rangle$, and $\gamma_{zz} = \langle S_z \otimes I \rangle$.

The reduced fidelity measures the distance between two quantum mixed states. For two reduced density matrices $\rho_{1\lambda}$ and $\rho_{1\lambda}$, the reduced fidelity $F(\rho_{1\lambda}, \rho_{2\lambda})$ is defined to be [17]

$$F(\rho_{1\lambda}, \rho_{2\lambda}) = \text{tr} \sqrt{\rho_{1\lambda}^{1/2} \rho_{2\lambda}^{1/2}}. \quad (7)$$

Here, $\rho_{1\lambda}$ and $\rho_{2\lambda}$ are the reduced density matrices corresponding to two different values, λ_1 and λ_2, of the control parameter λ. Notice that the reduced fidelity $F(\rho_{1\lambda}, \rho_{2\lambda})$ is a function of λ_1 and λ_2, which satisfies the following properties: (i) normalization $F(\rho_{1\lambda}, \rho_{1\lambda}) = 1$; (ii) symmetry $F(\rho_{1\lambda}, \rho_{2\lambda}) = F(\rho_{2\lambda}, \rho_{1\lambda})$; (iii) range $0 \leq F(\rho_{1\lambda}, \rho_{2\lambda}) \leq 1$.

In Fig. 2 (upper panel), we plot the ground-state reduced fidelity $F(\rho_{1\lambda}, \rho_{1\lambda})$ between the one-site reduced density matrices for quantum Ising model in a transverse field on an infinite-size square lattice, with the transverse field strength λ as the control parameter. Here, we choose $\rho_{1\lambda}$, at $\lambda_2 = 2.1$, as a reference state, which breaks the Z_2 symmetry. The one-site reduced fidelity is able to distinguish two mixed states (described by two reduced density matrices) from two degenerate ground-state wave functions, with a bifurcation point as a pseudo-phase-transition point λ_{B}. When the control parameter λ crosses a pseudo-transition point, the ground-state degeneracy changes suddenly, implying that the system undergoes a QPT. We observe that the pseudo-phase-transition point λ_{B} moves toward the critical point λ_c with increasing D.

More precisely, the pseudo-phase-transition point locates at $\lambda_{\text{B}} = 3.100$ for the truncation dimension $D = 2$, at $\lambda_{\text{B}} = 3.065$ for the truncation dimension $D = 3$, and at $\lambda_{\text{B}} = 3.050$ for the truncation dimension $D = 4$, respectively.

We also plot the ground-state reduced fidelity $F(\rho_{1\lambda}, \rho_{2\lambda})$ between the two-site reduced density matrices for quantum Ising model in a transverse field on an infinite-size square lattice in Fig. 2 (lower panel). The reference state is chosen at the same $\lambda_2 = 2.1$, as in the case of the one-site reduced fidelity. We observe that a bifurcation also occurs in the two-site reduced fidelity, with the same pseudo-phase-transition point λ_{B}. This is expected, simply because they are resulted from the same set of the ground-state wave functions.

V. THE UNIVERSAL ORDER PARAMETER

As argued in Ref. [16], for any quantum lattice system with a symmetry group G undergoing a QPT with symmetry breaking order, there is a universal order parameter: it is defined as the ground state fidelity per lattice site between a ground-state wave function and its symmetry-transformed counterpart, which is discontinuous for first-order phase transitions and continuous for second-order phase transitions. This is based on the observation that, for any ground state $|\Psi\rangle$ in the symmetric phase, $\langle \Psi_g | \Psi \rangle$ is equal to 1, for any symmetry operation $g \in G$, whereas it is identical to zero for any state in the symmetry broken phase.

In order to measure the distance between two quantum states $|\Psi(\lambda)\rangle$ and $g|\Psi(\lambda)\rangle$, let us consider their counterparts $|\Psi_g(\lambda)\rangle$ and $g|\Psi_g(\lambda)\rangle$ on a finite-size lattice, with L being the number of the total lattice sites. As argued in Refs. [4–7], $L|\langle \Psi | \Psi \rangle|_L$ asymptotically scales as $f^L_\lambda(\lambda)$ with L, as one may see from the tensor network representations of the system’s ground state wave functions. Here, $f^L_\lambda(\lambda)$ is the averaged fidelity per lattice site, which is well-defined even in the thermodynamic limit. As such, one sees that, $f^L_\lambda(\lambda) = 1$ for any $g \in G$, if λ is in the symmetric phase $\lambda > \lambda_c$, and $0 < f^L_\lambda(\lambda) < 1$ for any nontrivial symmetry operation g, if λ is in the symmetry-broken phase $\lambda < \lambda_c$. As argued in Ref. [16], we define the universal order parameter to be

$$I_\lambda = \sqrt{1 - f^L_\lambda(\lambda)}. \quad (8)$$

Note that $I_\lambda(\lambda)$ is always zero if $\lambda > \lambda_c$. However, it becomes nonzero, with its value ranging from 0 to 1, if $\lambda < \lambda_c$. These features are exactly what one requires for $I_\lambda(\lambda)$ to be an order parameter. In fact, this is valid for any quantum many-body lattice system with a global symmetry group G spontaneously broken. A remarkable feature of the universal order parameter
FIG. 3: (color online) The universal order parameter $I(\lambda)$ for quantum Ising model in a transverse magnetic field on a square lattice. A pseudo-phase-transition point λ_D occurs, as $I(\lambda)$ changes from being nonzero to zero at $\lambda = \lambda_D$. When the truncation dimension D is increased, a pseudo-phase-transition point λ_D approaches the critical point λ_c. In addition, the universal order parameter $I(\lambda)$ reaches the maximum value $I(\lambda) = 1$ at the factorizing field $\lambda_f = 0$.

is that it not only makes it possible to locate a critical point, but also enables us to identify a factorized state $\ket{\Psi(\lambda_f)}$, with λ_f being the so-called factorizing field [21].

In Fig.3, we plot the universal order parameter $I_g(\lambda)$ for quantum Ising model in a transverse field on an infinite-size square lattice, with the field strength λ as the control parameter. Here, the symmetry operation is the non-trivial element g of the group Z_2. If $\lambda < \lambda_D$, the universal order parameter $I_g(\lambda)$ is non-zero. This characterizes the Z_2 symmetry-broken phase, in contrast to the fact that the universal order parameter $I_g(\lambda)$ is zero, in the symmetric phase $\lambda > \lambda_D$. As the control parameter λ varies across the pseudo-critical point λ_D, the behavior of the universal order parameter $I_g(\lambda)$ changes qualitatively, implying that the system undergoes a QPT at the pseudo-phase-transition point λ_D. As the truncation dimension D is increased, the pseudo-phase-transition point λ_D moves toward the critical point λ_c. In addition, the (trivial) factorizing field $\lambda_f = 0$ exists for quantum Ising model in a transverse field on an infinite-size square lattice, at which $I_g(\lambda)$ reaches its maximum.

VI. CONCLUSIONS
We have investigated an intriguing connection between QPTs and bifurcations in the ground-state fidelity per lattice site, in the context of the tensor network algorithm based on the iPEPS representation. For quantum transverse Ising model on an infinite-size square lattice, the iPEPS algorithm produces two degenerate symmetry-breaking ground-state wave functions arising from the Z_2 symmetry breaking, each of which results from a randomly chosen initial state. Therefore, a quantum system undergoing a phase transition is characterized in terms of SSB that is captured by a bifurcation in the ground-state fidelity per lattice site. We have also constructed the universal order parameter, and discussed bifurcations in the ground-state reduced fidelity between two different reduced density matrices in the symmetry-broken phase, for quantum Ising model in a transverse magnetic field on an infinite-size square lattice. We expect that our approach might provide further insights into critical phenomena in quantum many-body lattice systems in condensed matter.

VII. ACKNOWLEDGMENTS
We thank Sam Young Cho, Bing-Quan Hu, Bo Li, Jin-Hua Liu, Yao-Heng Su, and Jian-Hui Zhao for helpful discussions. This work is supported in part by the National Natural Science Foundation of China (Grant No: 10874252). SHL, HLW, and QQS are supported by the Fundamental Research Funds for the Central Universities (Project No.: CDJXS11102214), and by Chongqing University Postgraduates’ Science and Innovation Fund (Project No.: 200911C1A0060322).

[1] S. Sachdev, Quantum Phase Transitions, Cambridge University Press, 1999, Cambridge.
[2] X.-G. Wen, Quantum Field Theory of Many-Body Systems, Oxford University Press, 2004, Oxford.
[3] P. Zanardi and N. Paunković, Phys. Rev. E 74, 031123 (2006).
[4] H.-Q. Zhou and J.P. Barjaktarević, J. Phys. A: Math. Theor. 41, 412001 (2008).
[5] H.-Q. Zhou, J.-H. Zhao, and B. Li, J. Phys. A: Math. Theor. 41, 492002 (2008).
[6] H.-Q. Zhou, arXiv:0704.2945.
[7] H.-Q. Zhou, R. Orús, and G. Vidal, Phys. Rev. Lett. 100, 080601 (2008).
[8] J.-H. Zhao, H.-L. Wang, B. Li, and H.-Q. Zhou, Phys. Rev. E 82, 061127 (2010).
[9] H.-L. Wang, J.-H. Zhao, B. Li, and H.-Q. Zhou, arXiv:0902.1670.
[10] P. Zanardi, M. Cozzini, and P. Giorda, J. Stat. Mech. L02002, (2007); N. Oelkers and J. Links, Phys. Rev. B 75, 115119 (2007); M. Cozzini, R. Ionicioiu, and P. Zanardi, Phys. Rev. B 76, 104420 (2007); L. Campos Venuti and P. Zanardi, Phys. Rev. Lett. 99, 095701 (2007); T. Liu, Y.-Y. Zhang, Q.-H. Chen, and K.-L. Wang, Phys. Rev. A 80, 023810 (2009).
[11] W.-L. You, Y.-W. Li, and S.-J. Gu, Phys. Rev. E 76, 022101 (2007); S. J. Gu, H. M. Kwok, W. Q. Ning, and H. Q. Lin, Phys. Rev. B 77, 245109 (2008); M. F. Yang, Phys. Rev. B 76, 180403(R) (2007); Y. C. Tzeng and M. F. Yang, Phys. Rev. A 77, 012311 (2008); J. O. Fjærestad, J. Stat. Mech.: Theory Exp. (2008) P07011; J. Sirker, Phys. Rev. Lett. 105, 117203 (2010).
[12] M.M. Rams and B. Damski, Phys. Rev. Lett. 106, 055701 (2011).
[13] Y.-W. Dai, B.-Q. Hu, J.-H. Zhao and H.-Q. Zhou, J. Phys. A: Math. Theor. 43, 372001 (2010).
[14] B. Li, S.-H. Li and H.-Q. Zhou, Phys. Rev. E 79, 060101(R) (2009).
[15] J.-H. Zhao, and H.-Q. Zhou, Phys. Rev. B 80, 041403 (2009).
[16] J.-H. Liu, Q.-Q. Shi, H.-L. Wang, and H.-Q. Zhou, arXiv:0909.3031.
[17] J.-H. Liu, Q.-Q. Shi, J.-H. Zhao, and H.-Q. Zhou, arXiv:0905.3031.
[18] J. Jordan, R. Orús, G. Vidal, F. Verstraete, and J. I. Cirac, Phys. Rev. Lett. 101, 250602 (2008).
[19] H. W. J. Blote and Y. Deng, Phys. Rev. E 66, 066110 (2002).
[20] J. D. Crawford, Rev. Mod. Phys. 63, 991 (1991); J. Araki et. al., Proc. R. Soc. Lond. A 345, 413 (1975).
[21] J. Kurmann, H. Thomas, and G. Müller, Physica A (Amsterdam) 112, 235 (1982); C. Hoeger, G. von Gehlen, and V. Rittenberg, J. Phys. A: Math. Gen. 18, 1813 (1985); V. Kendon, K. Nemoto, and W. J. Munro, J. Mod. Opt. 49, 1709 (2002); T. Roscilde, P. Verrucchi, A. Fubini, S. Haas, and V. Tognetti, Phys. Rev. Lett. 93, 167203 (2004); L. Amico, F. Baroni, A. Fubini, D. Patané, V. Tognetti, and P. Verrucchi, Phys. Rev. A 74, 022322 (2006); R. Oliveira, O. C. O. Dahlsten, and M. B. Plenio, Phys. Rev. Lett. 98, 130502 (2007); F. Baroni, A. Fubini, V. Tognetti, and P. Verrucchi, J. Phys. A: Math. Theor. 40, 9845 (2007); S. Dusuel and J. Vidal, Phys. Rev. B 71, 224420 (2005); R. Rossignoli, N. Canosa, and J. M. Matera, Phys. Rev. A 77, 052322 (2008); S. M. Giampaolo, G. Adesso, and F. Illuminati, Phys. Rev. Lett. 100, 197201 (2008).