Supplementary Information:
Genome-wide association study of serum liver enzymes implicates diverse metabolic and liver pathology

Table of Contents

Contents.. 1
Supp. Table 1.. 2
Supp. Table 2.. 3
Supp. Table 3.. 4
Supp. Table 4.. 6
Supp. Table 5.. 7
Supp. Table 6.. 9
Supp. Table 7... 10
Supp. Table 8... 11
Supp. Table 9... 12
Supp. Table 10.. 13
Supp. Table 11.. 14
Supp. Table 12.. 16
Supp. Table 13.. 18
Supp. Table 14.. 20
Supp. Table 15.. 21
Supp. Table 16.. 22
Supp. Table 17.. 23
Supp. Table 18.. 24
Supp. Fig. 1... 25
Supp. Fig. 2... 26
Supp. Fig. 3... 27
Supp. Fig. 4... 28
Supp. References... 29
Supplementary Table 1: Descriptive summary of phenotypes in UK BioBank

Variable	Value	N
Female	54%	390812
Age (years)	67 (8.0)	390812
Alanine aminotransferase (U/L)	24 (14)	390812
Aspartate aminotransferase (U/L)	24 (11)	389565
Alkaline phosphatase (U/L)	84 (26)	390964
Triglycerides (mmol/L)	1.5 (1.0)	390616
High-density lipoprotein (mmol/L)	1.5 (0.38)	358767
Low-density lipoprotein (mmol/L)	3.7 (0.82)	321191
Systolic blood pressure (mmHg)	145 (19)	176321
Diastolic blood pressure (mmHg)	86 (11)	176322
Body mass index (kg/m²)	27 (4.8)	407545
Glucose (mmol/L)	5.1 (1.2)	358536
Waist-to-hip ratio (cm/cm)	0.87 (0.09)	407545

Values are expressed as mean (standard deviation) or percentage.
Trait	UK BioBank	BioBank Japan	Meta-analysis		
	Lambda_GC	Intercept	Lambda_GC	Intercept	Lambda_GC
Alanine aminotransferase	1.44	1.26	1.13	1.02	1.03
Aspartate aminotransferase	1.47	1.31	1.13	1.01	1.03
Alkaline phosphatase	1.71	1.54	1.15	1.06	1.03

Genomic control parameters (lambda_GC) and intercept estimates for the UK BioBank, BioBank Japan, and the meta-analysis. Lambda-GC estimates are from METAL and intercept from LDpred.
CHR:POS	Variant	EA	OA	UK BioBank	BioBank Japan	Gene annotation	Nearest coding genes	P_het	Direction		
10:101912064	rs2862954	T	C	0.50	0.071	2.41e-194	6.67e-03	ERLIN1 (e)	4.34e-25	++	
19:19379549	rs58542926	T	C	0.08	0.099	1.72e-106	9.20e-06	TM6SF2 (e)	1.64e-08	++	
4:146821410	rs4835265	A	C	0.16	0.064	1.21e-84	3.24e-08	ZNF827 (i)	1.88e-04	++	
11:93870338	rs7117339	C	T	0.88	0.071	7.00e-80	3.45e-05	PANX1 (i)	3.81e-06	++	
1:16505320	rs1497406	G	A	0.58	0.046	1.38e-79	4.07e-05	EPHA2, ARHGEF19 (inter)	3.53e-06	++	
19:45411941	rs429358	T	C	0.84	0.051	7.16e-54	1.03e-02	APOE (e)	9.12e-06	++	
8:9185146	rs2126259	T	C	0.10	0.059	1.08e-50	3.68e-03	LOC157273 (i)	7.51e-05	++	
22:36545137	rs132642	T	A	0.83	0.051	7.52e-57	1.39e-01	APOL3 (UTR)	3.74e-08	++	
1:220970028	rs2642438	G	A	0.70	0.040	1.75e-52	1.37e-01	MARC1 (e)	1.73e-07	++	
1:155106697	rs12904	G	A	0.59	0.035	7.71e-46	7.30e-03	EFNA1 (UTR)	1.35e-04	++	
10:70985267	rs2394529	C	G	0.70	0.036	1.19e-42	7.17e-02	LOC101928994 (i)	1.61e-05	++	
2:169834370	rs72623176	A	G	0.04	0.047	4.92e-14	1.22e-02	ABCB11 (i)	5.10e-09	++	
8:145955007	rs2467663	T	C	0.66	0.034	3.90e-41	1.63e-01	ZNF251 (i)	5.77e-06	++	
2:227112754	rs2943654	T	C	0.65	0.031	2.59e-34	3.39e-01	LOC646736, MIR5702 (inter)	1.20e-05	++	
8:10571491	rs4484649	C	A	0.40	0.029	5.44e-32	2.81e-01	C8orf74, SOX7 (inter)	4.26e-05	++	
2:165557318	rs6712203	C	T	0.63	0.028	7.71e-29	3.62e-01	COBLL1 (i)	7.42e-05	++	
19:41333284	rs11878604	T	C	0.93	0.026	2.02e-08	6.94e-20	CYP2T1P, CYP2A6 (inter)	4.37e-07	++	
2:211540507	rs1047891	A	C	0.32	0.012	7.65e-06	6.46e-18	CPS1 (e)	3.04e-07	++	
1:150479901	rs1815544	C	T	0.60	0.024	2.22e-22	8.47e-01	TARS2 (UTR)	7.82e-05	++	
CHR:POS	rs56094641	G	A	1.00e-17	0.20	- 0.002	6.54e-01	FTO (i)	FTO	6.80e-05	+
----------	-----------	-------	-------	----------	------	---------	----------	--------	------	----------	----

CHR:POS, chromosome:position. EA, effect allele. OA, other allele. EAF, effect allele frequency. P_het, P value for heterogeneity between UK BioBank and BioBank Japan. Gene tags: (e) exonic, (i) intronic, (u) upstream, (d) downstream, (inter) intergenic, (UTR) untranslated region. Direction: + indicates that the variant increases the liver enzyme while - indicates that the variant decreases the liver enzyme. Direction of effect in UK BioBank is shown first, followed by effect in BioBank Japan.
Supplementary Table 4: Aspartate aminotransferase-altering alleles with heterogeneity between UK BioBank & BioBank Japan

CHR:POS	Variant	E	A	O	A	UK BioBank	BioBank Japan	Gene annotation	Nearest coding genes	P_het	Direction
10:101912	rs28629	0.5	0.0	2.60	0.9	0.0	3.29	ERLIN1 (e)	ERLIN1	1.13 e-09	++
19:193795	rs58542	0.0	0.0	3.73	0.0	0.0	1.38	TM6SF2 (e)	TM6SF2	2.25 e-04	++
3:5838046	rs11714	0.5	0.0	2.43	0.2	0.0	2.70	PXK (i)	PXK	4.96 e-11	++
1:1651089	rs36086	0.5	0.0	8.37	0.7	0.0	4.72	EPHA2, ARHGEF19 (inter)	EPHA2, ARHGEF19	8.72 e-05	++
8:8661681	rs12544	0.4	0.0	1.91	0.7	0.0	1.74	MFHAS1 (i)	MFHAS1	1.13 e-05	++
11:116648	rs96418	0.1	0.0	8.54	0.2	0.0	1.75	ZPR1 (UTR)	ZPR1	1.42 e-04	++
2:1138410	rs67342	0.6	0.0	1.11	0.9	0.0	6.98	IL1F10, IL1RN (inter)	IL1F10, IL1RN	1.48 e-05	++
10:709852	rs23945	0.7	0.0	5.40	0.1	0.0	7.28	LOC101928994 (i)	HKDC1	3.69 e-05	++
22:365451	rs13264	0.8	0.0	9.13	0.9	0.0	7.40	APOL3 (UTR)	APOL3	2.06 e-06	++
1:6614152	rs19385	0.1	0.0	2.69	0.7	0.0	8.87	LEPR, PDE4B (inter)	LEPR, PDE4B	5.30 e-05	++
10:182638	rs50819	0.5	0.0	1.72	0.4	0.0	1.12	SLC39A12 (i)	SLC39A12	6.81 e-31	++
6:3258260	rs34656	0.3	0.0	1.86	0.4	0.0	6.04	HLA-DRB1, HLA-DQA1 (inter)	HLA-DRB1, HLA-DQA1	1.44 e-08	++
9:1361418	rs25190	0.8	0.0	1.34	0.7	0.0	6.32	ABO (i)	ABO	9.19 e-06	++
16:587708	rs11643	0.9	0.0	1.13	0.9	0.0	5.96	GOT2, AP0PO5 (inter)	GOT2, CDH8	3.67 e-13	++

CHR:POS, chromosome:position. EA, effect allele. OA, other allele. EAF, effect allele frequency. P_het, P value for heterogeneity between UK BioBank and BioBank Japan. Gene tags: (e) exonic, (i) intronic, (u) upstream, (d) downstream, (inter) intergenic, (UTR) untranslated region. Direction: + indicates that the variant increases the liver enzyme while - indicates that the variant decreases the liver enzyme. Direction of effect in UK BioBank is shown first, followed by effect in BioBank Japan.
Supplementary Table 5: Alkaline phosphatase-altering alleles with heterogeneity between UK BioBank & BioBank Japan

CHR:POS	Variant	E	A	O	A	UK BioBank	BioBank Japan	Gene annotation	Nearest coding genes	P_het	Direction					
1:2189506 30	rs12563	T	C	0.3	1	0.1	0.1	1.59	E-298	0.2	0.1	2.84	E-124	3.87	e-11	++
10:653503 186	rs10822	G	A	0.4	9	0.1	<1e-02	300	0.4	0.0	6.35	E-19	2.10	e-09	++	
12:121432 659	rs97382	A	G	0.3	8	0.0	0.0	1.82	E-207	0.4	0.0	1.57	E-06	7.05	e-12	++
2:2773094 26	rs12603	T	C	0.3	9	0.0	0.0	4.02	E-146	0.5	0.0	1.12	E-03	1.84	e-10	++
19:546771 89	rs8736	T	C	0.4	4	0.0	0.0	4.58	E-131	0.2	0.0	2.61	E-04	2.67	e-08	++
11:296255 152	rs12277	A	G	0.0	5	0.1	1.25	E-73	0.2	0.0	2.72	E-38	1.62	e-05	++	
19:193795 49	rs58542	C	T	0.9	2	0.1	0.1	3.84	E-136	0.9	0.0	4.92	E-02	1.06	e-12	++
19:454218 77	rs48419	A	G	0.3	8	0.0	0.0	4.51	E-120	0.5	0.0	5.09	E-04	9.65	e-08	++
11:615923 62	rs17456	A	C	0.3	5	0.0	0.0	3.57	E-109	0.3	0.0	7.98	E-06	3.69	e-05	++
8:1066544 27	rs66015	C	A	0.4	1	0.0	0.0	6.75	E-108	0.6	0.0	1.74	E-02	6.34	e-09	++
2:1698934 37	rs21610	G	A	0.4	5	0.0	0.0	5.33	E-94	0.2	0.0	1.14	E-01	2.88	e-09	++
15:586787 20	rs26129	C	T	0.6	5	0.0	1.93	E-82	0.5	0.0	1.90	E-02	1.32	e-06	++	
4:1000655 59	rs18007	T	G	0.3	9	0.0	0.0	1.61	E-78	0.1	0.0	2.58	E-01	1.40	e-08	++
16:722171 23	rs72023	G	T	0.2	3	0.0	0.0	1.11	E-55	0.3	0.0	3.16	E-01	2.50	e-06	++
1:2089444 738	rs12137	A	T	0.9	0	0.0	0.0	2.29	E-35	0.9	0.0	9.86	E-01	1.15	e-05	++
9:1361404 13	rs16335	C	T	0.2	7	0.1	<1e-02	300	0.2	0.1	1.06	E-173	3.28	e-22	++	
8:9194978 716	rs13274	C	T	0.1	2	0.1	<1e-02	300	0.0	0.0	1.02	E-06	1.81	e-21	++	
8:1265000 761	rs28601	C	G	0.5	8	0.1	1.35	E-286	0.8	0.0	7.51	E-04	2.32	e-23	++	
20:252969 99	rs60837	T	G	0.5	6	0.0	0.0	1.92	E-134	0.0	0.0	8.19	E-03	7.68	e-11	++
14:248719 792	rs11621	C	T	0.5	5	0.0	0.0	1.17	E-58	0.9	0.0	5.29	E-01	2.36	e-07	++
Chr:Pos	rsID	SNP	Allele 1	Allele 2	EA	OA	Effect Allele Frequency	P_Het	Gene Tag	Direction	Effect in UK BioBank	Effect in BioBank Japan				
---------	------	-----	----------	----------	----	----	-----------------------	-------	----------	-----------	----------------------	-------------------------				
4:6932668	rs46940	CT	0.6	8	0.0	42	1.26E-47	0.9	0.0	++	1.98E-01	5.27E-05				
12:537275	rs93090	CT	0.6	9	0.0	37	2.56E-37	0.9	0.0	++	8.10E-01	1.71E-05				
12:460616	rs29708	TA	0.9	0	0.0	50	3.06E-29	1.0	0.0	++	8.02E-01	3.15E-05				
6:1164181	rs49461	AG	0.4	0	0.0	26	1.45E-20	0.6	0.0	++	4.67E-01	1.06E-04				

CHR:POS, chromosome:position. EA, effect allele. OA, other allele. EAF, effect allele frequency. P_het, P value for heterogeneity between UK BioBank and BioBank Japan. Gene tags: (e) exonic, (i) intronic, (u) upstream, (d) downstream, (inter) intergenic, (UTR) untranslated region. Direction: + indicates that the variant increases the liver enzyme while - indicates that the variant decreases the liver enzyme. Direction of effect in UK BioBank is shown first, followed by effect in BioBank Japan.
CHR:POS	Variant	EA	OA	BioBank Japan	UK BioBank	Gene annotation	Nearest coding genes		
12:1135482\-43	rs1902955 T C	0.81	0.02	1.90e-09	0.61	0.002	3.31e-01	RASAL1 (i)	RASAL1
6:33860843	rs1853557 T G	0.05	0.04	3.43e-08	0.05	0.003	5.48e-01	LINC01016 (i)	MLN, GRM4

CHR:POS, chromosome:position. EA, effect allele. OA, other allele. EAF, effect allele frequency. Gene tags: (e) exonic, (i) intronic, (u) upstream, (d) downstream, (inter) intergenic, (UTR) untranslated region.
Supplementary Table 7: Aspartate aminotransferase-altering alleles:
BioBank Japan only

CHR:POS	Variant	EA	O A	BioBank Japan	UK BioBank	Gene annotation	Nearest coding genes	
19:41332	rs118786	T C	0.6 1 0.0 3	2.14e-14	0.9 3 0.007 4	1.29e-01	CYP2T1P, CYP2A6 (inter)	EGLN2, CYP2A6
7:8017436	rs139761	T C	0.9 5 0.0 8	3.45e-14	0.9 3 0.007 4	1.29e-01	GNAT3, CD36 (inter)	GNAT3, CD36
4:7961919	rs757599	C A	0.8 2 0.0 32	1.58e-08	0.9 3 0.007 4	1.29e-01	LINC01094, BMP2K (inter)	ANXA3, BMP2K
7:5025847	rs459820	A T	0.5 7 0.0 22	2.82e-08	0.6 9 0.003 5	1.93e-01	C7orf72, IKZF1 (inter)	ZPBP, IKZF1
12:110069	rs110675	G T	0.9 2 0.0 4	3.49e-08	0.9 3 0.007 4	1.29e-01	MVK, FAM222A (inter)	MVK, FAM222A

CHR:POS, chromosome:position. EA, effect allele. O A, other allele. EAF, effect allele frequency. Gene tags: (e) exonic, (i) intronic, (u) upstream, (d) downstream, (inter) intergenic, (UTR) untranslated region.
Supplementary Table 8: Alanine aminotransferase-altering alleles with heterogeneity between men and women in UK BioBank

CHR:POS	Variant	E A	O A	Male E A F Beta P	Female E A F Beta P	Gene annotation	Nearest coding genes	P_het	Direction
9:11714 6043	rs7041363	C	G	0.0 0.0 0.0 51 7 8.19 E-88	0.0 0.0 0.0 51 49 3.17 E-51	AKNA (i)	AKNA	1.09 E-04 ++	
8:12648 2077	rs2954021	A	G	0.0 0.0 0.0 49 7 1.45 E-74	0.0 0.0 0.0 49 35 5.05 E-27	TRIB1, LINC00861 (inter)	TRIB1, FAM84B	5.45 E-08 ++	
4:14682 1410	rs4835265	A	C	0.0 0.0 0.0 16 16 5.41 E-21	0.0 0.0 0.0 16 75 1.68 E-64	ZNF827 (i)	ZNF827	3.59 E-05 ++	
1:15510 6697	rs12904	G	A	0.0 0.0 0.0 59 19 1.89 E-07	0.0 0.0 0.0 59 46 5.12 E-44	EFNA1 (UTR)	EFNA1	4.89 E-07 ++	
10:7098 5267	rs2394529	C	G	0.0 0.0 0.0 70 12 1.37 E-03	0.0 0.0 0.0 70 55 6.44 E-54	LOC101928994 (i)	HKDC1	3.19 E-13 ++	
16:8049 7341	rs28650012	G	C	0.0 0.0 0.0 27 17 1.25 E-05	0.0 0.0 0.0 27 41 7.13 E-29	LOC102724084 (i)	MAF, DYNLRB2	9.35 E-05 ++	
16:8398 0529	rs4782568	C	G	0.0 0.0 0.0 55 35 2.01 E-23	0.0 0.0 0.0 55 15 2.60 E-06	MLYCD, OSGIN1 (inter)	MLYCD, OSGIN1	2.35 E-04 ++	

CHR:POS, chromosome:position. EA, effect allele. OA, other allele. EAF, effect allele frequency. P_het, P value for heterogeneity between men and women. Gene tags: (e) exonic, (i) intronic, (u) upstream, (d) downstream, (inter) intergenic, (UTR) untranslated region. Direction: + indicates that the variant increases the liver enzyme while - indicates that the variant decreases the liver enzyme. Direction of effect in UK BioBank male is shown as effect in men followed by effect in women.
Supplementary Table 9: Aspartate aminotransferase-altering alleles with heterogeneity between men and women in UK BioBank

CHR:POS	Variant	EA	OA	Male	Female	Gene annotation	Nearest coding genes	P_het	Direction
1:155106	rs1290 4	G 59	A 0	0.01 4	8.98E-05	0.04 8.16E-34	EFNA1 (UTR)	3.07E-06	++
11:11664	rs9641 84	G 13	C 0.06 3	5.74E-33	0.02 2.69E-06	ZPR1 (UTR)	3.47E-07	++	
10:70985	rs2394 529	C 70	G 0.00 71	6.93E-02	0.04 2.69E-35	LOC101928 994 (i)	5.12E-10	++	
4:774166	rs1250 0824	A 35	G 0.02 9	9.59E-15	0.00 9.53E-02	SHROOM3 (i)	4.00E-05	++	
19:55824	rs7246 479	G 51	T 0.00 2	5.82E-01	0.02 3.02E-13	TMEM150B (e)	6.53E-05	++	

CHR:POS, chromosome:position. EA, effect allele. OA, other allele. EAF, effect allele frequency. P_het, P value for heterogeneity between men and women. Gene tags: (e) exonic, (i) intronic, (u) upstream, (d) downstream, (inter) intergenic, (UTR) untranslated region. Direction: + indicates that the variant increases the liver enzyme while - indicates that the variant decreases the liver enzyme. Direction of effect in UK BioBank male is shown as effect in men followed by effect in women.
Supplementary Table 10: Alkaline phosphatase-altering alleles with heterogeneity between men and women in UK BioBank

CHR:POS	Variant	EA	OA	Male	Female	Gene annotation	Nearest coding genes	P_het	Direction		
19:1937 9549	rs58542926	C	T	0.1	0.1	3.35E-96	3.27E-42	TM6SF2 (e)	1.52E-08	++	
9:13614 0462	rs1633513	C	T	0.1	0.1	9.70E-205	1.00E-162	ABO (i)	1.75E-05	++	
19:4916 4952	rs281392	A	G	0.1	0.1	2.40E-164	3.00E-117	NTN5 (e)	6.07E-06	++	
8:12650 0031	rs28601761	C	G	0.1	0.1	1.80E-204	4.23E-88	TRIB1, LINC00861 (inter)	TRIB1, FAM84B	7.47E-17	++
20:2529 6970	rs6083799	T	G	0.0	0.0	2.35E-90	3.68E-45	ABHD12 (i)	ABHD12	6.77E-07	++
4:69326 683	rs4694077	C	T	0.0	0.0	2.09E-38	6.23E-11	Tmprss11E (i)	Tmprss11E	4.13E-06	++
6:25783 315	rs39236036	T	C	0.0	0.0	7.19E-25	3.72E-06	SLC17A1 (UTR)	SLC17A1	7.14E-05	++
5:88364 958	rs6886306	T	C	0.0	0.0	6.88E-22	3.14E-05	MEF2C-AS1 (i)	MEF2C, CETN3	1.48E-04	++

CHR:POS, chromosome:position. EA, effect allele. OA, other allele. EAF, effect allele frequency. P_het, P value for heterogeneity between men and women. Gene tags: (e) exonic, (i) intronic, (u) upstream, (d) downstream, (inter) intergenic, (UTR) untranslated region. Direction: + indicates that the variant increases the liver enzyme while - indicates that the variant decreases the liver enzyme. Direction of effect in UK BioBank male is shown as effect in men followed by effect in women.
Variant	Trait	E	O	A	EA	Beta	P	Gene annotation
rs1277	E78 Disorders of lipoprotein metabolism and other lipidaemias	A	G	0.8	0.01	1.22e-55	PSRC1 (d)	
930	I10 Essential (primary) hypertension	G	A	0.5	0.004	3.44e-08	PKN2-AS1 (i)	
rs1277	I20 Angina pectoris	A	G	0.8	0.004	2.46e-17	PSRC1 (d)	
930	I21 Acute myocardial infarction	A	G	0.8	0.002	2.06e-09	PSRC1 (d)	
rs1277	I25 Chronic ischaemic heart disease	A	G	0.8	0.005	4.30e-25	PSRC1 (d)	
930	K42 Umbilical hernia	A	C	0.5	0.001	2.04e-13	LOC102723886 (i)	
rs6712	E11 Non-insulin-dependent diabetes mellitus	C	T	0.7	0.003	1.51e-13	COBLL1 (i)	
203	K80 Cholelithiasis	C	G	0.0	0.026	7.59e-257	ABCG8 (e)	
rs1188	E11 Non-insulin-dependent diabetes mellitus	C	G	0.0	0.004	5.93e-34	ABCG8 (e)	
7534	K82 Other diseases of gallbladder	C	G	0.0	0.003	1.92e-35	ABCG8 (e)	
rs1188	K83 Other diseases of biliary tract	C	G	0.0	0.002	4.36e-14	ABCG8 (e)	
7534	I10 Essential (primary) hypertension	T	G	0.7	0.005	1.02e-08	MSL2, PCCB (inter)	
rs6450	K80 Cholelithiasis	C	G	0.0	0.004	3.51e-11	TM4SF1-AS1, TM4SF4 (inter)	
40	E11 Non-insulin-dependent diabetes mellitus	A	G	0.9	0.002	1.07e-08	LINCO1948, C5orf67 (inter)	
rs1468	K80 Cholelithiasis	T	C	0.8	0.003	2.60e-13	ABCB4 (i)	
615	E78 Disorders of lipoprotein metabolism and other lipidaemias	A	G	0.4	0.006	8.90e-35	TRIB1, LINCO00861 (inter)	
rs2954	E10 Essential (primary) hypertension	C	A	0.4	0.005	2.98e-13	C8orf74, SOX7 (inter)	
021	I25 Chronic ischaemic heart disease	A	G	0.8	0.002	3.74e-09	TRIB1, LINCO00861 (inter)	
rs6876	E78 Disorders of lipoprotein metabolism and other lipidaemias	G	A	0.3	0.003	2.00e-08	ABO (i)	
21	I26 Pulmonary embolism	G	A	0.3	0.002	3.71e-42	ABO (i)	
rs6876	I80 Phlebitis and thrombophlebitis	G	A	0.3	0.003	4.15e-62	ABO (i)	
21	I84 Haemorrhoids	G	A	0.3	0.004	1.63e-15	ABO (i)	
rs6876	K57 Diverticular disease of intestine	G	A	0.3	0.003	2.73e-13	ABO (i)	
21	M79 Other soft tissue disorders, not elsewhere classified	G	A	0.3	0.002	4.19e-10	ABO (i)	
rs1051 713	K80 Cholelithiasis	C	T	0.8	0.003	1.23e-14	ALOX5 (i)	
-----------	-------------------	----	----	-----	--------	----------	-----------	
rs4766 462	E03 Other hypothyroidism	A	T	0.6	0.002	1.35e-10	SH2B3 (i)	
rs4766 462	I10 Essential (primary) hypertension	A	T	0.6	0.005	1.07e-10	SH2B3 (i)	
rs8648 99	I83 Varicose veins of lower extremities	G	A	0.5	0.002	2.38e-09	ATF1, TMPRSS12 (inter)	
rs1106 1602	M16 Coxarthrosis [arthrosis of hip]	T	G	0.5	0.001	1.80e-08	MLXIP (i)	
rs5609 4641	E11 Non-insulin-dependent diabetes mellitus	G	A	0.3	0.004	6.85e-26	FTO (i)	
rs5609 4641	E66 Obesity	G	A	0.3	0.004	3.00e-33	FTO (i)	
rs5609 4641	I10 Essential (primary) hypertension	G	A	0.3	0.004	9.48e-11	FTO (i)	
rs1713 8478	K80 Cholelithiasis	C	A	0.8	0.003	4.72e-08	HNF1B (i)	
rs4293 58	G30-G32 Other degenerative diseases of the nervous system	T	C	0.8	0.002	4.15e-54	APOE (e)	
rs5854 2926	E78 Disorders of lipoprotein metabolism and other lipidaemias	T	C	0.0	0.008	9.56e-17	TM6SF2 (e)	
rs4293 58	E78 Disorders of lipoprotein metabolism and other lipidaemias	T	C	0.8	0.014	1.81e-74	APOE (e)	
rs4293 58	F05 Delirium, not induced by alcohol and other psychoactive substances	T	C	0.8	0.000	1.86e-12	APOE (e)	
rs4293 58	I20 Angina pectoris	T	C	0.8	0.004	1.12e-15	APOE (e)	
rs4293 58	I21 Acute myocardial infarction	T	C	0.8	0.002	7.00e-10	APOE (e)	
rs4293 58	I25 Chronic ischaemic heart disease	T	C	0.8	0.005	2.49e-19	APOE (e)	
rs5854 2926	K76 Other diseases of liver	T	C	0.0	0.002	8.23e-09	TM6SF2 (e)	
rs7599	K80 Cholelithiasis	A	G	0.3	0.002	6.85e-09	TMEM147 (UTR)	
rs7384 09	I85 Oesophageal varices	G	C	0.2	0.000	2.97e-14	PNPLA3 (e)	
rs7384 09	K70 Alcoholic liver disease	G	C	0.2	0.000	1.98e-14	PNPLA3 (e)	
rs7384 09	K74 Fibrosis and cirrhosis of liver	G	C	0.2	0.000	2.25e-11	PNPLA3 (e)	
rs7384 09	K76 Other diseases of liver	G	C	0.2	0.002	4.77e-22	PNPLA3 (e)	

CHR:POS, chromosome:position. EA, effect allele. OA, other allele. EAF, effect allele frequency. Traits are represented as International Classification of Diseases code followed by disease name. Gene tags: (e) exonic, (i) intronic, (u) upstream, (d) downstream, (inter) intergenic, (UTR) untranslated region.
Supplementary Table 12: Phenome-wide association studies of aspartate aminotransferase-increasing alleles

Variant	Trait	E	A	EA	O	A	F	Beta	P	Gene annotation
rs100243	I10 Essential (primary) hypertension	G	A	0.5	0.004	6	1	3.44e-08	PKN2-AS1 (i)	
6										
rs654769	E11 Non-insulin-dependent diabetes mellitus	G	A	0.4	0.002	7	2	4.53e-08	GCKR (i)	
2										
rs294365	E11 Non-insulin-dependent diabetes mellitus	T	C	0.7	0.003	1	7	4.25e-18	LOC646736, MIR5702 (inter)	
4										
rs654769	E78 Disorders of lipoprotein metabolism and other lipidaemias	G	A	0.4	0.004	7	1	2.46e-13	GCKR (i)	
2										
rs654769	K80 Cholelithiasis	G	A	0.4	0.002	7	4	4.74e-10	GCKR (i)	
2										
rs654769	M10 Gout	G	A	0.4	0.001	7	2	6.31e-11	GCKR (i)	
2										
rs259497	I10 Essential (primary) hypertension	C	G	0.5	0.003	5	2	1.66e-10	C5orf56 (i)	
3										
rs689424	J45 Asthma	A	G	0.8	0.005	9	5	4.41e-09	VN1R10P, ZNF204P (inter)	
9										
rs132125	E03 Other hypothyroidism	A	G	0.8	0.003	9	4	8.80e-10	VN1R10P, ZNF204P (inter)	
62										
rs132125	E05 Thyrotoxicosis [hyperthyroidism]	A	G	0.8	0.001	9	3	5.10e-10	VN1R10P, ZNF204P (inter)	
62										
rs132125	E10 Insulin-dependent diabetes mellitus	A	G	0.8	0.001	9	5	4.41e-09	VN1R10P, ZNF204P (inter)	
62										
rs691631	I83 Varicose veins of lower extremities	T	A	0.5	-	2	0.001	3.86e-08	MIR588, RSPO3 (inter)	
8										
rs132125	K40 Inguinal hernia	A	G	0.8	0.003	9	5	1.65e-09	VN1R10P, ZNF204P (inter)	
62										
rs937247	K40 Inguinal hernia	T	C	0.3	0.002	5	3	1.36e-08	RFX6, VGLL2 (inter)	
5										
rs132125	K90 Intestinal malabsorption	A	G	0.8	0.005	9	5	6.94e-15	VN1R10P, ZNF204P (inter)	
62										
rs132125	N40 Hyperplasia of prostate	A	G	0.8	0.007	9	7	5.15e-13	VN1R10P, ZNF204P (inter)	
62										
rs295402	E78 Disorders of lipoprotein metabolism and other lipidaemias	T	A	0.5	0.006	2	8	6.26e-34	TRIB1, LINC00861 (inter)	
7										
rs125449	I10 Essential (primary) hypertension	G	C	0.5	0.004	3	7	2.16e-10	MFHAS1 (i)	
92										
rs484143	I10 Essential (primary) hypertension	C	A	0.4	0.006	8	1	3.73e-16	LOC102723313 (i)	
6										
rs295402	I25 Chronic ischaemic heart disease	T	A	0.5	0.002	2	8	2.28e-09	TRIB1, LINC00861 (inter)	
7										
rs113895	K80 Cholelithiasian	T	C	0.5	0.002	9	5	5.94e-10	SDCBP (i)	
159										
rs180097	E78 Disorders of lipoprotein metabolism and other lipidaemias	C	G	0.8	0.005	5	2	1.08e-09	ABCA1 (UTR)	
8										
rs251909	E78 Disorders of lipoprotein metabolism and other lipidaemias	C	T	0.7	0.005	7	9	2.63e-15	ABO (i)	
3										
rs251909	I26 Pulmonary embolism	C	T	0.7	0.003	9	7	2.29e-19	ABO (i)	
SNP	Trait Description	Chr	Pos	Minor Allele	Major Allele	P	OR (95% CI)	Gene Tags		
--------------	--	-----	-----	--------------	--------------	-----	------------------	--------------------		
rs251909	I80 Phlebitis and thrombophlebitis	C	T	0.7	0.3	0.004	3.52e-57	ABO (i)		
rs251909	I84 Haemorrhoids	C	T	0.7	0.3	0.003	6.03e-09	ABO (i)		
rs251909	K57 Diverticular disease of intestine	C	T	0.7	0.3	0.003	2.51e-08	ABO (i)		
rs251909	M79 Other soft tissue disorders, not elsewhere classified	C	T	0.7	0.3	0.002	7.57e-10	ABO (i)		
rs964184	E78 Disorders of lipoprotein metabolism and other lipidaemias	G	C	0.1	0.9	0.009	1.00e-31	ZPR1 (UTR)		
rs705699	E03 Other hypothyroidism	G	A	0.6	0.4	0.002	1.57e-09	RAB5B (i)		
rs705699	J33 Nasal polyp	G	A	0.6	0.4	0.001	4.13e-08	RAB5B (i)		
rs705699	J45 Asthma	G	A	0.6	0.4	0.003	5.48e-10	RAB5B (i)		
rs217184	E78 Disorders of lipoprotein metabolism and other lipidaemias	T	C	0.8	0.2	0.003	3.83e-08	HPR (i)		
rs171384	K80 Cholelithias	C	A	0.8	0.2	0.003	4.72e-08	HNF1B (i)		
rs585429	E78 Disorders of lipoprotein metabolism and other lipidaemias	T	C	0.0	0.5	0.008	9.56e-17	TM6SF2 (e)		
rs439401	E78 Disorders of lipoprotein metabolism and other lipidaemias	C	T	0.5	0.5	0.004	3.36e-15	APOE, APOC1 (inter)		
rs118827	E78 Disorders of lipoprotein metabolism and other lipidaemias	T	A	0.4	0.6	0.003	7.62e-12	RASIP1 (i)		
rs118827	I10 Essential (primary) hypertension	T	A	0.4	0.6	0.004	5.56e-10	RASIP1 (i)		
rs585429	K76 Other diseases of liver	T	C	0.0	0.5	0.002	8.23e-09	TM6SF2 (e)		
rs118827	K80 Cholelithias	T	A	0.4	0.6	0.002	3.12e-14	RASIP1 (i)		
rs738409	I85 Oesophageal varices	G	C	0.2	0.8	0.000	2.97e-14	PNPLA3 (e)		
rs738409	K70 Alcoholic liver disease	G	C	0.2	0.8	0.000	1.98e-14	PNPLA3 (e)		
rs738409	K74 Fibrosis and cirrhosis of liver	G	C	0.2	0.8	0.000	2.25e-11	PNPLA3 (e)		
rs738409	K74 Other diseases of liver	G	C	0.2	0.8	0.002	4.77e-22	PNPLA3 (e)		

CHR:POS, chromosome:position. EA, effect allele. OA, other allele. EAF, effect allele frequency. Traits are represented as International Classification of Diseases code followed by disease name. Gene tags: (e) exonic, (i) intronic, (u) upstream, (d) downstream, (inter) intergenic, (UTR) untranslated region.
Variant	Trait	Trait Description	E	A	O	Beta	P	Gene annotation	
rs12603 26	E11	Non-insulin-dependent diabetes mellitus	T	C	A	0.4	-	1.88e-10	GCKR (e)
rs12603 26	E78	Disorders of lipoprotein metabolism and other lipidaemias	T	C	A	0.4	-	3.09e-17	GCKR (e)
rs12603 26	K80	Cholelithiasis	T	C	A	0.4	-	9.37e-12	GCKR (e)
rs12603 26	M10	Gout	T	C	A	0.7	-	2.81e-14	GCKR (e)
rs68733 9	I10	Essential (primary) hypertension	T	C	A	0.7	-	2.38e-08	MSL2, PCCB (inter)
rs68733 9	I21	Acute myocardial infarction	T	C	A	0.7	-	2.38e-08	MSL2, PCCB (inter)
rs12633 863	K80	Cholelithiasis	A	G	A	0.5	-	2.82e-18	TM4SF4 (i)
rs22908 46	K80	Cholelithiasis	T	C	A	0.7	-	1.16e-21	LRBA (e)
rs27281 02	M10	Gout	T	C	A	0.7	-	9.96e-24	PKD2 (i)
rs3923	E83	Disorders of mineral metabolism	T	C	A	0.7	-	8.38e-52	VN1R10P, ZNF204P (inter)
rs69122 83	I10	Essential (primary) hypertension	A	G	A	0.5	-	8.04e-10	ZNF318, ABCC10 (inter)
rs3923	K90	Intestinal malabsorption	T	C	A	0.4	-	6.60e-23	SLC17A1 (UTR)
rs76428 4	K90	Intestinal malabsorption	G	A	A	0.5	-	2.96e-25	VN1R10P, ZNF204P (inter)
rs28601 761	E78	Disorders of lipoprotein metabolism and other lipidaemias	G	A	C	0.6	-	4.43e-40	TRIB1, LINC00861 (inter)
rs66015 27	I10	Essential (primary) hypertension	C	A	A	0.4	-	4.15e-15	PINX1 (i)
rs28601 761	I25	Chronic ischaemic heart disease	C	G	A	0.6	-	1.03e-11	TRIB1, LINC00861 (inter)
rs16335 13	I80	Phlebitis and thrombophlebitis	C	T	A	0.2	-	1.38e-15	ABO (i)
rs10900 229	K80	Cholelithiasis	C	T	A	0.7	-	2.13e-17	ZFAND4 (i)
rs10822 186	K80	Cholelithiasis	G	A	A	0.4	-	9.47e-09	REEP3 (i)
rs17456 6	J45	Asthma	G	A	A	0.3	-	9.23e-09	FADS2 (i)
rs17456 6	J45	Asthma	G	A	A	0.3	-	7.15e-09	FADS2 (i)
rs20739 50	E03	Other hypothyroidism	C	T	A	0.7	-	6.98e-11	ATXN2 (i)
rs20739 50	I10	Essential (primary) hypertension	C	T	A	0.7	-	3.28e-11	ATXN2 (i)
rs97382 26	I25	Chronic ischaemic heart disease	A	G	A	0.4	-	8.11e-10	HNF1A (i)
SNP	Trait	Chr:Pos	Effect Allele	Effect Allele Frequency	p-Value	Gene Tags			
--------	--	--------	---------------	-------------------------	---------	-----------			
rs97382 26	K80 Cholelithiasis	A	G	0.4	0.002	7	HNF1A (i)		
rs29415 05	J45 Asthma	A	G	0.3	0.003	2	PGAP3 (i)		
rs58542 926	E78 Disorders of lipoprotein metabolism and other lipidaemias	C	T	0.9	0.008	8	TM6SF2 (e)		
rs58542 926	K76 Other diseases of liver	C	T	0.9	0.002	1	TM6SF2 (e)		
rs60887 30	C44 Other malignant neoplasms of skin	C	G	0.5	0.002	7	EDEM2 (i)		
rs17216 707	N20 Calculus of kidney and ureter	C	T	0.1	0.001	8	BCAS1, CYP24A1 (inter)		
rs28368 82	K51 Ulcerative colitis	G	A	0.7	0.001	7	LINC01700, PSMG1 (inter)		

CHR:POS, chromosome:position. EA, effect allele. OA, other allele. EAF, effect allele frequency. Traits are represented as International Classification of Diseases code followed by disease name. Gene tags: (e) exonic, (i) intronic, (u) upstream, (d) downstream, (inter) intergenic, (UTR) untranslated region.
Trait	GCP	GCP Z score	Rho	Rho Z score	Heritability of metabolic trait (Z score)	Heritability of liver enzyme (Z score)
Triglycerides	0.65	2.86	0.18	1.04	10.08	12.71
High-density lipoprotein	0.53	2.25	-0.31	-5.61	9.26	12.72
Body mass index	0.65	2.48	0.40	6.05	26.27	12.71
Waist-hip-ratio	0.09	0.72	0.13	0.94	19.63	12.71
Fasting glucose	-0.26	-1.51	0.19	3.22	8.10	12.71
Systolic blood pressure	-0.20	-0.93	0.32	4.16	23.09	12.71
Diastolic blood pressure	-0.19	-0.90	0.29	3.57	22.83	12.71

GCP, genetic causality proportion. Significantly positive GCP implies that the metabolic trait is causal for the liver enzyme, and negative GCP implies that the liver enzyme is causal for the metabolic trait. Rho represents the estimated genetic correlation between the liver enzyme and the metabolic trait. SE, standard error.
Supplementary Table 15: Latent causal variable analysis of aspartate aminotransferase and metabolic traits

Trait	GCP	GCP Z score	Rho	Rho Z score	Heritability of metabolic trait (Z score)	Heritability of liver enzyme (Z score)
Triglycerides	0.24	0.76	0.02	0.10	10.08	11.69
High-density lipoprotein	0.34	1.78	-0.02	-0.34	9.26	11.69
Body mass index	0.37	0.97	0.17	1.87	26.27	11.69
Waist-hip-ratio	0.22	0.50	0.01	0.10	19.65	11.70
Fasting glucose	0.24	0.71	-0.01	-0.10	8.10	11.69
Systolic blood pressure	-0.46	-2.07	0.24	2.65	23.09	11.69
Diastolic blood pressure	-0.41	-1.87	0.19	1.98	22.83	11.69

GCP, genetic causality proportion. Significantly positive GCP implies that the metabolic trait is causal for the liver enzyme, and negative GCP implies that the liver enzyme is causal for the metabolic trait. Rho represents the estimated genetic correlation between the liver enzyme and the metabolic trait. SE, standard error.
Supplementary Table 16: Latent causal variable analysis of alkaline phosphatase and metabolic traits

Trait	GCP	GCP Z score	Rho	Rho Z score	Heritability of metabolic trait (Z score)	Heritability of liver enzyme (Z score)
Triglycerides	0.38	1.08	-0.04	-0.20	10.08	6.53
High-density lipoprotein	0.20	1.06	-0.08	-1.44	9.26	6.53
Body mass index	0.29	0.64	0.21	1.83	26.27	6.53
Waist-hip-ratio	-0.57	-2.15	-0.09	-0.55	19.63	6.53
Fasting glucose	-0.07	-0.09	0.07	1.07	8.10	6.53
Systolic blood pressure	-0.01	-0.02	0.24	2.19	23.09	6.55
Diastolic blood pressure	-0.01	-0.02	0.25	2.20	22.83	6.55

GCP, genetic causality proportion. Significantly positive GCP implies that the metabolic trait is causal for the liver enzyme, and negative GCP implies that the liver enzyme is causal for the metabolic trait. Rho represents the estimated genetic correlation between the liver enzyme and the metabolic trait. SE, standard error.
Supplementary Table 17: Effect of all liver enzyme-increasing alleles on primary biliary cholangitis

CHR:POS	Variant	EA	OA	EAF	Beta	P	Proxy	R2	Gene annotation
3:161823590	rs17236494	C (T)	A (C)	0.21	-0.26	5.31E-05	rs4679904	0.85	ARF7
4:103947120	rs223454	A (A)	G (C)	0.51	-0.21	7.66E-05	rs223420	0.98	UBE2D3P
4:103797685	rs179195	T (A)	C (G)	0.47	-0.22	2.19E-05	rs228614	0.85	MANBA

CHR:POS, chromosome:position. EA, effect allele. OA, other allele. EAF, effect allele frequency. When liver enzyme-increasing variants were not themselves available, proxy variants were used. EA and OA of proxy variants are shown in parentheses. Gene tags: (e) exonic, (i) intronic, (u) upstream, (d) downstream, (inter) intergenic, (UTR) untranslated region.
Supplementary Table 18: Effects of polygenic risk scores on cirrhosis and hepatic steatosis in Michigan Genomics Initiative

Liver enzyme	Cirrhosis	Hepatic steatosis		
	Odds ratio	P value	Odds ratio	P value
Alanine aminotransferase	1.23 (1.17-1.30)	5.10E-15	1.17 (1.14-1.21)	9.60E-28
Asparate aminotransferase	1.10 (1.04-1.16)	5.10E-04	1.08 (1.05-1.11)	3.80E-08
Alkaline phosphatase	1.05 (0.99-1.10)	8.60E-02	1.02 (0.99-1.05)	1.20E-01

Effect of each rank unit of polygenic risk score for a specific liver enzyme on cirrhosis and hepatic steatosis. Effects are represented as odds ratio (95% confidence interval).
Supplementary Figure 1: Quantile-quantile plots

(A) Quantile-quantile plots for genetic variants affecting (A) alanine aminotransferase (ALT), (B) aspartate aminotransferase (AST), or (C) alkaline phosphatase (ALP).
Supplementary Figure 2: Effects of liver enzyme-increasing variants on metabolic traits.

(A-C) Associations between metabolic traits and variants increasing (A) alanine aminotransferase (ALT), (B) aspartate aminotransferase (AST), or (C) alkaline phosphatase (ALP). For all panels, only genome wide-significant associations (p < 5 x 10^{-8}) are shown. Red indicates that the liver enzyme-increasing allele increases the trait, while blue indicates that it decreases it. Larger circles indicate lower p value. Data are from genome-wide association studies in UK Biobank. Green highlighting indicates variants that affect the liver enzymes themselves.
Supplementary Figure 3: Effects of liver enzyme-increasing variants on serum/plasma metabolites.

Associations between variants associated with alanine aminotransferase (ALT), aspartate aminotransferase (AST), or alkaline phosphatase (ALP) and serum/plasma metabolites. Data on associations between genetic variants and serum/plasma metabolite concentrations are from 17. Red indicates that the liver enzyme-increasing allele increases metabolite concentration, blue that it decreases it, and white that there is no significant association. A Bonferroni correction for 123 metabolites and 378 genetic variants (p < 1.1 x 10^-6 or |Z| > 4.88) was used. Hierarchical clustering of genetic variants was performed using Z scores for variant-metabolite associations as a distance metric. * rs58542926-C (TM6SF2) had opposite directions on ALT and ALP.
Supplementary Figure 4: Associations between aspartate aminotransferase polygenic risk score and cirrhosis and steatosis.

(A-B) Association between percentile of aspartate aminotransferase polygenic risk score on (A) cirrhosis or (B) steatosis. All results are depicted as odds ratios for cirrhosis or steatosis relative to individuals in the 0-10th percentile of polygenic risk score, adjusted for sex, age, age2, and principal components 1-10.
Supplementary References

1 Berge, K. E. et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. *Science (New York, N.Y.)* **290**, 1771-1775, doi:10.1126/science.290.5497.1771 (2000).

2 Solca, C. et al. Sitosterolaemia in Switzerland: molecular genetics links the US Amish-Mennonites to their European roots. *Clinical genetics* **68**, 174-178, doi:10.1111/j.1399-0004.2005.00472.x (2005).

3 Buch, S. et al. A genome-wide association scan identifies the hepatic cholesterol transporter ABCG8 as a susceptibility factor for human gallstone disease. *Nature genetics* **39**, 995-999, doi:10.1038/ng2101 (2007).

4 Chong, J. X., Owenga, R., Anderson, R. L., Waggoner, D. J. & Ober, C. A population-based study of autosomal-recessive disease-causing mutations in a founder population. *American journal of human genetics* **91**, 608-620, doi:10.1016/j.ajhg.2012.08.007 (2012).

5 Rees, D. C. et al. Stomatocytic haemolysis and macrothrombocytopenia (Mediterranean stomatocytosis/macrothrombocytopenia) is the haematological presentation of phytosterolaemia. *British journal of haematology* **130**, 297-309, doi:10.1111/j.1365-2457.2005.05599.x (2005).

6 Mannucci, L. et al. Beta-sitosterolaemia: a new nonsense mutation in the ABCG5 gene. *European journal of clinical investigation* **37**, 997-1000, doi:10.1111/j.1365-2362.2007.01880.x (2007).

7 Bolduc, V. et al. Reccessive mutations in the putative calcium-activated chloride channel Anoctamin 5 cause proximal LGMD2L and distal MMD3 muscular dystrophies. *American journal of human genetics* **86**, 213-221, doi:10.1016/j.ajhg.2009.12.013 (2010).

8 Finckh, U. et al. Prenatal diagnosis of carbamoyl phosphate synthetase I deficiency by identification of a missense mutation in CPS1. *Human mutation* **12**, 206-211, doi:10.1002/(sici)1098-1004(1998)12:3<206::aid-humu8-3.0.co;2-e (1998).

9 Aoshima, T. et al. Novel mutations (H337R and 238-362del) in the CPS1 gene cause carbamoyl phosphate synthetase I deficiency. *Human heredity* **52**, 99-101, doi:10.1159/000053360 (2001).

10 Kurokawa, K. et al. Molecular and clinical analyses of Japanese patients with carbamoylphosphate synthetase 1 (CPS1) deficiency. *Journal of human genetics* **52**, 349-354, doi:10.1017/s1099623x10000974 (2007).

11 Klaus, V. et al. Highly variable clinical phenotype of carbamylphosphate synthetase 1 deficiency in one family: an effect of allelic variation in gene expression? *Clinical genetics* **76**, 263-269, doi:10.1111/j.1399-0004.2009.01216.x (2009).

12 Hu, L. et al. Recurrence of carbamoyl phosphate synthetase 1 (CPS1) deficiency in Turkish patients: characterization of a founder mutation by use of recombinant CPS1 from insect cells expression. *Molecular genetics and metabolism* **113**, 267-273, doi:10.1016/j.ymgme.2014.09.014 (2014).

13 Hamada, T. et al. Lipid proteinosis maps to 1q21 and is caused by mutations in the extracellular matrix protein 1 gene (ECM1). *Human molecular genetics* **11**, 833-840, doi:10.1093/hmg/11.7.833 (2002).

14 Novarino, G. et al. Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. *Science (New York, N.Y.)* **343**, 506-511, doi:10.1126/science.1247363 (2014).

15 Santos-Cortez, R. L. et al. Autosomal-Recessive Hearing Impairment Due to Rare Missense Variants within S1PR2. *American journal of human genetics* **98**, 331-338, doi:10.1016/j.ajhg.2015.12.004 (2016).

16 Siintola, E. et al. Cathepsin D deficiency underlies congenital human neuronal ceroid-lipofuscinosis. *Brain : a journal of neurology* **129**, 1438-1445, doi:10.1093/brain/awt107 (2006).

17 Steinfield, R. et al. Cathepsin D deficiency is associated with a human neurodegenerative disorder. *American journal of human genetics* **78**, 988-998, doi:10.1086/504159 (2006).

18 Hershenson, J. et al. Cathepsin D deficiency causes juvenile-onset ataxia and distinctive muscle pathology. *Neurology* **83**, 1873-1875, doi:10.1212/wnl.0000000000000981 (2014).

19 Miki, Y. et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. *Science (New York, N.Y.)* **266**, 66-71, doi:10.1126/science.7545954 (1994).

20 Castillo, L. H. et al. Mutations in the BRCA1 gene in families with early-onset breast and ovarian cancer. *Nature genetics* **8**, 387-391, doi:10.1038/ng1294-394 (1994).

21 Simard, J. et al. Common origins of BRCA1 mutations in Canadian breast and ovarian cancer families. *Nature genetics* **8**, 392-398, doi:10.1038/ng1294-392 (1994).

22 Friedman, L. S. et al. Confirmation of BRCA1 by analysis of germline mutations linked to breast and ovarian cancer in ten families. *Nature genetics* **8**, 399-404, doi:10.1038/ng1294-399 (1994).

23 Gayther, S. A. et al. Frequently occurring germ-line mutations of the BRCA1 gene in ovarian cancer families from Russia. *American journal of human genetics* **60**, 1239-1242 (1997).

24 Liede, A. et al. A breast cancer patient of Scottish descent with germ-line mutations in BRCA1 and BRCA2. *American journal of human genetics* **62**, 1543-1544, doi:10.1086/301889 (1998).
Janezic, S. A. et al. Germline BRCA1 alterations in a population-based series of ovarian cancer cases. *Human molecular genetics* 8, 889-897, doi:10.1093/hmg/8.8.889 (1999).

Tesoriero, A. et al. De novo BRCA1 mutation in a patient with breast cancer and an inherited BRCA2 mutation. *American journal of human genetics* 65, 567-569, doi:10.1086/302503 (1999).

Mefford, H. C. et al. Evidence for a BRCA1 founder mutation in families of West African ancestry. *American journal of human genetics* 57, 575-578, doi:10.1086/302511 (1999).

Dorum, A., Heimdal, K., Hovig, E., Inganas, M. & Moller, P. Penetrances of BRCA1 1675delA and 1135insA with respect to breast cancer and ovarian cancer. *American journal of human genetics* 65, 671-679, doi:10.1086/302530 (1999).

Gorski, B. et al. Founder mutations in the BRCA1 gene in Polish families with breast-ovarian cancer. *American journal of human genetics* 66, 1963-1968, doi:10.1086/302922 (2000).

Sarantaus, L. et al. Multiple founder effects and geographical clustering of BRCA1 and BRCA2 families in Finland. *European journal of human genetics : EJHG* 8, 757-763, doi:10.1038/sj.ejhg.5200529 (2000).

Vallon-Christersson, J. et al. Functional analysis of BRCA1 C-terminal missense mutations identified in breast and ovarian cancer families. *Human molecular genetics* 10, 353-360, doi:10.1093/hmg/10.4.353 (2001).

Bergman, A. et al. The western Swedish BRCA1 founder mutation 3171ins5: a 3.7 cM conserved haplotype of today is a reminiscence of a 1500-year-old mutation. *European journal of human genetics : EJHG* 9, 787-793, doi:10.1038/sj.ejhg.5200704 (2001).

Vega, A. et al. Analysis of BRCA1 and BRCA2 in breast and breast/ovarian cancer families shows population substructure in the Iberian peninsula. *Annals of human genetics* 66, 29-36, doi:10.1017/s000348000101014 (2002).

Tischkowitz, M. et al. Pathogenicity of the BRCA1 missense variant M1775K is determined by the disruption of the BRCT phosphopeptide-binding pocket: a multi-modal approach. *European journal of human genetics : EJHG* 16, 820-832, doi:10.1038/ejhg.2008.13 (2008).

Domchek, S. M. et al. Biallelic deleterious BRCA1 mutations in a woman with early-onset ovarian cancer. *Cancer discovery* 3, 399-405, doi:10.1158/2159-8290.cd-12-0421 (2013).

Sawyer, S. L. et al. Biallelic mutations in BRCA1 cause a new Fanconi anemia subtype. *Cancer discovery* 5, 135-142, doi:10.1158/2159-8290.cd-14-1156 (2015).

Freire, B. L. et al. Homozygous loss of function BRCA1 variant causing a Fanconi-anemia-like phenotype, a clinical report and review of previous patients. *European journal of medical genetics* 61, 130-133, doi:10.1016/j.ejmg.2017.11.003 (2018).

Seo, A. et al. Mechanism for survival of homozygous nonsense mutations in the tumor suppressor gene BRCA1. *Proceedings of the National Academy of Sciences of the United States of America* 115, 5241-5246, doi:10.1073/pnas.1801796115 (2018).

Gal, A. et al. Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. *Nature genetics* 26, 270-271, doi:10.1038/81555 (2000).

Ebermann, I. et al. Truncating mutation of the DFNB59 gene causes cochlear hearing impairment and central vestibular dysfunction. *Human mutation* 28, 571-577, doi:10.1002/humu.20478 (2007).

Ksantini, M., Lafont, E., Bocquet, B., Meunier, I. & Hamel, C. P. Homozygous mutation in MERTK causes severe autosomal recessive retinitis pigmentosa. *European journal of ophthalmology* 22, 647-653, doi:10.5301/ajo.500096 (2012).

Jurkat-Rott, K. et al. A calcium channel mutation causing hypokalemic periodic paralysis. *Human molecular genetics* 3, 1415-1419, doi:10.1093/hmg/3.8.1415 (1994).

Ptacek, L. J. et al. Dihydropyridine receptor mutations cause hypokalemic periodic paralysis. *Cell* 77, 863-868, doi:10.1016/0092-8674(94)90135-x (1994).

Chabrier, S., Monnier, N. & Lunardi, J. Early onset of hypokalaemic periodic paralysis caused by a novel mutation of the CACNA1S gene. *Journal of medical genetics* 45, 668-688, doi:10.1136/jmg.2008.059766 (2008).

Ke, T., Gomez, C. R., Mateus, H. E., Castano, J. A. & Wang, Q. K. Novel CACNA1S mutation causes autosomal dominant hypokalemic periodic paralysis in a South American family. *Journal of human genetics* 54, 660-664, doi:10.1038/jjh.2009.202 (2009).

Kung, A. W., Lau, K. S., Fong, G. C. & Chan, V. Association of novel single nucleotide polymorphisms in the calcium channel alpha 1 subunit gene (CaV1.1) and thyrotropic periodic paralysis. *The Journal of clinical endocrinology and metabolism* 89, 1340-1345, doi:10.1210/jc.2003-030924 (2004).

Yoned, A. et al. De novo and inherited mutations in COL4A2, encoding the type IV collagen alpha2 chain cause porencephaly. *American journal of human genetics* 90, 86-90, doi:10.1016/j.ajhg.2011.11.016 (2012).

Ruiz-Perez, V. L. et al. Mutations in a new gene in Ellis-van Creveld syndrome and Weyers acrofacial dysostosis. *Nature genetics* 24, 283-286, doi:10.1038/73508 (2000).

Ye, X. et al. A novel heterozygous deletion in the EVC2 gene causes Weyers acrofacial dysostosis. *Human genetics* 119, 199-205, doi:10.1007/s00439-005-0129-2 (2006).

Shen, W., Han, D., Zhang, J., Zhao, H. & Feng, H. Two novel heterozygous mutations of EVC2 cause a mild phenotype of Ellis-van Creveld syndrome in a Chinese family. *American journal of medical genetics. Part A* 155A, 2131-2136, doi:10.1002/ajmg.a.34125 (2011).
54 D'Asdia, M. C. et al. Novel and recurrent EVC and EVC2 mutations in Ellis-van Creveld syndrome and Weyers acrofacial dysostosis. European journal of medical genetics 56, 80-87, doi:10.1016/j.ejmg.2012.11.005 (2013).
55 Keller, M. D. et al. Mutation in IRF2BP2 is responsible for a familial form of common variable immunodeficiency disorder. The Journal of allergy and clinical immunology 138, 544-550.e544, doi:10.1016/j.jaci.2016.01.018 (2016).
56 Lopez-Herrera, G. et al. Deleterious mutations in LRBA are associated with a syndrome of immune deficiency and autoimmunity. American journal of human genetics 90, 986-1001, doi:10.1016/j.ajhg.2012.04.015 (2012).
57 Alangari, A. et al. LPS-responsive beige-like anchor (LRBA) gene mutation in a family with inflammatory bowel disease and combined immunodeficiency. The Journal of allergy and clinical immunology 130, 481-488.e482, doi:10.1016/j.jaci.2012.05.043 (2012).
58 Charbonnier, L. M. et al. Regulatory T-cell deficiency and immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like disorder caused by loss-of-function mutations in LRBA. The Journal of allergy and clinical immunology 135, 217-227, doi:10.1016/j.jaci.2014.10.019 (2015).
59 Pinz, H. et al. De novo variants in Myelin regulatory factor (MYRF) as candidates of a new syndrome of cardiac and urogenital anomalies. American journal of medical genetics. Part A 176, 969-972, doi:10.1002/ajmg.a.38620 (2018).
60 Chitayat, D. et al. An Additional Individual with a De Novo Variant in Myelin Regulatory Factor (MYRF) with Cardiac and Urogenital Anomalies: Further Proof of Causality: Comments on the article by Pinz et al. (). American journal of medical genetics. Part A 176, 2041-2043, doi:10.1002/ajmg.a.40360 (2018).
61 Qi, H. et al. De novo variants in congenital diaphragmatic hernia identify MYRF as a new syndrome and reveal genetic overlaps with other developmental disorders. PLoS genetics 14, e1007822, doi:10.1371/journal.pgen.1007822 (2018).
62 Wang, K., Zhou, B., Kuo, Y. M., Zemansky, J. & Gitschier, J. A novel member of a zinc transporter family is defective in acrodermatitis enteropathica. American journal of human genetics 71, 66-73, doi:10.1086/341125 (2002).
63 Kury, S. et al. Identification of SLC39A4, a gene involved in acrodermatitis enteropathica. Nature genetics 31, 239-240, doi:10.1038/ng913 (2002).
64 Nakano, A., Nakano, H., Nomura, K., Toyomaki, Y. & Hanada, K. Novel SLC39A4 mutations in acrodermatitis enteropathica. The Journal of investigative dermatology 120, 963-966, doi:10.1046/j.1523-1747.2003.12243.x (2003).
65 Saleheen, D. et al. Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity. Nature 544, 235-239, doi:10.1038/nature22034 (2017).
66 Diodato, D. et al. VARS2 and TARS2 mutations in patients with mitochondrial encephalomyopathies. Human mutation 35, 983-989, doi:10.1002/humu.22590 (2014).
67 Taylor, R. W. et al. Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies. Jama 312, 68-77, doi:10.1001/jama.2014.7184 (2014).