Dobšináite, Ca$_2$Ca(AsO$_4$)$_2$·2H$_2$O, a new member of the roselite group from Dobšiná (Slovak Republic)

Jiří SEJKORA*, Martin ŠTEVKO2,1, Radek ŠKODA3, Eva VIŠKOVÁ4, Jiří TOMAN4, Sebastián HREUS3, Jakub PLÁŠIL3, Zdeněk DOLNÍČEK1

1Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, 193 00 Prague 9, Czech Republic; jiri.sejkora@nm.cz
2Earth Science Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovak Republic
3Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlárská 2, 611 37, Brno, Czech Republic
4Department of Mineralogy and Petrography, Moravian Museum, Zelný trh 6, 659 37 Brno, Czech Republic

*Corresponding author

Original paper

1. Introduction

During our long-term systematic mineralogical research focused on supergene arsenate minerals from various occurrences (Sejkora et al. 1999, 2009, 2018; Plumhoff et al. 2020; Steciuk et al. 2021), dobšináite, a new Ca dominant member of the roselite group, was discovered; in this paper, we report its description. Arsenate members of the roselite group comprise monoclinic minerals of generalized composition Ca$_2$M(AsO$_4$)$_2$·2H$_2$O. The octahedral M site is occupied mainly by Mn$^{2+}$ (brandtite, Herwig and Hawthorne 2006), Co$^{2+}$ (roselite, Hawthorne and Ferguson 1977), Cu$^{2+}$ (rugrite, Yang et al. 2011), Mg$^{2+}$ (wendwilsonite, Kolitsch and Fleck 2006) and Zn$^{2+}$ (zincroselite, Keller et al. 2004).

Dobšináite is named after its type locality Dobšiná, which represents the most important accumulation of Ni arsenides and sulfarsenides in the Western Carpathians and in the past, it was a significant producer of the high-grade Ni and Co ores in Europe.

The new mineral and its name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA 2020-81). The holotype sample of dobšináite is deposited in the collections of the Moravian Museum in Brno, Department of Mineralogy and Petrography, Zelný trh 6, Brno, Czech Republic, under the catalog number B12257.

2. Occurrence

Dobšináite was found in several specimens collected in the short abandoned adit at the Dionýz mining field, Zemberg-Terézia vein system, which is located 2.2 km NE of the Dobšiná town, Spišsko-gemerské rudohorie.
Jiří Sejkora, Martin Števko, Radek Škoda, Eva Višková, Jiří Toman, Sebastián Hreus, Jakub Plášil, Zdeněk Dolníček

Mts., Rožňava Co., Košice Region, Slovak Republic (48.837977°N, 20.383550°E).

The Zemberg-Terézia vein system is represented by siderite-ankerite hydrothermal carbonate–quartz veins with Ni–Fe–Co–Cu ore mineralization hosted in the Early Paleozoic gneiss-amphibolite complex of the Klátov group belonging to the Gemeric tectonic unit (Rozložník 1959, 1965; Halahyjová-Andrusovová 1964a; Grecula et al. 1995). The vertical extent of the veins exceeds 1.5 km, generally with the SW-NE orientation and moderate to steep dip (40° to 70°) to the S or SE. The veins are usually 0.7 to 1.5 m thick. The two different ore mineralization types were distinguished: carbonate (siderite, ankerite–dolomite)–quartz vein filling with baryte and abundant chalcopyrite and tetrahedrite is typical for the upper parts of the veins. In contrast, Ni–Co–As minerals are prevailing ore minerals in the deeper parts of the veins (Halahyjová-Andrusovová 1959, 1964b; Grecula et al. 1995). The dominant gangue minerals are carbonates, mainly Fe-rich dolomite to ankerite and siderite with quartz and minor tourmaline. Gersdorffite and arsenopyrite are the most frequent ore minerals, accompanied by minor pyrite, cobaltite, nickelskutterudite–skutterudite, nickelite, millerite, rammelsbergite, safflorite, ulmanite, lülingite, chalcopite, tetrahedrite group minerals, Bi sulfosalts and hematite (Halahyjová-Andrusovová 1959; Kiefer et al. 2017, 2020; Števko and Sejkora 2020). The two adits in the Dionýz mining field (Dionýz adit and the short adit above, where the samples with dobšináite were collected) explored one of the short hydrothermal ore veins developed at the southern margin of the Zemberg-Terézia vein system.

Dobšináite was found in a relatively dry area of the mine in assemblage with other Ca and Co phases. This supergene post-mining assemblage was found growing on the surface of loose fragments of vein filling containing calcite–dolomite–quartz matrix with rich impregnations of safflorite and Co-rich arsenopyrite. Dobšináite is closely associated with phaunouxite, picropharmacolite, erythrite–hörnesite, gypsum and aragonite. Rauenthalite is also present in this assemblage but never in direct association with dobšináite. The supergene assemblage with dobšináite was formed by oxidation of primary Co and As-bearing ore minerals (safflorite, arsenopyrite) in a Ca enriched environment (abundant calcite in the matrix) under the relatively dry conditions (Števko et al. unpublished data).

3. Appearance and physical properties

Dobšináite occurs as clusters or polycrystalline aggregates up to 1–4 mm in size consisting of densely intergrown, slightly rounded thin platy crystals up to 0.1 mm in size (Figs 1 and 2), usually the thickness of individual crystals does not exceed 10 µm. It has a white to pink color depending on the Co content; the holotype is white, locally with a light pink/violet tint. The pink variety seems to be more coarse crystalline than the white variety. Its aggregates are opaque to translucent; individual crystals or tiny fragments are translucent to transparent. It has a white streak and a vitreous luster. It does not fluoresce under either short- or long-wave ultraviolet light. Cleavage on {010} is good, the Mohs hardness is ~3 (scratch tests), and the mineral is brittle with an uneven fracture. The density $D_{\text{calc}} = 3.395 \text{ g/cm}^3$ was calculated on the basis of the empirical formula and unit-cell volume refined from powder data; for the ideal formula, we obtained 3.405 g/cm^3.

Dobšináite is optically biaxial negative, with $\alpha' = 1.601(2)$ and $\gamma' = 1.629(2)$ (measured at 589 nm).
$2V_{\text{meas}} = 60^\circ (\pm 20^\circ)$. Crystals and aggregates are formed of parallel intergrowths and bent fine elongated domains. Extinction has an undulatory character and is parallel to the elongation or with a minimum angle. The character of the sample hampers a more precise characterization. Dispersion is weak ($r > v$), and dobšináite exhibits no noticeable pleochroism. The Gladstone-Dale compatibility index $1 - (K_p/K_c)$ calculated from incomplete optical data is 0.003 for the empirical formula and unit-cell parameters from X-ray powder diffraction pattern, indicating superior compatibility (Mandarino 1981).

4. Chemical composition

Initial chemical analyses of dobšináite were collected utilizing Cameca SX-100 electron microprobe (Masaryk University, Brno) during a routine investigation of the secondary arsenate mineral assemblage from Dobšiná. Subsequently, a more systematic chemical characterization of dobšináite was performed by a Cameca SX-100 electron microprobe (National Museum, Prague) operating in the wavelength-dispersion mode with an accelerating voltage of 15 kV, a specimen current of 4 nA, and a beam diameter of 20 μm. The following lines and standards were used: K_α: diopside (Mg), fluorapatite (P), rhodonite (Mn), wollastonite (Ca), Co (Co), Ni (Ni), celestine (S), and L_α: clinoclase (As). Peak counting times (CT) were 20 s, CT for each background was one-half of the peak time. The raw intensities were converted to the concentrations automatically using PAP (Pouchou and Pichoir 1985) matrix-correction software. Other elements, such as Al, Cu, Fe, Si, V and Zn were found to be below the detection limits (0.03–0.08 wt. %). Water content could not be analyzed directly because of the minute amount of material available and was calculated on the basis of 2 H$_2$O (from the ideal composition of roselite group minerals).

Table 1 gives the chemical composition of the holotype sample of dobšináite (mean of nineteen determinations). The empirical formula of dobšináite based on 10 O atoms per formula unit is $\text{Ca}_2(\text{Ca}_{0.84}\text{Mg}_{0.10}\text{Co}_{0.03}\text{Ni}_{0.02})\{(\text{AsO}_4)_{1.99}(\text{SO}_4)_{0.01}\}\cdot 2\text{H}_2\text{O}$. The simplified formula is $\text{Ca}_2(\text{Ca},\text{Mg})(\text{AsO}_4)_2\cdot 2\text{H}_2\text{O}$, and the ideal end-member formula is $\text{Ca}_2\text{Ca}(\text{AsO}_4)_2\cdot 2\text{H}_2\text{O}$, which requires CaO 38.75, As$_2$O$_5$ 52.94, H$_2$O 8.30, total 100.00 wt. %.

In other samples, besides white ones, pink aggregates with increased Co (up to 3.66 wt. % CoO, on the basis of 2 H$_2$O from the ideal composition of roselite group minerals).

![Fig. 3 Ternary graph of occupation of Co+Ni vs. Ca vs. Mg (atom. unit) in the octahedral M position of dobšináte from Dobšiná; data for holotype sample are compared with white and pink dobšináte aggregates from other samples.](image-url)
0.21 apfu) and Ni contents (up to 0.79 wt. % NiO, 0.05 apfu) were observed; this composition also corresponds very well to dobšináite (Fig. 3). The representative analyses for all dobšináite samples are given in Tab. 2.

5. Crystallography

Attempts to obtain single-crystal X-ray data (Rigaku SuperNova single-crystal diffractometer with Atlas S2 CCD detector) were unsuccessful due to the nature of the studied material; it is formed by multiple intergrowths of sub-microscopic domains.

X-ray powder diffraction data of dobšináite (Tab. 3) were recorded at room temperature using a Bruker D8 Advance diffractometer equipped with a solid-state LynxEye detector and secondary monochromator producing CuKα radiation housed at the Department of Mineralogy and Petrology, National Museum, Prague. The instrument was operated at 40 kV and 40 mA. To minimize the background, the powdered samples were placed (without any liquid) on the surface of a flat silicon wafer. The powder pattern was collected in the Bragg–Brentano geometry in the range 3–70° 2θ, step 0.01°, and a counting time of 20 s per step (total duration of the experiment was ca. 30 hours). The positions and intensities of diffractions were refined by the least-squares function of the ZDS program package (Ondruš 1993).

The unit-cell parameters were refined by the least-squares program of Burnham (1962) for monoclinic space group P2₁/c (#14) as follows: \(a = 5.990(2), b = 13.013(4), c = \ldots \)
Tab. 3 Powder diffraction data (d in Å) of dobšináite; the strongest diffractions are given in bold

I observed	d calc	I calc	I calc *	h	k	l
24	6.484	6.506	18	0	2	0
37	5.197	5.207	40	1	1	0
33	5.002	5.012	21	0	1	1
22	4.458	4.461	14	1	1	-1
25	3.831	3.836	22	1	2	-1
38	3.443	3.448	33	1	3	0
66	3.385	3.389	53	0	3	1
33	3.309	3.309	18	1	1	1
77	3.249	3.253	40	0	4	0
42	3.201	3.203	35	1	3	-1
100	3.026	3.028	100	1	2	1
28	2.854	2.855	36	2	1	-1
60	2.822	2.823	41	1	0	-2
8	2.713	2.716	8	0	0	2
30	2.665	2.669	34	2	2	-1
3	2.3781	2.3764	6	2	3	0
5	2.3456	2.3470	5	0	5	1
19	2.2819	2.2823	19	1	5	-1
33	2.1327	2.1320	31	1	4	-2
6	2.0804	2.0794	6	1	2	2
6	2.0263	2.0262	4	1	6	0
4	1.9584	1.9582	5	1	3	2
7	1.9461	1.9448	5	2	5	-1
8	1.9186	1.9178	9	2	4	-2
11	1.9097	1.9077	8	3	2	-1
6	1.8798	1.8790	6	0	5	2
4	1.8721	1.8740	9	3	1	0
18	1.8317	1.8318	25	1	6	1
27	1.7443	1.7442	23	0	2	3
6	1.7428	1.7425	14	2	6	-1
10	1.7364	1.7355	14	3	3	0
6	1.6963	1.6962	3	2	1	2
131	1.6947	1.6947	3	0	6	2

I calc * = intensities were calculated using the software PowderCell 2.3 (Kraus and Nolze 1996) on the basis of the structural model (brandtite – Herwig and Hawthorne 2006 – with Ca replacing for Mg).

5.726(2) Å, β = 108.47(3)°, V = 423.3(3) Å³ and Z = 2. The a:b:c ratio calculated from unit-cell parameters is 0.4603:1:0.4400.

The well-known crystal structure of As-dominant members of the roselite group (Ca,M⁺(AsO₄)₂·2H₂O) is characterized by isolated MO₄(H₂O)octahedra that are linked by corner-sharing with AsO₄ tetrahedra to form the kröhnkite-type chains parallel to the c axis. These chains are linked together by the large Ca cations and hydrogen bonding (Hawthorne and Ferguson 1977; Keller et al. 2004; Herwig and Hawthorne 2006; Kolitsch and Fleck 2006; Yang et al. 2011). The values of unit-cell parameters (especially a and V) positively correlate with the octahedral M cation’s average ionic radii (Fig. 4).

6. Raman spectroscopy

The Raman spectrum of dobšináite (Fig. 5) was obtained employing a Horiba Labram HR Evolution spectrometer (Masaryk University, Brno). This dispersive, edge-filter-based system is equipped with an Olympus BX 41 optical microscope, a diffraction grating with 600 grooves per millimeter, and a Peltier-cooled, Si-based charge-coupled device (CCD) detector. The 633 nm He-Ne laser with the beam power of 5 mW at the sample surface was selected for spectra acquisition to minimize analytical artifacts. Raman signal was collected in the range of 50–4000 cm⁻¹ with a 100× objective (NA 0.9) and the system being operated in the confocal mode; beam diameter was ~1 µm and the depth resolution ~2 µm. No visual damage to the analyzed surface was observed at these conditions after the excitation. For wavenumber calibration, the Rayleigh line and low-pressure Ne-discharge lamp emissions were used. The wavenumber accuracy was ~0.5 cm⁻¹, and the spectral resolution was ~2 cm⁻¹. Band fitting was done after appropriate background correction, assuming combined Lorentzian-Gaussian band shapes using the Voigt function (PeakFit; Jandel Scientific Software).

The main bands observed are (in wavenumbers): 3358, 3170, 2960, 2724, 2474, 447, 416, 366, 333, 295, 196, 171, 125, 106, 81 and 53 cm⁻¹. Weak broad Raman bands with maxima at 3358, 3170 and 2960 cm⁻¹ are assigned to the νOH stretching vibrations of structurally distinct differently hydrogen-bonded water molecules. The most prominent very strong Raman band at 828 cm⁻¹ with a shoulder at 863 cm⁻¹ is attributed to overlapping ν(SO₄)²⁻ symmetric stretching and ν(AsO₄)³⁻ antisymmetric stretching vibrations. A weak shoulder band at 724 cm⁻¹ can be connected to the libration of H₂O molecules. Raman bands 474, 447 and 416 cm⁻¹ are attributed with the ν(AsO₄)³⁻ bending vibrations. Raman bands at 366, 333 and 295 cm⁻¹ are related to the ν(AsO₄)³⁻ bending vibrations and those below 200 cm⁻¹ to the lattice modes (Vansant et al. 1973; Yang et al. 2011; Sejkora et al. 2020). In the area of ν(AsO₄)³⁻ vibrations (1000–700 cm⁻¹), the Raman spectrum of dobšináite is close to other As-dominant members of the roselite group and distinctly differs from those of As-dominant members of the fairfieldite group (Fig. 6).

7. Comparison with related minerals

Dobšináite is a Ca- and As-dominant member of the roselite group, Strunz class 8.CG.10, Dana class 40.2.3.

A comparison of selected data for As-dominant members of this group is given in Tab. 4. An unambiguous determination of dobšináite as a member of the roselite group
is based on its chemical composition (stoichiometry), X-ray powder diffraction data and Raman spectroscopy. A mineral phase corresponding to dobšináite was described in 1953 by Evgeniy I. Nefedov from Tuvinskaya deposit, Tuva Autonomous Republic, Russia. Nefedov provided an empirical formula Ca$_2$(Ca,Mg)(AsO$_4$)$_2$·2H$_2$O, some structural, optical and physical data; however, a chemical analysis is missing. Nefedov (1953) named this mineral belovite and assigned it to the roselite group mainly based on similarities of general formula and inaccurate structural information. Borodin and Kazakova (1954) described a Sr, REE, Na-bearing member of the apatite supergroup and named it belovite, too. To reduce the confusion, belovite of Nefedov was then used to be call arsenate-belovite. Subsequent reinvestigation of belovite original material of Nefedov (Yakhontova and

Fig. 5 Raman spectrum of dobšináite (full-range).

![Raman spectrum of dobšináite](image)

Tab. 4 Comparison of the properties for As-dominant members of the roselite group

	dobšináite	brandite	wendwilsonite	roselite	zincroselite	rruffite
M_{ideal}	Ca	Mn	Mg	Co	Zn	Cu
M_{meas}	Ca$_{0.84}$Mg$_{0.10}$Co$_{0.03}$Ni$_{0.02}$	Mn$_{0.38}$Mg$_{0.62}$Fe$_{0.01}$	Mg$_{0.72}$Co$_{0.28}$	Co$_{0.32}$Mg$_{0.49}$	Zn$_{0.96}$Mg$_{0.04}$Mn$_{0.05}$	Cu$_{0.01}$
SG	P_2_1/c	P_2_1/c	P_2_1/c	P_2_1/c	P_2_1/c	P_2_1/c
a (Å)	5.990(2)	5.877(1)	5.806(1)	5.801(1)	5.827(1)	5.862(2)
b (Å)	13.013(4)	12.957(2)	12.923(3)	12.898(3)	12.899(3)	12.785(4)
c (Å)	5.726(2)	5.675(1)	5.628(1)	5.617(1)	5.646(1)	5.705(2)
β (°)	108.47(3)	108.00(3)	107.49(3)	107.42(2)	107.69(3)	109.425(2)
ν (Å3)	423.3(3)	411.0	402.75(14)	401.0	404.3	403.05(3)
Z	2	2	2	2	2	
AIR (Å)	0.948	0.802	0.723	0.740	0.743	0.730
optical						
α	α'	1.658	1.707–1.709	1.694(3)	1.694–1.725	1.703(3)
β	1.711	1.703(3)	1.704–1.703	1.710(4)	1.713(4)	1.734(1)
γ	γ'	1.670	1.722–1.727	1.713(3)	1.719–1.735	1.720(3)

| | [1] | [2] | [3] | [4] | [5] | [6] |

SG – space group; AIR – average ionic radii of octahedral M cation (Shannon 1976); optical data are taken from Anthony et al. (2000) and Yang et al. (2011); [1] this proposal; [2] Herwig and Hawthorne (2006); [3] Kolitsch and Fleck (2006); [4] Hawthorne and Ferguson (1977); [5] Keller et al. (2004); [6] Yang et al. (2011)
Sidorenko 1956; Pierrot 1964) revealed that its chemical composition is richer in Mg and corresponds to Ca$_3$Mg(AsO$_4$)$_2$·2H$_2$O, and it is a triclinic member of a beta-roselite group. Hence, this material corresponds to mineral talmessite, described in 1960 by Bariand and Herpin (1960) from the Talmessi deposit, Iran.

Synthetic Ca$_3$(AsO$_4$)$_2$·2H$_2$O has been prepared experimentally by Nelson and Haring (1937). The authors determined its relatively narrow stability field in the CaO–As$_2$O$_5$–H$_2$O system and performed an X-ray study; however, it is difficult to acquire more structural details from the photograph of the diffraction pattern they provided in the publication. A synthetic analog of dobšináite was synthesized by Guérin (Pierrot 1964). The X-ray powder diffraction data of this material, published by Pierrot (1964), are similar to those of dobšináite form Dobšiná, but also contain reflections at 11.7 Å and 6.1 Å, which were probably caused by the presence of impurities in Guérin’s phase, e.g., a synthetic analog of phaunouxite. The solubility of Ca$_3$(AsO$_4$)$_2$·2H$_2$O in water was studied by Chukhlantsev (1956) and Mahapatra et al. (1984). Unfortunately, both studies lack any structural information. There are many experimental works focused on the system CaO–As$_2$O$_5$–H$_2$O at various T-X conditions (Pearce and Aven 1937; Nishimura and Robins 1998; Bothe and Brown 1999; Zhu et al. 2006; Račević et al. 2007; Hernandez-Barcenas et al. 2017, etc.), however Ca$_3$(AsO$_4$)$_2$·2H$_2$O is usually missing among the precipitated solid phases which indicates specific conditions are necessary for dobšináite formation.

Acknowledgments. The reviewers, Juraj Majzlan and Nicolas Meisser, same as handling editor Jiří Zachariáš, are thanked for a lot of their constructive comments. This work was supported financially by the Ministry of Culture of the Czech Republic (long-term project DKRVO 2019-2023/1.II.c National Museum, 00023272) for JS, MŠ, ZD and its institutional support of long-term conceptual development of research institutions (ref. MK000094862) for JT and EV and the MUNI/A/1594/2020 research project of Masaryk University for RŠ and SH.

![Fig. 6 Raman spectra of dobšináite and those of As-dominant members of roselite (monoclinic) and fairfieldite (triclinic) group from the RRUFF project for comparison. The spectra of the figure are shown with a vertical offset for more clarity.](image-url)
References

ANTHONY JW, BIDEAUX RA, BLAHD KW, NICHOLS MC (2000) Handbook of Mineralogy, Vol. IV, Arsenates, Phosphates, Vanadates. Mineral Data Publishing, Tucson, Arizona 680 pp.

BARLAND P, HERPIN P (1960) Un arseniát de calcium et de magnésium, isomorphe de la β rosélite. Bull Soc franç Minéral Cristallographe 83: 118–121

BORODIN LS, KAZAKOVA ME (1954) Belovite-(Ce): a new mineral from an alkaline pegmatite. Dokl Akad Nauk SSSR 96: 613–616

BOTHE JR IV, BROWN PW (1999) The stabilities of calcium arsenates at 23 ± 1°C. J Hazard Mater 69(2): 197–207

BURNHAM CW (1962) Lattice constant refinement. Carnegie Institute Washington Yearbook 61: 132–135

CHUKHLANTSEV VG (1956) The solubility products of a number of arsenates. J Anal Chem USSR, 11: 565

Grecula P, Abonyi A, Abonyi M, Antaš J, Bartalík B, Bartalský E, Hudaček J, Kobulský J, Lörincz L, Macko J, Návesnák D, Németh Z, Novotný L, Radvaneč M, Rozkojovič I, Rozložník L, Varček Č, Zlochový Z (1995) Mineral deposits of the Slovak Ore Mountains, Vol I. Geocomplex, Bratislava, 1–834

Halajková-Andrusovová G (1959) Mineralogical and para-genetic study of the ore deposits around Dobšiná. Manuscript, ŠGÚDS-Geofond, Bratislava, 1–140 (in Slovak)

Halajková-Andrusovová G (1964a) About the genesis of the ore veins near Dobšiná. Geol Práce Správy 33: 53–69 (in Slovak)

Halajková-Andrusovová G (1964b) About the structures of Ni–Co–Fe sulfarsenides and arsenides from Dobšiná. Geol Sbor AKDŠ-Geofond, Bratislava, 1–140 (in Slovak)

Hawthorne FC, Ferguson RB (1977) The crystal structure of roselite. Canad Mineral 15: 36–42

Hernandez-Barcenas G, Castillo F, Avila-Borja M, Martinez-Villegas NV (2017) Synthesis of calcium arsenates in aqueous solution at 25 °C. Mineral Process Extr Metall Rev 18(3–4): 283–308

Hosokawa M, Macko J, Návesnák D, Németh Z, Novotný L, Radvaneč M, Rozkojovič I, Rozložník L, Varček Č, Zlochový Z (1995) Mineral deposits of the Slovak Ore Mountains, Vol I. Geocomplex, Bratislava, 1–834

Kiefer S, Števko M, Vojtko R, Ozdin D, Gerdes A, Creaser RA, Szczersa M, Majzlan J (2020) Geo-
Dobšináite, a new member of the roselite group

RAIČEVIĆ S, STANIĆ V, KALUDJEROVIĆ-RAĐOČIĆ T (2007) Theoretical assessment of calcium arsenates stability: Application in the treatment of arsenic contaminated waste. Mater Sci Forum 555: 131–136

ROZLOŽNÍK L (1959) Tectonic conditions of the ore deposits around Dobšiná. Acta Geol Geogr Univ Comen, Geol 2: 167–175 (in Slovak)

ROZLOŽNÍK L (1965) An analysis of the structural and metallogenetic elements between Dobšiná and Mlynky. Sborník Geol vied, Záp Karp 4: 29–93 (in Slovak).

SEJKORA J, ŘÍDKOŠIL T, ŠREIN V (1999) Zálesíite, a new mineral of the mixite group, from Zálesí, Rychlebské hory Mts., Czech Republic. Neu Jb Mineral, Abh 175(2): 105–124

SEJKORA J, HAWTHORNE FC, COOPER MA, GRICE JD, VAJDAK J, JAMBOR JL (2009) Burgessite, Co₂(H₂O)₃[AsO₃(OH)]₂·H₂O, a new arsenate mineral species from the Keeley mine, South Lorrain township, Ontario, Canada. Canad Mineral 47(1): 159–164

SEJKORA J, PLAŠIL J, KAMPF AR (2018) Honzaite, (Ni,Co)₂(AsO₃OH)₃(H₂O)₃, a new Ni-dominant analogue of burgessite, from Jáchymov, Czech Republic. Eur J Mineral 30(5): 989–997

SEJKORA J, PLAŠIL J, ČEJKA J, DOLNÍČEK Z, PAVLÍČEK R (2020) Molecular structure of the arsenate mineral chonellite from Jáchymov – a vibrational spectroscopy study. J Geosci 65: 111–120

SHANNON RD (1976) Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr A32: 751–767

STECIUK G, SEJKORA J, ČEJKA J, PLAŠIL J, HLOUŠEK J (2021) Krupičkaitie, Cu₄[AsO₃(OH)]₄·8H₂O, a new copper arsenate mineral from Jáchymov (Czech Republic). J Geosci 66: 37–50

ŠTEVKO M, SEJKORA J (2020) Sb-enriched association of Ni arsenides and sulfarsenides from the Zemberg-Terézia vein system near Dobšiná (Western Carpathians, Slovak Republic). Bull Mineral Petrolog 28: 105–115

VANSANT FK, VAN DER VEKEN BJ, DESSEYDN HD (1973) Vibrational analysis of arsenic and its anions I. Description of the Raman spectra. J Molec Struct 15: 425–437

YAKHONTOV A, SIDORENKO GA (1956) The new mineral arsenate-belovite. Zap Vsesojuz Mineral Obšč SSSR 85: 297–302 (in Russian)

YANG H, JENKINS RA, DOWNS RT, EVANS SH, TAIT KT (2011) Rruffite, Ca₂Cu(AsO₄)₂·2H₂O, a new member of the roselite group, from Tierra Amarilla, Chile. Canad Mineral 49: 877–884

ZHU YN, ZHANG XH, XIE QL, WANG DQ, CHENG GW (2006) Solubility and stability of calcium arsenates at 25°C. Water Air Soil Pollut 169(1): 221–238