When is Existential Quantification Conservative?

Brian Day

February 13, 2009

Abstract

We describe a sufficient condition for the process of left Kan extension to be a conservative functor. This is useful in the study of graphic Fourier transforms and quantum categories and groupoids.

1 Introduction

Let \(\mathcal{V} \) be a complete and cocomplete symmetric monoidal closed category. For various questions in “quantum” algebra (see [3]), we want to know when the functor

\[
\exists_N : [A, \mathcal{V}] \to [C, \mathcal{V}]
\]

(or \(\text{Lan}_N : \mathcal{P}(A) \to \mathcal{P}(C) \))

given by the coend formula

\[
\exists_N(f) = \int^a f(a) \otimes \mathcal{C}(Na, -)
\]

(see [2] for notation), is conservative (that is, reflects isomorphisms) for a given \(\mathcal{V} \)-functor

\[N : A \to C\]

with \(A \) a small \(\mathcal{V} \)-category. In this note we establish a “simple” sufficient condition for this to hold; namely, that \(A \) should also have a natural \(\mathcal{V} \)-opcategory structure (with mild assumptions on \(\mathcal{V} \)).

2 The main result

If a small \(\mathcal{V} \)-category \(A \) is equipped with \(\mathcal{V} \)-natural transformations

\[
\delta : A(a, b) \to A(c, b) \otimes A(a, c)
\]

\[
\epsilon : A(a, a) \to I
\]

*Department of Mathematics, Macquarie University, NSW 2109, Australia.
such that

$$\begin{array}{ccc}
A(a,b) & \xrightarrow{\delta} & A(b,b) \otimes A(a,b) \\
\downarrow 1 & & \downarrow \epsilon \otimes 1 \\
A(a,b) & \xleftarrow{=I \otimes A(a,b)} &
\end{array}$$

commutes, then the \mathcal{V}-functor

$$\exists_N = \text{Lan}_N : [A, \mathcal{V}] \to [C, \mathcal{V}]$$

is conservative for a given functor $N : A \to \mathcal{V}$ if we suppose that each component

$$N : A(a,b) \to C(Na, Nb)$$

is a regular mono (that is, the kernel of some pair of maps) and that the composite of regular monos in \mathcal{V} is again a regular mono, and the functor

$$- \otimes \mathcal{V} : \mathcal{V} \to \mathcal{V}$$

preserves regular monos for each X in \mathcal{V}.

The rest of this section is concerned with the proof of this statement.

Note: We shall use the term “opcat” to refer to any application using a \mathcal{V}-natural transformation of the form

$$fb \to \int_x A(x,b) \otimes f x$$

derived from the \mathcal{V}-natural transformation δ by use of the Yoneda expansion of a given \mathcal{V}-functor f. In fact, we can suppose that A is merely a Frobenius category in the sense that the given family of maps

$$\delta : A(a,b) \to A(c,b) \otimes A(a,c)$$

is only \mathcal{V}-natural in a and b (and not necessarily in c) and that the family

$$\epsilon : A(a,a) \to I$$

is not necessarily \mathcal{V}-natural in a. We then use the \mathcal{V}-natural transformation

$$fb \to \prod_x A(x,b) \otimes f x$$

in the following calculations, where \prod_x replaces \int_x, etc.

To show that \exists_N is conservative, it suffices to show that the unit of the \mathcal{V}-adjunction $\exists_N \dashv [N, 1]$ is a regular mono (see [1] or [2], for example, and the
references therein to W. Tholen). To do this, we now consider the following diagram in \(\mathcal{V} \).

\[
\begin{array}{cccccc}
\int^a \mathcal{A}(a, b) \otimes f_a & \cong & \int^a \mathcal{C}(Na, Nb) \otimes f_a \\
\downarrow \text{opcat} & & \downarrow \text{opcat} & & \\
\int^a \int_x \mathcal{A}(a, x) \otimes \mathcal{A}(x, b) \otimes f_a & \rightarrow & \int^a \int_x \mathcal{A}(a, x) \otimes \mathcal{C}(Nx, Nb) \otimes f_a \\
\downarrow \text{can} & & \downarrow \text{can} & & \\
\int_x \mathcal{A}(a, x) \otimes \mathcal{A}(x, b) \otimes f_a & \rightarrow & \int_x \mathcal{A}(a, x) \otimes \mathcal{C}(Nx, Nb) \otimes f_a \\
\downarrow \text{can} & & \downarrow \text{can} & & \\
\int_x \mathcal{A}(x, b) \otimes f_x & \rightarrow & \int_x \mathcal{C}(Nx, Nb) \otimes f_x \\
\end{array}
\]

where the isomorphisms are by the Yoneda expansion of \(f \), and “can” denotes the canonical “interchange” maps. Since \(\int_x N \otimes 1 \) is a regular mono (by the hypotheses on \(\mathcal{V} \) and \(N \)), so also is its pullback along the right-hand composite map. Hence, since

\[
\text{opcat}: f_b \rightarrow \int_x \mathcal{A}(x, b) \otimes f_x
\]

is a coretraction, with left inverse the composite

\[
f_b \cong \int_x \mathcal{A}(x, b) \otimes f_x \cong \int_x \mathcal{A}(x, b) \otimes f_x \cong \int_x \mathcal{A}(a, x) \otimes f_a
\]

we have that

\[
\int^a N \otimes 1
\]

is the composite of a coretraction (which is always a regular mono) and a regular mono (the pullback of \(\int_x N \otimes 1 \)), so is a regular mono (by hypothesis on \(\mathcal{V} \)). Thus, the adjunction unit we are looking at, which is the composite

\[
f_b \rightarrow \int^a \mathcal{A}(a, b) \otimes f_a \rightarrow \int^a \mathcal{A}(a, b) \otimes f_a \rightarrow \int^a \mathcal{C}(Na, Nb) \otimes f_a
\]

is a regular monomorphism, as required.
3 A frequent generalisation

Similarly, given a \mathcal{V}-functor $N : \mathcal{A} \to \mathcal{E}$ with \mathcal{A} small and \mathcal{E} a \mathcal{V}-cocomplete \mathcal{V}-category, we have the standard \mathcal{V}-adjunction

$$(\epsilon, \eta) : L \dashv Y : \mathcal{E} \to [\mathcal{A}^{\text{op}}, \mathcal{V}]$$

where $Y(e)(a) = \mathcal{E}(Na, e)$ describes the N-Yoneda functor Y, and

$$L(f) = \int^a f_a \otimes Na$$

describes its left adjoint. Hence, with corresponding hypotheses on \mathcal{A}, N, and \mathcal{V} as before, we can replace the right-hand side of the diagram displayed in §2 by the following composite (*):

$$\mathcal{E}\left(Nb, \int^a f_a \otimes Na\right) \xrightarrow{\text{opcat}} \mathcal{E}\left(Nb, \int^a \left(\int_x (A(a, x) \otimes f_x) \otimes Na\right)\right)$$

$$\xrightarrow{\text{can}} \mathcal{E}\left(Nb, \int^a \int_x (A(a, x) \otimes f_x) \otimes Na\right)$$

where the isomorphism comes from the Yoneda-lemma expansion

$$N_x \xrightarrow{\cong} \int^a A(a, x) \otimes Na$$

for N. Then, by the same argument as before, we obtain a regular mono in \mathcal{V} from the commuting diagram

$$\mathcal{E}\left(Nb, \int^a f_a \otimes Na\right) \xrightarrow{\eta_{f,b}} \mathcal{E}\left(Nb, \int^a f_a \otimes Na\right) = YL(f)(b)$$

$$\xrightarrow{\text{opcat}} \int_a f_a \otimes A(b, a) \xrightarrow{(\ast)} \mathcal{E}\left(Nb, \int^a f_a \otimes Na\right)$$

for each unit-component $\eta_{f,b}$ of the \mathcal{V}-functor f in $[\mathcal{A}^{\text{op}}, \mathcal{V}]$, provided the canonical natural transformation

$$X \otimes \mathcal{E}(Nb, Na) \to \mathcal{E}(Nb, X \otimes Na)$$

(†)
is a regular mono in \(V \) for each \(X \) in \(V \). Consequently, if this additional condition (†) holds on \(N \) and \(V \), then the left-adjoint \(V \)-functor

\[
L : [A^{\text{op}}, V] \rightarrow E
\]

is conservative.

The result of §2 can then be recovered from this latter result by putting \(E = [C, V] \), and taking the new \(N : A \rightarrow E \) to be the composite of the \(V \)-functor \(N^{\text{op}} : A^{\text{op}} \rightarrow C^{\text{op}} \) (this \(N \) from §2) with the Yoneda embedding

\[
C^{\text{op}} \subset [C, V],
\]

noting that \(A \) is a \(V \)-opcategory iff \(A^{\text{op}} \) is also a \(V \)-opcategory. The condition (†) holds for the new \(N \) since we have the isomorphisms

\[
X \otimes [C, V](C(Nb, -), C(Na, -)) \cong [C, V](C(Nb, -), X \otimes C(Na, -))
\]

by the Yoneda lemma applied twice.

4 Related Conditions

The following result is related to that of the earlier §2, but is much simpler.

Suppose that regular monomorphisms (that is, kernels in \(V \)) are closed under composition in \(V \) and also that \(n \) is a regular mono in \(V \) if \(mn \) and \(m \) are regular monos in \(V \). Then, provided both coproduct \(\Sigma \) and tensoring \(X \otimes - \) preserve regular monos in \(V \), we have that

\[
\exists N : [A, V] \rightarrow [C, V]
\]

is conservative if regular epimorphisms (that is, cokernels) split in the functor category \([A^{\text{op}} \otimes A, V] \) and each component

\[
N : A(a, b) \rightarrow C(Na, Nb)
\]

of \(N : A \rightarrow C \) is a regular monomorphism in \(V \).

To establish this, one simply notes that the canonical regular epimorphism

\[
\sum_a S(a, a) \rightarrow \int^a S(a, a)
\]

splits naturally in \(S \in [A^{\text{op}} \otimes A, V] \), so that \(f^a N \otimes 1 \) is a regular monomorphism by the hypotheses on \(N \) and \(V \). This implies that the unit components

\[
\eta_{f, b} = fb \cong \int^a A(a, b) \otimes f a \xrightarrow{\int^a N \otimes 1} \int^a C(Na, Nb) \otimes f a
\]
are regular monomorphisms, as required for \exists_N to be conservative.

Note: In practice, it is often the case that, under the given hypotheses on $[A^{op} \otimes A, V]$, each monomorphism of the form

$$N : A(-, b) \rightarrow C(N-, Nb)$$

splits naturally in $[A^{op}, V]$, in which case the result is obvious and generalises the familiar fact that \exists_N is fully faithful if N is.

Neither the condition in §2 and §3 that A should have an opcategory structure, nor the condition in this section that regular epimorphisms should split in $[A^{op} \otimes A, V]$, is in any way necessary for the process of left Kan extension along the Yoneda embedding of A^{op} into $[A, V]$, to be conservative. One notable example is the (left) Cayley functor

$$\exists_P : [A, V] \rightarrow [A^{op} \otimes A, V],$$

which is given by the coend formula

$$\exists_P(f) = \int^a f(a) \otimes P(a, -, -),$$

and is not fully faithful in general. This functor is conservative for each (small) V-promonoidal category (A, P, J) defined over any complete and cocomplete base category V.

Finally we note that both the sufficient conditions mentioned immediately above are closely related to the splitting properties of regular epimorphisms in the functor category $[A, V]$. (by Maschke’s result).

Note: Any enquires regarding this article can be forwarded to the author through Micah McCurdy (Macquarie University), who kindly typed the manuscript.

References

[1] M. Barr and C. Wells, Toposes, Triples and Theories, Springer-Verlag, 1985. Also Reprints in Theory Appl. Categories 12 (2005).
[2] B.J. Day and G.M. Kelly, Enriched functor categories, Lectures Notes in Math. 106 (Springer-Verlag, 1969) 178-191.
[3] B.J. Day, Monoidal functor categories and graphic fourier transforms, arXiv:math.QA/0612496v1 (2006).
[4] G.M. Kelly, Basic concepts of enriched category theory, London Math. Soc. Lecture Note Series 64 (Cambridge University Press 1982). Also Reprints in Theory Appl. Categories 10 (2005).
[5] G.M Kelly and A.J. Power, Adjunctions whose counits are coequalizers, and presentations of finitary enriched monads, J. Pure Appl. Algebra 89 (1993) 163-179.