Genome Size Covaries More Positively with Propagule Size than Adult Size: New Insights into an Old Problem

Douglas S. Glazier

Department of Biology, Juniata College, Huntingdon, PA 16652, USA; glazier@juniata.edu

Simple Summary: The amount of hereditary information (DNA) contained in the cell nuclei of larger or more complex organisms is often no greater than that of smaller or simpler organisms. Why this is so is an evolutionary mystery. Here, I show that the amount of DNA per cell nucleus ('genome size') relates more positively to egg size than body size in crustaceans (including shrimp, lobsters and crabs). Genome size also seems to relate more to the size of eggs or other gametes and reproductive propagules (e.g., sperm, spores, pollen and seeds) than to adult size in other animals and plants. I explain these patterns as being the result of genome size relating more to cell size (including that of single-celled eggs) than the number of cells in a body. Since most organisms begin life as single cells or propagules with relatively few cells, propagule size may importantly affect or be affected by genome size regardless of body size. Relationships between genome size and body size should thus become weaker as body size (and the amount of cell multiplication required during development) increases, as observed in crustaceans and other kinds of organisms.

Abstract: The body size and (or) complexity of organisms is not uniformly related to the amount of genetic material (DNA) contained in each of their cell nuclei ('genome size'). This surprising mismatch between the physical structure of organisms and their underlying genetic information appears to relate to variable accumulation of repetitive DNA sequences, but why this variation has evolved is little understood. Here, I show that genome size correlates more positively with egg size than adult size in crustaceans. I explain this and comparable patterns observed in other kinds of animals and plants as resulting from genome size relating strongly to cell size in most organisms, which should also apply to single-celled eggs and other reproductive propagules with relatively few cells that are pivotal first steps in their lives. However, since body size results from growth in cell size or number or both, it relates to genome size in diverse ways. Relationships between genome size and body size should be especially weak in large organisms whose size relates more to cell multiplication than to cell enlargement, as is generally observed. The ubiquitous single-cell 'bottleneck' of life cycles may affect both genome size and composition, and via both informational (genotypic) and non-informational (nucleotypic) effects, many other properties of multicellular organisms (e.g., rates of growth and metabolism) that have both theoretical and practical significance.

Keywords: allometric scaling; cell size; cellular (nuclear) DNA content; Crustacea; egg and sperm sizes; life cycles; multicellular animals and plants; nucleotypic effects; spore, pollen and seed sizes; unicellular organisms

1. Introduction

Two fundamental properties of all living systems are their physical size ('body size') and the quantity of their genetic material (DNA) per cell ('genome size', which refers to either the haploid or total DNA content per cell nucleus: see [1] for a review of this term). Numerous biological and ecological traits relate to body size [2–6] and genome size [7–12]. At first thought (and without further knowledge), one might think that the body size and genome size of organisms, i.e., the magnitudes of their phenotype (physical structure) and genotype (DNA information), should be strongly related. It seems reasonable to assume...
that more genetic information should be required to build larger (often more complex) organisms than smaller ones.

However, genome size appears to be unrelated (or only weakly related) to organismal complexity, apparently (at least in part) because much of the DNA in the genome does not consist of genes that code for RNA and proteins making up the structure of the body [7,8,13–16] (but see [17,18]). Much of the DNA in eukaryotic organisms consists of replicated sequences, which can vary greatly in quantity independently of the size or complexity of an organism [7,8,13–16]. The existence of replicated DNA helps explain why genome size is not necessarily related to body size or complexity, the so-called ‘C-value paradox’; but why the quantity of replicated DNA has evolved to be so different among species, is still little understood [7,8,14,15]. Although the proximate mechanisms involved are quite well understood (e.g., mobile or transposable DNA and polyploidy are importantly involved in genome expansion [8,9,14]), the ultimate (evolutionary) causes of genome-size variation remain unclear. Another related mystery is why the body-size scaling of genome size is highly diverse taxonomically, showing positive (strong or weak) relationships in many taxa, but no or even negative relationships in many others (Table 1). The primary aim of my article is to try to help explain this surprising diversity of relationships between genome size and body size. I hope that my exploratory analyses will stimulate others to investigate further the functional mechanisms and evolutionary causes underlying this diversity of genome-size scaling.

Table 1. Positive (POS), negative (NEG) or nonsignificant (NO) relationships between genome size (total or haploid DNA content per cell nucleus, pg) and body size in various taxa of unicellular and multicellular organisms.

Taxon	Relationship	Source
UNICELLULAR ORGANISMS		
Prokaryotes and eukaryotes	POS	[19,20]
Planktonic bacteria	POS	[21]
Escherichia coli	POS	[22]
Algae (phytoplankton)	POS	[23–25]
Dunaliella tertiolecta	POS	[26]
Bacillariophyceae (diatoms)	POS	[27]
Ditylum brightwellii	POS	[28]
Thalassiosira species	POS	[29]
Dinoflagellata	POS	[30]
Protists	POS	[31]
Ciliophora	POS	[32,33]
Stentor coeruleus	POS	[34]
MULTICELLULAR PLANTS		
Polypodiopsida (ferns)	NO	[35]
Angiospermae	NEG	[10]
Herbaceous species	POS	[36]
Perennial species	NEG	[12]
Acacia species	NO	[37]
Brassica raba	NO	[38]
Lolium multiflorum	POS	[39]
Nicotiana species	POS/NO 2	[40]
Senecio species	POS	[41]
Vicia faba	NEG	[42]
Zea mays	NEG	[43]
Taxon	Relationship	Source
-----------------------------	--------------	--------
MULTICELLULAR INVERTEBRATE ANIMALS		
Platyhelminthes (flatworms)	POS	[44]
Nematoda (round worms)	NO	[45]
Rotifera (Monogononta)	NO	[46]
Brachionus plicatilis	POS/NO ³	[47]
Annelida (segmented worms)	POS	[48]
Oligochaeta	NO	[49]
Polychaeta	POS	[50]
Dorvilleida		
Ophryotrocha species	POS/NO ⁴	[48,51]
Mollusca	POS	[52]
Gastropoda (snails)		
Viviparus contectus	POS	[53]
Arthropoda		
Arachnida	POS	[54]
Acari (mites and ticks)	POS	[55]
Araneae (spiders)	NO	[56]
Crustacea		
Cladocera	NO	[57]
Decapoda	NO	[57]
Copepoda	POS	
Decapoda	NEG	[present study]
Syndalpheus species	NO	[63]
Ostracoda	POS	[64]
Peracarida	? ⁵	[present study]
Amphipoda	POS	[57,65,66]
Hexapoda (insects)		
Blattodea (cockroaches and termites)	NO	[67]
Coleoptera (beetles)		
Chrysomelidae	NO	[68]
Coccinellidae	NO	[69]
Lampryidae	NO	[70,71]
Tenebrionidae	NO	[72]
Phylan semicosatus	NEG	[73]
Pimelia species	NO	[74]
Trabulium species	NO	[75]
Diptera		
Chironomidae (midges)	NO/POS	[76]
Culicidae (mosquitoes)		
Aedes albopictus	NO	[77]
Drosophilidae (fruit flies)	NO	[78]
Pimelia species	NO	[74]
Tribolium species	NO	[75]
Hymenoptera		
Apidae (bees)		
Melipona species	NO	[81]
Formicidae (ants)	NO	[82]
Hemiptera		
Aphidoidea (aphids)	NO	[83]
Coccoidea (scale insects)	POS	[67]
Lepidoptera (moths and butterflies)	NO	[84,85]
Arctiidae	NEG	[85]
Geometridae	POS	[85]
Noctuidae	NO	[85]
Odonata		
Table 1. Cont.

Taxon	Relationship	Source
Anisoptera (dragonflies)	POS	[86]
Zygoptera (damselflies)	NEG	[86]
MULTICELLULAR VERTEBRATE ANIMALS		
Actinopterygii (ray-finned fishes)	NO	[87]
Cyprinidae	NO	[88]
Tetrapoda (4-legged vertebrates)	NO	[89]
Anura (frogs and toads)	NO	[90]
Pipidae	NO	[91]
Caudata (salamanders)	NO	[90,92]
Dinosauria	NO	[94]
Sauropoda	NO	
Aves (birds)	POS	[95–97]
Mammalia	POS	[95,98]
Artiodactyla	NO	[95]
Carnivora	NO	[95]
Chiroptera (bats)	NO	[95]
Pteropodidae (megabats)	NO/POS	
Primates	NO	[95]
Rodentia	POS	[95]

Note	
1	Ploidy level used as measure of genome size.
2	Positive for dry body mass, but no effect for stalk height at first flowering.
3	Positive relationship found for a Pearson’s product moment correlation analysis, but no significant relationship found for a phylogenetically informed analysis.
4	No significant relationships were found Pearson’s product moment correlation analyses, but a significantly positive relationship was found for a phylogenetically informed analysis.
5	A positive trend is seen (see Table 2, Figure 1C), but the sample size (n = 7) is too small for adequate analysis.
6	Body size estimated as pupal size.
7	Genome size inferred from osteocyte lacunae volumes.

Crustaceans are an excellent taxonomic group for studying the body-size scaling of genome size because (1) they encompass a broad range of body sizes (>nine orders of magnitude in body mass [101]), (2) the genome size of many (>400) species has been determined [102], and (3) crustacean taxa show diverse genome sizes (nearly 650-fold [62]) and body-size scaling relationships [57,103], thus providing a useful model system for exploring the causes of genome-size diversity.

In this article, I explore whether crustacean genome size correlates more strongly with egg size than adult size. This objective was motivated by the remarkable similarity between the body-size scaling of genome size in various crustacean taxa [57,103] and that observed for egg size in the same taxa [101], as further described in the Results (Section 3). As will be seen, crustacean genome size does correlate more strongly with egg size than adult size, and this pattern can be explained in terms of (1) single-celled eggs being a critical first step in all animal life histories, and (2) the typically strong relationship observed between genome size and cell size. I further suggest that the body-size scaling of crustacean genome size varies considerably because (1) genome size relates more strongly to cell size (including egg size) than to the number of cells in a multicellular body, and (2) the proportional effects of cell size and number on body size vary greatly among taxa (also see [44,64]). This perspective provides insight into the causes of variation in genome size and its relationship to organismal size, as I further illustrate with applications to other animal and plant taxa. I also promote the view that biological scaling analyses should be expanded beyond the traditional focus on adult size to include the sizes of other developmental stages, as well.
2. Materials and Methods

2.1. Data Sources

I obtained data on genome size (haploid DNA content per cell nucleus, pg) and maximum body length (mm) for 170 species of four major taxa of crustaceans (Cladocera, Copepoda, Peracarida and Decapoda) from the supplementary information in [57]. For comparison, I also used data in [101] on egg mass (mg) and adult (maternal) body mass (mg) for 262 species in the same four taxa as above. Additional genome-size data from various tissues (including exopodites, gills, testes, haemocytes, coelomocytes, muscle cells, heart cells, and whole-body samples) of various crustacean species were collected from [102]. Data on body mass, egg mass and genome size are available in Table S1.

2.2. Scaling Analyses

I scaled genome size versus egg mass or adult mass or length using least squares regression of log10-transformed values, so as to linearize and normalize the data, and to permit proportional relationships to be readily discerned (following [104,105]). I also used general linear model (GLM) analyses to compare the relative strength of relationships between genome size and egg versus adult size. I used SYSTAT 10 software (SPSS Inc., Chicago, IL, USA) for all statistical analyses.

3. Results

Relatively parallel scaling exponents (slopes) occur between the relationships of genome size with body length and of egg mass with body mass among the four major crustacean taxa sampled (Figure 1A,B; Table 2). For both kinds of relationships, the slopes decrease in the same order: Copepoda, Peracarida, Cladocera and Decapoda (Table 2). These and similar differences in the scaling of genome size with body mass among these four taxa (Figure 1C; Table 2) suggested that genome size should be positively correlated with egg mass, which was confirmed (Figure 1D; Table 2). The greater positive effect of egg mass versus body mass on genome size is indicated by the greater scaling slopes of genome size in relation to egg mass than to body mass in all four taxa (Table 2).

Taxa	GS vs. BM	GS vs. EM
Copepoda	0.203	0.972
Cladocera	0.179	0.194
Peracarida	0.367	0.541
Decapoda	0.515	0.273

1 Data from [57,101,102].
2 95% confidence intervals in parentheses.
3 Pearson’s product-moment correlation coefficient.
4 Sample size.
5 Probability that correlation is due to chance.

Figure 1. Log-linear relationships between genome size (pg) and body length (mm) (A: data from [57]), wet egg mass (mg) and wet adult (maternal) body mass (mg) (B: data from [101]), genome size and wet body mass (C: data from [101,102]), and genome size and wet egg mass (D: data from [101,102]) for four major crustacean taxa. Solid and dashed lines indicate significant and non-significant linear regressions, respectively (details in Table 2).
Table 2. Statistical details for scaling relationships between log_{10}-transformed values of genome size (GS, pg) versus body length (BL, mm) or wet body mass (BM, mg), wet egg mass (EM, mg) versus wet body mass, and genome size versus wet egg mass for each of four major crustacean taxa.

Relationship	Taxon	Slope 2	Intercept 2	r^3	n4	p5
GS vs. BL	Cladocera	0.444 (±0.155)	−0.680 (±0.073)	0.756	28	<0.00001
GS vs. BL	Copepoda	1.354 (±0.419)	−0.078 (±0.159)	0.709	44	<0.00001
GS vs. BL	Peracarida	1.291 (±1.029)	−1.091 (±1.423)	0.504	19	0.17
GS vs. BL	Decapoda	0.001 (±0.168)	0.623 (±0.345)	0.002	79	0.986
EM vs. BM	Cladocera	0.390 (±0.168)	−1.828 (±0.213)	0.777	18	0.00015
EM vs. BM	Copepoda	0.842 (±0.111)	−2.377 (±0.117)	0.871	75	<0.00001
EM vs. BM	Peracarida	0.639 (±0.123)	−1.972 (±0.204)	0.798	64	<0.00001
EM vs. BM	Decapoda	0.094 (±0.031)	−1.190 (±0.520)	0.145	105	0.141
GS vs. BM	Cladocera	0.039 (±0.098)	−0.562 (±0.133)	0.309	10	0.384
GS vs. BM	Copepoda	0.432 (±0.222)	0.861 (±0.196)	0.807	12	0.0015
GS vs. BM	Peracarida	0.367 (±0.502)	0.025 (±0.931)	0.643	7	0.119
GS vs. BM	Decapoda	−0.194 (±0.126)	1.487 (±0.552)	0.573	23	0.0043
GS vs. EM	Cladocera	0.179 (±0.152)	−0.211 (±0.339)	0.694	10	0.026
GS vs. EM	Copepoda	0.972 (±0.420)	3.330 (±1.182)	0.852	12	0.00043
GS vs. EM	Peracarida	0.541 (±1.242)	1.047 (±1.034)	0.448	7	0.314
GS vs. EM	Decapoda	0.273 (±0.219)	0.873 (±0.223)	0.493	23	0.017

1 Data from [57,101,102]. 2 95% confidence intervals in parentheses. 3 Pearson’s product-moment correlation coefficient. 4 Sample size. 5 Probability that correlation is due to chance.

A GLM analysis also revealed that in the Cladocera, Copepoda and Decapoda, the effect of egg mass on genome size was significantly positive after controlling for the effect of body mass, whereas the effect of body mass was non-significant or significantly negative after controlling for the effect of egg mass (Table 3). The only exception to this pattern was the Peracarida, which showed no significant effects of egg mass or body mass (after controlling for the other) on genome size, probably because of the small sample size (Table 3).

Table 3. General linear model (GLM) analyses for scaling relationships between log_{10}-transformed values of genome size (pg) versus wet body mass (BM, mg) and wet egg mass (EM, mg) for each of four major crustacean taxa.

Taxon	N	BM Effect Coefficient	p	EM Effect Coefficient	p
Cladocera	10	−0.098	0.074	0.343	0.0089
Copepoda	12	0.203	0.140	0.643	0.040
Peracarida	7	0.515	0.258	−0.373	0.676
Decapoda	23	−0.181	0.0025	0.247	0.0090

1 Data from [57,101,102].

Another pattern emerged when the data for all the sampled crustacean species were scaled together. The relationships between genome size and body length or body mass, and between egg mass and body mass were all significantly curvilinear (concave downward), whereas the relationship between genome size and egg mass was significantly linear (Figure 2; Table 4). These patterns indicate that genome size correlates more positively with egg mass and the body size of relatively small crustaceans than with the body size of relatively large crustaceans.

Table 4. General linear model (GLM) analyses for scaling relationships between log_{10}-transformed values of genome size (pg) versus wet body mass (BM, mg) and wet egg mass (EM, mg) for each of four major crustacean taxa.

Taxon	N	BM Effect Coefficient	p	EM Effect Coefficient	p
Cladocera	10	−0.098	0.074	0.343	0.0089
Copepoda	12	0.203	0.140	0.643	0.040
Peracarida	7	0.515	0.258	−0.373	0.676
Decapoda	23	−0.181	0.0025	0.247	0.0090

1 Data from [57,101,102].
Another pattern emerged when the data for all the sampled crustacean species were pooled (Figure 2). The results of this study indicate that crustacean genome size correlates more positively with egg mass than with body size (Figure 2A, C). This trend is consistent with the observation that egg mass also scales curvilinearly (concave downward) with body mass (Figure 2B). Since genome size is a linear function of egg mass (Figure 2D), and egg mass relates more positively to body mass in small versus large crustaceans (Figure 2B), it follows that genome size should also relate more positively to body mass in small versus large crustaceans (Figure 2C). This trend is consistent with the observation that egg mass also scales curvilinearly (concave downward) with body mass (Figure 2B). Since genome size is a linear function of egg mass (Figure 2D), and egg mass relates more positively to body mass in small versus large crustaceans (Figure 2B), it follows that genome size should also relate more positively to body mass in small versus large crustaceans (Figure 2C).

Table 4. Statistical details for linear and curvilinear (polynomial, quadratic) scaling relationships between log_{10}-transformed values of genome size (pg) versus body length (mm) or body mass (mg), egg mass (mg) versus body mass, and genome size versus egg mass in crustaceans.

Relationship	Y Intercept	X Term	\(X^2\) Term	\(r^2\)	\(n\)	\(p\)
GS vs. BL (linear)	0.052	0.344	0.534	170	<0.00001	
GS vs. BL (curvilinear)	-1.252	0.903	-0.217	0.588	170	0.00013
EM vs. BM (linear)	-2.217	0.391	0.758	262	<0.00001	
EM vs. BM (curvilinear)	-2.101	0.688	-0.079	0.831	262	<0.00001
GS vs. BM (linear)	0.213	0.110	0.461	52	0.00058	
GS vs. BM (curvilinear)	0.377	0.331	-0.058	0.674	52	<0.00001
GS vs. EM (linear)	0.793	0.257	0.439	52	0.00112	
GS vs. EM (curvilinear)	0.889	0.528	0.094	0.474	52	0.0132

1 Data from [57,101,102]. 2 Pearson’s product-moment correlation coefficient. 3 Sample size. 4 Probability that correlation is due to chance. A second \(p\) value refers to the \(X^2\) term, which indicates whether the curvilinear relationship is a significantly better fit than the linear relationship.

4. Discussion

4.1. Scaling of Crustacean Genome Size with Egg versus Adult Body Sizes

The results of this study indicate that crustacean genome size correlates more positively with egg mass than adult body mass. Furthermore, relationships between genome size and body size appear to be stronger in small versus large crustaceans, as revealed by the curvilinear (concave downward) scaling depicted in Figure 2A, C. This trend is consistent with the observation that egg mass also scales curvilinearly (concave downward) with body mass in a similar way (Figure 2B; also see [99]). Since genome size is a linear function of egg mass (Figure 2D), and egg mass relates more positively to body mass in small versus large crustaceans (Figure 2B), it follows that genome size should also relate
more positively to body size in small versus large crustaceans, as observed (Figure 2A,C). This difference is highlighted by a comparison of two taxa with the largest sample sizes: microscopic copepods and macroscopic decapods. In copepods, genome size is strongly positively correlated with both egg mass and body size, whereas in decapods, genome size is positively correlated with egg mass, but non-significantly related to body length and negatively related to body mass (Figure 1A,C,D; Tables 2 and 3). However, in both taxa, egg mass is a stronger positive predictor of genome size than is body mass (Table 3). Before attempting further explanation of these patterns, I discuss next whether they may also apply to reproductive propagules in other organisms.

4.2. Scaling of Genome Size with Sizes of Gametes and Propagules in Other Animal and Plant Taxa

I surveyed the literature to investigate whether genome size is more positively related to the size of eggs and other reproductive propagules (spores, pollen and seeds) or gametes (sperm) than to body size in other organisms. Table 5 shows that in various multicellular plants and animals at various taxonomic levels, genome size is frequently positively correlated with propagule size.

Table 5. Positive (POS), negative (NEG) or nonsignificant (NO) relationships between genome size and propagule or gamete size in various taxa of multicellular organisms.

Taxon	Propagule or Gamete	Relationship	Source
PLANTS			
Bryophyta (mosses)	Sperm	POS	[106]
Polypodiopsida (ferns)	Spore	POS	[35,107]
Gymnospermae	Pollen	NO	[108]
Pinus species	Seed	POS	[110–112]
Angiospermae	Pollen	NO/POS	[9,113–116]
Perennial herbs	Seed	POS	[12]
Geophytes	Seed	NO	[119]
Acacia species	Seed	NO	[37]
Achillea species	Seed	POS	[120]
Aesculus species	Seed	NO/POS 1	[121]
Allium species	Seed	POS	[9,113]
Anacardium occidentale	Seed	POS	[122]
Armeria maritima	Pollen	POS	[123]
Bouteloua curtipendula	Pollen	POS 2	[124]
Brassica rapa	Seed	NO	[38]
Cicer species	Seed	POS	[125]
Corchorus olitorius	Seed	NO/POS 3	[126]
Crepis species	Pollen	POS	[127]
Dasypyrum villosum	Seed	POS	[128]
Glycine max	Seed	POS	[129]
Gossypium species	Pollen	POS	[130]
Hemerocallis varieties	Pollen	POS	[131]
Hyacinthus orientalis	Pollen	POS	[132]
Hyllocereus species	Pollen	POS	[133,134]
Juglans rea	Seed	NO/POS/NEG 4	[133]
Lavandula angustifolia	Seed	POS	[135]
Lolium multiflorum	Seed	POS	[136]
Lolium perenne	Seed	POS	[137]
Malus × domestica	Pollen	POS	[138]
Nicotiana species	Seed	POS	[40]
Table 5.

Taxon	Propagule or Gamete	Relationship	Source
Pisum sativum	Seed	POS	[139]
Pyrus pyrifolia	Pollen	POS	[140]
Ramonda species	Pollen	POS	[141]
Ramonda species	Seed	NO/POS \(^5\)	[141]
Scilla sibirica	Pollen	POS	[132]
Senecio species	Seed	NO	[41]
Sisyrinchium species	Seed	POS	[142]
Streptocarpus species	Pollen	NO/POS \(^6\)	[143]
Vicia species	Seed	POS	[113,144]
Vicia sativa	Seed	POS	[145]
Zea mays	Seed	NEG	[43]

INVERTEBRATE ANIMALS

Taxon	Propagule or Gamete	Relationship	Source
Rotifera (Monogononta)	Egg	NO	[46]
Brachionus plicatilis	Egg	POS	[47]
Annelida (segmented worms)	Egg	NO	[48,51]
Oligochaeta	Egg	NO	[146]
Ophryotrocha species	Egg	NO	[46,51]
Crassostrea gigas	Egg	POS	[146]
Arthropoda	Egg	NO	[147]
Cladocera	Egg	POS	[present study]
Copepoda	Egg	POS	[present study]
Decapoda	Egg	POS	[present study]
Peracarida	Egg	? \(^7\)	[present study]
Insecta	Egg	NO	[147]
Coleoptera (beetles)	Egg	NO	[147]
Bruchinae	Egg	NO	[147]
Tenebrionidae	Egg	NO	[147]
* Tribolium species*	Sperm	POS	[75]
Diptera	Egg	? \(^8\)	[148]
Drosophilidae (fruit flies)	Sperm	POS	[79]
Drosophilidae (fruit flies)	Egg	NO	[79,149] my analysis

VERTEBRATE ANIMALS

Taxon	Propagule or Gamete	Relationship	Source
Actinopterygii (ray-finned fishes)	Egg	POS	[87,150]
Anura (frogs and toads)	Egg	NO	[90]
Pipidae	Egg	NO	[91]
Caudata (salamanders)	Egg	NO	[90]
Plethodontidae	Egg	POS	[151] my analysis
Mammalia	Sperm	NO/POS \(^9\)	[7,152,153]
Chiroptera	Neonate	NO	[99]

\(^1\) No significant relationship overall, but positive relationships within clades. \(^2\) Chromosome number (ploidy) used as an indicator of genome size. \(^3\) Significantly positive effect on seed surface area, but not for seed mass, length or width. \(^4\) Associations varied with various diploid-tetraploid lines. \(^5\) Weakly positive effect on mass, but not significantly different in structural size. \(^6\) Positive correlation in polyploids, but not diploids. \(^7\) An apparent positive trend (see Figure 1D; Table 2), but sample size \((n = 7)\) is too small for adequate analysis. \(^8\) Sample size \((n = 5)\) is too small for adequate analysis, but two species with tiny eggs have very small genome sizes. \(^9\) Positive associations with ploidy in rodents, but lack of correlation for general phylogenetically informed analyses.
Although a crude comparison because of the variation in taxonomic levels represented (from species to phyla or divisions), genome size of multicellular organisms appears to be correlated positively with propagule size (69%: 49/71) much more frequently than with body size (39%: 29/75; Table 1). These suggestive differences deserve to be explored in a more rigorous way, as I have done here for crustaceans.

4.3. Single-Cell ‘Bottlenecks’ in the Life Cycles of Multicellular Organisms May Affect Their Genome and Cell Sizes

In this section, I propose the Single-Cell ‘Bottleneck’ Hypothesis (SCBH) to explain why genome size appears to relate more positively to the sizes of eggs and other reproductive propagules than to body size, and why relationships between genome size and body size vary so greatly among different kinds of crustaceans and other organisms (Table 1). The SCBH has eight well-verified assumptions and five testable predictions (Table 6).

Table 6. The eight assumptions and five predictions of the Single-Cell ‘Bottleneck’ Hypothesis (SCBH).

Assumption/Prediction	Statement
Assumption #1	The life cycles of most multicellular organisms include a single-celled developmental stage connecting one generation to the next.
Assumption #2	Reproductive propagules or gametes are unicellular (e.g., eggs/oocytes, sperm and spores) or consist of relatively few cells (pollen and seeds) compared to that of adults.
Assumption #3	Variation in the sizes of multicellular reproductive propagules is usually related to variation in cell size, at least in part.
Assumption #4	Genome size is almost always positively correlated with cell size.
Assumption #5	Genome size is usually unrelated or even negatively related to cell number in multicellular organisms.
Assumption #6	Multicellular bodies grow by cell enlargement or multiplication, or both.
Assumption #7	Large organisms typically require more cell multiplication to reach adult size than do small organisms, especially if the size differences are large.
Assumption #8	Trade-offs between somatic cell size and number and between propagule size and number often occur because of spatial (body-volume) constraints.
Prediction #1	Genome size should be more positively correlated with propagule size than adult body size. This prediction should apply to both unicellular and multicellular propagules.
Prediction #2	Genome size should be more strongly related to the size of a living system if it is unicellular than if it is multicellular.
Prediction #3	Genome size should be more strongly related to adult body size in multicellular organisms that differ mainly in cell size rather than cell number.
Prediction #4	Genome size should be more related to the size of a multicellular living system if it is small and chiefly affected by cell size (e.g., reproductive propagules and small adults) than if it is large and chiefly affected by cell number (e.g., large adults).
Prediction #5	Spatial (body-volume) constraints and similar effects of genome size on the sizes of somatic cells and reproductive propagules should cause interpopulation or interspecific variation in propagule size and number to parallel variation in somatic cell size and number.
Assumption #1 is not only nearly always true [154], but also supported by theory (e.g., [155,156]). As Bonner [154] remarked, the unicellular unfertilized egg “is the minimum unit of inheritance that joins one life cycle to the next. The point of minimum size in the cycle is therefore also the smallest possible unit of heredity” (p. 127). According to multi-level selection theory, single-celled propagules ensure cooperation among the cells of multicellular organisms [155–162]. Development from a single cell minimizes competition among somatic cells because they all receive the same genes, and thus are genetically identical except for somatic mutations [156–158]. As Grosberg and Strathmann [157] stated: “If cells have a legislature of lineages like the parliament alleged for genes, then a multicellular organism is a clonal congress. It is the unicellular bottleneck that maintains a voting block of genetically identical cells that is overwhelmingly large.” (p. 115). “With a unicellular bottleneck, defecting cell lineages rarely succeed beyond the life span of the multicellular individual.” (p. 621). This allows evolutionary selection at the individual (cell-group) level to predominate over selection at the cell level [162–165], which, as I argue in Section 4.4.2, has important consequences for both the size and composition of the genome.

Assumption #2 is common knowledge, based on an enormous amount of histological work.

Assumption #3 is supported by many studies, showing that variation in the sizes of multicellular propagules (e.g., pollen and seeds) is related to variation in cell size (at least in part), both in the propagules themselves and in the somatic body ([109,115,116,166–171]; see also Section 4.4; Table A1).

Assumption #4 is supported by numerous data sets in both plants and animals and is universally accepted, at least as a very common rule (e.g., [7–9,15,16,19,20,31,116,172–188]).

Assumption #5 is supported by many studies, showing that although increasing genome size (including polyploidy) is almost always associated with increased cell size [179,184,189–195], it usually has no or a negative relationship with cell number (as indicated by no or only small increases or decreases in body size [179,184,193,195–204] (see also Section 4.5; Table A2).

Assumption #6 is supported by simple logic. Growth and development of multicellular organisms involve various degrees of cell multiplication and enlargement depending on the kind of organism [103,203,205–207].

Assumption #7 is supported by the fact that large organisms tend to grow more by cell multiplication than cell enlargement. In many kinds of multicellular organisms (especially vertebrate animals), body size is only weakly related to cell size (e.g., [3,177,205,208–214]), thus requiring that increased body size must be largely due to cell multiplication [4,203,211].

Assumption #8 is supported by the common observation that at a given body size, increases in the sizes of somatic cells or reproductive propagules tend to be accompanied by decreases in their number (e.g., [101,146,166,184,196–199,202,204,215–222]); see also Section 4.4; Table A1).

Prediction #1 (following from assumptions 1–7) is supported by my analyses of crustacean genome size, egg size and body size (Section 3: Figures 1 and 2; Tables 2–4), and my overview of relationships of genome size with propagule size and body size in other animals and plants (Section 4.2: Tables 1 and 5).

Prediction #2 (as illustrated in Figure 3; and following from assumptions 4–7) is supported by observations in Table 1. Genome size is positively related to body size for all unicellular taxa in my database (100%: 12/12), whereas it is positively correlated with body size much less frequently in multicellular taxa (39%: 29/75) (also see [186]). Interestingly, a strong relationship between genome size and body size is also found in acellular viruses [223].
Prediction #3 (as illustrated in Figure 3; and following from assumptions 4–6) is advocated by [44,57,64,103]. It is especially well supported by a comparison of copepods with decapods. Adult copepods tend to have similar cell numbers regardless of their body size, and thus interpopulation and interspecific variation in body size is strongly related to variation in cell size [44,58,59,224,225]. Therefore, genome size, which is more related to cell size than number, is strongly positively related to adult body size in copepods (Figure 1A,C; Table 2). By contrast, variation in the adult body sizes of decapods appears to be more related to cell number than cell size. In support, haemocyte sizes are similar in decapods varying greatly in adult body size (including shrimp, crayfish, crabs and lobsters [226–231]). Accordingly, genome size, a strong indicator of cell size (following assumption #4), is unrelated to body length and somewhat negatively related to body mass in decapods (Figure 1A,C; Table 2). More observations of variation in cell size and number in decapods (and other animals) with different body sizes are needed to further test this prediction.

Prediction #4 (following from assumptions 2–7) is supported by the observation that microscopic copepods show strong positive relationships between genome size and body size, whereas much larger macroscopic decapods do not (Figure 1A,C; Table 2). Furthermore, the curvilinear (concave downward) scaling of genome size with body size in crustaceans, as a whole, is consistent with this prediction. At small body sizes, genome size scales positively with body size, whereas at large body sizes, it is unrelated to or even scales somewhat negatively with body size (Figure 2A,C; Table 4).

Prediction #4 is also consistent with multiple reports that the genome sizes of relatively large animals (e.g., fishes and tetrapods, including huge dinosaurs) and vascular plants (e.g., ferns and flowering plants, including huge trees) tend to show no, or weakly positive or negative relationships with body size (Table 1; Figure 4). As predicted, among mammals, relatively small Rodentia show a weakly positive correlation between genome size and body mass, whereas relatively large Primates, Carnivora and Artiodactyla show no significant relationships (Table 1). However, bats, which include many species at the small end of the mammalian size distribution, may or may not show a significant relationship between genome size and body mass (Table 1).
These relationships occur apparently because genome size is more related to cell size (including the cells of eggs, spores and seeds) than to cell number (which mainly determines the various sizes of relatively large organisms) (following assumptions #2–#5 of the SCBH: Table 6). Unfortunately, some of these explanations also appear to be inadequate. For example, it has been suggested that taxa showing determinate growth are more likely to exhibit positive associations between genome size and body size than those exhibiting indeterminate growth [64]. However, existing crustacean data contradict this hypothesis. Although both cladoceran and peracaridan crustaceans exhibit indeterminate (postmaturational) growth, they still exhibit significant associations between genome size and body size, as do copepods and ostracods that show determinate growth (Figure 1A,C; [64,236]). Unfortunately, the hypothesis of [64] is based on the mistaken (and unsupported) idea that determinate growth necessarily involves cell expansion and fixed cell numbers among adults having different body sizes, whereas indeterminate growth entails cell multiplication and fixed cell size. The use of these terms in [60] does not follow the conventional definitions, which are that determinate growth ceases at sexual maturation, whereas indeterminate growth continues after maturation [236,237]. These modes of growth do not require specific patterns of cell growth or multiplication.

Prediction #5 (as illustrated in Figure 5; and following from assumptions 2–4 and 8) is supported by many observations that increased chromosome number (and thus DNA content per cell) is associated with not only increased cell size and reduced cell number, but also in parallel, increased propagule size and reduced propagule number. Numerous studies of polyploidy effects support this prediction especially well (see Section 4.5; and Table A2). Further evidence is provided by the striking contrast between copepods and decapods. In copepods, the interspecific scaling of egg mass is nearly isometric (slope near 1), whereas the scaling of egg number (clutch size) is not significantly different from 0 [101]. Conversely, in decapods, the interspecific scaling of egg mass is not significantly different...
suggested that taxa showing determinate growth are more likely to exhibit positive ... to their relatively rapid growth rates ([57]; see also Section 4.7). I further evaluate the SCBH in Sections 4.4–

considered here may also be influential. For example, the SCBH apparently cannot explain world, especially in relation to propagule size and adult body size, but other factors not idans than in cladocerans having equivalent body or egg masses (Figure 1C,D; see also why genome size (DNA content per cell nucleus) is much larger in copepods and peracarids than in cladocerans having equivalent body or egg masses (Figure 1C,D; see also [57]). Perhaps, the relatively small genome size of cladocerans is related to their relatively rapid growth rates ([57]; see also Section 4.7). I further evaluate the SCBH in Sections 4.4–4.6. In Section 4.7, I also use the SCBH to promote linking genomic theory to life-history and metabolic theory.

4.4. Relationships between the Sizes and Numbers of Somatic Cells and Those of Propagules or Gametes

4.4.1. Data

Assumption #3 and prediction #5 (Figure 5) of the SCBH (Table 6) are supported by data in Tables A1 and A2. Variation in the sizes of somatic cells parallels that of reproductive propagules or gametes (Table A1). Furthermore, increases in genome size (via genome duplication or polyploidy) usually result in congruous increases in the sizes of cells and reproductive propagules and decreases in their number (Table A2; see also Section 4.5). These similarities suggest that a common mechanism or set of mechanisms may underlie trade-offs between somatic cell size and number and between reproductive propagule size and number. This mechanism or set of mechanisms may involve functional relationships to genome size, at least in part, as discussed in Sections 4.4.2 and 4.5.

4.4.2. Hypothetical Nucleotypic Effects

Here, I discuss why interpopulation or interspecific variation in the sizes and number of somatic cells parallels that for reproductive propagules (following prediction #5 of the SCBH). My overall explanation has two key components: (1) genome size and cell size are tightly correlated (assumption #4 of the SCBH) and (2) during development, the genome of germ cells is transmitted to somatic cells of the body, thus causing parallel effects of genome size on the sizes of germ cells and somatic cells, and of multicellular reproductive propagules that are largely affected by variation in cell size (following assumptions #1, #2 and #3 of the SCBH). To understand these parallel effects, one must

Figure 5. Schematic diagrams showing how the size and number of somatic cells (blue circles) in multicellular organisms tend to parallel the size and number of reproductive propagules (here illustrated as eggs: red circles), following prediction #5 of the Single-Cell ‘Bottleneck’ Hypothesis (SCBH: Table 6). (A): An organism with relatively few large somatic cells produces relatively few large eggs. (B): An organism with relatively many small somatic cells produces relatively many small eggs. These differences are similarly produced by changes in genome size (see Table A2) and ambient temperature (see Section 4.6).

The SCBH is helpful in explaining much of the diversity of genome size in the living world, especially in relation to propagule size and adult body size, but other factors not considered here may also be influential. For example, the SCBH apparently cannot explain why genome size (DNA content per cell nucleus) is much larger in copepods and peracarids than in cladocerans having equivalent body or egg masses (Figure 1C,D; see also [57]). Perhaps, the relatively small genome size of cladocerans is related to their relatively rapid growth rates ([57]; see also Section 4.7). I further evaluate the SCBH in Sections 4.4–4.6. In Section 4.7, I also use the SCBH to promote linking genomic theory to life-history and metabolic theory.

4.4. Relationships between the Sizes and Numbers of Somatic Cells and Those of Propagules or Gametes

4.4.1. Data

Assumption #3 and prediction #5 (Figure 5) of the SCBH (Table 6) are supported by data in Tables A1 and A2. Variation in the sizes of somatic cells parallels that of reproductive propagules or gametes (Table A1). Furthermore, increases in genome size (via genome duplication or polyploidy) usually result in congruous increases in the sizes of cells and reproductive propagules and decreases in their number (Table A2; see also Section 4.5). These similarities suggest that a common mechanism or set of mechanisms may underlie trade-offs between somatic cell size and number and between reproductive propagule size and number. This mechanism or set of mechanisms may involve functional relationships to genome size, at least in part, as discussed in Sections 4.4.2 and 4.5.

4.4.2. Hypothetical Nucleotypic Effects

Here, I discuss why interpopulation or interspecific variation in the sizes and number of somatic cells parallels that for reproductive propagules (following prediction #5 of the SCBH). My overall explanation has two key components: (1) genome size and cell size are tightly correlated (assumption #4 of the SCBH) and (2) during development, the genome of germ cells is transmitted to somatic cells of the body, thus causing parallel effects of genome size on the sizes of germ cells and somatic cells, and of multicellular reproductive propagules that are largely affected by variation in cell size (following assumptions #1, #2 and #3 of the SCBH). To understand these parallel effects, one must
realize that DNA can affect phenotypes through not only informational transmission (‘genotypic effects’), but also non-informational, physical/mechanical, ‘nucleotypic effects’ (following [7,15,16,31,113,238–241]). Throughout my article, I use the phrase “nucleotypic effect” to refer to any effect of genome size on various cellular, physiological and life-history traits, which have been quantified in numerous experimental and correlation analyses that I cite. How nucleotypic effects work is not well understood and subject to considerable debate [7,8]. For further information, the reader should see the reviews in [7,8,16,174,176,183,194,241–243]. Suffice it to say here that, as a general rule, large cells appear to require larger genomes to support their greater structure and resource demands than do smaller cells. In effect, nucleotypic effects provide an explanation for assumption #4, a critical foundational piece of the SCBH.

Another fundamental and controversial question is whether genome size determines cell size or vice versa [7,8,103,176,181,183,187]. Many studies assume implicitly or explicitly that genome size determines cell size. This view is well supported by experimental manipulations of genome size that cause correlated effects on cell size (see also Section 4.5). However, these short-term experiments focus on immediate phenotypic effects and do not consider the long-term coevolution of genome size and cell size, as seen in interspecific comparisons. During evolution, it is possible that selection may favor larger (or smaller) cells, which in turn require larger (or smaller) genomes for structural and functional support [7,15,20,31,176,181,244]. If so, the following hypothetical scenario (Figure 6), involving both the long-term evolution of reproductive propagule cell size and its effect on genome size, and the short-term ontogenetic effects of genome size on somatic cell size, may result. Specific (e.g., cold, dry, resource-poor or highly competitive) environments may favor organisms that produce larger eggs, sperm, spores or other multicellular reproductive propagules (pollen and seeds) composed of relatively large cells (see also Sections 4.6 and 4.7; and [15,101,245–251]). These cells may in turn require larger genomes. These large genomes are then transmitted to somatic cells and next-generation germ cells, which are relatively large because of nucleotypic effects. In addition, because of spatial (body-volume) constraints (following assumption #8), organisms in these specific environments may produce larger, but fewer somatic cells and reproductive propagules than those with similar body sizes in other environments favoring smaller propagules (also see Figure 5). Other hypothetical possibilities involving selection on the sizes of somatic cells (or their correlates, such as rates of growth, development and metabolism [7,8,15,89,96,176,181,244,252–258]) with secondary effects on genome size and propagule size, or effects of spontaneous or environmentally induced duplication of DNA sequences or whole genomes [8,11,17,103,172,186,242] on the sizes of somatic cells and reproductive propagules (Figure 6) should also be considered and evaluated. Mechanisms underlying relationships among genome size, cell size and propagule size are likely complex and multidirectional in cause-and-effect (Figure 6; see also Section 4.7).

Of course, the hypothetical scenarios depicted in Figure 6 assume that genome size and cell size are not altered during the ontogenetic development of various cell lineages. However, in specific cases, genomes (and their cells) may be up- or down-sized in specific tissues (e.g., [7,8,11,45,103,185,224,258,259]). Nevertheless, frequently observed associations between the sizes of somatic cells and their genomes and that of germ cells and reproductive propagules (Tables A1 and A2) suggest that the above cases are exceptions to a general rule. In short, unicellular bottlenecks in the life cycles of multicellular organisms may affect not only the genome composition of their somatic cells by minimizing the effects of somatic cell mutants on organismal genetic lineages [156–158], but also their genome sizes via nucleotypic effects.
Figure 6. Hypothetical scenarios showing possible causal (functional or evolutionary) relationships among the sizes of reproductive propagules, genomes (DNA content per cell), somatic cells and germ cells. These scenarios, each of which may occur at least in some cases, attempt to explain why the sizes of the above entities are often positively correlated with one another (see Figures 1D, 2D and 4; Tables 2–5, Tables A1 and A2). The left-hand scenario hypothesizes that natural selection for larger reproductive propagules with relatively large cells favors larger genomes for structural and functional support. These larger genomes are then passed onto somatic cells and next-generation germ cells, which are also larger because of nucleotypic effects. The larger germ cells, in turn, contribute structurally and functionally to larger next-generation propagules, thus reinforcing the adaptive evolutionary effects. The selection for larger propagules may also be associated with changes in other life-history traits. In addition, changes in the sizes of somatic cells may have secondary effects on other phenotypic traits, including rates of growth, development and metabolism. The middle scenario hypothesizes that spontaneous or environmentally induced changes in genome size affect the sizes of somatic and germ cells, and secondarily propagule size and possibly other associated phenotypic traits. The right-hand scenario hypothesizes that natural selection for larger somatic cells favors larger genomes for structural and functional support. These larger genomes, in turn, support larger germ cells and reproductive propagules with possible secondary effects on other life-history traits. The selection for larger somatic cells may be direct or the indirect result of selection on other associated phenotypic traits. All of the hypothetical scenarios include a single-celled developmental stage, and as such are informed by the Single-Cell ‘Bottleneck’ Hypothesis (SCBH) described in Table 6.

4.5. Effects of Polyploidy on the Sizes and Numbers of Cells, Gametes and Propagules

Numerous studies have shown that the sizes and numbers of somatic cells and reproductive propagules often correlate with genome size (e.g., [8,9,87,150,195]; see also Table 5 and Section 4.3). These associations are most clearly shown by comparing the sizes and numbers of somatic cells and reproductive propagules to the level of polyploidy among individuals, populations or species of organisms. Numerous examples for unicellular organisms and multicellular plants and animals are listed in Table A2: increasing ploidy correlates with larger but fewer somatic cells in 90 reported cases, larger sizes of both somatic cells and reproductive propagules in 58 cases, and larger but fewer propagules in 21 cases. Very few deviations from these trends have been reported. Many of the cited studies involve inducing polyploidy experimentally (e.g., by colchicine treatments). These experiments are especially useful for providing insight into cause-and-effect relationships.

4.6. Temperature Effects on Sizes of Cells, Gametes and Propagules

Experiments may also be used to manipulate the sizes of cells and propagules directly, independently of genome size. Most of these studies involve testing whether the effects of temperature on body size relate to changes in the sizes of somatic cells, reproductive propagules, or offspring. A common finding in ectothermic organisms is that
decreasing temperature is associated with not only larger adult body size (following the ‘temperature-size rule’ [260]), but also significantly larger cells, propagules and (or) offspring (e.g., [103,218,219,248,250,252,261–289]). These studies provide further evidence that the sizes of somatic cells and reproductive propagules tend to be positively correlated (as illustrated in Figure 5).

Moreover, a short-term experimental study on the fruit fly *Drosophila melanogaster* showed that lower temperatures induced the growth of larger cells and nuclei without any change in genome size [290] (though an experimental study on bacteria showed that warming caused decreases in both genome size and cell size [285]). Therefore, although cell size and genome size are usually strongly correlated, it is possible that cell size can change without changes in genome size (see also [132,203,291]). Genome size does not always determine cell size, thus opening up the possibility that cell (or propagule) size may first change and only later through evolution be accompanied by changes in genome size. Increases in both cell size and genome size (including polyploidy) along natural environmental gradients of decreasing temperature, as observed in various protists, plants and invertebrate animals (e.g., [9,56,61,62,103,182,191,192,276,280,292–304]; but see [90,118,172,183,193,305]), may be the result of long-term adaptive evolution. If so, they (in combination with the laboratory experiments of [290]) provide support for the hypothetical view described in Section 4.4.2 (Figure 6) that, on an evolutionary timescale, changes in cell size may precede changes in genome size (also see next Section 4.7).

4.7. Linking Genomics with Life-History and Metabolic Theory

4.7.1. Linking Genomics with Life-History Theory

The findings of this study and arguments made in Sections 4.3 and 4.4 suggest that an understanding of genome-size diversity would benefit from a life-history perspective, as pioneered by Cavalier-Smith [15]. He suggested that much of the variation of genome size could be explained in terms of the life-history theory of r- and K-selection [306] (see also [57,178,243,253,293,300,307]). According to this view, small genomes are associated with r-selected traits, such as high colonizing ability, rapid individual and population growth, early maturation, high reproductive output and short lives that are favored in unstable or ephemeral habitats and at low population densities, whereas large genomes are associated with K-selected traits, such as high competitive ability, slower individual and population growth, late maturation, low reproductive output and long lives that are favored in stable habitats and at high population densities. Although the theory of r- and K-selection may help explain some variation in genome sizes (e.g., the association of large genomes with relatively slow growth rates and long lives in some protists, plants and ectothermic animals (e.g., [7,8,15,19,59,60,113,151,177,186,189,195,243,255,293,300,308–312]; but not in endothermic vertebrates [95]), and the association of relatively large genomes with larger, but fewer reproductive propagules ([146,166,217,219,313,314]; Table A2), it cannot explain why genome size covaries with body size in some taxa, but not others (as observed in Table 1).

I argue that additional life-history theory is needed to provide further insight into variation of genome size and its relationship to variation in body size and propagule size. In particular, life-history theory based on age- and size-specific mortality [237,245,315,316] may be especially useful in this respect. According to this theory, variation in juvenile mortality relative to adult mortality can have profound effects on life histories, including growth rates, the age and size at maturation, offspring size and number, and breeding frequency. For example, Glazier [101] has used this theory to explain why in copepods egg mass, but not egg number per clutch, strongly correlates with body mass, whereas in decapods the opposite occurs. He hypothesized that the ratio of juvenile/adult mortality \(M_J/M_A\) is relatively low in copepods, thus favoring increased investment in individual offspring at the expense of number as total reproductive investment associated with larger body sizes increases (total clutch mass scales isometrically with maternal body mass in crustaceans: [101]). In contrast, he hypothesized that \(M_J/M_A\) is relatively high in decapods,
thus favoring increased investment in number rather than size of offspring as total body-size related reproductive investment increases. When juvenile survival is relatively high and adult survival relatively low (and thus the probability of future reproduction is greater in juveniles than adults), the fitness of individual offspring (which relates to their energy stores and overall size) should be prioritized over parental fitness (which relates to both the size and number of offspring), thus favoring the allocation of increasing reproductive investment to larger, rather than more offspring, as observed in copepods. However, when juvenile survival is relatively low and adult survival relatively high (and thus the probability of future reproduction is greater in adults than juveniles), parental fitness should be prioritized over that of individual offspring, thus favoring the allocation of increasing reproductive investment to more, rather than larger offspring, as observed in decapods. Data shown in Figure 7 support this hypothesis. Copepods exhibit much lower M_J/M_A than do decapods.

![Figure 7](image-url)

Figure 7. Body-mass scaling of egg mass and number per clutch (left-hand graphs) (data from [101]), and body-length scaling of genome size (right-hand graphs) (data from [57]) in copepods and decapods having different ratios of juvenile/adult mortality (M_J/M_A) (data from Table A3). For copepods, the top ratio is based on M_J for nauplii, whereas the bottom ratio is based on M_J for copepods. The scaling exponent (b) is indicated for each relationship. Hypothetical effects of M_J/M_A on the observed scaling relationships are discussed in Section 4.7.1 (also see [101]).

Following the SCBH, the above observations also help to explain why genome size scales positively with body size in copepods, but not in decapods (Figure 1A,C and Figure 7). Larger reproductive propagules with larger cells require larger genomes for structural and functional support. Therefore, genome size should also relate to M_J/M_A, at least indirectly.

Changes in genome size may not only result from life-history changes, but also cause them [103]. Variation in genome size is often (but not always) associated with changes in various life-history traits, including not only propagule size and number, but also growth rate, duration of developmental periods, and age at sexual maturity ([8–11,15,16,19,32,48,57–60,80,97,103,109,113,177,186,189,192,195,255,293,294,308–314,317]; see also sources cited in Table 2; but for contradictory evidence, see [97,98]). Interspecific correlations between genome size and longevity have also been proposed [48], but questioned [9,97]. Experimental manipulations of genome size (ploidy) provide critical evidence that genome size can affect life-history traits (e.g., [166,195]; also see sources cited in Table A2).
4.7.2. Linking Genomics with Metabolic Theory

Metabolism fuels all biological activities, including key life-history processes such as growth and reproduction \cite{318,319}. Furthermore, cell size may affect metabolic rate by means of surface area-to-volume effects. Surface-area-limited resource uptake and waste removal should scale to the 2/3 power of cell mass in isomorphic cells, whereas volume-related resource requirements should scale more steeply (log-log slope ≈ 1) with cell mass. Therefore, as cells grow, increasing limits on resource supply relative to resource-requiring cytoplasmic mass should cause them to have increasingly lower mass-specific metabolic rates. Maintaining ionic gradients is also less costly in larger cells with less surface area per volume. Therefore, an organism with few large cells should have a lower metabolic rate than an organism of similar size that has relatively many small cells \cite{253,320,321}. In addition, the cell-size theory of metabolic scaling posits that if organisms grow by cell enlargement only, their total cell-surface-area and thus metabolic rate should scale to the 2/3-power of body mass. However, if they grow by cell multiplication only, their total cell-surface-area and thus metabolic rate should scale isometrically (log-log slope ≈ 1) with body mass. Or, if organisms grow by both cell enlargement and multiplication, the metabolic scaling exponent should be between 2/3 and 1 \cite{205,320–324}. Consequently, if increasing genome size requires larger cells (following assumption #4 of the SCBH), then organisms with large genomes should also have lower mass-specific metabolic rates than those with smaller genomes \cite{15,238,253}.

The above genome-size hypothesis of metabolism has been tested many times with mixed results. As predicted, interspecific analyses often show that mass-specific metabolic rate is negatively related to genome size \cite{8,118,205,238,253,256,257,320,325–329} (but see \cite{330}). However, intraspecific tests in animals comparing polyploids with diploids have shown that increasing ploidy more often has no effect on metabolic rate than negative effects, and sometimes positive effects have even been observed (reviewed in \cite{331–334}; also see \cite{335,336}), as also seen for rates of photosynthesis in plants (e.g., \cite{195,201,293,333}). Differences in metabolic rate between polyploid and diploid animals may be temperature-dependent \cite{334–336}. In addition, some studies have shown that, although metabolic rate and its scaling with body mass relate to variation in cell size, they do not relate to variation in genome size \cite{337,338}. Furthermore, although some intraspecific studies show relationships between cell size and metabolic scaling \cite{321–323,339–341}, others do not \cite{342–344}. These results, suggest that interspecific associations between genome size and metabolic rate may be the result of the coevolution of genome size with cell size and metabolic rate, rather than direct effects of genome size on metabolic rate. Multiple cause-and-effect relationships may be involved, including selection for increased metabolic rate favoring the evolution of smaller cells and supporting genomes (see also Figure 6; and Section 4.4.2). The causes and consequences of the coevolution of genome size with various cellular, physiological and life-history traits are further discussed in the next Section 4.7.3.

4.7.3. Genome Size as an Inter-Linking Component of Multi-Trait Adaptive Syndromes

Correlation analyses, as used this study, do not allow conclusive determination of cause-and-effect relationships. Incisive multivariate experimental and comparative analyses are needed to unravel the various causal pathways likely involved in relationships between genome size and reproductive propagule size, somatic cell size, body size, and various other phenotypic (developmental, physiological and life-history) traits (Figure 6). Artificial selection experiments may be especially valuable in this respect (e.g., \cite{345}). Several investigators have emphasized that multiple causal pathways are likely involved in the evolution of genome size (e.g., \cite{7,8,90,97,183,186,327}).

The life-history approach that I promote in this essay is only one of many possible multi-directional causal pathways involved in the evolution of genome size (Figure 6; see also Section 4.4.2). Nevertheless, it has three features that I believe make it especially worthy for further investigation.
First, it emphasizes the importance of the evolution of propagule size as a driving influence on genome size, cell size and other phenotypic traits (Figure 6; and Section 4.4.2), which has received little explicit consideration (though this view was intimated in [15,16]; also see [90]). As Bernardo [246] emphasized, phenotypes of eggs and other propagules relate to the genotypes and evolutionary fitness of both parents and offspring. I would add that they relate to the nucleotypes of both parents and offspring, as well (cf. [16]). Others have further argued that the egg is the most influential cell in an animal’s life history [346], and that its size strongly influences many other life-history traits [346–348]. Therefore, propagule size should be considered a key factor in a comprehensive understanding of the evolution of genome size and other associated phenotypic traits (also see Section 5).

Second, my approach helps to explain a greater congruity between the evolution of reproductive strategies and somatic cellular structure and function than has been hitherto appreciated (Figure 6). Nucleotypic and environmental factors that influence the size and number of somatic cells in a body usually have parallel effects on the size and number of reproductive propagules that are produced (Figure 5; also see Sections 4.3–4.6; and Tables A1 and A2). These parallel patterns are also supported by reports made over 100 years ago that in frogs and other animals relatively large gametes tend to give rise to adult bodies with relatively large somatic cells [261,349]. Unfortunately, these reports were largely ignored and forgotten, chiefly due to claims that they were not of general significance [208]. My analyses suggest that the pioneering findings of Chambers [261] and Popoff [349] were prematurely dismissed and deserve renewed attention.

Third, my approach emphasizes genome size as a critical connecting link between various reproductive and somatic traits (Figure 6; see also Section 5). For example, if selection favors larger (but fewer) somatic cells in the body, and thus larger supporting genomes, nucleotypic effects may, in turn, result in the production of larger (but fewer) propagules via enlargement of their cells. Alternatively, if selection favors larger (but fewer) propagules, larger supporting genomes may also be favored that, via nucleotypic effects, result in larger somatic cells. Or these causal pathways may both occur, resulting in an evolutionary or functional co-adjustment of the sizes of genomes, cells and propagules.

Multivariate, multidirectional approaches to genome-size evolution can be further understood in light of the ‘adaptive syndrome’ concept [350–353]. An adaptive syndrome is a “coordinated set of characteristics” (p. 139 in [350]) evolved in a specific ecological context (e.g., with respect to resource use, dispersal strategy, predator avoidance, survival in extreme environments, etc.). It recognizes that natural selection does not act on individual traits in isolation, but on constellations of phenotypic traits [354]. Although the ecological and behavioral aspects of adaptive syndromes have received some attention [351,352], their origin(s) is(are) little understood. According to traditional evolutionary theory, one may presume that natural selection acting on variable genes has driven the evolution of adaptive syndromes, perhaps in a step-wise gradual manner [355,356]. However, other kinds of mechanisms, including synergistic functional linkages and antagonistic trade-offs, and allometric, developmental, physiological and structural constraints may also be important in channeling, expediting or hindering evolution toward specific sets of phenotypic traits. This is a large topic that I cannot discuss fully here. Here, I would like to focus on the potentially important roles of nucleotypic effects and phenotypically plastic responses in facilitating or retarding the evolution of specific adaptive syndromes that involve the sizes of cells and genomes.

As previously emphasized, nucleotypic effects underpin how changes in genome size relate to a plethora of phenotypic changes, including changes in the size and number of somatic cells and reproductive propagules, and of the rates of growth, development and metabolism (see also Section 4.4.2). This “nucleotypic bond” [329] involves a cascade of synergistic phenotypic changes that may facilitate adaptation to specific kinds of environments because each phenotypic trait responds in a way that increases fitness. For example, in resource-poor and other kinds of stressful environments, increased sizes of cells and propagules and lower rates of growth, development and metabolism may all
be advantageous responses (see, e.g., [101, 253, 300, 309, 357]). Perhaps this is why organisms with large genome sizes (including polyploids) often occur in stressful environments (e.g., [103, 193–195, 287, 293, 336, 358, 359]).

Similarly, phenotypically plastic responses to cold environments often involve increases in the sizes of somatic cells and reproductive propagules, and decreases in the rates of growth, development and metabolism, as well (see Section 4.6; and, e.g., [360–364]). These coordinated, multi-faceted phenotypic changes may be not only adaptive themselves (a point that is currently being debated [103, 264, 265, 267–270, 274, 282, 365, 366]), but also the vanguard for further adaptive (genotypic) evolution in cold environments (or in an opposite way in hot environments). This view is in line with recent arguments that phenotypic plasticity is centrally important to the evolution of integrated phenotypic complexes (e.g., [354, 367–370]). Coordinated phenotypic norms of reaction, as observed in plastic thermal responses, may often precede and facilitate the adaptive evolution of integrated phenotypes.

Therefore, both nucleotypic effects and phenotypically plastic responses may facilitate the coordinated evolution of adaptive syndromes in specific habitats. Additionally, propagule size may be an essential component of many of these adaptive syndromes (also see Section 5). However, some environments or life styles may favor the decoupling of genome size, cell size and various physiological and life-history traits. For example, comparisons of major taxa of crustaceans reveal that genome size and egg (propagule) size may be decoupled: at a given body size, cladocerans have much larger eggs, but much smaller genomes than do copepods (compare Figure 1A,C with Figure 1B). Why this is so deserves further investigation. In any case, it is possible that nucleotypic effects and phenotypically plastic responses may not only facilitate the evolution of adaptive syndromes in specific ecological contexts, but also hinder them in others that favor discordant responses of genome size, cell size, propagule size, etc.

5. Conclusions

In my essay, I have grappled with the long-standing mystery about why genome size shows highly variable (positive, absent and negative) relationships with body size (see Table 1). Four key observations that help unlock this mystery are (1) genome sizes usually relate more strongly to the structural size of the cells making up a multicellular organism than to the size of the whole body, (2) nearly all multicellular organisms have a single-celled developmental stage, (3) multicellular organisms grow by increasing cell size or number or both, and (4) genome size often shows no or even negative relationships with cell number. These and other observations are incorporated into a Single-Cell ‘Bottleneck’ Hypothesis (SCBH) that rests on eight well-verified assumptions that are used to infer five testable predictions (Table 6) for which there are considerable support (see Section 4.3). As a result of focused statistical analyses on four major taxa of crustaceans and broader surveys of other kinds of unicellular organisms and multicellular plants and animals, I reach the following major conclusions:

1. Genome size often relates more positively to reproductive propagule size than adult size (see Figure 1 and Tables 1–3 and 5). This makes sense because propagules are either single-celled (e.g., eggs, sperm and spores) or consist of a relatively few cells (e.g., pollen and seeds) whose size often relate strongly to propagule size. Therefore, since genome size and cell size are usually strongly positively related, genome size should often relate positively to propagule size, as well. By contrast, multicellular body size relates to either cell size or number or both. This fact leads to the next conclusion.

2. Genome size relates more positively to the size of unicellular organisms or small multicellular organisms whose variation in size relates strongly to variation in cell size, than to the size of relatively large multicellular organisms whose variation in size relates chiefly to variation in cell number (illustrated in Figure 3). This conclusion is supported by ubiquitous positive relationships between genome size and body size observed in unicellular organisms, frequently positive relationships between
genome size and body size observed in small multicellular organisms (e.g., flatworms, polychaete worms, mollusks, copepods, cladocerans, ostracods, amphipods, mites and ticks, and some rotifers and insects), and no or weakly positive or negative relationships with body size observed in relatively large organisms (e.g., decapods, fishes, tetrapods, ferns and angiosperms; see Figures 3 and 4; and Table 1). This conclusion is also supported by the observation that genome size scales curvilinearly (concave downward) with body length or mass in crustaceans, with a positive relationship at the small end of the body-size range, and an absent or negative relationship at the large end of the body-size range (see Figure 2 and Table 4). However, why some small animal taxa (e.g., nematodes, rotifers, oligochaete worms, spiders and some insects) do not show positive relationships between genome size and body size (see Table 1) remains a mystery.

3. Organisms with larger genomes (e.g., polyploids) or that have been exposed to low temperatures during their development tend to show parallel increases in the sizes of their somatic cells and reproductive propagules, and parallel decreases in their number (see Figure 5 and Tables A1 and A2). Changes in somatic cell size and number are, in turn, often related to changes in various developmental and physiological traits (e.g., rates of growth and metabolism). These patterns suggest that variation in reproductive strategies may be more intimately linked to variation in somatic cell size and function than has been hitherto appreciated. Adaptive or phenotypically plastic changes in reproductive traits may often covary with somatic traits, which should be considered in future theoretical models of life-history evolution and metabolic ecology.

4. DNA may influence phenotypes via not only informational (genotypic) effects, but also non-informational, structural or mechanical (nucleotypic) effects. Nucleotypic effects appear to play a central role in the network of cause-and effect relationships among genome size, cell size, propagule size and various other physiological and life-history traits (see Figure 6). Nucleotypic effects and thermally induced phenotypic plasticity may facilitate the evolution of ‘adaptive syndromes’ (integrated suites of traits, including the sizes of genomes, cells and propagules, and the rates of growth, development and metabolism) especially in hot, cold, resource-poor and other kinds of stressful environments.

5. I promote and further develop a life-history perspective to understanding the evolution of genome size and its relationship to body size. Genome size may be affected by not only r-, K-and adversity-selection, but also variation in age- and size-specific mortality—in particular, the relative mortality of juveniles (M_J) and adults (M_A) (see also Sections 4.7.1 and 4.7.3). I hypothesize that in organisms where M_J/M_A is low, propagule size, cell size and genome size should show strong positive scaling with body size (as observed in copepods), but in organisms where M_J/M_A is high, propagule size, cell size and genome size should scale weakly with body size or not at all (as observed in decapods). Furthermore, because of trade-offs between the size and number of propagules and somatic cells, low M_J/M_A should be associated with weak or absent scaling of propagule and cell number with body size (as observed in copepods), whereas high M_J/M_A should be associated with strongly positive scaling of propagule and cell number with body size (as observed in decapods) (see Figure 7). Genome size may both affect and be affected by the evolution of various life-history traits [103]. I argue that propagule size and number are key (central) traits in this respect, a view that has not received the attention that it deserves. Propagule size relates not only to the genotypic fitness of both offspring and parents, but also to genome size, cell size and many other phenotypic traits, both directly and indirectly by nucleotypic effects (see Figure 6), and thus, to many kinds of internal (biological) and external (ecological) factors. As such, propagule size appears to be a ‘hub trait’ that is highly connected to many other traits [371,372] in adaptive syndromes (correlation networks) representing the multiple interfaces of the genotype, nucleotype, phenotype and ecotype.
6. Recommendations for Further Research

- Further testing of the SCBH is needed, including rigorous multivariate statistical analyses of the relationships among genome size, propagule size, cell size, body size, and various other phenotypic traits in diverse kinds of plants and animals at various taxonomic levels. These analyses would benefit from using phylogenetically informed methods, which have not been employed in the preliminary analyses of crustaceans presented in my article.

- Why genome size and body size are sometimes negatively correlated (Table 1) has not been addressed in my study, and deserves further investigation. Perhaps, negative relationships occur because larger size is sometimes associated with smaller (rather than larger) cells (and thus supporting genomes), a hypothesis that should be tested.

- Experiments involving manipulations of, or artificial selection on the sizes of genomes, cells, propagules and (or) adults are needed to identify and disentangle cause-and-effect relationships (including the mechanisms underlying nucleotypic effects).

- Further syntheses of genomic theory with life-history and metabolic scaling theory are likely to be worthwhile. For example, theory regarding the origin(s) of genome-size diversity would benefit from explicit inclusion of life-history theories regarding the evolution of propagule size and number, and of cell-size-based metabolic scaling theory. Life-history and metabolic scaling theory may also benefit from explicit inclusion of genome-size-related nucleotypic effects (e.g., [205]).

- Scaling analyses of genome size and many other traits have focused mostly on adult size as the independent variable. Analyses based on the sizes of immature ontogenetic stages (as done in the present study) may provide new insights. As Bonner [154] emphasized, it is important to study organisms in the context of their whole life cycles, not just as adults.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/biology10040270/s1, Table S1 Crustacean data on body mass, egg mass and genome size.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author thanks three anonymous reviewers for their helpful comments.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

Tables A1 and A2 provide ancillary information that helps support arguments made in Sections 4.3–4.5, 4.7 and 5.

Table A1. Studies showing significant positive associations between sizes of various types of reproductive propagules or gametes and sizes of somatic cells in various taxa of plants and animals.

Taxon	Propagule/Gamete 1	Propagule/Gamete 2	Cell Type 1	Cell Type 2	Source
Bryophyta (mosses)					
Octoblepharurn albidum	Spore		Leaf		[373]
Polypodiopsida (ferns)	Spore			Stomata	[35]
Dryopteris filix-mas-Gruppe	Spore			Stomata	[374]
Taxon	Propagule/Gamete 1	Propagule/Gamete 2	Cell Type 1	Cell Type 2	Source
-------------------------------	--------------------	--------------------	---------------------	---------------------	--------
Angiospermae	Pollen	Seed	Stomata		
Allium oleraceum	Pollen	Stomata			[375]
Arabidopsis thaliana	Seed	Embryo	Seed coat	Leaf epidermis	[168,169]
Brassica campestris	Pollen	Seed	Stomata		[376]
B. rapa	Pollen	Seed	Stomata		[377]
Bromus inermis	Pollen	Stomata			[378]
Catharanthus roseus	Pollen	Seed	Stomata		[379,380]
Chamomilla recutita	Pollen	Seed	Stomata		[381]
Convulvulus pluricaulis	Pollen	Seed	Stomata	Leaf epidermis 1	[382]
Cyanopsis psoraloides	Pollen	Stomata			[383]
Cyclamen persicum	Pollen	Stomata			[384]
Dactylis glomerata	Seed	Stomata			[385]
Echinacea purpurea	Pollen	Seed	Stomata		[386]
Eriotheca species	Pollen	Stomata			[387]
Fagopyrum tataricum	Pollen	Seed			[388]
Glycine max	Pollen	Seed	Stomata		[389,390]
Hemerocallis varieties	Pollen	Stomata			[131]
Hemerocallis flavus	Pollen	Stomata			[391]
Hylocereus species	Pollen	Seed 2	Stomata		[134]
Hyoscyamus muticus	Seed	Stomata			[392]
Jatropha curcas	Pollen	Seed	Stomata		[393]
Lactuca sativa	Pollen	Seed	Stomata		[394]
Lagerstroemia indica	Pollen	Seed	Stomata		[395]
Lathyrus sativus	Pollen	Seed	Stomata		[396]
Lavandula angustifolia	Seed	Stomata			[136]
Lepidium sativum	Seed	Stomata			[397]
Linum species	Pollen	Seed	Stomata		[398]
Lolium multiflorum	Seed	Stomata			[39]
Lolium perenne	Seed	Leaf epidermis			[137]
Malus × domestica	Pollen	Stomata			[138]
Miscanthus species	Pollen	Stomata			[399]
Nicotiana species	Pollen	Seed	Stomata	Leaf epidermis	[40]
Nigella sativa	Seed	Stomata			[400]
Ocimum basilicum	Pollen	Stomata			[401]
Oryza sativa	Seed	Spikelet hull epidermis			[402,403]
Phaseolus vulgaris	Pollen	Seed	Cotyledon	Stomata 3	[167,216,404]
Phlox amabilis	Pollen	Stomata			[405]
Physalis species	Pollen	Stomata			[406]
Pisum sativum	Seed	Cotyledon			[139]
Plantago media	Pollen	Seed	Stomata		[407]
P. ovata	Pollen	Seed	Stomata		[408]
P. psyllium	Pollen	Seed	Stomata		[409]
Pyrus pyrifolia	Pollen	Stomata			[140]
Raphanus sativus	Pollen	Stomata			[410]
Rhipsalis baccifera	Seed	Stomata			[411]
Sesamum indicum	Pollen	Stomata			[412]
Tanacetum parthenium	Pollen	Seed	Stomata	Root meristem	[413]
Table A1. Cont.

Taxon	Propagule/Gamete 1	Propagule/Gamete 2	Cell Type 1	Cell Type 2	Source
Trachyspermum ammi	Pollen	Seed	Stomata		[414,415]
Trifolium species	Pollen		Stomata		[416]
Vicia species	Seed		Cotyledon		[144]
Vicia villosa	Pollen		Stomata		[417]
Vigna species	Pollen	Seed	Stomata		[418]
Viola × wittrockiana	Pollen	Seed			[419]
Ziziphus jujuba	Pollen		Stomata		[420]

INVERTEBRATE ANIMALS

Arthropoda					
Bombyx mori	Egg	Serosa			[421]

VERTEBRATE ANIMALS

Actinopterygii (ray-finned fishes)					
Cobitis	Egg		Erythrocyte		[314]
Misgurnus anguillicaudatus	Egg	Sperm			[422]
Anura (frogs)	Egg		Gastrula		[423]
Rana species	Egg	Epidermis	Lens 4		[261]

Table A2. Effects of polyploidy on cell or propagule (or gamete) size and number in various taxa of unicellular and multicellular organisms.

Taxon	Cell Size	Cell Number	Propagule Size	Propagule Number	Source
UNICELLULAR ORGANISMS					
Prokaryotes	POS				[424,425]
Fungi					
Saccharomyces cerevisiae	POS				[426–428]
Bacillariophyceae (diatoms)					
Thalassiosira species	POS				[29]
Ciliophora	POS				[34]

MULTICELLULAR ORGANISMS

Plants	Cell Size	Cell Number	Propagule Size	Propagule Number	Source
Bryophyta (mosses)					
Bryum varieties	POS				[429]
Octoblepharrum albidum	POS	POS			[373]
Polypodiopsida (ferns)	POS	POS			[107,430]
Asplenium species	POS				[431]
Asplenium trichomanes x	POS				[432]
Taxon	Cell Size	Cell Number	Propagule Size	Propagule Number	Source
----------------------------------	-----------	-------------	----------------	------------------	---------------------------------
Dryopteris margina	POS				[433]
Dryopteris filix-mas-Gruppe	POS				[374]
Woodwardia virginica	POS				[433]
Angiospermae	POS	POS	NEG		[113,166,172,199,434]
Abelmoschus species	POS	NEG			[435]
Acacia mearnsii	POS	NEG			[436]
Actinidia delicosa	POS				[437]
Andropogon species	POS	NEG			[438]
Aegilops neglecta	POS	NEG	POS		[375]
Allium oleraceum	POS	NEG			[440]
A. sativum	POS	NEG			[441]
Anthurium andraeanum	POS	NEG			[169,442–445]
Arabidopsis thaliana	POS	POS			[446]
Arachis species	POS				[447]
Asparagus officinalis	POS	NEG			[201]
Atriplex confertifolia	POS	NEG			[448]
Averrhoa carambola	POS				[449]
Brachyotropis ruzizienensis	POS				[450]
Brassica campestris	POS	NEG	POS		[376]
B. oleracea	POS				[451]
B. rapa	POS				[377]
Bromus inermis	POS	NEG	POS		[378]
Buddleja officinalis	POS	NEG			[452]
Calendula officinalis	POS	NEG			[453]
Camellia sinensis	POS	NEG			[454]
Cannabis sativa	POS	NEG			[455]
Carthamus tinctorius	POS				[456]
Catharanthus roseus	POS	NEG	POS		[379,380]
Cattleya intermedia	POS	NEG			[457]
Centella asiatica	POS				[458]
Chamaemes japonica	POS				[459]
Chamomilla (Epilobium) angustifolium	POS	NEG	POS		[460,461]
Chamomilla recutita	POS				[381]
Chrysanthemum carinatum	POS				[462]
Chrysanthemum (Dendranthema × grandiflorum)	NO	NO			[463]
Citrus lanatus			POS	NEG	[464]
Citrus clementine	POS	NEG			[465]
C. limonia	POS				[466]
C. reticulata	POS	NEG			[467]
Clematis heraclefola	POS	NEG			[468]
Coffea species	POS	NEG			[469]
Convolvulus pluricaulis	POS	NEG	POS	NEG	[382]
Crateagus species	POS				[470]
Cyamopsis psoraloides	POS	NEG	POS	NEG	[383]
Cyclamen persicatum	POS				[384]
Cynodon dactylon	POS	NEG			[471]
Dactylis glomerata	POS				[385,472]
Datura stramonium	POS	NEG			[473]
Dendrobiun cariniferum	POS	NEG			[474]
Dioscorea zingiberensis	POS				[475]
Draccocephalum kotschyi	POS				[476]
Taxon	Cell Size	Cell Number	Propagule Size	Propagule Number	Source
-----------------------------	-----------	-------------	----------------	------------------	---------
Echeveria ‘peerless’	POS	NEG	POS		[477]
Echinacea purpurea	POS	NEG	POS		[386]
Eragrostis curvula	POS		POS		[478]
Eriothea species	POS		POS		[387]
Fagopyrum tataricum			NEG	[388]	
Festuca arundinacea	POS	NEG	POS		[479]
Fragaria vesca	POS	NEG	POS		[480]
Gerbera jamesonii	POS	NEG	POS		[481]
Glycine max	POS	NEG	POS	NEG	[389,390]
Glycyrrhiza glabra	POS				[485]
Hemerocallis varieties	POS	POS			[131]
Hemerocallis flavus	POS	POS			[391]
Hibiscus syriacus	POS	NEG			[482]
Hordeum vulgare	POS				[483]
Humulus lupulus	POS				[484]
Hylocereus species	POS	NEG	POS	NEG	[133]
Hylocereus species	POS	NEG	POS/NEG	NEG	[134]
Impatiens balsamina	POS				[392]
Isatis indigotica	POS				[485]
Jatropha curcas	POS	NEG	POS/NEG		[393]
Lactuca sativa	POS		NEG		[394]
Lagerstroemia indica	POS	NEG	POS		[395,487]
Lathyrus sativus	POS	NEG	POS	NEG	[396]
Lavandula angustifolia	POS		POS		[136]
Lepidium sativum	POS	NEG	POS		[397]
Lilium davidii	POS	NEG			[488]
Linum species	POS		NEG		[398]
Lobularia maritima	POS	NEG			[489]
Lolium species	POS				[490]
Lolium multiflorum	POS		POS		[39,491]
L. perenne	POS				[491]
Lycium ruthenicum	POS	NEG			[492]
Malus × domestica	POS		POS		[138]
Mentha canadensis	POS	NEG			[493]
Medicago sativa	POS	NEG			[494]
Miscanthus species	POS		POS		[399,495]
Morus alba	POS	NEG			[496]
Musa species	POS	NEG			[497]
Musa acuminata	POS	NEG			[498]
Nicotiana species	POS	NEG	NEG		[40]
Nigella sativa	POS		POS		[400]
* Ocimum basilicum*	POS	NEG	POS		[401]
* O. klimandscharicum*	POS	NEG			[499]
Onosma species	POS				[500]
Opuntia mesacantha	POS				[501]
Oryza sativa	POS				[502]
Paeonia varieties	POS				[503]
Papaver bracteatum	POS	NEG			[504]
Patula tomentosa*	POS	NEG			[505]
Pennisetum species	POS	NEG			[506]
Petrocallis crispum	POS	NEG			[507]
Phaseolus vulgaris	POS	NEG	POS		[404]
Phleum species	POS		POS		[508]
Phlox amabilis	POS		POS		[405]
Physalis species	POS		POS		[406]
Pinellia ternate	POS	NEG			[509]
Table A2. Cont.

Taxon	Cell Size	Cell Number	Propagule Size	Propagule Number	Source
Plantago media	POS	POS	NEG	[407]	
P. ovata	POS	POS	POS	[408]	
P. psyllium	POS	NEG	POS	[409]	
Platanus acerifolia	POS	NEG	POS	[510]	
Plumbago auriculata	POS	NEG	NEG	[511]	
Pogostemon cablin	POS	NEG	NEG	[512]	
Pseudopanax trifoliata	POS	POS	POS	[513]	
Populus varieties	POS	POS	POS	[514]	
Populus tremuloides	POS			[305]	
Primula sieboldii	POS			[515]	
Pyrus pyrifolia	POS	POS	NEG	[140]	
Ramonda species	POS			[141]	
Raphanus sativus	POS			[410,516]	
Rhododendron fortunei	POS	NEG	POS	[517]	
Ricinus communis	POS			[518]	
Robinia pseudoacacia	POS	NEG	NEG	[519]	
Salix species	POS			[520]	
Salix viminalis	POS			[521]	
Salvia officinalis	POS	NEG	NEG	[522]	
Secale cereale, Triticum	POS	NEG	NEG	[523]	
aestivum and hybrids					
Sesamum indicum	POS	NEG	POS	[412]	
Solanaceae	POS			[524]	
Setaria italica	POS		NEG	[525]	
Solanum phurela	POS	NEG		[526]	
Sorghum bicolor	POS	NEG		[527,528]	
Spathiphyllum walisii	POS	NEG		[529]	
Tagetes erecta	POS	NEG		[530,531]	
Tanacetum parthenium	POS	NEG	POS	[413]	
Taraxacum species	POS	NO		[532]	
Thalictrum alpinum	POS	NEG		[533]	
Thesium triandra	POS	NEG		[534]	
Thymus persicus	POS	NEG		[535]	
Tradescantia cannaluculata	POS	NEG		[190]	
Trachypogon annuus	POS	NEG	POS	[414,415]	
Trichosanthes divica	POS			[536]	
Trifolium species	POS			[416]	
Triplasterospermum species	POS			[537]	
Triticum species	POS	NEG	POS	[538,539]	
Vanilla planifolia	POS			[540]	
Viburnum species	POS	NEG		[541]	
Vicia cracca	POS			[542]	
V. faba	POS	NEG		[543]	
V. villosa	POS	NEG	POS	[417]	
Vigna species	POS	NEG	POS	[418]	
Viola × wittrockiana	POS		NEG	[419]	
Zantedeschia varieties	POS			[544]	
Zea mays	POS			[545]	
Zingiber officinale	POS			[546]	
Ziziphus jujuba	POS	NEG	POS	[420,547]	

INVERTEBRATE ANIMALS

Mollusca
Bivalvia
Crassostrea gigas | POS | NEG | [146] |
Mulinia lateralis | POS | NEG | [217] |
Taxon	Cell Size	Cell Number	Propagule Size	Propagule Number	Source
Gastropoda					
Bulinus	POS				[548]
Potamopyrgus antipodarum	POS				[549]
Arthropoda					
Crustacea					
Anostraca					
Cladocera					
Daphnia pulex complex					
Decapoda					
Penaeus chinensis					
Insecta					
Bombyx mori					[421,552]
Verterbrate Animals					
Actinopterygii (ray-finned fishes)	POS				[553,554]
Acipenser baeri	POS				[555]
Carassius auratus	POS				[556,557]
C. gibelo					
Cobitis species	POS		NEG		[558]
Cobitis biwae	POS		NEG		[559]
Ctenopharyngodon idella × Hypophthalmichthys nobilis hybrids	POS				
Cyprinus carpio	POS	NEG			[561]
Danio rerio	POS	NEG			[562,563]
Dicentrarchus labrax					[564]
Gasterosteus aculeatus	POS	NEG			[199]
Ictalurus punctatus	POS				[565]
Misgurnus anguillicaudatus	POS				[422]
M. fossilis	POS				[566]
M. mizolepis	POS				[567]
Oncorhynchus kisutch	POS	NEG	POS		[568,569]
O. mykiss	POS	NEG	POS		[570,571]
Oreochromis varieties	POS				[572]
Oreochromis aeneus	POS				[573]
PlecoGLOSSUS altivelis	POS	NEG			[574]
Pleuronectes platessa	POS	NEG			[575,576]
Poeciliopsis species	POS				[577]
Pomoxis annularis	POS				[578]
Rhodeus ocellatus	POS	NEG			[579]
Salmo gairdneri	POS				[580]
S. salar	POS	NEG			[568,581]
S. trutta	POS				[582]
Salvelinus fontinalis	POS				[583]
Stizostedion varieties	POS				[584]
Tilapia aurea	POS				[585]
Tinca tinca	POS	NEG			[586]
Anura (frogs)					
Bufo viridis complex	POS				[587]
Hyla species	POS				[588]
Hyla versicolor complex	POS				[589,590]
Neobatrachus species	POS				[200]
Odontophrynus species	POS				[591]
Odontophrynus americanus	POS				[592]
Table A2. Cont.

Taxon	Cell Size	Cell Number	Propagule Size	Propagule Number	Source
Pleurodema species	POS				[591]
Pelophylax (Rana) species	POS				[593]
Pelophylax esculentus	POS				[284]
Xenopus laevis	POS				[594]
Caudata (salamanders)					
Ambystoma species	POS	NEG			[595]
Ambystoma jeffersonianum	POS	NEG			[596]
Ambystoma laterale-texanum	POS	NEG			[347]
Mammalia Rodentia	POS	NEG			[196,597]
Mus musculus	POS	NEG			[197,198,202,258]

1 Increased ploidy is associated with larger pollen, and fewer seeds of similar size. 2 Increased ploidy is associated with larger pollen and fewer seeds with either higher or lower mass. 3 Increased ploidy is associated with larger pollen and seeds having greater structural size, but lower mass. 4 Effect of ploidy on seed production depends on temperature and moisture. 5 Effect of ploidy on cell number depends on tissue type.

Appendix B

Table A3 presents data used to calculate the mean ratios of juvenile mortality relative to adult mortality (M_J/M_A) in copepod and decapod crustaceans, as depicted in Figure 7. The M_J/M_A ratios were calculated by dividing the average M_J by the average M_A for each taxonomic group. Sample sizes for nauplii, copepodids, adult copepods, larval decapods and adult decapods are 19, 10, 12, 5, and 21, respectively.

Table A3. Instantaneous natural mortality rates (d⁻¹) of larval juveniles (M_J) and adults (M_A) of copepod and decapod crustaceans.

Species	M_J	M_A	Source
COPEPODA			
Acartia clausi	0.2243 (N)	0.063	[598]
A. hudsonii			[599]
A. tonsa	0.7606 (N)	0.6	[598–600]
Calanus glacialis	0.11 (C)	0.102	[601]
C. finmarchicus	0.13 (N)	0.097	[602–606]
C. helgolandicus	0.426 (N)	0.1175	[598,602,607]
C. pacificus	0.0975 (N)	0.065	[609]
C. spp.	0.052 (C)		[609]
Centropages typicus	0.2398 (N)		[598]
Clausocalanus furcatus	1.0165 (N)	0.485	[603]
D. clavipes	0.365 (N)	0.23	[603]
D. negrensis	0.014 (C)	0.80	[603]
Diaptomus clavipes	0.314 (C)		[603]
Eurytemora affinis	0.014 (C)	0.878	[603]
Euterpina acutifrons	0.11 (N)	1.2	[603]
Oithona amazonica	0.2322 (N)	0.265	[598–600]
O. spp.	0.844 (C)		[598]
Table A3. Cont.

Species	\(M_J\)	\(M_A\)	Source
O. helolandica	0.1233 (N)		[598]
O. nana	0.0399 (N)		[598]
O. similis	0.0194 (N)	0.0718	[601,603,609,610]
	0.02 (C)		
Paracalanus parvus	0.0875 (N)		[598]
Pseudocalanus elongatus	0.04 (N)		[611]
	0.03 (C)		
P. newmani	0.11 (N)	0.0965	[612,613]
P. sp.	0.05 (N)		[600]
	0.05 (C)		

DECAPODA

(Shrimp)

Species	\(M_J\)	\(M_A\)	Source
Acetes japonicas		0.00644	[614]
Crangon crangon		0.00945	[615,616]
Litopenaeus schmittii	0.00662		[617]
Macrobrachium equidens	0.00737		[618]
M. macrobrachion	0.0092		[619]
M. vollenhovenii	0.00764		[620,621]
Palaemon adspersus	0.00593		[622]
Pandalus jordani	0.04865 (Z)	0.00436	[600,623,624]
P. borealis		0.00253	[625,626]
Penaeus duorarum	0.22 (Z)		[600]
P. latisulcatus	0.00386		[627,628]
P. semisulcatus	0.00658		[629]

(Lobsters)

Species	\(M_J\)	\(M_A\)	Source
Panulirus interruptus	0.018 (Z)	0.000986	[600]
P. penicillatus			[630]

(Crayfish)

Species	\(M_J\)	\(M_A\)	Source
Astacus leptodactylus	0.00158		[631]

(Crabs)

Species	\(M_J\)	\(M_A\)	Source
Callinectes sapidus	0.00240		[632]
Cancer magister	0.0161 (Z)	0.00440	[600,633,634]
C. pagurus	0.001355		[635]
Chionoecetes bairdi	0.000562		[636]
C. opilio	0.00146		[636–638]
Lithodes aequispinus	0.00145		[639]
Pagurus spp.	0.062 (L)		[640]
Paralithodes camptachaticus			[639,641]
P. platypus	0.000515		[639]

\(^1\)Instantaneous (daily) natural mortality rates (M) were calculated typically as \(M = \ln(N_0/N_t)/t\), where \(N_0\) is the initial number of individuals in a cohort and \(N_t\) is the number of surviving individuals after the time interval \(t\) in days (e.g., [600]). These rates excluded effects of human harvesting. Although mortality rates were estimated at various temperatures and other environmental conditions, major differences of \(M_J/M_A\) between copepods and decapods are apparent. Averages were calculated for species with multiple values. N = nauplii. C = copepodids. Z = zoea. L = larvae.

References

1. Greilhuber, J.; Doležel, J.; Lysak, M.A.; Bennett, M.D. The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents. *Ann. Bot.* 2005, 95, 255–260. [CrossRef] [PubMed]
2. Peters, R.H. *The Ecological Implications of Body Size*; Cambridge University Press: Cambridge, UK, 1983.
3. Calder, W.A. *Size, Function and Life History*; Harvard University Press: Cambridge, MA, USA, 1984.
4. Schmidt-Nielsen, K. *Scaling: Why Is Animal Size So Important?* Cambridge University Press: New York, NY, USA, 1984.
5. Niklas, J.T. *Plant Allometry: The Scaling of Form and Process*; University of Chicago Press: Chicago, IL, USA, 1994.
6. Bonner, J.T. *Why Size Matters*; Princeton University Press: Princeton, NJ, USA, 2006.
7. Gregory, T.R. Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. *Biol. Rev.* 2001, 76, 65–101. [CrossRef]
8. Gregory, T.R. Genome size evolution in animals. In The Evolution of the Genome; Gregory, T.R., Ed.; Elsevier Academic Press: Burlington, MA, USA, 2005; pp. 3–87.
9. Bennett, M.D.; Leitch, I.J. Genome size evolution in plants. In The Evolution of the Genome; Gregory, T.R., Ed.; Elsevier Academic Press: Burlington, MA, USA, 2005; pp. 89–162.
10. Knight, C.A.; Beaulieu, J.M. Genome size scaling through phenotype space. Ann. Bot. 2008, 101, 759–766. [CrossRef]
11. Patrashev, L.I.; Minkevich, I.G. The problem of the eukaryotic genome size. Biochemistry 2008, 73, 1519–1552. [CrossRef] [PubMed]
12. Münzbergová, Z. The effect of genome size on detailed species traits within closely related species of the same habitat. Bot. J. Linn. Soc. 2009, 160, 290–298. [CrossRef]
13. Mirsky, A.E.; Ris, H. The desoxyribonucleic acid content of animal cells and its evolutionary significance. J. Gen. Physiol. 1951, 34, 451–462. [CrossRef]
14. Elliott, T.A.; Gregory, T.R. What’s in a genome? The C-value enigma and the evolution of eukaryotic genome content. Phil. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140331. [CrossRef]
15. Cavalier-Smith, T. Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J. Cell. Sci. 1978, 34, 247–278.
16. Cavalier-Smith, T. Skeletal DNA and the evolution of genome size. Annu. Rev. Biophys. Bioeng. 1982, 11, 273–302. [CrossRef]
17. Lynch, M. The Origins of Genome Architecture; Sinauer Associates: Sunderland, MA, USA, 2007.
18. Markov, A.V.; Anisimov, V.A.; Korotayev, A.V. Relationship between genome size and organismal complexity in the lineage leading from prokaryotes to mammals. Palaeontol. J. 2010, 44, 363–373. [CrossRef]
19. Shuter, B.J.; Thomas, J.E.; Taylor, W.D.; Zimmerman, A.M. Phenotypic correlates of genomic DNA content in unicellular eukaryotes and other cells. Am. Nat. 1983, 122, 26–44. [CrossRef]
20. Cavalier-Smith, T. Economy, speed and size matter: Evolutionary forces driving nuclear genome miniaturization and expansion. Ann. Bot. 2005, 95, 147–173. [CrossRef]
21. Gasol, J.M.; Zweifel, U.L.; Peters, F.; Fuhrman, J.A.; Hagström, Å. Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural planktonic bacteria. Appl. Environ. Microbiol. 1999, 65, 4475–4483. [CrossRef]
22. Akerlund, T.; Nordström, K.; Bernander, R. Analysis of cell size and DNA content in exponentially growing and stationary-phase batch cultures of Escherichia coli. J. Bacteriol. 1995, 177, 6791–6797. [CrossRef]
23. Holm-Hansen, O. Algae: Amounts of DNA and organic carbon in single cells. Science 1969, 163, 87–88. [CrossRef]
24. Boucher, N.; Vaulot, D.; Partensky, F. Flow cytometric determination of phytoplankton DNA in cultures and oceanic populations. Mar. Ecol. Prog. Ser. 1991, 71, 75–84. [CrossRef]
25. Veldhuis, M.J.W.; Cucci, T.L.; Sieracki, M.E. Cellular DNA content of marine phytoplankton using two new fluorochromes: Taxonomic and ecological implications. J. Phycol. 1997, 33, 527–541. [CrossRef]
26. Malerba, M.E.; Ghedini, G.; Marshall, D.J. Genome size affects fitness in the eukaryotic alga Dunaliella tertiolecta. Curr. Biol. 2020, 30, 3450–3456. [CrossRef] [PubMed]
27. Connolly, J.A.; Oliver, M.J.; Beaulieu, J.M.; Knight, C.A.; Tomanek, L.; Moline, M.A. Correlated evolution of genome size and cell volume in diatoms (Bacillariophyceae). J. Phycol. 2008, 44, 124–131. [CrossRef]
28. Sharpe, S.C.; Koester, J.A.; Loebl, M.; Cockshutt, A.M.; Campbell, D.A.; Irwin, A.J.; Finkel, Z.V. Influence of cell size and DNA content on growth rate and photosystem II function in cryptic species of Dunaliella tertiolecta. Mar. Ecol. Prog. Ser. 1991, 65, 87–96. [CrossRef]
29. Von Dassow, P.; Petersen, T.W.; Chepurnov, V.A.; Virginia Armbrust, E. Inter- and intraspecific relationships between nuclear DNA content and cell size in selected members of the centric diatom genus Thalassiosira (Bacillariophyceae). J. Phycol. 2008, 44, 335–349. [CrossRef]
30. LaJeunesse, T.C.; Lambert, G.; Andersen, R.A.; Coffroth, M.A.; Galbraith, D.W. Symbiodinium (Pyrrhophyta) genome sizes (DNA content) are smallest among dinoflagellates. J. Phycol. 2005, 41, 880–886. [CrossRef] [PubMed]
31. Cavalier-Smith, T. Cell volume and the evolution of eukaryotic genome size. In The Evolution of Genome Size; Cavalier-Smith, T., Ed.; Wiley: Chichester, UK, 1985; pp. 104–184.
32. Wickham, S.A.; Lynn, D.H. Relations between growth rate, cell size, and DNA content in colpodean ciliates (Ciliophora: Colpodea). Eur. J. Protozool. 1990, 25, 345–352. [CrossRef]
33. McGrath, C.L.; Zufall, R.A.; Katz, L.A. Ciliate genome evolution. In Genomics and Evolution of Microbial Eukaryotes; Katz, L.A., Bhattacharya, D., Eds.; Oxford University Press: Oxford, UK, 2006; pp. 64–77.
34. Slabodnick, M.M.; Ruby, J.G.; Reiff, S.B.; Swart, E.C.; Gosai, S.; Prabakaran, S.; Witkowska, E.; Larue, G.E.; Fisher, S.; Freeman, R.M., Jr.; et al. The macronuclear genome of Stentor coeruleus reveals tiny introns in a giant cell. Curr. Biol. 2017, 27, 569–575. [CrossRef] [PubMed]
35. Henry, T.A.; Bainard, J.D.; Newtonman, S.G. Genome size evolution in Ontario ferns (Polypodiidae): Evolutionary correlations with cell size, spore size, and habitat type and an absence of genome downsizing. Genome 2014, 57, 555–566. [CrossRef] [PubMed]
36. Herben, T.; Suda, J.; Klimešová, J.; Miňulka, S.; Říha, P.; Šimová, I. Ecological effects of cell-level processes: Genome size, functional traits and regional abundance of herbaceous plant species. Ann. Bot. 2012, 110, 1357–1367. [CrossRef]
37. Gallaghger, R.V.; Leishman, M.R.; Miller, J.T.; Hui, C.; Richardson, D.M.; Suda, J.; Trávníček, P. Invasiveness in introduced Australian acacias: The role of species traits and genome size. Divers. Distrib. 2011, 17, 884–897. [CrossRef]
38. Basak, S.; Sun, X.; Wang, G.; Yang, Y. Genome size unaffected by variation in morphological traits, temperature, and precipitation in turnip. Appl. Sci. 2019, 9, 233. [CrossRef]

39. Rios, E.F.; Kenworthy, K.E.; Munoz, P.R. Association of phenotypic traits with ploidy and genome size in annual ryegrass. Crop. Sci. 2015, 55, 2078–2090. [CrossRef]

40. Ansour, S.; Krügel, T.; Sharbel, T.F.; Saluz, H.P.; Bonaventure, G.; Baldwin, I.T. Phenotypic, genetic and genomic consequences of natural and synthetic polyploidization of N. attenuata and N. obtusifolia. Ann. Bot. 2009, 103, 1207–1217. [CrossRef]

41. Lawrence, M.E.; Senecio, L. (Asteraceae) in Australia: Nuclear DNA amounts. Aust. J. Bot. 1985, 33, 221–232. [CrossRef]

42. Minelli, S.; Moscariello, P.; Ceccharelli, M.; Cionni, P.G. Nucleotype and phenotype in Vicia faba. Heredity 1996, 76, 524–530. [CrossRef]

43. Biradar, D.P.; Bullock, D.G.; Rayburn, A.L. Nuclear DNA amount, growth, and yield parameters in maize. Appl. Genet. 1994, 88, 557–560. [CrossRef]

44. Gregory, T.R.; Hebert, P.D.; Kolasa, J. Evolutionary implications of the relationship between genome size and body size in flatworms and copepods. Heredity 2000, 84, 201–208. [CrossRef] [PubMed]

45. Flemming, A.J.; Shen, Z.Z.; Cunha, A.; Emmons, S.W.; Leroy, A.M. Somatic polyploidization and cellular proliferation drive body size evolution in nematodes. Proc. Natl. Acad. Sci. USA 2000, 97, 5285–5290. [CrossRef] [PubMed]

46. Stelzer, C.P. A first assessment of genome size diversity in Monogonont rotifers. Hydrobiologia 2011, 662, 77–82. [CrossRef]

47. Stelzer, C.P.; Riss, S.; Stadler, P. Genome size evolution at the speciation level: The cryptic species complex Brachionus plicatilis (Rotatoria). BMC Evol. Biol. 2011, 11, 90. [CrossRef] [PubMed]

48. Beaudreau, N.; Massamba-N’Siala, G.; Bedzile, C.; Calosi, P.; Dufresne, F. Life-history traits display strong associations to genome size in anelids. Hydrobiologia 2021, 848, 799–810. [CrossRef]

49. Gregory, T.R.; Hebert, P.D. Genome size estimates for some oligochaete anelids. Can. J. Zool. 2002, 80, 1485–1489. [CrossRef]

50. Gambi, M.C.; Ramella, L.; Sella, G.; Protopo, P.; Aldieri, E. Variation in genome size in benthic polychaetes: Systematic and ecological relationships. J. Mar. Biol. Assoc. UK 1997, 77, 1045–1058. [CrossRef]

51. Sella, G.; Redi, C.A.; Ramella, L.; Soldi, R.; Premoli, M.C. Genome size and karyotype length in some interstitial polychaete species of the genus Ophryotrocha (Dorvilleidae). Genome 1993, 36, 652–657. [CrossRef]

52. Hinegardner, R. Cellular DNA content of the Mollusca. Comp. Biochem. Physiol. 1974, 47A, 447–460. [CrossRef]

53. Vinogradov, A.E. Variation in ligand-accessible genome size and its ecomorphological correlates in a pond snail. Hereditas 1998, 128, 59–65. [CrossRef]

54. Yorke, H. Exploring Genome Size Diversity in Arachnid Taxa. Master’s Thesis, University of Guelph, Guelph, ON, Canada, January 2020.

55. Gregory, T.R.; Young, M.R. Small genomes in most mites (but not ticks). Int. J. Acarol. 2020, 46, 1–8. [CrossRef]

56. Gregory, T.R.; Shorthouse, D.P. Genome sizes of spiders. J. Hered. 2003, 94, 285–290. [CrossRef]

57. Hessen, D.O.; Persson, J. Genome size as a determinant of growth and life-history traits in crustaceans. Biol. J. Linn. Soc. 2009, 98, 393–399. [CrossRef]

58. McLaren, I.A.; Sevigny, J.M.; Corkett, C.J. Body sizes, development rates, and genome sizes among Calanus species. Hydrobiologia 1988, 167/168, 275–284. [CrossRef]

59. McLaren, I.A.; Sevigny, J.M.; Frost, B.W. Evolutionary and ecological significance of genome sizes in the copepod genus Pseudocalanus. Can. J. Zool. 1989, 67, 565–569. [CrossRef]

60. Wyngaard, G.A.; Rasch, E.M.; Manning, N.M.; Gasser, K.; Domangue, R. The relationship between genome size, development rate, and body size in copepods. Hydrobiologia 2005, 532, 123–137. [CrossRef]

61. Leinaas, H.P.; Jalal, M.; Gabrielsen, T.M.; Hessen, D.O. Inter-and intraspecific variation in body-and genome size in calanoid copepods from temperate and arctic waters. Ecol. Evol. 2016, 6, 5585–5595. [CrossRef]

62. Hultgren, K.M.; Jeffery, N.W.; Moran, A.; Gregory, T.R. Latitudinal variation in genome size in crustaceans. Biol. J. Linn. Soc. 2018, 123, 348–359. [CrossRef]

63. Jeffery, N.W.; Hultgren, K.; Chak, S.T.C.; Gregory, T.R.; Rubenstein, D.R. Patterns of genome size variation in snapping shrimp. Genome 2016, 59, 393–402. [CrossRef] [PubMed]

64. Jeffery, N.W.; Ellis, E.A.; Oakley, T.H.; Gregory, T.R. The genome sizes of ostracod crustaceans correlate with body size and evolutionary history, but not environment. J. Hered. 2017, 108, 701–706. [CrossRef]

65. Jeffery, N.W.; Yampolsky, L.; Gregory, T.R. Nuclear DNA content correlates with depth, body size, and diversification rate in amphipod crustaceans from ancient Lake Baikal, Russia. Genome 2017, 60, 303–309. [CrossRef] [PubMed]

66. Ritchie, H.; Jamieson, A.J.; Pietrney, S.B. Genome size variation in deep-sea amphipods. R Soc. Open Sci. 2017, 4, 170862. [CrossRef]

67. Kelly, D.J. A Survey of Genome Size Diversity within Scale Insects (Hemiptera: Coccoidea) and Cockroaches and Termites (Blattodea). Master’s Thesis, University of Guelph, Guelph, ON, Canada, May 2018.

68. Petitpierre, E.; Juan, C. Genome size, chromosomes and egg-chorion ultrastructure in the evolution of Chrysomelinae. Ser. Entomol. 1994, 50, 213–225. [CrossRef]

69. Gregory, T.R.; Nedved, O.; Adamowicz, S.J. C-value estimates for 31 species of ladybird beetles (Coleoptera: Coccinellidae). Hereditas 2003, 139, 121–127. [CrossRef] [PubMed]
70. Liu, G.C.; Dong, Z.W.; He, J.W.; Zhao, R.P.; Wang, W.; Li, X.Y. Genome size of 14 species of fireflies (Insecta, Coleoptera, Lampyridae). Zool. Res. 2017, 38, 449–456. [CrossRef]
71. Lower, S.S.; Johnston, J.S.; Stanger-Hall, K.E.; Hjelmen, C.E.; Hanrahan, S.J.; Korunes, K.; Hall, D. Genome size in North American fireflies: Substantial variation likely driven by neutral processes. Genome Biol. Evol. 2017, 9, 1499–1512. [CrossRef]
72. Juan, C.; Petitpierre, E. Evolution of genome size in darkling beetles (Tenebrionidae, Coleoptera). Genome 1991, 34, 169–173. [CrossRef]
73. Miller, P.; Petitpierre, E. Relationship of genome size to body size in Phylan semicostatus (Coleoptera: Tenebrionidae). Ann. Ent. Soc. Am. 1996, 89, 221–225. [CrossRef]
74. Palmer, M.; Petitpierre, E.; Pons, J. Test of the correlation between body size and DNA content in Pinelina (Coleoptera: Tenebrionidae) from the Canary Islands. Eur. J. Entomol. 2003, 100, 123–129. [CrossRef]
75. Alvarez-Fuster, A.; Juan, C.; Petitpierre, E. Genome size in Tribolium flour-beetles: Inter-and intraspecific variation. Genet. Res. 1991, 58, 1–5. [CrossRef]
76. Cornette, R.; Gusev, O.; Nakahara, Y.; Shimura, S.; Kikawada, T.; Okuda, T. Chironomid midges (Diptera, Chironomidae) show extremely small genome sizes. Zool. Sci. 2015, 32, 248–254. [CrossRef]
77. Ferrari, J.A.; Rai, K.S. Phenotypic correlates of genome size variation in Aedes albopictus. Evolution 1989, 43, 895–899. [CrossRef] [PubMed]
78. Craddock, E.M.; Gall, J.G.; Jonas, M. Hawaiian Drosophila genomes: Size variation and evolutionary expansions. Genetica 2016, 144, 107–124. [CrossRef]
79. Gregathy, T.R.; Johnston, J.S. Genome size diversity in the family Drosophilidae. Heredity 2008, 101, 228–238. [CrossRef]
80. Ellis, L.L.; Huang, W.; Quinn, A.M.; Ahuja, A.; Alfrejd, B.; Gomez, F.E.; Hjelmen, C.E.; Moore, K.L.; Mackay, T.F.; Johnston, J.S.; et al. Intrapopulation genome size variation in D. melanogaster reflects life history variation and plasticity. PLoS Genet. 2014, 10, e1004522. [CrossRef] [PubMed]
81. Tavares, M.G.; Carvalho, C.R.; Soares, F.A.F. Genome size variation in Melipona species (Hymenoptera: Apidae) and sub-grouping by their DNA content. Apidologie 2010, 41, 636–642. [CrossRef]
82. Tsutsui, N.D.; Suárez, A.V.; Spagna, J.C.; Johnston, J.S. The evolution of genome size in ants. BMC Evol. Biol. 2008, 8, 64. [CrossRef] [PubMed]
83. Finston, T.L.; Hebert, P.D.; Footitt, R.B. Genome size variation in aphids. Insect Biochem. Mol. Biol. 1995, 25, 189–196. [CrossRef]
84. Gregory, T.R.; Hebert, P.D. Genome size variation in lepidopteran insects. Can. J. Zool. 2003, 81, 1399–1405. [CrossRef]
85. Miller, W.E. Phenotypic correlates of genome size in Lepidoptera. J. Lepid. Soc. 2014, 68, 203–210. [CrossRef]
86. Ardila-Garcia, A.M.; Gregory, T.R. An exploration of genome size diversity in dragonflies and damselflies (Insecta: Odonata). J. Zool. 2009, 278, 163–173. [CrossRef]
87. Smith, E.M.; Gregory, T.R. Patterns of genome size diversity in the ray-finned fishes. Hydrobiologia 2009, 625, 1–25. [CrossRef]
88. Gold, J.R.; Amemiya, C.T. Genome size variation in North American minnows (Cyprinidae). II. Variation among 20 species. Genome 1987, 29, 481–489. [CrossRef] [PubMed]
89. Organ, C.L.; Shedlock, A.M. Palaeogenomics of pterosaurs and the evolution of small genome size in flying vertebrates. Biol. Lett. 2009, 5, 47–50. [CrossRef]
90. Liedtke, H.C.; Gowar, D.J.; Wilkinson, M.; Gomez-Mestre, I. Macropalaeontological shift in the size of amphibian genomes and the role of life history and climate. Nat. Ecol. Evol. 2018, 2, 1792–1799. [CrossRef] [PubMed]
91. Miller, K.E.; Brownlee, C.; Heald, R. The power of amphibians to elucidate mechanisms of size control and scaling. Exp. Cell Res. 2020, 392, 112036. [CrossRef] [PubMed]
92. Scali, B.; Herrick, J. Genome size variation and species diversity in salamanders. J. Evol. Biol. 2019, 32, 278–286. [CrossRef]
93. Decena-Segarra, L.P.; Bizjak-Mali, L.; Kladnik, A.; Sessions, S.K.; Rovito, S.M. Miniaturization, genome size, and biological size in a diverse clade of salamanders. Am. Nat. 2020, 196. [CrossRef] [PubMed]
94. Organ, C.L.; Brusatte, S.L.; Stein, K. Sauropod dinosaurs evolved moderately sized genomes unrelated to body size. Proc. R. Soc. B Biol. Sci. 2009, 276, 4303–4308. [CrossRef]
95. Gregory, T.R. Genome size and developmental parameters in the homeothermic vertebrates. Genome 2002, 45, 833–838. [CrossRef] [PubMed]
96. Ji, Y.; DeWoody, J.A. Relationships among powered flight, metabolic rate, body mass, genome size, and the retrotransposon complement of volant birds. Evol. Biol. 2017, 44, 261–272. [CrossRef]
97. Yu, J.P.; Liu, W.; Mai, C.L.; Liao, W.B. Genome size variation is associated with life-history traits in birds. J. Zool. 2020, 310, 255–260. [CrossRef]
98. Tang, Y.; Mai, C.L.; Yu, J.P. Investigating the role of life-history traits in mammalian genomes. Anim. Biol. 2019, 70, 121–130. [CrossRef]
99. Smith, J.D.; Bickham, J.W.; Gregory, T.R. Patterns of genome size diversity in bats (order Chiroptera). Genome 2013, 56, 457–472. [CrossRef] [PubMed]
100. Smith, J.D.; Gregory, T.R. The genome sizes of megabats (Chiroptera: Pteropodidae) are remarkably constrained. Biol. Lett. 2009, 5, 347–351. [CrossRef] [PubMed]
101. Glazier, D.S. Clutch mass, offspring mass, and clutch size: Body mass scaling and taxonomic and environmental variation. In The Natural History of the Crustacea; Wellborn, G.A., Thiel, M., Eds.; Oxford University Press: New York, NY, USA, 2018; Volume 5, pp. 67–95.

102. Gregory, T.R. Animal Genome Size Database. 2020. Available online: http://www.genomesize.com/ (accessed on 17 September 2020).

103. Hessen, D.O.; Daufresne, M.; Leinaas, H.P. Temperature-size relations from the cellular-genomic perspective. Biol. Rev. 2013, 88, 476–489. [CrossRef]

104. Kerkhoff, A.J.; Enquist, B. Multiplicative by nature: Why logarithmic transformation is necessary in allometry. J. Theor. Biol. 2009, 257, 519–521. [CrossRef]

105. Glazier, D.S. Log-transformation is useful for examining proportional relationships in allometric scaling. J. Theor. Biol. 2013, 334, 200–203. [CrossRef]

106. Renzaglia, K.S.; Rasch, E.M.; Pike, L.M. Estimates of nuclear DNA content in bryophyte sperm cells: Phylogenetic considerations. Am. J. Bot. 1995, 82, 18–25. [CrossRef]

107. Barrington, D.S.; Patel, N.R.; Southgate, M.W. Inferring the impacts of evolutionary history and ecological constraints on spore size and shape in the ferns. Appl. Plant Sci. 2020, 8, e11339. [CrossRef] [PubMed]

108. Murray, B.G. Nuclear DNA amounts in gymnosperms. Ann. Bot. 1998, 82, 3–15. [CrossRef]

109. Beaulieu, J.M.; Clancy, R.B.; Götzenberger, L.; Dann, L.; Beaulieu, J.M. On the relationship between pollen size and genome size. Biol. J. Linn. Soc. 2010, 82, 1235–1241. [CrossRef]

110. Ohri, D.; Khoshoob, T.N. Genome size and environmental factors in the genus Plant Syst. Evol. 1986, 153, 119–132. [CrossRef]

111. Wakamiya, I.; Newton, R.J.; Johnston, J.S.; Price, H.J. Genome size and environmental factors in the genus Pinus. Am. J. Bot. 1993, 80, 1235–1241. [CrossRef]

112. Grotkopp, E.; Rejmánek, M.; Sanderson, M.J.; Rost, T.L. Evolution of genome size in pines (Pinus) and its life-history correlates: Supertree analyses. Evolution 2004, 58, 1705–1729. [CrossRef] [PubMed]

113. Bennett, M.D. Nuclear DNA content and minimum generation time in herbaceous plants. Proc. R. Soc. B Biol. Sci. 1972, 181, 109–135. [CrossRef]

114. Kirk, W.D.J. Interspecific size and number variation in pollen grains and seeds. Biol. J. Linn. Soc. 1993, 49, 239–248. [CrossRef]

115. Knight, C.A.; Clancy, R.B.; Götzemberger, L.; Dann, L.; Beaulieu, J.M. On the relationship between pollen size and genome size. J. Bot. 2010, 612017. [CrossRef]

116. Šimová, I.; Herben, T. Geometrical constraints in the scaling relationships between genome size, cell size and cell cycle length in herbaceous plants. Proc. R. Soc. B Biol. Sci. 2012, 279, 867–875. [CrossRef] [PubMed]

117. Thompson, K. Genome size, seed size and germination temperature in herbaceous angiosperms. Evol. Trends Plants 1990, 4, 113–116.

118. Knight, C.A.; Molinari, N.A.; Petrov, D.A. The large genome constraint hypothesis: Evolution, ecology and phenotype. Ann. Bot. 2005, 95, 177–190. [CrossRef] [PubMed]

119. Veselý, P.; Bureš, P.; Smarda, P.; Pavlíček, T. Genome size and DNA base composition of geophytes: The mirror of phenology and ecology? Ann. Bot. 2012, 109, 65–75. [CrossRef] [PubMed]

120. Dabrowska, J. Chromosome number and DNA content in taxa of Achillea L. in relation to the distribution of the genus. Acta Univ. Wratislavl. Prace Bot. 1992, 49, 1–83.

121. Krahulcová, A.; Trávníček, P.; Krahulec, F.; Rejmánek, M. Small genomes and large seeds: Chromosome numbers, genome size and seed mass in diploid Aesculus species (Sapindaceae). Ann. Bot. 2017, 119, 957–964. [CrossRef]

122. Aliyu, O.M. Analysis of absolute nuclear DNA content reveals a small genome and intra-specific variation in Cashew (Anacardium occidentale L.), Anacardiaceae. Silvae Genet. 2014, 63, 285–292. [CrossRef]

123. Vekemans, X.; Lefebvre, C.; Coulad, J.; Blaise, S.; Gruber, W.; Siljak-Yakovlev, S.; Brown, S.C. Variation in nuclear DNA content at the species level in Armeria maritima. Hereditas 1996, 124, 237–242. [CrossRef]

124. Siqueiros-Delgado, M.E.; Fisher, A.E.; Columbus, J.T. Polyploidy as a factor in the evolution of the Bouteloua curtipendula complex (Poaceae: Chloridoideae). Syst. Bot. 2017, 42, 432–448. [CrossRef]

125. Kim, S.; Han, M.; Rayburn, A.L. Genome size and seed mass analyses in Cicer arietinum (Chickpea) and wild Cicer species. HortScience 2015, 50, 1751–1756. [CrossRef]

126. Benor, S.; Fuchs, J.; Blattner, F.R. Genome size variation in Corchorus olitorius (Malvaceae s.l.) and its correlation with elevation and phenotypic traits. Genome 2011, 54, 575–585. [CrossRef]

127. Jones, R.N.; Brown, L.M. Chromosome evolution and DNA variation in Crepis. Heredity 1976, 36, 91–104. [CrossRef]

128. Caceres, M.E.; De Pace, C.; Mugnozza, G.T.S.; Kotsonis, P.; Cecarelli, M.; Cionini, P.G. Genome size variations within Dasypogon villosum: Correlations with chromosomal traits, environmental factors and plant phenotypic characteristics and behaviour in reproduction. Theor. Appl. Genet. 1998, 96, 559–567. [CrossRef]

129. Chung, J.; Lee, J.H.; Arumuganathan, K.; Graef, G.L.; Specht, J.E. Relationships between nuclear DNA content and seed and leaf size in soybean. Appl. Genet. 1998, 96, 1064–1068. [CrossRef]

130. Snodgrass, S.J.; Jareczek, J.; Wendel, J.F. An examination of nucleotypic effects in diploid and polyploid cotton. Aob Plants 2017, 9, plw082. [CrossRef]
131. Podwyszyńska, M.; Gabrzeszewska, E.; Dyki, B.; Stępowska, A.A.; Kowalski, A.; Jasiński, A. Phenotypic and genome size changes (variation) in synthetic tetraploids of daylily (Hemerocallis) in relation to their diploid counterparts. *Euphytica* **2015**, *203*, 1–16. [CrossRef]

132. Karp, A.; Rees, H.; Jewell, A.W. The effects of nucleotype and genotype upon pollen grain development in Hyacinth and Scilla. *Hereditas* **1982**, *48*, 251–261. [CrossRef]

133. Cohen, H.; Tel-Zur, N. Morphological changes and self-incompatibility breakdown associated with autopolyploidization in *Hylocereus* species (Cactaceae). *Euphytica* **2012**, *184*, 345–354. [CrossRef]

134. Cohen, H.; Fait, A.; Tel-Zur, N. Morphological, cytological and metabolic consequences of autopolyploidization in *Hylocereus* (Cactaceae) species. *BMC Plant Biol.* **2013**, *13*, 173. [CrossRef]

135. Khorami, S.S.; Arzani, K.; Karimzadeh, G.; Shojaeiyan, A.; Ligterink, W. Genome size: A novel predictor of nut weight and nut size of walnut trees. *HortScience* **2018**, *53*, 275–282. [CrossRef]

136. Urwin, N.A.; Hornsll, J.; Moon, T. Generation and characterisation of colchicine-induced autotetraploid *Lavandula angustifolia*. *Euphytica* **2007**, *156*, 257–266. [CrossRef]

137. Sugiyama, S.; Yamaguchi, K.; Yamada, T. Intraspecific phenotypic variation associated with nuclear DNA content in *Lolium perenne* *L.* *Euphytica* **2002**, *128*, 145–151. [CrossRef]

138. Podwyszyńska, M.; Krucznyska, D.; Machlanska, A.; Dyki, B.; Sowik, I. Nuclear DNA content and ploidy level of apple cultivars including Polish ones in relation to some morphological traits. *Acta Biol. Crac. Ser. Bot.* **2016**, *58*, 81–93. [CrossRef]

139. Lemontey, C.; Mousset-Délas, C.; Munier-Jolain, N.; Boutin, J.P. Maternal genotype influences pea seed size by controlling both mitotic activity during early embryogenesis and final endoreduplication level/cotyledon cell size in mature seed. *J. Exp. Bot.* **2000**, *51*, 167–175. [CrossRef][PubMed]

140. Wang, X.; Wang, H.; Shi, C.; Zhang, X.; Duan, K.; Luo, J. Morphological, cytological and fertility consequences of a spontaneous tetraploid of the diploid pear (*Pyrus pyrifolia* Nakai) cultivar ‘Cuiguan’. *Sci. Hortic.* **2015**, *189*, 59–65. [CrossRef]

141. Lazarevic, M.; Siljak-Yakovlev, S.; Lazarevic, P.; Stevanovic, B.; Stevanovic, V. Pollen and seed morphology of resurrection plants from the genus *Ramonda* (Gesneriaceae): Relationship with ploidy level and relevance to their ecology and identification. *Turk. J. Bot.* **2013**, *37*, 872–885. [CrossRef]

142. Kenton, A.Y.; Rudall, P.J.; Johnson, A.R. Genome size variation in *Sisyrinchium* L. (Iridaceae) and its relationship to phenotype and habitat. *Bot. Gaz.* **1986**, *147*, 342–354. [CrossRef]

143. Möller, M. Nuclear DNA C-values are correlated with pollen size at tetraploid but not diploid level and linked to phylogenetic histories. *Euphytica* **2012**, *183*, 251–261. [CrossRef]

144. Davies, D.R. DNA contents and cell number in relation to seed size in the genus *Vicia* (*Leguminosae*). *G. Afr. J. Bot.* **2018**, *114*, 323–344. [CrossRef]

145. Celikler, S.; Bilaloglu, R. Nucleotypic effects in different genotypes of *Vicia sativa* L. *Turk. J. Biol.* **2001**, *25*, 205–219. [CrossRef]

146. Guo, X.; Allen, S.K. Reproductive potential and genetics of triploid Pacific oysters, *Crassostrea gigas* (Thunberg). *Biol. Bull.* **1994**, *187*, 309–318. [CrossRef][PubMed]

147. Armqvist, G.; Sayadi, A.; Immonen, E.; Hotzy, C.; Rankin, D.; Tuda, M.; Hjelmen, C.E.; Johnston, J.S. Genome size correlates with reproductive fitness in seed beetles. *Proc. R. Soc. Biol. Sci.* **2015**, *282*, 20151421. [CrossRef]

148. Schmidt-Ott, U.; Rafiqi, A.M.; Sander, K.; Johnston, J.S. Extremely small genomes in two unrelated dipteran insects with shared early developmental traits. *Dev. Genes Evol.* **2009**, *219*, 207–210. [CrossRef][PubMed]

149. Markow, T.A.; Beall, S.; Matzkin, L.M. Egg size, embryonic development time and ovoviviparity in *Drosophila* species. *J. Evol. Biol.* **2009**, *22*, 430–434. [CrossRef][PubMed]

150. Hardie, D.C.; Hebert, P.D. Genome-size evolution in fishes. *Can. J. Fish. Aquat. Sci.* **1994**, *51*, 1636–1646. [CrossRef]

151. Jockusch, E.L. An evolutionary correlate of genome size change in plethodontid salamanders. *Proc. R. Soc. Biol. Sci.* **1997**, *264*, 597–604. [CrossRef]

152. Gage, M.J. Mammalian sperm morphometry. *Proc. R. Soc. Biol. Sci.* **1998**, *265*, 97–103. [CrossRef]

153. Gallardo, M.H.; Bickham, J.W.; Honeycutt, R.L.; Ojeda, R.A.; Köhler, N. Discovery of tetraploidy in a mammal. *Nature* **1999**, *401*, 341. [CrossRef]

154. Bonner, J.T. *Size and Cycle: An Essay on the Structure of Biology*; Princeton University Press: Princeton, NJ, USA, 1965.

155. Buss, L.W. The Evolution of Individuality; Princeton University Press: Princeton, NJ, USA, 1987.

156. Maynard Smith, J.; Szathmáry, E. *The Major Transitions in Evolution*; W.H. Freeman and Company: Oxford, UK, 1995.

157. Grosberg, R.K.; Strathmann, R.R. One cell, two cell, red cell, blue cell: The persistence of a unicellular stage in multicellular life histories. *Trends Ecol. Evol.* **1998**, *13*, 112–116. [CrossRef]

158. Michod, R.E. *Darwinian Dynamics: Evolutionary Transitions in Fitness and Individuality*; Princeton University Press: Princeton, NJ, USA, 1999.

159. Wolpert, L.; Szathmáry, E. Multicellularity: Evolution and the egg. *Nature* **2002**, *420*, 745. [CrossRef][PubMed]

160. Rainey, P.B.; Kerr, B. Cheats as first propagules: A new hypothesis for the evolution of individuality during the transition from single cells to multicellularity. *Bioessays* **2010**, *32*, 872–880. [CrossRef]

161. Hammerschmidt, K.; Rose, C.J.; Kerr, B.; Rainey, P.B. Life cycles, fitness decoupling and the evolution of multicellularity. *Nature* **2014**, *515*, 75–79. [CrossRef][PubMed]
163. Michod, R.E. On the transfer of fitness from the cell to the multicellular organism. *Biol. Philos.* **2005**, *20*, 967–987. [CrossRef]

164. Rose, C.J.; Hammerschmidt, K.; Pichugin, Y.; Rainey, P.B. Meta-population structure and the evolutionary transition to multicellularity. *Ecol. Lett.* **2020**, *23*, 1380–1390. [CrossRef]

165. Rose, C.J. Germ lines and extended selection during the evolutionary transition to multicellularity. *J. Exp. Zool. B Mol. Dev. Ecol.* **2020**, [CrossRef] [PubMed]

166. Blakeslee, A.F. Effect of induced polyploidy in plants. *Am. Nat.* **1941**, *75*, 117–135. [CrossRef]

167. Sexton, P.J.; Boote, K.J.; White, J.W.; Peterson, C.M. Seed size and seed growth rate in relation to cotyledon cell volume and number in common bean. *Field Crop. Res.* **1997**, *54*, 163–172. [CrossRef]

168. Alonso-Blanco, C.; Blankestijn-de Vries, H.; Hanhart, C.J.; Koornneef, M. Natural allelic variation at seed size loci in relation to other life history traits of Arabidopsis italiana. *Proc. Natl. Acad. Sci. USA* **1999**, *96*, 4710–4717. [CrossRef] [PubMed]

169. Del Pozo, J.C.; Ramírez-Parra, E. Whole genome duplications in plants: An overview from Arabidopsis. *J. Exp. Bot.* **2015**, *66*, 6991–7003. [CrossRef] [PubMed]

170. Li, N.; Li, Y. Molecular networks of seed size control in plants. *Annu. Rev. Plant Biol.* **2019**, *70*, 435–463. [CrossRef]

171. Li, N.; Xu, R.; Li, Y. Molecular networks of seed size control in plants. *Ann. Rev. Plant Biol.* **2019**, *70*, 435–463. [CrossRef]

172. Stebbins, G.L. *Chromosomal Evolution in Higher Plants*; Addison-Wesley: Reading, MA, USA, 1971.

173. Szarski, H. Cell size and nuclear DNA content in vertebrates. *Int. Rev. Cytol.* **1983**, *72*, 177–186. [CrossRef]

174. Price, H.J. DNA content variation among higher plants. *Ann. Missouri Bot. Gard.* **1990**, *77*, 435–463. [CrossRef]

175. Nurse, P. The genetic control of cell volume. In *Basic Appl. Histochem.* [CrossRef]

176. Olson, E. Nucleotype and cell size in vertebrates: A review. *Chromosomal Evolution in Higher Plants*; Addison-Wesley: Reading, MA, USA, 1971.

177. Otto, S.P. The evolutionary consequences of polyploidy. *Cell* **2007**, *131*, 452–462. [CrossRef] [PubMed]

178. Beaulieu, J.M.; Leitch, I.J.; Patel, S.; Pichugin, Y.; Rainey, P.B. Meta-population structure and the evolutionary transition to multicellularity. *Ecol. Lett.* **2020**, *23*, 1380–1390. [CrossRef]

179. Gregory, T.R. Germ lines and extended selection during the evolutionary transition to multicellularity. *Evol. Biol.* **2014**, *18*, 138–152. [CrossRef] [PubMed]

180. Gillooly, J.F.; Hein, A.; Damiani, R. Nuclear DNA content varies with cell size across human cell types. *Curr. Biol.* **2007**, *17*, 1380–1390. [CrossRef] [PubMed]

181. Hodgson, J.G.; Sharafi, M.; Jalili, A.; Dodo, K.; Ribaut, J.M.; Beaulieu, J.M. Genome size is a strong predictor of cell size and stomatal density. *New Phytol.* **2015**, *201*, 1–52. [CrossRef]

182. Sexton, P.J.; Boote, K.J.; White, J.W.; Peterson, C.M. Seed size and seed growth rate in relation to cotyledon cell volume and number in common bean. *Field Crop. Res.* **1997**, *54*, 163–172. [CrossRef]

183. Blakeslee, A.F. Effect of induced polyploidy in plants. *Am. Nat.* **1941**, *75*, 117–135. [CrossRef]

184. Beatty, R.A.; Fischberg, M. Cell number in haploid, diploid and polyploid mouse embryos. *J. Exp. Biol.* **1951**, *28*, 541–552. [CrossRef]

185. Doyle, J.J.; Coate, J.E. Polyploidy, the nucleotype, and novelty: The impact of genome doubling on the biology of the cell. *Int. J. Plant Sci.* **2019**, *180*, 1–52. [CrossRef]

186. Simonin, K.A.; Roddy, A.B. Genome downsizing, physiological novelty, and the global dominance of flowering plants. *PLoS Biol.* **2018**, *16*, e2003706. [CrossRef]

187. Price, H.J. DNA content variation among higher plants. *Ann. Missouri Bot. Gard.* **1998**, *75*, 1248–1257. [CrossRef] [PubMed]

188. Rose, C.J. Germ lines and extended selection during the evolutionary transition to multicellularity. *J. Exp. Bot.* **2020**, *23*, 1380–1390. [CrossRef] [PubMed]

189. Beatty, R.A.; Fischberg, M. Cell number in haploid, diploid and polyploid mouse embryos. *J. Exp. Biol.* **1951**, *28*, 541–552. [CrossRef] [PubMed]

190. Sax, K.; Sax, H.J. Stomata size and distribution in diploid and polyploid plants. *J. Arnold Arbor.* **1937**, *18*, 164–172. [CrossRef]

191. Gregory, T.R.; Mable, B.K. Polyplody in animals. In *The Evolution of Genome Size*; Cavalier-Smith, T., Ed.; John Wiley and Sons: Chichester, UK, 1985; pp. 185–196.

192. Simonin, K.A.; Roddy, A.B. Genome downsizing, physiological novelty, and the global dominance of flowering plants. *PLoS Biol.* **2018**, *16*, e2003706. [CrossRef]

193. Asri, Y.; et al. Stomatal vs. genome size in angiosperms: The somatic tail wagging the genomic dog? *Ann. Bot.* **2010**, *105*, 573–584. [CrossRef] [PubMed]

194. Hessen, D.O. Noncoding DNA as a phenotypic driver. *Evol. Biol.* **2015**, *42*, 427–431. [CrossRef] [PubMed]

195. Dufresne, F.; Jeffery, N. A guided tour of large genome size in animals: What we know and where we are heading. *Chromosoma Res.* **2011**, *19*, 925–938. [CrossRef]

196. Greilhuber, J.; Leitch, I.J. Genome size and the phenotype. In *Plant Genome Diversity*; Leitch, I.J., Greilhuber, J., Dolezel, J., Wendel, J.F., Eds.; Springer: Vienna, Austria, 2013; Volume 2, pp. 323–344. [CrossRef]

197. Frawley, L.E.; Orr-Weaver, T.L. Polyploidy. *Curr. Biol.* **2015**, *25*, R353–R358. [CrossRef] [PubMed]

198. Guilloo, J.F.; Stein, A.; Damiani, R. Nuclear DNA content varies with cell size across human cell types. *Cold Spring Harb. Perspect. Biol.* **2015**, *7*, a019091. [CrossRef] [PubMed]

199. Hessen, D.O. Noncoding DNA as a phenotypic driver. *Evol. Biol.* **2015**, *42*, 427–431. [CrossRef] [PubMed]

200. Gregory, T.R. The C-value enigma in plants and animals: A review of parallels and an appeal for partnership. *Annu. Bot.* **2005**, *95*, 133–146. [CrossRef] [PubMed]

201. Greilhuber, J.; Leitch, I.J. Genome size and the phenotype. In *Plant Genome Diversity*; Leitch, I.J., Greilhuber, J., Dolezel, J., Wendel, J.F., Eds.; Springer: Vienna, Austria, 2013; Volume 2, pp. 323–344. [CrossRef]

202. Frawley, L.E.; Orr-Weaver, T.L. Polyploidy. *Curr. Biol.* **2015**, *25*, R353–R358. [CrossRef] [PubMed]

203. Gilllooly, J.F.; Stein, A.; Damiani, R. Nuclear DNA content varies with cell size across human cell types. *Cold Spring Harb. Perspect. Biol.* **2015**, *7*, a019091. [CrossRef] [PubMed]
199. Swarup, H. Effect of triploidy on the body size, general organization and cellular structure in Gasterosteus aculeatus (L.). J. Genet. 1959, 56, 143–155. [CrossRef]

200. Mahony, M.J.; Robinson, E.S. Polyploidy in the Australian leptodactylid frog genus Neobatrachus. Chromosoma 1980, 81, 199–212. [CrossRef]

201. Henery, C.C.; Kaufman, M.H. Relationship between cell size and nuclear volume in nucleated red blood cells of developmentally matched diploid and tetraploid control mouse embryos. J. Exp. Zool. 1992, 261, 472–478. [CrossRef] [PubMed]

202. Henery, C.C.; Kaufman, M.H. Relationship between cell size and nuclear volume in nucleated red blood cells of developmentally matched diploid and tetraploid control mouse embryos. J. Exp. Zool. 1992, 261, 472–478. [CrossRef] [PubMed]

203. Conlon, I.; Raff, M. Size control in animal development. Cell 1999, 96, 235–244. [CrossRef]

204. Xiang, J.; Li, F.; Zhang, C.; Zhang, X.; Yu, K.; Zhou, L.; Wu, C. Evaluation of induced triploid shrimp Penaeus. Proc. Natl. Acad. Sci. USA 2003, 100, 14080–14085. [CrossRef] [PubMed]

205. Kozłowski, J.; Konarzewski, M.; Gawelczyk, A.T. Cell size as a link between noncoding DNA and metabolic rate scaling. Proc. Natl. Acad. Sci. USA 2007, 104, 4718–4723. [CrossRef] [PubMed]

206. Bonner, J.T. Size Morphogenesis: An Essay on Development; Princeton University Press: Princeton, NJ, USA, 1952.

207. Calow, P. Life Cycles: An. Evolutionary Approach to the Physiology of Reproduction, Development and Aging; Chapman and Hall: London, UK, 1978.

208. Conklin, E.G. Body size and cell size. J. Morphol. 1912, 23, 159–188. [CrossRef]

209. Bailey, I.W.; Tupper, W.W. Size variation in tracheary cells: I. A comparison between the secondary xylems of vascular cryptogams, gymnosperms and angiosperms. Proc. Am. Acad. Arts Sci. 1918, 54, 149–204. [CrossRef]

210. Teissier, G. Biométrie de la cellule. Table Biol. 1939, 19, 1–64.

211. Rensch, B. Evolution above the Species Level; Columbia University Press: New York, NY, USA, 1959.

212. Thompson, D.W. Size Morphogenesis: An Essay on Development; Princeton University Press: Princeton, NJ, USA, 1952.

213. Ernsting, G.; Isaaks, A. Ectotherms, temperature, and trade-offs: Size and number of eggs in a carabid beetle. Proc. Natl. Acad. Sci. USA 2007, 104, 4718–4723. [CrossRef] [PubMed]

214. Savage, V.M.; Allen, A.P.; Brown, J.H.; Gillooly, J.F.; Herman, A.B.; Woodruff, W.H.; West, G.B. Scaling of number, size, and metabolic rate of cells with body size in mammals. Proc. Natl. Acad. Sci. USA 2000, 97, 804–813. [CrossRef]

215. Elgar, M.A. Evolutionary compromise between a few large and many small eggs: Comparative evidence in teleost fish. Oikos 1990, 59, 283–287. [CrossRef]

216. White, J.W.; Gonzalez, A. Characterization of the negative association between seed yield and seed size among genotypes of common bean. Field Crop. Res. 1990, 23, 159–175. [CrossRef]

217. Guo, X.; Allen, S.K. Sex determination and polyploid gigantism in the dwarf surfclam (Spisula solidissima). Can. J. Zool. 1999, 77, 143–155. [CrossRef]

218. Mare, F. Effects of polyploidy on photosynthetic rates, photosynthetic enzymes, contents of DNA, chlorophyll, and sizes and numbers of photosynthetic cells in the C4-Dicotyledonous species. Photosynthetica 1989, 91, 1143–1151. [CrossRef]

219. Ernsting, G.; Isaaks, A. Ectotherms, temperature, and trade-offs: Size and number of eggs in a carabid beetle. Proc. Natl. Acad. Sci. USA 2007, 104, 4718–4723. [CrossRef] [PubMed]

220. Glazier, D.S. Smaller amphipod mothers show stronger trade-offs between offspring size and number. Ecol. Lett. 2000, 3, 142–149. [CrossRef]

221. Hendriks, A.J.; Mulder, C. Scaling of offspring number and mass to plant and animal size: Model and meta-analysis. Oecologia 2008, 155, 705–716. [CrossRef] [PubMed]

222. Juchno, D.; Borowiak, A.; Kujawa, R.; Szlachciak, J.; Szacherski, S.; Grabcowska, A. Comparison of egg and offspring size of karyologically identified spined loach, Cobitis taenia L., and hybrid triploid Cobitis females (Pisces, Cobitidae). Fish. Aquat. Life 2013, 21, 293–299. [CrossRef]

223. Edwards, K.F.; Steward, G.F.; Schvarcz, C.R. Making sense of virus size and the trade-offs shaping viral fitness. Ecol. Aquat. Life 2013, 21, 293–299. [CrossRef]

224. Edwards, K.F.; Steward, G.F.; Schvarcz, C.R. Making sense of virus size and the trade-offs shaping viral fitness. Ecol. Aquat. Life 2013, 21, 293–299. [CrossRef]

225. Escribano, R.; McLaren, I.A.; Breteler, W.K. Innate and acquired variation of nuclear DNA contents of marine copepods. Oikos 2008, 116, 804–813. [CrossRef]

226. Giulianini, P.G.; Bierti, M.; Lorenzon, S.; Battistella, S.; Ferrero, E.A. Ultrastructural and functional characterization of circulating hemocytes from the freshwater crayfish Astacus leptodactylus: Cell types and their role after in vivo artificial non-self challenge. Micron 2007, 38, 49–57. [CrossRef] [PubMed]
230. Zhou, Y.L.; Gu, W.B.; Tu, D.D.; Zhu, Q.H.; Zhou, Z.K.; Chen, Y.Y.; Shu, M.A. Hemocytes of the mud crab Scylla paramamosain: Cytometric, morphological characterization and involvement in immune responses. Fish. Shellfish Immunol. 2018, 72, 459–469. [CrossRef]

231. Jeyachandran, S.; Park, K.; Kwak, I.S.; Baskaralingam, V. Morphological and functional characterization of circulating hemocytes using microscopy techniques. Microsc. Res. Tech. 2020, 83, 736–743. [CrossRef] [PubMed]

232. Crab Cliparts Black #2812105. Available online: http://clipart-library.com/clipart/947704.htm (accessed on 4 December 2020).

233. Drawing Fish #1416367. Available online: http://clipart-library.com/clipart/piode7j61.htm (accessed on 4 December 2020).

234. Bushes Clipart Black and White #975041. Available online: http://clipart-library.com/clip-art/10-109830_ferns-vascular-plants-leaves-png-image-fern-clip.htm (accessed on 4 December 2020).

235. Tree Clipart #2994176. Available online: http://clipart-library.com/clipart/tree-clipart-21.htm (accessed on 4 December 2020).

236. Maszczyk, P.; Brzeziński, T. Body size, maturation size and growth, rate of crustaceans. In The Natural History of the Crustacea; Wellborn, G.A., Thiel, M., Eds.; Oxford University Press: New York, NY, USA, 2018; Volume 5, pp. 35–65.

237. Stearns, S.C. The Evolution of Life Histories; Oxford University Press: Oxford, UK, 1992.

238. Commoner, B. DNA and the chemistry of inheritance. Am. Sci. 1964, 52, 365–388.

239. Cavalier-Smith, T.; Beaton, M.J. The skeletal function of nongenic nuclear DNA: New evidence from ancient cell chimaeras. Genetica 1999, 106, 3–13. [CrossRef]

240. Bennett, M.D. The duration of meiosis. Proc. R. Soc. B Biol. Sci. 1971, 178, 277–299. [CrossRef]

241. Bennett, M.D. The nucleotype, the natural karyotype and the ancestral genome. Symp. Soc. Exp. Biol. 1996, 50, 45–52. [PubMed]

242. Blommaert, J. Genome size evolution: Towards new model systems for old questions. Am. Sci. 2020, 108, 75–87. [CrossRef] [PubMed]

243. Bennett, M.D. The duration of meiosis. Proc. R. Soc. B Biol. Sci. 1971, 178, 277–299. [CrossRef]

244. Wright, N.A.; Gregory, T.R.; Witt, C.C. Metabolic ‘engines’ of flight drive genome size reduction in birds. Proc. R. Soc. B Biol. Sci. 2014, 281, 20132780. [CrossRef] [PubMed]

245. Roff, D.A. The Evolution of Life Histories: Theory and Analysis; Chapman and Hall: New York, NY, USA, 1992.

246. Maszczyk, P.; Brzeziński, T. Body size, maturation size and growth, rate of crustaceans. In The Natural History of the Crustacea; Wellborn, G.A., Thiel, M., Eds.; Oxford University Press: New York, NY, USA, 2018; Volume 5, pp. 35–65.

247. Parish, P.J.; Barrie, B.; George, V. Evolution and development of body size and cell size in Drosophila melanogaster in response to temperature. Evolution 1994, 48, 1269–1276. [CrossRef] [PubMed]

248. Yampolsky, L.Y.; Scheiner, S.M. Why larger offspring at lower temperatures? A demographic approach. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1996, 351, 1309–1318. [CrossRef] [PubMed]

249. Blommaert, J. Genome size evolution: Towards new model systems for old questions. Am. Sci. 2020, 108, 75–87. [CrossRef] [PubMed]

250. Marshall, N.B. Egg size in Arctic, Antarctic and deep-sea fishes. Evolution 1953, 7, 328–341. [CrossRef]
266. Van Voorhis, W.A. Bergmann size clines: A simple explanation for their occurrence in ectotherms. *Evolution* 1996, 50, 1259–1264. [CrossRef]

267. Woods, H.A. Egg-mass size and cell size: Effects of temperature on oxygen distribution. *Am. Zool.* 1999, 39, 244–252. [CrossRef]

268. Blanckenhorn, W.U. Temperature effects on egg size and their fitness consequences in the yellow dung fly *Scathophaga stercoraria*. *Evol. Ecol.* 2000, 14, 627–643. [CrossRef]

269. Blanckenhorn, W.U.; Llaurens, V. Effects of temperature on cell size and number in the yellow dung fly *Scathophaga stercoraria*. *J. Biol.* 2003, 30, 213–219. [CrossRef]

270. Atkinson, D.; Morley, S.A.; Weetman, D.; Hughes, R.N. Offspring size responses to maternal temperature in ectotherms. In *Environment and Animal Development: Genes, Life Histories and Plasticity*; Atkinson, D., Thorndyke, M., Eds.; BIOS Scientific Publishers: Oxford, UK, 2001; pp. 269–285.

271. Atkinson, D.; Morley, S.A.; Hughes, R.N. From cells to colonies: At what levels of body organization does the ‘temperature-size rule’ apply? *Ecol. Dev.* 2006, 8, 202–214. [CrossRef] [PubMed]

272. Fischer, K.; Brakefield, P.M.; Zwaan, B.J. Plasticity in butterfly egg size: Why larger offspring at lower temperatures? *Ecology* 2003, 84, 3138–3147. [CrossRef]

273. Arendt, J. Ecological correlates of body size in relation to cell size and cell number: Patterns in flies, fish, fruits and foliage. *Biol. Rev.* 2007, 82, 241–256. [CrossRef]

274. Bownds, C.; Wilson, R.; Marshall, D.J. Why do colder mothers produce larger eggs? An optimality approach. *J. Exp. Biol.* 2010, 213, 3796–3801. [CrossRef]

275. Collin, R.; Salazar, M.Z. Temperature-mediated plasticity and genetic differentiation in egg size and hatching size among populations of *Crepidula* (Gastropoda: Calyptraeidae). *Biol. J. Linn. Soc.* 2010, 99, 489–499. [CrossRef]

276. Goodman, R.M.; Heah, T.P. Temperature-induced plasticity at cellular and organismal levels in the lizard *Anolis carolinensis*. *Integr. Zool.* 2010, 5, 208–217. [CrossRef]

277. Marshall, D.J.; Krug, P.J.; Kupriyanova, E.K.; Byrne, M.; Emlet, R.B. The biogeography of marine invertebrate life histories. *Annu. Rev. Ecol. Evol. Syst.* 2012, 43, 97–114. [CrossRef]

278. Czarnoleski, M.; Cooper, B.S.; Kierat, J.; Angilletta, M.J. Flies developed small bodies and small cells in warm and in thermally fluctuating environments. *J. Exp. Biol.* 2013, 216, 2896–2901. [CrossRef]

279. Czarnoleski, M.; Labecka, A.M.; Kozłowski, J. Thermal plasticity of body size and cell size in snails from two subspecies of *Cornu aspersum*. *J. Molluscan Stud.* 2016, 82, 235–243. [CrossRef]

280. Czarnoleski, M.; Labecka, A.M.; Starostová, Z.; Sikorska, A.; Bonds-Ostaszewska, E.; Woch, K.; Kubička, L.; Kratochvil, L.; Kozłowski, J. Not all cells are equal: Effects of temperature and sex on the size of different cell types in the Madagascar ground gecko *Paroedura picta*. *Biol. Open* 2017, 6, 1149–1154. [CrossRef]

281. Sabath, N.; Ferrada, E.; Barve, A.; Wagner, A. Growth temperature and genome size in bacteria are negatively correlated, suggesting genomic streamlining during thermal adaptation. *Genome Biol. Evol.* 2013, 5, 966–977. [CrossRef] [PubMed]

282. Walczyńska, A.; Labecka, A.M.; Sobczyk, M.; Czarnoleski, M.; Kozłowski, J. The temperature–size rule in *Lecane inermis* (Rotifera) is adaptive and driven by nuclei size adjustment to temperature and oxygen combinations. *J. Biol.* 2015, 54, 78–85. [CrossRef] [PubMed]

283. Walczyńska, A.; Sobczyk, M.; Czarnoleski, M.; Kozłowski, J. The temperature–size rule in a rotifer is determined by the mother and at the egg stage. *Ecol. Ecol.* 2015, 29, 525–536. [CrossRef]

284. Hermaniuk, A.; Rybacki, M.; Taylor, J.R. Low temperature and polyploidy result in larger cell and body size in an ectothermic vertebrate. *Physiol. Biochem. Zool.* 2016, 89, 118–129. [CrossRef] [PubMed]

285. Huete-Stauffer, T.M.; Arandia-Gorostidi, N.; Alonso-Saiz, L.; Morán, X.A.G. Experimental warming decreases the average size and nucleic acid content of marine bacterial communities. *Front. Microbiol.* 2016, 7, 730. [CrossRef]

286. Huete-Stauffer, T.M.; Arandia-Gorostidi, N.; Alonso-Saiz, L.; Morán, X.A.G. Experimental warming decreases the average size and nucleic acid content of marine bacterial communities. *Front. Microbiol.* 2016, 7, 730. [CrossRef]

287. Kierat, J.; Szentgyörgyi, H.; Czarnoleski, M.; Woyciechowski, M. The thermal environment of the nest affects body and cell size in the solitary red mason bee (*Osmia bicornis* L.). *J. Therm. Biol.* 2017, 68, 39–44. [CrossRef] [PubMed]

288. Barneche, D.R.; Burgess, S.C.; Marshall, D.J. Global environmental drivers of marine fish egg size. *Glob. Ecol. Biogeogr.* 2018, 27, 890–898. [CrossRef]

289. Pázmány, G.; Dózsa, J.; Gyergyik, H.; Czarnoleski, M.; Kozłowski, J. Effects of thermal and oxygen conditions during development on cell size in the common rough woodlice *Porcellio scaber*. *Ecol. Evol.* 2020, 1259–1264. [CrossRef] [PubMed]

290. Jalal, M.; Andersen, T.; Hessen, D.O. Temperature and developmental responses of body and cell size in *Drosophila*; effects of polyploidy and genome configuration. *J. Biol.* 2015, 51, 1–14. [CrossRef]

291. Martel, M.; Starostová, Z.; Kratochvil, L.; Fajšhans, M. Cell size does not always correspond to genome size: Phylogenetic analysis in geckos questions optimal DNA theories of genome size evolution. *Zoology* 2008, 111, 377–384. [CrossRef] [PubMed]

292. Löve, A.; Löve, D. The geobotanical significance of polyploidy. *I. Polyploidy and latitude*. *Port. Acta Biol.* A 1949, Spec. Vol., 273–352.

293. Levin, D.A. Polyploidy and novelty in flowering plants. *Am. Nat.* 1983, 122, 1–25. [CrossRef]

294. Bennet, M.D. Variation in genome form in plants and its ecological implications. *New Phytol.* 1987, 196, 177–200. [CrossRef]
362. Dell, A.I.; Pawar, S.; Savage, V.M. Systematic variation in the temperature dependence of physiological and ecological traits. *Proc. Natl. Acad. Sci. USA* **2011**, *108*, 10591–10596. [CrossRef] [PubMed]

363. Clarke, A. *Principles of Thermal Ecology: Temperature, Energy and Life*; Oxford University Press: Oxford, UK, 2017.

364. Li, Q.; Zhu, X.; Xiong, W.; Zhu, Y.; Zhang, J.; Djiba, P.K.; Lv, X.; Luo, Y. Effects of temperature on metabolic scaling in black carp. *PeerJ* **2020**, *8*, e9242. [CrossRef]

365. Verberk, W.C.; Atkinson, D.; Hoefnagel, K.N.; Hirst, A.G.; Horne, C.R.; Siepel, H. Shrinking body sizes in response to warming: Explanations for the temperature-size rule with special emphasis on the role of oxygen. *Biol. Rev.* **2020**. [CrossRef] [PubMed]

366. Developmental Plasticity and Evolution

367. Mantilla-Contreras, J.; et al. Trait correlation network analysis identifies biomass allocation traits and stem specific length as hub traits in herbaceous perennial plants. *J. Ecol.* **2019**, *107*, 829–842. [CrossRef]

368. He, N.; Li, Y.; Liu, C.; Xu, L.; Li, M.; Zhang, J.; He, J.; Tang, Z.; Han, X.; Ye, Q.; et al. Plant trait networks: Improved resolution of the dimensionality of adaptation. *Trends Ecol. Evol.* **2020**, *35*, 908–918. [CrossRef] [PubMed]

369. Schlichting, C.D. Phenotypic integration and environmental change. *BioScience* **1989**, *39*, 460–464. [CrossRef]

370. Piersma, T.; van Gils, J.A. *The Flexible Phenotype: A Body-Centred Integration of Ecology, Physiology, and Behavior*; Oxford University Press: Oxford, UK, 2011.

371. Kleyer, M.; Trinogga, J.; Cebrían-Piqueras, M.A.; Trenkamp, A.; Flejgaard, C.; Ejrnaes, R.; Bouma, T.J.; Minden, V.; Maier, M.; Mantilla-Contreras, J.; et al. Trait correlation network analysis identifies biomass allocation traits and stem specific length as hub traits in herbaceous perennial plants. *J. Ecol.* **2019**, *107*, 829–842. [CrossRef]

372. He, N.; Li, Y.; Liu, C.; Xu, L.; Li, M.; Zhang, J.; He, J.; Tang, Z.; Han, X.; Ye, Q.; et al. Plant trait networks: Improved resolution of the dimensionality of adaptation. *Trends Ecol. Evol.* **2020**, *35*, 908–918. [CrossRef] [PubMed]

373. Ježilová, E.; Nožková-Hlaváčková, V.; Duchoslav, M. Photosynthetic characteristics of three ploidy levels of *Allium oleraceum* L. (Amaryllidaceae) differing in ecological amplitude. *Plant Species Biol.* **2015**, *30*, 212–224. [CrossRef]

374. Schneller, J.J. Untersuchungen an einheimischen Farnen, insbesondere der *Dryopteris filix-mas*-Gruppe. 1. *Ber. Schweis. Bot. Gesellsch.* **1974**, *84*, 195–217.

375. Biswas, A.K.; Bhattacharyya, N.K. Induced polyploidy in *Catharanthus roseus* (L.) Gaertn. *Cytologia* **1960**, *25*, 334–341. [CrossRef]

376. Khanna, K.R. The haploid and the spontaneous diploid race in *Octoblepharum albidum* Hedw. *Cytologia* **1960**, *25*, 334–341. [CrossRef]

377. Zhang, C.; Wang, H.; Xu, Y.; Zhang, S.; Wang, J.; Hu, B.; Hou, X.; Li, Y.; Liu, T. Enhanced relative electron transport rate contributes to increased photosynthetic capacity in autotetraploid Pak Choi. *Plant Cell Physiol.* **2020**, *61*, 761–774. [CrossRef]

378. Tan, G.Y.; Dunn, G.M. Relationship of stomatal length and frequency and pollen-grain diameter to ploidy level in *Bromus inermis* Leyss. *Crop. Sci.* **1973**, *13*, 332–334. [CrossRef]

379. Hosseini, H.; Chehrazi, M.; Ahmad, D.N.; Sorestani, M.M. Colchicine-induced autotetraploidy and altered plant cytogenetic and morpho-physiological traits in *Catharanthus roseus* (L.) G. Don. *Adv. Hortic. Sci.* **2018**, *32*, 229–238. [CrossRef]

380. Shala, A.; Deng, Z. Investigation of morphological and anatomical changes in *Catharanthus roseus* (L.) G. Don due to colchicine induced polyploidy. *Sci. J. Flower. Ornarn. Plant.* **2018**, *5*, 233–243. [CrossRef]

381. Seidler-Lozykowska, K. Determination of the ploidy level in chamomile (*Chamomilla recutita* (L.) Rausch.) strains rich in a-bisabolol. *J. Appl. Genet.* **2003**, *44*, 151–155.

382. Porter, K.B.; Weiss, M.G. The effect of polyploidy on soybeans. *Cytologia* **1972**, *37*, 605–617. [CrossRef]

383. Malik, C.P.; Tandon, S.L. Morphological and cytological studies of a natural polyploid complex in *Convolvulus pluricaulis* Chois. *Cytologia* **1959**, *24*, 523–531. [CrossRef]

384. Biswas, A.K.; Bhattacharyya, N.K. Induced polyploidy in legumes. I. *Cynamopsis psoraloides* DC. *Cytologia* **1971**, *36*, 469–479. [CrossRef]

385. Takamura, T.; Miyajima, I. Colchicine induced tetraploids in yellow-flowered cyclamens and their characteristics. *Sci. Hortic.* **1996**, *65*, 305–312. [CrossRef]

386. Bretagnolle, F.; Lumaret, R. Bilateral polyploidization in *Dactylis glomerata* L. subsp. *luisitana*: Occurrence, morphological and genetic characteristics of first polyploids. *Euphytica* **1995**, *84*, 197–207. [CrossRef]

387. Abdoli, M.; Moieni, A.; Badi, H.N. Morphological, physiological, cytological and phytochemical studies in diploid and colchicine-induced tetraploid plants of *Echinacea purpurea* (L.). *Acta Physiol. Plant.* **2013**, *35*, 2075–2083. [CrossRef]

388. Marinho, R.C.; Mendes-Rodrigues, C.; Bonetti, A.M.; Oliveira, P.E. Pollen and stomata morphometrics and polyploidy in *Eriotheca* (Malvaceae-Bombacoideae). *Plant Biol.* **2014**, *16*, 508–511. [CrossRef] [PubMed]

389. Wang, L.J.; Sheng, M.Y.; Wen, P.C.; Du, J.Y. Morphological, physiological, cytological and phytochemical studies in diploid and colchicine-induced tetraploid plants of *Fagopyrum tataricum* (L.) Gaertn. *Bot. Stud.* **2017**, *58*, 2. [CrossRef]

390. Porter, K.B.; Weiss, M.G. The effect of polyploidy on soybeans. *Agron. J.* **1948**, *40*, 710–724. [CrossRef]

391. Shahriari-Ahmadi, F.; Dehghan, E.; Farsi, M.; Azizi, M. Tetraploid induction of *Hyoscyamus muticus* L. using colchicine treatment. *Pak. J. Biol. Sci.* **2008**, *11*, 2653–2659. [CrossRef]
512. Widoretno, W. In vitro induction and characterization of tetraploid Patchouli (Pogostemon cablin Benth.) plant. *Plant Cell Tissue Organ Cult.* **2016**, *125*, 261–267. [CrossRef]

513. Wei, T.; Wang, Y.; Xie, Z.; Guo, D.; Chen, C.; Fan, Q.; Deng, X.; Liu, J.H. Enhanced ROS scavenging and sugar accumulation contribute to drought tolerance of naturally occurring autotetraploids in *Foncirus trifoliata*. *Plant Biotechnol.* **2019**, *17*, 1394–1407. [CrossRef] [PubMed]

514. Liu, W.; Zheng, Y.; Song, S.; Huo, B.; Li, D.; Wang, J. In vitro induction of allohexaploid and resulting phenotypic variation in *Populus*. *Plant Cell Tissue Organ Cult.* **2018**, *134*, 183–192. [CrossRef]

515. Yamaguchi, S. Identification of ploidy level by pollen characters in *Primula sieboldii* E. Morren. *Ipn. J. Breed.* **1980**, *30*, 293–300. [CrossRef]

516. Dahanayake, N.; Senanayake, S.G.J.N. Colchicine induced tetraploids of radish (*Raphanus sativus* L.). *Trop. Agric. Res. Ext.* **2016**, *19*, 176–179.

517. Mo, L.; Chen, J.; Chen, F.; Lou, X.; Xu, Q.; Huang, H.; Dong, R.; Lou, X.; Lin, E. Induction and characterization of tetraploid castor plants. *Plant Genet. Resour.* **2020**, *18*, 98–104. [CrossRef]

518. Baghylalakshmi, K.; Shaik, M.; Mohanrao, M.D.; Shaw, R.K.; Lavanya, C.; Manjunatha, T.; Senthivel, S. Development and characterization of tetraploid castor plants. *Plant Genet. Resour.* **2020**, *18*, 98–104. [CrossRef]

519. Suliman, H.H.; Asander, H.S. Polyploidy induced by colchicine in *Salvia officinalis* L. and its effects on morphological, physiological and anatomical seed traits. *Iraqi J. Agric. Sci.* **2020**, *51*, 829–847. [CrossRef]

520. Buechler, W.K. Estimating polyploid levels in fossil *Salix*: A critical review of cell size proxy methods. *PaleoBios* **2010**, *29*, 60–75.

521. Dudits, D.; Torok, K.; Cseri, A.; Paul, K.; Nagy, A.V.; Nagy, B.; Sass, L.; Vankora, R.; Dobrev, P.; et al. Response of organ morphology, growth and drought susceptibility in *Taraxacum sect. Palustria* from Poland. *Acta Biol. Crac. Ser. Bot.* **2010**, *45*, 721–727. [CrossRef]

522. Hassanzadeh, F.; Zakaria, R.A.; Azad, N.H. Polyploidy induction in *Rhododendron fortunei* Lindl. *Plant Genet. Resour.* **2020**, *85*, 157–162. [CrossRef]

523. Sapra, V.T.; Hughes, J.L.; Sharma, G.C. Frequency, size, and distribution of stomata in triticale leaves. *Crop. Sci.* **1975**, *15*, 356–358. [CrossRef]

524. Berkov, S. Size and alkaloid content of seeds in induced autotetraploids of *Datura innoxia*, *Datura stramonium* and *Hyoscyamus niger*. *Pharm. Biol.* **2001**, *39*, 329–331. [CrossRef]

525. Rodiansah, A.; Puspita, M.I. In vitro polyploidy induction of foxtail millet (*Setaria italica* (L) beauv) cv. buru hotong using colchicine treatment. *IOP Conf. Ser. Earth Environ. Sci.* **2020**, *484*, 012031. [CrossRef]

526. Stupar, R.M.; Bhaskar, P.B.; Yandell, B.S.; Rensink, W.A.; Hart, A.L.; Ouyang, S.; Veilleux, R.E.; Buell, C.R.; et al. Phenotypic and transcriptomic changes associated with potato autopolyploidization. *Genetics* **2020**, *185*, 1504–1523. [CrossRef] [PubMed]

527. Sass, H.H.; Asander, H.S. Polyploidy induction in *Salvia officinalis* L. and its effects on some morphological and physiological characteristics. *Cytologia* **2020**, *85*, 157–162. [CrossRef]

528. Supar, V.T.; Hughes, J.L.; Sharma, G.C. Frequency, size, and distribution of stomata in triticale leaves. *Crop. Sci.* **1975**, *15*, 356–358. [CrossRef]

529. Murali, K.M.; Vanitha, J.; Jiang, S.; Ramachandran, S. Impact of colchicine treatment on *Sorghum bicolor BTÂ x 623*. *Mol. Plant Breed.* **2013**, *4*, 128–135. [CrossRef]

530. Ardbili, G.S.; Zakaria, R.A.; Zare, N. In vitro induction of polyploidy in *Sorghum bicolor* L. *Cytologia* **2015**, *80*, 495–503. [CrossRef]

531. Van Laere, K.; Franca, S.C.; Vansteenkiste, H.; Van Huynenbroeck, J.; Steppe, K.; Van Labeke, M.-C. Influence of ploidy level on growth and drought susceptibility in *Spthiphylum wallisii*. *Acta Physiol. Plant.* **2011**, *33*, 1149–1156. [CrossRef]

532. Sajjad, Y.; Jaskani, M.J.; Mehmood, A.; Ahmad, I.; Abbas, H. Effect of colchicine on in vitro polyploidy induction in African milagrd (*Tätges erecta*). *Pak. J. Bot.* **2013**, *45*, 1255–1258.

533. Halloran, G.M.; Pennell, A.L. Grain size and seedling growth of wheat at different ploidy levels. *Ann. Bot.* **1982**, *49*, 103–113. [CrossRef]

534. Godfree, R.C.; Marshall, D.J.; Young, A.G.; Miller, C.H.; Mathews, S. Empirical evidence of fixed and homeostatic patterns of polyploid advantage in a keystone grass exposed to drought and heat stress. *R. Soc. Open Sci.* **2017**, *4*, 170934. [CrossRef]

535. Tavan, M.; Mirjalili, M.H.; Karimzadeh, G. In vitro polyploidy induction: Changes in morphological, anatomical and phytochemical characteristics of *Thymus pircus* (Lamiaceae). *Plant Cell Tissue Organ Cult.* **2015**, *122*, 573–583. [CrossRef]

536. Hassan, J.; Miyajima, I.; Ozaki, Y.; Mizunoe, Y.; Sakai, K.; Zaland, W. Tetraploid induction by colchicine treatment and crossing with a diploid reveals less-seeded fruit production in Pointed Gourd (*Trichosanthes dioica* Roxb.). *Plants* **2020**, *9*, 370. [CrossRef] [PubMed]

537. Inceer, H.; Hayirlioglu-Ayaz, S. Chromosome numbers in *Tripleurospermum* Sch. Bip. (Asteraceae) and closely related genera: Relationships between ploidy level and stomatal length. *Plant Syst. Evol.* **2010**, *285*, 149–157. [CrossRef] [PubMed]

538. Halloran, G.M.; Pennell, A.L. Grain size and seedling growth of wheat at different ploidy levels. *Ann. Bot.* **1982**, *49*, 103–113. [CrossRef]

539. Khazaei, H.; Monnevieux, P; Hongbo, S.; Mohammady, S. Variation for stomatal characteristics and water use efficiency among diploid, tetraploid and hexaploid Iranian wheat landraces. *Genet. Resour. Crop. Evol.* **2010**, *57*, 307–314. [CrossRef]
Biology 2021, 10, 270

540. Bory, S.; Catrice, O.; Brown, S.; Leitch, I.J.; Gigant, R.; Chiroleu, F.; Grisoni, M.; Duval, M.F.; Besse, P. Natural polyploidy in Vanilla planifolia (Orchidaceae). Genome 2008, 51, 816–826. [CrossRef] [PubMed]

541. Moeglein, M.K.; Chatelée, D.S.; Donoghue, M.J.; Edwards, E.J. Evolutionary dynamics of genome size in a radiation of woody plants. Am. J. Bot. 2020, 107, 1527–1541. [CrossRef] [PubMed]

542. Eliášová, A.; Münzbergová, Z. Higher seed size and germination rate may favour autotetraploids of Vicia cracca L. (Fabaceae). Biol. J. Linn. Soc. 2014, 113, 57–73. [CrossRef]

543. Nagat, E.; Kamla, B.; Hoda, K. Phenotypic and molecular characterization of polyploidy Vicia faba induced by colchicine. Gsc Biol. Pharm. Sin. 2020, 11, 235–243. [CrossRef]

544. Kenanoğlu, O.N.; Yılmaz, S.; Soytaş, N.; Ergün, S.; Aki, C.; Tapan, F. Determination of triploidy in rainbow trout, Oncorhynchus mykiss using erythrocyte measurements. Mar. Sci. Technol. Bull. 2012, 1, 17–19.
572. Jayaprados, P.P.; Srijaya, T.C.; Jose, D.; Papini, A.; Hassan, A.; Chatterji, A.K. Identification of diploid and triploid red tilapia by using erythrocyte indices. *Caryologia* **2011**, *64*, 483–492. [CrossRef]

573. Don, J.; Avitalion, R.R. The induction of triploidy in *Oreochromis aureus* by heat shock. *Appl. Genet.* **1986**, *72*, 186–192. [CrossRef]

574. Aliah, R.S.; Inada, Y.; Yamaoka, K.; Taniguchi, N. Effects of triploidy on hematological characteristics and oxygen consumption in Ayu. *Nippon Suisan Gakk.* **1991**, *57*, 833–836. [CrossRef]

575. Lincoln, R.F. Sexual maturation in triploid male plaice (*Pleuronectes platessa*) and plaice x flounder (*Platichthys flesus*) hybrids. *J. Fish. Biol.* **1981**, *19*, 415–426. [CrossRef]

576. Lincoln, R.F. Sexual maturation in female triploid plaice, *Pleuronectes platessa*, and plaice x flounder, *Platichthys flesus*, hybrids. *J. Fish. Biol.* **1981**, *19*, 499–508. [CrossRef]

577. Cimino, M.C. Karyotypes and erythrocyte sizes of some diploid and triploid fishes of the genus *Poeciliopsis*. *J. Fish. Bd. Can.* **1973**, *30*, 1736–1737. [CrossRef]

578. Baldwin, N.W.; Busack, C.A.; Meals, K.O. Induction of triploidy in white crappie by temperature shock. *Trans. Am. Fish. Soc.* **1990**, *119*, 438–444. [CrossRef]

579. Kawamura, K.; Ueda, T.; Aoki, K.; Hosoya, K. Spermatozoa in triploids of the rosy bitterling *Rhodeus ocellatus ocellatus*. *J. Fish. Biol.* **1999**, *55*, 420–432. [CrossRef]

580. Lincoln, R.F.; Scott, A.P. Sexual maturation in triploid rainbow trout, *Salmo gairdneri* Richardson. *J. Fish. Biol.* **1984**, *25*, 385–392. [CrossRef]

581. Benfey, T.J.; Sutterlin, A.M.; Thompson, R.J. Use of erythrocyte measurements to identify triploid salmonids. *Can. J. Fish. Aquat. Sci.* **1984**, *41*, 980–984. [CrossRef]

582. Doraftshan, S.; Kalbassi, M.R.; Pourkazemi, M.; Amiri, B.M.; Karimi, S.S. Effects of triploidy on the Caspian salmon *Salmo trutta capsius* haematology. *Fish. Physiol. Biochem.* **2008**, *34*, 195–200. [CrossRef] [PubMed]

583. Woznicki, P.; Kuzminski, H. Chromosome number and erythrocyte nuclei length in triploid brook trout (*Salvelinus fontinalis*). *Caryologia* **2002**, *55*, 295–298. [CrossRef]

584. Garcia-Abiado, M.A.R.; Dabrowski, K.; Christensen, J.E.; Czesny, S.; Bajer, P. Use of erythrocyte measurements to identify triploid saugeyes. *N. Am. J. Aquac.* **1999**, *61*, 319–325. [CrossRef]

585. Valenti, R.J. Induced polyploidy in *Tilapia aurea* (Steindachner) by means of temperature shock treatment. *J. Fish. Biol.* **1975**, *7*, 519–528. [CrossRef]

586. Linhart, O.; Rodina, M.; Flajšhans, M.; Mavrodiev, N.; Nebesarova, J.; Gela, D.; Kocour, M. Studies on sperm of diploid and triploid tench, *Tinca tinca* (L.). *Aquac. Int.* **2006**, *14*, 9–25. [CrossRef]

587. Stöck, M.; Schmid, M.; Steinlein, C.; Gross, W.R. Mosaicism in somatic triploid specimens of the *Bufo viridis* complex in the Karakoram with examination of calls, morphology and taxonomic conclusions. *Ital. J. Zool.* **1999**, *66*, 215–232. [CrossRef]

588. Matson, T.O. Erythrocyte size as a taxonomic character in the identification of Ohio *Hyla chrysoscelis* and *H. versicolor*. *Herpetologica* **1990**, *46*, 457–462.

589. Bogart, J.P.; Wasserman, A.O. Diploid-polyploid cryptic species pairs: A possible clue to evolution by polyploidization in anuran amphibians. *Cytogenetics* **1972**, *11*, 7–24. [CrossRef] [PubMed]

590. Green, D.M. Size differences in adhesive toe-pad cells of treefrogs of the diploid-polyploid *Hyla versicolor* complex. *J. Herpetol.* **1980**, *14*, 15–19. [CrossRef]

591. Otero, M.A.; Grenat, P.R.; Valetti, J.A.; Salas, N.E.; Martino, A.L. Erythrocyte nuclear size as a better diagnostic character than cell size in the identification of live cryptic polyploid species. *Zootaxa* **2013**, *3694*, 262–270. [CrossRef] [PubMed]

592. Martino, A.L.; Sinsch, U. Speciation by polyploidy in *Odontophrynus americanus*. *J. Zool.* **2002**, *257*, 67–81. [CrossRef]

593. Gunther, V.R. Die erythroyzytengrosse als kriterium zur unterscheidung diploider und triploider tenchfrosche Rana “esculenta” L. (Anura). *Biol. Zbl.* **1977**, *96*, 457–466. [CrossRef]

594. George, S.A.; Lennartz, M.R. Methods for determining ploidy in amphibians: Nucleolar number and erythrocyte size. *Experientia* **1980**, *36*, 687–688. [CrossRef]

595. Uzzell, T.M. Relations of the diploid and triploid species of the *Ambystoma jeffersonianum* complex (Amphibia, Caudata). *Copeia* **1964**, *1964*, 257–300. [CrossRef]

596. Austin, N.E.; Bogart, J.P. Erythrocyte area and ploidy determination in the salamanders of the *Ambystoma jeffersonianum* complex. *Copeia* **1982**, *1982*, 485–488. [CrossRef]

597. Fankhauser, G.; Griffiths, R.B. Induction of triploidy and haploidy in the newt, *Triturus viridescens*, by cold treatment of unsegmented eggs. *Proc. Natl. Acad. Sci. USA* **1939**, *25*, 233–238. [CrossRef]

598. Morgan, S.G. Life and death in the plankton: Larval mortality and adaptation. In *Ecology of Marine Invertebrate Larvae*; McEdward, L., Ed.; CRC Press: Boca Raton, FL, USA, 1995; pp. 279–321.

599. McGurk, M.D. Natural mortality of marine pelagic fish eggs and larvae: Role of spatial patchiness. *Mar. Ecol. Prog. Ser.* **1986**, *34*, 227–242. [CrossRef]

600. Rumrill, S.S. Natural mortality of marine invertebrate larvae. *Ophelia* **1990**, *32*, 163–198. [CrossRef]

601. Thor, P.; Nielsen, T.G.; Tiselius, P. Mortality rates of epipelagic copepods in the post-spring bloom period in Disko Bay, western Greenland. *Mar. Ecol. Progr. Ser.* **2008**, *359*, 151–160. [CrossRef]

602. Ohman, M.D.; Eiane, K.; Durbin, E.G.; Runge, J.A.; Hirche, H.-J. A comparative study of *Calanus finmarchicus* mortality patterns at five localities in the North Atlantic. *ices J. Mar. Sci.* **2004**, *61*, 687–697. [CrossRef]
630. Hearn, A.; Murillo, J.C. Life history of the red spiny lobster, *Panulirus penicillatus* (Decapoda: Palinuridae), in the Galápagos Marine Reserve, Ecuador. *Pac. Sci.* 2008, 62, 191–204. [CrossRef]

631. Deval, M.C.; Bök, T.; Ateş, C.; Tosunoğlu, Z. Length-based estimates of growth parameters, mortality rates, and recruitment of *Astacus leptodactylus* (Eschscholtz, 1823) (Decapoda, Astacidae) in unexploited inland waters of the northern Marmara region, European Turkey. *Crustaceana* 2007, 80, 655–665. [CrossRef]

632. Hewitt, D.A.; Lambert, D.M.; Hoenig, J.M.; Lipcius, R.N.; Bunnell, D.B.; Miller, T.J. Direct and indirect estimates of natural mortality for Chesapeake Bay blue crab. *Trans. Am. Fish. Soc.* 2007, 136, 1030–1040. [CrossRef]

633. Zhang, Z.; Hajas, W.; Phillips, A.; Boutillier, J.A. Use of length-based models to estimate biological parameters and conduct yield analyses for male Dungeness crab (*Cancer magister*). *Can. J. Fish. Aquat. Sci.* 2004, 61, 2126–2134. [CrossRef]

634. Hankin, D.G.; Diamond, N.; Mohr, M.S.; Ianelli, J. Growth and reproductive dynamics of adult female Dungeness crabs (*Cancer magister*) in northern California. *Ices J. Mar. Sci.* 1989, 46, 94–108. [CrossRef]

635. Klaoudatos, D.S.; Conides, A.J.; Anastasopoulou, A.; Dulčić, J. Age, growth, mortality and sex ratio of the inshore population of the edible crab, *Cancer pagurus* (Linnaeus 1758) in South Wales (UK). *J. Appl. Ichthyol.* 2013, 29, 579–586. [CrossRef]

636. Zheng, J. Uncertainties of natural mortality estimates for eastern Bering Sea snow crab, *Chionoecetes opilio*. *Fish. Res.* 2003, 65, 411–425. [CrossRef]

637. Drouineau, H.; Sainte-Marie, B.; Duplisea, D. Estimating natural mortality and egg production of snow crab *Chionoecetes opilio* adult females. *Aquat. Biol.* 2013, 18, 261–270. [CrossRef]

638. Murphy, J.T.; Rugolo, L.J.; Turnock, B.J. Estimation of annual, time-varying natural mortality and survival for Eastern Bering Sea snow crab (*Chionoecetes opilio*) with state-space population models. *Fish. Res.* 2018, 205, 122–131. [CrossRef]

639. Siddeek, M.S.M.; Watson, L.J.; Blau, S.F.; Moore, H. Estimating natural mortality of king crabs from tag recapture data. In *Crabs in Cold Water Regions: Biology, Management, and Economics*; Paul, A.J., Ed.; University of Alaska Sea Grant College Program, AK-SG-02-01: Fairbanks, AK, USA, 2002; pp. 51–75. [CrossRef]

640. White, J.W.; Morgan, S.G.; Fisher, J.L. Planktonic larval mortality rates are lower than widely expected. *Ecology* 2014, 95, 3344–3353. [CrossRef]

641. Windsland, K. Total and natural mortality of red king crab (*Paralithodes camtschaticus*) in Norwegian waters: Catch–curve analysis and indirect estimation methods. *Ices J. Mar. Sci.* 2015, 72, 642–650. [CrossRef]