Primary MiNEN of the urinary bladder: an hitherto undescribed entity composed of large cell neuroendocrine carcinoma and adenocarcinoma with a distinct clinical behavior

Description of a case and review of the pertinent literature

Giacomo Maria Pini 1 · Silvia Uccella 1 · Matteo Corinti 2 · Maurizio Colecchia 3 · Giuseppe Pelosi 4, 5 · Carlo Patriarca 6

Received: 13 November 2020 / Revised: 28 December 2020 / Accepted: 6 January 2021
© The Author(s) 2021

Abstract
Neuroendocrine carcinomas (NECs) of the urinary bladder are very rare and can be observed in the context of mixed neuroendocrine/non-neuroendocrine neoplasms (MiNENs), most frequently in association with urothelial carcinoma. Small cell NECs are far more common than large cell NECs (LCNECs), which are exceedingly rare. We describe a primary MiNEN of the urinary bladder, composed of a LCNEC and of an adenocarcinoma, in which the neuroendocrine component reached complete pathological regression after neoadjuvant M-VAC chemotherapy, whereas the non-neuroendocrine component of the tumor progressed to metastatic disease. Compared to mixed neuroendocrine/non-neuroendocrine neoplasms described in the literature until now, this appears to be a unique case that expands the spectrum of neuroendocrine neoplasia of the urinary bladder.

Keywords Neuroendocrine neoplasm · Neuroendocrine carcinoma · Mixed neuroendocrine/non-neuroendocrine neoplasm · Urinary bladder

Introduction
Neuroendocrine neoplasms (NECs) of the urinary bladder represent less than 1% of all malignancies in this site and are mainly represented by Neuroendocrine carcinoma (NEC), whereas well-differentiated neuroendocrine tumors (NETs) are only anecdotally reported [1]. A significant proportion of NECs of the urinary bladder contains a non-neuroendocrine component, mostly represented by urothelial carcinoma and, more rarely, by squamous cell carcinoma or adenocarcinoma, and can be designated as mixed neuroendocrine/non-neuroendocrine neoplasms (MiNENs) in analogy to similar neoplasms arising in the digestive system [2]. Among vesical NECs, small cell NECs (SCNECs) are more frequently diagnosed than large cell NEC (LCNEC) [2, 3].

Here, we present a case of a MiNEN of the urinary bladder in which the neuroendocrine component, represented by a LCNEC, underwent complete pathological regression after neoadjuvant chemotherapy, while the non-neuroendocrine portion persisted and spread to metastatic sites.

Case history
A 49-year-old man was referred to the Urology Department for self-limiting painless gross hematuria in March 2018. Urinary cytology was positive for malignant epithelial neoplastic cells. Contrast-enhanced computerized tomography (CECT) showed a 46-mm-wide lesion
located on the dome of the bladder (Fig. 1). Transurethral resection of the bladder (TURB) was then performed, and the specimen was sent to the Pathology service. A diagnosis of MiNEN composed of LCNEC and adenocarcinoma of the bladder was signed out. Computed tomography of the brain, chest, and abdomen did not show metastatic disease. The patient received 3 cycles of neoadjuvant chemotherapy (methotrexate, vinblastine, adriamycin, and cisplatin—MVAC).

Radical cystoprostatectomy combined with the removal of pelvic and obturator lymph nodes was performed and a muscle-invasive poorly differentiated adenocarcinoma was reported, with no evidence of residual LCNEC. Three magnetic resonance imaging (MRI) scans of the abdomen were performed for clinical re-staging in January, May, and September 2019, respectively, without any evidence of relapse or metastatic disease.

In late November 2019, a growing lump on the penis and right epididymis was biopsied, revealing a poorly differentiated adenocarcinoma, without a neuroendocrine component. Emasculation was performed. After 2 years and 2 months after initial diagnosis, the patient is alive with ultrasonographic evidence of residual metastatic disease in inguinal lymph nodes.

Materials and methods

Morphology and immunohistochemistry

Tissue samples obtained from the different specimens (i.e., TURB, radical cystoprostatectomy, and percutaneous biopsy of the epididymis) were fixed in buffered formalin and routinely processed to paraffin wax. Five-micrometer-thick sections were routinely stained with hematoxylin and eosin and Alcian-PAS stain.

The immunohistochemical study was performed on additional 3-μm-thick sections using prediluted ready-to-use vials of the antibodies listed in Table 1 with an automated immunostainer (BenchMark Ultra, Ventana Roche Diagnostics) and standardized protocols (Ventana OptiView DAB IHC Detection Kit).

Review of the literature

The Pubmed database of the National Center for Biotechnology Information (NCBI) of the U.S. National Library of Medicine was searched using the keywords ‘MiNEN’ and ‘neuroendocrine carcinoma’. A total of 26 articles were identified for review. The results are summarized in Table 1.

Antibody	Manufacturer	Clone	
CD56	Cell Marque Corporation*	MRQ-42	
CDX2	Ventana°	EPR2764Y	
Carcinoembryonic antigen (CEA)	Ventana°	CEA31	
Chromogranin	Ventana°	LK2H10	
CK Cam5.2	Ventana°	CAM5.2	
CK20	Ventana°	SP33	
GATA3	Cell Marque Corporation*	L50-823	
Ki-67	Ventana°	30-9	
p16	Ventana°	CINtec® p16 histology	
p53	Ventana°	Confirm™ anti-p53 (DO-7)	
p63	Ventana°	4A4	
Rb1	BD Biosciences®	G3-245	
Synaptophysin	Ventana°	SP11	
TTF1	Ventana°	8G7G3/1	

*Cell Marque Corporation, Rocklin, CA, USA
°Ventana Medical Systems Inc., Tucson, AZ, USA
§ BD Biosciences, San Jose, CA, USA
Library of Medicine was searched using the following string “large cell neuroendocrine carcinoma [AND] urinary bladder.” All articles written in English were included. For each article, the reported cases were identified and, for each case, the following parameters were considered: age, sex, symptoms, presence of non-neuroendocrine component, immunophenotype, treatments, and outcome.

Results

Morphology and immunohistochemistry

The TURB specimen was entirely processed for microscopic analysis. Most of the specimens (70% of the total neoplastic volume) featured muscle-infiltrating neoplastic...
proliferation with organoid architecture, showing zonal necrosis (Fig. 2a). Neoplastic cells had moderately abundant, lightly eosinophilic cytoplasm, large vesicular nuclei, and focally prominent eosinophilic nucleoli. Apoptotic bodies were abundant and mitotic index was 40/10 high-power fields (HPFs) (Fig. 2b). Immunostains (Fig. 2c–h) were positive for Synaptophysin, Chromogranin A, CD56, CK Cam5.2, and, focally, for CK20 and TTF1. CDX2, GATA3, and p63 were negative. Intense cytoplasmic and nuclear p16 signal was also present, as well as p53 hyperexpression, whereas Rb1 expression was lacking. Ki67-related proliferative index was 85%.

The residual 30% of the total neoplastic volume was composed of an adenocarcinoma (Fig. 3), which was partially admixed with the former, but showed a tendency to be located in the most superficial layers of the bladder mucosa. Mitotic index was 4/10 HPFs. Immunostains for Synaptophysin, Chromogranin A, CD56, CEA, and p63 were negative, whereas those for CK Cam5.2, CK20, and GATA3 were diffusely positive and CDX2 was zonally expressed. Scattered cells were positive for TTF1. Rb1 was focally positive, while p16 and p53 had the same expression pattern as the neuroendocrine component. The final diagnosis was of muscle-invasive primary urinary bladder MiNEN, composed of LCNEC (70%) and moderately differentiated adenocarcinoma (30%).

The radical cystoprostatectomy specimen did not show, at gross evaluation, any residual neoplastic mass in the bladder. Microscopically, an estimated 90% of the vesical wall showed fibrosis and chronic inflammation with giantcell granulomas. In the remaining 10%, residual poorly differentiated adenocarcinoma was present, showing discohesive atypical cells with signet-ring-like and lipoblast-like features (Fig. 4). p63 and, focally, GATA3 were positive, but TTF1, CDX2, Chromogranin A, Synaptophysin, and Rb1 were absent. No residual LCNEC was identified.

In the percutaneous needle biopsy of the epididymis, poorly differentiated adenocarcinoma infiltrating fibromuscular tissue was seen (Fig. 5). Heterogenous positivity for GATA3 and p63 and negative stains for Chromogranin A, Synaptophysin, CD56, CD138, and PSA were observed. No evidence of LCNEC was found. The same morphological and IHC characteristics were observed in the specimen obtained from emasculation.
Review of the literature

We identified 25 articles published between 1986 and 2020, reporting a total of 41 cases of LCNEC of the urinary bladder (Table 2) [4–28]. The male-to-female ratio was 36:5 and patients’ age at diagnosis ranged from 20 to 84 years, with a median of 61 years. Specifically, 23 cases (56.1%) were pure LCNEC, 7 cases (17.1%) were a combined SCNEC/LCNEC [20, 23], 1 case (2.4%) had sarcomatous components [8], and 10 cases (24.4%) showed epithelial non-neuroendocrine components. Overall, the amount of the epithelial non-neuroendocrine components was small: in two cases, it was reported to account for less than 2% and less than 5%, respectively [6, 20]; in the remaining cases, a descriptive report was given (i.e., “evidence of,” “some foci of,” “minor contributions of” [16] epithelial non-neuroendocrine component).

Surgery and chemotherapy were the most frequently adopted treatments. Neoplasms were frequently muscle invasive, with or without fat infiltration, and commonly metastatic to regional lymph nodes. Outcomes were quite varied and based on follow-ups of different lengths.

Discussion

Our case is a rare example of what can be called a true MiNEN of the urinary bladder, as two morphologically distinct components, intimately admixed, one neuroendocrine and the
other non-neuroendocrine, were evident, both morphologically and immunohistochemically. In addition, this case is strictly adherent to the criteria used for digestive MiNENs [3], as each component represented at least 30% of tumor mass. In contrast, in previously reported cases of mixed vesical LCNECs, only a minor non-neuroendocrine component was detected [6, 9, 13, 16, 20]. Indeed, the adoption of a 30% cutoff is not based on clinical evidence, but rather it was arbitrarily introduced to avoid overestimating the biological relevance of focal cells with a divergent differentiation, which would be unlikely to influence the overall prognosis [29]. Nevertheless, as it has been underlined elsewhere [2, 29], we believe that minor, but morphologically recognizable, neoplastic components with divergent differentiation must be recorded in the pathological report, above all when they are morphological high-grade, because they still may influence prognosis and need a specific management.

LCNECs of the urinary bladder are exceptionally rare tumors, with only 41 cases reported in the literature (Table 1). Given their rarity, the exclusion of vesical metastatic disease from an unknown primary site is of paramount importance. Clinical and radiological information is pivotal in this task, as immunohistochemical markers have poor reliability in the identification of the primary sites of NECs [30]. In our case,
Authors	Age/gender	Symptoms	Type	H&E	Treatments	Outcome
Lee et al. 2009 [16]	20, M	Hematuria	Pure	CK33+, CK7+, NSE+, CD56+, CD68+, Chr+, Syn+, TTF1+	Partial C, Ch, Rad	DOD 14 months after initial diagnosis
Li et al. 2020 [17]	30, M	Hematuria	Pure	CD56+, Chr+, Syn+, TTF1+	Partial C, Ch (cisplatin-etoxisplatin)	AFD 22 months after surgery
Lee et al. 2006 [18]	35, M	Hematuria	Pure	CK AE1/AE3+, NSE+, Chr+, Syn+, PSA+, LCA+, Vimentin+	Partial C, Ch (M-VAC; gemcitabine, cisplatin)	AWD after 13 months; DOD after 13 months; DOD after initial diagnosis
Bertaccini et al. 2008	37, M	Hematuria	Pure	CK7+, NSE+, Chr+, Syn+, TTF1+	Partial C, Ch (cisplatin-etoxisplatin)	AWD 22 months after surgery
Coelho et al. 2014 [4]	37, M	Hematuria	Mixed	CK AE1/AE3+, NSE+, Chr+, Syn+, TTF1+	Partial C, Ch (cisplatin-etoxisplatin)	AFD more than 2 years after surgery Transferred to hospice about 13 months after surgery
Serrano et al. 2007 [20]	40, F	NS	Pure	CK AE1/AE3+, NSE+, Chr+, Syn+, TTF1+	Partial C, Ch (cisplatin-etoxisplatin)	AWD 22 months after surgery
Akdeniz et al. 2018 [21]	43, M	NS	Mixed	CK AE1/AE3+, NSE+, Chr+, Syn+, TTF1+	Partial C, Ch (cisplatin-etoxisplatin)	AWD 22 months after surgery
Colarossi, 2020 [31]	53, F	NS	Mixed	CK AE1/AE3+, NSE+, Chr+, Syn+, TTF1+	Partial C, Ch (cisplatin-etoxisplatin)	AWD 22 months after surgery
Abenoza et al. 1986 [24]	55, M	Hematuria and mucoid changes	Mixed	CK AE1/AE3+, NSE+, Chr+, Syn+, TTF1+	Partial C, Ch (cisplatin-etoxisplatin)	AWD 22 months after surgery
Goret, 2020 [31]	70, M	NS	Pure	CK AE1/AE3+, NSE+, Chr+, Syn+, TTF1+	Partial C, Ch (cisplatin-etoxisplatin)	AWD 22 months after surgery

Table 2. Published cases of large cell neuroendocrine carcinoma (LCNEC) of the urinary bladder

H&E = Hematoxylin and Eosin, *DOD* = Death of Disease, *TURB* = Transurethral Resection of Bladder, *nCh* = No Chemotherapy, *C* = Chemotherapy, *Ch* = Chemotherapy, *Rad* = Radiotherapy, *AWD* = Alive with Disease, *NS* = Not Specified.
Table 2 (continued)

Authors	Age/gender	Symptoms	Type	IHCC*	Treatments	Outcome
Chong et al. 2017	72, M	Back pain, acute kidney injury	Pure CD56+, Chr+, Syn+	C, nCh (carbo-eto), ADT	DOC 2 months after surgery	AWD 3 years after completion of treatments
Hailemarian et al.	73, M	Hematuria	Pure NSE+, Chr+, Syn+	C	Craniotomy, Ch (carbo-eto), whole-brain Rad	DOD 2 months after surgery
Tsugu et al. 2011	74, M	Neurologic disturbances	Pure CD56+, Chr+, Syn+, TTF1+	Craniotomy, Ch, nCh, Doc, Partial C, Rad, whole-brain Rad	TURB 5 months after surgery	
Evans et al. 2002	82, M	Hematuria	Mixed CK A E1/AE3+, Chr-, Syn+, PSA-, Partial C, Rad, whole-brain Rad	AWD 2 years after initial diagnosis		
Hata, Tasaki 2013	84, M	NS	Mixed CD56+, Chr+, Syn+	Mixed	TURB 5 months after initial diagnosis	

Legend: *IHCC*: immunohistochemical; **ARF**: acute renal failure; **AFD**: alive, free of disease; **AWD**: alive without disease; **C**: cystectomy/cystoprostatectomy; **carbo-eto**: carboplatin-etoposide; **Ch**: chemotherapy; **Chr**: chromogranin; **CK**: cytokeratin; **Cr**: craniotomy; **Craniotomy**: craniotomy; **C**: chemotherapy; **DOD**: died of disease; **DOC**: died of other cause; **Dx**: diagnosis; **EMA**: epithelial membrane antigen; **E1/AE3**: epithelial membrane antigen; **F**: female; **HF**: heart failure; **HMWCK**: high-molecular-weight cytokeratin; **IHC**: immunohistochemistry; **LC**: lung cancer; **LCNEC**: large cell neuroendocrine carcinoma; **LCA**: leukocyte common antigen; **M**: male; **M-VAC**: methotrexate, vinblastine, doxorubicin, and cisplatin; **NA**: not available; **nCh**: neoadjuvant chemotherapy; **NS**: not specified; **NSE**: neuron-specific enolase; **PSA**: prostate-specific antigen; **PSAP**: prostatic-specific acid phosphatase; **Rad**: radiation therapy; **TURB**: transurethral resection of the bladder.
carcinomatous component, for which we endorse the term of MiNEN. The correct diagnosis on the preoperative biopsy allowed the administration of a platinum-based neoadjuvant polychemotherapy to the patient, which was followed by the complete pathological response of the LCNEC component, which did not recur in metastatic sites.

Authors’ contributions Giacomo Maria Pini: Conceptualization; investigation; and writing—original draft
Silvia Uccella: Conceptualization; investigation; methodology; project administration; resources; writing—review and editing; and supervision
Matteo Coriniti: Investigation; validation; and visualization
Maurizio Colecchia: Investigation; validation; and visualization
Giuseppe Pelosi: Investigation; validation; and visualization
Carlo Patriarca: Conceptualization; investigation; and supervision

Funding Open Access funding provided by Università degli Studi dell’Insubria.

Data availability All data generated or analyzed during this study are included in this published article

Compliance with ethical standards
Conflict of interest The authors declare that they have no conflict of interest.

Ethics approval The study has been conducted according to the guidelines of the local ethical committee.

Consent to participate and for publication Informed consent has been obtained from the patient.

Code availability Not applicable

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material, the material is protected by copyright and you must obtain permission from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References
1. Moch H, Humphrey PA, Ulbright TM, Reuter VE (2016) WHO Classification of Tumours of the Urinary System and Male Genital Organs, 4th edn. IARC Press, Lyon
2. La Rosa S, Sessa F, Uccella S (2016) Mixed neuroendocrine-nonneuroendocrine neoplasms (MiNENs): unifying the concept of a heterogeneous group of neoplasms. Endocr Pathol 27(4): 284–311. https://doi.org/10.1007/s12750-016-0432-9
3. WHO Classification of Tumours. Digestive System Tumours (2019) Fifth Edt. IARC Press, Lyon
4. Abenosa P, Manivel C, Sibley RK (1986) Adenocarcinoma with neuroendocrine differentiation of the urinary bladder. Clinicopathologic, immunohistochemical, and ultrastructural study. Arch Pathol Lab Med 110(11):1062–1066 https://pubmed.ncbi.nlm.nih.gov/3778122
5. Haulemarian S, Gaspert A, Komminoth P, Tamboli P, Amin M (1998) Primary, pure, large-cell neuroendocrine carcinoma of the urinary bladder. Mod Pathol. 11(10):1016–1020 https://pubmed.ncbi.nlm.nih.gov/9796733
6. Evans AJ, Al-Maghrabi J, Tsilihas J, Lajoie G, Sweet JM, Chapman WB (2002) Primary large cell neuroendocrine carcinoma of the urinary bladder. Arch Pathol Lab Med 126(10):1229–1232. https://doi.org/10.1043/0003-9985(2002)126<1229:PLNCO2.0.CO;2
7. Dundr P, Pešl M, Povýšil C, Vítková I, Dvořáček J (2003) Large cell neuroendocrine carcinoma of the urinary bladder with lymphoepithelioma-like features. Pathol Res Pract 199(8):559–563. https://doi.org/10.1078/0344-0338-00462
8. Li Y, Outman JE, Mathur SC (2004) Carcinosarcoma with a large cell neuroendocrine epithelial component: first report of an unusual biphasic tumour of the urinary bladder. J Clin Pathol 57(3):318–320. https://doi.org/10.1136/jcp.2003.013474
9. Quek ML, Nichols PW, Yamzon J et al (2005) Radical cystectomy for primary neuroendocrine tumors of the bladder: The University of Southern California experience. J Urol 174(1):93–96. https://doi.org/10.1097/01.ju.0000162085.20043.1f
10. Lee KH, Ryu SB, Lee MC, Park CS, Juhng SW, Choi C (2006) Primary large cell neuroendocrine carcinoma of the urinary bladder. Pathol Int 56(11):688–693. https://doi.org/10.1111/j.1440-1827.2006.02031.x
11. Serrano FA, Sánchez-Mora N, Arranz JA, Hernández C, Álvarez-Fernández E (2007) Large cell and small cell neuroendocrine bladder carcinoma: immunohistochemical and outcome study in a single institution. Am J Clin Pathol 128(5):733–739. https://doi.org/10.1093/ajcp/07.10.1239
12. Bertaccini A, Marchioni D, Cricca A et al (2008) Neuroendocrine carcinoma of the urinary bladder: case report and review of the literature. Anticancer Res. 28(2 B):1369–1372. https://doi.org/10.1093/oxfordjournals.jco.a039461
13. Akamatsu S, Kanamaru S, Ishihara M, Sano T, Soeda A, Hashimoto K (2008) Primary large cell neuroendocrine carcinoma of the urinary bladder: case report. Int J Urol 15(12):1080–1083. https://doi.org/10.1111/j.1442-2042.2008.02168.x
14. Lee WJ, Kim CH, Chang SE, Lee MW, Choi JH, Moon KC, Koh JK (2009) Cutaneous metastasis from large-cell neuroendocrine carcinoma of the urinary bladder expressing CK20 and TTF-1. Am J Dermatopathol 31(2):166–169. https://doi.org/10.1097/DAD.0b013e3181ed4b3c
15. Tsuru A, Yoshiyama M, Matsumae M (2011) Brain metastasis from large cell neuroendocrine carcinoma of the urinary bladder. Surg Neurol Int 2(1):84. https://doi.org/10.4103/2025-7806.22250
16. Engles CD, Slobodov G, Culkin DJ. Primary mixed neuroendocrine carcinoma of the bladder with large cell component: a case report and review of the literature. 2012:1021-1025. doi:https://doi.org/10.1007/s11255-012-0148-6
17. Hata S, Tasaki Y (2013) A case of the large cell neuroendocrine carcinoma of the urinary bladder. Case Rep Med 2013:2–5. https://doi.org/10.1155/2013/804136
18. Colarossi C, Pino P, Giulfrida D, Aiello E, Costanzo R, Martinetti D, Memeo L (2013) Large cell neuroendocrine carcinoma (LCNEC) of the urinary bladder: a case report. Diagn Pathol 8(1): 19. https://doi.org/10.1186/1746-1596-8-19
19. Sari A, Ermete M, Sadullahoğlu C, Bal K, Bolükbaşlı A (2013) Large cell neuroendocrine carcinoma of urinary bladder; case presentation. Turk Patoloji Dergisi/Turkish J Pathol 29(2):138–142. https://doi.org/10.5146/tjpath.2013.01165
