NilCoxeter algebras categorify the Weyl algebra

Mikhail Khovanov

February 23, 2022

1 Introduction

In this paper we present an example of elaborate categorical structures hidden in very simple algebraic objects. We look at the algebra of polynomial differential operators in one variable x, also known as the Weyl algebra, and its irreducible representation in the ring of polynomials $\mathbb{Q}[x]$. We construct an abelian category \mathcal{C} whose Grothendieck group can be naturally identified with the ring of polynomials and define exact functors $F_X : \mathcal{C} \to \mathcal{C}$ and $F_D : \mathcal{C} \to \mathcal{C}$ such that

(a) on the Grothendieck group $K(\mathcal{C})$ of the category \mathcal{C} functors F_X and F_D act as the multiplication by x and differentiation, respectively, dimensional representations of the nilCoxeter algebra A

(b) there is a functor isomorphism $F_D F_X \cong F_X F_D \oplus \text{Id}$, which lifts the defining relation $\partial x = x \partial + 1$ of the Weyl algebra,

(c) functors F_X and F_D have nice adjointness properties: F_X is left adjoint to F_D and right adjoint to F_D, twisted by an automorphism of \mathcal{C}.

The category \mathcal{C} is the direct sum of categories \mathcal{C}_n over all $n \geq 0$, where \mathcal{C}_n is the category of finite dimensional representations of the nilCoxeter algebra A_n, which is generated by $Y_i, 1 \leq i \leq n - 1$, subject to relations $Y_i^2 = 0$, $Y_i Y_j = Y_j Y_i$ for $|i - j| > 1$ and $Y_i Y_{i+1} Y_i = Y_{i+1} Y_i Y_{i+1}$. The nilCoxeter algebra is the algebra of divided difference operators (see Macdonald [M], Fomin and Stanley [FS])

$$Y_i f = \frac{f - s_i f}{x_{i+1} - x_i},$$

where f is a polynomial in x_1, \ldots, x_n and $s_i f(x_1, \ldots, x_n) = f(x_1, \ldots, x_{i+1}, x_i, \ldots, x_n)$. Functors F_X and F_D are induction and restriction functors associated to the inclusion of algebras $A_n \hookrightarrow A_{n+1}$. The following holds

(d) functors F_X and F_D, restricted to each \mathcal{C}_n, are indecomposable.

It seems likely that ours is the only example (up to obvious modifications of base change, etc.) of an abelian category $\mathcal{C} = \bigoplus_{n \geq 0} \mathcal{C}_n$ and exact functors F_X and F_D satisfying conditions (a)-(d) above.

In Section 2 we study these and other properties of the category \mathcal{C} and functors F_X, F_D. In Section 3 we equip \mathcal{C} with a bialgebra-category structure. Specifically, inclusions of algebras $A_n \otimes A_m \hookrightarrow A_{n+m}$ give rise to induction and restriction functors, which, when summed over all $n, m \geq 0$, become functors $M : \mathcal{C}^{\otimes 2} \to \mathcal{C}$ and $\Delta : \mathcal{C} \to \mathcal{C}^{\otimes 2}$ between \mathcal{C} and its second tensor power $\mathcal{C}^{\otimes 2}$. These functors are exact, boast neat adjointness properties and on the Grothendieck group descend to the multiplication and comultiplication in the commutative, cocommutative Hopf algebra $\mathbb{Q}[x]$ of polynomials in one variable. The associativity relation for the multiplication, coassociativity of the comultiplication and the consistency relation between the multiplication and comultiplication become isomorphisms of functors. We check that these isomorphisms satisfy the coherence relations of Crane and Frenkel [CF] for a bialgebra-category.

In Section 4.1 we sketch how working with graded modules and bimodules over the nilCoxeter algebra yields a categorification of the quantum Weyl algebra and of the quantum deformation of the Hopf algebra H. The grading shift automorphism in the category of graded modules descends to a map of Grothendieck groups which we interpret as the multiplication by q.

In Section 4.3 we present a simple generalization of our construction to cross-products and provide a short comment on the relation of our work to Ariki’s realization [A] of highest weight modules over affine Lie algebras.
Acknowledgements: This work was done during my very nice stay at the Institute for Advanced Study. I would like to thank the Institute and the NSF for supporting me with grants DMS 97-29992 and DMS 96-27351.

2 The Weyl algebra and bimodules over the nilCoxeter algebra

2.1 The Weyl algebra

The Weyl algebra W is the algebra of differential operators with polynomial coefficients in one variable. For our purposes define W as the algebra over \mathbb{Z} with the unit 1, generators x, ∂ and defining relation $\partial x = x \partial + 1$. Let R_Q be the \mathbb{Q}-vector space R_Q spanned by x^0, x^1, x^2, \ldots. W acts on R_Q via $x \cdot x^i = x^{i+1}$ and $\partial \cdot x^i = i x^{i-1}$. Abelian subgroups R and R' of R_Q, generated by $\{x^i/i\}_{i=0}^\infty$ and $\{x^i\}_{i=0}^\infty$, respectively, are W-submodules of R_Q, i.e. the action of x and ∂ has integral coefficients in each of these two bases.

The Weyl algebra has an antiinvolution $\tau : W \to W$ with

$$\tau(x) = \partial, \quad \tau(\partial) = x \quad \text{and} \quad \tau(ab) = \tau(b)\tau(a) \quad \text{for} \ a, b \in W. \tag{2}$$

Let $(,)$ be the symmetric bilinear form on R_Q defined by $(x^i, x^j) = \delta_{i, j}!$. This form is τ-invariant:

$$(ya, b) = (a, \tau(y)b) \quad \text{for} \ y \in W, \ a, b \in R_Q, \tag{3}$$

and it restricts to an integer valued bilinear product $(,) : R' \times R \to \mathbb{Z}$.

2.2 The nilCoxeter algebra

Let A_n be the unital algebra over \mathbb{Q} generated by Y_1, \ldots, Y_{n-1} with defining relations

$$Y_i^2 = 0 \tag{4}$$
$$Y_i Y_j = Y_j Y_i \quad |i-j| > 1$$
$$Y_i Y_{i+1} Y_i = Y_{i+1} Y_i Y_{i+1}.$$

Fomin and Stanley [FS] call A_n the nilCoxeter algebra. It originally appeared in the work of Bernstein, Gelfand and Gelfand [BGG] on the cohomology of flag varieties and was later investigated and generalized in various ways by Lascoux and Schützenberger [LS], Macdonald [Mc], Kostant and Kumar [KK], Fomin and Stanley [FS] and others. Note that if we change the first relation in (4) to

$$Y_i = (3)$$
$$Y_i Y_{i+1} Y_i = Y_{i+1} Y_i Y_{i+1},$$

we obtain the group algebra of the symmetric group, which is, indeed, closely related to the nilCoxeter algebra:

Proposition 1 The algebra A_n is isomorphic to the algebra which is spanned over \mathbb{Q} by Y_w, as w ranges over elements of the symmetric group S_n, with the multiplication

$$Y_{w_1} Y_{w_2} = Y_{w_1 w_2} \quad \text{if} \ l(w_1 w_2) = l(w_1) + l(w_2),$$
$$Y_{w_1} Y_{w_2} = 0 \quad \text{otherwise}, \tag{5}$$

where $l(w)$ is the standard length function on the symmetric group, the number of inversions created by w. The isomorphism is given by sending the generator Y_i of A_n to Y_s, where $s_i = (i, i+1)$ is the transposition of i and $i+1$.

In particular, A_n has dimension $n!$. Note that $A_0 = A_1 = \mathbb{Q}$. Introduce a trace map $\text{tr}_n : A_n \to \mathbb{Q}$ by

$$\text{tr}_n(Y_{w_0}) = 1 \quad \text{where} \ w_0 \text{ is the longest permutation, } w_0(i) = n - i,$$
$$\text{tr}_n(Y_w) = 0 \quad \text{if} \ w \neq w_0. \tag{6}$$
Proposition 2 The trace map tr_n is nondegenerate and makes A_n into a Frobenius algebra.

Proof: When we say that the trace map is nondegenerate we mean that for each $y \in A_n, y \neq 0$ we can find $y' \in A_n$ such that $\text{tr}_n(yy') = 1$. Algebras with a nondegenerate trace map are called Frobenius algebras. The basic properties of the length function in the symmetric group imply that tr_n is nondegenerate. □

For more information about Frobenius algebras we refer the reader to Yamagata [Y] and references therein.

Let B_1, B_2 be finite-dimensional algebras over a field k and N a finite-dimensional (B_1, B_2)-bimodule. Then $N^\ast = \text{Hom}_k(N, k)$ is naturally a (B_2, B_1)-bimodule. The duality functor \ast is a contravariant equivalence between categories of finite-dimensional (B_1, B_2)-bimodules and (B_2, B_1)-bimodules. When $B_2 = k$, the duality functor \ast is a contravariant equivalence between categories of left and right B_1-modules.

If B_1 has an automorphism ν, we can use it to twist the right action of B_1 on a bimodule N: for $y \in B_1$ and $t \in N$ the twisted left action of B_1 is $\nu(y)t$. We will denote the resulting bimodule by νN. An automorphism ν of B_2 allows to twist the right action of B_2 on N, we denote the resulting bimodule by νN.

Any algebra B is a bimodule over itself in the obvious way. Denote by ψ_n the involution of A_n which takes Y_i to Y_{n-i} and by A_n^ψ the algebra A_n as a bimodule over itself with the right action twisted by ψ_n. Let $1^\psi_n \in A_n^\psi$ be the image of $1 \in A_n$ under the isomorphism $A_n \cong A_n^\psi$ of right A_n-modules, so that $1^\psi_n Y_i = Y_{n-i} 1^\psi_n$.

Proposition 3 A_n^\ast-bimodules A_n^\ast and A_n^ψ are isomorphic.

Proof: For $w \in S_n$ let $Y_w^\ast \in A_n^\ast$ be the functional

$$Y_w^\ast(Y_\sigma) = \begin{cases} 1 & \text{if } \sigma w = w_0, \\ 0 & \text{otherwise} \end{cases} \quad (7)$$

It is easy to check that the map $A_n^\ast \to A_n^\psi$ given by $Y_w^\ast \mapsto Y_w 1^\psi_n$ is a bimodule isomorphism (use that $s_i w_0 = w_0 s_{n-i}$). □

Corollary 1 The algebra A_n is injective as a left and right A_n-module.

This follows from either of the last two propositions. □

Note that the trace tr_n is quasi-symmetric w.r.t. ψ_n:

$$\text{tr}_n(ab) = \text{tr}_n(\psi_n(b)a) \quad \text{for } a, b \in A_n. \quad (8)$$

In the terminology of Frobenius algebras, ψ_n is the Nakayama automorphism associated with tr_n (see [Y], Section 2.1).

2.3 Bimodules

Denote by χ_n the algebra map $A_n \to A_{n+1}$ which sends each Y_i to Y_i. Proposition [ii] implies that χ_n is injective. The inclusion $\chi_n : A_n \to A_{n+1}$ induces a left and right A_n-module structure on A_{n+1}. The left A_n module structure on A_{n+1} commutes with the right A_{n+1}-module structure on A_{n+1}, the latter coming from the right action of A_{n+1} on itself. Thus, A_{n+1} is an (A_n, A_{n+1})-bimodule in a natural way, and we denote this bimodule by D_{n+1}. Similary, we get an (A_{n+1}, A_n)-bimodule structure on A_{n+1} and denote this bimodule by X_n.

Proposition 4 Bimodules X_n and D_n are left and right projective.

Proof: Bimodule X_n is free of rank 1 as a left A_{n+1}-module and, thus, left projective. As a right A_n-module, it is free of rank $n + 1$ and spanned by $1, Y_n, Y_{n-1} Y_n, Y_{n-2} Y_{n-1} Y_n, \ldots, Y_1 Y_2 \ldots Y_n$ (since any element s of the symmetric group S_{n+1} admits a unique decomposition $s = s_i s_{i+1} \ldots s_n s'$ with $s' \in S_n$ and some $i, 1 \leq i \leq n + 1$). Hence, X_n is projective as a right A_n-module. The same argument works for D_n. □
Proposition 5 For each n, there is an isomorphism of A_n-bimodules

$$D_{n+1} \otimes_{A_{n+1}} X_n \cong A_n \oplus (X_{n-1} \otimes_{A_{n-1}} D_n),$$

where A_n is equipped with the standard bimodule structure.

Proof: The left hand side of (9) is isomorphic to A_{n+1}, considered as an A_n-bimodule via χ_n. The right hand side is the direct sum of A_n and $A_n \otimes_{A_{n-1}} A_n$. We have maps m_1, m_2 of A_n-bimodules

$$m_1 : A_n \to A_{n+1} \quad \text{and} \quad m_2 : A_n \otimes_{A_{n-1}} A_n \to A_{n+1}$$

which are uniquely determined by $m_1(1) = 1$ and $m_2(1 \otimes 1) = Y_n$. For $w \in S_{n+1}$, the element Y_w of A_{n+1} lies in $m_1(A_n)$ iff $w(n+1) = n+1$. If $w(n+1) \neq n+1$, we can write $w = yz$ for $y, z \in S_n$, so that $Y_w = m_2(Y_y \otimes Y_z)$. Therefore, m_1 and m_2 define an A_n-bimodule isomorphism

$$A_n \oplus (A_n \otimes_{A_{n-1}} A_n) \cong A_{n+1}. \quad \Box$$

Let $A = \bigoplus A_n$ be the direct sum of algebras A_n over all n. Algebra A does not have a unit, instead it has an infinite system of pairwise orthogonal idempotents $1 \in A_n, n \geq 0$.

An (A_n, A_k)-bimodule N is naturally a bimodule over the algebra A. Namely, for $x \in A_i, i \neq n$ we set $xN = 0$ and let $Nx = 0$ if $x \in A_i, i \neq k$. In this way, bimodules X_n and D_n as we sum over all n, give rise to A-bimodules $X = \bigoplus X_n$ and $D = \bigoplus D_n$. We can reformulate Proposition 5 as

Proposition 6 There is a natural isomorphism of A-bimodules

$$D \otimes_A X \cong A \oplus (X \otimes_A D). \quad (12)$$

This is, of course, a bimodule version of the Weyl algebra relation $\partial x = x \partial + 1$. The generators x and ∂ of the Weyl algebra become the bimodules X and D, the product in the Weyl algebra becomes the tensor product of bimodules, addition becomes the direct sum and 1 becomes the identity bimodule A.

In the rest of this section we continue in the similar fashion, interpreting other structures of the Weyl algebra and its polynomial representation in the framework of nilCoxeter algebras.

2.4 Categories and functors

Let C_n be the category of finite-dimensional unital left A_n-modules, and let $C = \bigoplus C_n$. The category C can be viewed as the full subcategory of the category of finite-dimensional left A-modules, which consists of A-modules N with $AN = N$ and $A_nN = 0$ for large enough n.

An A-bimodule T is called small if it preserves the category C, i.e., for any $N \in C$, the module $T \otimes_A N$ is in C. Denote by F_T the functor of tensoring with T. We can reformulate Proposition 5 as saying that there is a canonical isomorphism of functors

$$F_D F_X \cong F_X F_D \oplus \text{Id}_C \quad (13)$$

The Grothendieck group $K(\mathcal{U})$ of an abelian category \mathcal{U} is the group generated by symbols $[N]$ for all objects N of \mathcal{U} subject to relations $[N_2] = [N_1] + [N_3]$ whenever there is a short exact sequence $0 \to N_1 \to N_2 \to N_3 \to 0$. The Grothendieck group of C_n is isomorphic to \mathbb{Z} and generated by $[L_n]$, where L_n is the simple A_n-module (L_n is uniquely defined, up to an isomorphism). We will identify $K(C_n)$ with the abelian subgroup of R generated by $x^n/n!$, by sending $[L_n]$ to $x^n/n!$.

Since $K(C) = \bigoplus_{n \geq 0} K(C_n)$, the Grothendieck group of C is canonically identified with the abelian group R, so that from now on we will consider $[N]$, for any object N of C, as an element of R. The indecomposable projective module in C_n (which we denote P_n) is mapped to x^n:

$$[P_n] = x^n, \quad [L_n] = \frac{x^n}{n!}. \quad (14)$$
We interpret the bilinear form $(\cdot): R' \times R \to \mathbb{Z}$ via the Hom bifunctor: if P is a projective object of \mathcal{C} and N is any object, then
\[
\dim_{\mathbb{Q}}(\text{Hom}_{\mathcal{C}}(P, N)) = ([P], [N]) \tag{15}
\]
Note that we need P to be projective, otherwise the dimension function on the left hand side will not be additive in $[N]$. Observe also that the form (\cdot) takes values in \mathbb{Z} when restricted to $R' \times R$, but is fractional when restricted to $R \times R$.

Bimodules X and D are right projective, so that the functors of tensoring with them are exact and induce maps x and ∂ of the Grothendieck group $R = K(\mathcal{C})$:
\[
[X \otimes_A N] = x[N], \quad [D \otimes_A N] = \partial[N] \quad \text{for} \quad N \in \text{Ob} \, \mathcal{C}. \tag{16}
\]

The functor of tensoring with X_n is the induction functor from A_n-modules to A_{n+1}-modules, while tensoring with D_{n+1} is the restriction functor from A_{n+1}-modules to A_n-modules. Since the induction is left adjoint to the restriction, we conclude that F_{X_n} is left adjoint to $F_{D_{n+1}}$ and F_X is left adjoint to F_D, i.e., there is a bifunctor isomorphism
\[
\text{Hom}_{\mathcal{C}}(F_X ?, ?) \cong \text{Hom}_{\mathcal{C}}(?, F_D ?). \tag{17}
\]

This isomorphism can be interpreted as the lift of the equality $(xa, b) = (a, \partial b)$ for $a, b \in R_\mathbb{Q}$, since we just established that the Hom-bifunctor lifts the bilinear form (\cdot) (formula (13)).

Note that $(\partial a, b) = (a, zb)$, so that a natural guess says that F_X is not only left but also right adjoint to F_D. This is false, but not far from the truth. Consider the bimodule A_n^ψ, which was defined in Section 2.2. Denote by A^ψ the A-bimodule which is the direct sum of A_n^ψ over all n, and by $\Psi: \mathcal{C} \to \mathcal{C}$ the functor F_{A^ψ} of tensoring with A^ψ. Since ψ_n is an involution, $\Psi^2 \cong \text{Id}_{\mathcal{C}}$.

Proposition 7 The functor F_X is right adjoint to $\Psi F_D \Psi$.

Proof: We use the following

Lemma 1 Let B_1, B_2 be Frobenius algebras over a field k and ν_1, ν_2 be Nakayama automorphisms of B_1, B_2. Suppose that N is a finite-dimensional (B_1, B_2)-bimodule which is projective as a left B_1-module and as a right B_2-module. Then the functor
\[
N \otimes_{B_2} \, ? : B_2\text{-mod} \to B_1\text{-mod} \tag{18}
\]
of tensoring with N has the right adjoint functor
\[
(N^*)_{\nu_1} \otimes_{B_1} \, ? : B_1\text{-mod} \to B_2\text{-mod} \tag{19}
\]
(here $(N^*)_{\nu_1}$ is the dual of N, with the right B_1-action twisted by ν_1) and the left adjoint functor
\[
\nu_2^{-1}(N^*) \otimes_{B_1} \, ? : B_1\text{-mod} \to B_2\text{-mod} \tag{20}
\]

In the case when B_1 and B_2 are symmetric algebras (i.e. ν_1, ν_2 are identity maps), rather than just Frobenius algebras, this lemma is proved in Rickard [R], Corollary 9.2.4. The same proof works for Frobenius algebras. □

Applying this lemma to the (A_{n+1}, A_n)-bimodule X_n proves the proposition (the Nakayama automorphism of A_n is ψ_n, hence the conjugation by Ψ in the second adjointness isomorphism). □

The algebra W has a \mathbb{Q}-vector space basis $\{x^m \partial^n\}$ for $n, m \geq 0$. We will call this basis the canonical basis of W. A product of two elements of the canonical basis decomposes as a linear combination of canonical basis vectors with nonnegative integral coefficients. This basis can be interpreted in terms of indecomposable bimodules. Namely, the (A, A)-bimodule $X^\otimes m \otimes D^\otimes n$ (all tensor products are over A), which in our theory is naturally associated to $x^m \partial^n$, is the direct sum of (A_{m+k-n}, A_k)-bimodules $A_{m+k-n} \otimes_{A_{k-n}} A_k$, over all $k \geq n$, and we have

Proposition 8 The (A_{m+k-n}, A_k)-bimodule $A_{m+k-n} \otimes_{A_{k-n}} A_k$ is indecomposable.

Proof: An exercise. □
2.5 Contravariant duality

Denote by \(C_n \) the category of finite-dimensional right \(A_n \)-modules and by \(C^r \) the direct sum of categories \(C_n \) over all \(n \geq 0 \). The duality functor \(\mathcal{N}^* = \text{Hom}(N,k) \), defined in Section 2.2 for bimodules, will be considered in this section as a contravariant functor from \(C \) to \(C^r \).

Let \(u \) be the antiinvolution of \(A_n \) which takes \(Y_i \) to \(Y_i \). It induces an equivalence of categories of left and right \(A_n \)-modules. As we sum over all \(n \), we obtain an equivalence of categories \(U : C^r \to C \).

The functor \(\Omega = U^* \) is a contravariant equivalence \(C \to C \).

Proposition 9 There are natural isomorphisms of functors

\[
\begin{align*}
\Omega^2 & \cong \text{Id}_C \\
\Omega\Phi & \cong \Phi\Omega \\
\Omega\Phi F_X & \cong F_X\Phi \\
\Omega F_D & \cong F_D\Omega
\end{align*}
\]

Proof \(\Omega^2 \cong \text{Id}_C \), since \(u \) is an antiinvolution, and \(\Omega\Phi \cong \Phi\Omega \), since \(u\psi_n = \psi_n u \). Isomorphism \(\Phi \) is a corollary of

Lemma 2

1. There is an isomorphism of bimodules

\[
X^*_n \cong D_{n+1} \otimes A_{n+1} A^\psi_{n+1}
\]

2. There are isomorphisms, functorial in \(N \in C_n \),

\[
\begin{align*}
(A^\psi_n \otimes A_n N)^* & \cong N^* \otimes A_n A^\psi_n \\
(X_n \otimes A_n N)^* & \cong N^* \otimes A_n \tilde{D}_{n+1},
\end{align*}
\]

where \(\tilde{D}_{n+1} \) is the \((A_n, A_{n+1}) \)-bimodule \(A^\psi_n \otimes A_n D_{n+1} \otimes A_{n+1} A^\psi_n \).

3. There are functorial in \(N \in C_n^r \) isomorphisms

\[
U(N \otimes A_n D_{n+1}) \cong X_n \otimes A_n U(N), \quad U(N \otimes A_n A^\psi_n) \cong A^\psi_n \otimes A_n U(N).
\]

Statement 1 of the lemma follows from Proposition 3. Let us now prove (27). If \(N = P_n \), the indecomposable projective \(A_n \)-module, the isomorphism (27) follows from (22). Moreover, (25) also implies that (27) is functorial relative to \(A_n \)-module maps \(P_n \to P_n \) (here \(N = P_n \)). For an arbitrary \(N \), represent \(N \) as the cokernel of a map of projective modules: \(P_n^{\otimes a} \to P_n^{\otimes b} \to N \to 0 \). Applying the functors on the left and right hand sides of (27) to each term of this exact sequence, and using the exactness of tensoring with \(X_n \) and \(\tilde{D}_{n+1} \), we conclude that (27) holds for any \(N \), functorially in \(N \). Other statements of the lemma can be proved in a similar or easier fashion. \(\square \)

Armed with Lemma 2, we compute, for \(N \in C \),

\[
\Omega\Phi F_X(N) = \Psi\Omega(X \otimes N) = \Psi U(N^* \otimes \tilde{D}) = \Psi^2 X \otimes (\Psi U(N^*)) = F_X\Psi \Omega(N).
\]

Isomorphism (24) is adjoint to (23). \(\square \)

2.6 The integral

We can next ask about the meaning of the indefinite integral in our model. The formula

\[
\int x^n = \frac{x^{n+1}}{n+1}
\]

suggests to look for an exact functor from \(C_n \) to \(C_{n+1} \) which takes the projective module \(P_n \) to a module which is \(n + 1 \) times “smaller” than the projective module \(P_{n+1} \) (since in our correspondence the image of the projective module \(P_i \) in the ring of polynomials is \(x^i \)). Let \(I_n \) be the \((A_{n+1}, A_n)\)-bimodule, which is
isomorphic to \(A_n \) as the right \(A_n \)-module, and the left \(A_{n+1} \)-action is via the homomorphism of algebras \(t_{n+1} : A_{n+1} \to A_n, t_{n+1}(Y_i) = Y_i \) for \(i < n \) and \(t_{n+1}(Y_n) = 0 \). Since \(I_n \) is projective as a right \(A_n \)-module, the functor \(F_{I_n} : C_n \to C_{n+1} \) of tensoring an \(A_n \)-module with \(I_n \) is exact. Moreover, \(F_{I_n} \) takes the indecomposable projective module \(P_n \) to a module of dimension \(nl \), while the projective generator \(P_{n+1} \) of \(C_{n+1} \) has dimension \((n + 1)! \), so that the desired relation holds: \([I_n \otimes_{A_n} N] = \int [N] \) for \(N \in \text{Ob}(C_n) \). To formulate this relation without the index \(n \), we form \(I = \bigoplus_{n=0}^{\infty} I_n \), the \(A \)-bimodule which is the direct sum of \(I_n \) over all \(n \). Then we have

\[
[I \otimes_A N] = \int [N] \quad \text{for all} \quad N \in \text{Ob}C. \tag{31}
\]

The following result is obvious:

Proposition 10
There are bimodule isomorphisms \(D_{n+1} \otimes_{A_{n+1}} I_n \cong A_n \) and \(D \otimes_A I \cong A \).

This isomorphism can be considered as a categorification of the formula \(d \int f(x) = f(x) \), for a polynomial function \(f(x) \). On the other hand, we don’t get to categorify the formula \(\int df(x) = f(x) \), for \(I \otimes_A D \) is not isomorphic to \(A \) as an \(A \)-bimodule.

2.7 Multiplication and the Leibniz rule

Let \(\gamma_{n,m} \) be the algebra homomorphism \(A_n \otimes A_m \to A_{n+m} \) given by

\[
\gamma_{n,m}(Y_i \otimes 1) = Y_i, \quad \gamma_{n,m}(1 \otimes Y_i) = Y_{n+i}. \tag{32}
\]

\(\gamma_{n,m} \) is injective and induces a bifunctor, denoted \(J_{n,m} \), from the product \(C_n \times C_m \) of categories \(C_n \) and \(C_m \) to \(C_{n+m} \):

\[
J_{n,m}(N_1, N_2) = A_{n+m} \otimes_{(A_n \otimes A_m)} (N_1 \otimes N_2) \quad \text{for} \quad N_1 \in C_n, N_2 \in C_m. \tag{33}
\]

Denote by \(J \) the bifunctor \(C \times C \to C \), which is the direct sum of \(J_{n,m} \) over all \(n, m \geq 0 \).

Proposition 11
1. Bifunctor \(J \) is biexact.

2. There is a functorial isomorphism \(F_D \circ J(N_1, N_2) \cong J(N_1, F_D N_2) \otimes J(F_D N_1, N_2) \), satisfying the natural consistency relation for the decomposition of \(F_D \circ J(N_1, N_2, N_3) \).

We omit the proof. \(\square \)

Since \(J \) is biexact, it induces a map of Grothendieck groups \(K(C) \times K(C) \to K(C) \), which is just the multiplication in the ring of polynomials. Part 2 of the proposition is a functor version of the Leibniz rule \(\partial(ab) = (\partial a)b + a(\partial b) \).

3 The bialgebra-category structure of \(C \)

3.1 Multiplication and comultiplication

The algebra of polynomials \(R_Q = \mathbb{Q}[x] \) has a comultiplication \(c(x) = x \otimes 1 + 1 \otimes x \) which makes \(R_Q \) into a bialgebra. The subring \(R \) of \(R_Q \) is stable under the comultiplication and has a structure of a bialgebra over \(\mathbb{Z} \). We will explains in detail how to lift the bialgebra structure from \(R \) to the category \(C \).

Let \(n = (n_1, \ldots, n_i) \) be an ordered \(i \)-tuple of nonnegative integers. Let \(A_n = A_{n_1} \otimes \cdots \otimes A_{n_i} \) and denote by \(C_n \) the category of finite dimensional left \(A_n \)-modules. Let \(C^{\otimes i} \) the direct sum of categories \(C_n \) over all \(i \)-tuples \(n \).

Algebra homomorphisms \(\gamma_{n,m} : A_n \otimes A_m \to A_{n+m} \), summed over all \(n \) and \(m \), define induction and restriction functors:

\[
M : C^{\otimes 2} \to C, \quad \Delta : C \to C^{\otimes 2}. \tag{34}
\]
Note that the Grothendieck group of $C^{\otimes i}$ is naturally isomorphic to the i-th tensor power of $K(C)$. The symmetric group S_i acts on the set of i-tuples by permutations of terms. This action induces an action of S_i on the category $C^{\otimes i}$. We denote by $S_{j,j+1}$ the action of the transposition $(j,j+1)$.

If a functor $G_j : C^{\otimes k} \to C^{\otimes k}$, $k = 1, 2$ is given by tensoring with a bimodule W_k, denote by $G_1 \otimes G_2$ the functor $C^{\otimes (1+1+2)} \to C^{\otimes (1+2+2)}$ of tensoring with the bimodule $W_1 \otimes Q W_2$.

Proposition 12

1. M is left adjoint to Δ and right adjoint to $S_{12} \Delta$.

2. There are functor isomorphisms

$$MS_{12} \cong \Psi M \Psi \otimes^2$$

$$S_{12} \Delta \cong \Psi^2 \Delta \Psi$$

3. Functors M and Δ are exact and on the Grothendieck group descend to the multiplication and comultiplication in the bialgebra $K(C)$.

Proof Part 2 of the proposition follows from an obvious computation with bimodules. Next, M is induction and Δ is restriction, thus, M is left adjoint to Δ. A_{n+m} is projective as left or right $A_n \otimes A_m$-module, so we can apply Lemma 3 and conclude that M is right adjoint to $\Psi \otimes^2 \Delta \Psi$. Together with the isomorphism (36), this implies that M is right adjoint to $S_{12} \Delta$. Since M and Δ each have left and right adjoints, they are exact. □

Proposition 13

1. There are functor isomorphisms

$$M(M \otimes \text{Id}) \cong M(\text{Id} \otimes M),$$

$$(\Delta \otimes \text{Id}) \Delta \cong (\text{Id} \otimes \Delta) \Delta,$$

$$\Delta M \cong M \otimes^2 S_{23} \Delta \otimes^2.$$

Proof Functors $M(M \otimes \text{Id})$ and $M(\text{Id} \otimes M)$, restricted to $C_n \otimes C_m \otimes C_k$, are canonically isomorphic to the functor of tensoring with A_{n+m+k}, considered as a left A_{n+m+k}-module and a right $A_n \otimes A_m \otimes A_k$-module. Hence the functor isomorphism (37). The same argument works for (38). To prove (39), note that both sides of it decompose as direct sums of functors $C_n \otimes C_m \to C_k \otimes C_l$, over all quadruples (n, m, k, l) such that $n + m = k + l$. The left hand side of (39), as a functor $C_n \otimes C_m \to C_k \otimes C_l$, is naturally isomorphic to the functor of tensoring with A_{n+m}, considered as a left $A_k \otimes A_l$ and a right $A_n \otimes A_m$-module, via algebra homomorphisms $\gamma_{k,l}$ and $\gamma_{n,m}$.

Lemma 3 Let w_1, \ldots, w_p, where $p = \min(n, m, k, l)$, be minimal length representatives of double cosets $S_k \times S_l \setminus S_{k+l} \cap S_n \times S_m$. Then A_{n+m} is isomorphic, as an $(A_k \otimes A_l, A_n \otimes A_m)$-bimodule, to the direct sum of subbimodules of A_{n+m}, spanned by Y_{w_1}, \ldots, Y_{w_p}.

We omit the proof of the lemma. □

The right hand side of (39), as a functor $C_n \otimes C_m \to C_k \otimes C_l$, is isomorphic to the direct sum (over all admissible r) of the following functors: restrict from $A_n \otimes A_m$ to $A_r \otimes A_{n-r} \otimes A_{k-r} \otimes A_{l+r-n}$ and then induce to $A_k \otimes A_l$. Denote the corresponding $(A_k \otimes A_l, A_n \otimes A_m)$-bimodule by B_r, it has a canonical generator that we will call g_r. To r there is associated a minimal length representative, $w(r)$, of the double cosets $S_k \times S_l \setminus S_{k+l} \cap S_n \times S_m$. Namely, $w(r)$ is the permutation that preserves the first r elements of the set $\{1, 2, \ldots, n+m\}$, shifts the next $n-r$ elements by $k-r$ to the right, shift the following $k-r$ elements by $n-r$ to the left and preserves the last $l+r-n$ elements. Sending the generator g_r of this bimodule to $Y_{w(r)} \in A_{n+m}$ and summing over all admissible r gives us an isomorphism of bimodules $\oplus B_r \cong A_{n+m}$.

Finally, summing over all (n, m, k, l) with $n + m = k + l$, we get a functor isomorphism (39). □

8
3.2 Coherence relations

Bialgebra-categories first appeared in the work of Crane and Frenkel [CF]. Crane and Frenkel argued that, while Hopf algebras produce invariants of 3-manifolds, quantum invariants of 4-manifolds will be governed by Hopf categories. In Hopf categories multiplication and comultiplication operations become functors, functor isomorphisms take place of (co)associativity of (co)multiplication and of the consistency relation between multiplication and comultiplication. Crane and Frenkel imposed 4 coherence relations on these functor isomorphisms. These relations pop up in our simple example:

Proposition 14 Isomorphisms (37), (38) and (39) satisfy the coherence relations of Crane and Frenkel for bialgebra-categories.

The coherence relation for the multiplication can be viewed as a cube, depicted in Figure 1.

![Figure 1](image)

In the vertices of the cube we have placed categories, arrows are functors and 6 square facets of the cube are functor isomorphisms. For simplicity we write 1 for the identity functor Id. Any path leading from $C^\otimes 4$ to C defines a functor, and any square facet defines an isomorphism of functors. Starting with the functor corresponding to a path, we can apply all 6 isomorphisms and return to the functor we started with. The coherence relation requires this natural transformation of functors to be the identity. This relation is obvious in our case. Note that the coherence relation for the multiplication is just the coherence relation for the tensor product functor in the monoidal categories, also known as the pentagon associativity (see Mac Lane [M], for instance).

The coherence relation for the comultiplication is obtained from Figure 1 by reversing all arrows and changing all appearances of M into Δ. This coherence holds in our category for obvious reasons too. Moreover, if we start from the multiplication coherence relation and change all functors and functor isomorphisms to their right adjoints, we get the coherence relation for the comultiplication. Or, if we start from the multiplication coherence relation and pass to left adjoints, we again get the comultiplication coherence relation (after canceling out all appearances of permutations in left adjoints, since the left adjoint of M is $S_{12}\Delta$).

There are two coherence relations that contain both multiplication and comultiplication. One of them is depicted in Figure 2. To get the other one, change Figure 2 in the following way: exchange M with Δ everywhere, reverse the direction of all arrows and invert the order of all compositions of functors, i.e., $M^2 \circ S_{23}$ should become $S_{23} \circ \Delta^2$.

9
In our category C functors M and Δ have nice adjointness properties, and these two coherence relations are equivalent via adjointness. Figure 2 coherence cube in the category C follows from a simple computation with double cosets $S_k \times S_l \setminus S_{n+m+p}/S_m \times S_p \times S_p$ for $k + l = n + m + p$. We omit the details. □

3.3 Other structures

Commutativity and cocommutativity: The bialgebra R is commutative and cocommutative. The bialgebra-category C is not commutative or cocommutative, in the sense that MS_{12} is not isomorphic to M and $S_{12}\Delta$ is not isomorphic to Δ. Instead, we have isomorphisms (35) and (36), which say that MS_{12}, resp. $S_{12}\Delta$ is isomorphic to M, resp. Δ, twisted by the involution functor Ψ. We will refer to these properties of M and Δ as quasi-commutativity and quasi-cocommutativity, respectively. What are the coherence relations for quasi-commutativity and quasi-cocommutativity? First of all, the usual coherence cube for the associativity and commutativity constraints in symmetric monoidal categories can be twisted by Ψ into the one, depicted in Figure 3 (where Ψ^2 denotes $\Psi \otimes \Psi$, etc.)
To obtain the coherence relation between the quasi-cocommutativity and coassociativity isomorphisms, change the direction of all arrows in Figure 3, substitute Δ for M and invert the order of all compositions. Finally, the Figure 4 below shows a coherence cube for the “mixed” quasi-(co)commutativity.

![Figure 4]

Proposition 15 These 3 coherence relations hold in the category C.

Unit and counit: Let \mathbb{Q}-vect be the category of finite-dimensional \mathbb{Q}-vector spaces. The functor $\iota : \mathbb{Q}$-vect $\to C$ which takes a vector space V to itself, considered as a module over $A_0 = \mathbb{Q}$, plays the role of the unit in the bialgebra-category C. The functor $\epsilon : C \to \mathbb{Q}$-vect which takes C_n to 0 for $n > 0$ and $V \in C_0$ to $V \in \mathbb{Q}$-vect is the counit functor.

Antipode: So far we referred to C as a bialgebra-category, rather than a Hopf category, and did not say a word about the antipode. The antipode s in the Hopf algebra R is given by $s(x) = -x$. Clearly, the antipode cannot be lifted to any exact functor in C, since it does not have positive coefficients in the basis of simple modules. This negativity is not a serious obstacle, though. We can pass to the bounded derived category $D^b(C)$ of C, derive the functors M and Δ and define the antipode functor $T : D^b(C) \to D^b(C)$ as the composition of a shift by $[n]$ (for C_n) in the derived category and Ψ,

$$T(N) = \Psi N[n], \text{ for } N \in D^b(C_n).$$

(40)

On the Grothendieck group level Ψ does nothing, but it enables us to lift the identity $s(ab) = s(b)s(a)$ to the isomorphism of functors $TM \cong MT \otimes S_{12}$. But we are in for a bigger trouble: there is no functor isomorphism

$$M(T \otimes \text{Id})\Delta \cong \iota \epsilon,$$

(41)

which any self-respecting Hopf category must have. No easy way to save the day by modifying the antipode functor is in sight. The problem lies with our childish definition of tensor powers of C, as the direct sum of many little blocks. One conjectural remedy would be to glue these little pieces into a more sophisticated construct, which should retain all the nice bialgebra-category properties of C and should also have an antipode functor with the isomorphism $[\Pi]$ and coherence relations for it.
4 Miscellaneous

4.1 Graded bimodules and a categorification of the quantum Weyl algebra

The algebra A_n is graded, with each Y_i in degree 1, and the Poincare polynomial of A_n is $[n]!$ where $[n]! = [1] \cdots [n]$ and $[i] = 1 + q + \cdots + q^{i-1}$. Let \mathcal{C}_n be the category of finite-dimensional graded left A_n-modules and $\mathcal{C} = \bigoplus_{n \geq 0} \mathcal{C}_n$. Let $\{i\}$ be the functor of shifting the grading up by i. Bimodules X and D over A are graded, tensoring with these bimodules over \mathbb{A} give us functors, denoted F_X, F_D, in the category \mathcal{C}.

Proposition 16 There is a functor isomorphism

$$F_{n}E_{X} \cong E_{X}E_{D}(1) \oplus \text{Id}$$

We define the quantum Weyl algebra as the algebra over $\mathbb{Z}[q,q^{-1}]$, generated by x and ∂, with relation $\partial x = qx\partial + 1$. Let R be the module over the quantum Weyl algebra, spanned over $\mathbb{Z}[q,q^{-1}]$ by $[n]!$, with the action $x \cdot x^i = x^{i+1}, \partial x^i = [i]x^{i-1}$.

The Grothendieck group $K(\mathcal{C})$ of \mathcal{C} is a free $\mathbb{Z}[q,q^{-1}]$-module, spanned by the images of simple modules L_n. The $\mathbb{Z}[q,q^{-1}]$-module structure comes from the grading, $[N\{i\}] = q^i[N]$, for a graded module N. Thus,

$$[L_n] = \frac{x^n}{[n]!}, \quad [P_n] = x^n.$$

As a result, $K(\mathcal{C})$ can be naturally identified with \overline{R}. All other structures described in Section 3 have their graded versions. We skip the details.

The product $M : \mathcal{C} \otimes \mathcal{C} \to \mathcal{C}$ is again defined as the induction functor, while the coproduct Δ, considered as a functor from \mathcal{C}_n to $\bigoplus_{0 \leq k \leq n} \mathcal{C}_k \otimes \mathcal{C}_{n-k}$, is the restriction from A_n to $A_k \otimes A_{n-k}$, composed with the shift in the grading up by $n-k$. On the Grothendieck group, the coproduct functor acts as the comultiplication $\Delta(x) = x \otimes 1 + q \otimes x$. Functor isomorphisms of Proposition 16 hold in the graded case as well and all results of Section 3 generalize easily to the graded case.

4.2 Representations of symmetric groups

The bialgebra-category \mathcal{C} is reminiscent of a similar structure for symmetric groups, discovered by Geissinger [G], who observed that induction and restriction functors associated to inclusions of symmetric groups $S_n \times S_m \hookrightarrow S_{n+m}$ induce a bialgebra structure on the direct sum of Grothendieck groups of the categories of S_n-modules, over all n. Geissinger [G] and Zelevinsky [Z] consistently derived many classical results on representations of symmetric groups from this Hopf algebra structure. Zelevinsky also generalized this construction from symmetric groups to wreath products of symmetric groups with finite groups and to $GL(n, \mathbb{F})$, for a finite field \mathbb{F}. Although Geissinger and Zelevinsky work mostly with Grothendieck groups, their results can be immediately reformulated in terms of categories. In particular, induction and restriction define a bialgebra-category structure on the category $\bigoplus_{n \geq 0} k[S_n]$-mod, where k is a field and $k[S_n]$-mod the category of finite-dimensional modules over the group algebra of S_n. There are several other interesting examples of bialgebra-categories that naturally appear in representation theory. We will discuss them elsewhere.

4.3 Nil wreath products

Let B be an algebra over \mathbb{Q}. By $A_n(B)$ we denote the semidirect product of A_n and $B^\otimes n$, with the multiplication $Y_w b_1 \otimes \cdots \otimes b_n = b_{w(1)} \otimes \cdots \otimes b_{w(n)} Y_w$ for $w \in S_n$ and $b_i \in B$.

Proposition 17 If B is a Frobenius algebra then $A_n(B)$ is also Frobenius.

If $B = \mathbb{Q}[z]/\{z^k = 0\}$, denote $A_n(B)$ by $A_n(k)$. Let $\mathcal{C}_n(k)$ be the category of finite dimensional $A_n(k)$-modules and $\mathcal{C}(k) = \bigoplus_{n \geq 0} \mathcal{C}_n(k)$. Inclusions $A_n(k) \hookrightarrow A_{n+1}(k)$ induce induction and restriction functors between categories $\mathcal{C}_n(k)$ and $\mathcal{C}_{n+1}(k)$. Denote by $F_{X,k}$, resp. $F_{D,k}$, the direct sum of these induction, resp. restriction functors over all n.

12
Proposition 18 There is a functor isomorphism $F_{D,k}F_{X,k} \cong F_{X,k}F_{D,k} \oplus (\text{Id}^\otimes k)$.

Various constructions and results of previous sections, including adjointness isomorphisms and bialgebra-category structures, can be generalized to algebras $A_n(k)$. These algebras are nilpotent counterparts of the wreath products of symmetric groups with cyclic groups and of Ariki-Koike cyclotomic Hecke algebras [AK]. For instance, the nilCoxeter and Hecke algebras belong to a two-parameter family of algebras with generators T_1, \ldots, T_{n-1} and relations $T_i^2 = aT_i + b, T_iT_j = T_jT_i$ for $|i - j| > 1$ and $T_iT_{i+1}T_i = T_{i+1}T_iT_{i+1}$ (specializing $a = b = 0$, resp. $a = 1 - q, b = q$, gets us the nilCoxeter algebra, resp. the Hecke algebra).

From this point of view, our categorification of the Weyl algebra action on polynomials is a toy degeneration of Ariki’s magnificent realization [A] of irreducible highest weight modules over the affine Lie algebra $\hat{\mathfrak{sl}}_n$ as Grothendieck groups of categories of modules over cyclotomic Hecke algebras.

References

[A] S.Ariki, On the decomposition numbers of the Hecke algebra of $G(m,1,n)$, J. Math. Kyoto Univ. 36 (1996), no. 4, 789-808.

[AK] S.Ariki, K.Koike, A Hecke algebra of $(\mathbb{Z}/r\mathbb{Z})\wr S_n$ and construction of its irreducible representations, Adv. Math. 106 (1994), no.2, 216-243.

[BGG] J.N.Bernstein, I.M.Gelfand and S.I.Gelfand, Schubert cells and cohomology of the spaces G/P, Russian Math. Surveys 28 (1973), 1-26.

[CF] L.Crane, I.B.Frenkel, Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases, J. Math. Phys. 35, (1994), 5136-5154.

[FS] S.Fomin and R.P.Stanley, Schubert polynomials and the nilCoxeter algebra, Advances in Math. 103, (1994), 196-207.

[G] L.Geissinger, Hopf algebras of symmetric functions and class functions, in Combinatoire et représentation du groupe symétrique, Lecture Notes in Math. 579, (1977), 168-181.

[KK] B.Kostant and S.Kumar, The nil Hecke ring and cohomology of G/P for a Kac-Moody group G, Advances in Math. 62, 3 (1986) 187-237.

[LS] A.Lascoux and M.-P. Schützenberger, Fonctorialité des polynômes de Schubert, in Invariant Theory, Contemporary Math. 88, AMS (1989), 585-598.

[M] S.Mac Lane, Categories for the Working Mathematician, Springer-Verlag, 1971.

[Mc] I.G.Macdonald, Notes on Schubert Polynomials, Publications du LCIM, vol 6, 1991.

[R] J.Rickard, Triangulated categories in the modular representation theory of finite groups, in Derived Equivalences for Group Rings, by S.König and A.Zimmermann, Lecture Notes in Math. 1685, (1998), 177-198.

[Y] K.Yamagata, Frobenius algebras, in Handbook of Algebra vol.1, (1996), 841-887.

[Z] A.Zelevinsky, Representations of Finite Classical Groups, Lecture Notes in Math. 869, (1981).