An odd \([1, b]\)-factor in regular graphs from eigenvalues

Sungeun Kim* Suil O† Jihwan Park‡ and Hyo Ree§

March 28, 2021

Abstract

An odd \([1, b]\)-factor of a graph \(G\) is a spanning subgraph \(H\) such that for each vertex \(v \in V(G)\), \(d_H(v)\) is odd and \(1 \leq d_H(v) \leq b\). Let \(\lambda_3(G)\) be the third largest eigenvalue of the adjacency matrix of \(G\). For positive integers \(r \geq 3\) and even \(n\), Lu, Wu, and Yang [10] proved a lower bound for \(\lambda_3(G)\) in an \(n\)-vertex \(r\)-regular graph \(G\) to guarantee the existence of an odd \([1, b]\)-factor in \(G\). In this paper, we improve the bound; it is sharp for every \(r\).

Keywords: Odd \([1, b]\)-factor, eigenvalues

AMS subject classification 2010: 05C50, 05C70

1 Introduction

In this paper we deal only with finite and undirected graphs without loops or multiple edges. The adjacency matrix \(A(G)\) of \(G\) is the \(n\)-by-\(n\) matrix in which entry \(a_{i,j}\) is 1 or 0 according to whether \(v_i\) and \(v_j\) are adjacent or not, where \(V(G) = \{v_1, \ldots, v_n\}\). The eigenvalues of \(G\) are the eigenvalues of its adjacency matrix \(A(G)\). Let \(\lambda_1(G), \ldots, \lambda_n(G)\) be its eigenvalues in nonincreasing order. Note that the spectral radius of \(G\), written \(\rho(G)\) equals \(\lambda_1(G)\).

The degree of a vertex \(v\) in \(V(G)\), written \(d_G(v)\), is the number of vertices adjacent to \(v\). An odd (or even) \([a, b]\)-factor of a graph \(G\) is a spanning subgraph \(H\) of \(G\) such that for each vertex \(v \in V(G)\), \(d_H(v)\) is odd (or even) and \(a \leq d_H(v) \leq b\); an \([a, a]\)-factor is called the \(a\)-factor. For a positive integer \(r\), a graph is \(r\)-regular if every vertex has the same degree \(r\). Note that \(\lambda_1(G) = r\) if \(G\) is \(r\)-regular. Many researchers proved the conditions for a graph

*Incheon Academy of Science and Arts, Korea, Incheon, 22009, tjddms9282@gmail.com
†Department of Applied Mathematics and Statistics, The State University of New York, Korea, Incheon, 21985, suil.o@sunykorea.ac.kr. Research supported by NRF-2017R1D1A1B03031758 and by NRF-2018K2A9A2A06020345
‡Incheon Academy of Science and Arts, Korea, Incheon, 22009, bjihwan37@gmail.com
§Incheon Academy of Science and Arts, Korea, Incheon, 22009, reehyo2234@naver.com
to have an a-factor, or (even or odd) $[a, b]$-factor. (See [2, 9, 11, 12]) Brouwer and Haemers started to investiage the relations between eigenvalues and the existence of 1-factor.

In fact, they [5] proved that if G is an r-regular graph without an 1-factor, then

$$\lambda_3(G) > \begin{cases}
 r - 1 + \frac{3}{r+1} & \text{if } r \text{ is even}, \\
 r - 1 + \frac{3}{r+2} & \text{if } r \text{ is odd}
\end{cases}$$

by using Tuttes 1-Factor Theorem [13], which is a special case of Berge-Tutte Formula [3]. Cioabă, Gregory, and Haemers [6] improved their bound and in fac t proved that if G is an r-regular graph without an 1-factor, then

$$\lambda_3(G) \geq \begin{cases}
 \theta = 2.85577... & \text{if } r = 3, \\
 \frac{1}{2}(r - 2 + \sqrt{r^2 + 12}) & \text{if } r \geq 4 \text{ is even}, \\
 \frac{1}{2}(r - 3 + \sqrt{(r + 1)^2 + 16}) & \text{if } r \geq 5 \text{ is odd},
\end{cases}$$

where θ is the largest root of $x^3 - x^2 - 6x + 2 = 0$. More generally, O and Cioabă [7] determined connections between the eigenvalues of a t-edge connected r-regular graph and its matching number when $1 \leq t \leq r - 2$. In 2010, Lu, Wu, and Yang [10] proved that if an r-regular graph G with even number of vertices has no odd $[1, b]$-factor, then

$$\lambda_3(G) > \begin{cases}
 r - \left\lfloor \frac{b}{r+1} \right\rfloor - 1 + \frac{1}{(r+1)(r+2)} & \text{if } r \text{ is even and } \left\lfloor \frac{b}{r} \right\rfloor \text{ is even}, \\
 r - \left\lfloor \frac{b}{r+1} \right\rfloor + 1 & \text{if } r \text{ is even and } \left\lfloor \frac{b}{r} \right\rfloor \text{ is odd}, \\
 r - \left\lfloor \frac{b}{r+1} \right\rfloor - 1 & \text{if } r \text{ is odd and } \left\lfloor \frac{b}{r} \right\rfloor \text{ is even}, \\
 r - \left\lfloor \frac{b}{r+1} \right\rfloor - 1 & \text{if } r \text{ is odd and } \left\lfloor \frac{b}{r} \right\rfloor \text{ is odd}.
\end{cases}$$

To prove the above bounds in the paper [10], they used Amahashi’s result.

Theorem 1.1. [1] Let G be a graph and let b be a positive odd integer. Then G contains an odd $[1, b]$-factor if and only if for every subset $S \subseteq V(G)$, $o(G - S) \leq b|S|$, where $o(H)$ is the number of odd components in a graph H.

Thoerem 1.1 guarantees that if there is no odd $[1, b]$-factor in an r-regular graph, then there exists a subset $S \subseteq V(G)$ such that $o(G - S) > b|S|$. By counting the number of edges between S and $G - S$, we can show that $G - S$ has at least three odd components Q_1, Q_2, Q_3 such that $|[V(Q_i), S]| \leq r - 1$ (see the proof of Theorem [10] or Theorem 3.2). Then they found lower bounds for the largest eigenvalue in a graph in the family $F_{r,b}$, where $F_{r,b}$ is a family of such a possible component depending on r and b, and those bounds are appeared above.

In this paper, we improve their bound and in fact prove that if G is an n-vertex r-regular graph without an odd $[1, b]$-factor, then

$$\lambda_3(G) \geq \rho(r, b),$$
where
\[
\rho(r, b) = \begin{cases}
- \frac{r-2+\sqrt{(r+2)^2-4\left(\left\lceil \frac{r}{b} \right\rceil -2\right)}}{2} & \text{if both } r \text{ and } \left\lceil \frac{r}{b} \right\rceil \text{ are even,} \\
- \frac{r-2+\sqrt{(r+2)^2-4\left(\left\lceil \frac{r}{b} \right\rceil -1\right)}}{2} & \text{if } r \text{ is even and } \left\lceil \frac{r}{b} \right\rceil \text{ is odd,} \\
- \frac{r-3+\sqrt{(r+3)^2-4\left(\left\lceil \frac{r}{b} \right\rceil -2\right)}}{2} & \text{if both } r \text{ and } \left\lceil \frac{r}{b} \right\rceil \text{ are odd,} \\
- \frac{r-3+\sqrt{(r+3)^2-4\left(\left\lceil \frac{r}{b} \right\rceil -1\right)}}{2} & \text{if } r \text{ is odd and } \left\lceil \frac{r}{b} \right\rceil \text{ is even.}
\end{cases}
\]

The bounds that we found are sharp in a sense that there exists a graph \(H \) in \(F_{r,b} \) such that \(\lambda_1(H) = \rho(r, b) \).

For undefined terms, see West [14] or Godsil and Royle [8].

2 Construction

Suppose that \(\varepsilon = \begin{cases}
2 & \text{if } r \text{ and } \left\lceil \frac{r}{b} \right\rceil \text{ has same parity} \\
1 & \text{otherwise}
\end{cases} \) and \(\eta = \left\lceil \frac{r}{b} \right\rceil - \varepsilon \). In this section, we provide graphs \(H_{r,\eta} \) such that \(\lambda_1(H_{r,\eta}) = \rho(r, b) \). These graphs show that the bounds in Theorem 3.2 are sharp.

Now, we define the graph \(H_{r,\eta} \) as follows:
\[
H_{r,\eta} = \begin{cases}
K_{r+1-\eta} \lor \frac{2K_r}{2} & \text{if } r \text{ is even,} \\
C_{\eta} \lor \frac{r+2-\eta}{2}K_2 & \text{if } r \text{ is odd.}
\end{cases}
\]

To compute the spectral radius of \(H_{r,\eta} \), the notion of equitable partition of a vertex set in a graph is used. Consider a partition \(V(G) = V_1 \cup \cdots \cup V_s \) of the vertex set of a graph \(G \) into \(s \) non-empty subsets. For \(1 \leq i, j \leq s \), let \(q_{i,j} \) denote the average number of neighbours in \(V_j \) of the vertices in \(V_i \). The quotient matrix of this partition is the \(s \times s \) matrix whose \((i,j)\)-th entry equals \(q_{i,j} \). The eigenvalues of the quotient matrix interlace the eigenvalues of \(G \). This partition is equitable if for each \(1 \leq i, j \leq s \), any vertex \(v \in V_i \) has exactly \(q_{i,j} \) neighbours in \(V_j \). In this case, the eigenvalues of the quotient matrix are eigenvalues of \(G \) and the spectral radius of the quotient matrix equals the spectral radius of \(G \) (see [4], [8] for more details).

Theorem 2.1. For \(r \geq 3 \) and \(b \geq 1 \), we have \(\lambda_1(H_{r,\eta}) = \rho(r, b) \).

Proof. We prove this theorem only in the case when \(r \) is odd because the proof of the other case is similar.

Consider the vertex partition \(\{V(C_\eta), V(\frac{r+2-\eta}{2}K_2)\} \) of \(H_{r,\eta} \). The quotient matrix of the vertex partitions equals
\[
Q = \begin{pmatrix}
\eta - 3 & r + 2 - \eta \\
\eta & r - \eta
\end{pmatrix}
\]

The characteristic polynomial of \(Q \) is
\[
p(x) = (x - \eta + 3)(x - r + \eta) - (r + 2 - \eta)\eta.
\]
Since the vertex partition is equitable, the largest root of the graph $H_{r, \eta}$ equals the largest root of the polynomial, which is $\lambda_1(Q) = \frac{r-3+\sqrt{(r+3)^2-4\eta}}{2}$. \hfill \square

3 Main results

In this section, we prove an upper bound for $\lambda_3(G)$ in an r-regular graph G with even number of vertices to guarantee the existence of an odd $[1, b]$-factor by using Theorem 1.1 and Theorem 3.1.

Theorem 3.1. [4, 8] If H is an induced subgraph of a graph G, then $\lambda_i(H) \leq \lambda_i(G)$ for all $i \in \{1, \ldots, |V(H)|\}$.

Theorem 3.2. Let $r \geq 3$, and b be a positive odd integer less than r. If $\lambda_3(G)$ of an r-regular graph G with even number of vertices is smaller than $\rho(r, b)$, then G has an odd $[1, b]$-factor.

Proof. We prove the contrapositive. Assume that an r-regular graph G with even number of vertices has no odd $[1, b]$-factor. By Theorem 1.1, there exists a vertex subset $S \subseteq V(G)$ such that $o(G - S) > b|S|$. Note that since $|V(G)|$ is even, b is odd, and $o(G - S) \equiv |S| \pmod{2}$, we have $o(G - S) \geq b|S| + 2$. Let G_1, \ldots, G_q be the odd components of $G - S$, where $q = o(G - S)$.

Claim 1. There are at least three odd components, say G_1, G_2, G_3, such that $|[V(G_i), S]| < \left\lceil \frac{r}{b} \right\rceil$ for all $i \in \{1, 2, 3\}$.

Assume to the contrary that there are at most two such odd components in $G - S$. Since G is r-regular, we have

$$r|S| \geq \sum_{i=1}^{q} |[V(G_i), S]| \geq \left\lceil \frac{r}{b} \right\rceil (q-2) + 2 \geq \left\lceil \frac{r}{b} \right\rceil b|S| + 2 \geq r|S| + 2,$$

which is a contradiction.

By Theorem 3.1, we have

$$\lambda_3(G) \geq \lambda_3(G_1 \cup G_2 \cup G_3) \geq \min_{i \in \{1, 2, 3\}} \lambda_1(G_i). \quad (1)$$

Now, we prove that if H is an odd component of $G - S$ such that $|[V(H), S]| < \left\lceil \frac{r}{b} \right\rceil$, then $\lambda_1(H) \geq \rho(r, b)$.

Claim 2. If H is an odd components of $G - S$ such that $|[V(H), S]| < \left\lceil \frac{r}{b} \right\rceil$ and if $\lambda_1(H) \leq \lambda_1(H')$ for all odd components H' in $G - S$ such that $|[V(H'), S]| < \left\lceil \frac{r}{b} \right\rceil$, then we have

$$|V(H)| = \begin{cases} r + 2 & \text{if } r \text{ is odd}, \\ r + 1 & \text{if } r \text{ is even} \end{cases}, \quad \text{and} \quad 2|E(H)| = \begin{cases} r(r+2) - \eta & \text{if } r \text{ is odd}, \\ r(r+1) - \eta & \text{if } r \text{ is even}. \end{cases}$$
Let \(x = \begin{cases} 1 \text{ if } r \text{ is odd}, \\ 0 \text{ if } r \text{ is even}. \end{cases} \) Since \(|V(H), S| < \lceil \frac{x}{2} \rceil < r\) and \(G\) is \(r\)-regular, we have \(|V(H)| \geq r + 1 + x\) since \(H\) has an odd number of vertices. If \(|V(H)| > r + 1 + x\), then we have \(|V(H)| \geq r + 3 + x\) since \(H\) has an odd number of vertices. Thus it suffices to show \(\rho(r, b) < \lambda_1(H)\) if \(|V(H)| \geq r + 3 + x\). By using the fact that \(\lambda_1(G) \geq \frac{2|E(G)|}{|V(G)|}\) for any graph \(G\), we have

\[
\lambda_1(H) > \frac{r|V(H)| - \eta}{|V(H)|} \geq \frac{r(r + 3 + x) - \eta}{r + 3 + x} > \frac{r - 2 - x + \sqrt{(r + 2 + x)^2 - 4\eta}}{2}.
\]

Now, we prove this theorem by considering two cases depending on the parity of \(r\).

Case 1. \(r\) is even. By Claim 2, assume that \(H\) is an odd component of \(G - S\) such that \(|V(H), S| < \lceil \frac{x}{2} \rceil\), \(|V(H)| = r + 1\), and \(2|E(H)| = r(r + 1) - \eta\). Then there are at least \(r + 1 - \eta\) vertices of degree \(r\). Let \(V_1\) be a set of vertices with degree \(r\) such that \(|V_1| = r + 1 - \eta\), and let \(V_2\) be the remaining vertices in \(V(H)\). Then the quotient matrix of the vertex partition \(\{V_1, V_2\}\) of \(H\) equals

\[
\begin{pmatrix}
 r - \eta & \eta \\
 r + 1 - \eta & \eta - 2
\end{pmatrix}
\]

whose characteristic polynomial is \(p(x) = (x - r + \eta)(x - \eta + 2) - \eta(r + 1 - \eta)\). Since the largest root of \(p(x)\) equals \(\rho(r, b)\), we have \(\lambda_1(H) \geq \rho(r, b)\).

Case 2. \(r\) is odd. By Claim 2, assume that \(H\) is an odd component of \(G - S\) such that \(|V(H), S| < \lceil \frac{x}{2} \rceil\), \(|V(H)| = r + 2\), and \(2|E(H)| = r(r + 2) - \eta\). Then there are at least \(r + 2 - \eta\) vertices of degree \(r\). Let \(V_1\) be a set of vertices with degree \(r\) such that \(|V_1| = r + 2 - \eta\), and let \(V_2\) be the remaining vertices in \(V(H)\). Suppose that there are \(m_{12}\) edges between \(V_1\) and \(V_2\). Note that \((r + 2 - \eta)(\eta - 1) \leq m_{12} \leq (r + 2 - \eta)\eta\). Then the quotient matrix of the vertex partition \(\{V_1, V_2\}\) of \(H\) equals

\[
\begin{pmatrix}
 r - \frac{m_{12}}{r + 2 - \eta} & \frac{m_{12}}{r + 2 - \eta} \\
 \frac{m_{12}}{\eta} & r - 1 - \frac{m_{12}}{r + 2 - \eta}
\end{pmatrix}
\]

whose characteristic polynomial is \(q(x) = (x - r + \frac{m_{12}}{r + 2 - \eta})(x - r + 1 + \frac{m_{12}}{\eta}) - \frac{m_{12}^2}{(r + 2 - \eta)\eta}\).

Note that since \((r + 2 - \eta)(\eta - 1) \leq m_{12} \leq (r + 2 - \eta)\eta\), \(m_{12}\) can be expressed \(m_{12} = (r + 2 - \eta)\eta - t\), where \(0 \leq t \leq r + 2 - \eta\). Thus we have

\[
q(x) = x^2 - (r - 3 + \frac{t(r + 2)}{(r + 2 - \eta)\eta})x - 3r + \eta - \frac{t}{r + 2 - \eta} + \frac{tr(r + 2)}{(r + 2 - \eta)\eta}.
\]

\[
= x^2 - (r - 3)x - 3r + \eta - \frac{t(r + 2)}{(r + 2 - \eta)\eta}x - \frac{t}{r + 2 - \eta} + \frac{tr(r + 2)}{(r + 2 - \eta)\eta}.
\]
Note that $q(\rho(r, b)) = -\frac{t(r+2)}{(r+2-\eta)\eta} (\rho(r, b) + \frac{\eta}{r+2} - r) \leq 0$, since $\eta \geq 1$ and $0 \leq t \leq r + 2 - \eta$.

\[\square \]

References

[1] A. Amahashi, On factors with all degrees odd, *Graphs Combin.*, 1 (1985), 111–114.

[2] K. Ando, A. Kaneko, T. Nishimura, A degree condition for the existence of 1-factors in graphs or their complements. *Discrete Math.* 203 (1999), no. 1–3, 1–8.

[3] C. Berge, Sur le couplage maximum dun graphe, *C. R. Acad. Sci. Paris*, 247 (1958), pp. 258–259

[4] A.E. Brouwer and W.H. Haemers, *Spectra of Graphs*, Springer, New York, (2011).

[5] A.E. Brouwer and W.H. Haemers, Eigenvalues and perfect matchings. *Linear Algebra Appl.*, 395 (2005), 155–162.

[6] S.M. Cioabă, D.A. Gregory, W.H. Haemers, Matchings in Regular Graphs from Eigenvalue. *J. Combin. Theory Ser. B* 99 (2009), 287–297.

[7] S.M. Cioabă, S. O, Edge-connectivity, Matchings, and Eigenvalues in Regular Graphs. *SIAM J. Discrete Math.* 22 (2010), 1470–1481.

[8] C. Godsil and G. Royle, *Algebraic Graph Theory*, Graduate Texts in Mathematics, 207. Springer-Verlag, New York, 2001.

[9] M. Kouider, Sufficient condition for the existence of an even $[a, b]$-factor in graph. *Graphs Combin.* 29 (2013), no. 4, 1051–1057.

[10] H. Lu, Z. Wu, and X. Yang, Eigenvalues and $[1, n]$-odd factors. *Linear Algebra Appl.*, 433 (2010), 750–757.

[11] H. Matsuda, Ore-type conditions for the existence of even $[2, b]$-factors in graphs. *Discrete Math.* 304 (2005), no. 1–3, 51–61.

[12] L. Nebesky, Some sufficient conditions for the existence of a 1-factor. *J. Graph Theory* 2 (1978), no. 3, 251–255.

[13] W.T. Tutte, The factorization of linear graphs, *J. Lond. Math. Soc.* 22 (1947) 107–111.

[14] D.B. West, *Introduction to Graph Theory*, Prentice Hall, Inc., Upper Saddle River, NJ, 2001.