Device fabrication and transport measurements of FinFETs built with 28Si SOI wafers toward donor qubits in silicon

Cheuk Chi Lo1,2, Arun Persaud2, Scott Dhuey3, Deirdre Olynick3, Ferenc Borondics4, Michael C Martin4, Hans A Bechtel4, Jeffrey Bokor1,3 and Thomas Schenkel2

1 Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
2 Accelerator and Fusion Research Division, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
3 The Molecular Foundry, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
4 Advanced Light Source, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

E-mail: cclo@eecs.berkeley.edu

Received 10 June 2009, in final form 28 August 2009
Published 22 September 2009
Online at stacks.iop.org/SST/24/105022

Abstract

We report on the fabrication of transistors in a FinFET geometry using isotopically purified silicon-28-on-insulator (28-SOI) substrates. Donor electron spin coherence in natural silicon is limited by spectral diffusion due to the residual 29Si nuclear spin bath, making isotopically enriched nuclear spin-free 28Si substrates a promising candidate for forming spin quantum bit devices. The FinFET architecture is fully compatible with single-ion implant detection for donor-based qubits and the donor spin-state readout through electrical detection of spin resonance. We describe device processing steps and discuss results on electrical transport measurements at 0.3 K.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Silicon-based quantum computation with donor qubits has attracted much attention since its original proposal by Kane [1]. The prevalence and maturity of silicon processing technologies offer a convenient platform for pursuing silicon-based quantum computation schemes. More importantly, it has long been known that donor electron and donor nuclear spins have extraordinary long spin-coherence times at cryogenic temperatures in isotopically purified 28Si substrates [2, 3], with the long spin lifetime being attributed to the weak spin–orbit interaction in the crystal lattice and the nuclear spin-free matrix. However, many challenges have to be met in order to demonstrate donor spin qubits, including the fabrication of a readout device doped with single donors [4–8], and the implementation of a suitable single spin-state measurement.

Single-ion implantation is a technique that enables single atom placement for donor qubit device formation. Early single-ion implants were achieved by sensitive detection of secondary electrons from single-ion implantation events [9]. More recently, electrical detection of single-ion impacts have been achieved with the use of p–i–n photodetector-like structures [6, 10] as well as with metal-oxide-semiconductor (MOS) field-effect transistor (FET) architectures [7, 8]. In our earlier work [7], conventional planer FETs were used with an aperture formed in the middle of the gate, allowing implanted ions to travel through. While the experiment serves as a proof-of-concept single-ion detection scheme using FETs, the planer device structure is not ideal as the gate has to be partially removed in order for the single-ion implantation event to take place. The partial gate removal potentially damages the silicon channel and introduces instability issues into the device. To circumvent this problem, we explore the possibility of utilizing the non-planer device architecture of the FinFET. The FinFET architecture allows both single-ion implantation detection and spin-state readout capabilities.
via the electrically detected magnetic resonance (EDMR) of spin-dependent scattering [11, 12]. Recently, we reported studies of ion implant detection and ion impact mapping using FinFETs [13, 14]. In this paper, we describe our device design strategies, the device fabrication process and first low-temperature transport measurements of FinFETs formed in isotopically purified silicon-28-on-insulator (28-SOI).

2. Device design

While FinFETs were invented as an end-of-roadmap CMOS technology with extremely scaled dimensions (<50 nm gate length) [15], they also provide a convenient architecture to achieve single-ion implantation and spin-state detection with the same device for realizing donor qubits. Our device design and fabrication process are guided with the objective of silicon quantum computation in mind: while donor electrons in bulk silicon have extraordinarily long spin-coherence lifetimes, it is degraded by the presence of oxide–silicon interfaces [16]. Hence, donors should be placed at least a few Bohr radii (a₀ ≈ 2–3 nm) away from the surface so that the donor electrons interact minimally with the interface spin-noise sources [17], but at the same time kept shallow enough to interact with the gate-induced two-dimensional electron gas (2DEG) that is used for spin-state readout detection in an EDMR experiment. In the case of FinFETs, the oxide interface is present on both sides of the donor (figures 1(a) and (b)); hence, we limit the minimal width of the fins (w) to approximately 40 nm. Since the 2DEG is induced on the side walls of the fin in a FinFET, the top portion of the gate can be removed for single-ion implantation without affecting the gating ability of the side gates (figure 1(c)). In addition, if separate contact leads are designed for the FinFET, the two side gates can then be biased independently for the optimal 2DEG–donor interaction with the split-gate geometry (figure 1(d)).

The donor atom that would serve as the qubit has to be isolated from other impurity atoms. However, in a conventional CMOS process, source and drain regions are degenerately doped and some of the dopants might struggle during ion implantation or diffuse into the channel, as is the case in recent single dopant transport measurements in tri-gate FETs [18]. Hence, the gate lengths (l₀) for spin-state readout FinFETs are designed to be longer than 250 nm as TCAD simulations indicate that the channel region will not be accidentally doped by the source/drain dopants for devices with such long gate lengths, given the processing conditions used. In addition, we use a different donor species in the channel donor implant (antimony) and for the source/drain degenerate implants (arsenic), and dopant species identification can be achieved through spectroscopic transport measurements such as EDMR [19–21].

Silicon-on-insulator (SOI) wafers are used for FinFET fabrication. However, for spin qubits the presence of 29Si isotopes in natural silicon reduces the spin-coherence lifetime dramatically due to spectral diffusion [2], and nuclear spin-free materials are critical for spin qubit device development [22]. The lack of commercially available isotopically enriched 28Si SOI wafers led us to adopt a hybrid approach: 28Si is epitaxially grown on a thin natural silicon SOI layer. When donors are implanted into the device, we use sufficiently low-implantation energies, so that the donor electrons reside only in the isotopically purified 28Si environment. After single-ion implantation is detected electrically, the device has to be annealed at a high temperature for dopant activation. Hence, we use only tungsten for the metal layer of the device. The complete process flow is described in detail in the next section.

3. Device fabrication

The starting substrates were silicon-on-insulator (SOI) wafers with natural isotope compositions from SOITEC. The top (100) silicon layer thickness was 100 nm and the box thickness was 200 nm. 150 nm of isotopically enriched 28Si (>99.9%) was epitaxially grown on the original SOI wafers, bringing the total top layer silicon thickness to 250 nm. A 100 nm thick low-temperature chemical-vapor deposited (CVD) silicon oxide layer was deposited to serve as a hard-mask for the fins. Electron beam lithography was used to pattern the fin patterns along with the source/drain contact pads. The oxide hard-mask and the SOI layer were then etched by reactive-ion etching to define the fins. After the fin etch, a 3 nm thick sacrificial dry oxide was grown and removed in dilute hydrofluoric acid to smoothen the SOI sidewall. Following sidewall smoothing, a 10 nm thick dry oxide was grown, and 140 nm thick in situ phosphorus-doped poly-crystalline silicon was deposited as the gate material. A second electron beam lithography step was carried out to define the gate patterns, and the poly-crystalline silicon gate
was patterned by another reactive-ion etching step. The wafers then received an arsenic implant with a dose of 2×10^{15} cm$^{-2}$ at 25 keV to create self-aligned degenerately doped source/drain regions. Dopant activation was achieved by rapid thermal annealing. A protective CVD oxide, tungsten metallization and forming gas anneal complete the basic device fabrication process. The thermal budget of the full device fabrication was designed with consideration of self-diffusion of 29Si from the 100 nm natural silicon layer into the 28Si epitaxial layer. Control measurements by electron spin resonance at 9 K showed linewidths of implanted 121Sb donors at 9 K to be 0.2 G [23], while the linewidth in natural silicon is about 4 G [2], confirming the integrity of the isotope enriched 28Si layer. From literature values of diffusivities [24], the expected self-diffusion of 29Si under the thermal budgets used for device fabrication is only about 4 nm. A SEM micrograph of the fabricated FinFET is shown in figure 2, prior to the final CVD oxide deposition and metallization steps. A typical room temperature I_d-V_d measurement of the devices is shown in figure 3.

Figure 2. False-color SEM micrograph of a 28-SOI FinFET close to completion. The micrograph was taken with the sample tilted at 30°. The device shown has a gate length of $L_g = 280$ nm and a fin width of $W = 80$ nm, similar to the one measured (see the text).

Figure 3. Typical room temperature I_d-V_d characteristics of fabricated FinFETs ($L_g = 280$ nm, $W = 80$ nm). The gate voltage is stepped from -0.2 V to $+0.6$ V in 0.2 V increments.

Figure 4. Stability diagram of a 28-SOI FinFET ($L_g = 280$ nm, $W = 120$ nm) measured at $T = 320$ mK. g_d is the conductance of the device. Several overlapping Coulomb diamond features are visible, indicating multiple Coulomb blockade sources in the device.

Figure 5. Traces of g_d-V_d around the first Coulomb peak at $T = 320$ mK, revealing oscillatory patterns for $V_d > 0$ V and a strong resonant feature for $V_d < 0$ V.

Electrical transport properties at low temperature are critical for the application of FinFETs as single spin readout devices. The device tested had the SOI layer pre-implanted with 121Sb at 80 keV with a dose of 6×10^{11} cm$^{-2}$ prior to all other fabrication steps. The post-processing Sb profile peak is expected to be located at 35 nm from the top of the SOI layer, with a peak concentration of 10^{13} cm$^{-3}$ from TCAD simulations. The fin width is 80 nm, the gate length is 280 nm and the height is 250 nm. Approximately 130 donor atoms reside in the fin under the gate for the given device dimensions. Low-temperature transport measurements were performed with the device mounted in a Helium-3 cryostat with a base temperature of 320 mK. Lock-in measurements at 100 Hz with a modulation amplitude of 500 μV was applied to the drain to measure the device conductance. The stability diagram of the device at the base temperature is shown in figure 4, with several overlapping Coulomb blockade diamonds visible. The Coulomb blockade structures might be caused by local defects at the oxide–silicon interface, or by surface roughness along the channel. It does not appear to be related to quantum confinement under the entire gate length due to the relatively large dimensions of the device. The overlapping diamonds in the stability diagram also indicate independent charge trapping/blockade centers along the conduction path in the device [25]. Figure 5 shows individual traces of the conductance-gate voltage (g_d-V_g)
measurements close to the low-voltage corner of the first Coulomb diamond. In the case where the drain voltage is positive, periodic oscillations are observed on the curves. When the drain voltage is biased in the negative regime, a sharp conductance peak is observed at the edge of the diamond. The reason for the asymmetry in the transport response is unclear at this point and is under further investigation.

The device performance is extremely stable [26] over \(\approx 10 \) h of measurement time at low temperature \((<1 \text{ K})\), and random telegraphic noise is only observable at higher temperatures. Figure 6 shows one such measurement at \(T \approx 10 \text{ K} \), revealing the sensitivity of our FinFETs to a single Coulomb scattering center caused by an interface trap. Measurements of the spin state of a similar trap have been previously reported in deep sub-micron planer silicon field-effect transistors [27]. A trap state created by the formation of previously reported in deep sub-micron planer silicon field-effect transistors [27]. A trap state created by the formation of a doubly occupied shallow donor, the so-called D\(^{-} \) center, also perturbs the device current as a Coulomb scattering center. Such D\(^{-} \) centers should then be observable under high magnetic fields and at low temperature [28], which is a promising candidate as a donor spin-state readout mechanism [29].

5. Conclusions

We have fabricated accumulation-mode field-effect transistor devices in a FinFET architecture using an isotopically enriched silicon-on-insulator material (28-SOI) as potential single donor electron spin readout devices. The FinFET architecture is fully compatible with electrical detection of single-ion implantation events for deterministic single atom doping as well as with single donor spin-state readout via electrically detected magnetic resonance. Constraints in device design for the FinFETs have been briefly addressed, and low-temperature transport measurements show stable device operation over several hours of measurement time.

Acknowledgments

We thank A M Tyryshkin and S A Lyon for the ESR measurements of the 28-SOI substrates. This work was supported by the National Security Agency under MOD 713106A, the Department of Energy under contract no DE-AC02-05CH11231, the National Science Foundation under grant no 0404208, and the Nanoelectronics Research Initiative-Western Institute of Nanoelectronics. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences of the US Department of Energy under contract no DE-AC02-05CH11231. The advanced light source is supported by the Director, Office of Science, Office of Basic Energy Sciences of the US Department of Energy under contract no DE-AC02-05CH11231. Support in device fabrication by the UC Berkeley Microlab staff is gratefully acknowledged.

References

[1] Kane B 1998 A silicon-based nuclear spin quantum computer Nature 393 133–7
[2] Tyryshkin A M, Lyon S A and Astashkin A 2003 Electron spin relaxation times of phosphorus donors in silicon Phys. Rev. B 68 193207
[3] Morton J J L, Tyryshkin A M, Brown R M, Shankar S, Lovett B W, Ardavan A, Schenkel T, Haller E E, Ager J W and Lyon S A 2008 Solid-state quantum memory using the p-31 nuclear spin Nature 455 1085–8
[4] Simmons M Y et al 2005 Scanning probe microscopy for silicon device fabrication Mol. Simul. 31 505–14
[5] Shen T C, Ji J Y, Zudov M A, Du R R, Kline J S and Tucker J R 2002 Ultradense phosphorous delta layers grown into silicon from ph molecular precursors Appl. Phys. Lett. 80 1580
[6] Hopf T, Jamieson D N, Hearne S M, Yang C, Pakes C I, Dzurak A S, Gauja E and Clark R G 2005 Ion beam induced charge and numerical modeling study of novel detector devices for single ion implantation Nucl. Instrum. Methods Phys. Res. B 231 463–6
[7] Batra A, Weis C D, Reijonen J, Persaud A, Schenkel T, Cabrini S, Lo C C and Bokor J 2007 Detection of low energy single ion impacts in micron scale transistors at room temperature Appl. Phys. Lett. 91 193502
[8] Shinada T, Kurosawa T, Nakayama H, Zhu Y, Hori M and Ohdomari I 2008 A reliable method for the counting and control of single ions for single-dopant controlled devices Nanotechnology 19 345202
[9] Shinada T, Kumura Y, Okabe J, Matsukawa T and Ohdomari I 1998 Current status of single ion implantation J. Vac. Sci. Technol. 16 2489
[10] Jamieson D N et al 2005 Controlled shallow single-ion implantation in silicon using an active substrate for sub-20 keV ions Appl. Phys. Lett. 86 202101
[11] de Sousa R, Lo C C and Bokor J 2008 Spin-dependent scattering in a silicon transistor Phys. Rev. B 46 12508–25
[12] Sarovar M, Young K C, Schenkel T and Whaley K B 2008 Quantum nondemolition measurements of single donor spins in semiconductors Phys. Rev. B 78 245302

[13] Weis C D et al 2008 Single atom doping for quantum device development in diamond and silicon J. Vac. Sci. Technol. B 26 2596–600

[14] Weis C D et al 2009 Mapping of ion beam induced current changes in finfets Nucl. Instrum. Methods B 267 1222

[15] Hisamoto D, Lee W C, Kedzierski J, Takeuchi H, Asano K, Kuo C Anderson E, King T J, Bokor J and Hu C M 2000 Finfet—a self-aligned double-gate mosfet scalable to 20 nm IEEE Trans. Electron Devices 47 2320–5

[16] Schenkel T, Liddle J A, Persaud A, Tyryshkin A M, Lyon S A, de Sousa R, Whaley K B, Bokor J, Shangkuan J and Chakarov I 2006 Electrical activation and electron spin coherence of ultralow dose antimony implants in silicon Appl. Phys. Lett. 88 112101

[17] de Sousa R 2007 Dangling-bond spin relaxation and magnetic 1/f noise from the amorphous-semiconductor/oxide interface: theory Phys. Rev. B 76 245306

[18] Sellier H, Lansbergen G P, Caro J, Rogge S, Collaert N, Feraud I, Jurczak M and Biesemans S 2006 Transport spectroscopy of a single dopant in a gated silicon nanowire Phys. Rev. Lett. 97 206805

[19] Ghosh R N and Silsbee R H 1992 Spin–spin scattering in a silicon two-dimensional electron gas Phys. Rev. B 80 045320

[20] McCamey D R, Huebl H, Brandt M S, Hutchison W D, McCallum J C, Clark R G and Hamilton A R 2008 Electrically detected magnetic resonance in ion-implanted Si:P nanostructures Appl. Phys. Lett. 78 045303

[21] Lo C C, Bokor J, Schenkel T, Tyryshkin A M and Lyon S A 2007 Spin-dependent scattering off neutral antimony donors in Si-28 field-effect transistors Appl. Phys. Lett. 91 242106

[22] Sailer J et al 2009 A schottky top-gated two-dimensional electron system in a nuclear spin free Si/SiGe heterostructure Phys. Status Solidi-RRL 2–3 61–3

[23] Tyryshkin A M and Lyon S A 2008 Private communication

[24] Bracht H, Haller E E and Clark-Phelps R 1998 Silicon self-diffusion in isotope heterostructures Phys. Rev. Lett. 81 393–6

[25] Sohn L L, Kouwenhoven L P and Schoen G (eds) 1997 Mesoscopic Electron Transport, NATO ASI Series E (Dordrecht: Kluwer)

[26] Zimmerman N M, Simonds B J, Fujiwara A, Ono Y, Takahashi Y and Inokawa H 2007 Charge offset stability in tunable-barrier Si single-electron tunneling devices Appl. Phys. Lett. 90 033507

[27] Xiao M, Martin I, Yablonovitch E and Jiang H W 2004 Electrical detection of the spin resonance of a single electron in a silicon field-effect transistor Nature 430 435–9

[28] Thornton D and Honig A 1973 Shallow-donor negative-ions and spin-polarized electron-transport in silicon Phys. Rev. Lett. 30 909–12

[29] McCamey D R, Morley G, Seipel H, Brunel L, Van Tol J and Boehme C 2006 Spin-dependent processes at the crystalline Si-SiO2 interface at high magnetic fields Phys. Rev. B 89 182115