Data Article

Data on diet and growth by giant panda in zoo Negara, Malaysia

Dennis Ten Choon Yung a, b, ***, Rohana Jani c, ***, Ridza Azizi c, Mat Naim Ramli d, Yang Haidi e, Ahmad Nizam Zainudin d, Akmal Hadi Samsuddin d, Noor Hashida Hashim f, Mohd Noor Afiq Ramlee g, Muhamad Aidil Zahidin g, h, Mohd Akmal Mohd Raffi g, Muhamad Safiih Lola i, Mohd Tajuddin Abdullah g, j, *

a Department of Wildlife and National Park Peninsular Malaysia, KM10, Jalan Cheras, 56100, Kuala Lumpur, Malaysia
b Institute for Advanced Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
c Department of Applied Statistics, Faculty of Economics and Administration, University of Malaya, 50603, Kuala Lumpur, Malaysia
d Veterinary Department, Zoo Negara Malaysia, Hulu Kelang, 68000, Ampang, Selangor, Malaysia
e China Conservation and Research Center for the Giant Panda, Duijiangyen, China
f Center of Matriculation Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
g Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Malaysia
h Faculty of Earth Science, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Kelantan, Malaysia
i Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
j Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia

A R T I C L E I N F O

Article history:
Received 9 October 2019
Received in revised form 9 December 2019
Accepted 23 December 2019
Available online 2 January 2020

A B S T R A C T

In this data article we present the determinations of the diet preference and growth of a pair of the giant panda, Ailuropoda melanoleuca (David, 1869) from Zoo Negara Malaysia. Once considered as endangered, the captive giant pandas were given with nine species of local bamboo in separate indoor enclosures.

* Corresponding author. Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Malaysia.
** Corresponding author. Department of Wildlife and National Park Peninsular Malaysia, KM10, Jalan Cheras, 56100, Kuala Lumpur, Malaysia.
*** Corresponding author. Department of Applied Statistics, Faculty of Economics and Administration, University of Malaya, 50603, Kuala Lumpur, Malaysia.
E-mail addresses: dennis@wildlife.gov.my (D.T.C. Yung), rohanaj@um.edu.my (R. Jani), mohd.tajuddin@umt.edu.my (M.T. Abdullah).

https://doi.org/10.1016/j.dib.2019.105082
2352-3409/ © 2019 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
We recorded data between May 25, 2014 and December 31, 2016 and analysed it based on food preference, the pattern toward food consumption and body weights using SPSS v25.0 (IBM, USA). Data on the bamboo preference, daily average bamboo provided and consumed, and factors predicting of body weight per individual are reported in this article. The data highlight correlation between panda growth (kg) to the part of bamboo consumed (kg) and exhibit the pattern of preferred part of food (i.e.: either the leaf, culm or shoots of bamboo variety) for panda consumptions. The food consumption toward the body weight was modelled using logistic regression analysis to help determine the pattern of food consumption and body weight of giant panda in the future and based on regression model 1, only consumed variable is significance to the model.

© 2019 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Specification Table

Subject area	Ecology
More specific subject area	Dietary and foraging ecology
Type of data	Tables and figures
How data was acquired	Through field works in captivity, direct observation and analysed using SPSS v22.0
Data format	Raw, semi-analysed and analysed
Experimental factors	Analysis of 952 data points of food preference, consumption and body weight from a pair of giant panda from May 25, 2014 until December 31, 2016
Experimental features	The pandas were offered at least two species of bamboo daily. The daily data points were recorded and analysed using SPSS v25.0 [1,2]
Data source location	Zoo Negara, Malaysia (3.2087°N, 101.758°E)
Data accessibility	The data is provided in this article
Related research article	I. Che Ishak, J.J. Rovie-Ryan, M.N. Raml, C. Li, H. Yang, A.N. Zainudin, A.H. Samsuddin, M.F. Mohamad Yusoff, A. Ibrahim, E.A. Abdullah, N.M. Abdullah, R. Topani, Effects of preference and nutritional values of local bamboo towards growth performance of captive giant pandas (Ailuropoda melanoleuca) in Zoo Negara, Malaysia. J. Sustain. Sci. Manage., 11 (2016) 92–98.

Value of the Data

- The dataset presents the diet and growth of a pair of captive giant panda at Zoo Negara, Malaysia.
- Data on daily food consumption can benefit the Giant Panda Research Consortium and target research groups to ensure this iconic species’ long term survival for the next generation and recovery of wild populations in China.
- The current food selection shows the seven local bamboo species can be served as a part of diet and nutrition for this conservation-dependent species. These data highlight the important in conserving and cultivating the bamboo species.
- The data provide an essential reference for the management authorities to formulate an adaptive system and to ensure the success of the captive conservation program in Malaysia and elsewhere in the world.
- Data on the bamboo species consumed in selected zoos in the world are useful to the zoos intending to keep this species in captivity.

1. Data

The giant panda, *Ailuropoda melanoleuca*, was once known as an Endangered (EN) species since 1990 before been down listed to Vulnerable (VU) in recent assessment [3]. Giant pandas in captivity will be returned to the range state for release to reinforce the wild populations in China. As part of a
conservation effort, a pair of giant panda, Fu Wa (male) and Feng Yi (female) from Wolong National Nature Reserve, Sichuan was given on captive breeding loan by the government of China to Malaysia for 10 years starting from May 2014 to April 2024.

Here, we present the diet and growth of Fu Wa and Feng Yi at Zoo Negara, Malaysia (Figs. 1–3). We provided a table (Table 1) of local bamboo species, and listed known bamboo species provided at in-situ and ex-situ conservation areas across the world (Supplementary Table 1) [4–23]. Table and graph provided to show the list of data on local bamboo and daily average of food provided and consumed by giant panda (Tables 2 and 3). The correlation test between panda growth (kg) to the part of bamboo consumed (kg) and exhibit pattern of preferred part of food for panda consumptions are shown in Tables 4 and 5 where Fu Wa and Feng Yi significantly preferred bamboo culm compared to leaf and shoots. Body weight profile and determination of giant panda are shown in Tables 6 and 7. All monthly related data were tabulated in Supplementary Tables 2-6 and visualised in Figs. 4–7. We constructed a model using logistic regression analysis to determine the food consumption to predict the body weights (Table 8). The regression models are shown in Tables 9 and 10.

Table 1
List of local bamboo species provided, and bamboo parts consumed by giant pandas.

Species name	Local name	Locality	Bamboo parts
Bambusa heterostachy	Buluh galah	Perak	x
Bambusa multiplex	Buluh pagar	Selangor	x
Bambusa vulgaris	Buluh aur	Selangor	x x
Bambusa vulgaris cv. vittat	Buluh aur gading	Selangor	x x
Bambusa vulgaris f. waminii	Buluh botol	Selangor	x
Dendrocalamus asper	Buluh betong	Selangor	x x
Gigantochloa alboclata	Buluh madu	Pahang	x
Gigantochloa thoii	Buluh betting	Selangor	x x
Thyrsostachys siamensi	Buluh siam	Negeri Sembilan	x

Fig. 1. Fu Wa (male) is feeding the local bamboo (Dendrocalamus asper) in Zoo Negara Malaysia.
Fig. 2. Feng Yi (female) is resting at the enrichment structure in Zoo Negara Malaysia Giant Panda exhibit. (Photo credit: Akmal Hadi Samsuddin).

Fig. 3. Local bamboos a) Bambusa heterostachy, b) B. multiplex, c) B. vulgar, d) B. v. cv. vittat, e) B. v. f. waminii, f) Dendrocalamus asper, g) Gigantochloa albociliata, h) G. theoi and h) Thyrsostachys siamensi.
2. Experimental design, materials and methods

Daily observation for food serving and consumption by giant pandas were carried out from May 25, 2014 until December 31, 2016 in Zoo Negara, Malaysia. The giant pandas were housed separately in the indoor enclosures which are maintained at a temperature range of 21 °C–23 °C throughout the year. They are free to undergo any activities in their corresponding enrichment structure within their enclosed area (Figs. 1–2). A total of nine species of local bamboos were harvested from central Peninsular Malaysia (Table 3, Fig. 3). To keep it fresh, bamboo culms, leaves and shoots were kept in a water sprayer chiller for no longer than three days. The bamboo culm aged 1–2 years was cut into pieces (approximately 100 cm long and 5 cm width). At least two species of local bamboo were served to the giant panda, six times a day at 8.00 a.m., 11.00 a.m., 2.30 p.m., 5.30 p.m., 8.30 p.m. and 10.30 p.m. [6]. Supplementary food such as fruits, carrot and panda cake were also given. We recorded the monthly and daily data on food provided and consumed by giant pandas are summarised in Supplementary Tables 2–6 and Figs. 4–7.

Fu Wa and Feng Yi consumed more bamboo culm than bamboo leaves and shoot as summarised in Table 2. We observed that the giant pandas were selectively consuming seven local bamboo species, exclude Bambusa glaucescens and Gigantochloa albociliata as summarised in Table 3 while Supplementary Tables 2–5 showed the monthly and daily data recorded on bamboos provided and consumed during 32-months of observation. The correlation between different types of bamboo parts consumed and panda growth in weight (kg) is displayed in Tables 4 and 5.

To exhibit the regression between amounts of each food consumed and body weight, average monthly body weight and faecal weight were taken (Supplementary Table 6) and analysed using the Statistical Package for the Social Sciences (SPSS) v25.0 (Tables 6 and 7) \[1,24,25\]. Since the supplement and bamboo are categorised as independent variables, the determinants of food consumption toward the body weight were modelled using logistic regression analysis (Table 8). The regression model examine the relationship between genders, food provided and consumed by giant panda where the estimated equations would be used to determine the supposed weight consumed by giant panda. The regression model indicate that giant panda consumption are based on gender related. Based on regression model 1, only consumed variable is significance to the model, therefore the model 1 and simplified model 2 could be used in estimating the increase of decrease of weight of giant panda and estimate their food intakes (Tables 9 and 10).

Giant panda	Type of foods	Average food provided daily/kg	Average food consumed daily/kg	Daily consumption (%)												
Fu Wa (Male)	Bamboo culm	28.27	17.09	80.47												
	Bamboo leaves	7.45	2.60	12.24												
	Bamboo shoot	0.03	0.01	0.06												
	Total bamboo	36.02	19.70	92.00												
	Supplement	1.70	1.70	8.00												
	Total food	37.74	21.40	90.00												
Feng Yi (Female)	Bamboo culm	23.01	11.62	69.07												
	Bamboo leaves	8.82	3.28	19.52												
	Bamboo shoot	0.29	0.19	1.15												
	Total bamboo	32.12	15.10	89.00												
	Supplement	1.88	1.95	11.00												
	Total food	33.74	16.82	100.00												
Species name	Provided (kg)	Consumed (kg)														
----------------------------------	--------------	-------------														
	Fu Wa (Male)	Feng Yi (Female)	Fu Wa (Male)	Feng Yi (Female)												
	Min	Max	Average	Total												
Dendrocalamus asper	0.00	57.44	20.67	19490.94	0.00	61.66	19.77	18667.43	0.00	35.35	11.61	10946.64	0.00	35.40	9.37	8844.23
Bambusa vulgaris	0.00	41.94	4.77	4497.01	0.00	48.50	4.72	4453.51	0.00	24.63	2.57	2422.74	0.00	36.90	2.20	2081.48
Bambusa heterostachy	0.00	37.10	2.37	2236.81	0.00	48.50	2.34	2205.14	0.00	25.30	1.53	1442.94	0.00	23.70	1.36	1280.51
Gigantochloa thoii	0.00	42.31	4.22	3980.09	0.00	34.12	1.54	1454.57	0.00	26.95	2.18	2056.77	0.00	20.20	0.62	585.91
Bambusa vulgaris cv. vittat	0.00	51.68	1.74	1642.57	0.00	40.88	1.15	1085.16	0.00	26.96	0.99	936.46	0.00	11.09	0.41	387.15
Thrysostachys siamensi	0.00	12.25	1.57	1480.20	0.00	15.96	1.60	1508.04	0.00	5.38	0.59	553.81	0.00	7.80	0.69	646.90
Bambusa vulgaris f. waminii	0.00	16.82	0.52	492.23	0.00	15.60	0.59	554.58	0.00	8.84	0.17	164.51	0.00	7.95	0.23	214.21
Gigantochloa albociliata	0.00	3.19	0.01	7.26	0.00	11.38	0.04	35.93	0.00	1.47	0.00	3.39	0.00	5.92	0.02	16.00
Bambusa multiplex	0.00	9.30	0.04	33.55	0.00	7.00	0.03	28.82	0.00	1.89	0.00	4.30	0.00	2.00	0.00	4.28
Table 4
Correlation between Fu Wa (male) growths (kg) with different part of bamboo consumed (kg).

Weight (kg)	Culm consumed (kg)	Leaf consumed (kg)	Shoot consumed (kg)	Bamboo consumed (kg)
Weight (kg)	1.0000	1.0000	1.0000	1.0000
Culm consumed (kg)	0.6716	1.0000	0.7639	0.7600
Leaf consumed (kg)	0.0609	0.6063	0.0438	0.0379
Shoot consumed (kg)	-0.2615	-0.2310	-0.0979	-0.2094
Bamboo consumed (kg)	0.7660	0.9762	0.6884	-0.2094

Table 5
Correlation between Feng Yu (female) growths (kg) with different part of bamboo consumed (kg).

Weight (kg)	Culm consumed (kg)	Leaf consumed (kg)	Shoot consumed (kg)	Bamboo consumed (kg)
Weight (kg)	1.0000	1.0000	1.0000	1.0000
Culm consumed (kg)	0.0609	0.6063	0.0438	0.0379
Leaf consumed (kg)	-0.0438	0.7600	0.2852	0.9399
Shoot consumed (kg)	-0.0184	-0.1246	0.0979	0.7328
Bamboo consumed (kg)	0.0379	0.0057	0.0057	0.0057

Table 6
Body weight, total food consumed and faecal output of giant pandas.

Items	Giant panda
	Fu Wa (Male)
Body weight range (kg)	117–138
Average weight (kg)	128.81
Daily total food consumed range (kg)	1.60–39.37
Daily average total food consumed (kg)	21.24
Daily faecal output range/kg	3.68–15.60
Average daily faecal output (kg)	9.85
Percentage of daily total food consume/body weight	16.59
	Feng Yi (Female)
Body weight range (kg)	92–127
Average weight (kg)	105.87
Daily total food consumed range (kg)	1.94–45.80
Daily average total food consumed (kg)	16.82
Daily faecal output range/kg	0.98–16.80
Average daily faecal output (kg)	7.67
Percentage of daily total food consume/body weight	16.04

Table 7
Determination of body weight of giant pandas.

Variable	Weight					
	Fu Wa (Male)	Feng Yi (Female)				
	Unstandardized β	Standardized β	Sig.	Unstandardized β	Standardized β	Sig.
Constant	125.254	0.000	104.965	0.053	0.105	
Supplement	2.092	0.215	0.491	0.053		
R	0.215	0.003	0.002	0.002		
R²	0.046	0.045	0.1246	0.0057	1.0000	
Adjusted R²	0.279	0.375	0.000	0.000	0.184	
Bamboo	123.304	0.375	106.274	0.043	0.184	
R	0.141	0.002	0.002	0.002		
R²	0.140	0.001	0.001	0.001		
Fig. 4. Monthly total of bamboo provided and consumed by giant pandas (weight in kg).

Fig. 5. Monthly bamboo culm and leave provided and consumed by Fu Wa (in kg).
MONTHLY BAMBOO CULM AND LEAVE PROVIDED (KG) AND CONSUMED BY FENG YI (FEMALE)

![Graph showing monthly bamboo culm and leave provided and consumed by Feng Yi (female).](image)

Fig. 6. Monthly bamboo culm and leave provided and consumed by Feng Yi (in kg).

AVERAGE DAILY BAMBOO CULM AND LEAVE CONSUMPTION BY GIANT PANDA

![Graph showing average daily bamboo culm and leave consumption by giant pandas.](image)

Fig. 7. Average bamboo culm and leave (daily) consumed by giant pandas.

Table 8

Coefficients	Unstandardized coefficients	Standardized coefficients	t	Sig	
Model					
1 (Constant)	2.175	.323			
Provided	.011	.015	.141	.771	.444
Consumed	-.062	.019	-.585	-3.196	.002

*a Dependent Variable: GanderRecode.
We thank the Ministry of Water, Land and Natural Resources (KATS) of Malaysia for the permission and support. We also thank the Director General Dato’ Abdul Kadir Abu Hashim and former Deputy Director General Dato’ Dr Zaaba Zainal Abidin of Department of Wildlife and National Parks (DWNP) Peninsular Malaysia for research permit; Zoo Negara, Malaysia; and China Conservation and Research Center for the Giant Panda (CCRCGP) for invaluable assistance. This data collection permission was granted by special DWNP permit (T-00430-16-15) and funded by KATS through Giant Panda Research Consortium Malaysia (KPGPM/UMT/53161) lead by Professor Dr Mohd Tajuddin Abdullah.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.105082.

References

[1] IBM Corp, IBM SPSS Statistics for Windows, version 24.0, Armonk, New York, 2016.
[2] T.C.Y. Dennis, R. Jani, N.H. Hasyim, M.N. Ramli, Y. Haidi, M.T. Abdullah, Challenges in Giant Panda ex-Situ Conservation Management Questionnaire Survey, 2019, https://doi.org/10.13140/RG.2.2.30927.02724.
[3] R. Swaisgood, D. Wang, F. Wei, *Ailuropoda Melanoleuca* (Errata Version Published in 2017), The IUCN Red List of Threatened Species, 2016. Retrieved from, https://www.iucnredlist.org/species/712/121745669#assessment-information. (Accessed 25 August 2019).
[4] R.L. Hansen, M.M. Carr, C.J. Apanavicius, P. Jiang, B.L. Gocinski, S. Beard, J.R. Ouellette, Seasonal shifts in giant panda feeding behavior: relationships to bamboo plant part consumption, Zoo Biol. 29 (2010) 470–483.
[5] A. Christian, K. Knott, C. Vance, J. Falcone, L. Bauer, F. Fahey, S. Willard, A. Kouha, Nutrient and mineral composition during shoot growth in seven species of Phyllostachys and Pseudosasa bamboo consumed by giant panda, J. Anim. Physiol. Anim. Nutr. 99 (2015) 1172–1183.
[6] I. Che Ishak, J.J. Rovie-Ryan, M.N. Ramli, C. Li, H. Yang, A.N. Zainudin, A.H. Samsuddin, M.F. Mohamad Yusoff, A. Ibrahim, E. A. Abdullah, N.M. Abdullah, R. Topani, Effects of preference and nutritional values of local bamboo towards growth performance of captive giant pandas (*Ailuropoda melanoleuca*) in Zoo Negara, Malaysia, J. Sustain. Sci. Manage. 11 (2016) 92–98.
[7] S.A. Mainka, Z. Guanlu, L. Mao, Utilization of a bamboo, sugar cane, and gruel diet by two juvenile giant pandas (*Ailuropoda melanoleuca*), J. Zoo Wildl. Med. 20 (1989) 39–44.
[8] R. Tabet, M. Allen, Behavioral preferences for bamboo in a pair of captive giant pandas (*Ailuropoda melanoleuca*), Zoo Biol. 24 (2005) 177–183.
[9] B. Wang, J. Wang, Classification and distribution of giant panda edible bamboo in Gansu Province, Gansu Sci. Tech. 30 (2014) 141–143.
[10] Y.H. Wei, L. Xiao, J.S. Chen, L. Jiao, I.W. Chen, B. Ma, Q. Liu, The effect of clonal integration on the compensatory growth of *Fargesia scabrida*, J. Chongqing Normal Univ. (Nat. Sci. Ed.) 4 (2013) 28.

[11] D.G. Reid, J. Hu, Giant panda selection between *Bashania fangiana* bamboo habitats in Wolong Reserve, Sichuan, China, J. Appl. Ecol. 28 (1991) 228–243.

[12] T.X. Wang, Y.L. Ding, Y.J. Liu, J.Q. Li, Distribution pattern of *Bashania fargesii*, J. Nanjing Forestry Univ. (Nat. Sci. Ed.) 29 (2005) 37–40.

[13] J. Wang, Z. Ma, C. Liu, L. Gan, Preliminary study on the growth and development rules of *Fargesia denudata* bamboo, J. Bamboo Res. 10 (1991) 38–48.

[14] State Forestry Administration of China, Report of the Third National Giant Panda Survey in China, Science Press, Beijing, 2006.

[15] Z. Lu, W. Wang, W. Zhang, H. Li, Q. Cao, G. Dang, D. He, S. Franklin, Spatial-temporal patterns of *Bashania fargesii* bamboo shoot emergence and giant panda herbivory, Acta Entomol. Sin. 51 (2008) 1099–1128.

[16] Y. Li, Y. Ren, H. Jia, The taxonomic on the bamboo as the main food of the giant panda from Mt. Qinling, Acta Bot. Boreal Occident Sin 23 (2003) 127–129.

[17] Z.S. Qin, A. Taylor, X. Cai, J.Y. Huang, The research on the biological characteristics of *Bashania fangiana*, J. Sichuan Norm. Univ. (Nat. Sci. Ed.) 15 (1994) 107–113.

[18] S.Q. Zhou, The preliminary biomass study on the *Bashania fangiana*, Chin. Bull. Bot. 12 (1995) 63–65.

[19] F. Wei, Z. Feng, The growth of *Bashania spongostachya* in relation with the environmental ecological factors, a bamboo eaten by the panda and red panda in Xiangling Mountain, J. Ecol. 19 (1999) 710–714.

[20] Z.S. Qin, A. Taylor, X. Cai, J.Y. Huang, The research on the biological characteristics of *Fargesia robusta*, J. Bamboo Res. 12 (1993) 6–17.

[21] X. Liu, R. Huang, J. Ran, B. Li, K. Tang, Effects of bamboo shoot-collecting on the shoot growth of giant panda’s diet bamboo *Chimonobambusa szechuanensis*, Chinese J. Ecol. 29 (2010) 2139–2145.

[22] S. Zhou, R. Li, X. Yan, J. Huang, D. Liu, Y. Huang, D. Li, H. Zhang, Selection and comparison of structure of microhabitat by giant pandas in regenerative and remnant bamboo forests of arrow bamboo, Sichuan J. Zool. 34 (2015) 1–7.

[23] H. Zhou, S. Yuan, Z. Yang, L. Zheng, Y. Yang, X. Gu, X. Yang, Z. Zhang, Correlation between diet and biomass of staple-food bamboos utilized by giant pandas during summer in Liziping Nature Reserve, China, Acta Theriol. Sin. 34 (2014) 93–99.

[24] S.A.V. Rajasegar, A. Md Yusof, S. Appalasamy, S.I. Mokhtar, T.D.C. Yung, D. Tao, V.K. Jayaraj, DNA extraction and library preparation optimization for metagenomic analysis of giant panda in Malaysia, J. Trop. Resour. Sustain. Sci. 5 (2017) 117–120.

[25] H. Yazid, M.N.A. Mad Yusof, J.L. Chong, S.I. M., M.A. Zahidin, T.C.Y., Dennis, D. Tao, M.N. Ramli, V.K. Jayaraj, Metagenome data of giant panda *Ailuropoda melanoleuca* in Zoo Negara, Malaysia. In Preparation and Will Submit to Data in Brief.