De novo pancytopaenia in an older adult with severe COVID-19 infection

Helena Lee, Onn Shaun Thein, Tazeen Muneer

SUMMARY
During the COVID-19 pandemic, it was recognised that SARS-CoV-2 can cause multisystem illness. Non-respiratory complications observed early in the pandemic were haematological in nature. A rare but serious complication of COVID-19 infection is pancytopaenia. We describe a case of an older adult without pre-existing haematological disease or risk factors for cell dyscrasia with severe pancytopaenia induced by COVID-19, who developed critical illness requiring respiratory support in intensive care and died. Our case report highlights that de novo pancytopaenia may only present with mild dermatological manifestations and may indicate severe COVID-19 infection. Management is primarily supportive and early involvement of haematology should be sought.

BACKGROUND
Since the start of the COVID-19 pandemic, there are over 591 million confirmed cases and 6.4 million deaths from SARS-CoV-2. SARS-CoV-2 has a predilection for the respiratory system but can also cause multisystem illness. Non-respiratory complications observed early in the pandemic were haematological in nature—namely lymphopaenia and thrombocytopenia. A rare but serious haematological complication of COVID-19 is pancytopaenia—the reduction of all three haematological cell types. We describe a case of an older adult without pre-existing haematological disease or risk factors for cell dyscrasia found to have severe pancytopaenia induced by COVID-19.

CASE PRESENTATION
A Caucasian man in his late 60s was brought in by ambulance to the Resuscitation area of an Accident and Emergency department 6 days after testing positive for COVID-19 on a lateral flow test. His presenting complaint was worsening shortness of breath over the past few days. He denied chest pain, vomiting, diarrhoea, weight loss, bruising or bleeding. His wife reported intermittent confusion at home. He had a previous medical history of hypothyroidism, hypercholesterolaemia and hypertension which were all well-controlled. There was no history of haematological disease or risk factors for blood dyscrasias. He had received two doses of the AstraZeneca (ChAdOx1) vaccination prior to hospital admission (the first dose was administered at 9 months and the second dose at 6 months prior to hospital admission), which constituted the full SARS-CoV-2 immunisation regimen in the UK at the time. He was usually very fit and well and regularly did gardening and household DIY (do-it-yourself) jobs (Clinical Frailty Scale 2—Well).

Initial observations are listed in table 1. He was able to talk in full sentences and was not in respiratory distress. Chest auscultation demonstrated bilateral fine crepitations and wheezing. There was no bruising; however, small petechial rashes were noted on the groin and right shin.

INVESTIGATIONS
Admission blood test results are listed in table 1. Blood film demonstrated red cell anisocytosis, left-shifted neutrophils with toxic granulations and some vacuolations, and reduced platelet count with thrombocytopenia. The presence of new pancytopaenia in our patient was confirmed by the absence of blast cells on the blood film and the absence of blast cells on the bone marrow aspirate confirms the diagnosis. AML can arise in the presence of haematological disorder, previous chemotherapy or radiotherapy, or de novo in a previously healthy individual.

Bone marrow failure: acute myeloid leukaemia (AML)
AML is the most common leukaemia in adults, with increasing incidence in those over 65s. Presenting features include fatigue, anorexia and weight loss which reflect bone marrow failure. Bone marrow failure arises due to the accumulation of immature myeloid cells within the bone marrow, resulting in a blood profile demonstrating leucocytosis, anaemia or thrombocytopenia; however, depletion of all three cell lines can occur. The presence of blast cells ≥20% in peripheral blood film or bone marrow aspirate confirms the diagnosis. AML can arise in the presence of haematological disorder, previous chemotherapy or radiotherapy, or de novo in a previously healthy individual.
Peripheral destruction of haematopoietic cells: disseminated intravascular coagulation (DIC)
DIC is a syndrome characterised by paradoxical simultaneous clotting and bleeding tendencies due to the abnormal systemic activation of coagulation pathways. Intravascular deposition of fibrin, reduction of antithrombin III and protein C and insufficient fibrinolysis result from systemic proinflammatory cytokine release. DIC is not an isolated diagnosis but is secondary to an aetiological process that generates systemic inflammatory responses which should be investigated for—these include sepsis, malignancy, organ necrosis (liver or pancreas) and trauma. DIC is a recognised complication of severe COVID-19 infection. The characteristic blood picture of DIC is thrombocytopaenia, elevated fibrin degradation products (such as D-dimer), prolonged prothrombin time and activated partial thromboplastin time and low fibrinogen (however, fibrinogen can be normal). D-dimers were not performed in this patient; however, a high result would have been expected due to severe infection. The presence of severe infection with the patient’s clotting parameters generally supports DIC; however, high fibrinogen counters the diagnosis.

Infection: COVID-19-induced pancytopaenia
Viruses are a recognised cause of pancytopaenia. Examples include parvovirus B19, hepatitis, cytomegalovirus, Epstein-Barr virus and HIV. It is proposed SARS-CoV-2 could induce pancytopaenia via similar mechanisms to the viruses listed above, where myelosuppression arises from direct viral entry and infection of haematopoietic stem cells. Positive PCR results for SARS-CoV-2, in conjunction with the blood film appearance of toxic left-shifted neutrophils, and absence of the previous history of haematological disease or risk factors for cell dyscrasia resulted in SARS-CoV-2-induced pancytopaenia being the favoured diagnosis.

SARS-CoV-2 vaccination: both mRNA (BNT162b2, mRNA-1273) and adenovirus vector (ChAdOx1) vaccinations have been reported with haematological disorders such as thrombocytopaenia. The ChAdOx1 vaccine is associated with thrombotic thrombocytopaenia; however, this condition tends to develop 1 to 3 weeks after vaccination in women under 50 years of age. Given this patient’s demographics (man over 60 years old) and the timeframe of his presentation, it is less likely that the Astrazeneca vaccine was a contributing factor.

TREATMENT
Initial management comprised high-flow oxygen therapy and proning to reduce V/Q (ventilation–perfusion) mismatch. Intravenous antibiotics (co-amoxiclav and clarithromycin), dexamethasone, intravenous fluids and carbocisteine were all commenced as part of the hospital’s COVID-19 treatment bundle. One unit of red cells and 3 units of platelets were administered after a discussion with the on-call haematologist. In view of thrombocytopaenia, mechanical thromboprophylaxis was commenced instead of subcutaneous low-molecular-weight heparin.

Within a few hours, the patient was transferred to the intensive care unit to commence continuous positive airway pressure due to increased respiratory effort and persistent hypoxia despite high-flow oxygen therapy. Over the next 24 hours, the patient’s breathing deteriorated to the point of tiring; therefore, the decision was made to intubate and start invasive ventilation under sedation.

Over the next 48 hours, little improvement was seen in oxygenation and blood results showed evidence of worsening infection (C reactive protein increase to 248 mg/L, worsening lymphopaenia 0.5×10⁹/L, procalcitonin 3.73 ng/mL). After discussion with the microbiologist on-duty, it was decided to switch antibiotic treatment to piperacillin–tazobactam to empirically cover for ventilator-associated pneumonia. Interleukin 6 (IL-6) inhibitors (tocilizumab and sarilumab) were considered in view of the early stages of critical illness requiring respiratory support. However, these were not commenced due to a persistently low platelet count <150×10⁹/L, IL-6 inhibitors being a contraindication as per the NHS Clinical Commissioning Policy for IL-6 inhibitors in hospitalised patients with COVID-19. Due to overwhelming bed pressures in the hospital, the patient was transferred out of the hospital to another intensive care unit within the region.

OUTCOME AND FOLLOW-UP
Despite intermittent red cell and platelet transfusions throughout the intensive care unit admission, a persistently low platelet count <150×10⁹/L meant that IL-6 inhibitors could not be commenced. There were no signs of bleeding throughout admission.

Despite 15 days of invasive ventilatory support, proning and optimal medical management, the patient’s respiratory function deteriorated. The patient’s wife was informed and a shared decision between her and the intensive care team was made that in the event of a cardiac arrest cardiopulmonary resuscitation would not be performed, which was in keeping with his wishes. Unfortunately after 15 days in intensive care, the patient died.

DISCUSSION
Our report of de novo COVID-induced pancytopaenia is not unique. Several cases have been reported throughout the pandemic of de novo pancytopaenia in adults with no haematological conditions or risk factors for cytopaenia. Two cases of spontaneous bleeding (premacular subhyaloid haemorrhage and spontaneous haemopteritoneum) in healthy male patients with no comorbidities have been reported as presenting symptoms of COVID-19-induced pancytopaenia. However, most cases of pancytopaenia in the presence of COVID-19 infection concern patients with an underlying haematological condition and/or risk factors for cytopaenias such as chemotherapy, methotrexate and other immunosuppressant therapy. The trajectory of COVID-induced pancytopaenia can range from being self-limiting to worsening of blood pressure.
parameters and clinical deterioration despite the use of blood products and optimal treatment of COVID-19 as seen in the case of our patient.

The mechanism of COVID-19-induced pancytopenia is not fully known. However, it is recognised that severe COVID-19 is characterised by a hyperinflammatory state and cytokine storm (the overwhelming release of proinflammatory cytokines). In a normal immune response to viral infection, proinflammatory cytokines (such as tumour necrosis factor-α, IL-1 and IL-6) are released which stimulates haematopoietic stem cell differentiation into mature leucocytes, erythrocytes and platelets. Immune cells, natural killer (NK) and cytotoxic T lymphocytes induce enzyme-mediated lysis of virus-infected cells, with apoptosis of antigen-presenting cells to clear the virus. In COVID-19 infection, viral clearance does not occur as previously described due to the defective lymphocytic activity means and instead recruitment of the whole immune system occurs. Immune system overactivity and cytokine storm contribute to sequelae of acute respiratory distress syndrome and multiorgan failure seen in severe COVID-19 infection. The rationale for using IL-6 inhibitors is to ameliorate this proinflammatory state and has demonstrated survival benefits for patients with severe COVID-19 infection requiring organ support. In the presence of pancytopenia, the benefits of IL-6 blockade must be cautiously weighed up against the risk of absolute immunosuppression.

The only clinical signs of pancytopenia in our patient were small petechial rashes, with no overt bruising or bleeding. This dermatological manifestation has been reported in another case of COVID-induced pancytopenia; however, although a rare presenting symptom, spontaneous bleeding in an otherwise healthy individual can also be the first presentation. Pancytopenia can create dilemmas in the clinical management of COVID-19 particularly around interventions with increased bleeding risk, such as venous thromboembolism prophylaxis and performing invasive procedures such as arterial line and central venous cannulation where covered with blood products is likely to be required. As described in the literature, and this case report, management of COVID-19-induced pancytopenia is primarily supportive. Early discussion with haematology should be sought.

Patient’s perspective

Before my husband was diagnosed with COVID-19, his colour was very grey and pale. He was also very quiet (not his usual self at all)—enough for myself and the family to notice and try to persuade him to see a doctor which he always replied “I’m OK.” On one occasion, he held his head in his hands and said “I think I’m dying” to which I replied “you need to go to A&E,” but again he refused.

Once he was diagnosed with COVID-19, that’s when the coughing and lethargy started. During the early hours, I awoke from the sounds of my husband talking to himself but not making any sense. He felt very hot and that is when I rang for the ambulance. I think he was frightened of the outcome with how ill he felt. I felt OK in myself—I had my booster vaccine last month which I think stopped me from catching COVID-19 from my husband.

I would like to thank all the staff for their care and how they tried so much to save him.

Learning points

- Pancytopenia is a rare but serious haematological consequence of viral infections which may only present with mild dermatological manifestations. As future waves of COVID-19 are expected, clinicians need to be vigilant of this haematological complication in the presence of severe SARS-CoV-2 infection.
- COVID-19-induced pancytopenia can occur in previously healthy individuals with no haematological conditions or risk factors for cytopenia.
- In a previously healthy individual, presentations can range from no signs of bleeding or immunocompromise to spontaneous bleeding and severe infection.
- Consider acute myeloid leukaemia and disseminated intravascular coagulation as differential diagnoses.
- Management of COVID-19-induced pancytopenia is primarily supportive. Early discussion with haematology should be sought.
Case report

16 NHS England. interim clinical commissioning policy: IL-6 inhibitors (tocilizumab or sarilumab) for hospitalised patients with COVID-19 (adults): NHS England, 2022. Available: https://www.england.nhs.uk/coronavirus/documents/interim-clinical-commissioning-policy-il-6-inhibitors-tocilizumab-or-sarilumab-for-hospitalised-patients-with-covid-19-adults-2/ [Accessed 20 Aug 2022].

17 Ufuk F, Bulghercu E, Sari T. COVID-19-associated pancytopenia and typhlitis. Am J Emerg Med 2021;45:685.e1–685.e3.

18 Martin Pozuelo Ruiz de Pascual R. Pancytopenia during SARS-CoV-2 infection. Medicina Clinica 2020;155:364–5.

19 Bridwell RE, Inman BL, Birdsong S, et al. A coronavirus disease-2019 induced pancytopenia. Am J Emerg Med 2021;47:324.e1–324.e3.

20 Kumar A, Kumar P, Singh A, et al. Bilateral premacular sub-hyaloid hemorrhage-unmasking COVID-19 induced pancytopenia. J Med Virol 2021;93:2576–7.

21 Karki S, Rawal SB, Malla S, et al. A case report on spontaneous hemoperitoneum in COVID-19 patient. Int J Surg Case Rep 2020;75:211–3.

22 Hersby DS, Do TH, Gang AO, et al. COVID-19-associated pancytopenia can be self-limiting and does not necessarily warrant bone marrow biopsy for the purposes of SARS-CoV-2 diagnostics. Ann Oncol 2021;32:121–3.

23 Issa N, Lacassin F, Camou F. First case of persistent pancytopenia associated with SARS-CoV-2 bone marrow infiltration in an immunocompromised patient. Ann Oncol 2020;31:1418–9.

24 Singh B, Ayad S, Kaur P, et al. COVID-19-Induced pancytopenia in a major molecular response CML patient on dasatinib: a case report and review of the literature. Eur J Case Rep Intern Med 2021;8:002233–33.

25 Mertens J, Lagthri Y, Kenyon C. A case of steroid-responsive, COVID-19 immune reconstitution inflammatory syndrome following the use of granulocyte colony-stimulating factor. Open Forum Infect Dis 2020;7:ofaa326.

26 Zhao Y, He J, Wang J, et al. Development of pancytopenia in a patient with COVID-19. J Med Virol 2021;93:1219–20.

27 Mahajan A, Tandon VS. Rhinosinus mucormycosis with drug-induced pancytopenia in an immunocompromised severely COVID-19 patient: a success. Indian J Crit Care Med 2022;26:395–8.

28 Işık MS, Günay D, Aksüt M. COVID-19 presenting with diarrhea in a heart transplant patient. Turk Gogus Kalp Damar Cerrahisi Derg 2021;29.

29 Soy M, Keser G, Atagündüz P, et al. Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment. Clin Rheumatol 2020;39:2085–94.

30 Sarzi-Puttini P, Giorgi V, Sirottì S, et al. COVID-19, cytokines and immunosuppression: what can we learn from severe acute respiratory syndrome? Clin Exp Rheumatol 2020;38:337–42.

31 King KY, Goodell MA. Inflammatory modulation of HSCs: viewing the HSC as a foundation for the immune response. Nat Rev Immunol 2011;11:685–92.

32 REMAP-CAP Investigators, Gordon AC, Mouncey PR, et al. Interleukin-6 receptor antagonists in critically ill patients with Covid-19. N Engl J Med 2021;384:1491–502.