Abstract
This study presents the first report of angiosperm macrofossil assemblage from the Early Cretaceous sediments of India, containing a fruit, a spike, a petal, leaves, and an axis from the Krishna Godavari Basin. This assemblage provides clues to angiosperm evolution and ecology during the Early Cretaceous of India. The described enigmatic forms are comparable to fruits of *Trapa*, and palm leaves and spikes of *Potamogeton*. The fossil material also includes ribbon-like leaves with a small axis; fossil remains suggest affinity with the monocotyledon group and support recent morphological and molecular phylogenetic studies to establish the divergence of this group from dicotyledons, during the early Cretaceous. Fossils described in the present study suggest an affinity for an aquatic environment that appears to be ideal for some early angiosperms.

Keywords: Angiosperms; Evolution; Early Cretaceous; India.

Resumo
Este estudo constitui o primeiro relato de assembleia de macrofósseis de angiospermas a partir dos sedimentos cretáceos iniciais da Índia. Os restos fósseis de angiospermas são preservados na forma de frutas, espigas, pétalas, folhas e eixos, que exemplificam a ocorrência explícita na bacia de Krishna Godavari. Essa assembleia fornece pistas sobre a evolução e a ecologia das durante os primeiros tempos do Cretáceo na Índia. As formas enigmáticas descritas são bem comparáveis aos frutos de *Trapa*, folhas de palmeira, espiga de *Potamogeton*. O material fóssil também inclui folhas em forma de fita com um pequeno eixo, restos fósseis sugerem afinidade com o grupo das monocotiledôneas, dão crédito aos recentes estudos filogenéticos, morfológicos e moleculares para estabelecer a divergência do grupo em relação às dicotiledôneas, no início do Cretáceo. Os fósseis descritos aqui sugerem uma afinidade por um paleoambiente aquático que parece ser ideal para algumas angiospermas primitivas.

Palavras-chave: Angiospermas; Evolução; Cretáceo inicial; Índia.
INTRODUCTION

Angiosperms are known from various geographic locations around the world during Early Cretaceous (Hickey and Doyle, 1977; Hill, 1994; Sun et al., 1998; Taylor et al., 2009; Friis, 2011). According to Friis (2011), the presence of India during the Early Cretaceous is unequivocal. Sahni (1932) described a vesselless fossil wood named Homoxylon from Rajmahal, India, and compared it with vesselless angiosperms. Conversely, Bose and Sah (1952) presented the affinity of Homoxylon Sahni within Bennettitales and transferred it to the new genus Sahnioxylon Bose and Sah (1952). Long afterward, Sharma (1997) described Lesqueria Crane and Dilcher and Banerji (2000) containing a fruiting body under a new genus Sonajoricarpus and a flower-like structure from the Rajmahal Formation. Banerji (2000) compared Sonajoricarpus with the fruits of extant fabaceous genus Butea Roxb. ex Willd. (1802). Interestingly, these fossils were also proved to be non-angiosperms and are now considered belonging to the gymnosperms (Srivastava and Krassilov, 2012).

Some fossil remains are described in the present article, which can be comparable with angiosperms from Neocomian-Aptian (Early Cretaceous) sediments of Krishna-Godavari Basin, East Coast of India. The described fossils consist of cf. Trapa L., fruits, Palm-like leaves, petals of flower, pentamerous flower-like structure, and some enigmatic leafy axis and ribbon-like leaves.

GEOLOGICAL SETTING

The Krishna-Godavari Basin is a pericratonic basin that came into existence following rifting along the Eastern continental margin of the Indian Craton during the early Mesozoic (Sastri et al., 1974; Lal et al., 2009) (Figure 1A). Geographically, the basin is located between the Kakinada in the NE and Ongole in the SW of Andhra Pradesh (Figure 1B). It is one of the promising petroliferous basins of India. The basin has a half-crescent shape and measures about 15,000 km on land and about 25,000 km of the adjoining offshore regions (Kumar, 1983). This basin was a major intracratonic Gondwanan rift basin until the Early Jurassic period (Rao, 2001), and after the Cretaceous it became a pericratonic rift basin (Biswas et al., 1993). The basement is composed of an Archean igneous and metamorphic complex overlain by Lower Gondwana (Permian) sediments represented by the Chintalapudi Formation (Lakshminarayana and Murti, 1990; Biswas, 1992).

The “Upper Gondwana” sediments are exposed toward the western and northwestern fringes of the basin (Figure 1) and distributed in two depressions named Godavari and Krishna (Sastri et al., 1974; 1981; Kumar, 1986; Venkatachalapati and Sinha, 1986). Sediments exposed in the Godavari Depression are divided into three litho-units, the Golapalli, Raghavapuram, and Tirupati formations. The Golapalli Formation (16°43’N; 80°35’E), is the oldest and comprises white to pale white and light brown sandstones with siltstone partings. The Raghavapuram Formation (17°02’N; 81°22’E) and Tirupati formations. This formation is characterized by white pale to pinkish earthy shale and dark brown ferruginous claystones, light buff to grayish white, medium grained glauconitic sandstones with rich fossil plant and animal materials (Bhalla, 1969; Bakhshi, 1968; Prasad and Pandur, 1999; Chinnappa et al., 2014). The Tirupati Formation (16°57’N; 81°17’E) overlying the Raghavapuram Formation is composed of purple red to light brown, medium grained sandstone and lacks plant macrofossils (Prasad and Pandur, 1999).

Sediments exposed in the Krishna Depression were also divided into three litho-units, the Budavada, Vemavaram, and Pavaluru formations. Sedimentary rocks of the Budavada Formation are the oldest in that order and is characterized by sandstones containing fragmented plant remains (Feistmantel, 1879). The Vemavaram Formation, which lies between the Budavada and Pavaluru formations and is primarily composed of shales containing carbonaceous matter, has provided many fossil plants (Feistmantel, 1879; Chinnappa et al., 2014). The Pavaluru Formation is comprised of medium to coarse grained clays and lateritic sandstones, and it is overlain by the Deccan intertrappeans (Rao, 2001) (Table 1). The lithology of the studied sections is provided in Figure 2.

MATERIALS AND METHODS

Fossil plants were collected from the mudstone/shale sequence of the Raghavapuram Formation, exposed about 1 km toward the South East of the Ramanujapuram village (17°13’27”N; 81°19’11”E), near Jangareddigudem, West Godavari District, Andhra Pradesh, India (Figure 2). Fossil plants were preserved
Figure 1. (A) Geological map of Krishna-Godavari Basin (Source: Chinnappa et al., 2014). (B) Map showing the fossil locality.
as impressions on whitish-yellow colored shale and pale-reddish mudstone/shale. Despite the preservation limitation, most morphological details are still retained, including the venation pattern in maximum number of specimens. Fossil plants were studied under an Olympus SZH 10 stereo dissecting microscope. All the specimens were photographed with a Canon SX 150 IS digital camera using either polarized light or low angle light to reveal surface details. The described material is assigned a BSIP (Birbal Sahni Institute of Palaeosciences) specimen number and lodged with the BSIP fossil repository.

RESULTS

Systematic palaeobotany

ANGIOSPERMAE
Class MAGNOLIOPSIDA – DICOTYLEDONS
Order MYRTALES Jussieu ex Brechtold and Jan Svatopluk Presl
Family LYTHRACEAE (formerly in Trapaceae) Saint-Hilaire. Reveal and Chase, 2011

cf. Trapa sp.

Figure 8A

Referred specimen. BSIP specimen number: 40457

Locality and age. Ramanujapuram, Raghavapuram Formation, East Coast of India, Early Cretaceous.

Description. Fruits are medium in size with two massive external horns triangular in outline. The fruit is 16 mm in length (including neck), with about 20 mm in width at the surface of the horn. The upper surface of the fruit is depressed with a well-developed neck (Figure 8A). The neck is obtuse in outline, about 5-mm long and 11-mm wide, and does not usually protrude from the upper horns. Apertures are not visible. Corona is lacking. The horns are about 30-mm long, triangular in outline, and usually downward pointed. The arms are gradually attenuating into straight, elongate thin spine-like tips, and are ascending at an angle of 50–60°. The arm ends are not properly preserved. Barbed spines (harpoons) cannot be visible on arms due to poor preservation of arm ends. The fruit body is well-developed, the lower part of the fruit body is obtriangular in outline.

Comments. Fruits of *Trapa* Linnaeus (1753) are characterized by two-four strongly recurved to ascending horns (indurated sepal) with thick bases, and the horns bear coarse harpoon-like barbs (Graham, 2013). Fruits of well-developed body with two massive horns with thick bases, ascending at an angle of 50–60°, can be well compared with the *Trapa*. The lack of harpoon-like barbs is due to the preservation limitations rather than their actual absence. The fossils of *Trapa* and *Hemitrapa* Miki are among the most intensively studied and the most easily recognized fossils in the Lythraceae (Graham, 2013). The earliest known fossil related to *Trapa* is fruit impressions described as *Prototrapa* Vassiljev from Early Cretaceous of Australia (Vassiljev, 1967).

Fruit impressions resembling the *Trapa* described in this study are the oldest records of such type in the fossil record to date. *Trapa* is mostly recorded from the Tertiary

Group	Formation	Lithology	Age
Tertiary			
Rajahmundry		Red, feldspathic, ferruginous, laterized, cross-beded, and conglomeratic sandstone	Miocene-Pliocene
Infra-Inter-Trappean		Basaltic lava	Late Cretaceous-Early Paleocene
	Unconformity		
Upper Gondwana			
Tirupati/Pavalur		Purple, red-light, brown sandstones/clay and calcitic sandstones	Late Cretaceous
Raghavapuram/Vemavaram		White, pale-reddish earthy shales, red ferruginous claystones, light buff-grayish, white glauconitic sandstones/shale containing carbonaceous matter	Early Cretaceous
	Unconformity		
Golapalli/Budavada		White-pale, white, and light brown sandstones with siltstone partings/sandstones	Early Cretaceous
	Unconformity		
Lower Gondwana			
Chintalapudi/Kamthi		Coarse grained feldspathic sandstones, alternating calcareous claystones	Permian
	Unconformity/Fault		
Proterozoic			
Khondalite		Igneous and metamorphic rocks	Precambrian

Table 1. Lithostratigraphy and ages of the various litho-units in the Krishna Godavari Basin.

Source: Chinnappa et al., 2014.
sequences (Miki, 1959; Kovar-Eder et al., 2005; Wójcicki and Velitzelos, 2007). The horns of the fruits described in the present article can be comparable with the *T. silesiaca* (Wójcicki and Zastawniak, 2002), but differ in size and shape of the body and neck. There are few other reports of fruit impressions related to the Trapaceous species (the term “Trapaceous” is used in a general sense to indicate the fossil fruit relation with the extant *Trapa* (Vassiljev, 1967; Golovneva, 1991). Fruit impressions of *Prototrapa* Vassiljev from Early Cretaceous of Australia (Vassiljev, 1967) and *Palaeotrapa* Golovneva from Late Cretaceous of Russia (Golovneva, 1991) differ in characteristic shape of the body and horn base. The shape of the body in cf. *Trapa* fruit described in this study is somewhat triangular, and horn base is wide and narrow at the ends; but in *Prototrapa* and *Palaeotrapa*, the body is fusiform and horn base is narrow and long.

Class LILIOPSIDA

Order ARECALES Juss. ex Brecht. and J. Presl

Family ARECACEAE Bercht. and J. Presl, nom. cons.

cf. Arecaceae leaf 1

Figures 3, 8C and 8E

Referred specimen. BSIP specimen number: 40458 and 40459.

Figure 2. Lithological succession showing the position of fossiliferous beds.

Figure 3. Reconstruction of cf. Arecaceae leaf 1 (Base of the leaf is based on the BSIP specimen number 40458. Apex of the leaf is based on the BSIP specimen number 40459) (not to scale).
Locality and age. Ramanujapuram, Raghavapuram Formation, East Coast of India, Early Cretaceous.

Description. Simple palmate leaves with fan shape, preserved lamina length of 80–100 mm and width of about 50–100 mm at widest region. The texture of the lamina is coriaceous. Petiole and hastula were not recovered. Lamina consisting of more than 25 plicate segments (Figures 3, 8B and 8E). Leaflets are symmetrical and diverging from base to apex, 2–4 mm wide, and the length varies. Venation is parallel with indistinct midrib and few faint lateral veins.

Comments. Fossil records of palms clearly indicate its quite ancient origin, having been found from the Liassic to modern period, if not from Triassic (Mahabale, 1962). Modern members of Arecaceae are diverse and share numerous similarities in form and gross external features, which hinders the comparison of fossil with modern members (Read and Hickey, 1972). Preservation limitations in fossil specimens are another important factor that precludes the matter. Read and Hickey (1972, p. 130) suggested a set of five characters that can either be used in combination or alone to identify fossil palms and palm-like leaves. They also considered all fossil palms and palm-like leaves under the nine genera, namely: *Amesoneuron* Goepert (1852), *Bactrites* Berry (1924), *Sabalites* Saporta (1865), *Palmacites* Brongniart (1822), *Phoenicites* Brongniart (1828), *Phoenix* Linnaeus (1753), *Sanmiguelia* Brown (1956), *Paloreodoxites* Knowlton (1930), and *Propalmophyllum* Lignier (1895).

The fossil leaves described in this article can be grouped in the *Palmacites* Brongniart (1822), based on the available evidences. The fossil genus *Palmacites* Brongniart (1822) includes “all fossil palm-like leaves adequate for determining original form; lamina with pure palmate lacking a costa or extension of the petiole into the blade” (Read and Hickey, 1972). So far, *Palmacites* is only known from the sediments younger than the Cretaceous, and their reports within the Cretaceous are largely unknown. There are frequent reports of *Palmacites* from Tertiary sequences of India. Leaflets are smaller in the present specimens, but they are comparatively larger in specimens from younger sediments (Singh; Patnaik, 2012; Srivastava et al., 2012). All the younger species of *Palmacites* greatly differ from the present specimens by nature of leaf base and size of leaflets. Similarly, base is very acute and narrow in the present specimens, but it is comparatively wide in the later specimens. The acute and narrow base and V shape of the leaf (Figure 3) can be comparable with the extant *Korthalsia* Blume (1843). However, it is not plausible to make further comparisons at species level either with extant or extinct members because of preservation limitations and the long chronological gap. Any imposed comparison with the relatively younger members is unlikely, and it hinders the knowledge of early forms and their utility in understanding the evolutionary process (Hughes, 1994).

Monocotyledon sp. A

Figures 5 and 8D

Referred specimen. BSIP specimen number: 40461.

Locality and age. Ramanujapuram, Raghavapuram Formation, East Coast of India, Early Cretaceous.

Description. The specimen is partially preserved with a small axis and five leaves. The surface of the axis is striated and the maximum available size is 40 mm. The leaves are ribbon-like; five leaves can be seen radiating from a central axis. The acute and narrow base and V shape of the leaf (Figure 3) can be comparable with the extant *Korthalsia* Blume (1843). However, it is not plausible to make further comparisons at species level either with extant or extinct members because of preservation limitations and the long chronological gap. Any imposed comparison with the relatively younger members is unlikely, and it hinders the knowledge of early forms and their utility in understanding the evolutionary process (Hughes, 1994).
common central point (Figures 5 and 8D). The maximum available size of the leaf is 80-mm long and 10-mm wide. Parallel margins. Apex is unknown. Venation is faintly preserved and parallel.

Comments. A single specimen is available with limited characters. Veins preserved as small parallel scars on the leaves at some places, thus indicating parallel venation. Though the specimen is partially preserved, the characteristic shape of the leaves and veins indicates affinity with angiosperms, more specifically with the monocotyledons. Fossil ribbon-like leaves and parallel venation are mostly known from the later part of the Cretaceous, are placed either in extinct *Stratiotes* or seagrass (van der Ham et al., 2007), and largely differ from present specimens by radiation of the leaves from axis (Figures 5 and 8D). The characteristic features of the leaves indicate that the plant might have dwelled in an aquatic habitat. Among the extant members of the monocotyledons, leaves with similar characters are mostly found in Cyperaceae.

Petals of angiosperm flower

Figures 6 and 8F

Referred specimen. BSIP specimen number: 40462.

Locality and age. Ramanujapuram, Raghavapuram Formation, East Coast of India, Early Cretaceous.

Description. Three petals arranged in whorls attached to a central granular structure, which may represent a receptacle, 30-mm long and 34-mm wide at widest region, i.e., apical part gradually narrowing towards the base. The overall shape of each segment is widely elliptical and somewhat triangular (Figures 6 and 8F). Both lateral and apical margins straighten up to slightly wavy. Open dichotomous venation with rare reticulation, thick veins and areoles are not clear.

Comments. Isolated petals of fossil flowers are frequent in Cretaceous fossil records and are often mistaken for aquatic ferns such as *Marsilea* Linnaeus (Skog and Dilcher, 1992; Nagalingum, 2007). Petals of the fossil flowers can be distinguished from the *Marsilea* and extinct *Marsileaceaephyllum* Nagalingum (2007) by the variation in size, thickness of the veins, and the irregularly sized, rectangular, or polygonal areoles (Rich et al., 2001). The large size of the segments (petals) and the thick first-order veins suggest the affinity with petals rather than *Marsilea* or *Marsileaceaephyllum*. Two petals were fully preserved and the third one is represented by a most basal part (Figure 8F). Although floral parts confer angiosperm, it is not possible to relate them to any known taxa.

Angiosperm floral Spike

Figures 7 and 8H

Referred specimen. BSIP specimen numbers: 40463 and 40464.
Locality and age. Ramanujapuram, Raghavapuram Formation, East Coast of India, Early Cretaceous.

Description. A reproductive axis with stalk and body about 60-mm long. The slender stalk runs throughout the body; a section of about 25-mm long and about 1-mm wide can be seen outside the body. The body, 35-mm long and about 6-mm wide, spindle-shaped, is loosely packed around the central axis. The outer surface of the body is slightly granular (Figure 8H).

Comments. This fossil spike, resembling that of *Potomogeton* L., is of special interest mostly due to its close resemblance with cones of Gnetales, primarily of ephedroid affinity (Sun et al., 2001; Rydin and Friis, 2010). Many of the previous fossils described under the genus *Potomogeton* (e.g., Yabe and Endó, 1935; Krassilov, 1982) were later considered as ephedroids (Friis, 2011). The specimens described in this article greatly differ from those previously described as spike-like *Potomogeton* (Krassilov, 1982) and the cones of Gnetales by nature of stalk and body. Cones of extant ephedroids are characterized by the presence of concentric rings of body around the central stalk. The body surface in the described specimens is loosely packed around a central axis and seems to be granular, which can be clearly observed at its outer surface (Figures 7 and 8H). The granular-surface structures around a central axis are highly suggestive of small fruit-like structures. Absence of gnetelean macrofossils from the early Cretaceous or older sediments of the Indian subcontinent also disputes the ephedroid affinity and thereby supports angiosperm affinity, possibly with *Potomogeton*.

Angiosperm sp.

Figure 8G

Referred specimen. BSIP specimen numbers: 40465 and 40466.

Locality and age. Ramanujapuram, Raghavapuram Formation, East Coast of India, Early Cretaceous.

Description. A slender axis with whorls of leaves at regular intervals, maximum available size of approximately 40-mm long and 1–2-mm wide. Leaves arranged in whorls around the axis at regular intervals, 5–6 in number (Figure 8G). The leaf about 5-mm long and 3-mm wide at apical part, slightly triangular in shape. Both the lateral and apical margins are straight. Venation not clear, 2–3 parallel veins are visible, running from base to apex.

Comments. Plants with slender leafy axis and leaves in whorls at regular intervals on the axis can be found in *Sphenophyllum* Brongniart (1822) and *Equisetum* Linnaeus (1753), belonging to pteridophytes, and *Hydrilla* Richard (1814), belonging to angiosperms. Fossils of this type, in addition to the aforementioned genera, are unknown to the best of the authors’ knowledge. The *Sphenophyllum* is an extinct member of Sphenopsids that thrived during Late...
Figure 8. (A–H) Fossil angiosperm remains: (A) cf. *Trapa* fruit (BSIP 40457). (B) cf. Arecaaceae leaf 2 (BSIP 40460). (C and E) cf. Arecaaceae leaf 1 (BSIP 40459 and 40458). (D) Monocotyledon sp. 1 (BSIP 40461). (F) Petals of angiosperm flower (BSIP 40462). (G) Angiosperm (BSIP 40465). (H) Angiosperm floral spike (BSIP 40463) (scale bar of 10 mm).
Devonian to Late Permian (Bashforth and Zodrow, 2007). Although, the external shape of the leaf in present specimens resembles those of Sphnephyllum, the Early Cretaceous age suggests that its affinity with that taxon is highly improbable, considering that the Sphnephyllum had already been extinct by the end of the Permian. Extant Equisetum differs in nature of leaves and their fossils are frequently identified based on the ridges and furrows, in addition to axis with well-determined nodes and internodes (Surange, 1966). Hydrodrilla is an extant member of Hydrocharitaceae and is represented by a single species (Cook and Lüönd, 1982). The leaves of Hydrodrilla are characterized by a well-developed midrib, apex is mostly acute, and margins are serrate, thus adequate to compare the present fossil specimen with this genus. Furthermore, molecular phylogenetic studies suggest a recent origin for Hydrodrilla (Chen et al., 2012). Taking this into consideration, it is not possible to compare the present specimens with any known taxa either extant or extinct. However, the available evidence, such as the characteristic nature of the leafy axis, indicates its affinity with angiosperms, which leads the authors to believe it probably represents an extinct lineage within Hydrocharitaceae. More specimens of similar type with better preserved details are needed to confirm its taxonomic position.

DISCUSSION

Angiosperm macrofossil remains are common in the fossil records of Early Cretaceous sedimentary basins (Taylor et al., 2009). However, little is known about the early presence of this plant group in India, where previous records of fossils placed within the flowering plants were later proved to be Bennettitaleans (Srivastava and Krassilov, 2012). The lack of early angiosperm remains from Early Cretaceous sedimentary basins of India hinders the understanding of the evolutionary history in the Indian subcontinent. In addition, this has historically constrained the authors’ understanding of the evolutionary history of the group itself. The present knowledge of angiosperm history in India is solely based on the fossils from Late Cretaceous and cannot be applied to early flowering plants because, by this time, they were markedly different (Crane et al., 2000; Crepet, 2000; Solits and Soltis, 2004; Friis et al., 2011). The angiosperm fossil assemblage described in this study is the first of its kind to date, and the fossils are mostly described under comparative forms due to the moderately available characters. The assemblage includes the fossil resembling the Trapa, Arecaceae, Potomogeton, ribbon-like leaves, petals of fossil flowers, and an enigmatic leafy axis.

Trapa fruits with unquestionable modern affinity are known from Miocene, but fossil reports of this genus from the Cretaceous period are common (Paradkar and Patki, 1987). Morphological variations in the fossil Trapa fruits are great. Besides this well-advanced state of fruits in Miocene, the sporadic reports of the genus in the Late Cretaceous suggest its origin in the Miocene to be highly dubious. Fruits similar to extant Trapa described in the present study and also from the Early Cretaceous sediments of Kutch Basin (Rajankanth and Chinnappa, 2016) suggest this genus might have existed early in the Cretaceous. The progenitors and center of origin of modern forms of Trapa still remain an unsettled question, and various opinions are found in the literature (Graham, 2013 and references therein). The Trapa-like fruits described in this study closely resemble fossil Trapa fruits from the Miocene, as well some extinct members, by sharing important characters, such as shape, nature of body, and horn, thus suggesting their close affinity. The present fossil fruits probably represent an ancestral lineage for modern forms, considering that fruit bodies in the Miocene and in modern Trapa are comparatively larger; this might be the evolutionary change, as fruit body size has increased since the Early Cretaceous.

Arecaceae is an ancient group of angiosperms with a controversial Triassic fossil record, i.e., Sanmiguelia (Brown, 1956). However, there are concerns about their affinity with true palms (Read and Hickey, 1972). Pollens of Spinozonzolicpites Muller (1968) and Mauritidiites van Hoeken-Klinkenberg (1964) from Zastric finally fossil records (van der Hammen and Garcia de Mutis, 1965) indicate an early origin for palms (Harley, 2006), which might have originated during Early Cretaceous, if not before. Reports of advanced forms, such as Cocos Linneaus (1753), from Late Cretaceous sediments of India (Srivastava and Srivastava, 2014), also refer the origin of palms to early Cretaceous or Late Jurassic, which is substantiated by the palm-like leaves reported in this study.

Spike-like structures comparable with Potomogeton spike from Early Cretaceous (Krassilov, 1982) were later considered under Gnetales (Friis et al., 2011) based on gross similarities with ephedroid spikes. The described specimen greatly differs from the previously described specimens and from the ephedroid spikes. Available evidence corroborate an angiospermous affinity probably with the Potomogeton stem lineage rather than with gnetalean (ephedroids). The absence of macrofossils of this latter group in Early Cretaceous sediments of India is also noteworthy.

Petals of flowers provided little information and it is not possible to relate them to any extinct or extant flower, but their presence along with pentamerous flower-like structures are of special interest. Although there are many specimens in the authors’ personal collection, with five lobes resembling the pentamorous flower, the poor and asymmetrical preservation of lobes precludes their definite affinity with flowers.

Ribon-like leaves with parallel venation resembling monocot leaves (Figure 5) support their classification within
the angiosperms, but the exact relation with extant flowering plants is unclear.

Leafy axis with leaves arranged in whorls show a probable angiosperm affinity (see comments under angiosperm sp.). Such whorled leaves are often seen in aquatic taxa, such as *Hydrilla*, and more efforts are needed to recover similar fossils. Except for this leafy axis fossil, all other plant macrofossils reported in this study well establish the existence of angiosperms during the Early Cretaceous in India.

CONCLUSIONS

The study records the first report of angiosperm macrofossil assemblage from India. The present findings of fossil flowering plant remains with monocots are in close agreement with recent morphological and molecular phylogenetic studies that establish the group divergence from the dicots, early in the Cretaceous (e.g., Bremer, 2000; Soltis and Soltis, 2004; Janssen and Bremer, 2004). The fossils described in the present research show close resemblance to extant aquatic forms, which appears to be an ideal habitat for some early angiosperms. More specimens with well-preserved characters are needed to better establish taxonomical relationships with extant members of angiosperms and to further contribute to the knowledge of their ecological preferences.

ACKNOWLEDGEMENT

The authors are grateful to V. Prasad, Director of the Birbal Sahni Institute of Palaeobotany, Lucknow, India for the encouragement and for providing infrastructural facilities.

REFERENCES

Baksi, S. K. (1968). Fossil plants from Raghavapuram Mudstone, west Godavari District, A. P. *Palaeobotanist*, 16, 206-215. Available from: <http://14.139.63.228:8080/pbrep/bitstream/123456789/492/1/PbV16No3_206.pdf>. Accessed on: Sept. 2020.

Banerji, J. (2000). Occurrence of angiosperm remains in an Early Cretaceous intertrappean bed, Rajmahal Basin, India. *Cretaceous Research*, 21(6), 781-784. https://doi.org/10.1006/cre.2000.0225

Banerji, T. (1992). Tectonic framework and evolution of graben basins of India. *Indian Journal of Petroleum Geology*, 1, 276-292.

Bhalla, S. N. (1969). Foraminifera from the type Raghavapuram Shale, east coast Gondwanas, India. *Micropalaentology*, 15(1), 61-84. https://doi.org/10.2307/1484860

Biswas, S. K. (1992). Classification of Indian Sedimentary basins in the framework of plate tectonics. *II Seminar on Petroliferous Basins of India*. Dehra Dun. 46 p.

Blume, C. L. (1843). *Rumphia 2. C. G*. Leiden: Sulpke.

Bose, M. N., Sah, S. C. D. (1952). On *Sahnioxylon rajmahalense*, a new name for *Homoxylon rajmahalense* Sahni, and *S. andrewsii*, a new species of *Sahnioxylon* from Amrapara in the Rajmahal Hills, Bihar. *Palaeobotanist*, 3, 1-8.

Bremer, K. (2000). Early Cretaceous lineages of monocot flowering plants. *Proceedings of the National Academy of Sciences*, 97(9), 4707-4711. https://doi.org/10.1073/pnas.080421597

Brongniart, A. (1822). Sur la classification et la distribution des vegetaux fossiles en general, et sur ceux des terrains de sediment superieur en particulier. *Memoires du Museum National d’Histoire Naturelle*, 8, 203-348.

Brongniart, A. (1828). *Histoire des végétaux fossiles ou recherches botaniques et géologiques sur les végétaux renfermés dans les diverses couches du globe*, Paris: imprimerie de fain.

Brown, R. W. (1956). Palm-like plants from the Dolores Formation (Triassic), southwestern Colorado. *United States Geological Survey Professional Paper H*, 274, 205-209. https://doi.org/10.3133/pp274H
Chen, L. Y., Chen, J. M., Gituru, R. W., Wang, Q. F. (2012). Generic phylogeny, historical biogeography and character evolution of the cosmopolitan aquatic plant family Hydrocharitaceae. *BMC Evolutionary Biology*, 12, 1-12. https://doi.org/10.1186/1471-2148-12-30

Chinnappa, C. H., Rajanikanth, A., Rao, Y. V. (2014). Flora diversity and implications in palaeoenvironments of Vemavaram Formation (Krishna Depression), Krishna-Godavari Basin, Andhra Pradesh, India. *Palaeobotanist*, 63, 63-78.

Cook, C. D., Lüönd, R. (1982). A revision of the genus *Hydrilla* (Hydrocharitaceae). *Aquatic Botany*, 13, 485-504. https://doi.org/10.1016/0304-3770(82)90074-2

Crane, P. R., Friis, E. M., Pedersen, K. R. (2000). The origin and early diversification of angiosperms. In: H. Gee (Ed.), *Shaking the Tree: Readings from Nature in the History of Life*, p. 233-250. Chicago: University Chicago Press.

Crepet, W. L. (2000). Progress in understanding angiosperm history, success, and relationships: Darwin’s abominably “perplexing phenomenon”. *Proceedings of the National Academy of Sciences*, 97(24), 12939-12941. https://doi.org/10.1073/pnas.97.24.12939

Cronquist, A. (1981). *An integrated system of classification of flowering plants*. New York: Columbia University Press.

Domin, K. (1915). Beiträge zur Flora und Pflanzengeographie australiens. *Bibliotheca Botanica*, 85, 1-551. https://doi.org/10.5962/bhl.title.58219

Doyle, J. A. (2006). Seed ferns and the origin of angiosperms. *Journal of the Torrey Botanical Society*, 133(1), 169-209. https://doi.org/10.3159/1095-5674(2006)133[169:SFATOO]2.0.CO;2

Doyle, J. A. (2012). Molecular and fossil evidence on the origin of angiosperms. *Annual Review of Earth and Planetary Sciences*, 40, 301-326. https://doi.org/10.1146/annurev-earth-042711-105313

Feistmantel, O. (1879). The fossil flora of Upper Gondwanas, Outliers on the Madras Coast. *Memoirs of the Geological Survey of India*, 2, 191-224.

Friedman, W. E. (2009). The meaning of Darwin’s “abominable mystery”. *American Journal of Botany*, 96(1), 5-21. https://doi.org/10.3732/ajb.0800150

Friis, E. M., Crane, P. R., Pedersen, K. R. (2011). *Early flowers and angiosperm evolution*. New York: Cambridge University Press.
Kumar, S. P. (1983). Geology and hydrocarbon prospects of Krishna-Godavari and Cauvery basins. *Petroleum Asia Journal*, 8, 57-65.

Lakshminarayana, G., Murti, K. S. (1990). Stratigraphy of the Gondwana formations in the Chintalapudi Sub Basin, Godavari Valley Andhra Pradesh. *Journal of the Geological Society of India*, 36, 13-26.

Lal, N. K., Siawal, A., Kaul, A. K. (2009). Evolution of east coast of India—A plate tectonic reconstruction. *Journal of the Geological Society of India*, 73, 249-260. https://doi.org/10.1007/S12594-009-0081-1

Lignier, O. (1895). Végétaux de Normandie [Part] 2, Contributions á la flare Liasique Ste.-Honorine-la-Guillaume (Orne). *Memoires de la Société linnéenne de Normandie*, 2 (18), 124-151.

Linnaeus, C. (1753). *Species Plantarum*. Stockholm: Laurentius Salvius.

Mahabale, T. S. (1962). Evolutionary trends in Palmae with special reference to fossil palms. *Palaeobotanist*, 14(1-3), 214-222.

Miki, S. (1959). Evolution of *Trapa* from ancestral *Lythrum* through *Hemitrapa*. *Proceedings of the Imperial Academy of Japan*, 35(6), 289-294. https://doi.org/10.1007/pjab1945.35.289

Muller, J. (1968). Palynology of the Pedawan and Plateau Sandstone Formations (Cretaceous–Eocene) in Sarawak. *Malaysia Micropaleontology*, 14(1), 1-37. https://doi.org/10.2307/1484763

Nagalingum, N. S. (2007). *Marsileaceaephyllum* a new genus for marsileaceous macrofossils: leaf remains from the Early Cretaceous (Albian) of southern Gondwana. *Plant Systematics and Evolution*, 264, 41-55. https://doi.org/10.1007/s00606-006-0497-7

Paradkar, S. A., Patki, S. P. (1987). *Trapa* mohgaoensis, a new petrified dicotyledonous fruit from Deccan Intertrappean beds of Moghaonkalan, M. P., India. *Geophytology*, 17(1), 21-27.

Prasad, B., Pundir, B. S. (1999). Biostratigraphy of the exposed Gondwana and Cretaceous rocks of Krishna-Godavari basin, India. *Journal of Paleontological Society of India*, 44, 91-117. Available from: <http://palaeontologicalsociety.in/vol44/v7.pdf>. Accessed on: Nov. 21, 2020.

Rao, G. N. (2001). Sedimentation, stratigraphy and petroleum potential of Krishna-Godavari Basin, east coast of India. *AAPG Bulletin*, 85(9), 1623-1643. https://doi.org/10.1306/8626CCDF-173B-11D7-8645000102C1865D

Rajanikanth, A., Chinnappa, C. (2016). Early Cretaceous flora of India—A review. *The Palaeobotanist*, 65, 209-245

Read, R. W., Hickey, L. J. (1972). A revised classification of fossil palm and palm-like leaves. *Taxon*, 21(1), 129-137. https://doi.org/10.2307/1219237

Rich, F. J., Johnson, D. M., Durkin, T. V. (2001). Occurrence and paleoecology of *Marsilea* from the Eocene Wasatch Formation, Johnson County, Wyoming. *Palaios*, 16(6), 608-613. https://doi.org/10.1007/10.2307/3515633

Richard, L. C. M. (1814). Sur les Hydrocharidees. *Mem. Inst. de France*, 12(2), 1-4.

Rydin, C., Friis, E. M. (2010). A new Early Cretaceous relative of Gnetales: *Siphonospermum simplex* gen. et sp. nov. from the Yixian Formation of Northeast China. *BMC Evolutionary Biology*, 10, 1-6. https://doi.org/10.1186/1471-2148-10-183

Sahni, B. (1932). *Homoxylon rajmahalense* gen. et sp. nov., a fossil angiospermous wood, devoid of vessels, from the Rajmahal hills, Bihar. *Memories of Geological Survey of India*, 20, 1-19.

Saporta, G. (1865). Etudes sur la vegetation du sud-est de la France a l’époque tertiaire. *Annales des Sciences Naturelles*, 5(4), 5-264.

Sastri, V. V., Raju, A. T. R., Singh, R. N., Venkatachala, B. S. (1974). Evolution of the Mesozoic sedimentary basins on the east-coast of India. *APEA Journal*, 14(1), 29-41. https://doi.org/10.1071/AJ73004

Sastri, V. V., Venkatachala, B. S., Narayanan, V. (1981). The evolution of the east coast of India. *Palaeogeography, Palaeoclimatology, Palaeoecology*, 36(1-2), 23-54. https://doi.org/10.1016/0031-0182(81)90047-X

Schneider, H., Schuettelpelz, E., Pryer, K. M., Cranfill, R., Magallón, S., Lupia, R. (2004). Ferns diversified in the shade of angiosperms. *Nature*, 428, 553-557. https://doi.org/10.1038/nature02361

Sharma, B. D. (1997). An early angiosperm fructification resembling *Lesqueria* Crane & Dilcher from the Rajmahal hills, India. *Phytomorphology*, 47, 305-310.
Singh, R. R., Patnaik, R. (2012). A fossil palm leaf impression from ~11.2 Ma old, Siwalik deposits of Kangra Valley, Himachal Pradesh. *Journal of the Geological Society of India*, 79, 85-88. https://doi.org/10.1007/s12594-012-0008-0

Skog, J. E., Dilcher, D. L. (1992). A new species of *Marsilea* from the Dakota Formation in central Kansas. *American Journal of Botany*, 79(9), 982-988. https://doi.org/10.1002/j.1537-2197.1992.tb13687.x

Soltis, P. S., Soltis, D. E. (2004). The origin and diversification of angiosperms. *American Journal of Botany*, 91(10), 1614-1626. https://doi.org/10.3732/ajb.91.10.1614

Srivastava, G., Mehrotra, R. C., Bauer, H. (2012). Palm leaves from the Late Oligocene sediments of Makum Coalfield, Assam, India. *Journal of Earth System Science*, 121, 747-754. https://doi.org/10.1007/s12040-012-0179-5

Srivastava, R., Krassilov, V. A. (2012). Revision of Early Cretaceous angiosperm remains from the Rajmahal Basin, India, with notes on the palaeoecology of the *Pentoxylon* plant. *Cretaceous Research*, 33(1), 66-71. https://doi.org/10.1016/j.cretres.2011.08.003

Srivastava, R., Srivastava, G. (2014). Fossil fruits of *Cocos* L. (Arecales) from Maastrichtian- Danian sediments of central India and its phytogeographical significance. *Acta Palaeobotanica*, 54(1), 67-75. https://doi.org/10.1016/j.acpa.2014.0003

Sun, G., Dilcher, D. L., Zheng, S., Zhou, Z. (1998). In search of the first flower: a Jurassic angiosperm, *Archaeafructus*, from northeast China. *Science*, 282(5394), 1692-1695. https://doi.org/10.1126/science.282.5394.1692

Sun, G., Zheng, S. L., Dilcher, D. L., Wang, Y. D., Mei, S. W. (2001). *Early angiosperms and their associated plants from western Liaoning, China*. Shanghai: Shanghai Scientific and Technological Education Publishing House.

Surange, K. R. (1966). *Indian fossil pteridophytes* (No. 4). Monograph. New Delhi: CSIR.

Taylor, E. L., Taylor, T. N., Krings, M. (2009). *Paleobotany: the biology and evolution of fossil plants*. New York: Academic Press.

Van der Ham, R. W. J. M., Van Konijnenburg-van Cittert, J. H. A., Ideherberge, L. (2007). Seagrass foliage from the Maastrichtian type area (Maastrichtian, Danian, NE Belgium, SE Netherlands). *Review of Palaeobotany and Palynology*, 144(3-4), 301-321. https://doi.org/10.1016/j.revpalbo.2006.07.008

Van der Hammen, T., Garcia de Mutis, C. (1965). The Paleocene pollen flora of Colombia. *Leidse Geologische Mededelingen*, 35(1), 105-114.

Van Hoeken-Klinkenberg, P. M. J. (1964). A palynological investigation of some Upper Cretaceous sediments in Nigeria. *Pollen et Spores*, 6, 209-231.

Vassiljev, V. N. (1967). New Genus of Trapaceae. *Paleontologicheski Zhurnal*, 2, 107-112.

Venkatachala, B. S., Sinha, R. N. (1986). Stratigraphy, age and palaeoecology of Upper Gondwana equivalents of the Krishna-Godavari Basin, India. *Palaeobotanist*, 35(1), 22-31.

Willdenow, C. L. (1802). *Species plantarum*. Berlin: Berolini.

Wójcicki, J. J., Velitzelos, D. (2007). *Trapa kvacekii* (Trapaceae), a remarkable new fossil species from the late Miocene of Greece. *Acta Palaeobotanica*, 47(2), 419-424.

Wójcicki, J. J., Zastawniak, E. (2002). Late Miocene *Trapa* L. (Trapaceae) of Sosnica (SW Poland) revisited. *Acta Palaeobotanica*, 42(1), 29-38.

Yabe, H., Endô, S. (1935). *Potamogeton* remains from the Lower Cretaceous? Lycoptera Beds of Jehol. *Proceedings of the Imperial Academy of Tokyo*, 11(7), 274-276. http://doi.org/10.2183/pjab1912.11.274