Solution Structure of the PilZ Domain Protein PA4608 Complex with Cyclic di-GMP Identifies Charge Clustering as Molecular Readout*\(^{\ddagger\#} \)

Received for publication, December 4, 2010, and in revised form, January 28, 2011 Published, JBC Papers in Press, February 10, 2011, DOI 10.1074/jbc.M110.209007

Judith Habazettl, Martin G. Allan\(^{1,2}\), Urs Jenal\(^{3}\), and Stephan Grzesiek\(^{4}\)

From the Biozentrum, University of Basel, CH-4056 Basel, Switzerland

Cyclic diguanosine monophosphate (c-di-GMP) is a ubiquitous bacterial second messenger that controls the switch from a single-cell lifestyle to surface-attached, multicellular communities called biofilms. PilZ domain proteins are a family of bacterial c-di-GMP receptors, which control various cellular processes. We have solved the solution structure of the Pseudomonas aeruginosa single-domain PilZ protein PA4608 in complex with c-di-GMP by NMR spectroscopy. Isotope labeling by \(^{13}\)C and \(^{15}\)N of both the ligand and the protein made it possible to define the structure of c-di-GMP in the complex at high precision by a large number of intermolecular and intramolecular NOEs and by two intermolecular hydrogen bond couplings. Complex formation induces significant rearrangements of the C- and N-terminal parts of PA4608. c-di-GMP binds as an intercalated, symmetric dimer to one side of the β-barrel, thereby displacing the C-terminal helix of the apo state. The N-terminal RXXXR PilZ domain motif, which is flexible in the apo state, wraps around the ligand and in turn ties the displaced C terminus in a loose manner by a number of hydrophobic contacts. The recognition of the dimeric ligand is achieved by numerous H-bonds and stacking interactions involving residues Arg\(^{8}\), Arg\(^{9}\), Arg\(^{10}\), and Arg\(^{13}\) of the PilZ motif, as well as β-barrel residues Asp\(^{35}\) and Trp\(^{77}\). As a result of the rearrangement of the N and C termini, a highly negative surface is created on one side of the protein complex. We propose that the movement of the termini and the resulting negative surface form the basis for downstream signaling.

The second messenger cyclic diguanosine monophosphate (c-di-GMP)\(^{5}\) is widespread in and unique to the bacterial kingdom. Elevated intracellular levels of c-di-GMP generally cause bacteria to change from a motile single-cell state to an adhesive surface-attached multicellular state called biofilm (1–3). Moreover, c-di-GMP controls the virulence of animal and plant pathogens (4–8), progression through the cell cycle (9), antibiotic production (10), and other cellular functions. In several pathogenic bacteria, c-di-GMP has been associated with the regulation of virulence factors and the development of chronic infections. During long term cystic fibrosis lung infections, increased persistence of Pseudomonas aeruginosa correlates with the generation of adaptive colony morphotypes. This includes mucoid colonies and small colony variants, auto-aggregative, hyper-adherent cells whose appearance correlates with poor lung function and persistence of infection. Both morphotypes are strongly linked to elevated levels of c-di-GMP, implicating a central role for this second messenger in chronic P. aeruginosa infections (8, 11–14). These studies emphasize the clinical significance of c-di-GMP and stress the importance for understanding c-di-GMP signaling in the pseudomonads.

c-di-GMP comprises two guanosine monophosphate molecules that are symmetrically connected by 5′-3′ phosphodiester bonds, forming a 12-membered ring (see Fig. 1A). It is synthesized from two molecules of guanosine triphosphate (GTP) by diguanylate cyclases (GGDEF-containing domains) and hydrolyzed into the linear dinucleotide 5′-phospoguanuanyl-(3′-5′)-guanosine by the activity of c-di-GMP-specific phosphodiesterases (EAL-containing domains) (15). The opposing activities of diguanylate cyclases and phosphodiesterases control the intracellular c-di-GMP concentrations, and hence c-di-GMP signaling. Several classes of c-di-GMP effector proteins have been identified so far, including PilZ domain proteins, response regulators, and degenerate GGDEF proteins that have lost catalytic activity (9, 16–19). The PilZ protein family (named after the type IV pilus control protein in Pseudomonas aeruginosa) represents the best studied class of effectors. Members of this family have been implicated in a diverse range of cellular functions including exopolysaccharide biosynthesis, flagellar motor activity, and virulence gene expression. However, little information is available about the mechanistic details involved in c-di-GMP-mediated PilZ activation of these cellular processes.

Several structures of PilZ domain proteins have been solved in their apo and holo forms. One is the two-domain Vibrio cholerae protein VCA0042. A comparison of apo VCA0042 with its holo structure (20) shows that binding of a single c-di-GMP monophosphate results in a 12-membered ring.
GMP molecule induces a conformational change in the loop connecting the C-terminal PilZ domain to the N-terminal YcgR-N domain. This brings the two domains into close proximity, thereby forming a new allosteric interaction surface with c-di-GMP at their mutual interface. It has been shown recently that YcgR, a homolog of VCA0042 in Escherichia coli, is able to bind to the flagellar motor in its c-di-GMP-bound form (21). Although VCA0042 appears to bind only one molecule of c-di-GMP and does not alter its quaternary structure upon ligand binding, PP4397 from Pseudomonas putida binding of two molecules of c-di-GMP in the junction of its YcgR-N and PilZ domains results in a dimer–monomer transition (22). This suggested that different PilZ domain proteins exhibit distinct binding stoichiometries and mechanistic principles.

All structures of c-di-GMP protein complexes solved until today involve multidomain proteins (for review, see Ref. 15). In these structures, the binding of c-di-GMP within a hinge-like region induces an allosteric rearrangement of the neighboring domains via fixation to the ligand. It was proposed that this c-di-GMP-induced domain immobilization represents a general mechanism for signal transduction. In contrast to these multidomain proteins, the PilZ domain PA4608 from P. aeruginosa is a single domain c-di-GMP-binding protein. The apo solution structure of PA4608 was solved by Ramelot et al. (23), who also confirmed binding of c-di-GMP by chemical shift analysis. NMR chemical shift mapping was then used to localize the ligand binding site of PA4608 to one side of the protein surface and to demonstrate that c-di-GMP binds to PA4608 as a dimer (16). Furthermore, these analyses demonstrated that PA4608 remains monomeric after ligand binding (16).

Here we report the structure of the complex of PA4608 with c-di-GMP solved by advanced solution NMR techniques. Uniform 13C, 15N isotope labeling of both c-di-GMP and PA4608 allowed the observation of a large number of intermolecular and intraligand NOE contacts, 1D$_{HN}$ and 1D$_{CH}$ ligand and protein residual dipolar couplings (RDCs), and intermolecular hydrogen bond scalar couplings. Both termini of the protein undergo large structural changes upon ligand binding while retaining a certain amount of flexibility. In particular, the C-terminal helix is displaced by the ligand, thereby opening one side of the β-barrel as a binding site, and the N terminus containing the RXXXR PilZ domain motif wraps around the ligand and in turn ties the C-terminal helix in a loose conformation induced by a number of hydrophobic contacts. The rearranged termini expose a highly negatively charged surface on one side of the complex to a possible effector protein. This induced folding of the flexible N terminus containing the PilZ signature RXXXR and the resulting clustering of surface charges may present a general mechanism for c-di-GMP readout by PilZ domains.

EXPERIMENTAL PROCEDURES

Protein Expression and Purification—Overexpression, 13C, 15N labeling, and purification of PA4608 were achieved as described previously (16). In the protein construct used, the PA4608 sequence is preceded by a hexahistidine tag with the sequence MGSSHHHHHHHSSGLVPRGS. c-di-GMP was produced enzymatically from GTP by using a non-feedback–inhibited mutant of the diguanylate cyclase DgcA named DgcA0646, in which the inhibition site RESD is replaced by GRDC (24, 25). Uniformly 13C- and 15N-labeled c-di-GMP was produced in the same manner but starting with 13C-, 15N-labeled GTP (Spectra Stable Isotopes) as a precursor.

NMR Samples—Uniformly 13C,15N- and 15N-labeled samples of apo PA4608 (0.8–1.2 mM) were prepared in 250 mM NaCl, 10 mM Tris-HCl at pH 6.7, 0.01% NaN$_3$ (w/v), and 5% (v/v) D$_2$O as sample volumes of 200–400 μl. For complex formation, c-di-GMP was titrated to the apo PA4608 samples from a 20 mM stock solution, and the fraction of apo- and ligand-bound protein was monitored by 1H-13N heteronuclear single quantum correlation spectra. The titration was stopped at two equivalents of c-di-GMP, i.e. when the protein was saturated. For preparation of D$_2$O samples, the H$_2$O samples were lyophilized and redissolved in D$_2$O twice. Non-isotopic samples of complexed (apo) protein were prepared by adding 18 mg/ml (26 mg/ml) filamentous phage Pf1 (Asla Biotech).

NMR Spectroscopy and Resonance Assignments—NMR spectra were recorded at 293 K on Bruker DRX 600 and DRX 800 NMR spectrometers equipped with TXI and TCI probe heads, respectively. For protein assignment, structure information, and assessment of backbone dynamics by 15N relaxation, standard two-dimensional and three-dimensional NMR spectra were acquired similar to the ones described (26). c-di-GMP ribose resonances were connected by three-dimensional HCCH-COSY and -TOCSY spectra recorded on 13C/15N-labeled c-di-GMP bound to 13C/15N-labeled PA4608. Ribose moieties and guanine H1/N1 and H8/C8 resonances were assigned via their NOE contacts. Details of the acquired spectra are indicated in the supplemental Table S1. NMR data were processed using the NMRPipe suite of programs (27). Spectra were displayed and analyzed with the programs SPARKY (28) and PIPP (29).

Structure Calculations—Structure calculations were performed with the program XPLOR-NIH (30) using two consecutive simulated annealing protocols (31). In a first step, calculations started from an extended strand with c-di-GMP bound to the protein via the measured H-bond between Hε1 of Trp77 and N7 of Gua1, using intraprotein restraints only; the second step included all restraints. c-di-GMP molecules were defined as two-residue, circular strands of RNA. The 20-residue His tag and linker were not included in structure calculations. A total of 200 structures were calculated, and the 20 lowest energy structures were selected for deposition (Protein Data Bank (PDB) code 2L74). The structural statistics are given in Table 1.

RESULTS AND DISCUSSION

NMR Spectroscopy, Resonance Assignments, and Structure Determination—Standard triple-resonance NMR spectra recorded on PA4608 saturated with c-di-GMP were used to assign backbone and side chain resonances of PA4608. Resonance assignments were obtained for about 92% of the protein backbone in the PA4608c-di-GMP complex. Missing backbone assignments comprise parts of the N-terminal His tag sequence as well as residues His12 and Asp108–Arg114. In almost all of these cases, resonances were not visible in the 1H-15N heteronuclear single quantum correlation spectra, presumably
Solution Structure of the PilZ Protein PA4608 in Complex with c-di-GMP

due to chemical exchange broadening resulting from flexibility on the microsecond to millisecond time scale.

The chemical shifts of c-di-GMP bound to PA4608 are very distinct from free c-di-GMP. In particular, four different imino H1 proton resonances are observed, indicative of four guanosines in an asymmetric environment. This is consistent with the binding of one c-di-GMP dimer to one protein monomer. Of these four guanosine residues, all one-bond 1H/15N and 1H/13C resonance pairs could be assigned with the exception of Gua1–H5” and Gua4–H5” by using information from three-dimensional HCCCH-TOSY/-COSY and 15N- or 13C-edited NOESY experiments. For both Gua2 and Gua3, one of the two N2-bound protons could also be clearly observed. In free guanosines, these proton resonances are usually strongly broadened from the rotation around the C2–N2 bond. The observation of the resonances together with the measured NOEs indicates H-bond formation between the intercalated dimers in the following way (Fig. 1B): Gua1-O1P→H1–N1–Gua3, Gua1-O1P→H21–N2–Gua3, Gua4-O1P→H1–N1–Gua2, and Gua4-O1P→H21–N2–Gua2. Two additional H-bonds between c-di-GMP and the protein, Gua1-N7→He1–Ne1-Trp77 and Gua2-N7→He–Ne-Arg9, were detectable by the HNN-COSY experiment (32) (Fig. 1C) and are indicated in Fig. 1B as red dashed lines. The position of the c-di-GMP dimer on the protein is well defined by 103 intermolecular NOEs. A small section of the two-dimensional NOESY spectrum (Fig. 1C) shows some of these NOEs from the four imino protons of the c-di-GMP dimer and the Trp77 He1 proton, indicating contacts between the ligand and protein residues Arg8, Arg9, Phe11, Arg13, Arg12, Ile41, Leu62, Ala26, and Trp77. The c-di-GMP dimer itself is well defined by 59 intramolecular NOEs and a further 15 1DCH RDCs. Structural restraints of the protein comprise 1734 intramolecular NOEs and 152 1DHN and 1DCH RDCs.

Based on these restraints, a well-defined structure of the PA4608-c-di-GMP complex was calculated using conventional simulated annealing protocols. Its quality is reflected in a heavy atom coordinate r.m.s.d. of 0.20 Å for the backbone in the ordered region of the protein and of 0.38 Å for the c-di-GMP dimer. Further structural statistics are given in Table 1.

Ligand-induced Changes in the Backbone Structure of PA4608—As compared with apo PA4608, the complexed protein shows strong chemical shift changes in the N-terminal region around residue Arg9, in the C-terminal region around residue Val120, as well as in the central β-barrel around residue Val36 (16). An analysis of the secondary structure (Fig. 2) and backbone dynamics (see below) shows that structural changes mainly occur in the N- and C-terminal regions, whereas the central β-barrel is largely unaffected. Ligand binding induces a transition of the N-terminal region from an unfolded state to an ordered structure and a strong destabilization of the C-terminal region in particular between residues Asp108 and Arg114. For residues Glu110 to Arg114, no resonances can be detected at all due to exchange broadening, indicating the disappearance of the apo 3_10 helix γ1 (Glu109–Glu113). Residues Glu115 up to the C terminus are again observable but correspond to an α-helix (α2) between residues Ala117 and Ser121 rather than to the apo 3_10 helix γ2 (Leu116–Leu118).

Fig. 2 shows a sequence and secondary structure alignment of PA4608 with the other PilZ domains, for which structures complexed with c-di-GMP have been solved, i.e. P. putida PP4397 (22) and V. cholerae VCA0042 (20). In addition, Caulobacter crescentus DgrA and DgrB and Salmonella typhimurium YcgR have been included because they have similar nanomolar affinities for c-di-GMP as PA4608, and key residues for ligand binding are identified by point mutations (16). Despite a rather low sequence similarity, the β-barrel and helix α1 secondary structure elements of the solved structures are largely conserved. Most importantly, in all aligned proteins, the PilZ domain signature motifs RXXXR and DXSXXG are completely conserved apart from a single amino acid replacement (S/A) for DgrA. Residues that have van der Waals contacts to the ligand in the solved holo structures (yellow) are also largely conserved. These comprise the two RXXXR and DXSXXG motifs and residues around Trp77 (PA4608) and Gly84 (PA4608), which are located on adjacent β-strands. Together with the DYSLHG-XG region, the latter form the surface of the β-barrel that is in direct contact with the ligand. Not surprisingly, mutations of the conserved residues Arg8, Arg9, Asp35, or Trp77 (PA4608 numbering) strongly reduce or abolish c-di-GMP binding in DgrA (16).

Description of the PA4608-c-Di-GMP Complex Structure—The core structure of PA4608 in complex with c-di-GMP consists of a six-stranded antiparallel β-barrel with an elongated α-helix across one barrel opening (Fig. 3, A and B). The antiparallel β-strands are in the order 1–2–3–6–5–4 with 1 and 4 closing the barrel in an antiparallel manner. The intercalated c-di-GMP dimer is located at one side of the barrel. It makes contacts with residues of the barrel strands β3, β6, β3, and β2 as well as with side chains from the N-terminal part of the sequence, which is unstructured in the apo state. This N-terminal end wraps around the external side of the intercalated c-di-GMP dimer. The face of the N-terminal region, which points away from the ligand, makes contacts to the C-terminal region, thereby also anchoring helix α2 toward the ligand. Fig. 3, C and D, show bundle representations of the 20 lowest energy structures in a best fit superposition of the barrel backbone atoms and the ligand atoms, respectively. The high coordinate precision of the protein core, c-di-GMP, and the N terminus is evident. In contrast, the C-terminal region is less well defined, but clearly not random.

Details of the recognition of c-di-GMP dimer by PA4608 are shown in Fig. 4. The main residues involved are Trp77 and Arg8 through Arg13. Trp77 recognizes the side of the Gua1 base by the h2JNN-detected H-bond from its indole Ne1 donor to the Gua1 N7 acceptor (Fig. 1). This locates the Gua1 base in the same plane as the aromatic ring of Trp77. A further H-bond may be possible from the Gua1 H1 hydrogen to the side chain of Asp35 but is not clearly detectable due to low definition of the Asp35 side chain (not shown). The Gua1 base also packs against the side chain of Arg13. The pyrimidine ring of Gua3 stacks below the pyrrole ring of Trp77. The N7 and O6 atoms of Gua3 are recognized by two further H-bonds from the Arg13 Nγ1 and Nη2 atoms. Besides the structural proximity, evidence for these H-bonds comes from the observation of resonances and NOE contacts from the Nγ1 and Nη2 atoms of Arg13. Usually these proton resonances are not detectable in free arginine side.
chains due to chemical exchange broadening from the rotation around the $C_\gamma-N_\eta 1$ and $C_\gamma-N_\eta 2$ bonds. The imino N1 and the amino N2 groups of Gua3 are in H-bonding distance to the Gua1 phosphate group of the first c-di-GMP monomer.

The pyrimidine ring of Gua2 stacks below the pyrimidine ring of Gua3. Its imino N1 and the amino N2 groups are in H-bonding distance to the Gua4 phosphate group of the second c-di-GMP monomer. The N7 and O6 atoms of Gua2 are recog-
Solution Structure of the PilZ Protein PA4608 in Complex with c-di-GMP

TABLE 1
Assignment and structure statistics

The statistics comprise an ensemble of the final 20 simulated annealing structures. Individual structures were fitted to each other using residues in the β-sheets of the barrel: 19–24, 27–37, 40–44, 57–62, 68–79, and 82–90. The numbers of the various constraints are given in parentheses.

Assignment statistics
Protein, backbone* (461/502)
Protein, all atoms† (1195/1342)
c-di-GMP (58/68)
r.m.s.d. value from experimental distance restraints (Å)
All (151)
Protein, intraresidue (i - j) (163)
Protein, sequential (i - j) (j - i) (598)
Protein, medium range (i <
Protein, long range (i - j) (j - i) > 5 (625)
Protein to ligand§ (103)
Within ligand (59)
Hydrogen bonds¶ (55)
r.m.s.d. values from RDCs (Hz)
of protein (152)
Ligand (15)
r.m.s.d. values from TALOS torsion angle restraints¶ (169)
(°)
r.m.s.d. values from experimental dihedral restraints¶ (16)
Deviations from idealized covalent geometry¶
Bonds (Å)
Angles (°)
Improper torsion (°)
Coordinate precision¶ (Å)
Protein backbone non-hydrogen atoms
Protein all-hydrogen atoms
c-di-GMP non-hydrogen atoms
c-di-GMP non-hydrogen atoms†
PROCHECK quality indicators¶
In most favored regions of Ramachandran plot (%)
In additionally allowed regions of Ramachandran plot (%)
In generically allowed regions of Ramachandran plot (%)
Protein, all atoms
c-di-GMP non-hydrogen atoms
c-di-GMP non-hydrogen atoms†
c-di-GMP non-hydrogen atoms¶
a Considering HN, HN (except Pro), 13C, and H* resonances of residues Met–Asp157. No resonances were assigned for residues Asp32 through Arg144. The first numbers in parentheses are the assigned resonances, and the second numbers are all occurring resonances.

b Considering routinely assignable H, HN, and 13C resonances of residues Met–Asp157, excluding N-terminal and Lys amino groups, Arg guanido groups, hydroxyproline of Ser, Thr, Tyr, thiol protons of Cys, carbonyl resonances of Asp and Gln, non-protonated aromatic carbons, and Pro 1H, 13C H belonging to the same methyl group and Phe, Tyr 1H, 13C are counted as one.

c Considering His11, C1, H2, C2, H3, C3, H4, C4, H5, C5, H1, N1, N2, N7, H7, and C8. Two additional H21 resonances were observed for hydrogen bonds.

d Derived from two-dimensional, isotope-filtered two-dimensional, and three-dimensional 13C and 15N-edited NOESY spectra.

e There are 49 hydrogen bonds within the protein, 42 of which lie in the ligand and 2 directly measured between protein and ligand. For each backbone hydrogen bond constraint, there are two distance restraints: \(r_{ij} \) and \(r_{ij}^{-1} \), where \(r_{ij} \) is the distance between hydrogen bond donors and acceptors.

f From an optimal superposition of all non-hydrogen atoms of c-di-GMP.

g These values are calculated with the program PROCHECK-NMR (38). Values are reported for all non-mobile residues, i.e., Gla–Phe11, Arg–Gly10, and Leu11–Ser121, excluding glycines and prolines.

h The observed H-bond interactions of the N7 and O6 acceptors of Gua3 and Gua2 with the Nη and Nε donors of Arg13 and Arg9, respectively, are a very common mode of recognition of guanosines by arginines in protein-DNA complexes (33). A further common recognition motif is identified in the favorable cation–π interactions (34, 35) that can be assumed for the packing of Gua1 against Arg13 and Gua4 against Arg9. The high degree of conservation of Arg9 and Arg13 (Fig. 2) is fully consistent with this observed key role in c-di-GMP dimer recognition. The side chains of Arg9 and Arg10 are not as well defined in the structure, and hence do not allow the identification of non-ambiguous H-bonds. However, the proximity of Arg8 to the guanine ring of Gua4 and of Arg10 to the negatively charged phosphate of Gua2 suggests that Arg9 and Arg10 are also involved in c-di-GMP recognition.

i Residues Phe11 and His12 are in the center of the RXXR motif, c-di-GMP recognition motif. Their backbone 1H, 15N resonances are very weak (Phe11) or not observed at all (His12), indicating flexibility on the microsecond to millisecond time scale. Nevertheless, the side chains of Phe11 and His12 could be assigned, and 15 unambiguous NOEs are detected from these residues to the side chains of Leu118 and Leu116 in the C-termini helix α2 (Fig. 4). Despite the apparently high structural flexibility in this region, these hydrophobic contacts clearly dock the C-terminal helix α2 onto the top of the N-termini c-di-GMP recognition site. Thus, the RXXR signature motif couples ligand binding directly to the reorientation of the C-termini part of the protein.

j Comparison of the PA4608 c-Di-GMP Binding Mode to Other Known Structures—Besides PA4608, PilZ structures have been solved in both apo and holo forms for two additional proteins, PP4397 (22) and VCA0042 (20). PP4397 consists of a C-terminal PilZ and an N-terminal YcgR domain. It dimerizes in its apo form via interactions between the RXXR signature motif of one protomer and the PilZ domain of the other protomer. Binding of an intercalated dimer of c-di-GMP to the RXXR motif in the linker region between the two PP4397 domains induces the separation of the protein dimer into monomers.

k Fig. 5, A and B, show a comparison of the c-di-GMP dimer recognition in PA4608 and PP4397. The similarity of the c-di-GMP coordination is very strong but may not be surprising based on the high sequence conservation of the recognition motifs. Thus, (i) Arg23 and Arg127 in PP4397 recognize the bases of Gua2 and Gua3 by the same H-bonds as Arg9 and Arg13 in PA4608; (ii) the side chain of His201 in PP4397 replaces the Trp77 side chain in PA4608 to recognize Gua1 by H-bonds; and (iii) Arg122 in PP4397 has well defined H-bonds to Gua4 that correspond to H-bonds from Arg9 in PA4608 but are not well detected in the NMR structure due to the low definition of the side chain. Further similarities are (iv) the H-bond recognition of the Gua1 imino group by the side chain of Asp157 in PP4397 and (v) the H-bond rec-
ognition of Gua2 phosphate by Asn124 in PP4397, which are replaced by Asp35 and Arg10 in PA4608, respectively.

VCA0042 also consists of a C-terminal PilZ and an N-terminal YcgR domain, dimerizes via the YcgR domain, and binds c-di-GMP in the linker region between the two domains. However, in contrast to PP4397, the bound c-di-GMP is in monomeric form. It was recently proposed that the replacement of the arginine, which precedes the RXXXR motif, by a leucine (Fig. 2) is responsible for the recognition of a c-di-GMP monomer instead of a dimer (20, 22). It is interesting to note that the respective residues in PA4608 (Arg8) and PP4397 (Arg122) are both arginines and recognize the base of Gua4 in the second c-di-GMP monomer by hydrogen bonds, consistent with the binding of dimeric c-di-GMP to both PA4608 and PP4397.

PleD, a multidomain diguanylate cyclase from *C. crescentus*, is a member of an additional class of c-di-GMP-binding proteins (36, 37). In this protein family, the c-di-GMP binding site constitutes an allosteric site responsible for tight feedback inhibition of the enzymatic activity (24). Similar to PA4608 and PP4397, PleD binds a dimer of c-di-GMP. Fig. 5 shows the dimer coordination in the same orientation as for PA4608 in Fig. 5A. Again, the specific recognition is mainly achieved by arginines. Thus, Arg390, Arg359, and Arg178 assume the role of the base-recognizing Arg8, Arg9, and Arg13 in PA4608. However, these side chains originate obviously from very different regions of the primary sequence and even from different domains of the protein. In addition, no equivalent of the recognition of Gua1 by the aromatic residue Trp77 (His201) in PA4608 (PP4397) is present in the PleD structure. Thus, although the principle of base recognition by arginine fingers is similar, the overall architecture of the c-di-GMP binding sites is distinct for the two protein families.

Comparison of PA4608 Apo and Holo Forms—Pronounced changes in the chemical shifts between the apo and holo form of PA4608 indicate significant structural rearrangements in the N- and C-terminal regions upon ligand binding. Fig. 6 shows a comparison between the two states. In the apo form, the c-di-GMP binding side of the /H9252-barrel comprising strands /H9252, /H9252, /H9252, and /H9252 is partially covered by the C-terminal 310 helices /H9253 and /H9253. Binding of c-di-GMP to this site pushes the C-terminal region away from the /H9252-barrel and causes the unfolding of helix /H9251. In turn, the N-terminal region, which is flexible in the apo state, buries the outer side of c-di-GMP with the residues RRRFH of the recognition motif. The end of the C-terminal region comprising the /H9251-helix /H9251 covers this part of the N terminus by hydrophobic contacts in a lid-like fashion.

During this process, the /H9252-barrel remains basically unchanged. This is reflected by an r.m.s.d. of 0.9 Å between the heavy backbone atom coordinates of the barrel in the apo and the holo structures. However, a certain rearrangement of helix α1 connecting the barrel to the C-terminal part is evident in Fig. 6. It corresponds to a rotation of 11° of the helix axis.
away from the barrel. The helix is structurally well defined with all its residues recognized as α-helical by PROCHECK-NMR (38) for all 20 lowest energy structures. Its change in orientation was confirmed experimentally from RDCs of the complex and the apo state, which were additionally acquired (supplemental Fig. S1 and Table S2). In the region of helix 1, the RDCs of the apo and holo form agree well with the apo and holo structures, respectively, but deviate for an interchange of structures. The difference in helix orientation is apparently caused by the hydrophobic interactions between helix residues Leu98, Leu101, and Val102 and the N-terminal residues Ile14 and Phe16 in the apo state and rearrangement of the N- and C-terminal regions, which pull the helix away from the barrel in the complexed state.

The changes in the protein backbone dynamics between the apo and holo form were also characterized by 15N relaxation experiments carried out at 293 K (Fig. 7). For most residues, the 15N T_1 and T_2 relaxation times as well as the heteronuclear 1H-15N NOEs are very uniform and correspond to a well folded structure. Moreover, they are also almost identical between the apo and holo forms. An analysis by the program TENSOR (16, 39) yields isotropic rotational correlation times (τ_0) of 11.3 ns (12.3 ns) for the apo (holo) form, which are in reasonable agreement with values expected for monomeric PA4608 in its apo form (16.7 kDa) and bound to a dimer of c-di-GMP (18.1 kDa). Also, in agreement with the monomeric state of the complex, no NOEs were detected that would indicate intermolecular dimer
contacts. Thus, PA4608 is monomeric in the apo and holo form.

The relaxation data also give evidence for changes in dynamics upon complex formation for certain parts of the sequence. Thus, the N-terminal residues around Arg8 have low [1H]-15N NOE and large T_2 values corresponding to large amplitude motions on the nanosecond time scale for the apo state, whereas these values become comparable with folded residues in the rest of the sequence in the holo state. This is consistent with folding upon ligand binding of the N terminus. In contrast, the C-terminal end around residue Ala122 has the opposite behavior, indicating that the very C-terminal end becomes flexible upon ligand binding. Nevertheless, the adjacent helix α2 of the complexed state appears relatively stable because residues Ala117 and Leu118 of this helix have 15N relaxation parameters that correspond to a folded structure. Consistent with this stability of helix α2, all its 5 residues (Ala117 to Ser121) are found in α-helical conformations in 90% of the lowest energy structures. In the apo state, the region of residues Asp108 to Leu116, which contains the 310 helix γ1, has relaxation parameters of a well folded protein. In contrast, resonances from these residues are strongly broadened or not detectable at all in the holo state, which must be caused by micro- to millisecond dynamics of the protein backbone. Thus, this region undergoes an unfolding transition upon ligand binding.

Clustering of PA4608 Surface Charges upon c-di-GMP Binding—The conformational changes in PA4608 induced by c-di-GMP binding lead to a severe rearrangement of surface charges (Fig. 8). Besides the four positive arginines (Arg8, Arg9, Arg10, Arg13), the N-terminal region contains 3 negative residues (Asp3, Asp6, Glu7). The coordination of the ligand by the four arginines causes their side chains to point inward. The concomitant transition to a folded structure of this region reorients the side chains of Asp3, Asp6, and Glu7 toward the
outside and creates a negative, surface-exposed cluster (Fig. 8). Likewise, the C terminus contains 7 negative residues centered on the 3\textsubscript{10} helix y\textsubscript{1} (Asp108, Glu109, Glu110, Glu113, Glu115) and at the very C terminus (Asp124, Asp125). The ligand-induced rearrangement of this region positions these negative charges on top of the negative cluster around residue Glu7. Together with further negative residues of the \beta-barrel (Asp17, Asp19, Glu21, Glu30, Asp35, Asp48, Asp80) and helix y\textsubscript{1} (Glu103), which do not move upon ligand binding, the combined structural changes create one face of the protein, which is strongly negatively charged and devoid of any positive charges. It is attractive to speculate that this newly generated molecular surface constitutes the readout of this small signaling protein by providing a highly charged interaction surface for high affinity regulatory interactions with downstream target proteins.

Although the PilZ domain associates with a plethora of known signaling, catalytic, or transport domains (40), stand-alone or single domain PilZ proteins represent the largest subclass of this protein family (see NCBI/CDART (Conserved Domain Architecture Retrieval Tool)). It is interesting to note that some of the surface-exposed charged side chains that were found to cluster on one side of the c-di-GMP-bound form of...
PA4608 show conservation within the subclass of stand-alone PilZ domain proteins. In particular, positions corresponding to Glu7 and to a lesser extent Glu115 have conserved negative charges within this family but not within the YcgRN-PilZ family represented by the VCA0042 and PP4397 proteins (supplemental Fig. S2). Consistent with this view, the C terminus of PilZ domains varies substantially between these two PilZ protein families (supplemental Fig. S2). Although the PilZ domains of YcgR homologs have rather conserved sequences of defined length, the C termini of single domain PilZ proteins share little sequence homology, vary substantially in length, and are usually strongly charged. This indicates a high degree of modularity within the C termini of single domain PilZ proteins and suggests that the clustering of key C-terminal residues engaged in potential electrostatic interactions might be a conserved principle for many of these c-di-GMP-binding proteins.

The motional freedom of the C-terminal region of the complexed form of PA4608 together with the abundant negative surface charges may indicate that more than one downstream effector protein with a positively charged surface site exists. Patterns of spatially clustered surface charges that have co-evolved with their respective interaction partners may provide binding specificity for a large variety of protein-protein interactions. This emphasizes the potential of this large family of proteins for functional diversification as signal transducer. Given the diverse cellular functions controlled by c-di-GMP in bacteria, rapid adaptation of this sensing module to different signaling pathways could explain the wide distribution and evolutionary success of stand-alone PilZ domain proteins.

Despite the similar binding of c-di-GMP by the PilZ domains in PA4608, VCA0042, and PP4397 (Fig. 5), the three proteins show fundamental differences in how the ligand binding translates into a molecular readout. Although PA4608 is a monomer in its apo- and ligand-bound form, both VCA0042 and PP4397 form dimers. Ligand binding to YcgR homologs induces large conformational changes within the dimer (VCA0042 [20]) or causes a dimer-to-monomer transition (PP4397 [22]). In both structures, the RXXR binding motif, also called the c-di-GMP switch (20), forms a hinge-like connector between the N-terminal YcgR and the C-terminal PilZ domain. In VCA0042, the switch is flexible and disordered in the apo structure but undergoes conformational changes upon ligand binding that cause a rotation of the entire PilZ domain and make it switch back toward the N-terminal YcgR domain (20). In contrast, in apo PP4397, the switch forms a short helix with residues within and next to the switch participating in dimerization. Upon c-di-GMP binding, this helix unwinds and wraps around the ligand, thereby contributing to the dimer-to-monomer transition. Thus, in all three proteins, the c-di-GMP switch region is critically involved in signal transduction by making extensive contacts both to c-di-GMP and to the flanking domains (VCA0042 and PP4397) or the C terminus of the same PilZ protomer (PA4608). Despite the different structural context, the central role of the c-di-GMP switch in all three PilZ proteins seems to be to “decode” ligand binding and to transfer this information to flanking regions within the same domain or interacting domains. Although this translates into repositioning of the two domains in the YcgR homologs, it amounts to a striking clustering of charged residues on one side of the PilZ domain protein PA4608. This stresses the versatility and evolutionary flexibility of the PilZ c-di-GMP binding module, which allows for rapid functional expansion in cellular signaling pathways.

During the preparation of this manuscript, Shin et al. (41) published a structural model of PA4608 bound to c-di-GMP based on solution NMR data. The overall structural arrangement is similar. However, in contrast to our work, the position and coordination of the ligand are not well defined because the ligand and the intermolecular interactions were not assigned. Furthermore, NOEs indicating the coordination of the C terminus to the N terminus were not assigned or detected.

Acknowledgments—We thank Matthias Christen, Beat Christen and Regula Aregger for help in producing isotope-labeled c-di-GMP and PA4608, Eric Hajjar for sequence analysis of PilZ domain proteins, as well as Tilman Schirmer for stimulating and helpful discussions.

REFERENCES

1. Jenal, U., and Malone, J. (2006) Annu. Rev. Genet. 40, 385–407
2. Hengge, R. (2009) Nat. Rev. Microbiol. 7, 263–273
3. Yan, H., and Chen, W. (2010) Chem. Soc. Rev. 39, 2914–2924
4. Cotter, P. A., and Stibitz, S. (2007) Curr. Opin. Microbiol. 10, 17–23
5. Dow, I. M., Fouhy, Y., Lucey, J. F., and Ryan, R. P. (2006) Mol. Plant Microbe Interact. 19, 1378–1384
6. Ryan, R. P., Fouhy, Y., Lucey, J. F., Jiang, B. L., He, Y. Q., Feng, J. X., Tang, J. L., and Dow, I. M. (2007) Mol. Microbiol. 63, 429–442
7. Tamayo, R., Pratt, J. T., and Camilli, A. (2007) Annu. Rev. Microbiol. 61, 131–148
8. Malone, J. G., Jaeger, T., Spangler, C., Ritz, D., Spang, A., Arrieumerlou, C., Kaever, V., Landmann, R., and Jenal, U. (2010) PLoS Pathog 6, e1000804
9. Duerig, A., Abel, S., Folcher, M., Nicollier, M., Schwede, T., Amiot, N., Giese, B., and Jenal, U. (2009) Genes Dev. 23, 93–104
10. Fineran, P. C., Williamson, N. R., Lilley, K. S., and Salmond, G. P. C. (2007) J. Bacteriol. 189, 7653–7662
11. Merighi, M., Lee, V. T., Hyodo, M., Hayakawa, Y., and Lory, S. (2007) Mol. Microbiol. 65, 876–895
12. Drenkard, E., and Ausubel, F. M. (2002) Nature 416, 740–743
13. Meissner, A., Wild, V., Simm, R., Rohde, M., Eck, C., Bredenbruch, F., Morr, M., Römling, U., and Häussler, S. (2007) Environ. Microbiol. 9, 2475–2485
14. Hickman, J. W., Tifrea, D. F., and Harwood, C. S. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 14422–14427
15. Schirmer, T., and Jenal, U. (2009) Nat. Rev. Microbiol. 7, 724–735
16. Christen, M., Christen, B., Allan, M. G., Folcher, M., Jenø, P., Grzesie, S., and Jenal, U. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 4112–4117
17. Lee, V. T., Matewish, J. M., Kessler, L. J., Hyodo, M., Hayakawa, Y., and Lory, S. (2007) Mol. Microbiol. 65, 1474–1484
18. Hickman, J. W., and Harwood, C. S. (2008) Mol. Microbiol. 69, 376–389
19. Krasteva, P. V., Fong, J. C., Shikuma, N. J., Beyhan, S., Navarro, M. V., Yildiz, F. H., and Sondermann, H. (2010) Science 327, 866–868
20. Benach, J., Swaminathan, S. S., Tamayo, R., Handelman, S. K., Folta-Stogiew, E., Ramos, J. E., Forouhar, F., Neely, H., Seetharaman, J., Camilli, A., and Jenal, U. (2007) EMBO J. 26, 5153–5166
21. Boehm, A., Kaiser, M., Li, H., Spangler, C., Kasper, C. A., Ackermann, M., Kaever, V., Sourjik, V., Roth, V., and Jenal, U. (2010) Cell 141, 107–116
22. Ko, J., Ryu, K. S., Kim, H., Shin, J. S., Lee, J. O., Cheong, C., and Choi, B. S. (2010) J. Mol. Biol. 398, 97–110
23. Ramelot, T. A., Yee, A., Cort, J. R., Semesi, A., Arrowsmith, C. H., and Kennedy, M. A. (2007) Proteins 66, 266–271
24. Christen, B., Christen, M., Paul, R., Schmid, F., Folcher, M., Jenoe, P.,
Meuwly, M., and Jenal, U. (2006) *J. Biol. Chem.* **281**, 32015–32024
25. Christen, M., Christen, B., Folcher, M., Schauerte, A., and Jenal, U. (2005) *J. Biol. Chem.* **280**, 30829–30837
26. Grzesiek, S., Bax, A., Hu, J. S., Kaufman, J., Palmer, I., Stahl, S. J., Tjandra, N., and Wingfield, P. T. (1997) *Protein Sci.* **6**, 1248–1263
27. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A. (1995) *J. Biomol. NMR* **6**, 277–293
28. Goddard, T., and Kneller, D. (2007) *SPARKY 3*, 114, University of California, San Francisco
29. Garrett, D., Powers, R., Gronenborn, A., and Clore, G. (1991) *J. Magn. Reson.* **95**, 214–220
30. Schwieters, C. D., Kuszewski, J. J., Tjandra, N., and Clore, G. M. (2003) *J. Magn. Reson.* **160**, 65–73
31. Nilges, M., Clore, G. M., and Gronenborn, A. M. (1988) *FEBS Lett.* **229**, 317–324
32. Dingley, A. J., Nisius, L., Cordier, F., and Grzesiek, S. (2008) *Nat. Protoc.* **3**, 242–248
33. Luscombe, N. M., Laskowski, R. A., and Thornton, J. M. (2001) *Nucleic Acids Res.* **29**, 2860–2874
34. Dougherty, D. A. (1996) *Science* **271**, 163–168
35. Plein, M. J., Bryce, D. L., and Boisbouvier, J. (2010) *Nat. Chem.* **2**, 466–471
36. Chan, C., Paul, R., Samoray, D., Amiot, N. C., Giese, B., Jenal, U., and Schirmer, T. (2004) *Proc. Natl. Acad. Sci. U.S.A.* **101**, 17084–17089
37. Wassmann, P., Chan, C., Paul, R., Beck, A., Heerklotz, H., Jenal, U., and Schirmer, T. (2007) *Structure* **15**, 915–927
38. Laskowski, R. A., Rullmann, J. A., MacArthur, M. W., Kaptein, R., and Thornton, J. M. (1996) *J. Biomol. NMR* **8**, 477–486
39. Dosset, P., Hus, J. C., Blackledge, M., and Marion, D. (2000) *J. Biomol. NMR* **16**, 23–28
40. Amikam, D., and Galperin, M. Y. (2006) *Bioinformatics* **22**, 3–6
41. Shin, J. S., Ryu, K. S., Ko, J., Lee, A., and Choi, B. S. (2011) *Protein Sci.* **20**, 270–277
42. Corpet, F. (1988) *Nucleic Acids Res.* **16**, 10881–10890
43. Cornilescu, G., Delaglio, F., and Bax, A. (1999) *J. Biomol. NMR* **13**, 289–302

Solution Structure of the PilZ Protein PA4608 in Complex with c-di-GMP

14314 JOURNAL OF BIOLOGICAL CHEMISTRY