ExomeChip-Wide Analysis of 95 626 Individuals Identifies 10 Novel Loci Associated With QT and JT Intervals

BACKGROUND: QT interval, measured through a standard ECG, captures the time it takes for the cardiac ventricles to depolarize and repolarize. JT interval is the component of the QT interval that reflects ventricular repolarization alone. Prolonged QT interval has been linked to higher risk of sudden cardiac arrest.

METHODS AND RESULTS: We performed an ExomeChip-wide analysis for both QT and JT intervals, including 209,449 variants, both common and rare, in 17,341 genes from the Illumina Infinium HumanExome BeadChip. We identified 10 loci that modulate QT and JT interval duration that have not been previously reported in the literature using single-variant statistical models in a meta-analysis of 95,626 individuals from 23 cohorts (comprised 83,884 European ancestry individuals, 9,610 blacks, 1,382 Hispanics, and 750 Asians). This brings the total number of ventricular repolarization associated loci to 45. In addition, our approach of using coding variants has highlighted the role of 17 specific genes for involvement in ventricular repolarization, 7 of which are in novel loci.

CONCLUSIONS: Our analyses show a role for myocyte internal structure and interconnections in modulating QT interval duration, adding to previous known roles of potassium, sodium, and calcium ion regulation, as well as autonomic control. We anticipate that these discoveries will open new paths to the goal of making novel remedies for the prevention of lethal ventricular arrhythmias and sudden cardiac arrest.

© 2018 The Authors. Circulation: Genomic and Precision Medicine is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health, Inc. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial-NoDerivs License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited, the use is noncommercial, and no modifications or adaptations are made.
Prolonged QT interval has been associated with increased risk of sudden cardiac arrest (SCA), a major cause of mortality, with between 180,000 and 450,000 cases of sudden cardiac arrest in the United States of America annually. Because the vast majority of sudden cardiac arrest occurs in the absence of clinical features that would bring a victim to medical attention, identifying additional risk factors and dissecting the pathogenesis of disease are of high importance. In this study, we conduct ExomeChip-wide analyses in 95,626 population-based multiethnic individuals to interrogate the role of a largely unstudied class of variation on ventricular repolarization in the population—coding single nucleotide variants. These variants fill in the gap between the extremely rare large-effect coding variants that result in the Mendelian long- and short-QT syndromes and the common small-effect largely noncoding variation identified through genome-wide association studies. The focus on exons and coding variants has an added benefit of directly implicating genes. Our approach of focusing on coding variants and both QT and JT intervals measures has identified 10 novel loci associated with ventricular repolarization and has implicated 17 specific genes, 7 of which are in novel loci. Our analyses show a role for myocyte internal structure and interconnections in modulating QT interval duration, adding to previous known roles of potassium, sodium, and calcium ion regulation, as well as autonomic control. We anticipate that these discoveries will open new paths to the goal of making novel remedies for the prevention of lethal ventricular arrhythmias and sudden cardiac arrest.

Heritability estimates of QT interval are between 30% and 40%, indicating that genetic variants play a large role in modulating QT interval in the general population. Mendelian syndromes of QT interval (long- and short-QT syndrome), which lead to increased risk of cardiac arrhythmias and SCA, occur in ≈1 in 2000 individuals and are caused by variants in ion channels or their interacting proteins. Previous candidate gene and genome-wide association studies (GWAS), largely screening common noncoding variants, have identified 35 loci containing variants that modestly influence QT interval, the largest of these studies, the QT Interval International GWAS Consortium (QT-IGC), included a discovery population of 760,61 European ancestry individuals.

In this study, we conduct ExomeChip-wide analyses in population-based samples to interrogate the role of a largely unstudied class of variation on ventricular repolarization in the population—coding single nucleotide variants (SNVs). These variants fill in the gap between the extremely rare large-effect coding variants that result in the Mendelian long- and short-QT syndromes and the common small-effect largely noncoding variation identified through GWAS. The focus on exons and coding variants has an added benefit of directly implicating genes. By contrast, noncoding variation typically implicates a region of the genome, often containing multiple genes, and therefore requiring extensive functional experiments to implicate a specific gene. Furthermore, in this study, we examine both QT and JT interval to more comprehensively examine ventricular repolarization. We have previously observed that variation in specific loci can influence ventricular depolarization and repolarization in a concordant fashion.

We performed a meta-analysis of 23 cohorts including 95,626 multiethnic individuals comprised 83,884 European ancestry individuals, 9610 blacks, 1382 Hispanics, and 750 Asian individuals (Table I in the in the Data Supplement). Each individual was genotyped for 191,740 coding SNVs in 17,341 genes using the Illumina Infinium HumanExome BeadChip (ExomeChip), along with 17,709 noncoding SNVs of known importance from previous GWAS and variants tiling across the genome. These variants were chosen by evaluating ≥12,000 exome sequences for coding variants that appeared in at least 3 individuals.

METHODS

The data, analytic methods, and study materials will be made available to other researchers for purposes of reproducing the results, subject to Data Use/Sharing Agreements adopted by individual participating cohorts. GWAS summary results will be available through the CHARGE Consortium Summary Results webpage available at dbGaP (phs000930). This study was approved by local institutional review boards, and all participating subjects gave informed consent (detailed ethics statements in the Data Supplement).

SNV Association Tests and Meta-Analysis

Detailed methods are provided in the Data Supplement. Briefly, all cohorts excluded individuals with QRS intervals ≥120 ms, heart rate <40 beats per minute or >120 beats per
RESULTS

QT Interval ExomeChip Analysis Identifies 6 Novel Loci

Meta-analysis identified SNVs in 25 loci associated with QT interval at ExomeChip-wide significance ($P<2\times10^{-7}$; Figure I in the Data Supplement). Of these, 19 loci were previously associated with QT interval, and 6 loci were novel (Table 1). At 4 of these novel loci (PM20D1, SLC4A3, CASR, and NRAP), the top hit is a nonsynonymous variant. For the 2 novel loci where the index SNV is a noncoding variant, no genes in these loci harbored coding SNVs associated with QT interval. Analyses stratified by ethnicity found similar effect sizes between European ancestry individuals and blacks and same general direction of effects in the much smaller Hispanic (n=1382) and Chinese (n=750) cohorts (Table II and Figure II in the Data Supplement).

Nineteen of the 25 loci associated with QT interval at ExomeChip-wide significance in our study had been associated with QT interval in prior European ancestry GWAS studies (Table 2, *P value). Table 2 detail the 35 known QT loci identified from prior GWAS of European ancestry individuals. Of the 14 previously identified loci for which the most significant SNV in our current study is a coding variant (Table 2, A), 3 loci reached ExomeChip-wide significance in our study (*P value). Of the 21 previously identified loci for which the most significant SNV in our study is a noncoding variant not in LD ($r^2>0.8$) with a nearby coding variant, 16 loci exceeded the significance threshold in our study (Table 2, B, *P value). For 5 of these 16 loci where the top signal was a noncoding SNV, they nonetheless harbored coding variants in ≥1 nearby genes that also reached ExomeChip-wide significance (Table II in the Data Supplement).

Nearby Gene	SNV	Chr	Coded/Noncoded Allele	CAF	Effect in ms (SE)	P Value	Function	Gene(s) With Independent Coding Variation	DEPICT Implicated Gene(s)	eQTL
PM20D1	rs1361754	1	G/A	0.511	0.47 (0.08)	1E-09	Nonsynonymous	PM20D1	PM20D1, *NUCKS1, RAB7L1, *SLC4A1	
SLC4A3	rs55910611	2	AVG	0.006	-3.06 (0.61)	2E-07	Nonsynonymous	SLC4A3		
CASR	rs1801725	3	T/G	0.126	-0.58 (0.12)	4E-08	Nonsynonymous	CASR	CSTA	
ZNF37A	rs4934956	10	T/C	0.497	0.58 (0.10)	2E-10	Intergenic	NRP, NRAP		
NRP	rs3189030	10	A/G	0.299	-0.48 (0.09)	4E-08	Nonsynonymous	NRAP	CASP?*	
GOSR2	rs17608766	17	C/T	0.123	0.72 (0.12)	3E-09	UTR3		RRPM1	

Significance was determined from analysis of inverse rank normal transformed residuals to avoid P value inflation from the analysis of rare variants. Effect size estimates in milliseconds (ms) are reported from untransformed analyses. n=95 626 number of samples. DEPICT* genes pass FDR <5% cutoff. Expression quantitative trait loci (eQTL) genes are pulled from the Genotype-Tissue Expression portal (GTEX) using the representative SNV and GWiS independent SNVs. CAF indicates coded allele frequency; DEPICT, Data-driven Expression-Prioritized Integration for Complex Traits; FDR, false discovery rate; GWiS, genome-wide significance; SNV, single-nucleotide variants; and UTR3, three prime untranslated region.

*Gene if the eQTL is in the left ventricle.
Table 2. Thirty-Five Loci Previously Associated With QT Interval

Nearby Gene	SNV	Chr	Coded/Noncoded Allele	CAF	Effect in ms (SE)	P Value	Function	QT-IGC Implicated Gene(s)	Gene(s) With Independent Coding Variation	DEPICT Implicated Gene(s)	eQTL
A, Known QT loci with coding variant as top SNV											
RNF207	rs709209	1	G/A	0.379	1.23 (0.09)	1E-48*	Nonsynonymous	RNF207(c)	RNF207	GPR153	
SP3	rs1047640	2	C/T	0.120	0.60 (0.12)	3E-06	Nonsynonymous		SP3		
TTN-CCDC141	rs72648998	2	T/C	0.054	1.00 (0.18)	3E-09*	Nonsynonymous	CCDC141(i),TTN	TTN	FEBP7, PRKRA	
SPT52L	rs192861441	2	A/G	0.004	−2.22 (0.67)	3E-04	Nonsynonymous	SMTS52L(t),SGOL2L(p)			
C3ORF75	rs2276853	3	G/A	0.411	−0.36 (0.08)	2E-05	Nonsynonymous	KHL18(0),PTPN23(0),SCAP(0),SETD2(0),MYL3(3)	NBEAL2		
SMARCAD1	rs7439869	4	T/C	0.378	0.41 (0.08)	8E-07	Nonsynonymous		SMARCAD1		
GMPR	rs1042391	6	T/A	0.551	−0.42 (0.09)	3E-06	Nonsynonymous	GMPR(k),ATXN1(p)	GMPR	GMPR	
KCNH2	rs1805123	7	G/T	0.214	−1.47 (0.10)	7E-51*	Nonsynonymous	KCNH2(3)	KCNH2		
LAPT4M8	rs17831160	8	A/G	0.030	−0.64 (0.24)	3E-03	Nonsynonymous				
AZIN1	rs143025416	8	A/G	0.001	4.90 (1.55)	2E-03	Nonsynonymous				
GBF1	rs143226354	10	T/C	8.89E-05	14.18 (4.66)	4E-03	Splicing/	ACTR1A(i)			
ATP2A2	rs11068997	12	A/G	0.040	−0.94 (0.21)	4E-07	Nonsynonymous	VPS29(t),GPAT23(t),ARPC3(t),C12ORF24(t),ATP2A2(p)	GIT2, TCTN1, ATP2A2, PPTC7		
USP50-TRPM7	ns042919	15	A/G	0.097	−0.57 (0.14)	4E-05	Nonsynonymous				
CREBBP	rs143903106	16	T/G	0.001	4.10 (1.46)	5E-03	Nonsynonymous	TRAP1(i)			
B, Known QT loci with noncoding variant as top SNV											
TCEA3	rs1077514	1	G/A	0.179	−0.58 (0.11)	4E-08*	Intronic	TCEA3(3)	TCEA3†, ASAP3		
NOS1AP	rs12143842	1	T/C	0.240	3.18 (0.10)	3E-255*	Intergenic				
ATPB1	rs10919071	1	G/A	0.115	−1.37 (0.13)	3E-30*	Intronic	ATPB1(3),NME7(1)	NME7		
SLCBA1	rs2540226	2	T/G	0.482	0.24 (0.08)	2E-03	Intergenic	SLCBA1(p)	THUMPD2		
SCN5A-SCN10A	rs12053903	3	C/T	0.379	−0.88 (0.09)	1E-26*	Intrinsic	SCN5A(p),SCN10A	SCN5A, SNORA6, SCN5A§		
SLC4A4	rs7689609	4	C/T	0.212	0.64 (0.12)	4E-08*	Intronic				
GFRA3	rs4835768	5	G/A	0.485	0.34 (0.08)	7E-05	Intergenic	FAM138(t),ETF1(p)	MYOT, FAM138		
SLC35F1-PLN	rs111537300	6	C/T	0.467	1.41 (0.08)	5E-74*	Intergenic	PLN(i)	S5X10		
CAV1	rs3807989	7	A/G	0.429	0.54 (0.08)	4E-12*	Intrinsic	CAV1(p),CAV2(p)	ACC002066.1		
NCOA2	rs2926707	8	G/T	0.348	0.31 (0.09)	3E-04	Intrinsic				
KCNQ1	rs2074238	11	T/C	0.074	−3.58 (0.16)	8E-130*	Intrinsic	C110RF21(t),PHEMXI(t),TSPM32(t),KCNQ1(3)	KCNQ1, KCNQ1		
FEN1-FADS2	rs1535	11	G/A	0.325	−0.48 (0.09)	8E-10*	Intronic	FADS1(0),FADS2(0),FADS3(0)	FAD2,1, FADS1, TMEM258		
KLF12	rs1886512	13	A/T	0.381	0.57 (0.09)	2E-10*	Intrinsic	KLF12(1)	KLF121		
ANKRD9	rs11704	14	C/G	0.291	0.35 (0.09)	7E-05	UTR3	ANKRD9(0)	ANKRD9, ZNF839		

(Continued)
JT Interval Association Identifies 4 Novel Loci

Although ventricular depolarization and repolarization are often coregulated, this is not universally true. Therefore, to more specifically examine ventricular repolarization, we also investigated genetic associations with JT interval, defined mathematically by subtracting the QRS interval (ventricular depolarization and conduction) from the QT interval, which primarily reflects ventricular repolarization. Among the 15,590 ARIC participants, the correlations (r^2) among the intervals were 0.84 for QT and JT; 0.02 for QRS and JT; and 0.08 for QT and QRS. We analyzed JT interval as described above for QT interval while adding QRS interval as an additional covariate to further remove the effect of ventricular depolarization on the analysis. Thirty coding variants in 14 loci were associated with JT interval (Table III in the Data Supplement). Four of these 14 loci were not identified as QT interval loci (Table 3). Hence, at these loci, variants that prolong the QRS interval (depolarization) shorten the JT interval (repolarization). Analyses run stratified by ethnicity found similar effect sizes between European ancestry individuals and blacks (Table III in the Data Supplement).

Use of Coding Variants to Implicate Specific Genes

Leveraging information from nominally significant coding SNVs, we sought to implicate causative genes in each locus by demonstrating that putatively functional coding variants are associated with ventricular repolarization independently of noncoding SNVs. We have previously shown that several QT loci contain multiple independent genetic effects, including some loci harboring multiple significant coding variants (Tables II and III in the Data Supplement). Thus, even if not the top hit at a locus, putative functional SNVs can still implicate a specific gene at a locus. We used the GWIS3 algorithm to determine the number of independent effects in all 45 ventricular repolarization associated loci from Tables 1 through 3 and to identify the SNV that best represents each independent effect in European ancestry individuals (n=83,884; Table IV in the Data Supplement). The SCN5A-SCN10A locus is a particularly illustrative example of the use of this approach. Although coding variants in DLECT, SCN5A, and SCN10A are each ExomeChip-wide significant, after using GWIS, the...
signal coming from the coding variants in DLEC1 and SCN5A is explained by noncoding variants, and only the SCN10A coding variant signal remains (Table V in the Data Supplement). In the Gene(s) with independent coding variation column in Tables 1 through 3, we list the 17 genes in 16 loci that have an independent effect represented by a coding variant.

For the loci listed in Table 2 B, such as the SCN5A-SCN10A locus, where intronic and intergenic variants were included in the analyses, the independent associations in coding SNVs identified by GWIS are independent of the noncoding variants in the region. This analysis implicates 2 genes for involvement in cardiac repolarization among those of European descent: SCN10A and KCNQ1. For the novel loci in Table 1 where a coding SNV is the most significant association in our study, it is unlikely that noncoding variants of importance are present in those loci because the loci were not found during the QT-IGC efforts, a study of similar sample size.

In contrast, for the 14 previously identified QT loci where the top SNV in our study was a coding variant (Table 2, A), the GWIS findings are less conclusive because intronic and intergenic SNVs were largely not examined in these regions. Therefore, to determine whether the associated coding variants are independently associated with QT interval and hence implicate a causal gene, or alternatively, are associated simply because of LD with a more strongly associated noncoding variant not genotyped with the ExomeChip, we performed additional analyses in a subset of the data set, ARIC, that includes both the QT-IGC top SNV, as well as the top SNV, from the current study. We performed conditional analyses at the 7 loci in Table 2, A where significant associations were identified by GWIS (the remaining 7 loci did not have any SNVs identified as significant by GWIS after accounting for multiple testing), by including both the QT-IGC and ExomeChip variants in the same regression model in the ARIC Europeans data set (n=9537; Table VI in the Data Supplement). Conditional analyses demonstrate that the coding variant in SP3 is independent of the top noncoding SNV at this locus discovered from QT-IGC, implicating this gene in QT interval modulation. For GMPR, the coding variant is in almost perfect linkage disequilibrium with the noncoding QT-IGC variant (r²=0.99 in ARIC), suggesting that the coding variant may be the causal variant explaining the QT-IGC signal. For a third locus, RNF207, although conditional analysis suggested that the QT-IGC SNV accounts for the association at this locus, both the top QT-IGC SNV as well as the top SNV from this study are coding variants in high LD, thus implicating the RNF207 gene in myocardial repolarization. For the remaining 4 loci, 1 coding variant is associated because of the stronger noncoding QT-IGC signal (KCNH2); 2 were not properly tested because of no effect in ARIC of the ExomeChip variant (ATP2A2) or the QT-IGC variant (TTM), although there was low LD (r²<0.04) between the coding and noncoding variants, suggesting independence; and 1 was unclear (SMARCAD1), as putting both SNVs in the model significantly altered the β estimates for both SNVs.

In Silico Analyses to Implicate Causal Genes

To further decode the role these loci might play in regulating ventricular repolarization, Data-driven Expression-Prioritized Integration for Complex Traits9 was used to investigate whether identified loci contain genes from functional annotated gene sets/pathways. Included in Tables 1 through 3 in the DEPICT Implicated Gene(s) column is a list of genes with a false discovery rate <5%. Furthermore, we looked up each of the Tables 1 through 3 SNVs in the Genotype-Tissue Expression Portal to identify single-tissue expression quantitative trait loci10,11 (left ventricle expression quantitative trait loci, represented by footnote symbols in tables). Findings for
DISCUSSION

Our approach of focusing on coding variants and both QT and JT intervals has identified 10 novel loci associated with ventricular repolarization and has implicated 17 specific genes, 7 of which are in novel loci. Previous studies have implicated roles for potassium ion regulation, sodium ion regulation, calcium ion regulation, and autonomous control of QT interval, and our results provide support for each of these pathways. SLC12A7 (KCC4), which is highly expressed in the left ventricle, is a potassium chloride cotransporter involved in potassium efflux. CASR is a G protein–coupled receptor that maintains circulating calcium ion homeostasis via parathyroid hormone secretion in the parathyroid and kidney tubule ion handling.

In addition to previously implicated pathways, our analyses highlight a role for genes involved in generating the physical force of contraction inside of cardiomyocytes and for conducting electric signal between cardiomyocytes across the heart. Pathway enrichment analyses using Data-driven Expression-Prioritized Integration for Complex Traits (detailed methods in the Data Supplement) identified the GO category GO:0005916, which comprised the genes that code for fascia adherens, the structure that links myofibrils between cardiomyocytes, and contains N-cadherin. NRAP, found to have a significant independent coding variant, likely anchors terminal actin filaments of myofibrils to other protein complexes beneath the sarcolemma and is expressed exclusively in skeletal muscle and heart. skNAC (skeletal NACA) knockout mice, a muscle-specific isoform of NACA, which was found to have a significant independent coding variant, die between embryonic days 10.5 and 12.5 because of cardiac defects, showing interventricular septal defects and a thin myocardial wall. With these 3 points of evidence combined with the previously known locus and GWAS-implicated gene, TTN, a clear class of genes emerge that influence ventricular repolarization through their effect on myocyte structure.

It is important to note that the intercalated disc, which is the interface between cardiomyocytes, contains fascia adherens, desmosomes, and gap junctions, the last of which is known to play a role in ion-mediated relaying of action potentials between cardiomyocytes and, in combination with the gene NOSTAP, has been implicated as regulating QT interval. In contrast, we implicate a nonion-dependent structural/mechanical interconnect between cardiomyocytes mediated by the fascia adherens.

By looking specifically at ventricular repolarization (JT interval) without the influence of depolarization (QRS interval), we detected additional loci related to ventricular repolarization while teasing apart the differential regulation of the various phases of ventricular conduc- tion. Our current results are consistent with our prior findings that variation in some loci influence ventricular depolarization and repolarization in a discordant fashion, and still other loci are associated with one phenotype and not the other. Although ventricular depolarization and repolarization are often coregulated, the difference in genetic effect indicates this is not universally true. Several limitations should be noted. First, we did not have an additional sample to perform replication studies although results were consistent across the diverse cohorts included in our study (Figures IV–XIII in the Data Supplement). Second, correlation of effect sizes was weak between the European ancestry and Hispanic and Asian populations, limiting extrapolation of findings to these populations.

In summary, we have identified 10 loci newly associated with ventricular repolarization. This brings the total number of ventricular repolarization–associated loci to 45. In addition, we have directly implicated 17 specific genes contained in these loci as likely affecting ventricular repolarization and outlined a class of genes that mechanically control QT interval. These new discoveries will likely allow for the development of novel vectors for the prevention of lethal ventricular arrhythmias and SCA.

AUTHORS

Jennifer A. Brody, BA; Albert Vernon Smith, PhD; Helen R. Warren, PhD; Honghuang Lin, PhD; Aaron Isaacs, PhD; Ching-Ti Liu, PhD; Jonathan Marten, BS; Farid Radmanesh, MD, MPH; Leanne M. Hall, MS; Niels Grarup, PhD; Hao Mei, PhD; Martina Müller-Nurasyid, PhD; Jennifer E. Huffman, MSC; Niek Verweij, PhD; Xuqing Guo, PhD; Jie Yao, MD; Ruiyang Li-Gao, MSc; Marten van den Berg, MD, MSc; Stefan Weiss, PhD; Bram P. Prins, PhD, MSc; Jessica van Setten, PhD; Jeffrey Haessler, MS; Leo-Pekka Lyytikäinen, MD; Man Li, PhD, MS; Alvaro Alonso, MD, PhD; Elsayed Z. Soliman, MSc, MS, FAHA, FACC; Joshua C. Bis, PhD; Tom Austin, MPH; Yii-Der Ida Chen, PhD; Bruce M. Psaty, MD, PhD; Tamara B. Harris, MD, MS; Lenore J. Launer, PhD; Sandosh Padmanabhan, MBBS, MD, PhD; Anna Dominiczak, DBE, FRCP, FRSE, FAHA; Paul L. Huang, MD, PhD; Zhijun Xie, BS; Patrick T. Ellinor, MD, PhD; Jan A. Kors, PhD, MSc; Archie Campbell, MA; Alison D. Murray, MBBCh (Hons), MRCP, FRCR, FRCP, PhD; Christopher P. Nelson, PhD; Martin D. Tobin, MFFPM; Jette Bork-Jensen, PhD; Torben Hansen, MD, PhD; Oluf Pedersen, MD, DMSc; Allan Linneberg, PhD; Moritz F. Sinner, MD, MPH; Annette Peters, PhD; Melanie Waldenberger, PhD; Thomas Meitinger, MD; Siegfried Perz, MSc; Ivana Kolcic, MD, PhD; Igor Rudan, MD, PhD; Rudolf A. de Boer, MD, PhD; Peter van der Meer, MD, PhD; Henry J. Lin, MD; Kent D. Taylor, PhD; Renée de

Circ Genom Precis Med. 2018;11:e001758. DOI: 10.1161/CIRCGEN.117.001758 January 2018 7
SOURCES OF FUNDING

Funded in part by training grant (National Institute of General Medical Sciences) ST32GM078184 (Dr Bihlmeyer), and R01HL116747 (Drs Arking, Bihlmeyer, and Sotoodehnia), and R01 HL111089 (Drs Sotoodehnia and Arking). Dr Sotoodehnia is also supported by the Laughlin Family. This material is based on work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1232825 (Dr Bihlmeyer). Any opinion, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

ACKNOWLEDGMENTS

The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the Office of the Director of the National Institutes of Health. Additional funds were provided by the National Cancer Institute (NCI), National Human Genome Research Institute (NHGRI), National Heart, Lung, and Blood Institute (NHLBI), National Institute of Drug Abuse (NIDA), National Institute of Mental Health (NIMH), and National Institute of Neurological Disorders and Stroke (NINDS). Donors were enrolled at Biospecimen Source Sites funded by NCISAIC-Frederick, Inc. (SAIC-F) subcontracts to the National Disease Research Interchange (10XS170), Roswell Park Cancer Institute (10XS171), and Science Care, Inc. (X05172). The Laboratory, Data Analysis, and Coordinating Center was funded through a contract (HHSN268201000025C) to The Broad Institute, Inc. Biorepository operations were funded through an SAIC-F subcontract to Van Andel Institute (10ST1035). Additional data repository and project management were provided by SAIC-F (HHSN262120080001E). The Brain Bank was supported by supplements to University of Miami grants DA006227 and DA033684 and to contract N01MH000028. Statistical Methods development grants were made to the University of Geneva (MH090941 and MH101814), the University of Chicago (MH090951, MH090937, MH101820, and MH101825), the University of North Carolina - Chapel Hill (MH090936 and MH101819), Harvard University (MH090948), Stanford University (MH101782), Washington University St Louis (MH101810), and the University of Pennsylvania (MH101822). The data used for the analyses described in this article were obtained from: the GTEx Portal on July 27, 2016 and dbGaP accession number phs000424.vN.pN on July 27, 2016.

DISCLOSURES

Dr Asselbergs is supported by a Dekker scholarship-Junior Staff Member 2014T001 – Netherlands Heart Foundation and UCL Hospitals NIHR Biomedical Research Centre. Dr Psaty serves on the Data and Safety Monitoring Board of a clinical trial funded by the manufacturer (Zoll LifeCor) and on the Steering Committee of the Yale Open Data Access Project funded by Johnson & Johnson. The other authors report no conflicts.

AFFILIATIONS

From the Predoctoral Training Program in Human Genetics (N.A.B.) and McKusick-Nathans Institute of Genetic Medicine (N.A.B., D.E.A.), Johns Hopkins School of Medicine, Baltimore, MD; Cardiovascular Health Research Unit, Department of Medicine (J.A.B., J.C.B., T.A., N.S.), Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services (B.M.P.), and Cardiovascular Health Research Unit, Department of Epidemiology (S.R.H.), University of Washington, Seattle; Icelandic Heart Association, Kopavogur (A.V.S., V.G.); Faculty of Medicine, University of Iceland, Reykjavik (A.V.S., V.G.); Clinical Pharmacology Department, William Harvey Research Institute, Barts and London School of Medicine and Dentistry (H.R.W., P.B.M.) and NIHR Barts Cardiovascular Biomedical Research Unit (H.R.W., P.B.M.), Queen Mary University of London, United Kingdom; Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L., Z.X.); CARIM School for Cardiovascular Diseases, Maastricht Center for Systems Biology and Department of Biochemistry, Maastricht University, The Netherlands (A.I.); Genetic Epidemiology Unit, Department of Epidemiology (A.I., C.M.v.D.) and Department of Medical Informatics (J.A.K.), Erasmus University Medical Center, Rotterdam, The Netherlands; Biostatistics Department, Boston University School of Public Health, MA (C.-T.L.); Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine (J.M., C.H.), Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine (A.C.), and Usher Institute for Population Health Sciences and Informatics (I.R.), University of Edinburgh, United Kingdom; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA (F.R., P.T.E., S.A.L., J.R.); Center for Human Genetic Research (F.R., J.R.), Cardiovascular Research Center (P.L.H., P.T.E., S.A.L.), and Center for Human Genetic Research and Cardiovascular Research Center (C.H.N.-C.), Harvard Medical School, Massachusetts General Hospital, Boston; Department of Cardiovascular Sciences (L.M.H., C.P.N., N.J.S.) and Genetic Epidemiology Group, Department of Health Sciences (M.D.T.), University of Leicester, United Kingdom; NIHR Leicester Cardiovascular Biomedical Research Unit (L.M.H., C.P.N.) and NIHR Leicester Respiratory Biomedical Research Unit (M.D.T.), Glenfield Hospital, United Kingdom; Novo Nordisk Foundation Center for Basic Metabolic Research,
Footnotes

Received March 13, 2017; accepted October 3, 2017.

The Data Supplement is available at http://circgenetics.ahajournals.org/lookup/suppl/doi:10.1161/CIRCGEN.117.001758/-/DC1.

An educational video is available at http://circgenetics.ahajournals.org/highwire/filestream/257340/field_highwire_adjunct_files/1/CircGenetics_CIRCCVG-2018-001758_supp7.mp4.

Circ Genom Precis Med is available at http://circgenetics.ahajournals.org.

References

1. Deo R, Albert CM. Epidemiology and genetics of sudden cardiac death. Circulation. 2012;125:620–637. doi: 10.1161/CIRCULATIONAHA.111.023838.

2. Chugh SS, Reiner K, Teodorescu C, Evanoado A, Kehr E, Al Samara M, et al. Epidemiology of sudden cardiac death: clinical and research implications. Prog Cardiovasc Dis. 2008;51:213–228. doi: 10.1016/j.pcad.2008.06.003.

3. Newton-Cheh C, Larson MG, Corey DC, Benjamini EJ, Herbert AG, Levy D, et al. QT interval is a heritable quantitative trait with evidence of linkage to chromosome 3 in a genome-wide linkage analysis: the Framingham Heart Study. Heart Rhythm. 2005;2:277–284. doi: 10.1016/j.hrthm.2004.11.009.

4. Schwartz PJ, Crotti L, Insolia R. Long-QT syndrome: from genetics to management. Circ Arrhythm Electrophysiol. 2012;5:868–877. doi: 10.1161/CIRCEP.111.962019.

5. Arking DE, Pult SL, Crotti L, van der Harst P, Mulder IM, et al. QT interval is a heritable quantitative trait with evidence of linkage to chromosome 3 in a genome-wide linkage analysis: the Framingham Heart Study. Heart Rhythm. 2005;2:277–284. doi: 10.1016/j.hrthm.2004.11.009.

6. Sotoodehnia N, Isaacs A, de Bakker PI, Dörr M, Newton-Cheh C, Nolte IM, et al. Common variants in 22 loci are associated with QRS duration highlights role for calcium signaling pathways in myocardial repolarization. Nat Genet. 2014;46:826–836. doi: 10.1038/ng.3014.

7. Huang H, Chanda P, Alonso A, Bader JS, Arking DE. Gene-based tests of association. PLoS Genet. 2011;7:e1002177. doi: 10.1371/journal.pgen.1002177.
8. Crow RS, Hannan PJ, Folsom AR. Prognostic significance of corrected QT and corrected JT interval for incident coronary heart disease in a general population sample stratified by presence or absence of wide QRS complex: the ARIC Study with 13 years of follow-up. *Circulation*. 2003;108:1985–1989. doi: 10.1161/01.CIR.0000095027.28753.9D.

9. Pers TH, Karjalainen JM, Chan Y, Westra HJ, Wood AR, Yang J, et al; Genetic Investigation of ANthropometric Traits (GIANT) Consortium. Biological interpretation of genome-wide association studies using predicted gene functions. *Nat Commun*. 2015;6:5890. doi: 10.1038/ncomms6890.

10. Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. The Genotype-Tissue Expression (GTEx) project. *Nat Genet*. 2013;45:580–585.

11. Consortium TGte. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. *Science*. 2015;348:648–660.

12. Porta A, Girardengo G, Bari V, George AL Jr, Brink PA, Goosen A, et al. Autonomic control of heart rate and QT interval variability influences arrhythmic risk in long QT syndrome type 1. *J Am Coll Cardiol*. 2015;65:367–374. doi: 10.1016/j.jacc.2014.11.015.

13. Mount DB, Mercado A, Song L, Xu J, George AL Jr, Delpire E, et al. Cloning and characterization of KCC3 and KCC4, new members of the cation-chloride cotransporter gene family. *J Biol Chem*. 1999;274:16355–16362.

14. Hendy GN, D’Souza-Li L, Yang B, Canaff L, Cole DE. Mutations of the calcium-sensing receptor (CASR) in familial hypocalciuric hypercalcemia, neonatal severe hyperparathyroidism, and autosomal dominant hypocalcemia. *Hum Mutat*. 2000;16:281–296. doi: 10.1002/1098-1004(20001016)16:4<281::AID-HUMU1>3.0.CO;2-A.

15. Luo G, Zhang JQ, Nguyen TP, Herrera AH, Paterson B, Horovits R. Complete cDNA sequence and tissue localization of N-RAP, a novel nebulin-related protein of striated muscle. *Cell Motil Cytoskeleton*. 1997;38:75–90. doi: 10.1002/(SICI)1097-0169(1997)38:1<75::AID-CM7>3.0.CO;2-G.

16. Luo G, Leroy E, Kozak CA, Polymeropoulos MH, Horovits R. Mapping of the gene (NRAP) encoding N-RAP in the mouse and human genomes. *Genomics*. 1997;45:229–232. doi: 10.1006/geno.1997.4917.

17. Park CY, Pierce SA, von Drehle M, Ivey KN, Morgan JA, Blau HM, et al. skNAC, a Smyd1-interacting transcription factor, is involved in cardiac development and skeletal muscle growth and regeneration. *Proc Natl Acad Sci U S A*. 2010;107:20750–20755. doi: 10.1073/pnas.1013493107.

18. Kapoor A, Sekar RB, Hansen NF, Fox-Talbot K, Morley M, Phur V, et al; QT Interval-International GWAS Consortium. An enhancer polymorphism at the cardiomyocyte intercalated disc protein NOS1AP locus is a major regulator of the QT interval. *Am J Hum Genet*. 2014;94:854–869. doi: 10.1016/j.ajhg.2014.05.001.