AGE AND STRUCTURE PARAMETERS OF THE REMOTE M31 GLOBULAR CLUSTER B514 BASED ON HST, 2MASS, GALEX, AND BATC OBSERVATIONS

JUN MA1,2, SONG WANG1,3, ZHENYU WU1, ZHOU FAN1, TIANMEN ZHANG1, JIANGHUA WU1, XU ZHOU1, ZHAOJI JIANG1, AND JIANGSHENG CHEN1

1 National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China; majun@nao.cas.cn
2 Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
3 Graduate University of Chinese Academy of Sciences, A19 Yuquan Road, Shijingshan District, Beijing 100049, China

ABSTRACT

B514 is a remote M31 globular cluster (GC) which is located at a projected distance of \(R_p \approx 55 \) kpc. Deep observations with the Advanced Camera for Surveys on the Hubble Space Telescope are used to provide accurate integrated light and star counts of B514. By coupling the analysis of the distribution of the integrated light with star counts, we are able to reliably follow the profile of the cluster out to \(\sim 40'' \). Based on the combined profile, we study in detail its surface brightness distribution in the F606W and F814W filters and determine its structural parameters by fitting a single-mass isotropic King model. The results showed that the surface brightness distribution departs from the best-fit King model for \(r > 10'' \). B514 is quite flat in the inner region and has a larger half-light radius than the majority of normal GCs of the same luminosity. It is interesting that, in the \(M_V \) versus \(\log R_h \) plane, B514 lies nearly on the threshold for ordinary GCs as defined by Mackey & van den Bergh. In addition, B514 was observed as part of the Beijing–Arizona–Taiwan–Connecticut (BATC) Multicolor Sky Survey, using 13 intermediate-band filters covering a wavelength range of 3000–8500 Å. Based on aperture photometry, we obtain its spectral energy distributions (SEDs) as defined by the 13 BATC filters. We determine the cluster’s age and mass by comparing its SEDs (from 2267 to 20000 Å, comprised of photometric data from the near-ultraviolet band of the Galaxy Evolution Explorer, 5 Sloan Digital Sky Survey bands, 13 BATC intermediate-band filters, and Two Micron All Sky Survey near-infrared \(JHK_s \) filters) with theoretical stellar population synthesis models, resulting in an age of 11.5 ± 3.5 Gyr. This age confirms the previous suggestion that B514 is an old GC in M31. B514 has a mass of \(0.96 \pm 1.08 \times 10^6 \, M_\odot \) and is a medium-mass GC in M31.

Key words: galaxies: evolution – galaxies: individual (M31) – galaxies: star clusters: individual (B514)

1. INTRODUCTION

In hierarchical cosmological models, galaxies are built up through the continuous accretion and merging of smaller galaxies. The signature of these system assembly processes is expected to be seen in the outskirts of a galactic halo. Globular clusters (GCs), as luminous compact objects that are found out to distant radii in the halos of massive galaxies, can serve as excellent tracers of substructures in the outer region of their parent galaxy. Thus, detailed studies on GCs in the outer halos of the local galaxies are very important.

M31, with a distance modulus of 24.47 (Holland 1998; Stanek & Garnavich 1998; McConnachie et al. 2005), is an ideal nearby galaxy for studying GCs since it is very near and contains more GCs than all other Local Group galaxies combined (Battistini et al. 1987; Racine 1991; Harris 1991; Fusi Pecci et al. 1993). The study of GCs in M31 was initiated by Hubble (1932), who discovered 140 GC candidates with \(m_p \leq 18 \) mag. Following Hubble’s discovery, a number of catalogs of GC candidates were published. For example, the Bologna Group (Battistini et al. 1980, 1987, 1993) did independent searches of GC candidates and compiled them with their own Bologna number. The Bologna catalog contains a total of 827 objects, and all the objects were classified into five classes by the authors’ degree of confidence. Of these candidates, 353 were considered to be class A or class B with a high level of confidence, and the others fell into classes C, D, or E. \(V \) magnitude and \(B-V \) color for most candidates were given in the Bologna catalog. There are recent works dealing with the searches and the catalogs of M31 GCs (e.g., Mochejska et al. 1998; Barmby & Huchra 2001; Galleti et al. 2004, 2006, 2007; Huxor et al. 2005, 2008, 2011; Kim et al. 2007; Mackey et al. 2006, 2007, 2010; Martin et al. 2006; Caldwell et al. 2009, 2011; Peacock et al. 2010). The continued importance of the study of GCs in this galaxy has been reviewed by Barmby et al. (2000).

From the spatial structure and internal stellar kinematics of GCs, we can obtain information on both their formation conditions and dynamical evolution within the tidal fields of their host galaxies. For example, the structural parameters of GCs indicate the timescales on which the cluster is bound to dissolve. However, the integrated properties of GCs, such as age and metallicity, are believed to reflect conditions in the early stages of galaxy formation (Brodie & Strader 2006).

The most direct method to determine a cluster’s age is to employ main-sequence photometry, since the absolute magnitude of the main-sequence turnoff is predominantly affected by age (see Puza et al. 2002 and references therein). However, until recently (cf. Perina et al. 2009), this method was only applied to the star clusters in the Milky Way and its satellites (e.g., Rich et al. 2001), although Brown et al. (2004) estimated the age of an M31 GC using extremely deep images observed with the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS). Generally, the ages of extragalactic star clusters are determined by comparing their observed spectral energy distributions (SEDs) and/or spectroscopy with the predictions of Simple Stellar Population (SSP) models (Williams & Hodge 2001a, 2001b; de Grijs et al. 2003a, 2003b, 2003c; Bik et al. 2003; Jiang et al. 2003; Beasley et al. 2004; Puza et al. 2005; Fan et al. 2006; Ma et al. 2006a, 2007b, 2009a, 2009b, 2011; Caldwell et al. 2009, 2011; Wang et al. 2010; Perina et al. 2011).
M31 GC B514 (B for “Bologna”; see Battistini et al. 1987), which was detected by Galleti et al. (2005) based on the Extended Source Catalog (XSC) sources of the All Sky Data Release of the Two Micron All Sky Survey (2MASS) within a ∼9′ × 9′ area centered on M31, is the outermost cluster known in M31 at that time, located at a projected distance of \(R_p \approx 55 \) kpc. Now, many new members of the M31 halo GC system, which are extending to very large radii, have been discovered (e.g., Huxor et al. 2005, 2008, 2011; Mackey et al. 2006, 2007, 2010; Martin et al. 2006).

Galleti et al. (2006) presented a deep color–magnitude diagram (CMD) for B514 in F606W and F814W photometry obtained with the ACS/HST, which reveals a steep red giant branch and a horizontal branch extending blueward of the instability strip showing that B514 is a classical old metal-poor GC. Federici et al. (2007) studied the density profile of B514 based on the same HST/ACS observations as Galleti et al. (2006), and they found that the light and the star-count profiles show a departure from the best-fit empirical models of King (1962) for \(r \geq 8′′ \)—as a surface brightness excess at large radii—and that the star-count profile shows a clear break in the correspondence of the estimated tidal radius. They also found that B514 has a significantly larger half-light radius than ordinary GCs of the same luminosity. Clementini et al. (2009) identified a rich harvest of RR Lyrae stars in B514, based on HST Wide Field Planetary Camera 2 (WFPC2) and HST/ACS time-series observations.

Since B514 is located in the halo of M31, i.e., far away from the galaxy’s disk, it is (for all practical purposes) only affected by the Galactic foreground extinction. The foreground Galactic reddening in the direction of M31 has been discussed by many authors (e.g., van den Bergh 1969; McClure & Racine 1969; Frogel et al. 1980; Fusi Pecci et al. 2005), and nearly similar values were determined, such as \(E(B-V) = 0.08 \) by van den Bergh (1969), 0.11 by McClure & Racine (1969) and Hodge (1992), and 0.08 by Frogel et al. (1980). We argue that the reddening value of B514 should not be smaller than the foreground Galactic reddening in the direction of M31. In this paper, we adopt the reddening value of \(E(B-V) = 0.10 \) from Galleti et al. (2006). The reddening law from Cardelli et al. (1989) is employed in this paper. In addition, throughout this paper we adopt a distance to M31 of 783 ± 25 kpc (1′ subtends 3.8 pc), corresponding to a distance modulus of \((m-M)_0 = 24.47 \pm 0.07 \) mag (McConnachie et al. 2005).

In this paper, we describe the details of the observations and our approach to the data reduction with the HST/ACS and the Beijing–Arizona–Taiwan–Connecticut (BATC) system in Sections 2 and 3. We will study in detail the surface distribution of B514 using the King (1966) models, which were developed by Michie (1963) and King (1966) based on the assumption that GCs are formed by single-mass, isotropic, lowered isothermal spheres (hereafter “King models”). We determine the age and mass of B514 by comparing observational SEDs with population synthesis models in Section 4. We provide a summary in Section 5.

2. OBSERVATION AND PHOTOMETRIC DATA WITH HST/ACS

The images of B514 used in this paper were observed with the ACS/Wide Field Camera (WFC) in the F606W and F814W filters on 2005 July 19 (program ID GO 10394; PI: N. Tanvir), covering the period 2005 July 19–20 in F606W (total \(t_{\text{exp}} = 1776 \) s) and F814W (total \(t_{\text{exp}} = 2505 \) s). Upon retrieval from the STScI archive, all images were processed using the standard ACS calibration pipeline, in which bias and dark subtractions, flat-field division, and the masking of known bad pixels are included. Subsequently, photometric header keywords are populated. In the final stage of the pipeline, the MultiDrizzle software is used to correct the geometric distortion present in the images. Finally, any cosmic rays are rejected while individual images in each band are combined into a final single image. We checked the images and did not find saturated cluster stars. Figure 1 shows the images observed with the ACS/WFC in F606W and F814W. The ACS/WFC spatial resolution is 0′05 pixel⁻¹.

2.1. Ellipticity, Position Angle, and Surface Brightness Profile

Surface photometry of the cluster is obtained from the drizzled images using the IRAF task ELLIPSE. Its center position

!Image
we ran two passes of the centroiding. Elliptical isophotes were fitted to the data with no task; however, an initial center position was determined by the IRAF task, with the ellipse fits the sky locally around each detected source, and after removal of the first and second fitted harmonics. From Table 1 and Figure 2, we can see that the values of ellipticity and P.A. cannot be obtained beyond 0\arcsec. Beyond \sim 0\arcsec, the ellipticity does not vary significantly as a function of the cluster’s semimajor axis. The P.A. does not vary as a function of the cluster’s semimajor axis within \sim 0\arcsec because of high S/N; however, beyond this position, it varies significantly with great errors because of low S/N.

Tables 3 and 4 list the surface brightness profile, \(\mu\), of B514 and its integrated magnitude, \(m\), as a function of radius in the F606W and F814W filters, respectively. The errors in the surface brightness were generated by the IRAF task ELLIPSE in which they are obtained directly from the root mean square scatter of the intensity data along the zero-ellipticity isophotes. In addition, the surface photometries at radii where the ellipticity and P.A. cannot be measured are obtained based on the last ellipticity and P.A. as the IRAF task ELLIPSE is designed.

In order to derive the surface brightness profile of B514 in its outer region, we use the profile from star counts. We used the DOLPHOT software (Dolphin 2000a), specifically the ACS module, to photometer our images. DOLPHOT performs PSF fitting using PSFs especially tailored to the ACS camera. Photometry was done simultaneously on all the flat-fielded images from the STScI archive (both filters) relative to a deep reference image—we used the drizzled combination of the F606W image. DOLPHOT accounts for the hot-pixel and cosmic-ray masking information attached to each flat-fielded image, fits the sky locally around each detected source, and

Table 1

\(a\) (arcsec)	\(\epsilon\)	P.A. (deg)	\(a\) (arcsec)	\(\epsilon\)	P.A. (deg)
0.0260	0.360 ± 0.082	159.5 ± 8.3	0.1752	0.598 ± 0.046	147.9 ± 3.4
0.0287	0.380 ± 0.087	158.6 ± 8.3	0.1928	0.150 ± 0.150	150.4 ± 32.0
0.0315	0.402 ± 0.092	157.7 ± 8.5	0.2120	0.150 ± 0.183	107.3 ± 38.4
0.0347	0.426 ± 0.098	156.9 ± 8.6	0.2333	0.171 ± 0.111	84.8 ± 20.6
0.0381	0.449 ± 0.104	155.6 ± 8.8	0.2566	0.203 ± 0.066	76.4 ± 10.5
0.0420	0.474 ± 0.112	154.3 ± 9.2	0.2822	0.199 ± 0.049	79.3 ± 8.0
0.0461	0.503 ± 0.123	153.1 ± 9.7	0.3105	0.205 ± 0.062	94.7 ± 9.8
0.0508	0.535 ± 0.134	152.5 ± 10.2	0.3415	0.210 ± 0.059	102.4 ± 9.1
0.0558	0.570 ± 0.133	151.6 ± 9.7	0.3757	0.197 ± 0.059	112.5 ± 9.5
0.0614	0.596 ± 0.137	150.6 ± 9.7	0.4132	0.171 ± 0.066	129.9 ± 12.1
0.0676	0.622 ± 0.146	149.6 ± 10.1	0.4545	0.090 ± 0.094	143.8 ± 31.9
0.0743	0.649 ± 0.159	148.8 ± 10.8	0.5000	0.090 ± 0.071	20.8 ± 23.6
0.0818	0.678 ± 0.134	147.8 ± 8.8	0.5500	0.123 ± 0.041	95.8 ± 10.1
0.0899	0.694 ± 0.114	147.4 ± 7.4	0.6050	0.102 ± 0.024	117.4 ± 7.2
0.0989	0.686 ± 0.092	146.4 ± 6.0	0.6655	0.119 ± 0.024	98.6 ± 6.2
0.1088	0.650 ± 0.075	145.4 ± 5.0	0.7321	0.158 ± 0.032	93.4 ± 6.2
0.1197	0.636 ± 0.059	146.1 ± 4.0	0.8053	0.067 ± 0.049	54.6 ± 21.3
0.1317	0.619 ± 0.050	146.6 ± 3.6	0.8858	0.063 ± 0.034	4.8 ± 15.5
0.1448	0.636 ± 0.037	146.6 ± 2.7	0.9744	0.067 ± 0.096	132.5 ± 42.6

Figure 2. Ellipticity and P.A. as a function of the semimajor axis in the F606W and F814W filters of ACS/WFC.
automatically applies the correction for the charge-transfer efficiency (CTE; Dolphin 2000b). It then transforms the instrumental magnitude to the VEGAMAG system (Dolphin 2000b). A variety of quality information is listed with each detected object, including the object type (stellar, extended, etc.), χ^2 of the PSF fit, the sharpness and roundness of the object, and a “crowding” parameter which describes how much brighter an object would have been had neighboring objects not been fitted simultaneously. We used the quality information provided by DOLPHOT to clean the resulting detection lists, selecting only stellar detections, with valid photometry on all input images, a global sharpness parameter between -0.3 and 0.3 in each filter, and a crowding parameter of less than 0.25 in each filter.

We joined the two profiles into one based on the method of Federici et al. (2007). This involves matching the intensity scales of the two profiles by fitting both profiles to smooth curves in the region $r = 9'' - 16''$. The star-count profile is listed in Table 5. The errors for the star counts take into account Poisson statistical uncertainties. The joined profile covered the full $0'' < r < 40''$ range as shown in Figure 3.

2.2. Point-spread Function

At a distance of 783 kpc, the ACS/WFC has a scale of $0'05 = 0.19$ pc pixel$^{-1}$, and thus M31 clusters are clearly resolved with it. Their observed core structures, however, are still affected by the PSF. We chose not to deconvolve the data, instead fitting structural models after convolving them with a simple analytic description of the PSF as Barmby et al. (2007) and McLaughlin et al. (2008) did (see Barmby et al. 2007; McLaughlin et al. 2008; Ma 2011 for details). In addition, since this PSF formula is radially symmetric and the models of King (1966) we fit are intrinsically spherical, the convolved models to be fitted to the data are also circularly symmetric.

2.3. Models and Fits

2.3.1. Structural Models

After elliptical galaxies, GCs are the best understood and most thoroughly modeled class of stellar systems. For example, a large majority of the ~150 Galactic GCs have been fitted by the simple models of single-mass, isotropic, lowered isothermal spheres developed by Michie (1963) and King (1966; i.e., King models), yielding comprehensive catalogs of cluster structural parameters and physical properties (see McLaughlin & van der Marel 2005 and references therein). For extragalactic GCs, HST imaging data have been used to fit the King models to a large number of GCs in M31 (e.g., Barmby et al. 2002, 2007, 2009, and references therein), M33 (Larsen et al. 2002), and NGC 5128 (e.g., Harris et al. 2002; McLaughlin et al. 2008, and references therein). In addition, there are other models used to fit the surface profile of GCs, including those by Wilson (1975), Elson et al.
Our fitting procedure involves computing in full large numbers of King structural models spanning a wide range of fixed values of the appropriate shape parameter \(W_0 \) (see McLaughlin & van der Marel 2005, for details). Then, the models are convolved with the ACS/WFC PSF for the F606W and F814W filters (see Barmby et al. 2007 for details):

\[
\tilde{T}_\text{mod}(R|\rho) = \int_{-\infty}^{\infty} \tilde{T}_\text{mod}(R/r_0) \times \tilde{I}_{\text{PSF}}[x - x', (y - y')] \, dx' \, dy',
\]

(1)

where \(\tilde{T}_\text{mod} \equiv I_{\text{mod}}/I_0 \) (see McLaughlin et al. 2008 for details). We changed the luminosity density to surface brightness \(\mu_{\text{mod}} = -2.5 \log [T_{\text{mod}}] \) before fitting them to the observed surface brightness profile of B514, \(\mu = \mu_0 - 2.5 \log [I(R/r_0)/I_0] \), finding the radial scale \(r_0 \) and central surface brightness \(\mu_0 \), which minimizes \(\chi^2 \) for every given value of \(\rho_0 \). The \((W_0, r_0, \mu_0) \) combination that yields the global minimum \(\chi^2_{\text{min}} \) over the grid used defines the best-fit model of that type:

\[
\chi^2 = \sum_i \frac{[\mu_{\text{obs}}(R_i) - \mu_{\text{mod}}(R_i|\rho_0)]^2}{\sigma_i^2},
\]

(2)
in which \(\sigma_i \) is the error in the surface brightness. Estimates of the 1σ uncertainties on these basic fit parameters follow from their extreme values over the subgrid of fits with \(\chi^2/v \leq \chi^2_{\text{min}}/v + 1 \), where \(v \) is the number of free parameters. Figure 3 shows our best King fits to B514. In Figure 3, open squares are ELLIPSE data points included in the least-squares model fitting, and the asterisks are points not used to constrain the fit; black circles are star-count points included in the \(\chi^2 \) model fitting, and red circles are star-count points not used to constrain the fits. These observed data points shown by asterisks are included in the radius \(R < 2 \) pixels = 0.1, and the isophotal intensity is dependent on their neighbors. As Barmby et al. (2007) pointed out, the ELLIPSE output contains brightnesses for 15 radii inside 2 pixels, but they are all measured from the same 13 central pixels and are not statistically independent. Thus, to avoid excessive weighting of the central regions of B514 in the fits, we only used intensities at radii \(R_{\text{min}} \), \(R_{\text{max}} \) + 0.5, 1.0, 2.0) pixels, or \(R > 2.5 \) as Barmby et al. (2007) used. Table 6 summarizes the results obtained in this paper.
Figure 3. Surface brightness profile of B514 measured in the F606W and F814 filters. The dashed curves (blue) trace the PSF intensity profiles and the solid (red) curves are the PSF-convolved best-fit models. The open squares are ellipse data points and the black circles are star-count profiles included in the χ^2 model fitting, and the asterisks are ellipse data points and the red circles are star-count profiles not used to constrain the fits (see the text for details).

From Figure 3, we can note that the surface brightness distribution departs from the best-fit King model for $r > 10''$, which can be interpreted as the presence of a population of extratidal stars around the cluster. In fact, Federici et al. (2007) have reported this population of extratidal stars (see their Figure 5 and their discussions).

2.4. Distribution of B514 in the M_V versus log R_h Plane

The distribution of stellar systems in the M_V versus log R_h plane can provide interesting information on the evolutionary history of these objects (e.g., van den Bergh & Mackey 2004; Mackey & van den Bergh 2005). In this plane, the half-light radius is an important parameter, which can be used to trace the initial size of a cluster, since it changes little in the evolution process (see Spitzer & Tuan 1972; Henon 1973; Lightman & Shapiro 1978; Murphy et al. 1990 for details).

Recently, van den Bergh & Mackey (2004) and Mackey & van den Bergh (2005) showed that in a plot of luminosity versus half-light radius, the overwhelming majority of normal Galactic GCs lie below (or to the right of) the line

$$\log R_h(\text{pc}) = 0.25M_V(\text{mag}) + 2.95.$$ \hspace{1cm} (3)

Exceptions to this rule are massive clusters, such as M54 and ω Centauri in the Milky Way, and G1 in M31, which are widely believed to be the remnant cores of now defunct dwarf galaxies (Zinnecker et al. 1988; Freeman 1993; Meylan et al. 2001). Because the well-known giant GC NGC 2419 (van den Bergh & Mackey 2004) in the Galaxy and 037-B327 (Ma et al. 2006b) in M31 also lie above this line, it has been speculated that these two objects might also be the remnant cores of dwarf galaxies (however, see de Grijs et al. 2005 for doubts regarding NGC 2419).

With the value of R_h (i.e., r_h) in the F606W filter obtained in this paper, we plot M_V versus log R_h in Figure 4, in which $M_V = -9.02$, which is derived based on $m_V = 15.76$ from Huxor et al. (2008). It is interesting that on this plot B514 is seen to lie nearly on the line defined by Equation (3). Considering the uncertainties of R_h and M_V, a certain conclusion may not be presented here. However, we argued that B514 is a medium-mass GC in M31 (see Section 4.4 for details) and is not as massive as G1 and 037-B327 (see Ma et al. 2006a, 2006b, 2007a, 2009a for details). Furthermore, and for completeness, in Figure 4 we have also included GCs in the Milky Way, M31, and M33. Galactic GCs are from the online database of Harris
(1996; 2010 update). This new revision of the McMaster catalog of Galactic GCs is the first update since 2003 and the biggest single revision since the original version of the catalog was published in 1996. The starting points for the present list of structural parameters for these six outer halo clusters. Based on F606W and F814W images of B514 obtained with the ACS/HST (program ID GO 10565; PI: S. Galletti), Federici et al. (2007) also studied in detail its surface brightness distribution in the F606W and F814W filters and determined its structural parameters by fitting a King (1962) model to a surface brightness profile. Comparing the results of Federici et al. (2007) with Table 6 of this paper, we find that our model fits produce smaller tidal radii, which result in smaller half-light, or effective, radii of a model. In addition, Federici et al. (2007) adopted $M_V = -9.1$ being brighter than $M_V = -9.02$ adopted here. So, in Federici et al. (2007), B514 lies above and brightward of the line defined by Equation (3).
than 0.02 mag. Fine photometrically the BATC system to an accuracy of better than 0.02 mag, the BATC filters used are 13 filters. The formal errors obtained for these stars in the 13 zero-point errors in magnitude for the standard stars through the optical wavelength range from 3000 to 10000 Å (see Fan et al. 2000). Column 6 of Table 7 gives the number of images observed through each filter, and the total observing time per filter. Multiple images through the same filter were combined to improve image quality (i.e., increase the S/N and remove spurious signal).

Calibration of the magnitude zero level in the BATC photometric system is similar to that of the spectrophotometric AB magnitude system. For flux calibration, the Oke–Gunn (Oke & Gunn 1983) primary flux standard stars HD 19445, HD 84937, BD +26°2606, and BD +17°4708 were observed during photometric nights (Yan et al. 2000). Column 6 of Table 7 gives the zero-point errors in magnitude for the standard stars through each filter.

3.1. Intermediate-band Photometry of B514

Observations of B514 were also obtained with the BATC 60/90 cm Schmidt telescope located at the Xinglong station of the National Astronomical Observatory of China (NAOC). This telescope is equipped with 15 intermediate-band filters covering the optical wavelength range from 3000 to 10000 Å (see Fan et al. 2009 for details). Figure 5 shows a finding chart of B514 in the BATC b band (centered at 5795 Å).

The BATC survey team obtained 47 images of B514 in 13 BATC filters between 2005 March 1 and 2006 December 9. Table 7 contains the observation log, including the BATC filter names, the central wavelength and bandwidth of each filter, the number of images observed through each filter, and the total observing time per filter. Multiple images through the same filter were combined to improve image quality (i.e., increase the S/N and remove spurious signal). We determined the intermediate-band magnitudes of B514 on the combined images. The (radial) photometric asymptotic growth curves in all BATC bands flatten out at a radius of ~13". Inspection ensured that this aperture is adequate for photometry, i.e., B514 does not show any obvious signal beyond this radius. Therefore, we use an aperture with $r \approx 13''$ for integrated photometry. Since B514 is located in the field of view of the image is 4.3' × 4.3'.

Filter	Central Wavelength (Å)	Bandwidth (Å)	Number of Images	Exposure Time (hr)	rms (mag)	Magnitude
a	3360	222	6	2:00	0.010	17.59 ± 0.05
b	3890	187	6	2:00	0.010	16.82 ± 0.02
c	4210	185	4	1:00	0.002	16.52 ± 0.01
d	4550	222	4	1:20	0.015	16.25 ± 0.02
e	4920	225	3	1:00	0.007	16.05 ± 0.01
f	5270	211	3	1:00	0.014	15.85 ± 0.02
g	5795	176	3	1:00	0.010	15.64 ± 0.01
h	6075	190	3	0:50	0.005	15.56 ± 0.01
i	6660	312	3	0:50	0.004	15.44 ± 0.01
j	7050	121	3	1:00	0.006	15.33 ± 0.01
k	7490	125	3	1:00	0.011	15.25 ± 0.01
m	8020	179	3	1:00	0.003	15.19 ± 0.01
n	8480	152	3	1:00	0.005	15.12 ± 0.01

Figure 5. Image of B514 in the BATC b band, obtained with the NAOC 60/90 cm Schmidt telescope. B514 is circled using an aperture with a radius of 13".
M31 halo, contamination from background fluctuations can be neglected. We adopted annuli for background subtraction spanning between 14′′ and 20′′. The calibrated photometry of B514 in 13 filters is summarized in Column 7 of Table 7, in conjunction with the 1σ magnitude uncertainties, which include uncertainties from the calibration errors in magnitude from daophot.

3.2. Near-infrared 2MASS Photometry of B514

B514 was detected by Galletti et al. (2005) based on the XSC sources of the All Sky Data Release of 2MASS within a ∼9′ × 9′ area centered on M31. In order to obtain accurate photometry for B514 in JHKs, we download the images in JHKs filters including B514. The image in each filter is combined using six frames of 1.3 s, so the total exposure time of the image in each filter is 7.8 s. The mosaic pixel scale of the final atlas image is resampled to 1″ (see Skrutskie et al. 2006 for details). The relevant zero points for photometry are 20.9210, 20.7089, and 20.0783 in J, H, and K, magnitudes, respectively, which are presented in photometric header keywords. We use an aperture with r = 13″ for integrated photometry, and annuli for background subtraction spanning between 14″ and 19″. The calibrated photometry of B514 in the J, H, and Ks filters is summarized in Table 8, in conjunction with the 1σ magnitude uncertainties obtained from daophot.

3.3. GALEX Ultraviolet Photometry of B514

While the principal science goal of the GALEX (Martin et al. 2005; Morrissey et al. 2007) has been the study of star formation in the local and intermediate-redshift universe, nearby galaxies such as M31 have also been surveyed, taking advantage of the wide (1:2) field of view of GALEX. The B514 images were obtained as part of the guest program carried out by GALEX in two UV bands: far-ultraviolet (FUV; λeff = 1539 Å, FWHM ∼ 270 Å) and near-ultraviolet (NUV; λeff = 2316 Å, FWHM ∼ 615 Å) with resolutions of 4′2 (FUV) and 5′3, respectively (NUV; Morrissey et al. 2007). The exposure times are 1616 s in FUV and 1704 s in NUV. The images are sampled with 1.5 pixels. The data were downloaded from the MAST archive. The relevant zero points for photometry are 20.08 and 18.82 in NUV and FUV magnitudes, respectively (Morrissey et al. 2007). We use an aperture with r = 12″ for integrated photometry, and annuli for background subtraction spanning between 13.5″ and 19.5″. The calibrated photometry of B514 in the NUV and FUV filters is summarized in Table 8. From Table 8, we can see that the 1σ magnitude uncertainties are great, especially if the magnitude uncertainty in FUV is very great (2.3 mag), i.e., the S/Ns of these images are low, especially if the S/N of the image in FUV is very low. Since the magnitude uncertainty in FUV is very great, we will not use it when fitting to derive the age of B514 in Section 4.

3.4. Photometric Data of B514 from SDSS

Peacock et al. (2010) presented an updated catalog of M31 GCs based on images from the Wide Field Camera (WFCAM) on the United Kingdom Infrared Telescope and from the SDSS, in which ugriz and K-band photometry are determined. In this catalog, B514 is named H6 from Huxor et al. (2008) and ugriz photometry is presented.

4. STELLAR POPULATION OF B514

4.1. Metallicity of B514

Cluster SEDs are determined by the combination of their ages and metallicities, which is often referred to as the age–metallicity degeneracy. Therefore, the age of a cluster can only be constrained accurately if the metallicity is known with confidence, from independent determinations. There exist four metallicity determinations for B514, namely, [Fe/H] = −1.8±0.3 (spectroscopic from Galletti et al. 2005), −1.8±0.15 (from the CMD; Galletti et al. 2006), −2.14±0.15 (from the CMD; Mackey et al. 2007), and −2.06±0.16 (spectroscopic from Galletti et al. 2009), which are consistent. In order to adopt a reasonable value of metallicity for B514, the mean value of these four independent determinations, i.e., [Fe/H] = −1.95, is adopted in this paper.

4.2. Stellar Populations and Synthetic Photometry

To determine the age and mass of B514, we compared its SEDs with theoretical stellar population synthesis models. The SEDs consist of photometric data from the NUV of GALEX, 13 BATC intermediate-band filters, and 2MASS near-infrared JHKs filters obtained in this paper, and of the photometric data in five SDSS filters obtained by Peacock et al. (2010). We will not include the photometric datum in the FUV band when constraining the age of B514 because of its large photometric error (2.3 mag), i.e., the photometric datum is not accurate. B514 is a very metal-poor GC (see discussions above). Hence, we use the SSP models of Bruzual & Charlot (2003, hereafter BC03), which have been upgraded from the earlier Bruzual & Charlot (1993) and A. G. Bruzual & S. Charlot (1996, unpublished) versions, and now provide the evolution of the spectra and photometric properties for a wide range of stellar metallicities. For example, BC03 SSP models based on the Padova 1994 evolutionary tracks include six initial metallicities, Z = 0.0001, 0.0004, 0.004, 0.008, 0.02 (Z⊙), and 0.05, corresponding to [Fe/H] = −2.25, −1.65, −0.64, −0.33, +0.09, and +0.56. BC03 provides 26 SSP models (both of high and low spectral resolution) using the Padova 1994 evolutionary tracks, half of which were computed based on the Salpeter (1955) initial mass function (IMF) with lower and upper mass cutoffs of mt,l = 0.1 M⊙ and mt,r = 100 M⊙, respectively. The other 13 were computed using the Chabrier (2003) IMF with the same mass cutoffs. In addition, BC03 provide 26 SSP models using the Padova 2000 evolutionary tracks which include 6 partially different initial metallicities, Z = 0.0004, 0.001, 0.004, 0.008, 0.019 (Z⊙), and 0.03, i.e., [Fe/H] = −1.65, −1.25, −0.64, −0.33, +0.07, and +0.29. In this paper, we adopt the high-resolution SSP models using the Padova 1994 evolutionary tracks to determine the most appropriate age for B514 since its metallicity is [Fe/H] = −1.95, and a Salpeter (1955) IMF is used. These SSP models contain 221 spectra describing the spectral evolution of SSPs from 1.0 × 10⁵ yr to 20 Gyr. The evolving spectra include the
contribution of the stellar component at wavelengths from 91 Å to 160 μm.

Since our observational data are integrated luminosities through a given set of filters, we convolved the theoretical SSP SEDs of BC03 with the GALEX NUV, SDSS ugriz, BATC a–n, and 2MASS JHKs filter response curves to obtain synthetic optical and NIR photometry for comparison (see Ma et al. 2009a, 2009b, 2011; Wang et al. 2010 for details).

4.3. Fit Results

We use a χ^2 minimization approach to examine which SSP models are most compatible with the observed SEDs, following

$$\chi^2 = \sum_{i=1}^{22} \frac{(m_{\lambda_i}^{\text{int}} - m_{\lambda_i}^{\text{mod}}(t))^2}{\sigma_i^2},$$

where $m_{\lambda_i}^{\text{mod}}(t)$ is the integrated magnitude in the ith filter of a theoretical SSP at age t, $m_{\lambda_i}^{\text{int}}$ represents the intrinsic integrated magnitude in the same filter, and σ_i is the magnitude uncertainty, defined as

$$\sigma_i^2 = \sigma_{\text{obs},i}^2 + \sigma_{\text{mod},i}^2 + \sigma_{\text{md},i}^2.$$

Here, $\sigma_{\text{obs},i}$ is the observational uncertainty from Tables 7 and 8 of this paper, and Table 1 of Peacock et al. (2010). $\sigma_{\text{mod},i}$ is the uncertainty associated with the model itself, and $\sigma_{\text{md},i}$ is associated with the uncertainty with the distance modulus adopted here. Charlot et al. (1996) estimated the uncertainty associated with the term $\sigma_{\text{md},i}$ by comparing the colors obtained from different stellar evolutionary tracks and spectral libraries. Following Ma et al. (2009a), Ma et al. (2009b), Wang et al. (2010), and Ma et al. (2011), we adopt $\sigma_{\text{mod},i} = 0.05$ mag. For $\sigma_{\text{md},i}$, we adopt 0.07 from McCConnachie et al. (2005).

Before fitting, we obtained the theoretical SEDs for the metallicities [Fe/H] = −1.95 model by interpolation between [Fe/H] = −2.25 and −1.65 models.

Since the observed magnitudes in the 2MASS photometric systems are given in the Vega system, we transformed them to the AB system for our fits. The photometric offsets in the 2MASS filters between the Vega and AB systems were obtained based on Equations (7) and (8) in the manual provided by Bruzual & Charlot (2003; bc03.ps). The best-reduced $\chi^2_{\text{min}}/v = 0.8$ is achieved with an age of 11.5 ± 3.5 Gyr (1σ uncertainties), $v = 21$ is the number of free parameters, i.e., the number of observational data points minus the number of parameters used in the theoretical model. In Figure 6, we show the intrinsic SEDs of B514 and the integrated SEDs and spectra of the best-fitting model. From Figure 6, we can see that the BC03 SSP models cannot fit the photometric data point in the H band as well as the other 21 data points, i.e., the observed magnitude is brighter than the model one in the H band. However, the photometric data point in the H band from Galletti et al. (2005) can be fitted by BC03 SSP models as well as the other 21 data points, and the fitting result (the age of B514) is in agreement with the one obtained above (11.5 ± 3.5 Gyr) within the uncertainty.

4.4. Mass of B514

Next we determined the mass of B514. The BC03 SSP models are normalized to a total mass of 1 M_\odot in stars at age $t = 0$. The absolute magnitudes (in the Vega system) in V, SDSS ugriz, and 2MASS JHKs filters are included in the BC03 SSP models. The difference between the intrinsic absolute magnitudes and those given by the model provides a direct measurement of the cluster mass. To reduce mass uncertainties resulting from photometric uncertainties based on only magnitudes in one filter (in general, the V band is used), we estimated the mass of B514 using magnitudes in the V, ugriz, and JHK bands. The resulting mass determinations for B514 are listed in Table 9 with their 1σ uncertainties. From Table 9, we can see that the mass of B514 obtained based on the magnitudes in different filters is consistent except for one in the H band. In fact, the observed magnitude is brighter than the model magnitude in the H band (see discussion in Section 4.3). So, the mass of B514 derived based on the magnitude in the H band is more massive than its true mass. The mass of B514 derived based on the magnitude in the H band from Galletti et al. (2005) is in agreement with ones derived based on the magnitudes in the other eight bands (Table 9). We know that the obtained mass of B514 is between 0.96 and 1.08 × 10^6 M_\odot not including the one in the H band. Compared with 037-B327 ($M_{BD37-B327} \sim 8.5 \times 10^6 M_\odot$, Barmby et al. 2002, or $M_{BD37-B327} \sim 3.0 \pm 0.5 \times 10^6 M_\odot$, Ma et al. 2006a) and G1 ($M_{G1} \sim 7-17 \times 10^6 M_\odot$, Meylan et al. 2001, or $M_{G1} \sim 5.8-10.6 \times 10^6 M_\odot$, Ma et al. 2009a) in M31 and ω Cen ($M_{\omega Cen} \sim 2.9-5.1 \times 10^6 M_\odot$, Meylan 2002) in the Milky Way, the most massive clusters in the Local Group, B514 is only a medium-mass GC.

5. SUMMARY

In this paper, we determined the structural parameters of the remote GC B514 known in M31 based on F606W and F814W images obtained with the ACS/HST. By performing a fit to
the surface brightness distribution of a single-mass isotropic King model, we derive its parameters: the best-fitting scale radii \(r_0 = 0.36^{+0.09}_{-0.09} \) arcsec (1.35 \(\pm 0.35 \) pc) and 0.36 \(\pm 0.09 \) arcsec (1.35 \(\pm 0.32 \) pc), tidal radii \(r_t = 16.08^{+0.11}_{-0.13} \) arcsec (61.11 \(\pm 8.00 \) pc) and 16.79 \(^{+1.74}_{-2.13} \) arcsec (63.76 \(^{+6.62}_{-5.64} \) pc), and concentration indices \(c = \log(r_t/r_0) = 1.66^{+0.06}_{-0.04} \) and 1.68 \(^{+0.04}_{-0.04} \) in F606W and F814W, respectively; the central surface brightnesses are 16.25 \(^{+0.57}_{-0.56} \) mag arcsec\(^{-2} \) and 15.64 \(^{+0.80}_{-0.64} \) mag arcsec\(^{-2} \) in F606W and F814W, respectively; and the half-light, or effective, radius of a model that contains half the total luminosity in projection, at \(r_h = 1.14^{+0.14}_{-0.08} \) arcsec (5.00 \(^{+0.55}_{-0.32} \) pc) and 1.36 \(^{+0.19}_{-0.18} \) arcsec (5.17 \(^{+0.48}_{-0.48} \) pc) in F606W and F814W, respectively. The results show that the surface brightness distribution departs from the best-fit King model for \(r > 10'' \). In addition, B514 was observed as part of the BATC Multicolor Sky Survey, using 13 intermediate-band filters covering a wavelength range of 3000–8000 Å. Based on aperture photometry, we obtain its SEDs as defined by the 13 BATC filters. We determine the cluster’s age by comparing its SEDs (from 2267 to 20000 Å, comprised of photometric data in the NUV of GALEX. 13 BATC intermediate-band filters, and five SDSS filters, and 2MASS near-infrared \(JHK \) data) with theoretical stellar population synthesis models, resulting in an age of 11.5 \(\pm 3.5 \) Gyr. This age confirms previous suggestions that B514 is an old GC in M31. B514 has a mass of 0.96–1.08 \(\times 10^6 \) \(M_\odot \) and is a medium-mass GC in M31.

We thank the anonymous referee for providing a rapid and thoughtful report that helped improve the original manuscript greatly. This work is partly based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555. These observations are associated with proposal 10394. This work was supported by the Chinese National Natural Science Foundation grant Nos. 10873016, 10633020, 10803007, 11003021, and 11073032, and by the National Basic Research Program of China (973 Program) No. 2007CB815403.

REFERENCES

Barmby, P., Holland, S., & Huchra, J. 2002, AJ, 123, 1937
Barmby, P., & Huchra, J. P. 2001, AJ, 122, 2458
Barmby, P., Huchra, J., Brodie, J., et al. 2000, AJ, 119, 727
Barmby, P., & Huchra, J. P. 2001, AJ, 122, 1487
Barmby, P., & Huchra, J. P. 2000, AJ, 119, 727
Battistini, P., Bonoli, F., Braccesi, A., et al. 1980, A&AS, 42, 357
Battistini, P., Bonoli, F., Braccesi, A., et al. 1989, A&AS, 67, 447
Battistini, P., Bonoli, F., Casavecchia, M., et al. 2003, A&A, 272, 77
Beasley, M., Brodie, J. P., Brodrer, J., et al. 2004, AJ, 128, 1623
Bek, A., Lamers, H. J. G. L. M., Bastian, N., Panagia, N., & Romanelli, M. 2003, A&A, 397, 473
Brodie, J. P., & Strader, J. 2006, ARAA, 44, 193
Brown, T. M., Ferguson, H. C., Smith, E., et al. 2004, ApJ, 613, L125
Bruzual, A. G., & Charlot, S. 1995, ApJ, 405, 538
Bruzual, A. G., & Charlot, S. 2003, MNRAS, 344, 1000
Caldwell, N., Harding, P., Morrison, H., et al. 2009, AJ, 137, 94
Caldwell, N., Schiavon, R., Morrison, H., Rose, J. A., & Harding, P. 2011, AJ, 141, 61
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
Chabrier, G. 2003, PASP, 115, 763
Charlot, S., Worthey, G., & Bressan, A. 1996, ApJ, 457, 625
Clementini, G., Contreras, R., Federici, L., et al. 2009, ApJ, 704, L103
Cockcroft, R., Harris, W. E., Ferguson, A. M. N., et al. 2011, ApJ, 730, 112
de Grijs, R., Anders, P., Lynds, R., et al. 2003a, MNRAS, 343, 1285
de Grijs, R., Bastian, N., & Lamers, H. J. G. L. M. 2003b, MNRAS, 340, 197

Ma et al.
Rich, R. M., Shara, M. M., & Zurek, D. 2001, AJ, 122, 842
Salpeter, E. E. 1955, ApJ, 121, 161
Sérsic, J.-L. 1968, Atlas de Galaxias Australes (Cordoba: Observatorio Astronómico)
Sirianni, M., Jee, M. J., Benítez, N., et al. 2005, PASP, 117, 1049
Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163
Spitzer, L., & Tuan, T. X. 1972, ApJ, 175, 31
Stanek, K. Z., & Garnavich, P. M. 1998, ApJ, 503, 131
Stetson, P. B. 1987, PASP, 99, 191
Trager, S. C., King, I. R., & Djorgovski, S. 1995, AJ, 109, 218
van den Bergh, S. 1969, ApJS, 19, 145
Wang, S., Fan, Z., Ma, J., de Grijs, R., & Zhou, X. 2010, AJ, 139, 1438
Williams, B. F., & Hodge, P. W. 2001a, ApJ, 548, 190
Williams, B. F., & Hodge, P. W. 2001b, ApJ, 559, 851
Wilson, C. P. 1975, AJ, 80, 175
Yan, H., Burstein, D., Fan, X., et al. 2000, PASP, 112, 691
Zinnecker, H., Keable, C. J., Dunlop, J. S., Cannon, R. D., & Griffiths, W. K. 1988, in IAU Symp. 126, The Harlow-Shapley Symposium on Globular Cluster Systems in Galaxies, ed. J. E. Grindlay & A. G. D. Philip (Dordrecht: Kluwer), 603