Gravitational recoil in nonspinning black-hole binaries: The span of test-mass results

Alessandro Nagar
Institut des Hautes Etudes Scientifiques, 91440 Bures-sur-Yvette, France and
Department of Physics, University of Torino, 10125 Torino, Italy
(Dated: May 7, 2014)

We consider binary systems of coalescing, nonspinning, black holes of masses \(m_1\) and \(m_2\) and show
that the gravitational recoil velocity for any mass ratio can be obtained accurately by extrapolating
the waveform of the test-mass limit case. The waveform obtained in the limit \(m_1/m_2 \ll 1\) via a
perturbative approach is extrapolated in \(\nu = m_1 m_2 / (m_1 + m_2)^2\) multipole by multipole using
the corresponding, analytically known, leading-in-\(\nu\) behavior. The final kick velocity computed from this
\(\nu\)-flexed waveform is written as \(v(\nu)/c = 0.04457/\nu^2 \sqrt{1-4\nu} (1 - 2.07106/\nu + 3.93472/\nu^2 - 4.78404/\nu^3 +
2.5204/\nu^4)\) and is compatible with the outcome of numerical relativity simulations.

PACS numbers: 04.30.Db, 95.30.Sf, 04.25.D-,

I. INTRODUCTION

Interference between the multipoles of the gravitational waves (GW) emitted from coalescing black-hole
binaries of masses \(m_1\) and \(m_2\) carries away linear momentum and thus imparts a recoil to the final merged black
hole. The accurate calculation of this recoil velocity, also referred as kick, has been the topic of analytical and nu-
merical studies in recent years [1–11]. In particular, after assessing the properties of the kick velocity for nonspinning
black-hole binaries, numerical relativity (NR) went to investigate the effect the black-hole spins have on the
final kick. The most interesting and astrophysically relevant result is that high recoil velocities, of about a
few thousands of km/s, can be reached for nonaligned spin configurations [9, 10].

When one black hole is much more massive than the other, \(M \equiv m_2 \gg m \equiv m_1\ (m/M \equiv 1/q \ll 1)\), the
kick is obtained from the GW emission computed using black hole perturbation theory [12, 13]. When the
larger black hole is nonspinning, Ref. [12] used Regge-Wheeler-Zerilli (RWZ) perturbation theory [14] to calcu-
late the GW emission from the transition from inspiral to plunge of a point-source particle subject to leading-
order (LO) analytical (effective-one-body), resummed radiation reaction force. When the larger black hole is spin-
ing, [13] solved the Teukolsky equation with a point-source particle term subject to a numerical, adiabatic,
radiation reaction force. In the nonspinning case, both studies essentially agreed on the value of the final re-
coil velocity: Ref. [13] got \(v/\sqrt{c(m/M)}^2 = 0.044\), using up to \(\ell = 6\) multipoles, while Ref. [12] estimated \(v/\sqrt{c(m/M)}^2 = 0.0446\) using multipoles up to \(\ell = 8\). Reference [13] studied whether the perturbative result can be accurately extrapolated to any mass ratio using the \(\nu\)-scaling corresponding to the LO multipolar contribution [15]

\[
v(\nu)/c = 0.044/\nu^2 \sqrt{1-4\nu}, \tag{1}
\]

where \(\nu = m_1 m_2 / M^2\), with \(M = m_1 + m_2\), is the symmetric mass ratio. It was found that this scaling is rather
inaccurate when \(\nu \sim 0.2\), as it predicts values that are larger by \(\sim 50\%\) than the NR results.

In this paper we show that extrapolating in \(\nu\) the test-mass waveform multipole by multipole up to multipole order \(\ell = 8\) and then computing the recoil from this \(\nu\)-flexed waveform, allows one to get an improved version of the LO scaling that is compatible with the NR results of Refs. [5, 6, 11].

II. EXTRAPOLATING IN \(\nu\) TEST-MASS RESULTS

Let us start by pointing out a systematic flaw in assuming the LO scaling (1). The RWZ-normalized multipolar
decomposition of the waveform is (for equatorial motion)

\[
h_+ - i h_\times = \frac{1}{r} \sum_{\ell=2}^{\ell_{\text{max}}} \sum_{m=-\ell}^{\ell} \sqrt{\frac{(\ell+2)}{(\ell-2)!}} i^\ell \Psi_{\ell m}^{(\epsilon)} Y_{\ell m}(\theta, \phi),
\]

where \(\epsilon = 0, 1\) is the parity of \(\ell + m\). The functions \(\Psi_{\ell m}^{(\epsilon)} = \Psi_{\ell m}^{(\epsilon)}(t, \nu)\), (e.g., computed from a NR simulation), are normalized as in Ref. [12]. In the perturbative context (\(\nu \rightarrow 0\)), they are a solution of the Zerilli (\(\epsilon = 0\) and Regge-Wheeler (\(\epsilon = 1\)) equations with a point-source particle term [12, 16]. The GW linear momentum flux in the equatorial plane is

\[
\mathcal{F}_x + i \mathcal{F}_y = \frac{1}{8\pi} \sum_{\ell=2}^{\ell_{\text{max}}} \sum_{m=-\ell}^{\ell} \left[a_{\ell m} \Psi_{\ell m}^{(0)} \Phi_{\ell m+1}^{(1)} + b_{\ell m} \sum_{\epsilon=0,1} \Psi_{\ell m}^{(\epsilon)} \Phi_{\ell m+1}^{(\epsilon)} \right], \tag{2}
\]

where the numerical coefficients \((a_{\ell m}, b_{\ell m}) > 0\) are given in Eqs. (16)-(17) of [12], and \(\Psi_{\ell m} = (-1)\ell m \Psi_{\ell -m}\). The (complex) recoil velocity at time \(t\) is obtained as

\[
v_x + iv_y = -\frac{1}{M} \int_{-\infty}^{t} (\mathcal{F}_x + i \mathcal{F}_y) dt'. \tag{3}
\]

For each multipole, the leading-in-\(\nu\) (completely explicit) dependence is [17] \(\Psi_{\ell m}^{(\epsilon)} \propto \nu c_{\ell+\epsilon}(\nu)\), where \(c_{\ell+\epsilon}(\nu) \equiv
TABLE I. Final recoil velocity: comparing the (multipolar) ν-extrapolated RWZ result, $v^{(\nu)}_{\text{end}}$, the leading-order extrapolation, Eq. (1), $v^{\text{RWZLO}}_{\text{end}}$, and the NR values of [11]. As a conservative error estimate, the $v^{\text{RWZ}}_{\text{end}}$ can be larger by 1 to 2\%.

q	ν	$v^{\text{NR}}_{\text{end}}$ [km/s]	$v^{\text{RWZ}}_{\text{end}}$ [km/s]	$v^{\text{RWZLO}}_{\text{end}}$ [km/s]
2	0.2	148 \pm 2	151.3	219.9
3	0.1875	174 \pm 6	169.5	234.8
4	0.1600	157 \pm 2	154.2	205.2
6	0.1224	114 \pm 6	114.1	143.1

$X^{\nu+e-1}_i + (-)^m X^{\nu+e-1}_1$, with $X_i = m_i/M$ so that $X_1 + X_2 = 1$ and $X_1X_2 = \nu$. The convention we adopt here is $X_2 > X_1$, i.e., $X_2 - X_1 = \sqrt{1 - 4\nu}$, so that $c_{\nu+e}(0) = 1$. The explicit ν-dependence in Eq. (2) comes as sum of products of $c_{\nu+e}(\nu)$. Defining individual rescaled fluxes as

$$F^{(\nu)}_x + iF^{(\nu)}_y = \nu^2 \sqrt{1 - 4\nu} \left\{ \tilde{F}_{223-3} + \tilde{F}_{223-2} + \tilde{F}_{222-2} + \cdots + (1 - 3\nu) \tilde{F}_{334-4} + \cdots + (1 - 3\nu)(1 - 2\nu)\tilde{F}_{445-5} + \cdots \right\},$$

(4)

where we wrote just a few terms to indicate that the explicit (leading) ν-dependence of the flux is more complicated than just the LO one. Let us consider now the $\nu \to 0$ gravitational waveform $\Psi^{(\nu)}_{\ell m}(t; 0)$ obtained solving the RWZ equations with a point-particle source subject to leading-order, resummed, analytical radiation reaction force. The mass ratio is $m/M = 10^{-3}$. This waveform was computed in Ref. [18] using the hyperboloidal layer approach [19], which allowed us to: i) extract waves at $\ell \to \infty$; ii) obtain high-resolution data (the numerical error is not an issue). The quasicircular inspiral starts at $r_0 = 7M$. The recoil velocity obtained from Eq. (2) with $\ell_{\text{max}} = 7$ is $v(0)/[c(m/M)^2] = 0.04457$, consistent with [12].

To extrapolate in ν the multipolar waveform, we take $\Psi^{(\nu)}_{\ell m}(\ell; 0) \equiv \nu \Psi^{(\nu)}_{\ell m}(\ell; 0)/(m/M)$, multiply it by the corresponding leading-order ν dependence, so to get the ν-dependent function (addressed as RWZ, in the following) $\Psi^{(\nu)}_{\ell m}(\ell; 0) \equiv \nu \Psi^{(\nu)}_{\ell m}(\ell; 0)$. The notation 0_ν is a reminder that only the leading order ν dependence of each multipole is included and so $\Psi^{(\nu)}_{\ell m}(\ell; 0) \neq \Psi^{(\nu)}_{\ell m}(\ell; 0)$. Using $\Psi^{(\nu)}_{\ell m}(\ell; 0)$ in Eq. (2) we get the linear momentum flux versus time and then the kick velocity via Eq. (3). Since the waveform starts at time $t_0 > -\infty$, the boundary condition $\nu v_0 \equiv \int_{t_0}^{\infty} (F^{(\nu)}_x + iF^{(\nu)}_y) dt$ in Eq. (3) is fixed as the center of the velocity hodograph during the inspiral [12].

Table I compares the final kick velocity $v \equiv |v_x + iv_y|$ obtained from the RWZ, waveform with the most recent NR calculations [11], using the SpEC [22] code, with $q = (2, 3, 4, 6)$ (and retaining only multipoles with $\ell \leq 6$). The extrapolated values are very close to the NR ones, in two cases within their error bars. By contrast, the last column of the table highlights how inaccurately the leading-order scaling is. The uncertainty on the RWZ, values has essentially two sources: (i) the fact that $m/M \ll 1$, but always $m/M \neq 0$ and (ii) the effect of multipoles selected by the condition $\ell_{\text{max}} > 7$. In Table III of Ref. [12] it was shown that changing $m/M = 10^{-3}$ to $m/M = 10^{-4}$ was increasing the final kick by ~ 0.5%. In
addition, we checked that the relative difference between taking $\ell_{\text{max}} = 6$ \((v(0)(M/m)^2 = 0.04383)\) and $\ell_{\text{max}} = 7$ \((v(0)(M/m)^2 = 0.04457)\) is as large as \(\sim 1.7\%\) when \(m/M = 10^{-3}\), but becomes as small as \(10^{-3}\) for $q = 6$ and \(10^{-4}\) for $q = 2$. As a conservative error estimate, the extrapolated values of Table I can be larger by 1 to 2%.

Figure 1 compares $v(\nu)$ with $0 \leq \nu \leq 0.25$ (solid curve, red online) with available fits obtained from the comprehensive numerical study of Refs. [5, 6]. We also show the data of Ref. [11]. The data of Refs. [5, 6] are represented by two different fits: $v_{\text{NR}} = 1.20 \times 10^\nu \sqrt{1 - 4\nu(1 - 0.93\nu)}$ (dashed, blue online), proposed in Ref. [5] without including the $q = 10$ data of [6], and $v_{\text{NR}} = 0.0436\nu^2 \sqrt{1 - 4\nu(1 - 1.3012\nu)}$, with $c = 299792.458$ km/s (dot-dashed) done in [11] including the $q = 10$ data. The maximum value of the RWZ$_\nu$ curve is $v_{\text{max}} = 170.164$ km/s (at $\nu = 0.194$), quite close to $v_{\text{max}} = 175.2 \pm 11$ km/s computed in [5]. A more precise quantitative information is given by (bottom panel of Fig. 1) the normalized quantity $\tilde{f} = v(\nu)/v(0)^2 \sqrt{1 - 4\nu}$ obtained from the extrapolated $v(\nu)$ (solid line). For completeness, we also exhibit the raw NR data of Refs. [5, 6, 11] as well as those of Refs. [20, 21] for the challenging values $q = 15$ and $q = 100$, the highest simulated so far. Note that for these q’s the recoil velocity is systematically underestimated since the multipoles with $\ell > 4$ were neglected in Refs. [20, 21]. Notably, if the extrapolation is done retaining only the multipoles with $\ell \leq 4$, the RWZ$_\nu$ result for $q = 15$ and $q = 100$ (red circles in the bottom panel of Fig. 1) is compatible with the NR points. The complete RWZ$_\nu\tilde{f}(\nu)$ curve is accurately fitted $(\Delta \tilde{f} \equiv \tilde{f} - \tilde{f}_{\text{RWZ}_\nu} \sim 10^{-5})$ by the quartic trend $\tilde{f}(\nu) = 1 - 2.07106\nu + 3.93472\nu^2 - 4.78404\nu^3 + 2.52040\nu^4$. A cubic trend yields instead $\tilde{f}(\nu) = 1 - 2.06407\nu + 3.76663\nu^2 - 3.60498\nu^3$ with $\Delta \tilde{f} \sim 10^{-4}$, undistinguishable on the scale of Fig. 1. Note that the (less accurate) quadratic trend was instead suggested in both Ref. [1] using the effective-one-body formalism and Ref. [2] using the close-limit approximation. It would be interesting to extract $\tilde{f}(\nu)$ accurately from ad hoc NR simulations.

Time evolution of kick velocity. We investigate now if the ν-extrapolation is able to reproduce the structure of the well-known (post-merger) local maximum of $v(t)$, predicted and analytically explained in [1] (see also [23]) and now known as “antikick” [3, 24]. Since this information is not given in [11], we have to compute $v_{\text{NR}}(t)$ from the (limited) number of NR (ℓ, m) waveform multipoles of [11] to which we have access. For both NR and RWZ$_\nu$ we use $\Psi^{(P)}_\nu$ with $m = \ell$ up to $\ell = 6$ plus (2.1) and (3.2). Table II lists the final and maximum velocity obtained from NR (boldface) and RWZ$_\nu$ data (cf. with Table I), together with the magnitude of the antikick, $\Delta \hat{v} \equiv \max(\hat{v}) - \hat{v}_{\text{end}}$, with $\hat{v} \equiv v(t)/(c\nu^2 \sqrt{1 - 4\nu})$. Even with a limited number of multipoles, the ν-extrapolated v_{end} is accurate; by contrast, the extrapolated antikick is much smaller than the corresponding NR one. The table is complemented by the main panel of Fig. 2, where we contrast the $q = 2$ $\hat{v}(t)$ for both NR and RWZ$_\nu$ data (the original $\nu \to 0$ curve is also added for completeness). Note that $\hat{v}(t)$ is plotted versus $t \equiv t - t_{\text{max}}$, where t_{max} corresponds to the maximum of $F_P \equiv |F^P_x + iF^P_y|$. The vertical line indicates the NR merger. Inset: corresponding analytical approximations, Eq. (5), to $\hat{v}(t)$. The nonextrapolated $\nu \to 0$ curves are also shown for completeness.

![Figure 2](image-url)
TABLE III. Characterization of max(\mathcal{F}_p) for the NR (boldface) and RWZ$_\nu$ waveforms (with a restricted sample of dominant multipoles). Here is $\tilde{\mathcal{F}}_p^\text{max} \equiv \mathcal{F}_p^\text{max}/\nu^4 \times 10^3$. The analytical estimate v^end of the final recoil velocity (last two columns) is obtained from Eq. (6).

q	$\tilde{\mathcal{F}}_p^\text{max}$	τ_{max}	Q^max	ϵ_{max}	v^end [km/s]	v^end
2	3.009	7.505	1.770	0.011	174.85	0.0354
	1.463	7.780	1.298	-0.486	202.57	0.0410
3	4.222	7.485	1.666	-0.028	208.47	0.0396
	2.330	7.823	1.319	-0.465	224.30	0.0426
4	4.816	7.526	1.607	-0.065	192.39	0.0418
	2.930	7.858	1.335	-0.447	201.621	0.0438
6	5.347	7.689	1.552	-0.136	141.29	0.0440
	3.730	7.905	1.356	-0.422	146.07	0.0455
∞	6.499	8.043	1.418	-0.330	146.07	0.0455

nonadiabatic character of the evolution of the momentum flux, this integral is dominated by what happens near max[$\mathcal{F}_p(t)$]. Expanding around τ_{max} one gets [1]

$$v_x + iv_y \simeq i\mathcal{F}_p^\text{max} e^{i\tau_{\text{max}}} \sqrt{\frac{\pi}{2\alpha}} e^{-\beta^2/(2\alpha)} \text{erfc}(z), \tag{5}$$

with $z = -\sqrt{\alpha/2} (\bar{t} - \beta/\alpha)$, where $\alpha \equiv 1/\tau_{\text{max}}^2 (1 - i\epsilon_{\text{max}})$ and $\beta = iQ/\tau_{\text{max}}$. Here $\tau_{\text{max}}^2 \equiv -\mathcal{F}_p^\text{max}/(d^2\mathcal{F}_p/d\tau^2)_{\text{max}}$ is the characteristic time scale associated to the resonance peak of \mathcal{F}_p: $Q \equiv \omega_{\text{max}}\tau_{\text{max}}$, where $\omega \equiv \dot{\varphi}$ can be interpreted as the “quality factor” associated to the same peak, and $\epsilon_{\text{max}} \equiv \omega_{\text{max}}\tau_{\text{max}}^2$. When $\bar{t} \gg \tau_{\text{max}}$, the integrated recoil is analytically expected to be [1]

$$v^\text{end}_\lambda \simeq \sqrt{2\pi \mathcal{F}_p^\text{max}} \frac{\tau_{\text{max}}}{(1 + \tau_{\text{max}}^2)^{1/4}} e^{-Q^2/[2(1 + \epsilon_{\text{max}}^2)]}. \tag{6}$$

All relevant information to numerically evaluate Eqs. (5)-(6) for NR (boldface) and RWZ$_\nu$ data is listed in Table III. Several observations can be made. First, the presence of the antikick is qualitatively explained by the behavior of the complementary error function $\text{erfc}(z)$, Eq. (5), when z is complex. Since ϵ_{max} is small, one sees that $\Im(z)$ is essentially given by Q [1]. When $Q > 0$ the usual, monotonic, behavior of $\text{erfc}(z)$ is modified so that a local peak (the antikick) appears (see inset of Fig. 2). In particular, when Q is small one finds small or negligible antikicks; when Q is larger the antikicks are larger. Second, looking at the values of Table III one sees that, from the quantitative point of view the analytical result leads to estimates of v^end_λ that are always systematically larger than the exact one, from $\sim 25\%$ ($q = 2$) to $\sim 38\%$ ($q = \infty$). Third, focusing on the RWZ$_\nu$ data, from Table III one sees that the values of τ_{max} and Q do not vary much with the extrapolation with respect to the test-mass ones, contrary to \mathcal{F}_p^max, which is then the main responsible of getting v^end_λ smaller than in the $\nu \rightarrow 0$ case. This gives a qualitative, analytical, consistency check of Table I and Fig. 1. In addition, from Table III one sees that Q is always larger in the NR case than in the RWZ$_\nu$ one, which explains qualitatively Table II. The reason for this is that the extrapolation acts only on the waveform modulus, and not on its phase (and frequency). As $Q = \omega_{\text{max}}\tau_{\text{max}}$, in the RWZ$_\nu$ case ω_{max} is still driven by the underlying, less bound, dynamics of a particle on Schwarzschild spacetime, which, during late plunge and merger, spans frequencies that are smaller than the corresponding (more bound) NR ones. Similarly one explains the dependence of $\Delta \dot{v}$ on q.

IV. CONCLUSIONS

In the context of coalescing, nonspinning, black-hole binaries, we have found a simple way to correct the leading-order ν-extrapolation of the recoil velocity in the test-mass limit, Eq. (1) (obtained via a perturbative approach) that is fully compatible with state-of-the-art numerical relativity simulations. Our approach is based on extrapolating in ν the test-mass waveform multipole by multipole using the corresponding leading-in-ν behavior before computing the recoil. An analogous ν-extrapolation to get the final recoil velocity can be applied to the the waveform generated by a (spinning) particle plunging on a Kerr black hole. In this case, the subtlety is to separately extrapolate in ν the spin-dependent and the spin-independent part of the waveform because of their different, leading-order, ν-dependence. The accuracy of the procedure will be discussed in future work.

ACKNOWLEDGEMENTS

I am indebted to S. Bernuzzi for a discussion that inspired this work, and to T. Damour for constructive criticism. I thank A. Zenginoğlu for collaboration, and L. Buchman, H. Pfeiffer, M. Scheel, B. Szigeti, J. Gonzalez, B. Brügmann, M. Hannam, S. Husa, and U. Sperhake for making available the data of their simulations. I acknowledge the Department of Physics, University of Torino, for hospitality during the development of this work.

[1] T. Damour and A. Gopakumar, Phys. Rev. D73, 124006 (2006).
[2] C. F. Sopuerta et al., Phys.Rev. D74, 124010 (2006).
[3] J. D. Schnittman et al., Phys.Rev. D77, 044031 (2008).
[4] J. G. Baker et al., Astrophys.J. 653, L93 (2006).
[5] J. A. Gonzalez et al., Phys. Rev. Lett. 98, 091101 (2007).
[6] J. A. Gonzalez et al., Phys. Rev. D79, 124006 (2009).
[7] M. Campanelli et al., Phys.Rev.Lett. 98, 231102 (2007).
[8] A. Le Tiec et al., Class.Quant.Grav. 27, 012001 (2010).
[9] C. O. Lousto and Y. Zlochower, Phys.Rev.Lett. 107, 231102 (2011).
[10] C. O. Lousto and Y. Zlochower, Phys.Rev. D87, 084027 (2013).
[11] L. T. Buchman et al., Phys.Rev. D86, 084033 (2012).
[12] S. Bernuzzi and A. Nagar, Phys. Rev. D81, 084056 (2010).
[13] P. A. Sundararajan et al., Phys.Rev. D81, 104009 (2010).
[14] A. Nagar and L. Rezzolla, Class.Quant.Grav. 22, R167 (2005).
[15] M. Fitchett and S. L. Detweiler, Mon.Not.Roy.Astron.Soc. 211, 933 (1984).
[16] A. Nagar et al., Class. Quant. Grav. 24, S109 (2007).
[17] T. Damour, B. R. Iyer, and A. Nagar, Phys. Rev. D79, 064004 (2009).
[18] S. Bernuzzi et al., Phys.Rev. D84, 084026 (2011).
[19] A. Zenginoglu, Class. Quant. Grav. 27, 045015 (2010).
[20] C. O. Lousto et al., Phys.Rev. D82, 104057 (2010).
[21] C. O. Lousto and Y. Zlochower, Phys.Rev.Lett. 106, 041101 (2011).
[22] M. A. Scheel et al., Phys. Rev. D79, 024003 (2009).
[23] R. H. Price et al., Phys.Rev. D83, 124002 (2011).
[24] L. Rezzolla et al., Phys.Rev.Lett. 104, 221101 (2010).