INTRODUCTION

Protein evolution is rife with examples of structural and functional domains utilized by multiple proteins: for example, over 700 human proteins display SH3 domains, and over 450 proteins display PDZ domains. The identification of such common domains may hint at similarities in substructure, interactions, and potentially in function, for the various proteins displaying these domains. About 680 different domains have been documented to date in the proteomes of humans and other organisms (SMART database, http://smart.embl-heidelberg.de/, [1]), and many of these domains appear, with some variation, in numerous proteins. Alternatively, the recognition of novel motifs may link proteins previously thought to be unrelated—e.g., suggesting a common function or interaction—and therefore may aid in the determination of both structure and function for proteins that display the novel motif.

We have previously described a set of receptors that induces apoptosis following ligand withdrawal, but inhibits apoptosis following the binding of trophic ligands [2–5]. These receptors have been referred to as dependence receptors. Such receptors play roles in neural development, tumorigenesis (including metastasis), neurodegeneration, and possibly in subapoptotic events such as neurite retraction and somal atrophy [2–5].

To date, ten such receptors have been described (Table 1 and [2]). These do not share any obvious structural similarity, nor do they display similar domains required for apoptosis induction. For example, Unc5H2 features a death domain in its intracytoplasmic region, but DCC does not; instead, apoptosis induction by DCC requires a short region in its intracytoplasmic domain (residues 1243–1264) that does not bear similarity to a death domain.

In the present study, we attempted to determine whether dependence receptors as a group may indeed display a common motif(s) that has gone undetected by the initial comparisons of alignment and predicted (known) domains. We utilized the Multiple EM (Expectation Maximization) for Motif Elicitation program (MEME) (http://meme.sdsc.edu/meme/meme.html and [6]) and identified a novel motif that is featured by receptors that have been described as dependence receptors. We then searched the Swiss-Prot protein database (http://www.expasy.uniprot.org/) and [7]) using the Motif Alignment and Search Tool (MAST) program (http://meme.sdsc.edu/meme/mast.html and [8]), to determine whether other receptors or other proteins also feature this motif, and identified an additional 16 human proteins that display this motif (see Results and Discussion, below).

The novel putative motif is in a transmembrane region, and therefore was dubbed dependence-associated receptor transmembrane motif (DART motif). Here we describe the consensus sequence and discuss the possible functions of this novel motif.

MATERIALS AND METHODS

Databases and software

The UniProt Knowledgebase (UniProtKB; http://www.expasy.uniprot.org/) database Release 3.3 (consisting of Swiss-Prot Release 45.3 and TrEMBL Release 28.3) from the Swiss Institute of Bioinformatics was used for this study. This database was chosen because it is well documented and allowed us to analyze the predictions on receptors.

The MEME (http://meme.sdsc.edu/meme/meme.html) software program (version 3.0; non-commercial version) was used for the identification of motifs in non-aligned sequences, where a motif is a sequence pattern that occurs repeatedly in a group of protein sequences. The program uses a stochastic method for motif discovery based on the Expectation-Maximization (EM) algorithm. The MAST (Motif Alignment and Search Tool) software program (http://meme.sdsc.edu/meme/mast.html) was used to identify motifs in protein sequences.

Academic Editor: Thomas Zwaka, Baylor College of Medicine, United States of America

Received March 26, 2007; Accepted April 23, 2007; Published May 23, 2007

Copyright: © 2007 del Rio et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a grant to the Buck Institute from American Bioscience, Inc., by NIH grants NS45093, AG12282 and NS33376 to DEB and by Conacyt grant SEP-2004-C01-47399/A-1 to GDR.

Competing Interests: The authors have declared that no competing interests exist.

* To whom correspondence should be addressed. E-mail: dbredesen@buckinstitute.org

Current address: Universidad Nacional Autonoma de Mexico/Instituto de Fisiología Celular, Biochemistry Department, Ciudad Universitaria, Mexico
Table 1. Ten dependence receptors (plus orthologues) comprise the training set for the MEME query.

Entry Name	Accession (Species)	Protein Name	TM Location	DART Location	Subcellular Location	Function (per Swiss-Prot)
A4	P05067 (Human)	Amyloid beta A4 protein	700-723	705-723	Type I membrane protein	Mutated in some cases of Alzheimer's Disease
	P79307 (Pig)					
	P12023 (Mouse)					
	Q6RH29 (Canfa)					
ANDR	P10275 (Human)	Androgen receptor	690-919 (ligand-binding)	880-898	Nuclear	Regulation of eukaryotic gene expression in target tissues
	Q9GKL7 (Pig)					
	P19091 (Mouse)					
	P49699 (Rabbit)					
DCC	P43146 (Human)	Netrin receptor DCC	1098-1122	1098-1116	Type I membrane protein	Receptor for netrin required for axon guidance
	P70211 (Mouse)					
	Q63155 (Rat)					
	Q91562 (Xeno)					
PTC1	Q13635 (Human)	Patched protein homolog 1	101-121	101-119	Integral membrane protein	Receptor for sonic hedgehog (SHH), Indian hedgehog (IHH) and desert hedgehog (DHH). May have a tumor suppressor function
	Q61115 (Mouse)					
	Q90693 (Chick)					
	Q99614 (Caeel)					
RET	P07949 (Human)	Proto-oncogene tyrosine-protein kinase receptor ret	636-657	637-655	Type I membrane protein	Part of GDNF receptor complex with tyrosine-protein kinase activity
	P35546 (Mouse)					
	Q9EPA1 (Rat)					
	O42362 (Bare)					
TNR5	P25942 (Human)	Tumor necrosis factor receptor superfamily member 5	194-215	195-213	Type I membrane protein	Receptor for TNFSF5/CD40L
	P27512 (Mouse)					
	Q28203 (Bovine)					
	Q7YRL5 (Canfa)					
TNR16	P08138 (Human)	Tumor necrosis factor receptor superfamily member 16	251-272	257-275	Type I membrane protein	Common neurotrophin receptor
	P07174 (Rat)					
	Q920W1 (Mouse)					
	P18519 (Chick)					
UNC5A	Q6ZN44 (Human)	Netrin receptor UNC5A	307-327	309-327	Type I membrane protein	Receptor for netrin required for axon guidance
UNC5B	Q8IZJ1 (Human)	Netrin receptor UNC5B	378-398	381-399	Type I membrane protein (by similarity)	Receptor for netrin required for axon guidance (axon repulsion)
UNC5C	O95185 (Human)	Netrin receptor UNC5C	381-401	382-400	Type I membrane protein (by similarity)	Receptor for netrin required for axon guidance (repulsion)
	O08747 (Mouse)					

Ten dependence receptors plus their orthologues (32 sequences total) were used as a training set by the MEME program to search for high-scoring motifs common to all proteins. Table 1 shows the transmembrane location (for each protein with one) and the location of the DART motif. Data taken from the Swiss-Prot database. All accession numbers are from Swiss-Prot.

doi:10.1371/journal.pone.0000463.t001
or DNA sequences. MEME saves these motifs as a set of profiles. MEME uses the method of Bailey and Elkan to identify likely motifs within the input set of sequences [6]. A range of motif widths (>15 amino acids in length) and various numbers of unique motifs to search for (zero or one motifs per sequence) were specified in our queries.

The software program MAST (http://meme.sdsc.edu/meme/mast.html, version 3.0; non-commercial version) was used to search the Swiss-Prot database for other proteins displaying the motifs identified by MEME to be present in more than one dependence receptor. The algorithm in MAST calculates position scores for each profile at each possible position within a sequence. These scores are translated into p-values, which represent the likelihood of the given profile scoring that well against a randomly generated sequence. The best (i.e., lowest) position p-values for each profile are then adjusted to take into account the length of the sequence. MAST avoids allowing gaps in the profiles or in the search sequence.

Training Set
In order to search for motifs in previously described dependence receptors, we used a set of ten human receptors and their corresponding orthologues (three orthologues were used for each, in order to avoid bias generated by using more orthologues for one dependence receptor than another) found in the UniProtKB database. Thus, our training set included a total of 32 protein sequences (32 rather than 40, since the netrin receptors Unc5A, Unc5B, Unc5C were represented by a total of 4 sequences rather than 12, to prevent overweighting). This list is shown in Table 1.

The option of having the training set sequences “shuffled” provided one of the controls used, ensuring that the motif(s) we detected were significant.

Web Site
To maintain updated information on the dependence receptor field and to allow researchers to identify the DART motif in their protein of interest, we have developed a website (http://bis.ifc.unam.mx/DependenceReceptors/). The program at our website runs four independent predictions: three for identifying a transmembrane region and one for identifying the DART motif. The transmembrane region predictions are run through three different programs located at:

1) HMMTOP (http://www.enzim.hu/hmmtop/),
2) SOSUI (http://sosui.proteome.bio.tuat.ac.jp/sosui_submit.html) and
3) TMPRED (http://www.ch.embnet.org/software/TMPRED_form.html).

For identifying the DART motif, the website uses the MAST program.

RESULTS
Searching for motifs among the known dependence receptors
The dependence receptors listed in Table 1 have all been shown to induce programmed cell death when expressed in the absence of their respective trophic ligands, but not when bound by these same trophic ligands. The receptors’ non-orthologous sequences in the training set did not show any significant sequence similarity by simple alignment searches. Hence, in order to search for novel motifs in this set, we used the MEME program. MEME allows the

Simplified	A	:223 :3:111:112:1
pos.-specific	B	:11:1:1:1
probability	C	:111:1:1:1
matrix	D	:111:1:1:1
E	:111:1:1:1	
F	:111:1:1:1	
G	:1:12:1:1	
H	:31:1:1	
I	:111:1:1:1	
J	:111:1:1:1	
K	:111:1:1:1	
L	:111:1:1:1	
M	:111:1:1:1	
N	:111:1:1:1	
O	:111:1:1:1	
P	:111:1:1:1	
Q	:111:1:1:1	
R	:111:1:1:1	
S	:1:1:1:1	
T	:1:1:1:1	
U	:1:1:1:1	
V	:1:1:1:1	
W	:1:1:1:1	
X	:1:1:1:1	
Y	:1:1:1:1	

bits	6.2						
Information content	3.1	*					
(34.1 bits)	2.5	*	**	*	*		
	1.9	****	****	*	*	*	*
	1.2	**************					
	0.6	**********************					
	0.0	---------------------					

Multilevel consensus sequence

| LLVIAVVVALVxVLLVxL |
| I | S | G | F | I | V | I |

Figure 1. Multilevel consensus sequence and amino acid frequency of the DART motif. MEME motifs are represented by position-specific probability matrices that specify the probability of each possible letter appearing at each possible position in an occurrence of the motif. In order to make it easier to see which letters are most likely in each of the columns of the motif, the simplified motif shows the letter probabilities multiplied by 10 rounded to the nearest integer. Zeros are replaced by “:” (a colon) for readability. The information content diagram provides an idea of which positions in the motif are most highly conserved. Each column (position) in a motif can be characterized by the amount of information it contains (measured in bits). Highly conserved positions in the motif have high information; positions where all letters are equally likely have low information. The diagram is printed so that each column lines up with the same column in the simplified position-specific probability matrix above it. This multilevel consensus sequence says several things about the motif. First, the most likely form of the motif can be read from the top line as LLVIAVVVALVxVLLVxL. Second, that only letter L has probability more than 0.2 in position 1 of the motif, both L and I have probability greater than 0.2 in position 2, etc. Third, a rough approximation of the motif can be made by converting the multilevel consensus sequence into the Prosite signature: L-[Ll]-V-[AAS]-V-V-V-[AGS]-L-V-[IF]-x-[VI]-L-[LV]-V-x-[LL]...
identification of motifs in non-aligned sequences, where a motif is a sequence pattern that occurs repeatedly in a group of protein or DNA sequences (see Materials and Methods section). Although MEME has been most commonly used to identify motifs in homologous sequences, a pattern identified by MEME in non-homologous sequences may be biologically relevant if: a) the proteins in the training set share a common function and b) the proteins identified to contain the motif could reasonably be suspected to share functional features with the training set. Note that these are the same conditions that are considered when evaluating motifs identified in homologous proteins.

Using a training set consisting of 32 sequences from the 10 experimentally-proven dependence receptors (Table 1), we identified a novel motif that occurs in all of the training set proteins. This motif, designated “DART” (dependence-associated receptor transmembrane) motif, appeared in the transmembrane region of all proteins in the training set that include a transmembrane region, whereas it appeared in the ligand-binding region of the one protein that lacks a transmembrane region (the androgen receptor).

The consensus sequence of the proposed DART domain is shown in Figure 1, and the DART motifs from the training set proteins are aligned in Figure 2.

Using the software program MAST to search the Swiss-Prot database for other proteins that displayed the DART motif, we found an additional 54 sequences, 16 of which are human proteins (using a cut-off at E-value of 2.7, the value below which all training set members scored) (Table 2). Of 13,991 human proteins in the database, 3,465 are annotated as transmembrane proteins, and 25 display the DART motif—nine of the 10 training set members (the exception being, as noted above, the androgen receptor) and 16 additional human proteins (Table 3). Of these 16 additional proteins, all were transmembrane proteins, and all contained the DART motif within their transmembrane region. Thus the DART motif is relatively uncommon (at least as defined here), occurring in approximately 0.7% of human transmembrane proteins (25/3,465). If we include slightly less similar motifs, extending the acceptable E-value from 2.7 to 10, then an additional 4 human proteins are included (data not shown). The alignment of the putative DART domains of these 16 human non-training set proteins is shown in Figure 2.
Table 2. MAST result list of 54 non-training set proteins found to display the DART motif.

Swiss-Prot Accession # / Sequence Name	Protein Name (truncated)		
sp	Q05910	ADAM8_MOUSE	ADAM 8 precursor (A disintegrin...)
sp	Q06335	APLP2_MOUSE	Amyloid-like protein 2 pr...
sp	Q06481	APLP2_HUMAN	Amyloid-like protein 2 pr...
sp	P15943	APLP2_RAT	Amyloid-like protein 2 pr...
sp	Q9JK66	BM88_MOUSE	BM88 antigen
sp	Q8N111	BM88_HUMAN	BM88 antigen
sp	Q9R026	BM88_PIG	BM88 antigen
sp	P21964	COMT_HUMAN	Cathalol O-methyltransfer...
sp	P12215	WSC3_YEAST	Cell wall integrity and s...
sp	P22521	IMMVECOLI	Colicin V immunity protei...
sp	P18666	H19_CANFA	DLA CLASS I HISTOCOMPATIB...
sp	P54753	EPHB3_HUMAN	Ephrin type-B receptor 3 ...
sp	P07498	EPHB3_CHICK	Ephrin type-B receptor 3 ...
sp	P97173	EPHB3_XENLA	Ephrin type-B receptor 3 ...
sp	P54761	EPHB4_MOUSE	Ephrin type-B receptor 4 ...
sp	P04585	FUS_SENDZ	Fusion glycoprotein F0 pr...
sp	P18345	GLE_EH4	Glycoprotein E
sp	P32343	KNM4_YEAST	Hypothetical protein KNM4...
sp	P13785	YE07_LCAEL	Hypothetical protein YE07...
sp	P21874	VF1M_CAEEL	Hypothetical protein VF1M...
sp	P83536	YBGI_SHIIL	Hypothetical UPF0194 membe...
sp	P88846	YBGI_ECOLI	Hypothetical UPF0194 memb...
sp	P75777	YBGI_ECOLO	Hypothetical UPF0194 memb...
sp	P8X799	YBGI_ECO7	Hypothetical UPF0194 memb...
sp	P78552	I31_R1_HUMAN	Interleukin-13 receptor a...
sp	P16150	LEUK_HUMAN	Leukosialin precursor (Leu...
sp	P50895	LH2_HUMAN	Lutheran blood group glyc...
sp	P32334	MSB2_YEAST	MSB2 protein (Multispan s...
sp	Q9H2L1	NORF_PSEAE	Na(+)-translocating NADH-...
sp	Q97798	NEO1_MOUSE	Neogenin precursor
sp	Q29859	NEO1_HUMAN	Neogenin precursor
sp	Q9UM74	NOTC3_HUMAN	Neurogenic locus notch hom...
sp	P46977	PPIB_MYCLE	Probable peptidyl-prolyl ...
sp	P50605	SDC_CAEEL	Probable syndecan precurs...
sp	P20990	VA13_VACC	Protein A13
sp	P33838	VA13_VARV	Protein A13
sp	P15165	C181_HUMAN	Protein C18orf1
sp	P53992	MMLA_STRICO	Putative membrane protein...
sp	P06494	ERBB2_RAT	Receptor tyrosine-protein...
sp	Q8E6G2	EZRAX_STRA3	Septation ring formation ...
sp	P49411	SDC_DROME	Syndecan precursor
sp	P26260	SDC1_RAT	Syndecan-1 precursor (SYN...
sp	P18828	SDC1_MOUSE	Syndecan-1 precursor (SYN...
sp	Q06704	STX3_MOUSE	Syntaxin-3
sp	Q08849	STX3_RAT	Syntaxin-3
sp	Q13277	STX3_HUMAN	Syntaxin-3
sp	P13726	TT_HUMAN	Tissue factor precursor (t...
sp	Q9D7R2	TMEPA_MOUSE	Transmembrane prostate an...
sp	Q14673	TRIOB_HUMAN	Tumor necrosis factor rec...
sp	Q9UBN6	TRIOD_HUMAN	Tumor necrosis factor rec...

The top-scoring non-training-set proteins displaying the DART motif, representing 38 proteins (plus 16 orthologues). Sixteen of the 54 are the human proteins listed in Table 3.

doi:10.1371/journal.pone.0000463.t002

Table 2. cont.

Swiss-Prot Accession # / Sequence Name	Protein Name (truncated)		
sp	P97758	TACD2_HUMAN	Tumor-associated calcium ...
sp	P07404	VAM5_MOUSE	Vesicle-associated membra...
sp	Q9WUF4	VAM5_RAT	Vesicle-associated membra...
sp	Q9S183	VAM5_HUMAN	Vesicle-associated membra...

The predicted secondary structure of the consensus DART domain, as predicted by the SOPMA (Self Optimized Prediction Method from Alignments) method [9] is for a helical structure (Figure 5). This is not surprising, given that the motif lies within the transmembrane region of the proteins that display it. However, in comparison to other transmembrane regions (in randomly selected transmembrane proteins) it is valine rich (29±4% vs. 15±3%; p<0.001).

DISCUSSION

The function of this novel motif is currently unknown. The finding that it exists in all dependence receptors described to date suggests that it may play a role in some biochemical process related to their function, such as the induction of apoptosis or the inhibition of apoptosis following ligand binding, or possibly an interaction with another membrane protein or membrane-associated non-proteinaceous molecule such as a lipid. For at least three of the proteins in the training set—APP, p75NTR, and DCC—this region undergoes regulated intramembrane proteolysis (RIP) [10], releasing an intracytoplasmic fragment that may migrate to the nucleus. Thus it is possible that the other proteins that display the DART motif may be substrates that also undergo regulated intramembrane proteolysis; however, a number of proteins that have been shown to undergo such cleavage do not display a DART motif, so it is clearly not required for such processing.

It is noteworthy that the transmembrane regions of DART-containing proteins are valine rich, with nearly twice the percentage of valine residues present in randomly-selected human Type I transmembrane protein domains (29±4% vs. 15±3%; p<0.001). It has been shown that Leu heptads within transmembrane domains may serve as homomultimerization domains and that the substitution of Ala (or other residues typical of transmembrane regions, including Val) for Leu may prevent homomultimerization [11]. Thus one possibility for the Val-rich nature of the DART domain may relate to the inhibition of receptor homomultimerization.

Proteins identified by MAST as displaying the DART motif

As noted above, MAST identified 16 proteins, all transmembrane proteins displaying the DART motifs and were as similar to the consensus as those of the training set (Table 3; Figure 3). Most of these have been implicated in cell death, either directly or indirectly; furthermore, several bind trophic ligands, as well,
making them reasonable candidates to evaluate experimentally as possible dependence receptors.

Neogenin has recently been shown to bind RGM (repulsive guidance molecule), and to serve as a possible dependence receptor for RGM, inducing programmed cell death that is inhibited by RGM [12]. Therefore, the identification of a DART motif within neogenin provides further support for RGM as a candidate dependence receptor.

APLP2 (APP-like protein 2) has been shown previously to be similar to APP in displaying a potential caspase-cleavage site in its intracytoplasmic domain [13]. Cleavage at this site liberates a pro-apoptotic peptide, C31, similar to what has been demonstrated for APP. Thus, although it is not yet clear whether APLP2 functions as a dependence receptor, and in particular whether APLP2 binds a trophic ligand, by analogy to APP it may bind laminin, collagen IV, glypican, or another ligand [14–16], and thus serve as a dependence receptor for one or more of those ligands.

Notch is an extensively-studied transmembrane receptor involved in cell fate determination. It binds to ligands Delta1, Jagged1, and Jagged2, regulating differentiation, proliferation, and apoptosis. Notch, like APP, DCC, and p75NTR, undergoes regulated intramembrane proteolysis, liberating an intracytoplasmic domain, the NICD, that forms a transcriptional activator complex with RBP-J kappa, activating genes of the enhancer of split locus.

Table 3. 16 human proteins found to display the DART motif.

Entry Name	Accession #	Protein Name	TM Location	DART Location	Subcellular Location	Function (per Swiss-Prot)
APLP2	Q06481	Amyloid-like protein 2 [Precursor]	693-716	698-716	Type I membrane protein (MP)	May play a role in the regulation of hemostasis
CS001	O15165	Protein C11orf1	65-85	67-85	Type Ib MP	May confer susceptibility to schizophrenia
BM88	Q8N111	BM88 antigen	126-146	126-144	Type IV MP	Involved in neuroblastoma cell differentiation (by similarity)
NOTC3	Q9UM47	Neurogenic locus notch homolog protein 3	1644-1664	1646-1664	Type I MP	Receptor for membrane-bound ligands Jagged1, Jagged2 and Delta1 to regulate cell-fate determination
EPHB3	P54753	Ephrin type-B receptor 3	560-580	559-577	Type I MP	Receptor for members of the ephrin-B family
TR10B	O14763	Tumor necrosis factor receptor superfamily member 10B	211-231	213-231	Type I MP	Receptor for TNFSF10/TRAIL
I13R1	P78552	Interleukin-13 receptor alpha-1 chain	344-367	349-367	Type I MP	Binds IL13 with a low affinity
TF	P13726	Tissue factor	252-274	254-272	Type I MP	Initiates blood coagulation by forming a complex with circulating factor VII or VIIa
TR10D	Q9UBN6	Tumor necrosis factor receptor superfamily member 10D	212-232	212-230	Type I MP	Receptor for TRAIL
LU	P50895	Lutheran blood group glycoprotein	548-568	551-569	Type I MP	Probable receptor. May mediate intracellular signaling. Member of the immunoglobulin superfamily IG
STX3	Q13277	Syntaxin-3	264-284	264-282	Type IV MP	Potentially involved in docking of synaptic vesicles at presynaptic active zones
VAMP5	O95183	Vesicle-associated membrane protein 5	73-93	75-93	Type IV MP	May participate in trafficking events that are associated with myogenensis
COMT	P21964	Catechol O-methyltransferase	7-26	7-25	Type II MP	Catalyzes the O-methylation of catecholamine neurotransmitters and catechol hormones
LEUK	P16150	Leukosialin	254-276	255-273	Type I MP.	Physicochemical properties of the T-cell surface and lectin binding
NEO1	Q92859	Neogenin	1106-1126	1104-1122	Type I MP	Receptor for repulsive guidance molecule
TACD2	P09758	Tumor-associated calcium signal transducer 2	275-297	277-295	Type I MP	May function as growth factor receptor

Sixteen human proteins were discovered that display high-scoring matches for the DART motif when the Swiss-Prot database was searched using the MAST software program. Table 3 shows the transmembrane location and the location of the DART motif. Data taken from the Swiss-Prot database. All accession numbers are from Swiss-Prot.

doi:10.1371/journal.pone.0000463.t003
Conclusion

Ten of ten previously described dependence receptors display a region of similarity dubbed the DART (dependence-associated receptor transmembrane) motif. MAST identified this motif in an additional 16 human proteins in the SwissProt database, in all cases in the transmembrane regions. The function of this novel putative domain is unknown, but the motif is noted to be valine rich, and in at least four cases, the DART motif is a site of regulated intramembrane proteolysis (RIP). Whether or not this motif plays a functional role in cell death induction or ligand-induced inhibition mediated by dependence receptors remains to be determined, but the identification of this motif in 16 non-training-set proteins such as Notch and APLP2 raises the question of whether these proteins may also function as dependence receptors. Since the field of dependence receptors is an emerging

Figure 3. Aligned DART motif within 26 human proteins. Occurrences (sites) of the DART motif within the sequences of the 10 human dependence receptors from the training set (top 10 of list) and the 16 human proteins designated by MAST as containing the motif. The sites are shown aligned with each other, and the ten sequence positions preceding and following each site are also shown. Each site is identified by the name of the sequence where it occurs and the position in the sequence where the site begins. The sites are listed in order of increasing p-value. The p-value of a site is computed from the match score of the site with the position specific scoring matrix for the motif. The p-value gives the probability of a random string (generated from the background letter frequencies) having the same match score or higher. Amino acid residues constituting the transmembrane region of the protein are indicated by shading.

doi:10.1371/journal.pone.0000463.g003

Figure 4. Dendrogram of the 26 human DART-containing proteins. Dendrogram demonstrating the relationships of the DART motif sequences within each of the 26 human proteins found to contain DART (10 from the training set plus 16 discovered through the use of MAST).

doi:10.1371/journal.pone.0000463.g004

(VAMP5) is also a Type IV membrane protein that may participate in vesicle trafficking events associated with myogenesis.
field, we have developed a website for predicting dependence receptors at http://bis.ifc.unam.mx/DependenceReceptors/.

ACKNOWLEDGMENTS
We thank Professor Mark Van der Laan (University of California, Berkeley, and the Buck Institute for Age Research) for his helpful discussions and assistance with data analysis.

Author Contributions
Conceived and designed the experiments: Gd DB DK. Performed the experiments: Gd. Analyzed the data: Gd DK KB. Wrote the paper: Gd DB DK KB. Other: Proposed the original idea and performed the initial computational analysis described in this work: Gd. Participated in the design and coordination of the study and helped to draft and finalize the manuscript: DB. Read and approved the final manuscript: DB Gd DK KB. Participated in the computational analysis and in the preparation of the manuscript: DK. Participated in the computation analysis: KB.

REFERENCES
1. Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, et al. (2004) SMART 4.0: towards genomic data integration. Nucleic Acids Res 32: D142–144.
2. Bredesen DE, Mehlen P, Rabizadeh S (2004) Apoptosis and dependence receptors: a molecular basis for cellular addiction. Physiol Rev 84: 411–430.
3. Mehlen P, Bredesen DE (2004) The dependence receptor hypothesis. Apoptosis 9: 37–49.
4. Mehlen P, Bredesen DE (2003) Meeting report: cellular dependence–old concept, new mechanisms. Sci STKE 2003: pe55.
5. Bredesen DE, Mehlen P, Rabizadeh S (2005) Receptors that mediate cellular dependence. Cell Death Differ 12: 1031–1043.
6. Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2: 28–36.
7. Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, et al. (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 31: 365–370.
8. Bailey TL, Gribskov M (1998) Combining evidence using p-values: application to sequence homology searches. Bioinformatics 14: 40–54.
9. Combet C, Blanchet C, Geourjon C, Deleage G (2000) NPS@: network protein sequence analysis Trends Biochem Sci 25: 147–150.
10. Brown MS, Ye J, Rawson RB, Goldstein JL (2000) Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100: 391–398.
11. Gurezka R, Laage R, Brosig B, Langosch D (1999) A heptad motif of leucine residues found in membrane proteins can drive self-assembly of artificial transmembrane segments. J Biol Chem 274: 9265–9270.
12. Matsunaga E, Tauszig-Delamasure S, Monnier PP, Mueller BK, Strittmatter SM, et al. (2004) RGM and its receptor neogenin regulate neuronal survival. Nat Cell Biol 6: 749–755.

13. Galvan V, Chen S, Lu D, Logvinova A, Goldsmith P, et al. (2002) Caspase cleavage of members of the amyloid precursor family of proteins. J Neurochem 82: 283–294.

14. Beher D, Hesse L, Masters CL, Multhaup G (1996) Regulation of amyloid protein precursor (APP) binding to collagen and mapping of the binding sites on APP and collagen type I. J Biol Chem 271: 1613–1620.

15. Caceres J, Brandan E (1997) Interaction between Alzheimer’s disease beta A4 precursor protein (APP) and the extracellular matrix: evidence for the participation of heparan sulfate proteoglycans. J Cell Biochem 65: 145–158.

16. Williamson TG, Mok SS, Henry A, Cappai R, Lander AD, et al. (1996) Secreted glypican binds to the amyloid precursor protein of Alzheimer’s disease (APP) and inhibits APP-induced neurite outgrowth. J Biol Chem 271: 31215–31221.