Big prime factors in orders of elliptic curves over finite fields

Yuri Bilua, Haojie Hongb and Florian Lucaa

December 15, 2021

Abstract

Let E be an elliptic curve over the finite field \mathbb{F}_q. We prove that, when n is a sufficiently large positive integer, $\#E(\mathbb{F}_{q^n})$ has a prime factor exceeding $n \exp(c \log n / \log \log n)$.

Contents

1 Introduction 1
 1.1 Notation . 3
2 Auxiliary facts 4
 2.1 The Theorems of Stewart . 4
 2.2 Cyclotomic polynomials and primitive divisors 4
 2.3 Counting S-units . 5
3 Proof of Theorem 1.1 7
 3.1 Case (3.3) . 8
 3.2 Case (3.4) . 8

1 Introduction

A Lucas sequence $(u_n)_{n \geq 0}$ is a binary recurrent sequence of integers satisfying $u_{n+2} = ru_{n+1} + su_n$ for all $n \geq 0$, and with $u_0 = 0$, $u_1 = 1$. The parameters r, s are assumed to be nonzero coprime integers such that $r^2 + 4s \neq 0$. In this case,

$$u_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$$

holds for all $n \geq 0$,

where α, β are the two roots of the quadratic $x^2 - rx - s = 0$. It is further assumed that α/β is not a root of unity. The Lucas sequences have nice divisibility properties. For example, if m, n are positive integers with $m \mid n$ then $u_m \mid u_n$.

A primitive divisor of u_n is a prime factor p of u_n which does not divide u_m for any positive integer $m < n$ and does not divide $r^2 + 4s$. Working with

aSupported by the ANR project JINVARIANT

bSupported by the China Scholarship Council grant CSC202008310189
the sequence of algebraic integers of general term \(v_n = (\alpha - \beta)u_n = \alpha^n - \beta^n \), one can reformulate the above definition by saying that a primitive divisor is a prime number \(p \) which divides \(v_n \) but not \(v_m \) for any positive integer \(m < n \). It was shown in \([2]\) that primitive divisors always exist if \(n \geq 31 \). Particular instances of this result were proved much earlier by Zsigmondy \([14]\) (the case of rational integers \(\alpha, \beta \)) and Carmichael \([5]\) (the case of real \(\alpha, \beta \)).

It is known that primitive divisors are congruent to \(\pm 1 \pmod{n} \). In particular, writing \(P(m) \) for the largest prime factor of the integer \(m \) with the convention that \(P(0) = P(\pm 1) = 1 \), one has

\[
P(u_n)/n \geq (n - 1)/n \quad \text{for} \quad n \geq 31.
\]

Erdős \([7]\) conjectured that \(P(u_n)/n \) tends to infinity. This was proved to be so by Stewart \([13]\) who showed that

\[
P(u_n) > n \exp\left(\frac{\log n}{(104 \log \log n)}\right)
\]

holds for \(n > n_0 \), where \(n_0 \) is a constant which Stewart did not compute and which depends on the discriminant of the field \(\mathbb{Q}(\alpha) \) and the number of distinct prime factors of \(s \). Explicit values for \(n_0 \) were computed in \([3]\) at the cost of replacing \(1/104 \) by somewhat smaller constants (see Theorem 2.1 and 2.2 below). It is also shown in \([3]\) that \(n_0 \) depends only on the field \(\mathbb{Q}(\alpha) \), but is independent of the number of prime divisors of \(s \).

Schinzel \([11]\) generalized the primitive divisor theorem to algebraic numbers in the following way. Let \(\gamma \) be an algebraic number of degree \(d \) which is not a root of unity, and denote \(v_n = \gamma^n - 1 \). A prime ideal \(\mathfrak{p} \subset O_K \) is called a primitive divisor of \(v_n \) if \(\mathfrak{p} \) appears at positive exponent in the factorization of the principal fractional ideal \(v_n O_K \) but \(\mathfrak{p} \) does not appear in the factorization of \(v_m O_K \) for any positive integer \(m < n \).

Schinzel proved that \(v_n \) has a primitive divisor for \(n \geq n_0(d) \). Stewart \([12]\) gave an explicit value for \(n_0(d) \) but he assumed that \(\gamma \) has a representation of the form \(\gamma = \alpha/\beta \) with coprime integers \(\alpha, \beta \) in \(O_K \). An explicit value for \(n_0 \) without any additional hypothesis was given in \([4]\).

In this note we show that Stewart’s type result can be obtained for recurrent sequences other than Lucas. We look at the prime factors of a certain linear recurrent sequences of order 4 which is a particular instance of a norm of a complex quadratic Lucas sequence. Namely, we let \(q \) and \(a \) be integers satisfying

\[
q \geq 2, \quad |a| < 2\sqrt{q}.
\]

We denote \(\alpha \) and \(\bar{\alpha} \) the complex conjugate roots of \(x^2 - ax + q \). We prove the following theorem.

Theorem 1.1. Set \(n_0 := \exp\exp(\max\{10^{10}, 3q\}) \) Let \(n \) be a positive integer satisfying \(n \geq n_0 \). Then the rational integer \((\alpha^n - 1)(\bar{\alpha}^n - 1) \) has a prime divisor \(p \) satisfying

\[
p \geq n \exp\left(0.0001 \frac{\log n}{\log \log n}\right).
\]

When \(q \) is a prime power, the number

\[
(\alpha - 1)(\bar{\alpha} - 1) = a\bar{\alpha} - (\alpha + \bar{\alpha}) + 1 = q - a + 1
\]

is the order of the group \(\#E(\mathbb{F}_q) \) of \(\mathbb{F}_q \)-rational points on a certain elliptic curve \(E \). Furthermore, \((\alpha^n - 1)/(\bar{\alpha}^n - 1) \) represents the order of the group...
The numbers \(\#E(F_{q^n}) \) of \(F_{q^n} \)-rational points. The numbers \(\#E(F_{q^n}) \) form a linearly recurrent sequence of order 4 with roots 1, \(\alpha \), \(\overline{\alpha} \), \(q \). Like the Lucas sequences, these numbers have the property that \(\#E(F_{q^m}) \mid \#E(F_{q^n}) \) when \(m \mid n \) (because \(F_{q^n} \) is an extension of \(F_{q^m} \) of degree \(n/m \)). However, in spite of those similarities, some non-trivial new ideas are needed to extend Stewart’s argument to these sequences, see Subsection 3.2.

Note that big prime factors of orders of elliptic curves were studied before, albeit in a different set-up. For instance, Akbary [1] studied big prime factors of \(\#E(F_q) \), where \(E \) is a fixed elliptic curve over \(\mathbb{Q} \) with complex multiplication. He proved that, for a positive proportion of primes \(q \), the number \(\#E(F_q) \) has a prime divisor bigger than \(q^\theta \), where \(\theta = 1 - e^{-1/4}/2 = 0.6105 \ldots \) We invite the reader to consult the comprehensive survey [6] for more information.

1.1 Notation

Unless the contrary is stated explicitly, \(m \) and \(n \) (with or without indices) always denote positive integers and \(p \) (with or without indices) denotes a prime number.

Let \(K \) be a number field. We denote \(D_K \) and \(h_K \) the discriminant and the class number of \(K \). By a prime of \(K \) we mean a prime ideal of the ring of integers \(\mathcal{O}_K \). If \(p \) is prime of \(K \) with underlying rational prime \(p \), then we denote \(f_p \) its absolute residual degree and \(N_p = p^{f_p} \) its absolute norm.

We denote \(h(\alpha) \) the usual absolute logarithmic height of \(\alpha \in \overline{\mathbb{Q}} \):

\[
h(\alpha) = [K : \mathbb{Q}]^{-1} \sum_{v \in M_K} [K_v : \mathbb{Q}_v] \log^+ |\alpha|_v,
\]

where \(\log^+ = \max\{\log, 0\} \). Here \(K \) is an arbitrary number field containing \(\alpha \), and the places \(v \in M_K \) are normalized to extend standard places of \(\mathbb{Q} \); that is, \(|p|_v = p^{-1} \) if \(v \mid p < \infty \) and \(|2021|_v = 2021 \) if \(v \mid \infty \).

If \(K \) is a number field of degree \(d \) and \(\alpha \in K \) then the following formula is an immediate consequence of the definition of the height:

\[
h(\alpha) = \frac{1}{d} \left(\sum_{\sigma: K \hookrightarrow \mathbb{C}} \log^+ |\sigma(\alpha)| + \sum_p \max\{0, -\nu_p(\alpha)\} \log N_p \right),
\]

where the first sum runs over the complex embeddings of \(K \) and the second sum runs over the primes of \(K \). If \(\alpha \neq 0 \) then \(h(\alpha) = h(\alpha^{-1}) \), and we obtain the formula

\[
h(\alpha) = \frac{1}{d} \left(\sum_{\sigma: K \hookrightarrow \mathbb{C}} -\log^- |\sigma(\alpha)| + \sum_p \max\{0, \nu_p(\alpha)\} \log N_p \right), \quad (1.1)
\]

where \(\log^- = \min\{\log, 0\} \).

Besides \(\log^+ \) and \(\log^- \) we will also widely use

\[
\log^* = \max\{\log, 1\}.
\]

We use \(O_1(\cdot) \) as the quantitative version of the familiar \(O(\cdot) \) notation: \(A = O_1(B) \) means \(|A| \leq B \).
2 Auxiliary facts

2.1 The Theorems of Stewart

The following two theorems are, essentially, due to Stewart [13], though in the present form they can be found in [3], see Theorems 1.4 and 1.5 there in.

Theorem 2.1. Let γ be a non-zero algebraic number of degree d, not a root of unity. Set $p_0 = \exp(80000d(\log^* d)^2)$. Then for every prime p of the field $K = \mathbb{Q}(\gamma)$ whose absolute norm satisfies $N_p \geq p_0$, and every positive integer n we have

$$
\nu_p(\gamma^n - 1) \leq N_p \exp \left(-0.002d^{-1} \frac{\log N_p}{\log \log N_p} \right) h(\gamma) \log^* n.
$$

Theorem 2.2. Let γ be a non-zero algebraic number of degree 2, not a root of unity. Assume that $N_\gamma = \pm 1$. Set $p_0 = \exp \exp(\max\{10^8, 2|D_K|\})$, where D_K is the discriminant of the quadratic field $K = \mathbb{Q}(\gamma)$. Then for every prime p of K with underlying rational prime $p \geq p_0$, and every positive integer n we have

$$
\nu_p(\gamma^n - 1) \leq p \exp \left(-0.001 \frac{\log p}{\log \log p} \right) h(\gamma) \log^* n.
$$

2.2 Cyclotomic polynomials and primitive divisors

Let K be a number field of degree d and $\gamma \in K^\times$ not a root of unity. We consider the sequence $u_n = \gamma^n - 1$. We call a K-prime p primitive divisor of u_n if

$$
\nu_p(u_n) \geq 1, \quad \nu_p(u_k) = 0 \quad (k = 1, \ldots, n-1).
$$

Let us recall some basic properties of primitive divisors. We denote by $\Phi_n(t)$ the nth cyclotomic polynomial.

Items 1 and 2 of the following proposition are well-known and easy, and item 3 is Lemma 4 of Schinzel [11]; see also [4] Lemma 4.5.

Proposition 2.3. 1. Let p be a primitive divisor of u_n. Then $\nu_p(\Phi_n(\gamma)) \geq 1$ and $N_p \equiv 1 \mod n$; in particular, $N_p \geq n + 1$.

2. Let p be a primitive divisor of u_n and p the rational prime underlying p. If γ is of degree 2 and absolute norm 1, then $p \equiv \pm 1 \mod n$. More specifically,

$$
p \equiv \begin{cases}
1 \mod n & \text{if } p \text{ splits in } \mathbb{Q}(\gamma), \\
-1 \mod n & \text{if } p \text{ is intert in } \mathbb{Q}(\gamma).
\end{cases}
$$

3. Assume that $n \geq 2^d + 1$. Let p be not a primitive divisor of u_n. Then $\nu_p(\Phi_n(\gamma)) \leq \nu_p(n)$.

Remark 2.4. In item 2 the ramified p seem to be missing. However, it is easy to show that, when $N_\gamma = 1$ and p ramifies in $\mathbb{Q}(\gamma)$ then $\nu_p(\gamma - 1) > 0$ or $\nu_p(\gamma + 1) > 0$. Hence, $n = 1$ or $n = 2$ in this case.
2.3 Counting \(S \)-units

Let \(S \) be a set of prime numbers. A positive integer is called \(S \)-unit if all its prime factors belong to \(S \). We denote \(\Theta(x, S) \) the counting function for \(S \)-units:

\[
\Theta(x, S) = \# \{ n \leq x : p \mid n \Rightarrow p \in S \}.
\]

We want to bound this function from above.

Proposition 2.5. Let \(S \) be a set of \(k \) prime numbers. Then for \(x \geq 3 \) we have

\[
\Theta(x, S) \leq \exp \left(2k^{1/2} \log \log x + 20 \left(\frac{\log x}{\log^* k} \right) \log^* \left(\frac{k \log^* k}{\log x} \right) \right). \tag{2.2}
\]

To start with, note the following trivial bound.

Proposition 2.6. In the set-up of Proposition 2.5 assuming \(x \geq 7 \) we have

\[
\Theta(x, S) \leq \exp(2k \log \log x). \tag{2.3}
\]

Proof. If \(n \leq x \) then for every \(p \) we have \(\nu_p(n) \leq \log x / \log 2 \). Hence

\[
\Theta(x, S) \leq \left(\frac{\log x}{\log 2} + 1 \right)^k \leq \exp(2k \log \log x),
\]

as wanted. \(\Box \)

Next, let us consider a special case, when the primes from \(S \) are not too small.

Proposition 2.7. In the set-up of Proposition 2.5 assume that \(p \geq k^{1/2} \) for every \(p \in S \). Then

\[
\Theta(x, S) \leq \exp \left(10 \left(\frac{\log x}{\log^* k} \right) \log^* \left(\frac{k \log^* k}{\log x} \right) \right). \tag{2.4}
\]

Proof. If \(x < 7 \), then either \(\Theta(x, S) = 0 \) so the above inequality is trivially true, or \(k \leq 25 \), and the right-hand side above is at least

\[
\exp \left(\left(\frac{10}{\log 25} \right) \log x \right) > x^3 > |x| \geq \Theta(x, S).
\]

If \(x \geq 7 \) and \(k \leq 2 \) then (2.4) follows from (2.3). From now on we assume that \(k \geq 3 \); in particular, \(\log^* k = \log k \). Write \(S = \{ p_1, p_2, \ldots, p_k \} \). Then every \(S \)-unit \(n \) can be presented as \(p_1^{a_1} \cdots p_k^{a_k} \) with non-negative integers \(a_1, \ldots, a_k \). If \(n \leq x \) then

\[
a_1 \log p_1 + \cdots + a_k \log p_k \leq \log x.
\]

By the assumption, \(\log p_i \geq (1/2) \log k \) for \(i = 1, \ldots, k \). Hence,

\[
a_1 + \cdots + a_k \leq \ell, \tag{2.5}
\]
where \(\ell = \lceil \frac{2 \log x}{\log k} \rceil \). We may assume that \(\ell \geq 1 \): if \(\ell = 0 \) then the only solution of (2.5) is \(a_1 = \cdots = a_k = 0 \), and \(\Theta(x, S) = 1 \). For further use, note that

\[
\frac{\log x}{\log k} \leq \ell \leq 2 \left(\frac{\log x}{\log k} \right).
\]

Inequality (2.5) has exactly

\[
\sum_{i=0}^{\ell} \binom{k+i}{i}
\]

solutions in \((a_1, \ldots, a_k) \in \mathbb{Z}_{\geq 0}^k \). Hence,

\[
\Theta(x, S) \leq (\ell + 1) \left(\frac{k + \ell}{\ell} \right) \leq (\ell + 1) \left(e \left(\frac{k + \ell}{\ell} \right) \right)^{\ell} \leq \exp \left(\ell \log \left(2e \left(\frac{k + \ell}{\ell} \right) \right) \right) \quad \text{(we used } \ell + 1 \leq 2\ell \text{)}
\]

\[
\leq \exp \left(2 \left(\frac{\log x}{\log k} \right) \log \left(2e \left(\frac{k + \ell}{\ell} \right) \right) \right).
\]

If \(k \leq 9\ell \) then

\[
\log \left(2e \left(\frac{k + \ell}{\ell} \right) \right) \leq \log(20e) < 4,
\]

and we are done. If \(k \geq 9\ell \) then

\[
\log \left(2e \left(\frac{k + \ell}{\ell} \right) \right) \leq \log \left(8 \left(\frac{k}{\ell} \right) \right) \leq \log \left(8 \left(\frac{k \log k}{\log x} \right) \right) \leq 4 \log^* \left(\frac{k \log k}{\log x} \right),
\]

and we are done again. \(\square \)

Proof of Proposition 2.6 Write \(S = S_1 \cup S_2 \), where

\[
S_1 = \{ p \in S : p < k^{1/2} \}, \quad S_2 = \{ p \in S : p \geq k^{1/2} \}.
\]

Then, clearly \(\Theta(x, S) \leq \Theta(x, S_1) \Theta(x, S_2) \). We estimate \(\Theta(x, S_1) \) using Proposition 2.6 and \(\Theta(x, S_2) \) using Proposition 2.7

\[
\Theta(x, S_1) \leq \exp(2k^{1/2} \log \log x),
\]

\[
\Theta(x, S_2) \leq \exp \left(10 \left(\frac{\log x}{\log^* (k - k^{1/2})} \right) \log^* \left(\frac{k \log^* k}{\log x} \right) \right) \leq \exp \left(20 \left(\frac{\log x}{\log^* k} \right) \log^* \left(\frac{k \log^* k}{\log x} \right) \right).
\]

The result follows. \(\square \)
3 Proof of Theorem 1.1

Denote $\mathbb{K} = \mathbb{Q}(\alpha)$. It is an imaginary quadratic field. Hence, for a non-zero $\theta \in \mathcal{O}_K$ we have

$$h(\theta) = \log |\theta| = \frac{1}{2} \sum \nu_p(\theta) \log N_p,$$

the sum being over the finite primes of \mathbb{K}.

We apply this with $\theta = \Phi_n(\alpha)$ (recall that $\Phi_n(t)$ denotes the nth cyclotomic polynomial). We have

$$\log |\Phi_n(\alpha)| = \varphi(n) \log |\alpha| + \sum_{d|n} \mu \left(\frac{n}{d} \right) \log |1 - \alpha^{-d}| = \frac{1}{2} \varphi(n) \log q + O_1(5). \quad (3.1)$$

Indeed, we have $|\alpha| = q^{1/2} \geq \sqrt{2}$ and $|\log |1 + z|| \leq 2|z|$ for $|z| \leq 1/\sqrt{2}$. Hence

$$\sum_{d|n} \mu \left(\frac{n}{d} \right) \log |1 - \alpha^{-d}| < 2 \sum_{d=1}^{\infty} |\alpha|^{-d} < 5,$$

which proves (3.1). Thus,

$$\sum_p \nu_p(\Phi_n(\alpha)) \log N_p = \varphi(n) \log q + O_1(10).$$

Proposition 2.3.3 implies that, for $n \geq 8$,

$$\sum_{p \text{ not primitive}} \nu_p(\Phi_n(\alpha)) \log N_p \leq 2 \log n,$$

the sum being over p which are non-primitive divisors of $\alpha^n - 1$. Hence,

$$\sum_{p \text{ primitive}} \nu_p(\Phi_n(\alpha)) \log N_p \geq \varphi(n) \log q - 10 - 2 \log n.$$

The Euler totient function $\varphi(n)$ satisfies

$$\varphi(n) \geq 0.5 \frac{n}{\log \log n} \quad (n \geq 10^{20}) \quad (3.2)$$

(see [10, Theorem 15]). Hence for $n \geq 10^{20}$ we have

$$\sum_{p \text{ primitive}} \nu_p(\Phi_n(\alpha)) \log N_p \geq 0.8 \varphi(n) \log q.$$

From now on, the proof splits into two cases, depending on whether the primes with residual degree 1 contribute more to the sum, or those with residual degree 2 do. Precisely, we have

either \[\sum_{\substack{p \text{ primitive} \\ f_p = 1}} \nu_p(\Phi_n(\alpha)) \log N_p \geq 0.4 \varphi(n) \log q, \] (3.3)

or \[\sum_{\substack{p \text{ primitive} \\ f_p = 2}} \nu_p(\Phi_n(\alpha)) \log N_p \geq 0.4 \varphi(n) \log q. \] (3.4)
Case (3.3) is easier, the proof follows the same lines as the proof of Theorem 1.2 in [3]. Case (3.4) is harder and requires more intricate arguments.

3.1 Case (3.3)

We will apply Theorem 2.1 with $\gamma = \alpha$ and $K = \mathbb{Q}(\alpha)$, so that $d = 2$ and $p_0 = \exp(160000)$. We may assume that $n > p_0$, because n_0 from Theorem 1.1 is bigger than p_0.

Let P be the biggest rational prime p with the following two properties: p splits in $K = \mathbb{Q}(\alpha)$, and $\alpha^n - 1$ admits a primitive divisor p with underlying prime p. We want to show that

$$P > n \exp \left(0.0002 \frac{\log n}{\log \log n} \right).$$

(3.5)

Let p be a primitive divisor of $\alpha^n - 1$ with $f_p = 1$, and p the underlying rational prime. Then $p \leq P$ and $p = Np \equiv 1 \mod n$ by Proposition 2.3.1. In particular, $p > n > p_0$, and Theorem 2.1 applies:

$$\nu_p(\alpha^n - 1) \leq P \exp \left(-0.001 \frac{\log n}{\log \log n} \right) \frac{1}{2} \log q \log n$$

$$\leq P \exp \left(-0.001 \frac{\log n}{\log \log n} \right) \log q \log n.$$

Hence,

$$\sum_{p \text{ primitive } \frac{f_p}{p} = 1} \nu_p(\Phi_n(\alpha)) \log Np \leq \pi(P; n, 1)P \exp \left(-0.001 \frac{\log n}{\log \log n} \right) \log q \log n \log P,$$

where, as usual $\pi(x; m, a)$ counts prime in the residue class $a \mod m$. Estimating trivially $\pi(P; n, 1) \leq P/n$, we obtain

$$\sum_{p \text{ primitive } \frac{f_p}{p} = 1} \nu_p(\Phi_n(\alpha)) \log Np \leq \frac{P^2 \log P}{n} \exp \left(-0.001 \frac{\log n}{\log \log n} \right) \log n \log q.$$

Compared with (3.3), this implies

$$P^2 \log P \geq 0.4 \frac{\omega(n)}{\log n} \exp \left(0.001 \frac{\log n}{\log \log n} \right).$$

Using (3.2), this implies (3.5) for $n > n_0$.

3.2 Case (3.4)

If p is a prime of K with $f_p = 2$ then it is a rational prime, and we write p instead of p. For such p we have $\nu_p(\alpha^n - 1) = \nu_p(\tilde{\alpha}^n - 1)$. Setting $\gamma = \tilde{\alpha}/\alpha$, we obtain

$$\nu_p(\gamma^n - 1) \geq \nu_p((\tilde{\alpha}^n - 1) - (\alpha^n - 1)) \geq \nu_p(\alpha^n - 1) \geq \nu_p(\Phi_n(\alpha)).$$

8
Hence, (3.4) implies the inequality
\[\sum_{p \in P} \nu_p(\gamma^n - 1) \log p \geq 0.2\varphi(n) \log q \]
(note that \(\mathcal{N}p = p^2\), where the set \(P\) consists of the rational primes \(p\) inert in \(K\) and satisfying \(\nu_p(\alpha^n - 1) > 0\):
\[P = \{ p \text{ inert in } K \text{ and } \nu_p(\alpha^n - 1) > 0 \}. \]

We are now tempted to bound the sum on the left as we did in Subsection 3.1, but with Theorem 2.1 replaced by Theorem 2.2, which applies here because \(\mathcal{N}\gamma = 1\). However, now instead of \(p \equiv 1 \mod n\) we have merely \(p^2 \equiv 1 \mod n\), and we have to use a more delicate argument.

Denote \(v_n = \gamma^n - 1\). If \(\nu_p(v_n) > 0\) then there is a divisor \(d\) of \(n\) such that \(p\) is primitive for \(v_n/d\). We denote it \(d_p\). We have
\[\nu_p(v_n) \leq \nu_p(v_{n/d}) + \sum_{m \mid n \atop m \neq n/d} \nu_p(\Phi_m(\gamma)). \]

Proposition 2.3.3 bounds the sum on the right by
\[\sum_{m \mid n} \nu_p(m) + \sum_{m=1}^7 \nu_p(\Phi_m(\gamma)). \]

It follows that
\[\sum_{p \in P} \nu_p(\gamma^n - 1) \log p \leq \sum_{p \in P} \nu_p(v_{n/d_p}) + \sum_{m \mid n} \log m + \sum_{m=1}^7 \sum_{p} \nu_p(\Phi_m(\gamma)) \log p. \]

The middle sum on the right is trivially estimated by \(\tau(n) \log n\), where \(\tau(n)\) denotes the number of divisors of \(n\):
\[\tau(n) = \sum_{m \mid n} 1. \]

To estimate the double sum on the right, note that
\[\nu_p(\Phi_m(\gamma)) \leq \nu_p(v_m) \leq \frac{1}{2} \nu_p((\alpha_m - \bar{\alpha})^2). \]

Since \((\alpha_m - \bar{\alpha})^2\) is a rational integer of absolute value not exceeding \(4q^m\), this implies that
\[\sum_{p} \nu_p(v_m) \log p \leq \frac{1}{2} m \log q + \log 2. \]

Hence,
\[7 \sum_{m=1}^7 \sum_{p} \nu_p(\Phi_m(\gamma)) \log p \leq 14 \log q + 7 \log 2. \]

Putting all this together, we obtain the inequality
\[\sum_{p \in P} \nu_p(v_{n/d_p}) \log p \geq 0.2\varphi(n) \log q - \tau(n) \log n - 14 \log q - 7 \log 2. \]
3.2.1 Disposing of big d_p

We want to get rid in our sum of primes p with $d_p \geq \tau(n) \log n$. Using (3.6), we obtain

$$\sum_{d_p \geq \tau(n) \log n} \nu_p(v_{n/d_p}) \log p \leq \frac{1}{2} n \log q \sum_{d \geq \tau(n) \log n} \frac{1}{d} + \tau(n) \log 2$$

The sum on the right is trivially estimated as

$$\frac{\tau(n)}{\tau(n) \log n} = \frac{1}{\log n}.$$

Hence,

$$\sum_{d_p \geq \tau(n) \log n} \nu_p(v_{n/d_p}) \log p \leq \frac{n}{2 \log n} \log q + \tau(n) \log 2.$$

Denote by P' the subset of P consisting of p with $d_p < \tau(n) \log n$:

$$P' = \{p \in P : d_p < \tau(n) \log n\}.$$

Then we obtain

$$\sum_{p \in P'} \nu_p(v_{n/d_p}) \log p \geq 0.2 \varphi(n) \log q - \tau(n) \log n - 14 \log q - 7 \log 2$$

$$- \frac{n}{2 \log n} \log q - \tau(n) \log 2.$$

We have

$$\tau(n) \leq \exp \left(1.1 \frac{\log n}{\log \log n}\right) \quad (n \geq 3) \quad (3.7)$$

(see [8, Theorem 1]). Using this and (3.2), we deduce that, for

$$n \geq n_0 \geq \exp\exp(10^{10})$$

(which is true by assumption), we have

$$\sum_{p \in P'} \nu_p(v_{n/d_p}) \log p \geq 0.1 \varphi(n) \log q. \quad (3.8)$$

3.2.2 Counting divisors $d < \tau(n) \log n$

The number of divisors $d < \tau(n) \log n$ can be estimated using Proposition 2.5. Denote $x = \tau(n) \log n$ and denote by S the set of prime factors of n, so that

$$\#S = \omega(n).$$

Then

$$\#\{d \mid n : d < x\} \leq \Theta(x, S)$$

$$\leq \exp \left(2 \omega(n)^{1/2} \log \log x + 20 \frac{\log x}{\log^* \omega(n)} \log^* \omega(n) \log^* \omega(n) \log x \right).$$
For further use, note the trivial estimates

\[\log \tau(n) \geq \omega(n) \log 2, \quad (3.9) \]
\[\log \tau(n) \leq \omega(n) \log \left(\frac{\log n}{\log 2} + 1 \right) \leq 2\omega(n) \log \log n \quad (3.10) \]

(recall that \(n \geq \exp(\exp(10^{10})) \)). Note also the estimates

\[\log \tau(n) \leq 1.1 \frac{\log n}{\log \log n}, \quad (3.11) \]
\[\omega(n) \leq 1.4 \frac{\log n}{\log \log n} \quad (3.12) \]

(see (3.7) and [11 Théorème 11]).

Using (3.11) and (3.12), we deduce that, for \(n \geq \exp(\exp(10^{10})) \), we have

\[2\omega(n)^{1/2} \log x \leq (\log n)^{1/2} \log \log n. \quad (3.13) \]

Using (3.9) and (3.12), we deduce that

\[\frac{\omega(n)^* \omega(n)}{\log x} \leq \frac{\omega(n)^* \omega(n)}{\log \tau(n)} \leq \frac{\omega(n)^*}{\log 2} \leq 2 \log \log n. \quad (3.14) \]

To estimate \(x/\log^* \omega(n) \), we consider two cases. Assume first that

\[\omega(n) \leq \frac{\log n}{(\log \log n)^3}. \]

In this case, using (3.10), we estimate

\[\frac{\log x}{\log^* \omega(n)} \leq \frac{2\omega(n) \log \log n + \log \log n}{\log \log n} \leq 3\omega(n) \log \log n \leq \frac{3 \log n}{(\log \log n)^2}. \]

Now assume that

\[\omega(n) \geq \frac{\log n}{(\log \log n)^3}. \]

In this case, using (3.11), we obtain

\[\frac{\log x}{\log^* \omega(n)} \leq \frac{1.1 \frac{\log n}{\log \log n} + \log \log n}{\log \log n - 3 \log \log \log n} \leq \frac{3 \log n}{(\log \log n)^2}. \]

Thus, in any case

\[\frac{\log x}{\log^* \omega(n)} \leq \frac{3 \log n}{(\log \log n)^2}. \]

Putting this all together, we obtain

\[\# \{ d \mid n : d < x \} \leq \exp \left((\log n)^{1/2} \log \log n + 20 \cdot 3 \frac{\log n}{(\log \log n)^2} \log(2 \log \log n) \right) \]
\[\leq \exp \left(70 \frac{\log n \log \log \log n}{(\log \log n)^2} \right). \quad (3.15) \]
3.2.3 The cardinality of P'

The crucial step is estimating the number of primes in the set P'. Denote P the biggest element of P'. We are going to prove that

$$\# P' \leq \left(\frac{P}{n} + 1 \right) \exp \left(\frac{80 \log n \log \log \log n}{(\log \log n)^2} \right). \quad (3.16)$$

Let p be a prime from the set P'. Recall that $n \mid p^2 - 1$; in particular, $p > 2$. Assume first that n is odd. In this case the numbers $\gcd(p - 1, n)$ and $\gcd(p + 1, n)$ are coprime. We write them, respectively, d and n/d. Thus, we have

$$p \equiv -1 \mod n/d, \quad p \equiv 1 \mod d \quad (3.17)$$

for some d dividing n and such that $\gcd(n/d, d) = 1$. By the definition of d_p we must have $d \mid d_p$. In particular, if $p \in P'$ then $d < \tau(n) \log n$.

By the Chinese Remainder Theorem, for every $d \mid n$ such that $\gcd(n/d, d) = 1$, there exists a unique $a_d \in \{1, \ldots, n - 1\}$ such that $p \equiv a_d \mod n$ holds for every p satisfying (3.17). It follows that

$$\# P' \leq \sum_{d \mid n : \gcd(n/d, d) = 1} \pi(P; n, a_d).$$

We estimate trivially $\pi(P; n, a_d) \leq P/n + 1$. Hence, when n is odd, we have the upper bound

$$\# P' \leq \left(\frac{P}{n} + 1 \right) \# \{d \mid n : d < \tau(n) \log n \}. \quad (3.18)$$

If n is even, the argument is similar, but slightly more complicated. Assume, for instance, that $p \equiv 3 \mod 4$. Then the numbers

$$\gcd \left(\frac{p - 1}{2}, \frac{n}{2} \right), \quad \gcd \left(\frac{p + 1}{2}, \frac{n}{2} \right)$$

are coprime, and we write them d and $n/2d$, respectively; note also that d is odd. We have $2d \mid d_p$, and, in particular, $d < \tau(n) \log n$. The system of congruences

$$p \equiv -1 \mod \frac{n}{2d}, \quad p \equiv 1 \mod d$$

is equivalent to $p \equiv a_d \mod n/2$, where $a_d \in \{1, \ldots, n/2 - 1\}$ depends only on d. Similarly, when $p \equiv 1 \mod 4$, we have $p \equiv b_d \mod n/2$, where $d < \tau(n) \log n$ and $b_d \in \{1, \ldots, n/2 - 1\}$ depends only on d. We obtain

$$\# P' \leq \sum_{d \mid n : \gcd(n/d, d) = 1} \left(\pi(P; n/2, a_d) + \pi(P; n/2, b_d) \right)$$

$$\leq \left(\frac{P}{n} + 2 \right) \# \{d \mid n : d < \tau(n) \log n \}. \quad (3.19)$$
We see that upper bound (3.19) holds in all cases. Combining it with (3.15), we obtain

\[\#P' \leq \left(\frac{P}{n} + \frac{1}{2} \right) \exp \left(70 \frac{\log n \log \log n}{(\log \log n)^2} + \log 4 \right), \]

which is sharper than (3.16).

3.2.4 Using Stewart

Now it is the time to use Theorem [2.2]. To start with, note that \(|D_K| \leq q \). Hence, \(p_0 \) from Theorem [2.2] does not exceed \(n_0^{1/2} \). Now if \(\nu_p(\gamma^n - 1) > 0 \) then \(n \mid p^2 - 1 \), see Proposition [2.3.1]. Hence, \(p > n^{1/2} \geq n_0^{1/2} \geq p_0 \), and Theorem [2.2] applies. For \(p \in P' \) it gives

\[\nu_p(\gamma^n - 1) \leq p \exp \left(-0.001 \frac{\log p}{\log \log p} \right) h(\gamma) \log n \]

\[\leq 2P \exp \left(-0.0005 \frac{\log n}{\log \log n} \right) \log q \log n, \quad (3.20) \]

because

\[p \leq P, \quad \frac{\log p}{\log \log p} \geq \frac{1}{2} \frac{\log n}{\log \log n}, \quad h(\gamma) \leq 2q. \]

Since \(\nu_p(v_{n/d_p}) \leq \nu_p(\gamma^n - 1) \), we can combine (3.20) with (3.8), obtaining

\[2P \log P \exp \left(-0.0005 \frac{\log n}{\log \log n} \right) \#P' \log q \log n \geq 0.1 \varphi(n) \log q. \]

Using (3.16) and (3.2), this implies, for \(n \geq \exp\exp(10^{10}) \), that

\[P(P + n) \log P \geq n^2 \exp \left(\left(0.0004 - 100 \frac{\log \log n}{\log \log \log n} \right) \frac{\log n}{\log \log n} \right) \]

\[\geq n^2 \exp \left(0.0003 \frac{\log n}{\log \log n} \right). \]

If \(P < n \) then the latter inequality is clearly impossible for \(n \geq \exp\exp(10^{10}) \). Hence, \(P \geq n \), and we obtain

\[P^2 \log P \geq \frac{1}{2} n^2 \exp \left(0.0003 \frac{\log n}{\log \log n} \right), \]

which implies

\[P \geq n \exp \left(0.0001 \frac{\log n}{\log \log n} \right). \]

Theorem [1.1] is proved.
References

[1] Amir Akbary, On the greatest prime divisor of N_p, J. Ramanujan Math. Soc. 23 (2008), no. 3, 259–282. MR 2446601

[2] Yu. Bilu, G. Hanrot, and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math. 539 (2001), 75–122, With an appendix by M. Mignotte. MR 1863855

[3] Yuri Bilu, Haojie Hong, and Sanoli Gun, Uniform explicit Stewart’s theorem on prime factors of linear recurrences, arXiv:2108.09857 (2021).

[4] Yuri Bilu and Florian Luca, Binary polynomial power sums vanishing at roots of unity, Acta Arith. 198 (2021), no. 2, 195–217. MR 4228301

[5] R. D. Carmichael, On the numerical factors of the arithmetic forms $a^n \pm b^n$, Ann. of Math. (2) 15 (1913/14), no. 1-4, 49–70. MR 1502459

[6] Alina Carmen Cojocaru, Primes, elliptic curves and cyclic groups, Analytic methods in arithmetic geometry, Contemp. Math., vol. 740, Amer. Math. Soc., Providence, RI, 2019 ©2019, With an appendix by Cojocaru, Matthew Fitzpatrick, Thomas Insley and Hakan Yilmaz, pp. 1–69. MR 4033729

[7] Paul Erdős, Some recent advances and current problems in number theory, Lectures on Modern Mathematics, Vol. III, Wiley, New York, 1965, pp. 196–244. MR 0177933

[8] J.-L. Nicolas and G. Robin, Majorations explicites pour le nombre de diviseurs de N, Canad. Math. Bull. 26 (1983), no. 4, 485–492. MR 716590

[9] Guy Robin, Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et grandes valeurs de la fonction $\omega(n)$ nombre de diviseurs premiers de n, Acta Arith. 42 (1983), no. 4, 367–389. MR 736719

[10] J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94. MR 137689

[11] A. Schinzel, Primitive divisors of the expression $A^n - B^n$ in algebraic number fields, J. Reine Angew. Math. 268(269) (1974), 27–33. MR 344221

[12] C. L. Stewart, Primitive divisors of Lucas and Lehmer numbers, Transcendence theory: advances and applications (Proc. Conf., Univ. Cambridge, Cambridge, 1976), 1977, pp. 79–92. MR 0476628

[13] Cameron L. Stewart, On divisors of Lucas and Lehmer numbers, Acta Math. 211 (2013), no. 2, 291–314. MR 3143892

[14] K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys. 3 (1892), no. 1, 265–284. MR 1546236

Yuri Bilu & Haojie Hong: Institut de Mathématiques de Bordeaux, Université de Bordeaux & CNRS, Talence, France

Florian Luca: School of Maths, Wits University, South Africa and King Abdulaziz University, Jeddah, Saudi Arabia and IMB, Université de Bordeaux, France and Centro de Ciencias Matematicas UNAM, Morelia, Mexico

14