Self-Triggered Control for Multi-Agent Systems with Quantized Communication or Sensing

Xinlei Yi, Jieqiang Wei and Karl H. Johansson

Abstract—The consensus problem for multi-agent systems with quantized communication or sensing is considered. Centralized and distributed self-triggered rules are proposed to reduce the overall need of communication and system updates. It is proved that these self-triggered rules realize consensus exponentially if the network topologies have a spanning tree and the quantization function is uniform. Numerical simulations are provided to show the effectiveness of the theoretical results.

I. INTRODUCTION

In the past decade, distributed cooperative control for multi-agent systems has gained much attention and significant progress has been achieved. Consensus problem or agreement is a typical problem in this research field. There are plenty of papers that address this, such as [1]-[4]. It should be pointed out that it tacitly assumes that the information can be continuously transmitted between agents with infinite precision in those papers. In practice, such an idealized assumption is unrealistic. The information transmitted across the network is an important factor that has to be considered in the analysis and design of consensus protocols [5].

There are normally two main ways to relax above assumption. One is using event-triggered control or self-triggered control to avoid continuous communication, in which the control input is piecewise constant and is obtained discretely [6]-[9]. For instance, [6] provided event-triggered and self-triggered protocols in both centralized and distributed formulations for multi-agent systems with undirected graph topology; [9] proposed a very simple self-triggered protocol for control inputs that are sent over a digital communication channel [10]-[12].

Moreover, in [13]-[17] the authors combined event-triggered control with quantized communication. For example, [16] considered model-based event-triggered control for systems with quantization and time-varying network delays; [17] presented decentralised event-triggered cooperative control in multi-agent systems with quantized communication.

When considering event-triggered control in multi-agent systems with quantized communication or sensing, some aspects should be paid special attention to. Firstly, the notion of the solution should be clarified since in some cases the classic or hybrid solutions may not exist. For instance, [11] and [12] used the concept of Filippov solution when they only considered quantized sensing. Secondly, the Zeno behavior must be excluded. Thirdly, the need of continuous accessing to the states of neighbors should be avoided. However, in [17], which is one of the motivations of the present paper, the authors did not explicitly discuss the first aspect and used periodic sampling to exclude the Zeno behavior. They did not give an accurate up bound of the sampling time, which restricts its application.

Inspired by [4] and [9], in this paper, we propose centralized and distributed self-triggered rules for multi-agent systems with quantized communication or sensing. Under these rules, the existence of a unique trajectory of the system is guaranteed and the frequency of communication and system updating is reduced. Additionally, continuously monitoring of the so-called trigging condition can also be avoided. An important contribution of this paper is that the weakest fixed topology is considered, namely a directed graph containing a spanning tree. The proposed self-triggered rules are easy to implement in the sense that triggering times of each agent are only related to its in-degree.

The rest of this paper is organized as follows: Section II introduces the preliminaries; Section III discusses self-triggered consensus with quantized communication; Section IV treats self-triggered consensus with quantized sensing; simulations are given in Section V; the paper is concluded in Section VI.

II. PRELIMINARIES

In this section we will review some related notations, definitions and results on algebraic graph theory [18]-[19] and stochastic matrices [20]-[23].

A. Algebraic Graph Theory

For a matrix $A \in \mathbb{R}^{n \times n}$, the element at the i-th row and j-th column is denoted as a_{ij} or $[A]_{ij}$; and denote $\text{diag}(A) = A - \text{diag}([a_{11}, \ldots, a_{nn}])$.

For a (weighted) directed graph (or digraph) $G = (\mathcal{V}, \mathcal{E}, A)$ with n agents (vertices or nodes), the set of agents $\mathcal{V} = \{v_1, \ldots, v_n\}$, set of links (edges) $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$, and the (weighted) adjacency matrix $A = (a_{ij})$ with nonnegative adjacency elements a_{ij}. A link of G is denoted by $e(i, j) = (v_i, v_j) \in \mathcal{E}$ if there is a directed link from agent v_j to agent v_i with weight $a_{ij} > 0$, i.e. agent v_j can send information to agent v_i while the opposite direction transmission might not exist or with different weight a_{ji}. It is assumed that $a_{ii} = 0$ for all $i \in \mathcal{I}$, where $\mathcal{I} = \{1, \ldots, n\}$. Let $N_{in}^i = \{v_j \in \mathcal{V} \mid a_{ij} > 0\}$ and $\text{deg}^n(v_i) =$
\[\sum_{j=1}^{n} a_{ij} \] denotes the in-neighbors and in-degree of agent \(v_i \), respectively. The degree matrix of digraph \(G \) is defined as \(D = \text{diag}(\{deg^{in}(v_1), \ldots, deg^{in}(v_n)\}) \). The (weighted) Laplacian matrix is defined as \(L = D - A \). A directed path from agent \(v_0 \) to agent \(v_k \) is a directed graph with distinct agents \(v_0, \ldots, v_k \) and links \(\ell(i + 1, i), i = 0, \ldots, k \).

Definition 1: We say a directed graph \(G \) has a spanning tree if there exists at least one agent \(v_{i0} \) such that for any other agent \(v_j \), there exists a directed path from \(v_{i0} \) to \(v_j \).

Obviously, there is a one-to-one correspondence between a graph and its adjacency matrix or its Laplacian matrix. In the following, for the sake of simplicity in presentation, sometimes we don’t explicitly distinguish a graph from its adjacency matrix or Laplacian matrix, i.e., when we say a matrix has some graphic properties, we mean that these properties are held by the graph corresponding to this matrix.

B. Stochastic Matrix

A matrix \(A = (a_{ij}) \) is called a nonnegative matrix if \(a_{ij} \geq 0 \) for all \(i, j \), and \(A \) is called a stochastic matrix if \(A \) is square, nonnegative and \(\sum_j a_{ij} = 1 \) for each \(i \). A stochastic matrix \(A \) is called scrambling if, for any \(i \) and \(j \), there exists \(k \) such that both \(a_{ik} \) and \(a_{jk} \) are positive. Moreover, given a nonnegative matrix \(A \) and \(\delta > 0 \), the \(\delta \)-matrix of \(A \), which is denoted as \(A^\delta \), is

\[
A^\delta_{ij} = \begin{cases}
\delta, & A_{ij} \geq \delta \\
0, & A_{ij} < \delta
\end{cases}
\]

If \(A^\delta \) has a spanning tree, we say \(A \) contains a \(\delta \)-spanning tree. Similarly, if \(A^\delta \) is scrambling, we say \(A \) is \(\delta \)-scrambling.

A nonnegative matrix \(A \) is called a stochastic indecomposable and aperiodic (SIA) matrix if \(A \) is a stochastic matrix and there exists a column vector \(v \) such that \(\lim_{k \to \infty} A^k = 1 v^\top \), where \(1 \) is the \(n \)-vector containing only ones. For two \(n \)-dimension stochastic matrices \(A \) and \(B \), they are said to be of the same type, denoted by \(A \sim B \), if they have zero elements and positive elements in the same places. Let \(\text{Ty}(n) \) denotes the number of different types of all SIA matrices in \(\mathbb{R}^{n \times n} \), which is a finite number for given \(n \).

For two matrices \(A \) and \(B \) of the same dimension, we write \(A \succeq B \) if \(A - B \) is a nonnegative matrix. Throughout this paper, we use \(\prod_{i=1}^{k} A_i = A_k A_{k-1} \cdots A_1 \) to denote the left product of matrices.

Here, we introduce some lemmas that will be used later.

From Corollary 5.7 in [20], we have

Lemma 1: For a set of \(n \times n \) stochastic matrices \(\{A_1, A_2, \ldots, A_{n-1}\} \), if there exists \(\delta > 0 \) and \(\delta' > 0 \) such that \(A_k \geq \delta I \) and \(A_k \) contains a \(\delta' \)-spanning tree for all \(k = 1, 2, \ldots, n - 1 \), then there exists \(\delta'' \in (0, \min\{\delta, \delta'\}) \), such that \(\prod_{i=1}^{\delta''} A_k \) is \(\delta'' \)-scrambling.

From Lemma 6 in [4], we have

Lemma 2: Let \(A_1, A_2, \ldots, A_k \) be \(n \times n \) matrices with the property that for any \(1 \leq k_1 < k_2 \leq k \), \(\prod_{i=k_1}^{k_2-1} A_i \) is SIA, where \(\delta > 0 \) is a constant, then \(\prod_{i=1}^{k} A_i \) is \(\delta \)-scrambling for any \(k > \text{Ty}(n) \).

Definition 2: ([21]) For a real matrix \(A = (a_{ij}) \), define the ergodicity coefficient \(\mu(A) = \min_{k} \sum_k \min\{a_{ik}, a_{jk}\} \) and its Hajnal diameter \(\Delta(A) = \max_{i,j} \sum_k \max\{0, a_{ik} - a_{jk}\} \).

Remark 1: Obviously, if \(A \) is a stochastic matrix, then \(0 \leq \mu(A), \Delta(A) \leq 1 \). Moreover, if \(A \) is \(\delta \)-scrambling for some \(\delta > 0 \), then \(\mu(A) \geq \delta \).

Lemma 3: ([22], [23]) If \(A \) and \(B \) are stochastic matrices, then \(\Delta(AB) \leq (1 - \mu(A))\Delta(B) \).

Lemma 4: ([20]) For a vector \(x = [x_1, \ldots, x_n]^\top \in \mathbb{R}^n \), define \(d(x) = \max_i x_i - \min_i x_i \). For an \(n \times n \) stochastic matrix \(A \), and \(x \in \mathbb{R}^n \), then \(d(Ax) \leq \Delta(A) d(x) \leq \Delta(A) \sqrt{2} \|x\|_2 \).

Remark 2: It is straightforward to see that for any \(x, y \in \mathbb{R}^n \), \(d(x + y) \leq d(x) + d(y) \).

III. Self-Triggered Control with Quantized Communication

We consider a set of \(n \) agents that are modelled as a single integrator:

\[
\dot{x}_i(t) = u_i(t), \quad i \in \mathcal{I}
\]

where \(x_i(t) \in \mathbb{R} \) is the state and \(u_i(t) \in \mathbb{R} \) is the input of agent \(v_i \), respectively.

In many practical scenarios, each agent cannot access the state of the system with infinite precision. Instead, the state variables have to be quantized in order to be represented by a finite number of bits to be used in processor operations and to be transmitted over a digital communication channel.

In this section, we use the self-triggered control input to each agent, which is only based on the latest quantized states of its in-neighbours. Denoting the triggering time sequence for agent \(v_j \) as the increasing time sequence \(\{t^j_k\}_{k=1}^\infty \), the control input is given as

\[
u_i = - \sum_{j \in N_i} l_{ij} \left[q(x_i(t_{k_i}(t))) - q(x_j(t_{k_j}(t)))\right]
\]

where \(k_i(t) = \arg \max_k \{t^j_k \leq t\} \), \(q : \mathbb{R} \to \mathbb{R} \) is a quantizer.

In this paper, we consider the following uniform quantizer:

\[
|q_a(a) - a| \leq \delta_a, \quad \forall a \in \mathbb{R}
\]

Remark 3: Compared with other papers, we do not need any additional assumptions about the quantizing function. For example, we do not need the quantizer to be an odd function.

A. Centralized Approach

In this subsection, we consider centralized self-triggered control, i.e., all agents simultaneously trigger at every triggering time. In this case, the triggering time sequence can be denoted as \(t_1, t_2, \ldots, t_n \) and \(t_{k+1} = t_k + Lq(x(t_k)) \) from (2) and (3).

Where \(x(t) = [x_1(t), \ldots, x_n(t)]^\top \) and \(q(v) = [q(v_1), \ldots, q(v_n)]^\top \) for any \(v \in \mathbb{R}^n \).

Here we give a rule to determine the triggering time sequence such that all agents converge to practical consensus.
Theorem 1: Assume the communication graph is directed, and contains a δ-spanning tree \(L_{\text{max}} \) with \(\delta > 0 \). Given the first triggering time \(t_1 \), use the following self-triggered rule to find \(t_k \), \(k = 2, 3, \ldots \)

\[
t_l \leq t_{k+1} - t_k \leq t_u, \quad k = 1, 2, \ldots
\]

where \(t_l = \frac{\delta'}{\max_{i,j} L_{ij}} \), \(t_u = \frac{1 - \delta'}{\max_{i,j} L_{ij}} \), \(\delta' \in (0, \frac{1}{2}) \) and \(L_{\text{max}} = \max_{i,j} L_{ij} \). Then the trajectory of (5) exponentially converges to the consensus set \(\{ x \in \mathbb{R}^n | d(x) \leq C_1 \delta_u \} \), where \(C_1 = \left[\frac{n - 1}{\delta_1} + 1 \right] 4(1 - \delta') \) and \(\delta'' \in (0, \min(\delta', \frac{\delta}{\delta_1} \delta')) \).

Proof: From the self-triggered rule (6), for any given \(t_1 \), the system can arbitrarily choose \(t_2 \) within \([t_1 + t_1, t_1 + t_u] \) for every agent. Similarly, after \(t_k \) has been chosen, the system can arbitrarily choose \(t_{k+1} \) within \([t_k + t_k, t_k + t_u] \) for every agent. Then, in the interval \((t_k, t_{k+1}] \), the only solution to (5) is

\[
x(t) = x(t_k) - (t - t_k)LQ(x(t_k)).
\]

Thus, \(d(x(t)) \leq d(x(t_k)) + 4(1 - \delta') \delta_u \). Hence

\[
\lim_{t \to +\infty} d(x(t)) \leq \lim_{k \to +\infty} d(x(t_k)) + 4(1 - \delta') \delta_u \leq C_1 \delta_u
\]

The proof is completed.

B. Distributed Approach

In this subsection, we consider distributed self-triggered control, i.e., each agent freely chooses its own triggering times no matter when other agents trigger.

Here we extend Theorem 1 to distributed form:

Theorem 2: Assume the communication graph is directed, and contains a δ-spanning tree with \(\delta > 0 \). For each agent \(v_i \), given the first triggering time \(t_1 \), use the following self-triggered principle to find \(t_2, \ldots, t_k, \ldots \)

\[
t_l \leq t_{k+1} - t_k \leq t_u, \quad k = 1, 2, \ldots
\]

where \(t_l = \frac{\delta_l}{\max_{i,j} L_{ij}} \), \(t_u = \frac{1 - \delta_l}{\max_{i,j} L_{ij}} \), and \(\delta_l \in (0, \frac{1}{2}) \). Then the trajectory of (2) with input (3) exponentially converges to the consensus set \(\{ x \in \mathbb{R}^n | d(x) \leq C_2 \delta_u \} \), where \(C_2 \) is a positive constant which can be determined by \(\delta, \delta_1, \ldots, \delta_n \).

Proof: (This proof is inspired by [4] and [9].) At time \(t \), if there exists at least one agent triggers, we say the system triggers at time \(t \). Let \(\{ t_1, t_2, \ldots \} \) denotes the system’s triggering sequence. Obviously, this is a strictly increasing sequence. For simplicity, denote \(\Delta t^i_k = t_{k+1} - t_k \) and \(\Delta t_k = t_{k+1} - t_k \). We first point out the following fact:

Lemma 5: For any agent \(v_i \) and positive integer \(k \), the number of triggers occurred during \([t_k, t_{k+1}] \) is no more than \(\tau_1 = \left(\left\lceil \frac{t_{max}}{t_{min}} \right\rceil + 1 \right)(n - 1) \), where \(t_{min} = \min_i \{ t_1, \ldots, t_k \} \) and \(t_{max} = \max_i \{ t_1, \ldots, t_k \} \). Moreover, for any positive integer \(k \), each agent triggers at least once during \([t_k, t_{k+1}] \), where \(\tau_2 = \left(\left\lceil \frac{t_{max}}{t_{min}} \right\rceil + 1 \right)n \).

The proof of this lemma can be found in [9].

Let \(y(t_k) = [y_1(t_k), y_2(t_k), \ldots, y_n(t_k)]^\top \) with \(y_i(t_k) = x_i(t_k, t_k) \), then, we can rewrite (2) and (3) as

\[
\dot{x}_i(t) = -\sum_{j=1}^n l_{ij} q(y_j(t_k)), \quad t \in (t_k, t_{k+1})
\]

Now we consider the evolution of \(y(t_k) \). If agent \(v_i \) does not trigger at time \(t_k+1 \), then \(t_{k+1} = t_{k+1} \). Thus

\[
y_i(t_k+1) = y_i(t_k)
\]

If agent \(v_i \) triggers at time \(t_{k+1} \), then \(t_{k+1} = t_{k+1} \). Assume \(t_{k+1} = t_{k+1} \) be the last update of agent \(v_i \) before \(t_{k+1} \), where integer \(d_{i,k} \geq 0 \) is the number of triggers which are triggered by other agents between \((t_k, t_{k+1}) \).

Then, \(y_i(t_k) = y_i(t_{k+1}) = \cdots = y_i(t_{k+1}) \).

Noting \((t_{k+1}), t_{k+1}) = \left[\frac{b}{m} = k - d_{i,k} \left(t_{min}, t_{min} + 1 \right) \right] \), we can conclude that there exists a unique solution to (2).
Then

\[y_i(t_{k+1}) = x_i(t_{k_i(t_{k+1})}) = x_i(t_{k_i(t_k)}) + \int_{t_{k_i(t_k)}}^{t_{k_i(t_{k+1})}} \bar{x}_i(t) \, dt \]

\[= y_i(t_{k-d_k}) + \sum_{m=k-d_k}^{k-1} \int_{t_{k_i(t_k)}}^{t_{m+1}} \bar{x}_i(t) \, dt \]

\[= y_i(t_k) - \sum_{m=k-d_k}^{k-1} \Delta t_m \sum_{j=1}^{n} l_{ij} q(y_j(t_m)) \]

\[= y_i(t_k) - \sum_{m=0}^{d_k} \Delta t_{m+k-d_k} \sum_{j=1}^{n} l_{ij} q(y_j(t_{m+k-d_k})) \]

\[= y_i(t_k) - \sum_{m=0}^{d_k} \Delta t_{m+k-d_k} l_{ii} q(y_i(t_{m+k-d_k})) \]

\[- \sum_{m=0}^{d_k} \Delta t_{m+k-d_k} \sum_{j \neq i} l_{ij} q(y_j(t_{m+k-d_k})) \]

\[= y_i(t_k) - \sum_{m=0}^{d_k} \Delta t_{i_k(t_k)} l_{ii} q(y_i(t_k)) \]

\[- \sum_{m=0}^{d_k} \Delta t_{m+k-d_k} \sum_{j \neq i} l_{ij} q(y_j(t_{m+k-d_k})) \]

(10)

If agent \(v_j \) triggers at time \(t_{k+1} \), then let \(a_{0i}^0(k) = 1 - \Delta t_{k_i(t_k)} l_{ii}^0, b_{0i}^0(k) = -\Delta t_{k_i(t_k)} l_{ii}^0 \), and \(a_{ii}^m(k) = b_{ii}^m(k) = 0 \) for \(m = 1, 2, \ldots, \tau_k \). Let \(a_{ij}^m(k) = b_{ij}^m(k) = 0 \) for \(i, j = 1, \ldots, n \) and \(m = d_k+1, \ldots, \tau_k \). Otherwise, let \(a_{ij}^m(k) = b_{ij}^m(k) = 0 \) for all \(i, j, m \) except \(a_{ii}^1(k) = 1 \).

Obviously,

\[a_{0i}^0(k) \geq 1 - (1-\delta_i) \geq \delta_i \geq \delta_{min} \]

(11)

\[- (1-\delta_{min}) \leq - (1-\delta_i) \leq b_{0i}^0(k) \leq -\delta_i \leq -\delta_{min} \]

(12)

\[\sum_{m=0}^{\tau_k} \sum_{j=1}^{n} a_{ij}^m(k) = 1, \sum_{m=0}^{\tau_k} \sum_{j=1}^{n} b_{ij}^m(k) = 0, a_{ij}^m(k) \geq 0 \]

(13)

where \(\delta_{min} = \min\{\delta_1, \ldots, \delta_n\} \).

Then we can uniformly rewrite (9) and (10) as

\[y_i(t_{k+1}) = \sum_{m=0}^{\tau_k} \sum_{j=1}^{n} a_{ij}^m(k) y_j(t_{k-m}) + \sum_{m=0}^{\tau_k} \sum_{j=1}^{n} b_{ij}^m(k)[q(y_j(t_{k-m})) - y_j(t_{k-m})] \]

(14)

Denote \(z(t_k) = [y(t_1)^T, y(t_2-1)^T, \ldots, y(t_{\tau_k}-1)^T]^T \in \mathbb{R}^{n(\tau_k+1)} \), \(A^m(k) = (a_{ij}^m(k))^T \in \mathbb{R}^{n \times n} \), \(B^m(k) = (b_{ij}^m(k))^T \in \mathbb{R}^{n \times n} \), \(C^m(k) = \begin{bmatrix} A^m(k) & A^2(k) & \cdots & A^{\tau_k-1}(k) & A^{\tau_k}(k) \\ I & 0 & \cdots & 0 & 0 \\ 0 & I & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & I & 0 \end{bmatrix} \)

and

\[D(k) = \begin{bmatrix} B^0(k) & B^1(k) & \cdots & B^{\tau_k-1}(k) & B^{\tau_k}(k) \\ 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \end{bmatrix} \]

From (11) and (13), we know that \(C(k) \) is a stochastic matrix. We can rewrite (14) as

\[z(t_{k+1}) = C(k)z(t_k) + D(k)[q(z(t_k)) - z(t_k)] \]

(15)

(b) Next, we will prove that there exists \(\delta_C \in (0, 1) \) such that for any \(k_1 \geq 0 \), \(\sum_{k=k_1}^{k_2} C(k) \) is \(\delta_C \) scrambling, where \(K_0 = (\text{Ty}(n)+1)\tau_2 \).

From (11) and (13), we know that \(A^m(k) \) is a nonnegative matrix for any \(m \) and \(k \), and \(\delta_{min} \geq \delta_{min} I \). Hence, \(\sum_{k=k_1}^{k_2} \sum_{m=0}^{\tau_k} A^m(l) \geq \delta_{min} I \). Denote

\[M_0 = \begin{bmatrix} I & 0 & \cdots & 0 \\ I & 0 & \cdots & 0 \\ 0 & I & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & I \end{bmatrix} \]

and \(C'(k) = \delta_{min} M_0 + C' \geq \delta_{min} M_0 \). Then,

\[C'(k) \geq \delta_{min} M_0 + C' \geq \delta_{min} M_0 \]

(16)

where \(E(k) = M_0 + C' \).

From Lemma [3] we know that, for any \(k_1 \leq k_2 \), \(\sum_{k=k_1}^{k_2} \sum_{m=0}^{\tau_k} A^m(l) \geq \delta_{min} \Delta(k) \).

Hence, \(\sum_{k=k_1}^{k_2} \sum_{m=0}^{\tau_k} A^m(l) \) has a \(\delta_{min} \) spanning tree. Thus, from Lemma 7 and its proof in [9], we know that there exists a \(\delta_F^0 < \delta_{min} \) such that \(F_k = \bigcup_{i=k_1}^{k_2} E(i) \) is \(\delta_F^0 \)-SIA and has a \(\delta_F^0 \)-spanning tree for any \(\delta_F \in (0, \delta_F^0) \). Here we choose a \(\delta_F \) such that \(0 < \delta_F, (\delta_F)^{\tau_2} \leq \delta_F^0 < \delta_{min} \).

For any \(1 \leq k_1 < k_2 \), note

\[\prod_{k=k_1}^{k_2} F_k^\delta = \prod_{k=k_1}^{k_2} \prod_{i=(k-1)\tau_1+1}^{k\tau_1} [E(i)][(\delta_F)^{\tau_2}] \]

(14)

and the first block row sum of \(\sum_{i=(k-1)\tau_1+1}^{k\tau_1} [C'(i)][(\delta_F)^{\tau_2}] \) has a spanning tree since \(0 < (\delta_F)^{\tau_2} \leq \delta_F^0 < \delta_{min} \). Then from Lemma 7 and its proof in [9], we know that \(\prod_{k=k_1}^{k_2} F_k^\delta \) is SIA.
Then, from Lemma 2 we know that \(\prod_{k=0}^{T} x(k) \) is \((\delta_{n})^{(T)} \)-scrambling. Hence, from \((16) \), we can conclude that \(\prod_{k=0}^{T} x(k)C_{k} \) is \(\delta_{C} \)-scrambling, where \(0 < \delta_{C} \leq (\delta_{n})^{(T)}(\delta_{min})K_{c} \).

(c) Similar to the proof of Theorem 1, we can find the \(C_{2} \) and complete the proof or this theorem.

IV. SELF-TRIGGERED CONTROL WITH QUANTIZED SENSING

In this section, we consider the situation that, each agent \(v_{i} \) discretely sense or measures the quantized value of the relative positions between its in-neighbors and itself. In other words, the only available information to compute the control inputs of each agent are the latest quantized measurements of the relative positions measured by itself:

\[
u_{i}(t) = \sum_{j \in N_{i}^{n}} a_{ij} q(x_{j}(t_{k}(t_{i}))) - x_{i}(t_{k}(t_{i}))
\]

Remark 4: Compared to the input \((3) \), the advantage of the input \((17) \) is that the input of one agent would not be affected by other agents’ triggering.

A. Centralized Approach

In this subsection, we consider centralized self-triggered consensus rule and denote the triggering time sequence as \(t_{1}, t_{2}, \ldots \). Then, we get

\[
u_{i}(t) = \sum_{j \in N_{i}^{n}} a_{ij} q(x_{j}(t_{k})) - x_{i}(t_{k}), \quad t \in (t_{k}, t_{k+1}]
\]

Similar to Theorem 1 we have

Theorem 3: Under the assumption and self-triggered rule in Theorem 1 the trajectory of system (2) with input (18) exponentially converges to the consensus set \(\{x \in \mathbb{R}^{n} | d(x) \leq C_{0} \delta_{u} \} \), where \(C_{0} \) is a positive constant which can be determined by \(\delta' \) and \(\delta \).

Proof: From the self-triggered rule (6), for any given \(t_{1} \), the system can arbitrarily choose \(t_{2} \in [t_{1} + t_{1}, t_{1} + t_{u}] \) for every agent. Similarly, after \(t_{k} \) has been chosen, the system can arbitrarily choose \(t_{k+1} \in [t_{k} + t_{1}, t_{k} + t_{u}] \) for every agent. Then, in the interval \((t_{k}, t_{k+1}] \), the only solution to (2) with input (18) is

\[
x_{i}(t) = x_{i}(t_{k}) + (t - t_{k}) \sum_{j=1}^{m} a_{ij} q(x_{j}(t_{k}) - x_{i}(t_{k}))
\]

Particularly, we have

\[
x_{i}(t_{k+1}) = x_{i}(t_{k}) + \Delta t_{k} \sum_{j=1}^{m} a_{ij} q(x_{j}(t_{k}) - x_{i}(t_{k}))
\]

Then, \(x(t_{k+1}) = A_{k} x(t_{k}) + \Delta t_{k} W x(t_{k}) \), where \(W x(t_{k}) = [W_{1}(x(t_{k})), W_{2}(x(t_{k})), \ldots, W_{n}(x(t_{k}))^{\top} \) and \(W_{i}(x(t_{k})) = \sum_{j=1}^{m} a_{ij} q(x_{j}(t_{k}) - x_{i}(t_{k})) - (x_{i}(t_{k}) - x_{i}(t_{k})) \). Finally, similar to the proof to Theorem 1 we can complete the proof.

B. Distributed Approach

In this subsection, we consider distributed self-triggered consensus rule. Similar to Theorem 2 we have

Theorem 4: Under the assumption and self-triggered rule in Theorem 2 the trajectory of (2) with input (17) exponentially converges to the consensus set \(\{x \in \mathbb{R}^{n} | d(x) \leq C_{2} \delta_{u} \} \), where \(C_{2} \) is a positive constant which can be determined by \(\delta, \delta_{1}, \ldots, \delta_{n} \).

Proof: We omit the proof since it is similar to the proof of Theorem 2.

Remark 5: In the future, we will extend all of the above results to networks with stochastically switching topologies.

V. SIMULATIONS

In this section, one numerical example is given to demonstrate the effectiveness of the presented results.

Consider a network of seven agents with a directed reducible Laplacian matrix

\[
L = \begin{bmatrix}
9 & -2 & 0 & 0 & -7 & 0 & 0 \\
0 & 8 & -4 & 0 & 0 & -4 & 0 \\
0 & -3 & 10 & -4 & 0 & 0 & -3 \\
-4 & 0 & -5 & 14 & 0 & -5 & 0 \\
0 & 0 & 0 & 0 & 6 & -6 & 0 \\
0 & 0 & 0 & 0 & 0 & 7 & -7 \\
0 & 0 & 0 & 0 & -5 & -4 & 9
\end{bmatrix}
\]

which is described by Fig. 1. The initial value of each agent is randomly selected within the interval \([-5, 5]\) in our simulation and the next triggering time is randomly chosen from the permissible range using a uniform distribution. And the uniform quantizing function used here is \(q(v) = 2k\delta_{u} \) if \(v \in [(2k - 1)\delta_{u}, (2k + 1)\delta_{u}] \).

Fig. 1. The communication graph.

Fig. 2 shows the evolution of \(d(x(t)) \) under the self-triggered rules provided in Theorems 1 and 2 with \(\delta_{u} = 0.5 \) and \(\delta' = \delta_{u} = 0.25 \). It can be seen that under the four self-triggering rules all agents converge to the consensus set with \(C_{1} = C_{2} = C_{3} = C_{4} < 2 \).

Then the parameter \(\delta_{u} \) takes different values. Fig. 3 illustrates \(\lim_{t \to +\infty} d(x(t)) \) under the four self-triggering
rules with different δ_u. All the data used in this figure are the averages over 100 overlaps. It can be seen that the smaller δ_u, the closer of each agent’s state.

VI. CONCLUSIONS

In this paper, consensus problem for multi-agent systems defined on directed graphs under self-triggered control has been addressed. We first considered the situation that the information can only be quantized transmitted. Centralized and distributed self-triggered rules have been proposed for consensus. Then, we applied the same rules to the situation that each agent can sense only quantized value of the relative positions between neighbors. The main advantage of these rules is the overall need of communication and system updates can be reduced. Moreover, compared to the existing work, these rules can be applied to directed graphs with spanning tree and they can be easily implemented in the sense that triggering times of each agent are only related to its in-degree.

REFERENCES

[1] R. O. Saber and R. M. Murray, “Consensus Problems in Networks of Agents With Switching Topology and Time-Delays,” Automatic Control, IEEE Transactions on, vol. 49, no. 9, pp. 1520-1533, 2004.
[2] L. Moreau, “Stability of continuous-time distributed consensus algorithms,” in Proceedings of the 43rd IEEE Conference on Decision and Control (CDC’04), vol. 4, pp. 3998-4003, 2004.
[3] W. Ren and R. W. Beard, “Consensus seeking in multiagent systems under dynamically changing interaction topologies,” Automatic Control, IEEE Transactions on, vol. 55, no. 5, pp. 655-661, 2005.
[4] F. Xiao and L. Wang, “Asynchronous consensus in continuous-time multi-agent systems with switching topology and time-varying delays,” Automatic Control, IEEE Transactions on, vol. 53, no. 8, pp. 1804-1816, 2008.
[5] K. You and L. Xie, “Network topology and communication data rate for consensusability of discrete-time multi-agent systems,” Automatic Control, IEEE Transactions on, vol. 56, no. 10, pp. 2262-2275, 2011.
[6] D. V. Dimarogonas, E. Frazzoli and K. H. Johansson, “Distributed event-triggered control for multi-agent systems,” Automatic Control, IEEE Transactions on, vol. 57, no. 5, pp. 1291-1297, 2012.
[7] G. S. Seyboth, D. V. Dimarogonas and K. H. Johansson, “Event-based broadcasting for multi-agent average consensus,” Automatica, vol.49, pp. 245-252, 2013.
[8] X. L. Yi, W. L. Lu and T. P. Chen, “Pull-Based Distributed Event-triggered Consensus for Multi-agent Systems with Directed Topologies,” Neural Networks and Learning Systems, IEEE Transactions on, to be appeared.
[9] B. Liu, W. Lu, L. Jiao and T. Chen, “Structure-based self-triggered consensus in networks of multiagents with switching topologies,” arXiv preprint arXiv:1501.07349, 2015.
[10] D. V. Dimarogonas and K. H. Johansson, “Stability analysis for multi-agent systems using the incidence matrix: quantized communication and formation control,” Automatica, vol. 46, no. 4, pp. 695-700, 2010.
[11] F. Ceragioli, C. D. Persis and P. Frasca. “Discontinuities and hysteresis in quantized average consensus,” Automatica, vol. 47, no. 9, pp. 1916-1928, 2011.
[12] M. Guo and D. V. Dimarogonas, “Consensus with quantized relative state measurements,” Automatica, vol. 49, no. 8, pp. 2531-2537, 2013.
[13] S. L. Hu and D. Yue, “Event-triggered control design of linear networked systems with quantizations,” ISA transactions, vol. 51, no. 1, pp. 153-162, 2012.
[14] Y. P. Guan, Q. L. Han and C. Peng, “Event-triggered quantized-data feedback control for linear systems,” In Industrial Electronics (ISIE), 2013 IEEE International Symposium on, pp. 1-6, 2013.
[15] H. Yu and P. J. Antsaklis, “Event-triggered output feedback control for networked control systems using passivity: Achieving \mathcal{H}_2 stability in the presence of communication delays and signal quantization,” Automatica, vol. 49, no. 1, pp. 30-38, 2013.
[16] E. Garcia and P. J. Antsaklis, “Model-based event-triggered control for systems with quantization and time-varying network delays,” Automatic Control, IEEE Transactions on, vol. 58, no. 2, pp. 422-434, 2013.
[17] E. Garcia, Y. C. Cao, H. Yu, P. J. Antsaklis and D. Casbeer, “Decentralised event-triggered cooperative control with limited communication,” International Journal of Control, vol. 86, no. 9, pp. 1479-1488, 2013.
[18] R. Diestel, Graph theory, Graduate texts in mathematics 173, New York: Springer-Verlag Heidelberg, 2005.
[19] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge, U.K.: Cambridge Univ. Press, 1987.
[20] B. Liu, W. L. Lu and T. P. Chen, “Consensus in networks of multiagents with switching topologies modeled as adapted stochastic processes,” SIAM Journal on Control and Optimization, vol. 49, no. 1, pp. 227-253, 2011.
[21] C. W. Wu, “Synchronization and convergence of linear dynamics in random directed networks,” Automatic Control, IEEE Transactions on, vol. 51, no. 7, pp. 1207-1210, 2006.
[22] J. Hajnal, “Weak ergodicity in non-homogeneous Markov chains,” In Mathematical Proceedings of the Cambridge Philosophical Society, vol. 54, no. 2, pp. 233-246, 1958.
[23] A. Paz and M. Reichaw, “Ergodic theorems for sequences of infinite stochastic matrices,” In Mathematical Proceedings of the Cambridge Philosophical Society, vol. 63, no. 3, pp. 777-784, 1967.