ONTOGENY OF B CELLS IN CBA/N MICE

Evidence for a Stage of Responsiveness to
Thymus-independent Antigens during Development*

BY TULLIA LINDSTEN and BIRGER ANDERSSON

From the Department of Tumor Biology, Karolinska Institutet, S-104 01 Stockholm 60, Sweden

CBA/N is a mutant mouse strain derived from CBA with an x-linked, recessive immune defect at the B-cell level. The defective mice are unable to raise antibodies to a number of thymus-independent (TI) antigens like lipopolysaccharide (LPS), pneumococcal polysaccharide type III (1), and polyinosinic-polycytidylic acid (2) whereas the antibody response to thymus-dependent (TD) antigens such as sheep erythrocytes (SRBC) is normal (1). It has also been shown that the percentage of Ig-bearing spleen cells is lower in these mice compared to normal mice (3). The distribution of Ig-determinants on the individual B cell is abnormal (4). A number of T-cell functions, such as mitogen responses to phytohemagglutinin and concanavalin A, specific in vitro T-lymphocyte-mediated cytotoxicity and graft rejection are normal (1). Several reports clearly show that the immune defect of CBA/N cannot be explained by an increased amount of suppressor T cells (5-7). A major question is whether CBA/N suffer from an arrest in the maturation of their B-cell line thus representing an immature B-cell state or if their B cells have deviated during development. A prerequisite for the latter hypothesis is that there exist two different mature subgroups of B cells, one that responds to TI antigens and another that responds to TD antigens (for review see reference 8). If a deviation of development has occurred in the CBA/N mouse it would indeed have mature B cells but only the kind that make antibodies to TD antigens. The subgroup of B cells responsible for antibody production to TI antigens would be lacking. In a previous paper we have shown that mature B cells from normal, adult mice respond to polyvinyl pyrrolidone (PVP), a TI antigen without T-cell help, whereas immature B cells require T cells as helpers to respond to PVP (9). This concept of T dependency in immature B cells seems to be general as similar results have been obtained by others using a different TI antigen, LPS (10). Immature B cells are defined as B cells from mice up to 2 wk of age, or B cells from lethally irradiated and bone marrow reconstituted adult mice up to 2 wk after reconstitution. We thus have a tool for studying the characteristics of the immature B cell.

The present paper is an attempt to analyze whether an arrest or a deviation has occurred in the development of the B-cell lineage in the CBA/N mouse, using the

* Supported by the Swedish Cancer Society.

1 Abbreviations used in this paper: BSS, balanced salt solution; DNP, dinitrophenyl; HRBC, horse erythrocytes; LPS, lipopolysaccharide; OA, ovalbumin; PVP, polyvinyl pyrrolidone; SRBC, sheep erythrocytes; TD, thymus dependent; TI, thymus independent.
above mentioned system. We have used lethally irradiated and bone marrow reconstituted adult mice which are challenged with antigen at the time of reconstitution. Antibody titers have been determined at different times after immunization. The present results show that the B cells of CBA/N mice, like B cells from normal mice, pass through a stage of maturation where they can be triggered by TI antigens and helper T cells. In contrast, adult CBA/N mice cannot be triggered by TI antigens and helper T cells. Thus, it seems as if CBA/N mice, at an early stage of development, have normal B cells but that these immature B cells only develop into the TD subgroup of B cells, indicating a deviation of development.

Materials and Methods

Mice. CBA/N mice were obtained from National Institutes of Health Rodent and Rabbit Production Section, Bethesda, Maryland. A/Sn mice were taken from our animal department. (A/Sn d × CBA/N f)F1 mice were used. The males of these hybrids are immunodeficient whereas the females can be used as normal controls. A/Sn mice possess a dominant gene(s) that determines high response to PVP (11). BALB/c and nude mice on a BALB/c genetic background were obtained from BOM Ltd., Denmark. Antibodies and Immunization. PVP with mol wt 10,000 and 360,000 were obtained from Fluka AG, Switzerland. Immunization was performed with 1 μg of the 360,000 preparation given either dissolved in balanced salt solution (BSS) intraperitoneally or in Freund's complete adjuvant (Difco Laboratories, Detroit, Mich.), subcutaneously. In cell transfer experiments, 0.1 μg was given dissolved in BSS intravenously together with the cells. Dinitrophenyl (DNP)-ovalbumin (OA) was prepared according to Little and Eisen (12) and for immunization 50 μg were given in Freund's complete adjuvant subcutaneously. Escherichia coli LPS 055:B5 was obtained from Difco Laboratories. For immunization, 1 μg dissolved in BSS was given intraperitoneally. In cell transfer experiments, 1 μg was given dissolved in BSS intravenously together with the cells. Horse erythrocytes (HRBC) were given intraperitoneally at a dose of 2 × 10⁶ for immunization.

Serologic Tests. Determination of hemolytic antibody to HRBC, PVP-labeled sheep erythrocytes and LPS-coated sheep erythrocytes as well as antigen-binding capacity of antisera using I 125-PVP was performed as previously described (13). I 125-labeled hydroxyphenacetyl-DNP-lysine (14) was also used in antigen-binding assays.

Irradiation of Mice and Preparation of Cell Suspensions. Performed as previously described (13).

Results

The Antibody Response to PVP, LPS, DNP-OA, and HRBC. Defective (A × CBA/N)F1 male mice and their normal female littermates were immunized with the TI antigens, PVP and LPS, and the TD antigens DNP-OA and HRBC. In parallel, nude mice were immunized as a control for the T dependency. A normal unrelated mouse strain, BALB/c, was also included. As can be seen in Tables I, II, and III (A × CBA/N)F1 δ are unable to raise antibody responses to PVP and LPS, as expected, measured both by hemolysis and antigen binding capacity. The responses to DNP-OA and HRBC are quite normal, the antibody titers being equivalent to those in (A × CBA/N)F1 γ and BALB/c mice.

Response of Maturing B Cells from the Bone Marrow of (A × CBA/N)F1 Transferred to Normal Syngeneic Mice. To examine whether the B cells during their maturation pass through the same early stage in defective (A × CBA/N)F1 δ as in normal (A × CBA/N)F1 γ, the following experiment was performed. Bone marrow cells from the defective and control mice were transplanted to lethally irradiated normal recipients either together with antigen alone or together with antigen and thymus cells from previously immunized (A × CBA/N)F1 γ. Fig. 1 shows the results obtained in the PVP-system.
TABLE I
Antigen-binding Antibody Response to PVP and DNP-OA in T- and B-Cell-deficient Mouse Strains

| Mice                                | Antibody response day 14 Log₁₀ABC ± SE* |
|-------------------------------------|----------------------------------------|
|                                     | PVP                     | DNP                     |
| B-cell deficient (A × CBA/N)F₁ δ    | 0.08 ± 0.19             | 1.35 ± 0.15             |
| Normal control (A × CBA/N)F₁ ♀      | 2.87 ± 0.06             | 1.42 ± 0.19             |
| T-cell deficient nude                | 2.95 ± 0.05             | <=1.0                   |
| Normal control BALB/c               | 2.56 ± 0.21             | 1.71 ± 0.02             |

* Mean of five to eight mice. Nanograms of antigen bound per milliliter of serum.

TABLE II
Hemolytic Antibody Response to PVP and HRBC in (A × CBA/N)F₁ Mice

| Mice                                | Antibody response day 17 Log₃ hemolytic titer* |
|-------------------------------------|-----------------------------------------------|
|                                     | PVP                     | HRBC                     |
| (A × CBA/N)F₁ δ                    | <1                      | 5.1                      |
| (A × CBA/N)F₁ ♀                    | 3.1                     | 6.0                      |

* Mean of seven to nine mice.

TABLE III
Hemolytic Antibody Response to LPS in (A × CBA/N)F₁ Mice

| Mice                                | Antibody response day 7 Log₃ hemolytic titer* |
|-------------------------------------|-----------------------------------------------|
|                                     | LPS                     |
| (A × CBA/N)F₁ δ                    | <1.0                    |
| (A × CBA/N)F₁ ♀                    | 6.0                     |

* Mean of three to five mice.

The control animals given only bone marrow cells show a rather poor antibody response to PVP during the first 2 wk of development, but, gradually develop a normal response to PVP. Adding immune thymus cells greatly enhances the antibody response. This is in accordance with results shown in an earlier paper (9). The defective animals, that is, lethally irradiated A × CBA/N ♀ mice reconstituted with δ bone marrow cells, show exactly the same pattern. It is evident that the immature (A × CBA/N)F₁ δ B cells can be triggered to an antibody response with the help of immune T cells. The result is confirmed in the LPS-system (Fig. 2), where also immune T cells were able to help the maturing B cells from the defective mice to produce antibody to LPS. Thus, immature B cells from defective A × CBA/N δ mice behave similarly as normal, immature B cells in the antibody response to two different TI antigens.

The Antibody Response to PVP, LPS, and HRBC after Addition of Normal or Immune Thymus Cells to Adult (A × CBA/N)F₁ Mice. To investigate whether an antibody response could be raised in adult intact (A × CBA/N)F₁ δ mice after addition of thymus cells from the normal (A × CBA)F₁ animals the following experiment was done. (A × CBA/N)F₁ δ mice received an intravenous injection of thymus cells from normal unimmunized (A × CBA)F₁ mice and were then immunized with PVP. As can be
Fig. 1. Effect of immune thymus cells on hemolytic antibody response to PVP in lethally irradiated and bone marrow reconstituted (A × CBA)F₁ mice. Mean of three to four mice. 2 × 10⁷ bone marrow cells were given intravenously. 1 × 10⁷ thymus cells, taken from (A × CBA/N)F₁, were given intravenously. Bone marrow donor: Δ, (A × CBA/N)F₁; O, (A × CBA/N)F₁; A, (A × CBA/N)F₁ + immune thymus cells; ●, (A × CBA/N)F₁ + immune thymus cells.

Fig. 2. Effect of immune thymus cells on hemolytic antibody response to LPS in lethally irradiated and bone marrow reconstituted (A × CBA)F₁ mice. Mean of seven to eight mice. 2 × 10⁷ bone marrow cells were given i.v. 2 × 10⁷ thymus cells, taken from (A × CBA/N)F₁, were given intravenously. Bone marrow donor: Δ, (A × CBA/N)F₁; O, (A × CBA/N)F₁; A, (A × CBA/N)F₁ + immune thymus cells; ●, (A × CBA/N)F₁ + immune thymus cells.
TABLE IV
Hemolytic Antibody Response to PVP and HRBC after Transfer of Normal or Immune Thymus Cells to Intact (A × CBA/N)F₁ Mice

| Thymus cells       | Antibody response day 16 Log₃ hemolytic titer* |
|--------------------|-----------------------------------------------|
|                    | PVP                                      | HRBC                                      |
| None               | <1.0                                     | 1.40                                      |
| None immune‡       | <1.0                                     | 2.25                                      |
| Immune§            | <1.0                                     | 1.80                                      |

* Mean of four to five mice.
‡ 1.3 × 10⁷ thymus cells were given intravenously.
§ 1.0 × 10⁷ thymus cells, taken from (A × CBA)F₁ mice immunized 13 d earlier with a mixture of PVP and HRBC, were given intravenously.

TABLE V
Hemolytic Antibody Response to LPS after Transfer of Immune Thymus Cells to Intact (A × CBA/N)F₁ Mice

| Thymus cells | Antibody response day 7 Log₃ hemolytic titer* |
|--------------|-----------------------------------------------|
|              | (A × CBA/N)F₁ | (A × CBA/N)F₁ |
| None         | <1.0 | 8.1 |
| 1 × 10⁷ thymus cells‡ | 1.0 | 8.3 |
| 2 × 10⁷ thymus cells‡ | 0.8 | 9.0 |

* Mean of three to eight mice.
‡ Thymus cells were taken from (A × CBA/N)F₁ mice immunized 7 d earlier with LPS intraperitoneally.

seen in Table IV, (A × CBA/N)F₁ males were still not able to produce antibodies to PVP. In an additional experiment, thymus cells from (A × CBA)F₁ animals previously immunized with PVP and HRBC were transferred and the mice were immunized with PVP. Even after this procedure, the defective mice were not able to respond to PVP. A similar experiment was done with LPS as an antigen. Also in this case, the males were unable to respond properly to LPS after immunization as can be seen in Table V. Clearly, the B cells from adult CBA/N mice are not just arrested at an early stage of development because at an early stage, B cells from these mice respond normally i.e., they are able to make antibodies to TI antigens after addition of normal or immune T cells, whereas the adult B cells are not triggered by those antigens.

Discussion
These studies deal with the CBA/N mice that have a genetic defect in their B-cell lineage, making them unable to respond to a variety of TI antigens. This defect is evident only in the adult, mature mice because we demonstrate that CBA/N B-cells pass through an early stage of maturation, where they can respond to TI antigens like immature B cells from normal mice. The B-cells of CBA/N adult mice are thus not arrested in their maturation at the immature stage of young mice, but rather a deviation of development has occurred. This is evident from the finding that adult
CBA/N mice, in spite of being supplemented with immune T-cells, are quite unable to respond to the TI antigens which the immature CBA/N B-cells do, if provided with T-cell help. This experiment also shows that the antibody production is really performed by the immature cells and not by contaminating B cells present in the transferred thymus cell preparation.

The ontogeny of B cells in normal and CBA/N mice can, according to our hypothesis, be visualized as seen in Fig. 3. In the normal mouse there is, during embryonical life, an omnipotent stem cell which gives rise to among others an immature B cell. This immature B cell can be detected in the young mouse up to 2 wk of age after which it gradually disappears. The immature B cell is totally T dependent, that is even with the so-called TI antigens, helper T cells are required for antibody production. From this, immature B-cell maturation goes along two lines giving rise to two different subgroups of B cells. Accordingly, in the adult mouse there is one subgroup of B cells which is restricted to making antibodies to TI antigens, like PVP and LPS and another one which, with the help of T cells, make antibodies to TD antigens only, such as SRBC, HRBC, and DNP-OA.

In the CBA/N mouse, the development of B cells passes through the same stage in the young mouse where we find the immature TD B cell which after 2 wk of age development deviates and only goes along the line that leads to the adult TD B cell. It has to be pointed out that the immature TD B cell is not identical to the adult TD B cell. The former is totally T dependent, that is it can not make antibodies to any kind of antigen unless provided with T-cell help. The latter is a specialized subgroup of the adult B-cell population responding only to true TD antigens. Another explanation to the immune defect in CBA/N mice would be an arrest in maturation at the stage of the 2-wk mouse, with the immature TD B cell prevailing in the adult mouse.
This is clearly not the case as we can not make the defective adult mouse respond to TI antigens after addition of helper T cells.

Preliminary data to be published in a following paper indicate that the receptor for complement factor 3 (C3) is of crucial importance as a developmental surface marker. It has previously been shown that the percentage of C3-receptor positive cells is lower in the spleens of newborn normal mice (9) and this also seems to be the case in newborn as well as in adult CBA/N mice. Thus, the adult CBA/N mice seem to lack a subgroup of B-cells with high concentration of the C3-receptor and which are responsible for the antibody response to TI antigens (Fig. 3). Again, it has to be stressed that the immature TD B cell is not identical to the adult TD B cell, although they seem to share surface characteristics with respect to C3-receptor density.

Summary

This paper deals with the CBA/N mice, a strain bearing a genetic defect in their B-cell compartment. By using a previously described system we have been able to show that the immature cells of CBA/N mice are functionally indistinguishable from normal immature cells, in that both can be triggered to respond to thymus-independent (TI) antigens, provided they are supplied with helper T cells. When the maturation is completed, CBA/N B cells are unable to respond to TI antigens (like lipopolysaccharide and polyvinyl pyrrolidine) irrespective of the presence of helper T cells, whereas normal mature B cells have grown able to respond without any help.

These data allow us to reject the hypothesis that CBA/N mice are arrested at an immature stage and clearly support the idea that they have deviated during development so that only thymus-dependent B cells develop.

The authors wish to thank Doctors J. Seeley and F. Celada for valuable criticism and discussion.

Received for publication 26 February 1979.

References

1. Amsbaugh, D. F., C. T. Hansen, B. Prescott, P. W. Stashak, D. R. Barthold, and P. J. Baker. 1972. Genetic control of the antibody response to Type III pneumococcal polysaccharide in mice. I. Evidence that an X-linked gene plays a decisive role in determining responsiveness. J. Exp. Med. 136:931.
2. Scher, I., M. Frantz, and A. D. Steinberg. 1973. The genetics of the immune response to a synthetic double-stranded RNA in a mutant CBA mouse strain. J. Immunol. 110:1396.
3. Scher, I., A. Ahmed, D. M. Strong, A. D. Steinberg, and W. E. Paul. 1976. X-linked B-lymphocyte immune defect in CBA/HN mice. I. Studies of the function and composition of spleen cells. J. Exp. Med. 141:788.
4. Scher, I., S. O. Sharrow, and W. E. Paul. 1976. X-linked B-lymphocyte defect in CBA/N mice. III. Abnormal development of B-lymphocyte populations defined by their density of surface immunoglobulins. J. Exp. Med. 144:507.
5. Kaplan, R. B., and J. Quintans. 1979. Phosphorylcholine specific helper T-cells in mice with an X-linked defect of antibody production to the same hapten. J. Exp. Med. 149:267.
6. Scher, I., A. D. Steinberg, A. K. Bernig, and W. E. Paul. 1975. X-linked B-lymphocyte immune defect in CBA/N mice. II. Studies of the mechanism underlying the immune defect. J. Exp. Med. 142:637.
7. Quintans, J., and R. B. Kaplan. 1978. Failure of CBA/N mice to respond to thymus-dependent and thymus-independent phosphorylcholine. Cell. Immunol. 38:294.
8. Janossy, G., and M. Gravess. 1975. Functional analysis of murine and human B lymphocyte subsets. Transplant. Rev. 24:177.
9. Andersson, B., and H. Blomgren. 1975. T-cell response to polyvinyl pyrrolidone is linked to maturity of B-cells. Nature (Lond.). 253:476.
10. Kagnoff, M. F., P. Billings, and M. Cohn. 1974. Functional characteristics of Peyers’ patch lymphoid cells. II. Lipopolysaccharide is thymus dependent. J. Exp. Med. 139:407.
11. Andersson, B., and H. Blomgren. 1976. T-cell dependency of the response to PVP is dependent on maturity of B-cells. In Immune Reactivity of Lymphocytes. M. Feldman and A. Globersson, editors. Plenum Publishing Corp., New York. 283.
12. Little, G. R., and H. N. Eisen. 1967. In Methods in Immunology and Immunochemistry. C. A. Williams and M. W. Chase, editors. Academic Press, Inc., New York. 128.
13. Andersson, B., and H. Blomgren. 1971. Evidence for thymus-independent humoral antibody production in mice against polyvinyl pyrrolidone and E. coli lipopolysaccharide. Cell Immunol. 2:411.
14. Mitchison, N. A. 1971. The carrier effect in the secondary response to hapten-carrier conjugates. I. Measurement of the effect with transferred cells and objections to the local environment hypothesis. Eur. J. Immunol. 1:10.