A linear-time algorithm and analysis of graph Relative Hausdorff distance

Sinan G. Aksoy∗, Kathleen E. Nowak†, and Stephen J. Young‡

Abstract. Graph similarity metrics serve far-ranging purposes across many domains in data science. As graph datasets grow in size, scientists need comparative tools that capture meaningful differences, yet are lightweight and scalable. Graph Relative Hausdorff (RH) distance is a promising, recently proposed measure for quantifying degree distribution similarity. In spite of recent interest in RH distance, little is known about its properties. Here, we conduct an algorithmic and analytic study of RH distance. In particular, we provide the first linear-time algorithm for computing RH distance, analyze examples of RH distance between families of graphs, and prove several analytic results concerning the range, density, and extremal behavior of RH distance values.

Key words. Relative Hausdorff distance, degree distribution, graph similarity measure, network science

AMS subject classifications. 05C82, 05C07, 05C85

1. Introduction and Background. The need to quantify the similarity between graphs arises in domains ranging from graph sampling techniques [22, 23, 35], generative model selection [19, 27], botnet discovery [36], anomaly detection [21, 30], classification and clustering of graph ensembles [1, 12], and epidemic spreading [26, 29]. In choosing a similarity function, the data scientist has no dearth of options at her disposal. Graph edit distance [31], maximum common subgraph based distance [17], iterative vertex-neighborhood methods [8, 20], or indeed the difference in any selection of structural metrics like graph diameter, clustering coefficients, modularity, centrality, or eigenvalues, could potentially serve as similarity measures. However, as graph data becomes more massive, varied, and dense, there is an increasing need for comparison tools that are not only informative, but lightweight and scalable. In this regard, a number of tools unfortunately fall short. For example, while the aforementioned edit distance provides a nuanced and intuitive measure of similarity, its exact computation is NP-complete and even its approximation is APX-hard [24].

One quantity that is easy to extract from data, and often used when comparing graphs, is the degree distribution. Perhaps the most fundamental and oft-studied notion in network science, the degree distribution plays an important role in graph modeling, algorithms, and resilience [6, 11, 28]. Due partly to its tractability and heavy-tailed nature, the degree distribution is particularly important for analyzing massive graphs like the Internet [9, 16]. Notwithstanding its ubiquity and importance, the degree distribution has limitations in capturing network structure. For example, it is straightforward to construct ensembles of graphs with identical degree distributions but strikingly different structural properties [13]. Nonetheless, because of its practicality, accessibility, and interpretability, the degree distribution remains a key representation of interest in graph data analysis.

Despite the apparent popularity of degree distributions, there is little consensus on how to meaningfully quantify their similarity. Although elegant and succinct, closed-form charac-

∗Pacific Northwest National Laboratory, Richland, WA, 99352 (sinan.aksoy@pnnl.gov, kathleen.nowak@pnnl.gov, stephen.young@pnnl.gov).
terizations like the famous power-law are prone to statistical error when fitted to empirical data [10]. A number of general-purpose statistical tools for probability distributions, such as the Kolmogorov-Smirnov (KS) test statistic, Earth movers distance, or percentile methods [19], avoid imposing assumptions on degree distribution shape but, nonetheless, lack stringency in the graph setting [4, 25, 32]. Last but not least, researchers have proposed feature extraction methods which, based on the standard deviation of the degree distribution, extract a fixed-length feature vector from the degree distribution which is then used to define a distance function between distributions [4]. While a single, definitive metric for degree distribution comparison is clearly unrealistic, we believe a detailed, analytic study of the metrics themselves provides utility and garners insight into what the different metrics capture.

In this work, we conduct and algorithmic and analytical study of a newly proposed, sophisticated measure of degree distribution similarity called Relative Hausdorff (RH) distance. Graph RH distance was first introduced by Simpson, Seshadhri and McGregor [32] in the context of small-space streaming algorithms. Given a sequence or stream of edges e_1, \ldots, e_m of a graph, they devised an algorithm to estimate the graph’s degree distribution when only a small fraction (typically less than 1%) of the edge stream can be stored in memory at a time before being forgotten. In order to score the performance of this algorithm, they sought a similarity measure by which to quantitatively compare two graph degree distributions. Unsatisfied with the flaws in some of the aforementioned metrics such as KS distance, they devised a new measure inspired by the Hausdorff metric from topology [18], aimed at capturing degree distribution closeness at all scales. They suggest that RH distance is particularly well-suited for heavy-tailed degree distributions, and use examples and experiments to argue that it is flexible yet captures important differences in degree distributions ignored by other metrics. However, despite a spate of subsequent work [3, 14, 25, 34] applying RH distance to graph data, as well as recent work by the authors analyzing RH distance as an anomaly-detection method in cyber-security applications [2], little is known about the fundamental properties of this metric.

We organize our work as follows: in Section 2, we define the original RH metric, as well as related variants from the literature. In Section 3, improving upon a previously known quadratic algorithm, we propose a new algorithm for computing RH distance and show its time-complexity is linear in the maximum degrees of the graphs being compared. This algorithm is not only of practical interest, but also provides a blueprint for analytically determining the RH distance between families of graphs. In Section 4, we obtain closed-form solutions for the RH distance between common families of graphs; these examples demonstrate that, contrary to its description in the literature as a “distance metric,” RH distance does not satisfy the triangle inequality. In Section 5 we analyze the possible values one can attain when computing the RH distance between two graphs. In particular, we (1) determine the range of possible RH values by establishing sharp upper bounds on the maximum RH distance between graphs; (2) show that the RH distance is dense in the real numbers; and (3) characterize the extremal behavior of the RH distance between graphs on a fixed vertex set that differ by a single edge. Finally, in Section 6 we outline open questions on RH distance, and briefly suggest avenues for future work.
2. Preliminaries. The Relative Hausdorff distance between graphs is based on their complementary cumulative degree histograms (ccdh), which summarize their vertex degree counts. As the ccdh is closely related to the oft-mentioned degree sequence and degree distribution of graphs, we define all three below for clarity.

Definition 2.1. For an n-vertex graph $G = (V, E)$ with no isolated vertices, let $d(v)$ denote the degree of a vertex v.

(a) The degree sequence of G is $(d(v_i))_{i=1}^n$.
(b) The degree distribution (i.e. degree histogram) of G is $(n(k))_{k=1}^∞$, where $n(k) = |\{v \in V : d(v) = k\}|$.
(c) The complementary cumulative degree histogram (ccdh) of G is $(N(k))_{k=1}^∞$, where $N(k) = \sum_{i=k}^∞ n(i)$.

Up to vertex labeling, all three of the above notions are equivalent in the sense that, for a given graph, each can be uniquely obtained from any of the others. However, for ease of exposition, it is often preferable to summarize degree counts using the ccdh, which (as noted in [32]) is typically less noisy than the degree distribution and additionally has the nice property of being monotonically decreasing. When clear from context, we will slightly abuse notation and write $F(d)$ for a graph F to mean the value of the ccdh of F at d. Furthermore, we let $\Delta(F)$ denote the maximum degree of graph F. Below, we present the original definition of RH distance, using slightly different notation than in [32].

Definition 2.2 (Discrete RH [32]). Let F, G be graphs. The discrete directional Relative Hausdorff distance from F to G, denoted $\overrightarrow{RH}_d(F, G)$, is the minimum ϵ such that

$$\forall d \in \{1, \ldots, \Delta(F)\}, \exists d' \in \{1, \ldots, \Delta(G)+1\} \text{ such that } |d-d'| \leq \epsilon d \text{ and } |F(d) - G(d')| \leq \epsilon F(d).$$

We call $\mathcal{RH}_d(F, G) = \max\{\overrightarrow{RH}_d(F, G), \overleftarrow{RH}_d(G, F)\}$ the discrete Relative Hausdorff distance between F and G.

By definition, $\mathcal{RH}_d(F, G) = \epsilon$ means that for every degree k in the graph F, $F(k)$ is within ϵ-fractional error of some $G(k')$, where k' is within ϵ-fractional error of k. In this sense, the RH measure is flexible in accommodating some error in both vertex degree values as well as their respective counts, yet strict in requiring that every point in F be ϵ-close to G (and vice versa). Crucially, we note that the ccdh underlying Definition 2.2 is defined on a discrete domain.

In [25, 34], Matulef and Stolman argue that the discrete domain of the ccdh in the above definition of RH distance poses a potential flaw. In particular, they note that this may lead to counterintuitively large RH distances between pairs of graphs which are intuitively similar. Indeed, they give an example1 of two graphs on the same vertex set which differ only by a single edge, yet still have (very large) RH distance of 1, for all values of n. To ameliorate this issue, they propose using a smooth ccdh in which each successive pair of points is connected via line segments. More formally, we define the smooth ccdh as follows.

1Let G consist of the complete bipartite graph $K_{2, n-2}$ and G' be the same graph with one edge removed. By examining their respective ccdhs, it is clear that $|G'(n) - G(d)| \geq 1$ for every d; hence RH distance as given in Definition 2.2 is 1.
Definition 2.3. For a graph \(G = (V, E) \), let \(f(k) = |\{v : d(v) \geq k\}| \). The smooth ccdh of a graph \(G \) is a function \(\varphi : \mathbb{Z}_{\geq 1} \times [0, 1) \rightarrow \mathbb{R}_{\geq 0} \) defined by
\[
\varphi(x, \epsilon) = (1 - \epsilon)f(x) + \epsilon f(x + 1).
\]
For ease of notation, we may write \(\varphi(x) := \varphi([x], x - [x]) \).

Using smooth ccdhs, the smooth RH distance is defined analogously as in Definition 2.2, except \(d' \) can now assume non-integer values.

Definition 2.4 (Smooth RH [25, 34]). Let \(F, G \) be graphs. The smooth directional Relative Hausdorff distance from \(F \) to \(G \), denoted \(\vec{\rho}_H(F, G) \), is the minimum \(\epsilon \) such that
\[
\forall d \in \{1, \ldots, \Delta(F)\}, \exists d' \in [1, \Delta(G) + 1) \text{ such that } |d - d'| \leq \epsilon d \text{ and } |\varphi_F(d) - \varphi_G(d')| \leq \epsilon \varphi_F(d).
\]
We call \(\rho_H(F, G) = \max\{\vec{\rho}_H(F, G), \vec{\rho}_H(G, F)\} \) the smooth Relative Hausdorff distance between \(F \) and \(G \).

Comparing Definitions 2.2-2.4, it is clear that for any pair of graphs, their smooth RH distance is at most their discrete RH distance. Henceforth, we focus exclusively on smooth RH distance and thus will abuse notation and use \(F(x) \) for \(\varphi_F(x) \).

3. A linear-time algorithm for RH Distance. The authors in [25, 32, 34] do not provide a pseudo-code specification of an algorithm for computing (discrete) RH distance between graphs. However, to supplement [34], Python code implementing a straightforward, quadratic-time algorithm for computing smooth RH distance was made publicly available [33]. Here, we devise a linear-time algorithm for computing RH distance in graphs. As an aside, we note that a linear-time algorithm for computing (non-graph) Hausdorff distance between convex polygons was given in [5], although the same techniques do not apply in the case of graph Relative Hausdorff distance.

Before beginning the analysis of the \textsc{SmoothRHDist} and \textsc{SmoothRH} algorithms, we first introduce notation for the relative Hausdorff equivalent of a ball,
\[
\text{box}((x, y); \epsilon) = \{(s, t) \in \mathbb{R}^2 : |x - s| \leq \epsilon x, |y - t| \leq \epsilon y \}.
\]
Note that if the smooth ccdh \(H \) intersects this region, then the relative Hausdorff distance between \((x, y) \) and \(H \) is at most \(\epsilon \). Furthermore, since a smooth ccdh is monotonically non-increasing, in order to determine its relationship with \(\text{box}((x, y); \epsilon) \) it suffices to consider the value of the ccdh at the points \((1 - \epsilon)x\) and \((1 + \epsilon)x\), see Figure 1. Additionally, if the distance between \((x, y) \) and \(H \) is exactly \(\epsilon \), then either \(H \) passes through \(\ell \), \(r \), \(H(1) = (1 - \epsilon)y \), or \(\Delta(H) + 1 = (1 - \epsilon)x \). With these observations in hand, we note that the following lemma follows immediately from the linearity of the coordinates of \(\ell \) and \(r \) in terms of \(\epsilon \).

Lemma 3.1. Algorithm \textsc{SmoothRHDist} correctly calculates the maximum of \(\epsilon \) and the relative Hausdorff distance between the point \((x, y) \) and the complimentary cumulative degree distribution \(H \).

We note that a cursory examination of \textsc{SmoothRH} and \textsc{SmoothRHDist} reveals that running time of \textsc{SmoothRHDist} is driven by the number of times the while loops at Line 7
Algorithm 3.1 Maximum of ϵ and smooth RH distance from (x, y) to H

procedure SmoothRHdist($(x, y), H)$
1: $(\ell_x, \ell_y) \leftarrow ((1 - \epsilon)x, (1 - \epsilon)y)$ \text{\triangleright lower left corner of box($(x, y); \epsilon$)}
2: $(r_x, r_y) \leftarrow ((1 + \epsilon)x, (1 + \epsilon)y)$ \text{\triangleright upper right corner of box($(x, y); \epsilon$)}
3: if $\Delta_H + 1 < \ell_x$ and $\ell_y \leq 0$ then \text{\triangleright edge case: box($(x, y); \epsilon$) is to right of H and contains $y = 0$}
4: return $1 - \Delta_H + 1$ \text{\triangleright H passes below box($(x, y); \epsilon$)}
5: else if $(H(\max\{1, \ell_x\}) < \ell_y)$ then
6: $j \leftarrow \max\{1, \lceil \ell_x \rceil\}$
7: while $H(j - 1) < \frac{(j - 1)y}{x}$ and $j > 1$ do
8: $j \leftarrow j - 1$
9: end while
10: if $\Delta_H + 1 \leq j - 1$ then
11: return $1 - \frac{\Delta_H + 1}{x}$
12: else if $j = 1$ then
13: return $1 - \frac{H(1)}{y}$
14: else
15: return $\frac{y + (x - j)H(j - 1) - (x - j + 1)H(j)}{y + x(H(j - 1) - H(j))}$
16: end if
17: else if $r_x < \Delta_H + 1$ and $H(r_x) > r_y$ then \text{\triangleright H passes above box($(x, y); \epsilon$)}
18: $j \leftarrow \lfloor r_x \rfloor$
19: while $H(j + 1) > \frac{(j + 1)y}{x}$ do
20: $j \leftarrow j + 1$
21: end while
22: return $\frac{(j + 1 - x)H(j) + (x - j)H(j + 1) - y}{y + x(H(j) - H(j + 1))}$ \text{\triangleright H passes through box($(x, y); \epsilon$)}
23: else
24: return ϵ
25: end if

Algorithm 3.2 Smoothed Relative Hausdorff distance between the ccdhs F and G

procedure SmoothRH(F, G)
1: $\epsilon \leftarrow 0$
2: $\Delta \leftarrow \max\{\Delta_G, \Delta_F\}$ \text{\triangleright maximum degree occurring in F or G}
3: for $i \in 1, \ldots, \Delta$ do
4: if $i \leq \Delta_F$ then
5: $\epsilon \leftarrow \text{SmoothRHdist}((i, F(i)), G, \epsilon)$
6: end if
7: if $i \leq \Delta_G$ then
8: $\epsilon \leftarrow \text{SmoothRHdist}((i, G(i)), F, \epsilon)$
9: end if
10: end for
11: return ϵ
Figure 1. An illustration of $\text{box}((x, y); \epsilon)$ together with ccdh’s passing above (red), through (blue), and below (green) the box.

and 19 are executed. It is easy to see that this gives an $O(\Delta_F^2 + \Delta_G^2)$ upper bound on the run time. We will in fact show that these while loops are entered at $\Delta_F + \Delta_G$ times giving a overall run time of $O(\Delta_F + \Delta_G)$. To that end consider the following lemma which is relevant to the execution of line 7.

Lemma 3.2. Let F and G be two ccdhs, let $\epsilon > 0$, and let $j < i$ such that $j < (1 - \epsilon)i$ and $G(j) < (1 - \epsilon)F(i)$, then the smooth RH distance from $(j, G(j))$ to F is strictly bigger than ϵ.

Proof. Since F is a ccdh, we note that for all $1 \leq k \leq i$, $F(k) \geq F(i)$. Furthermore, since $G(j) < (1 - \epsilon)F(i)$, we know that

$$(1 + \epsilon)G(j) < (1 + \epsilon)(1 - \epsilon)F(i) = (1 - \epsilon^2)F(i) < F(i) \leq F(k).$$

Since $(1 + \epsilon)j < i$, this gives that $\text{box}((j, G(j)); \epsilon)$ does not contain any element of F and so the smooth RH distance from $(j, G(j))$ to F is strictly bigger than ϵ.

This lemma immediately implies that the while loop starting at line 7 in SMOOTHRHDIST is never entered when run as a subroutine of SMOOTHRH. Specifically, if on iteration i, if given an index j and a specific value δ for the variable ϵ, the while loop would have been entered, then after iteration j the value of ϵ is strictly bigger than δ.

Now for the while loop starting at line 19, we note that right vertical boundaries of the boxes in SMOOTHRH move monotonically rightward as a function of i. Thus, if a value of j leads to iteration of the while loop on line 19, then in all subsequent iterations that value will not be considered. Thus we have the following result about the overall run time of SMOOTHRH.

Theorem 3.3. The algorithm SMOOTHRH calculates the smooth Relative Hausdorff distance between two complimentary cumulative degree distributions F and G in time at most $\Theta(\Delta_G + \Delta_F)$.
4. **Examples and the triangle inequality.** In introducing both discrete [32] and smooth [25] RH distance, the authors examine RH distance on simple families of graphs to illustrate its behavior and compare it with other degree-based comparison metrics. In this section, we prove a lemma useful for analytically determining RH distance between graphs whose degree sequence satisfies certain properties. Applying this lemma, we find closed-form expressions for RH distance between complete graphs of different sizes, and between the complete graph and cycle. We then analyze these examples to show RH distance does not satisfy the triangle inequality, nor can the definition of RH distance be modified in certain ways to satisfy the triangle inequality.

Lemma 4.1. Let F and G be graphs and suppose that F has no vertices of degree k for $d \leq k \leq d'$. Let $1 \leq x, x' \leq \Delta(G) + 1$ and $\epsilon > 0$ such that

\[
|d - x| \leq \epsilon d, \quad |F(d) - G(x)| \leq \epsilon F(d), \quad \text{and} \quad |d' + 1 - x'| \leq \epsilon(d' + 1), \quad |F(d' + 1) - G(x')| \leq \epsilon F(d' + 1).
\]

Then for all $d < \delta < d' + 1$, G intersects box($(\delta, F(\delta)); \epsilon$).

Proof. We can choose x and x' such that $x \leq x'$ so assume they are chosen as such. Fix $d < \delta < d' + 1$ and note that since there are not vertices of degree between d and d', we have that there is some $y = F(d) = F(\delta) = F(d' + 1)$. By assumption we have that box($(d, y); \epsilon$) and box($(d' + 1, y); \epsilon$) both intersect the smooth ccdh of G. Noting that

\[
(1 + \epsilon)F(\delta) \geq G(x) \geq G(x') \geq (1 - \epsilon)F(\delta),
\]

G is monotonically decreasing and $[x, x'] \cap [(1 - \epsilon)\delta, (1 + \epsilon)\delta] \neq \emptyset$, completes the proof. □

As a practical consequence of Lemma 4.1, it suffices to consider the end points of the plateaus present in the smooth ccdh of F when calculating $R\mathcal{H}(F, G)$. This observation makes it a straightforward exercise to verify the following result:

Lemma 4.2. Let $3 \leq n \leq m$, then $R\mathcal{H}(K_n, K_m) = \frac{m-n}{n}$.

Proof. By Lemma 4.1 it suffices to consider the RH distance from $(1, n)$ and $(n - 1, n)$ to the ccdh of K_m and from $(1, m)$ and $(m - 1, m)$ to ccdh of K_n. We note that for any $\delta > 0$, the upper right corner of box($(1, n); \frac{m-n}{n} - \delta$) is $(\frac{m-n}{n} - \delta, m - \delta)$.

As $\frac{m-n}{n} - \frac{m-\delta n}{n} < m$, this implies that $R\mathcal{H}(K_n, K_m) \geq \frac{m-n}{n}$. To show that $R\mathcal{H}(K_n, K_m) \leq \frac{m-n}{n}$, we first note that $(1 - \frac{m-n}{n})m = 2m - \frac{m^2}{n} \leq n$, and so box($(x, m); \frac{m-n}{n}$) contains a point on the ccdh of K_n as long as $(1 - \frac{m-n}{n})x \leq n - 1$. This is obvious for $x = 1$ and for $x = m - 1$ the inequality $(2n - m)(m - 1) \leq n(n - 1)$ can be rearranged in to $m - n \leq (m - n)^2$ which clearly holds. Now we note that box($(x, m); \frac{m-n}{n}$) contains (x, m) on the boundary and thus $R\mathcal{H}(K_n, K_m) = \frac{m-n}{n}$.

Along similar lines it is relatively straightforward, but tedious to derive closed-form expressions of RH distance between different families of graphs, such as the complete graph and cycle:
Lemma 4.3. Let $3 \leq n, m$, then

$$\mathcal{RH}(K_n, C_m) = \begin{cases} \frac{n - 1}{m} & 3 \leq m < \frac{n^2 - 3n + \sqrt{n^4 + 2n^2 - 11n}}{4n - 10} \\ 1 - \frac{3m}{n + nm - m} & 5 \leq n < m \leq \frac{n^2 - 3n + \sqrt{n^4 - 4n^3 + 7n^2}}{n - 1} \\ \frac{m}{n} - 1 & 2n < m \leq 2n \end{cases}$$

In addition to illustrating the nuance of RH distance values even for simple examples like the complete graph and cycle, such closed-form expressions are also useful in revealing mathematical properties of RH distance. For instance, a cursory analysis of the closed-form expression in Lemma 4.2 reveals that, while the RH measure clearly satisfies the non-negativity and symmetry axioms defining a distance metric, RH distance does not satisfy the triangle inequality: observe that $\mathcal{RH}(K_3, K_4) + \mathcal{RH}(K_4, K_5) = 7/12 < 2/3 = \mathcal{RH}(K_3, K_5)$. A natural, subsequent question is whether RH distance satisfies a c-relaxed triangle inequality, a triangle inequality variant that has been utilized in pattern matching [15], of the form

$$\mathcal{RH}(X, Y) + \mathcal{RH}(Y, Z) \geq c \cdot \mathcal{RH}(X, Z),$$

for some fixed $c \leq 1$. However, a closer analysis of the closed-form expression in Lemma 4.2 reveals that a c-relaxed triangle inequality is also impossible.

Claim 4.4 (Relaxed triangle inequality impossible). For any $\epsilon > 0$, there exist graphs F, G, H such that

$$\frac{\mathcal{RH}(F, G) + \mathcal{RH}(G, H)}{\mathcal{RH}(F, H)} < \epsilon.$$

Proof. We take F, G and H as the complete graph on x, y and cx vertices, respectively, for some constant $c > 1$ where $x < y < cx$. Using the closed-formula for the RH distance between complete graphs provided in Lemma 4.2, the ratio in question is

$$f(y) := \frac{1}{c - 1} \left(\frac{y}{x} + \frac{cy}{y} - 2 \right),$$

and choosing $y = \sqrt[3]{cx}$ which minimizes f, we see that $f(\sqrt[3]{cx}) \to 0$ as $c \to \infty$.

Lastly, we consider the possibility that the definition of RH distance itself could be modified in some way so that it satisfies the triangle inequality. Recall that the RH distance between graphs G and F is the maximum of the two directional RH distances between G and F. Instead of taking the extreme values of directional RH distance, one approach may be to “regularize” RH distance by taking some weighted average of directional RH distances. However, we provide a simple counterexample below to show no positive linear combination of maximum or minimum directional RH distances defines a bona-fide distance metric.

Claim 4.5. There exists no positive linear combination of $\min\{\mathcal{RH}^{-}(F,G), \mathcal{RH}^{-}(G,F)\}$ and $\max\{\mathcal{RH}^{+}(F,G), \mathcal{RH}^{+}(G,F)\}$ which defines a distance metric on graphs.
Proof. Consider the three trees on 6 vertices illustrated in Figure 2. A straightforward computation shows

\[\overrightarrow{\mathcal{RH}}(F, G) = \frac{1}{3} \quad \text{and} \quad \overrightarrow{\mathcal{RH}}(G, F) = \frac{1}{12} \]
\[\overrightarrow{\mathcal{RH}}(F, H) = 1 \quad \text{and} \quad \overrightarrow{\mathcal{RH}}(H, F) = \frac{1}{2} \]
\[\overrightarrow{\mathcal{RH}}(H, G) = \frac{1}{5} \quad \text{and} \quad \overrightarrow{\mathcal{RH}}(G, H) = \frac{1}{7} \]

from which we observe that no positive linear combination of the maximum and minimum of the directional RH measures will always satisfy the triangle inequality since for any \(a, b > 0 \), we have

\[2(a + b/2) > a\left(\frac{1}{3} + 1 + \frac{1}{5}\right) + b\left(\frac{1}{12} + \frac{1}{2} + \frac{1}{7}\right). \]

In short, the notion of RH distance has seemingly intrinsic barriers to satisfying the triangle inequality. We note that RH distance’s status as a bona-fide distance metric may not solely be a question of theoretical interest since performing graph distance computations over objects embedded in a metric space can sometimes have practical benefits, such as faster graph algorithms \([7]\). Next, we consider other analytic properties of RH distance useful for understanding its behavior.

5. Range, density, and extremal properties of RH distance. In this section, we derive several analytic results on RH distance which characterize the range, density and extremal behavior of RH distance values.

5.1. Range. A number of distance metrics, such as KS distance, are (by definition) bounded between 0 and 1. This normalization is a desirable property and facilitates interpretability when comparing distances between pairs of graphs of varying sizes. In the case of RH distance, while the Simpson et al. \([32]\) note “RH distance can exceed 1”, no upper bound is known. Below, we establish a sharp upper bound on RH distance. We also note this upper bound allows one to define an RH similarity measure, in the spirit of cosine similarity, with values always in the interval \([0, 1]\). However, as we see below, since the maximum RH distance between graphs is on the order of the number of vertices of the larger graph, RH similarity values between large graphs are likely to be extremely close to 1. Hence, practitioners may choose to transform RH similarity values or simply opt to use smooth RH distance instead.

Theorem 5.1. Let \(\mathcal{G}_k \) denote the set of all graphs on \(k \) vertices. If \(n \leq m \) then

\[\max_{F \in \mathcal{G}_n, \ G \in \mathcal{G}_m} \mathcal{RH}(F, G) = \begin{cases} \frac{m^2}{2} - 1 & n = 2, \\ \frac{m^2}{2m+1} - 1 & n \geq 3, \ m \geq 4. \end{cases} \]
Proof. We first consider the case where \(n = 2 \) and \(m \geq 3 \). We note that \(K_2 \) is the unique graph on two vertices with no isolated vertices. Thus since \(\{ (1, i) \mid i \in [2, m] \} \subset \text{box}((1, 2); \frac{m}{2} - 1) \), we have that

\[
\max_{\substack{F \in \mathcal{G}_2 \\ G \in \mathcal{G}_m}} \mathcal{R}(F, G) > \frac{m}{2} - 1
\]

if and only if there is some \(G \in \mathcal{G}_m \) such that \(\mathcal{R}(G, K_2) > \frac{m}{2} - 1 \).

Now we note that \(\text{box}((x, G(x)); \frac{m}{2} - 1) \) contains the point \((1, 2)\) for all \(x \in Z_{\geq 1} \) when \(m \neq 3 \). Thus, we are left to consider when \(m = 3 \). In this case, \(\mathcal{R}(P_3, K_2) = \mathcal{R}(K_3, K_2) = \frac{1}{2} \). Thus, there is no \(G \in \mathcal{G}_m \) such that \(\mathcal{R}(G, K_2) > \frac{m}{2} - 1 \). Finally, it is easy to verify that \(\mathcal{R}(K_2, K_m) = \frac{m}{2} - 1 \), which completes the case when \(n = 2 \).

For ease of notation, in the remainder of the proof we will define \(\epsilon_m \) as \(\frac{m^2}{2m+1} - 1 \). Suppose now that \(F \) has exactly one vertex of degree greater than 1 and that \(G = K_m \). Then

\[
\text{box}((2, 1); \epsilon_m) = \left[2 - 2\epsilon_m, \frac{2m^2}{2m+1} \right] \times \left[1 - \epsilon_m, \frac{m^2}{2m+1} \right]
\]

which intersects the ccdh for \(G \) precisely on the line between \((m - 1, m)\) and \((m, 0)\). Thus \(\mathcal{R}(F, G) \geq \epsilon_m \). Thus it suffices to show that for arbitrary choices of \(F \) and \(G \), \(\mathcal{R}(F, G) \leq \epsilon_m \).

Now consider the case where \(3 \leq n \) and \(5 \leq m \). Since \(\epsilon_m > 1 \) we have that for any \((x, y) \in Z^2 \), \(\text{box}((x, y); \epsilon_m) \) contains the set \([0, m] \times \{ y \}\) if \(x > 2 \) and the set \(\{ x \} \times [0, m] \) if \(y > 2 \). In particular, this implies that if \(F \in \mathcal{G}_n \) and \(G \in \mathcal{G}_m \) then \(\mathcal{R}(F, G) \leq \epsilon_m \) unless one of \(F(2) \) or \(G(2) \) is in \(\{1, 2\} \), as both \(\text{box}((1, G(1)); \epsilon_m) \) and \(\text{box}((1, F(1)); \epsilon_m) \) contain the points \((1, n)\) and \((1, m)\) since \(3 \leq n, m \). We now consider the intersection of the final line segment in a ccdh and the boxes around \((2, 1)\) and \((2, 2)\). To this end, let the endpoints of the final line segment be \((\Delta, c)\) and \((\Delta + 1, 0)\). Now we note that \([0, \frac{2m^2}{2m+1}] \times \{ 0 \} \subset \text{box}((2, 1); \epsilon_m) \cap \text{box}((2, 2); \epsilon_m) \) and thus contains \((\Delta + 1, 0)\) unless \(\Delta = m - 1 \). It is then a simple algebraic exercise to show that the line segment \((m - 1, c)\) to \((m, 0)\) intersects \(\text{box}((2, 1); \epsilon_m) \cap \text{box}((2, 2); \epsilon_m) \) for all \(c \leq m \). As \(c \) is at most \(m \) by definition, this completes the this case.

The only remaining cases are when \(m = 3, 4 \). Consider first when \(n = m = 3 \). In this case, either the ccdhs are identical or one is \((3, 1)\) and the other is \((3, 3)\). Given that the only integer point these differ on is \(d = 2 \), it suffices to consider

\[
\text{box}((2, 1); \epsilon_3) = \text{box}((2, 1); \frac{2}{7}) = [\frac{10}{7}, 18/7] \times [5/7, 9/7].
\]

Noting that the point \((18/7, 9/7)\) is on the line segment between \((2, 3)\) and \((3, 0)\) completes this case.

To consider the case where \(m = 4 \) and \(n = 3, 4 \), we first fix some \(F \in \mathcal{G}_3 \cup \mathcal{G}_4 \) and \(G \in \mathcal{G}_4 \) and suppose that \(\mathcal{R}(F, G) > \epsilon_4 \). Noting that the only valid ccdhs on 4 vertices are \(\{ (4), (4, 2), (4, 4), (4, 1, 1), (4, 3, 1), (4, 4, 2), (4, 4, 4) \} \), it suffices to examine the boxes around a set of 9 points given in Table 1. From Table 1 it is clear that we can restrict ourselves to the
case where one of F or G passes through one of $(2, 1)$, $(2, 2)$, $(3, 1)$ or $(3, 2)$. Furthermore, since these boxes all contain the line segment $[1, 3] \times \{1\}$ we have that the other graph must have at least two vertices of degree 3. Thus we may assume without loss of generality that the ccdh for F passes through one $S = \{(2, 1), (2, 2), (3, 1), (3, 2)\}$ and the ccdh for G is either $(4, 4, 2)$ or $(4, 4, 4)$. In particular, the ccdh for G at $\frac{32}{9}$ either passes through $\frac{8}{9}$ or $\frac{16}{9}$, respectively. As these points are in $\text{box}(s; \epsilon_4)$ for all $s \in S$, this completes the proof.

5.2. Density. When quantifying the similarity between discrete objects like graphs, it is important to understand the breadth of possible values that can be assumed. In the case of the RH distance between graphs, such questions are more meaningful when considered asymptotically, since it is trivially true that for any fixed n, there are a finite number of n-vertex graphs and hence a limited number of possible RH distance values. Below, we show that RH distance is dense in the real numbers, in the following sense:

Theorem 5.2. Let $c \in (0, \frac{1}{2}]$. There exists a sequence of pairs of graphs $\{(F_{n_i}, G_{n_i})\}_i$, each on n_i vertices, such that

$$\lim_{i \to \infty} \frac{\mathcal{RH}(F_{n_i}, G_{n_i})}{n_i} = c.$$

Proof. First we note that $\frac{1}{\delta}$ can be expressed as $k + \delta$ where k is a positive integer that is at least 2 and $\delta \in [0, 1)$. Now let $\{n_i\}$ be the sequence of odd positive integers such that $2k + 4 \leq n_1$ and $\left\lceil \frac{4n}{k+\delta} \right\rceil = \left\lfloor c \delta n_i \right\rfloor$ is even. We note that this sequence is infinite and has a bounded gaps between successive entries. In particular, for every (sufficiently large) positive integer t there exists an odd n such that $\left\lceil \frac{4n}{k+\delta} \right\rceil = 2t$. To see this, we note that it suffices to show that there is an odd integer such that $(2t - 1) < \frac{4n}{k+\delta} \leq 2t$. Rearranging this expression, we get

$$2t \left(1 + \frac{k}{\delta} \right) - \left(1 + \frac{k}{\delta} \right) < n \leq 2t \left(1 + \frac{k}{\delta} \right).$$

As the gap between the upper and lower bounds on n is $1 + \frac{k}{\delta} > 3$, there is at least one odd integer for every choice of t and the gap between successive such odd integers is bounded by

(x, y)	$box((x, y); \epsilon_4)$	contains $(1, 3)$	contains $(1, 4)$	contains $[1, 3] \times \{1\}$
$(1, 3)$	$\left[\frac{2}{9}, \frac{16}{9} \right] \times \left[\frac{6}{9}, \frac{48}{9} \right]$	X	X	X
$(1, 4)$	$\left[\frac{2}{9}, \frac{16}{9} \right] \times \left[\frac{6}{9}, \frac{64}{9} \right]$	X	X	X
$(2, 1)$	$\left[\frac{4}{9}, \frac{32}{9} \right] \times \left[\frac{2}{9}, \frac{16}{9} \right]$	X	X	X
$(2, 2)$	$\left[\frac{4}{9}, \frac{32}{9} \right] \times \left[\frac{4}{9}, \frac{32}{9} \right]$	X	X	X
$(2, 3)$	$\left[\frac{4}{9}, \frac{32}{9} \right] \times \left[\frac{6}{9}, \frac{48}{9} \right]$	X	X	X
$(2, 4)$	$\left[\frac{4}{9}, \frac{32}{9} \right] \times \left[\frac{8}{9}, \frac{64}{9} \right]$	X	X	X
$(3, 1)$	$\left[\frac{6}{9}, \frac{48}{9} \right] \times \left[\frac{2}{9}, \frac{16}{9} \right]$	X	X	X
$(3, 2)$	$\left[\frac{6}{9}, \frac{48}{9} \right] \times \left[\frac{4}{9}, \frac{32}{9} \right]$	X	X	X
$(3, 4)$	$\left[\frac{6}{9}, \frac{48}{9} \right] \times \left[\frac{8}{9}, \frac{64}{9} \right]$	X	X	X

Table 1

Relative Hausdorff boxes around points relevant to maximum $\mathcal{RH}(F, G)$.

a function of k and δ.

We now define G_n, as a r_i-regular graph on n_i vertices, where $r_i = \left\lfloor \frac{k}{k+\delta} n_i \right\rfloor - 1$. Note that $n_i - r_i = n_i - \left\lfloor \frac{k}{k+\delta} n_i \right\rfloor + 1 = \left\lfloor \frac{\delta}{k+\tau} n_i \right\rfloor + 1$, which is odd. Thus n_i and r_i have opposite parities, and so $r_i n_i$ is even and such a graph exists. We form F_{n_i} by creating a $(k - 2)$-regular graph on $n_i - 1$ vertices and adding a dominating vertex. Note that the ccdh of G_{n_i} is n_i repeated r_i times while the ccdh of F_{n_i} is n_i repeated $k - 1$ times followed by 1, $n_i - k$ times.

We will show that $\mathcal{RH}(F_{n_i}, G_{n_i}) = \tau$ where $\tau = \frac{(r_i - k + 1) n_i - 1}{kn_i + 1}$. We first note that

$$r_i \geq \left\lfloor \frac{k(2k + 4)}{k + \delta} \right\rfloor - 1 \geq \left\lfloor \frac{2k^2 + 4k}{k + 1} \right\rfloor - 1 = 2k$$

and thus the ccdhs G_{n_i} and F_{n_i} coincide on the interval $[1, k - 1]$. Thus by Lemma 4.1, in order to show that $\mathcal{RH}(F_{n_i}, G_{n_i}) \leq \tau$, it suffices to show that F_{n_i} intersects $\text{box}((r_i, n_i); \tau)$ and that G_{n_i} intersects both $\text{box}((k, 1); \tau)$ and $\text{box}((n_i - 1, 1); \tau)$. Now as $r_i - k + 1 \geq 2k - k + 1 = k + 1$, we have that $\tau > 1$. Thus, trivially, F_{n_i} intersects $\text{box}((r_i, n_i); \tau)$ and G_{n_i} intersects $\text{box}((n_i - 1, 1); \tau)$. Now consider $\text{box}((k, 1); \tau)$ and note that its upper right coordinate is

$$\left(\frac{(r_i + 1) n_i}{kn_i + 1}, \frac{(r_i + 1) n_i}{kn_i + 1} \right).$$

Since

$$r_i < \frac{(r_i + 1) n_i}{kn_i + 1} k < r_i + 1,$$

and

$$-n_i \left(\frac{(r_i + 1) n_i}{kn_i + 1} k - r_i \right) + n_i = -n_i \frac{kn_i - r_i}{kn_i + 1} + n_i = \frac{-kn_i^2 + r_i n_i + kn_i^2 + n_i}{kn_i + 1} = \frac{(r_i + 1) n_i}{kn_i + 1},$$

we have that $\text{box}((k, 1); \tau)$ touches G_{n_i} on the line between (r_i, n_i) and $(r_i + 1, 0)$. Further, since $\frac{(r_i + 1) n_i}{kn_i + 1} < n_i$, this implies that $\mathcal{RH}(F_{n_i}, G_{n_i}) = \tau$.

Finally, noting that

$$\lim_{i \to \infty} \frac{1}{n_i} \frac{(r_i - k + 1) n_i - 1}{kn_i + 1} = \lim_{i \to \infty} \left(\frac{\left\lfloor \frac{k}{k+\delta} n_i \right\rfloor - k}{n_i(kn_i + 1)} \right) n_i - 1 = \frac{1}{k + \delta} = c,$$

completes the proof.

5.3. Extremal edge deletion. In this section, we aim to uncover which minimal change in graph structure results in a maximal change in RH distance. On this topic, recall that in [25, 34] Matulef and Stolman give an example of two n-vertex graphs differing only by a single edge, yet with non-vanishing discrete RH distance and vanishing smooth RH distance, in order to to argue smooth RH distance fixes flaws in the discrete RH distance. Here, we investigate to what extent this property of (smooth) RH distance holds, not only for their particular example, but in general. Namely, we ask: over all possible pairs of n-vertex graphs
that differ by an edge, what is the maximum (smooth) RH distance, and which pair of graphs achieves this maximum?

As we soon will show, an RH extremal pair of edge-differing graphs is given by the star graph\(^*\) and a “perturbed” star graph containing an additional edge between pendant (i.e. degree 1) vertices. More generally, the extremal pair is given precisely by any such “star-degreed” graph, i.e.:

Definition 5.3. An \(n\)-vertex graph with precisely one degree \(k \geq 2\) vertex and \(n-1\) pendant vertices is called star-degreed.

Besides the star graph itself (on at least 3 vertices), disconnected graphs consisting of the disjoint union of a star on \(k \geq 3\) vertices and \(n-k/2\) many disjoint edges are also star-degreed.

Below, we calculate the discrete and smooth RH distance between a star-degreed graph \(S\) and graph \(S^x = S \cup e\) where \(e\) is any edge between pendant vertices in \(S\).

Claim 5.4 (Star-degreed vs perturbed star-degreed). For \(n \geq 5\), let \(S\) be a star-degreed graph, and let \(S^x = S \cup e\) where \(e\) is any edge between pendant vertices in \(S\). Then

1. \(\overline{RH}_d(S, S^x) = 1/2\) and \(\overline{RH}_d(S^x, S) = 2/3\).
2. \(\overline{RH}(S, S^x) = 2/5\) and \(\overline{RH}(S^x, S) = \frac{2}{2n+1}\).

Proof. Letting \(F\) and \(G\) denote the ccdhs of \(S\) and \(S^x\), respectively, it is clear that \(F(2) = 1\), \(G(2) = 3\), and \(F(d) = G(d)\) for all other \(d \in \mathbb{Z}_{\geq 1}\). We first prove (i). Fixing \(d = 2\), we note that \(\epsilon^* = \frac{1}{2}\) is the minimum \(\epsilon\) such that the set of integers \(\{(1 - \epsilon)d, \ldots, (1 + \epsilon)d\} \neq \{2\}\). Then since \(\{(1 - \epsilon^*)d, \ldots, (1 + \epsilon^*)d\} = \{1, 2, 3\}\) and

\[
\min_{d' \in \{1, 2, 3\}} \frac{|F(2) - G(d')|}{F(2)} = 0 < \frac{|F(2) - G(2)|}{F(2)} = 2,
\]

we have that \(\overline{RH}_d(S, S^x) = 1/2\). Now, switching the roles of \(F\) and \(G\), we observe \(|G(2) - F(d')|/G(2) \geq \frac{2}{5}\) for all \(d'\) when \(n \geq 5\), with equality holding if \(d' = 2\); hence \(\overline{RH}_d(S^x, S) = 2/3\).

Next, we prove (ii). Since for \(d' \in [1, 2]\), we have

\[
\frac{|F(2) - G(d')|}{F(2)} \geq \frac{|F(2) - G(2)|}{F(2)},
\]

it suffices to restrict attention to \(d' \in [2, 3]\). Rearranging \(\frac{|F(2) - G((1+\epsilon)d)|}{F(2)} \leq \epsilon\) yields \(\epsilon \geq 2/5\); hence \(\overline{RH}(S, S^x) = 2/5\). Now, switching the roles of \(F\) and \(G\), we observe \(|G(2) - F(d')|/G(2) = 2/3\) for all \(d' \geq 2\). For \(d' \in [1, 2]\), rearranging \(\frac{|G(2) - F((1-\epsilon)d)|}{G(2)} \leq \epsilon\) yields \(\epsilon \geq \frac{2}{2n+1}\); hence \(\overline{RH}(S^x, S) = \frac{2}{2n+1}\). \(\blacksquare\)

Below, we prove that the star-degreed and perturbed star-degreed graphs considered above form the extremal pair maximizing RH distance over all \(n\)-vertex graphs differing by an edge.

\(^2\)Recall that a star graph on \(n\) vertices is the complete bipartite graph, \(K_{1,n-1}\).
Theorem 5.5. Given $G = (V, E)$ and $e \notin E$, let $G \cup e$ denote the graph on V with $E = E(G) \cup e$. Then

$$\max_{G} \mathcal{RH}(G, G \cup e) = 2/5,$$

which is achieved by taking G to be a star-degreed graph and e as any edge between pendant vertices in G.

Proof. Let $G = (V, E)$ be a graph of order n and $e = xy \notin E$. Let F denote the ccdh of $G \cup e$. Then

$$F(d) = G(d) + \delta_{d,d(x)+1} + \delta_{d,d(y)+1},$$

where $\delta_{i,j}$ denotes the Kronecker delta function. Thus, we are left to consider when d equals either $d(x) + 1$ or $d(y) + 1$. Without loss of generality, let $d = d(x) + 1$. Next note that for any graph H, $H(1) = |V(H)|$ and $H(k + 1) = H(k) - n_k$, for $k \in \mathbb{Z}_{\geq 1}$, where n_k is the number of vertices in H with degree k. From this observation, it follows that $G(d - 1) = G(d) + n_{d-1} \geq F(d)$. Thus, since $G(d - 1) \geq F(d) \geq G(d) \geq F(d) - 2$ there exists d' such that $d - d' \leq \frac{2}{5} \leq \frac{2}{5}d$ and $G(d') = F(d) - \frac{2}{5}$, and so $\overline{\mathcal{RH}}(F, G) \leq \frac{2}{5}$. Now from the observation above, it also follows that $F(d + 1) \leq G(d)$. Thus, since $F(d + 1) \leq G(d) < F(d) \leq G(d) + 2$, there exists d' such that $d' - d \leq \frac{2}{5}d$ and $F(d') = G(d) + \frac{2}{5}$, and so $\overline{\mathcal{RH}}(G, F) \leq \frac{2}{5}$, as well. Therefore $\mathcal{RH}(G, F) \leq \frac{2}{5}$. Now suppose that $\mathcal{RH}(G, F) = \frac{2}{5}$. Then from our calculations above, we observe that $d = 2$ and $G(d) = 1$ so G must be star-degreed. Further, in this case when, for all d' such that $|d - d'| \leq \frac{2}{5}d$, $|G(d) - F(d')| \geq \frac{2}{5}G(d)$, and so

$$\max_{G} \mathcal{RH}(G, G \cup e) = 2/5,$$

with equality achieved precisely when G has no isolated vertices and one non-pendant vertex. \[\blacksquare\]

6. Conclusion and future work. We have conducted an algorithmic and analytic study of graph Relative Hausdorff distance, a newly proposed measure for quantifying similarity between degree distributions. Improving upon quadratic algorithms, we have devised a linear time algorithm for computing RH distance. Furthermore, we have conducted an analysis of the basic properties of RH distance, answering a number of natural questions concerning RH distance’s status as a bona-fide metric, its range and density of possible values, and its extremal behavior with regard to single edge deletions. While RH distance has so far been mainly applied in the context of evaluating streaming and sampling algorithms [14, 25, 32, 34], it is by no means limited to these applications. Indeed, the work in [2] shows RH distance can be used as anomaly detection method in time-evolving graphs, and is sometimes more sensitive to anomalies than the computationally-expensive edit distance. Nonetheless, more work is needed to determine how RH distance’s utility in applications; in this regard, additional comparative studies of RH distance against more established metrics whose behavior is better understood would be valuable. Last but not certainly least, we have not explored RH distance in stochastic settings. What is the expected RH distance between two instantiations of a random graph model, or between the expected degree sequence and that of a realization of the random graph model? Such results would not only be of interest in themselves, but provide a new way of quantifying the precision and accuracy of generative graph models in preserving degree distribution.
Acknowledgments. We would like to thank Emilie Purvine and Paul Bruillard for helpful discussions.

REFERENCES

[1] E. M. Airoldi, X. Bai, and K. M. Carley, Network sampling and classification: An investigation of network model representations, Decision Support Systems, 51 (2011), pp. 506–518, https://doi.org/10.1016/j.dss.2011.02.014.

[2] S. G. Aksoy, K. Nowak, E. Purvine, and S. J. Young, Relative hausdorff distance for network analysis, submitted, (2019).

[3] S. G. Aksoy, E. Purvine, E. Cotilla-Sanchez, and M. Halappanavar, A generative graph model for electrical infrastructure networks, Journal of Complex Networks, (2018), https://doi.org/10.1093/comnet/cny016.

[4] S. Aliakbari, J. Habibi, and A. Movaghar, Feature extraction from degree distribution for comparison and analysis of complex networks, The Computer Journal, 58 (2015), pp. 2079–2091, https://doi.org/10.1093/comjnl/bxv007.

[5] M. J. Atallah, A linear time algorithm for the hausdorff distance between convex polygons, Information Processing Letters, 17 (1983), pp. 207–209, https://doi.org/10.1016/0020-0190(83)90042-x.

[6] Barabasi and Albert, Emergence of scaling in random networks, Science (New York, N.Y.), 286 (1999), pp. 509–512.

[7] J. Bento and S. Ioannidis, A family of tractable graph distances, in Proceedings of the 2018 SIAM International Conference on Data Mining, Society for Industrial and Applied Mathematics, may 2018, pp. 333–341, https://doi.org/10.1137/1.9781611975321.38.

[8] V. D. Blondel, A. Gajardo, M. Heymans, P. Senellart, and P. V. Dooren, A measure of similarity between graph vertices: Applications to synonym extraction and web searching, SIAM Review, 46 (2004), pp. 647–666, https://doi.org/10.1137/s0036144502415960.

[9] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener, Graph structure in the web, Computer Networks, 33 (2000), pp. 309–320, https://doi.org/10.1016/s1389-1286(00)00083-9.

[10] A. Clauset, C. R. Shalizi, and M. E. J. Newman, Power-law distributions in empirical data, SIAM Review, 51 (2009), pp. 661–703, https://doi.org/10.1137/070710111.

[11] R. Cohen, K. Erez, D. ben Avraham, and S. Havlin, Resilience of the internet to random breakdowns, Physical Review Letters, 85 (2000), pp. 4626–4628, https://doi.org/10.1103/physrevlett.85.4626.

[12] L. da F. Costa, F. A. Rodrigues, G. Travieso, and P. R. V. Boas, Characterization of complex networks: A survey of measurements, Advances in Physics, 56 (2007), pp. 167–242, https://doi.org/10.1080/00018200701170527.

[13] J. C. Doyle, D. L. Alderson, L. Li, S. Low, M. Roughan, S. Shalunov, R. Tanaka, and W. Willinger, The “robust yet fragile” nature of the internet, Proceedings of the National Academy of Sciences, 102 (2005), pp. 14497–14502, https://doi.org/10.1073/pnas.0501426102.

[14] T. Eden, S. Jain, A. Pinar, D. Ron, and C. Seshadhri, Provable and practical approximations for the degree distribution using sublinear graph samples, in Proceedings of the 2018 World Wide Web Conference on World Wide Web - WWW ’18, ACM Press, 2018, https://doi.org/10.1145/3178876.3186111.

[15] R. Fagin and L. Stockmeyer, Relaxing the triangle inequality in pattern matching, International Journal of Computer Vision, 30 (1998), pp. 219–231, https://doi.org/10.1023/A:1008023416823.

[16] M. Faloutsos, P. Faloutsos, and C. Faloutsos, On power-law relationships of the internet topology, in Proceedings of the conference on Applications, technologies, architectures, and protocols for computer communication - SIGCOMM ’99, ACM Press, 1999, https://doi.org/10.1145/316188.316229.

[17] M.-L. Fernández and G. Valiente, A graph distance metric combining maximum common subgraph and minimum common supergraph, Pattern Recognition Letters, 22 (2001), pp. 753–758, https://doi.org/10.1016/s0167-8655(01)00017-4.

[18] F. Hausdorff, Grundzüge der Mengenlehre, American Mathematical Society, 1914.

[19] J. Janssen, M. Hurshman, and N. Kalyaniwalla, Model selection for social networks using graphlets,
[20] J. M. Kleinberg, *Authoritative sources in a hyperlinked environment*, Journal of the ACM, 46 (1999), pp. 604–632, https://doi.org/10.1145/324133.324140.

[21] T. LaFond, J. Neville, and B. Gallagher, *Anomaly detection in networks with changing trends*, in Outlier Detection and Description under Data Diversity at the International Conference on Knowledge Discovery and Data Mining, 2014.

[22] S. H. Lee, P.-J. Kim, and H. Jeong, *Statistical properties of sampled networks*, Physical Review E, 73 (2006), https://doi.org/10.1103/physreve.73.016102.

[23] J. Leskovec and C. Faloutsos, *Sampling from large graphs*, in Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD'06, ACM Press, 2006, https://doi.org/10.1145/1150402.1150479.

[24] C. L. Lin, *Hardness of approximating graph transformation problem*, in Algorithms and Computation, Springer Berlin Heidelberg, 1994, pp. 74–82, https://doi.org/10.1007/3-540-58325-4_168.

[25] K. M. Matulef, *Final report: Sampling-based algorithms for estimating structure in big data.*, tech. report, Sandia National Laboratory, Livermore, feb 2017, https://doi.org/10.2172/1367498.

[26] A. Montanari and A. Saberi, *The spread of innovations in social networks*, Proceedings of the National Academy of Sciences, 107 (2010), pp. 20196–20201, https://doi.org/10.1073/pnas.1004098107.

[27] S. Motallebi, S. Aliakbari, and J. Habibi, *Generative model selection using a scalable and size-independent complex network classifier*, Chaos: An Interdisciplinary Journal of Nonlinear Science, 23 (2013), p. 043127, https://doi.org/10.1063/1.4840235.

[28] M. E. J. Newman, *The structure and function of complex networks*, SIAM Review, 45 (2003), pp. 167–256, https://doi.org/10.1137/s003614450342480.

[29] R. Pastor-Satorras and A. Vespignani, *Epidemic dynamics in finite size scale-free networks*, Physical Review E, 65 (2002), https://doi.org/10.1103/physreve.65.035108.

[30] S. Ranshous, S. Shen, D. Koutra, S. Harenberg, C. Faloutsos, and N. F. Samatova, *Anomaly detection in dynamic networks: a survey*, Wiley Interdisciplinary Reviews: Computational Statistics, 7 (2015), pp. 223–247, https://doi.org/10.1002/wics.1347.

[31] A. Sanfeliu and K.-S. Fu, *A distance measure between attributed relational graphs for pattern recognition*, IEEE Transactions on Systems, Man, and Cybernetics, SMC-13 (1983), pp. 353–362, https://doi.org/10.1109/tsmc.1983.6313167.

[32] O. Simpson, C. Seshadhri, and A. McGregor, *Catching the head, tail, and everything in between: A streaming algorithm for the degree distribution*, in 2015 IEEE International Conference on Data Mining, IEEE, nov 2015, https://doi.org/10.1109/icdm.2015.47.

[33] A. Stolman, *Hyperheadtail*, https://github.com/astolman/HyperHeadTail/blob/master/scripts/rhcalculator.py, Jan. 2017.

[34] A. Stolman and K. Matulef, *HyperHeadTail*, in Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017 - ASONAM '17, ACM Press, 2017, https://doi.org/10.1145/3110025.3119395.

[35] M. P. H. Stumpf and C. Wiuf, *Sampling properties of random graphs: The degree distribution*, Physical Review E, 72 (2005), https://doi.org/10.1103/physreve.72.036118.

[36] C. Yin, L. Yang, and J. Wang, *Botnet detection based on degree distributions of node using data mining scheme*, International Journal of Future Generation Communication and Networking, 6 (2013), pp. 81–90, https://doi.org/10.14257/ijfgcn.2013.6.6.09.