Charmonium tetraquarks and pentaquarks or an additional quark?

Scott Chapman

1Institute for Quantum Studies, Chapman University, Orange, CA 92866, USA
(Dated: January 9, 2024)

Most of the exotic hadrons discovered over the last 20 years fit into the quark model as normal mesons and baryons if the existence of a seventh flavor of quark is hypothesized. For the quark to reproduce the mass, spin, parity, production and decay modes of exotic hadrons, it would have to have a mass of ~ 2.8 GeV, a charge of $-\frac{1}{3}$, and a W-boson-mediated interaction with the right-chiral component of the charm quark. The proposed spectrum of hadrons involving this quark is presented.

The existence of a fourth down-type quark (charge of $-1/3$) with a mass of ~ 2.8 GeV was recently hypothesized. The theory involving the additional quark was presented in [1], where the quark’s production and decay mechanisms were described in detail, and explanations were provided for how the theory had the possibility to reproduce data that would seemingly rule out another quark with mass in that range.

This paper presents a listing of many of the expected mesons and baryons involving the hypothesized quark. Each hadron is mapped to (a) an observed exotic hadron, (b) an exotic hadron seen with $< 5\sigma$ evidence, or (c) a predicted hadron. For the above 3 cases, the “σ” column in each table is (a) 5σ, (b) the σ of the evidence, or (c) blank. The hypothesized additional quark is denoted by the symbol f. The Name column includes the approximate mass of the hadron, and the Γ column includes its observed or predicted width; both are in MeV.

Production and decay modes for observed hadrons are described in the references of the “Ref.” column. The Production and Decay columns predict as-yet-unobserved processes. For each observed hadron, three tests of these predictions can be performed: (i) observed production + predicted decay, (ii) predicted production + observed decay, and (iii) predicted production + predicted decay. For the unobserved hadrons, only the third of these is available for testing. The proposed f-quark mesons and baryons are shown in the following tables.

Proposed $\bar{d}f$ and $f d$ mesons

QM	Name	Γ	σ	Ref.	Predicted Production	Predicted Decay	Predicted Decay BR
1^1S_0	$X(3250)$	< 45	5σ	$[2, 3]$	$X(6600) \rightarrow X^0 X^0$	$X^0 \rightarrow (K\bar{K})^0$	$> 10 \times [X^0 \rightarrow \Lambda \bar{p}K^+]$
1^3S_1	$X(3350)$	70	5σ	$[4, 3]$	$B^0 \rightarrow \omega X^0$	$X^0 \rightarrow D^{*+}\pi^-$	$\sim 5\%[B^0 \rightarrow \omega D^{*+}\pi^-]$
1^3P_0	$\chi_c(3860)$	201	5σ	$[3]$	$\psi^+(0)(4320) \rightarrow \pi^+\pi^0 X^0$	$\chi_c \rightarrow \pi^0 X(3250)$	$> 30\%[Z_c^0(3900) \rightarrow \pi^0 J/\psi]$
1^3P_1	$\chi_{c1}(3872)$	12	5σ	$[3]$	$Y(7250) \rightarrow J/\psi \chi_{c0}$	$\chi_{c1} \rightarrow \pi^0 D^0 D^* + c.c.$	$> 5 \times [\chi_{c0} \rightarrow D\bar{D}]$
1^1P_1	$Z_c^+(3900)$	28	5σ	$[3]$	$\psi(4660) \rightarrow \pi^0 Z_c^+(3900)$	$Z_c^0 \rightarrow \pi^0 X^0(3250)$	$> 10 \times [Z_c^0 \rightarrow \pi^0 J/\psi]$
1^3S_0	$Z_{c0}(3985)$	8	4.6%	$[5]$	$\psi(4680) \rightarrow K^0\bar{K}^0 Z_c^0(3985)$	$Z_{c0} \rightarrow \pi^0 X^0(3250)$	$> 5 \times [\chi_{c0} \rightarrow D\bar{D}]$
1^3P_0	$\chi(4014)$	4.2	2.8%	$[6]$	$\psi(4230) \rightarrow \gamma \chi_{c2}$	$\chi_{c2} \rightarrow \pi^0 X^0(3250)$	$> 5 \times [\chi_{c2} \rightarrow \gamma J/\psi]$
2^1S_0	$X(4020)$	15	5σ	$[3]$	$B^0 \rightarrow \pi^+ X^0$	$X^0 \rightarrow \pi^+\pi^0 X(3250)$	$> 5 \times [\chi_{c0} \rightarrow \phi J/\psi]$
2^3P_0	$X(4100)$	150	5σ	$[3]$	$B^0 \rightarrow \pi^+ X^0$	$X^0 \rightarrow D^- D_s^+$	$\sim 1\%[B^+ \rightarrow \pi^+ D^- D_s^+]$
1^3D_2	$X(4160)$	136	5σ	$[3]$	$B^+ \rightarrow \pi^+ \psi$	$\psi \rightarrow \pi^+\pi^- X(3250)$	$> 5 \times [\psi \rightarrow \pi^+\pi^- J/\psi]$
1^3D_3	$X(4230)$	49	5σ	$[3]$	$B^+ \rightarrow \pi^+ \chi_{c1}$	$\chi_{c1} \rightarrow \pi^+\pi^- X(3250)$	$> 5 \times [\chi_{c1} \rightarrow \phi J/\psi]$
2^1P_1	$\chi_{c1}(4274)$	51	5σ	$[3]$	$B^+ \rightarrow \pi^+ X$	$X \rightarrow D^- D_s^+$	$\sim 2\%[B^+ \rightarrow \pi^+ D^- D_s^+]$
2^1P_2	$X(4380)$	10	5σ	$[3]$	$B^+ \rightarrow \pi^+ X$	$X \rightarrow D^- D_s^+$	$\sim 3\%[B^+ \rightarrow \pi^+ D^- D_s^+]$
2^3P_1	$Z_0^+(4430)$	180	5σ	$[3]$	$\psi(4660) \rightarrow \pi^0 Z_0^+(4430)$	$Z_0^0 \rightarrow \pi^0 X^0(4230)$	$> 10 \times [Z_0^0 \rightarrow \pi^0 \psi(2S)]$
3^3P_1	$Y(4500)$	111	5σ	$[7, 8]$	$B^+ \rightarrow \pi^0 Y$	$Y \rightarrow D^- D_s^+$	$\sim 3\%[B^+ \rightarrow \pi^+ D^- D_s^+]$
2^3D_1	$X(4660)$	72	5σ	$[3]$	$B^+ \rightarrow \pi^+ \chi_{c1}$	$\chi_{c1} \rightarrow \phi X^0(3250)$	$> 5 \times [\chi_{c1} \rightarrow \phi J/\psi]$
3^3P_1	$\chi_{c1}(4685)$	126	5σ	$[3]$	$B^+ \rightarrow \pi^+ \chi_{c1}$	$\chi_{c1} \rightarrow \phi X^0(3250)$	$> 5 \times [\chi_{c1} \rightarrow \phi J/\psi]$
3^3P_0	$\chi(4700)$	87	5σ	$[3]$	$B^+ \rightarrow \pi^+ \chi_{c0}$	$\chi_{c0} \rightarrow D^- D_s^+$	$\sim 2\%[B^+ \rightarrow \pi^+ D^- D_s^+]$
4^3S_1	$Y(4710)$	126	5σ	$[8]$	$B^+ \rightarrow \pi^+ Y$	$Y \rightarrow D^- D_s^+$	$\sim 2\%[B^+ \rightarrow \pi^+ D^- D_s^+]$

The above mapping of $\chi_{c0}(3860)$ assumes the hypothesis of [9] that $\chi_{c0}(3915)$ and $\chi_{c2}(3930)$ are the 2^3P_0 and 2^3P_2 resonances of $\bar{c}c$. Fig 2. of [10] may contain evidence of the second predicted decay of $X^0(3350)$.

\[(1) \]
Proposed $u\bar{f}$ and $f\bar{u}$ Mesons

QM	Name	Γ	σ	Ref.	Predicted Production	Predicted Decay	Predicted Decay BR
1^3S_0	$X^0(3250)$	< 45	5+	[2], [3]	$X(6600) \to X^0 X^\mp$	$X^\pm \to (K K^{\mp})^\pm$	$> 10 \times [X^0 \to \Lambda p K^{+} \pi^-]$
1^3S_1	$X^\pm(3350)$	70			$B^- \to \omega X^-$	$X^- \to D_s^{*0} \pi^-$	$\sim 5\% [B^- \to \omega D^{*0} \pi^-]$
	$\chi^{\pm}_0(3860)$	201			$\psi(4230) \to \gamma X^{\pm}_0$	$X^{\pm} \to \pi^\mp J/\psi$	$10^{-3} \times [X \to \text{anything}]$
1^3P_0	$T_{cc}^\pm(3875)$	0.4	5+	[3]	$B^0 \to \pi^- T_{cc}$	$T_{cc}^+ \to D^- \pi^+ \pi^0$	$> 5 \times [X_{cc} \to D \bar{D}]$
1^3P_1	$Z^\pm_c(3900)$	28	5+	[3]	$\psi(4660) \to \pi^+ Z^\pm_c$	$Z^\pm_c \to \pi^0 \pi^\pm X^{0.0}(3350)$	$> 10 \times [Z^\pm_c \to \pi^+ J/\psi]$
2^1S_0	$Z^\pm_{cs}(3985)$	8	4.6	[5]	$\psi(4680) \to K^\mp Z^\pm_{cs}$	$Z^\pm_{cs} \to \pi^0 \pi^\pm X^{0.0}(3350)$	$> [Z_{cs} \to D_s \bar{D}^*]$
	$\chi^{\pm}_2(4014)$	4			$\psi(4230) \to \gamma X^{\pm}_2$	$\chi^{\pm}_2 \to \pi^0 \pi^\pm X^{0.0}(3250)$	$> [X_{c2} \to \gamma J/\psi]$
2^3S_1	$X^\pm(4020)$	13	5+	[3]	$B^0 \to \pi^- X^+$	$X^\pm \to \pi^\mp \pi^- X^\pm(3350)$	$> [X \to \pi^\mp h_{1}(1P)]$
2^3P_0	$X^\pm(4100)$	150	3.4	[3]	$B^0 \to \pi^- X^+$	$X^\pm \to \bar{D}^0 D_s^+$	$\sim 1\% [B^0 \to \pi^- D^0 D_s^+]$
1^3D_1	$\psi(4230)$	49			$B^0 \to \pi^- \psi^+$	$\psi^+ \to (\pi \pi X(3350))^{\pm}$	$>5 \times [\psi^0 \to \pi^+ J/\psi]$
2^3P_1	$\chi^{\pm}_1(4274)$	51			$B^0 \to \pi^- \chi^{\pm}_1$	$\chi^{\pm}_1 \to \pi^\mp \pi^- X^\pm(3350)$	$>5 \times [X^{\pm}_1 \to \phi J/\psi]$
2^3P_2	$X^\pm(4380)$	10			$B^0 \to \pi^- X^+$	$X^\pm \to \bar{D}^0 D_s^+$	$\sim 2\% [B^0 \to \pi^- D^0 D_s^+]$
2^1P_1	$Z^\pm_{c}(4430)$	180	5+	[3]	$\psi^{\pm,0}(4660) \to \pi^0 \pi^\pm Z^\pm_c$	$Z^\pm_c \to \pi^0 \pi^\pm X^{0.0}(4230)$	$> 10 \times [Z^\pm_c \to \pi^\pm \psi(2S)]$
3^3S_1	$Y^\pm(4500)$	111			$B^0 \to \pi^- Y^+$	$Y^+ \to \bar{D}^0 D_s^+$	$\sim 3\% [B^0 \to \pi^- D^0 D_s^+]$
2^3D_1	$\psi(4660)$	72			$B^0 \to \pi^- \psi^+$	$\psi^+ \to \bar{D}^0 D_s^+$	$\sim 3\% [B^0 \to \pi^- D^0 D_s^+]$
3^3P_1	$\chi^{\pm}_1(4685)$	126			$B^0 \to \pi^- \chi^{\pm}_1$	$\chi^{\pm}_1 \to \phi X^{(3350)}$	$>5 \times [X^{\pm}_1 \to \phi J/\psi]$
3^3P_0	$\chi^{\pm}_0(4700)$	87			$B^0 \to \pi^- \chi^{\pm}_0$	$\chi^{\pm}_0 \to \bar{D}^0 D_s^+$	$\sim 2\% [B^0 \to \pi^- D^0 D_s^+]$
4^3S_1	$Y^\pm(4710)$	126			$B^0 \to \pi^- Y^+$	$Y^+ \to \bar{D}^0 D_s^+$	$\sim 2\% [B^0 \to \pi^- D^0 D_s^+]$

Fig. 5 of [11] may contain evidence of the above predicted decays to $\bar{D}^0 D_s^+$.

Proposed $s\bar{f}$ and $f\bar{s}$ Mesons

QM	Name	Γ	σ	Ref.	Predicted Production	Predicted Decay	Predicted Decay BR
1^1S_0	$X(3550)$	30				$X \to \Lambda^{+} \bar{p}$	$\sim 1\% [B^- \to \pi^- \Lambda^{+} \bar{p}]$
1^3S_1	$R(3760)$	22	5+	[12]	$B^- \to \pi^- X^+$	$X \to \pi^0 J/\psi$	$> 10\% [Z_0^0(3900) \to \pi^0 J/\psi]$
	$\psi^{\pm,0}(4230) \to \pi^0 \pi^\pm R$				$B^0 \to \omega R$	$R \to D^{*-+} \pi^-$	$\sim 4\% [B^0 \to \omega D^{*-+} \pi^-]$
1^3P_0	$X(3960)$	43	5+	[13]	$\psi^{\pm,0}(4230) \to \pi^0 \pi^\pm R$	$R \to \pi^0 J/\psi$	$> 10\% [Z_0^0(3900) \to \pi^0 J/\psi]$
	$\chi^{\pm}_1(4140)$	19	5+	[3]			
1^3P_2	$\chi^{\pm}_0(4400)$	10					
2^3S_1	$X(4200)$	115	5+	[3]			
2^3D_1	$\psi(4360)$	128	5+	[14]			
2^3P_0	$X(4500)$	77					
3^3S_1	$\psi(4680)$	100					

Fig. 2. of [10] may contain evidence of the second predicted decays of $X(3550)$ and $R(3760)$. The predicted $X(4200)$ decay overlaps with the observed $\psi(4160)$ decay [15] and could provide a reason why the experimental signal is approximately double the calculated amount expected for the latter decay.

Proposed $c\bar{f}$ and $f\bar{c}$ Mesons

QM	Name	Γ	σ	Ref.	Predicted Production	Predicted Decay	Predicted Decay BR
1^1S_0	$X^\pm(4680)$	< 30					
2^3S_1	$X^\pm(5400)$	< 100					
2^1P_0	$X^\pm(5568)$	19	6.7+	[16]	$B^+ \to \rho^0 X^+$	$X^\pm \to \pi^\pm J/\psi$	$> 5\% [B^+ \to \rho^0 \pi^+ J/\psi]$
$p\bar{p}$ (prompt) $\to X^+$							

Fig. 2. of [10] may contain evidence of the second predicted decays of $X(3550)$ and $R(3760)$. The predicted $X(4200)$ decay overlaps with the observed $\psi(4160)$ decay [15] and could provide a reason why the experimental signal is approximately double the calculated amount expected for the latter decay.
The question mark associated with $X^{\pm}(5568)$ denotes the fact that only one collaboration has found evidence for it. Other collaborations with experiments at different CM energies or with different kinematics did not find evidence for this resonance. Due to the predicted prompt production and strong decay of $X^{\pm}(5568)$, certain experiments may not have had the optimal geometry to reproduce the results of [16].

Proposed $f \bar{f}$ Mesons

QM	Name	Γ	σ	Ref.	Predicted Production	Predicted Decay	Predicted Decay BR
13S_0	X(6500)	5+	440	[17], [18]	$p\bar{p}$ (prompt) $\rightarrow X$	$X \rightarrow J/\psi J/\psi$	$\sim 4\%[pp \rightarrow J/\psi J/\psi]$
13S_1	X(6600)	5+	440	[17], [18]	$e^+e^- \rightarrow X$	$X \rightarrow X^{\pm,0}(3250), X^{\mp,0}(3250)$	$> 50\%[X \rightarrow$ anything]
13P_0	X(6900)	5+	191	[17], [19]	$Y(7250) \rightarrow \gamma X$	$X \rightarrow X^{\pm,0}(3250), X^{\mp,0}(3250)$	$> 20\%[X \rightarrow$ anything]
21S_0	X(7200)	4.1	97	[17]	$e^+e^- \rightarrow Y$	$Y \rightarrow X^{\pm,0}(3250), X^{\mp,0}(3250)$	$> 10\%[X \rightarrow$ anything]
21S_1	Y(7250)	3.5	3.5	[20]	$e^+e^- \rightarrow Y$	$Y \rightarrow X^{\pm,0}(3250), X^{\mp,0}(3250)$	$> 10\%[Y \rightarrow$ anything]
23P_1	X(7500)				$\sim 3\%[p\bar{p} \rightarrow \psi(2S)\psi]$		
33S_1	Y(7700)				$> 5\%[Y \rightarrow$ anything]		

The $\psi(2S)J/\psi$ data of [18] may contain evidence of the $X(7500)$.

Proposed $b\bar{f}$ and $f\bar{b}$ Mesons

QM	Name	Γ	σ	Ref.	Predicted Production	Predicted Decay	Predicted Decay BR	
13P_1	X(8322)			< 80	[21], [22]	$Y(9480) \rightarrow \gamma X$	$X \rightarrow J/\psi J/\psi$	$1\%[p\bar{p} \rightarrow J/\psi J/\psi]$
21D_1	Y(8900)	~ 80			$e^+e^- \rightarrow Y$	$Y \rightarrow B^+ X^\pm(3250)$	$> 5\%[e^+e^- \rightarrow B^+ X^\pm(3250)]$	
53S_1	Y(9480)		< 20		$e^+e^- \rightarrow Y$			

The question mark is due to the fact that the resonance was only seen at one run at one experiment and not at others. It could nonetheless have been an actual observation if a resonance 16-26 MeV heavier than the $Y(1S)$ is produced in $e^+e^- \rightarrow \gamma X$ collisions [22]. The $Y(9480)$ listed above is proposed to be that resonance. Evidence of the predicted decay of $X(8322)$ may be contained in Fig. 1 of [18], Fig. 1 of [17] and Fig. 4b of [19].

Proposed isospin 1 fuu baryons in relation to their suu counterparts

suu Name	J^P	fuu Name	Γ	σ	Ref.	Predicted Production	Predicted Decay	Predicted Decay BR
Σ	$\frac{1}{2}^+$	$P_c^+(3870)$	< 5		[3]	$B^0 \rightarrow P_c^+ \bar{p}$	$P_c^+ \rightarrow D^+ \pi^- p$	$> 5\%[B_s^0 \rightarrow \bar{p} D^+ \pi^- p]$
$\Sigma(1383)$	$\frac{3}{2}^+$	$P_c^+(4065)$	< 5		[3]	$\Lambda_c^0 \rightarrow P_c^+ K^-$	$P_c^+ \rightarrow D^0 \pi^- \pi^-$	$> 5\%[\Lambda_c^0 \rightarrow K^- D^0 \pi^+ \pi^-]$
$\Sigma(1580)$	$\frac{1}{2}^-$	$P_c^+(4260)$	5		[21]	$B^- \rightarrow P_c^+ \bar{p}$	$P_{c0}^- \rightarrow J/\psi \Lambda$	$\sim 2\%[B^- \rightarrow J/\psi \Lambda \bar{p}]$
$\Sigma(1620)$	$\frac{3}{2}^-$	$P_c^+(4312)$	10	5+	[3]	$P_{c0}^+ \rightarrow D^{*+} P_{c0}^+$	$P_{c+}^+ \rightarrow D^{*0} \pi^-$	$> 10\%[P_{c+}^+ \rightarrow J/\psi \Lambda]$
$\Sigma(1660)$	$\frac{1}{2}^+$	$P_c^+(4380)$	200	5+	[3]	$P_{c0}^+ \rightarrow D^{*+} P_{c0}^+$	$P_{c+}^+ \rightarrow D^{*0} \pi^-$	$> 10\%[P_{c+}^+ \rightarrow J/\psi \Lambda]$
$\Sigma(1670)$	$\frac{3}{2}^+$	$P_c^+(4337)$	29	5+	[22]	$P_{c0}^+ \rightarrow D^{*+} P_{c0}^+$	$P_{c+}^+ \rightarrow D^{*0} \pi^-$	$> 10\%[P_{c+}^+ \rightarrow J/\psi \Lambda]$
$\Sigma(1750)$	$\frac{1}{2}^+$	$P_c^+(4440)$	21	5+	[3]	$P_{c0}^+ \rightarrow D^{*+} P_{c0}^+$	$P_{c+}^+ \rightarrow D^{*0} \pi^-$	$> 10\%[P_{c+}^+ \rightarrow J/\psi \Lambda]$
$\Sigma(1775)$	$\frac{3}{2}^+$	$P_c^+(4457)$	6	5+	[3]	$P_{c0}^+ \rightarrow D^{*+} P_{c0}^+$	$P_{c+}^+ \rightarrow D^{*0} \pi^-$	$> 10\%[P_{c+}^+ \rightarrow J/\psi \Lambda]$
$\Sigma(1780)$	$\frac{1}{2}^+$	$P_c^+(4457)$				$P_{c0}^+ \rightarrow D^{*+} P_{c0}^+$	$P_{c+}^+ \rightarrow D^{*0} \pi^-$	$> 10\%[P_{c+}^+ \rightarrow J/\psi \Lambda]$

For the above table, it is assumed that the $P_c^+(4457)$ is a very close double peak analog of the $\Sigma(1775)$ and $\Sigma(1780)$. It appears that the data could support splitting $P_c^+(4457)$ into two resonances. It is also assumed that $P_{c0}^0(4459)$ from [24] is the fud isospin partner of the $P_c^+(4457)$ resonance(s). $P_{c0}^0(4260)$ is similarly a neutral $I = 1$ baryon.
Proposed isospin 0 \(fuu \) baryons in relation to their \(sud \) counterparts

\(suu \) Name	\(f^0 \)	\(f^0 \) Name	\(\Gamma \)	\(\sigma \)	Ref.	Predicted Production	Predicted Decay	Predicted Decay BR
\(\Lambda \)	\(\frac{1}{2}^+ \)	\(\Lambda_f(3795) \)	< 5	5+	[25]	\(B^- \to \Lambda_f \bar{p} \)	\(\Lambda_f \to D^0 \pi^- p \)	\(> 5\% \)
\(\Lambda(1405) \)	\(\frac{1}{2}^+ \)	\(\Lambda_f(4085) \)	< 5	5+		\(B^- \to \Lambda_f \bar{p} \)	\(\Lambda_f \to D^0 \pi^- p \)	\(> 5\% \)
\(\Lambda(1520) \)	\(\frac{1}{2}^+ \)	\(\Lambda_f(4200) \)	< 5	5+		\(B^- \to \Lambda_f \bar{p} \)	\(\Lambda_f \to D^0 \pi^- p \)	\(> 5\% \)
\(\Lambda(1600) \)	\(\frac{1}{2}^+ \)	\(\Lambda_f(4280) \)	< 10			\(B^- \to \Lambda_f \bar{p} \)	\(\Lambda_f \to J/\psi \Lambda \)	\(\sim 2\% \)
\(\Lambda(1670) \)	\(\frac{1}{2}^+ \)	\(P^0_{\psi}(4338) \)	7	5+	[25]		\(\Lambda_f \to \eta \Lambda \)	\(\sim 1\% \)

Fig. 3 of [25] may contain evidence of the predicted decays of \(D^0_{c}(4260) \) and \(\Lambda_f(4280) \).

An advantage to the model generating the predictions of this paper is that it classifies almost all of the previously discovered charmonium tetraquarks and pentaquarks within a single framework. But the model has significant differences from the Standard Model, so it can only be accepted after surviving very thorough testing. An advantage of the predicted production and decay processes in this paper is that most of them can be tested using data already collected in previous or ongoing experiments. It would be interesting to see if such tests would support or contradict the hypothesis of an additional quark.

References:

[1] S. Chapman, Fitting the hadron spectrum with an additional quark (2023), 2203.03007.
[2] A. Aleev and et.al. (EXCHARM), Narrow baryonia with open and hidden strangeness, Yadernaya Fizika 56, 100 (1993).
[3] R. L. Workman, et al, and (Particle Data Group), Particle Listings (2022), Prog. Theor. Exp. Phys. 083C01.
[4] N. Gabyshev and et al (BELLE), Study of decay mechanisms in \(B^- \to \Lambda_f^+ \bar{p} \) decays and observation of low-mass structure in the \(\Lambda_f^+ \bar{p} \) system, Physical Review Letters 97, 242001 (2006), hep-ex/0409005.
[5] M. Ablikim and et al (BESIII), Evidence for a neutral near-threshold structure in the K0s recoil-mass spectra in e+e- to K0s Ds+ Ds- pi- and e+e- to K0s Ds+ Ds- pi+ pi-, Physical Review Letters 129, 10.1103/physrevlett.129.112003 (2022), 2204.13703.
[6] X. Wang, B. Gao, W. Zhu, and et al (BELLE), Study of gamma gamma to gamma psi(2s) at belle, Physical Review D 105, 10.1103/physrevd.105.112011 (2022), 2105.06605.
[7] M. Ablikim and et al (BESIII), Observation of the Y(4230) and a new structure in \(e^+e^- \to K^+K^-J/\psi \), Chinese Physics C 46, 111002 (2022), 2204.07800.
[8] M. Ablikim and et al (BESIII Collaboration), Observation of a vector charmoniumlike state at 4.7 GeV/c² and search for \(Z_{cs} \) in \(e^+e^- \to K^+K^-J/\psi \), Phys. Rev. Lett. 131, 211902 (2023).
[9] M.-X. Duan, S.-Q. Luo, X. Liu, and T. Matsuki, Possibility of charmoniumlike state \(x(3915) \) as \(\chi_{cs}(2p) \) state, Phys. Rev. D 101, 054029 (2020).
[10] M. Ablikim and et al (BESIII Collaboration), Study of the process e+e- to pi0 pi0 J/psi and neutral charmoniumlike state \(Zc(3900) \), Phys. Rev. D 102, 012009 (2020).
[11] R. Aaij and et al (LHCb), Amplitude analysis of B0 to Dbaru0 Ds+ pi- and B0+ to D- Ds0 pi+ pi- decays, Phys. Rev. D 108, 10.1103/PhysRevD.108.012017 (2023), 2212.02717.
[12] M. Ablikim and et al (BESIII), Direct measurement of the branching fractions \(B(\psi(3686) \to J/\psi X) \) and \(B(\psi(3770) \to J/\psi X) \), and observation of the state \(R(3760) \) in e+e- \(\to J/\psi X \), Phys. Rev. Lett. 127, 082002 (2021).
[13] LHCb Collaboration, Observation of a resonant structure near the \(D^+_s D^-_s \) threshold in the \(B^+ \to D^+_s D^-_s K^- \) decay (2022), 2210.15153.
[14] M. Ablikim and et al (BESIII), Observation of resonance structures in \(e^+e^- \to \pi^+ \pi^- \psi(3823) \) and mass measurement of \(\psi_2(3823) \), Phys. Rev. Lett. 129, 102003 (2022).
[15] R. Aaij and et al (LHCb), Observation of a resonance in B to K+ mu+mu decays at low recoil, Physical Review Letters 111, 10.1103/physrevlett.111.112003 (2013), 1307.7595.
[16] V. M. Abazov and et al (D0 Collaboration), Study of the \(X^{\pm}(5568) \) state with semileptonic decays of the \(B^0 \) meson, Phys. Rev. D 97, 092004 (2018).
[17] CMS (CMS), Observation of new structure in the \(J/\psi \) mass spectrum in proton-proton collisions at \(\sqrt{s}=13 \) TeV (2023), 2306.07164.
[18] M. Aaboud and et al (ATLAS), Observation of an excess of di-charmonium events in the four-muon final state with the ATLAS detector, Phys. Rev. Lett. 131, 151902 (2023), 2304.08962.
[19] LHCb collaboration, Observation of structure in the \(J/\psi \)-pair mass spectrum, Science Bulletin 65, 1983 (2020), 2006.1957.
[20] G. Apollinari, M. Barone, W. Carithers, M. Dell’Orso, T. Dorigo, I. Fiori, M. Franklin, P. Giannetti, P. Giromini, F. Happacher, S. Miscetti, A. Parri, F. Ptohos, and G. Velev, Search for narrow resonances below the upsilon mesons, Physical Review D 72, 092003 (2005), hep-ex/0507044.
[21] C. e. Peck (Crystal Ball), Evidence for a Narrow Massive State in the Radiative Decays of the Upsilon, Tech. Rep. (Stanford Linear Accelerator, 1984).
[22] E. Bloom, *The Search for New Effects in e+e- Interactions*, Tech. Rep. (Stanford Linear Accelerator, 1985).

[23] R. Aaij and et al (LHCb), Evidence for a new structure in the $J/\psi p$ and $J/\psi \bar{p}$ systems in B^{0}_{s} to $J/\psi p\bar{p}$ decays, *Physical Review Letters* **128**, 062001 (2022).

[24] R. Aaij and et al (LHCb), Evidence of a $J/\psi \Lambda$ structure and observation of excited Ξ^{-} states in the $\Xi_{b}^{-}\rightarrow J/\psi \Lambda K^{-}$ decay, *Sci. Bull.* **66**, 1278 (2021).

[25] R. Aaij and et al (LHCb), Observation of a $J/\psi \Lambda$ resonance consistent with a strange pentaquark candidate in $B^{-} \rightarrow J/\psi \Lambda\bar{p}$ decays (2022), [2210.10346](https://arxiv.org/abs/2210.10346).