Parameter space for families of parabolic-like mappings

Luna Lomonaco

May 2, 2014

Abstract

In this paper we study families of degree 2 parabolic-like mappings \((f_\lambda)_{\lambda \in \Lambda}\) (as we defined in \([L]\)). We prove that the hybrid conjugacies between a nice analytic family of degree 2 parabolic-like mappings and members of the family \(\text{Per}_1(1)\) induce a continuous map \(\chi : \Lambda \to \mathbb{C}\), which under suitable conditions restricts to a ramified covering from the connectedness locus of \((f_\lambda)_{\lambda \in \Lambda}\) to the connectedness locus \(M_1 \setminus \{1\}\) of \(\text{Per}_1(1)\). As an application, we prove that the connectedness locus of the family \(C_\alpha(z) = z + az^2 + z^3\), \(\alpha \in \mathbb{C}\) presents baby \(M_1\).

1 Introduction

A degree \(d\) polynomial-like mapping is a degree \(d\) proper holomorphic map \(f : U' \to U\), where \(U'\) and \(U\) are topological disks and \(U'\) is compactly contained in \(U\). This definition captures the behaviour of a polynomial in a neighbourhood of its filled Julia set. The filled Julia set is defined in the polynomial-like case as the set of points which do not escape the domain. The external class of a polynomial-like map is the (conjugacy classes of) the map which encodes the dynamics of the polynomial-like map outside the filled Julia set. The external class of a degree \(d\) polynomial-like map is a degree \(d\) real-analytic orientation preserving and strictly expanding self-covering of the unit circle: the expansivity of such a circle map implies that all the periodic points are repelling, and in particular not parabolic.

In order to avoid this restriction, in \([L]\) we introduce an object, which we call \textit{parabolic-like mapping}, to describe the parabolic case. A parabolic-like mapping is thus similar to a polynomial-like mapping, but with a parabolic external class; that is to say, the external map has a parabolic fixed point. A parabolic-like map can be seen as the union of two different dynamical
parts: a polynomial-like part and a parabolic one, which are connected by a dividing arc.

Definition 1.1. (Parabolic-like maps) A parabolic-like map of degree d is a 4-tuple (f, U', U, γ) where

- U' and U are open subsets of \mathbb{C}, with U', U and $U \cup U'$ isomorphic to a disc, and U' not contained in U,
- $f : U' \to U$ is a proper holomorphic map of degree d with a parabolic fixed point at $z = z_0$ of multiplier 1,
- $\gamma : [-1, 1] \to U$ is an arc with $\gamma(0) = z_0$, forward invariant under f, C^1 on $[-1, 0]$ and on $[0, 1]$, and such that
 \[
 f(\gamma(t)) = \gamma(dt), \quad \forall \ -\frac{1}{d} \leq t \leq \frac{1}{d}.
 \]
 \[
 \gamma([\frac{1}{d}, 1) \cup (-1, -\frac{1}{d}]) \subseteq U \setminus U', \quad \gamma(\pm 1) \in \partial U.
 \]

It resides in repelling petal(s) of z_0 and it divides U' and U into Ω', Δ' and Ω, Δ respectively, such that $\Omega' \subset U$ (and $\Omega' \subset \Omega$), $f : \Delta' \to \Delta$ is an isomorphism and Δ' contains at least one attracting fixed petal of z_0. We call the arc γ a dividing arc.

In [L] we extend the theory of polynomial-like maps to parabolic-like maps, and we straighten degree 2 parabolic-like maps to members of the family of quadratic rational maps with a parabolic fixed point of multiplier 1 at infinity and critical points at 1 and -1, which is

\[
\text{Per}_1(1) = \{[PA] \mid PA(z) = z + \frac{1}{z} + A\}.
\]

More precisely, we prove the following:

Straightening Theorem. Every degree 2 parabolic-like mapping (f, U', U, γ) is hybrid equivalent to a member of the family $\text{Per}_1(1)$. Moreover, if K_f is connected, this member is unique.

Note that $[PA] = \{PA, P_{-A}\}$, since the involution $z \to -z$ conjugates PA and P_{-A}, interchanging the roles of the critical points. We refer to a member of the family $\text{Per}_1(1)$ as one of the representatives of its class. The family $\text{Per}_1(1)$ is typically parametrized by $B = 1 - A^2$, which is the multiplier of the 'free' fixed point $z = -1/A$ of PA. The connectedness locus of $\text{Per}_1(1)$ is called M_1. If $f = (f_{\lambda} : U'_{\lambda} \to U_{\lambda})_{\lambda \in \Lambda}$ is a family of degree 2 parabolic-like
maps with parameter space $\Lambda \subset \mathbb{C}$, calling M_f the connectedness locus of f, by the uniqueness of the Straightening we can define a map

$$\chi : M_f \to M_1$$

$$\lambda \to B,$$

which associates to each λ the multiplier of the fixed point $z = -1/A$ of the member $[P_a]$ hybrid equivalent to f_λ.

In this paper we will prove that if the family f is analytic and nice (see Def. 2.1 and 2.0.1), the map χ extends to a map defined on the whole of Λ (see 4.1), whose restriction to M_f, under suitable conditions (see Def. 5.3) is a ramified covering of $M_1 \setminus \{1\}$ (see Thm. 2.2). The reason why the map χ covers $M_1 \setminus \{1\}$, instead of the whole of M_1, resides in the definition of analytic family of parabolic-like mappings, and it will be explained in section 2.4. As an application, we will show that the connectedness locus of the family $C_\alpha(z) = z + az^2 + z^3, a \in \mathbb{C}$ (see Fig. 1) presents 2 baby M_1 (see Fig. 2).

The results in this paper were developed during the author’s Ph.d. So the author would like to thank her former advisor, Carsten Lunde Petersen, for suggesting the idea of parabolic-like mapping and for his help, Roskilde University and Université Paul Sabatier for their hospitality, and Roskilde University, the ANR-08-JCJC-0002 founded by the Agence Nationale de la Recherche and the Marie Curie RTN 035651-CODY for their financial support during her Ph.d.
2 Definitions and statement of the result

In this Section we define an analytic family of parabolic-like maps and its connectedness locus, nice families of parabolic-like maps, and we give an example of nice analytic family of parabolic-like maps. Then we give a review of the Straightening Theorem, an overview of this paper and we state the main result.

Definition 2.1. Let $\Lambda \subset \mathbb{C}$, $\Lambda \approx \mathbb{D}$ and let $f = (f_\lambda : U'_\lambda \to U_\lambda)_{\lambda \in \Lambda}$ be a family of degree d parabolic-like mappings. Set $U' = \{(\lambda, z)| z \in U'_\lambda\}$, $U = \{(\lambda, z)| z \in U_\lambda\}$, $\Omega' = \{(\lambda, z)| z \in \Omega'_\lambda\}$, and $\Omega = \{(\lambda, z)| z \in \Omega_\lambda\}$. Then f is a degree d analytic family of parabolic-like maps if the following conditions are satisfied:

1. U', U, Ω' and Ω are domains in \mathbb{C}^2;
2. the map $f : U' \to U$ is holomorphic in (λ, z).
3. all the parabolic-like maps in the family have the same number of attracting petals in the filled Julia set.

For all $\lambda \in \Lambda$ let us call z_λ the parabolic-fixed point of f_λ, and let us set $K_\lambda = K_{f_\lambda}$, and $J_\lambda = J_{f_\lambda}$. Define $M_f = \{\lambda | K_\lambda \text{ is connected}\}$.

2.0.1 Nice families

An analytic family of parabolic-like mappings is *nice* if there exists a holomorphic motion of the dividing arcs

$$\Phi : \Lambda \times \gamma_0 \to \mathbb{C},$$

and there exists a holomorphic motion of the ranges

$$B : \Lambda \times \partial U_0 \to \mathbb{C}$$

which is a piecewise C^1-diffeomorphism with no cusps in z (for every fixed λ), and $B_\lambda(\gamma_0(\pm 1)) = \gamma_\lambda(\pm 1)$.

4
2.0.2 Remarks about the definition and motivations

A nice family is basically endowed by definition with a holomorphic motion of a fundamental annulus (see Section 3.0.3). We did not require analytic families to have these properties, because the concept of parabolic-like map is local. On the other hand, since all the maps in an analytic family of parabolic-like maps have the same number of attracting petals in its filled Julia set, it follows from the holomorphic parameter dependence of Fatou coordinates (see Appendix in [Sh]), that in many cases there is a holomorphic motion of the dividing arcs (however, in individual cases further detail might be required according to circumstances). Moreover, since the concept of parabolic-like map is local, in many cases it is not difficult to construct a holomorphic motion of the ranges for an analytic family of parabolic-like mappings.

2.0.3 Degree 2 analytic families of parabolic-like maps

The definition of analytic family of parabolic-like maps is valid for any degree. However, since in this paper we are interested in proving that, under suitable conditions, the map χ defined in the introduction is a ramified covering between M_f and $M_1 \setminus \{1\}$, in the remainder we will restrict our attention to degree 2 nice analytic families of parabolic-like maps. All the maps of an analytic family of parabolic-like maps have the same number of attracting petals in their filled Julia set, and each (maximal) attracting petal requires a critical point in its boundary. Hence, if f is a degree 2 analytic family of parabolic-like maps, either for each $\lambda \in \Lambda$ the map f_λ has no attracting petals in K_λ, or for each $\lambda \in \Lambda$ the map f_λ has exactly one attracting petal in K_λ.

Consider now the family $\text{Per}_1(1)$. The Δ-part of a parabolic-like mapping requires (at least) one attracting petal, and for all the members of the family $\text{Per}_1(1)$ with $A \neq 0$ the parabolic fixed point has parabolic multiplicity 1. So a parabolic-like restriction of P_A, with $A \neq 0$ has no attracting petals in the filled Julia set. On the other hand, $P_0 = z + 1/z$ has a parabolic fixed point of parabolic multiplicity 2 and the Julia set of P_0 is the common boundary of the immediate parabolic basins, so a parabolic-like restriction of P_0 has exactly one attracting petal in its filled Julia set.

So, if all the members an analytic family of degree 2 parabolic-like mappings f have exactly one attracting petal in its filled Julia set, they are all hybrid conjugate to the map $P_0 = z + 1/z$, and $\chi(\lambda) \equiv 1$, (but this case is not really interesting). On the other hand, if all the members of f have no petals in the filled Julia set, there is no $\lambda \in \Lambda$ such that f_λ is hybrid...
conjugate to the map \(P_0 = z + 1/z \), and finally the image of \(M_f \) under the map \(\chi \) is not the whole of \(M_1 \), but it belongs to \(M_1 \setminus \{1\} \). This is the case we are interested in.

2.1 Example

Consider the family of cubic polynomials

\[C_a(z) = z + az^2 + z^3, \quad a \in \mathbb{C}. \]

The maps belonging to this family have a parabolic fixed point at \(z = 0 \) of multiplier 1, and critical points at \(c_+(a) = \frac{-a + \sqrt{a^2 - 3}}{3} \) and \(c_-(a) = \frac{-a - \sqrt{a^2 - 3}}{3} \). Call \(C \) the connectedness locus for this family. Let \(\phi_a \) denote the Böttcher coordinates for \(C_a \) tangent to the identity at infinity, call \(\tilde{c}_-(a) \) the co-critical point of \(c_-(a) \) and let \(\Phi : C \setminus C \rightarrow C \setminus \mathbb{D} \) be the conformal representation of \(C \setminus C \) given by

\[\Phi(a) = \varphi(\tilde{c}_-(a)). \]

Define \(\Lambda \subset C \) as the open set bounded by the external rays of angle \(1/6 \) and \(2/6 \) (see [N]). In this section we are going to prove that the family \((C_a(z) = z + az^2 + z^3)_{a \in \Lambda} \) yields to a nice family of parabolic-like mappings.

2.2 For every \(a \in \Lambda \), \(C_a \) presents a parabolic-like restriction

Let us construct a parabolic-like restriction for every member of the family \((C_a)_{a \in \Lambda}\). Call \(\Xi_a \) the immediate basin of attraction of the parabolic fixed point \(z = 0 \). Then \(c_+(a) \) belongs to \(\Xi_a \), while \(c_-(a) \) does not belong to \(\Xi_a \). Let \(\phi_a : \Xi_a \rightarrow \mathbb{D} \) be the Riemann map normalized by setting \(\phi_a(c_+(a)) = 0 \) and \(\phi_a(z) \xrightarrow{z \to 0} 1 \), and let \(\psi_a : \mathbb{D} \rightarrow \Xi_a \) be its inverse. By the Carathéodory theorem the map \(\psi_a \) extends continuously to \(S^1 \). Note that \(\phi_a \circ C_a \circ \psi_a = h_2 \).

Let \(w_a \) be a \(h_2 \) periodic point in the first quadrant, such that the hyperbolic geodesic \(\tilde{\gamma}_a \in \mathbb{D} \) connecting \(w_a \) and \(\overline{w_a} \) separates the critical value \(z = 1/3 \) from the parabolic fixed point \(z = 1 \). Let \(U_a \) be the Jordan domain bounded by \(\tilde{\gamma}_a = \psi_a(\tilde{\gamma}_a) \), union the arcs up to potential level 1 of the external rays landing at \(v_a = \psi_a(w_a) \) and \(\overline{v}_a = \psi_a(\overline{w}_a) \), together with the arc of the level 1 equipotential connecting this two rays around \(c_-(a) \) (see Fig. 3). Let \(U'_a \) be the connected component of \(C_a^{-1}(U_a) \) containing 0 and the dividing arcs \(\gamma_{a \pm} \) be the fixed external rays landing at the parabolic fixed point 0 and parametrized by potential. Then \((C_a, U'_a, U_a, \gamma_a)\) is a parabolic-like map of degree 2 (see Fig. 3).
2.3 The family \((C_a(z) = z + az^2 + z^3)_{a \in \Lambda}\) yields to a nice analytic family of parabolic-like mappings

For every \(a \in \Lambda\) the parabolic fixed point \(0\) of \(C_a\) has parabolic multiplicity 1, and \((C_a, U_a', U_a, \gamma_a)\) is a parabolic-like map with no attracting petals in its filled Julia set. By the construction we gave, it follows easily that \((C_a)_{a \in \Lambda}\) restricts to an analytic family of parabolic-like mappings. Since external rays move holomorphically, to prove that this analytic family of parabolic-like maps is nice it suffices to show that the boundaries of \(U_a\) move holomorphically with the parameter (by construction the motion defines a piecewise \(C^1\)-diffeomorphisms with no cusps in \(z\)). Let us start by proving that the basin of attraction \(\Xi_a\) of 0 depends holomorphically on the parameter.

2.3.1 The basin of attraction of the parabolic fixed point depends holomorphically on \(a\)

Call \(\mathcal{P}_a\) the maximal attracting petal in \(\Xi_a\), and let \(F_a : \mathcal{P}_a \rightarrow \mathbb{H}_l\) be Fatou coordinates for \(C_a\) normalized by sending the critical point \(c_\pm(a)\) to 1. Since the family \((C_a)_{a \in \mathbb{C}}\) depends holomorphically on \(a\), \(F_a\) depends holo-
morphically on \(a \) and the extended Fatou coodinates to the whole parabolic basin \(\mathcal{F}_a : \Xi_a \to \mathbb{C} \) depend holomorphically on \(a \). On the other hand, let \(\Phi_h : \mathbb{D} \to \mathbb{C} \) be extended Fatou coordinates for the map \(h_2 \), normalized by sending the critical point to 1. Since the Riemann map \(\phi_a \) is a holomorphic conjugacy between \(C_a \) and \(h_2 \), \(\Phi_h \circ \phi_a \) are Fatou coordinates for \(C_a \). Since \(\Phi_a(c_+(a)) = 1 = \Phi_h \circ \phi_a(c_+(a)) = \Phi_h(0) = 1 \), we have that \(\Phi_a = \Phi_h \circ \phi_a \). Hence the Riemann map \(\phi_a \) depends holomorphically on \(a \). So (fixing a base point \(a_0 \in \Lambda \)) the dynamical holomorphic motion \(\Phi_{-1}^a \circ \Phi_a^{a_0} : \Lambda \times \Xi_{a_0} \to \mathbb{C} \) (holomorphic in \(z \)) induces a dynamical holomorphic motion of \(\Xi_{a_0} \).

2.3.2 The family \((C_a(z) = z + az^2 + az^3)_{a \in \Lambda} \) restricts to a nice analytic family of parabolic-like mappings

Since \(\Xi_a \) moves holomorphically, the points \(v_a \) and \(\bar{v}_a \) and the arc \(\hat{\gamma}_a \) defined in [2.2] depend holomorphically on \(a \). Since equipotentials and external rays move holomorphically, for every \(a \in \Lambda \) the set \(\partial U_a \) moves holomorphically. Hence the family \((C_a(z) = z + az^2 + az^3)_{a \in \Lambda} \) restricts to a degree 2 nice analytic family of parabolic-like maps.

2.4 Review and overview

In [L] we proved that a degree 2 parabolic-like map is hybrid conjugate to a member of the family \(\text{Per}_1(1) \) by changing its external class into the class of \(h_2(z) = \frac{z^2 + 1}{z^2 + 1} \) (see Theorem 6.3 in [L]) and showing that a parabolic-like map is holomorphically conjugate to a member of the family \(\text{Per}_1(1) \) if and only if its external class is given by the class of \(h_2 \) (see Proposition 6.2 in [L]). We defined a (quasiconformal) conjugacy between two parabolic-like maps \((f, U_f, U_f', \gamma_f)\) and \((g, U'_g, U_g, \gamma_g)\) to be a (quasiconformal) homeomorphism between (appropriate) restrictions of \(U_f \) and \(U_g \) which conjugates dynamics on \(\Omega_f \cup \gamma_f \) (see Def. 3.3 in [L]). Let us review how we changed the external class of a degree 2 parabolic-like map \(f \) into the class of \(h_2 \). As first step, we constructed a homeomorphism \(\tilde{\psi} \), quasiconformal everywhere but at the parabolic fixed point, between a fundamental annulus \(A_f = \overline{U_f \setminus \Omega_f} \) of \(f \) and a fundamental annulus \(A = \overline{B \setminus \Omega_B} \) of \(h_2 \). Then we defined on \(A_f \) an almost complex structure \(\sigma_1 \) by pulling back the standard structure by \(\tilde{\psi} \). In order to obtain on \(U_f \) a bounded and invariant (under a map coinciding with \(f \) on \(\Omega_f \)) almost complex structure \(\sigma \) we replaced \(f \) with \(h_2 \) on \(\Delta \), and spread \(\sigma_1 \) by the dynamics of this new map \(\tilde{f} \) (and kept the standard structure on \(K_f \)).
Finally, by integrating σ we obtained a parabolic-like map hybrid conjugate to f and with external map h_2.

In this paper we want to perform this surgery for nice analytic families of degree 2 parabolic-like maps, and prove that the map $\chi : M_f \to M_1$ induced by the family of hybrid conjugacies extends to a continuous map $\chi : \Lambda \to \mathbb{C}$ which under suitable conditions restricts to a branched covering of $M_1 \setminus \{1\}$. We will start by defining a family of quasiconformal maps, depending holomorphically on the parameter, between a fundamental annulus of h_2 and fundamental annuli $A_\lambda = \overline{U_\lambda} \setminus \Omega^\prime_\lambda$ of f_λ, $\lambda \in \Lambda$. In analogy with the polynomial-like setting we will call this family a holomorphic Tubing. In order to construct a holomorphic Tubing, fixed a $\lambda_0 \in \Lambda$, we will start by constructing a quasiconformal homeomorphism $\tilde{\psi}$ between A and A_{λ_0} (see Section 3.0.2) and a dynamical holomorphic motion $\hat{\tau} : \Lambda \times A_{\lambda_0} \to A_\lambda$ (see Section 3.0.3). Hence we will obtain a holomorphic Tubing by composing the inverse of $\tilde{\psi}$ with the holomorphic motion (see Section 3.0.4). By Tubing, we will extend the map χ to the whole of Λ (see Section 4.1). We will prove that the map χ is continuous (see Section 4.3), holomorphic on the interior of M_f (see Section 4.4) and with discrete fibers (see Section 4.5). Finally, we will prove that, on compact subsets of Λ, the map χ is a degree $D > 0$ branched covering (see Section 5). By defining proper families of parabolic-like maps we wil give the condition under which, for each neighborhood U of 1, $\chi^{-1}(M_1 \setminus U)$ is a compact subset of Λ (see Section 5.1). This implies the following result:

Theorem 2.2. Given a proper family of parabolic-like maps $(f_\lambda)_{\lambda \in \Lambda = \mathbb{D}}$, the map $\chi : M_f \to M_1 \setminus \{1\}$ is a degree $D > 0$ branched covering. More precisely, for every neighborhood U of 1 in \mathbb{C} (with $0 \notin U$) there exists a neighborhood \hat{V} of $M_1 \setminus U$ in $\chi(M_f)$ such that the map $\chi : \chi^{-1}(%}
3.0.1 A fundamental annulus \(A \) for \(h_2 \)

The map \(h_2(z) = \frac{z^{2+1/3}}{1+z^{2/3}} \) is an external map of every member of the family \(\text{Per}_1(1) \) (see Prop. 4.2 in [L]). Let \(h_2 : W' \to W \) (where \(W = \{ z : \exp(-\epsilon) < |z| < \exp(\epsilon) \} \) for an \(\epsilon > 0 \), and \(W' = h_2^{-1}(W) \)) be a degree 2 covering extension (this is, an extension such that \(h_2 : W' \to W \) is a degree 2 covering and there exists a dividing arc which devides \(W' \setminus D \) and \(W' \setminus D' \) into \(\Omega'_W, \Delta'_W \) and \(\Gamma'_W, \Delta'_W \) respectively, such that \(\Omega'_W \setminus \Delta'_W \) is a topological quadrilateral; see Def. 5.2 in [L]). Choose \(\lambda_0 \in \Lambda \). Let \(h_{\lambda_0} \) be an external map of \(f_{\lambda_0}, z_0 \) be its parabolic fixed point and define \(\gamma_{h_{\lambda_0}+} = \alpha_{\lambda_0}(\gamma_{\lambda_0+}), \gamma_{h_{\lambda_0}-} = \alpha_{\lambda_0}(\gamma_{\lambda_0-}) \) (where \(\alpha \) is a parabolic equivalence between \(f_{\lambda_0} \) and \(h_{\lambda_0} \)).

Let \(\Xi_{h_{\lambda_0}+} \) and \(\Xi_{h_{\lambda_0}-} \) be repelling petals for the parabolic fixed point \(z_0 \) which intersect the unit circle and \(\phi_{\pm} : \Xi_{h_{\lambda_0} \pm} \to \mathbb{H}_t \) be Fatou coordinates for \(h_{\lambda_0} \) with axis tangent to the unit circle at the parabolic fixed point \(z_0 \). Let \(\Xi_{h_{\lambda_0}+} \) and \(\Xi_{h_{\lambda_0}-} \) be repelling petals which intersect the unit circle for the parabolic fixed point \(z = 1 \) of \(h_2 \), and let \(\phi_{\pm} : \Xi_{h_{\lambda_0} \pm} \to \mathbb{H}_t \) be Fatou coordinates for \(h_2 \) with axis tangent to the unit circle at 1. Define \(\tilde{\gamma}_{+} = \phi_+^{-1}(\phi_{h_{\lambda_0}+}(\gamma_{h_{\lambda_0}+})) \) and \(\tilde{\gamma}_{-} = \phi_{-1}(\phi_{h_{\lambda_0}-}(\gamma_{h_{\lambda_0}-})) \).

Define \(\tilde{\Delta}_W = h_2(\Delta_W \cap \Delta_{W'}), \tilde{W} = \Omega_W \cup \tilde{\gamma} \cup \tilde{\Delta}_W, \tilde{W}' = h_2^{-1}(\tilde{W}), \tilde{\Omega}_W = \Omega_W \cap \tilde{W}', \tilde{\Delta}_W = \Delta_W \cap \tilde{W}' \) and \(Q_W = \Omega_W \setminus \tilde{\Omega}_W \). We call fundamental annulus for \(h_2 \) the topological annulus \(A = \tilde{W} \setminus (\tilde{\Omega}_W \cup D) \).

3.0.2 A fundamental annulus \(A_{\lambda_0} \) for \(f_{\lambda_0} \) and the map \(\tilde{\psi} : A_{\lambda_0} \to A \)

Let \(\Phi_{\Delta_{\lambda_0}} : \Delta_{\lambda_0} \to \Delta_W \) be a homeomorphism coinciding with \(\varphi_{\lambda_0}^{-1} \circ \phi_{h_{\lambda_0} \pm} \circ \alpha_{\lambda_0} \) on \(\gamma_{\lambda_0}, \) quasiconformal on \(\Delta_{\lambda_0} \setminus \{ z_{\lambda_0} \} \) (where \(z_{\lambda_0} \) is the parabolic fixed point of \(f_{\lambda_0} \)) and real-analytic diffeomorphism on \(\Delta_{\lambda_0} \) (see Claim 6.1 in the proof of Thm. 6.3 in [L]). Define \(\tilde{\Delta}_{\lambda_0} = \Phi_{\Delta_{\lambda_0}}^{-1}(\tilde{\Delta}_W), \tilde{\Delta}'_{\lambda_0} = \Phi_{\Delta_{\lambda_0}}^{-1}(\tilde{\Delta}'_W), \) and \(\tilde{U}_{\lambda_0} = (\Omega_{\lambda_0} \cup \gamma_{\lambda_0} \cup \tilde{\Delta}_{\lambda_0}) \subset U_{\lambda_0} \). Consider

\[
\tilde{f}_{\lambda_0}(z) = \begin{cases}
\Phi_{\Delta_{\lambda_0}}^{-1} \circ h_2 \circ \Phi_{\Delta_{\lambda_0}} & \text{on } \tilde{\Delta}'_{\lambda_0} \\
 f_{\lambda_0} & \text{on } \Omega_{\lambda_0} \setminus \tilde{\Delta}_{\lambda_0}
\end{cases}
\]

Define \(\tilde{U}'_{\lambda_0} = \tilde{f}_{\lambda_0}^{-1}(\tilde{U}_{\lambda_0}), Q_{\lambda_0} = \Omega_{\lambda_0} \setminus \tilde{\Omega}'_{\lambda_0} \), and the fundamental annulus \(A_{\lambda_0} = \tilde{U}'_{\lambda_0} \setminus \Omega_{\lambda_0}' \).

Let \(\Phi_{Q_{\lambda_0}} : \tilde{Q}_{\lambda_0} \to \tilde{Q}_W \) be a quasiconformal map which coincides with \(\varphi_{\lambda_0}^{-1} \circ \phi_{h_{\lambda_0} \pm} \circ \alpha_{\lambda_0} \) on \(\gamma_{\lambda_0} \) (see the proof Claim 6.2 in Thm. 6.3 in [L]). Define
a map \(\tilde{\psi} : A_{\lambda_0} \rightarrow A \) as follows:

\[
\tilde{\psi}(z) = \begin{cases}
\Phi_{\Delta_{\lambda_0}} & \text{on } \Delta_{\lambda_0} \\
\Phi_{Q_{\lambda_0}} & \text{on } Q_{\lambda_0}
\end{cases}
\]

The map \(\tilde{\psi} \) is a homeomorphism, quasiconformal on \(A_{\lambda_0} \setminus \{ z_{\lambda_0} \} \), so the map \(\tilde{\Psi} := \tilde{\psi}^{-1} : A \rightarrow A_{\lambda_0} \) is a homeomorphism, quasiconformal on \(A \setminus \{ 1 \} \).

3.0.3 Holomorphic motion of the fundamental annulus \(A_{\lambda_0} \)

Define for all \(\lambda \in \Lambda \) the set \(a_{\lambda} = U_{\lambda} \setminus \Omega_{\lambda}' \). Then the set \(a_{\lambda} \) is a topological annulus. Define the map \(\tilde{\tau} : \Lambda \times \partial a_{\lambda_0} \rightarrow \partial a_{\lambda} \) as follows:

\[
\tilde{\tau}(z) = \begin{cases}
\Phi_{\gamma_{\lambda_0}} & \text{on } \gamma_{\lambda_0} \\
B_{\lambda} & \text{on } \partial U_{\lambda_0} \\
f_{\lambda}^{-1} \circ f_{\lambda_0} & \text{on } \partial U_{\lambda_0}' \cap \partial \Omega_{\lambda_0}'
\end{cases}
\]

Since \(\Phi_{\lambda} \) and \(B_{\lambda} \) are holomorphic motions with disjoint images on \(\partial a_{\lambda_0} \setminus \{ \gamma_{\lambda_0}(1), \gamma_{\lambda_0}(-1) \} \), and \(f_{\lambda} : \partial U_{\lambda}' \rightarrow \partial U_{\lambda} \) is a degree \(d \) covering, \(\tilde{\tau} \) is a holomorphic motion with basepoint \(\lambda_0 \). Since \(\Lambda \approx \mathbb{D} \), by the Slodkowski’s Theorem we can extend \(\tilde{\tau} \) to a holomorphic motion \(\hat{\tau} : \Lambda \times \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}} \). In particular we obtain a holomorphic motion of \(\tilde{U}_{\lambda_0} \). For every \(\lambda \in \Lambda \), define \(\tilde{U}_{\lambda} = \tilde{\tau}(\tilde{U}_{\lambda_0}) \), and \(\Delta'_{\lambda} = \tilde{\tau}(\Delta'_{\lambda_0}) \). Define for every \(\lambda \in \Lambda \) the map \(f_{\lambda} \) as follows:

\[
\tilde{f}_{\lambda}(z) = \begin{cases}
\tilde{\tau} \circ \tilde{\Psi} \circ h_{\lambda}^{-1} & \text{on } \tilde{\Delta}_{\lambda} \\
f_{\lambda} & \text{on } \tilde{\Omega}_{\lambda}' \cup \gamma_f_{\lambda}
\end{cases}
\]

and the set \(\tilde{U}'_{\lambda} = \tilde{f}_{\lambda}^{-1}(\tilde{U}_{\lambda}) \). Finally, define for all \(\lambda \in \Lambda \) the set \(A_{\lambda} = U_{\lambda} \setminus \Omega_{\lambda}' \). Then the set \(A_{\lambda} \) is a topological annulus, and we call it fundamental annulus of \(f_{\lambda} \). The holomorphic motion \(\tilde{\tau} : \Lambda \times \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}} \) restricts to a holomorphic motion

\[
\tilde{\tau} : \Lambda \times A_{\lambda_0} \rightarrow A_{\lambda}
\]

which respects the dynamics.

3.0.4 Holomorphic Tubings

Define \(T := \tilde{\tau} \circ \tilde{\Psi} : \Lambda \times A \rightarrow A_{\lambda} \). We call the map \(T \) a holomorphic tubing. A holomorphic tubing is not a holomorphic motion, since \(T_{\lambda_0} = \tilde{\Psi} \neq Id \), but nevertheless it is quasiconformal in \(z \) for every fixed \(\lambda \in \Lambda \) and holomorphic in \(\lambda \) for every fixed \(z \in A \).
3.0.5 Straightening of the members of the family \((f_\lambda)_{\lambda \in \Lambda}\)

Let us now straighten the members of the family \((f_\lambda)_{\lambda \in \Lambda}\) to members of the family \(Per_1(1)\). For every \(\lambda \in \Lambda\) define on \(U_\lambda\) the Beltrami form \(\mu_\lambda\) as follows:

\[
\mu_\lambda(z) = \begin{cases}
\mu_{\lambda,0} = (T_\lambda)_*(\sigma_0) & \text{on } A_\lambda \\
\mu_{\lambda,n} = (\tilde{f}_\lambda^n)^*\mu_{\lambda,0} & \text{on } (\tilde{f}_\lambda)^{-n}(A_\lambda) \\
0 & \text{on } K_\lambda
\end{cases}
\]

For every \(\lambda\) the map \(T_\lambda\) is quasiconformal, hence \(||\mu_{\lambda,0}||_\infty \leq k < 1\) on every compact subset of \(\Lambda\). On \(\tilde{\Omega}_\lambda\) the Beltrami form \(\mu_{\lambda,n}\) is obtained by spreading \(\mu_{\lambda,0}\) by the dynamics of \(f_\lambda\), which is holomorphic, while on \(\Delta_\lambda\) the Beltrami form \(\mu_{\lambda,n}\) is constant for all \(n\) (by construction of the map \(\tilde{f}_\lambda\)). Thus \(||\mu_\lambda||_\infty = ||\mu_{\lambda,0}||_\infty\) which is bounded. By the measurable Riemann mapping theorem (see \([Ah]\)) for every \(\lambda \in \Lambda\) there exists a quasiconformal map \(\phi_\lambda : U_\lambda \to \mathbb{D}\) such that \((\phi_\lambda)^*\mu_0 = \mu_\lambda\). Finally, for every \(\lambda \in \Lambda\) the map \(g_\lambda = \phi_\lambda \circ \tilde{f}_\lambda \circ \phi^{-1}_\lambda\) is a parabolic-like map hybrid conjugate to \(f_\lambda\) and holomorphically conjugate to a member of the family \(Per_1(1)\) (see Prop. 6.2 in \([L]\)).

Remark 3.1. Note that for every \(\lambda \in \Lambda\), the dilatation of the integrating map \(\phi_\lambda\) is equal to the dilatation of the holomorphic Tubing \(T_\lambda\). So the family of integrating maps \((\phi_\lambda)_{\lambda \in \Lambda}\) has locally bounded dilatation.

3.0.6 Lifting Tubings

Let us lift the Tubing \(T_{\lambda_{\hat{\lambda}}}\). Define \(A_{\lambda,0} = A_\lambda\), \(B_{\lambda,1} = \tilde{f}_\lambda^{-1}(A_{\lambda,0})\), \(A_0 = A\) and \(B_1 = h_\lambda^{-1}(A_0)\). Hence \(\tilde{f}_\lambda : B_{\lambda,1} \to A_{\lambda,0}\) and \(h_\lambda : B_1 \to A_0\) are degree 2 covering maps, and we can lift the Tubing \(T_{\lambda_{\hat{\lambda}}}\) to \(T_{\lambda_{\hat{\lambda}}}: = \tilde{f}_\lambda^{-1} \circ T_\lambda \circ h_\lambda : B_1 \to B_{\lambda,1}\) (such that \(T_{\lambda,1} = T_\lambda\) on \(B_1 \cap A_0\)).

Define recursively \(A_{\lambda,n} = B_{\lambda,n} \cap \tilde{U}, B_{\lambda,n+1} = \tilde{f}_\lambda^{-1}(A_{\lambda,n}), A_n = B_n \cap \tilde{W}\) and \(B_{\lambda,n+1} = h_\lambda^{-1}(A_n)\). Hence \(\tilde{f}_\lambda : B_{\lambda,n+1} \to A_{\lambda,n}\) and \(h_\lambda : B_{\lambda,n+1} \to A_n\) are degree 2 covering maps, and we can lift the Tubing to \(T_{\lambda,n+1} : = \tilde{f}_\lambda^{-1} \circ T_{\lambda,n} \circ h_\lambda : B_{\lambda,n+1} \to B_{\lambda,n+1}\) (such that \(T_{\lambda,n+1} = T_{\lambda,\hat{n}}\) on \(B_{\lambda,n+1} \cap B_n\)).

In the case \(K_\lambda\) is connected, we can lift the Tubing \(T_{\lambda_{\hat{\lambda}}}\) to the whole of \((W \cup W') \setminus \overline{\mathbb{D}}\). If \(K_\lambda\) is not connected, the maximum domain we can lift the Tubing \(T_{\lambda_{\hat{\lambda}}}\) to is \(B_{n_0}\), such that \(B_{\lambda,n_0}\) contains the critical value of \(f_\lambda\). Note that the extension is still quasiconformal in \(z\).

4 Properties of the map \(\chi\)

Consider the map \(\chi : M_f \to M_1 \setminus \{1\}\) (defined in Section \([\mathbb{L}]\) which associates to each \(\lambda \in M_f\) the multiplier of the fixed point of the map \(P_A\) hybrid
equivalent to f_λ. In this section, we will first extend the map χ to the whole of Λ (see Section 4.1), then prove that the map $\chi : \Lambda \to \mathbb{C}$ is continuous at the boundary of M_f (see Prop. 4.3) and that it depends analytically on λ for $\lambda \in \partial M_f$ (see Prop. 4.5). Finally, we will prove that the map χ has discrete fibers (see Prop. 4.6).

4.1 Extending the map χ to all of Λ

Let T be a holomorphic tubing for the nice analytic family of parabolic-like maps f. Call c_λ the critical point of f_λ and let n be such that $f_n^{\lambda}(c_\lambda) \in A_\lambda$, $f_n^{\lambda-1}(c_\lambda) \notin A_\lambda$. Lift the holomorphic tubing T_λ to $T_{\lambda,n-1}$ (see Section 3.0.6).

We can therefore extend the map χ by setting:

$$\chi : \Lambda \setminus M_f \to \mathbb{C} \setminus M_1$$

$$\lambda \to \Phi^{-1} \circ T_{\lambda,n-1}^{-1}(c_\lambda)$$

where $\Phi : \mathbb{C} \setminus M_1 \to \mathbb{C} \setminus \overline{D}$ is the canonical isomorphism between the complement of M_1 and the complement of the unit disk (see [M2]). Since the tubing T_λ has locally bounded dilatation, the map $\chi : \Lambda \setminus M_f \to \mathbb{C} \setminus M_1$ is quasiregular on $\Lambda' \setminus M_f$ for any open $\Lambda' \subset \subset \Lambda$.

4.2 Indifferent periodic points

An indifferent periodic point z' for f_{λ_0}, $\lambda_0 \in \Lambda$, is called persistent if for each neighborhood $V(z')$ of z' there exists a neighborhood $W(\lambda_0)$ of λ_0 such that, for every $\lambda \in W(\lambda_0)$ the map f_λ has in $V(z')$ an indifferent periodic point z'_λ of the same period and multiplier (see [MSS]). Let $(f_\lambda)_{\lambda \in \Lambda}$ be an family of parabolic-like mappings. For all $\lambda \in \Lambda$, the parabolic fixed point is persistent. Since all the other indifferent periodic points are non persistent, in the remainder we will call them indifferent periodic points without further notation.

Proposition 4.1. The indifferent parameter values for a family of parabolic-like mappings belong to ∂M_f.

Proof. The proof follows the proof of Prop. 11 in [DH]. Since for all $\lambda \in \Lambda \setminus M_f$ the critical point c_λ of f_λ belongs to $(U_\lambda \setminus K_\lambda)$, the map f_λ is hyperbolic.

Assume that for $\lambda_0 \in M_f$ the map f_{λ_0} has an indifferent periodic point α_0 of period k, and assume first $(f^k)'(\alpha_0) \neq 1$. By the Implicit Function Theorem there exist W, V neighborhoods of λ_0 and α_0 respectively, with $W \subset M_f$, where the indifferent cycle and the critical point move holomorphically with the parameter, and where the multiplier map $\rho(\lambda) = (f^k_\lambda)'(\alpha_\lambda)$
is a holomorphic non constant map. Set $\alpha(\lambda) = \alpha_{\lambda}$. By taking a restrictions if necessary, we can assume λ_0 is the only parameter in W for which f_λ has in V an indifferent periodic point. Let (λ_n) be a sequence in W converging to λ_0, such that for all n, $|\rho(\lambda_n)| < 1$. Hence for all n, there exists a $\alpha^i(\lambda_n) \in \{\alpha^0(\lambda_n), \ldots, \alpha^{k-1}(\lambda_n)\}$ such that

$$f_{\lambda_n}^{i+k_p}(c_{\lambda_n}) \to \alpha^i(\lambda_n) \text{ as } p \to \infty$$

We can assume i independent of λ by choosing a subsequence. Let us define for all $\lambda \in W$ the sequence $F_p(\lambda) = f_{\lambda}^{i+k_p}(c_{\lambda})$.

Since (F_p) is a family of analytic maps bounded on any compact subset of W, it is a normal family. Let F_{p_n} be a subsequence converging to some function h. Then $h(\lambda_n) = \alpha(\lambda_n)$ for all n, hence $h = \alpha$ and for all $\lambda \in W$, $F_p(\lambda) \to \alpha(\lambda)$. But in W there are parameters λ^* for which $\alpha(\lambda^*)$ is a repelling periodic point, and thus it cannot attract the sequence $F_p(\lambda^*)$.

In the case $(f^k)'(a_0) = 1$, let Λ_0 be a neighborhood of $\lambda_0 \in \hat{M}_f$, let $\lambda : W(0) \to \Lambda_0$, $t \to t^2 + \lambda_0$, be a branched covering of Λ_0 branched at 0 for some neighborhood $W(0)$ of 0, and repeat the previous argument.

4.3 Continuity of χ on ∂M_f

In this Section we prove that the map $\chi : \Lambda \to \mathbb{C}$ is continuous on the boundary of M_f.

Proposition 4.2. Suppose $A_1, A_2 \in \mathbb{C}$, with $B_1 = 1 - (A_1)^2 \in \partial M_1$. If the maps P_{A_1} and P_{A_2} are quasiconformally conjugate, then $B_1 = B_2$.

Proof. Let (P_1, U', U, γ_1) and (P_2, V', V, γ_2) be parabolic-like restrictions of P_{A_1} and P_{A_2} respectively (for the construction of a parabolic-like restriction of members of the family $\text{Per}_1(1)$ see the proof of Prop. 4.2 in [L]), and let $\varphi : U \to V$ be a quasiconformal conjugacy between them. If K_{P_1} is of measure zero (where $K_{P_1} = \hat{\mathbb{C}} \setminus B_\infty$, and B_∞ is the parabolic basin of attraction of infinity, see Section 1 in [L]), then φ is a hybrid conjugacy and the result follows from Prop. 6.5 in [L].

Let K_{P_1} be not of measure zero. Define on $\hat{\mathbb{C}}$ the following Beltrami form:

$$\tilde{\mu}(z) := \begin{cases} (\phi)^* \mu_0 & \text{on } K_{P_1} \\ 0 & \text{on } \hat{\mathbb{C}} \setminus K_{P_1} \end{cases}$$

Since ϕ is quasiconformal, $||\tilde{\mu}||_\infty = k < 1$. Therefore for $|t| < 1/k$ we can define on $\hat{\mathbb{C}}$ the family of Beltrami form $\mu_t = \tilde{\mu}t$, and $||\mu_t||_\infty < 1$. The family
\(\mu_t\) depends holomorphically on \(t\). Let \(\Phi_t : \hat{\mathbb{C}} \to \hat{\mathbb{C}}\) be the family of integrating maps fixing \(\infty, 1\) and \(0\). Hence the family \(\Phi_t\) depends holomorphically on \(t\), \(\Phi_1 = \phi\) and \(\Phi_0 = \text{Id}\). The family of holomorphic maps \(F_t = \Phi_t \circ P_{A_t} \circ \Phi_t^{-1}\) has the form \(F_t(z) = z + 1/z + A(t)\) (since it is a family of quadratic rational maps with a parabolic fixed point at \(z = \infty\) with preimage at \(z = 0\) and a critical point at \(z = -1\)) and it depends holomorphically on \(t\). Therefore the map \(\alpha : t \to B(t) = 1 - A^2(t)\) is holomorphic, hence it is either an open or constant, and \(\alpha(0) = B_1 \in \partial M_1\). If \(\alpha(t)\) is open, there exists a neighborhood \(W\) of \(0\) such that \(\alpha(W) \subset M_1\). Hence the map \(\alpha(t)\) is constant, so for all \(t\), \(\alpha(t) = B_1\). In particular \(\alpha(1) = B_1\), and \(F_1 = P_{A_1}\).

Finally the map \(\phi \circ \Phi_t^{-1}\) is a quasiconformal conjugacy between \(P_{A_1}\) and \(P_{A_2}\) with \((\phi \circ \Phi_t^{-1})^*\mu_0 = \mu_0\) on \(K_P\). So \(P_{A_1}\) and \(P_{A_2}\) are hybrid equivalent, and the result follows by Prop. 6.5 in [L].

Proposition 4.3. The map \(\chi : \Lambda \to \mathbb{C}\) is continuous at any point \(\lambda \in \partial M_f\), and moreover \(\chi(\lambda) \in \partial M_1\).

Proof. In order to prove continuity at any point \(\lambda \in \partial M_f\), we have to show that for every sequence \(\lambda_n \in \Lambda\) converging to \(\lambda_0 \in \partial M_f\) there exists a subsequence \(\lambda_{n^*}\) such that \(B_{n^*} = \chi(\lambda_{n^*})\) converges to \(B_0 = \chi(\lambda_0) \in \partial M_1\). Let us start by proving that \(B_0 \in \partial M_1\).

Let \(\lambda_m\) be a sequence of indifferent parameters converging to \(\lambda_0\). Hence there exists a sequence \(B_m = \chi(\lambda_m)\) such that, for each \(m\), \(f_{\lambda_m}\) is hybrid conjugate to \(P_{A_m}\) by some quasiconformal map \(\phi_m\). The sequence \(\phi_m\) is a sequence of quasiconformal maps with locally bounded dilatation (see Remark [L1]), hence it is precompact in the topology of uniform convergence on compact subsets of \(U_{\lambda_0}\) (see [Ly]). Therefore there exists a subsequence \(\phi_{\lambda_{m^*}}\) which converges to some quasiconformal limit map \(\hat{\phi}\), which conjugates \(f_{\lambda_0}\) to some \(P_{\hat{A}}\), so \(B_{m^*} \to \hat{B}\). For all \(m\) the map \(f_{\lambda_m}\) has an indifferent periodic point, hence \(P_{A_m}\) has an indifferent periodic point, thus \(B_m \in \partial M_1\) and finally \(\hat{B} \in \partial M_1\). Since the map \(f_{\lambda_0}\) is hybrid conjugate to \(P_{A_0}\) and quasiconformally conjugate to \(P_{\hat{A}}\), and \(\hat{B} \in \partial M_1\), by Prop. [L2] \(B_{0} = \hat{B} \in \partial M_1\).

Let now \(\lambda_n \in \Lambda\) be a sequence converging to \(\lambda_0 \in \partial M_f\). Since the sequence \(\phi_n\) is precompact, there exists a subsequence \((\lambda^*_n)\) such that \(\phi_{\lambda^*_n}\) converges to some limit map \(\hat{\phi}\) which conjugates \(f_{\lambda_0}\) to \(P_{\hat{A}} = \hat{\phi} \circ f_{\lambda_0} \circ \hat{\phi}^{-1}\), so \(B_{n^*} \to \hat{B}\). Finally, since \(B_0 \in \partial M_1\) and \(f_{\lambda_0}\) is quasiconformally conjugate to both \(P_{\hat{A}}\) and \(P_{A_0}\), by Prop. [L2] \(\hat{B} = B_0\).
4.4 Analicity of χ on the interior of M_f

The proof of the analycity of the map χ on the interior of \hat{M}_f (see Proposition 4.5) follows the proof Lyubich gave in the setting of polynomial-like mappings (see [LV]). We will prove that the map χ is holomorphic on hyperbolic components first, and then on queer components. To prove that χ is holomorphic on queer components, we first need the following Proposition.

Proposition 4.4. Let Q be a queer component of \hat{M}_1. Then for every $A \in Q$, J_{P_A} admits an invariant Beltrami form with positive support. In particular, area $J(P_A) > 0$.

Proof. Choose $B_0 \in Q$ and set $P_0 = P_{A_0}$. Let us start by proving that there exists a dynamical holomorphic motion $\eta_A : Q \times \hat{C} \to \hat{C}$ with base point A_0, holomorphic in z.

Let Ξ^0 be an attracting petal of P_0 containing the critical value $z = 2$, and let $\Phi_0 : \Xi^0 \to \mathbb{H}_+$ be the incoming Fatou coordinates of P_0 normalized by $\Phi_0(2) = 1$. For $A \in Q$, let Ξ^A be an attracting petal of P_A and let $\Phi_A : \Xi^A \to \mathbb{H}_+$ be the incoming Fatou coordinates of P_A with $\Phi_A(2 + A) = 1$. The map $\eta_A = \Phi_A^{-1} \circ \Phi_0 : \Xi^0 \to \Xi^A$ is a conformal conjugacy between P_0 and P_A. Defining Ξ^0_{-n}, $n > 0$ as the connected component of $P_0^{-n}(\Xi^0)$ containing Ξ^0, and Ξ^A_{-n}, $n > 0$ as the connected component of $P_A^{-n}(\Xi^A)$ containing Ξ^A, we can lift the map η to $\eta_n : \Xi^0_{-n} \to \Xi^A_{-n}$. Since K_{P_0} and K_{P_A} are connected (where K_{P_0} and K_{P_A} are the complements of the basin of attraction of the parabolic fixed point for P_0 and P_A respectively), by iterated lifting we can extend η_n to $\eta_A : \hat{C} \setminus K_{P_0} \to \hat{C} \setminus K_{P_A}$. The map η_A is a holomorphic conjugacy between P_0 and P_A, and since the family $\text{Per}_1(1)$ is a family of holomorphic maps depending holomorphically on the parameter and so Fatou coordonates depend holomorphically on the parameter, the family $(\eta_A)_{A \in Q}$ depends holomorphically on the parameter. Hence $\eta_A : Q \times \hat{C} \setminus K_{P_0} \to \hat{C} \setminus K_{P_A}$ is a dynamical holomorphic motion with base point A_0, holomorphic in z. Since for every $A \in Q$ all the periodic points of P_A (but the parabolic fixed point) are repelling, K_A is nowhere dense. Hence $K_{P_0} = J_{P_0}$ and thus by the λ-Lemma we can extend η_A to $\hat{\eta}_A : Q \times \hat{C} \to \hat{C}$. Note that $\hat{\eta}_A$ still conjugates dynamics, and it is conformal on $\hat{C} \setminus K_{P_0}$.

Define $\mu_A = (\hat{\eta}_A)^* \mu_0$. By construction, $\mu_A = \mu_0$ on $\hat{C} \setminus K_{P_0}$. On the other hand, if $\mu_A = \mu_0$ on \hat{C}, by the Weyl’s Lemma for every $A \in Q$ the map $\hat{\eta}_A$ is holomorphic, hence for all $A \in Q$ the maps P_A are conformally equivalent. Therefore $\mu_A \neq \mu_0$ on K_{P_0}, and thus area$(\text{supp} \mu_A) > 0$ on K_{P_0}. In particular, this implies area$(J_{P_0}) > 0$. \hfill \Box

Proposition 4.5. The map $\chi : \Lambda \to \hat{C}$ depends analytically on λ for $\lambda \in \hat{M}_f$.

16
Proof. Let us start by proving that, for every hyperbolic component \(P \subset M_f \), there exists a hyperbolic component \(Q \subset M_1 \) such that \(\chi|_P : P \to Q \) is a holomorphic map. By the Implicit Function Theorem and Prop. 4.1, all the parameter values in \(P \) are hyperbolic. Hence for \(\lambda \in P, f_\lambda \) has an attracting cycle, thus \(P_{A_\lambda} = \phi_\lambda \circ f_\lambda \circ (\phi_\lambda)^{-1} \) has an attracting cycle and \(Q \subset M_1 \). Since \(\phi_\lambda \) is conformal on \(K_\lambda \), calling \(\rho_P, \rho_Q \) the multiplier maps on \(P, Q \) respectively, \(\rho_P(\lambda) = \rho_Q(A_\lambda) \). Hence on \(P \) we can write the map \(\chi \) as \(\chi = \rho_Q^{-1} \circ \rho_P \). Since \(f_\lambda \) is holomorphic in both \(\lambda \) and \(z \), and by the Implicit Function Theorem the attracting cycle moves holomorphically on \(P \), the map \(\rho_P \) is holomorphic. For the same reason, \(\rho_Q \) is holomorphic as well. Since \(\rho_Q \) has degree 1 (see [PT]), it is conformal and then \(\chi \) is holomorphic.

Let now \(C \) be a queer component in \(M_f \), and let \(\lambda_0 \in C \). Since \(C \subset M_f \) we can lift the holomorphic motion \(\hat{\tau}_\lambda : A_{\lambda_0} \to A_\lambda \) constructed in 3.0.3 to \(\tau_\lambda : U_{\lambda_0} \setminus K_{\lambda_0} \to U_\lambda \setminus K_\lambda \) (as we did for the holomorphic Tubing, see 3.31.6). Since for all \(\lambda \in C \), \(K_\lambda \) is nowhere dense, by the \(\lambda \)-Lemma we can extend \(\tau_\lambda \) to a dynamical holomorphic motion \(\tau_\lambda : U_{\lambda_0} \to U_\lambda \). Let \(P_{A_{\lambda_0}} \) be the member of the family \(\text{Per}_1(1) \) hybrid conjugate to \(f_{\lambda_0} \), let \(\phi_{\lambda_0} \) be a hybrid conjugacy between them and set \(K_0 = K_{P_{A_{\lambda_0}}} \). Note that, for all \(\lambda \in C \), the map \(\tau_\lambda \circ \phi_{\lambda_0}^{-1} : \phi_{\lambda_0}(U_{\lambda_0}) \to U_\lambda \) is a quasiconformal conjugacy between \(P_{A_{\lambda_0}} \) and \(f_\lambda \). Define on \(\hat{\mathbb{C}} \) the following family of Beltrami forms:

\[
\nu_\lambda(z) := \left\{ \begin{array}{ll} (\tau_\lambda \circ \phi_{\lambda_0}^{-1})^* \mu_0 & \text{on } K_0 \\ \mu_0 & \text{on } \hat{\mathbb{C}} \setminus K_0 \end{array} \right.
\]

The family \(\nu_\lambda \) is a family of \(P_{A_{\lambda_0}} \)-invariant Beltrami forms depending holomorphically on \(\lambda \). By Prop. 4.3, for every \(\lambda \in C \), on \(K_0 \) area(supp\(\nu_\lambda \)) > 0. Let \(\psi_\lambda : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \) be the family of integrating maps fixing \(-1, 0 \) and \(\infty \), then the family \(P_{A(\lambda)} = \psi_\lambda \circ P_{A_{\lambda_0}} \circ (\psi_\lambda)^{-1} \) has the form \(P_{A(\lambda)}(z) = z + 1/z + A(\lambda) \), where \(A(\lambda) \) depends holomorphically on the parameter. Finally, for every \(\lambda \in C \), the map \(\psi_\lambda \circ \phi_{\lambda_0} \circ \tau_\lambda^{-1} \) is a hybrid conjugacy between \(f_\lambda \) and \(P_{A(\lambda)} \), hence \(P_{A(\lambda)} \) is the straightening of \(f_\lambda \) and the map \(\chi|_C \) is holomorphic.

\[\square \]

4.5 Discreteness of fibers

Set \(B = \chi(\Lambda) \).

Proposition 4.6. For every \(B \in \mathcal{B}, \chi^{-1}(B) \) is discrete.

Proof. This follows the proof of Lemma 10.13 in [LY]. Let us assume there exists a \(B \in \mathcal{B} \) such that there exists a sequence \(\lambda_n \in \chi^{-1}(B) \) and \(\lambda_n \to \hat{\lambda} \in \chi^{-1}(B) \). The map \(\chi \) is quasiregular on \(\Lambda \setminus M_f \) and holomorphic on \(M_f \),
hence $\hat{\lambda} \in \partial M_f$ (or $\hat{\lambda}$ in a queer component of M_f for which χ is constant, and then we can replace $\hat{\lambda}$ with a boundary point).

Note that, for every n, the maps f_{λ_n} are hybrid equivalent to $f_{\hat{\lambda}}$ by some hybrid equivalence β_{λ_n}. Let us assume that for all λ in a neighborhood of $\hat{\lambda}$, $f_{\lambda}^{-1}(\Delta_{\lambda}) \subset \Delta_{\lambda}$ (in other case, take a nice analytic family of parabolically restrictions for which the assumption holds). For every λ, call z_{λ} the parabolic fixed point of f_λ, c_{λ} its critical point and v_{λ} its critical value. Consider $\hat{\lambda}$ as the base point of a holomorphic motion $\hat{\tau} : \Lambda \times A_{\hat{\lambda}} \to A_{\lambda}$, extend it by the Slodkowski’s Theorem and then restrict it to a holomorphic motion $\tau : \Lambda \times \hat{\mathbb{C}} \setminus \hat{\Omega}_{\hat{\lambda}}’ \to \mathbb{C} \setminus \Omega_{\lambda}’$. Define for every n the map $\alpha_{\lambda_n} : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ as follows:

$$\alpha_{\lambda_n}(z) := \begin{cases} \tau_{\lambda_n}^{-1} \circ f_{\lambda_n}^{-1} \circ \tau_{\lambda}^{-1}(z) & \text{on } A_{\lambda,n} \\ \beta_{\lambda_n} \circ f_{\lambda}^{-1} \circ \tau_{\lambda}^{-1}(z) & \text{on } K_{\lambda} \end{cases}$$

where the maps \hat{f}_{λ} are as in 3.0.3 and the sets $A_{\lambda,n}$ are constructed in 3.0.6. The proof of Prop. 6.4 in [L] shows that, for every n, the map α_{λ_n} is continuous and hence quasiconformal. Therefore, for every n, α_{λ_n} restricts to a hybrid equivalence between $f_{\hat{\lambda}}$ and f_{λ_n}. Consider on $\hat{\mathbb{C}}$ the family of Beltrami forms $\nu_{\lambda_n} = (\alpha_{\lambda_n})^*\mu_0$. Note that trivially α_{λ_n} integrates ν_{λ_n}, and for some subsets O_n of $\hat{\Omega}_{\lambda_n}$ and O of $\hat{\Omega}_{\hat{\lambda}}$, $(f_{\lambda_n})_{\mid O_n} = \alpha_{\lambda_n} \circ f_{\hat{\lambda}} \circ (\alpha_{\lambda_n})_{\mid O}^{-1}$.

On the other hand, define on $\hat{\mathbb{C}}$ the family of Beltrami forms μ_{λ} as follows:

$$\mu_{\lambda}(z) := \begin{cases} \mu_{\lambda,0} = (\tau_{\lambda})^*\mu_0 & \text{on } \hat{\mathbb{C}} \setminus \hat{\Omega}_{\hat{\lambda}}’ \\ \tau_{\lambda}^\prime \circ \mu_{\lambda,0} & \text{on } \hat{A}_{\lambda,n} \\ 0 & \text{on } K_{\lambda} \end{cases}$$

where for every λ the map \hat{f}_{λ} which defines the sets $\hat{A}_{\lambda,n}$ and spreads μ_{λ} is defined as follows:

$$\hat{f}_{\lambda}(z) = \begin{cases} \tau_{\lambda}^{-1} \circ f_{\lambda} \circ \tau_{\lambda} & \text{on } \hat{\Omega}_{\hat{\lambda}}’ \\ \tau_{\lambda}^{-1}(f_{\lambda}^{-1}(\Delta_{\lambda})) & \text{on } \hat{\Omega}_{\hat{\lambda}}’ \end{cases}$$

Note that $\hat{f}_{\hat{\lambda}}$ and \hat{f}_{λ} coincide on $\hat{\Omega}_{\hat{\lambda}}’$, hence for every n, $(\bigcup_n A_{\lambda,n}) \cap \hat{\Omega}_{\hat{\lambda}}’ = (\bigcup_n \hat{A}_{\lambda,n}) \cap \hat{\Omega}_{\hat{\lambda}}’$. Therefore, for all n, $\mu_{\lambda,n} = \nu_{\lambda,n}$.

The family μ_{λ} depends holomorphically on λ, because τ_{λ} is a holomorphic motion, on $\Delta_{\hat{\lambda}}$ it is constant and on $\hat{\Omega}_{\hat{\lambda}}’$ it is spread by the dynamics of $f_{\hat{\lambda}}$ (which does not depends on λ).

Let $H_{\lambda} : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be the holomorphic family of integrating maps mapping $z_{\hat{\lambda}}$ to z_{λ}, $c_{\hat{\lambda}}$ to c_{λ} and $v_{\hat{\lambda}}$ to v_{λ}. The family $G_{\lambda} = H_{\lambda} \circ f_{\hat{\lambda}} \circ H_{\lambda}^{-1} : H_{\lambda}(U_{\hat{\lambda}}) \to$
$H_\lambda(U_\lambda)$ is a holomorphic family of parabolic-like mappings hybrid equivalent to f_λ. For all n, $\alpha_{\lambda_n} = H_{\lambda_n}$ (since they are solutions of the same family of Beltrami form and they coincide on 3 points), and therefore on the O_n, $G_{\lambda_n}(z) = f_{\lambda_n}(z)$.

Choose a neighborhood Λ_* of $\hat{\lambda}$ in Λ and an open set V in $\cap_n O_n$ such that the maps G_λ and f_λ are well-defined in $\Lambda_* \times V$. Since $G_\lambda(z) = f_\lambda(z)$ on $\lambda_n \times V$, and λ_n converges to $\hat{\lambda}$, $G_\lambda = f_\lambda$ on $\Lambda_* \times V$. This is impossible, because in Λ_* there are λ for which f_λ has disconnected Julia set (since $\hat{\lambda} \in \partial M_f$), while for all λ, G_λ has connected Julia set (since it is equivalent to f_λ).

5 The map $\chi: \Lambda \to \mathbb{C}$ is a ramified covering from the connectedness locus M_f to $M_1 \setminus \{1\}$

In this chapter, we will first prove that for any closed and connected subset K of $B = \chi(\Lambda)$, if $C = \chi^{-1}(K)$ is compact, then $\chi|_C$ is a proper map of degree d (Prop. 5.1), and then that $\chi: C \to K$ is a d-fold branched covering (Prop. 5.2). Finally, we will prove that, under certain conditions (Def. 5.3), for every neighborhood U of the root of M_1 (without specifications, we consider a neighborhood open), the set $\chi^{-1}(M_1 \setminus U)$ is compact in Λ. This implies Theorem 2.2.

Denote by $i_{\chi}(\chi)$ the local degree of χ at λ. Note that, since $\chi: \Lambda \to B$ is quasiregular on $\Lambda \setminus M_f$ and holomorphic on \hat{M}_f, for all $\lambda \in \Lambda$, $i_{\chi}(\chi) > 0$.

Proposition 5.1. Let K be a closed and connected subset of B, and $C = \chi^{-1}(K)$. If C is compact, then there exist neighborhoods \hat{V} of K in B and \hat{U} of C in Λ such that $\chi: \hat{U} \to \hat{V}$ is a proper map of degree d, where, for every $y \in K$, $d = \sum_{x \in \chi^{-1}(y)} i_x(\chi)$.

Proof. The proof follows the analogous one in [DH]. Let N be a closed neighborhood of C in Λ with $\text{dist}(C, \partial N) > 0$ (it exists since C compact). Hence $C \subset N \subset \Lambda$, $\chi: N \to \chi(N)$ is proper and $\partial K \cap \chi(\partial N) = \emptyset$. Call \hat{V} the connected component of $B \setminus \chi(\partial N)$ which contains K, and set $\hat{U} = \chi^{-1}(\hat{V}) \cap N$. Then $\chi^{-1}(\hat{V}) \cap \partial N = \emptyset$, hence the map $\chi|_{\hat{U}}: \hat{U} \to \hat{V}$ is proper.

Since χ is continuous and \hat{V} is connected, \hat{U} is the union of connected components. Set $\hat{U} = \bigcup_j \hat{U}_j$. The restriction $\chi: \hat{U}_j \to \hat{V}$ is then a proper map between connected sets, thus it has a degree d_j, and since χ has discrete
fibers, for every \(v \in \hat{V} \) (see [III] pg. 136):

\[
d_j = \sum_{u \in \chi^{-1}(v) \cap \hat{U}_j} i_u(\chi)
\]

(note that \(d_j > 0 \)). Therefore \(\chi : \hat{U} \to \hat{V} \) has a degree \(d = \deg \chi|_{\hat{U}} = \sum_j d_j \) and in particular for all \(y \in K \), \(d = \deg \chi|_{\hat{U}} = \deg \chi|_{C} = \sum_{x \in \chi^{-1}(y) \cap C} i_x(\chi) \).

Proposition 5.2. In the hypothesis of Prop. 5.1, the map \(\chi|_{\hat{U}} : \hat{U} \to \hat{V} \) is a branched covering of degree \(d \).

Proof. The map \(\chi|_{\hat{U}} : \hat{U} \to \hat{V} \) is continuous, and by the previous proposition it is a proper surjective map of degree \(d \). Let \(y \in \hat{V} \), and let \(Y \) be a neighborhood of \(y \) in \(V \) such that for all \(x \in X = \chi^{-1}(Y) \) and \(x \neq \chi^{-1}(y) \), \(x \) is a regular point (such a \(Y \) exists since the fiber of \(\chi \) are finite). Hence \(X = \bigcup_{j \in J} U_j \), with the \(U_j \) disjoint and \(1 \leq j \leq d \). If \(j = d \), \(y \) is a regular point, and for all \(j, \chi|_{U_j} \) is a homeomorphism.

If \(j < d \), we want to show that for every \(w \in Y \setminus \{y\} \) there exists a neighborhood \(W \subset Y \) of \(w \) such that \(\chi^{-1}(W) = \bigcup_{1 \leq j \leq d} T_j \), with the \(T_j \) disjoint and \(\chi|_{T_j} \) homeomorphism. This is clear because all the points in \(X \) different from the preimage of \(y \) are regular points.

5.1 Proper families of parabolic-like maps

As we saw in 2.4, the range \(B \) of the map \(\chi \) is not the whole of \(\mathbb{C} \) but a proper subset, because there is no \(\lambda \in \Lambda \) for which \(f_\lambda \) is hybrid equivalent to \(P_0 = z + 1/z \). Hence \(M_1 \notin B \). However, we could hope that \(B = 1 \) is the only point of \(M_1 \) missing from \(B \), or in other words, that as \(B \to \partial B \) \(B \notin M_1 \) or \(B \to 1 \). Indeed this is the case under appropriate conditions (e.g. the following one).

Definition 5.3. Let \(f = (f_\lambda : U'_\lambda \to U_\lambda)_{\lambda \in \Lambda} \) be a nice analytic family of parabolic-like maps of degree 2, such that, for \(\lambda \to \partial \Lambda \):

1. \(\lambda \notin M_f \) or
2. \(\chi(\lambda) \to 1 \).

Then we call \(f \) a *proper family of parabolic-like mappings.*
Proposition 5.4. Let \(f \) be a proper family of parabolic-like mappings. Then, for every \(U(1) \) neighborhood of 1 in \(\mathbb{C} \), setting \(K = M_1 \setminus U(1) \), the set \(C = \chi^{-1}(K) \) is compact in \(\Lambda \).

Proof. Assume \(C \) is not compact in \(\Lambda \). Then there exists a sequence \((\lambda_n) \in C\) such that \(\lambda_n \to \partial \Lambda \) as \(n \to \infty \). On the other hand, for all \(n \), \(\chi(\lambda_n) \in K \). Let \(\lambda_n \) be a subsequence converging to some parameter \(B \). Since \(K \) is compact, the limit point \(B \) belongs to \(K \subset M_1 \setminus \{1\} \). This is a contradiction, because \(f \) is a proper family of parabolic-like mappings. Therefore \(C \) is compact in \(\Lambda \).

Hence if \(f \) is a proper family of parabolic-like mappings, \(U(1) \) a neighborhood of \(B = 1 \), \(K = M_1 \setminus U(1) \), and \(\hat{V} \) a neighborhood of \(K \) given by Prop. 5.4, then calling \(c_{\lambda} \) the critical point of \(f_\lambda \) and \(\hat{U} = \chi^{-1}(\hat{V}) \), the degree \(D \) of the branched covering \(\chi : \hat{U} \to \hat{V} \) is equal to the number of times \(f_\lambda(c_{\lambda}) - c_{\lambda} \) turns around \(0 \) as \(\lambda \) describes \(\partial C \).

Proof. The proof follows the analogous one in [DH]. Let \(c_{\lambda} \) be the critical point of \(f_\lambda \). Choose \(\lambda_0 \) such that \(f_{\lambda_0}(c_{\lambda_0}) = c_{\lambda_0} \). Let \(P_{\lambda_0} \) be the member of the family \(\text{Per}_1(1) \) hybrid equivalent to \(f_{\lambda_0} \). Therefore \(P_{\pm}\lambda_0(-1) = -1 \), hence \(\chi(\lambda_0) = 0 \). This means that the multiplicity of \(\lambda_0 \) as zero of the map \(\lambda \to f_\lambda(c_{\lambda} - c_{\lambda} \) is the multiplicity of \(\lambda_0 \) as zero of the map \(\lambda \to \chi(\lambda) \). This last one is \(\sum_{\lambda \in \chi^{-1}(0)} i_\lambda(\chi) = D \).

5.1.1 Extension to the root

Let \((f_\lambda)_{\lambda \in \Lambda} \) be a proper family of parabolic-like mappings. For every \(\lambda \in \Lambda \), \(f_\lambda \) is the restriction of some map \(F_\lambda \). Consequently, \(\Lambda \) is the restriction of the parameter plane of the maps \(F_\lambda \), call it \(G \). Call \(M_F \) the connectedness locus of \(F_\lambda \), hence \(M_f \subset M_F \).
Theorem 5.6. Let f be a proper family of parabolic-like mappings. If the map $\chi : M_f \to M_1 \setminus \{1\}$ is a homeomorphism, and $\partial \Lambda \cap \partial M_f \subset G$, then χ extends to a homeomorphism $\chi : M_f \cup \{\lambda_*\} \to M_1$ for a unique $\lambda_* \in \partial \Lambda$. More generally, if the map $\chi : M_f \to M_1 \setminus \{1\}$ is a degree D branched covering, and $\partial \Lambda \cap \partial M_f \subset G$, then map χ extends continuously to $\chi : M_f \cup \{\lambda_1\} \cup \ldots \cup \{\lambda_D\} \to M_1$ for exactly D points in $\partial \Lambda$.

Proof. Let f be a proper family of parabolic-like mappings for which the map $\chi : M_f \to M_1 \setminus \{1\}$ is a degree D covering and $\partial \Lambda \cap \partial M_f \subset G$. Since f is a proper family, as $\chi(\lambda) \to 1$, $\lambda \to \partial \Lambda \cap \partial M_f$. We will prove that for every $\lambda \in \partial \Lambda \cap \partial M_f$, $\chi(\lambda) = 1$, and that $\partial \Lambda \cap \partial M_f$ is a discrete set. Then by continuity, $\partial \Lambda \cap \partial M_f = \{\lambda_1, \ldots, \lambda_D\}$.

The original family F_λ has a persistent parabolic fixed point of multiplier 1 and it depends holomorphically on λ. Take a succession $\lambda_i \in M_f$ such that $\chi(\lambda_i) \to 1$, and call λ_* the limit of the λ_i in G. Since for every i, λ_i is a hyperbolic parameter, the limit λ_* is a hyperbolic or indifferent parameter. So, if $\chi(\lambda_*) \neq 1$, F_{λ_*} presents a degree 2 parabolic-like restriction and $\lambda_* \in \Lambda$. Since $\lambda_* \notin \Lambda$, $\chi(\lambda_*) = 1$.

Let us prove now that the set $\partial \Lambda \cap \partial M_f$ is discrete. Note that this is the set of parameters for which the parabolic fixed point z_λ of F_λ has parabolic multiplicity $n + 1$, where n is the multiplicity of z_λ for $\lambda \in M_f$. Then, in a neighborhood of z_λ we can consider F_λ as

$$z + a_\lambda z^{n+1} + \text{h.o.t.},$$

with $n \geq 1$ and a_λ holomorphic in λ. Hence the set λ_j^* for which $a_{\lambda_j^*} = 0$ is a discrete set.

5.2 The parameter plane of the family $C_a(z) = z + az^2 + z^3$ presents baby-M_1

Let us show that the family of parabolic-like mappings $(C_a(z) = z + az^2 + z^3)_{a \in \Lambda}$ is proper. Call M_a the connectedness locus of $(C_a)_{a \in \Lambda}$. The finite boundaries of Λ are the external rays of angle $1/6$ and $2/6$, which cannot intersect the connectedness locus M_a in other point than the landing point, if they land. Since these rays land at $a = 0$ (see [N]), for $a \to \partial \Lambda$ either $a \notin M_a$, hence $B \notin M_1$, or $a \to 0$, hence $B \to 1$.

Finally, by the relation $\Phi(a) = \varphi(c_c(a))$ between external rays in dynamical and parameter plane, the degree of $\chi|_{M_a}$ is 1. Therefore C presents a baby M_1. By symmetry, we can repeat the construction for the family
\((C_a(z) = z + a z^2 + z^3)_{a \in \Lambda'},\) where \(\Lambda'\) is the open set bounded by the external rays of angle \(\frac{4}{6}\) and \(\frac{5}{6}\). Hence the connectedness locus of the family \((C_a(z) = z + a z^2 + z^3)_{a \in \mathbb{C}}\) presents two baby \(M_1\), namely in the connected component bounded by the external rays of angle \(\frac{1}{6}\) and \(\frac{2}{6}\), and in the connected component bounded by the external rays of angle \(\frac{4}{6}\) and \(\frac{5}{6}\) (see Fig. [1] and [2] in the Introduction).

References

[A] K. Astala, *Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane*, Princeton Univ. Press, (2008).

[Ah] L. Ahlfors, Lectures on quasiconformal mappings, Second edition. AMS University Lecture series, Vol. 38. (2006).

[BH] B. Branner & J. H. Hubbard, The iteration of cubic polynomials II: Patterns and parapatterns, *Acta Math.*,157 (1986), no. 1-2, 23–48.

(DE) A. Douady & C. J. Earle, Conformally natural extension of homeomorphisms of the circle, *Acta Math.*,169 (1992), no. 3-4, 229-325.

[DH] A. Douady & J. H. Hubbard, On the Dynamics of Polynomial-like Mappings, *Ann. Sci. École Norm. Sup.*, (4), Vol.18 (1985), 287-343.

[F] O. Forster, *Lectures on Riemann Surfaces*, Springer, (1981).

[H] A. Hatcher, *Algebraic Topology*, Cambridge Univ. Press, (2002).

[Hö] L. Hörmander, *The analysis of Linear Partial Differential Operators I*, Springer-Verlag, (1983).

[Hu] J. Hubbard, *Teichmüller Theory, Volume 1: Teichmüller Theory*, Matrix Editions, (2006).

[L] L. Lomonaco, Parabolic-like maps, [arXiv:1111.7150](https://arxiv.org/abs/1111.7150).

[L1] L. Lomonaco, *Parabolic-like maps*, IMFUFA tekst, (2013).

[Ly] M. Lyubich, *Conformal Geometry and Dynamics of Quadratic Polynomials*, www.math.sunysb.edu/~mlyubich/book.pdf.

[M] J. Milnor, *Dynamics in One Complex Variable*, Annals of Mathematics Studies, (2006).
[M2] J. Milnor, On Rational Maps with Two Critical Points, *Experimental Mathematics*, (4), Vol. 9 (2000), 481-522.

[MSS] R. Mañé, P. Sad & D. Sullivan, On the Dynamics of Rational maps, *Ann. Sci. École Norm. Sup.*, (4), Vol.16 (1983), 193-217.

[S] D. Sullivan, Quasiconformal Homeomorphisms and Dynamics III, *Ann. Sci. École Norm. Sup.*, (4), Vol.16 (1983), 193-217.

[N] S. Nakane, Capture components for cubic polynomials with parabolic fixed points, *ACADEMIC REPORTS Fac. Eng. Tokio Polytech. Univ.*, (1), Vol.28 (2005), 33-41.

[PT] C. Petersen & L. Tan, Branner-Hubbard motions and attracting dynamics, *Dynamics on the Riemann sphere*, (45-70), Eur. Math. Soc. (2006).

[Sh] M. Shishikura, Bifurcation of parabolic fixed points, *The Mandelbrot set, Theme and Variations*, (325-363), *London Math. Soc. Lecture Note Ser.*, 274 Cambridge Univ. Press, (2000).