Impact of obesity on male fertility, sperm function and molecular composition

Nicole O. Palmer, Hassan W. Bakos, Tod Fullston and Michelle Lane

1School of Paediatrics and Reproductive Health; The Robinson Institute; Discipline of Obstetrics and Gynaecology; The University of Adelaide; Adelaide, SA Australia; 2School of Medicine; Discipline of Medicine; The University of Adelaide; Adelaide, SA Australia; 3Repromed; Dulwich, SA Australia

Keywords: male obesity, sperm, intergenerational, offspring, fertility

Male obesity in reproductive-age men has nearly tripled in the past 30 years and coincides with an increase in male infertility worldwide. There is now emerging evidence that male obesity impacts negatively on male reproductive potential not only reducing sperm quality, but in particular altering the physical and molecular structure of germ cells in the testes and ultimately mature sperm. Recent data has shown that male obesity also impairs offspring metabolic and reproductive health suggesting that paternal health cues are transmitted to the next generation with the mediator mostly likely occurring via the sperm. Interestingly the molecular profile of germ cells in the testes and sperm from obese males is altered with changes to epigenetic modifiers. The increasing prevalence of male obesity calls for better public health awareness at the time of conception, with a better understanding of the molecular mechanism involved during spermatogenesis required along with the potential of interventions in reversing these deleterious effects. This review will focus on how male obesity affects fertility and sperm quality with a focus on proposed mechanisms and the potential reversibility of these adverse effects.

Introduction

Obesity is a global health problem that is reaching epidemic proportions with 1.6 billion adults classified as overweight and an extra 400 million adults classified as obese.1 It accounts for 7.5% of the total burden of disease2 costing approximately $21 billion dollars each year3 in Australia. Using Australia as an example of a westernised society, since the 1970s the rates of obesity in reproductive-age men has nearly tripled.4 This obesity is coincident with an increase in male infertility as evidenced by the increase in couples seeking artificial reproductive technologies (ART) especially intracytoplasmic sperm injection (ICSI).5,6 There is increasing awareness that male obesity reduces sperm quality, in particular altering the physical and molecular structure of germ cells in the testes and mature sperm for a review see refs.7,9 Furthermore, there is increasing evidence that paternal health cues can be passed to the next generation with the mediator mostly likely occurring via the sperm. Interestingly the molecular profile of germ cells in the testes and sperm from obese males is altered with changes to epigenetic modifiers. The increasing prevalence of male obesity calls for better public health awareness at the time of conception, with a better understanding of the molecular mechanism involved during spermatogenesis required along with the potential of interventions in reversing these deleterious effects. This review will focus on how male obesity affects fertility and sperm quality with a focus on proposed mechanisms and the potential reversibility of these adverse effects.

Male Obesity Negatively Impacts Fertilization and Pregnancy

In the last 5–10 years it has been demonstrated that maternal obesity is associated with changes to the oocyte that negatively impact embryo development, which reduces subsequent pregnancy establishment after in vitro fertilization.15-17 Only recently in the last 2–3 years has the impact of an obese male partner on embryo development and pregnancy been assessed. Currently, there is mounting evidence that male obesity may be equally implicated in reducing fertility and embryo health. Couples with an overweight or obese male partner, with a female of normal body mass index (BMI), have increased odds ratio for increased time to conceive compared with couples with normal weight male partners.18,19 A limited number of clinical studies suggest similar outcomes. With obesity in males associated with decreased pregnancy rates and an increase of pregnancy loss in couples undergoing ART (Fig. 1).20-22 In part, this effect appears to be due to reduced blastocyst development, sperm binding and fertilization rates during in vitro fertilization (IVF), when the male partner is overweight or obese.20,23 However, more studies would be welcomed on this topic as limitations regarding sample size, cycle numbers, known factor infertility and the use of either IVF or ICSI are potential cofounders. This is suggested in the Keltz et al.22 study where they did not see the same changes to fertilization and embryo development when sperm were injected directly into the oocyte suggesting that the process of ICSI was by passing some impairment of the sperm to bind and fertilize. Although, this is not surprising as animal models of obesity have shown that the capacitation status and sperm binding ability of high fat diet mice were impaired compared with controls24,25 suggesting that post ejaculation maturation was altered and can be bypassed by ICSI. These embryology based findings which have established that male obesity at the time of conception impairs

*Correspondence to: Michelle Lane; Email: michelle.lane@adelaide.edu.au
Submitted: 05/17/12; Revised: 07/04/12; Accepted: 07/04/12
http://dx.doi.org/10.4161/spmg.21362
embryo health, therefore reducing implantation and live birth rates are paralleled by animal models of male obesity. This highly suggests a functional change to the molecular makeup of sperm that impacts directly on both sperm function but also on subsequent embryo development.

Paternal Obesity and Programming the Health of the Next Generation

It is widely accepted that nutritional challenges during gestation (including maternal obesity) program molecular changes in the developing fetus that result in increased susceptibility to adult chronic diseases for a review see refs. However less is known about the influence of paternal obesity on childhood and adult health. Epidemiology studies have concluded that obese fathers are more likely to father an obese child. Although, it must be noted that the extent of the individual contributions of genetic, epigenetic and environmental cannot be separated in these association studies due to the common raising environment of both father and child. In light of this limitation, animal models of paternal obesity have been developed, which have more directly demonstrated marked changes to both the metabolic and reproductive health of subsequent offspring. Data from a rat model of diet induced obesity and reduced glucose tolerance demonstrated that paternal obesity compromised pancreatic function through altered gene transcription and islet cell dysfunction in female offspring. Subsequently, a mouse model of diet induced obesity without reduced glucose tolerance showed that paternal obesity compromised both first and second generation metabolic and reproductive health, with the female offspring additionally having increased fat mass demonstrating the first direct evidence of transmission of obesity. Significantly, F1 offspring had compromised gamete health with increased oxidative stress noted in sperm of male offspring and changes to oocyte mitochondrial function in female offspring. Taken together these data suggest that paternal obesity at the time of conception has a marked effect on offspring health therefore, directly implicating the sperm as the mediator for these changes, likely through a molecular mechanism that is transmitted to the resultant embryo and offspring (Fig. 2).

Male Obesity on Traditional Sperm Parameters

There are several studies that have investigated the impact of male obesity on the traditional sperm parameters mandated by the world health organization (WHO), namely sperm concentration, sperm motility and sperm morphology (summarized in Table 1). There is some evidence that male obesity reduces sperm concentration with 15 out of 23 recent studies showing this (Table 1). In contrast, there are many contradicting reports with regard to sperm motility (with 7/19 showing decreased motility) and morphology (7/16 showing decreased normal forms) and it is currently unclear if male obesity has an impact on these parameters (Table 1). The discrepancies observed in the literature likely result from several limitations that are inherent in human studies. First, these studies can be confounded by lifestyle
factors (i.e., smoking, alcohol consumption and recreational drug use) and co-pathologies, which can themselves impair sperm function. Second, the majority of studies originate from fertility clinics, where patient cohorts are frequently biased toward, sub-fertile men, which may also confound findings. Third, some studies rely on self-reporting of parameters such as lifestyle factors and BMI, which can lead to under-reporting.

Due to these difficulties in interpreting data from human studies, rodent models of male obesity have now been established to assess the impact of male obesity on sperm function, however it is necessary to be aware of the differences between species. These studies have demonstrated that males fed a high fat diet to induce obesity had reduced sperm motility and a decrease in percentage of sperm with normal morphology, however it should be noted that a number of these studies had significant reductions in testosterone and altered glucose homeostasis in their high fat diet groups which could be contributing to the results. Although there is some contention in the literature with regard to the effect male obesity has on traditional WHO sperm parameters, the changes reported indicate that the sperm are indeed compromised on more subtle levels.

Male Obesity on Sperm DNA Integrity and Oxidative Stress

While traditional WHO sperm parameters (sperm concentration and motility) are important measures of male fertility it is becoming increasingly apparent that the molecular structure and content of the sperm is equally important to the ability of a sperm to generate a healthy term pregnancy. Sperm DNA integrity is important for successful fertilization and normal embryonic development, as evidenced by sperm with poor DNA integrity being negatively correlated with successful pregnancies. Furthermore, sperm oxidative stress correlated with decreased sperm motility, increased sperm DNA damage, decreased acrosome reaction and lower embryo implantation rates following IVF. Numerous human studies as well as an animal study have determined that a relationship between obesity and reduced sperm DNA integrity exists, despite the use of a variety of different methodologies to measure sperm DNA integrity (TUNEL, COMET, SCSA, etc.). Only two studies, one human and one rodent, have directly linked levels of sperm oxidative stress with male BMI. Both studies concluded that a positive association between increasing BMI and increased sperm oxidative stress exists. In summary, there are conflicting reports about the interaction of male obesity with traditional WHO sperm parameters, but it is becoming clearer that male obesity is associated with significant changes to the molecular composition of sperm which has implications for its function but also for the resultant embryo.

Male Obesity and Altered Hormone Profiles

Spermatogenesis is a highly complex and selective processes whereby sperm are continually produced from the onset of puberty until death for a review see refs. This highly specialized process is under strict control from sex steroids, which in

Figure 2. Hypothesis for the effect of male obesity on spermatogenesis and how it impacts offspring health. Paternal obesity in rodents has been shown to negatively impact the metabolic and reproductive health of offspring. Sperm are the likely mediator for altering the developmental profile of the embryo, fetuses and then resultant offspring. This change is likely to be molecular in nature and resulting from impaired spermatogenesis as a result of the obesity phenotype most likely occurring through changes to acetylation, methylation or non-coding RNA status of sperm.
with decreased testis weight, and sperm output due to a reduction in Sertoli cell numbers.62,63 Therefore it remains plausible that the decreased sperm counts observed in male obesity are at least in part a result of changes to the HPG axis through testosterone and estrogen and likely reduced Sertoli cell function.

Obesity, Metabolic Syndrome and Fertility

Hyperinsulinemia and hyperglycemia is a common occurrence in obese individuals and are constant confounding factors in many rodent studies of male obesity.13,24,27 Hyperinsulinemia and hyperglycemia have been shown to have an inhibitory effect on sperm quantity and quality and therefore could be attributing to the reduced fertility seen in obese men for a review see refs.64,65 With commonly altered makers of sperm function such as decreased count, increased reactive oxygen species and sperm DNA damage also seen in diabetic patients for a review see refs.65,66 High circulating levels of insulin is suggested as one possible mechanism for the above effects with increased insulin reducing the production of SHBG in the liver thereby indirectly increasing the amount of active unbound estrogens and testosterone (not bound by SHBG) in the blood stream.67 The decreased levels of SHBG to sustain homeostatic levels of testosterone could contribute to the decreased levels of testosterone and decreased sperm counts seen in these patients. Increasing levels of circulating glucose have also been shown to reduce the amount of LH released by the anterior pituitary in sheep68,69 and therefore could contribute to the impaired HPG axis and altered sperm parameters seen in diabetic and overweight and obese men. Additionally, there is emerging evidence that low testosterone levels can also induce aspects of metabolic syndrome and therefore obesity may not be the direct cause of reduced sperm counts seen in these men but a symptom of the same low testosterone.70-72

Interaction of Adipose Tissue with Hormonal Regulation

A working hypothesis proposed that elevated estrogens in obese men may in part result from the increased mass of white adipose tissue. White adipose tissue is responsible for aromatase activity and adipose derived hormones and adipokines, which are elevated in obese men.73 Aromatase cytochrome P450 enzyme, is produced by many tissues including adipose tissue and testicular Leydig cells, and in men activity converts testosterone to estrogens.74,75 Due to obesity increased influx of white adipose tissue it is suggested that elevated estrogen concentrations may result from an increased conversion of androgens to estrogens by white adipose tissue therefore contributing to the increased plasma estrogen levels seen.76-78 Another key hormone produced by white adipose tissue is leptin, which plays a pivotal role in the regulation of energy intake and expenditure for a review see refs.79,80 Leptin mainly targets receptors in the hypothalamus by counteracting the effects of neuropeptide Y. However leptin receptors have recently been discovered in ovaries and testes, functioning to regulate the HPG axis.81-85 Specifically, increased levels of leptin significantly decreased the production of testosterone from

Table 1. Summary of the studies investigating paternal obesity and their effect on basic sperm parameters

Study	Concentration	Motility	Morphology
Strain et al.48	Decreased	No change	n/a
Jensen et al.58	Decreased	No change	Decreased
Magnusdottr et al.57	Decreased	Decreased	n/a
Fajer et al.56	Decreased	No change	No change
Koloszar et al.54	Decreased	n/a	n/a
Kort et al.50	Decreased *	Decreased *	Decreased *
Qin et al.50	No change	No change	No change
Hammoud et al.51	Decreased	Decreased	Decreased
Pauli et al.54	No change	No change	No change
Aggerholm et al.52	No change	No change	No change
Nicopoulou et al.52	Decreased	n/a	n/a
Hofny et al.53	Decreased	Decreased	Decreased
Stewart et al.54	Decreased	n/a	n/a
Chavarro et al.55	No change	No change	No change
Shayeb et al.56	No change	No change	Decreased
Koloszar et al.54	Decreased	n/a	n/a
Sekhavat et al.57	Decreased	Decreased	n/a
Paasch et al.54	Decreased	No change	Decreased
Tunc et al.55	Decreased	No change	No change
Rybar et al.56	No change	No change	No change
Bakos et al.57	Decreased	Decreased	No change
Kriegel et al.58	No change	No change	Decreased
Fariello et al.56	No change	Decreased	No change

*Significant for Normal Motile Sperm (NMS) = volume*concentration*% morphology.
Leydig cells. Taken together this suggests that elevated leptin levels commonly found in obese males could alter the HPG axis, thus contributing to the decreased testosterone production observed.

Interaction of Adipose Tissue on Testicular Temperature

One side effect of obesity that may potentially contribute to altered sperm production/parameters is raised gonadal heat resulting from increased scrotal adiposity. The process of spermatogenesis is highly sensitive to heat, with optimal temperature ranging between 34–35°C in humans. Increased testicular heat is associated with reduced sperm motility, increased sperm DNA damage and increased sperm oxidative stress. Changes to testicular temperature can occur via a number of mechanisms such as physical disorders (e.g. varicoceles), increased scrotal adiposity or environmental disturbances (e.g. prolonged bike riding) and are associated with reduced sperm function and sub fertility. It is therefore not surprising that increased testicular heat caused by increased adiposity in obesity has been proposed as a possible mechanism. It is noteworthy that increased sperm DNA damage and oxidative stress are commonly impaired in obese patients and that a single study which investigated the surgical removal of scrotal fat reported an improvement in sperm parameters.

Impact of Male Obesity on Molecular Aspects of Spermatogenesis

Recent data, which has shown that paternal health cues are transmitted to the next generation most likely via the sperm, has resulted in a renewed interest into the molecular function of sperm and has helped lead to our current hypothesis (Fig. 2). The mechanisms inducing changes to sperm molecular composition are yet to be determined in obese individuals. However, several studies examining transgenerational effects have proposed epigenetic modifications to the sperm through changes to non-coding RNA content, methylation and acetylation status which are changed in obese individuals for a review see refs. Additional reports suggest that the proteomic profiles of sperm also differ between obese and non-obese men. It is now becoming increasingly accepted that the environment that the founder generation is exposed to impacts the phenotype of subsequent generations. This is supported by the fact that DNA methyltransferase proteins (DNMT 1, 3A, 3B) are present during the spermatogenic cycle as knockout studies result in changes to sperm methylation and in some cases sperm function. The stage specific changes in nuclear localization of these three proteins during spermatogenesis coincides with the establishment of the methylation imprints in the spermatogonia. Subsequent maintenance of these imprints occurs throughout the remainder of spermatogenesis suggesting methylation imprints are key molecular events during spermatogenesis.

There is some evidence that the methylation status of sperm DNA is associated with sub-fertility. Hypomethylation of imprinted genes and repeat elements in sperm have been linked with reduced pregnancy success and correlate with increased sperm DNA damage in males undergoing fertility treatment. Additionally, altered levels of methylation in the promoter regions of genes such as MTHFR are associated with decreased sperm function. Further, imprinted regions such as H19 and ALU repeat elements are more likely to be hypomethylated in subfertile men.

Environmental exposures have also been linked with changes to methylation status of sperm. Toxins such as exposure to 5-aza-2’-deoxycytidine, tamoxifen and chemotherapy agents disturb the de novo methylation activity in sperm as shown in animal models. This aberrant methylation was observed at imprinted regions such as Igf2 and H19. Subsequently, this leads to a disruption of the DNA methylation reprogramming of the male pronucleus, which in turn increases post implantation pregnancy loss. Moreover, excess alcohol consumption in men has been associated with site-specific hypomethylation in sperm, a finding confirmed in animal models. Excessive alcohol consumption impacts negatively on offspring prenatal growth and also alters the methylation status of offspring DNA.

To date there is little information as to the impact of obesity on the methylation status of DNA originating from male germ cells, however obesity has been shown to alter the methylation status of DNA originating from other tissues for a review see ref. Whether the metabolic and reproductive changes observed in offspring as well as reduced fertilization and increased pregnancy loss induced from paternal obesity results from alterations to de novo methylation patterns of developmental genes in the male germ line is yet to be determined.

Acetylation. Histone acetylation is vital for spermatogenesis to proceed and is necessary and essential for the removal of histones so they can be replaced by protamines during spermiogenesis. Furthermore, histone acetylation is essential to relax chromatin structure that allows for the repair of the DNA double and single strand breaks that result. Protamination is required to enable the tight packing of the DNA that occurs within the sperm head, which aids in the protection against DNA damage in the absence of normal cellular defenses that
There is evidence that the retention of these histones during protamination is not random with key pluripotency regulating genes remaining histone bound (ie Nanog, Oct4 and Sprouty). Therefore these loci are capable of normal somatic cell histone modifications. Thus, alterations to histone acetylation at such loci due to environmental cues could result in epigenetic modifications to sperm that might form the basis of paternal programming of offspring.

The N-terminus of histones is a key region attracting post translational modifications such as acetylation. Acetylated histones in mature sperm are thought to represent epigenetic marks capable of transmission to the oocyte during fertilization and regulate gene expression in early embryogenesis. Given that key pluripotency genes retain histones it is proposed that this is in readiness for immediate activation of expression of these genes post fertilization. Hyperacetylation of H4 and H3 is required for normal spermiogenesis and for appropriate replacement of histones by protamines during spermiogenesis. Studies exploring the roles of histone deacetylases (HDAC) found that germ cells treated with HDAC inhibitors, result in premature hyperacetylation of late round spermatids. The functional consequence of this early hyperacetylation is still to be fully understood, however studies indicate that an increased rate of DNA damage occurs as the result. Interestingly, male mice fed a high fat diet similarly displayed altered acetylation status in late round spermatids which also correlated with increased DNA damage in the germ cells (Fig. 3). Alterations to sperm histone acetylation correlates with poor protamination, which in turn positively correlates with increased DNA damage in mature sperm and therefore potentially contributes to poor sperm parameters observed in obese males. Taken together, alterations to histone acetylation represent a potential epigenetic basis for the programming observed in resultant embryos and sired by obese males.

RNA and small non-coding RNA. The long held dogma was that sperm were transcriptionally and translationally silent and that the small amounts of RNA contained were thought are greatly diminished by the shedding of the cytoplasm during epididymal transport. The histone to protamine transition is incomplete with roughly 1% of histones remaining in mature murine sperm. Curiously, up to 15% of histones are retained in human mature sperm. The histone to protamine transition is incomplete with roughly 1% of histones remaining in mature murine sperm. Curiously, up to 15% of histones are retained in human mature sperm.

Figure 3. The effect of diet induced obesity in C57BL6 mice on Acetylation and DNA damage levels in spermatids during protamination. Data taken from. Data was analyzed through a univariate general linear model with replicate fitted as a covariate and mouse ID as a random factor. Correlation data was determined by a Pearson’s Rho. (A) The effect of diet induced obesity in mice on acetylation levels of H3K9 in elongating spermatids representative of > 120 spermatids from at least 5 mice per treatment group. (B) The effect of diet induced obesity in mice on DNA damage levels in elongating spermatids representative of > 4000 spermatids from at least 5 mice per treatment group. There was a negative correlation found between acetylation levels of H3K9 and DNA damage levels in round spermatids. (A) The effect of diet induced obesity in mice on acetylation levels of H3K9 in elongating spermatids representative of > 120 spermatids from at least 5 mice per treatment group. (B) The effect of diet induced obesity in mice on DNA damage levels in elongating spermatids representative of > 4000 spermatids from at least 5 mice per treatment group. There was a negative correlation found between acetylation levels of H3K9 and DNA damage levels in round spermatids.
to be remnants left over from spermatogenesis.131 However, it is now evident that mature sperm contain a regulated suite of both mRNA and other non-coding RNA that are suggested to be important for normal fertilization and subsequent embryonic development, with active transcription and translation occurring in the sperm’s mitochondria.132-135 Although it is not yet clear what the precise role these RNAs play, it has been empirically proven that these RNA can cause phenotypic change in resultant offspring after injection into oocytes, albeit at amounts that far exceed biological concentrations.136 While to date there is little known about mRNA abundance in sperm from obese males, one rodent model of obesity and diabetes has shown significant differences in several mRNA within testes compared with lean controls.27

Mature sperm also contain significant levels of small non-coding RNAs including silencing RNAs (siRNAs), microRNAs (miRNAs) and in a recent study piwi-interacting RNA (piRNAs).137 Small non coding RNAs are 20–22 nucleotides (nt) in length and contain an abundance of stop codons and generally lack open reading frames.138 They regulate at the level of both transcription and translation via control of chromatin organization, mRNA stability and protein synthesis. Interestingly, microRNAs also regulate methylation in several tissues.139 Indeed, hypomethylation of repeat elements in the male germ-line has been associated with an increase in miR-29, which is predicted to downregulate DNMT3a, a protein necessary for establishing genomic methylation.140

It is apparent that these RNAs have a role in the oocyte during fertilization and in embryo development, fetal survival and offspring phenotype. Alteration of microRNA abundance in the male pronucleus of recently fertilised zygotes produce offspring of phenotypes of variable severity depending on the ratios of microRNAs injected.141 One preliminary study reported that the microRNA profile is altered in sperm as a result of male obesity in rodents.142 However, the impact of these changes on fertilization and embryo health remains to be determined.

Reversibility

While it is becoming clearer that male obesity has negative impacts on fertility, sperm function and long-term impacts on the health burden of the offspring It is equally clear that simple interventions such as changes to diet and/or exercise can reverse both the disease state and the offspring outcomes. There is emerging evidence that intake of selenium enriched probiotics by obese rodents improves both their metabolic health and fertility measures (sperm count and motility).143 Furthermore, our recent studies of diet and exercise interventions in an obese mouse model have determined that sperm function is correlated with the metabolic health of the individual.144 Improvements in metabolic health such as a return of plasma concentrations of glucose, insulin and cholesterol to normal levels result in improvements in sperm motility and morphology, concomitant with improvements to molecular composition such as reductions in oxidative stress and reduced DNA damage.145 To date there is little information about the impact of diet/exercise intervention in obese men with regard to semen parameters in the human. The largest study to date examined 43 obese men during a 14 week residential weight loss program and demonstrated significant improvements to both total sperm count and sperm morphology in men who lost the greatest amounts of weight.146 However, a recent case report of three patients who underwent bariatric surgery to achieve drastic weight loss demonstrated that sperm parameters worsened.147 These parameters remained poorer two months post surgery in all patients and only one patient had minimal improvements after two years.148 However, the impact of nutritional deficiencies that might persist even after surgical intervention, and metabolic health of these men were not studied. The full potential of diet and exercise interventions to restore the fertility of obese men and improve embryo and offspring outcomes are yet to be fully characterized.

Conclusion

There is emerging evidence that male obesity negatively impacts fertility through changes to hormone levels, as well as direct changes to sperm function and sperm molecular composition. Data from animal models implicate the nutritional status of the father as setting the developmental trajectory of resultant offspring. Both male and female offspring born to fathers with sub-optimal nutrition have a constellation of metabolic and reproductive health pathologies. Nutritionally induced alterations to both the physical and molecular composition of sperm evidently implicates it as the mediator of these impacts on both the father’s fertility and the health of the next generation, sparking renewed research interest in spermatogenesis and the detrimental effects of obesity. Additionally with the recent animal studies showing that simple diet and exercise interventions can be used to reverse the damaging effects of obesity on sperm function, understanding the impacts will be important for the development of public health messages for men considering fatherhood.
54. Paasch U, Grunewald S, Kratzsch J, Glander HJ. Obesity and age affect male fertility potential. Fertil Steril 2010; 94:2988-901; PMID:20667533; http://dx.doi.org/10.1016/j.fertnstert.2010.06.047.
55. Fejes I, Kolozsár Z, Vázavci Z, Daru J, Szilágyi J, Páty A. Effects of body weight on testosterone/estradiol ratio in oligospermic patients. Arch Androl 2006; 52:97-102; PMID:16443585; http://dx.doi.org/10.1080/01401840500315479.
56. Pauli EM, Legro RS, Demers LM, Kanseman AR, Dodson WC, Lee PA. Diminished pregnancy and gestational diabetes with increasing obesity in men. Fertil Steril 2008; 90:346-51; PMID:18291378; http://dx.doi.org/10.1016/j.fertnstert.2007.06.046.
57. Hofy ER, Ali ME, Abdel-Hafez HZ, Kamal Eld-D, Mohamed EE, Abd El-Azim GH, et al. Semen parameters and hormonal profile in obese fertile and infertile males. Fertil Steril 2010; 94:581-4; PMID:19432100; http://dx.doi.org/10.1016/j.fertnstert.2009.03.085.
58. Jensen TK, Andersson AM, Jørgensen N, Andersen OF, Paasch U, Grunewald S, Kratzsch J, Glander HJ. Expression of functional leptin receptors in rodent Leydig cells. Endocrinology 1999; 140:495-47; PMID:10357117; http://dx.doi.org/10.1210/endo.140.11.4939.
59. Handelsman DJ, Swerdloff RS. Male gonadal dys- function: a spectrum of disorders. Fertil Steril 1998; 70:207-21; PMID:9592330; http://dx.doi.org/10.1016/s0014-3655(98)00266-x.
60. Handelsman DJ, Swerdloff RS. Male gonadal dys- function: a spectrum of disorders. Fertil Steril 1998; 70:207-21; PMID:9592330; http://dx.doi.org/10.1016/s0014-3655(98)00266-x.
61. Haring R, Volzke H, Felix SB, Schipf S, Dörri M, Roskopf D, et al. Prediction of metabolic syndrome by low serum testosterone levels in men: results from the study of health in Pomerania. Diabetes 2009; 58:2027- 31; PMID:19581802; http://dx.doi.org/10.2337/db09-0031.
62. Akishita M, Fukai S, Hashimoto M, Kameyama Y, Nomura K, Nakamura T, et al. Association of low testosterone with metabolic syndrome and its com- ponents in middle-aged Japanese men. Hypertens Res 2010; 33:587-91; PMID:20339372; http://dx.doi.org/10.1038/hr.2010.43.
63. Kupelian V, Page ST, Araujo AB, Traverson TG, Bremner WJ, McKinlay JB. Low sex hormone-binding globulin, total testosterone, and sperm count in middle-aged men with obesity. J Clin Endocrinol Metab 2007; 92:845-50; PMID:17302881; http://dx.doi.org/10.1210/jc.2006-0326.
64. Wiker DJ, Strand M, Rask E, Westerbacka J, Livingstone DE, Soderberg S, et al. Intra-adipose sex steroid metabolism and body fat distribution in idiopathic human obesity. Clin Endocrinol (Oxf) 2007; 66:40-6; PMID:17028081; http://dx.doi.org/10.1111/j.1365-2265.2007.07255.x.
65. Meinhardt U, Mullis PE. The essential role of the aromatase/p450arom. Semin Reprod Med 2002; 20:277-84; PMID:12102280; http://dx.doi.org/10.1055/s-2002-35374.
66. Cohen PG. The hypogonadal-obesity cycle: role of aromatase in modulating the testosterone/estradiol shunt—a major factor in the genesis of morbidity obesity. Med Hypotheses 1999; 52:49-51; PMID:10342671; http://dx.doi.org/10.1054/mehy.1999.07624.
67. Ruige JB. Does low testosterone affect adaptive properties in obese men? Arch Phys Biochem 2011; 117:18-22; PMID:21073297; http://dx.doi.org/10.1016/j.apb.2010.05.024.
68. Kley HK, Deselaers T, Peerenboom H, Krüskemper D, Rosskopf D, et al. Prediction of metabolic syndrome by serum testosterone levels in obesity: a possible mechanism for leptin resistance. Lancet 1996; 348:159-61; PMID:8684156; http://dx.doi.org/10.1016/s0140-6736(96)80317-x.
69. Robinson RB, Rock J, Menkin MF. Control of human spermatogenesis by insulin-like growth factors. Hum Reprod 1998; 13:803-9; PMID:9577149; http://dx.doi.org/10.1093/humrep/13.5.803.
70. Haring R, Völzke H, Felix SB, Schipf S, Dörri M, Roskopf D, et al. Prediction of metabolic syndrome by low serum testosterone levels in men: results from the study of health in Pomerania. Diabetes 2009; 58:2027- 31; PMID:19581802; http://dx.doi.org/10.2337/db09-0031.
71. Akishita M, Fukai S, Hashimoto M, Kameyama Y, Nomura K, Nakamura T, et al. Association of low testosterone with metabolic syndrome and its com- ponents in middle-aged Japanese men. Hypertens Res 2010; 33:587-91; PMID:20339372; http://dx.doi.org/10.1038/hr.2010.43.
72. Kupelian V, Page ST, Araujo AB, Traverson TG, Bremner WJ, McKinlay JB. Low sex hormone-binding globulin, total testosterone, and sperm count in middle-aged men with obesity. J Clin Endocrinol Metab 2007; 92:845-50; PMID:17302881; http://dx.doi.org/10.1210/jc.2006-0326.
73. Meinhardt U, Mullis PE. The essential role of the aromatase/p450arom. Semin Reprod Med 2002; 20:277-84; PMID:12102280; http://dx.doi.org/10.1055/s-2002-35374.
74. Cohen PG. The hypogonadal-obesity cycle: role of aromatase in modulating the testosterone/estradiol shunt—a major factor in the genesis of morbidity obesity. Med Hypotheses 1999; 52:49-51; PMID:10342671; http://dx.doi.org/10.1054/mehy.1999.07624.
75. Ruige JB. Does low testosterone affect adaptive properties in obese men? Arch Phys Biochem 2011; 117:18-22; PMID:21073297; http://dx.doi.org/10.1016/j.apb.2010.05.024.
76. Kley HK, Deselaers T, Peerenboom H, Krüskemper D, Rosskopf D, et al. Prediction of metabolic syndrome by serum testosterone levels in obesity: a possible mechanism for leptin resistance. Lancet 1996; 348:159-61; PMID:8684156; http://dx.doi.org/10.1016/s0140-6736(96)80317-x.
77. Robinson RB, Rock J, Menkin MF. Control of human spermatogenesis by insulin-like growth factors. Hum Reprod 1998; 13:803-9; PMID:9577149; http://dx.doi.org/10.1093/humrep/13.5.803.
78. Cohen PG. The hypogonadal-obesity cycle: role of aromatase in modulating the testoste- rone/estradiol shunt—a major factor in the genesis of morbidity obesity. Med Hypotheses 1999; 52:49-51; PMID:10342671; http://dx.doi.org/10.1054/mehy.1999.07624.
79. Ruige JB. Does low testosterone affect adaptive properties in obese men? Arch Phys Biochem 2011; 117:18-22; PMID:21073297; http://dx.doi.org/10.1016/j.apb.2010.05.024.
80. Kley HK, Deselaers T, Peerenboom H, Krüskemper D, Rosskopf D, et al. Prediction of metabolic syndrome by serum testosterone levels in obesity: a possible mechanism for leptin resistance. Lancet 1996; 348:159-61; PMID:8684156; http://dx.doi.org/10.1016/s0140-6736(96)80317-x.
81. Robinson RB, Rock J, Menkin MF. Control of human spermatogenesis by insulin-like growth factors. Hum Reprod 1998; 13:803-9; PMID:9577149; http://dx.doi.org/10.1093/humrep/13.5.803.
112. Oakes CC, Kelly TL, Robaire B, Trasler JM. Adverse minor A, Chow V, Ma S. Aberrant DNA methylation
111. Marques CJ, João Pinho M, Carvalho F, Bièche
110. Jenkins T, Carrell DT. Sperm specific chromatin modific-
99. Youngson NA, Whitelaw E. The effects of acquired
98. Ooi SL, Henikoff S. Germline histone dynamics
97. Marcon L, Boissonneault G. Transient DNA strand
96. Bielawski DM, Zaher FM, Svinarich DM, Abel EL. Men with obstructive azoospermia and undergoing
95. Fenic I, Sonnack V, Failing K, Bergmann M, Steger
94. Gatewood JM, Cook GR, Balhorn R, Bradbury EM,
93. Barres R, Zierath JR. DNA methylation in meta-
92. Ouko LA, Shantikumar K, Knezovich J, Haycock
91. Oakes CC, Kelly TL, Robaire B, Trasler JM. Adverse
89. Ooki LA, Shaniukumar K, Knezovich J, Haycock
88. Molara O, Hedges E, Fang F, Song Q, Combrinck WR,
87. Hahn T, et al. Methylation status of imprinted genes
86. Balhorn R, Gledhill BL, Wyrobek AJ. Mouse sperm chromatin proteins: quantitative isolation and par-
85. Aoki VW, Carrell DT. Human protamines and the
84. Aoki VW, Moskovtsev SI, Willis J, Liu L, Mullen JB,
83. Akso VW, Moskovtsev SI, Willis J, Liu L, Mullen JB,
82. Akso VW, Emery BR, Liu L, Carrell DT. Paternlme levels vary between individual sperm cells of infertile
81. Akso VW, Emery BR, Liu L, Carrell DT. Paternlme levels vary between individual sperm cells of infertile
80. Akso VW, Emery BR, Liu L, Carrell DT. Paternlme levels vary between individual sperm cells of infertile
79. Akso VW, Emery BR, Liu L, Carrell DT. Paternlme levels vary between individual sperm cells of infertile
78. Akso VW, Moskovtsev SI, Willis J, Liu L, Mullen JB,
77. Stouder C, Sønder J, Paoloni-Giacobino A. Prenatal exposure to ethanol: a specific effect on the H19 gene in spermatids. Tiss Cell 2011; 3:507-12; PMID:21382472; http://dx.doi.org/10.1016/j.reproto.2011.02.009.
76. Knezovich JG, Ramsay M. The effect of preconception paternal alcohol exposure on spermatogenic remodeling of the h19 and rasi1 imprinting control regions in mouse offspring. Front Genet 2012; 3:10; PMID:22377170; http://dx.doi.org/10.3389/fgen.2012.00010.
75. Barres R, Zerach JR. DNA methylation in metab-
74. Gaucher J, Reynold N, Montellier E, Boussouar F, Rousseaux S, Khochbin S. From meiosis to postmeiotic events: the secrets of histone disappearance. FEBS J 2010; 277:599-604; PMID:20015078; http://dx.doi.org/10.1111/j.1742-4658.2009.07594.x.
73. Balhorn R, Gledhill BL, Wytsoek AJ. Mouse sperm chromatin proteins: quantitative isolation and partial characterization. Biochemistry 1977; 16:4074-80; PMID:911755; http://dx.doi.org/10.1021/bi01037a021.
72. Gatwood JM, Cook GR, Balhorn R, Brubuffy EM, Schmid CW. Sequence-specific packaging of DNA in human sperm chromatin. Science 1987; 236:962-4; PMID:5576213; http://dx.doi.org/10.1126/science.3576213.
71. Fehling CR, Fitz G, Ngi RK, Chan CF, Siew D, Dean W, et al. Global mapping of DNA methylation in mouse promotors reveals epigenetic reprogramming of pluripotency genes. PLoS Genet 2008; 4:e1000116; PMID:18584034; http://dx.doi.org/10.1371/journal.pgen.1000116.
70. Fenei I, Sonnack V, Failing K, Bergmann M, Steger K. In vivo effects of histone-deacetylase inhibitor trichostatin-A on murine spermatozoa. J Androl 2004; 25:811-8; PMID:15292114.
69. Hazzouri M, Piver-Pajar C, Fuare AK, Unson Y, Pelletier R, Sile B, et al. Regulated hyperacetylation of core histones during mouse spermatogenesis: involvement of histone deacetylase. Eur J Cell Biol 2000; 79:950-60; PMID:11152286; http://dx.doi.org/10.1078/0171-9335-00177.
68. Marcon L, Boissonneault G. Transient DNA strand breaks during murine and human spermogenesis new insights in stage specificity and link to chromatin remodeling. Biol Reprod 2004; 70:910-8; PMID:14647723; http://dx.doi.org/10.1095/biolre-
67. Barres R, Zerach JR. DNA methylation in metab-
66. Barres R, Zerach JR. DNA methylation in metab-
65. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
64. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
63. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
62. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
61. Ooki LA, Shaniukumar K, Knezovich J, Haycock
60. Molara O, Hedges E, Fang F, Song Q, Combrinck WR,
59. Ooki LA, Shaniukumar K, Knezovich J, Haycock
58. Ooki LA, Shaniukumar K, Knezovich J, Haycock
57. Vierling E, Xu W, Xu Y, Zhang G, He Y, et al. Hypomethylation of the imprinted H19 gene is associated with normal spermatogenesis with infertile men. J Androl 2006; 27:890-9; PMID:16870950; http://dx.doi.org/10.1016/j.jandrol.2006.05.063.
56. Bielawski DM, Zaher FM, Svinarich DM, Abel EL. Paternal alcohol exposure affects sperm cytosine methy-
55. Marques CJ, João Pinho M, Carvalho F, Bièche
54. Jenkins T, Carrell DT. Sperm specific chromatin modi-
53. Jenkins T, Carrell DT. Sperm specific chromatin modi-
52. Jenkins T, Carrell DT. Sperm specific chromatin modi-
51. Jenkins T, Carrell DT. Sperm specific chromatin modi-
50. Jenkins T, Carrell DT. Sperm specific chromatin modi-
49. Jenkins T, Carrell DT. Sperm specific chromatin modi-
48. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
47. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
46. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
45. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
44. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
43. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
42. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
41. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
40. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
39. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
38. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
37. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
36. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
35. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
34. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
33. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
32. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
31. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
30. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
29. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
28. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
27. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
26. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
25. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
24. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
23. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
22. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
21. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
20. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
19. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
18. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
17. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
16. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
15. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
14. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
13. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
12. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
11. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
10. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
9. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
8. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
7. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
6. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
5. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
4. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
3. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
2. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
1. Jenkins T, Carrell DT. Sperm specific chromatin modifi-
0. Jenkins T, Carrell DT. Sperm specific chromatin modifi-

Spermatogenesis
Volume 2 Issue 4
145. Sermondade N, Massin N, Boitrelle F, Pfeffer J, Eustache F, Sifer C, et al. Sperm parameters and male fertility after bariatric surgery: three case series. Reprod Biomed Online 2012; 24:206-10; PMID:22196889; http://dx.doi.org/10.1016/j.rbmo.2011.10.014.

146. Strain GW, Zunoff B, Kream J, Strain JJ, Deacher R, Rosenfeld RS, et al. Mild Hypogonadotropic hypogonadism in obese men. Metabolism 1982; 31:871-5; PMID:6811834; http://dx.doi.org/10.1016/0026-0495(82)90175-5.

147. Magnusdottir EN, Thorsteinsson T, Thorsteinsdottir S, Heimisdottir M, Olafsdottir K. Persistent organochlorines, sedentary occupation, obesity and human male subfertility. Hum Reprod 2005; 20:208-15; PMID:15567884; http://dx.doi.org/10.1093/humrep/deh569.

148. Fejes I, Kolozszi S, Szőlösi J, Závaczki Z, Pál A. Is semen quality affected by male body fat distribution? Andrologia 2005; 37:155-9; PMID:16266392; http://dx.doi.org/10.1111/j.1439-0272.2005.00671.x.

149. Kolozszi S, Fejes I, Závaczki Z, Daru J, Szőlösi J, Pál A. Effect of body weight on sperm concentration in normozoospermic males. Arch Androl 2005; 51:299-304; PMID:16036638; http://dx.doi.org/10.1080/0148501059105991701.

150. Qin DD, Yuan W, Zhou WJ, Cui YQ, Wu JQ, Gao ES. Do reproductive hormones explain the association between body mass index and semen quality? Asian J Androl 2007; 9:827-34; PMID:17968470; http://dx.doi.org/10.1111/j.1745-7262.2007.00268.x.

151. Hammoud AO, Wilde N, Gibson M, Parks A, Carrell DT, Meikle AW. Male obesity and alteration in sperm parameters. Fertil Steril 2008; 90:2222-5; PMID:18178190; http://dx.doi.org/10.1016/j.fertnstert.2007.10.011.

152. Nicopoulou SC, Alexiou M, Michalakis K, Ilias I, Venaki E, Koukoura E, et al. Body mass index vis-à-vis total sperm count in attendees of a single andrology clinic. Fertil Steril 2009; 92:1016-7; PMID:19243747; http://dx.doi.org/10.1016/j.fertnstert.2008.12.093.

153. Hufrey ER, Ali ME, Abdel-Hafez HZ, El-Dien Kamal E, Mohamed EE, Abd El-Azem HG, et al. Sperm parameters and hormonal profile in obese fertile and infertile males. Fertil Steril 2010; 94:581-4; PMID:19425100; http://dx.doi.org/10.1016/j.fertnstert.2009.03.085.

154. Stewart TM, Liu DY, Garrett C, Jørgensen N, Brown EH, Baker HW. Associations between andrological measures, hormones and semen quality in fertile Australian men: inverse relationship between obesity and sperm output. Hum Reprod 2009; 24:1561-8; PMID:19351657; http://dx.doi.org/10.1093/humrep/dep075.

155. Chavarro JE, Toth TL, Wright DL, Meeker JD, Hauser R. Body mass index in relation to semen quality, sperm DNA integrity, and serum reproductive hormone levels among men attending an infertility clinic. Fertil Steril 2010; 93:2222-31; PMID:19261274; http://dx.doi.org/10.1016/j.fertnstert.2009.01.100.

156. Shayeb AG, Harrild K, Mathers E, Bhattacharya S. An exploration of the association between male body mass index and semen quality. Reprod Biomed Online 2011; 23:717-23; PMID:22019618; http://dx.doi.org/10.1016/j.rbmo.2011.07.018.

157. Sekhavat L, Moein MR. The effect of male body mass index on sperm parameters. Aging Male 2010; 13:155-8; PMID:20059435; http://dx.doi.org/10.3109/13685530903536643.

158. Rybar R, Kopecova V, Prinosilova P, Markova P, Rubes J. Male obesity and age in relationship to semen parameters and sperm chromatin integrity. Andrologia 2011; 43:286-91; PMID:21486403; http://dx.doi.org/10.1111/j.1439-0272.2010.01057.x.