1 Mapping the landscape of Climate Services

Francesca Larosa*1,2 and Jaroslav Mysiak1,2

1Risk Assessment and Adaptation Strategies, Euro-Mediterranean Centre on Climate Change (CMCC), Venice, Italy
2Ca’ Foscari University of Venice, Venice, Italy
*e-mail: francesca.larosa@cmcc.it

Abstract

Climate services are technology-intensive, science-based and user-tailored tools providing timely climate information to a wide set of users. They accelerate innovation, while contributing to societal adaptation. Research has explored the advancements of climate services in multiple fields, producing a wealth of interdisciplinary knowledge spanning from climatology to social sciences. The aim of this paper is to map the global landscape of research on climate services and to identify patterns at individual, affiliation and country level and the structural properties of each community. We use a sample of 358 records published between 1974 and 2018 and we quantitatively analyse them. We provide insights on the main characteristics of the community of climate services through Bibliometrics and we complement these findings with Network Science. We computed the centrality of each actor as derived from a Principal Component Analysis of 42 different measures. By exploring the structural properties of the networks of individuals, institutions and countries we derive implications on the most central agents. Furthermore, we detect brokers in the network, capable of facilitating the information flow and increasing the cohesion of the community. We finally analyse the abstracts of the sample via Content Analysis. We find a progressive shift towards climate adaptation and user-centric visions. Agriculture and Energy are the top mentioned sectors. Anglophone countries and institutions are quantitatively dominant, and they are also relevant in connecting different sides of the network of scholars, by building on established partnerships. We find that nodes facilitating the diffusion of information flows (the brokers) are not necessarily the most central, but they have a high degree of interdisciplinarity facilitating interactions of different communities.

Social media abstract

#WhoisWho in #climateservices? A comprehensive map of research in #Europe and beyond

1. Introduction

Social and technological innovation is a vital part of adaptive capacity (Cohen et al., 2016). Innovation embedded in, or pursued by means of, climate services is conducive to a better management of climate risks (Brooks, 2013). Climate services entail “transformation of climate-related data into customized products such as projections, forecasts, information, trends, economic analysis, assessments (including technology assessment), counselling on best practices, development and evaluation of solutions and any other service in relation to climate that may be of use for the society at large” (EC, 2015). Several European and international initiatives have stimulated vibrant community: Third World Climate Conference (in 2009), the Climate Services Partnership (in 2011), the International Conference on Climate Services (in 2011), the Global Framework of Climate Services (in 2012), the European Roadmap for Climate Services (in 2015), and the Climate Services for Resilient Development Partnership (in 2017). Climate services can improve efficiency and speed innovative methods and processes in agriculture (Amisah-Arthur, 2003; Stigter, 2008; Lechthaler and Vinogradova, 2017; Li, Giuliani and Castelletti, 2017), food security (Vogel and O’Brien, 2006), disaster risk reduction (van den Hurk et al., 2016), urban planning (Jones et al., 2017; Lindberg et al., 2018), health (Goddard et al., 2010; Bruno Soares, Alexander and Dessai, 2017), tourism (Scott and Lemieux, 2010; Scott, Lemieux and Malone, 2011), and other climate-sensitive sectors.
Climate services (i) are technology-intensive and draw on coding, protocols, systems and devices; (ii) employ action-driven research, connecting science, business and policy; (iii) share processes and workflows for climate-smart decisions. It is important not only trace the wealth of research outputs such as publications or patents, but also collaboration networks that have jointly produced these outputs. Co-authorship is a proxy of joint innovation and cooperation between institutions and experts. Hence, network analysis is useful to explore centrality and power relation driving innovation. Content analysis (CA) on the other hand sheds light on most salient concepts.

In this paper we map the research on climate services. We explore productivity patterns, time-evolution of fields of interest, and structural properties of co-authorship networks at individual, organisation and country level. We use a sample of 358 bibliographic records published between 1974 and 2018 and retrieved from the Scopus database in January 2019. We characterise the interactions of individual scholars and institutions combining Bibliometrics, Network Analysis and Content Analysis. This work contributes to existing literature in two ways. First, it provides a comprehensive mapping of actors and topics in the domain of climate services and, hence, climate innovation. Second, it offers an original methodological approach to study node centrality and combine bibliometrics and network science. The work is organised as follows. Section 2 describes the framework, data and methods used. Section 3 presents the results (i) giving insights on the conceptual structure through bibliometrics; (ii) elaborating about the social structure of interactions within the network of individuals, institutions and countries; (iii) assessing the most relevant concepts of the fields of interest over the considered timeframe. Section 4 concludes with the limitations of our approach and provides reflections on future extension.

2. Materials and methods

2.1. Data and methods

Our framework combines bibliometrics, network and content analysis in a consistent approach. It aims at uncovering the conceptual and social structure of the network in which research is produced. The stepwise procedure allows to check and validate at multiple stages the quality of the analysis and the correctness of the results (Figure 1).

Bibliographic sample was retrieved from Elsevier’s Scopus (www.scopus.com) querying a combination of keywords1. The same query run on Web of Science (www.webofknowledge.com) resulted in lower number of records. The query yielded records from 1974 until 2019. Non-relevant records were removed from the sample (see Supplementary Material).

We used bibliometrics to describe the corpus of publications. Network Analysis and Content Analysis were, instead, deemed the most appropriate tools to assess the social and conceptual structure of the records included. Bibliometrics has been used to study the evolution of a given field, as well as to characterize the polarization of different topics and institutions. In climate change domain, a recent analysis based on 222,060 papers published between 1980 and 2014 identified an exponential increase and a strong presence of vulnerability and adaptation-related concepts among the most cited documents (Haunschild, Bornmann and Marx, 2016).

Research on impacts of climate change that goes beyond the natural sciences domain has intensified since 2005 (Haunschild, Bornmann and Marx, 2016). Furthermore, bibliometrics is often deemed appropriate to assess the role of interdisciplinarity in fostering the creation of new ideas, by looking in-depth at the

1“climate services” AND “Climate Services” AND “climate service” AND “Climate Service”. We also run an alternative query (“climate service*”) to check on the validity of our first search.
composition of research teams and at their expertise (Ma, Mondragón and Latora, 2015), as well as the exchanges between disciplines (Youngblood and Lahti, 2018).

Figure 1 | A stepwise method to map research on climate services. The framework combines Bibliometrics, Network Analysis and Content Analysis and offers opportunities to revise and verify the process.

To study the social structure of co-authorship, we derived co-authorship relationships at individual and institutional level and performed a network analysis. A network is a catalog of components \(V(.) \) – the nodes or vertices – interacting within a system and connected through links or edges \(E(.) \). It is mathematically represented as a graph that can describe the complexity behind the individual node’s behavior and the interaction between different nodes (Barabasi, 2016). NA has been successfully applied to study the drivers of social consensus (Baronchelli, 2018), as well as in analyzing social sciences (Borgatti et al., 2009) and the emergence of social dynamics (Castellano, Fortunato and Loreto, 2009). We characterized agents on their “importance” (centrality), by exploring the giant component of each network. This is the highest connected portion of the general graph. Given the wealth of existing centrality measures, we performed a Principal Component Analysis (PCA) on 42 metrics. We reduced the dimensionality to five and four main components, which explain more than 80% of the total variance (see Supplementary Material) in the individual scholar and institution and country case respectively. Moved by the idea that “structure matters” (Newman, 2003; Newman and Girvan, 2004a; Barabasi, 2016), we aimed at detecting communities - meant as groups or clusters of nodes connected to each other than to nodes belonging to different groups – to understand how science and research on climate services move within the network of actors involved.

Community detection is vital when studying the structural features of a network. First, highly connected nodes could share interests or shared preferences. Second, agents within the same community may have a privileged access to information and opportunities. Therefore, the investigation of structural properties at network level can reveal some important information about the mechanisms behind collaboration and diffusion patterns. There is no single unambiguous definition of what communities are. This has important implications: climate services employ knowledge from climatology and physics, but also information sciences, economics, business and sociology. Communities are nested and interlinked – often overlapping. The study of their structure offers insights about the research on climate services: insights from different disciplines are combined. The relevance
of community detection has produced a wealth of algorithms and methods to facilitate the identification of different groups. We performed the Newman-Girvan algorithm, the Spectral community algorithm, the Greedy algorithm and the Louvain method separately obtaining different community partitions (see Supplementary Material). Hence, we compared their performance using modularity as criterion. This measure represents the “the fraction of the edges that fall within the given groups minus the expected fraction if edges were distributed at random” (Li and Schuurmans, 2011). We employed the community structure with maximal modularity among the four computed algorithms.

Finally, we characterized individual based on their capacity to influence the network they are embedded in. We aimed at detecting brokers that allow research insights on climate services to travel within the network. These “connectors” act through two channels: (i) if removed from the network, their absence cause a significant drop in the cohesion of the graph; (ii) they are seeds for the diffusion of habits, methods, ideas and information (Borgatti, 2006). Hence, key players may be more efficient in spreading novelties rather than highly central nodes. We implemented the greedy search algorithm to look for the optimal number of key players and to overcome computational challenges. The algorithm selects an initial set of nodes as seeds. By continuously and iteratively swapping between selected and unselected nodes, the protocol computes if and how much group centrality increases (details in Supplementary Material).

We further investigated the thematic evolution of climate services combining two approaches. We performed Content Analysis on the set of abstracts and titles included in the database. Content Analysis transforms non-numerical material into quantitative information. It is the systematic analysis of textual, visual and audio inputs to identify regularities and patterns in a corpus of matters (Krippendorff, 2004). The output of this effort consisted in the dynamic characterization of top mentioned terms throughout the timeframe. Content Analysis also served as input for co-word analysis. This methodology links science mapping and bibliometrics to grasp connections in textual material (Cobo et al., 2011) and provides a thematic map that spatially allocate topics on a 1:2 plane.

The integration of different disciplines – from scientometrics to content analysis – represents an original feature of this work. By including tools from network science to a bibliometric database, we assess the social structure of individual scholars, institutions and countries. Finally, we move beyond existing metrics of success of a scholar (e.g. h-index, m-index, productivity) and we analyze both the power (centrality) of each node and the influence this has in driving the information flow.

3. Results
3.1. Bibliometric analysis

Our sample includes a corpus of 363 bibliometric records, published between 1974 and 2018 in 187 sources (journals and books) by 1351 authors from 234 institutions in 72 countries. Research articles (54.54 percent), conference proceedings (44.18 percent), reviews (5 percent) and book chapters (5 percent) represent the majority of records. Research on climate services has grown in numbers with an annual growth rate of 14.67 percent, with a sizeable acceleration between 2005 and 2010. The peak (Figure 1S) coincides with the World Climate Conference 3 (2009) and launch of the Global Framework for Climate Services (in 2012). In-between, the first International Conference on Climate Services (2011) marked an important milestone: the conference launched the Climate Service Partnership (CSP) to boost development of climate services. Earth and Planetary Sciences (35.3%) and Environmental Sciences (28.9%) are dominating the sample and are also the most time-consistent disciplines across time. Social Sciences (12.6%), Agricultural and Biological Sciences (4.6%) and Engineering (3.1%) follow suit. Economics, Econometrics and Finance (1.0%) are represented starting from 2010. Anglophone authors and institutions dominate the sample. Multi-country collaborations are prevalent: while the authors from United States mostly publish alone, the overall trend is a collaborative research across borders (Figure 4S). The most productive authors per number of published records are more diverse: 20% have
a background in Environmental Sciences, 20% in Social Sciences and the remaining 60% in Physical Sciences. Despite the heterogeneous cohort of actors involved, climatologists, physicists, and numerical modellers are widely recognised as the most central when it comes to climate services.

3.2. The conceptual structure

The science of climate services has roots in climatology and meteorology but as the innovation has become more user-centric oriented, social science disciplines are more represented and the articles pay more attention to clients’ knowledge requirements and the value unleashed by climate services. Literature has responded to this trend by exploring the barriers and opportunities from multidisciplinary angles. The historical citation analysis documents this shift: the most cited articles belong to a more recent body of research (Miles et al., 2006; Hewitt, Mason and Walland, 2012; Vaughan and Dessai, 2014) addressing co-design and co-development of national climate services (Figure 2).

Most frequent keywords (Figure 5S) include ‘climate change’ (365), ‘decision making’ (236) and ‘forecasting’ (214) display a fairly steep trajectory since 2001 onwards. Future-oriented keywords dominate, whereas ‘observations’ or ‘reanalysis’ are not among the first 100 concepts. ‘Seasonal forecasts’ gained on popularity, especially in the past eight years. ‘Multidisciplinarity’ and ‘adaptation’ have received progressively more attention: the temporal analysis of abstracts shows that ‘carbon’ and ‘emission-related’ topics were more popular in early 2010s, while ‘user-tailored’, ‘forecast skills’ and sector-specific topics nowadays prevail. ‘Adaptation measures’ are strongly related to ‘risk management’ and ‘decision making’ and require ‘climate modelling’ and sector-specific studies. Instead, articles related to meteorology and climatology contribute to scientific advancements of the services, but they are still tightly linked to essential climate variables (Figure 2a).
3.3. The social structure

We transformed the bibliographic records in undirected graphs (or networks) of co-authorship (N_{ind}), collaborating organizations (N_{aff}) and countries (N_{co}). The network has a small-world property with tightly interconnected clusters of nodes and most nodes can be reached from any other node through few steps (Mehlhorn and Schreiber, 2013) ($SM_{\text{index_ind}} = 7.91 > 3$). The giant component contains 613 nodes and 4326 edges. The network is loosely connected ($density = 0.024$). On average, each author is connected through 15.093 links (i.e. average degree) to 4.55 scholars (i.e. average path length). The probability of two adjacent nodes to be connected (i.e. clustering coefficient) is 82.26%. We performed a Principal Component Analysis (PCA) on 42 standardised centrality measures. The first five components (Figure 4a) explain 86.1% of the total variance. Buontempo C. happens to be the central agent, directly connecting 21.70% of the nodes and 29.25% edges. He is also connecting some of the most productive scholars per number of papers.
Figure 4 | a) Representation of eigenvalues.. The percentages represent the portion of variance contained in the data explained by components; b) centrality measures included in the PCA are represented according to the degree of correlation with the different dimensions. Dark blue colors are higher correlation measures included in the PCA.

The community detection protocol produced four different partitions – each per algorithm performed. We compared the modularity scores and we chose the Louvain method (Table 1), obtaining 19 communities.

The network of individuals is a set of complex interactions. Nodes’ size is equal to the contribution of each agent to the first five dimensions of the PCA and colors correspond to communities as derived from the Louvain method. The most central authors (Figure 5a) are located in five communities, which (the largest in size). Only three (Buontempo C., Hewitt C. and Kumar A.) are listed among the most productive authors (per number of papers) . Hence, quantity is not an automatic predictor of the “power” of agents, but rather a complementary feature. Two big communities are polarizing the network. The central group (orange) is deeply connected: authors are linked through a number of publications, one of which contributed to the scientific knowledge around sub-seasonal forecasts (White et al., 2017). The purple cluster (community 1) embraces authors involved and bounded in a European project ERA-CLIM2, under the Seventh Framework Program (Buizza et al., 2018).

Figure 5 | a) The individual scholars’ network. Colors represent communities as deducted by the Louvain method. Node sizes gives the centrality of each author, as derived from the PCA; Buontempo C (412) is the most central, followed by Kumar A. (614), Wintzer J. (494), Webb RS. (881), Schulz J. (295), Kjellström E. (623), Jack C. (939), Zebiak SE. (636), Brönniman S. (249), Jourdain S. (256), Ray AJ. (317), Brown TJ. (630), Doblas-Reyes F. (8) and Blaschek M. (275). b) The keyplayers represented with their own communities. The top 20 are (ranked in decreasing order): Kolli RK. (366), Baklanov
We measured the contribution of each node to maintain the cohesiveness of the graph, as suggested by Borgatti (2006). Top influential nodes (key players) do not entirely correspond to the most central ones (Figure 5b). Indeed, the set of key players includes some “bridging” scholars: they link different communities co-authoring with well-known and highly recognized authors. The key players are mostly involved in advancing numerical models, predictions and physical sciences, but they are also active in providing inputs about decision-making and user engagement. Hence, they do not just connect distant communities, but they also embody the conceptual framework in which climate services have been developed. They are “brokers” of knowledge generated throughout the network: by working as bridges both in physical and content level, they facilitate the information flow.

The institutional network \(N_{\text{inst}}\) contains 234 nodes and 1578 edges. The network is more cohesive than the individual one \(N_{\text{ind}}\) with density equal to 0.057. Nodes are also closer (diameter = 6). The average degree is 13.487 and each affiliation is linked to 2.750 (i.e. average path length). The average clustering coefficient is very high: 85.80% (higher than \(N_{\text{ind}}\)). We followed the same methods as for \(N_{\text{ind}}\) to detect centrality, community structure and degree of influence. Centrality is the contribution of each institutions to the first four dimensions, which explain 86.8% of the total variance of the sample. The top institution is Columbia University, with a centrality score of 4.358 (21.79% of the overall network and 28.14% of the overall edges), followed by University of Reading (3.867), University of Oxford (1.476), Desert Research Institute (1.422), University of East Anglia (1.404) and University of Helsinki (1.234). As for \(N_{\text{ind}}\), the Louvain method has the highest modularity. The algorithm found 13 communities: the biggest (community 6) has 31 members, while the smallest (community 1, 3 and 8) have only 7. The geographical location of institutions included in the sample appear in \(N_{\text{inst}}\) is relevant: African universities are clustered in the same group as the Chinese research institutes. German speaking and Belgian institutions have a tight connection. English-speaking (UK and USA-based) affiliations are cooperating with a heterogeneous set of actors: Columbia University is clustered together with other American institutes, but also co-publishes with the London School of Economics (LSE) and the Swedish Meteorological and Hydrological Institute (SMHI). The University of Reading has, instead, a strong European basin of co-publications, but the community it belongs to also includes the NASA Goddard Institute for Space Studies and Colorado State University.

The set of key players in the network is, as for \(N_{\text{ind}}\), different from the most central ones and provides the ground for some insightful considerations. The most influential node happens to the University of Nairobi, which acts as connector of extra-EU countries mainly located in Africa or China, with European and American institutions. Reasons for this may be related to the IGAD Climate Prediction and Applications Centre, where teams of researchers work on short, medium and long-term products and applications. Also, the Joint Research Center has a role in bridging knowledge around climate services produced in different areas of the world facilitates the diffusion of information and reduces distances in the network, increasing cohesiveness. Given the widespread collaborations that the UK Met Office has, its influence in spreading knowledge on climate services increases exponentially if compared with the centrality metrics. Not surprisingly, other well-established research institutions are listed among the top ten influential of the network (the National Center for Atmospheric Research and ECMWF). The top ones are not just providers of climate information services, but they are also producers of climate data. Furthermore, interactions seem to strongly depend on the level of economic development: African, South American and Asian institutions have tight bonds. Our analysis delivers a polarized picture that is possibly driven by project funding and calls for deeper analysis.
Conclusions

In this article we map the research on climate services by analysing a sample of articles published between 1974 and 2018. Results provide an overview of the most relevant topics explored by the pool of scholars and institutions, as well as the social interactions that shape co-authorship. Scientific production on climate services is higher than expectations: the interest has been stimulated by the launch of multiple international initiatives. Their action-driven component allowed climate services to progressively shift from mitigation towards adaptation. Hence, they are used as science-based tools capable of supporting decision-making by building on interdisciplinary expertise.

We found there is no perfect match between productivity (quantity) and centrality as derived from the PCA. Despite the high degree of interdisciplinarity, only one author has a background outside physical sciences (Wintzer J.). At institutional level, universities are more represented than research centers. Our analysis also provides details about bridging agents in the network: these actors are crucial in brokering information and speed the diffusion of information, reducing fragmentation in the network. At author level, the set of key players produce knowledge about physical sciences and decision-making. Hence, they contribute in filling the gap between provider and users with their scientific production. Institution-wise, the highest the geographic and field heterogeneity within a single publication, the stronger the influence within the network. Hence, interdisciplinarity is an asset to promote the reception of ideas, especially when it comes to user needs, value of the information, risk assessment and sector-specific adaptation. Institutes that provide inputs to build fully operational climate services are among the most influential (University of Nairobi, Joint Research Center, Met Office).

Our paper entails several novel contribution. First, we combine bibliometrics, network and content analysis in a consistent framework, making it possible to explore conceptual and social structure of the networks of individual and institutional actors. Second, we analyse structural properties of the field.

We acknowledge some limitations. Our query drives our bibliographic sample. First, climate services are not univocally defined, and they have formally received attention since 2011, while we included documents.
published from 1974 onwards. However, their definition has always been voluntarily broad: the keywords we
used to perform the query allow for maximum heterogeneity and are aligned to the flagship initiatives
promoted to unleash climate services’ potential (Barron, 2001; World Meteorological Organisation, 2009;
Street et al., 2015). Second, bibliographic databases – such as Scopus – are biased towards English-based
records. Also, our sample is populated by peer-reviewed material only, leaving nationally-relevant reports,
protocols and regulations out. Third, climate services often include other products and platforms, such as
decision-support systems, hydro-meteorological services and even weather services. We deemed “climate
services” as the most general and policy-oriented term, capable of capturing the whole period under study, but
strongly related to the recent initiatives. Finally, we acknowledge that our sample is is entirely focused on
peer-reviewed scientific records and excludes other initiatives and development. Hence, our contribution is not
meant to be exhaustive and calls for further research to complement the global mapping.

References

Agneessens, F., Borgatti, S. P. and Everett, M. G. (2017) ‘Geodesic based centrality: Unifying the local and
the global’, Social Networks. North-Holland, 49, pp. 12–26. doi: 10.1016/J.SOCNET.2016.09.005.

Al-garadi, M. A., Varathan, K. D. and Ravana, S. D. (2017) ‘Identification of influential spreaders in online
social networks using interaction weighted K-core decomposition method’, Physica A: Statistical Mechanics
and its Applications. North-Holland, 468, pp. 278–288. doi: 10.1016/J.PHYSA.2016.11.002.

Alexander, M. and Dessai, S. (2019) ‘What can climate services learn from the broader services literature?’,
Climatic Change. Springer Netherlands, pp. 1–17. doi: 10.1007/s10584-019-02388-8.

Alvarez-Hamelín, I. et al. (2005) ‘k-core decomposition: a tool for the visualization of large scale networks’,
arXiv. Available at: https://arxiv.org/pdf/cs/0504107.pdf (Accessed: 10 May 2018).

Amissah-Arthur, A. (2003) ‘Targeting Climate Forecasts for Agricultural Applications in Sub-Saharan Africa:
Situating Farmers in User-Space’, Climatic Change. Kluwer Academic Publishers, 58(1/2), pp. 73–92. doi: 10.1023/A:1023462613213.

Archambault, É. and Gagné, É. V. (2004) The Use of Bibliometrics in the Social Sciences and Humani-
... Available at: www.science-metrix.com (Accessed: 22 January 2018).

Aria, M. and Cuccurullo, C. (2017) ‘bibliometrix: An R-tool for comprehensive science mapping analysis’,
Journal of Informetrics. Elsevier, 11(4), pp. 959–975. doi: 10.1016/J.JOIL.2017.08.007.

Ashitian, M. et al. (2017) ‘Selection of most relevant centrality measures: A systematic survey on protein-
protein interaction networks’, bioRxiv. doi: 10.1101/149492.

Ball, R. (2017) Introduction to bibliometrics: new development and trends. Chandos Publishing, an imprint
of Elsevier. Available at: https://books.google.it/books?hl=it&lr=&id=wr1vDgAAQBAJ&oi=fnd&pg=PP1&dq=limits+of+bibliometrics&ots=R5ac8RnVAk&sig=8xMxCVY-n7A2Oht7CcJ-XcZfN2Y#v=onepage&q=limits+of+bi
... Available at: http://barabasi.com/ls/622.pdf (Accessed: 18 January 2019).

Baronchelli, A. (2018) ‘The emergence of consensus: a primer’, Royal Society of Open Science, 5, p. 172189.
doi: 10.1098/rsos.172189.

Barron, E. J. (2001) ‘A climate services vision: First steps toward the future’, Board on Atmospheric Sciences
and Climate.
Becker, J., Brackbill, D. and Centola, D. (2017) ‘Network dynamics of social influence in the wisdom of crowds.’, Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 114(26), pp. E5070–E5076. doi: 10.1073/pnas.1615978114.

Belter, C. W. (2015) ‘Bibliometric indicators: opportunities and limits.’, Journal of the Medical Library Association. Medical Library Association, 103(4), pp. 219–21. doi: 10.3163/1536-5050.103.4.014.

Blondel, V. D. et al. (2008) ‘Fast unfolding of communities in large networks’, Journal of Statistical Mechanics: Theory and Experiment. Available at: https://arxiv.org/pdf/0803.0476.pdf (Accessed: 5 April 2018).

Boccaletti, S. et al. (2006) ‘Complex networks: Structure and dynamics’, Physics Reports, 424, pp. 175–308. doi: 10.1016/j.physrep.2005.10.009.

Boldi, P. and Vigna, S. (2014) ‘Axioms for Centrality’, Internet Mathematics, 10(3–4), pp. 222–262. doi: 10.1080/15427951.2013.865686.

Borgatti, S. P. (2006) ‘Identifying sets of key players in a social network’, Comput Math Organiz Theor, 12, pp. 21–34. doi: 10.1007/s10588-006-7084-x.

Borgatti, S. P. et al. (2009) ‘Network analysis in the social sciences.’, Science. American Association for the Advancement of Science, 323(5916), pp. 892–5. doi: 10.1126/science.1165821.

Borgatti, S. P. and Everett, M. G. (2006) ‘A Graph-theoretic perspective on centrality’, Social Networks. North-Holland, 28(4), pp. 466–484. doi: 10.1016/J.SOCNET.2005.11.005.

Brandes, U., Borgatti, S. P. and Freeman, L. C. (2016) ‘Maintaining the duality of closeness and betweenness centrality’, Social Networks. North-Holland, 44, pp. 153–159. doi: 10.1016/J.SOCNET.2015.08.003.

Brandes, U., Erlebach, T. and Gesellschaft für Informatik. (2005) Network analysis: methodological foundations. Springer. Available at: https://books.google.it/books?id=VIMSPClafakC&pg=PA38&lpg=PA38&dq=closeness+vitality&source=bl&ots=cEIBjAt3Ab&sig=_eSJi8JG7CpO7VW0miBOYlJzkk-I&hl=it&sa=X&ved=0ahUKEwii-YHO2PjaAhWJF5oKHQlbAJIQ6AEIaTAI#v=onepage&q=closeness vitality&f=false (Accessed: 9 May 2018).

Bremer, S. and Meisch, S. (2017) ‘Co-production in climate change research: reviewing different perspectives’, Wiley Interdisciplinary Reviews: Climate Change. John Wiley & Sons, Ltd, 8(6), p. e482. doi: 10.1002/wcc.482.

Broads, R. N. (1987) ‘Toward a definition of “bibliometrics”’, Scientometrics. Kluwer Academic Publishers, 12(5–6), pp. 373–379. doi: 10.1007/BF02016680.

Brooks, M. S. (2013) ‘Accelerating Innovation in Climate Services: The 3 E’s for Climate Service Providers’, Bulletin of the American Meteorological Society. American Meteorological Society, 94(6), pp. 807–819. doi: 10.1175/BAMS-D-12-00087.1.

Bruno Soares, M., Alexander, M. and Dessai, S. (2017) ‘Sectoral use of climate information in Europe: A synoptic overview’, Climate Services. Elsevier B.V. doi: 10.1016/j.cliser.2017.06.001.

Bruno Soares, M. and Buontempo, C. (2019) ‘Challenges to the sustainability of climate services in Europe’, Wiley Interdisciplinary Reviews: Climate Change. John Wiley & Sons, Ltd, p. e587. doi: 10.1002/wcc.587.

Buizza, R. et al. (2018) ‘The EU-FP7 ERA-CLIM2 Project Contribution to Advancing Science and Production of Earth System Climate Reanalyses’, Bulletin of the American Meteorological Society, 99(5), pp. 1003–1014. doi: 10.1175/BAMS-D-17-0199.1.
Buontempo, C. et al. (2017) ‘What have we learnt from EUPORIAS climate service prototypes?’, Climate Services. Elsevier B.V. doi: 10.1016/j.cliser.2017.06.003.

Campitelli, M. G. et al. (2013) ‘Lobby index as a network centrality measure’, Physica A, 392, pp. 5511–5515. Available at: https://ac.els-cdn.com/S0378437113005839/1-s2.0-S0378437113005839-main.pdf?_tid=f4c2b4f4-a53e-4f19-931d-e6d7a6ad0a5&acdnat=1525971168_1269b1f5f83d17f9886a213e2d75e14 (Accessed: 10 May 2018).

Castellano, C., Fortunato, S. and Loreto, V. (2009) ‘Statistical physics of social dynamics’, Reviews of Modern Physics. American Physical Society, 81(2), pp. 591–646. doi: 10.1103/RevModPhys.81.591.

Chen, D.-B. et al. (2013) ‘Identifying Influential Nodes in Large-Scale Directed Networks: The Role of Clustering’, PLoS ONE, 8(10). doi: 10.1371/journal.pone.0077455.

Chin, C.-S. and Samanta, M. P. (2003) ‘Global snapshot of a protein interaction network—a percolation based approach.’, Bioinformatics, 19(18), pp. 2413–9. Available at: http://www.ncbi.nlm.nih.gov/pubmed/14668225 (Accessed: 10 May 2018).

Christel, I. et al. (2018) ‘Introducing design in the development of effective climate services’, Climate Services. Elsevier, 9, pp. 111–121. doi: 10.1016/J.CLISER.2017.06.002.

Cobo, M. J. et al. (2011) ‘An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field’, Journal of Informetrics. Elsevier, 5(1), pp. 146–166. doi: 10.1016/J.JOIL.2010.10.002.

Cohen, P. J. et al. (2016) ‘Understanding adaptive capacity and capacity to innovate in social-ecological systems: Applying a gender lens’, Ambio. 2016/11/22. Springer Netherlands, 45(Suppl 3), pp. 309–321. doi: 10.1007/s13280-016-0831-4.

Crucitti, P., Latora, V. and Porta, S. (2006) ‘Centrality in networks of urban streets’, Chaos. doi: 10.1063/1.2150162.

Cueno, M. E. and Imai, K. (2018) ‘Network analytics approach towards identifying potential antivirulence drug targets within the Staphylococcus aureus staphyloxanthin biosynthetic network’, Archives of Biochemistry and Biophysics, 643, pp. 81–86. doi: 10.1007/j.abb.2018.03.010.

Damm, A. et al. (2019) ‘The market for climate services in the tourism sector – An analysis of Austrian stakeholders’ perceptions’, Climate Services. Elsevier. doi: 10.1016/J.CLISER.2019.02.001.

Dangalchev, C. (2006a) ‘Residual closeness in networks’, Physica A: Statistical Mechanics and its Applications. North-Holland, 365(2), pp. 556–564. doi: 10.1016/J.PHYSA.2005.12.020.

Dangalchev, C. (2006b) ‘Residual closeness in networks’, Physica A: Statistical Mechanics and its Applications. North-Holland, 365(2), pp. 556–564. doi: 10.1016/J.PHYSA.2005.12.020.

Das, K., Samanta, S. and Pal, M. (2018) ‘Study on centrality measures in social networks: a survey’, Social Network Analysis and Mining. Springer Vienna, 8(1), p. 13. doi: 10.1007/s13278-018-0493-2.

Dekker, M. M. et al. (2018) ‘Characteristics and development of European cyclones with tropical origin in reanalysis data’, Climate Dynamics. Springer Berlin Heidelberg, 50(1–2), pp. 445–455. doi: 10.1007/s00382-017-3619-8.

Deng, S.-P., Zhu, L. and Huang, D.-S. (2016) ‘Predicting Hub Genes Associated with Cervical Cancer through Gene Co-Expression Networks’, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 13(1). doi: 10.1109/TCBB.2015.2476790.

Dinku, T. et al. (2014) ‘Bridging critical gaps in climate services and applications in africa’, Earth
Perspectives. SpringerOpen, 1(1), p. 15. doi: 10.1186/2194-6434-1-15.

Directorate-General for Research and Innovation, E. C. (2015) ‘European roadmap for Climate Services’, in Brussels: European Commission.

Dokas, I. M. et al. (2017) ‘Information systems for crisis response and management in Mediterranean Countries’, in 4th International Conference, ISCRAM, p. 221. Available at: https://books.google.it/books?id=N_M4DwAAQBAJ&pg=PA7&lpg=PA7dq=EPC+-+Edge+Percolated+Component&source=bl&ots=TqUQLhsmQv&sig=hauV79ek5mtCwDlp4-ZcrRN3Gg&hl=it&sa=X&ved=0ahUKEwi2pf71pP3aAhWJB8AKHX3hCPwQ6AEIczAN#v=onepage&q=EPC+-Edge+Percolated+Component&f=false

Estrada, E. and Rodríguez-Velázquez, J. A. (2005) ‘Subgraph centrality in complex networks’, Physical Review E. American Physical Society, 71(5), p. 056103. doi: 10.1103/PhysRevE.71.056103.

De Felice, M. et al. (2019) ‘Scoping the potential usefulness of seasonal climate forecasts for solar power management’, Renewable Energy. Pergamon, 142, pp. 215–223. doi: 10.1016/J.RENE.2019.03.134.

Ferreira, F. F. et al. (2016) ‘Behavior of surface water in the Pacific and Atlantic during the period 1982 2014 [Comportamento das águas superficiais nos oceanos Pacífico e Atlântico durante o periodo de 1982 a 2014]’, Revista Brasileira de Meteorologia. Sociedade Brasileira de Meteorologia, 31(3), pp. 366–373. doi: 10.1590/0102-778631320160050.

Fletcher, J. M. and Wennekers, T. (2018) ‘From Structure to Activity: Using Centrality Measures to Predict Neuronal Activity’, International Journal of Neural Systems, 28(175001361). doi: 10.1142/S0129065717500137.

Ford, J. D., Knight, M. and Pearce, T. (2013) ‘Assessing the “usability” of climate change research for decision-making: A case study of the Canadian International Polar Year’, Global Environmental Change. Pergamon, 23(5), pp. 1317–1326. doi: 10.1016/J.GLOENVCHA.2013.06.001.

Goddard, L. et al. (2010) ‘Providing seasonal-to-interannual climate information for risk management and decision-making’, in Procedia Environmental Sciences. Elsevier B.V., pp. 81–101. doi: 10.1016/j.proenv.2010.09.007.

Granovetter, M. S. (1973) ‘The Strength of Weak Ties’, American Journal of Sociology, 78(6), pp. 1360–1380. Available at: https://www.jstor.org/stable/pdf/2776392.pdf?refreqid=excelsior%3A1d122a8b7669a66335f747ac6af96d1a (Accessed: 1 October 2018).

Hage, P. and Harary, F. (1995) ‘Eccentricity and centrality in networks’, Social Networks. North-Holland, 17(1), pp. 57–63. doi: 10.1016/0378-7833(94)00248-9.

Han, X. et al. (2017) ‘Emergence of communities and diversity in social networks.’, Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 114(11), pp. 2887–2891. doi: 10.1073/pnas.1608164114.

Haunschild, R., Bornmann, L. and Marx, W. (2016) ‘Climate Change Research in View of Bibliometrics’, PLOS ONE. Edited by W. Glanzel. Public Library of Science, 11(7), p. e0160393. doi: 10.1371/journal.pone.0160393.
Hernández, J. M. and Mieghem, P. Van (2011) ‘Classification of graph metrics’. Available at: https://www.nas.ewi.tudelft.nl/people/Piet/papers/TUDreport20111111_MetricList.pdf (Accessed: 10 May 2018).

Hewitt, C., Mason, S. and Walland, D. (2012) ‘The Global Framework for Climate Services’, Nature Climate Change. Nature Research, 2(12), pp. 831–832. doi: 10.1038/nclimate1745.

Hubbell, C. H. (1965) ‘An Input-Output Approach to Clique Identification’, Sociometry, 28(4), pp. 377–399. Available at: http://www.jstor.org/stable/2785990 (Accessed: 11 May 2018).

van den Hurk, B. J. J. M. et al. (2016) ‘Improving predictions and management of hydrological extremes through climate services’, Climate Services. Elsevier B.V., 1, pp. 6–11. doi: 10.1016/j.cliser.2016.01.001.

Ivanov, S. E., Gorlushkina, N. N. and Ivanova, L. N. (2018) ‘Multi-parametric centrality method for graph network models’, in AIP Conference Proceedings, p. 020043. doi: 10.1063/1.5032005.

Johnson, P. T. J., de Roode, J. C. and Fenton, A. (2015) ‘Why infectious disease research needs community ecology.’, Science. NIH Public Access, 349(6252), p. 1259504. doi: 10.1126/science.1259504.

Joyce, K. E. et al. (2010) ‘A New Measure of Centrality for Brain Networks’, PLoS ONE, 5(8). doi: 10.1371/.

Kabir, M. et al. (2017) ‘Properties of genes essential for mouse development’, PloS One. doi: 10.1371/journal.pone.0178273.

Kalinka, A. T. and Tomancak, P. (2011) ‘linkcomm, an R package for the generation, visualization, and analysis of link communities in networks of arbitrary size and type’, Bioinformatics. Oxford University Press, 27(14), pp. 2011–2012. doi: 10.1093/bioinformatics/btr311.

Kirchhoff, C. J., Lemos, M. C. and Kalafatis, S. (2015) ‘Narrowing the gap between climate science and adaptation action: The role of boundary chains’, Climate Risk Management, 9, pp. 1–5. doi: 10.1016/j.crm.2015.06.002.

Kleinberg, J. M. (1998) ‘Authoritative Sources in a Hyperlinked Environment *’. Available at: https://www.cs.cornell.edu/home/kleinber/auth.pdf (Accessed: 10 May 2018).

Konstantinidis, K., Papadopoulos, S. and Kompatsiaris, Y. (2017) ‘Exploring Twitter communication dynamics with evolving community analysis’, PeerJ Computer Science. PeerJ Inc., 3, p. e107. doi: 10.7717/peerj-cs.107.

Korn, A., Schubert, A. and Teles, A. (2009) ‘Lobby index in networks’, Physica A: Statistical Mechanics and its Applications. North-Holland, 388(11), pp. 2221–2226. doi: 10.1016/J.PHYSA.2009.02.013.

Krippendorff, K. (2004) Content analysis : an introduction to its methodology. SAGE Publications. Available at: https://books.google.it/books?id=q657o3M3C8cC&pg=PA3&hl=it&source=gbs_toc_r&cad=4#v=onepage&q&f=false (Accessed: 21 September 2018).

Kumar Surendra Kumar, S. and Kretschmer, H. (2008) ‘Collaboration in Research Productivity in Oil Seed Research Institutes of India’, in Kretschmer, H. and Havemann, F. (eds) 4th International Conference on Webometrics, Infometrics and Scientometrics. Berlin. Available at: http://www.colnet.de/Berlin-2008/KumarWIS2008cir.pdf (Accessed: 9 April 2018).

L.D. D. B. and Raj, E. D. (2017) ‘Flocking based evolutionary computation strategy for measuring centrality
of online social networks’, Applied Soft Computing. Elsevier, 58, pp. 495–516. doi: 10.1016/J.ASOC.2017.04.047.

Larivière, V. et al. (2013) ‘Bibliometrics: Global gender disparities in science’, Nature, 504(7479), pp. 211–213. doi: 10.1038/504211a.

Latora, V. and Marchiori, M. (2001) ‘Efficient Behavior of Small-World Networks’, Physical Review Letters, 87(89). doi: 10.1103/PhysRevLett.87.198701.

Lechthaler, F. and Vinogradova, A. (2017) ‘The climate challenge for agriculture and the value of climate services: Application to coffee-farming in Peru’, European Economic Review. Elsevier B.V., 99, pp. 5–30. doi: 10.1016/j.euroecorev.2017.06.006.

Li, H. et al. (2018) ‘Current Flow Group Closeness Centrality for Complex Networks’, arXiv. Available at: https://arxiv.org/pdf/1802.02556.pdf (Accessed: 10 May 2018).

Li, W. and Schuurmans, D. (2011) ‘Modular Community Detection in Networks’, in Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence. Available at: https://www.ijcai.org/Proceedings/11/Papers/231.pdf (Accessed: 21 January 2019).

Li, Y., Giuliani, M. and Castelletti, A. (2017) ‘A coupled human-natural system to assess the operational value of weather and climate services for agriculture’, Hydrology and Earth System Sciences. Copernicus GmbH, 21(9), pp. 4693–4709. doi: 10.5194/hess-21-4693-2017.

Lin, C.-Y. et al. (2008) ‘Hubba: hub objects analyzer—a framework of interactome hubs identification for network biology’, Nucleic Acids Research. Oxford University Press, 36(suppl_2), pp. W438–W443. doi: 10.1093/nar/gkn257.

Lindberg, F. et al. (2018) ‘Urban Multi-scale Environmental Predictor (UMEP): An integrated tool for city-based climate services’, Environmental Modelling and Software. Elsevier Ltd, 99, pp. 70–87. doi: 10.1016/j.envsoft.2017.09.020.

Liu, K. and Yan, X. (2018) ‘Current-flow efficiency of networks’, Physica A: Statistical Mechanics and its Applications. North-Holland, 492, pp. 463–471. doi: 10.1016/J.PHYSA.2017.10.039.

Ma, A., Mondragón, R. J. and Latora, V. (2015) ‘Anatomy of funded research in science.’, Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 112(48), pp. 14760–5. doi: 10.1073/pnas.1513651112.

Martín-Martín, A., Orduna-Malea, E. and Delgado López-Cózar, E. (2018) ‘A novel method for depicting academic disciplines through Google Scholar Citations: The case of Bibliometrics’, Scientometrics, 114(3), pp. 1251–1273. doi: 10.1007/s11192-017-2587-4doi.org/10.1007/s11192-017-2587-4.

Mehlhorn, H. and Schreiber, F. (2013) ‘Small-World Property BT - Encyclopedia of Systems Biology’, in Dubitzky, W. et al. (eds). New York, NY: Springer New York, pp. 1957–1959. doi: 10.1007/978-1-4419-9863-7_2.

Miles, E. L. et al. (2006) ‘An approach to designing a national climate service’, Proceedings of the National Academy of Sciences of the United States of America, 103(52), pp. 19616–19623. doi: 10.1073/pnas.0609090103.

Milo, R. et al. (2002) ‘Network motifs: simple building blocks of complex networks.’, Science. American Association for the Advancement of Science, 298(5594), pp. 824–7. doi: 10.1126/science.298.5594.824.

Newman, M. E. J. (2003) ‘The Structure and Function of Complex Networks’, Society for Industrial and Applied Mathematics, 45(2), pp. 167–256. Available at: http://www.siam.org/journals/ojis.php (Accessed: 24 September 2018).

https://www.ijcai.org/Proceedings/11/Papers/231.pdf (Accessed: 21 January 2019).

https://arxiv.org/pdf/1802.02556.pdf (Accessed: 10 May 2018).

https://www.ijcai.org/Proceedings/11/Papers/231.pdf (Accessed: 21 January 2019).
Newman, M. E. J. (2004) ‘Fast algorithm for detecting community structure in networks’, Physical Review E. American Physical Society, 69(6), p. 066133. doi: 10.1103/PhysRevE.69.066133.

Newman, M. E. J. (2013) ‘Spectral methods for community detection and graph partitioning’, Physical Review E, 88, p. 42822. doi: 10.1103/PhysRevE.88.042822.

Newman, M. E. J. and Girvan, M. (2004a) ‘Finding and evaluating community structure in networks’, Physical Review E, 69(2), p. 026113. doi: 10.1103/PhysRevE.69.026113.

Newman, M. E. J. and Girvan, M. (2004b) ‘Finding and evaluating community structure in networks’, Physical Review E. American Physical Society, 69(2), p. 026113. doi: 10.1103/PhysRevE.69.026113.

Nie, T. et al. (2016) ‘Using mapping entropy to identify node centrality in complex networks’, Physica A: Statistical Mechanics and its Applications. North-Holland, 453, pp. 290–297. doi: 10.1016/J.PHYSA.2016.02.009.

Nishi, A. et al. (2015) ‘Inequality and visibility of wealth in experimental social networks’, Nature Publishing Group, 526(7573), pp. 426–429. doi: 10.1038/nature15392.

Opsahl, T., Agneessens, F. and Skvoretz, J. (2010) ‘Node centrality in weighted networks: Generalizing degree and shortest paths’, Social Networks. North-Holland, 32(3), pp. 245–251. doi: 10.1016/J.SOCNET.2010.03.006.

Otte, E. and Rousseau, R. (2002) ‘Social network analysis: a powerful strategy, also for the information sciences’, Journal of Information Science. Sage PublicationsSage CA: Thousand Oaks, CA, 28(6), pp. 441–453. doi: 10.1177/016555150202800601.

Pal, S. K., Kundu, S. and Murthy, C. A. (2014) ‘Centrality Measures, Upper Bound, and Influence Maximization in Large Scale Directed Social Networks’, Fundamenta Informaticae. IOS Press, 130(3), pp. 317–342. doi: 10.3233/FI-2014-994.

Qi, X. et al. (2012) ‘Laplacian centrality: A new centrality measure for weighted networks’, Information Sciences. Elsevier, 194, pp. 240–253. doi: 10.1016/J.IINS.2011.12.027.

Qi, X. et al. (2013) ‘Terrorist Networks, Network Energy and Node Removal: A New Measure of Centrality Based on Laplacian Energy’, Social Networking, 2, pp. 19–31. doi: 10.4236/sn.2013.21003.

DelRio, G., Koschützki, D. and Coello, G. (2009) ‘How to identify essential genes from molecular networks?’, BMC Systems Biology, 3(102). doi: 10.1186/1752-0509-3-102.

Ruhnau, B. (2000) ‘Eigenvector-centrality — a node-centrality?’, Social Networks. North-Holland, 22(4), pp. 357–365. doi: 10.1016/S0378-8733(99)00031-9.

Scardoni, G., Petterlini, M. and Laudanna, C. (2009) ‘Analyzing biological network parameters with CenTiScPa’, Bioinformatics. Oxford University Press, 25(21), pp. 2857–2859. doi: 10.1093/bioinformatics/btp517.

Scott, D. J., Lemieux, C. J. and Malone, L. (2011) ‘Climate services to support sustainable tourism and adaptation to climate change’, Climate Research, 47(1–2), pp. 111–122. doi: 10.3354/cr00952.

Scott, D. and Lemieux, C. (2010) ‘Weather and climate information for tourism’, in Procedia Environmental Sciences. Elsevier B.V., pp. 146–183. doi: 10.1016/j.proenv.2010.09.011.

Stigter, K. (2008) ‘Policy support for capacity building in weather and climate services focused on agriculture’,
Journal of Agrometeorology, 10(2), pp. 107–111. Available at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-78049411266&partnerID=40&md5=04e4fdda8ee4bdd5717337e3bf2fa172.

Street, R. et al. (2015) ‘A European research and innovation Roadmap for Climate Services’, European Commission.

Suebsombut, P. et al. (2017) ‘The using of bibliometric analysis to classify trends and future directions on “smart farm”’, in 2017 International Conference on Digital Arts, Media and Technology (ICDAMT). IEEE, pp. 136–141. doi: 10.1109/ICDAMT.2017.7904950.

Takes, F. W. and Kosters, W. A. (2013) ‘Computing the Eccentricity Distribution of Large Graphs’, Algorithms, 6, pp. 100–118. doi: 10.3390/a6010100.

Thomson Reuters (2008) Using Bibliometrics: A Guide to Evaluating Research Performance with Citation Data. Available at: http://ips.clarivate.com/m/pdfs/325133_thomson.pdf (Accessed: 22 January 2018).

Tian, Y., Wen, C. and Hong, S. (2008) ‘Global scientific production on GIS research by bibliometric analysis from 1997 to 2006’, Journal of Informetrics, 2, pp. 65–74. doi: 10.1016/j.joi.2007.10.001.

Troccoli, A. et al. (2018) ‘Creating a proof-of-concept climate service to assess future renewable energy mixes in Europe: An overview of the C3S ECEM project’, Advances in Science and Research, 15, pp. 191–205. doi: 10.5194/asr-15-191-2018.

Tsakas, N. (2017) ‘On Decay Centrality’, Cornell University. Available at: https://arxiv.org/pdf/1604.05582.pdf (Accessed: 9 May 2018).

Valente, T. W. and Fujimoto, K. (2010) ‘Bridging: Locating Critical Connectors in a Network.’, Social networks. NIH Public Access, 32(3), pp. 212–220. doi: 10.1016/j.socnet.2010.03.003.

Vaughan, C. et al. (2016) ‘Identifying research priorities to advance climate services’, Climate Services. Elsevier B.V., 4, pp. 65–74. doi: 10.1016/j.cliser.2016.11.004.

Vaughan, C. and Dessai, S. (2014) ‘Climate services for society: Origins, institutional arrangements, and design elements for an evaluation framework’, Wiley Interdisciplinary Reviews: Climate Change. Wiley-Blackwell, 5(5), pp. 587–603. doi: 10.1002/wcc.290.

Vaughan, C. and Hewitt, C. (2018) ‘Surveying Climate Services: What Can We Learn from a Bird’s-Eye View?’, American Meteorological Society. doi: 10.1175/WCAS-D-17-0030.1.

Vogel, C. and O’Brien, K. (2006) ‘Who can eat information? Examining the effectiveness of seasonal climate forecasts and regional climate-risk management strategies’, Climate Research, 33(1), pp. 111–122. doi: 10.3354/cr033111.

Wang, Y. et al. (2017) ‘Identifying Influential Spreaders on Weighted Networks Based on ClusterRank’, in 2017 10th International Symposium on Computational Intelligence and Design (ISCID). IEEE, pp. 476–479. doi: 10.1109/ISCID.2017.222.

Weaver, C. F. et al. (2013) ‘Improving the contribution of climate model information to decision making: the value and demands of robust decision frameworks’, Wiley Interdisciplinary Reviews: Climate Change. John Wiley & Sons, Ltd, 4(1), pp. 39–60. doi: 10.1002/wcc.202.

Webber, S. (2017) ‘Circulating climate services: Commercializing science for climate change adaptation in Pacific Islands’, Geoforum. Elsevier Ltd, 85, pp. 82–91. doi: 10.1016/j.geoforum.2017.07.009.

Webber, S. and Donner, S. D. (2017) ‘Climate service warnings: cautions about commercializing climate science for adaptation in the developing world’, Wiley Interdisciplinary Reviews: Climate Change. Wiley-
White, C. J. et al. (2017) ‘Potential applications of subseasonal-to-seasonal (S2S) predictions’, Meteorological Applications. John Wiley and Sons Ltd, 24(3), pp. 315–325. doi: 10.1002/met.1654.

World Meteorological Organisation, W. (2009) ‘Climate Knowledge for Action: A Global Framework for Climate Services’. Available at: https://www.wmo.int/gfcs/sites/default/files/FAQ/HLT/HLT_FAQ_en.pdf (Accessed: 28 June 2017).

Youngblood, M. and Lahti, D. (2018) ‘A bibliometric analysis of the interdisciplinary field of cultural evolution’, Palgrave Communications. Nature Publishing Group, 4(1), p. 120. doi: 10.1057/s41599-018-0175-8.

Yu, H. et al. (2007) ‘The Importance of Bottlenecks in Protein Networks: Correlation with Gene Essentiality and Expression Dynamics’, PLOS Computational Biology. Available at: http://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.0030059&type=printable (Accessed: 9 May 2018).

Zare-Farashbandi, F., Geraei, E. and Siamaki, S. (2014) ‘Study of co-authorship network of papers in the Journal of Research in Medical Sciences using social network analysis.’, Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences. Wolters Kluwer -- Medknow Publications, 19(1), pp. 41–6. Available at: http://www.ncbi.nlm.nih.gov/pubmed/24672564 (Accessed: 22 January 2018).

Zheng, Y. et al. (2017) ‘Identification of hub genes involved in the development of hepatocellular carcinoma by transcriptome sequencing.’, Oncotarget. Impact Journals, LLC, 8(36), pp. 60358–60367. doi: 10.18632/oncotarget.19483.