Supporting Information

CO₂ Conversion on N-doped Carbon Catalysts via Thermal- and Electro catalysis: the Role of C-NOₓ Moieties

Dorottya Hursán,¹,³ Marietta Ábel²,³, Kornélia Baán²,³, Edvin Fako⁴, Gergely F. Samu¹,³, HUU Chuong Nguyên⁴, Núria López⁴, Plamen Atanassov⁵,⁶, Zoltán Kónya²,³, András Sápi², Csaba Janáky*¹,³

¹Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
²Department of Applied and Environmental Chemistry, University of Szeged, H-6720, Szeged, Hungary
³Interdisciplinary Excellence Centre, University of Szeged, H-6720 Szeged, Hungary
⁴Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
⁵Department of Chemical and Biomolecular Engineering, University of California Irvine, 92697 Irvine, CA, USA
⁶National Fuel Cell Research Center, University of California Irvine, 92697 Irvine, CA, USA

*corresponding authors email: janaky@chem.u-szeged.hu (C. Janáky)
Figure S1. TEM images of PPy-C, PoPD-C, PANI(30)-PoPD(70)-C, PANI(70)-PoPD(30)-C, PoPD-C-NH$_3$ and PoPD-C-KOH.
Figure S2. N$_2$ adsorption / desorption isotherms of the catalysts.
Figure S3. Pore-size distribution curves of PANI-C (A), PPy-C (B), PANI(30)-PoPD(70)-C (C), PANI(70)-PoPD(30)-C (D) PoPD-C-NH$_3$ (E) and PoPD-C-KOH (F) in the mesopore range, calculated by the BJH-method.
Figure S4. Electrochemical impedance spectra of the PoPD-C and PoPD-C-NH$_3$ electrodes in an Ar-purged 1 M Na$_2$SO$_4$ solution.

Figure S5. Raman spectra of the studied catalysts.
Figure S6. Survey XPS spectra of the studied catalysts.

Figure S7. Fitting of the N1s region of the XPS spectra of the studied catalysts.
Figure S8: Partial current densities of CO and H\textsubscript{2} recorded on PPy-C (A) and PoPD-C (B) electrodes, measured with Pt and glassy carbon (CG) counterelectrodes. Measurements were performed in a CO\textsubscript{2}-saturated 0.1 M KHCO\textsubscript{3} solution.
Figure S9. (A,B): LSV curves of the studied catalysts, recorded in a CO₂-saturated 0.5 M KHCO₃ solution with 5 mV s⁻¹ sweep rate. (C,D): Total current densities measured in the 40th minute of the potentiostatic electrolysis in a CO₂-saturated 0.1 M KHCO₃ solution. Lines serve only as a guide for the eye.

Figure S10. First derivatives of the LSV curves in Fig.S9, to determine the onset potentials of the reduction reaction.
Figure S11. CO partial current densities on the studied N-C catalysts, normalized by the roughness factor of the electrodes (1.00 mg cm$^{-2}$ loadings). Measurements were performed in a CO$_2$-saturated KHCO$_3$ solution. Lines serve as a guide for the eye.

Figure S12. Faradaic efficiencies and partial current densities of methane on the studied N-C catalysts. A: PoPD-C; B: PPy-C; C: PANI-C; D: PANI(30)-PoPD(70)-C; E: PANI(70)-PoPD(30)-C; F: PoPD-C-NH$_3$; G: PoPD-C-KOH.
Figure S13. Stability of the TC CO\(_2\) conversion process on the studied catalysts. (A): CO formation rate, (B): CH\(_4\) formation rate.

Figure S14. Correlation between the amount of different N-species and the EC CO\(_2\) reduction activity (CO partial current densities normalized by the double layer capacitance value) of the studied catalysts.
Figure S15. Correlation between the amount of different N-species and the TC CO formation rate.

Figure S16. Potentiostatic electrolysis on a PoPD-C-NH$_3$ electrode in a CO$_2$-saturated 0.1 M KHCO$_3$-electrolyte at -0.6 V (vs. RHE). XPS analysis of the electrode was performed before and after electrolysis. (A): Chronoamperometric curve and the molar ratio of the formed CO and H$_2$. (B): Partial current densities of H$_2$ and CO during electrolysis.
Figure S17. Hydrogen adsorption over defects containing graphitic N, pyrrolic (N5), pyridinic (N6) and oxo-pyridinic (NO) Nitrogen atoms. Relaxed structures corresponding to hydrogen physisorption (1), as well as activated H adsorption (2-7) are shown in the bottom panel. The energy plots are derived from the electronic energy of the empty defects and isolated H$_2$ molecules, versus configurations shown in the bottom inset.
Figure S18. Electronic adsorption energy of CO$_2$ at the defect edges. CO$_2$ adsorption was computed over all nonsymetrically identical bridge sites of the corresponding defects (top inset). CO$_2$ adsorption was found to happen in two modes (i) vdW adsorption with adsorption energies of around 0.2 eV and (ii) Configurations in which 4-member rings are formed leading to typically highly endothermic adsorption energies in the 0.5 - 3.5 eV range depending on the defect.
Figure S19. Electronic adsorption energies of CO$_2$ (left) and “one step” CO$_2$+1/2H$_2$ adsorption (right) over all symmetrically non-equivalent sites of the examined defects (top inset). No local minima were found corresponding to chemisorbed CO$_2$ molecules bound via a direct C(CO$_2$)-N(defect) bond (left), resulting in vdW adsorbed configurations. However, stable COOH motifs were found for several defect motifs (motifs), most notably on the pyrrolic N atoms (as in the NO+N6+2N5 defect).
Figure S20. Deactivation pathways (electronic energy, referenced to isolated $\frac{1}{2} H_2$ and CO_2) of the oxo-pyridinic N containing defects, that indicate the possible deactivation via *NO reduction (red), and bicarbonate formation (blue).

Catalyst	Roughness factor (CV)	BET surface area / m2 g$^{-1}$
PoPD-C	2293	930
PPy-C	1642	403
PANI-C	1794	563
PANI(30)-PoPD(70)-C	1825	727
PANI(70)-PoPD(30)-C	1791	621
PoPD-C- NH$_3$	1982	1233
PoPD-C-KOH	4060	2182

Table S1. Roughness factors determined from the double layer capacitance values (cyclic voltammetry) and BET surface areas calculated from the N2 adsorption / desorption isotherms of the studies N-C samples.

Catalyst	E_{onset} / V (vs. RHE)	Activation energy / kcal mol$^{-1}$
PoPD-C	-0.318	8.77
PPy-C	-0.356	10.48
PANI-C	-0.352	11.05
PANI(30)-PoPD(70)	-0.337	7.07
PANI(70)-PoPD(30)	-0.344	11.18
PoPD-C-NH3	-0.297	10.63
PoPD-C-KOH	-0.616	N/A

Table S2. Onset potentials of the EC reduction reaction for the different samples, determined from the derivatives of the LSV curves. Activation energy of the TC CO-formation.
Catalyst	Rel. %			
	C	N	O	
PoPD-C	82.86	9.57	6.46	
PPy-C	80.24	5.75	13.52	
PANI-C	83.90	6.65	8.98	
PANI(30)-PoPD(70)-C	87.13	8.46	4.41	
PANI(70)-PoPD(30)-C	84.25	8.36	7.39	
PoPD-C-NH₃	89.13	6.45	4.42	
PoPD-C-KOH	91.70	1.53	6.78	

Table S3. Elemental composition of the studied catalysts, determined from XPS measurements.

Catalyst	Pyridinic N	Amine N	In plane N-H	N⁺	Edge N-H	N-Oₓ
PoPD-C	28.16	18.94	18.94	12.93	6.81	7.16
PPy-C	34.35	14.32	14.32	8.64	6.13	4.32
PANI-C	31.17	16.18	16.18	9.68	6.68	5.54
PANI(30)-PoPD(70)-C	28.65	21.67	21.67	14.18	7.70	9.08
PANI(70)-PoPD(30)-C	27.86	18.41	18.41	8.14	7.75	8.13
PoPD-C-NH₃	27.04	18.58	18.58	13.41	5.35	12.38
PoPD-C-KOH	18.12	29.91	29.91	6.84	8.24	11.16

Table S4. Relative amounts of the different N-species in the studied catalysts determined from XPS measurements.

Catalyst	I₀ / I₉
PoPD-C	0.88 ± 0.03
PPy-C	0.92 ± 0.01
PANI-C	0.95 ± 0.01
PANI(30)-PoPD(70)-C	0.91 ± 0.03
PANI(70)-PoPD(30)-C	0.97 ± 0.01
PoPD-C-NH₃	0.87 ± 0.02
PoPD-C-KOH	0.87 ± 0.00

Table S5. Intensity ratios of the D and G bands in the Raman spectra of the studied catalysts.
Theoretical and computational details

For the calculation of the Gibbs energies for the thermal path, we have used

\[\Delta G = \Delta H + \Delta ZPE - T \Delta S + 10 k_b T \ln(Q) \]

While the pH is not present in the thermal path, the term \(10 k_b T \ln(Q) \) has been estimated for each reaction with

\[Q = [C_{\text{product}}]/([C_{\text{reactant}}][*H]) \]

Except in the first step, there are not extra C atoms playing in the reaction, and we have assumed \([C_{\text{product}}] \approx [C_{\text{reactant}}] \approx [CO_2] \).

Assuming to loss of hydrogen \([*H] = 2[H_2(g)]\), therefore

\[Q = [CO_2]/([CO_2] 2[H_2(g)]) \]

Since the ratio of CO_2:H_2 is 1:4 we have \([H_2]=4[CO_2]\) thus

\[Q = 1/(2*4) \approx 1/8 \]

The translational and rotational contribution to the enthalpy was approximated as \(3/2 k_b T \)

The vibrational contribution of the entropy was approximated as

\[S_{\text{vib}} = R \sum_i \left[\frac{\hbar \nu_i}{e^{\hbar \nu_i/k_b T} - 1} - \ln\left(1 - e^{-\hbar \nu_i/k_b T}\right) \right] \]

Where \(R \) is the ideal gas constant, \(h \) is the Planck constant, \(\nu_i \) is the frequency, \(k_b \) is the Boltzmann constant. For all tables we named the surfaces with the convention clean is the basic 4N and a O cavity, hrol is the cavity with a pyrrolic H, hdim is the cavity with a H pyridinic and hh with both pyrrolic and pyridinic. All applied voltage are vs RHE. All numbers in the following tables are given in eV.

The following CO path without allowing *H transfer was investigated:

1. \(* + CO_2(g) + H^+ + e^- \rightarrow *COOH\)
2. \(*COOH \rightarrow COO^- + *H\)
3. \(*COO^- + H^+ + e^- \rightarrow *CO + H_2O (g)\)
4. \(*CO \rightarrow CO (g)\)
Table S6. Gibbs energies for the electrochemical CO path without permitting H transfer from the cavity at 298.15K, $V_{ext}=0.9$ V, pH=5.

Surface	$\Delta G(*\text{COOH})$ (eV)	$\Delta G(*\text{CO})$ (eV)	$\Delta G(\text{CO})(g)$ (eV)	Overpotential (eV)
clean	-1.809	-2.139	1.804	1.804
hrol	-1.219	0.330	-1.255	0.330
hdin	-1.771	-1.256	0.883	0.883
hh	-0.611	0.273	-1.806	0.273

Table S7. Gibbs energies for the thermal CO path without permitting H transfer from the cavity at 298.15K, $V_{ext}=0$, $Q=1/8$.

Surface	$\Delta G(*\text{COOH})$ (eV)	$\Delta G(*\text{CO})$ (eV)	$\Delta G(\text{CO})(g)$ (eV)	Overpotential (eV)
clean	-0.962	-0.761	2.791	2.791
hrol	-0.372	1.709	-0.268	1.709
hdin	-0.923	0.122	1.869	1.869
hh	0.236	1.651	-0.819	1.651

Table S8. Gibbs energies for the thermal CO path without permitting H transfer from the cavity at 900K, $V_{ext}=0$, $Q=1/8$.

Surface	$\Delta G(*\text{COOH})$ (eV)	$\Delta G(*\text{CO})$ (eV)	$\Delta G(\text{CO})(g)$ (eV)	Overpotential (eV)
clean	-1.812	-0.616	3.028	3.028
hrol	-1.242	1.777	0.064	1.777
hdin	-1.769	0.243	2.126	2.126
hh	-0.657	1.716	-0.460	1.716

Table S9. Gibbs energies for the thermal CO path without permitting H transfer from the cavity at 1000K, $V_{ext}=0$, $Q=1/8$.

The path without allowing H transfer from the cavities all have an overpotential >0 and are therefore not thermodynamically meaningful. The optimal path presented in the paper follow the reaction presented in Table 1 of the manuscript. For the electrochemical path:
Electrochemical path

Electrochemical path	Thermal path
1	* + CO\(_2\)(g) + H\(^+\) + e\(^-\) → *COOH
	* + CO\(_2\)(g) + \(\frac{1}{2}\) H\(_2\)(g) → *COOH
2	*COOH + H\(^+\) + e\(^-\) → *CO + H\(_2\)O (g)
	*COOH + \(\frac{1}{2}\) H\(_2\)(g) → *CO + H\(_2\)O (g)
3	*CO + 2H\(^+\) + 2 e\(^-\) → *CO + *H\(_{\text{dip}}\) + *H\(_{\text{roll}}\)
	*CO + H\(_2\)(g) → *CO + *H\(_{\text{dip}}\) + *H\(_{\text{roll}}\)
4	*CO → CO(g) + *
	*CO → CO(g) + *

Table S10. Optimal CO path.

	ΔG(1) (eV)	ΔG(2) (eV)	ΔG(3)(g) (eV)	ΔG(4)(g) (eV)
298K, pH=5, V=0.9	-1.809	-2.139	-0.934	-1.806
298K, Q=1/8	-0.962	-0.761	-0.106	-0.819
900K, Q=1/8	-1.812	-0.616	-0.222	-0.460
1000K, Q=1/8	-2.001	-0.583	-0.254	-0.387

Table S11. Gibbs energy for the optimal CO path.

Electrochemical CH\(_4\) paths without *H transfer from the cavity has been investigated.

1. * + CO\(_2\)(g) + H\(^+\) + e\(^-\) → *HCOO
2. *HCOO + H\(^+\) + e\(^-\) → *CO + H\(_2\)O (g)
3. *CO + H\(^+\) + e\(^-\) → *CHO
4. *CHO + H\(^+\) + e\(^-\) → *CHOH
5. *CHOH + H\(^+\) + e\(^-\) → *CH + H\(_2\)O(g)
6. *CH + H\(^+\) + e\(^-\) → *CH\(_2\)
7. *CH\(_2\) + H\(^+\) + e\(^-\) → *CH\(_3\)
8. *CH\(_3\) + H\(^+\) + e\(^-\) → CH\(_4\)(g) + *

It turns out however that step 4 cannot produce *CHOH but always converge to a *CHO with a *H\(_{\text{roll}}\) on the clean surface.
Table S12. Gibbs energy for the CH₄ electrochemical path at 298.15K, V_{ext}=0.9 V, pH=5. All numbers are in eV. Column 4 produce in reality *CHO + *H_{rol} for the clean surface.

Table S13. Gibbs energy for the CH₄ electrochemical path at 298.15K, V_{ext}=0 V, pH=5. All numbers are in eV. Column 4 produce in reality *CHO + *H_{rol} for the clean surface.

Thermal path was also investigated.

1. * + CO₂(g) + ½ H₂(g) → *HCOO
2. *HCOO + ½ H₂(g) → *CO + H₂O (g)
3. *CO + ½ H₂(g) → *CHO
4. *CHO + ½ H₂(g) → *CHOH
5. *CHOH + ½ H₂(g) → *CH + H₂O(g)
6. *CH + ½ H₂(g) → *CH₂
7. *CH₂ + ½ H₂(g) → *CH₃
8. *CH₃ + ½ H₂(g) → CH₄(g) + *
| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
|---|---|---|---|---|---|---|---|---|---|
| *Surface | ΔG(HCOO) | ΔG(CO) | ΔG(CHO) | ΔG(CHOH) | ΔG(CH) | ΔG(CH₂) | ΔG(CH₃) | ΔG(CH₄) | Overpot. |
| clean | -0.962 | -0.761 | 0.559 | -1.765 | 1.283 | -1.140 | 0.657 | 0.431 | 1.283 |
| hrol | -0.372 | 1.709 | -1.782 | -0.686 | 2.863 | -1.626 | -1.581 | -0.170 | 2.863 |
| hdin | -0.923 | 0.122 | -0.380 | -0.802 | 1.779 | -1.258 | -0.361 | 0.233 | 1.779 |
| hh | 0.236 | 1.651 | -1.774 | 0.677 | 0.464 | -0.554 | -1.560 | -0.527 | 1.651 |

Table S14. Gibbs energy for the CH₄ thermal path at 298.15K, Q=1/8, all energies in eV.

	1	2	3	4	5	6	7	8	
*Surface	ΔG(HCOO)	ΔG(CO)	ΔG(CHO)	ΔG(CHOH)	ΔG(CH)	ΔG(CH₂)	ΔG(CH₃)	ΔG(CH₄)	Overpot.
clean	-1.812	-0.616	0.488	-1.808	1.402	-1.152	0.525	0.245	1.402
hrol	-1.242	1.777	-1.790	-0.725	2.913	-1.720	-1.568	-0.187	2.913
hdin	-1.769	0.243	-0.431	-0.877	3.479	-1.248	-0.347	-0.216	3.479
hh	-0.657	1.716	-1.782	0.629	0.646	-0.777	-1.544	-0.513	1.716

Table S15. Gibbs energy for the CH₄ thermal path at 900K, Q=1/8, all energies in eV.

	1	2	3	4	5	6	7	8	
*Surface	ΔG(HCOO)	ΔG(CO)	ΔG(CHO)	ΔG(CHOH)	ΔG(CH)	ΔG(CH₂)	ΔG(CH₃)	ΔG(CH₄)	Overpot.
clean	-2.001	-0.583	0.470	-1.822	1.431	-1.161	0.497	0.213	1.431
hrol	-1.434	1.799	-1.798	-0.739	2.931	-1.742	-1.573	-0.186	2.931
hdin	-1.957	0.273	-0.447	-0.896	3.880	-1.253	-0.346	-0.300	3.880
hh	-0.851	1.737	-1.790	0.614	0.686	-0.819	-1.548	-0.507	1.737

Table S16. Gibbs energy for the CH₄ thermal path at 1000K, Q=1/8, all energies in eV.

The optimal thermal path has been written in 8 steps in the manuscript to allow easy comparison with the electrochemical path. The adsorptions of H₂(g) can however be taken as separated steps.

1. * + CO₂(g) + ½ H₂(g) → *COOH
2. *COOH + ½ H₂(g) → *CO + H₂O (g)
3. 2* + H₂(g) → + *H₅d₁ + *H₅rol

The optimal thermal path has been written in 8 steps in the manuscript to allow easy comparison with the electrochemical path. The adsorptions of H₂(g) can however be taken as separated steps.

1. * + CO₂(g) + ½ H₂(g) → *COOH
2. *COOH + ½ H₂(g) → *CO + H₂O (g)
3. 2* + H₂(g) → + *H₅d₁ + *H₅rol
4. \(\text{CO} + \text{H}_{\text{din/rol}} \rightarrow \text{CHO} \)
5. \(\text{CHO} + \text{H}_{\text{rol/din}} \rightarrow \text{CHOH} \)
6. \(2\text{H}_2(g) \rightarrow \text{H}_{\text{din}} + \text{H}_{\text{rol}} \)
7. \(\text{CHOH} + \frac{1}{2} \text{H}_2(g) \rightarrow \text{CH}_2\text{OH} \)
8. \(\text{CH}_2\text{OH} + \frac{1}{2} \text{H}_2(g) \rightarrow \text{CH}_3\text{OH} \)
9. \(\text{CH}_3\text{OH} + \frac{1}{2} \text{H}_2(g) \rightarrow \text{CH}_3 + \text{H}_2\text{O}(g) \)
10. \(\text{CH}_3 + \frac{1}{2} \text{H}_2(g) \rightarrow \text{CH}_4(g) + * \)

	\(\Delta G(1)\)	\(\Delta G(2)\)	\(\Delta G(3)\)	\(\Delta G(4)\)	\(\Delta G(5)\)	\(\Delta G(6)\)	\(\Delta G(7)\)	\(\Delta G(8)\)	\(\Delta G(9)\)	\(\Delta G(10)\)
T=1000K	-2.001	-0.583	-0.254	-1.094	-0.057	-0.077	-0.921	-0.225	-0.536	-0.507
T=900K	-1.812	-0.616	-0.222	-1.094	-0.051	-0.055	-0.906	-0.262	-0.507	-0.513
T=298.15K	-0.962	-0.761	-0.106	-1.097	-0.019	0.004	-0.857	-0.442	-0.352	-0.527

Table S17. Gibbs energy for the CH\(_4\) optimal thermal path with \(Q = 1/8\), all energies in eV.

We see that the step 6 is blocking the reaction at 298.15 K.

	E0 (eV)	TS (298.15K)	ZPE (eV)	TS (900K)	TS (1000K)	
clean	ncoo	-646.0407	0.2343	0.9566	2.1326	2.5553
clean	ncooh	-650.501	0.2392	1.3359	2.313	2.7818
clean	nco	-640.4451	0.1747	0.9072	1.8088	2.1801
clean	ncoh	-644.7097	0.1756	1.2265	1.904	2.3027
clean	nch1o	-643.4008	0.1954	1.2069	1.9691	2.3748
clean	nch1oh	-648.726	0.2038	1.5406	2.0902	2.5257
clean	nch1	-636.6128	0.1385	1.0969	1.6105	1.9528
clean	nch2oh	-650.9816	0.2091	1.8468	2.2014	2.6666
clean	nch2	-641.3224	0.1443	1.4372	1.6973	2.0646
clean	nch3oh	-653.6392	0.2602	2.0187	2.439	2.9408
clean	nch3	-644.14	0.1827	1.7152	1.9369	2.3481
clean	nch4	-647.0059	0.2526	1.8466	2.2619	2.7208
H pyrolic						
hrol	ncoo	-652.0118	0.2333	1.2871	2.2128	2.6605
hrol	ncooh	-655.9607	0.2423	1.6735	2.4144	2.9106
hrol	nco	-643.3739	0.2034	1.2085	2.0114	2.4221
hrol	ncoh	-648.5443	0.1954	1.4153	1.9385	2.3408
hrol	nch1o	-648.7224	0.2036	1.54	2.0885	2.5238
hrol	nch1oh	-652.9436	0.2107	1.8474	2.2044	2.6695
hrol	nch1	-639.2102	0.1665	1.3852	1.8152	2.1977
hrol	nch2oh	-656.2373	0.2167	2.1766	2.3248	2.8201
hrol	nch2	-644.3555	0.1832	1.6856	1.9947	2.4147
hrol	nch3oh	-659.4222	0.2306	2.3574	2.3485	2.8472
hrol	nch3	-649.5255	0.1906	2.047	2.0581	2.4991
Surface	Molecule	E_0 (eV)	ZPE (eV)	TS (eV)	E_{total} (eV)	
---------	----------	-----------	---------	---------	------------------	
hrol	nch4	-653.0229	0.2242	2.1725	2.1774	
H pyridinic						
hdin	ncoo	-649.1347	0.2396	1.2642	2.2653	
hdin	ncooh	-655.6619	0.2353	1.6627	2.3816	
hdin	nco	-644.7092	0.1765	1.2258	2.3067	
hdin	ncoh	-646.36	0.2059	1.4819	2.1725	
hdin	nch1o	-648.6171	0.1933	1.5535	2.1028	
hdin	nch1oh	-652.9454	0.2109	1.8438	2.2057	
hdin	nch1	-640.4902	0.1478	1.4091	2.1130	
hdin	nch2oh	-655.9542	0.2138	2.1524	2.7791	
hdin	nch2	-645.324	0.146	1.748	2.1924	
hdin	nch3oh	-658.842	0.2303	2.3439	2.8423	
hdin	nch3	-649.1791	0.1575	2.018	2.2735	
hdin	nch4	-652.2192	0.2777	2.176	3.0115	
H both						
hh	ncoo	-654.6493	0.2073	1.5929	2.1359	
hh	ncooh	-660.1386	0.2484	1.9792	3.0527	
hh	nco	-647.6086	0.2111	1.5151	2.5078	
hh	ncoh	-650.8293	0.2185	1.7973	2.7374	
hh	nch1o	-652.944	0.2113	1.8416	2.2072	
hh	nch1oh	-655.827	0.2236	2.1789	2.8333	
hh	nch1	-644.5931	0.1457	1.7831	2.1737	
hh	nch2oh	-660.2079	0.23	2.4742	2.9891	
hh	nch2	-648.5473	0.193	1.9949	2.5706	
hh	nch3oh	-664.0614	0.222	2.6422	2.8486	
hh	nch3	-653.6875	0.199	2.3457	2.6501	
hh	nch4	-657.5628	0.224	2.4836	2.7402	

Table S18. Raw data for ground state energy (E_0), zero point energy (ZPE) and entropic contribution (TS) at different temperature. The first column specifies the surface, clean is the basic 4N and a O cavity, hrol is the cavity with a pyrrolic H, hdin is the cavity with a H pyridinic and hh with both pyrrolic and pyridinic. The second column specify which molecule was attached.

Geometrical structures

All geometrical structures are available on the ioChem-BD database through the following link:

https://iochem-bd.iciq.es/browse/review-collection//fcf24395bc7810b48bf95bea