The Role of Heme Oxygenase 1 in Drug-Resistance in Hematological Malignancies

Dan Ma1 and Jishi Wang2*

1Department of hematology, Institute of hematology of Guizhou province, China
2Department of hematology, Hospital of Guizhou Medical University, China

Introduction

More recent studies, including our discoveries, reported that over expression of HO-1 can lead to resistance to anti-cancer agents in hematological malignancies [1-4]. It depends on the special characteristic of HO-1, which could decrease cellular oxidative stress to the acceptable level with ease in malignant cells underwent with stimulation [5-6]. Otherwise, HO-1 was also proven as a crucial regulator to chemo-resistance mediated by bone marrow environments [7-8]. In this review, we’ll concisely describe the mechanism of drug-resistance inducted by HO-1 and the reversing strategy from various aspects.

Protection of malignant cells against damaging by reducing oxidative stress

Reactive Oxygen Species (ROS) is a main production of oxidative stress [9]. As it was accumulated to the maximum limit, the mitochondrial respiratory chain would be damaged and cell death was triggered directly. HO-1 was reported to reduce the oxidation level to protect cells from damage [10]. Silencing HO-1 activated the endoplasmic reticulum apoptotic pathway by releasing Ca2+ and activating caspase-12. Meanwhile, HO-1 down regulation increased ROS generation and reduced MTP by undermining the steady state of oxidation reduction system, thus releasing Cyto C and increasing caspase-9 to activate the mitochondrial apoptotic pathway in acute myeloid leukemia [11].

Activation of anti-apoptosis signaling pathway

Up to now, most studies concerning the role of HO-1 in the signaling pathways of AML apoptosis have focused on the correlation between HO-1 and tumor suppressing pathway [12-14]. The high level of HO-1 exerts an anti-apoptotic effects on AML cells by JNK/c-JUN signaling pathway which probably suppresses P53 or releases reactive oxygen species (ROS) [15,16]. In addition, the characteristic over expression of HO-1 is mediated by constitutively activated NF-κB in ABC-DLBCL. HO-1 expression inhibits apoptosis in ABC-DLBCL, whereas HO-1 silencing promotes apoptosis. Increasing the expression of HO-1 in GCB-DLBCL-derived OCI-ly19 cells can lead to drug resistance. Furthermore, the combination of NF-κB and HO-1 may provide a new target for the therapy of ABC-DLBCL [17]. Moreover, we also found that HO-1 had anti-apoptotic effects on Imatinib (IM)-resistant CML cells through hyperfunction of NHE1, which may promotes tumor resistance by increasing pH through the PKC-β-p38/MAPK-Nrf2 pathway [18].

Increasing resistance to demethylation agents in MDS

Myelodysplastic syndrome (MDS), as a heterogeneous group of related clonal diseases. It has been associated with aberrant methylation of relevant gene promoters that can facilitate tumor onset by silencing anti-oncogenes and by changing the
expressions of tumor-related genes [19,20]. These epigenetic changes can be reversed by drugs such as DNA methyltransferase inhibitor 5-azacytidine (AZA) and decitabine (DAC). HO-1 overexpression may regulate the proliferation and survival of MDS cell line SKM-1 that thus escaped decitabine-induced apoptosis. The expression level of HO-1 was related with the risk stratification of MDS.

With DAC treatment in vitro, HO-1 over expression was blocked in SKM-1 cells, and the apoptotic rate significantly elevated by demethylation of p15INK4B and up regulation of p15INK4B protein expression, which activated the caspase dependent apoptotic pathway [21]. In the other study, we found that silencing HO-1 sensitized SKM-1 cells to AZA in vitro and in vivo. After being treated with AZA, SKM-1 cells expressed more HO-1, and the bone marrow MNCs from high-risk and very high-risk MDS patients had higher HO-1 expression than those from low-risk and very low-risk patients. With HO-1 silenced, AZA began to inhibit the proliferation of SKM-1 cells more potently, accompanied by raised apoptotic rate and dominant arrest in the G0/G1 phase. The changes were related with increases in the expressions of p16, cleaved caspase-3 and -9 as well as decrease in BCL-2/Bax ratio [22].

Promoting cells proliferation by cytokines regulated by HO-1

The growth and survival of leukemic cells are highly dependent on growth-promoting cytokines in the bone marrow microenvironment [23]. Recent studies indicated HO-1 played a critical role in the IL-6 paracrine and autocrine loop, and it might be a potential diagnostic marker or a therapeutic target for MM. Paracrine IL-6 regulated the cellular expression of HO-1 via the JAK2–STAT3 signaling pathway, and HO-1 regulated autocrine IL-6 production via the p38MAPK pathway [24]. Moreover, our data confirmed previous results of high expression of HIF-1α in human AML cell lines. We propose that inhibition of HIF-1α by 2ME2 has a potent anti leukemia activity through activation of the mitochondrial apoptotic pathway mediated by ROS, and is not cytotoxic to normal cells [25].

Autophagy induced by HO-1 reduced sensitivity of CML cells to IM

Autophagy is a catabolic process involved in the degradation of intracellular aggregated or misfolded proteins and damaged organelles through lysosomal machinery in response to stress or starvation [26,27]. Autophagy induces both survival and death of tumor cells during the initiation, progression, maturation and maintenance of cancer depending on the type and stage [28]. It reported that expressions of HO-1 and LC3α/II in IM-resistant CML patients surpassed those in healthy donors. After Znpp treatment, however, such expressions decreased, and p62 values, as evidenced by MTT assay, also dropped significantly. Hence, for IM-resistant CML patients, inhibiting HO-1 expression was capable of increasing IM sensitivity by hindering autophagy. Hence, chemotherapy-induced HO-1 overexpression in leukemia cells promoted autophagy, which in turn inhibited apoptosis and increased IM resistance, indicating that HO-1 is an important regulator of autophagy. Moreover, suppressing HO-1 expression significantly increased IM sensitivity of leukemia cells [29].

Conclusion

The abnormal expression of HO-1 plays a key role in drug-resistance in hematological malignancies. In this article, we summarized five points to demonstrate the relative mechanism, including oxidative stress reduction, anti-apoptotic signaling pathway activation, demethylation inhibition, cytokines regulation and autophagy induction. All points indicated that HO-1 might be a potent factor to prognosis of drug-resistance in hematology. On the contrary, inhibition of HO-1 could significantly increase sensitivity of malignant cells to anti-cancer agents. Therefore, the therapeutic usefulness of inhibitors of HO-1, especially in combination with conventional anti neoplastic therapies, may well represent a potential and promising approach in the fight against hematological malignancies.

Acknowledgments

This study was supported, in part, by the National Natural Science Foundation of China (nos. 81270636, 813605011, 81470006 and 81670006), Science Fund of Guiyang City Technology Bureau (no. 2012103) and Guizhou Province Technology Bureau Union Fund (no. UnionLH-2015-7386).

References

1. Adamiak M, Abdelbaset-Ismail A, Kuciu M, Ratajczak J, Ratajczak MZ (2016) Toll-like receptor signaling-deficient mice are easy mobilizers: evidence that TLR signaling prevents mobilization of hematopoietic stem/progenitor cells in HO-1-dependent manner. Leukemia 30(12): 2416-2419.
2. Abdelbaset-Ismail A, Borkowska-Rzeszotek S, Kubis E, Bujko K, Brezniakiewicz-Janus K, et al. (2017) Activation of the complement cascade enhances motility of leukemic cells by downregulating expression of HO-1. Leukemia 31(2): 446-458.
3. Wang F, Xiao M, Lin XJ, Muhammad S, Piao XH, et al. (2016) Expression of Heme Oxygenase-1 and Leukemia Inhibitory Factor in Maternal Plasma and Placental Tissue in a Lipopolysaccharide-Induced Late Pregnancy Preterm Birth Mouse Model. J Reprod Med 61(1-2): 39-46.
4. Ali D, Mohammad DK, Mujahed H, Jonson-Videsäter K, Nore B, et al. (2016) Anti-leukemic effects induced by APR-246 are dependent on induction of oxidative stress and the NFE2L2/HMOX1 axis that can be targeted by P13K and mTOR inhibitors in acute myeloid leukemia cells. Br J Haemtol 174(1): 117-126.
5. Kim J, Lim J, Kang BY, Jung K, Choi HJ, et al. (2017) Capillarisin augments anti-oxidative and anti-inflammatory responses by activating Nrf2/HO-1 signaling. Neurochem Int pii: S0197-0186(16)30260-1.
6. Pan PK, Qiao LX, Wen XN (2016) Saffranin prevents rotenone-induced oxidative stress and apoptosis in an in vitro model of Parkinson's disease through regulating Keap1/Nrf2 signaling pathway. Cell Mol Biol (Noisy-le-grand) 62(14): 12416-2419.
7. Shen H, Yang Y, Xia S, Rao B, Zhang J, et al. (2014) Blockage of Nrf2
suppresses the migration and invasion of esophageal squamous cell carcinoma cells in hypoxic microenvironment. Dis Esophagus 27(7): 685-692.

8. Na HK, Surh YJ (2014) Oncogenic potential of Nrf2 and its principal target protein gene expression-1. Free Radic Biol Med 67: 353-365.

9. Akhtar MJ, Ahamed M, Alhaddad HA, Alshamsan A (2017) Mechanism of ROS scavenging and antioxidant signalling by reducto metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders. Biochim Biophys Acta 1861(4): 802-813.

10. Abraham NG, Kappas A (2008) Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev 60(1): 79-127.

11. Sixi Wei, Yating Wang, Qisliang Chai, Fang Q, Zhang Y, et al. (2014) Potential crosstalk of Ca2+-ROS-dependent mechanism involved in apoptosis of Kasumi-1 cells mediated by heme oxygenase-1 small interfering RNA. Int J Oncol 45(6): 2373-2384.

12. Helbig G, Christopherson KW, Bhat-Nakshatri P, Kumar S, Kishimoto H, et al. (2003) NF-kappa B promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem 278(24): 21631-21638.

13. Rushworth SA, Zaitseva L, Langa S, Bowles KM, MacEwan DJ (2010) FLIP regulation of HO-1 and TNF signaling in human acute myeloid leukemia provides a unique secondary anti-apoptotic mechanism. Oncotarget 1(5): 359-366.

14. Rushworth SA, MacEwan DJ (2011) The role of nrf2 and cytoprotection in regulating chemotherapeutic resistance of human leukemia cells. Cancers (Basel) 3(2): 1605-1621.

15. Ma D, Fang Q, Li Y, Wang J, Sun J, et al (2014) Crucial role of heme oxygenase-1 in the sensitivity of acute myeloid leukemia cell line Kasumi-1 to ursolic acid. Anti-cancer Drugs 25(4): 406-414.

16. Tournier C (2013) The 2 faces of JNK signaling in cancer. Genes Cancer 4(9-10): 397-400.

17. Jun Huang, Pengxiang Guo, Dan Ma, Xiaoqiong Lin, Qin Fang, et al. (2016) Over expression of heme oxygenase-1 induced by constitutively activated NF-kB as a potential therapeutic target for activated B-cell-like diffuse large B-cell lymphoma. Int J Oncol 49(4): 253-264.

18. Ma D, Fang Q, Wang P, Gao R, Wu W, et al. (2015) Induction of Heme Oxygenase-1 by Na+-H+ Exchanger 1. Protein Plays a Crucial Role in Imatinib-resistant Chronic Myeloid Leukemia Cells. J Biol Chem 290(20): 12558-12571.

19. Jiayang, Y, Dunbar A, Gondek L, Mohan S, Rataul M, et al. (2009) aberrant DNA methylation is a dominant mechanism in MDS progression to AML. Blood 113(6): 1315-1325.

20. Stintzing S, Kammerling R, Kiesslich T, Alinger B, Ocker M, et al. (2011) Myelodysplastic syndrome and histone deacetylation inhibitors: "to be or not to be acetylated"? J Biomed Biotechnol 2011: 214143.

21. Ma D, Fang Q, Wang P, Gao R, Sun J, et al. (2015) Downregulation of HO-1 promoted apoptosis induced by decitabine via increasing p15(INK4B) promoter demethylation in myelodysplastic syndrome. Gene Ther 22(4): 287-296.

22. Wang P, Ma D, Wang J, Fang Q, Gao R, et al. (2015) Silencing HO-1 sensitizes SKM-1 cells to apoptosis induced by low concentration 5-azacitidine through enhancing p16 demethylation. Int J Oncl 46(3):1317-1327.

23. Kawano M, Hirano T, Matsuda T, Taga T, Horii Y, et al. (1988) Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas. Nature 332(6519): 83-85.

24. Wu W, Ma D, Wang P, Cao L, Lu T, et al. (2016) Potential crosstalk of the interleukin-6-heme oxygenase-1-dependent mechanism involved in resistance to lenalidomide in multiple myeloma cells. FEBS J 283(5): 834-849.

25. Zhe Nana, Wang Jishi, Chen Shuya, Lin X, Chai Q, et al. (2015) Heme oxygenase-1 plays a crucial role in chemoresistance in acute myeloid leukemia 20(7): 384-391.

26. Yang Z, Kionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12(9): 814-822.

27. Kremmer G, Marino G (2010) Autophagy and the integrated stress response, Mol Cell 40(2): 280-293.

28. Helgason GV, Karvela M, Holyoake TL (2011) Kill one bird with two stones: potential efficacy of BCR-ABL and autophagy inhibition in CML. Blood 118: 2035-2043.

29. Cao L, Wang Jishi, Ma D, Wang P, Zhang Y, et al (2016) Heme oxygenase-1 contributes to imatinib resistance by promoting autophagy in chronic myeloid leukemia through disrupting the mTOR signaling pathway. Biomed Pharmacother 78: 30-36.