Characterizations of regular semi-groups by interval-valued Q-fuzzy ideals with thresholds (α, β)

P. Murugadas1, A. Arikrishnan2

Abstract
This paper expose a study on characterizations of regular semi-groups by Interval-valued Q-fuzzy ideals with thresholds (α, β). Further, characterizations of regular semi-groups by interval-valued Q-fuzzy interior (bi,quasi) ideals with thresholds (α, β) are also discussed.

Keywords
Regular semi-group, interval-valued Q-fuzzy subset with thresholds $((\alpha, \beta))$, interval-valued Q-fuzzy sub semi-group with thresholds $((\alpha, \beta))$, interval-valued Q-fuzzy interior ideal with thresholds $((\alpha, \beta))$, interval-valued Q-fuzzy left(right, two-sided) ideal with thresholds $((\alpha, \beta))$, interval-valued Q-fuzzy bi-ideal with thresholds $((\alpha, \beta))$, interval-valued Q-fuzzy generalized bi-ideal with thresholds $((\alpha, \beta))$, interval-valued Q-fuzzy quasi-ideal with thresholds $((\alpha, \beta))$.

AMS Subject Classification
Primary 03E72; Secondary 16Y30.

1. Introduction
The important concept of a fuzzy set introduced by Zadeh in 1965 (see [15]) has opened up keen insights and applications in wide range of scientific fields. Rosenfeld introduced the concept of fuzzy groups [12]. Among others, fuzzy semi-groups were introduced by Kuroki [10]. A theory of fuzzy sets on ordered semi-groups has been recently developed (see[4,5,6,8,9]). Fuzzy sets in ordered semi-groups were first studied by Kehayopulu and Tsingelis in [5], then they defined fuzzy analogies for several notations, which have proved useful in the theory of ordered semi-group. In [7], they have discussed fuzzy bi-ideals in ordered semi-groups and they discuss fuzzy interior ideals in ordered semi-group in [9]. Fuzzy semi-groups were generalized in two folds: fuzzy ordered semi-groups and fuzzy ternary semi-groups. Since ordered semi-groups are useful for computer science, especially in theory of automata and formal language, fuzzy ordered semi-group has been extensively studied (see [1,2,3,5,6]). Interval-valued fuzzy subsets were proposed thirty years ago as a natural extension of fuzzy sets by L. A. Zadeh [15]. In [15], Zadeh also constructed a method of approximate inference using his interval-valued fuzzy subsets. In [11], AL. Narayanan and T. Manikantan introduced the notions of interval-valued fuzzy ideals generated by an interval-valued fuzzy subset in semi-groups. M. Shabir and Israr Ali Khan [13] have studied about interval-valued fuzzy ideals generated by an interval-valued fuzzy subset in ordered semi-groups. Thillaigovindan and V. Chinnadurai[14] initiated some study on Interval-valued fuzzy generalized bi-ideals. This paper characterize the ordered semi-groups in terms of interval-valued Q-fuzzy left (right, interior and bi-)ideals.
2. Preliminaries

Definition 2.1. An interval-valued Q-fuzzy subset \(\mathfrak{A} \) in a universe \(X \) of the form
\[
\mathfrak{A}(y, q) = \begin{cases}
\mathfrak{T} \in D(0, 1) & \text{if } (y, q) = (x, q) \\
\emptyset & \text{if } (y, q) \neq (x, q)
\end{cases}
\]
is said to be an interval-valued Q-fuzzy point with support \((x, q) \) and value \(T \) and is denoted by \((x, q)_{\mathfrak{T}} \). An interval-valued Q-fuzzy point \((x, q)_{\mathfrak{T}} \) is said to belong to \((\mathfrak{A}, q, \mathfrak{B}) \) with \(q \)-quasi-coincident with an interval-valued Q-fuzzy set \(\mathfrak{A} \) written \((x, q)_{\mathfrak{T}} \in \mathfrak{A}(\text{resp. } (x, q)_{\mathfrak{T}} \in \mathfrak{A}(\text{resp. } (x, q)_{\mathfrak{T}} \in \mathfrak{A}) \) means that \((x, q)_{\mathfrak{T}} \in \mathfrak{A} \) or \((x, q)_{\mathfrak{T}} \in \mathfrak{A} \). To say that \((x, q)_{\mathfrak{T}} \mathfrak{A} \) means that \((x, q)_{\mathfrak{T}} \mathfrak{A} \) does not hold. For every two interval-valued Q-fuzzy subsets \(\mathfrak{A} \) and \(\mathfrak{B} \) of \(S \), \(\mathfrak{A} \leq \mathfrak{B} \) means that, for all \(x \in S \), \(\mathfrak{A}(x) \leq \mathfrak{B}(x) \). The symbols \(\mathfrak{A} \wedge \mathfrak{B} \) and \(\mathfrak{A} \vee \mathfrak{B} \) will mean the following interval-valued Q-fuzzy subset of \(S \)
\[
(\mathfrak{A} \wedge \mathfrak{B})(x, q) = \mathfrak{A}(x, q) \wedge \mathfrak{B}(x, q)
\]
\[
(\mathfrak{A} \vee \mathfrak{B})(x, q) = \mathfrak{A}(x, q) \vee \mathfrak{B}(x, q).
\]
for all \(x \in S \), \(q \in Q \).

3. Some Results on Characterizations of Regular Semi-groups by Interval-valued Q-fuzzy Ideals with Thresholds \((\alpha, \beta)\)

In this section interval-valued Q-fuzzy left (right, interior, generalized, quasi) ideals with thresholds \((\alpha, \beta)\) are defined and some useful results are unraveled.

Definition 3.1. An interval-valued Q-fuzzy subset \(\mathfrak{A} \) of a semi-group \(S \) is called an interval-valued Q-fuzzy sub-semigroup with thresholds \((\alpha, \beta)\) of \(S \), where \(\alpha < \beta \) and \(\alpha, \beta \in D[0, 1] \), if it satisfies the following condition for all \(x, y, z \in S \), \(q \in Q \)
\[
\max \left\{ \mathfrak{A}(x, q), \alpha \right\} \geq \min \left\{ \mathfrak{A}(x, q), \mathfrak{A}(y, q), \beta \right\}.
\]

Definition 3.2. An interval-valued Q-fuzzy subset \(\mathfrak{A} \) of a semi-group \(S \) is called an interval-valued Q-fuzzy left (right) ideal with thresholds \((\alpha, \beta)\) of \(S \), where \(\alpha < \beta \) and \(\alpha, \beta \in D[0, 1] \), if it satisfies the following condition for all \(x, y, z \in S \), \(q \in Q \)
\[
\max \left\{ \mathfrak{A}(x, q), \alpha \right\} \geq \min \left\{ \mathfrak{A}(y, q), \beta \right\}.
\]

An interval-valued Q-fuzzy subset \(\mathfrak{A} \) of a semi-group \(S \) is called an interval-valued Q-fuzzy ideal with thresholds \((\alpha, \beta)\) of \(S \) if it is both an interval-valued Q-fuzzy left ideal and interval-valued Q-fuzzy right ideal with thresholds \((\alpha, \beta)\) of \(S \).

Definition 3.3. An interval-valued Q-fuzzy subset \(\mathfrak{A} \) of a semi-group \(S \) is called an interval-valued Q-fuzzy interior ideal with thresholds \((\alpha, \beta)\) of \(S \), where \(\alpha < \beta \) and \(\alpha, \beta \in D[0, 1] \), if it satisfies the following conditions for all \(x, a, y \in S \), \(q \in Q \)
\[
(1) \max \left\{ \mathfrak{A}(xy, q), \alpha \right\} \geq \min \left\{ \mathfrak{A}(x, q), \mathfrak{A}(y, q), \beta \right\},
\]
\[
(2) \max \left\{ \mathfrak{A}(ax, q), \alpha \right\} \geq \min \left\{ \mathfrak{A}(a, q), \beta \right\}.
\]

Definition 3.4. An interval-valued Q-fuzzy subset \(\mathfrak{A} \) of a semi-group \(S \) is called an interval-valued Q-fuzzy bi-ideal with thresholds \((\alpha, \beta)\) of \(S \), where \(\alpha < \beta \) and \(\alpha, \beta \in D[0, 1] \), if it satisfies the following conditions for all \(x, y, z \in S \), \(q \in Q \)
\[
(1) \max \left\{ \mathfrak{A}(xy, q), \alpha \right\} \geq \min \left\{ \mathfrak{A}(x, q), \mathfrak{A}(y, q), \beta \right\},
\]
\[
(2) \max \left\{ \mathfrak{A}(xyz, q), \alpha \right\} \geq \min \left\{ \mathfrak{A}(x, q), \mathfrak{A}(z, q), \beta \right\}.
\]

Definition 3.5. An interval-valued Q-fuzzy subset \(\mathfrak{A} \) of a semi-group \(S \) is called an interval-valued Q-fuzzy generalized bi-ideal with thresholds \((\alpha, \beta)\) of \(S \), where \(\alpha < \beta \) and \(\alpha, \beta \in D[0, 1] \), if it satisfies the following condition
\[
\max \left\{ \mathfrak{A}(xyz, q), \alpha \right\} \geq \min \left\{ \mathfrak{A}(x, q), \mathfrak{A}(z, q), \beta \right\}.
\]

Theorem 3.6. Let \(\alpha, \beta \in D[0, 1] \) and \(\alpha < \beta \) and \(\mathfrak{A} \) be a nonzero interval-valued Q-fuzzy sub-semi-group with thresholds \((\alpha, \beta)\) of \(S \). Then, the set \(\mathfrak{A} = \left\{ x \in S | \mathfrak{A}(x) > \alpha \land q \in Q \right\} \) is a semi-group of \(S \).

Proof: Let \(x, y \in \mathfrak{A} \). Then \(\mathfrak{A}(x) \geq \alpha \) and \(\mathfrak{A}(y) \geq \alpha \).
Since \(\mathfrak{A} \) is an interval-valued Q-fuzzy sub-semi-group with thresholds \((\alpha, \beta)\) of \(S \), we have
\[
\max \left\{ \mathfrak{A}(x, q), \alpha \right\} \geq \min \left\{ \mathfrak{A}(x, q), \mathfrak{A}(y, q), \beta \right\} > \min \left\{ \mathfrak{A}, \beta \right\} = \alpha.
\]
This implies that \(\mathfrak{A}(x, q) \geq \alpha \). So \(xy \in \mathfrak{A} \).
Thus, \(\mathfrak{A} \) is a sub-semi-group of \(S \).

Theorem 3.7. Let \(\alpha, \beta \in D[0, 1] \) and \(\alpha < \beta \) and \(\mathfrak{A} \) be a nonzero interval-valued Q-fuzzy generalized bi-ideal with thresholds \((\alpha, \beta)\) of \(S \). Then the set \(\mathfrak{A} = \left\{ x \in S | \mathfrak{A}(x) > \alpha \land q \in Q \right\} \) is a generalized bi-ideal of \(S \).

Proof: Let \(x, z \in \mathfrak{A} \). Then \(\mathfrak{A}(x) \geq \alpha \) and \(\mathfrak{A}(z) \geq \alpha \).
Since \(\mathfrak{A} \) is an interval-valued Q-fuzzy generalized bi-ideals with thresholds \((\alpha, \beta)\) of \(S \), we have
\[
\max \left\{ \mathfrak{A}(xyz, q), \alpha \right\} \geq \min \left\{ \mathfrak{A}(x, q), \mathfrak{A}(z, q), \beta \right\} > \min \left\{ \mathfrak{A}, \beta \right\} = \alpha.
\]
This implies that \(\mathfrak{A}(xyz) > \alpha \). So \(xz \in \mathfrak{A} \).
Thus, \(\mathfrak{A} \) is a generalized bi-ideal of \(S \).

Theorem 3.8. Let \(\alpha, \beta \in D[0, 1] \) and \(\alpha < \beta \) and \(\mathfrak{A} \) be a nonzero interval-valued Q-fuzzy generalized bi-ideal with thresholds \((\alpha, \beta)\) of \(S \). Then the set \(\mathfrak{A} = \left\{ x \in S | \mathfrak{A}(x) > \alpha \land q \in Q \right\} \) is a bi-ideal of \(S \).

Proof: Follows from Theorem 3.6 and Theorem 3.7.
Theorem 3.9. Let $\alpha, \beta \in D[0,1]$ and $\alpha < \beta$ and λ be a noninterval value function Q-fuzzy left (resp. right) ideal with thresholds (α, β) of S.
Then, the set $\lambda_{\alpha} = \{x \in S | \lambda(x, q) > \alpha, \forall q \in Q\}$ is a left (resp. right) ideal of S.

proof: Follows from Theorem 3.6 and Theorem 3.7.

Theorem 3.10. Let L be a left (resp. right) ideal of S and let λ be an interval-valued Q-fuzzy subset in S such that
\[
\lambda(x, q) \geq \beta \quad \text{if} \quad x \in L \text{ and } q \in Q
\]
\[
\lambda(x, q) \leq \alpha \quad \text{if} \quad x \in S \setminus L \text{ and } q \in Q
\]
Then, λ is an interval-valued Q-fuzzy left (resp. right) ideal with thresholds (α, β) of S.

Proof: (1) On the contrary suppose that there exist $x, y \in S$, $q \in Q$ such that
\[
\max \{\lambda(xy, q), \alpha\} < \min \{\lambda(y, q), \beta\}
\]
Then, $y \in L$ and $xy \notin L$. This is a contradiction to the fact that L is a left ideal of S. So,
\[
\max \{\lambda(xy, q), \alpha\} \geq \min \{\lambda(y, q), \beta\}
\]
Thus, λ is an interval-valued Q-fuzzy left ideal with thresholds (α, β) of S.

Similarly, we can prove the following theorems. \square

Theorem 3.11. Let A be a sub-semi-group of S and let λ be an interval-valued Q-fuzzy subset in S such that
\[
\lambda(x, q) \geq \beta \quad \text{if} \quad x \in A \text{ and } q \in Q
\]
\[
\lambda(x, q) \leq \alpha \quad \text{if} \quad x \in S \setminus A \text{ and } q \in Q
\]
Then, λ is an interval-valued Q-fuzzy semigroup with thresholds (α, β) of S.

\proof \square

Theorem 3.12. Let B be a generalized bi-ideal of S and let λ be an interval-valued Q-fuzzy subset in S such that
\[
\lambda(x, q) \geq \beta \quad \text{if} \quad x \in B \text{ and } q \in Q
\]
\[
\lambda(x, q) \leq \alpha \quad \text{if} \quad x \in S \setminus B \text{ and } q \in Q
\]
Then, λ is an interval-valued Q-fuzzy generalized bi-ideal with thresholds (α, β) of S.

\proof \square

Theorem 3.13. Let B be a bi-ideal of S and let λ be an interval-valued Q-fuzzy subset in S such that
\[
\lambda(x, q) \geq \beta \quad \text{if} \quad x \in B \text{ and } q \in Q
\]
\[
\lambda(x, q) \leq \alpha \quad \text{if} \quad x \in S \setminus B \text{ and } q \in Q
\]
Then, λ is an interval-valued Q-fuzzy bi-ideal with thresholds (α, β) of S.

\proof \square

Definition 3.14. Let λ and μ be interval valued Q-fuzzy subsets of S.

Then, define $\lambda \lambda_{\alpha} \mu$ as
\[
\left(\lambda \lambda_{\alpha} \mu\right)(x, q) = \begin{cases} \lor \{\lambda(y, q) \land \mu(z, q) \land \beta\} \lor \alpha, & \text{if } \exists y, z \in S, q \in Q \text{ such that } x = yz \\
\alpha, & \text{otherwise} \end{cases}
\]

Theorem 3.15. If λ is an interval-value Q-fuzzy left ideal and μ is an interval-value Q-fuzzy right ideal with thresholds (α, β) of a semi-group S, then $\lambda \lambda_{\alpha} \mu$ is an interval-value Q-fuzzy two-sided ideal with thresholds (α, β) of S.

\proof Let $x, y \in S, q \in Q$. Then,
\[
\left(\lambda \lambda_{\alpha} \mu\right)(y, q) \land \beta = \left[\lor \{\lambda(i, q) \land \mu(j, q) \land \beta\} \lor \alpha\right] \land \beta
\]
\[
= \left[\lor \{\lambda(i, q) \land \beta \land \mu(j, q) \lor \alpha\}\right] \land \beta.
\]
If $i = j$ then $xy = x(ij) = (xi)j$. Since λ is an interval-value Q-fuzzy left ideal with thresholds (α, β), so by definition $\max\{\lambda(xi, q), \alpha\} \geq \min\{\lambda(i, q), \beta\}$.
Thus, $\left(\lambda \lambda_{\alpha} \mu\right)(y, q) \land \beta$.

\proof \square
(Since each \(\overline{x}_i \) is an interval-valued Q-fuzzy left ideal of \(S \), so \(\max\{\overline{x}_i(xy, q), \overline{a}\} \geq \min\{\overline{x}_i(y, q), \overline{b}\} \) for all \(i \in I \). Thus,
\[
\left(\bigwedge_{i \in I} \overline{x}_i \right)(xy, q) \vee \overline{a} = \left[\bigwedge_{i \in I} \left(\overline{x}_i(xy, q) \right) \right] \vee \overline{a} = \bigwedge_{i \in I} \left(\overline{x}_i(xy, q) \right) \vee \overline{a} \geq \bigwedge_{i \in I} \left(\overline{x}_i(y, q) \wedge \overline{b} \right) = \left(\bigwedge_{i \in I} \overline{x}_i \right)(y, q) \wedge \overline{b}.
\]
Hence, \(\bigwedge_{i \in I} \overline{x}_i \) is an interval-valued Q-fuzzy left ideal with threshold \((\overline{a}, \overline{b}) \) of \(S \).

Similarly, we can prove that intersection of interval-valued Q-fuzzy right ideals with thresholds \((\overline{a}, \overline{b}) \) of a semi-group \(S \) is an interval-valued Q-fuzzy right ideal with thresholds \((\overline{a}, \overline{b}) \) of \(S \). Thus intersection of interval-valued Q-fuzzy two-sided ideals with thresholds \((\overline{a}, \overline{b}) \) of a semi-group \(S \) is an interval-valued Q-fuzzy two-sided ideal with thresholds \((\overline{a}, \overline{b}) \) of \(S \). □

Lemma 3.17. Let \(\overline{x} \) and \(\overline{p} \) be interval-valued Q-fuzzy left ideals with thresholds \((\overline{a}, \overline{b}) \) of \(S \). Then, \(\overline{x} \wedge \overline{p} \) is an interval-valued Q-fuzzy left ideal with thresholds \((\overline{a}, \overline{b}) \) of \(S \), where \(\overline{x} \wedge \overline{p} \) is defined as
\[
\left(\overline{x} \wedge \overline{p} \right)(x, q) = \max \left\{ \min \{\overline{x}(x, q), \overline{p}(x, q), \overline{b}\}, \overline{a} \right\}
\]
Proof: Let \(x, y \in S \) and \(q \in Q \). Then,
\[
\left(\overline{x} \wedge \overline{p} \right)(x, q) \vee \overline{a} = \left\{ \left(\overline{x}(xy, q) \wedge \overline{p}(xy, q) \wedge \overline{b} \right) \right\} \vee \overline{a} = \left(\overline{x}(xy, q) \wedge \overline{p}(xy, q) \wedge \overline{b} \right) \vee \overline{a} \geq \left(\right. \overline{x}(y, q) \wedge \overline{b} \left. \right) \vee \overline{a} = \left(\right. \overline{x}(y, q) \wedge \overline{p}(y, q) \wedge \overline{b} \left. \right) \vee \overline{a} = \left(\overline{x} \wedge \overline{p} \right)(y, q) \vee \overline{a} \geq \left(\overline{x} \wedge \overline{p} \right)(y, q) \wedge \overline{b}.
\]
Thus, \(\overline{x} \wedge \overline{p} \) is an interval-valued Q-fuzzy left ideal with thresholds \((\overline{a}, \overline{b}) \) of \(S \).

It is clear that every interval-valued Q-fuzzy bi-ideal with thresholds \((\overline{a}, \overline{b}) \) of a semi-group \(S \) is an interval-valued Q-fuzzy generalized bi-ideal with thresholds \((\overline{a}, \overline{b}) \) of \(S \). The next example shows that the interval-valued Q-fuzzy generalized bi-ideal with thresholds \((\overline{a}, \overline{b}) \) of \(S \) is not necessarily an interval-valued Q-fuzzy bi-ideal with thresholds \((\overline{a}, \overline{b}) \) of \(S \). □

Example 3.18. Consider the semi-group \(S = \{a, b, c, d\} \) and \(Q \) be any non-empty set
\[
\begin{array}{cccc}
\cdot & a & b & c \\
\hline
a & a & a & a \\
b & a & a & a \\
c & a & a & b \\
d & a & a & b \\
\end{array}
\]
Let \(\overline{x} \) be an interval-valued Q-fuzzy subset of \(S \) such that \(\overline{x}(a, q)=[0.4,0.5], \overline{x}(b, q)=[0.1,0.2], \overline{x}(c, q)=[0.2,0.3], \overline{x}(d, q)=[0,0] \). Then, \(\overline{x} \) is an interval-valued Q-fuzzy generalized bi-ideal with thresholds \((\overline{a} = 0.1, \overline{b} = 0.5) \) of \(S \).

Because \(\max\{\overline{x}(xy, q), 0.1\} = \overline{x}(a, q) \vee 0.1 = [0.4, 0.5] \geq \overline{x}(x, q) \wedge \overline{x}(y, q) \wedge 0.5 \),

But \(\overline{x} \) is not an interval-valued Q-fuzzy bi-ideal with thresholds \((\overline{a} = 0.1, \overline{b} = 0.5) \) of \(S \). Because \(\overline{x}(cc, q) \vee 0.1 = \overline{x}(b, q) = [0, 0.2] \neq [0.2, 0.3] = \overline{x}(c, q) \wedge \overline{x}(c, q) \vee 0.5 \).

Lemma 3.19. Every interval-valued Q-fuzzy generalized bi-ideal with thresholds \((\overline{a}, \overline{b}) \) of a regular semi-group \(S \) is an interval-valued Q-fuzzy bi-ideal with thresholds \((\overline{a}, \overline{b}) \) of \(S \).

Proof: Let \(\overline{x} \) be any interval-valued Q-fuzzy generalized bi-ideal with thresholds \((\overline{a}, \overline{b}) \) of \(S \) and let \(a, b \) be any elements of \(S \). Then, there exists an element \(x \in S \) such that \(b = bx \). Thus, we have \(\overline{x}(ab, q) \vee \overline{a} = \overline{x}(a(bx), q) \vee \overline{a} = \overline{x}(a(bx), q) \vee \overline{a} \geq \min \left\{ \overline{x}(a, q), \overline{x}(b, q) \right\} \). This shows that \(\overline{x} \) is an interval-valued Q-fuzzy semi-group with thresholds \((\overline{a}, \overline{b}) \) of \(S \) and so \(\overline{x} \) is an interval-valued Q-fuzzy bi-ideal with thresholds \((\overline{a}, \overline{b}) \) of \(S \). □

Definition 3.20. An interval-valued Q-fuzzy subset \(\overline{x} \) of a semi-group \(S \) is called an interval-valued Q-fuzzy quasi-ideal with thresholds \((\overline{a}, \overline{b}) \) of \(S \), if it satisfies, \(\max\{\overline{x}(x, q), \overline{a}\} \geq \min\left\{ \overline{x}(\sigma \overline{S}(\overline{x}) (x, q), \overline{S}(\sigma \overline{X}(x)) \right\}. \) Where \(\overline{S} \) is an interval-valued Q-fuzzy subset of \(S \) mapping every element of \(S \times Q \) on \(T \).
Theorem 3.21. Let $\overline{\lambda}$ be an interval-valued Q-fuzzy quasi-ideal with thresholds $(\overline{\alpha}, \overline{\beta})$ of a semi-group S.

Then, the set $\overline{\lambda}_{\mathcal{S}} = \{ x \in S | \overline{\lambda}(x,q) \geq \overline{\alpha}, \forall q \in Q \}$ is quasi-ideal of S.

Proof: In order to show that $\overline{\lambda}_{\mathcal{S}}$ is a quasi-ideal of S, we have to show that $\overline{S}\overline{\lambda}_{\mathcal{S}} \cap \overline{\lambda}_{\mathcal{S}} S \subseteq \overline{\lambda}_{\mathcal{S}}$. Let $a \in \overline{S}\overline{\lambda}_{\mathcal{S}}$ and $b \in \overline{\lambda}_{\mathcal{S}} S$. This implies that $a \in \overline{S}\overline{\lambda}_{\mathcal{S}}$ and $b \in \overline{\lambda}_{\mathcal{S}} S$. If $a = bx$ and $a = y$ for some $x, y \in S$ and $x, y \in S$. Thus, $\overline{\lambda}(x,q) > \overline{\alpha}$ and $\overline{\lambda}(y,q) > \overline{\alpha}$. Now, max($\overline{\lambda}(a,q), \overline{\alpha}$) \geq min\$i=1,j=1$ \{ $\overline{\lambda}(i,q) \wedge \overline{\lambda}(j,q) \wedge \overline{\beta}$ \} $\vee \overline{\alpha}$

Since $\overline{S} \wedge (x,q) = \overline{\lambda}(x,q) \wedge \overline{\beta}$ $\vee \overline{\alpha}$

Similarly, $\overline{S} \wedge (x,q) \geq \overline{\alpha}$. Thus we have max($\overline{\lambda}(a,q), \overline{\alpha}$) \geq min\$i=1,j=1$ \{ $\overline{\lambda}(i,q) \wedge \overline{\lambda}(j,q) \wedge \overline{\beta}$ \} $\vee \overline{\alpha}$

Thus, $\overline{\lambda}(a,q) > \overline{\alpha}$. Hence, $\overline{\lambda}$ is a quasi-ideal of S.

Remark 3.22. Every i-v Q-fuzzy quasi-ideal of S is an i-v Q-fuzzy quasi-ideal with thresholds $(\overline{\alpha}, \overline{\beta})$ of S.

Lemma 3.23. A non-empty subset T of a semi-group S is a quasi-ideal of S if and only if the characteristic function $\overline{\lambda}$ is an interval-valued Q-fuzzy quasi-ideal with thresholds $(\overline{\alpha}, \overline{\beta})$ of S.

Proof: Suppose T is a quasi-ideal of S. Let $\overline{\lambda}$ be the characteristic function of T. If $x \in S$, $x \notin T$, then $\overline{\lambda}(x,q) = \overline{\alpha}$ and so min\$i=1,j=1$ \{ $\overline{\lambda}(i,q) \wedge \overline{\lambda}(j,q) \wedge \overline{\beta}$ \} $\vee \overline{\alpha}$

If $x \in T$, then max($\overline{\lambda}(x,q), \overline{\alpha}$) \geq min\$i=1,j=1$ \{ $\overline{\lambda}(i,q) \wedge \overline{\lambda}(j,q) \wedge \overline{\beta}$ \} $\vee \overline{\alpha}$

Hence, $\overline{\lambda}$ is a Q-fuzzy quasi-ideal with thresholds $(\overline{\alpha}, \overline{\beta})$ of S.

Conversely, assume that $\overline{\lambda}$ is an interval-valued Q-fuzzy quasi-ideal with thresholds $(\overline{\alpha}, \overline{\beta})$ of S. Let $a \in T S \cap S T$. Then, there exist $b, c \in S$ and $x, y \in T$ such that $a = xb$ and $a = cy$. Then, we have

$(\overline{\lambda} \wedge (x,q) = \overline{\alpha}$

Thus, we have $\overline{\lambda}(a,q) = \overline{\alpha}$.

Lemma 3.24. The characteristic function $\overline{\lambda}$ is an interval-valued Q-fuzzy left ideal with thresholds $(\overline{\alpha}, \overline{\beta})$ of S if and only if L is a left ideal of S.

Proof: Let $\overline{\lambda}$ be an interval-valued Q-fuzzy left ideal with thresholds $(\overline{\alpha}, \overline{\beta})$ of S. Let $y \in S$, then $\overline{\lambda}(y,q) = \overline{\alpha}$. Since $\overline{\lambda}$ is an interval-valued Q-fuzzy left ideal with thresholds $(\overline{\alpha}, \overline{\beta})$ of S, so $\overline{\lambda}(y,q) = \overline{\beta}$. Since $\overline{\alpha} < \overline{\beta}$, so $\overline{\lambda}(y,q) \geq \overline{\beta}$. Thus, $\overline{\lambda}(T, q) = \overline{\alpha}$, which implies that $\overline{\lambda} \in T$. Hence, $\overline{\lambda}$ is an interval-valued Q-fuzzy left ideal with thresholds $(\overline{\alpha}, \overline{\beta})$.

Similarly, the characteristic function $\overline{\lambda}$ is an interval-valued Q-fuzzy right ideal with thresholds $(\overline{\alpha}, \overline{\beta})$ of S if and only if R is a right ideal of S. Hence, it follows that characteristic function $\overline{\lambda}$ is an interval-valued Q-fuzzy two-sided ideal with thresholds $(\overline{\alpha}, \overline{\beta})$ of S if and only if I is a two-sided ideal of S.
\((\overline{x} \circ \overline{\beta}) (x, q) \geq \min \left\{ (\overline{x} \circ \overline{\alpha}) (x, q), (\overline{x} \circ \overline{\mu}) (x, q) \right\} \).

Thus, \(\overline{x} \) is an interval-valued Q-fuzzy quasi-ideal with thresholds \((\overline{\alpha}, \overline{\beta}) \) of \(S \).

Similarly, we can show that every interval-valued Q-fuzzy right ideal with thresholds \((\overline{\alpha}, \overline{\beta}) \) of \(S \) is an interval-valued Q-fuzzy quasi-ideal with thresholds \((\overline{\alpha}, \overline{\beta}) \) of \(S \).

Lemma 3.26. Every interval-valued Q-fuzzy quasi-ideal with thresholds \((\overline{\alpha}, \overline{\beta}) \) of \(S \) is an interval-valued Q-fuzzy bi-ideal with thresholds \((\overline{\alpha}, \overline{\beta}) \) of \(S \).

Proof: Suppose that \(\overline{x} \) is an interval-valued Q-fuzzy quasi-ideal with thresholds \((\overline{\alpha}, \overline{\beta}) \) of a semi-group \(S \). Now,
\[
\overline{x}(xy, q) \vee \overline{\alpha} = \min \left\{ \overline{x}(xy, q) \wedge (\overline{\alpha} \circ \overline{\beta}) (xy, q), \overline{x}(xy, q) \wedge (\overline{\beta} \circ \overline{\alpha}) (xy, q) \right\}.
\]

Also, for all \(x, y \in S \),
\[
\overline{x}(xy, q) \wedge \overline{\alpha} = \min \left\{ \overline{x}(xy, q) \wedge (\overline{\beta} \circ \overline{\alpha}) (xy, q), \overline{x}(xy, q) \wedge (\overline{\alpha} \circ \overline{\beta}) (xy, q) \right\}.
\]

Thus, \(\overline{x} \) is an interval-valued Q-fuzzy bi-ideal with thresholds \((\overline{\alpha}, \overline{\beta}) \) of \(S \). \(\square \)

Example 3.28. Consider the semi-group \(S = \{0, a, b, c\} \) and \(Q \) be any non-empty set

	a	b	c
0	0	0	0
a	0	0	0
b	0	0	0
c	0	0	a

Let \(\overline{x} \) be an interval-valued Q-fuzzy subset of \(S \) such that \(\overline{x}(0, q) = [0.7, 0.8], \overline{x}(a, q) = [0.4, 0.5], \overline{x}(b, q) = [0.6, 0.7], \overline{x}(c, q) = [0.0, 0.1] \). Then, \(\overline{x} \) is an interval-valued Q-fuzzy right ideal with thresholds \((\overline{\alpha} = \overline{0.3}, \overline{\beta} = \overline{0.5}) \) of \(S \), which is not an interval-valued Q-fuzzy two-sided ideal with thresholds \((\overline{\alpha} = \overline{0.3}, \overline{\beta} = \overline{0.5}) \) of \(S \), that is it is not an interval-valued Q-fuzzy two-sided ideal with thresholds \((\overline{\alpha} = \overline{0.3}, \overline{\beta} = \overline{0.5}) \) of \(S \).

Definition 3.29. Let \(\overline{x} \) be an interval-valued Q-fuzzy subset of a semi-group \(S \),

We define the \(\overline{x} \) as \(\overline{x}(x, q) = \{ \overline{x}(x, q) \wedge \overline{\beta} \} \vee \overline{\alpha} \).

Lemma 3.30. Let \(\overline{x} \) and \(\overline{\mu} \) be interval valued Q-fuzzy subsets of a semi-group \(S \). Then the following hold.

1. \((\overline{x} \wedge \overline{\mu}) \) \(\overline{\Pi} = (\overline{x} \overline{\Pi} \overline{\mu}) \overline{\Pi} \)
2. \((\overline{x} \vee \overline{\mu}) \) \(\overline{\Pi} = (\overline{x} \overline{\Pi} \overline{\mu}) \overline{\Pi} \)
3. \((\overline{x} \circ \overline{\mu}) \) \(\overline{\Pi} \geq (\overline{x} \overline{\Pi} \overline{\mu}) \overline{\Pi} \)

If every element \(x \) of \(S \) is expressible as \(x = bc \), then
\[
(\overline{x} \circ \overline{\mu}) \overline{\Pi} = (\overline{x} \overline{\Pi} \overline{\mu}) \overline{\Pi}.
\]

Proof: For all \(a \in S \) and \(q \in Q \)

1. \((\overline{x} \wedge \overline{\mu}) \) \(\overline{\Pi} (a, q) = (\overline{x}(a, q) \wedge \overline{\mu}(a, q) \wedge \overline{\beta}) \vee \overline{\alpha} \)

2. \((\overline{x} \vee \overline{\mu}) \) \(\overline{\Pi} (a, q) = (\overline{x}(a, q) \vee \overline{\mu}(a, q) \wedge \overline{\beta}) \wedge \overline{\alpha} \)

(2) \((\overline{x} \vee \overline{\mu}) \) \(\overline{\Pi} (a, q) = (\overline{x} \overline{\Pi} \overline{\mu}) (a, q) \).
Lemma 3.32. Let A and B be non-empty subsets of a semi-group S and Q be any non-empty set. Then, the following properties hold.

1. $A \subseteq B$ if and only if $(C_A)^\overline{\beta}_B \subseteq (C_B)^\overline{\beta}_B$.
2. $(C_A \wedge C_B)^\overline{\beta}_B = (C_{A \cap B})^\overline{\beta}_B$.
3. $(C_A \vee C_B)^\overline{\beta}_B = (C_{A \cup B})^\overline{\beta}_B$.
4. $(C_A \circ B)^\overline{\beta}_B = (C_{A \cup B})^\overline{\beta}_B$.

Proof: (1) Suppose $A, B \subseteq S$ and $(C_A)^\overline{\beta}_B \subseteq (C_B)^\overline{\beta}_B$. Let $a \in A$ and $q \in Q$. Then, $(C_A)^\overline{\beta}_B(a, q) = \overline{\beta}$. Since $(C_A)^\overline{\beta}_B \subseteq (C_B)^\overline{\beta}_B$, so $\overline{\beta} = (C_A)^\overline{\beta}_B \subseteq (C_B)^\overline{\beta}_B$. Which implies that $(C_B)^\overline{\beta}_B(a, q) = \overline{\beta}$, so $a \in B$. Thus, $A \subseteq B$.

Conversely, let $A, B \subseteq S$ such that $A \subseteq B$. On the contrary suppose that there exist $x \in S$ such that $(C_A)^\overline{\beta}_B(x, q) > (C_B)^\overline{\beta}_B(x, q)$. Then, $(C_A)^\overline{\beta}_B(x, q) = \overline{\beta}$ and $(C_B)^\overline{\beta}_B(x, q) = \alpha$, which implies that $x \in A$ and $x \notin B$. So, $A \not\subseteq B$, which is a contradiction. Thus, $(C_A)^\overline{\beta}_B \subseteq (C_B)^\overline{\beta}_B$.

(2) Let a be any element of S. Suppose $a \in A \cap B$. It implies that $a \in A$ and $a \in B$. So

$$(C_A \wedge C_B)^\overline{\beta}_B(a, q) = [(C_A \wedge C_B)(a, q) \wedge \overline{\beta}] \vee \alpha = [(C_A(a, q) \wedge C_B(a, q)) \wedge \overline{\beta}] \vee \alpha = [(C_A(a, q) \wedge C_B(a, q) \wedge \overline{\beta}) \wedge \overline{\beta}] \vee \alpha = (\overline{\beta} \wedge \overline{\beta}) \wedge \overline{\beta} \wedge \alpha = \alpha \wedge \overline{\beta} = \overline{\beta} = (C_{A \cap B})^\overline{\beta}_B(a, q).$$

If $a \notin A \cap B$, then it implies $a \notin A$ or $a \notin B$. So,

$$(C_A \wedge C_B)^\overline{\beta}_B(a, q) = [(C_A \wedge C_B)(a, q) \wedge \overline{\beta}] \vee \alpha = [(C_A(a, q) \wedge C_B(a, q)) \wedge \overline{\beta}] \vee \alpha = (\overline{\beta} \wedge \overline{\beta}) \wedge \overline{\beta} \wedge \alpha = 0 \wedge \overline{\beta} = \overline{\beta} = (C_{A \cap B})^\overline{\beta}_B(a, q).$$

(3) Let $a \in A \cup B$, it implies that $a \in A$ or $a \in B$. So,

$$(C_A \vee C_B)^\overline{\beta}_B(a, q) = [(C_A \vee C_B)(a, q) \wedge \overline{\beta}] \vee \alpha = [(C_A(a, q) \vee C_B(a, q)) \wedge \overline{\beta}] \vee \alpha = (\overline{\beta} \wedge \overline{\beta}) \wedge \overline{\beta} \wedge \alpha = \overline{\beta} \wedge \overline{\beta} \wedge \alpha = \overline{\beta} = (C_{A \cup B})^\overline{\beta}_B(a, q).$$

If $a \notin A \cup B$, then it implies $a \notin A$ and $a \notin B$. So,

$$(C_A \vee C_B)^\overline{\beta}_B(a, q) = [(C_A \vee C_B)(a, q) \wedge \overline{\beta}] \vee \alpha = [(C_A(a, q) \vee C_B(a, q)) \wedge \overline{\beta}] \vee \alpha = (\overline{\beta} \wedge \overline{\beta}) \wedge \overline{\beta} \wedge \alpha = \overline{\beta} \wedge \overline{\beta} \wedge \alpha = \overline{\beta} = (C_{A \cup B})^\overline{\beta}_B(a, q).$$

(4) Let a be any element of S. Suppose $a \in AB$. Then $a = xy$ for some $x \in A$ and $y \in B$. Thus, we have
Characterizations of regular semi-groups by interval-valued Q-fuzzy ideals with thresholds $(\overline{a}, \overline{b})$ — 334/338

$$(\mathcal{C}_A \circ \mathcal{C}_B)(a, q) = \bigvee_{a=uv} \left((\mathcal{C}_A(u, q) \wedge \mathcal{C}_B(v, q) \wedge \overline{b}) \vee \overline{a}\right)$$

\[= \left(\overline{b} \wedge \mathcal{C}_B(v, q) \wedge \overline{b}\right) \vee \overline{a}\]

\[= \overline{b} \vee \overline{a}\]

and so $(\mathcal{C}_A \circ \mathcal{C}_B)(a, q) = \overline{b}$.

Since $a \notin AB$, $(\mathcal{C}_A \circ \mathcal{C}_B)(a, q) = \overline{b}$. So, $(\mathcal{C}_A \circ \mathcal{C}_B)(a, q) = (\mathcal{C}_A \circ \mathcal{C}_B)(a, q)$. Now, if $a \notin AB$, then $a \neq xy$, for all $x \in A$ and $y \in B$. If $a = uv$ for some $u, v \in S$, then we have

$$(\mathcal{C}_A \circ \mathcal{C}_B)(a, q) = \bigvee_{a=uv} \left((\mathcal{C}_A(u, q) \wedge \mathcal{C}_B(v, q) \wedge \overline{b}) \vee \overline{a}\right)$$

\[= \overline{a}\]

Thus, $(\mathcal{C}_A \circ \mathcal{C}_B)(a, q) = (\mathcal{C}_A \circ \mathcal{C}_B)(a, q)$. \hspace{1cm} \square

Lemma 3.33. The lower part of the interval-valued characteristic function $(\mathcal{C}_L P) \overline{a}$ is an interval-valued Q-fuzzy left ideal with thresholds $(\overline{a}, \overline{b})$ of S if and only if L is a left ideal of S.

Proof: Let L be a left ideal of S. Then, by Theorem 3.11 $(\mathcal{C}_L P) \overline{a}$ is an interval-valued Q-fuzzy left ideal with thresholds $(\overline{a}, \overline{b})$ of S.

Conversely, assume that $(\mathcal{C}_L P) \overline{a}$ is an interval-valued Q-fuzzy left ideal with thresholds $(\overline{a}, \overline{b})$ of S. Let $y \in L$. Then, $(\mathcal{C}_L P)(y, q) = \overline{b}$. Since $(\mathcal{C}_L P) \overline{a}$ is an interval-valued Q-fuzzy left ideal with thresholds $(\overline{a}, \overline{b})$ of S, so $(\mathcal{C}_L P)(y, q) \wedge \overline{a} \geq (\mathcal{C}_L P)(y, q) \wedge \overline{b}$. Since $\overline{a} < \overline{b}$, so $(\mathcal{C}_L P)(y, q) \wedge \overline{b} = \overline{b}$, which implies that $(\mathcal{C}_L P)(y, q) = \overline{b}$.

Hence, $y \in (\mathcal{C}_L P) \overline{a}$. Thus, L is a left ideal of S.

Similarly, we can prove that the interval-valued characteristic function $(\mathcal{C}_R P) \overline{a}$ is an interval-valued Q-fuzzy right ideal with thresholds $(\overline{a}, \overline{b})$ of S if and only if R is a right ideal of S. Thus, an interval-valued characteristic function $(\mathcal{C}_R P) \overline{a}$ is an interval-valued Q-fuzzy two-sided ideal with thresholds $(\overline{a}, \overline{b})$ of S if and only if T is a two-sided ideal of S. \hspace{1cm} \square

Lemma 3.34. Let T be a non-empty subset of a semi-group S. Then, T is a quasi-ideal of S if and only if an interval-valued characteristic function $(\mathcal{C}_T P) \overline{a}$ is an interval-valued Q-fuzzy quasi-ideal with thresholds $(\overline{a}, \overline{b})$ of S.

Proof: Suppose T is a quasi-ideal of S. Let $(\mathcal{C}_T P) \overline{a}$ be an interval-valued characteristic function of T. Let $x \in S$. If $x \notin T$, then $x \notin ST$ or $x \notin TS$, then $(\mathcal{S} \circ (\mathcal{C}_T P) \overline{a})(x, q) = \overline{a}$ and so max $\left\{((\mathcal{C}_T P) \circ \mathcal{S})(a, q), (\mathcal{S} \circ (\mathcal{C}_T P) \overline{a})(x, q)\right\}$

\[= \overline{a} = (\mathcal{C}_T P)(x, q) \wedge \overline{a}\]

If $x \in T$, then

\[\max\left\{((\mathcal{C}_T P) \circ \mathcal{S})(a, q), (\mathcal{S} \circ (\mathcal{C}_T P) \overline{a})(x, q)\right\} = \overline{a} = (\mathcal{C}_T P)(x, q) \wedge \overline{a}\]

Hence, $(\mathcal{C}_T P) \overline{a}$ is an interval-valued Q-fuzzy quasi-ideal with thresholds $(\overline{a}, \overline{b})$ of S.

Conversely, assume that $(\mathcal{C}_T P) \overline{a}$ is an interval-valued Q-fuzzy quasi-ideal with thresholds $(\overline{a}, \overline{b})$ of S. Let $a \in TS \cap ST$. Then, there exist $b, c \in S$ and $x, y \in T$ such that $a = xb$ and $a = cy$. Then

\[((\mathcal{C}_T P) \circ \mathcal{S})(a, q) = \bigvee_{a=xy} \left((\mathcal{C}_T P)(x, q) \wedge TS(b, q) \wedge \overline{b}\right) \vee \overline{a}\]

\[= \overline{b} \vee \overline{a}\]

\overline{a}. Similarly, $(\mathcal{S} \circ (\mathcal{C}_T P) \overline{a})(a, q) = \overline{a}$. Hence, $(\mathcal{C}_T P) \overline{a}$ is a quasi-ideal of S. \hspace{1cm} \square

Theorem 3.35. For a semi-group S the following conditions are equivalent.

1. S is regular.
2. $(\mathcal{X} \wedge \mathcal{P} P) = (\mathcal{X} \circ \mathcal{P} P)$ for every interval-valued Q-fuzzy right ideal \mathcal{X} and every interval-valued Q-fuzzy left ideal \mathcal{P} with thresholds $(\overline{a}, \overline{b})$ of S.

Proof: First assume that (1) holds. Let \mathcal{X} be an interval valued Q-fuzzy right ideal and \mathcal{P} an interval valued Q-fuzzy left ideal with thresholds $(\overline{a}, \overline{b})$ of S. Let $a \in S$, we have for all $q \in Q$

\[\mathcal{X} \circ \mathcal{P}(a, q) = \bigvee_{a=xy} \left(\left(\mathcal{X}(y, q) \wedge \mathcal{P}(x, q) \wedge \overline{b}\right) \vee \overline{a}\right)\]

\[= \bigvee_{a=xy} \left(\left(\mathcal{X}(y, q) \wedge \mathcal{P}(x, q) \wedge \overline{b}\right) \vee \overline{a}\right)\]

\[\leq \bigvee_{a=xy} \left(\left(\left(\mathcal{X}(y, q) \wedge \overline{a}\right) \wedge \left([-\mathcal{P}(z, q) \wedge \overline{b}\right) \vee \overline{a}\right)\right)\]

\[= \left(\mathcal{X}(y, q) \wedge \overline{a}\right) \wedge \left([-\mathcal{P}(z, q) \wedge \overline{b}\right) \vee \overline{a}\]

\[= \left(\mathcal{X}(a, q) \wedge \mathcal{P}(a, q) \wedge \overline{b}\right) \vee \overline{a}\]

\[= \mathcal{X} \wedge \mathcal{P}(a, q) \wedge \overline{b}\]

\[= \mathcal{X} \wedge \mathcal{P}(a, q) \wedge \overline{b}\]

So, $(\mathcal{X} \wedge \mathcal{P} P) \leq (\mathcal{X} \circ \mathcal{P} P)$. Since S is regular and $a \in S$, so there exists an element $x \in S$ such that $a = axa$. So,

\[= \bigvee_{a=xy} \left(\left(\mathcal{X}(y, q) \wedge \mathcal{P}(x, q) \wedge \overline{b}\right) \vee \overline{a}\right)\]

\[\geq \left(\mathcal{X}(a, q) \wedge \mathcal{P}(a, q) \wedge \overline{b}\right) \vee \overline{a}\]

\[\geq \left(\mathcal{X}(a, q) \wedge \mathcal{P}(a, q) \wedge \overline{b}\right) \vee \overline{a}\]

\[\geq \left(\mathcal{X}(a, q) \wedge \mathcal{P}(a, q) \wedge \overline{b}\right) \vee \overline{a}\]

\[\geq \left(\mathcal{X}(a, q) \wedge \mathcal{P}(a, q) \wedge \overline{b}\right) \vee \overline{a}\]

334
greater than or equal to \((\overline{X}(a,q) \land \overline{B}) \land [\overline{M}(a,q) \land \overline{B})] \lor \overline{\alpha}
\]
\[
= \{\overline{X}(a,q) \land \overline{M}(a,q) \land \overline{B}\} \lor \overline{\alpha}
\]
\[
= (\overline{X} \land \overline{M}(a,q)) (a,q).
\]

So, \((\delta \circ \overline{X} \circ \overline{M}) \geq (\overline{X} \land \overline{M}(a,q))\). Thus \((\delta \circ \overline{X} \circ \overline{M}) = (\overline{X} \land \overline{M}(a,q))\) and so (1) implies (2).

(2) implies (1) : assume that (2) holds. Let \(R\) and \(L\) be right ideal and left ideal of \(S\), respectively. In order to see that \(R \cap L = RL\) holds. Let \(a\) be any element of \(R \cap L\). Then, by Lemma 3.33, interval-valued Q-fuzzy characteristic functions \((\overline{C}(R))_{\overline{P}}\) and \((\overline{C}(L))_{\overline{P}}\) of \(R\) and \(L\) are interval-valued Q-fuzzy right ideal and interval-valued Q-fuzzy left ideal with thresholds \((\overline{\alpha}, \overline{\beta})\) of \(S\), respectively. Thus, we have

\[
(\overline{C}(R))_{\overline{P}}(a,q) = (\overline{C}(L))_{\overline{P}}(a,q) \quad \text{by Lemma 3.32}
\]
\[
= (\overline{C}(R \cap L))_{\overline{P}}(a,q) \quad \text{by (1)}
\]
\[
= (\overline{C}R \cap \overline{L})_{\overline{P}}(a,q) \quad \text{by Lemma 3.32}
\]
\[
= \overline{\beta}.
\]

So, \(a \in RL\), which implies that \(R \cap L \subseteq RL\). Thus, \(R \cap L = RL\). Hence, it follows from Theorem (For a semi-group \(S\) the following condition are equivalent.

(1) \(S\) is regular.
(2) \(R \cap L = RL\) for every right ideal \(R\) and every left ideal \(L\) of \(S\).
(3) ASA = \(A\) for every quasi-ideal \(A\) of \(S\).) that \(S\) is regular and so (2) implies (1).

Theorem 3.36. For a semi-group \(S\), the following conditions are equivalent.

(1) \(S\) is regular.
(2) \(((\delta \circ \overline{X} \circ \overline{M})_{\overline{P}} \leq (\delta \circ \overline{X} \circ \overline{M})_{\overline{P}}\) for every interval-valued Q-fuzzy right ideal \(\overline{X}\), every interval-valued Q-fuzzy generalized bi-ideal \(\overline{X}\) and every interval-valued Q-fuzzy left ideal \(\overline{M}\) with thresholds \((\overline{\alpha}, \overline{\beta})\) of \(S\).
(3) \(((\delta \circ \overline{X} \circ \overline{M})_{\overline{P}} \leq (\delta \circ \overline{X} \circ \overline{M})_{\overline{P}}\) for every interval-valued Q-fuzzy right ideal \(\overline{X}\), every interval-valued Q-fuzzy bi-ideal \(\overline{X}\) and every interval-valued Q-fuzzy left ideal \(\overline{M}\) with thresholds \((\overline{\alpha}, \overline{\beta})\) of \(S\).
(4) \(((\delta \circ \overline{X} \circ \overline{M})_{\overline{P}} \leq (\delta \circ \overline{X} \circ \overline{M})_{\overline{P}}\) for every interval-valued Q-fuzzy right ideal \(\overline{X}\), every interval-valued Q-fuzzy quasi-ideal \(\overline{X}\) and every interval-valued Q-fuzzy left ideal \(\overline{M}\) with thresholds \((\overline{\alpha}, \overline{\beta})\) of \(S\).

Proof: (1) \(\Rightarrow\) (2) : Let \(\overline{X}, \overline{M}\) and \(\overline{\alpha}\) be interval-valued Q-fuzzy right ideal, interval-valued Q-fuzzy generalized bi-ideal, and any interval-valued Q-fuzzy left ideal with thresholds \((\overline{\alpha}, \overline{\beta})\) of \(S\), respectively. Let \(a\) be any element of \(S\). Since \(S\) is regular, there exists an element \(x \in S\) such that \(a = axa\).
Theorem 3.37. For a semi-group S, the following conditions are equivalent.

1. S is regular.
2. $\overline{X}^{\pi_p} \subseteq (\overline{X} \cdot \overline{\pi_p} \cdot \overline{\pi_p} \cdot \overline{X})$ for every interval-valued Q-fuzzy generalized bi-ideal \overline{X} with thresholds $(\overline{\pi_p}, \overline{\pi_p})$ of \overline{X}.
3. $\overline{X}^{\pi_p} \subseteq (\overline{X} \cdot \overline{\pi_p} \cdot \overline{\pi_p} \cdot \overline{X})$ for every interval-valued Q-fuzzy bi-ideal \overline{X} with thresholds $(\overline{\pi_p}, \overline{\pi_p})$ of \overline{X}.
4. $\overline{X}^{\pi_p} \subseteq (\overline{X} \cdot \overline{\pi_p} \cdot \overline{\pi_p} \cdot \overline{X})$ for every interval-valued Q-fuzzy quasi-ideal \overline{X} with thresholds $(\overline{\pi_p}, \overline{\pi_p})$ of \overline{X}.

Proof: (1) \Rightarrow (2): Let \overline{X} be an interval-valued Q-fuzzy generalized bi-ideal with thresholds $(\overline{\pi_p}, \overline{\pi_p})$ of S and let a be any element of S. Since S is regular, there exists an element $x \in S$ such that $a = axa$. Hence, we have

$$\overline{X} \cdot \overline{\pi_p} \cdot \overline{\pi_p} \cdot \overline{X} \supseteq (\overline{X} \cdot \overline{\pi_p} \cdot \overline{\pi_p} \cdot \overline{X}) \supseteq (\overline{X} \cdot \overline{\pi_p} \cdot \overline{\pi_p} \cdot \overline{X}).$$

Thus, $\overline{X}^{\pi_p} \subseteq (\overline{X} \cdot \overline{\pi_p} \cdot \overline{\pi_p} \cdot \overline{X})$.

(2) \Rightarrow (3): Let T be any quasi-ideal of S. Then we have

$$T \subseteq \overline{T} \subseteq \overline{T} \cdot \overline{S} \subseteq T \cdot \overline{S} \subseteq \overline{T} \cdot \overline{S} \subseteq T \cdot \overline{S} \subseteq T,$$

where T is an interval-valued Q-fuzzy quasi-ideal with thresholds $(\overline{\pi_p}, \overline{\pi_p})$ of S. Now, by assumption and Lemma 3.32, we have

$$\overline{C_T}^{\pi_p} \subseteq \overline{C_T} \cdot \overline{\pi_p} \cdot \overline{\pi_p} \cdot \overline{C_T} = (\overline{C_T} \cdot \overline{\pi_p} \cdot \overline{\pi_p} \cdot \overline{C_T})^{\pi_p}.$$
Theorem 3.39. For a semi-group S, the following conditions are equivalent.

1. S is regular.
2. $\overline{\lambda} \cup \overline{\mu} \leq (\overline{\lambda} \circ_{\overline{p}} \overline{\mu})(a,q)$ for every interval-valued Q-fuzzy quasi-ideal $\overline{\lambda}$ and every interval-valued Q-fuzzy left ideal $\overline{\mu}$ with thresholds $\left(\overline{\alpha}, \overline{\beta}\right)$ of S.
3. $\left(\overline{\lambda} \cup \overline{\mu}\right) \leq (\overline{\lambda} \circ_{\overline{p}} \overline{\mu})$ for every interval-valued Q-fuzzy bi-ideal $\overline{\lambda}$ and every interval-valued Q-fuzzy left ideal $\overline{\mu}$ with thresholds $\left(\overline{\alpha}, \overline{\beta}\right)$ of S.
4. $\left(\overline{\lambda} \cup \overline{\mu}\right) \leq (\overline{\lambda} \circ_{\overline{p}} \overline{\mu})$ for every interval-valued Q-fuzzy generalized bi-ideal $\overline{\lambda}$ and every interval-valued Q-fuzzy left ideal $\overline{\mu}$ with thresholds $\left(\overline{\alpha}, \overline{\beta}\right)$ of S.

Proof: (1) \Rightarrow (4): Let $\overline{\lambda}$ and $\overline{\mu}$ be any interval-valued Q-fuzzy generalized bi-ideal and any interval-valued Q-fuzzy left ideal with thresholds $\left(\overline{\alpha}, \overline{\beta}\right)$ of S, respectively. Let a be any element of S. Then, there exists an element $x \in S$ such that $a = axa$. Thus we have

$$\left(\overline{\lambda} \circ_{\overline{p}} \overline{\mu}\right)(a,q) = \bigvee_{a'=y_{\overline{p}}} \left(\overline{\lambda}(y_{\overline{p}}) \cup \overline{\mu}(z_{\overline{p}}) \cup \overline{\alpha}\right)$$

which is equal to

$$= \left(\overline{\lambda}(a,q) \cup \overline{\mu}(a,q) \cup \overline{\alpha}\right) \cup \overline{\beta} \cup \overline{\alpha}$$

So, $\left(\overline{\lambda} \circ_{\overline{p}} \overline{\mu}\right) \geq (\overline{\lambda} \cup \overline{\mu})$. Now, (4) \Rightarrow (3) \Rightarrow (2) are obvious.

(2) \Rightarrow (1): Let $\overline{\lambda}$ be an interval-valued Q-fuzzy right ideal and $\overline{\mu}$ be an interval-valued Q-fuzzy left ideal with thresholds $\left(\overline{\alpha}, \overline{\beta}\right)$ of S. Since every interval-valued Q-fuzzy right ideal with thresholds $\left(\overline{\alpha}, \overline{\beta}\right)$ of S is an interval-valued Q-fuzzy quasi-ideal with thresholds $\left(\overline{\alpha}, \overline{\beta}\right)$ of S, so $\left(\overline{\lambda} \circ_{\overline{p}} \overline{\mu}\right) \geq (\overline{\lambda} \cup \overline{\mu})$. Thus, by Theorem 3.35 that S is regular.

4. Conclusion

In recent years interval-valued fuzzy sets and Q-fuzzy sets have been studied by several researchers [5,14,17,21,22,24,25,27,28,29,31]. In this consequence, the study reveals some important aspects of regular, intra-regular and ordered semi-group over interval-valued Q-fuzzy sets. Further, characterization of regular semi-groups by interval-valued fuzzy ideals with thresholds $\left(\overline{\alpha}, \overline{\beta}\right)$ are provided.

References

[1] M.T. Anbu Osmam, On some product of fuzzy subgroups, Fuzzy sets and system, 24(1) (1987), 79-86.
[2] S.K. Bhakat and P. Das, On the definition of a fuzzy sub-group, fuzzy sets and systems 51 (1992), 235-241.
[3] S.K. Bhakat and P. Das, Fuzzy subrings and ideals redefined, fuzzy sets and systems 81 (1996), 383-393.
[4] S.K. Bhakat, $\left(\in \cup \forall\right)$-level subset, fuzzy sets and system 103 (1999), 529-533.
[5] R. Biswas, Rosenfeld’s “Fuzzy subgroups with interval-valued membership functions, Fuzzy Sets and Systems”, 63(1994), No.1, 87-90.
[6] B. Davvaz, “Fuzzy ideals of near-ring with interval membership functions”, Journal of Sciences Republic of Iran, 12(2) (2002), 171-175.
[7] B. Davvaz, $\left(\in, \in \forall\right)$-fuzzy sub-nearrings and ideals, Soft Computing 10 (2006), 206-211.
[8] K. Iseki, A characterization of regular semi-groups, Proceedings of the Japan Academy Ser. A, 32(9) (1956) 676-677.
[9] Y.B. Jun and K.H. Kim, “Interval-valued fuzzy R-subgroup of Near-rings”, Indian Journal of Pure and Applied Mathematics, 33(1) (2002), 71-80.
Characterizations of regular semi-groups by interval-valued α-β-fuzzy ideals with thresholds $([\alpha, \beta])$ — 338/338

[10] Y.B. Jun and S.Z. Song, Generalized fuzzy interior ideals in semi-groups, Inform. Sci. 176 (2006), 3079-3093.

[11] N. Kehayopulu, “On prime, weakly prime ideals in ordered semi-groups”, Semi-group Forum, 44, No.3 (1992), 341-346.

[12] N. Kehayopulu and M. Tsingelis, Fuzzy sets in ordered groupoids, Semi-group Forum, 65, No.1 (2002), 128-132.

[13] N. Kehayopulu and Michael Tsingelis, “Fuzzy bi-ideals in ordered semi-groups”, Information Sciences, 171 (2005) 13-28.

[14] N. Kehayopulu and Michael Tsingelis, “Fuzzy interior ideals in ordered semi-groups”, Lovachevskli Journal of Mathematics, 21 (2006), 65-71.

[15] N. Kuroki, “Fuzzy bi-ideals in semi-groups", Comment Math Univer St. Pauli, 28(1979), 17-21.

[16] N. Kuroki, “Fuzzy semi-group ideals in semi-group”, Fuzzy Sets and System, 8 (1982) 71-79.

[17] N. Kuroki, “On fuzzy semi-group”, Information Science, 53 (1991), no.3, 203-236.

[18] N. Kuroki, “Fuzzy generalized bi-ideals in semi-groups”, Information Sciences, 66 (1992), 235-243.

[19] N. Kuroki, “Fuzzy congruences and fuzzy normal subgroups”, Information Sciences, 60(1992), 247-259.

[20] S. Lekkoksung, On Intuitionistic Q-fuzzy k-ideals of semiring, Int. J.Contemp. Math. Science, 7(8) (2012), 389-393.

[21] P. Murugadas, A. Arikrishnan and M.R. Thirumagal “ Interval-valued Q-Fuzzy Ideals Generated by an Interval-valued Q-Fuzzy Subset in Ordered Semi-groups”, Annals of Pure and Applied Mathematics, 13(2) (2017), 211-222.

[22] AL. Narayanan and T. Manikandan “Interval-valued fuzzy ideals generated by an interval-valued fuzzy subset in semi-groups”, J.App. Maths and Computing, 20 (2006), 455-465.

[23] A. Rosenfeld, “Fuzzy groups”, Journal of Mathematical Analysis and Applications, 35 (1971), 512-517.

[24] Saleem Abdullah, Muhammad Naeem, Bijan Davvaz, Characterizations of regular semi-groups by interval-valued fuzzy ideals with thresholds $([\alpha, \beta])$, Annals of Fuzzy Mathematics and Informatics, Volume 8, Number 3, (2014), 419-445.

[25] M. Shabir and Israr Ali Khan, Interval-valued fuzzy ideals generated by an interval-valued fuzzy subset in ordered semi-groups, Mathware and Soft Computing, 15 (2008), 263-272.

[26] M. Shabir and Y.B. Jun and Y. Nawaz, Characterizations of regular semi-groups by (α, β)-fuzzy ideals, Comput. Math. Appl. 60 (2010), 1473-1493.

[27] D. Singaram and PR. Kandasamy, Interval-valued fuzzy ideals of regular and intra-regular semi-groups, International Journal of Fuzzy Mathematical Archive, vol.3 (2013), 50-57.

[28] A. Solairaju and R. Nagarajan, A new structure and constructions of Q-fuzzy group, Advance in Fuzzy Mathematics, 4 (2009), 23-29.

[29] N. Thillaigovindan and V. Chinnadurai, “Interval-valued fuzzy generalized bi-ideals”, Proceedings of the National Conference on Algebra, Graph theory and their Applications, Department of mathematics, Manonmaniam Sundaranar University, Narosa, (2009), 85-98.

[30] N. Thillaigovindan and V. Chinnadurai, “ On interval-valued fuzzy quasi-ideals of semi-groups”, East Asian Mathematical Journal, 25(4) (2009) 441-453.

[31] L.A. Zadeh, “Fuzzy Sets”, Inform. and Control 8(1965), no.3, 338-353.

[32] L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning, Information Sciences, 8 (1975), 199-249.

ISSN(P):2319 – 3786
Malaya Journal of Matematik
ISSN(O):2321 – 5666
