Effects of citrus pulp, fish by-product and *Bacillus subtilis* fermentation biomass on growth performance, nutrient digestibility, and fecal microflora of weanling pigs

Hyun Suk Noh¹, Santosh Laxman Ingale¹, Su Hyup Lee¹, Kwang Hyun Kim¹, Ill Kyong Kwon², Young Hwa Kim³ and Byung Jo Chae¹*

Abstract

An experiment was conducted to investigate the effects of dietary supplementation with citrus pulp, fish by-product, and *Bacillus subtilis* fermentation biomass on the growth performance, apparent total tract digestibility (ATTD) of nutrients, and fecal microflora of weanling pigs. A total of 180 weaned piglets (Landrace × Yorkshire × Duroc) were randomly allotted to three treatments on the basis of body weight (BW). There were six replicate pens in each treatment with 10 piglets per pen. Dietary treatments were corn-soybean meal-based basal diet supplemented with 0 (control), 2.5, and 5.0% citrus pulp, fish by-product, and *B. subtilis* fermentation biomass. The isocaloric and isoproteineous experimental diets were fed in mash form in two phases (d 0 ~ 14, phase I and d 15 ~ 28, phase II). Dietary treatments had significant linear effects on gain to feed ratio (G:F) in all periods, whereas significant linear effects on ATTD of dry matter (DM), gross energy (GE), and ash were only observed in phase I. Piglets fed diet supplemented with 5.0% citrus pulp, fish by-product, and *B. subtilis* fermentation biomass showed greater (*p* < 0.05) G:F (phase I, phase II, and overall) as well as ATTD of DM, GE, and ash (phase I) than pigs fed control diet. Dietary treatments also had significant linear effects on total anaerobic bacteria populations by d 14 and 28. In addition, piglets fed diet supplemented with 5.0% citrus pulp, fish by-product and *B. subtilis* fermentation biomass showed greater (*p* < 0.05) fecal total anaerobic bacteria populations (d 14 and 28) than pigs fed control diet. Dietary treatments had no significant effects (linear or quadratic) on average daily gain (ADG), average daily feed intake (ADFI; phase I, phase II, and overall), or fecal populations of *Bifidobacterium* spp., *Clostridium* spp., and coliforms (d 14 and 28). These results indicate that dietary supplementation with 5.0% citrus pulp, fish by-product, and *B. subtilis* fermentation biomass has the potential to improve the feed efficiency, nutrient digestibility, and fecal microflora of weanling pigs.

Keywords: Citrus pulp, *Bacillus subtilis*, Performance, Fecal microflora, Weanling pigs

Background

Worldwide production of citrus fruits approaches 90 million tons per year [1]. Most of these fruits are squeezed to juice and by-products, including peels, segment membranes, and other parts, which are considered as citrus juice waste or pulp [2]. Due to their high processing cost, most citrus juice industry by-products are dumped into the ocean, leading to environmental pollution [3]. Recent approaches advocating the use of citrus juice waste have focused on reduction of its moisture contents and its use as an animal feed [4]. Dried citrus pulp contains relatively large amounts of pectins [5] and soluble carbohydrates [6]. Further, several health-promoting bioactive compounds such as limonene, hesperidin, naringin, quercetin, and bioflavonoids have been identified in citrus pulp [3,7-9]. Contreras Esquivel et al. [10] and Sen et al. [11] reported that citrus juice industry by-products have the necessary characteristics required for substrates of probiotic growth during fermentation.
Among probiotic microbes, Bacillus spp. are well known for their ability to produce pectinase using pectin in citrus peel as the sole carbon source [12,13]. Previous have reported that citrus juice waste can be used as a substrate for the growth of B. subtilis, and the resulting fermentation biomass has potential for improving the performance, intestinal morphology, and cecal microflora of broilers and weanling pigs [11,14]. Therefore, the objective of the present study was to investigate the effects of dietary supplementation with citrus pulp, fish by-product, and B. subtilis fermentation biomass on growth performance, apparent total tract digestibility (ATTD) of nutrients, and fecal microflora in weanling of pigs.

Methods
The protocol for the present experiment was approved by the Institutional Animal Care and Use Committee of Kangwon National University, Chuncheon, Republic of Korea.

Preparation of fermentation biomass
The B. subtilis used in the present study was isolated and characterized by Yoo et al. [3] and maintained in the laboratory at ~80°C as stock culture. Culture broth medium consisting of 6% corn steep liquor, 4% molasses, 0.3% yeast extract, 0.5% KH₂PO₄, and 0.25% K₂HPO₄ in distilled water was prepared and autoclaved before being used. Stock culture (2 mL) was then added to 2 L of autoclaved culture broth and incubated at 37°C at pH 7.0 for 48 h. The B. subtilis grown on culture broth medium was used as a starter to produce fermentation biomass. Dried citrus pulp and fish by-product with 30% moisture was used as the sole substrate. The substrate was inoculated with 2 L of starter per 10 kg of substrate and fermented for 7 d at 32°C and pH 7.0. After 7 d, the fermentation biomass was dried in a forced-air drying oven at 40°C for 72 h.

Animals and experimental design
A total of 180 weaned piglets (Landrace × Yorkshire × Duroc) were randomly allotted to three treatments on the basis of initial body weight (BW). There were six replicate pens in each treatment with 10 piglets per pen. All piglets were clinically healthy at the start of the trial and originated from 20 sows in their third parity. Dietary treatments were corn-soybean meal-based basal diet supplemented with 0 (control), 2.5, and 5.0% citrus pulp, fish by-product, and B. subtilis fermentation biomass. The citrus pulp, fish by-product and B. subtilis fermentation biomass were added to the weaning pig diets by replacing equal volumes of fish meal. The isocaloric and isoproteineous experimental diets were fed in mash form in two phases (d 0 ~ 14, phase I and d 15 ~ 28, phase II). Diets for phase I were formulated to contain 3,400 kcal/kg metabolizable energy (ME), 21.0% crude protein (CP), and 1.6% lysine (Table 1), whereas diets for phase II were formulated to contain 3,360 kcal/kg ME, 20.0% CP, and 1.4% lysine (Table 2). All diets met or exceeded the nutrient requirements recommended by NRC [15].

The experiment was conducted at the Kangwon National University farm facility. The piglets were housed in partially slatted concrete floor pens (2.8 × 5.0 m). The temperature in the barn was 30°C at the beginning of the experiment and was slowly reduced to 25°C on d 8, after which it was kept constant until the end of the experiment.

Table 1: Ingredient and chemical compositions of experimental diets (d 0 ~ 14; as-fed basis)

Ingredients, %	0	2.5	5
Corn	45.38	42.36	39.34
Whey powder	15.38	15.38	15.38
Deh-SBM	24.88	27.08	29.29
Soy oil	3.00	3.00	3.00
Fish meal	5.0	2.5	0.0
L-lysine (78%)	0.50	0.51	0.52
DL-Methionine (100%)	0.12	0.14	0.15
Choline-chloride (50%)	0.07	0.07	0.07
MCP	0.50	0.79	1.08
Limestone	0.67	0.73	0.78
Salt	0.20	0.20	0.20
Mineral premix¹	0.30	0.30	0.30
Vitamin premix²	0.30	0.30	0.30
ZnO	0.34	0.34	0.34
Sucrose	3.36	3.80	4.25
Citrus pulp, fish by-product, and Bacillus subtilis fermentation biomass	0.0	2.50	5.00

Calculated chemical composition³

Calculated chemical composition³	3,400	3,400	3,400
ME, kcal/kg			
CP, %	21.00	21.00	21.00
Ca, %	0.80	0.80	0.80
Av. P, %	0.40	0.40	0.40
Lys, %	1.60	1.60	1.60
Met + Cys, %	0.80	0.80	0.80

¹Supplied per kilogram of diet: 45 mg Fe, 0.25 mg Co, 50 mg Cu, 15 mg Mn, 25 mg Zn, 0.35 mg I, 0.13 mg Se.
²Supplied per kilogram of diet: 16,000 IU vitamin A, 3,000 IU vitamin D₃, 40 IU vitamin E, 5.0 mg vitamin K₃, 5.0 mg vitamin B₁₂, 20 mg vitamin B₂, 4 mg vitamin B₆, 0.08 mg vitamin B₁₂, 40 mg pantothenic acid, 75 mg niacin, 0.15 mg biotin, 0.65 mg folic acid, 12 mg antioxidant.
³Based on NRC [15] values.
The humidity ranged between 60 and 70%. Each pen was equipped with an infrared heating lamp, self-feeder, and low-pressure nipple drinker to allow ad libitum access to feed and water.

Experimental procedure and sampling
The pigs were individually weighed at the beginning of the trial as well as on d 14 and 28 of the experiment. Feed that was not consumed was weighed at the end of each phase, and consumption was calculated for phase I (d 0 to 14), phase II (d 15 to 28), and for the overall study period (d 0 to 28). As feed wastage was considered minimal, feed disappearance was determined to be a reliable estimate of feed consumption. Feed consumption was calculated at the end of each phase, and average daily feed intake (ADFI) and gain to feed ratio (G:F) were calculated. Average daily gain (ADG) and ADFI were calculated by dividing total pen weight gain and total pen feed consumption by the number of days. The G:F for each pen was calculated by dividing the ADG by the ADFI. To evaluate the effects of dietary treatments on the apparent total tract digestibility (ATTD) of energy and nutrients, 2.5 g kg\(^{-1}\) of chromium (as an inert, indigestible indicator) was included in the diets from d 8 to 14 (phase I) or d 22 to 28 (phase II). Fecal grab samples (100 gm/d per pen) were collected from each pen during the last 3 d of each phase to determine the ATTD of nutrients. Fecal samples from each pen were pooled, dried in a forced air-drying oven at 60°C for 72 h, and ground in a Wiley laboratory mill (Thomas Model 4 Wiley® Mill, Thomas scientific, Swedesboro, NJ, USA) using a 1-mm screen. Additionally, fresh fecal samples were collected from two pigs from each pen on d 14 and 28 and then measured for fecal bacterial counts. The samples collected for microbial analysis were immediately placed on ice (2–3 h) and transported to the laboratory for further analysis on the same day.

Chemical and microbial analyses
Experimental diets and excreta samples were analyzed in triplicate for dry matter (DM, method 930.15; [16]), crude protein (CP, method 990.03; [16]), ash (method 942.05; [16]), calcium, and phosphorus (method 985.01; [16]). Gross energy was measured by a bomb calorimeter (Model 1261, Parr Instrument Co., Moline, IL), and chromium concentrations of experimental diets and excreta samples were determined with an automated spectrophotometer (Jasco V-650, Jasco Corp., Tokyo, Japan) according to the procedure of Fenton and Fenton [17]. The ATTD (%) of nutrients was calculated by the following formula:

\[
\text{ATTD} \% = \left(1 - \frac{N_f}{N_d} \times \frac{C_d}{C_f}\right) \times 100
\]

Where

\[N_f = \text{nutrient concentration in feces (\%)}\]
\[N_d = \text{nutrient concentration in diet (\%)}\]
\[C_f = \text{chromium concentration in feces (\%)}\]
\[C_d = \text{chromium concentration in diet (\%)}\]

The microbiological assay of excreta was carried out by the procedure suggested by Choi et al. [18]. The microbial groups enumerated were total anaerobic bacteria (TAB; plate count agar, Difco Laboratories, Detroit, MI, USA), *Bifidobacterium* spp. (MRS agar), coliforms (violet red bile agar, Difco Laboratories, Detroit, MI, USA), and *Clostridium* spp. (Tryptose sulphite cycloserine agar, Oxoid, Hampshire, UK). The anaerobic conditions during the TAB and *Clostridium* spp. assays were created by

Table 2 Ingredient and chemical compositions of experimental diets (d 15 ~ 28; as-fed basis)

Ingredients, %	0	2.5	5
Corn	61.55	59.05	56.55
Whey powder	5.00	5.00	5.00
Deh-SBM	23.11	25.23	27.35
Soy oil	2.21	2.23	2.25
Fish meal (60%)	5.00	2.50	
l-Lysine (78%)	0.38	0.39	0.40
l-Methionine (100%)	0.05	0.06	0.07
MCP	0.71	1.00	1.29
Limestone	0.75	0.80	0.85
Salt	0.30	0.30	0.30
Mineral premix	0.30	0.30	0.30
Vitamin premix	0.30	0.30	0.30
ZnO	0.34	0.34	0.34
Citrus pulp, fish by-product, and Bacillus subtilis fermentation biomass	0.0	2.50	5.00

Calculated chemical composition

	ME, kcal/kg	CP, %	Ca, %	Av. P, %	Lys, %	Met + Cys, %
0	3,360	20.00	0.78	0.37	1.40	0.72
2.5	3,360	20.00	0.78	0.37	1.40	0.72
5	3,360	20.00	0.78	0.37	1.40	0.72

1Supplied per kilogram of diet: 45 mg Fe, 0.25 mg Co, 50 mg Cu, 15 mg Mn, 25 mg Zn, 0.35 mg I, 0.13 mg Se.
2Supplied per kilogram of diet: 16,000 IU vitamin A, 3,000 IU vitamin D\(_3\), 40 IU vitamin E, 5.0 mg vitamin K\(_2\), 20 mg vitamin B\(_6\), 4 mg vitamin B\(_9\), 0.08 mg vitamin B\(_12\), 40 mg pantothenic acid, 75 mg niacin, 0.15 mg biotin, 0.65 mg folic acid, 12 mg antioxidant.
3Based on NRC [15] values.
using the gas-pak anaerobic system (BBL, No. 260678, Difco, Detroit, MI, USA).

Statistical analysis

Data generated in the present study were subjected to statistical analysis using the GLM procedure of SAS (SAS Inst. Inc., Cary, NC) in a randomized complete block design. When significant difference were identified among treatment means, they were separated using Tukey’s Honestly Significant Difference test. The linear and quadratic contrasts were used to compare effects of increasing levels of citrus pulp, fish by-product, and *B. subtilis* fermentation biomass (0, 2.5 and 5.0% of basal diet). The pen was used as the experimental unit for the analysis of all parameters. Probability values of ≤0.05 were considered significant.

Results

Growth performance

Dietary treatments had significant linear effects on gain to feed ratio (G:F) in all periods (Table 3). Moreover, piglets fed diet supplemented with 5.0% citrus pulp, fish by-product, and *B. subtilis* fermentation biomass showed greater (p < 0.05) G:F than piglets fed control diet. The G:F of piglets fed diet supplemented with 2.5% citrus pulp and *B. subtilis* fermentation biomass was not different (p > 0.05) from that of piglets fed control or 5.0% citrus pulp, fish by-product, and *B. subtilis* fermentation biomass. Dietary treatments had no effects (linear or quadratic; p > 0.05) on the ADG or ADFI of piglets in all periods.

Apparent total tract digestibility

Significant linear effects on ATTD of DM, GE, and ash were only observed in phase I (Table 4). In addition, in phase I, piglets fed diet supplemented with 5.0% citrus pulp and *B. subtilis* fermentation biomass showed greater (p < 0.05) ATTD of DM, GE, and ash than piglets fed control diet. However, ATTD of DM, GE, and ash of piglets fed diet supplemented with 2.5% citrus pulp, fish by-product, and *B. subtilis* fermentation biomass was not different (p > 0.05) than those of pigs fed control and 5.0% citrus pulp, fish by-product, and *B. subtilis* fermentation biomass. During phase II, dietary treatments had no effects (linear or quadratic; p > 0.05) on ATTD of nutrients.

Fecal microflora

Dietary treatments also had significant linear effects on total anaerobic bacteria populations by d 14 and 28 (Table 5). Moreover, piglets fed diet supplemented with 5.0% citrus pulp, fish byproduct, and *B. subtilis* fermentation biomass showed greater (p < 0.05) fecal total

Table 3 Effect of dietary inclusion of citrus pulp, fish by-product, and *Bacillus subtilis* fermentation biomass on growth performance of weanling pigs

Item	Citrus pulp, fish by-product, and *Bacillus subtilis* fermentation biomass, %	SEM2	P-values3				
	0	2.5	5.0	Linear	Quadratic		
Phase I (d 0–14)	ADG, g	441	460	474	14.86	0.145	0.871
	ADFI, g	721	706	689	8.51	0.053	0.937
	GF, g/kg	613b	652ab	688a	19.96	0.018	0.960
Phase II (d 22–28)	ADG, g	515	540	576	16.80	0.057	0.688
	ADFI, g	1,087	1,129	1,123	13.36	0.163	0.686
	GF, g/kg	474b	478ab	512a	9.06	0.018	0.199
Overall (d 0–28)	ADG, g	478	500	525	11.40	0.250	0.944
	ADFI, g	904	917	906	13.74	0.058	0.747
	GF, g/kg	529b	545ab	579a	11.53	0.024	0.545

aValues with different superscripts of the row significantly differ (p < 0.05).

bData represent means based on 6 replicates per treatment.

cStandard error of means.

dLinear and quadratic effects of increasing citrus pulp and *Bacillus subtilis* fermentation biomass in the diet.

Table 4 Effect of dietary inclusion of citrus pulp, fish by-product, and *Bacillus subtilis* fermentation biomass on apparent total tract digestibility (%) of nutrients in weanling pigs

Item	Citrus pulp, fish by-product, and *Bacillus subtilis* fermentation biomass, %	SEM2	P-values3				
	0	2.5	5.0	Linear	Quadratic		
Phase I (d 8–14)	DM	84.63b	84.99ab	85.49a	0.15	0.003	0.714
	GE	83.56b	83.89ab	84.19a	0.12	0.005	0.890
	CP	79.66	79.93	80.21	0.275	0.098	0.906
	Ash	60.02b	60.76ab	61.72a	0.26	0.005	0.461
	Ca	56.48	55.52	54.99	1.77	0.548	0.851
	P	45.58	45.22	45.04	1.03	0.690	0.592
Phase II (d 22–28)	DM	81.87	82.04	82.77	0.35	0.106	0.535
	GE	82.14	82.67	83.34	0.47	0.101	0.009
	CP	75.95	76.78	77.39	0.61	0.127	0.885
	Ash	54.98	55.34	55.57	0.75	0.595	0.947
	Ca	52.08	52.34	52.53	1.38	0.821	0.983
	P	46.96	47.57	48.67	1.52	0.448	0.894

aValues with different superscripts of the row significantly differ (p < 0.05).

bData represent means based on 6 replicates per treatment.

cStandard error of means.

dLinear and quadratic effects of increasing citrus pulp and *Bacillus subtilis* fermentation biomass in the diet.
anaerobic bacteria populations than piglets fed control diet. However, total anaerobic bacteria populations of piglets fed diet supplemented with 2.5% citrus pulp, fish by-product, and *B. subtilis* fermentation biomass were not different (*p > 0.05*) than those of piglets fed control or 5.0% citrus pulp and *B. subtilis* fermentation biomass. Dietary treatments had no effects (linear or quadratic; *p > 0.05*) on populations of fecal *Bifidobacterium* spp., *Clostridium* spp., and coliform (d 14 and 28).

Discussion

Among several bacterial species used as probiotics, spore-forming *Bacillus* spp. are preferred due to the high resistance of their spores to harsh environments and long-term storability at ambient temperatures [19,20]. We have reported previously that *B. subtilis* fermentation biomass prepared by solid substrate fermentation with corn-soybean meal or citrus juice waste substrate has potential for improving growth performance, nutrient retention, and intestinal morphology as well as reducing harmful intestinal bacteria in broilers [11,21]. In contrast, this study found that citrus pulp, fish by-product, and *B. subtilis* fermentation biomass had no effects on ADG and ADFI of weanling pigs. This discrepancy could be attributed to variations in the administration level of probiotic products, health status within herds, farm hygiene, diet composition, feed forms, and interactions with other dietary feed additives [22,23]. Other studies also reported improved growth performance in pigs fed diet supplemented with probiotic products containing *Bacillus* spp. [24-27]. The fermentation biomass in the present study was prepared by fermentation of citrus pulp with *B. subtilis*, and the resultant biomass included probiotic microbes as well as secondary metabolites produced during microbial fermentation, as previously described [28,29].

In this study, dietary supplementation with 5.0% citrus pulp, fish by-product, and *B. subtilis* fermentation biomass improved ATTD of DM, GE, and ash during phase I (d 0–14). Our results confirm the findings of Lee et al. [14], who evaluated the effects of *B. subtilis* fermentation biomass dietary supplementation on weanling pigs and observed improved ATTD of DM and GE during phase I (d 0–14). Similarly, it was reported that weanling pigs fed diet supplemented with probiotic products prepared using *B. subtilis* and corn-soybean meal as a substrate show improved coefficient of total tract digestibility of DM and GE [30]. In contrast to the results of Choi et al. [30], Lee et al. [14], and the present study, Chen et al. [26] and Wang et al. [27] observed no effects of *Bacillus*-based probiotic products on the ATTD of nutrients in growing and finishing pigs. Variations in nutrient digestibility in weanling, growing, and finishing pigs indicate that the age of pigs is a considerable factor affecting the efficacy of *B. subtilis* and its fermentation biomass.

Table 5 Effect of dietary inclusion of citrus pulp, fish by-product, and *Bacillus subtilis* fermentation biomass on fecal microflora (Log$_{10}$cfu/g) of weanling pigs

Item	Citrus pulp, fish by-product, and *Bacillus subtilis* fermentation biomass (%)	SEM2	P-values3			
	0	2.5	5.0	Linear	Quadratic	
Phase I (d 14)						
Total anaerobic bacteria	9.23b	9.32ab	9.50a	0.05	0.020	0.446
Bifidobacterium spp.	8.73	8.78	8.79	0.05	0.434	0.706
Clostridium spp.	7.21	7.17	7.10	0.07	0.277	0.846
Coliforms	6.98	6.95	6.93	0.05	0.517	0.907
Phase II (d 28)						
Total anaerobic bacteria	9.38b	9.46ab	9.57a	0.16	0.020	0.786
Bifidobacterium spp.	8.82	8.85	8.88	0.18	0.379	0.976
Clostridium spp.	7.30	7.26	7.24	0.22	0.400	0.887
Coliforms	7.16	7.11	7.08	0.23	0.362	0.814

aValues with different superscripts of the row significantly differ (*p < 0.05*).
bData represent means based on 6 replicates per treatment.
cStandard error of means.
dLinear and quadratic effects of increasing citrus pulp and *Bacillus subtilis* fermentation biomass in the diet.
In the present study, the ATTD of nutrients during phase II (d 15–28) was not affected by dietary treatments, possibly due to the presence of developed and stable intestinal microflora during phase II. Stavric and Kornegev [31] reported that probiotics are more effective in pigs during microflora development or when microflora stability is impaired.

It has been well established that probiotic products favorably affect the host animal by improving intestinal balance [19], by creating gut micro-ecological conditions that suppress harmful microorganisms, and by favoring beneficial microorganisms [14,18,32]. Positive effects of probiotic products containing B. subtilis [11,18,21,33] have been reported previously. In the present study, pigs fed diets supplemented with 5.0% citrus pulp, fish by-product, and B. subtilis fermentation biomass showed greater total anaerobic bacteria populations by d 14 and 28, whereas there were no effects on Bifidobacterium spp., Clostridium spp., and coliform populations. In contrast, Lee et al. [14] observed that weanling pigs fed diet supplemented with corn-soybean and B. subtilis fermentation biomass show no difference in total anaerobic bacterial populations, whereas cecal Clostridium spp. and coliform populations are significantly reduced. This discrepancy might be due to variations in the type and dose of probiotic product, method of probiotic fermentation, and health status of piglets. In this study, we used healthy piglets with no symptoms of diarrhea.

Conclusions

In conclusion, the results obtained in present study indicate that dietary supplementation with 5.0% citrus pulp, fish by-product, and B. subtilis fermentation biomass has the potential to improve feed efficiency, nutrient digestibility, fecal microflora, and cost savings in weanling pigs without affecting growth performance.

Competing interests

The authors declare that there are no conflicts of interest.

Authors’ contributions

BJC and YHK designed experiment, HSN, LSH, KHK Carried out animal trial, HSN, SLH and IIK done lab analysis, SLI, YHK and BJC written manuscript. All authors read and approved the final manuscript.

Acknowledgments

This work was carried out with the support of the Cooperative Research Program for Agriculture Science & Technology Development (Project No. 009410) Rural Development Administration, Republic of Korea. The authors sincerely acknowledge the technical facilities provided by Kangwon National University, Chuncheon, Republic of Korea.

Author details

1Department of Animal Resources Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 200-701, South Korea.

2Department of Animal Products and Food Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 200-701, South Korea.

3Department of Animal Resources Development, Swine Science Division, National Institute of Animal Science, RDA, Suwon, South Korea.

Received: 13 May 2014 Accepted: 1 July 2014

References

1. Marin FR, Soler-Rivas C, Benavente-Garcia O, Castillo J, Perez-Alvarez JA: By-products from different citrus sources as a source of customized functional fibers. Food Chem 2007, 100:736–741.

2. Martinez Pascual J, Fernandez Carmona J: Citrus pulp in diets for fattening lambs. Anim Feed Sci Technol 1980, 11:1–22.

3. Yoo JH, Lee JJ, Lee HB, Choi SW, Kim YB, Sumathy B, Kim EK: Production of an antimicrobial compound by Bacillus subtilis LS 1–2 using a citrus-processing byproduct. Korean J Chem Eng 2011, 28:1400–1405.

4. Gadine C, Morand C, Rock E, Bauchart D, Durand D: Plant extracts rich in polyphenols (PERP) are efficient antioxidants to prevent lipid peroxidation in plasma lipids from animals fed n-3 PUFA supplemented diets. Anim Feed Sci Technol 2007, 136:281–296.

5. Wilkin MR, Widmer WW, Grohmann K, Cameron RG: Hydrolysis of grapefruit peels waste with cellulase and pectinase enzymes. Bioreour Technol 2007, 98:1596–1601.

6. Rihani N, Guessous F, Johnson WL: Nutritive value of dried citrus and beet pulps produced in Morocco. J Anim Sci 1986, 63(Suppl.1):428. Abstr.

7. Belshaw F: Citrus flour – a new fiber, nutrient source. Food Prod Dev 1978, 12:736.

8. Braddock RJ: Utilization of citrus juice vesicle and peel fiber. Food Technol 1983, 37:85–87.

9. Formica JV, Regelson W: Review of the biology of Quercetin and related bioflavonoids. Food Chem Toxicol 1995, 33:1061–1080.

10. Canteras Esquivel JC, Hours RA, Voget CE, Mignonne CF: Aspergillus kawachii produces an acidic pectin releasing enzyme activity. J Biosci Biotechnol 1999, 88:48–52.

11. Sen S, Ingale SL, Kim YW, Kim JS, Kim KH, Khong C, Lohakare JD, Kim EK, Kim HS, Kwon IK, Chae BJ: Effect of supplementation of Bacillus subtilis LS 1–2 grown on citrus-juice waste and corn-soybean meal substrate on growth performance, nutrient retention, caecal microbiology and small intestinal morphology of broilers. Asian-Aust J Anim Sci 2011, 24:1120–1127.

12. Mahmood AU, Greenman J, Scragg AH: Orange and potato peel extracts: Analysis and use as Bacillus substrates for the production of extracellular enzymes in continuous culture. Enzy Microb Technol 1998, 22:130–137.

13. Matsumoto T, Sugiuara Y, Kando A, Fukuda H: Efficient production of protopectinases by Bacillus subtilis using medium based on soybean flour. Biochem Eng J 2000, 6:381–86.

14. Lee SH, Ingale SL, Kim JS, Kim KH, Lohakare A, Kim EK, Kwon IK, Kim YH, Chae BJ: Effects of dietary supplementation with Bacillus subtilis LS 1–2 fermentation biomass on growth performance, nutrient digestibility, cecal microflora and intestinal morphology of weanling pig. Anim Feed Sci Technol 2014, 188:102–110.

15. National Research Council: Nutrient Requirement of Swine. 10th edition. Washington, DC: National Academy Press, 1998.

16. AOAC: Official Methods of Analysis of the Association of Official Analytical Chemists International. 18th edition. Gaithersburg, MD, USA: 2007.

17. Fenton TW, Fenton M: An improved method for chronic ozone determination in feed and feces. Can J Anim Sci 1970, 50:631–634.

18. Choi JY, Shinde PL, Ingale SL, Kim JS, Kim YW, Kim KH, Kwon IK, Chae BJ: Evaluation of multi-microbe probiotics prepared by submerged liquid or solid substrate fermentation and antibiotics in weanling pigs. Livest Sci 2011, 138:144–151.

19. Fuller R: Probiotics in man and animals. J Appl Bacteriol 1989, 66:365–378.

20. Hong HA, Le Duc H, Cutting SH: The use of bacterial spore formers as probiotics, FEMS Microbiol Rev 2005, 29:815–835.

21. Sen S, Ingale SL, Kim YW, Kim JS, Kim KH, Lohakare JD, Kim EK, Kim HS, Ryu MH, Kwon IK, Chae BJ: Effect of supplementation of Bacillus subtilis LS 1–2 to broiler diet on growth performance, nutrient retention, caecal microbiology and small intestinal morphology. Res Vet Sci 2012, 93:264–268.

22. Chesson A: Probiotics and other intestinal mediators. In Principles of Pig Science. Edited by Cole DJA, Wiseman J, Varley MA. Loughborough, U.K: Nottingham University Press; 1994:197–214.

23. Lessard M, Dupuis M, Gagnon N, Nadeau E, Matte JJ, Goulet J, Fairbrother JM: Administration of Pedicoccus acidilactici or Saccharomycetes cerevisiae bouardii modulates development of porcine mucosal immunity and
24. Gracia MI, Hansen S, Sanchez J, Medel P, Imasde Agropecuaria SL: Efficacy of addition of *B. licheniformis* and *B. subtilis* in pig diets from weaning to slaughter. *J Anim Sci* 2004, 82(Suppl. 1):26.

25. Alexiopoulos C, Georgoulakis IE, Tzivara A, Kitas SK, Sochou A, Kyriakis SC: Field evaluation of the efficacy of a probiotic containing *Bacillus licheniformis* and *Bacillus subtilis* spores, on the health status and performance of sows and their litters. *J Anim Physiol Anim Nutr* 2004, 88:381–392.

26. Chen YJ, Min BJ, Cho JH, Kwon OS, Son KS, Kim HJ, Kim IH: Effects of dietary *Bacillus*-based probiotic on growth performance, nutrients digestibility, blood characteristics and fecal noxious gas content in finishing pigs. *Asian-Aust J Anim Sci* 2006, 19:587–592.

27. Wang Y, Cho JH, Chen YJ, Yoo JS, Huang Y, Kim HJ, Kim IH: The effect of probiotic BioPlus 28® on growth performance, dry matter and nitrogen digestibility and slurry noxious gas emission in growing pigs. *Livest Sci* 2009, 120:35–42.

28. Ohno A, Aoto T, Shoda M: Effect of temperature on production of lipopeptide antibiotics, iturin A and surfactin by a dual producer, *Bacillus subtilis* RB14, in solid-state fermentation. *J Ferment Bioeng* 1995, 80:517–519.

29. Scholten RHJ, van der Peet-Schwering CMC, Verstegen MWA, den Hartog LA, Snijders JW, Verscheure P: Fermented co-products and fermented compound diets for pigs: a review. *Anim Feed Sci Technol* 1999, 82:1–19.

30. Choi JY, Min BJ, Cho JH, Kwon OS, Son KS, Kim HJ, Chae BJ: Effect of potential multimicrobe probiotic product processed by high drying temperature and antibiotic on performance of weanling pigs. *J Anim Sci* 2011, 89:1795–1804.

31. Stavric S, Komeyagi EF: Microbial probiotic for pigs and poultry. In *Biotechnology in Animal Feeds and Animal Feeding*. Edited by Wallace RJ, Chesson A. Weinheim: VCH Verlagsgesellschaft mbH; 1995:205–231.

32. Kim JS, Ingale SL, Kim KH, Shinde PL, Kwon IK, Chae BJ: Effect of supplementation of multi-microbe probiotic product on growth performance, apparent digestibility, cecal microbiota and small intestinal morphology of broilers. *J Anim Physiol Anim Nutr* 2012, 96:618–626.

33. Teo AY, Tan HM: Evaluation of the performance and intestinal gut microflora of broilers fed on com-soy diets supplemented with *Bacillus subtilis* PB6 (CloSTAT). *J Appl Poult Res* 2007, 16:296–303.

doi:10.1186/2055-0391-56-10

Cite this article as: Noh et al.: Effects of citrus pulp, fish by-product and *Bacillus subtilis* fermentation biomass on growth performance, nutrient digestibility, and fecal microflora of weanling pigs. *Journal of Animal Science and Technology* 2014 56:10.