Exact solutions of non-Hermitian chains with asymmetric long-range hopping under specific boundary conditions

Cui-Xian Guo and Shu Chen

1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3Yangtze River Delta Physics Research Center, Liyang, Jiangsu 213300, China

We study one-dimensional general non-Hermitian models with asymmetric long-range hopping and explore to analytically solve the systems under some specific boundary conditions. Although the introduction of long-range hopping terms prevents us from finding analytical solutions for arbitrary boundary parameters, we identify the existence of exact solutions when the boundary parameters fulfill some constraint relations, which give the specific boundary conditions. Our analytical results show that the wave functions take simple forms and are independent of hopping range, while the eigenvalue spectra display rich model-dependent structures. Particularly, we find the existence of a special point coined as pseudo-periodic boundary condition, for which the eigenvalues are the same as the periodical system when the hopping parameters fulfill certain conditions, whereas eigenstates display non-Hermitian skin effect.

INTRODUCTION

Recently, non-Hermitian systems have gained much attention, both theoretically and experimentally [1, 2]. In contrast to Hermitian systems, non-Hermitian systems exhibit many novel properties, such as complex spectrum structures, rich topological classifications and non-Hermitian skin effect (NHSE) [3–21]. NHSE is characterized by the emergence of a large number of bulk states accumulating on one of the open boundaries accompanying with remarkably different spectra from those under periodic boundary condition (PBC) [15–21]. As this counterintuitive phenomenon has no Hermitian correspondence, the NHSE has attracted intensive studies in the past years [22–33].

The NHSE is essentially a boundary-sensitivity phenomenon. The boundary effect for non-Hermitian systems has been studied in Ref.[18, 24, 34–42]. To understand why the change of boundary terms dramatically affects the properties of bulk states of non-Hermitian systems, with collaborators we presented exact solutions for one-dimensional non-Hermitian models with generalized boundary conditions in a recent work [38], in which size-dependent boundary effect has been clarified from the perspective of exact solution. The analytical results uncovered the existence of size-dependent NHSE and gave quantitative description of the interplay effect of boundary hopping terms and lattice size. The size-dependent NHSE was firstly observed by Li et al. in coupled nonreciprocal chains [43], and was generalized to open quantum systems [44]. It was also observed in non-reciprocal chains with impurity [39].

In this paper, we generalize the exact solutions to one-dimensional non-Hermitian models with nonreciprocal (asymmetric) long-range hopping under specific boundary conditions. Although the introduction of long-distance hopping terms hinders the finding of analytical solutions for arbitrary boundary parameters, we identify the existence of exact solutions when the boundary parameters fulfill some constraint relations, which give the specific boundary conditions considered in the present work. Under the specific boundary conditions, we exactly solve the eigenvalue equations and give analytical results of eigenvalues and wavefunctions. Based on our analytical results, we demonstrate the existence of size-dependent NHSE and rich structures of eigenvalue spectra. Some concrete examples are also discussed.

MODELS AND SOLUTIONS

We start with the general 1D non-Hermitian model with asymmetric long-distance hopping terms under generalized boundary conditions, described by the Hamiltonian:

\begin{equation}
H = \sum_{n=1}^{N} \left(t_{1n} a_{n}^\dagger a_{n+1} + t_{2n} a_{n+1}^\dagger a_{n} + \delta_{1n} a_{n}^\dagger + \delta_{2n} a_{n} \right),
\end{equation}

where a_n and a_n^\dagger are the annihilation and creation operators, respectively, and t_{1n}, t_{2n}, δ_{1n}, and δ_{2n} are the hopping and detuning terms, respectively. The boundary conditions are given by:

\begin{equation}
\begin{align*}
a_{N+1} &= \gamma_1 a_1, \\
b_{N+1} &= \gamma_2 b_1,
\end{align*}
\end{equation}

where γ_1 and γ_2 are the boundary parameters.

FIG. 1: Schematic diagram of general 1D non-Hermitian model with $p = 2$ and $q = 2$.

The analytical solutions for the eigenvalue problem are given by:

\begin{equation}
\lambda = \frac{1}{2} \left(\sqrt{\Delta^2 + 4\gamma_1^2} \right),
\end{equation}

where $\Delta = \sum_{n=1}^{N} \left(t_{1n}^2 + t_{2n}^2 + \delta_{1n}^2 + \delta_{2n}^2 \right)$.

The wavefunctions are given by:

\begin{equation}
\begin{align*}
a_n &= \frac{1}{\sqrt{\Delta}} \left(t_{1n} a_n^\dagger e^{i\Delta n} + t_{2n} a_n^\dagger e^{-i\Delta n} + \delta_{1n} a_n^\dagger e^{i\Delta n} + \delta_{2n} a_n^\dagger e^{-i\Delta n} \right), \\
b_n &= \frac{1}{\sqrt{\Delta}} \left(t_{1n} b_n^\dagger e^{i\Delta n} + t_{2n} b_n^\dagger e^{-i\Delta n} + \delta_{1n} b_n^\dagger e^{i\Delta n} + \delta_{2n} b_n^\dagger e^{-i\Delta n} \right).
\end{align*}
\end{equation}

The analytical results show that the wave functions take simple forms and are independent of hopping range, while the eigenvalue spectra display rich model-dependent structures.
nian as follows
\[
\hat{H} = \sum_{n=1}^{N-j} \left\{ \sum_{j=1}^{p} [t_{jL} \hat{c}^\dagger_{n+j} \hat{c}_n] + \sum_{j=1}^{q} [t_{jR} \hat{c}^\dagger_{n+j} \hat{c}_n] \right\} \\
+ \sum_{n=1}^{j} \left\{ \sum_{j=1}^{p} [\delta_{jL} \hat{c}^\dagger_{n-j} \hat{c}_n] + \sum_{j=1}^{q} [\delta_{jR} \hat{c}^\dagger_{n-j} \hat{c}_n] \right\}
\]
(1)

where \(p \) is the farthest length of left hopping, \(q \) is the farthest length of right hopping, and \(N \) is the number of lattice sites. A model with \(p = 2 \) and \(q = 2 \) is schematically displayed in Fig. 1. While the PBC corresponds to \(\delta_{jL} = t_{jL} \) (\(j = 1, \ldots, p \)) and \(\delta_{jR} = t_{jR} \) (\(j = 1, \ldots, q \)), the open boundary condition (OBC) corresponds to \(\delta_{jL} = \delta_{jR} = 0 \).

For the system under the PBC, we can perform the following Fourier transformation
\[
\hat{c}_n = \frac{1}{\sqrt{N}} \sum_k e^{i k n} \hat{c}_k, \quad \hat{c}_n^\dagger = \frac{1}{\sqrt{N}} \sum_k e^{-i k n} \hat{c}_k^\dagger.
\]
(2)

Then the Hamiltonian becomes \(\hat{H} = \sum_k \hat{H}(k) \), where
\[
\hat{H}(k) = \sum_{j=1}^{p} [t_{jL} e^{i k j} \hat{c}_k] + \sum_{j=1}^{q} [t_{jR} e^{-i k j} \hat{c}_k]
\]
(3)

with \(k = \frac{2m\pi}{N} \) (\(m = 1, 2, \ldots, N \)). Thus, the eigenvalue of the general model under PBC is given by
\[
E(k) = \sum_{j=1}^{p} t_{jL} e^{i k j} + \sum_{j=1}^{q} t_{jR} e^{-i k j}.
\]
(4)

For the nonreciprocal lattice, we have \(t_{jL} \neq t_{jR} \), and thus the periodic boundary spectrum is complex.

For the general case with \(\delta_{jL} \neq t_{jL} \) and \(\delta_{jR} \neq t_{jR} \), we need solve the eigenvalue equation for Eq.(1) in real space, which consists of a series of bulk equations and boundary equations. The bulk equations can be expressed as
\[
\sum_{j=0}^{q-1} [t_{(q-j)R} \psi_{s+j}] - E \psi_{s+q} + \sum_{j=1}^{p} [t_{jL} \psi_{s+j}] = 0
\]
(5)

with \(s = 1, 2, \ldots, N - (q + p) \). The boundary equations can be expressed as
\[
\sum_{j=1}^{s-1} [t_{(s-j)R} \psi_j] - E \psi_s + \sum_{j=1}^{p} [t_{jL} \psi_{s+j}] + \sum_{j=0}^{q-1} [\delta_{(q-j)R} \psi_{N+s-(q-j)}] = 0
\]
(6)

with \(s = 1, 2, \ldots, N \).
To solve the eigenvalue equation $H \Psi = E \Psi$, the general ansatz of wave function should also fulfill the boundary conditions. By inserting the expression of Ψ into Eqs.(8,9), the boundary equations can be represented as

$$H_B(c_1, \cdots, c_q, c_{q+1}, \cdots, c_{q+p})^T = 0. \tag{14}$$

Here H_B is the boundary matrix given by

$$
\begin{pmatrix}
F_1(z_1) & \cdots & F_1(z_q) & F_1(z_{q+1}) & \cdots & F_1(z_{q+p}) \\
\vdots & & \vdots & \vdots & & \vdots \\
F_q(z_1) & \cdots & F_q(z_q) & F_q(z_{q+1}) & \cdots & F_q(z_{q+p}) \\
F_{q+1}(z_1) & \cdots & F_{q+1}(z_q) & F_{q+1}(z_{q+1}) & \cdots & F_{q+1}(z_{q+p}) \\
\vdots & & \vdots & \vdots & & \vdots \\
F_{q+p}(z_1) & \cdots & F_{q+p}(z_q) & F_{q+p}(z_{q+1}) & \cdots & F_{q+p}(z_{q+p})
\end{pmatrix}
$$

where

$$F_s(z_i) = \sum_{j=0}^{q-s} [t(q-j)R - \delta(q-j)R z_i^N] z_i^{s-(q-j)},$$

with $s = 1, \cdots, q$ and

$$F_{q+s}(z_i) = \sum_{j=1}^{s} [\delta(p-s+j)L - t(p-s+j)L z_j^N] z_j^{q+s},$$

with $s = 1, \cdots, p$ and $i = 1, \cdots, q + p$. In the above calculation, the auxiliary wavefunctions defined as $\psi_j = \sum_{i=1}^{q+p} (c_i z_i^j) = c_1 z_1^j + c_2 z_2^j + \cdots + c_{q+p} z_{q+p}^j$ with $j = -q+1, -(q-1)+1, \cdots, 0$ and $j = N+1, N+2, \cdots, N+p$ are used. Alternatively, the Eq.(14) can also be obtained by inserting the expression of Ψ into Eqs.(6,7) in combination with Eq.(11). The nontrivial solutions for $(c_1, c_2, \cdots, c_{q+p})$ mean that $c_1 = 0, c_2 = 0, \cdots, c_{q+p} = 0$ cannot be satisfied simultaneously. The condition for the existence of nontrivial solutions for $(c_1, c_2, \cdots, c_{q+p})$ is determined by

$$\det[H_B] = 0, \tag{15}$$

which is usually too complicated to be precisely solved for the general case. For convenience, we shall divide the solutions into two cases: one is that the number of $c_i \neq 0$ $(i = 1, \cdots, q+p)$ is 1, and the other is that the number of $c_i \neq 0$ is greater than 1 and less than or equal to $q+p$. In general, the second case is hard to be analytically solved. An exception is the case of $p = q = 1$, which was exactly solved for arbitrary boundary parameters [38].

The solutions of z_i for the first case (i.e. there is only one nonzero c_i and for convenience we denote it as c_1) can be easily obtained by applying a simplified method, which is the situation studied in this paper. In this case, eigenfunction is composed of only one solution, i.e., $\Psi = c_1 |\Psi_f\rangle$, and the boundary equation $H_B(c_1, \cdots, 0)^T = 0$ requires $c_1 \neq 0, c_2 = 0, \cdots, c_{q+p} = 0$. Thus Eq.(14) gives rise to

$$F_1(z_1) = \cdots = F_q(z_1) = F_{q+1}(z_1) = \cdots = F_{q+p}(z_1) = 0 \tag{16}$$

i.e., the following equations should be satisfied simultaneously:

$$\sum_{j=0}^{q-s} [t(q-j)R - \delta(q-j)R z_i^N] z_i^{s-(q-j)} = 0 \tag{17}$$

with $s = 1, 2, \cdots, q$ and

$$\sum_{j=1}^{s} [\delta(p-s+j)L - t(p-s+j)L z_j^N] z_j^{q+s} = 0 \tag{18}$$

with $s = 1, 2, \cdots, p$.

From Eq.(17) with $s = q$, we can obtain the solution of z_1 as

$$z_1 = \sqrt[2m]{\mu} e^{i\frac{2m\pi}{N}}, \tag{19}$$

with

$$\mu = \frac{t_{2R}}{\delta_{1R}} \tag{20}$$

and $m = 1, \cdots, N$. Then we insert Eqs.(19) and (20) into Eq.(17) with $s = q - 1, q - 2, \cdots, 1$ successively, and we have

$$\frac{t(q-1)R}{\delta(q-1)R} = \cdots = \frac{t_{2R}}{\delta_{2R}} = \frac{t_{1R}}{\delta_{1R}} = \mu. \tag{21}$$

Next, we insert Eq.(19) into Eq.(18) with $s = 1$, and we get

$$\delta_{pL} = \mu. \tag{22}$$

Then we insert Eqs.(19) and (22) into Eq.(18) with $s = 1, 2, \cdots, p - 1$ successively, and we have

$$\frac{\delta_{(p-1)L}}{t_{(p-1)L}} = \cdots = \frac{\delta_{2L}}{t_{2L}} = \frac{\delta_{1L}}{t_{1L}} = \mu. \tag{23}$$

Combining Eqs.(20 - 23) together, we have

$$\frac{t_{1R}}{\delta_{1R}} \cdots = \frac{t_{qR}}{\delta_{qR}} = \frac{\delta_{1L}}{t_{1L}} = \cdots = \frac{\delta_{pL}}{t_{pL}} = \mu, \tag{24}$$

which is the specific boundary condition corresponding to the first case. As long as the specific boundary condition Eq.(24) is fulfilled, the solution of z_1 is given by Eq.(19). We note that $\mu = 1$ corresponds to the periodic boundary condition. While we have always $|z_1| = 1$ under the PBC, for the general case with $\mu \neq 1$, $|z_1| = \sqrt[2m]{\mu}$ is not equal to 1.

By inserting Eq.(19) into Eqs.(11,12), we obtain the eigenvalues and eigenvectors for the general model under the specific boundary condition as

$$E = \sum_{j=1}^{p} t_{jL} (\sqrt[2m]{\mu} e^{i\theta} j) + \sum_{j=1}^{q} t_{jR} (\sqrt[2m]{\mu} e^{i\theta} - j) \tag{25}$$
and
\[\Psi = \left(\sqrt{\mu} e^{i\theta}, \left(\sqrt{\mu} e^{i\theta} \right)^2, \ldots, \left(\sqrt{\mu} e^{i\theta} \right)^N \right)^T, \tag{26} \]
where \(\theta = \frac{2m\pi}{N} \). When \(\mu = 1 \), Eq.\((25)\) is identical to Eq.\((4)\), and the eigenstates are all extended states, corresponding to PBC. The case of \(\mu = e^{i\phi} \) with \(\phi \in (0, 2\pi) \) corresponds to a twist boundary condition by shifting the momentum a twist angle \(\phi/N \).

RESULTS AND DISCUSSIONS

From the expression of wavefunction given by Eq.\((26)\), we see that the distribution of wavefunction is only relevant to the value of \(\mu \), but is irrelevant to the values of \(t_{1L} \) and \(t_{1R} \) as long as the specific boundary condition is fulfilled. This means that systems with very different spectrum structures may have the same wavefunctions. When \(|\mu| \neq 1 \), Eq.\((26)\) suggests that non-Hermitian skin effect occurs as the distributions of wavefunctions decay exponentially from the left or right boundary. To see it clearly, in Fig. 2(a) we plot the distributions of wavefunctions for various systems fulfilled the specific boundary condition with \(\mu = 0.2 \). While the NHSE is distinct for small size systems, it becomes less distinct for large size systems as the wavefunctions approach extended states due to \(|z_1| = \sqrt{\mu} \rightarrow 1 \) when \(N \rightarrow \infty \) [38]. Fig. (b)-(d) display the spectra for different systems with the same sizes \(N = 60 \). Although they display quite different spectrum structures, their wavefunctions are identical as shown in Fig. (a).

Hatano-Nelson model under the specific boundary condition

When \(p = 1 \) and \(q = 1 \), the general model reduces to the Hatano-Nelson model [45, 47] under the specific boundary condition \(t_{1R}/t_{1L} = \delta_{1L}/t_{1L} = \mu \). The corresponding eigenvalues from Eq.\((25)\) with \(p = 1, q = 1 \) can be rewritten as
\[E = \left(t_{1L} \sqrt{\mu} + \frac{t_{1R}}{\sqrt{\mu}}\right) \cos(\theta) + i\left(t_{1L} \sqrt{\mu} - \frac{t_{1R}}{\sqrt{\mu}}\right) \sin(\theta) \tag{27} \]
with \(\theta = \frac{2m\pi}{N} \), and the eigenstates are given by Eq.\((26)\).

There are some special situations in the specific boundary conditions as follows:

When \(\mu = 1 \) (PBC), the eigenvalues can be expressed as
\[E = (t_{1L} + t_{1R}) \cos(\theta) + i(t_{1L} - t_{1R}) \sin(\theta) \tag{28} \]
with \(\theta = \frac{2m\pi}{N} \).
When $\mu = \left(\frac{t_{LR}}{t_{LL}}\right)^{N/2}$, the eigenvalues are given by
\[
E = 2 \sqrt{t_{1R}t_{1L}} \cos(\theta)
\]
with $\theta = \frac{2m\pi}{N}$. This special case is the so-called modified PBC studied in Ref.\[27\]. We note that the spectra are similar to those under OBC, i.e.,
\[
E = 2 \sqrt{t_{1R}t_{1L}} \cos(\theta)
\]
with $\theta = \frac{m\pi}{N}$. The corresponding wave functions under the modified PBC exhibit NHSE.

When $\mu = \left(\frac{t_{LR}}{t_{LL}}\right)^{N}$, the eigenvalues are given by
\[
E = (t_{1L} + t_{1R}) \cos(\theta) - i(t_{1L} - t_{1R}) \sin(\theta).
\]
Since the values θ appear always in pairs of $(\theta, -\theta)$ except the case of $\theta = 0, \pi$, ($\sin[0] = \sin[\pi] = 0$), we find that the spectrum are the same as the spectrum under PBC, whereas the corresponding wave functions exhibit NHSE. This special case is the so-called pseudo-PBC studied in Ref.\[38\]. This result is a little counterintuitive since we can get a Bloch-like spectrum even the translation invariance is broken by the boundary term. A straightforward interpretation is that the Hamiltonian under the pseudo-PBC \hat{H}_{pPBC} can be transformed to a Hamiltonian \hat{H} by carrying out a similar transformation, i.e., $S \hat{H}_{pPBC} S^{-1} = \hat{H}$, where \hat{H} is identical to the original Hatano-Nelson model under PBC with t_{1L} and t_{1R} exchanged each other.

In Fig.3, we plot the energy spectra and the profile of eigenfunction with different μ for a fixed N. As shown in Fig.3(a), the energy spectra under pPBC ($\mu = r^N$) are the same as those under PBC ($\mu = 1$), and both are located at energy spectra under PBC in the thermodynamic limit. In addition, the energy spectra under nPBC are located at spectra under OBC in the thermodynamic limit, which is consistent with our prediction. For $\mu > 1$, the wavefunctions are localized on the left boundary, and the NHSE becomes more obvious as μ increase as displayed in Fig.3(b).

Model with next-nearest-neighbor hopping

Now we consider the model with $p = 2$ and $q = 2$ under the specific boundary conditions $t_{2R}/\delta_{2R} = t_{1R}/\delta_{1R} = \delta_{1L}/t_{1L} = \delta_{2L}/t_{2L} = \mu$. The corresponding eigenvalues from Eq.(25) with $p = 2$ and $q = 2$ can be rewritten as
\[
E = \left[t_{1L} \sqrt{\mu} + \frac{t_{1R}}{\sqrt{\mu}} \right] \cos(\theta) + \left[t_{2L} \left(\sqrt{\mu} \right)^2 + \frac{t_{2R}}{\sqrt{\mu}^2} \right] \cos(2\theta) + i \left[t_{1L} \sqrt{\mu} - \frac{t_{1R}}{\sqrt{\mu}} \right] \sin(\theta) + i \left[t_{2L} \left(\sqrt{\mu} \right)^2 - \frac{t_{2R}}{\sqrt{\mu}^2} \right] \sin(2\theta)
\]
with $\theta = \frac{2m\pi}{N}$, and the eigenstates are also given by Eq.(26).

When we apply PBC, i.e. $\mu = 1$, the eigenvalues can be expressed as
\[
E = (t_{2L} + t_{2R}) \cos(2\theta) + (t_{1L} + t_{1R}) \cos(\theta) + i [(t_{2L} - t_{2R}) \sin(2\theta) + (t_{1L} - t_{1R}) \sin(\theta)].
\]

Similar to the Hatano-Nelson model, we can also find the existence of a pseudo-PBC case for $\sqrt{t_{1L}} = \sqrt{t_{1R}} = r$. When $\mu = r^{2N}$, the eigenvalues can be expressed as
\[
E = (t_{2L} + t_{2R}) \cos(2\theta) + (t_{1L} + t_{1R}) \cos(\theta) - i (t_{2L} - t_{2R}) \sin(2\theta) + (t_{1L} - t_{1R}) \sin(\theta)
\]
which are the same as those under PBC, while the corresponding wave functions exhibit NHSE. Therefore, this special boundary condition is also named as the pseudo-PBC.

In Fig.4, we plot the energy spectra and the profile of eigenfunction with different μ for a fixed N. We can see that the energy spectra under pPBC are the same as those under PBC, while the wavefunctions exhibit NHSE obviously, which is consistent with our prediction.

General model with $p = q$

For the general model with $p = q$ under the specific boundary conditions $t_{qR}/\delta_{qR} = \cdots = t_{1R}/\delta_{1R} = \delta_{1L}/t_{1L} = \cdots = \delta_{pL}/t_{pL} = \mu$. The corresponding eigenvalues from Eq.(25) with $p = q$ can be rewritten as
\[
E = \sum_{j=1}^{p} \left[(t_{jL} \sqrt{\mu})^j + \frac{t_{jR}}{(\sqrt{\mu})^j} \cos(j\theta) \right] + i \sum_{j=1}^{p} \left[(t_{jL} \sqrt{\mu})^j - \frac{t_{jR}}{(\sqrt{\mu})^j} \sin(j\theta) \right]
\]
with $\theta = \frac{2m\pi}{N}$, and the eigenstates are given by Eq.(26).

When we apply PBC, i.e. $\mu = 1$, the eigenvalues can be expressed as
\[
E = \sum_{j=1}^{p} [(t_{jL} + t_{jR}) \cos(j\theta)] + i \sum_{j=1}^{p} [(t_{jL} - t_{jR}) \sin(j\theta)]
\]

Similar to Hatano-Nelson model, we find the existence of a pseudo-PBC case as long as the following constrained relations
\[
2 \sqrt{t_{jR}/t_{jL}} = r, \quad j = 1, \cdots, p
\]
which are the same as those under PBC, while the corresponding wave functions exhibit NHSE. We also call this special case as the pseudo-PBC.

In Table 1, we display the energy spectra and eigenfunctions for non-Hermitian chains with asymmetric long-range hopping under different boundary conditions. It is noticed that pseudo-PBC exists only for the case of $p = q$, and we have $\theta = \frac{2m\pi}{N}$ ($m = 1, \cdots, N$) in the table.

CONCLUSION

In summary, we present exact solutions for general nonreciprocal chains with long-distance hopping under specific boundary conditions. Our analytical results indicate the existence of size-dependent NHSE. While the NHSE is distinct for small size system, it becomes less discernable in the large size limit. The wave functions are independent of hopping range, whereas the eigenvalue spectra are model dependent and display rich structures. We also find the existence of a special point called pseudo-PBC, for which the spectra are identical to periodic spectra when the hopping parameters meet certain conditions, while eigenstates display NHSE. Our exact solutions provide examples that the boundary terms can dramatically change the bulk properties of non-Hermitian systems. While both asymmetric and long-range hopping are hard to be realized in conventional quantum systems, electric circuits provide a platform to simulate non-reciprocal non-Hermitian systems [48, 49], which may be used to verify generalized bulk boundary correspondence and non-Hermitian skin effect. We expect that more interesting solutions can be found and be simulated in electric circuits in future works.

Table 1. Energy spectra and eigenfunctions for non-Hermitian chains with asymmetric long-range hopping under different boundary conditions.

Boundary condition	Energy spectra	Eigenfunctions
Generalized boundary condition	$E = \sum_{j=1}^{p} [t_{jL} + t_{jR}] \cos(j\theta) - i \sum_{j=1}^{p} [t_{jL} - t_{jR}] \sin(j\theta)]$	$\Psi = (\psi_1, \psi_2, \cdots, \psi_N)^T$ ($\psi_0 = \sum_{i=1}^{N} c_i z_i^0$)
$(\delta_{1R}, \cdots, \delta_{qR}, \delta_{1L}, \cdots, \delta_{pL})$	(No general solution for z_i)	
Specific boundary condition	$E = \sum_{j=1}^{p} t_{jL} (\sqrt{N} e^{i\theta})^j + \sum_{j=1}^{p} t_{jR} (\sqrt{N} e^{i\theta})^{-j}$	$\Psi = (\sqrt{N} e^{i\theta}, \cdots, (\sqrt{N} e^{i\theta})^N)^T$
$(t_{1L}, \cdots, t_{qR}) = t_{1L} = \cdots = t_{pL} = \mu$		
Periodic boundary condition $(\mu = 1)$	$E = \sum_{j=1}^{p} t_{jL} e^{i\theta j} + \sum_{j=1}^{p} t_{jR} e^{-i\theta j}$	$\Psi = (e^{i\theta}, e^{i2\theta}, \cdots, e^{iN\theta})^{T}$ (No non-Hermitian skin effect)
Pseudo-periodic boundary condition	$E = \sum_{j=1}^{p} [(t_{jL} + t_{jR}) \cos(j\theta)] - i \sum_{j=1}^{p} [(t_{jL} - t_{jR}) \sin(j\theta)]$	$\Psi = (r^2 e^{i\theta}, r^4 e^{i2\theta}, \cdots, (r^2 e^{i\theta})^N)^T$ (Exhibit non-Hermitian skin effect)
for $p = q$ case ($\mu = r^{2N}$, $\sqrt{t_{jR}/t_{jL}} = r$)		
The work is supported by National Key Research and Development Program of China (2016YFA0300600), NSFC under Grants No.11974413, and the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No. XDB33000000.

* Electronic address: schen@iphy.ac.cn

[1] Ashida Y, Gong Z, and Ueda M 2020 Adv. Phys. 69 249
[2] Bergholtz E J, Budich J C, and Kunst F K Rev. Mod. Phys. 93 015005
[3] Gong Z, Ashida Y, Kawabata K, Takasan K, Higashikawa S, and Ueda M 2018 Phys. Rev. X 8 031079
[4] Kawabata K, Shiozaki K, Ueda M, and Sato M 2019 Phys. Rev. X 9 041015
[5] Zhou H and Lee J Y 2019 Adv. Phys. B 99 235112
[6] Bergholtz E J, Budich J C, and Kunst F K Rev. Mod. Phys. 93 015005
[7] Zhou H and Lee J Y 2019 Adv. Phys. B 99 235112
[8] Lee J Y 2019 Adv. Phys. B 99 235112
[9] Lee T E 2016 Phys. Rev. Lett. 116 045702
[10] Lee T E 2016 Phys. Rev. Lett. 116 045702
[11] Liu C H, Jiang H, and Chen S 2019 Phys. Rev. B 100 125103
[12] Liu C H, and Chen S 2019 Phys. Rev. B 100 125103
[13] Lee C H and Thomale R 2019 Phys. Rev. B 100 054301
[14] Yao S and Wang Z 2020 Adv. Phys. A 100 054301
[15] Yao S and Wang Z 2020 Adv. Phys. A 100 054301
[16] Hung H, Zhen B, and Fu L 2018 Phys. Rev. Lett. 120 146402
[17] Kunst F K, Edvardsson E, Budich J C, and Bergholtz E J 2018 Phys. Rev. Lett. 121 026802
[18] Lee C H and Thomale R 2019 Phys. Rev. B 99 201103
[19] Yokomizo K and Murakami S 2019 Phys. Rev. Lett. 123 066404
[20] Zhang K, Yang Z, and Fang C, 2020 Phys. Rev. Lett. 125 126402
[21] Okuma N, Kawabata K, Shiozaki K, and Sato M 2020 Phys. Rev. Lett. 124 086801