UNVEILING A POPULATION OF GALAXIES HARBORING LOW-MASS BLACK HOLES WITH X-RAYS

M. Schramm1, J. D. Silverman3, J. E. Greene2,10, W. N. Brandt3,4, B. Luo3,4, Y. Q. Xue5, P. Capak6, Y. Kakazu7, J. Kartaltepe8, and V. Mainieri9

1 Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, the University of Tokyo, Kashiwanoha 5-1-5, Kashiwa-shi, Chiba 277-8568, Japan; malte.schramm@ipmu.jp
2 Department of Astrophysical Science, Princeton University, Princeton, NJ 08544, USA
3 Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802, USA
4 Institute for Gravitation and the Cosmos, Pennsylvania State University, University Park, PA 16802, USA
5 Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026, China
6 Spitzer Science Center, 314-6 California Institute of Technology, 1201 East California Boulevard, Pasadena, CA 91125, USA
7 Department of Astronomy, California Institute of Technology, Pasadena, CA 91125, USA
8 National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719, USA
9 European Southern Observatory, Karl-Schwarzschild-Strasse 2, Garching, D-85748, Germany

Received 2013 February 22; accepted 2013 May 10; published 2013 August 5

ABSTRACT

We report the discovery of three low-mass black hole (BH) candidates residing in the centers of low-mass galaxies at \(z < 0.3 \) in the Chandra Deep Field-South Survey. These BHs are initially identified as candidate active galactic nuclei based on their X-ray emission in deep Chandra observations. Multi-wavelength observations are used to strengthen our claim that such emission is powered by an accreting supermassive BH. While the X-ray luminosities are low at \(L_X \sim 10^{40} \text{ erg s}^{-1} \) (and variable in one case), we argue that they are unlikely to be attributed to star formation based on \(H\alpha \) or UV fluxes. Optical spectroscopy from Keck and the VLT allows us to (1) measure accurate redshifts, (2) confirm their low stellar host mass, (3) investigate the source(s) of photo-ionization, and (4) estimate extinction. With stellar masses of \(M_* < 3 \times 10^5 \text{ M}_\odot \) determined from Hubble Space Telescope/Advanced Camera for Surveys imaging, the host galaxies are among the lowest mass systems known to host actively accreting BHs. We estimate BH masses \(M_{\text{BH}} \sim 2 \times 10^6 \text{ M}_\odot \) based on scaling relations between BH mass and host properties for more luminous systems. In one case, a broad component of the \(H\alpha \) emission-line profile is detected, thus providing a virial mass estimate. BHs in such low-mass galaxies are of considerable interest as the low-redshift analogs to the seeds of the most massive BHs at high redshift which have remained largely elusive to date. Our study highlights the power of deep X-ray surveys to uncover such low-mass systems.

Key words: galaxies: active – X-rays: galaxies

1. INTRODUCTION

At the present time, nearly all massive galaxies contain supermassive \((10^6 - 10^9 \text{ M}_\odot)\) black holes (BHs) at their center. The formation mechanism of the seeds for these BHs is not known. They may have formed from the death of the first, massive stars (e.g., Li et al. 2007; Ohkubo et al. 2009; Bromm & Yoshida 2011), from the direct collapse of gas clouds (e.g., Devecchi & Volonteri 2009). Whatever the mechanism, we know that in some cases the seed BHs were initially identified as candidate active galactic nuclei based on their X-ray emission in deep Chandra observations. Multi-wavelength observations are used to strengthen our claim that such emission is powered by an accreting supermassive BH. While the X-ray luminosities are low at \(L_X \sim 10^{40} \text{ erg s}^{-1} \) (and variable in one case), we argue that they are unlikely to be attributed to star formation based on \(H\alpha \) or UV fluxes. Optical spectroscopy from Keck and the VLT allows us to (1) measure accurate redshifts, (2) confirm their low stellar host mass, (3) investigate the source(s) of photo-ionization, and (4) estimate extinction. With stellar masses of \(M_* < 3 \times 10^5 \text{ M}_\odot \) determined from Hubble Space Telescope/Advanced Camera for Surveys imaging, the host galaxies are among the lowest mass systems known to host actively accreting BHs. We estimate BH masses \(M_{\text{BH}} \sim 2 \times 10^6 \text{ M}_\odot \) based on scaling relations between BH mass and host properties for more luminous systems. In one case, a broad component of the \(H\alpha \) emission-line profile is detected, thus providing a virial mass estimate. BHs in such low-mass galaxies are of considerable interest as the low-redshift analogs to the seeds of the most massive BHs at high redshift which have remained largely elusive to date. Our study highlights the power of deep X-ray surveys to uncover such low-mass systems.

Key words: galaxies: active – X-rays: galaxies

10 Alfred P. Sloan Fellow.
et al. 2010; Leipski et al. 2012; Ho et al. 2012; Terashima et al. 2012; Araya Salvo et al. 2012; Secrest et al. 2012). On the other hand, very deep X-ray surveys now exist that reach depths capable of probing the intermediate-mass regime for BHs. For instance, the central area of the Chandra Deep Field-South Survey reaches depths (up to 4 Ms) capable of uncovering $\sim 10^2$–$10^6 M_\odot$ BHs with $L_{2-10 \text{ keV}}$ as low as 10^{-3} out to $z \approx 1$ (Babiel et al. 2007). So far, most studies of the AGN population in these deep-survey fields have focused on either the high-redshift luminous population or those hidden by obscuration. Recently, Xue et al. (2012) find that there is a significant fraction of relatively low-mass galaxies that host highly obscured AGNs at $z \sim 1$–3, which contribute to the unresolved 6–8 keV cosmic X-ray background. These surveys enable searches for accreting BHs in small stellar mass systems that are not biased by host-galaxy mass. Furthermore, such surveys have remarkable multiwavelength data that greatly facilitate our understanding of the building blocks of the more massive quasars and their host galaxies.

We use X-ray observations from the Chandra Deep Field-South Survey and its extended coverage to search for faint AGNs within the low-mass ($\sim 10^6$–$10^9 M_\odot$) galaxy population. These are galaxies most likely to harbor low-mass BHs. We select candidates with high X-ray luminosities compared to our expectations based on their optical luminosities and star formation rates (SFRs). In this exploratory work, we highlight three candidates with $0.1 < z < 0.3$, for which we also have high-quality optical spectroscopy. From the spectra, we seek additional signs of AGN activity from the strong line ratios, estimate the level of dust extinction, and place some limits on the SFRs. Using high-resolution imaging from Hubble Space Telescope/Advanced Camera for Surveys (HST/ACS), we present properties of the host galaxies. A follow-up study (M. Schramm et al., in preparation) will present the full population of AGNs associated with low-mass galaxies up to $z \sim 1$.

2. DATA AND SAMPLE SELECTION

We first select a sample of low-mass galaxies using the GEMS survey (Rix et al. 2004) in the Extended Chandra Deep Field-South (E-CDF-S) field that provides HST/ACS imaging over 0.3 deg2. Photometric redshifts are provided by the MUSYCYC survey (Cardamone et al. 2010) that are based on 32 bands of optical and infrared imaging. Due to the wealth of spectroscopic programs in the E-CDF-S (e.g., Szokoly et al. 2004; Vanzella et al. 2008; Popesso et al. 2009; Treister et al. 2009; Silverman et al. 2010; Cooper et al. 2012), we are able to replace photometric redshifts with spectroscopic values if available. We start by selecting galaxies with $z < 1$ such that one of the two HST filters falls above the 4000 Å break for sensitivity to older stellar populations. Stellar masses are determined from the galaxy absolute magnitude M_V and rest-frame color $B-V$ as measured from HST imaging, following the prescription of Bell et al. (2003). Our stellar mass estimates match well with those from the MUSYCYC survey (Cardamone et al. 2010) as derived from broadband spectral energy distribution (SED) fitting, for galaxies with secure spectroscopic redshifts that are in agreement with the photometric redshifts.

In this sample, there are ~ 5200 galaxies with $M_\ast < 3 \times 10^9 M_\odot$. The galaxy cutoff mass we choose is somewhat arbitrary, but does focus on a stellar-mass regime where only a few AGNs are already known (see, e.g., Figure 1 of Xue et al. 2010; note the $3 \times 10^9 M_\odot$ cutoff line in their Figure 1).

Figure 1. Rest-frame $U-V$ as a function of stellar mass for galaxies ($z < 1$) in the GEMS survey. All X-ray sources with $L_X < 10^{48} \text{erg s}^{-1}$ and $z_{\text{spec}} < 1$ are shown in red, while those of interest for this study at $z < 0.3$ are marked in green. The dashed line indicates our selection criterion of $M_\ast < 3 \times 10^9 M_\odot$.

Specifically, low-mass BHs found through optical selection using the SDSS (Greene & Ho 2007b) are typically found in higher-mass galaxies with stellar masses of a few times 10^5–$10^9 M_\odot$ (see also Dong et al. 2012). The stellar-mass regime below $\sim 10^9 M_\odot$ has yielded essentially no AGNs in optically selected searches (Ho et al. 1997; Kauffmann et al. 2003; Barth et al. 2008). Also, based on a naive extrapolation of the BH-to-bulge mass relation of Haering & Rix (2004), these galaxies are likely to harbor a BH with $M_{\text{BH}} < 2 \times 10^6 M_\odot$.

Finally, the upper limit on the stellar mass of the parent galaxy population focuses our search for low-mass BHs at the low-mass end of the blue cloud, a region of parameter space in the color–mass plane (see Figure 1), where galaxies are likely to be forming stars rapidly.

Multi-wavelength catalogs of X-ray sources in the CDF-S (Young et al. 2010; Silverman et al. 2010; Xue et al. 2011) provide robust matches to optical counterparts, including low-mass galaxies, based upon a likelihood-ratio matching routine. We find 27 galaxies with $z < 1$, $M_\ast < 3 \times 10^9 M_\odot$, and an X-ray detection. We note that all X-ray sources have a wavdetect false-positive probability of 10^{-3}. Of these 27 galaxies, we concentrate here on the three galaxies (out of a parent population of ~ 2100) with $z < 0.3$ and existing optical spectra and a high ratio of X-ray to optical luminosity. At these redshifts our spectra cover four strong optical emission lines: Hβ, [O III] $\lambda\lambda 4959, 5007$, Hα, and [N II] $\lambda\lambda 6548, 6584$, which will be used for further classification and analysis.

In this paper, we present three candidate AGNs in low-mass galaxies, selected to have a high ratio of X-ray to optical luminosity as detailed below. If confirmed, these galaxies would be among the lowest-mass host galaxies known (see also Barth et al. 2008; Reines et al. 2011). Two of them (XID-476, XID-231) are detected in the shallower E-CDF-S coverage (Lehmer et al. 2005) and the third (XID-312) within the central 4 Ms area (Xue et al. 2011) with more than 100 counts in the full band (0.5–8 keV). In Figure 2, we show postage-stamp HST/ACS images of the three low-mass galaxies while indicating the X-ray centroid and an effective search radius for an optical counterpart that demonstrates the likelihood of these associations. In the remainder of this paper, we combine the HST imaging (Figure 2), the optical spectroscopy from...
Schramm et al.

Figure 2. HST/ACS images of three low-mass galaxies determined to be the optical counterparts of the Chandra detections (left: 231; middle: 476; right: 312). A blue cross marks the centroid position of the X-ray detections. A circle indicates an effective search radius of 1″.

Keck/DEIMOS (Silverman et al. 2010) and VLT/VIMOS (Szokoly et al. 2004) (Figure 3), and the broadband SED to argue that each of these sources is a viable candidate to host a low-mass AGN (Section 3).

3. DISENTANGLING X-RAY EMISSION FROM AGNs AND NORMAL GALAXIES

We present our case that these three X-ray-detected galaxies are most naturally explained as being powered by accretion onto a massive BH. There are many other processes that lead to X-ray emission from galaxies, including an unresolved contribution of low-mass and high-mass X-ray binaries or thermal emission from hot gas (e.g., Fabbiano 2006). In particular, the high-mass X-ray binary population is likely to contribute significantly to those galaxies with high SFRs. Fortunately, there are many studies (e.g., Ranalli et al. 2003; O’Sullivan et al. 2003; Lehmer et al. 2010; Boroson et al. 2011) of X-ray emission from inactive galaxies (with no AGN) that enable us to determine whether the level of X-ray emission is characteristically higher than that expected for galaxies of a given luminosity (i.e., stellar mass) and SFR.

We first show that our candidates have excess X-ray emission compared to that expected from early-type galaxies based on their optical continuum luminosities and then we show that the sources have even more anomalous X-ray luminosity given their inferred SFRs. In Figure 4, we plot the distribution of X-ray luminosity as a function of B-band luminosity. The 1σ region of parameter space where X-ray emission is characteristic of early-type galaxies (O’Sullivan et al. 2003) is shaded. For reference, we also include all galaxies with X-ray detections (L_X < 10^{44} erg s^{-1}) and z < 1 in red. The dashed line gives the 1σ upper boundary for star-forming galaxies (Lehmer et al. 2010).

We show the location of our three low-mass galaxies at z < 0.3 that are X-ray emitters (green points). Although XID-312 is just above our selection criteria in the L_X - L_B plane, the galaxy has been reported to be X-ray variable in the recent study by Young et al. (2012), who concluded that the observed variability cannot be due to binary populations or ultraluminous sources but rather is best explained by an accreting black hole. Its X-ray hardness ratio, defined as HR = (H - S)/(H + S), where S and H are the soft (0.5–2 keV) and hard (2–8 keV) band net counts, is HR = −0.2 (Xue et al. 2011). The observed hardness ratio suggests some absorption by neutral gas with a density of about N_H ~ 10^{22} cm^{-2} (see Figure 9 in Silverman et al. 2005). There are 22 low-mass (M_* < 3 × 10^9 M_☉) galaxies at z < 1 that have an L_X-to-L_B ratio more than 1σ away from

Figure 3. Optical spectra taken with either Keck/DEIMOS (XID = 231 and 476) or VLT/FORS2 (XID = 312). Units are given in relative flux. For XID-312 we plot the spectrum before and after stellar continuum subtraction. The best-fit continuum is shown in red.
the typical relation for early-type galaxies, including the three galaxies at $z < 0.3$ that are the focus of this study.

Now we turn to the optical line emission; see Figure 3 for additional clues as to the nature of these sources. We use traditional emission-line ratio diagnostics (e.g., Kewley et al. 2006) to determine the dominant source of photo-ionization in these galaxies (AGN activity or star formation). We perform a line-fitting routine to measure the strengths of the emission lines. We first fit the spectrum with a low-order polynomial to model the continuum adjacent to the emission line and then subtract it from the spectrum. In the cases of XID-476 and XID-231, we do not detect any starlight in the continuum. Line fluxes are measured by integrating our best fit obtained for a multi-Gaussian model. For XID-312, there is significant galaxy fluxes are measured by integrating our best fit obtained for a multi-Gaussian model. From the total emission-line intensity ratios from Kauffmann et al. (2003), we estimate the metallicities of the three galaxies. From the $[\text{N} \text{II}] / H\alpha$ ratio, using the empirical calibration of Nagao et al. (2006), we estimate the metallicities of the three host galaxies to be in the range of 0.3–0.6 solar metallicity.

From the total emission-line intensity ratios $I(H\alpha) / I(H\beta)$, we estimate that all three galaxies show internal extinction ranging from $A_V = 0.9$ to 1.6 mag. In the case of XID-312, we report here a possible identification of a broad Hα line in the low-resolution optical spectrum from Szokoly et al. (2004). We performed the decomposition of the Hα profile into a Gaussian for the broad component and the $[\text{O} \text{III}]$ line profile to model the narrow Hα and $[\text{N} \text{II}]$. We estimate that the broad component has an FWHM of ~ 1400 km s$^{-1}$ (corrected for instrumental resolution) but caution that the resolution of this spectrum is low, and the continuum is dominated by galaxy light. The corresponding BH mass would be $\log M_{\text{BH}} / M_\odot = 5.3$ using the calibration of Greene & Ho (2005).

Although X-ray variability of this source and the broad Hα line are strong indications of an AGN, the overall line ratios place consistent SFR estimation again assuming no contribution from accretion. We find that for these upper limits on the SFRs, the X-ray emission is consistent with those seen in galaxies with masses of $\sim 10^9$ M_\odot (Elbaz et al. 2007). As a second SFR estimator, we use the extinction-corrected GALEX–NUV flux measurement, which gives a consistent SFR estimation again assuming no contribution from accretion. We find that for these upper limits on the SFRs, the X-ray emission is $>4\sigma$ (XID-231, XID-476) and $\sim 3\sigma$ (XID-312) larger than expected for star-forming galaxies (see Figure 6) using the relations given in Mineo et al. (2011) and Lehmer et al. (2010).

Therefore, there are two possible explanations for our sources. First, they have one or several highly super-Eddington X-ray binaries, or ultra-luminous X-ray sources. Second, they contain accreting nuclear BHs. In either case, they are interesting...
outliers from the SFR– L_X relations. In the case of XID-312, the X-ray variability and broad Hα line both suggest that the source is powered by a massive BH. We test the possibility of some super-Eddington X-ray binaries through a simple Monte Carlo test. We find that the probability for the two remaining galaxies to be outliers (>4σ) in the L_X–SFR relation is <0.2% based on our parent population of ~2100 galaxies at z < 0.3. We expect at most one false positive detection at 4σ within our parent. For this test we make the conservative assumption that we have a uniform X-ray sensitivity of the 4 Ms survey for the full parent population.

4. HOST-GALAXY MORPHOLOGY

We examine the host morphologies of each AGN candidate to provide some clues as to the formation mechanism of these low-mass BHs and their hosts. XID-312 falls within the GOODS-South area with coverage with five HST filter bands (ACS: F435W, F606W, F775W, F850LP, and F814W). We could not find a point source in a two-dimensional fit to the HST images (given a limiting host-to-nuclear flux ratio host/nuclear > 50) that included an empirical point-spread function (PSF) model created from nearby stars. We use a composition of three Sérsic profiles to fit the galaxy of XID-312. We use an n = 1 and n = 4 model to describe the disk and the bulge of the galaxy and an extended component with n = 0.42. We estimate the bulge-to-total ratio B/T = 0.16 (in the z band) showing that the galaxy is mostly disk dominated. Although the galaxy is disk dominated, we do not see any signs of spiral arms, even at the resolution of HST. For the estimated BH mass of 2 × 10^5 M⊙ from the broad Hα emission line and the stellar bulge mass, we find for the measured B/T, XID-312 falls onto the BH mass–bulge mass relation established for local galaxies by Haering & Rix (2004), see Figure 7). The bulge component of XID-312 appears to be consistent with the relation at higher mass as well as the bulge components of disks from Greene et al. (2008) with similar BH masses.
Figure 8. Observed $F606W - F850LP$ color profile of (from left to right) XID-231, XID-476, and XID-312 (solid squares). For comparison we show the average color profile of a redshift and mass matched sample of inactive galaxies (crosses) and the error of the mean as the gray shaded area. The vertical line shows the typical size of the PSF.

Table 1

ID	R.A.	Decl.	Redshift	R_{AB}	$\log M_\ast^{a}$	n_{Sersic}	$\log f_X^{b}$	$\log L_X^{b}$	$\log M_{BH}$	
231c	52.98483	-27.736667	0.128	22.7	8.3 (7.7)	2.4	$9.4^{+4.8}_{-3.4}$	-15.3	40.3	5.2
476a	53.207625	-28.006750	0.285	23.6	8.5 (8.2)	3.3	$8.8^{+5.5}_{-3.6}$	-15.3	41.1	5.4
312d	53.094917	-27.873389	0.131	20.4	9.2 (8.8)	2.9	$112.4^{+15.3}_{-13.9}$	-15.4	40.3	5.3 (virial)

Notes.
a Mass estimate based on GEMS (Rix et al. 2004), while that in parentheses is from the MUSYC survey (Cardamone et al. 2010).
b 0.5–8.0 keV band; rest-frame L_X.
c X-ray ID given in Lehmer et al. (2005).
d X-ray ID given in Xue et al. (2011); XID = 521 in Giaconi et al. (2002) and Szokoly et al. (2004).

5. CONCLUSIONS

We have identified three galaxies at $z < 0.3$ with stellar masses below $3 \times 10^9 M_\odot$ that likely harbor low-mass BHs. If confirmed, these would be among the lowest-mass galaxies known to host an AGN. They are roughly an order of magnitude more luminous in the X-rays than expected for highly super-Eddington X-ray binaries, or ultra-luminous X-ray sources based on their continuum luminosities or their estimated SFRs. Assuming the empirical relation between BH mass and bulge mass (e.g., Haering & Rix 2004), we can estimate the BH masses to be of order $\sim 2 \times 10^5 M_\odot$.

Accreting BHs in low-mass galaxies may contribute significantly to the hard X-ray background (Xue et al. 2012) so studying the host-galaxy properties in detail is an important task. The morphological analysis of the HST imaging data shows that each host is different. While XID-476 has an early-type host galaxy, XID-312 shows an intermediate and XID-231 an irregular host galaxy. Although all three galaxies show different morphologies, XID-312 and XID-476 have in common a blue core in the center of the galaxy (<0.7 kpc). This suggests that the ionizing source is located in the center of the galaxy and could therefore be an AGN. The diversity in the host morphology provides an insight into how BHs interacted with their host environment in the early universe (Reines et al. 2011; Jeon et al. 2012).

Of the three low-mass AGN candidates, XID-312 shows the strongest evidence of having an accreting BH. Besides the excess in the X-ray emission (compared to SFR and optical continuum luminosity) and the X-ray variability (Young et al. 2012), this object shows an indication of a broad Hα emission line with an FWHM of 1400 km s$^{-1}$ resulting in a corresponding BH mass of $\sim 2 \times 10^5 M_\odot$. This estimate is consistent with the BH mass prediction using the local BH mass–bulge mass. Although only a single object with independent BH and bulge mass estimate, XID-312 nicely extends the local relation at the low-mass end. For the other two sources the strong observed X-ray emission (although based on typically <10 X-ray counts), more than 4σ above the expected emission from star-forming galaxies, is the strongest argument for hosting an AGN. Performing a conservative Monte Carlo test, we find that the probability for just being outliers as star-forming galaxies is $<0.2\%$ based on our parent population of ~ 2100 galaxies at $z < 0.3$. More definitive proof that these two galaxies harbor AGNs could come from additional epochs of X-ray observations looking for variability similar to XID-312. In addition, resolved spectroscopy of the core region of the host...
looking for notable line ratios might also give further evidence of the presence of an AGN.

Eventually we want to understand whether all low-mass galaxies, such as those studied in this paper, host supermassive BHs. However, the story is complicated because as one goes to lower stellar mass, both the total occupation fraction (number of galaxies hosting a BH (e.g., Volonteri & Natarajan 2009; Bellovary et al. 2010) and the distribution of Eddington ratios (e.g., Schulze & Wisotzki 2010; Nobuta et al. 2012; Aird et al. 2012) may change in principle. Without independent constraints on the Eddington ratio distribution, we can derive only crude limits on the occupation fraction (e.g., Greene 2012). However, we hope to gain more insights, and better statistics, from studying the full sample of 27 potential low-mass BHs residing in low-mass galaxies identified in this work.

The authors fully appreciate the useful discussions with Aaron Barth and Masayuki Tanaka that improved the paper.