Locally excitable Cdc42 signals steer cells during chemotaxis

Hee Won Yang1,3,4, Sean R. Collins1,2,3,4 and Tobias Meyer1,4

Neutrophils and other amoeboid cells chemotax by steering their front ends towards chemoattractant. Although Ras, Rac, Cdc42 and RhoA small GTPases all regulate chemotaxis, it has been unclear how they spatiotemporally control polarization and steering. Using fluorescence biosensors in neutrophil-like PLB-985 cells and photorelease of chemoattractant, we show that local Cdc42 signals, but not those of Rac, RhoA or Ras, precede cell turning during chemotaxis. Furthermore, pre-existing local Cdc42 signals in morphologically unpolarized cells predict the future direction of movement on uniform stimulation. Moreover, inhibition of actin polymerization uncovers recurring local Cdc42 activity pulses, suggesting that Cdc42 has the excitable characteristic of the compass activity proposed in models of chemotaxis. Globally, Cdc42 antagonizes RhoA, and maintains a steep spatial activity gradient during migration, whereas Ras and Rac form shallow gradients. Thus, chemotactic steering and de novo polarization are both directed by locally excitable Cdc42 signals.

Neutrophils are professional chemotactic cells that rapidly migrate towards sites of tissue injury and infection. They initiate directed cell migration (chemotaxis) in response to sources of chemoattractants such as N-formyl-methionine-leucine-phenylalanine (fMLF). Even in response to spatially uniform increases in chemoattractant, neutrophils polarize and move in a curving random walk behaviour termed chemokinesis1-3. However, when such a migrating cell experiences a gradient of attractant, it gradually turns its front end more often towards the higher concentration to generate a biased random walk behaviour4-7. This directed gradual turning of the front ends of migrating cells has been termed chemotactic steering8. To computationally reproduce these two distinct directional control mechanisms, theories of chemotaxis of amoeboid cells such as neutrophils and Dictyostelium discoideum require that combined positive and negative feedback circuits generate an excitable network to produce a local compass activity9-11. Molecularly, polarization and chemotactic steering are controlled by chemoattractants such as fMLF that activate G-protein coupled receptors to regulate phosphoinositide 3-kinase (PI3K), Ras, Rac, Cdc42, RhoA and other signals, which in turn control dynamic changes in actin and myosin11-16.

Different studies have shown that PI3K, Ras, Rac, Cdc42 and RhoA can all be activated by positive feedback1,11,17-24, suggesting that each of them has the potential to be the elusive chemotactic compass in excitable network models. Although PI3K signalling initially emerged as the leading candidate among these putative compass activities11,25,26, it has since been shown that cells can chemotax in the absence of PI3K activity, albeit less effectively27,28. On the other hand, genetic studies have shown that Rac, Cdc42 or RhoA knockout leukocytes and Ras mutant Dictyostelium all have severely impaired chemotaxis28,29-33. Even though Rac has been a leading candidate to direct the steering of neutrophils24,35, the observed feedbacks for the other GTPases suggest that local Ras or Cdc42 signalling at the front, or alternatively RhoA signalling at the cell back, could be responsible for steering.

A major limitation for understanding chemotaxis has been that we do not know if and how small GTPases are spatiotemporally coordinated when neutrophils polarize, migrate and steer towards chemoattractant. Here we show that local Cdc42 signals within the front of migrating cells directly turn towards chemoattractant to mediate the chemotactic steering behaviour. We further show that basal local Cdc42 signals direct de novo polarization to mediate the chemokinesis migration behaviour. Finally, we show that Cdc42 activity exhibits local excitability, a requirement for Cdc42 to be the elusive chemotactic compass in excitable network models of chemotaxis9,10.

RESULTS

Light-induced activation of chemotaxis

We investigated the spatiotemporal dynamics of small GTPase signalling in neutrophil-like PLB-985 cells by monitoring GTPase activity using stably expressed fluorescence resonance energy transfer biosensors.
local signalling at the left or chemoattractant requires.

Steering towards chemoattractant requires local signalling at the left or right.

Local basal signals in unpolarized cells may mark the direction of future migration during chemokinosis.

Local self-amplification of a signal is required in models of chemotaxis.

Figure 1 Neutrophil chemotaxis controlled by automated photorelease of chemoattractant. (a) Schematic representation of the chemokinesis and chemotaxis processes. De novo polarization and chemotactic steering are two key directional mechanisms for chemotaxis. Putative local GTPase activities during these processes are indicated with blue and red colours. (b) Schematic representation of the microscope system used to generate gradients of the chemoattractant fMLF by light-triggered photorelease. In between imaging acquisitions, the stage is moved to deliver an uncaging pulse at a defined position relative to the imaging field of view. UV, ultraviolet. (c) Control experiment, visualizing the gradient of light-induced photorelease of caged fluorescein by confocal microscopy. The colour bar indicates the relative fluorescence intensity. (d) Movement of cells in a biased random walk in a chemoattractant gradient. A membrane marker is shown in green and a nuclear marker in red, and cell tracks are overlaid. The direction of the chemoattractant gradient is indicated with an asterisk. The time relative to the initial gradient generation is indicated. Scale bar, 50 μm.

(FRET) biosensors. As expression of GTPase biosensors can perturb cell migration through interactions with endogenous components, we sorted cells to achieve relatively low and consistent expression levels. Using a systematic chemotaxis assay we developed recently, we confirmed that cells expressing each of the biosensors have approximately the same speed, chemokinesis and directionality as sensor-free cells (Supplementary Fig. 1a–d).

To more closely reflect a neutrophil’s migration environment in vivo, we used an under agarose system, which squeezes cells into a confined space, where they effectively polarize and chemotax. We generated gradients of chemoattractant by employing a chemically caged derivative of fMLF (N-nitroveratryl derivative fMLF, Nv-fMLF; refs 37,40) combined with automated ultraviolet illumination to shape chemoattractant gradients (Fig. 1b). Gradient protocols were calibrated and optimized using caged fluorescein (Fig. 1c). In response to attractant uncaging, cells activated signalling pathways (Supplementary Fig. 1e,f) and rapidly migrated in a biased random walk towards higher fMLF concentrations (Fig. 1d).

Steep polarization of Cdc42 and RhoA activities, and broader patterns of Ras and Rac activities, at the leading edge of chemotaxing neutrophil-like cells

We measured spatial activity gradients of Ras, Rac, Cdc42 and RhoA in chemotaxing cells as a function of distance behind the protruding leading edge (Supplementary Fig. 2a). We averaged spatial profiles over time and then normalized them to the levels at the front edge (Supplementary Fig. 2b,c). Consistent with earlier polarity studies, we confirmed that Rac and Cdc42 activities were higher at the front of cells, whereas RhoA activity was lower at the front (Fig. 2a,b,d). However, the activity gradient of Rac was much less steep than that of Cdc42 (Fig. 2a,b and Supplementary Videos 1 and 2), and the activity of Cdc42 peaked at the leading edge (Fig. 2f), whereas Rac activity peaked 5 μm behind (Fig. 2e). The activity of Ras, an important regulator of Dictyostelium chemotaxis and a regulator of PI3K and other processes in neutrophils, was polarized with a gradient similarly shallow to that of Rac (Fig. 2c,g and Supplementary Video 3). Finally, we observed a steep depletion of RhoA activity at the leading edge, with an activity gradient that was inverse at the front to that of Cdc42 (Fig. 2d,h and Supplementary Video 4). Interestingly, these intracellular GTPase signalling gradients are largely independent of whether or not an external chemoattractant gradient is present (Fig. 2e–h).

We further tested whether the spatial gradients of the GTPase activities are dependent on PI3K activity by repeating the above experiment in the presence of the PI3K inhibitor LY294002 (LY29), which blocked the membrane translocation of a phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3)-responsive pleckstrin homology (PH) domain of Akt (PH1P1; Supplementary Fig. 3a,b). Consistent with previous findings that PI3K is not required for chemotaxis, the relative activity profiles of all four GTPases were unaffected (Fig. 2e–h and Supplementary Fig. 3c). Thus, the protrusive leading edge is marked by steep opposing local gradients of Cdc42 and RhoA activities, with more broadly extending gradients of Rac and Ras activities, and our results suggest that these intracellular

NATURE CELL BIOLOGY VOLUME 18 | NUMBER 2 | FEBRUARY 2016

© 2016 Macmillan Publishers Limited. All rights reserved
Figure 2 Cdc42 and opposing RhoA activities are steeply polarized at the front. (a–d) Spatial activity profiles of Rac, Cdc42, Ras and RhoA in a light-induced gradient of fMLF (approximately 8% across a cell). Time relative to gradient stimulation is marked and the direction of the chemoattractant gradient is indicated with an asterisk. The colour bars indicate the range of biosensor FRET ratios. Scale bar, 10 μm. (e–h) Relative activities of Rac, Cdc42, Ras and RhoA in migrating cells as a function of distance behind the leading edge. Values are normalized to the levels at the front edge. The error bars indicate ± s.e.m. of n = 10 (Rac control uniform), n = 18 (Rac control gradient), n = 18 (Rac LY29 (50 μM) gradient), n = 9 (Cdc42 control uniform), n = 26 (Cdc42 control gradient), n = 16 (Cdc42 LY29 (50 μM) gradient), n = 13 (Ras control uniform), n = 19 (Ras control gradient), n = 7 (Ras LY29 (50 μM) gradient), n = 10 (RhoA control uniform), n = 44 (RhoA control gradient) and n = 14 (RhoA LY29 (50 μM) gradient) cells. Time-averaged gradients are shown, including all cells measured for each GTPase.

Local Cdc42 signals within the cell front precede turning towards chemoattractant

As neutrophils polarize and migrate, their sensitivity to chemoattractant is high at the front and suppressed at the back. To turn towards a chemoattractant source, neutrophils must therefore compute chemoattractant concentration as a left versus right difference across the cell front. Although exogenous local activation of Rac at the front has been shown to induce cell turning, it is not yet known whether the endogenous mediator of steering is indeed Rac. By definition, the endogenous mediator of steering must transiently increase in the left or right side of the front before cells turn during chemotactic steering.

To observe a large number of turning events under standardized conditions, we induced efficient turning by switching the direction of an fMLF gradient from the bottom to the right of the imaging area (Fig. 3a). We then carried out a temporal cross-correlation analysis between the GTPase activity difference between the left and right sides of the cell front on the one hand and the angular change in the direction of migration on the other (see Methods for details). Strikingly, only local elevation of Cdc42 signals preceded turning of migrating cells, with a temporal offset of about 7.5 s (Fig. 3b, c and Supplementary Video 5). No such correlation was observed for local Ras or Rac signalling (Fig. 3c and Supplementary Fig. 4a, b). RhoA showed an opposing albeit weaker correlation, with depletion of its activity preceding turning by a similar time (Fig. 3c and Supplementary Fig. 4c). We confirmed our results with an alternate analysis modelled after a strategy used in fibroblasts by defining a ‘signalling vector’ as a weighted average of vectors pointing towards cell edge regions of high GTPase activity. The direction of this signalling vector correlated with future cell turning only for Cdc42 activity (Supplementary Fig. 4d, e). These results suggest that, of the
of the cell to the centre of the cell front. A yellow arrow indicates asymmetry in Cdc42 activity across the cell front. Cdc42 activity is represented as a colour scale. Time relative to stimulation is indicated and the direction of the chemoattractant gradient is indicated with an asterisk. Scale bar, 10 μm.

(c) Comparison of the temporal cross-correlation analysis between GTPase activity difference between the left- and right-hand sides of the cell front and the angular change in direction of migration. The error bars indicate ± s.e.m. of n = 41 (Rac), n = 47 (Cdc42), n = 42 (Ras) and n = 47 (RhoA) cells.

Only local basal Cdc42 activity predicts the future direction of polarization

Before neutrophils start to migrate during chemokinesis or chemotaxis, the unpolarized cell must break symmetry. We investigated the spatial dynamics of GTPase activities during de novo polarization of PLB-985 cells using uniform photorelease of Nv-fMLF to trigger a chemokinesis response (Supplementary Fig. 5a). We first investigated GTPase activities in morphologically unpolarized cells and observed locally fluctuating activities for all GTPases (Supplementary Fig. 5b). Using time-lapse analysis, we noticed that small regions of elevated Cdc42 activity before stimulation seemed to mark the cell’s eventual direction of polarization (Fig. 4a and Supplementary Video 6). To quantify this observation, we measured the angle between the site of maximal GTPase activity at the cell periphery before stimulation and the eventual direction of polarization after stimulation (Fig. 4b). Pre-existing asymmetry in Cdc42 activity was highly predictive of the future direction of cell polarization. In contrast, asymmetry in Ras, Rac and RhoA activity showed no predictive power (Fig. 4c). The same analysis showed a clear correlation between the lowest peripheral Cdc42 activity and the future back orientation, but there was no correlation between the lowest RhoA activity and the future front (Supplementary Fig. 6a). This suggests that fluctuating Cdc42 activities directly predicted asymmetry breaking and de novo polarization on induction of chemokinesis. Thus, rather than relying on two separate mechanisms, leukocytes employ Cdc42 signals for both the chemotactic steering of already polarized migrating cells and the de novo polarization of unpolarized cells.

Pulsatile and spatially focused Cdc42 activity reveals characteristics of a locally excitable network

Most models for chemotaxis require that the compass activity directing the turning of migrating cells is locally amplified within an excitable network. As the actin cytoskeleton and small GTPase signals are connected by feedback, we determined whether actin polymerization is necessary for local Cdc42 increases. Surprisingly, on inhibition of actin polymerization using latrunculin A (LatA), we observed high amplitude local pulses of Cdc42 activity that changed their intensity and location over time even in the absence of chemoattractant (Fig. 5a,b and Supplementary Video 7). This behaviour of Cdc42 was independent of PI3K (Supplementary Fig. 7) and reminiscent of pulsatile activations of Ca²⁺ and Erk signalling that involve autocatalytic positive feedback paired with a slower negative feedback. The pulsatile behaviour of Cdc42 activation persisted for long time periods (Fig. 5c,d), with a typical pulse duration of about 10 s (Fig. 5e), a median time between peaks of 25 s (Fig. 5d) and a local spatial diameter of about 5 μm (Fig. 5f). Further indicative of a locally excitable system, we observed in many cells Cdc42 activation waves that propagated across the length of a cell at a speed of about 1.1 μm s⁻¹ (Fig. 5a,b,g).
The observation of actin-independent pulsatile Cdc42 activation was surprising, because previous models of chemotaxis included actin polymerization as part of positive feedback-driven local excitatory loops\(^{16,26}\). As local Cdc42 signals do not spatially propagate in the absence of LatA, actin polymerization may instead have a role in locally stabilizing pulses of Cdc42 activity. Thus, rather than mediating a gradual increase in activity, signalling from the receptor may trigger local pulses of Cdc42 activity, a characteristic feature of the chemotactic compass in excitable network models.

Cdc42 and RhoA polarize earlier than Ras and Rac, coincident with the first polarized membrane protrusion

To gain insight into how Cdc42 might direct cell steering downstream of receptor activation, we monitored the spatiotemporal signalling dynamics of the four GTPases. We first found that, on uniform stimulation of unpolarized cells, the activities of Ras, Rac and Cdc42 increased over a 10 s interval with almost identical kinetics and that the activity of RhoA decreased during the same interval (Fig. 6a). However, it takes cells approximately 50 s to reach a steady state of polarization, providing further support for the role of Cdc42 and possibly RhoA in de novo polarization. RhoA activity showed initially a slight relative depletion of its activity in the nascent protrusion, before polarizing maximally towards the front with a delay. In contrast, the maximal induction of Cdc42 and Rac activities were observed (Fig. 6d,e). Rac activity showed initially a slight loss of its activity in the nascent protrusion, before polarizing maximally towards the front with a delay. In contrast, the maximal induction of Cdc42 and Rac activities correlated with cells reaching their steady state speed, providing further support for a central role for Cdc42 and potentially RhoA in de novo polarization.

Local activation of Cdc42 and inactivation of RhoA are correlated in space and time with local membrane protrusion

We further examined the relationship between local GTPase activities and membrane protrusion in steadily moving cells by carrying out a spatial correlation analysis. We parameterized the edge of the cell into 60 evenly spaced regions (Supplementary Video 2) and measured FRET signals for each local region at each time, as well as the local

Figure 4 Basal Cdc42 activity fluctuations in morphologically unpolarized cells predict the future direction of cell polarization.

(a) Examples of morphologically unpolarized cells with asymmetric Cdc42 activity before stimulation (left-hand column). Pink arrows indicate the site of pre-existing Cdc42 activity at the cell periphery. Cdc42 activity is indicated by the colour scale. Scale bar, 10 μm. (b) Schematic representation for analysing the angular difference between direction of movement and direction of the maximal peripheral GTPase activity before stimulation. White arrow is the polarization direction, and yellow arrow shows the maximum GTPase activity. Shown are the contour of the edge of a cell before stimulation, coloured according to the FRET ratio, overlaid with the contour (in grey) of the same cell after polarization and initial movement. Scale bar, 10 μm. (c) Rose plots showing distributions of the angle between the maximal local GTPase activity before stimulation and the subsequent migration direction. Red indicates angles between −30 and 30°; \(P < 0.0001\); \(n = 68\) (Rac), \(n = 69\) (Cdc42), \(n = 63\) (Ras) and \(n = 65\) (RhoA) cells.

\(\theta\)
Locally pulsatile Cdc42 activity in the absence of actin polymerization argues for the existence of an excitable network. (a) Examples of locally pulsatile Cdc42 activity revealed by treating cells with LatA (1 µM). The Cdc42 activity is indicated by the colour scale. The white dots mark the location of maximum Cdc42 activity. The images were taken every 2 s for 120 s. Scale bar, 10 µm. (b) Kymographs of Cdc42 activity for cell 1 in a treated with LatA (1 µM), showing different timescales. The Cdc42 activity was averaged over the vertical (y-axis) direction to get a one-dimensional profile for each timepoint. Images were taken at 2 s intervals. The Cdc42 activity is indicated by the colour scale. (c) Kymograph of linescan Cdc42 activity in a LatA (1 µM)-treated cell. Images were taken every 5 s for 420 s. Cdc42 activity is indicated by the colour scale. (d) Quantitative measurements of local Cdc42 activity in LatA (1 µM)-treated cells. Shown is a temporal trace for a selected 5 µm square region within an individual cell. Images were taken every 5 s for 420 s. (e) Temporal profile of peaks of Cdc42 activity in LatA (1 µM)-treated cells. Peaks of Cdc42 activity were automatically detected from time courses of activity in 6 µm square regions within cells. The peaks were aligned at their maxima and then averaged. Images were taken at 2 s intervals. The error bars indicate ±s.e.m. of n = 66 cells. (f) Spatial autocorrelation of Cdc42 activity in LatA (1 µM)-treated cells. Images were taken at 2 s intervals. Error bars indicate ±s.e.m. of n = 85 cells. (g) Histogram of instantaneous speeds of Cdc42 waves. n = 107 cells. Images were taken at 2 s intervals.

Figure 5 Locally pulsatile Cdc42 activity in the absence of actin polymerization argues for the existence of an excitable network. (a) Examples of locally pulsatile Cdc42 activity revealed by treating cells with LatA (1 µM). The Cdc42 activity is indicated by the colour scale. The white dots mark the location of maximum Cdc42 activity. The images were taken every 2 s for 120 s. Scale bar, 10 µm. (b) Kymographs of Cdc42 activity for cell 1 in a treated with LatA (1 µM), showing different timescales. The Cdc42 activity was averaged over the vertical (y-axis) direction to get a one-dimensional profile for each timepoint. Images were taken at 2 s intervals. The Cdc42 activity is indicated by the colour scale. (c) Kymograph of linescan Cdc42 activity in a LatA (1 µM)-treated cell. Images were taken every 5 s for 420 s. Cdc42 activity is indicated by the colour scale. (d) Quantitative measurements of local Cdc42 activity in LatA (1 µM)-treated cells. Shown is a temporal trace for a selected 5 µm square region within an individual cell. Images were taken every 5 s for 420 s. (e) Temporal profile of peaks of Cdc42 activity in LatA (1 µM)-treated cells. Peaks of Cdc42 activity were automatically detected from time courses of activity in 6 µm square regions within cells. The peaks were aligned at their maxima and then averaged. Images were taken at 2 s intervals. The error bars indicate ±s.e.m. of n = 66 cells. (f) Spatial autocorrelation of Cdc42 activity in LatA (1 µM)-treated cells. Images were taken at 2 s intervals. Error bars indicate ±s.e.m. of n = 85 cells. (g) Histogram of instantaneous speeds of Cdc42 waves. n = 107 cells. Images were taken at 2 s intervals.

-protrusion or retraction rate of the corresponding cell edge segment between frames. In a spatial kymograph analysis, we found that elevated Cdc42 activity and depleted RhoA activity correlated tightly in space with membrane protrusion, whereas Ras and Rac activities were increased over a much broader region than the protruding membrane segment (Fig. 7a–d; middle). We next carried out a temporal cross-correlation analysis that has previously been carried out for RhoA, Rac and Cdc42 in slowly migrating and stationary fibroblasts. Rac activity followed protrusion (Fig. 7a), similar to the results for Rac in fibroblasts. Local Ras activity, which was not analysed in fibroblasts, also followed with a lag after protrusion (Fig. 7b). However, our results in the fast moving neutrophil-like cells differed from the results in the much slower fibroblasts in that the activity of Cdc42 and reduced RhoA activity were both correlated with local protrusion with little or no time offset (Fig. 7c,d). The slower moving fibroblasts may have increased rather than decreased RhoA activity at the leading edge as they are known to exhibit much more prominent oscillatory membrane retraction events. Together with the close spatial antagonism between Cdc42 and RhoA in Figs 2 and 6, this suggests that locally increased Cdc42, supported by the absence of local RhoA activity, also directs the sites of local protrusions for the forward movement of neutrophils.

Cdc42 antagonizes RhoA activity

As Cdc42 and RhoA activities were spatiotemporally anticorrelated in the front region, we investigated whether Cdc42 may suppress RhoA activity. Such a mechanism was plausible on the basis of a study in endothelial cells that showed that Cdc42 activation inhibited RhoA but not vice versa. We stimulated cells by photorelease of Nv-fMLF in the presence or absence of increasing concentrations of...
Figure 6 Cdc42 and RhoA activities polarize before Rac and Ras activities during de novo polarization and induced chemokinetic movement. (a) Kinetics of cell-averaged GTPase activities after uniform photorelease. Values were normalized by the initial and maximum activity. The green line marks the start of gradient generation by photorelease. Error bars indicate ±s.e.m. of \(n_D \) (Rac), \(n_D \) (Ras), \(n_D \) (Cdc42) and \(n_D \) (RhoA). (b) Left: the contours of the cell edge are overlaid for several colour coded times during polarization and movement. The arrow indicates the computationally determined polarization direction. Right: schematic representations explaining the analysis of the polarization of GTPase activities. The front 20% of cell pixels were determined automatically on the basis of the polarization direction. Scale bar, 10 \(\mu \)m. (c) Overlay of time courses of directed speed for cells with FRET biosensors during de novo polarization in d. Directed speed was measured as the rate of movement of the cell centroid in the direction of eventual cell polarization. Each curve is labelled according to the FRET biosensor expressed in the corresponding cells. The green dotted line marks the time of chemoattractant release. The error bars indicate ±s.e.m. of \(n_D \) (Rac), \(n_D \) (Ras), \(n_D \) (Cdc42) and \(n_D \) (RhoA) cells. (d) Time course of polarization of GTPase activity (scored by FRET ratio in the front 20% of pixels minus the ratio in the back 80% of pixels) after uniform photorelease of Nva-IML. Values were normalized by the maximum (Rac, Ras and Cdc42) or minimum (RhoA) activity. The green dotted line marks the time of chemoattractant release. The error bars indicate ±s.e.m. of \(n_D \) (Rac), \(n_D \) (Ras), \(n_D \) (Cdc42) and \(n_D \) (RhoA) cells. (e) Time course of GTPase activities as the cells polarize after photorelease. The colour bars indicate the range of biosensor FRET ratios. Scale bar, 10 \(\mu \)m.

ZCL278, an inhibitor that is specific for Cdc42 over Ras and Rac (ref. 55; Supplementary Fig. 8b), and measured the kinetics of Cdc42 and RhoA responses. Concentrations of ZCL278 that partially or completely blocked activation of Cdc42 resulted in reduced RhoA activity changes in response to IML (Fig. 8a), suggesting that Cdc42 is inhibiting RhoA.
Figure 7 Cdc42 and opposing RhoA activities correlate spatiotemporally with local protrusion during cell migration. (a–d) Left: example images of local GTPase activities measured in 60 segmented regions along the cell edge. Arrows indicate the movement of the corresponding edge segments between sequential images. The direction of the chemoattractant gradient is indicated with an asterisk. The time after stimulation is marked. Scale bar, 10 μm. Middle: spatial and temporal activity maps of edge segment protrusion dynamics against local GTPase activities. The colour bars indicate protrusion-retraction dynamics and activation level of FRET biosensors. The green dotted lines mark the start of gradient generation by photorelease. Right: temporal cross-correlation analysis between edge protrusion and the respective GTPase activities averaged over all sampling segments as a function of time offset. Negative time lag values indicate GTPase activity preceding protrusion activity. The grey curves are data for individual cells, and the red curves represent the mean for all cells measured. n = 15 (Rac), n = 14 (Ras), n = 22 (Cdc42) and n = 15 (RhoA) cells.

We further investigated a link from Cdc42 to RhoA by using immunofluorescence to measure levels of phospho-myosin light chain (pMLC), a main output of RhoA signalling, under conditions where we perturbed either Cdc42 or RhoA activity (Supplementary Fig. 8c). A histogram of the single-cell pMLC levels showed a bimodal distribution, consistent with a bistable regulation of the upstream small GTPase signalling system (Fig. 8b). Cdc42 knockdown and incubation with ZCL278 each led to an increase in pMLC, whereas RhoA
knockdown caused a reduction of pMLC (Fig. 8b and Supplementary Fig. 8d). Expression of a constitutively active Cdc42 (G12V) resulted in a strong reduction in pMLC levels (Fig. 8b). These observations support the hypothesis that Cdc42 antagonizes myosin-mediated contraction in neutrophils by locally inactivating RhoA (ref. 1), arguing that Cdc42 is the primary GTPase that directs chemotactic steering.

DISCUSSION

Our results suggest that Cdc42, rather than the other likely candidates, PtdIns(3,4,5)P₃, Rac, Ras or RhoA, acts as the compass activity that directs chemotactic steering. Furthermore, our finding that Cdc42 signals exhibit local excitability fulfils a key requirement of many models of symmetry breaking, polarization and chemotactic steering. Our results were surprising given that direct homologues of Cdc42 are absent from Dictyostelium, an organism with chemotactic behaviour very similar to that of neutrophils. However, locally excitable Cdc42 signals have been shown to orient mating protrusions in Saccharomyces cerevisiae. A necessary role for Cdc42 in chemotaxis is also supported by previous studies in leukocytes showing that knockout of Cdc42 or expression of dominant negative Cdc42 results in multiple fronts, reduced persistence and suppressed chemotaxis.

![Figure 8](image-url) **Figure 8** Cdc42 antagonizes RhoA activity. (a) Effect of the Cdc42 inhibitor ZCL278 on the kinetics of cell-averaged Cdc42 and RhoA activities in response to chemoattractant photorelease. The values were normalized by the initial and maximum activities. The green dotted lines mark the time of chemoattractant release. The error bars indicate ±s.e.m. of n = 73 (Cdc42 0 µM), n = 75 (Cdc42 10 µM), n = 89 (Cdc42 50 µM), n = 114 (Cdc42 100 µM), n = 88 (RhoA 0 µM), n = 83 (RhoA 10 µM), n = 104 (RhoA 50 µM) and n = 130 (RhoA 100 µM) cells. Of note, a small but immediate apparent decrease was observed in the FRET ratios for both sensors, which is plausibly an artefact from interaction between ultraviolet light and the ZCL278 compound. (b) Histogram of pMLC intensities measured in individual cells by immunofluorescence for control cells and cells perturbed by Cdc42 or RhoA knockdown or expression of a constitutive active Cdc42. The grey lines mark mean pMLC intensities. n = 8,635 (control siRNA), n = 2,419 (Cdc42 siRNA), n = 634 (RhoA siRNA) and n = 22,201 (Cdc42 (G12V)) cells. (c) Proposed model of GTPase activation for neutrophil polarization. Cdc42 activity has an autocatalytic character and locally inhibits RhoA activity to define and steer the front of the cell. Ras and Rac polarize later and support polarization.
ARTICLES

One of the most intriguing aspects of chemotaxis is that cells typically respond to changing attractant gradients with gradual turning while maintaining cell polarity, rather than with abrupt changes of direction. This observation can be explained if cell polarity is bistable, generating core intracellular signalling gradients independent of external chemoattractant gradients, and if polarized cells steer by sensing differences in chemoattractant concentration across the cell front. Consistent with this framework, the sensitivity of receptor signalling in leukocytes is restricted to the front, and abstract models introducing a receptor-controlled left versus right steering signal can recreate the biased random walks of chemotaxing cells. Our study provides two major insights into this process. First, we found that the shapes of the intracellular gradients of Cdc42, Rac, Ras and RhoA activities are nearly identical, whether or not cells are in a chemoattractant gradient (Fig. 2e–h). Thus, control of polarization and migration is indeed likely to be bistable, with intracellular signalling gradients determined primarily by cell-intrinsic feedback connections. Second, we found that local Cdc42 activity, and the linked suppression of RhoA activity, are the key molecular signals downstream of receptor inputs that mediate left versus right steering towards the chemoattractant source. Nevertheless, rather than driving a steady graded bias, receptor input is integrated into a locally excitable Cdc42 network to generate pulses of activity that can direct turning in the context of stable cell polarity.

As a further clue for understanding the connections between cell steering and polarity, we observed that the fast-acting locally excitable Cdc42 circuit was often not sufficient to define a single front. On cell stimulation when there was no clear pre-existing asymmetry in Cdc42 activity, we frequently observed two initial protrusions at opposing ends of the cell, each marked by elevated Cdc42 activity. In all cases, one of the two protrusions gradually disappeared within approximately 60 s, leaving only one Cdc42-marked cell front remaining (Supplementary Fig. 6b). This suggests that locally excitable Cdc42 signals drive the generation of one or more initial protrusive fronts, but further mechanisms are needed to restrict Cdc42 activity to a single front. Most models of chemotaxis include such global mechanisms to restrict a local compass activity. Previous studies have shown that Rac is necessary for the migration and chemotaxis of neutrophils, and that Rac, rather than Cdc42, induces most of the Arp2/3-mediated branched actin polymerization required for motility. Our finding that Rac activity is elevated over a broad spatial region supports a previous observation that waves of actin polymerization, mediated by the Rac-regulated WAVE complex, frequently start in the middle of the cell and move towards the front. The distinct spatial dynamics of Rac and Cdc42 suggest that these waves of actin polymerization must coordinate at the front with sites of locally high Cdc42 and low RhoA activity to cooperatively promote local membrane protrusion.

Polarized Rac activity has been proposed to result from positive feedback between Rac and actin polymerization. We observed correlation between protrusion and Rac activity (Fig. 7a) that supports the existence of this positive feedback. However, the increase in Rac activity is delayed by about 10 s after protrusion and it persists for tens of seconds afterwards. Thus, our results argue that other feedback mechanisms are important for generating stable cell polarity.

that Rac and Ras have nearly identical spatial and temporal activity profiles, suggesting that they may be part of the same global positive feedback circuit.

Our study argues that locally excitable Cdc42 activity acts in opposition to RhoA to direct both chemotactic steering and de novo polarization. In contrast, Rac may act across a broader region to drive actin polymerization and promote stable polarization. At a conceptual level, a network combining a fast local Cdc42-based positive feedback with slower, broader Rac- and RhoA-based positive feedback is an appealing circuit design to create a stable but steerable polarity system.

METHODS

Methods and any associated references are available in the online version of the paper.

Note: Supplementary Information is available in the online version of the paper.

ACKNOWLEDGEMENTS

We thank K. Aoki and M. Matsuda for GTPase sensors; A. Hayer, D. Garbett and A. Wims for critical reading of the manuscript and helpful discussions; and the Stanford Shared FACS Facility for cell sorting and the National Institute of General Medical Sciences for funding.

AUTHOR CONTRIBUTIONS

H.W.Y., S.R.C. and T.M. designed the experiments. H.W.Y. and S.R.C. carried out the experiments and analysed the data. H.W.Y., S.R.C. and T.M. interpreted the data. H.W.Y., S.R.C. and T.M. wrote the paper.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

Published online at http://dx.doi.org/10.1038/ncb3292

Reprints and permissions information is available online at www.nature.com/reprints

1. Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

2. Niggli, V. Signaling to migration in neutrophils: importance of localized pathways. Int. J. Biochem. Cell Biol. 35, 1619–1638 (2003).

3. Becker, E. L. Stimulated neutrophil locomotion: chemokinesis and chemotaxis. Arch. Pathol. Lab. Med. 101, 509–513 (1977).

4. Arreneroulou, C. & Meyer, T. A local coupling model and compass parameter for eukaryotic chemotaxis. Dev. Cell 8, 215–227 (2005).

5. Devreotes, P. N. & Zigmond, S. H. Chemotaxis in eukaryotic cells: a focus on leukocytes and Dictyostelium. Annu. Rev. Cell Biol. 4, 649–686 (1988).

6. Andrew, N. & Insall, R. H. Chemotaxis in shallow gradients is mediated independently of PtdIns 3-kinase by biased choices between random protrusions. Nat. Cell Biol. 9, 193–200 (2007).

7. Alt, W. Biased random walk models for chemotaxis and related diffusion approximations. J. Math. Biol. 9, 147–177 (1980).

8. Wells, W. A. Chemotaxis by local steering. J. Cell Biol. 168, 674–675 (2005).

9. Iglesias, P. A. & Devreotes, P. N. Biased excitable networks: How cells direct motion in response to gradients.Curr. Opin. Cell Biol. 24, 245–253 (2012).

10. Tang, M. et al. Evolutionarily conserved coupling of adaptive and excitable networks mediates eukaryotic chemotaxis. Nat. Commun. 5, 5175 (2014).

11. Rickert, P., Weiner, O. D., Wang, F., Bourne, H. R. & Servant, G. Leukocytes navigate by compass: roles of P13Kγ and its lipid products. Trends Cell Biol. 10, 466–473 (2000).

12. Bokoloh, G. M. Chemotactic responses of Dictyostelium. Biochem. J. 169, 1469–1460 (1995).

13. Charest, P. G. & Firtel, R. A. Big roles for small GTPases in the control of directed cell movement. Biochem. J. 401, 377–390 (2007).

14. Heasman, S. J. & Ridley, A. J. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat. Rev. Mol. Cell Biol. 9, 690–701 (2008).

15. Nobs, C. D. & Hall, A. Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).

16. Srivivasan, S. et al. Rac and Cdc42 play distinct roles in regulating P13(3,4,5)P3 and polarity during neutrophil chemotaxis. J. Cell Biol. 160, 375–385 (2003).

17. Weiner, O. D. et al. A PtdInsP(3)- and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nat. Cell Biol. 4, 509–513 (2002).

18. Sun, C. X. et al. Rac1 is the small GTPase responsible for regulating the neutrophil chemotaxis compass. Blood 104, 3758–3765 (2004).
20. Li, Z. et al. directional sensing requires Gβγ-mediated PAK1 and PIX α-dependent activation of Cdc42. Cell 114, 215–227 (2003).
21. Wang, K., Pertz, O., Hahn, K. & Bourne, H. Neutrophil polarization: spatiotemporal dynamics of RhoA activity support a self-organizing mechanism. Proc. Natl. Acad. Sci. USA 103, 3639–3644 (2006).
22. Xu, J. et al. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114, 201–214 (2003).
23. Kitzing, T. M. et al. Positive feedback between Dia1, LARG, and RhoA regulates cell morphology and invasion. Genes Dev. 21, 1478–1483 (2007).
24. Medina, F. et al. Activated RhoA is a positive feedback regulator of the Lbc family of Rho guanine nucleotide exchange factor proteins. J. Biol. Chem. 288, 11325–11333 (2013).
25. Bourne, H. R. & Weiner, O. A chemical compass. Nature 419, 21 (2002).
26. Wang, F. et al. Lipid products of PI3Ks maintain persistent cell polarity and directed motility in neutrophils. Nat. Cell Biol. 4, 513–518 (2002).
27. Hoeller, O. & Kay, R. R. Chemotaxis in the absence of PIP3 gradients. Curr. Biol. 17, 813–817 (2007).
28. Alonso, P. V. & Parent, C. A. PI3K and chemotaxis: a priming issue? Sci. Signal. 4, pe22 (2011).
29. Lämmermann, T. et al. Cdc42-dependent leading edge coordination is essential for interstitial dendritic cell migration. Blood 113, 5073–5101 (2009).
30. Roberts, A. W. et al. Deficiency of the hematopoietic cell-specific Rho family GTPase Rac2 is characterized by abnormalities in neutrophil function and host defense. Immunity 10, 183–196 (1999).
31. Glogauer, M. et al. Rac1 deletion in mouse neutrophils has selective effects on Rac2, p120-GAP activation of Ras in human neutrophils is associated with inhibition of p120-GAP activity. J. Biol. Chem. 272, 23448–23454 (1997).
32. Zignond, S. H. Cell polarity: an examination of its behavioral expression and its consequences for polymorphonuclear leukocyte chemotaxis. J. Cell Biol. 89, 585–592 (1981).
33. Ghosh, M. et al. Cofilin promotes actin polymerization and defines the direction of cell motility. Science 304, 743–746 (2004).
34. Gilbert, S. H., Perry, K. & Fay, F. S. Mediation of chemoattractant-induced changes in Ca2+−i and cell shape, polarity, and locomotion by InsP3, DAG, and protein kinase C in newt eosinophils. J. Cell Biol. 127, 489–503 (1994).
35. Weiger, M. C., Ahmed, S., Welf, E. S. & Haugh, J. M. Directional persistence of cell migration coincides with stability of asymmetric intracellular signaling. Biophys. J. 98, 67–75 (2010).
36. Chau, A. H., Walter, J. M., Gerardin, J., Tang, C. & Lim, W. A. Designing synthetic regulatory networks capable of self-organizing cell polarization. Cell 151, 320–332 (2012).
37. Altschuler, S. J., Angenent, S. B., Wang, Y. & Wu, L. F. On the spontaneous emergence of cell polarity. Nature 454, 886–889 (2008).
38. Buty, A.-C. et al. A positive feedback loop stabilizes the guanine-nucleotide exchange factor Cdc42 at sites of polarization. EMBO J. 21, 1565–1576 (2002).
39. Wedlich-Soldner, R., Altschuler, S., Wu, L. Li, R. Spontaneous cell polarization through actomyosin-based delivery of the Cdc42 GTPase. Science 299, 1231–1235 (2003).
40. Meyer, T. & Stryer, L. Molecular model for receptor-stimulated calcium spiking. Proc. Natl. Acad. Sci. USA 85, 5051–5055 (1988).
41. Shankaran, H. & Wiley, H. S. Oscillatory dynamics of the extracellular signal-regulated kinase pathway. Curr. Opin. Genet. Dev. 20, 650–655 (2010).
42. Machacek, M. et al. Coordination of Rho GTPase activities during cell protrusion. Nature 461, 99–103 (2009).
43. Pertz, O., Hodgson, L., Klemke, R. L. & Hahn, K. M. Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 440, 1069–1072 (2006).
44. Moreau, V., Tatin, F., Varon, C. & Genot, E. Actin can reorganize into podosomes in aortic endothelial cells, a process controlled by Cdc42 and RhoA. Mol. Cell. Biol. 23, 6809–6822 (2003).
45. Friesland, A. et al. Small molecule targeting Cdc42-intersectin interaction disrupts Golgi organization and suppresses cell motility. Proc. Natl. Acad. Sci. USA 110, 1276–1261 (2013).
46. Amano, M. et al. Phosphorylation and Activation of Myosin by Rho-associated Kinase (Rho-kinase). J. Biol. Chem. 271, 20246–20249 (1996).
47. Howell, A. S. et al. Singularity in polarization: rewiring yeast cells to make two buds. Cell 139, 731–743 (2009).
48. Eichinger, L. et al. The genome of the social amoeba Dictyostelium discoideum. Nature 435, 43–57 (2005).
49. Johnson, J. M., Jin, M. & Lew, D. J. Symmetry breaking and the establishment of cell polarity in budding yeast. Curr. Opin. Genet. Dev. 21, 740–746 (2011).
50. Allen, W. E., Zicha, D., Ridley, A. J. & Jones, G. E. A role for Cdc42 in macrophage chemotaxis. J. Cell Biol. 141, 1147–1157 (1998).
51. Houk, A. R. et al. Membrane tension maintains cell polarity by confining signals to the leading edge during neutrophil migration. Cell 148, 175–188 (2012).
52. Postma, M. & Van Haastert, P. J. A diffusion-translocation model for gradient sensing by chemotactic cells. Biophys. J. 81, 1314–1323 (2001).
53. Jilkine, A. & Edelstein-Keshet, L. A comparison of mathematical models for polarization of single eukaryotic cells in response to guided cues. PLoS Comput. Biol. 7, e1001121 (2011).
54. Glogauer, M., Hartwig, J. & Stossel, T. Two pathways through Cdc42 couple the N-fomyr receptor to actin nucleation in permeabilized human neutrophils. J. Cell Biol. 150, 785–796 (2000).
55. Mullins, R. D., Heuser, J. A. & Pollard, T. D. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl. Acad. Sci. USA 95, 6181–6186 (1998).
56. Weiner, O. D., Marganski, W. A., Wu, L. F., Altschuler, S. J. & Kirschner, M. W. An actin-based wave generator organizes cell motility. PLoS Biol. 5, 2053–2063 (2007).
57. Peyrolier, K. et al. A role for the actin cytoskeleton in the hormonal and growth-factor-mediated activation of protein kinase B. Biochem. J. 352, 617–622 (2000).
METHODS

Cell culture. PLB-985 cells were obtained from the laboratory of O. Weiner and cultured in RPMI 1640 medium with 1-glutamine and 25 mM HEPES (Invitrogen catalogue no 22-400) supplemented with 10% heat-inactivated fetal bovine serum, 1-glutamine, penicillin, streptomycin at 37 °C in a humidified atmosphere of 5% CO₂. Cells were differentiated for 6 days in medium supplemented with 1.3% dimethylsulphoxide before each experiment. The PLB-985 cell line has been reported as being a misidentified subline of the HL-60 cell line in the ICLAC database. We have not determined whether this is the case for our cultures. However, both PLB-985 and HL-60 cells are established cell line models for human neutrophils, and the protocols used for the two cell lines are the same. We chose to use PLB-985 rather than HL-60 cells because they exhibited slightly better motility and chemotaxis in our experimental conditions. All of the cell lines used in our study tested negative for mycoplasma.

Constructs. The Ras, Rac, Cdc42 and RhoA sensors have been described previously. The PI3K biosensor was the PH domain of Akt (2–147) fused to yellow fluorescent protein (YFP), and it was cloned into pPBbsr, which harbours the blasticidin S-resistance gene. To generate stable cell lines, constructs containing the sensors within the piggyBac transposon were introduced into cells by electroporation and integrated using the piggyBac transposase. Histone 2B fused to mCherry was cloned into the CSII-EF lentiviral vector, and introduced into cells by viral transduction.

Compounds and inhibitors. The chemical inhibitors used in this study were LY294002 (Cayman) and ZCL278 (XcessBio). The caged derivative of fMLF was synthesized as described. Flu-3 AM and CMNB-caged fluorescein (fluorescein bis-(5-carboxymethoxy-2-nitrobenzyl) ether, dipotassium salt) were obtained from Invitrogen.

Live cell imaging and image analysis. Cells were plated in glass bottom 96-well plates (Greiner Bio One catalogue no 655892) and covered with a liquid imaging medium containing 1.5% low-melting-temperature agarose containing 100 nM Nv-fMLF. The agarose was left to solidify before the cells were warmed to 37 °C for imaging. Cells were imaged using a custom-assembled spinning disc confocal/epifluorescence microscope system built on a Zeiss Axiovert 200 M microscope with a x40 (1.3 numerical aperture) objective at 37 °C. To avoid artefacts from cell movement between sequential cyan fluorescent protein (CFP) and FRET image acquisitions, we used an Optical Insights Dual-View beamsplitter (Photometrics) for simultaneous acquisition. For our gradient photorelease, images were taken at 5 s intervals with 300 ms photorelease at a distance of 300 μm every three frames. To measure polarization kinetics, images were taken at 2 s intervals.

Image alignment.

All images for ratiometric FRET measurements were taken using an Optical Insights Dual-View beamsplitter (Photometrics) for simultaneous acquisition of CFP and YFP emission light from a common excitation pulse. The two images were collected on two halves of a camera and were computationally registered to enable ratiometric calculations. We found that perfect registration of the two images could not be achieved by simple alignment using translations and rotations, but instead small stretch and shear terms were also required. Therefore, we designed custom software for using MATLAB to achieve perfect registration of the two images throughout the entire field of view. This software computes a coordinate-mapping function between the two image channels using images taken of a grid-patterned reference slide. Local alignments are computed piecewise across the field of view, and the alignments are used to fit one global coordinate-mapping function of the form

\[(x', y') = (x + C_x x + C_y y + C_{xx} x^2 + C_{xy} x y + C_{yy} y^2, y + C_x y + C_{yx} x + C_{yy} x^2 + C_{xy} x y + C_{yx} y^2)\]

where \(C_i\) are the fitted parameters. Pixel intensities for the CFP image were then mapped to the YFP coordinate system by linear interpolation.

Background subtraction, cell segmentation and cell tracking. Images were first processed with local background subtraction in the following manner. An initial conservative segmentation was carried out to define a set of background pixels excluding pixels with significant signal from cells or other fluorescent objects. The background intensity was then taken to be the median intensity of neighbouring background pixels. The sum of the CFP and FRET images (after background subtraction) was then used to compute cell masks. The sum of the two channels was used because it has better signal to noise than either individual channel, and its value is less sensitive to differences in FRET efficiency. Cells were first crudely identified as large non-background objects, and then masks were computed locally for each cell. The mask was computed by first smoothing the image with a Gaussian filter of width 2 pixels (0.32 μm) to reduce pixel noise, followed by application of an unsharp mask to enhance edges, and finally automatic thresholding to define cell masks. Cells were tracked from frame to frame using a nearest neighbour method based on cell centroid positions.

Analysis of de novo polarization. We selected for analysis cells that showed no significant movement before stimulation with chemotaxant photorelease. A single direction of polarization was defined for each cell as the angle of cell centroid movement for the first time that the centroid moved persistently in the same direction over five consecutive frames. Directed displacement (a measure of cell movement in the polarization direction) was computed as the dot product between the displacement vector (the difference between cell centroids from adjacent frames) and a unit vector in the direction of polarization. GTase polarization was measured as the sum of the FRET intensities in the frontmost 20% of pixels in the cell polarization direction divided by sum of the corresponding CFP intensities, minus the analogous ratio for the backmost 80% of the cell’s pixels (Fig. 6b). Other measures of GTase polarization gave similar results.

Analysis of predictive power of GTase activity for future direction of cell polarization. Only cells that were not moving before stimulation and moved significantly after stimulation were included for analysis. Cells that had moved a total distance (centroid to centroid displacement) of less than 2 pixels (here 0.64 μm, as these images were acquired with a bin size of 2) over the 10 s of imaging before stimulation were considered non-moving. For each cell, the angle between the direction of maximal biosensor FRET signal at the cell periphery and the eventual direction of cell polarization was measured. The FRET signal at the cell periphery was computed around the entire cell periphery at 1 interval (angle between a vector extending from the cell centroid and a reference direction). Each FRET ratio value was computed as the sum of the FRET intensities divided by the sum of CFP intensities over a window including all pixels within 1.6 μm of the cell edge and within 10° of the direction of interest. The direction of maximal FRET ratio was then identified. The direction of cell polarization was defined by the difference between the cell centroid immediately after stimulation and the cell centroid 2 min after stimulation.

Analysis of intracellular spatial patterns of biosensor signals. To determine the spatial pattern of biosensor signals in polarized, moving cells, we segmented and tracked cells as described above. We computed ratiometric FRET values by first smoothing background-subtracted CFP and FRET images with a disk filter of radius 5 pixels (0.8 μm) to reduce pixel noise (and only using pixels within the cell mask for smoothing). We then divided the FRET intensities by the corresponding CFP intensities to obtain ratio values. We included for analysis frames for which the cell was moving consistently from the frame before the frame to analyze after stimulation. We defined protrusion pixels from frame to frame by subtracting the cell masks. We then defined the protruding front of the cell as the largest connected region of boundary pixels that were in the protrusion pixels for the present frame relative to the previous frame, and within one pixel of the protrusion pixels in the following frame. For every pixel in the cell mask, we then defined its distance from the protruding edge of the cell as the path length (in micrometres) of the shortest path within the cell mask from that pixel to protruding front edge pixels (using the MATLAB function bwdistgeodesic). We then computed the mean FRET ratio as a function of distance from the protruding edge of the cell for each biosensor.

Analysis of correlations between cell edge dynamics and biosensor signals. From cell masks, the cell edge was parametrized into 300 roughly equally spaced points on the cell boundary. From these points, 60 windows were defined for analysis, each with a depth of 10 pixels (1.6 μm) into the cell, and centred on every fifth cell boundary point. Pixels within the cell within 1.6 μm of the cell edge were unambiguously associated with windows by assigning each pixel to the closest window defining cell boundary points. For each window, the FRET ratio was computed as the sum of the FRET intensities divided by the sum of the CFP intensities over all pixels in the window. The local protrusion/retraction velocity of the cell edge was determined by tracking the boundary points from frame to frame by minimization of the squared sum of distances between matched points while preserving the ordering of points along the cell periphery. The protrusion/retraction velocity for each boundary point was computed as the dot product of the point’s movement vector with a unit vector normal to cell boundary, divided by the time step in between frames. The velocity for each window was the mean of the velocities for the five boundary points in the window. The above calculations gave a FRET measurement for each window at each time point, and an edge velocity measurement for each window for each step in between sequential frames. Cross-correlation values were then computed as a function of offset in time using Pearson’s correlation.

Analysis of correlations between asymmetry in biosensor signals across the cell front and cell turning. The same images, cell segmentation, local windows and
protrusion/retraction analysis were used as in the above analysis. Furthermore, the centre of the cell front was defined for each frame using the map of protrusion values (such as those shown in Fig. 7a–d, middle) smoothed by a smoothing filter with triangular shape in both the time and space dimension spanning a total of three times and seven windows. After the smoothing, the centre of the cell front was defined as the window farthest from a negative protrusion value (that is, the centre of the largest protrusion). For an individual frame, the centre of the cell front was defined on the basis of protrusion between that frame and the following frame. Asymmetry in the FRET signal was computed as the mean FRET signal over the 10 windows to the left of this centre window minus the mean FRET signal over the 10 windows to the right of the centre window. To reduce noise, the cell centroid positions and centre of the cell front positions were smoothed using LOWESS regression. The instantaneous cell direction was defined by the vector from the cell centroid to the centre of the cell front. The turning angle in between frames was then defined as the angular turn in the cell direction vector between consecutive frames. Temporal cross-correlations were then computed as a function of offset in time between asymmetry in biosensor signal and cell turning.

Analysis of correlations between a signalling vector and cell turning. The same data and cell centroid positions were used as in the above turning analysis. The same cell edge windows were used as in the edge dynamics analysis. A schematic representation of this analysis is depicted in Supplementary Fig. 4d. For each frame, a cell signalling vector was computed using all edge windows with a FRET ratio greater than the mean FRET ratio over all windows. The signalling vector was defined as the vector sum of the vectors pointing from the cell centroid to the centre of each included window, weighted by the FRET ratio for that window minus the mean FRET ratio over all windows. Cell directionality was defined in frame-to-frame intervals using cell movement vectors pointing from the earlier cell centroid position to the later cell centroid position. A cell turning angle was defined for each frame as the angle between the preceding cell direction vector and the following cell direction vector. A signalling angle was defined for each frame as the angle between the preceding cell direction vector and the signalling vector in that frame. In each case, an angle of zero constitutes straight ahead and positive and negative angles indicate turns to the left or right. Cross-correlations for different temporal offsets were computed between the cell turning angles and the signalling angles for each GTPase biosensor.

siRNA electroporation and western blotting. Three days after differentiation, PLB-985 cells were spun down and reuspended in extracellular buffer (5 mM KCl, 125 mM NaCl, 1.5 mM CaCl₂, 1.5 mM MgCl₂, 10 mM glucose, 20 mM HEPES, pH 7.4), 0.9 μM control (Dharmacon, D-001206-14-05); Cdc42 (Dharmacon, M-005057-01-0005) and RhoA (Dharmacon, E-003860-00-0005) siRNA pools were mixed with the cell suspension and were introduced into cell by parallel electroporation using a custom-built 96-well electroporation device. Cells were then incubated 3 days more with differentiation media in a 96-well plate. For western blot, whole-cell extracts were prepared and resolved by 4–10% gradient SDS-PAGE. The proteins were then transferred to a nitrocellulose membrane. Primary antibodies, anti-Cdc42 (Cell Signaling Technology, 2462, 1:1,000), anti-RhoA (Cell Signaling Technology, 2117, 1:1,000) and anti-GAPDH (Cell Signaling Technology, 5174, 1:1,000), were incubated overnight at 4°C. Bound antibodies were visualized with horseradish peroxidase-conjugated secondary antibodies (GE Healthcare) and the ECL system (Millipore).

Immunofluorescence. After fixation in PBS containing 4% formaldehyde, cells were washed three times in PBS, permeabilized and blocked with 0.1% Triton X-100, 1% BSA, 10% fetal bovine serum and 0.01% NaN₃ for 1 h at 25°C, and stained overnight at 4°C with anti-phospho-myosin light chain 2 (Ser 19; Cell Signaling Technology, 3671, 1:200). Primary antibody was visualized using Alexa Fluor 488 (Life Technology, A11034, 1:1,000). Images were taken on an ImageXpress Micro (Molecular Devices) with ×20 (0.75 numerical aperture) objective.

Statistics and reproducibility. For Fig. 4c and Supplementary Fig. 6a, we used the sign test to test whether 90° minus the median angle between the direction of cell movement and the direction of maximal (or minimal) FRET signal was greater or less than zero. The sign test is a non-parametric test that makes minimal assumptions and tests whether the median of a set of numbers is significantly different from zero. For Supplementary Fig. 8b, we used the Mann–Whitney U-test (ranksum in MATLAB) to test whether the normalized FRET ratios measured at later times differed from the values at time zero. The U-test is non-parametric and is appropriate when values are not known to be normally distributed. All of the results here were independently replicated at least four times except Fig. 8b, Supplementary Fig. 1b,c,f, Supplementary Fig. 3b and Supplementary Fig. 8bd, for which two independent experiments were carried out.

Code availability. The MATLAB scripts for analysis described here are available on GitHub at https://github.com/MeyerLab/Chemotaxis_Analysis.

68. Yusa, K., Rad, R., Takeda, J. & Bradley, A. Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat. Methods 6, 363–369 (2009).
69. Guignet, E. G. & Meyer, T. Suspended-drop electroporation for high-throughput delivery of biomolecules into cells. Nat. Methods 5, 393–395 (2008).
Supplementary Figure 1 Systematic analysis of cell motility and chemotaxis for control PLB-985 cells and PLB-985 cells stably expressing the indicated GTPase biosensors. All cells expressed an H2B-mCherry marker which was used for cell tracking. Chemoattractant gradients were generated at time zero by UV uncaging, cells were tracked from frame-to-frame, and statistics of cell movement were calculated. (a) Scheme for quantifying speed and direction of movement. For b and c: n=160 (Control), n=318 (Rac), n=309 (Cdc42), n=136 (Ras), and n=123 (RhoA) cells. (b) Measurement of mean cell speed as function of time relative to chemoattractant gradient generation. (c) Histograms of instantaneous cell direction relative to the chemoattractant gradient for moving cells (an angle of zero indicates perfect directionality). For the number of cells indicated above, the data includes: n=19743 (Control), n=42954 (Rac), n=39045 (Cdc42), n=13901 (Ras), and n=15307 (RhoA) frame-to-frame movement steps. (d) Histograms of instantaneous cell direction relative to the steeper gradient condition used for all high resolution imaging in this study. The data includes: n=2056 (Rac), n=1307 (Cdc42), n=1801 (Ras), and n=2798 (RhoA) frame-to-frame movement steps for 59, 49, 80, and 103 independent cells, respectively. (e) Intensity of the Fluo-3 dye inside PLB-985 cells after chemoattractant photorelease. Scale bar is 50μm. Color bar indicates relative fluorescence unit. (f) Quantitative analysis of timecourse of fluorescence intensity of Fluo-3 as a function of time relative to Nv-fMLF photorelease. Green dotted line marks the time of chemoattractant release. Data were normalized by the initial fluorescence intensity for each cell. Data represent the mean ± s.e.m. of n=22 cells.
Supplementary Figure 2 Measurement of relative activities of GTPases in migrating cells as a function of distance backwards from the leading edge. (a) A protrusion/retraction map computed by overlaying and subtracting cell masks from sequential images (left), a color coded map of the distance from the leading edge with associated color bar (middle), and Cdc42 activity (right). Color bar (right) indicates dynamic range of Cdc42 activity. The direction of the fMLF gradient is indicated with a *. Scale bar is 10μm. (b) Computed intracellular gradients of FRET ratio as a function of distance from the leading edge are shown for multiple time points for the individual cells shown in Fig. 2a-d. Each single timepoint curve is shown in gray. The averaged curve over all time points is shown in red. (c) The time-averaged activity curves for each individual cell used in our analysis for Fig. 2e-h (Control (Gradient)) are shown in gray. The curves for the cells depicted in the images in Fig. 2a-d are shown in red. Each curve is normalized by the levels at the front edge (mean of 5 front pixels).
Supplementary Figure 3 Spatial gradients of GTPase activities in the absence of PI3K activation. (a) Inhibition of the polarization of the PH^{AKT} domain fused to YFP (a biosensor for PIP3) by LY29 (50μM). Time relative to stimulation is indicated and the direction of the chemoattractant gradient is indicated with a *. Scale bar is 10μm. (b) Relative intensity of PH^{AKT} as a function of distance from the leading edge. Values are normalized to the levels at the front edge. Error bars indicate ± s.e.m. of n=15 (control) and n=20 (LY29) averaged traces from timecourses of independent cells. (c) Spatial gradients of GTPase activity in the presence of LY29 (50μM). Time relative to stimulation is indicated, and the direction of the chemoattractant gradient is indicated with a *. Color bars indicate the range of biosensor FRET ratios. Scale bar is 10μm.
Supplementary Figure 4 Spatial GTPases activity at the front during cell turning and alternate method to assess correlations between asymmetric GTPase signaling and cell turning towards chemoattractant. (a-c) Rac (a), Ras (b), and RhoA (c) activities in cells responding to a changing gradient generated by photorelease of Nv-fMLF. White line connects the centroid of the cell to the center of the cell front. Yellow arrow shows GTPase activity bias at the cell front. Time relative to stimulation is indicated and the direction of the chemoattractant gradient is indicated with a *. Color bars indicate the range of biosensor FRET ratios. Scale bar is 10μm. (d) Schematic of the correlation analysis between a “signaling angle” and a cell turning angle. Cell centroid positions are used to compute cell movement vectors, and a cell turning angle for each frame. A “signaling vector” is computed as a weighted sum of vectors pointing from the cell centroid to parametrized regions on the cell periphery with greater than average FRET ratio. The signaling angle is computed as the angle between the previous cell movement vector and the signaling vector. (e) Comparison of the temporal cross-correlation analysis between the signaling angle and the turning angle for each GTPase sensor. Negative time offsets indicate that signaling asymmetry precedes turning. Error bars indicate ± s.e.m. of n=41 (Rac), n=47 (Cdc42), n=42 (Ras), and n=47 (RhoA) cells.
Supplementary Figure 5 Local fluctuations or enrichments of GTPases activity in unpolarized cells. (a) Schematic of the assay to generate a rapid spatially uniform increase of the chemoattractant fMLF to induce a polarization and chemokinesis migration response. (b) Histogram of the maximum or minimum FRET ratio over the periphery of individual cells. Ratios were computed after smoothing to minimize the effects of imaging noise. Values were normalized by the mean FRET ratio for each cell. The red curves indicate histograms for the observed maximum (left) or minimum (right) FRET ratios. The blue curves show control values computed for the same cells in which the pixel positions in the cell periphery were randomly permuted prior to smoothing and detection of the maximum and minimum signals. The control curves are intended to simulate the distributions expected for uniform signaling activity with similar levels of imaging noise. n=146 (Rac), n=137 (Cdc42), n=168 (Ras), n=162 (RhoA) cells.
Supplementary Figure 6 Cdc42 activity in cells having two competitive protrusions and prediction of future direction. (a) Rose plots showing distributions of the angle between the minimum local GTPase activity before stimulation and the subsequent migration direction. * indicates p-value is less than 0.001. P-values were calculated using the sign test applied to the cosine of the angles. n=68 (Rac), n=69 (Cdc42), n=63 (Ras), and n= 65 (RhoA) cells. (b) Two examples of cells which initially generated two active protrusions after chemoattractant stimulation are shown. Cdc42 activity is indicated by the color scale. White arrows indicate the sites of pre-existing Cdc42 activity at cell periphery. Pink arrows mark the presence of two protruding fronts in the same cell. Scale bar is 10μm.
Supplementary Figure 7 Wave like behavior Cdc42 activity in the absence of PI3K activation. (a) Examples of autonomous waves of Cdc42 activity in the presence of LY29. Cells were treated with LatA (1µM) and LY (50µM). White dots mark the location of maximum Cdc42 activity. Cdc42 activity is indicated by the color scale. The images were taken every 2 seconds for 120 seconds. Scale bar is 10µm. (b) Kymograph of Cdc42 activity for a cell 1 treated with both LatA (1µM) and LY29 (50µM). The Cdc42 activity was averaged over the horizontal (x-axis) direction to get a one dimensional profile for each timepoint. For this analysis, images were taken at 2 second intervals. Cdc42 activity is indicated by the color scale. (c) Quantitative measurements of local Cdc42 activity in LatA (1µM) and LY29 (50µM)-treated cells. Shown are temporal traces for selected 5 µm square regions within individual cells. For this analysis, images were taken every 5 seconds for 420 seconds.
Supplementary Figure 8 Timecourses of directed speed during de novo polarization, effect of ZCL278 on GTPase activities, efficiency and specificity of Cdc42 and RhoA knockdown, and effect of ZCL278 on pMLC. (a) Directed speed was measured as the rate of movement of the cell centroid in the direction of eventual cell polarization. Green dotted line marks the time of chemoattractant release. Error bars indicate ± s.e.m. of n=113 cells. (b) Mean activity of GTPases in PLB-985 cells treated with different doses of ZCL278. Values were normalized by the control condition. Error bars indicate ± s.e.m. of n=163 (Ras 0µM), n=170 (Ras 10µM), n=160 (Ras 50µM), n=209 (Ras 100µM), n=202 (Rac 0µM), n=159 (Rac 10µM), n=173 (Rac 50µM), n=130 (Rac 100µM), n=141 (Cdc42 0µM), n=179 (Cdc42 10µM), n=144 (Cdc42 50µM), and n=162 (Cdc42 100µM). * indicates p-value is less than 0.01. P-values were calculated using the rank sum test. (c) Western blots of whole cell lysates were performed to assess siRNA-mediated gene knockdown efficiency of Cdc42 and RhoA. Blotting for GAPDH is also shown to demonstrate equal loading. (d) Histogram of pMLC intensities measured in individual cells by immunofluorescence for cells treated with ZCL278 (50µM) for 30 minutes. n=50892 (DMSO), and n=57584 (ZCL278) cells.
Supplementary Video Legends

Supplementary Video 1 Rac activity during neutrophil-like PLB-985 cell chemotaxis. These movie files contain 360 second imaging sequences with 5 second intervals between frames, corresponding to the examples shown in figure 2a. Time relative to stimulation is indicated and direction of the chemoattractant gradient and sequential UV photorelease are indicated with UV.

Supplementary Video 2 Cdc42 activity during neutrophil-like PLB-985 cell chemotaxis. These movie files contain 360 second imaging sequences with 5 second intervals between frames, corresponding to the examples shown in figure 2b. Time relative to stimulation is indicated and direction of the chemoattractant gradient and sequential UV photorelease are indicated with UV.

Supplementary Video 3 Ras activity during neutrophil-like PLB-985 cell chemotaxis. These movie files contain 360 second imaging sequences with 5 second intervals between frames, corresponding to the examples shown in figure 2c. Time relative to stimulation is indicated and direction of the chemoattractant gradient and sequential UV photorelease are indicated with UV.

Supplementary Video 4 RhoA activity during neutrophil-like PLB-985 cell chemotaxis. These movie files contain 360 second imaging sequences with 5 second intervals between frames, corresponding to the examples shown in figure 2d. Time relative to stimulation is indicated and direction of the chemoattractant gradient and sequential UV photorelease are indicated with UV.

Supplementary Video 5 Cdc42 activity bias at the cell front predicts direction of cell turning. This movie file contains a 380 second imaging sequence with 5 second intervals between frames, corresponding to the example shown in figure 3b. Time relative to stimulation is indicated and direction of the chemoattractant gradient and sequential UV photorelease are indicated with UV.

Supplementary Video 6 Prepolarized Cdc42 predicts cell direction after uniform fMLF stimulation. This movie file contains a 50 second imaging sequence with 2 second intervals between frames, corresponding to the example shown in figure 4a. Time relative to stimulation is indicated.

Supplementary Video 7 The original video was incorrect; a new file was uploaded on 5 January 2016. Locally pulsatile activation and propagation of Cdc42 in the absence of actin polymerization. This movie file contains a 120 second imaging sequence with 2 second intervals between frames, corresponding to the example shown in figure 5a.