Infiltrative Hepatocellular Carcinoma
Assessment of Factors Associated With Outcomes in Patients Undergoing Hepatectomy

Xiaopeng Yan, MD, Xu Fu, MD, Min Deng, MM, Jun Chen, MD, Jian He, MD, Jiong Shi, MD, and Yudong Qiu, MD

Abstract: Data on infiltrative hepatocellular carcinoma (iHCC) receiving hepatectomy are unclear. Our study assessed the outcomes, effects of anatomical resection, and prognostic factors in a cohort of Chinese patients with iHCC undergoing hepatectomy.

Data from 47 patients with iHCC undergoing hepatectomy were analyzed in a retrospective study. Independent prognostic factors of overall survival (OS) and recurrence-free survival (RFS) were identified using univariate and multivariate analyses. Correlations between microvascular invasion (MVI) and clinicopathological features were assessed using the χ² test, Student t test, or the Mann–Whitney U test. Survival outcomes were estimated using the Kaplan–Meier method.

The median OS was 27.37 months and the 1-year RFS rate were 61.7%. Alpha-fetoprotein (AFP) level was not a specific parameter in iHCC patients undergoing hepatectomy. Anatomical resection was significantly associated with increased RFS ($P = 0.007$). Patients showing MVI were observed with decreased RFS ($P < 0.001$). A high lactate dehydrogenase (LDH) level was significantly associated with decreased OS and RFS ($P = 0.003$ and $P = 0.020$, respectively). MVI was shown correlated with the levels of aspartate aminotransferase (AST), gamma glutamyl transpeptidase (GGT), and LDH. Subgroup analysis indicated that in mild MVI group, survival outcome was significantly more favorable in patients with high LDH level ($P = 0.019$).

iHCC patients are related with higher MVI rate and patients may still derive survival benefit from anatomic resection at early and intermediate stages. MVI classification could be used to identify iHCC patients with a poorer survival, especially those with a high preoperative LDH level.

(Observational Study)
METHODS

Ethics Statement
This study has been performed in accordance with the ethical standards of the responsible institutional committee on human experimentation and with the 1975 Declaration of Helsinki, as revised in 1983. For this type of study, formal consent is not required.

Patients
This is a retrospective study of a cohort of 47 patients with iHCC undergoing hepatectomy between January 2003 and December 2012 in the Department of Hepatopancreatobiliary Surgery of Drum Tower Hospital. Cases of iHCC were identified by a pathological review (Figure 1). Color photographs of the resected liver specimens were reviewed according to the largest cross-section of the tumor. iHCC type was determined by 3 reviewers (1 pathologist, 1 radiologist, and 1 surgeon) who were blind to the clinical and pathological data. Disagreement in diagnosing iHCC was resolved by consensus review. Clear agreement on the identification of iHCC was established in 58 patients. Eleven patients who were lost to follow-up were then excluded. The final cohort consisted of 47 patients.

Data Collection
The variables collected for analysis included patient demographics (age, gender), serum laboratory data [alanine aminotransferase (ALT), aspartate aminotransferase (AST), and so on], tumor characteristics (tumor numbers, tumor size, vascular invasion, and so on), portal hypertension (gastroesophageal varices, splenomegaly with a platelet count of less than 100,000/mL, ascites), surgical data (surgical procedure, type of resection, surgical margin, and so on), and pathological data (histological grade, MVI, T category). MELD score, Eastern Cooperative Oncology Group (ECOG) performance status, and ICG retention rate in 15 minutes (R15) were also recorded.

The overall survival (OS) time was defined as the time from the date surgery started to the date of death or last contact for surviving patients. The recurrence-free survival (RFS) was defined as the duration from the date of surgery to the date of recurrence, or to the date of the last follow-up.

Statistical Analysis
Median values were used to describe continuous data, with categorical variables displayed as frequencies and percentages. OS and RFS were calculated by the Kaplan–Meier method, and curves were compared by the log-rank test. Prognostic factors associated with OS and RFS were identified by the Cox proportional hazard model. The correlation between clinicopathologic factors and the degree of MVI was analyzed by the χ^2 test, Student t test, or the Mann–Whitney U test, where appropriate. Statistical analyses were carried out using SPSS software, version 19.0 (SPSS, IBM).

RESULTS

Patient Characteristics
The clinicopathologic features and tumor characteristics are summarized in Table 1. Of the 47 patients, 38 (80.9%) were men; the median age was 51 years (range, 22–73 yrs). HBV was the most common etiology (95.7%). The median MELD score was 7.0 (range, 6.0–12.0) with most patients presenting with an ECOG of 0 (85.1%). All the patients in this study were classified as Child’s class A. The median AFP level was 315.2 ng/mL.
TABLE 1. Baseline Characteristics of iHCC Patients Undergoing Hepatectomy (n = 47)

Variable	No.	%
Age/yrs, median (range)	51	22–73
Sex		
Male	38	80.9
Female	9	19.1
Etiology		
Hepatitis B infection	45	95.7
Hepatitis C infection/Other	2	4.3
ECOG PS		
0	40	85.1
1	7	14.9
MELD score, median (range)	7.0	6.0–12.0
Laboratory values, median (range)		
ALT (U/L)	41.5	7.9–617.1
AST (U/L)	39.0	14.5–285.5
AKP (U/L)	95.5	40.9–216.6
GGT (U/L)	59.6	17.3–405.6
LDH (U/L)	179.0	125.0–633.0
Total bilirubin (μmol/L)	14.4	6.0–33.5
Direct bilirubin (μmol/L)	4.5	1.3–12.6
Total protein (g/L)	72.0	60.7–90.1
Albumin (g/L)	42.4	36.1–50.8
Total bile acid (μmol/L)	9.7	0.4–29.6
Triglyceride (mmol/L)	0.83	0.39–5.32
Cholesterol (mmol/L)	4.14	3.13–6.28
Serum creatinine (μmol/L)	65.0	34.0–149.0
INR	1.07	0.9–1.4
AFP (ng/ml)	315.2	0.7–311,000.0
Pathological data		
Histological grade		
Well	4	8.5
Moderate	39	83.0
Poor	4	8.5
Microvascular invasion		
Yes	29	61.7
No	18	38.3
T category		
T1	13	27.7
T2	18	38.3
T3	14	29.8
T4	2	4.3

Surgical data
- Anatomic resection: 22 (46.8%)
- Nonanatomic resection: 25 (53.2%)
- Hepatic portal occlusion:
 - Yes: 33 (70.2%)
 - No: 14 (29.8%)
- Operation time (min): 260 (90–510)
- Bleeding volume: 400 (0–2500)
- Transfusion volume: 0 (0–1925)
- Surgical margin: 0.5 (0–3.0)

Pathological data
- **Tumor location**
 - Right lobe: 34 (72.3%)
 - Left lobe: 13 (27.7%)
- **Tumor number**
 - Single: 35 (74.5%)
 - Multiple: 12 (25.5%)
- **Tumor size (cm)**: 6.0 (1.5–14.0)
- **Vascular invasion**
 - Yes: 11 (23.4%)
 - No: 36 (76.6%)
- **Extrahepatic spread**
 - Yes: 4 (8.5%)
 - No: 43 (91.5%)
- **Cirrhosis**
 - Yes: 42 (89.4%)
 - No: 5 (10.6%)
- **Splenomegaly**
 - Yes: 11 (23.4%)
 - No: 36 (76.6%)
- **Gastroesophageal varices**
 - Yes: 4 (8.5%)
 - No: 43 (91.5%)
- **Ascites**
 - Yes: 11 (23.4%)
 - No: 36 (76.6%)

Variable	**No.**	**%**
Anatomic resection | 22 | 46.8
Nonanatomic resection | 25 | 53.2
Type of resection
Major hepatectomy | 22 | 46.8
Minor hepatectomy | 25 | 53.2
Hepatic portal occlusion
Yes | 33 | 70.2
No | 14 | 29.8
Time (min) | 30 (0–150)
Operation time (min) | 260 (90–510)
Bleeding volume | 400 (0–2500)
Transfusion volume | 0 (0–1925)
Surgical margin | 0.5 (0–3.0)

Pathological data
- **Histological grade**
 - Well: 4 (8.5%)
 - Moderate: 39 (83.0%)
 - Poor: 4 (8.5%)
- **Microvascular invasion**
 - Yes: 29 (61.7%)
 - No: 18 (38.3%)
- **T category**
 - T1: 13 (27.7%)
 - T2: 18 (38.3%)
 - T3: 14 (29.8%)
 - T4: 2 (4.3%)
- **AFP** = alpha-fetoprotein, **AKP** = alkaline phosphatase, **ALT** = alanine aminotransferase, **AST** = aspartate aminotransferase, **GGT** = gamma glutamyl transpeptidase, **ICG-R15** = ICG retention rate in 15 min, **INR** = International Normalized Ratio, **LDH** = lactate dehydrogenase.

(range, 0.7–311,000.0 ng/mL) at presentation; 27.7% of patients had an AFP greater than 1000 ng/mL, and 19.1% had an AFP less than 20 ng/mL. The median ICG retention rate in 15 minutes (R15), which reflects liver function, was 4.8% (range, 0.9%–13.2%). For enrolled patients, the median tumor size was 6.0 cm (range, 1.5–14.0 cm), of whom 35 (74.5%) had a single lesion. There were 11 patients (23.4%) having vascular invasion, 4 patients (8.5%) with extrahepatic spread, and 42 (89.4%) patients with cirrhosis. Ascites was not shown in the majority of patients (76.6%), and the same was presented in splenomegaly (76.6%) and gastroesophageal varices (91.5%).

Surgical Characteristics
Among these iHCC patients, 22 patients received anatomic resection and others underwent nonanatomic resection. Hepatic portal occlusion was given to 33 patients with a median occlusion time of 30 minutes (range, 0–150 min). The overall median operation time was 260 minutes (range, 90–510 min) and the surgical margin was gauged with a median result of 0.5 cm (range, 0–3.0 cm). Median bleeding volume and transfusion volume were 400 mL (range, 0–2500 mL) and 0 mL (range, 0–1925 mL), respectively.

Pathological Characteristics
Using the modified Edmondson classification, 4 (8.5%) patients were characterized as poorly differentiated, 39 (83.0%) were moderately differentiated, and 4 (8.5%) were well differentiated. In addition, patients with iHCC more commonly had
According to T stage of AJCC, 13 were classified as stage T1, 18 were stage T2, 14 were stage T3, and 2 were stage T4.

Survival and Recurrence Analysis

As of June 2015, 30 of the 47 iHCC patients had died (63.8%). The median OS was 27.37 months (95% confidence interval, 4.52–50.22 mo). The 1-, 3-, and 5-year OS rates were 72.3%, 46.3%, and 32.8%, respectively. The 1-, 3-, and 5-year RFS rates were 61.7%, 26.1%, and 16.6%, respectively. Stratified by HKLC stage, median survival was 52.57 months for stage I+IIb (n = 31), and 8.47 months for stage IIIb+IVa (n = 16).

Predictors of Death and Recurrence

Independent predictors for OS and RFS identified through univariate and multivariate analysis are illustrated in Tables 2 and 3.

Variable	Univariate Analysis	Multivariate Analysis	
Age	1.013	0.982–1.046	0.416
Gender	1.105	0.449–2.716	0.828
Length of hospital stay	1.029	0.984–1.075	0.213
Etiology (HBV vs. HCV/other)	0.539	0.073–3.962	0.544
MELD score	1.121	0.899–1.399	0.311
ECOG	8.958	3.356–23.911	<0.001
ALT	0.995	0.982–1.008	0.461
AST	1.001	0.991–1.010	0.905
AKP	1.004	0.990–1.017	0.592
GGT	1.002	0.998–1.005	0.389
LDH	1.010	1.005–1.015	<0.001
TB	1.045	0.986–1.108	0.138
DB	1.168	0.983–1.387	0.077
TP	1.011	0.960–1.066	0.677
ALB	0.986	0.888–1.093	0.783
TBA	1.005	0.951–1.063	0.849
TG	0.603	0.250–1.456	0.261
CHO	0.809	0.432–1.515	0.508
Cr	1.016	0.991–1.042	0.204
INR	0.799	0.022–28.798	0.902
AFP	1.000	1.000–1.000	0.763
Tumor location	0.591	0.275–1.270	0.178
Tumor number	1.680	0.745–3.785	0.211
Tumor size	1.263	1.111–1.435	<0.001
Vascular invasion	2.334	1.063–5.125	0.035
Extrahepatic spread	5.634	1.844–17.212	0.002
Cirrhosis	0.921	0.278–3.045	0.892
Splenomegaly	0.844	0.375–1.898	0.681
Gastroesophageal varices	1.533	0.365–6.450	0.560
Ascites	0.723	0.321–1.628	0.434
PLT	1.000	0.993–1.007	0.978
WBC	0.978	0.859–1.114	0.740
ICG-R15	1.044	0.911–1.196	0.538
Surgical procedure	2.455	1.144–5.267	0.021
Type of resection	0.514	0.250–1.057	0.070
Hepatic portal occlusion (yes/no)	1.139	0.544–2.600	0.664
Hepatic portal occlusion (time)	1.002	0.992–1.011	0.740
Operation time	1.002	0.999–1.006	0.169
Bleeding volume	1.000	1.000–1.001	0.703
Transfusion volume	1.000	1.000–1.001	0.224
Surgical margin	0.991	0.676–1.454	0.964
Histological grade	0.393	0.161–0.962	0.041
Microvascular invasion	0.621	0.284–1.359	0.234
T category	1.742	1.157–2.624	0.008

RFS rates were 61.7%, 26.1%, and 16.6%, respectively. Stratified by HKLC stage, median survival was 52.57 months for stage I+IIb (n = 31), and 8.47 months for stage IIIb+IVa (n = 16).

AFT = alpha-fetoprotein, AKP = alkaline phosphatase, ALB = albumin, ALT = alanine aminotransferase, AST = aspartate aminotransferase, CHO = cholesterol, Cr = creatinine, DB = direct bilirubin, GGT = gamma glutamyl transpeptidase, ICG-R15 = ICG retention rate in 15 min, INR = International Normalized Ratio, LDH = lactate dehydrogenase, PLT = platelets, TB = total bilirubin, TBA = total bile acid, TG = triglyceride, TP = total protein, WBC = leukocyte count.
predictive of death: ECOG, lactate dehydrogenase (LDH), tumor size, vascular invasion, extrahepatic spread, surgical procedure, histological grade, and T category. In the multivariate analysis, independent predictors of death were ECOG ($P < 0.001$), LDH level ($P = 0.001$), and T category ($P = 0.003$). With respect to RFS, univariate analysis identified 10 prognostic factors, including ECOG, LDH, DB, tumor size, vascular invasion, extrahepatic spread, surgical procedure, type of resection, MVI, and T category. Among them, ECOG ($P = 0.018$), LDH level ($P = 0.001$), vascular invasion ($P = 0.036$), surgical procedure ($P = 0.004$), and MVI ($P = 0.027$) were observed as independent risk factors of recurrence.

Variable	Univariate Analysis	Multivariate Analysis	
	HR 95% CI	HR 95% CI	P
Age	0.995 0.970–1.022	3.155 1.219–8.168	0.018
Gender	0.915 0.413–2.030		
Length of hospital stay	1.028 0.979–1.079		
ECOG	1.209 0.973–1.501		
ALT	4.067 1.695–9.755	1.010 1.004–1.016	0.001
AST	0.993 0.980–1.007		
GGT	1.001 0.989–1.012		
LDH	1.028 0.979–1.079		
MELD score	1.000 0.997–1.003		
ECOG	1.012 1.006–1.018	<0.001	
TB	1.047 0.989–1.109		
DB	1.168 1.007–1.353		
TP	1.018 0.965–1.074		
ALB	1.007 0.917–1.105		
TBA	1.019 0.968–1.071		
TG	0.606 0.291–1.258		
CHO	0.965 0.571–1.631		
Cr	1.015 0.993–1.037		
INR	2.903 0.113–74.748		
AFP	1.000 1.000–1.000		
Tumor location	0.711 0.357–1.416		
Tumor number	1.629 0.786–3.374		
Tumor size	1.210 1.070–1.369		
Vascular invasion	4.231 1.951–9.175	<0.001	
Extrahepatic spread	2.951 1.022–8.521		
Cirrhosis	0.834 0.256–2.722		
Splenomegaly	1.583 0.724–3.460		
Gastroesophageal varices	2.591 0.620–10.829		
Ascites	0.792 0.383–1.635		
PLT	1.001 0.995–1.006		
WBC	1.005 0.896–1.128		
ICG-R15	0.995 0.884–1.119		
Surgical procedure	2.468 1.261–4.832		
Type of resection	0.499 0.262–0.947		
Hepatic portal occlusion (yes/no)	0.886 0.430–1.829		
Hepatic portal occlusion (time)	1.003 0.995–1.010		
Operation time	1.002 0.999–1.005		
Bleeding volume	1.000 1.000–1.001		
Transfusion volume	1.000 1.000–1.001		
Surgical margin	1.256 0.898–1.757		
Histological grade	0.517 0.252–1.058		
Microvascular invasion	0.258 0.121–0.550	<0.001	
T category	1.479 1.047–2.091		

TABLE 3. Univariate and Multivariate Analysis of Prognostic Factors of RFS

AFP = alpha-fetoprotein, AKP = alkaline phosphatase, ALB = albumin, ALT = alanine aminotransferase, AST = aspartate aminotransferase, CHO = cholesterol, Cr = creatinine, DB = direct bilirubin, GGT = gamma glutamyl transpeptidase, ICG-R15 = ICG retention rate in 15 min, INR = International Normalized Ratio, LDH = lactate dehydrogenase, PLT = platelets, TB = total bilirubin, TBA = total bile acid, TG = triglyceride, trilgyceride, TP = total protein, WBC = leucocyte count.
Correlations Between Classification of MVI and Clinicopathological Factors

On the basis of the previous classification of MVI,13,14 all patients with MVI were divided into either a mild MVI group or a severe MVI group. MVI classification was defined as follows: mild MVI group: number of vessels invaded ≤ 5 and furthest distance on invasion from the tumor capsule ≤ 1 cm; severe MVI group: number of vessels invaded > 5 or furthest distance on invasion from the tumor capsule > 1 cm. The relationship between the degree of MVI and clinicopathological characteristics is summarized in Table 4. The levels of AST, GGT, and LDH in the severe MVI group were significantly higher than those in the mild MVI group (P = 0.006, 0.024, and 0.043, respectively).

Comparisons of OS and RFS Rates According to LDH level, Surgical Procedure, and MVI

Overall, Kaplan–Meier curve analysis revealed that anatomic resection was significantly associated with increased RFS (P = 0.007). A high LDH level was significantly associated with decreased OS and RFS (P = 0.003 and P = 0.020, respectively). Patients showing MVI were observed with decreased RFS especially in the severe MVI group (P < 0.001) (Figure 2A–D).

TABLE 4. Relationship Between the Degree of MVI and Clinicopathological Findings (n = 29, Mean ± SD)

Characteristic	Mild MVI (n = 18)	Severe MVI (n = 11)	P
AST	35.7 ± 11.4	52.0 ± 18.3	0.006 (t test)
GGT	87.1 ± 108.3	132.5 ± 77.4	0.024 (Mann–Whitney)
LDH	179.1 ± 23.5	264.6 ± 152.7	0.043 (Mann–Whitney)

AST = aspartate aminotransferase, GGT = gamma glutamyl transeptidase, LDH = lactate dehydrogenase, MVI = microvascular invasion.

FIGURE 2. Kaplan–Meier survival analysis of LDH level, surgical procedure, and MVI in patients with iHCC undergoing curative resection. A, Overall survival according to LDH level; B, Recurrence-free survival according to LDH level; C, Recurrence-free survival according to surgical procedure; D, Recurrence-free survival according to MVI classification.
infection. Similar to the study by Benvegnu et al and He et al, consisted of only 2 patients whose etiologic factor was not HBV. AFP of the cohort showed that 57.4% of iHCC patients had mildly elevated diffuse disease and associated major vascular invasion, had advanced or late stages (e.g., BCLC stage C or D) with iHCC. Because most studies were enrolling iHCC patients who systems especially for the HKLC classification for HBV-related HCC with available therapies, staging before treatment may be more emphasized to decide optimal treatment strategies. Proper therapies should be managed according to staging systems for patients at stage I and IIa was liver transplantation. However, a high rate of MVI and propensity for early recurrence may prevent this therapy giving superior results to surgical resection in iHCC patients. As there are no relevant reports about prognosis of liver transplantation in iHCC patients, comparison of anatomic resection and liver transplantation will be accomplished in our future studies.

In addition to anatomic resection, MVI was also found to be a significantly independent predictor of RFS. Several studies have demonstrated that the majority of patients with iHCC have extensive tumor burden as well as vascular invasion. Frequent presence of macrovascular invasion is most likely secondary to advanced tumor stage in iHCC. However, the importance of MVI in iHCC has not been fully elucidated. Our previous study demonstrated the higher MVI rate of infiltrative type than other gross types of HCC. Multivariate analyses indicated that the presence of MVI was a significantly independent predictor of inferior RFS ($P = 0.027$). With the high MVI rate in iHCC patients, the relationship between MVI and prognosis of iHCC patients should be drawn more attention. As previously stated, the presence of MVI was shown to lead to a high frequency of recurrence in iHCC after liver resection. Moreover, prevention of early recurrence of iHCC patients with MVI is the most important strategy for improving long-term survival after curative resection; unfortunately, no adjuvant therapy has been reported to show a beneficial survival. As the only standard systemic treatment capable of improving patient survival, sorafenib may act as an adjuvant treatment option to the iHCC patients with MVI. Although the recommendation of the use of sorafenib as adjuvant therapy in HCC patients after resection was seen as a disappointing consequence, the utility of sorafenib in iHCC patients is unclear. The time point for the
use of sorafenib in iHCC patients at early or intermediate stages after resection is still controversial. With respect to iHCC patients undergoing hepatectomy, it needs to clarify whether sorafenib is a proper adjuvant therapy to reduce early recurrence and experience a better survival.\(^{28,29}\) Future randomized controlled trials (RCTs) should be performed to demonstrate the effectiveness of this combination therapy.

Of note, ECOG and LDH were the only 2 preoperative predictors of both OS and RFS. Interestingly, high LDH level was identified associated with decreased OS and RFS in our cohort of iHCC patients. Up to now, the biological link between LDH, hypoxia, and the tumor-driven angiogenesis pathway through the abnormal activation of the hypoxia-inducible factor 1 (HIF-1α) is well established.\(^{28}\) Furthermore, LDHA plays an important role in metastasis as well as in HCC tumor growth.\(^{29}\)

Therefore, elevated serum LDH level may not only represent tumor hypoxia and/or angiogenesis but also be present along with abnormal activation of the oncogenic pathways. An increased LDH reflects an oncogenic status that favors tumor progression and impairs host immune surveillance, both of which are associated with poor oncologic outcome.\(^{30}\) Preoperative high LDH level was also significantly correlated with the severe degree of MVI and the poor outcome in iHCC patient. Therefore, LDH level together with MVI were shown to influence the RFS. As the role of serum LDH levels in predicting global outcome in HCC patients treated with sorafenib has been revealed,\(^{21}\) the application of sorafenib as adjuvant therapy following hepatectomy in iHCC patients with high LDH level and severe MVI will be possible.

The current study has several limitations. This was a single-center study and only able to identify 47 patients with iHCC undergoing hepatectomy. Because of the relatively small number of patients with iHCC selected for this study, there were limitations with regard to statistical modeling and power. Besides, not all the iHCC patients in our study were at stages (HKLC stage I to IIb) in which resection is recommended as optimal treatment. In our future prospective and multicenter study, more iHCC patients at early and intermediate stages undergoing hepatectomy will be enrolled to reduce the potential bias.

In summary, iHCC patients are related with a higher MVI rate and patients at early and intermediate stages (HKLC stage I to IIb) may still derive survival benefit from anatomic resection that could eradicate MVI as much as possible. MVI classification could be used to identify iHCC patients with a poorer survival, especially those with a high preoperative LDH level, which may guide postoperative adjuvant therapy.

ACKNOWLEDGMENT

The authors would like to thank the whole multiple discipline team (MDT) for their help in this study.

REFERENCES

1. DeSantis CE, Lin CC, Mariotto AB, et al. Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin. 2014;64:252–271.

2. Bruix J, Gores GJ, Mazzaferro V. Hepatocellular carcinoma: clinical frontiers and perspectives. Gut. 2014;63:844–855.

3. Nomoto S, Hishida M, Inokawa Y, et al. Management of hepatocellular carcinoma should consider both tumor factors and background liver factors. Hepatobiol Surg Nutr. 2014;3:82–85.

4. Kanai T, Hirohashi S, Upton MP, et al. Pathology of small hepatocellular carcinoma. A proposal for a new gross classification. Cancer. 1987;60:810–819.

5. He J, Sha J, Fu X, et al. The clinicopathologic and prognostic significance of gross classification on solitary hepatocellular carcinoma after hepatectomy. Medicine (Baltimore). 2015;94:e1331.

6. Mehta N, Fidelman N, Sarkar M, et al. Factors associated with outcomes and response to therapy in patients with infiltrative hepatocellular carcinoma. Clin Gastroenterol Hepatol. 2013;11:572–578.

7. Fu X, Mao L, Tang M, et al. Gross classification of solitary small hepatocellular carcinoma on preoperative computed tomography: prognostic significance after radiofrequency ablation. Hepatol Res. 2016;46:298–305.

8. Kneuertz PJ, Demirjian A, Firoozmand A, et al. Diffuse infiltrative hepatocellular carcinoma: assessment of presentation, treatment, and outcomes. Ann Surg Oncol. 2012;19:2897–2907.

9. Jang ES, Yoon JH, Chung JW, et al. Survival of infiltrative hepatocellular carcinoma patients with preserved hepatic function after treatment with transarterial chemoembolization. J Cancer Res Clin Oncol. 2013;139:635–643.

10. Han K, Kim JH, Yoon HM, et al. Transcatheter arterial chemoembolization for infiltrative hepatocellular carcinoma: clinical safety and efficacy factors influencing patient survival. Korean J Radiol. 2014;15:464–471.

11. Yan X, Fu X, Cai C, et al. Validation of models in patients with hepatocellular carcinoma: comparison of Hong Kong Liver Cancer with Barcelona Clinic Liver Cancer staging system in a Chinese cohort. Eur J Gastroenterol Hepatol. 2015;27:1180–1186.

12. Edmondson HA, Steiner PE. Primary carcinoma of the liver: a study of 100 cases among 48,900 necropsies. Cancer. 1954;7:462–503.

13. Roayaie S, Blume PN, Thung SN, et al. A system of classifying microvascular invasion to predict outcome after resection in patients with hepatocellular carcinoma. Gastroenterology. 2009;137:850–855.

14. Sumie S, Nakashima O, Okuda K, et al. The significance of classifying microvascular invasion in patients with hepatocellular carcinoma. Ann Surg Oncol. 2014;21:1002–1009.

15. Reynolds AR, Furlan A, Fetzer DT, et al. Infiltrative hepatocellular carcinoma: what radiologists need to know. Radiographics. 2015;35:371–386.

16. Benvegnu L, Noventa F, Bernardinello E, et al. Evidence for an association between the aetiology of cirrhosis and pattern of hepatocellular carcinoma development. Gut. 2001;48:110–115.

17. Farinati F, Marino D, De Giorgio M, et al. Diagnostic and prognostic role of alpha-fetoprotein in hepatocellular carcinoma: both or neither? Am J Gastroenterol. 2006;101:524–532.

18. Yopp AC, Mokdad A, Zhu H, et al. Infiltrative hepatocellular carcinoma: natural history and comparison with multifocal, nodular hepatocellular carcinoma. Ann Surg Oncol. 2015;22(Suppl 3):1075–1082.

19. Demirjian A, Peng P, Geschwind JF, et al. Infiltrating hepatocellular carcinoma: seeing the tree through the forest. J Gastrointest Surg. 2011;15:2089–2097.

20. Ochiai T, Sonoyama T, Ichikawa D, et al. Poor prognostic factors of hepatectomy in patients with resectable small hepatocellular carcinoma and cirrhosis. J Cancer Res Clin Oncol. 2004;130:197–202.

21. Lopez RR Jr, Pan SH, Hoffman AL, et al. Comparison of transarterial chemoembolization in patients with unresectable, diffuse vs focal hepatocellular carcinoma. Arch Surg. 2002;137:653–657.

22. Makuchi M. Surgical treatment for HCC – special reference to anatomical resection. Int J Surg. 2013;11(Suppl 1):S47–S49.

23. Qiu Y, Zhu X, Zhu R, et al. The clinical study of precise hemihepatectomy guided by middle hepatic vein. World J Surg. 2012;36:2428–2435.
24. Ueno S, Kubo F, Sakoda M, et al. Efficacy of anatomic resection vs nonanatomic resection for small nodular hepatocellular carcinoma based on gross classification. *J Hepatobiliary Pancreat Surg*. 2008;15:493–500.

25. Bruix J, Takayama T, Mazzaferro V, et al. Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): a phase 3, randomised, double-blind, placebo-controlled trial. *Lancet Oncol*. 2015;16:1344–1354.

26. Stein LL, Sellers MT. Outcomes of additional treatment for patients with infiltrative hepatocellular carcinoma. *Clin Gastroenterol Hepatol*. 2013;11:1673.

27. He VJ. Professor Pierce Chow: neo-adjuvant and adjuvant therapy for hepatocellular carcinoma-current evidence. *Hepatobiliary Surg Nutr*. 2013;2:239–241.

28. Zhang JP, Wang HB, Lin YH, et al. Lactate dehydrogenase is an important prognostic indicator for hepatocellular carcinoma after partial hepatectomy. *Transl Oncol*. 2015;8:497–503.

29. Sheng SL, Liu JJ, Dai YH, et al. Knockdown of lactate dehydrogenase A suppresses tumor growth and metastasis of human hepatocellular carcinoma. *FEBS J*. 2012;279:3898–3910.

30. Yang Z, Ye P, Xu Q, et al. Elevation of serum GGT and LDH levels, together with higher BCLC staging are associated with poor overall survival from hepatocellular carcinoma: a retrospective analysis. *Discov Med*. 2015;19:409–418.

31. Faloppi L, Scartozzi M, Bianconi M, et al. The role of LDH serum levels in predicting global outcome in HCC patients treated with sorafenib: implications for clinical management. *BMC Cancer*. 2014;14:110.