MODELLING AND ANALYSIS OF FRACTIONAL-ORDER REGULATED SYSTEMS IN THE STATE SPACE

Ľubomír DORČÁK, Ivo PETRÁŠ, Imrich KOSTIAL
Department of Informatics and Process Control
BERG Faculty, Technical University of Košice
B. Němcovej 3, 042 00 Košice, Slovak Republic
phone: (+42195) 6025172
e-mail: \{dorvak, petras, kostial\}@tuke.sk

Abstract
In this paper we present the mathematical description and analysis of a fractional-order regulated system in the state space. A little historical background of our results in the analysis and synthesis of the fractional-order dynamical regulated systems is given. The methods and results of simulations of the fractional order system described by a state space equation equivalent to three-member fractional-order differential equation with a fractional-order PD^δ regulator are then presented. The possibility of investigating the stability of such systems is also considered.

Keywords: fractional calculus, fractional-order regulated system, model, state space.

1. Introduction
Since the first references on fractional-order derivatives in the 17-th century, the theory of fractional-order derivatives and integrals was highly developed by many mathematicians. In the last five decades, many authors made a great effort to apply this knowledge in practice. But only in the last decade can we find some significant works concerned with the description, analysis, and synthesis of fractional-order regulated systems.

Real objects are generally fractional-order, however, for many of them the fractionality is very low. But the control systems used so far were all considered as integer-order systems, regardless of the reality. Because of the higher complexity and the absence of adequate mathematical tools, fractional-order dynamical systems were only treated marginally in the theory and practice of control systems, e.g. [1, 2, 3]. In these works the first generalizations of analysis methods for fractional-order control systems were made (s-plane, frequency response, etc.).

At that time our research in this field began. On the basis of fundamental works [1, 2] we made at first an analysis of the fractional dimension of the controlled systems and properties of fractional regulators [3, 4, 5, 6]. Until then we did not make difference between the terms fractal and fractional regulator. Very significant theoretical works appeared in 1993 and later [7, 8, 9, 10, 11, 12, 13, 14]. This and the following results in this field were summarized in book [15]. The fundamentals for practical utilization of numerical methods [16, 17, 18], based on the relation for approximation of the fractional derivatives [19], and analytical methods [20] for fractional-order systems simulation were made. But the proposed iterative numerical methods did not converge to the correct solution. The first explicit noniterative numerical methods for simulation of fractional-order systems were presented in works [21, 22, 23]. In
works [17, 18] the first comparison was made of these noniterative numerical methods and corresponded analytical methods derived for fractional-order control system from analytical solutions published in [12]. An example of experimental design of a fractional-order PD^δ controller, with comparison of dynamic properties in fractional- and integer-order system with a fractional- and integer-order controller, designed for an integer-order system as the best approximation to given fractional-order system, was presented in works [17, 18] too. It followed from these results, that an application of integer-order regulator to fractional-order system is inadequate and with a change of system or regulator parameters can lead to system instability. This example was taken to many other works [13, 15, 20, 23, 24] etc. After experimental method of the fractional-order system parameters identification [17, 18], two exact methods [21, 22] were derived. A great effort was devoted to elaboration of methods of fractional-order controllers synthesis. From purely experimental methods [17, 18] we continued with methods based on minimization of regulated square [23, 25] etc., and methods based on stability and damping measure [24, 26, 29] etc. In these works the fundamentals of fractional-order P$T^\lambda D^\delta$ controllers synthesis are developed and now first works appear with application of these methods to the control of chaotic fractional-order systems [29, 30]. The development of the methods described in works [25, 24, 26, 29] required the elaboration of methods of fractional-order system analysis in the frequency domain [27, 28] etc. The following Bode analysis was utilized for the fractional-order controllers synthesis and such regulated control systems stability analysis.

This contribution is a continuation of the previous works and deals with the mathematical description and analysis of fractional-order regulated systems in the state space. We present results of simulations of a fractional-order system with the aim to investigate the stability of such system.

2. Example of the fractional-order control system in state space

For the definition of the control system we consider a simple unity feed-back control system illustrated in Fig.1, where $G_s(s)$ denotes the transfer function of the controlled system and $G_r(s)$ is the controller transfer function, both integer- or fractional-order.

![Feed-back control loop](image)

Fig.1: Feed-back control loop

The differential equation of the above closed regulation system for the transfer function of the controlled system $G_s(s) = 1/(a_2 s^\alpha + a_1 s^\beta + a_0)$ and the controller $G_r(s) = K + T_d s^\delta$ has the form

$$a_2 y^{(\alpha)}(t) + a_1 y^{(\beta)}(t) + T_d y^{(\delta)}(t) + (a_0 + K) y(t) = K w(t) + T_d w^{(\delta)}(t)$$

(1)

where α, β, δ, are generally real numbers and a_0, a_1, a_2, K, T_d are arbitrary constants.

In works [31, 32, 29] was presented a state space model that expresses the fractional-order derivatives

$$x^{(\alpha)}(t) = A x(t) + B u(t),$$

$$y(t) = C x(t), \quad t \geq 0.$$

(2)

This description is convenient for simple models of systems [31] with only one fractional-order derivation.

In this contribution we propose state space model of the linear time invariant one dimensional system which expresses the first derivatives in the state space equations (2) and which has the classical state space interpretation for the fractional-order system too. On the right side of these equations we can then transfer more than one fractional-order derivatives of the state space variables ($x^{(fr)}(t)$). A disadvantage of this expression is that we cannot describe the state space equations in vector and matrix relations as in previous description (2).

$$x'(t) = f(x^{(fr)}(t), u(t)),$$

$$y(t) = g(x^{(fr)}(t), u(t)), \quad t \geq 0.$$

(3)
We verified the above methods on an example from [17, 18]. Assume the system described by differential equation (1) with coefficients:

\[a_2 = 0.8, a_1 = 0.5, a_0 = 1, \alpha = 2.2, \beta = 0.9, K = 20.5, T_d = 3.7343, \delta = 1.15. \]

After its modification and with state space variables:

\[x(t) = x_1(t), x'(t) = x_2(t), x''(t) = x_2(t) \]

we can derive the following state space model equivalent to model (1):

\[
\begin{align*}
x_1'(t) &= x_2(t), \\
x_2'(t) &= \frac{a_0 + K}{a_2} x_1^{(2-\alpha)}(t) - \frac{T_d}{a_2} x_1^{(1+\delta-\alpha)}(t) - \frac{a_1}{a_2} x_1^{(1+\beta-\alpha)}(t) - \frac{1}{a_2} w_1^{(2-\alpha)}(t), \\
y(t) &= K x_1(t) + T_d x_2^{(\delta-1)}(t), \quad t \geq 0.
\end{align*}
\] (4)

We can made other alternative state space models for the same system. The order of the integer-order system in the state space model was equivalent to the number of the state variables. In fractional-order systems it does not hold. We propose to consider the order of the fractional-order systems according to the order of the highest derivative (integer- or fractional-order) in the resulting differential equation, e.g. [1].

Under condition \(x'(t) = 0 \) we can obtain from state space model (1) the two equations of statics of this system, which are not algebraic equations as in integer-order linear systems, but differential equations, from which we can compute the coordinates of the equilibrium point, to which the state trajectories tend.

After discretisation of the first derivative by first differentiation in (4) we obtained the simple Euler methods for solving the state space model. For the fractional-order derivatives in (4) we can take the relation from e.g. [9, 10, 15, 17, 18]. In Fig.2 and Fig.3 is a comparison of the unit-step response of the classical numerical solution [17, 18] and the numerical solution of the state space model. The obtained state trajectories represent stable focal point for the above mentioned coefficients of the system (with stability measure \(S_t = -1.5 \) and damping measure \(T_l = 0.37 \), e.g. [27, 28]) and unstable focal point for only one changed coefficient \(T_d = 0.7343 \) of the same system.

This work was partially supported by grant VEGA 1/7098/20 from the Slovak Agency for Science.

References

[1] A. Outstaloup: From Fractality to non integer Derivation through Recursivity, a Property Common to these two Concepts: A Fundamental Idea from a new Process Control Strategy. in: Proc. of 12th IMACS World Congress, Paris, July 18-22, 1988, vol. 3, pp. 203-208.
[2] M. Axtell, E. M. Bise: Fractional Calculus Applications in Control Systems. in: Proc. of the IEEE 1990 Nat. Aerospace and Electronics Conf., New York, 1990, pp. 563 - 566.
[3] G. D. Kelogonov, Z. M. Dimitrova: Theoretico-experimental determination of the domain of applicability of the system " PI (I) regulator - fractional-type astatic systems". in: Izvestia vyssich ucebnych zavedenij, Elektromechanika, no. 2, 1992, pp. 65-72
[4] K. B. Oldham, J. Spanier: The Fractional Calculus. Academic Press, New York, 1974.
[5] P. Kmetek, J. Prokop: Use of fractal geometry for modelling and control of technology processes. VŠT, ÚVT VŠT a SAV, Správa VI-1, Košice, 1990, 51p.
[6] P. Kmetek, J. Prokop: Robust regulators with fractal structure. Flexible Automation, the 2nd International Symposium - DAAAM, December 9-11, 1991, Štrbské Pleso, ČSFR, pp. 24-25.
[7] J. Prokop, I. Košťial: The Properties of fractional-order Regulators. ASRTP’92, The 10th conference with international participation, September 2-4, 1992, Zlátá Idka, ČSFR, pp. 333-336.

[8] I. Košťial, P. Kmetek, J. Prokop, M. Olejár, L. Dorčák: On material evaluations and fractality in modelling a blast furnace process. ASRTP’92, the 10th conference with inter. participation, September 2-4, 1992, Zlatá Idka, ČSFR, pp. 337-338.

[9] I. Podlubny, J. Míša : The Use of Fractional Derivatives for Modelling the Motion of a Large Thin Plate in a Viscous Fluid. Proceedings of the 9th Conference on Process Control, Tatranské Matliare, May 1993, STU Bratislava, pp. 274-278.

[10] I. Podlubny: Numerical Methods of the Fractional Calculus. Transactions of the Technical University of Košice, vol. 4, no. 3-4, 1994, pp. 200-208.

[11] I. Podlubny: Numerical solution of initial value problems for ordinary fractional-order differential equations. Proceedings of the 14th World Congress on Computation and Applied Mathematics, July 11-15, 1994, Atlanta, Georgia, USA, Late Papers volume (ed.: W.F. Ames), pp. 107-111.

[12] I. Podlubny: The Laplace Transform Method for Linear Differential Equations of the Fractional Order. UEF-02-94, The Academy of Scien. Inst. of Exp. Phys., Košice, Slovak Republic, 1994, 20p.

[13] I. Podlubny: Fractional-Order Systems and Fractional-Order Controllers. UEF-03-94, The Academy of Sciences Institute of Experimental Physics, Košice, Slovak Republic, 1994, 32 p.

[14] I. Podlubny, L. Dorčák, J. Míša : Application of Fractional Derivatives in Calculation of the Change of Intensity in Heat Load of Blast Stove Walls. Trans. of the TU of Košice, vol. 5, 1995, pp. 137-144.

[15] I. Podlubny: Fractional Differential Equations. Academic Press, San Diego, 1999.

[16] S. G. Samko, A. A. Kilbas, O. I. Marichev: Fractional integrals and derivatives and some of their applications. Minsk, Nauka i technika, 1987.

[17] L. Dorčák, J. Prokop, I. Košťial: Investigation of the Properties of Fractional-Order Dynamical Systems. in: Proceedings of the 11th International Conference on Process Control and Simulation, September 19-20, 1994, Košice-Zlatá Idka, pp. 58-66.

[18] L. Dorčák: Numerical Models for Simulation of Fractional - Order Control Systems. UEF-04-94, The Academy of Sciences Institute of Exp. Physics, Košice, Slovak Republic, 1994, 12p.

[19] L. Dorčák, I. Košťial: Simulation of Fractional-Type Control Systems. in: 5th International DAAAM Symposium, University of Maribor Slovenia, 27-29th October 1994, pp. 99-100.

[20] I. Podlubny: Fractional Differential Equations. Dissertation, Košice, 1995.

[21] L. Dorčák, V. Leško, I. Košťial: Identification of Fractional - Order Dynamical Systems. 12th International Conference on Process Control and Simulation ASRTP’96, September 10-13, 1996, Košice, Slovak Republic, Volume I, pp. 62-68, ISBN 80-7099-263-8

[22] I. Podlubny: On Identification of Fractional-Order Dynamic Systems. Proceedings of the 3-rd Scientific-Technical Conference with International Participation, Process Control’98, vol. 1, 7-10 June 1998, Kouty nad Desnou, Czech Republic, pp. 328-331.

[23] P. Gombík: An analysis of fractional-order controllers. Diploma work, Košice, 1995.

[24] I. Petráš: The parameters design of the fractional-order controllers. Diploma work, Košice, 1997.

[25] E. Sýkorová, I. Košťial, L. Dorčák: A comparison of Integer- and Fractional- Order PID Regulators. in: Proceedings of the 2nd scientific-technical conference with international participation PROCESS CONTROL, Horní Bečva, Czech Republic, June 3-6, 1996, pp. 347-351.

[26] I. Petráš, L. Dorčák, I. Košťial: Design of Fractional - Order Controllers with Given Stability and Damping Measures. in: 9th Int. BERG Conf., Sept. 2-5, Košice, Slovak Republic, 1997, pp. 116-119.

[27] L. Dorčák, I. Petráš, I. Košťial: Algorithms for computation of stability measure and damping measure of fractional-order controllers. in: ICAMC’98/ASRTP’98, Sept. 8-12, Vysoké Tatry, 1998, pp. 243-246.

[28] I. Petráš, L. Dorčák: The frequency methods for stability investigation of fractional control systems. SACTA journal, vol. 2, no. 1-2, 1999, Durban, South Africa, ISSN 1563-3276, pp. 75-85.

[29] I. Petráš: The fractional order methods in control. Dissertation work, Košice, 1999.

[30] I. Petráš: Feedback Control of Fractional-Order Chua’s System. ICCC’2000. (In this Proceedings).

[31] D. Matignon: Observer-based controllers for fractional differential systems. in:Proc. 36th IEEE Conf. on Decision and Control, IEEE-CSS, SIAM, San Diego, California, December 1997, pp. 4967-4972.

[32] B. M. Vinagre: Modelling and Control of Systems Described by Differential Equations of Fractional Order. Internal report, Košice, 1999.