Short Communication

Sex differences in single IVF-derived bovine embryo cultured in chemically defined medium

Islam M. Saadeldina,b,c,*, Goo Jangb,d

a Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia
b Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
c Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
d Emergence Center for Food-Medicine Personalized Therapy System, Advanced Institute of Convergence Technology, Seoul National University, Gyeonggi-Do, 16629, South Korea

\textbf{ARTICLE INFO}

Keywords:
- Blastocyst
- Bovine
- In vitro fertilization
- PCR
- Single embryo culture

\textbf{ABSTRACT}

Single embryo culture is essential for culturing embryos derived from few oocytes obtained from elite cows through ultrasonography guidance. Bovine \textit{in vitro} fertilization (IVF) and individual embryo culture is a challenge as it generally leads to impaired embryo development. In this study, we explored the embryonic development and the sex ratio of IVF-derived bovine embryo cultured individually in chemically defined two-step culture medium. Total 63 cumulus-oocyte complexes were collected, in vitro matured, in vitro fertilized and the resultant fertilized oocytes were randomly cultured individually (4 trials, 15–16 oocytes each) in microdrops of 5 µL of a chemically defined two-step culture medium. Blastocysts were counted in every trial (n = 32, 50.79%) and all of them were used for both genomic DNA and total RNA extraction, cDNA synthesis and PCR using specific primers for \textit{GAPDH}, \textit{GDP6}, \textit{XIST} and \textit{SRY} genes. Results showed significant difference in expression of \textit{XIST} (positive expression in 11 blastocysts) and \textit{SRY} (positive expression in 21 blastocysts) mRNAs, \(P < .05\). This result supports the hypothesis of sexual dimorphism among the pre-implantation embryos produced in vitro production.

1. Introduction

Single bovine embryo \textit{in vitro} culture is a challenge but it is essential for culturing embryos derived from oocytes where obtained from elite cows through ultrasonography guidance. Several researchers reported the beneficial effect of group culture medium for bovine \textit{in vitro} produced embryos [1–5], while the demand for improving single embryo culture is essentially needed for accurate study of the early embryonic development [6,7], and for toxicity screening [8–11]. Therefore, extensive research was performed to improve single embryo culture through co-culturing with somatic [10,12] or embryonic cells [13].

We have previously shown that in vitro embryonic development and the yield of cloned, transgenic embryos and viable calves were increased by using a two-step chemically defined medium for IVF-derived bovine embryos [14–18].

In the current study, we explored the embryonic development and the sex ratio of IVF-derived bovine embryo cultured individually in a chemically defined two-step culture medium using genomic DNA marker and RT-PCR.

2. Materials and methods

2.1. Chemicals

Unless otherwise stated, all chemicals and hormones were purchased from Sigma-Aldrich Corp. (St. Louis, MO, USA).

2.2. Oocyte collection and in vitro maturation (IVM)

Ovaries were collected from a slaughterhouse into NaCl solution 0.9% at 30–33 °C and transported to the laboratory within 2–3 h. Cumulus-oocyte complexes (COCs) from follicles 2–8 mm in diameter were aspirated using an 18-gauge needle attached to a 10 mL disposable syringe. The COCs with evenly-granulated cytoplasm and enclosed by more than three layers of compact cumulus cells were selected, washed three times in HEPES-buffered tissue culture medium-199 (TCM-199; Invitrogen, Carlsbad, CA, USA), supplemented with 10% FBS, 2 mM NaHCO3, and 1% penicillin–streptomycin (v/v). For IVM, COCs were cultured in four-wells dishes (30–40 oocytes per well; Falcon, Becton-
2.3. Sperm preparation, in vitro fertilization (IVF) and in vitro culture of embryos (IVC)

Motile spermatozoa were purified and selected using the Percoll gradient method [19]. Briefly, spermatozoa were selected from the thawed semen straws by centrifugation on a Percoll discontinuous gradient (45-90%) for 15 min at 1500 rpm. The 45% Percoll solution was prepared with 1 mL of 90% Percoll (Nutricell, Campinas, SP, Brazil) and 1 mL of capitation-TALP (Nutricell) [20]. The sperm pellet was washed twice with capitation-TALP by centrifugation at 1500 rpm for 5 min. The active motile spermatozoa from the pellet used for insemination of matured oocyte (At 24 h of IVM). Following maturation, COCs were randomly distributed in 30 µL microdrops of IVF-TALP medium (Nutricell) and were then inseminated (day 0) with 1–2×10⁶ spermatozoa/µL for 18 h. Each microdrop contained two COCs and overlaid with mineral oil at 37 °C in a humidified atmosphere of 5% CO₂. In vitro culture (IVC) dishes were labelled and numbered to specifically monitor the individually cultured embryos. Presumptive zygotes were denuded and cultured individually in 5 µL two-step defined culture medium (first 5 days with stage-1 medium then transferred to the later stage medium [16]) overlaid with mineral oil and incubated at 39 °C in an atmosphere of 5% O₂, 5% CO₂ and 90% N₂. Cleavage and blastocyst rates were recorded on days 2 and 7, respectively.

2.4. Sex determination with genomic DNA and expression of sex-specific mRNA transcripts in single embryo by RT-PCR

Each blastocyst was washed in TALP medium then transferred into 5 µL of diethylpyrocarbonate (DEPC) treated water (Invitrogen) and stored at −80 °C. Individual embryos were transferred into 100 µL Trizol reagent and mixed very well then were divided (50 µL each) into genomic DNA or total RNA extraction procedures according to specific kits (Qiagen, Valencia, CA, USA) according to the manufacturer’s instruction [14,21]. Specific primers were used to amplify Y-specific segment from the extracted genomic DNA by PCR (Table 1). Different somatic cell lines were used [from transgenic male cow (Tet_M); brain tissue (Invitrogen) in a 20 µL reaction. 10 ng cDNA subjected to reverse transcription-polymerase chain reaction (RT-PCR) using Maxime PCR PreMix kit-i-starTaq (Intron Biotech., Seoul, Republic of Korea) and 1 µL of reverse transcriptase (Invitrogen) using random hexamer and superscript TM III reverse transcriptase-polymerase chain reaction (RT-PCR) using Maxime PCR PreMix kit-i-starTaq (Intron Biotech., Seoul, Republic of Korea) and 1 µL of capitation-TALP (Nutricell) [20]. The sperm pellet was washed twice with capitation-TALP by centrifugation at 1500 rpm for 5 min. The active motile spermatozoa from the pellet used for insemination of matured oocyte (At 24 h of IVM). Following maturation, COCs were randomly distributed in 30 µL microdrops of IVF-TALP medium (Nutricell) and were then inseminated (day 0) with 1–2×10⁶ spermatozoa/µL for 18 h. Each microdrop contained two COCs and overlaid with mineral oil at 37 °C in a humidified atmosphere of 5% CO₂. In vitro culture (IVC) dishes were labelled and numbered to specifically monitor the individually cultured embryos. Presumptive zygotes were denuded and cultured individually in 5 µL two-step defined culture medium (first 5 days with stage-1 medium then transferred to the later stage medium [16]) overlaid with mineral oil and incubated at 39 °C in an atmosphere of 5% O₂, 5% CO₂ and 90% N₂. Cleavage and blastocyst rates were recorded on days 2 and 7, respectively.

2.4. Sex determination with genomic DNA and expression of sex-specific mRNA transcripts in single embryo by RT-PCR

Each blastocyst was washed in TALP medium then transferred into 5 µL of diethylpyrocarbonate (DEPC) treated water (Invitrogen) and stored at −80 °C. Individual embryos were transferred into 100 µL Trizol reagent and mixed very well then were divided (50 µL each) into genomic DNA or total RNA extraction procedures according to specific kits (Qiagen, Valencia, CA, USA) according to the manufacturer’s instruction [14,21]. Specific primers were used to amplify Y-specific segment from the extracted genomic DNA by PCR (Table 1). Different somatic cell lines were used [from transgenic male cow (Tet_M); brain tissue (Invitrogen) in a 20 µL reaction. 10 ng cDNA subjected to reverse transcription-polymerase chain reaction (RT-PCR) using Maxime PCR PreMix kit-i-starTaq (Intron Biotech., Seoul, Republic of Korea) and 1 µL of reverse transcriptase (Invitrogen) using random hexamer and superscript TM III reverse transcriptase-polymerase chain reaction (RT-PCR) using Maxime PCR PreMix kit-i-starTaq (Intron Biotech., Seoul, Republic of Korea) and 1 µL of capitation-TALP (Nutricell) [20]. The sperm pellet was washed twice with capitation-TALP by centrifugation at 1500 rpm for 5 min. The active motile spermatozoa from the pellet used for insemination of matured oocyte (At 24 h of IVM). Following maturation, COCs were randomly distributed in 30 µL microdrops of IVF-TALP medium (Nutricell) and were then inseminated (day 0) with 1–2×10⁶ spermatozoa/µL for 18 h. Each microdrop contained two COCs and overlaid with mineral oil at 37 °C in a humidified atmosphere of 5% CO₂. In vitro culture (IVC) dishes were labelled and numbered to specifically monitor the individually cultured embryos. Presumptive zygotes were denuded and cultured individually in 5 µL two-step defined culture medium (first 5 days with stage-1 medium then transferred to the later stage medium [16]) overlaid with mineral oil and incubated at 39 °C in an atmosphere of 5% O₂, 5% CO₂ and 90% N₂. Cleavage and blastocyst rates were recorded on days 2 and 7, respectively.

2.4. Sex determination with genomic DNA and expression of sex-specific mRNA transcripts in single embryo by RT-PCR

Each blastocyst was washed in TALP medium then transferred into 5 µL of diethylpyrocarbonate (DEPC) treated water (Invitrogen) and stored at −80 °C. Individual embryos were transferred into 100 µL Trizol reagent and mixed very well then were divided (50 µL each) into genomic DNA or total RNA extraction procedures according to specific kits (Qiagen, Valencia, CA, USA) according to the manufacturer’s instruction [14,21]. Specific primers were used to amplify Y-specific segment from the extracted genomic DNA by PCR (Table 1). Different somatic cell lines were used [from transgenic male cow (Tet_M); brain tissue (Invitrogen) in a 20 µL reaction. 10 ng cDNA subjected to reverse transcription-polymerase chain reaction (RT-PCR) using Maxime PCR PreMix kit-i-starTaq (Intron Biotech., Seoul, Republic of Korea) and 1 µL of reverse transcriptase (Invitrogen) using random hexamer and superscript TM III reverse transcriptase-polymerase chain reaction (RT-PCR) using Maxime PCR PreMix kit-i-starTaq (Intron Biotech., Seoul, Republic of Korea) and 1 µL of capitation-TALP (Nutricell) [20]. The sperm pellet was washed twice with capitation-TALP by centrifugation at 1500 rpm for 5 min. The active motile spermatozoa from the pellet used for insemination of matured oocyte (At 24 h of IVM). Following maturation, COCs were randomly distributed in 30 µL microdrops of IVF-TALP medium (Nutricell) and were then inseminated (day 0) with 1–2×10⁶ spermatozoa/µL for 18 h. Each microdrop contained two COCs and overlaid with mineral oil at 37 °C in a humidified atmosphere of 5% CO₂. In vitro culture (IVC) dishes were labelled and numbered to specifically monitor the individually cultured embryos. Presumptive zygotes were denuded and cultured individually in 5 µL two-step defined culture medium (first 5 days with stage-1 medium then transferred to the later stage medium [16]) overlaid with mineral oil and incubated at 39 °C in an atmosphere of 5% O₂, 5% CO₂ and 90% N₂. Cleavage and blastocyst rates were recorded on days 2 and 7, respectively.

Table 1
Primer sequences and primers used for reverse transcription-PCR (RT-PCR) and genomic PCR analysis.

Gene	F	R	Size bp (°C)	Accession No.
RT-PCR	G6PD	CAAGATGATGAGCAAGAAGG	195 (55)	NM_001244135.1
	XIST	TTGGCTTTTAGATTAAATTTGATGAAAGCAT	99 (60)	NR_001464.2
	SRY	CCGTCAAGGGGACGAGGC	329 (60)	EU294189.1
	GAPDH	TGGCAGACACATCAGTCCGTAG	267 (60)	NM_001034034.2

Table 1
Primer sequences and primers used for reverse transcription-PCR (RT-PCR) and genomic PCR analysis.

Gene	F	R	Size bp (°C)	Accession No.
RT-PCR	G6PD	CAAGATGATGAGCAAGAAGG	195 (55)	NM_001244135.1
	XIST	TTGGCTTTTAGATTAAATTTGATGAAAGCAT	99 (60)	NR_001464.2
	SRY	CCGTCAAGGGGACGAGGC	329 (60)	EU294189.1
	GAPDH	TGGCAGACACATCAGTCCGTAG	267 (60)	NM_001034034.2

* Y-specific: Y chromosome specific STS marker BovY4.
expression of bovine preimplantation embryos cultured in vitro. Reproduction 2009;137:415–25.

[4] Keefer CL, Stice SL, Paprocki AM, Golueke P. In vitro culture of bovine IV-MIVF embryos: cooperative interaction among embryos and the role of growth factors. Theriogenology 1994;41:1323–31.

[5] Salvador I, Cebrian-Serrano A, Salamone D, Silvestre MA. Effect of number of oocytes and embryos on in vitro oocyte maturation, fertilization and embryo development in bovine. Spanish J Agric Res 2011;9:744–52.

[6] Wheeler MB, Walters EM, Beebe DJ. Toward culture of single gametes: the development of microfluidic platforms for assisted reproduction. Theriogenology 2007;68(Suppl 1):S178–89.

[7] Murillo A, Muñoz M, Martín-González D, Carroceros S, Martínez-Nistal A, Gómez E. Low serum concentration in bovine embryo culture enhances early blastocyst rates on day-6 with quality traits in the expanded blastocyst stage similar to BSA-cultured embryos. Reprod Biol 2017;17:162–71.

[8] Bols PEJ, Goovaerts LGF, J EPA, Petro EML, Langbeen A. New applications for bovine IVF technology: from single oocyte culture to toxicity screening. Anim Reprod 2012;9:88–94.

[9] Goovaerts IG, Lerney JL, Jorssen EP, Bols PE. Noninvasive bovine oocyte quality assessment: possibilities of a single oocyte culture. Theriogenology 2010;74:1509–20.

[10] Goovaerts IG, Lerney JMLR, Langbeen A, Jorssen EP, Bols E, Bols PEJ. Unraveling the needs of singly in vitro-produced bovine embryos: from cumulus cell co-culture to semi-defined, oil-free culture conditions. Reprod Fertil Dev 2012;24:1084–92.

[11] Kelley RL, Gardner DK. In vitro culture of individual mouse preimplantation embryos: the role of embryo density, microwells, oxygen, timing and conditioned media. Reprod Biomed Online 2017;34:441–54.

[12] Goovaerts IG, Lerney JMLR, Van Soom A, De Clercq JBP, Andries S, Bols PEJ. Effect of cumulus cell coculture and oxygen tension on the in vitro developmental competence of bovine zygotes cultured singly. Theriogenology 2009;71:729–38.

[13] Mori M, Kusa S, Hatari M-a, Ueda S. Development of a single bovine embryo improved by co-culture with trophoblastic vesicles in vitamin-supplemented medium. J Reprod Dev 2012;58:717–21.

[14] Saadeldin IM, Kim B, Lee B, Jang G. Effect of different culture media on the temporal gene expression in the bovine developing embryos. Theriogenology 2011;75:995–1004.

[15] Saadeldin IM, Choi W, Roibas Da Torre B, Kim B, Lee B, Jang G. Embryonic development and implantation related gene expression of oocyte reconstructed with bovine trophoblast cells. J Reprod Dev 2012;58:425–31.

[16] Lim KT, Jang G, Ko KH, Lee WW, Park HJ, Kim MJ, et al. Improved in vitro bovine embryo development and increased efficiency in producing viable calves using defined media. Theriogenology 2007;67:293–302.

[17] Yum S-Y, Lee S-J, Kim H-M, Choi W-J, Park J-H, Lee W-W, et al. Efficient generation of transgenic cattle using the DNA transposon and their analysis by next-generation sequencing. Sci Rep 2016;6:27185.

[18] Choi W, Kim E, Yum S-Y, Lee C, Lee J, Moon J, et al. EfficientPMN deletion in bovine genome using gene-editing technologies in bovine cells. Prion 2015;9:278–91.

[19] Machado GM, Carvalho JO, Filho ES, Kugumiya K, Shiga K. Effect of Percoll volume, duration and force of centrifugation, on in vitro production and sex ratio of bovine embryos. Theriogenology 2009;71:1289–97.

[20] Chamberland A, Fournier V, Tardif S, Sirard MA, Sullivan R, Bailey JL. The effect of heparin on motility parameters and protein phosphorylation during bovine sperm capacitation. Theriogenology 2001;55:823–35.

[21] Kim S, Saadeldin IM, Choi WJ, Lee SJ, Lee WW, Kim BH, et al. Production of transgenic bovine cloned embryos using piggybac transposition. J Vet Med Sci 2011;73:1453–7.

[22] O'Doherty EM, Wade MG, Hill JL, Roland MP. Effects of culturing bovine oocytes either singly or in groups on development to blastocysts. Theriogenology 2012;77:1461–9.

[23] Peggaramo LM, Thuard JM, Delalleau N, Guerin B, Deschamps JC, Marquant Le. Effect of cumulus cell coculture and oxygen tension on the in vitro developmental competence of bovine zygotes cultured singly. Theriogenology 2009;71:729–38.

[24] O'Doherty EM, Wade MG, Hill JL, Roland MP. Effects of culturing bovine oocytes either singly or in groups on development to blastocysts. Theriogenology 2012;77:1461–9.

[25] Peggaramo LM, Thuard JM, Delalleau N, Guerin B, Deschamps JC, Marquant Le. Effect of cumulus cell coculture and oxygen tension on the in vitro developmental competence of bovine zygotes cultured singly. Theriogenology 2009;71:729–38.

[26] O'Doherty EM, Wade MG, Hill JL, Roland MP. Effects of culturing bovine oocytes either singly or in groups on development to blastocysts. Theriogenology 2012;77:1461–9.

[27] Peggaramo LM, Thuard JM, Delalleau N, Guerin B, Deschamps JC, Marquant Le. Effect of cumulus cell coculture and oxygen tension on the in vitro developmental competence of bovine zygotes cultured singly. Theriogenology 2009;71:729–38.

[28] O'Doherty EM, Wade MG, Hill JL, Roland MP. Effects of culturing bovine oocytes either singly or in groups on development to blastocysts. Theriogenology 2012;77:1461–9.

[29] Peggaramo LM, Thuard JM, Delalleau N, Guerin B, Deschamps JC, Marquant Le. Effect of cumulus cell coculture and oxygen tension on the in vitro developmental competence of bovine zygotes cultured singly. Theriogenology 2009;71:729–38.