OŠТЕЋЕЊА KARDIOVASKULARНОГ СИСТЕМА И КОМПЛИКАЦИЈЕ У COVID-19 INFEKCIJI SA FOKUSOM НА POST-AKUTNI KOVID19 СИНДРОМ

Mila Bastać (1), Dušan Bastać (2), Anastasija Rašanin (2), Zoran Joksimović (2), Vojkan Čvorović (3), Biserka Tirmenstajn Janković (4), Stanislav Tadić (1), Jasna Strajnić (4), Maja Miladenović (4), Igor Dordiški (4)

(1) MEDSCAN TADIĆ DIJAGNOSTIKA, ZAJEČAR; (2) INTERNISTIČKA ORDINACIJA "DR BASTAĆ", ZAJEČAR; (3) BEL-MEDIC, BEOGRAD; (4) ZC ZAJEČAR

SAŽETAK: Izazivač teškog akutnog respiratornog sindroma, korona virus 2 (SARS-CoV-2), etiološki agens COVID-19 oboljenja, može da inficira srce, vaskularna tkiva i cirkulišuće čeliće preko enzima koji konvertuje angiotenzin 2 (ACE-2), receptor čelija domaćina za virusni protein šiljka (spike). Fokus ovog preglednog članka jeste na prevalenciji, faktorima rizika, patogenezi, kliničkom toku i sekvilama oštećenja miokarda izazvanih oboljenjem COVID-19. Dat je akcent na interakcije trombocita sa vaskularnim endotelem što uključuje razmatranje uloge proteina SARS-CoV-2 virusa u pokretanju razvoja generalizovanog endotelitisa, koji dalje u krug pokreće intenzivniju aktivaciju trombocita. Akutna ležija srca je uobičajena vanpčućna manifestacija COVID-19 sa potencijalnim hroničnim posledicama. Kliničke manifestacije obuhvataju direktno oštećenje srca i mehanizme indirektnog imunog odgovora koji utiču na kardiovaskularni (KV) sistem i daju implikacije na lečenje pacijenata nakon oporavka od akutne COVID-19 infekcije.

Najčešća direktna kardiovaskularna ležija je akutna srčana ležija, prisutna je u više od 12% svih inficiranih pacijenata. Definisana je značajnim povećanjem srčanih troponina u serumu i echokardiografskim znacima oštećenja teksture miokarda usled inflamacije, oštećenja segmentne pokretljivosti ili globalne sistolne i dijastolne funkcije leve komore. Nekada se akutna srčana ležija ipošljava inflamacijom perikarda, aritmijama, venskim tromboembolizmom i plućnom tromboembolijom i kardiomiopatiijama. Analizom 72314 potvrđenih slučajeva COVID-19 (Wuhan) nađena je ukupna smrtnost od 1663 bolesnika ili 2,3% sa prisustvom predhodne KV bolesti, 10,5% dijabetesa, 7,3% arterijskog hipertenzija i 1% svih pacijenata uz nekomorbiditeti bile su: ležija miokarda (20%), srčane aritmije (16%), miokarditis i fulminantni miokarditis sa sniženom ejekcijom frakcijom (10%), neokluzivni infarkt miokarda i venski tromboembolizam i akutna srčana insuficijencija i kardiogeni šok. Hipertenzija i dijabetes su najčešći koromorbiditeti kod inficiranih sa COVID-19, kod kojih je potrebna hospitalizacija. Danska studija zasnovana na nacionalnom registru na preko 5000 pacijenata sa hospitalizovanim COVID-19 otkrila je da je rizik od akutnog infarkta miokarda i ishemskog moždanog udara bio 5 i 10 puta veći, respektivno, tokom prvih 14 dana nakon infekcije COVID-19 u poređenju sa periodom koji je prethodio ponekadno infekciji. Brojni pojedinačni slučajevi upućuju na izrazito visoke vrednosti i dinamiku troponina T tipičnu za neokluzivni infarkt miokarda uz normalne koronarne arterije.

Mehanizmi indirektnih kardiovaskularnih ležija jesu: disregulacija inflamatornih ili imunih odgovora hiperinflamacije, vaskularna tromboza i aktivacija trombocita, autoimuni fenomeni i adaptivna imunološka disfunkcija u vaskularnoj trombozi povezanoj sa COVID-19. Kardiovaskularna disfunkcija i bolest su često fatalne komplikacije teške infekcije virusom COVID-19. Srčane komplikacije mogu se javiti, čak i kod pacijenata bez osnovne srčane bolesti, kao deo akutne infekcije i povezane su sa težim oblikom COVID-19 oboljenja i povećanim mortalitetom. COVID-19 bolesnici lećeni u jedinicima intenzivne nege egzitirali su u 61% jer su imali akutni respiratorni distres sindrom (ARDS), 44%, teške srčane aritmije i u 31% sindrom bolesti. Povišeni nivo troponina su bili retki kod preživelih od COVID-19 sa nekomplikovanim tokom (1%-20%), česti kod teško bolesnih pacijenata (46%-100%) i skoro univerzalno povišeni kod kritično bolesnih (tj., koji zahtevaju intenzivnu negu ili mehaničku ventilaciju) i oni koji nisu preživeli. Neki obdukcijalni nalazi uputili su se na infiltraciju miokarda mononuklearnim leukocitima i otkrili neke slučajevi teškog miokarditisa s dilatacionim fenotipom. Među hospitalizovanim pacijentima sa COVID-19, dokazi o akutnom oštećenju srčane funkcije su česti i uključuju sledeće: akutna srčana insuficijencija (3%-
Damage to the cardiovascular system and complications in COVID-19 infection with a focus on the post-acute COVID19 syndrome

Mila Bastać (1), Dušan Bastać (2), Anastasija Rašanin (2), Zoran Joksimović (2), Vojkan Čvorović (3), Biserka Tirmenštajn Janković (4), Stanislav Tadić (1), Jasna Strajnić (4), Maja Mladenović (4), Igor Đorđioski (4)

(1) MEDSCAN TADIĆ DIAGNOSIS, ZAJEČAR; (2) "DR BASTAĆ" INTERNIST'S OFFICE, ZAEČAR; (3) BEL-MEDIC, BELGRADE; (4) ZC ZAJEČAR

ABSTRACT: The causative agent of severe acute respiratory syndrome, corona virus 2 (SARS-CoV-2), the etiological agent of the COVID-19 disease, can infect the heart, vascular tissues and circulating cells via angiotensin-converting enzyme 2 (ACE-2), a cell receptor host for the viral spike protein. The focus of this review article is on the prevalence, risk factors, pathogenesis, clinical course and sequelae of myocardial damage caused by the disease COVID-19. Emphasis is also placed on the interactions of platelets with the vascular endothelium, which includes consideration of the role of the SARS-CoV-2 virus protein in triggering the development of generalized endothelitis, which further in a circle triggers more intense activation of platelets. Acute cardiac lesion is a common extrapulmonary manifestation of COVID-19 with potential chronic consequences. Clinical manifestations include direct cardiac damage and indirect immune response mechanisms that affect the cardiovascular (CV) system and have implications for the treatment of patients after recovery from acute COVID-19 infection. The most common direct cardiovascular lesion is an acute heart lesion, present in more than 12% of all infected patients and defined by a significant increase in cardiac troponins in the serum and echocardiographic signs of damage to the myocardial texture due to inflammation, impairment of segmental mobility or global systolic and diastolic function of the left ventricle and sometimes inflammation of the pericardium. Arrhythmias, venous thromboembolism and cardiomyopathy are predominant CV manifestations described in the patient with COVID-19. An analysis of 72,314 confirmed cases of COVID-19 (Wuhan) showed total mortality of 1663 patients or 2.3%, with presence of a previous KV disease in 10.5%, diabetes Mellitus in 7.3% and arterial hypertension in 6%. Cardiovascular complications because of COVID-19 associated with comorbidities were: myocardial lesion (20%), cardiac arrhythmias (16%), myocarditis and fulminant myocarditis with lowered ejection fraction (10%), non-occlusive myocardial infarction and venous thromboembolism and acute cardiac insufficiency and cardiogenic shock. Hypertension and diabetes are the most frequent comorbidities in those infected with COVID-19, for whom hospitalization was necessary. A Denmark study based on the national register of over 5000 patients with hospitalized COVID-19 revealed that the risk from the acute myocardial infarction and ischemic stroke was 5 and even 10 times higher, respectively, during the first 14 days after COVID-19 infections in comparison with the period which preceded the known infection. Numerous individual cases point to extremely high values and troponin T dynamics typical for non-occlusive myocardial infarction with normal coronary arteries. Mechanisms of indirect cardiovascular lesions are: dysregulation of inflammatory or immune responses of hyperinflammation, vascular thrombosis and activation of platelets, autoimmune phenomena and adaptive immunological dysfunction in vascular thrombosis associated with COVID-19. Cardiovascular dysfunction and disease are often fatal complications of a severe COVID-19 virus infection. Cardiovascular complications can occur even in patients without basic cardiac insufficiency, as a part of acute infections and they are associated with a more severe form of COVID 19 disease and increased mortality. Of COVID-19 patients treated in the intensive care unit 61% died because they had acute respiratory distress syndrome (ARDS), 44% of them had severe cardiac arrhythmias and 31% percent of them experienced a shock syndrome. Elevated troponin levels were rare in survivors of uncomplicated COVID-19 (1%–20%), common in critically ill patients (46%–100%), and almost universally elevated in critically ill (i.e., those requiring intensive care or mechanical ventilation) and those who did not survive. Some autopsy findings suggested myocardial infiltration by mononuclear leukocytes and revealed some cases of severe myocarditis with a dilated phenotype. Among patients hospitalized with COVID-19, evidence about
33%), kardiogeni šok (9%-17%), ishemija ili infarkt miokarda (0,9%-11%), ventrikularna disfunkcija leve komore (10%-41%), desne komore (33%-47%), biventricularna (3%-15%), stres kardiomiopatija (2%-5,6%), aritmije (9%-17%), venska tromboembolija (23%-27%) i arterijska tromboza kao sekundarna virusno posredovana koagulopatija. COVID-19 je povezan sa abnormalnostima strukture i funkcije srca uključujući ekoangiografski dokaz disfunkcije leve komore, abnormalnosti regionalnog pokreta zida i blago smanjenje funkcije desne komore. Uključenost lezije miokarda zbog SARS-CoV-2 infekcije bila je veoma rasprostranjena u čak i u pacijenata sa blagim simptomima.

Ključne reči: COVID-19, ACE2 receptor, akutna lezija miokarda, venski tromboembolizam, neokluzivni infarkt miokarda, miokarditis, kardiovaskularne bolesti, korona virus, post-akutni COVID-19

UVOD

Korona virusna bolest 2019 (COVID-19) izazvала je zasto života celeg čovečanstva. Katastrofalni gubitci života, zbunjen zdravstveni sistem i ugroženost globalne ekonomije su neki od ishoda ove pandemije. Iniciranost Korona-virusnom bolesti 2019 (COVID-19), pogoda svetsku populaciju bez obzira na uzrast i pol, a kod prisutnih komorbiditeta, COVID-19 i simptomatološke osebnosti lažne negativne rezultate. Višeslojna (multislužbena, multidetektoristička) Kompjuterizovana tomografija pluća (MSCT) može se koristiti kao dijagnostički test za COVID-19 [3].

Znamo da prodiranje virusa SARS-CoV-2 i izazivanje COVID-19 infekcije, posle kratke inkubacije i različitih respiratornih simptoma, gubitka čula mirisa i/ili ukusa i opštih simptoma: povišene telesne temperature, malakalnosti, maligne i artralgie, najčešće zahvataju plućni parhenim. Plućno oštećenje se u početku manifestuje kao sindrom gripa (kašalj i groznica), koji napreduje do pneumonije (dispeina, hipoksemija, tahipneja) i u nekim slučajevima, do akutnog respiratornog distres sindroma ili nekardiogenog edema pluća (ARDS).

Akutna lezija srca je uobičajena vanplućna manifestacija COVID-19 sa potencijalnim hroničnim posledicama. Kliničke manifestacije obuhvataju direktno zahvatanje srca i mehanizme indirektnog imunog odgovora koji oštećuju kardiovaskularni sistem (KVS), kao i implikacije na lečenje pacijenata nakon oporavka od akutne COVID-19 infekcije [4]. Rana radiografija pluća i srca a najpouzdanije MSCT (višeslojni, multidetektoristički kompjuter-tomografski sken) toraksa prikazuju detektabilne promene plućnog parenhima čak do 85% bolesnika koje mogu da protiču kako oligosimptomatski, tako i asimptomatski [5].

Strategije za dijagnozu SARS-CoV-2

Dijagnoza COVID-19 zasniva se na kombinaciji epidemioloških kriterijuma (kontakt unutar perioda inkubacije), prisustvo kliničkih simptoma, laboratorijskih ispitivanja (PCR testovi) i metoda zasnovanih na kliničkom imidižngu. Testovi na bazi antitela i SARS-CoV-2 antigena enzimski imunosorbenčki test (ELISA) su u razvoju i još uvek nisu u potpunosti validirani. Široko rasprostranjeno testiranje pokazalo se efikasnim u fazi obuzdavanja epidemije. Kvalitet uzimanja uzoraka (duboki bris nosa) i transporta (vreme) do laboratorija je neophodan da se izbegnu lažni negativni rezultati. Višeslojna (multislužbena, multidetektoristička) Kompjuterizovana tomografija pluća (MSCT) može se koristiti kao dijagnostički test za COVID-19 [3].

Znamo da prodiranje virusa SARS-CoV-2 i izazivanje COVID-19 infekcije, posle kratke inkubacije i različitih respiratornih simptoma, gubitka čula mirisa i/ili ukusa i opštih simptoma: povišene telesne temperature, malakalnosti, maligne i artralgie, najčešće zahvataju plućni parhenim. Plućno oštećenje se u početku manifestuje kao sindrom gripa (kašalj i groznica), koji napreduje do pneumonije (dispeina, hipoksemija, tahipneja) i u nekim slučajevima, do akutnog respiratornog distres sindroma ili nekardiogenog edema pluća (ARDS).

Akutna lezija srca je uobičajena vanplućna manifestacija COVID-19 sa potencijalnim hroničnim posledicama. Kliničke manifestacije obuhvataju direktno zahvatanje srca i mehanizme indirektnog imunog odgovora koji oštećuju kardiovaskularni sistem (KVS), kao i implikacije na lečenje pacijenata nakon oporavka od akutne COVID-19 infekcije [4]. Rana radiografija pluća i srca a najpouzdanije MSCT (višeslojni, multidetektoristički kompjuter-tomografski sken) toraksa prikazuju detektabilne promene plućnog parenhima čak do 85% bolesnika koje mogu da protiču kako oligosimptomatski, tako i asimptomatski [5].

PATOGENEZA AKUTNE COVID-19 LEZIJE MIOKARDA

Akutna COVID-19 lezija miokarda čiji je marker poviseni viskosenzitivni troponin T prisutan je u >12 % inficiranih pacijenata [6]. Odatle lezija srca u pacijenata inficiranih SARS-CoV-2 virusom postaje udružena sa višim mortalitetom i mortalitetom [6]. Teški akutni respiratorni distres sindrom-izazvan koronavirus 2 (SARS-CoV-2) ispoljava se dominacijom prekomerne produkcije inflamatornih citokina (IL-6 i TNF-α)
acute damage of cardiac functions are frequent and include the following: acute cardiac insufficiency (3%-33%), cardiogenic shock (9%-17%), ischemia or myocardial infarction (0.9%-11%), left ventricular dysfunction (10%-41%), right ventricular dysfunction (33%-47%), biventricular dysfunction (3%-15%), stress cardiomypathy (2%-5.6%), arrhythmias (9%-17%), venous thromboembolism (23%-27%) and arterial thrombosis as secondary viral mediated coagulopathy. COVID - 19 is associated with abnormalities of cardiac structures and functions including echocardiographic evidence of left ventricular dysfunction, regional wall movement abnormalities and mild reduction of right ventricular function. Involvement of myocardial lesion because of SARS - CoV - 2 infection was very much widespread even in patients with mild symptoms.

Key words: COVID-19, ACE 2 receptor, acute myocardial lesion, venous thromboembolism, non-occlusive myocardial infarction, myocarditis, cardiovascular diseases, corona virus, post-acute COVID-19

INTRODUCTION

Corona Virus Disease 2019 (COVID-19) has brought the life of the whole humanity to a standstill. Catastrophic loss of life, a confusion in healthcare and the vulnerability of the global economy are some of the outcomes of this pandemic. COVID-19 infection affects global population regardless of age and gender, and with comorbidities present, COVID-19 and its complications escalate at an alarming rate. Cardiovascular (CVD) diseases per se are the leading cause of death globally with an estimated 31% of deaths worldwide of which nearly 85% are due to heart attack and stroke. Scientific researchers have noted that individuals with pre-existing CV diseases and conditions are relatively more susceptible to infection with COVID-19 [1,2]. Moreover, it was shown in the comparison between subgroups: milder and more severe cases, survivors and non-survivors, patients from intensive care units and those who were not in intensive care [2]. The impact of the COVID-19 preventive measures of isolation and quarantine (lockdown) on CVD patients in Denmark showed that at that time, compared to the pre-Covid 19 era, there was no difference in the mortality of CVD patients. However, an increased out-of-hospital mortality and decreased in-hospital mortality were found. In contrast, in Germany and France, there was a significant increase in mortality, even by 12-20% in CV patients in April 2021.

Strategies for the diagnosis of SARS-CoV-2

The diagnosis of COVID-19 is based on a combination of epidemiological criteria (contact within the incubation period), the presence of clinical symptoms, laboratory tests (PCR tests) and tests based on clinical imaging. Antibody-based tests and SARS-CoV-2 antigen enzyme-linked immunosorbent assay (ELISA) are under development and not yet fully validated. Widespread testing has proven effective in the containment phase of the epidemic. The quality of sample collection (deep nasal swab) and transport (time) to the laboratory is necessary to avoid false negative results. Lung computed tomography (MSCT) can be used as a diagnostic test for COVID 19 [3].

We know that the penetration of the SARS COV-2 virus and the cause of the COVID-19 infection, after a short incubation and various respiratory symptoms, loss of the sense of smell and general symptoms: elevated body temperature, malaise, myalgia and arthralgia, most often affect the lung parenchyma. At the beginning lung damage manifests like flu syndrome (cough and fever), which is progressing to the pneumonia (dyspnea, hypoxemia, tachypnea) and, in some cases, acute respiratory distress syndrome or non-cardiogenic pulmonary edema (ARDS).

Acute cardiac lesion is an ordinary extrapulmonary manifestation of COVID-19 with potential chronic consequences. Clinical manifestations include directcardiac involvement and mechanisms of indirect immune response which affect the cardiovascular system and implications on the treatment of patients after the recovery from the acute COVID-19 infections [4]. Early radiography of the lungs and the heart and the most reliable MSCT (multilayer, multidetector computer-tomographic scan) of the thorax show detectable changes in the lung parenchyma in up to 85% of patients, which can be both oligosymptomatic and asymptomatic [5].

PATHOGENESIS OF ACUTE COVID-19 MYOCARDIAL LESIONS

Acute COVID-19 myocardial lesion whose marker is elevated high-sensitivity troponin T is
koji dovodi do sistemске inflamacije i sindroma multiple disfunkcije organskih sistema, akutno zahvatajući i KVS. Hipertenzija (56,6%) i dijabetes (33,8%) su najčešći komorbiditeti kod inficiranih COVID-19 koji zahtevaju hospitalizaciju. Srčana lezija, definisana kao povišeni visokosenzitivni troponini T i I, signifikantno je u korelaciji sa inflammatornim biomarkerima: interleukinima 6 i 2 (IL-6, IL-2) i C-reaktivnim-proteinom(hsCRP), hiperferitin-emijom i leukocitozom i oslikava značajnu povezanost lezije miokarda i inflammatorne hiperaktivnosti koja je uzrokovana virusnom infekcijom [6]. Pored toga, opisani su mehanizmi pomoću kojih aktivirani trombociti intenziviraju već postojeću endotelnu aktivaciju i disfunkciju, najverovatnije izazvane oslobađanjem kalcijum-vezujućih proteina dobijenih iz trombocita (SA 100A8 i SA 100A9). Koronavirus 2 (SARS-CoV-2), etiološki agens COVID-19, može da inficira srce, vaskularna tkiva i cirkulijuće čelije preko ACE2 (enzim koji konvertuje angiotenzin 2), receptora čelije domaćina za virusni S-spike protein. Endotelitis izazvan SARS-CoV-2 [1] uključuje interakciju virusnog spike (S-protein deo virusa tzv. šiljak) proteina sa endotelnim enzimom koji converntuje angiotenzin 2 (ACE2 konvertaza) zajedno sa alternativnim mehanizmima putem nukleokapsida i vjroporina. Ovi događaji stvaraju ciklus intravaskularne inflamacije i koagulacije vodene SARS-CoV-2 virusom, što značajno doprinosi lošem kliničkom ishodu kod pacijenata sa težim formama infekcije. Pacijenti sa faktorima rizika i/ili KV oboljenjima skloni su razvoju teških oblika COVID-19 i njegovih komplikacija (SLIKA 1). Odgovor domaćina na virus dovodi do znakova sistemske inflamacije, sa povećanjem markera inflamacije (hsCRP, prokalcitonin, d-dimer; IL-6, feritin, LDH) i lezije miokarda i/ili srčane disfunkcije (troponini i/ili BNP, NT-proBNP) što predisponira za akutnu srčanu insuficijenciju, miokarditis, trombozu i aritmije. Ove KV komplikacije ometaju odgovor domaćina na virus, što može dovesti do sindroma šoka, otkazivanja više organa i smrti [7]. (SLIKA 1)

SLIKA 1. Korona virus i srce

LEGENDA: CAD: bolest koronarne arterije; LDH: laktat dehidrogenaza; LVEF: ejekciona frakcija leve komore; CRP: C-reaktivni protein; IL-6: interleukin-6; ARDS: sindrom akutnog respiratornog distresa [7]. [preuzeto sa https://abccardiol.org/wp-content/uploads/articles_xml/0066-782X-abc-20200279-0066-782X-abc-20200279-en.pdf]

COVID-19 I KARDIOVASKULARNI KOMORBIDITETI

Meta-analiza 6 studija iz Kine sa 72314 COVID-19 pacijenata pokazuje visoku prevalencu arterijske hipertenzije (17 ± 7%), dijabetes mellitusa (8 ± 6%) i KVB (5 ± 4%) kao komorbiditeta [7,8]. Kod 138 hospitalizovanih pacijenata sa COVID-19 i pneumonijom, Wang i saradnici su našli visoku prevalencu hipertenzije (31,2%), KVB (19,6%) i dijabetesa (10,1%), a ovi komorbiditeti dovode do najtežih formi COVID 19 koja uobičajeno zahteva hospitalizaciju (hipoksemija, potreba lečenja u intenzivnoj nezi) posebno kod starijih (mediana 42-64 godine) [9]. Druga meta-analiza 7 studija, na 1576 vanhospitalno inficiranih pacijenata iznosi najvišu prevalencu komorbiditeta: hipertenzije...
present in > 12% of infected patients [6]. Hence, cardiac lesions in patients infected with the SARS COV-2 virus become associated with higher morbidity and mortality. [6]. Severe acute respiratory distress syndrome caused by coronavirus 2 (SARS-CoV-2) is manifested by the dominance of excessive production of inflammatory cytokines (IL-6 and TNF-α), which leads to systemic inflammation and syndrome of multiple dysfunction of organ systems, acutely involving the cardiovascular system. Hypertension (56.6%) and diabetes (33.8%) are the most common comorbidities in those infected with COVID-19 who require hospitalization. Cardiac lesion, defined as elevated high-sensitivity troponins T and I, is significantly correlated with inflammatory biomarkers: interleukins 6 and 2 (IL-6, IL-2) and C-reactive protein (hsCRP), hyperferritinemia and leukocytosis, and reflects a significant association of the myocardial lesion and inflammatory hyperactivity caused by viral infection [6]. In addition, mechanisms by which activated platelets intensify pre-existing endothelial activation and dysfunction, most likely caused by the release of platelet-derived calcium-binding proteins (SA 100A8 and SA 100A9), have been described. Coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19, can infect the heart, vascular tissues and circulating cells via ACE2 (angiotensin-converting enzyme 2), the host cell receptor for the viral spike protein. Endothelitis caused by SARS-CoV-2 [1] involves the interaction of the viral spike (S-protein part of the virus, the so-called spike) protein with the endothelial enzyme that converts angiotensin 2 (ACE2 convertase) together with alternative mechanisms via nucleocapsids and viroporins. These events create a cycle of intravascular inflammation and coagulation driven by the SARS-CoV-2 virus, which significantly contributes to poor clinical outcome in patients with more severe forms of infection. Patients with risk factors and/or cardiovascular diseases are prone to developing severe forms of COVID-19 and its complications (FIGURE 1). The host's response to the virus leads to signs of systemic inflammation, with increases in markers of inflammation (hsCRP, procalcitonin, d-dimer, IL-6, ferritin, LDH) and myocardial lesions and/or cardiac dysfunction (troponin and/or NT-proBNP), which predisposes to acute heart failure, myocarditis, thrombosis and arrhythmias. These CV complications interfere with the host's response to the virus, which can lead to shock syndrome, multiple organ failure, and death [7]. (FIGURE 1)

FIGURE 1. Corona virus and the heart.

LEGEND: CAD: coronary artery disease; LDH: lactate dehydrogenase; LVEF: left ventricular ejection fraction; CRP: C-reactive protein; IL-6: interleukin-6; ARDS: acute respiratory distress syndrome [7]. retrieved from https://abccardiol.org/wp-content/uploads/articles_xml/0066-782X-abc-20200279/0066-782X-abc-20200279-en.pdf
infarkta miokarda, fulminantnog miokarditsa koji se brzo razvija sa sniženom EF funkcijom leve komore, aritmijama, venskim trombo-embolizmom i kardiomioapatiom koja podseća na akutni infarkt sa ST elevacijom-STEMI tzv Takotzubo kardiomioapatiom. Osim toga, SARS-CoV-2 tropizam i interakcija sa sistemom rennin-angiotenzin-aldosteron (RAAS), putem ACE2 receptora pojačava inflamatorni odgovor i agresiju na srce, dovodeći do imunotropskog stava o korišćenju ACE inhibitora i blokatora angiotenzinskih receptora (ARB, sartani) kod inficiranih pacijenata. KV posledice dovode do loše prognoze, naglašavajući važnost njihove rane detekcije i uvođenje optimalne strategije lečenja [6]. Među hospitalizovanim pacijentima sa COVID-19, dokazi o akutnom oštećenju srčane funkcije su česti i uključuju sledeće: akutna srčana insuficijencija (3%-33%), kardiogeni šok (9%-17%), ishemiya ili infarkt miokarda (MI) (0,9%-11%), ventrikularna disfunkcija: leve komore (10%-41%), desne komore (33%-47%), biventrikularna disfunkcija(3%-15%). Kardiomiopatija (2%-5,6%), aritmije (9%-17%), venska tromboembolija (23%-27%) i arterijska tromboza kao sekundarna virusno posredovana koagulopatija [4]. Danska studija zasnivana na nacionalnom registru na preko 5000 pacijenata sa hospitalizovanim COVID-19 otkrila je da je rizik od akutnog MI i ishemijskog moždanog udara bio 5 i 10 puta veći, respektivno, tokom prvih 14 dana nakon infekcije COVID-19 u poređenju sa periodom koji je prethodio poznatoj infekciji [16].

PROGNOZA KOD OŠTEĆENJA

KVS U COVID-19 I PREDIKTORI

MORTALITETA

Prognoza zavisi od pristupa KV faktora rizika (npr. muški pol, starija starost, populacija, hipertenzija, dijabetes), komorbiditeta (npr. koronarna bolest i druge KVB, hronična opstruktivna bolest pluća, hronična bubrežna insuficijencija i maligniteti) koji predisponiraju pacijente sa COVID-19 na teže forme bolesti i povšen mortalitet [4]. Rasni i etnički dispariteti u ishodima COVID-19 su takođe evidentni [4]. Odmakla starost je nezavisni prediktor mortaliteta kod infekcije Kovid-19. Stropa mortaliteta raste sa starenjem na sledeći način: 1,3% kod pacijenata starosti 50-59 godina; 3,6% kod pacijenata starosti 60-69 godina; 8% kod pacijenata starosti 70-79 godina; i 14,8% kod pacijenata starih od 80 godina. Populacione

(21,1%), dijabetesa (9,7%), KVB (8,4%) i hroničnih respiratornih bolesti (1,5%). Komparacijom teških formi Kovid-19 sa umerenim i lakšim, dobijen je statistički parametar: ODDS ratio (OR) - odnos verovatnoće za loš ishod: za hipertenziju -2,36 (95% Cl: 1,46-3,83), za respiratorne bolesti -2,46 (95% Cl: 1,76-3,44) i najviše za KVB - 3,42 (95% Cl: 1,88-6,22)/respektivno [10].
COVID-19 AND CARDIOVASCULAR COMORBIDITIES

A meta-analysis of 6 studies from China with 72314 COVID-19 patients shows a high prevalence of arterial hypertension (17 ± 7%), diabetes mellitus (8 ± 6%) and cardiovascular disease (CVD) (5 ± 4%) as comorbidities [7, 8]. In 138 hospitalized patients with COVID-19 and pneumonia, Wang et al found a high prevalence of hypertension (31.2%), CVD (19.6%), and diabetes (10.1%), and these comorbidities lead to the most severe forms of COVID 19 which usually requires hospitalization (hypoxemia, need for treatment in intensive care), especially in the elderly (median 42-64 years old) [9]. Another meta-analysis of 7 studies, on 1576 out-of-hospital infected patients, shows the highest prevalence of comorbidities: hypertension (21.1%), diabetes (9.7%), cardiovascular diseases (CVD) (8.4%) and chronic respiratory diseases (1.5%). By comparing severe forms of COVID-19 with moderate and mild ones, a statistical parameter was obtained: ODDS ratio (OR) - odds ratio for a bad outcome: for hypertension - 2.36 (95% CI: 1.46–3.83), for respiratory diseases – 2.46 (95% CI: 1.76–3.44) and the highest for cardiovascular diseases - 3.42 (95% CI: 1.88–6.22)/respectively [10].

MORTALITY IN RELATION TO PREVIOUSLY RELEVANT CHRONIC DISEASES

An analysis of 72314 confirmed cases of COVID-19 (Wuhan) found a total mortality of 1663 patients or 2.3%, with the presence of a previous disease: 10.5% with CV disease, 7.3% with diabetes mellitus and 6% with arterial hypertension. Cardiovascular complications due to COVID-19 associated with comorbidities were: myocardial lesion (20%), cardiac arrhythmias (16%), myocarditis (10%) and acute heart failure and cardiogenic shock (about 5%) [8,9,11, 12]. Guo et al, evaluating a cohort of 187 patients, found that those with myocardial lesions had a higher prevalence of hypertension (63% vs 28%), diabetes (30.8% vs 8.9%), coronary disease (32.7% vs 3%) and heart failure (15.4% vs 0%) and these are of older age (median 71.4 years) [9]. In a group of 191 patients, Zhou et al. compared those discharged from the hospital with those who died and those who died had a higher prevalence of hypertension (48%), diabetes (31%) and CVD (24%) [13].

CARDIOVASCULAR DISEASE IN PATIENTS WITH COVID-19

COVID-19 patients treated in the intensive care unit had the following diagnoses from which they died: acute respiratory distress syndrome (ARDS) in 61%, severe cardiac arrhythmias in 44% and shock syndrome in 31%. Some autopsy findings suggested myocardial infiltration by mononuclear leukocytes and revealed some cases of severe myocarditis with a dilated phenotype [14,15]. COVID-19, as well as earlier coronaviruses and influenza epidemics, suggest an association with acute coronary events, arrhythmias and exacerbation of chronic heart failure, but the data also suggest the development of DE NOVO cases of cardiovascular diseases and worsening of the existing ones [14]. Cardiac lesion in patients infected by SARS COV -2 virus (COVID -19) is associated with higher risk from: myocardial infarction, fulminant myocarditis which quickly develops with lowered EF left ventricular function, arrhythmias, venous thromboembolism, cardiomyopathy which reminds of the acute heart attack with ST elevation - STEMI the so-called Takotzubo cardiomyopathy. In addition, SARS-CoV-2 tropism and interaction with the rennin-angiotensin-aldosterone system (RAAS), through the ACE2 receptor, enhances the inflammatory response and aggression to the heart, leading to the imperative position on the use of ACE inhibitors and angiotensin receptor blockers (ARBs, sartans) in infected patients. CV consequences lead to a poor prognosis, emphasizing the importance of their early detection and the introduction of an optimal treatment strategy [6]. Among hospitalized patients with COVID-19, evidence of acute impairment of cardiac function is common and includes the following: acute heart failure (3%-33%), cardiogenic shock (9%-17%), myocardial ischemia or infarction (0.9% -11%), ventricular dysfunction (left ventricular [10%–41%], right
studije su izvestile o ukupnoj stopi mortaliteta od 6% kod pacijenata sa hipertenzijom, 7,3% kod pacijenata sa dijabetesom i 10,5% kod pacijenata sa KVB. Pacijenti sa malignim tumorima imaju veći rizik od COVID-19 zbog poremećene imunološke obrane i posledica antineoplastičnog lečenja. U Kini, među potvrđenim slučajevima COVID-19, prevalencija raka kretala se od 1% do 7%, što je više od ukupne incidenca raka u toj zemlji (0,2%). Pacijenti sa rakom češće su razvili teški oblik COVID-19 u porođenju sa onima bez raka (39% naspram 8%). Od pacijenata sa rakom koji su podvrgnuti nedavnoj hemoterapiji ili operaciji, 75% je razvilo tešku bolest u porođenju sa 3% onih koji nisu nedavno lečili [17].

Biomarkerski dokazi o srčanoj ležiji su snažno povezani sa lošijim ishodima COVID-19. Povišenje srčanih biomarkera, kao što su NT-proBNP, Troponina (Th) T i i ili D-dimer, predviđa loše kliničke ishode. Kod hospitalizovanih pacijenata sa COVID-19, prevalencija povišenog hs-TnT (troponin-T visoke osjetljivosti) je 20% do 30%. Na osnovu tako povišenih nivoa Tn, akutna ležija miokarda se kreće od 8% do 62% prema raznim podacima a teži oblici bolesti povezani su sa većim nivoom kardijalnih biomarkera. Povišeni nivoi Tn su bili retki kod preživelih od COVID-19 sa nekomploikovanim tokom (1%-20%), česti kod teško bolesnih pacijenata (46%-100%) i skoro univerzalno povišeni kod kritično bolesnih (tj., koji zahtevaju intenzivnu negu ili mehaničku ventilaciju i onih koji nisu preživi) [11].

Među 2736 hospitalizovanih pacijenata sa COVID-19 u Njujorku, čak i mala povišenja Tn I (>0,03–0,09 ng/mL) bila su povezana sa većom smrtnošću.

GRAFIKON 1. OŠTEĆENJE miokarda i ranija KVB

Podaci retrospektivne studije, COVID-19 bolesnika hospitaliziranih u 7 bolnica u Wuhanu u razdoblju 23. 01. – 23. 02. 2020.[18].

Štaviše, što je veći porast TnT, veći je rizik od smrtnosti [18], (GRAFIKON 1). U porođenju sa onima bez povišenja Tn, pacijenti sa COVID-19 sa povišenim Tn imaju veći rizik od sindroma akutnog respiratornog distresa (58%–59% naspram 12%–15%), potrebu za mehaničkom ventilacijom (22%–60% naspram 4%–10%), maligne aritmije (17% naspram 2% VT/VF) i smrt (51%–95% naspram 3%–27%). Nivoi Tn i NT-proBNP se povećavaju tokom hospitalizacije kod onih koji nisu preživi, ali ne i među preživelima [11,13,18].

VIZUELIZACIONE METODE U DOKAZIVANJU LEZIJE MIOKARDA

COVID-19 je povezan sa abnormalnostima strukture i funkcije srca uključujući echokardiografski dokaz disfunkcije leve komore, abnormalnosti regionalnog pokreta zida i blago smanjenje funkcije desne komore [19]. Nekoliko studija putem kardiovaskularne magnetne rezonance (CMR) registrovalo je abnormalnosti miokarda koje perzistiraju nakon akutne infekcije. U studiji na 100 pacijenata sa COVID-19 snimanje je urađeno u prosjeku 71 dan nakon dijagnoze COVID-19. Perikardni izliv (>10 mm) je otkriven kod 20% (20/100) pacijenata. Kasno pojačanje gadolinijuma (LGE), koje
ventricular [33%–47%], biventricular [3%–15%]), stress cardiomyopathy (2%–5.6%), arrhythmias (9%–17%), venous thromboembolism (23%–27%) and arterial thrombosis secondary to viral-mediated coagulopathy [4]. A Danish study based on a national registry of over 5000 hospitalized patients with COVID-19 found that the risk of acute MI and ischemic stroke was 5-fold and 10-fold higher, respectively, during the first 14 days after infection with COVID-19 compared with the period which preceded the known infection [16].

PROGNOSIS OF CVS DAMAGE IN COVID-19 AND PREDICTORS OF MORTALITY

The prognosis depends on the presence of CV risk factors (e.g. male gender, older age, population, hypertension, diabetes), comorbidities (e.g. coronary disease and other cardiac diseases, chronic obstructive pulmonary disease, chronic renal failure and malignancies) that predispose patients with COVID-19 to more severe forms of diseases and increased mortality [4]. Racial and ethnic disparities in the outcomes of COVID-19 are also evident [4]. Advanced age is an independent predictor of mortality in COVID-19 infection. The mortality rate increases with age as follows: 1.3% in patients aged 50-59 years; 3.6% in patients aged 60-69; 8% in patients aged 70-79 years; and 14.8% in patients older than 80 years. Population studies have reported an overall mortality rate of 6% in patients with hypertension, 7.3% in patients with diabetes, and 10.5% in patients with CVD. Patients with malignant tumors have a higher risk of COVID-19 due to impaired immune defenses and the consequences of antineoplastic treatment. In China, among confirmed cases of COVID-19, the prevalence of cancer ranged from 1% to 7%, which is higher than the total incidence of cancer in that country (0.2%). Patients with cancer were more likely to develop a severe form of COVID-19 compared to those without cancer (39% vs. 8%). Of cancer patients who had undergone recent chemotherapy or surgery, 75% developed severe disease compared with 3% of those who had not received recent treatment [17].

Biomarker evidence of cardiac lesion is strongly associated with worse outcomes in COVID-19. Elevation of cardiac biomarkers, such as NT-proBNP, Troponin(Tn) T and I or D-dimer, predicts poor clinical outcomes. In hospitalized patients with COVID-19, the prevalence of elevated hs-ThT (high-sensitivity troponin-T) is 20% to 30%. Based on such elevated Tn levels, acute myocardial lesions range from 8% to 62% according to various data, and more severe forms of the disease are associated with higher levels of cardiac biomarkers. Elevated Tn levels were rare in survivors of uncomplicated COVID-19 (1%–20%), common in critically ill patients (46%–100%), and almost universally elevated in critically ill (ie, requiring intensive care or mechanical ventilation and those who did not survive) [11].

Among 2736 hospitalized patients with COVID-19 in New York, even small elevations of Troponin I (>0.03–0.09 ng/mL) were associated with higher mortality.
odražava fibrozu i cicatrix, primećeno je kod 32% što je bilo značajno češće kod pacijenata sa COVID-19 nego kod zdravih kontrola ili kontrola usklađenih sa faktorima rizika. Pored toga, druge studije su primetile visoku prevalenciju edema miokarda nakon infekcije COVID-19. Da li abnormalni nalazi CMR imidža primećeni nakon COVID-19 odražavaju trajnu leziju srca, u ovom trenutku nije poznato zbog nedostatka dugoročnih (long term) studija.

RADIPOGRAFIJA I MSCT GRUDNOG KOŠA

Rani MSCT (multislažni, multidetektorski kompjuter-tomograški sken) toraksa: prikazuje detektabilne promene multidetektorski komjer (long term) (MDCT). MSCT prikazuje detektabilne promene u ovom trenutku nije poznato zbog nedostatka (long term) studija.

ABNORMALNOSTI KOJE UKAZUJU NA LEZIJU SRCA NA EHOKARDIOGRAFIJI

Ehokardiografija (EHO) – ultrazvuk srca) je najdostupnija metoda koja se može raditi i kao hitna uz krevet bolesnika (point of care-POR pristup). Ehokardiografske abnormalnosti (EA) koje se obično registruju kod hospitalizovanih pacijenata sa COVID-19 uklujuju disfunkciju desne komore (RV) (26,3%), abnormalnosti pokreta zida leve komore (LV) (23,7%), globalnu disfunkciju leve komore sa sniženom Ejekcioni frakcijom leve komore (EF)<50% (18,4%), stepen II ili III dijastolske disfunkcije (13,2%) i perikardijalni izliv (7,2%) [22]. Biomarkerski dokazi o leziji miokarda uđrženi sa EA koreloraju sa većim rizikom od bolničkog mortaliteta. Zahvaćenost miokarda izazvana infekcijom SARS-CoV-2 može biti važna za dugoročnu prognozu. Naprednim EHO tehnikama mogu se karakteristički efekti na miokard tokom infekcija SARS-CoV-2. Imidžing deformacije (strain imaging) sproveden je kod 18 pacijenata sa SARS-CoV-2 infekcijom koji procenjuju longitudinalnu, radijalnu i cikrumferentnu deformaciju ili strujane leve komore (LV) uključujući rotaciju, torziju i twisting [17]. Deformacija (strijen) LV je analizirana u kontrolnoj grupi zdravih osoba odgovarajućeg uzrasta (n = 20). Dominantni nalaz bio je smanjen longitudinalni strejn (LS) na 94%, stepen II ili III dijastolskog deblijanja ili negativnim regionalnim dijastolskim strejnom pretežno u bazalnim segmentima (n = 5/14 pacijenata, 36%); odsustvo ili disperzija bazalne rotacije leve komore (n = 6/14 pacijenata, 43%); smanjen ili pozitivan regionalni cikrumferentni strejn u više od jednog bazalnog segmenta (n = 7/14 pacijenata, 50%); neto rotacija koja pokazuje kasni post-sistolni tvist ili dvofaznog okrugla dvofazni obrazac (n = 8/14 pacijenata, 57%); rotacija srca koja pokazuje polifazni obrazac i/ili višu maksimalnu vrednost tokom dijastole (n = 8/14 pacijenata, 57%). Opisna oštećenja miokarda zbog SARS-CoV-2-infekcije bila su veoma rasprostranjena čak i kod pacijenata sa blagim simptomima Izgleda da COVID-19 oštećenja miokarda karakterišu specifične abnormalnosti deformacije (strijen) u bazalnim

Vol. 47 (2022) br. 2-3
Moreover, the greater the increase in TnT, the greater the risk of mortality [18]. Compared with those without elevated TnI, COVID-19 patients with elevated Tn have a higher risk of acute respiratory distress syndrome (58%–59% vs. 12%–15%), need for mechanical ventilation (22%–60% vs. 4%–10%), malignant arrhythmias (17% vs 2% VT/VF) and death (51%–95% vs 5%–27%). Tn and NT-proBNP levels increased during hospitalization in non-survivors but not in survivors [11,13].

VISUALIZATION METHODS IN PROVING MYOCARDIAL LESIONS

COVID-19 is associated with abnormalities of cardiac structure and function including echocardiographic evidence of left ventricular dysfunction, regional wall motion abnormalities, and mild reduction in right ventricular function [19]. Several cardiovascular magnetic resonance (CMR) studies have documented myocardial abnormalities that persist after acute infection. In a study of 100 patients with COVID-19, imaging was performed an average of 71 days after the diagnosis of COVID-19. Pericardial effusion (>10 mm) was detected in 20% (20/100) of patients. Late gadolinium enhancement (LGE), reflecting fibrosis and cicatrix, was observed in 32% and was significantly more common in patients with COVID-19 than in healthy or risk-factor-matched controls. In addition, other studies have noted a high prevalence of myocardial edema following COVID-19 infection. Whether the abnormal CMR imaging findings observed after COVID-19 reflect a permanent cardiac lesion is unknown at this time due to the lack of long-term studies.

RADIOGRAPHY AND MSCT OF THE CHEST

Early MSCT (multislice, multidetector computed tomography scan) of the thorax shows detectable changes in the lung parenchyma in as many as 85% of patients, which can be both oligosymptomatic and asymptomatic. Also, in as many as 75%, there are COVID-19 bilateral lung changes with subpleural and peripheral distribution [5]. In addition to other viral pneumonias, COVID-19 pneumonia on the Rtg manifests as peripherally located ground glass opacity. Perihilar or diffuse widespread ground-glass opacification and “crazy paving” are present in MSCT findings in COVID-19 and are difficult to distinguish from the others diseases only on the basis CT findings (other viral pneumonia, acute respiratory distress syndrome - ARDS, acute hypersensitive pneumonitis, sarcoidosis, pulmonary hemorrhage, alveolar proteinosis) [20,21]. By appearance, peripherally located consolidations with marginal zone ground glass opacity do not differ from the findings in Cryptogenic organizing C organizing pneumonia (COP), Eosinophilic pneumonia , Vasculitis , Invasive aspergillosis and should be interpreted within the whole clinical picture. The organizing pneumonia (pulmonary tissue consolidation) in COVID-19 has the same characteristics as the organizing pneumonias of other causes . Nodules with a halo sign, apart from COVID-19, are also a common finding in numerous other diseases. [20,21]. Even in less severe, ambulatory-treated COVID-19 patients, signs of incipient lung congestion can be detected on a chest radiograph: Kerley B lines and redistribution of the pulmonary vascular pattern. In patients who are treated in intensive care units, enlargement of the cardiac shadow-cardiomegaly, bilateral pleural effusion as part of cardiac decompensation and pronounced lung congestion can be detected. MSCT is sovereign in the detection of thrombus in the branches of the pulmonary artery and the diagnosis of pulmonary thromboembolism [16]

ABNORMALITIES INDICATING A HEART LESION ON ECHOCARDIOGRAPHY

Echocardiography - (ultrasound of the heart) is the most accessible method that can also be performed as an emergency at the patient’s bedside (point of care-POC approach). Echocardiographic abnormalities commonly registered in hospitalized patients with COVID-19 include right ventricular (RV) dysfunction (26.3%), left ventricular (LV) wall motion abnormalities (23.7%), global left ventricular dysfunction with reduced LV EF (18.4%), grade II or III diastolic dysfunction (13.2%) and pericardial effusion (7.2%) [22]. Biomarker evidence of myocardial lesion associated with echocardiographic abnormalities correlates with a higher risk of in-hospital mortality. Myocardial
ABNORMALNOSTI KOJE UKAZUJU NA LEZIJU NA MAGNETNOJ REZONANSIJ CI SRCA (CMR)

CMR nalazi uključuju: abnormalnosti T1 mapiranja (što sugerira difuzne promene miokarda kao što su difuzna fibroza i/ili edem); abnormalnosti mapiranja T2 (specifičnije za infaraciju miokarda, kao što se dešava kod akutnog miokarditis); prisustvo kasnog napuštanja gadolinijsma (LGE), što ukazuje na akutnu leziju miokarda i/ili fibrozu miokarda; ili zahvaćenost perikarda – sve to može ukazivati na srčane lezijsne povezane sa COVID-19. U sistemskom pregledu koji je obuhvatio 199 pacijenata putem CMR studija nakon oporavka kod pacijenata sa COVID-19. CMR je postavljena dijagnoza miokarditis u 40,2%, mioperikarditis u 1,5%, Takotsubu u 1,5%, ishemiju u 2,5% i dvostruku leziju :ischemiju i nehimšćene promene u 2,0%. Regionalne abnormalnosti kretanja zida prijavljene su u 40,6%, edem (na T2 ili oporavku kratke tau inverzije) u 51,1%, LGE u 42,7% i T1 i T2 mapiranje abnormalnosti u 73% i 63%, respektivno. Dodatno, abnormalnosti mapiranja perfuzije i ekstracelularnog volumena opisane su kod 85% i 52% pacijenata, respektivno. Zahvaćenost perikarda uključivala je perikardni izliv u 24% i perikardni LGE u 22%. Ukratko, najčešća CMR dijagnoza u COVID-19 bolesnika je miokarditis, a nalazi imidžina su uključivali dokaze o difuznom edemnu miokardu i fibrozi miokarda. Međutim, važno je napomenuti da je većina prijavljenih nalaza bila blago povećanje T1 i T2 intenziteta signala, a klinički značaj izolovanih abnormalnosti T1/T2 povezanih sa COVID-19 i dalje ostaje nepoznat [26,27].

ZAHVAĆENOST SRCA NAKON OPORAVKA OD AKUTNOG COVID 19 OBOLJENJA -POST-AKUTNI COVID 19 (PASC) ili LONG COVID 19 SINDROM

Određeni pacijenti zaraženi SARS-CoV-2 nastavljaju da imaju simptome nedeljama do mesecima nakon prividnog oporavka od akutne faze bolesti. Rani izveštaji sugerisani do 10% pacijenata sa COVID-19 može doživeti „PRODUŽENI I LIKO COVID SINDROM (LCSy)“ ili POST-AKUTNI COVID 19 (PASC). Sintomi PASC su veoma različiti po raznolikosti, ozbiljnosti i trajanju [16]. Preliminarni studije sugerisani da do 30% pacijenata može prijaviti simptome čak 9 meseci nakon akutne
involvement caused by SARS-CoV-2 infection may be important for long-term prognosis. Myocardial effects during SARS-CoV-2 infections can be characterized with advanced echocardiographic techniques. Strain imaging was performed in 18 patients with SARS CoV-2 infection assessing longitudinal, radial, and circumferential strain or left ventricular (LV) strain including rotation, torsion, and twisting [17]. LV deformation (strain) was also analyzed in a control group of healthy individuals of the appropriate age (n = 20). The dominant finding was the finding; reduced longitudinal strain observed predominantly in more than one basal segment of the LV (n = 10/14 patients, 71%). This pattern resembles a “reverse Tako-tsubo” morphology, which is not typical of other viral myocarditis. Additional findings included a biphassic pattern with maximal postsystolic thickening or negative regional radial strain predominantly in the basal segments (n = 5/14 patients, 36%); absence or dispersion of left ventricular basal rotation (n = 6/14 patients, 43%); decreased or positive regional circumferential strain in more than one segment (n = 7/14 patients, 50%); net rotation showing late post-systolic twist or biphasic pattern (n = 8/14 patients, 57%); cardiac rotation showing a polyphasic pattern and/or higher peak values during diastole (n = 8/14 patients, 57%). Descriptive myocardial damage due to SARS-CoV-2-infection was highly prevalent in the presented cohort, even in patients with mild symptoms. COVID-19 myocardial damage appears to be characterized by specific deformation (strain) abnormalities in the basal segments of the LV. These data raise an idea for prospective testing: whether these parameters are useful for risk stratification and for long-term follow-up of these patients [17].

It is important to present a large meta-analysis by Ogunbey O. et al [23] on 41013 patients, where the aim was to quantify the relationship between myocardial lesion biomarkers, coagulation and severe COVID-19 and death in hospitalized patients. Individual study effect estimates of the association of markers of myocardial lesion (troponins), myocardial dysfunction (N-terminal-prohormone BNP, NT-proBNP) and coagulopathy (D-dimer) and death or severe/critical COVID-19 were pooled using the statistical parameter Odds ratio (odds ratios for adverse events-OR) by outcomes of critical/severe COVID-19 and death. Comorbidities of hypertension - 39% (95% CI: 34–44%); diabetes, - 21% (95% CI: 18%-24%); coronary artery disease, 13% (95% CI: 10–16%); chronic obstructive pulmonary disease, 7% (95% CI: 5–8%); and history of malignancy, 5% (95% CI: 4–7%). Elevated troponin was associated with higher pooled odds of critical/severe COVID-19 and death [OR: 1.76, 95% (CI: 1.42–2.16)]. By separate OR analysis, the odds ratio for death was OR: 1.72, 95% (CI: 1.32–2.25) and for critical/severe COVID-19, OR: 1.93, 95% (CI: 1.45–2.40). Elevations of NT-proBNP were also associated with more severe COVID-19 and death (OR: 3.00, 95% CI: 1.58–5.70). Increased D-dimer levels were significantly associated with critical/severe COVID-19 and death (pooled OR: 1.38, 95% CI: 1.07–1.79). This meta-analysis synthesizes the existing evidence that myocardial injury and coagulopathy are significant complications of COVID-19. The reversibility and functional significance of these complications and their contribution to long-term cardiac disease outcomes are still being investigated. Patients who have recovered from COVID-19 may benefit from assessment of markers of myocardial injury, heart dysfunction-failure, and coagulopathy for early risk stratification [23].

An important aspect of COVID-19 pandemic is the associated collateral damage in the treatment of many other diseases. This includes diagnostic difficulty and treatment of all forms of cardiac and other serious chronic diseases of other organ systems and not only the treatment of infarctions and acute cardiac diseases during the COVID-19 pandemic, which has consequences for our daily cardiology practice. [24,25]

ABNORMALITIES INDICATING A LESION ON CARDIAC MAGNETIC RESONANCE (CMR)

CMR findings include: T1 mapping abnormalities (suggesting diffuse myocardial changes such as diffuse fibrosis and/or edema); T2 mapping abnormalities (more specific to myocardial inflammation, as occurs in acute myocarditis); the presence of late gadolinium enhancement (LGE), which indicates an acute myocardial lesion and/or myocardial fibrosis; or pericardial involvement – all of which may indicate cardiac lesions associated with COVID-19. In a systematic review of 199 patients, post-recovery CMR studies in patients with COVID-19, CMR diagnosed myocarditis in 40.2%,
infekcije [28]. Najčešći simptomi uključuju umor, pad funkcionalnog kapaciteta i tolerancije na vežbanje, kratak dah, probleme sa spavanjem i palpitacijama. Neki pacijenti opisuju poteškoće sa jasnim razmišljanjem („magla u mozgu“), anksioznost i/ili depresiju. Tačni prediktori, trajanje, stepen zahvatanja srca (ili drugih organa) i potencijalni efekti različitih tretmana za PASC zahtevaju opsežno istraživanje koje je u toku [16].

Potencijal za dugotrajne srčane posledice oštećenja miokarda povezane sa COVID-19 je istaknut u CMR studijama kod oporavljenih pacijenata sa dokazima o fibrozi miokarda ili miokarditisu prijavljenim u širokom spektru od 9% do 78% pacijenata oporavljenih od akutnog COVID-19. Među 100 pacijenata nakon COVID-19 koji su bili podvrgnuti CMR-u u 2 do 3 meseca nakon dijagnoze, Puntmann i saradnici su prijavili značajan broj pacijenata sa dokazima o aktuelnom zapaljenju u 60% [16].

COVID-19 je istaknut u CMR studijama kod oporavljenih pacijenata sa dokazima o fibrozi miokarda (14%–40%), lokalni perikarditis (19%), endokardijalnu trombozu (14%) ili endotelitis i trombozu malih koronarnih krvišnih sudova (19%). Kardijalni tropizam SARS-CoV-2 je prvobitno ustanovljen kvantitativnim RT-PCR detekcijom virusne RNK u postmortalnim srcima pacijenata sa COVID-19, a zatim u endomiokardijalnim biopsijama pacijenata sa sumnjom na miokarditis. Srčani ćelinski tropizam SARS-CoV-2 je sada dokazan u situ obeležavanjem SARS-CoV-2 RNK i elektronskom mikroskopskom detekcijom čestica sličnih virusu unutar kardiomiočita, intersticijskih ćelija, i endotelnih ćelija srca post mortem [30,31]. Autopsije kod pacijenata sa akutnim miokarditidom su nedavno pokazale dokaze o virusnoj infekciji, i replikaciji unutar kardiomiočita. Preovladavanje dokaza sugeriše da SARS-CoV-2 može lako infiltrisati ljudske srčane mioke i da se može otkriti u miokeitim na obdukciji ili endomiokardijalnom biopsijom kod pacijenata sa i bez kliničkih dokaza o zahvaćenosti srca. Patohistološki nalazi jasnog miokarditisa u pojedinačnim slučajevima gde svi elementi uvek sugerišu COVID-19 miokarditis ili direktno oštećenje kardiomiočita u izrazito snažnoj zapaljenoj reakciji (citokinska oluja) uzrokovane viremijom, a ne mikrovaskularnu miokardnu ležiju [14,32].

Od 277 srca u 22 autopsijske studije COVID-19, prijavljeno je samo 20 slučajeva miokarditisa (7,2%). Za razliku od niske prevalencije miokarditisa, intersticijalna infiltracija makrofaga bez degeneracije kardiomiočita bila je uobičajena u multicentričnoj seriji autopsije COVID-19 (18 od 21 slučaja, 86%) [33]. Drugi češći histološki nalazi o kojima se izveštava u seriji autopsije COVID-19 uključuju perivaskularne i infiltratore infiltrate miokarda, trombozu endokarda i malih krvišnih sudova, endotelitis i anksioznost ili depresiju (23%). Veća težina bolesti tokom hospitalizacije bila je povezana sa smanjenim kapacitetima plućne difuzije i abnormnom radiografijom grudnog koša. (Huang C. 2021). Nejasan je doprinos promena на srcu nakon COVID-19 i akutne ležije miokarda simptomima PASC-a [29].
myopericarditis in 1.5%, Takotsubo in 1.5%, ischemia in 2.5% and a double lesion: ischemia and non-ischemic changes in 2.0%. Regional wall motion abnormalities were reported in 40.6%, edema (on T2 or short tau inversion recovery) in 51.1%, LGE in 42.7%, and T1 and T2 mapping abnormalities in 73% and 63%, respectively. Additionally, perfusion and extracellular volume mapping abnormalities were described in 85% and 52% of patients, respectively. Pericardial involvement included pericardial effusion in 24% and pericardial LGE in 22%. In summary, the most common CMR diagnosis in COVID-19 patients is myocarditis, and imaging findings included evidence of diffuse myocardial edema and myocardial fibrosis. However, it is important to note that most of the reported findings were mild increases in T1 and T2 signal intensity, and the clinical significance of isolated T1/T2 abnormalities associated with COVID-19 still remains unknown [26,27].

CARDIAC INVOLVEMENT AFTER RECOVERY FROM ACUTE COVID 19 DISEASE - POST-ACUTE COVID 19 (PASC) or LONG COVID-19 SYNDROME

Certain patients infected with SARS-CoV-2 continue to have symptoms for weeks to months after apparent recovery from the acute phase of the disease. Early reports suggest that up to 10% of patients with COVID-19 may experience "PROLONGED OR LONG COVID SYNDROME" or POST-ACUTE COVID 19 (PASC). Symptoms of PASC vary widely in variety, severity, and duration [16]. Preliminary studies suggest that up to 30% of patients may report symptoms as late as 9 months after acute infection [28]. The most common symptoms include fatigue, decreased functional capacity and exercise tolerance, shortness of breath, sleep problems, and palpitations. Some patients describe difficulty thinking clearly ("brain fog"), anxiety and/or depression. The exact predictors, duration, extent of cardiac (or other organ) involvement, and potential effects of different treatments for PASC require extensive research, which has already begun [16].

The potential for long-term cardiac sequelae of myocardial damage associated with COVID-19 has been highlighted in CMR studies of recovered patients with evidence of myocardial fibrosis or myocarditis reported in a wide range of 9% to 78% of patients recovered from acute COVID-19. Among 100 post-COVID-19 patients who underwent CMR 2 to 3 months after diagnosis, Punemann et al reported **cardiac involvement in 78% with evidence of ongoing inflammation in 60%**. On the day of imaging, 71% had elevated hs-TnT. Cardiac symptoms were common and included atypical chest pain (17%), palpitations (20%), and dyspnea and fatigue (36%). Recovered patients had lower left ventricular (LV) ejection fractions and larger LV volumes compared with risk factor-matched controls. These CMR findings of myocarditis and myocardial fibrosis raise concerns about potential long-term cardiac consequences, including increased risk of heart failure and arrhythmia based on previous experience with myocarditis. The presence of late gadolinium accumulation (LGE) subepicardially and medially in the left ventricular wall associated with myocarditis often implies myocardial necrosis in addition to myocardial edema and has previously been associated with adverse outcomes in multiple CMR studies of non-Covid-related myocarditis [27]. Post-acute sequelae of SARS-CoV-2 infection, often called post-acute COVID-19 syndrome or long-lasting-LONG COVID-19, can occur in patients who are slow to recover. Of 143 patients who were treated as outpatients after infection with COVID-19, only 12.6% were asymptomatic. (Carfe A) [28]. Symptoms included fatigue (53.1%), dyspnea (43.4%), joint pain (27.3%), and chest pain (21.7%); 44.1% reported deterioration in quality of life. Among 1,733 discharged patients with COVID-19 followed for an average of 6 months after symptom onset, the most common symptoms were fatigue or muscle weakness (63%), difficulty sleeping (26%), and anxiety or depression (23%). Greater disease severity during hospitalization was associated with reduced pulmonary diffusion capacities and abnormal chest radiography. (Huang C. 2021). The contribution of cardiac changes after COVID and acute myocardial injury to the symptoms of post-acute COVID-19 syndrome is unclear [29].

PROOF OF DIRECT VIRAL HEART INFECTION BY PATHOHISTOLOGY

Cardiac autopsies showed cardiomegaly, right ventricular enlargement, lymphocytic myocarditis (14%-40%), focal pericarditis (19%), endocardial thrombosis (14%), or endothelitis and thrombosis of small coronary
degeneraciju miocita. Jedna studija 39 obdukcijenih srca otkrila je SARS-CoV-2 pomoću kRT-PCR-u u 24 (61,5%) slučajeva, sa 16 srca koje pokazuju visoko virusno opterećenje (>1000 genomskih kopija po mg ukupne RNK) [34,35]. O斯塔je da se utvrdi da li heterogenost srčane histopatologije kod COVID-19 označava različite endovertopove lezije miokarda COVID-19 ili kontinuitet jednог patološkог procesa [16].

PRODUŽENA NETOLERANCIJA NA NAPOR I DISAUTONOMIJA

Sve je više dokaza o produženim simptomima COVID-19 nakon perioda akutne infekcije (PASC, LCSy) sa produženom netoleracijom na napor(nepodnošenje napora) koja postaje čest nalaz ne samo kod takmičarskih sportista i aktivnih pojedinaca, već i kod mnogih mladih i starijih preživèelih od COVID-19 [3,16]. Uobičajeni simptomi povezani sa miokarditismom i PASC uključuju bol u grudima, dispneju i palpitacije. Verovatni uzroci nesportista mogu predstavljati normalne EKG promene koje se smatraju abnormaln, odakle se otkrivanje CMR abnormalnosti. Nasuprot tome, neinvazivnim biomarkerima, EKG ciljana upotreba CMR koja je prehramila RNK nakon COVID-19 doveo je do relativna nervnih vlakana uzrokovana CMR infekcijom, grudima, dispneju i palpitacije. Verovatni uzroci sa miokarditisom i COVID-19 i COVID-19 infekcije simptomima COVID-19, jehova prevencija, rano prepoznavanje i lečenje [14].

PRINCIPI TERAPIJSKOG PRISTUPA COVID-19 INFEKCIJI SA FOKUSOM NA KARDIOVASKULARNI SISTEM

Najvažniji principi u terapijskom pristupu COVID-19 pacijentima [16]: A) optimalne suportivne mere i lečenje komplikacija; B) lečenje postojećih hroničnih KVB i stanja razvijenih u sklopu COVID-19 prema aktualnim smernicama kardioloških udruženja (ESC, AHA/ACC) uključujući inhibitore renin-angiotenzin-aldosteronskog sistema(RAASI) [14]; C) u slučajevima citokinske komplikacije koja je povezana s razvojem ARDS-a i miokarditisu razmotriti uvodenje imunomodulatorne terapije; D) individualna stratifikacija rizika za razvoj KV komplikacija u COVID-19 infekciji, jehova prevencija, rano prepoznavanje i lečenje [14].

Lečenje COVID-19 i komplikacija povezanih sa COVID-19 [16] nastavljaje da se brzo razvija kako sve više tretmana završava testiranje u randomizovanim ispitivanjima. Tretman u ranoj fazi uključuju antivirusne lekove i monoklonska antitela protiv SARS-CoV-2.**Antivirusni lekovi.** Remdesivir je analog nucleozida koji inhibira RNK zavisu RNK polimerazu i jedini je antivirusni lek koji je odobrila američka Uprava za hranu i lekove (FDA) za lečenje COVID-19 [16]. Trenutno se preporučuje pacijentima hospitalizovanim sa umerenim COVID-19 koji zahtevaju dodatni kiseonik, ali korist nije utvrđena kod pacijenata kojima je potreban kiseonik sa velikim protokom, neinvazivna ventilacija ili mehanička ventilacija. Trajanje lečenja je oko 5 dana, koje se
The cardiac tropism of SARS-CoV-2 was initially established by quantitative RT-PCR detection of viral RNA in postmortem hearts of patients with COVID-19 and then in endomyocardial biopsies of patients with suspected myocarditis. The cardiac cellular tropism of SARS-CoV-2 has now been demonstrated by in situ labeling of SARS-CoV-2 RNA and electron microscopic detection of virus-like particles within cardiomyocytes, interstitial cells, and cardiac endothelial cells post mortem [30,31]. Autopsies in patients with acute myocarditis have recently shown evidence of viral infection, and replication within cardiomyocytes. The preponderance of evidence suggests that SARS-CoV-2 can readily infect human cardiac myocytes and can be detected in myocytes at autopsy or endomyocardial biopsy in patients with and without clinical evidence of cardiac involvement. There are pathohistological findings of clear myocarditis in individual cases where all elements strongly suggest COVID-19 myocarditis or direct cardiomyocyte damage in an extremely strong inflammatory reaction (cytokine storm) caused by viremia rather than a microvascular myocardial lesion [14,32].

Of 277 hearts in 22 autopsy studies of COVID-19, only 20 cases of myocarditis (7.2%) were reported. In contrast to the low prevalence of myocarditis, interstitial macrophage infiltration without cardiomyocyte degeneration was common in a multicenter COVID-19 autopsy series (18 of 21 cases, 86%) [33]. Other more common histologic findings reported in the COVID-19 autopsy series include perivascular and inflammatory myocardial infiltrates, endocardial and small vessel thrombosis, endothelitis, and myocyte degeneration. One study of 39 autopsied hearts detected SARS-CoV-2 by qRT-PCR in 24 (61.5%) cases, with 16 hearts showing high viral loads (>1000 genomic copies per mg of total RNA) [34,35]. It remains to be determined whether the heterogeneity of cardiac histopathology in COVID-19 signifies different endophenotypes of the myocardial lesion of COVID-19 or the continuity of a single pathological process [16].

PROLONGED EXERCISE INTOLERANCE AND DYSAUTONOMY

There is increasing evidence of prolonged symptoms of COVID-19 after a period of acute infection (post-acute covid, long covid) with prolonged exercise intolerance (failure to exert effort) which is becoming a common finding not only in competitive athletes and active individuals, but also in many young and elderly people survivors of COVID-19 [3,16]. Common symptoms associated with myocarditis and post-COVID syndrome include chest pain, dyspnea, and palpitations. CMR findings of a cardiac lesion, small nerve fiber neuropathy caused by the COVID-19 virus, and dysautonomia are likely causes. Postural orthostatic tachycardia syndrome associated with COVID-19 is common. The relative poor cardiac fitness during periods of exercise and training limitations is often confounding in situations when trying to delineate the cause of failure to exercise [3,16].

The potential for increased risk of sudden cardiac death in post-COVID fibrosis or myocardial inflammation is of concern to athletes or active individuals returning to exercise. The wide range of LGE prevalence after COVID-19 has led to controversy over the routine practice versus targeted use of CMR. Risk stratification with noninvasive biomarkers, ECG, or echocardiography may be insensitive for detecting CMR abnormalities. Conversely, ECG changes considered abnormal in non-athletes may represent normal variants in athletes. According to the American College of Cardiology, Sports, and Exercise, athletes who have recovered from COVID-19 can return to sports based on biomarkers and noninvasive cardiac imaging, including ECG and echocardiogram [3,16]. Athletes are advised to limit exercise to 5 days a week, minimally at first with a gradual increase in exercise intensity. Cardiovascular risk assessment is recommended for mild symptoms lasting longer than 10 days; for moderate or severe symptoms, including hospitalization, further cardiac testing depends on symptoms and abnormal findings on baseline testing. The uncertainty of long-term consequences and the potential for long-term evolution into chronic myocardial disease, cardiomyopathy, and other cardiovascular complications, including heart failure, chronic sinus tachycardia, autonomic dysfunction, and arrhythmias, await further definition. In addition, studies are needed to determine whether therapeutic interventions to moderate the inflammatory response can also limit the extent of intermediate- to long-term myocardial injury associated with COVID-19. Evaluation of post-acute COVID-19 syndrome (long-COVID-19) and recommendations for long-
može produžiti na 10 dana u nedostatku kliničkog poboljšanja [36]. **Monoklonska antitela** protiv SARS-CoV-2 koja su od strane FDA odobrena za hitnu upotrebu: Bamlanivimab plus etesevimab (primjenjeni zajedno) su odobreni za lečenje blagog do umerenog COVID-19 kod odraslih i pedijatrijskih vanbolničkih pacijenata [37]. Pored toga, FDA je izdala dozvolu za kasirivimab i imdevimab (primjenjeni zajedno) za lečenje blagog do umerenog oblika COVID-19 kod odraslih i pedijatrijskih pacijenata [38]. Potencijalni kardioprotektivni efekti tretmana antikoagulinima još nisu utvrđeni zbog nedoslednosti u rezultatima kliničkih ispitivanja [16]. **Kortikosteroidi** su pokazali korist u podgrupi pacijenata sa umerenim COVID-19 kojima je potreban dodatni kiseonik. U ispitivanju randomizovane evaluacije terapije COVID-19, deksametazon (6 mg jednom dnevno do 10 dana) je smanjio 28-dnevnih mortalitet, ali pacijenti kojima nije bio potreban kiseonik nisu imali koristi [16,39]. U meta-analizi 7 randomizovanih kontrolisanih studija (RCT) koji su uključili 1703 kritično bolesna pacijenta (uključujući one kojima je potrebna mehanička ventilacija) sa COVID-19, upotreba sistemskog deksametazona, hidrokortizona ili metilprednizolona rezultirala je smanjenjem rizika od smrtnosti od svih uzroka za 34% nakon 28 dana [16,40].

"Oluja" oslobađanja citokina, koja potiče od neravnoteže aktivacije T celija sa neregulisanim oslobađanjem interleukina (IL)-6, IL-17 i drugih citokina, može doprineti KVB kod COVID-19. U toku je testiranje terapije Anti-IL-6 antitela. Aktivacija imunog sistema zajedno sa promenama imunometabolizma može dovesti do nestabilnosti aterosklerotskih plakova, dopринеоći razvoju akutnih koronarnih događaja [16].

Uloga antikoagulacije u COVID-19. Mnoge opsravcione ili manje studije su istraživale koji pacijenti sa COVID-19 bi mogli imati koristi od antikoagulantne ili antiagregacione terapije u kojoj dozi i u kojoj fazi bolesti sa različitim rezultatima. Dok se čekaju dovoljno snažna, pravilno dizajnirana i izvedena duplo lepa randomizovana ispitivanja, mnoge institucije su usvojile profilaksu kod svih ili specifičnih grupa hospitalizovanih pacijenata sa COVID-19. Dokumenti o konzensusu generalno preporučuju praćenje dostupnih medicinskih preporuka zasnovanih na dokazima kako bi se izbegla široka upotreba veće od profilaktičke doze antikoagulansa, osim ako se ne koristi kao deo istraživačke studije [16,41]. Generalno, rizik od venskog tromeombozima (VTE) kod hospitalizovanih pacijenata dostigao je vrhunac u ranom toku pandemije, ali je kasnije došlo do pada incidence zahvaljujući usvajanju profilaktičke antikoagulacije. Velika studija danskih registara baziranih na nacionalnoj populaciji sugeriše da je rizik od VTE kod hospitalizovanih pacijenata sa COVID-19 nizak do umeren i da nije značajno veći od rizika od VTE kod hospitalizovanih SARS-CoV-2-negativnih i pacijenata sa gripom [42]. Rizik VTE u periodu nakon otpusta i u ambulantnim slučajevima COVID-19 može biti blago povišen, ali mnogo manji od rizika kod akutno bolesnih i hospitalizovanih pacijenata.

Antagonisti sistema renin-angiotenzin-aldosteron (RAAS inhibitori, RAASI)

Nakon otkrića da SARS-CoV-2 koristi ACE2 za ulazak u Čeliju domaća, pojavila se zabrinutost u vezi sa potencijalom ACE inhibitora (inhibitora angiotenzin konvertaze 2 - ACEI) i blokatora angiotenzin AT1 receptora (ARB)-a da izazovu kompenzatorno povećanje ekspresije ACE2 i pogoršaju prognozu među onima sa COVID-19. Studije opsravcije koje procenjuju ishode povezane sa upotreba ACEI i ARB među pacijentima sa potvrđenim COVID-19 [43,44] i RCTs upoređujući nastavak ili povlačenje ovih agenasa među onima koji su hospitalizovani sa COVID-19, nisu pokazali štetne efekte na preživljavanje i druge kliničke ishode [45,46]. Dakle, nastavak ACEI i ARB tokom bolesti COVID-19 preporučuje se pacijentima koji se leče ovim lekovima. Takođe se čini da u eksperimentalnim modelima ARB mogu imati potencijalno zaštitni uticaj. Nedavna opsravcionala studija na preko 8910 pacijenata iz 169 bolnica u Aziji, Evropi i Severnoj Americi nije pokazala štetnu povezanost ACEI ili ARB sa smrtnošću u bolnici, dok je studija u Vuhantu pokazala da je kod 1128 hospitalizovanih pacijenata upotreba ACEI/ARB bila povezana sa manjim rizikom od infekcije COVID-19 ili ozbiljnijih komplikacija ili smrti od infekcije COVID-19. Ovo je u skladu sa prethodnim uputstvima najvažnijih kardiovascularnih udruženja, u kojima se navodi da pacijenti na
term surveillance, monitoring, and return to exercise or sport remain areas for further evaluation [3,16].

PRINCIPLES OF THE THERAPEUTIC APPROACH TO COVID-19 INFECTION WITH A FOCUS ON THE CARDIOVASCULAR SYSTEM

The most important principles in the therapeutic approach to COVID-19 patients [16]: A) optimal supportive measures and treatment of complications; B) treatment of existing chronic cardiovascular diseases and conditions developed as part of COVID-19 according to the current guidelines of professional societies and associations (ESC, AHA/ACC) including inhibitors of the renin-angiotensin-aldosterone system [14]; C) in cases of cytokine storm associated with the development of ARDS and myocarditis, consider the introduction of immunomodulatory therapy; D) individual risk stratification for development of severe complications in COVID-19 infection, prevention of these, early recognition and treatment [14]. Treatment of COVID-19 and complications associated with COVID-19 [16] continues to develop rapidly as more treatments complete testing in randomized trials. Treatment in early phase includes antiviral medicines and monoclonal antibodies against SARS-CoV-2.

Antiviral medicines. Remdesivir is nucleoside analog which inhibits RNA dependent RNA polymerase and is the only antiviral medicine approved by US Food and Drug Administration (FDA) for treatment of COVID-19 [16]. It is currently recommended to patients hospitalized with moderate COVID-19 who need extra oxygen, but its benefit has not been established in patients who require high flow oxygen, non-invasive ventilation or mechanical ventilation. Treatment lasts about 5 days, it can be prolonged to 10 days if there are no clinical improvements [36].

Monoclonal antibodies against SARS-CoV-2 which have been approved by FDA for emergency use: Bamlanivimab plus etesevimab (applied together) have been approved for treatment of mild to moderate COVID-19 in adults and pediatric outpatients [37]. Besides, FDA has issued permission for casirivimab and imdevimab applied together) for treatment of mild to moderate variant of COVID-19 in adults and pediatric patients [38]. Potential cardioprotective effects of treatment by anticytokines haven’t been determined yet due to inconsistencies in the results of clinical trials [16].

Corticosteroids have showed benefit in a patient subgroup with moderate COVID-19 who needed extra oxygen. In a randomized evaluation trial of therapy for COVID-19, dexamethasone (6 mg one time daily up to 10 days) reduced the 28-day mortality, but patients who didn’t need oxygen did not experience any benefits [16, 39].

In meta-analysis of 7 randomized controlled studies (CT), which included 1703 critically sick patients (including those who needed mechanical ventilation) with COVID-19, the use of systemic dexamethasone, hydrocortisone or methylprednisolone resulted in the reduction of risks of mortality from all causes by 34% after 28 days [16,40].

"A "storm" of cytokine release", which comes from T cell activation imbalance with unregulated interleukin release (IL)-6, IL-17 and other cytokines, can contribute to CVD in COVID-19. Anti-IL-6 antibody therapy trial is ongoing. Activation of the immune system together with the changes in immunometabolism can lead to the instability of atherosclerotic plaques, contributing to the development of acute coronary events [16].

The role of anticoagulation in COVID-19.

Many observational or smaller studies have investigated which patients with COVID-19 could benefit from anticoagulants or antiaggregation therapy, in which dose and in which phase of the disease with different results. While waiting for sufficiently strong, properly designed and performed blinded randomized trials, many institutions have adopted the prophylaxis of escalated doses in all or specific subgroups of hospitalized patients with COVID-19. Documents about consensus generally recommend tracking the available medical recommendations based on the evidence in order to avoid a widespread use higher than the prophylactic dose of anticoagulants, except if it is not used as a part of a research study [16,41]. In general, risk from venous thromboembolism (VTE) in hospitalized patients reached its climax in the early stage of the pandemic, but later the incidence decreased thanks to the adoption of prophylactic anticoagulation. A big study of Danish registers based on the national population suggests that the risk from the VTE in hospitalized patients with COVID-19 is low to
ACEI ili ARB ne bi trebalo da prekidaju ove lekove [16].

ORGANIZACIJA ZBRINJAVANJA I SPECIFIČNOSTI NAJVAŽNIJIH KVB U TOKU COVID-19 PANDEMIJE

Akutni koronarni sindromi (ACS) bez elevacije ST (NSTEMI)

Lečenje pacijenata sa NSTEMI treba da bude vođeno stratifikacijom rizika [3]. Testiranje na SARS-CoV-2 treba da se obavi što je pre moguće nakon prvog medicinskog kontakta, bez obzira na strategiju lečenja, kako bi zdravstveni radnik mogao da primeni adekvatne zaštitne mere i puteve zbrinjavanja. Pacijente treba kategorisati u 4 rizika (nizak rizik, srednji rizik, visok rizik i nizak rizik) i upravljati u skladu sa tim. Pacijenti sa porastom troponina i bez akutnih kliničkih znakova nestabilnosti (EKG promene, ponavljanje bola, hemodinamski stabilni) mogu se lečiti primarno konzervativnim pristupom. Neinvazivno snimanje pomoću skeneres koronarografije (CCTA) može ubrzati stratifikaciju rizika, izbeći invazivni pristup koji omogućava rano otpuštanje. Za pacijente sa visokim rizikom, strategija ima za cilj stabilizaciju uz planiranje rane (< 24 sata) invazivne strategije. U slučaju pozitivnog testa na SARS-CoV-2, pacijenti treba da budu prebačeni na invazivni tretman u bolnicu za COVID-19 opremljenu za lečenje pacijenata pozitivnih na COVID-19. Pacijente sa srednjim rizikom treba pažljivo proceniti uzimajući u obzir alternativne dijagnoze tipu 1 MI, kao što su MI tipa II, miokarditis ili lezija miokarda usled respiratornog distresa ili multiorganske insuficijencije ili Takotsubo. U slučaju da se bilo koja od diferencijalnih dijagnoza čini verodostojnom, treba razmotriti neinvazivnu strategiju i dati prednost CCTA [3].

Infarkt miokarda (MI) sa elevacijom ST segmenta (STEMI)

Pandemija COVID-19 ne bi trebalo da ugrozi pravovremenu reperfuziju putem perkutanog balon angioplastike sa ugradnjom stenta (PCI) ili trombolitičkom terapijom kod pacijenata sa STEMI [3]. U skladu sa trenutnim smernicama reperfuziona terapija ostaje indikovana kod pacijenata sa simptomima ishemije koji traju manje od 12 sati uz permanentnu elevaciju ST segmenta na EKG u najmanje dva susedna odvoda. Istovremeno mora da postoji bezbednost zdravstvenih radnika i u nedostatku testiranja na SARS-CoV-2 sve pacijente treba lečiti kao da su Covid 19 pozitivni. Bezbednost zdravstvenih profesionalaca je od najveće važnosti da bi se izbegle infekcije zdravstvenih radnika.

Hronični koronarni sindromi (CCS)

Pacijenti sa CCS sa kliničkim scenarijem stabilne angine pektoris su generalno pod niskim rizikom od KI događaja što omogućava odlaganje dijagnostičkih i/ili interventnih procedura u većini slučajeva [3].

Neinvazivno lečenje optimizovati i/ili intenzivirati u zavisnosti od kliničkog statusa. Kliničko praćenje putem telemedicine je opravdano kako bi se kod pacijenta rano otkrila nestabilna angina ili promene u kliničkom statusu, koje bi mogle da zahtevaju bolnički prijem kod pacijenata sa visokim rizikom.

Akutna srčana insuficijencija (AHF)

Bilateralna COVID-19 pneumonija često dovodi do pogoršanja hemodinamskog statusa usled hipoksemije, dehidracije i hipoperfuzije. Osnovni mehanizmi AHF kod COVID-19 jesu akutnu ishemiju miokarda, infarkt ili infilamacija miokarda (miokarditis), akutni respiratorni distres sindrom (ARDS), akutno oštećenje bubrega i hipervolemija, stress-kardiomioapatija i tahiaritmije [3]. Klinička prezentacija, prisustvo postojećih KV komorbiriteta i nalaz radiografije RTG thoraxa (kardiomegalija i/ili bilateralni pleuralni izliv, kongestija plućnih krila pri bazama) su od najveće važnosti. Značajno povišeni nivoi BNP a ne NT-proBNP takođe sugerišu akutnu HF. Preporučuje se oprezna upotreba transtorakalne ehokardiografije (TTE) uz uzglavlje pacijenta (point of care-POC) da se spreči kontaminacija osoblja i/ili opreme od pacijenta. Ista strategija lečenja akutne HF može se primeniti kod pacijenata sa i bez COVID-19 [3,47]. Što se tiče prognoze, u jednom skorašnjem izveštaju 23% svih hospitalizovanih pacijenata razvilo je AHF, dok je prevalencija hronične HF bila značajno veća u slučajevima sa smrtnim ishodom u poređenju sa preživelima (52% naspram 12%, P < 0,0001) [3].

Hronična srčana insuficijencija (CHF)

Rizik od infekcije COVID-19 može biti veći kod hroničnih pacijenata sa srčanom...
moderate and that it's not significantly higher than the risks from the VTE in hospitalized SARS-CoV-2 negative patients and patients with flu [42]. VTE Risk in the period after dismissal and in ambulatory cases of COVID-19 can be slightly elevated, but it is much smaller than the risks in acutely ill and hospitalized patients.

Antagonists of the renin-angiotensin-aldosterone system (RAAS antagonists)

Following the discovery that SARS-CoV-2 uses ACE2 to enter the host cell, concerns have been raised about the potential for ACE inhibitors and ARBs to cause a compensatory increase in ACE2 expression and worsen prognosis among those with COVID-19. Observational studies evaluating outcomes associated with the use of ACE inhibitors and ARBs among patients with confirmed COVID-19 [43,44] and RCTs comparing continuation or withdrawal of these agents among those hospitalized with COVID-19 have shown no adverse effects on survival and other clinical outcomes [45,46]. Therefore, continuation of ACE inhibitors and ARBs during the course of COVID-19 disease is recommended for patients treated with these drugs. It also appears that in experimental models, ARBs may have a potentially protective effect. A recent observational study of over 8910 patients from 169 hospitals in Asia, Europe, and North America showed no adverse association of ACEIs or ARBs with in-hospital mortality, while a study in Wuhan showed that in 1128 hospitalized patients, ACEI/ARB use was associated with a lower risk from infection with COVID-19 or serious complications or death from infection with COVID-19. This is consistent with previous guidelines from the major cardiovascular associations, which state that patients on ACEIs or ARBs should not discontinue these medications [16].

ORGANIZATION OF CARE AND SPECIFICITY OF THE MOST IMPORTANT CVD DURING THE COVID-19 PANDEMIC

Non-ST elevation acute coronary syndromes (NSTEMI)

Management of patients with NSTEMI should be guided by risk stratification [3]. Testing for SARS-CoV-2 should be performed as soon as possible after the first medical contact, regardless of the treatment strategy, so that the healthcare professional can implement adequate protective measures and care pathways. Patients should be categorized into 4 risk groups (ie, very high risk, high risk, intermediate risk, and low risk) and managed accordingly. Patients with an increase in troponin and without acute clinical signs of instability (ECG changes, recurrence of pain, hemodynamically stable) can be treated with a primarily conservative approach. Non-invasive imaging with CCTA can speed up risk stratification, avoid an invasive approach and allow early discharge. For high-risk patients, the medical strategy aims at stabilization while planning an early (<24 hours) invasive strategy. In the case of a positive SARS-CoV-2 test, patients should be transferred for invasive treatment to a COVID-19 hospital equipped to treat the patients positive for COVID-19. Intermediate-risk patients should be carefully evaluated considering alternative diagnoses of T1MI, such as type II MI, myocarditis or myocardial lesion due to respiratory distress or multiorgan failure, or Takotsubo. In case any of the differential diagnoses seems plausible, a non-invasive strategy should be considered and CT scan coronary angiography (CCTA) should be preferred [3].

ST segment elevation myocardial infarction (STEMI)

The COVID-19 pandemic should not compromise timely reperfusion via percutaneous balloon angioplasty with stent placement (PCI) or thrombolytic therapy in patients with STEMI [3]. According to current guidelines, reperfusion therapy remains indicated in patients with symptoms of ischemia lasting less than 12 hours with permanent ST-segment elevation on ECG in at least two adjacent leads. At the same time, there must be safety for healthcare workers and in the absence of testing for SARS-CoV-2, all patients should be treated as if they were Covid-19 positive. The safety of healthcare professionals is of utmost importance to avoid healthcare worker infections and further spread of infection.
insuficijencijom HF zbog starosti i prisustva više komorbiditeta. Kod ambulantno stabilnih pacijenata sa HF, bez bitnih kardioloških stanja, ordinirajući lekar treba da se uzdrži od bolničkog lečenja. Medicinska terapija prema smernicama (uključujući pet paralelnih stubova terapije po novom ESC vodiču [3,47]: Betablokatore, SGLPT-2 inhibitore, antagoniste mineralokortikoidnih receptora(MRA), diuretik Henleove petje kod kongestijskih RAAS, najbolje sakubitrol/valsartan ili ACEI, ILI ARBa), treba nastaviti kod pacijenata sa hroničnom HF, bez obzira na COVID-19. Važno je implementacija telemedicine za pružanje medicinskih saveta i praćenje stabilnih pacijenata sa COVID-19.

Arterijska Hipertenzija

Utvrđena je povezanost između hipertenzije i rizika od teških komplikacija ili smrti od infekcije COVID-19 uz zbunjujući nedostatak uticaja na hipertenziju i komorbiditeta povezanih sa starenjem i hipertenzijom. Ipak, trenutno nema dokaza koji bi sugerišali da je hipertenzija sama po sebi rizik za teške kompleksije ili smrt od infekcije COVID-19 [3]. Uprkos mnogim spekulacijama, dokazi iz nedavno objavljenih serij emisijskih studija sugerišu da prehodni ili sadašnji tretman sa ACEI ili ARB nije uticaj rizika od infekcije COVID-19 a rizik od razvoja teških komplikacija od infekcije COVID-19 u poređenju na rizik kod pacijenata koji uzimaju druge antihipertenzivne lekove. Lečenje hipertenzije treba da prati postojeće preporuke u Smernicama ESC-EHS. Tokom pandemije COVID-19 nije potrebna nikakva promena ovih preporuka za lečenje [3].

COVID 19 Miokarditis

Ograničeno kliničko iskustvo ukazuje da SARS-CoV-2 može dovesti do svih formi miokarditida od subkliničkog do fulminantnog miokarditida. Treba posumnjati na miokarditis kod pacijenata sa COVID-19 i akutnim bolom u grudima, promenama ST segmenta, srčanom aritmijom i hemodinamskom ne stabilnosti. Pored toga, dilatacija LV sa sniženom EF, globalna ili multisegmentalna hipokontraktilnost LV uz značajno povećanje kardiotroponina T i I i nivoa oba ili samo jednog natriuretskog peptida (BNP I /NTproBNP) uz isključenje značajnog CCS su elementi za postavljanje radne kliničke dijagnoze. Posebno treba posumnjati na miokarditis kod COVID-19 pacijenata sa AHF, edemom pluća ili kardiogenim šokom a bez anamnestičkih podataka o predhodnom KVB. Efokardiografija kao prva i rutinska imidž metoda često pokazuje dijastolnu disfunkciju, multisegmentalnu hipokontraktilnost dilataciju obe komore i značajno smanjenje sistolne funkcije – pad EF i nekad malo perikardial izliv. Oštećenja miokardida zbog SARS-CoV-2-infekcije u vidu, specifične abnormalnosti deformacije (strejna) u bazalnim segmentima leve komore bila su veoma rasprostranjena čak i kod pacijenata sa blagim simptomima [17]. CCTA je predložena kao najbolji pristup za isključivanje istovremene koronarne bolesti i CMR, ako je dostupna može se koristiti za dalju dijagnostiku procenu. Endomiokardijalna biopsija se ne preporučuje kod pacijenata sa COVID-19 sa sumnjom na miokarditis [3].

Efikasnost antikovid vakcinacije i post-vakcinacioni miokarditis

Vakcine su pokazale efikasnost u smanjenju morbitudeta i mortaliteta od COVID-19 u randomizovanim kliničkim ispitivanjima i studijama u stvarnom svetu, što smanjuje i kardiovaskularne kompleksije. Njihova struka upotreba dovela je do značajnog smanjenja incidenca COVID-19. Od jula 2021. godine, CDC sistem za prijavu neželjenih događaja (VAERS) primio je preko 1100 prijava miokarditida ili perikarditida nakon prijema vakcinacije protiv COVID-19 (prvenstveno mRNA vakcine) i potvrdio ih je oko 70%. U Evropi (EEA) su takođe prijavljeni slučajevi miokarditida sa mRNA vakcinama i, uglavnom kod mladih odraslih osoba, često kod muškaraca i obično nakon druge doze vakcine. Miokarditis, koji se može otkriti magnetnom rezonansom srca, obično se javlja u roku od 3 do 5 dana nakon vakcinacije i predstavlja nelagodnost u grudima, abnormalni EKG i povišenje troponina. Iako je tačan mehanizam nepoznat, verovatno je imunološki posredan. Moguća incidenca asimptomatskih slučajeva, faktori rizika i dugoročni efekti tek treba da se utvrdi. Sve u svemu, čini se da je miokarditis nakon imunizacije COVID-19 retkost (~na 24 doze na milion vakcinisanih), blag i verovatno sam prolazi u većini slučajeva. Lečenje je prvenstveno suportivno [48,49].
Chronic coronary syndromes (CCS)

Patients with Chronic Coronary Syndrome (CCS) with a clinical scenario of stable angina pectoris are generally at low risk of cardiovascular events, which allows delaying diagnostic and/or interventional procedures in most cases [3]. Medical therapy should be optimized and/or intensified depending on the clinical status. Clinical monitoring of a patient via telemedicine is justified for the early detection of unstable angina or changes in clinical status that may require hospital admission in high-risk patients.

Acute heart failure (AHF)

Bilateral COVID-19 pneumonia often leads to worsening hemodynamic status due to hypoxemia, dehydration, and hypoperfusion. The main mechanisms of AHF in COVID-19 are acute myocardial ischemia, myocardial infarction or inflammation (myocarditis), acute respiratory distress syndrome (ARDS), acute kidney damage and hypervolemia, stress-induced cardiomyopathy, and tachyarrhythmias [3]. Clinical presentation, the presence of existing cardiovascular comorbidities and the findings of X-ray thorax (cardiomegaly and/or bilateral pleural effusion, congestion of the lung wings at the bases) are of utmost importance. Significantly elevated levels of BNP and not NT-proBNP also suggest acute HF. Careful use of point-of-care (POC) transthoracic echocardiography (TTE) is recommended to prevent contamination of personnel and/or equipment from the patient. The same treatment strategy for acute HF can be applied in patients with and without COVID-19 [3,47]. Regarding prognosis, in a recent report 23% of all hospitalized patients developed AHF, while the prevalence of HF was significantly higher in fatal cases compared with survivors (52% vs. 12%, P < 0.0001) [3].

Chronic heart failure (CHF)

The risk of infection with COVID-19 may be higher in chronic heart failure HF patients due to age and the presence of multiple comorbidities. In ambulatory stable patients with HF, without urgent cardiac conditions, the prescribing physician should refrain from hospital treatment. Medical therapy according to the guidelines (including the five parallel pillars of therapy according to the new ESC guideline [3,47] Beta-blockers, SGLPT-2 inhibitors, mineralocorticoid receptor antagonists (MRA), loop of Henle diuretics for congestion and one of the RAAS inhibitors, preferably sacubitril/valsartan or ACEI, OR ARB), should be continued in patients with chronic HF, regardless of COVID-19. The implementation of telemedicine to provide medical advice and follow-up of stable patients with COVID-19 is important.

Arterial Hypertension

An association between hypertension and risk of severe complications or death from COVID-19 infection was found, with a confounding lack of effect of age and comorbidities associated with aging and hypertension. However, there is currently no evidence to suggest that hypertension per se is an independent risk factor for severe complications or death from COVID-19 infection [3]. Despite much speculation, evidence from a recently published series of observational cohort studies suggests that previous or current treatment with an ACEI or ARB does not increase the risk of infection with COVID-19 or the risk of developing severe complications from infection with COVID-19 compared to the risk in patients taking other antihypertensive drugs. Treatment of hypertension should follow the existing recommendations in the ESC-ESH Guidelines. No changes to these treatment recommendations are necessary during the COVID-19 pandemic [3].

COVID 19 Myocarditis

Limited clinical experience indicates that SARS-CoV-2 can lead to all forms of myocarditis from subclinical to fulminant myocarditis. Myocarditis should be suspected in patients with COVID-19 and acute chest pain, ST segment changes, cardiac arrhythmia, and hemodynamic instability. In addition, dilatation of the left ventricle (LV) with reduced ejection fraction (EF), global or multisegmental hypocontractility of the LV with a significant increase in cardiac troponin T and I and the level of both or only one natriuretic peptide (BNP I / or NTproBNP) with the exclusion of significant chronic coronary disease are elements for establishing a working clinical diagnosis. In particular, myocarditis should be suspected in COVID-19 patients with acute heart failure: pulmonary edema or cardiogenic shock and

www.tmg.org.rs
ZAKLJUČAK
Akutna lezija srca je uobičajena vanplućna manifestacija COVID-19 sa potencijalnim brončanim posledicama. Kliničke manifestacije obuhvataju direktno oštećenje srca i mehanizme indirektnog imunog oštećenja KVS i daju implikacije na lečenje pacijenata nakon oporavka od akutne infekcije. Hipertenzija (56,6%) i dijabetes (33,8%) su najčešći komorbiditeti kod inficiranih sa COVID-19, kod kojih je potrebna hospitalizacija. KV manifestacije COVID-19 variraju, a akutna infekcija je povezana sa širokim spektrom KV komplikacija, uključujući akutne koronarne sindrome, moždani udar, srčanu insuficijenciju sa akutnim početkom, aritmije, miokarditis, venski tromboembolizam, kardiogeni šok i srčani zastroj.

Najčešće direktno oštećenje srca je akutna srčana lezija, definisana značajnim povećanjem srčanih trponina u serumu u >12% inficiranih i ehokardiografskim znacima oštećenja teksture miokarda usled inflamacije, oštećenja segmentne pokretljivosti, globalne sistolne i dijastolne funkcije leve komore i inflamacijom perikarda. Među hospitalizovanim pacijentima sa COVID-19, dokazi o akutnom oštećenju srčane funkcije su česti: akutna srčana insuficijencija (3%-33%), kardiogeni šok (9%-17%), ishemija ili infarkt miokarda (0,9%-11%), disfunkcija leve komore (10%-41%) odnosno, desne komore (33%-47%), biventrikularna disfunkcija [3%-15%]), stres kardiomiopatija (2%-5,6%), aritmije (9%-17%), venska tromboembolija/plućna embolija (23%-27%).

Povišen troponin T je udružen sa češćim razvojem teških komplikacija:adultni respiratorni distres sindrom (ARDS), malignih aritmija (VT,VF), akutne koagulopatije i akutnog bubrežnog oštećenja. Brojni pojedinačni slučajevi upućuju na izrazito visoke vrednosti i dinamiku troponina T tipičnu za neokluzivni infakt miokarda uz normalne koronarne arterije. Patohistološki nalazi miokarditis uverljivo sugerišu COVID-19 miokarditis ili direktno oštećenje kardiomiocita u izrazito snažnoj zapaljenoj reakciji, citokinskoj oluji. Oko 10% pacijenata sa COVID-19 može doživeti „PRODUŽENI ILE LONG COVID SINDROM” ili POST-AKUTNI COVID 19 (PASC). Simptomi PASC su veoma različiti po raznolikosti, ozbiljnosti i trajanju.

Teoretski, predviđena povećanja nivoa Angiotenzina II od strane COVID-19 infekcije mogu se obuzdati davanjem maksimalnih doza ACEi i ARB. Kardiovaskularna disfunkcija i bolest su često fatalne komplikacije teške infekcije virusom COVID-19 a srčane komplikacije mogu javiti, čak i kod pacijenata bez osnovne srčane bolesti, kao deo akutne infekcije i povezane su sa težim oblikom COVID 19 oboljenja i povećanim mortalitetom.

LITERATURA:
1. Rossouw TM, Anderson R, Manga P and Feldman L. Emerging Role of Platelet-Endothelium Interactions in the Pathogenesis of Severe SARS-CoV-2 Infection-Associated Myocardial Injury. Front Immunol. 2022;13:776861. doi: 10.3389/fimmu.2022.776861. PMCID: PMC8584752. PMID: 35185878
2. AlShahrani I, Hosmani J, Shankar VG, AlShahrani A, Togoo RA, et al. COVID-19 and cardiovascular system—a comprehensive review. Rev Cardiovasc Med. 2021;22(2):343-351. doi: 10.31083/rcm2202041.
3. The European Society for Cardiology ESC Guidance for the Diagnosis and Management of CV Disease during the COVID-19 Pandemic. https://www.wescardio.org/Education/COVID-19-and-Cardiology/ESC_COVID-19_Guidance (Last update: 10 June 2020). Dostupno na: https://www.medbox.org/document/esc-guidance-for-the-diagnosis-and-management-of-cv-disease-during-the-covid-19-pandemic#GO
4. Mina K. Chung , Joseph Loscalzo et al. COVID-19 and Cardiovascular Disease. Circulation Research. 2021;128:1214-1236. DOI: 10.1161/CIRCRESAHA.121.317997 April 16, 2021.
5. Hosseiny M et al. Radiology perspective of coronavirus disease 2019 (COVID-19) lessons from severe acute respiratory syndrome and Middle East Respiratory Syndrome. AJR Am J Roentgenol. 2020; S: 1-5.
6. Azevedo RB et al. Covid-19 and the cardiovascular system: a comprehensive review. Journal of Human Hypertension 2021;35(1):4–11. https://doi.org/10.1038/s41371-020-0387-4
7. Isabel da Silva Costa et al. The Heart and COVID-19: What Cardiologists Need to Know Arq Bras Cardiol. 2020; 114(5):805-816.
8. Wu Z, et al. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239-1242.
9. Wang D, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-1069.
10. Jing Yang et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: meta-analysis. Int J Infect Dis. 2020; 94:91-95.
11. Guo T. et al. Cardiovascular implications of Fatal Outcomes of Patients with Coronavirus Disease 2019 (COVID-19). JAAC. (published online March 27). 2020;5(7):811-818.
significant reduction in the incidence of COVID-19, risk of myocardial infarction (MI), hypertension, and increased risk of death. Advanced echocardiographic methods, such as myocardial deformation imaging (strain-strain imaging) and advanced computed tomography angiography (CTA), were used to rule out concomitant coronary artery disease and interrupt the cardiac cycle. Cardiac magnetic resonance (CMR) imaging, if available, can be used for further diagnostic evaluation. Endomyocardial biopsy is not recommended in patients with COVID-19 with suspected myocarditis [3].

Efficacy of anticovid vaccination and post-vaccination myocarditis

Vaccines have shown efficacy in reducing morbidity and mortality from COVID-19 in randomized clinical trials and real-world studies, which also reduce cardiovascular complications. Their widespread use has led to a significant reduction in the incidence of COVID-19.

As of July 2021, the CDC's Adverse Event Reporting System (VAERS) has received over 1,100 reports of myocarditis or pericarditis after receiving a COVID-19 vaccination (primarily mRNA vaccine) and confirmed about 70% of them. In Europe (EEA), cases of myocarditis have also been reported with mRNA vaccines and with AstraZeneca vaccine, mostly in young adults, more often in men and usually after the second dose of the vaccine. Myocarditis, which can be detected by cardiac magnetic resonance imaging, usually occurs within 3 to 5 days after vaccination and presents with chest discomfort, an abnormal EKG, and elevated troponin. Although the exact mechanism is unknown, it is probably immunologically mediated. The possible incidence of asymptomatic cases, risk factors and long-term effects remain to be determined. Overall, myocarditis following COVID-19 immunization appears to be rare (~24 doses per million vaccines), often mild, and probably self-limiting in most cases. Treatment is primarily supportive [48,49].

CONCLUSION

Acute cardiac lesion is a common extrapulmonary manifestation of COVID-19 with potential chronic consequences. Clinical manifestations include direct cardiac damage and indirect immune response mechanisms that affect the cardiovascular system and have implications for the treatment of patients after recovery from acute COVID-19 infection. Hypertension (56.6%) and diabetes (33.8%) are the most common comorbidities in those infected with COVID-19, requiring hospitalization.

Cardiovascular manifestations of COVID-19 vary, and acute infection is associated with a wide range of cardiovascular complications, including acute coronary syndromes, stroke, acute-onset heart failure, arrhythmias, myocarditis, venous thromboembolism, and cardiac arrest.

The most common direct damage to the heart is an acute heart lesion, defined by a significant increase in cardiac troponins in the serum in >12% of infected and echocardiographic signs of damage to the texture of the myocardium due to inflammation, impairment of segmental mobility, global systolic and diastolic function of the left ventricle and inflammation of the pericardium. Among hospitalized patients with COVID-19, the evidence about acute damage of heart function is common: acute heart insufficiency (3%-33%), cardiogenic shock (9%-17%), ischemia or myocardial infarction (0.9%-11%), ventricular dysfunction (left ventricular [10%-41%], right ventricular [33%-47%], biventricular [3%-15%]), stress cardiomyopathy (2%-5.6%), arrhythmias (9%-17%), and venous thromboembolism (23%-27%).

Elevated troponin T is associated with more frequent development of severe complications: adult respiratory distress syndrome (ARDS), malignant arrhythmias (VT, VF), acute coagulopathy and acute kidney damage. Numerous individual cases indicate extremely high values and dynamics of troponin T typical for non-occlusive myocardial infarction with normal coronary arteries. Pathohistological findings of myocarditis strongly suggest COVID-19 myocarditis or direct damage to cardiomyocytes in an extremely strong
inflammatory reaction, a cytokine storm, caused by viremia.

About 10% of patients with COVID-19 may experience "LONG COVID SYNDROME" or POST-ACUTE COVID 19 (PASC). The symptoms of PASC vary widely in variety, severity, and duration.

Theoretically, the predicted increases in Angiotensin II levels by COVID-19 infection can be curbed by administration of maximal doses of ACE inhibitors and AT1 receptor blockers. Cardiovascular dysfunction and disease are often fatal complications of severe infection with the COVID-19 virus, and cardiac complications can occur, even in patients without underlying heart disease, as part of an acute infection and are associated with a more severe form of COVID-19 disease and increased mortality.

LITERATURE:
1. Rossouw TM, Anderson R, Manga P and Feldman C. Emerging Role of Platelet-Endothelium Interactions in the Pathogenesis of Severe SARS-CoV-2 Infection-Associated Myocardial Injury. Front Immunol. 2022; 13:77661. doi: 10.3389/fimmu.2022.77661. PMCID: PMC854752 PMID: 35185879
2. AlShahrani I, Hosmani J, Shankar VG, AlShahrani A, Togoo RA, et al. COVID-19 and cardiovascular system—a comprehensive review. Rev Cardiovasc Med. 2021;22(2):343–351. doi: 10.31083/r.cvm.220241.
3. The European Society for Cardiology ESC Guidance for the Diagnosis and Management of CV Disease during the COVID-19 Pandemic. https://www.escardio.org/Education/COVID-19-and-Cardiology/ESCCOVID-19-Guidance. (Last update: 10 June 2020). Dostupno na: https://www.medbox.org/document/esc-guidance-for-the-diagnosis-and-management-of-cv-disease-during-the-covid-19-pandemic#GO
4. Mina K. Chung, Joseph Loscalzo et al. COVID-19 and Cardiovascular Disease. Circulation Research. 2021;128:1214–1236. DOI: 10.1161/IRCRES.121.317997 April 16, 2021 1219.
5. Hosseiny M. et al. Radiology perspective of coronavirus disease 2019 (COVID-19) lessons from severe acute respiratory syndrome and Middle East Respiratory Syndrome. AJR Am J Roentgenol. 2020; 5; 1–5.
6. Azevedo RB et al. Covid-19 and the cardiovascular system: a comprehensive review. Journal of Human Hypertension 2021;35(1):4–11. https://doi.org/10.1038/s41371-020-0387-4
7. Isabela da Silva Costa et al. The Heart and COVID-19: What Cardiologists Need to Know Arq Bras Cardiolo. 2020; 114(5):805-816.
8. Wu Z, et al. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: a summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239-1242.
9. Wang D, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-1069.
10. Jing Yang et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: meta-analysis. Int J Infect Dis. 2020; 94: 91-95.
11. Guo T, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JACC, (published online March 27, 2020);S7:811-818.
12. Shi S, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802-810.
13. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1014-1024. doi: 10.1016/S0140-6736(20)30566-3.
14. Madjid M. et al. Potential Effects of Coronaviruses on the Cardiovascular System. JAMA Cardiology. 2020;5(7):831-840.
15. Austin Turner et al. Spectrum of Suspected Cardiomyopathy Due to COVID-19: A Case Series. Curr Probl Cardiol 2021;46:100926.
16. Libby P, Bonow OR, Douglas L, Mann DL, Tomaselli FG, et al. BRAUNWALD’S HEART DISEASE: A TEXTBOOK OF CARDIOVASCULAR MEDICINE, TWELFTH EDITION. ELSEVIER 2022;1743-63.
17. Stephan Stöbe et al. Echocardiographic characteristics of patients with SARS CoV 2 infection. Clinical Research in Cardiology 2020;109(12):1549-1566.
18. COVID-19 and Cardiology Last updated on 10 February 2022. Dostupno na: https://www.escardio.org/Education/COVID-19-and-Cardiology
19. Szekely V, Lichter V, Taieb P, et al. Spectrum of cardiac manifestations in COVID-19: a systematic echocardiographic study. Circulation. 2020;142(4):834-353.
20. Jajodia A, Ebner L, Heidinger B, CA K, Prosch H. Imaging of patients with SARS CoV 2 infection. Clinical Radiology 2020; 109(12):1549-1566. J Am Coll Cardiol. 2020;76:2043–2055.
21. Ogungbe O, Kumbe B, Fadodun OA, Lahaa T, Meyer D et. al. Subclinical myocardial injury, coagulopathy, and inflammation in COVID-19: A meta-analysis of 41,013 hospitalized patients. J Clin Heart & Vascular. 2022;40:100950. doi.org/10.1016/j.jchc.2021.100950.
22. Bois MC, Beire NA, Layman AJ, Aubry MC, Alexander MP, Roden AC, et al. COVID-19-Associated Nonocclusive Fibrin Microthrombi in the Heart. Circulation. 2021;143(3):230-243. doi: 10.1161/CIRCULATIONAHA.120.050754.
23. Bernhard Metzler, Ivan Lechner, [..], and Sebastian J. Reinstadler. Cardiac injury after COVID-19: Primary cardiac and primary non-cardiac etiology makes adifference. Int J Cardiol 2022; 350: 17–18.
24. Ojha V et al. Cardiac magnetic resonance imaging in coronavirus disease 2019 (COVID-19): a systematic
on days alive and out of the hospital in patients admitted with COVID-19: a randomized clinical trial. J Am Med Assoc. 2021;325(3):254–264.
46. Cohen JB, Hanff TC, William P, et al. Continuation versus discontinuation of renin-angiotensin system inhibitors in patients admitted to hospital with COVID-19: a prospective, randomised, open-label trial. Lancet Respir Med. 2021;9(3):275–284.
47. Bastać D, Joksimović Z, Pavlović S, Bastać M, Račanin A, Đordiški I. PROMENA PARADIGME HRONIČNE SRČANE INSUFICIJENCIJE PO ESC VODIČU 2021 - NOVI INOVATIVNI LEKOVI U FOKUSU. TMG 2022; 47(1):40-47.
48. Diaz GA, Parsons GT, Gering SK, et al. Myocarditis and pericarditis after vaccination for COVID-19. JAMA. 2021 Aug 4:e2113443.
49. Montgomery J, Ryan M, Engler R, et al. Myocarditis following immunization with mRNA COVID-19 vaccines in members of the US military. JAMA Cardiol. Published online June 29, 2021. https://doi.org/10.1001/jamacardio.2021.2833.
review of cardiac magnetic resonance imaging findings in 199 patients. J Thorac Imaging. 2020;36:73–83.

27. Puntmann VO, et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5:1265–1273. doi: 10.1001/jamacardio.2020.3557.

28. Carfè A, Bernabei R, Landi F; Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent symptoms in patients after acute COVID-19. JAMA. 2020;324:603–605. doi: 10.1001/jama.2020.12603.

29. Huang C, et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021;397:220–232.

30. Buja LM, Wolf DA, Zhao B, et al. The emerging spectrum of cardiopulmonary pathology of the coronavirus disease 2019 (COVID-19): report of 3 autopsies from Houston, Texas, and review of autopsy findings from other United States cities. Cardiovasc Pathol. 2020;48:107233.

31. Rosedly A, Zaver S, Fayed H, Coghlan JG. COVID-19 and the heart: a systematic review of cardiac autopsies. Front Cardiovasc Med. 2021;7:626975.

32. Cardiology in the Time of COVID-19: Current Status of the COVID-19 Pandemic. https://www.youtube.com/watch?v=KeLeg5ISzZg

33. Halushka MK, Vander Heide RS. Myocarditis is rare in COVID-19 autopsies: cardiovascular findings across 277 postmortem examinations. Cardiovasc Pathol. 2021;50:107300.

34. Escher F, Pietsch H, Aleshcheva G, et al. Detection of viral SARS-CoV-2 genomes and histopathological changes in endomyocardial biopsies. ESC Heart Fail. 2020;7(5):2440–2447.

35. Loscalzo J, Fauci A, Kasper D, Hauser S, Longo D, Jameson JL. Harrison's Principles of Internal Medicine, Twenty-First Edition (Vol.1 & Vol.2) 21st Edition. McGrawHill 2022; 1508-11.

36. Goldman JD, Lye DCB, Hui DS, et al. Remdesivir for 5 or 10 Days in patients with severe Covid-19. New Engl J Med. 2020;383(19):1827–1837.

37. Gottlieb RL, Nirula A, Chen P, et al. Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19: a randomized clinical trial. J Am Med Assoc. 2021;325(7):632–644.

38. Weinreich DM, Sivapalasingam S, Norton T, et al REGN-COV2, a neutralizing antibody cocktail, in outpatients with Covid-19. New Engl J Med. 2020;384(3):238–251.

39. RECOVERY Collaborative Group, Horby P, Lim WS, et al. Dexamethasone in hospitalized patients with Covid-19. New Engl J Med. 2021;384(8):693–704.

40. Sterne JAC, Diaz J, Villar J, et al. Corticosteroid therapy for critically ill patients with COVID-19: a structured summary of a study protocol for a prospective meta-analysis of randomized trials. Tri-als 2020;21(1):734.

41. Moores LK, Trischler T, Brosnahan S, et al. Prevention, diagnosis, and treatment of VTE in patients with coronavirus disease 2019; CHEST guideline and expert panel report. Chest. 2020;158(3):1143–1163.

42. Dalager-Pedersen M, Lund LC, Mariager T, et al. Venous thromboembolism and major bleeding in patients with COVID-19: a nationwide population-based cohort study. [published online ahead of print January 5, 2021]. Clin Infect Dis. https://doi.org/10.1093/cid/ciab003