QCD-improved limits from neutrinoless double beta decay

C. Arbeláez, M. González, and S.G. Kovalenko
Universidad Técnica Federico Santa María,
Centro-Científico-Tecnológico de Valparaíso,
Casilla 110-V, Valparaíso, Chile

M. Hirsch
AHEP Group, Instituto de Física Corpuscular – C.S.I.C./Universitat de València
Edificio de Institutos de Paterna, Apartado 22085, E-46071 València, Spain

Abstract

We analyze the impact of QCD corrections on limits derived from neutrinoless double beta decay ($0\nu\beta\beta$). As demonstrated previously, the effect of the color-mismatch arising from loops with gluons linking the quarks from different color-singlet currents participating in the effective operators has a dramatic impact on the predictions for some particular Wilson coefficients. Here, we consider all possible contributions from heavy particle exchange, i.e. the so-called short-range mechanism of $0\nu\beta\beta$ decay. All high-scale models (HSM) in this class match at some scale around a few TeV with the corresponding effective theory, containing a certain set of effective dimension-9 operators. Many of these HSM receive contributions from more than one of the basic operators and we calculate limits on these models using the latest experimental data. We also show with one non-trivial example, how to derive limits on more complicated models, in which many different Feynman diagrams contribute to $0\nu\beta\beta$ decay, using our general method.

Keywords: double beta decay, physics beyond the standard model, neutrinos
I. INTRODUCTION

Lepton Number Violation (LNV) appears in many extensions of the Standard Model (SM). If LNV exists, it could be the explanation for the smallness of the observed neutrino masses and maybe even the baryon asymmetry of the universe \[1\]. Neutrinoless double beta decay (0νββ) is widely credited as the most promising probe for LNV from the view point of experimental observability. Consequently, 0νββ-decay has been studied in great detail, both from theoretical and experimental points of view. \(^1\)

A number of experiments are currently searching for 0νββ-decay \[6–10\] with the negative results setting lower bounds on the 0νββ-half-life \(T_{0\nu}^{1/2}\). Currently the best bounds are

\[
\begin{align*}
\text{KamLAND-Zen} & : T_{1/2}^{0\nu}(^{136}\text{Xe}) = 1.07 \times 10^{26} \text{ ys (90\% C.L.)}, \\
\text{GERDA Phase-II} & : T_{1/2}^{0\nu}(^{76}\text{Ge}) = 5.2 \times 10^{25} \text{ ys (90\% C.L.)}.
\end{align*}
\]

Sensitivities in excess of \(T_{1/2}^{0\nu} \gtrsim 10^{27} \text{ ys}\) in experiments using \(^{136}\text{Xe}\) \[11\] and \(^{76}\text{Ge}\) \[12, 13\] are expected in the future.

Contributions to 0νββ-decay can be classified as either long-range (LRM) \[14\] or short-range mechanisms (SRM) \[15\], depending on whether all of the virtually exchanged particles are heavy or not, see Fig. 1. For the short-range mechanisms, SRM, the experimental limits imply typical masses of heavy intermediate particles and an LNV scale \(\Lambda_{\text{LNV}}\) in the ballpark of (a few) TeV. Therefore, the LHC could possibly provide a cross-check whether or not these contributions can be dominant in 0νββ-decay \[16–20\].

Naturally, for a realistic comparison of the sensitivities of 0νββ-decay with the LHC the theoretical calculations must be made as reliable as possible, which is particularly demanding for 0νββ-decay. One well-known source of difficulties in this case are uncertainties in the Nuclear Matrix Elements (NME), which spread by a factor of typically \(\sim 2\) comparing different calculations. Improving the predictions for 0νββ-NMEs is a serious challenge for nuclear structure theory, which is going to take time and significant efforts. On the other hand, recently it has been pointed out that one important effect has so far been missing in the theoretical treatment of 0νββ-decay \[21, 22\]: QCD corrections. This effect, being perturbative, is much better controllable theoretically than the essentially non-perturbative (in quantum field theory sense) physics involved in the NME-calculations. As explained in Ref. \[22\] gluon exchange diagrams can lead to the so called “color-mismatch” in the products of the color-singlet quark currents giving rise to an appreciable mixing between different 0νββ-effective operators. The vastly differing numerical values of NMEs for different operators then result in dramatic changes of the limits on the Wilson coefficients of some particular operators. This feature is pertinent to the SRMs of 0νββ-decay. It has been recently demonstrated in Ref. \[23\] that the color-mismatch effect is absent in the case of the

\(^1\) For reviews of particle physics aspects of 0νββ see for instance refs. \[2, 3\] and for recent calculations of nuclear matrix elements refs. \[4, 5\].
LRMs of $0\nu\beta\beta$-decay and, therefore, for this class of mechanisms the QCD corrections are not so crucial.

For such a fairly low-energy process as $0\nu\beta\beta$-decay an effective operator description is adequate for calculating the decay rate. This rather straightforward observation forms the framework of the original papers $[14, 15]$ where the basis of the effective $0\nu\beta\beta$-decay $d = 9$ operators was introduced and generic formulas for the $0\nu\beta\beta$-decay half-life were derived. More recently this approach has been developed in Refs. $[22, 23]$ where we derived the QCD-corrected $0\nu\beta\beta$-decay half-life formulas for both SRM and LRM 2. From the more fundamental high-energy point of view, however, contributions to $0\nu\beta\beta$-decay originate from some renormalizable LNV extension of the SM, i.e. high-scale models (HSM), whose parameters are the couplings and masses of experimentally yet unknown particles.

A list of all possible HSMs representing UV completions of the above-mentioned $0\nu\beta\beta$-decay $d = 9$ operators was given in Ref. $[26]$ and from that paper, in principle, all the HSMs contributing to $0\nu\beta\beta$-decay via the short-range mechanism can be found. The purpose of our present paper is to provide a bridge between these two descriptions – in terms of the effective operators and the HSMs – taking into account the effect of the above-mentioned QCD corrections. Upper limits derived on the Wilson coefficients of the $0\nu\beta\beta$-decay effective operators (low energy approach) $[22]$ can be converted into lower limits on the mass scales of the HSMs listed in Ref. $[26]$ and we provide tables of these limits, using updated experimental lower bounds on the $0\nu\beta\beta$-decay half-life, for all “elementary” HSMs (see section III). While these “translation rules” can be applied in a rather straightforward manner to any particular HSM, for which only one Feynman diagram contributes significantly, there are many example models in the literature where this is not the case. In the presence of more than one significant diagram a careful examination of their contributions to different operators is required for arriving at the correct answer. We will discuss one particular example – R-parity violating supersymmetry – in some detail, to demonstrate the usefulness of our approach.

This paper is organized as follows. In Sec. II we start by recalling the definitions for the QCD corrected half-life formula for $0\nu\beta\beta$-decay. This section summarizes the results of Ref. $[22]$. We then derive limits on “elementary” HSMs contributing to the short-range $0\nu\beta\beta$-decay mechanism in section III. In Sec. IV we discuss how to derive limits in our approach on more complicated HSMs. As already mentioned, we choose the well-known example of R-parity violating SUSY. We conclude with a discussion of our results in Sec. V. Some more technical aspects of the calculation are delegated to an Appendix.

II. QCD RUNNING OF SHORT-RANGE MECHANISMS

The contribution of a HSM to $0\nu\beta\beta$-decay via heavy particle exchange we call the short-range mechanism (SRM), already mentioned in Introduction. After integrating out the

2 In Ref. $[21]$ the QCD corrections were taken into account to the pion-exchange mechanism $[25]$ of $0\nu\beta\beta$-decay.
FIG. 1: Short-range mechanism (SRM), to the left, and long-range mechanism (LRM) to the right. The grey blobs indicate effective vertices originating from heavy particle-exchange.

heavy degrees of freedom of a mass $\sim M_I$ at an energy-scale $\mu < M_I$, all the HSMs of the SRM category can be represented by the effective Lagrangian \[\mathcal{L}_{\text{eff}}^{0\nu\beta\beta} = \frac{G_F^2}{2m_p} \sum_{i,XY} C_{iXY}^{XY}(\mu) \cdot \mathcal{O}_{iXY}^{\mu}(\mu), \] with the complete set of dimension-9 $0\nu\beta\beta$-operators

\[
\begin{align*}
\mathcal{O}_{1}^{XY} & = 4(\bar{u}P_Xd)(\bar{u}P_Yd) \cdot j, \quad (4) \\
\mathcal{O}_{2}^{XY} & = 4(\bar{u}\sigma^{\mu\nu}P_Xd)(\bar{u}\sigma_{\mu\nu}P_Xd) \cdot j, \quad (5) \\
\mathcal{O}_{3}^{XY} & = 4(\bar{u}\gamma^\mu P_Xd)(\bar{u}\gamma^\mu P_Yd) \cdot j, \quad (6) \\
\mathcal{O}_{4}^{XY} & = 4(\bar{u}\gamma^\mu P_Xd)(\bar{u}\gamma^\mu P_Yd) \cdot j^\nu, \quad (7) \\
\mathcal{O}_{5}^{XY} & = 4(\bar{u}\gamma^\mu P_Xd)(\bar{u}P_Yd) \cdot j_\mu, \quad (8)
\end{align*}
\]

where $X,Y = L,R$ and the leptonic currents are

\[j = \bar{e}(1 \pm \gamma_5)e^c, \quad j_\mu = \bar{e}\gamma_\mu\gamma_5e^c. \] (9)

The Wilson coefficients C_{iXY}^{XY} can be expressed in terms of the parameters of a particular HSM at a scale $\Lambda \sim M_I$, called “matching scale”. Note that some of $C_{i}(\Lambda)$ may vanish. In order to make contact with $0\nu\beta\beta$-decay one needs to estimate C_{i} at a scale μ_0 close to the typical $0\nu\beta\beta$-energy scale. The QCD corrections, such as shown in Fig. 2, lead to running of the coefficients between the matching Λ and μ_0 scales.

While the QCD-running is only logarithmic, it mixes different operators (or equivalently Wilson coefficients) from the list (4)-(8). Because of the vast difference of the NMEs of some operators, this effect results in a dramatic impact on the prediction of some HSM for
FIG. 2: One-loop QCD corrections to the short range mechanisms of $0\nu\beta\beta$ decay in the effective theory.

$0\nu\beta\beta$-decay [22]. The $0\nu\beta\beta$-decay half-life formula, taking into account the leading order QCD-running [22], reads

$$\left(T_{1/2}^{0\nu\beta\beta} \right)^{-1} = G_1 \left| \sum_{i=1}^{3} \beta_{i}^{XY}(\mu_0, \Lambda) C_{i}^{XY}(\Lambda) \right|^2 + G_2 \left| \sum_{i=4}^{5} \beta_{i}^{XY}(\mu_0, \Lambda) C_{i}^{XY}(\Lambda) \right|^2 \quad (10)$$

Here, $G_{1,2}$ are phase space factors [15, 27]. The parameters β_{i}^{XY} incorporate the QCD-running and the NMEs of the operators in Eqs. (4)-(8). We show the values of these coefficients in Table I calculated with the NMEs from Refs. [2]. In Eq. (10) the summation over the different chiralities $X, Y = L, R$ is implied. It is important to note that the Wilson coefficients $C_{i}(\Lambda)$, entering in Eq. (10), are linked to the matching scale Λ, where they are calculable in terms of the HSM parameters, such as couplings and intermediate particle masses.

In Ref. [22] we used the $0\nu\beta\beta$-decay half-life formula (10) in order to extract “individual” upper limits on the Wilson coefficients C_{i}^{XY} from the existing experimental bounds on $T_{1/2}^{0\nu\beta\beta}$. We employed the conventional hypothesis that a single term dominates in Eq. (10). This method disregards effects of a possible simultaneous presence of several non-zero terms, which may partially cancel each other or give rise to a significant enhancement. These effects are discussed in the next section.

III. LIMITS ON SHORT-RANGE ELEMENTARY HIGH-SCALE MODELS

Two tree-level topologies contributing to the $0\nu\beta\beta$ decay amplitude were identified in Ref. [26], see Fig. 3. Here, the outer lines of the diagrams represent all possible permutations of the six fermions $\bar{u}\bar{u}d\bar{d}\bar{e}\bar{e}$, which make up the $0\nu\beta\beta$ decay operator. Considering $G_{SM} = SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y}$ invariant vertices in these diagrams one may derive a complete list of the G_{SM}-assignments for the intermediate particles (Scalar, Fermion, Scalar) = (S, Ψ, S') and (three Scalars) = (S, S', S'') in the T-I and T-II topology diagrams, respectively. This was done in Ref. [26]. Each case in this list we call “elementary” HSM (eHSM). We reproduce the original list of Ref. [26] in Tables [V, VI] and
TABLE I: The coefficients $\beta_i \equiv \beta_i(\mu_0, \Lambda)$ incorporating NMEs and entering the QCD corrected half-life formula (10). The results are shown for the QCD-running between the scales $\Lambda = 1$ TeV and $\mu_0 = 1$ GeV. We used NMEs from Ref. [2].

![Image of tree-level topologies contributing to the short-range mechanism of $0\nu\beta\beta$-decay.](image)

where, for convenience of our analysis, we collected the eHSMs in groups enumerated by #I. Any short-range HSM can be represented in the form of a linear combination of several eHSMs. The HSMs considered in the literature (for a recent review c.f. Ref. [2]) are mainly of this kind with the parameters (couplings, masses) of the involved eHSMs related between each other by symmetry or other arguments. We will discuss one example of such non-elementary HSM – R_p SUSY – in the next section and here first focus on the eHSMs.

In the case of the short-range mechanism all the HSMs in the low-energy limit are reducible to the effective Lagrangian (3). By definition each eHSM generates, after integrating out heavy particles, a single effective operator. It is straightforward, although tedious, to check that all the eHSMs from each group #I in Tables V, VI and VIII lead to the same
effective operator O^I. Projection of O^I on the general operator basis O_i in Eqs. (4)-(8) via Lorentz and color Fierz transformations (see Appendix A) gives rise to a linear combination of only two basis operators

$$O^I = x^I O_i + y^I O_j$$

with numerical coefficients x^I, y^I algebraically calculable for any particular eHSM [26]. Note that no summation over the repeated indices i, j is implied in Eq. (11). All the possible operator pairs with the corresponding coefficients are shown in Tables II, III. Some eHSM lead to only one of the basis operators, these are listed in Table IV. The values of the coefficients x^I, y^I given in these Tables are useful as an additional identifier of the eHSMs as well as for recalculation of the experimental limits on the parameters of the eHSMs, also given in these Tables, with the NMEs and the experimental $0\nu\beta\beta$-decay half-life bounds different from those we used here.

We derived these limits in the following way. The effective Lagrangian for any #I eHSM at the matching scale Λ can be expressed, taking into account (11), as

$$\mathcal{L}_I = \frac{G^2_F}{2m_p} C_I(\Lambda) \cdot O^I(\Lambda) = \frac{G^2_F}{2m_p} C_I(\Lambda) \cdot (x^I O_i(\Lambda) + y^I O_j(\Lambda)).$$

The half-life formula (10), used to constrain a concrete eHSM, is reduced to

$$T_{1/2}^{-1} = G_{K_I} |C_I(\Lambda)|^2 |\beta_i(\mu_0, \Lambda) x^I_i + \beta_j(\mu_0, \Lambda) y^I_j|^2.$$ (13)

Here $K_I = 1$ or 2 for $i, j \in \{1, 2, 3\}$ or for $i, j \in \{4, 5\}$, respectively.

Using the current experimental $0\nu\beta\beta$-decay half-life lower bounds (1), (2) we derive from Eq. (13) upper limits on the Wilson coefficients $C_I(\Lambda = 1\text{TeV}) \leq C_{I, \text{exp}}^{\text{exp}}$. These limits are shown in Tables II, III, IV. For a more direct comparison of the $0\nu\beta\beta$-decay limits with the sensitivity of an accelerator experiment, such as the LHC, it is instructive to convert these limits into limits on the scale M_I of the masses of the intermediate heavy particles mediating the contribution of #I eHSMs to $0\nu\beta\beta$-decay. Denoting the dimensionless couplings in the T-I diagram from Figs. 3 with $\lambda_{1,2,3,4}$ and letting all the intermediate particle masses be of the order of the same scale M_I we can give an estimation

$$\frac{G^2_F}{2m_p} C_I(\Lambda) = \frac{\lambda_{1,2,3,4}}{M^2_I}$$

for the overall coefficient in Eq. (12). Then we find lower limits for the typical mass scale at which a particular eHSM contributes to the short-range mechanism:

$$M_I \geq \lambda_{\text{eff}}^{4/5} \left(\frac{2m_p}{C_I^{\text{exp}} G^2_F} \right)^{1/5} = \lambda_{\text{eff}}^{4/5} \frac{M^{\text{exp}}_I}{M_I},$$

(15)

where we introduced for convenience $\lambda_{\text{eff}} = (\lambda_{1,2,3,4})^{1/4}$ and C_I^{exp} are the previously derived upper limits on $C_I(\Lambda) \leq C_I^{\text{exp}}$. We show these limits in Tables II, IV for completeness.
TABLE II: Decomposition in the basis operators (4)-(8) of the effective operators O^I representing low-energy limits of the eHSMs of the group $\# I$ specified in Tables V-VIII. Experimental limits on the Wilson Coefficients $C_I(\Lambda = 1\text{TeV}) \leq C_{I}^{\text{exp}}$ of these operators and their characteristic scales $M_I \geq \lambda_{\text{eff}}^{4/5}M_{I}^{\text{exp}}$ (for the definitions see Eqs. (12), (15)) are derived from the current $0\nu\beta\beta$ bounds (1), (2).

Note that for T-II diagrams in Fig. 3, the triple-scalar coupling has dimension of mass. Nevertheless, we can apply the same limits, as in the case of T-I, assuming this coupling to be of order $\mu = \lambda_{\text{eff}}M_I$.

Closing this section we emphasize once more the importance of the QCD corrections for some particular short-range HSMs. The largest impact is found for models containing the operator O_1^{XX}. For example, from Table V one finds a lower limit on $\Lambda_{LNV} \sim M_I$ of the order $\Lambda_{LNV} \gtrsim 6.6 \text{ TeV}$. The corresponding number without QCD corrections would be $\Lambda_{LNV} \gtrsim 1.8 \text{ TeV}$. For a detailed comparison of the limits with and without the QCD corrections we refer the reader to Ref. [22].
In the previous section we derived limits on eHSMs. Here, we discuss how to derive limits on models, which contribute with more than one diagram of the type T-I and/or T-II in Fig. 3 to the short-range amplitude of $0\nu\beta\beta$-decay. In terms of the previous section these HSMs are linear combinations of certain eHSMs from the list given in Tables V-VIII. The example we have chosen is the well-known case of R-parity violating supersymmetry (R_p SUSY).

It provides LNV vertices with $\Delta L = 1$ from the superpotential. Importantly, in this
model there are the gluino (\(\tilde{g}\)) and neutralino (\(\chi\)) Majorana mass terms, originating from the soft SUSY breaking sector. Then \(R_p\) SUSY can contribute to a \(\Delta L = 2\) process, such as \(0\nu\beta\beta\)-decay, via the short-range mechanism \([28\ 29]\) given by Feynman diagrams of the topology T-I in Fig. 3 with two \(\Delta L = 1\) vertices, two squarks (\(\tilde{g}\)) or two selectrons (\(\tilde{e}\)) and a \(\tilde{g}\) or \(\chi\) in the intermediate state. There are in total three gluino plus six neutralino diagrams Ref. [22], see Fig. 4. It is worth noting that the gluino exchange is known to give the dominant contribution in significant parts of the minimal \(R_p\) SUSY parameter space [29]. Below we consider the gluino \(\tilde{g}\) and the neutralino \(\chi\)-exchange contributions separately, as if they were uncorrelated sectors. To make contact with our general method, we first identify the transformation properties of the internal SUSY particles, appearing in the diagram T-I

eHSM	Effective operator decomposition	\(C^{exp}_I\)	\(M^{exp}_I\)		
	\(\mathcal{O}^I = \frac{1}{8} \mathcal{O}_1^{XX}\)	\(2.3 \times 10^{-9}\)	\(1.1 \times 10^{-9}\)	\(5.7\)	\(6.6\)
	\(\mathcal{O}^I = \frac{1}{8} \mathcal{O}_1^{LR,RL}\)	\(5.2 \times 10^{-8}\)	\(2.7 \times 10^{-8}\)	\(3.0\)	\(3.5\)
	\(\mathcal{O}^I = \frac{1}{32} \mathcal{O}_3^{LR,RL}\)	\(5.0 \times 10^{-7}\)	\(2.5 \times 10^{-7}\)	\(1.9\)	\(2.2\)
	\(\mathcal{O}^I = \frac{1}{16} \mathcal{O}_5^{XX}\)	\(1.7 \times 10^{-7}\)	\(8.5 \times 10^{-8}\)	\(2.4\)	\(2.8\)
	\(\mathcal{O}^I = \frac{1}{16} \mathcal{O}_5^{LR}\)	\(3.4 \times 10^{-7}\)	\(1.8 \times 10^{-7}\)	\(2.1\)	\(2.4\)
	\(\mathcal{O}^I = \frac{1}{16} \mathcal{O}_3^{XX}\)	\(1.9 \times 10^{-7}\)	\(9.5 \times 10^{-8}\)	\(2.4\)	\(2.7\)

TABLE IV: The same as in Table II but for eHSMs decomposing in only one of the basis operators Eqs. (4)-(8).

FIG. 4: The six different Feynman diagrams in R-parity violating supersymmetry that contribute to \(0\nu\beta\beta\) decay.
in Fig. 4. The scalars \bar{u}_L and \bar{e}_L are members of the $SU(2)_L$ doublets \bar{Q}_L and \bar{L}, respectively. The SM gauge group assignments of the internal states of the diagrams are then given as: $\bar{Q}_L = S_{3,2,1/6}$, $\bar{d}_R = S_{3,1,1/3}$, $\bar{L} = S_{1,2,1/2}$, $\bar{g} = \psi_{8,1,0}$. For the simplicity we consider the case of Bino-dominant lightest neutralino, then $\chi = \psi_{1,1,0}$.

From Tables [VII] we then identify the operator combination corresponding to each diagram. For the gluino diagrams this results in: diagram (a) corresponds to eHSM #5, (b) to #3 and (c) again to #5. The neutralino diagrams are: (a) and (c) correspond to #4, (b) diagram. For the gluino diagrams this results in: diagram (a) corresponds to eHSM #5, (b) diagram. For the simplicity we consider the case of Bino-dominant lightest neutralino, then $\chi = \psi_{1,1,0}$.

From these considerations, we can re-construct the corresponding effective Lagrangians in the basis $[30]$. In this way we find:

\tilde{g}-exchange contribution:

$$\mathcal{L}_{\text{eff}}^\tilde{g} = \frac{G_F^2}{2m_p} (C_{\bar{g}a} \mathcal{O}_a + C_{\bar{g}b} \mathcal{O}_b + C_{\bar{g}c} \mathcal{O}_c) = \frac{G_F^2}{2m_p} \left((2C_{\bar{g}a} + 2C_{\bar{g}c} - 7C_{\bar{g}b}) \mathcal{O}_1^{RR} - \frac{1}{4} (2C_{\bar{g}a} + 2C_{\bar{g}c} + C_{\bar{g}b}) \mathcal{O}_2^{RR} \right) \right].$$

χ-exchange contribution:

$$\mathcal{L}_{\text{eff}}^\chi = \frac{G_F^2}{2m_p} \sum_{i=a\ldots f} C_{\chi i} \mathcal{O}_{\chi i} = \frac{G_F^2}{2m_p} \left[(C_b + C_c + C_a + 4C_f - 2C_d - 2C_e) \mathcal{O}_1^{RR} + (C_b - C_c - C_a) \mathcal{O}_2^{RR} \right].$$

The Wilson coefficients were calculated in Ref. [29]:

$$C_{\bar{g}c} = \frac{\kappa_3}{m_\tilde{g}} \frac{1}{m^4_{\tilde{g}a}} \quad C_{\bar{g}a} = \frac{\kappa_3}{m_\tilde{g}} \frac{1}{m^4_{\tilde{g}b}} \quad C_{\bar{g}b} = \frac{\kappa_3}{m_\tilde{g} \bar{m}^2_{\tilde{g}a} \bar{m}^2_{\tilde{g}b}},$$

$$C_b = \frac{\kappa_2}{m_\chi} \frac{\epsilon_L(u) \epsilon_R(d)}{m^2_{\bar{u}_L} m^2_{\bar{d}_R}} \quad C_c = \frac{\kappa_2}{m_\chi} \frac{\epsilon_L^2(u)}{m^2_{\bar{u}_L}} \quad C_a = \frac{\kappa_2}{m_\chi} \frac{\epsilon_R^2(d)}{m^2_{\bar{d}_R}},$$

$$C_f = \frac{\kappa_2}{m_\chi} \frac{\epsilon_L^2(e)}{m^2_{\bar{e}_L} m^2_{\bar{d}_R}} \quad C_d = \frac{\kappa_2}{m_\chi} \frac{\epsilon_L(e) \epsilon_R(d)}{m^2_{\bar{e}_L} m^2_{\bar{d}_R}} \quad C_e = \frac{\kappa_2}{m_\chi} \frac{\epsilon_L(e) \epsilon_L(u)}{m^2_{\bar{e}_L} m^2_{\bar{u}_L}},$$

with

$$\kappa_2 = \frac{\lambda'_{111}^2 4\pi \alpha_2 m_p}{G_F^2}, \quad \kappa_3 = \frac{\lambda'_{111}^2 16\pi \alpha_s m_p}{G_F^2},$$

$$\epsilon_L(\psi) = \tan \theta_W [T_3(\psi) - Q(\psi)], \quad \epsilon_R(\psi) = \tan \theta_W Q(\psi),$$

where λ'_{111} is the first generation \mathbb{R}_p SUSY coupling, $\alpha_2 = g_2^2/4\pi$ and $\alpha_s = g_3^2/4\pi$ are the $SU(2)_L$ and $SU(3)_C$ couplings, respectively. As usual G_F is the Fermi constant and m_p
is the proton mass. $T_{3}(\psi)$ and $Q(\psi)$ are the third component of the weak isospin and the electric charge of the fermion ψ.

First we consider the \tilde{g}-exchange and derive the limits on the R_{p} SUSY parameter space. For this we adopt the conventional assumption $m_{\tilde{u}_{L}} \approx m_{\tilde{d}_{R}} \approx m_{\tilde{q}}$. Comparing the Lagrangian (16) with the canonic form (3) and using the half-life formula (10) we find, by taking into account the QCD running, for the current experimental limits (1)-(2) the following upper bounds on the R_{p}/SUSY Yukawa coupling:

$$\tilde{g} - \text{exchange} : \lambda'_{111Ge} \leq 1.0 \times 10^{-2} \left(\frac{m_{\tilde{q}}}{1\text{TeV}}\right)^{2} \left(\frac{m_{\tilde{g}}}{1\text{TeV}}\right)^{1/2},$$

$$\lambda'_{111Xe} \leq 7.2 \times 10^{-3} \left(\frac{m_{\tilde{q}}}{1\text{TeV}}\right)^{2} \left(\frac{m_{\tilde{g}}}{1\text{TeV}}\right)^{1/2},$$

(23)

(24)

For the case of the neutralino exchange we consider a particular part of the R_{p}/SUSY parameter space where $m_{\tilde{e}} \ll m_{\tilde{q}}$. This is motivated by the fact that LHC searches set very strong limits on the colored sector of any beyond the SM physics. In this domain the dominant contribution comes from the diagram (f), corresponding to eHSM #23. We find the limits taking into account the QCD running

$$\chi - \text{exchange} : \lambda'_{111Ge} \leq 7.3 \times 10^{-4} \left(\frac{m_{\tilde{e}}}{1\text{TeV}}\right)^{2} \left(\frac{m_{\tilde{\chi}}}{1\text{TeV}}\right)^{1/2},$$

$$\lambda'_{111Xe} \leq 5.1 \times 10^{-1} \left(\frac{m_{\tilde{e}}}{1\text{TeV}}\right)^{2} \left(\frac{m_{\tilde{\chi}}}{1\text{TeV}}\right)^{1/2},$$

(25)

(26)

For the calculation of this limit we assumed $N_{1} \simeq 1$. Note that the limits from the χ-exchange (25), (26) are competitive with those, which come from the \tilde{g}-exchange (23), (24) in the R_{p}/SUSY parameter space domain $m_{\tilde{q}} \gg m_{\tilde{e}}$ and $m_{\tilde{g}} \gg m_{\tilde{\chi}}$.

In order to demonstrate the significance of the QCD running we re-calculated the corresponding limit for 76Ge using the same experimental bound (1), but switching off the QCD corrections. This results in a modification of the coefficients β in Table I which can be found for this limiting case in Ref. [22]. Without QCD running we obtain the limits:

$$\tilde{g} - \text{exchange} : \lambda'_{111Ge} \leq 9.3 \times 10^{-2} \left(\frac{m_{\tilde{q}}}{1\text{TeV}}\right)^{2} \left(\frac{m_{\tilde{g}}}{1\text{TeV}}\right)^{1/2},$$

$$\chi - \text{exchange} : \lambda'_{111Ge} \leq 5.2 \left(\frac{m_{\tilde{e}}}{1\text{TeV}}\right)^{2} \left(\frac{m_{\tilde{\chi}}}{1\text{TeV}}\right)^{1/2},$$

(27)

(28)

This is about $\sim 10 \sim (7)$ weaker than the limits for gluino (neutralino) cases in Eqs. (23), (25) taking into account the QCD corrections for SRM.

V. CONCLUSIONS

In this paper we have calculated QCD-improved lower limits on the Wilson coefficients and the LNV mass scales, Λ_{LNV}, for all ultraviolet completions (“elementary high-scale
of the $d = 9$ $0\nu\beta\beta$ decay operator, contributing to the short-range part of the amplitude. We have also worked out a general method which can be used to find the limits for any particular model, contributing to the SRM of $0\nu\beta\beta$ decay with several diagrams. Our method can be used to find new, improved limits easily, should better experimental limits or new calculations of the nuclear matrix elements become available. In closing, we would like to stress again, that QCD running can lead to important changes in the $0\nu\beta\beta$ decay limits on the mass scales of LNV extensions of the SM.

Acknowledgements

Marcela and Carolina are grateful for the hospitality of the AHEP group in the IFIC during their visits in May-July 2016. This work was supported by the Spanish MICINN grants SEV-2014-0398, FPA2014-58183-P and Multidark CSD2009-00064 (MINECO), and PROMETEOII/2014/084 (Generalitat Valenciana), and by Fondecyt (Chile) under grants No. 3150472, No. 1150792 and No. 3160642 as well as CONICYT (Chile) Ring ACT 1406 and Basal FB0821. M.H. thanks the Universidad Federico Santamaria, Valparaiso, for hospitality.

Appendix A: Specification of eHSMs and Notations

Here we comment on the notations used in Tables V-VIII where we specify all the eHSMs contributing to $0\nu\beta\beta$-decay via the short-range mechanism according to T-I and T-II diagrams in Fig. 3 with heavy intermediate particles (messengers). Each eHSM is uniquely specified by the SM gauge group $G_{\text{SM}} = SU(3)_c \times SU(2)_L \times U(1)_Y$ assignments of the messengers: Scalar-Fermion-Scalar $\{(S), (\psi), (S')\}$ for diagram T-I and triple scalar $\{(S), (S'), (S'')\}$ for T-II. Thus each set of G_{SM} representations in curled brackets corresponds to a particular eHSM $\{(\cdot), (\cdot), (\cdot)\}$. The list of the models is taken from Ref. [26], however, in our tables we put the eHSMs in groups with an identifier #I. The eHSMs from the same group lead in the low-energy limit after integrating out the heavy particles to the same effective operator O^I. These operators in the form (11) are given in Tables II-IV.

Some eHSMs appear in Tables V-VIII with numerical coefficients α, like $\alpha \cdot \{(\cdot), (\cdot), (\cdot)\}$. In our notations this means that in the low-energy limit the models belonging to the group #I tend to the same effective operator O^I but with different normalization factors so that

$$\alpha \cdot \{(\cdot), (\cdot), (\cdot)\} \rightarrow O^I \quad (A1)$$

For example, in the group #1 we find the eHSMs for which

$$-2 \cdot \{(\cdot), (\cdot), (\cdot)\} : \{(8, 2; 1/2), (3, 2; 5/6), (3, 1; 1/3)\} \rightarrow -\frac{1}{2} \cdot O^{I=1} \quad (A2)$$

$$\{(\cdot), (\cdot), (\cdot)\} : \{(8, 2; 1/2), (8, 1; 0), (8, 2; -1/2)\} \rightarrow O^{I=1} \quad (A3)$$
We also used a shorthand notation for the subsets of eHSMs in a particular group #I inside the blue boldface curled brackets, which means

$$\alpha \cdot \{\{(),(),()\},...,\{(),(),()\}...\} = \alpha \cdot \{\{(),(),()\},...,\{(),(),()\}...$$

(A4)

Limits on the Wilson coefficients C_I of the eHSMs and their characteristic mass scales M_I are given in Tables II-IV for each eHSM listed in Tables V-VIII. For an eHSM appearing in the latter Tables with a numerical coefficient eHSM = $\alpha \cdot \{\{(),(),()\}\}$ the upper limit from Tables II-IV on its Wilson coefficient should be replaced with $\alpha \cdot C_{exp}^I$ and the lower limit on the mass scale with $\alpha^{-1/5}M_{exp}^I$.

We refer the reader to Ref. [26] for the detailed rules of the reconstruction of the operators O^I starting from the eHSM messenger assignment $\{\{(),(),()\}\}$ given in Tables V-VIII.

[1] M. Fukugita and T. Yanagida, Phys. Lett. B174, 45 (1986).
[2] F. F. Deppisch, M. Hirsch, and H. Päś, J.Phys. G39, 124007 (2012), arXiv:1208.0727.
[3] W. Rodejohann, Int.J.Mod.Phys. E20, 1833 (2011), arXiv:1106.1334.
[4] A. Faessler, V. Rodin, and F. Simkovic, J.Phys. G39, 124006 (2012), arXiv:1206.0464.
[5] F. Simkovic, Phys. Part. Nucl. Lett. 10, 623 (2013).
[6] GERDA Collaboration, M. Agostini et al., Phys.Rev.Lett. 111, 122503 (2013), arXiv:1307.4720.
[7] EXO-200 Collaboration, J. Albert et al., Nature 510, 229234 (2014), arXiv:1402.6956.
[8] KamLAND-Zen Collaboration, I. Shimizu, Neutrino 2014, Boston (2014).
[9] KamLAND-Zen, A. Gando et al., Phys. Rev. Lett. 117, 082503 (2016), arXiv:1605.02889.
[Addendum: Phys. Rev. Lett.117,no.10,109903(2016)].
[10] GERDA Collaboration, M. Agostini et al., Presentation at Neutrino-2016, London .
[11] EXO-200 Collaboration, D. Auty, Recontres de Moriond 2013 (2013).
[12] GERDA Collaboration, I. Abt et al., (2004), arXiv:hep-ex/0404039.
[13] Majorana Collaboration, C. Aalseth et al., Nucl.Phys.Proc.Suppl. 217, 44 (2011), arXiv:1101.0119.
[14] H. Päś, M. Hirsch, H. Klapdor-Kleingrothaus, and S. Kovalenko, Phys.Lett. B453, 194 (1999).
[15] H. Päś, M. Hirsch, H. Klapdor-Kleingrothaus, and S. Kovalenko, Phys.Lett. B498, 35 (2001), arXiv:hep-ph/0008182.
[16] J. Helo, M. Hirsch, S. Kovalenko, and H. Päś, Phys.Rev. D88, 011901 (2013), arXiv:1303.0899.
[17] J. Helo, M. Hirsch, H. Päś, and S. Kovalenko, Phys.Rev. D88, 073011 (2013), arXiv:1307.4849.
[18] J. C. Helo, M. Hirsch, and S. Kovalenko, Phys. Rev. D89, 073005 (2014), arXiv:1312.2900.
[Erratum: Phys. Rev.D93,no.9,099902(2016)].
[19] J. C. Helo and M. Hirsch, Phys. Rev. D92, 073017 (2015), arXiv:1509.00423.
TABLE V: Identification of the T-I (Fig. 3) short-range eHSMs. For explanation of notations see Appendix [A] and the main text.

[20] L. González, J. C. Helo, M. Hirsch, and S. G. Kovalenko, (2016), arXiv:1606.09555.
[21] N. Mahajan, Phys.Rev.Lett. 112, 031804 (2014).
[22] M. González, M. Hirsch, and S. G. Kovalenko, Phys. Rev. D93, 013017 (2016), arXiv:1511.03945.
[23] C. Arbeláez, M. González, M. Hirsch, and S. Kovalenko, Phys. Rev. D (2016), in press, arXiv:1610.04096.
[24] T. Peng, M. J. Ramsey-Musolf, and P. Winslow, Phys. Rev. D93, 093002 (2016), arXiv:1508.04444.
[25] A. Faessler, S. Kovalenko, and F. Simkovic, Phys.Rev. D58, 055004 (1998), arXiv:hep-
#I	T-I
8	\{\{\textbf{3}, 2; -1/6\}, \{\textbf{8}, 2; 1/2\}, \{\textbf{3}, 1; 1/3\}\}, \{\{\textbf{3}, 2; -1/6\}, \{\textbf{8}, 2; 1/2\}, \{\textbf{3}, 3; 1/3\}\}
9	\{\{\textbf{3}, 2; -1/6\}, \{\textbf{3}, 1; -1/3\}, \{\textbf{3}, 1; 1/3\}\}, \{\{\textbf{3}, 2; -1/6\}, \{\textbf{3}, 3; -1/3\}, \{\textbf{3}, 3; 1/3\}\}
10	\{\{\textbf{3}, 2; -1/6\}, \{\textbf{3}, 1; -1/3\}, \{\textbf{3}, 1; 1/3\}\}, \{\{\textbf{3}, 2; -1/6\}, \{\textbf{3}, 3; -1/3\}, \{\textbf{3}, 3; 1/3\}\}
11	\{\{\textbf{8}, 2; 1/2\}, \{\textbf{3}, 2; 5/6\}, \{\textbf{3}, 1; 1/3\}\}, \{\{\textbf{8}, 2; 1/2\}, \{\textbf{8}, 1; 0\}, \{\textbf{3}, 1; 1/3\}\}, \{\{\textbf{8}, 2; 1/2\}, \{\textbf{3}, 2; 7/6\}, \{\textbf{3}, 2; 1/6\}\}
12	\{\{\textbf{8}, 2; 1/2\}, \{\textbf{8}, 2; -1/2\}, \{\textbf{3}, 2; 1/6\}\}
13	\{\{\textbf{3}, 1; -1/3\}, \{\textbf{1}, 1; 0\}, \{\textbf{3}, 1; 1/3\}\}, \{\{\textbf{3}, 1; -1/3\}, \{\textbf{6}, 1; 1/3\}, \{\textbf{6}, 1; -2/3\}\}, \{\{\textbf{3}, 1; -1/3\}, \{\textbf{6}, 2; -1/6\}, \{\textbf{6}, 1; -2/3\}\}
14	\{\{\textbf{3}, 1; -1/3\}, \{\textbf{3}, 1; 1/3\}, \{\textbf{3}, 2; -4/3\}, \{\textbf{6}, 1; -2/3\}\}, \{\{\textbf{3}, 1; -1/3\}, \{\textbf{3}, 2; -5/6\}, \{\textbf{6}, 1; -2/3\}\}
15	\{\{\textbf{3}, 2; -1/6\}, \{\textbf{3}, 2; 1/6\}, \{\textbf{3}, 1; 1/3\}\}
16	\{\{\textbf{3}, 1; -1/3\}, \{\textbf{8}, 1; 0\}, \{\textbf{3}, 1; 1/3\}\}
17	\{\{\textbf{8}, 2; 1/2\}, \{\textbf{3}, 2; 5/6\}, \{\textbf{3}, 1; 1/3\}\}, \{\{\textbf{8}, 2; 1/2\}, \{\textbf{8}, 1; 0\}, \{\textbf{3}, 1; 1/3\}\}, \{\{\textbf{8}, 2; 1/2\}, \{\textbf{3}, 2; 7/6\}, \{\textbf{3}, 2; 1/6\}\}
18	\{\{\textbf{8}, 2; 1/2\}, \{\textbf{8}, 2; -1/2\}, \{\textbf{3}, 2; 1/6\}\}
19	\{\{\textbf{3}, 2; -1/6\}, \{\textbf{1}, 2; 1/2\}, \{\textbf{3}, 1; 1/3\}\}
20	\{\{\textbf{3}, 2; -1/6\}, \{\textbf{8}, 1; 0\}, \{\textbf{3}, 1; 1/3\}\}

TABLE VI: Continuation of Table V

[26] F. Bonnet, M. Hirsch, T. Ota, and W. Winter, JHEP **1303**, 055 (2013), arXiv:1212.3045
[27] M. Doi, T. Kotani, and E. Takasugi, Prog.Theor.Phys.Suppl. **83**, 1 (1985).
[28] R. Mohapatra, Phys.Rev. **D34**, 3457 (1986).
[29] M. Hirsch, H. Klapdor-Kleingrothaus, and S. Kovalenko, Phys.Rev. **D53**, 1329 (1996), arXiv:hep-ph/9502385
eHSM	Mediators \((SU(3)_c, SU(2)_L, U(1)_Y) \) with \(Y = Q - T_3 \)
#I	\(\{ (\bar{S}, \psi), (\bar{S}') \} \)
21	\(\{ (\bar{3}, 2; -7/6), (1, 2; -1/2), (3, 2; 1/6) \}, \{ (6, 1; 4/3), (3, 2; 7/6), (3, 2; 1/6) \}, \{ (6, 1; 4/3), (3, 2; 1/6), (3, 2; 7/6) \} \)
	\(\{ (6, 1; 4/3), (6, 1; 1/3), (3, 2; 1/6) \}, \{ (6, 1; 4/3), (6, 2; 5/6), (3, 2; 7/6) \} \)
	\(-2 \cdot \{ (\bar{3}, 2; -1/6), (\bar{6}, 1; -1/3), (\bar{3}, 1; 1/3) \} \)
22	\(\{ (\bar{3}, 2; -7/6), (\bar{8}, 2; -1/2), (3, 2; 1/6) \} \)
23	\(\{ (1, 2; 1/2), (1, 1; 0), (1, 2; 1/2) \}, \{ (1, 2; 1/2), (1, 3; 0), (1, 2; -1/2) \}, \{ (1, 2; 1/2), (3, 2; 3/2), (\bar{3}, 1; 1) \} \)
	\(\{ (1, 2; 1/2), (\bar{3}, 2; 7/6), (1, 3; 1) \}, \{ (1, 2; 1/2), (\bar{3}, 2; 5/6), (1, 3; 1) \}, \{ (1, 2; 1/2), (\bar{3}, 3; 1/3), (1, 3; 1) \} \)
	\(-2 \cdot \{ (1, 2; 1/2), (\bar{3}, 2; 5/6), (\bar{3}, 1; 1/3) \}, \{ (1, 2; 1/2), (\bar{3}, 2; 5/6), (\bar{3}, 3; 1/3) \}, \{ (1, 2; 1/2), (1, 1; 0), (\bar{3}, 1; 1/3) \}, \)
	\(\{ (1, 2; 1/2), (1, 3; 0), (\bar{3}, 3; 1/3) \}, \{ (1, 2; 1/2), (3, 3; 2/3), (3, 2; 1/6) \}, \{ (1, 2; 1/2), (1, 1; 0), (3, 2; 1/6) \} \)
	\(\{ (1, 2; 1/2), (1, 3; 0), (3, 2; 1/6) \} \)
24	\(\{ (1, 2; 1/2), (1, 1; 0), (1, 2; -1/2) \}, \{ (1, 2; 1/2), (1, 3; 0), (1, 2; -1/2) \}, \{ (1, 2; 1/2), (3, 2; 7/6), (1, 3; 1) \} \)
	\(\{ (1, 2; 1/2), (3, 3; 2/3), (1, 3; 1) \}, \{ (1, 2; 1/2), (\bar{3}, 3; 1/3), (1, 3; 1) \}, \{ (1, 2; 1/2), (\bar{3}, 2; 5/6), (1, 3; 1) \} \)
	\(-2 \cdot \{ (1, 2; 1/2), (\bar{3}, 2; 5/6), (\bar{3}, 1; 1/3) \}, \{ (1, 2; 1/2), (\bar{3}, 2; 5/6), (\bar{3}, 3; 1/3) \}, \{ (1, 2; 1/2), (1, 1; 0), (\bar{3}, 1; 1/3) \}, \)
	\(\{ (1, 2; 1/2), (1, 3; 0), (\bar{3}, 3; 1/3) \}, \{ (1, 2; 1/2), (3, 3; 2/3), (3, 2; 1/6) \}, \{ (1, 2; 1/2), (1, 1; 0), (3, 2; 1/6) \} \)
	\(\{ (1, 2; 1/2), (1, 3; 0), (3, 2; 1/6) \} \)
25	\(\{ (\bar{3}, 2; -1/6), (1, 2; 1/2), (\bar{3}, 1; 1/3) \}, \{ (\bar{3}, 2; -1/6), (1, 2; 1/2), (\bar{3}, 3; 1/3) \} \)
26	\(\{ (1, 2; 1/2), (\bar{3}, 2; 5/6), (\bar{3}, 1; 1/3) \}, \{ (1, 2; 1/2), (1, 1; 0), (\bar{3}, 1; 1/3) \}, \{ (1, 2; 1/2), (\bar{3}, 2; 7/6), (3, 2; 1/6) \} \)
	\(\{ (1, 2; 1/2), (1, 2; -1/2), (\bar{3}, 2; 1/6) \} \)
27	\(\{ (1, 2; 1/2), (\bar{3}, 2; 5/6), (\bar{3}, 1; 1/3) \}, \{ (1, 2; 1/2), (1, 1; 0), (\bar{3}, 1; 1/3) \}, \{ (1, 2; 1/2), (\bar{3}, 2; 7/6), (3, 2; 1/6) \} \)
	\(\{ (1, 2; 1/2), (1, 2; -1/2), (\bar{3}, 2; 1/6) \} \)
28	\(\{ (6, 1; 4/3), (6, 1; 1/3), (6, 1; -2/3) \}, \{ (6, 1; 4/3), (3, 3; 1/3), (1, 1; 2) \}, \{ (\bar{\bar{6}}, 1; 2/3), (\bar{\bar{3}}, 1; 4/3), (1, 1; 2) \} \)
	\(-2 \cdot \{ (3, 1; -1/3), (1, 1; 0), (\bar{3}, 1; 1/3) \}, \{ (3, 1; -1/3), (6, 1; 1/3), (6, 1; -2/3) \}, \{ (3, 1; -1/3), (3, 1; -4/3), (6, 1; -2/3) \} \)
	\(-\frac{1}{2} \cdot \{ (3, 1; -1/3), (8, 1; 0), (\bar{3}, 1; 1/3) \} \)

TABLE VII: Continuation of Table [V]
#I	eHSM	T-II Mediators (SU(3)_c, SU(2)_L, U(1)_Y) with Y = Q − T_3
1	\{(8, 2, 1/2), (8, 2, 1/2), (1, 3, −1)\}	2 ⋅ \{(8, 2, 1/2), (3, 1; −1/3), (\overline{3}, 2; −1/6), \{(8, 2, 1/2), (3, 3, −1/3), (\overline{3}, 2; −1/6)\}\}
5	\{5 \cdot \{(6, 3; 1/3), (\overline{8}, 1/3), (1, 3; −1)\}, \{(6, 1; 4/3), (\overline{6}, 3; −1/3), (1, 3; −1)\}\}	2 ⋅ \{(6, 3; 1/3), (\overline{3}, 2; −1/6), (\overline{3}, 2; −1/6), \{(3, 1; −1/3), (3, 1; −1/3), (\overline{6}, 1; 2/3)\}, \{(3, 3; −1/3), (3, 3; −1/3), (\overline{6}, 1; 2/3)\}\}
7	\{(8, 2; 1/2), (8, 2; 1/2), (1, 3; −1)\}	−2 ⋅ \{(8, 2; 1/2), (3, 1; −1/3), (\overline{3}, 2; −1/6), \{(8, 2; 1/2), (3, 3; −1/3), (\overline{3}, 2; −1/6)\}\}
11	\{(8, 2; 1/2), (3, 1; 1/3), (\overline{3}, 2; −1/6)\}	2 ⋅ \{(3, 1; −1/3), (3, 1; −1/3), (\overline{6}, 1; 2/3)\}
16	\{(8, 2; 1/2), (3, 1; −1/3), (\overline{3}, 2; −1/6)\}	2 ⋅ \{(6, 1; 4/3), (\overline{3}, 2; −7/6), (\overline{3}, 2; −1/6)\}
17	\{(8, 2; 1/2), (3, 1; −1/3), (\overline{3}, 2; −1/6)\}	2 ⋅ \{(6, 1; 4/3), (\overline{3}, 2; −7/6), (\overline{3}, 2; −1/6)\}
22	\{(1, 2; 1/2), (1, 2; 1/2), (1, 3; −1)\}	−2 ⋅ \{(1, 2; 1/2), (3, 1; −1/3), (\overline{3}, 2; −1/6), \{(1, 2; 1/2), (3, 3; −1/3), (\overline{3}, 2; −1/6)\}\}
23	\{(1, 2; 1/2), (1, 2; 1/2), (1, 3; −1)\}	2 ⋅ \{(1, 2; 1/2), (3, 1; −1/3), (\overline{3}, 2; −1/6), \{(1, 2; 1/2), (3, 3; −1/3), (\overline{3}, 2; −1/6)\}\}
24	\{(1, 2; 1/2), (3, 1; −1/3), (\overline{3}, 2; −1/6)\}, \{(1, 2; 1/2), (3, 3; −1/3), (\overline{3}, 2; −1/6)\}	−\frac{1}{2} ⋅ \{(1, 2; 1/2), (1, 2; 1/2), (1, 3; −1)\}
26	\{(1, 2; 1/2), (3, 1; −1/3), (\overline{3}, 2; −1/6)\}	\{(1, 2; 1/2), (3, 1; −1/3), (\overline{3}, 2; −1/6)\}
27	\{(1, 2; 1/2), (3, 1; −1/3), (\overline{3}, 2; −1/6)\}	\{(1, 2; 1/2), (3, 1; −1/3), (\overline{3}, 2; −1/6)\}
28	\frac{1}{2} ⋅ \{(6, 1; 4/3), (\overline{6}, 1; 2/3), (\overline{1}, 1; −2)\}	−3 ⋅ \{(3, 1; −1/3), (\overline{3}, 1; −1/3), (\overline{6}, 1; 2/3)\}

TABLE VIII: Identification of the T-II short-range eHSMs. For notations see Appendix and the main text.