РОЗРОБКА МОДЕЛІ РОЗПОДІЛУ РЕСУРСІВ АВТОМАТИЗОВАНОЇ СИСТЕМИ УПРАВЛІННЯ СПЕЦІАЛЬНОГО ПРИЗНАЧЕННЯ В УМОВАХ НЕДОСТАТНІСТІ ІНФОРМАЦІЇ ПРО РОЗВИТОК ОПЕРАТИВНОЇ ОБСТАНОВКИ

Шишацький А. В., Сова О. Я., Журавський Ю. В., Животовський Р. М., Лященко Г. Т., Черняк О. Р., Зінченко К. А., Лазута Р. Р., Мельник А. О., Симоненко О. А.

РАЗРАБОТКА МОДЕЛИ РАСПРЕДЕЛЕНИЯ РЕСУРСОВ АВТОМАТИЗИРОВАННОЙ СИСТЕМЫ УПРАВЛЕНИЯ СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ В УСЛОВИЯХ НЕДОСТАТОЧНОСТИ ИНФОРМАЦИИ ПРО РАЗВИТИЕ ОПЕРАТИВНОЙ ОБСТАНОВКИ

Шишацкий А. В., Сова О. Я., Журавский Ю. В., Животовский Р. Н., Лященко А. Т., Черняк О. Р., Зинченко К. А., Лазута Р. Р., Мельник А. А., Симоненко А. А.

DEVELOPMENT OF RESOURCE DISTRIBUTION MODEL OF AUTOMATED CONTROL SYSTEM OF SPECIAL PURPOSE IN CONDITIONS OF INSUFFICIENCY OF INFORMATION ON OPERATIONAL DEVELOPMENT

Shyshatskyi A., Sova O., Zhuravskyi Yu., Zhyvotovskyi R., Lyashenko A., Cherniak O., Zinchenko K., Lazuta R., Melnyk A., Symonenko O.

У роботі розглянуто задачу розподілу ресурсів автоматизованої системи управління спеціального призначення в умовах недостатності інформації про розвиток операційної обстановки. Об'єктом дослідження є автоматизована система управління спеціального призначення в умовах невизначеності операційної обстановки та обмеженості обчислювальних ресурсів. Одним з найбільш проблемних місць при розподілі ресурсів автоматизованої системи управління є низька якість планування, розподілу та використання ресурсів автоматизованої системи в умовах недостатності інформації про операційну обстановку та відсутність можливості прогнозування дій противника. Це знижує ефективність як самої системи, так і її застосування. Наукове завдання вирішено за допомогою розробки моделі розподілу ресурсів системи за умови можливої появи на вході безлічі збурень, що враховує особливості поточної операційної обстановки протикання збройного конфлікту та дозволяє провести прогнозування стану автоматизованої системи управління. В ході проведеного дослідження авторами роботи були використані основні положення теорії масового обслуговування, теорії автоматизації, теорії складних технічних систем, а також загальнонаукові
методи пізнання, а саме аналізу та синтезу. Новизна запропонованої моделі полягає в тому, що вона дозволяє обґрунтувати декомпозицію системи. Це дозволяє представити рішення векторного завдання оптимізації в бінарних відношеннях конфлікту, сприяння та байдужності. А також враховує операційну обстановку та дозволяє провести прогнозування стану системи з урахуванням зовнішніх впливів, побудувати функції корисності та гарантованого виграшу, а також чисельну схему оптимізації на цій множині. Запропонована модель дозволяє підіяти оперативність обробки інформації за рахунок її розподілу та раціонального використання наявних обчислювальних ресурсів. Результати дослідження докладно використовувати під час планування конфігурації системи передачі даних та на етапі операцівного управління ресурсами зазначених систем.

Ключові слова: системи управління, операцівна обстановка, якість планування, бінарне відношення конфлікту, оперативність передачі інформації.

В роботі розглядається задача розподілу ресурсів автоматизованої системи управління спеціального призначення в умовах недостатності інформації про розвиток оперативної обстановки. Об'єктом дослідження є автоматизована система управління спеціального призначення в умовах непередбаченості оперативної обстановки і обмеженості відносно високообчислювальних ресурсів. Одним з найбільш проблемних місць при розподілі ресурсів автоматизованої системи управління є низьке якість планування, розподілення та використання ресурсів автоматизованої системи в умовах недостатності інформації про операцівну обстановку і отсутисть можливості прогнозування дій противника. Це снижує ефективність саме системи, так і її використання. Наукова задача розглядається з допомогою розробки моделі розподілу ресурсів системи при виникненні множини можливих обставин, враховуючи особливості наявної у різних обставинах обстановки протягом воєнного конфлікту, а також враховуючи можливість прогнозування стану автоматизованої системи управління. В ході проведеного дослідження авторами роботи були використані основні положення теорії масового обслуговування, теорії автоматизації, теорії сложних технічних систем, а також общенавчальні методи познання, а імена аналіза і синтеза. Новизна запрошені моделі заключається в тому, що вона дозволяє обосновано декомпозицію системи. Це дозволяє розподілити ресурси автоматизованої системи управління, використовуючи численну схему розподілу в бінарних відношениях конфлікту, сприяння та байдужності. Також враховується проблема відповідності забезпечення відповідної обставини протягом воєнного конфлікту, а також враховується можливість прогнозування стану автоматизованої системи управління. В ході проведеного дослідження авторами роботи були використані основні положення теорії масового обслуговування, теорії автоматизації, теорії сложних технічних систем, а також общенавчальні методи познання, а імена аналіза і синтеза. Новизна запрошені моделі заключається в тому, що вона дозволяє обосновано декомпозицію системи. Це дозволяє розподілити ресурси автоматизованої системи управління, використовуючи численну схему розподілу в бінарних відношениях конфлікту, сприяння та байдужності. Також враховується проблема відповідності забезпечення відповідної обставини протягом воєнного конфлікту, а також враховується можливість прогнозування стану автоматизованої системи управління. В ході проведеного дослідження
получении конфигурации системы передачи данных и на этапе оперативного управления ресурсами указанных систем.

Ключевые слова: системы управления, оперативная обстановка, качество планирования, бинарное отношение конфликта, оперативность передачи информации.

1. **Вступ**

Розподіл ресурсів автоматизованої системи управління спеціального призначення (АСУ) – це функція системи з регулювання використання своїх ресурсів при наявності невизначеності характеру протікання конфлікту з використанням різних засобів протистріля (знищення цілей). А також з-за невідповідності поточної оперативної обстановки планованому способу застосування АСУ як найбільш ефективному протягом певного часу.

Розподіл ресурсів передбачає ряд прийомів, які допомагають елементу, що приймає рішення (ЕПР), в досягненні найкращих результатів. В такому випадку завдання ЕПР полягає в знаходженні способів гнучкого реагування на зміну оперативної обстановки з метою мінімізації впливу поточної ситуації на АСУ за допомогою засобів розподілу її ресурсів.

Разом з тим, існуючі підходи з розподілу ресурсів не задовольняють вимогам, що до них висуваються, а саме:

– велика обчислювальна складність [1, 2];
– необхідність знання повної інформації про стан системи та дій противника [3, 4];
– неможливість прогнозування дій противника на стан системи [5–7].

У зв’язку з цим необхідно розробити модель розподілу ресурсів АСУ в умовах невизначеності інформації про оперативну обстановку, що враховують суттєві особливості протікання збройного конфлікту в конкретній ситуації. Отже, об’єктом дослідження є автоматизована система управління спеціального призначення в умовах невизначеності оперативної обстановки та обмеженості обчислювальних ресурсів. А метою зазначеного дослідження слід вважати підвищення ефективності функціонування АСУ за рахунок підвищення оперативності розподілу ресурсів АСУ.

2. **Методика проведення дослідження**

Результатуюче управління у, яке впливає на об’єкт управління, утворюється двома складовими, такими як програмна (план \(x\)) і коригувальна (оперативне управління \(y\)) [1, 2]. Даний вид управління може бути представлений по різному: у вигляді суми цих двох складових, або якість іншій завдання їх функцією:

\[u = x + y \text{ або } u = F(x, y). \] \(1\)

Оперуючій стороні необхідно забезпечити виконання всіх умов допустимості результатуючого управління, які коротко можна записати в такий спосіб:

\[u \in U(\varepsilon), \] \(2\)
де U – задана множина в функціональному просторі управлінь, залежне від збурень ε. Крім цього операційна сторона намагається максимізувати критерій якості управлінь, на який також впливають збурення:

$$I(u, \varepsilon) \rightarrow \max.$$

У записах (2), (3) показана суттєва особливість АСУ в умовах недостатності інформації про розвиток оперативної обстановки: критерій якості та умови допустимості управління залежать від збурень.

Потім ведеться облік зворотного впливу управління на безліч очікуваних збурень Ξ_0. На підставі напередої інформації $I(\Xi)$ про збурення операційна сторона заздалегідь формує план x:

$$x = X(I(\Xi)).$$

Наступним кроком буде розгляд двох варіантів напередої інформованості [7, 8]:

– відомо лише безліч майбутніх збурень Ξ_0, яке задається, наприклад, граничними значеннями збурень;

– відома функція розподілу збурень $\mu(\Xi)$, іншими словами ймовірність, з якою збурення можуть потрапити в будь-яку підмножину Ξ вихідної безлічі Ξ_0.

Оперативне управління u формується після планування, в процесі функціонування, використовуючи поточну інформацію $i(\varepsilon)$ про збурення. Це дає можливість, компенсувати частину небажаних впливів:

$$y = Y(x, i(\varepsilon)).$$

Під алгоритмом оперативного управління мається на увазі повний список дій для кожної з існуючих реалізацій $\varepsilon \in \Xi_0$. Побудова таких алгоритмів в даному випадку не розглядається, тому операційний (5) вважаємо заданим. Коли інформація в даний момент часу повна, іншими словами $i(\varepsilon) = \varepsilon$, то в деяких вирішених квазістатичних завданнях вдалося аналітично створити оптимальний алгоритм оперативного управління [9, 10].

Для виконання оперативного завдання потрібен певний комплекс ресурсів, частина якого ε в АСУ, а інша – у вищій системі (надсистемі), обсяг централізованого поповнення ресурсів АСУ x планується операційною стороною – оператором АСУ заздалегідь. На обсяг і наявність ресурсів вищій системи ε операцій АСУ не може надавати ніякого впливу, також при плануванні величина ε невідома, тобто знаходиться в розряді збурень.

Сумарний обсяг ресурсів $x + \varepsilon$ складається з двох частин, одна передана АСУ і володіє одиничною місткістю, інша може перебувати в залежності від операційної обстановки. В пасивному запасі ємністю r, або бути готовою до застосування вищої
системою [3]. З іншого боку, сумарного обсягу ресурсів $x + \varepsilon$ повинно вистачити, щоб АСУ в умовах недостатності інформації про розвиток оперативної обстановки спільно з вищестоячою системою змогла здійснити необхідну протидію противнику. Для цього необхідно забезпечити початкову наявність хоча б ν-ї частки від максимального (одиничного) комплексу ресурсів АСУ ($0 < \nu < 1$). Відсутня кількість ресурсів може бути заповнена перерозподілом ресурсів АСУ або діями вищестоячої системи. Оперативний керуючий вплив у полягає в перерозподілі ресурсів АСУ для виконання часткового завдання.

Оперативний керуючий вплив у полягає в перерозподілі ресурсів АСУ для виконання часткового завдання. Позитивні значення керуючого впливу відповідають поповненню запасу, необхідного для досягнення часткової мети, негативні – зменшення необхідного запасу ресурсу [2].

Результируюче управління (1) рівне сумі планової x та оперативної y складових:

$$ u = x + y, \quad \rightarrow \quad (6) $$

які в поточній постановці не є векторними функціями часу, а просто скалярними параметрами, які вибирає ЕПР оперуючого боку.

Множина (2) можливих результацій управління задається запасами ресурсів АСУ, приведеними до одиниці, мінімально допустимою його кількістю ν, а також розміром r пасивного запасу. Така множина значно залежить від збурень – величини ε та u приймають в умовах допустимості управління на однакових правах:

$$ u \in U(\varepsilon) = \{x, y: x \geq 0, |y| \leq r, \nu \leq x + y + \varepsilon \leq 1\}. \quad \rightarrow \quad (7) $$

Якість управління оцінюється якістю виконання поставленого завдання, яка лінійно залежить від усіх трьох видів ресурсів: централізованих x (ресурсів АСУ), нецентралізованих ε (ресурсів надсистеми) та компенсуючих y (перерозподілених) [1, 3]:

$$ J = x + qy + g\varepsilon \rightarrow \max, \quad \rightarrow \quad (8) $$

де $g \geq 1 \geq q \geq 0$.

Різні величини коефіцієнтів g, q відображають розбіжність обстановки протиборства, яка для простоти вважається на етапі планування вже відомою. Відповідно до вище сказаного оперативне управління u здійснюється за достовірною інформацією про збурення ε та плані x. Отже, з допустимої безлічі (7) можна вибрати величину u, максимізуючу критерій (8):

$$ y = Y(x, \varepsilon) = y_o = \{1 - x - \varepsilon, r \geq y_o = \max \{\nu - x - \varepsilon, -r\}. \quad \rightarrow \quad (9) $$
Вираз (9) є алгоритмом оперативного управління (5), відповідно до якого компенсуючий обсяг ресурсів завжди дорівнює максимально можливому: \(y = y_0 \). Це або забезпечує повне використання ресурсів АСУ, якщо \(y = 1 - x - \varepsilon \leq r \), або повністю вичерпує запас ресурсів надсистеми, якщо \(y = r \leq 1 - x - \varepsilon \). Нижня межа \(y_0 \) бере участь тільки в створенні умов допустимості алгоритму \(Y \), що замикають співвідношення (9). Допустимість оперативного управління гарантується за рахунок вибору плану \(x \).

При відомому ще до планування алгоритму оперативного управління \(Y \) умову (2) допустимості результуючого управління потрібно виконати лише за рахунок вибору плану \(x \). Цим забезпечується достатній запас ресурсів на регулювання.

Умови (2), відображенні в просторі планів \(x \), можливо розділити на три типи:

1. Умови, що не залежать від збурення, а також умови цілочисельності або, в загальному випадку, дискретності деяких компонент вектору планів \(x \):

\[
x \in X_1 = \bigcup_{n=0}^{N} X^n_1, \quad X^n_1 \cap X^n_1 = \emptyset \text{ для } n \neq n'.
\]

У виразі (10) показаний процес побудови безлічі \(X_1 \). Це об’єднання кінцевого числа незалежних підмножин \(X^n_1 \), кожне, з яких можливо є компактним і залежить від номера \(n \). Дозволені і чисто дискретні варіанти, коли підмножини \(X^n_1 \) кінцеві або парні.

2. Умови, які залежать від збурення, але за своїм призначенням повинні бути реалізовані для всіх априорно можливих реалізацій збурення:

\[
x \in X_2(\varepsilon) = \{ x : G_i(\varepsilon) \geq 0, i \in I_2 \}, \quad \forall \varepsilon \in \Xi_0(x).
\]

3. Умови, що залежать від збурення:

\[
x \in X_3(\varepsilon) = \{ x : G_i(x,\varepsilon) \geq 0, i \in I_3 \}, I_2 \cap I_3 = \emptyset.
\]

В (11) та (12) \(G_i(x,\varepsilon) \) являє собою відображення, які синтезуються з початкових відображень, які задають вираз (2) у просторі результуючого управління \(u \). Після чого відбувається вираження через планову \(x \) та коректуючу \(y \) складову та наступного виключення \(y \) за допомогою алгоритму оперативного управління \(Y \). Умови (11) та (12) являють собою системи нерівностей. Вони тогожі за \(\varepsilon \) та не можуть бути задоволені за рахунок вибору \(x \), у зв’язку з тим, що планова складова, в порівнянні з коректуючою, не може змінюватися в залежності від збурення в даний момент часу. Відхилення від цього правила мають місце тільки тоді, коли алгоритм оперативного управління достовірно відображає збурення для будь-яких вихідних даних. Але в цьому випадку відповідні їм перетворення відображення \(G_i(x,\varepsilon) \) вже не
залежать фактично від \(\varepsilon \) та відносяться до розряду умов (10), в яких вирішуються як рівності, так і нерівності.

Умови (11), що виконуються при будь-яких збуреннях з \(\Xi_0(x) \) як для ймовірнісної, так і для гарантуючих поставок та можуть бути віднесені до виразу (10), який не має збурення, в силу еквівалентності двох нерівностей:

\[
G_i(x,\varepsilon) \geq 0 \quad \forall \varepsilon \in \Xi_0(x) \iff \inf_{\varepsilon \in \Xi_0} G_i(x,\varepsilon) \geq 0,
\]

при відсутності залежності від збурення \(\varepsilon \) в плані \(x \). В результаті умову одночасного виконання виразів (10) та (11) можна відобразити у більш простому вигляді:

\[
x \in X_0 = \{x : x \in X_1, G_i(x) \geq 0, i \in I_2\}.
\]

Вектор збурення \(\varepsilon \) для зручності подальших міркувань розділимо на дві підгрупи – неперервні \((\eta)\) та дискретні \((\chi)\):

\[
\varepsilon = (\eta, \chi) \in \Xi_0(x) \iff \chi \in Z_0 = \{\chi_1, \chi_2, \ldots\}, \eta \in H_0(\eta, \chi).
\]

Дискретні збурення \(\chi \), що входять в кінцеву або розрахункову множину \(\Xi_0 \) відповідають за стрибкоподібні зміни ситуації в цей момент часу. Такі збурення викликаються, наприклад, новими обмеженнями, які виникають після завершення етапу планування.

Реалізація дискретних збурень \(\chi \), може впливати на безліч \(H_0 \) майбутніх значень безперервних збурень \(\eta \). План \(x \) вибирається залежно від структури безлічі \(H_0 \). В принципі немає протиріч і для залежності \(Z_0(x) \). Множини \(Z_0 \) та \(H_0 \) майбутніх дискретних \((\eta)\) і безперервних \((\chi)\) збурень вважаються відомими вже на початку етапу планування [4].

Тоді для кожного значення \(\chi \), дискретних збурень, відповідно до моделі гарантованого виграшу:

\[
\varphi = \sum_{\{ACU, \xi_n\} \subseteq \{\gamma\}} \alpha_n \left(q_{ACU}^r - q_{ACU}^0\right) + \sum_{\{ACU, \xi_n\} \subseteq \{\gamma\}} \beta_n \left(q_{ACU}^r - q_{ACU}^0\right),
\]

де \(\alpha_n, \beta_n \) – ваги відповідних властивостей збурень \(\xi_n \) із позицій \(ACU, \gamma \), відношення сприяння та конфлікту, відповідно; \(q_{ACU}^0 \) – очікувана функція корисності.

Введемо безліч \(H_i^+ \) сприятливих безперервних збурень \(\eta \). Сприятливими вважаються збурення \(\eta \), якщо вони для фіксованого плану \(x \) не порушують умову допустимості результуючого управління та дають можливість реалізації критерію якості, що не опускається нижче необхідного рівня \(s \).
\[H^{-}_i(x,c) = \{ \eta : \eta \in H_0(x,\chi_i), G_i(x,\eta,\chi_i) \geq 0, i \in I_2, J^*(x,\eta,\chi_j) \geq c \}, \quad (16) \]

де \(J^* = J\left(F(x,Y(x,i(\eta,\chi_i))), \eta,\chi_j\right) \).

Інші збурення \(\eta \) з \(\frac{H_0}{H_j} \) є несприятливими. Таким чином, множина \(Z^+ \) сприятливих дискретних збурень \(\chi \) становлять лише ті \(\chi_i \), яким (16) є непустою множиною, тобто:

\[Z^+(x,c) = \{ \chi : \chi = \chi_i \in Z_0, H^+_j(x,c) = \emptyset \}, \quad (17) \]

збурення, що \(\chi \) залишилися, належать до несприятливих.

3. Результати дослідження та обговорення

Поділ усіх можливих збурень на непересічні підмножини сприятливих і несприятливих збурень виконується для фіксованої безлічі планів \(x \) та фіксованої нижньої оцінки з реалізації \(J \) критерію якості резultonуючого управління.

Ясно, що для наступного розгляду мають значення плани, які відповідають умовам (17) збурень, що не включають в себе збурень.

Решта умов (15) допустимості плану реалізуються лише на безлічі сприятливих збурень. За умови збільшення оцінки з безліч сприятливих збурень стане звужуватися (точніше, не розширюватися), і для всіх \(c \), що перевищують деякий критичний рівень, воно буде порожнім. Але з погляду вибору плану інтерес представляє не «виснаження» безлічі сприятливих збурень, а його необхідна «повнота». Гарантуюча та ймовірнісна постановки різняться вимогами до повноти безлічі сприятливих збурень.

У завданні про управління ресурсами АСУ обсяг ресурсів вищої системи \(\varepsilon \) є безперервною змінною. До початку планування вона оцінюється тільки зверху величиною \(d \), так що \(\Xi^+_0 = \left[0,d\right] \).

Множини (16), (17) (рис. 1) сприятливих збурень при кожному фіксованому \(x \) на підставі виразів (7)–(9) представляються відрізками наступного виду:

\[\Xi^+_0(x,c) = \left[\varepsilon^+_0(x,c), \varepsilon^+_0(x)\right], \quad \rightarrow \quad (18) \]

\[\varepsilon^+_n = \max\{\varepsilon_0^+, \varepsilon_{n1}^+, \varepsilon_{n2}^+, \varepsilon_{n3}^+\}; \quad \varepsilon^+_0 = \min\{\varepsilon_{01}, \varepsilon_{02}\}; \quad \varepsilon_{n0} = 0; \quad \varepsilon_{n1} = 1 - r - x; \]

\[\varepsilon_{n2} = \frac{1}{g} (c - x - qr); \quad \varepsilon_{n3} = \frac{1}{g - q} (c - (1 - q) - x - g); \quad \varepsilon_{0} = d, \varepsilon_{n1} = 1 + r - x. \]
Рис. 1. Оцінка збурень автоматизованої системи управління

В (18) та на рис. 1 позначене:

\(\varepsilon_{e_0} \) — верхня апріорна оцінка збурень;

\(\varepsilon_{e_1} \) — максимальне збурення за рівнем ресурсів, що припустимі надсистемою;

\(\varepsilon_{n_0} \) — нижня апріорна оцінка збурень;

\(\varepsilon_{n_1} \) — мінімальне збурення, припустиме за умови мінімального завантаження;

\(\varepsilon_{n_2} \) — мінімальне збурення, що забезпечує очікуваний результат \(c \) при можливості вільного набору ресурсів;

\(\varepsilon_{n_3} \) — мінімальне збурення, що забезпечує очікуваний результат \(c \) при наявності залишку ресурсів.

З ростом інтенсивності протиборства \(c \) нижні границі \(\varepsilon_{n_2} \) та \(\varepsilon_{n_3} \) піднімаються, інші залишаються константами. Відповідно до цього інтервал сприятливих збурень (18) звужується, вироджаючись при певному значенні \(c \) у порожню множину. Це є загальною властивістю множин сприятливих збурень (16), (17).

Далі виникають проблемні питання, пов’язані з оцінкою впливу збурень на ефективність протидії, що дозволяє використовувати результати дослідження в моделях підтримки прийняття управлінських рішень.

4. Висновки

В ході дослідження авторами проведено розробку моделі розподілу ресурсів АСУ в умовах недостатності інформації про розвиток оперативної обставини. Новизна запропонованої моделі полягає в тому, що вона:

— дозволяє обґрунтувати декомпозицію системи, що дозволяє представити рішення векторного завдання оптимізації в бінарних відношениях конфлікту, сприяння та байдужності;

— враховує оперативну обстановку;
дозволяє провести прогнозування стану системи з урахуванням зовнішніх впливів;
дозволяє побудувати функції корисності та гармонізованого виграшу, а також чисельну схему оптимізації на цій множині.

Запропонована модель дозволяє розробити системи розподілу та раціонального використання наявних обчислювальних ресурсів.

Результати дослідження доцільно використовувати під час планування конфігурації системи передачі даних та на етапі оперативного управління ресурсами зазначених систем.

References
1. Bashkyrov, O. M., Kostyna, O. M., Shyshatskyi, A. V. (2015). Development of integrated communication systems and data transfer for the needs of the Armed Forces. *Arms and Military Equipment, 1* (5), 35–40.
2. Kuznetsov, A. V. (2017). A Model of the joint motion of agents with a three-level hierarchy based on a cellular automaton. *Computational Mathematics and Mathematical Physics, 57* (2), 339–349. doi: http://doi.org/10.7868/s0044466917020107
3. Zhuk, O. G., Shyshatskiy, A. V., Zhuk, P. V., Zhyvotovskiy, R. M. (2017). Methodological substances of management of the radio-resource managing systems of military radio communication. *Information Processing Systems, 5* (151), 16–25. doi: https://doi.org/10.30748/soi.2017.151.02
4. Oshmarin, D. V. (2010). Raspredelenie kanalnykh resursov v setiakh kognitivnogo radio na osnove teorii igr. *Biznesinformatika, 4* (14), 38–45.
5. Redi, J., Ramanathan, R. (2011). The DARPA WNaN network architecture. 2011 – *MILCOM 2011 Military Communications Conference*, 2258–2263. doi: http://doi.org/10.1109/milcom.2011.6127657
6. Jain, A. K., Murty, M. N., Flynn, P. J. (1999). Data clustering. *ACM Computing Surveys (CSUR), 31* (3), 264–323. doi: http://doi.org/10.1145/331499.331504
7. Sumaiya Begum, D., Nithya, R., Prasanth, K. (2014). Energy Efficient Hierarchical Cluster Based Routing Protocols In WSN – A Survey. *International Journal for Innovative Research in Science & Technology, 1* (7), 261–266.
8. Pelillo, M. (1999). Replicator Equations, Maximal Cliques, and Graph Isomorphism. *Neural Computation, 11* (8), 1933–1955. doi: http://doi.org/10.1162/089976699300016034
9. Priluckii, M. Kh., Afraimovich, L. G. (2006). Mnogoindeksnye zadachi raspredeleniiia resursov v ieirarkhicheskikh sistemakh. *Avtomatamika i telemekhanika, 6*, 194–205.
10. Romanenko, I. O., Shyshatskyi, A. V., Zhyvotovskiy, R. M., Petruk, S. M. (2017). The concept of the organization of interaction of elements of military radio communication systems. *Science and Technology of the Air Force of the Armed Forces of Ukraine, 1*, 97–100.

The paper considers the task of allocating the resources of an automated control system for special purposes in conditions of insufficient information on the development of the operational situation. The object of research is an automated control system for special purposes in the face of uncertainty in the operational
environment and limited computing resources. One of the most problematic places in the distribution of resources of an automated control system is the low quality of planning, distribution and use of resources of an automated system in conditions of insufficient information about the operational situation and the inability to predict the actions of the enemy. This reduces the efficiency of both the system itself and its application. The scientific problem is solved with the help of developing a model for the distribution of system resources with the possible appearance of a lot of perturbations at the input, taking into account the features of the current operational situation in the course of the armed conflict and allows forecasting the state of the automated control system. In the course of the study, the authors of the work used the basic principles of queuing theory, automation theory, the theory of complex technical systems, as well as general scientific methods of cognition, namely analysis and synthesis. The novelty of the proposed model lies in the fact that it allows to justify the decomposition of the system. This allows to present a solution to the vector optimization problem in the binary relations of conflict, assistance and indifference. It also takes into account the operational environment and allows predicting the state of the system taking into account external influences, constructing utility functions and guaranteed payoff, as well as a numerical optimization scheme on this set. The proposed model will improve the efficiency of information processing due to its distribution and rational use of available computing resources. It is advisable to use the research results when planning the configuration of the data transmission system and at the stage of operational control of the resources of these systems.

Keywords: control systems, operational environment, planning quality, binary conflict ratio, efficiency of information transfer.