Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Neuropilin-1 in the pathogenesis of preeclampsia, HIV-1, and SARS-CoV-2 infection: A review

Nitalia Naidoo a,*, Jagidesa Moodley a, Olive Pearl Khaliq a, Thajasvarie Naicker b

a Women’s Health and HIV Research Group, Department of Obstetrics and Gynaecology, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
b Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa

ARTICLE INFO

Keywords:
Neuropilin-1
Preeclampsia
HIV-1 infection
SARS-CoV-2 infection
MicroRNAs

ABSTRACT

This review explores the role of transmembrane neuropilin-1 (NRP-1) in pregnancy, preeclampsia (PE), human immunodeficiency virus type 1 (HIV-1) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Since these conditions are assessed independently, this review attempts to predict their comorbid clinical manifestations. Dysregulation of NRP-1 contributes to the pathogenesis of PE by (a) impairing vascular endothelial growth factor (VEGF) signaling for adequate spiral artery remodeling and placentation, (b) inducing syncytiotrophoblast (ST) cell apoptosis and increasing ST-derived microparticle circulation and (c) by decreasing regulatory T cell activity predisposing maternal immune intolerance. Although NRP-1 is upregulated in SARS-CoV-2 placentae, its exploitation for SARS-CoV-2 internalization and increased infectivity may alter angiogenesis through the competitive inhibition of VEGF. The anti-inflammatory nature of NRP-1 may aid its upregulation in HIV-1 infection; however, the HIV-accessory protein, tat, reduces NRP-1 expression. Upregulated NRP-1 in macrophages and dendritic cells also demonstrated HIV-1 resistance/reduced infectivity. Notably, HIV-1-infected pregnant women receiving antiretroviral therapy (ART) to prevent vertical transmission may experience immune reconstitution, impaired decidualization, and elevated markers of endothelial injury. Since endothelial dysfunction and altered immune responses are central to PE, HIV-1 infection, ART usage and SARS-CoV-2 infection, it is plausible that an exacerbation of both features may prevail in the synergy of these events. Additionally, this review identifies microRNAs (miRNAs) mediating NRP-1 expression. MiR-320 and miR-141 are overexpressed in PE, while miR-206 and miR-124-3p showed increased expression in PE and HIV-1 infection. Additionally, miR-214 is overexpressed in PE, HIV-1 and SARS-CoV-2 infection, implicating treatment strategies to reduce these miRNAs to upregulate and normalize NRP-1 expression. However, inconsistencies in the data of the role and regulation of miRNAs in PE, HIV-1, and SARS-CoV-2 infections require clarification. This review provides a platform for early diagnosis and potential therapeutic intervention of PE, HIV-1, and SARS-CoV-2 infections independently and as comorbidities.

1. Introduction

The burden of maternal mortality attributed to hypertensive disorders of pregnancy (HDP), particularly preeclampsia (PE), in low- and middle-income countries (LMICs), such as South Africa (SA), is high (Lewis, 2008; Girum and Wasie, 2017). Thus, there is an urgent need to reduce the maternal mortality ratio in SA to attain the global Sustainable Developmental Goals 2016–2030 (World Health Organization, 2015; United Nations, 2016; National Committee for Confidential Enquiry into Maternal Deaths, 2018). Due to the high prevalence of human immunodeficiency virus type 1 (HIV-1), SA has the highest antiretroviral therapy (ART) roll out globally including the use of these drugs for the

Abbreviations: Akt, Protein kinase B; ART, Antiretroviral therapy; COVID-19, Coronavirus disease 2019; FGR, Fetal growth restriction; HDP, Hypertensive disorders of pregnancy; HIV-1, Human immunodeficiency virus type 1; LMICs, Low- and middle-income countries; NRP-1, Neuropilin-1; PI3K, Phosphatidylinositol 3-kinase; PGF, Placental growth factor; PMTCT, Prevention of mother-to-child transmission; PE, Preeclampsia; SARS-CoV-2, Severe acute respiratory coronavirus 2; SEMA, Semaphorin; sFlt-1, Soluble fms-like tyrosine kinase 1; ST, Syncytiotrophoblast; STBM, Syncytiotrophoblast microparticles; tat, Transactivator of transcription protein; Tregs, CD4+ regulatory T cells; VEGF, Vascular endothelial growth factor; VEGFR, VEGF receptor.

* Corresponding author.

E-mail address: naickera@ukzn.ac.za (N. Naidoo).

https://doi.org/10.1016/j.virusres.2022.198880
Received 30 May 2022; Received in revised form 24 July 2022; Accepted 25 July 2022
Available online 26 July 2022
0168-1702/© 2022 Elsevier B.V. All rights reserved.
prevention of mother-to-child transmission (PMTCT) (Pattinson, 2014; Woldesenbet et al., 2018). Increased PE prevalence and mortality rates have been associated with adverse effects of HIV-1 infection and ART usage (Frank et al., 2004; Sebitloane and Moodley, 2017a; Sebitloane and Moodley, 2017b). Moreover, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, causing the coronavirus disease (COVID-19) pandemic, has devastated the South African healthcare system. Since PE and HIV-1 infection increases susceptibility to COVID-19 morbidity and mortality, it is urgent to establish the relationship between PE, HIV-1 infection, ART usage, and COVID-19 (Brown et al., 2021; Naidoo et al., 2021).

The transmembrane neuropilin-1 (NRP-1) protein is a multifunctional signaling protein involved in cell migration and invasion, angiogenesis, tumor progression, SARS-CoV-2 cell entry, axonal guidance, and immune function (Mayi et al., 2021). NRP-1 is also highly expressed in female reproductive tissue, where it plays an integral role in maintaining maternal immune tolerance and placentation (Arad et al., 2017). Previous research highlights defective NRP-1 expression in the pathogenesis of PE and its upregulation in SARS-CoV-2 infections (Ochiumi et al., 2006; Maulik et al., 2016; Xu et al., 2016; Arad et al., 2017; Cantuti-Castelvetri et al., 2020). The influence of NRP-1 in normotensive pregnant and preeclamptic women of African ancestry living with HIV-1 infection and the effects of ART superimposed on COVID-19 remains unknown. In addition, several microRNAs (miRNAs) mediating NRP-1 expression are dysregulated in PE, HIV-1 infection and COVID-19, implicating their role in the pathogenesis of these disorders. Therefore, this review discusses the role and regulation of NRP-1 in PE, HIV-1 infection, and COVID-19, as well as possible interactions/comorbidities and potential therapeutic intervention/management strategies.

2. Neuropilin-1: Structure and Function

NRP-1 is segmented into several domains, namely, the extracellular complement C1r/C1s; uEGF bone morphogenetic protein 1 (CUB) domain (denoted ‘a1/a2’); the coagulation factors V/VIII domain (denoted ‘b1/b2’); the homologous meprin protease (MAM), A5 antigen, receptor tyrosine phosphatase η and K domain (denoted ‘c’); and the intracellular PSD-95/Dlg/ZO-1 homology (PDZ) domain-binding motif (SEA) (Fig. 1) (Nakamura and Goshima, 2002). The CUB or a1/a2 domain interacts with the semaphorin (SEMA) group of ligands to modulate immune cell trafficking and CD4+ regulatory T cells (Tregs) activity as well as to maintain its stability (Nakamura and Goshima, 2002; Chuckran et al., 2020). The FV/VIII or b1/b2 domain associates with vascular endothelial growth factor (VEGF) groups promoting endothelial cell proliferation, migration, and angiogenesis (Chuckran et al., 2020). The c domain mediates homodimerization or heterodimerization of the receptors for cell adhesion and signal transduction (Nakamura and Goshima, 2002). Lastly, the SEA motif binds to the G Alpha Interacting Protein (GAIIP) C-terminus/synectin, mediating intracellular signaling and receptor internalization (Chuckran et al., 2020).

NRP-1 has a high affinity to VEGF165 and placental growth factor (PIGF), particularly type 2 (Felmeden et al., 2003). Amino acids present at the carboxyl-terminal chain of the exon 7-encoded domain of VEGF165 mediate its binding capacity and specificity for NRP-1 (Neufeld et al., 1999; Wu et al., 2010). Although VEGF-A has a weaker affinity for VEGFR-2, it is an essential mediator of angiogenesis in the presence of NRP-1, boosting endothelial cell migration and proliferation (Shibuya, 2006; Pandey et al., 2018). In the presence of VEGF165, NRP-1 binds to VEGF2, which stimulates phosphatidylinositols 3-kinase (PI3K) to activate protein kinase B (Akt), thereby facilitating angiogenesis (Hong et al., 2007). NRP-1 is a dual receptor for VEGF-A and SEMA 3A, although SEMA 3A has anti-angiogenic properties in vitro.

![Neuropilin-1 structure, ligands, and biological effects](Fig. 1. Neuropilin-1 structure, ligands, and biological effects. Adapted from (Chuckran et al., 2020). Abbreviations: C-end rule motif (CendR); CD4+ regulatory T cell (Treg); Coagulation factors, V/VIII domains (b1/b2); Complement C1r/C1s, uEGF bone morphogenetic protein 1 (CUB or a1/a2); Hepatocyte growth factor (HGF); Interleukin-10 and -35 (IL-10 and IL-35); Meprin, A-5 protein, and receptor protein-tyrosine phosphatase mu domain (c); Met/hepatocyte growth factor receptor (HGF-R); Neuropilin-1 (NRP-1); Platelet-derived growth factor (PDGF); Platelet-derived growth factor receptor alpha (PDGFR-α); P53-95/Dlg/ZO-1 homology domain (PDZ); Semaphorin (SEMA A, 3A and 4A); Serine/Threonine Kinase and Alkaline sequence (SEA); Severe acute respiratory coronavirus 2 (SARS-CoV-2); Vascular endothelial growth factor 165 (VEGF165); VEGF receptor 2 (VEGFR-2).)
causing endothelial cell adhesion, migration, and survival to be compromised (Romano et al., 2016). It is, therefore, plausible that an imbalance of competitive inhibitors such as VEGF165 and SEMA 3A will affect angiogenesis (Miao and Klagsbrun, 2000). Furthermore, NRP-1 is a crucial component required for initiating the primary immune response (Tordjman et al., 2002; Vadasz et al., 2010). In addition, it facilitates interactions between dendritic and Treg cells, thereby contributing to peripheral tolerance (Sarris et al., 2008; Vadasz et al., 2010). Finally, the pro-angiogenic and immune functions of NRP-1 are also essential for normal successful pregnancy.

3. Neuropilin-1 in normal pregnancy

NRP-1 is highly expressed in the human decidua, syncytiotrophoblast (ST) and extravillous trophoblast cells, endothelial cells of placental villous capillaries and vessels, where it plays a fundamental role in establishing and sustaining the maternal-fetal microenvironment (Baston-Buest et al., 2011). Halder et al., reported an upregulation of NRP-1 in the decidual bed of mice (Halder et al., 2006). Baston-Buest et al., demonstrated a strong mRNA and protein expression of NRP-1 in trophoblast cells in vitro and showed that this expression occurred across all three trimesters of pregnancy; the highest expression occurring in the first trimester with a decline to moderate/low expression in late pregnancy (Baston-Buest et al., 2011). This observation may contribute to the formation of new blood vessels early in pregnancy to facilitate implantation and placentation (Krüssel et al., 2001).

During implantation, alloantigens of paternal origin are expressed by the embryo and contribute to inflammation (Robertson et al., 2018). Human chorionic gonadotropin (hCG) is secreted by the blastocyst immediately after fertilization and has chemotactic properties that recruit Tregs (Schumacher et al., 2009). The presence and activation of Tregs at the maternal-fetal interface are essential for physiological adaptation that prevents alloantigen-associated inflammation and establishes immune tolerance (Guerin et al., 2009; Moldenhauer et al., 2019). Tregs control effector immunity, suppress inflammation and facilitate maternal vascular adaptations, enabling trophoblast invasion and blood perfusion to the developing fetus (Robertson et al., 2019). Reduced Tregs or a lack of functional competency have been linked to idiopathic infertility and recurrent miscarriage, as well as pregnancy problems such as PE and fetal growth restriction caused by placental insufficiency (Schumacher et al., 2009; Moldenhauer et al., 2019; Robertson et al., 2019).

NRP-1, in addition to its involvement in tumor angiogenesis, exacerbates Treg cell suppression and restriction of long-lasting CD8+ T cell responses (Chuckran et al., 2020). NRP-1 is highly expressed by Tregs and is required for intrinsic cell stability (Chuckran et al., 2020). In miscarriage and ectopic pregnancies, reduced hCG secretion by the blastocyst hinders Treg cell recruitment and function at the maternal-fetal interface (Schumacher et al., 2009). Furthermore, reduced Treg cell activity is significantly attributed to its decreased expression of NRP-1, forkhead box P3 (Foxp3), interleukin (IL-1, IL-6 and IL-8) and syncytiotrophoblast microparticles (STBM) which further deter eNOS and prostaglandin I2 (PGI2) production for effective vasodilation (Moghaddas Sani et al., 2019). This is achieved by leukocyte recruitment and subsequent oxidative/nitrosative stress (Paladugu et al., 2003). Additionally, an incline of agonist autoantibodies against angiotensin receptors (ATI-AA) released from the preeclamptic placenta facilitates angiotensin II (Ang II) receptor sensitivity and increases placental oxidative stress (Brewer et al., 2013; Campbell et al., 2018). These events ultimately lead to increased vasoconstriction predominantly by elevated endothelin-1 (ET-1) circulation, which is then sustained by calcium influx and vascular resistance during endothelial damage in PE, as seen in Fig. 2 (Maynard et al., 2003; Touyz et al., 2018).

5. Neuropilin-1 in preeclampsia

NRP-1 expression is reduced in the ST villous layer of PE placentae compared to normotensive pregnancies, indicating its involvement in the development of PE (Arad et al., 2017). Another study revealed that NRP-1 and VEGF were significantly lower in both PE and homocysteine-induced PE in mice, predisposing endothelial damage seen in PE (Xu et al., 2016). Yang et al., showed that increased NRP-1 expression, regulated by RNA-binding protein [quaking I-5 (QKI-5)], significantly enhanced trophoblast proliferation in vitro and in vivo. In addition, these authors showed significantly reduced expressions of QKI-5 and NRP-1 in PE placentae as well as in trophoblasts exposed to hypoxic conditions (Yang et al., 2021). Furthermore, QKI-5 directly interacted with the 3′-UTR region of NRP-1 to mediate cell proliferation and migration via matrix metalloprotease-9 (Yang et al., 2021). FGR pregnancies complicated with absent end-diastolic flow in the umbilical artery showed reduced placental NRP-1 expression, correlating with PE development (Maulik et al., 2016). NRP-1 is also downregulated in pregnancies following assisted reproductive technologies, a known risk factor of PE development (Omani-Samani et al., 2020).

In addition to the pro-angiogenic implication of reduced NRP-1 in PE, the receptor also regulates apoptosis which is also associated with the pathogenesis of PE (Ochiimi et al., 2006). Shedding of STBM from the placenta into maternal blood occurs in normal pregnancies and is exacerbated during PE due to elevated apoptosis or aponecrosis

N. Naidoo et al.
Virus Research 319 (2022) 198880
Fig. 2. Maternal endothelial dysfunction in preeclampsia. Adapted from (Naidoo et al., 2021). Abbreviations: Angiotensin II (Ang II); Endothelial nitric oxide synthase (eNOS); Endothelin-1 (ET-1); Hypoxia-inducible factor (HIF); Interleukin-1, 6, and 8 (IL-1, IL-6, and IL-8); Nitric oxide (NO); Prostaglandin (PGI2); Protein kinase C (PKC); Placental growth factor (PIGF); Reactive oxygen species (ROS); Soluble endoglin (sEng); Soluble fms-like tyrosine kinase-1 (sFlt-1); Syncytiotrophoblast microparticles (STBM); Transforming growth factor-β (TGF-β); Tumor necrosis factor-α (TNF-α); Thromboxane A2 (TXA2); Vascular endothelial growth factor (VEGF); VEGF receptor (VEGFR).

(Huppertz et al., 1998). These microparticles induce systemic inflammation (Naidoo et al., 2021). Arad et al., showed that NRP-1 (anti-apoptotic) immunostaining of the ST cells was highly concentrated within syncytiotrophoblasts (aged ST cells). This localization of NRP-1 within the syncytiotrophoblasts differs from previous descriptions of other anti-apoptotic proteins that showed reduced levels in this area (Arad et al., 2017). Notably, the STBM in PE serve as a stimulus for systemic inflammation and endothelial cell injury (Huppertz, 2010; Sharp et al., 2010).

Previous research supports the anti-apoptotic ability of NRP-1, in cancer and rheumatoid arthritis, due to the regulation of B-cell lymphoma-2 (Bcl-2) expression and Bcl-2 associated X protein (Bax) translocation (anti-apoptotic proteins) (Bachelder et al., 2001; Kim et al., 2006; Ochiumi et al., 2006; Riese et al., 2012). Therefore, reduced expression of NRP-1 in preeclamptic placentae may contribute to the apoptotic process (Arad et al., 2017). PE is also associated with elevated apoptosis of extravillous trophoblasts cells (Naicker et al., 2013). mRNAs have also been implicated in the regulation of Tregs in PE, particularly in the downregulation of IR-210 and IR-155, affecting maternal immune tolerance (Chen et al., 2019; Schjenken et al., 2020). Previous studies have identified HIV-1 infection and ART usage for PMTCT as risk factors for PE due to their adverse side effects, which exacerbate the anti-angiogenic and pro-inflammatory milieu of PE (Tooke et al., 2016).

6. Neuropilin-1 in human immunodeficiency virus infection

In 2020, the number of HIV-1 infections was estimated to be 37.7 million in the global population, of which 25.4 million emanated from the African continent (World Health Organisation, 2021). The 2021 mid-year statistics showed that 8.2 million South Africans are reportedly living with HIV-1 infection, including women of child-bearing age and pregnant women (Stats SA, 2021). Trans-activator of transcription (tat), an HIV-1 accessory protein, has been shown to mimic VEGF; however, its involvement in angiogenesis is unclear (Padayachie et al., 2019).

Since ART is a global standard of care to improve the immunological incompetency seen in HIV-1 infection and for PMTCT, 97% of South African pregnant women living with HIV-1 infection receive various forms of ART (World Health Organization, 2010, 2019). ART restores immune function in HIV-1-infected individuals; therefore, pregnant women receiving ART may be at risk for severe comorbidity with PE (French et al., 2000; Tooke et al., 2016). Several studies highlight the impact of ART in decidualization and placentation, prompting maternal endothelial dysfunction and the hypertensive hallmark in PE (Autran et al., 1999; Powis and Shapiro, 2014; Hernández et al., 2017; Song et al., 2018; Naidoo et al., 2021).

An upregulation in VEGFR-2 and its co-receptor NRP-1 occurs in podocytes of HIV-1-1 transgenic mice, possibly attributed to the anti-inflammatory nature of NRP-1 (Korgaonkar et al., 2008). Notably, tat is an HIV-1 regulatory protein that optimizes viral infectivity (Debiaisieux et al., 2012). Its arginine and lysine sequence closely resembles that of VEGF (Albini et al., 1996; Zhou et al., 2013). Therefore, tat protein hinders VEGF-induced extracellular-signal-regulated kinase (ERK) activation and mitogenesis in endothelial cells via competitive inhibition of VEGFR and NRP-1 signaling. This downregulates angiogenesis in vitro at concentrations similar to those which inhibit VEGF receptor binding (Jia et al., 2001). A recent novel study identified NRP-1 as an antiviral protein for the treatment of HIV-1 infection (Wang et al., 2022). Wang et al., observed resistance to HIV-1 infection in myeloid cells [macrophages and dendritic cells (DCs)] due to their high expression of transmembrane NRP-1 compared to CD4+ T cells (Wang et al., 2022). Furthermore, this study demonstrated that NRP-1 silencing facilitated the transmission of HIV-1 in macrophages and DCs significantly and amplified virion infectivity in these cells (Wang et al., 2022). However, the lack of literature on NRP-1 in HIV-1 infection prompts future research examining its regulation in viral infection.

7. COVID-19: The global pandemic

The coronavirus disease (COVID-19) has claimed more than 6.2
Virus Research 319 (2022) 198880

N. Naidoo et al.

million lives, with approximately 525 million confirmed cases world-
wide, as of May 2022 (World Health Organization, 2022). Prior to the
COVID-19 vaccine rollout, pregnant women with COVID-19 were more
susceptible to adverse outcomes requiring hospitalization and intensive
care unit admission than non-pregnant women (Sheffield, 2021). Fifty-five percent of the hospitalized patients were asymptomatic, while
one-fifth had underlying medical conditions; moreover, a two percent
miscarriage rate was also noted (Sheffield, 2021). At present, over 11.3
billion vaccine doses have been administered globally, which show
promising protective properties against severe SARS-CoV-2 infection
(World Health Organization, 2022). Observational studies raised no
major concerns of adverse effects and short-term obstetric outcomes
following vaccinations in pregnant women (Bleicher et al., 2021;
Bookstein Perez et al., 2021; Goldshltein et al., 2022). Moreover, a
significant secretion of SARS-CoV-2-specific IgA and IgG was reported in
human milk implicating the possibility of passive immunity transfer
from vaccinated women to infants through breastfeeding (Valcarce
et al., 2021). Similar to the general population, pregnant women showed
high vaccine effectiveness during SARS-CoV-2 infection; however, long-term surveillance is still underway (Dagan et al., 2021; Goldshltein
et al., 2021).

Endothelial dysfunction and inflammation are central to the systemic
manifestations of COVID-19 (Kaur et al., 2020). Following SARS-CoV-2
infection, the lung pathology of moderate/severe cases presented with
neutrophilia (Fox et al., 2020). This observation was accompanied by an
upregulation of expressions of E-selectin, P-selectin, adhesins, cadher-
ins, as well as disregulated angiogenic factors (VEGFR-1, VEGFR-2,
PECAMs, ICAMs, and VCAM-1) and hypoxia (Kaur et al., 2020). Alter-
ations of these circulating proteins increase vascular permeability in
pulmonary and acute capillaries with subsequent expulsion of neutro-
phils into the alveolar space, compromising the alveolar-capillary bar-
rier (Herold et al., 2013; Kaur et al., 2020). Additionally, the excess
circulating neutrophils may promote neutrophil extracellular traps
(NETs), which aggregate with platelets and induce coagulation
(Sørensen and Borregaard, 2016; Zuo et al., 2020).

Increased chemotaxis prompts the macrophage activation syndrome
(MAS) and upregulates pro-inflammatory cytokines such as IL-6 and
TNF-α (Schulert and Grom, 2015). Moreover, reactive oxygen species
generated by neutrophils damage the endothelium and further contribute to the COVID-19 cytokine storm (Soy et al., 2020). The in-
flammatory cascade promotes endothelial activation and capillary
leakage, resulting in circulatory collapse and distress (Jin et al., 2020).
Persistent endothelial dysfunction expedites the clotting cascade and
microvascular obstruction, leading to multi-organ failure (Kaur et al.,
2020).

Notably, the endothelial pathology observed in COVID-19 positive
individuals closely resembles the pro-inflammatory state of PE (Naidoo
et al., 2021). COVID-19 infected placentas showed hypoxia with a
subsequent decline in maternal vascular perfusion, implying the pres-
ence of systemic inflammation (Shanes et al., 2020). Furthermore, an
incline was observed in the sFlt-1/PIGF ratio in COVID-19 positive pa-
tients compared to COVID-19 negative pneumonia and healthy patients
(Giordini et al., 2020). Similarly, an increased sFlt-1/PIGF ratio is noted in
PE and is currently used in its diagnosis and management (Hernández-Pacheco et al., 2020). Therefore, it is suggestive that COVID-19
increases the risk of PE development and vice versa (Mendoza et al.,
2020; Phoswa and Khaliq, 2020).

8. Neuropilin-1 in SARS-CoV-2 infection

The angiotensin-converting enzyme 2 (ACE2) receptor, previously
identified as an entry receptor for SARS-CoV and Middle East respiratory
syndrome coronavirus (MERS-CoV), displays a higher affinity for the
SARS-CoV-2 receptor-binding domain (RBD) compared to the SARS-CoV
RBD (Shang et al., 2020). Similar to SARS-CoV and MERS-CoV, the
SARS-CoV-2 spike protein is proteolytically cleaved at the S1/S2 site for
successful infection of the human host cell (Wrobel et al., 2020). Studies
highlight several cofactors such as transmembrane serine protease 2
(TMPSRSS2), TLR4 (Toll-like receptor 4), furin, endosomal cathepsin B/L
(CatB/L), heparan sulfate proteoglycans (HSPGs) and NRP-1 that aid
ACE2 receptors by playing an integral role in SARS-CoV-2 spike protein
priming and increasing viral infectivity (Evans and Liu, 2021; Zhao
et al., 2021).

NRP-1 is directly involved in SARS-CoV-2 internalization and
infectivity (Cantuti-Castelvetri et al., 2020). Upon infection, the
SARS-CoV-2 spike protein is cleaved by endogenous furin thereby
exposing the C-end rule (CendR) motif in S1 (Coutard et al., 2020). Since
the CendR binding pocket lies within the b1 domain of NRP-1, the NRP-1
binds to the exposed C-terminal RRAR amino acid motif (res. 682–685)
of the S1 subunit, potentiating increased viral endocytic internalization,
 viral cargo dissemination and infectivity (Fig. 3) (Coutard et al., 2020;
Balsi et al., 2021). The binding of NRP-1 catalyzes viral spike protein
complex destabilization thereby activating the detachment of S2 from the S1 subunit. Subsequently, the S2 domain undergoes fusion and
replication within the host cell (Gadowska-Sawczuk and Mroczko,
2021). Notably, VEGF165 also binds to the b1 domain of NRP-1, thereby
implicating competitive dysregulation of angiogenesis (Pan et al., 2007;
Daly et al., 2020). The capsid proteins of several viruses contain CendR
motifs which may be exposed following proteolytical cleavage (Teesalu
et al., 2009). Similar to SARS-CoV-2 exploitation of NRP-1, other viruses
have also shown to manipulate the CendR motif for host cell infection
(Table 1).

The dissemination and dysregulation of key COVID-19 mediators
(ACE 2, TMPRSS2, and NRP-1) in male and female reproductive tissues
may be linked to infertility issues following infection (Rajak et al.,
2021). Additionally, the COVID-19 induced cytokine storm promotes
heightened immune responses oxidative stress, and fever which may
impair steroidogenesis, gametogenesis, and reproductive cycles in
infected patients (Rajak et al., 2021). SARS-CoV-2 complicated preg-
nancies are reportedly more susceptible to adverse fetal outcomes such
as intrauterine demise (Hcini et al., 2021). These observations align with
the excessive viral load noted in infected placentas, particularly in ST
cells and at the maternal-fetal interface (Argueta et al., 2021). Further-
more, a large influx of maternal immune cells, including mac-
rophages, was observed in the intervillous spaces of infected placentas,
predisposing tissue inflammation (Argueta et al., 2021). NRP-1 is highly
localized within the ST cells, showing a greater affinity for infection than
placental endothelial cells following exposure to SARS-CoV-2 or
SARS-CoV-2 spike protein pseudo-typed lentivirus in placental culture
ex vivo. However, infectivity was significantly diminished by blocking
antibodies against ACE 2 and NRP-1 (Argueta et al., 2021). NRP-1
expression is upregulated in SARS-CoV-2 infected cells but not in un-
infected cells (Cantuti-Castelvetri et al., 2020). The utilizing of NRP-1
receptors for SARS-CoV-2 entry may potentially hinder the physiolog-
ic signaling action of NRP-1 in pregnancy, thereby dysregulating
angiogenesis, Treg function, and possibly predisposing PE development.

Interestingly, NRP-1 facilitates SARS-CoV-2 entry via furin cleavage
(Coutard et al., 2020). Furin is significantly upregulated during labor to
serve as a prerequisite for inducing uterine contractions (Zhang et al.,
2021). This increase in furin during normal delivery may be a risk factor
for SARS-CoV-2 placental infection and vertical transmission due to high
placental NRP-1 expression; however, there is a decline in NRP-1
expression as pregnancy progresses into the third trimester (Bas-
ton-Buest et al., 2011). Therefore, the risk associated with normal
vaginal delivery during SARS-CoV-2 infection requires evaluation.

Reports of blood coagulation in SARS-CoV-2 infection were attrib-
uted to the release of inflammatory factors following endothelial injury
(Machhi et al., 2020). Bechet et al., demonstrated an upregulation in
tissue factors with subsequent vasconstriction and thrombi formation
following in vitro NRP-1 inhibition in tumor vasculature by a photo-
sensitizing peptide [a chlorin conjugated with a heptapeptide (ATWLPPR)] (Bechet et al., 2010). Likewise, the competitive inhibition
of VEGF ligands by the SARS-CoV-2 spike protein at the B1 domain of NRP-1 may induce endothelial dysfunction and systemic coagulation, similarly to PE (Bonnar et al., 1976; Mayi et al., 2021). Although an upregulation of NRP-1 facilitates endothelial cell adhesion and permeability as well as tightly regulates immune cell signaling and proliferation, its role in SARS-CoV-2 infection is yet to be elucidated (Siri et al., 2021). Furthermore, SARS-CoV-2 infected pregnant women exhibited PE-like symptoms such as endothelial dysfunction and hypertension, associating COVID-19 with the onset and severity of PE (Naidoo et al., 2021).

A dysregulation of NRP-1 in pregnancy is a risk factor for PE, HIV-1 infection and SARS-CoV-2 infection. Fig. 4 explores HIV-1 infection, ART usage, and SARS-CoV-2 infection in the pathogenesis of PE.

9. The influence of microRNAs on neuropilin-1 in preeclampsia, HIV-1 infection and SARS-CoV-2 infection

MicroRNAs are non-coding RNA molecules comprising approximately 22 nucleotides (Bartel, 2018). They function in RNA silencing and post-transcriptional mediation of gene expression via complementary base-pairing with messenger RNA (mRNA) (Bartel, 2009; Fabian et al., 2010). MiRNAs achieve this by inducing mRNA cleavage, mRNA destabilisation by shortening their poly(A) tails and controlling the mRNA translation rate into ribosomal proteins (Bartel, 2009; Fabian et al., 2010). They target about 60% of the human genome and may serve as potential biomarkers for many diseases (Friedman et al., 2009). Since miRNAs offer fine-tuning of protein synthesis, imbalances in their expression may have pathological outcomes (Abel et al., 2021). A systematic approach was employed to isolate miRNAs regulating the NRP1 gene. Table 2 shows the regulation of NRP-1 in an environment where the identified miRNA is overexpressed. Moreover, Table 2 notes the expression status of the miRNAs in PE, HIV-1 infection and COVID-19.

MiRmap Web (http://mirmap.ezlab.org) is a comprehensive prediction of miRNA target repression strength. The target repression strength is determined by combining thermodynamic, evolutionary, and
probabilistic factors as well as sequence-based features to predict possible binding regions and the ability of a given miRNA to hinder gene expression (Vejnar and Zdobnov, 2012). Using the MiRmap Web, this review further highlights the potential of identified miRNAs and their subgroups that bind and repress the NRP1 gene (Table 3).

Previous literature highlights the inflammatory and angiogenic status of these miRNAs, seen in Fig. 5, which is central to their regulation in PE, HIV-1 infection and COVID-19. Table 2 demonstrates that four miRNAs (miR-200c, miR-141, miR-214, and miR-29b) are common to pro-inflammatory conditions such as PE and COVID-19, implicating their role in evoking the immune response, similarly to their role in other inflammatory diseases (Reddy et al., 2012; Chen et al., 2020; Guo et al., 2021). Notably, these four miRNAs have been previously described as anti-angiogenic miRNAs (Zhao et al., 2017; Dong et al., 2019; Tang et al., 2020; Witvrouwen et al., 2021). Furthermore, anti-angiogenic miRNAs, miR-206, miR-320, miR-365, miR-181b, and miR-24 were overexpressed in PE; however, miR-181b and miR-24 were anti-inflammatory in previous studies (Wu et al., 2014; Fu et al., 2016).

![Fig. 4. Neurophilin-1 in PE, HIV-1 and SARS-CoV-2 infection. Abbreviations: Angiopoietin 2 (Ang2); Angiotensin-converting enzyme 2 (ACE2); CD4+ regulatory T cell (Treg); Coronavirus disease 2019 (COVID-19); Dendritic cells (DCs); Extravillous trophoblast (EVT); Human immunodeficiency virus type 1 (HIV-1); Interferon gamma (IFN-γ); Matrix metalloproteinase (MMP); Neurophilin-1 (NRP-1); Nuclear factor kappa B (NF-κB); Phosphatidylinositol 3-kinase (PI3K); Phosphate group (P); Placental growth factor (PlGF); Preeclampsia (PE); Protein kinase B (Akt); Reactive oxygen species (ROS); Severe acute respiratory coronavirus 2 (SARS-CoV-2); Signal transducer and activator of transcription 3 (STAT3); Soluble endoglin (sEng); Soluble fms-like tyrosine kinase-1 (sFlt-1); Syncytiotrophoblast microparticles (STBM); Trans-activator of transcription protein in HIV-1 (tat); uterine natural killer (uNK); Vascular cell adhesion molecule 1 (VCAM-1); Vascular endothelial growth factor 165 (VEGF165); VEGF receptor 2 (VEGFR-2).

Table 2
MicroRNA
miR-206
miR-320
miR-365
miR-181b
miR-206
miR-124-3p
miR-199a-5p
miR-24
miR-200c
miR-141
miR-214
miR-130a
miR-29b
Table 3

MicroRNA	Potential Binding Regions on NRP-1	Individual MicroRNA Repression Strength (%)	MicroRNA Repression Strength (%)
miR-320b	(1) 33467229 (chr 10) 1775	(1) 42.97	93.85
	(2) 33467870 (chr 10) 1134	(2) 72.58	
	(3) 33468799 (chr 10) 205	(3) 94.87	
miR-320a	(1) 33467229 (chr 10) 1775	(1) 42.70	93.71
	(2) 33467870 (chr 10) 1134	(2) 72.19	
	(3) 33468799 (chr 10) 205	(3) 94.77	
miR-320c	(1) 33467229 (chr 10) 1775	(1) 41.80	93.47
	(2) 33467870 (chr 10) 1134	(2) 70.09	
	(3) 33468799 (chr 10) 205	(3) 94.84	
miR-320d	(1) 33467229 (chr 10) 1775	(1) 40.40	92.85
	(2) 33467870 (chr 10) 1134	(2) 71.45	
	(3) 33468799 (chr 10) 205	(3) 93.91	
miR-124-3p	(1) 33467313 (chr 10) 1691	(1) 29.03	92.32
	(2) 33467063 (chr 10) 1941	(2) 73.13	
	(3) 33468249 (chr 10) 755	(3) 94.06	
miR-214-3p	(1) 33468331 (chr 10) 691	(1) 80.77	88.84
	(2) 33467861 (chr 10) 1143	(2) 86.14	
miR-206	(1) 33466460 (chr 10) 2544	(1) 93.04	85.95
miR-199a-5p	(1) 33468275 (chr 10) 729	(1) 76.93	85.27
	(2) 33468324 (chr 10) 680	(2) 80.59	
miR-24-3p	(1) 33468887 (chr 10) 117	(1) 92.07	84.61
miR-130a-3p	(1) 33466663 (chr 10) 2141	(1) 89.38	81.11
miR-141-3p	(1) 33466805 (chr 10) 2199	(1) 82.38	74.20
miR-320e	(1) 33468800 (chr 10) 294	(1) 53.78	65.56
	(2) 33467871 (chr 10) 1133	(2) 56.46	
miR-199a-3p	(1) 33467526 (chr 10) 1478	(1) 59.98	55.95
miR-181b-5p	(1) 33467977 (chr 10) 1027	(1) 54.44	51.43
miR-365b-3p	(1) 33467687 (chr 10) 1317	(1) 53.40	50.62
miR-365a-3p	(1) 33467687 (chr 10) 1317	(1) 53.40	50.62
miR-214-5p	(1) 33468915 (chr 10) 1317	(1) 41.97	41.55
miR-200c-3p	(1) 33467446 (chr 10) 1558	(1) 23.84	26.22
miR-29b-2-5p	(1) 33465609 (chr 10) 2495	(1) 19.88	22.41
miR-141-5p	(1) 33468088 (chr 10) 916	(1) 6.21	7.89
miR-124-5p	(1) 33468337 (chr 10) 667	(1) 1.66	2.36

Fig. 5. The angiogenic and inflammatory status of identified microRNAs.
10. Neurupilin-1 for therapeutic interventions in SARS-CoV-2 infection

The exploitation of NRP-1 for SARS-CoV-2 cell entry prompted studies to deter spike protein interaction at the b1b2 domain of NRP-1 (Chapoval and Keegan, 2021). A novel study observed a significant reduction of cell infection following pre-incubation of SARS-CoV-2 pseudovirus with recombinant soluble extracellular b1b2 domain of NRP-1 (Cantuti-Castelvetri et al., 2020). Several amino acid residues at the NRP-1 binding site (Y297, W301, N313, T316, P317, E319, D320, S346, E348, T349, K351, and Y353) have become a target of interest to block SARS-CoV-2 S1 interaction (Klaewkla et al., 2021; Charoute et al., 2022). Two monoclonal antibodies and a known NRP-1 antagonist molecule, EG00229, exhibited a considerable decrease in SARS-CoV-2 infection in cell culture by disrupting the interaction between the spike protein and the b1 domain of NRP-1 through high specificity binding of the NRP-1 CendR motif (Daly et al., 2020). Later comparisons highlighted that EG0017, R683G and A684M showed a greater affinity for the NRP-1 CendR binding region possibly due to interactions with more amino acid residues than EG00229 (Klaewkla et al., 2021). Furthermore, the R683G and A684M peptides also displayed a higher NRP-1 binding efficiency than the SARS-CoV-2 S1 CendR heptadptide (Klaewkla et al., 2021).

The computational screening of five compounds showing potential against COVID-19 namely, Nafamostat, 5-(E)-(hydroxymino)methyl)-2-methyl-N-(1R)-1-(naphthalen-1-yl)ethyl benzamide (Y96), Selinexor, Ebastine and N-(4-methoxypryridin-2-yl)-2(naphthalen-2-yl) acetamide (UGS) reveal lower NRP-1 docking scores (-8.2 kcal/mol) and more active key residue interactions than EG00229 and EG01377 (-6.6 and -7.1 kcal/mol, respectively (Charoute et al., 2022). A recent study by Katopodis et al., identified three miRNAs (miR-148a-3p, miR-152-3p and miR-148b-3p) that may effectively regulate both NRP-1 and a disintegrin and metalloproteinase 17 (ADAM17), a sheddase responsible for ACE 2 receptor cleavage to its soluble form for potential decay of SARS-CoV-2 cell entry (Mulangu et al., 2019; Katopodis et al., 2022). Furthermore, miR-587 was common between NRP-1 and TLR4 (Katopodis et al., 2022). These findings provide a platform for effective COVID-19 treatment and clinical management.

11. Conclusion

NRP-1 is associated with the pathogenesis of PE, HIV-1 and SARS-CoV-2 infection. Various studies show dysregulated NRP-1 expression, which predisposes endothelial injury; therefore, an exacerbation of endothelial cell dysfunction and heightened immune responses would dominate in the synergy of these conditions. Post-transcriptional regulation of NRP-1 expression by miRNAs has been reported in PE, HIV-1 and SARS-CoV-2 infection. MiR-320 and miR-141 are overexpressed in PE, while miR-206 and miR-124-3p showed an increased expression in PE and HIV-1 infection. Additionally, miR-214 is overexpressed in PE, HIV-1 infection and COVID-19, implicating novel treatment strategies that reduce these miRNAs to upregulate and normalize NRP-1 expression.

Future recommendations and clinical perspectives

Further studies are warranted to validate the influence of HIV-1 infection on NRP-1 expression. In light of the optimal conditions established following the incline in labor-induced furin in severe COVID-19 complicated pregnancies, an assessment of normal vaginal delivery as a risk factor of SARS-CoV-2 vertical transmission requires scrutiny. NRP-1-focused therapies for COVID-19, including miRNA suppression of NRP-1, are promising; however, the expression of miRNAs in conditions such as PE, HIV-1 infection and COVID-19 necessitates great examination during therapeutic transfection studies involving comorbidities. Moreover, inconsistencies in the data on miRNA regulation in PE, HIV-1 infection and COVID-19 require clarification.
Biswas, S., Haleyurgirisetty, M., Lee, S., Hewlett, I., Devadas, K., 2019. Development and validation of plasma miRNA biomarker signature panel for the detection of early HIV-1 infection. J. Infect. Dis. 219 (9), 1390–1398. https://doi.org/10.1093/infdis/jix212.

Bleeker, L., Kadoor-Perroz, E., Sagi-Dain, L., Sagi, S., 2021. Early exploration of COVID-19 vaccination safety and effectiveness during pregnancy: interim descriptive data from a prospective observational study. Vaccine 39 (44), 6535–6538. https://doi.org/10.1016/j.vaccine.2021.09.043.

Bonnar, J., Redman, C.W., Denson, K.W., 1976. The role of coagulation and fibrinolysis in preeclampsia. Perspect. Nephrol. Hypertens. 5, 145–151. https://doi.org/10.1097/0000262.00000100-000003.

Bookstein Peretz, S., Regev, N., Novick, L., Nachshol, M., Goffer, E., Ben-David, A., 2016. NRP1 is targeted by miR-130a and miR-130b, and is involved in preeclampsia. Mol Med Rep 19 (2), 1150–1155. https://doi.org/10.3892/mmr.2015.4556.

Biswas, S., Haleyurgirisetty, M., Lee, S., Hewlett, I., Devadas, K., 2019. Development and validation of plasma miRNA biomarker signature panel for the detection of early HIV-1 infection. J. Infect. Dis. 219 (9), 1390–1398. https://doi.org/10.1093/infdis/jix212.

Bleeker, L., Kadoor-Perroz, E., Sagi-Dain, L., Sagi, S., 2021. Early exploration of COVID-19 vaccination safety and effectiveness during pregnancy: interim descriptive data from a prospective observational study. Vaccine 39 (44), 6535–6538. https://doi.org/10.1016/j.vaccine.2021.09.043.

Bonnar, J., Redman, C.W., Denson, K.W., 1976. The role of coagulation and fibrinolysis in preeclampsia. Perspect. Nephrol. Hypertens. 5, 145–151. https://doi.org/10.1097/0000262.00000100-000003.

Bookstein Peretz, S., Regev, N., Novick, L., Nachshol, M., Goffer, E., Ben-David, A., 2016. NRP1 is targeted by miR-130a and miR-130b, and is involved in preeclampsia. Mol Med Rep 19 (2), 1150–1155. https://doi.org/10.3892/mmr.2015.4556.

Biswas, S., Haleyurgirisetty, M., Lee, S., Hewlett, I., Devadas, K., 2019. Development and validation of plasma miRNA biomarker signature panel for the detection of early HIV-1 infection. J. Infect. Dis. 219 (9), 1390–1398. https://doi.org/10.1093/infdis/jix212.

Bleeker, L., Kadoor-Perroz, E., Sagi-Dain, L., Sagi, S., 2021. Early exploration of COVID-19 vaccination safety and effectiveness during pregnancy: interim descriptive data from a prospective observational study. Vaccine 39 (44), 6535–6538. https://doi.org/10.1016/j.vaccine.2021.09.043.

Bonnar, J., Redman, C.W., Denson, K.W., 1976. The role of coagulation and fibrinolysis in preeclampsia. Perspect. Nephrol. Hypertens. 5, 145–151. https://doi.org/10.1097/0000262.00000100-000003.

Bookstein Peretz, S., Regev, N., Novick, L., Nachshol, M., Goffer, E., Ben-David, A., 2016. NRP1 is targeted by miR-130a and miR-130b, and is involved in preeclampsia. Mol Med Rep 19 (2), 1150–1155. https://doi.org/10.3892/mmr.2015.4556.

Biswas, S., Haleyurgirisetty, M., Lee, S., Hewlett, I., Devadas, K., 2019. Development and validation of plasma miRNA biomarker signature panel for the detection of early HIV-1 infection. J. Infect. Dis. 219 (9), 1390–1398. https://doi.org/10.1093/infdis/jix212.

Bleeker, L., Kadoor-Perroz, E., Sagi-Dain, L., Sagi, S., 2021. Early exploration of COVID-19 vaccination safety and effectiveness during pregnancy: interim descriptive data from a prospective observational study. Vaccine 39 (44), 6535–6538. https://doi.org/10.1016/j.vaccine.2021.09.043.

Bonnar, J., Redman, C.W., Denson, K.W., 1976. The role of coagulation and fibrinolysis in preeclampsia. Perspect. Nephrol. Hypertens. 5, 145–151. https://doi.org/10.1097/0000262.00000100-000003.

Bookstein Peretz, S., Regev, N., Novick, L., Nachshol, M., Goffer, E., Ben-David, A., 2016. NRP1 is targeted by miR-130a and miR-130b, and is involved in preeclampsia. Mol Med Rep 19 (2), 1150–1155. https://doi.org/10.3892/mmr.2015.4556.

Biswas, S., Haleyurgirisetty, M., Lee, S., Hewlett, I., Devadas, K., 2019. Development and validation of plasma miRNA biomarker signature panel for the detection of early HIV-1 infection. J. Infect. Dis. 219 (9), 1390–1398. https://doi.org/10.1093/infdis/jix212.

Bleeker, L., Kadoor-Perroz, E., Sagi-Dain, L., Sagi, S., 2021. Early exploration of COVID-19 vaccination safety and effectiveness during pregnancy: interim descriptive data from a prospective observational study. Vaccine 39 (44), 6535–6538. https://doi.org/10.1016/j.vaccine.2021.09.043.

Bonnar, J., Redman, C.W., Denson, K.W., 1976. The role of coagulation and fibrinolysis in preeclampsia. Perspect. Nephrol. Hypertens. 5, 145–151. https://doi.org/10.1097/0000262.00000100-000003.
null