Original article

Adjuvant chemotherapy could benefit early-stage ER/PR positive mucinous breast cancer: A SEER-based analysis

Hong-Fei Gao a,1, Wei-Ping Li b, a,1, Teng Zhu a, Ci-Qiu Yang a, Mei Yang a, Liu-Lu Zhang a, Fei Ji a, Min-Yi Cheng a, Jie-Qing Li a, Kun Wang a, b, *

a Department of Breast Cancer, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
b The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China

A R T I C L E   I N F O
Article history:
Received 29 June 2020
Received in revised form 15 August 2020
Accepted 7 September 2020
Available online 9 September 2020

Keywords:
Mucinous adenocarcinomas
Breast cancer
Surveillance epidemiology
And end results (SEER)
Adjuvant chemotherapy

A B S T R A C T

Purpose: The aim of this study was to explore the value of adjuvant chemotherapy in patients with early-stage ER/PR-positive mucinous carcinoma.

Methods: We identified early-stage ER/PR-positive mucinous carcinoma patients in the Surveillance, Epidemiology, and End Results (SEER) database. We used propensity-score matching (PSM) analysis to eliminate selection bias and differences in baseline characteristics. Univariate and multivariate analyses were performed to identify significant prognostic factors. The primary outcomes were overall survival (OS) and breast cancer-specific survival (BCSS), which were evaluated with the Kaplan-Meier method.

Results: After propensity score matching, 805 pairs were selected. Patients with early-stage ER/PR-positive mucinous adenocarcinoma in the chemotherapy group had a better OS, but not BCSS, than those in the nonchemotherapy group after PSM (OS: p < 0.001; BCSS; p = 0.285). After stratifying by tumor size and lymph node status, adjuvant chemotherapy could significantly improve the OS of early-stage ER/PR-positive patients with tumors larger than 3 cm (p = 0.004) if they had negative lymph nodes (LNs). For patients positive LNs, the OS was significantly different between the chemotherapy group and the non-chemotherapy group when the tumors were larger than 1 cm (T = 1–2.9 cm, p = 0.006; T > 3 cm, p = 0.049, respectively).

Conclusion: Adjuvant chemotherapy maybe improves prognosis in patients with negative LNs and tumors larger than 3 cm, or patients with LNs metastasis and tumors larger than 1 cm. We suggest considering clinical characteristics meanwhile when deciding chemotherapy or not. Randomized controlled trials (RCT) are expected to confirm our results in the future.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Mucinous carcinoma is a special histologic type of breast cancer, and its incidence ranges from 1% to 6% of all invasive breast carcinomas [1–3]. Previous studies have found that mucinous breast tumors have specific characteristics, such as higher estrogen receptor (ER) and progesterone receptor (PR) expression, lower expression of human epidermal growth factor receptor 2 (HER2), lower grade, and lower risk of nodal metastasis than other types of breast tumors [4–6]. It was reported that mucinous adenocarcinoma is associated with a good prognosis and has a better prognosis than invasive carcinoma [7,8]. Adjuvant chemotherapy always plays an important role in invasive breast cancer.

Didonato stated that the majority of mucinous breast cancer is mainly treated with surgery and adjuvant therapy, including anti-estrogen therapy [9]. The National Comprehensive Cancer Network (NCCN) guidelines recommend treating mucinous breast cancer according to hormone receptor status and lymph node status. These guidelines recommend that patients who are hormone receptor-positive receive endocrine therapy alone if they have negative lymph nodes, while those who have positive lymph nodes (one or more metastases > 2 mm) are recommended to consider adjuvant endocrine therapy plus adjuvant chemotherapy [10]. However, because of the rarity of ER/PR-positive mucinous
cancer, there is no clinical study has proved that adjuvant chemotherapy can be omitted. The value of adjuvant chemotherapy in the treatment of ER/PR positive mucinous breast cancer is still uncertain. Therefore, using the Surveillance, Epidemiology, and End Results (SEER) database, we aimed to investigate the role of adjuvant chemotherapy in patients with early-stage ER/PR-positive mucinous adenocarcinoma of the breast, and these findings may provide useful information for oncologists to make more precise clinical decisions.

**Patients and methods**

**Database**

The Surveillance, Epidemiology, and End Results (SEER) database, a National Cancer Institute-sponsored program, aims to collect information about cancer incidence and outcomes, including data on patient demographics, clinicopathologic features, and cancer-associated treatment of the US population [11]. We used the latest SEER*Stat software (version 8.3.6) to conduct this study.

**Patients and variables**

In this study, we screened 10918 female early-stage ER/PR positive breast cancer patients with histologically proven mucinous adenocarcinoma between 1998 and 2016 from the SEER database. The inclusion criteria for data extraction were as follows: (1) pathologically confirmed mucinous adenocarcinoma; (2) age ≥ 20 years and surgery at the primary tumor site; and (3) available follow-up data. The following patients were excluded: (1) male patients; (2) patients with multiple cancers or a prior diagnosis of other tumors; (3) patients with distant metastasis; (4) patients with an unknown lymph node status and no surgical information; (5) patients who died within 3 months after surgery; and (6) patients with ER-negative or PR-negative cancer or an unknown ER or PR status. The patient selection process is summarized in Fig. 1. The primary end-points of interest were overall survival (OS) and breast cancer-specific survival (BCSS). OS was defined as the time from diagnosis to death or last follow-up and BCSS was defined as the...
survival time from the date of the diagnosis of breast cancer to the date of death caused by breast cancer [12]. Informed consent was not required from the patients in this study because the SEER patient information is deidentified.

Statistical analysis

The patients were divided into two groups according to whether they received chemotherapy. All statistical analyses were carried

| Variables | Data before PSM | Data after PSM |
|-----------|-----------------|----------------|
| Age (year, %) | | |
| <50 | 661 (46.7) | 1083(11.4) | <0.001 |
| ≥50 | 754 (53.3) | 8420(88.6) | <0.001 |
| Marital status (%) | | |
| Unmarried | 582(41.1) | 4597(48.4) | <0.001 |
| Married | 792(56.0) | 4476(47.1) | 0.642 |
| Unknown | 41(2.9) | 430(4.5) | 0.349 |
| Race (%) | | |
| White | 975(68.9) | 7570(79.7) | <0.001 |
| Black | 203(14.3) | 875(9.2) | 0.100 |
| Other | 237(16.7) | 1058(11.1) | 0.378 |
| Grade (%) | | |
| I/II | 1109(78.4) | 8021(84.4) | <0.001 |
| III/IV | 139(9.8) | 230(2.4) | 0.155 |
| Unknown | 167(11.8) | 1252(13.2) | 0.766 |
| Laterality (%) | | |
| Left | 713(50.4) | 4901(51.6) | 0.696 |
| Right | 700(49.5) | 4395(48.4) | 0.123 |
| Unknown | 2(0.1) | 7(0.1) | 0.653 |
| Stage | | |
| I | 432(30.5) | 6723(70.7) | <0.001 |
| II | 730(51.6) | 2585(27.2) | 0.002 |
| III | 252(17.8) | 152(1.6) | 0.001 |
| Unknown | 1(0.1) | 7(0.1) | <0.001 |
| Tumor size (cm, %) | | |
| T < 1 | 65(4.6) | 1709(18.0) | <0.001 |
| 1≤T ≤ 2.9 | 514(36.3) | 4087(43.0) | 0.766 |
| T > 3 | 415(29.3) | 975(10.3) | 0.696 |
| Unknown | 429(30.8) | 2732(28.7) | 0.123 |
| LN status (%) | | |
| Negative | 861(60.8) | 9058(95.3) | <0.001 |
| Positive | 554(39.2) | 445(4.7) | 0.653 |
| HER status (%) | | |
| Negative | 404(28.6) | 4030(42.4) | <0.001 |
| Positive | 106(7.5) | 69(0.7) | 0.960 |
| Unknown | 950(64.0) | 5404(56.9) | <0.001 |
| Surgery | | |
| Done | 1396(98.7) | 9245(97.3) | 0.002 |
| None | 19(1.3) | 238(2.7) | 0.960 |
| Radiation | | |
| Done | 869(61.4) | 4756(50.0) | <0.001 |
| None | 546(38.6) | 4747(50.0) | 0.960 |
out using the IBM SPSS Statistics software package (version 25.0). The chi-square test and Fisher’s test were used to analyze differences in clinical characteristics between the chemotherapy and nonchemotherapy groups, as appropriate. We carried out univariate and multivariate Cox proportional hazard regression analyses to identify the independent prognostic factors associated with improved OS and BCSS and reported the corresponding hazard ratios (HRs) and 95% confidence intervals (CIs). To eliminate the obvious differences in baseline covariates and inherent selection bias, we conducted a propensity score matching (PSM) analysis between the patients who underwent chemotherapy and those who did not (nonchemotherapy group). PSM is a tool for narrowing selection bias in nonrandomized studies and achieving balanced variables across treatment groups [13]. Using the chi-square test, twelve variables that may contribute to the survival of patients with mucinous adenocarcinoma were chosen for the propensity model to generate a matching ratio of 1:1, including age at diagnosis, marital status, race, tumor grade, stage, tumor size, lymph node status, ER status, PR status, HER2 status, surgery, and radiation. The standardized difference of <10% or a p-value >0.05 was reliably used to estimate the balance between variables before and after PSM [14]. The survival analysis between the chemotherapy and nonchemotherapy groups was performed by using the Kaplan-Meier method with the log-rank test. Two-sided p-values < 0.05 were considered to be statistically significant.

**Results**

**Baseline patient characteristics**

A total of 10918 patients with early-stage ER/PR positive mucinous adenocarcinoma were eligible from the SEER database, including 1415 patients who underwent chemotherapy and 9503 who did not receive chemotherapy. The median follow-up duration was 74 months (range: 3–227 months). The median age of the patients was 68 years, and the majority of (84.0%) patients were aged older than 50 years. Of all the patients, 9499 (83.0%) had grade I/II disease, and 1419 (13.0%) have grade III disease. Of all the patients, 999 (9.2%) had LN metastasis and 9919 (90.8%) did not. Furthermore, 861 (8.7%) of the patients with negative LNs had received chemotherapy, while 554 (55.5%) of the patients with positive LNs had received chemotherapy. Compared with the nonchemotherapy group, there were more patients with tumors larger than 3 cm in the chemotherapy group, regardless of lymph
node status. When the patients had negative LNs, the proportion of patients with tumors smaller than 1 cm or between 1 and 2.9 cm was lower in the chemotherapy group than in the nonchemotherapy group (5.6% vs 18.7%, 43.1% vs 43.4%, respectively, \( p < 0.001 \)), and the proportion of patients with tumors larger than 3 cm (23.1%) were higher in the chemotherapy group than in the nonchemotherapy group (9.2%). Similarly, when the patients had LN metastasis, the proportion of patients with tumors smaller than 1 cm or between 1 and 2.9 cm was lower in the chemotherapy group than in the nonchemotherapy group (3.1% vs 3.4%, 25.8% vs 26.1%, respectively, \( p < 0.001 \)). When the patients had negative LNs, we found that OS and BCSS by using PSM, we found that patients with ER/PR-positive mucinous adenocarcinoma in the chemotherapy group achieved a significantly better OS than those in the nonchemotherapy group (\( p < 0.001 \); Fig. 3A and C). However, chemotherapy showed no significant effects on OS in patients with tumors larger than 3 cm (\( p = 0.014 \); Fig. 3B). For patients with positive LNs, the chemotherapy group had a longer OS than the nonchemotherapy group among patients with tumors \( \geq 1 \mathrm{~cm} \) (\( T = 1 \), \( p = 0.285 \); Fig. 3D). The 5-year OS and BCSS rates of the two cohorts are reported in Table 4. The 10-year OS and BCSS rates of the two cohorts are reported in Table 5. After stratifying patients by tumor size and lymph node status, for patients with negative LNs, we found that OS was significantly better in the chemotherapy group than in the nonchemotherapy group for patients with tumors larger than 3 cm (\( p = 0.006 \); Fig. 4A and B). For patients with positive LNs, the chemotherapy group had a longer OS than the nonchemotherapy group among patients with tumors \( \geq 1 \mathrm{~cm} \) (\( T = 1 \), \( p = 0.049 \); respectively).

### Table 2

Univariate and multivariate Cox regression model analysis of OS between the Chemotherapy group and the Non-chemotherapy group.

| Characteristics          | Univariate analysis | Multivariate analysis |
|--------------------------|---------------------|-----------------------|
|                          | P value  | Hazard ratio | 95.0% CI for Exp(B) | P value  | Hazard ratio | 95.0% CI for Exp(B) |
| Age(year)                |          |              |                     |          |              |                     |
| <50years                 | Reference |            |                     | Reference |            |                     |
| ≥50years                 | <0.001   | 5.051       | 3.474–7.346         | <0.001   | 4.311       | 2.935–6.332         |
| Marital status           |          |              |                     |          |              |                     |
| Unmarried                | Reference |            |                     | Reference |            |                     |
| Married                  | <0.001   | 0.519       | 0.406–0.662         | 0.001    | 0.642       | 0.500–0.824         |
| Unknown                  | 0.457    | 0.713       | 0.292–1.739         | 0.247    | 0.577       | 0.228–1.462         |
| Race                     |          |              |                     |          |              |                     |
| White                    | Reference |            |                     | Reference |            |                     |
| Black                    | 0.436    | 1.164       | 0.794–1.706         | 0.434    | 1.168       | 0.792–1.722         |
| Other                    | 0.007    | 0.967       | 0.375–0.859         | 0.125    | 0.720       | 0.472–1.096         |
| Grade                    |          |              |                     |          |              |                     |
| I/II                     | Reference |            |                     | Reference |            |                     |
| III/IV                   | 0.279    | 1.397       | 0.763–2.561         | 0.658    | 1.079       | 0.789–1.515         |
| Laterality               |          |              |                     |          |              |                     |
| Left                     | Reference |            |                     | Reference |            |                     |
| Right                    | 0.622    | 0.942       | 0.741–1.197         | 0.102    | 5.155       | 0.720–36.910        |
| Stage                    |          |              |                     |          |              |                     |
| I                        | Reference |            |                     | Reference |            |                     |
| II                       | <0.001   | 2.154       | 1.653–2.808         | 0.066    | 1.355       | 0.980–1.874         |
| III                      | <0.001   | 6.147       | 4.043–9.345         | <0.001   | 2.691       | 1.542–4.698         |
| Unknown                  | 0.943    | 0.9          | 0–5.551E-90         | 0.933    | 0           | 0–3.918E+105        |
| Tumor size(cm)           |          |              |                     |          |              |                     |
| T < 1                    | Reference |            |                     | Reference |            |                     |
| 1<T < 2.9                | 0.069    | 2.924       | 0.921–9.283         | 0.041    | 3.386       | 1.051–10.907        |
| T > 3                    | 0.002    | 6.507       | 2.042–20.739        | 0.014    | 4.482       | 1.346–14.920        |
| Unknown                  | 0.016    | 4.135       | 1.310–13.055        | 0.023    | 3.926       | 1.209–12.747        |
| LN status                |          |              |                     |          |              |                     |
| Positive                 | Reference |            |                     | Reference |            |                     |
| Negative                 | <0.001   | 2.241       | 1.730–2.904         | 0.863    | 1.029       | 0.742–1.428         |
| HER status               |          |              |                     |          |              |                     |
| Positive                 | Reference |            |                     | Reference |            |                     |
| Negative                 | 0.326    | 0.488       | 0.117–2.041         | 0.871    | 0.887       | 0.208–3.776         |
| Unknown                  | 0.217    | 0.771       | 0.509–1.165         | 0.185    | 0.745       | 0.482–1.151         |
| Surgery                  |          |              |                     |          |              |                     |
| Done                     | Reference |            |                     | Reference |            |                     |
| None                     | <0.001   | 0.200       | 0.099–0.406         | <0.001   | 0.208       | 0.099–0.438         |
| Chemotherapy             |          |              |                     |          |              |                     |
| Done                     | Reference |            |                     | Reference |            |                     |
| None                     | <0.001   | 0.468       | 0.363–0.604         | <0.001   | 0.427       | 0.331–0.552         |
| Radiation                |          |              |                     |          |              |                     |
| Done                     | Reference |            |                     | Reference |            |                     |
| None                     | <0.001   | 0.990       | 0.465–0.750         | <0.001   | 0.646       | 0.505–0.826         |

**Survival analysis for OS and BCSS**

Before PSM, among all patients, those who received adjuvant chemotherapy showed significantly better OS but worse BCSS (OS: \( p < 0.001 \), BCSS: \( p = 0.001 \), respectively) than the patients in the nonchemotherapy group (Fig. 3A and C). After 1:1 matching, 805 patients in the chemotherapy group were matched and compared with 805 patients in the nonchemotherapy group. No demographic variables with significant differences were included (\( p > 0.05 \)).

After eliminating the differences in covariates that might affect OS and BCSS by using PSM, we found that patients with ER/PR-positive mucinous adenocarcinoma in the chemotherapy group achieved a significantly better OS than those in the nonchemotherapy group (\( p < 0.001 \); Fig. 3B). However, chemotherapy was associated with only improved OS, not BCSS (\( p = 0.285 \); Fig. 3D). The 5-year OS and BCSS rates of the two cohorts are reported in Table 4. The 10-year OS and BCSS rates of the two cohorts are reported in Table 5. After stratifying patients by tumor size and lymph node status, for patients with negative LNs, we found that OS was significantly better in the chemotherapy group than in the nonchemotherapy group for patients with tumors larger than 3 cm (\( p = 0.004 \); Fig. 4C). While adjuvant chemotherapy showed no significant effects on OS in patients with tumors less than 3 cm (\( T < 1 \), \( p = 0.625 \), Fig. 4A), patients with positive LNs who received chemotherapy showed a significantly longer OS than those who did not (\( p = 0.006 \); Fig. 4B). For patients with positive LNs, the chemotherapy group had a longer OS than the nonchemotherapy group among patients with tumors \( \geq 1 \mathrm{~cm} \) (\( T = 1 \), \( p = 0.049 \); respectively; \( p < 0.001 \), respectively).
gate the prognostic factors that could predict OS and BCSS in the Prognostic factors for mucinous adenocarcinoma

Table 4
Univariate and multivariate Cox regression model analysis of BCSS between the Chemotherapy group and the Non-chemotherapy group.

| Characteristics | Univariate analysis | | Multivariate analysis | |
|-----------------|---------------------|------------------|----------------------|--------|
|                 | P value | Hazard ratio | 95.0% CI for Exp(B) | P value | Hazard ratio | 95.0% CI for Exp(B) |
| Age(year)       |         |               |                      |         |               |                      |
| <50years        | 0.193   | 1.421         | 0.837–2.414          | 0.684   | 0.888         | 0.501–1.574          |
| ≥50years        |         |               |                      |         |               |                      |
| Marital status  |         |               |                      |         |               |                      |
| Unmarried       | Reference | | | Reference | | |
| Married         | 0.995   | 0.658         | 0.403–1.075          | 0.048   | 0.305         | 0.094–0.991          |
| Unknown         | 0.961   | 0             | 0–7.975E+190         |         |               |                      |
| Race            |         |               |                      |         |               |                      |
| Black           | 0.163   | 1.621         | 0.823–3.194          | 0.205   | 1.566         | 0.782–3.136          |
| White           | Reference | | | Reference | | |
| Other           | 0.036   | 0.288         | 0.090–0.922          |         |               |                      |
| Grade           |         |               |                      |         |               |                      |
| I/II            | Reference | | | Reference | | |
| III/IV          | 0.040   | 2.610         | 1.043–5.30           | 0.038   | 2.700         | 1.058–6.890          |
| Unknown         | 0.379   | 0.684         | 0.293–1.594          | 0.569   | 0.775         | 0.322–1.864          |
| Laterality      |         |               |                      |         |               |                      |
| Left            | Reference | | | Reference | | |
| Right           | 0.140   | 1.454         | 0.885–2.388          |         |               |                      |
| Unknown         | 0.975   | 0             | 1.047E+212           |         |               |                      |
| Stage           |         |               |                      |         |               |                      |
| I               | Reference | | | Reference | | |
| II              | 0.002   | 2.481         | 1.392–4.420          | 0.367   | 1.392         | 0.678–2.858          |
| III             | <0.001  | 10.875        | 5.070–23.328         | 0.011   | 4.123         | 1.379–12.332         |
| Unknown         | 0.975   | 0             | 0–5.517E+212         | 0.972   | 0             | 0–4.568E+263         |
| Tumor size(cm)  |         |               |                      |         |               |                      |
| T <1            | Reference | | | Reference | | |
| 1< T ≤ 2.9     | 0.883   | 5739.705      | 0–7.712E+53          | 0.887   | 4953.918      | 0–4.609E+54          |
| T > 3           | 0.865   | 21805.989     | 0–2.929E+54          | 0.876   | 11636.225     | 0–1.083E+55          |
| Unknown         | 0.874   | 11257.050     | 0–1.512E+54          | 0.879   | 9129.244      | 0–8.493E+54          |
| LN status       |         |               |                      |         |               |                      |
| Negative        |         |               |                      |         |               |                      |
| Positive        | <0.001  | 3.186         | 1.927–5.268          | 0.182   | 1.592         | 0.805–3.150          |
| HER status      |         |               |                      |         |               |                      |
| Negative        |         |               |                      |         |               |                      |
| Positive        | 0.967   | 0             | 0–2.795E+237         | 0.928   | 0             | 0–4.600E+82          |
| Surgery         |         |               |                      |         |               |                      |
| None            | Reference | | | Reference | | |
| Done            | <0.001  | 0.124         | 0.039–0.399          | 0.011   | 0.202         | 0.059–0.691          |
| Chemotherapy    |         |               |                      |         |               |                      |
| None            | Reference | | | Reference | | |
| Done            | 0.286   | 1.310         | 0.797–2.152          | 0.524   | 1.178         | 0.712–1.950          |
| Radiation       |         |               |                      |         |               |                      |
| None            | Reference | | | Reference | | |
| Done            | 0.008   | 0.513         | 0.313–0.841          | 0.131   | 0.675         | 0.405–1.125          |

Fig. 4D and E). However, there was no difference in BCSS between the chemotherapy group and the non-chemotherapy group, regardless of tumor size or lymph node status (LNs-negative: \( T = 1–2.9 \) cm, \( p = 0.347 \); \( T > 3 \) cm, \( p = 0.847 \); LNs-positive: \( T = 1–2.9 \) cm, \( p = 0.697 \); \( T > 3 \) cm, \( p = 0.815 \), respectively; Fig. 5).

Prognostic factors for mucinous adenocarcinoma

We performed univariate and multivariate analyses to investigate the prognostic factors that could predict OS and BCSS in the matched-cohort. As shown in Table 2, univariate analyses revealed that age (\( p < 0.001 \), marital status (\( p < 0.001 \), race (\( p = 0.007 \)), stage (\( p < 0.001 \), tumor size (\( p = 0.002 \), LN status (\( p < 0.001 \), chemotherapy (\( p < 0.001 \), and radiation (\( p < 0.001 \) were important factors affecting OS. After we included the covariates that were clinically worth exploring or had \( p < 0.05 \) in the univariate analysis into the multivariate analysis, race (\( p = 0.036 \), grade (\( p = 0.040 \), stage (\( p < 0.001 \), tumor size (\( p = 0.041 \), surgery (\( p < 0.001 \), chemotherapy (\( p < 0.001 \) and radiation (\( p < 0.001 \) were independent prognostic factors of OS in patients with mucinous adenocarcinoma. As shown in Table 3, univariate analyses revealed that race (\( p = 0.007 \), grade

Table 4
5-year overall survival (OS) and breast cancer-specific survival (BCSS) of the two groups.

| Group | 5-year OS | | 5-year BCSS | |
|-------|-----------|------------------|------------------|
|       | Before matching | After matching | Before matching | After matching |
| Chemotherapy | 95.4% | 95.7% | 97.8% | 98.6% |
| Non-chemotherapy | 87.4% | 89.4% | 98.2% | 98.0% |
| P value | <0.001 | <0.001 | 0.001 | 0.285 |
| Total | 88.5% | 92.5% | 98.1% | 98.3% |
(p = 0.006), stage (p < 0.001), LN status (p < 0.001), HER status (p = 0.013), surgery (p < 0.001) and radiation (p = 0.008) were important factors affecting BCSS. After we included the covariates that were clinically worth exploring or had p < 0.05 in the univariate analysis into the multivariate analysis, race (p = 0.048), grade (p = 0.038), stage (p = 0.011), HER status (p = 0.009) and surgery (p = 0.011) were independent prognostic factors of BCSS in patients with mucinous adenocarcinoma.

Discussion

In this SEER-based study, we observed an association between adjuvant chemotherapy and survival in patients with early-stage ER/PR-positive mucinous adenocarcinoma from 1998 to 2016. The median age of the enrolled patients was 68 years, which was older than the average age at diagnosis for invasive breast carcinoma [15]. Patients with mucinous adenocarcinoma were more likely to have a significantly better differentiated histologic grade, and lower risk of LN positivity, which is consistent with previous studies [1,3,6].

In our study, patients with early-stage ER/PR positive mucinous adenocarcinoma in the chemotherapy group had obviously better OS than those in the nonchemotherapy group, even after matching clinicopathological factors by PSM. However, our findings are not consistent with the conclusions from some other studies.

A previous study showed that node-negative, estrogen receptor-positive breast cancer patients did not equally benefit from adjuvant chemotherapy compared to patients with other types of breast cancer [16]. A clinical trial has reported that luminal A patients even in the high-risk premenopausal population derive no benefit from adjuvant chemotherapy [17]. Unfortunately, these studies were not specifically focused on mucinous carcinoma.

Hyung et al.’s retrospective analysis which included 3076 Table 5

| Group           | 10-year OS Before matching | 10-year OS After matching | 10-year BCSS Before matching | 10-year BCSS After matching |
|-----------------|----------------------------|---------------------------|------------------------------|-----------------------------|
| Chemotherapy    | 88.7%                      | 88.2%                     | 94.2%                        | 94.8%                       |
| Non-chemotherapy| 70.2%                      | 73.8%                     | 96.2%                        | 96.0%                       |
| P value         | <0.001                     | <0.001                    | 0.001                        | 0.285                       |
| Total           | 72.8%                      | 80.9%                     | 95.9%                        | 95.4%                       |

Fig. 4. Comparison of the OS of ER/PR positive patients between the chemotherapy and the non-chemotherapy groups stratified by tumor size and lymph node after matching. OS, overall survival; ER, estrogen receptor; PR, progesterone receptor; T, tumor size; LN, lymph node.
patients revealed that most ER-positive mucinous breast cancer patients did not benefit from adjuvant chemotherapy. They stated that chemotherapy can be omitted in the treatment of most ER-positive mucinous carcinomas [18].

The NCCN guidelines consider using hormone receptor status as the most important factor in making clinical decisions for the treatment of mucinous adenocarcinoma. ER-/PR-positive patients are recommended to consider adjuvant chemotherapy if they have LN metastasis, while adjuvant chemotherapy is not recommended for patients with negative LNs [10]. However, mucinous carcinoma is different from invasive breast cancer, and the uniqueness of mucinous carcinoma should be taken into consideration in clinical practice. Few clinical trials specifically focus on adjuvant chemotherapy to treat mucinous adenocarcinoma. Therefore, we tried to investigate the association between adjuvant chemotherapy and the survival of early-stage ER/PR-positive mucinous breast cancer patients. We found that the benefits obtained from adjuvant chemotherapy in ER/PR-positive mucinous adenocarcinoma depended on tumor size. In general, our study showed that early-stage ER/PR-positive patients in the chemotherapy group could have a better OS, but not BCSS, than those in the nonchemotherapy group. After stratifying by tumor size and lymph node status, our results are different from the NCCN guidelines.

When ER/PR-positive patients have negative LNs, the guidelines recommend adjuvant endocrine therapy alone regardless of tumor size. However, we found that patients could benefit from adjuvant chemotherapy if they had tumors larger than 3 cm because such patients had a better OS in the chemotherapy group than in the non-chemotherapy group.

When ER/PR-positive patients have LN metastasis, the guidelines recommend adjuvant endocrine therapy combined with or without adjuvant chemotherapy. However, the guidelines do not point out when these patients should and should not receive adjuvant chemotherapy. We found that those patients do not need adjuvant chemotherapy if they had tumors smaller than 1 cm. Patients with tumors larger than 1 cm had better OS in the chemotherapy group than in the nonchemotherapy group.

Therefore, patients with negative LNs should consider adjuvant chemotherapy if they have tumors larger than 3 cm and patients with LNs could consider omitting adjuvant chemotherapy if they have tumors smaller than 3 cm.
have tumors smaller than 1 cm. Currently, genetic testing plays an important role in identifying the individual risk of recurrence for luminal patients to avoid the side effects of unnecessary adjuvant chemotherapy [19]. However, according to a previous study, genetic testing cannot be used to predict recurrence risk in mucinous breast cancer due to the abundant mucinous content [20]. To the best of our knowledge, this is the first SEER population-based study using PSM analysis to assess the value of adjuvant chemotherapy in treating mucinous breast cancer.

However, our study should be considered with several limitations. First, it is a retrospective study, which may inevitably result in selection bias even when using PSM. Second, chemotherapy regimens were not available, which may influence the effect of chemotherapy on OS and BCSS. Third, we did not assess the toxicity and side effects of the treatment for mucinous adenocarcinoma, which may affect the quality of life and compliance of patients.

Although our study provides evidence that ER/PR-positive patients with negative LNs and tumors larger than 3 cm and those with positive LNs and tumors larger than 1 cm could benefit from adjuvant chemotherapy, further clinical trials, and prospective studies should be conducted to validate our results and treatment guidelines for mucinous carcinoma.

Conclusion

Adjuvant chemotherapy may improve the prognosis of early-stage ER/PR-positive mucinous adenocarcinoma patients. Patients with negative LNs should consider adjuvant chemotherapy if they have tumors larger than 3 cm, while patients with positive LNs may consider adjuvant chemotherapy if they have tumors larger than 1 cm. We also suggest considering clinical characteristics meanwhile when deciding chemotherapy or not. These results could help oncologists to treat patients more precisely in the future. Ran
domized controlled trials (RCT) are expected to confirm our results in the future.

Funding

This work was supported by the National Natural Science Foundation of China under Grant Nos. 81871513; the Science and Technology Planning Project of Guangzhou City under grant number 202002030236 and the CSCO-Constant Rui Tumor Research Fund, China under grant number Y-HR2016-067.

Declaration of competing interest

All authors declare no conflicts of interest in this work.

Acknowledgments

The authors acknowledge the efforts of the Surveillance, Epidemiology, and End Results (SEER) Program tumor registries in the creation of the SEER database and thank all the patients analyzed in this study. All authors read and gave final approval of the manuscript.

References

[1] Diab SG, Clark GM, Osborne CK, Libby A, Allred DC, Elledge RM. Tumor characteristics and clinical outcome of tubular and mucinous breast carcinomas. J Clin Oncol : official journal of the American Society of Clinical Oncology 1999;17:1442–8.
[2] Fentiman IS, Mills RR, Smith P, Ellul JP, Lampejo O. Mucoid breast carcinomas: histology and prognosis. Br J Canc 1997;75:1061–5.
[3] Di Saverio S, Gutierrez J, Avisar E. A retrospective review with long term follow up of 11,400 cases of pure mucinous breast carcinoma. Breast Canc Res Treat 2008;111:541–7.
[4] Roux P, Knight S, Cohen M, Classe JM, Mazouni C, Chauvet MP, et al. Tubular and mucinous breast cancer: results of a cohort of 917 patients. Tumori 2019;105:55–62.
[5] Gwark SC, Lee HS, Lee Y, Lee SB, Sohn G, Kim J, et al. Clinical implication of HER2 status in hormone receptor-positive mucinous breast cancer. Ann Surg Oncol 2019;26:2166–74.
[6] Louwman MW, Visiezen M, van Beek MW, Nolthenius-Puylaert MC, van der Sangen MJ, Roumen RM, et al. Uncommon breast tumors in perspective: incidence, treatment and survival in The Netherlands. Int J Canc 2007;121:127–35.
[7] Lei L, Yu X, Chen B, Chen Z, Wang X. Clinicopathological characteristics of mucinous breast cancer: a retrospective analysis of a 10-year study. PloS One 2016;11:e0155132.
[8] Cao YH, He M, Liu ZB, Di GH, Wu J, Lu JS, et al. Outcome of pure mucinous breast carcinoma compared to infiltrating ductal carcinoma: a population-based study from China. Ann Surg Oncol 2012;19:3019–27.
[9] Didonato R, Shapiro N, Koenigsberg T, D’Alfonso T, Jaffe S, Fineberg S. Invasive mucinous carcinoma of the breast and response patterns after neoadjuvant chemotherapy (NAC). Histopathology 2018;72:965–73.
[10] Bevers TB, Heuvel MA, Bonaccio E, Calloun KE, Daly MB, Farrar WB, et al. Breast cancer screening and diagnosis, version 3.2018, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw : JNCCN. 2018;16:1362–89.
[11] Merrill RM, Dearden KA. How representative are the surveillance, epidemiology, and end results (SEER) program cancer data of the United States? Cancer causes & control. CCC (Cancer Causes Control) 2004;15:1027–34.
[12] Li Y, Chen M, Pardini B, Dragoni MP, Lucchi A, Calin GA. The role of radiotherapy in metastatic breast cancer: a propensity score-matched analysis of the SEER database. J Transl Med 2019;17:318.
[13] McCaffrey DF, Redgeway G, Morral AR. Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychol Methods 2004;9:403–25.
[14] Austin PC. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat Med 2009;28:3083–107.
[15] Xe B, Kim A, Pi T, I S, A management ISJC, et al. Pathologic response after weekly paclitaxel versus docetaxel in operable breast cancer 2020;12:1419–26.
[16] Faik S, Tang G, Shok S, Kim C, Baker J, Kim W, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol : official journal of the American Society of Clinical Oncology 2006;24:3726–34.
[17] Nielsen TO, Jensen MB, Burugu S, Gao D, Jorgensen CL, Balslev E, et al. High-risk premenopausal luminal A breast cancer patients derive no benefit from adjuvant cyclophosphamide-based chemotherapy: results from the DBCG77B clinical trial. Clin Canc Res : an official journal of the American Association for Cancer Research 2017;23:946–53.
[18] Kim HS, Lee JU, Yoo TK, Chae BJ, Son D, Kim YJ, et al. Omission of chemotherapy for the treatment of mucinous breast cancer: a nationwide study from the Korean breast cancer society. Journal of breast cancer 2019;22:599–612.
[19] Sotiriou C, Pusztai L. Gene-expression signatures in breast cancer. N Engl J Med 2009;360:790–800.
[20] Fu J, Wu L, Jiang M, Li D, Jiang T, Hong Z, et al. Clinical nomogram for predicting survival outcomes in early mucinous breast cancer. PloS One 2016;11:e0164921.