3-D radiative transfer in clumped hot star winds

I. Influence of clumping on the resonance line formation

B. Šurlan1,2,3, W.-R. Hamann4, J. Kubát1, L. M. Oskinova4, and A. Feldmeier4

1 Astronomický ústav, Akademie věd České Republiky, CZ-251 65 Oněřejov, Czech Republic
2 Matematicko fyzikální fakulta, Univerzita Karlova, Praha, Czech Republic
3 Matematički Institut SANU, Kneza Mihaila 36, 11001 Beograd, Republic of Serbia
4 Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Straße 24/25, 14476 Potsdam-Golm, Germany

Received:

ABSTRACT

Context. The true mass-loss rates from massive stars are important for many branches of astrophysics. For the correct modeling of the resonance lines, which are among the key diagnostics of stellar mass-loss, the stellar wind clumping turned out to be very important. In order to incorporate clumping into radiative transfer calculation, 3-D models are required. Various properties of the clumps may have strong impact on the resonance line formation and, therefore, on the determination of empirical mass-loss rates.

Aims. We incorporate the 3-D nature of the stellar wind clumping into radiative transfer calculations and investigate how different model parameters influence the resonance line formation.

Methods. We develop a full 3-D Monte Carlo radiative transfer code for inhomogeneous expanding stellar winds. The number density of clumps follows the mass conservation. For the first time, realistic 3-D models that describe the dense as well as the tenuous wind components are used to model the formation of resonance lines in a clumped stellar wind. At the same time, non-monotonic velocity fields are accounted for.

Results. The 3-D density and velocity wind inhomogeneities show very strong impact on the resonance line formation. The different parameters describing the clumping and the velocity field results in different line strengths and profiles. We present a set of representative models for various sets of model parameters and investigate how the resonance lines are affected. Our 3-D models show that the line opacity is reduced for larger clump separation and for more shallow velocity gradients within the clumps.

Conclusions. Our new model demonstrates that to obtain empirically correct mass-loss rates from the UV resonance lines, the wind clumping and its 3-D nature must be taken into account.

Key words. stars: winds, outflows, clumping – stars: mass-loss – stars: early-type

1. Introduction

Hot massive stars lose mass via stellar winds. Mass loss plays an important role in the stellar evolution and strongly affect the interstellar environment (Bresolin et al. 2008). In order to better understand the evolution of hot massive stars and their influence on the environment it is necessary to determine their mass-loss rates reliably. Many sophisticated models of the stellar evolution have been calculated (see Maeder & Meynet 2010, for a review), however relying on mass-loss rates, that are still far from being empirically established.

Since the 1970s, significant progress in understanding the physics of hot star winds has been made (see e.g. Lucy & Solomon 1970, Castor et al. 1975, Pauldrach et al. 1986), assuming the standard wind model (stationary, spherically symmetric wind with uniform flow). Winds of hot stars are driven by radiation absorbed in spectral lines, so-called the line-driven winds. For recent reviews of the physical mechanism of line driving and of line-driven stellar winds see, e.g., Krtička & Kubát (2007), Puls et al. (2008), or Owocki (2010).

In the last decades there was a growing evidence that the stellar winds are not smooth (Hamann et al. 2008). Detailed theoretical studies showed that the line-driven winds are intrinsically unstable (Lucy & White 1980). Due to this instability shocks and wind density structures (clumps) develop in the winds. Theoretical evidence of clumping is based on numerical simulations of line-driven stellar winds that have been performed using the simplifying assumption of spherical symmetry and 1-D geometry (Feldmeier 1995, Feldmeier et al. 1997a, Owocki et al. 1988, Runacas & Owocki 2002) or pseudo-2-D geometry (Dessart & Owocki 2003, 2005).

Theoretical predictions are supported by direct observational evidence of clumping. Eversberg et al. (1998) found stochastic variable structures in the He emission line of $ζ$ Puppis, which drift with time from the line centre to the blue edge of the line. These structures were explained by accelerated wind inhomogeneities moving outwards. High-resolution spectroscopic monitoring of the line-profile variations (LPVs) in the emission lines of nine Wolf-Rayet (WR) stars (Lépine & Moffat 1999), investigation of the LPVs of H$α$ for a large sample of O-type supergiants (Markova et al. 2005), and direct spectroscopic observation of five O-type massive star of different evolutionary stages (Lépine & Moffat 2008), suggest that clumpy structures are a common property and a universal phenomenon of all hot star winds.

In addition to the stochastic small-scale wind structures, there is also strong evidence for the presence of large-scale wind structures, namely the discrete absorption components (DACs). These DACs are observed to propagate bluewards through the UV resonance line profiles of nearly all O-type stars (Prinja & Howarth 1986, Hamann et al. 2001). To explain the
observed DAC properties qualitatively, the model of Corotating Interaction Regions (CIR) has been proposed (Mullan, 1984). The CIRs form in a rotating stars when high-density, low-speed wind streams collide with low-density, high-speed streams (see, e.g., Cranmer & Owocki, 1996).

One of the indirect evidences of clumping in hot star winds comes from X-rays observations. Detailed investigation of the X-ray transport in clumped winds showed that wind clumping may strongly affect the X-ray line formation (see e.g., Feldmeier et al., 2003; Oskinova et al., 2004, 2006; Owocki & Cohen, 2006).

The radiative transfer models for non-LTE stellar-winds, like CMFGEN (Hillier & Miller, 1998), PoWR (Hamann & Graefener, 2004) and FASTWIND (Puls et al., 2005), account for wind inhomogeneities in an approximative way. An adjustable parameter, like the “clumping factor” D, defines the enhancement of the density inside clumps compared to a smooth model with the same mass-loss rate. Clumps are assumed to be optically thin at all frequencies, and the velocity field is monotonotic. The empirical mass-loss rates derived under these assumptions (the so-called microclumping approach) differ from those obtained when different clumping statistics are used. It was shown that the mass-loss rates derived from ρ_2-based diagnostics (i.e. recombination lines such as Hα, IR, and radio emission lines) have to be reduced by a factor of \sqrt{D} compared to the values obtained under the assumption of a smooth wind (see, e.g., Hamann & Koesterke, 1998; Bouret et al., 2003, 2005). On the other hand, diagnostics that depend linearly on the density (e.g., unsaturated UV resonance lines) should not be affected by optically thin clumping. Fullerton et al. (2000) found that mass-loss rates obtained from ρ_1 resonance lines are systematically smaller than those derived from Hα or radio free-free emission. Consequently, a reduction of the empirical mass-loss rates by up to a factor of 100 compared to the unclumped models was suggested. Another possibility to explain the discrepancies between ρ_1- and ρ_2-based diagnostics was proposed by Waldron & Cassinelli (2010). They suggested that the XUV radiation near the He ii ionization edge originating in wind shocks may destroy the ρ_1 ions and, consequently, ρ_1 resonance line diagnostic may be explained without the need to decrease the mass-loss rates. However, it was shown by Krtička & Kubát (2009) that X-rays fail to destroy the ρ_2 ions.

In order to reconcile results obtained from different diagnostics, traditionally used assumptions have to be relaxed. The first attempt in this direction was made by Oskinova et al. (2007). They studied resonance and recombination lines assuming statistical properties of clumps and keeping a monotonic velocity field. They proposed that the discrepancies between mass-loss rates derived from recombination lines and from the ρ_2 resonance doublet can be solved by accounting for macroclumping. In this approach clumps can be of any optical thickness. They showed that accounting for macroclumping has a significant impact on the line formation process, manifested as reduction of the effective opacity of the medium leading to weaker lines for a given mass-loss rate.

A further relaxation of the traditional assumptions was made by B. Šurlan et al.: 3-D radiative transfer in clumped hot star winds (2008). He pointed out that for line transitions, the non-monotonic velocity field (“vorosity”) can be important. He showed that a non-monotonic velocity field may also reduce the effective opacity. Zsargó et al. (2008) stressed that the void interclump medium (ICM) assumption also has to be relaxed, and that the ICM must be taken into account. Sundqvist et al. (2010) showed that the detailed density structure, the non-void ICM, and non-monotonic velocity field improve the line fits. They confirmed the findings of Oskinova et al. (2007) that the microclumping approximation is not adequate for UV resonance line formation in typical OB-star winds. This is in agreement with Prińa & Massa (2010), who established spectroscopic evidence for optically thick clumps in the wind by measuring the ratios of the radial optical depths of the red and blue components of the Si iv doublets of B0 to B5 supergiants (see also Massa et al., 2008). They showed that these ratios are spread between 1 and 2. Since they differ from the predicted value of two (this value follows from the atomic constants for a smooth wind), this is a direct signature of optically thick clumping.

In addition to the statistical approach, the Monte Carlo (MC) technique proved to be a very suitable method for studying clumps in hot star winds. Oskinova et al. (2004, 2006) used this approach in 2D geometry to calculate X-ray line profiles. In a recent paper, Sundqvist et al. (2010) synthesized UV resonance lines from inhomogeneous pseudo-2D radiation-hydrodynamic wind models and 2-D stochastic wind models using MC radiative transfer calculation. In their second paper, Sundqvist et al. (2011) extended the wind model to pseudo-3-D. Muijres et al. (2011) also used a MC method combined with non-LTE model atmospheres to compute the effect of clumping and porosity on the momentum transfer from the radiation field to the wind. They parameterized clumping and porosity by heuristic prescriptions.

Important steps has been made in the last five years in understanding the line formation in clumped winds. However, all previous works applied simplifications to the wind geometry. The structured stellar winds are essentially a 3-D problem, and a full description requires a 3-D radiative transfer. In this paper we treat for the first time the full problem with 3-D radiative transfer in the clumped wind. We accounting for: non-monotonic velocity, non-void ICM, and full 3-D without any limitation for geometry. We present the basic concept of the model and the method we developed. The main effects on the resonance lines (both singlets and doublets) including wind clumping in density and velocity as well as the effect of a non-void ICM are demonstrated. In a forthcoming publication we will apply our model to observations and derive mass-loss rates.

In Sect. 2 we define the wind model (geometry, velocity, and opacity of the wind) and our parametrization of the clump properties. The MC radiative transfer code is described in Sect. 3. Results of the model calculation are presented in Sect. 4. In Sect. 5 we summarize our results and outline further work.

2. The wind model

We assumed a wind that may consist of a smooth and a clumped region. The clumped region comprises two density components: the tenuous ICM and the dense clumps. All distances in the wind are expressed in units of stellar radius. We introduce a parameter r_{cl}, where the wind clumping sets on. The lower boundary of the wind r_{min} is set to the surface of the star ($r_{\text{min}} = 1$). The region $1 \leq r < r_{\text{cl}}$, represents the smooth wind region. The region $r_{\text{cl}} < r \leq r_{\text{max}}$, where r_{max} is the outer boundary of the wind, represents the clumped region (see Fig. 1).

General method. In order to solve the radiative transfer through the clumped wind, we first generate a snapshot of the clumps’ distribution. Using the MC approach (see Sect. 3), we then follow the photons along their paths. The density and velocity of the wind can be arbitrarily defined in a 3-D space. The calculations are carried out in the comoving frame following the prescriptions by Hamann (1980).
We solve the radiative transfer in the dimensionless form. We introduce the dimensionless frequency in the observer’s frame \(\chi_{\text{obs}} \), measured relative to the line center in units of standard Doppler-width \(\Delta \nu_s \),

\[
\chi_{\text{obs}} = \left(\frac{v}{v_0} - 1 \right) \frac{c}{v_s}.
\]

where \(v_s \) is an arbitrary reference velocity and \(v_0 = \Delta \nu_s (c/v_0) \). During the calculations we strictly keep the local co-moving frame frequency \(\chi_{\text{cmf}} \) of the photon which means that the frequency of the followed photon at the certain coordinate point can be expressed using the scalar product of the vector of the local macroscopic velocity \(\mathbf{v} \) and the unit vector in the direction of the photon’s propagation \(\mathbf{k} \),

\[
\chi_{\text{cmf}} = \chi_{\text{obs}} - \mathbf{k} \cdot \mathbf{v}.
\]

Only when the photon exits the wind, \(\chi_{\text{cmf}} \) must be transformed into the observer’s frame by

\[
\chi_{\text{obs}} = \chi_{\text{cmf}} + \mathbf{k} \cdot \mathbf{v}.
\]

Note that all velocities are dimensionless and measured in units of \(v_s \).

The code which we developed is gridless and does not require any symmetry. Instead of using a predefined grid, we introduce an adaptive integration step \(\Delta r \). After choosing \(\Delta r \), the velocity and opacity are calculated along the photon’s path. This allows us to account for arbitrary density and velocity inhomogeneities (for a detailed description see Sect. 3.2).

For the vectors we use a Cartesian coordinate system and in this coordinate system they are expressed by a set of coordinates \((x, y, z) \).

Basic assumptions. In order to study the basic effects of clumping on the resonance line formation (both singlets and doublets), we adopt a core-halo model. Only the line opacity is taken into account while the continuum opacity is neglected in the wind. We consider only pure scattering and assume complete redistribution. Only Doppler broadening is considered.

Wind velocity. The velocity field can be arbitrary. For simplicity, we assume that the velocity field is radial and for the smooth wind we adopt the standard \(\beta \)-velocity law,

\[
v_r = v_\infty \left(1 - \frac{b}{r} \right)^\beta,
\]

where \(v_r \) is the radial component of the velocity vector, \(v_\infty \) is the wind terminal velocity and \(b \) is chosen such that \(r_{\text{min}} \leq 10^{-3} v_\infty \).

The derivative of the Eq. (4) gives radial velocity gradient

\[
v' = \frac{dv_r}{dr} = v_r \beta \frac{b}{r(r - b)},
\]

that is important for choosing an adequate integration step.

Wind opacity. Line opacity calculation in the moving medium requires that we take into account the Doppler shift, which makes the opacity anisotropic in the observers frame. We do not adopt the Sobolev approximation but solve the radiative transfer equation in the comoving frame. Since in this frame the fluid is at rest, the opacity is isotropic.

For the opacity we use the same parameterization as Hamann (1980).

\[
\chi(r) = \frac{\chi_0}{r^2} q(r) \phi_x,
\]

where \(\chi_0 \) is a free parameter of the model that corresponds to the line strength and it is proportional to the mass-loss rate and abundance of the absorbing ion, \(q(r) \) reflects the depth-dependent degree of the ionization of the absorbing ion and for simplicity it is chosen to be \(q(r) \equiv 1 \) here, i.e. constant ionization condition. The absorption profile \(\phi_x \) for the singlet lines is assumed to be Gaussian

\[
\phi_x \equiv \frac{1}{\sqrt{\pi}} e^{-x^2},
\]

where \(x \) is the dimensionless frequency given by Eq. (1). We imply that the reference velocity \(v_s \) is the Doppler-broadening velocity \(v_D \) (i.e. \(v_s = v_D \)) that includes contribution from both thermal broadening and microturbulence and it is constant over the whole wind.

In this parametric formalism, the smooth wind opacity \(\chi(r) \) is proportional to the smooth wind density \(\rho_{\text{sm}}(r) \). In our calculations, we do not directly calculate wind density, but the depth-dependent line opacity \(\chi(r) \), which is enough for calculation of the emergent radiation from the wind.

2.1. Description of clumping

2.1.1. Clump properties

Clumps are gaseous regions in the wind with higher density than their surroundings, and, possibly, also with velocities different from the smooth wind.

We allow for arbitrary optical depth of clumps. The clumps can be optically thick in the cores of a resonance lines, while they may remain optically thin at all other frequencies. Clumps are assumed to be stochastically distributed within the stellar wind. The average clump separation \(l (r) \), measured between their centers, is variable with the distance \(r \) from the star. For simplicity, we assume that each clump has the spherical shape with the volume \(4 \pi r^3 l^3 \), where \(l \) is the radius of the particular clump. Clump radius varies with the distance from the star, \(l = l (r) \). The
Using parameter of our model and for simplicity it is assumed to be density \(\rho_{cl} \) inside the clump at a distance \(r \) from the center is assumed to be by a factor \(D \) higher than the smooth wind density \(\rho_{sw} \) at the same radius,

\[
\rho_{cl}(r) = D \rho_{sw}(r),
\]

and \(D \geq 1 \). The factor \(D \) (density contrast) is the first free parameter of our model and for simplicity it is assumed to be depth independent. Using \(L \) and \(l \), the factor \(D \) can be expressed as

\[
D = \frac{L^3(r)}{\frac{4}{3} \pi l^3(r)}.
\]

In our model clumps are assumed to be preserved entities. We assume that clumps are accelerated radially and neither split nor merge. The consequence of this is that the number of clumps per unit volume \(n_{cl} \) has to satisfy the equation of the continuity,

\[
n_{cl} \propto \frac{1}{r^2 v_r}.
\]

Then for the average clump separation, holds \(L = n_{cl}^{-1/3} \). With Eq. (10), this can be expressed as

\[
L(r) = L_0 \sqrt{\frac{r^2}{w(r)}},
\]

where \(L_0 \) is a second free parameter of our model that represents the typical clump separation in units of the stellar radius, and \(w(r) = v_r / v_{1}\) is the velocity in the units of the terminal speed. Similar as in the Eq. (11), the clump radius can be written as

\[
l(r) = l_0 \sqrt{\frac{r^2}{w(r)}},
\]

where

\[
l_0 = L_0 \sqrt{\frac{3}{4 \pi D}}.
\]

which follows from Eqs. (9) and (11). With this procedure we create clumps whose size varies with the radial distance (see Fig. 2).

The volume filling factor \(f_V \) is defined as the ratio of the total volume that clumps occupy \((V_{cl}) \) to the whole volume \(V_w \) in which the clumps are distributed (between \(r_{cl} \) and \(r_{max} \)),

\[
f_V = \frac{V_{cl}}{V_w} = \frac{\sum_{i=1}^{N_{cl}} V_{cl_i}}{\frac{4}{3} \pi (r_{max}^3 - r_{cl}^3)}.
\]

where \(V_{cl_i} = (4\pi/3)l_i^3 \) is the volume of \(i \)-th clump and \(N_{cl} \) is the total number of the clumps.

For the case of void ICM, the entire mass of the wind \(m_w = \int_{V_{sw}} \rho_{sw}(r) dV = \langle \rho_{sw} \rangle V_w \) in the clumps can be written as (using Eq. 3)

\[
m_w = \sum_{i=1}^{N_{cl}} m_{cl_i} = \sum_{i=1}^{N_{cl}} \rho_{cl_i} V_{cl_i} = D \sum_{i=1}^{N_{cl}} \rho_{sw} V_{cl_i} = D \langle \rho_{sw} \rangle \sum_{i=1}^{N_{cl}} V_{cl_i}
\]

where \(m_{cl_i} \) and \(\rho_{cl_i} \) are mass and density of the \(i \)-th clump, respectively, and \(\rho_{sw} \) is the value of the smooth wind density at the location of the \(i \)-th clump. If the ICM is void,

\[
f_V = \frac{1}{D}.
\]

2.1.2. Inter-clump medium

The ICM density \(\rho_{ic} \) is assumed to be reduced with respect to the smooth wind density \(\rho_{sw} \) (the density of the wind without any clumping) by a factor \(d \) (third free parameter of our model, assumed to be radius independent),

\[
\rho_{ic}(r) = d \rho_{sw}(r); \quad 0 \leq d < 1.
\]

For the case of non-void ICM, the total mass of the wind is distributed between clumps and ICM. In this case, the total mass...
of the wind \(m_w = \langle \rho_{sw} \rangle V_w \) can be expressed as

\[
m_w = m_c + \sum_{i=1}^{N_c} m_{ci} = d \langle \rho_{sw} \rangle (V_w - V_{ci}) + D \langle \rho_{sw} \rangle \sum_{i=1}^{N_c} V_{ci}. \tag{18}
\]

Then from the Eqs. (14) and (18) follows

\[
f_V = \frac{1 - d}{D - d} \tag{19}
\]

2.1.3. Clump distribution

The distance \(r_i \) of the \(i \)-th clump from the stellar center is chosen randomly. By employing the von Neumann rejection method (Press et al., 1992) with the inverse of the velocity law \(1/v_1 \) as the probability density distribution function. This reflects the equation of the continuity for the number density of clumps. Consequently, more clumps are concentrated close to the star (see Fig. 2).

Clumps are distributed uniformly in \(\cos \theta_i \) and \(\varphi_i \), and \(\theta_i \) and \(\varphi_i \) are randomly chosen with \(\cos \theta_i = \mu_i = \sqrt{\xi_{i1}} \) and \(\varphi_i = 2\pi\xi_{i2} \) (\(\xi_{i1} \) and \(\xi_{i2} \) are two different random numbers). For given \(r_i \), the radius of each clump \(l_i \) is determined according to Eq. (12). We do not allow the clumps to overlap.

2.1.4. Inhomogeneous velocity in clumps

In our wind model the velocity of the smooth and the inter-clump medium is assumed to be monotonic, Eq. (4). However, the velocity inside the clumps is allowed to deviate from the monotonic wind. Consequently, a negative velocity gradient can appear (see more in the Sect. 3). This assumption is based on the prediction of hydrodynamic wind simulations (e.g., Owocki et al., 1988; Feldmeier et al., 1997b; Runacres & Owocki, 2002), which show that over-dense regions inside the wind are slower and that ICM has approximately the same velocity as the smooth wind. The velocity structure of our model along one particular photon path is shown in Fig. 3.

3. Monte Carlo radiative transfer

3.1. Creation of a photon

A photon is released from the lower boundary of the wind (surface of the star) and then follow through the wind until they reach the outer boundary of the wind or scatters back into the photosphere. The photons are uniformly distributed in \(\cos \theta \) and \(\varphi \) over the whole surface area of the star. The photons from the lower boundary are released only uniformly in \(\varphi \) and with a distribution function \(\propto \mu \) in \(\mu \). The angular distribution function for photons emitted by the photosphere follows from the definition of the flux (see, e.g., Lucy, 1983). The initial unit vector \(\mathbf{k} \) of the photon propagation from the surface of the star is randomly chosen with \(\cos \theta = \mu_0 \) and \(\varphi_0 = 2\pi\xi_{i1} \) and \(\xi_{i1} \) and \(\xi_{i2} \) are two different random numbers.

In our MC calculations, frequencies of newly created photons are determined from the interval defined using the ratio \(v_{\text{by}}/v_D \) (as in Hamann, 1998). Initial frequencies of photons have values from the interval \((x_{\min}, x_{\max}) \) where

\[
x_{\min} = \frac{v_{\infty}}{v_D} - x_{\text{hand}}, \quad x_{\max} = \frac{v_{\infty}}{v_D} + x_{\text{hand}},
\]

where \(x_{\text{hand}} \) is the line width and it is usually assumed to be about 4.5 Doppler units (similarly as in Mihalas et al., 1975).

We divide the whole frequency interval into \(N_{\text{bin}} \) subintervals of equal length, and the same number of the photons are released in each subinterval. Each photon obtains the frequency \(x_{\text{bin}}(r_{\text{min}}) \), randomly chosen from the frequency interval of \(n \)-th \((n = 1, \ldots, N_{\text{bin}}) \) bin, given in the observer’s frame as

\[
x_{\text{bin}}(r_{\text{min}}) = (n - \xi) x_{\text{bin}} + x_{\min}, \tag{22}
\]

where \(x_{\text{bin}} = (x_{\text{bin}} - x_{\text{min}})/N_{\text{bin}} \) is the width of the frequency bin (the same for all bins) and \(\xi \) is a random number. Then the frequency is transformed to the comoving-frame frequency by the relation

\[
x_{\text{cmf}}(r_{\text{min}}) = x_{\text{bin}}(r_{\text{min}}) + \beta(x_{\text{bin}}(r_{\text{min}}) - v_D) \tau(r_{\text{min}}),
\]

where \(\tau(r_{\text{min}}) \) is the optical depth and \(\beta(x_{\text{bin}}(r_{\text{min}}) - v_D) \)

3.2. Optical depth calculation

After its creation, each photon obtains an information how far it is allowed to travel before it undergoes interaction with some particle. This distance is determined by a randomly chosen optical depth \(\tau_x = -\ln \xi \) (see Avery & House, 1968; Caroff et al., 1972). Then the actual optical depth, which photon passes on its
The path of one particular photon inside a realization of our clumped wind with the adaptive integration step. The bigger green sphere represents the outer boundary while the red sphere in the center represents the lower boundary of the wind. Smaller blue balls represent the clumps and black dots denote integration steps.

In order to reproduce the emergent flux from the wind, all photons that reach the edge of the wind are collected and put into a proper frequency bin. Each of the profiles shown in this paper has been calculated for one random configuration of clumps. This would correspond to an observation with a short exposure time, compared to the dynamical time scale. But on the other hand, we count the emergent photons irrespective of their direction, while the distant observer sees the 3-D clump configuration from one specific direction. By this averaging over all directions, we effectively obtain a mean emergent profile, similar to what we would get from averaging over many different random clump configurations but seen from one specific direction.

4. Results of the 3-D wind model calculation

In this section we show basic effects on the line profiles for both single resonance lines and resonance doublets varying different model parameters. Depending on which effect we want to study, some parameters are kept fixed, while others are varied within considered ranges (see Table 1). The basic model parameters (left part of Table 1) are chosen to represent a typical O type star. The varied model parameters (the right part of Table 1) have their default value except the selected one whose effect we aim to study. The effects on the line profiles are shown for weak ($\chi_0 = 1$), intermediate ($\chi_0 = 10$), and strong ($\chi_0 = 100$) lines. If the variation of some model parameter shows a similar effect on all three types of lines, we show that effect only for the strong line case.

All calculations are performed using 10^5 photons distributed over 100 frequency bins, resulting in a S/N ratio of about 30 per bin due to the Poisson statistics.

4.1. The effects of the macroclumping

The optical depth between r_1 and r_2 for the actual integration step j is

$$\tau_j = \int_{r_1}^{r_2} \chi(r) dr$$

and it is calculated using the trapezoidal rule. Along the whole path, the optical depth is accumulated ($\tau = \sum_{j=1}^{J} \tau_j$, where the J is the total number of the integration steps made before scattering happens), and when the total optical depth $\tau \geq \tau_{ec}$, then the condition for the line scattering is fulfilled.

After the scattering, the photon obtains a new direction (θ, ϕ), chosen randomly for the case of isotropic scattering as $\cos \theta = 2\xi - 1$ and $\phi = 2\pi\xi$ and a new optical depth $\tau_{ec} = -\ln \xi$ is randomly chosen again. For determination of θ, ϕ, and τ_{ec} three different random numbers are used. Assuming complete redistribution the photon frequency after scattering is calculated randomly from Gaussian distribution with the mean zero and the standard deviation unity (Box & Muller, 1958).

In order to reproduce the emergent flux from the wind, all photons that reach the edge of the wind are collected and put into a proper frequency bin. Each of the profiles shown in this paper has been calculated for one random configuration of clumps. This would correspond to an observation with a short exposure time, compared to the dynamical time scale. But on the other hand, we count the emergent photons irrespective of their direction, while the distant observer sees the 3-D clump configuration from one specific direction. By this averaging over all directions, we effectively obtain a mean emergent profile, similar to what we would get from averaging over many different random clump configurations but seen from one specific direction.
In this subsection, all model parameters are set to their default values except of χ_0 and L_0, which are varied as given in Table 1. The main macroclumping effect on the line profile is the reduction of the line strength compared to the smooth wind. For this case, where we assumed that clumping starts from the surface of the star ($r_{cl}=0$), the variation of the L_0 parameter has a strong influence on all three types of lines (see the left part of Fig. 5). This is because the clumps are optically thick for these lines. However, if we assume that clumping starts at $r_{cl}=1.3$, the clumps are optically thin for the weak lines there while they remain optically thick for the intermediate and strong line case (see Šurlan et al. 2012).

Fig. 5. The effects of the macroclumping (left) and the non-void ICM (right) on the weak ($\chi_0 = 1$, the upper panels), intermediate ($\chi_0 = 10$, the middle panels), and strong ($\chi_0 = 100$, the lower panels) lines. Left: The black dashed lines represent a smooth wind ($L_0 \to 0$) and other lines are calculated for a different clump separation parameter L_0 as given in the panels. Other model parameters have their default value (Table 1). Right: The black dashed lines represent a smooth wind and other lines are calculated for different values of the ICM density parameter d as given in the panels. Other model parameters have their default value (Table 1).
Table 1. The model parameters to study the influence of their variation on the resonance line profiles.

Fixed model parameters	Value	Varied model parameters	Considered range	Default value
Outer boundary of the wind r_{max} [R$_*$]	80	Opacity parameter χ_0	1, 10, 100	100
Beta parameter β	1	Clump separation parameter L_0	0.2, 0.5, 0.7, 1	0.5
Velocity at the photosphere v_{lin} [km s$^{-1}$]	10	Clumping factor D	3, 5, 10	10
Terminal velocity v_∞ [km s$^{-1}$]	1000	ICM density factor d	0, 0.05, 0.1, 0.9	0
		Onset of clumping r_{cl}	1, 1.01, 1.3, 2	1
		Doppler velocity v_D [km s$^{-1}$]	20, 50, 100	50
		Velocity deviation parameter $m = v_{\text{lin}}/v_\infty$	0.0, 0.1, 0.2	0

According to Eqs. (12) and (13), the radius of the clumps depends on L_0. For very small L_0 a huge number of clumps with small radii are created, and the clump contribution to the line opacity is almost the same as in case of a smooth wind. In this case there are not too many “holes” between the clumps, and the photons cannot escape from the wind easily. But for higher values of L_0, less clumps with larger radii exist. Consequently, there are more “holes” in the wind, through which photons may freely propagate. This leads to lower absorption and weaker line.

Clumping lowers the effective opacity. This effect is weaker for the outer parts of the wind, because the individual clumps become optically thin there. This causes the bump in the blue part of the line. On the other hand, a significant part of the wind has approximately the same wind velocity close to the wind terminal velocity. Consequently, despite lower effective opacity there is still enough matter to absorb. This causes the absorption dip near v_∞, especially for lower L_0.

A similar effect of attenuation of the line strength can be obtained by varying the clumping factor D. In Fig. 6 we show the effect only for the strong line ($\chi_0 = 100$). The model parameters are again set to their default values except of D that is varied. When enhancing the density inside clumps compared to the smooth wind density (i.e. increasing the parameter D), the porosity effect is more pronounced and the line becomes weaker.

4.2. Effects of the non-void inter clump medium

In this subsection we study the changes caused by variations of the ICM density parameter d and χ_0, while the other model parameters are set to their default values. The space between clumps is filled with some amount of matter with density defined by d. This matter fills the density “holes” between the clumps, and photons can also be scattered there. This manifests as strengthening of both the absorption and emission parts of the line profiles with respect to the model with void ICM (see the right part of Fig. 5). This effect is most pronounced for the strong lines, where even for a small d the ICM contributes a lot to the absorption coefficient and makes the lines more saturated and the emission parts stronger (see the right lower panel in Fig. 5). For the same value of the parameter d, the strong lines are saturated more than the intermediate lines. A proper choice of d can saturate the strong lines but still keep the intermediate lines unsaturated (e.g. see lines for $d = 0.1$ in the right middle and lower panels of Fig. 5).

Assuming that the ICM is not void has an influence on the strength of the line as a whole, but it has a particular effect on the center of the line, where a small absorption dip appears. Because more clumps are concentrated close to the star, the inner part of the wind together with the ICM contribute to the line opacity more than the outer part of the wind.
4.3. Effects of the onset of clumping

In order to show the effect of the radius where clumping starts, we now fix all parameters of the model at their default values except the onset radius of clumping \(r_3 \). The main effect of the \(r_3 \) variation is the appearance of a strong absorption near the line center (see Fig. 7), which is due to the smooth part of the wind inside \(r_3 \) at low expansion velocity. If clumping starts higher in the wind, the absorption near the line center is broader and also partly attenuates the emission from the back hemisphere of the wind. Therefore, this central absorption dip can be used as diagnostic for the onset of clumping.

It is interesting to note that even a very little smooth part of the wind (between \(r = 1 \) and \(r = 1.01 \)) causes significant central absorption, an effect which should be observable. As it can be seen from the Fig. 7 only when \(r_3 = 1 \) the absorption near the line center disappears. When the clumped part of the wind is larger (smaller value of the \(r_3 \)), the reduction of the line strength is more pronounced. By setting \(r_3 = r_{\text{max}} \) the smooth wind is reproduced.

4.4. Effects of velocity dispersion inside clumps

The absorption of an individual clump can be broadened by stochastic (thermal or micro-turbulent) motions inside the clump, but also by an additional velocity gradient in the clump as predicted by hydrodynamic simulations. These kinds of line broadening are described in our model by the Doppler-broadening velocity \(v_{\text{D}} \), and by the velocity dispersion inside the clumps \(\Sigma_{\text{disp}} \), respectively (see Sect. 2.2.3).

In Fig. 8 we show the effect of the \(v_{\text{D}} \) variation. The normalization of the frequency-integrated absorption coefficient is maintained by a compensating change of \(\chi_0 \). For the higher value of \(v_{\text{D}} \), the line profile is broader, and absorption and emission are stronger. When \(v_{\text{D}} \) decreases, the macroclumping effect becomes more pronounced because the clumps are optically thicker in the line center, which leads to a smaller effective optical depth due to a larger macroclumping effect.

To study the effect of the velocity dispersion inside clumps, we fix \(v_{\text{D}} = 20 \text{ km s}^{-1} \) and vary \(m \) and \(\chi_0 \) (Fig. 9). If the velocity dispersion inside the clumps is higher (i.e. when increasing the parameter \(m \)), the gaps in the velocity field are smaller (more velocities overlap) and the probability of photon escape is lower. This leads to some absorption at velocities higher than \(v_{\text{esc}} \). However, in the shown example the velocity gradient inside the clumps does not differ much from the velocity gradient of the smooth wind except of its sign, thus leaving the optical depth of the individual clumps is roughly the same. Therefore, the “vorosity” has only little effect on the total line strength.

When the velocity dispersion is accounted for, the absorption extends to velocities higher than the terminal velocity \(v_{\text{esc}} \). This effect is important for the derivation of \(v_{\text{esc}} \) from observations (i.e. see Prinja et al. 1990), and may provide an effective diagnostic for the existence of the velocity dispersion inside the clumps.

4.5. Doublet calculation

For the calculation of doublets, the profile \(\phi_i \) in Eq. (6) is assumed to have the form

\[
\phi_i = \frac{1}{\sqrt{\pi}} \left(e^{-x^2} + e^{-x^2} \right),
\]

where \(x = d_{\text{sep}}/\sqrt{2} \). The ratio of line opacities has a fixed value \(p = \chi_1/\chi_2 \), which follows from the atomic line strengths. The zero point frequency is located in the middle between the components.

The frequency of the photon after scattering is chosen randomly with a Gaussian distribution in the same way as for singlets. However, if the co-moving frame frequency of the photon before scattering indicates that it belongs to the blue component (\(\chi_{\text{off}} > 0 \)), we assume that the photon is redistributed only within the blue component of the doublet, and vice versa.

In Fig. 8 we show one example of a strong doublet with \(d_{\text{sep}} = 2000 \text{ km s}^{-1} \) and \(\chi_0 = 500 \). We demonstrate different effects on the line profile by changing the properties of the clumps. These effects are analogous to the single-line case. The main effect of macroclumping is the reduction of the line strength. If the velocity dispersion inside clumps is taken into account, there is some absorption at velocities higher than \(v_{\text{esc}} \). Only for the case of non-void ICM it is possible to saturate the line.

5. Summary

In this paper we present a full 3-D inhomogenous stellar wind model and solve the radiative transfer to model the resonance lines. To our knowledge this is the first work where the problem of resonance line formation in stellar winds is solved in full 3-D, while previous work was restricted to 2-D or pseudo-3-D geometries only.

The radiative transfer is also calculated for the formation of doublets. This is important, because UV resonance doublets are a key diagnostic for stellar winds. Our work demonstrates the role which stellar wind clumping plays in the formation of spectral lines, and how it affects the empirical wind diagnostics.

The method we develop here is very flexible, as it is capable to account for different 3-D shapes of clumps, for arbitrary 3-D velocity fields, and for ICM the same time. Below we briefly summarize the main results of our models, deferring the application to observed spectra to forthcoming work (Šurlan et al., in prep.).

- Allowing for clumps of any optical depths (macroclumping) causes a reduction of the effective opacity in the lines. Consequently, there is less absorption in the wind. Since this reduction is weaker for the outer parts of the wind, the line profiles show an absorption dip near \(v_{\text{esc}} \).
Effects of the velocity dispersion inside clumps on the line profile.

- For a given clumping factor D, the key model parameter affecting the effective opacity is L_0, the clump separation parameter. The opacity reduction is largest for the largest L_0 (Fig. 5). Therefore, the mass-loss rate empirically obtained by fitting the UV resonance lines becomes larger when the macroclumping effect is taken into account.
- The onset of clumping, r_{cl}, affects the line shape: the closer to the stellar surface clumping starts, the more pronounced is the absorption dip at the line center (Fig. 7). This absorption dip may provide an effective diagnostic for the onset of clumping.
- The line saturation is strongly affected by the ICM. A non-void ICM is required to reproduce the saturated lines simultaneously with non-saturated lines (Fig. 5).
- When accounting for a velocity dispersion within the clumps, added to the mean velocity law, the absorption extends to a larger blue-shift than corresponding to v_{∞}. This effect has to be taken into account when deriving v_{∞} from observations.
- In any clumped wind, non-monotonic velocities will always appear together with the density inhomogeneities. Therefore, their combined effect must be taken into account for the line formation modeling.
- In case of resonance doublets, the clumping effects are analogous to the case of single lines.

The main conclusion of our work is that in a realistic 3-D wind with density inhomogeneities and non-stationary velocity, the P-Cygni profiles from resonance lines are different from those from smooth and stationary 3-D winds. Any mass-loss diagnostics which do not account for wind clumping must under-
estimate the actual mass-loss rates. This can explain the reported discrepancies between the mass-loss rates obtained from ρ- and ρ^2-based diagnostics, respectively. Using our general description of clumping presented in this work, it will be possible to determine improved values of the stellar mass-loss rates.

Acknowledgements. This work was supported by grants GA ČR 205/08/0003 and 205/08/H005, GA UK-42441, DAAD/AÝCR D-3/CZ/2011-2012, and FKZ 50 OR 1101 (LMO). BS thanks to Ministry of Education and Science of Republic of Serbia who supported this work through the project 176002 "Influence of collisions on astrophysical plasma spectra". WRH and LMO are very grateful for the hospitality at the Ondřejov observatory. We thank the anonymous referee for useful suggestions regarding the clump distribution and other helpful remarks.

References
Avery, L. W., & House, L. L. 1968, ApJ, 152, 493
Bouret, J.-C., Lanz, T., Hillier, D. J., et al. 2003, ApJ, 595, 1182
Bresolin, F., Crowther, P. A., & Puls, J. (eds.) 2008, Massive Stars as Cosmic Engines, IAU Symp. 250, Cambridge Univ. Press
Box, G. E. P., & Muller, M. E., 1958, Ann. Math. Statist, 29, 610
Castor, J. I., Abbott, D. C., & Klein, R. I. 1975 ApJ, 195, 157
Caroff, L. J., Noerdlinger, P. D., & Scargle, J. D. 1972, ApJ, 176, 439
Cranmer, S. R., & Owocki, S. P. 1996, ApJ, 462, 469
dessart, L., & Owocki, S. P. 2000, A&A, 406, L1
dessart, L., & Owocki, S. P. 2005, A&A, 437, 657
Eversberg, T., Lépine, S., & Moffat, A. F. J. 1998, ApJ, 494, 799
Feldmeier, A. 1993, A&A, 299, 523
Feldmeier, A., Kudritzki, R.-P., Puls, J., & Puls, J. 1997a, A&A, 320, 899
Feldmeier, A., Puls, J., & Pauldrach, A. W. A., & Puls, J. 1997b, A&A, 322, 878
Hamann, W.-R. 1980, A&A, 84, 342
Hamann, W.-R. 1981, A&A, 93, 353
Hamann, W.-R., & Koesterke, L. 1998, A&A, 335, 1003
Hamann, W.-R., Brown, J. C., Feldmeier, A., Oskinova, L. M. 2003, A&A, 378, 946
Hamann, W.-R., & Gräfener, G. 2005, A&A, 427, 697
Hamann, W.-R., Oskinova, L. M., & Feldmeier, A. (eds.) 2008, Clumping in Hot-Star Winds
Hillier, D. J., & Miller, D. L. 1998, ApJ, 496, 407
Korčáková, D., & Kubát, J. 2004, A&A, 401, 419
Korčáková, D., & Kubát, J. 2003, A&A, 440, 715
Krtíčka, J., & Kubát, J. 2004, Astron. Soc. Pacific Conf. Ser. Vol. 361, 153
Krtíčka, J., & Kubát, J. 2004, MNRAS, 394, 2065
Lépine, S., & Moffat, A. F. J. 1994, AJ, 514, 909
Lépine, S., & Moffat, A. F. J. 2005, AJ, 136, 548
Lobel, A., & Blomme, R. 2008, ApJ, 678, 408
Lucy, L. B., & Solomon, P. M. 1971, ApJ, 159, 879
Lucy, L. B., & White, R. L. 1970, ApJ, 241, 300
Lucy, L. B. 1983, ApJ, 274, 372
Maeder, A., & Meynet, G. 2001, New Astronomy Rev., 54, 32
Markova, N., Puls, J., Scuderi, S., & Markov, H. 2005, A&A, 440, 1133
Massa, D., Prinja, R. K., & Fullerton, A. W. 2008 in Clumping in hot-star winds, ed. W.-R. Hamann, A. Feldmeier, & L. M. Oskinova, 147
Mihalas, D., Heasley, J. N., & Auer, L. H. 1975, NCAR-TN/STR-104
Müllers, D., de Koter, A., & Vink, J., et al. 2011, A&A, 526, A37
Mullan, D. J. 1968, ApJ, 283, 303
Oskinova, L. M., Kudritzki, R.-P., & Hamann, W.-R., 2003, A&A, 422, 675
Oskinova, L. M., Feldmeier, A., & Hamann, W.-R. 2006, MNRAS, 372, 313
Oskinova, L. M., Hamann, W.-R., & Feldmeier, A. 2004, A&A, 476, 1331
Owocki, S. P., Castor, J. J., & Rybicki, G. B. 1985, ApJ, 335, 914
Owocki, S. P., & Cohen, D. H. 2004, ApJ, 648, 565O
Owocki, S. P. 2008, in Clumping in Clumping in Hot Star Winds, p. 121
Owocki, S. P. 2010, Astron. Soc. Pacific Conf. Ser. Vol., 425, 199
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992, Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd Ed., Cambridge University Press, New York
Pauldrach, A., Puls, J., & Kudritzki, R.-P. 1986 A&A, 164, 86
Prinja, R. K., & Howarth, I. D. 1996, ApJS, 61, 357
Prinja, R. K., Barlow, M. J., Howarth, I. D., 1996, ApJ, 617, 507
Prinja, R. K., & Massa, D. L. 2010, A&A, 521, L55
Puls, J., Urban, J., & Venero-Cruz, R. 2005, A&A, 435, 669
Puls, J., Vink, J. S., & Najarro, F. 2008 A&A, 485L, 149