Abstract. This paper is the continuation of the work in [14]. In that paper we generalized the definition of W-graph ideal in the weighted Coxeter groups, and showed how to construct a W-graph from a given W-graph ideal in the case of unequal parameters.

In this paper we study the full W-graphs for a given W-graph ideal. We show that there exist a pair of dual modules associated with a given W-graph ideal, they are connected by a duality map. For each of the dual modules, the associated full W-graphs can be constructed. Our construction closely parallels that of Kazhdan and Lusztig [6, 10, 11], which can be regarded as the special case $J = \emptyset$. It also generalizes the work of Couillens [2], Deodhar [3, 4], and Douglass [5], corresponding to the parabolic cases.

Introduction

Let (W, S) be a Coxeter system and $\mathcal{H}(W)$ its Hecke algebra over $\mathbb{Z}[q, q^{-1}]$, the ring of Laurent polynomials in the indeterminate q. This is now called the one parameter case (or the equal parameter case). In [9] Howlett and Nguyen introduced the concept of a W-graph ideal in (W, \leq_L) with respect to a subset J of S, where \leq_L is the left weak Bruhat order on W. They showed that a W-graph can be constructed from a given W-ideal, and a Kazhdan-Lusztig like algorithm was obtained.

In particular, W itself is a W-graph ideal with respect to \emptyset, and the W-graph obtained is the Kazhdan-Lusztig W-graph for the regular representation of $\mathcal{H}(W)$ (as defined in [10]). More generally, it was shown that if J is an arbitrary subset of S then D_J, the set of distinguished left coset representatives of W_J in W, is a W-graph ideal with respect to J and also with respect to \emptyset, and Deodhars parabolic analogues of the Kazhdan-Lusztig construction are recovered.

In [14] we generalized the definition of W-graph ideal in the Coxeter groups with a weight function L, we showed that the W-graph can also be constructed from a given W-graph ideal.

In this paper we continue the work in [14], it grows out of our attempt to understand the "full W-graphs" that include W-graphs and their dual ones. The duality has appeared in some literatures, for instance, in the original paper [6] Kazhdan and Lusztig implicitly provided a pair of dual bases C and C' for the Hecke algebras, Deodhar introduced a pair of dual modules M^J and \tilde{M}^J in parabolic cases (see [3, 4]).

2000 Mathematics Subject Classification. Primary and secondary 20C08, 20F55.

Key words and phrases. Coxeter group, Hecke algebra, W-graph, Kazhdan-Lusztig basis, Kazhdan-Lusztig polynomial.
The paper is organised as follows. In Section 1 we present some basic concepts and facts concerning the weighted Coxeter groups, Hecke algebras and \(W \)-graphs. In Section 2, we recall the concept of \(W \)-graph ideal. In Section 3, we show that there exist a pair of dual modules \(M(E_f,L) \) and \(\tilde{M}(E_f,L) \) that are associated with a given \(W \)-graph ideal \(E_f \), they are connected by a duality map, this in turn can be used for the construction of the dual bases of the \(W \)-graphs. This construction closely parallels the work of Deodhar [3, 4], Douglass [5], where they focused primarily upon the parabolic cases.

In Section 4 we prove in general the construction of another pair of dual \(W \)-graph bases. This part is motivated by Lusztig's work [11] Ch. 10], the construction is obtained by using the bases of \(\mathcal{H} \)-modules \(\text{Hom}_A(M,A) \) and \(\text{Hom}_A(\tilde{M},A) \).

In Section 5, in the case \(W \) is finite we prove an inversion formula that relates the two versions of the relative Kazhdan-Lusztig polynomials, . In the last section we give some examples and remarks.

1. Preliminaries

Let \(W \) be a Coxeter group, with generating set \(S \). In this section, we briefly recall some basic concepts concerning the general multi-parameter framework of Lusztig [10, 11], which introduces a weight function into Coxeter groups and their associated Hecke algebras on which all the subsequent constructions depend.

We denote by \(\ell : W \to \mathbb{N} = \{0, 1, 2, \ldots \} \) the length function on \(W \) with respect to \(S \). Let \(\leq \) denote the Bruhat order on \(W \).

Let \(\Gamma \) be the totally ordered abelian group which will be denoted additively, the order on \(\Gamma \) will be denoted by \(\leq \). Let \(\{L(s) \mid s \in S\} \subseteq \Gamma \) be a collection of elements such that \(L(s) = L(t) \) whenever \(s, t \in S \) are conjugate in \(W \). This gives rise to a weight function

\[
L : W \longrightarrow \Gamma
\]

in the sense of Lusztig [10, 11]: we have \(L(w) = L(s_1) + L(s_2) + \cdots + L(s_k) \) where \(w = s_1s_2\cdots s_k(s \in S) \) is a reduced expression for \(w \in W \). We assume throughout that

\[
L(s) \geq 0
\]

for all \(s \in S \). (If \(\Gamma = \mathbb{Z} \) and \(L(s) = 1 \) for all \(s \in S \), then this is the original "equal parameter" setting of [4].)

Let \(R \subseteq \mathbb{C} \) be a subring and \(A = R[\Gamma] \) be a free \(R \)-module with basis \(\{q^\gamma \mid \gamma \in \Gamma\} \) where \(q \) is an indeterminant. (The basic constructions in this section are independent of the choice of \(R \) and so we could just take \(R = \mathbb{Z} \).) The flexibility of \(R \) will be useful once we consider representations of \(W \). There is a well-defined ring structure on \(A \) such that \(q^\gamma q^{\gamma'} = q^{\gamma + \gamma'} \) for all \(\gamma, \gamma' \in \Gamma \). We denote \(1 = q^0 \in A \). If \(a \in A \) we denote by \(a_\gamma \) the coefficient of \(a \) on \(q^\gamma \) so that \(a = \sum_{\gamma \in \Gamma} a_\gamma q^\gamma \). If \(a \neq 0 \) we define the degree of \(a \) as the element of \(\Gamma \) equal to

\[
\deg(a) = \max\{\gamma \mid a_\gamma \neq 0\}
\]

by convention (see [11]), we set \(\deg 0 = -\infty \). So \(\deg : A \to \Gamma \cup \{-\infty\} \) satisfies \(\deg(ab) = \deg(a) + \deg(b) \).

Let \(\mathcal{H} = \mathcal{H}(W,S,L) \) be the generic Hecke algebra corresponding to \((W,S) \) with parameters \(\{q^{L(s)} \mid s \in S\} \). Thus \(\mathcal{H} \) has an \(A \)-basis \(\{T_w \mid w \in W\} \) and the
multiplication is given by the rules

\[
T_s T_w = \begin{cases}
T_{sw} & \text{if } \ell(sw) > \ell(w) \\
T_{sw} + (q^{L(s)} - q^{-L(s)})T_w & \text{if } \ell(sw) < \ell(w),
\end{cases}
\]

Let \(\Gamma_{\geq \gamma_0} = \{ \gamma \in \Gamma \mid \gamma \geq \gamma_0 \} \) and denote by \(A_{\geq \gamma_0} \) (or \(R[\Gamma_{\geq \gamma_0}] \)) the set of all \(R \)-linear combinations of terms \(q^\gamma \) where \(\gamma \geq \gamma_0 \). The notations \(A_{\gamma > \gamma_0} \), \(A_{\gamma \leq \gamma_0} \), \(A_{\gamma < \gamma_0} \) have a similar meaning.

We denote by \(A \mapsto \overline{A} \) the automorphism of \(A \) induced by the automorphism of \(\Gamma \) sending \(\gamma \) to \(-\gamma\) for any \(\gamma \in \Gamma \). This extends to a ring involution \(\mathscr{H} \mapsto \overline{\mathscr{H}} \), \(h \mapsto \overline{h} \), where

\[
\sum_{w \in W} a_w T_w = \sum_{w \in W} a_{\overline{w}} T_{\overline{w}}^{-1}, a_w \in A \text{ for all } w \in W,
\]

and

\[
T_s = T_{s}^{-1} = T_s + (q^{-L(s)} - q^{L(s)}) \text{ for all } s \in S.
\]

Definition of \(W \)-graph.

Definition 1.1. (for equal parameter case see [6]; for general \(L \) see [7].) A \(W \)-graph for \(\mathscr{H} \) consists of the following data:

(a) a base set \(\Lambda \) together with a map \(I \) which assigns to each \(x \in \Lambda \) a subset \(I(x) \subseteq S \);

(b) for each \(s \in S \) with \(L(s) > 0 \), a collection of elements

\[
\{ \mu_{x,y}^s \mid x, y \in \Lambda \text{ such that } s \in I(x), s \notin I(y) \};
\]

(c) for each \(s \in S \) with \(L(s) = 0 \) a bijection \(\Lambda \rightarrow \Lambda, x \mapsto s\cdot x \). These data are subject to the following requirements. First we require that, for any \(x, y \in \Lambda \) and \(s \in S \) where \(\mu_{x,y}^s \) is defined, we have

\[
q^{L(s)} \mu_{x,y}^s \in R[\Gamma_{\geq 0}] \text{ and } \overline{\mu_{x,y}^s} = \mu_{\overline{x},\overline{y}}^s.
\]

Furthermore, let \([\Lambda]_A\) be a free \(A \)-module with basis \(\{ b_y \mid y \in \Lambda \} \). For \(s \in S \), define an \(A \)-linear map

\[
\rho_s(b_y) = \begin{cases}
b_{s,y} & \text{if } L(s) = 0;
-q^{-L(s)}b_y & \text{if } L(s) > 0, s \in I(y);
q^{L(s)}b_y + \sum_{x \in A; s \in I(x)} \mu_{x,y}^s b_x & \text{if } L(s) > 0, s \notin I(y).
\end{cases}
\]

Then we require that the assignment \(T_s \mapsto \rho_s \) defines a representation of \(\mathscr{H} \).

2. W-graph ideals

For each \(J \subseteq S \), let \(\tilde{J} = S \setminus J \) (the complement of \(J \)) and define \(\mathcal{W}_J = \langle J \rangle \), the corresponding parabolic subgroup of \(W \). Let \(\mathcal{H}_J \) be the Hecke algebra associated with \(\mathcal{W}_J \). As is well known, \(\mathcal{H}_J \) can be identified with a subalgebra of \(\mathscr{H} \).

Let \(D_J = \{ w \in W \mid \ell(ws) > \ell(w) \text{ for all } s \in J \} \), the set of minimal coset representatives of \(W/\mathcal{W}_J \). The following lemma is well known.
Lemma 2.1. [3] Lemma 2.1(iii)(modified) Let \(J \subseteq S \) and \(s \in S \), and define
\[
D^-_{J,s} = \{ w \in D_J \mid \ell(sw) < \ell(w) \},
D^+_{J,s} = \{ w \in D_J \mid \ell(sw) > \ell(w) \text{ and } sw \in D_J \},
D^0_{J,s} = \{ w \in D_J \mid \ell(sw) > \ell(w) \text{ and } sw \notin D_J \},
\]
so that \(D_J \) is the disjoint union \(D^-_{J,s} \cup D^+_{J,s} \cup D^0_{J,s} \). Then \(sD^+_{J,s} = D^-_{J,s} \), and if \(w \in D^0_{J,s} \) then \(sw = wt \) for some \(t \in J \).

In this section we shall recall [3] Section 5, with some modification.

Let \(\leq_L \) denote the left weak (Bruhat)order on \(W \). We say \(y \leq_L y \) if and only if \(y = zz \) for some \(z \in W \) such that \(\ell(y) = \ell(z) + \ell(x) \). We also say that \(x \) is a suffix of \(y \). The following property of the Bruhat order is useful (see [11] Corollary 2.5), for example).

Lemma 2.2. Let \(y, z \in W \) and let \(s \in S \).

(i) Assume that \(sz < z \), then \(y \leq_L z \iff sy \leq_L z \).
(ii) Assume that \(y < sy \), then \(y \leq_L z \iff y \leq_L sz \).

Definition 2.3. If \(X \subseteq W \), let \(Pos(X) = \{ s \in S \mid \ell(xs) > \ell(x) \text{ for all } x \in X \} \).

Thus \(Pos(X) \) is the largest subset \(J \) of \(S \) such that \(X \subseteq D_J \). Let \(E \) be an ideal in the poset \((W, \leq_L) \); that is, \(E \) is a subset of \(W \) such that every \(u \in W \) that is a suffix of an element of \(E \) is itself in \(E \). This condition implies that \(Pos(E) = S \setminus E = \{ s \in S \mid s \notin E \} \). Let \(J \) be a subset of \(Pos(E) \), so that \(E \subseteq D_J \).

In contexts we shall denote by \(E_J \) for the set \(E \), with reference to \(J \). For each \(s \in S \) we classify the elements in \(E_J \) as follows:
\[
E^-_{J,s} = \{ w \in E_J \mid \ell(sw) < \ell(w) \text{ and } sw \in E_J \},
E^+_{J,s} = \{ w \in E_J \mid \ell(sw) > \ell(w) \text{ and } sw \in E_J \},
E^0_{J,s} = \{ w \in E_J \mid \ell(sw) > \ell(w) \text{ and } sw \notin D_J \},
E^0_{J,s} = \{ w \in E_J \mid \ell(sw) > \ell(w) \text{ and } sw \in D_J \setminus E_J \}.
\]

Since \(E_J \subseteq D_J \) it is clear that, for each \(w \in E_J \), each \(s \in S \) appears in exactly one of the following four sets \(SA(w) = \{ s \in S \mid w \in E^+_{J,s} \}, SD(w) = \{ s \in S \mid w \in E^0_{J,s} \}, WA_J = \{ s \in S \mid w \in E^0_{J,s} \} \) and \(WD_J = \{ s \in S \mid w \in E^0_{J,s} \} \). We call the elements of these sets the strong ascents, strong descents, weak ascents and weak descents of \(w \) relative to \(E_J \) and \(J \). In contexts where the ideal \(E_J \) and the set \(J \) is fixed we frequently omit reference to \(J \), writing \(WA(w) \) and \(WD(w) \) rather than \(WA_J(w) \) and \(WD_J(w) \). We also define the sets of descents and ascents of \(w \) by \(D(w) = SD(w) \cup WD(w) \) and \(A(w) = SA(w) \cup WA(w) \).

Remark. It follows from [2,1] that
\[
WA_J(w) = \{ s \in S \mid sw \notin E_J \text{ and } w^{-1}sw \notin J \},
WD_J(w) = \{ s \in S \mid sw \notin E_J \text{ and } w^{-1}sw \in J \}.
\]

since \(sw \notin E_J \) implies that \(sw > w \) (given that \(E_J \) is an ideal in \((W, \leq_L) \)). Note also that \(J = WD_J(1) \).

Definition 2.4. [3] Definition 5.1(modified) Let \((W, S) \) be a Coxeter group with weight function \(L \) such that \(L(s) \geq 0 \) for all \(s \in S \), \(\mathcal{H} \) be the corresponding Hecke
algebra. The set \(E_J \) is said to be a \(W \)-graph ideal with respect to \(J(\subseteq S) \) and \(L \) if the following hypotheses are satisfied.

(i) There exists an \(A \)-free \(\mathcal{H} \)-module \(M(E_J, L) \) possessing an \(A \)-basis

\[
B = \{ \Gamma_w | w \in E_J \},
\]

for any \(s \in S \) and any \(w \in E_J \) we have

\[
T_s \Gamma_w = \begin{cases}
\Gamma_{sw} + (q^{L(s)} - q^{-L(s)}) \Gamma_w & \text{if } w \in E_{J,s}^-; \\
\Gamma_{sw} & \text{if } w \in E_{J,s}^+; \\
-q^{-L(s)} \Gamma_w & \text{if } w \in E_{J,s}^0; \\
q^{L(s)} \Gamma_w - \sum_{z < w} r_{z,w} \Gamma_z & \text{if } w \in E_{J,s}^0.
\end{cases}
\]

for some polynomials \(r_{z,w} \in q^{L(s)} A_{>0} \).

(ii) The module \(M(E_J, L) \) admits an \(A \)-semilinear involution \(\alpha \mapsto \overline{\alpha} \) satisfying \(\overline{1} = 1 \) and \(\overline{h \alpha} = \overline{h} \overline{\alpha} \) for all \(h \in \mathcal{H} \) and \(\alpha \in M(E_J, L) \).

An obvious induction on \(\ell(w) \) shows that \(\Gamma_w = T_w \Gamma_1 \) for all \(w \in E_J \).

Definition 2.5. ([9, Definition 5.2]) If \(w \in W \) and \(E_J = \{ u \in W \mid u \leq_L w \} \) is a \(W \)-graph ideal with respect to some \(J \subseteq S \) then we call \(w \) a \(W \)-graph determining element.

Remark. It has been verified in [9, Section 5] that if \(W \) is finite then \(w_J \), the maximal length element of \(W \), is a \(W \)-graph determining element with respect to \(\emptyset \), and \(d_J \), the minimal length element of the left coset \(w_J^{-1} J \), is a \(W \)-graph determining element with respect to \(J \) and also with respect to \(\emptyset \).

3. Duality theorem for \(W \)-graph ideals

Let \((W, S) \) be a Coxeter group with weight function \(L \) such that \(L(s) \geq 0 \) for all \(s \in S \), \(\mathcal{H} \) be the corresponding Hecke algebra. There exists an algebra map \(\Phi : \mathcal{H} \rightarrow \mathcal{H} \) given by \(\Phi(q^{L(s)}) = q^{L(s)} \) for all \(s \in S \), and \(\Phi(T_w) = \epsilon_w \overline{T_w} \), where the bar is the standard involution in \(\mathcal{H} \). Further, \(\Phi^2 = Id \) and \(\Phi \) commutes with the bar involution.

Duality theorem. We now give an equivalent definition of a \(W \)-graph ideal, and the associated module is denoted by \(\overline{M}(E_J, L) \). The following theorem essentially provides the duality between the two set ups.

Theorem-definition 3.1. (i) With the above notation, let the set \(E_J \) be a \(W \)-graph ideal with respect to \(J(\subseteq S) \) and \(L \), then the following hypotheses are satisfied.

(i) There exists an \(A \)-free \(\mathcal{H} \)-module \(\overline{M}(E_J, L) \) possessing an \(A \)-basis

\[
\overline{B} = \{ \overline{\Gamma}_w | w \in E_J \},
\]

for any \(s \in S \) and any \(w \in E_J \) we have

\[
T_s \overline{\Gamma}_w = \begin{cases}
\overline{\Gamma}_{sw} + (q^{L(s)} - q^{-L(s)}) \overline{\Gamma}_w & \text{if } w \in E_{J,s}^-; \\
\overline{\Gamma}_{sw} & \text{if } w \in E_{J,s}^+; \\
-q^{-L(s)} \overline{\Gamma}_w & \text{if } w \in E_{J,s}^0; \\
q^{L(s)} \overline{\Gamma}_w - \sum_{z < w} r_{z,w} \overline{\Gamma}_z & \text{if } w \in E_{J,s}^0.
\end{cases}
\]
where \(\overline{r}_{z,w}^s = \epsilon_z \epsilon_w \overline{r}_{z,w}^s \in q^{-L(s)}A_{<0} \). (ii) The module \(\widetilde{M}(E_j, L) \) admits an \(A \)-semilinear involution \(\widetilde{\alpha} \mapsto \overline{\alpha} \) satisfying \(\Gamma_1 = \overline{\Gamma}_1 \) and \(h\alpha = h\overline{\alpha} \) for all \(h \in \mathcal{H} \) and \(\overline{\alpha} \in \widetilde{M}(E_j, L) \).

(II) There exists a unique map \(\eta : M(E_j, L) \to \widetilde{M}(E_j, L) \) such that

\((i) \eta(\Gamma_1) = \overline{\Gamma}_1; \)

\((ii) \eta(h\Gamma) = \Phi(h)\eta(\Gamma), \) for all \(h \in \mathcal{H} \) and \(\Gamma \in M(E_j, L) \).

(i.e., \(\eta \) is \(\Phi \)-linear). Further, it has the following properties:

(a) \(\eta \) commutes with the involution on \(M(E_j, L) \) and \(\widetilde{M}(E_j, L) \).

(b) \(\eta \) is one-to-one onto and the inverse \(\theta \) of \(\eta \), satisfies properties (i) and (ii) of \(\eta \).

Proof. For \(w \in E_j \), define \(\eta(\Gamma_w) = \epsilon_w \overline{\Gamma}_w \). Extend \(\eta \) to the whole of \(M(E_j, L) \) by \(\Phi \)-linearity. Let \(s \in S \). Then we have,

\[
\eta(T_s \Gamma_w) = \begin{cases}
\eta[\Gamma_{sw} + (q^{L(s)} - q^{-L(s)})\Gamma_w] & \text{if } w \in E^j_{d,s}, \\
\eta(\Gamma_{sw}) & \text{if } w \in E^+_{j,s}, \\
\eta(-q^{-L(s)}\Gamma_w) & \text{if } w \in E^0_{j,s}, \\
\eta(q^{L(s)}\Gamma_w - \sum_{z \in E_j} r_{z,w}^s \Gamma_z) & \text{if } w \in E^0_{j,s},
\end{cases}
\]

which equals to

\[
\begin{cases}
\epsilon_{sw} \overline{\Gamma}_{sw} + (q^{L(s)} - q^{-L(s)})\epsilon_w \overline{\Gamma}_w & \text{if } w \in E^j_{d,s}, \\
\epsilon_{sw} \overline{\Gamma}_{sw} & \text{if } w \in E^+_{j,s}, \\
-q^{-L(s)}\epsilon_w \overline{\Gamma}_w & \text{if } w \in E^0_{j,s}, \\
q^{L(s)}\epsilon_w \overline{\Gamma}_w - \sum_{z \in E_j} r_{z,w}^s \epsilon_z \overline{\Gamma}_z & \text{if } w \in E^0_{j,s},
\end{cases}
\]

for some polynomials \(r_{z,w}^s \in q^{L(s)}A_{>0} \). On the other hand

\[
\Phi(T_s)\eta(\Gamma_w) = -T_s \epsilon_w \overline{\Gamma}_w
\]

\[
= (-1)^{\ell(w)+1} T_s \overline{\Gamma}_w
\]

\[
= (-1)^{\ell(w)+1} \begin{cases}
\overline{\Gamma}_{sw} + (q^{L(s)} - q^{-L(s)})\overline{\Gamma}_w & \text{if } w \in E^j_{d,s}, \\
\overline{\Gamma}_{sw} & \text{if } w \in E^+_{j,s}, \\
-q^{-L(s)}\overline{\Gamma}_w & \text{if } w \in E^0_{j,s}, \\
q^{L(s)}\overline{\Gamma}_w - \sum_{z \in E_j} r_{z,w}^s \overline{\Gamma}_z & \text{if } w \in E^0_{j,s},
\end{cases}
\]

It is easy to check that these two expressions give the same result, and this shows that \(\eta(T_s \Gamma_w) = \Phi(T_s)\eta(\Gamma_w) \). It is also easy to see that \(\eta(h\Gamma_w) = \Phi(h)\eta(\Gamma_w) \) for all \(h \in \mathcal{H} \) and \(\Gamma \in M(E_j, L) \).

If \(\eta' \) is another map satisfying properties (i) and (ii), then

\[
\eta'(\Gamma_w) = \eta'(T_s \Gamma_1) = \Phi(T_w)\overline{\Gamma}_1 = \epsilon_w T_w \overline{\Gamma}_1 = \epsilon_w T_w \overline{\Gamma}_1 = \epsilon_w \overline{\Gamma}_w
\]

It is now clear that \(\eta' = \eta \).
To prove statement (a), observe that for any $\Gamma \in M(E_J, L)$, there exists $h \in \mathcal{H}$ such that $\Gamma = h^\Gamma_1$. Thus

$$\eta(\Gamma) = \eta(h^\Gamma_1) = \Phi(h)^\Gamma_1 = \Phi(h)\bar{\Gamma}_1 = \Phi(h)\tilde{\Gamma}_1 = \eta(h)\tilde{\Gamma}_1 = \eta(\Gamma).$$

This proves (a).

We interchange the role of these two modules to obtain a map

$$\theta : \tilde{M}(E_J, L) \to M(E_J, L)$$

such that $\theta(\tilde{\Gamma}_w) = \epsilon_w\Gamma_w$. It is easy to check that θ and η are inverses of each other. This proves (b).

Corollary 3.2. If $R_{x,y}$ and $\tilde{R}_{x,y}$ are the polynomials given by the formula

$$\Gamma_y = \sum_{x \in E_J} R_{x,y}\Gamma_x, \quad \overline{\Gamma}_y = \sum_{x \in E_J} \tilde{R}_{x,y}\overline{\Gamma}_x$$

then

$$\tilde{R}_{x,y} = \epsilon_x\epsilon_y R_{x,y}.$$

Proof. Apply the function η to both the sides of the formula for Γ_y and use the fact that η commutes with the involution and then use the formula for $\overline{\Gamma}_y$. We omit the details. \qed

The above result can also be proved by the following recursive formulas.

Lemma 3.3. [14 Prop. 4.1] Let $x, y \in E_J$. If $s \in S$ is such that $y \in E_{J,s}$ then

$$R_{x,y} = \begin{cases}
R_{sx,sy} & \text{if } x \in E_{J,s}^- \\
R_{sx,ys} + (q^{-L(s)} - q^{L(s)})R_{x,ys} & \text{if } x \in E_{J,s}^+ \\
-q^{L(s)}R_{x,ys} & \text{if } x \in E_{J,s}^{0_-} \\
q^{-L(s)}R_{x,ys} & \text{if } x \in E_{J,s}^{0_+}.
\end{cases}$$

Similarly we have

Lemma 3.4. Let $x, y \in E_J$. If $s \in S$ is such that $y \in E_{J,s}^-$ then

$$\tilde{R}_{x,y} = \begin{cases}
\tilde{R}_{sx,ys} & \text{if } x \in E_{J,s}^- \\
\tilde{R}_{sx,ys} + (q^{-L(s)} - q^{L(s)})\tilde{R}_{x,ys} & \text{if } x \in E_{J,s}^+ \\
q^{-L(s)}\tilde{R}_{x,ys} & \text{if } x \in E_{J,s}^{0_-} \\
q^{L(s)}\tilde{R}_{x,ys} & \text{if } x \in E_{J,s}^{0_+}.
\end{cases}$$

We have the further properties of $R_{x,y}$.

Lemma 3.5. If $y \in E_{J,s}^{0_-}$ then we have

$$R_{x,y} = \begin{cases}
-q^{-L(s)}R_{sx,y} & \text{if } x \in E_{J,s}^- \\
-q^{L(s)}R_{sx,y} & \text{if } x \in E_{J,s}^+.
\end{cases}$$

If $y \in E_{J,s}^{0_+}$ then we have

$$R_{x,y} = \begin{cases}
q^{L(s)}R_{sx,y} & \text{if } x \in E_{J,s}^- \\
q^{-L(s)}R_{sx,y} & \text{if } x \in E_{J,s}^+.
\end{cases}$$
Proof. If \(y \in \mathbf{E}_{J,s}^0 \) then
\[
T_s \Gamma_y = -q^{-L(s)} \Gamma_y
\]
Applying involution bar on both sides. On the left hand side we have
\[
\overline{T_s \Gamma_y} = \overline{T_s \Gamma_y} = [T_s + (q^{-L(s)} - q^{L(s)}) \sum_{x \in \mathbf{E}_J} R_{x,y} \Gamma_x].
\]
while the right hand side is \(-q^{-L(s)} \overline{\Gamma_y} = -q^{L(s)} \sum_{x \in \mathbf{E}_J} R_{x,y} \Gamma_x. \)
Comparing the coefficients of \(\Gamma_x \) in the two expressions, we get the result. The proof for the case \(y \in \mathbf{E}_{J,s}^+ \) is similar with the above. \(\square \)

Dual bases \(\mathbf{C} \) and \(\mathbf{C}' \). Recall [14, Th.4.4] that the invariants in \(M(\mathbf{E}_J, L) \) (respectively \(\widetilde{M}(\mathbf{E}_J, L) \)) form a free \(A \)-module with a basis \(\{ \mathbf{C}_w \mid w \in \mathbf{E}_J \} \) (respectively \(\widetilde{\mathbf{C}}_w \mid w \in \mathbf{E}_J \} \), where \(\mathbf{C}_w = \sum_{y,w} P_{y,w} \Gamma_y \) and \(\widetilde{\mathbf{C}}_w = \sum_{y,w} \widetilde{P}_{y,w} \Gamma_y \).

Using the map \(\theta \), we obtain a dual basis \(\{ \mathbf{C}'_w \mid w \in \mathbf{E}_J \} \) for the invariants in \(M(\mathbf{E}_J, L) \). Analogously, using the map \(\eta \) we obtain the dual basis \(\{ \widetilde{\mathbf{C}}'_w \mid w \in \mathbf{E}_J \} \) for the invariants in \(\widetilde{M}(\mathbf{E}_J, L) \).

More precisely, we have:

Proposition 3.6. Let \(\mathbf{C}'_w = \theta(\mathbf{C}_w), \widetilde{\mathbf{C}}'_w = \eta(\mathbf{C}_w) \). Then
(a) The \(\mathcal{H} \)-module \(M(\mathbf{E}_J, L) \) has a unique basis \(\{ \mathbf{C}'_w \mid w \in \mathbf{E}_J \} \) such that \(\overline{\mathbf{C}}'_w = \mathbf{C}'_w \) for all \(w \in \mathbf{E}_J \), and \(\mathbf{C}'_w = \sum_{y \in \mathbf{E}_J} e_y \widetilde{P}_{y,w} \Gamma_y \), for some elements \(\widetilde{P}_{y,w} \in A_{\geq 0} \) with the following properties:
 (a1) \(\widetilde{P}_{y,w} = 0 \) if \(y \neq w \);
 (a2) \(\widetilde{P}_{w,w} = 1 \);
 (a3) \(\widetilde{P}_{y,w} \) has zero constant term if \(y \neq w \) and
 \[
 \overline{\widetilde{P}_{y,w}} - \widetilde{P}_{y,w} = \sum_{y < x \leq w} \overline{R}_{y,x} \widetilde{P}_{x,w} \text{ for any } y < w.
 \]
(b) Analogously, the module \(\widetilde{M}(\mathbf{E}_J, L) \) has another basis \(\{ \widetilde{\mathbf{C}}'_w \mid w \in \mathbf{E}_J \} \), where \(\widetilde{\mathbf{C}}'_w = \sum_{y \in \mathbf{E}_J} e_y \overline{\Gamma}_y \).

Proof.
\[
\mathbf{C}'_w = \theta(\sum_{y \in \mathbf{E}_J} \widetilde{P}_{y,w} \overline{\Gamma}_y) = \sum_{y \in \mathbf{E}_J} e_y \widetilde{P}_{y,w} \overline{\Gamma}_y
\]
Hence, \(\overline{\mathbf{C}}'_w = \theta(\mathbf{C}_w) = \theta(\widetilde{\mathbf{C}}_w) = \mathbf{C}'_w \) and the result follows. \(\square \)

Inversion. For \(y, w \in \mathbf{E}_J \), we write the matrix \(P = (P_{y,w}) \), where \(P_{y,w} \) are \(\mathbf{E}_J \)-relative Kazhdan-Lusztig polynomials. The formula for \(\mathbf{C}_w \) in [14, Th.4.4] may be written as
\[
\mathbf{C}_w = \Gamma_w + \sum_{y \in \mathbf{E}_J} P_{y,w} \Gamma_y
\]
and inverting this gives
\[
\Gamma_w = \mathbf{C}_w + \sum_{y \in \mathbf{E}_J} \overline{Q}_{y,w} \mathbf{C}_y
\]
where the elements $Q_{y,w}$ (defined whenever $y < w$) are given recursively by

$$Q_{y,w} = -P_{y,w} - \sum_{z \in \mathcal{E}_J|y < z < w} Q_{y,z} P_{z,w}$$

A \mathcal{E}_J-chain is a sequence $\zeta: z_0 < z_1 < \cdots < z_n (n \geq 1)$ of elements in \mathcal{E}_J, we set $\ell(\zeta) = n$ and $P_\zeta = P_{z_0,z_1} P_{z_1,z_2} \cdots P_{z_{n-1},z_n}$. z_0 is called the initial element of ζ and z_n is called the final element of ζ. For $y < w$, let $\tau(y,w)$ denote the set of all \mathcal{E}_J-chains with y as the initial element and w as the final element.

The following results are motivated by Lusztig [11, Ch. 10]. For the sake of completeness we attach the proofs.

Proposition 3.7. For any $y, w \in \mathcal{E}_J$ we have

$$Q_{y,w} = \sum_{\zeta \in \tau(y,w)} (-1)^{\ell(\zeta)} P_\zeta$$

We have $Q_{y,w} \in A_{\geq 0}$ with the following properties:

(a1) $Q_{y,w} = 0$ if $y \not\leq w$;

(a2) $Q_{w,w} = 1$;

Proof. If $\ell(w) - \ell(y) = 1$, by Eq.(7) we have $Q_{y,w} = -P_{y,w}$. The statement is true. Applying induction on $\ell(w) - \ell(y) \geq 1$. For any $z \in \mathcal{E}_J, y < z < w$, in the sum of Eq.(7) we use the induction hypothesis.

$$Q_{y,z} = \sum_{\zeta' \in \tau(y,z)} (-1)^{\ell(\zeta')} P_{\zeta'}$$

We have

$$Q_{y,w} = -P_{y,w} - \sum_{\zeta' \in \tau(y,z)} (-1)^{\ell(\zeta')} P_{\zeta'} P_{z,w}$$

$$= \sum_{\zeta \in \tau(y,w)} (-1)^{\ell(\zeta)} P_\zeta$$

where the sequence $\zeta = (y,w) \in \tau(y,w)$ is with $\ell(\zeta) = 1$ and $(\zeta', w) \in \tau(y,w))$ with the length $\ell(\zeta') + 1$. The listed properties of Q's are by Eq.(7). The result is proved. \(\square\)

We define

$$Q'_{y,w} = sgn(y) sgn(w) Q_{y,w}$$

Proposition 3.8. For any $y, w \in \mathcal{E}_J$ we have $Q_{y,w} = \sum_{z: y \leq L z \leq L w} Q_{y,z}^\perp R_{z,w}$

Proof. The triangular matrices $Q = (Q_{y,w}), P = (P_{y,w}), R = (R_{y,w})$ are related by

$$PQ = QP = 1, \mathcal{T} = \mathcal{R} P, \overline{\mathcal{R}} = \mathcal{R} \mathcal{R} = 1$$

where the bar involution over a matrix is the matrix obtained by applying $\bar{\cdot}$ to each entry. We deduce that

$$PQ = 1 = Q P = \overline{Q} \mathcal{T} = \overline{Q} \mathcal{R} P$$

Multiplying on the right by Q and using the fact $PQ = 1$ we deduce $Q = \overline{Q} \mathcal{R}$. Multiplying on the right by R gives

$$\overline{Q} = QR$$
Let S be the matrix whose (y,w)-entry is $\text{sgn}(y)\delta_{y,w}$. We have $S^2 = 1$. Note that $Q' = SQS$. By Corollary 3.2 we have $\widehat{R} = S\widehat{R}S$. Hence

$$Q' = SQS = S(QR)S = SQS \cdot SRS = Q\widehat{R}$$

The result follows. \square

4. W-graphs for the modules \hat{M} and \tilde{M}

Denote by $M := M(E_J, L)$ and $\tilde{M} := \tilde{M}(E_J, L)$. Let $\hat{M} := Hom_A(M, A)$ and $\hat{\tilde{M}} := Hom_A(\tilde{M}, A)$.

Define an left \mathcal{H}-module structure on \hat{M} by

$$hf(m) = f(hm)$$

with $f \in \hat{M}$, $m \in M$, $h \in \mathcal{H}$.

We define a bar operator $\hat{\tilde{M}} \rightarrow \hat{\tilde{M}}$ by $\hat{\tilde{f}}(m) = \overline{f(m)}$ (with $f \in \hat{M}$, $m \in M$); in $\overline{f(m)}$ the lower bar is that of M and the upper bar is that of A.

$$\overline{h \cdot f(m)} = \overline{hf(m)} = \overline{f(hm)} = \overline{f(hm)} = \overline{f(m)}$$

Hence we have $\overline{h \cdot f} = \overline{h} \cdot \overline{f}$ for $f \in \hat{M}, h \in \mathcal{H}$.

In the following contexts we focus on the module \hat{M}, and usually omit the analogous details for $\hat{\tilde{M}}$.

If P is a property we set $\delta_P = 1$ if P is true and $\delta_P = 0$ if P is false. We write $\delta_{x,y}$ instead of $\delta_{x=y}$.

The basis of \hat{M}. We firstly introduce two bases for the module \hat{M}. For any $z \in E_J$ we define $\hat{\Gamma}_z \in \hat{M}$ by $\hat{\Gamma}_z(w) = \delta_{z,w}$ for any $w \in E_J$. Then $\tilde{B} := \{\hat{\Gamma}_z; z \in E_J\}$ is an A-basis of \hat{M}.

Further, for any $z \in E_J$ we define $\hat{D}_z \in \hat{M}$ by $\hat{D}_z(C_w) = \delta_{z,w}$ for any $w \in E_J$. Then $D := \{\hat{D}_z; z \in E_J\}$ is an A-basis of \hat{M}.

Obviously we have

$$D_z = \sum_{y \in E_J, z < y} Q_{z,y} \hat{\Gamma}_y.$$

An equivalent definition of the basis element $D_w \in \hat{M}$ is

$$D_z(\Gamma_y) = Q_{z,y}$$

for all $y \in E_J$. In fact, we have

$$D_z(C_w) = D_z \sum_{y \in E_J} P_{y,w}(\Gamma_y) = \sum_{y \in E_J} Q_{z,y} P_{y,w} = \delta_{z,w}$$

Lemma 4.1. For any $y \in E_J$ we have

$$\overline{\Gamma}_y = \sum_{w \in E_J, y \leq w} R_{y,w} \hat{\Gamma}_w.$$
Proof. For any \(x \in E_J \) we have

\[
\hat{\Gamma}_y(\Gamma_x) = \hat{\Gamma}_y(\Gamma_x) \\
= \hat{\Gamma}_y \left(\sum_{x' \in E_J, x' \leq x} R_{x',x} \Gamma_{x'} \right) = \delta_{y \leq x} R_{y,x} = \delta_{y \leq x} R_{y,x} \\
= \sum_{w \in E_J, y \leq w} R_{y,w} \hat{\Gamma}_w(\Gamma_x)
\]

\(\square \)

Theorem 4.2. [14, Th. 4.7] The basis elements \(\{ C_v \mid v \in E_J \} \) give the module \(M(E_J, L) \) the structure of a \(W \)-graph module such that

\[
T_s C_v = \begin{cases}
q^{L(v)} C_v + C_{sv} + \sum_{z \in E_J, s \leq z < v} m_{z,v} C_z & \text{if } s \in SA(v), \\
-q^{-L(v)} C_v & \text{if } s \in D(v), \\
q^{L(v)} C_v + \sum_{z \in E_J, z < v} m_{z,v} C_z & \text{if } s \in WA(v).
\end{cases}
\]

Theorem 4.3. The \(\mathcal{H} \)-module \(\hat{M}(E_J, L) \) has a unique basis \(\{ D_z \mid z \in E_J \} \) such that \(D_z = D_z \) for all \(z \in E_J \), and \(D_z = \sum_{y \in E_J} Q_{z,y} \hat{\Gamma}_y \) for some elements \(Q_{z,y} \in A \geq 0 \) with the following properties:

1. \(Q_{z,y} = 0 \) if \(z \not\leq y \);
2. \(P_{z,z} = 1 \);
3. \(Q_{z,y} \) has zero constant term if \(z \not= y \) and

\[
Q_{z,y} - Q_{z,y} = \sum_{z \leq x < y, x \in E_J} Q_{z,x} R_{x,y}
\]

for any \(z < y \).

The proof is very similar to that of [11, Th. 5.2] or [10, Section 2]. It uses induction on \(\ell(w) - \ell(y) \), the equation \(Q = QR \) in Proposition 3.8, and the fact: If \(f = \sum_{y \in E_J} Q_{z,y} R_{z,y} \) then \(f = -f \). We omit further details of the proof.

The (left) ascent set of \(z \in E_J \) is

\[
A(z) = \{ s \in S \mid z \in E_J^+ \cup E_J^{0,+} \}
\]

Theorem 4.4. Let \(s \in S \) and assume that \(L(s) > 0 \). The basis elements \(\{ D_z \mid z \in E_J \} \)

give \(\hat{M} \) the structure of a \(W \)-graph module such that

\[
T_s D_z = \begin{cases}
-q^{-L(z)} D_z + D_{sz} + \sum_{z < u, s \in A(u)} m_{z,u} D_u & \text{if } s \in SD(z), \\
q^{L(s)} D_z & \text{if } s \in A(z), \\
-q^{-L(z)} D_z + \sum_{z < u, s \in A(u)} m_{z,u} D_u & \text{if } s \in WD(z),
\end{cases}
\]
Proof. In the case $s \in SD(z)$, $T_s D_z(C_w) = D_z(T_s C_w)$ gives

$$T_s D_z(C_w) = \begin{cases} D_z(q^{L(s)}C_w + C_{sw} + \sum_{x \in E_j, s \leq x < w} m^s_{x,w} C_x) & \text{if } s \in SA(w), \\ D_z(-q^{-L(s)}C_w) & \text{if } s \in D(w), \\ D_z(q^{L(s)}C_w + \sum_{x \in E_j, s \leq x < w} m^s_{x,w} C_x) & \text{if } s \in WA(w), \end{cases}$$

$$= \begin{cases} \delta_{z,sw} + \sum_{x \in E_j, s \leq x < w} m^s_{x,w} \delta_{z,x} & \text{if } s \in SA(w), \\ -q^{-L(s)} \delta_{z,w} & \text{if } s \in SD(w), \\ 0 & \text{if } s \in WD(w), \\ \sum_{x \in E_j, s \leq x < w} m^s_{x,w} \delta_{z,x} & \text{if } s \in WA(w), \end{cases}$$

$$= \begin{cases} (D_{sz} + \sum_{z < u, w \in E_j} m^s_{z,u} D_u)(C_w) & \text{if } s \in SA(w), \\ -q^{-L(s)} D_z(C_w) & \text{if } s \in SD(w), \\ 0 & \text{if } s \in WD(w), \\ \sum_{z < u, w \in E_j} m^s_{z,u} D_u(C_w) & \text{if } s \in WA(w), \end{cases}$$

Hence, we obtain

$$T_s D_z(C_w) = (-q^{-L(s)} D_z + D_{sz} + \sum_{z < u, s \in A(u)} m^s_{z,u} D_u)(C_w)$$

for all $w \in E_J$. The desired formula follows in this case.

In other cases the computation is similar with the above, we omit the details. \(\square\)

The following is by \([13, \text{Prop.4.8}]\).

Corollary 4.5. For $s \in S$ with $L(s) = 0$, $z \in E_J$, we have

$$T_s D_z = \begin{cases} D_{sz} & \text{if } s \in SD(z) \text{ or } s \in SA(z), \\ -D_z & \text{if } s \in WD(z), \\ D_z & \text{if } s \in WA(z), \end{cases}$$

The D'-basis for M.

Theorem 4.6. The \mathcal{H}-module $\hat{M}(E_J, L)$ has a unique basis $\{ D'_z \mid z \in E_J \}$ such that $\overline{D'_z} = D'_z$ for all $z \in E_J$, and $D'_z = \sum_{y \in E_J} \epsilon_y \overline{Q_{z,y} \Gamma}_{y,v}$, where $\overline{Q_{z,y}} \in A_{\geq 0}$, are the
analogous elements in the case of \(\tilde{M} \).

\[
T_s D'_z = \begin{cases}
q^{L(s)} D'_z + D'_z + \sum_{z < u, s \in \Delta(u)} m_{z,u} D'_{u} & \text{if } s \in SD(z), \\
-q^{-L(s)} D'_z & \text{if } s \in A(z), \\
q^{L(s)} D'_z + \sum_{z < u, s \in \Delta(u)} m_{z,u} D'_{u} & \text{if } s \in WD(z),
\end{cases}
\]

(10)

For the \(\mathcal{H} \)-module \(M(E_J, L) \), two pairs of dual bases \(C, C' \) and \(D, D' \) give the structures of the "full W-graphs".

The module \(\tilde{M}(D_J, L) \). Set \(E_J := D_J \). If \(D_J \) is regarded as a \(W \)-graph ideal with respect to \(\emptyset \) (see Deodhar's construction in Section 6), we have

Lemma 4.7. The modules \(\tilde{M}(D_J, L) \) and \(M(D_J, L) \) are identical.

Proof. For any basis element \(\hat{\Gamma}_w \) of \(\tilde{M}(D_J, L) \) and element \(\Gamma_y \) of \(M(D_J, L) \), we have

\[
T_s \hat{\Gamma}_w(\Gamma_y) = \hat{\Gamma}_w(T_s \Gamma_y)
\]

\[
= \delta_{y \in D_{J,s}} \delta_{w,y} + (q^{L(s)} - q^{-L(s)}) \delta_{y \in D_{J,s}} \delta_{w,y} + \delta_{y \in D_{J,s}^+} \delta_{w,y}
\]

\[
+ q^{L(s)} \delta_{y \in D_{J,s}^+} \delta_{w,y}
\]

\[
= \delta_{w \in D_{J,s}^+} \delta_{w,y} + (q^{L(s)} - q^{-L(s)}) \delta_{w \in D_{J,s}^+} \delta_{w,y} + \delta_{w \in D_{J,s}^+} \delta_{w,y}
\]

\[
+ q^{L(s)} \delta_{w \in D_{J,s}^+} \delta_{w,y}
\]

\[
= (\delta_{w \in D_{J,s}^+} \hat{\Gamma}_{w,y} + (q^{L(s)} - q^{-L(s)}) \delta_{w \in D_{J,s}^+} \hat{\Gamma}_{w,y} + \delta_{w \in D_{J,s}^+} \hat{\Gamma}_{w,y})
\]

\[
+ q^{L(s)} \delta_{w \in D_{J,s}^+} \hat{\Gamma}_{w,y}(\Gamma_y)
\]

hence we have

\[
T_s \hat{\Gamma}_w = \begin{cases}
\hat{\Gamma}_{w,y} & \text{if } w \in D_{J,s}^+ \\
\hat{\Gamma}_{w,y} + (q^{L(s)} - q^{-L(s)}) \hat{\Gamma}_{w,y} & \text{if } w \in D_{J,s}^0 \\
q^{L(s)} \hat{\Gamma}_{w,y} & \text{if } w \in D_{J,s}^0
\end{cases}
\]

The result follows. \(\square \)

Corollary 4.8. The \(\mathcal{H} \)-module \(M(D_J, L) \) has basis \(\{ D_z \mid z \in D_J \} \), where \(D_z = \sum_{z \in D_J} Q_{z,y} \Gamma_y \). This basis gives the structure of \(W \)-graph module such that

\[
T_s D_z = \begin{cases}
-q^{-L(s)} D_z + D_{sz} + \sum_{z < u, u \in D_{J,s}^+ \cup D_{J,s}^0} m_{z,u} D_u & \text{if } z \in D_{J,s}^+, \\
q^{L(s)} D_z & \text{if } z \in D_{J,s}^0
\end{cases}
\]

5. IN THE CASE \(W \) IS FINITE

Let \((W, S) \) be a finite Coxeter system and \(w_0 \) be the longest element in \(W \). Define the function \(\pi : W \rightarrow W \) by \(\pi(w) = w_0 w w_0 \), it satisfies \(\pi(S) = S \) and it extends to a \(C \)-algebra isomorphism \(\pi : C[W] \rightarrow C[W] \). We denote by \(s_0 = \pi(s) \). For \(s \in S \) we have \(\ell(w_0) + \ell(w_0 s) + \ell(s) = \ell(s) + \ell(\pi(s) w_0) \), hence

\[
L(w_0) = L(w_0 s) + L(s) = L(s) + \ell(\pi(s)) + L(\pi(s) w_0) = L(s) + L(w_0 s)
\]
so that \(L(\pi(s)) = L(s) \). It follows that \(L(\pi(w)) = L(w) \) for all \(w \in W \) and that we have an \(A \)-algebra automorphism \(\pi : \mathcal{H} \to \mathcal{H} \) where \(\pi(T_w) = T_{\pi(w)} \) for any \(w \in W \).

Lemma 5.1. The \(\mathcal{H} \)-modules \(M \) and \(\widetilde{M} \) have basis \(\Gamma^\pi = \{ T_{w_0} \Gamma_w \mid w \in E_J \} \) and \(\widetilde{\Gamma}^\pi = \{ T_{w_0} \widetilde{\Gamma}_w \mid w \in E_J \} \) respectively. Moreover we have \(\eta(T_{w_0} \Gamma_w) = \epsilon_{w_0 w} T_{w_0} \Gamma_w \).

Proof. Since the involution is square 1 and \(T_{w_0} \) is invertible in \(\mathcal{H} \), the statement follows. Furthermore

\[
\eta(T_{w_0} \Gamma_w) = \Phi(T_{w_0}) \eta(\Gamma_w) = \epsilon_{w_0 w} T_{w_0} \epsilon_w \Gamma_w = \epsilon_{w_0 w} T_{w_0} \Gamma_w.
\]

□

In the following, for the sake of convenience we primarily focus on the module \(M \) and omit the analogous details for \(\widetilde{M} \), unless it is needed. For any \(w \in E_J \) we denote by \(w' := w_0 w \) and \(\Gamma^\pi_w := T_{w_0} \Gamma_w \in M(E_J, L) \).

Remark Generally \(w_0 E_J \neq E_J \). We emphasize that, in the following contexts, the set \(w_0 E_J \) will be just used as the index set for the objects involved.

Direct computation gives the following multiplication rules for the basis \(\Gamma^\pi \).

\[
T_{s_0} \Gamma_w^\pi = \begin{cases} \Gamma^\pi_{s_0 w'} + (q^L(s) - q^{-L(s)}) \Gamma^\pi_{s_0 w'} & \text{if } w \in E_J^+, \\
\Gamma^\pi_{s_0 w'} & \text{if } w \in E_J^-, \\
-q^{-L(s)} \Gamma^\pi_{w'} & \text{if } w \in E_J^{0, -}, \\
q^L(s) \Gamma^\pi_w - \sum_{z < w} r_{w, z}^s \Gamma^\pi_z & \text{if } w \in E_J^{0, +}, \end{cases}
\]

where \(r_{w, z}^s = \frac{r}{r_{w, w}} \in q^{-L(s)} A_{<0} \).

Lemma 5.2. For any \(y' \in w_0 E_J \) there exist coefficients \(R^\pi_{x', y'} \in A \), defined for \(x' \in w_0 E_J \) and \(x' < y' \), such that \(\Gamma^\pi_{y'} = \sum_{x' \in w_0 E_J} R^\pi_{x', y'} \Gamma^\pi_{x'} \). If \(R^\pi_{x', y'} \neq 0 \) then \(x' \leq y' \); particularly \(R^\pi_{y', y'} = 1 \).

The proof is trivial.

We have further properties of \(R^\pi_{x', y'} \).

Lemma 5.3. If \(y' \in w_0 E_J^{0, -} \) then we have

\[
R^\pi_{x', y'} = \begin{cases} -q^L(s_0) R^\pi_{s_0 x', y'} & \text{if } x' \in w_0 E_J^{0, -}, \\
-q^{-L(s_0)} R^\pi_{s_0 x', y'} & \text{if } x' \in w_0 E_J^+ \end{cases}
\]

If \(y' \in w_0 E_J^{0, +} \) then we have

\[
R^\pi_{x', y'} = \begin{cases} q^{-L(s_0)} R^\pi_{s_0 x', y'} & \text{if } x' \in w_0 E_J^{0, +}, \\
q^L(s_0) R^\pi_{s_0 x', y'} & \text{if } x' \in w_0 E_J^- \end{cases}
\]

Proof. The proof is similar with that of Lemma 3.5. □

5.1. The bases \(C^\pi \) for \(M \). The elements \(R^\pi_{w', y'} \), where \(w', y' \in w_0 E_J \), lead to the construction of another set of elements \(P^\pi_{w', y'} \) and the following basis of \(M(E_J, L) \).

Theorem 5.4. The \(\mathcal{H} \)-module \(M(E_J, L) \) has a unique basis \(\{ C^\pi_{y'} \mid y' \in w_0 E_J \} \) such that \(C^\pi_{y'} = C^\pi_{y'} \) for all \(y \in w_0 E_J \), and \(C^\pi_{y'} = \sum_{w' \in w_0 E_J} P^\pi_{w', y'} \Gamma^\pi_{w'} \) for some elements \(P^\pi_{w', y'} \in A_{\geq 0} \) with the following properties:
\(P_{w',y'} = 0\) if \(w' \neq y'\);

(a2) \(P_{y',y'} = 1\);

(a3) \(P_{w',y'}\) has zero constant term if \(y' \neq w'\) and

\[
P_{w',y'} - P_{w',y'} = \sum_{w' < x' \leq y'} R_{x',y'} P_{x',y'} \text{ for any } w' < y'.
\]

The proof is very similar to that of [11, Th. 5.2] or [10, Section 2]. It uses induction on \(\ell(w') - \ell(y')\), and the fact:

\[
\text{If } f = \sum_{w' < x' \leq y'} R_{x',y'} P_{x',y'} \text{ then } \overline{f} = -f.
\]

We omit further details of the proof.

Lemma 5.5. For \(y, w \in E_J\), we have (i) \(y \leq L w \iff w' \leq L y'\);

(ii) \(R_{w',y'} = R_{y,w} ; \overline{R}_{w',y'} = \overline{R}_{y,w} \);

(iii) for any \(w', y' \in w_0 E_J\) and \(w' < y'\) we have

\[
\overline{P}_{w',y'} = \sum_{w' < x' \leq y'} R_{x',y'} P_{x',y'}
\]

Proof. (a) is obvious. We prove (b) by induction on \(\ell(w)\). If \(\ell(w) = 0\) then \(w = 1\). We have \(R_{y,1} = \delta_{y,1}\). Now \(R_{w_0,y} = 0\) unless \(w_0 \leq L w_0 y\). On the other hand we have \(w_0 y \leq L w_0\). Hence \(R_{w_0,y} = 0\) unless \(w_0 y = w_0\), that is \(y = 1\) in which case it is 1. The desired equality holds when \(\ell(w) = 0\). Assume that \(\ell(w) \geq 1\). We can find \(s \in S\) such that \(sw < w\). The proof of the following cases (a) and (b) is similar with Lusztig,...

In the case (a) \(y \in E_J^{-}\). By the induction hypothesis we have

\[
R_{y,w} = R_{s y,sw} = R_{w_0,w_0 y w_0} = R_{w_0,w_0 w_0 y} = R_{w_0,w_0 y}
\]

In the case (b) \(y \in E_J^{+}\). Using Lemma 3.3, by the induction hypothesis we have

\[
R_{y,w} = R_{s y,sw} + (q^{-L(s)} - q^{L(s)}) R_{y,sw}
\]

\[
= R_{w_0,w_0 y} + (q^{-L(s)} - q^{L(s)}) P_{w_0,w_0 y}
\]

\[
= R_{s_{w_0},w_0 y} + (q^{-L(s)} - q^{L(s)}) R_{s_{w_0},w_0 y'}
\]

\[
= R_{s_{w_0},w_0 y'} + (q^{-L(s)} - q^{L(s)}) R_{s_{w_0},w_0 y'}
\]

In the Case (c) \(y \in E_J^{0,-}\). Using Lemma 3.5 and Lemma 5.3, by the induction hypothesis we have

\[
R_{y,w} = -q^{L(s)} R_{y,sw} = -q^{L(s)} R_{w_0,(sw),w_0 y} = -q^{L(s)} R_{s,w_0',y'}
\]

\[
= -q^{L(s)} (q^{-L(s)} R_{w_0',y'}) = R_{w_0',y'}.
\]
Case (d) $y \in E_{J_+}^0$. Using Lemma 3.5 and 5.3, by the induction hypothesis we have

$$R_{y,w} = q^{-L(s)}R_{y,sw} = q^{-L(s_0)}R_{s_0w,y'} = R_{w',y'}.$$

(iii) follows (ii).

\[\square\]

Proposition 5.6. For any $y, w \in E_J$ we have $Q_{y,w} = \epsilon_y \epsilon_w \tilde{P}_{w',y'}^\pi$. (Analogously $\tilde{Q}_{y,w} = \epsilon_y \epsilon_w \tilde{P}_{w',y'}^\pi$).

\[\text{Proof.}\] We argue by induction on $\ell(w) - \ell(y) \geq 0$. If $\ell(w) - \ell(y) = 0$ we have $y = w$ and both sides are 1. Assume that $\ell(w) - \ell(y) > 0$. Subtracting the identity in ...from that in ...and using induction hypothesis, we obtain

$$\epsilon_y \epsilon_w Q_{y,w} - \tilde{P}_{w',y'}^\pi = \epsilon_y \epsilon_w Q_{y,w} - \tilde{P}_{w',y'}^\pi$$

The right hand side is in $A_{>0}$; since it is fixed by the involution bar, it is 0. \[\square\]

More precisely, we have the following inversion formulas

Corollary 5.7. In the above situation,

$$\sum_{z \in E_J, x \leq z \leq w} \epsilon_w \epsilon_z P_{x,z} \tilde{P}_{w',z'}^\pi = \delta_{x,w};$$

$$\sum_{z \in E_J, x \leq z \leq w} \epsilon_w \epsilon_z P_{x,z} \tilde{P}_{w',z'}^\pi = \delta_{x,w}$$

for all $x, w \in E_J$.

Corollary 5.8. If W is finite, for any $y, w \in E_J$ we have

$$m^s_{y,w} = -\epsilon_{w_0y} \epsilon_{w_0w} m^\pi_{w_0w, w_0y};$$

where $m^s_{y,w}$ are the elements involved in the multiplication formulas for C-basis, $m^\pi_{w_0w, w_0y}$ are the analogous in the formulas for C^π-basis.

Corollary 5.9. If W is finite, for the bases D and C^π in $M(D_J, L)$, and the \tilde{D}-basis and \tilde{C}^π-basis for $\tilde{M}(D_J, L)$ we have

$$T_{w_0} D_z = \epsilon_{w_0z} \theta(\tilde{C}^\pi_{w_0z})$$

and

$$T_{w_0} \tilde{D}_z = \epsilon_{w_0z} \eta(C^\pi_{w_0z}).$$

6. Some remarks

An example: the dual Solomon modules. In this subsection, let (W,S) be a finite Coxeter group system. Assume that $L(s) > 0$ for all $s \in S$. In [14] we introduced the A-free \mathcal{H}-module $\mathcal{H}C_{w,J} C'_{w,J}$, which is called the **Solomon module** with respect to J and L, and where

$$C_{w,J} = \epsilon_{w,J} \sum_{w \in W_J} \epsilon_w q^{L(ww_J)} T_w = \epsilon_{w,J} q^{L(wJ)} \sum_{w \in W_J} \epsilon_w q^{-L(s)} T_w;$$

$$C'_{w,J} = \sum_{w \in W_J} q^{-L(ww_J)} T_w = q^{-L(wJ)} \sum_{w \in W_J} q^{L(w)} T_w.$$

that is, $C_{w,J}$ is the C'-basis element corresponding to w_J, the maximal length element of W_J, or c-basis element corresponding to w_J (see [14 Corollary 12.2]). $C_{w,J}$ is the C-basis element corresponding to w_J.

In [13] we showed that $\mathcal{H}C_{w,J}C_{w,J}'$ has basis $\{T_xC_{w,J}C_{J}' \mid x \in F_J\}$. This basis admits the multiplication rules listed in the Definition 2.4, and F_J is a W-graph ideal with respect to J and weight function L.

Similarly, the \mathcal{H}-module $\mathcal{H}C_{w,J}'C_{w,J}$ has basis $\{T_xC_{w,J}'C_{J} \mid x \in F_J\}$. We can easily prove that this basis admits the multiplication rules listed in the Definition 3.1. We call this the dual module of $\mathcal{H}C_{w,J}C_{w,J}'$.

The Kazhdan-Lusztig construction. Assume that $J = \emptyset$. Then $D_J = W$ and the sets $WD_J(w)$ and $WA_J(w)$ are empty for all $w \in W$.

(1). If $L(s) > 0$ (for all $s \in S$), both modules $M(E_J, L)$ and $\tilde{M}(E_J, L)$ are with A-basis $(X_w \mid w \in E_J)$ such that,

$$T_sX_w = \begin{cases} X_{sw} & \text{if } \ell(sw) > \ell(w) \\ X_{sw} + (q^{L(s)} - q^{-L(s)})X_w & \text{if } \ell(sw) < \ell(w), \end{cases}$$

where the elements X_w stand for Γ_w or $\tilde{\Gamma}_w$. If we let $X_w = T_w$ for all $w \in W$, then both modules are the regular module \mathcal{H} with weight function L. Thus we can recover some of Lusztig’s results (for example, see [11, Ch.5, 6, 10, 11]) for the regular case.

Deodhar’s construction: the parabolic cases. Let J be an arbitrary subset of S and $L(s) = 1$ for all $s \in S$, we can now turning to Deodhar’s construction.

Set $E_J := D_J$, then D_J is a W-graph ideal with respect to J, and also it is a W-graph ideal with respect with \emptyset.

In the latter case we have $D_\emptyset = W$, if $w \in E_J$ then

$$SA(w) = \{s \in S \mid sw > w \text{ and } sw \in D_J\},$$

$$SD(w) = \{s \in S \mid sw < w\},$$

$$WD_\emptyset(w) = \{s \in S \mid sw \notin D_\emptyset\} = \emptyset,$$

$$WA_\emptyset(w) = \{s \in S \mid sw \in D_\emptyset \text{ and } D_J\} = \{s \in S \mid sw = wt \text{ for some } t \in J\}.$$

Let \mathcal{H}_J be the Hecke algebra associated with the Coxeter system (W_J, J). Let $M_\psi = \mathcal{H} \otimes_{\mathcal{H}_J} A_\psi$, where A_ψ is A made into an \mathcal{H}_J-module via the homomorphism $\psi : \mathcal{H}_J \to A$ that satisfies $\psi(T_u) = q^{\ell(u)}$ for all $u \in W_J$, it is a A-free with basis $B = \{b_w \mid w \in D_J\}$ defined by $b_w = T_w \otimes 1$. This corresponds to M^J in [4] in the case $u = q$ (we note that this is denoted by \tilde{M}^J in [4]).

Let $M_\phi = \mathcal{H} \otimes_{\mathcal{H}_J} A_\phi$, where A_ϕ is A made into an \mathcal{H}_J-module via the homomorphism $\phi : \mathcal{H}_J \to A$ that satisfies $\psi(T_u) = (-q)^{-\ell(u)}$ for all $u \in W_J$, again it is a A-free with basis $B = \{b_w \mid w \in D_J\}$ defined by $b_w = T_w \otimes 1$. This corresponds to M^J in [4] in the case $u = -1$ (this is denoted by M^J in [4]).

Our module $M(E_J, L)$ is now essentially reduced to be the module M_ψ, while $\tilde{M}(E_J, L)$ is reduced to be the module M_ϕ, the only differences being due to our non-traditional definition of \mathcal{H}.

In the case D_J is a W-graph ideal with respect to J, the discussion is similar with the above. For more details see [4] Sect. 8.

References

[1] C. Bonnafé, *Two-sided cells in type B in the asymptotic case*, J. Algebra 304 (2006), 216-236.

[2] Michèle Couillens, *Généralisation parabolique des polynômes et des bases de Kazhdan-Lusztig*, J. Algebra. 213 (1999), 687–720.
[3] V. Deodhar, *On some geometric aspects of Bruhat orderings II. The parabolic analogue of Kazhdan-Lusztig polynomials*, J. Alg. 111(2), (1987), 483-506.

[4] V. Deodhar, *Duality in parabolic set up for questions in Kazhdan-Lusztig theory*, J. Alg. 142, (1991), 201-209.

[5] J. Matthew Douglass, *An inversion formula for relative Kazhdan-Lusztig polynomials*, Comm. Algebra. 18 (1990), 371–387.

[6] D. Kazhdan and G. Lusztig, *Representations of Coxeter groups and Hecke algebras*, Invent. Math. 53 (1979), 165–184.

[7] M. Geck and N. Jacon, *Representations of Hecke algebras at roots of unity*, Algebra and Applications 15, Springer-Verlag, 2011.

[8] M. Geck, *PyCox: Computing with (finite) Coxeter groups and Iwahori-Hecke algebras*, arXiv: 1201.5566v2, 2012.

[9] R. B. Howlett and V. Nguyen, *W-graph ideals*, J. Algebra 361(2012), 188-212.

[10] G. Lusztig, *Left cells in Weyl groups*, Lie Group Representations, I, R. L. R. Herb and J. Rosenberg, eds., Lecture Notes in Math., vol. 1024, Springer-Verlag, 1983, 99-111.

[11] G. Lusztig, *Hecke algebras with unequal parameters*, CRM Monographs Ser. 18, Amer. Math. Soc., Providence, RI, 2003.

[12] J.Y. Shi, *The Laurent polynomials $M^\tau_{\nu, w}$ in the Hecke algebra with unequal parameters* J. Alg. 357(2012), 1-19.

[13] L. Solomon, *A decomposition of the group algebra of finite Coxeter group*, J. Alg. 9(1968), 220-239.

[14] Y. Yin, *W-graphs for Hecke algebras with unequal parameters*, Manuscripta Math. DOI: 10.1007/s00229-014-0719-1, Nov. 2014, published online.

Department of Mathematics, Shanghai University of Finance and Economics, P.R. China