Long noncoding RNAs as regulators of pediatric acute myeloid leukemia

Sina Neyazi1*, Michelle Ng2, Dirk Heckl2 and Jan-Henning Klusmann3

Abstract

Long noncoding RNAs (lncRNAs) are increasingly emerging as regulators across human development and disease, and many have been described in the context of hematopoiesis and leukemogenesis. These studies have yielded new molecular insights into the contribution of lncRNAs to AML development and revealed connections between lncRNA expression and clinical parameters in AML patients. In this mini review, we illustrate the versatile functions of lncRNAs in AML, with a focus on pediatric AML, and present examples that may serve as future therapeutic targets or predictive factors.

Background

Acute myeloid leukemia (AML) accounts for approximately 20% of acute leukemias in children [1]. Although the overall survival of children with AML has significantly increased as a result of intensified therapy, hematopoietic stem cell transplantation, and improved supportive care over the past decades, around 25% of all patients still cannot be cured [2] — highlighting the urgent need to transfer discoveries about the molecular features of pediatric AML into new therapeutic approaches. Among the recent scientific developments in this field, comprehensive studies have revealed that the molecular landscape of childhood AML is shaped not only by oncogenic mutations and cytogenetic alterations but also by global changes in DNA methylation and gene expression affecting both protein-coding genes and noncoding RNAs [3, 4]. Noncoding RNAs in particular are emerging as important regulators of hematopoiesis and leukemogenesis and represent a largely understudied space in the search for new therapeutic strategies.

Long noncoding RNAs (lncRNAs) — defined as transcripts longer than 200 nucleotides that lack open reading frames — represent the largest group of noncoding RNAs and constitute two-thirds of the human transcriptome [5]. Different structural domains enable their interaction with RNA, DNA, and proteins and thereby allow the regulation of every stage of gene expression. Apart from their versatile roles in gene regulation on every possible transcriptional and posttranscriptional level, lncRNAs can directly interact with signaling pathways and contribute to the function of organelles such as exosomes or mitochondria.

Molecular mechanisms and functions of lncRNAs

Based on the mechanistic interaction of lncRNAs with other molecules, four different archetypes of lncRNA functions — namely signal, decoy, guide, and scaffold — have been defined in a seminal work by Wang and Chang in 2011 [6]. As the first archetype, signal lncRNAs, which are under precise transcriptional control, act as a molecular signal reflecting a specific developmental stage, cellular background, or a response to stimuli [6–9]. LncRNAs belonging to the second archetype, decoy, bind and titrate away regulatory proteins or RNAs, thereby repressing transcription or translation of a target gene [10, 11]. Guide lncRNAs, which represent the third mechanistic archetype, direct regulatory protein complexes, chromatin modifiers, or transcription factors to their target site, resulting in either transcriptional activation or repression of the respective genomic locus [12, 13]. The fourth archetype, scaffold, describes lncRNAs as

*Correspondence: sina.neyazi@gmail.com
1 Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
Full list of author information is available at the end of the article
a structural platform at which different bound components of protein complexes or ribonucleoprotein complexes are assembled or can interact with each other [14, 15]. Even though increasing evidence now points toward complex lncRNA mechanisms that represent rather coexisting or overlapping features of the four classical archetypes, these four mechanistic subtypes still illustrate the wide range of possible modes of action of lncRNAs.

Nuclear-localized lncRNAs can exert independent regulatory effects on neighboring genes (function in cis) as well as on distant genes (function in trans), while cytoplasmic lncRNA mechanisms include competitive miRNA binding and interaction with translational proteins [16]. The most commonly demonstrated function of cis-acting nuclear lncRNAs, which are operating at their own site of transcription, is regulation of gene expression and chromatin modification [17]. The participation of cis-acting lncRNAs in transcriptional processes is supported by the high abundance of lncRNA genes in the proximity of regulatory elements of the human genome such as enhancers and promoters [18]. Protein-coding genes that are involved in transcriptional regulation, e.g., genes encoding transcription factors or chromatin modifiers, show a higher enrichment of closeby lncRNA genes than protein-coding genes of other functional categories, further indicating an essential contribution of cis-acting lncRNAs to the regulation of gene expression [19]. LncRNAs can act in cis to either activate or repress the expression of nearby genes through a variety of mechanisms. For instance, lncRNAs can activate gene expression in cis by recruiting proteins that establish spatial interactions such as chromatin loops, thereby enabling closer contact of an enhancer to the respective protein-coding gene [20, 21]. Other lncRNAs have been shown to activate gene expression of their target genes in cis in an transcript-independent manner by the process of their own transcription and splicing through recruiting cofactors, accumulation of transcriptional proteins, and establishing of activating chromatin marks [22, 23]. Conversely, cis-acting lncRNAs can also recruit chromatin modifiers that repress transcriptional activity at their genomic locus, such as the polycomb repressive complex 2 [24, 25]. Another lncRNA mechanism that results in decreased expression of the neighboring target gene is transcriptional interference: The transcription of a lncRNA can interfere with the transcription of the adjacent gene by impeding recruitment of necessary proteins such as transcription factors and chromatin remodeling proteins or by increasing nucleosome density, thereby preventing transcription factor access [26, 27]. For trans-acting lncRNAs, diverse functions in the modulation of distant gene expression have been demonstrated, with most of the studied examples exhibiting mechanisms that have been also described in the context of cis-acting lncRNAs. For instance, lncRNAs can facilitate transcriptional activation of distant target genes by the initiation of chromatin loop formation [28]. Similarly, several lncRNAs have been shown to repress transcription of target genes in trans through recruitment of chromatin-modifying complexes [7, 9, 29]. Another mechanism that has been described for cis-acting lncRNAs as well as for trans-acting lncRNAs is the formation of RNA-DNA hybrids, the so-called R-loops, that are recognized by transcription factors or chromatin modifiers and thereby lead to the activation or repression of transcription of the target gene [30].

Given their versatile cellular and molecular functions, it is no surprise that lncRNAs are involved in many essential physiological processes such as genomic imprinting and differentiation, as well as in the pathogenesis of diseases such as cancer, neurodegenerative disorders, and metabolic diseases [31–33].

LncRNAs in hematopoiesis and AML

Hematopoietic differentiation is a tightly regulated, hierarchically ordered process coordinated by the expression of specific gene programs. Numerous lncRNAs have been characterized in the context of hematopoiesis including lncRNAs that are involved in hematopoietic fate decision and lncRNAs whose deregulation contributes to the malignant transformation of hematopoietic progenitor cells [34]. Recent studies identified unique stage- and lineage-specific lncRNA signatures in distinct blood cell populations indicating an important contribution of lncRNAs to the homeostasis and regulation of hematopoiesis [3, 35, 36]. Here, we review a selection of well-characterized lncRNAs that are involved at different levels of hematopoietic differentiation.

Fetal lncRNA *H19* is one of the best-characterized lncRNAs in embryonic development and tumorigenesis. Physiologically downregulated after birth, *H19* is expressed in almost every type of human cancer [37, 38]. During embryonic development, the lncRNA facilitates the transition from endothelial cells to hematopoietic stem cells (HSCs), whereas in adult hematopoiesis, it is essential for maintaining HSC quiescence, thereby regulating the long-term homeostasis of HSCs [39, 40]. In addition, *H19* is overexpressed in AML and correlates with poor prognosis. In vitro knockdown of *H19* leads to decreased proliferation and increased apoptosis in AML cell lines — further supporting its potential oncogenic effect in AML [41]. Another example of an lncRNA implicated in HSC homeostasis is *LncHSC-2*, a nuclear lncRNA, which is expressed in HSCs and hematopoietic progenitors [42]. *LncHSC-2* regulates long-term self-renewal and lymphoid differentiation of HSCs by binding
to Tcf3, a transcription factor that is essential for HSC proliferation and differentiation into myeloid-lymphoid progenitor cells [42].

In addition to these and other mechanistically studied examples of IncRNAs involved in HSC maintenance and maturation, several comprehensive transcriptomic studies identified hundreds of IncRNAs enriched in HSCs that are co-expressed with lineage-specific transcription factors, indicating that IncRNAs represent another important layer of the complex regulatory network that tunes hematopoietic differentiation [35, 36, 42]. Accordingly, IncRNAs are specifically enriched and functionally relevant not only in the context of HSCs but also in hematopoietic progenitor cell populations and mature blood cell populations. For instance, IncRNA HOTAIR1 is highly expressed during granulocytic differentiation and contributes to the modulation of target genes in cis and in trans that are essential for proper myelopoiesis [43].

LINC00173 is another example of a IncRNA that is essentially involved in myeloid differentiation. We identified LINC00173 to be specifically expressed in mature granulocytes [3]. Upon knockdown in hematopoietic stem and progenitor cells (HSPCs), granulocytic differentiation and phagocytic capacity are impaired, whereas the erythroid lineage remained unaffected. Further analyses revealed a direct interaction between LINC00173 and PRC2, as well as differential H3K27 trimethylation at the promoter regions of genes involved in stemness, megakaryopoiesis, and erythropoiesis [3].

During erythroid differentiation, IncRNA EPS is enriched only in erythroid progenitor cells and promotes terminal erythrocytic differentiation by repressing pro-apoptotic pathways [44]. Within the lymphoid lineage, numerous IncRNAs that regulate differentiation and contribute to the immune response have been described. An example is IncRNA NeST, which is specifically expressed in CD4+ T-helper 1 cells and regulates the transcription of inflammatory genes through recruiting histone methyltransferase complexes [45, 46].

Dysregulation of the hematopoietic system results in uncontrolled proliferation of immature progenitor cells and in a block of proper differentiation, ultimately leading to the development of leukemia. Several IncRNAs have been shown to contribute to leukemogenesis [34]. In addition, IncRNAs may also serve as biomarkers or predictive factors in this disease [34]. It has been demonstrated that specific IncRNA expression profiles can be utilized to distinguish between different known molecular and cytogenetic AML subgroups and may serve as independent predictors of clinical outcome [47]. Using several examples, we illustrate different functions that have been described for individual IncRNAs in AML. We also briefly discuss IncRNA loci that may have functional consequences in AML cells independent from the encoded transcripts.

The IncRNA HOTAIR is highly expressed in AML and serves as a predictor for poor clinical outcome [48]. In vitro studies in primary AML blasts suggest an oncogenic function of HOTAIR, where it supposedly acts as a decoy for the tumor-suppressive microRNA miR-193a [48]. An alternative mode of action has also been described, where HOTAIR exerts its oncogenic effect in AML through EZH2-mediated epigenetic silencing of the tumor suppressor gene p15 [49].

IncRNA ANRIL, which is upregulated in both AML and ALL, acts as an oncogenic IncRNA by epigenetic silencing of its antisense tumor suppressor gene p15 [14, 50] As for other oncogenic IncRNAs, recent studies indicate a correlation of ANRIL expression to poor survival in patients with AML [51].

In contrast to the previous examples, IncRNA IRAIN is downregulated in AML cell lines and patients with high-risk AML, indicating that IncRNAs might not only act as oncogenes but as tumor suppressors in AML, too [52]. This IncRNA is transcribed antisense from the insulin-like growth factor type 1 receptor (IGF1R) locus, which is known to promote proliferation of AML cells through the PI3K/Akt signaling pathway [53, 54]. Mechanistically, IRAIN is involved in the formation of an intrachromosomal chromatin loop connecting the IGF1R promoter to a putative enhancer element [52]. However, the functional implications of this mechanism have yet to be elucidated. Clinical data further support the suggested tumor-suppressive function of IRAIN in AML, demonstrating a correlation between low IRAIN expression and poor prognosis in non-M3 acute myeloid leukemia patients [55].

While the majority of IncRNAs have yet to undergo in-depth characterization, this selection of examples provides a glimpse into the diversity of IncRNA functions in the context of hematopoiesis and AML. Even for these better-studied examples, it should be noted that mechanistic details remain elusive, due in part to the extensive experimental labor required to discern between RNA-dependent and -independent effects originating from IncRNA loci [56]. As a case in point, our group recently described MYNRL15 — a pan-myeloid leukemia dependency locus involved in genome topology, whose IncRNA product is dispensable for its dependency phenotype [57]. We found CTCF-enriched IncRNA loci (C-LNCs) like MYNRL15 to be enriched for leukemia vulnerabilities and provide a catalog (www.C-LNC.org) in hopes of facilitating the functional classification of IncRNAs and the discovery of new oncogenic vulnerabilities [57].
LncRNAs in pediatric AML

In contrast to many other malignant diseases, AML occurs in all age groups, but children account for only a small proportion of all patients with AML. The molecular landscape of pediatric AML differs significantly from the molecular profile of adult AML. Chromosomal aberrations are more common in children than in adults with AML [4, 58]. In addition, the genes that are frequently mutated in adult AML (NPM1, DNMT3A, IDH1, IDH2, RUNX1, TP53) are less often affected in children. Other genes, such as FLT3 or GATA2, differ in terms of the exact location and frequency of the mutations between pediatric and adult AML [4]. Given these biological and clinical differences, it is essential that we refrain from simply transferring new findings from adult cell lines, mouse models, and clinical cohorts of adult AML patients to the pediatric setting. Rather, investigations that focus specifically on pediatric AML are needed, to refine current risk stratification criteria and to develop novel therapeutic strategies for children with AML. While most current examples of lncRNAs with roles in AML have first been described in adult contexts, there is now an increasing number of studies characterizing lncRNAs in pediatric AML.

Our group described, for the first time, subtype-specific lncRNA signatures for six major cytogenetic subgroups of pediatric AML, namely, Down syndrome (DS) and non-DS acute megakaryoblastic leukemia (AMKL), inv[16], t[8;21], and AML with KMT2A rearrangement (t[9;11] and t[10;11]) [3]. In the transcriptional landscape of normal and malignant hematopoiesis, most DS- and non-DS-AMKL samples, and KMT2A-r samples, cluster in close proximity to HSCs. Their lncRNA expression profiles are characterized by the absence of myeloid expression programs. In contrast, all other pediatric AML samples clustered in proximity to normal myeloid progenitor cells. We further uncovered a core lncRNA stem cell signature that is shared between HSCs and AML blasts of all different pediatric AML subgroups. High expression of this core lncRNA stemness program is significantly correlated with poor survival in a cohort of adult AML patients [3].

Other studies have focused on the in-depth characterization of individual lncRNAs in pediatric AML. Here, we will summarize lncRNAs that have been implicated in pediatric AML (Table 1) and will exemplarily discuss several individual lncRNAs, for which molecular functions have been studied in the context of pediatric AML. Luo et al. found that the lncRNA HOTTIP is overexpressed in NPM1-mutated and KMT2A-r AML cases and predicts poor outcome [59]. Mechanistically, they showed that HOTTIP alters the three-dimensional structure of the nearby HOXA locus and binds to posterior HOXA sites as well as other genes critically involved in hematopoiesis and leukemogenesis, resulting in the activation of an AML-specific transcriptional program. Of note, HOTTIP expression is sufficient to initiate leukemic transformation of HSCs in mice. Knockout of HOTTIP perturbs leukemic proliferation and prolongs the survival in AML mouse models, suggesting a novel therapeutic option for the treatment of pediatric AML [59].

A recent elaborate study has identified lncRNA CDK6-AS1 as a novel regulator in pediatric AML [60]. In a pediatric patient cohort, CDK6-AS1 was significantly overexpressed and associated with higher minimal residual disease after induction therapy. High CDK6-AS1 levels contributed to an immature phenotype in healthy HSCs and primary AML blasts, whereas silencing of the lncRNA led to increased hematopoietic differentiation of HSCs and to a rescue of the pathogenic undifferentiated state of AML blasts. Mechanistically, the authors could show that CDK6-AS1 regulates expression of its neighboring gene CDK6 by shifting a bidirectional promoter, and that the common CDK6-AS1/CDK6 axis downregulates RUNX1 signaling, which is essential for early hematopoietic differentiation. In addition, CDK6-AS1 activates mitochondrial biogenesis in healthy HSCs as well as in pediatric AML blasts. Interestingly, mitochondrial targeting, using Tigecycline, sensitizes AML blasts with high CDK6-AS1 expression to chemotherapy, supporting the concept of a mitochondrial vulnerability in these blasts. Overall, these findings identified CDK6-AS1 as an important regulator of early hematopoietic differentiation and leukemogenesis of pediatric AML and uncovered therapeutics targeting mitochondrial biogenesis as a novel treatment strategy in pediatric AML [60].

UCA1 is an additional example of an oncogenic lncRNA in adult and pediatric AML. UCA1 has been shown to be upregulated by CEBPα-p30, the CEBPα isoform that results from CEBPA mutations recurrently found in AML patients [86]. In pediatric and adult AML cell lines, UCA1 is upregulated, and knockdown of the lncRNA impairs leukemic viability, migration, and invasion through binding of various microRNAs, such as miR-126, miR-204, miR96-5p, and miR296-3p [61–64]. Furthermore, UCA1 contributes to chemoresistance in pediatric AML by tethering miR-125a [65].

Other examples of relevant lncRNAs in childhood AML are MONC and MIR100HG, which are host genes for the homologous miRNA clusters miR-99a~125b-2 and miR-100~125b-1, respectively. These miRNA clusters are known to promote the progression of AMKL [87, 88]. Both lncRNA host genes are highly expressed in AMKL cells compared to cell lines of other pediatric AML subtypes. Lentiviral overexpression of MONC
alters hematopoietic differentiation, independently of the expression of the oncogenic miRNA clusters [66].

LncRNA MEG3 is downregulated in adult and pediatric AML, supposedly by epigenetic modifications of its genomic locus. Mechanistically, MEG3 has been shown to activate p53 expression and DNMT3A, thereby inhibiting leukemogenesis [67]. Hypermethylation of the MEG3 promoter is associated with poor prognosis in adult AML patients [68]. In pediatric AML patients, higher expression of MEG3 correlates with better survival [69].

These are only a few examples of lncRNAs that have been characterized in the context of pediatric AML and that show correlation to clinically relevant subgroups and/or prognosis of the patients. In addition, a more general lncRNA scoring system based on the expression of 14 lncRNAs has been proposed to predict overall survival in children with AML [89].

LncRNA	Role in pediatric AML	Cellular function	Clinical significance in pediatric AML	References
HOTTIP	Oncogenic in NPM1-mutated and KMT2A-r AML	Activation of posterior HOXA genes and other hematopoietic genes	High expression correlates with poor survival	[59]
CDK6-AS1	Oncogenic	Silencing of RUNX1 transcription and activation of mitochondrial biogenesis	High expression correlates with poor treatment response	[60]
UCA1	Oncogenic	Binding of various miRNAs	Unknown	[61–65]
MONC	Oncogenic in AMKL	Unknown	Unknown	[66]
MIR100HG	Oncogenic in AMKL	Unknown	Unknown	[66]
MEG3	Tumor suppressive	Activation of p53 expression and DNMT3A	High expression correlates with better survival	[67–69]
HOXA10-AS5	Oncogenic in KMT2A-AML	Activation of the NF-κB pathway	High expression correlates with poor survival	[70]
LINC00998	Tumor suppressive	ZFP36 binding and reduction of mTORC2 mRNA stability	Low expression correlates with poor survival	[71]
LINC01257	Oncogenic in t(8;21) AML	Unknown	High expression correlates with poor survival	[72]
MVIH	Oncogenic	Unknown	High expression correlates with poor treatment response and survival	[73]
GAS6-AS1	Oncogenic	Decoy for tumor-suppressive miRNA miR-370-3p	Unknown	[74]
FBXL19-AS1	Oncogenic	Unknown	High expression correlates with poor survival	[75]
SNHG14	Oncogenic	Decoy for tumor-suppressive miRNA miR-193-3p	Unknown	[76]
DARS-AS1	Oncogenic	Decoy for tumor-suppressive miRNA miR-425	High expression correlates with poor survival	[77]
TUG1	Oncogenic	Decoy for tumor suppressive miRNA miR-221-3p	Unknown	[78]
LINC00909	Oncogenic	Decoy for tumor-suppressive miRNA miR-625	High expression correlates with poor survival	[79]
LAMPS-AS1	Oncogenic in KMT2A-AML	Activation of DOT1L and global H3K79 methylation	High expression correlates with poor survival	[80]
LINC0064	Oncogenic	Decoy for tumor-suppressive miRNA miR-378a	Unknown	[81]
Lnc-SOX6-1	Oncogenic	Unknown	High expression correlates with poor survival	[82]
CCAT1	Oncogenic in t(8;21) AML	Unknown	High expression correlates with poor survival	[83]
PVT1	Oncogenic in t(8;21) AML	Unknown	High expression correlates with poor survival	[83]
CASC15	Oncogenic in t(8;21) AML	Regulation of YY1-mediated transcription of SOX4	No correlation to prognosis	[84]
DLEU2	Tumor suppressive in AML MS	Unknown	No correlation to prognosis	[85]
HOXA10-AS: a novel oncogenic lncRNA in pediatric AML with KMT2A rearrangements

In a recently published study from our group, the antisense lncRNA HOXA10-AS was identified as an essential regulator of hematopoiesis and as a novel oncogenic lncRNA in the context of pediatric AML with KMT2A rearrangements (KMT2A-r AML) [70]. Along the genome, HOXA10-AS is located at the posterior end of the HOXA cluster — one of the four highly conserved HOX gene clusters. Tightly controlled spatiotemporal expression of the different HOX genes is crucial for hematopoietic differentiation, and dysregulation of HOX genes such as HOXA9 and HOXA7 by KMT2A fusion proteins is responsible for leukemic transformation in KMT2A-r AML [90]. The HOX gene clusters harbor numerous lncRNAs that are expressed in the same specific pattern as their protein-coding neighbors during differentiation, indicating their putative biological importance [9]. Previous studies revealed that HOX lncRNAs are capable of regulating the expression of neighboring or distant protein-coding HOX genes, as well as of independent effects on other signaling pathways [9, 12, 91]. Although a handful of HOX lncRNAs have undergone further characterization, the role of the vast majority of HOX lncRNAs in AML remains unknown.

HOXA10-AS is transcribed from the antisense strand relative to the protein-coding gene HOXA10 and microRNA mir-196b, both of which are involved in hematopoiesis and in the pathogenesis of KMT2A-r AML. In our study, we confirmed that HOXA10-AS is overexpressed in KMT2A-r AML as well (Fig. 1A). KMT2A rearrangements are the most frequent cytogenetic aberrations in pediatric AML and predominantly affect infants [58, 92]. Gain-of-function experiments in cell lines and primary blasts showed increased leukemic growth of KMT2A-r AML cells upon HOXA10-AS overexpression. In complementary loss-of-function assays using shRNA-mediated knockdown, CRISPR-Cas9-induced excision, and LNA-GapmeRs, we further demonstrated that the maintenance of KMT2A-r AML cells depends on high HOXA10-AS expression (Fig. 1B). During normal hematopoiesis, HOXA10-AS is specifically expressed in HSCs and strongly downregulated during hematopoietic differentiation, whereas the neighboring

![Fig. 1](image)
genes \textit{HOXA10} and mir-196b remain highly expressed in early myeloid progenitor cells (Fig. 1C). This strict stem cell-specific expression of \textit{HOXA10-AS} suggests an independent regulatory circuit and cellular function separate from that of the nearby genes. Hematopoietic differentiation assays upon lentiviral overexpression of \textit{HOXA10-AS} in HSPCs revealed impaired monocytic differentiation in \textit{HOXA10-AS} overexpressing cells (Fig. 1D). The observations that ectopic expression of \textit{HOXA10-AS} impaired monocytic differentiation and that \textit{HOXA10-AS} is over-expressed in \textit{KMT2A}-r AML are consistent with the fact that \textit{KMT2A}-r AML predominantly manifests as a monoblastic leukemia (AML FAB M5) [58]. Regarding the mechanistic characterization of \textit{HOXA10-AS}, we found that its effects in hematopoiesis and leukemogenesis were independent of changes in expression of the neighboring oncogenes, arguing against a regulatory role for \textit{HOXA10-AS} on the \textit{HOXA} cluster \textit{in cis}. This was supported by subcellular localization studies, which showed that the \textit{HOXA10-AS} is mainly located in the cytoplasm. Indeed, microarray-based gene expression analysis uncovered a possible \textit{trans} mechanism for \textit{HOXA10-AS} involving the upregulation of NF-\textit{kB} target genes in \textit{HOXA10-AS} expressing early monocyctic progenitors and \textit{KMT2A}-r AML (Fig. 1A and D). Finally, we provided a proof of principle of how \textit{HOXA10-AS} could be leveraged towards clinical implementation, by demonstrating \textit{HOXA10-AS} as a prognostic marker in AML and potential therapeutic target in pediatric \textit{KMT2A}-r AML [70].

Conclusion

LncRNAs are emerging as regulators of hematopoiesis and AML pathogenesis, and knowledge about their individual effects is rapidly increasing. However, extensive functional research is required before we gain a complete understanding of the complex regulatory networks surrounding LncRNAs and their interplay with known oncogenic drivers. While individual examples continue to provide valuable information about the roles of LncRNAs and how they might serve as novel therapeutic targets or prognostic factors in AML, research on LncRNAs in pediatric AML still lags behind adult AML. Thus, investigations of LncRNAs such as \textit{HOXA10-AS} add important insights on the regulatory roles of LncRNAs in general, as well as crucial knowledge about the specific pathogenesis of pediatric AML, both of which will hopefully contribute to a comprehensive view and new therapies for this disease.

Abbreviations

- AML: Acute myeloid leukemia
- AMKL: Acute megakaryoblastic leukemia
- DS: Down syndrome
- HSC: Hematopoietic stem cell
- HSPC: Hematopoietic stem cell
- KMT2A: Evi-1 (Core binding factor alpha 2)
- LncRNA: Long noncoding RNA
- shRNA: Short hairpin RNA
- SN: SourceNote

Acknowledgements

Not applicable.

Authors’ contributions

SN wrote the manuscript. MN, DH, and JHK edited the manuscript. All authors read and approved the final manuscript.

Funding

S. Neyazi was a recipient of Mildred-Scheel doctoral research funding from the German Cancer Aid. This work was supported by funding to J. H. K from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement #714226). J. H. K. is a recipient of the St. Baldrick’s Robert J. Arceci Innovation Award.

Availability of data and materials

Not applicable.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

J. H. K. has advisory roles for bluebird bio, Novartis, Roche, and Jazz Pharmaceuticals. The authors disclose that their published work is highlighted in this mini review.

Author details

1. Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. 2. Department of Pediatrics, Martin Luther University Halle-Wittenberg, Halle, Germany. 3. Department of Pediatrics, Goethe University Frankfurt, Frankfurt, Germany.

Received: 3 December 2021 Accepted: 30 March 2022 Published online: 20 May 2022

References

1. Erdmann F, Kaatsch P, Grabow D, Spix C (2020) German Childhood Cancer Registry - Annual Report 2019 (1980-2018)
2. Rasche M, Zimmermann M, Borschel L, Bourquin J-P, Dworzak M, Klingebiel T et al (2018) Successes and challenges in the treatment of pediatric acute myeloid leukemia: a retrospective analysis of the AML-BFM trials from 1987 to 2012. Leukemia 32(10):2167–2177
3. Schwarzacher A, Emmrich S, Schmidt F, Beck D, Ng M, Reimer C et al (2017) The non-coding RNA landscape of human hematopoiesis and leukemia. Nat Commun 8(1):2118
4. Bolouri H, Farrar JE, Triche TJ, Ries RE, Lim EL, Alonzo TA et al (2018) The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat Med 24(1):103–112
5. Guttmann M, Amit I, Garber M, French C, Lin MF, Feldser D et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458(7235):223–227
6. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43(6):904–914
7. Huarte M, Guttman M, Kapranov P, Kim T, Hertig A, Diecidue C et al (2008) Non-coding RNA in the complexity of gene regulation. Nat Rev Genet 9(11):828–839
8. Louws S, Cabili MN, Guttmann M, Loh YH, Thomas K, Park IH et al (2010) Long intergenic non-coding RNA-ROr mediates reprogramming of human induced pluripotent stem cells. Nat Genet 42(12):1113–1117
9. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323
10. Poliseno L, Salmena L, Zhang J, Carver B, Haveman JW, Pandolphi PP (2010) A coding-independent function of gene and pseudogene miRNAs regulates tumour biology. Nature 465(7301):1033–1038
11. Hung T, Wang Y, Lin MF, Koegel AK, Kotake Y, Grant GD et al (2011) Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 43(7):621–629
12. Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y et al (2011) A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472(7341):120–124
13. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076
14. Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M et al (2011) Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4b) tumor suppressor gene. Oncogene 30(16):1956–1962
15. Ly H, Blackburn EH, Parslow TG (2003) Comprehensive structure-function analysis of the core domain of human telomerase RNA. Mol Cell Biol 23(19):6849–6856
16. Gutmann M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482(7385):339–346
17. Gil N, Ulfitsky I (2020) Regulation of gene expression by cis-acting long non-coding RNAs. Nat Rev Genet 21(2):102–117
18. Marques AC, Hughes J, Graham B, Kowalczyk MS, Higgs DR, Ponting CP (2013) Chromatin signatures at transcriptional start sites separate two equally populated yet distinct classes of intergenic long noncoding RNAs. Genome Biol 14(11):R131
19. Ponjavic J, Oliveri PL, Lunter G, Ponting CP (2009) Genomic and transcriptional co-localization of protein-coding and long non-coding RNA pairs in the developing brain. PLoS Genet 5(8):e1000617
20. Xiang J-F, Yin Q-F, Chen T, Zhang Y, Zhang X-O, Wu Z et al (2014) Human colorectal cancer-specific CCAT1-L IncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res 24(5):513–531
21. Lai F, Orom UA, Cesaroni M, Bieringer M, Taetjes D, Blobel GA et al (2013) Activating RNAs associate with mediator to enhance chromatin architecture and transcription. Nature 494(7438):497–501
22. Engert J, Haines JE, Perez EM, Munson G, Chen J, Kane M et al (2016) Local regulation of gene expression by IncRNA promoters, transcription and splicing. Nature 539(7629):452–455
23. Gil N, Ulfitsky I (2018) Production of spliced long noncoding RNAs specifies regions with increased enhancer activity. Cell Syst 7(5):S37–S47.e3
24. Zhao J, Sun BK, Erwin JA, Song J-J, Lee JT (2008) Polycomb proteins define regions with increased enhancer activity. Cell Syst 7(5):537–547.e3
25. Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J et al (2015) The emerging role of lncRNAs in cancer. Nat Med 21(11):1253–1261
26. Moran L, Akerman I, van de Bunt M, Xie R, Benzaiza M, Namm M et al (2012) Human β cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes. Cell Metab 16(4):435–448
27. Zhou S, Yu X, Wang M, Meng Y, Song D, Yang H et al (2021) Long non-coding RNAs in pathogenesis of neurodegenerative diseases. Front Cell Dev Biol 9:719247
28. Ng M, Heckl D, Klusmann J-H (2019) The regulatory roles of long noncoding RNAs in acute myeloid leukemia. Front Oncol 9:570
29. Wu Z, Gao S, Zhao X, Chen J, Keyvanfar K, Feng X et al (2019) Long noncoding RNAs of single hematopoietic stem and progenitor cells in healthy and dysplastic human bone marrow. Haematologica 104(5):894–906
30. Cabezasi-Wallisch N, Klimmbeck D, Hansson J, Lipka DR, Reyes A, Wang Q et al (2014) Identification of regulatory networks in HSCs and their immediate progeny via integrated proteome, transcriptome, and DNA methylation analysis. Cell Stem Cell 15(4):507–522
31. Raveh E, Matouk IJ, Gilon M, Hochberg A (2015) The H19 long non-coding RNA in cancer initiation, progression and metastasis - a proposed unifying theory. Mol Cancer 14:184
32. Gabory A, Jammes H, Dandolo L (2010) The H19 locus: role of an imprinted non-coding RNA in growth and development. Bioessays 32(6):473–480
33. Venkatraman A, He XC, Thorvaldsen JL, Sugurmara P, Perry JM, Tao F et al (2013) Maternal imprinting at the H19-f2g2 locus maintains adult haematopoietic stem cell quiescence. Nature 500(7462):345–349
34. Zhou J, Xu J, Zhang L, Liu S, Ma Y, Wen X et al (2019) Combined single-cell profiling of IncRNAs and functional screening reveals that H19 is pivotal for embryonic hematopoietic stem cell development. Cell Stem Cell 24(2):285–298.e5
35. Zhang T-J, Zhao J-D, Zhang W, Lin J, Ma J-C, Wen X-M et al (2018) H19 overexpression promotes leukemogenesis and predicts unfavorable prognosis in acute myeloid leukemia. Clin Epigenetics 10:47
36. Luo M, Jeong M, Sun D, Park HJ, Rodriguez BAT, Xia Z et al (2015) Long non-coding RNAs control hematopoietic stem cell function. Cell Stem Cell 16(4):426–438
37. Zhang X, Lian Z, Padden C, Genstein MB, Rozovsky J, Snyder M et al (2009) A myelopoesis-associated regulatory intergenic noncoding RNA transcript within the human HOXA cluster. Blood 113(11):2526–2534
38. Hu W, Yuan B, Flogare J, Lodish HF (2011) Long noncoding RNA-mediated anti-apoptotic activity in murine erythroid terminal differentiation. Genes Dev 25(24):2573–2578
39. Gomez JA, Wapinski OL, Yang YW, Bureau J-F, Copinath S, Monack DM et al (2013) The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus. Cell 152(4):743–755
40. Collier SP, Collins PL, Williams CL, Boothby MR, Aune TM (2012) Cutting edge: influence of Tmevpg1, a long intergenic noncoding RNA, on the expression of Ifng by Th1 cells. J Immunol 189(5):2084–2088
41. Beck D, Thomas JAI, Palić C, Herold T, Shah A, Olivier J et al (2018) A four-gene lincRNA expression signature predicts risk in multiple cohorts of acute myeloid leukemia patients. Leukemia 32(2):263–272
42. Xing C, Hu X, Xie F, Yu Z, Li H, Zhou B et al (2015) Long non-coding RNA HOTAIR modulates c-KIT expression through sponging miR-193a in acute myeloid leukemia. FEBS Lett 589(15):1981–1987
43. Gao S, Zhou B, Li H, Huang X, Wu Y, Xing C et al (2018) Long noncoding RNA HOTAIR promotes the self-renewal of leukemia stem cells through epigenetic silencing of p15. Exp Hematol 67:22–40.e3
44. Yu W, Gius D, Oyano P, Muldown-Jacobs K, Karp J, Feinberg AP et al (2008) Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451(7175):202–206
45. Tan Z, Zhuo K, Yin Y, Luo Z (2021) Long non-coding RNA ANRIL is a potential indicator of disease progression and poor prognosis in acute myeloid leukemia. Mol Med Rep 23(2):112.
46. Sun J, Li W, Sun Y, Yu D, Wen X, Wang H et al (2014) A novel antisense long non-coding RNA within the IGF1R gene locus is implicated in hematopoietic malignancies. Nucleic Acids Res 42(15):9588–9601
47. Chapsis N, Tamburini J, Cornillet-Lefevre P, Gillot L, Bardet V, Willems L et al (2010) Autocrine IGF-1/IGF-1R signaling is required for constitutive PI3K/Akt activation in acute myeloid leukemia: therapeutic value of neutralizing anti-IGF-1R antibody. Haematologica 95(5):415–423.
48. Xu Q, Simpson SE, Scialla TJ, Bagg A, Carroll M (2003) Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood 102(3):972–980
55. Pashaiefar H, Izadifard M, Yaghmaie M, Montazeri M, Gheisari E, Ahmad-Neyazi et al. Molecular and Cellular Pediatrics (2022) 9:10

56. Kopp F, Mendell JT (2018) Functional classification and experimental dissection of long noncoding RNAs. Cell 172(3):393–407

57. Ng M, Verboon L, Isa H et al (2021) Myeloid leukemia vulnerabilities at CTCF-enriched long noncoding RNA loci, PREPRINT (Version 1) available at Research Square

58. von Neuhoff C, Reinhardt D, Sander A, Zimmermann M, Bradtke J, Betts DR et al (2010) Prognostic impact of specific chromosomal aberrations in a large group of pediatric patients with acute myeloid leukemia treated uniformly according to trial AML-BFM 98. J Clin Oncol Off J Am Soc Clin Oncol 28(16):2682–2689

59. Luo H, Zhu G, Xu J, Lai Q, Yan B, Guo Y et al (2019) HOTTIP IncRNA promotes hematopoietic stem cell self-renewal leading to AML-like disease in mice. Cancer Cell 36(6):645–659.e8

60. Porcu E, Benetton M, Bisio V, Da Ros A, Tregnago C, Borella G et al (2021) The long non-coding RNA CDK6-A51 overexpression impacts on acute myeloid leukemia differentiation and mitochondrial dynamics. iScience 24(11):103350

61. Sun M-D, Zheng Y-Q, Wang L-P, Zhao H-T, Yang S (2018) Long noncoding RNA UCA1 promotes cell proliferation, migration and invasion of human leukemia cells via sponging miR-126. Eur Rev Med Pharmacol Sci 22(8):2233–2245

62. Liang Y, Li E, Zhang H, Zhang L, Tang Y, Wanany Y (2020) Silencing of IncRNA UCA1 enriches proliferation and accelerates apoptosis by repressing SIRT1 signals by targeting miR-204 in pediatric AML. J Biochem Mol Toxicol 34(3):e22437

63. Li J, Chen XF, Wang M, Zhang PP, Zhang F, Zhang JJ (2020) Long non-coding RNA UCA1 promotes autophagy by targeting miR-96-5p in acute myeloid leukemia. Clin Exp Pharmacol Physiol 47(5):877–885

64. Li J, Wang M, Chen X (2020) Long non-coding RNA UCA1 generates cell proliferation and apoptosis by regulating miR-296-3p/Myc axis in acute myeloid leukemia. Cell Cycle 19(12):1454–1465

65. Zhang Y, Liu Y, Xu K (2018) Knockdown of LncRNA-UCA1 suppresses chemoresistance of pediatric AML by inhibiting glycolysis through the microRNA-125a/hexokinase 2 pathway. J Cell Biochem 119(7):6296–6308

66. Emmrich S, Streitwieser A, Schmidt F, Thiangpandir VR, Reinhardt D, Klußmann J-H (2014) LncRNAs MIRCN and MIR100HG act as oncogenes in acute megakaryoblastic leukemia. Mol Cancer 13:171

67. Lyu Y, Lou J, Yang Y, Feng J, Hao Y, Huang S et al (2017) Dysfunction of the WT1-MEG3 signaling promotes AML leukemogenesis via p33-dependent and -independent pathways. Leukemia 31(12):2543–2551

68. Benetatos L, Hatzimichael E, Diasoula A, Dranitsaris G, Tsaiara S, Seryrou M et al (2010) CPG methylation analysis of the MEG3 and SNRPN imprinted genes in acute myeloid leukemia and myelodysplastic syndromes. Leuk Res 34(2):148–153

69. Xue H, Gao H, Xia H, Li S, Li N, Duan Y et al (2021) Prognostic significance of long non-coding maternally expressed gene 3 in pediatric acute myeloid leukemia. Medicine (Baltimore) 100(35):e26959

70. Al-Kershi S, Bhayadia R, Ng M, Verboon L, Ishaq H et al (2018) Low expression of long noncoding RNA IRAIN is associated with poor prognosis in non-m3 acute myeloid leukemia patients. Genet Test Mol Biomarkers 22(5):288–294

71. Fang X, Pan X, Mai H, Yuan X, Li S, Wen F et al (2021) The stem cell-specific long noncoding RNA HOXA10-AS in the pathogenesis of KMT2A-rearranged leukemia. Blood Adv 5(21):18534–18544

72. Connerty P, Moles E, de Bock CE, Jayatilleke N, Smith JL, Meshinchi S et al (2021) Development of siRNA-loaded lipid nanoparticles targeting long non-coding RNA LINCO1257 as a novel and safe therapeutic approach for treating pediatric acute myeloid leukemia. Pharmaceutics 13(10):1681

73. Sheng H, Zhang J, Ma Y, Zhang Y, Dai Y, Jiang R (2021) IncRNA FBXL19-A51 is a diagnosis biomarker for paediatric patients with acute myeloid leukemia. J Gene Med 23(3):e3317

74. Wang X, Li W, Chen Y, Zhou L (2021) Long non-coding RNA SNHG14 affects the proliferation and apoptosis of childhood acute myeloid leukemia cells by modulating the miR-193b-3p/MCL1 axis. Mol Med Rep 23(2):90

75. Dou B, Jiang Z, Chen X, Wang C, Wu J, An J et al (2020) Oncogenic long non-coding RNA DARS-A51 in childhood acute myeloid leukemia by binding to microRNA-425. Technol Cancer Res Treat 19:1533033820965580

76. Zhang X, Yang L, Xu G (2020) Silencing of long noncoding RNA TUG1 inhibits viability and promotes apoptosis of acute myeloid leukemia cells by targeting microRNA-221-3p/KIT axis. Clin Hemorheol Microcirc 76(3):425–437

77. Ma L, Wang Y-Y, Jiang P (2020) LncRNA LINC00909 promotes cell proliferation and metastasis in pediatric acute myeloid leukemia via miR-625-mediated modulation of Wnt/B-catenin signaling. Biochem Biophys Res Commun 527(3):654–661

78. Wang X-T, Chen T-Q, Zeng Z-C, Pan Q, Huang W, Han C et al (2020) The IncRNA LAMPS-A51 drives leukemia cell stemness by directly modulating DOTT1L methyltransferase activity in MLL leukemia. J Hematol Oncol 13(1):78

79. Wang J, Liu Z-H, Yu L-J (2019) Long non-coding RNA LINC00641 promotes cell growth and migration through modulating miR-378a/ZBTB20 axis in acute myeloid leukemia. Eur Rev Med Pharmacol Sci 23(17):7498–7509

80. Guan X, Wen X, Xiao J, An X, Yu J, Guo Y (2019) Lnc-SOX6-1 upregulation correlates with poor risk stratification and worse treatment outcomes, and promotes cell proliferation while inhibits apoptosis in pediatric acute myeloid leukemia. Int J Lab Hematol 41(2):234–241

81. El-Khazragy N, Elayat W, Marbouly S, Seliman S, Samaa A, Safwat G et al (2019) The prognostic significance of the long non-coding RNAs "CCAT1, PVT1" and "MLL2" in t(8;21) associated acute myeloid leukemia. Gene 707:172–177

82. Emmrich S, Kaschel R, Rösch T, Klusmann J-H, Pouille A, Klußmann J-H et al (2014) LncRNAs and MIR100HG act as oncogenes in acute megakaryoblastic leukemia. Mol Cancer 13:171

83. Hornick JL, Elmore SR, Padera TP, Liao Y, Langenfeld J, Liao Y et al (2012) C/EBPα-p30 protein induces expression of the oncogenic long non-coding RNA UCA1 in acute myeloid leukemia. Oncotarget 3(21):9231–9243

84. Chen C, Yang L, Zhao Y, Zhang L, Liu Y, Li J et al (2021) RUNX1-rearranged acute leukemia. J Gene Med 23(3):e3317

85. Morenos L, Chatterton Z, Ng JL, Halemba MS, Parkinson-Bates M, Mechiniou et al (2017) The IncRNA CASC15 regulates SOX4 expression in RUNX1-rearranged acute leukemia. Mol Cancer 16(1):126

86. Hughes JM, Legnini I, Salvatori B, Mascelli SR, Marchioni M, Fazi F et al (2015) CBP/p30 protein induces expression of the oncogenic long non-coding RNA UCA1 in acute myeloid leukemia. Oncotarget 6(21):18354–18364

87. Xue H, Gao H, Xia H, Li S, Li N, Gao C et al (2021) IncRNA MLYH correlates with disease features, predicts treatment response and survival in pediatric acute myeloid leukemia. J Clin Lab Anal 35(4):e23739

88. Lei W, Lin J, Liu F, Chen N (2021) Long noncoding RNA GAS5 antisense RNA1 silencing attenuates the tumorigenesis of acute myeloid leukemia cells through targeting microRNA-370-3p/Tetraspanin3 axis. Clin Hemorheol Microcirc 78(1):69–81

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.