Immunomodulatory dietary polysaccharides: a systematic review of the literature

Jane E Ramberg*, Erika D Nelson, Robert A Sinnott

Abstract

Background: A large body of literature suggests that certain polysaccharides affect immune system function. Much of this literature, however, consists of in vitro studies or studies in which polysaccharides were injected. Their immunologic effects following oral administration is less clear. The purpose of this systematic review was to consolidate and evaluate the available data regarding the specific immunologic effects of dietary polysaccharides.

Methods: Studies were identified by conducting PubMed and Google Scholar electronic searches and through reviews of polysaccharide article bibliographies. Only articles published in English were included in this review. Two researchers reviewed data on study design, control, sample size, results, and nature of outcome measures. Subsequent searches were conducted to gather information about polysaccharide safety, structure and composition, and disposition.

Results: We found 62 publications reporting statistically significant effects of orally ingested glucans, pectins, heteroglycans, glucomannans, fucoidans, galactomannans, arabinogalactans and mixed polysaccharide products in rodents. Fifteen controlled human studies reported that oral glucans, arabinogalactans, heteroglycans, and fucoidans exerted significant effects. Although some studies investigated anti-inflammatory effects, most studies investigated the ability of oral polysaccharides to stimulate the immune system. These studies, as well as safety and toxicity studies, suggest that these polysaccharide products appear to be largely well-tolerated.

Conclusions: Taken as a whole, the oral polysaccharide literature is highly heterogenous and is not sufficient to support broad product structure/function generalizations. Numerous dietary polysaccharides, particularly glucans, appear to elicit diverse immunomodulatory effects in numerous animal tissues, including the blood, GI tract and spleen. Glucan extracts from the Trametes versicolor mushroom improved survival and immune function in human RCTs of cancer patients; glucans, arabinogalactans and fucoidans elicited immunomodulatory effects in controlled studies of healthy adults and patients with canker sores and seasonal allergies. This review provides a foundation that can serve to guide future research on immune modulation by well-characterized polysaccharide compounds.
Methods

Literature review

Studies were identified by conducting electronic searches of PubMed and Google Scholar from their inception to the end of October 2009. The reference lists of the selected articles were checked for additional studies that were not originally found in the search.

Study selection and data extraction

The following search terms were combined with the term polysaccharide: dietary AND immune, or oral AND immune, or dietary AND inflammation, or oral AND inflammation. When specific polysaccharides or polysaccharide-rich plants and fungi were identified, further searches were conducted using their names with the same search terms. Studies were selected based on the following inclusion criteria:

1. Rodent or human studies
2. The presence of test group and control group (using either placebo, crossover, sham, or normal care)
3. Studies reporting statistically significant immunomodulatory effects
4. English language
5. Studies published up to October 2009.

Two researchers (JER, EDN) reviewed the list of unique articles for studies that fit the inclusion criteria. Uncertainties over study inclusion were discussed between the researchers and resolved through consensus. Searches were then conducted to obtain specific polysaccharide product information: safety (using the search terms: toxicity, NOAEL, LD50), composition and structure, and disposition.

Quality assessment

Each study was assessed as to whether or not it reported a significant outcome measure for the polysaccharide intervention group.

Results

A total of 62 rodent publications (Tables 1, 2 and 3) and 15 human publications (Table 4) were deemed appropriate for inclusion in this review. Available structural and compositional information for these immunomodulatory polysaccharides are provided in Table 5 and safety information is provided in Table 6. The majority of animal studies explored models in which animals were injected or implanted with cancer cells or tumors, were healthy, or were exposed to carcinogens. Other studies investigated immunodeficient, exercise-stressed, aged animals, or animals exposed to inflammatory agents, viruses, bacterial pathogens, pathogenic protozoa, radiation or mutagens. Human studies assessed immunomodulatory effects in healthy subjects, or patients with cancers, seasonal allergic rhinitis or aphthous stomatitis. Because of the limited number of human studies, we included some promising open-label controlled trials. Human study durations ranged from four days to seven years; daily doses ranging from 100-5,400 mg were reported to be well-tolerated.

A number of studies in healthy human adults demonstrated immune stimulating effects of oral polysaccharides. Arabinogalactans from *Larix occidentalis* (Western larch) were shown in RCTs to increase lymphocyte proliferation and the number of CD8+ lymphocytes [18] and to increase the IgG subtype response to pneumococcal vaccination [19]. A furanose extract from *Panax quiquefolium* (North American ginseng) was shown in an RCT of healthy older adults to decrease the incidence of acute respiratory illness and symptom duration [20]. Finally, an RCT of healthy adults consuming *Undaria pinnatifida* (wakame) fucoidans found both immune stimulating and suppressing effects, including increased stromal-derived factor-1, IFN-g, CD34+ cells and CXCR4-expressing CD34+ cells and decreased blood leukocytes and lymphocytes [21].

Studies in healthy animals showed a number of immune stimulating effects of various glucan products from *Agaricus subrufescens* (*A. blazei*) (aqueous extracts [22], aqueous extracts with standardized β-glucans [23], α-1,6 and α-1,4 glucans [24], and whole plant powders [25]); *Lentinula edodes* (shitake) (lentinan [26] and β-glucans [27]); *Sachcharomyces cerevisiae* (β-1,3-glucans [27,28]); *Laminaria digitata* (laminarin [29]); *Sclerotium rorii* (glucan phosphate [29]); *Sclerotinia sclerotiorum* (SSG [30]); and *Phellinus linteus* (powder [31] and aqueous, alcohol-precipitated extract [32]). A furanose extract from *P. quiquefolium* and pectins from *Buplerum falcatum* and *Malus* (apple) spp. have also been shown to enhance immune function in healthy young animals [33-35]. *Cyanopsis tetragonolobus* galactomannan (guar gum) or highly methoxylated pectin feeding exerted numerous stimulating effects on antibody production in older animals [36].

Evidence for the effectiveness of oral polysaccharides against infection and immune challenges has been mainly demonstrated in animals. Immune stimulating effects have been shown in resting and exercise-stressed animals with thioglycollate, clodronate, or HSV-1 injections fed *Avena* (oat) spp. soluble glucans [37-41]; animals injected with or fed *E. vermiformis* and fed *Avena* spp. particulate glucans [42,43]; animals with *E. coli* injections fed *L. digitata* glucans (laminarin) [44]; animals with HSV injections fed *U. pinnatifida* fucoidans [45]; animals with *Staphylococcus aureus* or *Candida*
Source	Extract	Animal	Dose/day	Duration of study	Treatment	Effects	Reference
Agaricus (A. blazei) subrufescens	α-1,6 and α-1,4 glucans	8-week ♀ C3H/He mice (5/group)	100 mg/kg IG every 3 days	1 month	Healthy animals	↑ #s splenic T lymphocytes (Thy1.2, CD4+ and CD8+)	[24]
		7-9-week ♀ Balb/cByJ mice (40/group)	1 ml 0.45N, 0.6N, or 3N aqueous extract	2 months		All doses ↑ serum IgG levels, CD3+ T cell populations and PML phagocytic activity	[22]
			7-9-week male Balb/cByJ mice (40/group)	1 ml 0.45N, 0.6N, or 3N aqueous extract	10 weeks IP injection of OVA at 4 weeks	0.6N and 3N ↑ levels of OVA-specific serum IgG 28 days post-immunization; all doses ↑ delayed-type hypersensitivity and TNF-α secreted from splenocytes at 10 weeks; 0.6N ↑ splenocyte proliferation at 10 weeks	
		5-6-week ♀ BALB/cHsdOla mice (8/group × 2)	One 200 μl extract day 1, orogastric intubation	1 week	Injected IP fecal solution day 2	↓ CFU in blood of mice with severe peritonitis & improved overall survival rate in all peritonitis groups	[46]
						↓ tumor size & weight after 21 days treatment	[65]
Aqueous, acid treated	6-week ♀ C57BL/6 mice (10/group)	20, 100 or 500 μg/ml, drinking water	9 days	Injected IP human ovarian cancer cells day 1	500 μg/ml ↓ tumor weight	[66]	
			20, 100 or 500 μg/ml, drinking water	3 weeks	Injected IV murine lung cancer (3LL) cells	100 & 500 μg/ml ↓ #s metastatic tumors	
Aqueous, with 200 ng/day β-glucan	6-week ♀ BALB/c mice (10/group)	200 ng days 5-21	3 weeks	Injected Meth A tumor cells day 1	↓ tumor size & weight	[23]	
			2 weeks	Injected Meth A tumor cells	↑ cytotoxic T lymphocyte activity & spleen cell IFN-α protein		
						↑ splenic NK cell activity	
Avena spp.	β-glucans (particulate)	6-7-week ♀ C57BL/6 mice (7/group)	3 mg every 48 h, days 1-3	1 month	Oral E. vermiciformis oocysts day 10	↓ E. vermiciformis fecal oocyte #s; increased intestinal anti-merozoite IgA; ↓ # of IL-4-secreting MLN cells	[42]
			3 mg on alternating days, days 1-10	22 days	Injected IP Eimeria vermiformis day 10	↓ E. vermiciformis fecal oocyte #s; ↑ anti-merozoite intestinal IgA	[43]
	β-glucans (soluble)	4-week ♀ CD-1 mice (24/group)	0.6 mg/ml 68% β-glucan, drinking water	1 month	Resting or exercise-stressed (days 8-10) animals administered HSV-1 IN day 10	↓ morbidity in resting and exercise-stressed animals; ↓ mortality in exercise-stressed animals; pre-infection, ↑ Mø anti-viral resistance in resting and exercise-stressed animals	[38]
			~3.5 mg days 1-10, drinking water		Resting or exercise-stressed (days 5-10) animals administered HSV-1 IN day 10	Pre-infection, ↑ Mø antiviral resistance in resting animals	[41]

[45] Ramberg et al. Nutrition Journal 2010, 9:54
http://www.nutritionj.com/content/9/1/54
Table 1 Immunomodulatory Glucan Extracts: Oral Animal Studies (Continued)

Extract Source	Formulation	Tumor Model	Dose	Treatment	Effect注	Reference
Hordeum vulgare	β-1,3,1,4 or β-1,3,1,6-D-glucans	Athymic nu/nu mice (4-12/group)	40 or 400 μg IG for 4 weeks	31 weeks	Mice with human xenografts (SRM128 melanoma, A431 epidermoid carcinoma, BT474 breast carcinoma, Daudi lymphoma, or LAN-1 neuroblastoma) ± mAb (R24, 528, Herceptin, Rituximab, or 3F8, respectively) therapy twice weekly	400 μg + mAb ↓ tumor growth & ↑ survival; higher MW ↓ tumor growth rate for both doses
Grifola frondosa D fraction	BALB/c mice (10/group)	1.5 mg every other day, beginning day 2	13 days	Implanted SC: 1) Sarcoma-180, 2) MM-46 carcinoma, or 3) IMC carcinoma cells	↓ tumor weight & tumor growth rate: 1) 58%, 2) 64%, and 3) 7%	71.0
Ganoderma tsugae Aqueous	BALB/cByJ/Narl mice (14/group)	0.2-0.4% of diet (young fungi); 0.33 or 0.66% of diet (mature fungi)	5 weeks	Injected IP OVA days 7, 14, 21; aerosolized OVA twice during week 4	In splenocytes, both doses of both extracts ↑ IL-2 and IL-2/IL-4 ratios, 0.2% young extract and 0.66% mature extract ↓ IL-4; in Mø, 0.66% mature extract ↑ IL-1β, both doses of both extracts ↑ IL-6	53.0
Ganoderma tsugae Aqueous	4-week CD-1 mice (20/group)	Resting or exercise-stressed (days 8-10) animals administered IN clodronate-filled liposomes to deplete Me days 8 & 14 & infected IN with HSV-1 day 10	1 month	↓ morbidity in exercise-stressed & resting animals; ↓ mortality in exercise-stressed animals	39.0	
Ganoderma lucidum Aqueous	7-week CD-1 mice (26/group)	5% of diet	5 months	Injected IM DMH once a week, weeks 1-10	↓ aberrant crypt foci per colon, tumor size, cell proliferation, nuclear staining of β-catenin	69.0
Ganoderma tsugae Aqueous	8-week CD-1 mice (26/group)	50, 100, or 200 mg/kg, oral	10 days	Injected SD Sarcoma 180 cells	↓ of tumor weight was dose dependent: 27.7, 55.8, 66.7%, respectively	67.0
Ganoderma lucidum (mycelia) Aqueous	4-week CD-1 mice (19-30/group)	0.8 mg/ml 50% β-glucan, days 1-10, drinking water	10 days	Resting or exercise-stressed (days 8-10) animals administered HSV-1 IN day 10	↑ neutrophil mobilization in resting & moderately exercised animals; ↑ neutrophil respiratory burst activity in resting and fatiguing exercised animals	37.0
Ganoderma lucidum (mycelia) Aqueous	7-week CD-1 mice (14/group)	0.2-0.4% of diet (young fungi); 0.33 or 0.66% of diet (mature fungi)	5 weeks	Injected IP OVA days 7, 14, 21; aerosolized OVA twice during week 4	In splenocytes, both doses of both extracts ↑ IL-2 and IL-2/IL-4 ratios, 0.2% young extract and 0.66% mature extract ↓ IL-4; in Mø, 0.66% mature extract ↑ IL-1β, both doses of both extracts ↑ IL-6	53.0
Ganoderma tsugae Aqueous	8-week CD-1 mice (26/group)	50, 100, or 200 mg/kg, oral	10 days	Injected SD Sarcoma 180 cells	↓ of tumor weight was dose dependent: 27.7, 55.8, 66.7%, respectively	67.0
Hordeum vulgare	Athymic nu/nu mice (4-12/group)	40 or 400 μg IG for 4 weeks	31 weeks	Mice with human xenografts (SRM128 melanoma, A431 epidermoid carcinoma, BT474 breast carcinoma, Daudi lymphoma, or LAN-1 neuroblastoma) ± mAb (R24, 528, Herceptin, Rituximab, or 3F8, respectively) therapy twice weekly	400 μg + mAb ↓ tumor growth & ↑ survival; higher MW ↓ tumor growth rate for both doses	75.0
Ganoderma lucidum Aqueous	Athymic BALB/c mice	4, 40, or 400 μg for 3-4 weeks	1 month	Mice with neuroblastoma (NM-B7, LAN-1, or SK-N-ER) xenografts, ± 3F8 mAb therapy twice weekly	40 and 400 μg doses + mAb ↓ tumor growth; 400 μg dose ↑ survival. Serum NK cells required for effects on tumor size	76.0
Ganoderma tsugae Aqueous	Athymic BALB/c mice	4, 40, or 400 μg for 3-4 weeks	1 month	Mice with neuroblastoma (NM-B7, LAN-1, or SK-N-ER) xenografts, ± 3F8 mAb therapy twice weekly	40 and 400 μg doses + mAb ↓ tumor growth; 400 μg dose ↑ survival. Serum NK cells required for effects on tumor size	76.0
Hordeum vulgare	Athymic BALB/c mice	4, 40, or 400 μg for 3-4 weeks	1 month	Mice with neuroblastoma (NM-B7, LAN-1, or SK-N-ER) xenografts, ± 3F8 mAb therapy twice weekly	40 and 400 μg doses + mAb ↓ tumor growth; 400 μg dose ↑ survival. Serum NK cells required for effects on tumor size	76.0
Table 1 Immunomodulatory Glucan Extracts: Oral Animal Studies (Continued)

β-glucans	Laminaria digitata	Lentinula edodes	Saccharomyces cerevisiae
β-glucans	Fox Chase ICR immune-deficient (SCID) mice (9/group)	400 μg days 1-29	0.1 ml water with 10% SME/10 g body weight days 1-19, 33-50
Female	Mice with human (Daudi, EBV-BLCL, Hs445, or RPMI6666) lymphoma xenografts, ± Rituximab mAb therapy twice weekly	50 days	50 days
	+mAb ↓ tumor growth and ↑ survival		+mAb ↓ tumor growth and ↑ survival
Laminarin	ICR/HSD mice (3/group)	1 mg	1 mg
Female	Healthy animals	1 day	1 day
	↑ Ma expression of Dectin-1 in GALT cells; ↑ TLR2 expression in Peyer’s patch dendritic cells		
	Wistar rats (7/group)	5% of diet days 1-4, 10% of diet days 5-25	26 days
Male	Injected IP E. coli LPS day 25		
	↓ liver ALT, AST, and LDH enzyme levels; ↑ ED2-positive cells, ↓ peroxidase-positive cells in liver, ↓ serum monocytes, TNF-α, PGE2, NO3		
	Laminarin	6-week nude mice	5%-6-week athymic mice (10/group)
Female	0.1 ml water with 10% SME/10 g body weight	50 days	5 weeks
	Injected SC prostate cancer (PC-3) cells day 1	Injected SC colon cancer (LoVo and SW48, SW480 and SW620, or SW403 and SW1116) cells day 7	
	↓ tumor size		
	Ψ 3- and 8-week BALB/c mice (15/group)	50, 100 or 250 μg	3 mg, days 1-7
Male	Healthy animals	1-2 weeks	3 weeks
	250 μg dose ↑ spleen cell IL-2 secretion		
	Ψ 3- and 8-week BALB/c mice (15/group)	50, 100 or 250 μg	5 weeks
Female	Injected murine mammary carcinoma (Ptas64) cells into mammary fat pads 2 weeks before treatment		
	↓ tumor weight		
	5-6-week pre-leukemic AKR mice (10/group)	3 mg, days 1-7	
Male	Injected SC K36 murine lymphoma cells day 7		
	↓ tumor weight; ↑ tumor inhibition rate (94%)		
	5-6-week athymic mice (10/group)		
Male	Injected SC colon cancer (LoVo and SW48, SW480 and SW620, or SW403 and SW1116) cells day 7		
	↓ tumor weight; ↑ tumor inhibition rate (>90%)		
	Ψ AKR mice	3 mg	3 mg
Female	Pre-leukemic mice	1 day	1 day
	↑ serum IFN-α and TNF-α, peak at 4 h and then back to normal at 24 h; ↑ IL-2 and IL-1α, peak at 2 h and back to normal at 24 h; ↑ CD4+ T, CD3+ T, B lymphocytes		
	Phellinus linteus	Aqueous, alcohol-precipitated	
Male	C57BL/6 mice (10-50/group)	200 mg/kg in drinking water	
	Healthy animals	1 month	1 month
	↑ production and secretion of IFN-γ by con A stimulated T cells		
	Saccharomyces cerevisiae	Scleroglucan	
Male	ICR/HSD mice (3/group)	1 mg one day before challenge (day 1)	
	IV Staphylococcus aureus or Candida albicans day 2	6 days	
	↑ long-term survival		
	Ψ 1,3,1,6 glucans (particulate)	3 and 8-week BALB/c mice (15/group)	
Female	Injected murine mammary carcinoma (Ptas64) cells into mammary fat pads 2 weeks before treatment	50, 100 or 250 μg	1-2 weeks
	↓ tumor weight		
albicans injections fed S. cerevisiae glucans (scleroglucan) [29]; and animals with fecal solution injections fed an aqueous extract of A. subrufescens (A. blazei Murrill) [46].

Additional controlled human and animal studies have shown anti-inflammatory and anti-allergy effects of some polysaccharide products. In an RCT of adults with seasonal allergic rhinitis, S. cerevisiae β-1,3;1-6 glucans decreased IL-4, IL-5 and percent eosinophils, and increased IL-12 in nasal fluid [47], while a placebo-controlled study of patients with recurrent aphthous stomatitis (canker sores) consuming β-1,3,1-6 glucans found increased lymphocyte proliferation and decreased Ulcer Severity Scores [48].

Animal models of inflammatory bowel disease have shown anti-inflammatory effects of Cladosiphon okamuranus Tokida fucoidans [49], Cyamopsis tetragonolobus galactomannans [50], Malus spp. pectins [51], and mixed polysaccharide supplements [52]. Animals challenged with ovalbumin have demonstrated anti-inflammatory/allergy effects of A. subrufescens aqueous extracts [22], an aqueous extract of Ganoderma tsugae [53], and Pyrus pyrifolia pectins [54]. Anti-inflammatory effects have also been seen in animals with cotton pellet implantations fed a Pholiota nameko heteroglycan (PNPS-1) [55].

Trametes versicolor glucans have demonstrated anti-cancer effects in humans. In two RCTs and five controlled trials, PSK from T. versicolor mycelia increased survival of advanced stage gastric, colon and colorectal cancer patients [56-62] with one study showing increased immune parameters (including blood NK cell activity, leukocyte cytotoxicity, proportion of helper cells

Table 1 Immunomodulatory Glucan Extracts: Oral Animal Studies (Continued)

Glucan Extract	Species	Dose	Route	Age	N	Outcome	Reference
β-1,3-glucan							
WT or CCD11b-		0.4 mg for 3 weeks	Injected SC RMA-S-MUC1 lymphoma cells ± 14.G2a or anti-MUC1 mAb IV injection every 3rd day	Healthy animals	All 3 doses ↑ phagocytic activity of blood monocytes & neutrophils & ↑ spleen cell IL-2 secretion	[73]	
C57BL/6 mice							
25 mg		1 week	Healthy animals	All 3 doses ↑ phagocytic activity of blood monocytes & neutrophils & ↑ spleen cell IL-2 secretion	[73]		

Sclerotinia sclerotiorum SSG 6-8-week specific pathogen-free σ CDF1 mice (3/group) 40 or 80 mg/kg days 1-10 2 weeks Healthy animals 10 mg dose ↑ acid phosphatase activity of peritoneal Mø (day 14) [30]

6-8-week specific pathogen-free σ CDF1 mice (3/group) 40, 80 or 160 mg/kg days 2-6 35 days Implanted SC Metha A fibrosarcoma cells day 1 80 mg dose ↓ tumor weight [94]

6-8-week specific pathogen-free σ mice of BDF1 and C57BL/6 mice (7/group) 40, 80 or 160 mg/kg days 2-11 2-3 weeks Injected IV Lewis lung carcinoma (3LL) cells 2 mg ↓ # of 3LL surface lung nodules at 2 weeks [83]

Sclerotium rolfsii Glucan phosphate σ ICR/HSD mice (3/group) 1 mg 1 day Healthy animals ↓ systemic IL-6; ↑ Mø expression of Dectin-1 in GALT cells; ↑ TLR2 expression in dendritic cells from Peyer’s patches [29]

Trametes (Coriolus) versicolor PSP 6-8-week σ BALB/c mice (10/group) 35 μg days 5-29 in drinking water 29 days Implanted SC Sarcoma-180 cells day 1 ↓ tumor growth & vascular density [94]
Extract	Source	Animal	Oral dose/day	Duration	Treatment	Significant effects	Reference
Fucoidans	Cladosiphon okamuranus Tokida	8-week ♀ BALB/c mice, 10/group	0.05% w/w of diet	56 days	DSS-induced UC	↓ disease activity index and myeloperoxidase activity; ↓ # of B220-positive colonic B cells; ↓ colonic MLN IFN-γ and IL-6 and ↑ IL-10 and TGF-β; ↓ colonic IgG; ↓ colonic epithelial cell IL-6, TNF-α, and TLR4 mRNA expression	[49]
Undaria pinnatifida	5-week ♀ BALB/c mice (10-12/group)	5 mg, days 1-14 or 7-14	2 weeks	Injected HSV into cornea day 7	↓ facial herpetic lesions; ↑ survival, particularly in pre-treated animals	[45]	
Furanose (COLD-FX®)	Panax quinquefolium	Weanling ♀ SD rats (10/group)	450 or 900 mg/kg in food	1 week	Healthy animals	Both doses ↑ spleen Il-2 and IFN-γ production following ConA or LPS stimulation; ↓ proportion of total MLN and Peyers patch CD3+ cells & activated T cells; high dose ↑ spleen cell IL-1β production following 48 h ConA stimulation.	[33]
Galactomannan (partially hydrolyzed guar gum)	Cyamopsis tetragonolobus	10-week ♀ BALB/c mice, 11-15/group	5% of diet	3 weeks	DSS-induced UC at beginning of week 3	↓ disease activity index scores, ↓ colonic mucosal myeloperoxidase activity & lipid peroxidation; ↓ colonic TNF-α protein levels & mRNA expression up regulated by DSS exposure	[50]
Galactomannans (guar gum)	Lentinula edodes	8-month- ♀ SD rats, 5/group	5% of diet	3 weeks	Older animals	↓ serum IgG, ↑ MLN lymphocyte IgG, IgM and IgG production	[36]
Glucomannan (KS-2)	A. subrufescens	DD1 mice (10-20/ group)	140 mg/kg days 2-13	50 days	Injected IP Ehrlich asites tumor cells day 1	↑ survival	[84]
Heteroglycan (ATOM)	A. subrufescens	Mice (10/group); 1) 5-week ♀ Swiss/ NIH; 6-week ♀ DS mice; 2) 8-week ♀ BALB/c nude; 3) 5-week ♀ C3H/HeN	100 or 300 mg/kg days 2-11	8 weeks	Implanted SC 1: Sarcoma-180, 2: Shionogi carcinoma 42, 3: Meth A fibrosarcoma, or 4: Ehrlich asites carcinoma cells	Both doses ↓ Sarcoma-180 tumor size at 4 weeks & ↑ survival; 300 mg/kg ↑ peritoneal macrophage and C3-positive cells; 300 mg/kg ↓ Shionogi and Meth A tumor sizes at 4 weeks. Both doses ↑ survival of Ehrlich asites mice	[93]
Table 2 Immunomodulatory Non-Glucan Extracts: Oral Animal Studies (Continued)

Heteroglycan (LBP3p)	Lycium barbarum	♂	Kunming mice (10/group)	5, 10 or 20 mg/kg	10 days	Injected SC Sarcoma-180 cells	S & 10 mg/kg ↑ thymus index; all doses ↓ weight, ↓ lipid peroxidation in serum, liver and spleen & ↑ spleen lymphocyte proliferation, cytotoxic T cell activity, IL-2 mRNA
Heteroglycan (PNPS-1)	Pholiota nameko	♂	SD rats (5/group)	100, 200 or 400 mg/kg days 1-8	8 days	Implanted SC cotton pellets in scapular region day 1	↓ granuloma growth positively correlated with dose: 11%, 18% and 44%, respectively
Heteroglycan (PG101)	Lentinus lepideus	♀	8-10-week BALB/c mice (3/group)	10 mg	24 days	6 Gy gamma irradiation	↑ colony forming cells, granulocyte CFUs/Mø, erythroid burst-forming units, and myeloid progenitor cells in bone marrow; induced proliferation of granulocyte progenitor cells in bone marrow; ↓ serum levels of GM-CSF, IL-6, IL-1β
Mixed polysaccharides (Ambrotose® or Advanced Ambrotose® powders)	Aloe barbadensis, Larix spp, and other plant polysaccharides	♂	SD rats (10/group)	37.7 or 377 mg/kg days 1-8	8 days	Injected IP OVA day 7, provoked with OVA aerosol day 21	↓ bronchial fluid ↓ IFN-γ & ↑ IL-5; splenic cells: ↑ IFN-γ, ↓ IL-5; normalized pulmonary histopathological changes; ↓ serum IgE
Pectin	Pyrus pyrifolia	♂	6-8-week BALB/c mice (11/group)	100 μg days 1-7	22 days	Injected SC AOM once a week	↓ colon tumor incidence
Pectins (bupleurum 2IIc)	Bupleurum falcatum	♀	specific-pathogen-free C3H/HeJ mice	250 mg/kg	1 week	Healthy animals	↑ spleen cell proliferation
Pectins (highly methoxylated)	Malus spp.	♀	8-month- specific-pathogen-free C3H/HeJ mice	5% of diet vs. cellulose control	3 weeks	Older animals	↑ MLN lymphocyte IgA & IgG
Pectins Citrus spp.	Malus spp.	♀	5-week F344 rats (30/group)	15% of diet	34 weeks	Injected SC AOM once a week, weeks 4-14	↓ colon tumor incidence
	Malus spp.	♀	5-week BALB/c mice (6/group)	5% of diet	2 weeks	Healthy animals	↑ fecal IgA and MLN CD4+/CD8+ T lymphocyte ratio & IL-2 & IFN-γ secretion by ConA-stimulated MLN lymphocytes
		♀	5-week BALB/c mice (6/group)	5% of diet days 5-19 vs. cellulose control	19 days	DSS-induced UC days 1-5	Significantly increased MLN lymphocytes IgA, and significantly decreased IgE; significantly decreased ConA-stimulated IL-4 and IL-10
	4-week ♂ Donryu rats (20-21/group)	♀	20% of diet	32 weeks	Injected SC AOM once a week, weeks 2-12	↓ colon tumor incidence	
	4-week ♂ Donryu rats (19-20/group)	♀	10 or 20% of diet	32 weeks	Injected SC AOM once a week, weeks 2-12	Both doses ↓ colon tumor incidence; 20% ↓ tumor occupied area & ↓ portal blood and distal colon PGE2	
Table 2 Immunomodulatory Non-Glucan Extracts: Oral Animal Studies (Continued)

Source	Pectins (modified)	Citrus spp. 2-4-month BALB/c mice (9-10/group)	0.8 or 1.6 mg/ml drinking water, days 8-20	20 days	Both doses ↓ tumor size	[87]	
		NCR nu/nu mice (10/group)	1% (w/v) drinking water	16 weeks	Orthotopically injected human breast carcinoma cells (MDA-MB-435) into mammary fat pad on day 7	↓ tumor growth rate & volume at 7 weeks, lung metastases at 15 weeks, # of blood vessels/tumor at 33 days post-injection	[89]
SD rats	(7-8/group)	0.01%, 0.1% or 1.0% wt/vol of drinking water, days 4-30	1 month	Injected SC MAT-LyLu rat prostate cancer cells	↓ lung metastases; 1.0% ↓ lymph node disease incidence	[88]	

Table 3 Immunomodulatory Polysaccharide-Rich Plant Powders: Oral Animal Studies

Source	Animal	Oral dose/day	Duration	Treatment	Significant effects	Reference	
Agaricus (A. blazei) subrufescens (fruit bodies)	6-week ♂ C57BL/6, C3H/HeJ and BALB/c mice (3/group)	16, 32 or 64 mg	2 weeks	Healthy animals	32 and 64 mg ↑ liver mononuclear cell cytotoxicity	[25]	
Grifola frondosa	6-week ♀ ICR mice (10-15/group)	5% of diet	36 weeks	Oral N-butyl-N'-butylnitrosamine daily for first 8 weeks	↓ #s of animals with bladder tumors; ↑ tumor weight; ↑ peritoneal Mø chemotactic activity, splenic lymphocyte blastogenic response & cytotoxic activity	[70]	
Laminaria angustata	Weanling SD rats (58/group)	5% of diet	26 weeks	IG DMBA, beginning of week 5	↑ time to tumor development and ↓ # of adenocarcinomas in adenocarcinoma-bearing animals	[77]	
Lentinula (Lentinus) edodes	6-week ♀ ICR mice (10-17/group)	5% of diet	36 weeks	Oral BBN daily for first 8 weeks	↓ # of animals with bladder tumors; ↓ tumor weight; ↑ Mø chemotactic activity, splenic lymphocyte blastogenic response, cytotoxic activity	[70]	
	7-8-week ♀ Swiss mice (10/group)	1%, 5% or 10% of diet of 4 different lineages days 1-15	16 days	Injected IP N-ethyl-N-nitrosourea day 15	All 3 doses of one lineage and the 5% dose of two other lineages ↓ # of micronucleated bone marrow polychromatic erythrocytes	[79]	
Lentinula edodes (fruit bodies)	5-week ♀ ICR mice (14/group x 2)	10%, 20% or 30% of diet	25 days	Injected IP Sarcoma-180 ascites	All 3 doses ↓ Sarcoma-180 tumor weight	[78]	
	Mice: 1) CDF1; 2) C3H; 3) BALB/c; 4,5) C57BL/6N (9/group x 3)	20% of diet	25 days	Injected SC 1) IMC carcinoma, 2) MM-46 carcinoma, 3) Meth-A fibrosarcoma, 4) B-16 melanoma, or 5) Lewis lung carcinoma cells	↓ growth of MM-46, B-16, Lewis lung, and IMC tumors; ↑ lifespan in Lewis lung and MM-46 animals		
	ICR mice (14/group x 2)	20% of diet	20% of diet days 1-7, days 7-31 or days 14-31	31 days	Injected IP Sarcoma-180 ascites	↓ tumor weight & growth when fed days 7-31 or 14-31	
	Mice: 1) CDF1; 2) C3 H (5/group x 4)	20% of diet	7-12 days	Injected SC 1) IMC carcinoma or 2) MM-46 carcinoma cells	↑ spreading rate of activated Mø ↑ phagocytic activity		
Phellinus linteus	4-week ♀ ICR mice (10/group)	2 mg	1 month	Healthy animals	↓ serum & splenocyte IgE production; ↓ proliferation of splenic CD4+ T cells & splenocyte IFN-γ production	[31]	
Pleurotus ostreatus	6-week ♀ ICR mice (10-20/group)	5% of diet	36 weeks	Oral BBN daily for first 8 weeks	↓ #s of animals with bladder tumors; ↓ tumor weight; ↑ plasma Mø chemotactic activity, splenic lymphocyte blastogenic response, cytotoxic activity	[70]	
Table 4 Immunomodulatory Polysaccharide Products: Oral Human Studies

Extract	Source	Study design	Population	N (experimental/control)	Dose/day	Duration	Significant effects	Reference
Arabino-galactans	Larix occidentalis	Randomized, double-blind, placebo-controlled	Healthy adults	8/15	4 g	6 weeks	↑ % CD8+ lymphocytes & blood lymphocyte proliferation	[18]
Arabino-galactans (ResistAid™)			Healthy adults given pneumococcal vaccinations day 30	21/24	4.5 g	72 days	↑ plasma IgG subtypes	[19]
Fucoidans	Undaria pinnatifida sporophylls	Randomized, single-blind, placebo-controlled	Healthy adults	25 (75% fucoidan, 6 (10% fucoidan)/6)	3 g	12 days	75% fucoidan; ↓ #s blood leukocytes, lymphocytes; ↑ plasma stromal derived factor-1, IFN-γ, CD34+ cells; ↑ % CXCR4-expressing CD34+ cells	[21]
Furanose extract (Cold-FX™)	Panax quinquefolium	Randomized, double-blind, placebo-controlled	Healthy older adults given influenza immunization at the end of week 4	22/21	400 mg	4 months	During weeks 9-16, ↓ incidence of acute respiratory illness, symptom duration	[20]
Glucans	Agaricus subrufescens	Randomized, double-blind, placebo-controlled	Cervical, ovarian or endometrial cancer patients receiving 3 chemotherapy cycles	39/61	5.4 g (estimated)	6 weeks	↑ NK cell activity, ↓ chemotherapy side effects	[64]
Glucans (β-1,3;1,6)	Not identified	Placebo-controlled	Recurrent aphthous stomatitis patients	31/42	20 mg	20 days	↑ PBL lymphocyte proliferation, ↓ Ulcer Severity Scores	[48]
Glucans (β-1,3;1-6)	S. cerevisiae	Randomized, double-blind, placebo-controlled	Adults with seasonal allergic rhinitis	12/12	20 mg	12 weeks	30 minutes after nasal allergen provocation test; nasal lavage fluid; ↓ IL-4, IL-5, % eosinophils, ↑ IL-12	[47]
Glucans (PSK)	Trametes versicolor	Randomized, controlled	Patients with curatively resected colorectal cancer receiving chemotherapy	221/227	200 mg	3-5 years	↑ disease-free survival and overall survival	[56]
Controlled			Post-surgical colon cancer patients receiving chemotherapy	123/121	3 g for 4 weeks, alternating with 10 4-week courses of chemotherapy	7 years	↑ survival from cancer deaths; no difference in disease-free or overall survival	[57]
			Post-surgical colorectal cancer patients receiving chemotherapy	137/68	3 g daily	2 years	↑ survival in stage III patients; ↓ recurrence in stage II & III patients	[58]
			Post-surgical gastric cancer patients receiving chemotherapy	124/129	3 g for 4 weeks, alternating with 10 4-week courses of chemotherapy	5-7 years	↑ 5-year disease-free survival rate, overall 5-year survival	[59]
Table 4 Immunomodulatory Polysaccharide Products: Oral Human Studies (Continued)

Glucans (PSP)	Trametes versicolor	Randomized, double-blind, placebo-controlled	Conventional-treatment stage III-IV non-small cell lung cancer patients	Pre-surgical gastric or colorectal cancer patients	Post-surgical stage III/IV colorectal cancer patients	Randomized, double-blind, placebo-controlled	Controlled
				16 daily; 17 every other day/13	3 g daily or on alternate days before surgery	56/55	32/21
				<14 days or 14-36 days	8-10 years	3 g for 2 months, 2 g for 22 months, 1 g thereafter	3 g
				≥14 day treatment: ↑ peripheral blood NK cell activity, PBL cytotoxicity, proportion of PBL helper cells; ↓ proportion of PBL inducer cells; <14 day treatment: ↑ PBL response to PSK and Con A, proportion of regional node lymphocyte suppressor cells	remission & survival rates	1 year	survival time

and lymphocyte suppressor cells) [62]. An RCT of advanced stage lung cancer patients consuming PSP from *T. versicolor* fruit bodies found increased IgG and IgM antibodies and total leukocyte and neutrophil counts, along with a decrease in the number of patients withdrawing from the study due to disease progression [63]. An RCT of ovarian or endometrial cancer patients consuming *A. subrufescens* glucans showed increased NK cell activity and fewer chemotherapy side effects [64].

In numerous animal models of cancer, a wide range of polysaccharides have shown anti-tumorogenic effects. Glucan products sourced from *A. subrufescens* demonstrating anti-cancer activities in animal models include an aqueous extract [65], an aqueous, acid-treated extract [66], and an aqueous extract with standardized levels of β-glucans [23]. Anti-cancer effects have been reported following intake of aqueous extracts of *G. lucidum* [67-69]; the powder and D fraction of *G. frondosa* [70-72]; *Hordeum vulgare* β-glucans [73-76]; *Laminaria angustata* powder [77]; *Lentinus edodes* products (powders [70,78,79], SME [80], β-glucans [27], and lentilinan [81,82]); *Pleurotus ostreatus* powder [70], *Saccharomyces cerevisiae* particulate β-1,3;1,6 and β-1,3glucans[27,73]; and a glucan from *Sclerotinia sclerotiorum* (SSG) [30,83]. A glucomannan from *L. edodes* (KS-2) improved survival of animals with cancer cell injections [84]; apple and citrus pectins have exerted anti-cancer effects, including decreased tumor incidence [85-90]. Finally, heteroglycans from *Lycium barbarum* (LBP3p), *Lentinus lepidus* (PG101) and *A. subrufescens* (ATOM) demonstrated a number of immune stimulating effects in animal cancer models [91-93]. Interestingly, only one animal study has been performed using glucans from *T. versicolor* (PSP): animals with cancer cell implantations showed decreased tumor growth and vascular density [94].

Most polysaccharide products appear to be safe, based on NOAEL, acute and/or chronic toxicity testing in rodents (Table 6). As would be expected, powders, extracts and products that have not been fully characterized pose the most concerns. Other than for aloe vera gel, which was shown in a small human trial to increase the plasma bioavailability of vitamins C and E [95], the impact of polysaccharide intake on the absorption of nutrients and medications is not known. While one rat toxicity study raised concerns when guar gum comprised 15% of the daily diet [96], the product was safe in human studies when 18-39.6 g/day was consumed for up to a year (Table 4). Product contamination may pose the most concerns. Other than for aloe vera gel, which was shown in a small human trial to increase the plasma bioavailability of vitamins C and E [95], the impact of polysaccharide intake on the absorption of nutrients and medications is not known. While one rat toxicity study raised concerns when guar gum comprised 15% of the daily diet [96], the product was safe in human studies when 18-39.6 g/day was consumed for up to a year (Table 4). Product contamination may explain three case reports of hepatotoxicity and/or death following intake of an *A. subrufescens* aqueous extract [97]. Seven animal studies reporting positive immunologic effects of *A. subrufescens* extracts in healthy animals or animals with cancers found no evidence of toxicity (Tables 1 and 2). In humans, six weeks of *A. subrufescens* glucans intake was safe for cancer patients, and four months of 3 g/day intake by 24 healthy adults and 24 adults with liver disease reported no evidence of toxicity (Table 4). Another case report associated liver toxicity with *G. lucidum* intake, but the elderly subject also took an unidentified product a month previous to her admission for testing [98]. Three animal studies reported immunologic benefits and no adverse effects
Source	Category	Features	MW	Monosaccharide composition	Reference		
Agaricus subrufescens (A. blazei)	Extract	β-1,6-D-glucan	10,000	NA	[66]		
Agaricus subrufescens (fruit body)	Extract	α-1,6- and α-1,4 glucans with β-1,6-glucopyranosyl backbone (629.2 mcg/mg polysaccharides, 43.5 mcg/mg protein)	170,000	glucose	[24]		
		α-1,4 glucans & β-1,6 glucans with β-1,3 side branches; α-1.6 glucans, β-1,6, 1-3 glucans, β-1,4 glucans, β-1,3 glucans, α-1.3 glucans; riboglucons, galactogluconamans, β-1,2, β-1.3 glucoomannans	NA	glucose, mannoside, galactose, ribose	[25,117,118]		
Agaricus subrufescens (mycelia)	Extract	β-1,6-D-glucan, protein complex, 5% protein	100,000-1,000,000	mannose, glucose, galactose, ribose	[93]		
Aloe barbadensis (leaf gel)	Whole tissue	Dry weight: 10% polysaccharides; acemannan, aloemannan, aleride, pectic acid, galactans, arabinans, glucomanans	average 2,000,000	mannose, glucose, arabinose, xylene, rhamnose	[119,120]		
		neutral partially acetylated glucomanan, mainly β-1,4-mannans	>200,000	mannose	[121]		
		NA	4,000,000-7,000,000	37% glucose, 23.9% galactose, 19.5% mannoside, 10.3% arabinose	[122]		
		β-1,4 acetylated mannan	80,000	mannoside	[123]		
Aloe barbadensis, (leaf gel), *Larix* sp. (bark), *Anogeissus latifolia* (bark), *Astragalus gummifer* (stem), *Oryza sativa* (seed), glucosamine	Extracts (Ambrotose® powder)	β-1,4 acetylated mannan, arabinogalactans, polysaccharide gums, rice stach, 5.4% protein	57.3% ≥ 950,000, 26.4% < 950,000 and ≥80,000, 16.3% ≤ 10,000	mannoside, galactose, arabinose, glucose, galacturonic acid, rhamnose, xylene, fructose, fucose, glucosamine, galacturonic acid (unpublished data, Mannatech Incorporated)			
		β-1,4 acetylated mannan, arabinogalactans, polysaccharide gums, rice stach, 5.4% protein	13% = 1,686,667; 46% = 960,000; 30% <950,000 and ≥70,000, 11% ≤ 10,000	mannoside, galactose, arabinose, glucose, galacturonic acid, rhamnose, xylene, fructose, fucose, glucosamine, galacturonic acid (unpublished data, Mannatech Incorporated)			
Avena spp. (seed endosperm)	Extract	β-1,3;1,4 particulate (1-3 μ) glucans	1,100,000	glucose	[43]		
Avena spp. (seed)	Extract	β-1,4,1,3 particulate glucans (linear chains of β-D-glucopyranosyl units; 70% β-1,4 linked)	2,000,000	NA	[41,124]		
Bupleurum falcatum (root)	Extract	6 linked galactosyl chains with terminal glucuronic acid substituted to β-galactosyl chains	NA	galactose, glucuronic acid, rhamnose	[35]		
Citrus spp. (fruit)	Extract	α-1,4-linked partially esterified D-anhydroglacturonic acid units interrupted periodically with 1,2-rhamnose	70,000-100,000	galactose, galacturonic acid, arabinose, glucose, xylene, rhamnose	[125]		
Cladosiphon okamuranus (frond)	Extract	α-1,3-fucopyranose sulfate	56,000	fucose, glucuronic acid (6:1:1:0)	[126]		
Cordyceps sinensis (mycelia)	Extract	β-1,3-D-glucan with 1,6-branched chains	NA	NA	[127]		
Cyamopsis tetragonolobus (seed)	Extract (gum)	Main chain of β-1,4-mannopyranosyl units with α-galactopyranosyl units	220,000	mannoside, galactose	[36,128]		
Product	Extract Type	Components	Molecular Weight	Structure Comments			
---------------------------------	-------------------------------	---	------------------	--			
Flammulina velutipes Extract	NA	20,000 mannose, galactose	[50]				
Flammulina velutipes (fruit body) Extract	β-1,3 glucan	NA glucose, mannose, galactose	[117]				
Ganoderma lucidum Whole tissue	Linear β-1,3-glucans with varying degrees of D-glucopyranosyl branching, β-glucan/protein complexes, heteropolysaccharides	400,000-1,000,000 glucose, galactose, mannose, xylose, uronic acid	[130]				
Ganoderma lucidum (fruit body) Extract	β-linked heteroglycan peptide	513,000 fructose, galactose, glucose, mannose, xylose (3.167:0.556:6.89:0.549:3.61)	[15]				
Ganoderma tsugae Extract	NA	7,000-9,000 NA	[67]				
Ginkgo biloba (seed) Extract	89.7% polysaccharides	NA glucose, fructose, galactose, mannose	[131]				
Grifola frondosa Whole tissue	β-1,3, 1, 6-glucans, α-glucans, mannosylglycans, xyloglucans, mannogalactofucans	NA glucose, fucose, xylose, mannose, galactose	[117]				
Grifola frondosa (fruit body) Extract (D fraction)	β-1,6-glucan with β-1,3 branches, 30% protein	NA glucose	[132]				
Grifola frondosa (fruit body) Extract (X fraction)	β-1,6-D-glucan with α-1,4 branches, 35% protein	550,000-558,000 glucose	[75]				
Hordeum spp. (seed) Extract	β-1,3,1,4-and β-1,3,1,6-D-glucans	45,000-404,000 glucose	[124]				
Laminaria spp. (frond) Extract (laminarin)	β-1,3,1-6 glucan	7,700 glucose	[29]				
Laminaria spp. (frond) Extract	β-1,3 glucan with some β-1,6 branches and a small amount of protein	4,500-5,500 glucose	[44]				
Larix occidentalis (bark) Extract	β-1,3,1,6-D-galactans with arabinofuranosyl and arabinopyranosyl side chains	19,000-40,000 galactosearabinose (6:1), uronic acid	[128,134]				
Lentilina edodes Extract (SME)	β-1,3-glucans (4-5%), α-1,4-glucan (8-10%), protein (11-14%)	NA glucose	[80]				
Lentilina edodes Whole tissue	Linear β-1,3-glucans, β-1,4,1,6-glucans, heterogalactan	NA glucose, galactose, mannose, fucose, xylose	[135]				
Lentilina edodes (fruit body) Extract (lentinin)	β-1,3-glucan with 2 β-1,6 glucopyranoside branchings for every 5 β-1,3-glucopyranoside linear linkages	500,000 glucose	[136]				
Lentilina edodes (fruit body) Extract (KS-2)	Peptide units and mannan connected by α-glycosidic bonds	60,000-90,000 mannose, glucose	[137]				
Lentinula edodes (mycelia or fruit body)	Extract	Triple helical β-1,3-D glucan with β-1,6 glucoside branches	1,000,000 glucose	[3]			
Lentinula edodes (mycelia)	Extract (LEM)	44% sugars, 24.6% protein	~1,000,000 xylose, arabinose, glucose, galactose, mannose, fructose	[3]			
Lentinula edodes (mycelia)	Extract (PG101)	72.4% polysaccharides, 26.2% protein, 1.4% hexosamine	NA	[138]			
Lycium barbarum	Whole tissue	α-1,4,1,6-D-glucans, lentinan, β-1,3,1,6 heteroglucans, heterogalactans, heteromannans, xyloglucans	NA	[139]			
Lycium barbarum (fruit body)	Extract (LBP3p)	88.36% sugars, 7.63% protein	157,000 glucose, galactose, mannose, xylose (molar ratio of 1:2.12:1.25:1.01:2.5:1.76)	[91]			
Panax quinquefolium (root)	Extract	Poly-furanosyl-pyranosyl saccharides	NA	[33]			
Panax quinquefolium (root)	Extract (Cold-FX®)	90% poly-furanosyl-pyranosyl-saccharides	NA	[20]			
Phellinus linteus (fruit body)	Extract	α- and β-linked 1,3 acidic proteoglycan with 1,6 branches	150,000 glucose, mannose, arabinose, xylose	[141]			
Phellinus linteus (mycelia)	Extract	83.2% polysaccharide (4.4% β-glucan), 6.4% protein, 0.1% fat	NA	[142]			
Pholiota nameko (fruit body)	Extract (PNPS-1)	NA	114,000 mannose, glucose, galactose, arabinose, xylose (molar ratio of 1:8.4:13.6:29.6:6.2)	[55]			
Pleurotus ostreatus (mycelia)	Extract	β-1,3,1,6-D-glucans	316,260 glucose	[143]			
Saccharomyces cerevisiae	Extract (WGP)	Particulate β-1,3,1,6-D-glucan	NA	[144]			
Saccharomyces cerevisiae	Extract	β-glucans with β-1,6 branches with a β-1,3 regions	NA	[124]			
Saccharomyces cerevisiae	Extract (SBG)	soluble β-1,3-D-glucan with β-1,3 side chains attached with β-1,6 linkages	20,000 glucose	[145]			
Sclerotinia sclerotiorum (mycelia)	Extract (SSG)	β-1,3-D-glucan, <1% protein (>98% polysaccharide)	NA	[83]			
Sclerotium rolfsii	Extract (scleroglucan)	β-1,3,1,6 glucan	1,000,000 glucose	[29]			
Trametes versicolor (fruit body)	Extract (PSP)	α-1,4, β-1,3 glucans, 10% peptides	100,000 glucose, arabinose, mannose, rhamnose	[146]			
Trametes versicolor (mycelia)	Extract (PSK)	β-1,4,1,3,1,6-D-glucans, protein	94,000 glucose (74.6%), mannose (15.9%), xylose (4.9%), galactose (2.7%), fucose (2.4%)	[137,147]			
Undaria pinnatifida (sporophyll)	Extract	Galactofucan sulfate	9,000 fucose:galactose 1:0.1	[148]			
Undaria pinnatifida (sporophyll)	Extract	Galactofucan sulfate	63,000 fucose:galactose:gluc-uronic acid (1:0.1:0.04)	[149]			
Undaria pinnatifida (sporophyll)	Extract	β-1,3-galactofucan sulphate	38,000 fucose, galactose	[150]			
Unidentified source	Extract (modified citrus pectin)	NA	10,000 galactose, rhamnose, uronic acid	[125]			
Unidentified source	Extract (highly methoxylated pectin)	NA	200,000 NA	[36]			
Category	Source	Test group	Test	Design	Results	Equivalent human dose*	Reference
-------------------	---	--------------------	-------------------------------	--------------------------	--	-------------------------	-----------
Arabinogalactans	Argemone mexicana (arabinogalactan protein)	Pregnant rats	Developmental toxicity	250, 500, or 1,000 mg/kg, gestational days 5-19	No developmental toxicity: NOAEL = 1 g/kg	68 g	[151]
		☞ and ☞ rats	Fertility	250, 500, or 1,000 mg/kg, 1 month	No effects on reproduction: NOAEL = 1 g/kg		
Fucoids	Undaria pinnatifida	Rats	Subchronic toxicity	1.35 g/kg, 1 month	No evidence of toxicity	91.8 g	[152]
Galactomannans	Cyamopsis tetragonolobus	Adolescent and adult ☞ rats	Subchronic and chronic toxicity	8% of diet, 6-67 weeks	No evidence of toxicity	8% of diet	[153]
		Rats	Acute toxicity	One 7.06 g/kg dose; observed 2 weeks	All doses ↓ ☞ BW; 7.5-15% ↓ ☞ BW; 15% ↓ bone marrow cellularity; ↓ kidney and liver weights	1-15% of diet	[96]
		Rats	Subchronic and chronic toxicity	1, 2, 4, 7.5 or 15% of diet, 3 months	No evidence of toxicity		
		19 adults with hypercholesterolemia	Subchronic and chronic toxicity	18 g/day, 1 year	Short-term gastric bloating/loose stools, in 8 subjects, resolved in 7-10 days, 2 withdrew because of diarrhea. No toxicity for 13 subjects completing study	18 g	[154]
		16 Type II diabetics	Subchronic toxicity	26.4-39.6 g/day, 6 months	No effects on hematologic, hepatic, or renal function	39.9 g	[155]
		18 Type II diabetics	Subchronic toxicity	30 g/day, 4 months		30 g	
	Cyamopsis tetragonolobus (partially hydrolyzed guar gum)	Mice & rats	Acute toxicity	One 6 g/kg dose; observed 2 weeks	LD₅₀ > 6 g/kg	>408 g	[156]
		Rats	Subchronic toxicity	0.2, 1.0 or 5% of diet, 13 weeks	No evidence of toxicity	5% of diet	
		Rats	Subchronic toxicity	0.5 or 2.5 g/kg, 1 month	NOAEL > 2.5 g/kg	>170 g	[157]
	S. typhimurium	Mutagenicity	Ames test	Not mutagenic		NA	[97]
Glucans	Agaricus subrufescens (aqueous extract)	Rats	Subchronic toxicity	0.63, 1.25, 2.5 or 5% of diet, 3 months	NOAEL = 5% of diet	5% of diet	[158]
		3 women with advanced cancers	Specific identity of products, doses, and durations of intake unknown	Severe hepatotoxicity; two patients died		NA	[97]
	Agaricus subrufescens (freeze dried powder)	24 normal adults and 24 adults with liver problems	Subchronic toxicity	3 g, 4 months	No evidence of toxicity	3 g	[159]
	Ganoderma lucidum (supplement)	Elderly woman	Case report	1 year G. lucidum (and another unidentified product, initiated one month previous)	Elevated liver enzymes and liver tissue damage	NA	[98]
	Grifola frondosa (powder)	Rats	Acute toxicity	One 2 g/kg dose	No evidence of toxicity	136 g	[160]
following intake of *G. lucidum* aqueous extracts; in one study intake was 5% of the diet for 5 months (Table 1). While adverse effects were also reported in a study in which 10 adults consumed 4 g/day *L. edodes* powder for 10 weeks \[99\], immunologic animal studies reported no ill effects of either *L. edodes* powder (5 studies, up to 5% of the diet up to nine months) or extract (7 studies, up to 40 days intake) (Tables 1 and 3). Finally, while intake of 319 mg/kg of an aqueous extract of *P. ostreatus* by mice for 1 month caused hemorrhages in multiple tissues \[100\], there was no reported toxicity when mice consumed the mushroom powder as 5% of their diet for nine months (Table 3). While ≥1 gram/day of *T. versicolor* glucan products were safely consumed by cancer patients for up to 10 years, the long-term effects of ingestion of the other polysaccharide products discussed in this review is also not known.

Discussion

The majority of studies that qualified for inclusion in this review employed models investigating immune stimulation; fewer explored anti-inflammatory effects. Animal studies reported immune system effects in the gut, spleen, bone marrow, liver, blood, thymus, lungs, and saliva; controlled human studies reported evidence of immune stimulation in the blood, anti-inflammatory

Table 6 Safety of Immunomodulatory Polysaccharide Products Following Oral Intake (Continued)

Polysaccharide Product	Organisms	Route of Administration	Dose	Toxicity	LD₅₀ or NOAEL	Ref.
Lentinula edodes (powder)	10 adults	Safety	4 g/day for 10 weeks, repeated 3-6 months later	50% of subjects experienced blood eosinophilia, ↑ eosinophil granule proteins in serum and stool, ↑ GI symptoms	4 g [99]	
Lentinula edodes (SME)	Nude mice	Safety	10% of diet days 1-18, 33-50	No adverse events	10% of diet [80]	
	61 men with prostate cancer	0.1 g/kg, 6 months	No adverse events	6.8 g		
Lentinus lepideus (PG101)	Female mice	Subchronic toxicity	0.5 g/kg, 24 days	No evidence of toxicity	34 g [92]	
Phellinus linteus (crude extract)	Rats	Acute toxicity	One 5 g/kg dose; observed 2 weeks	LD₅₀ > 5 g/kg	349 g [161]	
Pleurotus ostreatus (aqueous extract)	Mice	Acute toxicity	One 3 g/kg dose; observed 1 day	LD₅₀ > 3 g/kg	>204 g [100]	
		Subacute toxicity	319 mg/kg, 1 month	Hemorrhages in intestine, liver, lung, kidney, inflammation and microabscesses in liver	21.7 g	
Saccharomyces cerevisiae (particulate glucan [WGP])	Rats	Acute toxicity	One 2 g/kg, observed 2 weeks	LD₅₀ > 2 g/kg	>136 g [144]	
		Subchronic toxicity	2, 33.3 or 100 mg/kg, 3 months	NOAEL = 100 mg/kg	680 g	
Heteroglycans Trametes versicolor (PSP)	Rats	Subchronic toxicity	1.5, 3.0 or 6.0 mg/kg, 2 months	No evidence of toxicity	408 mg [162]	
	Rats & monkeys	Subchronic and chronic toxicity	100-200X equivalent human dose, 6 months	No evidence of toxicity	NA	
Trametes versicolor (PSK)	Humans with colon cancer	Safety	3 g/day, up to 7 years	No significant adverse events	3 g [57]	
	Humans with colorectal cancer	3 g/day, 2 years	3 g [58]			
Mannans Aloe vera gel	Dogs	Acute toxicity	Fed one 32 g/kg; observed 2 weeks	LD₅₀ > 32 g/kg	>2,176 g Bill Pine, personal communication	
	Rats		One 21.5 g/kg, observed 2 weeks	LD₅₀ > 10 g/kg	>680 g	

*150 lb adult
effects in nasal lavage fluid and improved survival in cancer patients. The literature is highly heterogenous and is not sufficient to support broad structure/function generalizations. For the limited number of studies that investigated well-characterized, isolated products (primarily glucan products), effects can be unequivocally attributed to polysaccharides. Such associations are certainly more tenuous when considering product powders or products obtained by extraction methods designed to isolate polysaccharides, but without complete compositional analyses.

Dietary polysaccharides are known to impact gut microbial ecology [101,102], and advances in microbial ecology, immunology and metabolomics indicate that gut microbiota can impact host nutrition, immune modulation, resistance to pathogens, intestinal epithelial development and activity, and energy metabolism [103-107]. Other than fucoidans, the polysaccharides discussed in this review appear to be at least partially degraded by bacterial enzymes in the human digestive tract (Table 7). Arabinogalactans, galactomannans, a glucan (laminarin), glumomannans, and mixed polysaccharide products (Ambrotose® products) have been shown to be metabolized by human colonic bacteria. Orally ingested fucoidans, glucans and mannans (or their fragments) have been detected in numerous tissues and organs throughout the body [73,108,109], (Carrington Laboratories, personal communication). We know of no study that has determined the specific identity of orally-ingested polysaccharide end products in animal or human tissues.

One can only speculate upon the mechanisms by which the polysaccharides discussed in this review influence immunologic function, particularly when one considers the exceedingly complex environment of the GI tract. It is possible that fragments of polysaccharides partially hydrolyzed by gut bacteria may either bind to gut epithelia and exert localized and/or systemic immune system effects, or be absorbed into the bloodstream, with the potential to exert systemic effects. Current studies investigating the link between the bioconversion of dietary polysaccharides, their bioavailability and their downstream effects on the host

| Table 7 Fate of Immunomodulatory Polysaccharide Products Following Oral Intake |
|--|------------------|-----------------|-----------------|-----------------|
| Category | Product | Metabolized by human gut bacteria? | Study type | Fate (method: tissues detected) | References |
| Arabinogalactans | Larix spp. | yes | in vitro | NA | [163-169] |
| Fucoidans | Undaria pinnatifida | no | in vitro | Ab: human plasma | [108,170] |
| Galactomannans | Cyamopsis tetragonolobus (partially hydrolyzed guar gum) | yes | in vivo | NA | [171] |
| Glucans | Hordeum vulgare | NA | in vivo | Fluorescein-labeled: mouse Mø in the spleen, bone marrow, lymph nodes | [73] |
| | Laminaria digitata (laminarin) | yes | in vitro | NA | [29,170,172] |
| | Sclerotium rolfs (scleroglucan) glucan phosphate, Laminaria spp. (laminarin) | NA | in vivo | Alexa Fluor 488-labeled: mouse intestinal epithelial cells, plasma, GALT | [29] |
| | Saccharomyces cervisiae (particulate) | NA | in vivo | Fluorescein-labeled: mouse macrophage in the spleen, bone marrow, lymph nodes | [73] |
| | Trametes versicolor (PSK) | NA | in vivo | 14C-labeled: rat and rabbit serum; mouse GI tract, bone marrow, salivary glands, liver, brain, spleen, pancreas | [173] |
| Mannans | Aloe barbadensis (aloemannan) | yes | in vitro | FITC-labeled: mouse, GI tract | [121,174] |
| | Aloe barbadensis (gel powder) | NA | in vitro | NA | [163] |
| | Aloe barbadensis (acemannan) | NA | in vivo | 14C-labeled: dog systemic, particularly liver, bone marrow, gut, kidney, thymus, spleen | (Carrington Laboratories, personal communication) |
| Mixed polysaccharide products | Ambrotose complex®, Advanced Ambrotose® powder | yes | in vitro | NA | [163,175] |
| Pectins | NA | yes | in vitro | NA | [165-167,176] |
| | Bupleurum falcatum (bupleuran 2Ic) | NA | in vivo | Ab bound: mouse Peyer’s patch, liver | [109] |
metabolism and physiology are utilizing metabolomic and metagenomic approaches that can detect and track diverse microbial metabolites from immunomodulatory polysaccharides [103]. These and other innovative approaches in the field of colonic fermentation are providing novel insights into gut microbial-human mutualism [110,111], its impact on regulating human health and disease, and the importance of dietary modulation [112-115].

Additional RCTs of well-characterized products are needed to more completely understand the immunomodulatory effects and specific applications of oral polysaccharides. Such studies will need to better investigate the optimal timing and duration for polysaccharide ingestion. That is, should they be consumed continuously, before, at the time of, or after exposure to a pathogen or environmental insult? Only a few studies have actually investigated the impact of timing of polysaccharide intake to achieve optimal benefits. Daily feeding with some polysaccharides appears to result in tolerance (and diminished benefits); this has been demonstrated for some mushroom β-glucans [3,26]. For those polysaccharides whose immunologic effects are dependent on their prebiotic activities, regular feeding would be presumed necessary.

Conclusions

The dietary polysaccharides included in this review have been shown to elicit diverse immunomodulatory effects in animal tissues, including the blood, GI tract, and spleen. In controlled human trials, polysaccharide intake stimulated the immune system in the blood of healthy adults, dampened the allergic response to a respiratory inflammatory agent, and improved survival in cancer patients. Additional RCTs of well-characterized products are needed to more completely understand the immunomodulatory effects and specific applications of oral polysaccharides.

List of abbreviations

♀: female; ♂: male; Ab: antibody; AIDS: autoimmune deficiency syndrome; AOM: azoxymethane; BBN: N-butyl-N'-butanolnitrosamine; BLCL: Burkitt’s Lymphoma Cell Line; BW: body weight; CBC: complete blood count; CD: cluster of differentiation; CFU: colony forming unit; ConA: concanavalin A; CXCR: CXC chemokine receptor; DMBA: 7,12-dimethylbenz(a)anthracene; DMH: N-N’-dimethylhydrazine; DMN: dimethylhydrazine; DSS: dextran sulfate sodium; EBV: Epstein-Barr virus; GALT: gut-associated lymphoid tissue; GI: gastrointestinal; H2O2: hydrogen peroxide; HSV: herpes simplex virus; IEL: intraepithelial lymphocytes; IFN-γ: interferon gamma; IG: intragastric; IgA: immunoglobulin A; IgE: immunoglobulin E; IgG: immunoglobulin G; IgM: immunoglobulin M; IL: interleukin; IMC: invasive micropapillary carcinoma; IN: intranasally; IP: intraperitoneal; IV: intravenous; LPS: lipopolysaccharide; Mø: macrophage; mAb: monoclonal antibody; 3-MCA: methylcholanthrene; MLN: mesenteric lymph nodes; MM-46 carcinoma: mouse mammary carcinoma; MW: molecular weight; NK: natural killer; NOAEL: no observable adverse effect level; OVA: ovalbumin; PBL: peripheral blood leukocytes; PBMC: peripheral blood mononuclear cells; PHA: phytohaemagglutinin; PMA: phorbol 12-myristate 13-acetate; PML: polymorphonuclear lymphocyte; RCT: randomized, controlled trial; RNA: ribonucleic acid; SC: subcutaneous; SD rats: Sprague Dawley; TLR: toll like receptor; TNF-α: tumor necrosis factor alpha; UC: ulcerative colitis; WT: wild type.

Acknowledgements

The authors would like to thank Barbara K. Kinsey, Ward Moore and Mrs. Jennifer Aponte for their assistance with the preparation of this manuscript, and Dr. Azita Alavi and Mrs. Christy Duncan for their editorial assistance.

Authors’ contributions

JER and EDN conducted literature searches and wrote the manuscript. RAS provided technical guidance. All authors read and approved the final manuscript.

Competing interests

The authors are employees of the Research & Development Department at Mannatech, incorporated, which sells two of the polysaccharide products (Ambrotose® powder and Advanced Ambrotose® powder) discussed in this review.

Received: 6 May 2010 Accepted: 18 November 2010
Published: 18 November 2010

References

1. Paulsen BS: Plant polysaccharides with immunostimulatory activities. Curr Org Chem 2001, 5:939-950.
2. Yamada H, Kyohara H: Complement-activating polysaccharides from medicinal herbs. In Immunomodulatory Agents from Plants. Edited by: Wagner H Basel, Switzerland: Birkhauser Verlag; 1999.
3. Hobbs C: Medicinal Mushrooms: An Exploration of Tradition, Healing and Culture Summertown, Tenn: Botanica Press; 2003.
4. Kusaykin M, Bakunina I, Sova V, Ermakova S, Kuznetsova T, Besednova N, et al: Structure, biological activity, and enzymatic transformation of fucoidans from the brown seaweeds. Biotechnol J 2008, 3:904-915.
5. Aloes: The genus aloes Boca Raton, Fla: CRC Press; 2003.
6. Anderson JW, Smith BM, Gustafson NJ: Health benefits and practical aspects of high-fiber diets. Am J Clin Nutr 1994, 59:1242S-1247S.
7. Weickert MO, Pfeiffer AF: Metabolic effects of dietary fiber consumption and prevention of diabetes. J Nutr 2008, 138:439-442.
8. Estruch R, Martinez-Gonzalez MA, Corella D, Baçora-Gallisa J, Ruiz-Gutierrez V, Covas M, et al: Effects of dietary fibre intake on risk factors for cardiovascular disease in subjects at high risk. J Epidemiol Community Health 2009, 63:582-588.
9. Pelkey RP, Strickland FM: Plants, polysaccharides, and the treatment and prevention of neoplasia. Crit Rev Oncog 2000, 11:189-225.
10. Lu L, Wicherth HJ, Savelkoul HF: Antiinflammatory and immunomodulating properties of fungal metabolites. Mediators Inflamm 2005, 2005:63-80.
Fucoidan ingestion increases the immunostimulatory effects of fucoidan on bone marrow-differentiated dendritic cells. Immune Lett 2008, 115:138-143.

Boh B, Berovic M, Zhang J, Zhi-Bin L. *Ganoderma lucidum* and its pharmaceutically active compounds. *Biotechol Annu Rev* 2007, 13:265-301.

Nantz MP, Parker AR, McGill C, Percival SS. Effect of dietary fiber on the lipid metabolism and immune function of aged Sprague-Dawley rats. *Biosci Biochem Biochem* 2003, 67:429-433.

Murphy EA, Davis JM, Brown AS, Carmichael MD, Ghaffar A, Mayer EP. Oat beta-glucan effects on neutrophil respiratory burst activity following exercise. *Med Sci Sports Exerc* 2007, 39:639-644.

Murphy EA, Davis JM, Carmichael MD, Mayer EP, Ghaffar A. Benefits of oat beta-glucan and sucrose feedings on infection and macrophage antiviral resistance following exercise stress. *Am J Physiol Regul Integr Comp Physiol* 2009, 297:R188-R194.

Murphy EA, Davis JM, Brown AS, Carmichael MD, Carson JA, Van RN, et al. Benefits of oat beta-glucan on respiratory infection following exercise stress: role of lung macrophages. *Am J Physiol Regul Integr Comp Physiol* 2008, 294:R1593-R1599.

Davis JM, Murphy EA, Brown AS, Carmichael MD, Ghaffar A, Mayer EP. Effects of moderate exercise and oat beta-glucan on innate immune function and susceptibility to respiratory infection. *Am J Physiol Regul Integr Comp Physiol* 2004, 286:R166-R173.

Yun CH, Estrada A, Van Kessel A. Immunomodulatory effects of oat beta-glucan administered intragastrically or parenterally on mice infected with *Eimeria vermiformis*. *Microbiol Immunol* 1998, 42:465-475.

Yun CH, Estrada A, Van KA, Park BC, Laavetid S. Beta-glucan, extracted from oat, enhances disease resistance against bacterial and parasitic infections. *FEMS Immunol Med Microbiol* 2003, 35:647-75.

Neyrinck AM, Mouzon A, Delzenne NM. Dietary supplementation with laminarin, a fermentable marine beta (1-3) glucan, protects against hepatotoxicity induced by LPS in rat by modulating immune response in the hepatic tissue. *Int Immunopharmacol* 2007, 7:1497-1506.

Hayashi K, Nakano T, Hashimoto M, Kanieki K, Hayashi T. Defensive effects of a fucoidan from *Cladosiphon okamuranus* against herpes simplex virus infection. *Int Immunopharmacol* 2008, 8:109-116.

Bernardshaw S, Hetland G, Grinde B, Johnson E. Effects of glucan treatment on the mouse mushroom *Agaricus blazei* Murill protects against lethal septicemia in a mouse model of fecal peritonitis. *Shock* 2006, 25:420-425.

Kirmaz C, Baynak P, Yilmaz O, Yukel H. Effects of glucan treatment on the Th1/Th2 balance in patients with allergic rhinitis: a double-blind placebo-controlled study. *Eur Cytokine Netw* 2005, 16:128-134.

Koray M, Ak G, Kurklue E, Tanyen H, Aydin F, Oguz FS, et al. The effect of beta-glucan on recurrent aphthous stomatitis. *J Altern Complement Med* 2009, 15:111-113.

Matsumoto S, Nagaoka M, Hara T, Kimura-Takagi I, Mistuyama K, Ueyama S. Immunomodulatory effects of yeast- and mushroom-derived beta-glucans. *J Med Food* 2008, 11:615-622.

Tsvakad C, Yokoyama H, Miyaji C, Ishimoto Y, Kawamura H, Abo T. Immunopotentiation of intraepithelial lymphocytes in the intestine by oral administrations of beta-glucan. *Cell Immunol* 2003, 221:1-5.

Rice PJ, Adams ES, Ozment-Skeltenson T, Gonzalez AJ, Goldman MP, Lockhard BE, et al. Oral delivery and gastrointestinal absorption of soluble glucans stimulates increased resistance to infectious challenge. *J Pharmacol Exp Ther* 2005, 314:1079-1086.

Suzuki I, Hashimoto K, Ohno N, Tanaka H, Yadozane T. Immunomodulation by orally administered beta-glucan in mice. *Int J Immunopharmacol* 1989, 11:761-769.

Lim BO, Yamada K, Cho RG, Jeon T, Hwang SG, Park T, et al. Comparative study on the modulation of IgE and cytokine production by *Phellinus linteus* grown on germinated brown rice, *Phellinus linteus* and germinated brown rice in murine splenocytes. *Biosci Biotechnol Biochem* 2004, 68:2391-2394.

Oh GS, Lee MS, Paet HO, Kwon J, Lee SS, Jeong JG, et al. Effects of oral administration of *Phellinus linteus* on the production of Th1- and Th2-type cytokines in mice. *Immunopharmacol Immunotoxicol* 2006, 28:281-293.

Bando FD, Goruk S, Rust MR, O’Connell E, Field CJ. Effect of CVT-E002 (COLD-FX) versus a ginsenoside extract on systemic and gut-associated immune function. *Int Immunopharmacol* 2008, 18:1134-1142.

Lim BO, Lee SH, Park DK, Choue RW. Effect of dietary pectin on the production of immunoglobulins and cytokines by mesenteric lymph node lymphocytes in mouse colitis induced with dextran sulfate sodium. *Biosci Biotechnol Biochem* 2003, 67:1706-1712.

Sakurai MH, Matsumoto T, Kiyohara H, Yamada H. B-cell proliferation activity of pectic polysaccharide from a medicinal herb, the roots of *Bupleurum falcatum* L. and its structural requirement. *Immunology* 1999, 97:540-547.
and activities of macrophages and lymphocytes in mice treated with a carcinogen, N-butyl-N-butanolnitrosoamine. Immunopharmacol Immunotoxicol 1997, 19:175-183.

71. Hishida I, Nanba H, Kuroda H. Antitumor activity exhibited by orally administered extract from fruit body of Grifola frondosa (maitake). Chem Pharm Bull (Tokyo) 1988, 36:1819-1827.

72. Nanba H, Kubo K. Effect of Maitake D-fraction on cancer prevention. Ann N Y Acad Sci 1997, 833:204-207.

73. Hong F, Yan J, Baran JI, Allendorf DJ, Hansen RD, Ostroff GR, et al. Mechanism by which orally administered (beta)-1,3-glucans enhance the tumoricidal activity of antitumor monoclonal antibodies in murine tumor models. J Immunol 2004, 173:797-806.

74. Modak S, Koehezi G, Vickers A, O'Reilly RJ, Cheung NK. Rituximab therapy of lymphoma is enhanced by orally administered (1–3), (1–4)-beta-D-glucan. Leuk Res 2005, 29:679-683.

75. Cheung NK, Modak S, Vickers A, Knuckles D. Orally administered beta-glucans enhance anti-tumor effects of monoclonal antibodies. Cancer Immunol Immunother 2002, 51:557-564.

76. Cheung NK, Modak S. Oral (1–3), (1–4)-beta-D-glucan synergizes with antiangiogenic GD2 monoclonal antibody 3F8 in the therapy of neuroblastoma. Clin Cancer Res 2002, 8:1217-1223.

77. Teas J, Harbison ML, Gelman RS. Dietary seaweed (Laminaria) and mammary carcinogenesis in rats. Cancer Res 1984, 44:2758-2761.

78. Nanba H, Mori K, Toyomasu T, Kuroda H: Antitumor action of shiitake (Lentinus edodes) fruit bodies orally administered to mice. Chem Pharm Bull (Tokyo) 1987, 35:2453-2458.

79. Sugui MM, ves de Lima PL, Delmanto RD, da Eira AF, Salvador DM, Ribeiro LR: Antimutagenic effect of Lentinula edodes (BERK) Pegler mushroom and possible variation among lineages. Food Chem Toxicol 2001, 39:535-560.

80. deVerre White RW, Hackman RM, Soares SE, Beckett LA, Sun B: Effects of a mushroom mycelium extract on the treatment of prostate cancer. Urology 2002, 60:640-644.

81. Yap AT, Ng ML: Immunopotentiating properties of lentinan (1–3)-beta-D-glucan extracted from cultivated-medicinal Shiitake mushroom. Int J Medlinal Mushrooms 2003, 5:19-39.

82. Ng ML, Yap AT: Inhibition of human colon carcinoma development by lentinan from shiitake mushrooms (Lentinus edodes). J Altern Complement Med 2002, 8:581-589.

83. Suzuki I, Sakurai T, Hashimoto K: Inhibition of human colon carcinoma development by Lentinus edodes (BERK) Pegler mushroom extract from cultured medium of Coriolus versicolor. Int J Medlinal Mushrooms 2003, 5:19-39.

84. Murakawa K, Fukunaga K, Tanouchi M, Hosokawa M, Hossain Z, Takahashi K: Effects of daily oral administration of beta-glucan from cultured medium of Grifola frondosa Murill on spontaneous and peritoneal disseminated metastasis in mouse model. J Cancer Res Clin Oncol 2003, 131:527-538.

85. Zhang Q-H, Lin Z-B: The antitumor activity of Ganoderma lucidum (Curt.: Fr.) P. Karst. LingZhi (Aphyllophoromycetidae) polysaccharides is related to tumor necrosis factor-alpha and interferon-gamma. J Medinal Mushrooms 1999, 207-215.

86. Lu H, Kyo E, Usaka T, Kato H, Watanabe N. A water-soluble extract from cultured medium of Ganoderma lucidum (Rei-shi) mycelia suppresses azoxymethane-induction of colon cancers in male F344 rats. Oncol Rep 2003, 10:375-379.

87. Lu H, Kyo E, Usaka T, Kato H, Usaka T, Watanabe H. Prevention of development of N,N'-dimethylhydrazine-induced colon tumors by a water-soluble extract from cultured medium of Ganoderma lucidum (Rei-shi) mycelia in male ICR mice. Int J Mol Med 2002, 9:113-117.

88. Kurashige S, Akawaza Y, Endo F: Effects of Lentinus edodes, Grifola frondosa and Pleurotus ostreatus administration on cancer outbreak, and
by oral administration of PG101, a water-soluble extract from Lentinus lepideus. Exp Biol Med (Maywood) 2003, 228:759-766.

93. Ito H, Shimura K, Itoh K, Hikawa M. Antitumor effects of a new polysaccharide-protein complex (ATOM) prepared from Agaricus blazei (Hwade strain 101) Himehatsutake and its mechanisms in tumor-bearing mice. Anticancer Res 1997, 17:277-284.

94. Ho JC, Konerding MA, Gaumann A, Groth M, Liu WK. Fungal polysaccharopeptide inhibits tumor angiogenesis and tumor growth in mice. Life Sci 2004, 75:1343-1356.

95. Vinson JA, Al Khatib H, Andreadi L. Effect of Aloe vera preparations on the human bioavailability of vitamins C and E. Phytomedicine 2005, 12:760-765.

96. Graham SL, Arnold A, Kasaia I, Ruffin GE, Jackson RC, Watkins TL, et al. Subchronic effects of guar gum in rats. Food Cosmet Toxicol 1981, 19:287-290.

97. Mukai H, Watanabe T, Ando M, Katsumata N. Antitumor activity of polysaccharides and lipids from marine algae. Nippon Suisan Gakkaishi 1989, 51:265-1271.

98. Wasser SP. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 2002, 60:258-274.

99. Firenzuoli F, Gori L, Lombardo G. The medicinal mushroom Agaricus blazei Murrill: Review of literature and pharmaco-toxicological problems. Evid Based Complement Alternat Med 2008, 3:5-15.

100. Luta G, Mckinny S. Aloe vera: chemical composition and methods used to determine its presence in commercial products. Glycoseience & Nutrition 2005, 61-12.

101. Qi Z, Jones K, Wylie M, Jia Q, Orndorff S. Modified Aloe barbadensis polysaccharide with immunoregulatory activity. Planta Med 2000, 66:152-156.

102. Yagi A, Nakamori J, Yamada T, Iwase H, Tanaka T, Kaneo Y, et al. In vivo metabolism of aloesamn in cancer patients. Jpn J Clin Oncol 2006, 36:808-810.

103. Yuen MF, Ip P, Ng WK, Lai CL. Hepatotoxicity due to a formulation of Ganoderma lucidum (lingzhi). J Hepatol 2004, 41:686-687.

104. Levy AM, Kita H, Phillips SF, Schiade PA, Dyer PD, Gleich GJ, et al. Eosinophilia and gastrointestinal symptoms after ingestion of shiitake mushrooms. J Allergy Clin Immunol 1999, 101:623-620.

105. Al Deen IH, Twaij HA, Al Badr AA, Istarabadi TA, Al Deen IH. Antitumor effects of a new high-molecular-weight polysaccharide from Aloe vera with potent immunostimulatory activity. J Agirc Food Chem 2001, 49:1030-1034.

106. Final report on the safety assessment of Aloe andongensis extract, Aloe andongensis leaf juice, Aloe arborescens leaf extract, Aloe arborescens leaf juice, Aloe arborescens leaf protoplasts, Aloe barbadensis flower extract, Aloe barbadensis leaf, Aloe barbadensis leaf extract, Aloe barbadensis leaf juice, Aloe barbadensis leaf polysaccharides, Aloe barbadensis leaf water, Aloe ferox leaf extract, Aloe ferox leaf juice, and Aloe ferox leaf juice extract. Int J Toxicol 2007, 26(Suppl 21):1-50.

107. Akramiene D, Kundratas A, Didziapetriene J, Kevelaitis E, et al. Final report on the safety assessment of Aloe andongensis extract, Aloe andongensis leaf juice, Aloe arborescens leaf extract, Aloe arborescens leaf juice, Aloe arborescens leaf protoplasts, Aloe barbadensis flower extract, Aloe barbadensis leaf, Aloe barbadensis leaf extract, Aloe barbadensis leaf juice, Aloe barbadensis leaf polysaccharides, Aloe barbadensis leaf water, Aloe ferox leaf extract, Aloe ferox leaf juice, and Aloe ferox leaf juice extract. Int J Toxicol 2007, 26(Suppl 21):1-50.
140. Oshima Y, Sato K, Hikino H. Isolation and hypoglycemic activity of quinquefolans A, B, and C, glyçans of Panax quinquefolium roots. J Nat Prod 1987; 50:188-190.
141. Zhu T, Kim SH, Chen CY. A medicinal mushroom: Phellinus linteus. Curr Med Chem 2008, 15:1330-1335.
142. Matsuba S, Matsumo H, Sakuma M, Komatsu Y. Phellinus linteus extract augments the immune response in mitomycin C-induced immunodeficient mice. Evid Based Complement Alternat Med 2008, 5:85-90.
143. Refaeli FM, Esmt Ay, Daba A, Taha SM. Characterization of polysaccharopeptides from Pleurotus ostreatus mycelium: assessment of toxicity and immunomodulation in vivo. Micologica Actacopoda Internacional 2009, 21:67-76.
144. Babicke K, Cechova I, Simon RR, Harwood M, Cox DJ. Toxicological assessment of a particulate yeast (1,3/1,6)-beta-D-glucan in rats. Food Chem Toxicol 2007, 45:1719-1730.
145. Lehne G, Hanberg B, Gausdal P, Johansen PN, Preus H, Abrahamsen TG. Oral administration of a new soluble branched beta-1,3-D-glucan is well tolerated and can lead to increased salivary concentrations of immunoglobulin A in healthy volunteers. Clin Exp Immunol 2006, 143:63-69.
146. Ng TB. A review of research on the protein-bound polysaccharide (polysaccharopeptide, PSP) from the mushroom Coriolus versicolor (Basidiomycetes: Polyporaceae). Gen Pharmacol 1999, 30:1-4.
147. Tsukagoshi S, Hashimoto Y, Fujiy A, Kobayashi H, Nomoto K, Orita K. Krestin (PSK). Cancer Treat Rev 1984, 11:131-155.
148. Lee JB, Hayashi K, Hashimoto M, Nakano T, Hayashi T. Novel antiviral fucoidan from sporophyll of Undaria pinnatifida (Mekabu, Chem Pharm Bull (Tokyo) 2004, 52:1091-1094.
149. Katsube T, Yamasaki Y, Iwamoto M, Oka S. Hyaluronidase-inhibiting polysaccharide isolated and purified from hot water extract of sporophyll of Undaria pinnatifida. Food Sci Technol 2003, 9:25-29.
150. Koo JG, Jo KS, Do JR, Woo SJ. Isolation and purification of fucoidan from the Sporophyll of Undaria pinnatifida krestin (Mekabu, Chem Pharm Bull (Tokyo) 2004, 52:1091-1094.
151. Tamboli S, Arora S, Bhatnagar U, Vishwase G, Singh M. Immunomodulatory dietary polysaccharide from Agaricus blazei Murill. J Nutr Biochem 2010, 21:107-112.
152. Koo JG, Jo KS, Do JR, Woo SJ. Isolation and purification of fucoidan from the Sporophyll of Undaria pinnatifida krestin (Mekabu, Chem Pharm Bull (Tokyo) 2004, 52:1091-1094.
153. Track NS, Cawkwell ME, Chin BC, Chiu SS, Haberer SA, Honey CR. Effects of partially hydrolyzed guar gum intake on human intestinal microflora. BIFIDUS Flores, Fruits et Semina 1992, 6:19-29.
154. Michel C, Lahaye M, Bonnet C, Mabeau S, Barry JL. In vitro fermentation by human faecal bacteria of total and purified dietary fibres from brown seaweeds. Br J Nutr 1996, 75:283-290.
155. McIvor ME, Cummings CC, Van Duyn MA, Leo TA, Margolis S, Behall KM, et al. Characterization of polysaccharides and antitumor activity of sanghwang mushroom (Agaricus blazei Murill strain 101) himematsutake. Murrill in F344 rats. J Nutr Biochem 2006, 17:101-117.
156. McIvor ME, Cummings CC, Van Duyn MA, Leo TA, Margolis S, Behall KM, et al. Characterization of polysaccharides and antitumor activity of sanghwang mushroom (Agaricus blazei Murill strain 101) himematsutake. Murrill in F344 rats. J Nutr Biochem 2006, 17:101-117.
157. Takahashi H, Yang S, Fujiki M, Kim M, Yamamoto T, et al. Isolation and purification of fucoidans from sporophyll of Undaria pinnatifida krestin (Mekabu, Chem Pharm Bull (Tokyo) 2004, 52:1091-1094.
158. McIvor ME, Cummings CC, Van Duyn MA, Leo TA, Margolis S, Behall KM, et al. Characterization of polysaccharides and antitumor activity of sanghwang mushroom (Agaricus blazei Murill strain 101) himematsutake. Murrill in F344 rats. J Nutr Biochem 2006, 17:101-117.
159. McIvor ME, Cummings CC, Van Duyn MA, Leo TA, Margolis S, Behall KM, et al. Characterization of polysaccharides and antitumor activity of sanghwang mushroom (Agaricus blazei Murill strain 101) himematsutake. Murrill in F344 rats. J Nutr Biochem 2006, 17:101-117.
160. McIvor ME, Cummings CC, Van Duyn MA, Leo TA, Margolis S, Behall KM, et al. Characterization of polysaccharides and antitumor activity of sanghwang mushroom (Agaricus blazei Murill strain 101) himematsutake. Murrill in F344 rats. J Nutr Biochem 2006, 17:101-117.
161. McIvor ME, Cummings CC, Van Duyn MA, Leo TA, Margolis S, Behall KM, et al. Characterization of polysaccharides and antitumor activity of sanghwang mushroom (Agaricus blazei Murill strain 101) himematsutake. Murrill in F344 rats. J Nutr Biochem 2006, 17:101-117.
162. McIvor ME, Cummings CC, Van Duyn MA, Leo TA, Margolis S, Behall KM, et al. Characterization of polysaccharides and antitumor activity of sanghwang mushroom (Agaricus blazei Murill strain 101) himematsutake. Murrill in F344 rats. J Nutr Biochem 2006, 17:101-117.