Evaluation of different laboratory techniques for diagnosis of intestinal microsporidiosis in diarrheic children

Fatima M Zahran, Ayman N Ibrahim, Hanan M Abou-Seri

Parasitology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt

ABSTRACT

Background: Microsporidia are a group of obligate intracellular organisms that can infect all animals including man causing disease in both immunocompetent individuals and immunosuppressed patients. The most common microsporidia causing gastrointestinal infection worldwide are Enterocytozoon bieneusi and Encephalitozoon intestinalis.

Objectives: The present study was designed with the aim of estimating the rate of microsporidia in diarrheic children and the evaluation of different staining techniques and nested polymerase chain reaction (PCR) for the clinical diagnosis of intestinal microsporidiosis.

Subjects and Methods: One hundred and fifty diarrheic stool samples were collected from Abou El-Rich children hospital laboratory. Samples were examined by “Ryan-Blue” modified trichrome stain (MTS), modified Ziehl Neelsen (MZN), acid fast trichrome (AFT) stain, and nested polymerase chain reaction (nPCR).

Results: Microsporidium spp. was detected in 12 (8%) of samples using MTS. Compared with the other detection techniques the respective sensitivities and specificities of MZN stain was 100% and 98.57%; nPCR was 80% and 100%; and AFT was 85.71% and 97.87%.

Conclusion: Using specific staining techniques as MZN and AFT for diagnosis of intestinal microsporidiosis in diarrheal stool samples are nearly as efficacious as PCR, but even better in some cases with the added advantage of being an inexpensive diagnostic method compared to PCR. Another benefit is the detection of other oocyst forming parasites such as Cryptosporidium, which makes staining techniques very suitable for developing countries.

Keywords: acid fast trichrome; microsporidia; modified trichrome; nPCR; Ziehl Neelsen.

Received: 20 March, 2020, Accepted: 29 April, 2020.

Corresponding Author: Hanan M Abou-Seri, Tel.: +20 1006770522, E-mail: hanan.mahmoud27@hotmail.com

Print ISSN: 1687-7942, Online ISSN: 2090-2646, Vol. 13, No. 2, August, 2020.

INTRODUCTION

Oocysts forming apicomplexan protozoa including Cryptosporidium spp., Cyclospora spp., Isospora spp., Sarcocystis spp. and intestinal spore forming parasites including microsporidia spp. have emerged as a cause of opportunistic infections in human causing various degrees of diarrhea and extraintestinal manifestations.[1]

Microsporidia are a group of obligate intracellular organisms that can infect all animals including man.[2] They are eukaryotic, unicellular organisms belonging to the phylum Microspora.[3] Over 1300 species of microsporidia are detected, of which 15 species were identified in human.[4] The most identifiable stage of microsporidia is a highly resistant small spore measuring 1-10 μm.[5] Microsporidiosis is considered an opportunistic infection causing severe chronic diarrhea in immunosuppressed patients especially the HIV infected, and in transplant recipients, children, and the elderly.[6-8]. Microsporidia can also cause extraintestinal manifestations as bronchitis, keratitis and myositis.[9] Enterocytozoon bieneusi and the three Encephalitozoon spp. (Encephalitozoon intestinalis, Encephalitozoon hellem and Encephalitozoon cuniculi) were identified as opportunistic pathogens.[10]

There are several methods for diagnosis of microsporidiosis using different stains including gram stain (microsporidia spores are gram-positive and stain dark violet), Hematoxylin and Eosin (H&E), Giemsa, Warthin-Starry silver and MTS,[5] as well as transmission electron microscopy (TEM), immunofluorescence assays (IFA) and molecular methods.[10] Under-reporting of Microsporidium spp. and intestinal coccidian parasites is common because the general diagnostic microscopic methods are inadequate for detection of these infections. Their detection requires the use of specific stains or the use of PCR techniques which are very expensive for developing countries.[11] To the best of our knowledge little is known about the frequency of intestinal microsporidiosis among diarrheal children in Egypt.

Thus, the present study was designed to estimate the rate of microsporidia in diarrheic children by using a battery of stains (MTS, MZN, AFT), and nPCR; and to evaluate the efficacy of these diagnostic techniques in clinical diagnosis of microsporidia. The presence of Cryptosporidium in these patients was also determined.
MATERIAL AND METHODS

In this descriptive analytical study, fresh fecal samples were collected from 150 diarrheic children at Abou El-Rich Children Hospital Laboratory, Cairo, Egypt, during the period from November 2018 to April 2019.

Stool sample collection, storage and staining techniques: Fecal samples were collected in 60 ml clean labeled containers, each sample was subsequently divided into two portions. A part was stored at -20°C for further molecular studies, and the remaining part was preserved using formalin saline fixative for subsequent microscopic examination and concentration by formalin-ether technique. Smears were made from the deposit, air dried, and fixed in methanol.

• Modified Ziehl Neelsen (MZN) stain: Methanol fixed smears were stained in working fuchsin for 45 min and rinsed in slow-running water. Malachite green (2%) was used as counter stain for 10 min. The slides were rinsed under slow-running water and allowed to dry at room temperature.

• "Ryan Blue" modified trichrome (MTS) stain: Methanol fixed smears were incubated for 90 min in trichrome stain, rinsed for 1 to 3 sec in acid-alcohol, dipped several times in 95% alcohol, immersed in 95% alcohol (two changes), 100% alcohol, and three changes of xylene for 5, 10, and 10 min, respectively.

• Acid fast trichrome (AFT) stain: Methanol fixed smears were placed in carbol fuchsin solution for 10 min, briefly rinsed with slow-running water then decolorized with 0.5% acid alcohol, placed in trichrome stain for 30 min at 37°C, then rinsed in acid alcohol for 1 to 3 sec, dipped for several times in 95% alcohol, then placed for 30 sec in 95% alcohol.

Copro-PCR Assay: Genomic DNA was extracted from frozen fecal samples using the MO BIO's PowerSoil® DNA Isolation Kit according to the manufacturer's specifications. Eventually, the purified DNA was stored at -20°C for further analysis. Amplification of the 410-420 bp fragment of Enterocytozoon bieneusi and Encephalitozoon species was done using previously published forward primer Mic C (5'-GTTGCCAGCGCCCGG-3') and reverse primer Mic D (5'-GCACATTCCACTCT-3') as per published protocol was done. All the amplified products were electrophoresed on 2% (w/v) agarose gel (Promega Corporation: 2800 Woods Hollow Road-Madison, WI 53711-USA, cat no. V 3121) and stained with ethidium bromide to be visualized on a UV trans-illuminator. The sizes of fragments of the amplified products were compared to the standard 100 bp DNA ladder which contained fragments of known size.

Detection criteria: Identification of microsporidia spores under oil immersion field lens was based on their characteristic morphology as ovoid pink bodies measuring ~1-2 μm in length with a clear uncolored vacuole and a pink polar body. Detection of spores of microsporidia using microscopy in one or more stool samples or its DNA during molecular analysis indicated that the sample was positive for microsporidia spp. The true positive samples were confirmed according to selection of MTS as gold standard test.

Statistical Analysis: The collected data was revised, coded, tabulated and introduced to a Personal Computer using Statistical package for Social Science. Data were analyzed using SPSS package version 15 (SPSS Inc., Chicago, IL). Descriptive statistics were frequency and percentage for qualitative data and kappa agreement test to test congruency of the two tests (PCR and microscopy examination).

Ethical consideration: An informed consent was taken from all patients for examining their stool samples. Positive results were relayed to their supervising physicians for prescribing the appropriate treatment. The study was approved by the Research Ethics Committee, Faculty of Medicine, Ain Shams University.

RESULTS

Among 150 samples included in the study, the 12 (8%) samples found positive for microsporidia by MTS (Figure 1), were confirmed by MZN stain (Figure 2); while 10 (7%) samples were positive using AFT stain (Figure 3). Using nPCR 9 (6%) samples were positive for Microsporidium spp. (Figure 4). The 138 (92%) samples which were negative by all of the above-mentioned techniques were considered "true negative" (Table 1). The three false positive samples detected by AFT, and two false positive samples detected by MZN stain, were not statistically counted among the true positive results. Sensitivity of MZN stain was the highest at 100% followed by AFT stain at 85.71% (95% confidence interval [CI], 0.57 to 0.98), and PCR at 80% (95% CI, 0.51-0.95). The specificity of nPCR was the highest at 100% followed by MZN stain (90.57%) and AFT stain (97.87%).

Table 1. Comparison of MZN, MTS, AFT stains and nested PCR for diagnosis of intestinal microsporidosis.

	MTS	MZN	AFT	nPCR	Total
+	+	-	+	-	138
-	+	-	-	+	7
-	+	-	-	+	2
-	-	-	-	-	3

AFT: Acid fast trichrome, MTS: "Ryan-blue" modified trichrome, MZN: Modified Ziehl Neelsen, nPCR: Nested polymerase chain reaction.

A kappa agreement test was done to test congruency of the PCR and different staining techniques. An almost perfect agreement was found between nPCR and MTS by kappa test (0.81) (Table 2). Structures morphologically compatible with Cryptosporidium spp. were also detected in 5 (3.3%) samples using MZN stain with diagnostic
yield (100%), and in 4 (2.6%) samples using AFT stain with diagnostic yield (89%), while the distinct morphological character for the oocysts couldn’t be confirmed using MTS. No Mixed infection was recorded between microsporidia and Cryptosporidium spp. (Table 3).

Table 3. Comparison of MTS, MZN and AFT staining techniques for diagnosis of cryptosporidiosis.

	MTS	MZN	AFT	Total
nPCR+	7	0	7	145
nPCR-	3	138	2	138

*Kappa: 0 poor agreement, 0.01-0.2 slight agreement, 0.21-0.40 Fair agreement, 0.41-0.60 Moderate agreement, 0.61-0.80 Substantial agreement, 0.81-1.00 almost perfect agreement. AFT: Acid fast trichrome, MTS: "Ryan-blue" modified trichrome, MZN: Modified Ziehl Neelsen, nPCR: Nested polymerase chain reaction.

Other enteric pathogens detected by light microscopy were, Giardia lamblia in 12 cases (8%), Blastocystis spp. in 9 (6%) cases. No helminthic or mixed infections were recorded.
In conclusion, this study demonstrated that using staining specific techniques as MZN and AFT in diagnosis of intestinal microsporidiosis in diarrheal stool samples are nearly as efficient as PCR. These stains may even be considered better in some cases with the added advantage of being an inexpensive diagnostic method compared to PCR. In addition, the mentioned stains are capable of detecting other oocyst forming parasites such as Cryptosporidium, which makes them very suitable for use in developing countries. Thus, it is relevant to endorse the selection of a standard reference test for detection of microsporidiosis. This
would allow identification of the exact contribution of microsporida to diarrhea in pediatrics’ in relation to other pathogens in a community known to be endemic for protozoal infections as Egypt. Additionally, testing for intestinal microsporidiosis should be part of patients’ evaluation for diarrhea especially among immunocompromised population.

Author contribution: Zahran F shared in choosing the aim of study, designing the plan of work, performing staining techniques, analyzing the data and revising the manuscript. Ibrahim AN wrote and revised the manuscript, Abou-Seri HM conceived and designed the plan of work, shared in specimen collection, performed PCR, analyzed the data, wrote and revised the manuscript.

Conflict of interest: We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome. We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

REFERENCES

1. Paboriboune P, Phoumindr N, Borel E, Sourinpoumy K, Phaxayaseung S, Luangkhott E, et al. Intestinal parasitic infections in HIV-infected patients, Lao People’s Democratic Republic. PLoS One 2014; 9(3): e91452.
2. Liu H, Pan G, Dang X, Li T, Zhou Z. Characterization of active ribosomal RNA harboring MITes insertion in microsporidian *Nosema bombycis* genome. Parasitol Res 2013;112(3):1011-1020.
3. Desportes-Livage I. Biology of Microsporidia. In: Petry F, ed. Cryptosporidiosis and microsporidiosis. Contributions to Microbiology. Vol. 6. Basel: Karger. 2000;116-139.
4. Ramanan P, Pritt BS. Extradigestal microsporidiosis. J Clin Microbiol 2014;52(11) : 3839-3844.
5. Yazars S, Koru O, Hamamci B, Cetinkaya U, Karaman U, Kuk S. Microsporidia and microsporidiosis. Turkiye Parazitol Derg 2013;37(2):123-134.
6. Saigal K, Sharma A, Sehgal R, Sharma P, Malla N, Khurana S. Intestinal microsporidiosis in India: a two-year study. Parasitol Int 2013; 62:53-56.
7. Velasquez JN, di Risco C, Etchart C, Chertoff AV, Astudillo OG, Carnevale S. Multimethodological approach to gastrointestinal microsporidiosis in HIV-infected patients. Acta Parasitol 2019; 64(3):658-669.
8. Carlson JR, Li L, Helton CL, Munn RJ, Wason K, Perez RV, et al. Disseminated microsporidiosis in a pancreas/kidney transplant recipient. Arch Pathol Lab Med 2004; 128:41-43.

9. Peterson TS, Spitsbergen JM, Feist SW, Kent ML. Luna stain, an improved selective stain for detection of microsporidian spores in histologic sections. Dis Aquat Organ 2011; 6:95(2):175-180.
10. Joseph J, Murthy S, Garg P, Sharma S. Use of different stains for microscopic evaluation of corneal scrapings for diagnosis of microsporidial keratitis. J Clin Microbiol 2006; 44(2):583-585.
11. Garcia LS. Examination of fecal specimens in [Diagnostic Medical Parasitology]. Fifth edition. (Garcia, L. S.ed). ASM (American Society for microbiology) Press 2007; P: 813-820 and P: 826-829.
12. Lee SH, JoungM, Yoon S, Choi K, Park WY, Yu JR. Multiplex PCR detection of waterborne intestinal protozoa: microsporida, *Cyclospora*, and *Cryptosporidium*. Korean J Parasitol 2010; 48(4): 297-301.
13. Patil K, De A, Mathur M. Comparison of Weber Green and Ryan Blue modified trichrome staining for the diagnosis of microsporidial spores from stool samples of HIV-positive patients with diarrhea. Indian J Med Microbiol 2008; 26(4): 407.
14. Pierstani M, Sadraei J, Forouzandeh M. Molecular characterization and genotyping of human related microsporidia in free-ranging and captive pigeons of Tehran, Iran. Infection, Genetics and Evolution. 2013; 20: 495-499.
15. Ghoyounchi R, Mahami-Oskouei M, Rezamand A, Spotin A, Aminisani N, Nami S, et al. Molecular phyldiagnosis of *Enterocytozoon bieneusi* and *Encephalitozoon intestinalis* in children with cancer: Microsporidia in malignancies as an emerging opportunistic infection. Acta Parasitol 2018; 64(1): 103-111.
16. Lorens B, Lopez-Miragaya I, Arias C, Fenoy S, Torres J, del Aguila C. Intestinal microsporidiosis due to *Enterocytozoon bieneusi* in elderly human immunodeficiency virus-negative patients from Vigo, Spain. Clin Infect Dis 2002; 34: 918-921.
17. El-Sayed AA, El-Taweel HA, Abou Holw SA, Khalil SS. Microsporidia in diarrheic patients: detection and evaluation of intestinal inflammation and malabsorption. PJJ 2014; 7: 116-121.
18. El-Mahallawy H, Zaki MM, El-Arousy M, ShalabiL, Mansour T. Diagnosis of intestinal microsporidiosis in pediatric oncology patients in Egypt using modified acid fast trichrome staining versus PCR. Acta Parasitol 2011; 56(4): 348-352.
19. Da Silva AJ, Slemenda SB, Visvesvara GS, Schwartz DA, Mel Wilcox C, Wallace S. Detection of *Septata intestinalis* (Microsporidia) Cali et al. 1993 using polymerase chain reaction primers targeting the small subunit ribosomal RNA coding region. JMD 1997; 2: 47-52.
20. Garcia LS. Laboratory identification of the microsporidia. J Clin Microbiol 2002;40: 1892-1901.
21. Kazemi E, Tavalla M, Maraghi S, YadMJ, Latiifi M. Frequency of microsporidial infection in immunocompromised patients with staining and molecular methods based on internal spacer region gene in two cities of Southwest Iran during 2013-2014. Asian J Pharm Res Health Care 2017; 9(1): 7-16.
22. Abdel-Hamid MY, Badawy AF, Ibrahim AN. An original simple technique for diagnosis of microsporidia using glycerol jelly direct smear. Parasitol Res 2015;114 (2): 453-456.

23. Abd-Elbaki MH, Arafa MA, Abd-El Hameed DM, Habib KS, Abdel Rahman AA, Anwar MA. Intestinal microsporidiosis: prevalence and genetic study of Egyptian isolates. PUJ 2020; 13(1): 35-44.