Bound entanglement helps to reduce communication complexity

Michael Epping

Institut für Theoretische Physik III,
Heinrich-Heine-Universität Düsseldorf,
Universitätsstr. 1, D-40225 Düsseldorf, Germany

ˇCaslav Brukner

Vienna Center for Quantum Science and Technology (VCQ) and Faculty of Physics,
University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria and
Institute of Quantum Optics and Quantum Information (IQOQI),
Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria

(Dated: May 2, 2014)

Abstract

We present a simple communication complexity problem where three parties benefit from sharing bound entanglement. This demonstrates that entanglement distillability of the shared state is not necessary in order to surpass classical communication complexity.

PACS numbers: 03.67.Hk, 03.65.Ud, 03.67.Mn
I. INTRODUCTION

Quantum Information studies communication or computation schemes which allow more efficient solutions when considering the laws of quantum theory instead of those of classical physics. In this research field, entanglement has proven to be a beneficial resource and many applications make use of maximally entangled states \(^1\). As these states are important for such applications, methods have been developed to create one maximally entangled state out of several copies of less entangled states using local operations and classical communication (LOCC) \(^2\). This process is called entanglement distillation. Entangled states that allow for the creation of a maximally entangled state by LOCC in at least one bipartition of the composite system are called distillable. States which are entangled but not distillable are called bound entangled \(^3\).

Bell inequalities are constraints on probabilities for local measurements, which are satisfied by local hidden variable theories \(^4\), \(^5\). However, they are not satisfied by quantum mechanics. Entangled states that violate a Bell inequality are called nonlocal. There exist (mixed) entangled local states, i.e. states which do not violate any Bell inequality \(^6\). Yet, it was shown that all entangled states, including bound entangled ones, violate a Bell inequality when combined with another state which on its own cannot violate the same Bell inequality \(^7\). Every distillable state may be transformed into a nonlocal state using only LOCC, but not every nonlocal state is distillable. This was found recently by giving an explicit example of a nonlocal bound entangled state \(^8\) (strengthening previous results \(^9\), \(^11\) to fully bound entangled states, see below for the definition of fully bound entangled states). Even though no pure entanglement can be distilled from bound entangled states they constitute an useful resource in quantum information protocols. These are entanglement activation \(^12\), \(^13\), enhancement of the teleportation power of some other state \(^14\), quantum steering \(^15\), quantum data hiding \(^16\) and quantum key distribution \(^17\). The last two tasks are “classical” in the sense that they can be stated outside the framework of quantum theory. Quantum theory can then enable advantages in comparison to how the tasks can be performed on the basis of classical laws. In this paper we consider another task of this type - communication complexity - for which we show that bound entangled states can provide advantage over all possible classical solutions. This task allows to quantify the advantage of the bound entan-
gled states with respect to classical resources of shared (classically) correlated bit strings. Communication Complexity studies the amount of information that must be communicated between distant parties in order to calculate a function of arguments which are distributed among the parties \[18\]. We consider a similar question: If the parties are restricted to communicate only a given amount of information, what is the highest possible probability for them to estimate the value of the function correctly?

It is well known, that nonlocal states can be useful in such a task \[19\]. Here we give a surprisingly simple example illustrating the fact, that this includes even fully bound entangled states.

II. A GENERAL QUANTUM COMMUNICATION COMPLEXITY SCHEME

We will make use of a generalization of the quantum communication complexity scheme introduced in Ref. \[19\] to more than two bits input per party. Consider the situation where \(n\) parties labelled 1 to \(n\) are spatially separated. Let us assume an inequality of the form

\[
\sum_{x_1,\ldots,x_n=0}^{2^m-1} g(x_1,\ldots,x_n)E(x_1,\ldots,x_n) \leq B, \tag{1}
\]

where the coefficients \(g(x_1,\ldots,x_n)\) and the local hidden variable bound \(B\) are real numbers and \(E(x_1,\ldots,x_n)\) is the correlation function of a measurement for the choice of measurement setting \(x_i\) by each party \(i\). The correlation function can be expressed as \(E(x_1,\ldots,x_n) = P(a_1\ldots a_n = 1|x_1,\ldots,x_n) - P(a_1\ldots a_n = -1|x_1\ldots x_n)\), where \(a_i = \pm 1\) is the measurement result of observer \(i\). We call inequality (1) a Bell inequality, if it can be violated by a value \(S > B\) using quantum mechanical expectation values. Following the idea of Ref. \[19\] we introduce a quantum communication complexity problem associated with this Bell inequality. Each party \(i\) receives one bit \(y_i \in \{-1,1\}\) and \(m\) bits \(x_i \in \{0,1,\ldots,2^m-1\}\) unknown to all the other parties. The two possible values of \(y_i\) occur with equal probability while the values of \(x_i\) follow the probability distribution

\[
Q(x_1,\ldots,x_n) = \frac{|g(x_1,\ldots,x_n)|}{\sum_{x'_1,\ldots,x'_n=0}^{2^m-1} |g(x'_1,\ldots,x'_n)|}, \tag{2}
\]

which is fixed beforehand and known to all parties. Their common task is to output the value of the function

\[
f(y_1,\ldots,y_n,x_1,\ldots,x_n) = \prod_{i=1}^{n} y_i \text{sign}[g(x_1,\ldots,x_n)]. \tag{3}
\]
The parties will not evaluate the function correctly with certainty. The aim is to maximize the probability of successful evaluation. Each party is allowed to broadcast a single bit of information to its fellow parties. It is required that all parties broadcast the bit simultaneously (in this way the communicated bit of one party does not depend on the broadcasted bits of others, but only on the local input). Afterwards one of the parties is asked to output the value of the function. We consider two different protocols. In the classical protocol the bit s_i sent by party i could be in general, any function of y_i and x_i. However it was shown in Ref. [20] (analog to Ref. [19]) that in the optimal classical protocol $s_i = y_i a_i(x_i)$ where $a_i(x_i)$ is an appropriate chosen function $\{0,1,...,2^m-1\} \rightarrow \{-1,1\}$ and the best guess is given by

$$A(y_1, ..., y_n, x_1, ..., x_n) = \prod_{i=1}^{n} y_i a_i(x_i). \hspace{1cm} (4)$$

Intuitively one can understand this in the following way. Opposite values of any y_i lead to opposite values of the function f. Missing a single y_i would completely destroy the information about the result. Therefore it is crucial to communicate y_i in a way that allows to reconstruct the product of all the y_i’s. In the quantum protocol $a_i(x_i)$ is replaced by the measurement result a_i. Each party i chooses one out of 2^m possible measurement settings according to the input x_i and sends y_i multiplied by the measurement result a_i. The best guess is then again given by Eq. 4.

The probability of success of the protocol, i.e. the probability for $A(y_1, ..., y_n, x_1, ..., x_n)$ to equal $f(y_1, ..., y_n, x_1, ..., x_n)$ can be written as

$$P(A = f) = \frac{1}{2} [1 + (f, A)] \hspace{1cm} (5)$$

using the weighted scalar product

$$(f, A) = \sum_{y_1,...,y_n=\pm 1} \sum_{x_1,...,x_n=0}^{2^m-1} \frac{1}{2^n} Q(x_1, ..., x_n) f(y_1, ..., x_n) A(y_1, ..., x_n). \hspace{1cm} (6)$$

Inserting Q, f and A gives the probability of guessing correctly

$$P_C = \frac{1}{2} \left(1 + \frac{B}{\sum_{x_1,...,x_n=0}^{2^m-1} |g(x_1, ..., x_n)|} \right) \hspace{1cm} (7)$$

in the classical protocol and

$$P_Q = \frac{1}{2} \left(1 + \frac{S}{\sum_{x_1,...,x_n=0}^{2^m-1} |g(x_1, ..., x_n)|} \right) \hspace{1cm} (8)$$

in the quantum case.
III. BOUND ENTANGLEMENT AS A RESOURCE

We now come to the explicit example. We choose \(n = 3 \), so there are three separated parties. They share the state

\[
\rho = \sum_{i=1}^{4} p_i |\psi_i\rangle\langle\psi_i|
\]

with \(p_1 = 0.0636039, p_2 = p_3 = 0.273734, p_4 = 0.388929 \) and

\[
|\psi_1\rangle = 0.183013|000\rangle - 0.408248(|001\rangle + |010\rangle + |100\rangle) + 0.683013|111\rangle,
|\psi_2\rangle = -0.344106(|001\rangle - 2|010\rangle + |100\rangle) + 0.219677(|011\rangle - 2|101\rangle + |110\rangle),
|\psi_3\rangle = 0.596008(|100\rangle - |001\rangle) + 0.380492(|110\rangle - |011\rangle),
|\psi_4\rangle = -0.933013|000\rangle + 0.149429(|011\rangle + |101\rangle + |110\rangle) + 0.25|111\rangle.
\]

It was introduced by T. Vértesi and N. Brunner in Ref. [8]. See the reference for an analytic expression for the amplitudes. It is constructed such that it is symmetric under permutations of the parties and invariant under partial transpose with respect to party 3. The last condition is sufficient for \(\rho \) to be biseparable on the partition \((1, 2)|3\) [21]. Together these conditions ensure that the state is separable along any biseparation. Therefore it is fully nondistillable. Here “fully nondistillable” refers to the fact that none of the three groupings \((1, 2)|3, (1, 3)|2\) and \((2, 3)|1\) of subsystems to parties is distillable. Vértesi and Brunner also found that \(\rho \) can be used to violate the Bell inequality

\[
-13 \leq \text{sym}[A_1 + A_1B_2 - A_2B_2 - A_1B_1C_1 - A_2B_1C_1 + A_2B_2C_2] \leq 3,
\]

which is listed under number 5 in Ref. [22]. The symbol \(\text{sym}[X] \) denotes the symmetrization of \(X \) with respect to the three parties, e.g. \(\text{sym}[A_1B_2] = A_1B_2 + A_1C_2 + A_2B_1 + A_2C_1 + B_1C_2 + B_2C_1 \). As \(\rho \) is fully nondistillable and nonlocal it is fully bound entangled.

We now use the method of homogenization described by Y. Wu and M. Źukowski in Ref. [23]: By adding a constant 5 to inequality (10) the bounds become symmetric. Then we introduce new observables \(A_0, B_0 \) and \(C_0 \) which also take the values \(-1\) and \(1\). Substituting the observables \(A_i \) by \(A_i/A_0, B_i \) by \(B_i/B_0 \) and \(C_i \) by \(C_i/C_0 \) and factoring out \(1/(A_0B_0C_0) \), one expands lower order correlation terms to full correlation terms. We arrive at the inequality

\[
\left| \frac{1}{A_0B_0C_0} \text{sym}[5A_0B_0C_0 + A_1B_0C_0 + A_1B_2C_0 - A_2B_2C_0] \right|
\]
\[-A_1B_1C_1 - A_2B_1C_1 + A_2B_2C_2 \mid \leq 8 \]
\[\iff \quad |\text{sym}[5A_0B_0C_0 + A_1B_0C_0 + A_1B_0C_0 - A_2B_2C_0] - A_1B_1C_1 - A_2B_1C_1 + A_2B_2C_2] \mid \leq 8, \tag{11} \]

which is expression H05 given in table I of Ref. [23]. This inequality has the required form to link to the communication complexity problem described above. Like in Ref. [8] we choose

\[A_1 = B_1 = C_1 = \begin{pmatrix} \cos \left(\frac{2\pi}{9} \right) & \sin \left(\frac{2\pi}{9} \right) \\ \sin \left(\frac{2\pi}{9} \right) & -\cos \left(\frac{2\pi}{9} \right) \end{pmatrix} \tag{12} \]

and
\[A_2 = B_2 = C_2 = \begin{pmatrix} \sin \left(\frac{\pi}{18} \right) & -\cos \left(\frac{\pi}{18} \right) \\ -\cos \left(\frac{\pi}{18} \right) & -\sin \left(\frac{\pi}{18} \right) \end{pmatrix} \tag{13} \]

For the new observables it is sufficient to choose \(A_0 = B_0 = C_0 = 1 \). With these observables we calculate the left-hand side of (11) using the quantum mechanical expectation values as

\[S = 5 + 3.00685 = 8.00685. \tag{14} \]

This violation of the Bell inequality (11) implies a quantum advantage in the quantum communication complexity task associated with it. We write the coefficients in front of correlations \(A_{x_1}B_{x_2}C_{x_3} \) in inequality (11) as

\[g(x_1, x_2, x_3) = \{2 \left[(\delta_{x_1,x_2,x_3} + x_1 + x_2 + x_3) \mod 2 \right] - 1 \} \times (1 + 4\delta_{0,x_1,x_2,x_3})(1 - \delta_{2,(x_1+x_2+x_3) \mod 3}) \prod_{i=1}^{3}(1 - \delta_{3,x_i}), \tag{15} \]

where the symbol \(\delta \) is 1 if all subscripts are equal and 0 otherwise. The first factor of Eq. (15) gives the sign of the coefficient while the others define the probability distribution for \(x_1, x_2 \) and \(x_3 \) (see Eq. [2]). The task for the three parties is to calculate the function

\[f = y_1y_2y_3 \text{sign} [g(x_1, x_2, x_3)] \]
\[= y_1y_2y_3 \left\{ 2 \left[(\delta_{x_1,x_2,x_3} + x_1 + x_2 + x_3) \mod 2 \right] - 1 \right\}, \tag{16} \]

which is basically the parity of the sum of \(x_1, x_2, x_3 \) and \(\delta_{x_1,x_2,x_3} \). As we chose \(A_0 = B_0 = C_0 = 1 \) a party \(i \) performs no measurement if \(x_i = 0 \) and simply sends \(y_i \). Using equations (7) and (8) we get \(P_C = 0.681818 \) and \(P_Q = 0.681974 \). This shows that albeit slightly, the parties still can increase the probability of success if they share the bound entangled state \(\rho \),
as compared to any classical protocol. This is striking, especially if you remind yourself that the state ρ is separable along any bipartition, i.e. it satisfies all Bell inequalities across every bipartition. The presented task is a simple application associated with the Bell inequality \cite{8} the authors of Ref. \cite{8} were asking for. We note that a similar advantage can be shown using the nonlocal games from Ref. \cite{24}.

Acknowledgments

We thank Sylvia Bratzik and Dagmar Bruß for advising us to this topic. CB acknowledges support from the European Commission, Q-ESSENCE (No 248095) and the Austrian Science Fund (FWF): [SFB-FOCUS], [P 24621] and the doctoral programme CoQuS.

\begin{thebibliography}{9}
\bibitem{1} M. Nielsen and I. Chuang, \textit{Quantum Computation and Quantum Information}, Cambridge Series on Information and the Natural Sciences (Cambridge University Press, 2000), ISBN 9780521635035.
\bibitem{2} C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, Phys. Rev. Lett. \textbf{76}, 722 (1996), URL \url{http://link.aps.org/doi/10.1103/PhysRevLett.76.722}.
\bibitem{3} M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev. Lett. \textbf{80}, 5239 (1998), URL \url{http://link.aps.org/doi/10.1103/PhysRevLett.80.5239}.
\bibitem{4} J. S. Bell, Physics \textbf{1}, 195 (1964).
\bibitem{5} A. Peres, Foundations of Physics \textbf{29}, 589 (1999).
\bibitem{6} R. F. Werner, Phys. Rev. A \textbf{40}, 4277 (1989), URL \url{http://link.aps.org/doi/10.1103/PhysRevA.40.4277}.
\bibitem{7} Y.-C. Liang, L. Masanes, and D. Rosset, Phys. Rev. A \textbf{86}, 052115 (2012), URL \url{http://link.aps.org/doi/10.1103/PhysRevA.86.052115}.
\bibitem{8} T. Vértesi and N. Brunner, Phys. Rev. Lett. \textbf{108}, 030403 (2012), URL \url{http://link.aps.org/doi/10.1103/PhysRevLett.108.030403}.
\bibitem{9} W. Dür, Phys. Rev. Lett. \textbf{87}, 230402 (2001), URL \url{http://link.aps.org/doi/10.1103/PhysRevLett.87.230402}.
\end{thebibliography}
