TRAIL and Effect of Irradiation on Apoptosis of Cancer Cells

Jaeseob Lee,¹,² Seongjoo Jang*³

¹Department of Radiological Technology, Gwangyang Health College
²Dept. of Radiological Technology, Dongshin University

Received: September 22, 2016. Revised: October 19, 2016. Accepted: October 30, 2016

ABSTRACT

Tumor using the efficient concomitant radiotherapy and chemotherapy to remove, prior to surgery and, either reduce the size of the tumor after surgery, or was can be made smaller, Or excised tumor, in a way to be removed, most conventional surgical method is surgical excision surgery therapy. And methods reduce or tumor size, or smaller, chemotherapy can kill tumor is administered selectively anticancer agent which increases the radioactive susceptible to tumor cells, sensitive to susceptibility to radiation are those which make it possible to respond to, either TRAIL methods of various biological cytostatic can deform the protein, by deforming the structure of the protein help to cell death it is known. In this paper, the HCT-116 cells thought to be a cancer cell to analyze the interaction of TRAIL and radiation. Experimental results, single use of TRAIL and radiation, results were compared with the control group, it was found to have no significant effect on each cell proliferation and apoptosis. Conversely treated with TRAIL, when treated in parallel radiation, it was possible to know that the HCT-116 cells significantly apoptosis occurs, The proportion of G1 ratio G0 also was found to have increased. TRAIL conclusion is increased apoptosis radiation defensive cells can know that increased radiosensitivity, also possible to alter the cell cycle, reduce cell proliferation ability stepwise it was possible. TRAIL is increased apoptosis, decreased cell proliferative capacity, it is considered to be possible to use as a radiation sensitizer.

Keywords: Proliferation, Apoptosis, Radiosensitizer, HCT 116 cells, TRAIL, Radiation

I. INTRODUCTION

HCT-116 cells are frequently used in the cell test cell as colorectal cancer cell line of the human body. [1] This is the cell which is mainly used in research for the pathogenesis and therapy of human colon cancer. Radiotherapy is used as a mono therapy and in combination therapy is typically used in combination with the anti-cancer chemotherapy used in the treatment of cancer patients.[2]

Treatment of locally advanced been rectal cancer, although combination therapy performed radiation therapy and chemotherapy after surgery simultaneously have been performed by standard methods of treatment[3-6] In recent years, a combination therapy to enforce pre-operative chemotherapy and radiation therapy at the same time tends to increase.

Apoptosis is a normal physiological phenomenon which plays an important role in the generation and regulation of homeostasis object. Recently, apoptosis regulation and has involved many genes, by examining the functions and features of these gene products is becoming a possible molecular explanation of apoptosis phenomenon. That of tumor necrosis factor (TNF) TNF-related apoptosis-inducing ligand belong to the superfamily (TRAIL) is a kind of transmembrane protein when selectively act on the tumor tissue.[7]

TRAIL is membrane binding of the receptor is that d
TRAIL and Effect of Irradiation on Apoptosis of Cancer Cells

eath (Death receptors, DR4 and DR5) combined with the intracellular death domains through an apoptotic signal via the outgoing apoptosis of extrinsic (death receptor) pathway, which is known to participate in it. These receptors when coupled with a ligand and activated via a multiplexer (multimerization) of the receptor, thereby various adapter proteins and receptor binding as a result. Adapter proteins are combined to induce apoptosis through the activation of a variety of proteins, such as caspase that is the important action in cell death.\(^8\)\(^9\)

Accordingly, the susceptibility to TRAIL in many cells is dependent on membrane TRAIL receptors and caspase-8 present in the cell membrane. Caspase-8, which is activated by TRAIL, is to start a protease cascade that activates the effector caspase that contains a caspase-3 and caspase-7 free in the cell.\(^10\) In particular, TRAIL is very convenient to the treatment strategy of the transformed cells, such as cancer cells without affecting at all in normal cells, is very high clinical value.\(^11\)\(^12\)

Chemotherapy is important to investigate the specific cytotoxicity one has processed a substance which following to check whether the cancer cell death is induced to determine the anti-cancer effects. The cancer cell apoptosis and the action associated with the mechanism of the cancer cells and identifying.\(^13\) While there are few side effects and the lack of effective anti-cancer therapeutics discovery and development of new therapeutic agents has been steadily made efforts to increase the therapeutic effect. In this experiment to investigate the radiation and then further activated to induce the death of cancer cells by the immune chemicals that act only on cancer cells as the target cells to increase the radiation sensitivity at the same time evaluate use in cancer cells removed.

Cells by a variety of extra cellular stimuli including inflammation adapted to elicit an immune response thereby producing an immune substance, to further activate the signaling and immune responses between cells. TRAIL is involved in the immune and inflammatory responses as a typical material in these materials. Also inhibits the apoptosis by controlling a chain reaction of caspase or the opposite also cause apoptosis. Previous studies have reported that there is induced the different reaction by a variety of factors, including the type of receptor that binds to the type of target cells, the processing time.\(^14\)\(^15\)

In this study, using the TRAIL and radiation, to determine whether the survival of the HCT-116 cells, was trying to figure out whether there is effectively anti-cancer effect.

II. MATERIAL AND METHODS

1. Irradiation

Irradiated to each of the control group and the cancer group 4.0 Gy of gamma radiation and then by replacing with fresh medium and cultured. Using Gamma knife \(^60\)Co sources irradiation time has not been setting. At this time, TRAIL treated group to the 10, 20, 50, 100 ng/ml concentrations and TRAIL 20 ng/ml with irradiation.

2. Cell processing

HCT-116 cells is American Type Culture Collection, (Rockville, USA) in the frequency divider receives 90% of the RPMI-1640 medium (Giboco BRL, Grand Island, NY, USA), 10% FBS (fetal bovine serum, FBS) and 1% of penicillin and streptomycin (Biofluids, Rockville, MD, USA) using the medium containing the 37 °C, and incubated under 5% CO\(_2\) condition. In order to also solve the congestion of the phenomena of cell proliferation processes the sheet every 48 hours 0.05% trypsin-ethylenediaminetetraacetic acid (EDTA, Gibco BRL) and incubated the cells were suspended and then transferred to a Petri dish for cell culture. TRAIL (KOMA Biotech Inc, Seoul, Korea) was diluted in treatment medium to an appropriate concentration dissolved in PBS.

3. Cell growth inhibition irradiation by MTT assay

6 well cell culture plate in the frequency divider of 1 \(\times 10^5\) cells per well for HCT-116 cell, and cultured for 4 8 hours after the mixing process and the radiation alone
or TRAIL after stabilization for 24 hours. Remove the culture medium. After 48 hours, dilute the bromide salt tetrazolium (MTT, Sigma, St. Louis, MO, USA) in 0.5 mg / ml concentration was dispensed per 200ml reaction for 3 hours. After 3 hours remove the MTT reagent, which was then compared to the frequency division by 100 ml of DMSO dissolved all of the formazan produced in the well using the ELISA reader (molecular devices, sunnymvale,CA,USA) measured at 540 nm. Experimental results were the mean and standard error of three measurements. Processes the LmSup, LmE and the cells of the concentration of \(1 \times 10^6\) cells / ml to 5 μg/ml each of the cultured HCT-116 cells, 24 hours, 48 hours, each was the control group was not treated.

4. Apoptosis measurements

After each incubation time has elapsed, the cells were collected in PBS and then suspended the cells, by the addition of annexin V-FITC and propidium iodide (PI) (BD bioscience, San Diego, CA) in the cell suspension was measured by flow cytometry (BD bioscience) at room temperature. Cells were possible staining with Annexin V-FITC is defined as apoptosis occurs cells were analyzed total of 10,000 cells per each sample. and activity measurement was done.

5. Measuring the cell cycle

In order to examine the changes in the cell cycle, and LmSup in concentration Cell of \(1 \times 10^6\) cells / ml The LmE each treated with 5 μg / ml, and cultured for 24, 48hours. In the control group, and untreated, the HCT-116 cells were cultured, respectively 24, 48 hours.

After the incubation time has elapsed, were each cell, all collected and resuspended in DPBS, centrifuged, the cells were washed 3 times through a process of removing the top of the liquid.

Washed cells were treated with PI resuspended again DPBS, stained for 10 minutes. It was measured through the flow cytometry cell analyzer. To measure the number of cells Sub G0 / G1 phase, it was examined the cell cycle. The Sub G0 / G1 phase of the cell defined by progress in cell death was analyzed total of 10,000 cells per each sample.

II. RESULT

1. The ability of TRAIL treatment and cell proliferation

Along with the results of a study TRAIL of proliferative capacity of processing the TRAIL compared to the control group cells to an increase of 10,20,50,100 ng/ml, the cell proliferative capacity stepwise decrease, than 100 ng/ml statistically were significant results (Fig. 1).

![Fig. 1. The effect of HCT-116 cell proliferation on the TRAIL](image1)

2. TRAIL treatment and Apoptosis

Depending on TRAIL treatment, results of examining the death of cells, depending on the concentration of the processing of TRAIL as shown in FIG. 2, showed the appearance that apoptosis is increased gradually. In particular, it was statistically significant in the 50 ng/ml and 100 ng/ml (Fig. 2).

![Fig. 2. The apoptosis HCT-cell-116 on the TRAIL](image2)
3. TRAIL treatment and the radiation environment of the cell proliferation ability

By treating the TRAIL at concentrations of 20 ng/ml, the proliferative capacity of the cells was reduced by about 10% at about 90%. On the other hand, simply a method of line irradiation, decreased cell proliferative capacity of about 15% at about 85%, was treated this both, proliferation ability of the cells is reduced by about 25 percent, showed a 75% survival rate. It was statistically significant (Fig. 3).

![Cell proliferation (%)](image)

Fig. 3. The cell proliferation of HCT cell-116 on the TRAIL and IR(irradiation) and TRAIL+IR

4. TRAIL treatment and the radiation environment with apoptosis

When treated with TRAIL at concentrations of 20 ng/ml, apoptosis, although the difference between the control group at approximately 10% had little, the frequency of apoptosis when used with the irradiation was increased to 25%. If who underwent only irradiated showed apoptosis rate of about 17% (Fig. 4).

![Apoptosis (%)](image)

Fig. 4. The apoptosis HCT cell-116 on the TRAIL, IR and TRAIL+IR

5. The proportion of cell cycle G1 ratio G0 phase

When treated with TRAIL at concentrations of 20 ng/ml, when the percentage of G0 corresponding to the resting phase of the cell division cycle has been used in combination if the TRAIL and radiation research alone and enforcement when treated with TRAIL, respectively, had a higher percentage in the case of at the same time implementing the TRAIL and radiation at 20%, 30%, 40% or more (Fig. 5).

![Sub G0/G1 (%)](image)

Fig. 5. The TRAIL, IR and TRAIL + IR on the G0/G1

IV. CONSIDERATION

As colorectal cancer cell lines, the cells used in cell experiments have HCL-116 cells. On the other hand, radiation therapy, may be mentioned is typically possible to chemotherapy is largely divided into monotherapy and combination therapy applied to the patient in combination therapy. Apoptosis is a normal physiological phenomenon which plays an important role in the generation and regulation of homeostasis object tumor necrosis fact or(TNF) TNF-related apoptosis-inducing ligand(TRAIL) belongs to the superfamily is typically a type of transmembrane protein. Susceptibility to TRAIL in a number of cells depends on the cell membrane TRAIL receptors a nd caspase-8, caspase-8 activated by TRAIL, the activity of the effector caspase containing caspase-3 and caspase-7 free in the cell start the protease cascade which of, TRAIL is usefully employed in the treatment of transformed cells such as cancer cells without affecting at all on normal cells. Materials used in chemotherapy, it is impo
rtant to clarify in the study of cancer cells apoptosis and its associated mechanism of action, should effective even though there is no side effects. Over TRAIL was can affect the tissue to be adversely affected. TRAIL is involved in the immune and inflammatory responses as a typical material in these materials. Also inhibits apoptosis by controlling the chain reaction of the anti-caspase or may induce apoptosis. Previous studies have been proposed in many papers that induce different responses by a variety of factors, including the type of receptor that bindsto the type of target cells, the processing time. Research results of this paper, the proliferative capacity of cells treated with TRAIL as compared to the control group as the concentration of TRAIL to increase, and decreased cell proliferative capacity in stages. This is, it can be determined that the TRAIL used alone gave me to some extent reduce the cell proliferative capacity. Result of observation of the Apoptosis, according to TRAIL treatment Apoptosis show aspects that gradual increase (than 50 ng/ml of 100 ng/ml was statistically significant), which is the process of TRAIL can be viewed as induced Apoptosis. By the Comparing TRAIL and irradiation TRAIL processing (20 ng/ml), the proliferative capacity of the cells was reduced by about 10%, radiation alone enforcement is proliferative capacity of about 15% cells were decreased. When treated with both showed a reduction in cell proliferative capacity of approximately 25%, it was possible to know the Additive effect of radiation TRAIL. Further, the ratio of G0 Phase corresponding to the resting phase of the cell division cycle, if used in combination with TRAIL and radiation, than when carried out singly, increase the proportion of more display resting cells it TRAIL and radiation irradiation, it was possible to know the revive the action at the same time with each other. Through this experiment, when each treatment alone to TRAIL and irradiation, both were able to confirm the apoptosis, it showed Additive effect if the probability of such apoptosis is was applied to the two conditions at the same time, in the G1 phase S phase rather than move to, a change in the resting stage to the G0 phase of cell is increased cell division was found to aborted.

V. CONCLUSION

Using the two methods of TRAIL and irradiation, result of observation of the death of cells, than single treatment of TRAIL or irradiation, treating both simultaneously have found that promoted apoptosis.

Based on this, it is determined that it is possible to take advantage of the application of TRAIL as a future radiosensitizers.

Reference

[1] Byung Geol Jeong, Soon Young Kim, Kon Joo Lee and Jong Sik Kim, “Up-Regulation of NAG-1 and p21 Genes by Sulforaphane”, Journal of Life Science, Vol. 22, No. 3, pp. 360-365, 2012
[2] Jihae Lee, Kyung-Ja Leeongyeon Lee, “Clinical Factors Predicting the Pathologic Tumor Response after Preoperative Concurrent Chemoradiotherapy for Rectal Cancer”, Journal of radiation oncology, Vol.26, No, 4, pp. 213-221, 2008
[3] O'Connell MJ, Martenson JA, Wieand HS, et al. “Improving adjuvant therapy for rectal cancer by combining protracted-infusion fluorouracil with radiation therapy after curative surgery” N Engl J Med, Vol. 331, pp. 502-507, 1994
[4] Gastrointestinal Tumor Study Group. “Prolongation of the disease-free interval in surgically treated rectal cancer”, N Engl J Med, Vol. 312, pp.165-192, 1985
[5] Krook JE, Moertel CG, Gunderson LL, et al. “Effective surgical adjuvant therapy for high-risk rectal carcinoma”, N Engl J Med, Vol.324, pp. 709-715, 1991
[6] Gastrointestinal Tumor Study Group. “Radiation therapy and fluorouracil with or without semustine for the treatment of patients with surgical adjuvant adenocarcinoma of the rectum”, J Clin Oncol, Vol. 10, p. 549-557, 1992
[7] Wang, S and S. W. El-Deiry “TRAIL and apoptosis induction by TNF-family death receptors” oncogene Vol. 22, pp. 862-863, 2001
[8] French, L.E and J.Tschopp, “The TRAIL to selective
tumor death”, Nat. Med, Vol. 5, pp. 146-147, 1999

[9] Srivastava, R.K. “TRAIL/Apo-2L: mechanisms and clinical applications in cancer”, Neoplasia Vol. 3, pp. 535-546, 2001

[10] Anderson, D.M, E.Maraskovsky, W.L.Billingsley, W.C. Dougall, M.E. Tometsko, E.R.Roux, M.C. Teepe, R.F. DuBose, D.Cosman, L.Galibert, “A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function”, Nature, Vol. 390, 175-179, 1997

[11] Griffith, T.S. and D.H. Lynch, “TRAIL: a molecule with multiple receptors and control mechanisms” Curr. Opin. Immunol, Vol. 10 pp. 559-563, 1998

[12] Zhang, X.D., A. Franco, K. Myers, C.Gray, T.Nguyen and P.Hersey, “Relation of TNF-related apoptosis inducing ligand (TRAIL) receptor and FLICE inhibitory protein expression to TRAIL induced apoptosis of melanoma”, Cancer Res, Vol. 59, pp. 264-295, 1999

[13] Dongyeon Lee, Seongjin Ko, Sesik Kang, Changsoo Kim, Donghyun Kim, Junghoon Kim, “Dose Evaluation of Childhood Leukemia in Total Body Irradiation”, Journal of Korean Society of Radiology, Vol.7, No. 4, pp. 259-264, 2013

[14] Karson S Putt, Grace W Chen, Jennifer M Pearson, Joseph S Sandhorst, Martin S Hoagland, Jung-Taek Kwon, Soon-Kyung Hwang, Hua Jin, Mona I Churchwell, Myung-Haing Cho, Daniel R Doerge, William G Helferich & Paul J Hergenrother, “Small-molecule activation of procaspase-3 to caspase-3 as a personalized anticancer strategy”, Journal of Nature Chemical Biology, Vol. 2, pp. 543-550, 2006

[15] David Wallach, Mark Boldin, Eugene Varfolomeev, Rudi Beyaert, Peter Vandenabeele, Walter Fiers, “Cell death induction by receptors of the TNF family: towards a molecular understanding”, Journal of FEBS Letters, Vol. 410, No.1, pp. 96-106, 1997
TRAIL과 방사선 조사가 암세포의 사멸에 미치는 효과

이재섭, 장성주

1광양보건대학교 방사선과
2동신대학교 방사선학과

요 약

종양은 효율적으로 적출, 제거하기 위해서는 부수적으로 방사선 치료 및 항암화학요법을 이용하여 수술 전이나, 수술 후 종양의 크기를 줄이거나 작게 할 수는 있었으나, 종양을 적출하거나 제거하는 방법으로 외과적 절제수술요법이 가장 재해적인 수술 방법이다. 종양의 크기를 줄이거나 작게 하는 방법과, 종양을 사멸시킬 수 있는 항암화학요법은 방사선 감수성을 증가시키는 항암약제는 종양세포에 선택적으로 투여하여 방사선에 대한 감수성에 민감하게 반응할 수 있도록 한 것이며, 다양한 생물학적인 세포증식억제 방법 중 TRAIL은 단백질을 변형시킬 수 있으며 단백질 구조를 변형시켜 세포의 사멸에 일조를 하는 것으로 알려져 있다. 본 논문에서는 HCT-116세포를 암세포로 간주하여 TRAIL과 방사선과의 상호관계를 분석하였다. 실험결과 TRAIL과 방사선의 단독사용은 대조군과 비교해 본 결과 각각 세포증식과 세포사멸비에 유의 적인 영향을 가지지 않은 것으로 나타났다. 반대로 TRAIL로 처리하고, 방사선 조사를 병행하여 처리한 경우 HCT-116세포가 유의적으로 세포사멸이 발생되었음을 알 수 있었고, G1대비 G0의 비율도 증가한 것으로 나타났다. 결론적으로 TRAIL은 방사선 방어적인 세포의 세포사멸을 증가시켜 방사선 감수성을 증가시켰음을 알 수 있었으며, 또한 세포주기를 변화시켜 세포 증식 능력을 점진적으로 감소시킬 수 있었다. TRAIL은 세포사멸을 증가시키고 세포증식 능력을 감소시켜 방사선 증감제로서 사용이 가능하다는 것으로 사료된다.

중심단어: 세포증식 능력, 세포사멸, 방사선 증감제, HCT-116 세포, TRAIL, 방사선 조사