Novel genotypes of Cryptosporidium and Enterocytozoon bieneusi detected in plateau zokors (Myospalax baileyi) from the Tibetan Plateau

Bin Hua, b, Jiamin Wanga, b, Shuairan Zhangc, Bo Wanga, b, Yanan Xinga, b, shuyi Hana, b, Hongxuan Hea, *

a National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences. Beijing, China
b University of Chinese Academy of Sciences, Beijing, China
c College of Shenyang Institute of Technology, Fushun, Liaoning, China

\textbf{A R T I C L E I N F O}

Keywords:
Plateau zokor
Cryptosporidium sp.
Enterocytozoon bieneusi
Novel genotypes
Host-adapted

\textbf{A B S T R A C T}

The plateau zokor (Myospalax baileyi) is a small subterranean rodent endemic to China that lives alone in sealed underground burrows at altitudes ranging from 2000 to 4200 m above sea level on the Tibetan Plateau. Due to the unique environmental factors in the Tibetan Plateau, intestinal parasites in the local population may be more likely to develop host-adapted genotypes. We therefore conducted an epidemiological survey of common intestinal parasites in plateau zokors on the Tibetan plateau to estimate their actual gastrointestinal parasite status.

Two areas with high populations of plateau zokor in Xunhua County, Qinghai Province were selected as sampling sites, and a total of 98 zokors were trapped. Four parasites, Cryptosporidium sp., Enterocytozoon bieneusi, Giardia lamblia and Blastocystis hominis, were tested in the faecal samples. The results showed that a new genotype of Cryptosporidium sp. was identified by amplification and sequencing of a portion of the small subunit ribosomal RNA (SSU rRNA) gene with an infection rate of 1.0% (1/98), and new genotypes of E. bieneusi were identified by amplification and sequencing of a portion of the internal transcribed spacer (ITS) region of the ribosomal RNA gene sequences with an infection rate of 4.1% (4/98). Neither of the two intestinal parasites, G. lamblia and B. hominis, was detected.

1. Introduction

The plateau zokor (Myospalax baileyi) is a small subterranean rodent endemic to China that lives alone year-round in sealed burrows underground at altitudes of 2000–4200 m on the Tibetan Plateau (Kang et al., 2020a; Pu et al., 2019). Faced with a harsh environment of high humidity, limited oxygen, high CO\textsubscript{2} concentration, low temperature, and food scarcity, the body structure and physiological functions of Plateau zokor have evolved to adapt to the subterranean tunnel system (Shao et al., 2015). It is now become a good model for studying differentiation, selection, and species formation (Kang et al., 2022).

Cryptosporidium spp. and E. bieneusi have been shown to have multiple host-adapted genotypes (Song et al., 2021; Xiao et al., 2002). Cryptosporidium sp. is a widespread zoonotic parasite, the main symptom of which is diarrhoea, capable of infecting 240 species of animals, including humans, and can cause serious public health emergencies in outbreaks (Ryan et al., 2018; Zahedi and Ryan, 2020). Enterocytozoon bieneusi are a group of intracellular, specific parasitic eukaryotes that can infect almost all vertebrates, including humans, are often associated with HIV or AIDS patients, making them an important opportunistic pathogen in humans (Li et al., 2019; Stentiford et al., 2016). Giardia lamblia is a genus of intestinal flagellates that infect a wide range of vertebrate hosts, and are found in a variety of mammals, including humans, pets and livestock (Feng and Xiao, 2011). Blastocystis hominis is a globally distributed intestinal protozoan that infects humans and many species of animals (Wang et al., 2013).

Compared to some terrestrial rodents, plateau zokors are less active, and their unique geographic location and living habits make them often an ideal model for studying phenotypic and ecological adaptations (Kang et al., 2020b). This also leads to a low probability of exogenous anthropogenic influences and pathogen invasion in plateau zokors, and intra-population intestinal parasites may be more likely to occur to produce host-adapted genotypes (Cao et al., 2014; Zhao et al., 2014). Therefore, we investigated the infection status of plateau zokors with...
Cryptosporidium spp., *E. bieneusi*, *G. lambia* and *B. hominis* on the Tibetan plateau.

2. Materials and methods

Ethical statement

This study was conducted in accordance with the Guidelines for the Care and Use of Animals in Research published by the Institute of Zoology, Chinese Academy of Sciences. This study was reviewed and approved by the Animal Ethics Committee of the Institute of Zoology, Chinese Academy of Sciences (2019FY100300-03).

2.1. Sample capture of plateau zokor

The Qinghai subspecies of Plateau zokor (*Myospalax fontanierii baileyi*) was selected as the host for the study, and two regions with high populations of plateau zokor in Xunhua County, Qinghai Province were selected as the sampling sites. In September 2021, we went to each of these two sites and carried out rodent trapping using the rope trap method. A total of 30 zokors were captured at site 1 (35°38′46.3″ N 102°15′02.0″ E altitude: 3553.28m) and 68 zokors were captured at site 2 (3211.91m 35°41′48.7″ N 102°14′29.1″ E). Captured plateau zokors were euthanised with isoflurane and then taken back to the local laboratory for risk assessment. After confirming that there was no potential biosafety risk, the autopsy was performed, and gender and location were recorded, as shown in Table 1.

2.2. Microscopic examination

Parasite isolation and purification was an improvement on the method described by Zajac et al. (2021). In short, the collected feces were added to a sucrose solution and then floated and shaken and mixed, and then centrifuged to take the liquid film on the surface and place it for observation under an optical microscope.

2.3. Stool sample collection and DNA extraction

Rectal contents were collected into 2 mL sterilized centrifuge tubes, tubes were labeled, placed in liquid nitrogen for quick freezing, and then centrifuged to take the liquid film on the surface and place it for further PCR assays.

The microscopic examination of the collected fecal samples showed that cysts and oocysts of *Cryptosporidium spp.*, *E. bieneusi*, *G. lambia* and *B. hominis* were not detected. Then PCR was used to detect *Cryptosporidium* sp. SSU gene, *E. bieneusi* ITS gene, *G. lambia* β-giardin gene and *B. hominis* SSU RNA gene by amplification in nested PCR, and only the samples after successful sequence alignment in the sequencing results were considered as positive samples. Of 98 samples, a total of 4 samples gave bands at the right place in the PCR for the *Cryptosporidium* spp. PCR, but only one could be successfully sequenced. And a total of 6 samples gave bands at the right place in the PCR for the *E. bieneusi* PCR, 4 samples could be successfully sequenced. *Cryptosporidium* spp. was not detected at site 1 (0/30), 1.5% (1/68) at site 2 and 1.0% (1/98) overall. *E. bieneusi* were detected at site 1 in 13.3% (4/30), not found positive at site 2. And the positive samples were considered as positive samples. Of 98 samples, a total of 4 samples were sequenced to 853bp and submitted to GenBank to obtain the reference sequences of the SSU rRNA phylogenetic trees. Similarly, samples including those covering Ebpc WbEb1 B13, B18, MUL5, D, CDZ211, JLN6-3, JLN6-6, horse 1, 5, ST32, Peru 16, BEB4, WbEb4, YZZ157, MS2, BEB6, BEB7, C4 and other taxa were selected as reference genes and *Enterocytozoon epatopenaei* was used as an outgroup control in the construction of the tree and was used for rooting of the ITS gene phylogenetic tree. *Cryptosporidium* and *Enterocytozoon* species/geneotypes were determined by aligning with reference sequences available in GenBank database with the ClustalX 2.1 software package. The phylogenetic relationships of *Cryptosporidium* sp. and *E. bieneusi* were constructed using the maximum-likelihood (ML) under MEGA 7.0 (Mello, 2018) to construct phylogenetic evolutionary trees, while the reliability was checked using Bootstrap with 500 replicates.

3. Results

3.1. *Cryptosporidium* spp., *E. bieneusi*, *G. lambia* and *B. hominis* infection rates in plateau zokors

The microscopic examination of the collected fecal samples showed that cysts and oocysts of *Cryptosporidium spp.*, *E. bieneusi*, *G. lambia* and *B. hominis* were not detected. Then PCR was used to detect *Cryptosporidium* sp. SSU gene, *E. bieneusi* ITS gene, *G. lambia* β-giardin gene and *B. hominis* SSU RNA gene by amplification in nested PCR, and only the samples after successful sequence alignment in the sequencing results were considered as positive samples. Of 98 samples, a total of 4 samples gave bands at the right place in the PCR for the *Cryptosporidium* spp. PCR, but only one could be successfully sequenced. And a total of 6 samples gave bands at the right place in the PCR for the *E. bieneusi* PCR, 4 samples could be successfully sequenced. *Cryptosporidium* spp. was not detected at site 1 (0/30), 1.5% (1/68) at site 2 and 1.0% (1/98) overall. *E. bieneusi* were detected at site 1 in 13.3% (4/30), not found positive at location 2 (0/68) and total infection was 4.1% (4/98).

The sequences of the 18S rRNA locus of *Cryptosporidium* sp. QH219-58 were sequenced to 853bp and submitted to GenBank to obtain the sequence accession number: OM403638. The ITS sequences of *E. bieneusi* QH219-5, QH219-9, QH219-13, QH219-21 were 397bp, 393bp, 392bp and 392bp, respectively. The sequences were submitted to GenBank and the sequence accession numbers were obtained: OM406189, OM406190, OM406191 and OM406192.

3.2. Phylogenetic analysis of SSU rRNA gene in *Cryptosporidium* sp

A phylogenetic tree was constructed by comparing with SSU RNA gene sequence of reference *Cryptosporidium* sp. (Fig. 1). The genotypes of *Cryptosporidium* sp. found in plateau zokors were significantly different from other known host genotypes of *Cryptosporidium*, aggregating with the *Cryptosporidium* chipmunk genotype I.

3.3. Phylogenetic analysis of ITS gene in *E. bieneusi*

A phylogenetic tree was constructed by comparing and analyzing the ITS gene sequence with that of the reference *E. bieneusi* (Fig. 2). The genotypes of *E. bieneusi* detected in plateau zokors were significantly different from those of other known *E. bieneusi* genotypes, forming a separate group.

4. Discussion

Rodents are considered to be important zoonotic hosts for *Cryptosporidium* spp. (Zhang et al., 2022) and *E. bieneusi* (Ni et al., 2021). To our knowledge, this study is the first time to investigate the infection status of *Cryptosporidium* sp. and *E. bieneusi* in plateau zokors. Many studies have shown that *Cryptosporidium* sp. can infect humans and animals, and many *Cryptosporidium* sp. species/genotypes of public health significance have been identified. However, it has been rarely reported in rodents, especially in plateau zokors. These results indicate that the prevalence of *Cryptosporidium* sp. infection in plateau zokors was not only lower than that of the Chinese Qinghai vole (8.9%, 8/90) and plateau pika (6.25% (4/64) in the same region (Zhang et al., 2018), but also lower than that of rodent populations in other countries (Horvátková et al., 2019; Stenger et al., 2018). The global prevalence of *Cryptosporidium* sp. in rodents is estimated to be about 17% (Taghipour et al., 2019).

Table 2

Gene	Primers	Amplication protocol	Size	Ref
Cryptosporidum sp.				
SSU gene	1st Forward 5′-TTCTAGAGCTATACATGCG-3′	94°C: 3 min, 35 cycles: (94°C: 45 s, 55°C: 45 s, 72°C: 1 min)	1325 bp	Xiao et al., 2001
	2nd Forward 5′-GGAAAGGGTTAGATTTATGATAAAG-3′	72°C: 7 min		
	PCR Reverse 5′-CCATTCCCCGAAACAGGA-3′	94°C: 3 min, 35 cycles: (94°C: 45 s, 55°C: 45 s, 72°C: 1 min)	864 bp	
E. bieneusi ITS gene	1st Forward 5′-GTTGATAGGGGATGAGGAG-3′	94°C: 5 min, 35 cycles: (94°C: 30 s, 57°C: 30 s, 72°C: 40 s)	435 bp	
	2nd Forward 5′-GCTCTGAAATACTGATGGCT-3′	72°C: 7 min		
G. lamblia β-giardin gene	PCR Reverse 5′-ATCGCCGAGGGATCAGG-3′	94°C: 5 min, 35 cycles: (94°C: 30 s, 55°C: 30 s, 72°C: 40 s)	390 bp	
	2nd Forward 5′-GAAGGAAGGAGATCGAGG-3′	72°C: 7 min		
B. hominis SSU rRNA gene	PCR Reverse 5′-CTGACGAGCTCGTTGTT-3′	94°C: 5 min, 35 cycles: (94°C: 30 s, 65°C: 30 s, 72°C: 40 s)	753 bp	
	2nd Forward 5′-GGGATGCTGAGGATGGC-3′	72°C: 7 min		

Fig. 1. Phylogenetic relationships of *Cryptosporidium* sp. genotypes identified in the present study and other known genotypes and species on GenBank was inferred by a maximum-likelihood phylogenetic analysis of SSU rRNA gene sequences using the Tamura 3-parameter model and with 500 replicates. The *Eimeria* (GenBank: U40264.1) were used as the outgroup. The red circles and squares indicate the novel genotypes identified in this study. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
et al., 2020), which is higher than our detection results. The *E. bieneusi* in plateau zokors is lower than the average infection rate of 10.0% (50/498) in rodents from five regions within Gansu Province (Xu et al., 2020).

In this study, neither *G. lamblia* nor *B. hominis* were detected positively, which may be related to the low number of parasite infections and the low intensity of infection. Based on these results we speculate that this may be related to the unique living environment and habits of plateau zokors. An increase in rodent population density can cause an increase in infectious disease infection rates (Krawczyk et al., 2020), but plateau zokors often live alone underground, reducing the probability of suffering from disease infestation. Coupled with the fact that intra-population encounters are mostly possible during spring breeding, low-frequency contact within populations reduces parasite transmission (Cai et al., 2018; Jonsson et al., 2010).

Most of the morphological differences between *Cryptosporidium* spp. and *E. bieneusi* species cannot be distinguished by the naked eye, and identification based on oocyst morphology alone has limitations, which can be compensated by molecular identification methods that can analyze genetic differences between different *Cryptosporidium* species at the genetic level (Ryan et al., 2014; Xiao, 2010). The 18S rRNA gene of *Cryptosporidium* sp. is responsible for encoding the multicopy repeat sequence of the SSU rRNA, which is approximately 1850 bp in length and is the marker gene with both informative and functional roles, making it the most widely used genotyping tool for identifying host-adapted *Cryptosporidium* (Xiao and Feng, 2017). Host adaptation is a general phenomenon in the genus *Cryptosporidium*, and specific genotypes are usually associated with specific animal groups (Xiao et al., 2002). The new genotype identified in this study is evolutionarily related to *C. chipmunk* genotype I and *Cryptosporidium hominis*. *C. chipmunk* genotype I, originally identified in rodents (chipmunks, squirrels, and deer mice) and watershed runoff in New York, has been identified as a novel zoonotic pathogen in humans (Guo et al., 2015; Xu et al., 2019), and the disease has had small outbreaks in Sweden and poses a significant public health threat (Bujila et al., 2021). Therefore, the *Cryptosporidium* sp. found in plateau zokors may not only be a new host-adapted genotype, but also a novel zoonotic pathogen.

Sequence analysis of the ITS of the ribosomal RNA gene of *E. bieneusi* has been widely used in *E. bieneusi* typing studies (Widmer and Akiyoshi, 2010). Based on the high diversity of ITS, more than 500 genotypes have been identified, some of which are host-adapted genotypes (Karim et al., 2014, 2015; Santín and Fayer, 2011; Wei et al., 2019). It has been demonstrated that environmental and host isolation characteristics make differences in the distribution of *E. bieneusi* genotypes (Wei et al., 2019). New genotypes may exist in different hosts, for example, ten novel genotypes (WR1-WR10) were identified in wild rodents in Poland in 2015 (Perec-Matysiak et al., 2015). A study in the USA found that the *E. bieneusi* prevalent in animals from Texas in 2011 may be a prairie dog-specific genotype (Roellig et al., 2015).

In the present experiment, phylogenetic analysis using the ML method showed that all ITS representative gene sequences of *E. bieneusi* identified in this study were evolutionarily distant from the pre-existing nucleotide sequences, forming a separate branch, indicating that it may be a plateau zokor-specific genotype, and based on the differences in its
molecular characteristics and host specificity, we therefore named the newly identified genotype as zokor genotype of Enterocytozoon bieneusi.

5. Conclusions

In summary, this study enriched the host range and genotype database of Cryptosporidium spp. and E. bieneusi by molecular biological detection detection and phylogenetic analysis of host-adapted genotypes in plateau zokor populations in the Tibetan Plateau region, providing a new case for environmental isolation that may lead to special species reservoirs of more host-adapted genotypes of parasites.

Author contributions statement

Hongxuan He, Bin Hu contributed to the conception of the study; Jianmin Wang, Shuaiqiang Zhang performed the experiment; Yanan Xing, Shuoqian Zhang performed the experiment; Yanyun Su, Jie Su, Bo Yao, Ji Wei, Hegab I.M., Hanafy A.M., Zhang, Dejun Kang contributed significantly to analysis and manuscript preparation; Bo wang helped perform the analysis with constructive discussions; Bin Hu performed the data analyses and wrote the manuscript.

Data availability statement

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

Declaration of competing interest

All the authors have no conflict of interest to declare.

Acknowledgments

This study was financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA19050204), National Key R&D Program of China, National Forestry and Grassland Administration, China, the Major Program of National Natural Science Foundation of China (No. 32090023), Beijing Innovation Consortium of Agriculture Research System (BAIC04-2021).

References

Buckholt Michael A., Lee John H., Hitzpiori, S., 2002. Prevalence of Enterocytozoon bieneusi in sivine: an 18-month study at a slaughterhouse in Massachusetts. Appl. Environ. Microbiol. 68, 2959–2959.
Bujil, J., Torel, K., Fischersteg, K., Nordahl, M., Killander, G., Hansen, A., Norderland, R., Lebbad, M., Bujila, I., Fischerstr, K., 2015. Transmission profiling of zoonotic zooceratid zokor, myospalax baileyi, to high-altitude stresses in tibet. Sci. Rep. 8, 4671.
Cai, Z., Wang, L., Song, X., Tagore, S., Li, X., Wang, H., Chen, J., Li, K., Frenkel, Z., Pu, P., Lu, S., Niu, Z., Zhang, T., Zhao, Y., Yang, X., Zhao, R., Tang, X., Chen, Q., 2019. Oxygehesion properties and underlying molecular mechanisms of hemoglobin in plateau zokor %28%29. Am. J. Physiol. Regul. Integr. Comp. Physiol. 317, E969–E970.
Roellig, D.M., Salzer, J.S., Carroll, D.S., Ritter, J.M., Drew, C., Gallardo-Romero, N., Keckler, M.S., Langham, G., Hutson, C.I., Karem, R.L., et al., 2015. Identification of Giardia duodenalis and Enterocytozoon bieneusi in an epizootological investigation of a laboratory colony of prairie dogs, Cynomys ludoviciensis. Vet. Parasitol. 210, 91–97.
Ryan, U., Fayer, R., Xiao, L., 2014. Cryptosporidium species in humans and animals: current understanding and research needs. Parasitology 141, 1667–1685.
Ryan, U., Haliswi, N., Xiao, L., 2018. Fecalbiddo microsporidian. Int. J. Parasitol. 48, 246–246.
Perec-Matsyi, A., Burkowska-Gawl, K., Kwa, S., Bak, I., Hildebrand, J., Letainia, K., 2015. Diversity of Enterocytozoon bieneusi genotypes among small rodents in southwestern Poland. PLoS One 10, e0117991.
Pu, P., Lu, S., Niu, Z., Zhang, T., Zhao, Y., Yang, X., Zhao, R., Tang, X., Chen, Q., 2019. Oxygenation properties and underlying molecular mechanisms of hemoglobin in plateau zokor %28%29. Am. J. Physiol. Regul. Integr. Comp. Physiol. 317, E969–E970.
Roellig, D.M., Salzer, J.S., Carroll, D.S., Ritter, J.M., Drew, C., Gallardo-Romero, N., Keckler, M.S., Langham, G., Hutson, C.I., Karem, R.L., et al., 2015. Identification of Giardia duodenalis and Enterocytozoon bieneusi in an epizootological investigation of a laboratory colony of prairie dogs, Cynomys ludoviciensis. Vet. Parasitol. 210, 91–97.
Ryan, U., Fayer, R., Xiao, L., 2014. Cryptosporidium species in humans and animals: current understanding and research needs. Parasitology 141, 1667–1685.
Ryan, U., Haliswi, N., Xiao, L., 2018. Fecalbiddo microsporidian. Int. J. Parasitol. 48, 246–246.
Perec-Matsyi, A., Burkowska-Gawl, K., Kwa, S., Bak, I., Hildebrand, J., Letainia, K., 2015. Diversity of Enterocytozoon bieneusi genotypes among small rodents in southwestern Poland. PLoS One 10, e0117991.
Pu, P., Lu, S., Niu, Z., Zhang, T., Zhao, Y., Yang, X., Zhao, R., Tang, X., Chen, Q., 2019. Oxygenation properties and underlying molecular mechanisms of hemoglobin in plateau zokor %28%29. Am. J. Physiol. Regul. Integr. Comp. Physiol. 317, E969–E970.
Roellig, D.M., Salzer, J.S., Carroll, D.S., Ritter, J.M., Drew, C., Gallardo-Romero, N., Keckler, M.S., Langham, G., Hutson, C.I., Karem, R.L., et al., 2015. Identification of Giardia duodenalis and Enterocytozoon bieneusi in an epizootological investigation of a laboratory colony of prairie dogs, Cynomys ludoviciensis. Vet. Parasitol. 210, 91–97.
Ryan, U., Fayer, R., Xiao, L., 2014. Cryptosporidium species in humans and animals: current understanding and research needs. Parasitology 141, 1667–1685.
Ryan, U., Haliswi, N., Xiao, L., 2018. Fecalbiddo microsporidian. Int. J. Parasitol. 48, 246–246.
Perec-Matsyi, A., Burkowska-Gawl, K., Kwa, S., Bak, I., Hildebrand, J., Letainia, K., 2015. Diversity of Enterocytozoon bieneusi genotypes among small rodents in southwestern Poland. PLoS One 10, e0117991.
Pu, P., Lu, S., Niu, Z., Zhang, T., Zhao, Y., Yang, X., Zhao, R., Tang, X., Chen, Q., 2019. Oxygenation properties and underlying molecular mechanisms of hemoglobin in plateau zokor %28%29. Am. J. Physiol. Regul. Integr. Comp. Physiol. 317, E969–E970.
Roellig, D.M., Salzer, J.S., Carroll, D.S., Ritter, J.M., Drew, C., Gallardo-Romero, N., Keckler, M.S., Langham, G., Hutson, C.I., Karem, R.L., et al., 2015. Identification of Giardia duodenalis and Enterocytozoon bieneusi in an epizootological investigation of a laboratory colony of prairie dogs, Cynomys ludoviciensis. Vet. Parasitol. 210, 91–97.
Cryptosporidium: implications for taxonomy and public health. Int. J. Parasitol. 32, 1773–1785.
Xu, J., Wang, X., Jing, H., Cao, S., Zhang, X., Jiang, Y., Yin, J., Cao, J., Shen, Y., 2020. Identification and genotyping of Enterocytozoon bienneusi in wild Himalayan marmots (Marmota himalayana) and Alashan ground squirrels (Spermophilus alashanicus) in the Qinghai-Tibetan Plateau area (QTPA) of Gansu Province, China. Parasites Vectors 13, 367.
Xu, Z., Guo, Y., Roeffig, D.M., Feng, Y., Xiao, L., 2019. Comparative analysis reveals conservation in genome organization among intestinal Cryptosporidium species and sequence divergence in potential secreted pathogenesis determinants among major human-infecting species. BMC Genom. 20, 406.
Zahedi, A., Ryan, U., 2020. Cryptosporidium - an update with an emphasis on foodborne and waterborne transmission. Res. Vet. Sci. 152, 500–512.
Zajac, A.M., Conboy, G.A., Little, S.E., Reichard, M.V., 2021. Veterinary Clinical Parasitology. John Wiley & Sons.
Zhang, K., Fei, Y., Li, J., Zhang, L., 2022. Public health and ecological significance of rodents in Cryptosporidium infections. One Health 14, 100364.
Zhang, X., Jian, Y., Li, X., Ma, L., Karanis, G., Karanis, P., 2018. The first report of Cryptosporidium spp. in Microtusfuscus (Qinghai vole) and Ochotona curzoniae (wild plateau pika) in the Qinghai-Tibetan Plateau area, China. Parasitol. Res. 117, 1401–1407.
Zhao, F., Ma, J.-Y., Cai, H.-X., Su, J.-P., Hou, Z.-B., Zhang, T.-Z., Lin, G.-H., 2014. Molecular identification of Taenia mustelae cysts in subterranean rodent plateau zokors (Eospalax baileyi). Dongwuxue Yanjiu 35, 313–318.