Collective intelligence for control of distributed dynamical systems

D. H. Wolpert, K. R. Wheeler and K. Tumer

NASA Ames Research Center - Moffett Field, CA 94035, USA

(received 30 November 1998; accepted in final form 5 January 2000)

PACS. 07.05.Mh – Neural networks, fuzzy logic, artificial intelligence.
PACS. 89.80.+h – Computer science and technology.
PACS. 89.90.+n – Other topics of general interest to physicists.

Abstract. – We consider the El Farol bar problem, also known as the minority game (W. B. Arthur, The American Economic Review, 84 (1994) 406; D. Challet and Y. C. Zhang, Physica A, 256 (1998) 514). We view it as an instance of the general problem of how to configure the nodal elements of a distributed dynamical system so that they do not “work at cross purposes”, in that their collective dynamics avoids frustration and thereby achieves a provided global goal. We summarize a mathematical theory for such configuration applicable when (as in the bar problem) the global goal can be expressed as minimizing a global energy function and the nodes can be expressed as minimizers of local free energy functions. We show that a system designed with that theory performs nearly optimally for the bar problem.

Introduction. – In many distributed dynamical systems there is little centralized communication and control among the individual nodal elements. Despite this handicap, typically we wish to design the system so that its dynamical behavior has some desired form. Often the quality of that behavior can be expressed as a (potentially path-dependent) global energy function, G. The associated design problem is particularly interesting when we can also express the individual nodal elements η as minimizers of “local” energy functions γ_η. Given G, this reduces the problem to determining the optimal associated $\{\gamma_\eta\}$.

Because the argument lists of the γ_η may overlap, what action η should take at time t to minimize γ_η may depend on what actions the other nodes take at t. Since without binding contracts η cannot know those other actions ahead of time, it cannot assuredly minimize γ_η in general. We are particularly interested in cases where each η addresses this problem by using inductive algorithms from the field of machine-learning (ML)\(^{(1)}\) to determine its actions. (In its use of such techniques that trade off exploration and exploitation, such an η often approximates a stochastic node following the distribution that minimizes η’s free energy —see below.) In such cases the challenge is to choose the $\{\gamma_\eta\}$ so that the associated system of good (but suboptimal) ML-based nodes induces behavior that best minimizes G.

We refer to a system designed this way, or more generally to a system investigated from this perspective, as a COllective INtelligence (COIN) \([2, 3]\). To agree with bar problem and game-theory terminology, we refer to the nodes as agents, G as (minus) world utility, and the $\{\gamma_\eta\}$ as (minus) private utilities. As an example of this terminology, a spin glass in which each

\(\text{(1)}\) Machine learning is a well-established field drawing from statistics, computer science and engineering. It encompasses recently publicized topics involving statistical inference and decision making, such as reinforcement learning, data mining, genetic algorithms and neural networks \([1]\).
spin η is at an energy minimum given the states of the other spins is a “Nash equilibrium” of an associated “game” [4], a game formed by identifying each agent with a spin η and its associated private utility function with η’s energy function.

Arthur’s bar problem [5] can be viewed as a problem in designing COINs. Loosely speaking, in this problem at each time t each agent η decides whether to attend a bar by predicting, based on its previous experience, whether the bar will be too crowded to be “rewarding” at that time, as quantified by a reward function R_D,η. The greedy nature of the agents frustrates the global goal of maximizing $G = \sum \eta R_D,\eta$ at t. This is because if most agents think the attendance will be low (and therefore choose to attend), the attendance will actually be high, and vice versa. This frustration effect makes the bar problem particularly relevant to the study of the physics of emergent behavior in distributed systems [6–12].

In COIN design we try to avoid such effects by determining new utilities $\{\gamma_\eta\}$ so that all agents trying to minimize those new utilities means that G is also minimized. (Of course, we wish to determine the $\{\gamma_\eta\}$ without first explicitly solving for the minimum of G.) As an analogy, economic systems sometimes have a “tragedy of the commons” (TOC) [13], where each agent’s trying to maximize its utility results in collective behavior that minimizes each agent’s utility, and therefore minimizes $G = \sum \eta R_D,\eta$. One way the TOC is avoided in real-world economies is by reconfiguring the agents’ utility functions from $\{R_D,\eta\}$ to a set of $\{\gamma_\eta\}$ that results in better G, for example via punitive legislation like anti-trust regulations. Such utility modification is exactly the approach used in COIN design.

We recently applied such COIN design to network packet routing [3]. In conventional packet routing each router uses a myopic shortest path algorithm (SPA), with no concern for side-effects of its decisions on an external world utility like global throughput (e.g., for whether those decisions induce bottlenecks). We found that a COIN-based system has significantly better throughput than does a conventional SPA [3], even when the agents in that system had to predict quantities (e.g., delays on links) that were directly provided to the SPA.

In this paper we investigate frustration effects more directly, in the context of the bar problem. In the next section we present (a small portion of) the theory of COINs. Then we present experiments applying that theory to the distributed control of the agents in the bar problem. Those experiments indicate that by using COIN theory we can avoid the frustration in the bar problem and thereby achieve almost perfect minimization of the global energy.

Theory of COINs. – We consider the state of the system across a set of consecutive time steps, $t \in \{0, 1, \ldots\}$. Without loss of generality, all relevant characteristics of agent η at time t —including its internal parameters at that time as well as its externally visible actions— are encapsulated by a Euclidean vector $\zeta_{\eta,t}$, the *state* of agent η at time t. $\zeta_{\eta,t}$ is the set of the states of all agents at t, and ζ is the state of all agents across all time.

So world utility is $G(\zeta)$, and when η is an ML algorithm “striving to increase” its private utility, we write that utility as $\gamma_\eta(\zeta)$. The mathematics is generalized beyond such ML-based agents through an artificial construct: the personal utilities $\{g_\eta(\zeta)\}$. We restrict attention to utilities of the form $\sum_t R_t(\zeta_{\eta,t})$ for reward functions R_t.

We are interested in systems whose dynamics is deterministic. (This covers in particular any system run on a digital computer.) We indicate that dynamics by writing $\zeta = C(\zeta_{\eta,0})$. So all characteristics of an agent η at $t = 0$ that affect the ensuing dynamics of the system, including in particular its private utility if it has one, must be included in $\zeta_{\eta,0}$.

Definition: A system is factored if for each agent η individually,

$$g_\eta(C(\zeta_{\eta,0})) \geq g_\eta(C'(\zeta_{\eta,0}')) \iff G(C(\zeta_{\eta,0})) \geq G(C'(\zeta_{\eta,0}'))$$

(1)
for all pairs $\zeta_{0,0}$ and ζ'_{0} that differ only for node η.

For a factored system, the side effects of a change to η’s $t = 0$ state that increases its personal utility cannot decrease world utility. If the separate agents have high personal utilities, by luck or by design, then they have not frustrated each other, as far as G is concerned.

The definition of factored is carefully crafted. In particular, it does not concern changes in the value of the utility of agents other than the one whose state is varied. Nor does it concern changes to the states of more than one agent at once. Indeed, consider the following alternative desideratum to having the system be factored: any change to ζ_{0} that simultaneously improves all agents’ ensuing utilities must also improve the ensuing world utility. Although it seems quite reasonable, there are systems that obey this desideratum and yet quickly evolve to a minimum of world utility. For example, any system that has $G(\zeta) = \sum_{0} g_{\eta}(\zeta)$ obeys this desideratum, and yet, as shown below, such systems entail a TOC in the bar problem, thereby minimizing G.

For a factored system, when every agents’ personal utility is optimized, given the other agents’ behavior, world utility is at a critical point [2]. In game-theoretic terms, optimal global behavior corresponds to the agents’ reaching a personal utility Nash equilibrium for such systems [4]. Accordingly, there can be no TOC for a factored system.

As a trivial example, if $g_{\eta} = G \forall \eta$, then the system is factored, regardless of C. However there exist other, often preferable sets of $\{g_{\eta}\}$, as illustrated in the following development.

Definition: The $(t = 0)$ effect set of node η at ζ, $C_{\eta}^{T}(\zeta)$, is the set of all components $\zeta_{\eta',t}$ for which $\partial_{\zeta_{\eta',0}} (C(\zeta_{\eta,0}))_{\eta',t} \neq 0$. C_{η}^{T} with no specification of ζ is defined as $\cup_{\zeta \in C} C_{\eta}^{T}(\zeta)$.

Definition: Let σ be a set of agent-time pairs, i.e., a set of components of ζ. $Z_{\eta}(\zeta)$ is ζ modified by “clamping” the states corresponding to all elements of σ to some arbitrary pre-fixed value, here taken to be 0. Let us define the following utility σ at ζ:

$$W_{\sigma}(\zeta) \equiv G(\zeta) - G(Z_{\sigma}(\zeta)) .$$

In particular, W for the effect set of node η is $G(\zeta) - G(Z_{\eta}^{T}(\zeta))$.

η’s effect set W is analogous to the change world utility would undergo had node η “never existed”. However $Z(\cdot)$ is a purely “fictional”, counter-factual mapping, in that it produces a new ζ without taking into account the system’s dynamics. The sequence of states produced by the clamping operation in the definition of W need not be consistent with the dynamical laws embodied in C. This is a crucial strength of effect set W. It means that to evaluate that W we do not try to infer how the system would have evolved if node η’s state were set to 0 at time 0 and the system re-evolved. So long as we know G and the full ζ, and can accurately estimate what agent-time pairs comprise C_{η}^{T}, we know the value of η’s effect set W —even if we know nothing of the details of the dynamics of the system.

Theorem 1: A COIN is factored if $g_{\eta} = W_{C_{\eta}}^{T} \forall \eta$ (proof in [2]).

If our system is factored with respect to personal utilities $\{g_{\eta}\}$, then we want each $\zeta_{\eta,0}$ to be a state with as high a value of $g_{\eta}(C(\zeta_{\eta,0}))$ as possible. Assuming η is ML-based and able to achieve close to the largest possible value of any private utility specified in $\zeta_{\eta,0}$, we would likely be in such a state of high personal utility if η’s private utility were set to the associated personal utility: $\gamma_{\eta} \equiv \zeta_{\eta,0:private\ utility} = g_{\eta}$. Enforcing this equality, our problem becomes determining what $\{\gamma_{\eta}\}$ the agents will best be able to maximize while also causing dynamics that is factored with respect to the $\{\gamma_{\eta}\}$.

Now regardless of $C(\cdot)$, both $\gamma_{\eta} = G \forall \eta$ and $\gamma_{\eta} = W_{C_{\eta}}^{T} \forall \eta$ are factored systems (for $g_{\eta} = \gamma_{\eta}$). However since each agent is operating in a large system, it may experience difficulty
discerning the effects of its actions on G when G sensitively depends on all components of the system. Therefore each η may have difficulty learning how to achieve high γ_η when $\gamma_\eta = G$. This problem can be obviated using effect set W as the private utility, since the subtraction of the clamped term removes some of the “noise” of the activity of other agents, leaving only the underlying “signal” of how the agent in question affects the utility.

We can quantify this signal/noise effect by comparing the ramifications on the private utilities arising from changes to $\hat{\xi}$, $\hat{\xi}_0$, with the ramifications arising from changes to $\hat{\xi}_0$, where $\hat{\eta}$ represents all nodes other than η. We call this quantification the learnability $\lambda_{\eta,\gamma_\eta} (\hat{\eta})$:

$$\lambda_{\eta,\gamma_\eta} (\hat{\eta}) = \frac{\| \nabla_{\hat{\xi}_0} \gamma_\eta(C(\xi_0)) \|}{\| \nabla_{\hat{\xi}_0} \gamma_\eta(C(\xi_0)) \|} .$$

(3)

Theorem 2: Let σ be a set containing C^eff_{γ}. Then

$$\frac{\lambda_{\eta,W_{\gamma}} (\hat{\eta})}{\lambda_{\eta,G} (\hat{\eta})} = \frac{\| \nabla_{\hat{\xi}_0} G(C(\xi_0)) \|}{\| \nabla_{\hat{\xi}_0} G(C(\xi_0)) - \nabla_{\hat{\xi}_0} G(Z_{\gamma}(C(\xi_0))) \|} \quad \text{(proof in [2]).}$$

This ratio of gradients should be large whenever σ is a small part of the system, so that the clamping will not affect G’s dependence on ξ_0, much, and therefore that dependence will approximately cancel in the denominator term. In such cases, W will be factored just as G is, but far more learnable. The experiments presented below illustrate the power of this fact in the context of the bar problem, where one can readily approximate effect set W and therefore use a utility for which the conditions in theorems 1 and 2 should approximately hold.

Experiments. – We modified Arthur’s original problem to be more general, and since we are not interested here in directly comparing our results to those in [5,7,9,14], we use a more conventional ML algorithm than the ones investigated in [5, 7, 9, 14, 15], an algorithm that approximately minimizes free energy. These modifications are similar to those in [6].

There are N agents, each picking one of seven nights to attend a bar the following week, a process that is then repeated. In each week, each agent’s pick is determined by its predictions of the associated rewards it would receive. Each such prediction in turn is based solely upon the rewards received by the agent in those preceding weeks in which it made that pick.

The world utility is $G(\hat{\eta}) = \sum_t R_G(\hat{\xi}_t)$, where $R_G(\hat{\xi}_t) \equiv \sum_{k=1}^{\lambda} \phi_k(x_k(\hat{\xi}_t))$; $x_k(\hat{\xi}_t)$ is the total attendance on night k at week t, $\phi_k(y) \equiv \alpha_k \exp[-y/c]$, and c and the $\{\alpha_k\}$ are real-valued parameters. Intuitively, this G is the sum of the “world rewards” for each night in each week. Our choice of $\phi_k(\cdot)$ means that when too few agents attend some night in some week, the bar suffers from lack of activity and therefore the world reward is low. Conversely, when there are too many agents the bar is overcrowded and the reward is again low. The original version of the bar problem in the physics literature [7] is a special case where there are two “nights” in the week (one of which corresponds to “staying at home”); λ is uniform; $\phi_k(x_k) = \min_i (x_i) 0_{\arg \min_i (x_i)}$; and $R_{\gamma_{0,0}}$ is used.

Two different λ’s are investigated. One treats all nights equally; $\lambda = [1111111]$. The other is only concerned with one night; $\lambda = [000070000]$. $c = 6$ and N is 4 times the number of agents needed to allow c agents to attend the bar on each of the nights, i.e., there are $4 \times 6 \times 7 = 168$ agents. For the purposes of the Z operation, an agent’s action at time t is represented as a unary seven-dimensional vector, so the “clamped action” is $(0, 0, 0, 0, 0, 0, 0)$. Each η has a 7-dimensional vector representing its estimate of the reward it would receive for attending each night of the week. At the end of each week, the component of this vector
corresponding to the night just attended is proportionally adjusted towards the actual reward just received. At the beginning of the succeeding week, to trade off exploration and exploitation, \(\eta \) picks the night to attend randomly using a Boltzmann distribution with 7 energies \(\epsilon_i(\eta) \) given by the components of \(\eta \)'s estimated rewards vector, and with a temperature decaying in time. This distribution of course minimizes the expected free energy of \(\eta \), \(E(\epsilon(\eta)) - TS \), or equivalently maximizes entropy \(S \) subject to having expected energy given by \(T \). This learning algorithm is similar to Claus and Boutilier’s independent learner algorithm [16].

We considered three agent reward functions, using the same learning parameters (learning rate, Boltzmann temperature, decay rates, etc.) for each. The first reward function had \(\gamma_\eta = G \forall \eta \), i.e., agent \(\eta \)'s reward function equals \(R_G \). The other two reward functions are:

\[
R_{D;\eta}(\zeta_t) \equiv \phi_{d_\eta}(x_{d_\eta}(\zeta_t)) / x_{d_\eta}(\zeta_t),
\]

\[
R_{W;\eta}(\zeta_t) \equiv R_G(\zeta_t) - R_G(Z_\eta(\zeta_t)) = \phi_{d_\eta}(x_{d_\eta}(\zeta_t)) - \phi_{d_\eta}(x_{d_\eta}(\zeta_t) - 1),
\]

where \(d_\eta \) is the night picked by \(\eta \).

The conventional \(R_D \) reward is a “natural” reward function to use; each night’s total reward is uniformly divided among the agents attending that night. In particular, if \(g_\eta = \gamma_\eta \equiv \sum_t R_{D;\eta}(\zeta_t), G(\zeta) = \sum_\eta g_\eta(\zeta) \), so the “alternative desideratum” discussed above is met. In contrast, \(R_G \) results in the system meeting the desideratum of factoredness. \(R_G \) suffers from poor learnability, at least in comparison to that of \(R_W \); by eq. (3) the ratio of learnabilities is approximately 11 (see [2] for details). Another important distinction is that to evaluate \(R_W \) each agent only needs to know the total attendance on the night it attended, in contrast to the case with \(R_G \) where centralized communication concerning all 7 nights is needed.

Finally, in the bar problem the only interaction between any pair of agents is indirect, via small effects on each others’ rewards; each \(\eta \)'s action at time \(t \) has its primary effect on \(\eta \)'s own future actions. So the effect set of \(\eta \)'s entire sequence of actions is well approximated by \(\zeta_{\eta,t} \).

In turn, since that sequence is all that is directly affected by the choice of \(\eta \)'s private utility, the effect set of \(\zeta_{\eta,0;\text{private utility}} \) can be approximated by \(\zeta_{\eta,0} \), and therefore so can the effect set of the full \(\zeta_{\eta,0} \). Plugging this in, we approximate the effect set \(W \) for \(\eta \) as \(\sum_t R_{W;\eta}(\zeta_{\eta,t}) \), a sum over time of a reward function. So we expect that use of \(R_{W;\eta} \) should result in (close to) factored dynamics.

Figure 1 graphs world reward value as a function of time, averaged over 50 runs, for all three reward functions, for both \(\bar{\alpha} = [1 1 1 1 1 1 1] \) and \(\bar{\alpha} = [0 0 0 7 0 0 0] \). Performance
Fig. 2 – Typical daily attendance when $\vec{\alpha} = [1 1 1 1 1 1]$ for R_W, R_G, and R_D, respectively.

with R_G eventually converges to the global optimum. This agrees with the results obtained by Crites [17] for the bank of elevators control problem. Systems using R_W also converged to optimal performance. This indicates that in the bar problem γ_η’s effect set is sufficiently well approximated by η’s future actions so that theorem 1 holds.

However since the R_W reward has better “signal to noise” than the R_G reward (see above), convergence with R_W is far quicker than with R_G. Indeed, when $\vec{\alpha} = [0 0 0 7 0 0 0]$, systems using R_G converge in 1250 weeks, which is 5 times worse than the systems using R_W. When $\vec{\alpha} = [1 1 1 1 1 1]$ systems take 6500 weeks to converge with R_G, which is more than 30 times worse than the time with R_W. This slow convergence of systems using R_G is a result of the reward signal being “diluted” by the large number of agents in the system.

In contrast to the behavior for COIN theory-based reward functions, use of conventional R_D reward results in very poor world reward values that deteriorated with time. This is an instance of the TOC. For example, when $\vec{\alpha} = [0 0 0 7 0 0 0]$, it is in every agent’s interest to attend the same night —but their doing so shrinks the world reward “pie” that must be divided among all agents. A similar TOC occurs when $\vec{\alpha}$ is uniform. This is illustrated in fig. 2 which shows a typical example of $\{x_k(\zeta, t)\}$ for each of the three reward functions for $t = 2000$. In this example using R_W results in optimal performance, with 6 agents each on 6 separate nights, and the remaining 132 agents on one night (average world reward of 13.05). In contrast, R_D results in a uniform distribution of agents and has the lowest average world reward (3.25). Use of R_G results in an intermediate average world reward (6.01). The crucial aspect of this figure is that the W reward moves a “poor” Nash equilibrium in D reward (in

Fig. 3 – Behavior of each reward function with respect to the number of agents for $\vec{\alpha} = [0 0 0 7 0 0 0]$. The top curve is R_W, middle is R_G, and bottom is R_D.
terms of global performance) to a “good” one, i.e., the \(W \) reward Nash equilibrium coincides with the global optimum, in contrast to the \(D \) reward Nash equilibrium.

Figure 3 shows how performance at \(t = 2000 \) scales with \(N \) for each reward function for \(\tilde{\alpha} = [0 \ 0 \ 0 \ 7 \ 0 \ 0 \ 0 \ 0] \). Systems using \(RD \) perform poorly regardless of \(N \). Systems using \(RG \) perform well when \(N \) is low. As \(N \) increases however, it becomes increasingly difficult for the agents to extract the information they need from \(RG \). (This problem is significantly worse for uniform \(\tilde{\alpha} \).) Systems using \(RW \) overcome this learnability problem because \(RW \) is based on clamping of all agents but one, and therefore is not appreciably affected by \(N \).

Conclusion. – The theory of COINs is concerned with distributed systems of controllers in which each controller strives to minimize an associated local energy function. That theory suggest how to initialize and then update those local energy functions so that the resultant global dynamics will achieve a global goal. In this paper we present a summary of the part of that theory dealing with how to initialize the local energy functions. We present experiments applying that theory to the control of individual agents in difficult variants of Arthur’s El Farol bar problem. In those experiments, the COINs quickly achieve nearly optimal performance, in contrast to the other systems we investigated. This demonstrates that even when the conditions required by the initialization theorems of COIN theory do not hold exactly, they often hold well enough so that they can be applied with confidence. In particular the COINs automatically avoid the tragedy of the commons inherent in the bar problem.

REFERENCES

[1] MITCHELL T. M., Machine Learning (WCB/McGraw-Hill, Boston) 1997, and references therein.
[2] WOLPERT D. H. and TUMER K., in Handbook of Agent Technology, edited by J. M. BRADSHAW (AAAI Press/MIT Press) 2000 to appear; preprint cs.LG/9908014 at xxx.lanl.gov archive.
[3] WOLPERT D. H., TUMER K. and FRANK J., in Advances in Neural Information Processing Systems-11 (MIT Press) 1999, pp. 952-958.
[4] FUDENBERG D. and TIROLE J., Game Theory (MIT Press, Cambridge, MA) 1991.
[5] ARTHUR W. B., Amer. Econ. Rev., 84 (1994) 406.
[6] CAVAGNA A., GARRAHAN J. P., GIARDINA I. and SHERRINGTON D., Phys. Rev. Lett., 83 (1999) 4429.
[7] CHALLET D. and ZHANG Y. C., Physica A, 256 (1998) 514.
[8] CHENG J., The mixed strategy equilibria and adaptive dynamics in the bar problem, Technical report, Santa Fe Institute Computational Economics Workshop, 1997.
[9] DE CARA M. A. R., PLA O. and GUINEA F., Eur. Phys. J. B, 10 (1999) 187.
[10] JOHNSON N. F., JARVIS S., JONSON R., CHEUNG P., KWONG Y. R. and HUI P. M., Volatility and agent adaptability in a self-organizing market, preprint cond-mat/9802177, February 1998.
[11] SAVIT R., MANUCA R. and RIolo R., Adaptive competition, market efficiency, phase transitions and spin-glasses, preprint cond-mat/9712006, December 1997.
[12] ZHANG Y. C., Europhys. News, March/April issue (1998).
[13] HARDIN G., Science, 162 (1968) 1243.
[14] CALDARELLI G., MARZIL M. and ZHANG Y. C., Europhys. Lett., 40 (1997) 479.
[15] SETHARES W. A. and BELL A. M., in Proceedings of the 36th Annual Allerton Conference on Communication, Control, and Computing, Allerton, IL, 1998.
[16] CLAUS C. and BOUTILIER C., in Proceedings of the 15th National Conference on Artificial Intelligence, Madison, WI (AAAI Press) 1998, pp. 746-752.
[17] CRITES R. H. and BARTO A. G., in Advances in Neural Information Processing Systems-8 (MIT Press) 1996, pp. 1017-1023.