In the emerging era of the internet of things (IoT), ubiquitous sensors continuously collect, consume, store, and communicate a huge volume of information which is becoming increasingly vulnerable to theft and misuse. Modern software cryptosystems require extensive computational infrastructure for implementing ciphering algorithms, making them difficult to be adopted by IoT edge sensors that operate with limited hardware resources and at low energy budgets. Here we propose and experimentally demonstrate an “all-in-one” 8 × 8 array of robust, low-power, and bio-inspired crypto engines monolithically integrated with IoT edge sensors based on two-dimensional (2D) memtransistors. Each engine comprises five 2D memtransistors to accomplish sensing and encoding functionalities. The ciphered information is shown to be secure from an eavesdropper with finite resources and access to deep neural networks. Our hardware platform consists of a total of 320 fully integrated monolayer MoS2-based memtransistors and consumes energy in the range of hundreds of picojoules and offers near-sensor security.
Innervation security is key to the sustainable growth and development of any modern society that thrives on global connectivity in this new era of the Internet of Things (IoT). Today, information is collected, stored, and communicated continuously by IoT sensors and edge devices that are found ubiquitously in our homes, workplaces, industrial manufacturing plants, transportation, health sectors, agricultural fields, and so on and so forth. However, with the increasing demand for edge devices, there is an escalating threat of tampering or physical intrusion of privacy by untrustworthy parities.

While the state-of-the-art cryptosystems offer powerful security solutions based on complex algorithms that can be implemented using hardware accelerators, IoT edge devices have many restrictions in terms of computational capabilities due to limited hardware and energy resources. Furthermore, low-cost design needs, large-scale deployments, and the heterogeneous nature of IoT sensors limit the direct adoption of traditional security solutions, including the widely used public-key scheme. Due to inadequate security, IoT devices used in smart cars and smart homes have shown tremendous vulnerability in recent times.

Acknowledging these limitations, the United States National Institute of Standards and Technology (NIST) has proposed a multi-year effort, namely, the lightweight cryptography (LWC) standardization process to ensure confidentiality, integrity, and authenticity of data using efficient software modules. However, this effort emphasizes software solutions rather than providing hardware-based technological solutions. Therefore, it is timely to develop on-chip cryptographic primitives that require less computational resources and are integrated with IoT edge sensors.

Here, we exploit the optoelectronic sensing and in-memory compute capabilities of two-dimensional (2D) memtransistors based on photosensitive monolayer MoS 2 to introduce near sensor and robust security solutions for IoT edge devices with minimal hardware investments and at frugal energy expenditure. Note that, unlike two-terminal memristors, 2D memtransistors are three-terminal devices, with their additional gate terminal allowing both non-volatile and analog programming of the conductance states as well as electrostatic control of the 2D channel. For our demonstration, we have fabricated an 8 × 8 crossbar array of fully integrated crypto engines to encode 8 × 8 pixel images. Each engine comprises five monolithically integrated MoS 2 memtransistors (5T cell) to accomplish sensing and encoding functionalities. Our entire hardware platform utilizes a total of 320 MoS 2 memtransistors, making it one of the very few experimental demonstration of medium scale integrated (MSI) circuits based on 2D materials and devices. In addition, our hardware platform is “self-sufficient,” offering all-in-one IoT capabilities that include sensing, compute, storage, and security. Finally, our design inspiration for the 2D memtransistor-based crypto engine is derived from the organization of the peripheral and central nervous systems, which employ similar cell types, i.e., groups of neurons with different functionalities, that transduce external sensory information into electrical impulses to communicate among each other through successive encoding and decoding processes in the presence of a wide range of synaptic noises.

Note that our hardware platform is “self-sufficient,” offering all-in-one IoT capabilities that include sensing, compute, storage, and security. This is in sharp contrast to the state-of-the-art silicon-based complementary metal oxide semiconductor (CMOS) technology, which is limited in terms of memory and compute integration owing to the traditional von-Neumann computing architecture. Similarly, non-von-Neumann platforms such as field programmable gate arrays (FPGAs) and memristive crossbar arrays lack sensing functionalities. In addition, two-terminal memristors are limited in computational capabilities and require CMOS peripherals, which increases area and energy overhead. In contrast, our proposed three-terminal memtransistor technology with the added feature of photosensitivity owing to the use of monolayer 2D material such as MoS 2 offers a stand-alone and holistic solution for in-memory computing and sensing, which is critical for achieving integrated and energy/area efficient security solutions. Note that, beyond photodetectors, MoS 2 based FETs have been used as chemical sensors, biological sensors, touch sensors, and radiation sensors. Therefore, the sensing unit of our MoS 2-based crypto engine is not limited to only optical stimuli. See Supplementary Table 1 for benchmarking of our work against earlier works on 2D materials, memristors, phase change materials, and nanocrystals that combine either “sensing and storage” or “sensing and compute” or “security and storage” but not all aspects in a single hardware platform.

Results

All-in-one 2D memtransistor-based hardware fabric

Figure 1a–c, respectively, show optical images of the fully integrated 8 × 8 crossbar array of the crypto engines, a representative crypto engine with five MoS 2 memtransistors (5T cell) that combine sensing, storage, and encoding functionalities, and an individual MoS 2 memtransistor, which is locally back-gated using a stack comprising atomic layer deposition (ALD) grown 50 nm Al 2O 3 on sputter deposited 40/30 nm Pt/TiN. All back-gate islands were placed on a commercially purchased SiO 2/2p + Si substrate (see Supplementary Figs. 1–3 for enlarged optical images of the entire chip, 8 × 8 array of the crypto engines, and individual crypto engines). As we will discuss later, the Al 2O 3/Pt/TiN gate islands not only allow non-volatile programming of our MoS 2 memtransistors but also enhance the photoresponse of MoS 2 memtransistors owing to the phenomenon of gate-tunable persistent photoconductivity when subjected to the right polarity and magnitude of local back-gate biases. This, in turn, empowers our hardware platform to enable in-memory computing and near-sensor security, which are presently lacking for conventional silicon as well as emerging technologies.

Figure 1d, e, respectively, show the circuit schematic for the crossbar architecture and for each crypto engine (see Supplementary Figs. 4, 5 for enlarged circuit schematics). In short, MoS 2 memtransistors used as the photo transistor (T PT) mimic sensory neurons and transduce optical information into persistent photoconductance (G PT), whereas the MoS 2 memtransistors used as the white Gaussian noise adder (T WGNA) emulate noisy synapses. Note that T WGNA are pre-programmed into random conductance states (G WGNA). As such, T WGNA superimpose white Gaussian noise of finite standard deviation (σ G) on the signal transduced by T PT and generate noisy voltage, V PSY. Finally, the MoS 2 memtransistors used as the spiking neurons (T SN) encrypt the noisy presynaptic information i.e., V PSY into post-synaptic current spikes (I PSP) using reconfigurable encoding threshold (V ESP). The remaining two MoS 2 memtransistors, i.e., photo selector transistor (T PSP) and encoding selector transistor (T EST) operate as the individual selector switches for the photosensing and the encoding operations, respectively.

In Fig. 1e, T PST and T PT are connected in series at the node N 3, T PT and T WGNA are connected in series at the node N 5, which is also connected to the local back-gate of T SN, and, finally, T EST and T SN are connected in series at the node N 10. The nodes N 2, N 4, N 6, and N 9, respectively, serve as the local back-gate terminals of T PST, T PT, T WGNA, and T EST, while node N 1 serves as the drain terminal of T PST, node N 8 serves as the drain terminal of T EST, and node N 2 serves as the common source terminal for T WGNA and T SN. As shown in Fig. 1d, nodes N 2, N 4, N 6, and N 9...
Fig. 1 All-in-one hardware fabric for near sensor security based on multifunctional MoS$_2$ memtransistors. Optical images of (a) the fully integrated 8 × 8 crossbar array of crypto engines, (b) a representative crypto engine with five MoS$_2$ memtransistors (5T cell) that integrate sensing, storage, and encoding functionalities, and (c) an individual MoS$_2$ memtransistor, which is locally back-gated using a stack comprising 50 nm Al$_2$O$_3$ on 40/30 nm Pt/TiN. All back-gate islands were placed on an SiO$_2$/p$^{++}$-Si substrate. Equivalent circuit diagrams for (d) the 8 × 8 crossbar array with column and row select lines and (e) each crypto engine. Herein, the MoS$_2$ memtransistor used as T_{PST} mimics sensory neurons and transduces optical information into persistent photoconductance (GPT), the MoS$_2$ memtransistor used as T_{WGNA} emulates noisy synapses, the MoS$_2$ memtransistor used as T_{SN} imitates spiking neurons converting noisy presynaptic information, i.e., V_{PSV}, into post-synaptic current spikes (IPSC), and the remaining 2 MoS$_2$ memtransistors, T_{PST} and T_{EST}, operate as the individual selector switches for the photosensing and the encoding operations, respectively. An example experimental demonstration of sensing and ciphering, where (f) the information, for example, an 8 × 8 pixelated image of the letter ‘N’ obtained by illuminating a blue light emitting diode (ILED) is presented to the corresponding 8 × 8 array of the crypto engines. Colormap of (g) post-illumination G_{PT}, (h) noisy V_{PSV}, and (i) encrypted IPSC. The information is revealed by a decoder through a voting process.
from the crypto engines in a given column are connected to common \(V_{N2}, V_{N4}, V_{N6}\) and \(V_{N9}\) lines, respectively, and nodes \(N_1, N_7,\) and \(N_9\) from the crypto engines in a given row are connected to common \(V_{N1}, V_{N7},\) and \(V_{N8}\) lines, respectively. This allows us to select any crypto engine corresponding to a given row and column. Note that the overlapping connections between the horizontal and vertical metal lines are separated lithographically by depositing an insulating layer of alumina (\(\text{Al}_2\text{O}_3\)) at the cross points as described in the Methods section.

Figure 1f–j shows an example experimental demonstration of sensing and ciphering. Note that the proposed security scheme aims at the “confidentiality” of the information. Information, for example, an 8 × 8 pixelated image of the letter ‘N’ (Fig. 1i) obtained by illuminating a blue light emitting diode (LED), is presented one-by-one to the corresponding 8 × 8 crossbar array of the crypto engines using the row and column select lines. Figure 1g shows the post-illumination photocurrent map obtained from the corresponding \(T_{PTN}\), which is transformed into a noisy \(V_{PSV}\) map using the respective pre-programmed \(T_{WGNA}\), as shown in Fig. 1h, and presented to the corresponding \(T_{SN}\) to generate an encrypted \(I_{PS}\) map as shown in Fig. 1i. The information is revealed by a decoder (Fig. 1j) through a voting process when a finite number \((P)\) of 8 × 8 crypto engines communicate the encrypted information. As we will elucidate in the following sections, the decoding process requires an optimum number of voting mandate \((M_V)\) that is determined by \(P\), \(V_{ET}\), and \(\eta\), without the knowledge of which an eavesdropper requires a significant number of brute force trials \((\text{BFTs})\) for deciphering the information. In fact, the information remains concealed even if the eavesdropper has access to a trained deep neural network (DNN). The proposed attack model refers to wiretapping.

Note that the monolayer MoS\(_2\) used in this study was grown epitaxially on a sapphire substrate using a metal-organic chemical vapor deposition (MOCVD) technique at 1000 °C by the 2D Crystal Consortium (2DCC). The monolayer film was then transferred using a PMMA-assisted wet transfer process\(^{41,42}\) from the growth substrate to the target application substrate, i.e., SiO\(_2\) / p++-Si with predefined islands of Al\(_2\)O\(_3\)/Pt/TiN, for subsequent fabrication of the 8 × 8 crypto engines. Details on the fabrication of the back-gate islands, monolayer MoS\(_2\) synthesis, film transfer, fabrication of MoS\(_2\) memtransistors, and monolithic integration can be found in the Methods section. Each MoS\(_2\) memtransistor has a footprint \((W \times L)\) of 5 µm × 1 µm. Given that we have used monolayer MoS\(_2\) as the channel material for the memtransistors, which are aggressively scalable, it is possible to reduce the hardware footprint even further.

While any ultra-thin-body semiconductor which is multifunctional, i.e., photosensitive and can be used to fabricate programmable field effect transistors (FETs) or memtransistors, is equally suitable for this demonstration, the use of MoS\(_2\) in our all-in-one IoT platform has several merits. First, MoS\(_2\) is the most advanced among other 2D materials in terms of scalable growth over a large area (wafer scale) as well as in terms of demonstration of high-performance FETs with on current \(> 250\) µA/µm at ultrashort channel lengths\(^{43}\) with low device-to-device variability\(^{43–45}\) which are promising to meet the requirements set forth by the International Roadmap of Devices and Systems (IRDS)\(^{46}\). In addition, circuit and architecture level demonstrations of digital, analog, and radio frequency (RF) electronics based on 2D transistors are already available\(^{47–51}\), and emerging applications such as neuromorphic, optoelectronic, straintronic, hardware security, and biomimetic technologies exploiting the sensing, computing, and storage capabilities of 2D transistors have also been reported\(^{13,26,28,30,52–61}\). This work further advances the field of 2D material-based devices by demonstrating robust security features achievable under the same hardware infrastructure used for sensing, storage, and computing. Note that some of our earlier work has also shown the potential use of 2D materials in resolving rampant security vulnerabilities\(^{52,58,61,62}\).

Characterization of monolayer MoS\(_2\)-based memtransistor. Figure 2a, b, respectively, show the transfer characteristics, i.e., source to drain current \(I_{DS}\) as a function of the local back-gate voltage \(V_{BG}\) at different drain biases \(V_{DS}\), and output characteristics, i.e., \(I_{DS}\) versus \(V_{DS}\) for different \(V_{BG}\), of a representative MoS\(_2\) memtransistor. Figure 2c shows the device-to-device variation in the transfer characteristics of as-fabricated 64 MoS\(_2\) memtransistors used as \(T_{SN}\) corresponding to each of the 8 × 8 array of the crypto engines (see Supplementary Fig. 6a for the transfer characteristics of each of these 64 MoS\(_2\) memtransistors). Figure 2d shows the colormap of electron field effect mobility values \((\mu_{FE})\) extracted from the peak transconductance for these 64 MoS\(_2\) memtransistors with a mean of \(~8\) cm\(^2\)V\(^{-1}\)s\(^{-1}\) and a standard deviation of 3.1 cm\(^2\)V\(^{-1}\)s\(^{-1}\). Supplementary Fig. 6b–d, respectively, show similar colormaps on device-to-device variation in current on/off ratio \((\text{DOS}^{\text{ON/OFF}})\), threshold voltage \(V_{TH}\) extracted at an iso-current of 100 nA/µm, and subthreshold slope \((SS)\) over 3 orders of magnitude change in \(I_{DS}\) with mean values of \(~1\times10^{6}\), \(~1.65\) V, and \(~355\) mV/decade, respectively, and standard deviation values of \(~1\times10^{6}\), \(~0.42\) V, and \(~85\) mV/decade, respectively. Our \(\mu_{FE}\) values and their corresponding device-to-device variations are on par with the state-of-the-art literature on large area grown MoS\(_2\). Also note that, in Fig. 2b, the on-state current in the representative MoS\(_2\) memtransistor reaches as high as \(~30\) µA/µm at \(V_{DS} = 5\) V for an inversion charge carrier density of \(~1\times10^{13}\) cm\(^{-2}\). While on-state performance has minimal impact on the operation of the crypto engine, these metrics confirm high-quality monolayer film growth using MOCVD, relatively damage-free film transfer, and clean device fabrication processes.

Next, we demonstrate the programming capability of our monolayer MoS\(_2\) memtransistors in any desirable conductance state with non-volatile memory retention characteristics. Figure 2e, f, respectively, show the post-programmed and post-erased transfer characteristics of a representative MoS\(_2\) memtransistor when subjected to negative “Write” \((V_P)\) and positive “Erase” \((V_E)\) voltage pulses of different amplitudes applied to the local back-gate electrode, each for a duration of \(\tau_{P/E} = 1\) s. The shift in the transfer characteristics can be attributed to charge trapping/detrapping at and near the MoS\(_2\)/Al\(_2\)O\(_3\) interface. A negative shift in the transfer characteristics with an increasing magnitude of \(V_P\) and positive shift with increasing magnitude of \(V_E\) are indicative of electron trapping and detrapping in the local back-gate stack, respectively. Interestingly, the trapping and detrapping processes were found to be non-volatile as evident from the retention measurements displayed in Fig. 2g, h for 5 representative post-programmed \((G_P)\) and post-erased \((G_E)\) conductance states, respectively, for 100 seconds. We also examined long-term memory retention for two representative analog conductance states for \(~10^4\) seconds, as shown in Supplementary Fig. 7. The memory ratio \((MR)\) between these two states was found to change from \(~6\times10^{2}\) to \(~2\times10^{2}\) following an exponential decay with a time constant of 7.6 × 10\(^3\) s. The projected time before the MR reaches 1, i.e., these two states become indistinguishable, was found to be \(~14\) h. The MR can be reinstated by reprogramming the devices every few hours or as necessary. This will necessitate some peripheral timing circuits. Improving memory retention through the optimization of our back-gate stack can eliminate the need for...
Supplementary Fig. 8 shows the memory endurance for 2×10^3 cycles for two representative analog conductance states. MR was found to change from ~ 7.5 to ~ 5 following a power-law decay with an exponent of ~ -0.1. The projected memory endurance before the MR reaches 1 was found to be 5×10^8 cycles, which is comparable to the state-of-the-art FLASH memory devices.

Nevertheless, we exploit the analog nature of the conductance states achievable in MoS$_2$ memtransistors for the realization of noisy synapses, i.e., T_{WNGA}, with corresponding G_{WNGA} that follow random Gaussian distribution (in logarithmic scale). Supplementary Fig. 9 shows the device-to-device variation in the pre and post-programmed transfer characteristics and corresponding colormap of MR measured at $V_{BG} = 0$ V for 64 monolayer MoS$_2$ memtransistors corresponding to our 8×8 array of the crypto engines. Finally, Supplementary Fig. 10 shows the programming and erasing energy expenditures (E_P), which were found to be less than picojoules calculated based on...
Next, we demonstrate the adaptive photosensing capability of monolayer MoS₂ memtransistors by exploiting the unique phenomenon of gate-tunable persistent photoconductivity. Figure 2i shows the transfer characteristics of a representative monolayer MoS₂ memtransistor before and after illumination from a blue LED with input currents ranging from \(I_{\text{LED}} = 0.02 \text{ mA} \) (low-brightness) to \(I_{\text{LED}} = 20 \text{ mA} \) (high-brightness) at different \(V_{\text{BG}} = V_{\text{illum}} \) for \(t_{\text{illum}} = 1 \text{ s} \). Note that, instead of standard LASER illumination used to assess the photoresponsivity of monolayer MoS₂, we have used an LED as the source of external optical stimuli since it represents a more realistic lighting ambience where most edge sensors will be deployed. Figure 2j shows the colormap of the ratio of post-illumination conductance to dark conductance, \(r_{\text{PH}} \), extracted at \(V_{\text{BG}} = 0 \text{ V} \) from Fig. 2i as a function of \(I_{\text{LED}} \) and \(V_{\text{illum}} \). Two distinctive types of photoresponse are seen in MoS₂ memtransistors. For \(V_{\text{illum}} > 0 \text{ V} \), i.e., illuminations in the on-state and in the subthreshold regime, \(r_{\text{PH}} = 1 \), whereas for \(V_{\text{illum}} < 0 \text{ V} \), i.e., illuminations in the off-state, \(r_{\text{PH}} > 1 \). This can be explained from the fact that during illumination in the on-state the photocarriers generated in the MoS₂ channel are swept across by the applied \(V_{\text{DS}} \) and hence there is no persistent photocurrent beyond the optical exposure. However, for \(V_{\text{illum}} < 0 \text{ V} \), persistent photoconductivity emerges as photocarriers get trapped at and near the MoS₂/dielectric interface, leading to the shift in the post-illumination device characteristics. The detrapping process can take several hours. Higher \(I_{\text{LED}} \) more negative \(V_{\text{illum}} \), and longer \(t_{\text{illum}} \) naturally result in more photocarrier trapping and hence larger shifts in the device characteristics, leading to higher values of \(r_{\text{PH}} \). Supplementary Fig. 11 shows the colormap of \(r_{\text{PH}} \) as a function of \(V_{\text{illum}} \) and \(t_{\text{illum}} \) for \(I_{\text{LED}} = 20 \text{ mA} \). Interestingly, \(r_{\text{PH}} \) values obtained for brighter LED illuminations at less negative \(V_{\text{illum}} \) and shorter \(t_{\text{illum}} \) can be obtained for dimmer LED illuminations at more negative \(V_{\text{illum}} \) and for longer \(t_{\text{illum}} \). This phenomenon of gate-tunable persistent photoconductivity can be exploited for adaptive sensing, which is a key requirement for edge sensors. Note that post-illumination MoS₂ memtransistors can be reset back to their pre-illumination conditions by applying erase programming voltages, \(V_{\text{E}} \), to the local back-gate as described in the context of traps. For \(V_{\text{illum}} \geq 0 \text{ V} \), the photoconductance to dark conductance (\(\Delta G \)) obtained through LED illumination \((I_{\text{LED}} = 20 \text{ mA}) \) using different \(V_{\text{illum}} \). This demonstration highlights the advantages of gate-tunability of persistent photoconductivity in achieving adaptation to the illumination levels similar to the rod and cone neurons found in the visual system of primates. Finally, Supplementary Fig. 13 shows the pre- and post-illumination transfer characteristics of 64 MoS₂ memtransistors used as \(T_{\text{PSV}} \) corresponding to each of the \(8 \times 8 \) crypto engines and the corresponding colormap of the ratio of post-illumination photoconductance to dark conductance (\(r_{\text{PH}} \)) measured at \(V_{\text{BG}} = 0 \text{ V} \). The mean and standard deviation values were found to be \(1.6 \times 10^4 \) and \(3.1 \times 10^4 \), respectively. The device-to-device variation in photoconductance had minimal effect on the encryption and decryption process. We would like to remind the readers that, here, “information encryption” refers to the confidentiality of the encoded information.

Encryption using MoS₂ memtransistor. Next, we illustrate the encryption process by utilizing the sensing, storage, and computing capabilities of MoS₂ memtransistors demonstrated above and by using the circuit diagram shown in Fig. 1d, e. Supplementary Fig. 14 shows the input voltage waveforms applied to different nodes when any given crypto engine is selected for encoding. The encryption process comprises photosensing, information encoding, and erase cycles. \(V_{\text{N1}}, V_{\text{N2}}, V_{\text{N6}}, \) and \(V_{\text{N7}} \) are held constant at \(1 \text{ V}, 5 \text{ V}, 0 \text{ V} \), and \(0 \text{ V} \), respectively, throughout the encryption process. \(V_{\text{N8}} \) and \(V_{\text{N9}} \) are enabled only during the encoding cycle, with \(1 \text{ V} \) and \(5 \text{ V} \) applied to the respective nodes. Finally, \(V_{\text{N4}} \) cycles between \(V_{\text{illum}} = -4 \text{ V} \), \(V_{\text{encoding}} = 0 \text{ V} \), and \(V_{\text{erase}} = 11 \text{ V} \) during photosensing, encoding, and erase cycles, respectively. Note that \(V_{\text{N2}} = 5 \text{ V} \) ensures that \(T_{\text{PSV}} \) is biased in the deep on-state with orders of magnitude lower resistance than \(T_{\text{PT}} \) and \(T_{\text{WGNA}} \). Therefore, the \(V_{\text{PSV}} \) value obtained at node \(N_5 \) can be expressed using Eq. 1.

\[
V_{\text{PSV}} = f(G_{\text{PT}}, G_{\text{WGNA}})
\] (1)

Here, \(G_{\text{PT}} \) and \(G_{\text{WGNA}} \) are, respectively, the conductance values of \(T_{\text{PT}} \) and \(T_{\text{WGNA}} \). Note that since both \(T_{\text{PT}} \) and \(T_{\text{WGNA}} \) are operated in their subthreshold regime, none of these memtransistors behave like a linear resistor, which is why the \(V_{\text{PSV}} \) value cannot be derived based on the standard model of a resistor divider network. Nevertheless, the 64 MoS₂ memtransistors used as \(T_{\text{WGNA}} \) corresponding to each of the \(8 \times 8 \) crypto engines are randomly pre-programmed such that the \(V_{\text{PSV}} \) values obtained under dark condition follow a Gaussian distribution with a mean of \(0.3 \text{ V} \) and finite \(\sigma_V \) when measured using a back-gate voltage, \(V_{\text{N6}} = 0 \text{ V} \) (see Supplementary Fig. 15 for the distribution of \(G_{\text{WGNA}} \) for different \(\sigma_V \)). While it can be argued that on-chip random number generators are more desirable solutions, these are often power-hungry and pose integration challenges. Instead, our approach offers inherent energy efficiency since the noise conductance values are already stored in \(T_{\text{WGNA}} \), reducing the energy burden during field operations although it adds area and storage overhead. Similarly, the 64 MoS₂ memtransistors used as \(T_{\text{PT}} \) corresponding to each of the \(8 \times 8 \) crypto engines are pre-programmed such that the pre-illumination \(G_{\text{PT}} = 10 \text{ nS} \) when measured using a back-gate voltage, \(V_{\text{N2}} = 0 \text{ V} \). To transcribe the LED illumination, \(T_{\text{PT}} \) is biased at \(V_{\text{N2}} = V_{\text{illum}} = -2 \text{ V} \) for \(t_{\text{illum}} = 100 \text{ ms} \). If the pixel illumination is present \((I_{\text{LED}} = 20 \text{ mA}) \), the corresponding \(T_{\text{PT}} \) reaches \(G_{\text{PT}} = 400 \text{ nS} \) when measured post-illumination using \(V_{\text{N3}} = 0 \text{ V} \). Figure 3a shows the \(V_{\text{PSV}} \) values corresponding to each of the 64 crypto engines and Fig. 3b shows the corresponding colormaps for \(V_{\text{PSV}} \) for different values of \(\sigma \) when an \(8 \times 8 \) pixelated image of the letter ‘N’ is transduced using the corresponding \(T_{\text{PT}} \) and \(T_{\text{WGNA}} \). Under no-noise conditions, i.e., \(\sigma_V = 0 \text{ V} \), \(V_{\text{PSV}} \) values, as expected, achieve two distinct levels, ~0.3 V and ~0.6 V, corresponding to dark and bright pixels in the image of the letter ‘N’ and the colormap of \(V_{\text{PSV}} \) shows accurate transduction of the optical information. For any finite \(\sigma_V \), both \(V_{\text{PSV}} \) levels become superimposed with random Gaussian noise. Higher \(\sigma_V \) values are translated into more variation in the two \(V_{\text{PSV}} \) levels in Fig. 3a and the corresponding colormaps in Fig. 3b, obscuring the sensed information.

The final stage of the encryption process is performed by the MoS₂ memtransistors used as \(T_{\text{SN1}} \) which transforms the \(V_{\text{PSV}} \)
into a corresponding I_{PSC}. Note that $V_{SN9} = 5$ V ensures that T_{SET} is biased in the deep on-state with orders of magnitude lower resistance than T_{SN}, allowing I_{PSC} to be determined by T_{SN} and hence V_{PSV}. Also, note that all 64 MoS$_2$ memtransistors used as T_{SN} are pre-programmed such that their encoding threshold is at $V_{ET} = 0.5$ V (see Supplementary Fig. 16 for the transfer characteristics of a representative T_{SN}). This ensures that the V_{PSV} values obtained in Fig. 3a are primarily subthreshold with occasional threshold crossing events. In other words, for $V_{PSV} < V_{ET}$, T_{SN} does not invoke any observable current response greater than the noise floor of the measurement (~1 pA/µm). Figure 3c shows the I_{PSC} values obtained from T_{SN} corresponding to each of the 8 × 8 crypto engines and Fig. 3d shows the corresponding colormaps for I_{PSC} for different σ_{G} for the letter ‘N’. As evident, for lower σ_{G} values, there are few if any threshold crossing events, resulting in sporadic bright pixels in the 8 × 8 encrypted image of the letter ‘N’, whereas for higher σ_{G} values, there are more frequent threshold crossing events, resulting in the greater number of bright pixels in the 8 × 8 encrypted image of the letter ‘N’. Nevertheless, the I_{PSC} map constitute the encoded information for the letter ‘N’. Note that, except for T_{PP}, none of the other MoS$_2$ memtransistors corresponding to the crypto engine are biased in their deep off-state and hence these memtransistors do not encounter any photogating effect.

Encryption strength of encoded information

To analyze the strength of the encryption process, we define true positive (TP) as an event when a bright pixel in the encoded image corresponds to a bright pixel in the original image and false positive (FP) as an event when a bright pixel in the encoded image corresponds to a dark pixel in the original image. The likelihood of identifying the letter ‘N’ by an eavesdropper from the encrypted image will, therefore, be determined by the detectivity (D), which is defined as $D = p_{TP} - p_{FP}$, where p_{TP} is the probability of TP and p_{FP} is the probability of FP. Colormaps in Fig. 4a–c, respectively, show p_{TP}, p_{FP}, and D as a function of σ_{G} obtained by repeating the experiments $P = 50$ times, which represents the population strength, and Fig. 4d shows the corresponding population means. Note that the population means for D exhibit a non-monotonic behavior. At a low noise level, there is hardly any FP, i.e., low p_{FP}, but the likelihood of detecting the letter ‘N’ remains low due to limited threshold crossing events for the original bright pixels, i.e., low p_{TP}. At a high noise level, both bright and dark pixels corresponding to the original image cross the spiking threshold, resulting in high p_{TP} and p_{FP} and, therefore, low D. However, at an intermediate noise, the detectivity reaches its maximum value.

Figure 4e shows the number of brute force trials (BFTs) by the eavesdropper necessary to identify the letter ‘N’ as a function of σ_{G}. Note that we computed BFT = $1/D^2$, where $S = 8 \times 8 = 64$ is the size of the image. The number of BFTs is found to be significantly high irrespective of σ_{G}. Furthermore, the number of BFTs increases exponentially with S (see Supplementary Fig. 17). Therefore, the encryption can be considered to be secure from an eavesdropper with finite resources.

Figure 4f shows the average energy expenditure by the crypto engines ($E_{encrypt}$) for the encryption of the letter ‘N’ as a function of σ_{G} calculated using Eq. 2.

$$E_{encrypt} = \frac{1}{64} \sum_{i=1}^{64} [I_{N_{N1N7}}V_{N1} + I_{N_{N7N7}N_{N8}}V_{N8}]_{Illum} + \frac{1}{2}C_{G}(V_{N2}^2 + V_{N4}^2 + V_{N6}^2 + V_{N8}^2)$$

(2)

Here, $I_{N_{N1N7}}$ and $I_{N_{N7N7}N_{N8}}$ are the currents flowing through the sensing and encoding units, respectively. Note that the energy expenditure was found to be less than a few hundred picowatts per engine even for the highest σ_{G}. See Supplementary
Note 1 for the energy expenditure comparison with other competing technologies.

The encryption strength is also tested assuming that the eavesdropper has access to a trained artificial DNN, with the information being communicated being an encrypted MNIST data set for digit classification. DNNs have shown remarkable success in various applications ranging from image recognition and pattern classification to defeating professional players in the game of "Go". DNNs consist of one input layer, one output layer, and many hidden layers \((N_L) \), with each containing a certain number of neurons. The neurons in a layer and its consecutive layer are connected by synapses and the strength of the synapses, i.e., synaptic weights, are trained using back-propagation algorithms. The deeper the network is, i.e., for higher \(N_L \), the more complex datasets that can be trained, and with better accuracy. Figure 4g shows the schematic of a DNN trained to recognize the MNIST data set. The input layer consists of 784 neurons where the normalized pixel values of the images (28 × 28 pixels) in the MNIST dataset are sent and the output layer consists of 10 neurons that correspond to digits from 0 to 9. Output neurons perform the SoftMax activation function, and the winner is determined based on the maximum value. We have used \(N_L = 1, 2, 3, 4 \) hidden layers with 300, 200, 100, and 50 neurons in the corresponding layers, respectively. The gradient descent algorithm is used to train the DNN using 60,000 images with a learning rate of 0.003 and rectified linear unit (ReLU) as the activation function, and the remaining 10,000 images are used for testing the inference accuracy. Supplementary Fig. 18 shows the training and inference accuracy as a function of \(N_L \) and the number of epochs. Training accuracies of 100% and testing accuracies of >98% were achieved beyond 50 epochs irrespective of \(N_L \). Note that higher \(N_L \) values achieve better training accuracy.
and inference accuracies with a lesser number of epochs. Next, we added white Gaussian noise (WGN) to 10,000 MNIST testing images and binarized them at a threshold of 1.5, mimicking the encryption process of our MoS$_2$ memtransistor-based crypto engines. Figure 4h shows some examples of encoded MNIST images for different standard deviations (σ) of the WGN. Figure 4i shows the inference accuracy for the encrypted images as a function of σ for different N_{Layer}. Interestingly, the accuracy values are found to be significantly low irrespective of σ and N_{Layer}, indicating the robustness of our proposed encryption scheme to trained DNNs.

Voting-based decryption process. In order to retrieve the information, we adopt a population voting-based algorithm. We assume that the encoded images of the letter 'N' are transmitted over different communication channels by P encoders, each comprising 8 \times 8 array of the crypto engines. The receiver at the other end receives P encoded images and counts the number of votes corresponding to each pixel. In our experiments, this was accomplished by encoding the same information P times by the same 8 \times 8 array of the crypto engines but using different G_{WGN} every time. Figure 5a shows the vote counts for each pixel when $P = 50$ for different σ_G. A vote is a true positive vote (TPV) if the corresponding pixel in the original image is bright, whereas the vote is a false positive vote (FPV) if the corresponding pixel in the original image is dark. The colormap of the correlation coefficient (CC) between the original and the decrypted image images of the letter 'N' as a function of σ_G and M_V when encryption is done by $P = 50$ encoders with encoding thresholds of $V_{ET} = 0.5$ V. Here, M_V is the minimum number of votes required to mark a pixel as bright. Without prior knowledge of σ_G, P, and V_{ET} it is difficult to determine M_V and hence decode the information.
different σ_G. At low noise levels, the probability of crossing the encoding threshold (V_{ET}) is low and hence only a few encoders fire simultaneously, resulting in lower expected number of encoders for TPV, i.e., $\langle N_{TPV} \rangle = \sum_{n=1}^{p} p_{TPV}(n)$. The expected number of encoders for FPV, i.e., $\langle N_{FPV} \rangle = \sum_{n=1}^{p} n p_{FPV}(n)$, is even lower. Similarly, at high noise levels, the probability of crossing the threshold of the encoder is high and hence more encoders fire synchronously, resulting in larger $\langle N_{TPV} \rangle$ and $\langle N_{FPV} \rangle$. However, as seen in Fig. 5b, c, for any σ_G, $\langle N_{FPV} \rangle$ is higher than $\langle N_{TPV} \rangle$. Supplementary Fig. 19 shows the decoding of the images of the letter ‘N’ for different σ_G for different number of mandated votes (M_V) to mark a pixel as bright for $P = 50$. Figure 5d shows the corresponding colormap of the correlation coefficient (CC) between the original and the decrypted image as a function of σ_G and M_V. Note that, for a given σ_G, there is an optimum range for M_V, that allows accurate decryption of the encoded image, i.e., $CC = 1$. Supplementary Fig. 20 shows similar results for CC when different encoding population sizes (P) are used. As expected, the optimum number of M_V for accurate decryption is found to be different for similar σ_G. Therefore, without the prior knowledge of the σ_G and P used by the biometric encoder, it is difficult to decode the information.

The strength of encoding can be further enhanced by exploiting the programming capability of our MoS$_2$ memtransistors. Here we reconfigure the encoding threshold (V_{ET}) in a manner similar to neuromplasticity in biological neurons allowing adaptation to changing environments and stimuli. Supplementary Fig. 21 shows the encryption of the letter ‘N’ by encoders with different V_{ET} for different σ_G. As obvious, if $V_{PSV} > V_{ET}$, the encryption process is pointless, or, in other words, the communication is insecure. For V_{ET} values slightly greater than V_{PSV}, there are more threshold crossing events even for low σ_G, whereas for V_{ET} values further from V_{PSV}, there are limited threshold crossing events even for high σ_G. Figure 5e shows the colormap of CC between the original and the decrypted images of the letter ‘N’ as a function of V_{ET} and M_V for $\sigma_G = 0.8$ V and $P = 50$ (see Supplementary Fig. 22 for similar results with different σ_G). Clearly, the optimum M_V for accurate decryption is found to be different for different V_{ET}. Therefore, not only σ_G and P, but also prior knowledge of V_{ET} is required for decoding the information, which makes the system more robust from the eavesdropper. However, to achieve on-field reconfiguration capability, some peripheral circuits will be necessary for our integrated crypto engines, for example, the clocking signal for the MoS$_2$ memtransistor based T_{ET}, the gate-voltages necessary to randomly program the MoS$_2$ memtransistor based T_{WGAN}, and the gate voltages necessary to program the encoding threshold for the MoS$_2$ memtransistor based T_{SN}. Finally, the reader may be interested in knowing the impact of environmental noise, temperature, etc., on the encryption process. We have found that the device-to-device variation is dominant compared to environmental noise and that it has insignificant impact on the encryption process. Similarly, small variations in temperature are expected to have minimal impact on the proposed crypto engine.

Discussion

In conclusion, we have experimentally demonstrated a monolithically integrated and multi-pixel all-in-one hardware IoT platform based on programmable and multifunctional MoS$_2$ memtransistors which is capable of sensing, storing, and securing information. Since a single material and similar device structures are used for our demonstration, the hardware investment is minimal. The average energy expenditure by each crypto engine was also found to be low, in the range of a few hundred picojoules, as we have primarily exploited the subthreshold regime of memtransistor operation. The encrypted information is found to be secure from an adversary with access to advanced machine learning capabilities such as trained DNNs. The decryption of the encrypted information relies on population voting. Overall, our platform shows the capability of near-sensor security by exploiting in-memory bio-inspired computing.

Methods

Fabrication of local back-gate islands. The local back-gate islands were fabricated on a commercially-bought substrate (285 nm SiO$_2$ on p-type Si). The substrate was first coated with a bilayer photoresist consisting of Lift-Off-Resist (LOR SA) and Series Photoresist (SPR 3012), which were then baked at 185 °C for 2 minutes and 95 °C for 1 minute, respectively. The bilayer photoresist was then exposed using a Heidelberg Maskless Aligner (MLA 150) to define the islands and developed using MF CD262 microsop, followed by a de-ionized (DI) water rinse for 75 and 60 seconds respectively. The local back and side islands (20/50 nm TiN/ Pt) were deposited using reactive sputtering. The photoresist was then removed using acetone and Photo Resist Stripper (PRS 3000) and cleaned using 2-propanol (IPA) and DI water. An atomic layer deposition (ALD) process was then implemented to grow 50 nm Al$_2$O$_3$ uniformly across the entire substrate, including the island regions. To access the individual Pt back-gate electrodes, etch patterns were defined using the same bilayer photoresist (LOR SA and SPR 3012) used previously. The bilayer photoresist was then again exposed using the MLA 150 and developed using MF CD262 microsop. The 50 nm Al$_2$O$_3$ was subsequently dry etched using a BCl$_3$ reactive ion etch chemistry at 5 °C for a total of 80 s; this process was split into four 20 s etches to minimize heating in the substrate and thus ensure a uniform etch rate/depth. The photoresist was then removed to give access to the individual Pt electrodes.

Monolayer MoS$_2$ Film Growth. Monolayer MoS$_2$ was obtained from the Pennsylvania State University 2D Crystal Consortium (2DCCC). It was deposited on an epi-ready 2° c-sapphire substrate by metal-organic chemical vapor deposition (MOCVD). An inductively heated graphite susceptor with wafer rotation in a cold-wall horizontal reactor was used to achieve uniform monolayer deposition as previously described. Molybdenum hexacarbonyl (Mo(CO)$_6$) and hydrogen sulfide (H$_2$S) were used as the precursors. Mo(CO)$_6$ was maintained at 10 °C and 950 Torr in a stainless-steel bubbler, which was used to deliver 0.036 sccm of the metal precursor for the growth, while 400 sccm of H$_2$S was used. Mo$_2$ deposition was carried out at 1000 °C and 90 Torr in H$_2$ ambient and monolayer growth was achieved in 18 min. The substrate was first heated to 1000 °C in H$_2$ and maintained for 10 min before the growth was initiated. After growth the substrate was cooled in H$_2$ to 300 °C to inhibit decomposition of the Mo$_2$ films.

MoS$_2$ film transfer to local back-gate islands. To fabricate the MoS$_2$ memtransistor, the as-grown monolayer MoS$_2$ film was transferred to substrate with local back-gate islands using a PMMA (poly(methyl-methacrylate)) assisted wet transfer process. PMMA 495 A6 resist was spun onto the growth substrate at 4000 RPM for 45 s and allowed to sit overnight to ensure good PMMA/MoS$_2$ adhesion. The edges of the spin-coated film were then scratched using a razor blade and the substrate was immersed into a 2 M NaOH solution kept at 90 °C. Capillary action served to draw the NaOH solution to the PMMA-substrate interface, separating the hydrophobic PMMA/MoS$_2$ from the hydrophilic sapphire substrate. Note that scratching the edges of the film served to aid this process via removing any PMMA beaming that may have been formed at the edge of the substrate during spinning and shortening the distance for the solution to penetrate. The detached film was retrieved from the NaOH bath using a clean glass slide and rinsed three times in separate DI water baths (15 min each). It was then retrieved from the final bath using the prepared SiO$_2$/Si++-Substrate with local back-gate islands and baked at 50°C and 70°C for 10 min each to remove moisture and promote adhesion. Finally, the PMMA supporting layer was removed using an acetone bath and the substrate was cleaned using IPA.

Fabrication of monolayer MoS$_2$ memtransistor. To define the channel regions for the memtransistors, the sample was first spin-coated with PMMA 950 A6 at 4000 RPM for 45 s and then baked at 180°C for 90 s. Electron-beam (e-beam) lithography was used to pattern the resist, which was developed using a 1:1 mixture of 4-methyl-2-pentanone (MIBK) and IPA for 60 s and pure IPA for 45 s. The MoS$_2$ islands were then scratched using a razor blade and the substrate was immersed into a 2 M NaOH solution kept at 90 °C. Capillary action served to draw the NaOH solution to the PMMA substrate, separating the hydrophobic PMMA/MoS$_2$ from the hydrophilic sapphire substrate. Note that scratching the edges of the film served to aid this process via removing any PMMA beaming that may have been formed at the edge of the substrate during spinning and shortening the distance for the solution to penetrate. The detached film was retrieved from the NaOH bath using a clean glass slide and rinsed three times in separate DI water baths (15 min each). It was then retrieved from the final bath using the prepared SiO$_2$/Si++-Substrate with local back-gate islands and baked at 50°C and 70°C for 10 min each to remove moisture and promote adhesion. Finally, the PMMA supporting layer was removed using an acetone bath and the substrate was cleaned using IPA.
IPA for 60 s and pure IPA for 45 s. Note that this development process allowed for the formation of a significant undercut in the bilayer resist, making subsequent metal deposition/liftoff easy. 40 nm of nickel (Ni) and 30 nm of gold (Au) were deposited using e-beam evaporation. Finally, lift-off of the evaporated material was performed by immersing the sample in acetone for 30 min and in IPA for 15 min.

In the final design, each local back-gate island contained one memtransistor to allow for individual gate control.

Monolithic integration. Each crypto engine of our multi-pixel (8 × 8) hardware consists of 5 MoS₂ memtransistors, as shown using the circuit schematic in Fig. 1d. To define the connections between the respective nodes of \(T_{PS} \), \(T_{PSA} \), \(T_{GWMA} \), \(T_{GWMA} \), and \(T_{NS} \), the substrate was spin-coated with MMA and PMMA, followed by e-beam lithography and development using a 1:1 mixture of MBK and IPA. E-beam evaporation of 60 nm of Ni and 30 nm of Au, and, finally, rinsing away the resist using acetone and IPA. All column-select metal lines were defined during this lithography step. The row-select lines were also defined except for the regions, where they crossover the column-select lines. To electrically isolate the column- and row-select lines, the substrate was again spin-coated with MMA and PMMA, followed by e-beam lithography and e-beam evaporation 80 nm of insulating alumina \((Al₂O₃) \) at the cross-points. Finally, another lithography step was performed, followed by the deposition of 60 nm of Ni and 30 nm of Au to connect the row-select lines bridging over the cross-points.

Electrical characterization. Electrical characterization of the fabricated devices was performed using an automated probe station (Cascade SUMMIT200) under atmospheric conditions using a Keysight B1500A parameter analyzer. We have used our automated probe station for the readout, i.e., the probes move from one set of select lines to the next to collect the data. The entire encryption process is, therefore, automated without the need for any human intervention making the demonstration real-time. See Supplementary Video 1 for a representative recording.

Data availability Relevant data supporting the key findings of this study are available within the article and the Supplementary Information file. All raw data generated during the current study are available from the corresponding authors upon request.

Code availability The codes used for plotting the data are available from the corresponding authors on reasonable request.

Received: 2 February 2021; Accepted: 31 May 2022; Published online: 23 June 2022

References

1. Verton, D. & Brownlow, J. *Black ice: The invisible threat of cyber-terrorism. (Osborne, 2003).*

2. Alfaleh, F., Alfehaid, H., Alanzy, M. & Elkhediri, S. in *NATURE COMMUNICATIONS* (2022). 10.1038/s41467-022-31148-z (2022).

3. Verton, D. & Brownlow, J. *NATURE COMMUNICATIONS* (2022). 10.1038/s41467-022-31148-z (2022).

4. Erlach, B. & Erlach, H. *Black ice: The invisible threat of cyber-terrorism. (Osborne, 2003).*

5. Verton, D. & Brownlow, J. *NATURE COMMUNICATIONS* (2022). 10.1038/s41467-022-31148-z (2022).

6. Erlach, B. & Erlach, H. *Black ice: The invisible threat of cyber-terrorism. (Osborne, 2003).*

7. Verton, D. & Brownlow, J. *NATURE COMMUNICATIONS* (2022). 10.1038/s41467-022-31148-z (2022).

8. Erlach, B. & Erlach, H. *Black ice: The invisible threat of cyber-terrorism. (Osborne, 2003).*

9. Verton, D. & Brownlow, J. *NATURE COMMUNICATIONS* (2022). 10.1038/s41467-022-31148-z (2022).

10. Erlach, B. & Erlach, H. *Black ice: The invisible threat of cyber-terrorism. (Osborne, 2003).*

11. Verton, D. & Brownlow, J. *NATURE COMMUNICATIONS* (2022). 10.1038/s41467-022-31148-z (2022).

12. Erlach, B. & Erlach, H. *Black ice: The invisible threat of cyber-terrorism. (Osborne, 2003).*

13. Verton, D. & Brownlow, J. *NATURE COMMUNICATIONS* (2022). 10.1038/s41467-022-31148-z (2022).

14. Erlach, B. & Erlach, H. *Black ice: The invisible threat of cyber-terrorism. (Osborne, 2003).*

15. Verton, D. & Brownlow, J. *NATURE COMMUNICATIONS* (2022). 10.1038/s41467-022-31148-z (2022).

16. Erlach, B. & Erlach, H. *Black ice: The invisible threat of cyber-terrorism. (Osborne, 2003).*

17. Verton, D. & Brownlow, J. *NATURE COMMUNICATIONS* (2022). 10.1038/s41467-022-31148-z (2022).

18. Erlach, B. & Erlach, H. *Black ice: The invisible threat of cyber-terrorism. (Osborne, 2003).*

19. Verton, D. & Brownlow, J. *NATURE COMMUNICATIONS* (2022). 10.1038/s41467-022-31148-z (2022).

20. Erlach, B. & Erlach, H. *Black ice: The invisible threat of cyber-terrorism. (Osborne, 2003).*

21. Verton, D. & Brownlow, J. *NATURE COMMUNICATIONS* (2022). 10.1038/s41467-022-31148-z (2022).

22. Erlach, B. & Erlach, H. *Black ice: The invisible threat of cyber-terrorism. (Osborne, 2003).*

23. Verton, D. & Brownlow, J. *NATURE COMMUNICATIONS* (2022). 10.1038/s41467-022-31148-z (2022).

24. Erlach, B. & Erlach, H. *Black ice: The invisible threat of cyber-terrorism. (Osborne, 2003).*

25. Verton, D. & Brownlow, J. *NATURE COMMUNICATIONS* (2022). 10.1038/s41467-022-31148-z (2022).

26. Erlach, B. & Erlach, H. *Black ice: The invisible threat of cyber-terrorism. (Osborne, 2003).*

27. Verton, D. & Brownlow, J. *NATURE COMMUNICATIONS* (2022). 10.1038/s41467-022-31148-z (2022).

28. Erlach, B. & Erlach, H. *Black ice: The invisible threat of cyber-terrorism. (Osborne, 2003).*

29. Verton, D. & Brownlow, J. *NATURE COMMUNICATIONS* (2022). 10.1038/s41467-022-31148-z (2022).

30. Erlach, B. & Erlach, H. *Black ice: The invisible threat of cyber-terrorism. (Osborne, 2003).*

31. Verton, D. & Brownlow, J. *NATURE COMMUNICATIONS* (2022). 10.1038/s41467-022-31148-z (2022).

32. Erlach, B. & Erlach, H. *Black ice: The invisible threat of cyber-terrorism. (Osborne, 2003).*

33. Verton, D. & Brownlow, J. *NATURE COMMUNICATIONS* (2022). 10.1038/s41467-022-31148-z (2022).

34. Erlach, B. & Erlach, H. *Black ice: The invisible threat of cyber-terrorism. (Osborne, 2003).*

35. Verton, D. & Brownlow, J. *NATURE COMMUNICATIONS* (2022). 10.1038/s41467-022-31148-z (2022).

36. Erlach, B. & Erlach, H. *Black ice: The invisible threat of cyber-terrorism. (Osborne, 2003).*

37. Verton, D. & Brownlow, J. *NATURE COMMUNICATIONS* (2022). 10.1038/s41467-022-31148-z (2022).

38. Erlach, B. & Erlach, H. *Black ice: The invisible threat of cyber-terrorism. (Osborne, 2003).*

39. Verton, D. & Brownlow, J. *NATURE COMMUNICATIONS* (2022). 10.1038/s41467-022-31148-z (2022).

40. Erlach, B. & Erlach, H. *Black ice: The invisible threat of cyber-terrorism. (Osborne, 2003).*

41. Verton, D. & Brownlow, J. *NATURE COMMUNICATIONS* (2022). 10.1038/s41467-022-31148-z (2022).

42. Erlach, B. & Erlach, H. *Black ice: The invisible threat of cyber-terrorism. (Osborne, 2003).*

43. Verton, D. & Brownlow, J. *NATURE COMMUNICATIONS* (2022). 10.1038/s41467-022-31148-z (2022).

44. Verton, D. & Brownlow, J. *NATURE COMMUNICATIONS* (2022). 10.1038/s41467-022-31148-z (2022).
46. Ashokbhai Patel, K., Grady, R. W., Smithe, K. K. H., Pop, E. & Sordan, R. Ultra-scaled MoS₂ transistors and circuits fabricated without nanolithography. 2D Mater. 7, https://doi.org/10.1088/2053-1283/abde0f (2019).

47. Wachter, S., Polyushkin, D. K., Bethge, O. & Mueller, T. A microprocessor based on a two-dimensional semiconductor. Nat. Commun. 8, 14948 (2017).

48. Yu, L. et al. Design, modeling, and fabrication of chemical vapor deposition grown MoS₂ circuits with E-Mode FETs for large-area electronics. Nano Lett. 16, 6349–6356 (2016).

49. Sanne, A. et al. Radio frequency transistors and circuits based on CVD MoS₂. Nano Lett. 15, 5039–5045 (2015).

50. Yu, L. et al. High-performance WSe₂ complementary metal oxide semiconductor technology and integrated circuits. Nano Lett. 15, 4928–4934 (2015).

51. Tosun, M. et al. High-gain inverters based on WSe₂ complementary field-effect transistors. ACS Nano 8, 4953 (2014).

52. Sebastian, A., Pannone, A., Radhakrishnan, S. S. & Das, S. Gaussian synapses for probabilistic neural networks. Nat. Commun. 10, 1–11 (2019).

53. Dodda, A. et al. Stochastic resonance in MoS₂ photodetector. Nat. Commun. 11, 4406 (2020).

54. Arnold, A. J. et al. Mimicking Neurotransmitter release in chemical synapses via hysteresis engineering in MoS₂ transistors. ACS Nano. 11, 3110–3118 (2017).

55. Nasr, J. R. et al. Low-power and ultra-thin MoS₂ photodetectors on glass. ACS Nano. 14, 15440–15449 (2020).

56. Das, S. Two Dimensional Electrostrictive Field Effect Transistor (2D-EFET): A sub-60mV/decade steep slope device with high ON current. Sci. Rep. 6, 34811 (2016).

57. Wali, A., Ravichandran, H. & Das, S. A machine learning attack resilient true random number generator based on stochastic programming of atomically thin transistors. ACS Nano 15, 17804–17812 (2021).

58. Oberoi, A., Dodda, A., Liu, H., Terrones, M. & Das, S. Secure Electronics Enabled by Atomically Thin and Photosensitive Two-Dimensional Memtransistors. ACS Nano 15, 19815–19827 (2021).

59. Dodda, A. & Das, S. Demonstration of Stochastic Resonance, Population Coding, and Population Voting Using Artificial MoS₂ Based Synapses. ACS Nano 15, 16172–16182 (2021).

60. Liu, H. et al. Spontaneous chemical functionalization via coordination of Au single atoms on monolayer MoS₂. Sci. Adv. 6, eab9308 (2020).

61. Wali, A. et al. Satisfiability Attack-Resistant Camouflaged Two-Dimensional Heterostructure Devices. ACS Nano 15, 3453–3467 (2021).

62. Dodda, A. et al. Graphene-based physically unclonable functions that are reconfigurable and resilient to machine learning attacks. Nat. Electron. 4, 364–374 (2021).

63. Liu, W. et al. A survey of deep neural network architectures and their applications. Neurocomputing 234, 11–26 (2017).

64. 2DCC. 2d-crystal-consortium, https://www.mri.psu.edu/2d-crystal-consortium/user-facilities/thin-films/list-thin-film-samples-available

65. Xuan, Y. et al. Multi-scale modeling of gas-phase reactions in metal-organic chemical vapor deposition growth of WSe₂. J. Crys Growth 527, https://doi.org/10.1016/j.jcrysgro.2019.125247 (2019).

Acknowledgements
Authors would like to acknowledge Shiva Subbulakshmi Radhakrishnan for his help with the CNN simulation. The work of A.D. and S.D. was partially supported by Army Research Office (ARO) through Contract Number W911NF1920338 and National Science Foundation (NSF) through a CAREER Award under grant no. ECCS-2042154. Authors also acknowledge the materials support from the National Science Foundation (NSF) through the Pennsylvania State University 2D Crystal Consortium—Materials Innovation Platform (2DCCMIP) under NSF cooperative agreement DMR-2039351.

Author contributions
S.D. conceived the idea and designed the experiments. S.D., and A.D. performed the experiments, analyzed the data, discussed the results, agreed on their implications. N.T., and J.M.R. synthesized the MOCVD grown monolayer MoS₂. All authors contributed to the preparation of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-31148-z.

Correspondence and requests for materials should be addressed to Saptarshi Das.

Peer review information Nature Communications thanks Patrick Schaumont and the other anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022