Longitudinal Evaluation of Segmental Arterial Mediolysis in Splanchnic Arteries: Case Series and Systematic Review

Hyun Soo Kim, Sang-il Min*, Ahram Han, Chanjoong Choi, Seung-Kee Min, Jongwon Ha
Department of Surgery, Seoul National University College of Medicine, Seoul, Korea

* surgeonmsi@gmail.com

Abstract

Background
Segmental arterial mediolysis (SAM) is a rare non-atherosclerotic, non-inflammatory vascular disorder varying widely in clinical course. The purpose of this study is to analyze detailing clinical and imaging manifestations over time in patients with SAM through a literature review and to suggest an optimal management strategy.

Methods
A retrospective review of eight consecutive patients diagnosed with SAM between January, 2000 and January, 2012 was conducted. All presented with acute-onset abdominal or flank pain. Clinical features, imaging studies, and laboratory findings served as grounds for diagnosis, having excluded more common conditions (ie, fibromuscular dysplasia, collagen vascular disorders, or arteritis). CT angiography was done initially and repeated periodically (Week 1, Month 3, then yearly). Treatment was conservative, utilizing endovascular intervention as warranted by CT diagnostics. In a related systematic review, all English literature from 1976 to 2015 was screened via the PubMed database, assessing patient demographics, affected arteries, clinical presentations, and treatment methods.

Findings
Ultimately, 25 arterial lesions identified in eight patients (median age, 62.8 years; range, 40–84 years) were monitored for a median period of 26 months (range, 15–57 months). At baseline, celiac axis (3/8, 37.5%), superior mesenteric (4/8, 50%), and common hepatic (2/8, 25%) arteries were involved, in addition to isolated lesions of right renal, splenic, right colic, middle colic, gastroduodenal, left gastric, right gastroepiploic, proper hepatic, right hepatic, and left hepatic arteries. Compared with prior publications, celiac axis and superior mesenteric artery were more commonly affected in cohort. Arterial dissections (n = 8), aneurysms (n = 5), stenoses or occlusions (n = 4), and a single pseudoaneurysm were documented. Despite careful conservative management, new splanchnic arterial lesions (n = 4) arose during follow-up. Considering the few available reports of new arterial lesions in the
literature, newly developing pathology is a distinctive feature of our patients, four of whom eventually required endovascular interventions.

Conclusions

Careful clinical observation via periodic CT angiography is required in patients with SAM, checking for newly developing lesions. The natural history of SAM should be clarified in a larger patient population.

Introduction

Segmental arterial mediolysis (SAM) is a rare non-atherosclerotic, non-inflammatory vascular disorder that varies considerably in clinical course. Its etiology remains unclear, although some consider it a variant or a precursor of fibromuscular dysplasia (FMD) [1, 2]. Others have suggested that SAM is a secondary phenomenon, resulting from vasospasm or arterial wall injury due to immune complexes [3]. Originally described in 1976 by Slavin et al [4], only around 100 cases of SAM have since been reported in the literature [5].

SAM is typically manifested in splanchnic arteries where lytic degeneration of medial smooth muscle occurs, culminating in tearing/separation from adventitia and adjacent fibrosis. Patients variably present with dissection, aneurysm, stenosis, occlusion, or hemorrhage after rupture, often calling for emergency surgical or endovascular intervention. Unfortunately, no standard criteria exist at present for differentiating SAM from inflammatory vasculitis, and the clinical course of SAM is varie, with no clear tendency to progress, resolve, or stabilize. Likewise, there are no established therapeutic or monitoring guidelines stipulating circumstances where surgical or other interventions are indicated.

The purpose of this study is to review our experience with SAM management and to suggest an optimal management and surveillance strategy in SAM through thorough literature review.

Methods

A retrospective review of eight consecutive patients (male, 4; female, 4) diagnosed with SAM between January, 2000 and January, 2012 was conducted with approval of the Institutional Review Board (IRB No SNUH-1408-027-601). The obtainment of informed consent was waived and patient information/records were anonymized and de-identified prior to analysis.

Diagnosis of SAM

Diagnostic criteria developed by Kalva et al [6] were applied, relying upon presenting clinical features, imaging studies, and laboratory findings. Briefly, patients experiencing acute or chronic abdominal pain, flank pain, or no symptoms qualified as SAM, in the absence of any congenital predisposition for dissection (eg, Ehlers-Danlos, Marfan’s, or Loeys-Dietz syndrome) and after excluding more common alternatives, namely FMD, collagen vascular disorders, or arteritis. On imaging studies, dissection, aneurysm, or occlusion involving multiple splanchnic arteries was characteristically found findings. No inflammatory markers of vasculitis (ie, ANCA, C3/C4, FANA, RF, anti-La antibodies, and anti-cardiolipin antibodies) were elevated on laboratory testing.

Treatment and Surveillance of SAM

Treatment of SAM generally was conservative, including strict control of blood pressure, resting of the bowel (if mesenteric arteries involved), and close observation, prohibiting use of
anticoagulants or antiplatelet agents. CT angiographic studies were repeated at Week 1 and at Month 3 after diagnosis and thereafter were done yearly. On occasion, CT angiography was ordered more often (at physician’s discretion) if new lesions or symptoms developed. In patients requiring superior mesenteric arterial stenting, self-expandable stents were placed in a manner reported previously [7].

Literature review

PubMed databases were searched for all articles published in English between January 1, 1976 and August 31, 2015. “Segmental arterial mediolysis” and “segmental mediolytic arteritis” served as keyword combinations. All abstracts, case reports, patient series and citations scanned were examined. Extraction of study data was achieved using a standardized template, which included author’s name, publication year, patient demographics, affected arteries, clinical presentations, and treatment methods. A full description of search terms, strategy and screening stages are provided in S1 Table.

This literature review follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (S1 PRISMA Checklist, S1 PRISMA Flow Diagram).

Statistical analysis

We analyzed variables of our case series and of those in the literature. Because events were relatively few and biased, the binomial Clopper Pearson exact method was used to generate 95% confidence intervals.

Results

Patients demographics

From January 1, 2000 to January 31, 2012, a total of 8 patients were diagnosed as SAM (Table 1). Median age was 62.8 years (range, 40–84 years, 95% CI range, 51.7–73.8 years), and median follow-up period was 26 months (range, 15–57 months). All patients presented with acute abdominal or flank pain. Relevant patient comorbidities included hypertension (25%), atrial fibrillation (25%), congestive heart failure (12.5%), and hyperlipidemia (25%). Only one patient was a current smoker (20 pack-years), the rest denying such habit. None of the patients had family histories or clinical manifestations suggesting congenital predispositions for dissection (eg, Marfan’s syndrome, Ehlers-Danlos syndrome, and FMD).

Table 1. Baseline demographic and clinical characteristics of patients.

Variables	Patients (N = 8)	95% CI
Age: median (range), y	62.8 (40–84)	62.8 (51.7–73.8)
Gender (male:female)	4:4	50.0 (15.7–84.3)
Initial presentation as abdominal pain, n (%)	7 (87.5%)	87.5 (47.4–99.7)
Initial presentation as flank pain, n (%)	1 (12.5%)	12.5 (0.3–52.7)
Comorbidities, hypertension, n (%)	2 (25%)	25 (3.2–65.1)
Comorbidities, congestive heart failure, n (%)	1 (12.5%)	12.5 (0.3–52.7)
Comorbidities, hyperlipidemia, n (%)	2 (25%)	25 (3.2–65.1)
Comorbidities, smoking, n (%)	1 (12.5%)	12.5 (0.3–52.7)
Family history of arterial disease	0 (0%)	0 (0–36.9)
Histologic diagnosis	0 (0%)	0 (0–36.9)
Table 2. Clinical and imaging findings at presentation and follow-up.

No.	Age (y) /Gender	Clinical presentation	Follow up (months)	Comorbidity	Initial CT angiography	Newly developed arterial lesion at follow-up CT angiography	Endovascular treatment
1	63/M	Abdominal pain	17	None	SMA dissection	Progression of SMA dissection	SMA stent insertion
2	56/M	Abdominal pain	25	HTN, Hyperlipidemia, A. fib	SMA dissection	Right renal artery dissection	
3	70/F	Abdominal pain	15	Hyperlipidemia	Celiac axis and CHA dissection	Left renal artery dissection with ectasia (1 week later)	
4	84/F	Abdominal pain	19	HTN, A. fib, CHF	Aneurysm of PHA, RHA, LHA, LGA, and RGEA right renal artery stenosis	Stable	Right renal artery stent insertion
5	66/M	Abdominal pain	57	None	SMA dissection	Progression of SMA dissection, Pancreaticoduodenal artery aneurysm (9 days later)	SMA Stent insertion
6	70/F	Abdominal pain	38	None	SMA dissection, Right colic artery dissection, Middle colic artery occlusion	Ileocolic artery aneurysm (1 month later)	
7	40/M	Lt. flank pain	15	None	Celia axis stenosis, CHA stenosis, Splenic artery occlusion	Stable	
8	53/F	Abdominal pain	22	None	GDA pseudoaneurysm, Celiac axis dissection	Stable	Embolization

No., number; CT, computed tomography; SMA, Superior mesenteric artery; CHA, common hepatic artery; PHA, proper hepatic artery; RHA, right hepatic artery; LHA, left hepatic artery; LGA, left gastric artery; RGEA, right gastroepiploic artery; GDA, gastroduodenal artery; HTN, hypertension; A. fib, atrial fibrillation; CHF, congestive heart failure.

doi:10.1371/journal.pone.0161182.t002

Detailed clinical and imaging findings at presentation and during follow-up of patients are summarized in Table 2.

Markers of inflammatory vascular disease, such as anti-neutrophil cytoplasmic antibody (ANCA), complement C3/C4, fluorescent antinuclear antibody (FANA), rheumatoid factor (RF), anti-La antibodies, and anti-cardiolipin antibodies, were all negative. C-reactive protein was elevated in one patient showing a splenic infarct (patient No.7).

Arterial involvement of SAM

All eight patients were subjected to CT angiography at presentation, identifying 19 lesions as follows: celiac axis, three (37.5%); superior mesenteric artery (SMA), four (50%); common hepatic artery, two (25%); and one each involving right renal, splenic, right colic, middle colic, gastroduodenal, left gastric, right gastroepiploic, proper hepatic, right hepatic, and left hepatic arteries. A number of dissections (n = 8), aneurysms (n = 5), and stenoses or occlusions (n = 5), as well as a single pseudoaneurysm were demonstrated (Table 2).

During follow-up, all patients underwent CT angiography periodically in accord with study protocol. Upon conclusion, 25 lesions ultimately accrued, including three additional aneurysms (SMA branch, pancreaticoduodenal and ileocolic arteries), marginal artery occlusion, and bilateral renal arterial dissections (Table 2).
Surveillance results

Although patient No. 8 underwent endovascular embolization of an initially identified gastro-duodenal pseudoaneurysm (Fig 1), other patients opted for regular monitoring. At completion of the follow-up period, lesions in four patients were stable, whereas new arterial lesions developed in the other four (No. 1, 2, 5, 6). In one patient (No. 1), a SMA branch aneurysm and a marginal arterial occlusion appeared at Month 2. Another patient (No. 2), presenting with SMA dissection, displayed dissections of right and left renal arteries with ectasia at Week 1 (Fig 2). Patient No. 5, also presented with SMA dissection and developed a pancreaticoduodenal aneurysm by Day 9. Finally, patient No. 6 developed an ileocolic aneurysm at Month 1 (Fig 3).

Among these patients, symptomatic isolated dissection of SMA (SIDSMA) was first considered in three (No. 1, 2, 5). However, a diagnosis of SAM was made after other splanchnic arterial lesions materialized. Two patients (No. 1, 5) required stent placement due to progression of dissection, as specified in our previously published recommendations [7].

Literature cases

To date there are 76 studies and 101 cases of SAM (Tables 3 and 4), of which 60 were men and 41 were women. Median age was 56.9 years (range, 0–91 years 95% CI range,). Most patients presented with abdominal pain (68%), whereas eight patients were asymptomatic. In 68 patients (67%), diagnosis was confirmed by histologic means. Others were diagnosed clinically. The vessel most often associated with SAM was splenic artery, accounting for 28% of all SAM involvement. Common hepatic artery (and hepatic branches), celiac trunk, and renal arteries were the next most commonly involved.

Of the 94 cases with reported survival outcomes, SAM-related mortality was 22% (21 patients), with 78% (73 patients) surviving acute presentations of SAM. Of the 21 patients who
died of SAM-related causes, 13 reportedly died before any intervention could be attempted (i.e., death on arrival to hospital) or without intervention, and five died despite attempts at nonoperative conservative management.

Eventually only 14 patients were conservatively managed. Another 47 patients underwent surgical ligation of bleeding vessels/or resection of aneurysmal segment, often with vascular reconstruction either as primary management or after failed endovascular intervention. Twenty-four patients were managed by endovascular intervention through sole use of coil embolization.

In most cases reviewed, follow-up indicated that patients were largely asymptomatic clinically, with additional imaging showing variable outcomes from complete resolution to no change in untreated aneurysm [5]. Few reports of new arterial lesions appears in the literature.

Discussion

Slavin et al (1976) were the first to define SAM, describing this pathologically distinct entity based on three autopsies. Fundamentally, SAM involves lytic degeneration of medial smooth muscle leading to tearing/separation from adventitia and adjacent fibrosis. Hence, patients commonly present with aneurysms, dissections, stenoses and ruptures, often requiring emergency surgical or endovascular intervention [32].

The 101 cases of SAM that have been reported thus far likely represent a gross underestimate of its true incidence. Typically, splanchnic vessels of middle-aged and elderly adults are affected in SAM, although carotid, renal, intracranial, and iliac arterial involvement has been reported, and some cases have developed in young individuals. To date, some authorities insist that SAM represents a variant or a precursor of FMD [1, 2]. However, young females are
usually afflicted with FMD, showing diffuse disarray of media in mid- and distal arterial segments where smooth muscle is replaced by collagen [6, 83]. Arterial stenoses are common in FMD, but aneurysms and dissections are rare [35, 83]. The differential diagnosis also includes Marfan’s syndrome, polyarteritis nodosa, Takayasu’s arteritis, Behçet’s disease, allergic granulomatous angiitis, and various disorders of collagen (eg, Ehlers-Danlos syndrome, Loeys-Dietz syndrome, and neurofibromatosis) [35]. SAM differs significantly in terms of pathologic findings, laboratory abnormalities, and sites of involvement, predominantly involving splanchnic vasculature and presenting distinctively. Marfan’s and Ehlers-Danlos syndromes commonly manifest as dissections and aneurysms. Loeys-Dietz syndrome also is usually marked by aneurysms. Although neurofibromatosis may produce long-segment stenosis and aneurysms, dissections are rare [35].

In a literature review, abdominal pain was the most common presenting symptom (68%), followed by hemodynamic shock (25%), neurologic symptom (12%), and 11 patients (11%) died before further investigation and/or attempted management. However, eight cases (8%) reported an asymptomatic presentation. In our review, seven of our patients (87.5%) presented with acute abdominal pain and one patient experienced acute flank pain.

Mean age at presentation was slightly higher in our patients, compared with the pooled data of literature review (62.8 vs 56.9 years). Multiple vessels were initially involved in five of our patients (62.5%), as opposed to 47% in other reports [34, 84]. Some sources further suggest that multiple splanchnic vessels are affected during the course of SAM [32]. In support of this tenet, half of our patients developed new lesions of splanchnic arteries (Pt. No. 1, 2, 5, 6) (Table 1). Consequently, careful clinical follow-up is recommended, checking regularly for new arterial lesions via CT angiography. According to our protocol, CT angiography is done at presentation and repeated periodically (Week 1 and Month 3 after diagnosis, then yearly). Only if

![Fig 3. CT angiography (patient No. 6): (A) SMA dissection at presentation (in addition to right colic arterial dissection and occlusion of middle colic artery); (B) newly developed aneurysm of ileocolic artery seen 1 month after initial visit.](https://doi.org/10.1371/journal.pone.0161182.g003)
initial lesions resolve completely within the first year of follow-up is yearly imaging abandoned. In reviewing the literature, only in a few instances did new lesions develop during the course of SAM. A high index of suspicion and careful evaluation of imaging studies are essential in this regard. Our imaging protocol during follow-up periods may certainly played a role here.

Three of our patients (37.5%) were initially considered as SIDSMA in our series. Once new splanchnic arterial lesions materialized, a diagnosis of SAM was eventually established. It may well be that SIDSMA is a preliminary manifestation of SAM. Regular imaging and careful monitoring are thus prudent in instances of SIDSMA as well.

No formal guidelines for management of SAM exist as yet. Patients with shock and intra-abdominal hemorrhage should be treated with emergency surgical or endovascular intervention. If a lesion progresses, increasing the risk of organ ischemia, endovascular intervention is perhaps the foremost therapeutic option [32]. Previous studies have indicated that a benign course of the disease requires no therapy [52]. Given that the arterial walls are already prone to dissection or development of aneurysms, intra-arterial catheter manipulation and balloon dilation stand to worsen or instigate arterial dissections. Accordingly, invasive procedures may be reserved for patients with hemodynamically unstable conditions or significant end-organ ischemia [47, 63, 69, 85]. Four of our patients submitted to endovascular interventions. Two had stents placed in SMA, adhering to related treatment guidelines of our group; [7] one underwent coil embolization for a pseudoaneurysm of gastroduodenal artery with bleeding; and in another we opted for right renal arterial stent insertion due to progressing azotemia. No surgical interventions were done. The utility of corticosteroids in the management of this disease is questionable, given the absence of inflammation in histologic preparations. Active management of hypertension may otherwise be beneficial [62].

The present study has several limitations. As other case series reports, our initiative deals with a small group of patients (N = 8). The latter may seem abundant by comparison, relative to 101 similar case reports in the literature, but small patient samplings provide only limited perspective of this disease entity. In addition, none of the arterial lesions had pathologic confirmation, which would have been prohibitive. Each diagnosis was based solely on clinical and imaging findings, in conjunction with an absence of laboratory abnormalities and exclusion of diagnostic alternatives [6]. We applied diagnostic criteria of Kalva et al for this study. Nevertheless, these criteria are in need of further validation. The present study was also retrospective in nature, relying upon only eight patients. However, in the only prior study of more than eight patients, CT angiographic data were insufficient. By comparison, our efforts have generated a significant body of information on SAM, addressing diagnosis, therapy, and follow-up management. With increasing awareness of SAM, new studies are coming forward.

Table 3. Baseline demographic and clinical characteristics of literature cases.

Variables	Patients (n = 101)	95% CI
Age: median (range), y	56.9 (0–91)	56.9 (53.8–60.0)
Gender (male:female)	60:41	59.4 (49.2–69.1)
Initial presentation as abdominal pain	69 (68%)	68.3 (58.3–77.2)
Histologic diagnosis	68 (67%)	67.3 (57.3–76.3)
Management		
Conservative management	14 (14%)	13.9 (7.8–22.2)
Endovascular intervention	24 (24%)	23.8 (15.9–33.3)
Open surgery after failed endovascular intervention	7 (7%)	6.9 (2.8–13.8)
Open surgery	41 (41%)	40.6 (30.9–50.8)
None mentioned or attempted	15 (15%)	14.9 (8.6–23.3)

doi:10.1371/journal.pone.0161182.t003
Table 4. Included studies and outcomes of interest.

Authors	Year	No. of cases	Histologic confirmation	Management	Outcome	SAM involved vessels
Matsuda et al.[8]	2015	1	Yes	O after failed EV	S	Splenic a.
Kimura et al.[9]	2015	1	Yes	O after failed EV	S	Inf. PDA
Liao et al.[10]	2015	1	No	EV	S	SMA
Ruderman et al.[11]	2015	1	No	EV	S	Renal a.
Nishimura et al.[12]	2014	1	No	O	S	Middle colic a.
Galketiya et al.[13]	2014	1	Yes	O	S	Lt. colic a.
Horsley et al.[14]	2014	1	No	C	S	SMA, IMA, ileocolic a. Hepatic a.
Yamamoto et al.[15]	2014	1	No	EV	S	PDA
Marshall et al.[16]	2013	2	1. Yes	1. O after failed EV	1. S	1. Hepatic a.
			2. Yes	2. O after failed EV	2. S	2. Hepatic a.
Kidogawa et al.[17]	2013	1	No	C	S	Inf. PDA
Alturkustani et al.[18]	2013	1	Yes	O	S	LGA
			2. Yes	1. N	1. DS	1. VA
				2. N	2. DS	2. VA
Tabassum et al.[19]	2013	1	Yes	O	S	Ant. cerebral a., Lt. VA
Yoshida et al.[20]	2013	1	Yes	O	S	Lt. colic a.
Ushijima et al.[21]	2013	1	No	O	S	Post. inf. PDA
Yoo et al.[22]	2012	1	No	EV	S	SMA, middle colic a.
Matsuda et al.[23]	2012	1	No	O	S	Ant. cerebral a., Lt. VA
Ito et al.[24]	2012	1	No	C	S	SMA, IMA, Lt. renal a. Splenic a.
Hatogai et al.[25]	2012	1	Yes	O	S	Hepatic a., Celiac artery
Cooke et al.[26]	2012	1	No	EV	S	VA
Filippone et al.[27]	2011	2	1. No	1. C	1. S	1. Rt. renal a., Rt. carotid a., Both VA, Lt. middle cerebral a. Both renal a.
			2. Yes	2. O	2. S	2. Hepatic a., SMA
Gahide et al.[28]	2011	1	No	EV	S	Lt. renal a.
Obara et al.[29]	2011	1	No	EV	S	Splenic artery, Celiac artery
Oki et al.[30]	2011	1	Yes	O	S	Rt. renal a.
Tomonaga et al.[31]	2011	1	No	C	S	Hepatic a.
Tameo et al.[32]	2011	1	Yes	O after failed EV	S	SMA
Fujikawa et al.[33]	2011	1	Yes	O after failed EV	S	Middle colic a.
Naitoh et al.[34]	2010	1	No	EV	S	Splenic a. Celiac a.
Baker-LePain et al.	2010	2	1. Yes	1. O	1. S	1. Hepatic a., Lt. colic a., Splenic a.
			2. Yes	2. O	2. S	2. Celiac a., Splenic a. Hepatic a.
Davran et al.[36]	2010	3	1. No	1. EV	1. S	1. Rt. renal a., SMA, Celiac a.
			2. No	2. EV	2. S	2. Hepatic a., Renal a., SMA
			3. No	3. EV	3. S	3. SMA, PDA
Soga et al.[37]	2009	1	Yes	C	DN	Renal a.
Ro et al.[38]	2009	1	Yes	N	DS	RGEA, LGA, VA
Keuleers et al.[39]	2009	1	Yes	O	S	Ascending aorta
Kahn et al.[40, 41]	2009	1	Yes	O	DS	Splenic a., Celiac a., Middle colic a.
Agarwal et al.[42]	2009	2	1. No	1. C	1. S	1. Splenic a., Celiac a.
			2. No	2. EV	2. S	2. SMA, Renal a., Celiac a., Splenic a., GEA
Hirokawa et al.[43]	2009	1	No	EV	S	Middle colic a.
Ro et al.[44]	2008	1	Yes	N	DS	Vertebral a., Basilar a., Internal carotid a.
Hashimoto et al.[45]	2008	1	Yes	EV (then elective O)	S	Splenic a., GEA, SMA
Abdelrazeq et al.[46]	2008	1	Yes	O after failed EV	S	Marginal a. of Drummond

(Continued)
Table 4. (Continued)

Authors	Year	No. of cases	Histologic confirmation	Management	Outcome	SAM involved vessels
Shimohira et al.[47]	2008	4	1. No	1. EV	1. S	1. Hepatic a., Splenic a.
			2. No	2. EV	2. S	2. GEA
			3. No	3. EV	3. S	3. Middle colic a., Hepatic a., Celiac a.
			4. No	4. EV	4. S	4. IMA, Lt. colic a.
Mizutani et al.[48]	2008	1	No	EV	S	Rt. renal a.
Takahashi et al.[49]	2007	1	No	EV	S	Middle colic a.
Muller and Kullmann[50]	2006	1	Yes	O	S	Pulmonary arterioles
Rosenfelder et al.[51]	2006	1	Yes	O	S	Colic a., Mid-jejunal a., Hepatic a., GA
Michael et al.[52]	2006	5	1. No	1. C	1. S	1. Celiac a., SMA, Hepatic a.
			2. No	2. EV	2. S	2. Celiac a., Hepatic a., GDA, Lt. renal a.
			3. Yes	3. O	3. S	3. SMA, GDA, Middle colic a.
			4. Yes	4. N	4. DS	4. Middle colic a.
			5. No	5. C	5. S	5. SMA, Renal a., Jejun al.
Phillips and Lepor[53]	2006	1	Yes	O	S	Lt. renal a.
Obara et al.[54]	2006	1	Yes	O	S	Lt. ICA, Celiac a., SMA, Hepatic a.
Imai et al.[55]	2005	1	Yes	N	DS	Splenic a.
Yamakawa et al.[56]	2005	2	1. Yes	1. O	1. S	1. Post. inf. cerebellar a.
			2. Yes	2. O	2. DS	2. Post. inf. cerebellar a.
Jibiki et al.[57]	2005	1	Yes	O	S	PDA, Celiac a., Splenic a.
Basso et al.[58]	2005	2	1. Yes	1. O	1. S	1. Submucosal and serosal intestinal a.
			2. Yes	2. O	2. DS	2. Both ICA
Hirakawa et al.[59]	2005	4	1. Yes	1. O	1. U	1. Celiac a., LGA, Splenic a., CHA
			2. Yes	2. O	2. U	2. Celiac a., LGA, Splenic a.
			3. Yes	3. O	3. U	3. Celiac a., LGA
			4. Yes	4. O	4. U	4. Splenic a.
Chino et al.[60]	2004	1	Yes	O	S	Middle colic a.
Nishiyama et al.[61]	2004	1	Yes	N	DS	LGA
Soulen et al.[62]	2004	1	No	EV	S	CHA, Splenic a., Both renal a., GDA, SMA
Rengstorf et al.[63]	2004	1	Yes	O	S	IMA
Yamada et al.[64]	2004	1	Yes	O	S	Lt. common iliac a.
Eifinger et al.[65]	2004	1	Yes	C	DS	Placental a., Umbilical cord a.
Takagi et al.[66]	2003	1	Yes	O	S	Celiac a., Splenic a., Lt. renal a.
Ohta et al.[67]	2003	1	Yes	EV (then elective O)	S	Vertebro-basilar junction, Ant. Communicating a., Lt. superficial temporal a.
Sakata et al.[68]	2002	1	Yes	C	DS	Rt.VA, Lt. ICA, SMA, Bilateral renal a., Lt. EIA
Ryan et al.[69]	2000	1	No	EV	S	Hepatic a.
Chen et al.[70]	1998	1	Yes	O	S	Hepatic a., Splenic a.
Nagashima et al.[71]	1998	1	Yes	N	DS	PHA
Sakano et al.[72]	1997	1	Yes	O	S	Middle colic a.
Kato et al.[73]	1996	1	Yes	O	S	IMA
Peters et al.[74]	1995	1	Yes	C	DS	ICA
Ito et al.[75]	1995	1	Yes	C	DS	Splenic a.
Slavin et al.[1]	1995	5	1. Yes	1. O	1. S	1. Lt. colic a.
			2. Yes	2. N	2. DN	2. Epicardial coronary a.
			3. Yes	3. O	3. S	3. Ileocolic a.
			4. Yes	4. N	4. DN	4. Hepatic a.
			5. Yes	5. N	5. DS	5. GEA
Wang and Huang[76]	1994	1	Yes	O	S	Lt. colic a.
Juvonen et al.[77]	1994	1	Yes, O	S	O	Omental a., Splenic a., Pancreatic a.
potential for misdiagnosis means that untold sufferers fail to receive proper treatment or due vigilance. A multicenter observation registry may offer better insights into clinical and imaging characteristics of SAM, accruing sufficient case numbers for prospective investigation.

Table 4. (Continued)

Authors	Year	No. of cases	Histologic confirmation	Management	Outcome	SAM involved vessels
Eskenasy-Cottier et al.	1994	1	Yes	N	DS	Ant. Circulation of the circle of Willis
Inayama et al.	1992	1	Yes	O	S	LGA, Splenic a.
Armas and Donovan	1992	1	Yes	N	DS	Hepatic a.
Heritz et al.	1990	1	Yes	O	S	Omental a., Ileal a., GDA, Renal a.
Slavin et al.	1989	1	Yes	O	S	Jejunal a.
Slavin et al.	1976	3	1. Yes	1. N	1. DS	1. Splenic a.
			2. Yes	2. N	2. DS	2. Rt. colic a.
			3. Yes	3. N	3. DS	3. Lt. colic a.

C, Conservative management; DN, died from causes not directly related to segmental arterial mediolysis; DS, died as a direct consequence of segmental arterial mediolysis or segmental arterial mediolysis-related sequelae; EV, endovascular intervention; N, none mentioned or attempted; O, open surgery; S, survived; U, outcome not reported; No., number; SMA, Superior mesenteric artery; CHA, common hepatic artery; PHA, proper hepatic artery; RHA, right hepatic artery; LHA, left hepatic artery; LGA, left gastric artery; RGEA, right gastroepiploic artery; GEA, gastroepiploic artery; GDA, gastroduodenal artery; PDA, pancreaticoduodenal artery; GA, gastric artery; ICA, internal carotid artery; VA, vertebral artery; EIA, external iliac artery.

doi:10.1371/journal.pone.0161182.t004

Supporting Information

S1 PRISMA Checklist. PRISMA Checklist.
(PDF)

S1 PRISMA Flow Diagram. PRISMA Flow Diagram.
(PDF)

S1 Table. Search strategy.
(DOCX)

Author Contributions

Conceived and designed the experiments: SM SKM.

Performed the experiments: HSK SM.

Analyzed the data: SM AH CC JH.

Contributed reagents/materials/analysis tools: HSK SM AH CC SKM JH.

Wrote the paper: HSK SM.

References

1. Slavin RE, Saeki K, Bhagavan B, Maas AE. Segmental arterial mediolysis: a precursor to fibromuscular dysplasia? Modern pathology: an official journal of the United States and Canadian Academy of Pathology, Inc. 1995; 8(3):287–94. PMID: 7617656.

2. Lie JT. Segmental mediolytic arteritis. Not an arteritis but a variant of arterial fibromuscular dysplasia. Archives of pathology & laboratory medicine. 1992; 116(3):238–41. PMID: 1536608.
3. Slavin RE, Inada K. Segmental arterial mediolysis with accompanying venous angiopathy: a clinical pathologic review, report of 3 new cases, and comments on the role of endothelin-1 in its pathogenesis. International journal of surgical pathology. 2007; 15(2):121–34. doi: 10.1177/1066896906297684 PMID: 17478765.

4. Slavin RE, Gonzalez-Vitale JC. Segmental mediolytic arteritis: a clinical pathologic study. Laboratory investigation; a journal of technical methods and pathology. 1976; 35(1):23–9. PMID: 940319.

5. Shenuoda M, Riga C, Naji Y, Renton S. Segmental arterial mediolysis: a systematic review of 85 cases. Annals of vascular surgery. 2014; 28(1):269–77. doi: 10.1016/j.avsg.2013.03.003 PMID: 23988553.

6. Kalva SP, Somarouthu B, Jaff MR, Wicky S. Segmental arterial mediolysis: clinical and imaging features at presentation and during follow-up. Journal of vascular and interventional radiology: JVIR. 2011; 22(10):1380–7. doi: 10.1016/j.jvir.2011.07.001 PMID: 21840227.

7. Min SI, Yoon KC, Min SK, Ahn SH, Jae HJ, Chung JW, et al. Current strategy for the treatment of symptomatic spontaneous isolated dissection of superior mesenteric artery. Journal of vascular surgery. 2011; 54(2):461–6. doi: 10.1016/j.jvs.2011.03.001 PMID: 21571493.

8. Matsuda Y, Sakamoto K, Nishino E, Kataoka N, Yamaguchi T, Tomita M, et al. Pancreatectomy and splenectomy for a splenic aneurysm associated with segmental arterial mediolysis. World J Gastrointest Surg. 2015; 7(5):78–81. doi: 10.4240/wjgs.v7.i5.78 PMID: 26015853; PubMed Central PMCID: PMC4438451.

9. Kimura Y, Ito T, Imamura M, Hirata K. Successful hybrid treatment for huge visceral artery aneurysms with contained rupture complicating segmental arterial mediolysis. Interact Cardiovasc Thorac Surg. 2015; 21(6):814–6. doi: 10.1093/icvts/ivv249 PMID: 26362627.

10. Liao CY, Kuo WH, Huang EH, Hsieh AT, Le CC, Tsai CC, et al. A diagnostic dilemma: acute abdomen presenting as segmental arterial mediolysis masked by a ruptured hepatocellular carcinoma. Gastroenterol Rep (Oxf). 2015. doi: 10.1093/gastro/gov030 PMID: 26163669.

11. Ruderman I, Menahem S. Segmental arterial mediolysis mimicking medium-vessel vasculitis. Nephron Clin Pract. 2015; 20(3):224–5. doi: 10.1111/ncp.12360 PMID: 25712556.

12. Nishimura K, Hamasaki T, Ota R, Ohno T, Kodama W, Uchida N, et al. Elective treatment of middle colic artery aneurysm. Ann Vasc Dis. 2014; 7(3):328–30. doi: 10.3400/avd.cr.14-00058 PMID: 25298839; PubMed Central PMCID: PMC4180699.

13. Galketiya K, Llewellyn H, Liang X. Spontaneous haemoperitoneum due to segmental arterial mediolysis and rupture of the left colic artery. ANZ J Surg. 2016; 86(3):201–2. doi: 10.1111/ans.12654 PMID: 24801961.

14. Horsley-Silva JL, Ngamruengphong S, Frey GT, Paz-Fumagalli R, Lewis MD. Segmental arterial mediolysis: a case of mistaken hemorrhagic pancreatitis and review of the literature. JOP. 2014; 15(1):72–7. doi: 10.6092/1590-8577/2036 PMID: 24413790.

15. Yamamoto T, Yoshizawa N, Fuke H, Hashimoto A, Sugimoto K, Shiraki K, et al. Education and imaging. Gastrointestinal: Spontaneous rupture of the pancreaticoduodenal artery from segmental arterial mediolysis. Journal of gastroenterology and hepatology. 2014; 29(6):1129. doi: 10.1111/jgh.12603 PMID: 24832780.

16. Marshall L, O’Rourke T, McCann A, Finch R, Strong R. Spontaneous intrahepatic haemorrhage: two cases of segmental arterial mediolysis. ANZ J Surg. 2015; 85(1–2):49–52. doi: 10.1111/ans.12304 PMID: 23980275.

17. Kidogawa H, Okamoto K, Yamayoshi T, Noguchi J. [Conservative management of a ruptured inferior pancreaticoduodenal artery aneurysm associated with celiac artery occlusion]. Nihon Shokakibyo Gakkai Zasshi. 2013; 110(10):1831–34. doi: 10.1111/nep.12360 PMID: 24097155.

18. Alturkustani M, Ang LC. Intracranial segmental arterial mediolysis: report of 2 cases and review of the literature. Am J Forensic Med Pathol. 2013; 34(2):98–102. doi: 10.1097/PAF.0b013e31828879e8 PMID: 23629390.

19. Tabassum A, Sasani S, Majid AJ, Henderson C, Merrett ND. Segmental arterial mediolysis of left gastric artery: a case report and review of pathology. BMC Clin Pathol. 2013; 13(1):26. doi: 10.1186/1472-6890-13-26 PMID: 24168034; PubMed Central PMCID: PMC4175101.

20. Yoshida H, Ukai K, Sugimura M, Akoshima H, Kimura K, Iwabuchi M, et al. A case report of segmental arterial mediolysis in which computed tomography angiography was useful for diagnosis. Clin J Gastroenterol. 2013; 6(6):447–53. doi: 10.1007/s12328-013-0433-7 PMID: 24319500; PubMed Central PMCID: PMC3851787.

21. Ushijima T, Izumo A, Matsumoto T, Taniguchi K, Uchida T. Pancreaticoduodenal artery pseudoaneurysm caused by segmental arterial mediolysis: a case report of surgical treatment. Ann Vasc Dis. 2013; 6(2):198–201. doi: 10.3400/avd.cr.12.00094 PMID: 23825502; PubMed Central PMCID: PMC3692991.
Segmental Arterial Mediolysis

22. Yoo BR, Han HY, Cho YK, Park SJ. Spontaneous rupture of a middle colic artery aneurysm arising from superior mesenteric artery dissection: Diagnosis by color Doppler ultrasonography and CT angiography. J Clin Ultrasound. 2012; 40(4):255–9. doi: 10.1002/jcua.21906 PMID: 22457222.

23. Matsuda R, Hironaka Y, Takeshima Y, Park YS, Nakase H. Subarachnoid hemorrhage in a case of segmental arterial mediolysis with coexisting intracranial and intraabdominal aneurysms. J Neurosurg. 2012; 116(5):948–51. doi: 10.3171/2012.1.JNS111967 PMID: 22385002.

24. Ito N, Kuwahara G, Sukehiro Y, Seki E, Iwasaki E, et al. A case of hepatic artery aneurysm that had formed asymptptomatically and penetrated into the duodenum. Journal of Japanese Society of Gastroenterology. 2012; 109(2):247–54. PMID: 22306548.

25. Hatogai K, Nakazawa A, Takita M, Kishino R, Seki E, Iwasaki E, et al. A case of hepatic artery aneurysm associated with segmental arterial mediolysis. J Neurointerv Surg. 2013; 5(5):478–82. doi: 10.1136/eurintsurg-2012-010333 PMID: 22693248.

26. Filippone EJ, Foy A, Galanis T, Pokuah M, Newman E, Lallas CD, et al. Segmental arterial mediolysis: report of 2 cases and review of the literature. American journal of kidney diseases: the official journal of the National Kidney Foundation. 2011; 58(6):981–7. doi: 10.1053/j.ajkd.2011.05.031 PMID: 21872379.

27. Gahide G, Servant S, Giroux MF. Vanishing renal artery disease: a segmental arterial mediolysis story. Kidney international. 2011; 80(9):1002. doi: 10.1038/ki.2011.279 PMID: 21997510.

28. Obara H, Matsubara K, Inoue M, Nakatsuka S, Kuribayashi S, Kitagawa Y. Successful endovascular treatment of hemosuccus pancreaticus due to splenic artery aneurysm associated with segmental arterial mediolysis. Journal of vascular surgery. 2011; 54(5):1488–91. doi: 10.1016/j.jvs.2011.04.053 PMID: 21715127.

29. Oki T, Adachi H, Tahara H, Kino S. Spontaneous renal artery dissection with renal infarction: A case report. Acta Urologica Japonica. 2011; 57(11):611–4. PMID: 22166823.

30. Tomonaga T, Eguchi S, Hidaka M, Takatsuki M, Soyama A, Muraoka I, et al. A case of ruptured segmental arterial mediolysis of the hepatic artery: report of a case. Hepato-gastroenterology. 2011; 58(112):1912–4. doi: 10.5754/hge10177 PMID: 22234060.

31. Tameo MN, Dougherty MJ, Calligaro KD. Spontaneous dissection with rupture of the superior mesenteric artery from segmental arterial mediolysis. Journal of vascular surgery. 2011; 53(4):1107–12. doi: 10.1016/j.jvs.2010.11.034 PMID: 21276678.

32. Fujiwara Y, Takemura M, Yoshida K, Morimura K, Inoue T. Surgical resection for ruptured aneurysm of middle colic artery caused by segmental arterial mediolysis: a case report. Osaka City Med J. 2010; 56(2):47–52. PMID: 21466129.

33. Naitoh I, Ando T, Shimohira M, Nakazawa T, Hayashi K, Okumura F, et al. Hemosuccus pancreaticus associated with segmental arterial mediolysis successfully treated by transarterial embolization. JOP. 2010; 11(6):625–9. PMID: 21068500.

34. Baker-LePain JC, Stone DH, Mattis AN, Nakamura MC, Fye KH. Clinical diagnosis of segmental arterial mediolysis: differentiation from vasculitis and other mimics. Arthritis care & research. 2010; 62(11):1655–60. doi: 10.1002acr.20294 PMID: 20662047; PubMed Central PMCID: PMC2974779.

35. Davran R, Canar M, Parildar M, Oran I. Radiological findings and endovascular management of three cases with segmental arterial mediolysis. Cardiovasc Intervent Radiol. 2010; 33(3):601–7. doi: 10.1053/j.ajkd.2011.05.031 PMID: 21872379.

36. Soga Y, Nose M, Arita N, Komori H, Miyazaki T, Maeda T, et al. Aneurysms of the renal arteries associated with segmental arterial mediolysis in a case of polyarteritis nodosa. Pathol Int. 2009; 59(3):197–200. doi: 10.1111/j.1440-1827.2009.02351.x PMID: 19261100.

37. Ro A, Kageyama N, Takatsu A, Fukunaga T. Segmental arterial mediolysis of varying phases affecting both the intra-abdominal and intracranial vertebral arteries: an autopsy case report. Cardiovascular pathology: the official journal of the Society for Cardiovascular Pathology. 2010; 19(4):248–51. doi: 10.1016/j.carpath.2009.02.002 PMID: 19375356.

38. Keuleers S, Verbeken E, Sinnaeve P. Aortic dissection associated with segmental arterial mediolysis in polycystic kidney disease. Eur J Intern Med. 2009; 20(1):e9–11. doi: 10.1016/j.ejim.2008.07.035 PMID: 19237081.

39. Khan NU, Khan U, Al-Aloul M, Yoran N, Khasati N, Machaal A, et al. Segmental Mediolytic Arteriopathy With Post-transplant Lymphoproliferative Disorder of the Lung: Case Report and Review of the Literature. Journal of Heart and Lung Transplantation. 2009; 28(9):77–80. doi: 10.1016/j.healun.2009.05.013 PMID: 19716054.
41. Lefevre G, Copin MC, Staumont-Salle D, Avenel-Audran M, Aubert H, Taieb A, et al. The lymphoid variant of hypereosinophilic syndrome: study of 21 patients with CD3-CD4+ aberrant T-cell phenotype. Medicine. 2014; 93(17):255–66. doi: 10.1097/MD.0000000000000888 PMID: 25398061.

42. Agarwal S, Stephen E, Selvaraj D, Mathur K, Keshava S, Chandy ST. Visceral ischemia: could it be segmental arterial mediolysis. Indian J Gastroenterol. 2009; 28(2):72–3. doi: 10.1007/s12664-009-0023-2 PMID: 19696994.

43. Hirokawa T, Sawai H, Yamada K, Nakatani K, Ogiro H, et al. Middle-colic artery aneurysm rupture in association with segmental arterial mediolysis, successfully managed by transcatheter arterial embolization: report of a case. Surg Today. 2009; 39(2):144–7. doi: 10.1007/s00595-008-3811-x PMID: 19198994.

44. Ro A, Kageyama N, Hayashi K, Shimahara A, Fukunaga T. Non-traumatic rupture of the intracranial vertebral artery of a man found dead in a severe car accident—Histopathological differentiation by stepwise sections. Legal Medicine. 2008; 10(2):101–6. doi: 10.1016/j.legalmed.2007.08.002 PMID: 17980639.

45. Hashimoto T, Deguchi J, Endo H, Miyata T. Successful treatment tailored to each splanchnic arterial lesion due to segmental arterial mediolysis (SAM): report of a case. Journal of vascular surgery. 2008; 48(5):1338–41. doi: 10.1016/j.jvs.2008.05.056 PMID: 18971044.

46. Abdelrazeq AS, Saleem TB, Nejim A, Leveson SH. Massive Hemopteritoneum Caused by Rupture of an Aneurysm of the Marginal Artery of Drummond. CardioVascular and Interventinal Radiology. 2007; 31(2):108–10. doi: 10.1007/s00270-007-9117-3

47. Shimohira M, Ogiro H, Sasaki S, Ishikawa K, Koyama M, Watanabe K, et al. Transcatheter arterial embolization for segmental arterial mediolysis. Journal of endovascular therapy: an official journal of the International Society of Endovascular Specialists. 2008; 15(4):493–7. doi: 10.1583/08-2384.1 PMID: 18729557.

48. Mizutani K, Kikuchi M, Kondo H, Moriyama Y, Tsujiya T, Masahiro N, et al. [Ruptured pseudoaneurysm of the renal artery associated with segmental arterial mediolysis]. Hinyokika Kiyo. 2008; 54(7):489–91. PMID: 18697484.

49. Takahashi Y, Moriguchi M, Suminaga Y, Nagashio C, Kano T, Suzuki A, et al. [A case report of segmental arterial mediolysis]. Nihon Rinsho Meneki Gakkai Kaishi. 2007; 30(3):193–7. PMID: 17603260.

50. Müller AM, Kullmann HJ. Pulmonary segmental mediolycytic arteriopathy. Pathol. 2006; 27(2):152–8. doi: 10.1007/s00292-006-0821-6 PMID: 16453108.

51. Rosenfelder NA, Taylor-Robinson SD, Jackson JE, Stamp GWH. Segmental mediolycytic arteriopathy in a patient with intraperitoneal bleeding. European Journal of Gastroenterology and Hepatology. 2006; 18(3):295–7. doi: 10.1097/00042737-200603000-00012 PMID: 16462545.

52. Michael M, Widmer U, Wildermuth S, Barghorn A, Duewell S, Pfammatter T. Segmental arterial mediolysis. CTA findings at presentation and follow-up. AJR American journal of roentgenology. 2006; 187(6):1463–9. doi: 10.2214/AJR.05.0281 PMID: 17114538.

53. Phillips CK, Lepor H. Spontaneous retroperitoneal hemorrhage caused by segmental arterial mediolysis. Rev Urol. 2006; 8(1):36–40. PMID: 16985559; PubMed Central PMCID: PMC1471784.

54. Obara H, Matsumoto K, Narimatsu Y, Sugano N, Igari T, Koike M, et al. Segmental arterial mediolysis involving both the internal carotid artery and visceral arteries. Journal of vascular surgery. 2006; 43(3):623–6. doi: 10.1016/j.jvs.2005.11.033 PMID: 16520184.

55. Imai MA, Kawahara E, Katsuda S, Yamashita T. Berry splenic artery aneurysm rupture in association with segmental arterial mediolysis and portal hypertension. Pathol Int. 2005; 55(5):290–95. doi: 10.1111/j.1440-1827.2005.01827.x PMID: 16785923.

56. Yamakawa H, Kakuy Y, Yoshimura SI, Okuma A, Sakai N. Two cases of dissecting aneurysm of the distal posterior inferior cerebellar artery: Possible involvement of segmental mediolycytic arteriopathy in the pathogenesis. Clinical Neurology and Neurosurgery. 2005; 107(2):117–22. doi: 10.1016/j.clineuro.2005.01.007 PMID: 15708226.

57. Jibiki M, Inoue Y, Iwai T, Sugano N, Igari T, Koike M. Treatment of three pancreaticoduodenal arterial aneurysms associated with celiac artery occlusion and splenic artery aneurysm: A case report and review of the literature. European Journal of Vascular and Endovascular Surgery. 2005; 29(2):213–7. doi: 10.1016/j.ejvs.2004.09.010 PMID: 16649792.

58. Basso MC, Flores PC, de Azevedo Marques A, de Souza GL, D'Elboux Guimaraes Brescia M, Campos CR, et al. Bilateral extensive cerebral infarction and mesenteric ischemia associated with segmental arterial mediolysis in two young women. Pathol Int. 2005; 55(10):632–7. doi: 10.1111/j.1440-1827.2005.01881.x PMID: 19969994.

59. Hirakawa E, Inada K, Tsuji K. Asymptomatic dissecting aneurysm of the coeliac artery: a variant of segmental arterial mediolysis. Histopathology. 2005; 47(5):544–6. doi: 10.1111/j.1440-1827.2005.02149.x PMID: 16242010.
60. Chino O, Kijima H, Shibuya M, Yamamoto S, Kashiwagi H, Kondo Y, et al. A case report: Spontaneous rupture of dissecting aneurysm of the middle colic artery. Tokai Journal of Experimental and Clinical Medicine. 2004; 29(4):155–8. PMID: 15717485

61. Nishiyama S, Zhu BL, Quan L, Tsuda K, Kamikodai Y, Maeda H. Unexpected sudden death due to a spontaneous rupture of a gastric dissecting aneurysm: An autopsy case suggesting the importance of the double-rupture phenomenon. Journal of Clinical Forensic Medicine. 2004; 11(5):268–70. doi: 10.1016/j.jcfm.2004.04.010 PMID: 15489181

62. Soulen MC, Cohen DL, Itkin M, Townsend RR, Roberts DA. Segmental arterial mediolysis: angioplasty of bilateral renal artery stenoses with 2-year imaging follow-up. Journal of vascular and interventional radiology: JVIR. 2004; 15(7):763–7. PMID: 15231892.

63. Rengstorff DS, Baker EL, Wack J, Yee LF. Intra-abdominal hemorrhage caused by segmental arterial mediolysis of the inferior mesenteric artery: report of a case. Diseases of the colon and rectum. 2004; 47(5):769–72. doi: 10.1016/j.jvs.2003.07.022 PMID: 15054678.

64. Yamada M, Ohno M, Itagaki T, Takaba T, Matsuyma T. Coexistence of cystic medial necrosis and segmental arterial mediolysis in a patient with aneurysms of the abdominal aorta and the iliac artery. Journal of vascular surgery. 2004; 39(1):246–9. doi: 10.1016/j.jvs.2003.07.022 PMID: 14718847.

65. Eifinger F, Fries J, Bald R, Korber F, Kribs A, Roth B. Segmental arterial mediolysis in a preterm. J Perinatol. 2004; 24(7):641–4. doi: 10.1038/sj.jp.7211130 PMID: 15224122.

66. Takagi C, Ashizawa N, Eishi K, Ashizawa K, Hayashi T, Tanaka K, et al. Segmental mediolytic arteriopathy involving celiac to splenic and left renal arteries. Internal Medicine. 2003; 42(9):818–23. PMID: 14518668

67. Ohta H, Sakai H, Nakahara I, Sakai N, Nagata I, Ishibashi-Ueda H. Spontaneous superficial temporal artery aneurysm associated with multiple intracranial cerebral aneurysms—Does it segmental mediolitic arteriopathy of the intra- and extra-cranial arteries? Acta Neurochirurgica. 2003; 145(9):805–6. doi: 10.1007/s00701-003-0079-1 PMID: 14505110

68. Sakata N, Takebayashi S, Shimizu K, Kojima M, Masawa N, Suzuki K, et al. A case of segmental mediolytic arteriopathy involving both intracranial and intraabdominal arteries. Pathology Research and Practice. 2002; 198(7):493–7.

69. Ryan JM, Suchocki PV, Smith TP. Coil embolization of segmental arterial mediolysis of the hepatic artery. Journal of vascular and interventional radiology: JVIR. 2000; 11(7):865–8. PMID: 10928523.

70. Chan RJ, Goodman TA, Aretz TH, Lie JT. Segmental mediolitic arteriopathy of the splenic and hepatic arteries mimicking systemic necrotizing vasculitis. Arthritis and Rheumatism. 1998; 41(5):935–8. doi: 10.1002/1529-0131(199805)41:5<935::AID-ART22>3.0.CO;2-N PMID: 9588747

71. Nagashima Y, Taki A, Misugi K, Aoki I, Tamura I, Fukano F, et al. Segmental mediolytic arteriopathy: A case report with review of the literature. Pathology Research and Practice. 1998; 194(9):643–7.

72. Sakano T, Morita M, Imaki M, Ueno H. Segmental arterial mediolysis studied by repeated angiography. Br J Radiol. 1997; 70(834):656–8. doi: 10.1259/bjr.70.834.9227264 PMID: 9227264.

73. Kato T, Yamada K, Akiyama Y, Kobayashi M, Yamamoto H, Hirai H, et al. Ruptured inferior mesenteric artery aneurysm due to segmental mediolitic arteritis. Cardiovascular Surgery. 1996; 4(5):644–8. doi:10.1016/0967-2109(95)00145-X PMID: 8909825

74. Peters M, Bohl J, Thomke F, Kallen KJ, Mahlzhahn K, Wandel E, et al. Dissection of the internal carotid artery after chiropractic manipulation of the neck. Neurology. 1995; 45(12):2284–8. doi: 10.1212/00005390-199512000-00026 PMID: 8848211

75. Ito MR, Ohtani H, Nakamura Y, Abe T, Nose M. An autopsy case of segmental mediolytic arteritis (SMA) accompanied with microscopic polyarteritis nodosa. Ryuamachi. 1994; 35(4):693–8.

76. Wang JJ, Huang TW. Ischemic colitis caused by an isolated dissecting aneurysm of the left colic artery: a presumed case of segmental mediolitic arteriopathy. Journal of the Formosan Medical Association = Taiwan yi zhi. 1994; 93(8):715–20. PMID: 7858458

77. Juvonen T, Niemelä O, Reinilä A, Nissinen J, Kairaluoma MI. Spontaneous intraabdominal haemorrhage caused by segmental mediolitic arteritis in a patient with systemic lupus erythematosus—an underestimated entity of autoimmune origin? European Journal of Vascular Surgery. 1994; 8(1):96–100. doi: 10.1016/0953-535X(93)90015-E PMID: 7938008

78. Eskinasy-Cottier AC, Leu HJ, Bassetti C, Bogousslavsky J, Regli F, Janzer RC. A case of dissection of intracranial cerebral arteries with segmental mediolitic ‘arteritis’. Clinical Neuropathology. 1994; 14(6):329–37. PMID: 7851048

79. Inayama Y, Kitamura H, Kitamura H, Tobe M, Kanisawa M. Segmental mediolitic arteritis. Clinico-pathological study and three-dimensional analysis. Acta Pathologica Japonica. 1992; 42(3):201–9. PMID: 1570742
80. Armas OA, Donovan DC. Segmental mediolytic arteritis involving hepatic arteries. Archives of Pathology and Laboratory Medicine. 1992; 116(5):531–4. PMID: 1580759

81. Heritz DM, Butany J, Johnston KW, Sniderman KW. Intraabdominal hemorrhage as a result of segmental mediolytic arteritis of an omental artery: Case report. Journal of vascular surgery. 1990; 12(5):561–5. doi: 10.1016/0741-5214(90)90011-X PMID: 2231968

82. Slavin RE, Cafferty L, Cartwright J Jr. Segmental mediolytic arteritis. A clinicopathologic and ultrastructural study of two cases. American Journal of Surgical Pathology. 1989; 13(7):558–68. PMID: 2660608

83. Stanley JC, Gewertz BL, Bove EL, Sottiurai V, Fry WJ. Arterial fibroplasias. Histopathologic character and current etiologic concepts. Archives of surgery. 1975; 110(5):561–6. PMID: 1131001.

84. Inada K, Maeda M, Ikeda T. Segmental arterial mediolysis: unrecognized cases culled from cases of ruptured aneurysm of abdominal visceral arteries reported in the Japanese literature. Pathology, research and practice. 2007; 203(11):771–8. doi: 10.1016/j.prp.2007.07.010 PMID: 17920781.

85. Ha HK, Lee SH, Rha SE, Kim JH, Byun JY, Lim HK, et al. Radiologic features of vasculitis involving the gastrointestinal tract. Radiographics: a review publication of the Radiological Society of North America, Inc. 2000; 20(3):779–94, doi: 10.1148/radiographics.20.3.g00mc02779 PMID: 10835128.