EXACT SOLUTIONS FOR A QUANTUM-MECHANICAL PARTICLE WITH SPIN 1 IN THE EXTERNAL HOMOGENEOUS MAGNETIC FIELD

With the use of the general covariant matrix 10-dimensional Petiau – Duffin – Kemmer formalism in cylindrical coordinates and tetrad there are constructed exact solutions of the quantum-mechanical equation for a particle with spin 1 in presence of an external homogeneous magnetic field. There are separated three linearly independent types of solutions; in each case the formula for energy levels has been found.

1 Introduction, setting the problem

The problem of a quantum-mechanical particle in the external homogeneous magnetic field is well-known in theoretical physics. In fact, only two cases are considered: a scalar (Schrödinger’s) non-relativistic particle with spin 0, and fermions (non-relativistic Pauli’s and relativistic Dirac’s) with spin 1/2 (the first investigation were [1, 2, 3, 4]). In the present paper, exact solutions for a vector particle with spin 1 will be constructed explicitly. The most popular quantum-mechanical problem for such a particle is that in presence of external Coulomb potential [4].

To treat the problem we take the matrix Petiau – Duffin – Kemmer approach in the theory of the vector particle extended to a general covariant form on the base of tetrad formalism (recent consideration and list of references see in [5, 6]).

The main equation in tetrad form is [6]

$$\left[i \beta^\alpha (x) (\partial_\alpha + B_\alpha - i \frac{e}{\hbar} A_\alpha) - \frac{Mc}{\hbar} \right] \Psi (x) = 0,$$

$$\beta^\alpha (x) = \beta^\alpha e^{\alpha (a)} (x), \quad B_\alpha (x) = \frac{1}{2} J^{ab} e^{\beta (a)} \nabla_\alpha e^{(b)\beta};$$

(1)

$e^{\alpha (a)} (x)$ is a tetrad, J^{ab} stands for generators for 10-dimensional representation of the Lorentz group referred to 4-vector and anti-symmetric tensor (for brevity we note Mc/\hbar as M). To the homogeneous magnetic field $B = (0, 0, B)$ corresponds 4-potential

$$A^a = (0, \vec{A}) = (0, \frac{1}{2} \vec{B} \times \vec{r}) = \frac{B}{2} (0, -x^2, +x^1, 0);$$

in the cylindric coordinates it is given by a simple expression

$$(ct, r, \phi, z), \quad dS^2 = c^2 dt^2 - dr^2 - r^2 d\phi^2 - dz^2, \quad A_0 = 0, \quad A_r = 0, \quad A_\phi = -\frac{Br^2}{2}, \quad A_z = 0.$$

(2)

Choosing a diagonal cylindric tetrad

$$e^{\alpha (0)} = (1, 0, 0, 0), \quad e^{\alpha (1)} = (0, 1, 0, 0), \quad e^{\alpha (2)} = (0, 0, 1, 0), \quad e^{\alpha (3)} = (0, 0, 0, 1).$$

(3)
after simple calculation, the main equation (1) is reduced to the form
\[
\begin{pmatrix}
i\beta^0 \partial_0 + i\beta^1 \partial_r + \frac{i\beta^2}{r} (\partial_\phi + \frac{ieB}{2\hbar} r^2 + J^{12}) + i\beta^3 \partial_z - M
\end{pmatrix}\Psi(t,r,\phi,z) = 0.
\] (4)

For brevity we will note \((eB/2\hbar)\) as \(B\). It is best to chose the matrices \(\beta^a\) in the so-called cyclic form, where the generator \(J^{12}\) has a diagonal structure. In block-form \((1 - 3 - 3 - 3)\) these matrices are
\[
\beta^0 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & i \tau_i & 0 \\ 0 & -i & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad \beta^i = \begin{pmatrix} 0 & 0 & e_i & 0 \\ 0 & 0 & 0 & \tau_i \\ -e_i^+ & 0 & 0 & 0 \\ 0 & -\tau_i & 0 & 0 \end{pmatrix},
\]
where \(e_i, \tau_i\) denote
\[
e_1 = \frac{1}{\sqrt{2}}(-i, 0, i), \quad e_2 = \frac{1}{\sqrt{2}}(1, 0, 1), \quad e_3 = (0, i, 0),
\]
\[
\tau_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \tau_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \quad \tau_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \tau_3 & 0 \\ 0 & 0 & \tau_3 \end{pmatrix} = s_3.
\]

Entering eq. (4) generator \(J^{12}\) is given by
\[
J^{12} = \beta^1\beta^2 - \beta^2\beta^1 = -i \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \tau_3 & 0 & 0 \\ 0 & 0 & \tau_3 & 0 \\ 0 & 0 & 0 & \tau_3 \end{pmatrix} = -i s_3.
\]

2 Separation of the variables

With the use of special substitution (it corresponds to diagonalization of the third projections of momentum \(P_3\) and angular momentum \(J_3\) for a particle with spin 1)
\[
\Psi = e^{-i\epsilon t} e^{i m \phi} e^{ik z} \begin{pmatrix} \Phi_0 \\ \bar{\Phi} \\ \vec{E} \\ \bar{\vec{E}} \end{pmatrix}, \quad \left[ie^0 + i\beta^1 \partial_r - \frac{\beta^2}{r} (m + Br^2 - S_3) - k\beta^3 - M \right] \begin{pmatrix} \Phi_0 \\ \bar{\Phi} \\ \vec{E} \\ \bar{\vec{E}} \end{pmatrix} = 0. \] (5)

after calculations we arrive at the radial system of ten equations
\[
\begin{align*}
-b_{m-1}E_1 - a_{m+1}E_3 - i k E_2 &= M \Phi_0, \\
-ib_{m-1}H_1 + ia_{m+1}H_3 + ie E_2 &= M \Phi_2, \\
i a_m H_2 + ie E_1 - k H_1 &= M \Phi_1, \\
-ib_m H_2 + ie E_3 + k H_3 &= M \Phi_3,
\end{align*}
\]
\[
\begin{align*}
a_m \Phi_0 - ie \Phi_1 &= ME_1, \\
i a_m \Phi_2 + k \Phi_1 &= MH_1, \\
b_m \Phi_0 - ie \Phi_3 &= ME_3, \\
ib_m \Phi_2 - k \Phi_3 &= MH_3, \\
-ie \Phi_2 - ik \Phi_0 &= ME_2, \\
ib_{m-1} \Phi_1 - ia_{m+1} \Phi_3 &= MH_2.
\end{align*}
\] (6)
Because, we can readily get

\[\frac{1}{\sqrt{2}} \left(\frac{d}{dr} + \frac{m + Br^2}{r} \right) = a_m, \quad \frac{1}{\sqrt{2}} \left(-\frac{d}{dr} + \frac{m + Br^2}{r} \right) = b_m. \]

From (6) – (7) it follow 4 equations for the components \(\Phi_a \)

\[
\begin{align*}
- b_{m-1} a_m - a_{m+1} b_m - k^2 - M^2 \right) \Phi_0 - \epsilon k \Phi_2 + i \epsilon (b_{m-1} \Phi_1 + a_{m+1} \Phi_3) &= 0, \\
- b_{m-1} a_m - a_{m+1} b_m + \epsilon^2 - M^2 \right) \Phi_2 + \epsilon k \Phi_0 - i \epsilon k (b_{m-1} \Phi_1 + a_{m+1} \Phi_3) &= 0, \\
- a_m b_{m-1} + \epsilon^2 - k^2 - M^2 \right) \Phi_1 + a_m a_{m+1} \Phi_3 + i \epsilon a_m \Phi_0 + i \epsilon k a_m \Phi_2 &= 0, \\
- b_{m} a_{m+1} + \epsilon^2 - M^2 - k^2 \right) \Phi_3 + b_m b_{m-1} \Phi_1 + i \epsilon b_m \Phi_0 + i \epsilon b_m \Phi_2 &= 0; \quad (8)
\end{align*}
\]

3 Special simple class of solutions

There exists a simple linear condition on 4-vector \(\Phi_a \), leading to a second order differential equation. Let it be \(\Phi_1 = 0, \Phi_3 = 0 \), the system (8) gives

\[
\begin{align*}
- b_{m-1} a_m - a_{m+1} b_m - k^2 - M^2 \right) \Phi_0 - \epsilon k \Phi_2 &= 0, \\
- b_{m-1} a_m - a_{m+1} b_m + \epsilon^2 - M^2 \right) \Phi_2 + \epsilon k \Phi_0 &= 0, \\
i a_m (\epsilon \Phi_0 + i \epsilon k \Phi_2) &= 0, \\
i b_m (\epsilon \Phi_0 + i \epsilon k \Phi_2) &= 0. \quad (9)
\end{align*}
\]

From two last equations in (9) we conclude that

\[\epsilon \Phi_0 + k \Phi_2 = 0 \]

(10)
correspondingly, the first two in (9) take the form

\[
\begin{align*}
- b_{m-1} a_m - a_{m+1} b_m + \epsilon^2 - k^2 - M^2 \right) \Phi_0 &= 0, \\
- b_{m-1} a_m - a_{m+1} b_m + \epsilon^2 - k^2 - M^2 \right) \Phi_2 &= 0. \quad (11)
\end{align*}
\]

Because, we can readily get

\[
- b_{m-1} a_m - a_{m+1} b_m = \frac{d^2}{dr^2} + \frac{1}{r} \frac{dr}{dr} - \frac{(m + Br^2)^2}{r^2} = \Delta,
\]

eqs. (11) are differential equations of one the same type that is operative in the theory of a scalar particle in magnetic field

\[
(\Delta + \epsilon^2 - k^2 - M^2) \Phi_0 = 0, \quad (\Delta + \epsilon^2 - k^2 - M^2) \Phi_2 = 0. \quad (12)
\]

All the remaining component of the 10-dimensional function can be found straightforwardly as in accordance with the relations

\[
\begin{align*}
\Phi_1 &= 0, \Phi_3 = 0, \quad \epsilon \Phi_0 + k \Phi_2 = 0, \\
a_m \Phi_0 &= ME_1, \quad a_m \Phi_2 = i MH_1, \quad b_m \Phi_0 = ME_3, \\
b_m \Phi_2 &= -i MH_3, \quad (\epsilon \Phi_2 + k \Phi_0) = i ME_2, \quad 0 = H_2. \quad (13)
\end{align*}
\]

In general, there must exist three types of solutions for the particle with spin 1, we have found only one that.
4 General analysis of the radial equations

Eqs. (18) can be transformed to the form

\[
\begin{align*}
- b_{m-1} a_m - a_{m+1} b_m + \epsilon^2 - M^2 - k^2 & (k \Phi_0 + \epsilon \Phi_2) = 0 , \\
- b_{m-1} a_m - a_{m+1} b_m + \epsilon^2 - k^2 - M^2 & (\epsilon \Phi_0 + k \Phi_2) = \\
= (\epsilon^2 - k^2) & \left[(\epsilon \Phi_0 + k \Phi_2) - (i b_{m-1} \Phi_1 + i a_{m+1} \Phi_3) \right] ; \\
(-a_m b_{m-1} + \epsilon^2 - k^2 - M^2) & \Phi_1 + a_m a_{m+1} \Phi_3 + i \epsilon a_m \Phi_0 + i k a_m \Phi_2 = 0 , \\
(-b_m a_{m+1} + \epsilon^2 - M^2 - k^2) & \Phi_3 + b_m b_{m-1} \Phi_1 + i \epsilon b_m \Phi_0 + i k b_m \Phi_2 = 0 .
\end{align*}
\]

(14)

Let us introduce new variables

\[
F(r) = k \Phi_0(r) + \epsilon \Phi_2(r) , \quad G(r) = \epsilon \Phi_0(r) + k \Phi_2(r) ,
\]

then eqs. (14) - (15) read

\[
\begin{align*}
- b_{m-1} a_m - a_{m+1} b_m + \epsilon^2 - M^2 - k^2 & F = 0 , \\
- b_{m-1} a_m - a_{m+1} b_m - M^2 & G = - (\epsilon^2 - k^2) (i b_{m-1} \Phi_1 + i a_{m+1} \Phi_3) , \\
(-a_m b_{m-1} + \epsilon^2 - k^2 - M^2) & \Phi_1 + a_m a_{m+1} \Phi_3 + i \epsilon a_m G = 0 , \\
(-b_m a_{m+1} + \epsilon^2 - M^2 - k^2) & \Phi_3 + b_m b_{m-1} \Phi_1 + i b_m G = 0 .
\end{align*}
\]

(17)

For two equations in (18), let us multiply the first (from the left) by \(b_{m-1} \) and the second by the \(a_{m+1} \), which result in

\[
\begin{align*}
- b_{m-1} a_m (b_{m-1} \Phi_1) + (\epsilon^2 - k^2 - M^2) (b_{m-1} \Phi_1) + b_{m-1} a_m (a_{m+1} \Phi_3) + i b_{m-1} a_m G &= 0 , \\
- a_{m+1} b_m (a_{m+1} \Phi_3) + (\epsilon^2 - M^2 - k^2) (a_{m+1} \Phi_3) + a_{m+1} b_m (b_{m-1} \Phi_1) + i a_{m+1} b_m G &= 0 .
\end{align*}
\]

(19)

Again, let us introduce two new variables

\[
b_{m-1} \Phi_1 = Z_1 , \quad a_{m+1} \Phi_3 = Z_3 ;
\]

(20)
eqs. (19) read as follows

\[
\begin{align*}
- b_{m-1} a_m Z_1 + (\epsilon^2 - k^2 - M^2) Z_1 + b_{m-1} a_m Z_3 + i b_{m-1} a_m G &= 0 , \\
- a_{m+1} b_m Z_3 + (\epsilon^2 - M^2 - k^2) Z_3 + a_{m+1} b_m Z_1 + i a_{m+1} b_m G &= 0 .
\end{align*}
\]

(21)

With the aid of new functions \(f(r), g(r) \)

\[
Z_1 = \frac{f + g}{2} , \quad Z_3 = \frac{f - g}{2} , \quad Z_1 + Z_3 = f , \quad Z_1 - Z_3 = g ,
\]

(22)
the system (21) is transformed to the following ones

\[
\begin{align*}
- b_{m-1} a_m g + (\epsilon^2 - k^2 - M^2) \frac{f + g}{2} + i b_{m-1} a_m G &= 0 , \\
a_{m+1} b_m g + (\epsilon^2 - M^2 - k^2) \frac{f - g}{2} + i a_{m+1} b_m G &= 0 .
\end{align*}
\]

(23)
Combining these equations we get

\[
- b_{m-1}a_m - a_{m+1}b_m + \epsilon^2 - k^2 - M^2 \right] g + i(b_{m-1}a_m - a_{m+1}b_m) G = 0 , \\
(-b_{m-1}a_m + a_{m+1}b_m) g + (\epsilon^2 - k^2 - M^2) f + i(b_{m-1}a_m + a_{m+1}b_m)G = 0 .
\] (24)

In these variables, eqs. (17) can be written as

\[
(-b_{m-1}a_m - a_{m+1}b_m + \epsilon^2 - M^2 - k^2) F = 0 , \\
(-b_{m-1}a_m - a_{m+1}b_m - M^2) G = -i(\epsilon^2 - k^2) f .
\] (25)

Further, with the use of identities

\[
- b_{m-1}a_m - a_{m+1}b_m = \Delta , \\
- b_{m-1}a_m + a_{m+1}b_m = 2B .
\] (26)

eqs. (25) and (24) can be written down as follows

\[
(\Delta + \epsilon^2 - M^2 - k^2) F = 0 , \\
\Delta G = M^2 G - i(\epsilon^2 - k^2) f , \\
(\Delta + \epsilon^2 - k^2 - M^2) g = 2iB G , \\
(\epsilon^2 - k^2 - M^2) f - i\Delta G + 2B g = 0 .
\] (27)

With the help of the second equation, from the forth one it follows the linear relationship

\[
f = -i G + \frac{2B}{M^2} g .
\] (28)

Now, excluding the function \(f \) in the second one in (27)

\[
(\Delta + \epsilon^2 - k^2 - M^2) G = -i(\epsilon^2 - k^2)\frac{2B}{M^2} g .
\] (29)

Thus, the general problem is reduced to the system of four equations

\[
(\Delta + \epsilon^2 - M^2 - k^2) F = 0 , \\
f = -i G + \frac{2B}{M^2} g , \\
(\Delta + \epsilon^2 - k^2 - M^2) g = 2iB G , \\
(\Delta + \epsilon^2 - k^2 - M^2) G = -2iB \frac{\epsilon^2 - k^2}{M^2} g ,
\] (30)

The structure of this system allows to separate an evident linearly independent solution as follows

\[
f(r) = 0, \quad g(r) = 0 , \quad H(r) = 9 , \\
F(r) \neq 0 , \quad (\Delta - k^2 - M^2 + \epsilon^2) F = 0 .
\] (31)

corresponding functions and energy spectrum are known (also see below). We are to solve the system of two last equations in (30), in matrix form it reads (let \(\gamma = (\epsilon^2 - k^2)/M^2 \))

\[
\begin{pmatrix}
\Delta + \epsilon^2 - M^2 - k^2 \\
\epsilon^2 - k^2 - M^2
\end{pmatrix}
\begin{pmatrix}
g(r) \\
G(r)
\end{pmatrix}
=
\begin{pmatrix}
0 & 2iB \\
-2iB\gamma & 0
\end{pmatrix}
\begin{pmatrix}
g(r) \\
G(r)
\end{pmatrix} .
\] (32)
Let us construct transformation changing the matrix on the right to a diagonal form

\[
\begin{pmatrix}
\Delta + e^2 - M^2 - k^2
\end{pmatrix}
\begin{pmatrix}
g' \\
G'
\end{pmatrix}
= \begin{pmatrix}
\lambda_1 & 0 \\
0 & \lambda_2
\end{pmatrix}
\begin{pmatrix}
g' \\
G'
\end{pmatrix},
\]

\[
\begin{pmatrix}
g' \\
G'
\end{pmatrix} = S \begin{pmatrix}
g \\
G
\end{pmatrix},
\]

\[S = \begin{pmatrix}
s_{11} & s_{12} \\
s_{21} & s_{22}
\end{pmatrix}.
\]

(33)

The problem to solve is

\[
S \begin{pmatrix}
0 & 2iB \\
-2iB\gamma & 0
\end{pmatrix} S^{-1} = \begin{pmatrix}
\lambda_1 & 0 \\
0 & \lambda_2
\end{pmatrix},
\]

which results in two linear systems

\[
\begin{cases}
-\lambda_1 s_{11} - 2iB\gamma s_{12} = 0 , \\
2iB s_{11} - \lambda_1 s_{12} = 0 ,
\end{cases}
\]

and

\[
\begin{cases}
-\lambda_2 s_{21} - 2iB\gamma s_{22} = 0 , \\
2iB s_{21} - \lambda_2 s_{22} = 0 .
\end{cases}
\]

The values of \(\lambda_1\) and \(\lambda_2\) are given by

\[
\lambda_1 = \pm 2B\sqrt{\gamma} , \quad \lambda_2 = \pm 2B\sqrt{\gamma}.
\]

The matrix \(S\) must be degenerate, so we must use different \(\lambda_1, \lambda_2\):

Variant (A)

\[
\lambda_1' = +2B\sqrt{\gamma} , \quad \lambda_2' = -2B\sqrt{\gamma} ,
\]

\[
i s_{11} - \sqrt{\gamma} s_{12} = 0 , \quad i s_{21} + \sqrt{\gamma} s_{22} = 0 ;
\]

let it be

\[
s_{12} = 1 , \quad s_{22} = 1 , \quad s_{11} = -i\sqrt{\gamma} , \quad s_{21} = +i\sqrt{\gamma} , \quad S = \begin{pmatrix}
-i\sqrt{\gamma} & 1 \\
+i\sqrt{\gamma} & 1
\end{pmatrix}.
\]

(34)

Variant (B)

\[
\lambda_1'' = -2B\sqrt{\gamma} = \lambda_2'' , \quad \lambda_2'' = +2B\sqrt{\gamma} = \lambda_1'' ,
\]

\[
i s_{11} + \sqrt{\gamma} s_{12} = 0 , \quad i s_{21} - \sqrt{\gamma} s_{22} = 0 ;
\]

let it be

\[
s_{12} = 1 , \quad s_{22} = 1 , \quad s_{11} = +i\sqrt{\gamma} , \quad s_{21} = -i\sqrt{\gamma} , \quad S = \begin{pmatrix}
+ i \sqrt{\gamma} & 1 \\
- i \sqrt{\gamma} & 1
\end{pmatrix}.
\]

(35)

In the new (primed) basis, eqs. (32) take the form of two separated differential equations

(A) \[
\begin{pmatrix}
\Delta + e^2 - k^2 - M^2 - 2B\sqrt{\gamma}
\end{pmatrix} g' = 0 ,
\]

\[
\begin{pmatrix}
\Delta + e^2 - k^2 - M^2 + 2B\sqrt{\gamma}
\end{pmatrix} G' = 0 ;
\]

(36)

(B) \[
\begin{pmatrix}
\Delta + e^2 - k^2 - M^2 + 2B\sqrt{\gamma}
\end{pmatrix} g'' = 0 ,
\]

\[
\begin{pmatrix}
\Delta + e^2 - k^2 - M^2 - 2B\sqrt{\gamma}
\end{pmatrix} G'' = 0 .
\]

(37)
Recalling the meaning of \(\Delta \), let us detail the second order equation

\[
\left(\frac{d^2}{dr^2} + \frac{1}{r} \frac{d}{dr} - \frac{(m + Br^2)^2}{r^2} + \lambda^2 \right) \varphi(r) = 0 ,
\]

\[
\lambda^2 = \epsilon^2 - k^2 - M^2 \pm 2B \sqrt{\gamma} , \quad \sqrt{\gamma} = \frac{\sqrt{\epsilon^2 - k^2}}{M} .
\] (38)

It is convenient to introduce a new variable \(x = Br^2 \), then eq. (38) reads

\[
\frac{d^2 \varphi}{dx^2} + \frac{d}{dx} - \left(\frac{m^2}{4x} + \frac{x}{4} + \frac{m}{2} - \frac{\lambda^2}{4B} \right) \varphi = 0 .
\] (39)

With the substitution \(\varphi(x) = x^A e^{-Cx} f(x) \), for \(f(x) \) we get

\[
x \frac{d^2 f}{dx^2} + (2A + 1 - 2Cx) \frac{df}{dx} + \left[\frac{A^2 - m^2/4}{x} + \left(C^2 - \frac{1}{4} \right)x - 2AC \right] f = 0 .
\]

When \(A, C \) are taken as \(A = + |m|/2 \), \(C = +1/2 \) the previous equation becomes simpler

\[
x \frac{d^2 R}{dx^2} + (2A + 1 - x) \frac{dR}{dx} - \left(A + \frac{1}{2} + \frac{m}{2} - \frac{\lambda^2}{4B} \right) R = 0 ,
\]

which is of (degenerate) hypergeometric type

\[
x Y'' + (\gamma - x)Y' - \alpha Y = 0 , \quad \alpha = \frac{|m|}{2} + \frac{1}{2} + \frac{m}{2} - \frac{\lambda^2}{4B} ; \quad \gamma = |m| + 1 .
\]

To obtain polynomials we must impose additional condition \(\alpha = -n \); which leads to the following quantization for \(\lambda^2 \)

\[
\lambda^2 = 4B \left(n + \frac{1}{2} + \frac{|m| + m}{2} \right) .
\] (40)

Taking into account (36) – (37), we have relations

(A) \(\left(\Delta + (\epsilon^2 - k^2) - M^2 - 2B \frac{\sqrt{\epsilon^2 - k^2}}{M} \right) g' = 0 \), \(\sqrt{\epsilon^2 - k^2} = +B + \sqrt{B^2 + M^2(M^2 + \lambda^2)} \),

\(\left(\Delta + (\epsilon^2 - k^2) - M^2 + 2B \frac{\sqrt{\epsilon^2 - k^2}}{M} \right) G' = 0 \), \(\sqrt{\epsilon^2 - k^2} = -B + \sqrt{B^2 + M^2(M^2 + \lambda^2)} \);

(B) \(\left(\Delta + (\epsilon^2 - k^2) - M^2 + 2B \frac{\sqrt{\epsilon^2 - k^2}}{M} \right) g'' = 0 \), \(\sqrt{\epsilon^2 - k^2} = -B + \sqrt{B^2 + M^2(M^2 + \lambda^2)} \),

\(\left(\Delta + (\epsilon^2 - k^2) - M^2 - 2B \frac{\sqrt{\epsilon^2 - k^2}}{M} \right) G'' = 0 \), \(\sqrt{\epsilon^2 - k^2} = +B + \sqrt{B^2 + M^2(M^2 + \lambda^2)} \).

\footnote{For definiteness let us consider \(B \) to be positive, which does not affect generality of the analysis. So, to infinite values of \(r \) corresponds infinite and positive values of \(x \).}

7
In fact, here there exist only two different possibilities (and correspondingly two formulae for energy spectrum):

\[
\sqrt{\epsilon^2 - k^2} = \frac{B + \sqrt{B^2 + M^2(M^2 + \lambda^2)}}{M}, \quad q'(r) \neq 0, \ G' = 0; \\
\sqrt{\epsilon^2 - k^2} = \frac{-B + \sqrt{B^2 + M^2(M^2 + \lambda^2)}}{M}, \quad q'(r) = 0, \ G' \neq 0.
\]

In turn, energy spectrum for the case (31) is given by

\[
\epsilon^2 = M^2 + k^2 + \lambda^2
\]

Thus, on the base of the use of general covariant formalism in the Petiau – Duffin – Kemmer theory of the vector particle, exact solutions for such a particle are constructed in presence of external homogeneous magnetic field. There are separated three types of linearly independent solutions, and energy spectra are found.

The authors are grateful to participant of the seminar of Laboratory of theoretical physics, Institute of Physics, National Academy of Sciences of Belarus, for stimulating discussion.

References

[1] Rabi I.I. Das freie Electron in Homogenen Magnetfeld nach der Diracschen Theorie. Z. Phys. 1928. Bd. 49. P. 507 – 511.

[2] Landau L., Diamagnetismus der Metalle, Ztschr. Phys. 1930, Bd. 64, S. 629–637.

[3] Plesset M.S. Relativistic wave mechanics of the electron deflected by magnetic field. Phys.Rev. 1931. no 12. P. 1728 – 1731.

[4] I.E. Tamm. Motion of a meson in electromagnetic fields. Collection of papers. Vol. 2. Moskow, Nauka, 1975 95 – 99 (in Russian).

[5] A.A. Bogush, V.V. Kisel, N.G. Tokarevskaya, V.M. Red’kov. Duffin–Kemmer–Petiau formalism reexamined: non-relativistic approximation for spin 0 and spin 1 particles in a Riemannian space-time. Annales de la Fondation Louis de Broglie. 32, 355–381 (2007).

[6] V.M. Red’kov. Fields in Riemannian space and the Lorentz group. Publishing House "Belarusian Science", Minsk (2009).
V.V. Kisel, E.M. Ovsiyuk, V.M. Red’kov

EXACT SOLUTIONS FOR A QUANTUM-MECHANICAL PARTICLE WITH SPIN 1 IN THE EXTERNAL HOMOGENEOUS MAGNETIC FIELD

With the use of the general covariant matrix 10-dimensional Petiau – Duffin – Kemmer formalism in cylindrical coordinates and tetrad there are constructed exact solutions of the quantum-mechanical equation for a particle with spin 1 in presence of an external homogeneous magnetic field. There are separated three linearly independent types of solutions; in each case the formula for energy levels has been found.

1 Introduction, setting the problem

The problem of a quantum-mechanical particle in the external homogeneous magnetic field is well-known in theoretical physics. In fact, only two cases are considered: a scalar (Schrödinger’s) non-relativistic particle with spin 0, and fermions (non-relativistic Pauli’s and relativistic Dirac’s) with spin 1/2 (the first investigation were [1, 2, 3, 4]). In the present paper, exact solutions for a vector particle with spin 1 will be constructed explicitly. The most popular quantum-mechanical problem for such a particle is that in presence of external Coulomb potential [4].

To treat the problem we take the matrix Petiau – Duffin – Kemmer approach in the theory of the vector particle extended to a general covariant form on the base of tetrad formalism (recent consideration and list of references see in [5, 6]).

The main equation in tetrad form is [6]

\[
\left[i \beta^\alpha(x) \left(\partial_\alpha + B_\alpha - \frac{e^\alpha}{\hbar} A_\alpha \right) - \frac{M c}{\hbar} \right] \Psi(x) = 0 ,
\]

\[
\beta^\alpha(x) = \beta^a e^\alpha_a(x), \quad B_\alpha(x) = \frac{1}{2} J^{ab} e^\beta_{(a)} \nabla_\alpha e^{(b)\beta} ;
\]

(1)

e^\alpha_a(x) is a tetrad, \(J^{ab}\) stands for generators for 10-dimensional representation of the Lorentz group referred to 4-vector and anti-symmetric tensor (for brevity we note \(M c/\hbar\) as \(M\)). To the homogeneous magnetic field \(B = (0, 0, B)\) corresponds 4-potential

\[
A^a = \left(0, \vec{A} \right) = \left(0, \frac{1}{2} \vec{B} \times \vec{r} \right) = \frac{B}{2} \left(0, -x^2, +x^1, 0 \right) ;
\]

in the cylindric coordinates it is given by a simple expression

\[
(ct, r, \phi, z) , \quad ds^2 = c^2 dt^2 - dr^2 - r^2 d\phi^2 - dz^2 ,
\]

\[
A_0 = 0, \quad A_r = 0, \quad A_\phi = -\frac{Br^2}{2}, \quad A_z = 0 .
\]

(2)

Choosing a diagonal cylindric tetrad

\[
e^\alpha_{(0)} = (1, 0, 0, 0) , \quad e^\alpha_{(1)} = (0, 1, 0, 0) , \quad e^\alpha_{(2)} = (0, 0, \frac{1}{r}, 0) , \quad e^\alpha_{(3)} = (0, 0, 0, 1) .
\]

(3)
after simple calculation, the main equation (1) is reduced to the form
\[[i\beta^0 \partial_0 + i\beta^1 \partial_r + \frac{i\beta^2}{r} (\partial_\phi + \frac{ieB}{2\hbar} r^2 + J^{12}) + i\beta^3 \partial_z - M] \Psi(t, r, \phi, z) = 0. \] (4)
For brevity we will note \((eB/2\hbar)\) as \(B\). It is best to chose the matrices \(\beta^a\) in the so-called cyclic form, where the generator \(J^{12}\) has a diagonal structure. In block-form \((1 - 3 - 3 - 3)\) these matrices are
\[
\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & i & 0 \\
0 & -i & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}, \quad \begin{pmatrix}
0 & 0 & e_i & 0 \\
0 & 0 & 0 & \tau_i \\
e^{-i\beta_i^+} & 0 & 0 & 0 \\
0 & -\tau_i & 0 & 0
\end{pmatrix},
\]
where \(e_i, \tau_i\) denote
\[
e_1 = \frac{1}{\sqrt{2}}(-i, 0, i), \quad e_2 = \frac{1}{\sqrt{2}}(1, 0, 1), \quad e_3 = (0, i, 0),
\]
\[
\begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}, \quad \begin{pmatrix}
0 & -i & 0 \\
i & 0 & -i \\
i & 0 & 0
\end{pmatrix}, \quad \begin{pmatrix}
1 & 0 & 0 \\
0 & \tau_3 & 0 \\
0 & 0 & \tau_3
\end{pmatrix} = \tau_2, \quad \begin{pmatrix}
0 & 0 & 0 \\
0 & \tau_3 & 0 \\
0 & 0 & 0
\end{pmatrix} = \tau_1.
\]
Entering eq. (4) generator \(J^{12}\) is given by
\[
J^{12} = \beta^1\beta^2 - \beta^2\beta^1 = -i \begin{pmatrix}
0 & 0 & 0 \\
0 & \tau_3 & 0 \\
0 & 0 & \tau_3
\end{pmatrix} = -i\tau_3.
\]

2 Separation of the variables

With the use of special substitution (it corresponds to diagonalization of the third projections of momentum \(P_3\) and angular momentum \(J_3\) for a particle with spin 1)
\[
\Psi = e^{-i\epsilon_0 E^0 \epsilon^kz} \begin{pmatrix}
\Phi_0 \\
\Phi_0 \\
\Phi_0
\end{pmatrix} \begin{pmatrix}
\epsilon \beta^0 + i\beta^1 \partial_r - \frac{\beta^2}{r} (m + Br^2 - S_3) - k\beta^3 - M \\
\epsilon \beta^0 + i\beta^1 \partial_r - \frac{\beta^2}{r} (m + Br^2 - S_3) - k\beta^3 - M \\
\epsilon \beta^0 + i\beta^1 \partial_r - \frac{\beta^2}{r} (m + Br^2 - S_3) - k\beta^3 - M
\end{pmatrix} \begin{pmatrix}
\Phi_0 \\
\Phi_0 \\
\Phi_0
\end{pmatrix} = 0. \quad (5)
\]
after calculations we arrive at the radial system of ten equations
\[
- b_{m-1} E_1 - a_{m+1} E_3 - ik E_2 = M\Phi_0, \\
-ib_{m-1} H_1 + ia_{m+1} H_3 + ie E_2 = M\Phi_2, \\
ia_m H_2 + ie E_1 - k H_1 = M\Phi_1, \\
-ib_m H_2 + ie E_3 + k H_3 = M\Phi_3,
\]
\[
a_m \Phi_0 - ie \Phi_1 = ME_1, \quad -ia_m \Phi_2 + k \Phi_1 = MH_1, \\
b_m \Phi_0 - ie \Phi_3 = ME_3, \quad ib_m \Phi_2 - k \Phi_3 = MH_3, \\
-ie \Phi_2 - ik \Phi_0 = ME_2, \quad ib_{m-1} \Phi_1 - ia_{m+1} \Phi_3 = MH_2.
\] (7)
Because, we can readily get

\[
\frac{1}{\sqrt{2}} \left(\frac{d}{dr} + \frac{m + Br^2}{r} \right) = a_m, \quad \frac{1}{\sqrt{2}} \left(\frac{d}{dr} + \frac{m + Br^2}{r} \right) = b_m.
\]

From (6) – (7) it follow 4 equations for the components \(\Phi_a \)

\[
(-b_{m-1} a_m - a_{m+1} b_m - k^2 - M^2) \Phi_0 - \epsilon k \Phi_2 + i\epsilon (b_{m-1} \Phi_1 + a_{m+1} \Phi_3) = 0, \\
(-b_{m-1} a_m - a_{m+1} b_m + \epsilon^2 - M^2) \Phi_2 + \epsilon k \Phi_0 - ik (b_{m-1} \Phi_1 + a_{m+1} \Phi_3) = 0, \\
(-a_m b_{m-1} + \epsilon^2 - k^2 - M^2) \Phi_1 + a_m a_{m+1} \Phi_3 + i\epsilon a_m \Phi_0 + ik a_m \Phi_2 = 0, \\
(-b_m a_{m+1} + \epsilon^2 - M^2 - k^2) \Phi_3 + b_m b_{m-1} \Phi_1 + i\epsilon b_m \Phi_0 + ik b_m \Phi_2 = 0; \quad (8)
\]

3 Special simple class of solutions

There exists a simple linear condition on 4-vector \(\Phi_a \), leading to a second order differential equation. Let it be \(\Phi_1 = 0, \ \Phi_3 = 0 \), the system (8) gives

\[
(-b_{m-1} a_m - a_{m+1} b_m - k^2 - M^2) \Phi_0 - \epsilon k \Phi_2 = 0, \\
(-b_{m-1} a_m - a_{m+1} b_m + \epsilon^2 - M^2) \Phi_2 + \epsilon k \Phi_0 = 0, \\
i \epsilon a_m(\epsilon \Phi_0 + ik \Phi_2) = 0, \quad i \epsilon b_m(\epsilon \Phi_0 + ik \Phi_2) = 0. \quad (9)
\]

From two last equations in (9) we conclude that

\[
\epsilon \Phi_0 + k\Phi_2 = 0 \quad (10)
\]

correspondingly, the first two in (9) (9) take the form

\[
(-b_{m-1} a_m - a_{m+1} b_m + \epsilon^2 - k^2 - M^2) \Phi_0 = 0, \\
(-b_{m-1} a_m - a_{m+1} b_m + \epsilon^2 - k^2 - M^2) \Phi_2 = 0. \quad (11)
\]

Because, we can readily get

\[-b_{m-1} a_m - a_{m+1} b_m = \frac{d^2}{dr^2} + \frac{1}{r} \frac{d}{dr} - \frac{(m + Br^2)^2}{r^2} = \Delta, \]

eqs. (11) are differential equations of one the same type that is operative in the theory of a scalar particle in magnetic field

\[
(\Delta + \epsilon^2 - k^2 - M^2) \Phi_0 = 0, \quad (\Delta + \epsilon^2 - k^2 - M^2) \Phi_2 = 0. \quad (12)
\]

All the remaining component of the 10-dimensional function can be found straightforwardly as in accordance with the relations

\[
\Phi_1 = 0, \ \Phi_3 = 0, \quad \epsilon \Phi_0 + k\Phi_2 = 0, \\
a_m \Phi_0 = ME_1, \quad a_m \Phi_2 = iMH_1, \quad b_m \Phi_0 = ME_3, \\
b_m \Phi_2 = -iMH_3, \quad (\epsilon \Phi_2 + k \Phi_0) = iME_2, \quad 0 = H_2. \quad (13)
\]

In general, there must exist three types of solutions for the particle with spin 1, we have found only one that.
4 General analysis of the radial equations

Eqs. [8] can be transformed to the form

\[\begin{align*}
- b_{m-1} a_m - a_{m+1} b_m + \epsilon^2 - M^2 - k^2 \right] (k \Phi_0 + \epsilon \Phi_2) &= 0 , \\
- b_{m-1} a_m - a_{m+1} b_m + \epsilon^2 - k^2 - M^2 \right] (\epsilon \Phi_0 + k \Phi_2) &= 0 \\
&= (\epsilon^2 - k^2) \left[(\epsilon \Phi_0 + k \Phi_2) - (i b_{m-1} \Phi_1 + i a_{m+1} \Phi_3 \right] ;
\end{align*} \]

\[(-a_m b_{m-1} + \epsilon^2 - k^2 - M^2) \Phi_1 + a_m a_{m+1} \Phi_3 + i \epsilon a_m \Phi_1 + i k a_m \Phi_2 = 0 , \\
(-b_m a_{m+1} + \epsilon^2 - M^2 - k^2) \Phi_3 + b_m b_{m-1} \Phi_1 + i \epsilon b_m \Phi_0 + i k b_m \Phi_2 = 0 . \]

Let us introduce new variables

\[F(r) = k \Phi_0(r) + \epsilon \Phi_2(r) , \quad G(r) = \epsilon \Phi_0(r) + k \Phi_2(r) , \]

then eqs. [14] - [15] read

\[\begin{align*}
- b_{m-1} a_m - a_{m+1} b_m + \epsilon^2 - M^2 - k^2 \right] F &= 0 , \\
- b_{m-1} a_m - a_{m+1} b_m - M^2 \right] G &= - (\epsilon^2 - k^2) (i b_{m-1} \Phi_1 + i a_{m+1} \Phi_3 \right] ;
\end{align*} \]

\[(-a_m b_{m-1} + \epsilon^2 - k^2 - M^2) \Phi_1 + a_m a_{m+1} \Phi_3 + i a_m G = 0 , \\
(-b_m a_{m+1} + \epsilon^2 - M^2 - k^2) \Phi_3 + b_m b_{m-1} \Phi_1 + i b_m G = 0 . \]

For two equations in [18], let us multiply the first (from the left) by \(b_{m-1} \) and the second by the \(a_{m+1} \), which result in

\[\begin{align*}
- b_{m-1} a_m (b_{m-1} \Phi_1) + (\epsilon^2 - k^2 - M^2))(b_{m-1} \Phi_1) + b_{m-1} a_m (a_{m+1} \Phi_3) + i b_{m-1} a_m G &= 0 , \\
- a_{m+1} b_m (a_{m+1} \Phi_3) + (\epsilon^2 - M^2 - k^2)(a_{m+1} \Phi_3) + a_{m+1} b_m (b_{m-1} \Phi_1) + i a_{m+1} b_m G &= 0 .
\end{align*} \]

Again, let us introduce two new variables

\[b_{m-1} \Phi_1 = Z_1 , \quad a_{m+1} \Phi_3 = Z_3 ; \]

eqs. [19] read as follows

\[\begin{align*}
- b_{m-1} a_m Z_1 + (\epsilon^2 - k^2 - M^2) Z_1 + b_{m-1} a_m Z_3 + i b_{m-1} a_m G &= 0 , \\
- a_{m+1} b_m Z_3 + (\epsilon^2 - M^2 - k^2) Z_3 + a_{m+1} b_m Z_1 + i a_{m+1} b_m G &= 0 .
\end{align*} \]

With the aid of new functions \(f(r), g(r) \)

\[Z_1 = \frac{f + g}{2} , \quad Z_3 = \frac{f - g}{2} , \quad Z_1 + Z_3 = f , \quad Z_1 - Z_3 = g ; \]

the system [21] is transformed to the following ones

\[\begin{align*}
- b_{m-1} a_m G + (\epsilon^2 - k^2 - M^2) \frac{f + g}{2} + i b_{m-1} a_m G &= 0 , \\
a_{m+1} b_m G + (\epsilon^2 - M^2 - k^2) \frac{f - g}{2} + i a_{m+1} b_m G &= 0 .
\end{align*} \]
Combining these equations we get
\[
\begin{align*}
- b_{m-1} a_m - a_{m+1} b_m + e^2 - k^2 - M^2 \mid g + i(b_{m-1} a_m - a_{m+1} b_m) G &= 0 , \\
(- b_{m-1} a_m + a_{m+1} b_m) g + (\epsilon^2 - k^2 - M^2) f + i(b_{m-1} a_m + a_{m+1} b_m) G &= 0 .
\end{align*}
\]
(24)

In these variables, eqs. (17) can be written as
\[
\begin{align*}
(- b_{m-1} a_m - a_{m+1} b_m + e^2 - M^2 - k^2) F &= 0 , \\
(- b_{m-1} a_m - a_{m+1} b_m - M^2) G &= -i(\epsilon^2 - k^2) f .
\end{align*}
\]
(25)

Further, with the use of identities
\[
\begin{align*}
- b_{m-1} a_m - a_{m+1} b_m = \Delta , \\
- b_{m-1} a_m + a_{m+1} b_m = 2B .
\end{align*}
\]
(26)

eqs. (25) and (24) can be written down as follows
\[
\begin{align*}
(\Delta + \epsilon^2 - M^2 - k^2) F &= 0 , \\
\Delta G &= M^2 G - i(\epsilon^2 - k^2) f , \\
(\Delta + \epsilon^2 - k^2 - M^2) g &= 2iB G , \\
(\epsilon^2 - k^2 - M^2) f - i\Delta G + 2B g &= 0 .
\end{align*}
\]
(27)

With the help of the second equation, from the forth one it follows the linear relationship
\[
f = -i G + \frac{2B}{M^2} g .
\]
(28)

Now, excluding the function \(f \) in the second one in (27)
\[
(\Delta + \epsilon^2 - k^2 - M^2) G = -i(\epsilon^2 - k^2)\frac{2B}{M^2} g .
\]
(29)

Thus, the general problem is reduced to the system of four equations
\[
\begin{align*}
(\Delta + \epsilon^2 - M^2 - k^2) F &= 0 , \\
f &= -i G + \frac{2B}{M^2} g , \\
(\Delta + \epsilon^2 - k^2 - M^2) g &= 2iB G , \\
(\Delta + \epsilon^2 - k^2 - M^2) G &= -2iB \frac{\epsilon^2 - k^2}{M^2} g .
\end{align*}
\]
(30)

The structure of this system allows to separate an evident linearly independent solution as follows
\[
\begin{align*}
f(r) &= 0 , \\
g(r) &= 0 , \\
H(r) &= 9 , \\
F(r) &\neq 0 , \\
(\Delta - k^2 - M^2 + \epsilon^2) F &= 0 .
\end{align*}
\]
(31)

corresponding functions and energy spectrum are known (also see below). We are to solve the system of two last equations in (30), in matrix form it reads (let \(\gamma = (\epsilon^2 - k^2)/M^2 \))
\[
\begin{pmatrix}
\Delta + \epsilon^2 - M^2 - k^2 \\
\epsilon^2 - k^2 - M^2 \\
\epsilon^2 - M^2 - k^2 \\
\Delta + \epsilon^2 - k^2 - M^2
\end{pmatrix}
\begin{pmatrix}
g(r) \\
G(r) \\
G(r) \\
g(r)
\end{pmatrix}
=
\begin{pmatrix}
0 \\
2iB \\
-2iB \gamma \\
0
\end{pmatrix}
\begin{pmatrix}
g(r) \\
G(r)
\end{pmatrix} .
\]
(32)
Let us construct transformation changing the matrix on the right to a diagonal form

\[
(\Delta + \epsilon^2 - M^2 - k^2) \begin{vmatrix} g' \\ G' \end{vmatrix} = \begin{vmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{vmatrix} \begin{vmatrix} g' \\ G' \end{vmatrix},
\]

\[
\begin{vmatrix} g' \\ G' \end{vmatrix} = S \begin{vmatrix} g \\ G \end{vmatrix}, \quad S = \begin{vmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{vmatrix}.
\]

(33)

The problem to solve is

\[
S \begin{vmatrix} 0 & 2iB \\ -2iB\gamma & 0 \end{vmatrix} S^{-1} = \begin{vmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{vmatrix},
\]

which results in two linear systems

\[
\begin{aligned}
-\lambda_1 s_{11} - 2iB\gamma s_{12} &= 0, \\
2iB s_{11} - \lambda_1 s_{12} &= 0,
\end{aligned}
\]

\[
\begin{aligned}
-\lambda_2 s_{21} - 2iB\gamma s_{22} &= 0, \\
2iB s_{21} - \lambda_2 s_{22} &= 0.
\end{aligned}
\]

The values of \(\lambda_1\) and \(\lambda_2\) are given by

\[
\lambda_1 = \pm 2B\sqrt{\gamma}, \quad \lambda_2 = \pm 2B\sqrt{\gamma}.
\]

The matrix \(S\) must be degenerate, so we must use different \(\lambda_1, \lambda_2\):

Variant (A) \(\lambda_1' = +2B\sqrt{\gamma}, \quad \lambda_2' = -2B\sqrt{\gamma}, \quad i s_{11} - \sqrt{\gamma} s_{12} = 0, \quad i s_{21} + \sqrt{\gamma} s_{22} = 0;\)

let it be

\[
s_{12} = 1, \quad s_{22} = 1, \quad s_{11} = -i\sqrt{\gamma}, \quad s_{21} = +i\sqrt{\gamma}, \quad S = \begin{vmatrix} -i\sqrt{\gamma} & 1 \\ +i\sqrt{\gamma} & 1 \end{vmatrix}.
\]

(34)

Variant (B) \(\lambda_1'' = -2B\sqrt{\gamma} = \lambda_2'', \quad \lambda_2'' = +2B\sqrt{\gamma} = \lambda_1'', \quad i s_{11} + \sqrt{\gamma} s_{12} = 0, \quad i s_{21} - \sqrt{\gamma} s_{22} = 0;\)

let it be

\[
s_{12} = 1, \quad s_{22} = 1, \quad s_{11} = +i\sqrt{\gamma}, \quad s_{21} = -i\sqrt{\gamma}, \quad S = \begin{vmatrix} +i\sqrt{\gamma} & 1 \\ -i\sqrt{\gamma} & 1 \end{vmatrix}.
\]

(35)

In the new (primed) basis, eqs. (32) take the form of two separated differential equations

A) \(\left(\Delta + \epsilon^2 - k^2 - M^2 - 2B\sqrt{\gamma}\right) g' = 0, \quad \left(\Delta + \epsilon^2 - k^2 - M^2 + 2B\sqrt{\gamma}\right) G' = 0;\)

(36)

B) \(\left(\Delta + \epsilon^2 - k^2 - M^2 + 2B\sqrt{\gamma}\right) g'' = 0, \quad \left(\Delta + \epsilon^2 - k^2 - M^2 - 2B\sqrt{\gamma}\right) G'' = 0.
\)

(37)
Recalling the meaning of Δ, let us detail the second order equation

$$\left(\frac{d^2}{dr^2} + \frac{1}{r} \frac{d}{dr} - \frac{(m + Br^2)^2}{r^2} + \lambda^2\right) \varphi(r) = 0,$$

$$\lambda^2 = \epsilon^2 - k^2 - M^2 \pm 2B \sqrt{\gamma}, \quad \sqrt{\gamma} = \frac{\sqrt{\epsilon^2 - k^2}}{M}.$$ (38)

It is convenient to introduce a new variable $x = Br^2$, then eq. (38) reads

$$\frac{d^2 \varphi}{dx^2} + \left(\frac{m^2}{4x} + \frac{x}{4} + \frac{m - \lambda^2}{4B}\right) \varphi = 0.$$ (39)

With the substitution $\varphi(x) = x^A e^{-Cx} f(x)$, for $f(x)$ we get

$$x \frac{d^2 f}{dx^2} + (2A + 1 - 2Cx) \frac{df}{dx} + \left[\frac{A^2 - m^2/4}{x} + (C^2 - \frac{1}{4})x - 2AC - C - \frac{m - \lambda^2}{4B}\right] f = 0.$$

When A, C are taken as $A = + \frac{|m|}{2}, C = +1/2$ the previous equation becomes simpler

$$x \frac{d^2 R}{dx^2} + (2A + 1 - x) \frac{dR}{dx} - \left(A + \frac{1}{2} + \frac{m}{2} - \frac{\lambda^2}{4B}\right) R = 0,$$

which is of (degenerate) hypergeometric type

$$x Y'' + (\gamma - x)Y' - \alpha Y = 0, \quad \alpha = \frac{|m|}{2} + \frac{1}{2} + \frac{m}{2} - \frac{\lambda^2}{4B}; \quad \gamma = |m| + 1.$$

To obtain polynomials we must impose additional condition $\alpha = -n$; which leads to the following quantization for λ^2

$$\lambda^2 = 4B \left(n + \frac{1}{2} + \frac{|m| + m}{2} \right).$$ (40)

Taking into account (36) – (37), we have relations

(A) $$(\Delta + (\epsilon^2 - k^2) - M^2 - 2B \sqrt{\epsilon^2 - k^2} \frac{M}{M}) g' = 0, \quad \sqrt{\epsilon^2 - k^2} = \frac{+B + \sqrt{B^2 + M^2(M^2 + \lambda^2)}}{M},$$

(B) $$(\Delta + (\epsilon^2 - k^2) - M^2 + 2B \sqrt{\epsilon^2 - k^2} \frac{M}{M}) G' = 0, \quad \sqrt{\epsilon^2 - k^2} = \frac{-B + \sqrt{B^2 + M^2(M^2 + \lambda^2)}}{M}. $$

For definiteness let us consider B to be positive, which does not affect generality of the analysis. So, to infinite values of r corresponds infinite and positive values of x.

1For definiteness let us consider B to be positive, which does not affect generality of the analysis. So, to infinite values of r corresponds infinite and positive values of x.

7
In fact, here there exist only two different possibilities (and correspondingly two formulae for energy spectrum):

\[
\sqrt{\epsilon^2 - k^2} = \frac{+B + \sqrt{B^2 + M^2(M^2 + \lambda^2)}}{M}, \quad q'(r) \neq 0, \ G' = 0 ;
\]

\[
\sqrt{\epsilon^2 - k^2} = \frac{-B + \sqrt{B^2 + M^2(M^2 + \lambda^2)}}{M}, \quad q'(r) = 0, \ G' \neq 0 . \tag{41}
\]

In turn, energy spectrum for the case (31) is given by

\[
\epsilon^2 = M^2 + k^2 + \lambda^2 \tag{42}
\]

Thus, on the base of the use of general covariant formalism in the Petiau – Duffin – Kemmer theory of the vector particle, exact solutions for such a particle are constructed in presence of external homogeneous magnetic field. There are separated three types of linearly independent solutions, and energy spectra are found.

The authors are grateful to participant of the seminar of Laboratory of theoretical physics, Institute of Physics, National Academy of Sciences of Belarus, for stimulating discussion.

References

[1] Rabi I.I. Das freie Electron in Homogenen Magnetfeld nach der Diraschen Theorie. Z. Phys. 1928. Bd. 49. P. 507 – 511.

[2] Landau L., Diamagnetismus der Metalle, Ztshr. Phys. 1930, Bd. 64, S. 629–637.

[3] Plesset M.S. Relativistic wave mechanics of the electron deflected by magnetic field. Phys.Rev. 1931. no 12. P. 1728 – 1731.

[4] I.E. Tamm. Motion of a meson in electromagnetic fields. Collection of papers. Vol. 2. Moskow, Nauka, 1975 95 – 99 (in Russian).

[5] A.A. Bogush, V.V. Kisel, N.G. Tokarevskaya, V.M. Red’kov. Duffin–Kemmer–Petiau formalism reexamined: non-relativistic approximation for spin 0 and spin 1 particles in a Riemannian space-time. Annales de la Fondation Louis de Broglie. 32, 355–381 (2007).

[6] V.M. Red’kov. Fields in Riemannian space and the Lorentz group. Publishing House ”Belarusian Science”, Minsk (2009).