Innate immune surveillance of the circulation: A review on the removal of circulating virions from the bloodstream

Stephanie E. Ander¹, Frances S. Li¹, Kathryn S. Carpentier², Thomas E. Morrison¹*¹

1 Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America, 2 Department of Natural Sciences, Greensboro College, Greensboro, North Carolina, United States of America

* Thomas.Morrison@CUAnschutz.edu

Abstract

Many viruses utilize the lymphohematogenous route for dissemination; however, they may not freely use this highway unchecked. The reticuloendothelial system (RES) is an innate defense system that surveys circulating blood, recognizing and capturing viral particles. Examination of the literature shows that the bulk of viral clearance is mediated by the liver; however, the precise mechanism(s) mediating viral vascular clearance vary between viruses and, in many cases, remains poorly defined. Herein, we summarize what is known regarding the recognition and capture of virions from the circulation prior to the generation of a specific antibody response. We also discuss the consequences of viral capture on viral pathogenesis and the fate of the captor cell. Finally, this understudied topic has implications beyond viral pathogenesis, including effects on arbovirus ecology and the application of virus-vectored gene therapies.

Author summary

Limiting the amount of virus freely circulating in the bloodstream can be important for controlling viral pathogenesis and transmission. However, despite early advances, this field of study has become overlooked and understudied. Innate immune cells in the liver and spleen constantly survey and remove from circulation viral particles without the aid of virus-specific antibody. The details of these host–virus interactions, and the consequences thereof, remain unknown for many viruses. Yet, understanding this phenomenon has implications not only on bettering our understanding of disease progress, but also on arbovirus ecology and the development of effective virus-vectored gene therapies.

Introduction

It has been established for over a century that foreign particles introduced intravenously (i.v.) into vertebrates are rapidly removed from circulation [1]. In 1904, Ribbert reported lithium carmine solution injected i.v. “vitally stained” a specific subset of cells [1]. Through careful analysis of tissues following i.v. dye inoculation, Aschoff defined cells able to sequester vital
dyes from the blood as the “reticuloendothelial system” (RES) [1]. Today, the RES is understood to be composed of macrophages, circulating monocytes, and endothelial cells that remove from circulation particulates like cellular debris, immune complexes, and microbes. The role of specific populations, cell surface receptors, and humoral components in microbial vascular clearance can be elucidated using drugs for selective cellular depletion [2], genetic and conditional knockouts (KO) in mouse models [3,4], and advanced live imaging techniques [5,6].

Since initial studies in the late 19th century, there have been great leaps in our understanding of microbial vascular clearance. However, most mechanistic studies focus on clearance of blood-borne bacteria, and limited mechanistic reports exist on viral vascular clearance. Herein, we introduce key cell types of the liver and spleen demonstrated to mediate the bulk capture of circulating virions prior to generation of a specific antibody response and summarize known host and viral mechanisms orchestrating clearance of specific viruses from mammalian circulation. We also discuss consequences of vascular clearance on viral pathogenesis and additional implications of these studies on both arbovirus ecology and virus-vectored gene therapies.

The blood-filtering organs

Beginning in the late 1950s, the importance of circulating blood in promoting viral dissemination garnered scientific interest in the role of host innate immune defenses against viremia. One of the first papers to describe the RES as an innate defense against circulating virions was published in 1959 using ectromelia virus (ECTV; mousepox) [7]. Applying techniques previously developed to study vascular clearance of inert particles, Mims found i.v. inoculated ECTV was rapidly removed from circulation and colocalized with cells lining the liver sinusoids, likely Kupffer cells (KCs) or liver sinusoidal endothelial cells (LSECs) [7] (see Poxviruses section). Since this initial study, multiple and diverse viruses have been examined. In general, while clearance rates vary, virion removal is often rapid and mediated predominantly by the liver, although there is also evidence of spleen involvement (Table 1). As an aside, it should be noted that these studies on viral capture from the bloodstream assume vascular dissemination occurs via free viral particles. However, hematogenous spread of some viruses, such as cytomegalovirus, primarily occurs in a cell-associated manner—which adds another layer of complexity [8].

Liver

The liver plays a critical role in immune surveillance and has evolved a number of features that promote efficient removal of foreign or unwanted molecules from the blood. Every minute, 1,500 mL flows through the human liver [74]. Blood is supplied from both the hepatic artery and the portal vein, exposing the liver to systemic and gut-derived microbes. In the liver, blood percolates through the honeycomb-like structure of the liver sinusoids [6,75]. Within the narrow sinusoids (5 to 10 μm in diameter in rodents [76–78]), blood flow rate is reduced [79], maximizing contact between blood contents and liver cells to allow recognition and removal of unwanted particles [75]. Lining the sinusoids are LSECs, which form a selective barrier between blood and hepatocytes. Attached to the luminal surface of LSECs are KCs, the tissue-resident macrophage of the liver (Fig 1). Both LSECs and KCs express a diverse array of pathogen recognition receptors (PRRs) at their surface to detect and remove unwanted pathogens from circulation (Table 2).

Unique to liver sinusoids, the liver endothelial lining is highly porous as it lacks a basement membrane, and LSECs are highly fenestrated [94–96]. The fenestrae (50 to 150 nm in diameter) are generally grouped together to form sieve plates that limit access of blood-borne...
Organ	Cell type	Host mediator	Virus
Liver	KCs	Natural antibodies	Gene therapy vector: AdV [9–11]
		CR1g	Gene therapy vector: AdV [12]
		Complement	Gene therapy vector: AdV [10,12]
		SRs	Gene therapy vector: AdV [10,13,14]
		SR-A1 (MSR1)	Gene therapy vector: AdV [15,16]
		SR-A6 (MARCO)	Arbovirus: CHIKV, RRV, and ONNV [17]
		SR-F1 (SREC-I)	Gene therapy vector: AdV [15,16]
		Platelets	Gene therapy vector: AdV [18]
		GAGs	Gene therapy vector: AAV [19]
		ND	Blood-borne virus: HIV [20]
			Arbovirus: SFV [21], small-plaque variants of VEEV [22], and VSV [23]
			Gene therapy vector: AdV [24,25]
			Other: CPXV [26], DHBV [27], ECTV [28], LCMV [29], NDV [30], BKPyV [31], JCPyV [31], and RABV [32]
LSECs	SR-A1 (MSR1)	Gene therapy vector: AdV [15,16]	
	SR-F1 (SREC-I)	Gene therapy vector: AdV [15,16]	
	GAGs	Gene therapy vector: AAV [19,33]	
	ND	Blood-borne virus: HIV [20]	
	ND	Other: DHBV [27,34], BKPyV [31], and JCPyV [31]	
Hepatocytes	Coagulation factors	Gene therapy vector: AdV [10,33,35–37]	
ND	Natural antibodies	Gene therapy vector: AdV [38]	
	Complement	Gene therapy vector: AdV [38]	
	SRs	Gene therapy vector: MV [39]	
	GAGs	Arbovirus: MVEV [40], SINV [41], and VEEV [42]	
	ND	Blood-borne virus: SIV [43,44]	
	ND	Arbovirus: LGTV [45], MVEV [7], RFV [46], VSV [30], and YFV [47]	
	ND	Gene therapy vector: AdV [48]	
	ND	Other: DHBV [34], ECTV [7,49], IFV [7,50], LCMV [29], and PV [7], RV [51]	
Spleen	Marginal zone, MZMs, and MMMs	ND	Arbovirus: VSV [23,52,53]
	ND	Gene therapy vector: AdV [48,54–57]	
	ND	Other: DHBV [27], BKPyV [31], JCPyV [31], HSV [58], and RABV [32,59]	
Red pulp and red pulp macrophages	ND	Arbovirus: VSV [23]	
	ND	Gene therapy vector: AdV [48,54]	
	ND	Other: BKPyV [31] and RABV [32,59]	
Macrophages	ND	Other: LCMV [29]	
Kidney	Endothelial cells	ND	Other: BKPyV [31] and JCPyV [31]
	ND	ND	Other: LCMV [60]
Lung	ND	ND	Blood-borne virus: SIV [43]
	ND	ND	Arbovirus: LGTV [45]
	ND	Other: RV [51,61]	
Lymph node	ND	ND	Blood-borne virus: SIV [43]

(Continued)
particulates to the space of Disse and the underlying hepatocytes. LSECs have high clathrin-mediated endocytic capacity. Most often associated with pinocytosis of particles smaller than 200 nm [96–101], LSECs also are capable of phagocytosing larger latex beads following impairment of KC function [102].

Table 1. (Continued)

Organ	Cell type	Host mediator	Virus
ND	Macrophages	ND	Arbovirus: YFV [62] Other: JUNV [63] and VACV [64]
ND	Platelets	Glycoporphin A	Other: HAV [65]
ND	Complement	Arbovirus: SINV [66] and WNV [67] Gene therapy vector: Adv [68]	
ND	MBL	Arbovirus: DENV [67] and WNV [67]	
ND	SR	Gene therapy vector: AAV [69]	
ND	GAGs	Arbovirus: JEV [40], EMCV [70], SINV [71], VEEV [42,72], and WEEV [73]	

AAV, adeno-associated virus; AdV, adenovirus; BKPyV, BK polyoma virus; CHIKV, chikungunya virus; CPXV, cowpox virus; DENV, dengue virus; DHBV, duck hepatitis B virus; ECTV, ectromelia virus/mousepox; EMCV, encephalomyocarditis virus; GAG, glycosaminoglycan; HAV, hepatitis A virus; HIV, human immunodeficiency virus; HSV, herpes simplex virus; IFV, influenza virus; JCPyV, JC polyoma virus; JEV, Japanese encephalitis virus; JUNV, Junin virus; KC, Kupffer cell; LCMV, lymphocytic choriomeningitis virus; LGTV, Langat virus; LSEC, liver sinusoidal endothelial cell; MBL, mannose-binding lectin; MMM, marginal zone metallophilic macrophage; MV, measles virus; MVEV, Murray Valley encephalitis virus; MZM, marginal zone macrophage; ND, not determined; NDV, Newcastle disease virus; ONNV, o’nyong’nyong virus; PV, poliovirus; RABV, rabies virus; RRV, Ross River virus; RV, reovirus; RVFV, Rift Valley fever virus; SFV, Semliki Forest virus; SINV, Sindbis virus; sIV, Simian immunodeficiency virus; SR, scavenger receptor; VACV, vaccinia virus; VEEV, Venezuelan equine encephalitis virus; VSV, vesicular stomatitis virus; WEEV, Western equine encephalitis virus; WNV, West Nile virus; YFV, yellow fever virus.

https://doi.org/10.1371/journal.ppat.1010474.t001

The Liver

Fig 1. The liver sinusoid. There are 2 key cell types located in the liver sinusoid that have been shown to contribute to viral vascular clearance. Although in vitro studies suggest that LSECs, which form the liver endothelium, interact with certain viruses (e.g., AdV), KCs, which are the liver’s main tissue-resident macrophages, are responsible for clearing diverse circulating viruses (e.g., CHIKV and AdV) in vivo. In addition, KCs are important in controlling pathogenesis of viruses like LCMV. This figure was created with BioRender.com. AdV, adenovirus; CHIKV, chikungunya virus; HA, hepatic artery; IFN, interferon; KC, Kupffer cell; LCMV, lymphocytic choriomeningitis virus; LSEC, liver sinusoidal endothelial cell; PRR, pathogen recognition receptor; PV, portal vein; VACV, vaccinia virus.

https://doi.org/10.1371/journal.ppat.1010474.g001
KCs, positioned within the sinusoidal lumen, constitute the body’s largest population of tissue-resident macrophages and have multiple processes that extend into different sinusoids, which increases their surveillance area [103]. KCs are a self-renewing population [104–106], although circulating monocytes are capable of renewing the KC niche following selective KC depletion [3,107–109]. Capture of circulating viruses and other pathogens by KCs is generally considered to be mediated by phagocytosis. In vitro, direct comparison of endocytic activities of KC to that of splenic and peritoneal macrophages showed KCs to outcompete uptake of dextran and *Escherichia coli*, and in vivo, KCs supersede even splenic macrophages in the removal of dextran from circulation [110]. KCs also interact with other innate immune cells to defend against pathogens. Specifically, KCs can serve as a docking site for neutrophils to eliminate the bacteria trapped at the KC extracellular surface [111,112].

Spleen

The spleen is another major contributor to removal of microbes in the bloodstream, as demonstrated in a study comparing contributions of splenic mass and blood flow on the clearance of *Streptococcus pneumoniae* in a rabbit model [113]. In contrast to sham- or hemi-splenectomized rabbits, those that underwent procedures to reduce splenic blood flow exhibited impaired rates of bacterial clearance, and completely splenectomized animals were unable to reduce the bacterial burden in the bloodstream [113].

Table 2. Documented surface-expressed pattern recognition receptors of LSECs and KCs.

	LSECs (approximately 50% of nonparenchymal cells in liver) [80–88]	KCs (approximately 20% of nonparenchymal cells in liver) [80–82,84,85,88–93]
SR	**Mus musculus**	**Homo sapiens**
	SR-A1 (MSR1), SR-A6 (MARCO), SR-B1 (SCARB1), SR-B1.1 (SCARB2), SR-B2 (CD36), SR-E2 (CLEC7A), SR-D1 (CD68), SR-G (CXCL16), SR-H2 (STAB2), and SR-L (LRP1)	SR-A1 (MSR1), SR-E1 (OLR1), SR-E3 (CD206), SR-F1 (SREC-1), SR-G (CXCL16), SR-H1 (STAB1), and SR-H2 (STAB2)
C-type lectin receptor	Mannose receptor (CD206/SR-E3), LSECTIN (CLEC4G), DNGR-1 (CLEC9A), and L-SIGN (CLEC4M)	Mannose receptor (CD206/SR-E3), LSECTIN (CLEC4G), and L-SIGN (CLEC4M)
Toll-like receptor	TLR1-2 and TLR4	TLR4
Fc receptor	FcγRIIB and FcγRn	FcγRIIB

KCs, Kupffer cell; **LSEC,** liver sinusoidal endothelial cell; **SR,** scavenger receptor.

https://doi.org/10.1371/journal.ppat.1010474.t002
In the spleen, macrophages mediate clearance of circulating particulates. The spleen has 3 major macrophage populations: red pulp macrophages (RpM), marginal zone macrophages (MZM), and marginal zone metallophilic macrophages (MMM). As arterial blood travels through the spleen, vessels passing through the white pulp open to form sinusoids within the marginal zone; blood then percolates through the marginal zone into the red pulp's venous sinuses (Fig 2). MZM and MMM appear to be the main workhorses mediating clearance of blood-borne microbes [27,54,55,114,115], although red pulp macrophages also phagocytose bacteria [116,117] and deparasitize red blood cells of Plasmodium [118].

In the spleen, macrophages mediate clearance of circulating particulates. The spleen has 3 major macrophage populations: red pulp macrophages, marginal zone macrophages (MZM), and marginal zone metallophilic macrophages (MMM). As arterial blood travels through the spleen, vessels passing through the white pulp open to form sinusoids within the marginal zone; blood then percolates through the marginal zone into the red pulp’s venous sinuses (Fig 2). MZM and MMM appear to be the main workhorses mediating clearance of blood-borne microbes [27,54,55,114,115], although red pulp macrophages also phagocytose bacteria [116,117] and deparasitize red blood cells of Plasmodium [118].

While there are examples of virus capture by splenic macrophages in the literature (such as adenovirus [AdV], discussed below), the spleen is typically dispensable or plays a minimal role in the clearance of virions from circulation. For example, splenectomized mice exhibit no defect in vascular clearance kinetics of chikungunya virus (CHIKV) [17], and examinations of viral biodistributions postclearance generally find the liver absorbs the bulk of the inoculum [5,7,17,25,30,31,42,51,119]. Yet, splenic capture of circulating microbes may have an important role in initializing an effective immune response necessary for the resolution of a natural infection [55,114].

Blood-borne pathogens

Some of the most well-studied blood-borne viruses are human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV). For these viruses, viremia levels are indicators of disease progression during chronic viral infections, which is characterized by a viremia set point that is constant for years [120]. This constancy is likely due to continuous
removal of viral particles from circulation to establish an equilibrium, as viral load would other-
wise be expected to steadily increase over time [120]. The magnitude of this set point associates with disease progression [120–122]. For example, AIDS patients with high-viral set points tend to have a more rapid disease progression than those with low-viral set points [121,122].

Understanding host mechanisms mediating removal of these human-specific viruses from circulation is challenging. The most common method to estimate viral clearance rates uses antiviral therapy to halt virus production then measures plasma virion half-life [120]. Another technique is plasma apheresis, wherein plasma is removed from a patient and fluids returned at similar rates to maintain blood volume [120]. Viral plasma loads are compared before, during, and after apheresis. If the clearance rate due to apheresis is smaller than the calculated natural clearance rate, there will be little impact on plasma viral concentrations [120]. Using animal models, viral vascular clearance can also be examined following i.v. inoculation.

HIV/SIV

In animal models, simian immunodeficiency virus (SIV) and HIV-1 viral particles are rapidly removed from circulation. Following i.v. inoculation into naive and SIV-infected rhesus macaques, newly inoculated SIV particles were quickly cleared from the plasma at an estimated half-life of 1.3 to 4.6 minutes [43,44]. Inoculated virus was not found in the blood’s cellular compartment, nor was it degraded when incubated in blood ex vivo, suggesting active removal of virions from circulation [43]. Another rhesus macaque study also identified rapid removal of HIV particles from circulation with half-lives of 13 to 26 minutes in naive animals [123]. A very small percentage of inoculated virus could be detected in the primate spleen, lungs, and lymph nodes [43,44]; however, the bulk of viral clearance from circulation was mediated by the liver [20,43,44]. In mice, inoculation of HIV-like particles resulted in clearance of 97% of the inoculum by 10 minutes [20], and HIV structural proteins env and gag were observed to associate with LSECs (approximately 88%) and KCs (approximately 12%) [20]. Studies in SIV macaque models suggest that captured virions are rapidly degraded, as only 30% of infused S35-labeled virus was detected at 1 hour postinoculation (hpi) [44], and no viral RNA was detected in tissues at later time points [43,123].

Human patient data also support a short half-life of circulating HIV particles, ranging from 28 minutes to no greater than 6 hours depending on methods used [124,125]. Correlating with animal data, HIV antigen and mRNA can also be detected in patient livers, particularly within KCs and to some degree within hepatocytes [126,127]. In vitro, both KC and LSEC primary cultures are capable of permissive HIV infection [128–130]. However, while liver samples of HIV-infected individuals (and SIV-infected macaques) have shown KCs stain positive for HIV antigen and nucleic acids, it remains uncertain whether KCs are able to support productive HIV/SIV replication in vivo [126,127,131–133]. In addition, host factors on KCs and LSECs responsible for mediating HIV-1 removal from circulation have yet to be identified.

HBV

Initial estimates of HBV half-life in the circulation ranged from 1 to 3 days [134–138]. These estimates were calculated following antiviral treatment to arrest HBV replication. However, more recent studies have attempted to account for the delayed release of HBV virions assembled prior to the start of drug intervention. The first such study calculated a revised HBV half-life of 3.8 hours in a chimpanzee model [139]. A subsequent study comparing chronic disease patients categorized into low- and high-viremic groups estimated median half-lives of 2.5 minutes and 46 minutes, respectively [140], suggesting that clearance rates may be affected by viral load or underlying host factors. Interestingly, such distinction in clearance rates between low-
and high-viremic patients was not observed in an immunodeficient mouse model (HBV half-life of 3 hours) [140]. It has been suggested liver hepatocyte expression of sodium taurocholate cotransporting polypeptide both mediates HBV removal from circulation and establishes liver infection [141].

HCV

HCV is rapidly cleared from circulation with a half-life of a few hours in the blood, as calculated from antiviral therapy [142,143], plasma apheresis [124,144], and liver transplantation studies [145]. Liver transplantation studies indicate the liver is not only involved in HCV replication but also viral clearance from circulation, as immediately postprocedure liver transplant recipients exhibit significantly enhanced rates of viral clearance [145]. However, mechanisms mediating this clearance are unknown and could be due to infection of new hepatocytes, capture by reticuloendothelial cells of the donor liver, or a combination thereof.

Arboviruses

Arboviruses are arthropod-borne viruses maintained in nature through transmission cycles involving hematophagous arthropod vectors and vertebrate hosts [146]. Viremia is an important determinant of arbovirus transmission efficiency, reservoir competency, and disease severity. Critical for arbovirus transmission, vertebrate hosts must produce a viremia of sufficiently high magnitude and duration to support infection of the arthropod vector from a blood meal. Beyond transmission, increased levels of viremia have also been shown to correlate with more severe disease outcomes for several arboviruses [147–152]. However, our understanding of arboviral viremia control is limited.

CHIKV, RRV, and ONNV

In mice, vascular clearance of arthritogenic alphaviruses CHIKV, Ross River virus (RRV), and o’nyong’nyong virus (ONNV) depends on the presence of scavenger receptor (SR) MARCO (SR-A6) (Fig 3) [17]. In wild-type (WT) mice, these viruses are efficiently cleared from circulation in less than 1 hour following i.v. inoculation [17]. Meanwhile, MARCO-deficient mice fail to remove i.v. inoculated virus, and following subcutaneous (s.c.) inoculation, they exhibit enhanced viral dissemination and worse disease outcomes [17].

MARCO-mediated clearance is specifically dependent on the presence of a particular lysine residue in the viral E2 glycoprotein. For CHIKV and ONNV, that critical lysine residue is at position E2-200 (K200), and for RRV, it is at position E2-251 (K251) [17]. Interestingly, substitution of any other residue, including another positive-charged residue, at these sites produces virions resistant to murine vascular clearance [17]. This lysine-specific vascular clearance phenotype suggests that the virion’s MARCO binding site may be sterically restrained. Alternatively, ONNV and CHIKV E2-K200 and RRV E2-K251 may be posttranslationally modified, as many possible lysine modifications exist [153], and SRs were first identified based on the capacity to recognize molecules such as low-density lipoprotein (LDL) with specific modifications on lysines including acetylation and oxidation [154].

VEEV

Serum clearance studies with Venezuelan equine encephalitis virus (VEEV) have suggested correlations between virion–glycosaminoglycan (GAG) interactions and clearance from circulation. Specifically, VEEV strains that exhibit high affinity for GAGs in vitro are more swiftly removed from circulation than strains with reduced GAG-binding properties [42]. For
example, mutations in VEEV that enhance virion–GAG interactions correlated with more rapid vascular clearance following i.v. inoculation of mice, with clearance mediated by the liver, spleen, lung, and kidney [42]. A similar finding was observed in a nonhuman primate model, wherein VEEV vaccine strain TC-83 (distinguished by a point mutation in the viral E2 glycoprotein that enhances GAG-binding in vitro [42,155]) was rapidly removed from circulation, while its virulent progenitor strain, TrD, was resistant [72]. Studies with other viruses also correlate the presence of virion GAG-binding mutations with rapid vascular clearance (alphaviruses: Sindbis virus (SINV) [41,71], Western equine encephalitis virus [73], Eastern equine encephalitis virus [156]; flaviviruses: Japanese encephalitis virus [40], Murray Valley encephalitis virus [40]; and picornavirus: Mengo virus [70]). Following clearance, these GAG-binding viruses are often liver localized [22,40,42,71], which is known to have high amounts of heparan sulfate (a class of GAGs) [157] and to mediate vascular clearance of heparan sulfate-binding proteins in vivo [158–161]. Given the GAG-binding properties of these viruses described above are also associated with attenuation in vivo [42,162–164], GAG-mediated vascular clearance is commonly hypothesized to control viremia and thus ultimately limit disease development [165].
SINV

Studies with SINV have identified a role for host-specific posttranslational modifications in determining viral clearance kinetics from the serum. Specifically, the absence of sialic acid on the SINV virion is associated with enhanced complement C3 activation in vitro and complement-mediated enhancement of vascular clearance in vivo [166]. Comparison of mosquito- and mammalian cell–derived virus detected more sialic acid associated with the latter [166]; insect cells generally do not sialylate glycans, unlike mammalian cells [167]. Removal of sialic acid from mammalian cell–derived virus by neuraminidase treatment resulted in enhanced complement C3 activation in vitro, comparable to mosquito cell–derived virus [166].

DENV and WNV

Investigations on vascular clearance of dengue (DENV) and West Nile (WNV) virus particles from circulation have implicated a role for mannose-binding lectin (MBL) ([Fig 3](#fig3)). In vivo, MBL contributes to swift vascular clearance of DENV (<0.5 hpi), as MBL-A/C-deficient mice cleared DENV particles less efficiently compared with WT mice [67]. In vitro, murine MBL binds to DENV and WNV via terminal mannose N-linked glycans and activates the MBL-complement pathway to neutralize virus [67]. In addition, in vitro human MBL can neutralize all 4 DENV serotypes independent of complement [168]. Whether MBL-mediated activation of the complement pathway is necessary for its role in vascular clearance remains to be investigated. Moreover, the absence of MBL delayed, but did not abolish, the vascular clearance of DENV, suggesting that additional pathways also contribute to the clearance of DENV particles from murine circulation.

The ability of MBL to bind WNV is influenced by viral glycosylation [67]. MBL binds strongly to mosquito cell–derived WNV, but not mammalian cell–derived WNV [67]. This was associated with cell type–specific N-linked glycan chains [67], as mosquito cells produced viral particles with truncated, high-mannose N-linked glycan chains, while mammalian cells are capable of further processing these N-linked glycans into more complex chains [167]. Inhibiting formation of complex N-linked glycosylation during WNV propagation in mammalian cells yielded progeny virions with exposed high-mannose sugars. These virions were more susceptible to MBL deposition, and this effect of MBL recognition of WNV N-linked glycosylation was supported by in vivo vascular clearance experiments [67].

VSV

The first report on the serum clearance of vesicular stomatitis virus (VSV) found it to be rapidly removed from circulation over a 5-minute period, and at 20 minutes pi, most of the infectious virus recovered was in the liver [30]—later shown to colocalize with KCs [23]. Although a more recent study analyzing VSV biodistribution at 2 hpi found more infectious virus in the spleen rather than the liver [60]; where virus colocalized with red pulp macrophages and MMMs [23,53]. Regarding splenic capture, VSV removal from circulation was heavily dependent on the presence of IgM natural antibodies, wherein splenic uptake was reduced by 2 to 3.5 logs at 1 hpi in antibody-deficient mice, but liver uptake was unaffected [60]. Furthermore, reconstitution of μMT mice (deficient in functional B cells and thus also natural antibody) with a single dose of normal mouse serum 30 minutes prior to i.v. inoculation of a lethal dose of VSV permitted 75% to 80% survival by 60 dpi (0% survival of nonreconstituted mice by 10 dpi) [60].

Gene therapy vectors

Gene therapy delivery by viral vectors is an attractive method due to viruses’ ability to evade immunosurveillance and deliver nucleic acids to specific cell types. Because viral vectors can
be administrated i.v., clearance of these vectors can influence efficacy, side effects, and half-life of the gene therapy.

AdV

The most extensively studied virus on the topic of viral vascular clearance is human AdV 5. For the purposes of this review, we highlight only those details of AdV vascular clearance that complement and generate a more comprehensive description of the virus–host interactions mediating removal of viral particles from circulation in general. For more information on AdV vascular clearance and the innate immune response, please see the detailed reviews by Allen and Byrnes [169] and Atasheva and colleagues [170].

Following i.v. inoculation, AdV is rapidly removed from circulation [171–173] and primarily distributed to the liver in both mice and nonhuman primates [9,48,171,172,174], although splenic macrophages in the marginal zone and red pulp have also been shown to be involved [48,56,57]. In mice, greater than 96% of circulating virus is cleared by the liver within 10 minutes post-i.v. inoculation [173]. An in vivo imaging study of near-infrared–labeled AdV particles revealed virus particles accumulated within the liver as soon as 11 seconds post-i.v. inoculation and saturation of the liver-localized signal occurred by 3 minutes postinoculation [5]. Within the liver, AdV specifically localizes to KCs [9,12,48,174–176]. However, there is also evidence of AdV uptake by LSECs [172], and mouse strain differences can affect whether the bulk of AdV uptake is performed by KCs or LSECs [11]. With regard to the latter, it is likely allelic differences play a role in determining which cell types mediate viral vascular clearance. Data in the same study implied mouse strain-dependent differences may also result in differential degrees of splenic involvement, wherein clearance in BALB/c mice is dominated by the spleen and C57BL/6, the liver [11].

It has been suggested that SRs expressed on KCs are responsible for capturing circulating AdV, specifically SR-A1 (MSR-1) [15,16,177], SR-F1 (SREC-I) [15,16], and SR-A6 (MARCO) (Fig 3) [178]. Supporting a role for SRs, pretreatment of mice with SR inhibitors (poly[I], poly[G], and/or dextran sulfate) reduced KC-AdV association by 80% to 90% and, subsequently, promoted greater liver transfection [10,14–16].

Natural antibodies and complement also promote uptake of AdV particles by KCs (Fig 3). RAG1 KO mice, which are unable to produce natural antibodies due to nonfunctional B cells, exhibit a 75% decrease in KC viral burden, but serum clearance can be partially rescued by pre-injection of WT naive mouse serum [10]. Natural antibodies bind AdV in vitro [10,179], and several other studies offer supporting in vivo evidence in RAG KO mice, as their hepatocytes are more highly transduced upon AdV i.v. inoculation (implying poor uptake by KCs) [9,11,179]. As for complement, C3 is activated in vivo following i.v. inoculation of AdV [68]. In vitro studies with AdV found C3 and C4 directly bind virions [10] and inhibit viral replication postinternalization [180,181]. Furthermore, CR1g expression by KCs contributes to AdV vascular clearance. CR1g-deficient mice clear AdV from circulation less efficiently, and data suggest reduced uptake of viral particles by CR1g-deficient KCs [12]. Other hematogenous host factors can also promote AdV resistance to KC-capture. For example, binding of coagulation factors to AdV promotes hepatocyte transduction [10,33,35–37,175] and thus, by extension, escape from KC entrapment.

In addition to host determinants of clearance, several studies examined virion features affecting clearance and biodistribution of circulating AdV. A single-point mutation in the virion fiber protein (Y477A), known to ablate binding to the AdV entry receptor CAR (cok-sackie and AdV receptor), delayed viral clearance from the bloodstream following i.v. inoculation [182]. Meanwhile, a different fiber mutation also known to disrupt CAR-binding
(S408E-P409A) found no impact on viral capture by KCs [183]. These data suggest 2 mechanisms to remove AdV from circulation: KCs acting independent of CAR and a non-KC cell population dependent on CAR. Virion features that specifically affect KC uptake are the fiber and hexon proteins. Chimeric AdV with different serotype knob-domains of fiber (Ad35 and Ad9) resulted in varying degrees of KC association [184]. This is supported by in vitro data wherein pretreatment of primary KC with knob protein decreases AdV uptake [177]. Hexon protein also appears to mediate KC interactions, specifically through the hypervariable regions (HVRs). Chimeric Ad5 expressing the HVR of Ad6 results in 10-fold enhanced hepatocyte transduction and reduced KC loss (implying better KC evasion; see KC response section) [185]. Similarly, modification of the hexon HVR to enhance virion PEGylation caused 10- to 40-fold enhancement of hepatocyte transduction [13]. This enhancement is thought to be due to KC evasion, as pretreating mice to deplete KC did not produce any additive effects [13].

MV vector

Clearance of measles virus (MV)-like particles from murine circulation is rapid, with a half-life of 1 minute and undetectable plasma virus levels by 30 minutes pi [39]. These clearance kinetics were measured in the absence of natural antibodies using severe combined immunodeficiency (SCID) mice, and clearance of MV-like particles appears to be primarily mediated by CD68+ macrophages of the liver and spleen. Because pretreatment with SR inhibitors (poly[I], poly[G], and dextran sulfate) reduced, but did not eliminate, viral uptake by the liver and spleen, a SR seems to be partially responsible for MV clearance. However, it is evident a second, poly[I]-insensitive mechanism of clearance exists [39].

Poxviruses

A series of studies by Mims in 1959 analyzed the serum clearance of mousepox virus [7,49]. By 2 to 3 minutes post-i.v. inoculation, 90% of the inoculated mousepox virus was removed from circulation, and analysis of virus burdens in the tissues at 5 minutes pi found 95% of the inoculated virus was present in the liver, while the spleen accounted for only 4% [7]. The amount of infectious virus detected in the liver declined over time, suggesting viral particles were destroyed. Microscopic examination identified virus was captured by liver littoral cells (KCs and LSECs) but not hepatocytes [7]. Despite the rapid viral clearance from circulation, Mims noted a small fraction of inoculated virus persisted in the bloodstream. This residual virus associated with platelets, and when reinoculated into a naive mouse, remained relatively resistant to vascular clearance [7].

Building on this earlier work, a 2017 study on dissemination of vaccinia virus (VACV) found i.v. inoculation of low viral doses (100 and 1,000 plaque-forming units [PFU]) unable to effectively disseminate to murine ovaries [64]. However, depletion of phagocytic cells via clodronate permitted viral dissemination [64], suggesting that macrophages mediate the capture of VACV from circulation. In contrast, depletion of dendritic cells (DCs) in CD11c-DTR transgenic mice did not alter VACV dissemination [64]. In congruence, an earlier observation described that pretreatment of mice with thorotrast (which impedes phagocytic activity) also inhibited VACV vascular clearance [21]. However, the fate of VACV following vascular clearance appears to be tissue dependent. Hepatic capture results in viral destruction, as VACV antigen was only detected at early time points post-i.v. inoculation and became undetectable after 1 hpi [21]. In contrast, splenic uptake of VACV by MZMs [64] and MMMs [186] results in productive infection.

Natural antibodies have been proposed to promote splenic uptake of VACV, as μMT mice (deficient in functional B cells) exhibited both decreased serum clearance of the virus and
decreased titer of virus in the spleen [60]. However, the liver may compensate for decreased splenic uptake as absence of natural antibodies was also associated with a modest increase in liver viral titer [60].

Fate of viral capture

In general, rapid viral vascular clearance is associated with reduced viral pathogenesis, as seen in animal studies specifically impairing or depleting RES phagocytes via pharmaceuticals (e.g., thorotrast and clodronate-loaded liposomes). For example, s.c. inoculation of Semliki Forest virus (mimicking the natural route of inoculation for this arbovirus) into thorotrast-treated mice produced accelerated and heightened viremia compared with untreated controls [21]. Similarly, RES impairment enhanced herpes simplex virus 2 mortality [187] and promoted LCMV replication and viremia development [29] in murine models. Interestingly, while clodronate-treated, LCMV-infected mice were able to mount an initial virus-specific cytotoxic T lymphocyte (CTL) response, these T cells soon exhibited an exhausted T-cell phenotype as measured by an in vitro killing assay [188]. Similarly, a study of LCMV infection in op/op mice (that naturally lack MZMs but retain KCs [189,190]) also found disease development associated with exhausted CTLs or an immunopathologic CTL response [53].

Another method to investigate the impact of vascular clearance on disease severity is the utilization of specific viral mutants with altered clearance kinetics. One such mutation in the capsid of the hepatitis A virus (HAV) promoted faster serum clearance than WT virus due to its stronger affinity for glycophorin A expressed on erythrocytes [65]. Competition experiments, where differing amounts of WT and mutant HAV were co-inoculated i.v., showed that the mutant was specifically removed from circulation at a faster rate than WT virus [65]. This more rapid clearance correlated with less productive liver infection [65]. Similarly, a single-point mutation in the E2 glycoprotein of CHIKV, RRV, and ONNV made virions completely resistant to vascular clearance [17]. Following s.c. inoculation, this point mutation enhanced CHIKV dissemination, viremia, and subsequent disease severity [17,191]. From these studies, it is evident the RES is an important modulator of viral pathogenesis.

KC and liver-mediated T-cell response

Following uptake of circulating viral particles, KCs restrict viral gene expression and replication in a manner dependent on signaling through the type-I interferon receptor (IFNAR). Upon VACV vascular clearance, viral replication was controlled by KC IFNAR signaling and promoted host survival [192]. Despite lack of detectable type I interferon (IFN-I) in the serum [193], a local, hepatic IFN-I response controlled viral replication [192]. Likewise, KC IFNAR signaling controlled LCMV infection [29] and was associated with a rapid influx of inflammatory monocytes to the liver [194]. In vitro, KCs isolated from human liver specimens phagocytize and degrade purified DENV-1 particles [195], producing antiviral cytokines, including IFN-α, interleukin (IL)-6, and tumor necrosis factor alpha (TNFα), in response to DENV-1 uptake.

However, KC–virus interactions may also result in KC death. For example, while most AdV particles captured by the liver are degraded [173,196], as evidenced by poor or failed transduction of KCs and LSECs [9,197,198], this control of viral infection also comes at a cost for the KC. Membrane disruption by the AdV capsid protein decreases the KC population size [25,183,199]. Consequently, this mutual destruction of KC and AdV could provide a window of opportunity for a secondary infection to disseminate unchecked until KC compartment repopulation.
Capture of circulating virions by the liver can affect development of an antiviral T-cell response (for a review on liver immunosurveillance, please see [200]). LSECs are suggested to activate T cells against circulating antigen; however, their priming of naive T cells typically produces tolerant or regulatory T-cell responses [200 201]. While KCs are generally skewed to promote a tolerogenic T-cell response [202], they can also induce an antiviral T-cell response analogous to that observed in the secondary lymphoid organs [203,204]. Specifically, KC-targeted uptake of virus has been shown to produce robust, effective CTL responses [203,205], even in the absence of hepatic DCs [203].

Splenic macrophage response

While splenic macrophages do not appear to play a dominant role in the physical removal of circulating virions (as there are no reports of splenectomized animals failing to clear virus from circulation), their participation does impact the immunological responses to infection. For example, murine MZMs and MMMs are potent producers of IFN-I in response to i.v. inoculation of UV-inactivated herpes simplex virus 1 [58,115], while no IFN-producing cells were detected in the liver [58]. Likewise, AdV capture by marginal zone, MARCO+ macrophages elicited an inflammatory response [55]. Specifically, these MZMs recruited neutrophils to the spleen marginal zone leading to destruction of virus-associated macrophages [55].

Meanwhile, several studies with AdV [56,57] and VSV [23,52] have demonstrated a role for MMMs in promoting the development of strong B and T-cell responses. During infection, MMMs capture circulating virions but, unlike KCs and other splenic macrophage subpopulations, permit viral replication as a means of amplifying viral antigen for delivery to DC. Viral replication is supported by both the nonresponsiveness of MMMs to IFN-I due to expression of ubiquitin-specific peptidase 18 (USP18, a negative regulator of IFNAR signaling) [23] as well as the effects of TNF secreted by CD11b+/CD11c−/Ly6C+/Ly6G+ cells [52]. MMM-amplified viral antigen can then be cross-presented by DCs to prime CTLs [23,52,56, 57], eliciting a biased response to major histocompatibility complex (MHC)-I-binding peptides [57]. In the absence of DCs, an adaptive immune response is still elicited, albeit to a lower degree [57].

Conclusions

The literature contains a vast variety of papers on the kinetics of viral vascular clearance and subsequent biodistribution. If susceptible to vascular clearance, most virions are rapidly cleared from circulation by the liver, with some splenic participation (Table 1). The mechanisms orchestrating clearance vary between viruses, and in some cases, the RES may utilize multiple, redundant avenues to capture a virion, as seen with DENV [67] and MV [39]. Interestingly, host mechanisms of viral vascular clearance may supersede viral interactions with receptors identified in vitro, as shown with AdV. For example, different AdV serotypes may use the same receptor in vitro, yet exhibit different biodistributions following i.v. inoculation [119].

While the literature describes a clear role for the RES-mediated removal of viral particles from circulation and importance in controlling viral pathogenesis, only a handful of studies have delved deeper to examine immunological responses elicited in specific RES cell populations following viral vascular clearance and the fate of captured virions [23,52,53,56,57,186,205].

Furthermore, it is unclear how aging or illness that disrupts integrity of the RES system (e.g., liver or spleen diseases) affects clearance of circulating viruses, although some studies observed impaired bacterial clearance in patients suffering liver cirrhosis [206, 207]. Elucidating virus–host interactions and downstream consequences (and in different physiological
conditions) will enhance our understanding of the application of virus-vectored gene therapies, the impact of vascular clearance (or failure thereof) on viral pathogenesis and disease severity, and even the ecology of arthropod-borne viruses.

References
1. Yona S, Gordon S. From the reticuloendothelial to mononuclear phagocyte system—The unaccounted years. Front Immunol. 2015; 6(JUL):1–7. https://doi.org/10.3389/fimmu.2015.00328 PMID: 26191061
2. Van RN, Sanders A. Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods. 1994; 174(1–2):93–93. https://doi.org/10.1016/0022-1759(94)90012-4 PMID: 8083541
3. Scott CL, Zheng F, De Baetselier P, Martens L, Saeps Y, De Prijck S, et al. Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat Commun. 2016; 7:1–10. https://doi.org/10.1038/ncomms10321 PMID: 26813785
4. Kohyama M, Ise W, Edelson BT, Wilker PR, Hildner K, Mejia C, et al. Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis. Nature. 2009 Jan; 457(7227):318–21. https://doi.org/10.1038/nature07472 PMID: 19037245
5. Hoffmann SE, Adams KE, Chen CY, May S, Weaver EA, Barry MA. Real-time dynamic imaging of virus distribution In Vivo. PLoS ONE. 2011; 6(2):1–8. https://doi.org/10.1371/journal.pone.0017076 PMID: 21347236
6. Jenne CN, Kubes P. Immune surveillance by the liver. Nat Immunol. 2013 Oct; 14(10):996–1006. https://doi.org/10.1038/ni.2691 PMID: 24048121
7. Mims CA. The response of mice to large intravenous injections of ectromelia virus. I. The fate of injected virus. Br J Exp Pathol. 1959; 40:533–43. PMID: 14422711
8. Britt W. Virus entry into host, establishment of infection, spread in host, mechanisms of tissue damage. In: Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, et al., editors. Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis. Cambridge; 2007. PMID: 21348097
9. Tao N, Gao GP, Parr M, Johnston J, Baradet T, Wilson JM, et al. Sequestration of adenoviral vector by Kupffer cells leads to a nonlinear dose response of transduction in liver. Mol Ther. 2001; 3(1):28–35. https://doi.org/10.1006/mthe.2000.0227 PMID: 11162308
10. Xu Z, Tian J, Smith JS, Byrnes AP. Clearance of Adenovirus by Kupffer Cells Is Mediated by Scavenger Receptors, Natural Antibodies, and Complement. J Virol. 2008; 82(23):11705–13. https://doi.org/10.1128/JVI.01320-08 PMID: 18815305
11. Snoeys J, Mertens G, Lievens J, van Berkel T, Collen D, Biessen EAL, et al. Lipid emulsions potently increase transgene expression in hepatocytes after adenoviral transfer. Mol Ther. 2006; 13(1):98–107. https://doi.org/10.1016/j.mthe.2005.06.477 PMID: 16112619
12. He QJ, Katschke KJ Jr, Gribling P, Suto E, Lee WP, Diehl L, et al. CR1-mediated early Kupffer cell responses to adenovirus. J Leukoc Biol. 2013; 93:301–6. https://doi.org/10.1189/jlb.0612311 PMID: 23225913
13. Khare R, Reddy VS, Nemerow GR, Barry MA. Identification of Adenovirus Serotype 5 Hexon Regions That Interact with Scavenger Receptors. J Virol. 2012; 86(4):2293–301. https://doi.org/10.1128/JVI.00760-11 PMID: 22156151
14. Haisma HJ, Kamps JAAM, Kamps GK, Plantinga JA, Rots MG, Bellu AR. Polynoisinoc acid enhances delivery of adenovirus vectors in vivo by preventing sequestration in liver macrophages. J Gen Virol. 2008; 89(5):1097–105. https://doi.org/10.1099/vir.0.83495-0 PMID: 18420786
15. Piccolo P, Vetrini F, Mithbaokar P, Grove NC, Bertin T, Palmer D, et al. SR-A and SREC-I are Kupffer and Endothelial cell receptors for helper-dependent adenoviral vectors. Mol Ther. 2013; 21(4):767–74. https://doi.org/10.1038/mt.2012.287 PMID: 23356188
16. Piccolo P, Annunziata P, Mithbaokar P, Brunetti-Pierri N, SR-A and SREC-I binding peptides increase HDAd-mediated liver transduction. Gene Ther. 2014; 21(11):950–7. https://doi.org/10.1038/gt.2014.71 PMID: 25119377
17. Carpentier KS, Davenport BJ, Haist KC, McCarthy MK, May NA, Robison A, et al. Discrete viral E2 lysine residues and scavenger receptor MARCO are required for clearance of circulating alphaviruses. Elife. 2019 Oct 9; 8:e49163. https://doi.org/10.7554/eLife.49163 PMID: 31596239
18. Stone D, Liu Y, Shayakhmetov D, Li Z-Y, Ni S, Lieber A. Adenovirus-Platelet Interaction in Blood Causes Virus Sequestration to the Reticuloendothelial System of the Liver. J Virol. 2007; 81(9):4866–71. https://doi.org/10.1128/JVI.02619-06 PMID: 17301138
19. Shen S, Bryant KD, Sun J, Brown SM, Troupes A, Pulicherla N, et al. Glycan Binding Avidity Determines the Systemic Fate of Adeno-Associated Virus Type 9. J Virol. 2012; 86(19):10408–17. https://doi.org/10.1128/JVI.01155-12 PMID: 22787229

20. Mates JM, Yao Z, Cheplowitz AM, Suer O, Phillips GS, Kwiek JJ, et al. Mouse liver sinusoidal endothelium eliminates HIV-like particles from blood at a rate of 100 million per minute by a second-order kinetic process. Front Immunol. 2017; 8(JAN):1–9.

21. Mims CA. Aspects of the pathogenesis of virus diseases. Bacteriol Rev. 1964 Mar; 28(1):30–71. https://doi.org/10.1128/br.28.1.30-71.1964 PMID: 14127970

22. Jahrling PB, Gorelkin L. Selective clearance of a benign clone of Venezuelan equine encephalitis virus from hamster plasma by hepatic reticuloendothelial cells. J Infect Dis. 1975; 132(6):667–76. https://doi.org/10.1093/infdis/132.6.667 PMID: 1202111

23. Honke N, Shaabani N, Cadeddu G, Sorg UR, Zhang DE, Trilling M, et al. Enforced viral replication activates adaptive immunity and is essential for the control of a cytopathic virus. Nat Immunol. 2012; 13(1):51–7.

24. Lieber A, He CY, Meuse L, Schowalter D, Kirillova I, Winther B, et al. The role of Kupffer cell activation and viral gene expression in early liver toxicity after infusion of recombinant adenovirus vectors. J Virol. 1997; 71(11):8798–807. https://doi.org/10.1128/JVI.71.11.8798-8807.1997 PMID: 9343240

25. Manickan E, Smith JS, Tian J, Eggeman TL, Lozier JN, Muller J, et al. Rapid Kupffer cell death after intravenous injection of adenovirus vectors. Mol Ther. 2006; 13(1):108–17. https://doi.org/10.1016/j.ymthe.2005.08.007 PMID: 16198149

26. Mims CA. The response of mice to the intravenous injection of cowpox virus. Br J Exp Pathol. 1968; 49(1):24–32. PMID: 5689130

27. Tohid-Esfahani R, Vickery K, Cossart Y. The early host innate immune response to duck hepatitis B virus infection. J Gen Virol. 2010; 91(2):509–20. https://doi.org/10.1099/vir.0.015529-0 PMID: 19846670

28. Roberts JA. Histopathogenesis of mousepox: III. Ectromelia virulence Br J Exp Pathol. 1963 Oct; 44 (5):465–72. PMID: 14066120

29. Lang PA, Recher M, Honke N, Scheu S, Borkens S, Gallius N, et al. Tissue macrophages suppress viral replication and prevent severe immunopathology in an interferon-α-dependent manner in mice. Hepatology. 2010; 52(1):25–32. https://doi.org/10.1002/hep.23640 PMID: 20578253

30. Brunner K, Hurez D, McCluskey R, Benacerraf B. Blood clearance of P-32 Labeled Vesicular Stomatitis and Newcastle Disease Viruses by the Reticuloendothelial System in Mice. J Immunol. 1960; 85:99–105. PMID: 13805345

31. Simon-Santamaria J, Rinaldo CH, Kardas P, Li R, Malovic I, Elvevold K, et al. Efficient uptake of blood-borne BK and JC polyomavirus-like particles in endothelial cells of liver sinusoids and renal Vasa recta. PLoS ONE. 2014; 9(11):e111762. https://doi.org/10.1371/journal.pone.0111762 PMID: 25375646

32. Claassen IJ, Osterhaus AD, Claassen E. Antigen detection in vivo after immunization with different presentation forms of rabies virus antigen: involvement of marginal metallophilic macrophages in the uptake of immune-stimulating complexes. Eur J Immunol. 1995 May; 25(5):1446–52. https://doi.org/10.1002/eji.1830250547 PMID: 7774649

33. Zais AK, Foley EM, Lawrence R, Schneider LS, Hoveida H, Secrest P, et al. Hepatocyte heparan sulfate is required for adeno-associated virus 2 but dispensable for adenovirus 5 liver transduction in vivo. J Virol. 2016; 90(1):412–20. https://doi.org/10.1128/JVI.01939-15 PMID: 26491162

34. Breiner KM, Schaller H, Knolle PA. Endothelial cell-mediated uptake of a hepatitis B virus: A new concept of liver targeting of hepatotropic microorganisms. Hepatology. 2001; 34(4 I):803–8. https://doi.org/10.1053/jhep.2001.27810 PMID: 11584379

35. Parker AL, Waddington SN, Nicol CG, Shayakhmetov DM, Buckley SM, Denby L, et al. Multiple vitamin K-dependent coagulationzymogens promote adenovirus-mediated gene delivery to hepatocytes. Blood. 2006; 108(8):2545–61. https://doi.org/10.1182/blood-2006-04-08532 PMID: 16788098

36. Waddington SN, Parker AL, Havenga M, Nicklin SA, Buckley SMK, McVey JH, et al. Targeting of adenovirus serotype 5 (Ad5) and 5/47 pseudotyped vectors in vivo: fundamental involvement of coagulation factors and redundancy of CAR binding by Ad5. J Virol. 2007 Sep 1; 81(17):9568–71. https://doi.org/10.1128/JVI.00663-07 PMID: 17553882

37. Waddington SN, McVey JH, Bhella D, Parker AL, Barker K, Atoda H, et al. Adenovirus serotype 5 hexon mediates liver gene transfer. Cell. 2008; 132(3):397–409. https://doi.org/10.1016/j.cell.2008.01.016 PMID: 18267072
38. Xu Z, Qiu Q, Tian J, Smith JS, Conenello GM, Morita T, et al. Coagulation factor X shields adenovirus type 5 from attack by natural antibodies and complement. Nat Med. 2013; 19(4):452–7. https://doi.org/10.1038/nm.3107 PMID: 23524342

39. Liu YP, Tong C, Dispensieri A, Federspiel MJ, Russell SJ, Peng KW. Polysinosinic acid decreases sequestration and improves systemic therapy of measles virus. Cancer Gene Ther. 2012; 19(3):202–11. https://doi.org/10.1038/cgt.2011.82 PMID: 22116376

40. Lee E, Lobigs M. Mechanism of virulence attenuation of glycosaminoglycan-binding variants of Japanese encephalitis virus and Murray Valley encephalitis virus. J Virol. 2002; 76(10):4901–11. https://doi.org/10.1128/jvi.76.10.4901-4911.2002 PMID: 11967307

41. Postic B, Schleupner C, Armstrong J, Ho M. Two variants of sindbis virus which differ in interferon induction and serum clearance. I. The phenomenon. J Infect. 1969; 120(3):339–47. https://doi.org/10.1093/infdis/120.3.339 PMID: 11280997

42. Bernard KA, Klimstra WB, Johnston RE. Mutations in the E2 glycoprotein of Venezuelan equine encephalitis virus confer heparan sulfate interaction, low morbidity, and rapid clearance from blood of mice. Virology. 2000; 276(1):93–103. https://doi.org/10.1006/viro.2000.0546 PMID: 11967307

43. Zhang L, Dailey PJ, Gettie A, Blanchard J, Ho DD. The liver is a major organ for clearing simian immunodeficiency virus in rhesus monkeys. J Virol. 2002; 76(10):5271–3. https://doi.org/10.1128/jvi.76.10.5271-5273.2002 PMID: 11967341

44. Nathanson N, Harrington B, McLean A. Experimental infection of monkeys with Langat virus II. Turnover of circulating virus. Review Rev Med Virol. 2000; 10(4):207–15. https://doi.org/10.1002/jmv.1099-1654(200007/08)10:4<207::aid-rmv267>3.0.co;2-t PMID: 10891869

45. Mims CA. Rift Valley Fever virus in mice. II. Adsorption and multiplication of virus. Br J Exp Pathol. 1956; 37(11):210–9. PMID: 13315886

46. Zisman B, Wheelock EF. Role of macrophages and antibody in resistance of mice against yellow fever virus. J Immunol. 1971; 107:236–43. PMID: 4326399

47. Schnell MA, Zhang Y, Tazelaar J, Gao GP, Yu QC, Qian R, et al. Activation of innate immunity in non-human primates following intraportal administration of adenoviral vectors. Mol Ther. 2001; 3(5):708–22. https://doi.org/10.1006/mthe.2001.0330 PMID: 11356076

48. Zhang Y, Chirmule N, Gao GP, Qian R, Croyle M, Joshi B, et al. Acute cytokine response to systemic adenoviral vectors in mice is mediated by dendritic cells and macrophages. Mol Ther. 2001; 3(5):697–707. https://doi.org/10.1006/mthe.2001.0329 PMID: 11356075

49. Backer R, Schwandt T, Greuter M, Oosting M, Juengerkes F, Tuting T, et al. Effective collaboration between marginal metallophilic macrophages and CD8+ dendritic cells in the generation of cytotoxic T cells. Proc Natl Acad Sci U S A. 2010 Jan; 107(1):216–21. https://doi.org/10.1073/pnas.0909541107 PMID: 20018690

50. Bernhard CA, Ried C, Kochanek S, Brocker T. CD169+ macrophages are sufficient for priming of CTLs with specificities left out by cross-priming dendritic cells. Proc Natl Acad Sci U S A. 2015 Apr; 112(17):5461–6. https://doi.org/10.1073/pnas.1423356112 PMID: 25922518
58. Eloranta ML, Sandberg K, Alm G V. The interferon-alpha/beta responses of mice to herpes simplex virus studied at the blood and tissue level in vitro and in vivo. Scand J Immunol. 1996 Apr; 43(4):356–60. https://doi.org/10.1046/j.1365-3083.1996.d01-62.x PMID: 8668912

59. Claassen IJ, Osterhaus AD, Poelen M, Van Rooijen N, Claassen E. Antigen detection in vivo after immunization with different presentation forms of rabies virus antigen, II. Cellular, but not humoral, systemic immune responses against rabies virus immune-stimulating complexes are macrophage dependent. Immunology. 1998 Aug; 94(4):455–60. https://doi.org/10.1046/j.1365-2567.1998.00539.x PMID: 9767431

60. Ochsenbein AF, Fehr T, Lutz C, Suter M, Brombacher F, Hengartner H, et al. Control of early viral and bacterial distribution and disease by natural antibodies. Science. 1999; 286(5447):2156–9. https://doi.org/10.1126/science.286.5447.2156 PMID: 10591647

61. Verdin EM, Lynn SP, Fields BN, Maratos-Flier E. Uptake of reovirus serotype 1 by the lungs from the bloodstream is mediated by the viral hemagglutinin. J Virol. 1988; 62(2):545–51. https://doi.org/10.1128/JVI.62.2.545-551.1988 PMID: 3336070

62. Zisman B, Hirsch MS, Allison AC. Selective effects of anti-macrophage serum, silica and anti-lymphocyte serum on pathogenesis of herpes virus infection of young adult mice. J Immunol. 1970; 104(5):1155–9. PMID: 4315460

63. Contigiani MS, Medeot SI, Diaz GE, Sabattini MS. Rapid vascular clearance of two strains of Junin virus in Calomys musculinus: selective macrophage clearance. Acta Virol. 1991 Apr; 35(2):144–51. PMID: 1681712

64. Davies ML, Parekh NJ, Kaminsky LW, Soni C, Reider E, Krouse TE, et al. A systemic macrophage response is required to contain a peripheral poxvirus infection. PLoS Pathog. 2017; 13(8):e1006435. https://doi.org/10.1371/journal.ppat.1006435 PMID: 28614386

65. Hirsch R, Griffin D, Winkelstein J. The role of complement in viral infections. II. The clearance of sindbis virus from the bloodstream and central nervous system of mice depleted of complement. J Infect Dis. 1980; 141(2):212–7. https://doi.org/10.1093/infdis/141.2.212 PMID: 7365277

66. Fuchs A, Lin TY, Beasley DW, Stover CM, Schwaeble WJ, Pierson TC, et al. Direct complement restriction of flavivirus infection requires glycan recognition by mannose-binding lectin. Cell Host Microbe. 2010; 8(2):186–95. https://doi.org/10.1016/j.chom.2010.07.007 PMID: 20709295

67. Tian J, Xu Z, Smith JS, Holmner SE, Barry MA, Byrnes AP. Adenovirus activates complement by distinctly different mechanisms in vitro and in vivo: Indirect complement activation by virions in vivo. J Virol. 2009; 83(11):5648–58. https://doi.org/10.1128/JVI.00822-09 PMID: 19321608

68. Van Dijk R, Montenegro-Miranda PS, Riviere C, Schilderink R, Ten Bloemendaal L, Van Gorp J, et al. Polyinosinic acid blocks adeno-associated virus macrophage endocytosis in vitro and enhances adeno-associated virus liver-directed gene therapy in vivo. Hum Gene Ther. 2013; 24(9):807–13. https://doi.org/10.1089/hum.2013.086 PMID: 24010701

69. Campbell J, Buera J, Tobias F. Influence of blood clearance rates on interferon production and virulence of Mengo virus plaque mutants in mice. Can J Microbiol. 1970; 16(9):821–6. https://doi.org/10.1139/m70-138 PMID: 4319089

70. Byrnes AP, Griffin DE. Large-Plaque Mutants of Sindbis Virus Show Reduced Binding to Heparan Sulfate, Heightened Viremia, and Slower Clearance from the Circulation. J Virol. 2000; 74(2):644–51. https://doi.org/10.1128/JVI.74.2.644-651.2000 PMID: 10623725

71. Jahrling PB, Hilmas DE, Heard CD. Vascular clearance of venezuelan equine encephalomyelitis viruses as a correlate to virulence for rhesus monkeys. Arch Virol. 1977; 55(1–2):161–4. https://doi.org/10.1007/BF01314490 PMID: 411457

72. Granger DN, Kwietysz PR. Circulation, Overview. In: Johnson LRBT-E of G, editor. New York: Elsevier; 2004. p. 351–5.

73. Kubes P, Jenne C. Immune Responses in the Liver. Annu Rev Immunol. 2018 Apr; 36:247–77. https://doi.org/10.1146/annurev-immunol-051116-052415 PMID: 23928785

74. MacPhee PJ, Schmidt EE, Groom AC. Intermittence of blood flow in liver sinusoids, studied by high-resolution in vivo microscopy. Am J Physiol Gastrointest Liver Physiol. 1995, 269(S 32–5). https://doi.org/10.1152/ajpgi.1995.269.S692 PMID: 7491960
77. Warren A, Chaberek S, Ostrowski K, Cogger VC, Hilmer SN, McCuskey RS, et al. Effects of old age on vascular complexity and dispersion of the hepatic sinusoidal network. Microcirculation. 2008; 15(3):191–202. https://doi.org/10.1080/10739680701600856 PMID: 18386215

78. Wisse E, de Zanger RB, Jacobs R, McCuskey RS. Scanning electron microscope observations on the structure of portal veins, sinusoids and central veins in rat liver. Scan Electron Microsc. 1983; 111:1441–52. PMID: 6648350

79. Oda M, Yokomori H, Han J-Y. Regulatory mechanisms of hepatic microcirculation. Clin Hemorheol Microcirc. 2003; 29(3–4):167–182. PMID: 14724338

80. Tabula Muris Consortium. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature. 2018 Oct; 562(7727):367–72. https://doi.org/10.1038/s41586-018-0590-4 PMID: 30283141

81. Bruhns P, Jönsson F. Mouse and human FcR effector functions. Immunol Rev. 2015; 268(1):25–51. https://doi.org/10.1111/imr.12350 PMID: 26497511

82. Szabo G, Dolganuiuc A, Mandrekar P. Pattern recognition receptors: a contemporary view on liver diseases. Hepatology. 2006 Aug; 44(2):287–98. https://doi.org/10.1002/hep.21308 PMID: 16871558

83. Pandey E, Nour AS, Harris EN. Prominent Receptors of Liver Sinusoidal Endothelial Cells in Liver Homeostasis and Disease. Front Physiol. 2020; 11:873. https://doi.org/10.3389/fphys.2020.00873 PMID: 32948838

84. Nakamoto N, Kanai T. Role of toll-like receptors in immune activation and tolerance in the liver. Front Immunol. 2014; 5:221. https://doi.org/10.3389/fimmu.2014.00221 PMID: 24904576

85. Hoving JC, Wilson GJ, Brown GD. Signalling C-type lectin receptors, microbial recognition and immunity. Cell Microbiol. 2014/01/10. 2014 Feb; 16(2):185–94. https://doi.org/10.1111/cmi.12249 PMID: 24330199

86. Wisse E, de Zanger RB, Jacobs R, McCuskey RS. The liver sieve: Considerations concerning the structure and function of the sinusoidal wall and the space of Disse. Hepatology. 1983; 5(4):883–92. https://doi.org/10.1002/hep.1840050542 PMID: 39269097

87. Wisse E. An electron microscopic study of the fenestrated endothelial lining of rat liver sinusoids. J Ultrastruct Research. 1970; 31(1–2):125–50. https://doi.org/10.1016/s0022-5320(70)90150-4 PMID: 5442603

88. Otten MA, van Egmond M. The Fc receptor for IgA (FcalphaRI, CD89). Immunol Lett. 2004 Mar; 92(1–2):23–31. https://doi.org/10.1016/j.imlet.2003.11.016 PMID: 15081523

89. Kimura Y, Inoue A, Hangai S, Saijo S, Negishi H, Nishio J, et al. The innate immune receptor Dectin-2 mediates the phagocytosis of cancer cells by Kupffer cells for the suppression of liver metastasis. Proc Natl Acad Sci U S A. 2016 Dec; 113(49):14097–102. https://doi.org/10.1073/pnas.1617903113 PMID: 27872290

90. Bruggeman CW, Houtzager J, Dierdorp B, Kers J, Pals ST, Lutter R, et al. Tissue-specific expression of IgG receptors by human macrophages ex vivo. PLoS ONE. 2019; 14(10):e0223264. https://doi.org/10.1371/journal.pone.0223264 PMID: 31613876

91. DeLeve L, Maretti-Miracle A. LSECs: An Update. Semin Liver Dis. 2017; 37(4):377–87. https://doi.org/10.1055/s-0037-1617455 PMID: 29272898

92. Bhandari S, Larsen AK, McCourt P, Smedsrød B, Sørensen KK. The Scavenger Function of Liver Sinusoidal Endothelial Cells in Health and Disease. Front Physiol. 2021; 12. https://doi.org/10.3389/fphys.2021.757469 PMID: 34707514

93. Hoving JC, Wilson GJ, Brown GD. Signalling C-type lectin receptors, microbial recognition and immunity. Cell Microbiol. 2014/01/10. 2014 Feb; 16(2):185–94. https://doi.org/10.1111/cmi.12249 PMID: 24330199

94. Otten MA, van Egmond M. The Fc receptor for IgA (FcalphaRI, CD89). Immunol Lett. 2004 Mar; 92(1–2):23–31. https://doi.org/10.1016/j.imlet.2003.11.016 PMID: 15081523

95. Braet F, Wisse E. Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol. 2002; 1:1. https://doi.org/10.1186/1476-5926-1-1 PMID: 12437787

96. Wisse E, de Zanger RB, Charels K, van der Smissen P, McCuskey RS. The liver sieve: Considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of disse. Hepatology. 1985; 5(4):683–92. https://doi.org/10.1002/hep.1840050542 PMID: 3926620

97. Sørensen KK, McCourt P, Berg T, Crossley C, Le Couteur D, Wake K, et al. The scavenger endothelial cell: A new player in homeostasis and immunity. Am J Phys Regul Integr Comp Phys. 2012; 303(12). https://doi.org/10.1152/ajpregu.00686.2011 PMID: 23076875

98. Dalen DPP, De Leeuw AM, Brouwer A, Knoock DL. Rat liver endothelial cells have a greater capacity than kuffer cells to endocytose N-acetylglucosamine- and mannose-terminated glycoproteins. Hepatology. 1987; 7(4):672–9. https://doi.org/10.1002/hep.1840070410 PMID: 3301616
99. Laakso T, Smidsrød B. Cellular distribution in rat liver of intravenously administered polyacryl starch and chondroitin sulfate microparticles. Int J Pharm. 1987; 36(2–3):253–62.

100. Wisse E, Braet F, Luo D, De Zanger R, Jans D, Crabbé E, et al. Structure and function of sinusoidal lining cells in the liver. Toxicol Pathol. 1996; 24(1):100–11. https://doi.org/10.1177/019262339602400114 PMID: 8839287

101. Kjeken R, Mousavi SA, Brech A, Gjaen T, Berg T. Fluid phase endocytosis of [125I]iodixanol in rat liver parenchymal, endothelial and Kupffer cells. Cell Tissue Res. 2001; 304(2):221–30. https://doi.org/10.1007/s00441003348 PMID: 11396716

102. Steffen A-M, Gendrault J-L, McCuskey RS, McCuskey PA, Kirn A. Phagocytosis, an unrecognized property of murine endothelial liver cells. Hepatology. 1986; 6(5):830–6. https://doi.org/10.1002/hep.1840060505 PMID: 3758936

103. Hickey MJ, Kubes P. Intravascular immunity: The host-pathogen encounter in blood vessels. Nat Rev Immunol. 2009; 9(5):364–75. https://doi.org/10.1038/nri2532 PMID: 19390567

104. Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity. 2013; 38(4):792–804. https://doi.org/10.1016/j.immuni.2013.04.004 PMID: 23601688

105. Movita D, Kreeff K, Biesta P, van Oudenaarden A, Leenen PJM, Janssen HLA, et al. Kupffer cells express a unique combination of phenotypic and functional characteristics compared with splenic and peritoneal macrophages. J Leukoc Biol. 2012; 92:723–33. https://doi.org/10.1097/00000658-198202000-00009 PMID: 22685319

112. Gregory SH, Sagnimeni AJ, Wing EJ. Bacteria in the bloodstream are trapped in the liver and killed by immigrating neutrophils. J Immunol. 1996; 157(6):2514–20. PMID: 8805652

113. Horton J, Ogden ME, Williams S, Coln D. The importance of splenic blood flow in clearing pneumococcal organisms. Ann Surg. 1982; 195(2):172–6. https://doi.org/10.1097/00000658-198202000-00009 PMID: 7055394

114. Perez OA, Yeung ST, Vera-Licona P, Romagnoli PA, Samji T, Ural BB, et al. CD169+ macrophages orchestrate innate immune responses by regulating bacterial localization in the spleen. Sci Immunol. 2017; 2(16). https://doi.org/10.1126/sciimmunol.aah5520 PMID: 28996418

115. Eloranta M, Alm GV. Splenic Marginal Metallophilic Macrophages and Marginal Zone Macrophages are the Major Interferon-α/β Producers in Mice Upon Intravenous Challenge with Herpes Simplex Virus. Scand J Immunol. 1999; 49:391–4. https://doi.org/10.1046/j.1365-3083.1999.00514.x PMID: 10219764

116. De Jesus M, Park CG, Su Y, Goldman DL, Steinman RM, Casadevall A. Spleen deposition of Cryptococcus neoformans capsular glucuronoxylomannan in rodents occurs in red pulp macrophages and not marginal zone macrophages expressing the C-type lectin SIGN-R1. Med Mycol. 2008 Mar; 46(2):153–62. https://doi.org/10.1080/13693780701747182 PMID: 18324494

117. Kirby AC, Beattie L, Maroof A, Van Rooijen N, Kaye PM. SIGNR1-negative red pulp macrophages protect against acute streptococcal sepsis after Leishmania donovani-induced loss of marginal zone
118. Schnitzer B, Sodeman T, Mead ML, Contacos PG. Pitting function of the spleen in malaria: ultrastructural observations. Science. 1972 Jul; 177(4044):175–7. https://doi.org/10.1126/science.177.4044.175 PMID: 4339353

119. Stone D, Liu Y, Li Z, Tuve S, Straus R, Lieber A. Comparison of Adenoviruses From Species B, C, E, and F After Intravenous Delivery. Mol Ther. 2007; 15(12):2146–53. https://doi.org/10.1038/sj.mt.6300319 PMID: 17895860

120. Perelson AS. Modelling viral and immune system dynamics. Nat Rev Immunol. 2002; 2(1):28–36. https://doi.org/10.1038/nri700 PMID: 11905835

121. Ho DD. Viral counts count in HIV infection. Science. 1996 May; 272(5265):1124–5. https://doi.org/10.1126/science.272.5265.1124 PMID: 8638155

122. Mellors JW, Rinaldo CRJ, Gupta P, White RM, Todd JA, Kingsley LA. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science. 1996 May; 272(5265):1167–70. https://doi.org/10.1126/science.272.5265.1167 PMID: 8638160

123. Igarashi T, Brown C, Azadegan A, Haigwood N, Dimitrov D, Martin MA, et al. Human immunodeficiency virus type 1 neutralizing antibodies accelerate clearance of cell-free virions from blood plasma. Nat Med. 1999; 5(2):211–6. https://doi.org/10.1038/5576 PMID: 9930870

124. Ramratnam B, Bonhoeffer S, Binley J, Hurley A, Zhang L, Mittler JE, et al. Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis. Lancet. 1999; 354(9192):1782–5. https://doi.org/10.1016/S0140-6736(99)02035-8 PMID: 10577640

125. Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science. 1996 Mar; 271(5255):1582–6. https://doi.org/10.1126/science.271.5255.1582 PMID: 8599114

126. Cao YZ, Dieterich D, Thomas PA, Huang YX, Mirabile M, Ho DD. Identification and quantitation of HIV-1 in the liver of patients with AIDS. AIDS. 1992 Jan; 6(1):65–70. https://doi.org/10.1097/00002030-199201000-00008 PMID: 1543567

127. Houssset C, Boucher O, Girard PM, Leibowitch J, Saimot AG, Bréchet C, et al. Immunohistochemical evidence for human immunodeficiency virus-1 infection of liver Kupffer cells. Hum Pathol. 1990 Apr; 21(4):404–8. https://doi.org/10.1016/0046-8177(90)90202-g PMID: 2108080

128. Gendrault JL, Steffan AM, Schmitt MP, Jaeck D, Aubertin AM, Kirn A. Interaction of cultured human Kupffer cells with HIV-infected CEM cells: an electron microscopic study. Pathobiology. 1991; 59(4):223–6. https://doi.org/10.1159/000163650 PMID: 1883517

129. Schmitt MP, Steffan AM, Gendrault JL, Jaeck D, Royer C, Schweitzer C, et al. Multiplication of human immunodeficiency virus in primary cultures of human Kupffer cells—possible role of liver macrophage infection in the physiopathology of AIDS. Res Virol. 1990; 141(2):143–52. https://doi.org/10.1016/0923-2516(90)90016-c PMID: 1693219

130. Steffan AM, Lafon ME, Gendrault JL, Schweitzer C, Royer C, Jaeck D, et al. Primary cultures of endothelial cells from the human liver sinusoid are permissive for human immunodeficiency virus type 1. Proc Natl Acad Sci U S A. 1992 Mar; 89(5):1582–6. https://doi.org/10.1073/pnas.89.5.1582 PMID: 1371878

131. Ahsan MH, Gill AF, Alvarez X, Lackner AA, Veazey RS. Kinetics of liver macrophages (Kupffer cells) in SIV-infected macaques. Virology. 2013; 446(1–2):77–85. https://doi.org/10.1016/j.virol.2013.07.026 PMID: 24074569

132. Hufert FT, Schmitz J, Schreiber M, Schmitz H, Racz P, von Laer DD. Human Kupffer cells infected with HIV-1 in vivo. J Acquir Immune Defic Syndr. 1993 Jul; 6(7):722–7. PMID: 8099611

133. Houssset C, Lamas E, Courgnaud V, Boucher O, Girard PM, Marche C, et al. Presence of HIV-1 in human parenchymal and non-parenchymal liver cells in vivo. J Hepatol. 1993 Sep; 19(2):252–8. https://doi.org/10.1016/s0168-8278(93)80016-c PMID: 8301058

134. Nowak MA, Bonhoeffer S, Hill AM, Boehme R, Thomas HC, McDade H. Viral dynamics in hepatitis B virus infection. Proc Natl Acad Sci U S A. 1996; 93(April):4398–402.

135. Lewin SR, Ribeiro RM, Walters T, Lau GK, Bowden S, Locarnini S, et al. Analysis of hepatitis B viral load decline under potent therapy: Complex decay profiles observed. Hepatology. 2001; 34(5):1012–20. https://doi.org/10.1053/jhep.2001.28509 PMID: 11679773

136. Zeuzem S, De Man RA, Honkoop P, Roth WK, Schalm SW, Schmidt JM. Dynamics of hepatitis B virus infection in vivo. J Hepatol. 1997; 27(3):431–6. https://doi.org/10.1016/s0168-8278(97)80345-5 PMID: 9314118
137. Tsian M, Rooney JF, Toole JJ, Gibbs CS. Biphasic clearance kinetics of hepatitis B virus from patients during adefovir dipivoxil therapy. Hepatology. 1999; 29(6):1863–9. https://doi.org/10.1002/hep.510290626 PMID: 10347131

138. Wolters LMM, Hansen BE, Niesters HGM, de Man RA. Viral dynamics in chronic hepatitis B patients treated with lamivudine, lamivudine-famiciclovir or lamivudine-ganciclovir. Eur J Gastroenterol Hepatol. 2002 Sep; 14(9):1007–11. https://doi.org/10.1097/00042737-200209000-00012 PMID: 12352221

139. Murray JM, Pursell RH, Wieland SF. The half-life of hepatitis B virions. Hepatology. 2006; 44(5):1117–21. https://doi.org/10.1002/hep.21364 PMID: 1697217

140. Dandri M, Murray JM, Lutgehetmann M, Volz T, Lohse AW, Petersen J. Virion half-life in chronic hepatitis B infection is strongly correlated with levels of viremia. Hepatology. 2008; 48(4):1079–86. https://doi.org/10.1002/hep.22469 PMID: 18697217

141. Li W. The Hepatitis B Virus Receptor. Annu Rev Cell Dev Biol. 2015 Nov 13; 31(1):125–47.

142. Neumann AU, Lam NP, Dahari H, Gretch DR, Wiley TE, Layden TJ, et al. Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy. Science. 1998 Oct; 282(5386):103–7. https://doi.org/10.1126/science.282.5386.103 PMID: 9756471

143. Zeuzem S. Clinical implications of hepatitis C viral kinetics. J Hepatol Suppl. 1999; 31(1):61–4. https://doi.org/10.1016/s0168-8278(99)80376-6 PMID: 10622562

144. Manzin A, Candela M, Solforosi L, Gabrielli A, Clementi M. Dynamics of hepatitis C viremia after plasma exchange. J Hepatol. 1999; 31(3):389–93. https://doi.org/10.1016/s0168-8278(99)80027-0 PMID: 10488694

145. Fukumoto T, Berg T, Ku Y, Bechstein WO, Knoop M, Lemmens HP, et al. Viral dynamics of hepatitis C early after orthotopic liver transplantation: Evidence for rapid turnover of serum virions. Hepatology. 1996; 24(6):1351–4. https://doi.org/10.1002/hep.510240606 PMID: 8938160

146. Alonso-Palomares LA, Moreno-Garcia M, Lanz-Mendoza H, Salazar MI. Molecular Basis for Arbovirus Transmission by Aedes aegypti Mosquitoes. Intervirology. 2018; 61(6):255–64. https://doi.org/10.1159/000499128 PMID: 31082816

147. Vuong NL, Quyen NTH, Tien NTH, Tuan NM, Kien DTH, Lam PK, et al. Higher plasma viremia in the febrile phase is associated with adverse outcomes irrespective of infecting serotype or host immune status: an analysis of 5642 Vietnamese cases. Clin Infect Dis Off Publ Infect Dis Soc Am. 2020. Dec.

148. Chow A, Her Z, Ong EKS, Chen J, Dimatacat F, Kwek DJC, et al. Persistent arthralgia induced by Chikungunya virus infection is associated with interleukin-6 and granulocyte macrophage colony-stimulating factor. J Infect Dis. 2011 Jan; 203(2):149–57. https://doi.org/10.1093/infdis/jiq042 PMID: 21288813

149. Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, Suntayakom S, et al. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis. 2000 Jan; 181(1):2–9. https://doi.org/10.1086/315215 PMID: 10608744

150. Wagggoner JJ, Gresh L, Vargas MJ, Ballesteros G, Tellez Y, Soda KJ, et al. Viremia and Clinical Presentation in Nicaraguan Patients Infected With Zika Virus, Chikungunya Virus, and Dengue Virus. Clin Infect Dis Off Publ Infect Dis Soc Am. 2016 Dec; 63(12):1584–90. https://doi.org/10.1093/cid/ciw589 PMID: 27578819

151. Pozo-Aguilar JO, Monroy-Martinez V, Díaz D, Barrios-Palacios J, Ramos C, Ulloa-Garcia A, et al. Evaluation of host and viral factors associated with severe dengue based on the 2009 WHO classification. Parasit Vectors. 2014 Dec; 7:590. https://doi.org/10.1186/s13071-014-0590-7 PMID: 25500154

152. de St Maurice A, Harmon J, Nyakarahuka L, Balinandi S, Tumusiime A, Kyondo J, et al. Rift valley fever viral load correlates with the human inflammatory response and coagulation pathway abnormalities in humans with hemorrhagic manifestations. PLoS Negl Trop Dis. 2018 May; 12(5):e0006460. https://doi.org/10.1371/journal.pntd.0006460 PMID: 29727450

153. Azevedo C, Saiardi A. Why always lysine? The ongoing tale of one of the most modified amino acids. Adv Biol Regul. 2016 Jan; 60:144–50. https://doi.org/10.1016/j.jbior.2015.09.008 PMID: 26482291

154. Platt N, Gordon S. Scavenger receptors: Diverse activities and promiscuous binding of polyanionic ligands. Chem Biol. 1998; 5(8):193–203. https://doi.org/10.1016/s1074-5521(98)90156-9 PMID: 9710567

155. Kinney RM, Chang GJ, Tsuchiy a KR, Sneider JM, Roehrig JT, Woodward TM, et al. Attenuation of Venezuelan equine encephalitis virus strain TC-83 is encoded by the 5'-noncoding region and the E2 envelope glycoprotein. J Virol. 1993; 67(3):1269–77. https://doi.org/10.1128/JVI.67.3.1269-1277.1993 PMID: 7679745

156. Marker S, Jahnring P. Correlation between virus-cell receptor properties of alphaviruses in vitro and virulence in vivo. Arch Virol. 1979; 62(1):53–62. https://doi.org/10.1007/BF01314903 PMID: 295182
157. Lyon M, Deakin JA, Gallagher JT. Liver heparan sulfate structure. A novel molecular design. J Biol Chem. 1994 Apr; 269(15):11208–15. PMID: 8157650

158. Karlsson K, Marklund SL. Plasma clearance of human extracellular-superoxide dismutase C in rabbits. J Clin Invest. 1988; 82(3):762–6. https://doi.org/10.1172/JCI13676 PMID: 3417870

159. Bauer RJ, Der K, Ohtah-Ihejeto N, Barrientos J, Kung AH. The role of liver and kidney on the pharmacokinetics of a recombinant amino terminal fragment of bactericidal/permeability-increasing protein in rats. Pharm Res. 1997 Feb; 14(2):224–9. https://doi.org/10.1023/a:1012013113579 PMID: 9090714

160. Wells MJ, Blajchman MA. In vivo clearance of ternary complexes of vitronectin-thrombin-antithrombin is mediated by hepatic heparan sulfate proteoglycans. J Biol Chem. 1998; 273(36):23440–7. https://doi.org/10.1074/jbc.273.36.23440 PMID: 9722580

161. Yuge T, Furukawa A, Nakamura K, Nagashima Y, Shinozaki K, Nakamura T, et al. Metabolism of the intravenously administered recombinant human basic fibroblast growth factor, transferring, in liver and kidney: degradation implicated in its selective localization to the fenestrated type microvasculatures. Biol Pharm Bull. 1997 Jul; 20(7):786–93. https://doi.org/10.1248/bpb.20.786 PMID: 9255421

162. Prestwood TR, Prigozhin DM, Sharar KL, Zellweger RM, Shresta S. A Mouse-Passaged Dengue Virus Strain with Reduced Affinity for Heparan Sulfate Causes Severe Disease in Mice by Establishing Increased Systemic Viral Loads. J Virol. 2008; 82(17):8411–21. https://doi.org/10.1128/JVI.00611-08 PMID: 18562532

163. Sa-Carvalho D, Rieder E, Baxt B, Rodarte R, Tanuri A, Mason PW. Tissue culture adaptation of foot-and-mouth disease virus selects viruses that bind to heparin and are attenuated in cattle. J Virol. 1997; 71(7):5115–23. https://doi.org/10.1128/JVI.71.7.5115-5123.1997 PMID: 9188578

164. Mandl CW, Kroschewski H, Allison SL, Kofler R, Holzmann H, Meixner T, et al. Adaptation of tick-borne encephalitis virus to BHK-21 cells results in the formation of multiple heparan sulfate binding sites in the envelope protein and attenuation in vivo. J Virol. 2001 Jun; 75(12):5627–37. https://doi.org/10.1128/JVI.75.12.5627-5637.2001 PMID: 11356970

165. Zhu W, Li J, Liang G. How does cellular heparan sulfate function in viral pathogenicity? Biomed Environ Sci. 2011; 24(1):81–7. https://doi.org/10.3967/0895-3988.2011.01.011 PMID: 21440844

166. Brooks SA. Appropriate glycosylation of recombinant proteins for human use: Implications of choice of expression system. Appl Biochem Biotechnol—Part B Mol Biotechnol. 2004; 28(3):241–55. https://doi.org/10.1385/MB:28:3:241 PMID: 15542924

167. Avirutnan P, Hauhart RE, Marovich MA, Garred P, Atkinson JP, Diamond MS. Complement-mediated neutralization of dengue virus requires mannose-binding lectin. mBio. 2011; 2(6):1–11. https://doi.org/10.1128/mBio.00276-11 PMID: 22167226

168. Ganesan LP, Mohanty S, Kim J, Clark KR, Robinson JM, Clark L. Rapid and Efficient Clearance of Blood-borne Virus by Liver Sinusoidal Endothelium. PLoS Pathog. 2011; 7(9):e1002281. https://doi.org/10.1371/journal.ppat.1002281 PMID: 21980295

169. Worgall S, Wolff G, Falck-Pedersen E, Crystal RG. Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration. Hum Gene Ther. 1997; 8(1):37–44. https://doi.org/10.1089/hum.1997.8.1-37 PMID: 8989993

170. Mok H, Palmer DJ, Ng P, Barry MA. Evaluation of polyethylene glycol modification of first-generation and helper-dependent adenoviral vectors to reduce innate immune responses. Mol Ther. 2005; 11 (1):66–79. https://doi.org/10.1016/j.ymthe.2004.09.015 PMID: 15585407

171. Alemany R, Suzuki K, Curiel DT. Blood clearance rates of adenovirus type 5 in mice. J Gen Virol. 2000; 81(11):2605–9. https://doi.org/10.1099/0022-1317-81-11-2605 PMID: 11038370
177. Haisma HJ, Boejes M, Beerens AM, Van Der Strate BWA, Curiel DT, Plüddemann A, et al. Scavenger receptor A: A new route for adenovirus 5. Mol Pharm. 2009; 6(2):366–74. https://doi.org/10.1021/mp8000974 PMID: 19227971

178. Maler MD, Nielsen PJ, Stichting N, Cohen I, Ruzsics Z, Wood C, et al. Key role of the scavenger receptor MARCO in mediating adenovirus infection and subsequent innate responses of macrophages. mBio. 2017; 8(4):1–15.

179. Khare R, Hillestad ML, Xu Z, Byrnes AP, Barry MA. Circulating Antibodies and Macrophages as Modulators of Adenovirus Pharmacology. J Virol. 2013; 87(7):3678–86. https://doi.org/10.1128/JVI.01392-12 PMID: 23325678

180. Tam JCH, Bidgood SR, McEwan WA, James LC. Intracellular sensing of complement C3 activates cell autonomous immunity. Science. 2014 Sep; 345(6201):1256070. https://doi.org/10.1126/science.1256070 PMID: 25190799

181. Bottermann M, Foss S, Caddy SL, Clift D, van Tienen LM, Vaysburd M, et al. Complement C4 Prevents Viral Infection through Capsid Inactivation. Cell Host Microbe. 2019 Apr; 25(4):617–629.e7. https://doi.org/10.1016/j.chom.2019.02.016 PMID: 30926239

182. Alemany R, Curiel D. CAR-binding ablation does not change biodistribution and toxicity of adenoviral vectors. Gene Ther. 2001; 8:1347–53. https://doi.org/10.1038/sj.gt.3301515 PMID: 11571572

183. Smith JS, Xu Z, Tian J, Stevenson SC, Byrnes AP. Interaction of systemically delivered adenoviral vectors with kupffer cells in mouse liver. Hum Gene Ther. 2008; 19(5):547–54. https://doi.org/10.1089/hum.2008.004 PMID: 18447633

184. van Dinther D, Veninga H, Iborra S, Borg EGF, Hoogterp L, Olesek K, et al. Functional CD169 on Macrophages Mediates Interaction with Dendritic Cells for CD8(+) T Cell Cross-Presentation. Cell Rep. 2018 Feb; 22(6):1484–95. https://doi.org/10.1016/j.celrep.2018.01.021 PMID: 29425504

185. Pinto AJ, Stewart D, van Rooijen N, Morahan PS. Selective depletion of liver and splenic macrophages using liposomes encapsulating the drug dichloromethylene diphosphonate: effects on antimicrobial resistance. J Leukoc Biol. 1991 Jun; 49(6):579–86. https://doi.org/10.1002/jlb.49.6.579 PMID: 1827490

186. Seiler P, Aichele P, Odermatt B, Hengartner H, Zinkernagel RM, Schwendener RA. Crucial role of marginal zone macrophages and marginal zone metallophil in the clearance of lymphocytic choriomeningitis virus infection. Eur J Immunol. 1997; 27(10):2626–33. https://doi.org/10.1002/eji.1850271023 PMID: 9368619

187. Wittmeyer-Pack MD, Hughes DA, Schuler G, Lawson L, McWilliam A, Inaba K, et al. Identification of macrophages and dendritic cells in the osteopetrotic (op/op) mouse. J Cell Sci. 1993 Apr; 104(Pt 4):1021–9. https://doi.org/10.1242/jcs.104.4.1021 PMID: 8314887

188. Cecchini MG, Dominguez MG, Mocci S, Wetterwald A, Felix R, Fleisch H, et al. Role of colony stimulating factor-1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse. Development. 1994 Jun; 120(6):1357–72. https://doi.org/10.1242/dev.120.6.1357 PMID: 8050349

189. Hawman DW, Carpentier KS, Fox JM, May NA, Sanders W, Montgomery SA, et al. Mutations in the E2 Glycoprotein and the 3’ Untranslated Region Enhance Chikungunya Virus Virulence in Mice. J Virol. 2017; 91(20):1–17. https://doi.org/10.1128/JVI.00816-17 PMID: 28747508

190. Borst K, Frenz T, Spanier J, Tegtmeyer PK, Chhatbar C, Skerra J, et al. Type I interferon receptor signaling delays Kupffer cell replenishment during acute fulminant viral hepatitis. J Hepatol. 2018; 68(4):682–90. https://doi.org/10.1016/j.jhep.2017.11.029 PMID: 29274730

191. Movita D, van de Garde MB, Biesta P, Kreeft K, Haagmans B, Zuniga E, et al. Inflammatory Monocytes Recruited to the Liver within 24 Hours after Virus-Induced Inflammation Resemble Kupffer Cells but Are Functionally Distinct. J Virol. 2015; 89(9):4809–17. https://doi.org/10.1128/JVI.03733-14 PMID: 25673700
195. Marienneau P, Steffan AM, Royer C, Drouet MT, Jaeck D, Kim A, et al. Infection of primary cultures of human Kupffer cells by Dengue virus: no viral progeny synthesis, but cytokine production is evident. J Virol. 1999 Jun; 73(6):5201–6. https://doi.org/10.1128/JVI.73.6.5201-5206.1999 PMID: 10233989

196. Wolff G, Worgall S, van Rooijen N, Song WR, Harvey BG, Crystal RG. Enhancement of in vivo adenovirus-mediated gene transfer and expression by prior depletion of tissue macrophages in the target organ. J Virol. 1997; 71(1):624–9. https://doi.org/10.1128/JVI.71.1.624-629.1997 PMID: 8985392

197. Di Paolo NC, van Rooijen N, Shayakhmetov DM. Redundant and synergistic mechanisms control the sequestration of blood-born adenovirus in the liver. Mol Ther. 2009; 17(4):675–84. https://doi.org/10.1038/mt.2008.307 PMID: 1923863

198. Hegenbarth S, Gerolami R, Protzer U, Tran PL, Brecho C, Gerken G, et al. Liver sinusoidal endothelial cells are not permissive for adenovirus type 5. Hum Gene Ther. 2000; 11(3):481–6. https://doi.org/10.1089/10430340050015941 PMID: 10697122

199. Wiethoff CM, Wodrich H, Gerace L, Nemerow GR. Adenovirus protein VI mediates membrane disruption following capsid disassembly. J Virol. 2005 Feb; 79(4):1992–2000. https://doi.org/10.1128/JVI.79.4.1992-2000.2005 PMID: 15681401

200. Ficht X, Iannacone M. Immune surveillance of the liver by T cells. Sci Immunol. 2020 Sep; 5(51). https://doi.org/10.1126/sciimmunol.aba2351 PMID: 32887842

201. Limmer A, Ohl J, Kunts C, Ljunggren HG, Reiss Y, Groettrup M, et al. Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nat Med. 2000 Dec; 6(12):1348–54. https://doi.org/10.1038/82161 PMID: 1101119

202. Crispe IN. Liver antigen-presenting cells. J Hepatol. 2011 Feb; 54(2):357–65. https://doi.org/10.1016/j.jhep.2010.10.005 PMID: 21084131

203. Benéchet AP, De Simone G, Di Lucia P, Cilenti F, Barbiera G, Le Bert N, et al. Dynamics and genomic landscape of CD8(+) T cells undergoing hepatic priming. Nature. 2019 Oct; 574(7777):200–5. https://doi.org/10.1038/s41586-019-1620-6 PMID: 31582858

204. Klein I, Crispe IN. Complete differentiation of CD8+ T cells activated locally within the transplanted liver. J Exp Med. 2006 Feb; 203(2):437–47. https://doi.org/10.1084/jem.20051775 PMID: 16476766

205. De Simone G, Andreata F, Bleriot C, Fumagalli V, Laura C, Garcia-Manteiga JM, et al. Identification of a Kupffer cell subset capable of reverting the T cell dysfunction induced by hepatocellular priming. Immunity. 2021 Sep; 54(9):2089–2100.e8. https://doi.org/10.1016/j.immuni.2021.05.005 PMID: 34469774

206. Ashare A, Stanford C, Hancock P, Stark D, Lill K, Birrer E, et al. Chronic liver disease impairs bacterial clearance in a human model of induced bacteremia. Clin Transl Sci. 2009 Jun; 2(3):199–205. https://doi.org/10.1111/j.1752-8662.2009.00122.x PMID: 20443893

207. Llorente C, Schnabl B. Fast-Track Clearance of Bacteria from the Liver. Cell Host Microbe. 2016 Jul; 20(1):1–2. https://doi.org/10.1016/j.chom.2016.06.012 PMID: 27414492