Commuting simplicity and closure constraints for 4D spin-foam models

Muxin Han1,2 and Thomas Thiemann3,4

1 Max-Planck-Institut für Gravitationsphysik, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
2 Centre de Physique Théorique, CNRS-Luminy Case 907, F-13288 Marseille, France
3 Institut für Theoretische Physik III, Universität Erlangen-Nürnberg, Staudtstraße 7, D-91058 Erlangen, Germany
4 Perimeter Institute for Theoretical Physics, 31 Caroline Street N, Waterloo, ON N2 L 2Y5, Canada

E-mail: Muxin.Han@cpt.univ-mrs.fr

Received 12 July 2013, in final form 30 September 2013
Published 30 October 2013
Online at stacks.iop.org/CQG/30/235024

Abstract

Spin-foam models are supposed to be discretized path integrals for quantum gravity constructed from the Plebanski–Holst action. The reason for there being several models currently under consideration is that no consensus has been reached for how to implement the simplicity constraints. Indeed, none of these models strictly follows from the original path integral with commuting B fields, rather, by some nonstandard manipulations one always ends up with non-commuting B fields and the simplicity constraints become in fact anomalous which is the source for there being several inequivalent strategies to circumvent the associated problems. In this paper, we construct a new Euclidian spin-foam model which is constructed by standard methods from the Plebanski–Holst path integral with commuting B fields discretized on a 4D simplicial complex. The resulting model differs from the current ones in several aspects, one of them being that the closure constraint needs special care. Only when dropping the closure constraint by hand and only in the large spin limit can the vertex amplitudes of this model be related to those of the FK$^\gamma$ model but even then the face and edge amplitude differ. Interestingly, a non-commutative deformation of the B^{ij} variables leads from our new model to the Barrett–Crane model in the case of $\gamma = \infty$.

PACS number: 04.60.Pp

(Some figures may appear in colour only in the online journal)
1. Introduction

Loop quantum gravity (LQG) is an attempt to make a background independent, non-perturbative quantization of four-dimensional General Relativity (GR)—for reviews, see [1–3]. It is inspired by the formulation of GR as a dynamical theory of connections [4]. Starting from this formulation, the kinematics of LQG is well-studied and results in a successful kinematical framework (see the corresponding chapters in the books [1]), which is also unique in a certain sense [5]. However, the framework of the dynamics in LQG is still largely open so far. There are two main approaches to the dynamics of LQG, they are (1) the operator formalism of LQG, which follows the spirit of Dirac quantization of constrained dynamical system, and performs a canonical quantization of GR [6, 7]; (2) the path integral formulation of LQG, which is currently understood in terms of the spin-foam models (SFMs) [3, 10–13]. The relation between these two approaches is well-understood in the case of three-dimensional gravity [14], while for four-dimensional gravity, the situation is much more complicated and there are some attempts [15] for relating these two approaches.

The present paper is concerned with the following issue in the framework of SFMs. The current SFMs are mostly inspired by the four-dimensional Plebanski formulation of GR [16] (Plebanski–Holst formulation by including the Barbero–Immirzi parameter \(\gamma \)), whose action reads

\[
S_{\text{PH}}[A, B, \varphi] := \int \left(B + \frac{1}{\gamma} \ast B \right)^J J J + \int \frac{1}{3} \int d^4 x \rho^\gamma \ell^I I L L(1.1)
\]

where \(B \) is a \(\text{so}(4) - \)valued 2-form field, \(F := dA + A \wedge A \) is the curvature of the \(\text{so}(4) \)-connection field \(A \) and \(\rho^\gamma \ell^I I L L = \rho[\gamma, I] [I, L] \) is a densitized tensor, symmetrized under interchanging \(\gamma \) and \([I, L]\), and traceless \(\varepsilon_{\alpha \beta \gamma \delta} \rho^\gamma \ell^I I L L = 0 \). For the illustrative purposes of this paper, we consider only Euclidean GR in the present paper, however, the lessons learnt will extend also to the Lorentzian theory. One can show that the equations of motion implied by the Plebanski–Holst action are equivalent to the Einstein equations of GR. Moreover, if we consider formally the following path integral partition function of the Plebanski–Holst action and perform the
integral of $\phi^{\alpha\beta\gamma\delta}$,

$$Z := \int [DA \; DB \; D\phi] \; e^{iS_{\text{BF}}[A,B,\phi]} = \int [DA \; DB] \; \delta \left(\epsilon_{IJJKL} B_{a\beta}^{I} B_{a\gamma}^{J} - \mathcal{V}_{\alpha\beta\gamma\delta} / 4! \right) \; e^{i\int (B + 1/\gamma B^\gamma / E_f)}$$

we obtain the partition function of BF theory [17] whose paths are, however, constrained by 20 simplicity constraint equations

$$\epsilon_{IJJKL} B_{a\beta}^{I} B_{a\gamma}^{J} = \frac{1}{4!} \mathcal{V}_{\alpha\beta\gamma\delta}.$$

The point of this formulation is of course that the path integral of BF theory has been formulated as a concrete SFM (subject to the divergence issue, see the corresponding chapters in [11]) and thus the idea is to rely on those results and to implement the simplicity constraints properly into the partition function of BF theory. We remark that even for Euclidean gravity, the partition function (1.2) is unlikely to be derived from the canonical formulation because of the presence of second class constraints which affect the choice of the measure in (1.2), see the first and third reference in [15] for a detailed discussion. Since in current SFMs the proper choice of measure is also regarded as a non-trivial problem and as we want to draw attention to a different issue for the current SFMs, we also will not deal with the measure issue in this paper and leave this for future research.

The partition function of BF theory, after discretization on a four-dimensional simplicial complex \mathcal{K} and its dual complex \mathcal{K}^*, can be expressed as a sum over certain spin-foam amplitudes. Here a spin-foam amplitude is obtained by (1) assigning an SO(4) unitary irreducible representation to each triangle f of \mathcal{K} (we label the representation by a pair (j^+_f, j^-_f) for each triangle); (2) assigning a 4-valent SO(4) intertwiner to each tetrahedron t of \mathcal{K} (we label the intertwiner by a pair (i^+_t, i^-_t) for each tetrahedron). Then the partition function of BF theory can be written as

$$Z_{\text{BF}}(\mathcal{K}) = \sum \sum \prod_{f} \text{dim}(j^+_f) \text{dim}(j^-_f) \prod_{\sigma} \{15j\}_{\text{SO}(4)}(j^+_\sigma, j^-_{\sigma})$$

where the 15j-symbol is the 4-simplex/vertex amplitude corresponding to the 4-simplex σ. The partition function Z_{BF} turns out to be formally independent of the triangulation \mathcal{K}. Clearly, as shown explicitly in equation (1.2), in order to obtain the partition function for quantum gravity as a sum of spin-foam amplitudes, one has to impose the simplicity constraint in the BF theory measure. When doing that, the resulting partition function is no longer triangulation independent and thus one should in fact consider all possible discretizations and not only simplicial ones. This is also necessary in order to make contact with the canonical LQG Hilbert space which contains all possible graphs and not only 4-valent ones. This has been recently emphasized in [8, 9] and the current SFMs already have been generalized in that respect. We believe our model also to be generalizable but will not deal with this aspect in the present work as this would draw attention away from our main point.

Essentially, the very method of imposing the simplicity constraint defines the corresponding candidate SFM for quantum gravity which why its proper implementation deserves so much attention. Currently the three most studied SFMs for quantum gravity (in Plebanski or Plebanski–Holst formulation) are the Barrett–Crane (BC) model [10], the EPRL model [11], and FKγ model [12]. These three, a priori, different models are defined by three different ways to impose simplicity constraint on the measure of the BF partition function Z_{BF}.

6 As it should not be because GR is not a topological quantum field theory (TQFT) in the classical level. Triangulation independence is understood as a feature in the quantization of classical TQFT, which should not be expected in the quantization of gravity.
We will review these different methods of imposing the simplicity constraint briefly in what follows.

First of all, in the context of the discretized path integral, the simplicity constraint also takes a discretized expression. For each triangle f we define an $so(4)$ Lie algebra element B_f which corresponds to the integral of the 2-form B over the triangle f. Then in terms of the B_f for each 4-simplex σ the discretized simplicity constraints read

$$\epsilon_{IJKL} B_{IJ}^f B_{KL}^f = 0, \quad f, f' \text{ belong to the same tetrahedron } t$$ \hspace{1cm} (1.5)

$$\epsilon_{IJKL} B_{IJ}^{f'} B_{KL}^{f'} = \epsilon_{IJKL} B_{IJ}^f B_{KL}^f, \quad f, f' \text{ belong to the two different tetrahedrons in } \sigma$$ \hspace{1cm} (1.6)

The BC model, the EPRL model, and the FK γ model all explicitly impose the first type of simplicity constraint equation (1.5), called tetrahedron constraint, in some way to the spin-foam partition function of BF theory. On the other hand, all of them replace the second type of simplicity constraint, called 4-simplex constraint equation (1.6) by the so-called closure constraint

$$\sum_{f \subset t} B_{IJ}^f = 0 \quad \text{for each tetrahedron } t.$$ \hspace{1cm} (1.7)

It is not difficult to see that the closure constraints together with the tetrahedron constraints imply the 4-simplex constraints but not vice versa. Thus, strictly speaking, imposing the closure constraint constrains the BF measure more than the classical theory would prescribe. It is unknown and also beyond the scope of the present paper whether this replacement is harmless or is in conflict with the classical theory. In this paper, as we are merely interested in comparing the standard way of imposing the simplicity constraints (commuting B fields) with the nonstandard methods defining the BC, EPRL and FK models (non-commuting B fields), we proceed as in those other SFMs and also replace the 4-simplex constraint by the closure constraint. To distinguish these two different types of constraints, in what follows we use the terminology ‘simplicity constraint’ for equation (1.5) and ‘closure constraint’ for equation (1.7). Notice that the BC model, EPRL model, and FK γ model argue that the closure constraint is ‘automatically’ implemented in their spin-foam amplitude. We will come back to this argument in a moment. Because of that argument, in none of these models the closure constraint is further analysed. The proper implementation of the simplicity and closure constraints is one of the most active research areas in the SFM community and there are many issues that yet have to be understood [18].

For both the BC model and EPRL model, the strategy for imposing the simplicity constraint is the following: in order to take advantage of the knowledge of BF SFM, one formally takes the delta distribution on the B variables out of the integral over B by a standard trick known from ordinary quantum field theories: one (formally) just has to replace B by $\delta/\delta F$ because the integrand of the B integral is of the form $\exp(iF \cdot B)$. Due to the discretization upon which F is replaced by a holonomy around a face of the dual triangulation and B by an integral over a triangle of the triangulation, $\delta/\delta F$ can be rewritten in terms of the right invariant vector fields X on the copy of $SO(4)$ corresponding to the given holonomy with holonomy dependent coefficients. One now argues that these coefficients can be replaced by their chromatic evaluation (setting the holonomy equal to unity) because the integration over B leads to $\delta(F)$ enforcing the measure on the space of connections to be supported on flat ones. Clearly, this argument is not obviously water tight because $\delta(\delta^2/\delta F^2) \cdot \delta(F)$ may not be supported at $F = 0$. In fact it should not be if we are interested in gravity rather than BF theory. See the chapter on spin-foams in the second reference of [1] for more details. In any case, this way of proceeding now leads to replacing the commutative derivations $\delta/\delta F$ by the non-commutative right invariant vector fields X.

4
An alternative argument that has been given is the following: the kinetical boundary Hilbert space of the spin-foam path integral should be the canonical LQG Hilbert space (restricted to the 4-valent boundary graph of the given simplicial triangulation) and here the B field would be quantized as $\delta/\delta A$ where A is the underlying connection. On functions of holonomies this again becomes a right invariant vector field labelled by the triangles dual (in the 3D sense) to the corresponding boundary edges which in turn correspond to the faces of the dual triangulation dual (in the 4D sense) to those triangles. The physical boundary Hilbert space should therefore be the kernel of that quantized boundary simplicity constraints. In order to write the corresponding SFM, one has to define the projector on that physical Hilbert space. To do this properly, one should canonically quantize Plebanski–Holst gravity, identify all the first and second class constraints and define the projector via Dirac bracket and group averaging which then leads to a spin-foam path integral. How complicated this becomes if one really performs all the necessary steps is outlined in [15]. However, this is not what is done in [11]. The first observation is that since the spin-foam path integral naturally involves $SO(4)$, the kinematical boundary Hilbert space is naturally also in terms of $SO(4)$ spin network functions. One now studies the restrictions that the simplicity constraints impose on the spins and intertwiners of the boundary $SO(4)$ Hilbert space spin network functions. The detailed structure of these restrictions suggests a natural one to one map with spin network states in the canonical $SU(2)$ Hilbert space. Finally, using locality arguments, one conjectures that these restrictions should not only hold on the boundary but also in the bulk of the BF $SO(4)$ SFM. See [31] for a particularly simple and clear exposition of this procedure. It has recently been criticized in [18] on the ground that the BF symplectic structure and the LQG symplectic structure have wrongly been identified in the afore mentioned identification map.

In any case, whether or not the map is the correct correspondence, the simplicity constraints were again quantized as non-commuting (anomalous) constraints. If one understands the kernel in the strong operator topology then one obtains the BC model, if one understands it in the weak operator topology (Gupta–Bleuler procedure) one obtains the EPRL model. Because of the anomaly, imposing the constraint operators strongly apparently makes the BC model lose some important information about non-degenerate quantum geometry [19]. Imposing the constraints weakly is less restrictive and thus may lead to a better behaved model. More in detail, first of all the quadratic expression of the simplicity constraint equation (1.5) is replaced by a linearized expression. It is given by asking that for each tetrahedron I, there exists a unit vector u_I, such that

$$\ast B^I \ast u_I = 0 \quad (1.8)$$

The equivalence of the linearized simplicity constraint equation (1.8) with original simplicity constraint equation (1.5) will be reviewed in section 3 (in the gravitational sector of the solution). In the original construction of EPRL SFM in [11], the unit vector u_I is gauge fixed to be δ^0/I, and a ‘Master constraint’ $M_I := \sum_j C^j_I \bar{C}^j_I$ is defined (to replace the cross-diagonal part of the simplicity constraint equation (1.5)), where $C^j_I := \ast B^j_I$ from equation (1.8). The corresponding ‘Master constraint operator’ is defined by replacing B^j_I by right invariant derivatives. This Master constraint solves the problem of non-commutativity/anomaly of the quantum simplicity to a certain extent, because a single Master constraint replaces all the cross-diagonal components of equation (1.5). Moreover the diagonal part of equation (1.5) and this Master constraint operator restrict the Hilbert space spanned by the 4-valent $SO(4)$ spin-networks to its subspace, which can be identified with 4-valent $SU(2)$ spin-networks and thus can be imbedded into the kinematical Hilbert space of LQG. For each of these $SU(2)$ spin-networks, the $SU(2)$ unitary irreducible representations labelled by $k \in \frac{1}{2} \mathbb{N}$ has the following relation with the original $SO(4)$ representations on all the boundary edges dual to the boundary
Here the Barbero–Immirzi parameter \(\gamma \) can only take discrete values, i.e.

\[
\text{If } |\gamma| > 1 : \gamma = \frac{j^+ + j^-}{f^+_j - f^-_j},
\]

\[
\text{If } |\gamma| < 1 : \gamma = \frac{j^+ - j^-}{f^+_j + f^-_j}.
\]

More importantly, the recent results in [9, 20] show that the boundary Hilbert space used in the EPRL model solves the linear version of simplicity constraint equation (1.8) (and the closure constraint equation (1.7)) weakly, i.e. the matrix elements (with respect to the boundary SO(4) Hilbert space) of the constraint operators vanish on the space of solutions

\[
\langle f, \hat{C} f' \rangle = 0, \quad \text{for all } f, f' \text{ in the Hilbert space of solutions}
\]

in contrast to the strong implementation of the constraints in the BC model. Finally the (Euclidean) EPRL spin-foam partition function is expressed by

\[
Z_{\text{EPRL}}(K) = \sum_{(k_f)} \sum_{\{15j\}_{\text{SO(4)}}} \prod_{f} \dim(k_f) \prod_{i^\pm} \int_{\sigma, i^\pm} \{15j\}_{\text{SO(4)}}(f^\pm_j, i^\pm_k) \prod_{(\sigma, i)} f^i_{\sigma, i^\pm}(j^\pm_f, k_f)
\]

where for each spin-foam amplitude, an SU(2) unitary irreducible representation \(k_f \) is assigned to each triangle \(f \), satisfying the relation equation (1.9), and an SU(2) 4-valent intertwiner \(i \) is assigned to each tetrahedron \(t \). Here

\[
\sum_{i^\pm} \{15j\}_{\text{SO(4)}}(f^\pm_j, i^\pm_k) \prod_{(\sigma, i)} f^i_{\sigma, i^\pm}(j^\pm_f, k_f)
\]

is the 4-simplex/vertex amplitude for the EPRL model, where \(f^i_{\sigma, i^\pm} \) are fusion coefficients defined in [11].

The FK \(f \) model follows a different strategy to impose the simplicity constraint, namely by using the coherent states for SU(2) group [21, 22]. Given a unitary irreducible representation space \(V^j \) of SU(2), the coherent state is defined by

\[
|j, n\rangle := n|j, j\rangle = \sum_{m=-j}^{j} |j, m\rangle \pi^j_m(n) \quad n \in \text{SU}(2).
\]

We then immediately have the resolution of identity on \(V^j \):

\[
1_j = \dim(j) \int_{\text{SU}(2)} dn \ |j, n\rangle \langle j, n|.
\]

This coherent state has a certain geometrical interpretation, which can be seen by computing the expectation value of the su(2) generator (\(\sigma \) are Pauli matrices)

\[
\langle j, n| \hat{X} |j, n\rangle = \langle j, n| \hat{F} |j, n\rangle \sigma_1 = jn\sigma_3n^{-1}
\]

If we identify the Lie algebra su(2) with \(\mathbb{R}^3 \), we can see that the coherent state \(|j, n\rangle \) describes a vector in \(\mathbb{R}^3 \) with length \(j \), its direction is determined by the action of \(n \) on a unit reference vector (the direction of \(\sigma_3 \)). From the expression \(jn\sigma_3n^{-1} \) we see that \(n \) can be parameterized by the coset SU(2)/U(1) = S^2. In addition, the integral in the resolution of identity is essentially over SU(2)/U(1) = S^2. It is not hard to show that the (Euclidean) BF partition function can be
expressed in terms of the coherent states (we write \((g^+, g^-)\) for each SO(4) element, \((j^+, j^-)\) for an SO(4) unitary irreducible representation)

\[
Z_{\text{BF}}(\mathcal{K}) = \sum_{(j^+_f, j^-_f)} \prod_{(\sigma, t)} \dim(j^+_f \sigma_{j^+_f}) \dim(j^-_f \sigma_{j^-_f}) \int \prod_{(\sigma, t)} dg^+_\sigma \, dg^-_{\sigma} \prod_{(i, j)} \dim(j^+_i \sigma_{j^+_i}) \dim(j^-_i \sigma_{j^-_i})
\]

\[
\times \int \prod_{(j^+_f, j^-_f)} \prod_{(\sigma, t)} \left[(j^+_f, n^+_f | g^+_\sigma g^-_{\sigma}| j^+_f, n^+_f) (j^-_f, n^-_f | g^+_\sigma g^-_{\sigma}| j^-_f, n^-_f) \right]
\]

\[
(1.17)
\]

where \((g^+_\sigma, g^-_{\sigma})\) is a SO(4) holonomy along the edge from the centre of 4-simplex \(\sigma\) to the centre of tetrahedron \(t\). Then the strategy of imposing simplicity constraint in FK\(_p\) model is to use the interpretation \((1.16)\) of the coherent state labels \(j^+_n n^-_n \tau_3(n^+_n)^{-1}\) as the self-dual/anti-self-dual part \(X^+_f\) of the so(4) variable \(B_{ij}\) associated with a triangle \(\sigma\) seen from a tetrahedron \(t\). (More precisely, we know that the previously defined \(B_{ij}\) can be decomposed into self-dual and anti-self-dual part \(X^+_f\). The interpretations of \(j^+_n n^-_n \tau_3(n^+_n)^{-1}, X^+_f\) are considered as the parallel transport of \(X^+_f\) from the centre of triangle \(\sigma\) to the centre of tetrahedron \(t\), i.e. \(X^+_f = n^-_n X^+_f g^-_{\sigma}\), where \(g^-_{\sigma}\) is the holonomy along the edge from the centre of triangle \(\sigma\) to the centre of tetrahedron \(t\).) That is, the simplicity constraint is imposed on the coherent state labels, which results in the following restrictions:

\[
\begin{align*}
\frac{j^+}{j^-} &= \left| \frac{\gamma + 1}{\gamma - 1} \right|, & \text{and} & & \left(n^+_n, n^-_n \right) = (n^-_n h_{\phi_0}, u_n n^-_n h_{\phi_0}^{-1}) \quad & \text{for } -1 < \gamma < 1; \\
\left(n^+_n, n^-_n \right) &= (n^-_n h_{\phi_0}, u_n n^-_n h_{\phi_0}^{-1} \epsilon) \quad & \text{for } \gamma < -1 \text{ or } \gamma > 1
\end{align*}
\]

\[
(1.18)
\]

where \(u_t\) is some normal to \(t\), \(h_{\phi_0}\) takes values in the U(1) subgroup of SU(2) generated by \(\sigma_3\) and \(\epsilon = i \sigma_2\). In more detail, the proposal is then to simply replace in \((1.17)\) \(n^+_n\) by these expressions and the Haar measure \(dn^+_n \, dn^-_n\) by the Haar measure \(dn^-_n \, du \, dh_{\phi_0}\). We emphasize that this is an interesting but nonstandard procedure: while the identification of the coherent state labels \(j^+_n, n^-_n\) with the so(4) variables \(B_{ij}\) is certainly well motivated, the resulting expression does not arise by integrating out the \(B\) fields in the presence of the delta distributions enforcing the simplicity constraints. Rather, in \((1.17)\) the \(B\) fields have already been integrated out. To restrict measure and integrate by hand afterwards according to \((1.18)\) is not obviously equivalent with the standard procedure of solving the \(\delta\)-distributions. One would hope that the resulting procedures coincide in the semiclassical or the ‘large-\(J\’) limit

\[23\]. Indeed, the ‘large-\(J\’) limit result in section 4 will support this expectation. Finally the spin-foam partition function of FK\(_p\) model coincides (at least up to a slight change of edge amplitude) with EPRL partition function when the Barbero–Immirzi parameter \(-1 < \gamma < 1\). However when \(\gamma < -1\) or \(\gamma > 1\), FK\(_p\) partition function is rather different from the EPRL partition function. Here we only show explicitly the 4-simplex/vertex amplitude of FK\(_p\) model when \(\gamma < -1\) or \(\gamma > 1\):

\[
\sum_{(\sigma_t)} [15j_{\text{SO}(4)}(j^+_f, j^-_f)] \prod_{(\sigma_t)} f^+_{\sigma_t \sigma_t}(j^+_f, k_{ij}).
\]

\[
(1.19)
\]

Here although the relation between \(j^+_f\)

\[
\frac{j^+}{j^-} = \left| \frac{\gamma + 1}{\gamma - 1} \right|
\]

\[
(1.20)
\]

is the same as in EPRL model, in FK\(_p\) model for \(\gamma < -1\) or \(\gamma > 1\), there are some additional degrees of freedom associated with the label \(k_{ij}\), which are the values of spins from the coupling of \(j^+_f\) and \(j^-_f\), i.e. \(k_{ij}\) could take values in \(|j^+_f - j^-_f|, \ldots, j^+_f + j^-_f\). The final partition function is obtained by summing over \(j^-_f, i_t\), and \(k_{ij}\) with some measure factors (see \[12\] for details).
In the previous three paragraphs, we briefly revisited the main strategies of imposing simplicity constraint in BC, EPRL and FK$_\gamma$ models. We have seen that these in general different SFMs came from two different ways of imposing simplicity constraint, i.e. BC and EPRL model quantize the simplicity constraint as operators and imposed them (strongly or weakly) on the boundary spin-networks, while FK$_\gamma$ model imposes the constraint on the coherent state labels. However, as we have reviewed, none of the three models is derived from the original path integral formula equation (1.2) of the Plebanski action (or the discretized version of the path integral) without using some nonstandard methods. Therefore a natural question arises: is any of those three SFMs consistent with the path integral formula equation (1.2) and its discretized version? This question is non-trivial because in all three types of models one deals with non-commutative B fields and simplicity constraints as operators on some Hilbert space while the original path integral is in terms of commutative c-number variables so that anomalies cannot arise. Because of this issue, it is interesting to investigate what kind of SFM we will obtain, if we start from the (discretization of) the path integral formula equation (1.2) with commutative B^{IJ} variables. It is also interesting to find some possible bridges linking the (discretization of) the path integral formula equation (1.2) with commutative B^{IJ} variables to the existing SFMs using non-commutative B^{IJ} variables.

In this paper, we consider the discretization of the path integral formula equation (1.2), which will be equation (2.1). As announced in [32], in contrast to the BC, EPRL, and FK$_\gamma$ models, we always consider the variables B^{IJ} as commutative c-numbers. The simplicity constraint (and closure constraint) is (are) imposed by the c-number delta functions inserted in the path integral formula, which one gets by integrating over the Lagrange multiplier and which constrain the path integral measure. In our concrete analysis in section 4, the most important difference between our derivation and the derivation in any of BC, EPRL, and FK$_\gamma$ models is the following: in any of BC, EPRL, and FK$_\gamma$ models, one always imposes the respective version of the simplicity constraint on the BF spin-foam partition function equation (1.4) or (1.17) after integration over B^{IJ}. This feature is essentially the reason why it is difficult to find a relation between the simplicity constraint imposed in any of BC, EPRL, and FK$_\gamma$ models and the simplicity constraint in the path integral formula equation (1.2). By contrast, our derivation in section 4 will not start from the spin-foam partition function of BF theory, but instead we impose the delta function of the simplicity constraint (and closure constraint) before performing the integral over B^{IJ}, and we will see that solving these constraints gives rise to a non-trivial modification of the path integral measure. There were early works analysing the simplicity constraint toward this direction, see e.g. [26].

As also announced in [32], regarding the B^{IJ} variables as commutative c-numbers also makes the treatment of closure constraint different. We know that the closure constraint equation (1.7) is necessary in order that the full set of simplicity constraint equations (1.5) and (1.6) is satisfied. In BC model the closure constraint is argued to be automatically satisfied by the SO(4) gauge invariance of the vertex amplitude. However, as shown in [32], this is only true after performing the Haar measure integrals which essentially project everything on the gauge invariant sector. It is clear that the closure constraint must be imposed before performing the integral over the connections. In the EPRL model, the argument is improved in that both simplicity constraint and closure constraint vanishes weakly on the EPRL boundary Hilbert space [20]. Moreover, in [24], it is shown that in both EPRL and FK$_\gamma$ model, the closure constraint can be implemented in terms of geometric quantization and by the commutativity of the quantization and phase space reduction [25]. As defined, an additional closure constraint would be redundant for both EPRL and FK$_\gamma$ model, since they are already on the constraint surface of closure constraint (if one interprets the coherent state labels to be the B^{IJ} variables), although the original definitions of both models did not impose closure constraint explicitly.
We feel that this is again due to the fact that the Haar integrals have already been performed. In our analysis we find that the implementation of closure constraint gives non-trivial restrictions on the measure.

In order to understand what happens when one ignores the closure constraint and to follow more closely the procedure followed by existing SFMs, in section 4, we first consider a simplified partition function $Z_{\text{Simplified}}(K)$ in which the delta functions of closure constraint is dropped (as it is discussed in [26]), and derive an expression of $Z_{\text{Simplified}}(K)$ as a sum of all possible spin-foam amplitudes (constrained only by the simplicity constraints). Then we also compute the true partition function $Z(K)$ with the closure constraint implemented. When we compare $Z_{\text{Simplified}}(K)$ with the true partition function $Z(K)$, we find the closure constraint non-trivially affect the spin-foam expression of partition function. But all the spin-foams (transition channels) admitted in the simplified partition function $Z_{\text{Simplified}}(K)$ still contribute to the full partition function $Z(K)$ (with some changes for the triangle/face amplitude and tetrahedron/edge amplitude).

Another key feature of our derivation is a different discretization of the BF action. Here we first break the faces dual to the triangles into wedges (see figure 1) and then write the discretized BF action in terms of the holonomies along the boundary of the wedges. Here, as usual, a wedge in the dual face f is determined by a dual vertex or original 4-simplex σ and thus denoted by (σ, f). Its boundary consists of four segments defined as follows. The original (piecewise linear) 4-simplex has a barycentre $\hat{\sigma}$ which is the dual vertex. The dual edges connect these barycentres. A pair of dual edges e, e' adjacent to the same dual vertex defines a face. Conversely, given a face and a dual vertex which is one of the corners of the face, we obtain two dual edges. These are dual to two tetrahedra t, t' of the original complex. The boundary of the wedge (σ, f) is now given by $(\hat{\sigma}, \hat{e}) \circ (\hat{f}, \hat{\hat{e}}) \circ (\hat{f}', \hat{\hat{e}}') \circ (\hat{\sigma}, \hat{e}')$ where the hat denotes the respective barycentres. In an unfortunate abuse of notation which exploits the duality one also writes this as $(\sigma, t) \circ (f, \hat{\hat{f}}) \circ (f', \hat{\hat{f}}') \circ (\sigma, t')$. Using this notation we have (cf figure 1)

\[
\int_M \left[B + \frac{1}{\gamma} \ast B \right] \wedge F_{IJ} = \int_M \left(1 + \frac{1}{\gamma} \right) \text{tr}(X^+ \wedge F^+) + \int_M \left(1 - \frac{1}{\gamma} \right) \text{tr}(X^- \wedge F^-) = \sum_f \left(1 + \frac{1}{\gamma} \right) \text{tr}(X_f^+ F^+_f) + \sum_f \left(1 - \frac{1}{\gamma} \right) \text{tr}(X^-_f F^-_f)
\]
\[Z_{\gamma} \approx \sum_{(\sigma,f)} \left(1 + \frac{1}{\gamma} \right) \text{tr}(X_{\gamma}^+ F^{+}_{(\sigma,f)}) + \sum_{(\sigma,f)} \left(1 - \frac{1}{\gamma} \right) \text{tr}(X_{\gamma}^- F^{-}_{(\sigma,f)}) \]

\[\simeq \sum_{(\sigma,f)} \left(1 + \frac{1}{\gamma} \right) \text{tr}(X_{\gamma}^+ g^+_f g^-_f g^+_{\sigma f} g^-_{\sigma f}) + \sum_{(\sigma,f)} \left(1 - \frac{1}{\gamma} \right) \text{tr}(X_{\gamma}^- g^-_f g^+_f g^-_{\sigma f} g^+_{\sigma f}) \]

(1.21)

where \(F_{(\sigma,f)} \) is the curvature 2-form integrated on the wedge determined by \((\sigma,f) \) and \(t, t' \) respectively are the afore mentioned unique tetrahedra (or dual edges). This starting point results in the following structures in the resulting SFM \(Z_{\text{simplified}}(K) \) (these structures turn out to be similar to the structure proposed in [26]).

- In contrast to the existing SFMs, where the SO(4) representations \((j_f^+ , j_f^-) \) were labelling the faces \(f \), the new SFM derived in section 4 have SO(4) representations \((j^+_{\sigma f}, j^+_{\sigma' f}) \) labelling the wedges, i.e. a dual face \(f \) having \(n \) vertices (corners) in general has \(n \) different pairs \((j^+_{\sigma f}, j^+_{\sigma' f}) \), one for each wedge determined by the vertex dual to \(\sigma \). However in the large-\(j \) limit, the triangle/face amplitude is concentrated on SO(4) representations \(j^+_{\sigma f} = j^+_{\sigma' f} \) for any vertices \(\sigma, \sigma' \) of the same face \(f \).

- Two neighbouring wedges \((\sigma,f) \) and \((\sigma',f) \) of a face \(f \) share a segment \((t,f) \) (cf figure 1) whose end points are the centre of the face \(f \) and the centre of the edge dual to the tetrahedron \(t = \sigma \cap \sigma' \). For each segment \((t,f) \) there is an SU(2) representation \(k_{tf} \) ‘mediating’ the SO(4) representations of the two neighbouring wedges, \((j^+_{\sigma f}, j^+_{\sigma' f}) \) and \((j^+_{\sigma' f}, j^+_{\sigma f}) \), in the sense that \(k_{tf} \) has to lie in the range of the joint Clebsch–Gordan decomposition of \(j^+_{\sigma f} \otimes j^+_{\sigma' f} \) and \(j^+_{\sigma' f} \otimes j^+_{\sigma f} \) (cf figure 4), thus

\[k_{tf} \in \{ j^+_{\sigma f} - j^+_{\sigma' f}, \ldots, j^+_{\sigma f} + j^+_{\sigma' f} \} \cap \{ j^+_{\sigma f} - j^+_{\sigma' f}, \ldots, j^+_{\sigma' f} + j^+_{\sigma f} \}. \]

(1.22)

Note that the idea for implementing c-number simplicity constraint strongly in the SFM is not new, and has been employed in [26]. Some calculations, e.g. solving the simplicity constraint, toward \(Z_{\text{simplified}}(K) \) is similar to the derivation in [26] (especially in the first reference in [26]). However the discrete action equation (1.21) here is different from the one used in [26]. The action here turns out to be important to understand the non-commutative deformation and the relation to BC model in the appendix, which is one of the key points in this paper.

An interesting result from the analysis here is the relations between the new SFM derived here and the existing SFMs e.g. BC, EPRL, and FK\(_\gamma \) models. From the analysis in section 4, we find that, firstly, in the large-\(j \) and large-area limit the spin-foams in our new model \(Z_{\text{simplified}}(K) \) reduces to the spin-foams in FK\(_\gamma \) model (with identical 4-simplex/ vertex amplitude but different tetrahedron/edge and triangle/face amplitudes) at least for \(|\gamma| > 1 \). Secondly, in the appendix, we study the non-commutative deformation of the partition function equation (2.1), in order to study how the non-commutative nature of the \(B^{ij} \) variables in the existing SFMs emerges in our commutative context. The non-commutative deformation we employ here comes from a generalized Fourier transformation on the compact group [29] (the deformed partition function will be denoted by \(Z_{\gamma}(K) \)). With this deformation, we find that the closure constraint really becomes redundant when we set the deformation parameter \(a = \ell_p^2 \), while the redundancy is hard to be shown with a general deformation parameter. With the setting of the deformation parameter \(a = \ell_p^2 \), we show that the non-commutative deformation of our new SFM leads to BC model when the Barbero–Immirzi parameter \(\gamma = \infty \). This result explains how the non-commutative nature of the \(B^{ij} \) variables in BC model relates to the
commutative context of our new SFM in section 4, and also explains to some extent the reason why in the BC model the closure constraint is redundant (such an explanation also appears in the first reference of [30] from the group field theory (GFT) perspective). On the other hand, the relation with EPRL model and FK γ with a boundary. will see in the following discussion.

Z function (the first reference of [30] from the group field theory (GFT) perspective). On the other hand, why in the BC model the closure constraint is redundant (such an explanation also appears in

$\text{8 Such a spin-foam partition function can be understood as a sum over the histories of SO(4) spin-networks, as we will see in the following discussion.}$

$\text{2. Starting point of the new model}$

$\text{2.1. The partition function}$

In the last section we reviewed the approaches of simplicity constraint and closure constraint in the existing SFMs, and summarized the approach and main results of the present paper. In this section, we present the detailed construction and analysis of our new SFM. We take a simplicial complex \mathcal{K} of the four-dimensional manifold M, where we denote the simplices by σ, the tetrahedra by t and the triangles by f. And we take the following discretized partition function as the starting point for constructing the SFM8:

$$Z(\mathcal{K}) := \int \prod_f d^3X^+_f \prod \delta(\sum_{(\sigma,f)} X^+_f) \prod \exp\left(i \left(1 + \frac{1}{\gamma^2}\right) \text{tr}(X^+_f g^+_f g^+_f g^+_f g^+_f) \right)$$

$$\times \prod_{t,f} \delta(X^+_t \cdot X^+_{t'}, - X^-_t \cdot X^-_{t'})$$

$$\times \prod_{(\sigma,f)} \exp\left(i \left(1 - \frac{1}{\gamma^2}\right) \text{tr}(X^-_f g^-_f g^-_f g^-_f g^-_f) \right)$$

(2.1)

We explain the meaning of the variables appearing in the above definition:

\bullet $X^+_f, X^-_f \in \mathfrak{su}(2)$ are respectively the self-dual and anti-self-dual part of the $\mathfrak{so}(4)$ flux variable B^{μ}_f, which is the $\mathfrak{so}(4)$-valued 2-form field $B^{\mu}_{\alpha\beta}$ smeared on the triangle dual to f while

$$X^\pm_{f} := g^\pm_{f} X^\pm_{f} g^\pm_{f}.$$

(2.2)

So given two tetrahedra t, t' sharing a face f, the relation between X_{tf} and $X_{t'f}$ is thus

$$X^\pm_{tf} := g^\pm_{t} X^\pm_{t} g^\pm_{t}.$$

(2.3)

$\text{7 In most of the discussions of the present paper, the manifold } M \text{ is assumed to be without boundary, then the partition function } Z(\mathcal{K}) \text{ is a number associated to the triangulation. But the discussion can be easily generalized to the case with a boundary.}$
where \(s_{ij}^\pm = g_{ij}^\pm e_i^\mp e_j^\pm \) and \(g_{ij}^\pm = (g_{\alpha\mu})^{-1} \). Such a ‘parallel-transportation condition’ for \(X_{ij}^\pm \)
means that each triangle \(f \) associates a unique pair \(X_{ij}^\pm \), which ensures the right number of
degrees of freedom as a discretization of Plebanski–Holst gravity. \(X_{ij}^\pm \) are the auxiliary
variables which are useful in the following derivation.

- \(dg \) is the Haar measure on \(SU(2) \). \(g_{\alpha\mu}, s_{\alpha\mu} \in SU(2) \) is the self-dual and anti-self-dual
part of the \(SO(4) \) holonomy along the half edge \((\sigma, \bar{t})\) outgoing from the vertex \(\sigma \) while
\(g_{ij}^\pm, s_{ij}^\pm \) are respectively the self-dual and anti-self-dual part of the \(SO(4) \) holonomy along
the segments \((t, \bar{f})\) (see figure 1).
- The delta function \(\delta(X_{ij}^+, X_{ij}^f - X_{ij}^- \cdot X_{ij}^-) \) imposes the simplicity constraint for each
tetrahedron:
\[
e_{IJKL} B_{ij}^{IJ} B_{kl}^{KL} = 0 \quad f, f' \text{ belonging to the same tetrahedron} \quad (2.4)
\]
while the delta function \(\delta \left(\sum_{f \subset t} X_{ij}^+ \right) \) imposes the self-dual closure constraint for each
tetrahedron. Note that there is no closure constraint for \(X_{ij}^- \) because the closure of \(X_{ij}^- \)
is implied by the self-dual closure constraint and the simplicity constraint as we will
demonstrate shortly. So including it would be equivalent to multiplying the partition
function with a divergent constant which drops out in expectation values. In addition, the
closure constraint and simplicity constraint equation (1.5) imply the 4-simplex constraints
\((i, j, k, l \in \{1, 2, 3, 4, 5\})\):
\[
e_{IJKL} B_{ij}^{IJ} B_{kl}^{KL} = \epsilon_{IJKL} B_{ij}^{IJ} B_{ij}^{KL} = \epsilon_{IJKL} B_{ij}^{IJ} B_{ij}^{KL}
\]
where \(f_{ij} \) face dual to the triangle \(t_i \cap t_j \), where \(t_i \) are the 5 tetrahedra of \(\sigma \) (2.5)

Here \(X_{\sigma f}^{\pm} = g_{\sigma f}^{\pm} X_{\sigma f}^{\pm \sigma f} \) and \(B_{\sigma f}^{IJ} = X_{\sigma f}^{\pm} + X_{\sigma f}^{-} \). The four tetrahedra of \(\sigma \) and
(2.5), in which the holonomies can be replaced by the group unit, we recover the
Plebanski simplicity constraints (20 equations):
\[
e_{IJKL} B_{\alpha f}^{IJ} B_{\beta f}^{KL} = \mathcal{V} \epsilon_{\alpha\beta}^{\gamma \delta} / 4!
\]
(2.6)
where \(\mathcal{V} := \epsilon^{\alpha\beta\gamma\delta} e_{IJKL} B_{\alpha f}^{IJ} B_{\beta f}^{KL} \) is the four-dimensional volume element. Note that there
are essentially 20 constraint equations while the trace part of equation (2.6) is an identity.

The solutions of the simplicity constraints is well-known: given a non-degenerate co-tetrad
\(e_i^\alpha \), there are five sectors of solutions of the simplicity constraints [3]
\[
I^\pm : B^{IJ} = \pm e^I \wedge e^J
\]
\[
H^\pm : B^{IJ} = \pm e^I_{K L} e^K \wedge e^J
\]
\[
\text{Deg} : B^{\pm} = B^-
\]
(2.7)
where \(B^{IJ} \) are the self-dual and anti-self-dual parts of \(B^{IJ} \).
- The exponents in \(\mathbb{I} \prod_{(\alpha, f)} e^{[1 + \frac{1}{2} \text{tr}(X_{\alpha f}^{\pm} X_{\alpha f}^{\pm f})]} \prod_{(\sigma, f)} e^{[1 - \frac{1}{2} \text{tr}(X_{\sigma f}^{\pm} X_{\sigma f}^{\pm f})]} \) come from
the exponential of the BF action, discretized in terms of wedge holonomies \(g_{\sigma f}^\alpha, g_{\sigma f}^\beta\).

In more detail,
\[
\int_M \left[B + \frac{1}{\gamma} \ast B \right]^{IJ} \wedge F_{IJ} = \int_M \left(1 + \frac{1}{\gamma} \right) \text{tr}(X^+ \wedge F^+) + \int_M \left(1 - \frac{1}{\gamma} \right) \text{tr}(X^- \wedge F^-)
\]
\[
= \sum_f \left(1 + \frac{1}{\gamma} \right) \text{tr}(X_f^{J} F_f^{J}) + \sum_f \left(1 - \frac{1}{\gamma} \right) \text{tr}(X_f^{-} F_f^{-})
\]
\[
= \sum_{(\sigma, f)} \left(1 + \frac{1}{\gamma} \right) \text{tr}(X_f^{J} F_{(\sigma, f)}^{J}) + \sum_{(\sigma, f)} \left(1 - \frac{1}{\gamma} \right) \text{tr}(X_f^{-} F_{(\sigma, f)}^{-})
\]

\[
\int_M \left[B + \frac{1}{\gamma} \ast B \right]^{IJ} \wedge F_{IJ} = \int_M \left(1 + \frac{1}{\gamma} \right) \text{tr}(X^+ \wedge F^+) + \int_M \left(1 - \frac{1}{\gamma} \right) \text{tr}(X^- \wedge F^-)
\]
\[
= \sum_f \left(1 + \frac{1}{\gamma} \right) \text{tr}(X_f^{J} F_f^{J}) + \sum_f \left(1 - \frac{1}{\gamma} \right) \text{tr}(X_f^{-} F_f^{-})
\]
\[
= \sum_{(\sigma, f)} \left(1 + \frac{1}{\gamma} \right) \text{tr}(X_f^{J} F_{(\sigma, f)}^{J}) + \sum_{(\sigma, f)} \left(1 - \frac{1}{\gamma} \right) \text{tr}(X_f^{-} F_{(\sigma, f)}^{-})
\]
\begin{align}
\sum (\sigma, f) \left(1 + \frac{1}{\gamma} \right) \text{tr}\left(X_f^+ g_f^+ g_{\sigma f}^+ g_{\sigma f}^+ \right) \\
+ \sum (\sigma, f) \left(1 - \frac{1}{\gamma} \right) \text{tr}\left(X_f^- g_f^- g_{\sigma f}^- g_{\sigma f}^- \right)
\end{align}

(2.8)

where \(F_{(\sigma, f)} \) is the curvature 2-form integrated on the wedge determined by \((\sigma, f)\).

- Finally we note that under the \(SO(4) \) gauge transformations:
 \[
g_{ij}^{\pm} \rightarrow h_{ij}^{\pm} h_{ij}^{\pm -1} \quad g_{\sigma f}^{\pm} \rightarrow h_{\sigma}^{\pm} h_{\sigma}^{\pm -1} \quad X_f^{\pm} \rightarrow h_f^{\pm} X_f^{\pm} (h_f^{\pm})^{-1} \quad X_{ij}^{\pm} \rightarrow h_i^{\pm} X_{ij}^{\pm} (h_i^{\pm})^{-1}
\]

(2.9)

where \(h : \Sigma \rightarrow SO(4); \quad x \mapsto h(x) \) denotes a gauge transformation and \(h_\sigma := h(\hat{\sigma}), \quad h_i := h(\hat{i}), \quad h_f(\hat{f}) \) with \(\hat{\sigma} \) the barycentre of \(\sigma \) etc.

Hence the traces of the exponentials
\[
\text{tr}\left(X_f^{\pm} g_f^{\pm} g_{\sigma f}^{\pm} g_{\sigma f}^{\pm} \right)
\]

(2.10)

and the simplicity constraint
\[
X_{ij}^+ X_{ij}^- - X_{ij}^- X_{ij}^+ = 0
\]

(2.11)

are invariant quantities while the closure constraint transforms covariantly
\[
\sum_{f \in \ell} X_{ij}^+ \rightarrow h_i \left(\sum_{f \in \ell} X_{ij}^+ \right) h_i^{-1}
\]

(2.12)

The desire to maintain gauge (co)invariance of action and constraints in the discretization motivated to introduce the quantities \(X_{\sigma f}^\pm \) and \(X_{\tau f}^\pm \) which in the continuum limit reduce to \(X_f^\pm \) to leading order in the discretization regulator.

- One may wonder why we do not include \(\delta \) functions enforcing the closure constraint for the ‘minus’ sector. As we will see, the measure is supported on configurations satisfying \(X_{ij}^- = u_i X_{ij}^+ u_i^{-1} \) for some \(u_i \in SU(2) \). Thus
\[
\sum_{f \in \ell} X_{ij}^- = -u_i \left[\sum_{f \in \ell} X_{ij}^+ \right] u_i^{-1}
\]

(2.13)

is already implied by the ‘Plus’ sector. So we could include it but that would result in an infinite constant \(\delta(0) \) which drops out in correlators. We assume to have done this already.

Remark. It appears awkward, that here are more holonomies than B fields, suggesting a mismatch in the number of \(B \) and \(A \) degrees of freedom in contrast to the classical theory. Here we remark that the natural definition of the dual of a triangle really is the gluing of wedges (see e.g. the second reference of [1] in the notation used here and references therein). The boundary \(\partial f \) is naturally a composition of the half edges \([\ell, \hat{\ell}]\) where the hat denotes the barycentre of tetrahedron and 4-simplex respectively. Thus, if we would discretize the action using the holonomy around the \(\partial f \) rather than around the wedges, the discretized action only would depend on the edges \(e = [\hat{\sigma} \cap \hat{\sigma}'] \cap [\sigma \cap \sigma', \hat{\sigma}'] \) and the properties of the Haar measure ensure that the integrals over \(g_{\hat{\sigma} f}^\pm, g_{\hat{\sigma} f}^\pm \) reduce to the integrals over \(g_{\hat{\sigma} f}^\pm \). Thus, we are doing this in order to approximate \(\text{tr}(B_f \cdot g_f) \) by \(\sum \delta_{\sigma f} \text{tr}(B_f \cdot g_{f, \sigma}) \) where \(g_{f, \sigma} = g_{f \sigma} g_{\hat{\sigma} f} \cdot g_{f, \hat{\sigma} f} \) and \(g_{f, \sigma} \) is the corresponding wedge holonomy after having introduced the redundant variables \(g_{\hat{\sigma} f}, g_{f, \hat{\sigma} f} \). We are aware of this presents a further modification of the model but it should be a mild one because both discretized actions have the same continuum limit. In fact we will see that in the semiclassical (large-\(f \)) limit the representations on the wedges essentially coincide so
that effectively only the face holonomies are of relevance. It is certainly possible to define the commutative B field model without this step, however, it is very helpful to do so as it facilitates the solution to otherwise cumbersome bookkeeping problems. We leave the definition of the model without a priori introduction of wedges for future work.

2.2. Expansion of the exponentials

For the preparation of the integration of the holonomies $g^\pm_{\alpha\beta}$ and $g^\pm_{\gamma\delta}$, we would like to expand the factors $e^{i(\pm\frac{1}{2})\mathrm{tr}(X^\pm_s\hat{q}_s^\alpha\hat{q}_s^\beta)}$ in terms of the SU(2) unitary irreducible representation matrix elements $\pi_{mn}^{j}(g)$. So we define the matrix $K_{mn}^{j}(Y), Y \in \mathfrak{su}(2)$, such that

$$e^{i\mathrm{tr}(Y)} = \sum_{j,m,n} K_{mn}^{j}(Y) \pi_{mn}^{j}(g)$$

(2.14)

while the expression of $K_{mn}^{j}(Y)$ can be obtained by

$$\frac{1}{\dim(j)} K_{mn}^{j}(Y) = \int \mathrm{d}g \exp(i\mathrm{tr}(Y)g) \pi_{mn}^{j}(g) = \int \mathrm{d}g \exp(i\mathrm{tr}(Y)g) \pi_{mn}^{j}(g^{-1})$$

(2.15)

Since $iY \equiv i\hat{\gamma} \cdot \hat{\sigma} = \hat{\gamma} \cdot \hat{\sigma}$ (σ_j are Pauli matrices, $\tau_j = -i\sigma_j$), we have the following relation

$$iY = \frac{|\vec{\gamma}|}{4} i\hat{\gamma} \cdot \hat{\sigma} = \frac{|\vec{\gamma}|}{4} e^{i\frac{\hat{\gamma} \cdot \hat{\sigma}}{2}}$$

(2.16)

Therefore

$$\frac{1}{\dim(j)} K_{mn}^{j}(Y) = \int \mathrm{d}g \exp\left(\frac{|\vec{\gamma}|}{4} \mathrm{tr}\left(e^{i\hat{\gamma} \cdot \hat{\sigma}}\right)\right) \pi_{mn}^{j}(g^{-1})$$

$$= \int \mathrm{d}g \exp\left(\frac{|\vec{\gamma}|}{4} \mathrm{tr}(g)\right) \pi_{mn}^{j}\left(e^{i\frac{\hat{\gamma} \cdot \hat{\sigma}}{2}}\right)$$(2.17)

where in the last step we made a translation $g \rightarrow e^{-i\frac{\hat{\gamma} \cdot \hat{\sigma}}{2}}$. Moreover we can expand the function $e^{i\frac{\hat{\gamma} \cdot \hat{\sigma}}{2}}$ by the SU(2) characters

$$e^{-i\frac{\hat{\gamma} \cdot \hat{\sigma}}{2}} = \sum_{k \in \mathbb{N}/2} \beta_k(|\vec{\gamma}|) \chi_k(g)$$

(2.18)

Then

$$\frac{1}{\dim(j)} K_{mn}^{j}(Y) = \sum_{k \in \mathbb{N}/2} \beta_k(|\vec{\gamma}|) \sum_{l} \pi_{ml}^{j}(e^{i\frac{\hat{\gamma} \cdot \hat{\sigma}}{2}}) \int \mathrm{d}g \pi_{nm}^{l}(g^{-1}) \chi_l(g)$$

$$= \sum_{k \in \mathbb{N}/2} \beta_k(|\vec{\gamma}|) \sum_{l} \pi_{ml}^{j}(e^{i\frac{\hat{\gamma} \cdot \hat{\sigma}}{2}}) \int \mathrm{d}g \pi_{nm}^{l}(g) \chi_l(g)$$

$$= \sum_{k \in \mathbb{N}/2} \beta_k(|\vec{\gamma}|) \sum_{l} \pi_{ml}^{j}(e^{i\frac{\hat{\gamma} \cdot \hat{\sigma}}{2}}) \frac{1}{\dim(j)} \delta_{kl} \delta_{nl}$$

$$= \frac{1}{\dim(j)} \beta_j(|\vec{\gamma}|) \pi_{nn}^{j}(e^{i\frac{\hat{\gamma} \cdot \hat{\sigma}}{2}})$$

(2.19)

Then plugging this result back into equation (2.14) yields

$$e^{i\mathrm{tr}(Y)} = \sum_{j} \beta_j(|\vec{\gamma}|) \mathrm{tr}_j\left(e^{i\frac{\hat{\gamma} \cdot \hat{\sigma}}{2}}\right) g = \sum_{j} \beta_j(|\vec{\gamma}|) \mathrm{tr}_j(i\hat{\gamma} \cdot \hat{\sigma} g).$$

(2.20)

by using this identity, we have $(X^\pm = X^\pm \cdot \hat{\tau} = \hat{X}^\pm \cdot (-i\hat{\sigma}))$

$$e^{i(\pm\frac{1}{2})\mathrm{tr}(X^\pm_s\hat{q}_s^\alpha\hat{q}_s^\beta)} = \sum_{j,\sigma} \beta^{\sigma}_{\pm j} \left(1 \pm \frac{1}{\mathcal{V}} \left|\hat{X}^\pm_j\right|\right) \mathrm{tr}_{\pm j} (i\hat{X}^\pm_j \cdot \hat{\sigma} g^\dagger_{\hat{X}^\pm_j S_{\sigma j}^\alpha S_{\sigma j}^\beta})$$

(2.21)
Inserting this result into the expression of the partition function, we obtain
\[
Z(K) = \int_{\mathbb{R}^L} \prod_{f} d^3 X_f^+ d^3 X_f^- \prod_{t} \delta_{\mathfrak{g}_{\mathfrak{g} t}} \prod_{t,f} \delta(\mathcal{L}^+_{\mathfrak{g} t} - \mathcal{L}^-_{\mathfrak{g} t} - \mathcal{L}^+_{\mathfrak{g} f} - \mathcal{L}^-_{\mathfrak{g} f}) \\
\times \prod_{t} \delta \left(\sum_{f \in t} \mathcal{L}^+_{\mathfrak{g} f} \right) \prod_{j,r} \beta_{j,r} \left(\left| \sum_{f \in j} \mathcal{L}^+_{\mathfrak{g} f} \right| \right) \left(1 + \frac{1}{\gamma} \left| \mathcal{L}^+_{\mathfrak{g} f} \right| \right) tr_{j,r} \left(i \hat{\mathcal{L}}^+_{\mathfrak{g} f} - \hat{\mathcal{L}}^-_{\mathfrak{g} f} \right) \\
\times \sum_{j,r} \prod_{(j,r) \neq (t,f)} \beta_{j,r} \left(\left| 1 - \frac{1}{\gamma} \left| \mathcal{L}^+_{\mathfrak{g} f} \right| \right| \right) tr_{j,r} \left(i \hat{\mathcal{L}}^+_{\mathfrak{g} f} - \hat{\mathcal{L}}^-_{\mathfrak{g} f} \right). \tag{2.22}
\]

3. Implementation of simplicity constraint

3.1. Linearizing the simplicity constraint

In order to implement the simplicity constraints via the delta functions \(\delta(\mathcal{L}^+_{\mathfrak{g} f} - \mathcal{L}^-_{\mathfrak{g} f}) \) for each tetrahedron it proves convenient to pass from this quadratic expression to an integral of linear expressions directly at the level of measures (in the gravitational sector \(\mathbb{R}^L \)). In this subsection we are dealing with a single tetrahedron \(t \), thus we ignore the \(t \) label of \(X_f^\pm \).

Consider the four flux variables \(X_f^\pm (f = 1, \ldots, 4) \) associated with a tetrahedron \(t \). Define the symmetric matrix \(l_{ff} := X_f^+ \cdot X_f^- \), \(1 \leq f, f' \leq 4 \). Then \(l_{ff} \) determines the \(X_f^\pm \) up to an \(O(3) \) matrix \(O \). Denote by \(L \) the range of the map \(|X_f^\pm|_{f=1}^4 \mapsto \{l_{ff} \}_{1 \leq f, f' \leq 4} \) (as a subset of \(\mathbb{R}^{10} \), \(L \) is constrained in particular by the Cauchy–Schwarz inequality). Then we can define a map \(Y : O(3) \otimes L \to \mathbb{R}^{12} \), \((g,l) \mapsto (gX_1(l), gX_2(l), gX_3(l), gX_4(l)) \) where \(X_f(l) \) is any solution of \(l_{ff} = X_f^+ \cdot X_f^- \).

In the following result we drop the \(\pm \) for convenience.

Lemma 3.1. We have \(\det((l_{ff})) = 0 \). Given \(F : \mathbb{R}^{12} \to \mathbb{R} \) define \(\hat{F} : O(3) \times L \to \mathbb{R} \) by \(\hat{F} := F \circ Y \). Then
\[
\int_{\mathbb{R}^{10}} \prod_{f=1}^4 d^3 X_f F = \int_{O(3)} \! dg \int_{\mathbb{R} \times L} \! d^{10} l \delta(\det((l_{ff}))) \hat{F} \tag{3.1}
\]
where \(dg \) is the \(SU(2) \) Haar measure (up to normalization) and \(\hat{F} \) is trivially extended off the surface \(\det(l) = 0 \).

Proof. Up to measure zero sets, \(X_1, X_2, X_3 \) will be linearly independent and define a 3 metric \(l_{ab} = X_a \cdot X_b \). Accordingly (since \(X_4 \) is a linear combination of \(X_1, X_2, X_3 \))
\[
X_4 = l_{ab}(X_a \cdot X_b) X_a = l_{ab} l_{ad} X_d \tag{3.2}
\]
is a linear combination of these vectors and \(l^{ac} l_{cb} = \delta_b^a \). We obtain the constraint
\[
l_{ad} = X_a \cdot X_4 = l_{ab} l_{ad} l_{ab} \tag{3.3}
\]
among the \(l_{ff} \). On the other hand
\[
\det(l_{ff}) = \det \begin{pmatrix} l_{ad} & l_{ab} \\ l_{ad} & l_{ab} \end{pmatrix} = l_{ad} \det(l_{ab} - l_{ad} l_{ab}) = l_{ad}^2 \left[\det(X_d^+) \right]^2 \det(l_{ad} \delta_{ij} - l_{ad} l_{ij}) \tag{3.4}
\]
with \(l_{ad} = X_d^a l_{ad} \) and \(X_d^a \) is the inverse of \(X_d^i \). The computation of the remaining determinant is elementary and yields
\[
\det(l_{ff}) = \det(l_{ab}) \det(l_{ad} - l_{ab} l_{ab}) \tag{3.5}
\]
which is proportional to the constraint equation (3.3), hence \(\det(l_{ff}) = 0 \).
In order to write an integral over \(X_1, \ldots, X_4 \) in terms of the independent coordinates \(l_{ab}, l_{aa}, \vec{a} \) where \(\alpha \) parametrizes the rotation \(g \), we must compute the Jacobian

\[
J = \left| \det \left(\frac{\partial (X_1, X_2, X_3, X_4)}{\partial (l_{ab}, \vec{a}, l_{aa})} \right) \right|. \tag{3.6}
\]

Since only \(X_4 \) depends on \(l_{aa} \) this immediately simplifies to

\[
J = \frac{1}{\sqrt{\det(l_{ab})}} \left| \det \left(\frac{\partial (X_1, X_2, X_3)}{\partial (l_{ab}, \vec{a})} \right) \right|. \tag{3.7}
\]

To compute the remaining determinant we choose for instance the following parametrization

\[
X_1 = \frac{l_{13}}{\sqrt{l_{33}}} \cdot \vec{b} + \sqrt{l_{13} - l_{23}^2/l_{33}} (\cos(\gamma + \chi) \cdot \vec{b}_1 + \sin(\gamma + \chi) \cdot \vec{b}_2)
\]

\[
X_2 = \frac{l_{23}}{\sqrt{l_{33}}} \cdot \vec{b} + \sqrt{l_{23} - l_{13}^2/l_{33}} (\cos(\chi) \cdot \vec{b}_1 + \sin(\chi) \cdot \vec{b}_2)
\]

\[
X_3 = \sqrt{l_{33}} \cdot \vec{b}_3 \tag{3.8}
\]

with the Euler angles \(\vec{a} = (\phi, \theta, \chi) \), \(\phi, \chi \in [0, 2\pi], \theta \in [0, \pi] \) and the orthonormal right oriented basis

\[
b_1 = (\sin(\theta) \cdot \cos(\phi), \sin(\theta) \cdot \sin(\phi), \cos(\theta)), \ b_2 = b_{3,a}/\sin(\theta)
\]

(3.9)

together with

\[
\cos(\gamma) = \frac{l_{12}l_{33} - l_{13}l_{23}}{\sqrt{(l_{13} - l_{23}^2/l_{33}) (l_{23} - l_{13}^2/l_{33})}}, \quad \sin(\gamma) = \frac{\sqrt{\det(l_{ab})} l_{33}}{\sqrt{(l_{13} - l_{23}^2/l_{33}) (l_{23} - l_{13}^2/l_{33})}}. \tag{3.10}
\]

This defines the map \(Y \) above and the reader may check that the relations \(X_a \cdot X_b = l_{ab} \) are satisfied for any \(\vec{a} \). The computation of the Jacobian is much simplified by noticing that the matrix

\[
\frac{\partial (X_1, X_2, X_1)}{\partial (l_{13}, \theta, \phi, \chi, l_{22}, l_{23}, l_{11}, l_{12}, l_{13})}
\]

(3.11)

consists of \(3 \times 3 \) blocks and is upper block trigonal with non-singular matrices as diagonal block entries. Accordingly its determinant is the product of the determinants of the diagonal block matrices and yields after a short commutation the value \(\sin(\theta)/8\sqrt{\det(l_{ab})} \). Due to the absolute value the Jacobian is thus given by

\[
J = \frac{\sin(\theta)}{8 \det(l_{ab})}. \tag{3.12}
\]

It is not difficult to check that for the Euler angle parametrization we have up to a normalization constant the following expression for the Haar measure

\[
dg = d\chi \ d\phi \ d\theta \ \sin(\theta)/8. \tag{3.13}
\]

We can therefore finish the proof by

\[
\int_{\mathbb{R}^{12}} d^3X_1 \ d^3X_2 \ d^3X_3 \ d^3X_4 \ F = \int_{O(3)} \ d\theta \ \prod_{a \leq b \leq 3} \ dl_{ab} \ \prod_{a=1}^{3} \ dl_{aa} \ \frac{\tilde{F}}{\det((l_{ab}))}
\]

(3.14)

\[
= \int_{O(3)} \ d\theta \ \prod_{a \leq b \leq 3} \ dl_{ab} \ \prod_{f=1}^{4} \ dl_{ff} \ \frac{\tilde{F}}{\det((l_{ab}))} \ \delta(l_{44} - l_{4b} l_{ba})
\]

(3.14)

\[
= \int_{O(3)} \ d\theta \ \prod_{f \leq f' \leq 4} \ dl_{ff'} \ \delta(\det(l_{ff'})) \ \tilde{F}. \tag{3.14}
\]
As usual in path integrals we will not worry about normalization constants as they drop out in correlators. The preceding lemma is crucial for establishing the following result.

Lemma 3.2. For each tetrahedron \(t \) (\(u_t \in \text{SO}(3) \) \(^9\)), \(u_t \) can be viewed as the parametrization of the normal for the tetrahedron \(t \) (see equation (3.18)).

\[
\prod_{f,f'=1}^{4} \delta(X_f^+ \cdot X_{f'}^- - X_f^- \cdot X_{f'}^+) = \delta(\det(X_f^+ \cdot X_{f'}^+)) \int du_t \prod_{f=1}^{4} \delta(X_f^+ + u_t X_f^- u_t^{-1})
\]

(3.15)

in the solution sector \(\mathcal{H}_\pm \) of the simplicity constraint \([12]\).

Proof. Essentially we need to prove that for all continuous function \(f(X_f^+, X_{f'}^-) f = 1, \ldots, 4 \) vanishing in the topological solution sector \(\mathcal{I}_\pm \) of the simplicity constraint

\[
\int \prod_{f=1}^{4} d^3X_f^+ d^3X_f^- \prod_{f,f'=1}^{4} \delta(X_f^+ \cdot X_{f'}^- - X_f^- \cdot X_{f'}^+) f(X_f^+, X_{f'}^-)
\]

\[
= \int \prod_{f=1}^{4} d^3X_f^+ d^3X_f^- \delta(\det(X_f^+ \cdot X_{f'}^+)) \int du_t \prod_{f=1}^{4} \delta(X_f^+ + u_t X_f^- u_t^{-1}) f(X_f^+, X_{f'}^-)
\]

(3.16)

From the left-hand side, by using lemma 3.1, we transform the coordinates from \(X_f^+ \) to \(u_t \) and \(l_{ff'}^\pm \), constrained by \(\det(l_{ff'}^\pm) = 0 \):

\[
\int \prod_{f=1}^{4} d^3X_f^+ d^3X_f^- \prod_{f,f'=1}^{4} \delta(X_f^+ \cdot X_{f'}^- - X_f^- \cdot X_{f'}^+) f(X_f^+, X_{f'}^-)
\]

\[
= \int du_t^+ du_t^- \prod_{f,f'=1}^{4} dl_{ff'}^+ dl_{ff'}^- \delta(\det(l_{ff'}^+)) \delta(\det(l_{ff'}^-)) \times \prod_{f,f'=1}^{4} \delta(l_{ff'}^+ - l_{ff'}^-) f(l_{ff'}^+, l_{ff'}^-, u_t^+, u_t^-)
\]

\[
= \int du_t^+ du_t^- \prod_{f,f'=1}^{4} dl_{ff'}^+ \delta(\det(l_{ff'}^+)) \delta(\det(l_{ff'}^-)) f(l_{ff'}^+, l_{ff'}^-, u_t^+, u_t^-)
\]

\[
= \int \prod_{f=1}^{4} d^3X_f^+ \int du_t^- \delta(\det(X_f^+ \cdot X_{f'}^+)) f(X_f^+, -u_t^- X_f^+(u_t^-)^{-1})
\]

\[
= \int \prod_{f=1}^{4} d^3X_f^+ d^3X_f^- \delta(\det(X_f^+ \cdot X_{f'}^+)) \int du_t \prod_{f=1}^{4} \delta(X_f^+ + u_t X_f^- u_t^{-1}) f(X_f^+, X_{f'}^-)
\]

(3.17)

where we restrict ourselves in the gravitational sector \(\mathcal{H}_\pm \).

\(\square \)

Notice that strictly speaking we should be using the Haar measure \(du_t^\pm \) on \(\text{O}(3) \) rather than \(\text{SO}(3) \) which is just the sum of two Haar measures on \(\text{SO}(3) \) twisted by a reflection so that we actually get an integral over \(\text{SO}(3) \) of a sum of \(\delta \) distributions \(\delta(X - u_t X^+ u_t^{-1}) + \delta(X + u_t X^+ u_t^{-1}) \) with \(u_t \in \text{SO}(3) \). This is expected because the simplicity constraints do not select either of

\(\text{SO}(3) \) is considered as the upper hemisphere of \(\text{SU}(2) \), while their Haar measure is different by a factor of 2.

\(^9\)
the two sectors (gravitational and topological). As usual in SFMs, we consider a restriction of the model to the purely gravitational sector in the above lemma.

Here we note that the singular factor \(\delta(\det(X_{f}^{+} + X_{f}^{-})) \) is essentially a \(\delta(0) \) and can be divided out by an appropriate Faddeev–Popov procedure [12]. And the linearized simplicity constraint \(\delta(X_{f}^{+} + u_{f}X_{f}^{-}u_{f}^{-1}) \) has clear geometrical interpretation that for each tetrahedron \(t \), there exists a unit 4-vector \(n_{t} = (n_{t}^{1}, n_{t}^{2}, n_{t}^{3}, n_{t}^{4}) \) corresponding to the \(SU(2) \) element

\[
 u_{t} = \begin{pmatrix}
 n_{t}^{1} + i n_{t}^{2} & n_{t}^{3} + i n_{t}^{4} \\
 -(n_{t}^{1} - i n_{t}^{2}) & n_{t}^{3} - i n_{t}^{4}
\end{pmatrix}
\]

(3.18)

such that \(^{\star}B^{ij}_{tf}n_{t} = 0 \).

Thus the constrained measure of the flux variables in equation (2.22) is written as (we denote \(g_{f} = u_{f} \) in what follows)

\[
 \prod_{f} d^{3}X_{f}^{+} d^{3}X_{f}^{-} \prod_{t} \int du_{t} \prod_{f \subset t} \delta(X_{f}^{+} + u_{f}X_{f}^{-}u_{f}^{-1}) \prod_{t} \delta\left(\sum_{f \subset t} X_{f}^{+}\right).
\]

(3.19)

Note that the measure \(d^{3}X_{f}^{\pm} \) can be considered as the measure \(d^{3}X_{f}^{\pm} \) constrained by the parallel-transportation condition \(\delta(X_{f}^{+} - g_{f}^{-1}X_{f}^{+}(g_{f}^{-1})^{-1}) \).

In particular we see, that it is possible to justify the passing between the quadratic simplicity constraints employed by the BC model and the linearized simplicity constraints of the EPRL and FK models respectively, at the level of measures in terms of the commuting \(B \) variables.

3.2. Imposing the simplicity constraint

In what follows we make the ad hoc restriction to the gravitational sector as mentioned at the end of the previous subsection.

Performing a polar decomposition of the variables \(X_{f}^{\pm} \) and \(X_{f}^{\pm} \), we introduce the new variables \(\rho_{f}^{\pm} \in \mathbb{R}^{+} \) and \(N_{f}^{\pm} \in SU(2) \):

\[
 X_{f}^{\pm} = \rho_{f}^{\pm} N_{f}^{\pm} t_{3}(N_{f}^{\pm})^{-1} \quad X_{f}^{\pm} = \rho_{f}^{\pm} N_{f}^{\pm} t_{3}(N_{f}^{\pm})^{-1} \quad N_{f}^{\pm} = g_{f}^{\pm} N_{f}^{\pm}
\]

(3.20)

where \(\rho_{f}^{\pm} = ||X_{f}^{\pm}||, t \equiv N_{f}^{\pm} t_{3}(N_{f}^{\pm})^{-1} \) and the same for \(X_{f}^{\pm} \). Note that given \(X^{\pm} \in su(2) \), \(N^{\pm} \in SU(2) \) is determined up to a \(U(1) \) rotation \(h_{\phi} \in U(1) \), which leaves \(t_{3} \) invariant.

\[
 h_{\phi} = \begin{pmatrix}
 e^{i\phi} & 0 \\
 0 & e^{-i\phi}
\end{pmatrix}
\]

(3.21)

The associated equivalence relation is called the Hopf fibration of \(SU(2) = S^{3} \) as a \(U(1) \) bundle over the coset space \(SU(2)/U(1) \cong S^{2} \). It is convenient for given unit vector \(\vec{n}(\theta, \phi) = (\sin(\theta) \cos(\phi), \sin(\theta) \sin(\phi), \cos(\theta))\) to fix the representative \(N = ie^{i}(\theta, \phi)\sigma_{i} \) with the unit vector \(\vec{e}(\theta, \phi) = (\sin(2\theta) \cos(\phi), \sin(2\theta) \sin(\phi), \cos(2\theta)) \) parametrizing a point on \(S^{2} \).

The linearized simplicity constraint \(X_{f}^{+} = -u_{f}X_{f}^{-}u_{f}^{-1} \) implies that there exists a \(h_{\phi_{f}} \in U(1) \) for each pair of \(f, t \) such that

\[
 \rho_{f}^{+} = \rho_{f}^{-} = \rho_{f} \quad \text{and} \quad (N_{f}^{+}, N_{f}^{-}) = (N_{f} h_{\phi_{f}}, u_{f} N_{f} h_{\phi_{f}}^{-1} \epsilon)
\]

(3.22)

where the diagonal \(U(1) \) invariance is absorbed into the definition of \(N_{f} \), we only take care of the anti-diagonal one by introducing \(\phi_{f} \), and

\[
 \epsilon = \begin{pmatrix}
 0 & 1 \\
 -1 & 0
\end{pmatrix}
\]

(3.23)
We now reexpress the constrained measure in terms of the new variables ρ_3^\pm and N_3^\pm. The Lebesgue measure d^3X can be expressed in the spherical coordinates (when one integrates any function f of X independent of the U(1) part)

$$\int f \, d^3X = \int f \rho^2 \, d\rho \, d^2\Omega = \int f \rho^2 \, d\rho \, dN$$

(3.24)

where $d^2\Omega$ is the round measure on S^2 and dN is the Haar measure on SU(2).

Lemma 3.3. For any continuous function $f(N^+, N^-)$ on SU(2) \times SU(2), up to overall constant factor ($\delta_{\mathcal{F}}(\cdots)$ is the delta function on S^2)

$$\int_{SU(2) \times SU(2)} dN^+ dN^- \delta_{\mathcal{F}}(N^- \tau_3(N^-)^{-1} + uN^+ \tau_3(N^+)^{-1}u^{-1}) \, f(N^+, N^-)$$

(3.25)

which gives

$$\delta_{\mathcal{F}}(N^- \tau_3(N^-)^{-1} + uN^+ \tau_3(N^+)^{-1}u^{-1}) = \int_0^{2\pi} d\phi \, \delta_{SU(2)}(N^-, uN^+ h_{2\phi}^{-1}e).$$

(3.26)

Proof. On the right-hand side of equation (3.25),

$$\int_{SU(2) \times SU(2)} dN^+ dN^- \int_{SU(2)} dN \int_0^{2\pi} d\phi \, \delta_{SU(2)}(N^+, Nh_{\phi}) \delta_{SU(2)}(N^-, uNh_{\phi}^{-1}e) \, f(N^+, N^-)$$

(3.27)

On the left-hand side, we can express the Haar measure dN^- in terms of Euler angles

$$\int_{SU(2)} dN^- \cdots = \frac{1}{16\pi^2} \int_0^{2\pi} d\phi_2 \int_0^{\pi} d\theta \, \sin \theta \int_0^{4\pi} d\phi_1 \cdots.$$

(3.28)

And the delta function $\delta_{\mathcal{F}}(N^- \tau_3(N^-)^{-1} + uN^+ \tau_3(N^+)^{-1}u^{-1})$ is the delta function on S^2, which is coordinatized by $\theta \in [0, \pi]$ and $\phi_2 \in [0, 2\pi]$. By explicit computation

$$\int_0^{2\pi} d\phi_2 \int_0^{\pi} d\theta \, \sin \theta \, \delta_{\mathcal{F}}(N^- \tau_3(N^-)^{-1} + uN^+ \tau_3(N^+)^{-1}u^{-1}) \, f(N^+, N^-)$$

(3.29)

Therefore the left-hand side of equation (3.25) reduces to

$$\int_{SU(2)} dN^+ \int_0^{4\pi} d\phi_1 \, f(N^+, uN^- h_{\phi_1}^{-1}e)$$

(3.30)

which is identical to the right hand side equation (3.27).
Using this we rewrite the constrained measure up to an unimportant overall constant as
\[
\prod_f d^3X^+_f d^3X^-_f \prod_i \int du_i \prod_{f \in \mathcal{J}} \delta(X^+_f + u_i X^-_f u_i^{-1}) \prod_i \delta\left(\sum X^+_i\right)
\]
\[
= \prod_f d\rho^+_f dN^+_f (\rho^+_f)^2 d\rho^-_f dN^-_f \prod_i \int du_i \prod_{f \in \mathcal{J}} \delta(\rho^+_f - \rho^-_f)
\]
\[
\times \int_0^{2\pi} d\phi_f \delta(N^-_f, u_i N^+_f h_{2\theta_f}^{-1} e) \prod_i \delta\left(\sum \rho^+_f N^+_f \tau_3 (N^-_f)^{-1}\right).
\]
(3.31)

We insert this result into the partition function
\[
Z(\mathcal{K}) = \int \prod \frac{d\sigma_{\alpha f}}{(\alpha, f)} \prod \frac{d\sigma_{\alpha f}}{(\alpha, f)} \prod dN^+_f \prod dN^-_f \prod d\rho_f (\rho_f)^2 \prod d\phi_f \prod \delta(\rho^+_f - \rho^-_f)
\]
\[
\times \int_0^{2\pi} d\phi_f \delta(N^-_f, u_i N^+_f h_{2\theta_f}^{-1} e) \prod_i \delta\left(\sum \rho^+_f N^+_f \tau_3 (N^-_f)^{-1}\right)
\]
\[
\times \sum \prod \beta_{j \sigma_f} \left(1 + \frac{1}{\gamma} \right)^{\rho^+_f} \operatorname{tr}_{j \sigma_f} (iN^+_f \sigma_3 (N^-_f)^{-1} g^{\rho^+_f}_\sigma g^{\rho^-_f}_\sigma) \quad (3.32)
\]

Performing a translation of the Haar measure $d\sigma^+_{j \sigma_f}$
\[
d\sigma^+_{j \sigma_f} \mapsto d\left(\sigma^+_{j \sigma_f} N^+_{j \sigma_f}\right) = dN^+_j
\]
(notice that dN^+_j and dN^-_j are Haar measures on SU(2)) we see that the integrand depends on N^+_j only so that the integrals over N^-_j trivially and give unity (upon proper normalization). The partition function therefore reduces to
\[
Z(\mathcal{K}) = \int \prod \frac{d\sigma_{\alpha f}}{(\alpha, f)} \prod \frac{d\sigma_{\alpha f}}{(\alpha, f)} \prod dN^+_f \prod dN^-_f \prod d\rho_f (\rho_f)^2 \prod d\phi_f \prod \delta(\rho^+_f - \rho^-_f)
\]
\[
\times \int_0^{2\pi} d\phi_f \delta(N^-_f, u_i N^+_f h_{2\theta_f}^{-1} e) \prod_i \delta\left(\sum \rho^+_f N^+_f \tau_3 (N^-_f)^{-1}\right)
\]
\[
\times \sum \prod \beta_{j \sigma_f} \left(1 + \frac{1}{\gamma} \right)^{\rho^+_f} \operatorname{tr}_{j \sigma_f} (iN^+_f \sigma_3 (N^-_f)^{-1} g^{\rho^+_f}_\sigma g^{\rho^-_f}_\sigma) \quad (3.34)
\]

where we also performed the integral over ρ^-_f.

Next we perform the integral over dN^-_f to solve the simplicity constraint (implementing equation (3.22))
\[
Z(\mathcal{K}) = \int \prod \frac{d\sigma_{\alpha f}}{(\alpha, f)} \prod \frac{d\sigma_{\alpha f}}{(\alpha, f)} \prod dN^+_f \prod d\rho_f (\rho_f)^2 \prod d\phi_f \prod \delta\left(\sum \rho^+_f N_j \tau_3 N_j^{-1}\right)
\]
\[
\times \sum \prod \beta_{j \sigma_f} \left(1 + \frac{1}{\gamma} \right)^{\rho^+_f} \operatorname{tr}_{j \sigma_f} (iN^+_f h_{\sigma_f} \sigma_3 h_{\sigma_f}^{-1} (N^-_f)^{-1} g^{\rho^+_f}_\sigma g^{\rho^-_f}_\sigma) \quad (3.35)
\]
where we also have performed the translation \(N^+_t \rightarrow N^+_t h_{\phi^t} \). Performing the translation \(g^t_{\sigma t} \rightarrow g^t_{\sigma t} u_t^{-1} \), the integrand no longer depends on \(u_t \) and the \(u_t \) integral gives, leaving us with

\[
Z(K) = \int \prod_{(t, r)} d g^t_{\sigma t} d g^t_{\sigma r} \prod_{(t, r)} d N^+_t \prod_{(t, r)} d \rho^t_f (\rho^t_f) \prod_{t} \delta \left(\sum_{f < t} \rho^t_f N^+_t \mathbb{t}_2 N^+_t \right)
\times \sum_{\{l_{ij}, j \} (s, r)} \beta^i_j \left(\begin{array}{c} 1 + \frac{1}{i} \\ -1 \end{array} \right) \operatorname{tr}_{_{j \neq t}} (i N^+_t h^{t}_{\sigma^t} \sigma \mathbb{a} h^{t}_{\sigma^t} (N^+_t)^{-1} g^t_{\sigma t} g^t_{\sigma r})
\times \sum_{\{l_{ij}, j \} (s, r)} \beta^i_j \left(\begin{array}{c} 1 - \frac{1}{i} \\ -1 \end{array} \right) \operatorname{tr}_{_{j \neq t}} (i N^+_t h^{t}_{\sigma^t} \epsilon \mathbb{c} \epsilon^{-1} h_{\sigma^t} N^+_t g^t_{\sigma t} \sigma_{\sigma r})
\]

Recall that for any SL(2, \(\mathbb{C} \)) matrix \(g \)

\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix}
\]

the representation matrix element \(\pi^j_{mn} (g) \) reads

\[
\pi^j_{mn} (g) = \sum_l \frac{\sqrt{(j + m)! (j - m)! (j + n)! (j - n)!}}{(j + n - l)! (m - n + l)! (j - m - l)!} a^{i+n-l} b^{m-n+l} c^l d^{l-m-l}.
\]

Applying this to \(i \sigma_3 \)

\[
i \sigma_3 = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}
\]

yields

\[
\pi^j_{mn} (i \sigma_3) = \sum_l \frac{\sqrt{(j + m)! (j - m)! (j + n)! (j - n)!}}{(j + n - l)! (m - n + l)! (j - m - l)!} i^{j+n-l} 0^{m-n+l} 0^l (-i)^{j-m-l}
\]

\[
= i^{j+m} (-i)^{j-m} \delta_{mn}.
\]

Likewise for

\[
h_{\phi} = \begin{pmatrix} e^{i \phi} & 0 \\ 0 & e^{-i \phi} \end{pmatrix}
\]

we obtain

\[
\pi^j_{mn} (h_{\phi}) = \sum_l \frac{\sqrt{(j + m)! (j - m)! (j + n)! (j - n)!}}{(j + n - l)! (m - n + l)! (j - m - l)!} (e^{i \phi})^{j+n-l} 0^{m-n+l} 0^l (e^{-i \phi})^{j-m-l}
\]

\[
= (e^{i \phi})^{j+m} (e^{-i \phi})^{j-m} \delta_{mn} = (e^{2im \phi}) \delta_{mn}.
\]

We conclude (summing over repeated indices),

\[
\operatorname{tr}_{_{j \neq t}} (i N^+_t h_{\sigma^t} \sigma \mathbb{a} h^{t}_{\sigma^t} (N^+_t)^{-1} g^t_{\sigma t} g^t_{\sigma r})
\]

\[
= i^{j+1} e^{2im \phi} \pi^j_{mn} \pi^{j}_{mn} (N^+_t) \pi^{j}_{mn} (g^t_{\sigma t} \sigma_{\sigma r}).
\]

Since \(i e \sigma_3 \epsilon^{-1} = -i \sigma_3 \) we have similarly for the anti-self-dual part

\[
\pi^j_{mn} (i \sigma_3) = \sum_l \frac{\sqrt{(j + m)! (j - m)! (j + n)! (j - n)!}}{(j + n - l)! (m - n + l)! (j - m - l)!} (-i)^{j+n-l} 0^{m-n+l} 0^l (-i)^{j-m-l}
\]

\[
= (-i)^{j+m} i^{j-m} \delta_{mn}.
\]
thus
\[\text{tr}_{\mathcal{I}_f} (N_{t_f} h^{-1}_{b_{t_f}} \epsilon \sigma \epsilon^{-1} h_{b_{t_f}} N_{t_f}^{-1} g_{\alpha \sigma} g_{\sigma \alpha}) = (-i)^{2b_{t_f}} \exp(-2ib_{t_f}(\phi_{t_f} - \phi_f)) \pi^{\gamma}_{\alpha \sigma} g_{\alpha \sigma} \]
\[\times (N_{t_f}) \pi^{\gamma}_{\alpha \sigma} (N_{t_f}^{-1}) \pi^{\gamma}_{\epsilon \sigma} g_{\epsilon \sigma} g_{\alpha \sigma} . \]

We insert these formulae into the partition function equation (3.36)
\[Z(\mathcal{K}) = \int \prod_{(s,t)} dB_{(s,t)} dB_{\alpha \sigma} \prod_{f} \frac{d \phi_f (\rho_f)}{\rho_f} \prod_{(s,t)} dB_{(s,t)} \prod_{(t,f)} dB_{\alpha \sigma} \prod_{t} \delta \left(\sum_{f \in \mathcal{I}_t} \rho_f N_{t_f} \right) \]
\[\times \sum_{(l_{j_f})} \beta_{l_{j_f}} \left(\frac{1}{1 + \frac{1}{\gamma} \rho_f} \right) \beta_{l_{j_f}} \left(1 - \frac{1}{\gamma} \rho_f \right) \]
\[\times \sum_{a,b,c} \epsilon_{3b_{t_f}} (\phi_{t_f} - \phi_f) \pi^{\gamma}_{a_{t_f}b_{t_f}c_{t_f}} (N_{t_f}) \pi^{\gamma}_{a_{t_f}b_{t_f}c_{t_f}} (N_{t_f}^{-1}) \pi^{\gamma}_{\epsilon \sigma} g_{\epsilon \sigma} g_{\alpha \sigma} . \]

and perform the integrals over $d \phi_f$ which enforce $b_{t_f} = b_{t_f}^+ = b_{t_f}^\dagger$ and restrict the range of the sum over b_{t_f} to the set $\{ -j_{t_f}, \ldots, j_{t_f} \} \cap \{ -j_{t_f}, \ldots, j_{t_f} \}$. Accordingly,
\[Z(\mathcal{K}) = \int \prod_{(s,t)} dB_{(s,t)} dB_{\alpha \sigma} \prod_{f} \frac{d \phi_f (\rho_f)}{\rho_f} \prod_{(s,t)} dB_{(s,t)} \prod_{(t,f)} dB_{\alpha \sigma} \prod_{t} \delta \left(\sum_{f \in \mathcal{I}_t} \rho_f N_{t_f} \right) \]
\[\times \sum_{(l_{j_f})} \beta_{l_{j_f}} \left(\frac{1}{1 + \frac{1}{\gamma} \rho_f} \right) \beta_{l_{j_f}} \left(1 - \frac{1}{\gamma} \rho_f \right) \]
\[\times \sum_{a,b,c} \pi^{\gamma}_{a_{t_f}b_{t_f}c_{t_f}} (N_{t_f}) \pi^{\gamma}_{a_{t_f}b_{t_f}c_{t_f}} (N_{t_f}^{-1}) \pi^{\gamma}_{\epsilon \sigma} g_{\epsilon \sigma} g_{\alpha \sigma} \]
\[\times \pi^{\gamma}_{\epsilon \sigma} g_{\epsilon \sigma} g_{\alpha \sigma} . \]

3.3. Topological/gravitational sector duality, γ-duality

Before performing further computations, in this subsection we consider the topological sector $I \pm$ of the simplicity constraint. Because we consider the model with finite Barbero–Immirzi parameter, the sector $I \pm$ is actually also gravitational here in the following sense: by definition, $\text{tr}(F \wedge \epsilon (e \wedge e))$ is the Palatini (gravitational) term while $\text{tr}(F \wedge (e \wedge e))$ is the topological term. Since we are considering the Plebsnski–Holst Lagrangian $\text{tr}(F \wedge (B + \frac{1}{\gamma} e \wedge e))$, inserting the gravitational solution $B = \pm e \wedge e$ yields (due to $e^2 = \text{id}$ in Euclidean signature) the Palatini–Holst Lagrangian with Immirzi parameter γ, that is, $\pm \text{tr}(F \wedge (e \wedge e) + \frac{1}{\gamma} e \wedge e)$ while inserting the topological solution $B = \pm e \wedge e$ yields Palatini – Holst Lagrangian with Immirzi parameter $1/\gamma$. That is $\pm \frac{1}{2} \text{tr}(F \wedge (e \wedge e) + \gamma e \wedge e)$ rescaled by $1/\gamma$. If we change coordinates from X^μ to $\pm X^\mu / \gamma$ in the partition function Z_γ (2.1) then we obtain the relation
\[Z_\gamma (\mathcal{K}) = \gamma^{6F - 21T} Z_{47/4} (\mathcal{K}) \]

where F, T respectively denote the number of triangles and tetrahedra respectively in \mathcal{K} (the powers arise from the Lebesgue measure and the δ functions respectively). The appearing power of γ drops out in correlators, hence up to the rescaling of the n-point functions of
involving $X^\pm_f, Z_f, Z_{1/\gamma}$ yield the same correlators. It follows that the model (2.1) is a mixture of gravitational and topological sectors as it should be.

This is before restriction to either the gravitational or topological sector respectively and the manipulations (dropping infinite constants) that followed. For comparison, the partition function for the topological (I) and gravitational sector with Immirzi parameter γ respectively read (before expanding the exponentials)

$$Z^I_{\gamma} (K) = \int \left[\prod_f d^3 X^+_f d^3 X^-_f \right] \left[\prod_{(\sigma,t)} d g^+_{\sigma,t} d g^-_{\sigma,t} \right] \left[\prod_{(u,t)} d g^+_{u,t} d g^-_{u,t} \right]$$

$$\times \left[\prod_t \delta (\sum_{f \leq t} X^+_f) \right] \int \left[\prod_t du_t \right] \left[\prod_{(u,t)} \delta (X^-_f \mp u_t X^-_{t'} u_t^{-1}) \right]$$

$$\times \exp \left(i [1 + \gamma^{-1}] \sum_{(\sigma,f)} \text{Tr} (X^+_f w^+_{\sigma,f}) + i [1 - \gamma^{-1}] \sum_{(\sigma,f)} \text{Tr} (X^-_f w^-_{\sigma,f}) \right).$$

The only difference is the sign in the δ distribution enforcing the linearized simplicity constraint. Now change variables $X^\pm_f \to \pm X^\pm_f / \gamma$ in the model I (this induces also $X^\pm_{t'} \to \pm X^\pm_t / \gamma$). This switches the sign of the simplicity constraint to that of the model II, maps the $1/\gamma$ in the exponent to γ and rescales the Lebesgue measure and the δ distributions according to

$$Z^I_{\gamma} (K) = \gamma^{6F-5T} Z^I_{1/\gamma} (K).$$

The power of γ again drops out in correlators and thus up to γ powers coming from n-point functions, ‘topological’ correlators with respect to γ are essentially the same as ‘gravitational’ correlators with respect to $1/\gamma$. We coin this relation between the two sectors ‘γ duality’. We will therefore not discuss model I any further in this paper.

4. The spin-foam model

4.1 A simplified model without closure constraint

In this subsection we discuss a simplified model by removing the closure constraint in the partition function $Z(K)$ by hand as it is also done in existing SFMs. We do this just for a better comparison between our model and those models as far as the modifications are concerned that result from commuting rather than non-commuting B fields. The discussion of the full model and the additional modifications that come from a proper treatment of the closure constraint will follow in the subsequent subsection.

The simplified partition function reads (from equation (3.47))

$$Z_{\text{Simplified}} (K) = \int \left[\prod_{(\sigma,t)} d g^+_{\sigma,t} d g^-_{\sigma,t} \right] \prod_f d \rho_f (\rho_f)^2 \prod_{(u,t)} d N_{tf} \sum_{\beta^{+}_{I,f}} \prod_{(\sigma,t)} \beta^{+}_{I,f}$$

$$\times \left(\left| 1 + \frac{1}{\gamma} \rho_f \right| \beta^{+}_{I,f} \left(\left| 1 - \frac{1}{\gamma} \rho_f \right| \beta^{-}_{I,f} \right) \right.$$

$$\times \sum_{a,b,c} \left[\pi^{+}_{a_{\sigma,t} b_{\sigma,t}} (N_{tf}) \pi^{+}_{c_{\sigma,t} a_{\sigma,t}} (N_{tf}^{-1}) \pi^{+}_{c_{\sigma,t} a_{\sigma,t}} (g^{+}_{\sigma,t} a_{\sigma,t}^{+}) \right]$$

$$\times \left[\pi^{+}_{a_{\sigma,t} b_{\sigma,t}} (N_{tf}) \pi^{+}_{c_{\sigma,t} a_{\sigma,t}} (N_{tf}^{-1}) \pi^{+}_{c_{\sigma,t} a_{\sigma,t}} (g_{\sigma,t}^{-1} a_{\sigma,t}^{+}) \right].$$

(4.1)
In order to explore the structure of the spin-foam amplitude (e.g. vertex amplitude) for this partition function, we use the following recoupling relation \((N \in \text{SU}(2))\):

\[
\pi^{j_b, a}_{a, b', a'} (N) = \sum_{k, j' = |j^-|}^{j' + j} \langle k, a^+, a^- | j^{+}, a^+; j^-, a^- \rangle \times \langle j^{+}, b^+; j^-, b^- | k, b^+ + b^- \rangle \pi^{k}_{a, a', b, b'} (N).
\]

(4.2)

We denote by \(c(k, j^\pm a^\mp a'^\mp) = c(k, j^\pm a^\mp a'^\mp)\) the Clebsch–Gordan coefficients \([k, \alpha] j^+, a^+; j^-, a^-\), which are real and vanish unless \(\alpha = a^+ + a^-\). Thus (summing repeated indices)

\[
\pi^{j_b, a}_{a, b', a'} (N) = \sum_{k, j' = |j^-|}^{j' + j} c(k, j^\pm a^\mp a'^\pm) \pi^{k}_{a, a', b, b'} (N)
\]

(4.3)

By using this recoupling relation we find

\[
\pi^{j_b, a}_{a, b', a'} (N_{1f}) \pi^{j_{b'}, a'}_{a', b''} (N_{1f}^{-1}) \pi^{k_{b''}, (N_{1f}^{-1})}_{b'} (N_{1f}) = \sum_{k, k' = |j' - j|}^{j' + j} c(k, j^\pm a^\mp a'^\pm) \pi^{k}_{a, a', b, b'} (N_{1f})
\]

(4.4)

where \(\beta\) and \(\alpha'\) are fixed to be \(2b\). We note that \(k\) and \(k'\) are restricted to be greater than or equal to \(2b\) which we take care of by defining \(c(k, j^\pm a^\mp a'^\pm)\) to be zero when \(k < 2b\). Inserting this result back into the partition function \(Z_{\text{Simplified}}(K)\) results in (see figure 2 for illustrating the spin labels)

\[
Z_{\text{Simplified}}(K) = \int \prod_{\langle \sigma, \tau \rangle} d^2 \sigma d^2 \tau \prod_{f} d \rho_f (\rho_f) \prod_{\langle \tau, \rho_f \rangle} d N_f \sum_{k, k', j_{\sigma f}, j_{\tau f}} \beta_{j_{\sigma f}} \left(\left| 1 + \frac{1}{\gamma} \rho_f \right| \beta_{j_{\tau f}} \right) \sum_{k, k', j_{\sigma f}, j_{\tau f}} \left(\left| 1 - \frac{1}{\gamma} \rho_f \right| \rho_f \right)
\]
integrate the SU(2) holonomies incoming to the edge
we call it to be outgoing from

Now we focus on a vertex \(v\) dual to a 4-simplex \(\sigma\). We fix the orientation of each dual half edge \((\sigma, i)\) in the notation of figure 3 to be outgoing from the vertex and integrate the SU(2) holonomies \(g^b_{\sigma i}\). The integration of \(g^b_{\sigma i}\) leads to a result that depends on the orientations of the wedges bounded by \((\sigma, i)\). We say a wedge \(w\) bounded by \((\sigma, i)\) is incoming to the edge \((\sigma, i)\), if the orientation along its boundary agrees with \((\sigma, i)\), otherwise we call it to be outgoing from \((\sigma, i)\). The integrations of \(g^b_{\sigma i}\) in equation (4.5)

\[
\int d\sigma d_{\sigma i} \prod_{\sigma, i} \pi^{-}(g_{\sigma i}) \prod_{\sigma, i} \pi^{+}(g_{\sigma i}^{-1})
\]

equals a projection operator \(\mathcal{P}_{\sigma i}\) for each dual half edge \((\sigma, i)\)

\[
\mathcal{P}_{\sigma i} : \left[\begin{array}{ccc} \otimes & V_{j^\sigma_i}^+ & \otimes \\
\text{w incoming } & (\sigma, i) & \text{w outgoing } (\sigma, i) \\
\end{array} \right] \left[\begin{array}{ccc} \otimes & V_{j^\sigma_i}^- & \otimes \\
\text{w incoming } & (\sigma, i) & \text{w outgoing } (\sigma, i) \\
\end{array} \right]
\]

\[
\rightarrow \text{Inv} \left[\begin{array}{ccc} \otimes & V_{j^\sigma_i}^+ & \otimes \\
\text{w incoming } & (\sigma, i) & \text{w outgoing } (\sigma, i) \\
\end{array} \right] \left[\begin{array}{ccc} \otimes & V_{j^\sigma_i}^- & \otimes \\
\text{w incoming } & (\sigma, i) & \text{w outgoing } (\sigma, i) \\
\end{array} \right]
\]

\[
\mathcal{P}_{\sigma i} := \left[\sum_{i_{\sigma f}} C^4_{i_{\sigma f}}(j^\sigma_f) \otimes C^4_{i_{\sigma f}}(j^\sigma_f) \right] \otimes \left[\sum_{i_{\sigma f}} C^4_{i_{\sigma f}}(j^\sigma_f) \otimes C^4_{i_{\sigma f}}(j^\sigma_f) \right]
\]

where \(V_{j^\sigma_i}\) is the representation space for SU(2) unitary irreducible representation, and we keep in mind that each pair \((\sigma, f)\) determines a wedge \(w\), and \(C^4_{i_{\sigma f}}(j^\sigma_f)\) are the 4-valent SU(2)
intertwiners forming an orthonormal basis in

$$\text{Inv} \left(\bigotimes_{\omega \text{ incoming } (\sigma, t)} V_{ij}^{\omega} \bigotimes_{\omega \text{ outgoing } (\sigma, t)} V_{ij}^{\omega} \right).$$ \tag{4.8}$$

Thus the result of the integrations of $\Psi_{\alpha, t}$ in equation (4.5) is a product of the projection operators $\Psi_{\alpha, t}$ for all the dual half edges (σ, t). According to the index structure appearing in equation (4.5), we find that in each $\Psi_{\alpha, t}$ the adjoint intertwiners $C_{i_1 j_1}^\dagger (j_{\sigma f})$ are combined with the indices $a^\pm_{\sigma f}, c^\pm_{\sigma f}$, where $a^\pm_{\sigma f}$ are for the incoming wedges and $c^\pm_{\sigma f}$ are for the outgoing wedges. However the intertwiners $C_{i_1 j_1}^\dagger (j_{\sigma f})$ for each half edge (σ, t) are contracted with other half edge intertwiners of (σ, t) at the vertex dual to σ. Summing over the indices $a^\pm_{\sigma f}, c^\pm_{\sigma f}$, the integrations of $g_{\sigma, t}$ in equation (4.5) result in a product of

$$\left[\sum_{i_1} C_{i_1 j_1}^\dagger (j_{\sigma f}) \right] \left[\sum_{i_1} C_{i_1 j_1}^\dagger (j_{\sigma f}) \right] \left[\sum_{i_1} C_{i_1 j_1}^\dagger (j_{\sigma f}) \right] \left[\sum_{i_1} C_{i_1 j_1}^\dagger (j_{\sigma f}) \right] \tag{4.9}$$

for all half edges (σ, t), where \cdots are the indices contracted with other half edge intertwiners of (σ, t) at the vertex dual to σ. According to the structure of equation (4.5), we assign the intertwiners

$$C_{i_1 j_1}^\dagger (j_{\sigma f}) \cdot C_{i_1 j_1}^\dagger (j_{\sigma f}) \cdot C_{i_1 j_1}^\dagger (j_{\sigma f}) \cdot C_{i_1 j_1}^\dagger (j_{\sigma f}) \tag{4.10}$$

to the beginning point of (σ, t), while we assign the adjoint intertwiners

$$C_{i_1 j_1}^\dagger (j_{\sigma f}) \cdot C_{i_1 j_1}^\dagger (j_{\sigma f}) \cdot C_{i_1 j_1}^\dagger (j_{\sigma f}) \cdot C_{i_1 j_1}^\dagger (j_{\sigma f}) \tag{4.11}$$

to the end point of (σ, t).

The contractions of the half edge intertwiners equation (4.10) at each vertex dual to σ gives a SO(4) 15-j-symbol

$$\{15\}_\text{SO}(4) (j_{\sigma f}^\pm, i_{\sigma f}^\pm) := \text{tr} \left[\bigotimes_{(\sigma, t)} C_{i_1 j_1}^\dagger (j_{\sigma f}) \right] \text{tr} \left[\bigotimes_{(\sigma, t)} C_{i_1 j_1}^\dagger (j_{\sigma f}) \right] \tag{4.12}$$

to each 4-simplex σ (to each vertex dual to σ).

On the other hand, each of the adjoint intertwiners equation (4.11) at the end point of (σ, t) is contracted with the Clebsch–Gordan coefficients $c(k, j_{\sigma f}^\pm)_{a_{\sigma f} c_{\sigma f}}$ and $c(k', j_{\sigma f}^\pm)_{c_{\sigma f} a_{\sigma f}}$. Thus we obtain a 4-valent SU(2) intertwiner $T_{i_1 j_1}^\dagger (k_{\sigma f}, k'_{\sigma f}, j_{\sigma f}^\pm)$ at the end point of each half edge (σ, t) (summing repeated indices)

$$T_{i_1 j_1}^\dagger (k_{\sigma f}, k'_{\sigma f}, j_{\sigma f}^\pm) \cdot \left[\sum_{i_1} C_{i_1 j_1}^\dagger (j_{\sigma f}) \right] \cdot \left[\sum_{i_1} C_{i_1 j_1}^\dagger (j_{\sigma f}) \right] \prod_{(\sigma, f) \text{ incoming}} c(k_{\sigma f}, j_{\sigma f}^\pm)_{a_{\sigma f} b_{\sigma f}} \prod_{(\sigma, f) \text{ outgoing}} c(k'_{\sigma f}, j_{\sigma f}^\pm)_{c_{\sigma f} d_{\sigma f}}. \tag{4.13}$$

If we choose an orthonormal basis in the space of 4-valent SU(2) intertwiners (labelled by $l_{\sigma r}$)

$$C_{i_1 j_1}^\dagger (k_{\sigma f}, k'_{\sigma f}) \in \text{Inv} \left(\bigotimes_{f \text{ incoming } (\sigma, t)} V_{k_{\sigma f}} \bigotimes_{f' \text{ outgoing } (\sigma, t)} V_{k'_{\sigma f}} \right) \tag{4.14}$$
we may expand $T_{1 \alpha}^{\pm} (k_{\alpha f}, k'_{\alpha f}, j^\pm_{\alpha f})$ in terms of this basis, explicitly

$$
T_{1 \alpha}^{\pm} (k_{\alpha f}, k'_{\alpha f}, j^\pm_{\alpha f}) = \sum_{\beta \gamma} \left[T_{1 \alpha}^{\pm} (k_{\beta f}, k'_{\beta f}, j^\pm_{\beta f}) \right]_{(\beta \gamma), (\gamma \beta)} C_{\alpha \beta}^{\pm} (k_{\alpha f}, k'_{\alpha f}) \frac{C_{\alpha \beta}^{\pm} (k_{\beta f}, k'_{\beta f})}{(\beta \gamma), (\gamma \beta)}
$$

(4.15)

Insert these findings into the partition function $Z_{\text{simplified}}(K)$ yields

$$
Z_{\text{simplified}}(K) = \sum_{(\beta \gamma)} \sum_{(\sigma, f)} \int \prod_f d \rho_f (\rho_f) \left(\prod_{(f)} \frac{1}{N_f} \prod_{(\sigma, f)} \beta f^{\pm}_{\sigma f} \right) \times \left(1 + \frac{1}{\gamma} \rho_f \right)^{N_f} \prod_{(\sigma, f)} \beta f^{\pm}_{\sigma f}
$$

from which we read the vertex amplitude for each dual to a 4-simplex σ

$$
A_{\sigma} (j^\pm_{\sigma f}; k_{\sigma f}, k'_{\sigma f}; l_{\sigma f}) := \sum_{(\beta \gamma)} \sum_{(\sigma, f)} \int \prod_f d \rho_f (\rho_f) \frac{C_{\sigma \beta}^{\pm} (k_{\sigma f}, k'_{\sigma f})}{(\beta \gamma), (\gamma \beta)} \prod_{(\sigma, f)} \beta f^{\pm}_{\sigma f} (\sigma, f)
$$

(4.17)

Next, we consider the integrations of dN_f. Since the closure constraint is removed, the integrals over dN_f can be done immediately. Consider a tetrahedron t_i shared by two 4-simplexes σ_i, σ_{i+1} (cf figure 1), the integral of dN_f is essentially

$$
\int dN_f \prod_{(\alpha \sigma)} \beta f^{\pm}_{\alpha f} (N_f) \frac{C_{\alpha \beta}^{\pm} (k_{\alpha f}, k'_{\alpha f})}{(\beta \gamma), (\gamma \beta)} \prod_{(\sigma, f)} \beta f^{\pm}_{\sigma f} (N_f)^{-1} = \frac{1}{\dim(k_{f})} \delta k_{\alpha f} k'_{\alpha f} \delta_{\alpha f} \delta_{\alpha f} \delta_{\alpha f} \delta_{\alpha f}
$$

(4.18)

There are three consequences from these integrals.

1. The SU(2) representations $k_{\alpha f}$ is identified with $k'_{\alpha f}$, thus we label

$$
k_{\alpha f} = k'_{\alpha f} \equiv k_{\alpha f}
$$

(4.19)

where t_i is the tetrahedron shared by the 4-simplexes σ_i, σ_{i+1} (see figure 4).

2. For the SU(2) intertwiners on the half edges (σ, t_i) and (σ_{i+1}, t_i),

$$
\prod_{(\sigma, f)} \delta_{\alpha f} \delta_{\alpha f}^{\prime} \prod_{(\sigma, f)} \delta_{\alpha f} \delta_{\alpha f}^{\prime} = \delta \delta_{\alpha f}^{\prime}
$$

(4.20)

which identify the half edge intertwiners into full edge intertwiners

$$
l_{\alpha f} = l_{\alpha f} \equiv l_{(\sigma, \sigma_{i+1})} \equiv l_{e_i}
$$

(4.21)

where $e_i := (\sigma, \sigma_{i+1})$ is the edge dual to the tetrahedron t_i.

27
(3) For each face dual to \(f \), we have a factor
\[
\prod_{i=1}^{\left|\sigma\right|_f} \left[c(k_{i,f},j_{i,f})^{2b_{i,f}} c(k_{i-1,f},j_{i-1,f})^{2b_{i-1,f}} \right] \prod_{i=1}^{\left|\sigma\right|_f} \delta_{b_{i,f},-2b_{i+1,f}}
\]
\[
= \sum_{b_f} \prod_{i=1}^{\left|\sigma\right|_f} c(k_{i,f},j_{i,f})^{2b_f} c(k_{i+1,f},j_{i+1,f})^{2b_f}
\]
(4.22)
where the indices \(b_{\sigma_f} \) are identified for the different wedges belonging to the same dual face and the range of \(b_f \) is
\[
\left[\{ -\sum_{j=1}^{2j+1} \} \cap \{ -\sum_{j=1}^{2j} \} \right]
\]
(4.23)
and \(\left|\sigma\right|_f \) is the number of vertices around a face dual to \(f \).

Finally we consider the integrals of \(d\rho_f \). We define a triangle/face amplitude
\[
A_f(j_{\sigma_f}, k_{\sigma_f}) := \sum_{b_f} \prod_{i=1}^{\left|\sigma\right|_f} c(k_{i,f},j_{i,f})^{2b_f} c(k_{i+1,f},j_{i+1,f})^{2b_f}
\]
\[
\times \int_0^\infty d\rho_f(\rho_f)^2 \prod_{i=1}^{\left|\sigma\right|_f} \left[\beta_{\sigma_i}^{\pm} \left(\left| 1 + \frac{1}{\rho_f} \right| \rho_f \right) \beta_{\sigma_i}^{\pm} \left(\left| 1 - \frac{1}{\rho_f} \right| \rho_f \right) \right].
\]
(4.24)
By equation (2.18), we can directly compute the expression of the function \(\beta_j \)
\[
\beta_j(r) = \int dg e^{-i\nu(x)} X_j(x) = i^{-2j} (2j+1) \frac{J_{2j+1}(2r)}{r}
\]
(4.25)
where \(J_n(x) \) is the Bessel function of the first kind. The proof of this relation uses the recurrence relation:
\[
J_{2j+2}(2r) + J_{2j}(2r) = (2j+1) \frac{J_{2j+1}(2r)}{r}
\]
(4.26)
Let us consider the integrand of the integration over areas \(\rho_f \) (or considering an integral in large-area regime). In the uniform limit of \(j \to \infty, \rho \to \infty \) (or \(r \to \infty \)), the asymptotic
behaviour of the function β_j is (see e.g. [33], uniform limit can be made by the scaling $j \to \lambda j, r \to \lambda r$ and sending $\lambda \to \infty$)

$$
\text{Large-}(j, r) : \quad \beta_j(r) \sim i^{-2j}\frac{2j+1}{r}(2r-2j). \quad (4.27)
$$

It follows that in the uniform limit $j_{\sigma_f}^\pm \to \infty$, $\rho_f \to \infty$, the asymptotic behaviour of the Bessel functions constrains the SO(4) representations on the wedges by

$$
j_{\sigma_f}^\pm = j_{\sigma_f'}^\pm = j_f^\pm \quad (4.28)
$$

and also impose the well-known constraint on the self-dual and anti-self-dual representations

$$
\left| 1 - \frac{1}{\gamma} \right| j_f^\pm = \left| 1 + \frac{1}{\gamma} \right| j_f^\pm
$$

(4.29)

which gives the quantization condition for the Barbero–Immirzi parameter

$$
\text{If } |\gamma| > 1 : \quad \gamma = \frac{j_f^+ + j_f^-}{j_f^+ - j_f^-}
$$

$$
\text{If } |\gamma| < 1 : \quad \gamma = \frac{j_f^+ - j_f^-}{j_f^+ + j_f^-}. \quad (4.30)
$$

While it is nice to see that we obtain certain points of contact with the EPRL and FK models respectively, one should keep in mind that these constraints hold only in the sense of large- j.

In general, the representations which do not satisfy equations (4.28) and (4.29) still have non-trivial contributions to the spin-foam amplitude and it is not clear whether these ‘non-EPRL/FK configurations’ have large or low measure.

Let us summarize the structure of the partition function $Z_{\text{Simplified}}(K)$ in terms of the 4-simplex/vertex amplitude, tetrahedron/edge amplitude and triangle/face amplitude

$$
Z_{\text{Simplified}}(K) = \sum_{\{j_{\sigma_f}^\pm\}} \sum_{\{k_{\sigma_f}\}} \sum_{\{l_{\sigma_f}\}} \prod_{f} A_f(j_{\sigma_f}^\pm, k_{\sigma_f}, l_{\sigma_f}) \prod_{\sigma} A_\sigma(j_{\sigma_f}^\pm, k_{\sigma_f}, l_{\sigma_f}) \quad (4.31)
$$

where k_{σ_f} is constrained by the condition that for a tetrahedron t shared by both 4-simplices σ, σ' we have

$$
k_{\sigma_f} \in \left\{ |j_{\sigma_f}^+ - j_{\sigma_f'}^+|, \ldots, |j_{\sigma_f}^+ + j_{\sigma_f'}^-| \right\} \cap \left\{ |j_{\sigma_f}^- - j_{\sigma_f'}^-|, \ldots, |j_{\sigma_f}^- + j_{\sigma_f'}^+| \right\} \quad (4.32)
$$

and the 4-simplex/vertex amplitudes, tetrahedron/edge amplitudes and triangle/face amplitudes are respectively identified as

$$
A_\sigma(j_{\sigma_f}^\pm, k_{\sigma_f}, l_{\sigma_f}) := \sum_{\{t_{\sigma_f}\}} \left(1^{2|j_{\sigma_f}^\pm|} \right) \prod_{\{t_{\sigma_f}\}} f_{t_{\sigma_f}}^{j_{\sigma_f}^\pm} (k_{\sigma_f}; j_{\sigma_f}^\pm) \quad (4.33)
$$

$$
A_f(j_{\sigma_f}^\pm, k_{\sigma_f}, l_{\sigma_f}) := \prod_{j \in \sigma_f} \frac{1}{\text{dim}(k_{\sigma_f})} \quad (4.34)
$$

$$
A_f(j_{\sigma_f}^\pm, k_{\sigma_f}) = \sum_{b_t} \prod_{i=1}^{2b_t} c(k_{\sigma_f}, j_{\sigma_f}^\pm) e^{2b_t} \prod_{i=1}^{2b_t} \left[\beta_{j_{\sigma_f}^\pm} - 1 \right] \beta_{j_{\sigma_f}^\pm} \left[1 - 1/\gamma \right] \rho_f \quad (4.35)
$$

When we take the uniform limit: $j_{\sigma_f}^\pm, \rho_f \to \infty$ for the integrand, by the previous discussion, we obtain the constraints:

$$
j_{\sigma_f}^\pm = j_{\sigma_f'}^\pm = j_f^\pm \quad \text{and} \quad \left| 1 - \frac{1}{\gamma} \right| j_f^\pm = \left| 1 + \frac{1}{\gamma} \right| j_f^\pm. \quad (4.36)
$$
Thus the spins j^k_f for different wedges are identical on the same face dual to f, and j^f_+ and j^f_- satisfy the ‘γ-simple’ relation in this limit. Then the vertex amplitude reduces to

$$A_σ \sim \sum_{\{l^f_\alpha\}} [15f]_{SO(4)}(j^f_+, j^f_-) \prod_{(σ, t)} f^f_{\alpha}(k_{σ, f}; j^f_+)$$ (4.35)

where j^f_+ and j^f_- subject the relation in equation (4.40). We notice that in this limit equation (4.35) is nothing but the vertex amplitude of the FK$_γ$ model (when $|γ| > 1$) [12].

And in the large-j limit the integral over area $ρ_f$ in the large-area regime can be approximated by a discrete sum over f^f_+ or f^f_- in the path integral equation (2.1). In the usual context of spin-foam formulation, the large-j limit is understood as a semiclassical limit in a certain sense [27, 28].

4.2. On the implementation of closure constraint

In this subsection we properly keep the closure constraint in the partition function:

$$Z(\mathcal{K}) = \sum_{\{l^f_\alpha\}_f} \frac{j^k_f}{k_\sigma_f} \sum_{\{l^f_\alpha\}_f} \int \prod_f dρ_f(ρ_f)^2 \prod_{(σ, t)} dN_{tf} \times \prod_{(σ, f)} β_{\sigma, f} \left[1 + \frac{1}{γ} |ρ_f| β_{\sigma, f} \left(1 - \frac{1}{γ} |ρ_f| \right) \right]$$

$$\times \sum_{\{l^f_\alpha\}_f} \prod_{(σ, f)} A_σ^f (j^f_+, k_{σ, f}; k_{σ, f}^\prime; l_{σ, f}) \prod_{(σ, t)} \frac{C^4_{λ_σ}(k_{σ, f}, k_{σ, f}^\prime)}{(σ, t)} \prod_{(σ, f)} \delta \left[\sum_{f} ρ_f N_{tf} τ_f N_{tf}^{-1} \right]$$

$$\times \prod_{(σ, f)} \pi_{k_{σ, f}, k_{σ, f}^\prime} (N_{tf}) \left[c(k_{σ, f}, j^f_+)^{2β_{σ, f}}_{b_{σ, f}} c(k_{σ, f}^\prime, j^f_-)^{2β_{σ, f}^\prime}_{b_{σ, f}^\prime} \right] \pi_{k_{σ, f}, k_{σ, f}^\prime} (N_{tf}^{-1}).$$ (4.36)

Here we can also extract the vertex/4-simplex amplitude $A_σ$, the edge/tetrahedron amplitude A_t, and the face/triangle amplitude A_f:

$$A_σ (j^f_+, k_{σ, f}, k_{σ, f}^\prime; l_{σ, f}) := \sum_{\{l^f_\alpha\}_f} \left\{ \frac{15j}{SO(4)} \right\} \prod_{(σ, f)} f^f_{\alpha}(k_{σ, f}; j^f_+).$$

$$A_t (ρ_f; k_{σ, f}, k_{σ, f}^\prime; l_{σ, f}; b_{σ, f}) := \int \prod_{f \in \mathcal{E}} dN_{tf} \delta \left[\sum_{f} ρ_f N_{tf} τ_f N_{tf}^{-1} \right]$$

$$\times \left[C^4_{λ_σ}(k_{σ, f}, k_{σ, f}^\prime)_{(σ, f)} \right] \left[C^4_{λ_σ}(k_{σ, f}, k_{σ, f}^\prime)_{(σ, f)} \right] \prod_{f} π_{k_{σ, f}, k_{σ, f}^\prime} (N_{tf}) \prod_{f} π_{k_{σ, f}, k_{σ, f}^\prime} (N_{tf}^{-1})$$

$$\times \prod_{f} π_{2β_{σ, f}, τ_f} (N_{tf}) \pi_{2β_{σ, f}^\prime, τ_f} (N_{tf}^{-1}).$$ (4.37)
Then the partition function can be written in terms of these amplitudes as:

$$Z(K) = \sum_{(i^j)_{\alpha_f}} \sum_{(k_{\alpha_f}, k_{\alpha_f}') \{b_{\alpha_f}\}} \int \prod_{f} \mathcal{D} \rho_f \mathcal{A}_{\alpha_f}(\rho_f; j_{\alpha_f}^\pm; k_{\alpha_f}, k_{\alpha_f}'; b_{\alpha_f}) \times \mathcal{A}_{\alpha}(\rho_{\alpha_f}; k_{\alpha_f}, k_{\alpha_f}'; l_{\alpha_f}; b_{\alpha_f}) \mathcal{A}_{\alpha}(j_{\alpha_f}^\pm; k_{\alpha_f}, k_{\alpha_f}'; l_{\alpha_f}).$$

(4.38)

Note that in the large-\((j, \rho)\) limit,

$$\text{Large-}(j, \rho) : \beta_{\alpha_f} \left(\left| \pm \frac{1}{\gamma} \rho_f \right| \right) \sim i^{-2 i_f^\alpha} \frac{2j_{\alpha_f}^\pm + 1}{\left| \pm \frac{1}{\gamma} \rho_f \right|} \delta(2 \left| \pm \frac{1}{\gamma} \rho_f - 2j_{\alpha_f}^\pm \right|).$$

(4.39)

In this limit, the integral of \(\rho_f\) in the large-area regime is completely constrained by the delta functions. Thus, as in the previous section, the delta functions impose the constraints:

$$j_{\alpha_f}^\pm = j_{\alpha_f}^\pm$$

(4.40)

This shows that in the large-\((j, \rho)\) limit the spins \(j_{\alpha_f}^\pm\) for different wedges are identical on the same face dual to \(f\), and \(j_f^+\) and \(j_f^-\) satisfy the ‘\(\gamma\)-simple’ relation in this limit. However, since at the current stage the constraint

$$k_{\alpha_f} = k_{\alpha_f}'$$

(4.41)

are not obviously imposed by the integral of \(N_{\alpha_f}\) (because of the present of closure constraint in \(A_{\alpha}\)), the vertex amplitude \(A_{\alpha}\), even in the large-\(j\) limit, does not approximate the FK\(_{\gamma}\) vertex amplitude in general.

To explore the structure of this amplitude, we consider the integral of \(N_{j_f}\) in the expression of \(A_{\alpha}\), for a tetrahedron \(t\) shared by \(\sigma, \sigma'\):

$$A_{\alpha}(\rho_f; k_{\alpha_f}, k_{\alpha_f}'; l_{\alpha_f}; b_{\alpha_f}) := \int \prod_{f \in t} dN_{j_f} \delta \left(\sum_{f \in t} \rho_f N_{j_f} t_3 N_{j_f}^{-1} \right) \left[C_{\alpha_f}(k_{\alpha_f}, k_{\alpha_f}')_{\{\alpha_{\alpha_f}\}, \{\alpha_{\alpha_f}'\}} \right] \times \left[C_{\alpha_f}(k_{\alpha_f}, k_{\alpha_f}')_{\{\alpha_{\alpha_f}'\}, \{\alpha_{\alpha_f}\}} \right] \times \prod_{f \text{ outgoing}} \pi_{2_b_{\alpha_f}, a_{\alpha_f}}(N_{j_f}^{-1}) \pi_{k_{\alpha_f}'}{_{2_b_{\alpha_f}, a_{\alpha_f}}} \times \prod_{f \text{ incoming}} \pi_{\alpha_{\alpha_f}'(2_b_{\alpha_f}, \beta_{\alpha_f}')(N_{j_f})} \pi_{k_{\alpha_f}'}{_{\alpha_{\alpha_f}', 2b_{\alpha_f}')).$$

(4.42)

Recall that \(N_{j_f} = b_{j_f} N_{j_f} (N_{j_f} = N_{j_f}^+ = q_{j_f}^+ N_{j_f}^+)\) while the integrand of the partition function only depends on the combination \(N_{j_f} t_3 N_{j_f}^{-1}\) (recall that the integrand depends on \(X_f^\pm\)), i.e. the integrand is invariant under \(N_{j_f} \mapsto N_{j_f} h_{\delta}\) where \(h_{\delta} \in U(1)\) thus it only depends on \(SU(2)/U(1)\). Let us parameterize \(N_{j_f}\) in terms of the spherical coordinates. In terms of the complex coordinates \((z_f, \bar{z}_f)\) on the unit sphere we have

$$N(z_f) = \frac{1}{\sqrt{1 + |z_f|^2}} \left(\begin{array}{c} 1 \\
-z_f \\
1 \end{array} \right)$$

(4.43)

where the complex coordinates \(z, \bar{z}\) are defined by the stereographic projection, and the unit vector \(\bar{\Omega}\) on \(S^2\) is expressed in terms of the complex coordinates

$$\bar{\Omega}(z) = -i \left(\begin{array}{c} -z + \bar{z} \\
1 + |z|^2 \end{array} \right) \sigma_1 + \frac{1}{i} \frac{z - \bar{z}}{1 + |z|^2} \sigma_2 + \frac{1 - |z|^2}{1 + |z|^2} \sigma_3 = N(z) t_3 N(z)^{-1}.$$

(4.44)
Under the action of SU(2) group
\[
gN(z) = N(z^f) \begin{pmatrix} a - \tilde{b}z & 0 \\ \frac{a - \tilde{b}z}{|a - \tilde{b}z|} & 0 \end{pmatrix}^{-1}
\]
where \(g = \left(\begin{array}{cc} a & b \\ \tilde{b} & \tilde{a} \end{array} \right)\).

Therefore
\[
N_{tf} = g_{tf}N(z_f) = N(z_f)h^{-1}_{b _f} h_{b _f} \in U(1)
\]
where \(z_f = z^f/\sqrt{\det g}\). Note that the above decomposition may also be understood by writing the SU(2) matrix in terms of Euler coordinates, i.e.
\[
u_u = u_{\sigma_1} u_{\sigma_2} u_{\sigma_3} \begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix}
\]
where \(d\theta_\sigma \lambda = \frac{\sin \theta}{2}\) and \(0 \leq \theta \leq \pi\), while the SU(2) Haar measure can also be written as
\[
dg = \frac{1}{16\pi^2} \sin \theta \, d\phi_1 \, d\theta \, d\phi_2.
\]
The integrals \(\int_{0}^{2\pi} d\phi_{f} \) impose the constraint that \(b_{\sigma f} = b_{\sigma' f} \equiv b_{f} \) for all \(f \subseteq t \), hence

\[
A_{t}(\rho_{f}; k_{\sigma f}, k'_{\sigma' f}; l_{t}; b_{\sigma f}) = \int \prod_{f \subseteq t} d^{3}\Omega_{f} d \delta \left(\sum_{f \subseteq t} \rho_{f} \Omega_{f} \right) \left[C_{\phi_{f}}^{k_{\sigma f}, k'_{\sigma' f}}(a_{\sigma f}, a_{\sigma f}) \right] \\
\times \left[C_{\phi_{f}}^{k_{\sigma f}, k'_{\sigma' f}}(a_{\sigma f}, a_{\sigma f}) \right] \\
\times \prod_{f \text{ outgoing}} k_{\sigma f}^{k_{\sigma f}}(N(z_{f}))^{-1} \times \prod_{f \text{ incoming}} k_{\sigma' f}^{k_{\sigma' f}}(N(z_{f}))^{-1} \right). \tag{4.52}
\]

Moreover for the outgoing dual face \(f \), we have the relation

\[
\pi_{2b_{f}, a_{\sigma f}}^{k_{\sigma f}}(N^{-1}) \times \pi_{b_{f}, 2b_{f}}^{k_{\sigma f}}(N) = \pi_{2b_{f}, a_{\sigma f}}^{k_{\sigma f}}(N) \times \pi_{b_{f}, 2b_{f}}^{k_{\sigma f}}(N) \times \pi_{b_{f}, 2b_{f}}^{k_{\sigma f}}(N)
\]

while for the incoming dual face \(f' \) we have similarly

\[
\pi_{a_{\sigma f}, 2b_{f}}^{k_{\sigma f}}(N^{-1}) \times \pi_{a_{\sigma f}, b_{f}}^{k_{\sigma f}}(N) = \pi_{a_{\sigma f}, 2b_{f}}^{k_{\sigma f}}(N) \times \pi_{a_{\sigma f}, b_{f}}^{k_{\sigma f}}(N) \times \pi_{a_{\sigma f}, b_{f}}^{k_{\sigma f}}(N)
\]

Thus the integral reduces to

\[
A_{t}(\rho_{f}; k_{\sigma f}, k'_{\sigma' f}; l_{t}; b_{\sigma f}) = \int \prod_{f \subseteq t} d^{3}\Omega_{f} d \phi_{f} \times \delta \left(\sum_{f \subseteq t} \rho_{f} \Omega_{f} \right) \Theta_{t}(l_{t}, l_{t'}, k_{\sigma f}, k_{\sigma f}, k_{\sigma f}, k_{\sigma f}, b_{f}; z_{f}) \tag{4.55}
\]

with the integrand (\(t \) is the tetrahedron shared by \(\sigma, \sigma' \))

\[
\Theta_{t}(l_{t}, l_{t'}, k_{\sigma f}, k_{\sigma f}, k_{\sigma f}, k_{\sigma f}, b_{f}; z_{f}) := \prod_{f \text{ outgoing}} (-1)^{2k_{\sigma f}-2b_{f}} \sum_{l_{f}=|k_{\sigma f}-k_{\sigma f}|} c(l_{f}; k_{\sigma f}, k_{\sigma f})^{a_{\sigma f}, a_{\sigma f}} c(l_{f}; k_{\sigma f}, k_{\sigma f})^{2b_{f}, b_{f}} k_{\sigma f}^{k_{\sigma f}}(N(z_{f}))
\]

\[
\times \prod_{f \text{ incoming}} (-1)^{2k_{\sigma f}-2b_{f}} \sum_{l_{f}=|k_{\sigma f}-k_{\sigma f}|} c(l_{f}; k_{\sigma f}, k_{\sigma f})^{a_{\sigma f}, a_{\sigma f}} c(l_{f}; k_{\sigma f}, k_{\sigma f})^{2b_{f}, b_{f}} k_{\sigma f}^{k_{\sigma f}}(N(z_{f})^{-1})
\]

33
is not hard to see that the set of amplitudes contributing to the simplified model $Z_{\text{Simplified}}$ is a subset of the full model $Z(\mathcal{K})$. To see this, notice that the simplest non-trivial contribution of the integral in A_c comes from the term with $l_{f'} = l'_{f'} = 0$. With the constraints $l_{f'} = l'_{f'} = 0$ and dropping the contribution from the other terms

$$\Theta_\delta(l_{f'}, l'_{f'}, k_{\sigma f}, k'_{\sigma f}, k_{\sigma f'}, k'_{\sigma f'}, b_f; z_{tf})$$

we obtain, by extracting the term with $l_{f'} = l'_{f'} = 0$

$$\prod_{f' \text{ incoming}} (1 - 2)^{K_{\sigma f'} - 2b_{\sigma f'}} \delta_{k_{\sigma f'}, k'_{\sigma f'}} \delta_{\alpha_{\sigma f'}, \beta_{\sigma f'}} \frac{(1 - 2)_{K_{\sigma f'} - 2b_{\sigma f'}}}{\dim(k_{\sigma f'})} \frac{(1 - 2)_{K_{\sigma f'} - 2b_{\sigma f'}}}{\dim(k_{\sigma f'})}$$

For this subset of amplitude the edge/tetrahedron amplitude reduces to

$$A_\delta(\rho_{f'}; k_{\sigma f}, k'_{\sigma f}; l_{st}; b_{\sigma f}) \to \prod_{f' \in j} \frac{1}{\dim(k_{f'})} \delta_{k_{f'}, k'_{f'}} \delta_{\alpha_{f'}, \beta_{f'}} \delta_{l_{st}, l'_{st}}$$

$$\times \int \prod_{f' \in j} d^2 \Omega_{f'} d \phi_{f'} \delta \left(\sum_{f' \in j} \rho_{f'} \right)$$

Then we can define a SFM by picking out a subset of amplitudes in the full partition function $Z(\mathcal{K})$:

$$Z(\mathcal{K}) = \sum_{\{j\}_{f'}} \sum_{(k_{\sigma f}), (k'_{\sigma f})} \sum_{(l_{st})} \sum_{(b_{\sigma f})} \int \prod_{f' \in j} d\rho_{f'} A_d(\rho_{f'}; j_{\sigma f}', k_{\sigma f'}, b_{\sigma f})$$

$$\times A_\delta(\rho_{f'}; k_{\sigma f'}, k_{\sigma f'}; l_{st}; b_{\sigma f})$$

The amplitudes in $Z(\mathcal{K})$ are contributions with the closure constraint implemented, however unfortunately they may not exhaust all the contributions.

$$\times A_\delta(\rho_{f'}; k_{\sigma f'}, k_{\sigma f'}; l_{st}; b_{\sigma f})$$

(4.61)
In equation (4.60) the Kronecker deltas \(\delta_{k_0', k_0}, \delta_{k_{0'}}, \delta_{l_0', l_0} \) imply that there is an one-to-one correspondence between the transition channels in the simplified model \(Z^{\text{Simplified}}(\mathcal{K})\) and the transition channels in the model \(Z(\mathcal{K})\), which form a subset of the transition channels in \(Z(\mathcal{K})\). Consider the sets \(\{Z^{\text{Simplified}}\}\) and \(\{Z\}\) respectively, which are the collections of spin-foams that contribute to their respective partition functions \(Z^{\text{Simplified}}(\mathcal{K})\) and \(Z(\mathcal{K})\). Our above analysis then reveals

\[
\{Z^{\text{Simplified}}\} \subset \{Z\}. \tag{4.62}
\]

At this point this is all we can say about the relation between the models with the closure constraint in place or not. The additional weights and contributions in the full model may severely change the correlators (physical inner product) and it is by no means obvious that the simplified model is a good approximation.

As a final remark, the above inclusion is in terms of spin-foam amplitude, in the sense that we write the partition functions as a sum of amplitude over possible spins and intertwiners. Moreover such an inclusion is natural from the path integral point of view. We consider a simple example. Consider a function \(f(x, y)\) on \(\mathbb{R}^2\) which has a Fourier transform \(\tilde{f}(k, q)\) and that we have a ‘closure constraint’ \(y = 0\). Then the \(Z\) integral (with closure) corresponds to (dropping factors of \(2\pi\))

\[
Z = \int dx \, dy \, \delta(y, 0) f(x, y) = \int dx \, dy \, \delta(y, 0) \int dk \, dq \, \tilde{f}(k, q) \exp(\imath(kx + qy))
\]

\[
= \int dx \int dk \, dq \, \tilde{f}(k, q) \exp(\imath kx) = \int dk \, dq \, \tilde{f}(k, q) \delta(k, 0)
\]

\[
= \int dq \, \tilde{f}(0, q). \tag{4.63}
\]

On the other hand the \(Z^{\text{Simplified}}\) integral without closure is

\[
Z^{\text{Simplified}} = \int dx \, dy \, f(x, y) = \int dx \, dy \int dk \, dq \, \tilde{f}(k, q) \exp(\imath(kx + qy))
\]

\[
= \int dk \, dq \, \tilde{f}(k, q) \delta(k, 0) \delta(q, 0)
\]

\[
= \tilde{f}(0, 0). \tag{4.64}
\]

Hence the \(Z\) amplitudes are more in Fourier space \((k, p)\) corresponding to spin-foam representation, and less in real space \((x, y)\).

5. Outlook

In section 4 we first carried out the analysis for the simplified partition function without closure constraint and obtained the SFM \(Z^{\text{Simplified}}(\mathcal{K})\), then we discussed the complete partition function \(Z(\mathcal{K})\) with closure constraint implemented, however we did not compute yet explicitly the full set of possible spin-foam amplitudes. We were only able to show that all the spin-foam amplitudes contributing to \(Z^{\text{Simplified}}(\mathcal{K})\) are contained in those contributing to the full model \(Z(\mathcal{K})\). Therefore, in addition to present SFMs, our commutative \(B\) field model variable sums over additional amplitudes having non-trivial contributions to the partition function \(Z(\mathcal{K})\). While we have shown that in the large-\(j\) limit the 4-simplex/vertex amplitude of \(Z^{\text{Simplified}}(\mathcal{K})\) can be related to the 4-simplex/ vertex amplitude of \(\text{FK}_v\) model \((|y| > 1)\), for the full model \(Z(\mathcal{K})\), even in the large-\(j\) limit, there exist additional, non-trivial spin-foam amplitudes. It would be important to further specify those unknown spin-foams contributing to \(\{Z\}\) but not to \(\{Z^{\text{Simplified}}\}\), at least for their large-\(j\) asymptotics.
Unfortunately, the relation between our new model and EPRL model is almost untouched in the present paper. Although we have seen that all the EPRL spin-foams (with possibly different triangle/face and tetrahedron/edge amplitudes) are included in \(\{Z_{\text{simplified}}\} \) (thus in \(\{Z\} \)), it seems to us that, however, they are not quite special among the spin-foam amplitudes contributing \(Z_{\text{simplified}}(K) \) or \(Z(K) \). We expected that the relation between our model \(Z(K) \) and EPRL model could be realized by the non-commutative deformation, like in the case of BC model. The reason for our expectation was that (1) both models are defined via the non-commutative operator constraint technique, and (2) when the Barbero–Immirzi parameter \(\gamma \rightarrow \infty \), EPRL model reduces to BC model. However it turns out that our expectation is difficult to realize, since the non-commutative deformation via the group Fourier transformation hardly works for the case of finite \(\gamma \). It seems to us that if our model \(Z(K) \) and the EPRL model could be related via any non-commutative deformation, we should rather choose a different deformation scheme.

The present paper starts from a purely path-integral/spin-foam point of view. If we also consider the relation between the path integral and canonical quantization, then the partition function equation (2.1) should probably be modified. It is pointed in [15] that a quantum gravity path integral formula consistent with canonical physical inner product should not only be an naive path integral equation (1.2) of Plebanski–Holst action, but also include a suitable local measure factor in the path integral formula. The local measure factor is a product of a certain power of spacetime volume elements and a certain power of spatial volume elements at all the spacetime points. The implementation of such local measure factor in the partition function will modify both the 4-simplex/ vertex and tetrahedron/edge amplitudes. A detailed analysis of this issue will be postponed to future research.

It is interesting to look for relations with other new approaches on the implementation of simplicity constraint in SFMs or GFTs. In the appendix, we show that a non-commutative deformation of the above model, as a non-commutative simplicial path integral, relates to the GFT model defined in [30]. One may also compare the approach here with the ‘holomorphic simplicity constraint’ in [34], where the new version of simplicity constraints using spinor/twistor variables are commutative. However this approach closely relates to the operator-constraint approach reviewed in the introduction. The commutative holomorphic simplicity constraints come from the non-commutative algebra of flux variables. It may also be interesting to see the relation with quantum Regge calculus. As far as we have shown, the SFM constructed here comes from a path integral of simplicial Plebanski–Holst action, where the discretization procedure is different from Regge calculus (in first or second order formulations). So the resulting SFM does not coincide with the quantum Regge calculus in general. But it is possible that they may be related in certain limit. Such a possibility should be studied in the future.

Acknowledgments

MH is grateful to Aristide Baratin for many enlightening discussions, and thanks You Ding for letting him know about the details of her recent work. MH also acknowledges the support by International Max Planck Research School (IMPRS) and the partial support by NSFC nos 10675019 and 10975017.

Appendix. Non-commutative deformation and BC model

A.1. Non-commutative deformation

In order to further investigate the question, in which sense the closure constraint is redundant when working with non-commutative B fields (as is common practice in existent SFMs), in this
section, we explore a non-commutative deformation of our starting point, the partition function $Z(K)$ in equation (2.1). The non-commutative deformation we will employ here comes from a generalized Fourier transformation defined on a compact group [29]. The deformation replaces the normal c-number product in the expression of $Z(K)$ by a non-commutative ‘\star-product’ (we will briefly review the definition below). Interestingly, this non-commutative deformation establishes a relation between the new SFM $Z(K)$ we analysed in the previous section and the BC SFM [10]. In some sense it relates the recent approach of using non-commutative product in the simplicial path integral representation of the GFT [30].

First of all, we recall the partition function $Z(K)$ in the commutative context (after the linearization of simplicity constraint):

$$Z(K) := \int dk \sum_{f} d^{3}X_{f}^+ d^{3}X_{f}^- \prod_{(\sigma,t)} d\sigma_{\sigma} \prod_{(i,f)} d\sigma_{\sigma}^{-1} \prod_{i,f} d\tau_{f} \prod_{i,f} \delta(X_{f}^- + \beta \sigma f_{f} \sigma_{f}^{-1})$$

$$\times \prod_{i,f} \delta \left(\sum_{j \neq i} X_{j}^- \right) \prod_{(\sigma,f)} \exp(\im \text{tr}(X_{f}^+ \mathcal{G}_{f} \mathcal{G}_{\sigma} \mathcal{G}_{\sigma}^+))$$

$$\times \prod_{(\sigma,f)} \exp(\im \text{tr}(X_{f}^- \mathcal{G}_{f} \mathcal{G}_{\sigma} \mathcal{G}_{\sigma}^+))$$

(A.1)

where $\beta = \frac{1 - i}{1 + i}$ and for the convenience of the following analysis, we have made a change of variables

$$X_{f}^\pm \mapsto \left(1 \pm \frac{1}{\gamma}\right)^{-1} X_{f}^\pm$$

(A.2)

and dropped a constant γ dependent factor. Here we assume that our structure group is $\text{SO}(3) \times \text{SO}(3)$ instead of $\text{SO}(4) \cong \text{SU}(2) \times \text{SU}(2)/\mathbb{Z}_2$. The reason for this replacement is to be compatible with the group Fourier transformation, which will be seen shortly.

We now replace (by hand) the commutative c-number product in equation (2.1) by the non-commutative \star-product on $\mathfrak{su}(2) \cong \mathbb{R}^3$ defined in [29], that is

$$e^{\pm \im \text{tr}(X_{f}^\pm)} \star \mathfrak{c}^{\pm \im \text{tr}(X_{f}^\pm)} := e^{\pm \im \text{tr}(X_{f})}$$

(A.3)

where a is the deformation parameter, $X = X^{\pm} \tau_{j}$ and $\tau_{j} = -i \sigma_{j}$ with σ_{j} the Pauli matrices $\sigma_{j} \sigma_{j} = \delta_{ij} + i e_{ij} \sigma_{k}$, $g \in \text{SU}(2)$ represented by a 2×2 matrix and $|g| = \text{sgn}(\text{tr}g)g$ so that $| - g | = |g|$. We can write $g \in \text{SU}(2)$ as

$$g = P_{0} + i a \vec{P} \cdot \vec{\sigma}, \quad P_{0}^2 + a^2 ||\vec{P}||^2 = 1$$

(A.4)

Thus $|g|$ is the projection of g on the upper ‘hemisphere’ of $\text{SU}(2)$ with $P_{0} \geq 0$. Therefore the ‘plane wave’ in equation (A.3) can be written

$$e_{g}(X) := e^{\pm \im \text{tr}(X_{f})} = e^{\im \vec{P} \cdot \vec{\sigma} \text{sgn}(\text{tr}g)}$$

(A.5)

depends on $\text{SO}(3)$ only (its character expansion depends on integral representations only because it is an even function under reflection $g \rightarrow -g$). With these ‘plane waves’ we can define an invertible ‘group Fourier transformation’ from the functions $f(g)$ on $\text{SO}(3)$ ($f(g) = f(-g)$ for $g \in \text{SU}(2)$) to the functions $\tilde{f}(X)$ on the Lie algebra $\mathfrak{su}(2)$:

$$\tilde{f}(X) = \int dg \ f(g) \ e_{g}(X)$$

$$f(g) = \frac{1}{8\pi a^3} \int d^3X \ \tilde{f}(X) \star e_{g^{-1}}(X) = \sqrt{1 - a^2 ||\vec{P}(g)||^2} \int d^3X \ \tilde{f}(X) \ e_{g^{-1}}(X).$$

(A.6)
Given two functions $\tilde{f}_1(X)$ and $\tilde{f}_2(X)$ in the image of the group Fourier transformation, their \star-product is defined as

$$\tilde{f}_1(X) \star \tilde{f}_2(X) = \int \mathcal{D}g_1 \, dg_2 \, f_1(g_1) \, f_2(g_2) \, e_{g_1}(X) \star e_{g_2}(X)$$ \hspace{1cm} (A.7)$$

and when the deformation parameter turns to $a \to 0$, the \star-product reproduces the normal commutative product (if we keep P_0, \tilde{P} fixed, see (A.4)).

We also have two identities for delta functions

$$\delta_{SO(3)}(g) = \frac{1}{8\pi a^3} \int d^3X \, e_g(X)$$

$$\delta_X(X') = \int \mathcal{D}e_g(X) \, e_g(X')$$ \hspace{1cm} (A.8)$$

where the second delta function is the Dirac distribution in the non-commutative sense, that is

$$\int d^3X' \, (\delta_X \star f)(X') = \int d^3X' \, (f \star \delta_X)(X') = f(X).$$ \hspace{1cm} (A.9)$$

With the above definitions, we can make a non-commutative deformation of the integrand in equation (A.1). In the following we fix the deformation parameter to

$$a = \ell_p^2 = 1.$$

The reason for this choice is that only in this case the closure constraint turns out to be redundant and can be removed from equation (A.1), which is necessary in order to derive the BC model. We will show this immediately in the next paragraph. On the other hand, fixing $a = \ell_p^2$ makes it impossible to study the commutative limit $a \to 0$ of the non-commutative model $Z_a(\mathcal{K})$ which we denote by and thus we cannot compare with the commutative model $Z(\mathcal{K})$.

We first define the non-commutative deformation of

$$\prod_{f} \delta\left(\sum_{j \in f} X_j^+\right) \prod_{(\sigma, f)} \exp\left(\text{itr}(X^+_j (g^+_{jI} g^+_{\sigmaJ} g^+_{I\ell}))\right)$$

$$\equiv \prod_{f} \delta\left(\sum_{j \in f} g^+_{jI} X_j^+ g^+_{I\ell}\right) \prod_{(\sigma, f)} \exp\left(\text{itr}(X^+_j (g^+_{jI} g^+_{\sigmaJ} g^+_{I\ell}))\right)$$ \hspace{1cm} (A.11)$$

Given a face dual to the triangle f with n vertices dual to the 4-simplices $\sigma_1, \ldots, \sigma_n$ (cf figure 1), we define the quantity

$$G^+_f(X^+_j, g^+_{\sigmaJ}, g^+_{I\ell}, h_I) := [e_{\delta^+_j h_I} e_{\delta^+_I h_J} e_{\delta^+_J h_I}] \star e_{\delta^+_j h_I} e_{\delta^+_I h_J} e_{\delta^+_J h_I} \star \cdots \star e_{\delta^+_j h_I} e_{\delta^+_I h_J} e_{\delta^+_J h_I} \cdots$$

$$\cdots \star e_{\delta^+_J h_I} e_{\delta^+_I h_J} e_{\delta^+_J h_I} \cdots [e_{\delta^+_1 h_J} e_{\delta^+_J h_I} e_{\delta^+_I h_J}] \Gamma(X^+_j).$$ \hspace{1cm} (A.12)$$

A possible non-commutative deformation of equation (A.11) is

$$\int \prod_{f} \mathcal{D}h_I \prod_{j \in f} G^+_f(X^+_j, g^+_{\sigmaJ}, g^+_{I\ell}, h_I)$$ \hspace{1cm} (A.13)$$

because the non-commutative Dirac distribution for the closure constraint is

$$\delta\left(\sum_{j \in f} g^+_{jI} X_j^+ g^+_{I\ell}\right) = \int \mathcal{D}h_I \prod_{j \in f} e_{\delta^+_j h_I} e_{\delta^+_I} (X^+_j).$$ \hspace{1cm} (A.14)$$

It is here where the choice $a = \ell_p^2$ was important because we have implicitly set $\ell_p^2 = 1$ in the exponential so far (it comes from the fact that the flux field has dimension cm2 and the Plebanski action is multiplied by $1/\kappa$ where $\kappa \hbar = \ell_p^2$) so restoring it we can combine the
ordinary product of exponentials into star products only if the deformation parameter is given by \(a = \ell_P^2\).

However, since

\[
G^+_f(X^+_f, g^+_f, \ell, h_t) = [e_{g^+_f}^{\ell_0}, h_0, \mathbb{K}_{\ell_0}, e_{g^+_f}^{\ell_1}, h_1, e_{g^+_f}^{\ell_2} \ldots e_{g^+_f}^{\ell_p}, h_p] (X^+_f)
\]

we can absorb \(h_t\) into \(g_{\sigma_1}\) by a change of variables

\[
g_{\sigma_1}^+ \rightarrow h^{-1}_t g_{\sigma_1}^+
\]

while \(dg^+_t\) does not change since it is Haar measure. Therefore finally the integral of \(h_t\) gives unity, which shows the redundancy of the closure constraint for this particular non-commutative deformation!

Next we consider the simplicity constraint

\[
\delta (X^+_f + \beta u^+_f u^{-1}_f) = \delta (g^+_f X^-_f g^{-1}_f + \beta u^+_f g^+_f X^-_f g^{-1}_f u^{-1}_f)
\]

whose non-commutative version is

\[
\delta (g^+_f X^-_f g^{-1}_f + \beta u^+_f g^+_f X^-_f g^{-1}_f u^{-1}_f) = \int u_{ij} e_{ijf} (g^+_f X^-_f g^{-1}_f + \beta u^+_f g^+_f X^-_f g^{-1}_f u^{-1}_f)
\]

\[
= \int u_{ij} e_{ijf} (e_{ijf} X^-_f g^{-1}_f u^{-1}_f) e_{ijf} (\beta u^+_f g^+_f X^-_f g^{-1}_f u^{-1}_f)
\]

\[
= \int d^4 u_{ij} e_{ijf} (X^-_f) e_{ijf} (\beta X^-_f).
\]

For the above factor related to \(\beta\) in the above integrand, we can write

\[
e_{ijf} (X^-) := e_{ijf} (\beta X^-).
\]

Thus for each face dual to the triangle \(f\) with \(n\) vertices dual to the 4-simplices \(\sigma_1, \ldots, \sigma_n\), we define

\[
\mathcal{F}^+_f (X^+_f, g^+_f, h_t, u_t, v_t, \beta) := [e_{g^+_f}^{\ell_0}, h_0, \mathbb{K}_{\ell_0}, e_{g^+_f}^{\ell_1}, h_1, e_{g^+_f}^{\ell_2} \ldots e_{g^+_f}^{\ell_p}, h_p] (X^+_f)
\]

and

\[
\mathcal{F}^-_f (X^-_f, g^-_f, h_t, u_t, v_t, \beta) := [e_{g^-_f}^{\ell_0}, h_0, \mathbb{K}_{\ell_0}, e_{g^-_f}^{\ell_1}, h_1, e_{g^-_f}^{\ell_2} \ldots e_{g^-_f}^{\ell_p}, h_p] (X^-_f)
\]

Then the deformed partition function is defined by

\[
Z_{\mathcal{K}} := \int f d^3 X^+_f d^3 X^-_f \prod (g^+_f) \prod (g^-_f) \prod (d\ell) \prod (du_t) \prod (dv_t) \prod (\beta) \mathcal{F}^+_f (X^+_f, g^+_f, h_t, u_t, v_t, \beta) \mathcal{F}^-_f (X^-_f, g^-_f, h_t, u_t, v_t, \beta)
\]

\[
\times \int f d^3 X^+_f d^3 X^-_f \prod (g^+_f) \prod (g^-_f) \prod (d\ell) \prod (du_t) \prod (dv_t) \prod (\beta) \mathcal{F}^+_f (X^+_f, g^+_f, h_t, u_t, v_t, \beta) \mathcal{F}^-_f (X^-_f, g^-_f, h_t, u_t, v_t, \beta)
\]

\[10\] The point here is that one should make the exponential of action to look like a ‘plane wave’ equation (A.5) of group Fourier transformation. However it is \(\ell_P^{-2}\) in front of the action but not \(a^{-1}\) (The plane wave in equation (A.14) is with \(a^{-1}\) not \(\ell_P^{-2}\)). So we have to set \(a = \ell_P^2\) to resolve the mismatch, in order to remove the closure condition from the (\(\bullet\)-deformed) path integral.
which is the non-commutative deformation of equation (A.1). However since we have shown the redundancy of the closure constraint in \(Z_\ast(K)\), we can equivalently write

\[
Z_\ast(K) := \int \prod_f d^3 X_f^+ d^3 X_f^- \prod_{\langle \sigma, f \rangle} dg_{\sigma f}^+ dg_{\sigma f}^- \prod_f \frac{d\sigma}{\beta} \prod_f dv_f \\
\times \prod_f \mathcal{F}_f^+ (X_f^+, g_{\sigma f}^+, g_{\eta f}^+, u_t, v_f, \beta) \mathcal{F}_f^- (X_f^-, g_{\sigma f}^-, g_{\eta f}^-) \tag{A.23}
\]

where \(\mathcal{F}_f^+\) is replaced by

\[
\mathcal{F}_f^+ (X_f^+, g_{\sigma f}^+, g_{\eta f}^+, u_t, v_f, \beta) := [e_{g_{\sigma f}^+} e_{g_{\eta f}^+} e_{u_t} e_{v_f}^* e_{g_{\sigma f}^-}^* e_{g_{\eta f}^-}^* e_{u_t} e_{v_f}^*] (X_f^+) \tag{A.24}
\]

\section{A.2. \(\gamma = \infty\) and Barrett–Crane model}

The computation with general \(\beta\) is difficult, because it involves the \(*\)-product between two different types of plane waves \(e_\sigma\) and \(e_\beta^\dagger\), which is even not well-defined in general (since they could consider having different deformation parameter). Therefore here we only consider the simplified case that \(\gamma = \infty\). Then \(\beta = 1\) and in this case we can directly compute \(\mathcal{F}_f^\pm\) to be

\[
\mathcal{F}_f^+ (X_f^+, g_{\sigma f}^+, g_{\eta f}^+, u_t, v_f, \beta = 1) = e_{g_{\sigma f}^+} e_{g_{\eta f}^+} e_{u_t} e_{v_f}^* e_{g_{\sigma f}^-}^* e_{g_{\eta f}^-}^* e_{u_t} e_{v_f}^* (X_f^+) = e_{g_{\sigma f}^+} e_{g_{\eta f}^+} e_{u_t} e_{v_f}^* e_{g_{\sigma f}^-}^* e_{g_{\eta f}^-}^* e_{u_t} e_{v_f}^* (g_{\sigma f}^+ X_f^+ g_{\eta f}^+). \tag{A.25}
\]

Similarly for the anti-self-dual part

\[
\mathcal{F}_f^- (X_f^-, g_{\sigma f}^-, g_{\eta f}^-, v_f) = e_{g_{\sigma f}^-} e_{g_{\eta f}^-} e_{u_t} e_{v_f}^* e_{g_{\sigma f}^+}^* e_{g_{\eta f}^+}^* e_{u_t} e_{v_f}^* (X_f^-) = e_{g_{\sigma f}^-} e_{g_{\eta f}^-} e_{u_t} e_{v_f}^* e_{g_{\sigma f}^+}^* e_{g_{\eta f}^+}^* e_{u_t} e_{v_f}^* (g_{\sigma f}^- X_f^- g_{\eta f}^-). \tag{A.26}
\]

We define the following changes of the variables

\[
g_{\sigma f}^+ \mapsto g_{\sigma f}^+ u_t \ \ g_{\eta f}^+ \mapsto u_t^{-1} g_{\eta f}^+ \ \ X_f^+ \mapsto g_{\sigma f}^+ u_t^{-1} X_f^+ u_t \ \ g_{\sigma f}^- \mapsto g_{\sigma f}^- X_f^- \ \ g_{\eta f}^- \mapsto g_{\eta f}^- X_f^- \tag{A.27}
\]

where for each face dual to \(f\), a unique \(t_\sigma(f)\) is chosen as the base point of the dual face. Thus the partition function can be written as

\[
Z_\ast(K) := \int \prod_f d^3 X_f^+ d^3 X_f^- \prod_{\langle \sigma, f \rangle} dg_{\sigma f}^+ dg_{\sigma f}^- \prod_f dv_f \\
\times \prod_f e_{g_{\sigma f}^+} e_{g_{\eta f}^+} e_{u_t} e_{v_f}^* e_{g_{\sigma f}^-}^* e_{g_{\eta f}^-}^* e_{u_t} e_{v_f}^* (X_f^+) \\
\times \prod_f e_{g_{\sigma f}^-} e_{g_{\eta f}^-} e_{u_t} e_{v_f}^* e_{g_{\sigma f}^+}^* e_{g_{\eta f}^+}^* e_{u_t} e_{v_f}^* (X_f^-). \tag{A.28}
\]
We perform the integrals over X^+_f, X^-_f and obtain

$$
Z_+(\mathcal{C}) := \int \prod_{(\sigma, f)} \mathrm{d}g_{\sigma f}^+ \prod_{(r, f)} \mathrm{d}v_{rf} \\
\times \prod_f \delta\left(g_{\sigma_1 f}^+ g_{\sigma_2 f}^+ \cdots g_{\sigma_n f}^+, v_{rf} g_{\sigma_1 f}^+ g_{\sigma_2 f}^+ \cdots g_{\sigma_n f}^+, \cdots, g_{\sigma_1 f}^- g_{\sigma_2 f}^- \cdots g_{\sigma_n f}^-
ight) \\
\times \prod_f \delta\left(g_{\sigma_1 f}^- g_{\sigma_2 f}^- \cdots g_{\sigma_n f}^-, v_{rf} g_{\sigma_1 f}^- g_{\sigma_2 f}^- \cdots g_{\sigma_n f}^-, \cdots, g_{\sigma_1 f}^+ g_{\sigma_2 f}^+ \cdots g_{\sigma_n f}^+
ight)
$$

(A.29)

which gives BC vertex amplitude [10]. This result is consistent with the work done by colleagues [26, 30]. On a given triangulation, the GFT model constructed by Baratin and Oriti in [30] reproduce the \star-deformed simplicial path integral equation (2.1). Thus the SFM constructed in the main part of the paper may be viewed as the commutative limit of the model in [30] as the triangulation is fixed.

References

[1] Rovelli C 2004 Quantum Gravity (Cambridge: Cambridge University Press)

[2] Thiemann T 2007 Modern Canonical Quantum General Relativity (Cambridge: Cambridge University Press)

[3] Perez A 2003 Spin-foam models for quantum gravity Class. Quantum Grav. 20 R43–R104

[4] Ashtekar A 1987 New Hamiltonian formulation of general relativity Phys. Rev. D 36 1587

[5] Fleischhack C 2009 Representations of the Weyl algebra in quantum geometry Commun. Math. Phys. 285 67–140

[6] Thiemann T 1998 Quantum spin dynamics (QSD) Class. Quantum Grav. 15 839–73 (arXiv:gr-qc/9606089)

[7] Thiemann T 1998 Quantum spin dynamics (QSD): II. The kernel of the Wheeler–deWitt constraint operator Class. Quantum Grav. 15 875–905 (arXiv:gr-qc/9606090)

[8] Thiemann T 1998 Quantum spin dynamics (QSD): III. Quantum constraint algebra and physical scalar product in quantum general relativity Class. Quantum Grav. 15 1207–47 (arXiv:gr-qc/9705017)

[9] Thiemann T 2006 The phoenix project: Master constraint programme for loop quantum gravity Class. Quantum Grav. 23 2211–48

[10] Thiemann T 2006 Quantum spin dynamics: VIII. The master constraint Class. Quantum Grav. 23 2249–66 (arXiv:gr-qc/0510011)

[11] Han M and Ma Y 2006 Master constraint operator in loop quantum gravity Phys. Lett. B 635 225–31 (arXiv:gr-qc/0510014)

[12] Kaminski W, Kiefer H and Lewandowski J 2010 Spin foams for all loop quantum gravity Class. Quantum Grav. 27 095006

[13] Kaminski W, Kiefer H and Lewandowski J 2010 The EPRL intertwiners and corrected partition function Class. Quantum Grav. 27 165020

[14] Ding Y, Han M and Rovelli C 2011 Generalized spinfoams Phys. Rev. D 83 124020 (arXiv:1101.2149)

[15] Barrett J and Crane L Relativistic spin-networks and quantum gravity J. Math. Phys. 39 3296

[16] Engle J, Pereira R and Rovelli C 2007 The loop-quantum-gravity vertex-amplitude Phys. Rev. Lett. 99 161301

[17] V. Engle J, Livine E, Pereira R and Rovelli C 2008 LQG vertex with finite Immirzi parameter Nucl. Phys. B 799 136
[12] Freidel L and Krasnov K 2007 New spin foam model for 4d gravity arXiv:0708.1595v1 [gr-qc]

[13] Han M 2011 4-dimensional spinfoam model with quantum Lorentz group J. Math. Phys. 52 072501 (arXiv:1012.4216)
Han M 2011 Cosmological constant in LQG vertex amplitude arXiv:1105.2212
Ding Y and Han M 2011 On the asymptotics of quantum group spinfoam model arXiv:1103.1597
Fairbairn W J and Meusburger C 2010 Quantum deformation of two four-dimensional spin foam models arXiv:1012.4784

[14] Noui K and Perez A 2006 Three dimensional loop quantum gravity: physical scalar product and spin foam models Class. Quantum Grav. 22 1739–62

[15] Han M and Thiemann T 2009 On the relation between operator constraint–, Master constraint–, reduced phase space–, and path integral quantisation arXiv:0911.3428
Han M and Thiemann T 2009 On the relation between Rigging inner product and Master constraint direct integral decomposition arXiv:0911.3431
Han M 2009 Path integral for the Master constraint of loop quantum gravity arXiv:0911.3432
Engle J, Han M and Thiemann T 2009 Canonical path-integral measure for Holst and Plebanski gravity: I. Reduced phase space derivations arXiv:0911.3433
Han M 2009 Canonical path-integral measure for Holst and Plebanski gravity: II. Gauge invariance and physical inner product arXiv:0911.3436

[16] Plebanski J 1977 On the separation of Einsteinian substructures J. Math. Phys. 18 2511–20
Reisenberger M P 1998 Classical Euclidean general relativity from ‘left-handed area = righthanded area’ arXiv:gr-qc/9804061
De Pietri R and Freidel L 1999 so(4) Plebanski action and relativistic spin foam model Class. Quantum Grav. 16 2187–96

[17] Ooguri H 1992 Topological lattice models in four dimensions Mod. Phys. Lett. A 7 2799–810

[18] Alexandrov S and Roche P 2010 Critical overview of loops and foams arXiv:1004.4475
Alexandrov S 2010 The new vertices and canonical quantization arXiv:1004.2260 [gr-qc]

[19] Freidel L and Louapre D 2003 Asymptotics of 6j and 10j symbols Class. Quantum Grav. 20 1267

[20] Ding Y and Rovelli C 2009 The volume operator in covariant quantum gravity arXiv:0911.0543
Ding Y and Rovelli C 2010 Physical boundary Hilbert space and volume operator in the Lorentzian new spin-foam theory arXiv:1006.1294

[21] Livine E R and Speziale S 2007 A new spinfoam vertex for quantum gravity Phys. Rev. D 76 084028

[22] Conrady F and Freidel L 2008 Path integral representation of spin foam models of 4d gravity Class. Quantum Grav. 25 245010

[23] Conrady F and Freidel L 2009 Quantum geometry from phase space reduction J. Math. Phys. 50 123510

[24] Bonzom V 2009 Spin foam models for quantum gravity from lattice path integrals Phys. Rev. D 80 064028
Bonzom V 2009 From lattice BF gauge theory to area-angle Regge calculus Class. Quantum Grav. 26 155020
Bonzom V and Livine E R 2009 A Lagrangian approach to the Barrett–Crane vertex model Phys. Rev. D 79 064034

[25] Barrett J W, Dowdall R J, Fairbairn W J, Gomes H and Hellmann F 2009 Asymptotic analysis of the EPRL four-simplex amplitude J. Math. Phys. 50 112504
Barrett J W, Dowdall R J, Fairbairn W J, Hellmann F and Pereira R 2009 Lorentzian spin foam amplitudes: graphical calculus and asymptotics arXiv:0907.2440

[26] Han M and Zhang M 2011 Asymptotics of spinfoam amplitude on simplicial manifold: Euclidean theory arXiv:1109.0500
Han M and Zhang M 2011 Asymptotics of spinfoam amplitude on simplicial manifold: Lorentzian theory arXiv:1109.0499

[27] Freidel L and Majid S 2008 Noncommutative harmonic analysis, sampling theory and the Duflot map in 2+1 quantum gravity Class. Quantum Grav. 25 045006

[28] Baratin A and Oriti D 2011 Quantum simplicial geometry in the group field theory formalism: reconsidering the Barrett–Crane model arXiv:1108.1178
Baratin A and Oriti D 2010 Group field theory with non-commutative metric variables Phys. Rev. Lett. 105 221302
[31] Rovelli C 2010 A new look at loop quantum gravity arXiv:1004.1780 [gr-qc]
[32] Baratin A, Flori C and Thiemann T 2008 The Holst spin foam model via cubulations arXiv:0812.4055 [gr-qc]
[33] Lamborn B N A 1970 Short notes: an expression for the Dirac delta function II SIAM Rev. 12 567–9
[34] Dupuis M, Freidel L, Livine E R and Speziale S 2012 Holomorphic Lorentzian simplicity constraints J. Math. Phys. 53 032502