Review Article
The Association of Haptoglobin Gene Variants and Retinopathy in Type 2 Diabetic Patients: A Meta-Analysis

Huiqun Wu,1, 2 Huan Wu,1 Lili Shi,1 Xinlu Yuan,3 Ying Yin,1 Mingjie Yuan,1 Yushan Zhou,1 Qianwen Hu,1 Kui Jiang,1 and Jiancheng Dong1

1Department of Medical Informatics, Medical School of Nantong University, Nantong 226001, China
2Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
3Department of Endocrinology, Affiliated Hospital of Nantong University, Nantong 226001, China

Correspondence should be addressed to Kui Jiang; kuij@ntu.edu.cn

Received 25 February 2017; Accepted 23 May 2017; Published 3 July 2017

Aims/Introduction. To collectively evaluate the association between haptoglobin (Hp) gene variants and diabetic retinopathy (DR) in patients with type 2 diabetes mellitus (T2DM).

Methods. A comprehensive literature review was performed for eligible studies. After inclusion and exclusion selection as well as quality assessment, those studies meeting quality standards were included. In this study, diabetic patients with retinopathy were selected as the case group and those ones without DR were treated as the control group. The recessive model, allele model, additive model, heterozygote model, and homozygote model were utilized to investigate the association of three Hp gene variants and DR. Subgroup analysis on different severity of DR including nonproliferative diabetic retinopathy (NPDR) and proliferative diabetic retinopathy (PDR) was also conducted.

Results. Six trials from different regions were finally included. A total of 1145 subjects containing 564 T2DM patients with retinopathy were included. The recessive model, allele model, additive model, and homozygote model results showed that Hp gene variants were not associated with DR, NPDR, and PDR. However, the heterozygote model indicated the association of Hp gene variants with DR.

Conclusions. No association was found between the Hp gene variants and PDR and NPDR. More studies are required to verify these findings.

1. Introduction

Diabetes is a global health burden that affects populations’ economic and health status. Due to the fact that diabetes is a system metabolic disorder, many organs and tissues will be affected and might be in dysfunction in the end. Management of diabetic complications has been a worldwide research of interest due to its clinical relevance and importance [1–3]. Vascular complications from diabetic complications such as nephropathy, retinopathy, and cardiovascular disease cause serious morbidity in patients with type 2 diabetes mellitus (T2DM) [4]. Diabetic retinopathy (DR) is one of the serious microvascular complications of T2DM patients and will finally cause blindness if not controlled effectively. As shown in recent epidemiologic studies, the prevalence of DR accompanied with T2DM is decreasing [5, 6].

Traditional measures to detect those microvascular complications mostly relied on imaging techniques. A digital fundus camera is such a device that could be utilized to record retinal blood vessels, the images of which are further assessed by ophthalmologists qualitatively. Besides biomarkers at the observable tissue level, some biomarkers at the molecular level are probably involved in the progression of above-mentioned microvascular complications. Heritability estimates for DR
range from 25 to 50%, and the same degree of DR has been found in a cohort of identical twins with diabetes, suggesting that genetic variation is associated with DR. Haptoglobin (Hp) gene (rs137853233) is one of such candidate genes and is encoded by a single gene on chromosome 16. Hp gene has been discovered in human serum since 60 years ago, and the genetic mutation could be identified using SNP genotype data [7]. There are two common alleles for Hp which likely arose from a duplication event involving exons 3 and 4, usually denoted as Hp1 (containing 5 exons) and Hp2 (containing 7 exons) correspondingly. The most common type of allele variation consists of a major allele (M) and a minor allele (m); the Hp phenotype variants can be a major allele homozygote (Hp1-1), a heterozygote (Hp2-1), or a minor allele homozygote (Hp2-2). Hp could form stable complexes with plasma-free hemoglobin (Hb), as a result, blocking Hb-induced oxidative damage. The binding of Hp to apolipoprotein A1 (ApoA1) has also been reported to be related to the T2DM-associated cardiovascular disease [8]. Hp protein also facilitates the removal of Hb from the extravascular compartment via the CD163 macrophage scavenger receptor. Unlike Hp1-1 and Hp2-1, Hp2-2 exists as large circular polymers, having decreased binding affinity for free hemoglobin, and has been associated with biomarkers of oxidant stress and iron delocalization. Several longitudinal studies have recently demonstrated that Hp gene variants might be an independent risk factor for different kinds of diabetes complications such as diabetic retinopathy, cardiovascular disease, and nephropathy, but with the discrepancy in their findings [9–12]. Therefore, in this study, we conducted a meta-analysis to summarize the results by using a recessive model, allele model, additive model, heterozygote model, and homozygote model to investigate the association of Hp gene variants and DR.

2. Materials and Methods

2.1. Search Strategy. In the research, a comprehensive literature review was performed on four electronic databases: PubMed (National Center for Biotechnology Information), ISI (Web of Science), Embase, and CNKI (China National Knowledge Infrastructure), and the related studies published in English or Chinese before January 2017. While conducting the searches in the databases, no restrictions were imposed for time and language. Two subsets of citations were enhanced, namely, an indexing DR or diabetes, the other indexing Hp. For developing these subsets of citations, we used a combination of subject headings and text terms used in medical literature. Search terms used were as follows: (i) diabetic retinopathy, DR, diabetes without retinopathy, DWR, proliferative diabetic retinopathy, PDR, non-proliferative diabetic retinopathy, NPDR, metabolic syndrome, diabetic complication, diabetes, diabe∗, glycuresis; (ii) haptoglobin, Hp, Hp∗, gene, genetic, Hp1-1, Hp1-2, Hp2-1, Hp2-2; (iii) incidence, mortality, epidemiologic studies; and (iv) photography, photomicrography, photos, images, retinopathy, fundus. We combined the terms to generate a subset of citations that address the objective of our research study. We also hand searched reference lists of relevant articles for eligible studies. We examined the reference lists of all known primary and review articles to identify additional articles not captured by the electronic searches. The detailed search strategy is available from the authors. Two reviewers (Wu and Wu) independently examined the electronic searches and obtained full reports of all citations that were likely to meet the predefined selection criteria. Disagreements were resolved by consensus after discussion with a third reviewer (Yin).

2.2. Inclusion and Exclusion Criteria. The inclusion criteria were as follows: (i) case-control or cohort studies published about the association of Hp gene variants and DR.
Study	Year	Country	Number of DR/DWR	Age (DWR)	Age (DR)	Male/female (DWR)	Male/female (DR)	DM duration (years) DR/DWR	BMI (kg/m²)	HbA1c (%)
Mukund et al.	2013	India	30/15 (NPDR)	55.93 ± 17.85	55.7 ± 11.97	16/14	7/8	11.6 ± 4.77/7.6 ± 3.59	—	—
Nitza et al.	2011	Finland	14/84 (PDR)	69 ± 9.7	62 ± 7.8	13/1	28/56	4.3 ± 3.7/19 ± 8	28.8 ± 2.5/28.7 ± 5.3	8.7 ± 2.5/7.4 ± 1.2
Adinortey et al.	2011	Ghana	24/73	52.70 ± 1.49 (male)	56.83 ± 0.97 (male)	101/189	46/62	—	28.58 ± 0.40 (female)	—
Wobeto et al.	2006	Brazil	97/73	—	—	—	—	—	—	—
Meng et al.	2011	China	149/168	58 ± 10	57 ± 11	82/67	91/77	12.9	26.3 ± 3.7/26.7 ± 4.0	8.77 ± 2.00/8.44 ± 1.91
Wang et al.	2011	China	101/168	58.2 ± 10.6	52.8 ± 10.5	42/59	91/77	12.5/9	27.0 ± 3.9/26.7 ± 4.0	7.84 ± 2.13/8.44 ± 1.91
			(NPDR)	149/168	57.0 ± 11.1	82/67	91/77	12.0/9	26.3 ± 3.7/26.7 ± 4.0	8.77 ± 2.00/8.44 ± 1.91
in patients with the T2DM disease. (ii) Determination of DR was made by ophthalmoscope examination or fundus photography. (iii) Adequate information about the Hp genotype and allele were available. (iv) The language was written in English or Chinese.

The exclusion criteria were as follows: (i) insufficient data in frequencies of Hp genotype and allele, (ii) insufficient information about baseline characteristics of participants, (iii) literature reporting language other than English and Chinese, and (iv) patients diagnosed with T1DM other than T2DM.

2.3. Data Extraction and Analysis. In this study, those studies meeting the quality standards were included. The quality of the included studies was assessed by their risk of bias, directness, consistency of results, precision, publication bias, the magnitude of the effect, and so forth. In each of the included studies, three individual researchers (Wu, Wu, and Yuan) independently extracted the raw data associated with the values of Hp gene variants, DR numbers, total study numbers, ages, sex, and other factors. In instances where the raw data could not be extracted or calculated, we obtained the same by contacting the authors of these manuscripts. The recessive model, allele model, additive model, heterozygote model, and homozygote model were utilized to investigate the association of Hp gene variants and DR. For improving the accuracy of these tests, subgroup analyses were used to identify the test-related or other factors responsible for heterogeneity. In this study, RevMan (version: 5.2) was used to perform meta-analysis. Odds ratio (OR) and its 95% confidence interval (CI) were calculated for statistical analysis. Heterogeneity was established using chi-square and quantified by I². In general, intergroup heterogeneity was evaluated by inconsistency index (I²) and heterogeneity. While the heterogeneity value was less than 0.1, pooled OR was estimated by using a random effect model or otherwise using a fix effect model. Sensitivity analyses were performed by omitting each study to identify possible study contributing to the heterogeneity. A two-sided value which is less than 0.05 means statistically significant. Funnel plots were utilized for investigating publication and other biases in meta-analysis.

3. Results

The literature search yielded 295 references, six articles [13–18] out of which were eligible for inclusion finally. Figure 1 outlines the study selection.

3.1. Summary Characteristics of Included Studies. A total of six trials were retrieved for detail data extraction (Table 1). The six studies from different regions including India, Finland, Ghana, China, and Brazil were finally included for this analysis. A total of 1145 subjects includes 564 type 2 DM patients accompanied with retinopathy. All studies met inclusion and exclusion criteria. The average age of the included population was comparable (the elders ranged from 51.27 to 69 years old). Hp allele frequencies of cases and controls are shown in Table 2. Meta-analysis was performed on all these studies after adjusting for different sorts of risk factors.

![Table: Hp allele frequencies of cases and controls.](image)

Table 2: Hp allele frequencies of cases and controls.

Study	CC HP1-1 (%)	DR CT HP2-1 (%)	TT HP2-2 (%)	CC HP1-1 (%)	DWR CT HP2-1 (%)	TT HP2-2 (%)
Mukund et al.	0 (0)	7 (23.3)	23 (76.7)	0 (0)	9 (60.0)	6 (40.0)
Nitza et al.	4 (28.6)	5 (35.7)	5 (35.7)	19 (22.6)	23 (27.4)	42 (50.0)
Adinortey et al.	4 (16.7)	6 (25.0)	14 (58.3)	2 (3.7)	0 (0)	52 (96.3)
Wobeto et al.	4 (5.2)	47 (61.0)	26 (33.8)	17 (23.3)	36 (49.3)	20 (27.4)
Meng et al.	2 (1.4)	82 (55.0)	65 (43.6)	3 (1.8)	78 (46.7)	86 (51.5)
Wang et al. (PDR)	4 (4.0)	45 (44.6)	52 (51.4)	3 (1.8)	86 (51.5)	78 (46.7)
(NPDR)	2 (1.4)	65 (43.6)	82 (55.0)	3 (1.8)	86 (51.5)	78 (46.7)

Figure 2: Forest plot for meta analysis comparing DR with DWR in dominant model (TT + CT versus CC).
Figure 3: Forest plot for meta analysis comparing DR with DWR in allele model (T versus C).

Study or subgroup	DM with DR Events	Total	DM without DR Events	Total	Weight	Odds ratio IV, random, 95% CI	Odds ratio IV, random, 95% CI
Adinortey 2011	34	48	104	108	14.9%	0.09 [0.03, 0.30]	
Meng 2011	212	298	250	334	28.8%	0.83 [0.58, 1.18]	
Wang 2011	378	500	242	334	29.3%	1.18 [0.86, 1.61]	
Wobeto 2006	99	154	76	146	27.0%	1.66 [1.04, 2.63]	
Total (95% CI)	1000	922	100.0%			0.80 [0.43, 1.49]	
Total events	723	672					

Heterogeneity: $\tau^2 = 0.32; \chi^2 = 22.22, df = 3 (p < 0.0001); I^2 = 86\%$
Test for overall effect: $Z = 0.70 (p = 0.48)$

Figure 4: Forest plot for meta analysis comparing DR with DWR in recessive model (TT versus CT + CC).

Study or subgroup	DM with DR Events	Total	DM without DR Events	Total	Weight	Odds ratio M-H, fixed, 95% CI	Odds ratio M-H, fixed, 95% CI
Adinortey 2011	14	24	52	54	12.7%	0.05 [0.01, 0.27]	
Meng 2011	65	149	86	167	30.3%	0.73 [0.47, 1.14]	
Wang 2011	134	250	78	167	31.0%	1.32 [0.89, 1.95]	
Wobeto 2006	26	77	20	73	26.0%	1.35 [0.67, 2.72]	
Total (95% CI)	500	461	100.0%			0.74 [0.36, 1.54]	
Total events	239	236					

Heterogeneity: $\chi^2 = 0.41; \chi^2 = 16.90, df = 3 (p = 0.0007); I^2 = 82\%$
Test for overall effect: $Z = 0.81 (p = 0.42)$

Figure 5: Forest plot for meta analysis comparing DR with DWR in heterozygote model (TC versus CC).

Study or subgroup	DM with DR Events	Total	DM without DR Events	Total	Weight	Odds ratio M-H, fixed, 95% CI	Odds ratio M-H, fixed, 95% CI
Adinortey 2011	6	10	0	2	3.2%	7.22 [0.28, 189.19]	
Meng 2011	82	84	78	81	18.9%	1.58 [0.26, 9.69]	
Wang 2011	110	116	86	89	50.3%	0.64 [0.16, 2.63]	
Wobeto 2006	47	51	36	53	27.6%	5.55 [1.72, 17.92]	
Total (95% CI)	261	225	100.0%			2.39 [1.17, 4.87]	
Total events	245	200					

Heterogeneity: $\chi^2 = 5.96, df = 3 (p = 0.11); I^2 = 50\%$
Test for overall effect: $Z = 2.39 (p = 0.02)$

Figure 6: Forest plot for meta analysis comparing DR with DWR in homozygous model (TT versus CC).

Study or subgroup	DM with DR Events	Total	DM without DR Events	Total	Weight	Odds ratio IV, random, 95% CI	Odds ratio IV, random, 95% CI
Adinortey 2011	14	18	52	54	23.1%	0.13 [0.02, 0.81]	
Meng 2011	65	67	86	89	22.9%	1.13 [0.18, 6.98]	
Wang 2011	134	140	78	81	26.3%	0.86 [0.21, 3.53]	
Wobeto 2006	26	30	20	37	27.8%	5.53 [1.61, 19.00]	
Total (95% CI)	255	261	100.0%			1.00 [0.22, 4.59]	
Total events	239	236					

Heterogeneity: $r^2 = 1.78; \chi^2 = 11.74, df = 3 (p = 0.006); I^2 = 74\%$
Test for overall effect: $Z = 0.60 (p = 1.00)$
3.2. The Association of Hp Gene Variants and DR. Four studies [15–18] in the dominant model comparing those DWR and DR patients showed great heterogeneity of the studies ($X^2 = 0.01 < 0.05$, $I^2 = 73%$); the total effect size OR in this study was 1.11 (95% CI: 0.26, 4.70), and the Z value was 0.14 ($p > 0.05$), suggesting that Hp gene variants were not associated with DR (Figure 2). Similarly, the allelic model showed serious heterogeneity ($X^2 = 3.17, df = 1 (p < 0.07); I^2 = 68%$); the total effect size OR in this study was 0.74 (95% CI: 0.36, 1.54), and the Z value was 0.70 ($p > 0.05$), suggesting that no association was found between the Hp gene variants and DR (Figure 3). The recessive model also showed serious heterogeneity of the studies ($X^2 = 0.05, I^2 = 86%$); the total effect size OR and Z value were 0.80 (95% CI: 0.43, 1.49), and the Z value was 0.70 ($p > 0.05$), suggesting that no association was found between the Hp gene variants and DR (Figure 4). However, the heterozygote model showed no heterogeneity of the studies comparing DR and DWR ($X^2 = 0.11 > 0.05$, $I^2 = 50%$); the total effect size OR in this study was 2.39 (95% CI: 1.17, 4.87), and the Z value was 2.39 ($p < 0.05$), suggesting that Hp gene variants were associated with DR (Figure 5). The homozygous and additive model showed serious heterogeneity of the studies ([$I^2 = 74%$ and 75%, resp.], and the Z value and the total effect size OR are both suggesting that Hp gene variants were not associated with DR (Figures 6 and 7).

3.3. The Association of Hp Gene Variants and NPDR. In this study, two studies [13, 14] in the recessive model, allelic model, and additive model all showed no heterogeneity of the studies between DR and DWR ($X^2 = 0.08, I^2 = 68%$; $X^2 = 0.11, I^2 = 60%$; and $X^2 = 0.07, I^2 = 68%$, resp.); the subtotal effect size OR in this study was 2.23 (95% CI: 0.68, 7.35), 1.74 (95% CI: 0.72, 4.18), and 2.21

Study or subgroup	DM with DR Events	Total	DM without DR Events	Total	Weight	Odds ratio IV, random, 95% CI	Odds ratio IV, random, 95% CI
Adinority 2011	18	24	54	54	4.2%	0.03 [0.00, 0.49]	
Meng 2011	67	149	89	167	33.2%	0.72 [0.46, 1.12]	
Wang 2011	140	250	81	167	34.4%	1.35 [0.91, 2.00]	
Wobeto 2006	30	77	37	73	28.1%	0.62 [0.32, 1.19]	
Total (95% CI)	500	461	100.0%	0.74 [0.39, 1.41]			
Total events	255	261					

Heterogeneity: $r^2 = 0.27; \chi^2 = 12.01, df = 3 (p = 0.007); I^2 = 75%$

Test for overall effect: $Z = 0.91 (p = 0.36)$

Figure 7: Forest plot for meta analysis comparing DR with DWR in additive model (TT + CC versus CT).

Study or subgroup	DM with NPDR Events	Total	DM without NPDR Events	Total	Weight	Odds ratio IV, random, 95% CI	Odds ratio IV, random, 95% CI
Mukund 2013	23	30	6	15	5.9%	4.93 [1.30, 18.73]	
Wang 2011	82	149	78	167	25.3%	1.40 [0.90, 2.18]	
Subtotal (95% CI)	105	84					
Total (95% CI)	282	263					

Heterogeneity: $r^2 = 0.54; \chi^2 = 3.09, df = 1 (p = 0.08); I^2 = 68%$

Test for overall effect: $Z = 1.32 (p = 0.19)$

Figure 8: Forest plot for meta analysis comparing NPDR with DWR in different models.
(95% CI: 0.66, 7.44), respectively, all suggesting that Hp gene variants were not associated with NPDR (Figure 8). The heterozygote model and homozygous model were not suitable for the data; therefore, no results were obtained. However, the p value of the overall effect Z value from different models was less than 0.05, indicating the association between Hp gene variants and NPDR.

3.4. The Association of Hp Gene Variants and PDR. Two studies [14, 18] in all models showed no heterogeneity of the studies ($X^2 p = 0.29 > 0.1$, $I^2 = 11\%$; $X^2 p = 0.62 > 0.1$, $I^2 = 0\%$; $X^2 p = 0.23 > 0.1$, $I^2 = 30\%$; $X^2 p = 0.37 > 0.1$, $I^2 = 0\%$; $X^2 p = 0.91 > 0.1$, $I^2 = 0\%$; and $X^2 p = 0.31 > 0.1$, $I^2 = 2\%$), and the subtotal effect size OR in these studies was 0.96 (95% CI: 0.64, 1.43), 0.60 (95% CI: 0.23, 1.57), 0.99 (95% CI: 0.51, 1.93), 0.66 (95% CI: 0.23, 1.88), 0.53 (95% CI: 0.19, 1.52), and 1.19 (95% CI: 0.74, 1.91), respectively, all suggesting that Hp gene variants were not associated with PDR (Figure 9).

Funnel plots of each group of meta-analysis were shown, and those funnel plots without outlines were due to the use of the random effect model (See Supplementary Figures S1–S8 available online at https://doi.org/10.1155/2017/2195059).

4. Discussion

The global incidence and prevalence of DM have increased significantly over the last several decades [19, 20]. Patients with DM are often at a high risk of microvascular events [21, 22], in which DR is one of such risky events and might result in blindness at the late stage. The potential use of retinal vessel changes as a unique diagnostic biomarker for DR diagnosis is commonly investigated [23–25]. Recently, precision medicine idea empowers genetic codes as an early prediction tool for DR; therefore, we tried to analyze recent clinical studies on such possible gene candidates for DR prediction. Although several
 genome-wide association studies (GWAS) in different populations, such as Pima Indians [26, 27], Mexican-Americans [28], Asian [29–31], and Caucasians [32], identified multiple susceptibility loci to DR and reported evidence for the linkage of DR to several chromosomal regions, the susceptibility genes in these regions remain to be elucidated. Hp gene is one of such candidate genes and has been recently found to be related to vascular complications like retinopathy after diabetes since Hp-encoded protein is regarded as a positive acute phase reactant due to its binding capacity to hemoglobin (Hb) [33]. It has been figured out that free Hb is a relevant potent prooxidant which mediates several oxidative pathways resulting in the formation of hydroxyl radicals [34], which are often related to DM complications. Hp-Hb binding could exert an anti-inflammatory effect by removing heme compounds which catalyze the oxidation of arachidonic acid by prostaglandin synthase. Interestingly, such Hp–Hb binding capacity depends not only on serum Hp concentration but also on Hp phenotypes. Therefore, we investigated different Hp genotype variants and their association with DR complications. The recessive model, allele model, additive model, and homozygote model results showed that Hp gene variants were not associated with DR, NPDR, and PDR. However, the heterozygote model indicated the association of Hp gene variants with DR. The heterozygote model is the case where the heterozygote conveys both advantages and disadvantages, while both homozygotes convey a disadvantage. A well-established case of heterozygote advantage is that of the gene involved in sickle cell anaemia. A recent study [35] has shown that low levels of nitric oxide (NO), a major mediator of vascular tone, are significantly more prevalent in Hp2-2 DM individuals. The major reason for the reduced bioavailability of NO in the plasma Hp2-2 DM individuals is due to increased plasma Hb in these individuals. It has been reported that the Hp1-1 protein clears Hb more quickly than the Hp2-2 protein, and so there is more Hp2-2-Hb available to bind to ApoA1 in Hp2-2 individuals [36]. As Hp genotype was indicated to be associated with DR, there should be a tendency that such association should be consistent with the severity of the outcome in a dose-dependent manner, in our case, PDR. However, all models in our subgroup analysis showed no association between Hp gene variants and PDR. Nephropathy is usually regarded as one of the complications of T2DM at a serious stage and has been reported to be associated with PDR [37]. Nakhoul et al. reported the association between Hp gene and the risk of nephropathy [38]. However, such association was found to be not significant in Wobeto et al.’s study [39]; therefore, more studies are required to confirm the association between Hp genotype and severity of DR and the underlying mechanism is worth of investigation.

Meta-analysis is a comprehensive statistical method that has been used increasingly for combining and integrating data from a number of independent studies. However, the results of meta-analysis depend on the quality of primary researches included for further analysis. In this study, there are some limitations that might be affecting the summarized results. First, our studies included populations which are not from the same region and DM duration was not uniform in these research groups. Second, some publication bias could be attributed to the inaccuracy association between Hp gene and NPDR, therefore making its result not robust. Third, despite the relatively large size of the population from which cases were derived, the number of DR patients was relatively small. Furthermore, we had problems with missing data during data extraction in Hp1-1 phenotype subjects for NPDR, which have unpredictable effects on multivariate estimates on risk.

Despite the above-mentioned weaknesses, in the meta-analysis comparing DR with DWR, the heterozygote model indicated the association of Hp gene variants with DR. More primary large-sample and well-controlled studies on the association between Hp genotype variants and DR are required to verify these findings.

Conflicts of Interest

The authors declare no conflict of interest.

Authors’ Contributions

Huiqun Wu and Huan Wu contributed equally to this work.

Acknowledgments

This work was supported by the grants from the National Natural Science Foundation of China (nos. 81501559 and 81371663), Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (no. 15KJB310015), and Science and Technology Project of Nantong City (MS12015105), Jiangsu Overseas Research & Training Program for University Prominent Young & Middle-aged Teachers and Presidents 2016, Science and Technology Project Nantong University (15Z04), and Graduate Research and Innovation Plan Project of Nantong University (YKC15056).

References

[1] A. Chadli, S. El Aziz, N. El Ansari et al., “Management of diabetes in Morocco: results of the International Diabetes Management Practices Study (IDMPS) - wave 5,” Therapeutic Advances in Endocrinology and Metabolism, vol. 7, pp. 101–109, 2016.
[2] A. Phillips, “Optimising the person-centred management of type 2 diabetes,” The British Journal of Nursing, vol. 25, pp. 535–538, 2016.
[3] M. F. Mahomoodally, A. Mootooosamy, and S. Wambugu, “Traditional therapies used to manage diabetes and related complications in Mauritius: a comparative ethnoreligious study,” Evidence-Based Complementary and Alternative Medicine, vol. 2016, Article ID 4523828, 25 pages, 2016.
[4] J. A. Beckman and M. A. Creager, “Vascular complications of diabetes,” Circulation Research, vol. 118, pp. 1771–1785, 2016.
[5] R. Klein and B. E. Klein, “Are individuals with diabetes seeing better? A long-term epidemiological perspective,” Diabetes, vol. 59, pp. 1853–1860, 2010.
[6] R. Klein, M. D. Knudston, K. E. Lee, R. Gangnon, and B. E. Klein, “The Wisconsin epidemiologic study of diabetic retinopathy: XXII the twenty-five-year progression of retinopathy in persons with type 1 diabetes,” *Ophthalmology*, vol. 115, pp. 1859–1868, 2008.

[7] E. J. Hollox and L. V. Wain, “Recurrent mutation at the classical haptoglobin structural polymorphism,” *Nature Genetics*, vol. 48, no. 4, pp. 347–348, 2016.

[8] L. E. Cahill, M. K. Jensen, S. E. Chiuve et al., “The risk of coronary heart disease associated with glycosylated hemoglobin of 6.5% or greater is pronounced in the haptoglobin 2-2 genotype,” *Journal of the American College of Cardiology*, vol. 66, no. 16, pp. 1791–1799, 2015.

[9] Y. C. Chen, C. C. Lee, C. Y. Huang et al., “Haptoglobin polymorphism as a risk factor for chronic kidney disease: a case-control study,” *American Journal of Nephrology*, vol. 33, no. 6, pp. 510–514, 2011.

[10] J. Staals, B. M. Pieters, I. L. Knottnerus et al., “Haptoglobin polymorphism and lacunar stroke,” *Current Neurorvascular Research*, vol. 5, no. 3, pp. 153–158, 2008.

[11] A. A. Amiri, M. B. Hashemi-Soteh, M. R. Haghshehans, F. Daneshvar, A. Rastegar, and T. Farazmand, “Haptoglobin polymorphism in individuals with type 2 diabetic microangiopathy,” *North American Journal of Medical Sciences*, vol. 5, pp. 529–535, 2013.

[12] R. Asleh and A. P. Levy, “In vivo and in vitro studies establishing haptoglobin as a major susceptibility gene for diabetic vascular disease,” *Vascular Health and Risk Management*, vol. 1, pp. 19–28, 2005.

[13] M. H. Hampe and M. R. Mogarekar, “Haptoglobin2-2 phenotype is an additional risk factor of retinopathy in type 2 diabetes mellitus,” *Indian Journal of Human Genetics*, vol. 19, pp. 154–158, 2013.

[14] G. C. Nizza, G. Merav, D. S. Olga et al., “Does haptoglobin genotype affect early onset of diabetic retinopathy in patients with type 2 diabetes?” *Retina*, vol. 31, pp. 1574–1580, 2011.

[15] M. B. Adinortey, B. A. Gyan, J. P. Adjimani et al., “Haptoglobin polymorphism and association with complications in Ghanaian type 2 diabetic patients,” *Indian Journal of Clinical Biochemistry*, vol. 26, pp. 366–372, 2011.

[16] V. P. Wobeto, E. T. Rosim, M. B. Melo, L. E. Calliari, and F. Sonati Mde, “Haptoglobin polymorphism and diabetic retinopathy in Brazilian patients,” *Diabetes Research and Clinical Practice*, vol. 77, pp. 385–388, 2007.

[17] S. Y. Meng, S. Chen, D. Q. Li, P. Yu, S. J. Zhou, and D. M. Yu, “Association of haptoglobin gene polymorphism with diabetic retinopathy in type 2 diabetes mellitus (A),” *Chinese Journal of Diabetes*, vol. 19, pp. 325–327, 2011.

[18] J. J. Wang, S. Chen, P. Yu, S. Y. Meng, S. J. Zhou, and D. M. Yu, “Association of haptoglobin gene polymorphism with diabetic retinopathy in type 2 diabetes mellitus (B),” *Chinese Journal of Diabetes*, vol. 19, pp. 329–332, 2011.

[19] T. M. Abraham, K. M. Pencina, M. J. Pencina, and C. S. Fox, “Trends in diabetes incidence: the Framingham Heart Study,” *Diabetes Care*, vol. 38, pp. 482–487, 2015.

[20] L. S. Geiss, J. Wang, Y. J. Cheng et al., “Prevalence and incidence trends for diagnosed diabetes among adults aged 20 to 79 years, United States, 1980-2012,” *JAMA*, vol. 312, pp. 1218–1222, 2014.

[21] Y. W. Chen, Y. Y. Wang, D. Zhao et al., “High prevalence of lower extremity peripheral artery disease in type 2 diabetes patients with proliferative diabetic retinopathy,” *PloS One*, vol. 10, no. 3, article e0122022, 2015.

[22] J. M. Tarr, K. Kaul, M. Chopra, E. M. Kohnert, and R. Chibber, “Pathophysiology of diabetic retinopathy,” *ISRN Ophthalmology*, vol. 2013, Article ID 343560, 13 pages, 2013.

[23] H. Kan, J. Stevens, G. Heiss, R. Klein, K. M. Rose, and S. J. London, “Dietary fiber intake and retinal vascular caliber in the atherosclerosis risk in communities study,” *The American Journal of Clinical Nutrition*, vol. 86, pp. 1626–1632, 2007.

[24] L. Wang, T. Y. Wong, A. R. Sharrett, R. Klein, A. R. Folsom, and M. Jerosch-Herold, “Relationship between retinal arteriolar narrowing and myocardial perfusion: multi-ethnic study of atherosclerosis,” *Hypertension*, vol. 51, pp. 119–126, 2008.

[25] N. Cheung, F. M. Islam, D. R. Jacobs Jr et al., “Arterial compliance and retinal vascular caliber in cerebrovascular disease,” *Annals of Neurology*, vol. 62, pp. 618–624, 2007.

[26] G. Imperatore, R. L. Hanson, D. J. Pettitt, S. Kobes, P. H. Bennett, and W. C. Knowler, “Sib-pair linkage analysis for susceptibility genes for microvascular complications among Pima Indians with type 2 diabetes. Pima diabetes genes group,” *Diabetes*, vol. 47, pp. 821–830, 1998.

[27] H. C. Looker, R. G. Nelson, E. Chew et al., “Genome-wide linkage analyses to identify loci for diabetic retinopathy,” *Diabetes*, vol. 56, pp. 1160–1166, 2007.

[28] Y. P. Fu, D. M. Hallman, V. H. Gonzalez et al., “Identification of diabetic retinopathy genes through a genome-wide association study among Mexican-Americans from Starr County, Texas,” *Journal of Ophthalmology*, vol. 2010, 2010.

[29] Y. C. Huang, I. M. Lin, H. J. Lin et al., “Genome-wide association study of diabetic retinopathy in a Taiwanese population,” *Ophthalmology*, vol. 118, pp. 642–648, 2011.

[30] T. Awata, H. Yamashita, S. Kurishara et al., “A genome-wide association study for diabetic retinopathy in a Japanese population: potential association with a long intergenic non-coding RNA,” *PloS One*, vol. 9, no. 11, article e111715, 2014.

[31] W. H. Sheu, J. Z. Kuo, I. T. Lee et al., “Genome-wide association study in a Chinese population with diabetic retinopathy,” *Human Molecular Genetics*, vol. 22, pp. 3165–3173, 2013.

[32] M. A. Grassi, A. Tikhomirov, S. Ramalingam, J. E. Below, N. J. Cox, and D. L. Nicolae, “Genome-wide meta-analysis for severe diabetic retinopathy,” *Human Molecular Genetics*, vol. 20, pp. 2472–2481, 2011.

[33] M. MacKellar and D. J. Vigerust, “Role of haptoglobin in health and disease: a focus on diabetes,” *Clinical Diabetes*, vol. 34, no. 3, pp. 148–157, 2016.

[34] M. J. Nielsen and S. K. Moestrup, “Receptor targeting of hemoglobin mediated by the haptoglobins: roles beyond heme scavenging,” *Blood*, vol. 114, pp. 764–771, 2009.

[35] I. Dahan, E. Farber, N. Thauho et al., “Interaction between the haptoglobin 2 phenotype and diabetes mellitus on systolic pulmonary arterial pressure and nitric oxide bioavailability in hemodialysis patients,” *Journal of Diabetes Research*, vol. 2015, Article ID 613860, 7 pages, 2015.

[36] J. Watanabe, V. Grijalva, S. Hama et al., “Hemoglobin and its scavenger protein haptoglobin associate with ApoA-1-containing particles and influence the inflammatory properties and function of high density lipoprotein,” *The Journal of Biological Chemistry*, vol. 284, no. 27, pp. 18292–18301, 2009.
[37] M. C. Boelter, J. L. Gross, L. H. Canani et al., “Proliferative diabetic retinopathy is associated with microalbuminuria in patients with type 2 diabetes,” Brazilian Journal of Medical and Biological Research, vol. 39, no. 8, pp. 1033–1039, 2006.

[38] F. M. Nakhoul, R. Miller-Lotan, H. Awaad, R. Asleh, and A. P. Levy, “Hypothesis—haptoglobin genotype and diabetic nephropathy,” Nature Clinical Practice Nephrology, vol. 3, pp. 339–344, 2007.

[39] V. P. Wobeto, P. M. Garcia, T. R. Zaccariotto, and F. Sonati Mde, “Haptoglobin polymorphism and diabetic nephropathy in Brazilian diabetic patients,” Annals of Human Biology, vol. 36, pp. 437–441, 2009.