Ethnobotanical Approaches of Traditional Medicinal Plants Used in the Management of Asthma in Iran

Amir Jalali 1,2, Atefeh Raesi Vanani 3,4,* and Maryam Shirani 4

1 Department of Toxicology, Toxicology Research Center, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
2 Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
3 Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
4 Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

* Corresponding author: Department of Toxicology, Toxicology Research Center, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. Tel: +98-9163179736, Fax: +98-6133738381, Email: atefehraisi1393@gmail.com

Received 2017 September 27; Revised 2019 May 28; Accepted 2018 July 14.

Abstract

Context: Asthma is the most common respiratory disease that has increased in prevalence worldwide during the last decade and causes an estimated 250,000 deaths annually. Due to adverse effects of chemical medicines, patients are seeking alternative therapy for management of asthma. This review aims at medicinal properties of Iranian traditional medicine and potential uses of these plants as antiasthmatics (both extrinsic and intrinsic).

Evidence Acquisition: Information was sourced from Iranian traditional medicine textbooks and scientific databases, such as PubMed, Science Direct, Google Scholar, SCOPUS, SID, IranDoc and MagIran. The data search was up-to-date as of October 31, 2017.

Results: This review reveals significant ethnobotanical information on medical plants to manage asthma from literature, which consists of botanical name, part used, preparation and administration. According to the main traditional Persian medicine texts Crocus sativus, Carum carvi, Nigella sativa, Myrica sapida, Portulaca oleracea, Rosa damascena, Viola odorata and Zingiber officinale were the most efficacious medicinal plants for the improvement of asthma.

Conclusions: Iran has a precious traditional plant-based knowledge on healthcare and important scientists such as Razi and Avicenna used a lot of plants and plant extracts for treatment a large number of diseases. This study represents some pharmacological and phytochemical reports available on medicinal plants using for treatment asthma and their underlying molecular mechanisms. Due to no scientifically proven cure for asthma, this review introduces many traditional herbs that can be used for asthma treatment.

Keywords: Asthma, Traditional Medicinal Plants, Treatment, lung, Iran

1. Context

Asthma is one of the most common chronic diseases in the world and clinical features include wheezing, dyspnea and coughing. Asthma is a factor in disturbing the quality of life, physical activity and emotional activity. The prevalence rate of asthma varies in different parts of the world, such that this rate is higher in developed countries such as Australia, New Zealand and the United Kingdom. According to studies, the prevalence rate, morbidity, mortality and economic burden of asthma, especially in children, are on the rise. In Iran, the prevalence of asthma is between 2% (diagnosed by a physician) and 9% (caused by physical activity). At present, more than 300 million people are suffering from this disease.

Asthma is characterized by increased airway response to allergens and increased mucosal secretions and eosinophilic inflammation. The pattern of inflammation in asthma is a characteristic of allergic diseases, and it affects inflammatory cells and many mediators. The therapeutic purposes of asthma are to prevent the onset of symptoms, establish normal lung function, help the patient in improving natural activity, prevent relapse of the disease, provide optimal drug therapy with minimal side effects and satisfy the patient and the family from treatment.

The drugs available for the treatment of asthma are divided into two groups:

The first group are drugs to prevent smooth muscle contraction, such as beta-adrenergic agonists (metaproterenol, terbutaline, albuterol, formoterol, bitolterol, salmeterol, pirbuterol), methylxanthenes (theophylline, aminophylline, theophylline, dipyridamole, proxylidine) and anticholinergics (ipratropium bromide, tiotropium bromide).

The second group are drugs to prevent and eliminate inflammation, such as corticosteroids (prednisolone,
dexamethasone, beclomethasone, dipropionate, dexamethasone, budesonide, fluticasone), antileukotrienes (pro-
bilukast, irlukast, zileuton, montelukast, zafirlukast, pranlukast), and mast cell stabilizers (cromolyn sodium,
nedocromil sodium).

The current medical treatment for asthma has some limitations. First, there is no known cure for asthma. In
addition, patients continue to be at increased risk of ex-
acerbation of symptoms. Finally, some of the side effects
of drugs such as osteoporosis, cataracts, growth distur-
bances, arrhythmias and seizures can all be factors in find-
ing treatments with fewer side effects, which are cheaper
and more effective that can replace existing treatments
(10).

2. Evidence Acquisition

First, these textbooks of Iranian traditional medicine
including Al-Hawi, Al-qanun fi al-tibb, Zakhireh
Kharazmshahi, Tohfat ol Momenin, were used to find
plants which were used to treat asthma in traditional
Iranian medicine. Then, scientific databases including
PubMed, Science Direct, Google Scholar, SCOPUS, SID, Iran-
Doc and Magiran were searched to find possible evidence
of the efficacy of these plants for managing asthma. The
data search was up-to-date as of October 31, 2017.

3. Results

3.1. Traditional Approaches to Asthma Management in Iran

Over the past two decades, there has been significant
growth in the use of herbal medicines to manage and treat
asthma around the world. In many countries, the use of
traditional medicine is common for the treatment of dis-
eases and the promotion of public health. On the other
hand, attention to medicinal herbs are obvious in the pro-
duction of drugs and the treatment of serious illnesses
such as diabetes, atherosclerosis, cardiovascular disease,
neurological diseases and cancer (10).

The proposed mechanism for the desired effects of
plants to improve diseases is to make changes in the re-
dox state. Some important compounds in plants include
flavonoids, terpenes, alkaloids, and essential oils (10). Mu-
colytic agents have often been used to treat asthma be-
cause, according to traditional doctors especially Razi and
Avicenna, thick and sticky sputum should be removed by
diluent drugs. It should be noted that the effect of a drug
type varies from person to person. Therefore, a drug that is
effective for a person in the treatment of a disease may not
be effective in someone else, and it is up to the medical do-
tor to select the appropriate drug for the patient by doing
the test. The names of plants used in traditional medicine
for the treatment of asthma and most commonly used in
combination, some of which are listed in Table 1.

3.2. Evaluation of Plants Pharmacological Performance

Carum Carvi (caraway) is an herbaceous plant with
pink flowers and contains carvon, a-pinene, B-pinene, and
myrcene, which is used in traditional medicine for the
treatment of gastrointestinal and respiratory system dis-
orders in countries such as Germany and Iran. In a study,
the bronchodilatory and anticholinergic effects of aque-
ous extracts, macerated and essential oils of the above
plant were evaluated on isolated guinea pig trachea. The
results confirmed the relative bronchodilatory effects of
the plant, which is expected to have a stimulating effect on
beta-2 adrenergic receptors and inhibitory effects on H1 re-
ceptors as the mechanisms of action for these effects (32).

Crocus sativus is a small, durable plant with hairy leaves
and purple funnel shaped flowers, cultivated in many
parts, especially in Iran and Spain. Some of the available
phytochemicals include crocins, safranal, picrocrocin, ke-
toisporone, isophorone, and glycosidic terpenoids (33,
34). In a study regarding the relaxant effect of the saffron
hydroalcoholic extract and its active ingredient (safranal)
on beta 2-adrenoceptors of guinea pig tracheal chains,
it was observed that the extract and safranal have rela-
tive stimulatory effects on beta-2 receptors and may also
be effective on tracheal chains through another proposed
mechanism of action, i.e. the control of histamine H1
receptors. In addition, another study confirmed the in-
hibitory effects of extract and safranal on muscarinic re-
cptors (33).

Zingiber officinale Rose, a plant root, is widely used
as one of the most important oral spices and medicin-
als plants. In traditional medicine, ginger is used to
treat a wide range of diseases, such as asthma, rheuma-
toid arthritis, neurological diseases, and diabetes (35, 36).
Phytochemical studies have shown that ginger is rich
in gingerols and shogaols; among these, 6-gingerol and
6-shogaol are powerful 5-lipoxygenase inhibitors (37-39).
Ginger has the ability to inhibit the synthesis of some pro-
inflammatory cytokines such as interleukin-1, 8 (IL-1 and
IL-8), and tumor necrosis factor (TNF-α), and can impede T-helper1 (Th1) responses (40, 41). In addition, ginger can
inhibit Th2-induced immune responses, which play an im-
portant role in the pathogenesis of asthma (42). In a study,
the effect of ginger on asthmatic patients was evaluated
and the results showed improvement in spirometric in-
dices of PEF, FEV1 and asthma control test (ACT) scores (9).

Myrica sapida is a type of tree with variable height be-
tween 3 and 15 meters that grows in subtropical regions,
and contains myricetin-3, rhamnoside and quercetin gly-
cosides that have properties such as inhibiting the release
of histamine from mast cells and polymorphonuclear
leukocytes, anti-smooth muscle spasm, anti-allergen, anti-
anaphylactic activity and bronchodilation (43-47). During
a study, the bronchodilator and anti-anaphylactic activi-
ties of the ethanolic extract of this plant were evaluated
on experimental models of acetylcholine-induced bronchospasm in guinea pigs and egg albumin-induced anaphylaxis in guinea pigs. The results of this study indicate significant effects of anti-bronchospasm and anti-allergen, and the proposed mechanism for these events could be based on the reduction of bronchial hyper-responsiveness and potent inhibitory effect on immediate hypersensitivity reactions (27).

Portulaca oleracea L. is an annual tree containing antioxidants and omega-3 fatty acids (48, 49). A study evaluated the bronchodilatory effects of this plant compared to theophylline syrup and salbutamol in patients with asthma. It was observed that boiled extract increased all the lung function tests, including forced expiratory volume in one second (FEV1), peak expiratory flow (PEF), and maximal mid-expiratory flow (MEF25-75) (50). Finally, it can be concluded that Portulaca oleracea has anti-asthmatic powers that can exert its effect through antioxidant and anti-inflammatory agents (50, 51).

Rosa damascena L. is a shrub with a height of about 1 to 2 meters containing carboxylic acid, terpene, myrcene, vitamin C, which is grown in different parts of the world and especially in the city of Kashan in Iran to provide rose water and essential oils (52, 53). In a study that investigated the effects of alcoholic extract and essential oils of the plant in comparison with different concentrations of theophylline on tracheal chains of guinea pigs, the potent relaxant effect of the plant was observed possibly via stimulation of beta receptors and inhibition of histamine H1 receptors and inhibition calcium channels and anti-inflammatory activity (54).

Viola odorata is a plant with dark purple flowers that is native to the Asian, North African and European regions and contains phytochemicals of alkaloids, glycosides, saponins, tannins, methyl salicylate, mucilage, co-marin, vitamin C and flavonoids (55, 56). In a parallel double-blind randomized controlled trial, the effects of this plant flower syrup were investigated on coughing in children with asthma and the results revealed a significant reduction in coughing in children receiving violet syrup compared to placebo (57). In another study, the effect of alcoholic extract of Viola mandshurica was assessed on valbumin-induced asthmatic mouse model, and the results showed that alcoholic extract inhibited the increased serum levels of IgE, IL-4, IL-13 and bronchoalveolar lavage fluid (BALF) and the decreased eosinophilia, mucus hyper-secretion (58).

Nigella sativa Sibth is herbaceous plant with blue-green flowers and tiny black seeds that contains ingredients of niggelline, nigellicine, thymoquinone (TQ), dithymoquinone, thymol, and carvacrol (59-61). In Islamic medicine, it is mentioned that this plant is effective for the treatment of all diseases, except for aging and death. Its seed extract possesses anticough activity, anti-inflammatory and antioxidant properties, and its crude oil seeds have anti-histamine properties. In traditional medicine, this plant alone or with honey has been used to improve asthma and bronchospasm. Studies on the evaluation of the aqueous and organic extracts and carvacrol TQ of N. sativa on guinea pig trachea showed the effects of bronchodilatory, anticholinergic, relaxant, calcium antagonist, muscarinic and histamine receptors inhibition and B2 receptors stimulation (62).

3.3. Phytochemical Properties Evaluation

Phytoconstituents in medicinal plants are the main factor in their pharmacological properties, so that about 70% of over the counter (OTC) drugs are derived from medicinal plants and some of these phytoconstituents include flavonoids, xanthones, and phenols, alkaloids, terpenes, essential oils and glycosides. Some anti-asthma properties of flavonoids include inhibiting the platelet-activating factor (PAF), phospholipase A2 (PLA2) and phosphodiesterase (PDE), anti-allergen, anti-inflammatory, anti-spasm and antioxidant activities (63-67). In addition, flavonoids prevent the release of allergic mediators, including histamine, through the inhibition of mast cell degranulation (68). The phenolic compounds have anti-inflammatory properties, antioxidants and immune system boosters, and inhibit the accumulation of platelets. The alkaloids, terpenes and essential oils have anti-inflammatory properties, smooth muscle relaxant and immune-modulatory properties (69, 70).

Oxidative stress plays an essential role in the development of respiratory problems and some diseases, including aging (71), cancer (72), diabetes (73, 74), neurological disorders such as alzheimer’s and parkinson’s (75, 76), which are neutralized by the antioxidant activity of the phytochemical compounds of the plants.

4. Conclusions

The herbs for asthma treatment can be employed as the rich sources of compounds in producing new and innovative drugs. Formerly, medicinal plants had been used for the treatment of respiratory disorders. For example, Ma Huang plant used to treat respiratory disorders in China which contained ephedrine that was extracted from this plant since 1940 to treat asthma. Moreover, another drug to treat the asthma, called Cromolyn sodium as a mast cell stabilizer, has been prepared from the Khellin (Ammi visnaga) plant (10). It is also suggested that further studies are needed to investigate active compounds in herbs and their anti-asthma effects. This review attempts to bridge the gap in the existing indigenous knowledge of plants and therefore proposes wide range of various researches on the application of medicinal plants for asthma treatment.

Jundishapur J Nat Pharm Prod. 2020;15(1):e62269.
Footnotes

Authors' Contribution: Study concept and design: Amir Jalali, Atefeh Raesi Vanani, and Maryam Shirani. Drafting of the manuscript: Atefeh Raesi Vanani. Critical revision of the manuscript for important intellectual content: Amir Jalali and Atefeh Raesi Vanani.

Conflict of Interests: None.

Funding/Support: This study was supported in by Jundishapur University of Medical Sciences, Ahvaz, Iran.

References

1. Fatokun OT, Wojoula TE, Esiebo KB, Kundle OF. Medicinal plants used in the management of asthma: A review. Eur J Pharm Med Res. 2016;3(2):82–92.
2. Varmaghami M, Farzadfar F, Shariﬁ F, Rashidian A, Moin M, Moradi-Lakeh M, et al. Prevalence of asthma, COPD, and chronic bronchitis in Iran: A systematic review and meta-analysis. Iran J Allergy Asthma Immunol. 2016;15(2):93–104. [PubMed: 27909362].
3. Malani PN. Harrison’s principles of internal medicine. JAMA. 2012;308(17):1811. doi: 10.1001/jama.2012.17181-b.
4. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. TH1 and TH2 cells: Different patterns of cytokine secretion lead to different functional properties. Annu Rev Immunol. 1989;7:415–35. doi: 10.1146/annurev.im.07.040189.002215. [PubMed: 2532792].
5. Mosmann TR, Bad S. The expanding universe of T-cell subsets: TH2 and more. Immunol Today. 1996;17(3):338–46. doi: 10.1016/0167-7562(96)00066-2. [PubMed: 8820272].
6. Rabe KF, Adachi M, Lai CK, Soriano JB, Vermeire PA, Weiss KB, et al. The global asthma insights and reality surveys. J Allergy Clin Immunol. 2004;114(1):40–7. doi: 10.1016/j.jaci.2004.04.042. [PubMed: 15243124].
7. Juniper EF, Bousquet J, Abetz L, Bateman ED, Goal Committee. Identifying ‘well-controlled’ and ‘not well-controlled’ asthma using the Asthma Control Questionnaire. Respir Med. 2006;100(4):816–21. doi: 10.1016/j.resmed.2005.08.012. [PubMed: 16226443].
8. Farzini D, Shariﬁpour A, Mansouri SN, Aﬁlayi M, Abedi S. Efficacy of ginger in patients uncontrolled on standard moderate asthma treatment. J Mazandaran Univ Med Sci. 2012;21(2):37–40.
9. Mali KG, Dhake AS. A review on herbal antiasthmatics. Orient Pharm Exp Med. 2011;11(2):77–90. doi: 10.1007/s12603-011-0018-4. [PubMed: 22207824].
10. BHMA. British herbal pharmacopoeia. Bournemouth: British Herbal Medicine Association; 1996.
11. Chiej R. The Macdonald encyclopedia of medicinal plants. London: Macdonald & Co (Publishers) Ltd; 1984.
12. Fromhe D, Pfander HJ. A colour atlas of poisonous plants. London: Wolfe Publishing Ltd; 1984.
13. Dioscorides P. [De materia medica]. Leipzig, Germany: Cnobloch; 1829.
14. Martindale WH. The extra pharmacopoeia. 2. London: Pharmaceutical Press; 1943.
15. Holorasani MA, [Makhtzan al-Adwaih]. Reprinted from a copy which was printed in Calcultta dated in 1844. Tehran: Enqelab-e Eslami Publishing and Educational Organization; 1992. Arabic.
16. Hessani-Tabib M. [Tabf ut omr alinin]. Tehran and Qum: Mostafavi Press; 1959. Persian.
17. Razi A. [Al-hawi fl il-tibb]. Hyderabad: Osmania Oriental Publications Bureau; 1968.
18. Jorjani S. [Zakheev Khurazmshahi]. Tehran: Iranian Cultural Organisation Press; 1976.
19. Barnes J, Anderson LA,Phillipson JD, Newall CA. Herbal medicines. London: pharmaceutical press; 2007.
20. Tierra M. The way of herbs. New York City: Simon and Schuster; 1998.
21. Hilton WH, Coon N. The Rodale herb book: How to use, grow, and buy nature’s miracle plants. Emmaus, Pennsylvania: Rodale Press; 1975.
22. Tyler V, Brady L, Robbers J. Pharmacognosy. 9th ed. Philadelphia: Lea and Febiger; 1988.
23. Al-Bakhtari RAA, Mattini J. [Hedayat al-motealeem in fl-tibb]. Mashhad, Iran: Mashhad University; 1965.
24. Sina L. [Al-quinun fl-tibb]. Tehran: Aalalami Library; 2005. p. 48–51.
25. Leyel CF. A Modern Herbal Mrs M. Grieve. 3. London, England: Penguin books, Harmondsworth; 1984.
26. Patel KG, Bhalodia PN, Patel AD, Patel KV, Gandhi TR, Evaluation of bronchodilator and anti-anaphylactic activity of Myrica sapida. Iran Biomed. J. 2008;12(3):391–6.
27. Ahwazi AA, [Kamal e Sanaa al-Tibbiyah]. Mashhad: Lithograph edition of Astan-e Quds-e Razavi; 1973. p. 299–7.
28. Li S, Smith P, Saurat GH. Chinese medicinal herbs: A modern edition of a classic sixteenth-century manual. Chelmsford, Massachusetts: Courier Corporation; 2003.
29. Hemmati AA, Arzi A, Adineh A, Mostofi NE, Mozaffari AR, Jalali A, Yarrow (Achillea millefolium L.) extract impairs the fibrogenic effect of bleomycin in rat lung. J Med Plants Res. 2011;5(10):1843–9.
30. Moosavi M, Jalali A, Kianpour F, Siahpoosh A, Farajzadeh-Shakib A. Assessing mutagenicity of methanolic extract of Borage flower (Echium amuenum) using Ames bioassay. J Med Plant Res. 2011;5(17):3207.
31. Boskabady MH, Talebi M. Bronchodilatory and anti-inflammatory effects of Carum carvi on isolated guinea pig tracheal chains. Med J Islam Rep Pub. Iran. 1999;12(4):345–51.
32. Nemati H, Boskabady MH, Ahmadzadef Vostakolaei H. Stimulatory effect of Crocus sativus (saffron) on beta2-adrenoreceptors of guinea pig tracheal chains. Phytochemistry. 2008;68(12):3038–45. doi: 10.1016/j.phytochem.2007.07.008. [PubMed: 18797995].
33. Tarantilis PA, Tousspas G, Polissiou M. Determination of saffron (Crocus sativus L.) components in crude plant extract using high-performance liquid chromatography-UV-visible photoiode-array detection mass spectrometry. J Chromatogr A. 1995;699(1):2307–18. doi: 10.1016/0021-9673(95)00044-n. [PubMed: 7757208].
34. Ali BH, Blunden G, Tanira MO, Nemmar A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food Chem Toxicol. 2008;46(4):209–20. doi: 10.1016/j.fct.2007.09.085. [PubMed: 17950516].
35. van Breemen RB, Tao Y, Li W. Cyclooxygenase-2 inhibitors in ginger (Zingiber officinale). Fitoterapia. 2010;81(2):38–41. doi: 10.1016/j.fitote.2010.09.004. [PubMed: 20837132].
36. Granzza R, Lindmark L, Frondoza CG. Ginger-an herbal medicinal product with broad anti-inflammatory actions. J Med Food. 2005;8(2):325–32. doi: 10.1089/jmf.2005.8.125. [PubMed: 1617600].
37. Shen CL, Hong KJ, Kim SW. Comparative effects of ginger root (Zingiber officinale Rosc.) on the production of inflammatory mediators in normal and osteoarthritic cow condrocytes. J Med Food. 2005;8(2):249–53. doi: 10.1089/jmf.2005.8.149. [PubMed: 1617605].
38. Ahut MI, Champa P, Ramadan A, Pham Van L, Araujo L, Brou Andre K, et al. Ginger prevents Th2-mediated immune responses in a mouse model of airway inflammation. Int Immunopharmacol. 2008;8(12):3626–32. doi: 10.1016/j.intimp.2008.07.009. [PubMed: 18692598].
43. Dorsch W, Wagner H. New antiasthmatic drugs from traditional medicine? Int Arch Allergy Appl Immunol. 1991;94(1-4):262-5. doi: 10.3109/01716814.1991.10408004.

44. Hazekamp A, Verpoorte R, Panthong A. Isolation of a bronchodila-
tor flavonoid from the Thai medicinal plant Clerodendrum petasites. J Ethnopharmacol. 2001;78(1):45-9. doi: 10.1016/s0378-8741(01)00220-8. [PubMed: 11585687].

45. Johri RK, Zutshi U, Kameshwaran L, Atal CK. Effect of quercetin on rat mast cell. Indian J Physiol Pharmacol. 1985;29(1):43-6. [PubMed: 392201].

46. Park KH, Park J, Koh D, Lim Y. Effect of saikosaponin-A, a triterpenoid glycoside, isolated from Bupleurum falcatum on experimental al-
lergic asthma. Phytother Res. 2002;16(4):359-63. doi: 10.1002/ptr.1903. [PubMed: 12132293].

47. Puri A, Saxena GP, Rupi PY, Kulsheerdhika DK, Saxena KC, Dhawan BN. Immunostimulant activity of Picroliv, the Iridoid Glycoside fraction of Picrorhiza kurroa, and its protective action against Leishmanina donovani infection in hamsters. Planta Med. 1992;58(6):528-32. doi: 10.1055/s-2006-990542. [PubMed: 7226313].

48. Boskabady MH, Borouşaki M, Aslani MR. Relaxant effect of Portulaca oleracea L. subsp. Sativa (Haw.) Celak. J Ethnopharmacol. 2001;78(1):45-9. doi: 10.1016/s0378-8741(01)00320-8. [PubMed: 11803026].

49. Malek F, Boskabady MH, Borushaki MT, Tohidi M. Bronchodila-
tory effect of Portulaca oleracea in airways of asthmatic patients. J Ethnopharmacol. 2001;73(3):175-80. doi: 10.1016/s0378-8741(00)00318-4. [PubMed: 11585687].

50. Malek F, Mayor J, Malek A, Borušaki M. Anti-inflammatory, antioxidant, and immunomodulatory aspects of Nigella sativa for its preventive and bronchodilatory effects on ob-
structive respiratory diseases: A review of basic and clinical evidence. J Funct Foods. 2015;7:201-7. doi: 10.1016/j.jff.2015.06.012.

51. Miller AL. The etiologies, pathophysiology, and alterna-
tive/complementary treatment of asthma. Altern Med Rev. 2008;13(1):20-47. [PubMed: 18224755].

52. Okwu DE. Phytochemical and vitamin content of indigenous spices of South Eastern Nigeria. J Sustain Agric Environ. 2004;6:30-4. [PubMed: 15175395].

53. Farquhar JW. Plant sterols: Their biological effects in humans. In: Spiller GA, editor. Handbook of lipids in human nutrition. CRC Press; 1996. p. 101-5.

54. Ebrahim MI, Okojie AK. Physiological mechanisms underlying the use of Garcinia kola Heckel in the treatment of asthma. Afr J Respir Med. 2012;8(1).

55. Okoli RI, albge O, Obodo O, Mensah JK. Medicinal herbs used for managing some common ailments among Edo people of Edo State, Nige-
ria. Pakistan J Nutr. 2007;6(3):490-6. doi: 10.3923/pjn.2007.490.496.

56. Nasri H, Rafieian-Kopaee M. Oxidative stress and aging prevention. Int J Prev Med. 2013;4(9):151-2. doi: 10.1007/s11064-013-1232-
4. [PubMed: 23791291].

57. Mirhoseini M, Baradaran A, Rafieian-Kopaee M. Medicinal plants. J Herbmed Pharmacol. 2013;2:13-6.

58. Nasri H, Rafieian-Kopaee M. Protective effects of herbal antioxidants on diabetic kidney disease. J Res Med Sci. 2014;19(5):182-3. [PubMed: 24872571]. [PubMed Central: PMC3961332].

59. Mirzaei MGR, Azimian M, Moezzi M, Vameghi R, Rafieian-Kopaee M. Ef-
fact of lamotrigine on prophylaxis of pediatric classic migraine. Iran J Child Neurol. 2009;3(2):35-8.

60. Rabiei Z, Rafieian-Kopaei M, Heidarian E, Saghaei E, Mokhtari S. Effects of Zizyphus jujube extract on memory and learning impairment induced by bilateral electric lesions of the nucleus basalis of Meynert in rat. Neurochem Res. 2014;39(2):333-60. doi: 10.1007/s11064-013-2222-
8. [PubMed: 24379180].
Table 1. Plants Used to Treat Asthma in Traditional Iranian Medicine

No.	Family	Scientific Name	Persian Name	Parts Used	Active Component	Preparation And Administration	References
1	Pteridaceae	*Adiantum capillus-veneris* L.	Parsiavashan	Leave	Flavonoid, mucilage, tannin	Boiled with anjir	11,14
2	Moraceae	*Ficus carica* L.	Anjir	Fruit	Alkaloid	Boiled with anison and parsiavashan	13,15
3	Fabaceae	*Melilotus officinalis* L.	Eklil al-malek	Seed	Flavonoid, tannin, resin	Boiled	16,17
4	Fabaceae	*Astragalus fasciculifolius* Boiss.	Anzarut	Gum	Gum	Pill	18
5	Lamiaceae	*Hyssopus officinalis* L.	Zufa	Flower-leave	Flavonoid, glycoside, tannin	Boiled with irsa, ferasation and shirin bayan	11,19
6	Leguminosae	*Trigonella foenum-graecum* L.	Shanbalileh (holbeh)	Seed	Vit. C, minerals, mucilage, gum	Boiled with anjir before the meal	13,18,20
7	Asteraceae	*Carthamus tinctorius* L.	Golrang (kajireh)	Seed	Mineral, glycoside	With almond oil	11,18
8	Polypodiaceae	*Polypodium vulgare* L.	Baspayak	Root	Tannin, saponin, mannitol	Boiled with anison and shirin bayan	12,15,18,20
9	Cucurbitaceae	*Citrullus colocynthis*	Hanzal	Fruit	Alkaloid, resin, pectin	Mixture with anison, an acinus before sleeping	12-15,21
10	Brassicaceae	*Brassica nigra* (L.)	Khardal	Seed	Mucilage	With ghersa-al hemar, an acinus daily	13,18,22,23
11	Umbelliferae	*Pimpinella anisum* L.	Anisun (badian roomi)	Fruit	Flavonoid (luteolin)	Boiled with anisun and parsiavashan	11,13,18,20,23
12	Convolvolaceae	*Cuscuta planifolia* Ten.	Altimun	Seed	Flavonoid (phytosterol)		13,15,18
13	Rutaceae	*Ruta graveolens* L.	Sodab	Extract	Flavonoid, glycoside, tannin	With grined zaravand	12,15,24
14	Burseraceae	*Boswellia Carteri* birde.	Kondor	Gum	Gum, resin		12,23,25
15	Coniferae	*Juniperus excelsa* Biech.	Abhal	Seed	Tannin, resin	Dry powder with honey and cow butter	12,15,21,25
16	Leguminosae	*Chichyrrica glabra* L.	Shirin bayan	Root	Flavonoid, mucilage, mineral	With hanzal, an acinus daily	11,15,19
17	Brassicaceae	*Lepidium sativum* L.	Tulkhm shahi (tartizak)	Seed	Mineral		12,13,15,18
18	Lauraceae	*Laurus nobilis* L.	Barg bu	Fruit	Essential fatty acids, mucilage	With honey, an acinus daily	11,15,18
19	Plantaginaceae	*Plantago major* L.	Barhang	Leave-root	Flavonoid, mucilage, alkaloid	Syrup contains behdaneh, shirin bayan root, zufa and banafsheh	13,15,21,25
20	Rosaceae	*Pyrus cydonia* L.	Thum behdaneh	Seed	Flavons, mucilage, resin	Syrup contains behdaneh, shirin bayan root, zufa and banafsheh	13,15,21,25
21	Iridaceae	*Crocus sativus* L.	Zaffaron	Flower	Crocin, safranal, mucilage		13,22,23,25,26
22	Zingiberaceae	*Zingiber officinale* Rose	Zanjafil	Root	Mucilage	Boiled	15
23	Portulacaceae	*Portulaca oleracea* L.	Khorfeh	Seed-leave	Mucilage, alkaloid, glycoside		12,15,21,25
24	Violaceae	*Viola odorata*	Banafsheh	Flower	Mucilage, alkaloid, gum		12,22,23,25
25	Rosaceae	*Rosa damascena* L.	Gole mohammadi	Flower	Carotene, vit C, resin		11,13,25
26	Ranunculaceae	*Nigella sativa* Sibth.	Siah daneh	Seed	Mucilage, alkaloid, tannin		13,25
27	Myricaceae	*Myrica sapida*	Kaiphal	Bark	Quercetin		25,27
28	Apiaceae	*Carum carvi* L.	Zire siah	Seed	Mucilage, tannin, resin		11,25
No.	Family	Genus and Species	Part(s)	Active Pr.	Boiled/Mixed with		
-----	----------------	---	------------------	----------------------------	-----------------------------------		
29	Nitrariaceae	Peganum harmala L.	Expand seed	Alkaloid			
30	Compositae	Anacyclus pyrethrum L.	Aqarqarha Seed	Mucilage			
31	Convolvulaceae	Operculina turpethum L.	Turbod Root	Flavonoid	A mixture with khardal, aftimun, gazaneh and honey		
32	Labiatae	Levandula stocheus L.	Otaghodos Branch	Flavonoid	Boiled before sleeping		
33	Compositae	Chrysanthemum parthenium L.	Bokhore maryam underwater caulis	Alkaloid (phytosterol), mucilage			
34	Lamiaceae	Pulgium vulgare Mill.	Poneh Leave	Tannin, resin			
35	Rhamnaceae	Zizyphus vulgaris L.	Unnab Fruit	Mucilage, vit C, tannin	Boiled		
36	Cruciferae	Raphanus sativus L.	Trob Root	Essential fatty acids, Glycoside			
37	Cucurbitaceae	Ecballium elaterium L.	Qetha al-hemar Fruit	Essential fatty acids, alkaloid	Boiled with pichak sahraei		
38	Xanthorrhoeaceae	Aloe vera [L.] Burm. f.	Sahr zard Aerial parts	Glycoside, resin	Mixture with aftimun and hanzal		
39	Compositae	Matricaria chamomilla L.	Raahoonaj Flower	Flavonoid, mucilage			
40	Fabaceae	Caesalpinia bonduc [L.] Roxb.	Fandoq hendi Root	Flavonoid			
41	Umbellifera	Ferula persica wild.	Sabbinaj Gum	Gum, Resin			
42	Tamaricaceae	Tumex manniiferu Ehrenb.	Gaz anjabin Fruit	Mucilage, sucrose	Boiled		
43	Costaceae	Cheilocostus speciosus [J. Koenig]	Qost shirin Root	Mucilage	With afsantin		
44	Convolvulaceae	Convolvulus arvensis L.	Pichak sahraei Aerial parts	Tannin, glycoside, resin	Boiled with ghesa-al hemar		
45	Araliaceae	Hedera helix L.	Ashaqe Fruit	Mineral, tannin, vit C	Boiled		
46	Rosaceae	Prunus amygdalus [L.] Stock	Badam shirin Oil	Essential fatty acids, mucilage, vit C			
47	Liliaceae	Veratrum album L.	Kharbagh sefid Root	Gum, resin			
48	Liliaceae	Allium sativum L.	Sir Onion	Mucilage, mineral, vit C, A			
49	Umbellifera	Opomax chironium kochi	Javshir Gum	Gum, malic acid			
50	Umbellifera	Ferula galbaniflua Boiss.	Barijeh Gum resin	Gum, resin	Mixture with honey		
51	Umbellifera	Dorema ammoniacum Don	Kandal Gum	Resin			
52	Compositae	Achillea millefolium L.	Bumadaran Flower	Flavonoid, alkaloid,			
53	Leguminosae	Cassia Fistula L.	Fulus Fruit	Flavonoid			
54	Boragineaceae	Echium amoenum Fisch. & Mey.	Gul gavzaban Mucilage, alkaloid, vit C				
55	Urticaceae	Urtica dioica L.	Gazaneh Seed	Carotene, minerals			

No information available.