Thermal dimension of quantum spacetime

Giovanni Amelino-Camelia\(^a,\ast\), Francesco Brighenti\(^b,c\), Giulia Gubitosi\(^b\), Grasiele Santos\(^a\)

\(^a\) Dipartimento di Fisica, Università “La Sapienza” and Sez. Roma I INFN, P.le A. Moro 2, 00185 Roma, Italy
\(^b\) Theoretical Physics, Blackett Laboratory, Imperial College, London, SW7 2BZ, United Kingdom
\(^c\) Dipartimento di Fisica e Astronomia dell’Università di Bologna and Sez. Bologna INFN, Via Irnerio 46, 40126 Bologna, Italy

ARTICLE INFO

Article history:
Received 24 November 2016
Accepted 24 January 2017
Available online 27 January 2017
Editor: J. Hisano

ABSTRACT

Recent results suggest that a crucial crossroad for quantum gravity is the characterization of the effective dimension of spacetime at short distances, where quantum properties of spacetime become significant. This is relevant in particular for various scenarios of “dynamical dimensional reduction” which have been discussed in the literature. We are here concerned with the fact that the related research effort has been based mostly on analyses of the “spectral dimension”, which involves an unphysical Euclideanization of spacetime and is highly sensitive to the off-shell properties of a theory. As here shown, different formalizations of the same physical theory can have wildly different spectral dimension. We propose that dynamical dimensional reduction should be described in terms of the “thermal dimension” which we here introduce, a notion that only depends on the physical content of the theory. We analyze a few models with dynamical reduction both of the spectral dimension and of our thermal dimension, finding in particular some cases where thermal and spectral dimension agree, but also some cases where the spectral dimension has puzzling properties while the thermal dimension gives a different and meaningful picture.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

There are several alternative approaches to the study of the quantum-gravity problem, with formalizations and physical pictures that are significantly different, in most cases offering very few opportunities to compare predictions between one approach and another. As a result, there is strong interest for the few features which are found to arise in several alternative models. A common expectation is that at short distances the classical picture of spacetime as a Riemannian geometry should be replaced by some new “quantum” geometry. The alternative pictures of quantum spacetime appear to be rather different, but over the last decade it became clear that some of these have in common the mechanism of “dynamical dimensional reduction”: the familiar four-dimensional classical picture of spacetime in the IR (“infrared”, i.e. for probes of wavelength much longer than the Planck length) is replaced by a quantum picture with an effective number of spacetime dimensions smaller than four in the UV (“ultraviolet”, i.e. for probes of wavelength comparable to the Planck length). These exciting recent developments face the challenge that the standard concept of dimension of a spacetime, the “Hausdorff dimension”, is inapplicable to a quantum spacetime [1,2], and therefore one must rely on some suitable new concept. This challenge has been handled so far mostly\(^1\) by resorting to the notion of “spectral dimension”, whose key ingredient is the (modified) d’Alembertian of the theory\(^2\) and for classical flat spacetimes reproduces the Hausdorff dimension. It was in terms of the spectral dimension that dynamical dimensional reduction was described for several approaches to the quantum-gravity problem, including the approach based on Causal Dynamical Triangulations [8], the Asymptotic-Safety approach [9], Horava–Lifshitz gravity [10], the Causal-Sets approach [11], Loop Quantum Gravity [12,13], Spacetime Noncommutativity [14] and theories with Planck-scale curvature of momentum space [15,16].

It is for us cause of concern that so much of our intuition about the quantum-gravity realm is being attached to analyses based

\(^1\) Other candidates for the characterization of the dimension of a quantum spacetime have been proposed in Refs. [2–6].

\(^2\) There are cases, such as in Causal Dynamical Triangulations, where the d’Alembertian of the theory is not known, but it is possible to calculate the spectral dimension with other techniques. It has been established [7] that in these cases it is then possible to reconstruct the d’Alembertian.
on the spectral dimension, which is not a physical characterization of a theory. For such precious cases where a feature is found in many approaches to the quantum-gravity problem, and therefore might be a “true feature” of the quantum-gravity realm, we should ask for no less than a fully physical characterization. It is well known that the spectral dimension provides a valuable characterization of properties of classical Riemannian geometries [14, 17], but its proposed applicability to the description of the dimension of a quantum spacetime involves some adaptations, and, as we shall here see, these adaptations are responsible for some of its inadequacies. In the study of quantum spacetimes the spectral dimension is the effective dimension ‘seen’ by a fictitious diffusion process governed by the Euclidean version of the d’Alembertian. The UV value of the spectral dimension, $d_S(0)$, is then formally computed via:

$$d_S(0) = -2 \lim_{s \to 0} \frac{d \ln P(s)}{d \ln(s)},$$

(1)

where $P(s)$ is the average return probability of the diffusion process and s is the fictitious diffusion time. When the IR Hausdorff dimension of spacetime is $D + 1$, and the Euclidean d’Alembertian of the theory is represented on momentum space as $\Omega^2(E, p)$, the return probability is given by

$$P(s) \propto \int dE \, dp \left(p^{D-1} e^{-s \Omega^2(E, p)} \right).$$

(2)

The fact that the Euclidean version of the d’Alembertian intervenes is of course of concern for us. It is in fact well known that the Euclidean version of a quantum-gravity model can be profoundly different from the original model in Lorentzian spacetime (see, e.g., Ref. [20]). Moreover, evidently in (2) an important role is played by off-shell modes, a role so important that, as we shall here show, one can obtain wildly different values for the spectral dimension for different formulations of the same physical theory (cases where the formulations coincide on-shell but are different off-shell). We are also concerned by the fact that evidently the $P(s)$ of (2) is invariant under active diffeomorphisms on momentum space (an active diffeomorphism on momentum space amounts to an irrelevant change of integration variable for $P(s)$). Since an active diffeomorphism can map a given physical theory into a very different one (also see here below), we believe that this degeneracy of the spectral dimension is worrisome.

While these concerns are, in our appreciation, very serious, we do acknowledge that several analyses centered on the spectral dimension give rather meaningful results. Therefore we are here guided by the idea that it is necessary to replace the spectral dimension with some other fully physical notion of dimensionality of a quantum spacetime, with the requirement that in most cases the new notion should agree with the spectral dimension. Only when the unphysical content of the spectral dimension plays a particularly significant role should the new notion differ significantly from the spectral dimension. In searching for such a new notion we took as guidance the observation reported in recent studies [21–23] (see also [24] for earlier related proposals) that in some instances the Stefan–Boltzmann law gives indications on the dimensionality of spacetime that are consistent with the spectral dimension. One can view the Stefan–Boltzmann law as an indicator of spacetime dimensionality since for a gas of radiation in a classical spacetime with $D + 1$ dimensions the Stefan–Boltzmann law takes the form

$$U \propto T^{D+1}.$$

(3)

Actually several thermodynamical relations are sensitive to the dimensionality of spacetime, another example being the equation of state parameter $w \equiv P/\rho$, relating pressure P and energy density ρ, which for radiation in a classical spacetime with $D + 1$ dimensions takes the form

$$w = \frac{1}{D}.$$

(4)

These observations inspire our proposal of assigning a “thermal dimension” to a quantum spacetime. Our recipe involves studying the thermodynamical properties of radiation with on-shellness characterized by the (deformed) d’Alembertian of the relevant quantum-spacetime theory (the same deformed d’Alembertian used when evaluating the spectral dimension, but in its Lorentzian form). By looking at the resulting Stefan–Boltzmann law and equation of state one can infer the effective dimensionality of the relevant quantum spacetime. This notion of dimensionality has the advantage of being directly observable, a genuine physical property of the quantum spacetime, and, as we shall here show, fixes the shortcomings of the spectral dimension, while agreeing with it in some particularly noteworthy cases.

2. Application to generalized Horava–Lifshitz scenarios

We start the quantitative part of our study by considering a class of generalized Horava–Lifshitz scenarios, which has been the most active area of research on dynamical dimensional reduction [10, 17]. These are cases where the momentum-space representation of the deformed d’Alembertian takes the form

$$\Omega_{\gamma \gamma}(E, p) = E^2 - p^2 + \frac{2}{\xi_1} E^{2(1+\gamma)} - \frac{2}{\xi_2} E^{2(1+\gamma)},$$

(5)

where E is the energy, p is the modulus of the spatial momentum, γ_1 and γ_2 are dimensionless parameters, and ξ_1 and ξ_2 are parameters with dimension of length (usually assumed to be of the order of the Planck length).

For this model it is known [15, 17] that the UV value of the spectral dimension, obtained from the Euclidean version of the above d’Alembertian ($E^2 + p^2 + \xi_1^2 E^{2(1+\gamma)} + \xi_2^2 p^{2(1+\gamma)})$, is

$$d_S(0) = \frac{1}{1+\gamma_1} + \frac{D}{1+\gamma_2}. $$

(6)

In deriving the thermal dimension for this case we start from the logarithm of the thermodynamical partition function [25], written so that the integration is explicitly taken over the full energy-momentum space:

$$\log Q_{\gamma \gamma} = -\frac{2V}{(2\pi)^T} \int dE \, d^3p \left[\delta(\Omega_{\gamma \gamma}) \Theta(E) \cdot 2E \log \left(1 - e^{-\beta E} \right) \right].$$

(7)

Here β is related to the Boltzmann constant k_B and temperature via $\beta = \frac{1}{k_B T}$, and the delta function $\delta(\Omega_{\gamma \gamma})$ enforces the on-shell relation $\Omega_{\gamma \gamma} = 0$.

From (7) one obtains the energy density and the pressure respectively as

$$\rho_{\gamma \gamma} \equiv -\frac{1}{V} \frac{\partial}{\partial \beta} \log Q_{\gamma \gamma}, \hspace{1cm} p_{\gamma \gamma} \equiv \frac{1}{V} \frac{\partial}{\partial V} \log Q_{\gamma \gamma}. $$

(8)
In this equation, behavior of the energy density ρ in arbitrary units (top panel) and of the equation of state parameter w (bottom panel) as a function of $t(t^3 \beta_3 T^3)$, according to the partition function Q_{Ω^2}, for $p = 0$ and $p = 2$ (blue), $p = 4$ (orange), $p = 6$ (green), $p = 8$ (red). The purple line is the standard case, $p = T^4$ (top panel) and $w = 1/3$ (bottom panel). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

In Fig. 1 we show (for a few choices of γ_s, γ_t) the resulting temperature dependence for the energy density and for the equation of state parameter. For the UV/high-temperature values of $\rho_{\gamma_s, \gamma_t}$ and w_{γ_s, γ_t} one can easily establish the following behaviors at high temperature, in agreement with the content of Fig. 1

$$\rho_{\gamma_s, \gamma_t} \propto T^{1+\gamma_s \gamma_t/2(1+\gamma_t)}, \quad w_{\gamma_s, \gamma_t} = \frac{1 + \gamma_s}{3(1 + \gamma_t)}. \quad (9)$$

By comparison to (3) and (4) one sees that both of these results give a consistent prediction for the "thermal dimension" at high temperature, which is

$$d_T = 1 + \frac{1 + \gamma_t}{1 + \gamma_t}. \quad (10)$$

Interestingly, in this case of generalized Horava–Lifshitz scenarios the thermal dimension agrees with spectral dimension, eq. (6), for $\gamma_t = 0$, but differs from the spectral dimension when $\gamma_t \neq 0$.

3. Implications of active diffeomorphisms on momentum space

Generalized Horava–Lifshitz scenarios also give us an easy opportunity for comparing the properties of the thermal dimension and of the spectral dimension under active diffeomorphisms on momentum space. From this perspective the analysis is particularly simple for the case $\gamma_s = 0, \gamma_t = 1$, where one has

$$\Omega_{\gamma_s, \gamma_t}(E, p) = E^2 - p^2 + \ell_s^2 E^4. \quad (11)$$

In light of the results reviewed and derived above we know that in this case the UV spectral dimension is $d_s = 3.5$, while the UV thermal dimension is $d_T = 7$.

Let us then contemplate a simple diffeomorphism on momentum space, the following reparameterization of the energy variable: $E \to \tilde{E} = \sqrt{E^2 + \ell_t^2 E^4}$. In terms of \tilde{E} the d'Alembertian takes the standard special-relativistic form, $\Omega_{1,0} = \tilde{E}^2 - p^2$, while the momentum space measure becomes non-trivial:

$$d\mu(\tilde{E}, p) = \frac{d\tilde{E} dp \sqrt{2\ell_t p^2 \tilde{E}}}{\sqrt{(1 + 4\ell_t^2 \tilde{E}^2)(-1 + \sqrt{1 + 4\ell_t^2 \tilde{E}^2})}}. \quad (12)$$

When the above diffeomorphism on momentum space is an active one, the laws of physics are not invariant. This is indeed what is found when comparing the thermodynamical properties of the "\tilde{E}, p theory" with d'Alembertian $\tilde{E}^2 - p^2$ and momentum-space integration measure (12) and the "E, p theory" with (deformed) d'Alembertian $\Omega_{1,0}(E, p) = E^2 - p^2 + \ell_t^2 E^4$ and integration measure $dE d^3 p$. In the "\tilde{E}, p theory" the logarithm of the thermodynamical partition function is

$$\log \tilde{Q}_{\text{act.}} = -\frac{2V}{(2\pi)^3} \int d\mu(\tilde{E}, p) \left[\frac{\Theta(\tilde{E}^2 - p^2)}{\tilde{E} \log (1 - e^{-\beta \tilde{E}})} \right] \neq \log Q. \quad (13)$$

A passive diffeomorphism just relabels the same physical picture and of course the thermal dimension is not affected.

On the other hand, it can be easily seen that the spectral dimension is not only invariant under passive diffeomorphisms but also under active diffeomorphisms on momentum space. In fact, active and passive diffeomorphisms have the same effect on the return probability $P(s)$ (eq. (2)), that of changing the integration variable (without changing the integral). Therefore the "\tilde{E}, p theory" has the same UV spectral dimension ($d_s = 3.5$) as the "E, p theory".

In summary, one finds that the UV spectral dimension of both the "\tilde{E}, p theory" and the "E, p theory" is 3.5, and 3.5 is also the value of the thermal dimension of the "\tilde{E}, p theory", but the "E, p theory" has UV thermal dimension of 7. It should be evidently seen as advantageous for the thermal dimension the fact that it assigns different UV dimension to the two very different "E, p theory" and "\tilde{E}, p theory".

5 Some of us had contemplated in previous work [15,26,27] the possibility of describing the dimension of a quantum spacetime in terms of the duality with momentum space, by resorting to the "Hausdorff dimension of momentum space". However, at least as formulated in [15,26,27], that notion is only applicable to theories of the type of the "E, p theory", i.e. with undeformed d'Alembertian (but possibly deformed measure of integration on momentum space).
4. Application to $f(E^2 - p^2)$ scenarios

Another scenario of significant interest is the one where the d’Alembertian is deformed into a function of itself: $E^2 - p^2 \rightarrow f(E^2 - p^2)$. The structure of this scenario is very valuable for our purposes, but it also has intrinsic interest since it has been proposed on the basis of studies of the Asymptotic-Safety approach [28] and of the approach based on Causal Sets [29]. We focus on a case which might deserve special interest from the quantum-gravity perspective, as stressed in Ref. [28], such that the deformed d’Alembertian takes the form

$$\Omega_{\gamma}(E, p) = E^2 - p^2 - \ell^{2\gamma} \left(E^2 - p^2 \right)^{1+\gamma},$$

(15)

where the parameter γ takes integer positive values and ℓ is a parameter with dimension of length.

For this case one easily finds [6] that the UV spectral dimension is

$$d_5(0) = \frac{4}{1 + \gamma},$$

(16)

but the fact that this notion of the UV dimensionality of spacetime depends on γ is puzzling and points very clearly to the type of inadequacies of the spectral dimension that we are here concerned with. In fact, in the UV limit the parameter γ has no implications for the on-shell/physical properties of the (massless) theory. In general, massless particles governed by Ω_{γ} will be on-shell only either when

$$E^2 = p^2$$

or when

$$E^2 = p^2 + \frac{1}{\ell^2},$$

(17)

independently of the value of γ. At low energies only $E^2 = p^2$ is viable. For energies such that $E \gtrsim 1/\ell$ also the second possibility, $E^2 = p^2 + \frac{1}{\ell^2}$, becomes viable. However, in the UV limit the two possibilities become indistinguishable, all particles are governed by $E \approx p$ just like in any 4-dimensional spacetime, because as $E \rightarrow \infty$ one has that $p^2 + \frac{1}{\ell^2} \approx p^2$. So without any need to resort to complicated analyses we know that this theory in the UV limit must behave like a 4-dimensional theory, in contradiction with the mentioned result for the UV spectral dimension.

The UV value of our “thermal dimension” is correctly 4, independently of γ. This is easily seen by taking into account the deformation of d’Alembertian present in the Ω_{γ} of (15) for the analysis of the partition function:

$$\log Q_{\gamma} = -\frac{2V}{(2\pi)^3} \int dE d^3 p \delta(\Omega_{\gamma}) \Theta(E) 2E \log \left(1 - e^{-\beta E} \right).$$

(18)

Using the fact that

$$\delta(\Omega_{\gamma}) = \frac{\delta(E - p)}{2p} + \frac{\delta(E - \sqrt{p^2 + \frac{1}{\ell^2}})}{2\sqrt{p^2 + \frac{1}{\ell^2}},}$$

(19)

one easily finds that the UV behavior of thermodynamical quantities which is relevant to determine the thermal dimension is independent of γ, and in particular in the UV the Stefan–Boltzmann law and the equation-of-state parameter take the form known for a standard 4-dimensional spacetime:

5 Note that in order to have the Euclidean version of the d’Alembertian $\Omega_{\gamma}(E, p)$ one has to Wick-rotate also the parameter ℓ [31].
We here proposed a notion of dimensionality which is free from the shortcomings of the spectral dimension, since it relies on the analysis of observable thermodynamical properties of radiation in the quantum spacetime. Only experience with its use will gradually say if our notion of thermal dimension of a quantum spacetime is not only physical but also particularly useful. We conjecture that it will prove to be very valuable at least for studies of the early universe, which is anyway the context where the UV dimension of spacetime should find its most significant applications [32,33].

Acknowledgements

GAC and GG acknowledge support from the John Templeton Foundation, grant numbers 29085 and 47633 respectively. GS acknowledges the support by the CAPES-ICRANet program financed by CAPES – Brazilian Federal Agency for Support and Evaluation of Graduate Education within the Ministry of Education of Brazil through the grant BEX 13955/13-6.

References

[1] J.F. Wheater, J. Correa, Nucl. Phys. Proc. Suppl. 73 (1999) 783, arXiv:hep-lat/9808020.
[2] S. Carlip, AIP Conf. Proc. 1196 (2009) 72, arXiv:0909.3329 [gr-qc].
[3] G. Calcagni, Phys. Rev. E 87 (1) (2013) 012123, http://dx.doi.org/10.1103/PhysRevE.87.012123, arXiv:1205.5046 [hep-th].
[4] M. Reuter, F. Saueressig, JHEP 1112 (2011) 012, http://dx.doi.org/10.1007/JHEP12(2011)012, arXiv:1110.5224 [hep-th].
[5] M. Niedermaier, Class. Quantum Gravity 24 (2007) R171, http://dx.doi.org/10.1088/0264-9381/24/18/R01, arXiv:gr-qc/0610018.
[6] T. Padmanabhan, S. Chakrabarty, D. Kothawala, arXiv:1507.05669 [gr-qc].
[7] T.P. Sotiriou, M. Visser, S. Weinfurtner, Phys. Rev. D 84 (2011) 104018, arXiv:1105.6998 [hep-th].
[8] J. Ambjorn, J. Jurkiewicz, R. Loll, Phys. Rev. Lett. 95 (2005) 171301, arXiv:hep-th/0505113.
[9] D.F. Litim, Phys. Rev. Lett. 92 (2004) 201301, arXiv:hep-th/0312114.
[10] P. Horava, Phys. Rev. Lett. 102 (2009) 161301, arXiv:0902.3657 [hep-th].
[11] A. Belenchia, D.M.T. Benincasa, A. Marciano, L. Modesto, arXiv:1507.00330 [gr-qc].
[12] L. Modesto, Class. Quantum Gravity 26 (2009) 242002, arXiv:0812.2214 [gr-qc].
[13] G. Calcagni, D. Oriti, J. Thirigen, Class. Quantum Gravity 31 (2014) 135014, arXiv:1311.3340 [hep-th].
[14] D. Benedetti, Phys. Rev. Lett. 102 (2009) 111303, arXiv:0811.1396 [hep-th].
[15] G. Amelino-Camelia, M. Arzano, G. Gubitosi, J. Magueijo, Phys. Lett. B 736 (2014) 317, arXiv:1311.3135 [gr-qc].
[16] M. Arzano, G. Gubitosi, J. Magueijo, G. Amelino-Camelia, Phys. Rev. D 92 (2015) 024028, arXiv:1412.2054 [gr-qc].
[17] D.V. Vassilevich, Phys. Rep. 388 (2003) 279, http://dx.doi.org/10.1016/j.physrep.2003.09.002, arXiv:hep-th/0306138.
[18] G. Calcagni, A. Eichhorn, F. Saueressig, Phys. Rev. D 87 (2013) 124028, arXiv:1304.7247 [hep-th].
[19] A. Eichhorn, S. Mizerwa, Class. Quantum Gravity 31 (2014) 125007, http://dx.doi.org/10.1088/0264-9381/31/12/125007, arXiv:1311.2530 [gr-qc].
[20] S. Carlip, Class. Quantum Gravity 32 (23) (2015) 232001, arXiv:1506.08775 [gr-qc].
[21] K. Husain, S.S. Seahra, E.J. Webster, Phys. Rev. D 88 (2) (2013) 024014, arXiv:1305.2814 [hep-th].
[22] G. Santos, G. Gubitosi, G. Amelino-Camelia, JCAP 1508 (08) (2015) 005, arXiv:1502.02833 [gr-qc].
[23] K. Nozari, V. Hosseinzadeh, M.A. Gori, Phys. Lett. B 750 (2015) 218, http://dx.doi.org/10.1016/j.physletb.2015.09.014, arXiv:1504.07117 [hep-th].
[24] J.J. Atick, E. Witten, Nucl. Phys. B 310 (1988) 291, http://dx.doi.org/10.1016/0550-3213(88)90151-4.
[25] K. Huang, Statistical Mechanics, Wiley, 1987.
[26] G. Amelino-Camelia, M. Arzano, G. Gubitosi, J. Magueijo, Phys. Rev. D 88 (10) (2013) 103524, arXiv:1309.3999 [gr-qc].
[27] M. Arzano, G. Gubitosi, J. Magueijo, G. Amelino-Camelia, Phys. Rev. D 91 (12) (2015) 125031, arXiv:1505.05021 [gr-qc].
[28] R. Percacci, in: D. Oriti (Ed.), Approaches to Quantum Gravity, 2009, pp. 111–128, arXiv:0709.3851 [hep-th].
[29] A. Belenchia, D.M.T. Benincasa, S. Liberati, JHEP 1503 (2015) 036, arXiv:1411.6513 [gr-qc].
[30] F. Brighenti, PhD thesis, in preparation.
[31] G. Calcagni, L. Modesto, G. Nardelli, arXiv:1408.0199 [hep-th].
[32] G. Amelino-Camelia, M. Arzano, G. Gubitosi, J. Magueijo, Phys. Rev. D 87 (12) (2013) 123532, arXiv:1305.3153 [gr-qc].
[33] G. Amelino-Camelia, M. Arzano, G. Gubitosi, J. Magueijo, Int. J. Mod. Phys. D 24 (12) (2015) 1543002, arXiv:1505.04649 [gr-qc].