Review

The broad landscape of follicular lymphoma: Part II

Stefano Fratoni1, Magda Zanelli2, Maurizio Zizzo3,4, Francesca Sanguedolce5, Valentina Aimola6, Giulia Cerrone6, Linda Ricci7, Alessandra Filosa8, Giovanni Martino9, Antonella Maria Fara10, Valerio Annessi11, Alessandra Soriano12, Stefano Ascani13

1 Department of Anatomic Pathology, St. Eugenio Hospital of Rome, Rome, Italy; 2 Pathology Unit, Azienda Unità Sanitaria Locale, IRCCS di Reggio Emilia, Reggio Emilia, Italy; 3 Surgical Oncology Unit, Azienda Unità Sanitaria Locale, IRCCS di Reggio Emilia, Reggio Emilia, Italy; 4 Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy; 5 Pathology Unit, Azienda Ospedaliero-Università, Ospedali Riuniti di Foggia, Foggia, Italy; 6 Pathology Unit, University of Cagliari, Cagliari, Italy; 7 Pathology Unit, University of Siena, Siena, Italy; 8 Pathology Unit, Ospedale di Ascoli Piceno, Ascoli, Italy; 9 Hematology Unit, CREO, Azienda Ospedaliero di Perugia, University of Perugia, Perugia, Italy; 10 Pathology Unit, Department of Medical, Surgical and Experimental Surgery, University of Sassari, Italy; 11 General Surgery Unit, Azienda Unità Sanitaria Locale, IRCCS di Reggio Emilia, Guastalla, Reggio Emilia, Italy; 12 Gastroenterology Unit, Azienda Unità Sanitaria Locale, IRCCS di Reggio Emilia, Reggio Emilia, Italy; 13 Pathology Unit, Azienda Ospedaliera Santa Maria Terni, University of Perugia, Terni, Italy

Summary
Follicular lymphoma is a neoplasm derived from follicle center B cells, typically both centrocytes and centroblasts, in variable proportions according to the lymphoma grading. The pattern of growth may be entirely follicular, follicular and diffuse and rarely completely diffuse. It represents the second most common non-Hodgkin lymphoma, after diffuse large B-cell lymphoma and it is the most common low-grade mature B-cell lymphoma in Western countries. In the majority of cases, follicular lymphoma is a nodal tumor, occurring in adults and is frequently associated with the translocation t(14;18)(q32;q21)/IGH-BCL2. However, in recent years the spectrum of follicular lymphoma has expanded and small subsets of follicular lymphoma, which differ from common follicular lymphoma, have been identified and included in the current 2017 WHO classification. The aim of our review is to describe the broad spectrum of follicular lymphoma, pointing out that the identification of distinct clinicopathological variants of follicular lymphoma is relevant for the patient outcomes and treatment.

Key words: follicular lymphoma, B-cell, centrocyte, centroblast

Introduction
Follicular lymphoma (FL) is the most common low-grade mature germinal center B-cell lymphoma in Western countries, representing 20% to 30% of all non-Hodgkin lymphomas. The updated 2017 World Health Organization (WHO) Classification includes critical aspects about FL. In recent years, histological and clinical spectrum of germinal center-derived B-cell neoplasms has expanded, leading to the conclusion that FL represents a far more heterogeneous entity than originally appreciated. In the previous review we illustrated FL variants encountered in diagnostic practice. Surgical pathologists and hematopathologists should be aware of the broad FL landscape, in order to avoid diagnostic pitfalls and get to more accurate diagnosis.

Although FL is mostly a nodal disease, it can involve primarily extranodal sites. In the current WHO classification, it is well recognized that FL aris-
ing at particular extranodal sites (i.e. duodenum, skin and testis) have clinicopathological features and outcomes different from conventional nodal FL. The skin and gastrointestinal (GI) tract are the most commonly involved extranodal sites. The site of involvement may affect disease prognosis. It is well recognized that stage I FL of the skin and duodenal-type FL have a significantly better outcome than nodal primary disease. Differently, stage I FLs of muscle, connective tissue and nervous system have significantly worse survival than nodal FLs. Other extranodal sites such as head and neck or respiratory system are not associated with worse survival.

Duodenal-type FL

Primary duodenal FL is a variant with distinctive biological and clinical features. It consists of polypoid lesions of the small bowel, more often in the second portion of duodenum. Patients are usually asymptomatic. The disease is localized and incidentally detected. Classically, small nodules involve mucosa and submucosa. The cellular composition recapitulates low-grade FL, with centrocytes and only rare centroblasts (Fig. 1). The cells are positive for CD10, CD20, BCL6 and BCL2 and carry t(14;18)/IGH/BCL2 (Fig. 2). Primary duodenal FL has an indolent clinical course, often without therapy. Radiotherapy can be used. Local recurrences can occur. Clinical evaluation and staging is essential to exclude systemic FL secondarily involving the bowel, which follows a more aggressive course.

Testicular FL

Primary testicular FL was initially described in children and subsequently in adults (Fig. 3). It is usually a low stage disease (stage 1E). Histologically, it tends to show high-grade morphology (grade 3A) and the pattern of growth can be follicular or follicular and diffuse. Prominent fibrosis is often present. (Fig. 4). Testicular FL expresses germinal center (GC) markers (CD10, BCL6), but it usually lacks BCL2-protein expression and BCL2 gene rearrangements (Fig. 5). FL of the testis is typically a localized disease with an indolent clinical behavior and good prognosis. Optimal therapy for patients with low stage disease is not well defined. Most patients (children and adults) are treated with surgery plus anthracycline-containing chemotherapy, sometimes with central nervous system prophylaxis. In adults, primary FL of the testis needs to be distinguished from diffuse large B-cell lymphoma (DLBCL).
(more commonly seen in the adult testis), which is a much more aggressive disease.

FL confined to the ovaries

FL arising primarily in the ovary is very rare and its clinicopathological features are not completely clear. Oznan et al. identified two main groups of FL arising in the ovary with divergent clinicopathological aspects. The first group included cases with high-grade histology (3A), negativity or weak positivity for BCL2 and absence of BCL2 translocation; this group frequently had low stage disease. The second group included cases with low histological grade, strong positivity for BCL2 protein and presence of IGH/BCL2 translocation; this group frequently had advanced stage disease. There is no clear evidence that the second group arises primarily in the ovary, as the disease is usually in an advanced stage. The first group (high-grade, low stage) includes cases with disease usually confined to the ovary. This latter group may represent true primary ovarian FL. The features of high-grade, low stage BCL2-negative FL resemble those reported in FL of the testis, which shows a favorable outcome. It is tempting to speculate that this group of ovarian FL might be related to either pediatric-type FL (PTFL) or testicular FL.

Primary cutaneous FL

Primary cutaneous FL (PCFL) is a low-grade lymphoma of follicle center B cells, without evidence of systemic/nodal involvement at time of diagnosis. It is the most common primary cutaneous B-cell lymphoma. It presents with localized plaques or nodules on the scalp, trunk and back and rarely on the legs; multifocal skin lesions can be present. PCFL involves the dermis, often extending into subcutis. The epidermis is spared with a grenz zone separating the epidermis from the...
underlying lymphoid proliferation (Fig. 6). Follicular and diffuse or totally diffuse pattern of growth may be present (Fig. 7) \(^1^2\). Neoplastic follicles are usually closely packed, irregular and not polarized, tingible body macrophages are absent, and mantle zone is thin or absent. Neoplastic cells include centrocytes and centroblasts. Rarely, centrocytes may be spindle-shaped or show bizarre features with different sizes and shapes \(^1^2\). Sclerosis and myxoid features may also be present in PCFL, particularly in the spindle cell variant \(^1^2\). Reactive T cells can be prominent. PCFL with a diffuse pattern of growth is entirely composed of sheets of centrocytes and centroblasts. The neoplasm may show any grade, although high-grade cytology (grade 3) is seen quite frequently and differential diagnosis with DLBCL leg-type is mandatory. BCL6 is positive; CD10 is positive in cases with a follicular growth pattern, whereas it is often negative in cases with predominantly diffuse pattern (Fig. 8) \(^1^3\). Although BCL2 is often reported as negative or weakly positive and \(t(14;18)/IGH-BCL2\) is frequently absent, recent studies have identified BCL2 expression as well as the presence of BCL2 rearrangements in a proportion of PCFL \(^1^4,1^5\). IRF4/MUM1 and FOXP1 are usually absent. Ki-67 shows a low proliferation index. Some PCFLs, mainly those composed of large cells and which need to be distinguished from DLBCL leg-type, can show high Ki-67. PCFL patients usually have an indolent disease, regardless of grade. Unlike nodal FL, PCFL should not be graded histologically, because grading does not seem to provide prognostic information. Surgical excision and local radiotherapy are treatments of choice for localized disease. Rare cases with multifocal skin lesions and extensive cutaneous disease require systemic therapy. Local recurrences are reported (20-30% of cases). When extracutaneous sites are involved, regional lymph nodes and bone marrow are usually affected \(^1^2\). Transformation to DLBCL has been suggested by some studies \(^1^6\). Systemic FL secondarily involving the skin needs to be excluded. This scenario is challenging for pathologists, because careful clinical workup and staging are usually unavailable at time of skin biopsy. PCFL with diffuse pattern and numerous large centrocytes and centroblasts can be tricky to separate from DL-

Figure 6. A Primary cutaneous follicular lymphoma. HE, 200x; B Primary cutaneous follicular lymphoma. HE, 400x; C Primary cutaneous follicular lymphoma. CD20 immunostaining, 100x; D Primary cutaneous follicular lymphoma. BCL6 immunostaining, 100x; E Primary cutaneous follicular lymphoma. BCL2 immunostaining, 100x; F Primary cutaneous follicular lymphoma. Ki-67/MIB1 immunostaining, 400x.

Figure 7. A Primary cutaneous follicular lymphoma, follicular pattern of growth. HE, 100x; B Primary cutaneous follicular lymphoma, follicular pattern of growth. HE, 200x; C Primary cutaneous follicular lymphoma, follicular pattern of growth. HE, 400x; D Primary cutaneous follicular lymphoma, diffuse pattern of growth. HE, 40x; E Primary cutaneous follicular lymphoma, diffuse pattern of growth. Large-sized neoplastic cells. HE, 400x.
BCL leg-type. The presence of centrocytes, follicular dendritic cells meshwork and numerous T cells argue in favor of PCFL. Sheets of large atypical centroblasts and/or immunoblasts support DLBCL leg-type. MUM1 and FOXP1 are usually absent in PCFL, differently from DLBCL leg-type.

Primary cutaneous follicular helper T-cell lymphoma (PCFHTCL) is a relatively recently described lymphoma mimicking PCFL. Patients tend to be elderly, presenting with multiple nodules, papules and/or plaques, often involving the extremities. PCFHTCL displays a nodular architecture, syringotropism and includes numerous B cells. A careful examination reveals atypical T-cells with a follicular T-helper phenotype, including CD10 and BCL6. Systemic nodal follicular T-cell lymphoma may secondarily involve the skin; it can mimic follicular B-cell lymphoma.

Blastic plasmacytoid dendritic cell neoplasm is a rare myeloid neoplasm of immature plasmacytoid dendritic cells, commonly involving the skin. It can have a leukemic presentation or it can be limited to the skin, at least initially (Fig. 10). It follows an aggressive course, even in patients with skin-limited lesions. It may show a nodular growth pattern and include centrocyte-like cells. The expression of CD123, CD56, CD4, TCL1, CD2AP and CD303 helps with its correct classification.

Cutaneous reactive lymphoid hyperplasia may also mimic PCFL. In reactive hyperplasia, follicles show the typical outer mantle zone, encircling well polarized GC,
as highlighted by Ki-67. Molecular studies (polymerase chain reaction - PCR) can help support PCFL diagnosis, examining immunoglobulin heavy-chain and light-chain genes and confirming clonality. The presence of clonality supports PCFL, if in the right clinicopathological context. However, pitfalls do exist. DNA may be of insufficient quality for molecular analysis, particularly in formalin-fixed, paraffin-embedded tissue. When DNA is of poor quality, false-negative results can occur. PCFL may not have a detectable monoclonal population and false-negative results are possible. In addition, when a B-cell population emerges as dominant clone in reactive lymphoid hyperplasia, false-positive results can occur.

Splenic FL

Primary splenic FL is very rare. To date, just a few studies on primary splenic FL have been performed. Its macroscopic appearance with multiple, small nodules can resemble splenic marginal zone lymphoma (Fig. 11). Histologically, the spleen shows a micronodular pattern, GC cytology and frequent marginal zone-like cells at nodules periphery (Fig. 12). Mollejo et al. reported the clinicopathological features of primary splenic FL subdividing it in 2 groups: the first resembling classical FL with the presence of t(14;18) and CD10 expression, which is usually diagnosed at advanced stage; the second, characterized by high grading, elevated proliferation index and BCL2 negativity, more often restricted to the spleen (Fig. 13). Splenic FL shows some clinical features different from nodal FL. Hepatitis C virus (HCV)-positive status is significantly more common in patients with splenic FL. Ann Arbor stage III or IV and high-risk FLIPI (Follicular Lymphoma International Prognostic Index) are less common in splenic FL. The progression-free survival is worse in patients undergoing splenectomy without postoperative chemotherapy. These results suggest the spleen itself, as primary lesion, might affect the biological characteristics of FL. Splenic FL should probably be considered a distinct type of FL compared to nodal FL.

Rare extranodal sites involved by FL

Rarely, FL may involve uncommon extranodal sites such as peripheral nerves, muscle, peritoneum, dura, pancreas, conjunctiva and orbit.
Unusual phenotypes and molecular pitfalls in FL

BCL2-negative FL. BCL2 protein expression varies from 85-90% in grade 1-2 to less than 50% in grade 3 FL. BCL2 expression is related to the recurrent translocation t(14;18)(q32;q21) involving IGH and BCL2. BCL2-negative FL are explained by either true absence of t(14;18) or by mutation in BCL2 epitope usually recognized by clone 124 anti-BCL2 antibody. In these cases of BCL2 “pseudo-negative” FL, neoplastic follicles are immunoreactive using different anti-BCL2 antibodies such as clones E17 and/or SP66. Thus, the absence of BCL2 should not be interpreted as evidence against FL diagnosis, if other features are consistent with FL. Furthermore, the use of additional clones of anti-BCL2 antibody in the workup of BCL2-negative FL is advisable.

CD10/BCL6 negative FL. A subset of FL, more frequently grade 3A, is CD10-negative and/or BCL6-negative. Recently, novel markers like Stathmin, GCET1, HGAL, and LMO2 have been introduced that can be useful in CD10 and/or BCL6-negative FL.

CD30 positive FL. A small percentage of FL, mostly grade 3, may contain sparse CD30-positive cells. This phenomenon is usually restricted to large centroblasts and/or to pleomorphic Hodgkin-Reed Sternberg (HRS)-like cells of grade 3 FL.

CD5 positive FL. CD5 is expressed by 5% of FL. CD5-positive FL can have the floral and/or diffuse patterns of growth. CD5 expression has been associated with higher International Prognostic Index (IPI), higher rate of transformation, and shorter progression-free survival.

IRF4/MUM1 positive FL. IRF4/MUM1 expression is detected in grade 3B FL as marker of late GC differentiation. Low to moderate IRF4/MUM1 expression may be observed even in low-grade FL. High IRF4/MUM1 expression has been recently reported to be predictive of poor outcome in low-grade FL.

The t(14;18)(q32;q21)/IGH-BCL2 translocation is present in common FL, although its frequency varies greatly depending on FL grading. The translocation t(14;18) is detected in up to 90% of low-grade FL, but in only 60-70% of grade 3A and 15-30% of grade 3B FL. Furthermore, BCL2 translocation variants such as t(2;18) and t(18;22) have been described. FL with BCL6 translocation represents 10-15% of cases, more frequently grade 3A and 3B. These FL strongly express BCL6, but are quite often BCL2 and/or CD10 negative.

The updated WHO classification recognizes the category of high-grade B-cell lymphoma (HGBCL) with MYC and BCL2 and/or BCL6 rearrangements, so called double-hit (DH) or triple-hit (TH) lymphomas. Occasionally, “de novo” low-grade or grade 3 FL may carry MYC and BCL2 and/or BCL6 gene rearrangements, but should not be classified as HGBCL, unless undergoing a clear-cut transformation. The prognostic significance of concurrent MYC and BCL2 or BCL6 rearrangements in otherwise typical FL is an open question. Some studies report an aggressive course, but better response to more intensive regimens, while others show a behavior similar to FL lacking MYC rearrangement.

NOTCH-mutant FL. NOTCH1 and NOTCH2 have been recently reported in several B cell lymphoma. The role of these mutations in FL is not known. A recent study identified NOTCH1 and NOTCH2 mutations in 6.3% of FL. NOTCH-mutated FL showed lower frequency of t(14;18), higher incidence of splenic involvement and female predominance. Furthermore, transformation-
tion was more frequently identified in NOTCH-mutated FL than in wild-type cases. These results indicate NOTCH mutations are uncommon in FL, but may occur in a subset of cases with distinctive features 46.

Grade 3B FL

The number of centroblasts is the key feature for FL grading. Grade 3B is a FL with a purely follicular growth pattern, composed only by centroblasts (Fig. 14). Pure 3B FL is rare and clinical data on this enigmatic entity remain scarce 39. Most 3B FLs focally contain diffuse areas, therefore, deserving the diagnosis of DLBCL 47. Furthermore, grade 3B rarely coexists with grade 1-2 or 3A, suggesting a divergent pathogenesis 48. Grade 3B FL is generally CD10-negative and IRF4/MUM1-positive (Fig. 15). The translocation t(14;18)(q32;q21) juxtaposing the IGH and BCL2 genes is rare in pure 3B FL (13%), despite expressing BCL2 protein in 69% of cases. BCL6 rearrangement occurs rarely in pure 3B FL, whereas increased TP53 expression is rather common (31%). Grade 3B FL is still an evolving subclass. Physicians should understand its aggressive nature, requiring timely attention, compared with grade 3A. In many aspects 3B FL resembles de novo DLBCL. Some studies suggest it may represent a morphological variant of DLBCL with a follicular pattern of growth 39. Histology, immunophenotypic profile and chromosomal aberrations of pure 3B FL resemble DLBCL, particularly non-GCB type. It is widely accepted 3B FL is distinct from other types of FL and it is intriguing to speculate it may represent a follicular growing variant of DLBCL.

Transformation of nodal FL

It is well recognized that clinical aggressiveness and risk of transformation to DLBCL increase proportionally to the number of centroblasts and proliferative fraction. Transformation or progression occurs in 30% of FL. The current WHO criteria for transformed FL include a diffuse pattern of growth with centroblasts > 15/HPF (grade 3) 1. In other words, the presence of grade 3 cytology in a diffuse pattern constitutes a DLBCL.

Currently, transformed FL is classified as DLBCL, or high-grade B-cell lymphoma (HGBCL) with MYC, BCL2 and/or BCL6 rearrangements or HGBCL not otherwise specified (in absence of MYC, BCL2 and/or BCL6 rearrangements). The HGBCL category has variable morphology, including DLBCL, Burkitt lymphoma, and/or “blastoid” morphology. “Burkitt-like” cases are reminiscent of both DLBCL and Burkitt lymphoma, not fulfilling diagnostic criteria for either entity.
Cases with so-called “blastoid morphology” show diffuse cohesive sheets of monotonous, small to medium-sized cells, high proliferation index, and starry-sky pattern. The cells have round nuclei with finely dispersed chromatin, inconspicuous nucleoli and a small rim of cytoplasm. These cells resemble lymphoblasts or the blastoid variant of MCL. Staining for TdT, Cyclin D1 and SOX11 should be performed. More rarely, FL may transform into Hodgkin lymphoma, plasmablastic lymphoma, histiocytic sarcoma (HS) or precursor B cell lymphoblastic leukemia/lymphoma 49-52.

Lymphoblastic-type transformation of FL is a rare event with a poor outcome. It has to be differentiated from “de novo” FL with blastoid features, which has the typical FL phenotype and genetic abnormalities, without TdT expression. To avoid any confusion, the current WHO classification recommends the term “transformed FL of lymphoblastic type, TdT positive”. Recent studies suggested that transformation might occur in early neoplastic progenitors rather than in later subclones 53. Thus, the phenomenon of transformation could be explained by a divergent evolution from a common precursor which was the founder cell of initial FL, and then evolved into DLBCL, HGBCL, Burkitt lymphoma and B-lymphoblastic lymphoma/leukemia "transformed FL of lymphoblastic type, TdT positive". Recent examples of composite FL and NMZL, studied by PCR sequencing of IGH from microdissected NMZL and FL components, showed different sequences in the CDR3 region, suggesting the presence of two different clones 67.

Recent examples of composite FL and NLPHL have been described, but the clonal relationship was not established, due to insufficient tissue for laser capture microdissection 68,69. Composite CHL and FL have been reported, in some of which the CHL and FL components were clonally related. CHL may display the translocation t(14;18), suggesting a common origin (common B-cell precursor) of CHL and FL components. In a series of 19 composite cases involving CHL and other non-Hodgkin lymphomas, a shared clonality was demonstrated in 12/19 (63%) cases 68,70,71. T-cell lymphoma associated with low-grade B-cell lymphoma is very rare. A composite FL and T-cell lymphoma is rarely reported 72,73. The genomic aberration may have occurred in an early lymphoid progenitor which underwent divergent evolution via additional genomic alterations, resulting in heterogeneous subclones and eventually T-cell and B-cell neoplasms 72.

Occasionally, small innocuous aggregates of Langherans cells are identified within FL. Histiocytic and Langherans cell neoplasms occurring synchronously or sequentially in FL patients have been reported. FL and Langherans cell neoplasms or histiocytic sarcoma often share a common cell precursor (clonally related) 51,74.

Composite FL

Composite lymphoma (CL) represents a fascinating process. It consists of two or more morphologically and immunophenotypically distinct lymphomas within the same anatomic site 55,56. Its incidence ranges from 1 to 4.7% of total lymphomas, although CL may be more common than previously thought 57,58. CL can arise synchronously or metachronously and can be clonally related or not. Regardless of the distinctive histology of the different components, in some cases the components are clonally related, whereas in others they are clonally unrelated, representing the "collision" of clonally unrelated tumors. With the advent of molecular analysis, it became clear that, in a subset of cases, CL components share a common clonal origin, suggesting derivation from a common precursor cell 53,60. An adequate sampling is required to establish CL diagnosis. CL can be composed of FL and MCL, FL and chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), FL and nodal marginal zone lymphoma (NMZL), FL and nodular lymphocyte predominance Hodgkin lymphoma (NLPHL), FL and classic Hodgkin lymphoma (CHL). Cases of FL associated with DLBCL, HGBCL, Burkitt lymphoma and B-lymphoblastic lymphoma/leukemia have to be excluded, because they represent high-grade transformation.

CL with FL and MCL have been rarely reported. FL component is typically low-grade, BCL2 positive and harbors the (14;18) translocation. The MCL component shows a diffuse or in situ mantle-zone growth pattern, it is CCND1 positive and harbors the (11;14) translocation 61. Morphologically, the nodal architecture is intact and reactive follicles are mainly distributed in the cortex. The mantle zone is preserved and CCND1 positive cells are often restricted to the mantle zone 62. Some studies suggest FL and MCL are clonally related, originating from the same preneoplastic clone 59,63,64. CL with FL and CLL/SLL is extremely rare (Fig. 16) 65. An interesting study of Boiocchi et al. supported the notion that composite low-grade B-cell lymphomas are usually biclonal 66. Another recent study, reporting the largest case series of composite CLL/SLL and FL did not perform microdissection, so that the relationship between the two components cannot be definitively determined 65.

Recent examples of composite FL and NMZL, studied by PCR sequencing of IGH from microdissected NMZL and FL components, showed different sequences in the CDR3 region, suggesting the presence of two different clones 67.
CL diagnosis is challenging, requiring careful interpretation of morphology, immunohistochemistry and fluorescence in situ hybridization (FISH) analysis as well as flow cytometry, particularly when both components show identical immunoglobulin light chain restrictions and/or overlapping immunophenotypic features. A handful of CL have been reported, few of which have been characterized in terms of clonal relationships. IGH gene rearrangement analysis is critical to demonstrate the clonal relationship. It is recommended to use not only morphology, immunohistochemistry and FISH, but also PCR or next-generation sequencing (NGS) of the IGH and T-cell receptor gene rearrangements. Molecular studies are proving to be invaluable in CL workup. FISH, immunoglobulin rearrangement and sequencing as well as NGS technology can be improved by tissue microdissection. IGH analysis on whole tissue sections may not be helpful and laser capture microdissection is necessary to purify, or enrich individual components, in order to allow an interpretable gene rearrangement analysis. Thus, the power of microdissection coupled with molecular analysis needs to be considered. Recently, the concept is emerging that CL may represent different phenotypes of an identical shared common progenitor. The analysis of additional CL cases is necessary to further investigate the clonal relationship between the individual components and to get better insights into CL pathogenesis.

Bone marrow involvement by FL

Usually, bone marrow trephine biopsy is performed for FL staging. Bone marrow involvement is quite common, occurring in 80% of FL patients. Typically, lymphoma is aligned along the trabecular bone (paratrabecular pattern), although interstitial and/or nodular patterns may be seen (Fig. 17). Rarely, bone marrow is extensively involved by FL (Fig. 18). Grading is not recommended on bone marrow biopsy. In absence of previous rituximab therapy, CD20 is sufficient to reveal even subtle bone marrow infiltration, whereas CD10...
and BCL6 are typically downregulated or may be totally negative. BCL2 staining is not useful, and does not add any further information. Furthermore, BCL2 is expressed by many other indolent low-grade B-cell lymphomas. Sometimes, a nodal transformed DLBCL coexists with low-grade FL in bone marrow, representing the so-called “discordant” lymphoma.

Approach to histopathological diagnosis of FL by core needle biopsy

Correct lymphoma classification is the best way to obtain relevant information for treatment and outcomes. The criteria for FL diagnosis and, by extension, the most appropriate therapeutic strategies are based largely on histologic evaluation of surgically excised specimens. Nonetheless, recently, an increasing reliance on core needle biopsy (CNB) of lymph nodes is evident. In many institutions, CNB is the primary diagnostic procedure in the suspect of lymphoma. Several studies on the effectiveness of CNB suggested that CNB yields an adequate diagnosis for treatment decision in about 65% to 75% of cases.

The reasons of the increasing popularity of this procedure are briefly summarized below. One of the most important considerations leading to CNB over excisional biopsy is urgency. However, in 25% of cases, CNB fails to yield an actionable diagnosis, further delaying therapy (Tab. I).

Since CNB can give only partial information, excisional biopsy of the lymph node should be performed, whenever possible. CNB has limitations, which is not particularly surprising, given how critical the architectural pattern is in FL diagnosis (Tab. II). Histological pattern, grading, immunohistochemical interpretation, including proliferative index, as well as detection of areas of transformation are common dilemmas, as many samples do not contain the recommended 10 follicles. Accurate grading may be very difficult on CNB. The National Comprehensive Cancer Network (NCCN) clinical practice guidelines in oncology are quite explicit, regarding the preference of excisional biopsies at the time of initial diagnosis, whenever feasible.

Despite the evolution of diagnostic methodologies, the use of ancillary techniques only occasionally compensates the loss of diagnostic specificity due to limited sampling. The current WHO classification states “accurate grading cannot be performed on fine-needle aspiration and may be difficult on core needle biopsy. Therefore, an excisional biopsy is recommended for primary diagnosis.”

Conclusion

Under the broad heading of FL, diseases with different clinicopathological features are included. Diverse molecular pathways are probably associated with different clinical features and outcomes.

References

1. Swerdlow SH, Campo E, Harris NL, et al. Revised 4th Edition WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon, France: IARC Press; 2017.
2. Fratoni S, Zanelli M, Zizzo M, et al. The broad landscape of follicular lymphoma: Part I. Pathologica 2020;112:1-16. https://doi.org/10.32074/1591-951X-35-19
3. Shastri A, Janaiakiram M, Mantzaris I, et al. Sites of extranodal involvement are prognostic in patients with stage 1 follicular lymphoma. Oncotarget 2017;8:78410-8. https://doi.org/10.18632/oncotarget.19240
4. Misdraji J, Harris NL, Hasserjian RP, et al. Primary follicular lymphoma of the gastrointestinal tract. Am J Surg Pathol 2011;35:1255-63. https://doi.org/10.1097/PAS.0b013e318224e6f1

5. Damaj G, Verkarre V, Delmer A, et al. Primary follicular lymphoma of the gastrointestinal tract: a study of 25 cases and a literature review. Ann Oncol 2003;14(4):623-9. https://doi.org/10.1093/annonc/mdg168

6. Sakata Y, Iwakiri R, Sakata H, et al. Primary gastrointestinal follicular center lymphoma resembling multiple lymphomatous polyposis. Dig Dis Sci 2001;46:567-70. https://doi.org/10.1023/a:100563002083

7. Huang WT, Hsu YH, Yang SF, et al. Primary gastrointestinal follicular lymphoma: a clinicopathologic study of 13 cases from Taiwan. J Clin Gastroenterol 2008;42:997-1002. https://doi.org/10.1097/MCG.0b013e3180f62b12

8. Zanelli M, Tioli C, Mengoli MC, et al. Marginal-zone lymphoma: a rare presentation with multiple intestinal polyps. Clin Res Hepatol 2019;43(2):117-9. https://doi.org/10.1016/j.clinre.2018.08.001

9. Pileri SA, Sabattini E, Rosito P, et al. Primary follicular lymphoma of the testis in childhood: an entity with peculiar clinical and molecular characteristics. J Clin Pathol 2002;55:684-8. https://doi.org/10.1136/jcp.55.9.684

10. Bacon CM, Ye H, Diss TC, et al. Primary follicular lymphoma of the testis and epididymis in adults. Am J Surg Pathol 2007;31:1050-8. https://doi.org/10.1097/PAS.0b013e3180ee4ab

11. Oszan N, Bedke BJ, Law ME, et al. Clinicopathologic and genetic characterization of follicular lymphomas presenting in the ovary reveals 2 distinct subgroups. Am J Surg Pathol 2011;35:1691-9. https://doi.org/10.1097/PAS.0b013e3182bd8a8

12. Cerroni L. Skin Lymphoma: The Illustrated Guide, 4th Edition. Hoboken, NJ: Wiley Blackwell; 2014.

13. Servitje O, Climent F, Colomo L, et al. Primary cutaneous vs secondary cutaneous follicular lymphomas: A comparative study focused on BCL2, CD10, and t(14;18) expression. J Cutan Pathol 2019;46:182-9. https://doi.org/10.1111/cup.13399

14. Vergier B, Belaud-Rotureau MA, Benassy MN, et al. Neoplastic cells do not carry bcl2-JH rearrangements detected in a subset of primary cutaneous follicle center B-cell lymphomas. Am J Surg Pathol 2004;28:748-55. https://doi.org/10.1097/01.pas.0000126775.27698.6e

15. Szablewski V, Ingen-Housz-Oro S, Baia M, et al. Primary Cutaneous Follicle Center Lymphomas Expressing BCL2 Protein Frequently Harbor BCL2 Gene Break and May Present 1p36 Deletion: A Study of 20 Cases. Am J Surg Pathol 2016;40:127-36. https://doi.org/10.1097/PAS.0000000000000567

16. Tsang HC, Mathew S, Magro CM. An aggressive primary cutaneous follicle center lymphoma with c-MYC translocation and CDKN2A (9p21) deletion: a case report and review of the literature. Am J Dermatopathol 2017;39:e44-9. https://doi.org/10.1097/DAD.0000000000000738

17. Swerdlow SH. Cutaneous marginal zone lymphomas. Semin Diagn Pathol 2017;34:76-84. https://doi.org/10.1053/j.semdp.2016.11.007

18. Battistella M, Beylot-Barry M, Bachelez H, et al. Primary cutaneous follicular helper T-cell lymphoma: a new subtype of cutaneous T-cell lymphoma reported in a series of 5 cases. Arch Dermatol 2012;148:832-9. https://doi.org/10.1001/archdermatol.2011.3289

19. Wang JY, Nguyen GH, Ruan J et al. Primary cutaneous follicular helper T-cell lymphoma: a case series and review of the literature. Am J Dermatopathol 2017;39:374-83. https://doi.org/10.1097/DAD.0000000000000685

20. Cota C, Vale E, Viana I, et al. Cutaneous manifestations of blasticplasmacytoid dendritic cell neoplasm-morphologic and phenotypic variability in a series of 33 patients. Am J Surg Pathol 2010;34:75-87. https://doi.org/10.1097/PAS.0b013e3181c5e5e26

21. Evans PA, Pott Ch, Groenen PJ, et al. Significantly improved PCR-based clonality testing in B-cell malignancies by use of multiple immunoglobulin gene targets. Report of the BIOMED-2 concerted action BMH4-CT96-3936. Leukemia 2007;21:207-14. https://doi.org/10.1038/sj.leu.2404479

22. Schafernak KT1, Variaikos D, Goolsby CL, et al. Clonality assessment of cutaneous B-cell lymphoid proliferations: a comparison of flow cytometry immunophenotyping, molecular studies, and immunohistochemistry/in situ hybridization and review of the literature. Am J Dermatopathol 2014;36:781-95. https://doi.org/10.1097/DAD.0000000000000022

23. Gulia A, Saggini A, Wiesner T, et al. Clinicopathologic features of early lesions of primary cutaneous follicle center lymphoma, diffuse type: implications for early diagnosis and treatment. J Am Acad Dermatol 2011;65:991-1000. https://doi.org/10.1016/j.jaad.2010.06.059

24. Mollejo M, Rodriguez-Pinilla MS, Montes-Moreno S, et al. Splenic follicular lymphoma: clinicopathologic characteristics of a series of 32 cases. Am J Surg Pathol 2009;33:730-8. https://doi.org/10.1097/PAS.0b013e318193fcef

25. Shimono J, Miyoshi H, Kamimura T, et al. Clinicopathological features of primary splenic follicular lymphoma. Ann Hematol 2017;96:2063-70. https://doi.org/10.1007/s00277-017-3139-y

26. Umeda M, Kondo T, Nishikori M, et al. A case of neurolymphomatosis caused by follicular lymphoma successfully treated with bendamustine. Clin Case Rep 2015;4:23-5. https://doi.org/10.1002/ccr3.436

27. Martins F, Stalder G, Van Der Gucht A, et al. Intramuscular Follicular Lymphoma. Clin Nucl Med 2018;43:682-4. https://doi.org/10.1097/RLU.0000000000002180

28. Cunningham N, French-Constant S, Planche K, et al. Peritoneal lymphomatosis: a rare presentation of follicular lymphoma mimicking peritoneal carcinomatosis. BMJ Case Rep 2015;2015:bcr2014207136. https://doi.org/10.1136/bcr-2014-207136

29. Tandon R, Mukherjee U, Abrari A, et al. Primary dural follicular lymphoma masquerading as meningioma: a case report. Br J Neurosurg 2012;26:905-6. https://doi.org/10.1017/S02686897.2012.685783

30. Saltapan S, Abu Bakar NZ, Jarmin R, et al. Primary follicular lymphoma of the pancreas: A rare tumour mimicking pancreatic carcinoma. Malays J Pathol 2018;40:359-71.

31. Gaffar M, Thebapatth P, Przygodzki R, et al. Primary follicular lymphoma of the conjunctiva in a 6-year-old child. J AAPOS 2010;14:538-40. https://doi.org/10.1016/j.jaapos.2010.08.009

32. Prasad GL, Hegde A, Menon G, et al. Primary orbital follicular lymphoma: a case report and review. J Clin Diagn Res 2017;11:XD01-XD03. https://doi.org/10.7860/JCDR/2017/24674.9400

33. Rasmussen PK, Raakkaer E, Praise JU, et al. Follicular lymphoma of the ocular adenexal region: a nation-based study. Acta Ophthal 2015;93:184-9. https://doi.org/10.1111/aos.12525

34. Schraders M, de Jong D, Kluin P, et al. Lack of Bcl-2 expression in follicular lymphoma may be caused by mutations in the BCL2 gene or by absence of the t(14;18) translocation. J Pathol 2005;205:327-35. https://doi.org/10.1002/path.1689

35. Adam P, Baumann R, Schmidt J, et al. The BCL2 E17 and SP66 antibodies discriminate 2 immunophenotypically and genetically distinct subgroups of conventionally BCL2-“negative” grade 1/2 follicular lymphomas. Hum Pathol 2013;44:1817-26. https://doi.org/10.1016/j.humpath.2012.02.004

36. Younes SF, Beck AH, Ohgami RS, et al. The efficacy of HGAL
and LMO2 in the separation of lymphomas derived from small B cells in nodal and extranodal sites, including the bone marrow. Am J Clin Pathol 2011;135:697-708. https://doi.org/10.1093/ajcp722BIBUNQPlZ

37 Xerri L, Dinhofer S, Quintanilla-Martínez L, et al. The heterogeneity of follicular lymphomas: from early development to transformation. Virchows Arch 2016;468:127-39. https://doi.org/10.1007/s00428-015-1864-y

38 Li Y, Hu S, Zuo Z, et al. CDS-positive follicular lymphoma: clinicopathologic correlations and outcome in 88 cases. Mod Pathol 2015;28:787-98. https://doi.org/10.1038/modpathol.2015.42

39 Horn H, Schmelter C, Leich E, et al. Follicular lymphoma grade 3B is a distinct neoplasm according to cytogenetic and immuno-histochemical profiles. Haematologica 2011;96:1327-34. https://doi.org/10.3324/haematol.2011.042531

40 Xerri L, Bachy E, Fabiani B, et al. Identification of MUM1 as a prognostic immunohistochemical marker in follicular lymphoma using computerized image analysis. Hum Pathol 2014;45:2085-93. https://doi.org/10.1016/j.humpath.2014.06.019

41 Bosga-Bouwer AG, van Imhoff GW, Boonstra R, et al. Follicular lymphoma grade 3B includes 3 cytogenetically defined subgroups with primary t(14;18), 3q27, or other translocations: t(14;18) and 3q27 are mutually exclusive. Blood 2003;101:1149-54. https://doi.org/10.1182/blood.V101.3.1149

42 Díaz-Alderete A, Doval A, Camacho F, et al. Frequency of BCL2 and BCL6 translocations in follicular lymphoma: relation with histological and clinical features. Leuk Lymphoma 2006;49:95-101. https://doi.org/10.1080/10428190701424727

43 Miao Y, Hu S, Lu X, et al. Double-hit follicular lymphoma with MYC and BCL2 translocations: a study of 7 cases with a review of literature. Hum Pathol 2016;58:72-7. https://doi.org/10.1016/j.humpath.2016.07.025

44 Yoshida M, Ichikawa A, Miyoshi H, et al. Clinicopathological features of double-hit B-cell lymphomas with MYC and BCL2, BCL6 or CCND1 rearrangements. Pathol Int 2015;65:519-27. https://doi.org/10.1111/pin.12335

45 Miyaoa M, Kikuti Y, Carreras J, et al. Clinicopathological and genomic analysis of double-hit follicular lymphoma: comparison with high-grade B-cell lymphoma with MYC and CL2 and/or BCL6 rearrangements. Mod Pathol 2018;31:313-26. https://doi.org/10.1038/modpathol.2017.134

46 Karube K, Martínez D, Royo C, et al. Recurrent mutations of NOTCH genes in follicular lymphoma identify a distinct subset of tumours. J Pathol 2014;234:423-30. https://doi.org/10.1002/path.4428

47 Salaverría I, Siebert R. Follicular lymphoma grade 3B. Best Pract Res Clin Haematol. 2011;24:111-9. https://doi.org/10.1016/j.bepha.2011.02.002

48 Koch K, Hoster E, Ziepert M, et al. Hodgkin disease subsequent to follicular lymphoma on maintenance MOH.0000000000000049

49 Martinez D, Valera A, Perez NS, et al. Plasmablastic transformation of low-grade B-cell lymphomas: report on 6 cases. Am J Surg Pathol 2013;37:272-81. https://doi.org/10.1097/PAS.0b013e31826cb1d1

50 Feldman AL, Arber DA, Pittaluga S, et al. Clonally related follicular lymphomas and histiocytic/dendritic cell sarcomas: evidence for transdifferentiation of the follicular lymphoma clone. Blood 2006;111:5433-9. https://doi.org/10.1182/blood-2007-11-124792

51 Geyer JT, Subramanyam S, Jiang Y, et al. Lymphoblastic transformation of follicular lymphoma: a clinicopathologic and molecular analysis of 7 patients. Hum Pathol 2015;46:260-71. https://doi.org/10.1016/j.humpath.2014.10.021

52 Green MR, Alizadeh AA. Common progenitor cells in mature B-cell malignancies: implications for therapy. Curr Opin Hematol 2014;21:333-40. https://doi.org/10.1097/MOH.0000000000000409

53 Okosun J, Bödör C, Wang J, et al. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat Genet 2014;46:176-81. https://doi.org/10.1038/ng.2856

54 Gonzalez CL, Medeiros LJ, Jaffe ES. Composite lymphoma. A clinicopathologic analysis of nine patients with Hodgkin’s disease and B-cell non-Hodgkin’s lymphoma. Am J Clin Pathol 1991;96:81-9. https://doi.org/10.1093/ajcp/96.1.81

55 Kim H. Composite lymphoma and related disorders. Am J Clin Pathol 1993;99:445-51. https://doi.org/10.1093/ajcp/99.4.445

56 Thirumala S, Esposito M, Fuchs A. An unusual variant of composite lymphoma: a short case report and review of the literature. Arch Pathol Lab Med 2000;124:1376-8.

57 Maeshima AM, Taniguchi H, Nomoto J, et al. Clinicopathological features of classical Hodgkin lymphoma in patients ≥ 40 years old, with special reference to composite cases. Jpn J Clin Oncol 2015;45:921-8. https://doi.org/10.1016/j.jjco.2015.03.010

58 Wang S, Tzankov A, Xu-Monette ZY, et al. Clonally related composite follicular lymphoma and mantle cell lymphoma with clinicopathologic features and biological implications. Hum Pathol 2013;44:2658-67. https://doi.org/10.1016/j.humpath.2013.07.007

59 Schneider S, Crescenzi B, Schneider M, et al. Subclonal evolution of a classical Hodgkin lymphoma from a germinal center B-cell-derived mantle cell lymphoma. J Cancer. 2014;134:832-43. https://doi.org/10.1002/jc.28422

60 Subtil A, Xu Z. Follicular lymphoma with composite in situ mantle cell neoplasia. Blood 2019;133:2460. https://doi.org/10.1182/blood.2019000012

61 Carvajal-Cuenca A, Sua LF, Silva NM, et al. In situ mantle cell lymphoma: clinical implications of an incidental finding with indolent clinical behavior. Haematologica 2012;97:270-8. https://doi.org/10.3324/haematol.2011.052621

62 Tsang P, Pan L, Cesarmian E, et al. A distinctive composite lymphoma consisting of clonally related mantle cell lymphoma and follicle center cell lymphoma. Hum Pathol 1999;30:988-92. https://doi.org/10.1002/ijc.28422

63 Vine J, Nair A, Yun S, et al. A rare presentation of in situ mantle cell lymphoma and follicular lymphoma: a case report and review of the literature. Case Rep Hematol 2014;2014:145129. https://doi.org/10.1155/2014/145129

64 Jelloul FZ, Chen QH, Yang T, et al. Composite Small Lymphocytic Lymphoma/Chronic Lymphocytic Leukemia and Follicular Lymphoma: A Clinicopathological Study of Six Cases. Int J Surg Pathol. 2014;22:80-8. https://doi.org/10.1097/01.sisp.0000435507.14333.63

65 Boiocchi L, Witter RE, He B, et al. Composite chronic lymphocytic leukemia/small lymphocytic lymphoma and follicular lymphoma are biclonal lymphomas: a report of two cases. Am J Clin Pathol 2012;137:647-59. https://doi.org/10.1093/ajcp/foxs10-W20ELA

66 Miyaoa M, Kikuchi T, Carreras J, et al. Composite follicular lymphoma and CD5-positive nodal marginal zone lymphoma. J Clin Exp Hematop 2016;56:35-5. https://doi.org/10.3960/jshr.56.55
Dargent JL, Lespagnard L, Meiers I, et al. Composite follicular lymphoma and nodular lymphocyte-predominant Hodgkin's disease. Virchows Arch 2005;447:778-80. https://doi.org/10.1007/s00428-005-0008-1

O'Neil JP, Quinn F, Dowling A, et al. Composite t(14;18)–Negative follicular lymphoma and nodular lymphocyte-predominant hodgkin lymphoma. Case Rep Hematol 2018;2018:4312594. https://doi.org/10.1155/2018/4312594

Küppers R, Sousa AB, Baur AS, et al. Common germinal-center B-cell origin of the malignant cells in two composite lymphomas, involving classical Hodgkin's disease and either follicular lymphoma or B-CLL. Mol Med 2001;7:285-92.

Küppers R, Dührsen U, Hansmann ML. Pathogenesis, diagnosis, and treatment of composite lymphomas. Lancet Oncol 2014;15:435-46. https://doi.org/10.1016/S1470-2045(14)70153-6

Wang E, Papavassiliou P, Wang AR, et al. Composite lymphoid neoplasm of B-cell and T-cell origins: a pathologic study of 14 cases. Hum Pathol 2014;45:788-84. https://doi.org/10.1016/j.humpath.2013.11.008

Tanaka J, Su P, Luedke C, et al. Composite lymphoma of follicular B-cell and peripheral T-cell types with distinct zone distribution in a 75-year-old male patient: a case study. Hum Pathol 2018;76:110-6. https://doi.org/10.1016/j.humpath.2017.11.017

West DS, Dogan A, Quint PS, et al. Clonally related follicular lymphomas and Langerhans cell neoplasms: expanding the spectrum of transdifferentiation. Am J Surg Pathol 2013;37:978-86. https://doi.org/10.1097/PAS.0b013e318283099f

Torlakovic E, Torlakovic G, Brunning RD. Follicular pattern of bone marrow involvement by follicular lymphoma. Am J Clin Pathol 2002;118:780-6. https://doi.org/10.1093/ACP/MYB9-WEFW-7H1R

Sovani V, Harvey C, Haynes AP, et al. Bone marrow trephine biopsy involvement by lymphoma: review of histopathological features in 511 specimens and correlation with diagnostic biopsy, aspirate and peripheral blood findings. J Clin Pathol 2014;67:389-95. https://doi.org/10.1136/jclinpath-2013-201520

Frederiksen JK, Sharma M, Casulo C, et al. Systematic review of the effectiveness of fine-needle aspiration and/or core needle biopsy for subclassifying lymphoma. Arch Pathol Lab Med 2015;139:245-51. https://doi.org/10.5858/arpa.2013-0674-RA

Hu Q, Naushad H, Xie Q, et al. Needle-core biopsy in the pathologic diagnosis of malignant lymphoma showing high reproducibility among pathologists. Am J Clin Pathol 2013;140:238-47. https://doi.org/10.1309/AJCP9ZAGKVFJ8PDAX

Amador-Ortiz C, Chen L, Hassan A, et al. Combined core needle biopsy and fine-needle aspiration with ancillary studies correlate highly with traditional techniques in the diagnosis of nodal-based lymphoma. Am J Clin Pathol 2011;135:516-24. https://doi.org/10.1309/AJCP3WZDRJQDOU

Zelenetz AD, Abramson JS, Advani RH, et al. NCCN clinical practice guidelines in oncology for non-Hodgkin’s lymphomas. J Natl Compr Canc Netw 2010;8:288-334. https://doi.org/10.6004/jnccn.2010.0021

Johl A, Lengfelder E, Hiddemann W, et al. Core needle biopsies and surgical excision biopsies in the diagnosis of lymphoma experience at the Lymph Node Registry Kiel. Ann Hematol 2016;95:1281-6. https://doi.org/10.1007/s0027-016-2704-0