Flow Cytometric Analysis of Ca2+-Induced Membrane Permeability Transition of Isolated Rat Liver Mitochondria

Teruo Umegaki1, Yuya Okimura1,2, Hirofumi Fujita*1, Hiromi Yano3, Jitsuo Akiyama2, Masayasu Inoue4, Kozo Utsumi1, and Junzo Sasaki1

1Department of Cytology & Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikatacho, Okayama 700-8558, Japan
2Donan Institute of Medical Science, Akiyama Memorial Hospital, 41-9 Ishikawacho, Hakodate 041-8502, Japan
3Department of Health and Sports Science, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki 710-0193, Japan
4Department of Biochemistry & Molecular Pathology, Osaka City University Medical School, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585 Japan

Received 2 April, 2007; Accepted 21 June, 2007

Summary The membrane permeability transition (MPT) of mitochondria plays an important role in the mechanism of apoptotic cell death in various cells. Classic type MPT is induced by Ca2+ in the presence of inorganic phosphate and respiratory substrate, and is characterized by various events including generation of reactive oxygen species (ROS), membrane depolarization, swelling, release of Ca2+ and high sensitivity to cyclosporine A. However, the sequence of these events and the effect of antioxidants on their events remain obscure. Flow cytometry is a convenient method to investigate the order of events among various functions occurring in MPT using a limited amount of mitochondria (200 µl of 0.02 mg protein/ml) without contamination by other organelles. Flow cytometric analysis revealed that Ca2+ sequentially induced ROS generation, depolarization, swelling and Ca2+ release in mitochondria by a cyclosporine A-inhibitable mechanism. These results were supported by the finding that Ca2+-induced MPT was inhibited by antioxidants, such as glutathione and N-acetylcysteine. It was also revealed that various inhibitors of Ca2+-induced phospholipase A\textsubscript{2} suppressed all of the events associated with Ca2+-induced MPT. These results suggested that ROS generation and phospholipase A\textsubscript{2} activation by Ca2+ underlie the mechanism of the initiation of MPT.

Key Words: antioxidant, membrane permeability transition, flow cytometric analysis, mitochondria, phospholipase A\textsubscript{2}

Introduction

Apoptosis plays an important role in various physiological processes including embryonic development, maintenance of tissue and cell homeostasis, and in the pathogenesis of various diseases [1–3]. Among various organelles [4–7] mitochondria play the most important roles in the process of apoptosis by inducing membrane permeability transition (MPT). Opening of MPT pores releases apoptosis-related proteins including cytochrome c from mitochondria to cytosol thereby activating the caspase cascade [4, 8]. Mitochondria thus play pivotal roles in determining cell survival and death through energy transduction and release of apoptosis-related proteins, respectively.
In the presence of inorganic phosphate (Pi) and respiratory substrates, Ca\(^{2+}\) induces typical classic type MPT characterized by its dependency on energy metabolism, mitochondrial depolarization, swelling, release of Ca\(^{2+}\), and high sensitivity to cyclosporine A, a specific inhibitor of MPT\([4, 9, 10]\). Although Ca\(^{2+}\) loading into mitochondria induces cytochrome c release, the molecular mechanism and sequence of events leading to cell death remain unclear.

Reactive oxygen species (ROS) produced by a variety of physiological and pathological metabolisms\([11–13]\) function as critical second messenger in a variety of intracellular signaling pathways\([14, 15]\). We previously reported that mitochondria generated ROS followed by the induction of MPT\([10]\). Although the generation of ROS has been postulated to be one of the early events that induce MPT\([15]\), the effects of antioxidants on Ca\(^{2+}\)-induced mitochondrial swelling and other events leading to MPT remain obscure. Since flow cytometric analysis is an excellent method for the analysis of mitochondrial swelling, depolarization, Ca\(^{2+}\) release and ROS generation\([16–18]\), we analyzed a sequence of events occurring in small amount of mitochondria using a FACScan analyzer.

Materials and Methods

Chemicals

Bromophenacol bromide (BPB), chlorpromazine (CP), fatty acid free bovine serum albumin (BSA), N-acetylcysteine (NAC), quinacrine (QC), ruthenium red (RR), cyclosporine A (CsA) and trifluoperazine (TFP) were obtained from Sigma Co. Ltd. (Saint Louis, MO). Ca\(^{2+}\)-dependent secretary phospholipase A2 (cPLA2) α inhibitor was obtained from Calbiochem (Darmstadt, Germany). 2,7'-Dichlorodihydrofluorescein diacetate (H2DCF-DA), hydroethidine (HE), tetramethylrhodamine-ethyl-ester (TMRE) and 10-nonyl acridine orange (NAO) were obtained from Molecular Probes (Eugene, OR). 1-[2-Amino-5-(-dimethylamino-6-dimethylammonio-9-xanthenyl)phenoxy]-2-(2-amino-5-methylphenoxy)ethane-N,N,N',N'-tetraacetic acid (Rhod 2)-tetraacetoxymethyl (AM) was obtained from Dojin Co. Ltd. (Kumamoto, Japan). Cyanine dye, 3,3'-dipropyl-2,2'-thiodicarboxycyanine iodide (diS-C3-(5)), a cyanine dye, was obtained from the Hayashibara Biochemical Laboratories (Okayama, Japan). All other chemicals were of analytical grade and obtained from Nacalai Tesque (Kyoto, Japan). NAO, TMRE, hydroethidine and CsA were dissolved in DMSO and stored at 4°C until use.

Isolation of rat liver mitochondria

After fasting Wistar rats overnight, excised rat livers were homogenized in 0.25 M sucrose containing 10 mM Tris-HCl buffer (pH 7.4) and 1 mM EDTA at 4°C. Mitochondria were isolated from the homogenates by the method of Hogeboom as described previously\([19]\).

Assay for mitochondrial functions

Oxygen consumption and oxidative phosphorylation of mitochondria were measured by an oxygen electrode\([10]\). Mitochondria (0.25 mg protein/ml) were incubated in a medium consisting of 250 mM sucrose, 5 mM MgCl\(_2\), 10 mM KCl and 10 mM Tris-HCl buffer (pH 7.4) at 25°C. Mitochondria used for the experiments maintained a high respiratory control ratio (RCR of 5.0) and ADP/O ratio (1.7) in the presence of Pi and succinate.

Mitochondrial swelling was monitored by the change in light scattering at 540 nm and recorded by a Hitachi fluorescence spectrophotometer (650-10LC) equipped with a thermostatically controlled cuvette holder and a magnetic stirrer\([10]\). Mitochondrial membrane potential was measured by the fluorescence intensity of diS-C3-(5) (0.2 µg/ml) at 670 nm during excitation at 622 nm by a Hitachi 650-10LC\([10]\).

Flow cytometry

Flow cytometric analysis was carried out using a FACScan equipped with a 488-nm Argon laser (Becton Dickinson, San Jose, CA). Data from the experiments were analyzed using the CELLQuest software (Becton Dickinson) as described previously\([16–18]\). To exclude debris in the side scatter (SSC) and forward scatter (FSC) modes, 50,000 events per sample within this gate (R1) were collected using the "low" setting for sample flow rate. Mitochondria were selectively stained with NAO (100 nM, excitation at 488 nm and emission at 525 nm) that binds to cardiolipin in the inner mitochondrial membrane\([17, 20]\). TMRE (100 nM, excitation at 488 nm and emission at 590 nm), HE (10 µM, excitation at 493 and emission at 580 nm) and Rhod 2 (2.5 µM, excitation at 488 nm and emission at 576 nm) were used to measure membrane potential, ROS and release of Ca\(^{2+}\), respectively\([16–18, 21–24]\). TMRE accumulated in mitochondria in membrane potential dependent manner. Binding of Ca\(^{2+}\) to Rhod 2 increases its fluorescence. Thus, it has been used to monitor changes in [Ca\(^{2+}\)] within the mitochondrial matrix\([24]\). HE also used to detect ROS, especially superoxide\([22]\).

Mitochondria (0.1 mg protein/ml) were stained under dark conditions with either NAO, HE, TMRE or Rhod 2-AM in 1 ml of standard medium (3 mM HEPES buffer, pH 7.4, containing 70 mM sucrose, 230 mM mannitol, 1 µM EDTA and ~10 µM contaminating Ca\(^{2+}\)) in the presence of 0.5 mM Pi and 2.5 mM succinate under dark conditions at 25°C for 3 min. Then, adding various concentration of Ca\(^{2+}\) in the presence or absence of various reagents induced MPT. After 20 seconds~5 min, membrane depolarization, Ca\(^{2+}\)-release and ROS generation of NAO-positive mitochondria were analyzed by FACScan for changes in FL2-H of TMRE.
Rhod 2 and HE. ROS generation and mitochondrial swelling were also analyzed by FACS can based on the changes in FL1-H of H$_2$DCF-DA and in SSC and FSC of NAO-positive particles before and after adding Ca$^{2+}$. Protein concentrations were determined by the method of Bradford using BSA as a standard [25].

Results

Analysis of light scattering properties of mitochondria

To analyze the relationship among Ca$^{2+}$-induced membrane depolarization, swelling, Ca$^{2+}$ release and ROS generation, mitochondria were selected from rat liver based on their light-scattering properties using a FACScan analyzer. The purity of mitochondrial preparations was determined by staining with NAO [18]. Fig. 1A shows the FSC/SSC plot of the isolated rat liver mitochondria. We gated the largest population with reasonable FSC values as R1, assuming that they are mitochondrial fraction. When the gated R1 population was analyzed for NAO fluorescence, almost all events were positive for NAO (Fig. 1B), which confirmed that they were mitochondrial fraction. Thus, the gated R1 events were analyzed in the following experiments.

Effect of succinate and Ca$^{2+}$ on the membrane potential of isolated mitochondria

It is well-known that mitochondrial membrane depolarization occurs prior to the occurrence of MPT [4]. We tested whether the flow cytometric technique was useful for the analysis of the mitochondrial membrane depolarization, and the effect of Ca$^{2+}$ on TMRE fluorescence intensity. When the mitochondria were added with only TMRE, FL2-H intensity increased (Fig. 2), probably due to the endogenous membrane potential. Adding Pi and succinate, a respiratory substrate, further increased the intensity of fluorescence. In contrast, exogenously-added Ca$^{2+}$ decreased the FL2-H fluorescence and the peak shifted to the left, which indicated depolarization (Fig. 2). These results indicate that flow cytometry is useful for the analysis of the sequence of MPT in isolated mitochondria.

Effect of succinate and cyclosporine A on Ca$^{2+}$-induced mitochondrial events

Since Ca$^{2+}$-induced MPT occurred by some energy-dependent and CsA-inhibitable mechanism, we analyzed the
effects of succinate and CsA on various events observed with MPT. In the presence but not in the absence of succinate, ROS generation, depolarization, swelling and Ca\(^{2+}\) release were observed with Ca\(^{2+}\)-treated mitochondria (Fig. 3). All of these Ca\(^{2+}\)-induced events associated with MPT of Ca\(^{2+}\)-treated mitochondria were suppressed by CsA (Fig. 3). Since CsA affected the fluorescence intensity of HE, ROS generation by mitochondria could not be measured. Although most experiments were carried out using 0.1–1 mg mitochondrial protein/ml, the extent of the Ca\(^{2+}\)-induced events in mitochondria occurred independently from these concentrations. At protein concentrations between 0.02 to 0.1 mg/ml, mitochondria showed typical patterns of depolarization, Ca\(^{2+}\) release and swelling 5 min after the treatment with 5–15 µM Ca\(^{2+}\) (Fig. 4). These results indicate that various functions can be analyzed with a relatively small amount of mitochondria.

Sequence of events occurring with Ca\(^{2+}\)-induced membrane permeability transition

To determine the sequence of events occurring with Ca\(^{2+}\)-induced mitochondrial MPT, flow cytometric analysis of swelling, depolarization, Ca\(^{2+}\) release, and ROS generation was carried out with isolated mitochondria which were
stained with either TMRE, Rhod 2, or HE for analysis. The mitochondrial swelling decrease in SSC of Argon laser at 488 nm was comparable to the decrease in light scattering at 540 nm in a fluorescence spectrophotometer (data not described) [16]. As shown in Fig. 5, Ca2+-induced ROS generation was detectable from the increase in FL2-H fluorescence (green line) of HE. The increased HE fluorescence (green line) was detectable before the onset of mitochondrial swelling detected in SSC-H (Fig. 5A). The decrease of TMRE fluorescence in FL2-H (green line) reflecting Ca2+-induced depolarization occurred more rapidly than mitochondrial swelling (Fig. 5B). In contrast, mitochondrial
swelling occurred more rapidly than the release of Ca^{2+} detected by the decrease of Rhod 2 fluorescence in FL2-H (green line in Fig. 5C). ROS generation was also detectable from the increase in the fluorescence of H$_2$DCF-DA (data not shown).

Effect of antioxidants on the Ca^{2+}-induced changes in mitochondrial functions

Since ROS generation is one of the early events in Ca^{2+}-induced MPT, we tested the effect of antioxidants on the Ca^{2+}-induced depolarization, swelling and Ca^{2+} release of mitochondria. Reduced GSH, a typical hydrophilic antioxi-
Flow Cytometric Analysis of Ca²⁺-induced MPT

Flow Cytometric Analysis of Ca²⁺-induced MPT

Vol. 42, No. 1, 2008

41

dant, suppressed the Ca²⁺-induced swelling, depolarization and release of Ca²⁺ in isolated mitochondria in a concentration dependent manner (Fig. 6). Similar effects were also observed with NAC, a hydrophilic antioxidant. We also studied ROS production by HE and, contrary to our expectation, found that HE fluorescence increased in the presence of GSH and NAC (data not shown). Additional experiment showed that even without mitochondria, GSH increased the HE fluorescence in xanthine-xanthine oxidase system. Thus, HE may not be a suitable ROS detector when GSH and NAC were present in the system.

Effect of RR and inhibitors of phospholipase A₂ on Ca²⁺-induced swelling, depolarization, and Ca²⁺-release of mitochondria

To elucidate the mechanism of Ca²⁺-induced MPT, we tested the effect of RR, an inhibitor of Ca²⁺ uniporter [26] that inhibits Ca²⁺ influx into mitochondrial matrix, on mitochondrial swelling, depolarization and release of loaded Ca²⁺. Analysis using SSC-H, FL2-H (TMRE), and FL2-H (Rhod 2) revealed that Ca²⁺-induced mitochondrial swelling, depolarization and Ca²⁺ release were suppressed by RR (Fig. 7). Similar inhibition was observed with BSA that binds free fatty acid. Furthermore, various inhibitors of phospholipase A₂ (PLA₂), such as TFP, BPB, CP and QC suppressed the Ca²⁺-induced mitochondrial swelling, depolarization and Ca²⁺ release [27–32] (Fig. 8). In contrast, inhibitor of cytosolic cPLA₂ [32] failed to suppress these changes induced by Ca²⁺. These results suggested that both Ca²⁺ uniporter and PLA₂ play important role in the mechanism of Ca²⁺-induced MPT. Furthermore, PLA₂ inhibitors did not affect significantly the ROS generation demonstrated by HE fluorescence (data not shown).

Discussion

The present work describes the sequence of events that elicited Ca²⁺-induced MPT in isolated mitochondria without being affected by cytosol and other organelles. Kinetic analysis using FACScan equipment revealed that the sequence of events occurring during the process of Ca²⁺-induced MPT were Ca²⁺-uptake into mitochondria, which was followed by ROS generation and activation PLA₂, depolarization, swelling, and then efflux of the loaded Ca²⁺.

In this experiment we measured mitochondrial swelling by SSC, a parameter for the complexity of the target object, and not by FSC, a parameter for the object size. This was because the actual measurement showed that SSC was more sensitive than FSC in the detection of mitochondrial swelling. Probably the mitochondrial swelling result in the simplification of inner membrane structure and SSC decreases more sensitively than the increase in FSC [33, 34].

Recent studies using newly developed multi channel analyzers have revealed that selective ion leaks occur prior to the onset of permeability transition [35]. Although Ca²⁺ plays important roles in cell signaling for cell survival, it accumulates in mitochondria by an energy-dependent mechanism and triggers the reaction causing MPT, a prerequisite to

Fig. 8. Effect of PLA₂ inhibitors on the Ca²⁺-induced depolarization, swelling and Ca²⁺-release of isolated mitochondria. Experimental conditions were the same as described for Fig. 7. The concentration used of BPB, CP, QC and cPLA₂α inhibitor were 20 µM, 10 µM, 15 µM and 0.5 µM, respectively. Similar results were obtained in 3 separate experiments.
cell death. We previously described that CsA inhibited the ROS generation from mitochondria [10]. The present work demonstrates that ROS generation is an initial step of the sequence of events triggering Ca\(^{2+}\)-induced MPT of mitochondria.

In the present experiments, it was found that inhibitors of Ca\(^{2+}\)-induced PLA2, RR and BSA suppressed the various events in MPT. These results suggested that PLA2 might affect the early events in MPT. Several investigators have reported that Ca\(^{2+}\) accumulated in mitochondria stimulated PLA2 and released free fatty acid and lysophosphatidates, which activate the caspase cascade [36–39]. RR suppressed the uniport channel found in the inner mitochondrial membrane [26, 40]. It is known that free fatty acids elicit CsA-sensitive MPT and induce mitochondrial swelling [41–43] by a mechanism that is suppressed by fatty acid binding BSA [27, 28]. In this context, ischemia/reperfusion increased free fatty acids in rat brain, and CsA and TFP effectively suppressed the reperfusion-induced release of fatty acids [37]. These results indicate that MPT seems to involve the uncoupling effect of fatty acids generated by activated PLA2 [43]. However, it was reported that mitochondrial Ca\(^{2+}\) could be released spontaneously by MPT without generating free fatty acid although long-term incubation of mitochondria significantly increased the products of PLA2 [32]. This result suggests that the accumulation of fatty acids in mitochondria might be the consequence rather than the cause of MPT, and that free fatty acid generated in mitochondria might sustain the permeable state.

It is well known that PLA2 consists of a wide variety of enzymes [44]. Thus, it is very important to identify the isoform involving in MPT mechanism. The PLA2 isoform that is localized within mitochondria is different from the cytosolic isoform of PLA2 (cPLA2); and is most likely to be a low-molecular-mass PLA2 [45] which belong to group IIA PLA2s [46]. It is interesting to note that TFP, BPB, CP and QC, but not cPLA2 inhibitor, are potent inhibitors for group IIA PLA2s [45, 47–49]. This finding indicates that the group IIA PLA2s are involved in the Ca\(^{2+}\)-induced mitochondrial swelling. In addition, recent report showed that Ca\(^{2+}\)-independent PLA2\(\gamma\) (iPLA2\(\gamma\)) is also localized in mitochondria, and is involved in Ca\(^{2+}\)-induced mitochondrial MPT [50]. Thus, the possible involvement of this isoform should be studied further.

Since Ca\(^{2+}\)-induced MPT is associated with ROS generation, some antioxidants were expected to inhibit the occurrence of mitochondrial swelling and depolarization [12, 51–53]. However, only limited information is available for the inhibitory effect of antioxidant on mitochondrial swelling [12, 54]. Recent studies showed that some peptide having strong antioxidant activity accumulated in mitochondria and inhibited the Ca\(^{2+}\)-induced swelling [55, 56]. Since thiol-specific antioxidants suppressed the Ca\(^{2+}\)-induced swelling of mitochondria, Ca\(^{2+}\)-induced reactions might involve the oxidation of the critical thiol groups such as those in adenine nucleotide translocator (ANT) [10, 52, 53]. In this context, Ca\(^{2+}\) has been postulated to modify the reactivity of mitochondrial membrane protein thiols with N-ethylmaleimide and mersalyl [57]. The present work showed that antioxidant NAC and GSH inhibited the occurrence of Ca\(^{2+}\)-induced mitochondrial swelling and depolarization. These observations are consistent with the hypothesis that oxidation of critical thiol underlies the mechanisms for the induction of Ca\(^{2+}\)-induced MPT and mitochondrial dysfunction [10].

Acknowledgement
This work was supported in part by grants from the Ministry of Education, Science and Culture of Japan, and the Eisai Co.

Abbreviations
ANT, adenine nucleotide translocator; BPB, bromophenacyl bromide; BSA, bovine serum albumin; diS-C\(_3\)-(5), 3,3\'-dioctyl-2,2\'-thiodiacylcyanine iodide; CP, chlorpromazine; HE, hydroethidine; H2DCF-DA, 2,7\'-dichlororhodamine diacetate; CsA, cyclosporine A; MPT, membrane permeability transition; NAC, N-acetylcysteine; NAO, 10-nonyl acridine orange; PLA2, phospholipase A2; QC, quinacrine; Rhod 2; 1-[2-Amino-5-((diethylamino-6-dimethylamino-9-xanthenyl)phenyl]x]-2-(2-amino-5-methylphenoxy)ethane-N,N,N',N'-tetraacetic acid; RR, ruthenium red; ROS, reactive oxygen species; SSC, side scatter; FSC, forward scatter; TFP, trifluoperazine; TMRE, tetramethylrhodamine-ethyl-ester.

References

1. Shi, L., Kraut, R.P., Aebersold, R., and Greenberg, A.H.: A natural killer cell granule protein that induces DNA fragmentation and apoptosis. J. Exp. Med., 175, 553–566, 1992.
2. Shi, L., Kam, C.M., Powers, J.C., Aebersold, R., and Greenberg, A.H.: Purification of three cytotoxic lymphocyte granule serine proteases that induce apoptosis through distinct substrate and target cell interactions. J. Exp. Med., 176, 1521–1529, 1992.
3. Shi, L., Mai, S., Israels, S., Browne, K., Trapani, J.A., and Greenberg, A.H.: Granzyme B (GrB) autonomously crosses the cell membrane and perforin Initiates apoptosis and GrB nuclear localization. J. Exp. Med., 185, 855–866, 1997.
4. Zoratti, M. and Szabo, I.: The mitochondrial permeability transition. Biochim. Biophys. Acta, 1241, 139–176, 1995.
5. Kristal, B.S. and Brown, A.M.: Apoptogenic ganglioside GD3 directly induces the mitochondrial permeability transition. J. Biol. Chem., 274, 23169–23175, 1999.
6. Oyadomari, S., Araki, E., and Mori, M.: Endoplasmic reticu-

J. Clin. Biochem. Nutr.
lum stress-mediated apoptosis in pancreatic beta-cells. *Apoptosis*, 7, 335–345, 2002.

[7] Ishisaka, R., Utsumi, T., Yabuki, M., Kanno, T., Furuno, T., Inoue, M., and Utsumi, K.: Activation of caspase-3-like protease by digitonin-treated lysosomes. *FEBS Lett.*, 435, 233–236, 1998.

[8] Mancini, M., Nicholson, D.W., Roy, S., Thornberry, N.A., Peterson, E.P., Casciola-Rosen, L.A., and Rosen, A.: The caspase-3 precursor has a cytosolic and mitochondrial distribution: implications for apoptotic signaling. *J. Cell Biol.*, 140, 1485–1495, 1998.

[9] Kushnareva, Y., Haley, L., and Sokolove, P.: The role of low (< or = 1 mM) phosphate concentrations in regulation of mitochondrial permeability: modulation of matrix free Ca2+ concentration. *Arch. Biochem. Biophys.*, 363, 155–162, 1999.

[10] Kanno, T., Sato, E.F., Utsumi, T., Yoshioka, T., Inoue, M., and Utsumi, K.: Oxidative stress underlies the mechanism for Ca2+-induced permeability transition of mitochondria. *Free Rad. Res.*, 38, 27–35, 2004.

[11] Kowaltowski, A.J., Castilho, R.F., Grijalba, M.T., Bechara, E.J., and Vercesi, A.E.: Effect of inorganic phosphate concentration on the nature of inner mitochondrial membrane alterations mediated by Ca2+ ions. A proposed model for phosphate-stimulated lipid peroxidation. *J. Biol. Chem.*, 271, 2929–2934, 1996.

[12] Kowaltowski, A.J., Naia-da-Silva, E.S., Castilho, R.F., and Vercesi, A.E.: Ca2+-stimulated mitochondrial reactive oxygen species generation and permeability transition are inhibited by dibucaine or Mg2+. *Arch. Biochem. Biophys.*, 359, 77–81, 1998.

[13] Kowaltowski, A.J., Castilho, R.F., and Vercesi, A.E.: Mitochondrial permeability transition and oxidative stress. *FEBS Lett.*, 495, 12–15, 2001.

[14] Le Bras, M., Clement, M.V., Pervaiz, S., and Brenner, C.: Reactive oxygen species and the mitochondrial signaling pathway of cell death. *Histol. Histopathol.*, 20, 205–219, 2005.

[15] Kim, J.S., Jin, Y., and Lemasters, J.J.: Reactive oxygen species, but not Ca2+ overloading, trigger pH- and mitochondrial permeability transition-dependent death of adult rat myocytes after ischemia-reperfusion. *Am. J. Physiol. Heart Circ. Physiol.*, 290, H2024–2034, 2006.

[16] Mattiasson, G.: Analysis of mitochondrial generation and release of reactive oxygen species. *Cytometry A.*, 62, 89–96, 2004.

[17] Mattiasson, G.: Flow cytometric analysis of isolated liver mitochondria to detect changes relevant to cell death. *Cytometry A.*, 60, 145–154, 2004.

[18] Mattiasson, G., Friberg, H., Hansson, M., and Wieloch, T.: Flow cytometric analysis of mitochondria from CA1 and CA3 regions of rat hippocampus reveals differences in permeability transition pore activation. *J. Neurochem.*, 87, 532–544, 2003.

[19] Hogeboom, G.H.: Fractionation cell components and animal tissues. In: Colowick, S.P., Kaplan, N.O., eds., *Methods Enzymol.*, vol. 1., Academic Press, New York, pp. 16–19, 1995.

[20] Jacobson, J., Duchen, M.R., and Heales, S.J.: Intracellular distribution of the fluorescent dye nonyl acridine orange responds to the mitochondrial membrane potential: implications for assays of cardiolipin and mitochondrial mass. *J. Neurochem.*, 82, 224–233, 2002.

[21] Robinson, K.M., Monette, J.S., Ross, M.F., Hagen, T.M., Murphy, M.P., and Beckman, J.S.: Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. *Proc. Natl. Acad. Sci. U S A.*, 103, 15038–15043, 2006.

[22] Zhao, H., Kalivendi, S., Zhang, H., Joseph, J., Nithipatikom, K., Vasquez-Vivar, J., and Kalyanaraman, B.: Superoxide reacts with hydroethidium but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. *Free Radic. Biol. Med.*, 34, 1359–1368, 2003.

[23] Boitier, E., Rea, R., and Duchen, M.R.: Mitochondria exert a negative feedback on the propagation of intracellular Ca2+ waves in rat cortical astrocytes. *J. Cell Biol.*, 145, 795–808, 1999.

[24] Drummond, R.M., Mix, T.C., Tuft, R.A., Walsh, J.V., Jr., and Fay, F.S.: Mitochondrial Ca2+: homeostasis during Ca2+ influx and Ca2+ release in gastric myocytes from Bufo marinus. *J. Physiol.*, 522 (Pt 3), 375–390, 2000.

[25] Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal. Biochem.*, 72, 248–254, 1976.

[26] Bae, J.H., Park, J.W., and Kwon, T.K.: Ruthenium red, inhibitor of mitochondrial Ca2+ uniporter, inhibits curcumin-induced apoptosis via the prevention of intracellular Ca2+ depletion and cytochrome c release. *Biochem. Biophys. Res. Commun.*, 303, 1073–1079, 2003.

[27] Birkett, D.J., Myers, S.P., and Sudlow, G.: The fatty acid content and drug binding characteristics of commercial albumin preparations. *Clin. Chim. Acta.*, 85, 253–258, 1978.

[28] Furuno, T., Kanno, T., Arita, K., Asami, M., Utsumi, T., Doi, Y., Inoue, M., and Utsumi, K.: Roles of long chain fatty acids and carnitine in mitochondrial membrane permeability transition. *Biochem. Pharmacol.*, 62, 1037–1046, 2001.

[29] Broekemeier, K.M., Schmid, P.C., Schmid, H.H., and Pfeiffer, D.R.: Effects of phospholipase A2 inhibitors on ruthenium red-induced Ca2+ release from mitochondria. *J. Biol. Chem.*, 260, 105–113, 1985.

[30] Gogvadze, V.G., Brustovetsky, N.N., and Zhukova, A.A.: The role of phospholipase A2 in lipid peroxidation-induced fall of membrane potential of rat liver mitochondria. *FEBS Lett.*, 264, 168–170, 1990.

[31] Ono, T., Yamada, K., Chikazawa, Y., Ueno, M., Nakamoto, S., Okuno, T., and Seno, K.: Characterization of a novel inhibitor of cytosolic phospholipase A2alpha, pyrrophenone. *Biochem. J.*, 363 (Pt 3), 727–735, 2002.

[32] Rustenbeck, I., Munster, W., and Lenzen, S.: Relation between accumulation of phospholipase A2 reaction products and Ca2+ release in isolated liver mitochondria. *Biochim. Biophys. Acta.*, 1304, 129–138, 1996.

[33] Deamer, D.W., Utsumi, K., and Packer, L.: Oscillatory states of mitochondria. 3. Ultrastructure of trapped conformational
Shalbuyeva, N., Brustovetsky, T., Bolshakov, A., and Krasnikov, B.F., Zorov, D.B., Antonenko, Y.N., Zaspal, A.A., Virmani, A., Gaetani, F., Imam, S., Binienda, Z., and Ali, S.; Phillis, J.W., Diaz, F.G., O'Regan, M.H., and Pilitsis, J.G.; Hoyt, K.R., Sharma, T.A., and Reynolds, I.J.; Trifluoperazine; Moreau, B., Nelson, C., and Parekh, A.B.; Biphasic regulation of mitochondrial Ca2+ uptake by cytosolic Ca2+ concentration; Moreau, B., Nelson, C., and Parekh, A.B.; Biphasic regulation of mitochondrial Ca2+ uptake by cytosolic Ca2+ concentration; Arita, K., Yamamoto, Y., Takehara, Y., Utsumi, T., Kanno, T., Miyaguchi, C., Akiyama, J., Yoshioka, T., and Utsumi, K.; Mechanisms of enhanced apoptosis in HL-60 cells by UV-irradiated n-3 and n-6 polyunsaturated fatty acids; Pastorino, J.G., Snyder, J.W., Serroni, A., Hoek, J.B., and Farber, J.L.; Cyclosporin and carmine prevent the anoxic death of cultured hepatocytes by inhibiting the mitochondrial permeability transition; Garcia, N., Correa, F., and Chavez, E.; On the role of the respiratory complex I on membrane permeability transition; Six, D.A. and Dennis, E.A.; The expanding superfamily of phospholipase A2 enzymes: classification and characterization; Guidarelli, A. and Cantoni, O.; Pivotal role of superoxides generated in the mitochondrial respiratory chain in peroxynitrite-dependent activation of phospholipase A2; Tischfield, J.A.; A reassessment of the low molecular weight phospholipase A2 gene family in mammals; Madesh, M. and Balasubramanian, K.A.; Activation of liver mitochondrial phospholipase A2 by superoxide; Baek, S.H., Takayama, K., Kudo, I., Inoue, K., Lee, H.W., Do, J.Y., and Chang, H.W.; Detection and characterization of extracellular phospholipase A2 in pleural effusion of patients with tuberculosis; Lindahl, M. and Tagesson, C.; Selective inhibition of group II phospholipase A2 by quercetin; Kinsey, G.R., McHowat, J., Patrick, K.S., and Schnellmann, R.G.; Role of Ca2+-independent phospholipase A2gamma in Ca2+-induced mitochondrial permeability transition; Kowaltowski, A.J., Castilho, R.F., and Vercesi, A.E.; Ca2+-induced mitochondrial membrane permeabilization: role of coenzyme Q redox state; Kowaltowski, A.J., Netto, L.E., and Vercesi, A.E.; The thiol-specific antioxidant enzyme prevents mitochondrial permeability transition. Evidence for the participation of reactive oxygen species in this mechanism; Kowaltowski, A.J., Castilho, R.F., and Vercesi, A.E.; Opening of the mitochondrial permeability transition pore by uncoupling or inorganic phosphate in the presence of Ca2+ is dependent on mitochondrial-generated reactive oxygen species; Oliveira, P.J., Esteves, T., Rolo, A.P., Monteiro, P., Goncalves, L., Palmeira, C.M., and Moreno, A.J.; Carvedilol: relation between antioxidant activity and inhibition of the mitochondrial permeability transition; Zhao, K., Luo, G., Giannelli, S., and Szeto, H.H.; Mitochondria-targeted peptide prevents mitochondrial depolarization and apoptosis induced by tert-butyl hydroperoxide in neuronal cell lines; Zhao, K., Zhao, G.M., Wu, D., Soong, Y., Birk, A.V., Schiller, P.W., and Szeto, H.H.; Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury; Kowaltowski, A.J., Vercesi, A.E., and Castilho, R.F.; Mitochondrial membrane protein thiol reactivity with N-ethylmaleimide or mersalyl is modified by Ca2+; correlation with mitochondrial permeability transition.