Comparing Antimicrobial Susceptibilities among *Mycoplasma pneumoniae* Isolates from Pediatric Patients in Japan between Two Recent Epidemic Periods

Tomohiro Oishi,a Kento Takahashi,a Shoko Wakabayashi,a Yoshitaka Nakamura,a Sahoko Ono,a Mina Kono,a Atsushi Kato,a Aki Saito,a Eisuke Kondo,a Yuhei Tanaka,a,b Hideto Teranishi,a Hiroto Akaike,a Takaaki Tanaka,a © Ippei Miyata,a Satoko Ogita,a Naoki Ohno,a Takashi Nakano,a Kazunobu Ouchi

Department of Pediatrics, Kawasaki Medical School, Okayama, Japan

Department of Pediatrics, Aso Iizuka Hospital, Fukuoka, Japan

ABSTRACT We compared the antimicrobial susceptibility of *Mycoplasma pneumoniae* isolates from pediatric patients in Japan in 2011–2012 and 2015–2016, when epidemics occurred. The antimicrobial activity of macrolides and tetracyclines against *M. pneumoniae* infection tended to be restored in 2015–2016. There was no change in the antimicrobial activity of quinolones against *M. pneumoniae* infection.

KEYWORDS antimicrobial susceptibility, children, epidemic, Japan, *Mycoplasma pneumoniae*

Mycoplasma pneumoniae is an important pathogen that causes human respiratory tract infection, particularly in children and young adults. Epidemics of *M. pneumoniae* infection occur in 3- to 5-year cycles. In 2011–2012 and 2015–2016 in Japan, the number of patients increased by 2-fold the number in a typical year (1).

Macrolides are the first-line treatments for respiratory tract infections caused by *M. pneumoniae* (2). However, macrolide-resistant (MR) *M. pneumoniae* isolates were detected in Japanese pediatric patients in 2001 for the first time worldwide and have become widespread in Japan (3). The rate of MR *M. pneumoniae* infection was as high as 80% among pediatric patients in Japan in 2009 to 2011 (4). We also investigated the prevalence of MR *M. pneumoniae* since 2008 (5) and reported that the prevalence of MR *M. pneumoniae* among pediatric patients decreased from 74.6% to 49.5% between 2011 and 2015 in Japan (6).

Tetracyclines or quinolones are recommended for treatment of MR *M. pneumoniae* infection. Second-line treatments, such as tetracycline and quinolones, are increasingly used because of the increase in MR *M. pneumoniae* cases in Japan (2).

It is important to conduct surveillance of the susceptibilities of *M. pneumoniae* isolates to tetracyclines, quinolones, and macrolides. We previously reported that quinolones exhibited potent antimicrobial activity against both MR and macrolide-sensitive (MS) *M. pneumoniae* isolates from pediatric patients in 2009 to 2011 (7). However, there are no recent reports of antimicrobial activity against *M. pneumoniae* infection.

We investigated the antimicrobial susceptibility of *M. pneumoniae* isolates from pediatric patients in Japan in 2011 to 2016 and compared the cumulative distributions of the MICs of macrolides, quinolones, and tetracyclines in 2011–2012 and 2015–2016.

We enrolled all pediatric patients with acute respiratory tract infections at 85 institutions located in 8 areas throughout Japan (20 institutions in Kyushu, 25 in Chugoku, 3 in Shikoku, 11 in Kinki, 7 in Chubu, 3 in Kanto, 2 in Tohoku, and 3 in Hokkaido) in 2011 to 2016.
Pediatricians at the facilities collected samples from patients with suspected *M. pneumoniae* infections. Informed consent was obtained from the parents of all patients. The Ethics Committee at Kawasaki Medical School, Kurashiki, Japan, approved the study protocol on 15 October 2018 (no. 3119-1).

M. pneumoniae isolates were obtained by cultivation of specimens. The medium used for isolation and determination of the MIC was pleuropneumonia-like organism broth (PPLO) (Oxoid, Hampshire, UK) supplemented with 0.5% glucose (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan), 20% mycoplasma supplement G (Oxoid), and 0.0025% phenol red (Sigma-Aldrich, St. Louis, MO).

The MICs of antimicrobial agents for the isolated strains were determined with microdilution methods (8). Briefly, medium containing 10⁵ to 10⁶ CFU/ml of *M. pneumoniae* was added to 96-well microplates and incubated at 37°C for 6 to 8 days.

MIC was defined as the lowest concentration of antimicrobial agent at which the metabolism of the organism was inhibited, which was evidenced by the lack of a color change in the medium 3 days after the drug-free control first showed a color change.

The reference strain FH was used as a drug-susceptible control. The antimicrobial agents used for MIC determination were erythromycin, clarithromycin, azithromycin, clindamycin, minocycline, tetracycline, tosufloxacin, garenoxacin, and levofloxacin.

Table 1: In vitro antimicrobial activity against clinical isolates of *Mycoplasma pneumoniae* strains

Organism (no. of strains)	Antimicrobial agent*	MIC (µg/ml)	Range	MIC₅₀	MIC₉₀
Mycoplasma pneumoniae (1,256)	TFLX	0.0625 to 0.5	0.25	0.25	
	GRNX	0.0078 to 0.125	0.0313	0.0313	
	LVFX	0.25 to 1	0.5	0.5	
	TC	0.125 to 1	0.5	0.5	
	MINO	0.125 to 4	1	2	
	CLDM	0.25 to >128	64	128	
	EM	0.001 to >128	>128	>128	
	CAM	0.00025 to >128	>128	>128	
	AZM	0.0000313 to >128	32	64	
Macrolide-susceptible *M. pneumoniae* (383)	TFLX	0.0625 to 0.5	0.25	0.5	
	GRNX	0.0156 to 0.125	0.0313	0.0625	
	LVFX	0.25 to 1	0.5	0.5	
	TC	0.125 to 1	0.5	0.5	
	MINO	0.125 to 4	1	2	
	CLDM	0.25 to 4	1	1	
	EM	0.001 to 2	0.0039	0.0078	
	CAM	0.00025 to 0.5	0.002	0.0039	
	AZM	0.0000313 to 0.0313	0.00025	0.0005	
Macrolide-resistant *M. pneumoniae* (873)	TFLX	0.0625 to 0.5	0.25	0.25	
	GRNX	0.0078 to 0.063	0.0313	0.0313	
	LVFX	0.25 to 1	0.5	0.5	
	TC	0.125 to 1	0.5	0.5	
	MINO	0.125 to 4	1	2	
	CLDM	4 to >128	128	128	
	EM	8 to >128	>128	>128	
	AZM	0.25 to >128	32	64	

TFLX, tosufloxacin; GRNX, garenoxacin; LVFX, levofloxacin; TC, tetracycline; MINO, minocycline; EM, erythromycin; CAM, clarithromycin; AZM, azithromycin.
than those of the other antimicrobials. All quinolones, particularly garenoxacin, showed potent antimicrobial activity against MR *M. pneumoniae*, with MIC₅₀/MIC₉₀ values of 0.0313/0.0313 µg/ml. These values were equal to those of MS *M. pneumoniae* isolates. Tosufloxacin, the only quinolone approved for treatment of pneumonia in pediatric patients in Japan, also showed good activity against MR and MS *M. pneumoniae* isolates, with MIC₅₀/MIC₉₀ values of 0.25/0.25 and 0.25/0.5 µg/ml, respectively. Tetracyclines, such as tetracycline and minocycline, showed comparably good activity against MR and MS *M. pneumoniae* isolates.

Figure 1 shows the MIC distribution of macrolides, quinolones, and tetracyclines in 2011–2012 and 2015–2016 and statistical analysis of the differences in each MIC value between the two periods by the Wilcoxon rank-sum test. The resistance rate of erythromycin, clarithromycin, and azithromycin decreased from 75%, 74%, and 71.9% in 2011–2012 to 54.2%, 54.2%, and 53.1% in 2015–2016, respectively. The MIC values of macrolides and tetracyclines in 2015–2016 were significantly lower than those in 2011–2012. The antimicrobial activity of quinolones remained potent in 2016. Strains resistant to these agents were not detected in this study.

In comparing the two periods when *M. pneumoniae* epidemics occurred (2011–2012 and 2015–2016), the antimicrobial activities of all macrolides and tetracyclines against *M. pneumoniae* isolates were restored significantly in 2015–2016. The sensitivity to macrolides may have been restored because of a decrease in *M. pneumoniae* isolates with specific point mutations in domain V of the 23S rRNA gene (6).

We considered two reasons for recovery of the sensitivity to macrolides. One is the appropriate use of tosufloxacin for treating *M. pneumoniae* infection, and the other is a shift in the P1 type.

First, tosufloxacin was approved in 2010 in Japan as treatment for pediatric patients and is recommended for use in patients with suspected MR *M. pneumoniae* infection as a second-line drug under various guidelines (2). Specifically, tosufloxacin is recommended for cases with *M. pneumoniae* infection in which fevers are not reduced by 48 to 72 h after the initiation of macrolide treatment. Ouchi et al. (10) reported that tosufloxacin was significantly more effective than clarithromycin in eradicating MR *M. pneumoniae*. Additionally, total oral antimicrobial use of macrolides decreased, whereas that of quinolones, including tosufloxacin, increased from 2011 to 2013 in children (age, 0 to 14 years), based on analysis of health insurance claim data in the national database (11). Miyashita et al. (12) reported lower macrolide resistance rates of *M. pneumoniae* infection in adults to whom macrolides, tetracyclines, or respiratory quinolones were commonly administered than in children to whom only macrolides or tetracyclines were administered in 2008 to 2011. Thus, because tosufloxacin was used appropriately for *M. pneumoniae* infections, the development of MR *M. pneumoniae* was prevented.

Second, a type shift in p1 may explain the recovery of sensitivity to macrolides. At the surface of the attachment organelle is the 170-kDa adhesin protein P1, which is densely clustered and plays a major role in binding to the receptor molecule of host epithelial cells (13). Two major subtypes of p1 (subtypes 1 and 2) are known that form some minor variants (subtype 1, 2a, 2b, and 2c).

A type-shift phenomenon occurs in Japan every 8 to 10 years. A major subtype of p1 was subtype 2 in 1995 to 2001. Thereafter, subtype 1 reached a level of 90% in 2005, whereas subtype 2 decreased from 2001 to 2005. Recently, it was reported that a type shift from subtype 1 to subtype 2 occurred in 2013 to 2015 in Yamagata Prefecture, Japan (14). It was presumed that because this subtype had few opportunities to be exposed to macrolides since 2000, isolates of subtype 2 may have been more sensitive to macrolides than isolates of subtype 1. Furthermore, correlations of P1 with multilocus variable-number tandem-repeat analysis (MLVA), which is one of the methods for typing, have been described (15, 16). As revealed by a previous MLVA-4 analysis, almost all isolates of 4/5/7/2 or 4/5/7/3 strains belonged to subtype 1 of p1, whereas almost all of the 3/5/6/2 or 3/6/6/2 strains belonged to subtype 2 of p1. We did not perform MLVA, and we hope to address this aspect in the future.

Next, we discuss the reason that the MIC values of tetracyclines against *M. pneum-
were restored significantly in 2015–2016 compared with 2011–2012. Okubo et al. (17) investigated the trends of use in practice patterns on pediatric *M. pneumoniae*-related respiratory infections. They reported that the usage of tetracyclines against pediatric *M. pneumoniae*-related respiratory infections decreased after the

FIG 1 MIC distribution of antimicrobial agents for *M. pneumoniae* isolates in two recent epidemics in 2011–2012 and 2015–2016. TFLX, tosufloxacin; LVFX, levofloxacin; TC, tetracycline; MINO, minocycline; EM, erythromycin; CAM, clarithromycin; AZM, azithromycin.

moniae were restored significantly in 2015–2016 compared with 2011–2012. Okubo et al. (17) investigated the trends of use in practice patterns on pediatric *M. pneumoniae*-related respiratory infections. They reported that the usage of tetracyclines against pediatric *M. pneumoniae*-related respiratory infections decreased after the
pandemic of *M. pneumoniae* infections in 2011–2012. Although they did not investigate the cases in 2015–2016, we suggest that the use of tetracycline in 2015–2016 might not have increased as much as in 2011–2015 because of the recommendation of quinolones against pediatric *M. pneumoniae* infections. In other words, because quinolones were not recommended in 2011–2012, some cases of children (<8 years old) suspected to have MR *M. pneumoniae* infections were prescribed tetracyclines. If quinolones were prescribed instead of tetracyclines in these cases in 2015–2016, the chances of prescribing tetracyclines may have decreased.

In summary, quinolones and tetracyclines exhibited potent antimicrobial activities against MS and MR *M. pneumoniae* infection in 2011–2012 and 2015–2016, when *M. pneumoniae* epidemics occurred. The antimicrobial activities of macrolides and tetracyclines were restored significantly in 2015–2016 compared with 2011–2012.

The antimicrobial susceptibility of *M. pneumoniae* isolates should continue to be surveyed in Japan and other countries.

ACKNOWLEDGMENTS

We thank Reiji Kimura and Yuri Fujitani for technical assistance and all the clinicians who participated by collecting samples in the Atypical Pathogen Study Group.

The individuals from the various facilities that participated in the Atypical Pathogen Study Group and in the study were Hideki Asaki (Asaki Pediatric Clinic), Kazutoyo Asada (National Mie Hospital), Tomohiro Ichimaru (Saga Prefectural Hospital Koseikan), Toshio Ineda (Inada Clinic), Takuya Inoue (Chayamati Pediatric Clinic), Masakazu Umemoto (Umemoto Pediatric Clinic), Kanetsu Okura (Okura Clinic), Kenji Okada (Fukuoka National Hospital), Takashige Okada (Okada Pediatric Clinic), Teruo Okafuji (Okafuji Pediatric Clinic), Yasuko Okamoto (Okamoto Clinic), Shinichiro Oki (Higashisaga National Hospital), Keiko Oda (Kawasaki Medical School Kawasaki Hospital), Jin Ochiai (Ochiai Pediatric Clinic), Seiko Obuchi (Obuchi Clinic), Yoji Kanehara (Kanematsu Pediatric Clinic), Yo Nomatsui (Nomatsu Pediatric Clinic), Shoji Kouno (Shomonoseki City Central Hospital), Makoto Kuramitsu (Aoba Pediatric Clinic), Kats president of Kawasaki Red Cross Hospital), Kanoko Hashino (Hashino Pediatric Clinic), Yuko Hirata (Hirata Pediatric Clinic), Kazumi Hirata (Hirata Pediatric Clinic), Takeshi Fujimura (Fujimura Pediatric Clinic), Tatsuyuki Fujimura (Fujimura Pediatric Clinic), Shigeki Takeda (Takeda Pediatric Clinic), Takaaki Tanaka (Tanaka Clinic), Taichi Fujimura (Fujimura Pediatric Clinic).
REFERENCES

1. National Institute of Infectious Diseases. 1998. Weekly cases of pneumonia caused by *M. pneumoniae* in Japan from April 1999 to present. (Graphs based on data of the National Epidemiological Surveillance of Infectious Diseases [NESID]). https://www.niid.go.jp/niid/en/10/2096-weeklygraph/1659-18myco.html.

2. Joint Committee of Japanese Society of Pediatric Infectious Disease and Japanese Society of Pediatric Pulmonology. 2017. Pneumonia, p 60. In Ouchi K, Kurosaki T, Okada K (ed), Guidelines for management of respiratory infectious diseases in children in Japan 2017. Kyowa Kikaku Ltd., Tokyo, Japan. (In Japanese).

3. Okazaki N, Narita M, Yamada S, Izumikawa K, Umetsu M, Kenri T, Sasaki Y, Arakawa Y, Sasaki T. 2001. Characteristics of macrolide resistant *Mycoplasma pneumoniae* strains isolated from patients and induced with erythromycin in vitro. Microbiol Immunol 45:617–620. https://doi.org/10.1111/j.1348-0421.2001.tb01293.x.

4. Ubukata K, Morozumi M, Iwata S. 2011. Large epidemic of mycoplasmal pneumonia caused by *Mycoplasma pneumoniae* strains highly resistant to macrolides among children in 2011. IASR 32:337–339.

5. Kawai Y, Miyashita N, Kubo M, Akaike H, Kato A, Nishizawa Y, Saito A, Kondo E, Teranishi H, Wakabayashi T, Ogita S, Tanaka T, Kawasaki K, Nakano T, Terada K, Ouchi K. 2013. Nationwide surveillance of macrolide-resistant *Mycoplasma pneumoniae* infection in pediatric patients. Antimicrob Agents Chemother 57:4046–4049. https://doi.org/10.1128/AAC.00663-13.

6. Tanaka T, Oishi T, Miyata I, Wakabayashi S, Kono M, Ono S, Kato A, Fukuda Y, Saito A, Kondo E, Teranishi H, Tanaka Y, Wakabayashi T, Akaike H, Ogita S, Ohno N, Nakano T, Terada K, Ouchi K. 2017. Macrolide-resistant Mycoplasma pneumoniae infection, Japan, 2008–2015. Emerg Infect Dis 23:1703–1706. https://doi.org/10.3201/eid2310.170106.

7. Akaike H, Miyashita N, Kubo M, Kawai Y, Tanaka T, Ogita S, Kawasaki K, Nakano T, Terada K, Ouchi K. 2017. In vitro activities of 11 antimicrobial agents against macrolide-resistant Mycoplasma pneumoniae isolates from pediatric patients: results from a multicenter surveillance study. Jpn J Infect Dis 65:535–538. https://doi.org/10.7883/yoken.65.335.

8. Waites KB, Crabbe DM, Bing S, Duffy LB. 2003. In vitro susceptibilities to and bactericidal activities of garenoxacin (BMS-284756) and other antimicrobial agents against human mycoplasmas and ureaplasmas. Antimicrob Agents Chemother 47:161–165. https://doi.org/10.1128/AAC.47.1.161-165.2003.

9. Narita M, Okazaki N, Ohyu H, Ishida T, Miyashita N, Yamazaki T, Iwata S, Kaku M, Sasaki T. 2008. Proposed antibiotic breakpoints on *Mycoplasma pneumoniae* clinical isolates concerning macrolide and lincomamide antibiotics. Jpn J Mycoplasmol 35:59–60. (In Japanese.)

10. Ouchi K, Takayama S, Fujikawa S, Sunakawa K, Iwata S. 2017. A phase III, randomized, open-label study on 15% tosufloxacin granules in pediatric Mycoplasma pneumoniae pneumonia. Jpn J Chemother 65:585–596.

11. Yamasaki D, Tanabe M, Muraki Y, Kato G, Ohmagari N, Yagi T. 2018. The first report of Japanese antimicrobial use measured by national database based on health insurance claims data (2011-2013): comparison with sales data, and trend analysis stratified by antimicrobial category and age group. Infection 46:207–214. https://doi.org/10.1007/s15010-017-1097-x.

12. Miyashita N, Akaike H, Teranishi H, Ouchi K, Okimoto N. 2013. Macrolide-resistant *Mycoplasma pneumoniae* pneumonia in adolescents and adults: clinical findings, drug susceptibility, and therapeutic efficacy. Antimicrob Agents Chemother 57:5181–5185. https://doi.org/10.1128/AAC.00737-13.

13. Kenri T, Okazaki N, Yamazaki T, Narita M, Izumikawa K, Matsuoka M, Suzuki S, Horino A, Sasaki T. 2008. Genetic typing of Mycoplasma pneumoniae clinical strains in Japan between 1995 and 2005: type shift phenomenon of *M. pneumoniae* clinical strains. J Med Microbiol 57:469–475. https://doi.org/10.1099/jmm.0.47634-0.

14. Katsukawa C, Kenri T, Shibayama K, Takahashi K. 2019. Genetic characterization of Mycoplasma pneumoniae isolated in Osaka between 2011 and 2017: decreased detection rate of macrolide-resistance and increase of *p*1 gene type 2 lineage strains. PLoS One 14:e0209938. https://doi.org/10.1371/journal.pone.0209938.

15. Diaz MH, Benitez AJ, Cross KE, Hicks LA, Kuty P, Bramley AM, Chappell JD, Hymas W, Patel A, Qi C, Williams DJ, Arnold SR, Ampofo K, Self WH, Grijalva CG, Anderson EJ, McCullers JA, Pavia AT, Wunderink RG, Edwards KM, Jain S, Winchell JM. 2015. Molecular detection and characterization of Mycoplasma pneumoniae among patients hospitalized with community-acquired pneumonia in the United States. Open Forum Infect Dis 2:ofv106. https://doi.org/10.1093/ofid/ofv106.

16. Zhao F, Liu J, Shi W, Huang F, Liu L, Zhao S, Zhang J. 2019. Antimicrobial susceptibility and genotyping of Mycoplasma pneumoniae isolates in Beijing, China, from 2014 to 2016. Antimicrob Resist Infect Control 8:18. https://doi.org/10.1186/s13756-019-0469-7.

17. Okubo Y, Michihata N, Morisaki N, Uda K, Miyairi I, Ogawa Y, Matsui H, Fushimi K, Yasunaga H. 2018. Recent trends in practice patterns and impact of corticosteroid use on pediatric Mycoplasma pneumoniae-related respiratory infections. Respir Investig 56:158–165. https://doi.org/10.1016/j.resinv.2017.11.005.