DYNAMIC SCREENING CORRECTION FOR SOLAR \(p-p \) REACTION RATES

KATIE MUSSACK\(^1\) and WERNER DÄPPEN\(^2\)

\(^1\) Los Alamos National Laboratory, XTD-2, MS T-086, Los Alamos, NM 87545, USA; musack@lanl.gov
\(^2\) Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA

ABSTRACT

The solar abundance controversy inspires renewed investigations of the basic physics used to develop solar models. Here we examine the correction to the proton–proton reaction rate due to dynamic screening effects. Starting with the dynamic screening energy from the molecular-dynamic simulations of Mao et al., we compute a reaction-rate correction for dynamic screening. We find that, contrary to static screening theory, this dynamic screening does not significantly change the reaction rate from that of the bare Coulomb potential.

Key words: equation of state – nuclear reactions, nucleosynthesis, abundances – plasmas – Sun: general

Online-only material: color figure

1. INTRODUCTION

Solar models generated with the Grevesse & Noels (1993) or Grevesse & Sauval (1998) abundances agree quite nicely with helioseismic inferences of the sound speed, the location of the base of the convection zone, and the helium abundance in the convection zone. However, Asplund et al. (2005, 2009), Caffau et al. (2008, 2009), and Ludwig et al. (2009) revised the solar abundances using three-dimensional hydrodynamic models of the atmosphere with improved input physics and non-local thermodynamic equilibrium effects, lowering abundances by up to 1/3. Solar models that use the new lower abundances yield worse agreement than those that use the older abundances. This has led to years of heated debates over whether the disagreement represents a solar model problem or a solar abundance problem. The ongoing disagreement has inspired a re-examination of all aspects of solar models, including opacities, diffusive settling, convective overshooting, and the possble accretion of low-Z material late in the Sun’s evolution or mass loss early in the Sun’s evolution (see Basu & Antia 2008; Guzik 2008; Guzik & Mussack 2010, for reviews of mitigation attempts). Although these proposed adjustments have led to some improvement in the agreement, they do not satisfactorily resolve the issue. Further investigations into the basic physics of the solar interior are required.

Nuclear reactions generate the energy that drives our Sun. Developing an accurate picture of the conditions that lead to nuclear reactions is essential in order to fully understand the inner workings of the Sun. With that in mind, we re-examine screening effects in the solar core. In this work, we focus on \(p-p \) reactions which produce most of the nuclear energy generated in the Sun.

1.1. Nuclear Reaction Rates

In this section, we derive an expression for calculating nuclear reaction rates following the treatment of Clayton (1968). The reaction rate per unit volume between particles of types \(\alpha \) and \(\beta \) is a product of the number densities of the particles, \(n_\alpha \) and \(n_\beta \), and the average value of the product of the relative velocity \(v \) times the cross section \(\sigma \),

\[
\lambda = \langle \sigma v \rangle = \int \psi(E) E \sigma(E) dE.
\]

where \(\psi(E) \) is the relative velocity distribution and \(\delta_{\alpha\beta} \) accounts for reactions of like particles. Because we will be dealing with the correction due to dynamic screening (a ratio between the unscreened and screened reaction rates), we can ignore the density factor and focus on the reaction rate per pair of particles,

\[
\lambda = \langle \sigma v \rangle = \int_0^\infty f(\mu, T) \sigma(\mu, T) \exp\left(-\frac{E}{k_B T}\right) dE,
\]

where \(f(\mu, T) = \sqrt{\frac{8}{\pi \mu}} \left(\frac{1}{k_B T}\right)^{3/2} \), \(\mu \) is the reduced mass of the pair, and the Maxwell–Boltzmann distribution is used for \(\psi(E) \). The cross section \(\sigma(E) \) can be defined as a product of three separate energy-dependent factors,

\[
\sigma(E) = S(E) \exp\left(-\frac{b}{\sqrt{E}}\right),
\]

where \(b = 31.28 Z_\alpha Z_\beta A^{1/2} \) keV\(^{1/2} \), with \(Z_\alpha \) and \(Z_\beta \) being the charges of the interacting ions and \(A \) is the reduced atomic weight. The exponential factor in this expression comes from the barrier penetration probability, the inverse energy dependence comes from the quantum–mechanical interaction between the two particles, and \(S(E) \) contains the intrinsically nuclear parts of the probability for a nuclear reaction to occur. With this substitution for \(\sigma(E) \), Equation (2) can be re-written as

\[
\lambda = f(\mu, T) \int_0^\infty S(E) \exp\left(-\frac{E}{k_B T} - \frac{b}{\sqrt{E}}\right) dE.
\]

In the non-resonant reaction case, \(S(E) \) is slowly varying with \(E \), so we can treat it as a constant \(S_0 \) evaluated at the energy

\[
\sigma_0 = \frac{n_\alpha n_\beta}{1 + \delta_{\alpha\beta}} \int_0^\infty \psi(E) v(E) \sigma_0(E) dE.
\]
where \(\exp(-E/k_B T - b/E^{1/2}) \) is maximum. Then the reaction rate per pair of particles (without screening) can be computed as
\[
\lambda = f(\mu, T) S_0 \int_0^\infty \exp \left(-\frac{E}{k_B T} - \frac{b}{\sqrt{E}} \right) dE. \tag{6}
\]

1.2. Electrostatic Screening

Salpeter (1954) developed a treatment to include the effect of static electron screening on nuclear reaction rates. Here we summarize his method which we will use in Section 2 as the inspiration for our calculation of the dynamic screening correction.

We begin by writing the total interaction energy as a combination of the bare Coulomb potential and a contribution from the plasma:
\[
U_{\text{total}}(r) = \frac{Z_1 Z_2 e^2}{r} + U(r). \tag{7}
\]

Then consider a case in which the classical impact parameter \(r_c \) is very small compared with the charge cloud radius \(R_D \) and the nuclear radius \(r_n \) is much smaller than \(r_c \). Then the barrier penetration factor for \(r_n < r < r_c \) depends only on the expression
\[
E - U(r) - \frac{Z_1 Z_2 e^2}{r}. \tag{8}
\]

For distances larger than \(r_c \), the barrier penetration factor hardly depends on the potential. \(U(r) \) must be small for distances greater than \(R_D \) and approach a constant value \(U_0 \) of the order of magnitude of \(Z_1 Z_2 e^2 / R_D \) for small \(r \). Then,
\[
\frac{r_c}{R_D} \approx \frac{U_0}{E_{\text{max}}} \ll 1, \tag{9}
\]

where \(E_{\text{max}} \) is the relative kinetic energy for which the integrand in Equation (2) reaches a sharp maximum. If this inequality is satisfied, \(U(r) \) can be replaced by the potential at the origin \(U_0 \). By examining expression (8), we can see that the screening potential has effectively increased the kinetic energy by a magnitude of \(U_0 \).

We begin with the calculations of Mao et al. (2009) for a plasma at temperature \(T \) with number density \(n \) which is defined by
\[
R_D^2 = \frac{\epsilon_0 k_B T}{e^2 (n_e + n_i Z_i^2)}. \tag{14}
\]

For a neutral proton–electron plasma, the electron number density \(n_e \) and ion number density \(n_i \) are both \(n/2 \), so the Debye length is just
\[
R_D^2 = \frac{\epsilon_0 k_B T}{ne^2}. \tag{15}
\]

1.3. Dynamic Screening

Although Salpeter’s expression accurately describes the effect of static screening, the issue of dynamic screening in the hot, dense plasma of the solar interior remains an open question. Dynamic screening occurs when the screened interaction energy of a pair of ions depends on the relative velocity of the pair. Most of the ions in the solar plasma are much slower than the electrons and the fastest ions. The thermal ions are therefore not able to rearrange themselves as quickly around individual faster moving ions. Since nuclear reactions require energies several times the average thermal energy, the ions that are able to engage in nuclear reactions in the Sun are the faster moving ions, which are not accompanied by a full static screening cloud.

Salpeter’s derivation uses the mean-field approach in which the many-body interactions are reduced to an average interaction that simplifies calculations. This technique is quite useful for calculations describing the average behavior of the plasma. However, dynamic effects for the fast-moving, interacting ions in hot, dense plasma lead to a screened potential that deviates from the average value. Therefore, the mean-field approximation is not appropriate for computing stellar nuclear reaction rates. Instead, we use the molecular-dynamics method of Shaviv & Shaviv (1996) to model the motion of protons and electrons in a plasma under solar conditions in order to investigate dynamic screening in \(p-p \) reactions. The advantage of the molecular-dynamics method is that it does not assume a mean field. Nor does it assume a long-time average potential for the scattering of any two charges, which is necessary in the statistical way to solve Poisson’s equation to obtain the mean potential in a plasma.

In previous work, Mao et al. (2009) present simulation results for the velocity-dependent screening energy of \(p-p \) reactions in a plasma with the temperature and density of the solar core (\(T = 1.6 \times 10^7 \) K, \(\rho = 1.6 \times 10^5 \) kg m\(^{-3}\)). They demonstrate that the static screening result does not accurately represent this plasma, and they compute a screening energy that depends on the relative kinetic energy of a pair of interacting ions (see Figure 1). In this paper, we use their simulation results to compute a correction to the solar \(p-p \) reaction rate due to the dynamic screening they observe.

2. METHODS

We begin with the calculations of Mao et al. (2009) for a plasma of protons and electrons with the temperature and density
of the solar core. Their Figure 5 shows the relationship between the total interaction energy at the turning point and the relative kinetic energy of a pair of interacting protons. As in Salpeter’s static screening derivation, we can split the total interaction energy into the Coulomb and screening cloud contributions:

\[
U_{\text{total}}(r) = \frac{Z_1 Z_2 e^2}{r} + U(r, v). \tag{16}
\]

The screening energy now includes a velocity dependence, so \(U_0\) can no longer be factored out of the energy integral as was done to obtain Equation (12) for the static screening case.

Following Salpeter’s calculation for static screening, we focus on the contribution to the interaction energy from the screening cloud at small \(r\). This value of \(U_0\) is obtained from the relationship between the screening energy of a pair of protons at their turning point and their relative kinetic energy which is shown in Figure 1.

The dynamic screening energy curve is described by the equation

\[
\frac{U_0(E)}{k_B T} = 0.005 - 0.281 \exp(-2.35 \frac{E}{k_B T}), \tag{17}
\]

which comes from the best-fit curve for the Mao et al. (2009) \(E_{\text{screen}}(r_c, E)\). (Note the difference in sign from Mao et al. (2009), where the screening energy was defined as a negative contribution to the total energy, \(E_{\text{total}}(r) = e^2/r - E_{\text{screen}}(r, E)\). In this paper, we use the Salpeter (1954) convention, as shown in Equations (7) and (16).)

Now we return to Equation (10) for the screened reaction rate per pair of particles. The assumptions and approximations used in the derivation of Equation (10) for the static case will be examined and justified for the dynamic case in Section 3.2.

Replacing \(U_0\) from the statically screened case with \(U_0(E)\) for the dynamically screened case and using definition 4 for the cross section, we have

\[
\lambda = f(\mu, T) \int_0^\infty \frac{E}{E - U_0(E)} S(E - U_0(E)) \times \exp \left[-\frac{E}{k_B T} - \frac{b}{\sqrt{E - U_0(E)}} \right] dE. \tag{18}
\]

Because \(S(E)\) is a slowly varying function of energy, we make the approximation

\[
S(E - U_0(E)) \approx S(E) \tag{19}
\]

and replace this function with the constant \(S_0\), as was done in the original reaction-rate calculation in Equation (6).

We can now evaluate the reaction rate per pair of particles using Equation (6) for the unscreened case and

\[
\lambda = f(\mu, T) S_0 \int_0^\infty \frac{E}{E - U_0(E)} \times \exp \left[-\frac{E}{k_B T} - \frac{b}{\sqrt{E - U_0(E)}} \right] dE \tag{20}
\]

for the statically and dynamically screened cases. Equation (13) gives the static screening \(U_0\) and Equation (17) gives the dynamic screening \(U_0(E)\). Because all three cases contain the factor \(f(\mu, T)S_0\), we only need to compute the integrals in order to compare ratios of the two screened cases to the bare Coulomb potential case to obtain the correction factors for the \(p-p\) reaction rate.

3. RESULTS

Table 1 shows the results of the screening corrections for solar \(p-p\) reaction rates computed from the integrals in Equations (6) and (20). The statically screened correction shows a fairly large enhancement in the nuclear reaction rate. Conversely, the dynamically screened reaction rate is almost the same as the unscreened rate.

3.1. Integrands

How does the dynamic screening energy seen in Figure 1 result in a reaction rate that is so close to the unscreened reaction rate? To answer that question, we compare the components of the integrands from Equations (6) and (20). Both integrands can be written in the general form

\[
F(E) = H(E) J(E), \tag{21}
\]

where

\[
H(E) = \frac{E}{G(E)}, \tag{22}
\]

\[
J(E) = \exp \left[-\frac{E}{k_B T} - \frac{b}{\sqrt{G(E)}} \right]. \tag{23}
\]
and

\[G(E) = E - U. \] \hspace{1cm} (24)

The three cases only differ in the screening energy \(U \) which is shown for each case in Table 1.

In Figure 2(a), we see that the dynamic \(G(E) \) approaches the unscreened \(G(E) \) for high energies. Figure 2(b) shows that this leads to the dynamic \(H(E) \) approaching the unscreened \(H(E) \) for energies above \(\sim 2k_B T \), while the static \(H(E) \) is very different from both the dynamic and bare \(H(E) \). Below energies of \(\sim 2k_B T \) the dynamic \(H(E) \) drops rapidly away from the unscreened value of 1. However, the factor \(H(E) \) is multiplied by \(J(E) \) in the integrand of the reaction-rate equations. As seen in Figure 2(c), \(J(E) \) is very small to zero below energies of \(\sim 2k_B T \), damping out the region of \(H(E) \) in which the unscreened and dynamic results diverge. This leads to integrands for the dynamic and unscreened cases that are nearly identical, as seen when \(H(E) \) and \(J(E) \) are multiplied together to give \(F(E) \) in Figure 2(d). The Gamow-peak-like factor \(J(E) \) acts as a weighting function to devalue the \(H(E) \) contribution of the slow pairs of ions that rarely participate in nuclear reactions. The faster pairs that cause less polarization of the surrounding plasma and therefore see less screening provide the main contribution to the reaction-rate integral.

3.2. Evaluating Assumptions

Now that we have defined the integrand \(F(E) \) for the dynamic case, we can return to the issue of assumptions and approximations that were justified in the static screening rate derivation and adopted in the dynamic screening rate derivation. Here we assess the validity of these assumptions and approximations in the case of dynamic screening.

The first assumption is that \(r_s \) is very small compared with the charge cloud radius \(R_D \) and that the nuclear radius \(r_n \) is much smaller than \(r_c \), leading to expression (8). Although the dynamic case does not have a traditional static screening cloud, the inequality \(r_s \ll r_c \ll R_D \) is still satisfied. This can be seen in the definition of \(R_D \) as the distance beyond which an appreciable fraction of the nuclear charge is screened by the polarization charge cloud, a distance that is large for the dynamic case.

Next, we examine the inequality in Equation (9), \(U_0/E_{max} \ll 1 \). In the dynamic case, \(E_{max} \) is the kinetic energy for which the integrand of Equation (20) is maximum. We see from Figure 2(d) and \(U_0 \) in Figure 1 that the peak of the integrand \(F(E) \) occurs at energies for which \(U_0/E_{max} \ll 1 \).

Finally, we address the approximation that \(U(r) \) can be replaced by the potential at the origin \(U_0 \). While this is easy to see for the static case, in the case of dynamic screening we do not have the screening energy in the form \(U(r, E) \) to examine this claim. Instead, we define \(U_0(E) \) to be the screening energy computed at the turning point of the approaching protons, since this is the relevant \(U(r, E) \) for nuclear reaction-rate calculations.

4. DISCUSSION OF ARGUMENTS AGAINST DYNAMIC SCREENING

In light of the contentious debate over the validity of dynamic screening, we devote this section to a discussion...
of arguments that have been made against dynamic screening.

4.1. Incorrect Derivations

The argument for dynamic screening has been damaged by several derivations of alternate screening formulae (see, for example, Carraro et al. 1988; Opher & Opher 2000; Shaviv & Shaviv 1996; Tsytovich 2000) that were subsequently shown to be incorrect. Here we discuss two examples, Carraro et al. (1988) and Shaviv & Shaviv (1996). Carraro et al. (1988) derived a modified screening potential for fusing ions when the Gamow velocity is greater than the thermal velocity. Brown & Sawyer (1997) showed that including processes of excitation or de-excitation of the plasma in an interaction with one of the fusing ions exactly cancels the dynamic modifications proposed by Carraro et al. (1988). Shaviv & Shaviv (1996) then introduced a factor of $3^{1/2}$ on the screening energy. They arrived at this result by including the interaction of the screening cloud from each fusing ion in the total interaction potential. Bruggen & Gough (1997) showed that Shaviv & Shaviv (1996) misinterpreted the thermodynamics and used an incorrect potential in the Schrödinger equation for the system. Bahcall et al. (2002) summarize the problems with several different alternative screening formulae. However, finding flaws in these (and other) derivations of analytical expressions for screening deviations does not rule out the effect of dynamic screening. This argument only highlights the difficulty in developing a general analytical formalism to describe dynamic screening.

4.2. Factorability of the Distribution Function Is Wrong

For the Gibbs distribution, probabilities for momenta and coordinates are independent and cannot influence each other. This leads to the argument that velocities of fusing particles cannot have an effect on screening because the distribution function is not factorable. However, it is clear when examining individual ions that their relative velocity affects how close the ions can be to each other. This argument extends to ions in a plasma, where the configuration of the screening cloud of approaching ions depends on the relative velocity of those ions. Over the whole system, this velocity-dependent effect averages out to the Gibbs distribution, but each screening configuration is not identical to the average configuration of a screening cloud in that system.

Solar nuclear reactions select a biased sample of the ions in the system. These nuclear reactions involve mainly the fastest ions, not a random sample of all ions in the system. Therefore, the velocity distribution must be multiplied by the velocity-dependent screening energy before integration instead of beginning with an average value of the distribution.

4.3. Higher-order Terms

Do dynamic screening results imply that higher-ordered terms are required? The screening energy can be expressed as a power series expansion in the plasma coupling parameter Λ:

$$ \frac{U(r)}{k_BT} = -\frac{\Lambda}{x} \left(1 - \exp(-x)\right) - \Lambda^2 f(x, \Lambda), \tag{25} $$

where

$$ \Lambda = \frac{Z_1 Z_2 e^2}{R_D k_BT}. \tag{26} $$

$x = r/R_D$, and $f(x, \Lambda)$ is given by DeWitt (1965). The first term reduces to the Debye–Hückel weak screening result shown in Equation (13).

For the temperature and density of our simulations ($T = 1.6 \times 10^7$ K, $\rho = 1.6 \times 10^5$ kg m$^{-3}$, $\Lambda = 0.05$, so higher-order terms are small. Therefore, if dynamic screening could be described by higher-order terms in the expansion, the effect should be much smaller than the first term. However, the dynamic correction is not just a higher-order term in the expansion. Dynamic effects come from a different approach to determining screening effects. Instead of deriving an expression for screening based on average properties of the system, we examine the formation of the screening clouds themselves and do not average out the velocity-dependent nature of the clouds.

4.4. Observational Confirmation

What observational evidence can confirm any screening effect in the nuclear reactions in the Sun? Many early discussions of dynamic screening were motivated by the neutrino problem which has since been resolved with neutrino oscillation theory. In addition, including dynamic screening corrections in models with the Grevesse & Noels (1993) or Grevesse & Sauval (1998) abundances worsened agreement with helioseismic constraints (see, for example, Weiss et al. 2001). However, the solar abundance problem provides renewed motivation for exploring dynamic screening in solar nuclear reactions.

Before 2005, solar models with the latest input physics reproduced the sound-speed profile determined from helioseismic inversions to within 0.4% and also provided good agreement with the seismically inferred convection zone depth and convection zone helium abundance. Then Asplund et al. (2005, 2009), Caffau et al. (2008, 2009), and Ludwig et al. (2009) began using three-dimensional hydrodynamic models of the solar atmosphere with improved input physics and non-local thermodynamic equilibrium effects to determine solar atmospheric abundances. These revised calculations lowered element abundances by up to $1/3$. When the lower abundances are incorporated in solar models, the sound-speed profiles, convection zone depths, and convection zone helium abundances give worse agreement with helioseismic constraints than models with the old, higher abundances. Many attempts have been made to improve agreement by adjusting the physics or evolutionary assumptions in solar models (see Basu & Antia 2008; Guzik 2008; Guzik & Mussack 2010). Although these adjustments have shown some improvement, no model using the new lower abundances agrees as well with the helioseismic constraints as the models using the older abundances.

In a forthcoming paper, K. Mussack & J. A. Guzik (2011, in preparation) incorporate the dynamic screening correction shown here for solar $p-p$ reaction rates into solar models with the new lower abundances. They show that including this correction in solar models improves the sound-speed discrepancy in the solar core, as shown in Figure 3. This improvement does not fully reconcile the new abundances with helioseismic constraints, but it is a step in the right direction. Perhaps in combination with other changes, dynamic screening corrections could contribute to a solution to the solar abundance problem.

5. SUMMARY

We have shown that dynamic screening in solar $p-p$ reactions does not reproduce the enhancement of reaction rates that is predicted by Salpeter’s static screening approximation. In
We thank Hugh DeWitt for useful discussions and Dan Mao for her simulation results. This work was supported in part by grant AST-0708568 of the National Science Foundation.

REFERENCES

Asplund, M., Grevesse, N., & Sauval, A. J. 2005, in ASP Conf. Ser. 336, Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis, ed. T. G. Barnes, III & F. N. Bash (San Francisco, CA: ASP), 25

Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481

Bahcall, J. N., Brown, L. S., Gruzinov, A., & Sawyer, R. F. 2002, A&A, 383, 291

Basu, S., & Antia, H. M. 2008, Phys. Rep., 457, 217

Brown, L. S., & Sawyer, R. F. 1997, Rev. Mod. Phys., 69, 411

Bruggen, M., & Gough, D. O. 1997, ApJ, 488, 867

Caffau, E., Ludwig, H.-G., Steffen, M., Ayres, T. R., Bonifacio, P., Cayrel, R., Freytag, B., & Plez, B. 2008, A&A, 488, 1031

Caffau, E., Maiorca, E., Bonifacio, P., Faraggiana, R., Steffen, M., Ludwig, H.-G., Kamp, I., & Busso, M. 2009, A&A, 498, 877

Carraro, C., Schäfer, A., & Koonin, S. E. 1988, ApJ, 331, 565

Carraro, C., Schäfer, A., & Koonin, S. E. 1988, ApJ, 331, 565

Clayton, D. D. 1968, Principles of Stellar Evolution and Nucleosynthesis (New York, NY: McGraw-Hill)

Debye, P., & Hückel, E. 1923, Phys. Z., 24, 185

DeWitt, H. E. 1965, Phys. Rev., 140, 466

Grevesse, N., & Noels, A. 1993, in Origin and Evolution of the Elements, ed. N. Prantzos, E. Vangioni-Flam, & M. Cassé (Cambridge: Cambridge Univ. Press), 15

Grevesse, N., & Sauval, A. J. 1998, Space Sci. Rev., 85, 161

Guzik, J. A. 2007, Mem. Soc. Astron. Ital., 79, 481

Guzik, J. A., & Mussack, K. 2010, ApJ, 713, 1108

Ludwig, H.-G., Caffau, E., Steffen, M., Bonifacio, P., Freytag, B., & Cayrel, R. 2009, in IAU Symp. 265, Chemical Abundances in the Universe: Connecting First Stars to Planets, ed. K. Cunha, M. Spite, & B. Barbuy (Cambridge: Cambridge Univ. Press), 201

Mao, D., Mussack, K., & Dappen, W. 2009, ApJ, 701, 1204

Opher, M., & Opher, R. 2000, ApJ, 535, 473

Salpeter, E. E. 1954, Aust. J. Phys., 7, 373

Shaviv, N. J., & Shaviv, G. 1996, ApJ, 468, 433

Tsytovich, V. N. 2000, A&A, 356, 57

Weiss, A., Flaschamp, M., & Tsytyovich, V. N. 2001, A&A, 371, 1123