Rescue From Oculocutaneous Albinism Type 4 Using Medaka slc45a2 cDNA Driven by Its Own Promoter

Shoji Fukamachi,*1† Masato Kinoshita, Masato Kinoshita,1 Taro Tsujimura,* Atsuko Shimada,§ Shoji Oda,* Akihiro Shima,§ Axel Meyer,1 Shoji Kawamura§ and Hiroshi Mitani*.2

*Department of Integrated Biosciences, University of Tokyo, Kashiwa-no-ha, Kashiwa-shi, Chiba 277-8562, Japan, †Department of Biology, University of Konstanz, D-78457 Konstanz, Germany, ‡Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan and §Department of Biological Sciences, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Manuscript received September 12, 2007
Accepted for publication November 30, 2007

ABSTRACT

Patients and vertebrate mutants with oculocutaneous albinism type 4 (OCA4) have mutations in the solute carrier family 45 member 2 (slc45a2) gene. However, there is no empirical evidence for this gene–phenotype relationship. There is a unique OCA4 mutant in medaka (b) that exhibits albinism only in the skin, but the mechanism underlying this phenotype is also unknown. In this study, we rescued medaka OCA4 phenotypes, in both the eyes and the skin, by micro-injection of an slc45a2-containing genomic fragment or slc45a2 cDNA driven by its own 0.9-kb promoter. We also identified a spontaneous nucleotide change of 339 bp in the promoter as the b mutation. There are multiple transcription start sites in medaka slc45a2, as in its human ortholog, and only the shortest and eye-specific mRNA is transcribed with the b mutation. Interestingly, we further revealed a conserved pyrimidine (Py)-rich sequence of ~10 bp in the promoter by medaka–pufferfish comparative genomics and verified that it plays an indispensable role for expression of slc45a2 in the skin. Further studies of the 0.9-kb promoter identified in this study should provide insights into the cis/trans-regulatory mechanisms underlying the ocular and cutaneous expression of slc45a2.

The colors and patterns on animal body surfaces are often important for visual communication in the wild and are determined primarily by pigment cells (chromatophores) in vertebrates. The chromatophores are distributed in the skin, and their types, sizes, densities, and physiological activities affect these colors and patterns. Although mouse mutants have contributed greatly to our knowledge of skin- and coat-color formation (see Coat Color Genes, http://www.espcr.org/micemut/), mammals possess only one type of chromatophore, the melanocyte. In fish, up to six chromatophore types (melano-, leuco-, erythro-, xantho-, irido-, and cyanophores) have been identified, and there are two distinctive model species to which molecular genetics can be feasibly applied, the zebrafish and the medaka. Chromatophore studies in these species have successfully provided novel clues to the development, regulation, and interaction of these chromatophores (e.g., Parichy et al. 2000; Fukamachi et al. 2004a; Watanabe et al. 2006).

We have previously reported that the gene slc45a2 of solute carrier family 45, member 2, which was formally called antigen isolated from immuno-selected melanoma 1 (aim-1) or membrane-associated transporter protein (matp), is mutated in b-locus mutants of medaka (Fukamachi et al. 2001). This gene is also mutated in human patients with oculocutaneous albinism type 4 (OCA4), underwhite mice, “cream” horses, and silver chickens (Newton et al. 2001; Mariat et al. 2003; Gunnarsson et al. 2007). The phenotypes in these different species are quite similar to one another in that melanin deposition is severely suppressed in the phenotype, whereas the eyes become slightly pigmented during maturation. Population genetic studies have indicated that polymorphisms of human SLC45A2 are also related to population differences in human skin color (Nakayama et al. 2002; Soejima et al. 2006; Yuasa et al. 2006; Graf et al. 2007). slc45a2 mRNA is expressed in melanocyte/melanophore precursors during embryonic development (Fukamachi et al. 2001; Baxter and Pavan 2002), and the activity of tyrosinase (melanin-synthesizing enzyme) is suppressed in underwhite melanocytes (Costin et al. 2003), but not in b melanophores (Shimada et al. 2002; Fukamachi et al. 2004b). Although these results strongly suggest that a deficiency in slc45a2 function causes the OCA4 phenotype (possibly, via the reduced activity of tyrosinase), evidence that directly supports this gene–phenotype correlation has not yet been obtained, such as knockout/knockdown of slc45a2 or rescue from the mutant phenotype by the wild-type allele.

There is a unique OCA4 mutant in medaka; it has amelanotic skin, but its eyes are melanized. The fish is
traditionally called an orange-red variant and has the \(b \) allele at the \(b \) locus (Aida 1921; Matsumoto and Hirose 1993; Shimada et al. 2002). Whereas other \(b \)-locus mutants with the typical OCA4 phenotype (\(b^{1}, b^{2}, b^{4}, b^{5}, b^{51}, \) and \(b \)) have mutations in the protein-coding region of \(slc45a2 \), a mutation has not been identified from the \(b \) allele. Considering that the \(b \) embryo does not transcribe \(slc45a2 \) in the skin (Fukamachi et al. 2001), the \(b \) mutation probably occurs in a gene-regulating region that specifically controls the cutaneous expression of \(slc45a2 \).

In this study, we provide empirical \textit{in vivo} evidence for the \(slc45a2 \)-OCA4 causal relationship. Further, we identify (1) a promoter sequence that is sufficient for the oculocutaneous expression of \(slc45a2 \), (2) multiple transcription start sites that are used tissue specifically, and (3) the \(b \) mutation that causes the skin-specific albinism. We also report an intriguing instance in which comparative genomics successfully pinpoint a functional motif in the promoter.

MATERIALS AND METHODS

Construct preparation: Cosmid (HC19): We screened a bacterial artificial chromosome (BAC) library (Kondo et al. 2002) using the alkPhos direct labeling and detection system (Amersham Pharmacia, Piscataway, NJ) and isolated a clone that contained \(slc45a2 \). The clone was subcloned into the SuperCos1 cosm id vector (Stratagene, La Jolla, CA) after En3AI partial digestion using MaxPlax Lambda Packaging Extract (Epicericot Technologies, Madison, WI). We screened for it with colony PCR and isolated a cosm id that contained all seven exons of \(slc45a2 \) (HC19; Figure 1A).

Promoter-dcDNA fusion constructs (B and B constructs): We first amplified the \(slc45a2 \) open reading frame (ORF) of the wild-type \(B \) allele (HNJ inbred) by RT-PCR and cloned the products into the pcR4-TOPO vector (Invitrogen, San Diego). Then, the Agel–Xhol interval of the pEGFP-1 vector (Clontech, Palo Alto, CA), which contains the entire unenhanced green fluorescent protein (EGFP) ORF, was substituted with the Agel–Spe1 interval of the \(slc45a2 \) ORF plasmid (the \(Agel \) site is within the first exon of \(slc45a2 \) and the Spe1 site is on the pcR4-TOPO vector). We then amplified the \(5^{'prime} \) promoter region together with the first exon of the wild-type \(B \) allele (Sakura) or the mutant \(b \) allele (AA2 inbred) by genomic PCR. The products were inserted between Agel (in the multicloning site of the pEGFP-1 vector) and Agel (within the first exon of \(slc45a2 \)) of the pcR4-TOPO plasmid (Figure 1B). The dam-methylase-sensitive Xhol site in the pEGFP-1 vector was demethylated in \textit{Escherichia coli} strain ER2925 (New England Biolabs, Beverly, MA) for digestion.

For the ligation reactions, we resolved the digested inserts/ vectors by electrophoresis on 1–2% agarose gels and recovered the fragments using the QiAquick gel extraction kit (QIAGEN, Valencia, CA). The vectors were dephosphorylated with shrimp alkaline phosphatase (United States Biochemical, Cleveland), when necessary. After further purification by phenol–chloroform extraction and isopropanol precipitation, the fragments were ligated using a DNA ligation kit Ver. 2 (Takara, Berkeley, CA).

Mutated promoter-dcDNA fusion constructs (B-mut and B-del constructs): We PCR amplified two fragments from the wild-type “\(B \) construct” using four primers (one of them containing the mutation to be introduced; Figure 1C), which mutually overlapped by a 20-bp sequence, 5′-TTTCTTTAAAAAAGACCCGGCCC-3′, immediately upstream of the mutation. These fragments were joined by a second PCR using the 5′-most and 3′-most primers and were used to replace the EcoRI–EcoRI interval of the B construct.

Microinjection: All the injection constructs were purified using the Plasmid Midi kit (QIAGEN), dissolved in double-distilled water to a final concentration of 10–20 ng/ml, and used for microinjection. The injected embryos were incubated in ~0.001% methylene blue water at 25°C until hatching.

Sequencing the 5′ upstream region of the medaka \(slc45a2 \) locus: We isolated genomic DNA from the tail fins of adult fish. The primers for genomic PCRs were designed on the basis of the \(amacr–slc45a2 \) intergenic sequence, which we had determined previously (Fukamachi et al. 2001), with melting points \(\sim 60°C \), calculated with the CPrimer software (http://iubio.bio.indiana.edu:7131/soft/molbio/Listing.shtml). All PCRs were performed using the following parameters: 94°C for 1 min; 30 cycles of 98°C for 20 sec, 60°C for 1 min, 72°C for 1–10 min; with a final extension at 72°C for 10 min. We used a presequencing kit (United States Biochemical) for the preparation of the sequencing templates and sequenced the products using a BigDye terminator cycle sequencing kit (Applied Biosystems, Foster City, CA). Sequences were assembled and compared with SeqMan II software (DNASTAR, Madison, WI).

RT–PCR: We used IsoGen (Nippon Gene) to isolate the total RNA from embryos and the eyes of adult fish. First-strand cDNA was synthesized with ReverTra Ace reverse transcriptase (Toyobo) following the manufacturer’s protocol. All PCRs were performed with the conditions described above.

5′ RNA-ligase-mediated RACE (RLM–RACE): We used the FirstChoice 5′ RNA-ligase-mediated RACE (RLM–RACE) Kit (Ambion, Austin, TX). Total RNAs were extracted from the eyes and skin of wild-type \(\textit{color interferer} \) (Fukamachi et al. 2004a) and \(6 \) (Hdr-r) fish using TRIzol reagent (Invitrogen). Nested PCR products were resolved by electrophoresis on a 1% agarose gel. Four major bands of two different sizes (see Figure 4B) were excised, and the DNAs were recovered as described above and cloned into the pCRII-TOPO vector (Invitrogen). A total of 61 positive clones \(\textit{i.e.}, 13–16 \) clones from each band \(\textit{were} \) PCR amplified and sequenced.

Electrophoretic mobility shift assay: The mouse B16 melanoma cell line and the mouse L929 fibroblast cell line were cultured at \(37°C \) with 10 mM HEPES-buffered L-15 medium containing 15% fetal calf serum. For the experimental use of logarithmically growing cells, \(5 × 10^5 \) cells were inoculated into a 600-ml plastic flask and incubated for 2 days.

Cells \(1 × 10^6 \) were harvested and washed with phosphate-buffered saline. The cell pellet was resuspended in 400 \(\mu \)l of buffer A (10 mM HEPES–KO \(\text{H} \); pH 7.8), 1.5 mM MgCl2, 10 mM KCl, 0.5 mM dithiothreitol (DTT), 0.5 mM phenylmethylsulfonyl fluoride (PMSF), 0.1% NP-40), incubated on ice for 20 min, vortexed for 1 min, and then centrifuged. The pellet was resuspended with 100 \(\mu \)l of buffer C (20 mM HEPES–KO \(\text{H} \); pH 7.8), 420 mM NaCl, 1.5 mM MgCl2, 0.2 mM EDTA (pH 8.0), 25% glycerol, 0.5 mM DTT, 0.5 mM PMSF), gently mixed at 4°C for 20 min, and centrifuged. The supernatant was used as the nuclear extract. The protein concentration was measured using the BCA method (Pierce, Rockford, IL).

Complementary oligonucleotide probes (see Figure 6A for the sequence of one strand) for electrophoretic mobility shift assay (EMSA) were annealed, their 5′ ends were labeled with \([\gamma^32P]\)ATP using T4 polynucleotide kinase (Toyobo), and they were purified using the QiAquick nucleotide removal kit (QIAGEN). For the binding reaction, 4 \(\mu \)g of nuclear extract were used. The binding reaction was carried out in 20 \(\mu \)l of a mixture containing 15 mM Tris-HCl (pH 7.4), 60 mM KCl,
An slc45a2-containing genomic fragment rescued melanin synthesis in the OCA4 medaka: We micro-injected into medaka OCA4 mutant (be8) eggs a cosmid (HC19) containing all the exons/introns of medaka slc45a2 and ~9 and 2 kb of the 5’- and 3’-flanking regions, respectively (Figure 1A). Among the b locus mutants, melanin suppression is most severely in the be8 mutant (Shimada et al. 2002). We observed that 36 of 140 injected embryos exhibited chimeric deposition of melanin in the eye and/or skin (eye: 3; skin: 24; both: 9; Figure 2, A and B). Some fish retained the recovered skin melanophores until the adult stage, suggesting stable gene expression from HC19 (Figure 2, C and D). None of the mature fish successfully passed the transgene to their offspring, although one of the pairs occasionally produced melanized but severely malformed and lethal embryos (data not shown). Therefore, HC19 must contain a gene and its regulatory regions that can rescue the medaka OCA4 phenotype.

slc45a2 cDNA driven by its 0.9-kb promoter rescued melanin synthesis in the OCA4 medaka: The rescuing gene is most likely slc45a2, but another gene might exist in HC19. A series of our published and preliminary experiments indicated that the transcription of slc45a2 is not very strong (difficult to be detected) in medaka, e.g., faint signals on whole-mount in situ hybridization (Fukamachi et al. 2001), no signal from embryos micro-injected with an slc45a2 promoter–EGFP plasmid (see below), no band on Northern hybridization, and no knockdown by morpholino injection (data not shown). The weak expression was similarly reported from mouse (Baxter and Pavan 2002), and it has also recently been reported that strong expression of SLC45A2 may suppress melanin deposition in humans (Graf et al. 2007). Therefore, we undertook to rescue the be8 phenotype with slc45a2 cDNA driven by its own promoter, rather than with a promoter for its ectopic expression.

We first sequenced the 5’-flanking region (~4.4 kb) of the medaka slc45a2 locus and compared the sequences between two genetically divergent wild-type strains, HNI (northern inbred) and Sakura (southern noninbred). Besides many single-nucleotide polymorphisms (SNPs) and small insertions/deletions, we detected a large insertion of ~5 kb in the HNI allele 0.9 kb upstream from the translation initiation codon (Figure 3, A and B). Because the insertion of a fragment of several kilobases (e.g., a transposon) into a promoter often abolishes the ordinary transcription of the gene (e.g., Itada et al. 2004), we expected that the region upstream from this insert may be dispensable for slc45a2 expression.

Therefore, we constructed a plasmid in which 922 bp of the 5’-promoter region, which should also contain the 5’-untranslated region (UTR), were connected to the slc45a2 ORF (1728 bp) and the 36 bp of the 3’-UTR (see Figure 1B). Micro-injection of the construct (B mutant) successfully rescued the be8 phenotype. From 127 injected eggs, nine embryos exhibited chimeric deposition of melanin in the eye and/or skin (eyes: two; skin: three; both: four; Figure 2, E and F). Therefore, the medaka OCA4 phenotype is caused by a defect in slc45a2 and not in a neighboring gene in HC19. This result also shows that the 0.9-kb promoter can drive slc45a2 expression at a level sufficient for melanin production in both the eyes and the skin.

The b mutation occurs in the promoter of slc45a2: Because the 0.9-kb promoter rescued both the ocular and the cutaneous phenotypes, we expected the b mutation (see Introduction) to occur in the promoter.

RESULTS

An slc45a2-containing genomic fragment rescued melanin synthesis in the OCA4 medaka: We micro-injected into medaka OCA4 mutant (be8) eggs a cosmid (HC19) containing all the exons/introns of medaka slc45a2 and ~9 and 2 kb of the 5’- and 3’-flanking regions, respectively (Figure 1A). Among the b locus mutants, melanin suppression is most severely in the be8 mutant (Shimada et al. 2002). We observed that 36 of 140 injected embryos exhibited chimeric deposition of melanin in the eye and/or skin (eye: 3; skin: 24; both: 9; Figure 2, A and B). Some fish retained the recovered skin melanophores until the adult stage, suggesting stable gene expression from HC19 (Figure 2, C and D). None of the mature fish successfully passed the transgene to their offspring, although one of the pairs occasionally (~10%) produced melanized but severely malformed and lethal embryos (data not shown). Therefore, HC19 must contain a gene and its regulatory regions that can rescue the medaka OCA4 phenotype.

slc45a2 cDNA driven by its 0.9-kb promoter rescued melanin synthesis in the OCA4 medaka: The rescuing gene is most likely slc45a2, but another gene might exist in HC19. A series of our published and preliminary experiments indicated that the transcription of slc45a2 is not very strong (difficult to be detected) in medaka, e.g., faint signals on whole-mount in situ hybridization (Fukamachi et al. 2001), no signal from embryos micro-injected with an slc45a2 promoter–EGFP plasmid (see below), no band on Northern hybridization, and no knockdown by morpholino injection (data not shown). The weak expression was similarly reported from mouse (Baxter and Pavan 2002), and it has also recently been reported that strong expression of SLC45A2 may suppress melanin deposition in humans (Graf et al. 2007). Therefore, we undertook to rescue the be8 phenotype with slc45a2 cDNA driven by its own promoter, rather than with a promoter for its ectopic expression.

We first sequenced the 5’-flanking region (~4.4 kb) of the medaka slc45a2 locus and compared the sequences between two genetically divergent wild-type strains, HNI (northern inbred) and Sakura (southern noninbred). Besides many single-nucleotide polymorphisms (SNPs) and small insertions/deletions, we detected a large insertion of ~5 kb in the HNI allele 0.9 kb upstream from the translation initiation codon (Figure 3, A and B). Because the insertion of a fragment of several kilobases (e.g., a transposon) into a promoter often abolishes the ordinary transcription of the gene (e.g., Itada et al. 2004), we expected that the region upstream from this insert may be dispensable for slc45a2 expression.

Therefore, we constructed a plasmid in which 922 bp of the 5’-promoter region, which should also contain the 5’-untranslated region (UTR), were connected to the slc45a2 ORF (1728 bp) and the 36 bp of the 3’-UTR (see Figure 1B). Micro-injection of the construct (B mutant) successfully rescued the be8 phenotype. From 127 injected eggs, nine embryos exhibited chimeric deposition of melanin in the eye and/or skin (eyes: two; skin: three; both: four; Figure 2, E and F). Therefore, the medaka OCA4 phenotype is caused by a defect in slc45a2 and not in a neighboring gene in HC19. This result also shows that the 0.9-kb promoter can drive slc45a2 expression at a level sufficient for melanin production in both the eyes and the skin.

The b mutation occurs in the promoter of slc45a2: Because the 0.9-kb promoter rescued both the ocular and the cutaneous phenotypes, we expected the b mutation (see Introduction) to occur in the promoter.
Indeed, we found a unique nucleotide change in the promoter of the b mutant, an inversion of 167 bp, an insertion of 48 bp, and a deletion of 172 bp (Figure 3; see Figure 4C for details). The origin of the inserted 48 nucleotides is unknown, because the sequence cannot be aligned to neighboring sequences. This allele (inversion/insertion/deletion, inv/ins/del) was not found in at least 11 wild-type fish, which had been collected from various rivers and ponds in Japan and South Korea (Figure 3C; see Takehana et al. 2004 for references).

To assess the function of the b promoter, we substituted the 922-bp promoter of the B construct with the 795-bp promoter of the b mutant (B construct; Figure 1B) and micro-injected it into b^{es} or SK² eggs (SK² is a triple mutant of the b^{es}, leucophore-free, and guanineless loci recovered in this study; see Figure 2F). Fourteen of 284 injected embryos exhibited chimeric deposition of melanin, but only in the eyes (note that only 2/9 embryos rescued by the B construct had pigment only in the eye (P < 0.001, chi-square test)). Therefore, we concluded that the b promoter is responsible for the mutant phenotype and that it is likely to be the inv/ins/del sequence.

Multiple transcription start sites in medaka slc45a2: Interestingly, we found that slc45a2 mRNA in the b mutant lacks part of the 5’-UTR (Figure 4A). This indicates the existence of multiple transcription start sites (i.e., the b mutation selectively abolishes the transcription of the full-length mRNA) or utilization of a weaker transcription start signal in the b mutant. Our results from RLM–RACE supported the former scenario. The wild-type medaka transcribe at least two major variants of slc45a2 mRNA: the longer form in both the skin and the eyes and the shorter form only in the eyes (Figure 4B). The longer form was not detectable in the b mutant (even after 60 cycles of nested PCR), whereas the shorter form seemed to be expressed as usual. Thus, the b mutation specifically suppresses the transcription of the longer mRNA, which is necessary for melanization in the skin but not in the eyes, whereas the shorter mRNA is transcribed independently of the b mutation.

Medaka–pufferfish comparative genomics pinpoint a functional motif in the 0.9-kb promoter necessary for the cutaneous expression of slc45a2: The 339-bp region disrupted by the b mutation probably contains a functional motif, such as a transcription-factor-binding site (TFBS), that regulates the transcription of the longer form of slc45a2 mRNA. However, we could not efficiently predict such motifs using online software, such as TFBIND (http://tbind.ims.u-tokyo.ac.jp/) or TFSEARCH (http://molsun1.cbrc.aist.go.jp/research/db/TFSEARCH.html), because >100 TFBSs were identified within the 0.9-kb promoter. We also failed to make a prediction based on comparative genomics (phylogenetic footprinting), using human, mouse, rat, zebrafish, Takifugu, and Tetraodon genomes (Figure 5, A–C; other data not shown).

Intriguingly, however, a pairwise alignment of the medaka and pufferfish (Takifugu or Tetraodon) promoters using the mVISTA program (http://genome.lbl.gov/mvista/index.shtml) revealed up to four conserved putative motifs in the 0.9-kb promoter (Figure 5C). This result allowed us to identify a pyrimidine (Py)-rich motif (motif D in Figure 5), which is located in very close proximity to the 5’-most transcription start site of slc45a2, at least in medaka (Figure 4A), zebrafish [expressed sequence tag (EST) CF266172 in GenBank], mouse (EST BB858311), and human (Graf et al. 2007). Although the sequences of the Py-rich motif are not strictly conserved among species, its functional importance in the skin is further suggested by two observations: (1) the Py-rich motif is interrupted by the 3′ edge of the b mutation in medaka (Figure 4A), and (2) cultured mouse B16 melanoma cells express nuclear proteins that specifically bind to the Py-rich motif (Figure 6).

To assess this hypothesis, we micro-injected promoter–cDNA constructs with a mutation exclusively in the...
Py-rich motif: the B-mut construct, in which the Py-rich motif (5’-CTTTCTCTTTCTCTTTACT-3’) was substituted with purines (5’-GAAAGAGAGAAGGGAGAAAATGA-3’), and the B-del construct, in which the Py-rich motif was deleted (Figure 1C). The B-mut or the B-del construct rescued the OCA4 phenotype in 5 of 64 or 7 of 76 bg8 or SK2 embryos, respectively, but only in the eyes of 5/5 or 7/7 significantly (P<0.001, chi-square test) differs from 2/9/C138. Thus, the Py-rich motif plays an indispensable role in melanin production in the skin, facilitating the transcription of the longer form of slc45a2 mRNA in melanophores.

DISCUSSION

Vertebrate OCA4 mutants caused by mutations in slc45a2: Our results presented here provide robust *in vivo* evidence of an slc45a2–OCA4 causal relationship. We believe that the OCA4 phenotypes of other vertebrates are also caused by the loss of slc45a2 function and will be rescued by wild-type slc45a2 nucleotides. However, this might not be the case in the *underwhite dominant brown* (*uwDbr*) mutant mouse, which has a missense point mutation in the coding region of slc45a2 (Newton et al. 2001; Du and Fisher 2002). Dominant-negative slc45a2 protein has been proposed to explain the dominant inheritance of the *uwDbr* phenotype. However, the detailed function of slc45a2 protein in melanin synthesis is as yet not well understood (but see Costin et al. 2003).

There is another intriguing OCA4 mutant, *B*′ medaka, which exhibits “variegated” deposition of melanin in the adult skin (Aida 1921). We found that the *B*′ mutant has no mutation in the coding region of slc45a2, but carries the inv/ins/del sequence (*i.e.*, the *b* mutation) in the promoter (our unpublished observation). The indistinguishable phenotypes of the *b* and *B*′ embryos can be explained by this finding. The mechanism for the later and incomplete enhancement of melanin deposition in the *B*′ skin remains unknown. We assume that other genomic regions in addition to the 0.9-kb promoter control the expression of medaka slc45a2. This is because we achieved a lower rescue frequency when using the *B* construct (9/127) than when using the cosmid HC19 (36/140; P<0.001, chi-square test). Sequence comparisons of the entire slc45a2 locus (*i.e.*, 5′/3′ genomic regions and introns contained in HC19; see Figure 1A) between the *b* and *B*′ alleles may reveal additional
mutations and provide new insight into the cutaneous expression of slc45a2 in adult fish.

Medaka promoter for oculocutaneous expression of slc45a2: The 0.9-kb promoter isolated in this study can drive slc45a2 transcription at a sufficient level for melanin production in both the eyes and the skin of medaka. This system might be useful in assessing the functional significance of the polymorphisms/mutations in slc45a2 in vivo, i.e., if mammalian orthologs can similarly rescue the b^{et} phenotype, we should be able to functionally assess the polymorphism/mutation of interest (see Introduction) by preparing constructs for micro-injection.

The promoter sequence should also be useful in investigating the molecular mechanisms that control slc45a2 expression. Microphthalmia-associated transcription factor
Figure 5.—Comparative genomic prediction of the functional motifs in the slc45a2 promoter. (A) The promoters (~1 kb) and translated (~0.3 kb) regions of the mouse and human sequences were aligned with mVISTA (Mayor et al. 2000). The translation start codon is underlined. Transcription start sites are indicated by arrowheads. Conserved nucleotides are indicated by shaded boxes. Note that many nucleotides are conserved not only in the translated region but also in the promoter region. Similar results were obtained from mouse–rat and Takifugu–Tetraodon comparisons (see C). The motif D, which was revealed by the medaka–pufferfish comparison (see C), is boxed. (B) The zebrafish sequence was only poorly aligned to any of the human, mouse, rat, Takifugu, Tetraodon, and medaka sequences (data not shown). Two of the four motifs predicted by the medaka–pufferfish comparison exist in zebrafish. (C) The medaka–pufferfish comparison. The mVISTA program aligned an identical medaka sequence differently to Takifugu and Tetraodon sequences, which are shown as Medaka1 and Medaka2, respectively. The upper regions (not shown here) rarely contain conserved nucleotides, even between the pufferfish genera. Nucleotides conserved only between the pufferfish genera are indicated by shaded boxes. Solid boxes show nucleotides conserved among the four sequences. Candidate motifs (where solid boxes of several nucleotides in length are found) are boxed (A–D). (D) Summary of the comparative genomics. The candidate motifs and translated regions are indicated with open and shaded boxes, respectively. Transcription start sites are shown with arrowheads.

Rescue From Medaka OCA4 by slc45a2 Micro-injection 767
identify conserved and therefore functionally important sequences, the prediction of TFBSs in a promoter is often difficult. This is because (1) TFBSs are generally small (<10 bp); (2) sequences surrounding TFBSs are highly divergent, even in length, which disturbs the alignment of the TFBSs; (3) the TFBS itself is not strictly conserved among species; and (4) only limited numbers of genomic sequences are available, especially for vertebrates (see BOFFELLI et al. 2004; WASSERMANN and SABLEN 2004).

Interestingly, however, a comparison of the medaka and pufferfish genomes exceptionally predicted a functional sequence that plays an essential role, the Py-rich motif (Figure 5C). Although we do not believe that this medaka–pufferfish method will reveal a functional motif in all promoters, the recent publication of the medaka whole-genome sequence (KASAHARA et al. 2007) should provide expanded opportunities to characterize promoter structures in silico before in vitro/in vivo experiments. However, the Py-rich motif should not be the only functional motif in the medaka slc45a2 promoter; another motif that controls the shorter mRNA in the eye (Figure 4A) must also exist. To obtain a more complete understanding of the transcriptional regulation of slc45a2, further investigations will be necessary, including comparative genomic analyses of more species and in vitro screening for functional regions using deletion constructs.

We detected a nuclear protein that binds to the Py-rich motif in mouse melanoma cells (Figure 6). Identification of this protein (STEAD and MCDOWALL 2007) may provide new insight into trans-regulatory mechanisms for the cutaneous expression of slc45a2. However, we obtained an EMSA result identical to that shown in Figure 6 using mouse L929 fibroblast cells, which do not transcribe slc45a2 or produce melanin (data not shown). Considering that the Py-rich motif is located very close to the transcription start site (Figure 5), it is possible that the protein that binds to the Py-rich motif is a general transcription factor that initiates transcription. To explain the tissue-specific transcription of slc45a2, other mechanisms must be considered, such as melanocyte-specific cofactors that activate the binding protein, another motif on the promoter to which a melanocyte-specific transcription factor binds, etc.

In summary, we rescued the medaka OCA4 phenotype with slc45a2, isolated the promoter sufficient for the oculocutaneous expression of slc45a2, revealed multiple mRNA variants that are tissue-specifically transcribed, identified the mutation as the cause of the skin-specific albinism, and identified the Py-rich motif, which is essential for melanogenesis in the skin. Further studies of the 0.9-kb promoter sequence, including the Py-rich motif, will provide a more detailed understanding of the cis/trans regulatory mechanisms underlying the oculocutaneous expression of slc45a2.

The authors thank S. Asakawa and N. Shimizu of Keio University for the BAC library; M. Schartl of the University of Würzburg for the Hd-rR medaka; T. Suzuki of Nagoya University and S. Shibahara of Tohoku
University for advice on the EMSA; S. Takada and T. Yamashita of the University of Tokyo for fish care; and the Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University for providing the B16 and L929 cells. We also thank N. Kuzuno of the University of Tokyo for naming the SK2 strain (Suke-suke). This work was supported by grants-in-aid for scientific research on the priority areas “Study of Medaka as a Model for Organization and Evolution of the Nuclear Genome” (no. 1813) and “Comparative Genomics” (no. 015) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. S.F. is supported by a research fellowship of the Japan Society for the Promotion of Science for Young Scientists (no. 17-10821) and by a long-term fellowship of the International Human Frontier Science Program Organization (no. 00059/2005-L).

LITERATURE CITED

Aida, T., 1921 On the inheritance of color in a fresh-water fish, Alpochelus latipes Tenneck and Schlegel, with special reference to sex-linked inheritance. Genetics 6: 554–573.

Baxter, L. L., and W. J. Pavan, 2002 The ocoulcutaneous albinism type IV gene Matp is a new marker of pigment cell precursors during mouse embryonic development. Mech. Dev. 116: 299–212.

Béjar, J., Y. Hong and M. Scharltl, 2003 Mitf expression is sufficient to direct differentiation of medaka blastula derived stem cells to melanocytes. Development 130: 6545–6553.

Boffelli, D., M. A. Norbrega and E. M. Rubin, 2004 Comparative genomics at the vertebrate extremes. Nat. Rev. Genet. 5: 456–465.

Costin, G. E., J. C. Valence, W. D. Vieira, M. L. Lamoreux and V. J. Hearing, 2003 Tyrosinase processing and intracellular trafficking is disrupted in mouse primary melanocytes carrying the underwhite (uw) mutation. A model for ocoulcutaneous albinism (OCA) type 4. J. Cell Sci. 116: 5203–5212.

De, J., and D. E. Fisher, 2002 Identification of Aim-1 as the under-white mouse mutant and its transcriptional regulation by MITF. J. Biol. Chem. 277: 402–406.

Fukamachi, S., A. Shimada and A. Shima, 2001 Mutations in the gene encoding B, a novel transporter protein, reduce melanin content in medaka. Nat. Genet. 28: 381–385.

Fukamachi, S., M. Sugimoto, H. Mitani and A. Shima, 2001a Somatolactin selectively regulates proliferation and morphogenesis of neural-crest derived pigment cells in medaka. Proc. Natl. Acad. Sci. USA 101: 10661–10666.

Fukamachi, S., S. Asakawa, Y. Wakamatsu, N. Shimizu, H. Mitani et al., 2004b Conserved function of medaka pink-eyed dilution in melanin synthesis and its divergent transcriptional regulation in gonads among vertebrates. Genetics 168: 1519–1527.

Grafs, J., J. Voisey, J. Hughes and A. Van Daal, 2007 Promoter polymorphisms in the Matp (SLC45A2) gene are associated with normal human skin color variation. Hum. Mutat. 28: 710–717.

Gunnarsson, U., A. R. Hellstrom, M. Trinchieri-Chochard, F. Minvielle, B. Bed’hom et al., 2007 Mutations in SLC45A2 cause plumage color variation in chicken and Japanese quail. Genetics. 175: 867–877.

Iida, A., H. Inagaki, M. Suzuki, Y. Wakamatsu, H. Hori et al., 2004 The tyrosinase gene of the (b) albino mutant of the medaka fish carries a transposable element insertion in the promoter region. Pigment Cell Res. 17: 158–164.

Kasahara, M., K. Naruse, S. Sasaki, Y. Nakatani, W. Qu et al., 2007 The medaka draft genome and insights into vertebrate genome evolution. Nature. 447: 714–719.

Kondo, M., A. Froeschauer, A. Kitano, I. Nanda, U. Hornung et al., 2003 Molecular cloning and characterization of DMRT genes from the medaka Oryzias latipes and the platfish Xiphophorus maculatus. Gene 295: 215–222.

Mariat, D., S. Taourit and G. Guerin, 2003 A mutation in the Matp gene causes the cream coat colour in the horse. Genet. Sel. Evol. 35: 119–135.

Matsumoto, J., and E. Hirose, 1993 Deficiency of the gene B impairs differentiation of melanophores in the medaka fish, Oryzias latipes: fine structure studies. Pigment Cell Res. 6: 45–51.

Mayor, C., M. Bruino, J. R. Schwartz, A. Polliakov, E. M. Rubin et al., 2000 VISTA: visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 16: 1046–1047.

Nakayama, K., S. Fukamachi, H. Kikura, Y. Koda, A. Soemantri et al., 2002 Distinctive distribution of AIM1 polymorphism among major human populations with different skin colors. J. Hum. Genet. 47: 92–94.

Newton, J. M., O. Cohen-Barak, N. Hagiwara, J. M. Gardner, M. T. Davidson et al., 2001 Mutations in the human orthologue of the mouse underwhite gene (uw) underlie a new form of ocoulcutaneous albinism, OCA4. Am. J. Hum. Genet. 69: 981–988.

Parichy, D. M., D. G. Ransome, B. Paw, L. I. Zon and S. L. Johnson, 2000 An orthologue of the kit-related gene fms is required for development of neural crest-derived xanthophores and a subpopulation of adult melanocytes in the zebrafish, Danio rerio. Development 127: 3031–3044.

Shimada, A., S. Fukamachi, Y. Wakamatsu, K. Ozato and A. Shima, 2002 Induction and characterization of mutations at the b locus of the medaka, Oryzias latipes. Zool. Sci. 19: 411–417.

Soejima, M., H. Tachida, T. Ishida, A. Sano and Y. Koda, 2006 Evidence for recent positive selection at the human AIM1 locus in a European population. Mol. Biol. Evol. 23: 179–188.

Stead, J. A., and K. J. Mcdowell, 2007 Two-dimensional gel electrophoresis for identifying proteins that bind DNA or RNA. Nat. Protoc. 2: 1839–1848.

Takehana, Y., S. Uchiyama, M. Matsuda, S. R. Jeon and M. Sakaizumi, 2004 Geographical variation and diversity of the cytochrome b gene in wild populations of medaka (Oryzias latipes) from Korea and China. Zool. Sci. 21: 483–491.

Wakamatsu, Y., S. Prystazhiryurk, M. Kinoshita, M. Tanaka and K. Ozato, 2001 The see-through medaka: a fish model that is transparent throughout life. Proc. Natl. Acad. Sci. USA 98: 10046–10050.

Wasserman, W. W., and A. Sandelin, 2004 Applied bioinformatics for the identification of regulatory elements. Nat. Rev. Genet. 5: 275–287.

Watanabe, M., M. Ishiwata, M. Ishii, Y. Kurihara, A. Wakamaki et al., 2006 Spot pattern of leopard Danio is caused by mutation in the zebrafish connexin41.8 gene. EMBO Rep. 7: 893–897.

Yuasa, I., K. Umetzu, S. Harihara, A. Kido, A. Miyoshi et al., 2006 Distribution of the F574 allele of the SLC45A2 (MATP) gene and founder-haplotype analysis. Ann. Hum. Genet. 70: 802–811.

Communicating editor: D. J. Grunwald