Membrane-type Total Heat Exchanger Performance Simulation with Consideration of Entrance Effects

J F Duan, J C Min*

Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China

*E-mail: minjc@mail.tsinghua.edu.cn

Abstract. Membrane-type total heat exchanger (THX) is an air-to-air heat exchanger used to reduce the building energy consumption associated with forced ventilation by recovering both heat and moisture from ventilation air. It contains a heat/moisture exchange core made of a water vapour permeable membrane, supply outdoor air and exhaust indoor air flow through the membrane channels in the core in a crossflow manner and exchange heat and moisture across the membranes. The present work numerically investigates the airflow channel entrance effects on the THX performance. The results show that such effects on the air temperature and humidity distributions are inconspicuous and so are they on the THX effectiveness, it is therefore appropriate to use the constant Nusselt number to evaluate the THX performance.

1. Introduction

With the developments of economy and technology, people spend more time in indoor environment [1]. Forced ventilation is often necessary to improve the indoor air quality but it simultaneously causes a huge energy consumption in fresh air conditioning. Membrane-type total heat exchanger (THX) is an air-to-air heat exchanger used to reduce such an energy consumption, it contains a heat and moisture exchange core made of a water vapor permeable membrane, supply outdoor air and exhaust indoor air flow through the channels in the core and exchange heat and moisture across the membranes.

Numerical methods are often used to evaluate the THX performance, in which equations governing the heat and moisture transfer in the THX core are set up and solved numerically to obtain various physical quantity distributions and exchanger effectiveness. Zhang and his co-workers [2, 3] numerically studied the THX performance. Min and his group [4-9] conducted a series of researches on the THX, they numerically investigated the effects of membrane thickness, channel spacing, membrane materials and outdoor air state on the THX performance [4-6], discussed the phenomena of heat and mass transfer in different directions across membranes [7], and compared the effectiveness-NTU and numerical methods for evaluating the THX performance and reported that the numerical method with consideration of the effect of adsorption heat was the best method [8]. They also carried out experimental investigations on the THX and validated their simulation model by comparing the calculations with the experiments [9]. More studies on the THX performance evaluation can be found in Refs. [10-13].

The existing studies all used the convective heat and mass transfer coefficients for fully developed laminar flow in rating the THX performance, no study has discussed the entrance effect on it. The present research attempts to investigate that effect by comparing the THX performance results obtained using the local heat and mass transfer coefficients and those for fully developed laminar flow.
2. Theoretical Model

Fig. 1 illustrates the basic physical model for the core of a typical THX, which consists of a supply airstream channel, an exhaust airstream channel, and membranes, with the two airstreams proceeding along the channels in a crossflow pattern and exchanging heat and moisture across the membrane separating the channels. Because of the periodicity and symmetry in geometry, half the volume of the exhaust airstream, half the volume of the supply airstream and the intermediate membrane are taken to constitute the computational domain.

![Figure 1. Basic physical model](image)

The mathematical model describing the heat and mass transfer in the Fig. 1 model is based on the assumptions that the physical properties of the air fluid and membrane are constant, and the heat and moisture transfer are both at steady state.

Supply air:

\[
\frac{m_s c_p}{n x_F} \frac{\partial T_s}{\partial x} + 2h_s (T_s - T_{m_s}) = 0, \quad \frac{m_s}{n y_F} \frac{\partial W_s}{\partial x} + 2k_s (W_s - W_{m_s}) = 0
\]

Exhaust air:

\[
\frac{m_e c_p}{n x_F} \frac{\partial T_e}{\partial y} + 2h_e (T_e - T_{m_e}) = 0, \quad \frac{m_e}{n y_F} \frac{\partial W_e}{\partial y} + 2k_e (W_e - W_{m_e}) = 0
\]

Membrane:

\[
q = -\lambda_m \frac{\partial T_m}{\partial z} = \lambda_m \frac{T_{m_s} - T_{m_e}}{\delta}, \quad J = -D_{m_s} \frac{\partial \theta}{\partial z} = D_{m_s} \frac{\theta_{m_s} - \theta_{m_e}}{\delta}
\]

Also

\[
q = h_s (T_s - T_{m_s}) + JL_{m_s} = h_e (T_{m_e} - T_e) + JL_{m_e}, \quad J = k_s (W_s - W_{m_s}) = k_e (W_{m_e} - W_e)
\]

where \(W\) is the air humidity ratio, \(m\) is the air mass flow rate, \(J\) is the moisture flux across membrane, \(n\) is the number of channels, \(x_F\) and \(y_F\) are the channel lengths in the \(x\) and \(y\) directions, \(D_{m_s}\) is the moisture diffusivity in membrane, \(\theta\) is the membrane moisture content, \(\delta\) is the membrane thickness, and \(L_{m_s}\) is the heat of adsorption of water vapor on membrane, which is assumed to be equal to the heat of vaporization of water. The subscripts \(s\), \(e\), \(m\) and \(w\) refer to the supply air, exhaust air, membrane and water vapor, respectively.

The equation describing moisture adsorption at the membrane surface can be represented by

\[
\theta = \frac{w_{\text{max}}}{1 - C + C/\phi}
\]

where \(\theta\) is the moisture uptake in membrane, \(w_{\text{max}}\) the maximum moisture content of the membrane material, \(C\) the adsorption constant, which determines the shape of the adsorption curve.

The THX performance is evaluated using the sensible heat transfer effectiveness, latent heat transfer effectiveness and enthalpy effectiveness, which can be calculated from

\[
\varepsilon_s = \frac{m_s (T_{s_l} - T_{sl}) + m_e (T_{m_e} - T_{sl})}{2m_{\text{min}} (T_{sl} - T_{sl})} \quad (6a); \quad \varepsilon_L = \frac{m_s (w_{sl} - w_{sl}) + m_e (w_{m_e} - w_{sl})}{2m_{\text{min}} (w_{sl} - w_{sl})} \quad (6b)
\]
\[
e_{H} = \frac{m_{i} (H_{i} - H_{w}) + m_{o} (H_{o} - H_{w})}{2m_{w} (H_{i} - H_{w})}
\]
where \(H \) is the specific enthalpy of moist air, given by
\[
H = 1.006T + W (2501 + 1.805T)
\]
in which \(T \) is the air temperature in °C.

According to Shah and London [14], for fully developed laminar flow between parallel plates with constant temperature boundary conditions, the Nusselt number is \(Nu_{c} = 7.54 \). According to Stephan and Karl [15], the mean Nusselt number for laminar flow between parallel plates with isothermal boundary conditions including the entrance can be calculated by
\[
Nu_{m} = 7.55 + \frac{0.024(x^{*})^{-1.14}}{1 + 0.0358(x^{*})^{-0.64} Pr^{0.17}}, \quad x^{*} = \frac{x}{D_{h} Re Pr}
\]
Since the mean Nusselt number is the local Nusselt number averaged along the channel, the local Nusselt number can be derived from Eq. (8) as
\[
Nu_{c} = 7.55 + \frac{0.00336(x^{*})^{-1.14}}{1 + 0.0358(x^{*})^{-0.64} Pr^{0.17}} - \frac{0.00055(x^{*})^{-1.78} Pr^{0.17}}{(1 + 0.0358(x^{*})^{-0.64} Pr^{0.17})^{2}}
\]
with \(Nu_{m} \) and \(Nu_{c} \) satisfying \(Nu_{c} = \frac{1}{x^{*}} \int_{0}^{x^{*}} Nu_{c} dx^{*} \). When the Nusselt number is known, the convective heat transfer coefficient can be obtained from
\[
h_{c} = h_{s} = h = \frac{Nu_{c} \lambda}{2d}
\]
while the convective mass transfer coefficient can be related with \(h \) by the heat and mass transfer analogy relation as [16-18]
\[
k_{s} = k_{c} = k = \frac{h}{c_{p} Le^{2/3}}
\]
where \(Le \) is the Lewis number, whose value is about 0.85 for a temperature range of 0-40°C [16].

3. Results and Discussion

The indoor and outdoor air dry-bulb temperatures are taken as 26.0 and 35.0 °C and the relative humidities are set as 50% and 70%. The airflow rate is specified to range 0.1-0.3 kg/s for both the supply and exhaust airstreams, generating approximately 1.0-3.0 m/s air velocities in the channel. Calculations are conducted on the THX with the core dimensions and membrane parameters presented in Table 1 for air velocities of \(V = 1.0-3.0 \) m/s, generating Reynolds numbers of 266-799.

Table 1. THX core dimensions and membrane parameters
THX core dimensions
\(x_{f}, y_{f} \) (m)
\(d \) (mm)
\(N \)
\(\delta \) (mm)
\(\lambda_{m} \) (W/m.K)
Membrane parameters
\(D_{som} \) (10^-7 kg/m.s)
\(w_{max} \) (kg/kg)

Figure 2 illustrates various Nusselt numbers including the constant, local and average ones for \(V = 2.0 \) m/s air velocity, of which \(Nu_{c} = 7.54 \) is for fully developed laminar flow, \(Nu_{c} \) is given by Eq. (9) and varies along the channel, and \(Nu_{m} \) is given by Eq. (8) and is calculated as 7.73. It is appropriate to think that the local \(Nu \) can best reflect the reality whereas the constant \(Nu \) is widely used in the THX performance evaluations in literatures. Correspondingly, there are three convective heat transfer coefficients, \(h_{c}, h_{s} \) and \(h_{m} \), corresponding to \(Nu_{c}, Nu_{s} \) and \(Nu_{m} \), which are determined by Eq. (10). Fig.
3 presents their variations. Also, there are three convective mass transfer coefficients, k_e, k_i and k_m, corresponding to h_e, h_i and h_m, they are determined by Eq. (11). Their variations are similar to those of the heat transfer coefficients.

Figure 2. Various Nu for $V=2.0$ m/s

Figure 3. Various h for $V=2.0$ m/s

Figures 4 and 5 compare the air temperature and humidity ratio distributions obtained using the constant and local Nusselt numbers, Nu_c and Nu_t, for $V=2.0$ m/s. The figures show that the air temperature and humidity distributions obtained using different Nusselt numbers are similar to each other, and the differences caused by the usage of Nu_c and Nu_t are minimal and inconspicuous.

Figure 4. Air temperature distributions obtained using Nu_c and Nu_t for $V=2.0$ m/s

Figure 5. Air humidity ratio distributions obtained using Nu_c and Nu_t for $V=2.0$ m/s
Table 2 compares the sensible, latent and enthalpy effectivities calculated using the local, average and constant Nusselt numbers (Nu_L, Nu_m and Nu_c) for air velocity of $V=2.0$ m/s. When the local Nu (Nu_L) is used, the calculated sensible, latent and enthalpy effectivities are 65.76%, 52.67% and 56.70%, respectively. When the average Nu (Nu_m) is used instead of the local one (Nu_L), the sensible effectivity increases by 0.22 percentage points while the latent and enthalpy effectivities decrease by 1.76 and 1.68 percentage points. All effectivities become closer to those with Nu_L when the constant Nu (Nu_c) is employed. This is somewhat surprising, the explanation is that decrease of the Nusselt number acts to reduce the sensible effectivity but increases the latent effectivity, while use of the constant Nu instead of the local one works to increase the sensible effectivity but reduce the latent and enthalpy effectivities, as seen in Table 2, these two effects act together and lead to the above results. No matter which Nusselt number is used, the enthalpy effectivity always lives between the sensible and latent effectivities. The Table 2 data support the use of the constant Nu in the THX performance evaluation.

![Table 2](image)

Figure 6 compares the sensible, latent and enthalpy effectivities calculated using Nu_L, Nu_m and Nu_c for $V=1.0$-3.0 m/s. As expected, all effectivities decrease with increasing air velocity. The differences among the effectivities calculated using different Nusselt numbers tend to increase with increasing air velocity, but they are basically quite small and may not exceed 2 percentage points.

![Figure 6](image)

4. Conclusions
A mathematical model considering the effect of adsorption heat is provided to analyze the heat and mass transfer in the core of a membrane-type total heat exchanger. Calculations are conducted to investigate the airflow channel entrance effects on the total heat exchanger performance. The results suggest that such effects on the air temperature and humidity distributions are not obvious and those on the various effectivities including the sensible, latent and enthalpy ones are very limited and generally less than 2 percentage points. It is therefore appropriate to use the constant Nusselt number instead of the local one, which varies along the channel, to evaluate the total heat exchanger performance.
References

1. Xue L X, Liu B X, Chen J and Shao A C 2012, Structure and properties of total-heat exchange membranes for energy saving heat exchange ventilation processes, *Adv. Mater.* **374** 568-571

2. Zhang L Z and Jiang Y 1999, Heat and mass transfer in a membrane-based energy recovery ventilator, *J. Membr. Sci.* **163** 29-38

3. Niu J L and Zhang L Z 2001, Membrane-based enthalpy exchanger: material considerations and clarification of moisture resistance, *J. Membr. Sci.* **189**(2) 179-191

4. Min J C and Su M 2010, Performance analysis of a membrane-based enthalpy exchanger: effects of the membrane properties on the exchanger performance, *J. Membr. Sci.* **348**(1) 376-382

5. Min J C and Su M 2010, Performance analysis of a membrane-based energy recovery ventilator: Effects of membrane spacing and thickness on the ventilator performance, *Appl. Therm. Eng.* **30**(8) 991-997

6. Min J C and Su M 2011, Performance analysis of a membrane-based energy recovery ventilator: Effects of outdoor air state, *Appl. Therm. Eng.* **31**(17) 4036-4043

7. Min J C and Duan J F 2015, Membrane-type total heat exchanger performance with heat and moisture transferring in different directions across membranes, *Appl. Therm. Eng.* **91** 1040-1047

8. Min J C and Duan J F 2016, Comparison of various methods for evaluating the membrane-type total heat exchanger performance, *Int. J. Heat and Mass Transfer* **100** 758-766

9. Min J C, Su M and Wang L N 2012, Experimental and theoretical investigations of membrane-based energy recovery ventilator performance, *Int. J. Air-Conditioning and Refrigeration* **20** 1150004

10. Dugaria S, Moro L amd Del D C 2015, Modelling heat and mass transfer in a membrane-based air-to-air enthalpy exchanger, *Journal of Physics: Conference Series* **655** 012-035

11. Vali A, Simonson C J, Besant R W and Mahmood G 2009, Numerical model and effectiveness correlations for a run-around heat recovery system with combined counter and crossflow exchangers, *Int. J. Heat Mass Transfer* **52** 5827-5840

12. Lee E J, Lee J P and Kim N H 2013, Moisture transfer characteristics of a LiCl-impregnated paper membrane used for an enthalpy exchanger, *J. Mech. Sci. Technol.* **27**(5) 1527-1537

13. Lee E J, Lee J P and Sim H M 2012, Modeling and verification of heat and moisture transfer in an enthalpy exchanger made of paper membrane, *Int. J. Air-Conditioning and Refrigeration* **20**(3) 1250015

14. Shah R K and London A L 1978, Laminar Flow Forced Convection in Ducts, *J. Fluid. Eng.* **102**(2) 431-455

15. Stephan and Karl 1959, Wärmeübergang und Drückabfall bei Nicht Ausgebildeter Laminarströmung in Röhre und in Ebenen Spalten, *Chemie Ingenieur Technik* **31**(12) 773-778

16. Kuehn T H, Ramsey J W, Threkeld J L 1998, Thermal environment engineering, third ed. Prentice Hall, Upper Saddle River, New Jersey

17. Lin Y T, Hsu K C, Change Y J and Wang C C 2001, Performance of rectangular fin in wet conditions: visualization and wet fin efficiency, *J. Heat Transfer* **123** 827-836

18. Min J C and Wang L N 2013, Coupled heat and mass transfer during moisture exchange across a membrane, *J. Membr. Sci.* **430** 150-157