Agent-based models in robotized manufacturing cells designing

A Sekala¹, A Gwiazda¹, K Foit¹, W Banas¹, P Hryniewicz¹ and G Kost¹
¹Silesian University of Technology, The Faculty Of Mechanical Engineering, Institute Of Engineering Processes Automation And Integrated Manufacturing Systems, ul. Konarskiego 18a 44-100 Gliwice, Poland

E-mail: agnieszka.sekala@polsl.pl

Abstract. The complexity of the components, presented in robotized manufacturing workcells, causes that already at the design phase is necessary to develop models presenting various aspects of their structure and functioning. These models are simplified representation of real systems and allow to, among others, systematize knowledge about the designed manufacturing workcell. They also facilitate defining and analyzing the interrelationships between its particular components. This paper proposes the agent-based approach applied for designing robotized manufacturing cells.

1. Introduction

Industrial robots are universal technological equipment. They are used in different work scenes depending on the utilized production system (figure 1). The most often they are utilized as equipment in manufacturing workcells. In this type of a production system robots realized some specialized tasks: servicing machine tools, parts reorientation and controlling the sequence of operations. Production lines are the other work scene, in which are utilized industrial robots. In comparison to workcells, production lines are external controlled. In this case industrial robots service particular manufacturing and assembly stands locate and position elements and are used as specific production buffers.

Figure 1. Different robot work scenes [1].
Creating the robot work scenes is related with two main processes: the designing one and the selection one. During the designing process is determined the general structure of a workcell, including elements location, paths planning and area protection. During the selection process are chosen machine tools, auxiliary equipment and industrial robots. In this approach the workcell structure is the compromise between the designing and selection processes. One of the possibilities of changing this situation is to apply one of modern tools adding the heuristics elements of mentioned processes [2-4, 10-19].

2. Agent-based approach to the designing process

In the theory of artificial intelligence and automatics of the most popular tool is the concept of an agent. It is an autonomous unit which observes its environment, through sensors, and acts upon this environment using actuators [20, 21, 25]. The agent directs its activity towards achieving goals using embedded rules of rationality. Analyzing an agent, from the point of view of its construction, it could be stated that it is a system of associated elements.

An agent could be described as unit that characterizes with some properties [20-27]. Firstly it is an autonomous unit (figure 2). It means that an agent has a certain degree of control over their behavior and could operate without human or other program intervention. It could evaluate gathered facts and take proper action according to stored rules or acquired knowledge. Secondly, an agent is a communication unit. It could communicate both with others agents, and with other participants of its environment (including humans). Communication, together with autonomy and rationality allows the group of agents self-organizing. The next property of an agent is reactivity. It means that agent could respond to changes in its environment. Finally one should say that an agent is unit which is focusing on the goal. Generally speaking an agent not only reacts to changes in the environment, but it also takes the initiative to achieve determined goals. Taking into account the possibility of an agent to learn it could be described as an intelligent unit.

![General model of an agent](image)

Figure 2. General model of an agent [27].

The designing process is the process of three sub-systems designing [5-9]: the structural one, the drive one and the control one. These sub-systems create a general structure of any complex technical mean. This structure corresponds to the structure of any mechatronics device [28], which includes: a mechanical sub-system (structural), an electric one (drive) and a computer one (control).

The designing process could be presented as a process of intelligent and heuristic processing of data, received from the environment in the form of technical requirements, to obtain an action taking the form of a technical solution.

The above diagram shows that the design process, from the special point of view, could be treated as a special action of an agent of a group of agents. In this form the design process is the agent-based one. Assuming the hierarchical structure of a system (including an agent) it is possible to state that a complex agent could be a system of less complex ones, what leads to the vision of a system of primary agents in the bottom of the hierarchy. Such structure is called a multi-agent system (MAS).
3. Workcell designing using MAS

A multi-agent system is a computerized system composed of multiple interacting intelligent agents within an environment [20, 27]. Multi-agent systems can be used to solve problems that are difficult or impossible for an individual agent. They are applied particularly for solving technical problems. The very important feature of the whole MAS is the self-organization. In the system of agents operation (agents and their environment) is programmable implemented the rule of self-organization of autonomous agents according to goal common for the whole system. This approach could help to elaborate the frameworks of a system for robots work scene designing, concerning the elements of that process as agents.

The MAS is frequently organized in a form of hierarchically controlled system. This hierarchical structure is called a holarchy what means a hierarchical system of agents. Groups of agents are called holons. In the same convention it could be designed a schematic structure of a holarchy that represents the system of a robotized workcell (figure 2). It also includes the supervising levels, responsible for self-organization, and the agent’s level, representing devices in a workcell.

Taking into account presented considerations it is possible to elaborate the complex of a holarchy structure designated for designing robotized work scenes in a form of a workcell. This structure is presented in the figure 3.

![Diagram of a holarchy for workcell designing as a self-organizing process.](image)

Figure 3. Holarchy for workcell designing as a self-organizing process.

The presented structure includes holons representing the mentioned previously processes of selection the workcell equipment (agents of ready libraries of elements (figure 4)) and of designing the workcell equipment (agents of designed elements (figure 5)).
4. Conclusions
In the presented work was discussed the concept of a multi-agent system designed for aiding the design process of robotized work scene (particularly a workcell). The system consists of two main groups of agents, having the possibility to learn. These groups represent the supervising levels and the operational level. Agents at the supervising level are aided with databases. The design is the result of self-organizing action of agents at the operational level.

Acknowledgements
The work is realized within the project titled: “Modular automated production stand with instrumentation for non-invasive confirmation of product quality” funded by The National Centre for Research and Development, agreement No UOD-DEM-1-495/001.

References
[1] Information on http://www.kaizenautomation.com/motosim.html, http://www.cardsplmsolutions.nl/en/plm-software/tecnomatix/robocad-10/screenshots, http://www.compositesworld.com/articles/structural-preform-technologies-emerge-from-the-shadows, http://devlinksltd.com/services/
[2] Foit K 2014 Mixed reality as a tool supporting programming of the robot Advanced Materials Research 1036 pp 737-742
[3] Foit K 2014 Introduction to solving task-level programming problems in logic programming language Journal of Achievements in Materials and Manufacturing Engineering 64/2 pp 78-84
[4] Banaś W and Sękala A 2014 Concepts of flexible production line, on the example of robotic cell Advanced Materials Research 1036 pp 749-754
[5] Gwiazda A, Sękala A, Monica Z and Banaś W 2014 Integrated approach to the designing process of complex technical systems Advanced Materials Research 1036 pp 1023-1027
[6] Gwiazda A, Sękala and Monica Z 2014 Integrated approach to the designing process of complex technical systems Advanced Material Research 1036 pp 1023-1027
[7] Sękala A, Gwiazda A and Banaś W 2014 Agent-based systems approach for robotic workcell integration Advanced Materials Research 1036 pp 721-725
[8] Gwiazda A 2014 System of designing complex technical means using fuzzy analysis Applied Mechanics and Materials 474 pp 147-152
[9] Gwiazda A 2014 Construction development using virtual analysis on the example of a roof support Applied Mechanics and Materials 474 pp 417-422
[10] Dymarek A, Dzitkowski T, Herbuś K, Kost G and Ociepka P 2014 Geometric analysis of motions exercised by the Stewart platform Advanced Materials Research 837 pp 351-356
[11] Ćwikła G, Sękala A and Woźniak M 2014 The expert system supporting design of the Manufacturing Information Acquisition System (MIAS) for production management Advanced Materials Research 1036 pp 852-857
[12] Grabowik Janik W 2013 The concrete casting matrixes inserts design preparation based on the master models Advanced Materials Research 702 pp 259-262
[13] Dobrzańska-Danikiewicz A 2006 The acceptation of the production orders for the realization in the manufacturing assembly systems Journal of Materials Processing Technology 175/1/3 pp 123-132
[14] Skołud B 2014 Market oriented approach to the production management on the operational level Advanced Materials Research 837 pp 663-668
[15] Grabowik A, Kalinowski K, Paprocka I and Kempa W 2014 UML models of design and knowledge representation for technical production preparation needs Advanced Materials Research 837 pp 369-374
[16] Dzitkowski T 2004 Computer - aided synthesis of discrete - continuous subsystems of machines with the assumed frequency spectrum represented by graphs Journal of Material Processing Technology 157-158 pp 144-149
[17] Buchacz A, Placzk M and Wróbel A 2014 Modelling and analysis of systems with cylindrical piezoelectric transducers Mechanika 20/2 pp 183-189
[18] Dzitkowski T and Dymarek A 2014 Active reduction of identified machine drive system vibrations in the form of multi-stage gear units Mechanika 20/1 pp 87-91
[19] Dymarek A and Dzitkowski T 2013 Passive reduction of system vibrations to the desired amplitude value J. Vibroeng. 15/3 pp 1354-1364
[20] Botti V and Giret A 2008 A multi-agent methodology for holonic manufacturing systems (Berlin: Springer Verlag)
[21] Wooldridge M and Jennings N R 1995 Intelligent agents: theory and practice Knowledge Engineering Review 10/2 pp 115-152
[22] Ferreira P, Reyes V and Mestre J 2013 A web-based integration procedure for the development of reconfigurable robotic work-cells Int. Journal of Advanced Robotic Systems 10 pp 295-304
[23] Niazi M and Muaz H A 2011 Agent-based computing: from multi-agent systems to agent-based models. A visual survey Scientometrics 89/2 pp 479–499
[24] Babiceanu R F and Chen F F 2006 Development and applications of holonic manufacturing systems: a survey Journal of Intelligent Manufacturing 17 pp 111-131
[25] Rodriguez S, Gaud N, Hilaire V and Koukam A 2006 Modeling holonic systems with an organizational approach, A. Omicini, B. Dunin-Keplicz, J. Padget (Eds.) Proceedings of EUMAS’06 Lisbon
[26] Monostori L, Vâncza J and Kumara S 2006 Agent-based system for manufacturing Annals of the CIRP 55/2 pp 697-720
[27] Russell S and Norvig P 2005 Artificial intelligence: a modern approach (New York: Prentice-Hall)
[28] Silva W 2005 Mechatronics: An integrated approach (Boca Raton: CRC Press)