The sub-k-domination number of a graph with applications to k-domination

David Amos ∗ John Asplund † Boris Brimkov ‡ Randy Davila §, ¶

Abstract

In this paper we introduce and study a new graph invariant derived from the degree sequence of a graph G, called the sub-k-domination number and denoted $\text{sub}_k(G)$. We show that $\text{sub}_k(G)$ is a computationally efficient sharp lower bound on the k-domination number of G, and improves on several known lower bounds. We also characterize the sub-k-domination numbers of several families of graphs, provide structural results on sub-k-domination, and explore properties of graphs which are sub$_k(G)$-critical with respect to addition and deletion of vertices and edges.

Keywords: sub-k-domination number, k-domination number, degree sequence index strategy

AMS subject classification: 05C69

1 Introduction

Domination is one of the most well-studied and widely applied concepts in graph theory. A set $S \subseteq V(G)$ is dominating for a graph G if every vertex of G is either in S, or is adjacent to a vertex in S. A related parameter of interest is the domination number, denoted $\gamma(G)$, which is the cardinality of the smallest dominating set of G. Much of the literature on domination is surveyed in the two monographs of Haynes, Hedetniemi, and Slater [11, 12]. For more recent results on domination, see [5, 6, 10, 24] and the references therein.

In 1984, Fink and Jacobson [9] generalized domination by introducing the notion of k-domination and its associated graph invariant, the k-domination number. Given a positive integer k, $S \subseteq V(G)$ is a k-dominating set for a graph G if every vertex not in S is adjacent to at least k vertices in S. The minimum cardinality of a k-dominating set of G is the k-domination number of G, denoted $\gamma_k(G)$. When $k = 1$, the 1-domination number is precisely the domination number; that is, $\gamma_1(G) = \gamma(G)$. Like domination, k-domination has also been extensively studied; for results on k-domination related to this paper, we refer the reader to [2, 4, 8, 13, 21, 22].

Computing the k-domination number is NP-hard [17], and as such, many researchers have sought computationally efficient upper and lower bounds for this parameter. In general, the degree sequence of a graph can be a useful tool for bounding NP-hard graph invariants. For example, the residue and annihilation number of a graph are derived from its degree sequence, and are

∗Department of Mathematics, Texas A&M University, USA. (dave.amos@live.com)
†Department of Technology and Mathematics, Dalton State College, USA. (jasplund@daltonstate.edu)
‡Department of Computational and Applied Mathematics, Rice University, USA. (boris.brimkov@rice.edu)
§Department of Pure and Applied Mathematics, University of Johannesburg, South Africa.
¶Department of Mathematics, Texas State University, USA. (rrd32@txstate.edu)
respectively lower and upper bounds on the graph’s independence number (cf. [7,20]). Another example is a lower bound on the domination number due to Slater [23], which will be discussed in the sequel. Recently, Caro and Pepper [1] introduced the degree sequence index strategy, or DSI-strategy, which provides a unified framework for using the degree sequence of a graph to bound NP-hard invariants. In this paper we introduce a new degree sequence invariant called the sub-\(k\)-domination number, which is a sharp lower bound on the \(k\)-domination number; our investigation contributes to the known literature on both degree sequence invariants and domination.

Throughout this paper all graphs are simple and finite. Let \(G = (V(G), E(G))\) be graph. Two vertices \(v\) and \(w\) in \(G\) are adjacent, or neighbors, if there exists an edge \(vw \in E\). A vertex is an isolate if it has no neighbors. The complement of \(G\) is the graph \(\overline{G}\) with the same vertex set, in which two vertices are adjacent if and only if they are not adjacent in \(G\). A set \(S \subseteq V(G)\) is independent if no two vertices in \(S\) are adjacent; the cardinality of the largest independent set in \(G\) is denoted \(\alpha(G)\). For any edge \(e \in E(G)\), \(G - e\) denotes the graph \(G\) with the edge \(e\) removed; For any vertex \(v \in V(G)\), \(G - v\) denotes the graph \(G\) with the vertex \(v\) and all edges incident to \(v\) removed; for any edge \(e \in E(G)\), \(G + e\) denotes the graph \(G\) with the edge \(e\) added. The degree of a vertex \(v\), denoted \(d(v)\), is the number of vertices adjacent to \(v\). We will use the notation \(n(G) = |V(G)|\) to denote the order of \(G\), \(\Delta(G)\) to denote the maximum degree of \(G\), and \(\delta(G)\) to denote the minimum degree of \(G\); when there is no scope for confusion, the dependence on \(G\) will be omitted. We will also use \(d_i\) to denote the \(i\)th element in the degree sequence of \(G\), denoted \(D(G) = \{\Delta = d_1 \geq d_2 \geq \cdots \geq d_n = \delta\}\), which lists the vertex degrees in non-increasing order. We may abbreviate \(D(G)\) by only writing distinct degrees, with the number of vertices realizing each degree in superscript. For example, the star \(K_{n-1,1}\) may have its degree sequence written as \(D(K_{n-1,1}) = \{n-1,1^{n-1}\}\), and the complete graph \(K_n\) may have degree sequence written as \(D(K_n) = \{(n-1)^n\}\). For other graph terminology and notation, we will generally follow [15].

This paper is organized as follows. In the next section, we introduce the sub-\(k\)-domination number of a graph and show that it is a lower bound on the \(k\)-domination number. In Section 3, we characterize the sub-\(k\)-domination numbers of several families of graphs and provide other structural results on sub-\(k\)-domination. In Section 4, we compare the sub-\(k\)-domination number to other known lower bounds on the \(k\)-domination number. In Section 5, we explore the properties of sub\(_k\)(\(G\))-critical graphs. We conclude with some final remarks and open questions in Section 6.

2 Sub-\(k\)-domination

In this section we introduce the sub-\(k\)-domination number of a graph and prove that it is a lower bound on the \(k\)-domination number. We first recall a definition and result due to Slater [23], which is a special case of our result. For consistency in terminology, we will refer to Slater’s definition as the sub-domination number of a graph; this invariant was originally denoted \(\text{sl}(G)\), and for our purposes will be denoted \(\text{sub}(G)\).

Definition 1 ([23]). The sub-domination number of a graph \(G\) is defined as

\[
\text{sub}(G) = \min \left\{ t : t + \sum_{i=1}^{t} d_i \geq n \right\}.
\]

Theorem 1 ([23]). For any graph \(G\), \(\gamma(G) \geq \text{sub}(G)\), and this bound is sharp.
For any \(k \geq 1 \), the \(k \)-domination number is monotonically increasing with respect to \(k \); that is, \(\gamma_k(G) \leq \gamma_{k+1}(G) \). Keeping monotonicity in mind, it is natural that a parameter generalizing \(\text{sub}(G) \) will need to increase with respect to increasing \(k \). This idea motivates the following definition.

Definition 2. Let \(k \geq 1 \) be an integer, and \(G \) be a graph. The \(sub-k \)-domination number of \(G \) is defined as

\[
\text{sub}_k(G) = \min \left\{ t : t + \frac{1}{k} \sum_{i=1}^{t} d_i \geq n \right\}
\]

Since the vertex degrees of \(G \) are integers between 0 and \(n-1 \), the sorted degree sequence of \(G \) can be obtained in \(O(n) \) time by counting sort (assuming vertex degrees can be accessed in \(O(1) \) time). By maintaining the sum of the first \(t \) elements in \(D(G) \) and incrementing \(t \), \(\text{sub}_k(G) \) can be computed in linear time; we state this formally below.

Observation 2. For any graph \(G \) and positive integer \(k \), \(\text{sub}_k(G) \) can be computed in \(O(n) \) time.

Taking \(k = 1 \) in Definition 2, we observe \(\text{sub}_1(G) = \text{sub}(G) \), and hence \(\text{sub}_1(G) \leq \gamma_1(G) \) by Theorem 1. More generally, we will now show that the \(k \)-domination number of a graph is bounded below by its \(sub-k \)-domination number.

Theorem 3. For any graph \(G \) and positive integer \(k \), \(\gamma_k(G) \geq \text{sub}_k(G) \), and this bound is sharp.

Proof. Let \(S = \{v_1, \ldots, v_t\} \) be a minimum \(k \)-dominating set of \(G \). By definition, each of the \(n - t \) vertices in \(V(G) \setminus S \) is adjacent to at least \(k \) vertices in \(S \). Thus, the sum of the degrees of the vertices in \(S \), i.e. \(\sum_{i=1}^{t} d(v_i) \), is at least \(k(n - t) \). Dividing by \(k \) and rearranging, we obtain

\[
t + \frac{1}{k} \sum_{i=1}^{t} d(v_i) \geq n.
\]

Since the degree sequence of \(G \) is non-increasing, it follows that \(\sum_{i=1}^{t} d_i \geq \sum_{i=1}^{t} d(v_i) \). Thus,

\[
t + \frac{1}{k} \sum_{i=1}^{t} d_i \geq n. \tag{1}
\]

Since \(\text{sub}_k(G) \) is the smallest index for which (1) holds, we must have \(\text{sub}_k(G) \leq t = \gamma_k(G) \).

When \(k = 1 \), note that \(\text{sub}(K_{n-1,1}) = 1 = \gamma(K_{n-1,1}) \). When \(k > 1 \), let \(G \) be a complete bipartite graph with a perfect matching removed where each part of the vertex partition is of size \(k + 1 \). Then \(\text{sub}_k(G) = \min\{t : t + \frac{1}{k} \sum_{i=1}^{t} k \geq n\} = k + 1 = \gamma_k(G) \). Thus, the bound is sharp for all \(k \).

In the next section, we compute \(\text{sub}_k(G) \) for several families of graphs and investigate graphs for which \(\text{sub}_k(G) = \gamma_k(G) \).
Proposition 4. Let \(G \) be a graph with \(\Delta \geq n - 2 \). Then, \(\text{sub}(G) = \gamma(G) \).

Proof. If \(\Delta = n - 1 \) then \(\gamma(G) = 1 \) and thus \(\text{sub}(G) = \gamma(G) \), since by Theorem 3, \(1 \leq \text{sub}(G) \leq \gamma(G) = 1 \). If \(\Delta = n - 2 \), then \(\gamma(G) = 2 \) since no single vertex can dominate the graph, but a maximum degree vertex and its non-neighbor is a dominating set. Moreover, \(\text{sub}(G) \neq 1 \) since \(1 + (n - 2) < n \); thus, \(2 \leq \text{sub}(G) \leq \gamma(G) = 2 \).

If \(G \) is a graph with \(\Delta \leq n - 3 \), then \(\text{sub}(G) \) may not be equal to \(\gamma(G) \). For example, let \(G \) be the graph obtained by appending a degree one vertex to two leaves of \(K_{1,3} \); it can be verified that \(\gamma(G) = 3 \) and \(\text{sub}(G) = 2 \).

Proposition 5. Let \(G \) be a graph with \(\gamma(G) \leq 2 \). Then \(\text{sub}(G) = \gamma(G) \).

Proof. From Theorem 3 if \(\gamma(G) = 1 \) then \(\text{sub}(G) = 1 \). Conversely, if \(\text{sub}(G) = 1 \), then \(1 + d_1 \geq n \) and hence from Proposition 4, \(\gamma(G) = 1 \). Similarly, if \(\gamma(G) = 2 \) then \(\text{sub}(G) \leq 2 \); however, since \(\text{sub}(G) = 1 \) if and only if \(\gamma(G) = 1 \), it follows that \(\text{sub}(G) = 2 \).

If \(G \) is a graph with \(\gamma(G) \geq 3 \), then \(\text{sub}(G) \) may not be equal to \(\gamma(G) \). For example, let \(G \) be the graph obtained by appending two pendants to each vertex of \(K_3 \); it can be verified that \(\gamma(G) = 3 \) and \(\text{sub}(G) = 2 \).

We next characterize the sub-\(k \)-domination number of regular graphs. This will reveal some families of graphs for which \(\text{sub}_k(G) = \gamma_k(G) \) for \(k \geq 2 \).

Theorem 6. If \(G \) is an \(r \)-regular graph, then \(\text{sub}_k(G) = \lceil \frac{kn}{r+k} \rceil \).

Proof. Since \(G \) is \(r \)-regular, \(d_i = r \) for \(1 \leq i \leq n \). Then, from the definition of sub-\(k \)-domination, we have

\[
\text{sub}_k(G) + \frac{\text{sub}_k(G)r}{k} = \text{sub}_k(G) + \frac{1}{k} \sum_{i=1}^{\text{sub}_k(G)} d_i \geq n.
\]

Rearranging (2), we obtain

\[
\frac{kn}{r+k} \leq \text{sub}_k(G).
\]

Since \(\text{sub}_k(G) \) is the smallest integer that satisfies (3), it follows that \(\text{sub}_k(G) = \lceil \frac{kn}{r+k} \rceil \).

Note that \(\gamma_k(G) = n \) whenever \(k > \Delta(G) \). We therefore restrict ourselves to the more interesting case of \(k \leq \Delta \). The next example shows an infinite family of graphs for which the sub-\(k \)-domination number equals the \(k \)-domination number for all \(k \leq \Delta \).

Observation 7. Let \(C_n \) be a cycle. For all \(k \leq \Delta \), \(\text{sub}_k(C_n) = \gamma_k(C_n) \).

Proof. When \(k = 1 \), it is known that \(\gamma(C_n) = \lceil \frac{n}{2} \rceil \). Since cycles are 2-regular, Theorem 6 gives \(\text{sub}(C_n) = \lceil \frac{n}{2} \rceil \). Hence, \(\gamma(C_n) = \text{sub}(C_n) \) for all \(n \). When \(k = 2 \), Theorem 6 gives \(\lceil \frac{n}{2} \rceil \leq \text{sub}_2(C_n) \). Since we can produce a 2-dominating set for \(C_n \) by first picking any vertex \(v \) and adding all vertices whose distance from \(v \) is even, it follows that \(\gamma_2(C_n) \leq \lceil \frac{n}{2} \rceil \). Thus \(\text{sub}_2(C_n) = \gamma_2(C_n) \).

As another example, from Proposition 4 and Theorem 6, we see that \(\gamma(K_n) = \text{sub}(K_n) = 1 \) and \(\gamma_2(K_n) = \text{sub}_2(K_n) = 2 \) for all \(n \). When \(k \geq 3 \), \(\gamma_k(K_n) \) does not equal \(\text{sub}_k(K_n) \) for all \(n \). For example, \(\text{sub}_3(K_4) = 2 \) but \(\gamma_3(K_4) = 3 \); however, our next result shows that equality does hold when \(n \) is large enough.
Proposition 8. Let \(K_n \) be a complete graph and let \(k \leq n - 1 \) be a positive integer. Then \(\text{sub}_k(K_n) = \gamma_k(K_n) = k \) if and only if \(n > (k-1)^2 \).

Proof. First, note that \(\gamma_k(K_n) = k \) for \(k \leq n - 1 \), since any set of \(k \) vertices of \(K_n \) is \(k \)-dominating, while any set with at most \(k - 1 \) vertices is at most \((k-1) \)-dominating. Next, since \(K_n \) is regular of degree \(n - 1 \) it follows from Theorem 6 that

\[
\text{sub}_k(K_n) = \left\lceil \frac{kn}{n-1+k} \right\rceil \leq k = \gamma_k(K_n).
\]

If \(\text{sub}_k(K_n) = k \), we must have

\[
\frac{kn}{n-1+k} > k - 1.
\]

Rearranging, we obtain that \(n > (k-1)^2 \).

Our last focus in this section is on the \(\text{sub}_k \)-domination number and \(k \)-domination number of 3-regular, or cubic, graphs. First, we recall an upper bound for the \(k \)-domination number due to Caro and Roditty [2].

Theorem 9 ([2]). Let \(G \) be a graph, and \(k \) and \(r \) be positive integers such that \(\delta \geq \frac{r+1}{r}k - 1 \). Then,

\[
\gamma_k(G) \leq \frac{r+1}{r+1} n.
\]

In particular, for cubic graphs, Theorem 8 and the Caro-Roditty bound (with \(r \) taken to be the smallest positive integer satisfying \(3 \geq \frac{r+1}{r}k - 1 \)) imply the following intervals for the \(k \)-domination number.

Corollary 10. Let \(G \) be a cubic graph. Then,

1. \(\left\lceil \frac{n}{4} \right\rceil \leq \gamma(G) \leq \left\lfloor \frac{n}{2} \right\rfloor \),
2. \(\left\lceil \frac{2n}{5} \right\rceil \leq \gamma_2(G) \leq \left\lfloor \frac{n}{2} \right\rfloor \),
3. \(\left\lceil \frac{n}{2} \right\rceil \leq \gamma_3(G) \leq \left\lfloor \frac{3n}{4} \right\rfloor \).

We see from Corollary 10 that \(\text{sub}_k(G) = \gamma_k(G) \) for some cubic graphs with small values of \(n \); for example, \(\text{sub}(G) = \gamma(G) \) when \(n \leq 6 \) and \(\text{sub}_2(G) = \gamma_2(G) \) when \(n \leq 8 \).

4 Comparison to known bounds on \(\gamma_k(G) \)

A well-known lower bound on the domination number of a graph is \(\frac{n}{\Delta+1} \). This bound is not difficult to derive \(\text{a priori} \), but it immediately follows from the definition of \(\text{sub}\)(\(G \)) and Theorem 3. In [9], Fink and Jacobson generalized this bound by showing that \(\frac{kn}{\Delta+k} \leq \gamma_k(G) \); this also follows from a result of Hansberg and Pepper in [14]. In the following theorem, we show that \(\text{sub}_k(G) \) is an improvement on this bound.

Theorem 11. Let \(G \) be a graph; for every positive integer \(k \leq \Delta \),

\[
\frac{kn}{\Delta+k} \leq \text{sub}_k(G) \leq \gamma_k(G).
\]
Proof. The second inequality in (4) follows from Theorem 3. To prove the first inequality, fix \(k \) and let \(t = \text{sub}_k(G) \). By definition, \(t + \frac{1}{k} \sum_{i=1}^{t} d_i \geq n \). Since \(\Delta \geq d_i \) for \(1 \leq i \leq n \), it follows that

\[
t + \frac{t \Delta}{k} = t + \frac{1}{k} \sum_{i=1}^{t} \Delta \geq t + \frac{1}{k} \sum_{i=1}^{t} d_i \geq n.
\]

Rearranging the above inequality gives

\[
\frac{kn}{\Delta + k} \leq t = \text{sub}_k(G).
\]

Recall from Theorem 6 that if \(G \) is regular of degree \(r \), then \(\text{sub}_k(G) = \lceil \frac{kn}{r+k} \rceil \). Thus, from Theorem 11, we see that regular graphs minimize the sub-\(k \)-domination number over all graphs with \(n \) vertices and maximum degree \(\Delta \). This suggests that in order to maximize the sub-\(k \)-domination number, we might consider graphs which are, in some sense, highly irregular with respect to vertex degrees. This motivates the following theorem and its corollary.

Theorem 12. Let \(G \) be a graph; for \(1 \leq t \leq \Delta \) let \(n_t \) be the number of vertices of \(G \) with degree \(t \), let \(s_t = \sum_{i=1}^{s_t} n_{\Delta+1-i} \), and let \(\Delta_t = d_{s_t+1} \). If \(s_t + \sum_{i=1}^{s_t} d_i < n \) for some \(t \), then

\[
\frac{kn - \sum_{i=1}^{s_t} (\Delta + 1 - \Delta_t - i)n_{\Delta+1-i}}{k + \Delta_t} \leq \text{sub}_k(G).
\]

Proof. From the definition of \(\text{sub}_k(G) \), we have

\[
n \leq \text{sub}_k(G) + \frac{1}{k} \sum_{i=1}^{\text{sub}_k(G)} d_i.
\]

(5)

Since \(s_t + \sum_{i=1}^{s_t} d_i < n \), it follows that \(s_t < \text{sub}_1(G) \leq \text{sub}_k(G) \), and thus

\[
\sum_{i=1}^{\text{sub}_k(G)} d_i = \sum_{i=1}^{s_t} d_i + \sum_{i=s_t+1}^{\text{sub}_k(G)} d_i.
\]

(6)

Since \(s_t = n_\Delta + n_{\Delta-1} + \cdots + n_{\Delta-t+1} \) and since the degree sequence of \(G \) is non-increasing and has \(n_j \) elements with value \(j \), we have

\[
\sum_{i=1}^{s_t} d_i = \Delta n_\Delta + (\Delta - 1)n_{\Delta-1} + \cdots + (\Delta - t + 1)n_{\Delta-t+1}
\]

\[
= \sum_{i=1}^{t} (\Delta + 1 - i)n_{\Delta+1-i}.
\]

(7)

Again since \(D(G) \) is non-decreasing, we have that \(\Delta_t = d_{s_t+1} \geq d_{s_t+2} \geq \cdots \geq d_{\text{sub}_k(G)} \). Thus, it follows that

\[
\sum_{i=s_t+1}^{\text{sub}_k(G)} d_i \leq \sum_{i=s_t+1}^{\text{sub}_1(G)} \Delta_t = (\text{sub}_k(G) - s_t)\Delta_t.
\]

(8)
Substituting (6), (7), and (8) into the right-hand-side of (5) yields

\[n \leq \text{sub}_k(G) + \frac{1}{k} \sum_{i=1}^{t} (\Delta + 1 - i)n_{\Delta+1-i} + \frac{1}{k}(\text{sub}_k(G) - s_t)\Delta_t. \]

By expanding \((\text{sub}_k(G) - s_t)\Delta_t\) and substituting \(s_t = \sum_{i=1}^{t} n_{\Delta+1-i}\), the above inequality can be rewritten as

\[n \leq \text{sub}_k(G) \left(1 + \frac{\Delta_t}{k}\right) + \frac{1}{k} \sum_{i=1}^{t} (\Delta + 1 - \Delta_t - i)n_{\Delta+1-i}. \]

Rearranging the preceding inequality gives

\[\frac{k n - \sum_{i=1}^{t}(\Delta + 1 - \Delta_t - i)n_{\Delta+1-i}}{k + \Delta_t} \leq \text{sub}_k(G). \]

We note that the bound in Theorem 12 is optimal when \(t\) is taken to be the maximum positive integer for which \(s_t + \sum_{i=1}^{s_t} d_i < n\). Theorem 12 can be used to give simple lower bounds for the \(k\)-domination number of a graph when certain restrictions on the order and maximum degree are met. These bounds also improve on the lower bound given in Theorem 11.

Corollary 13. Let \(G\) be a graph, let \(n_{\Delta}\) denote the number of maximum degree vertices of \(G\), and let \(\Delta'\) denote the second-largest degree of \(G\). If \(k\) is a positive integer and \(n_{\Delta} + \frac{\Delta n_{\Delta}}{k} < n\), then

\[\frac{k n - n_{\Delta}(\Delta - \Delta')}{\Delta' + k} \leq \text{sub}_k(G) \leq \gamma_k(G). \] (9)

Proof. Take \(t = 1\) in the bound from Theorem 12 and note that \(s_1 = n_{\Delta}\) and \(\Delta_1 = d_{n_{\Delta}+1} = \Delta'\). Since \(n_{\Delta} + \frac{\Delta n_{\Delta}}{k} < n\), we have that \(s_1 + \frac{1}{k} \sum_{i=1}^{s_1} d_i = n_{\Delta} + \frac{1}{k} \sum_{i=1}^{n_{\Delta}} d_i = n_{\Delta} + \frac{\Delta n_{\Delta}}{k} < n\). Thus, the condition of Theorem 12 is satisfied, and we obtain the first inequality in (9); the second inequality in (9) follows from Theorem 3.

We see from Corollary 13 that if \(G\) has a unique maximum degree vertex, then

\[\frac{k n - \Delta + \Delta'}{\Delta' + k} \leq \gamma_k(G). \]

Corollary 13 gives significant improvements on the lower bound in Theorem 11 whenever the difference between \(\Delta\) and \(\Delta'\) is large. For example, consider the corona of \(K_{1,n-1}\) \((n \geq 3)\) which is obtained by appending a vertex of degree 1 to each of the \(n - 1\) vertices of degree 1 in \(K_{1,n-1}\). The degree sequence of this graph is \(\{n - 1, 2^{n-1}, 1^{n-1}\}\) and its order is \(2n - 1\). This graph meets the conditions of Corollary 13 and the bound given in the corollary simplifies to \(\frac{(2k-1)n - (k-3)}{2+k}\), whereas the bound given by Theorem 11 is \(\frac{k(2n-1)}{n-1+k}\). To compare these two bounds, we first compute the difference between them:

\[\frac{(2k-1)n - (k-2)}{2+k} - \frac{k(2n-1)}{n-1+k} = \frac{(2k-1)n^2 + (4-6k)n + 8k - k^2 - 3}{(2+k)(n-1+k)}. \]

When \(k\) is fixed, the difference between these two bounds approaches \(\infty\) as \(n \to \infty\).
\section{Critical graphs}

There are three natural ways to consider critical graphs in the context of sub-\(k\)-domination: graphs which are critical with respect to edge-deletion, edge-addition, and vertex-deletion.

\textbf{Definition 3.} Let \(G\) be a graph and \(k\) be a positive integer. We will say that

1. \(G\) is \textit{edge-deletion-sub}_{\(k\)}(\(G\))-\textit{critical} if for any \(e \in E(G)\), \(\text{sub}_{\(k\)}(G - e) > \text{sub}_{\(k\)}(G)\).

2. \(G\) is \textit{edge-addition-sub}_{\(k\)}(\(G\))-\textit{critical} if for any \(e \in E(\overline{G})\), \(\text{sub}_{\(k\)}(G + e) < \text{sub}_{\(k\)}(G)\).

3. \(G\) is \textit{vertex-deletion-sub}_{\(k\)}(\(G\))-\textit{critical} if for any \(v \in V(G)\), \(\text{sub}_{\(k\)}(G - v) > \text{sub}_{\(k\)}(G)\).

These properties will respectively be abbreviated as \(\text{sub}_{\(k\)}(G)\)-\textit{ED-critical}, \(\text{sub}_{\(k\)}(G)\)-\textit{EA-critical}, and \(\text{sub}_{\(k\)}(G)\)-\textit{VD-critical}.

In this section, we present several structural results about sub-\(k\)-domination critical graphs, including connections to other graph parameters. Throughout the section, we will assume that given a graph \(G\) with \(V(G) = \{v_1, \ldots, v_n\}\) and \(D(G) = \{d_1, \ldots, d_n\}\) where \(d_1 \geq \cdots \geq d_n\), it holds that \(d_i = d(v_i)\) — in other words, the vertices of \(G\) are labeled according to a non-increasing ordering of their degrees.

We first present two results about \(\text{sub}_{\(k\)}(G)\)-\textit{ED-critical} graphs.

\textbf{Proposition 14.} Let \(G\) be a \(\text{sub}_{\(k\)}(G)\)-\textit{ED-critical} graph with \(\text{sub}_{\(k\)}(G) = t\). Then \(\{v_{t+1}, \ldots, v_n\}\) is an independent set of \(G\), and \(n - \text{sub}_{\(k\)}(G) \leq \alpha(G)\).

\textit{Proof.} Suppose for contradiction that \(\{v_{t+1}, \ldots, v_n\}\) is not an independent set and let \(e = v_xv_y\) be an edge with \(v_x, v_y \in \{v_{t+1}, \ldots, v_n\}\). Then, the degree sequence of \(G - e\) is \(d'_1 \geq \cdots \geq d'_n\), where \(d'_i = d_i\) for all \(1 \leq i \leq t\). Thus, \(t + \frac{1}{k} \sum_{i=1}^{t} d'_i = t + \frac{1}{k} \sum_{i=1}^{t} d_i \geq n\), which implies that \(\text{sub}_{\(k\)}(G - e) \leq t\); this contradicts the assumption that \(G\) is \(\text{sub}_{\(k\)}(G)\)-\textit{ED-critical}. Thus, \(\{v_{t+1}, \ldots, v_n\}\) is an independent set, so \(\alpha(G) \geq n - t\). \(\blacksquare\)

\textbf{Proposition 15.} Let \(G\) be a \(\text{sub}_{\(k\)}(G)\)-\textit{ED-critical} graph with no isolates and \(\text{sub}_{\(k\)}(G) = t\). Then \(\lfloor t + \frac{1}{k} \sum_{i=1}^{t} d_i \rfloor = n\), and for any \(e \in E(G)\), \(\text{sub}_{\(k\)}(G - e) = \text{sub}_{\(k\)}(G) + 1\).

\textit{Proof.} By definition of \(\text{sub}_{\(k\)}(G)\) and since \(n\) is an integer, we have that \(\lfloor t + \frac{1}{k} \sum_{i=1}^{t} d_i \rfloor \geq n\). Suppose for contradiction that \(\lfloor t + \frac{1}{k} \sum_{i=1}^{t} d_i \rfloor > n\). Since by Proposition 14 \(\{v_{t+1}, \ldots, v_n\}\) is an independent set of \(G\) and since \(G\) has no isolates, we can choose an edge \(e\) incident to exactly one vertex in \(\{v_1, \ldots, v_t\}\). The degree sequence of \(G - e\) is \(d'_1 \geq \cdots \geq d'_n\), where \(\sum_{i=1}^{t} d'_i = (\sum_{i=1}^{t} d_i) - 1\). Thus,

\[t + \frac{1}{k} \sum_{i=1}^{t} d'_i = t + \frac{1}{k} \sum_{i=1}^{t} d_i - \frac{1}{k} \geq t + \frac{1}{k} \sum_{i=1}^{t} d_i - \frac{1}{k} \geq n + 1 - \frac{1}{k} \geq n, \]

meaning \(\text{sub}_{\(k\)}(G - e) = t\), which contradicts \(G\) being \(\text{sub}_{\(k\)}(G)\)-\textit{ED-critical}.

Now let \(e\) be any edge of \(G\) and \(d'_1 \geq \cdots \geq d'_n\) be the degree sequence of \(G - e\). The deletion of \(e\) decreases \(\sum_{i=1}^{t} d_i\) by at most 2, i.e., \(\sum_{i=1}^{t+1} d'_i \geq (\sum_{i=1}^{t} d_i) - 2\). Thus,

\[(t + 1) + \frac{1}{k} \sum_{i=1}^{t+1} d'_i \geq (t + 1) + \frac{1}{k} \sum_{i=1}^{t} d_i - \frac{2}{k} = t + \frac{1}{k} \left(\sum_{i=1}^{t} d_i\right) + \frac{d_{t+1} - 2}{k} + 1 \geq n, \]
where in the last inequality $d_{t+1} \geq 1$ since G has no isolates; this implies sub$_k(G - e) = t + 1 = \text{sub}_k(G) + 1$.

Next, we present two analogous results about sub$_k(G)$-EA-critical graphs.

Proposition 16. Let G be a sub$_k(G)$-EA-critical graph with sub$_k(G) = t$. Then the vertices in \(\{v \in V(G) : d(v) < d_t^i\} \) form a clique.

Proof. Suppose on the contrary that there are two non-adjacent vertices v_x and v_y with $d_t^i > d_x^i \geq d_y^i$. Then, the degree sequence of $G + v_xv_y$ is $d_1^i \geq \cdots \geq d_n^i$, where $d_t^i = d_i$ for all $1 \leq i \leq t$. This implies that sub$_k(G + e) = \text{sub}_k(G)$, a contradiction.

Proposition 17. Let G be a sub$_k(G)$-EA-critical graph with no isolates and sub$_k(G) = t$. Then, for each $e \in E(G)$, sub$_k(G + e) = \text{sub}_k(G) - 1$.

Proof. Let e be any edge in G and $d_1^i \geq \cdots \geq d_n^i$ be the degree sequence of $G + e$. The addition of e increases $\sum_{i=1}^t d_i$ by at most 2, i.e., $\sum_{i=1}^t d_i \leq (\sum_{i=1}^t d_i) + 2$. Thus,

\[
(t - 2) + \frac{1}{k} \sum_{i=1}^{t-2} d_i = (t - 2) + \frac{1}{k} \sum_{i=1}^t d_i^t - \frac{d_1^t + d_{t-1}^t - k}{k} \leq t + \frac{1}{k} \sum_{i=1}^t d_i - \frac{d_1^t + d_{t-1}^t - k}{k} \leq n - \frac{d_1^t + d_{t-1}^t}{k} < n,
\]

where in the last inequality $\frac{d_1^t + d_{t-1}^t}{k} > 0$ since G has no isolates; this implies sub$_k(G + e) > t - 2$, so sub$_k(G + e) = \text{sub}_k(G) - 1$.

Graphs that are sub$_k(G)$-VD-critical differ from sub$_k(G)$-ED-critical graphs and sub$_k(G)$-EA-critical graphs, in the sense that it is possible for sub$_k(G - v)$ and sub$_k(G)$ to differ by much more than 1. For example, this is the case for the star $K_{n-1,1}$ when the center of the star is the vertex removed. We now show another result for sub$_k(G)$-VD-critical graphs.

Proposition 18. Let G be a sub$_k(G)$-VD-critical graph with sub$_k(G) = t$. Then each vertex in \(\{v_{t+1}, \ldots, v_n\} \) is adjacent to at least $k + 1$ vertices in \(\{v_1, \ldots, v_t\} \).

Proof. Suppose that $v_x \in \{v_{t+1}, \ldots, v_n\}$ is adjacent to at most k vertices in \(\{v_1, \ldots, v_t\} \). Then $G - v_x$ has degree sequence d_1', \ldots, d_{t-1}' such that $\sum_{i=1}^t d_i' \geq (\sum_{i=1}^t d_i) - k$. Thus, $t + \frac{1}{k} \sum_{i=1}^t d_i' \geq t + \frac{1}{k} \sum_{i=1}^t d_i - 1 \geq n - 1$, which implies that sub$_k(G - v_x) \leq t$; this contradicts the assumption that G is sub$_k(G)$-VD-critical.

6 Conclusion

In this paper, we introduced the sub-k-domination number and showed that it is a computationally efficient lower bound on the k-domination number of a graph. We also showed that the sub-k-domination number improves on several known bounds for the k-domination number, and gave some conditions which assure that sub$_k(G) = \gamma_k(G)$. This investigation was a step toward the following general question:

Problem 1. For each positive integer k, characterize all graphs for which $\gamma_k(G) = \text{sub}_k(G)$.

9
As another direction for future work, it would be interesting to define and study an analogue of sub-k-domination which is an upper bound to the k-domination number, or explore degree sequence based invariants which bound the connected domination number or the independent domination number of a graph.

Acknowledgements

This work is supported by the National Science Foundation, Grant No. 1450681 (B. Brimkov).

References

[1] Y. Caro and R. Pepper, Degree sequence index strategy, *Australasian Journal of Combinatorics*, 59: 1–23 (2014).

[2] Y. Caro and Y. Roditty, A note on the k-domination number of a graph, *International Journal of Mathematics and Mathematical Sciences*, 13: 205–206 (1990).

[3] E.J. Cockayne, R.M. Dawes, and S.T. Hedetniemi, Total domination in graphs, *Networks*, 10: 211–219 (1980).

[4] E. DeLaViña, C.E. Larson, R. Pepper, and B. Waller, Graffiti.pc on the 2-domination number of a graph, *Congressus Numerantium*, 203: 15–32 (2010).

[5] M. Dorfling, W.D. Goddard, and M. Henning, Domination in planar graphs with small diameter II, *Ars Combinatoria*, 78: 237–255 (2006).

[6] Z. Du, and A. Ilić, A proof of the conjecture regarding the sum of domination number and average eccentricity, *Discrete Applied Mathematics*, 201: 105–113 (2016).

[7] O. Favaron, M. Mahéo, and J.F. Saclé, On the residue of a graph, *Journal of Graph Theory*, 15: 39–64 (1991).

[8] O. Favaron, A. Hansberg, and L. Volkmann, On the k-domination and minimum degree in graphs, *Journal of Graph Theory*, 57: 33–40 (2008).

[9] J.F. Fink and M.S. Jacobson, n-Domination in graphs, *Graph Theory with Applications to Algorithms and Computer Science* (Kalamazoo, Mich., 1987), pp. 283–300, Wiley, 1985.

[10] R. Glebov, A. Liebenau, and T. Szabó, On the concentration of the domination number of the random graph, *SIAM Journal on Discrete Mathematics*, 29(3): 1186–1206 (2015).

[11] T. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs. Marcel Decker, Inc., NY, 1998.

[12] T. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics. Marcel Decker, Inc., NY, 1998.

[13] A. Hansberg, Bounds on the connected k-domination number in graphs, *Discrete Applied Mathematics*, 158(14): 1506–1510 (2010).
[14] A. Hansberg and R. Pepper, On k-domination and j-independence in graphs, *Discrete Applied Mathematics*, 161: 1472–1480 (2013).

[15] M. A. Henning and A. Yeo, *Total domination in graphs (Springer Monographs in Mathematics)*. ISBN-13: 978-1461465249 (2013).

[16] R. Isaacs, Infinite families of nontrivial trivalent graphs which are not Tait colorable, *American Mathematical Monthly*, 82: 221–239 (1975).

[17] M.S. Jacobson and K. Peters, Complexity questions for n-domination and related parameters, *Congressus Numerantium*, 68: 7–22 (1989).

[18] F. Jelen, k-independence and the k-residue of a graph, *Journal of Graph Theory*, 127: 209–212 (1999).

[19] G. Mekiš, Lower bounds for the domination number and the total domination number of direct product graphs. *Discrete Mathematics*, 310: 3310–3317 (2010).

[20] R. Pepper, Binding independence. *PhD Thesis* University of Houston (2004).

[21] R. Pepper, Implications of some observations about the k-domination number, *Congressus Numerantium*, 206: 65–71 (2010).

[22] D. Rautenbach and L. Volkmar, New bounds on the k-domination number and the k-tuple domination number, *Applied Mathematics Letters*, 20: 98–102 (2007).

[23] P.J. Slater, Locating dominating sets and locating-dominating sets, *Graph Theory, Combinatorics, and Applications: Proceedings of the 7th Quadrennial International Conference on the Theory and Applications of Graphs*, 2: 1073–1079 (1995).

[24] D. Stevanović, M. Aouchiche, and P. Hansen, On the spectral radius of graphs with a given domination number, *Linear Algebra and its Applications*, 428(8): 1854–1864 (2008).