Increasing product quality of torrefied palm kernel shell batch model with internal surface area modification

K Karelius¹, M Dirgantara²*, N Rumbang³, N Kristian² and F Purwanto¹

¹Study Program of Chemistry, University of Palangka Raya, Palangka Raya, Indonesia
²Study Program of Physics, University of Palangka Raya, Palangka Raya, Indonesia
³Study Program of Agriculture Cultivation, University of Palangka Raya, Palangka Raya, Indonesia

Email: dirgantaramade@mipa.upr.ac.id

Abstract. As the largest palm oil-producing country in the world, Indonesia has abundant biomass potential from the production of crude palm oil (CPO). Palm oil production in 2018 in Indonesia is 34.94 million tons, where have by-products are empty bunches (23%), mesocarp fiber (12%), and palm kernel shell (5%). Palm kernel shells are a potential biomass that can upgrade the quality as a solid fuel through thermochemical processes. Torrefaction is one of the thermochemical processes where currently being used to increase the quality of biomass. The usual method used for the torrefaction process in the laboratory is the batch method. However, this method has a disadvantage when the capacity is improved make decreases the quality of the fuel produced. In this study, the quality of torrefied palm kernel shell from batch and batch torrefaction with internal surface area modification were compared. The torrefaction process was carried out at 275°C, with a residence time of 30 minutes. The results showed that the torrefaction of the modified batch method had a better heating value, and was proximate as a fuel.

1. Introduction

Biomass is one of the renewable energy that is potent and currently replaces fossil fuels in industries such as steam power plants [1]. Biomass is defined as biological material originating from life or living organisms with a carbon structure and a chemical mixture of organic matter containing hydrogen, nitrogen, oxygen, and a small number of atoms & other elements. However, in terms of utilization as energy, biomass is defined as all organic materials from plants, animals, products, or wastes from aquaculture industries such as agriculture, plantation, forestry, animal husbandry, and fisheries [2]. Biomass as an energy source is very important to maintaining the availability of energy can also help reduce the environmental impact of plantation or forestry waste [3,5]. As the most significant crude palm oil (CPO) production globally, Indonesia has a large amount of biomass as a by-product of this production. Indonesia is also committed to increasing palm oil products, which can be seen from the increased production of fresh fruit bunches (FFB) every year. In 2016, it amounted to 31.73 million tons to 45.86 million tons in 2019 [6]. By-products generated from each ton of FFB is 23 % empty bunches, 12% mesocarp fiber, and 5% palm kernel shells [7,8]. Compared to other solid waste from CPO production, the highest potential to be used as fuel by going through a thermochemical process to increase its quality is palm kernel shell.

Torrefaction is a thermochemical process to improve the quality of biomass as a fuel such as increasing heat value and carbon content [9,11]. There are various kinds of torrefaction methods, one...
of which is the most widely used batch method. The method's weakness is that the reaction time is directly proportional to the amount of biomass that is processed. This method causes the energy requirements of the torrefaction to be higher. Therefore, in this research, a modification of the biomass receptacle for increasing the surface area/heat contact of the biomass to streamline the torrefaction time.

2. Materials and methods

2.1. Torrefaction process

The Torrefaction process is shown in figure 1 [4] by modifying the torrefaction bait container into 2 (two) different models (model I and model II). Torrefaction model I had one container like the conventional batch method, while in model II, the container was modified into a rack to increase heat contact on the biomass surface. In figure 1, nitrogen gas was supplied at a rate of 2 Liters/minute for 10 minutes until the reactor in inert conditions. The torrefaction process was carried out at 275°C, with a residence time of 30 minutes [12].

![Figure 1. Torrefaction process [4].](image)

Torrefaction process by the batch method used two container models intending to modify the surface area of biomass that was in contact with heat. The model I biomass container that was currently commonly used only consisted of one container. Model II was modified into a rack so that the heat contact to the biomass would be more efficient. The model, I and II containers, can be seen in figure 2.

![Figure 2. (A) Model I and (b) Model II](image)

2.2. Calorific value analysis

Calorific value or higher heating value (HHV) was determined by following the ASTM D240 or EN 14918 procedure using a bomb calorimeter [4,13]. The samples measured were samples before treatment (control), after torrefaction model I dan II.
2.3. Proximate analysis

The proximate analysis to determine humidity, volatility, and ash content, in this study was tested following standard procedures of ASTM D3171, D3175, and D3174. The sample of this analysis controls was torrefaction model I and II [5, 13, 14].

3. Results and discussion

3.1. The visual products of torrefaction

The Torrefaction process in this study referred to Dirgantara et al. 2020, where the optimal conditions of the torrefaction process at 275 °C with a residence time of 30 minutes [12]. Visually, the results of the model I torrefaction looked less optimal where physically, it did not look much different from the control. Black color on the torrefied palm kernel shell was an indication that the carbonization process was successful during the torrefaction [4,15,16]. The torrefaction results with model II looked better than model I. The black color of the palm kernel shell was distributed evenly. The following results of torrefaction in models I and II were compared with controls (figure 3).

![Figure 3](image-url)

Figure 3. (A) Control, (b) Model and (C) Model II.

3.2. Calorific value

Calorific value is the main parameter that indicates the quality of biomass as a solid fuel[17,19]. More heat can be released by every gram of biomass when an increase in the calorific value [12]. The results of the analysis of the heating value are shown in figure 4. The heating value increased significantly after the torrefaction process, where the control of 4469.35 Cal/gram increased to 5072.48 Cal/gram (model I) and 5440.67 Cal/gram (model II). An increase in the carbon content to the palm shells during the torrefaction process caused an increase in HHV. This caused the elimination of volatile substances during the torrefaction process, such as water, acetic acid, and phenols in the palm shells [3]. During the process of torrefaction, thermal degradation of hemicellulose and lignin occurred in volatile substances. The formation of volatile substances, causing the ratio of O/C and H/C, would continue to decrease, thereby increasing the palm shell's carbon content [20]. This had led to an increase in the calorific value of the palm kernel shell resulting from torrefaction. Making the biomass container into a shelf (model II) in the torrefaction process, as shown in figure 2, made the heat more evenly distributed so that the thermochemical process on the palm kernel shell was better. With the even distribution of heat distributed causes more volatile compounds to be lost, so that the bound carbon value increases and had an impact on increasing the heating value.

3.3. Proximate analysis

Analysis Proximate used to determine the characteristics of the and quality of solid fuels concerning the use of solid fuels, namely to determine the relative amounts of water moist (moisture content), volatile substance (volatile matter), ash (ash content), and carbon moored (fixed carbon) [19,21]. The results of the proximate analysis are shown in figure 5. Moisture content in biomass affected the
calorific value. The higher the water content of solid fuels, the more significant the heating value needed in the combustion process, so that it required extra energy. Also, the high-water content would increase the risk of fire hazards when storing biomass for a long time. High humidity could potentially cause fermentation so that the temperature of the material increased, which could cause a fire if there was friction or was close to a heat source.

Figure 4. Calorific value of palm kernel shell control, model I and model II.

Moisture content in biomass affected the calorific value. The higher the water content of solid fuels, the more significant the heating value needed in the combustion process, so that it required extra energy [4,22]. Also, the high-water content would increase the risk of fire hazards when storing biomass for a long time. High humidity could potentially cause fermentation so that the temperature of the material increased, which could cause a fire if there was friction or was close to a heat source. The water content in model II was smaller than the model I; this condition indicated that model II was more efficient in reducing water content.

The high ash content in solid fuels resulted in lower total heat [21,23]. Low ash content was significant in the thermal conversion of biomass, increasing efficiency, mainly when the biomass contained potassium or halides such as chlorine. The ash content of the palm shell torrefaction product in Model I and II increased. The mass reduction that occurred during the process of torrefaction is not accompanied by degradation of the ash-forming inorganic component into the cause of this increase.

Figure 5. Proximate analysis torrefied palm kernel shell (control, model I and model II).

Volatile matter (VM) is the amount of substance lost when biomass is heated at a specific temperature and time. One of the factors influencing the rate of release of volatile compounds is the surface area of the biomass. The more surface area (torrefaction model II), the faster the rate of release of volatile compounds. The main chemical components that lost during the torrefaction process in
biomass are hydrogen and oxygen [24]. Phenols and carbonyl are produced in the temperature range of 200 - 300 °C from volatile compounds, especially oxygen. The reduction of hydrogen and oxygen content leads to an increase in the ratio of carbon to hydrogen and oxygen, which affects to increase in the calorific value products [25,26].

Fixed Carbon (FC) states the amount of carbon contained in material or biomass [4,12]. The Torrefaction process caused much volatile matter to be lost so that fixed carbon would continue to increase after torrefaction. Levels of fixed carbon were associated with volatile levels. The lower levels of volatiles in biomass caused higher levels of fixed carbon so that the heating value was also higher. Torrefaction products with model II had higher fixed carbon values than the model I torrefaction products. The large surface area of biomass in model II caused more volatile compounds that were lost affect ed the higher carbon content bound to the model II torrefaction product.

4. Conclusion
Modification of the biomass container in the torrefaction reactor (model II) batch method produced more optimal products than without modification (model I). This product quality can be seen from the higher heating value and lower volatile matter in model II. Thus, increasing the surface area/heat contact area of the biomass could streamline the batch method torrefaction process and produce better fuel quality.

Acknowledgments
This work was supported by Badan Pengelola Dana Perkebunan Kelapa Sawit (BPDPKS) who have funded through the Grant Palm Research Scheme.

References
[1] Perea-Moreno M-A, E. Samerón-Manzano and Perea-Moreno A J 2019 Biomass as Renewable Energy: Worldwide Research Trends Sustainability 11 863
[2] Pranoto B, Pandin M, Fithri S R and Nasution S 2016 Peta Potensi Limbah Biomassa Pertanian dan Kehutanan Sebagai Basis Data Pengembangan Energi Terbarukan. Ketenagalistrikan dan Energi Terbarukan 12 123–30
[3] Mafu L D, Neomagus H W J P, Everson R C, Carrier M, Strydom C A and Bunt J R 2016 Structural and chemical modifications of typical South African biomasses during torrefaction. Bioresource Technology 202 192–97
[4] Mamvura T A, Pahla G and Muzenda E 2018 Torrefaction of waste biomass for application in energy production in South Africa. South African Journal of Chemical Engineering 25 1–12
[5] Mohd Faizal H et al. 2018 Torrefaction of densified mesocarp fibre and palm kernel shell Renewable Energy 122 419–28
[6] BPS Badan Pusat Statistik 2020 https://www.bps.go.id/dynamictable/2015/09/04/839/produksi-tanaman-perkebunan-menurut-propinsi-dan-jenis-tanaman-indonesia-ribu-ton-2011-2019-.html (accessed Jul. 14, 2020)
[7] Thaim T and Rasid R A 2016 Improvement Empty Fruit Bunch Properties through Torrefaction. Australian Journal of Basic and Applied Sciences 10 114–21
[8] Saelor S, Kongjan P and Thong S O 2017 Biogas Production from Anaerobic Co-digestion of Palm Oil Mill Effluent and Empty Fruit Bunches Energy Procedia 138 717–22
[9] Abdul Samad N A F, Jamin N A and Saleh S 2017 Torrefaction of Municipal Solid Waste in Malaysia Energy Procedia 138 313–18
[10] Abdul Wahid F R A, Saleh S and Abdul Samad N A F 2017 Estimation of Higher Heating Value of Torrefied Palm Oil Wastes from Proximate Analysis. Energy Procedia 138 307–12
[11] Alamsyah R, Siregar N C and Hasanah F 2017 Torrefaction study for energy upgrading on Indonesian biomass as low emission solid fuel. IOP Conference Series: Earth and Environmental Science 65 012051
[12] Dirgantara M, Karelius, Cahyana B T, Suastika K G and Akbar A R 2020 Effect of Temperature and Residence Time Torrefaction Palm Kernel Shell On The Calorific Value and Energy Yield *Journal of Physics: Conference Series* **1428** 012010

[13] Nyoman Sukarta I and Sri Ayuni P 2016 Analisis Proksimat dan Nilai Kalor pada Pellet Biosolid yang Dikombinasikan Dengan Biomassa Limbah Bambu *JST (Jurnal Sains dan Teknologi)* **5** 8278

[14] Susanty W, Helwani Z and Zulfansyah 2018 Torrefaction of oil palm frond: The effect of process condition to calorific value and proximate analysis. *IOP Conference Series: Materials Science and Engineering* **345** 012016

[15] Bach Q-V and Skreiberg Ø 2016 Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction. *Renewable and Sustainable Energy Reviews* **54** 665–77

[16] Asadullah M, Adi A M, Suhada N, Malek N H, Saringat M I and Azdarpour A 2014 Optimization of palm kernel shell torrefaction to produce energy densified bio-coal *Energy Conversion and Management* **88** 1086–93

[17] Erol M, Haykiri-Acma H and Küçükbayrak S 2010 Calorific value estimation of biomass from their proximate analyses data *Fuel* **89** 170–73

[18] Dirgantara M, Kristian N and Karelius 2019 Evaluasi Prediksi Nilai Higher Heating Value (HHV) Biomassa Berdasarkan Analisis Ultimate. *Jurnal Jejaring Matematika dan Sains* **1** 107–13

[19] Hosseinpour S, Aghbashlo M and Tabatabaei M 2018 Biomass higher heating value (HHV) modeling on the basis of proximate analysis using iterative network-based fuzzy partial least squares coupled with principle component analysis (PCA-INFPLS) *Fuel* **222** 1–10

[20] Karelius, Dirgantara M, Rumbang N, Suastika K G and Akbar A R M 2020 Torrefaction of palm kernel shell using COMB method and its physicochemical properties *Journal of Physics: Conference Series* **1422** 012005

[21] Sirisomboon P, Funke A and Posom J 2020 Improvement of proximate data and calorific value assessment of bamboo through near infrared wood chips acquisition *Renewable Energy* **147** 1921–31

[22] Pahla G, Mamvura T A, Ntuli F and Muzenda E 2017 Energy densification of animal waste lignocellulose biomass and raw biomass *South African Journal of Chemical Engineering* **24** 168–75

[23] Sukiran M A, Abnisa F, Wan W M A Daud, Abu Bakar N and Loh S K 2017 A review of torrefaction of oil palm solid wastes for biofuel production *Energy Conversion and Management* **149** 101–20

[24] Karelius, Dirgantara M, Rumbang N, Suastika K G, Prabawa I D G P and Ernawati L 2020 The Prediction of Optimal Torrefaction Condition Palm Kernel Shell based on Elemental Composition *International Conference on Industrial Technology* **2019** 46–51

[25] Nhuchhen D R and Abdul Salam P 2012 Estimation of higher heating value of biomass from proximate analysis: A new approach *Fuel* **99** 55–63

[26] Chen Y-C, Chen W-H, Lin B-J, Chang J-S and Ong H C 2017 Fuel Property Variation of Biomass Undergoing Torrefaction *Energy Procedia* **105** 108–12