Fracture toughness characterizes the ability of a material to maintain a certain level of strength despite the presence of a macroscopic crack. Understanding this tolerance for defects in soft collagenous tissues (SCT) has high relevance for assessing the risks of fracture after cutting, perforation or suturing. Here we investigate the peculiar toughening mechanisms of SCT through dedicated experiments and multi-scale simulations, showing that classical concepts of fracture mechanics are inadequate to quantify and explain the high defect tolerance of these materials. Our results demonstrate that SCT strength is only modestly reduced by defects as large as several millimeters. This defect tolerance is achieved despite a very narrow process zone at the crack tip and even for a network of brittle fibrils. The fracture mechanics concept of tearing energy fails in predicting failure at such defects, and its magnitude is shown to depend on the chemical potential of the liquid environment.
F ailure of materials is often associated with the presence of defects, either generated during manufacturing or originating from the growth and coalescence of microstructural faults. Reduction of tear resistance as a consequence of defects in soft biological tissues is relevant for a number of medical problems. These include iatrogenic rupture of fetal membranes due to perforation for amniocentesis or fetal surgery, episiotomy and perineal tear during childbirth, the tearing of skin, tendons and ligaments at lesions and the failure of sutures in soft tissues, e.g., with regard to the fixation of tissue-engineered vascular grafts, skin grafts or heart valve leaflets. The mechanical behavior of soft collagenous tissues (SCT) is complex, and correspondingly, the understanding and the prediction of failure at their defects is elusive, due also to the difficulties associated with the variables observed in corresponding mechanical experiments. Soft biological tissues are generally considered as defect tolerant, as eloquently portrayed by J.E. Gordon in his classic textbook, and different arguments were proposed to rationalize this property. High fracture toughness is often the consequence of intrinsic or extrinsic mechanisms opposing crack growth, and many processes that increase fracture toughness are associated with dissipation of energy through inelastic deformations of material regions adjacent to the crack. Conversely, several investigations on the fracture behavior of single collagen fibrils pointed at a rather brittle behavior, with only little inelastic deformation before failure.

Another mechanism that might explain enhanced toughness is the activation of long-range deformation and energy dissipation processes ahead of the crack. The size of the material region in which these processes occur was suggested to be closely related to the critical size at which defects become influential, i.e., at which the material becomes flaw-sensitive. Indeed, recent analyses of fracture experiments on dense connective tissue, cartilage and muscles, proposed the existence of large process and plastic zones ahead of the crack tip to explain why under certain circumstances these tissues are ignoring the presence of a crack. On the contrary, our recent analysis of the nearfield of defects in fetal membranes indicated a markedly narrow zone affected by stress and strain concentration at the tip of macroscopic cracks, characterized by a strongly localized compaction of collagen fibers.

In order to resolve these contradictions and to rationalize the fracture behavior of SCT, this work analyzes the deformation mechanisms in their crack nearfield and the conditions leading to crack propagation. To this end, we performed parametric studies using a novel hybrid computational approach combining continuum and discrete fiber network representations of the tissue. These in-silico investigations led to the formulation of specific hypotheses, which we then verified experimentally on SCT model systems, including fresh bovine Glisson’s capsule (GC) and a collagen type I based cell carrier material (CCC). Mechanical experiments were performed in-situ in a multiphoton microscope in order to characterize the collagen network response in the crack nearfield. While very effective at avoiding crack propagation, the highly localized processes observed to occur at the crack tip do not offer opportunities for extensive energy dissipation, and thus lead to a generally brittle behavior. SCT appear therefore to belong to a very peculiar class of materials, in that they are brittle and unable to activate long-range stress redistribution, but yet exhibit high defect tolerance. As a consequence, unique for this class, the very small size of the fracture process zone does not correlate with the extraordinarily large size of defects necessary to dominate the process of SCT failure. This work analyzes important implications of this peculiar behavior in the assessment and quantification of SCT fracture toughness for medical applications, such as suture retention strength, the reduction of tear resistance through defects and the dependence of fracture toughness on the osmolarity of the tissue environment.

Results

Size dependence of the tearing energy of SCT

The methodology introduced by Rivlin and Thomas to determine the tearing energy of rubber-like materials has been applied in previous studies for the characterization of SCT. The corresponding experimental configuration for mode I fracture testing (Fig. 1a) a short and wide specimen is elongated in the direction perpendicular to the notch, until crack propagation is observed. From the integral of the force-displacement curves, the corresponding value of the tearing energy can be calculated as the ratio U/b of the work of the external forces until crack propagation U and the effective sample width b (cf. Figs. 2a, b). We simulated such experiments using the hybrid model (see Methods), which combines a continuum representation of a SCT material in the far field and a discrete fiber network model for the near field of the defect (Fig. 1a). The fiber network model was recently shown to represent the deformation behavior of soft collagenous membranes, and in particular of GC, at macroscopic and microscopic length scales. The single fibers were assumed elastic, and to break at a critical strain ε_c (Fig. 1a), in line with reported values of critical elongation of collagen fibers. Simulations of mode I fracture tests indicate that the elongation ε_f at which the fibers break and the crack propagates, depends on the sample length L_0 (Fig. 1b). For smaller samples, the critical elongation increases. Fracture mechanics theories explain this behavior based on the size dependence of the energy release rate associated with crack growth. Remarkably, the hybrid model reproduces this result from a fiber level failure criterion, i.e., without the need to quantify the energy release rate associated with crack growth for a specific loading state. The second notable result of the simulations is that once a few fibers rupture, catastrophic sample failure follows (Fig. 1b), emulating the brittle behavior that was observed also in corresponding experiments with GC (Fig. 2b). Noteworthy, GC was chosen as a model system in the present investigations as it exhibits mechanical characteristics that are similar to those observed in other SCTs, and it is available from the local abattoir in relatively large portions. The nearfield characteristics obtained from the simulations are compared with corresponding second harmonic generation (SHG) images from in-situ experiments on fresh bovine GC. These experiments were performed with specimens of 10 mm × 40 mm in free length and width, and a lateral cut of 10 mm. Both, the general morphology of the collagen fiber network and the localized fiber alignment observed upon mechanical loading are captured by the model (Fig. 1c). Indicative of the high reversibility of the deformation process, the nearfield fiber distribution reverts to its initial configuration after unloading from a subcritical loading state in both simulation and experiment (Fig. 1c, e, f, h). The higher SHG intensity at the notch tip clearly points at a highly localized response, with collagen network compaction in the direct vicinity of the tip (Fig. 1d). Noteworthy, low loading rates and dwell times were applied before imaging, thus reducing the presence of time-dependent effects (see Methods). At shorter time scales or higher loading rates, the outflow of water and, correspondingly, the compaction might be reduced. The detailed analysis of the images reveals fiber alignment (Fig. 1e) and intensity increase (Fig. 1f) ahead of the tip in GC within a region of approximately 50 μm width in the direction of the cut (x) and 100 μm height along the axis of elongation (y). At larger distances these values rapidly decrease to the corresponding levels that characterize the far field. These salient features of soft collagenous membranes observed in fracture testing are captured by the simulations based on the hybrid modeling approach: Fiber elongation and alignment peak at the notch tip and reduce to the corresponding far-field values at a distance of 40–80 μm and 100–200 μm in cut (x) and loading (y) direction, respectively (Fig. 1g, h).
The qualified model was used to investigate characteristic aspects of the fracture behavior of SCT, and to formulate hypotheses to be verified experimentally (Fig. 2a, b). At first, the dependence of the membrane tearing energy on sample dimensions was quantified by the computational model. The rupture condition in the model was defined as the loading state for which 25 fibers failed in the DNM. However, for a sufficiently large number of failed fibers, the results are practically independent of the failure criterion adopted (see Supplementary Discussion and Supplementary Fig. 2a). The calculated work of the external forces until crack propagation depends on the initial sample length. For this reason, the corresponding value of tearing
energy is termed apparent tearing energy Γ_a in order to distinguish it from the material property Γ (tearing energy). Γ_a was computed for different values of L_0 and converges to a stable value $\Gamma_a = \Gamma$ only for large sample dimensions ($L_0 \geq 40$ mm), and therefore cannot be considered as a material property (Fig. 2c). Correspondingly, the fracture stretch λ_f computed for different sample lengths (Fig. 2d) shows that the critical elongation for $L_0 < 40$ mm is lower than the one that would be predicted based on fracture mechanics, i.e., from the corresponding Γ (Fig. 2c). Note that results are shown to be nearly independent of the DNM model size and of the total number of considered fibers, for DNM radii > 100 μm (see Supplementary Fig. 2c, d). For sample lengths <1 mm, the critical elongation corresponds to the one calculated for a specimen without crack. Based on these computational findings, corresponding experiments were performed to validate the hypothesis that Γ_a converges to Γ only at large sample lengths for SCT. To this end, the fracture behavior of small (L_0 of few mm) and large (L_0 up to 30 mm) samples was analyzed (see Methods) for bovine GC (Fig. 2e) and, in addition, for CCM (Fig. 2f), which was selected as an example of a collagen-based material with a repeatable and well-controlled fabrication procedure, and is used as a stable and tough cell substrate. The values of tearing energy measured with GC are not far from those predicted by the model (Fig. 2c, e). More importantly, these experimental results confirm the model predictions in that Γ_a increases with L_0 and reaches a stable value only for larger specimens ($L_0 > 20$ mm, Fig. 2e, f), and that the critical stretch deviates from the Γ-based predictions (Fig. 2g, h) for smaller samples. Previously reported Γ-values of SCT obtained in mode I fracture experiments used samples of lengths in the range of 4–30 mm. Thus, the results are likely to represent apparent values and to underestimate the real tearing energy of the materials. A similar conclusion was made in refs. 25, 26 for muscle and cartilage based on an estimate of the critical distance for these tissues, which was larger than typical sample dimensions in fracture experiments. This finding has been interpreted to be associated with large plastic and process zone dimensions in these tissues. Vice-versa, the present computational and experimental results demonstrate that in SCT the size of the crack near field is extremely small (Fig. 1e–h), which is a consequence of the collagen fiber densification mechanism at the crack tip (Fig. 1d). This process likewise can provide an effective shielding of local imperfections and might therefore be indicative of a general defect insensitivity of SCT. The influence of mm-sized flaws on the tear resistance of SCT was thus analyzed next.

SCT are defect insensitive. The hybrid model was applied to predict the reduction in critical elongation λ_f^* associated with the presence of a defect in the center of a sample (Fig. 3a). The computational results, again based on a rupture criterion of 25 failed fibers, indicate a negligible reduction of the critical stretch for defects up to 0.1 mm, and a modest decrease for larger defect sizes up to a few mm (Fig. 3b). For comparison, a fracture mechanics-based analysis (see Methods) of the corresponding defect sensitivity of a soft silicon elastomer (Sylgard184, Dow Corning, Midland, MI, USA) is also reported (Fig. 3c). The predicted reduction in failure stretch λ_f for a defect size of 1 mm is <10% for SCT and >40% for Sylgard184 (Fig. 3d). Based on these results, we prepared GC and elastomer samples containing cuts with lengths of 0.2, 1, and 5 mm, and loaded them in a biaxial membrane inflation experiment shown in Fig. 3e. In line with model predictions, all Sylgard184 samples failed at the defect, even for a defect size of 0.2 mm (Fig. 3f). Remarkably, the SCT ignored defects of 0.2 mm in that for none of the corresponding samples failure originated at the crack, while the failure strain reduction for 1 and 5 mm was modest and much lower than for Sylgard184 (Fig. 3f). The reduction in critical stretch for SCT is thus in line with the predictions of the hybrid model and confirms the general defect tolerance of these materials. It was recently argued that the ratio between Γ and the work to rupture W of defect-free samples would provide a transition length scale at which flaws and defects begin to dominate the process of material failure. Corresponding plots (Fig. 3g) derived from data in Figs 2c–h, 4e and previous results indeed confirm that the estimated length scale match the simulations and experimental observations (Fig. 2d, g, h) in terms of order of magnitude, and indicate a 100-fold difference between GC and Sylgard 184. In fact, the length of flaw sensitivity of the SCT exceeds that of the vast majority of synthetic materials.

Low notch sensitivity is associated with the ability of the collagen fiber network to generate a protective layer with high density around the defect, effectively preventing crack propagation. This enables a structure formed from a brittle material to be highly defect tolerant. Recent detailed microscopic analyses of amniotic membranes suggested the presence of micro-fractures in SCT with dimensions of up to 100 microns. Interestingly, our results indicate that the tissue might tolerate defects of such small dimensions without a reduction of its tear resistance. Larger cracks are generated in SCT as a consequence of needle perforation, e.g., for suturing in surgery. We therefore analyzed the ability of SCT to resist suture pull-out.

Tearing energy does not predict suture retention strength. The suture retention strength (SRS) test is commonly used to quantify the force required to pull out the suture from the material. Needle perforation generates a defect with dimensions in the mm range from which the failure process originates, and the question arises whether this type of failure can be captured by fracture mechanics concepts. SRS in-silico simulations (Fig. 4a) were performed using the hybrid approach with a discrete representation of the fiber network in the needle hole’s nearfield. Corresponding SRS tests were performed on different materials (Fig. 4c), and additionally in-situ for GC (Fig. 4b). The force for
initiation of suture failure (referred to as BSS39,45) predicted by the model was compared with the values obtained from experiments on GC. The mean predicted value is about 30% lower than the measurements (Fig. 4d), in line with the lower fracture resistance previously predicted by the hybrid model for GC (cf. Fig. 2c, e). We then used a validated continuum model representation of GC33 and performed a fracture mechanics analysis32 of the suture test (see Methods), using the measured stable value of Γ of 0.45 J m-1 for GC (Fig. 2e). This provided a prediction for the suture failure force that is about a factor of two higher than the suture strength observed in the experiment (Fig. 4d). This means that the BSS of SCT would be largely overestimated if predictions were based on tearing energy values, i.e., the material property Γ, as would be the case in a fracture mechanics analysis. For SCT, Γ is thus relevant only for the analysis of large cracks (>10 or 20 mm), and this strongly limits its applicability for medical problems. For comparison, the same experiments and calculations were performed

![Image](image-url)
for Sylgard184, and for this material the computed energy release rate in suture pull-out tests agrees to a great extent with its tearing energy so that measured and predicted BSS values clearly match (Fig. 4d).

The BSS measured for the elastomer samples is much smaller than the value measured for GC, despite a similar strength of the two membranes. In order to quantitatively evaluate this superior ability of GC to resist the stress concentration associated with a suture, we normalized the BSS value with respect to the tensile force (F_R) required to rupture an intact sample as measured in a conventional tensile test, using a sample with the same cross section dimensions as in the suture test. As expected, this ratio is
by almost a factor of 2 larger for GC than for Sylgard184 (Fig. 4e). Even higher is the value obtained for CCC, another SCT specifically developed to provide high toughness. We further hypothesized that a tissue consisting of fibers made of a material able to undergo significant plastic deformation would have enhanced defect tolerance through combining the advantages of the fiber compaction mechanisms in the near field with the ability to dissipate energy by inelastic deformation. Motivated by the known high fracture toughness of electrospun polymeric networks, electrospun polyurethane (PU) mats were selected for verification of the hypothesis. Fracture tests indeed revealed very large plastic deformations in this material, effectively blunting the notch, providing local reinforcement and avoiding crack propagation (Fig. 4f). Notably, the normalized BSS measured for the PU mat exceeds the values for Sylgard184 and GC by factors of 10 and 4, respectively (Fig. 4e).

Osmolarity of liquid environment affects fracture toughness.

The compaction of fibers at the crack tip of SCT implies a strong volume reduction only possible through efflux of liquid from the network. This essential ingredient of defect tolerance could therefore be affected by the chemical potential of the liquid environment of the tissue. In fact, lower osmolarity of the bath leads to increased water uptake by the tissue and thus higher hydrostatic pressure of the extracellular liquid. Accordingly, a higher magnitude of hydrostatic pressure is required to expel the water from the collagen network during tissue deformation. In order to analyze these processes, a 3D fiber network model was created (see Methods) and boundary conditions representative of the state of deformation predicted with the hybrid model at the crack tip in the fracture test were applied (Fig. 5a). The 3D model...
contains a volumetric chemoelastic contribution accounting for the liquid phase of SCT. The chemoelastic behavior depends on the assumed concentration of fixed charges in the tissue and the density of mobile charges in the liquid environment, and the model parameters were selected to be representative of bovine GC. When subjected to elongation, calculations show that the tissue expels water and reduces its volume, as expected. Notably, if the surrounding environment is changed from 0.9% NaCl physiological saline solution (PS) to distilled water (DW), the model predicts that the amount of this volume reduction (dehydration) is lower (Fig. 5a). For uniaxial tension simulations in DW, volume even increases up to an elongation of 1.15, as the hydrostatic pressure of the liquid component is not sufficiently large to effectively expel water from the tissue. For larger global elongations, fiber alignment leads to hydrostatic pressure increase and thus volume decrease. Numerical results demonstrate that the amount of stretched fibers increases with elongation and, for the same global elongation, a larger amount of fibers are exposed to increased stretch in the DW case (Fig. 5b). This difference, however, reduces and finally vanishes for large elongations.

Fracture experiments in PS and DW were performed on GC samples ($L_0 = 15$ mm) in order to quantify the effect of bath osmolarity on fracture behavior of SCT. GC testpieces were immersed in physiological saline solution (PS) and in distilled water (DW), were elongated up to the point of crack propagation, then unloaded, after which the bath was either changed or not, before reloading to crack propagation. Sample-specific difference in critical stretch $\Delta \lambda_F$ between subsequent loadings with (PS-DW, $n = 5$, and DW-PS, $n = 5$) or without (PS-PS, $n = 6$, and DW-DW, $n = 7$) bath change. Experimentally determined tearing energy of GC in PS ($n = 9$) and DW ($n = 5$). Suture retention strength tests on GC leading to smaller BSS in DW ($n = 7$) than in PS ($n = 7$). Results in (d-f) are presented as boxplots, where boxes represent upper and lower quartiles and lines inside the boxes define the median, while dots represent outliers, and whiskers 10–90 percentiles. Significant differences are indicated for $p < 0.05$ by * (Student t-test).

Fig. 5 Osmolarity of the liquid environment influences the toughness of SCT. a Illustration of the 3D discrete fiber network model with volumetric chemoelastic contributions used to analyze the network deformation in the nearfield of the notch. Reference and elongated states are shown, together with the volume change J vs. λ curves. b The influence of bath osmolarity on the network kinematics at the notch tip is quantified in terms of the relative fraction of fibers with a strain larger than their slackness (5%). c Schematic illustration of the experimental procedure used for the investigation of the sample effect of bath osmolarity on fracture behavior of SCT. GC testpieces were immersed in physiological saline solution (PS) and in distilled water (DW), were elongated up to the point of crack propagation, then unloaded, after which the bath was either changed or not, before reloading to crack propagation. d Sample-specific difference in critical stretch $\Delta \lambda_F$ between subsequent loadings with (PS-DW, $n = 5$, and DW-PS, $n = 5$) or without (PS-PS, $n = 6$, and DW-DW, $n = 7$) bath change. e Experimentally determined tearing energy of GC in PS ($n = 9$) and DW ($n = 5$). f Suture retention strength tests on GC leading to smaller BSS in DW ($n = 7$) than in PS ($n = 7$). Results in (d-f) are presented as boxplots, where boxes represent upper and lower quartiles and lines inside the boxes define the median, while dots represent outliers, and whiskers 10–90 percentiles. Significant differences are indicated for $p < 0.05$ by * (Student t-test).
osmolarity on toughness. In order to test the sample-specific variation in critical toughness, experiments were performed with change of bath during the test, from PS to DW or vice versa. Samples were loaded till crack advance, unloaded and then re-loaded to reattain a level of elongation causing the next crack increment (Fig. 5c). The change in critical elongation was quantified for cases when the bath was changed between loading steps from PS to DW or vice versa, and compared to the case without change of bath (control). The results clearly demonstrate that the critical elongation is smaller when changing to DW, while it increases significantly for a change from DW to PS (Fig. 5d). Further evidence of the effect of the liquid environment on SCT fracture toughness is provided by a direct comparison of the tearing energy measured in mode I fracture tests in PS and DW, with significant differences between the two cases, despite the large scatter associated with these measurements (Fig. 5e).

However, the experimental results clearly evidence a significant influence of bath osmolarity on toughness (Figs. 5d–f), whereas the model predicts that the bath has a notable effect on fiber kinematics only for moderate loads, while at higher, near-critical elongations the influence becomes small (Fig. 5b). Given the effect of environmental conditions on collagen fibril mechanics, this discrepancy might point to a direct effect of bath osmolarity on the failure properties of the fibers themselves, in addition to the indirect effect resulting from the changed network kinematics.

Discussion

We used a computational model of SCT able to account for the discrete nature and the non-affine deformation behavior of a collagen fiber network. In order to describe SCT fracture behavior, a simple failure criterion was introduced, assuming brittle failure of the fibers at a specific strain level. While there is evidence of generally brittle behavior of collagen fibrils in tensile experiments, our model clearly represents a significant simplification when compared with the complex molecular, intra- and interfibrillar damage mechanisms involved in collagen rupture in SCT. Notwithstanding, this modeling assumption is supported by the sound agreement with experiments on GC and CCC. In particular, the morphology changes observed in the SHG crack tip images during loading-unloading cycles were fully recoverable, and all experiments indicated a generally brittle behavior of SCT, i.e., with catastrophic failure following after initial crack advance.

The model predicts important features of SCT fracture behavior, in particular the dependence of the apparent tearing energy on specimen dimensions and, perhaps more important, the defect insensitivity of SCT. This favorable characteristic is present despite the brittleness of the materials’ constituents and despite the strong localization of the deformation processes at the crack tip. As calculated with the model, and demonstrated with SHG images, at a distance of 100 microns from the crack tip, the state of deformation agrees with the far field. Thus, contrary to what is assumed in fracture mechanics theories, for SCT the size of a defect to determine strength is by orders of magnitude larger than the size of the fracture process zone. Hence, we show here that materials exist, for which these two length scales are largely decoupled. To shed more light on the underlying mechanisms, we performed mode I fracture simulations with a model corresponding to a hypothetical network for which fibers display the same stiffness in tension and compression (Supplementary Discussion and Supplementary Fig. 4). In this case, the nearfield size is considerably larger and it becomes comparable to the characteristic sample length for transition to flaw insensitive response. Our results thus indicate that defect tolerance of SCT is neither associated with long-range deformation nor major dissipation mechanisms, but is a direct consequence of the highly non-linear fiber response, which facilitates their alignment and the strong lateral contraction, leading to a highly localized material densification at the crack tip. The resulting local reinforcement effectively shields the defect from increasing stress concentration and avoids premature failure. This observed defect tolerance is expected to be a characteristic of SCT with highly dispersed fiber distributions, such as skin, fetal membranes or pericardium. As a consequence of their flaw insensitivity (Fig. 3b, d, f, g), defects with size up to few mm are not expected to affect the tear resistance of SCT. Thus, under normal conditions, needle perforations or suture holes should not cause any measurable strength reduction. Extremely narrow nearfields in SCT further indicate that sutures placed at an inter-distance as low as a few mm are not expected to interact, and would hence not affect tissue integrity. Experiments and simulations confirm that the estimated size of defects at which conventional fracture mechanics theories apply is in the range of several mm for SCT. Interestingly, this is two orders of magnitude larger than the size of their intrinsic flaws (up to 0.1 mm, see Supplementary Fig. 2l and ref. 43) indicating that the network is able to locally shield existing defects and thus avoid their propagation. While this mechanism provides SCT with high defect tolerance despite their brittleness, much-enhanced fracture toughness is obtained for materials combining the network compaction mechanism with large inelastic deformation and long-range inter-filament damage, such as electrospun PU mats. The demonstrated links between SCT fracture toughness, network compaction and the chemical potential of the SCT liquid phase points at relevant implications for mechanotransduction: The densification in the vicinity of a lesion creates a particular environment for resident cells, with strongly increased osmotic pressure of the extracellular liquid and enhanced stiffness of the extracellular matrix. The 3D model (Fig. 5a) predicts changes of osmotic pressure in the range of 10 kPa in the notch nearfield for a far-field elongation of 20% (Supplementary Fig. 1h, i.e., of a magnitude known to influence cell behavior. These findings thus indicate that the peculiar deformation behavior of SCT in the near-field of cracks might not only serve as a protective mechanism to avoid their propagation, but, in addition, play a role in the mechanobiology of tissue repair and regeneration, e.g., through stimulating deposition and remodeling of the extracellular matrix.

Methods

Materials. Following an established protocol, bovine Glisson’s capsule (GC) was separated from pieces of bovine livers, obtained from a local slaughterhouse, within 6 h after animal death. The collagen I based cell carrier CCC (Viscofan BioEngineering, Weinheim, Germany) was obtained from the manufacturer and immersed 24 h in physiological saline solution (PS, 0.9% NaCl) prior to testing. Electrospun PU mats with average fiber diameter around 900 nm were received from Empa (St. Gallen, Switzerland). PDMS (SY184, Sylgard 184, Dow Corning, Midland, MI, USA) samples were produced in a 1:10 mixing ratio of between crosslinker and base polymer. GC and CCC samples were kept hydrated during sample preparation and testing in all experiments in PS or, if specified, in distilled water (DW).

Sample preparation. For fracture tests, rectangular specimens were excised from GC and CCC, and a lateral cut of length c was introduced with a scalpel. The dimensions (i.e., the total length × width before clamping), free sample lengths Lc after clamping and c were 42 mm × 12 mm (Lc = 2 mm, c = 3 mm), 45 mm × 60 mm (Lc = 15 mm, c = 15 mm) and 60 mm × 60 mm (Lc = 30 mm, c = 15 mm). An additional set of experiments was performed with 40.5 mm × 6 mm CCC specimens (Lc = 0.7 mm to 1.1 mm, and c = 1 mm). Note that the total length is up to 4 times larger than Lc in order to provide sufficient clamping area. The adaption of c for each specific Lc was due to material availability considerations. For
instance, with $\epsilon = 15$ mm for all samples, the required width for L_s of 2 mm would have been $w_0 = 60$ mm, instead of the currently used 12 mm, thus leading to signif-
ificant changes and consequently, results differing from Sy184. In order to ensure complete extraction from each liver. For uniaxial tension to failure tests (UA), dog bone specimens
ISO 37 Type 4, 2 mm width, $L_s = 20$ mm) were used. For inflation (EB) tests (GC, Sy184) circular samples with diameter 70 mm (free diameter $D_0 = 50$ mm) were prepared, and central defects of dimensions of approximately 0.2 mm, 1 mm and 5 mm for GCC, and 0.05, 0.1 and 0.2 mm for GCC. Membranes with a central defect were prepared ($L_s = 20$ mm), perforated and sutured by a needle and 5–0 monofilament suture (B. Braun Melnsungen AG, Melnsungen, Germany), with a bite depth of 2 mm away from the front edge. To allow for image-based analysis of in-plane strains, thus unaffected by slippage at the clamps42. Following modifi-
and initial ligament width
N-m to 0.4 mm for Sy184. In order to compare critical force F_{th} with SRS tests (Fig. 4d), the critical tension was calculated and multiplied by SRS specimen width (10 mm) in order to get normalized forces for a similar cross-section in the two tests. For determination of SRS and BSS breaking strength (BSS)29, the corresponding samples were clamped at one side, the suture loop was pulled slowly (0.2 mm s$^{-1}$) and the force (0.005 mm$^{-1}$) with force F_{th} recorded, and the failure stretch was identified (Fig. 4a–c). From the force signal and analysis of top view images, the critical force BSS at crack propagation initiation was identified (Figs 4d, e and 3f).

Computational material models. The 2D DNM31 was developed based on microscopical and histological data, representing the mechanical response of GC in uniaxial and biaxial experiments. It is a cross-linked fiber network filled with continuum triangular finite elements that account for the resistance to fluid in- or efflux.27,29,30 The model is generated by randomly placing cross-links at a density of $\rho = 0.075$ mm$^{-2}$ within a specified domain44. Four connectors repre-
represent the fibers that are defined for each cross-link based on a random weighted sampling process with uniform orientation distribution and a distribution in length resembling the shape of a Poisson distribution with mean $L_0 = 10$ mm, if not specified otherwise. The worry collagen fibers are modeled with axial connector ele-
ments (CONN2D2) in Abaqus (Abaqus 6.10-EF1, DS Simulia Corp., Providence, RI, USA), and their non-linear mechanical response is approximated by a bilinear force-strain law $F(\varepsilon) = \psi \epsilon$, with a stiffness $k_0 = 0.3$ mN mm$^{-1}$ in the compression and initial uncrimping regimes, and $k_0 = 100$ mN mm$^{-1}$ when straight, i.e., $\varepsilon = \varepsilon_c$, where ε_c is the slackness strain (Fig. 1a). The effect of critical fiber slackness was investigated by selecting ε_c in $[0.21, 0.04]$ (Supplementary Discussion and Supplementary Fig. 2). The effect of critical fiber strains was investigated by selecting ε_c in $[0.35, 0.6]$ (Supplementary Fig. 2), motivated by experimentally reported failure strains of collagen fibers. The DNM was either used to define representative area elements to compute homogeneous load cases or to define regions of hybrid models in which the DNM was combined with continuous material sections.

The hybrid models were established by coupling the DNM at the boundaries of the discretized domain with a continuum material that is representative of the DNs homogenized macroscopic response (cf. Figs. 1a, c, 3a and 4a and Supplementary Fig. 1c).

The continuum model (CM) representative for SCT was based on a hyperelastic anisotropic constitutive model33,62,63 that represents $N = 32$ families of fibers uniformly distributed in the plane, with a slight off-plane inclination β, and embedded in a weak compressible matrix. In the deformed configuration, these fibers are specified by the vector $\mathbf{r} = \{X, Y, Z\}$, where X and Y are aligned with the strain $\lambda' = [m]$. In terms of m, the left Cauchy–Green tensor \mathbf{B} and its determinant $\det \mathbf{B} = m_1 m_2 m_3$ is $\det \psi = \mu_{th} (\det \mathbf{B} - 1)/2 (m_i - 1)$, with $m_i = 100 \lambda_i^3$, where λ_i is the stretch of the i-th family of fibers normalized to 1 cm.
We calculated

\[\rho \psi \]

and

\[\beta \]

in the presence of central defects in Sy184, crack opening simulation \(\psi \) were performed to determine the energy release rate. Opposite nodes on a line extending from a defect of length \(a_0 \) were tied together, the sample was stretched to a given \(\lambda \) and the connection was released such that the crack increased in length by \(\Delta a \). From the corresponding change in energy \(\psi \) we calculated

\[\psi = \Delta U / \Delta a \]

for various initial lengths and values of \(\lambda \) and the stresses \(\lambda_1 \) and crack sizes corresponding to \(\Gamma = 80 \text{ m}^2 / \text{m} \) were identified (Fig. 3c) and

\[\psi = \Delta U / \Delta a \]

were increased by the experimental determined critical strain of Sy184 of 2.2

\(\psi = \Delta U / \Delta a \) was calculated accordingly. Suture displacement was varied in iterative calculations to obtain the experimentally determined values of \(\psi \) for Sy184 and Sy184, and the corresponding \(\psi \) values were extracted (Fig. 3d).

Statistical analysis

Data were analyzed, fitted and tested for statistical significance using Python or Matlab. Values in the present study are expressed as mean ± standard deviation or as boxplots. The significance between two different groups was analyzed with a two-tailed Student t-test. More than two groups were analyzed with Kruskal–Wallis and subsequent Dunn’s post hoc test. p-values of less than 0.05 were considered significant.

Data availability

All relevant data are available from the authors upon request, and/or are included within the main part and Supplementary Information.

Received: 31 August 2018 Accepted: 22 January 2019

Published online: 15 February 2019

References

1. Deprest, J. A. et al. The making of fetal surgery. *Prenat. Diagn.* **30**, 653–667 (2010).
2. Vergybse, T. S., Championara, R., Kapoor, D. S. & Lathe, P. M. Obstetric anal sphincter injuries after episiotomy: systematic review and meta-analysis. *Int Urogynecol J.* **27**, 1459–1467 (2016).
3. Xang, W. et al. On the tensile strength of skin. *Nat. Commun.* **6**, 6649 (2015).
4. Von Forell, G. A., Hyuong, P. S. & Bowden, A. E. Failure modes and fracture toughness in partially torn ligaments and tendons. *J. Mech. Behav. Biomed. Mater.* **35**, 77–84 (2014).
5. Pashneh-Tala, S., MacNeil, S. & Caerysens, F. The tissue-engineered vascular graft: present and future. *Tissue Eng. Part B Rev.* **22**, 68–100 (2016).
6. Buts, C. C. et al. Cost-benefit analysis of outcomes from the use of fibrin sealant for fixation of skin grafts in small-size burns compared to staples as historical controls: A retrospective review. *Ann. Plast. Surg.* **74**, 173–175 (2015).
11. Ridruejo, A., Jubera, R., González, C. & Llorca, J. Inverse notch sensitivity: A. J. Thorac. Cardiovasc. Surg. 141, 388–393 (2011).
10. Hadi, M. F. & Barocas, V. H. Microscale tissue engineering: Adv. Mater. 21, 2103–2110 (2009).
9. Koh, C. T., Strange, D. G. T., Tonsomboon, K. & Oyen, M. L. Failure mechanisms in fibrinous scaffolds. Acta Biomater. 9, 7326–7334 (2013).
8. Gordon, J. E. & Barocas, V. H. Microscale fiber network alignment affects mechanical failure behavior in simulated collagen tissue analogs. J. Biomech. Eng. 135, 021026 (2013).
7. Ritchie, R. O. The conflicts between strength and toughness. Nat. Mater. 10, 817–822 (2011).
6. Bouville, F. et al. Strong, tough and stiff bioinspired ceramics from brittle constituents. Nat. Mater. 13, 508–514 (2014).
5. Sen, D. & Buehler, M. J. Structural hierarchies de
4. Schmidt, T., Stachon, S., MacK, A., Rohde, M. & Just, L. Evaluation of a thin filament. Appl. Phys. Lett. 94, 253104 (2009).
3. Gentileman, E. et al. Mechanical characterization of collagen fibers and scaffolds for tissue engineering. Biomaterials 24, 3805–3813 (2003).
2. Yamamoto, N. & Nakamura, S. Relationships between the tensile strength and diameter of collagen fibrils isolated from mouse tail tendons. JBSE 12, 16–0011 (2017).
1. Koh, C. T. & Barocas, V. H. Microscale tissue engineering: Adv. Mater. 21, 2103–2110 (2009).

71. Naït-Abdelaziz, M., Zairi, F., Qu, Z., Hamdi, A. & Aït Hocine, N. J integral as a fracture criterion of rubber-like materials using the intrinsic defect concept. Mech. Mater. 53, 80–90 (2012).

Acknowledgements
The authors want to specially thank J.M. Mateos and the Center for Microscopy and Image Analysis (University of Zurich) for their constant support and collaboration with the Multiphoton microscopy. M.Z. was supported by funding from the Swiss National Science Foundation under Grant SNF 20021-155918. Moreover, the authors want to thank Viscofan BioEngineering for providing CCC samples and L. Weidenbacher from the Laboratory for Biomimetic Membranes and Textiles at Empa (St. Gallen, Switzerland) for producing the electrospun networks used in this work. Finally, we gratefully acknowledge valuable exchanges on fracture mechanics of soft materials with Prof. Z. Suo (Harvard University).

Author contributions
All authors developed the concepts. K.B. and M.Z. developed the numerical framework. K.B., M.Z., and M.P. performed the experiments. K.B. carried out all simulations and analyzed the data. K.B. and M.Z. prepared the figures. K.B., A.E.E., and E.M. wrote the figures. K.B., A.E.E., and E.M. wrote the manuscript. All authors discussed the results and provided critical comments on the manuscript.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-019-08723-y.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Journal peer review information: Nature Communications thanks Anthony Herbert and the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019