Does smoking have an influence on postoperative nausea and vomiting?

Ionescu D1, Bădescu C2, Maican D2, Acalovschi I3
1. Senior lecturer, Anaesthesia and Intensive Care Department, University of medicine and Pharmacy, Cluj-Napoca, Romania
2. Registrars in Anaesthesia and Intensive Care, Clinica ATI, Spitalul Clinic de Adulti, Cluj-Napoca, Romania
3. Professor in Anaesthesia and Intensive Care, Clinica ATI, Spitalul Clinic de Adulti, Cluj-Napoca, Romania

Correspondence to: Dr D Ionescu, e-mail: dionescuati@yahoo.com

ABSTRACT

Background
Smoking is considered a risk factor not only for anaesthesia, but for general health. On the other hand, it was demonstrated that smoking reduces postoperative nausea and vomiting. In our study, we have investigated this effect in patients undergoing laparoscopic cholecystectomy. Moreover, we have looked to see if there is a relationship between the number of cigarettes smoked daily and the antiemetic effect.

Methods
71 patients scheduled for elective laparoscopic cholecystectomy under general anaesthesia were divided into 2 groups: group 1 (n=40) included non-smokers and group 2 (n=31) included the smokers. Each group was randomized for propofol and thiopentone as an induction agent. In addition, the smokers were further divided into heavy smokers, for patients smoking more than 20 cigarettes daily and smokers for patients smoking less than 20 cigarettes daily. The incidence of postoperative nausea and vomiting and the severity of pain (on Visual Analogue Score) were both assessed for the first 24 hours postoperatively.

Results
Postoperative nausea and vomiting occurred in 31 patients (77.5%) in the non-smokers’ group, as compared with 12 patients (38.7%) in smokers’ group (p<0.05). The mean maximum degree of pain (5.82) was significantly lower in the smokers’ group as compared with non-smokers where this was 2.8 (p<0.05).

Conclusions
A history of current smoking significantly reduces postoperative nausea and vomiting in patients undergoing laparoscopic cholecystectomy. Smoking also reduced the incidence of postoperative pain. Despite these favorable effects, we would like to emphasize that our study is not intended to promote smoking.

Introduction
There are numerous studies in the literature detailing the serious side effects and complications of smoking, many of which represent perioperative risk. However there is also a favorable effect of smoking in the perioperative period. Cohen M et al1, Koivuranta M et al2, and Hugh MB et al3, identified smoking as a protective factor against postoperative nausea and vomiting (PONV), and Apfel et al4 found that non-smoking represents one of the four most important risk factors for PONV, together with female gender, history of PONV, or motion sickness and the use of opioids postoperatively. Chimbira and Sweeney5 confirmed the anti-emetic effect of smoking in a study on 327 consecutive patients undergoing arthroscopic knee surgery and this has also been demonstrated by other groups.6-9

Our study was designed to investigate the effects of smoking on postoperative nausea and vomiting as well as on postoperative pain. Furthermore we investigated if there is a relationship between the number of cigarettes smoked daily and the incidence of PONV, considering that such a relationship has not yet been reported.

Methods
Seventy one patients (ASA I/II) undergoing laparoscopic cholecystectomy (between Jan 1999 - Jan 2000) under general anaesthesia were enrolled in the study after obtaining the approval of the Ethics Committee of the University of Medicine from Cluj-Napoca, and written informed consent from the patients the evening before operation.

Patients aged 20-73 (48 ± 11.93) years, body weight range of 55-120 (42.87 ± 13.44) kg were divided into 2 groups: group 1(n=40) NS was non-smoking patients and group 2 (n=31) was current smokers. In the smokers group 8 patients were “heavy smokers” (i.e. patients smoking more than 20 cigarettes daily) and 23 patients were “smokers” (i.e. patients smoking less than 20 cigarettes daily) for at least one year. None of the patients included in the study have had any concomitant medication that may influence the study results. The groups were further randomized to thiopentone or propofol as the anaesthetic induction agent.

Patients were premedicated with diazepam 10 mg and meperidine 100 mg i.m. one hour before surgery. They were brought into the operating theatre 30 min before induction, when a peripheral cannula was inserted and 500 ml Ringer’s solution was administered in all patients.

General anaesthesia was induced with 1.25 mg droperidol, midazolam 1 mg, fentanyl 2 μg.kg-1, and thiopentone 2-3 mg.kg-1.
Tracheal intubation was facilitated with 0.5–0.6 mg kg\(^{-1}\) atracurium. Anaesthesia was maintained with halothane (Ethal 1–1.5 MAC) in 100% oxygen, and 100 μg fentanyl was given when the HR and BP were increased 20% above the patient's preoperative reference level. During anaesthesia patients were mechanically ventilated to maintain EtCO\(_2\) between 4.5–5.5 kPa. After intubation, a nasogastric tube was introduced to empty the stomach of fluid and air. The tube was removed at the end of surgery. During the operation, patients were placed in a reverse Trendelenburg position and 25°–35° left lateral decubitus. Intraoperatively, pneumoperitoneum with CO\(_2\) was maintained at a pressure of 12-15 mmHg. At the end of surgery, halothane was discontinued after skin closure and muscle relaxation was reversed with 2.5 mg neostigmine and 1 mg atropine.

During anaesthesia BP, HR, ECG, inspiratory and expiratory O\(_2\) and halothane concentration and CO\(_2\) were monitored. Postoperatively all 71 patients were monitored for PONV and pain for the first 24 hours by a blinded observer, who was unaware of the patient’s smoking habit. The need for rescue antiemetic medication (mg kg\(^{-1}\)) was also recorded. Rescue antiemetic medication consisted of 10 mg metoclopramide i.v. administered for severe nausea and/or vomiting. The intensity of postoperative pain was evaluated on a visual analogue scale (VAS) ranging from 0 – 10, where: 0 – no pain, 10 – most severe pain. The mean of maximum score in each study group during the first 24 h was recorded. For postoperative analgesia, the protocol was 2 g metamizol i.m. for a VAS < 4 and meperidine 1 mg kg\(^{-1}\) i.m. for a VAS ≥ 4.

The statistical pack SPSS for Windows was used to analyze the results. Nominal data were reported as incidences and analyzed using the chi-square test or the Fisher’s exact test. Continuous and discrete data are reported as mean (± standard deviation) and analyzed using the two-sided t-test for independent samples, assuming equal variances (the F-test for variances) if the data were normally distributed (the Kolmogorov-Smirnov Liliefors test). Alternatively the the Mann-Whitney U test was used. A p <0.05 was considered significant.

Results

The study groups were comparable in terms of age, weight, gender, anaesthetic risk, duration of anaesthesia and intraoperative opioid consumption (Table I).

	Group 1 (n = 40)	Group 2 (n = 31)
Age (yr)	48.6 (± 12.3)	42.96 (± 13.08)*
Weight (kg)	72.7 (± 12.5)	75.29 (± 15.62)*
Gender (M/F)	13/27	8/23
ASA I/II	22/18	17/14
Fentanyl consumption (μg/kg)	5.9 (± 0.17)	5.7 (± 0.16)*
Anaesthesia time (min)	62 (± 17.28)	59.67 (± 14.14)*

*p<0.05

The average amount of crystalloids given during anaesthesia was 750-1000 ml.

As can be seen from Table II, the incidence of PONV was significantly lower in group 2 (smokers) as compared with group 1 (non-smokers).

Table II: The overall incidence of PONV in study groups.

	Group 1 (n = 40)	Group 2 (n = 31)	p
Nausea (only)	16 (40%)	4 (12.9%)	p < 0.05
Vomiting	15 (37.5%)	8 (25.8%)	p > 0.05
PONV	31 (77.5%)	12 (38.7%)	p < 0.001

With regard to the influence of anaesthetic induction agent on perioperative outcomes, the incidence of PONV was significantly increased (p < 0.05) in the non-smoking group, regardless of which induction agent was used. Insert Tables III and IV.
As was expected, the overall incidence of PONV is lower in the propofol group in both smokers and non-smokers. The results regarding the relationships between the number of the cigarettes smoked daily and the incidence of PONV are listed in Table V.

The incidence of PONV was found to be lower in heavy smokers, although the difference was not statistically significant. This is likely due to the sample size being too small to show any differences.

Regarding the severity of pain, the greatest postoperative score was registered in the non-smoking group, and there was a significant difference between this group and the smoking group (Table VI).

Table IV: The incidence of PONV in study groups using propofol as induction agent

	Group 1 (n = 20)	Group 2 (n = 15)	p
Nausea (only)	9 (45%)	4 (26.66%)	p > 0.05
Vomiting	5 (25%)	1 (6.66%)	p > 0.05
PONV	17 (85%)	7 (43.75%)	p < 0.01

As was expected, the overall incidence of PONV is lower in the propofol group in both smokers and non-smokers. The results regarding the relationships between the number of the cigarettes smoked daily and the incidence of PONV are listed in Table V.

Table V: The incidence of PONV in smokers group

	Heavy smokers (n = 8)	Smokers (n = 23)	p
Nausea (only)	2 (25%)	2 (8.7 %)	p > 0.05
Vomiting	0	8 (34.7%)	p > 0.05
PONV	2 (25%)	10 (43.4%)	p > 0.05

The incidence of PONV was found to be lower in heavy smokers, although the difference was not statistically significant. This is likely due to the sample size being too small to show any differences.

Regarding the severity of pain, the greatest postoperative score was registered in the non-smoking group, and there was a significant difference between this group and the smoking group (Table VI).

Table VI: Postoperative maximum pain score in study groups

	Group 1 (n = 40)	Group 2 (n = 31)
VAS (mean ± SD)	1.81 (± 2.1)	2.8 (± 2.3)*

*p< 0.05

Discussion

Until a few years ago, it was generally accepted that tobacco, and nicotine, in particular, have an emetogenic effect. It was only recently demonstrated that smoking has, in fact, an antiemetic effect. Assigned with these opinions, in this study we have demonstrated that smoking significantly reduced the incidence of PONV after laparoscopic cholecystectomy, when both thiopentone and propofol have been used as induction agents. Moreover our results demonstrate that this antiemetic effect may be related to the number of cigarettes smoked, but our sample of heavy smokers is too small to allow a statistical conclusion. Also, the upper limit for a definition of heavy...
smoking was determined arbitrarily at 20 cigarettes per day. It is thus conceivable that a cut-off level of 10 per day may have shown a significant difference, but this awaits confirmation in another study.

Numerous substances in the cigarette smoke could be responsible for these postoperative effects. The exact mechanism of the antientemic effect of nicotine and/or other substances in the cigarette smoke is not completely understood. It is known that cigarette smoke is a mixture of approximately 4000 substances (carbon monoxide, nor nicotine, antabine, anabasine, ketones, nitroasamines, polyaromatic hydrocarbons), so it is difficult to say at this moment whether this effect is produced by nicotine only or by other substances.

One explanation for such an effect would be the presence of one or more antientemic substances in tobacco smoke. The pharmacological receptors that mediate PONV are known to act at the dopamine (D2), cholinergic, histamine (H1), 5-HT3 and (neurokinin 1) NK receptors; and if there were an antientemic in cigarette smoke it would have to belong to one of these classes of receptor-blocking drugs. Presumably, if this were the case, then other dopaminergic, cholinergic or histaminergic effects would be seen occasionally. Alternatively, the reduction in PONV may be seen as an adaptive response to a repeated emetic stimulus, although it is known that only those who have smoked too much or are uninitiated find tobacco emetogenic.

These substances and many more included in cigarette smoke condensate (naphthalene, phenanthrene, anthracene and others) are toxic, and their detoxification occurs via cytochrome P450 (CYP) enzyme pathways. Cigarette smoke can result in as much as a 5-fold increase in CYP1A2 activity, in common with polycyclic aromatic hydrocarbons. This can lead to increased drug metabolism including that of morphine, meperidine and other analgesics. Volatile anaesthetics, on the other hand, are metabolized by CYP2E1 which is also induced by nicotine and aromatic hydrocarbons. These changes in enzyme pathways would suggest a quicker and smoother emergence in smokers, but may also have implications for increased intraoperative opioid requirements. Previous data have demonstrated an increased requirement for meperidine and morphine in smokers. However, our results have not shown a significant difference in intraoperative opioid requirements between smokers and non-smokers, although there was a significant difference in the severity of postoperative pain scores between the groups. In the mean time nicotine-induced analgesia was documented in cigarette smokers, but may also have implications for increased intraoperative opioid requirements. Previous data have demonstrated an increased requirement for meperidine and morphine in smokers.

and others) that may contribute to the antientemic and analgesic effects.

References:
1. Cohen MM, Duncan PG, De Boer JP, Tweed WA. The postoperative interview: assessing risk factors for nausea and vomiting. Anaeseth Analg 1994;79:7-16
2. Kortilla, Koivuranta, Abdalla, M. A factorial trial of six interventions for the prevention of postoperative nausea and vomiting. Br J Anaesth 2002;89:234-240
3. Miller LG. Cigarettes and drug therapy: pharmacokinetic and pharmacodynamic considerations. Thor Rev 1993;9:125-35
4. Apfel CC, Koivuranta M, Laara E, Snare L, Roos Y A, Roewer N. A simplified risk score for predicting models for postoperative nausea and vomiting. Br J Anaesth 2000;85:237-42
5. Alti KB, Kumar A, Bhargova KP. Comparative evolution of stimulatory effects associated with the transdermal nicotine patch. Drug Sci 1998;38:297-308
6. Sweeney BP. The influence of smoking on postoperative nausea and vomiting. Anaesthesia 1998;53:952-5
7. Seversons RF, Snook ME, Arrendale RF, Chortyk OT. Gas chromatographic quantitation of polynuclear hydrocarbons in cigarette smoke. Analyst Chem 1998;35:1866-72
8. Hefferman AM, Rowbotham DJ. Postoperative nausea and vomiting-time for balanced antiemesis? Br J Anaesth 2000;5:675-7
9. Sweeney BP. Why does smoking protect against PONV? Br J Anaesth 2002;89:815-21
10. Greenland S, Satterfield MH, Lanes SF. A meta-analysis to assess the incidence of adverse effects associated with the transdermal nicotine patch. Drug Sci 1998;38:297-308
11. Seversons RF, Snook ME, Arrendale RF, Chortyk OT. Gas chromatographic quantitation of polynuclear hydrocarbons in cigarette smoke. Analyst Chem 1998;35:1866-72
12. Hefferman AM, Rowbotham DJ. Postoperative nausea and vomiting-time for balanced antiemesis? Br J Anaesth 2000;5:675-7
13. Sweeney BP. Why does smoking protect against PONV? Br J Anaesth 2002;89:815-21
14. Miller LG. Cigarettes and drug therapy: pharmacokinetic and pharmacodynamic considerations. Thor Rev 1993;9:125-35
15. Ali B, Kumar A, Bhargova KP. Comparative evolution of stimulatory effects associated with the transdermal nicotine patch. Drug Sci 1998;38:297-308
16. Kortilla, Koivuranta, Abdalla, M. A factorial trial of six interventions for the prevention of postoperative nausea and vomiting. Br J Anaesth 2002;89:234-240
17. Miller LG. Cigarettes and drug therapy: pharmacokinetic and pharmacodynamic considerations. Thor Rev 1993;9:125-35
18. Apfel CC, Koivuranta M, Laara E, Snare L, Roos Y A, Roewer N. A simplified risk score for predicting models for postoperative nausea and vomiting. Br J Anaesth 2000;85:237-42
19. Kortilla, Koivuranta, Abdalla, M. A factorial trial of six interventions for the prevention of postoperative nausea and vomiting. Br J Anaesth 2002;89:234-240
20. Sweeney BP. The influence of smoking on postoperative nausea and vomiting. Anaesthesia 1998;53:952-5
21. Seversons RF, Snook ME, Arrendale RF, Chortyk OT. Gas chromatographic quantitation of polynuclear hydrocarbons in cigarette smoke. Analyst Chem 1998;35:1866-72
22. Hefferman AM, Rowbotham DJ. Postoperative nausea and vomiting-time for balanced antiemesis? Br J Anaesth 2000;5:675-7
23. Sweeney BP. Why does smoking protect against PONV? Br J Anaesth 2002;89:815-21
24. Miller LG. Cigarettes and drug therapy: pharmacokinetic and pharmacodynamic considerations. Thor Rev 1993;9:125-35
25. Ali B, Kumar A, Bhargova KP. Comparative evolution of stimulatory effects associated with the transdermal nicotine patch. Drug Sci 1998;38:297-308
26. Kortilla, Koivuranta, Abdalla, M. A factorial trial of six interventions for the prevention of postoperative nausea and vomiting. Br J Anaesth 2002;89:234-240
27. Miller LG. Cigarettes and drug therapy: pharmacokinetic and pharmacodynamic considerations. Thor Rev 1993;9:125-35
28. Apfel CC, Koivuranta M, Laara E, Snare L, Roos Y A, Roewer N. A simplified risk score for predicting models for postoperative nausea and vomiting. Br J Anaesth 2000;85:237-42
29. Kortilla, Koivuranta, Abdalla, M. A factorial trial of six interventions for the prevention of postoperative nausea and vomiting. Br J Anaesth 2002;89:234-240
30. Miller LG. Cigarettes and drug therapy: pharmacokinetic and pharmacodynamic considerations. Thor Rev 1993;9:125-35
31. Ali B, Kumar A, Bhargova KP. Comparative evolution of stimulatory effects associated with the transdermal nicotine patch. Drug Sci 1998;38:297-308
32. Kortilla, Koivuranta, Abdalla, M. A factorial trial of six interventions for the prevention of postoperative nausea and vomiting. Br J Anaesth 2002;89:234-240
33. Miller LG. Cigarettes and drug therapy: pharmacokinetic and pharmacodynamic considerations. Thor Rev 1993;9:125-35