KAON PHYSICS FROM LATTICE QCD

G. Martinelli

Dip. di Fisica, Univ. “La Sapienza” and
INFN, Sezione di Roma, P.le A. Moro, I-00185 Rome, Italy.

Abstract

The latest lattice results on kaon decays and mixing are reviewed. The discussion is focused on recent theoretical progress and new numerical calculations which appeared after Kaon 1999.
1 Introduction

In this talk a review of theoretical and numerical results on kaon decays, obtained with lattice QCD after Kaon 1999, is presented. Several issues of interest for the lattice approach can also be found in the talk by J. Donoghue at this Conference, to which I will refer when necessary. This contribution is being written just after the Lattice 2001 Conference where new intriguing results for ϵ'/ϵ by the CP-PACS and RBC Collaborations have been presented. I added a discussion of these results to the material presented at Kaon 2001. The main topics in this review are: i) the determination of the $\Delta I = 1/2$ $K \to \pi\pi$ amplitudes; ii) the main contributions to ϵ'/ϵ due to the electropenguin operators (Q_7 and Q_8 in the standard notation) and to the strong penguin operator Q_6. The most important novelties since Kaon 1999 are the following:

Theoretical advances

- Detailed and extended studies of the chiral expansion of several relevant amplitudes in finite and infinite volumes, in the quenched and unquenched cases, have been done in refs. [4]–[8]. Further one-loop chiral calculations which are particularly important to control finite volume corrections and quenching effects in actual numerical simulations remain to be done. These calculations will also be very useful to extract the value of the physical $K \to \pi\pi$ amplitudes from the lattice $K \to \pi$ matrix elements and to extrapolate both $K \to \pi$ and $K \to \pi\pi$ matrix elements, which are at present computed at unphysical values of the quark masses, to the physical point;

- The importance of Final State Interaction (FSI) effects for $\Delta I = 1/2$ transitions was first noticed in refs. [9, 10]. More recently it has been emphasized by Bertolini, Eeg and Fabbrichesi and Pallante and Pich that they may have large effects also for ϵ'/ϵ. Although the quantitative evaluation of FSI effects is still controversial, there is a general consensus that, for a reliable calculation of kaon decay amplitudes, it is necessary to have a good theoretical control of FSI. This problem poses serious difficulties to lattice calculations based on the extraction of the $K \to \pi\pi$ amplitudes from the $K \to \pi$ matrix elements using chiral perturbation theory (χPT), as done by the CP-PACS and RBC Collaborations;

- The Maiani-Testa no-go theorem has prevented for a long time any attempt to directly calculate $K \to \pi\pi$ matrix elements in an Euclidean lattice. An important step towards the solution of this problem has recently been achieved by Lellouch and Lüscher in ref. [15] (denoted in the following by LL), who derived a relation between the $K \to \pi\pi$ matrix elements in a finite Euclidean volume and the physical kaon-decay amplitudes. Further investigation in this direction has been recently done in ref. [16] and exploratory numerical studies are just beginning. A discussion of these papers will be presented in the following.

New numerical results

- A lattice calculation of matrix element of the electro-magnetic operator $\langle \pi^0 | \hat{Q}_i^+ | K^0 \rangle$, which is relevant for the CP violating $K_L \to \pi^0 e^+e^-$ decay, has been performed in ref. [17];

- New results for $K^0-\bar{K}^0$ mixing with Improved Wilson Fermions and Domain Wall Fermions (DWF) have appeared. With some differences, they confirm previous lattice results. Calculations of $\langle \bar{K}^0 | \hat{Q}_i | K^0 \rangle$ for all possible operators Q_i.
which can mediate K^0-\bar{K}^0 mixing in extensions of the Standard Model have been done in refs. \cite{18, 23}. These results are very useful to put severe constraints on FCNC parameters of SUSY models \cite{24};

- The SPQC\textsubscript{DP} Collaboration has presented results for the amplitudes $\langle \pi^+\pi^0|\hat{Q}_4|K^+\rangle$ and $\langle \pi\pi|\hat{Q}_{7,8}|K^0\rangle_{I=2}$, obtained by following the approach of \cite{17} and \cite{16} of computing directly the $K \to \pi\pi$ amplitude \cite{6, 25}. The chiral behaviour of the matrix elements has also been studied in view of the extrapolation to the physical point and the necessary calculations of the relevant chiral loops are under way;

- In a first exploratory study, the SPQC\textsubscript{DP} Collaboration has also observed the first signal for $\langle \pi\pi|\hat{Q}^-|K^0\rangle_{I=0}$ and $\langle \pi\pi|\hat{Q}_6|K^0\rangle_{I=0}$ \cite{25};

- As mentioned before, CP-PACS and RBC have presented results for the CP conserving $\Delta I = 1/2$ amplitude, A_0, and for ϵ'/ϵ, obtained from $K \to \pi$ matrix elements using soft pion theorems. Both groups find a negative value, $\epsilon'/\epsilon \sim -5 \times 10^{-4}$. The possible origin of the discrepancy with the experimental results \cite{26, 27} will be discussed in detail.

In this short review a severe selection of arguments has been necessary. The reader, interested to have more information about lattice calculations of weak decays, including heavy flavours, may address either the nice reviews by L. Lellouch \cite{22} and C. Bernard \cite{28} at Lattice 2000, or the forthcoming Proceedings of the 2001 Lattice Conference \cite{1}.

2 General framework

Physical kaon weak decay amplitudes can be described with negligible error (of $\mathcal{O}(\mu^2/M_W^2)$, where μ is the renormalization scale) in terms of matrix elements of the effective weak Hamiltonian

$$\langle \pi\pi|\mathcal{H}^{\Delta S=1}|K\rangle,$$

written as combination of Wilson coefficients and renormalized local operators

$$\mathcal{H}^{\Delta S=1} = -\frac{G_F}{\sqrt{2}} \sum_i C_i(\mu)\hat{Q}_i(\mu). \quad (2)$$

The sum is over a complete set of operators, which depend on μ. In general there are 12 four-fermion operators and two dimension-five operators: a chromomagnetic one and an electromagnetic one. In the Standard Model, the contribution of the dimension-five operators is usually neglected (SUSY effects may enhance the contribution of the chromomagnetic operator \cite{29}). The calculation of the matrix elements must be done non-perturbatively, and this is the rôle of the lattice, whereas the Wilson coefficients can be computed in perturbation theory.

Wilson coefficients and renormalized operators

For $\mathcal{H}^{\Delta S=1}$ the Wilson coefficients have been computed at the next-to-leading order in refs. \cite{30–35}. The perturbative calculation is reliable provided that the scale μ is large enough, $\mu \gg \Lambda_{QCD}$. In this respect calculations performed below the charm quark mass ($m_c \sim 1.3$ GeV) are, in my opinion, suspicious. In fact, either $\mu \ll m_c$, and then
perturbation theory is questionable, or \(\mu \sim m_c \), and then the effective three-flavour weak Hamiltonian (with propagating up, down and strange quarks) cannot be properly matched to the four-flavour theory (up, down, strange and charm) because of the presence of operators of higher dimension which contribute at \(\mathcal{O}(\mu^2/m_c^2) \). Another important remark is in order. Wilson coefficients and matrix elements of the operators \(Q_i(\mu) \) separately depend on the choice of the renormalization scale and scheme. This dependence cancel in physical quantities, up to higher-order corrections in the perturbative expansion of the Wilson coefficients. For this crucial cancellation to take place, the non-perturbative method used to compute the hadronic matrix elements must allow a definition of the renormalized operators consistent with the scheme used in the calculation of the Wilson coefficients. The lattice approach satisfies this requirement.

Matching of bare (divergent) lattice operators, \(Q_i(a) \) to the renormalized ones is obtained by computing suitable renormalization constants \(Z_{ik}(\mu a) \)

\[
A_{I=0,2}(\mu) = \langle \pi\pi | \hat{Q}_i(\mu) | K \rangle_{I=0,2} = \sum_k Z_{ik}(\mu a) \langle \pi\pi | Q_k(a) | K \rangle_{I=0,2},
\]

where \(a \) is the lattice spacing. The ultra-violet (UV) problem, which deals with the construction of finite matrix elements of renormalized operators constructed from the bare lattice ones, has been addressed in a series of papers \[36\]-[41] and is, at least in principle, completely solved. The remaining difficulties are practical ones. On the one hand, the \(\Delta I = 1/2 \) operators suffer from power divergences in the ultraviolet cutoff, \(1/a \). These divergences, that cannot be subtracted using perturbation theory \[22\], can be eliminated by performing suitable numerical subtractions. The subtraction procedure, however, suffers from systematic uncertainties which are difficult to keep under control, see below. On the other hand, the perturbative calculation of the logarithmically divergent (or finite) \(Z_{ik}(\mu a) \) is rather inaccurate. Several non-perturbative methods have been developed in order to compute \(Z_{ik}(\mu a) \) non-perturbatively \[23\], \[12\]-[16] and the uncertainties vary between 1%, for the simplest bilinear operators, to \(10 \div 25% \), in the case of the four-fermion operators of interest. An accurate determination of \(Z_{ik}(\mu a) \) for the \(\Delta I = 1/2 \) operators is missing to date and more work is needed in this direction.

Since numerical simulations are performed at finite values of the lattice spacing, \(a^{-1} \sim 2 \div 4 \) GeV, another source of uncertainty in the determination of the matrix elements comes from discretization errors. They are of \(\mathcal{O}(\Lambda_{QCD} a) \), \(\mathcal{O}(|\vec{p}| a) \) or \(\mathcal{O}(m_q a) \), where \(\vec{p} \) is a typical hadron momentum and \(m_q \) the quark mass. The simplest strategy to reduce discretization effects consists in computing physical quantities at several values of the lattice spacing and then extrapolate to \(a \to 0 \). A different approach, pioneered by Symanzik and extensively studied on the lattice \[13\], is to reduce discretization errors from \(\mathcal{O}(a) \) to \(\mathcal{O}(a^2) \) by improving the lattice action and operators. This method, which can also be combined with the extrapolation to \(a \to 0 \), has been successfully applied to the determination of the quark masses and of matrix elements of bilinear operators. A systematic study of the improvement of four fermion operators is still to be done. Note that with DWF \[17\] or overlapping Fermions \[18\] the errors are automatically of \(\mathcal{O}(a^2) \) \[19\]. These formulations of lattice QCD are, however, much more demanding in terms of computing resources. Discretization errors correspond to the matching problems in effective theories with a low cutoff recently discussed by Cirigliano, Donoghue and Golowich \[50\]. In this respect the problem is softer for the lattice approach since numerical simulations are already performed at relatively large scales.
$K \to \pi$ and $K \to \pi\pi$ matrix elements

Two main roads have been suggested in the past in order to obtain $A_{I=0,2}^i(\mu)$:

- Compute the $K \to 0$ and $K \to \pi \pi$ matrix elements $\langle 0|\hat{Q}_i(\mu)|K\rangle$ and $\langle \pi\pi|\hat{Q}_i(\mu)|K\rangle$ and then derive $\langle \pi\pi|\hat{Q}_i(\mu)|K\rangle_{I=0,2}$ using soft pion theorems \cite{36,37}. In this case the $K \to \pi\pi$ amplitudes can be evaluated only at the lowest order of the chiral expansion;
- Compute directly $\langle \pi\pi|\hat{Q}_i(\mu)|K\rangle_{I=0,2}$ \cite{15,16,38,39}.

The main difficulty in the latter case is due to the relation between $K \to \pi\pi$ matrix elements computed in a finite Euclidean space-time volume and the corresponding physical amplitudes (the infrared problem). In the approach where the $A_{I=0,2}^i(\mu)$ are extracted from the one-pion matrix elements, $\langle \pi|\hat{Q}_i(\mu)|K\rangle$, the problem is the size of the corrections which relate matrix elements in the chiral limit to the corresponding physical amplitudes. These corrections are expected to be much larger for $I = 0$ amplitudes, because of the larger FSI \cite{12}. Both the approaches have their advantages and drawbacks to which most of the following discussion will be devoted.

The infrared problem arises from two sources: i) the unavoidable continuation of the theory to Euclidean space-time and ii) the use of a finite volume in numerical simulations. An important progress has been achieved by LL, who derived a relation between the lattice theory to Euclidean space-time and ii) the use of a finite volume in numerical simulations.

An alternative discussion of boundary effects and the LL-formula, based on a study of the properties of correlators of local operators was presented in ref. \cite{10}. In this approach the LL-formula is derived for all elastic states under the inelastic threshold, with exponential accuracy in the quantization volume. As a consequence the relation between finite-volume matrix elements and physical amplitudes, derived by Lellouch and Lüscher for the lowest seven energy eigenstates, can be extended to all elastic states under the inelastic threshold. It can also been explicitly demonstrated how finite volume correlators converge to the corresponding ones in infinite volume. The derivation of \cite{10} is based on the property of correlators of local operators which can be expressed, with exponential accuracy, both as a sum or as an integral over intermediate states, when considering volumes larger than the interaction radius and Euclidean times $0 < t \simeq L$. It can also been shown that it is possible to extract $K \to \pi\pi$ amplitudes also when the kaon mass, m_K, does not match the two-pion energy, namely when the inserted operator carries a non-zero energy-momentum. Such amplitudes are very useful, for example, in the determination of the coefficients of operators appearing at higher orders in χPT, as illustrated by the numerical results for $\Delta I = 3/2$ transitions presented in sec. \cite{3}.

Let us sketch now the derivation of the result with an illustrative example which is not explicitly written in \cite{10}. Consider the following Euclidean T-products (correlators):

$$
G(t,t_K) = \langle 0|T[J(t)\hat{Q}_i(0)K^\dagger(t_K)]|0\rangle,
$$

$$
G(t) = \langle 0|T[J(t)J(0)]|0\rangle,
$$

$$
G(t_K) = \langle 0|T[K(t_K)K^\dagger(0)]|0\rangle,
$$

where J is a scalar operator which excites (annihilates) zero angular momentum $\pi\pi$ states from (to) the vacuum and K^\dagger is a pseudoscalar source which excites a kaon from the vacuum ($t > 0$ and $t_K < 0$). At large time distances we have

$$
G(t,t_K) \to V \sum_n \langle 0|J|\pi\pi(n)\rangle_V \langle \pi\pi(n)|\hat{Q}_i|K\rangle_V \langle K|K^\dagger|0\rangle_V \exp(-W_n t - m_K t_K),
$$
\[G(t) \rightarrow V \sum_n \langle 0 | J \pi \pi(n) \rangle_V \langle \pi \pi(n) | J | 0 \rangle_V \exp(-W_n t), \]

\[G(t_K) \rightarrow V \langle 0 | K | K \rangle_V \langle K | K^\dagger | 0 \rangle_V \exp(-m_K t_K). \]

(5)

From a study of the time dependence of \(G(t, t_K) \), \(G(t) \) and \(G(t_K) \) we may extract

1. the kaon mass \(m_K \);

2. the two-pion energies on the finite lattice volume, \(W_n \). As shown by M. Lüscher in [31], the \(W_n \) are related to the infinite volume phase-shift of the two pions, \(\delta(k) \), via the following relations

\[W_n = 2 \sqrt{m_\pi^2 + k^2}, \quad \frac{\phi(q) + \delta(k)}{\pi} = n, \quad n = 1, 2, \ldots, \quad q = \frac{kL}{2\pi}, \]

(6)

where \(n \) is a non-negative integer \(^1\) and the function \(\phi(q) \) is defined in [51].

3. the operator matrix elements on a finite volume \(\langle \pi \pi(n) | \hat{Q}^i | K \rangle_V \), \(\langle \pi \pi(n) | J | 0 \rangle_V \) and \(\langle K | K^\dagger | 0 \rangle_V \).

Moreover by a suitable choice of the lattice parameters it is possible to match one of the two-pion energies in such a way that \(m_K = W_n^* \). In practice, since it will be possible to disentangle only the first few states, the matrix elements will be computed with \(n^* = 0 \pm 2 \).

The fundamental point is that it is possible to relate the finite-volume Euclidean matrix element \(\langle \pi \pi(n^*) | \hat{Q}^i | K \rangle_V \) with the absolute value of the physical amplitude \(\langle \pi \pi | \hat{Q}^i | K \rangle \):

\[\langle \pi \pi | \hat{Q}^i | K \rangle = \sqrt{\mathcal{F}} \langle \pi \pi(n^*) | \hat{Q}^i | K \rangle_V, \quad \mathcal{F} = 32\pi^2 V^2 \frac{\rho_V(E) E m_K}{\kappa(E)}, \]

(7)

where

\[\kappa(E) = \sqrt{\frac{E^2}{4} - m_\pi^2}, \quad \frac{\rho_V(E)}{dE} = \frac{q\phi'(q) + k\delta'(k)}{4\pi k^2} E. \]

(8)

The last expression in eq. (8) is the one which one would heuristically derive from a naive interpretation of \(\rho_V(E) \) as the density of states, cf. eq. (8). There are however, some technical subtleties with such an interpretation which will not be discussed here. Eq. (8) holds also when \(m_K \neq W_n \) and the operator carries non-zero energy-momentum \([16]\).

By varying the kaon and pion masses and momenta, one may then fit the coefficients of the chiral expansion of \(\langle \pi \pi | \hat{Q}^i | K \rangle \) and use these coefficients to extrapolate to the physical point. This procedure is necessary, at present, since it is not possible to compute the matrix elements at realistic values of the quark masses and in the unquenched case. To give an explicit example, the matrix elements of \(\hat{Q}_7,8 \) (for generic meson masses, one pion at rest and the other with a given momentum corresponding to an energy \(E_\pi \)) can be written as \([1, 52]\)

\[-i M_{7,8}(m_K, m_\pi, E_\pi) = \gamma_{7,8} + \delta_{1,8} \left(\frac{m_K(m_\pi + E_\pi)}{2} - m_\pi E_\pi \right) \]

\[+ \delta_{2,8} \left(-\frac{m_K(m_\pi + E_\pi)}{2} - m_\pi E_\pi \right) - \delta_{3,8} m_K(m_\pi + E_\pi) + \left(\delta_{4,8} + \delta_{5,8} \right) \left(2m_K^2 + 4m_\pi^2 \right) \]

\[+ \delta_{6,8} \left(4m_K^2 + 2m_\pi^2 \right) + \text{chiral logs} + \mathcal{O}(p^4). \]

(9)

\(^1\) For \(n = 0 \), there are two solutions: one corresponding to \(k = 0 \) which is spurious, the other giving the Lüscher relation between the finite volume energy and the scattering length.
A fit to the lattice data for $M_{7,8}$, extracted from suitable correlation functions, allows the determination of the couplings $\gamma^{7,8}$, $\delta^{7,8}$, etc. The results of the extrapolated amplitudes, if chiral logarithms are included, are independent of the cutoff used in the chiral theory.

![Figure 1](image)

Figure 1: Chiral behaviour of the matrix element of Q_4, $M_4(m_K, m_\pi, E_\pi)$. The extrapolation to the physical point using only the data corresponding to the lightest masses, without the effect of the chiral logarithms and using the operators of ref. [7], is also shown as a shadowed band. The experimental result, computed as explained in the text, is also given as a line.

3 Numerical Results

In this section, the latest numerical results from lattice QCD for $K \rightarrow \pi\pi$ and $K \rightarrow \pi$ amplitudes and for B_K are reviewed, together with a comparison with other approaches.

$\Delta I = 3/2$ transitions and $K^0-\bar{K}^0$ mixing

The SPQCDR Collaboration [6, 25] has presented (quenched) results for both $\Delta I = 3/2$ and $\Delta I = 1/2$ amplitudes, obtained from a calculation of $K \rightarrow \pi\pi$ matrix elements following the strategy of refs. [13, 14]. For $\Delta I = 3/2$ transitions, an extended study of the chiral behaviour of the matrix elements of the operators $\hat{Q}_{4,7,8}$, renormalized non-perturbatively, was performed. In figs. [1] and [2], $M_4(m_K, m_\pi E_\pi)$ and $M_8(m_K, m_\pi E_\pi)$
are shown as a function of the kaon mass. Note that the amplitude does depend on three independent quantities that are left to vary, namely \(m_K, m_\pi \) and \(E_\pi \) (one of the two pions is always at rest). In the same figures the extrapolation to the physical point, performed by using the chiral expansion of the matrix elements as in eq. (9), is given as a band. In fig. 1 the experimental number, extracted from the \(K^+ \to \pi^+\pi^0 \) decay rate using the Wilson coefficient of \(\hat{Q}_4 \) computed at the NLO, is also shown. The extrapolations are preliminary, since they do not include the effects of (quenched) chiral logarithms that have not been computed yet for the kinematical configurations used in this study. For some of the points, masses and momenta are too large to use chiral perturbation theory, and they have not been included in the fit. The preliminary results in fig. 1 already give us an interesting physics information. In the chiral limit, and using \(SU(3) \) symmetry, one may relate the \(K^+ \to \pi^+\pi^0 \) amplitude to the \(K^0-\bar{K}^0 \) mixing parameter \(\hat{B}_K \) \([53]\). In this limit, a large value for \(\hat{B}_K \), as found in lattice calculations and unitarity triangle analyses \([54]\), \(\hat{B}_K \sim 0.85 \), would lead to a value of the \(K^+ \to \pi^+\pi^0 \) amplitude larger than the experimental one by \(\sim 50\% \). The extrapolation of the results of fig. 1, together with those for \(\hat{B}_K \) obtained by the same collaboration \([53]\) given in table 2, demonstrate that chiral corrections to both the \(K^+ \to \pi^+\pi^0 \) amplitude and \(\hat{B}_K \) can easily reconcile a large value of \(\hat{B}_K \) with the experimental \(K^+ \to \pi^+\pi^0 \) amplitude.

It is very instructive to compare the results for \(\hat{Q}_7 \) and \(\hat{Q}_8 \) with those obtained in other approaches, table 1. For the sake of comparison all the results are converted to the \(\overline{MS} \) scheme at a renormalization scale \(\mu = 2 \) GeV. In the case of \(\hat{Q}_8 \) we notice the nice agreement between lattice results obtained from \(K \to \pi \) matrix elements using chiral
perturbation theory and those from the first direct calculation of $K \to \pi \pi$ amplitudes. Similar numbers were obtained by the CP-PACS \cite{2} and RBC \cite{3} collaborations, which computed $K \to \pi$ matrix elements with DWF. These groups presented the results in different renormalization schemes and scales and for this reason the values have not been included in the table. There is, however, a very large discrepancy of the lattice results with those obtained with dispersive methods \cite{55} or with the $1/N_c$ expansion \cite{56}, whose results would correspond to a huge value of the B-parameter, $B_6 = 3 \div 7$. In order to reproduce the experimental results for ϵ'/ϵ within the Standard Model, such a large value of B_8 implies a stratospheric value for B_6. After Kaon 1999 a new analysis, performed with spectral function techniques by Bijnens, Gamiz and Prades appeared \cite{58}. In this paper, a value of $\langle \hat{Q}_8 \rangle$ much lower than in refs. \cite{55,56} was found, although still about a factor of two larger than lattice determinations. The very low value of $\langle \hat{Q}_7 \rangle$ found from the lattice $K \to \pi\pi$ calculation originates from large cancellations occurring in the renormalization of the relevant operator and requires further investigation.

Table 1: $K \to \pi\pi$ matrix elements in GeV3, at $\mu = 2$ GeV in the \overline{MS} scheme, from lattice calculations (first three rows) and other approaches.

Reference	Method	$\langle \hat{Q}_8 \rangle$	$\langle \hat{Q}_7 \rangle$
SPQCDR 2001	$K \to \pi\pi$	0.53 ± 0.06	0.02 ± 0.01
SPQCDR 2001	$K \to \pi + \chi$ PT	0.49 ± 0.06	0.10 ± 0.03
APE 1999	$K \to \pi + \chi$ PT	0.50 ± 0.10	0.11 ± 0.04
Amherst 1999	Dispersion relations	2.22 ± 0.67	0.16 ± 0.10
Marseille 1998	$1/N_c$	3.50 ± 1.10	0.11 ± 0.03
BGP 2001	Spectral functions	1.2 ± 0.5	0.26 ± 0.03

Lattice predictions for \hat{B}_K have been very stable over the years, with a central value centered around 0.85. This is essentially also the value extracted from Unitarity Triangle Analyses \cite{4}, thus confirming that lattice QCD can predict (and not only postdict) physical quantities. In table 2 the lattice world average is given, together with some of the latest lattice results. \hat{B}_K from CP-PACS \cite{59} (with operators renormalized perturbatively) and RBC \cite{20} (with operators renormalized non-perturbatively) has been obtained with DWF. This formulation of QCD should guarantee a better control of the chiral behaviour of the regularized theory with respect to Wilson-like fermions. The results from ref. \cite{58} have been obtained using the non-perturbatively improved Wilson-like action, with a new method based on the Ward Identities \cite{60}, which save us from the painful subtractions of the wrong chirality operators, which was necessary in the past. Similar strategies have been pursued with twisted-mass fermions \cite{45}. The results with DWF are about 15% below the world average and show a marked decrease at small quark masses. This could reconcile the large value of \hat{B}_K at the physical kaon mass with the low value of this parameter obtained in the chiral limit by ref. \cite{61}. Whether the decrease at small quark masses is a physical effect, or is due to lattice artefacts (finite volume, residual chiral symmetry breaking etc.) remains to be investigated.

\footnote{Other results for \hat{Q}_7 and \hat{Q}_8 can be found in refs. \cite{11} and \cite{57}.}
Table 2: B_K in the \overline{MS} scheme at the renormalization scale $\mu = 2$ GeV and the renormalization group invariant \hat{B}_K from recent lattice calculations. The results from SPQCDR, CP-PACS and RBC Collaborations are quenched.

Reference	Method	$B_{\overline{MS}}^K(2\text{GeV})$	B_K
World Average		0.63 \pm 0.03 \pm 0.10	0.86 \pm 0.06 \pm 0.14
SPQCDR [18] 2001	with subtractions	0.71 \pm 0.13	0.91 \pm 0.17
SPQCDR [18] 2001	Ward identity method	0.70 \pm 0.10	0.90 \pm 0.13
CP-PACS [59] 2001	DWF Pert. Ren.	0.5746(61)(191)	0.787 \pm 0.008
RBC [20] 2000	DWF Nonpert. Ren.	0.538 \pm 0.08	0.737 \pm 0.011
Ciuchini et al. [54] 2001	Unitarity Triangle	0.70$^{+0.23}_{-0.11}$	0.90$^{+0.30}_{-0.14}$

$\Delta I = 1/2$ transitions and ϵ'/ϵ

For $\Delta I = 1/2$ transitions and ϵ'/ϵ, the subtractions of the power divergencies, necessary to obtain finite matrix elements, are the major obstacle in lattice calculations. These divergencies arise from penguin contractions of the relevant operators, fig. 3, which induce a mixing with operators of lower dimensions, namely $\bar{s}\sigma^{\mu\nu}G^{A}_{\mu\nu}t^A d$, $\bar{s}\sigma^{\mu\nu}\gamma_5G^{A}_{\mu\nu}t^A d$, $\bar{s}d$ and $\bar{s}\gamma_5 d$ [37]. Power divergencies and subtractions are encountered with both the strategies ($K \rightarrow \pi\pi$ or $K \rightarrow \pi$) adopted to compute the physical amplitudes. For example, with a propagating charm quark, $Re A_0$ is computed in terms of the matrix elements of $Q^\pm (Q_1$ and $Q_2)$ only. In this case, due to the GIM mechanism, the subtraction is implicit in the difference of penguin diagrams with a charm and an up quark propagating in the loop:

$$Q^\pm = \bar{s}\gamma_\mu (1 - \gamma_5) u \bar{u}\gamma_\mu (1 - \gamma_5) d \pm \bar{s}\gamma_\mu (1 - \gamma_5) d \bar{u}\gamma_\mu (1 - \gamma_5) u - (u \rightarrow c).$$

In the past any attempt to compute $\Delta I = 1/2 \ K \rightarrow \pi\pi$ matrix elements failed because no visible signal was observed after the subtraction of the power divergencies [24, 32]. These calculations, performed about twelve years ago with very modest computer resources, on small lattices and with little statistics, were abandoned after the publication of the Maiani-Testa no-go theorem [14].
This year, the SPQCDR Collaboration has found the first signals for both the matrix elements of Q^{-} and Q_{6}, figs. 4, 5 and 6. The difference with respect to previous attempts is given by a much larger volume and statistics, about 400 configurations with $V = 24^3 \times 64$, compared to a few tens of configurations on lattices with $V = 16^3 \times 32$ (8 configurations on $V = 24^3 \times 40$) or 110 configuration of a lattice with $V = 16 \times 12 \times 10 \times 32$ (sic !!). A crucial ingredient is also to work at the point corresponding to the matching condition $m_{K} = W_{0}$, where W_{0} is the energy of the two pions at rest on the finite volume used in the simulation, namely with non degenerate strange and light quark masses. Past calculations were always performed, instead, at the degenerate point, $m_{K} = m_{\pi}$. The results are very preliminary and in particular the two-pion energy in the finite volume for this channel gives a scattering length, $a_{I=0}$, in disagreement with expectations both in value and in the mass dependence. This is to be contrasted with the $\Delta I = 3/2$ case, where the analysis of the scattering length $a_{I=2}$ is in good agreement with expectations.

Much more work is needed to clarify these problems before trying to extrapolate the amplitude to the physical point.

At the matching point $m_{K} = W_{0}$, there are also results for $\langle \pi \pi | Q_{6} | K \rangle$. In this case there is no GIM mechanism at work, and a finite subtraction of the matrix element of the pseudoscalar density operator $Q_{P} = (m_{s} - m_{d})\bar{s}\gamma_{5}d$ must be done (for parity, instead, the subtraction of the scalar operator $Q_{S} = (m_{s} + m_{d})\bar{s}d$ is not necessary). The coefficient of

\footnote{In this case, as in the case of degenerate quark masses, the subtraction of operators of lower dimensions is not necessary.}
Figure 5: First signal for the matrix element $\langle \pi \pi | Q_6 | K \rangle$ at the matching point $m_K \sim W_0$, obtained with 400 configurations and $V = 24^3 \times 64$.

Figure 6: $\langle \pi \pi | \bar{s} \gamma_5 d | K \rangle$ at the matching point $m_K \sim W_0$, obtained with 400 configurations and $V = 24^3 \times 64$. At the matching point $\langle \pi \pi | \bar{s} \gamma_5 d | K \rangle$ decreases by a huge factor and thus the subtraction for $\langle \pi \pi | Q_6 | K \rangle$ is very small.
the mixing of \(Q_P \) with \(Q_6 \) is quadratically divergent \(^4\)

\[
\hat{Q}_6 \sim Q_6 + \frac{C_P(\alpha_s)}{a^2} Q_P
\]

(11)

If not for the explicit chiral symmetry breaking of the lattice action, \(\langle \pi\pi|Q_P|K \rangle \) would vanish by the equation of motions when \(m_K = W_{n^*} \). With an improved action, \(\langle \pi\pi|Q_P|K \rangle \) is of \(\mathcal{O}(a^2) \) and thus a finite subtraction is necessary. The preliminary results shown in fig. 3 show that the value of \(\langle \pi\pi|\bar{s}\gamma_5 d|K \rangle \) drops by a factor of about 20 with respect to \(\langle \pi\pi|Q_6|K \rangle \) when \(m_K = W_0 \) (it is of the same order when the kinematics is not matched) and thus the subtraction is not very critical. The signal itself is very noisy however, see fig. 3 and even with 400 configurations the statistical error on \(\langle \pi\pi|Q_6|K \rangle \) is about 50%. Thus a rather large statistics will be necessary to obtain a relatively accurate result.

\(K \to \pi\pi \) amplitudes in the chiral limit can also be extracted from the calculation of \(K \to \pi \) matrix elements, and indeed this has been the most popular method in lattice calculations of \(\Delta I = 3/2 \) transitions. The main advantage of this approach is that the three-point correlators, necessary for the extraction of the matrix elements, are less noisy than the four-point correlators used in the \(K \to \pi\pi \) case. Moreover, for \(K \to \pi \) matrix elements, finite volume corrections are exponentially small as \(L \to \infty \). The main disadvantage is that the \(K \to \pi\pi \) amplitudes are obtained, using soft pion theorems, in the chiral limit only and then the effect of FSI is definitively lost. If these are important for \(\Delta I = 1/2 \) channels there is no hope, then, to recover the physical amplitudes.

In order to make the \(K \to \pi \) matrix element finite at least a subtraction is necessary, even in the absence of explicit chiral symmetry breaking in the action. With Wilson-like Fermions, for which chiral symmetry is explicitly broken, the number of subtractions makes this approach unpracticable as also demonstrated by the failure of past attempts \(\text{[2]} \). The method has acquired a renewed popularity, instead, with recent formulations of the lattice theory, DWF or overlapping Fermions, for which chiral symmetry breaking is absent or strongly reduced in practice. In this case, and under the hypothesis that chiral symmetry is under control, a finite amplitude can be obtained by subtracting the scalar density amplitude with a suitable coefficient \(C_i \) which depends on the operator at hand

\[
\langle \pi|Q_{i}^{\text{sub}}|K \rangle = \langle \pi|Q_i|K \rangle - C_i \langle \pi|Q_S|K \rangle.
\]

(12)

The power divergent coefficients \(C_i \) cannot be computed perturbatively. Following ref. \(\text{[3]} \), when chiral symmetry is preserved, the \(C_i \) can be determined by the condition that the \(K \to 0 \) matrix element of the subtracted operator vanishes

\[
\langle 0|Q_i - C_i Q_P|K \rangle = 0.
\]

(13)

The coefficients \(C_i \) have been obtained either using non degenerate quarks, \(m_s \neq m_d \), by the RBC Collaboration, or from the derivatives of the 2-point correlation function with respect to the quark mass, by the CP-PACS Collaboration. Numerically, the matrix element of the subtracted operator is much smaller than the unsubtracted one, as shown by fig. 7, taken from the recent work of the RBC collaboration \(\text{[4]} \). This implies that any

\(^4\) The mixing with the chromomagnetic operator is not discussed here. This mixing is a small, finite correction which can be ignored to simplify the discussion.
Figure 7: $\langle \pi | Q | K \rangle$ for the unsubtracted operator, Q_6 (squares), the subtraction, $C_6 Q_S$ (Circles), and the total, Q^sub_i see eq. (13), as a function of the quark mass m_f. The results are from the RBC Collaboration.

systematic uncertainty which enters in the subtraction procedure can have huge effects in the determination of the physical amplitudes. After the subtraction, the chiral dependence of the matrix element has to be fitted in order to extrapolate it to the chiral limit. Both groups have included the logarithmic corrections which arise in quenched χPT in the fit and, in some cases, polynomial corrections of higher order in m^2_{π}. The chiral behaviour observed by CP-PACS is very satisfactory, as shown by fig. 8, less good in the case of the RBC Collaboration. The difference may be due to the fact that a different gluon action is used in the two cases, corresponding to smaller chirally breaking effects for CP-PACS. This can be monitored by measuring the so called “residual mass” which should be zero for perfect chirality and is about a factor of ten smaller for CP-PCAS than for RBC. For a more extended discussion on this important point the reader can refer to the forthcoming proceedings of the Lattice 2001 Conference [1], or those of the 2000 edition [64].

Let me also mention that the overall renormalization constants have been computed perturbatively by CP-PACS [40] and non-perturbatively by RBC [44]. My compendium of the physics results obtained by the two groups is given in table 3.

A few observations are necessary at this point. First of all, $\text{Re} A_0$, and consequently $\text{Re} A_0/\text{Re} A_2$, from the RBC Collaboration are in good agreement with experimental values, contrary to CP-PACS which finds $\text{Re} A_0$ smaller by about a factor of two than the experimental number. Since the two groups use the same lattice formulation of the theory and differ only by, hopefully, marginal details, the reason of this difference should be clarified. In both cases, however, ϵ'/ϵ is in total disagreement with the data. The
Figure 8: Chiral behaviour of the subtracted matrix element $\langle \pi | Q_6^{(0)} | K \rangle$ from the CP-PACS Collaboration. The curves represent different fits used to extrapolate to the chiral limit.

Table 3: Lattice results for $\Delta I = 1/2$ transitions using $K \to \pi$ matrix elements from RBC and CP-PACS. The experimental numbers are also given.

Reference	ReA_0	ReA_2	ReA_0/ReA_2	ϵ'/ϵ
RBC [3] 2001	$29 \div 31 \times 10^{-8}$	$1.1 \div 1.2 \times 10^{-8}$	$24 \div 27$	$-8 \div -4 \times 10^{-4}$
CP-PACS [2] 2001	$16 \div 21 \times 10^{-8}$	$1.3 \div 1.5 \times 10^{-8}$	$9 \div 12$	$-7 \div -2 \times 10^{-4}$
Exps. [26, 27, 65] 2001	33.3×10^{-8}	1.5×10^{-8}	22.2	$17.2 \pm 1.8 \times 10^{-4}$

The main reason is that the value of the matrix element of Q_6 is much smaller than what would be necessary to reproduce the experimental value (it corresponds approximatively to $B_0 = 0.3 \div 0.4$), see also the talk by J. Donoghue at this Conference. Let me list a number of sources of systematic errors which may explain these embarrassing results:

1. Chirality By working with DWF at a finite fifth dimension, $N_5 = 16$, a residual chiral symmetry breaking is present in the theory. The amount of residual symmetry breaking is parametrized by a mass scale denoted by $m_{res} \sim 0.2 \div 2.0$ MeV. In the presence of explicit chiral symmetry breaking, the coefficients C_i determined from $K \to 0$ differs from the correct one and this may induce an error of $O(m_{res}a^{-2}) \sim (200 \text{MeV})^3$ on matrix elements which are of the order of $\Lambda_{QCD}^3 \sim (300 \text{MeV})^3$. Both groups claim to have this point fully under control [2, 3]. A calculation at a larger value of N_5, with all the other parameters unchanged, would be very useful to clarify the situation.

2. Matching below the charm mass Both groups have so far presented results at a renormalization scale just below the charm quark mass. As discussed in the introduction, the matching of the effective theory is rather problematic at such low scales.
3. Extra Quenched Chiral Logarithms As shown by fig. 7, the subtraction of the power divergencies is very critical. Besides the effects discussed in 1., there is another delicate problem which has been recently raised by Golterman and Pallante [8]. In the quenched theory the $(8, 1)$ operators, such as Q^- and Q_6, do not belong anymore to irreducible representations of the chiral group and this gives rise to spurious chiral logarithms. These logarithms affect the subtraction procedure and have not been taken into account in the analyses of RBC and CP-PACS.

4. Higher order chiral corrections and FSI Higher order chiral contributions, among which FSI have also to be accounted, can produce large variations of the matrix elements between the chiral limit and the physical point. In simulations where only $K \rightarrow \pi$ matrix elements are computed, $K \rightarrow \pi\pi$ amplitudes can only be obtained at lowest order in χPT where these physical effects are missing.

5. New Physics As noticed by Murayama and Masiero [29], it is possible to produce large effects for ϵ'/ϵ in SUSY without violating other bounds coming from FCNC. If the lattice results are correct, this is an open possibility. Before invoking new physics, at least the result for ReA_0 should be established with more confidence. Given that the two groups still don’t agree on this quantity, more work is needed.

4 Conclusion and outlook

A renewed activity in lattice calculations of kaon decays and mixing has developed in the last two years. For $\Delta I = 3/2$ transitions, $K^+ \rightarrow \pi^+\pi^0$ and electroweak penguin amplitudes, new and more precise results have been obtained. In this case, removal of lattice artefacts, by extrapolation to the continuum and/or improvement, and unquenched calculations are around the corner. For $\Delta I = 1/2$ transitions, it has been shown that direct computations of $K \rightarrow \pi\pi$ amplitudes, including FSI, is possible [15, 16], although the practical implementation with sufficient accuracy will require more time. First results, obtained by using $K \rightarrow \pi$ lattice matrix elements computed with DWF and soft-pion theorems, show a striking disagreement with the experiments for ϵ'/ϵ. For ReA_0, there is a factor of two between the values found by the CP-PACS [2] and RBC [3] Collaborations. More work is needed in this case to clarify all these points. Many related physical quantities, like the strong interaction phase-shifts for $\pi\pi$ scattering, the chromomagnetic operator matrix elements, semileptonic $K \rightarrow \pi\ell\nu$ amplitudes and the scalar semileptonic form factor will also be obtained as a byproduct from lattice investigations of non-leptonic kaon decays, see also J. Donoghue at this Conference.

Acknowledgements

I thank particularly D. Becirevic, M. Golterman R. Gupta, D. Lin, V. Lubicz, R. Mawhinney, J. Noaki, M. Papinutto and S. Sharpe for fruitful and constructive discussions. I am also particularly indebted to all the members of the SPQCDR Collaboration. This work was supported by European Union grant HTRN-CT-2000-00145.

References
[1] LATTICE 2001, The XIX International Symposium on Lattice Field Theory, August 19 - 24, 2001, Berlin. Copies of the transparencies of the Plenary talks can be found on the web site http://www-zeuthen.desy.de/~latt2001/

[2] J. Noaki et al., CP-PACS Collaboration, hep-lat/0108013.

[3] T. Blum et al., from the presentations of the RIKEN-BNL-Columbia (RBC) Collaboration by T. Blum, C. Calin and R. Mawhinney, LATTICE 2001, The XIX International Symposium on Lattice Field Theory, August 19 - 24, 2001, Berlin, prep. CU-TP-1028, BNL-HET-01/30, RBRC-194 in preparation.

[4] C. W. Bernard and M. F. Golterman, Phys. Rev. D53 (1996) 476, hep-lat/9507004.

[5] M. F. Golterman and K. C. Leung, Phys. Rev. D56 (1997) 2950, hep-lat/9702013; Phys. Rev. D57 (1998) 5703 hep-lat/9711033; Phys. Rev. D58 (1998) 097503, hep-lat/9805032.

[6] D. Lin et al., the SPQCDR Collaboration, presented at LATTICE 2001, The XIX International Symposium on Lattice Field Theory, August 19 - 24, 2001, Berlin.

[7] M. Golterman and E. Pallante, JHEP 0008 (2000) 023 hep-lat/0006029.

[8] M. Golterman and E. Pallante, hep-lat/0108010.

[9] T.N. Truong, Phys. Lett. B207 (1988) 495.

[10] N. Isgur et al., Phys. Rev. Lett. 64 (1990) 161 and Nucl. Phys. A508 (1990) 371.

[11] S. Bertolini, J. O. Eeg, M. Fabbrichesi and E. I. Lashin, Nucl. Phys. B514 (1998) 93, hep-ph/9706260; S. Bertolini, J. O. Eeg and M. Fabbrichesi, Phys. Rev. D63 (2001) 056009, hep-ph/0002234.

[12] E. Pallante and A. Pich, Phys. Rev. Lett. 84 (2000) 2568, hep-ph/9911233 and Nucl. Phys. B592 (2001) 294, hep-ph/0007208.

[13] A. J. Buras, M. Ciuchini, E. Franco, G. Isidori, G. Martinelli and L. Silvestrini, Phys. Lett. B480 (2000) 80, hep-ph/0002116; M. Buchler, G. Colangelo, J. Kambor and F. Orellana, hep-ph/0102287 and hep-ph/0102289.

[14] L. Maiani and M. Testa, Phys. Lett. B245 (1990) 585.

[15] L. Lellouch and M. Lüscher, Commun. Math. Phys. 219 (2001) 31.

[16] C. J. Lin, G. Martinelli, C. T. Sachrajda and M. Testa, hep-lat/0104006.

[17] D. Becirevic, V. Lubicz, G. Martinelli and F. Mescia [SPQcdR Collaboration], Phys. Lett. B501 (2001) 98, hep-ph/0010349.

[18] D. Becirevic et al., the SPQCDR Collaboration, presented at LATTICE 2001, The XIX International Symposium on Lattice Field Theory, August 19 - 24, 2001, Berlin.

[19] D. Becirevic, D. Meloni and A. Retico, JHEP 0101 (2001) 012, hep-lat/0012009.

[20] T. Blum et al. the RBC Collaboration, Nucl. Phys. (Proc. Suppl.) 94 (2001) 291, hep-lat/0011042.

[21] A. Ali Khan et al., the CP-PACS Collaboration, hep-lat/0105020.

[22] L. Lellouch, Nucl. Phys. (Proc. Suppl.) 94 (2001) 142, hep-lat/0011088.
[23] C. R. Allton et al., Phys. Lett. B453 (1999) 30, hep-lat/9806016; A. Donini, V. Gimenez, L. Giusti and G. Martinelli, Phys. Lett. B470 (1999) 233, hep-lat/9910017.

[24] E. Gabrielli, A. Masiero and L. Silvestrini, Phys. Lett. B374 (1996) 80, hep-ph/9509379; F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, Nucl. Phys. B477 (1996) 321, hep-ph/9604387; J. A. Bagger, K. T. Matchev and R. Zhang, Phys. Lett. B412 (1997) 77, hep-ph/9707225; M. Ciuchini, E. Franco, V. Lubicz, G. Martinelli, I. Scimemi and L. Silvestrini, Nucl. Phys. B523 (1998) 501, hep-ph/9711402; M. Ciuchini et al., JHEP 9810 (1998) 008, hep-ph/9808328.

[25] M. Papinutto et al., the SPQCDR Collaboration, presented at LATTICE 2001, The XIX International Symposium on Lattice Field Theory, August 19 - 24, 2001, Berlin.

[26] I. Mikulec et al., the NA48 Collaboration, at this Conference; see also the talk by H. Wahl.

[27] A. Glazov et al., the KTeV Collaboration, at this Conference; see also the talk by B. Winston.

[28] C. W. Bernard, Nucl. Phys. (Proc. Suppl.) 94 (2001) 159, hep-lat/0011064.

[29] A. Masiero and H. Murayama, Phys. Rev. Lett. 83 (1999) 907, hep-ph/9903363.

[30] G. Altarelli, G. Curci, G. Martinelli and S. Petrarca, Nucl. Phys. B187 (1981) 461.

[31] A.J. Buras, P.H. Weisz, Nucl. Phys. B333 (1990) 66.

[32] A.J. Buras, M. Jamin, M.E. Lautenbacher and P.H. Weisz, Nucl. Phys. B370 (1992) 69, Addendum, ibid. Nucl Phys. B375 (1992) 501.

[33] A.J. Buras, M. Jamin and M.E. Lautenbacher, Nucl. Phys. B400 (1993) 37 and B400 (1993) 75.

[34] M. Ciuchini, E. Franco, G. Martinelli and L. Reina, Nucl. Phys. B415 (1994) 403.

[35] M. Ciuchini et al., Z. Phys. C68 (1995) 239.

[36] Claude W. Bernard, T. Draper, A. Soni, H. David Politzer, Phys. Rev. D32 (1985).

[37] M. Bochicchio et al., Nucl. Phys. B262 (: 1988 L. Maiani, G. Martinelli, G.C. Rossi and M. Testa, Phys. Lett. 176B (1986) 445 and Nucl. Phys. B289 (1987) 505.

[38] C. Bernard, T. Draper, G. Hockney and A. Soni, Nucl. Phys. (Proc. Suppl.) 4 1988 483.

[39] C. Dawson et al., Nucl. Phys. B514 (1998) 313.

[40] S. Aoki et al., Phys. Rev. D59 (1999) 094505; Phys. Rev. D60 (1999) 114504; Phys. Rev. D63 (2001) 054504 and in preparation.

[41] S. Capitani and L. Giusti, hep-lat/0011070.

[42] G. Martinelli, C. Pittori, C.T. Sachrajda, M. Testa and A. Vladikas, Nucl. Phys. B445 (1995) 81.

[43] G. Martinelli et al., Nucl. Phys. B445 (1995) 81; A. Donini et al., Phys. Lett. B360 (1996) 83; M. Crisafulli et al., Phys. Lett. B369 (1996) 325; L. Conti et al., Phys. Lett. B421 (1998) 273.

[44] RBC Collaboration, C. Dawson et al. Nucl. Phys. (Proc.Suppl.) 94 (2001) 613.
C. Pena, presented at LATTICE 2001, The XIX International Symposium on Lattice Field Theory, August 19 - 24, 2001, Berlin.

For a review, see M. Luscher, Les Houches Summer School in Theoretical Physics, Les Houches, France, 28 Jul - 5 Sep 1997, [hep-lat/9802023] and references therein.

D.B. Kaplan, *Phys. Lett.* B288 (1992) 342, *Nucl. Phys. (Proc. Suppl.)* 30 (1993) 597; R. Narayanan and H. Neuberger, *Phys. Lett.* B302 (1993) 62, *Phys. Rev. Lett.* 71 (1993) 3251, *Nucl. Phys.* B412 (1994) 574, *Nucl. Phys.* B443 (1995) 305; Y. Shamir, *Nucl. Phys.* B406 (1993) 91.

H. Neuberger, *Phys. Lett.* B417 (1998) 141, *Phys. Lett.* B427 (1998) 353.

P. Hernandez, review talk presented at LATTICE 2001, The XIX International Symposium on Lattice Field Theory, August 19 - 24, 2001, Berlin.

V. Cirigliano, J. Donoghue and E. Golowich *JHEP* 0010 (2000) 048, [hep-ph/0007196].

M. Lüscher, *Commun. Math. Phys.* 104 (1986) 177; *Commun. Math. Phys.* 105 (1986) 153; *Nucl. Phys.* B354 (1991) 531; *Nucl. Phys.* B364 (1991) 237.

V. Cirigliano and E. Golowich, *Phys. Lett.* B475 (2000) 351, [hep-ph/9912513].

John F. Donoghue, Eugene Golowich and Barry R. Holstein, *Phys. Lett.* B119 (1982) 412.

M. Ciuchini et al., *JHEP* 0107 (2001) 013 [hep-ph/0012308].

J. F. Donoghue and E. Golowich, *Phys. Lett.* B478 (2000) 172, [hep-ph/9911309]; V. Cirigliano, J. F. Donoghue, E. Golowich and K. Maltman, [hep-ph/0109113].

M. Knecht, S. Peris and E. de Rafael, *Phys. Lett.* B457 (1999) 227, [hep-ph/9812471]; *Phys. Lett.* B508 (2001) 117, [hep-ph/0102017].

T. Hambye, G. O. Kohler, E. A. Paschos, P. H. Soldan and W. A. Bardeen, *Phys. Rev.* D58 (1998) 014017, [hep-ph/9802300].

J. Bijnens, E. Gamiz and J. Prades, [hep-ph/0108240].

A. Ali Khan et al., CP-PACS Collaboration, [hep-lat/0105020].

D. Becirevic, P. Boucaud, V. Gimenez, V. Lubicz, G. Martinelli, J. Micheli and M. Papinutto, *Phys. Lett.* B487 (2000) 74, [hep-lat/0005013].

S. Peris and E. de Rafael, *Phys. Lett.* B490 (2000) 213, [hep-ph/0006146].

C. Bernard, *Nucl. Phys. (Proc. Suppl.)* 17 (1990) 495.

G. Martinelli, *Nucl. Phys. (Proc. Suppl.)* 17 (1990) 523.

Proceedings of LATTICE 2000, XVIII International Symposium of Lattice Field Theory, 17–22 August 2000, Bangalore, India, *Nucl. Phys. (Proc. Suppl.)* 94 (2001).

Review of Particle Physics, *Eur. Phys. J.* C15 (2000) 1.