Chemopreventive effect of oltipraz on AFB\textsubscript{1}-induced hepatocarcinogenesis in tree shrew model

Yuan Li1, Jian Jia Su1, Liu Liang Qin1, Chun Yang1, Dan Luo1, Ke Chen Ban1, TW Kensler2 and BD Roebuck3

Subject headings hepatocellular carcinoma; tupajidae; aflatoxin B\textsubscript{1}; hepatitis B virus; incidence; carcinogens, environmental

Received 2000-06-13 Accepted 2000-06-29

INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the major cancers in the world with a mortality of more than 250,000 cases yearly. More than 137,000 cases of HCC were diagnosed each year in China, which account approximately for more than 40 percent of the total number in the world. HCC has become the second major cause of death for cancer in China since 1990, and its annual mortality is expected to be 21.2 cases per 100,000 population in the year 2000. Even though progresses have been achieved for HCC diagnosis and treatment, its 5-year mortality is still higher than 95 percent[1-3]

The prevalence of HCC is quite different among different areas around the world[4,5]. It is considerably high in South-East Asia and sub-Saharan Africa, particularly in some southern and eastern regions inside China such as Fusui County in eastern regions inside China such as Fusui County in south-east Asia and sub-Saharan Africa, particularly in some southern and eastern regions inside China such as Fusui County in Guangxi Zhuang Autonomous Region and Qidong City in Jiangsu Province[6-9]. The standardized incidence of HCC in these high-risk regions may exceed 100 cases per 100,000 of population[10]. The obvious difference in geographic distribution of HCC indicates that there must be environmental factors for its pathogenesis.

Aflatoxin B\textsubscript{1} (AFB\textsubscript{1}), which is produced by some strains of Aspergillus flavus, is a potent hepatotoxigen and hepatocarcinogen[11,12], and is considered as a major cause of HCC in some regions[13-18]. It has also been postulated that chronic infection with hepatitis B virus (HBV) in combination with exposure to AFB\textsubscript{1} in the diet may contribute to the extraordinary high risk of human HCC in some areas. Actually, two case-control studies in Shanghai have demonstrated a strong interaction between HBV and AFB\textsubscript{1} for risk of HCC[14,15]. A similar chemical-viral interaction has been observed in Taiwan[18-20]. The synergism between virus and mycotoxic carcinogen for the development of human HCC suggests that reduction in both risk factors may bring important public health consequences.

The concept of chemoprevention of cancer is over 40 years old and a number of works have been done in this field[21,22]. Looking for effective and safe reagents against AFB\textsubscript{1} and/or other HCC related risk factors is one of the most important chemopreventive strategies for HCC[23-26]. Green tea was identified years ago as one of the effective chemopreventive reagents against HCC through a series of animal experiments as well as a clinical trial[27,28]. Recently oltipraz, another preventive agent which was previously described as a potent inhibitor of AFB\textsubscript{1} induced hepatocarcinogenesis in rat[29-33], has been shown to inhibit the bioactivation of aflatoxin and enhance its detoxification in a clinical trial[34-37] as well as in human hepatocytes in primary culture[38]. Meanwhile, a universal vaccination program against HBV that started a decade ago now results in lower rates of HCC in children[39]. An experimental model to test the synergistic effect of these two agents and their prevention, therefore, is needed.

RESEARCH ON TREE SHREW MODEL OF HEPATOCARCINOGENESIS

Tree shrew (Tupaia spp.) is a kind of small, squirrel-like mammals. Formerly it was considered to belong to the Primate order; currently it is classified into a separate order Scandentia and is supposed to be more closely related to human being than rodents[40,41]. They have been used in biomedical researches since as early as the 1960s. Many researches have been done on its visual and nervous systems. In 1976, however, Reddy et al[42] successfully induced liver cancer in tree shrew by AFB\textsubscript{1}. Yan et al[43,44] reported that tree shrews can be infected with HBV and they successfully used this HBV-infected tree shrew model for liver cancer.
research. Recently Walter et al[45] reported their in vivo and in vitro study results from tree shrews infected with HBV. Yan and Li reported a significantly higher incidence of HCC in tree shrews both infected with human HBV and exposed to AFB1 than with either agent alone[46,47]. Thus, this tree shrew model appears to closely mirror the most common causative factors of human HCC in some prevalent regions. Furthermore, with the exception of the chimpanzee, tree shrew is the only known animal that can be infected with human HBV. Therefore, the application of tree shrew in research related to liver cancer and hepatitis is receiving increasing attentions and a number of works have been published[48-52].

Because of the difficulties in raising tree shrews artificially, most of the tree shrews used so far for research in China are captured individually from Yunnan Province. The drawback of using tree shrews captured in the wild for animal experiments is that their age, health status and reproductive history are unknown. In an attempt to avoid this drawback, we have conducted a preliminary experiment on rearing tree shrews and a promising result was obtained[53].

RESEARCH ON THE PREVENTIVE EFFECT OF OLTIPRAZ IN TREE SHREW

In order to study the preventive effect of oltipraz on AFB1 by animal models other than rodents, a short-term experiment was conducted on tree shrews.

Male and female adult tree shrews (Tupaia belangeri chinensis) were purchased from the Kunming Institute of Zoology (Yunnan Province, P.R. China). Their body weights ranged from 100g to 160g. Upon arrival, 1mL blood was collected from each animal and tested for HBV markers (HBsAg, anti-HBsAg, anti-HBcAg) and ALT. The serum samples and 24-hour urine samples were collected once a week from each animal throughout the experiment. At the termination of the 9-week experiment, tree shrews were killed by cervical dislocation. Three blocks of liver tissue were taken from each animal. Serial sections from each block were stained histochemically for r-glutamyl transpeptidase (γ-GT)[54] and HE respectively. The γ-GT positive liver cells were counted with a nest-ruler under microscope. The results were analyzed by the medical statistics analyzing software PEMS that was designed by West China University of Medical Sciences. The levels of aflatoxin-albumin adducts in serum samples were determined by radioimmune assay[35] and the levels of Aflatoxin-N7-guanine adducts in urine samples were assayed by HPLC[29].

No γ-GT positive liver cell focus, a postulated precancerous marker[54-56], was observed in any liver of the variously treated tree shrews in our study. However, different numbers of γ-GT positive liver cells, which scattered mainly around the portal spaces, were observed in each group. Even though the distribution patterns of these cells were similar among the 4 groups, the number was quite different. Groups B and D had obviously less γ-GT positive cells than groups A and C (Table 1).

γ-GT normally exists in embryonic liver cell in human being and rat. In adult rat, it exists only in some cells around portal spaces[57] but can be re-expressed by mature hepatocytes during the recovery process after liver damage[58]. In this study a number of γ-GT positive hepatocytes in periportal regions in the normal control group. On the contrary, the number of γ-GT positive hepatocytes of the same sites was markedly reduced in the AFB1 treated B group. This phenomenon is fairly consistent with the findings on AFB1 induced damage in rat, in which the periportal hepatocytes are the major targets of AFB1. As shown in the same table, the number of γ-GT positive hepatocytes in group C was strikingly similar to the normal control group. This result indicates strongly the preventive action of oltipraz against AFB1 toxicity. The apparent ineffectiveness of oltipraz in group D is most possibly due to its inadequate dose[59]. These results might indicate that oltipraz has the preventive was dose-related effect on AFB1.

Insufficient duration and/or insufficient dosage of AFB1 treatment may result in that no separate focus of γ-GT positive liver cell formed at the end of this 9-week experiment[60]. However, the decrease of γ-GT positive hepatocytes in the periportal regions may be an early marker for the damage induced by AFB1.

The levels of both aflatoxin-albumin adducts in serum samples and aflatoxin-N7-guanine adducts in urine samples of the tree shrews were also significantly affected by oltipraz. Following daily
exposures to AFB1, the levels of aflatoxin-albumin adducts in group B increased rapidly over 2 weeks to reach a plateau that did not diminish until cessation of AFB1 exposure. In group C however, week 5 were 6.34 ± 2.04 and 0.47 ± 0.13 in groups B and C respectively. This 93% decrease represented a statistically significant difference (P<0.05). These results were reported in detail in another article[61]. The major mechanism of oltipraz’s chemopreventive effect is probably through inducing the activities of cytochrome P450 system and phase 2 enzymes such as glutathione transferases, epoxide hydrolase, etc, as reported by Langouet et al[60] and Fahey et al[62].

SUMMARY

Tree shrew is phylogenetically more closely related to human being than rodents. It is susceptible both to HBV infection and AFB1 intoxication. It is a suitable experimental animal for hepatocarcinogenesis. Attempt for its rearing is promising.

Oltipraz is an effective reagent to protect AFB1 intoxication. This effect is proved clearly not only by histological examination, but also by reduction of aflatoxin-albumin adducts in serum and aflatoxin-N7 guanine adducts in urine.

All of these studies mentioned above provide a foundation for further HCC chemoprevention study by using tree shrews in the future.

ACKNOWLEDGEMENTS

The authors express their appreciation to Drs. Guo-Hua Huang, Chao Ou, Xue-Lan Deng and Hua-Ping Huang for the contributions to the animal experiment. Preliminary accounts of this work were presented at the 1999 Annual Meeting of the American Association for Cancer Research[63].

REFERENCES

1 Skolnick AA. Armed with epidemiologic research, China launches programs to prevent liver cancer. JAMA, 1996;276:1458-1459
2 Guayton KZ, Kessler TW. Prevention of liver cancer. Curr Opin Oncol, 1997;9:492-496
3 Li LD, Lu FZ, Zhang SW, Mu R, Sun XD. Huanggu XM, Sun J, Zhou YS, Ouyang NH,Rao KQ, Chen YD, Sun AM, Xue ZF, Xia Y. The alterations of malignant tumors' mortality in China during the 20 years and the forecasting. Zhonghua Zhou jiu Zhi, 1997;19:3-9
4 Schafer DF, Sorrell MF. Hepatocellular carcinoma. Lancet, 1999; 353:1253-1257
5 Wild CP, Jiang YZ, Allen SJ, Jansen LAM, Hall AI, Montesano R. Aflatoxin-albumin adducts in human sera from different regions of the world. Carcinogenesis, 1990;11:2271-2274
6 Ruan CC, Chen YH, Zhang ZQ. Drinking water and liver cancer. China Natl J New Gastroenterol, 1997;3:47-49
7 Deng ZL, Ma Y. Aflatoxin sufferer and p53 gene mutation in hepatocellular carcinoma. World J Gastroenterol, 1998;8:28-29
8 Chen JG. The epidemiological tendency and forecasting of liver cancer in Qingdong (Abstract). Zhonghua Yiyang Yixue Zhai, 1996;30:180
9 Groopman JD, Zhu JQ. Donahue PR, Prikul A, Zhang LS, Chen JS, Wogan GN. Molecular dosimetry of urinary aflatoxin DNA adducts in people living in Guangxi Auto nomous Region, People’s Republic of China. Cancer Res, 1992;52:45-52
10 Yeh FS, Yu MC, Mo CC, Luo S, Tong MJ, Henderson BE. Hepatitis B virus, aflatoxin, and hepatocellular carcinoma in southern Guangxi, China. Cancer Res, 1989;49:2506-2509
11 Wogan GN. Aflatoxin as a human carcinogen. Hepatology, 1999; 30: 573-575
12 Choy WN. A review of the dose response induction of DNA adducts by aflatoxin B-1 and its implications to quantitative cancer risk assessment. Mutation Res, 1993;296:181-198
13 Wang D, Shu JQ. Overexpression and mutations of tumor suppressor gene p53 in hepatocellular carcinoma. China Natl J New Gastroenterol, 1996;2:161-164
14 Qian GS, Ross RK, Yu MC, Yuan JM, Gao YT, Henderson BE, Wogan GN, Groopman JD. A follow up study of urinary markers of aflatoxin exposure and liver cancer risk in Shanghai, People’s Repub lic of China. Cancer Epidemiol Biomark Prevent, 1994;3:3-10
15 Ross RK, Yuan JM, Yu MC, Wogan GN, Qian GS, Tu JT, Groopman JD, Gao YT, Henderson BE. Urinary aflatoxin biomarkers and risk of hepatocellular carcinoma. Lancet, 1999;159:943-947
16 Chen CJ, Wang LY, Lu SN, Wu MH, You SL, Zhang YJ, Wang LW, Santella RM. Elevated aflatoxin exposure and increased risk of hepatocellular carcinoma. Hepatology, 1996;24:38-42
17 Wogan GN. Biomarkers for molecular epidemiology of aflatoxin as a risk factor for hepatocellular carcinoma: the essential role of basic science. CIBT Activities, 1999;19:4-10
18 Wang LY, Hatch M, Chen CJ, Levin B, You SL, Lu SN, Wu MH, Wu WP, Wang LW, Wang Q, Huang GT, Yang PM, Lee HS, Santella RM. Aflatoxin exposure and risk of hepatocellular carcinoma in Taiwan. Int J Cancer, 1996;67:620-625
19 Lunn RM, Zhang YJ, Wang LY, Chen CJ, Lee PH, Lee CS, Tsai WY, Santella RM. p53 Mutations, chronic hepatitis B virus infection, and aflatoxin exposure in hepatocellular carcinoma in Taiwan. Cancer Res, 1997;57:3471-3477
20 McGlynn KA, Rosvold EA, Lustbader ED, Hu Y, Clapper ML, Zhou T, Wild CP, Xia XL, Baffoe Bonnie A, Ofori Adjei D, Chen GC, London WT, Sheen FM, Buetow KH. Susceptibility to hepatocellular carcinoma is associated with genetic variation in the enzymatic detoxification of aflatoxin B1. Proc Natl Acad Sci USA, 1995;92:2384-2387
21 Hong WK, Sporn MB. Recent advances in chemoprevention of cancer. Science, 1997;278:1073-1077
22 Mukhtar H, Ahmad N. Contemporary issues in toxicology: cancer chemoprevention:future holds in multiple agents. Toxicol Appl Pharmacol, 1999;158:207-210
23 Gu GW, Zhou HG. Traditional Chinese Medicine in prevention of liver
24 Zhou HG, Gu GW. Retinoids preventing liver cancer. Shijie Huaren Xiaohao Zazhi, 1997;7:80-81
25 Tan W, Lin DX, Xiao Y, Kadlubar FF, Chen JS. Chemoprevention of 2 amino 1 methyl 6 phenylimidazo[4,5-b]pyridine induced carcinogenesis DNA adducts by Chinese cabbage in rats. World J Gastroenterol, 1999;5:138-142
26 Yuan JH, Zhang RP, Zhang RG, Guo LX, Wang XW, Luo D, Xie Y, Xie H. Growth inhibiting effects of taxol on human liver cancer in vitro and in nude mice. World J Gastroenterol, 2000;6:210-215
27 Chen ZY, Yan RQ, Qin QG, Qin LL. Effects of six edible plants on liver cancer. Sichuan Zhongliu angzhi, 1997;10:1-4
29 Kensler TW, Gange SJ, Egner PA, Dolan PM, Groopman JD, Roebuck BD. Protection against aflatoxin B-1 induced hepatocarcinogenesis in F344 rats by 5 (2 pyrazinyl) 4 methyl 1,2 dithiole 3 thione (oltipraz): predictive role for short term molecular dosimetry. Cancer Res, 1998;51:5501-5506
31 Kensler TW, Gange SJ, Egner PA, Dolan PM, Muekotz A, Groopman JD, Rogers AE, Roebuck BD. Predictive value of molecular dosimetry: Individual versus group effects of oltipraz on aflatoxin B1 induced hepatocarcinogenesis in rats fed 5 (2 pyrazinyl) 4 methyl 1,2 dithiole 3 thione (oltipraz). Cancer Epidemiol Prev, 1997;6:603-610
33 Kensler TW, Gange SJ, Egner PA, Dolan PM, Muekotz A, Groopman JD, Rogers AE, Roebuck BD. Mechanism of protection against aflatoxin tumorigencity in rats fed 5 (2 pyrazinyl) 4 methyl 1,2 dithiole 3 thione (oltipraz) and related 1,2 dithiole 3 thiones and 1,2 dithiole 3 ones. Cancer Res, 1987;47:4271-4277
34 Wang JS, Shen X, He X, Zhu YR, Zhang BC, Wang JB, Qian GS, Kuang SY, Fang X, Li YF, Yu LY, Prochaska HJ, Davidson DL, Kensler TW, Roebuck BD. Identification of dithiolethiones with better chemopreventive properties than oltipraz. Carcinogenesis, 1999;20:1609-1616
37 Wang JS, Shen X, He X, Zhu YR, Zhang BC, Wang JB, Qian GS, Kuang SY, Zhe A, Egner PA, Jacobson LP, Mu oz A, Helzlouser KJ, Groopman JD, Kensler TW. Protective alterations in phase I and 2 metabolism of aflatoxin B-1 by oltipraz in residents of Qidong, People’s Republic of China. J Natl Cancer Inst, 1999;91:347-354
41 Li Y, Su JJ, Qin LL, Yuan JH, Zhang YC, Ban KC, Yang C, Wang JB, Wu Y, Zhang QN, Qian GS. Expression of ras gene in experimental hepatocarcinogenesis in the tree shrew (Tupaia belangeri chinensis). Cancer Epidemiol, 1999;28:67-71
43 Li Y, Su JJ, Qin LL, Yuan JH, Zhang YC, Ban KC, Yang C, Wang JB, Wu Y, Zhang QN, Qian GS. Expression of ras gene in experimental hepatocarcinogenesis in the tree shrew (Tupaia belangeri chinensis). Cancer Epidemiol, 1999;28:67-71
45 Li Y, Su JJ, Qin LL, Yuan JH, Zhang YC, Ban KC, Yang C, Wang JB, Wu Y, Zhang QN, Qian GS. Expression of ras gene in experimental hepatocarcinogenesis in the tree shrew (Tupaia belangeri chinensis). Cancer Epidemiol, 1999;28:67-71
47 Li Y, Su JJ, Qin LL, Yuan JH, Zhang YC, Ban KC, Yang C, Wang JB, Wu Y, Zhang QN, Qian GS. Expression of ras gene in experimental hepatocarcinogenesis in the tree shrew (Tupaia belangeri chinensis). Cancer Epidemiol, 1999;28:67-71
49 Li Y, Su JJ, Qin LL, Yuan JH, Zhang YC, Ban KC, Yang C, Wang JB, Wu Y, Zhang QN, Qian GS. Expression of ras gene in experimental hepatocarcinogenesis in the tree shrew (Tupaia belangeri chinensis). Cancer Epidemiol, 1999;28:67-71
51 Li Y, Su JJ, Qin LL, Yuan JH, Zhang YC, Ban KC, Yang C, Wang JB, Wu Y, Zhang QN, Qian GS. Expression of ras gene in experimental hepatocarcinogenesis in the tree shrew (Tupaia belangeri chinensis). Cancer Epidemiol, 1999;28:67-71
53 Li Y, Su JJ, Qin LL, Yuan JH, Zhang YC, Ban KC, Yang C, Wang JB, Wu Y, Zhang QN, Qian GS. Expression of ras gene in experimental hepatocarcinogenesis in the tree shrew (Tupaia belangeri chinensis). Cancer Epidemiol, 1999;28:67-71
55 Li Y, Su JJ, Qin LL, Yuan JH, Zhang YC, Ban KC, Yang C, Wang JB, Wu Y, Zhang QN, Qian GS. Expression of ras gene in experimental hepatocarcinogenesis in the tree shrew (Tupaia belangeri chinensis). Cancer Epidemiol, 1999;28:67-71
57 Li Y, Su JJ, Qin LL, Yuan JH, Zhang YC, Ban KC, Yang C, Wang JB, Wu Y, Zhang QN, Qian GS. Expression of ras gene in experimental hepatocarcinogenesis in the tree shrew (Tupaia belangeri chinensis). Cancer Epidemiol, 1999;28:67-71
61 Li Y, Su JJ, Qin LL, Yuan JH, Zhang YC, Ban KC, Yang C, Wang JB, Wu Y, Zhang QN, Qian GS. Expression of ras gene in experimental hepatocarcinogenesis in the tree shrew (Tupaia belangeri chinensis). Cancer Epidemiol, 1999;28:67-71
650 ISSN 1007-9327 CN 14-1018/ R World J Gastroentero October 2000 Volume 6 Number 5