Assessment of Efficiency, Impact Factor, Impact of Probe Mass, Probe Life Expectancy, and Reliability of Mars Missions

Malaya Kumar Biswal M* and Ramesh Naidu Annavarapu†

Department of Physics
School of Physical Chemical and Applied Sciences,
Pondicherry University, Kalapet, Puducherry, India – 605 014

Mars is the next frontier after Moon for space explorers to demonstrate the extent of human expedition and technology beyond low-earth orbit. Government space agencies as well as private space sectors are extensively endeavouring for a better space enterprise. Focusing on the inspiration to reach Mars by robotic satellite, we have interpreted some of the significant mission parameters like proportionality of mission attempts, efficiency and reliability of Mars probes, Impact and Impact Factor of mass on mission duration, Time lag between consecutive mission attempts, interpretation of probe life and transitional region employing various mathematical analysis. And we have discussed the importance of these parameters for a prospective mission accomplishment. Our novelty in this paper is we have found a deep relation describing that the probe mass adversely affects the mission duration. Applying this relation, we also interpreted the duration of probe life expectancy for upcoming missions.

I. Nomenclature

CNSA = China National Space Administration
ESA = European Space Agency
ISRO = Indian Space Research Organization
JAXA = Japan Aerospace Exploration Agency
MBSRC = Mohammed Bin Rashid Space Center
MGRSO = Mars Global Remote Sensing Orbiter
MMX = Martian Moon Exploration
MOM = Mars Orbiter Mission
NASA = National Aeronautics Space Administration
NICT = National Institute of Information and Technology

II. Introduction

Journey to Mars has fascinated many enthusiasts and space scientists for planetary exploration. For a prosperous strive, it is significant to have a perspective knowledge of mission trends and their effects on the community and mankind. Henceforth with reference to our preceding paper [1, 2] we have assessed data and employed a mathematical regression analysis technique to interpret various mission parameters described in the abstract. These parameters are significant enough to determine mission prospects. Our assessment report is novel and unique and has found nowhere in any of the analysis reports. Thus these findings may have a potential impact on upcoming missions.

* Graduate Researcher, Department of Physics, Pondicherry University, India; malayakumar1997@gmail.com, mkumar97.res@pondiuni.edu.in, Member of Indian Science Congress Association, Student Member AIAA
† Associate Professor, Department of Physics, Pondicherry University, India; rameshnaidu.phy@pondiuni.edu.in, arameshnaidu@gmail.com.
III. Terms, Definitions and Research Methodology

A. Terms and Definitions

- **Mission Duration:** It is considered as the number of days from the date of launch to the date of the last operation (last contact).
- **Mission Degradation:** It is considered between the date of launch and to the date of decay (mission lost).

B. Research Methodology

For our analysis, we gathered data from the dataset [3, 4] for the probe mass, mission duration/degradation. Similarly, the time lag is estimated between their consecutive launch and decay dates. As the time lag data shows a good response to our analysis we have taken the negative value data in positive. Additionally, the duration for the operational probe is considered from the date of launch to the date of operation as of 1st May 2020 of this current calendar year. The data gathered were plotted against the period from the 1960s to the 2020s and various mathematical techniques (Linear, Logarithmic, and Polynomial Regression Analysis) were performed to show predictive trend curves for all parameters. We also have interpreted the probe life expectancy curve that is capable of determining the lifespan of upcoming probes with respect to their mass. Because the probe mass has a great impact on its duration. We will discuss it further. Our assessment report is very different and novel and has not explained in any published reports or online resources. Hence we consider that this will provide an outline for a perspective idea for attempting successful missions in the near future.

IV. Assessment of Mission Parameters

A. Mission Attempt Rate

In this section, we have discussed the rate of mission attempts at the frequency of 20 years from the 1960s to the 2020s. These rates are the measure of the ratio of the number of attempts (success or failure) to the total number of attempts. Polynomial regression analysis and curve fitting method were executed against these ratios to obtain fine curves shown in Fig.1. It shows that the frequency of attempts that remained failure decreases from a higher peak to the lower level. Contradictory to this curve the frequency of success rises from the 1960s to the 2020s. And we found that the nation’s economic standard, technological feasibility, and the rate of success and failure determine the mission attempt [5, 6].
B. Reliability

The reliability of the mission determines the longevity (the ability of a probe to withstand in orbit or planetary surface for operation) of Mars probes. It also determines the possibility of mission accomplishment to a greater extent. And we have estimated the difference between the period of degradation and duration as the reliability of the probe. Furthermore, its average is considered to be the average mission reliability. Performing the logarithmic regression analyzing method over the data acquired from [3] to obtain the reliability curve shown in Fig.2. The line of reliability shows an excellent improvement of probe reliability over the years. Inadequate fabrication and ground testing, space environmental condition, and robustness nature of the probe components are the considerable factors affecting the reliability of Mars probes. Mathematical expression for reliability is

\[\text{Reliability} = \frac{\text{Degradation Period (Days)} - \text{Duration Period (Days)}}{2} \]

C. Impact Factor of Mass on Duration

Impact Factor is the measure of the ratio of the sum of duration/degradation of probes of two preceding attempts to the sum of masses of probes of two preceding attempts and mathematically expresses as

\[I.F_y = \frac{(\text{Duration/Degradation})_{y-1} + (\text{Duration/Degradation})_{y-2}}{\text{Mass}_{y-1} + \text{Mass}_{y-2}} \]

It displays the impact factor of mass on the duration/degradation of probes shown in Fig.3. Over the past 60 years. And we notice that there is a gradual increase in impact factor over duration contradictory to degradation. Hence, it indirectly shows the rise of mission duration over the years from the 1960s to the 2020s.
D. Impact of Mass on Mission Duration and Degradation

One of the significant relationships we found in this paper is the impact of mass on mission duration. It showed that the probe having lower masses have greater duration than the heavier probes. So, we performed linear regression and curve-fitting techniques for both duration and degradation with respect to their masses. It yielded two straight lines shown in Fig.4. The dense point along the highest point is the approximation of probe mass and both duration and degradation for the next 10 missions.

E. Probe Life Expectancy

Concerning the section (4.4), we are interested to interpret the lifespan of the probes with reference to their masses. In this analysis, we have eliminated the data for the duration and degradation of the probe lost with launch vehicle issues in order to have good precision. And we used logarithmic regression analysis for the selected data gathered from [3, 4] to get two curves of probe life expectancy shown in Fig.5. Using these results, we have interpreted the lifespan of upcoming probes mentioned in table-1 and graphically shown in Fig.6. Similar to this we can also interpret lifespan using the line equation shown in Fig.4

Mission Name	Agency	Mass (Kg)	Duration (Days)	Average Degradation (Days)	Equation
Mars 2020 Rover	NASA	1025	1113.38	1169.21	Logarithmic
MGRSO/Tianwen-1	CNSA	3175	921.29	661.87	Linear
MGRSO Rover	CNSA	240	1360.04	1442.71	Logarithmic
Hope Mars Mission	MBRSC	1500	1048.68	1045.99	Logarithmic
ExoMars 2020 Rover	ESA	310	1316.56	1407.58	Logarithmic
Terahertz Explorer	NICT	140	1451.61	1507.63	Linear
Mangalyaan 2 / MOM-2	ISRO	150	1508.78	1543.86	Linear
Martian Moon Exploration	JAXA	150	1439.89	1499.85	Linear

Table-1. Interpreted Mission Life Expectancy

Figure 5 Probe Life Interpretation
Figure 6 Interpreted Mission Duration
F. Efficiency of the Missions

The efficiency of the mission is estimated as the ratio of output (no. of days in operation) to the input (no. of days taken to prepare and launch subsequent probes) multiplied by 100.

\[
Efficiency \% = \frac{Output \ (No. \ of \ Days \ in \ Operation)}{Input \ (No. \ of \ Days \ taken \ for \ concurrent \ launch)} \times 100
\]

From the ratio described in the dataset [4], we have applied the logarithmic regression technique to determine efficiency in three epochs shown in Fig.7. We observe that the period (the 1960s-1980s, and 2000s – 2020s) have greater efficiency than the period (1980s – 2000s). It may be due to repeated or number of failures during that epoch.

G. Mission Intermission

Additional to the other parameters, we also have estimated mission intermission curves between two consecutive launch and decay date intervals (in terms of the number of days). Performing the logarithmic regression analysis method, we obtained two fine curves shown in Fig.8. We describe that the input effort in launching the probes and their degradation intervals are almost the same as the curves go parallel to each other. Further, these curves closely explain the gradual increase in mission efficiency over the years.

\[\text{Figure 7 Efficiency of Mars Missions} \quad \text{Figure 8 Mission Intermision Curves}\]

H. Transitional and Active Region

The transitional region or intermediate region is the region of space lies between the curves of mission duration and degradation shown in Fig.9. In this region, the probes start to decay after either accomplishing its mission target or losing its function. Similarly, the region below the duration curve is the active region where the probe starts its mission, accomplishes the goal, shows greater performance, and the incapability of functioning well.
Figure 9 Transitional and Active Region

V. Results and Discussions

Table-2. Resultant Equations of all Mission Parameters

Eq. No	Equation Name	Equations	R^2 Value	Figure Reference
01.	Proportion of Mission Attempts	$y = 0.015(x^2) - 0.1311(x) + 0.3977$	0.5815	Figure-1
02.	Failed Attempts	$y = 0.0171(x^2) - 0.1842(x) + 0.5522$	0.8647	Figure-1
03.	Success Attempts	$y = 0.0128(x^2) - 0.0730(x) + 0.2286$	0.2368	Figure-1
04.	Reliability	$y = 40.929 \ln(x) - 54.042$	0.0644	Figure-2
05.	Average Reliability	$y = 11.258 \ln(x) - 8.8752$	0.0224	Figure-2
06.	Impact Factor of Mass on Duration	$y = 1.893 \ln(x) - 3.0375$	0.1496	Figure-3
07.	Impact Factor of Mass on Degradation	$y = -2.021 \ln(x) + 10.437$	0.0057	Figure-3
08.	Impact of Mass on Duration	$y = -0.3826(x) + 1617.2$	0.0477	Figure-4
09.	Impact of Mass on Degradation	$y = -0.4203(x) + 1703.8$	0.0570	Figure-4
10.	Probe Life Interpretation			
11.	Mission Efficiency			
12.	Mission Intermission between Two			
13.	consecutive dates			
14.	Mission Efficiency			
15.	Duration as per Eq. (8)	$y = 986.62(x)^{0.1803}$	0.5006	Figure-9
16.	Average Duration	$y = 918.76(x)^{0.2570}$	0.3400	Figure-9

Figure-2

Figure-3

Figure-4

Figure-5

Figure-6

Figure-7

Figure-8

Figure-9
Performing various mathematical interpretation techniques, we obtained 2 line, 3 power, 3 polynomials, and 13 logarithmic regression equations shown in table-2. And its plotted graphs were shown in appropriate sections. From overall observations, the relationship of the impact factor and impact of mass on mission duration greatly promises for a durable mission. The interpreted duration for future missions from this analysis is uncertain in data accuracy. However, we can roughly approximate the duration. The essential step is to reduce the probe mass and the probe masses ranging between 200 kilograms to 1000 kilograms suit best for the mission reliability. Then coming to the transitional region graph shown in Fig.8, the degradation line is supposed to be above the duration curve, it is because the resultant curve obtained shows the progression of mission duration over years from the regression analysis. So, it ultimately suppresses the degradation curve to lie under the duration curve. Further the efficiency we estimated as per the acquired data is tentative and can vary from probe to probe. Because the exact efficiency can be counted as per the data and results returned by the probe either from orbit or the planetary surface (On Mars) to the ground (On Earth). Moreover, the reliability of the mission is assessed based on the number of degradation and duration. It is supposed to be considered depending on the rate of physical tolerance (space environmental factors) and the internal maintenance of components (efficient feasibility of technological components and circuitries).

VI. Conclusions

Concerning the mission tragedies and future prospects, we have clearly explained the mission parameters and interpreted various results by various mathematical interpretation techniques. The results and interpretations were graphically shown in each appropriate section. The resultant equations of mission parameters were orderly showed in table-2. Hence, we conclude that despite the uncertainty of some of the data in this analysis, the trend of Mars mission parameters and interpretation will greatly help global space communities to begin with a gait leap towards planetary explorations.

About the Work

The work has been carried out during the Covid-19 Pandemic and subjected to peer review process. The terms and definitions are novel and nowhere found elsewhere during the search for literature studies. This study was performed at the Department of Physics, Pondicherry University to show and analyze various mission parameters and its effects on mission life employing mathematical techniques such as Regression Analysis, Extrapolation and Averaging.

Copyright License and Statement

The work is licensed under CC BY–SA 4.0. Copyright © 2020 by Malaya Kumar Biswal M and Ramesh Naidu Annavarapu. Pondicherry University. All rights reserved.

Dedication

The main author Malaya Kumar Biswal M would like to dedicate this work to his beloved mother late. Mrs Malathi Biswal for her motivational speech and emotional support throughout his life.

Supplementary Reading

Mars Missions Failure Report Assortment: Review and Conspectus. Presented as Technical Paper at 2020 AIAA Propulsion and Energy Forum on 24 August 202 with paper number AIAA-2020-3541. Published by American Institute of Aeronautics and Astronautics. https://arc.aiaa.org/doi/abs/10.2514/6.2020-3541.
References

[1] Biswal M. M. K., & Naidu A. R. (2020). Mars Missions Failure Report Assortment: Review and Conspectus. In AIAA Propulsion and Energy 2020 Forum (p. 3541). Accessed from https://doi.org/10.2514/6.2020-3541.

[2] Biswal M. M. K., & Naidu A. R. (2020). A Study on Mars Probe Failures. In AIAA SciTech 2021 Forum and Exposition. (Under Review).

[3] Biswal M, Malaya Kumar; Annavarapu, Ramesh Naidu (2020), “Master Catalogue of Lunar and Mars Exploration Missions and their Probe Parameters”, Mendeley Data, V3, Access from https://doi.org/10.17632/mdkzgz23dj.3.

[4] Biswal M, Malaya Kumar (2020), “Data for Assessment of Reliability, Efficiency, Impact Factor, Impact of Probe Mass on mission duration, and Probe Life Expectancy of Mars Missions”, Mendeley Data, V1. Access from http://doi.org/10.17632/vs64pys5dy.1.

[5] Logsdon, J. M., & Millar, J. R. (2001). US–Russian cooperation in human spaceflight: assessing the impacts. Space Policy, 17(3), 171-178.

[6] Tarasenko, M. V. (1996). Current status of the Russian space programme. Space Policy, 12(1), 19-28.
Appendices

Data for Assessment of Durability, Efficiency, Impact Factor, Impact of Probe Mass on mission duration, and Probe Life Expectancy of Mars Missions

Table-3 Overall Mission Attempt Rate

Period	Number of Counts	Proportions									
	Total Attempts	Success Attempts	Failed Attempts	Total Attempts	Success Attempts	Failed Attempts					
1960s-1970s	12	3	9	0.272727273	0.142857143	0.391304348					
1970s-1980s	11	5	6	0.25	0.238095238	0.260869565					
1980s-1990s	2	0	2	0.045454545	0	0.086956522					
1990s-2000s	7	3	4	0.159090909	0.142857143	0.173913043					
2000s-2010s	6	5.5	0.5	0.136363636	0.261904762	0.02173913					
2010s-2020s	6	4.5	1.5	0.136363636	0.214285714	0.065217391					
Total	44	21	23								

Table-4 Efficiency of Mars Missions

Period	1960s-1980s	1980s-2000s	2000s-2020s			
Counts	Output†	Input§	Output†	Input§	Output†	Input§
1	0.0034	4	0.085	52	0.085	4685
2	0.0034	740	0.000459	52	0.000459	6178
3	140	8	1750	258	-	206
4	0.003	3	0.1	330	153.6	0.1
5	3.6	7.32	0.04918	3647	153.6	0.04918
6	118	23	4860.87	0.09227	1504	4685
7	249	2	12450	-	9	456
8	666	1548	43.02326	-	18	0.01555
9	0.005	30	0.016667	297	-	1557
10	640	30	2133.333	219	-	18
11	0.00048	6	0.008	1983	576	0.008
12	0.0032	767	0.000417	286	576	0.000417
13	0.0625	1	6.25	334	161	6.25
14	461	9	5122.222	334	23	5122.222
15	192	9	2133.333	219	847	2133.333
16	-	-	-	727	71	
17	452	-	-	244	71	
18	188	2	9400	-	238	
19	-	-	-	-	-	
20	514	-	-	-	-	
21	195	783	24,90421	-	2133.333	
22	218	4	5450	-	727	
23	219	11	1990.909	-	4575	
24	219	4	5475	-	2133.333	
25	214	-	-	-	-	
26	214	741	28.87989	-	-	
27	1824	741	246.1538	-	-	
28	2040	20	10200	-	-	
29	1050	20	5250	-	-	
30	1677	4685	35.79509	-	-	
Total	12490.44	10925	66600.93	7792.006	10629	9989.585

Notes:
- † Output – Total number of durations (Days)
- § Input – Total number of time elapsed for next mission launch (Days)
- Bolded fonts are operational missions
Table-5 Durability of Mars Missions

S.No	Duration Units	Degradation Days	Average, Reliability Days	S.No	Duration Units	Degradation Days	Average, Reliability Days
1	0.0036	1	0.4982	34	258	258	0
2	0.0034	1	0.4983	35	330	340	5
3	0.0034	125	62.4983	36	3647	3700	26.5
4	140	230	45	37	0.0062	2	0.9969
5	0.003	227	113.4985	38	-	2	0
6	0.36	1	0.32	39	-	2	0
7	1118	1118	0	40	297	297	0
8	249	249	0	41	219	219	0
9	666	666	0	42	1983	1985	1
10	0.005	1	0.4975	43	286	288	1
11	640	641	0.5	44	334	379	22.5
12	0.00048	1	0.49976	45	334	379	22.5
13	0.032	1	0.4984	46	-	0	0
14	0.0625	2	0.96875	47	6178	-	0
15	461	461	0	48	206	244	19
16	192	192	0	49	2477	2906	214.5
17	-	192	0	50	5452	5700	124
18	452	452	0	51	5376	-	0
19	188	188	0	52	456	1024	284
20	-	188	0	53	0.00155	68	33.999225
21	514	516	1	54	-	68	0
22	195	204	4.5	55	-	68	0
23	218	218	0	56	3079	-	0
24	219	219	0	57	2369	-	0
25	219	219	0	58	2356	-	0
26	214	228	7	59	1509	-	0
27	214	212	-1	60	219	219	0
28	1824	1846	11	61	727	-	0
29	2040	2640	300	62	244	638	197
30	1050	1050	0	63	238	638	200
31	1677	1677	0				
32	52	56	2				
33	52	56	2				
Total	**58132.45**	**33502**	**1703.77**				
Average	**922.73**	**531.78**	**27.04**				
Table-6 Impact Factor of Mass on Duration and Degradation of Mars Probes

S.No	Mass	Duration	Degradation	Impact Factor (Mass on Duration)	Impact Factor (Mass on Degradation)
Units	Kg	Days	Days		
01.	480	0.0036	01	0.00000075	0.00208
02.	480	0.0034	01	0.00000071	0.00208
03.	893	0.0034	125	0.00000495	0.091
04.	893	140	230	0.0785	0.198
05.	890	0.0030	227	0.0785	0.256
06.	260	0.36	01	0.00031	0.198
07.	244	1118	1118	2.212	2.220
08.	890	249	249	1.205	1.205
09.	381	666	666	0.719	0.719
10.	3800	0.0050	01	0.159	0.00159
11.	381	640	641	0.153	0.153
12.	3800	0.00048	01	0.153	0.153
13.	558.8	0.0032	01	0.00000084	0.000458
14.	4549	0.0625	02	0.00012	0.000587
15.	2628	653	653	0.090	0.091
16.	2628	640	640	0.246	0.285
17.	558.8	514	516	0.362	0.362
18.	2265	195	204	0.251	0.254
19.	2265	218	218	0.091	0.093
20.	2535	438	438	0.136	0.136
21.	2535	428	440	0.170	0.173
22.	1455	4464	4486	1.226	1.234
23.	1455	2727	2727	2.471	2.478
24.	2990	104	112	0.636	0.638
25.	2990	516	535	0.103	0.108
26.	1018	330	340	0.211	0.218
27.	1030	3647	3700	1.941	1.972
28.	3975	0.0186	06	0.7286	0.740
29.	211	516	516	0.123	0.124
30.	258	1983	1985	5.328	5.332
31.	358	286	288	3.683	3.689
32.	292.4	334	389	0.953	1.025
33.	376	6964	-	10.918	-
34.	646	6384	244	13.060	-
35.	174	2477	2906	10.306	3.84
36.	185	5452	5700	22.086	23.97
37.	984	5376	-	9.262	-
38.	350	456	1024	4.371	-
39.	1781	0.0031	68	0.213	0.51
40.	899	3079	-	1.148	-
41.	482	2369	-	3.944	-
42.	809	2356	-	3.659	-
43.	600	1509	-	2.578	-
44.	280	219	219	1.781	-
45.	358	727	-	1.482	-
46.	27	782	1276	3.140	-
Total	57988	58956.46	32894	111.9559293	211.4696767
Average	1260.60	1281.66	715.08	2.43	4.59
Table 7: Predicted Lifespan from Regression Analysis

S.No	Duration	Mass	Degradation	Mass	Predicted Duration	Predicted Degradation
1	140	893	230	893	1275.54	1328.55
2	1118	244	1118	244	1523.86	1601.30
3	249	890	249	890	1276.69	1329.81
4	666	381	666	381	1471.44	1543.72
5	640	381	641	381	1471.44	1543.72
6	461	2265	461	2265	750.59	751.96
7	192	362.5	192	362.5	1478.52	1551.50
8	452	2265	452	2265	750.59	751.96
9	188	362.5	188	362.5	1478.52	1551.50
10	514	558.8	516	558.8	1403.41	1469.00
11	195	2265	204	2265	750.59	751.96
12	218	2265	218	2265	750.59	751.96
13	219	3260	219	3260	369.88	333.80
14	219	3260	219	3260	369.88	333.80
15	214	3260	228	3260	369.88	333.80
16	214	3260	212	3260	369.88	333.80
17	1824	883	1846	883	1279.37	1332.75
18	2640	572	2640	572	1398.36	1463.45
19	1050	883	1050	883	1279.37	1332.75
20	1677	572	1677	572	1398.36	1463.45
21	52	2420	56	2420	691.28	686.82
22	52	570	56	570	1399.13	1464.29
23	258	2420	258	2420	691.28	686.82
24	258	570	277	570	1399.13	1464.29
25	330	1018	340	1018	1227.71	1276.02
26	3647	1030	3700	1030	1223.12	1270.97
27	297	210	297	210	1536.87	1615.59
28	219	11	219	11	1613.01	1699.22
29	1983	258	1985	258	1518.50	1595.41
30	286	338	288	338	1487.89	1561.79
31	334	290	379	290	1506.26	1581.97
32	334	2.4	397	2.4	1616.30	1702.83
33	6964	376	376	376	1473.35	1545.82
34	6178	637	637	637	1373.49	1436.14
35	206	9	244	9	1613.77	1700.06
36	2477	174	2906	174	1550.64	1630.71
37	5452	185	5700	185	1546.43	1626.09
38	5376	984	984	984	1240.72	1290.31
39	456	350	1024	350	1483.30	1556.75
40	3079	899	899	899	1273.24	1326.03
41	2369	482	482	482	1432.80	1501.28
42	2356	809	809	809	1307.68	1363.85
43	1509	690.8	690.8	690.8	1352.91	1413.53
44	219	280	219	280	1510.08	1586.17
45	727	358	358	358	1480.24	1553.39
46	244	13.5	638	13.5	1612.05	1698.17
47	238	13.5	638	13.5	1612.05	1698.17
Table-8 Mission Intermission Between Two Consecutive Launch and Decay Date Interval

S.No	Launch Date Interval	Decay Date Interval	S.No	Launch Date Interval	Decay Date Interval		
Units	Days	Days	Units	Days	Days		
1	4	4	33	-	-		
2	2	2	740	865	34	1536	19
3	8	8	113	35	35	1536	1589
4	3	3	657	36	36	1504	4821
5	732	732	657	37	9	3636	-
6	23	1440	38	18	18	313	-
7	2	1098	39	-	-	-	-
8	2	1548	19	-	-	-	-
9	30	636	41	576	78	-	-
10	30	641	42	576	2342	-	-
11	6	635	43	161	1538	-	-
12	767	767	44	23	71	-	-
13	1	3	45	825	1483	-	-
14	9	468	46	-	-	-	-
15	9	269	47	786	-	-	-
16	-	-	48	8	-	-	-
17	-	-	49	8	2279	-	-
18	2	264	50	28	3002	-	-
19	2	330	51	766	3507	-	-
20	-	-	52	722	-	-	-
21	783	471	53	1557	456	-	-
22	4	18	54	18	68	-	-
23	11	12	55	-	-	-	-
24	4	13	56	-	-	-	-
25	-	-	57	710	-	-	-
26	741	16	58	13	-	-	-
27	741	3169	59	847	-	-	-
28	20	2305	60	71	-	-	-
29	20	1362	61	71	219	-	-
30	4685	1317	62	-	-	-	-
31	-	-	4444	63	-	244	-
32	5	144	64	-	603	-	-

Table-9 Interpretation of Duration for future missions

Mission Name	Mass Kg	Duration Line Days	Duration Logarithmic Days	Average Days	Degradation Line Days	Degradation Logarithmic Days	Average Days
Mars 2020 Rover	1025	1113.38	1225.04	1169.21	1152.58	1272.99	1212.79
Mars Global Remote Sensing Orbiter	3175	921.29	402.45	661.87	941.95	369.35	655.65
MGRSO Rover	240	1360.04	1525.38	1442.71	1423.06	1602.93	1512.99
Hope Mars Mission	1500	1048.68	1043.30	1045.99	1081.65	1073.35	1077.50
ExoMars 2020 Rover	310	1316.56	1498.59	1407.58	1375.38	1573.51	1474.44
Terahertz Explorer	140	1451.61	1563.64	1507.63	1523.47	1644.96	1584.22
Mangalyaan 2	100	1508.78	1578.94	1543.86	1586.16	1661.77	1623.96
Martian Moon Exploration	150	1439.89	1559.81	1499.85	1510.62	1640.76	1575.69
Type	S.No	Spacecraft	Mass (kg)	Mission Duration**	Mission Degradation***		
------------	------	---------------------	-----------	-------------------	------------------------		
Flybys	01.	1M.No.1	440	0.0016	01		
	02.	1M.No.2	440	0.0013	04		
	03.	2MV-4.No.1	892	0.0024	122		
	04.	2MV-4.No.2	893	0.140	230		
	05.	Mariner-3	260	0.36	04		
	06.	Mariner 4	244	1118	1118		
	07.	Zond 2	890	18	249		
	08.	Mariner 6	381	670	666		
	09.	Mariner 7	381	640	641		
	10.	Mars 6	1900	219	219		
	11.	Mars 7	1900	214	228		
	12.	MarCo-A	13.5	244	244		
	13.	MarCo-B	13.5	603	603		
	14.	2MV-3.No.1	890	0.0030	04		
	15.	Mars 2	358	192	192		
	16.	Mars 3	358	188	188		
	17.	Mars 6	635	219	219		
	18.	Mars 7	635	214	228		
	19.	Viking 1	572	2036	2036		
	20.	Viking 2	572	1316	1316		
	21.	Phobos 1	570	52	119		
	22.	Phobos 2	570	258	258		
	23.	Mars 05	25	02	02		
	24.	Mars Pathfinder	210	297	297		
	25.	Mars Polar Lander	290	334	334		
	26.	Beagle 2	09	183	206		
	27.	Phoenix	350	455	456		
	28.	Schiaparelli EDM	280	219	219		
	29.	InSight Mars Lander	358	727*	727*		
Lander	30.	2M.No.521	3800	0.0050	01		
	31.	2M.No.522	3800	0.0048	01		
	32.	Mariner-8	558.8	0.0022	01		
	33.	Kosmos 110	545.8	0.0025	02		
	34.	Mars 2	2265	461	461		
	35.	Mars 3	2265	452	452		
	36.	Mars 4	2265	195	204		
	37.	Mars 5	2265	218	218		
	38.	Viking 1	883	1846	2640		
	39.	Viking 2	883	1050	1317		
	40.	Phobos 1	2420	52	119		
	41.	Phobos 2	2420	258	258		
	42.	Mars 06	2780	0.0062	02		
Orbiter	43.	Nozomi	258	1983	1985		
	44.	Mars Climate Orbiter	338	286	286		
	45.	Mars Odyssey	376	6964*	6964*		
	46.	Mars Express	637	6178*	6178*		
	47.	Mars Reconnaissance Orbiter	984	5376*	5376*		
	48.	Phobos-Grunt	1560	0.001355	68		
	49.	Yinghao-1	115	0.001355	68		
	50.	Mangalyaan	482	2369*	2369*		
	51.	MAVEN	809	2256*	2256*		
	52.	ExoMars TGO	690.8	1509*	1509*		
Rover	53.	Mars 2 – Prop-M	4.5	192	192		
	54.	Mars 3 – Prop-M	4.5	188	188		
	55.	Sojourner	11	282	297		
	56.	Spirit	174	2269	2477		
	57.	Opportunity	185	5452	5700		
	58.	Curiosity	899	3079*	3079*		

Notes:
- * Operational Mission – Duration Estimated as per 1st May 2020.
- ** Duration From the date of launch to the date of last contact/issue encounter.
- *** Duration from the date of launch to the date of decay/lost.
- Strikethrough missions are the eliminated data for precise life span prediction.
- Bolded texts are the operational mission and their duration is taken as per 1st May 2020.