A six-part collisional model of the main asteroid belt

M. Brož¹, H. Cibulková¹, P. G. Benavidez²

¹ Charles University in Prague, Czech Republic
² Universidad de Alicante, Alicante, Spain

Milani & Kneževic (2003)
Masiero et al. (2011)
Motivation

- New data (albedos and diameters for 129,750 asteroids) from the WISE satellite (Masiero et al. 2011)
- Test if a single scaling law can be used for the whole main belt (Benz & Asphaug 1999)
- To decide if asteroids are rather monolithic or rubble-piles? (simulations from Durda et al. 2007, Benavidez et al. 2012)
- We focus on the last ~3.85 Gyr only (i.e. post-LHB)!
Observational data from WISE

- 6 parts of the MB: inner, middle, `pristine`, outer, Cybele, high-inclination
- reconstruction of the SFDs for 535,630 asteroids (a Monte-Carlo method)

we also computed intrinsic probabilities p_i and impact velocities v_{imp} (Bottke & Greenberg 1993)

observational bias
Observed asteroid families

- we use the list of 82 families from Brož et al. (2013), with a few additions (Walsh et al. 2013)
- essentially compatible with lists of Masiero et al. (2013), Nesvorný (2012)
- we need also physical parameters (D_{PB}, M_{LR}/M_{PB} ratio) to distinguish catastrophic disruptions (methods of Durda et al. 2007, Tanga et al. 1999)

Table 1. A list of asteroid families and their physical parameters.

Designation	a_{cut}	N	p_V	Tax.	D_{PB} km	D_{Durch} km	LR/PB	v_{esc} m/s	q_1	q_2	Age Gyr	Notes, references
3 Juno	50	449	0.250	S	233	?	0.999	139	-4.9	-3.2	<0.7	cratering, Nesvorný et al. (2005)
4 Vesta	60	11 169	0.351	V	259	425	0.995	314	-4.5	-2.9	1.0 ± 0.25	
8 Flora	60	3284	0.304	W	150	160	0.81–0.68	88	-3.4	-2.9	1.0 ± 0.5	
10 Hygiea	70	3122	0.055	C.B	410	442	0.976–0.78	243	-4.2	-3.2	2.0 ± 1.0	
15 Eunomia	50	2867	0.187	S	292	292	0.958–0.66	153	-5.6	-2.3	2.5 ± 0.5	
20 Massalia	40	2980	0.215	S	146	144	0.995	86	-5.0	-3.0	0.3 ± 0.1	
24 Themis	70	3581	0.066	C	158	27.4–30	0.43–0.09	158	-2.7	-2.4	2.5 ± 1.0	
44 Nysa (Polana)	60	9957	0.278	S	81c	?	0.65	48	-6.9	-2.6(0.5)	<1.5	
46 Hestia	65	95	0.053	S	124	153	0.992–0.53	74	-3.3	-2.0	<0.2	
87 Sylvia	110	71	0.045	C/X	261	272	0.994–0.88	154	-5.2	-2.4	1.0–3.8	
128 Nemesis	60	654	0.052	C	189	197	0.987–0.87	112	-3.4	-3.3	0.2 ± 0.1	
137 Meliboea	95	199	0.054	C	174c	240–290	0.59–0.20	102	-1.9	-1.8	<3.0	
142 Polana (Nysa)	60	3443	0.055	W	75	?	0.42	45	-7.0	-3.6	<1.5	

cont. below ↓
The scaling law and fragment SFDs

- scaling law expressed as:
 \[Q_D^* = \frac{1}{q_{\text{factor}}} \left(Q_0 r^a + B \rho r^b \right) \]

- we need also parametric relations describing outcomes of disruptions:
 largest fragment mass \(M_{\text{LF}} \)
 and SFD slope \(q \) vs \(Q/Q_D^* \)
Model, parameters, χ^2 metric

- Boulder code (Morbidelli et al. 2009), particle-in-a-box + SPH
- 36 free parameters: initial SFD slopes, ranges, normalization
- fit for SFD’s @ $t_{\text{end}} = 4$ Gyr and the # of families:
 \(\text{syn, obs} \) ... either $N(>D)$ or N_{fam}
- weighting $w_{\text{fam}} = 10$

\[
\chi^2 = \sum_{i=1}^{N=96+6} \frac{(\text{syn}_i - \text{obs}_i)^2}{\sigma_i^2}
\]
a wide range of

Initial conditions (for simplex)

- 729 different SFDs * 300 iterations = 218,700 simulations
- convergence to a local minimum is difficult ← stochasticity!

disruptions of large PB depend on the random seed
Results for monoliths

- problems with some SFDs! (for $D = 1$ to 10 km)
- the best fit $\chi^2 = 613$, or 512 after a detailed analysis

families are OK
Results for rubble-piles
and the same set of iniconds...

- the ‘best’ fit $\chi^2 = 1602$ only, i.e. much worse than for monoliths!
- the main belt is *not* composed of (pure) rubble-piles?
Possible

Improvements of the model?

- use a longer SFD `tail' \((D_{\text{min}} = 0.01 \text{ km})\)
- account for the Yarkovsky effect dynamical decay \(N(t+\Delta t) = N(t) \exp \left(\frac{\Delta t}{\tau_{YE}} \right)\)
- optimize sequentially the 6 parts of the MB
- none of these works!

\[\tau_{YE}(D) \]
\[\omega(D) \approx 1/D \]
\[\omega(D) \approx D^{-1.5} \]

\[N(t+\Delta t) = N(t) \exp \left(\frac{\Delta t}{\tau_{YE}} \right) \]

a test for a single MB: we can exclude low \(K \) & \(\omega \)
Conclusions and future work

- indeed different scaling laws for different parts of the MB?
- improve the scaling of $D_{PB} = 100$ km disruptions?
- the evolution is too stochastic ($N \sim 10^0$) → prescribe large disruptions (i.e. a deterministic model)?
- improve the YE model (using N-body simulations)?
- some of $v_{imp} > 5$ km/s → use a velocity-dependent scaling law? (e.g. Leinhardt & Stewart 2012)
- family lists are strongly biased? (Walsh et al. 2013)
- etc.?