Effects of Febuxostat on Mortality and Cardiovascular Outcomes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

Ahmad Al-Abdouh, MD; Safi U. Khan, MD; Mahmoud Barbarawi, MD; Sireesha Upadhrasta, MD; Srajum Munira, MD; Anas Bizanti, MD; Hadi Elias, MD; Asadulla Jat, MD; Di Zhao, PhD; and Erin D. Michos, MD, MHS

Abstract

Objective: To investigate the association between using febuxostat and cardiovascular events.

Methods: Systematic search of randomized controlled trials was performed using PubMed/MEDLINE, Cochrane review, and EMBASE databases through April 17, 2019. Meta-analysis was performed using random effect model and estimates were reported as risk difference (RD) with 95% CIs. The certainty of evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation approach. The main outcomes of interest were cardiovascular mortality and all-cause mortality.

Results: A total of 15 randomized controlled trials (16,070 participants) were included. The mean ± SD age was 58.1 ± 11.7 years. At the median follow-up of 6.4 months, use of febuxostat was not associated with statistically significant risk of cardiovascular mortality (RD, 0.12%; 95% CI, -0.25% to 0.49%; I² = 48%; low certainty evidence), all-cause mortality (RD, 0.20%; 95% CI, -0.28% to 0.68%; I² = 60%; very low certainty evidence), major adverse cardiovascular events (RD, 0.40%; 95% CI, -0.34% to 1.13%; I² = 26%; low certainty evidence), myocardial infarction (RD, -0.06%; 95% CI, -0.29% to 0.17%; I² = 0%; moderate certainty evidence), stroke (RD, 0.10%; 95% CI, -0.15% to 0.35%; I² = 0%; moderate certainty evidence), or new-onset hypertension (RD, 1.58%; 95% CI, -0.63% to 3.78%; I² = 58%; very low certainty evidence). These findings were consistent in patients with existing cardiovascular disease.

Conclusion: This meta-analysis suggested that use of febuxostat was not associated with higher risk of mortality or adverse cardiovascular outcomes in patients with gout and hyperuricemia. The results were limited by low to moderate certainty of evidence.

© 2020 THE AUTHORS. Published by Elsevier Inc on behalf of Mayo Foundation for Medical Education and Research. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
safety profile in larger population settings is warranted. A recent meta-analysis11 has found that febuxostat did not increase the risk of major adverse cardiovascular events (MACE) but may increase the risk of cardiovascular death. Herein, we conducted a systematic review and meta-analysis by including a higher number of RCTs than the previously published meta-analysis to examine the effects of febuxostat on mortality and MACE in patients with gout.

METHODS

This trial level meta-analysis was conducted in accordance with Cochrane collaboration guidelines12 and reported according to the Preferred Reporting Items for Systematic Review and Meta-Analysis protocols.13 The protocol of the present study was registered at PROSPERO register (CRD42019133121).

Study Search and Selection Criteria

The literature search was performed using electronic databases of PubMed/MEDLINE, Cochrane review, and EMBASE without language limitations through April 17, 2019, by two independent reviewers (H.E. and S.U.). The following keywords were used: febuxostat, hyperuricemia, gout, and clinical trial (Supplementary Material, available online at http://www.mcpiqojournal.org). References of retrieved studies were screened for further relevant studies suitable for this meta-analysis. The pre-determined inclusion criteria were: (1) RCTs comparing febuxostat vs control (placebo or allopurinol) among adult patients with hyperuricemia; and (2) studies reporting mortality and cardiovascular endpoints of interest. There were no restrictions on language, sample size, and follow-up duration. We excluded reviews, editorials, letters, and non-human studies. We also excluded observational studies as they carry risk of selection and attrition bias to minimize the risk of confounding.

Data Extraction and Quality Assessment

The data abstraction was performed on a prespecified data collection form by two independent reviewers (A.B. and A.J.), and any discrepancy was resolved by a third reviewer (A.A.). The following information was abstracted: baseline characteristics of trials and participants, crude point estimates, raw events, sample sizes, and follow-up duration. Two reviewers (A.J. and A.B.) assessed the quality and certainty of the evidence under the supervision of third reviewer (A.A.) using the Jadad scale14 (Supplemental Table 1, available online at http://www.mcpiqojournal.org), and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach (GRADE-pro GDT),15 which was classified as high, moderate, low, or very low (Supplemental Tables 2 and 3, available online at http://www.mcpiqojournal.org).16 The risk of bias assessment was determined using the Cochrane risk of bias scale (Supplemental Figure 1, available online at http://www.mcpiqojournal.org). Publication bias was assessed using funnel plot (Supplemental Figure 2, available online at http://www.mcpiqojournal.org), and Egger’s regression test.

Outcomes of Interest

The main outcomes of interest were cardiovascular mortality and all-cause mortality. The additional endpoints were MACE, myocardial infarction (MI), stroke, and new-onset hypertension. The definition of MACE in each of the involved trials is shown in Supplemental Table 3.

Statistical Analysis

Outcomes were pooled using a random effects Mantel-Haenszel model. The DerSimonian and Laird method was used for estimation of τ^2. We reported effect sizes as risk difference (RD) with 95% CI. The 95% CIs that did not cross zero were considered statistically significant. We reported the number needed to treat or harm (NNT/H) for all outcomes. We used the I^2 statistic to measure statistical heterogeneity; $I^2>50\%$ was considered to have significant heterogeneity. Sensitivity analyses were performed by limiting the results to patients with pre-existing cardiovascular disease (CVD), and by excluding one trial at a time. To assess whether the current meta-analysis was powered to assess 30% difference between groups with moderate heterogeneity, power analysis was performed as suggested by Borenstein et al.17 (Supplemental Figure 3, available online at http://www.
mcpiqojournal.org). This meta-analysis was 100% powered for primary endpoints.

Analyses were performed using Review Manager (RevMan) Version 5.3 (Copenhagen, Denmark: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014).

RESULTS

Of 661 articles, 67 full-text articles were reviewed after removal of duplicates. Finally, 15 RCTs encompassing 16,070 participants met the inclusion criteria (Figure 1).

Egger’s regression test did not detect significant publication bias ($P_{\text{two-tailed}} = .51$).

Characteristics of Trials and Participants

Tables 1 and 2 report baseline characteristics of trials and participants. The mean ± SD age was 58.1±11.7 years. The proportion of patients with hypertension varied from 27.7% to 100.0% and diabetes 6.9% to 100.0%. The median follow-up across the trials was 6.4 months (range: 4 to 24 months).

Cardiovascular Mortality and All-Cause Mortality

The use of febuxostat was not associated with a significant risk of cardiovascular mortality (RD, 0.12%; 95% CI, -0.25% to 0.49%; $P = .53$; $I^2 = 48$%; NNH=454.5; low certainty evidence) (Figure 2A) or all-cause mortality (RD, 0.20%; 95% CI, -0.28% to 0.68; $P = .42$; $I^2 = 60$%; NNH=149.3; very low certainty of evidence) (Figure 2B).

Cardiovascular Outcomes

The use of febuxostat was not associated with a significant risk of MI (RD, -0.06%; 95% CI, -0.29% to 0.17%; $P = .61$; $I^2 = 0$%; NNH=128.2; moderate certainty evidence), MACE (RD, 0.40%; 95% CI, -0.34% to 1.13%; $P = .29$; $I^2 = 26$%; NNH=155.3; low certainty evidence).
TABLE 1. Details of the Randomized Clinical Trials

Study, year	N	Comparative treatment	Study period	Country	Follow-up (mo)	Population
Becker et al, 2005²⁵	760	Febuxostat 80 mg vs febuxostat 120 mg vs allopurinol	July 2002—February 2004	United States and Canada	12	Gout and hyperuricemia
Schumacher et al, 2008²³	1072	Febuxostat 80 mg vs febuxostat 120 mg vs febuxostat 240 mg vs allopurinol vs placebo	February 2003—April 2004	United States	6.4	Gout
Becker et al, 2009¹⁸	1086	Febuxostat 80 mg vs febuxostat 120 mg vs allopurinol	—	United States and Canada	40	Gout
Becker et al, 2010²⁴	2269	Febuxostat 40 mg vs febuxostat 80 mg vs allopurinol	—	United States	6	Gout
Huang et al, 2014²⁰	516	Febuxostat 40 mg vs febuxostat 80 mg vs allopurinol	February 2010—December 2010	China	6.4	Gout
Nagakomi et al, 2015²⁰	61	Febuxostat 40 mg vs allopurinol	September 2011—April 2013	Japan	12	Heart failure and hyperuricemia
Saag et al, 2016²²	96	Febuxostat 30 mg twice daily vs Febuxostat 40—80 mg once daily vs placebo	—	United States	12	Gout and chronic kidney disease
Dalbeth et al, 2017¹⁶	314	Febuxostat 40—80 mg vs placebo	—	United States	24	Gout
Gunawardhana et al, 2017¹⁸	121	Febuxostat 80 mg vs placebo	—	United States	1.5	Hypertension and hyperuricemia
Gunawardhana et al, 2018²⁷	189	Febuxostat IR 40 mg vs febuxostat XR 40 mg vs febuxostat IR 80 mg vs febuxostat XR 80 mg vs placebo	May 2014—October 2015	United States	3	Gout
Kimura et al, 2018³⁰	443	Febuxostat 10—40 mg vs placebo	November 2012—January 2014	Japan	25	Asymptomatic hyperuricemia and stage 3 chronic kidney disease
Mukri et al, 2018¹⁹	93	Febuxostat 40 mg vs placebo	—	Malaysia	6	Diabetic nephropathy (chronic kidney disease stage 3 and 4) and hyperuricemia
White et al, 2018⁷	6190	Febuxostat 40—80 mg vs allopurinol	April 2010—May 2017	United States	32	Gout and previous cardiovascular events

Continued on next page
certainty evidence), stroke (RD, 0.10%; 95% CI, .15% to 0.35%; \(P = .43; I^2 = 0\% \); NNH=476.2; moderate certainty evidence), or new onset hypertension (RD, 1.58%; 95% CI, -0.63% to 3.78%; \(P = .16; I^2 = 58\% \); NNH=44.8; very low certainty evidence) compared with control (Supplemental Figures 4 A to 4D, available online at http://www.mcpiqojournal.org).

Sensitivity Analyses
In sensitivity analyses restricted to trials including only patients with pre-existing CVD (4 RCTs, 7442 participants), use of febuxostat was not associated with significant risk of cardiovascular mortality (RD, 0.48%; 95% CI, -0.58% to 1.54%; \(P = .37; I^2 = 30\% \); NNH=117.8; low certainty evidence), all-cause mortality (RD, 0.32%; 95% CI, -1.30% to 1.94%; \(P = .70; I^2 = 46\% \); NNH=94.8; low certainty evidence), MACE (RD 0.24% [-1.01% to 1.49%]; \(P = .71; I^2 = 0\% \); NNH=377.4; moderate certainty evidence), and MI (RD, -0.30%; 95% CI, -1.03% to 0.43%; \(P = .42; I^2 = 0\% \); NNH=396.8; moderate certainty evidence) (Supplemental Figures 5A to 5D, available online at http://www.mcpiqojournal.org). Sensitivity analysis by excluding one trial at a time was not associated with significant changes in the results (Supplemental Table 4, available online at http://www.mcpiqojournal.org).

DISCUSSION
In this systematic review and meta-analysis of 15 RCTs including more than 16,000 patients, we found that febuxostat was not associated with a significant risk of cardiovascular or all-cause mortality among patients with gout and hyperuricemia compared with control. In conformity, there was no significant risk of MACE, nonfatal MI, stroke, or new-onset hypertension with use of febuxostat vs control.

Observational studies have suggested a beneficial cardiovascular outcome with febuxostat in patients with gout. This cardioprotective effect could be attributed to the lower frequency of gout flares which has a detrimental effect on the cardiovascular system. On the other hand, using data from an observational cohort study from Taiwan, Su et al found a significant increased risk of adverse cardiovascular events and mortality with
febuxostat and the association was dose dependent. In 2018, White et al\(^9\) published the CARES trial, which was the largest reported RCT that evaluated the cardiovascular safety of febuxostat in patients with gout compared with allopurinol. This trial, which included 6190 patients, found no overall difference in MACE between the two groups, but there were more cardiovascular and all-cause mortality events in the febuxostat group. However, we did not find an association of febuxostat with cardiovascular or all-cause mortality in our analysis of pooled RCT data that included more than 16,000 patients. The CARES trial included patients with higher cardiovascular risk who had events rate more than 10% higher than the other trials, which could have contributed to this higher mortality rates seen in this trial.\(^9\) The mechanism behind any potential risks is unknown. Experimental trials have reported no cardiac toxic effect on both heart function and rhythm.\(^{36-38}\) Furthermore, the rates of MI, arrhythmias, and MACE were similar in both groups of the CARES trial and this was consistent with our analysis. A recent meta-analysis\(^11\) had included 10 trials and found that febuxostat did not increase the risk of MACE but may increase the risk of cardiovascular death. We found that MACE was defined differently across different RCTs (Supplemental Table 5, available online at http://www.mcpiqojournal.org) and using it as a primary outcome is

Study, year	Trial arm, dosage (mg)	N	Males	Age ± SD, y	DM	HTN	CAD	BMI
Becker et al, 2005\(^{25}\)	FBX, 80	256	243	51.8±11.7	17	106	23	32.7±6.1
	FBX, 120	251	243	52.0±12.1	17	113	28	32.3±5.7
	ALP, 300	253	243	51.6±12.6	19	112	23	32.6±6.1
Schumacher et al, 2008\(^{13}\)	FBX, 80	267	251	51±12	—	124	38	33±6
	FBX, 120	269	255	51±12	—	124	37	33±7
	FBX, 240	134	126	54±13	—	70	24	33±7
	ALP, 100-300	268	249	52±12	—	123	27	33±6
	Placebo	134	123	52±12	—	61	18	32±6
Becker et al, 2009\(^{18}\)	FBX, 80	649	—	51.4±11.95	46	295	71	32.3±5.78
	FBX, 120	292	—	50.9±11.57	15	115	33	33.2±6.17
	ALP, 300	145	—	51.0±11.30	12	73	14	33.8±6.79
Becker et al, 2010\(^{24}\)	FBX, 40	757	722	52.5±11.68	89	—	421	32.9±6.37
	FBX, 80	756	710	53.0±11.79	113	—	440	32.9±6.39
	ALP, 200-300	756	709	52.9±11.73	110	—	436	32.7±6.23
Huang et al, 2014\(^{29}\)	FBX, 40	172	167	46.12±10.90	—	54	57	25.63±2.80
	FBX, 80	172	169	47.40±11.18	—	45	47	25.25±2.64
	ALP, 300	172	168	46.17±11.56	—	44	45	25.44±2.53
Nakagomi et al, 2015\(^{12}\)	FBX, 40	31	22	69.3±10	9	27	20	23.6±2.4
	ALP, 100-300	30	18	71.8±8	12	30	24	23.1±3.1
Saag et al, 2016\(^{22}\)	FBX, 30 (twice daily)	32	25	67.3±11.11	12	30	—	32.8±6.45
	FBX, 40–80 (once daily)	32	26	63.6±8.15	15	31	—	34.2±7.30
	Placebo	32	26	66.3±12.05	16	31	—	33.3±6.36
Dalbeth et al, 2017\(^{26}\)	FBX, 40–80	157	145	50.1±11.7	—	—	—	32.3±6.23
	Placebo	157	143	51.4±12.4	—	—	—	33.1±6.40
Gunawardhana et al, 2017\(^{28}\)	FBX, 80	61	50	52.2±10.5	—	43	—	31.99±5.13

\(^{a}ALP = \text{allopurinol}; \text{BMI} = \text{body mass index}; \text{CAD} = \text{coronary artery disease}; \text{DM} = \text{diabetes mellitus}; \text{ER} = \text{extended release}; \text{FBX} = \text{febuxostat}; \text{HTN} = \text{hypertension}; \text{IR} = \text{immediate release}.\)
Our study has many other important strengths, including extensive search focusing on cardiovascular events, examining multiple individual MACE endpoints, a larger number...
of included trials, performance of a key sensitivity analysis, and analyzing the data using the RD instead of risk ratio because we are handling a dataset in which many of the event frequencies were zero; thus, using the risk ratio may exaggerate the effect of treatment.39

Study Limitations

On the other hand, our study also has some limitations worth mentioning. First, although we included a higher number of trials than the prior meta-analysis,11 there was high heterogeneity of study populations across the various trials. We tried to overcome that by pooling results using the random effects model and doing sensitivity analysis. Second, among these trials, the number of cardiovascular events were low in both febuxostat and control arms of the trials and this is likely because the primary endpoints of most of these studies were not cardiovascular events. Third, there were only limited number of studies which included only patients with history of CVD.20,28,31 If future studies are planned, we recommend further trials that measure cardiovascular events and mortality as an outcome, defining MACE, and comparing the outcomes among different doses of febuxostat over a longer follow-up duration. Finally, there are many ongoing trials that are measuring cardiovascular events and mortality as an outcome such as the Cardiovascular Safety of Febuxostat and Allopurinol in Patients with Gout and Cardiovascular Morbidities; CVD = cardiovascular disease; MACE = major adverse cardiovascular events; MI = myocardial infarction; RCT = randomized controlled trials; RD = risk difference

SUPPLEMENTAL ONLINE MATERIAL

Supplemental material can be found online at http://www.mcpiqojournal.org. Supplemental material attached to journal articles has not been edited, and the authors take responsibility for the accuracy of all data.

Abbreviations and Acronyms: CARES trial = The Cardiovascular Safety of Febuxostat and Allopurinol in Patients with Gout and Cardiovascular Morbidities; CVD = cardiovascular disease; MACE = major adverse cardiovascular events; MI = myocardial infarction; RCT = randomized controlled trials; RD = risk difference

CONCLUSION

This meta-analysis including 16,070 participants showed that there was no significant difference in cardiovascular mortality, all-cause mortality, MACE, MI, stroke, and new-onset hypertension between febuxostat and the control group.
4. Roughley MJ, Belcher J, Mallen CD, Roddy E. Gout and risk of chronic kidney disease and nephropathic: meta-analysis of observational studies. Arthritis Res Ther. 2010;12(7):190.

5. Claus LW, Saezen JJ. Patient considerations in the management of gout and role of combination treatment with lesinurad. Patient Relat Outcome Meas. 2018;9:231-238.

6. Sattu SE, Gaffo AL. Treatment of hyperuricemia in gout: current therapeutic options, latest developments and clinical implications. Ther Adv Musculoskelet Dis. 2016;8(4):145-159.

7. Osada Y, Tsuchimoto M, Fukushima H, et al. Hypouricemic effect of the novel xanthine oxidase inhibitor, TEI-6720, in rodents. Eur J Pharmacol. 1993;241(2-3):183-188.

8. Takano Y, Hase-Aoki K, Horuchi H, et al. Selectivity of febuxostat, a novel non-purine inhibitor of xanthine oxidase\xspace/xanthine dehydrogenase. Life Sci. 2005;76(16):1835-1847.

9. White WB, Saag KG, Becker MA, et al. Cardiovascular safety of febuxostat and allopurinol in patients with gout. N Engl J Med. 2018;378(13):1200-1210.

10. US Food and Drug Administration. FDA adds boxed warning for increased risk of death with gout medicine Uloric (febuxostat). https://www.fda.gov/Drugs/DrugSafety/ucm311182.htm. Accessed April 25, 2019.

11. Cuenca JA, Balda J, Palacio A, Young L, Pillinger MH, Tamariz L. Febuxostat and cardiovascular events: a systematic review and meta-analysis. Int J Rheum Dis. 2019;22(1):107-118.

12. Higgins JPT, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.

13. Shamseer L, Moher D, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P). 2015: elaboration and explanation. BMJ. 2015;350:5284.

14. Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996;17(1):1-12.

15. GRADEpro. GRADE your evidence and improve your guide lines development in health care. https://gdtGRADEpro.app/. Accessed January 19, 2020.

16. Borenstein M, Hedges LV, Higgins JP, Rothstein HR. Introduction to Meta-Analysis. West Sussex, UK: John Wiley & Sons; 2011: 257-275, Chapter 29.

17. Becker MA, Schumacher HR, MacDonald PA, Lloyd E, Lauderbach C. Clinical efficacy and safety of successful long-term urate lowering with febuxostat or allopurinol in subjects with gout. J Rheumatol. 2009;36(6):1273-1282.

18. Mukin MNA, Kong WY, Mustafar R, et al. Role of febuxostat in retarding progression of diabetic kidney disease with asymptomatic hyperuricemia: a 6-months open-label, randomized controlled trial. EXCIJ. 2018;17:563-575.

19. Nakagomi A, Saiki Y, Nioma S, et al. Effects of febuxostat and allopurinol on the inflammation and cardiac function in chronic heart failure patients with hyperuricemia. J Card Metab Endocr. 2015;8:46-55.

20. Saag KG, Becker MA, Whelton A, et al. Efficacy and safety of febuxostat extended and immediate release in patients with gout and renal impairment: a phase II placebo-controlled study. Arthritis Rheum. 2018;71(1):143-153.

21. Saag KG, Whelton A, Becker MA, MacDonald P, Hunt B, Gunawardhana L. Impact of Febuxostat on Renal Function in Gout. Patients With Moderate-to-Severe Renal Impairment. Arthritis Rheumatol. 2016;68(8):2035-2043.

22. Schumacher MA, Becker MA, Wortmann RL, et al. Effects of febuxostat versus allopurinol and placebo in reducing serum urate in subjects with hyperuricemia and gout: a 28-week, phase III, randomized, double-blind, parallel-group trial. Arthritis Rheum. 2008;59(11):1540-1548.

23. Becker MA, Schumacher HR, Espinosa LR, et al. The urate-lowering efficacy and safety of febuxostat in the treatment of the hyperuricemia of gout: the CONFIRM5 trial. Arthritis Res Ther. 2010;12(2):16-18.

24. Becker MA, Schumacher HRJ, Wortmann RL, et al. Febuxostat, a novel nonpurine selective inhibitor of xanthine oxidase: a twenty-eight-day, multicenter, phase II, randomized, double-blind, placebo-controlled, dose-response clinical trial examining safety and efficacy in patients with gout. Arthritis Rheum. 2005;52(3):1692-1693.

25. Dalbeth N, Saag KG, Palmer WE, et al. Effects of febuxostat in early gout. Arthritis Rheumatol. 2017;69(12):2386-2395.

26. Gunawardhana L, Becker MA, Whelton A, Hunt B, Castillo M, Saag K. Efficacy and safety of febuxostat extended release and immediate release in patients with gout and moderate renal impairment: phase II placebo-controlled study. Arthritis Res Ther. 2018;20(1):99.

27. Gunawardhana L, McLearn L, Punni HA, et al. Effect of Febuxostat on ambulatory blood pressure in subjects with hyperuricemia and hypertension: A Phase 2 randomized placebo-controlled study. J Am Heart Assoc. 2017;6(15):e006683.

28. Huang X, Du H, Gu J, et al. An allopurinol-controlled, multicenter, randomized, double-blind, parallel-between-group, comparative study of febuxostat in Chinese patients with gout and hyperuricemia. Int J Rheum Dis. 2014;17(6):679-686.

29. Kimura K, Hosoya T, Uchida S, et al. Febuxostat therapy for patients with stage 3 CKD and asymptomatic hyperuricemia: a randomized trial. Am J Kidney Dis. 2018;72(6):798-810.

30. Kojima S, Matsui K, Hiramitsu S, et al. Febuxostat for Cerebral Arteriovenous Events Prevention Study. Eur J Heart J. March 2019;40(22):1778-1786.

31. Foody J, Turpin RS, Tidwell BA, Lawrence D, Schulman KL. Major cardiovascular events in patients with gout and associated cardiovascular disease or heart failure and chronic kidney disease initiating a xanthine oxidase inhibitor. Am Heal Drug Benefi ts. 2017;10(8):393-401.

32. Singh JA, Ramachandaran R, Yu S, Curtis JR. Allopurinol use and the risk of acute cardiovascular events in patients with gout and diabetes. BMC Cardiovasc Disord. 2017;17(1):76.

33. Krishnan E. Inflammation, oxidative stress and lipids: the risk triad for atherosclerosis in gout. Rheumatology (Oxford). 2010;49(7):1229-1238.

34. Vic C-Y, Shih H-C, Lin L-Y, Lin F-J. Comparing cardiovascular safety of febuxostat and allopurinol in the real world: a population-based cohort study. Mayo Clin Proc. 2019;94(7):1147-1157.

35. Hou M, Hu Q, Chen Y, Zhao L, Zhang J, Bache RJ. Acute effects of febuxostat, a nonpurine selective inhibitor of xanthine oxidase, in pacing induced heart failure. J Cardiovasc Pharmacol. 2006;48(5):255-263.

36. Grewal HK, Martinez JR, Espinosa LR. Febuxostat: drug review and update. Expert Opin Drug Metab Toxicol. 2014;10(5):747-758.

37. Zhao L, Roche BM, Wassale JL, et al. Chronic xanthine oxidase inhibition following myocardial infarction in rabbits: effects of early versus delayed treatment. Life Sci. 2008;82(10-19):495-502.

38. Walter SD. Choice of effect measure for epidemiological data. J Clin Epidemiol. 2000;53(9):931-939.

39. MacDonald TM, Ford I, Nuki G, et al. Protocol of the Febuxostat in the Management of Symptomatic Hyperuricaemia in Cardiovascular Disease or Heart Failure and Chronic Kidney Disease (FAMOS Study): A Large Prospective, Randomised, Open, Blinded Endpoint Study Comparing the Cardiovascular Safety of Allopurinol and Febuxostat in the Management of Symptomatic Hyperuricaemia. BMJ Open. 2014;4(7):e005354.