The Traditional Uses, Phytochemistry and Pharmacology of Genus Hibiscus: A Review

Manish Kapoor1*, Gurdeep Kaur1*, Navneet Kaur1, Chanchal Sharma1, Kajal Batra1 and Davinderpal Singh1

1Department of Botany, Punjabi University, Patiala, India.

Authors’ contributions

This work was carried out in collaboration among all authors. Authors MK and DS designed the study and analysed. Authors GK, NK, CS and KB interpreted and prepared the manuscript. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/EJMP/2021/v32i430382

Received 14 March 2021
Accepted 24 May 2021
Published 03 June 2021

ABSTRACT

The genus Hibiscus belongs to the mallow family, Malvaceae comprising of about 275 species growing in tropical and sub tropical areas. The various species of genus Hibiscus have been used as traditional medicine all over the world. There are numerous reports of their traditional medicinal uses in various countries like India, Nigeria, China, and Sri Lanka etc. to cure various ailments such as hypertension, cardiac diseases, stomach-ache, urine problems, skin diseases and many more. Based on the historical knowledge, various pharmacological and phytochemical studies on some species of the genus Hibiscus have been done. Nevertheless, there are no up-to-date articles published which can provide an overview of pharmacological effects of the genus Hibiscus. Therefore, the main objective of the review article is to provide a systematic comprehensive summary of traditional uses, phytochemistry and pharmacology of the genus Hibiscus and to build up a correlation between its traditional ethno-botanical uses and pharmacological activities so as to find some advanced research opportunities in this field. The given information on the ethno-botanical uses, phytoconstituents and various medicinal properties of the genus Hibiscus was gathered from the online scientific databases through search in Google, Google Scholar, Science Direct, NCBI, Pubmed, Springer Link, Research Gate by using some keywords as. Besides these

*Corresponding author: E-mail: jdmanishkapoor@yahoo.com, kaurgurdeep1908@gmail.com;
websites other published literature and unpublished Ph.D. thesis and M.Sc. dissertation were also consulted. Previously conducted research revealed that the genus contains good amount of phytoconstituents such as antioxidants, phytosterols, saponins, lignin, essential oils, glycosides, and anthocyanins etc. Presence of these bioactive compounds in the crude extracts of the plants make it suitable for various medicinal properties like anti-inflammatory, anti-diabetic, anti-obesity, anti-proliferative, anti-ulcer, hypersensitive, hypolipidemic, hepatoprotective, nephroprotective and many more. Additionally, this review article showed that mainly two species of the genus i.e. *H. rosa-sinensis* and *H. sabdariffa* have been explored for their pharmacological activities. There are few reports on some other species like *H. tiliaceus*, *H. microanthus*, *H. asper*, *H. acetosella*. This review highlights the medicinal potential of the plant Hibiscus due to its unique blend of phytochemicals. These phytoconstituents can be further assessed and subjected to clinical trials for their proper validations. Although large amount of the data regarding pharmacological effects has already been added to the existing reservoir but still potential of certain species like *H. radiatus*, *H. hirtus*, *H. moschetous*, *H. trionum* and many more is not yet unveiled and can be considered as future prospects that need to be worked out.

Graphical Abstract:

- **Most Common species**
 - *H. rosa-sinensis*, *H. sabdariffa*

- **Less common species**
 - *H. syriacus*, *H. mutabilis*,
 - *H. tiliaceus*, *H. schizopetalous*

Ethnobotanical uses
- Cure for:
 - Hypertension
 - Cardiac diseases
 - Stomach ache
 - Urine problem
 - Hair problems
 - Skin diseases

Pharmacological activities
- Anti-inflammatory
- Anti-bacterial
- Anti-diabetic
- Anti-obesity
- Anti-proliferative
- Anti-ulcer
- Hypo lipidemic
- Hepatoprotective
- Nephroprotective

Phytoconstituents
- Antioxidants
- Phytosterols
- Saponins
- Lignin
- Anthocyanins
- Glycosides

Keywords: Hibiscus; phytoconstituents; pharmacognosy; pharmacology; traditional uses; ethnobotany; anti-bacterial; antioxidant; anti-fungal; anti-cancer activity; Hibiscus schizopetalous; Hibiscus rosa-sinensis; Hibiscus radiates; Hibiscus sabdariffa; Hibiscus syriacus; Hibiscus mutabilis.

ABBREVIATIONS

- **DPPH**: α, α'-diphenyl-β-picrylhydrazyl.
- **FRAP**: Ferric reducing antioxidant power
- **ABTS**: 2, 2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)
- **H₂O₂**: Hydrogen peroxide
- **NO**: Nitric oxide
- **SOD**: Superoxide dismutase
- **GPx**: Glutathione Peroxidase
- **CAT**: Chloramphenicol acetyltransferase
- **MIC**: Minimum inhibitory concentration
- **TBARS**: Thiobarbituric acid reactive substance assay
- **TG**: Triglycerides
- **VLDL**: Very low density lipids
- **LDL**: Low density lipids
- **HDL**: High density lipids
- **AST**: Aspartate amino transferase
- **ALT**: Alanine transaminase
- **SGOT**: Serum glutamic oxaloacetic transaminase
- **SGPT**: Serum glutamic pyruvic transaminase
- **WBC**: White blood cells
- **RBC**: Red blood cells
- **IC₅₀**: Inhibitory concentration 50.
1. INTRODUCTION

Hibiscus is a genus of flowering plants with numerous medicinal properties belongs to mallow family, Malvaceae. The genus is quite large, comprising several hundred species that is native to warm-temperate, sub-tropical and tropical regions throughout the world. There are about 275 species of Hibiscus in the tropical and sub-tropical regions [1]. Out of them H. rosa-sinensis, H. syriacus, H. cannabinus, H. radiatus, H. vitifolius, H. sabdariffa, H. schizopetalus etc. are commonly found in India. Along with a flowering plant it also has various medicinal properties. Plants with medicinal properties have a bright future because over 50% of all modern clinical drugs used today are of natural origin [2]. More than 7500 species out of 17000 species of higher plants are used in the various traditional systems of medicine like Ayurveda, Siddha and Unani [3]. Because plant-based medicines are organic in origin and have less or no side effects as compared to all opathic medicine, their use has increased, which monetarily stands about US$120 billion, and is expected to reach US$7 trillion by 2050 [4]. The primary benefits of using the plant-derived medicines are more beneficial because they are readily affordable and accessible [5]. For the discovery of new more effective bio-therapeutic agents, the interest is increasing to find the chemical composition of plants [6]. The various parts of this plant have been known to contain numerous medicinal properties like antihyperlipidemic, antiproliferative, antioxidant, antimicrobial, anti-inflammatory and other pharmological properties [7]. This review will focus on the phytochemistry and pharmacological properties of Hibiscus in detail.

2. MORPHOLOGICAL CHARACTERISTICS

The genus includes both annual and perennial herbaceous plants, as well as woody shrubs and small trees. The leaves are alternate, ovate to lanceolate, often with a toothed or lobed margin. The flowers are complete, large, conspicuous, and trumpet-shaped, with five or more petals, colour from white to pink, red, orange, peach, yellow or purple and from 4 to 18 cm broad. Flower colour in certain species, such as H. mutabilis and H. tiliaceus changes with age. The fruit is a dry five-lobed capsule, containing several seeds in each lobe, which are released when the capsule dehisces (splits open) at maturity [Fig.1].

2.1 Phytochemical Analysis

Secondary metabolites are the important compounds present in the plants possessing major role in defence. Phytochemical studies on genus Hibiscus has been started million years ago and is being explored till date. These studies reveal that the plant is perfect blend of various phytoc compounds like flavonoids, tannins, saponins, carbohydrates, steroids, phenols, glycosides, quinones, terpenoids etc. The extraction of such economical phytochemicals has been done from various plant parts such as leaves, stem, flower and roots using different solvents viz. water, methanol, ethanol, ethylacetate, chloroform and petroleum ether for extract preparation. Table 1 illustrates presence of diverse phytoc compounds in different species of Hibiscus where it is clearly observed that H. sabdariffa and H. rosa-sinensis has been well explored in this regard but still little is known about H. acetosella, H. cannabinus, H. syriacus and many more.

| Chart 1. Taxonomic classification |
|-----------------|-----------------|
| **Botanical name** | **Hibiscus** |
| Domain | Eukaryota |
| Kingdom | Plantae |
| Subkingdom | Tracheobionta |
| Phylum | Tracheophyta |
| Subphylum | Spermatophylla |
| Class | Magnoliopsida |
| Sub class | Dilleniaceae |
| Super order | Rosanae |
| Order | Malvalces |
| Family | Malvaceae |
| Sub family | Malvoideae |
| Tribe | Hibisceae |
| Genus | Hibiscus L. |
Fig. 1. A) *Hibiscus schizopetrous*; B) *H. rosasinensis*; C) *H. radiates*; D) *H. sabdariffa*; E) *H. syriacus*; F) *H. mutabilis*

2.2 Pharmacological Activities

Besides being eye-catching morphologically, pharmacological activities of *Hibiscus* are also great source of attraction. The plant shows anti-bacterial, anti-fungal, anti-inflammatory, anti-cancerous, anti-hyperepidemic, anti-glycaemic activities along with various other health related benefits like effect on lipid metabolism, anti-hypertensive effects, effects on hairgrowth and anti-analgesic activities.

2.2.1 Anti-bacterial activity

Hibiscus exhibits anti-bacterial activity against different gram-positive and gram-negative bacteria like Bacillus cereus, *Streptococcus faecalis*, *Streptococcus aureus*, Clostridium sporogenes, Micrococcus luteus, E.coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Serratia marcescens, Proteus vulgaris, Proteus rettgeri, Aeromonas hydrophila, Bacillus subtilis and many more. Studies have been conducted on different plant parts like leaves, flowers, fruits in different extracts like methanol, ethanol, ethyl acetate and aqueous and almost all the plant parts were found to show anti-bacterial activity, however these extracts did not display same results for all the bacterial strains used for different studies. The results obtained by different researchers have been included in Table 2 along with plant part and bacterial strain used.

2.2.2 Antioxidant activity

Exploration of antioxidant potential of biological forms like plants has always been of greater interest to the pharmacologist. Higher the antioxidant potential, greater benefits can be drawn out of various medicinal plants like hibiscus. Various parts of plant like leaves, bark,
Chart 2. Synonyms

Species	Synonyms
Hibiscus acetosella Welw. ex Hiern	Hibiscus eetveldeanus De Wild. & T. Durand
Hibiscus adoensis Hochst. ex A. Rich.	Kosteletzkya adoensis (Hochst. ex A. Rich.) Mast.
Hibiscus calycinus Willd.	Hibiscus calyphyllus Cav.
Hibiscus calyphyllus Cav.	Hibiscus calycinus Willd.
Hibiscus cuneiformis DC.	Alyogyne cuneiformis (DC.) Lewton
	Cientfuegosia cuneiformis (DC.) Hochr.
	Fugosia cuneiformis (DC.) Benth.
Hibiscus eetveldeanus De Wild. & T. Durand	Hibiscus acetosella Welw. ex Hiern
Hibiscus elatus Sw.	Talipariti elatum (Sw.) Fryxell
Hibiscus esculentus L.	Abelmoschus esculentus (L.) Moench
Hibiscus ficulneus L.	Abelmoschus ficulneus (L.) Wight & Arn.
Hibiscus flavus Forssk.	Pavonia arabica Hochst. & Steud. ex Boiss.
Hibiscus glaber Matsum. ex Nakai	Talipariti glabrum (Matsum. ex Nakai) Fryxell
Hibiscus hakeifolius Giord.	Alyogyne hakeifolia (Giord.) Alef.
	Cientfuegosia hakeifolia (Giord.) Hochr.
	Fugosia hakeifolia (Giord.) Hook.
Hibiscus hamabo Siebold & Zucc.	Talipariti hamabo (Siebold & Zucc.) Fryxell
Hibiscus hastatus L. f.	Talipariti hastatum (L. f.) Fryxell
Hibiscus laevis All.	Hibiscus militaris Cav.
Hibiscus lampas Cav.	Thespesia lampas (Cav.) Dalzell
Hibiscus macrophyllus Roxb. ex Hornem.	Talipariti macrophyllum (Roxb. ex Hornem.) Fryxell

Chart 3. Traditional uses: Traditional uses of *Hibiscus* species

Species	Country/Region	Plant part used	Traditional uses	Proportional administration	References
H. asper	Nyong valley in Cameroon	Whole plant	To cure female infertility	-	Jiofack et al. [8]
H. cannabinus L.	Africa	Stem peels	To cure fatigue and anaemia	-	Agbor et al. [9] and Lee et al. [10]
H. cannabinus	Kwa Nibela, peninsula, St Lucia, South Africa	Whole plant	To cure chicken pox	Boiled juice	Kokwaro, [11] and Williams, [12]
H. linarifolius wild	Nigeria	Leaves	Treatment of Typhoid fever	Decoction	Borokini et al. [13]
H. macrophyllus Roxb.	Tripura, India	Leaves and Flower	To cure cough and sexual problems	-	Sen et al. [14]
Species	Country/Region	Plant part used	Traditional uses	Proportional administration	References
----------------------	------------------------	-----------------------	---	-----------------------------	-------------------------
H. rosa-sinensis	Guimaras island, Phillipines	Flower	To cure boils	Crush and apply as poultice	Ong et al. [15]
H. rosa-sinensis	Bangladesh	Flower	Regulation of menstrual cycle	Decoction	Alam, [16]
H. rosa-sinensis	China	Flower and Bark	Emmenagogue	Hot water extract	Burkhill, [17] and Pardo et al. [18]
H. rosa-sinensis	Cook Islands	Flower and leaves	Ailing infants, Gonorrhea	Hot water extract	Whistler, [19]
H. rosa-sinensis	East Indies	Flower and leaves	Regulate menstruation produce abortion. To stimulate expulsion of afterbirth	Hot water extract of flower.	Burkhill, [17]
H. rosa-sinensis	Fiji	Leaves	Digestion, Diarrhea	Juice	Singh, [20]
H. rosa-sinensis	French Guiana	Flowers	Grippe	Hot extract	Luu, [21]
H. rosa-sinensis	Ghana	Peeled Twig	Chewstick	-	Adu-Tutu et al. [22]
H. rosa-sinensis	Guadeloupe	Flowers	Sodonic, Anti-tussive	Hot extract	Vitalyos, [23]
H. rosa-sinensis	Guan	Leaves	To Promote draining of abscesses	-	Haddock, [24]
H. rosa-sinensis	Haiti	Leaves and Flowers	Flu & cough, stomach pain, Eye problems	Decoction	Kobayashi, [25]
H. rosa-sinensis	Hawaii	Flowers	Lactation	-	Nath et al. [26]
H. rosa-sinensis	India	Stem and Flowers	Abortion, Antifertility, Contraceptive, Diuretic, Menorrhagia, bronchitis, Emmenagogue, Demulcent, Cough, Abortifacient	Hot water extract	Nath et al. [26], Tiwari et al. [27], Maheswari et al. [28], Jain et al.[29], Malihi et al.[30], Reddy et al. [31], Dixit, [32] and Hemadi et al.[33], Dixit, [34] and Van et al.[35]
H. rosa-sinensis	Indonesia	Leaves and Flowers	Menstruation, Abortion, Emmenagogue, Women in labor	Juice	Quisumbing, [34] and Van et al.[35]
H. rosa-sinensis	Japan	Leaves	Anti-diarrhoeal	Decoction	Shimizu et al. [36]
H. rosa-sinensis	Kuwait	Flowers	Aphrodisiac	-	Alami et al. [37]
H. rosa-sinensis	Malaysia	Roots and Flowers	Fever, Expectorant, Emmenagogue	Hot water extract	Burkhill, [17] and Hooper, [38]
H. rosa-sinensis	Mexico	Barks and leaves	Dysentery	Infusion	Zamora-Martinez, [39]
H. rosa-sinensis	Nepal	Roots	Cough	Hot water extract	Suwal, [40]
H. rosa-sinensis	New Britain	Flowers	Menstruation	Hot extract	Holdsworth, [41]
H. rosa-sinensis	New Caledonia	Flowers	Abortifacient	Decoction	Holdsworth et al. [42]
H. rosa-sinensis	Northern Ireland	Flowers	To induce labor	Water extract	Ramirez et al. [43]
H. rosa-sinensis	Peru	Flowers	Contraceptive, Emmenagogue	Hot water extract	Pardo et al.[18]
H. rosa-sinensis	Philippines	Flowers	Bronchial Catarrh, Emmollients,	Hot water extract	Watt et al. [44]
Species	Country/Region	Plant part used	Traditional uses	Proportional administration	References
-------------------------	--------------------------	-------------------------------	--	-----------------------------	-----------------------------
H. rosa-sinensis	Trinidad	Flowers	Cancerous, Swellings, Amenorrhea	Decoction	Wong, [45] and Ayensu, [46]
H. rosa-sinensis	Vanuatu	Stem and bark	Amenorrhea, Abortive	Decoction	Bourdy et al. [47]
H. rosa-sinensis	Vietnam	Flowers	Dysmenorrhea, Abortive, Infusion	Infusion	Quisumbing, [34]
H. sabdariffa L.	India, Africa, Mexico	Infusion of leaves or calyces	Diuretic, Chlorectic, Febirufgal, hypertensive effect	-	Morton, [48]
H. sabdariffa L.	Egypt	Calyces	Treatment of cardiac and nerve diseases, increase production of urine	-	Leung, [49]
H. sabdariffa L.	Egypt and Sudan	“Karkade” Calyces	To lower body temperature	-	Leung, [49]
H. sabdariffa L.	India	Seeds	Relieve pain in urination and indigestion	Decoction	Morton, [48]
H. sabdariffa L.	Brazil	Roots	Stomachache emollient properties, high blood pressure	-	Morton, [48]
H. sabdariffa	China (Chinese Folk Medicine)	Roots	To treat liver disorder and high blood pressure	-	Morton, [48]
H. sabdariffa	Iran	Sour hibiscus tea	To treat hypertension	-	Burnham et al. [50]
H. sabdariffa	Nigeria	Seeds	Rise or induce lactation in cases of poor milk production, poor letdown and maternal mortality	-	Gaya et al. [51]
H. schizopetalous (Mast.)	India	Leaf and Flower	Fresh wound	-	Sens et al. [14]
H. surratenius	Nyong valley in Cameroon	Aerial parts	Polyydromnius	-	Jofack T. et al. [8]
H. surratenius	South Africa	Leaves	Malaria	Decoction/ Oral	Yetein et al. [52]
H. talbotii	India	Roots	Indigestion	-	Jagtap et al. [53]
H. tiliaceous	Sri Lanka	Flower	Earache	Boiled in milk	Dixit, [32]
H. tiliaceous	Sri Lanka	Flower	Emollient properties and anti-depressant like activities	-	Dixit, [32]
H. tiliaceous	Sri Lanka	Bark, branches, and Flower buds	Mild laxative and lubricant in childbirth or labor pain and rubbed on stomach to treat bronchitis	Slimy sap	Hemadri et al. [33]
H. tiliaceous	Sri Lanka	Wood and flower	Treatment of skin diseases	-	Hemadri et al. [33]
Table 1. Phytochemical studies of different *Hibiscus* species

Species	Solvent used for Extraction	Class	Bioactive compound	Reference
H. cannabinus	Acetone	-	Grossamide K1, Erythrocannabinine H2, Phellandrene, Phytol, Nonanal, 5-Methyl-turfural, 2-Hexenal, Benzene acetaldehyde	Pappas et al. [54], Moujir et al. [55], Seca et al. [56]
H. esculentus	Aqueous	Flavonoid	Cyaniidin 3-xylosylglucose and cyanin 3-glucoside, the red flowers of *H. mutabilis* contained quercetin 3-sambubioside, isoquercitrin, hyperin, quajaverin and kaempferol glycosides	Shui et al. [57], Ishikura, [58]
H. mutabilis	Aqueous	Anthocyanin	Cyanidin-3-sambubioside	Amrhein et al. [59]
	Methanol	Flavonoids	Quercetin and hyporside	Iwaoaka et al. [60]
	Aqueous	Flavonoids	Quercetin 3- sambubioside and cyanidin 3-sambubioside	Lowry et al. [1]
	Aqueous	Phenols, flavonoids, and anthocyanins	Quercetin, Quercemericrine, Quercetin-3-D-sylsoside, Quercetin-3-Sambubioside, Isoquercetin, Kaempherol, Cyanidine, Cyanidine-3-slosylglucose, Cyanidine-3-monoglucose, Hibiscones, Hibiscoquinones, Beta-sitosterol	Barve et al. [61]
H. mutabilis	Aqueous	Phenols and flavonoids	Steppogenin, genistein, salicyclic acid, rutin, potengriffsioside A, kaempferol 3-O-rutinoside and emodin	Hou et al. [62]
H. rosa sinensis	Aqueous	Anthocyanin	Cyanin, cyanin chorides, methyl-10-oxa-11-octadecynoate, methyl-8-oxa-9- octadecynoate, methyl-9-methylene-8-oxaheptadecanoate and methyl10-methylene-9-oxactadecanoate	Sharma et al. [63]
H. rosa sinensis	Choloroform	Anthocyanin	Cyanidin3-sorphoside	Vastrad et al. [64] and Bhakta et al. [65]
H. rosa sinensis	Methanol	Glucoside	Luteolin-8-C-glucoside.	Begum et al. [66]
H. rosa sinensis	Aqueous	Sterols	Beta Sitosterol	Khare et al. [67]
H. rosa sinensis	Aqueous and methanol	Flavonoids	Quercetin-3- di-0-beta-D-glucoside, quercetin-3-7-di-0-beta-D-glucose, quercetin-3-0-beta-D-sorphorotioside, kaempferol-3-0-beta-D-slosylglucose, cholesterol, campesterol, Beta-sitosterol, catalase	Ross et al.[68] and Subramanian et al. [69]
H. rosa sinensis	Methanol	Flavonoids	Cyclopeptide alkaloid, quercetin, hentriacontane	Srivastava et al. [70] and Khokhar, [71]
H. rosa sinensis	Aqueous	Flavonoids	Quercetin-3,5-diglucoside, quercetin-3,7-diglucoside, cyanidine-3,5-diglucoside and kaempferol-3-xylosylglucose	Joshi et al. [72]
Species	Solvent used for Extraction	Class	Bioactive compound	Reference
------------------	-----------------------------	----------------------	---	----------------------------
H. rosa sinensis	Methanol	Flavonoids	Quercetin, quercetin-3-diglucoside, β-sitosterol, cyanidin-3,5-diglucoside	Kumar, [73]
H. rosa sinensis	Aqueous	Phenols, flavonoids, and anthocyanins	Hibiscetin, Cynadin, Cyanidine glucosides, Taraxeryl acetate, b-Sitosterol Campesterol, Ergosterol, Cyclopropenoids	Gilani et al. [74], Adhirajan et al. [75], Khokute [76], Singh et al. [77], Gauthaman et al. [78], Sachdewa et al. [79], Sachdewa et al. [80], Sharma et al. [81], Sharma et al. [82] and Ajay et al. [83]
H. sabdariffa	Aqueous	Anthocyanin	Delphinidin-3-sambubioside, Cyanidine-3-sambubioside, Delphinidin-3-sambubioside	Jabeur et al. [84]
H. sabdariffa	Aqueous and methanol	Anthocyanin	Delphinidin-3-sambubioside (hibiscin), cyanidin-3-sambubioside (gossypycyanin), cyanidin-3,5-diglucoside, delphinidin (anthocyani1d)	Hida et al. [85]
H. sabdariffa	Aqueous	Anthocyanin	Cyanidin-3-sambubioside (gossypycyanin), cyanidin-3,5-diglucoside and cyanidin-3-glucoside (chrysanthemin)	Williamson et al. [86]
H. sabdariffa	Aqueous	Flavonoids	Hibiscitrin (hibiscetin-3-glucoside), sabdaritrin, gossypitrin, gossyrin and other gossypetin glucosides, quercetin and luteolin	Du et al. [87] and Shibata et al.[88]
H. sabdariffa	Aqueous	Flavonoids	Chlorogenic acid, protocatechuc acid, pelargonicid acid, eugenol, quercetin, luteolin and the sterols β-sitosterol and ergosterol	Subramanian et al.[69]
H. sabdariffa	Aqueous, Ethenol and chloroform	Flavonoids	3-monoglucoside of hibiscetin (hibiscitrin)	McKay, [89] and Williamson et al. [86]
H. sabdariffa	Methanol	Flavonoids	7-glucoside of gossypetin (gossypitrin) and sabdaritrin and hydroxyflavone named sabdaritin.	Rao et al. [90] and Rao et al. [91]
H. sabdariffa	Methanol	Flavonoids	Gossypetin-8-glucoside (0.4%) and gossypetin-7-glucoside	Rao et al. [90] and Rao et al. [91]
H. sabdariffa	Aqueous	Flavonoids	Quercetin, luteolin and its glycoside	Subramanian et al. [69]
H. sabdariffa	Aqueous, Ethenol and chloroform	Flavonoids	Quercetin-3-glucoside, rutin, quercetin-3-rutinoside kaempferol	Salama et al. [92], McKay, [89] and Williamson et al. [86]
H. sabdariffa	Aqueous, Ethenol and chloroform	Flavonoids	Atechin and ellagic acid, protocatechuc acid, catechin, gallo catechin, cafeic acid, gallo catechin gallate	Beltran-Debon et al. [94], Herranz-Lopez et al. [95], Peng et al. [96], Ramirez-Rodrigues et al. [97], and
Species	Solvent used for Extraction	Class	Bioactive compound	Reference
------------------	-----------------------------	----------------------	---	---
H. sabdariffa	Aqueous	Organic Acids	Citric Acid, Mallic Acid, Tartaric Acid, Ascorbic Acid.	Ramirez-Rodrigues et al. [98]
	Aqueous	Organic Acids	Citric Acid, Mallic Acid	Eggensperger et al. [99] and Schilcher, [100].
	Aqueous	Organic Acids	Ascorbic Acid and Hydroxy citric acid (2S,3R)	Eggensperger et al. [99] and Schilcher, [100].
H. sabdariffa	Methanol	Phenolic Acid	Protocatechuic acid (PCA)	Ismail et al. [104] and Morton, 1987
H. sabdariffa	Aqueous and methanol	Phenolic Acid	Chlorogenic acid	Lee et al. [107], Lin et al. [108], McKay, [89], Williamson et al. [86], Clifford et al. [109] and Alarcon et al. [110]
H. sabdariffa	Methanol	Phenolic compounds	Protocatechuic acid and Catechin	Kuo et al. [111]
H. sabdariffa	Aqueous	Flavonoids and Phenolic acid	Chlorogenic acid isomer I, Chlorogenic acid Chlorogenic acid isomer II 5-O-Caffeoylshikimic acid, 3-Caffeoylquinic acid, 5-Caffeoylquinic acid, 4-Caffeoylquinic acid	Osman et al. [112]
H. sabdariffa	Hydroethanol	Flavonoids and phenolic compounds	Kaempferol-3-O-rutinoside, Kaempferol-3-p-coumarylglucoside, Myricetin-pentosylhexoside, Quercetin-3-sambubioside, Quercetin-3-rutinoside, Quercetin-pentosylhexoside	Jabeur et al. [84]
H. sabdariffa	Aqueous	Phenols, organic acids and anthocyanins	b-Carotene, Anisaldehyde, Arachidic acid, Citric acid, Malic acid Tartaric acid, Glycinebetaine, Trigonelline Anthocyanins, Cyanidin-3-rutinoside, Delphinidin, Delphinidin-3-glucosylxoside	Dafallah et al. [113], Farombi et al. [114], Chen et al. [115], Ali et al. [116], [117], Kamei et al. [118], Chang et al. [119], Suboh et al. [120], Pool-Zobel et al. [121] and Meiers et al. [122]
H. syriacus	Chloroform	-	Hibiscuside, Syringaresinol, Feruloyltyramines, Isoflavonoids, Syriacins A–C, Pentacyclic triterpene caffeic acid esters, Clemsicosin A, C and D, Scopeolin, 8-Hydroxy-5,6,7-trimethoxycoumarin	Yokota et al. [123], Yoo et al.[124] and Yun et al. [125]
H. taiwanensis	Methanol	-	8-Hydroxy-5,6,7-trimethoxycoumarin, (7S,8S)-Demethylcariolignan E, Hibusuwanin A, Hibusuwanin B, Clemsicosin A and C, 8,9,9-O-Feruloyl(-)-secoisolariciresinol Dehydroconiferyl alcohol, Erythro-cariolignan E, b-Syringaresinol, Hibisculide A, Hibisculide B, Hibisculide C.	Wu et al. [126,127]
Species	Solvent used for Extraction	Class	Bioactive compound	Reference
------------------	-----------------------------	----------------	---	----------------------------------
H. tilliaceus	Aqueous	Anthocyanin	Cyanidin-3-glucoside	Lowry et al. [1]
H. tilliaceus	Methanolic	Anthocyanin	Cyanidin 3-O-sambubioside	Shikawa et al. [128]
H. tilliaceus	Aqueous	Amide	Hibiscusamide	Chen et al. [129]
H. tilliaceus	Aqueous	Coumarin	Hibiscusin	Chen et al. [129]
H. tilliaceus	Methanolic	Phenolic	p-coumaric acid, fumaric acid, kaempferol, kaempferol-3-O-D-galactoside, quercetin and quercetin3-O-D-galactosid	Subramanian et al. [130]
H. tilliaceus	Methanol	Phenolic	Ergosta-4,6,8,9, friedelin, germanicol, glutinol, lupeol, pachysandiol, β-sitosterol, stigmaster-4,22-dien-3-one, stigmast-4-en-3-one, stigmasterol and 22-tetraen-3-one	Yang et al. [106]
H. tilliaceus	Methanol	Phenolic compound	Catechin, rutin, quercetin, and ellagic acid	Hossain et al. [131]
H. tilliaceus	Methanol	Phenolic compounds and organic acids	Stigmasterol, Stigmastadienol, Stigmastadienone, 27-Oic-3-oxo-28-friedelanoic acid, Vanillic acid, Syringic acid, Scorpoletin, N-trans-feruloyltiramine, N-cis-Feruloyltiramine, b-Sitostenone, Stigmasta-4,22-dien-3-one	Kobayashi, [25], Singh et al. [132] and Whistler, [19]
H. tilliaceus	Aqueous	Organic acids, phenolic compounds, and flavonoids	Azelaic acid, cleomiscosin C, daucosterol, friedelin, fumaric acid, hibiscolacontone, kaempferol, quercetin, rutin, scopoletin, β-sitosterol, succinic acid, syriacusin A and vanillin	Zhong et al. [133]
H. tilliaceus	Aqueous	Organic acids and phenolic compounds	Vanillic acid, syringic acid, p-hydroxybenzoic acid, phydroxybenzaldehyde, scopoletin, N-transferuloyltiramine, N-cis-feruloyltiramine, β-sitosterol, stigmasterol, β-sitostenone and stigmasta-4-dien-3-one.	Chen et al. [129]
H. tilliaceus	Chloroform	Triterpene	27-oic-3-oxo-28-friedelanoic acid	Li et al. [134]
H. vitifolius	Ethanol	Flavonoids	Flavonol bioside	Kunnumakkara et al. [135]
Table 2. Anti-bacterial activity of various species of genus *Hibiscus*

Species	Part used	Solvent used for extraction	Test organism	Observation	Author and year
H. rosa-sinensis	Flower	Methanol and Ethanol	*S. aureus*, *Streptococcus sp.*, *B. subtilis*, *E. coli*, *Salmonella sp.*, *P. aeruginosa*	Highest zone of inhibition is recorded against *B. subtilis* and *E. coli* as (18.86±0.18) and (18.00±1.63) mm respectively shown by methanol extract.	Ruban et al. [136]
H. rosa-sinensis	Leaves	Hexane, Ethylacetate, Methanol and Aqueous	*Staphylococcus aureus*, *B. subtilis*, *Streptomyces albogentes*, *Micrococcus luteus*, *S. epidermis*, *Pseudomonas aeruginosa*, *Bordetella bronchiseptica*	Methanol extract is best solvent showing maximum anti-bacterial activity.	Patel et al. [137]
H. rosa-sinensis	Leaves and Flower	Methanol	*E. coli*, *S. aureus*	Zone of inhibition for *E. Coli* and *S. aureus* is 23±1.01 mm and 13.75±0.99 mm respectively.	Tiwari et al. [138]
H. rosa-sinensis	Leaves	Aqueous and Methanol	*Bacillus subtilis*, *S. aureus*	Methanol extract had highest zone of inhibition 18.82±0.18 mm against *B. subtilis*.	Udo et al. [139]
H. rosa-sinensis	Leaves	Aqueous and ethanol	*P. aeruginosa* and *A. hydrophilla*	Ethanol extracts have maximum antibacterial activity with inhibition zone of 6 to 9 mm against *P. aeruginosa* and *A. Hydrophilla* respectively.	Singh et al. [140]
H. rosa-sinensis	Flower	Ethanol, Methanol, Aqueous and Ethylacetate	*E. coli*, *P. aeruginosa*, *S. aureus*	Maximum antibacterial activity is shown by Methanol extracts against all three bacterial strains.	Sobhy et al. [141]
H. rosa-sinensis	Leaves and Silver and gold nanoparticles	Deionized water	*Pseudomonas aeruginosa*, *Bacillus subtilis*, *Micrococcus luteus*, *S. aureus*, *S. epidermidis*, *Enterobacter aerogenes*, *E. coli*, *S. pneumoniae*, *Aeromonas hydrophila*	Plant extract shows antibacterial activity against test organisms in conc. dependant manner.	Tyagi et al. [142]
H. rosa-sinensis	Leaves	Ethanol	*Aeromonas hydrophila*	Highest inhibition zone is 11 mm. Maximum inhibition zone is 24 mm at 50% concentration.	Vijayaraj et al. [143]
H. rosa-sinensis	Leaves	Aqueous	*Aeromonas hydrophila*	Maximum inhibition zone is 24 mm at 50% concentration.	Amita et al. [144]
Species	Part used	Solvent used for extraction	Test organism	Observation	Author and year
-----------------	-----------------	--	--	---	-----------------
H. rosa-sinensis	Leaves	Ethanol, methanol and distilled water	*S. aureus* and *E. coli*	Methanol extract with 10% and 5% conc. Had antibacterial activity against all the test organisms.	Vastrad et al. [64]
H. rosa-sinensis	Flowers	Methanol, water and ethyl acetate	*E. coli*, *B. subtilis* and *S. aureus*	Methanolic extract show more activity than other two solvents against all three bacteria.	Vijayakumar et al. [145]
H. rosa-sinensis	Flower	Methanol and Ethanol extract	Klebsiella pneumoniae, *Escherichia coli*, *Bacillus subtilis*, *Staphylococcus aureus*, *Pseudomonas aeruginosa* and *Salmonella* sp.	Methanolic extracts show less antibacterial activity than Ethanolic extracts.	Singh et al. [146]
H. sabdariffa	Green and red calyx	Methanol and water (4:1)	*Bacillus cereus*, *Streptococcus faecalis*, *Clostridium sporogenes*, *Micrococcus luteus*, *E. coli* *Pseudomonas aeruginosa*, Klebsiella pneumonia, *Serratia marcescens*, Proteus vulgaris and Proteus rettgeri	Extract shows largest inhibition zone against *Micrococcus luteus*.	Adebisi et al. [147]
H. sabdariffa	Calyces	80% aqueous methanol	*E. coli*	The maximum Zone of inhibition was 12.66mm for 10%, 10.75mm for 5% and 8.9mm for 2.5% conc.	Fullerton et al. [148]
H. sabdariffa	Fruits	85% methanol	*Sarcina lutea*, *Shigella dysenteriae*, *E. coli*, *Shigella boydii*, *Bacillus subtilis*, *B. megaterium*, *B. anthracis*, *B. cereus* and *P. aeruginosa*	Fruit extracts had highest activity against *Sarcina lutea* i.e.13±0.21mm.	Mamun et al. [149]
H. sabdariffa	Leaves	Ethanol extract	*Listeria monocytogenes*, *S. typhimurium*, *E. coli*	Ethanolic extracts of leaves had effective antibacterial activity against the test organisms.	Zhang et al. [150]
H. sabdariffa	(roselle)	Aqueous and Ethanol extract	*E. coli*, *Staphylococcus aureus*, *Salmonella typhi*, *Shigella dysenteriae*, *Streptococcus mutans*	Ethanol extracts have better activity as compared to aqueous extract against all the tested organisms.	Edema et al. [151]
H. sabdariffa	Calyces	Water and ethanol	*Bacillus subtilis*, *S. aureus* and *E. coli*	Ethanol extract exhibit slightly higher activity against *B. subtilis* and *S.*	Jung et al. [152]
Species	Part used	Solvent used for extraction	Test organism	Observation	Author and year
------------------	----------------	------------------------------	--	--	-----------------
H. sabdariffa	Calyces	Petroleum ether and ethanol	*Klebsiella pneumoniae, Staphylococcus aureus, B. cereus, Lactobacillus brevis*	aureus than that of water extract, however, Roselle water extract has more activity against *E. coli*.	Das et al. [153]
				Extracts made in Petroleum ether were most effective against bacteria like *Bacillus cereus, Klebsiella pneumoniae, Staphylococcus aureus* and *Lactobacillus brevis*.	
H. sabdariffa	Calyx	Petroleum ether, ethyl acetate, methanol and water.	*Staphylococcus aureus (ATCC25923), Bacillus subtilis (NCTC10073), Klebsiella pneumonia (ATCC70063)* and *Escherichia coli (ATCC25922)*.	The aqueous extracts have the greatest anti-bacterial activity with MICs of 125–250 μg/mL.	Osei et al. [154]
H. sabdariffa	Leaves	Aqueous	*Escherichia coli, Klebsiella pneumonia, Staphylococcus aureus aureus and Pseudomonas aeruginosa.*	Extract conc.200μg/mL has maximum activity against *P. aeruginosa.*	Sulaiman et al. [155]
H. sabdariffa	Leaves	Methanol	*S. typhi, E. coli and S. aureus*	Extract exhibit maximum antibacterial activity against *S. aureus.*	Adamu et al. [156]
H. sabdariffa	Calyx	Hexane, Ethyl acetate and Methanol	*E. coli (ATCC25922), S. aureus (ATCC29213), Pseudomonas aeruginosa (ATCC27853), Salmonella typhi, Bacillus subtilis*	500μg/mL is the minimum inhibitory concentration (MIC) against *Escherichia coli* for both ethyl acetate and methanol extracts while hexane extracts show no activity at all.	Ajoku et al. [157]
H. sabdariffa	Calyx	Aqueous and hydro ethanol 30%	*E. coli, S. aureus, P. aeruginosa and B. subtilis*	Hydro ethanol extract had more potent anti bacterial activity.	Mensah et al. [158]
H. sabdariffa	Seed coats	Aqueous ethanol, hexane and methanol	*E. coli, S. aureus, S. pneumoniae, K. aerogenes, S. species, P. aeruginosa*	None of the extracts show any antibacterial activity against any test organism.	Nathaniel et al. [159]
H. sabdariffa	Leaves and fruits	Methanol	*Streptococcus mutans, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa*	Extract exhibit more anti-bacterial activity against gram positive bacteria than gram negative bacteria.	Sekar et al. [160]
H. sabdariffa	Leaves and seeds	Phosphate buffer	*Staphylococcus sp.*	Extract showed maximum zone of inhibition of 9mm.	Thiripurasudari et al. [161]
H. sabdariffa	Calyces	80%methanol	*Escherichia coli ATCC25922*	The maximum antibacterial activity of	Abdallah et al. [162]
Species	Part used	Solvent used for extraction	Test organism	Observation	Author and year
-----------------	---------------	----------------------------	--	--	-----------------
H. sabdariffa	Calyx	Methanol	*Salmonella enteric* ATCC5174, *Klebsiella pneumonia* ATCC27736, *Proteus vulgaris* ATCC49132, and *Pseudomonas aeruginosa* ATCC27853, *Staphylococcus aureus* ATCC25923, *Staphylococcus epidermidis* ATCC49461 and *Bacillus cereus* ATCC10876.	*H. sabdariffa* calyces extract was recorded against *S. aureus* (18.5±0.5mm).	Garbi et al. [5]
H. sabdariffa	Calyx	Hot and cold aqueous	*Corynbacterium diphtheria*, *S. aureus*, *Enterococcus faeclis*, *Listeria monocytogenes*, *B. cereus*, *Proteus mirabilis*, *Proteus vulgaris*, *Pseudomonas aeruginosa* (ATCC27853), *Serratia marcescens*, *E. coli* (ATCC25922), *Klebsiella pneumonia* (ATCC70063)	Methanol extracts exhibit more activity against all bacteria with inhibition zone ranging from 14 to 36mm.	Salmon et al. [163]
H. sabdariffa	Calyces	Methanol	*E. coli* (ATCC25922), *P. aeruginosa* (ATCC27853), *K. pneumonia* (ATCC15380), *S. typhi* (ATCC4561), *B. subtilis* (NCTC8236), *S. aureus* (ATCC25923)	The cold aqueous extract at concentration 40mg/mL was exhibiting the maximum antibacterial activity against tested bacteria. Maximum activity was reported against *B. subtilis*.	Youns et al. [164]
H. sabdariffa	Flower	Methanol	*Aeromonas hydrophila*	Roselle flower extract had antibacterial activity against *A. hydrophila* in a conc. depenedent manner.	Bariyyah et al. [165]
H. sabdariffa	Leaves and stem	80% aqueous methanol	*Staphylococcus aureus*, *Pseudomonas aeruginosa*	Leaf extracts show better activity against *S. aureus* and *P. aeruginosa* than stem extract.	Kumar et al. [166]
H. syriacus	Leaves	Petroleum ether, Benzene, Chloroform, Methanol and	*Bacillus cereus*, *Staphylococcus epidermis*, *Klebsiella*	Methanol extracts show maximum zone of inhibition against all the test	Punasiya et al. [167]
Species	Part used	Solvent used for extraction	Test organism	Observation	Author and year
-------------------------	--------------------------------	-----------------------------	---	---	-----------------
H. tiliaceus	Leaves and bark	Aqueous extracts	*pneumonia*, *Bacillus subtilis*	Bark extract has maximum antibacterial effect against *S. aureus* and *S. epidermidis* among all the test organisms.	Abdul et al. [168]
		Ethanol	*Staphylococcus aureus*, *S. epidermidis*, *S. saprophyticus*, *S. pyogenes*, *Plesiomonas shigelloides*, *Shigella dysenteriae*, *S. flexneri*, *S. boydii*, *S. sonnei*, *Pseudomonas aeruginosa*, *Vibrio cholera*, *Salmonella typhi*		
	Fruits, leaves and twigs	Methanol and chloroform, methanol and ethyl acetate fractions	*Pseudomonas eruginoasa*	The strongest anti-bacterial activities were exhibited by the chloroform fraction of fruits at a conc. of 80%.	Andriani et al. [169]

Table 3. Antioxidant activity of various species of genus *Hibiscus*

Species	Part used	Solvent used for extraction	Assay performed	Observations	Author and year
H. acetosella	Stem	Water and ethanol (70/30) 80% methanol	DPPH	IC50 value for stem extracts is 44μg/mL. Calyx extract had higher % inhibition (53.33-0.25%) against DPPH radical than leaf extract (36.33-0.45%). Methanol extract of flower (71.84%) exhibit maximum DPPH activity.	Abdooulaye et al. [170] Gbadamosi et al.[171]
H. asper	Leaves and calyx		DPPH		Ryu et al. [172]
H. cannabinus	Leaves, bark, flowers and seeds	Water	DPPH	IC50 value for ethanol extract is 44.48μg/mL. Ethanol extract shows radical scavenging activity in conc. dependent manner.	Rusmini et al. [173] Saravanan et al. [174]
H. cannabinus	Leaves	Ethanol	DPPH		Ryu et al. [172]
H. platanifolius	Leaves	Ethanol and Aqueous	Reducing power and hydrogen peroxide scavenging assay	Ethanol extract shows radical scavenging activity in conc. dependent manner.	Ryu et al. [172]
H. rosa-sinensis	Flower	Methanol	DPPH	IC50 value for methanol extract is 43.9μg/mL. Crude extract of leaves exhibits potent antioxidant activity against all the studied assay.	Falade et al. [175]
H. rosa-sinensis	Leaves	80%ethanol	Ferric thiocyanate, Hydrogen peroxide scavenging, DPPH, ABTS radicals’ cations and Super oxide an ion radical scavenging by riboflavin methionine illuminate		Mandade et al. [176]
Species	Part used	Solvent used for extraction	Assay performed	Observations	Author and year
------------------	---------------------	-----------------------------	--	---	-----------------
H. rosa-sinensis	Flower	Ethanol	SOD, GPx, CAT	Ethanol extract at 250mg/kg conc. was more effective than other two doses.	Sankaran et al. [177]
H. rosa-sinensis	Stem and leaves	Aqueous and methanol	DPPH reduction assay, scavenging of SO, H2O2 and NO, reducing power, FRAP assay.	Methanol extract possesses significant antioxidant activity as compared to aqueous extract.	Garg et al. [178]
H. rosa-sinensis	Leaves	70% ethanol/water extract	Butylated hydroxyl toluene (BHT), Ascorbic acid (ASA)	Extract has two times more antioxidant activity than BHT and ASA.	Ghaffar et al. [179]
H. rosa-sinensis	Flowers	Methanol	DPPH	100µg/mL varies between 30.95 to 55.11% scavenging effect.	Sheth et al. [180]
H. rosa-sinensis	Root	Aqueous	Super oxide anions and Hydroxyl radicals	The effect was dose dependent and highest i.e.58% for SO and 48% for hydroxylion at peak concentration (500mg/mL).	Kumar et al. [181]
H. rosa-sinensis	Petals	Ethanol and ethyl acetate fraction	DPPH	IC50 value for ethanol extract is 36±1.7 µg/mL.	Pillai et al. [182]
H. rosa-sinensis	Corolla and calyx	Methanol extract	Ferric ion Reducing PowerAssay [FRAP] Nitric Oxide Scavenging assay	Maximum % inhibition of calyx extracts 66.66% and Corolla is 71.25% against NO.	Guleria et al. [183]
H. rosa-sinensis	Flower	Water, ethanol, and absolute ethanol extract	DPPH, Nitric oxide, hydroxyl radical scavenging activity	Flower extract against DPPH show highest activity of 90.20±0.29% at 500mg/ml conc.	Afifty et al. [184]
H. rosa-sinensis	Leaves	Ethanol	DPPH, Nitricoxide, Superoxide radical	Extract conc.i.e.1000µg/mL has maximum% inhibition i.e. 91.15±1.32% for DPPH, 86.45±2.09 for NO and 79.12±1.56 for super oxide radicals.	Mondal et al. [185]
H. rosa-sinensis	Flowers	Methanol	DPPH, hydrogen peroxide radical scavenging activity	The extract showed IC50 values of 28.41±1.7, 36.69±2.3 and 33.32±2.5 µg/mL against DPPH, H2 O2 and superoxide radical respectively.	Purushotaman et al. [186]
H. rosa-sinensis	Flower	Ethanol	Hydrogen peroxide scavenging assay	The flower extract exhibits a concentration dependent hydrogen peroxide radical scavenging activity	Ghosh et al. [187]
H. rosa-sinensis	Leaves	Aqueous and Ethanol	DPPH, NO, FRAP and H2O2	DPPH 11.8mg/g, NO 66.8, FRAP 15.4, H2O2 23.04mg/g.	Prasanna et al. [188]
Species	Part used	Solvent used for extraction	Assay performed	Observations	Author and year
------------------	--------------------	-----------------------------	--	---	-----------------
H. rosa-sinensis	Leaves	Mucilage from leaves	FRAP, DPPH, hydroxyl, superoxide,	The mucilage showed antioxidant potential against all the assays, but it was detected to be lower as compared to the standards used.	Kapoor et al. [189]
			nitric oxide and hydrogen peroxide		
			scavenging assay.		
H. rosa-sinensis	Flower	Methanol and Ethanol extract	DPPH	IC50 value for methanol extract is maximum i.e.19.54µg/mL.	Vignesh et al. [189]
H. rosa-sinensis	Flower	Ethanol extract	DPPH	IC50 value for the ethanol extract is 231.110±1.59µg/mL.	Wahid et al. [190]
H. sabdariffa	Calyces	Methanol	DPPH	IC50 for the extract is 230.01±2.40µg/mL.	Luvongal et al. [191]
H. sabdariffa	Leaves	Ethanol	DPPH	Anti radical power 0.41mg DPPH/mg.	Zhang et al. [190]
H. sabdariffa	Leaves	Aqueous, 95 percent ethanol, ethyl acetate fraction	DPPH	IC50 values for the extracts is ranging from 46.13±0.37 to 94.16±0.56µg/mL.	Kurna et al. [192]
H. sabdariffa	Calyces	Water and ethanol extract	DPPH	Dose dependent activity is shown by both the extracts.	Jung et al. [192]
H. sabdariffa	Calyces	Ethanol, methanol, petroleum ether and aqueous	DPPH	Petroleum ether extract show better activity as compared to all other solvents used.	Das et al. [153]
H. sabdariffa	Petal	Methanol	DPPH	IC50 is 0.24mg/mL.	Obouayeb et al. [193]
H. sabdariffa	Calyx	Ethanol extract	DPPH	At a conc.250µg/mL calyx extract has maximum 86% scavenging activity.	Sirag et al. [194]
H. sabdariffa	Flower	Methanol	DPPH and ABTS assay	IC50 for DPPH and ABTS were 17.14-2.24 and 85.91-6.72µg/mL respectively.	Zhang et al. [195]
H. sabdariffa	Leaves and calyx	Methanol extract	DPPH	IC50 for leaves is 43.48 and for calyces is 37.15±g/mL.	Formagio et al. [196]
H. sabdariffa	Calyx	Ethanol	FRAP and DPPH	The DPPH radical scavenging activity of ethanol extracts is dose dependent and ranged between 14.09 to 35.92% The FRAP value of calyx extract was 0.784±0.01mg ascorbic acid equivalent/g.	Ghosh et al. [197]
H. sabdariffa	Calyx and callus	Methanol	DPPH	Calyx extract shows more antioxidant activity as compared to callus extract.	Kouakou et al. [198]
H. sabdariffa	Calyx	Aqueous and 30% hydro ethanol	DPPH and hydroxyl radical	A dose-dependent radical scavenging of hydroxyl radicals was observed for each extract.	Mensah et al. [158]
H. sabdariffa	Leaves	Ethanol	DPPH	IC50 value is 184.881g/Ml at a conc.50.01g/mL.	Subhaswaraj et al. [199]
H. sabdariffa	Flower	Methanol	DPPH, ABTS, FRAP	IC50 for DPPH is 195.73µg/mL, ABTS is Widowati et al. [200]	
Species	Part used	Solvent used for extraction	Assay performed	Observations	Author and year
-------------------	----------------------------	-----------------------------	-----------------	---	-----------------
H. sabdariffa L.	Silver nanoparticles from bark extract	Methanol	assay	74.58 and 46.24µM Fe (II)/µg for FRAP. DPPH and ABTS assays have IC50 31.74±2.06 and 15.45±2.72µg/mL respectively.	Islam et al. [201]
H. sabdariffa	Calyces	Methanol	DPPH	Percentage inhibition activity shown by the extract is 53±0.09%.	Youns et al. [164]
H. sabdariffa	Calyx	Methanol	DPPH	DPPH radical scavenging activity was reported maximum in genotype 4920 i.e.95.09%.	Jamini et al. [202]
H. schizopetalus	Flower	Methanol	DPPH	IC value 50 is 38.2± 0.08µg/mL. Flower extract showed 80.70% antioxidant activity.	Zahid et al. [203]
	Leaves	Methanol	DPPH	IC 50 is 58.9± 0.13µg/M. Leaf extract showed 75.2% antioxidant activity.	
	Flower	Methanol	Nitric oxide		
	Leaves	Methanol	Nitric oxide		
H. syriacus L.	Leaves	Methanol	DPPH, Superoxide radical scavenging activity in NBT system, reducing power and Inhibition of lipid peroxidation induced by TBARS in liver homogenate	EC50 value is 248.00 and 105.00µg/mL for DPPH and superoxide radicals respectively and EC50 for lipid peroxidation of liver homogenate is 281.61µg/mL.	Umachig et al. [204]
Table 4. Anti-fungal activity of various species of genus *Hibiscus*

Species	Part used	Solvent used for extraction	Organism used	Observations	Author and year
H. rosa-sinensis	Leaves	Aqueous, Ethanol, Methanol	*Trichophyton rubrum,* *Candida albicans*	Ethanol extract showed maximum antifungal activity among all three solvents used.	Das et al. [205]
H. rosa-sinensis	Flower	Acetone	*Candida albicans,* *Aspergillus niger,* *Tricoderma viride,* *Rhizopus microsporus*	Maximum zone of inhibition for *Candida albicans* is 20mm, *Aspergillus niger* is 16mm, *Trichoderma viride* is 12mm, and *Rhizopus microsporus* is 21mm.	Durga et al. [206]
H. sabdariffa	Calyces	80% ethanol	*Candida albicans*	Zone of inhibition for *Candida albicans* is 45.0±0.4 mm.	Edema et al. [151]
H. sabdariffa	Calyx	Hexane, Ethylacetate, Methanol	*Candida albicans*	The ethyl acetate fraction exhibited most significant antifungal activity against *Candida albicans* at MIC of 16μg/mL.	Ajoku et al. [207]
H. sabdariffa	Calyx	Aqueous and hydroethanol 30%	*Candida albicans*	Hydro ethanol extract is more potent antifungal extract.	Mensah et al. [158]
H. syriacus	Calyces	Methanol	*Candida albicans*	Extract has maximum inhibition zone of 21mm against *Candida albicans*.	Youns et al. [164]
H. syriacus	Root	Methanol	*Trichophyton mentagrophytes*	Methanolic extract of *H. syriacus* gogoma exhibited four times higher activity than its parent against *Trichophyton mentagrophytes*.	Jang et al. [208]

Table 5. Anti cancerous activity of various species of genus *Hibiscus*

Species	Activity	Part used	Organism used	Observations	Author and year
H. cannabinus	Cytotoxicity	Seeds extract and seed oil	Human cancer cell lines	Seed extract exhibited a greater cytotoxic activity as compared to seed oil.	Wong et al. [209]
H. calyphyllus, H. deflersii, H. micranthus	Anti-cancer	Aerial parts	HepG2, MCF-7 cell lines	*H. deflersii* petroleum ether fraction showed the most significant cytotoxic effect on HepG2 and MCF-7 with IC50 14.4 and 11.1μg/mL, respectively.	Alam et al. [210]
H. rosa-sinensis	Anti cancer activity	Flower	Hela cell lines	Flower extract exhibited potent anti cancer activity against helacell lines.	Durga et al. [206]
H. sabdariffa	Cytotoxicity	Fruits	Brine shrimp lethality bioassay	LC value for fruit extract is 5.082±12 μg/mL. Percentage inhibition against helacell lines reached upto 83.67±3.07% at 20μg/mL concentrations.	Mamun et al. [149]
H. sabdariffa L.	Anti-tumour activity	Seeds	Human cervical hela cells		Zhang et al. [195]
H. sabdariffa	Anti-tumor activity	Leaves and calyx	Leukaemia line k-562	Methanol extract from calyx show significant antitumor activity.	Formagio et al.[196]
Table 6. Other medicinal activities of various species of genus *Hibiscus*

Species	Activity	Part used	Organism used	Observations	Author and year
H. sabdariffa	Cytotoxicity	Seeds	H9c2 cardiomyoblast cells	Pre-treatment with seed extract significantly reduced cell apoptosis at concentration of 31.25-250 μg/mL.	Hosseinia et al. [211]
H. sabdariffa	Anti-proliferative	Calyx	Caco-2, hepG-2, HCT8 and A549 cell lines	Calyx extract has significant cytotoxic activity.	Maciela et al. [212]
H. sabdariffa	Cytotoxic activity	Leaves	HepG2 cell lines	Administration of leaf extract showed increased cell growth inhibition and decreased cell viability in a dose dependent manner.	Sangeetha et al. [213]
H. syriacus	Anti proliferative effect	Root bark	Human lung cancer cells	Acetone extract of *H. syriacus* has potent and dose dependent anti proliferative activity.	Cheng et al. [214]
H. tiliaceus	Cytotoxic effect	Leaves and bark	Brine shrimp	Leaf extract of plant has moderate cytotoxic activities with LC50 is 20 μg/mL while bark has low cytotoxic effect LC50 is 50 μg/mL.	Abdul et al. [168]
H. vitifolius	Cytotoxic activity	Flowers	Hela cell lines	IC50 value agains thella cell lines is 81.27 μg/mL.	Nishitha et al. [215]

6.1. Effect on lipid metabolism

Species	Activity	Part used	Organism used	Observations	Author and year
H. platanifolius	Hypoglycaemic and hypolipidemic activity	Leaves	Rats	Administration of extract dose of 100 mg and 150 mg/kg helps to decrease the increased biochemical parameters in all diabetic rats.	Saravanan et al. [174]
H. rosa-sinensis	Lipid lowering effect	Flower petals	Albino Rats	After administration of flower extract, the levels of free fatty acids, phospholipids TG, VLDL, LDL and HDL cholesterol were back to nearly normal.	Gomathi et al. [216]
H. rosa-sinensis	Hypoglycaemic and hypolipidemic activity	Flower	Rats	500 mg/kg/day dose showed potent hypoglycaemic and hypolipidemic activities, 500 mg/kg dose of methanol extract showed decrease in levels of cholesterol, triglyceride, and low-density lipids.	Bhasker et al. [217]
H. rosa-sinensis	Anti-hyperlipidaemic activity	Leaves	Mice	The decreased levels of blood glucose, carbohydrate metabolizing enzymes, TBARS, and lipid profiles were found after the administration of flower extract.	Mishra et al. [218]
H. rosa-sinensis	Hypoglycaemic and hypolipidemic activity	Flowers	Rats		Sankaran et al. [177]
Plant	Activity	Part	Animals	Description	
---------------	---------------------------------	------------	----------	---	
H. rosa-sinensis	Antihyperlipidemic activity	Flowers	Rats	Oral dose of 500mg/kg body wt. of the ethanolic extract exhibited a significant reduction (p<0.01) lipid parameters, LDL, VLDL total cholesterol, triglycerides and increase in HDL in rat serum.	
H. rosa-sinensis	Hyperlipidaemic activity	Leaves	Rabbits	After treatment with 400mg/kg dose of extract, decrease in total cholesterol, triacylglycerol, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol in diabetic rabbits is observed.	
H. rosa-sinensis	Hypolipidemic properties	Flower	Albino Wistar Rats	240mg/kg dose has significant hypolipidemic activity.	
H. rosa-sinensis	Hypoglycaemic effect	Leaves	Rats	The treatment of diabetic rats with leaf extract helps to reduce the amount of plasma alanine amino transferase (ALT) enzyme, glucose, cholesterol, aspartate amino transferase (AST) enzyme, uric acid, creatinine and hepatic malonaldehyde.	
H. sabdariffa	Hypolipidemic activity	Leaves	Hyperlipidic rats	300 mg per kg dose possessed the best hypolipidemic activities.	
H. sabdariffa	Hyperglycaemia, hyperinsulinemia, and hyperlipidaemia activity	Calyces	Rat	A dose of 200mg/kg showed significant results against Hyperglycaemia, hyperinsulinemia, and hyperlipidaemia activities.	
H. sabdariffa	Hypoglycaemic and hypolipidemic effects	Leaves	Rats	A significant (p<0.05) reduction in levels of serum cholesterol, triglycerides, LDL-cholesterol and increase in HDL-cholesterol was observed.	
H. sabdariffa	Hypolipidemic effect	Calyces	Albino rats	Administration of plant extract lowers the serum lipid levels.	
H. schizopetalus (Mast) Hook	Hypolipidemic activity	Flowers and leaves	Rats	Cholesterol and triglycerides levels were significantly decreased after the administration of plant extracts.	
H. esculentus	Hepato-protective activity	Pods	Wistar albino rats	Administration of pod extract showed reduction in liver enzymes like SGOT, SGPT, ALP, cholesterol, TG and malondialdehyde, non-protein sulphydryl sowing to its hepatoprotective activity.	
H. rosa-sinensis | Hepato-protective activity | Leaves | Albino rats | Leaf extracts have significant hepatoprotective activity, where enzymes like ALT, AST, ALP and total bilirubin were decreased. | El-Sayed et al. [227]
H. sabdariffa | Hepato-renal toxicity | Calyx | Albino rats | After the treatment with extract significant increase was observed in the renal indices, urea, uric acid and creatine but sodium and potassium were decreased. | Abubakar et al. [228]
H. sabdariffa | Hepato-protective activity | Leaves | Rats | Oral administration of extract exhibits a potent reduction in AST, ALP, ALT and bilirubin levels. | Bhavana et al. [229]
H. sabdariffa | Hepato-protective activity | Leaves | Albino rats | Increase the levels of blood in dose dependent manner. | Joshua et al. [230]
H. sabdariffa | Ethanol induced hepatotoxicity | Leaves | Rats | Levels of SGOT, SGPT and bilirubin were decreased after the treatment with leaf extract. | Olarewaju et al. [231]
H. vitifolius (Linn.) | Hepato-toxicity activity | Root | Albino rats | The extracts were found to be safe up to a dose of 2000mg/kg but higher than this was toxic. | Samuela et al. [232]

| 6.3. Anti-inflammatory activity
H. asper hook. F. | Anti-inflammatory | Leaves | Wistar albino rats | Methanolic extract has significant dose dependent activity. | Simplice et al. [233]
H. cannabinus | Anti-inflammatory | Seeds | Mice | Maximum effect at 400mg/kg dose was observed. | Chaudhari et al. [234]
H. rosa-sinensis and H. rosa-sinensis alba | Anti-inflammatory | Flower and leaf | Rats | Dose up to 500mg/kg is not toxic. The white hibiscus had more potent anti-inflammatory effect. | Raduan et al. [235]
H. sabdariffa | Anti-inflammatory | Calyx | Wistar rats | All the administered doses revealed anti-inflammatory effect. | Saptarini et al. [236]
H. sabdariffa | Anti-inflammatory | Seeds | Rats | Extract showed a significant dose dependent anti-inflammatory activity. | Ali et al. [237]

| 6.4. Analgesic activity
H. cannabinus | Analgesic activity | Seeds | Mice and rats | Seed extracts had central and peripheral analgesic activities. | Chaudhari et al. [234]
H. rosa-sinensis | Analgesic potentials | Roots | Albino rats | Root extracts showed significant dose dependent activity. | Soni et al. [238]
H. sabdariffa | Analgesic activity | Leaves | Wistar albino rats | A dose of 750mg/kg of extract showed analgesic potency as similar as morphine. | Omodamiro et al. [239]
H. sabdariffa | CNS stimulant activity | Flowers | Albino rats | Increase in the locomotory activity proved that the extract has the CNS Stimulant activity. | Gresamma et al. [240]

| 6.5. Haemato-toxicity |
Plant Species	Activity Type	Part Used	Species	Description
H. cannabinus	Haematonic activity	Leaves	Rats	A Significant increase in the red blood count, haemoglobin concentration and pack cell volume was observed after extract administration.
H. rosa-sinensis	Haemato-protective	Flowers	Rats	Exhibit significant Haemato-protective activity. The extract had the ability to reduce hydrogen peroxide induced haemolysis.
H. rosa-sinensis	Anti-haemolytic activity	Flowers	Venous blood samples	After administration of extract increased levels of RBC, haemoglobin and decreased levels of WBC were observed.
H. sabdariffa	Haemato-toxicity	Calyces	Rats	
H. platanifolius	Anti-diabetic activity	Stem	Rats	Ethanolic extract of stems at 250mg/kg dose revealed a decrease in blood glucose level.
H. rosa-sinensis	Anti-diabetic	Leaves	Rats	Upon treatment with leaves extract Diabetic rats blood glucose was elevated to normal values.
H. rosa-sinensis	Effect on diabetes	Flower	Rats	Administration of flower extracts decreased blood glucose levels.
H. sabdariffa	Anti-diabetic	Leaves, stem, roots	Rats	Leaf extract Reduce sugar level in rats more significantly than stem and root extracts.
H. syriacus	Anti-diabetic	Leaves	Rats	Treatment with leaves extract showed a decrease in blood glucose level.
H. sabdariffa	Anti-hypertensive	Calyces	Rats	Extract administration helps to reduce hypertension.
H. sabdariffa	Hypertension	Leaves	Wistar rats	Extract revealed ameliorative effect against hypertension.

6.6. Anti-diabetic activity

6.7. Anti-hypertensive activity
flowers, seeds etc have been well worked out for exploring the antioxidant potential following different assays like DPPH, FRAP, ABTS, H₂O₂, NO etc and the same have been highlighted in this review. The solvents used for the preparations of the plant extracts were mainly water, methanol, ethanol and ethylacetate. Numerous *Hibiscus* species have been well acknowledged for higher Antioxidant potential out of which *H.sabdariffa* and *H.rosa-sinensis* have been well studied however only few reports on *H.asper, H.cannabinus, H. platanifolius* and *H.syriacus* were found suggesting further explorative studies. The details of the same have been mentioned in Table 3 along with the plant part used, assay followed and observations.

2.2.3 Anti-fungal activity

Besides anti-bacterial activity, *Hibiscus* also illustrates anti-fungal behaviour against various detrimental genera of fungi like *Candida albicans, Aspergillus niger, Tricoderma viride, Rhizopus microsporous* and *Trichophyton mentagrophytes*. Plant parts used as well as the extracts used for the studies were like those used in anti-bacterial studies. Comparative analysis of potential of plant extracts in different solvents was also done by different researchers but positive results were obtained only in few solvents against different genera of fungi. All the results are depicted in Table 4 reflecting anti-fungal properties of *Hibiscus*.

2.2.4 Anti-canceractivity

Different cell line studies revealed anti-cancer activities of *Hibiscus. H. sabdariffa* is maximum explored member in this regard displaying positive results. Different cell lines like human cancer, Hela cell lines, Leukemia line k-562, hepG2 etc.were used for these demonstrating the anti-cancer activity of different parts of *Hibiscus* like flower, leaves, calyx, roots, fruit, bark etc. All these details are presented in Table 5.

3. SOME OTHER MEDICINAL PROPERTIES

Besides aforementioned activities, *Hibiscus* also displays excellent health benefits like effects on lipid metabolism where rat, rabbit, mice were used for experimental studies and positive behaviour of the *Hibiscus* extracts was elucidated (Table 6.1). Similar studies were conducted by various researchers to demonstrate hepatoprotective activity of *Hibiscus* where extracts were known to regulate essential liver enzymes like Aspartate aminotransferase (AST), Alanine transaminase (ALT), Serum glutamic oxaloacetic transaminase (SGOT), Serum glutamic pyruvic transaminase (SGPT) (Table 6.2). The plant extracts also showed anti-inflammatory properties as depicted in Table 6.3. A significant dose dependent analgesic behaviour of the extracts was observed and the same has been presented in Table 6.4. Morphine like activity of the *Hibiscus* extracts was reported by few reports. Effect of the extracts on blood cells like RBCs and WBCs was also observed where the extracts were seen to enhance the blood cell count (Table 6.5). Maintenance of blood sugar levels by the extracts was also observed and the extracts exhibit antidiabetic properties which are of greater use and can be considered subject of exploitation for commercial uses (Table 6.6). Reduction in Hypertension levels by the extracts were observed by various researchers and the same has been presented in Table 6.7.

4. CONCLUSION

In conclusion this survey features the therapeutic capability of various species of genus *Hibiscus*. Due to the presence of its extraordinary mix of various phytochemicals like phenols, flavonoids, tannins, sterols, glucosides, lignin, anthocyanin and many more, which could be additionally surveyed and exposed to clinical preliminaries for their legitimate approvals. The enormous information in regards to the traditional uses and pharmacological impacts of genus *Hibiscus* has already been added to the existing data base by means of this article but at the same time capabilities of certain more species of the genus is not get disclosed so this can be considered as future possibilities that should be worked out.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

COMPETING INTERESTS

Authors have declared that no competing interests exist.
REFERENCES

1. Lowry JB. Floral anthocyanins of some Malesian Hibiscus species. Phytochemistry. 1976;15(9):1395-1396.
2. Sumathi S, Krishnaveni M. Preliminary screening, antioxidant and antimicrobial potential of Chaetomorpha antennina and Caulerpa scalpelliformis invitro study. Int. J. Environ. Sci. 2012;2(4):2312-2320.
3. Kala CP, Sajwan BS. Revitalizing Indian systems of herbal medicine by the National Medicinal Plants Board through institutional networking and capacity building. Curr. Sci. 2007;93:797-806.
4. Singh A, Sinha B. Asparagus racemosus and its phytocomponents; an updated review. Asian J. Biochem. Pharm. Res. 2014;4:230-240.
5. Garbi MI, Saleh M, Badri AM, Ibrahim TI, Mohammed SF, Alhassan MS, Elshikh AA, Kabbashi AS. Antibacterial activity, phytochemical screening and cytotoxicity of Hibiscus sabdariffa (calyx). J. Adv. Med. Plant Res. 2016;4(4):116-121.
6. Roja G, Rao PS. Anticancer compounds from tissue cultures of medicinal plants. J. Herbs Spices Med. Plants. 2000;7(2):71-102.
7. Salem MZ, Olivares-Perez J, Salem AZM. Studies on biological activities and phytochemical composition of Hibiscus species-A review. Life Sci. 2014;11(5):1-8.
8. Jiofack T, Ayissi I, Fokunang C, Guedje N, Kemeuze V. Ethnobotany and phytomedicine of the upper Nyong valley forest in Cameroon. Afr. J. Pharm. Pharmacol. 2009;3(4):144-150.
9. Agbors GA, Oben JE, Ngoqgang JY, Xinjing C, Vinson JA. Antioxidant capacity of some herbs/spices from Cameroon: a comparative study of two methods. J. Agric. Food Chem. 2005b;53(17):6819-6824.
10. Lee YG, Byeon SE, Kim JY, Lee JY, Rhee MH, Hong S, Wu JC, Lee HS, Kim MJ, Cho DH, Cho JY. Immunomodulatory effect of Hibiscus cannabinus extract on macrophage functions. J. Ethnopharmacol. 2007;113(1):62-71.
11. Kokwaro JO. Medicinal plants of east Africa. East African Literature Bureau. Third edition; 1976.
12. Williams VL. The design of a risk assessment model to determine the impact of the herbal medicine trade on the Witwatersrand on resources of indigenous plant species (Doctoral dissertation);2007.
13. Borokini TI, Omotayo FO. Phytochemical and ethnobotanical study of some selected medicinal plants from Nigeria. J. Med. Plants Res. 2012;6(7):1106-18.
14. Sen S, Chakraborty R, De B, Devanna N. An ethnobotanical survey of medicinal plants used by ethnic people in West and South district of Tripura, India. J. For. Res. 2011;22(3):417.
15. Ong HG, Kim YD. Quantitative ethnobotanical study of the medicinal plants used by the Ati Negrito indigenous group in Guimaras island, Philippines. Journal of ethnopharmacology 2014;157:228-242.
16. Alam MK. Medical ethnobotany of the Marma tribe of Bangladesh. Econ. Bot. 1992;46(3):330-335.
17. Burkhill IH. Dictionary of the Economic products of the Malay Peninsula Ministry of Agriculture and Co-operatives. Kuala Lumpur, Malaysia. 1966;1.
18. Pardo DT.. The medicinal plants of the Philippines. Translated and revised by Jerome B. Thomas, jr. Philadelphia: P. Blakiston's son & co., 1901:269-8. Available:https://doi.org/10.5962/bhl.title.56910.
19. Whistler WA. Traditional and herbal medicine in the Cook Islands. J. Ethnopharmacol. 1985;13(3):239-280.
20. Singh YN. Traditional medicine in Fiji: some herbal folk cures used by Fiji Indians. J. Ethnopharmacol. 1986;15(1):57-88.
21. Luu C. Notes on the traditional pharmacopoeia of French Guyana. Plant Med. Phytother. 1975;9:125-135.
22. Adututu M, Afful Y, Asante-Appiah K, Lieberman D, Hall JB, Elvin-Lewis M. Chewing stick usage in southern Ghana. Econ. Bot. 1979;33(3):320-328.
23. Vitalyos D. Phytotherapy in Domestic Traditional Medicine in Matouba-Papaye (Guadeloupe) (Doctoral dissertation, Ph. D. Dissertation. University of Paris); 1979.
24. Haddock RL. Some medicinal plants of Guam including English and Guamanian common names. Report Regional Tech Mtg Med Plants Papeete, Tahiti:1973.
25. Kobayashi J. Early Hawaiian uses of medicinal plants in pregnancy and childbirth. J. Trop. Pediatr. 1976;22(6):260-262.
26. Nath D, Sethi N, Singh RK, Jain AK. Commonly used Indian abortifacient plants with special reference to their teratologic effects in rats. J. Ethnopharmacol. 1992;36(2):147-154.
27. Tiwari KC, Majumder R, Bhattacharjee S. Folklore information from Assam for family planning and birth control. Int. J. Crude Drug Res. 1982;20(3):133-137.
28. Maheshwari JK, Singh KK, Saha S. Ethnomedicinal uses of plants by Tharus in Kheri district. UP. 1980;1:318-337.
29. Jain SK, Tarafder CR. Medicinal plant-lore of the santals (A revival of PO Boddin's work). Econ. Bot. 1970;24(3):241-278.
30. Malhi BS, Trivedi VP. Vegetable antifertility drugs of India. Int. J. Crude Drug Res. 1972;12(3):1922-1928.
31. Reddy MB, Reddy KR, Reddy MN. A survey of plant crude drugs of Anantapur district, Andhra Pradesh, India. Int. J. Crude Drug Res. 1989;27(3):145-155.
32. Dixit VP. Effects of chronically administered Malvaviscus flower extract on the female genital tract of gerbil Meriones hurrianae Jerdon. Indian J. Exp. Biol. 1977;15(8):650-652.
33. Hemadri K, Rao SS. Antifertility, abortifacient and fertility promoting drugs from Dandakaranya. Anc. Sci. Life. 1983;3(2):103-107.
34. Quisumbing E. Medicinal plants of the Philippines. Department of Agriculture and Commerce, Philippine Islands Technical Bulletin; 1951.
35. Van Steenis-Kruseman MJ. Select Indonesian medicinal plants. Bull. Org. Sci. Res. Indonesia 1953;18:1-90.
36. Shimizu N, Tomoda M, Suzuki I, Takada K. Plant mucilages. XXLIII. A representative mucilage with biological activity from the leaves of Hibiscus rosa-sinensis. Biol. Pharm. Bull. 1993;16(8):735-739.
37. Alami RA, Macksad AR. Medicinal plants in Kuwait. Al-Assiriya printing press Kuwait; 1976.
38. Hooper D. On Chinese medicine: drugs of Chinese pharmacies in Malaya. The Gard. Bull. Singapore.1929;6(1):1-154.
39. Zamora-Martinez MC, De Pascual Pola CN. Medicinal plants used in some rural populations of Oaxaca, Puebla and Veracruz, Mexico. J. Ethnopharmacol. 1992;35(3):229-257.
40. Suwal PN. Medicinal plants of Nepal. Ministry of forests, Department of Medicinal plants, Thapathali, Kathmandu, Nepal; 1970.
41. Holdsworth DK. Medicinal plants of Papua-New Guinea, Noumea, New Caledonia. South Pacific Commission Technical Paper no. 1977;175.
42. Holdsworth DK, Hurley CL, Rayner SE. Medicinal plants of New Ireland Papua New Guinea. Sci. New Guinea. 1978;6(2):96-104.
43. Ramirez VR, Mostacero LJ, Garcia AE, Mejia CF, Pelaez PF, Medina CD, Miranda CH. Vegetales empleados en medicina tradicional Norperuana. Banco Agrario del Peru & NACL Univ Trujillo, Trujillo, Peru; 1988.
44. Watt JM, Breyer-Brandwijk MG. The Medicinal and Poisonous Plants of Southern and Eastern Africa being an Account of their Medicinal and other Uses, Chemical Composition, Pharmacological Effects and Toxicology in Man and Animal., (Edn 2);1962.
45. Wong W. Some folk medicinal plants from Trinidad. Econ. Bot. 1976;30(2):103-142.
46. Ayensu ES. Medicinal plants of the West Indies. Reference Publications, Inc. Medicinal plants of the West Indies. 1981;282.
47. Bourdy G, Walter A. Maternity and medicinal plants in Vanuatu I. The cycle of reproduction. J. Ethnopharmacol. 1992;37(3):179-196.
48. Morton J. Roselle. In Morton JF. (Ed). Fruits of Warm Climates, Miami, FL. 1987;281-286.
49. Leung AY. Encyclopedia of common natural ingredients used in food, drugs, and cosmetics. Wiley. A John Wiley and Sons, Inc. Publications; 1996.
50. Burnett T, Wickersham R, Novak K. The review of natural products. (3rd ed.), Facts and Comparisons, St. Louis, MO;2002.
51. Gaya IB, Mohammad OMA, Suleiman AM, Maje MI, Adekunle AB, Toxicological and lactogenic studies on the seeds of Hibiscus sabdariffa Linn (Malvaceae) extract on serum prolactin levels of albino wistar rats. Int. J. Endo. 2009;5(2):1-6.
52. Yetein MH, Houessou LG, Lougbegnon TO, Teka O, Tente B. Ethnobotanical study of medicinal plants used for the treatment of malaria in plateau of Allada, Benin (West Africa). J. Ethnopharmacol. 2013;146(1):154-163.
53. Jagtap SD, Deokule SS, Bhosle SV. Ethnobotanical uses of endemic and RET plants by Pawra tribe of Nanندurbar district, Maharashtra. 2008;7(2):311-315.

54. Pappas CS, Tarantilis PA, Polissiou MG. Isolation and spectroscopic study of pectic substances from kenaf (Hibiscus cannabinus L.). Nat. Prod. Res. 2003;17(3):171-176.

55. Moujir L, Seca AM, Silva AM, Lopez MR, Padilla N, Cavaleiro JA, Neto CP. Cytotoxic activity of lignans from Hibiscus cannabinus. Fitoterapia. 2007;78(5):385-387.

56. Seca AM, Silva AM, Silvestre JA, Cavaleiro JA, Domingues FM, Pascoal-Neto C. Lignanamides and other phenolic constituents from the bark of kenaf (Hibiscus cannabinus). Phytochemistry. 2001;58(8):1219-1223.

57. Shui G, Peng LL. An improved method for the analysis of major antioxidants of Hibiscus esculentus Linn. J. Chromatogr. A. 2004;1048(1):17-24.

58. Ishikura N. Flavonol glycosides in the flowers of Hibiscus mutabilis f. versicolor. Agric. Biol. Chem. 1982;46(6):1705-1706.

59. Amrhein N, Frank G. Anthocyanin formation in the petals of Hibiscus mutabilis L. Z. Naturforsch. C. 1989;44(5-6):357-360.

60. Iwaoke E, Oku H, Takahashi Y, Ishiguro K. Allergy-preventive effects of Hibiscus mutabilis ‘versicolor’and a novel allergy-preventive flavonoid glycoside. Biol. Pharm Bull. 2009;32(3):509-512.

61. Barve BH, Hiremath SN, Pattan SR, Pal SC. Phytochemical and pharmacological evaluation of Hibiscus mutabilis leaves. J. chem. pharm. 2010;10(1):300-309.

62. Hou Z, Liang X, Su F, Su W. Preparative isolation and purification of seven compounds from Hibiscus mutabilis L. leaves by two-step high-speed counter-current chromatography. Chem. Ind. Chem. Eng. Q. 2015;21(2):331-341.

63. Sharma PC, Yelne MB, Dennis TJ. Database on medicinal plants used in Ayurveda, Central Council for Research in Ayurveda and Siddha. New Delhi. 2001;2:538-549.

64. Vastrad JV, Byadgi SA. Phytochemical screening and antibacterial activity of Hibiscus rosa-sinensis leaf extracts. Int. J. Curr. Microbiol. Appl. Sci. 2018;7(3):3329-3337.

65. Bhakta S, Das SK. A review on Hibiscus rosa-sinensis: A rural traditional medicine for contraception. Int. J. Eng. Info. Sys. 2018;1(9):77-79.

66. Begum Z, Younus I, Ali SM. Anti-inflammatory, analgesic and anti-pyretic activities of Hibiscus rosa-sinensis Linn and phytochemicals. World J. Pharm. Pharm. Sci. 2015;4(12):116-123.

67. Khare CP. Encyclopedia of Indian Medicinal Plants, Springer Verlag Berlin Heidelberg, New York. 2004;248-249.

68. Ross IA. Medicinal Plants of the World, 2nd edition Vol-I, Library of Congress Cataloging in Publication data, America. 1949;253-266.

69. Subramanian SS, Nair AGR. Flavonoids of four Malvaceous plants. Phytochemistry. 1972;11:1518-1519.

70. Srivastava DN, Bhatt SK, Udupa KN. Gas chromatographic identification of fatty acids, fatty alcohols, and hydrocarbons of Hibiscus rosa-sinensis leaves. J. Am. Oil Chem. Soc. 1976;53(10):607-608.

71. Khokhar I, Ahmad I. Studies in Medicinal Plants of Pakistan: A New Cyclopeptide Alkaloids from the Flowers of Hibiscus Rosa Sinensis. Sci. Int. (Lahore). 1992;4:147-149.

72. Joshi SG. Medicinal Plants, Oxford and IBH Publishing Co. Pvt. Ltd. New Delhi;2004.

73. Kumar PS. Evaluation of In-Vitro Anticancer Activity of Hibiscus rosa-sinensis against HeLa cell Line. J. Glob. Pharma Technol;2018.

74. Gilani AH, Bashir S, Janbaz KH, Shah AJ. Presence of cholinergic and calcium channel blocking activities explains the traditional use of Hibiscus rosasinensis in constipation and diarrhoea. J. Ethnopharmacol. 2005;102(2):289-294.

75. Adhirajan N, Kumar TR, Shanmugasundaram N, Babu M. In vivo and in vitro evaluation of hair growth potential of Hibiscus rosa-sinensis Linn. J. Ethnopharmacol. 2003;88(2-3):235-239.

76. Khokute SD. Effect of Hibiscus rosa-sinensis on spermatogenesis and accessory reproductive organs in rats. Planta Med. 1977;31(02):127-135.

77. Singh MP, Singh RH, Udupa KN. Anti-fertility activity of a benzene extract of Hibiscus rosa-sinensis flowers on female albino rats. Planta Med. 1882,44(03):171-174.
78. Gauthaman KK, Saleem MT, Thanislas PT, Prabhu VV, Krishnamoorthy KK, Devaraj NS, Somasundaram JS. Cardioprotective effect of the \textit{Hibiscus rosa sinensis} flowers in an oxidative stress model of myocardial ischemic reperfusion injury in rat. BMC Complement Altern. Med. 2006;6(1):1-8.

79. Sachdeva AR, Khemani LD. A preliminary investigation of the possible hypoglycemic activity of \textit{Hibiscus rosa-sinensis}. Biomed. Environ. Sci. 1999;12(3):222-226.

80. Sachdeva A, Raina D, Srivastava AK, Khemani LD. Effect of \textit{Aegle marmelos} and \textit{Hibiscus rosa sinensis} leaf extract on glucose tolerance in glucose induced hyperglycemic rats (Charles foster). J. Environ. Biol. 2001;22(1):53-57.

81. Sharma S, Sultana S. Effect of \textit{Hibiscus rosa sinensis} extract on hyperproliferation and oxidative damage caused by benzoyl peroxide and ultraviolet radiations in mouse skin. Basic Clin. Pharmacol. 2004a;95(5):220-225.

82. Sharma S, Khan N, Sultana S. Effect of Onosma echioides on DMBA/croton oil mediated carcinogenic response, hyperproliferation and oxidative damage in murine skin. Life Sci. 2004b;75(20):2391-2410.

83. Ajay M, Chai HJ, Mustafa AM, Gilani AH, Mustafa MR. Mechanisms of the anti-hypertensive effect of \textit{Hibiscus sabdariffa} L. calyces. J. Ethnopharmacol. 2007;109(3):388-393.

84. Jabeur L, Pereira E, Barros L, Calhelha RC, Sokovic M, Oliveira, MBP. \textit{Hibiscus sabdariffa} L. as a source of nutrients, bioactive com- pounds and colouring agents, Food Res. Int. 2017;100:717–723.

85. Hida H, Yamada T, Yamada Y. Genome shuffling of \textit{Streptomyces} sp. U121 for improved production of hydroxycitric acid. Appl. Microbiol. 2007;73(6):1387-1393.

86. Williamson EM, Driver S, Baxter K. Stockley's herbal medicines interactions: a guide to the interactions of herbal medicines, dietary supplements and nutraceuticals with conventional medicines/editors, digital products team, Julie McGlashan, Elizabeth King. London; Chicago: Pharmaceutical Press;2013.

87. Du CT, Francis FJ. Anthocyanins of roselle (\textit{Hibiscus sabdariffa}, L.). J. Food Sci. 1973;38(5):810-812.

88. Shibata M, Furukawa M. Reexamination on the structure of so-called “Hiviscin”. Shokubutsugaku zasshi. 1969;82:341-347.

89. Mckay D. Can hibiscus tea lower blood pressure. Agro. Food Ind. Hi Tec. 2009;20:40-42.

90. Rao PS, Seshadri TR. Pigments of the flowers of \textit{Hibiscus sabdariffa}. In Proceedings of the Indian Academy of Sciences-Section A, Springer India 1942;16 (5):323.

91. Rao PR, Seshadri TR. Constitution of hibiscitrin. Part I. In Proceedings of the Indian Academy of Sciences-Section A, Springer India. 1948;27(2):104.

92. Salama RB, Ibrahim SA. Ergosterol in \textit{Hibiscus sabdariffa} seed oil. Planta Med. 1979;36(07):221-222.

93. Salah AM, Gathumbi J, Vierling W. Inhibition of intestinal motility by methanol extracts of \textit{Hibiscus sabdariffa} L. (Malvaceae) in rats. Phytother Res. 2002;16(3):283-285.

94. Beltran-Debon R, Alonso-Villaverde C, Aragones G, Rodriguez-Medina I, Rull A, Micol V, Segura-Carretero A, Fernandez-Gutierrez A, Camps J, Joven J. The aqueous extract of \textit{Hibiscus sabdariffa} calyces modulates the production of monocyte chemoattractant protein-1 in humans. Phytomedicine 2010;17(3-4):186-191.

95. Herranz-Lopez M, Fernandez-Arroyo S, Perez-Sanchez A, Barrajon-Catalan E, Beltran-Debon R, Menendez JA, Alonso-Villaverde C, Segura-Carretero A, Joven J, Micol V. Synergism of plant-derived polyphenols in adipogenesis: perspectives and implications. Phytomedicine. 2012;19(3-4):253-261.

96. Peng CH, Chyau CC, Chan KC, Chan TH, Wang CJ, Huang CN. \textit{Hibiscus sabdariffa} polyphenolic extract inhibits hyperglycemia, hyperlipidemia, and glycation-oxidative stress while improving insulin resistance. J. Agric. Food Chem. 2011’59(18):9901-9909.

97. Ramirez-Rodrigues MM, Balaban MO, Marshall MR, Rouseff RL. Hot and cold-water infusion aroma profiles of \textit{Hibiscus sabdariffa}: fresh compared with dried. J. Food Sci. 2011a;76(2):C212-C217.

98. Ramirez-Rodrigues MM, Plaza ML, Azeredo A, Balaban MO, Marshall MR. Physicochemical and phytochemical properties of cold and hot water extraction
from *Hibiscus sabdariffa*. J. Food Sci. 2011b;76(3):C428-C435.

99. Eggensperger H, Wilker M. Hibiscus-Extrakt: Ein hautverträglicher Wirkstoffkomplex aus AHA’s und polysacchariden. Teil 1. Parfümerie und Kosmetik. 1996;77(9):522-523.

100. Schlicher H. Deutsch Apoth. Ztg. (116), 1155 In: Franz, M. and Regensburg, G. Franz. 1988. *Hibiscus sabdariffa* – Hibiscusblüten. Z. Phytother. 1976;1159:1163–1166.

101. Buogo G, Picchinnena D. Chemical characteristics of Roselle hemp. Ann. Chim. Appl. 1937;27:577-582.

102. Indovina R, Capotummino G. Chemical analysis of karkade, the extract derived from *Hibiscus sabdariffa* L. cultivated in Sicily (Palermo). Ann. Chim. 1938;28:413-418.

103. Reaubourg G, Monceaux RH. The chemical, botanical and pharmacological characteristics of the karkade (rosella) *Hibiscus sabdariffa* (gossypifolius). J. Pharm. Chim. 1940;1(9):292.

104. Ismail A, Ikram EHK, Nazri HSM. Roselle (*Hibiscus sabdariffa* L.) seeds-nutritional composition, protein quality and health benefits. Food. 2008;2(1):1-16.

105. Lin HH, Chan KC, Sheu JY, Hsuan SW, Wang CJ, Chen JH. *Hibiscus sabdariffa* leaf induces apoptosis of human prostate cancer cells in vitro and *In vivo*. Food Chem. 2012;132(2):880-891.

106. Yang MY, Peng CH, Chan KC, Yang YS, Huang CN, Wang CJ. The hypolipidemic effect of *Hibiscus sabdariffa* polyphenols via inhibiting lipogenesis and promoting hepatic lipid clearance. J. Agric. Food Chem. 2010;58(2):850-859.

107. Lee MJ, Cho F, Tseng TH, Hsieh MH, Lin MC, Wang CJ. Hibiscus protocatechuic acid or esculetin can inhibit oxidative LDL induced by either copper ion or nitric oxide donor. J. Agric. Food Chem. 2002;50(7):2130-2136.

108. Lin WL, Hsieh YJ, Jou FP, Wang CJ, Cheng MT, Tseng TH. Hibiscus protocatechuic acid inhibits lipopolysaccharide-induced rat hepatic damage. Arch. Toxicol. 2003;77(1):42-47.

109. Clifford MN, Johnston KL, Knight S, Kuhnert N. Hierarchical scheme for LC-MS n identification of chlorogenic acids. J. Agric. Food Chem. 2003;51(10):2900-2911.

110. Alarcon-Alonso J, Zamilpa A, Aguilar FA, Herrera-Ruiz M, Tortoriello J, Jimenez-Ferrer E. Pharmacological characterization of the diuretic effect of *Hibiscus sabdariffa* Linn (Malvaceae) extract. J. Ethnopharmacol. 2012;139(3):751-756.

111. Kuo CY, Kao ES, Chan KC, Lee HJ, Huang TF, Wang CJ. *Hibiscus sabdariffa* L. extracts reduce serum uric acid levels in oxonate-induced rats. J. Funct. Foods. 2012;4(1):375-381.

112. Osman A, Younes M, Mokhtar A. Chemical examination of local plants. XIII. Elucidation of the structure of a new glycoside from the leaves of Egyptian *Hibiscus sabdariffa*. Aust. J. Chem. 1975;28(1):217-220.

113. Dafallah AA, Al-Mustafa Z. Investigation of the anti-inflammatory activity of *Acacia nilotica* and *Hibiscus sabdariffa*. Am. J. Chinese Med. 1996;24(4):263-269.

114. Farombo EO, Fakoya A. Free radical scavenging and antigenotoxic activities of natural phenolic compounds in dried flowers of *Hibiscus sabdariffa* L. Mol. Nutr. Food Res. 2005;49(12):1120-1128.

115. Chen RT, Fang SDE. On the chemical constituents of cotton rose *Hibiscus*. Chin. Tradit. Herb. Drug. 1993;24:227-229.

116. Ali MB, Salih WM, Mohamed AH, Homeida AM. Investigation of the antispasmodic potential of *Hibiscus sabdariffa* calyces. J. Ethnopharmacol. 1991;31(2):249-257.

117. Ali BH, Wabel NA, Blunden G. Phytochemical, pharmacological and toxicological aspects of *Hibiscus sabdariffa* L; a review. Phytother. Res.; An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 2005;19(5):369-375.

118. Kamei H, Kojima T, Hasegawa M, Koide T, Umeda T, Yukawa T, Terabe K. Suppression of tumor cell growth by *Hibiscus* anthocyanins in vitro. *Suppression of tumor cell growth by *Hibiscus* anthocyanins in vitro. J. Pharmacol. Sci.* 1982;54(2):217-220.

119. Suboh SM, Bilto YY, Aburjai TA. Protective effects of selected medicinal plants against protein degradation, lipid peroxidation and deformability loss of oxidatively stressed human erythrocytes. Phytother. Res. 2004;18(4):280-284.
121. Pool-Zobel BL, Bub A, Schroder N, Rechkenmer G. Anthocyanins are potent antioxidants in model systems but do not reduce endogenous oxidative DNA damage in human colon cells. Eur. J. Nutr. 1999;38(5):227-234.

122. Meiers S, Kemény M, Weyand U, Gastpar R, Von AE, Marko D. The anthocyanidins cyanidin and delphinidin are potent inhibitors of the epidermal growth-factor receptor. J. Agric. Food Chem. 2001;49(2):958-962.

123. Yokota M, Zenda H, Kosuge T, Yamamoto T, Torigoe Y. Studies on isolation of naturally occurring biologically active principles. V. Antifungal constituents in Betulae cortex (author's transl). Yakugaku Zasshi: Journal of the Pharmaceutical Society of Japan. 1978;98(12):1607-1612.

124. Yoo ID, Yun BS, Lee IK, Ryoo IJ, Choong DH, Han KH. Three naphthalenes from root bark of Hibiscus syriacus. Phytochemistry. 1998;47(5):799-802.

125. Yun BS, Ryoo IJ, Lee IK, Park KH, Choong DH, Han KH, Yoo ID. Two bioactive pentacyclic triterpene esters from the root bark of Hibiscus syriacus. J. Nat. Prod. 1999;62(5):764-766.

126. Wu PL, Chuang TH, He CX, Wu TS. Cytotoxicity of phenylpropanoid esters from the stems of Hibiscus syriacus. Bioorg. Med. Chem. 2004;12(9):2193-2197.

127. Wu PL, Wu TS, He CX, Su CH, Lee KH. Constituents from the stems of Hibiscus tainwensis. Chem. Pharm. Bull. 2005;53(1):56-59.

128. Shimokawa S, Iwashina T, Murakami N. Flower color changes in three Japanese Hibiscus species: further quantitative variation of anthocyanin and flavonol contents. Nat. Prod. Commun. 2015;10(3):451-452.

129. Chen JJ, Huang SY, Duh CY, Chen IS, Wang TC, Fang HY. A new cytotoxic amide from the stem wood of Hibiscus tiliaceus. Planta Med. 2006;72(10):935-938.

130. Subramanian SS, Nair AR. Chemical constituents of the fruits of Hibiscus tiliaceus. Curr. Sci. 1973;75:770-775.

131. Hossain H, Akbar PN, Rahman SE, Yeasmin S, Khan TA, Rahman MM, Jahan IA. HPLC profiling and antioxidant properties of the ethanol extract of Hibiscus tiliaceus leaf available in Bangladesh. Eu. J. Med. Plants. 2015;7(1):7-15.

132. Singh YN, Ikahihiho T, Panuve M, Slatter C. Folk medicine in Tonga. A study on the use of herbal medicines for obstetric and gynaecological conditions and disorders. J. Ethnopharmacol. 1984;12(3):305-329.

133. Zhong-Zhao WANG, Jun LI, Xv-Li TANG, Guo-Qiang LI. Triterpenes and steroids from semi-mangrove plant Hibiscus tiliaceus. Chin. J. Nat. Medicines. 2011;9(3):190-192.

134. Li L, Huang X, Sattler I, Fu H, Grabley S, Lin W. Structure elucidation of a new friedelane triterpene from the mangrove plant Hibiscus tiliaceus. Magn. Reson. Chem. 2006; 44(6):624-628.

135. Kunnumakkara AB, Nair AS, Ahn KS, Pandey MK, Yi Z, Liu M, Aggarwal BB. Gossypin, a pentahydroxy glucosyl flavone, inhibits the transforming growth factor beta-activated kinase-1-mediated NF-kB activation pathway, leading to potentiation of apoptosis, suppression of invasion, and abrogation of osteoclastogenesis. Blood. Am. J. Hematol. 2007;109(12):5112-5121.

136. Ruban P, Gajalakshmi K. In vitro antibacterial activity of Hibiscus rosa-sinensis flower extract against human pathogens. Asian Pac. J. Trop. Biomed. 2012;2(5):399-403.

137. Patel R, Patel A, Vaghasiya D, Nagee A. Antimicrobial evaluation of Hibiscus rosa-sinensis plant extracts against some pathogenic bacteria. Bull Env. Sci. Res. 2012;1(3-4):14-17.

138. Tiwari U, Yadav P, Nigam D. Study on phytochemical screening and antibacterial potential of methanolic flower and leaf extracts of Hibiscus rosa-sinensis. Int. J. Innov. Appl. Res. 2015;3:9-14.

139. Udo IJ, Ben MG, Etuk CU, Tiomothy AI. Phytochemical, proximate, and antibacterial properties of Hibiscus rosa-sinensis L. Leaf. J. Med. Plants Stud. 2016;4(5):193-195.

140. Singh V, John SA, Rao KP. Evaluation of phytochemical constituents and antibacterial activity of Caricapapaya and Hibiscus rosa sinensis against Pseudomonas aeruginosa and Aeromonashydrophila. The Allahabad Farmer 2017;73(2):46-48.

141. Sobhy EA. Elauleem KG, Elauleem HG. Potential Antibacterial Activity of Hibiscus rosa-sinensis Linn flowers extracts. Int. J.
142. Tyagi SH, Kumar AR, Tyagi PK. Comparative analysis of metal nanoparticles synthesized from *Hibiscus rosa sinensis* and their antibacterial activity estimation against nine pathogenic bacteria. Asian J. Pharm. Clin. Res. 2017;10(5):323-329.

143. Vijayaraj R, Kumaran NS. Biosynthesis of silver nanoparticles from *Hibiscus rosa sinensis*: An approach towards antimicrobial activity on fish pathogen aeromonas hydrophila. Int J Pharm Sci Res. 2017;8:5241-6.

144. Amita Paul. Analysis of *Hibiscus micranthus* L. Int. j. adv. res. innov. idea technol. 2018;4:2451-2454.

145. Vijayanakumar S, Yabesh MJE, Arulmozhi P, Praseetha PK. Identification and isolation of antimicrobial compounds from the flower extract of *Hibiscus rosa-sinensis* L: In silico and in vitro approaches. Microb. Pathog. 2018;123:527-535.

146. Singh S, Gupta A, Kumar A, Verma R. Antimicrobial and Antioxidant Potential of *Hibiscus rosa-sinensis* L. in Western Himalaya. Biol. Forum. 2019;11(1):35-40.

147. Adebisi O, Ojokoh AO. Antimicrobial activities of green and red calyx extracts of *Hibiscus sabdariffa* on some microorganisms. Int. J. Agric. Biol. 2011;2(2):038-042.

148. Fullerton M, Khatiwada J, Johnson JU, Davis S, Williams LL. Determination of antimicrobial activity of sorrel (*Hibiscus sabdariffa*) on *Escherichia coli* O157: H7 isolated from food, veterinary, and clinical samples. J. Med. Food. 2011;14(9):950-956.

149. Mamun-al, Khatun HM, Nesa LM, Islam MR, Munira MS. In vitro Evaluation of the Antibacterial, Cytotoxic and Insecticidal Activities of *Hibiscus sabdariffa* Fruits. Lib. Agri. Res. Cent. J. Int. 2011;2(3):144-149.

150. Zhang M, Hettiarachchy NS, Horax R, Kannan A, Praisooody MA, Muhundan A, Mallangi CR. Phytochemicals, antioxidant, and antimicrobial activity of *Hibiscus sabdariffa*, *Centella asiatica*, *Moringa oleifera* and *Murraya koenigii* leaves. J. Med. Plants Res. 2011;5(30):6672-80.

151. Edema MO, Alaga TO. Comparative evaluation of bioactive compounds in *Hibiscus sabdariffa* and *Syzygium samarangense* juice extracts. Afr. Crop Sci. J. 2012;20(3):179-188.

152. Jung E, Kim Y, Joo N. Physicochemical properties and antimicrobial activity of Roselle (*Hibiscus sabdariffa* L.). J. Sci. Food Agric. 2013;93(15):3769-3776.

153. Das S. In Vitro Evaluation of Phytochemical, Antimicrobial and Antioxidant Activity of Calyces of Roselle (*Hibiscus sabdariffa* L.). Int. J. Pharm. Sci. Res. 2014;5(8):3364.

154. Osei-Djarbeng SN, Amonoo-Neizer J, Boadi P, NA P, Opoku SOA. Comparative antimicrobial activities of different solvent extracts and a refreshing drink (Sobolo) made from *Hibiscus sabdariffa* Linn. Linn. Int. J Med. 2014;2(3):01-04.

155. Sulaiman FA, Kazeem MO, Waheed AM, Temowo SO, Azeez IO, Zubair FI, Adeyemi TA, Nyang A, Adeyemi OS. Antimicrobial and toxic potential of aqueous extracts of *Allium sativum*, *Hibiscus sabdariffa* and *Zingiber officinale* in Wistar rats. J. Taibah. Univ. Sci. 2014;8(4):315-322.

156. Adamu H, Ngwu RO. Phytochemical Screening and Antibacterial Activities of *Hibiscus sabdariffa* L. Leaf Extracts. Niger. J. Chem. Res. 2015;20:46-52.

157. Ajoku GA, Okwute SK, Okogun JL. Preliminary phytochemical and antimicrobial screening of the calyx of green *Hibiscus sabdariffa* (Linn) (Malvaceae). J. Phytomed. Therap. 2015;15(1):41-52.

158. Mensah JK, Golomeke D. Antioxidant and antimicrobial activities of the extracts of the Calyx of *Hibiscus Sabdariffa* Linn. Curr. Sci. Perspectives. 2015;1(2):69-76.

159. Nathaniel OK, Agina SE. Evaluation of the Antibacterial Activity of Seed Coat Extracts of Roselle (*Hibiscus Sabdariffa* L.) on Selected Antibiotic Resistant Bacterial Species. J. Plant Sci. 2015;3(5):259-263.

160. Sekar M, Hashim HNM, Fadzil FSA, Sukaini SSM, Zukhi NNM, Nadzri MN, Abdullah MS. Antibacterial activity of the methanolic extract of *Hibiscus sabdariffa* Leaves and Fruits. Int. J. Microbiol. Res. 2015;10(5):1-6.

161. Thiripurasundari N, Kumar TV, Ramanathan G. Antimicrobial potential of medicinal plant extracts against human pathogens. Int. Res. J. Pharm. App. Sci. 2015;3(4):107-109.

162. Abdallah EM. Antibacterial efficiency of the Sudanese Roselle (*Hibiscus sabdariffa* L.). A famous beverage from Sudanese folk
medicine. J. Intercult. Ethnopharmacol. 2016;5(2):186-190.

163. Salmon SA, Aldeen WRT. Antibacterial, Anti-virulence factors of Hibiscus sabdariffa extracts in Staphylococcus aureus isolated from patients with urinary tract infection. Res. J. Pharm. Technol. 2018;11(2):735-740.

164. Youns MA, Hashim Al, Suliman SI, Alla AB. In Vitro Evaluation of the Antimicrobial and Antioxidant Activity of Hibiscus Sabdariffa L. J. Dent. Medical Sci. 2018;17(4):69-74.

165. Bariyyah SK, Prajito N, Yuniarti A. Phytochemical screening and antimicrobial activity of Roselle (Hibiscus sabdariffa L.) flower extract against Aeromonas hydrophila. J. Exp. Life Sci. 2019;9(2):65-69.

166. Kumar S, Annasheba L. A study on phytochemicals, antimicrobial, and synergistic antimicrobial activities of Hibiscus sabdariffa. Biofilms. 2019;12(4):198-201.

167. Punasiya R, Pillai S. In vitro Antibacterial Activity of Leaf Extracts of Hibiscus syriacus (L). J. Cosmet. Trop. Sci. 2014;5(2):51–55.

168. Abdul-Awal SM, Nazmir S, Nasrin S, Nurunnabi TR, Uddin SJ. Evaluation of pharmacological activity of Hibiscus tiliaceus. SpringerPlus 2016;5(1):1209.

169. Andriani Y, Mohamad H, Bhubalan K, Abdullah MI, Amir H. Phytochemical Analyses, Anti Bacterial and Anti-Biofilm Activities Of Mangrove-Assocated Hibiscus tiliaceus Extracts and Fractions Agains Pseudomonas aeruginosa. J. Sustain. Sci. Manag. 2017;12(2):45-51.

170. Abdoulaye IZ, Reine BGS, Bothon FTD, Pascal ADC, Yaya K, Espérance MS, Felicien A, Dominique SCK. Phytochemical screening and anti-radical scavenging activity of three antianmic plants acclimated in Benin: Alternanthera brasiliana, Monechma depauperatum and Hibiscus acetosella. Int. J. Eng. Sci. Technol. 2018;7(12):374-381.

171. Gbadamosi IT, Abiade AA, Agbatutu A. An Assessment of the Nutritional, Phytochemical and Antioxidant Properties of Hook. F.(Malvaceae). Afr. J. Biomed. Res. 2018;21(3):333-338.

172. Ryu J, Kwon SJ, Ahn JW, Jo YD, Kim SH, Jeong SW, Lee MK, Kim JB, Kang SY. Phytochemicals and antioxidant activity in the kenaf plant (Hibiscus cannabinus L.). Plant Biotechnol. J. 2017;44(2):191-202.

173. Rusmini R, Aquastini D, Manullang RR, Daryono D, Sadikin A. Phytochemical Assay and Antioxidant Activity against DPPH of Ethanol Extract from Kenaf Leaf (Hibiscus cannabinus L.). J. Trop. Pharm. Chem. 2019;4(5):203-208.

174. Saravanan D, Lakshmi IA, Gobinath M, kumar BG, Priya S, Syamala E, Rahamathbee K. Potential antioxidant, hypoglycemic and hypolipidemic effect of leaves of Hibiscus platanifolius Linn. Int. J. Pharmaceut. Sci. Drug Res. 2011;3:236-240.

175. Falade OS, Aderogba MA, Kehinde O, Akinpelu BA, Oyedapo BO, Adewusi SR. Studies on the chemical constituents, antioxidants and membrane stability activities of Hibiscus rosa sinensis. Niger J. Nat. Prod. Med. 2009;13:58-64.

176. Mandade R, Sreenivas SA, Sakarkar DM, Choudhury A. Radical scavenging and antioxidant activity of Hibiscus rosasinensis extract. Afr. J. Pharm. Pharmacol. 2011;5(17):2027-2034.

177. Sankaran M, Vadivel A. Antioxidant and Antidiabetic effect of Hibiscus rosa-sinensis flower extract on Streptozotocin induced experimental rats-a dose response study. Not. Sci. Biol. 2011;3(4):13-21.

178. Garg D, Shaikh A, Muley A, Marar T. In vitro antioxidant activity and phytochemical analysis in extracts of Hibiscus rosasinensis stem and leaves. Free Radic. 2012;2(3):41-46.

179. Ghaffar FRA, El-Elaimy IA. In vitro, antioxidant and scavenging activities of Hibiscus rosa sinensis crude extract. J. Appl. Pharm. Sci. 2012;2(2):51-58.

180. Sheth F, De S. Evaluation of comparative antioxidant potential of four cultivars of Hibiscus rosa-sinensis L. by HPLC-DPPH method. Free Radic. 2012;2(4):73-78.

181. Kumar V, Mahdi F, Khanna AK, Singh R, Chander R, Saxena JK, Mahdi AA, Singh RK. Antidyshlipidemic and antioxidant activities of Hibiscus rosa sinensis root extract in alloxan induced diabetic rats. Indian J. Clin. Biochem. 2013;28(1):46-50.

182. Pillai SS, Mini S. In vitro antioxidant activities of different solvent fractions from the ethanolic extract of Hibiscus rosa sinensis petals. Int. J. Pharm. Sci. Res. 2014;5(9):3879-3883.
183. Guleria H, Vaidya M. In-vitro study of antioxidant activity and phytochemical analysis of *Hibiscus rosa-sinensis* Linn. corolla & calyx. Int. J. Green Her. Chem. 2015;4:55-59.

184. Afify AEMMR, Hassan HMM. Free radical scavenging activity of three different flowers-*Hibiscus rosa-sinensis*, *Quisqualis indica* and *Senna surattensis*. Asian Pac. J. Trop. Biomed. 2016;6(9):771-777.

185. Mondal S, Ghosh D, Sagar N, Ganapaty S. Evaluation of Antioxidant, Toxicological and wound healing Properties of *Hibiscus rosa-sinensis* L. (Malvaceae) ethanolic leaves extract on different Experimental animal models. Indian J. Pharm. Edu. Res. 2016;50:620-37.

186. Purushothaman A, Meenatchi P, Saravanan S, Sundaram R, Saravanan N. Quantification of total phenolic content, HPLC analysis of flavonoids and assessment of antioxidant and antihaemolytic activities of *Hibiscus rosa-sinensis* L. flowers in vitro. Int. J. Pharma. Res. Health Sci. 2016;4(5):1342-1350.

187. Ghosh A, Dutta A. GC-MS analysis and study of potential antioxidant activity of the crude ethanolic flower extract of *Hibiscus rosa-sinensis* L. (wild variety) by hydrogen peroxide scavenging assay. Int. J. Mod. Trends Sci. Technol. 2017;11(7):20405-20410.

188. Prasanna R. Bioprospecting of Neem and *Hibiscus rosa-sinensis*. Int. J. Advn. Res, Idea Innov Technol. 2017;3(1):543-558.

189. Vignesh RM, Nair BR. A study on the antioxidant and antibacterial potential of the mucilage isolated from *Hibiscus rosa-sinensis* Linn. (Malvaceae). J. Pharmacogn. Phytochem. 2018;7(2):1633-1637.

190. Wahid S, Tasleem S, Jahangir S. Phytochemical profiling of Ethanolic flower extract of *Hibiscus rosa-sinensis* and evaluation of its antioxidant potential. World J. Pharm. Res. 2019;8(6):161-168.

191. Luvonga WA, Njoroge MS, Makokha A, Ngunjiri PWB. Chemical characterisation of *Hibiscus sabdariffa* (Roselle) calyces and evaluation of its functional potential in the food industry. In jkuat annual scientific conference proceedings. 2010:631-638.

192. Kumar M, Garg R. Phytochemical properties and antioxidant activity of *Hibiscus sabdariffa* Linn. Int. J. pharm. chem. sci. 2012;1:1236-1240.

193. Obouayeba AP, Boyvin L, M’Boh GM, Diabaté S, Kouakou TH, Djaman AJ, N’Guessan JD. Hepatoprotective and antioxidant activities of *Hibiscus sabdariffa* petal extracts in Wistar rats. Int. J. Basic. Clin. Pharmacol. 2014b;3(5):774-780.

194. Sirag N, Elhadi MM, Alagaili AM, Ohaj M. Determination of Total Phenolic Content and Antioxidant Activity of Roselle (*Hibiscus sabdariffa* L.) Calyx and Epicalyx Ethanolic (Alcoholic) Extract. Gezira J. Health Sci. 2014;10(1).

195. Zhang B, Mao G, Zheng D, Zhao T, Zou Y, Qu H, Li F, Zhu B, Yang L, Wu X. Separation, identification, antioxidant, and anti-tumor activities of *Hibiscus sabdariffa* L. extracts. Sep. Sci. Technol. 2014;49(9):1379-1388.

196. Formagio ASN, Ramos DD, Vieira MC, Ramalho SR, Silva MM, Zárate NAH, Foglio MA, Carvalho JE. Phenolic compounds of *Hibiscus sabdariffa* and influence of organic residues on its antioxidant and antitumoral properties. Braz. J. Biol. 2015;75(1):69-76.

197. Ghosh I, Poddar S, Mukherjee A. Evaluation of the protective effect of *Hibiscus sabdariffa* L. calyx (Malvaceae) extract on arsenic induced genotoxicity in mice and analysis of its antioxidant properties. Biol. Med. 2015;7(1):218.

198. Kouakou TH, Konkon NG, Ayolié K, Obouayeba AP, Abeda ZH, Koné M. Anthocyanin production in calyx and callus of Roselle (*Hibiscus sabdariffa* L.) and its impact on antioxidant activity. J. Pharmacogn. Phytochem. 2015;4(3):9-15.

199. Subhaswaraj P, Sowmya M, Bhavana V, Dyavaiah M, Siddhardha B. Determination of antioxidant activity of *Hibiscus sabdariffa* and *Croton caudatus* in *Saccharomyces cerevisiae* model system. Int. J. Food Sci. 2017;54(9):2728-2736.

200. Widowati W, Rani AP, Hamzah RA, Arumwardana S, Afifa E, Kusuma HSW, Rhibiha DD, Nufus H, Amalia A. Antioxidant and antiangiogenic activity of *Hibiscus sabdariffa* L. and its compounds. Nat. Prod. Sci. 2017;23(3):192-200.

201. Islam M, Yesmin R, Ali H. Antineoplastic Properties of Phyto-synthesized Silver Nanoparticles from *Hibiscus Sabdariffa* Linn. Bark Extract. Cent. Asian J. Med. Sci. 2018;4(4):281-292.
202. Jamini TS, Islam AKM, Mohi-ud-Din M, Hasan MM. Phytochemical Composition of Calyx Extract of Roselle (Hibiscus sabdariffa L.) Genotypes. J. Food Tech. Food Chem. 2019;2(102).

203. Zahid H, Rizwani GH, Shareef H, Ali ST. Antioxidant and urease inhibition activity of methanol extract of Hibiscus schizopetalus (Mast) Hook. J. Pharmacogn. Phytochem. 2014;2(6):7-11.

204. Umachigi SP, Jayaveera NK, Kumar CA, Bharathi T, Kumar GS. Evaluation of antioxidant properties of leaves of Hibiscus syriacus L. Pharmacologyonline. 2008;1:51-65.

205. Das L, Godbole S. Antifungal and phytochemical analysis of Lantana camara, Citrus limonum (lemon, Azadirachta indica (neem) and Hibiscus rosasinensis (china rose). J. Pharm. Res. 2015;9(7):476-479.

206. Durga R, Kumar PS, Hameed SAS, Dheeba B, Saravanan R. Evaluation of In-Vitro Anticancer Activity of Hibiscus rosasinensis against HeLa Cell Line. J. Glob. Pharma. Technol. 2018;10(1):1-10.

207. Ajoku GA, Okwute SK, Okogun JL. Preliminary phytochemical and antimicrobial screening of the calyx of green Hibiscus sabdariffa (Linn) (Malvaceae). J. Phytother. Therap. 2015;15(1):41-52.

208. Jang YW, Jung JY, Lee IK, Kang SY, Yun BS. Nonanoic acid, an antifungal compound from Hibiscus syriacus Ggoma. Mycobiology. 2012;40(2):145-146.

209. Wong YH, Tan WY, Tan CP, Long K, Nyam KL. Cytotoxic activity of kenaf (Hibiscus cannabinus L.) Fraction of ursolic acid, β-sitosterol and lupeol in three different Hibiscus species (aerial parts) by validated HPTLC method. Saudi J. Pharm. J. 2018;26(7):1060-1067.

210. Hosseini A, Bakhtiar E, Mousavi SH. Protective effect of Hibiscus sabdariffa on doxorubicin-induced cytotoxicity in H9c2 cardiomyoblast cells. Iran J. Pharm. Res. 2017;16(2):708-713.

211. Maciel LG, do Carmo MAV, Azevedo L, Daguer H, Molognoni L, de Almeida MM, Granato D, Rosso ND. Hibiscus sabdariffa anthocyanins-rich extract: Chemical stability, in vitro antioxidant and antiproliferative activities. Food Chem. Toxicol. 2018;113:187-197.

212. Sangeetha S, Ananthi T. In vitro cytotoxic activity of leaves of Hibiscus sabdariffa L. against hepg2 cell line. World J. Pharm. Res. 2018;7(12):862-869.

213. Cheng YL, Lee SC, Harn HJ, Huang HC, Chang WL. The extract of Hibiscus syriacus inducing apoptosis by activating p53 and AIF in human lung cancer cells. Am. J. Chinese Med. 2008;36(01):171-18.

214. Nishitha G, Latha AG, Tejaswini L, Mounica A, Rekha K, Reddy KN, Jyothirmayi B, Kesana SN, Unissa R. In vitro Cytotoxic Activity of Ethyl Acetate Fraction of Hibiscus vitifolius Flowers Against HeLa Cell Line. Trop. J. Nat. Prod. Res. 2018;2(3):122-125.

215. Gomathi N, Malarvilii T, Mahesh R, Begum VH. Lipids lowering effect of Hibiscus rosa-sinensis flower petals on monosodium glutamate (MSG) induced obese rats. Pharmacologyonline 2008;1:400-409.

216. Bhaskar A, Nithya V, Vidhya VG, Bharathi T, Kumar GS. Evaluation of antioxidant properties of leaves of Hibiscus syriacus Phytochemical screening and in vitro antioxidant activities of the ethanolic extract of Hibiscus rosa sinensis L. Ann. Biol. Res. 2011;2(5):653-661.

217. Mishra R, Karmarkar SM, Bhagwat AM. Preliminary dose dependent study on anti-hyperlipidemic activity of Hibiscus rosa-sinensis Linn leaves on triton WR 1339 induced hyperlipidemic mice model. Asian J. Pharm. Clin. Res. 2011;4(2):100-102.

218. Sikarwar MS, Patil MB. Antihyperlipidemic effect of ethanolic extract of Hibiscus rosa-sinensis flowers in hyperlipidemic rats. Rgush J. Pharm. Sci. 2011;1(2):117-122.

219. Ojiaho A, Chikezie P, Zedech U. Serum lipid profile of hyperlipidemic rabbits (Lepus townsendii) treated with leaf extracts of Hibiscus rose-sinesis, Emilia coccinea, Acanthus montanus and Asystasia gangetica. J. Med. Plants Res. 2013;7:3226-3231.

220. Biswas A, D’Souza UU, Bhat S, Damodar D. The hepatoprotective effect of Hibiscus rosa-sinensis flower extract on diet-induced hypercholesterolemia in male albino wistar rats. Int. J. Med. Pharm. Sci. 2014;4:1-10.

221. Zaki LH, Mohamed SM, Bashandy SA, Morsy FA, Tawfik KM, Shahat AA.
Hypoglycemic and antioxidant effects of *Hibiscus rosa-sinensis* L. leaves extract on liver and kidney damage in streptozotocin induced diabetic rats. Afr. J. Pharma. Pharmac. 2017;11(13):161-169.

223. Gosain S, Irchiya R, Sharma PC, Thareja S, Kalra A, Deep A, Bhardwaj TR. Hypolipidemic effect of ethanolic extract from the leaves of *Hibiscus sabdariffa* L. in hyperlipidemic rats. Acta. Pol. Pharm. Sci. 2010;67(2):179-184.

224. Ndarubu TA, Chiarama OS, Alfa S, Aishatu M, Chinedu OE, Wenawo DL, Adenike AR, Bashir L, Eustace BB. Phytochemicals, hypoglycemic and hypolipidemic effects of methanol leaf extract of *Hibiscus sabdariffa* in alloxan induced diabetic rats. GSC Biol. Pharm. Sci. 2019;8(3):070-078.

225. Gaffer EY, Mustafa HA. The Hypolipidaemic Effect of the Ethanolic Extract of *Hibiscus sabdariffa* L. Calyces on Induced Hyperlipidaemia in Albino Rats. EC Vet. Sci. 2019;4:379-86.

226. Alqasoumi SI, Al-Rehaily AJ, AlSheikh AM, Abdel-Kader MS. Evaluation of the hepatoprotective effect of *Ephedra foliata*, *Alhagi mauroorum*, *Capsella bursa-pastoris* and *Hibiscus sabdariffa* against experimentally induced liver injury in rats. Nat. Prod. 2008;14(2):95-99.

227. El-Sayed MSS. Effect of hepatoprotective role evaluation of *Hibiscus rosa-sinensis* leaves and Pomegranate (*Punica granatum*) peels aqueous extract on male albino rats. Zagazig J. Agri. Res. 2018;45(1):349-362.

228. Abubakar M, Lawal A, Suleiman B, Abdullahi K. Hepatorenal toxicity studies of sub-chronic administration of calyx aqueous extracts of *Hibiscus sabdariffa* in albino rats. Bayero J. Pure App. Sci. 2010;3(1):16-19.

229. Bhavana GR, Rajani M, Babu J, Bonthagarala B. Hepatoprotective Activity of Aqueous Extract of *Hibiscus sabdariffa* on Alcohol Induced Hepatotoxicity in Rats. World J. Pharm. Pharmac. Sci. 2017;6:767-778.

230. Joshua PE, Eze CS, Ukegbu CY, Okafor JO, Okoli PC, Nkwocha CC, Nduka FO, Ogara AL, Ubani CS. Hepatoprotective effect of aqueous extract of *Hibiscus sabdariffa* on some antioxidants and haematological indices of acetaminophen challenged Wistar albino rats. Afr. J. Pharm. Pharmacol. 2017;11(20):250-259.

231. Olanrewaju E, Anyaehie B, Ezeh CO, Onyekwelu KC, Ezeh RC. Effect of methanolic extract of *Hibiscus sabdariffa* in ethanol-induced hepatotoxicity. Afr. J. Biomed. Res. 2017;20(1):99-102.

232. Samuel AJSJ, Mohan S, Chellappan DK, Kalusalingam A, Ariamuthu S. *Hibiscus vitifolius* (Linn.) root extracts shows potent protective action against anti-tubercular drug induced hepatotoxicity. J. Ethnopharmacol. 2012;141(1):396-402.

233. Simplice FH, Armand AB, Roger P, Emmanuel AA, Pierre K, Veronica N. Effects of *Hibiscus asper* leaves extracts on carrageenan induced oedema and complete Freund’s adjuvant-induced arthritis in rats. J. Cell Anim. Biol. 2011; 5(5):69-75.

234. Chaudhari SR, Patil VR, Deshmukh TA, Bhangale JO. Analgesic and anti-inflammatory activity of ethyl acetate extract of *Hibiscus cannabious* (L.) seed extract. American Journal of Phytomedince and Clinical Therapautics. 2015;3(10):633-642.

235. Raduan, S.Z., Abdul Aziz, M.W.H., Roslida, A.H., Zakaria, Z.A., Zuraini, A., Hakim, M.N., 2013. Anti-inflammatory effects of *Hibiscus rosa-sinensis* L. and *Hibiscus rosa-sinensis* var. alba ethanol extracts. Int. J. Pharm. Pharm. Sci. 5(4), 754-762.

236. Saptarini NM, Darusman F, Priatna B. Anti-Inflammatory Activity of *Hibiscus Sabdariffa* Extract. Planta Med. 2013;1(5):18-23.

237. Ali SAE, Mohamed AH, Mohammed GEE. Fatty acid composition, anti-inflammatory and analgesic activities of *Hibiscus sabdariffa* Linn. seeds. J. Adv. Vet. Anim. Res. 2014;1(2):50-57.

238. Soni D, Gupta A. An evaluation of antipyretic and analgesic potentials of aqueous root extract of *Hibiscus rosa sinesis* Linn. (Malvaceae), International Int. J. res. phytochem. pharmacol. 2011;1(3):184-186.

239. Omodamiro OD, Achi NK, Jimoh MA. Phytochemical content and analgesic activity of ethanol extract of *Hibiscus Sabdariffa* in experimental animal model. Drug Discov. 2018;12:31-37.

240. Gresamma L. To Evaluate the CNS Stimulant Activity Aqueous Flower Extract of *Hibiscus Sabdariffa* Linn. In the Male Wister Albino Rats. J Neurol. Psychiatr. Disord. 2019;1(1):104-108.
241. Agbor GA, Oben JE, Ngogang JY. Haematinic activity of *Hibiscus cannabinus*. Afr. J. Biotechnol. 2005a;4(8):833-837.

242. Meena AK, Patidar D, Singh RK. Ameliorative effect of *Hibiscus rosasinensis* on phenylhydrazine induced haematotoxicity. Int. J. Innov. Res. Sci. Eng. Technol. 2014;3(2):8678-8683.

243. Famurewa AC, Kanu SC, Oguqua VN, Nweke ML. Protective effect of pretreatment of rats with calyx extract of *Hibiscus sabdariffa* against carbon tetrachloride-induced hematotoxicity. J. Biol. Sci. 2015;15(3):138-143.

244. Raghavendra HG, Sahasreddy P, Lakshmikanth G, Manohar A, Venumadhavi AM, Rani K. Evaluation of antidiabetic activity of ethanolic extract of stems of *Hibiscus platanifolius* in alloxan induced diabetic rats. Eur. J. Biomed. 2016;3(3):167-172.

245. Anandhi DJ, Prasath GS, Subramanian S. Evaluation of Antidiabetic Potential of *Hibiscus rosa-sinensis* leaves extract in alloxan-induced diabetic rats. Int. J. Pharmacogn. Phytochem. 2013;5(6):306-314.

246. Afiune LAF, Leal-Silva T, Sinzato YK, Moraes-Souza RQ, Soares TS, Campos KE. Beneficial effects of *Hibiscus rosasinensis* L. flower aqueous extract in pregnant rats with diabetes. PLoS One. 2017;12(6). DOI: 10.1371/journal.pone.0179785

247. Ojewumi AW, Kadiri M. Physiological evaluation of the anti-diabetic properties of *Hibiscus sabdariffa* on rats. J. Nat. Sci., Eng. Technol. 2013;12(1):50-59.

248. Nirosha K, Divya M, Himabindu R, Himaja N, Pooja M, Sadiq M. Antidiabetic activity of *Hibiscus syriacus* on alloxan induced diabetic rats. Int. J. Novel Trends Pharm. Sci. 2014;4(5):140-144.

249. Nkumah OC. Phytochemical analysis and medicinal uses of *Hibiscus sabdariffa*. Int. J. Herb. Med. 2015;2(6):16-19.

250. Balogun ME, Besong EE, Obimma JN, Iyare EE, Nwachukwu DC. Ameliorative effect of aqueous extract of *Hibiscus sabdariffa* (roselle) on salt-induced hypertension in wistar rats. Pharmacology online 2019;2:247-258.