XMM-NEWTON OBSERVATIONS OF THE TeV BL LACERTAE OBJECT PKS 2155–304 IN 2006: SIGNATURE OF INVERSE COMPTON X-RAY EMISSION?

Y. H. ZHANG

Department of Physics and Tsinghua Center for Astrophysics (THCA), Tsinghua University, Beijing 100084, China; youhong.zhang@mail.tsinghua.edu.cn

Received 2008 January 30; accepted 2008 April 14

ABSTRACT

This paper reports the first discovery of possible inverse Compton (IC) X-ray emission below 10 keV in the typical high-energy peaked BL Lac object (HBL) PKS 2155–304. Two *XMM-Newton* observations performed in 2006 reveal that the 0.6–10 keV X-ray spectra of the source harden (\(\Delta \Gamma \approx 0.1–0.3\)) at break energies of \(~4\) keV. The concave X-ray spectra of the source could be easily interpreted as a mixture of a steep component (i.e., the high-energy tail of the synchrotron emission) and a flat one (i.e., the low-energy side of the IC emission). However, the steep spectra (\(\Gamma \approx 2.3\)) in the hard X-rays indicate that the synchrotron emission still dominates over the IC one, while the latter is effectively present and perceived as flattening the synchrotron spectrum in this energy range. The quasi-simultaneous optical/UV/X-ray spectral energy distributions (SEDs) obtained with *XMM-Newton* suggest that the concave X-ray spectra of the source could be the result of downward shift of the synchrotron peak frequency to the optical band that causes the IC emission to become more important in the hard (\(~4–10\) keV) X-ray band with respect to other cases in which the synchrotron emission peaks in the UV to soft X-ray range. This discovery provides a new clue for a smooth transition between HBLs and the low-energy peaked BL Lac objects (LBLs).

Subject headings: BL Lacertae objects: general — BL Lacertae objects: individual (PKS 2155–304) — X-rays: galaxies

Online material: color figures

1. INTRODUCTION

BL Lac objects are currently classified on the basis of the peak frequency of synchrotron emission. The synchrotron emission of the high-energy peaked BL Lac objects (HBLs) peaks in the UV-X-ray range, while the low-energy peaked BL Lac objects (LBLs) are those whose synchrotron emission peaks in the IR-optical band. The transition from HBLs to LBLs is expected to be smooth rather than dichotomic, forming a continuous sequence of synchrotron peak frequency with luminosity. A few bright LBLs, when they are in very high states, can exhibit X-ray spectra typical of HBLs.

PKS 2155–304 (\(z = 0.116\)) is the brightest BL Lac object at the UV and EUV wavelengths as revealed by the *IUE* and *EUVE* satellites. It is also among the brightest X-ray BL Lac objects. Although it is classified as a HBL, the peak energy of its synchrotron emission was found to be no larger than a few tenth of a keV even in very high states (Zhang et al. 2002; Massaro et al. 2008). Numerous X-ray observations with various X-ray telescopes instead suggested that the synchrotron emission of PKS 2155–304 tends to peak in the UV-EUV rather than in the X-rays. In contrast, for the other two well-studied, HBLs Mrk 421 and Mrk 501, the synchrotron emission can peak at a few keV or even at very high-energy X-ray band (e.g., Pian et al. 1998; Massaro et al. 2004; Tramacere et al. 2007). It is the fifth among the 20 extragalactic very high energy (VHE) or TeV \(\gamma\)-ray sources known so far (Chadwick et al. 1999). An extreme TeV burst of about an hour duration was recorded on 2006 July 28, and the most rapid TeV variation was seen down to a timescale of \(~200\) s (Aharonian et al. 2007). However, the rapid TeV flare did not accompany spectral variability, and *Swift* follow-up observations did not reveal shift of the synchrotron peak frequency either (Foschini et al. 2007). The CANGAROO-III observations also showed rapid VHE \(\gamma\)-ray variability over timescales shorter than a few hours (Sakamoto et al. 2008).

As a calibration target, *XMM-Newton* repeatedly monitored PKS 2155–304 since 2000. In this paper we present X-ray spectral analysis and quasi-simultaneous optical/UV/X-ray SEDs of two observations performed on 2006 May 1 (orbit 1171, ObsID 0158961401) and November 7 (orbit 1266, ObsID 0411780101), to show the signature of the possible IC emission between \(~4\) and 10 keV. A complete data analysis for all available *XMM-Newton* observations will be presented elsewhere.

2. THE XMM-NEWTON OBSERVATIONS AND DATA REDUCTION

We follow the standard procedures to reprocess the observation data files (ODFs) with the *XMM-Newton* Science Analysis System (SAS) version 7.1.0 and with the calibration files as of 2007 October. First we extract a high-energy (10 keV \(< E < 12\) keV for pn, and \(E > 10\) keV for mos) light curve only with Practical Analysis Tool (PATTLOT). The pn data are not affected by the pile-up effects, while the MOS data meet with strong pile-up effects. As a result, we extract pn source counts from a circle region centered on the source with radius of \(40"\), while the MOS1/MOS2 source counts are extracted from an annulus region centered on the source with inner and outer radii of \(5"/10"\) and \(40"\), respectively. The pn background counts are selected from a circle region least affected by the source counts on the same CCD as the source region. Because there are no MOS background region available on the same CCD as the source region, we select MOS background counts from a circle...
The Optical Monitor (OM) observations were taken in standard imaging mode with a sequence of six filters (i.e., V, B, U, UVW1, UVM2, and UVW2). The OM observations have two images for UVW1 filter and one image for other filters. We reprocess the OM imaging data using the standard ω chain pipeline of SAS 7.1.0, from which we obtain the source count rates and instrumental magnitudes. The OM count rates are then converted into fluxes according to the average conversion factors derived from observations of white dwarf standard stars. The OM observational results are listed in Table 2.

Part of the XMM-Newton observations obtained on 2002 November 29–30 (orbit 0545, ObsID 0124930601) for PKS 2155–304.

region of another exposed CCD. Single and double (pn) and single-to-quadruple (MOS) events with quality FLAG = 0 are selected for our analysis. For consistency, we use the same energy range of 0.6–10 keV for both pn and MOS data, in an attempt to exclude any possible remaining (cross) calibration uncertainties below 0.6 keV. The pn and MOS spectra are created with SAS task xmmselect and grouped with FTOOLS task grppha in order to have at least 30 counts in each energy bin for the use of χ^2 statistics. Redistribution matrices and ancillary response files are produced with SAS tasks arfgen and rmfgen. The journal of the pn and MOS observations is shown in Table 1.

TABLE 1

Observational Journal of PKS 2155–304 with XMM-Newton EPIC pn and MOS

ObsID	Orbit	Date (UT)	Time (UT)	Detector	Modea	Filter	Duration (s)	Live Time (s)	Count Rateb
0158961401	1171	2006 May 1	12:31:58-06:24:500	pn	SW	Medium	64372	45108	12.2
0158961401	1171	2006 May 1	12:26:48-06:22:500	MOS1	SW	Medium	64563	62638	3.24
0158961401	1171	2006 May 1	12:26:48-06:22:544	MOS2	SW	Medium	64568	62637	3.23
0411780101	1266-1	2006 Nov 7	00:31:25-08:50:03	pn	SW	Thin	29918	20869	17.3
0411780101	1266-2	2006 Nov 7	08:52:19-18:35:53	pn	SW	Medium	35015	24356	18.8
0411780101	1266-3	2006 Nov 7	18:38:36-24:54:76	pn	SW	Thick	35179	24626	16.6
0411780101	1266	2006 Nov 7	00:23:33-04:22:06	MOS1	SW	Medium	100714	97288	2.66
0411780101	1266	2006 Nov 7	00:23:34-04:22:11	MOS2	SW	Medium	100718	97285	2.65
0124930601	0545	2002 Nov 29	23:32:52-15:20:17	pn	SW	Thick	56845	39794	13.0

TABLE 2

Observational Results of PKS 2155–304 with XMM-Newton OM (Imaging Mode)

Filter	Wavelength (nm)	Time (UT)	Exposure Time (s)	Count Ratea	Magnitudeb	Fluxc
Orbit 1171 (2006 May 1)						

V	543	12:34:59-12:51:40	1000	95.08 ± 0.58	13.02 ± 0.01	2.38 ± 0.02
U	344	12:56:48-13:13:26	1000	202.37 ± 1.14	12.49 ± 0.01	3.93 ± 0.02
B	450	13:18:32-13:35:13	1000	224.98 ± 1.48	13.39 ± 0.01	2.81 ± 0.02
UVW1	291	17:37:40-18:49:49	4000	96.63 ± 0.32	12.24 ± 0.01	4.66 ± 0.02
UVM2	231	19:37:55-20:44:35	4000	26.24 ± 0.08	12.23 ± 0.01	5.80 ± 0.02
UVW2	212	20:49:42-21:56:23	4000	10.41 ± 0.05	12.32 ± 0.01	5.94 ± 0.03

| Orbit 1266 (2006 Nov 7) |

V	543	08:55:01-09:11:41	1000	128.76 ± 0.77	12.69 ± 0.01	3.22 ± 0.02
U	344	09:46:49-10:03:29	1000	265.76 ± 1.39	12.20 ± 0.01	5.16 ± 0.03
B	450	10:08:36-10:25:17	1000	291.31 ± 2.47	13.11 ± 0.01	3.64 ± 0.03
UVW1	291	14:27:42-16:46:31	8000	124.82 ± 0.29	11.96 ± 0.01	6.02 ± 0.01
UVM2	231	17:34:37-18:41:18	4000	37.05 ± 0.09	11.85 ± 0.01	8.19 ± 0.02
UVW2	212	18:46:24-19:53:04	4000	15.21 ± 0.06	11.91 ± 0.01	8.67 ± 0.03

| Orbit 0545 (2002 Nov 30) |

V	543	00:15:02-00:31:41	1000	46.62 ± 0.20	13.79 ± 0.01	1.16 ± 0.01
U	344	00:36:49-00:56:49	1200	104.38 ± 0.57	13.21 ± 0.01	2.03 ± 0.01
B	450	01:01:55-01:18:35	1000	112.74 ± 0.72	14.14 ± 0.01	1.45 ± 0.01
UVW1	291	03:54:25-04:44:25	3000	47.86 ± 0.10	13.00 ± 0.01	2.28 ± 0.01
UVM2	231	04:49:32-05:39:32	3000	14.26 ± 0.07	12.89 ± 0.01	3.14 ± 0.02
UVW2	212	05:44:38-06:57:58	4400	5.83 ± 0.04	12.95 ± 0.01	3.33 ± 0.02

a Background-subtracted count rate.
b Instrumental magnitude.
c Flux in unit of 10^{-14} ergs cm$^{-2}$ s$^{-1}$ Å$^{-1}$ is converted from the count rate using the conversion factor of white dwarf standard star.
d Two images are combined.
3. X-RAY DATA ANALYSIS

3.1. Timing Analysis

Figure 1a shows the 0.6–10 keV light curves and hardness ratios for orbit 1171. The pn light curve exhibits an overall variation of ~10% from the minimum to the maximum, characterized by multiple “flarelike” events. The MOS1 and MOS2 light curves are basically identical, and both roughly tracks the pn one. The pn hardness ratios (2–10 vs. 0.6–2 keV) are not strongly variable.

The 0.6–10 keV light curves and hardness ratios for orbit 1266 are plotted in Figure 1b. The pn light curve is separated into three sections due to different filters used for 1266-1 (thin), 1266-2 (medium) and 1266-3 (thick), respectively. This brings about an offset between different sections, in particular between 1266-2 and 1266-3. The MOS1 and MOS2 light curves overlap each other very well, showing an asymmetric flare with ~30% minimum-to-maximum variability amplitude and a rising timescale of ~70 ks. The decaying phase of the flare may be not fully sampled, but its varying rate is slower than the rising one. The MOS1 and MOS2 hardness ratios (2–10 to 0.6–2 keV) are roughly constant. The pn light curve appears to follow the MOS ones very well after one arbitrarily scales the three sections of the pn light curve together (see Fig. 1b).

3.2. Spectral Analysis

Roughly constant hardness ratios imply that the X-ray spectra are not strongly variable during each orbit, so we fit a (mean) spectrum with XSPEC 12.3.1 for each exposure. The Galactic neutral hydrogen absorption ($N_H = 1.36 \times 10^{20}$ cm$^{-2}$; Lockman & Savage 1995) in sight of light toward PKS 2155–304 is fixed for all of spectral fits. The results of the spectral fits are summarized in Table 3.

First we fit each pn spectrum with a single-power-law model to inspect if the spectrum is typical of HBLs, characterized by
continuously downward-curved (convex) shape with increasing energy. The pn count spectra with the best power-law fit models and the data-to-model ratios are shown in Figure 2a for orbits 1171 and 1266-3, respectively. To our surprise, both fits clearly show positive residuals above ~4–5 keV, becoming larger with increasing energy. This feature indicates a spectral flattening with increasing energy. A single-power-law fit leaves similar residuals for the other two pn spectra (i.e., the orbits 1266-1 and 1266-2) and all the MOS spectra. Due to much smaller photon counts compared to the pn ones, the residuals for the MOS spectra are relatively weak.

It is well known that the residuals, from a single-power-law fit to the X-ray spectra of HBLs, are negative below a few tenth of keV and above a few keV, and are positive between them, implying that the spectra are continuously downward-curved below 10 keV. The broadband X-ray spectra with BeppoSAX suggest that a spectral hardening of PKS 2155–304 occurs above tens of keV, while the spectra below 10 keV are still typical of HBLs (Giommi et al. 1998; Chiappetti et al. 1999). To firmly confirm the reality of our new discovery, we make several tests. A single-power-law fit to the pn spectra extracted only with single events (minimizing the pile-up effects) yields identical photon index and residuals. We then extract the pn spectra from an annulus by excluding the inner 10° to avoid probable residuals of the pile-up effects, and the fits with a single-power-law model leave similar tails. We also extract the pn background spectra from various locations of the CCD, and the tails persist as well. We further use a single-power-law model to fit all other available XMM-Newton pn spectra of PKS 2155–304, in particular the two observations performed in 2005 November 30 (orbit 1095) and 2007 April 22 (orbit 1349), only about half year before orbit 1171 and after orbit 1266. We find that these pn spectra are all typical of HBLs. As an example, Figure 2a also shows the pn spectrum and the data-to-model ratios for the observation in 2002 November 29 and 30 (orbit 0545; see Zhang et al. 2005, 2006 for the light curve) when the source was in an X-ray state similar to orbits 1171 and 1266. The residuals are completely distinguished from those of orbits 1171 and 1266-3, indicating that the X-ray spectra in 2006 indeed are not typical of HBLs.

Excellent spectral fits are achieved with a broken-power-law model, showing that the spectra are flatter in the hard than in the soft X-rays for orbits 1171 and 1266. The spectral hardening ($\Delta \Gamma \sim 0.1–0.3$) occurs at a break energy of ~3–5 keV. This is sharply opposite to the spectral softening ($\Delta \Gamma \sim 0.23$) at a break energy of ~2 keV for orbit 0545. We present in Figure 2b the pn, MOS1, and MOS2 count spectra with the best broken-power-law

Fig. 1—Continued
models and the data-to-model ratios for orbit 1171. Moreover, Figure 3 plots the 68%, 90%, and 99% confidence level contours for the break energy and the soft/hard X-ray photon index under the best fits with the broken-power-law model to the pn spectra of the orbits 1171 and 1266-3. The contours demonstrate that the soft and the hard X-ray photon index are completely separate at 99% confidence level, confirming the hard tails of the concave X-ray spectra of the source in 2006. The similar contours also show that the soft and the hard X-ray photon index are completely disjoint at 99% confidence level for all other cases.

The logarithmic parabolic model, often used to describe continuously downward-curved X-ray spectra of HBLs (e.g., Massaro et al. 2004), also presents good fits. The curvature index is 0.22 ± 0.01 for the pn spectrum of orbit 0545, indicating downward-curved spectral shape. However, the curvature index is -0.07 ± 0.01 and -0.09 ± 0.01 for the pn spectra of orbits 1171 and 1266, respectively, suggesting that the spectra are weakly upward-curved and in support of the concave spectral shape derived from the broken-power-law fits.

4. OPTICAL DATA AND SPECTRAL ENERGY DISTRIBUTION

The OM observations do not provide useful information for short-term variability of PKS 2155–304 in the optical-UV bands because only one or two images were obtained for each filter with exposure time of 1000–4400 s during each orbit. However, they do show long-term optical and UV variability over timescales of years. More importantly, the OM and X-ray observations present quasi-simultaneous optical-UV-X-ray SEDs that are precious to understand the long-term evolution of synchrotron spectra. The OM observations do not provide useful information for the six wavelengths are not simultaneous, and the pn and OM

Table 3

RESULTS OF THE X-RAY SPECTRAL FITS OF PKS 2155–304

Orbit	Γ_1 b	E_{break}/b^c	Γ_2	χ^2/dof	Prob.	$F_{\text{2-10 keV}}/d^e$	$F_{\text{0.6-10 keV}}/d^f$	
1171/pn	2.59 \pm 0.01	1.44 \pm 0.01	1.11/1272	0.003	1.60	4.28
1171/MOS1	2.55 \pm 0.01	1.47 \pm 0.01	1.12/375	0.053	1.72	4.46
1171/MOS2	2.58 \pm 0.01	1.53 \pm 0.01	1.12/382	0.053	1.72	4.58
1266-1/pn	2.53 \pm 0.01	1.91 \pm 0.01	1.03/1127	0.241	2.24	5.84
1266-2/pn	2.52 \pm 0.01	2.11 \pm 0.01	1.01/1226	0.412	2.57	6.51
1266-3/pn	2.52 \pm 0.01	2.24 \pm 0.01	1.12/1245	0.003	2.73	6.91
1266/MOS1	2.48 \pm 0.01	2.09 \pm 0.01	1.12/2406	0.001	2.70	6.47
1266/MOS2	2.51 \pm 0.01	2.21 \pm 0.01	1.18/402	0.008	2.74	6.87
0545/pn	2.75 \pm 0.01	2.21 \pm 0.01	1.72/1134	0.000	1.65	5.13

a The fits are performed in the 0.6–10 keV energy band. The neutral hydrogen absorption column density is fixed to the Galactic value ($N_H = 1.36 \times 10^{20}$ cm$^{-2}$). The quoted errors are 90% confidence level for one interesting parameter.

b Γ_1 is the photon index at 1 keV in the LP model. The errors are smaller than 0.01.

c E_{break} is the break energy in the BKPL model. b is the curvature parameter in the LP model ($b > 0$ means downward curved shape and $b < 0$ upward-curved shape).

d K is the normalization factor in unit of 10^{-2} keV$^{-1}$ cm$^{-2}$ s$^{-1}$. The errors are smaller than 0.01.

e Unabsorbed 2–10 keV flux in unit of 10^{36} ergs cm$^{-2}$ s$^{-1}$. The errors are smaller than 0.01.

f Unabsorbed 0.6–10 keV flux in unit of 10^{36} ergs cm$^{-2}$ s$^{-1}$.

observations do not cover the same length of time (in fact, the OM exposure times are much shorter than the pn ones). As we are concentrated on the long-term evolution of the SEDs of the source, the average pn fluxes are used for constructing the quasi-simultaneous SEDs.

The X-ray SEDs of PKS 2155–304 clearly show an upturn in the high-energy X-ray band for orbits 1171 and 1266–3. It is also obvious that the source goes through strong evolution of synchrotron emission spectra, manifested by very different amplitude of flux variability in different energy bands. The optical-UV fluxes increase by a factor of $\frac{1.6}{2.0}$, depending on the wavelengths, over a time interval of about 4 yr from orbit 0545 to orbit 1266-3. However, the 0.6–10 keV X-ray flux increases only $\frac{38\%}{3.0}$ over the same time period even though the X-ray variability amplitude strongly increases with increasing energy. Similar flux variability amplitude of $\frac{50\%}{3.0}$ occurs in the optical-UV and X-rays over a timescale of about half year from orbits 1171 to 1266-3.

5. DISCUSSION

The X-ray spectra of HBLs are characterized by convex shape or by continuously downward-curved shape in some cases. This is the signature of the high-energy tail of the synchrotron emission as the result of the energy-dependent particle acceleration and cooling (e.g., Massaro et al. 2004). Previous X-ray observations by various X-ray telescopes showed that the X-ray spectra of PKS 2155–304 are convex at the X-ray energy range below 10 keV (e.g., Kataoka et al. 2000; Zhang et al. 2002). Although numerous XMM-Newton observations of the source exhibited the convex X-ray spectra as well (Foschini et al. 2006a; Massaro et al. 2008), the two XMM-Newton observations in 2006 we analyzed here clearly show that the X-ray spectra of the source are concave. A broken-power-law fit to the 0.6–10 keV spectra yield a break energy around 3–5 keV, with a spectral flattening of $\Delta \Gamma \sim 0.1–0.3$ from the soft to hard X-rays. However, such break energy usually occurs around energy of several tens of keV as revealed by the broadband BeppoSAX X-ray spectra of PKS 2155–304 (Giommi et al. 1998; Chiappetti et al. 1999). This paper thus presents the first evidence for the concave X-ray spectra below 10 keV for a typical HBL.

In the X-rays below 10 keV, the concave X-ray spectra are a common feature of LBLs. This has been interpreted as a mixture of two spectral components. A steep and variable spectral component, attributed to the synchrotron emission from the high-energy tail of an electron distribution, dominates at the soft X-rays, while a flat but less variable spectral component, associated with the IC scattering of the low-energy side of the same electron distribution off the synchrotron (and/or external in some cases) photons, is dominant at the hard X-rays. This explanation is supported by the fact that the transiting energy between the two spectral component increases with increasing X-ray flux (e.g., S5 0716+714: Ferrero et al. 2006; Foschini et al. 2006b; BL Lacertae: Ravasio et al. 2003). Moreover, in very high states, the synchrotron emission from S5 0716+714 can be dominant up to 10 keV (Ferrero et al. 2006).

In analogy to LBLs, we may attribute the concave X-ray spectra of PKS 2155–304 to a mixture of the two spectral components.
component as well: the low-energy X-ray emission, whose spectrum is steep ($\Gamma \sim 2.6$), originates completely from the high-energy end of the synchrotron emission, but the high-energy X-ray emission, whose spectrum is flatter than the soft one, should be a mixture of the most energetic end of the synchrotron emission and the low-energy side of the IC emission. The IC emission whose spectrum is flat, gradually becomes important with increasing energy. However, the high-energy X-ray spectra is steep ($\Gamma \sim 2.3$–2.5), implying that the high-energy X-ray emission is still dominated by the synchrotron emission. The contamination of the IC emission flattens a bit the high-energy X-ray spectra. If it is dominated by the IC component, the high-energy X-ray spectra should be flat similar to LBLs (i.e., $\Gamma \sim 1.7$; e.g., Ferrero et al. 2006). Our analyses of all available XMM-Newton observations show that PKS 2155–304 was in relatively low X-ray states in 2006, indicating that the emergence of the

Fig. 2—Continued

![Graph](image)

Fig. 3.—Plot of the 68%, 90%, and 99% confidence contours (from the inner to the outer curves, respectively) for the break energy and the soft (photon index 1) and the hard (photon index 2) X-ray photon index in the case of the broken-power-law best-fitting model to the pn data of orbits (a) 1171 and (b) 1266-3. These contours demonstrate that the soft and the hard X-ray photon index are completely disjoint at 99% confidence level, confirming the hard tails of the concave X-ray spectra in 2006.
IC component may be related to its low X-ray state. However, in other epochs with similar low X-ray states (e.g., orbit 0545 shown in this paper), the X-ray spectra of the source are still convex. Another possibility to account for the flatter but steep high-energy X-ray spectra is that the X-ray emission of PKS 2155–304 in 2006 may consist of two synchrotron components with different spectral slopes.

With XSPEC 12.3.1, we simulate a spectrum consisting of two power-law components: one with $\Gamma = 2.5$ represents the steep synchrotron component, and another one with $\Gamma = 1.7$ is for the flat IC component. We normalize the relative importance of the two components such that they contribute equally to the observed flux at 30 keV. The simulated spectrum is then folded with the pn response and auxiliary files of orbit 1171, and normalized to the pn 0.6–10 keV flux and photon counting statistics (with 60,000 s exposure time) of orbit 1171 as well. We then group and fit the simulated spectrum in the exact same way as the observed spectra ($\chi^2 = 3.2$), which is presented in Figure 5. All the fits present very similar results and fit statistic as the observed ones. The single-power-law fit gives $\Gamma = 2.431 \pm 0.004 (\chi^2 = 1.08, \text{dof} = 1276$ and probability $= 2.3\%)$ and leaves a similar hard tail above ~ 4 keV (Fig. 5, middle panel). The broken-power-law fit results in $\Gamma_1 = 2.441 \pm 0.005$ and $\Gamma_2 = 2.309 \pm 0.05$ with break energy at 3.93 ± 0.68 keV ($\chi^2 = 1.04, \text{dof} = 1274, \text{and probability} = 13.2\%)$, and the logarithmic parabolic model yields the curvature index of -0.045 ± 0.006 and $\Gamma = 2.449 \pm 0.004$ at 1 keV ($\chi^2 = 1.05, \text{dof} = 1275, \text{and probability} = 9.0\%)$. The simulation thus demonstrates that the concave spectra

Fig. 4.—Simultaneous optical/UV/X-ray SEDs at three epochs. The solid lines are the best parabolic fits to the data between the optical and 2 keV range, which is then extrapolated to 10 keV. For orbits 1171 and 1266-3, the deviation of the hard X-ray SED from the synchrotron SED (i.e., parabola) suggests possible contamination of the IC component.

Fig. 5.—Top: Simulated X-ray spectrum and the best power-law fit. The simulated spectrum is derived with a model consisting two power-law components with photon index $\Gamma = 2.5$ and $\Gamma = 1.7$, respectively. The two components are assumed to contribute equally to the flux at 30 keV. The simulated spectrum is then convolved with orbit 1171 pn response and auxiliary files and the Galactic neutral hydrogen absorption, and the flux is also normalized to the orbit 1171 pn one with photon counting statistics of 60,000 s exposure time. The best power-law fit (middle panel) shows the hard tail of the simulated spectrum. The best broken-power-law fit (bottom panel) demonstrates the concave shape of the simulated spectrum, which is flatter in the hard ($\Gamma = 2.44 \pm 0.01$) than in the soft ($\Gamma = 2.31 \pm 0.05$) X-ray band with a break energy at 3.93 ± 0.68 keV. [See the electronic edition of the Journal for a color version of this figure.]
with steep photon index at the hard X-rays is very likely a mixture of a steep synchrotron component dominating below 10 keV and a flat IC one dominating above 10 keV. However, the IC component is effectively present and perceived as a hardening of the synchrotron spectrum between ~4 and 10 keV.

The simultaneous optical/UV/X-ray SEDs show that PKS 2155–304 is more variable in the optical-UV bands than in the X-rays, implying strong evolution of the synchrotron spectra from orbit 0545 to orbits 1171 and 1266-3. Although the synchrotron peak is not directly perceived due to a broad data gap between the optical-UV and X-rays, we may fit the SEDs with a parabola to phenomenologically determine the synchrotron peak frequency and flux. The fit is restricted to the optical-UV and 0.6–2 keV range to avoid putative contamination of the IC emission above ~3 keV. The parabola from the best fit is then extended to the whole observed X-ray range, which is plotted in Figure 4 along with the SEDs, to show the degree of the IC contribution to the synchrotron component (i.e., the parabola). The high-energy X-ray SED is clearly above the extrapolation of the parabola for orbits 1171 and 1266-3, while for orbit 0545 it is very well in agreement with the extrapolation of the parabola. The derived peak frequency (ν_{peak}) of the parabola is 5.78×10^{15}, 5.41×10^{14}, and 2.81×10^{14} Hz, and the corresponding peak flux, ($\nu F_{\nu \text{peak}}$), is 1.04×10^{-10}, 1.47×10^{-10}, and 2.12×10^{-10} ergs cm$^{-2}$ s$^{-1}$ for orbits 0545, 1171, and 1266-3, respectively. The peak flux is thus anticorrelated with the peak frequency: the lower the peak frequency, the higher the peak flux. The downward shift of the synchrotron peak to the optical wavelengths might be the reason that the IC component become visible below 10 keV for orbits 1171 and 1266-3. However, this behavior is inconsistent with the positive correlation between the frequency and flux of the synchrotron peak found in some X-ray-bright TeV HBLs (Tramacere et al. 2007; Massaro et al. 2008). In fact, Massaro et al. (2008) already noticed that PKS 2155–304 behaves differently. This new discovery warrants further more simultaneous multiwavelength observations with the EUV range involved in particular and theoretical considerations.

I thank the anonymous referee for the constructive suggestions and comments that improved significantly the paper. This research is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. This work is conducted under the Key Project of Chinese Ministry of Education (NO 106009), Project 10473006 and 10733010 supported by NSFC, Project sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, and the Project for Top Scholars sponsored by Tsinghua University.

REFERENCES

Aharonian, F., et al. 2007, ApJ, 664, L71
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
Chadwick, P. M., et al. 1999, ApJ, 513, 161
Chiappetti, L., et al. 1999, ApJ, 521, 552
Ferrero, E., Wagner, S. J., Emmanoulopoulos, D., & Ostorero, L. 2006, A&A, 457, 133
Foschini, L., et al. 2006a, A&A, 453, 829
———. 2006b, A&A, 455, 871
———. 2007, ApJ, 657, L81
Giommi, P., et al. 1998, A&A, 333, L5
Kataoka, J., et al. 2000, ApJ, 528, 243
Lockman, F. J., & Savage, B. D. 1995, ApJS, 97, 1
Massaro, E., Perri, M., Giommi, P., & Nesci, R. 2004, A&A, 413, 489
Massaro, F., Tramacere, A., Cavaliere, A., Perri, M., & Giommi, P. 2008, A&A, 478, 395
Pian, E., et al. 1998, ApJ, 492, L17
Ravasio, M., Tagliaferri, G., Ghisellini, G., Tavecchio, F., Bottcher, M., & Sikora, M. 2003, A&A, 408, 479
Sakamoto, Y., et al. 2008, ApJ, 676, 113
Tramacere, A., Massaro, F., & Cavaliere, A. 2007, A&A, 466, 521
Zhang, Y. H., Treves, A., Celotti, A., Qin, Y. P., & Bai, J. M. 2005, ApJ, 629, 686
Zhang, Y. H., Treves, A., Maraschi, L., Bai, J. M., & Liu, F. K. 2006, ApJ, 637, 699
Zhang, Y. H., et al. 2002, ApJ, 572, 762