1. Introduction

The reachable set for a dynamic system with disturbances is a set that bounds the state trajectories starting from the origin by inputs with peak value. In practice and engineering applications, many dynamical systems may cause abrupt variations in their structure due to stochastic failures or repairs of the components, changes in the interconnections of subsystems, sudden environment changes, and so on. Markovian jump systems, modeled by a set of subsystems with transitions among the models determined by a Markov chain taking values in a finite set, have appealed to a lot of researchers in the control community. In the past few decades, the Markovian jump systems have been extensively studied (see [1–3] and the references therein).

For the bound of reachable sets for linear systems without any time delay, we can find a well-known result which has been formulated in terms of linear matrix inequality (LMI) [4], and it is widely used to design control systems that have saturating actuators [5, 6]. However, time-delay phenomenon is frequently encountered in many practical systems, such as biological systems, chemical systems, hydraulic systems, and electrical networks. In recent years, the problem of reachable set estimation for time-delay systems has attracted much attention. Then, an increasing number of researchers have devoted their efforts to the problem of reachable set estimation [7–11]. In [7], a delay-dependent condition for an ellipsoid bounding the set of reachable states was presented by using the Lyapunov–Razumikhin function and the S-procedure. Five non-convex scalar parameters have to be treated as tuning parameters to find the smallest possible ellipsoid. Based on a relaxed Lyapunov–Krasovskii function, the delay-dependent and delay-rate-dependent conditions for the existence of a desired ellipsoid are obtained [8]. Chen and Zhong [10] studied the reachable set of neutral systems with perturbations and uncertainties via novel inequality. In [11], the time-varying delay is split into two nonuniform subintervals based on the Lyapunov–Krasovskii functional, and using the well-known Wirtinger integral inequality and reciprocating convex combination inequality, the RSE boundary of the time-delay system is obtained.

However, the Markov jump system is different from the general time-delay system. It is a random system with multiple modes. The jump transfer between the various modes of the system is determined by a set of Markov chains. In practical application, the equation of state of the system often has some randomness. On the one hand, the stability
and stability of Markov jump system have been widely studied [12–16]. On the other hand, there are few studies on the reachable set estimation problem of the Markov jump system (see [17–20] and the references therein). Therefore, this paper studies the reachable set estimation of uncertain Markov jump system.

Besides, in real life, parameter uncertainty is inevitable in the mathematical modeling due to the failure or maintenance of parts, external perturbations, parameter fluctuations, data errors and the change of connection mode of subsystems, etc. Therefore, inspired by the issues discussed above, the problem of reachable set estimation for uncertain Markov jump systems with time-varying delays and disturbance is investigated in this study. The interval is divided by time-varying delay split based on Lyapunov–Krasovskii functional, and the partial integral term of derivative of Lyapunov function is optimized by using Wirtinger-based inequality and reciprocating convex matrix inequality.

Finally, numerical examples are given to illustrate the validity of the results.

Notations: the notations used throughout the paper are fairly standard. The superscript “T” stands for matrix transposition; \mathbb{R}^n denotes the n-dimensional Euclidean space; the notation $P > 0$ means that P is a positive definite matrix; I_n and $0^{n \times n}$ represent identity matrix and zero matrix with dimension n, respectively; and $\text{sym} (X_{11}) = X_{11} + X_{11}^T$. In symmetric block matrices, we use an asterisk (*) to represent a term which is induced by symmetry. Matrices, if their dimensions are not explicitly stated, are assumed to be compatible for algebraic operations.

2. Problem Statement

Consider the following Markov jump systems with uncertainties:

$$
\begin{align*}
\dot{x}(t) &= \left(A_{(t,r)} + \Delta A_{(t,r)}(t) \right)x(t) + \left(B_{(t,r)} + \Delta B_{(t,r)}(t) \right)x(t - h(t)) + \left(D_{(t,r)} + \Delta D_{(t,r)}(t) \right)\omega(t), \\
x(t) &= 0, \quad \forall t \in [-h_2, 0],
\end{align*}
$$

where $x(t) \in \mathbb{R}^n$ is the state vector and $\omega(t) \in \mathbb{R}^m$ is the disturbance which satisfies

$$
\omega^T(t)\omega(t) \leq \omega_m^2 \leq 1. \quad (2)
$$

The discrete time-varying delay $h(t) > 0$ satisfies

$$
0 \leq h_1 \leq h(t) \leq h_2, \quad (3)
$$

where h_1, h_2 are constants and $h_m = \gamma h_1 + (1 - \gamma)h_2$, \(0 \leq \gamma \leq 1\). \([r_t, t \geq 0]\) is a Markovian process taking values on the probability space in a finite state $g = \{1, 2, \ldots, N\}$ with generator $\Lambda = \{\lambda_{ij}\}$, \((i, j) \in g\) given by

$$
\Pr[r_{t+\Delta} = j | r_t = i] = \begin{cases}
\lambda_{ij} \Delta + o(\Delta), & j \neq i, \\
1 + \lambda_{ij} \Delta + o(\Delta), & j = i,
\end{cases} \quad (4)
$$

where $\Delta > 0$, $\lim_{\Delta \to 0} o(\Delta)/\Delta = 0$, $\lambda_{ij} \geq 0$, for $j \neq i$ is the transition probability from mode i at time t to mode j at time $t + \Delta$, $\lambda_{ii} = -\sum_{j=1, j \neq i}^{N} \lambda_{ij}$, $A_{(t,r)}$, $B_{(t,r)}$, and $D_{(t,r)}$ are known constant matrices of the Markovian process. For notational simplicity, when $(t, r_t) = (i, i) \in g$, the matrix $A_{(t,r)}$ will be represented by A_i, and the other symbols are similarly defined.

Since the state transition probability of the Markovian jump process considered in this paper is partially known, the transition probability matrix of Markovian jumping process Λ is defined as

$$
\Lambda = \begin{pmatrix}
\lambda_{11} & \cdots & \lambda_{1N} \\
\cdots & \cdots & \cdots \\
\lambda_{N1} & \cdots & \lambda_{NN}
\end{pmatrix}, \quad (5)
$$

where $? \in \Lambda$ represents the unknown transition rate. For notational clarity, $\forall i \in g$, and the set $U_i^j = U_{ik}^j \cup U_{ik}^j$ with

$$
U_{ik}^j \equiv \{ j : \lambda_{ij} \text{ is known for } j \in g \}, \\
U_{ik}^j \equiv \{ j : \lambda_{ij} \text{ is unknown for } j \in g \}. \quad (6)
$$

Moreover, if $U_k^j \neq \emptyset$, it is further described as $U_k^j = \{ k^1, k^2, \ldots, k^m \}$, where m is a non-negation integer with $1 \leq m \leq N$ and $k^j \in \mathbb{Z}^+$, for $1 \leq k^j \leq N$, $j = 1, 2, \ldots, m$ represent the known element of the ith row and jth column in the state transition probability matrix Λ.

Besides, ΔA_i, ΔB_i, and ΔD_i are the parametric uncertainties in system (1), which are assumed to be in the following form:

$$
[\Delta A_i, \Delta B_i, \Delta D_i] = L_i K_i(t) [E_{ia}, E_{ib}, E_{id}], \quad (7)
$$

where $K_i(t)$ is an unknown real and possibly time-varying matrix with Lebesgue measurable elements satisfying

$$
K_i^T(t)K_i(t) \leq I, \quad (8)
$$

and L_i, E_{ia}, E_{ib}, and E_{id} are known real constant matrices which characterize how the uncertainty enters the nominal matrices A_i, B_i, and D_i.

Before proceeding further, system (1) can be written as

$$
\begin{align*}
\dot{x}(t) &= A_i x(t) + B_i x(t - h(t)) + D_i \omega(t) + L_i u, \\
z &= E_{ia} x(t) + E_{ib} x(t - h(t)) + E_{id} \omega(t),
\end{align*}
$$

with the constraint: $u = K_i(t)z$.

We further have
\[u^T u \leq \left[E_{\omega_1} x(t) + E_{\alpha} x(t - h(t)) + E_{\omega_2} \omega(t) \right]^T \cdot \left[E_{\omega_1} x(t) + E_{\alpha} x(t - h(t)) + E_{\omega_2} \omega(t) \right]. \] (10)

For the sake of brevity, \(x(t) \) is used to represent the solution of the system under initial conditions \(x(t_0, x_0) \), and \(x(t, t) \) satisfies the initial condition \(x(0), r_0 \). And its weak infinitesimal generator, acting on function \(V \), is defined in [21].

\[LV(x(t), r, t) = \lim_{\Delta \to 0} \frac{1}{\Delta} \left[\varepsilon(V(x(t + \Delta), t + \Delta, r + \Delta)) - \varepsilon(V(x(t), r, t)) \right]. \] (11)

A reachable set that bounds the state of system (1) is defined by

\[\mathcal{R}_x = \{ x(t) \in \mathbb{R}^n | x(t), \omega(t) \text{ satisfy (1) and (2)} \}. \] (12)

Based on the ideas proposed in [4], this reachable set estimation problem can be transformed into the problem of finding an ellipsoid to bound the \(\mathcal{R}_x \). We will bound \(\mathcal{R}_x \) by an ellipsoid of the form

\[\mathcal{F}(P) = \left\{ x(t) \in \mathbb{R}^n : x(t), \omega(t) \text{ satisfies (1) and (2)} \right\}. \] (13)

Before proceeding further, we will state well-known lemmas.

Lemma 1 (see [4]). Let \(V(t, x(0)) = 0 \) and \(\omega^T(t) \omega(t) \leq \omega_m^2 \); if

\[LV(t, x_i) + aV(t, x_i) - \beta \omega^T(t) \omega(t) \leq 0, \quad \alpha > 0, \beta > 0, \]
then we have \(V(t, x_i) \leq \beta(\alpha)\omega_m^2 \) for all \(t \geq 0 \).

Lemma 2 (see [22]). For any positive definite matrix \(M \in \mathbb{R}^{m \times m} \), scalar \(h_2 > h_1 \geq 0 \), and vector function \(\omega : [h_1, h_2] \to \mathbb{R}^m \) such that the integrations concerned are well defined,

\[-(h_2 - h_1) \int_{t-h_1}^{t-h_2} \omega^T(s) M \omega(s) ds \]
\[\leq \alpha \omega^T(s) M \omega(s) ds \]
\[\int_{t-h_2}^{t-h_1} \omega^T(s) M \omega(s) ds. \] (15)

Lemma 3 (see [23, 24]). For a given matrix \(R > 0 \), the following inequality holds for all \(\omega(t) \) in \(\omega : [a, b] \to \mathbb{R}^n \):

\[\int_a^b \omega^T(s) R \omega(s) ds \geq \frac{1}{b - a} \Omega_1^T \Omega_1 + \frac{3}{b - a} \Omega_2^T \Omega_2 \]
\[+ \frac{5}{b - a} \Omega_3^T \Omega_3, \] (16)

where \(\Omega_1 = \omega(b) - \omega(a), \]
\[\Omega_2 = \omega(b) + \omega(a) - \frac{2}{b - a} \int_a^b \omega(s) ds, \]
\[\Omega_3 = \omega(b) - \omega(a) + \frac{6}{b - a} \int_a^b \omega(s) ds \]
\[- \frac{12}{(b - a)^2} \int_a^b \omega(s) ds du. \]

Lemma 4 (reciprocally convex combination inequality [25]). For all vectors \(\xi \in \mathbb{R}^n \), the function

\[H(a, Q) = \frac{1}{a} \xi^T W_1^T Q W_1 \xi + \frac{1}{1 - a} \xi^T W_2^T Q W_2 \xi, \] (18)

where \(a \in (0, 1), W_1, W_2 \) and \(Q \) are matrices with appropriate dimensions. Then, the following inequality holds:

\[\min_{a \in (0, 1)} H(a, Q) \geq \xi^T \left[\begin{array}{ccc} W_1 & X \end{array} \right]^T \left[\begin{array}{ccc} Q & 0 \\ 0 & Q \end{array} \right] \xi, \] (19)

if there exists a matrix \(X \) such that \(\left[\begin{array}{cc} Q & X \\ * & Q \end{array} \right] > 0 \).

Lemma 5 (Schur complement [26]). Given constant symmetric matrices \(\Sigma_1, \Sigma_2, \Sigma_3 \), where \(\Sigma_1 = \Sigma_1^T \)
and \(\Sigma_2 = \Sigma_2^T > 0 \), then \(\Sigma_1 + \Sigma_2 + \Sigma_3 < 0 \) holds if and only if

\[\left[\begin{array}{cc} \Sigma_1 & \Sigma_2 \\ \Sigma_2 & \Sigma_3 \end{array} \right] < 0 \] (20)

3. Main Results

In this section, some delay-dependent criteria for the existence of ellipsoid \(\mathcal{F}(P) \) bounding the states of system (1) will be obtained. The notations for some matrices are defined in Appendixes.

Theorem 1. Consider the uncertain Markov jump system (1) with constraints (2) and (3); if there exist real matrices

\[P_{11}, P_{12}, P_{13}, P_{14}, P_{15}, P_{21}, P_{22}, P_{23}, P_{24}, P_{25}, P_{31}, P_{32}, P_{33}, P_{34}, P_{35}, P_{44}, P_{45}, P_{55} \]

\[W_i > 0, \quad i = 1, 2, \ldots, \]

\[N_j > 0, \quad j = 1, 2, \ldots, \]

\[R_i > 0, \quad i = 1, 2, \ldots, \]

where

\[M_1 = \left[\begin{array}{cccc} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{array} \right], \quad Y = \left[\begin{array}{ccc} Y_{11} & Y_{12} & Y_{13} \\ Y_{21} & Y_{22} & Y_{23} \\ Y_{31} & Y_{32} & Y_{33} \end{array} \right] \]
with appropriate dimension such that
\[
\begin{bmatrix}
\bar{R}_5 & X \\
\ast & \bar{R}_6
\end{bmatrix} > 0,
\]
\[
\begin{bmatrix}
\bar{P}_{1,i} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\ast & 0 & 0 & 0 & 0 \\
\ast & \ast & 0 & 0 & 0 \\
\ast & \ast & \ast & 0 & 0
\end{bmatrix},
\]
\[
P_j - W_i \geq 0, \quad j \in U^{\dagger}_{nk}, j \neq i,
\]
\[
\text{where } \Psi_1, \Psi_2, \Phi_1, \Phi_2, \Pi_1, \Pi_2, \text{ and } P_1, \text{ are defined in Appendix A. Then, the reachable sets of system (1) with (2) and (3) are bounded by boundaries } \cap_{i=1}^{N} \mathcal{X}(\bar{P}_{1,i}), \text{ which is defined in (12).}
\]

Proof. We choose the following Lyapunov–Krasovskii functional candidate as follows:
\[
V(t, x_t) = \sum_{i=1}^{s} V_i(t, x_t),
\]
\[
\text{where }
\eta^T(t) = \begin{bmatrix}
x^T(t) \\
\int_{t-h_1}^{t} x(s)ds \\
\int_{t-h_m}^{t-h_1} x(s)ds \\
\int_{t-h_m}^{t-h_1} x(s)ds \\
\end{bmatrix},
\]
\[
V_2(t, x_t) = \int_{t-h_1}^{t} e^{\alpha(t-s)} x^T(s)Q_1 x(s)ds + \int_{t-h_m}^{t-h_1} e^{\alpha(t-s)} x^T(s)Q_2 x(s)ds + \int_{t-h_m}^{t-h_1} e^{\alpha(t-s)} x^T(s)Q_3 x(s)ds,
\]
\[
V_3(t, x_t) = h_1 \int_{-h_1}^{0} \int_{t+\theta}^{t} e^{\alpha(s-t)} x^T(s)R_1 x(s)dsd\theta + (h_m - h_1) \int_{-h_m}^{0} \int_{t+\theta}^{t} e^{\alpha(s-t)} x^T(s)R_2 x(s)dsd\theta + (h_2 - h_m) \int_{-h_2}^{0} \int_{t+\theta}^{t} e^{\alpha(s-t)} x^T(s)R_3 x(s)dsd\theta,
\]
\[
V_4(t, x_t) = h_1 \int_{-h_1}^{0} \int_{t+\theta}^{t} e^{\alpha(s-t)} x^T(s)R_4 \dot{x}(s)dsd\theta,
\]
\[
V_5(t, x_t) = (h_m - h_1) \int_{-h_m}^{0} \int_{t+\theta}^{t} e^{\alpha(s-t)} x^T(s)R_5 \dot{x}(s)dsd\theta + (h_2 - h_m) \int_{-h_2}^{0} \int_{t+\theta}^{t} e^{\alpha(s-t)} x^T(s)R_6 \dot{x}(s)dsd\theta,
\]
\[
P_i = \begin{bmatrix} P_{i11} & P_{i12} & P_{i13} & P_{i14} \\
* & P_{i22} & P_{i23} & P_{i24} \\
* & * & P_{i33} & P_{i34} \\
* & * & * & P_{i44}
\end{bmatrix},
\]
\[
h_m = y h_1 + (1 - y) h_2, \quad 0 \leq y \leq 1.
\]

Taking derivative of \(V(t, x_t)\) along the trajectories of system (1), we obtain the following:
\[
LV = LV_1 + LV_2 + LV_3 + LV_4 + LV_5,
\]
\[
\text{where }
\]
\[LV_1(t, x_t) = 2 \eta^T(t) P_i \eta(t) + \eta^T(t) \left(\sum_{j=1}^{N} \lambda_{ij} P_j \right) \eta(t) \]

\[= 2 \left[\eta^T(t) \ u^T \right] \begin{bmatrix} P_{i11} & P_{i12} & P_{i13} & P_{i14} & P_{i15} \\ * & P_{i22} & P_{i23} & P_{i24} & P_{i25} \\ * & * & P_{i33} & P_{i34} & P_{i35} \\ * & * & * & P_{i44} & P_{i45} \\ * & * & * & * & P_{i55} \end{bmatrix} \begin{bmatrix} A_i x(t) + B_i x(t-h(t)) + D_i \omega(t) + L_i u \\ x(t) - x(t-h_1) \\ x(t-h_1) - x(t-h_m) \\ x(t-h_m) - x(t-h_2) \end{bmatrix} + D_i \omega(t) + L_i u \]

(29)

Taking into account the situation that the information of transition probabilities are not accessible completely, due to \(\sum_{j=1}^{N} \lambda_{ij} = 0 \), the following equations hold for arbitrary appropriate matrices \(W_i = W_i^T \) are satisfied

\[LV_1(t, x_t) = 2 \left[\eta^T(t) \ u^T \right] \begin{bmatrix} P_{i11} & P_{i12} & P_{i13} & P_{i14} & P_{i15} \\ * & P_{i22} & P_{i23} & P_{i24} & P_{i25} \\ * & * & P_{i33} & P_{i34} & P_{i35} \\ * & * & * & P_{i44} & P_{i45} \\ * & * & * & * & P_{i55} \end{bmatrix} \begin{bmatrix} A_i x(t) + B_i x(t-h(t)) + D_i \omega(t)L_i u \\ x(t) - x(t-h_1) \\ x(t-h_1) - x(t-h_m) \\ x(t-h_m) - x(t-h_2) \end{bmatrix} \]

(30)

Hence,

\[LV_2(t, x_t) = x^T(t) Q_2 x(t) + e^{-ah_1} x^T(t-h_1) [Q_2 - Q_1] x(t-h_1) + e^{-ah_2} x^T(t-h_m) [Q_2 - Q_2] \cdot x(t-h_m) - e^{-ah_2} x^T(t-h_2) Q_2 x(t-h_2) - \alpha V_2, \]

\[LV_3(t, x_t) = x^T(t) \left[h_1^2 R_1 + (h_m - h_1)^2 R_2 + (h_2 - h_m)^2 R_3 \right] x(t-h_1) \int_{t-h_1}^{t} e^{a(s-t)} x^T(s) R_2 x(s) ds \]

- \(\int_{t-h_m}^{t-h_1} e^{a(s-t)} x^T(s) R_2 x(s) ds \) - \(\int_{t-h_2}^{t-h_m} e^{a(s-t)} x^T(s) R_3 x(s) ds \) - \(\alpha V_3. \)
Based on Lemma 2, \(LV_3(t, x_t) \) can be rewritten as

\[
LV_3(t, x_t) \leq x^T(t) \left[h_1^2 R_1 + (h_m - h_1)^2 R_2 + (h_2 - h_m)^2 R_3 \right] x(t) - e^{-\alpha h} \left(\int_{t-h}^t x(s)ds \right)^T R_1 \\
\cdot \left(\int_{t-h}^t x(s)ds \right) - e^{-\alpha h} \left(\int_{t-h_m}^{t-h} x(s)ds \right)^T R_2 \left(\int_{t-h_m}^t x(s)ds \right) \\
- e^{-\alpha h} \left(\int_{t-h_m}^{t-h} x(s)ds \right)^T R_3 \left(\int_{t-h_m}^t x(s)ds \right) - \alpha V_3,
\]

(32)

So, according to Lemma 3, we have

\[
LV_4(t, x_t) \leq \dot{x}^T(t) \left[h_1^2 R_4 \right] \dot{x}(t) - e^{-\alpha h} \left[[x(t) - x(t-h_1)]^T R_4 [x(t) - x(t-h_1)] \right] \\
+ \left[x(t) + x(t-h_1) - \frac{2}{h_1} \int_{t-h}^t x(s)ds \right]^T (3R_4) \left[x(t) + x(t-h_1) - \frac{2}{h_1} \int_{t-h}^t x(s)ds \right] \\
+ \left[x(t) + x(t-h_1) - \frac{6}{h_1} \int_{t-h}^{t-h_1} x(s)ds - \frac{12}{h_1^2} \int_{t-h}^{t-h_1} \int_{u}^{t-h_1} x(s)du \right] (5R_4) \\
\cdot \left[x(t) + x(t-h_1) - \frac{6}{h_1} \int_{t-h}^{t-h_1} x(s)ds - \frac{12}{h_1^2} \int_{t-h}^{t-h_1} \int_{u}^{t-h_1} x(s)du \right] - \alpha V_4,
\]

(33)

\[
LV_5(t, x_t) \leq x^T(t) \left[(h_m - h_1)^2 R_5 + (h_2 - h_m)^2 R_6 \right] \dot{x}(t) - e^{-\alpha h} (h_m - h_1) \int_{t-h_m}^{t-h_1} x^T(s)R_5\dot{x}(s)ds \\
- e^{-\alpha h} (h_2 - h_m) \int_{t-h_m}^{t-h_1} \dot{x}^T(s)R_6\dot{x}(s)ds - \alpha V_5.
\]

(34)

When \(h(t) \in (h_1, h_m) \), based on the Lemmas 3 and 4, we have

\[
- (h_m - h_1) \int_{t-h_m}^{t-h(t)} \dot{x}^T(s)R_5\dot{x}(s)ds \\
= -(h_m - h_1) \int_{t-h(t)}^{t-h(t)} \dot{x}^T(s)R_5\dot{x}(s)ds - (h_m - h_1) \int_{t-h(t)}^{t-h_1} \dot{x}^T(s)R_5\dot{x}(s)ds \\
\leq - \xi^T_1(t) \left[\frac{1}{(h_m - h(t))/(h_m - h_1)} \Gamma_1^T R_5 \Gamma_1 + \frac{1}{(h(t) - h_1)/(h_m - h_1)} \Gamma_2^T R_5 \Gamma_2 \right] \xi_1(t) \\
\leq - \xi^T_1(t) \left[\Gamma_1^T \left[\begin{array}{c} \overline{\Gamma}_5 \end{array} X \end{array} \right] \Gamma_1 \right] \xi_1(t),
\]

(35)
where

\[
\begin{align*}
\xi_1(t) &= \left[x^T(t) x^T(t-h_1) x^T(t-h_2) \left(\int_{t-h_1}^t x(s) ds \right)^T \left(\int_{t-h_2}^t x(s) ds \right)^T \right. \\
&\quad \cdot \left. \left(\int_{t-h_2}^{t-h_1} x(s) ds \right)^T \left(\int_{-t}^{t-h_1} x(s) ds \right)^T \left(\int_{t-h_1}^{t-h_2} x(s) ds \right)^T \left(\int_{-t}^{t-h_2} x(s) ds \right)^T \right] \left[\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ \omega^T(t) u^T \end{array} \right]^T,
\end{align*}
\]

\[
\begin{align*}
X_1 &= \begin{bmatrix} 0 & 0 & 0 & I & -I & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & I & I & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & I & -I & 0 & 0 & 0 & 0 & 6I & 0 & -12I & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & I & -I & -I & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & I & I & I & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & I & -I & 0 & 0 & 0 & 0 & 6I & 0 & -12I & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix},
\end{align*}
\]

\[
\begin{align*}
\Gamma_1 &= \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ X_5 \\ X_6 \end{bmatrix},
\end{align*}
\]

\[
\begin{align*}
\Gamma_2 &= \begin{bmatrix} X_4 \\ X_5 \\ X_6 \end{bmatrix},
\end{align*}
\]

\[
\begin{align*}
R_5 &= \begin{bmatrix} 0 & 0 \\ 0 & 3R_5 \\ 0 \\ 0 & 5R_5 \end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
\tilde{R}_5 &= \begin{bmatrix} R_5 & X \\ \ast & \tilde{R}_5 \end{bmatrix} > 0.
\end{align*}
\]

(36)
Using Lemma 3, we further have

\[
- (h_2 - h_m) \int_{t-h_2}^{t-h_m} x^T (s) R_6 x(s) ds
\]

\[
\leq - \left\{ 9x^T (t-h_m) R_6 x(t-h_m) - 6x^T (t-h_m) R_6 x(t-h_2) + 9x^T (t-h_2) R_6 x(t-h_2) + \frac{48}{h_2 - h_m}\right\}
\]

\[
\cdot x^T (t-h_m) R_6 \left(\int_{t-h_2}^{t-h_m} x(s) ds \right) - \frac{120}{(h_2 - h_m)^2} x^T (t-h_m) R_6 \left(\int_{t-h_2}^{t-h_m} x(s) ds \right) - \frac{72}{h_2 - h_m}
\]

\[
\cdot x^T (t-h_2) R_6 \left(\int_{t-h_2}^{t-h_m} x(s) ds \right) + \frac{120}{(h_2 - h_m)^2} x^T (t-h_2) R_6 \left(\int_{t-h_2}^{t-h_m} x(s) ds \right) + \frac{192}{(h_2 - h_m)^2}
\]

\[
\cdot \left(\int_{t-h_2}^{t-h_m} x(s) ds \right)^T R_6 \left(\int_{t-h_2}^{t-h_m} x(s) ds \right) - \frac{720}{(h_2 - h_m)^3} \left(\int_{t-h_2}^{t-h_m} x(s) ds \right)^T R_6 \left(\int_{t-h_2}^{t-h_m} x(s) ds \right) + \frac{720}{(h_2 - h_m)^3}
\]

\[
\cdot \left(\int_{t-h_2}^{t-h_m} x(s) ds \right)^T R_6 \left(\int_{t-h_2}^{t-h_m} x(s) ds \right) - \frac{720}{(h_2 - h_m)^3} \left(\int_{t-h_2}^{t-h_m} x(s) ds \right)^T R_6 \left(\int_{t-h_2}^{t-h_m} x(s) ds \right) + \frac{720}{(h_2 - h_m)^3}
\]

\[
\cdot \left(\int_{t-h_2}^{t-h_m} x(s) ds \right)^T R_6 \left(\int_{t-h_2}^{t-h_m} x(s) ds \right) - \frac{720}{(h_2 - h_m)^3} \left(\int_{t-h_2}^{t-h_m} x(s) ds \right)^T R_6 \left(\int_{t-h_2}^{t-h_m} x(s) ds \right) + \frac{720}{(h_2 - h_m)^3}
\]

\[
\cdot R_6 \left(\int_{t-h_2}^{t-h_m} x(s) ds \right) - \alpha V_5.
\]

Thus, \(LV_5 (t, x_i) \) can be acquired as

\[
LV_5 (t, x_i) \leq x^T (t) \left((h_m - h_2)^2 R_5 + (h_2 - h_m)^2 R_6 \right) x(t) - e^{-\alpha h_m} \tilde{\xi}^T (t) \left[\begin{array}{c} \Gamma_1 \\Gamma_2 \end{array} \right]^T \left[\begin{array}{c} R_5 \\Gamma_1 \end{array} \right] \tilde{\xi} (t)
\]

\[
- e^{-\alpha h_2} \left\{ 9x^T (t-h_m) R_6 x(t-h_m) - 6x^T (t-h_m) R_6 x(t-h_2) + 9x^T (t-h_2) R_6 x(t-h_2) + \frac{48}{h_2 - h_m}\right\}
\]

\[
\cdot x^T (t-h_m) R_6 \left(\int_{t-h_2}^{t-h_m} x(s) ds \right) - \frac{120}{(h_2 - h_m)^2} x^T (t-h_m) R_6 \left(\int_{t-h_2}^{t-h_m} x(s) ds \right) - \frac{72}{h_2 - h_m}
\]

\[
\cdot x^T (t-h_2) R_6 \left(\int_{t-h_2}^{t-h_m} x(s) ds \right) + \frac{120}{(h_2 - h_m)^2} x^T (t-h_2) R_6 \left(\int_{t-h_2}^{t-h_m} x(s) ds \right) + \frac{192}{(h_2 - h_m)^2}
\]

\[
\cdot \left(\int_{t-h_2}^{t-h_m} x(s) ds \right)^T R_6 \left(\int_{t-h_2}^{t-h_m} x(s) ds \right) - \frac{720}{(h_2 - h_m)^3} \left(\int_{t-h_2}^{t-h_m} x(s) ds \right)^T R_6 \left(\int_{t-h_2}^{t-h_m} x(s) ds \right) + \frac{720}{(h_2 - h_m)^3}
\]

\[
\cdot \left(\int_{t-h_2}^{t-h_m} x(s) ds \right)^T R_6 \left(\int_{t-h_2}^{t-h_m} x(s) ds \right) - \frac{720}{(h_2 - h_m)^3} \left(\int_{t-h_2}^{t-h_m} x(s) ds \right)^T R_6 \left(\int_{t-h_2}^{t-h_m} x(s) ds \right) + \frac{720}{(h_2 - h_m)^3}
\]

\[
\cdot R_6 \left(\int_{t-h_2}^{t-h_m} x(s) ds \right) - \alpha V_5.
\]

Meanwhile, for any matrices \(M_1 \) and \(M_2 \) with appropriate dimension, the following equation is true:

\[
2 \left[x^T (t) M_1 + \dot{x}^T (t) M_2 \right] - \left[A_i x (t) - \dot{x} (t) + B_i x (t-h(t)) + D_i \omega (t) + L_i u \right] = 0.
\]
where Ψ_i, Φ_1 are the same as defined in Theorem 1. Using the S-procedure in [4], one can see that this condition is implied by the existence of a non-negative scalar $\epsilon > 0$ such that

\[
LV(t, x(t)) \leq \frac{\alpha}{\omega_m} \omega^T(t)\omega(t) - \xi_1^T(t)(\Psi_i + \Phi_1)\xi_1(t) + \eta^T(t) \left(\sum_{j \in U_{ia}} \lambda_{ij}(P_j - W_i) \right) \eta(t)
\]

(41)

for all $\xi_1(t) \neq 0$. By using Lemma 5, the matrix inequalities (21), (23), and (24) imply (41).

Similarly, when $h(t) = h_1$ or $h(t) = h_m$, inequality (35) can be reduced to the following two inequalities, respectively. When $h(t) = h_1$, we obtain the following inequality:

\[
-(h_m - h_1) \int_{t-h_m}^{t-h_1} x^T(s) R_3 x(s) ds
\]

\[
= -(h_m - h(t)) \int_{t-h_m}^{t-h(t)} x^T(s) R_3 x(s) ds
\]

\[
\leq - \left[x(t-h(t)) - x(t-h_m) \right]^T R_3 \left[x(t-h(t)) - x(t-h_m) \right] + \left[x(t-h(t)) + x(t-h_m) \right]
\]

\[
\frac{2}{h_m - h(t)} \int_{t-h_m}^{t-h(t)} x(s) ds + \frac{6}{h_m - h(t)} \int_{t-h_m}^{t-h(t)} x(s) ds - \frac{12}{(h_m - h(t))^2} \int_{t-h_m}^{t-h(t)} x(s) ds du
\]

(42)

Combining Equations (25)–(39) and (42), we can obtain

\[
LV(t, x(t)) + aV(t, x(t)) - \frac{\alpha}{\omega_m} \omega^T(t)\omega(t)
\]

\[
\leq \xi_1^T(t)(\Psi_i + \Phi_2)\xi_1(t) + \eta^T(t) \left(\sum_{j \in U_{ia}} \lambda_{ij}(P_j - W_i) \right) \eta(t),
\]

(43)

where $\bar{\Psi}_i, \Phi_2$ are the same as defined in Theorem 1. Using the S-procedure in [4], one can see that this condition is implied by the existence of a non-negative scalar $\epsilon > 0$ such that

\[
LV(t, x(t)) + aV(t, x(t)) - \frac{\alpha}{\omega_m} \omega^T(t)\omega(t) \leq \xi_1^T(t)(\bar{\Psi}_i + \Phi_2)\xi_1(t) + \eta^T(t) \left(\sum_{j \in U_{ia}} \lambda_{ij}(P_j - W_i) \right) \eta(t)
\]

(44)

for all $\xi_1(t) \neq 0$. By using Lemma 5, the matrix inequalities (21), (23), and (24) imply (44).
\[-(h_m - h_1) \int_{t-h_1}^{t-h} x^T(s) R_3 x(s) ds\]
\[= -(h(t) - h_1) \int_{t-h(t)}^{t-h} x^T(s) R_3 x(s) ds\]
\[\leq -\left[\frac{1}{2} (x(t-h_1) - x(t-h(t)))^T R_3 [x(t-h_1) - x(t-h(t))] + \frac{1}{2} (x(t-h_1) + x(t-h(t)))^T R_3 [x(t-h_1) + x(t-h(t))] \right] \int_{t-h(t)}^{t-h} x(s) ds\]
\[\quad + 6 \frac{1}{h(t) - h_1} \int_{t-h(t)}^{t-h} x(s) ds - \frac{12}{(h(t) - h_1)^2} \int_{t-h(t)}^{t-h} \int_u x(s) ds du^T \right]\]
\[
\quad \cdot (5R_3) \left[x(t-h_1) - x(t-h(t)) + 6 \frac{1}{h(t) - h_1} \int_{t-h(t)}^{t-h} x(s) ds - \frac{12}{(h(t) - h_1)^2} \int_{t-h(t)}^{t-h} \int_u x(s) ds du \right] \right].
\]

Combining Equations (25)–(39) and (45), we can obtain

\[LV(t, x_t) + aV(t, x_t) - \frac{\alpha}{\omega_m} \omega^T(t) \omega(t) \leq \xi_1^T(t) \Psi_1 + \Phi_3 \xi_1(t) \]
\[+ \eta^T(t) \left(\sum_{j \in \Omega_{ak}} \lambda_j \left(P_j - W_j \right) \right) \eta(t), \]
\[\text{(46)}\]

\[LV(t, x_t) + aV(t, x_t) - \frac{\alpha}{\omega_m} \omega^T(t) \omega(t) \leq \xi_1^T(t) \Psi_1 + \Phi_3 \xi_1(t) + \eta^T(t) \left(\sum_{j \in \Omega_{ak}} \lambda_j \left(P_j - W_j \right) \right) \eta(t) \]
\[+ \epsilon \left[E_{ia} x(t) + E_{ib} x(t-h(t)) + E_{id} \omega(t) \right]^T \left[E_{ia} x(t) + E_{ib} x(t-h(t)) + E_{id} \omega(t) \right] - u^T u < 0, \]
\[\text{(47)}\]

for all \(\xi_1(t) \neq 0\). By using Lemma 5, the matrix inequalities (21), (23), and (24) imply (47).

It should be noted that \(\Psi_1 + \Phi_1 < 0\), \(\Psi_2 + \Phi_2 < 0\), \(\Psi_1 + \Phi_3 < 0\) according to inequalities (21), (23), and (24), which implies that \(LV(t, x_t) + aV(t, x_t) - (\alpha/\omega_m) \omega^T(t) \omega(t) < 0\).
When \(h(t) \in (h_m, h_2) \), the last two integral terms of \(LV_m(t, x_t) \) are handled in the following way based on Lemmas 3 and 4:

\[
\begin{align*}
&\leq -\frac{1}{(h_m - h_1)} \left[(h_2 - h_m) \int_{t-h_2}^{t-h_m} \dot{x}(s) R_5 \dot{x}(s) ds - (h_2 - h_m) \int_{t-h(t)}^{t-h_2} \dot{x}(s) R_6 \dot{x}(s) ds \right] \\
&\leq -\xi_5^T(t) \left[\frac{1}{(h_2 - h(t))} \int_{t-h_2}^{t-h(t)} \dot{x}(s) R_6 \dot{x}(s) ds \right. \\
&\quad \left. + \frac{1}{(h(t) - h_m)} \int_{t-h(t) - h_2 + h_2 - h_m}^{h(t) - h_2 + h_2 - h_m} \dot{x}(s) R_6 \dot{x}(s) ds \right] \\
&\leq -\xi_5^T(t) \left[\frac{1}{(h_2 - h(t))} \int_{t-h_2}^{t-h(t)} \dot{x}(s) R_6 \dot{x}(s) ds \right. \\
&\quad \left. + \frac{1}{(h(t) - h_m)} \int_{t-h(t) - h_2 + h_2 - h_m}^{h(t) - h_2 + h_2 - h_m} \dot{x}(s) R_6 \dot{x}(s) ds \right] \xi_2(t),
\end{align*}
\]

Using the same method to deal with the following integral inequality, we further have
where

\[
\xi_2(t) = \begin{bmatrix}
 x^T(t) & \dot{x}^T(t) & x^T(t - h_1) & x^T(t - h(t)) & x^T(t - h_m) \end{bmatrix} \begin{bmatrix}
 \int_{t-h_1}^{t} x(s)ds \, T \, \left(\int_{t-h_m}^{t} x(s)ds \right)

 \cdot \left(\int_{t-h_m}^{t} x(s)ds \right)^T \left(\frac{1}{h_2 - h(t)} \int_{t-h_1}^{t-h(t)} x(s)ds \right)^T \left(\frac{1}{h(t) - h_m} \int_{t-h(t)}^{t-h_m} x(s)ds \right)^T \left(\frac{1}{(h_2 - h(t))^2} \int_{t-h_2}^{t-h(t)} \int_{t-h_2}^{t-h(t)} x(s)dsdu \right)^T

 \cdot \left(\frac{1}{(h(t) - h_m)^2} \int_{t-h(t)}^{t-h_m} x(s)dsdu \right)^T \left(\frac{1}{h_1} \int_{t-h_1}^{t} \int_{t-h_1}^{t} x(s)dsdu \right)^T \left(\frac{1}{(h_m - h_1)^2} \int_{t-h_m}^{t-h_1} \int_{t-h_m}^{t-h_1} x(s)dsdu \right)^T \omega^T(t)u^T
\end{bmatrix},
\]

\[
\chi_5 = [0 \, 0 \, 0 \, I \, 0 \, -I \, 0 \, 0 \, 0 \, 0 \, 0 \, 0 \, 0 \, 0 \, 0 \, 0 \, 0],
\]

\[
\chi_6 = [0 \, 0 \, 0 \, I \, 0 \, 0 \, 0 \, -2I \, 0 \, 0 \, 0 \, 0 \, 0 \, 0 \, 0 \, 0 \, 0],
\]

\[
\chi_9 = [0 \, 0 \, 0 \, I \, 0 \, -I \, 0 \, 0 \, 0 \, 6I \, 0 \, -12I \, 0 \, 0 \, 0 \, 0 \, 0],
\]

\[
\chi_{10} = [0 \, 0 \, 0 \, -I \, I \, 0 \, 0 \, 0 \, 0 \, 0 \, 0 \, 0 \, 0 \, 0 \, 0 \, 0 \, 0],
\]

\[
\chi_{11} = [0 \, 0 \, 0 \, I \, I \, 0 \, 0 \, 0 \, 0 \, -2I \, 0 \, 0 \, 0 \, 0 \, 0 \, 0 \, 0],
\]

\[
\chi_{12} = [0 \, 0 \, 0 \, -I \, I \, 0 \, 0 \, 0 \, 0 \, 6I \, 0 \, -12I \, 0 \, 0 \, 0 \, 0 \, 0],
\]

\[
\begin{bmatrix} \chi_7 \\ \chi_8 \\ \chi_9 \\ \chi_{10} \\ \chi_{11} \\ \chi_{12} \end{bmatrix}
\]

\[
\Gamma_3 = \begin{bmatrix} \chi_7 \\ \chi_8 \\ \chi_9 \end{bmatrix},
\]

\[
\Gamma_4 = \begin{bmatrix} \chi_{10} \\ \chi_{11} \\ \chi_{12} \end{bmatrix},
\]

\[
\bar{R}_6 = \begin{bmatrix} R_6 & 0 & 0 \\ 0 & 3R_6 & 0 \\ 0 & 0 & 5R_6 \end{bmatrix},
\]

\[
\begin{bmatrix} \bar{R}_6 & \bar{Y} \\ * & \bar{R}_6 \end{bmatrix} > 0.
\]

(50)
Then, $LV_5(t, x_i)$ can be rewritten as

$$
LV_5(t, x_i) \leq \dot{x}^T(t) \left[(h_m - h_1)^2 R_5 + (h_2 - h_m)^2 R_6 \right] \dot{x}(t) - e^{-\alpha h_m} \left\{ 9x^T(t - h_1)R_5x(t - h_1) \\
- 6x^T(t - h_1)R_5x(t - h_m) + 9x^T(t - h_m)R_5x(t - h_m) + \frac{48}{h_m - h_1} x^T(t - h_1)R_5 \right\}
$$

$$
\cdot \left(\int_{t-h_m}^{t-h_1} x(s)ds \right) - \frac{120}{(h_m - h_1)^2} x^T(t - h_1)R_5 \left(\int_{t-h_m}^{t-h_1} x(s)ds \right) \right) - \frac{72}{h_m - h_1} \cdot
$$

$$
\cdot \left(\int_{t-h_m}^{t-h_1} x(s)ds \right) + \frac{120}{(h_m - h_1)^2} x^T(t - h_1)R_5 \left(\int_{t-h_m}^{t-h_1} x(s)ds \right)
$$

$$
+ \frac{192}{(h_m - h_1)^2} \left(\int_{t-h_m}^{t-h_1} x(s)ds \right) R_5 \left(\int_{t-h_m}^{t-h_1} x(s)ds \right) - \frac{720}{(h_m - h_1)^3} \left(\int_{t-h_m}^{t-h_1} x(s)ds \right) R_5
$$

$$
\cdot \left(\int_{t-h_m}^{t-h_1} x(s)ds \right)
$$

$$
\left\{ \int_{t-h_m}^{t-h_1} x(s)ds \right\} - e^{-\alpha h_m} \xi_2(t) \left[\xi_3 \right]^T \left[\begin{array}{cccc} \xi_3 & Y & \xi_3 & \xi_3 \\ \xi_4 & * & \xi_4 & \xi_4 \end{array} \right] \xi_2(t) - aV_5.
$$

Based on Equations (25)–(34), (39), and (51), we have

$$
LV(t, x_i) + aV(t, x_i) - \frac{\alpha}{\omega_m} \omega^T(t) \omega(t) \leq \xi_2^T(t)(\Psi_1 + \Pi_1) \xi_2(t) + \eta^T(t) \left(\sum_{j \in \Delta_{ik}} \lambda_{ij} \left(P_j - W_j \right) \right) \eta(t),
$$

$$
(52)
$$

$$
LV(t, x_i) + aV(t, x_i) - \frac{\alpha}{\omega_m} \omega^T(t) \omega(t) \leq \xi_2^T(t)(\Psi_1 + \Pi_1) \xi_2(t) + \eta^T(t) \left(\sum_{j \in \Delta_{ik}} \lambda_{ij} \left(P_j - W_j \right) \right) \eta(t)
$$

$$
+ e \left\{ [E_{ia}x(t) + E_{ib}x(t - h(t)) + E_{id} \omega(t)]^T [E_{ia}x(t) + E_{ib}x(t - h(t)) + E_{id} \omega(t)] - u^T u \right\} < 0,
$$

for all $\xi_2(t) \neq 0$. By using Lemma 5, the matrix inequalities (22)–(24) imply (53).

When $h(t) = h_2$, inequality (49) can simplify the following equation:
\[-(h_2 - h_m) \int_{t-h_m}^{t-h_u} x^T(s)R_\alpha \dot{x}(s)ds\]

\[-(h(t) - h_m) \int_{t-h(t)}^{t-h_u} x^T(s)R_\alpha \dot{x}(s)ds\]

\[\leq -\left[\{x(t-h_m) - x(t - h(t))\}^T R_\alpha [x(t-h_m) - x(t - h(t))] + \{x(t-h_m) + x(t - h(t))\} \right] \]

\[+ \left[x(t-h_m) - x(t - h(t)) \right] + \frac{6}{h(t) - h_m} \int_{t-h(t)}^{t-h_u} x(s)ds - \frac{12}{(h(t) - h_m)^2} \int_{t-h(t)}^{t-h_u} x(s)ds\]

\[\cdot (5R_\alpha) \left\{ x(t-h_m) - x(t - h(t)) \right\} + \frac{6}{h(t) - h_m} \int_{t-h(t)}^{t-h_u} x(s)ds - \frac{12}{(h(t) - h_m)^2} \int_{t-h(t)}^{t-h_u} x(s)ds\}

Based on Equations (25)–(34), (39), and (54), we have

\[LV(t, x_t) + aV(t, x_t) - \frac{\alpha}{\omega_m} \omega^T(t)\omega(t) \leq \xi^T(t)(\tilde{\Psi}_1 + \Pi_2)\xi_2(t)\]

\[+ \eta^T(t) \left(\sum_{j \in U_{ia}} \lambda_{ij}(P_j - W_i) \right) \eta(t),\]

\[LV(t, x_t) + aV(t, x_t) - \frac{\alpha}{\omega_m} \omega^T(t)\omega(t) \leq \xi^T(t)(\tilde{\Psi}_1 + \Pi_2)\xi_2(t) + \eta^T(t) \left(\sum_{j \in U_{ia}} \lambda_{ij}(P_j - W_i) \right) \eta(t)\]

\[+ \epsilon \left[E_{ia} x(t) + E_{ib} x(t-h(t)) + E_{id} \omega(t) \right]^T \left[E_{ia} x(t) + E_{ib} x(t-h(t)) + E_{id} \omega(t) \right] - u^T u < 0,\]

for all \(\xi_2(t) \neq 0\). By using Lemma 5, the matrix inequalities (22)–(24) imply (56).

It should be noted that \(\tilde{\Psi}_1 + \Pi_1 < 0\), \(\tilde{\Psi}_1 + \Pi_2 < 0\) according to inequalities (22)–(24), which implies that \(LV(t, x_t) + aV(t, x_t) - (a/\omega_m) \omega^T(t)\omega(t) < 0\).

In conclusion, \(LV(t, x_t) + aV(t, x_t) - (a/\omega_m) \omega^T(t)\omega(t) < 0\) is true on the basis of equations (21)–(24).

Since \(P_1 = [p_{i,j}]_{3 \times 3}\), there is a positive matrix \(\tilde{P}_{1,2} \in \mathbb{R}^{n \times n}\) such that

\[
\begin{bmatrix}
\tilde{P}_{1,2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

We further have the inequality \(x^T(t)\tilde{P}_{1,2} x(t) \leq V_j(t, x_t) \leq V(t, x_t) \leq 1\) when \(h(t) \in [h_1, h_2]\). Hence, \(V(t, x_t) \leq 1\) is true by using Lemma 1. This completes the proof. \(\square\)

Remark 1. We choose an augmented Lyapunov–Krasovskii functional \(V_j(t, x_t) = \eta^T(t)P_j \eta(t)\) to establish more general delay-dependent conditions, where \(P_j\) is a fifth-order matrix and \(\eta(t)\) is a five-dimensional column vector. Therefore, the reachable set estimation criteria can utilize more information on state variables via using these augmented variables in the Lyapunov–Krasovskii functional.

Remark 2. Parameter \(\gamma\) is used to divide the time-delay interval into two subintervals in this paper. \(h(t)\) is the time-varying delay satisfying \(0 \leq h_1 \leq h(t) \leq h_2\). Generally, the authors divide the time-delay interval into two or more equal subintervals in previous studies to get less conservative stability criteria. Different from them, the time-delay interval \([h_1, h_2]\) in our study is partitioned into \([h_1, h_m]\) and \([h_m, h_2]\) by introducing an adjustable parameter \(\gamma\), where \(h_m = \gamma h_1 + (1 - \gamma) h_2\), \(0 \leq \gamma \leq 1\); when \(\gamma = 0.5\), the two
subintervals are equal as those in the literatures. Moreover, the integral interval is decomposed in the same way to estimate the bounds of integral terms more exactly.

Remark 3. An optimized integral inequality is provided to deal with the integral term $\int_{-h_m}^{t-h_m} \dot{x}(s)R_5 \dot{x}(s)ds$ and $\int_{-h_m}^{t-h_m} \dot{x}^T(s)R_5 \dot{x}(s)ds$. Recently, the reciprocally convex combination approach [18, 25, 27] has been widely used to deduce the results. According to the applications shown in these literatures, it is easy to see that the results based on this method are less conservative than the existing ones. Therefore, we adopt the distinguished Wirtinger integral inequality [23] together with the reciprocally convex combination inequality to handle these two integral terms to get more general reachable set estimation criteria.

Corollary 1. Consider the uncertain Markov jump system (1)–(4) with all elements completely known in transition rate matrix (5); if there exist real matrices

$$P_i = \begin{bmatrix} P_{i1} & P_{i12} & P_{i13} & P_{i14} & P_{i15} \\ * & P_{i22} & P_{i23} & P_{i24} & P_{i25} \\ * * & P_{i33} & P_{i34} & P_{i35} \\ * * * & P_{i44} & P_{i45} \\ * * * * & P_{i55} \end{bmatrix},$$

$P_{ij} > 0, \ W_j > 0 (i = 1, 2, \ldots, N), \ P_{ij} > 0, Q_j > 0, Q_k > 0, R_j > 0 (i = 1, 2, \ldots, 6),$

$$\bar{R}_5 = \begin{bmatrix} R_5 & 0 & 0 & 0 & 0 \\ 0 & 3R_5 & 0 & 0 & 0 \\ 0 & 0 & 5R_5 & 0 & 0 \end{bmatrix},$$

$$M_i (i = 1, 2), X = \begin{bmatrix} X_{11} & X_{12} & X_{13} \\ X_{21} & X_{22} & X_{23} \\ X_{31} & X_{32} & X_{33} \end{bmatrix}, \ Y = \begin{bmatrix} Y_{11} & Y_{12} & Y_{13} \\ Y_{21} & Y_{22} & Y_{23} \\ Y_{31} & Y_{32} & Y_{33} \end{bmatrix},$$

with appropriate dimension such that

$$\begin{bmatrix} \bar{R}_5 & X & \bar{R}_5 \end{bmatrix} > 0,$$

$$\begin{bmatrix} \bar{R}_5 & Y & \bar{R}_5 \end{bmatrix} > 0, \ P_i \geq \begin{bmatrix} P_{ij} & 0 & 0 & 0 & 0 \\ * & 0 & 0 & 0 & 0 \\ * * & 0 & 0 & 0 & 0 \\ * * * & 0 & 0 & 0 \end{bmatrix} a \ scalar \ \epsilon > 0 \ such \ that \ \begin{bmatrix} R_{5j} & X & \bar{R}_{5j} \end{bmatrix} > 0,$$

that the LMIs equations (21)–(22) hold, which all elements $\Psi_i, \tilde{\Psi}_i, \Phi_1, \Phi_2, \Phi_3, \Pi_1, \Pi_2$ are defined in Appendix B.

Corollary 2. Consider the uncertain Markov jump system (1)–(4) with all elements completely unknown in transition rate matrix (5); if there exist real matrices

$$P_i = \begin{bmatrix} P_{i1} & P_{i12} & P_{i13} & P_{i14} & P_{i15} \\ * & P_{i22} & P_{i23} & P_{i24} & P_{i25} \\ * * & P_{i33} & P_{i34} & P_{i35} \\ * * * & P_{i44} & P_{i45} \\ * * * * & P_{i55} \end{bmatrix},$$

$P_{ij} > 0, \ W_j > 0 (i = 1, 2, \ldots, N),$ $P_{ij} > 0, Q_j > 0, Q_k > 0, R_j > 0 (i = 1, 2, \ldots, 6),$ $\bar{R}_5 = \begin{bmatrix} R_5 & 0 & 0 & 0 & 0 \\ 0 & 3R_5 & 0 & 0 & 0 \\ 0 & 0 & 5R_5 & 0 & 0 \end{bmatrix},$ any matrices

$$M_i (i = 1, 2), X = \begin{bmatrix} X_{11} & X_{12} & X_{13} \\ X_{21} & X_{22} & X_{23} \\ X_{31} & X_{32} & X_{33} \end{bmatrix}, \ Y = \begin{bmatrix} Y_{11} & Y_{12} & Y_{13} \\ Y_{21} & Y_{22} & Y_{23} \\ Y_{31} & Y_{32} & Y_{33} \end{bmatrix},$$

with appropriate dimension such that

$$\begin{bmatrix} \bar{R}_5 & X & \bar{R}_5 \end{bmatrix} > 0,$$

$$\begin{bmatrix} \bar{R}_5 & Y & \bar{R}_5 \end{bmatrix} > 0, \ P_i \geq \begin{bmatrix} P_{1i} & 0 & 0 & 0 & 0 \\ * & 0 & 0 & 0 & 0 \\ * & 0 & 0 & 0 & 0 \\ * & 0 & 0 & 0 & 0 \end{bmatrix} a \ scalar \ \epsilon > 0 \ such \ that \ \begin{bmatrix} R_{5i} & X & \bar{R}_{5i} \end{bmatrix} > 0,$$

that the LMIs equations (21)–(22) hold, which all elements $\Psi_i, \tilde{\Psi}_i, \Phi_1, \Phi_2, \Phi_3, \Pi_1, \Pi_2$ are defined in Appendix B.
Proof. Of Theorem 2 Following a similar line as in the proof of Theorem 1, one can simply obtain this theorem. This completes our proof. □

Corollary 3. Consider the Markov jump system (58) with all elements completely known in transition rate matrix (5); if there exist real matrices \(P_i = \begin{bmatrix} P_{i11} & P_{i12} & P_{i13} & P_{i14} \\ * & P_{i22} & P_{i23} & P_{i24} \\ * & * & P_{i33} & P_{i34} \\ * & * & * & P_{i44} \end{bmatrix} \geq 0, \)
\(\bar{P}_{1,1} > 0, \ Q_1 > 0, \ Q_2 > 0, \ Q_3 > 0 \) and \(R_i > 0 \) (\(i = 1, \ldots, 6 \)),
\(\bar{R}_5 = \begin{bmatrix} R_5 \ 0 \ 0 \ 0 \\ 0 \ 3R_5 \ 0 \ 0 \\ 0 \ 0 \ 5R_5 \ 0 \\ 0 \ 0 \ 0 \ 5R_6 \end{bmatrix}, \bar{R}_6 = \begin{bmatrix} R_6 \ 0 \ 0 \\ 0 \ 3R_6 \ 0 \\ 0 \ 0 \ 5R_6 \ 0 \end{bmatrix}, \) any matrices
\(M_i (i = 1, 2), X = \begin{bmatrix} X_{11} & X_{12} & X_{13} \\ X_{21} & X_{22} & X_{23} \\ X_{31} & X_{32} & X_{33} \end{bmatrix}, \ Y = \begin{bmatrix} Y_{11} & Y_{12} & Y_{13} \\ Y_{21} & Y_{22} & Y_{23} \\ Y_{31} & Y_{32} & Y_{33} \end{bmatrix} \)
with appropriate dimension such that \(\bar{R}_5 X \bar{R}_5 > 0, \) satisfying the following matrix inequalities:
\[\Psi_1 + \Phi_1 < 0, \]
\[\Psi_1 + \Phi_2 < 0, \]
\[\Psi_1 + \Phi_3 < 0, \]
\[\Psi_1 + \Pi_1 < 0, \]
\[\Psi_1 + \Pi_2 < 0, \]
where all elements are defined in Appendix E.

Corollary 4. Consider the Markov jump system (58) with all elements completely unknown in transition rate matrix (5); if there exist real matrices \(P_i = \begin{bmatrix} P_{i11} & P_{i12} & P_{i13} & P_{i14} \\ * & P_{i22} & P_{i23} & P_{i24} \\ * & * & P_{i33} & P_{i34} \\ * & * & * & P_{i44} \end{bmatrix} \geq 0, \)
\(\bar{P}_{1,1} > 0, \ Q_1 > 0, \ Q_2 > 0, \ Q_3 > 0 \) and \(R_i > 0 \) (\(i = 1, \ldots, 6 \)),
\(\bar{R}_5 = \begin{bmatrix} R_5 \ 0 \ 0 \ 0 \\ 0 \ 3R_5 \ 0 \ 0 \\ 0 \ 0 \ 5R_5 \ 0 \\ 0 \ 0 \ 0 \ 5R_6 \end{bmatrix}, \bar{R}_6 = \begin{bmatrix} R_6 \ 0 \ 0 \\ 0 \ 3R_6 \ 0 \\ 0 \ 0 \ 5R_6 \ 0 \end{bmatrix}, \) any matrices
\(M_i (i = 1, 2), X = \begin{bmatrix} X_{11} & X_{12} & X_{13} \\ X_{21} & X_{22} & X_{23} \\ X_{31} & X_{32} & X_{33} \end{bmatrix}, \ Y = \begin{bmatrix} Y_{11} & Y_{12} & Y_{13} \\ Y_{21} & Y_{22} & Y_{23} \\ Y_{31} & Y_{32} & Y_{33} \end{bmatrix} \)
with appropriate dimension such that \(\bar{R}_5 X \bar{R}_5 > 0, \) satisfying the following matrix inequalities:
\[\Psi_1 + \Phi_1 < 0, \]
\[\Psi_1 + \Phi_2 < 0, \]
\[\Psi_1 + \Phi_3 < 0, \]
\[\Psi_1 + \Pi_1 < 0, \]
\[\Psi_1 + \Pi_2 < 0, \]
where all elements are defined in Appendix E.

4. Numerical Examples

In this section, two examples are used to demonstrate the effectiveness and correctness of the main results derived above.

Example 1. Consider the following uncertain time-delayed system (58) which has been studied in [9, 11]:
\[
A_1 = \begin{bmatrix} -2 & 0 \\ 0 & -0.7 \end{bmatrix},
B_1 = \begin{bmatrix} -1 & 0 \\ 0 & -1.0 \end{bmatrix},
D_1 = \begin{bmatrix} -0.5 & \Lambda \\ 1 & 0 \end{bmatrix},
A_2 = \begin{bmatrix} -2 & 0 \\ 0 & -1.1 \end{bmatrix},
B_2 = \begin{bmatrix} -1 & 0 \\ 0 & -1.1 \end{bmatrix},
D_2 = D_1, \quad \omega^T(t)\omega(t) \leq \omega_m^2, \ \omega_m = 1, \ h_1 = 0.
\]

The transition rate matrix \(\Lambda \) is considered as in the following three cases.

Case 1. The transition rate matrix \(\Lambda \) is completely known, which is considered as \(\Lambda = \begin{bmatrix} -0.6 & 0.6 \\ 0.2 & -0.2 \end{bmatrix} \).
Case 2. The transition rate matrix \(\Lambda \) is partly known, which is considered as \(\Lambda = \begin{bmatrix} -0.6 & 0.6 \\ 0 & 0 \end{bmatrix} \).
Case 3. The transition rate matrix Λ is completely unknown, which is considered as $\Lambda = \begin{bmatrix} \ast & \ast \\ \ast & \ast \end{bmatrix}$.

By solving the optimization problem (59)–(62), the allowable minimum values of h obtained by different methods for $0 \leq h(t) \leq 0.7$ and $0 \leq h(t) \leq 0.75$ are listed in Table 1. According to Table 1, it is inescapably clear that our results decrease the size of the ellipsoid significantly.

Furthermore, for the parameters listed above, let $h_2 = 0.75$, $a = 0.7$, and we can get the following feasible solutions by Theorem 2 in this paper. In this example, when the transition probability matrix is completely unknown (at this point, the state trajectory is general switching system, not the system studied in this paper), it is a general switching system, such as [9,11]. But when the Λ is partly unknown or completely known, it is the Markov jump system. And there are two elliptical boundaries in the picture. So, we choose the smaller one as the reachable set boundary. Due to the limitation of the length of this paper, we just show some of them here, and the reachable set is $\bigcap_{i=1}^{2} \mathcal{S}(\bar{P}_{1i})$.

By using Theorem 2 and solving the problem (59)–(62) in Case 2, we can obtain

$$ P_{i1} = \begin{bmatrix} 2.4425 & -0.4772 \\ -0.4772 & 1.0098 \end{bmatrix}, $$
$$ P_{i4} = \begin{bmatrix} 24.8867 & 0.3433 \\ 0.3433 & 24.9046 \end{bmatrix}, $$
$$ Q_3 = \begin{bmatrix} 175.9261 & 0.4467 \\ 0.4467 & 173.8194 \end{bmatrix}, $$
$$ R_6 = \begin{bmatrix} 0.0493 & -0.0035 \\ -0.0035 & 0.0365 \end{bmatrix}, $$
$$ X_{11} = \begin{bmatrix} -50.2037 & 0.0891 \\ 0.0891 & -50.3448 \end{bmatrix}, $$
$$ Y_{11} = \begin{bmatrix} -52.9810 & 0.2084 \\ -0.2832 & -52.6961 \end{bmatrix}, $$
$$ \bar{P}_{11} = \begin{bmatrix} 1.6344 & -0.3169 \\ -0.3169 & 0.6826 \end{bmatrix}. $$

By using Corollary 3 and solving the problems (63) and (64) in Case 1, we can obtain

$$ P_{i1} = \begin{bmatrix} 4.3786 & -0.5368 \\ -0.5368 & 2.1556 \end{bmatrix}, $$
$$ P_{i4} = \begin{bmatrix} 72.9859 & 0.3683 \\ 0.3683 & 72.5227 \end{bmatrix}, $$
$$ Q_3 = \begin{bmatrix} 474.5381 & 0.7949 \\ 0.7949 & 467.5645 \end{bmatrix}, $$
$$ \bar{P}_{11} = \begin{bmatrix} 2.9222 & -0.3632 \\ -0.3632 & 1.4403 \end{bmatrix}. $$

By using Corollary 4 and solving the problems (65) and (66) in Case 3, we can obtain

$$ P_{i1} = \begin{bmatrix} 4.9321 & -0.4496 \\ -0.4496 & 2.5786 \end{bmatrix}, $$
$$ P_{i4} = \begin{bmatrix} 99.7440 & 0.3944 \\ 0.3944 & 99.3030 \end{bmatrix}, $$
$$ Q_3 = \begin{bmatrix} 678.1573 & 1.0381 \\ 1.0381 & 672.4074 \end{bmatrix}, $$
$$ R_3 = \begin{bmatrix} 0.1860 & -0.0122 \\ -0.0122 & 0.1374 \end{bmatrix}, $$
$$ X_{11} = \begin{bmatrix} -195.7636 & 0.4919 \\ 0.4919 & -197.1652 \end{bmatrix}, $$
$$ Y_{11} = \begin{bmatrix} -203.4827 & 0.7165 \\ -0.8392 & -202.9476 \end{bmatrix}, $$
$$ \bar{P}_{11} = \begin{bmatrix} 3.2976 & -0.3031 \\ -0.3031 & 1.7280 \end{bmatrix}. $$
Figure 1 is the plot of the state trajectory of system (56). Figures 2–4 are the plots of the ellipsoidal sets \mathcal{S} defined in equation (13), which are obtained in Theorem 2 and Corollaries 3 and 4 when $h_2 = 0.75$, respectively.

Example 2. Consider the uncertain MJSs with time-varying delays and disturbances:

$$
\dot{x}(t) = \left(A_{(t,r)} + \Delta A_{(t,r)}(t) \right) x(t) + \left(B_{(t,r)} + \Delta B_{(t,r)}(t) \right) x(t - h(t)) + \left(D_{(t,r)} + \Delta D_{(t,r)}(t) \right) \omega(t),
$$

where

$$
A_1 = \begin{bmatrix} -5 & 0 \\ 0 & -6 \end{bmatrix},
B_1 = \begin{bmatrix} -1.6 & 0 \\ -1.8 & -1.5 \end{bmatrix},
D_1 = \begin{bmatrix} 0.5 \\ -1 \end{bmatrix},
L_1 = \begin{bmatrix} 0.1 & 0 \\ 0 & 0.1 \end{bmatrix},
E_{13} = 0,
A_2 = \begin{bmatrix} -4 & 0 \\ 0 & -5 \end{bmatrix},
B_2 = \begin{bmatrix} -2 & 0 \\ -0.9 & -1.2 \end{bmatrix},
D_2 = \begin{bmatrix} -0.5 \\ 1 \end{bmatrix},
L_2 = \begin{bmatrix} 0 & 0 \\ 0 & -0.1 \end{bmatrix},
E_{23} = 0,
E_{11} = \begin{bmatrix} 0 & 0 \\ 0 & -0.1 \end{bmatrix},
E_{12} = \begin{bmatrix} -0.1 & 0 \\ 0 & 0.1 \end{bmatrix},
E_{21} = \begin{bmatrix} 0 & 0 \\ 0 & 0.1 \end{bmatrix},
E_{22} = \begin{bmatrix} 0.1 & 0 \\ 0 & 0.1 \end{bmatrix}.
$$

By using Corollary 1 and solving the optimization problem (72) in Case 1, we can get that the minimization of δ is 0.0785 (the short half axis length of the ellipsoid is 0.2802) when $\alpha = 0.7$ and the corresponding feasible matrices are given as

$$
\bar{P}_{1,1} = \begin{bmatrix} 21.3278 & -0.3828 \\ -0.3828 & 12.7572 \end{bmatrix}, \bar{P}_{1,2} = \begin{bmatrix} 10.2938 & 0.9042 \\ 0.9042 & 10.2938 \end{bmatrix}.
$$

The reachable sets of system (72) in Case 1 are bounded by a intersection of two ellipsoids: $\bigcap_{i=1}^{2} \mathcal{S}(\bar{P}_{i,j})$, which is depicted in Figure 5.

By using Theorem 1 and solving the optimization problem (72) in Case 2, we can get that the minimization of δ
Figure 3: The ellipsoidal bound \mathcal{F} and state trajectory of system (58) for Case 2.

Figure 4: The ellipsoidal bound \mathcal{F} and state trajectory of system (58) for Case 3.

Figure 5: The ellipsoidal bound \mathcal{F} and state trajectory of system (72) for Case 1.
is 0.0524 (the short half axis length of the ellipsoid is 0.2288) when $\alpha = 0.7$ and the corresponding feasible matrices are given as $P_{1,1} = \begin{bmatrix} 32.8001 & 2.0190 \\ 2.0190 & 19.3954 \end{bmatrix}$, $P_{1,2} = \begin{bmatrix} 15.8731 & 2.5565 \\ 2.5565 & 13.5311 \end{bmatrix}$. The reachable sets of system (72) in Case 1 are bounded by a intersection of two ellipsoids: $\cap_{i=1}^{2} \mathcal{S}(P_{1,i})$, which is depicted in Figure 6.

By using Corollary 2 and solving the optimization problem (72) in Case 3, we can get that the minimization of δ is 0.0598 (the short half axis length of the ellipsoid is 0.2445) when $\alpha = 0.7$ and the corresponding feasible matrices are given as $P_{1,1} = \begin{bmatrix} 32.8028 & 4.4496 \\ 4.4496 & 17.9617 \end{bmatrix}$, $P_{1,2} = \begin{bmatrix} 21.1376 & 5.7135 \\ 5.7135 & 14.6146 \end{bmatrix}$. The reachable sets of system (72) in Case 1 are bounded by a intersection of two ellipsoids: $\cap_{i=1}^{2} \mathcal{S}(P_{1,i})$, which is depicted in Figure 7.

5. Conclusion

The reachable set bounding for uncertain Markov jump systems with time-varying delays and disturbances has been investigated in our study. We partition the time-varying delay into two nonuniform subintervals and consider the delay in these two cases separately. Furthermore, some new reachable set estimation conditions are derived in terms of linear matrix inequalities by constructing a novel augmented Lyapunov–Krasovskii functional, combining with optimized integral inequality which is based on distinguished Wirtinger integral inequality and reciprocally convex combination inequality. Finally, the feasibility and the
comparisons with recent results obtained in the latest literatures are shown through numerical examples.

Appendix

A. The Representation of Ψ, Ψ_f, Φ, Φ_1, Φ_2, Φ_3, Π_1, Π_2 in Theorem 1

where

$$
\Psi_i = \begin{bmatrix}
\Psi_{11} & \Psi_{12} & \Psi_{13} & \Psi_{14} \\
* & \Psi_{22} & 0 & 0 \\
* & * & \Psi_{33} & 0 \\
* & * & * & 0 \\
* & * & * & * \\
* & * & * & * \\
\end{bmatrix}
$$

\begin{equation}
(A.1)
\end{equation}

\begin{align}
\Psi_{11} = & \begin{bmatrix}
\Psi_{11} & \Psi_{12} & \Psi_{13} & \Psi_{14} & \Psi_{15} & \Psi_{16} & \Psi_{17} & \Psi_{18} & \Psi_{19} \\
* & \Psi_{22} & 0 & 0 & 0 & \Psi_{27} & \Psi_{28} & \Psi_{29} \\
* & * & \Psi_{33} & 0 & 0 & \Psi_{37} & \Psi_{38} & \Psi_{39} \\
* & * & * & 0 & 0 & \Psi_{47} & \Psi_{48} & \Psi_{49} \\
* & * & * & * & 0 & \Psi_{57} & \Psi_{58} & \Psi_{59} \\
* & * & * & * & * & 0 & \Psi_{67} & \Psi_{68} & \Psi_{69} \\
* & * & * & * & * & * & 0 & \Psi_{77} & \Psi_{78} & \Psi_{79} \\
* & * & * & * & * & * & * & 0 & \Psi_{87} & \Psi_{88} & \Psi_{89} \\
* & * & * & * & * & * & * & * & 0 & \Psi_{97} & \Psi_{98} & \Psi_{99}
\end{bmatrix},
\end{align}

\begin{align}
\Psi_{12} = & \begin{bmatrix}
0 & 0 & 0 & 0 & \Psi_{14} & 0 & \Psi_{16} \\
0 & 0 & 0 & 0 & 0 & \Psi_{24} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \Psi_{34} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \Psi_{14} & 0 & \Psi_{16} & 0 \\
0 & 0 & 0 & 0 & 0 & \Psi_{24} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \Psi_{34} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \Psi_{94} \\
\end{bmatrix},
\end{align}

\begin{align}
\Psi_{22} = & \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
* & 0 & 0 & 0 & 0 & 0 & 0 \\
* & * & 0 & 0 & 0 & 0 & 0 \\
* & * & * & 0 & 0 & 0 & 0 \\
* & * & * & \Psi_{14} & 0 & 0 & 0 \\
* & * & * & * & 0 & 0 & 0 \\
* & * & * & * & * & 0 & 0 \\
* & * & * & * & * & * & 0 \\
\end{bmatrix},
\end{align}

\begin{align}
\Psi_{13} = & \begin{bmatrix}
\Psi_{11} & \Psi_{12} & \Psi_{13} & \Psi_{14} & \Psi_{15} & \Psi_{16} & \Psi_{17} & \Psi_{18} & \Psi_{19} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix},
\end{align}

\begin{align}
\Psi_{14} = & \begin{bmatrix}
\epsilon \Psi_{11} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix},
\end{align}

\begin{align}
\Psi_{23} = & \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix},
\end{align}

\begin{align}
\Psi_{24} = & \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix},
\end{align}

\begin{equation}
(A.2)
\end{equation}
\[\varphi_{111} = P_{i1} A_i + A_i^T P_{i1}^T + P_{i15} A_i + A_i^T P_{i15}^T + P_{i12} + P_{i22} + h_i^2 R_1 + (h_m - h_i)^2 R_2 + (h_2 - h_m)^2 R_3 + Q_1 + M_1 A_i + A_i^T M_1^T + \alpha P_{i11} - 9R_4 e^{-ah_i} + \sum_{j \in U_k} \lambda_{ij} (P_{j11} - W_{j11}), \]

\[\varphi_{112} = -M_1 - P_{i15} + A_i^T M_1^T, \]

\[\varphi_{113} = P_{i13} - P_{i12} + 3R_4 e^{-ah_i}, \]

\[\varphi_{114} = P_{i11} B_i + P_{i15} B_i + M_1 B_i, \]

\[\varphi_{115} = P_{i14} - P_{i13}, \]

\[\varphi_{116} = -P_{i14}, \]

\[\varphi_{114} = 60R_4 e^{-ah_i}, \]

\[\varphi_{124} = M_2 B_i, \]

\[\varphi_{1216} = M_2 D_i, \]

\[\varphi_{168} = -P_{i14}^T, \]

\[\varphi_{177} = A_i^T P_{i1} + A_i^T P_{i25}^T + P_{i22}^T - \frac{24}{h_i} R_4 e^{-ah_i} + \alpha P_{i12} + \sum_{j \in U_k} \lambda_{ij} (P_{j12} - W_{j12}), \]

\[\varphi_{188} = A_i^T P_{i31} + A_i^T P_{i35}^T + P_{i23} + \alpha P_{i13} + \sum_{j \in U_k} \lambda_{ij} (P_{j13} - W_{j13}), \]

\[\varphi_{33} = e^{-ah_i} (Q_2 - Q_1) - 9R_4 e^{-ah_i}, \]

\[\varphi_{199} = A_i^T P_{i41} + A_i^T P_{i45}^T + P_{i24} + \alpha P_{i14} + \sum_{j \in U_k} \lambda_{ij} (P_{j14} - W_{j14}), \]

\[\varphi_{137} = P_{i23} - P_{i22} + \frac{36}{h_i} R_4 e^{-ah_i}, \]

\[(A.3) \]

\[\varphi_{116} = P_{i11} D_i + P_{i15} D_i + M_1 D_i, \]

\[\varphi_{188} = -e^{-ah_i} R_2 + \alpha P_{i33} + \sum_{j \in U_k} \lambda_{ij} (P_{j33} - W_{j33}), \]

\[\varphi_{117} = P_{i15} + P_{i11} L_i + P_{i51} L_i + M_1 L_i + A_i^T P_{i51}^T + A_i P_{i55} - A_i^T P_{i15} - P_{i25}, \]

\[\varphi_{22} = -M_2 - M_2^T + h_i^2 R_4 + (h_m - h_i)^2 R_5 + (h_2 - h_m)^2 R_6, \]

\[\varphi_{138} = P_{i33}^T - P_{i13}, \]

\[\varphi_{139} = P_{i43}^T - P_{i42}, \]

\[\varphi_{127} = -P_{i12}, \]

\[\varphi_{128} = -P_{i13}, \]

\[\varphi_{129} = -P_{i14}, \]

\[\varphi_{217} = M_2 L_i - P_{i55}, \]

\[\varphi_{134} = -60R_4 e^{-ah_i}, \]

\[(A.4) \]
\[\varphi_{i47} = B_i^{T}p_{i21}^{T} + B_i^{T}p_{i25}^{T}, \]
\[\varphi_{i48} = B_i^{T}p_{i31}^{T} + B_i^{T}p_{i35}^{T}, \]
\[\varphi_{i49} = B_i^{T}p_{i41}^{T} + B_i^{T}p_{i45}^{T}, \]
\[\varphi_{i4,17} = B_i^{T}P_{i51}^{T} + B_i^{T}P_{i55}^{T} - B_i^{T}P_{i15}, \]
\[\varphi_{55} = e^{-a_{hi}}(Q_3 - Q_2), \]
\[\varphi_{i57} = P_{i24}^{T} - P_{i23}^{T}, \]
\[\varphi_{i58} = P_{i34}^{T} - P_{i33}^{T}, \]
\[\varphi_{i59} = P_{i44}^{T} - P_{i43}^{T}, \]
\[\varphi_{i66} = -e^{-a_{hi}}Q_3, \]
\[\varphi_{i67} = -P_{i24}^{T}, \]
\[\varphi_{P_{i69}} = -P_{i44}^{T}, \]
\[\varphi_{i77} = -e^{-a_{hi}}R_3 + \alpha P_{i22} - \frac{192}{R_1^2}R_4 e^{-a_{hi}} + \sum_{j \in U_i} \lambda_{ij}(P_{ij2} - W_{ij2}), \]
\[\varphi_{i78} = \alpha P_{i23} + \sum_{j \in U_i} \lambda_{ij}(P_{ij3} - W_{ij3}), \]
\[\varphi_{i4,14} = -720R_4 e^{-a_{hi}}, \]
\[\varphi_{i79} = \alpha P_{i24} + \sum_{j \in U_i} \lambda_{ij}(P_{ij2} - W_{ij4}), \]
\[\varphi_{i7} = \frac{360}{R_1^2}R_4 e^{-a_{hi}}, \]
\[\varphi_{i89} = \alpha P_{i34} + \sum_{j \in U_i} \lambda_{ij}(P_{ij3} - W_{ij4}), \]
\[\varphi_{i99} = -e^{-a_{hi}}R_3 + \alpha P_{i44} + \sum_{j \in U_i} \lambda_{ij}(P_{ij4} - W_{ij4}), \]
\[\varphi_{i7,16} = P_{i21}D_i + P_{i25}D_i, \]
\[\varphi_{i8,16} = P_{i31}D_i + P_{i35}D_i, \]
\[\varphi_{i9,16} = P_{i41}D_i + P_{i45}D_i, \]
\[\varphi_{i7,17} = P_{i21}L_i + P_{i25}L_i, \]
\[\varphi_{i8,17} = P_{i31}L_i + P_{i35}L_i, \]
\[\varphi_{i16,17} = D_i^{T}P_{i51}^{T} + D_i^{T}P_{i55}^{T} - D_i^{T}P_{i15}, \]
\[\varphi_{i9,17} = P_{i41}L_i + P_{i45}L_i, \]
\[\varphi_{i17,17} = P_{i51}L_i + L_i^{T}P_{i51} + P_{i55}L_i + L_i^{T}P_{i55} - L_i - L_i^{T} - \varepsilon I, \]
\[\Psi_j = [\varphi_{i,j}]_{16 \times 16}, \]
\[\Phi_1 = \Phi^{(1)} + \Phi^{(2)} + \Phi^{(3)} + \Phi^{(4)}, \]
\[\Phi_2 = \Phi^{(1)} + \Phi^{(4)}, \]
\[\Phi_3 = \Phi^{(2)} + \Phi^{(4)}, \]
\[\Pi_1 = \Pi^{(1)} + \Pi^{(2)} + \Pi^{(3)} + \Pi^{(4)}, \]
\[\Pi_2 = \Pi^{(2)} + \Pi^{(4)}, \]
where

\[
\phi^{(1)} = [\phi_{ij}^{(1)}]_{18 \times 18}, \Phi^{(1)} = [\phi_{ij}^{(2)}]_{18 \times 18}, \Phi^{(3)} = [\phi_{ij}^{(3)}]_{18 \times 18}, \Phi^{(4)} = [\phi_{ij}^{(4)}]_{18 \times 18}, \\
\Pi^{(1)} = [\pi_{ij}^{(1)}]_{18 \times 18}, \Pi^{(2)} = [\pi_{ij}^{(2)}]_{18 \times 18}, \Pi^{(3)} = [\pi_{ij}^{(3)}]_{18 \times 18}, \Pi^{(4)} = [\pi_{ij}^{(4)}]_{18 \times 18}, \\
\Phi^{(2)} = [\phi_{ij}^{(2)}]_{16 \times 16}, \Phi^{(4)} = [\phi_{ij}^{(4)}]_{16 \times 16}, \Phi^{(1)} = [\phi_{ij}^{(1)}]_{16 \times 16}, \Phi^{(2)} = [\phi_{ij}^{(2)}]_{16 \times 16}, \\
\Phi^{(4)} = [\phi_{ij}^{(4)}]_{16 \times 16}, \Phi^{(1)} = [\phi_{ij}^{(1)}]_{16 \times 16}, \Phi^{(2)} = [\phi_{ij}^{(2)}]_{16 \times 16}, \Phi^{(4)} = [\phi_{ij}^{(4)}]_{16 \times 16}. \\
\]

with

\[
\phi_{34}^{(1)} = -9R e^{-ah_n}, \phi_{45}^{(1)} = 3R e^{-ah_n}, \phi_{4,10}^{(1)} = -24R e^{-ah_n}, \phi_{4,12}^{(1)} = 60R e^{-ah_n}, \\
\phi_{34}^{(1)} = -9R e^{-ah_n}, \phi_{45}^{(1)} = 3R e^{-ah_n}, \phi_{4,10}^{(1)} = -24R e^{-ah_n}, \phi_{4,12}^{(1)} = 60R e^{-ah_n}, \\
\phi_{34}^{(3)} = e^{-ah_n}(X_{11}^{T} + X_{12}^{T} + X_{13}^{T} + X_{21}^{T} + X_{22}^{T} + X_{23}^{T} + X_{31}^{T} + X_{32}^{T} + X_{33}^{T}), \\
\phi_{35}^{(3)} = e^{-ah_n}(X_{11}^{T} + X_{12}^{T} + X_{13}^{T} - X_{21}^{T} - X_{22}^{T} - X_{23}^{T} + X_{31}^{T} + X_{32}^{T} + X_{33}^{T}), \\
\phi_{34}^{(3)} = 2e^{-ah_n}(X_{21}^{T} - 3X_{11}^{T} + X_{22}^{T} + 3X_{12}^{T} + X_{23}^{T} - 3X_{13}^{T}), \phi_{35}^{(3)} = 12e^{-ah_n}(X_{11}^{T} + X_{12}^{T} + X_{13}^{T}), \\
\phi_{44}^{(3)} = e^{-ah_n} \text{sym}(X_{11}) + \text{sym}(X_{21}) + \text{sym}(X_{31}) - \text{sym}(X_{12}) - \text{sym}(X_{22}) \\
- \text{sym}(X_{32}) + \text{sym}(X_{13}) + \text{sym}(X_{23}) + \text{sym}(X_{33}), \\
\phi_{45}^{(3)} = -e^{-ah_n}(X_{11}^{T} - X_{12}^{T} + X_{13}^{T} + X_{21}^{T} - X_{22}^{T} + X_{23}^{T} - X_{31}^{T} + X_{32}^{T} + X_{33}^{T}), \\
\phi_{4,10}^{(3)} = -2e^{-ah_n}(X_{21}^{T} - 3X_{11}^{T} + X_{22}^{T} + 3X_{12}^{T} + X_{23}^{T} - 3X_{13}^{T}), \phi_{4,13}^{(3)} = -24e^{-ah_n}(X_{23} - 3X_{33}), \\
\phi_{4,11}^{(3)} = 2e^{-ah_n}(X_{12} + X_{22} + X_{32} - 3X_{13} - 3X_{23} - 3X_{33}), \phi_{4,12}^{(3)} = -24e^{-ah_n}(X_{32}^{T} - 3X_{33}), \\
\phi_{4,12}^{(3)} = -12e^{-ah_n}(X_{31}^{T} - X_{32}^{T} + X_{33}^{T}), \phi_{4,13}^{(3)} = 12e^{-ah_n}(X_{13} + X_{23} + X_{33}), \\
\phi_{5,13}^{(3)} = -12e^{-ah_n}(X_{13} - X_{23} + X_{33}), \phi_{10,11}^{(3)} = -4e^{-ah_n}(X_{22} - 3X_{32} - 3X_{23} + 9X_{33}), \\
\phi_{5,11}^{(3)} = -2e^{-ah_n}(X_{12} - X_{22} + X_{32} - 3X_{13} + 3X_{23} - 3X_{33}), \phi_{12,13}^{(3)} = -144e^{-ah_n}(X_{33}), \\
\]

(A.9)
\[\phi_{55} = -9R_6e^{-ah_2}, \phi_{56} = 3R_6e^{-ah_2}, \phi_{59} = \frac{24}{h_2 - h_m}R_6e^{-ah_2}, \phi_{5,15}^{(4)} = 60R_6e^{-ah_2}, \]
\[\phi_{66} = -9R_6e^{-ah_2}, \phi_{69} = \frac{36}{h_2 - h_m}R_6e^{-ah_2}, \phi_{6,15}^{(4)} = -60R_6e^{-ah_2}, \phi_{99} = \frac{192}{(h_2 - h_m)^2}R_6e^{-ah_2}, \]
\[\phi_{9,15}^{(4)} = \frac{360}{h_2 - h_m}R_6e^{-ah_2}, \phi_{15,15}^{(4)} = -720R_6e^{-ah_2}, \frac{\pi}{3} = -9R_6e^{-ah_2}, \phi_{16}^{(4)} = 3R_6e^{-ah_2}, \]
\[\pi_{1,10}^{(1)} = -24R_6e^{-ah_2}, \pi_{1,11}^{(1)} = 60R_6e^{-ah_2}, \pi_{6,10}^{(1)} = -9R_6e^{-ah_2}, \pi_{6,11}^{(1)} = 36R_6e^{-ah_2}, \]
\[\pi_{1,10}^{(2)} = -192R_6e^{-ah_2}, \pi_{1,11}^{(2)} = 360R_6e^{-ah_2}, \pi_{12,12} = -720R_6e^{-ah_2}, \]
\[\pi_{4,11}^{(2)} = -192R_6e^{-ah_2}, \phi_{4,12}^{(2)} = 360R_6e^{-ah_2}, \phi_{4,13}^{(2)} = -240R_6e^{-ah_2}, \phi_{4,14}^{(2)} = 60R_6e^{-ah_2}, \]
\[\pi_{5,11}^{(2)} = -9R_6e^{-ah_2}, \phi_{5,12}^{(2)} = 360R_6e^{-ah_2}, \phi_{5,13}^{(2)} = -60R_6e^{-ah_2}, \]
\[\pi_{1,13}^{(2)} = -192R_6e^{-ah_2}, \phi_{1,13}^{(2)} = 360R_6e^{-ah_2}, \phi_{1,13}^{(2)} = -720R_6e^{-ah_2}, \]
\[\pi_{1,3} = e^{-ah_2}(\text{sym}(Y_{11}) + \text{sym}(Y_{21}) + \text{sym}(Y_{31}) - \text{sym}(Y_{12}) - \text{sym}(Y_{22}) - \text{sym}(Y_{32}) + \text{sym}(Y_{13}) + \text{sym}(Y_{23}) + \text{sym}(Y_{33})), \]
\[\pi_{1,3} = e^{-ah_2}(Y_{11} + Y_{21} + Y_{31} + Y_{12} + Y_{22} + Y_{32} + Y_{13} + Y_{23} + Y_{33}), \]
\[\pi_{1,3} = e^{-ah_2}(Y_{11} - Y_{21} + Y_{31} + Y_{12} - Y_{22} + Y_{32} - Y_{13} + Y_{23} - Y_{33}), \]
\[\pi_{1,3} = e^{-ah_2}(2Y_{21} - 6Y_{31} - 2Y_{22} + 6Y_{32} + 2Y_{13} - 6Y_{23} - 6Y_{33}), \pi_{1,3}^{(3)} = -12e^{-ah_2}(Y_{31} - Y_{32} + Y_{33}), \]
\[\pi_{1,3} = e^{-ah_2}(2Y_{12} + 2Y_{22} + 2Y_{32} - 6Y_{13} - 6Y_{23} - 6Y_{33}), \pi_{1,3}^{(3)} = -12e^{-ah_2}(Y_{13} + Y_{23} + Y_{33}), \]
\[\pi_{1,3} = e^{-ah_2}(Y_{11} - Y_{21} + Y_{31} + Y_{12} - Y_{22} + Y_{32} + Y_{13} - Y_{23} + Y_{33}), \]
\[\pi_{1,3} = e^{-ah_2}(3Y_{31} - 3Y_{32} + 3Y_{33}), \pi_{1,3}^{(3)} = -144e^{-ah_2}(Y_{33}), \]
\[\pi_{1,3} = -9R_6e^{-ah_u}, \pi_{1,3}^{(4)} = 3R_6e^{-ah_u}, \pi_{38}^{(4)} = -\frac{24}{h_m - h_1}R_6e^{-ah_u}, \pi_{1,3}^{(4)} = 60R_6e^{-ah_u}, \]
\[\pi_{1,3}^{(4)} = -9R_6e^{-ah_u}, \pi_{38}^{(4)} = \frac{36}{h_m - h_1}R_6e^{-ah_u}, \pi_{1,3}^{(4)} = -60R_6e^{-ah_u}, \]
\[\pi_{1,3}^{(4)} = -9R_6e^{-ah_u}, \pi_{38}^{(4)} = \frac{36}{h_m - h_1}R_6e^{-ah_u}, \pi_{1,3}^{(4)} = -60R_6e^{-ah_u}, \]
\[\pi_{1,3}^{(4)} = -9R_6e^{-ah_u}, \pi_{38}^{(4)} = \frac{36}{h_m - h_1}R_6e^{-ah_u}, \pi_{1,3}^{(4)} = -60R_6e^{-ah_u}, \]
\[\pi_{1,3}^{(4)} = -9R_6e^{-ah_u}, \pi_{38}^{(4)} = \frac{36}{h_m - h_1}R_6e^{-ah_u}, \pi_{1,3}^{(4)} = -60R_6e^{-ah_u}, \]
\[\pi_{1,3}^{(4)} = -9R_6e^{-ah_u}, \pi_{38}^{(4)} = \frac{36}{h_m - h_1}R_6e^{-ah_u}, \pi_{1,3}^{(4)} = -60R_6e^{-ah_u}, \]
\[\pi_{1,3}^{(4)} = -9R_6e^{-ah_u}, \pi_{38}^{(4)} = \frac{36}{h_m - h_1}R_6e^{-ah_u}, \pi_{1,3}^{(4)} = -60R_6e^{-ah_u}, \]
\[\pi_{1,3}^{(4)} = -9R_6e^{-ah_u}, \pi_{38}^{(4)} = \frac{36}{h_m - h_1}R_6e^{-ah_u}, \pi_{1,3}^{(4)} = -60R_6e^{-ah_u}, \]
\[\pi_{1,3}^{(4)} = -9R_6e^{-ah_u}, \pi_{38}^{(4)} = \frac{36}{h_m - h_1}R_6e^{-ah_u}, \pi_{1,3}^{(4)} = -60R_6e^{-ah_u}, \]
\[\pi_{1,3}^{(4)} = -9R_6e^{-ah_u}, \pi_{38}^{(4)} = \frac{36}{h_m - h_1}R_6e^{-ah_u}, \pi_{1,3}^{(4)} = -60R_6e^{-ah_u}, \]
\[\pi_{1,3}^{(4)} = -9R_6e^{-ah_u}, \pi_{38}^{(4)} = \frac{36}{h_m - h_1}R_6e^{-ah_u}, \pi_{1,3}^{(4)} = -60R_6e^{-ah_u}, \]
\[\pi_{1,3}^{(4)} = -9R_6e^{-ah_u}, \pi_{38}^{(4)} = \frac{36}{h_m - h_1}R_6e^{-ah_u}, \pi_{1,3}^{(4)} = -60R_6e^{-ah_u}, \]
\[\pi_{1,3}^{(4)} = -9R_6e^{-ah_u}, \pi_{38}^{(4)} = \frac{36}{h_m - h_1}R_6e^{-ah_u}, \pi_{1,3}^{(4)} = -60R_6e^{-ah_u}, \]
\[\pi_{1,3}^{(4)} = -9R_6e^{-ah_u}, \pi_{38}^{(4)} = \frac{36}{h_m - h_1}R_6e^{-ah_u}, \pi_{1,3}^{(4)} = -60R_6e^{-ah_u}, \]
The other elements in $\Phi^{(1)}$,$\Phi^{(2)}$,$\Phi^{(3)}$,$\Phi^{(4)}$,$\Pi^{(1)}$,$\Pi^{(2)}$,$\Pi^{(3)}$,$\Pi^{(4)}$, $\Phi^{(1)}$, $\Phi^{(2)}$, $\Phi^{(3)}$, $\Phi^{(4)}$, Ψ_1, Ψ_2, Ψ_3, Π_1, Π_2, and Π_3 are equal to zero.

B. The Representation of $\Psi, \Psi_i, \Phi_1, \Phi_2, \Phi_3, \Pi_1, \Pi_2$ in Corollary 1

where

$$\Psi_i = \begin{bmatrix}
\Psi_{i1} & \Psi_{i2} & \Psi_{i3} & \Psi_{i4} \\
* & \Psi_{i2} & \Psi_{i3} & \Psi_{i4} \\
* & * & \Psi_{i17,17} & 0 \\
* & * & * & -\epsilon I
\end{bmatrix},$$

$\Phi_{i11} = P_{i11}A_i + A_i^TP_{i11}^T + P_{i15}A_i + A_i^TP_{i15}^T + P_{i12} + P_{i12}^T + R_3 + Q_1 + M_1A_i + A_i^TM_1^T + aP_{i11} - 9R_5e^{-ah_1} + \sum_{j\in U_k^i} \lambda_{ij}P_{j11}$,

$$\Phi_{i12} = A_i^TP_{i21}^T + A_i^TP_{i22}^T + P_{i22} - \frac{24}{h_1}R_5e^{-ah_1} + aP_{i12} + \sum_{j\in U_k^i} \lambda_{ij}P_{j12},$$

$$\Phi_{i13} = A_i^TP_{i31}^T + A_i^TP_{i32}^T + P_{i32} + aP_{i13} + \sum_{j\in U_k^i} \lambda_{ij}P_{j13},$$

(A.11)
\[\Psi_{i19} = A_i^T P_{i41} + A_i^T P_{i45} + P_{i24} + \alpha P_{i44} + \sum_{j \in U_k^i} \lambda_{ij} P_{j44}, \]

\[\Psi_{i77} = -e^{-ab_1} R_1 + \alpha P_{i22} - \frac{212}{h_1} R_4 e^{-ab_1} + \sum_{j \in U_k^i} \lambda_{ij} P_{j22}, \]

\[\Psi_{i78} = \alpha P_{i23} + \sum_{j \in U_k^i} \lambda_{ij} P_{j23}, \]

\[\Psi_{i79} = \alpha P_{i24} + \sum_{j \in U_k^i} \lambda_{ij} P_{j24}, \]

\[\Psi_{i88} = -e^{-ab_2} R_2 + \alpha P_{i33} + \sum_{j \in U_k^i} \lambda_{ij} P_{j33}, \]

\[\Psi_{i89} = \alpha P_{i34} + \sum_{j \in U_k^i} \lambda_{ij} P_{j34}, \]

\[\Psi_{i99} = -e^{-ab_2} R_3 + \alpha P_{i44} + \sum_{j \in U_k^i} \lambda_{ij} P_{j44}. \]
The other elements are the same as those defined in Appendix A.

D. The Representation of Ψ_i, Ψ_i, Φ, $\Phi_2, \Phi_3, \Pi_1, \Pi_2$ in Theorem 2

$$\Psi_i = \begin{bmatrix} \Psi_{i11} & \Psi_{i12} \\ \Psi_{i21} & \Psi_{i22} \end{bmatrix}$$

where

$$\Psi_{i11} = \begin{bmatrix} \varphi_{i11} & \varphi_{i12} & \varphi_{i13} & \varphi_{i14} & \varphi_{i15} & \varphi_{i16} & \varphi_{i17} & \varphi_{i18} & \varphi_{i19} \\ \ast & \varphi_{i22} & 0 & \varphi_{i24} & 0 & 0 & 0 & 0 & 0 \\ \ast & \ast & \varphi_{i23} & 0 & 0 & \varphi_{i25} & \varphi_{i26} & \varphi_{i27} \\ \ast & \ast & \ast & \varphi_{i29} & 0 & \varphi_{i30} & \varphi_{i31} & \varphi_{i32} \\ \ast & \ast & \ast & \ast & \varphi_{i33} & \varphi_{i34} & \varphi_{i35} & \varphi_{i36} \\ \ast & \ast & \ast & \ast & \ast & \varphi_{i37} & \varphi_{i38} & \varphi_{i39} \end{bmatrix}$$

$$\varphi_{i11} = P_{i11} A_i + A_i^T P_{i11}^T + P_{i12} + P_{i12}^T + h_i^2 R_1 + (h_m - h_i)^2 R_2 + (h_n - h_m)^2 R_3 + M_1 A_i + A_i^T M_1^T + Q_1 + a P_{i11} - 9 R_4 e^{-ah} + \sum_{j \in U_i^t} \lambda_{ij} (P_{j11} - W_{i11})$$

$$\varphi_{i12} = -M_1 + A_i^T M_2^T$$

$$\varphi_{i14} = P_{i12} B_i + M_1 B_i$$

$$\varphi_{i18} = A_i^T P_{i21}^T + P_{i23} + a P_{i13} + \sum_{j \in U_i^t} \lambda_{ij} (P_{j13} - W_{i13})$$

$$\varphi_{i17} = A_i^T P_{i21}^T + P_{i22} - \frac{24}{h_i} R_4 e^{-ah} + a P_{i12} + \sum_{j \in U_i^t} \lambda_{ij} (P_{j12} - W_{i12})$$

$$\varphi_{i16} = P_{i11} D_i + M_1 D_i$$

$$\varphi_{i19} = A_i^T P_{i41}^T + P_{i24} + a P_{i14} + \sum_{j \in U_i^t} \lambda_{ij} (P_{j14} - W_{i14})$$

$$\varphi_{i16} = P_{i11} D_i + M_1 D_i$$

$$\varphi_{i19} = A_i^T P_{i41}^T + P_{i24} + a P_{i14} + \sum_{j \in U_i^t} \lambda_{ij} (P_{j14} - W_{i14})$$

The other elements are defined in Appendix A.
E. The Representation of Ψ, $\tilde{\Psi}$, Φ, in Corollary 3

$$\Psi_1 = \begin{bmatrix} \Psi_{i11} & \Psi_{i12} \\ * & \Psi_{i22} \end{bmatrix},$$ (E.1)

where

$$\phi_{i11} = \alpha P_{i11} + \mu_{i11}^2 A_1 + A_i^T P_{i11} + P_{i12} + \mu_{i12}^2 R_1$$
$$+ (h_m - h_1)^2 R_2 + (h_2 - h_m)^2$$
$$R_3 + Q_1 - 9\mu_2 e^{-\alpha h_1} + M_1 A_1 + A_1^T M_1^T + \sum_{j \in U'_k} \lambda_{ij} P_{j11},$$
$$\phi_{i17} = A_1 \tilde{T}_i P_{i21} + \mu_{i22}^2 R_1 - \frac{24}{h_1} \mu_2 e^{-\alpha h_1} + \alpha P_{i12} + \sum_{j \in U'_k} \lambda_{ij} P_{j12},$$
$$\phi_{i18} = A_1 \tilde{T}_i P_{i31} + P_{i23} + \alpha P_{i13} + \sum_{j \in U'_k} \lambda_{ij} P_{j13},$$
$$\phi_{i19} = A_1 \tilde{T}_i P_{i41} + P_{i24} + \alpha P_{i14} + \sum_{j \in U'_k} \lambda_{ij} P_{j14},$$
$$\phi_{i17} = -e^{-\alpha h_1} R_1 + \alpha P_{i22} + \frac{192}{h_1} \mu_2 e^{-\alpha h_1} + \sum_{j \in U'_k} \lambda_{ij} P_{j22},$$
$$\phi_{i18} = \alpha P_{i23} + \sum_{j \in U'_k} \lambda_{ij} P_{j23},$$
$$\phi_{i19} = \alpha P_{i24} + \sum_{j \in U'_k} \lambda_{ij} P_{j24},$$
$$\phi_{i17} = -e^{-\alpha h_2} R_2 + \alpha P_{i44} + \sum_{j \in U'_k} \lambda_{ij} P_{j44},$$
$$\phi_{i18} = -e^{-\alpha h_2} R_3 + \alpha P_{i33} + \sum_{j \in U'_k} \lambda_{ij} P_{j33},$$
$$\phi_{i19} = \alpha P_{i34} + \sum_{j \in U'_k} \lambda_{ij} P_{j34}.$$ (E.2)

The elements Ψ_{i11}, Ψ_{i12}, Ψ_{i22}, and other ϕ are the same as those defined in Appendix D.

F. The Representation of Ψ, $\tilde{\Psi}$, Φ, in Corollary 4

$$\Psi_1 = \begin{bmatrix} \Psi_{i11} & \Psi_{i12} \\ * & \Psi_{i22} \end{bmatrix},$$ (F.1)

where

$$\phi_{i11} = \alpha P_{i11} + \mu_{i11}^2 A_1 + A_i^T P_{i11} + P_{i12} + \mu_{i12}^2 R_1$$
$$+ (h_m - h_1)^2 R_2 + (h_2 - h_m)^2$$
$$R_3 - 9\mu_2 e^{-\alpha h_1} + M_1 A_1 + A_1^T M_1^T + \sum_{j \in U'_k} \lambda_{ij} P_{j11},$$
$$\phi_{i17} = A_1 \tilde{T}_i P_{i21} + \mu_{i22}^2 R_1 - \frac{24}{h_1} \mu_2 e^{-\alpha h_1} + \alpha P_{i12},$$
$$\phi_{i18} = \alpha P_{i13} + \sum_{j \in U'_k} \lambda_{ij} P_{j13},$$
$$\phi_{i19} = A_1 \tilde{T}_i P_{i41} + \mu_{i24}^2 R_1 - \frac{192}{h_1} \mu_2 e^{-\alpha h_1} + \alpha P_{i14},$$
$$\phi_{i17} = -e^{-\alpha h_1} R_1 + \alpha P_{i22} + \frac{192}{h_1} \mu_2 e^{-\alpha h_1},$$
$$\phi_{i18} = \alpha P_{i23},$$
$$\phi_{i19} = \alpha P_{i24},$$
$$\phi_{i17} = -e^{-\alpha h_2} R_2 + \alpha P_{i33},$$
$$\phi_{i18} = -e^{-\alpha h_2} R_3 + \alpha P_{i44}.$$ (F.2)

The other elements are the same as those defined in Appendix D.

Data Availability

As a research paper, this paper mainly studies the theory of dynamic properties of time-delay differential system, and some numerical simulations were carried out by MATLAB. The data and program used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research was supported by the Science and Technology Foundation of Guizhou Province (nos. LKM[2013]21, J [2015]2074, and J[2016]1074), Doctoral Fund Project of Guizhou Minzu University (no. 006), and Project for Young Talents Growth of Guizhou Pro vincial Department of Education (no. Ky[2017]133).

References

[1] Z.-Y. Li, J. Lam, and Y. Wang. "Stability analysis of linear stochastic neutral-type time-delay systems with two delays," *Automatica*, vol. 91, pp. 179–189, 2018.
[2] S. Long, S. Zhong, H. Guan, and D. Zhang, “Exponential stability analysis for a class of neutral singular markovian jump systems with time-varying delays,” *Journal of the Franklin Institute*, vol. 356, no. 12, pp. 6015–6040, 2019.

[3] W. H. Qi, X. Yang, X. W. Gao, J. Cheng, Y. G. Kao, and Y. L. Wei, “Stability for delayed switched systems with markov jump parameters and generally incomplete transition rates,” *Applied Mathematics and Computation*, vol. 365, Article ID 124718, 2020.

[4] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, *Linear Matrix Inequalities in System and Control Theory*, SIAM, Philadelphia, PA, USA, 1994.

[5] T. Hu and Z. Lin, “Composite quadratic Lyapunov functions for constrained control systems,” *IEEE Transactions on Automatic Control*, vol. 48, no. 3, pp. 440–450, 2003.

[6] C. C. Shen and S. M. Zhong, “Improved asymptotic stability criteria for uncertain neutral systems with time-varying discrete delays,” *International Journal of Information and Mathematical Sciences*, vol. 6, p. 1, 2010.

[7] E. Fridman and U. Shaked, “On reachable sets for linear systems with delay and bounded peak inputs,” *Automatica*, vol. 39, no. 11, pp. 2005–2010, 2003.

[8] B. Zhang, J. Lam, and S. Xu, “Relaxed results on reachable set estimation of time-delay systems with bounded peak inputs,” *International Journal of Robust and Nonlinear Control*, vol. 26, no. 9, pp. 1994–2007, 2016.

[9] C. Shen and S. Zhong, “The ellipsoidal bound of reachable sets for linear neutral systems with disturbances,” *Journal of the Franklin Institute*, vol. 348, no. 9, pp. 2570–2585, 2011.

[10] H. Chen and S. M. Zhong, “New results on reachable set bounding for linear time delay systems with polytopic uncertainties via novel inequalities,” *Journal of Inequalities and Applications*, vol. 2017, no. 1, p. 277, 2017.

[11] W. Wang, S. Zhong, F. Liu, and J. Cheng, “Reachable set estimation for linear systems with time-varying delay and polytopic uncertainties,” *Journal of the Franklin Institute*, vol. 356, no. 13, pp. 7322–7346, 2019.

[12] P. Balasubramaniam, A. Manivannan, and R. Rakkiyappan, “Exponential stability results for uncertain neutral systems with interval time-varying delays and Markovian jumping parameters,” *Applied Mathematics and Computation*, vol. 216, no. 11, pp. 3396–3407, 2010.

[13] L. Xiong, J. Tian, and X. Liu, “Stability analysis for neutral Markovian jump systems with partially unknown transition probabilities,” *Journal of the Franklin Institute*, vol. 349, no. 6, pp. 2193–2214, 2012.

[14] L. L. Xiong, H. Y. Zhang, and Y. K. Li, “Improved stability and H performance for neutral systems with uncertain markovian jump,” *Nonlinear Analysis Hybrid Systems*, vol. 19, pp. 13–25, 2016.

[15] W. Chen, B. Zhang, and Q. Ma, “Decay-rate-dependent conditions for exponential stability of stochastic neutral systems with Markovian jumping parameters,” *Applied Mathematics and Computation*, vol. 321, pp. 93–105, 2018.

[16] G. Tartaglione, M. Ariola, and F. Amato, “An observer-based output feedback controller for the finite-time stabilization of markov jump linear systems,” *IEEE Control Systems Letters*, vol. 3, no. 3, pp. 763–768, 2019.

[17] Z. Feng and W. X. Zheng, “On reachable set estimation of delay Markovian jump systems with partially known transition probabilities,” *Journal of the Franklin Institute*, vol. 353, no. 15, pp. 3835–3856, 2016.

[18] Z. Feng, W. X. Zheng, and L. Wu, “Reachable set estimation of T-S fuzzy systems with time-varying delay,” *IEEE Transactions on Fuzzy Systems*, vol. 25, no. 4, pp. 878–891, 2017.

[19] W. J. Lin, Y. He, and M. Wu, “Reachable set estimation for markovian jump neural networks with time-varying delay,” *Neural Networks*, vol. 108, pp. 527–532, 2018.

[20] C. Shen, S. Zhou, and H. Deng, “The No-ellipsoidal bound of reachable sets for neutral markovian jump systems with disturbances,” *Journal of Applied Mathematics and Physics*, vol. 8, no. 5, pp. 799–813, 2020.

[21] A. V. Skorokhod, *Asymptotic Methods in the Theory of Stochastic Differential Equation*, American Mathematical Society, Providence, RI, USA, 1989.

[22] K. Q. Gu, “An integral inequality in the stability problem of time-delay systems,” in *Proceedings of the 39th IEEE Conference on Decision and Control*, pp. 2805–2810, Sydney, Australia, December 2000.

[23] A. Seuret and F. Gouaisbaut, “Integral inequality for time-varying delay systems,” in *Proceedings of the European Control Conference (ECC)*, pp. 3366–3371, Zrich, Switzerland, July 2013.

[24] J. Tian, Z. Ren, and S. Zhong, “A new integral inequality and application to stability of time-delay systems,” *Applied Mathematics Letters*, vol. 101, Article ID 106058, 2020.

[25] P. Park, J. W. Ko, and C. Jeong, “Reciprocally convex approach to stability of systems with time-varying delays,” *Automatica*, vol. 47, no. 1, pp. 235–238, 2011.

[26] J. Tian, L. Xiong, J. Liu, and X. Xie, “Novel delay-dependent robust stability criteria for uncertain neutral systems with time-varying delay,” *Chaos, Solitons & Fractals*, vol. 40, no. 4, pp. 1858–1866, 2009.

[27] W. Kang, S. Zhong, and K. Shi, “Triple integral approach to reachable set bounding for linear singular systems with time-varying delay,” *Mathematical Methods in the Applied Sciences*, vol. 40, no. 8, pp. 2949–2960, 2017.

[28] J.-H. Kim and F. Jabbari, “Scheduled controllers for buildings under seismic excitation with limited actuator capacity,” *Journal of Engineering Mechanics*, vol. 130, no. 7, pp. 800–808, 2004.

[29] J. Abedor, K. Nagpal, and K. Poolla, “A linear matrix inequality approach to peak-to-peak gain minimization,” *International Journal of Robust and Nonlinear Control*, vol. 6, no. 9-10, pp. 899–927, 1996.

[30] J. K. Hale and S. M. Verduyn Lunel, *Introduction to Functional Differential Equation*, Springer, New York, NY, USA, 1993.