Dimension-2 condensates, ζ-regularization and large-N_c Regge Models

Enrique Ruiz Arriola1,a and Wojciech Broniowski2,3

1 Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada, Spain
2 The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland
3 Institute of Physics, Świętokrzyska Academy, PL-25406 Kielce, Poland

26 September 2006

Abstract. Dimension-2 and -4 gluon condensates are re-analyzed in large-N_c Regge models with the ζ-function regularization which preserves the spectrum in any $\bar{q}q$ channel separately. We demonstrate that the signs and magnitudes of both condensates can be properly described within the framework.

PACS. 12.38.Lg – 12.38.-t

The dimension-2 gluon condensate, corresponding to vacuum expectation values of a gauge-invariant non-perturbative and non-local operator and generating the lowest $1/Q^2$ power corrections, was proposed long ago [1] and has been determined in instanton-model studies [2]. Phenomenological QCD sum-rule re-analyses [3,4], theoretical considerations [5,6,7,8,9], non-local quark models [10], and lattice simulations at zero [11,12] and finite [13] temperatures. In the present contribution we re-examine our recent findings [14], namely, that within the large-N_c expansion these $1/Q^2$ corrections appear naturally within the Regge framework, on the light of ζ-regularization. We show that the signs and magnitudes of both the dimension-2 and -4 condensates can be accommodated comfortably with reasonable values of the parameters of the hadronic spectra. Many works compare Regge models to the Operator Product Expansion (OPE) [15,16,17,18,19] but besides [19] the dimension-2 condensate has been ignored.

We begin with a simple quantum-mechanical derivation of the (radial) Regge spectrum. For two relativistic scalar quarks of mass m interacting via a linear confining potential the mass operator in the CM frame is given by

$$M = 2\sqrt{p^2 + m^2 + \sigma_S r},$$

(1)

that $p^2 = p_r^2 + L^2/r^2$. For excited radial states the Bohr-Sommerfeld semiclassical quantization condition holds,

$$2 \int_0^a p_r \, dr = 2\pi(n + \alpha),$$

(2)

where the turning point is given by $a = M/\sigma_S$ and α is of order of unity. The integral is trivial and leads to

$$M_n^2 = 4\pi\sigma_S(n + \alpha) = 2\pi\sigma(n + \alpha),$$

(3)

a (radial) Regge mass spectrum which in terms of the spinor string tension $\sigma = 2\sigma_S$ (the factor depends on the type of interaction [20]) is well fulfilled experimentally for mesons [21] and signals confinement for the quark states. For large meson masses, the level density becomes

$$\rho(M^2) = \frac{1}{2\pi\sigma} \int_0^a \frac{dr}{p_r} = \rho_0 \left(1 + \frac{M^2}{M_0^2}\right)^{\alpha - 1},$$

(4)

which is a constant. Inclusion of finite quark mass corrections is straightforward, yielding

$$\frac{dn}{dM^2} = \frac{1}{2\pi\sigma} \sqrt{1 - \frac{4m^2}{M^2}}$$

for $M^2 \geq 4m^2$.

Note that this corresponds to the two-body phase space factor appearing in the absorptive part of two-point correlators. Thus at large energies the WKB approximation holds and $\rho(M^2)$ looks like the phase space of two free particles, featuring the quark-hadron duality.

The best way to look at the $\bar{q}q$ level density is to consider two point correlation functions in different channels,

$$i\Pi^{\mu a,\nu b}(q) = \int d^4xe^{-iq\cdot x} \langle 0 \left| \left(J^{\mu a}(x)J^{\nu b}(0) \right) \right| 0 \rangle$$

$$= \Pi(q^2) \left(g^{\mu \nu} - g^{\mu \mu}q^2 \right) \delta^{ab},$$

(6)
where current conservation for both the vector and axial currents has explicitly been used. At high Euclidean momentum OPE can be performed. Equivalently, in the Euclidean coordinate space one has

$$\langle J_\mu(x) J_\nu(0) \rangle = (g^{\mu\nu} \partial^2 - \partial^\mu \partial^\nu) \Pi(x).$$

(7)

The function $\Pi(x)$ has dimension x^{-4}. Thus, at short distances one expects to have (up to possible logarithms)

$$\Pi(x) = \frac{O_0}{x^4} + \frac{O_2}{x^2} + \frac{O_4}{x^0} + \frac{O_6}{x^2} + \ldots$$

(8)

We digress that the term containing O_2 is very special, since it yields a contribution of the form

$$\left(g^{\mu\nu} \partial^2 - \partial^\mu \partial^\nu \right) \frac{1}{x^2} = \frac{g^{\mu\nu} x^2 - 4x^2 \partial^\mu \partial^\nu}{x^4},$$

(9)

which in addition of being conserved is also traceless. Thus, contracting and taking the derivative ∂^μ do no commute.

There is no traceless and transverse term in momentum space, since conservation implies the form $A(q^\mu q^\nu - q^2 \delta^{\mu\nu})$ but tracelessness requires $A = 0$. This problem appears in chiral quark models; the dimension-2 object is the constituent quark mass squared, $O_2 \sim (\sigma^2 + \pi^2) \sim M^2$.

Recent discussions incorporate O_2 in OPE. From\[3\] we get up to dimension 6 in the chiral limit

$$\Pi_{+A}(Q^2) = \frac{1}{4\pi^2} \left \{ \left(1 + \frac{\alpha_s}{\pi} \right) \log \frac{Q^2}{\mu^2} - \frac{\alpha_s}{\pi} \frac{A^2}{Q^2} + \frac{\pi (\alpha_s G^2)}{3} \frac{256\pi^3}{81} \frac{\alpha_s \langle \bar{q} q \rangle^2}{Q^6} \right \},$$

$$\Pi_{-A}(Q^2) = -\frac{32\pi}{9} \frac{\alpha_s \langle \bar{q} q \rangle^2}{Q^6},$$

(10)

where λ^2 corresponds to the dimension-2 condensate.

In the large-N_c limit one has (up to subtractions)[22]

$$\Pi_V(Q^2) = \sum \frac{F_{\pi}^2}{M_{\pi}^2 + Q^2} + c.t.,$$

(11)

where the sum involves infinitely many resonances. This function satisfies a dispersion relation of the form

$$\Pi_V(Q^2) = \int_0^\infty ds \frac{Q^2}{s} \rho_V(s) \frac{n^2}{s + Q^2},$$

(12)

with one subtraction, with the spectral function

$$\rho_V(s) = \frac{1}{\pi} \text{Im} \Pi_V(s) = \sum \frac{F_{\pi}^2}{s - M_{\pi}^2} \delta(s - M_{\pi}^2).$$

(13)

At large values of the squared CM energy s it becomes

$$\rho_V(s) \to \int_0^\infty F_{\pi}^2 \delta(s - M_{\pi}^2) dn = F_V(n^2) \frac{dn}{dM_{\pi}^2} \bigg|_{M_{\pi}^2 = s}.\)$$

(14)

Matching to the free massless quark result

$$\rho_V(s) = N_c/(12\pi^2) \delta(s)$$

gives at large values of n

$$F_V(n^2) \frac{dn}{dM_{\pi}^2} \to \frac{N_c}{3} \frac{1}{4\pi^2}.$$

(15)

For constant F_V this implies the asymptotic spectrum $M_{\pi}^2 \to 2\pi s n$ with the string tension given by $2\pi \sigma = 24\pi^2 F_V^2 N_c$. If we identify $F_V = 154\text{MeV}$ from the $\rho \to 2\pi$ decay\[23\] which corresponds to only one resonance we get $\sqrt{\sigma} = 546\text{MeV}$. Lattice calculations\[24\] provide $\sqrt{\sigma} = 420\text{MeV}$. Including infinitely many resonances improves the value of σ.

In dimensional regularization the coupling of the resonance to the current acquires an additional dimension $\Pi_V \to \Pi_V \mu^\epsilon$ with $\epsilon = d - 4$. By choosing $\mu = M_V$ one gets $F_{\pi}^2 \to F_{\pi}^2 M_V^2$. The regularized correlator is an analytic function for $Q^2 < M^2$ (the lowest mass), so we can Taylor-expand at small Q^2. We can then regularize the finite coefficients of the expansion and proceed by analytic continuation both in Q^2 and ϵ. The regularization only acts for truly infinitely many resonances. At large Euclidean momenta one gets

$$\Pi_V(Q^2) = \sum \frac{F_{\pi}^2}{M_{\pi}^2 + Q^2} - \sum \frac{F_{\pi}^2}{M_{\pi}^2 + Q^2 + \epsilon} + \ldots$$

(16)

The coefficients of powers in $1/Q^2$ of the expansion are convergent provided one computes the sum first and then takes the limit $\epsilon \to 0$ corresponding to the use of the ζ-function regularization (see e.g.\[25\]),

$$\sum \frac{F_{\pi}^2}{M_{\pi}^2 + Q^2} = \lim_{s \to n} \sum \frac{F_{\pi}^2}{M_{\pi}^2 + Q^2}.$$

(17)

In other words, one may expand formally at large Q^2 and re-interpret the result by means of the ζ-function regularization. Using the axial-axial correlator at large N_c,

$$\Pi_A(Q^2) = \frac{f_A^2}{Q^2} + \sum \frac{F_{\pi}^2}{M_{\pi}^2 + Q^2 + c.t.},$$

(18)

and matching to \[16\] yields the two Weinberg sum rules:

$$f_A^2 = \sum \frac{F_{\pi}^2}{M_{\pi}^2} - \sum \frac{F_{\pi}^2}{M_{\pi}^2},$$

(WSR I)

$$0 = \sum \frac{F_{\pi}^2}{M_{\pi}^2} - \sum \frac{F_{\pi}^2}{M_{\pi}^2}.$$

(WSR II)

These sums are assumed to be ζ-regularized, see Eq. \[17\].

The simplest Regge model is given by

$$M_{V,n}^2 = M_{\pi}^2 + 2\pi s n, \quad M_{A,n}^2 = M_A^2 + 2\pi s n, \quad n = 0, 1, 2 \ldots,$$

(19)

which is well fulfilled\[21\] experimentally. The corresponding couplings are constant, $F_V = F_A = F$ and the ζ-function regularized sums follow from

$$\sum_{n=0}^{\infty} (na + M^2)^{s} = a^s \zeta \left(-s, \frac{M^2}{a}\right).$$

(20)

This function is analytic in the complex plane $\text{Re}(s) \leq -1$ with the exception of $s = -1$, admitting analytic continuation to any s. Actually, for positive powers one gets the Bernoulli polynomials $\zeta(-k, z) = -B_{k+1}(z)/(k + 1)$,
where \(B_0 = 1, B_1 = x - 1/2, B_2 = x^2 - x + 1/6, \) etc. An important feature of the \(\zeta \)-function is that it regulates each spectrum separately, i.e. under regularization one cannot apply the distributive property. For instance,

\[
\sum_{n=0}^{\infty} (an + M_V^2)^0 - \sum_{n=0}^{\infty} (an + M_A^2)^0 \neq 0. \tag{21}
\]

In other words, the difference of the regularized sums does not coincide with the regularized difference. The finite terms in the difference have to do with preserving the spectra in the vector and axial channels separately, and hence a chiral asymmetry is generated. All these \(\zeta \)-function results reproduce the correct signs and numbers in the right expanding in large \(Q^2 \).

The strict linear Regge model does not generate condensates with the proper signs. In [13] (see also [25]) we consider the following simple modification

\[
M_{V,0} = m_\rho, \quad M_{V,n} = M_V^2 + 2\pi\sigma n, \quad n \geq 1,
\]

\[
M_{A,n}^2 = M_A^2 + 2\pi\sigma n, \quad n \geq 0. \tag{22}
\]

In words, the lowest \(\rho \) mass is shifted, otherwise all is kept “universal”, including constant residues for all states. With [22] the Weinberg sum rules are (we set \(N_c = 3 \))

\[
M_A^2 = M_V^2 + 8\pi^2 f^2 \rho, \quad 2\pi\sigma = 8\pi^2 F^2 = \frac{8\pi^2 f^4 (4\pi^2 f^2 + M_V^2)}{4\pi^2 f^2 - m_\rho^2 + M_V^2}. \tag{23}
\]

When \(m_\rho = 0.77 \text{GeV} \) is fixed, the model has only one free parameter left. We may take it to be \(M_V \), however, it is more convenient to express it through the string tension \(\sigma \), which is then treated as a free parameter. Thus

\[
M_V^2 = \frac{-16\pi^3 f^4 + 4\pi^2 f^2 \rho - m_\rho^2 \sigma}{4f^2 \pi - \sigma}, \tag{24}
\]

and the condensates, obtained by matching to [13], are

\[
-\frac{\alpha_S \lambda^2}{4\pi^2} = \frac{16\pi^3 f^4 - \pi^2 \sigma^2 + m_\rho^2 \sigma}{16f^2 \pi^3 - 4\pi^2 \sigma},
\]

\[
\frac{\alpha_S (G^2)}{12\pi} = \frac{2\pi f^2}{\pi - \sigma} f^2 \rho + \frac{3\sigma m_\rho^2}{8\pi^2} \left(\frac{m_\rho^2 \sigma}{(\sigma - 4f^2 \rho)^2} - 2\pi \right) + \frac{\sigma^2}{12}. \tag{25}
\]

This allows to reproduce the correct signs and numbers in the range \(0.48 \leq \sqrt{\sigma} \leq 0.5 \text{ GeV} \) (see Fig. 1).

\[\text{Fig. 1. Dimension-2 (solid line, in GeV}^2\text{) and -4 (dashed line, in GeV}^4\text{) condensates plotted as functions of } \sqrt{\sigma}. \text{ The horizontal lines indicate estimates from the literature.}\]

\begin{itemize}
 \item \[3. \ C. A. Dominguez, Phys. Lett. B 345, 291 (1995)\]
 \item \[4. \ K. G. Chetyrkin, S. Narison and V. I. Zakharov, Nucl. Phys. B 550, 353 (1999)\]
 \item \[5. \ F. V. Gubarev, L. Stodolsky and V. I. Zakharov, Phys. Rev. Lett. 86, 2220 (2001)\]
 \item \[6. \ F. V. Gubarev and V. I. Zakharov, Phys. Lett. B 501, 28 (2001)\]
 \item \[7. \ K. I. Kondo, Phys. Lett. B 514, 335 (2001)\]
 \item \[8. \ H. Verschelde, K. Knecht, K. Van Acoleyen and M. Vanderkelen, Phys. Lett. B 516, 307 (2001)\]
 \item \[9. \ S. Narison and V. I. Zakharov, Phys. Lett. B 522, 266 (2001)\]
 \item \[10. \ A. E. Dorokhov and W. Broniowski, Eur. Phys. J. C32 (2003) 79\]
 \item \[11. \ P. Boucaud, A. Le Yaouanc, J. P. Leroy, J. Micheli, O. Pene and J. Rodriguez-Quintero, Phys. Rev. D 63, 114003 (2001)\]
 \item \[12. \ E. Ruiz Arriola, P. O. Bowman and W. Broniowski, Phys. Rev. D 70, 097505 (2004)\]
 \item \[13. \ E. Megias, E. Ruiz Arriola and L. L. Salcedo, JHEP 0601, 073 (2006)\]
 \item \[14. \ E. Ruiz Arriola and W. Broniowski, Phys. Rev. D 73 (2006) 097502\]
 \item \[15. \ M. Golterman and S. Peris, JHEP 0101, 028 (2001) ; Phys. Rev. D 67, 096001 (2003).\]
 \item \[16. \ S. R. Beane, Phys. Rev. D 64, 116010 (2001)\]
 \item \[17. \ Y. A. Simonov, Phys. Atom. Nucl. 65, 135 (2002) [Yad. Fiz. 65, 140 (2002)]\]
 \item \[18. \ S. S. Afonin, Phys. Lett. B 576, 122 (2003)\]
 \item \[19. \ S. S. Afonin, A. A. Andrianov, V. A. Andrianov and D. Espriu, JHEP 0404, 039 (2004)\]
 \item \[20. \ C. Goebel, et al, Phys. Rev. D 41 (1990) 2917.\]
 \item \[21. \ A. V. Anisovich, V. V. Anisovich and A. V. Sarantsev, Phys. Rev. D 62, 051502 (2000)\]
 \item \[22. \ A. Pich, arXiv:hep-ph/0205030\]
 \item \[23. \ G. Ecker, J. Gasser, A. Pich and E. de Rafael, Nucl. Phys. B 321, 311 (1989)\]
 \item \[24. \ O. Kaczmarek and F. Zantow, Phys. Rev. D 71, 114510 (2005)\]
 \item \[25. \ S. S. Afonin and D. Espriu, arXiv:hep-ph/0602219\]
 \item \[26. \ L. L. Salcedo and E. Ruiz Arriola, Annals Phys. 250, 1 (1996)\]
\end{itemize}