Antibacterial activity of thin films TiO$_2$ doped with Ag and Cu on Gracilicutes and Firmicutes bacteria

Dragomira S. Stoyanova†, Iliana A. Ivanova‡, Orlin I. Angelov§, Todorka G. Vladkova$^\|$

† Sofia University “St. Kl. Ohridski”, Sofia, Bulgaria
‡ Bulgarian Academy of Sciences, Sofia, Bulgaria
§ University of Chemical Technology and Metallurgy, Sofia, Bulgaria

Abstract

This research aims to study the antibacterial activity of thin films nanostructured TiO$_2$ doped with Ag and Cu on Gracilicutes and Firmicutes bacteria with clinical significance. The thin films were deposited on glass substrates without heating during the deposition by radio frequency magnetron co-sputtering of TiO$_2$ target and pieces of Ag and Cu. The total surface area of Ag was 60 mm2 and this one of Cu was 100 mm2. The r.f. power was 50W and sputtering atmosphere was Ar (0.8 Pa). The thickness of the films was about 60 nm. The experiment was conducted under day light regime. The test strains Bacillus cereus, Staphylococcus epidermidis, Salmonella enterica, Escherichia coli and Pseudomonas sp. were used. The bactericidal effect was established at different time point between 30 min - 90 min for Pseudomonas sp. and S. enterica. The Firmicutes bacteria B. cereus and S. epidermidis were killed at 4th and 8th h of the treatment respectively. The effect against E.coli was bacteriostatic till 10th hour. The toxic effect was evaluated by classical Koch’s method and optical density measurements. The results were confirmed by assessment of dehydrogenase activity inhibition. The film could be used in medical and clinical practice.

© Stoyanova D et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Keywords

nanomedicine, bactericidal effect, Gram positive and Gram negative bacteria, clinical significant strains

Presenting author

Dragomira S. Stoyanova

Presented at

World BioDiscovery Congress 2017

Acknowledgements

Sofia University Scientific Fund is gratefully acknowledged for the financial support of this investigation (project 80-10-12/12.04.2017) as well as Bulgarian Scientific Fund financial support performed in the frame of COST Action TD 1305 "Improved Protection of Medical Devices Against Infections".

Funding program

Project 80-10-12/12.04.2017
COST Action TD 130

Grant title

"Antimicrobial Effect of Nanostructured aterials"
"Improved Protection of Medical Devices Against Infections"

Hosting institution

1 Department of "General and Industrial Microbiology", Faculty of Biology, Sofia University "St. Kl. Ohridski", Sofia, Bulgaria

2 Central Laboratory of Solar Energy and New Energy Sources, Bulgarian Academy of Sciences, Sofia, Bulgaria
Author contributions

Equal author contributions

Conflicts of interest

The authors declare that there is no conflict of interests.