Supporting Information for

Excited-state Dynamics of Crossing Controlled Energy Transfer in Europium Complexes

Liangliang Wu, a Yu Fang, a Wanlong Zuo, b,g Juanjuan Wang, a Ju Wang, c Shufeng Wang, c Zhifeng Cui, g Weihai Fang, a Hao-Ling Sun, *a Yunliang Li *be f and Xuebo Chen *ad

a. Key Laboratory of Theoretical and Computational Photochemistry of the Ministry of Education, Department of Chemistry, Beijing Normal University Xin-wai-da-jie No. 19, Beijing 100875, China. E-mail: xuebochen@bnu.edu.cn; haolingsun@bnu.edu.cn; yunliangli@iphy.ac.cn
b. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, No.8, 3rd South Street, Zhongguancun, Haidian District, Beijing 100190, China
c. State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, China
d. College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
e. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
f. Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China.
g. College of Physics and Electric Information, Anhui Normal University, Wuhu 241000, China

Contents

1. Computational mechanism-based design for the candidate antennas
2. Synthesis and characterization of ligand and Eu-complexes
 2.1 Synthesis
 2.2 X-ray crystallography and physical measurements
 2.3 Time-resolved luminescence spectroscopy and transient Mid IR spectroscopy
3. Computational details
 3.1 Model setup
 3.2 Complete active space self-consistent field calculations
 3.3 Complete active space perturbation theory and relaxation pathways
 3.4 Spin-orbit coupling calculations and kinetic assessment on the ligand-centered ISC
 3.5 References
 3.6 Selected orbitals in the active space
 3.7 Optimized structures
 3.8 Energy tables
 3.9 Cartesian coordinates
1. Computational mechanism design for the candidate antennas

Table S1. Vertical excitation energies (ΔE_{\perp}, kcal mol$^{-1}$/nm), oscillator strengths (f), dipole moments (D.M., Debye), and the schematic representation of singly occupied orbitals for the $S_0 \rightarrow S_1(1\pi\pi^*)$ bright states of the candidate antennas of PPPD, para-Br-PPPD and meta-Br-PPPD obtained by CASPT2//CASSCF calculations.

Transition	D.M.	f	ΔE_{\perp}	singly occupied orbitals
PPPD				
S_0	5.7	--	0.0	
$S_0 \rightarrow S_1(1\pi\pi^*)$	4.9	0.47	73.2/391	π–dione
para-Br-PPPD				
S_0	8.4	--	0.0	
$S_0 \rightarrow S_1(1\pi\pi^*)$	3.6	0.42	70.6/405	π–dione
meta-Br-PPPD				
S_0	9.0	--	0.0	
$S_0 \rightarrow S_1(1\pi\pi^*)$	3.1	0.43	70.7/404	π–dione

Table S2. Adiabatic energies of the lowest-lying triplet $3\pi\pi^*$ state (T_{0-0}, kcal mol$^{-1}$) and spin–orbit couplings (SOCs cm$^{-1}$) between the triplet $3\pi\pi^*$ minima and corresponding S_0 states are summarized for the parent PPPD and its 9 derivatives, in which Br atoms are placed in different substituted positions of pyridine and phenyl moieties as shown in the left column of numbering scheme. Mulliken charge changes between the bright $S_{\text{CT}}(1\pi\pi^*)$ and corresponding S_0 states are provided on the three fragments of the pyridine (Δq_I), diketone (Δq_{II}), and phenyl moieties (Δq_{III}) upon the visible-light driven $S_0 \rightarrow S_{\text{CT}}(1\pi\pi^*)$ transitions on the basis of the CASPT2//CASSCF computations.

PPPD	Br–position	T_{0-0}	SOC	Δq_I	Δq_{II}	Δq_{III}
PPPD	2	51.0	12.3	0.4281	-0.6216	0.1935
PPPD	3	51.6	52.3	0.4476	-0.6413	0.1937
PPPD	4	53.0	0.8	0.4244	-0.6386	0.2142
PPPD	5	53.1	3.1	0.4043	-0.6232	0.2189
PPPD	6	45.6	6.4	0.4386	-0.6293	0.1907
PPPD	2'	45.9	19.0	0.0557	-0.6322	0.5765
PPPD	3'	59.9	<10$^{-3}$	0.0209	-0.6604	0.6395
PPPD	4'	50.4	0.7	0.0213	-0.6577	0.6364
PPPD	5'	49.4	5.4	-0.0094	-0.6357	0.6453

S2
Figure S1. Minimum-energy profiles (MEPs) for the relaxation processes of the photo-excited free antenna ligands of PPPD (a), para-Br-PPPD (b) and meta-Br-PPPD (c) obtained at the CASPT2//IRC//CASSCF level of theory. Showing values along decay paths are the related barriers for the rotational deformation of pyridine or benzene ring in kcal/mol and the SOC at the singlet-triplet crossings (STCs) in cm⁻¹. Selected stationary structures are given with their rotational dihedral angles (°) in green. The singly occupied molecular orbitals are schematically shown in the left panel, which can be used to describe the visible light initiated CT excitation. This mainly accounts for the non-radiative decay of visible light irradiated free antenna ligands associated with rotational deformation of pyridine or benzene, leading to the conical intersection (CI) of S_{CT} and S_0 states, i.e., CI(S_{CT}/S_0).
2. Synthesis and characterization of ligand and Eu-complexes

2.1 Synthesis

[Eu(PPPD)]$_2$ (1): The water solution (2 mL) of Eu(Ac)$_3$·6H$_2$O (0.05 mmol, 21.9 mg) was added to the bottom of a test tube, and then 3 mL mixed solvent (CH$_3$OH:H$_2$O=1:1) was used as a buffer layer. Finally, 3 mL methanol solution of PPPD (0.15 mmol, 33.9 mg) was carefully transferred on the top of the solution. The resulting solution was left at room temperature for one week before giving rise to plate yellow crystals of complex 1. Yield: 18.9 mg (45.9 %) based on europium ions. Elemental analysis (%) calcd for C$_{42}$H$_{30}$EuN$_3$O$_6$ (1): C, 61.17, N, 5.09, H, 3.67; found C, 60.95, N, 5.06, H, 3.72. Selected IR (KBr, cm$^{-1}$) for 1: 3421(br), 3061(w), 1601(s), 1551(s), 1518(s), 1452(s), 1424(s), 1393(s), 1285(m), 1231(m), 1024(s), 795(w), 748(s), 691(s), 613(w).

[Eu(para-Br-PPPD)]$_3$ (2): Eu(Ac)$_3$·6H$_2$O (0.05 mmol, 21.9 mg) was added to a 10 mL methanol solution containing para-Br-PPPD (0.15 mmol, 45.9 mg). The resulting solution was stirred for 5 min to give a clear yellow solution. Upon filtration, the resulting yellow solution was left to evaporate at room temperature for several days before giving rise to bright yellow plate crystals of complex 2. Yield: 34.7 mg (65.4 %) based on europium ions. Elemental analysis (%) calcd for C$_{42}$H$_{27}$Br$_3$EuN$_3$O$_6$ (2): C, 47.50, N, 3.96, H, 2.54; found C, 47.52, N, 3.91, H, 2.63. Selected IR (KBr, cm$^{-1}$) for 2: 3421(br), 3064(w), 1605(s), 1560(s), 1516(s), 1451(s), 1425(s), 1396(s), 1287(m), 1231(m), 1027(s), 794(w), 747(s), 695(s), 616(w).

[Eu$_2$(meta-Br-PPPD)$_6$(H$_2$O)(CH$_3$OH)]·H$_2$O (3): The water solution (2 mL) of Eu(Ac)$_3$·6H$_2$O (0.05 mmol, 21.9 mg) was added to the bottom of a test tube, and then 2 mL mixed solvent (CH$_3$OH:H$_2$O=1:1) and methanol solution (3 mL) were used as a buffer layer. Finally, 3 mL methanol solution of meta-Br-PPPD (0.15 mmol, 45.9 mg) was carefully transferred on the top of the solution, giving rise to the block yellow crystals of complex 3 in a month. Yield: 19.3 mg (35.6 %) based on europium ions. Elemental analysis (%) calcd for C$_{85}$H$_{62}$Br$_6$Eu$_2$N$_6$O$_{15}$ (3): C, 46.56, N, 3.83, H, 2.83; found C, 46.55, N, 3.85, H, 2.80. Selected IR (KBr, cm$^{-1}$) for 3: 3421(br), 3060(w), 1608(s), 1560(s), 1516(s), 1456(s), 1420(s), 1392(s), 1281(m), 1232(m), 1024(s), 795(w), 746(s), 695(s), 614(w).

[Eu$_2$(meta-Br-PPPD)$_2$(PNO)$_2$] (4): Eu(Ac)$_3$·6H$_2$O (0.03 mmol, 13.1 mg) was added to a 10 mL methanol solution of meta-Br-PPPD (0.09 mmol, 27.5 mg) and the reaction mixture was stirred and heated at 40 °C for 5 min. Finally, solid PNO (0.09 mmol, 8.6 mg) was added to give a clear yellow solution. Upon filtration, the resulting solution was left to evaporate at room temperature for several days before giving rise to tabular yellow crystals of complex 4. Yield: 11.3 mg (30.1 %) based on europium ions. Elemental analysis (%) calcd for C$_{104}$H$_{74}$Br$_6$Eu$_2$N$_{10}$O$_{16}$ (4): C, 49.89, N, 5.60, H, 2.96; found C, 49.90, N, 5.63, H, 2.94. Selected IR (KBr, cm$^{-1}$) for 4: 3421(br), 3059 (w), 1607(s), 1558(s), 1516(s), 1463(s), 1420(s), 1395(s), 1247(s), 1232(m), 1024(s), 795(w), 770(s), 695(s), 615(w).
2.2 X-ray crystallography and physical measurements

Figure S2. Crystal structures of Eu-PPPD (1), Eu-para-Br-PPPD (2) and Eu-meta-Br-PPPD (3 and 4) complexes. Colour code: Eu (green), O (red), N (blue), C (dark grey). Hydrogen atoms are omitted for clarity.

Figure S3. The C-H···π connection between the layers in 1. Colour code: Eu (green), O (red), N (blue), C (dark grey). Hydrogen atoms are omitted for clarity.
Figure S4. The \(\pi \cdots \pi \) connection between the layers in 2. Colour code: Eu (green), O (red), N (blue), C (dark grey), Br (orange). Hydrogen atoms are omitted for clarity.

Figure S5A. The coordination polyhedron around Eu\(^{13+}\) ion (a) and Eu\(^{23+}\) ion (b) of complex 3. Colour code: Eu (green), O (red), N (blue).
Figure S5B. 1D chain of complex 3 constructed by hydrogen bonds. Colour code: Eu (green), O (red), N (blue). Most hydrogen atoms, bromine atoms and the guest water molecules are omitted for clarity.

Figure S5C. The π-π stackings between the chains in complex 3. Colour code: Eu (green), O (red), N (blue), C (dark grey). Most hydrogen atoms, bromine atoms and the guest water molecules are omitted for clarity.
Figure S5D. The π-π stackings between the layers in complex 3. Colour code: Eu (green), O (red), N (blue), C (dark grey). Most hydrogen atoms, bromine atoms and the guest water molecules are omitted for clarity.

Table S3. Crystallographic data and structure refinement for complex 1–3

Complex	1	2	3
Formula	C₄₂H₅₀EuN₃O₆	C₄₂H₂₁₇Br₅EuN₃O₆	C₆₅H₆₀Br₆Eu₂N₆O₁₅
Mr	824.65	1061.36	2190.79
Crystal system	orthorhombic	orthorhombic	triclinic
Space group	Pbcn	Pca₂₁	P ₁
a (Å)	16.794(7)	29.290(9)	11.503(3)
b (Å)	25.861(8)	16.933(5)	19.024(5)
c (Å)	8.156(5)	7.806(3)	21.128(4)
V (Å³)	3542.7(3)	3871.8(2)	4145.4(1)
α (°)	90	90	115.877(3)
β (°)	90	90	93.390(2)
γ (°)	90	90	91.574(2)
Z	4	4	2
Dcalc	1.546	1.821	1.755
μ (mm⁻¹)	1.824	15.655	14.671
F (000)	1656	2064	2140
GOF	1.091	1.049	1.057
Data collected	12333	10072	28956
unique	4299	5819	15645
Rint	0.0549	0.0445	0.0388
R₁, wR₂[I>2σ(I)]	0.0516, 0.0866	0.0864, 0.2225	0.0713, 0.1893
R₁, wR₂[all data]	0.0911, 0.0996	0.0997, 0.2352	0.0764, 0.1951
Table S4. Selected bond distances (Å) in complex 1−3

	Eu1-O3	2.323(3)	Eu1-O3#1	2.323(3)	Eu1-N1#2	2.635(4)
	Eu1-O2	2.363(3)	Eu1-O2#1	2.363(3)	Eu1-N1#3	2.635(4)
	Eu1-O1	2.390(3)	Eu1-O1#1	2.390(3)		

	Eu1-O5	2.314(1)	Eu1-O3	2.370(1)	Eu1-N1#1	2.616(1)
	Eu1-O1	2.357(1)	Eu1-O6	2.386(1)	Eu1-N2#2	2.625(1)
	Eu1-O4	2.368(1)	Eu1-O2	2.391(1)		

	Eu1-O5	2.330(7)	Eu1-O4	2.359(7)	Eu1-O7	2.477(8)
	Eu1-O1	2.341(6)	Eu1-O6	2.377(5)	Eu1-N5	2.649(8)
	Eu1-O3	2.348(6)	Eu1-O2	2.380(8)		
	Eu2-O10	2.363(5)	Eu2-O13	2.362(4)	Eu2-O14	2.401(5)
	Eu2-O11	2.364(5)	Eu2-O12	2.373(4)	Eu2-N3	2.642(6)
	Eu2-O9	2.369(4)	Eu2-O8	2.395(5)		

Table S5. The C-H⋯π force in 1.

X-H	d(X-H) (Å)	<DHA(°)	d(X...Cg) (Å)	Cg
C12-H12	0.930	118.04	3.84(9)	C9-C10-C11-C12-C13-C14 [1-X,Y, 1/2-Z]

Table S6. Hydrogen Bonds in 3.

D-H	d(D-H) (Å)	<DHA(°)	d(D...A) (Å)	A
O8-H8a	0.870	64.4	2.735	N2 (2-x, 3-y, 2-z)
O7-H7	0.851	171.4	2.788	N6 (1-x,1-y,1-z)
Figure S6. Powder X-ray diffraction profiles of 1–3 and the simulated ones based on their single crystal structures, all at room temperature.

Figure S7. A comparison of the single-exponential fitting results for observed luminescence decay patterns of complexes 1–4.
2.3 Time-resolved luminescence spectroscopy and transient Mid IR spectroscopy

Figure S8. Transient Mid IR spectroscopy of complexes 1–4 (a–d) varying with different time delay from 0 to 100 ps and their energy relaxation dynamics (e).
3. Computational details

Throughout the manuscript and the supplementary material, the electronic states of the complexes are given as $2S+1(R,M)_n$, where $2S+1$ is the total spin multiplicity of the complex, R and M stand for the labels of the ligand and the Eu$^{3+}$ ion, and n corresponds to the numbering of the electronic states $2S+1(R,M)$ starting from n=0 for the lowest state. It is important to distinguish this numbering of the electronic states of the complexes from the J levels of the Eu$^{3+}$ central ion, although they often take the same values, e.g., the ground state of the complexes is denoted as $7(S_0/F_0)$. Omitting spin-orbit coupling the weak asymmetric ligand field splits $7(S_0/F_0)$ into seven substates $7(S_0/F_n)$ (n=0-6). Using the state interaction approach, matrix elements over the spin-orbit Hamiltonian \hat{H}_{SO} are computed based on these substates and the Hamiltonian matrix is diagonalized resulting in a total of (2S+1)(2L+1)=49 energy levels. Including spin-orbit coupling Eu$^{3+}$ 46 7F is split into seven levels $7F_J$ (J=0-6). The corresponding complex substates $7(S_0/F_J)$ are again split due to the ligand field into 2J+1 levels each, yielding again a total of 49 energy levels. Since in the case of the Eu$^{3+}$ complexes considered here spin-orbit interaction is stronger than the ligand field, one may keep the J value as a useful label for the $7(S_0/F_J)_n$ (J=0-6,n=0,1,…49) energy levels of the complexes.

3.1 Model setup: The starting structures for the isolated antennas of PPPD, para-Br-PPPD and meta-Br-PPPD ligand were constructed by density functional theory (DFT) optimization at the B3LYP/6-31G* level. The starting geometries of complexes 1-4 were taken from the crystal structure data by the mechanism-based crystal engineering. The minimum structural units were extracted to undergo further geometry optimizations, which result in the initial structures to describe fully the coordination micro-environment around Eu$^{3+}$ center for the reduction of computational burden of the subsequent high-accurate multi-configurational quantum chemical calculations.

3.2 Complete active space self-consistent field calculations: The complete active space self-consistent field (CASSCF) method51,52 has been verified to accurately describe the structural and optical properties of organic systems, transition-metal and lanthanide complexes, especially for those excited states with charge-transfer (CT) character and strong spin-orbit coupling effects.$^{53-57}$ In this work, the ab initio calculations of isolated antennas were primarily performed at the CASSCF level of theory with a total of 12 electrons in 10 active orbitals (12e/10o). In order to describe the CT excitation of the antennas, the high-lying occupied π and the low-lying π^* orbitals of the diketone, pyridine and benzene ring were included in the active spaces. All orbitals in the active space for the CASSCF(12e/10o) calculations are schematically shown in Figures. S9-11. For the free antennas, 6-31G* basis sets were applied for all atoms.

All minima of the free antennas in their singlet excited states were obtained by full system state-averaged CASSCF optimizations using a two-root equally weighted (0.5:0.5) approach, while a single-root optimization was adopted for the triplet excited states and the ground states. The same state-averaged method was employed to determine the geometry of the intersection space of S_{CT} and S_0 state. The minimum-energy crossing points between the S_{CT} and T_1 state were optimized using a many-electron basis of Slater determinants. The minimum energy profiles (MEPs) for singlet and triplet relaxation were mapped by intrinsic reaction coordinate (IRC) computations to
connect the above critical points in several possible excited and ground states.58,59

Restricted active space self-consistent field (RASSCF) calculations510 were adopted for the complexes 1-4. Three pair of π and π^* orbitals of the diketone, pyridine and benzene ring were included to describe the involved electron transitions and conjunction effects of the coordinated ligands. Meanwhile, 6 f electrons and their 7 f orbitals (6e/7o) of Eu$^{3+}$ center were added, resulting in a total of 12e/13o active space, to characterize complexes 1-4 in the septet ground state $7(S_0/F)$, and the various excited states, i.e., the quintet $5(S_0/F)$, septet $7(SCT(1\pi\pi^*)/F)$ and nonet $9(3\pi\pi^*/F)$ states. All of these orbitals for the RASSCF(12e/13o) calculations are schematically shown for complexes 1-4 in Figures S12-15.

3.3 Complete active space perturbation theory and relaxation pathways: In order to consider the dynamic electron correlation effects, the single-point energy of the optimized geometries in the above computations was recalculated at the multi-configuration second-order perturbation (CASPT2) level of theory.511,512 Five roots state-averaged RASSCF wave functions for the isolated antennas were used as zeroth-order wave function, while different multiple-roots state-averaged RASSCF wave functions for complexes were applied to calculate the energetic levels of the $7(S_0/F)$ (14 roots), $7(1\pi\pi^*/F)$ (14 roots), $9(3\pi\pi^*/F)$ (14/7 roots), and $5(S_0/F)$ (5 roots) states and their splitting in corresponding sublevels. As a result, the minimum energy profiles of free antennas and the chelated complexes were eventually computed at the CASPT2//IRC/CASSCF level of theory along the unbiased reaction coordinates to obtain the relaxation path of isolate ligands and the radiative-EnT pathways of lanthanide complexes 1-4 elucidating their photoluminescence mechanisms. The vertical excitation energies and the corresponding oscillator strengths (f) for the different transitions of the ligands and complexes were calculated by 4 or 3 roots state-averaged CASSCF state interaction (CASSI) computations at their corresponding ground state geometries.

3.4 Spin-orbit coupling calculations and kinetic assessment on the ligand-centered ISC: The SO matrix elements between the involved states for the complexes 1-4 were computed by using the pseudopotential spin-orbit operator on Eu$^{3+}$ and the Breit-Pauli operator on all other atoms.513,514 For the quintet-septet couplings, the active space of six f electrons in seven f orbitals, i.e. (6e/7o), was adopted to compute the $5(S_0/F_J,J=0-4, n=0,1,...,25)$ and the $7(S_0/F_J,J=0-6, n=0,1,...,49)$ couplings, which results in a total of 74×74 = 5476 matrix elements. While for the septet-nonet couplings, the targeted pair of antenna π/π^* was added with a total (8e/9o) space to judge the efficiency of intersystem crossing for the complexes. The SO matrix elements number for septet-nonet couplings, i.e., $7(S_0/F_J,J=0-6, n=0,1,...,98)$ and $9(3\pi\pi^*/F_J,J=0-6, n=0,1,...,63)$, is 161×161 = 25921. It should be noted that for the effective one-electron Eu spin-orbit operator used in this work there is no direct coupling of the nonet $9(3\pi\pi^*/F)$ and quintet $5(S_0/F)$ states in the spin-orbit Hamiltonian matrix, but rather an indirect coupling mediated by septet states. These values were afterwards used in the spin–orbit coupling matrices to calculate subsequently eigenstates and properties, within a many-electron basis set consisting of spin-free electronic states of the CASSCF or RASSCF calculations. The ligand-centered ISC rate k_{ISC} from the initial state I to final state F was evaluated in the Condon
approximation as follows,

\[k_{\text{ISC}} = \frac{2\pi}{\hbar} \langle 1\psi_0 | H_{\text{SO}} | 3\psi_0^F \rangle^2 \langle \chi_0 | \chi_n >^2 \rho \]

where \(H_{\text{SO}} \) indicates spin-orbit coupling vector between initial \(I \) to final \(F \) state. The Franck−Condon factor \(\langle \chi_0 | \chi_n > \) was taken equal to 1 and \(\rho = 1/\Delta E_{IF} \).

The rate constants of radiative/nonradiative relaxations \((k_{\text{rad}}/k_{\text{nr}}, \text{s}^{-1}) \) and the metal radiative decay efficiencies \((\eta_{\text{Eu}}) \) were calculated based on the experimentally recorded overall quantum yields \((\Phi_{\text{QY}}) \) and lifetimes \((\tau) \) using the formula below.

\[k_{\text{rad}} = 1 / \tau_{\text{rad}} = A_{\text{MD}} \cdot n^3 \cdot I_{\text{tot}}/I_{\text{MD}} \]

\[k_{\text{nr}} = k_{\text{obs}} - k_{\text{rad}} = 1 / \tau_{\text{obs}} - 1 / \tau_{\text{rad}} \]

\[\eta_{\text{Eu}} = \tau_{\text{obs}} / \tau_{\text{rad}} = k_{\text{rad}} / k_{\text{obs}} \]

where \(I_{\text{tot}} \) is the integrated emission intensity over all of the \(^5D_0 \rightarrow ^7F_J \) transitions and \(I_{\text{MD}} \) is the integrated intensity of the \(^5D_0 \rightarrow ^7F_1 \) transition (measured from 580–600 nm). \(A_{\text{MD}} \), represents the spontaneous emission probability of the \(^5D_0 \rightarrow ^7F_1 \) transition, with a value of 14.65 s\(^{-1}\) in vacuo, \(n \) is the refractive index (1.51).
3.5 References

(S1) Roos, B. O.; Taylor, P. R.; Siegbahn, P. E. M. A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem. Phys. 1980, 48, 157-173.

(S2) Ruedenberg, K.; Schmidt, M. W.; Gilbert, M. M.; Elbert S. T. Are atoms intrinsic to molecular electronic wavefunctions? I. The FORS model. Chem. Phys. 1982, 71, 41-49.

(S3) Su, H. Z.; Chen, X. B.; Fang, W. H. On–off mechanism of a fluorescent sensor for the detection of Zn(II), Cd(II), and Cu(II) transition metal ions. Anal. Chem. 2014, 86, 891–899.

(S4) Han, J.; Chen, X. B.; Shen, L.; Chen, Y.; Fang, W. H.; Wang, H. B. Energy transfer tunes phosphorescent color of single–dopant white OLEDs. Chem. Eur. J. 2011, 17, 13971-13977.

(S5) Wang, H. J.; Cao, X. Y.; Chen, X. B.; Fang, W. H.; Dolg, M. Regulatory mechanism of the enantioselective intramolecular enone [2+2] photocycloaddition reaction mediated by a chiral Lewis acid catalyst containing heavy atoms. Angew. Chem. Int. Ed. 2015, 54, 14295-14298.

(S6) Wu, L.; Cao, X.; Chen, X.; Fang, W.; Dolg, M. Visible-light photocatalysis of C(sp^3)-H fluorination by the uranyl ion: mechanistic insights. Angew. Chem. Int. Ed. 2018, 57, 11812-11816.

(S7) Yang, W.; Chen, X.; Fang, W. H. Nonadiabatic curve-crossing model for the visible-light photoredox catalytic generation of radical intermediate via a concerted mechanism. ACS Catal. 2018, 8, 7388–7396.

(S8) Fukui, K. The path of chemical reactions - the IRC approach. Acc. Chem. Res. 1981, 14, 363–368.

(S9) Hratchian, H. P.; Schlegel, H. B. Accurate reaction paths using a Hessian based predictor–corrector integrator. J. Chem. Phys. 2004, 12, 9918–9924.

(S10) Malmqvist, P.Å.; Rendell, A.; Roos, B. O. The restricted active space self-consistent-field method, implemented with a split graph unitary group approach. J. Phys. Chem. 1990, 94, 5477-5482.

(S11) Andersson, K.; Malmqvist, P. A.; Roos, B. O.; Sadlej, A. J.; Wolinski, K. Second-order perturbation theory with a CASSCF reference function. J. Phys. Chem. 1990, 94, 5483–5488.

(S12) Andersson, K.; Malmqvist, P. Å.; Roos, B. O. Second-order perturbation theory with a complete active space self-consistent field reference function. J. Chem. Phys. 1992, 96, 1218–1226.

(S13) Marian, C. M.; Wahlgren, U. A new mean-field and ECP-based spin-orbit method. Applications to Pt and PtH. Chem. Phys. Lett. 1996, 251, 357-364.

(S14) Schimmelpfennig, B.; Maron, L.; Wahlgren, U.; Teichteil, C.; Fagerli, H.; Gropen, O. On the combination of ECP-based CI calculations with all-electron spin-orbit mean-field integrals. Chem. Phys. Lett. 1998, 286, 267-271.
3.6 Selected orbitals in the active space

Plots of selected orbitals in the active spaces for the free antennas PPPD, \textit{para}-Br-PPPDD and \textit{meta}-Br-PPPDD anion and their corresponding complexes 1-4. The subscripts reflect the main character of the orbitals.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image}
\caption{Molecular orbitals of PPPD used in defining the active space for the CASPT2//CASSCF(12e/10o) calculations.}
\end{figure}
Figure S10. Molecular orbitals of para-Br-PPPD used in defining the active space for the CASPT2/CASSCF(12e/10o) calculations.

Figure S11. Molecular orbitals of meta-Br-PPPD used in defining the active space for the CASPT2/CASSCF(12e/10o) calculations.
Figure S12. Molecular orbitals of complex 1 used in defining the active space for the CASPT2//RASSCF(12e/13o) calculations.
Figure S13. Molecular orbitals of complex 2 used in defining the active space for the CASPT2//RASSCF(12e/13o) calculations.
Figure S14. Molecular orbitals of complex 3 used in defining the active space for the CASPT2//RASSCF(12e/13o) calculations.
Figure S15. Molecular orbitals of complex 4 used in defining the active space for the CASPT2/RASSCF(12e/13o) calculations.
3.7 Optimized structures

Figure S16. The critical structures of PPPD obtained at the CASSCF(12e/10o) level of theory. Selected key bond lengths are given in angstrom (Å) (see Sect. 3.9 for Cartesian coordinates).
Figure S17. The critical structures of para-Br-PPPD obtained at the CASSCF(12e/10o) level of theory. Selected key bond lengths are given in angstrom (Å) (see Sect. 3.9 for Cartesian coordinates).
Figure S18. The critical structures of meta-Br-PPPD obtained at the CASSCF(12e/10o) level of theory. Selected key bond lengths are given in angstrom (Å) (see Sect. 3.9 for Cartesian coordinates).
Figure S19. The critical structures of complex 1 obtained at the CASSCF(12e/13o) level of theory. Hydrogen atoms are omitted for clarity. Selected key bond lengths are given in angstrom (Å). (see Sect. 3.9 for Cartesian coordinates).
Figure S20. The critical structures of complex 2 obtained at the CASSCF(12e/13o) level of theory. Hydrogen atoms are omitted for clarity. Selected key bond lengths are given in angstrom (Å). (see Sect. 3.9 for full Cartesian coordinates).
Figure S21. The critical structures of complex 3 obtained at the CASSCF(12e/13o) level of theory. Hydrogen atoms are omitted for clarity. Selected key bond lengths are given in angstrom (Å). (see Sect. 3.9 for full Cartesian coordinates).
Figure S22. The critical structures of complex 4 obtained at the CASSCF(12e/13o) level of theory. Hydrogen atoms are omitted for clarity. Selected key bond lengths are given in angstrom (Å). (see Sect. 3.9 for full Cartesian coordinates).
3.8 Energy tables

Table S7. Vertical excitation energies (E_{\perp}, kcal mol$^{-1}$), oscillator strengths (f), dipole moments ($\Delta \text{D.M.}$, Debye), and singly occupied orbitals in the $S_0 \rightarrow S_1(\text{11}\pi\pi^*)$ electronic transitions of the antennas PPPD, para-Br-PPPD and meta-Br-PPPD formed complexes 1–4.

Transition	D.M.	f	ΔE	singly occupied orbitals
S_0	8.6	--	0.0	
Complex 1				
$^\gamma(S_0/\gamma F_0 \rightarrow S_1(\text{11}\pi\pi^*)/\gamma F_0)$	3.4	0.53	61.8	$\pi\pi^*$–dione
S_0	5.9	--	0.0	
Complex 3				
$^\gamma(S_0/\gamma F_0 \rightarrow S_1(\text{11}\pi\pi^*)/\gamma F_0)$	5.6	0.79	62.9	$\pi\pi^*$–dione
S_0	12.5	--	0.0	
Complex 4				
$^\gamma(S_0/\gamma F_0 \rightarrow S_1(\text{11}\pi\pi^*)/\gamma F_0)$	12.2	0.57	62.3	$\pi\pi^*$–dione

Critical points	Transitions	SOME/cm⁻¹	
		ligand	metal
7(S(1′ππ′)/7F₀)−Min	7(1′ππ′)/F₀→ 9(3ππ⁴)/F₀	0.3−1.8	
	7(1′ππ′)/F₀→ 9(3ππ⁴)/F₁	36−317	
	7(1′ππ′)/F₀→ 9(3ππ⁴)/F₂	7−157	
	7(1′ππ′)/F₀→ 9(3ππ⁴)/F₃	17−183	
	7(1′ππ′)/F₀→ 9(3ππ⁴)/F₄	5−99	
	7(1′ππ′)/F₀→ 9(3ππ⁴)/F₅	1.4−7.5	
	7(1′ππ′)/F₀→ 9(3ππ⁴)/F₆	2−87	
9(3ππ⁴)/F₀−Min	9(3ππ⁴)/F₀→ 9(3ππ⁴)/F₁	332−1454	
5(S₀⁶/D₀)−Min	5(S₀⁶/D₀)→ 7(S₀⁷/F₀)	9−349	
	5(S₀⁶/D₀)→ 7(S₀⁷/F₁)	24−1580	
	5(S₀⁶/D₀)→ 7(S₀⁷/F₂)	433−1679	
	5(S₀⁶/D₀)→ 7(S₀⁷/F₃)	69−799	
	5(S₀⁶/D₀)→ 7(S₀⁷/F₄)	148−1037	
	5(S₀⁶/D₀)→ 7(S₀⁷/F₅)	85−440	
	5(S₀⁶/D₀)→ 7(S₀⁷/F₆)	4−555	
	5(S₀⁶/D₀)→ 5(S₀⁶/D₁)	34−657	
	9(3ππ⁴)/F₀→ 5(S₀⁶/D₁)	412−1597	
	5(S₀⁶/D₀)→ 5(S₀⁶/D₁)	559−1118	
7(S₁(1′ππ′)/7F₀)−Min	7(1′ππ′)/F₀→ 9(3ππ⁴)/F₀	0.5−2.8	
	7(1′ππ′)/F₀→ 9(3ππ⁴)/F₁	54−287	
	7(1′ππ′)/F₀→ 9(3ππ⁴)/F₂	19−101	
	7(1′ππ′)/F₀→ 9(3ππ⁴)/F₃	14−191	
	7(1′ππ′)/F₀→ 9(3ππ⁴)/F₄	9−148	
	7(1′ππ′)/F₀→ 9(3ππ⁴)/F₅	6−84	
	7(1′ππ′)/F₀→ 9(3ππ⁴)/F₆	17−102	
Complex 4	\(^9(3\pi\pi^*/F_0)\rightarrow 5(S_0/F_0)\)	0.3–2.2	35–969
----------	---------------------------------	--------	--------
	\(^9(3\pi\pi^*/F_0)\rightarrow 5(S_0/F_1)\)		271–1536
	\(^5(S_0/F_0)\rightarrow 5(S_0/F_1)\)		884–2594

\(^9(3\pi\pi^*/F_0)\rightarrow 5(S_0/F_0)\)	0.3-1.9	77-298
\(^9(3\pi\pi^*/F_0)\rightarrow 5(S_0/F_1)\)		373-1444
\(^5(S_0/F_0)\rightarrow 5(S_0/F_1)\)		418-921

\(^9(3\pi\pi^*/F_0)\rightarrow 5(S_0/F_0)\)	28-686	
\(^5(S_0/F_0)\rightarrow 7(S_0/F_0)\)		219-1196
\(^5(S_0/F_0)\rightarrow 7(S_0/F_2)\)		351-1358
\(^5(S_0/F_0)\rightarrow 7(S_0/F_3)\)		239-926
\(^5(S_0/F_0)\rightarrow 7(S_0/F_4)\)		53-1117
\(^5(S_0/F_0)\rightarrow 7(S_0/F_6)\)		130-909
\(^5(S_0/F_0)\rightarrow 7(S_0/F_6)\)		122-618

\(^9(3\pi\pi^*/F_0)\rightarrow 5(S_0/F_0)\)	171-783	
\(^9(3\pi\pi^*/F_0)\rightarrow 5(S_0/F_1)\)		37-199
\(^5(S_0/F_0)\rightarrow 5(S_0/F_1)\)		337-1444
\(^5(S_0/F_0)\rightarrow 5(S_0/F_1)\)		418-921
Table S9. Absolute energies (A.E., Hartree) and relative energies (R.E., kcal mol\(^{-1}\)) with respect to their corresponding ground state \(\gamma(S_0/F_0)\) for the optimized structures of the complexes 1-4 in the energy resonant region (nonet-quintet crossing, NQC) obtained at the CASPT2 level. The corresponding energy profiles are plotted in Figure 3 of the main article.

NQC	\(\gamma(3\pi\pi^*/F)\)	RASSCF	CASPT2
	A.E.	A.E.	R.E.
\(7(S_0/F)\)\(_{e=6}\)			
Root1 \(\gamma(S_0/F_0)\)	-3398.172186	-3404.72011	0.0
Root2	-3398.171434		
Root3	-3398.168223		
Root4	-3398.167555		
Root5	-3398.167287		
Root6	-3398.166461		
Root7	-3398.165528		
\(\gamma(S_0^*/F)\)\(_{e=6}\)			
Root1 \(\gamma(S_0^*/F_0)\)	-3398.174723	-3404.706365	8.6
Root2	-3398.173948		
Root3	-3398.170734		
Root4	-3398.170117		
Root5	-3398.169799		
Root6	-3398.168752		
Root7	-3398.168207		
\(\gamma(3\pi\pi^*/F)\)\(_{e=6}\)			
Root1 \(\gamma(3\pi\pi^*/F_0)\)	-3398.043138	-3404.62221	61.4 (541 nm)
Root2	-3398.042403		
Root3	-3398.039226		
Root4	-3398.038615		
Root5	-3398.038467		
Root6	-3398.037254		
Root7	-3398.036713		
\(\pi(S_0^D)\)\(_{e=4}\)			
Root1 \(\pi(S_0^D_0)\)	-3398.045158	-3404.62640	58.8 (570 nm)
Root2	-3398.043851		
Root3	-3398.040383		
Root4	-3398.038410		
Root5 \(\pi(S_0^D_1)\)	-3398.037824	-3404.62038	62.6 (530 nm)

Complex 1

Complex 2

NQC	\(\gamma(S_0/F)\)	RASSCF	CASPT2	
	A.E.	A.E.	R.E.	
\(7(S_0/F)\)\(_{e=6}\)				
Root1 \(\gamma(S_0/F_0)\)	-3435.882186	-3442.86077	0.0	
Root2	-3435.880913			
Root3	-3435.877958			
Root4	-3435.877228			
Root5	-3435.876999			
Root6	-3435.876258			
Complex 3				
---	---			
$^1\text{S}_0^*/\text{F}$				
Root1	$^1\text{S}_0^*/\text{F}_0$	-3435.867738	-3442.84699	8.7
Root2	-3435.866433			
Root3	-3435.863435			
Root4	-3435.862714			
Root5	-3435.862484			
Root6	-3435.861583			
Root7	-3435.861138			

$^3\text{S}_0^*/\text{F}$				
Root1	$^3\text{S}_0^*/\text{F}_0$	-3435.770193	-3442.76528	59.9 (558 nm)
Root2	-3435.768927			
Root3	-3435.765940			
Root4	-3435.765274			
Root5	-3435.765011			
Root6	-3435.764033			
Root7	-3435.763552			

$^5\text{S}_0^*/\text{D}$				
Root1	$^5\text{S}_0^*/\text{D}_0$	-3435.772178	-3442.76560	59.7 (560 nm)
Root2	-3435.770409			
Root3	-3435.767016			
Root4	-3435.765018			
Root5	-3435.764421	-3442.75943	63.6 (520 nm)	

$^1\text{S}_0^*/\text{F}$				
Root1	$^1\text{S}_0^*/\text{F}_0$	-3267.275103	-3273.94426	0.0
Root2	-3267.274130			
Root3	-3267.272940			
Root4	-3267.271885			
Root5	-3267.271279			
Root6	-3267.270984			
Root7	-3267.270938			

$^3\text{S}_0^*/\text{F}$				
Root1	$^3\text{S}_0^*/\text{F}_0$	-3267.265009	-3273.94169	1.6
Root2	-3267.263941			
Root3	-3267.262884			
Root4	-3267.261858			
Root5	-3267.261235			
Root6	-3267.260892			
Root7	-3267.260866			

$^3\text{S}_0^*/\text{D}$					
Root1	$^3\text{S}_0^*/\text{D}_0$	-3267.158481	-3273.85698	54.8 (538 nm)	
Root2	-3267.157425				
Root3	-3267.156475				
Complex 4	Root4	-3267.155430			
Complex 4	Root5	-3267.154705			
Complex 4	Root6	-3267.154579			
Complex 4	Root7	-3267.154338			
$^5(S_0^0D)_0$ 2	Root1	$^5(S_0^0D_0)$	-3267.162129	-3273.86299	51.0 (579 nm)
$^5(S_0^0D)_0$ 2	Root2	-3267.161995			
$^5(S_0^0D)_0$ 2	Root3	-3267.161780			
$^5(S_0^0D)_0$ 2	Root4	-3267.161474			
$^5(S_0^0D)_0$ 2	Root5	$^5(S_0^0D_1)$	-3267.161279	-3273.85777	54.3 (543 nm)

7(S_0/F) 0-6	Root1	$^7(S_0^0F_0)$	-3583.534879	-3590.60478	0.0
7(S_0/F) 0-6	Root2	-3583.534015			
7(S_0/F) 0-6	Root3	-3583.532419			
7(S_0/F) 0-6	Root4	-3583.532169			
7(S_0/F) 0-6	Root5	-3583.531853			
7(S_0/F) 0-6	Root6	-3583.531793			
7(S_0/F) 0-6	Root7	-3583.531329			

$^7(S_0^*/F_0)$ 0-6	Root1	$^7(S_0^*/F_0)$	-3583.521675	-3590.60436	0.3
$^7(S_0^*/F_0)$ 0-6	Root2	-3583.520773			
$^7(S_0^*/F_0)$ 0-6	Root3	-3583.519156			
$^7(S_0^*/F_0)$ 0-6	Root4	-3583.518819			
$^7(S_0^*/F_0)$ 0-6	Root5	-3583.518517			
$^7(S_0^*/F_0)$ 0-6	Root6	-3583.518344			
$^7(S_0^*/F_0)$ 0-6	Root7	-3583.517921			

$^9(3\pi^0\pi^*/F_0)$ 0-6	Root1	$^9(3\pi^0\pi^*/F_0)$	-3583.410487	-3590.527226	48.7 (590 nm)
$^9(3\pi^0\pi^*/F_0)$ 0-6	Root2	-3583.409552			
$^9(3\pi^0\pi^*/F_0)$ 0-6	Root3	-3583.407933			
$^9(3\pi^0\pi^*/F_0)$ 0-6	Root4	-3583.407632			
$^9(3\pi^0\pi^*/F_0)$ 0-6	Root5	-3583.407356			
$^9(3\pi^0\pi^*/F_0)$ 0-6	Root6	-3583.407012			
$^9(3\pi^0\pi^*/F_0)$ 0-6	Root7	-3583.406524			

$^5(S_0^0D)_0$ 0-4	Root1	$^5(S_0^0D_0)$	-3583.409221	-3590.527588	48.4 (593 nm)
$^5(S_0^0D)_0$ 0-4	Root2	-3583.408981			
$^5(S_0^0D)_0$ 0-4	Root3	-3583.408916			
$^5(S_0^0D)_0$ 0-4	Root4	-3583.408614			
$^5(S_0^0D)_0$ 0-4	Root5	$^5(S_0^0D_1)$	-3583.408544	-3590.52188	52.0 (552 nm)
Table S10. Absolute energies (A.E., Hartree) and relative energies (R.E., kcal mol\(^{-1}\)) for PPPD along the relaxation pathway in S\(_{CT}(^1\pi\pi^*)\) and T\(_1(3\pi\pi^*)\) state. The corresponding ground state energy is also given. The minimum energy profiles have been plotted in Figure S1.

	RASSCF A.E.	RASCC A.E.	CASPT2 R.E.
S\(_0\)-Min			
Root1(S\(_0\))	-740.219390	-742.40646	0.0
Root2[S\(_{CT}(^1\pi\pi^*)\)]	-740.077612	-742.28977	73.2
Path-S\(_{CT}(^1\pi\pi^*)\)-1			
Root1(S\(_0\))	-740.217367	-742.40597	0.3
Root2[S\(_{CT}(^1\pi\pi^*)\)]	-740.085705	-742.29684	68.8
S\(_{CT}(^1\pi\pi^*)\)-Min			
Root1(S\(_0\))	-740.197584	-742.39000	10.3
Root2[S\(_{CT}(^1\pi\pi^*)\)]	-740.097120	-742.30377	64.4
Path-S\(_{CT}(^1\pi\pi^*)\)-4			
Root1(S\(_0\))	-740.191738	-742.38509	13.4
Root2[S\(_{CT}(^1\pi\pi^*)\)]	-740.097917	-742.30300	64.9
Path-S\(_{CT}(^1\pi\pi^*)\)-5			
Root1(S\(_0\))	-740.189030	-742.38252	15.0
Root2[S\(_{CT}(^1\pi\pi^*)\)]	-740.097623	-742.30235	65.3
Path-S\(_{CT}(^1\pi\pi^*)\)-6			
Root1(S\(_0\))	-740.186990	-742.38110	15.9
Root2[S\(_{CT}(^1\pi\pi^*)\)]	-740.097508	-742.30247	65.3
Path−S_{CT}(\pi\pi^*)−8			
--------------------------	---	---	
Root1(S_0)	-740.190506	-742.38376	14.2
Root2 [S_{CT}(\pi\pi^*)]	-740.097631	-742.30246	65.3

Path−S_{CT}(\pi\pi^*)−9			
Root1(S_0)	-740.193186	-742.38495	13.5
Root2 [S_{CT}(\pi\pi^*)]	-740.097835	-742.30317	65.3

Path−S_{CT}(\pi\pi^*)−10			
Root1(S_0)	-740.193734	-742.385113	13.4
Root2 [S_{CT}(\pi\pi^*)]	-740.097602	-742.303107	64.9

Path−S_{CT}(\pi\pi^*)−11			
Root1(S_0)	-740.193863	-742.385063	13.4
Root2 [S_{CT}(\pi\pi^*)]	-740.097382	-742.303130	64.8

Path−S_{CT}(\pi\pi^*)−12			
Root1(S_0)	-740.193651	-742.384790	13.6
Root2 [S_{CT}(\pi\pi^*)]	-740.097155	-742.303137	64.8

Path−S_{CT}(\pi\pi^*)−13			
Root1(S_0)	-740.193193	-742.384548	13.7
Root2 [S_{CT}(\pi\pi^*)]	-740.097028	-742.303377	64.7

Path−S_{CT}(\pi\pi^*)−14			
Root1(S_0)	-740.199945	-742.382255	15.2
Root2 [S_{CT}(\pi\pi^*)]	-740.098882	-742.302361	65.3

Path−S_{CT}(\pi\pi^*)−15			
Root1(S_0)	-740.198597	-742.378928	17.3
Root2 [S_{CT}(\pi\pi^*)]	-740.091829	-742.303591	64.6

Path−S_{CT}(\pi\pi^*)−16				
Root1(S_0)	-740.195611	-742.374572	20.0	
Root2 [S_{CT}(\pi\pi^*)]	-740.090340	-742.302554	65.2	
Path−$S_{CT}(^1\pi\pi')$−17	Root1(S_0)	-740.191594	-742.368878	23.6
Root2 [$S_{CT}(^1\pi\pi')$]	-740.089276	-742.301794	65.7	
Path−$S_{CT}(^1\pi\pi')$−18	Root1(S_0)	-740.193267	-742.370878	22.3
Root2 [$S_{CT}(^1\pi\pi')$]	-740.092979	-742.311343	63.0	
Path−$S_{CT}(^1\pi\pi')$−19	Root1(S_0)	-740.194693	-742.372795	21.1
Root2 [$S_{CT}(^1\pi\pi')$]	-740.097370	-742.311343	59.7	
Path−$S_{CT}(^1\pi\pi')$−20	Root1(S_0)	-740.136014	-742.344337	39.0
Root2 [$S_{CT}(^1\pi\pi')$]	-740.132431	-742.312374	59.0	
STC(S_{CT}/T_1)	Root1(S_0)	-740.136717	-742.343409	39.6
Root2 [$S_{CT}(^1\pi\pi')$]	-740.132826	-742.315826	56.9	
Path−$S_{CT}(^1\pi\pi')$−22	Root1(S_0)	-740.137325	-742.342588	40.1
Root2 [$S_{CT}(^1\pi\pi')$]	-740.133132	-742.318437	55.2	
Path−$S_{CT}(^1\pi\pi')$−23	Root1(S_0)	-740.137800	-742.341972	40.5
Root2 [$S_{CT}(^1\pi\pi')$]	-740.133419	-742.320552	53.9	
CI(S_{CT}/S_0)	Root1(S_0)	-740.129804	-742.327095	49.8
Root2 [$S_{CT}(^1\pi\pi')$]	-740.126573	-742.321118	53.6	
Path−$T_1(^2\pi\pi')$−1	Root1[$T_1(^2\pi\pi')$]	-740.095777	-742.316326	56.6
Path−T₁(3ππ')−2	Root₁[T₁(3ππ')]	-740.106141	-742.320309	54.1
------------------	------------------	-------------	-------------	-----
Path−T₁(3ππ')−3	Root₁[T₁(3ππ')]	-740.107934	-742.322661	52.6
Path−T₁(3ππ')−4	Root₁[T₁(3ππ')]	-740.095414	-742.323701	51.9
T₁(3ππ')−Min	Root₁[T₁(3ππ')]	-740.103032	-742.329578	48.2
Table S11. Absolute energies (A.E., Hartree) and relative energies (R.E., kcal mol\(^{-1}\)) for para-Br-PPPD along the relaxation pathway in \(S_{\text{CT}}(1\pi\pi^*)\) and \(T_1(3\pi\pi^*)\) state. The corresponding ground state energy is also given. The minimum energy profiles have been plotted in Figure S1.

	RASSCF	CASPT2		
	A.E.	A.E.	R.E.	
\(S_0\)				
Root1 \((S_0)\)	-752.774409	-755.10244	0.00	
Root2 [\(S_{\text{CT}}(1\pi\pi^*)\)]	-752.635555	-754.98985	70.7	
Path\(-S_{\text{CT}}(1\pi\pi^*)\)-1				
Root1 \((S_0)\)	-752.772899	-755.10153	0.6	
Root2 [\(S_{\text{CT}}(1\pi\pi^*)\)]	-752.645085	-754.99681	66.3	
Path\(-S_{\text{CT}}(1\pi\pi^*)\)-2				
Root1 \((S_0)\)	-752.765899	-755.09560	4.3	
Root2 [\(S_{\text{CT}}(1\pi\pi^*)\)]	-752.653937	-755.00263	62.6	
Path\(-S_{\text{CT}}(1\pi\pi^*)\)-3				
Root1 \((S_0)\)	-752.753698	-755.08449	11.3	
Root2 [\(S_{\text{CT}}(1\pi\pi^*)\)]	-752.657211	-755.00376	61.9	
Path\(-S_{\text{CT}}(1\pi\pi^*)\)-4				
Root1 \((S_0)\)	-752.751712	-755.08279	12.3	
Root2 [\(S_{\text{CT}}(1\pi\pi^*)\)]	-752.658358	-755.00395	61.8	
Path\(-S_{\text{CT}}(1\pi\pi^*)\)-5				
Root1 \((S_0)\)	-752.749751	-755.08122	13.3	
Root2 [\(S_{\text{CT}}(1\pi\pi^*)\)]	-752.658503	-755.00384	61.9	
Path\(-S_{\text{CT}}(1\pi\pi^*)\)-6				
Root1 \((S_0)\)	-752.750324	-755.08158	13.1	
Root2 [\(S_{\text{CT}}(1\pi\pi^*)\)]	-752.658384	-755.00383	61.9	
Path\(-S_{\text{CT}}(1\pi\pi^*)\)-7				
Root1 \((S_0)\)	-752.747967	-755.07975	14.2	
Root2 [\(S_{\text{CT}}(1\pi\pi^*)\)]	-752.658261	-755.00374	61.9	
Path	$\text{S}_{CT}(\pi\pi')$-8			
-------	--------------------------	-----	-----	----
Root1(S_0)	-752.747386	-755.07957	14.4	
Root2 [$S_{CT}(\pi\pi')$]	-752.658136	-755.00395	61.8	

Path	$\text{S}_{CT}(\pi\pi')$-9		
Root1(S_0)	-752.746973	-755.07911	14.6
Root2 [$S_{CT}(\pi\pi')$]	-752.658402	-755.00364	61.8

Path	$\text{S}_{CT}(\pi\pi')$-10			
Root1(S_0)	-752.747312	-755.07940	14.6	
Root2 [$S_{CT}(\pi\pi')$]	-752.658153	-755.00386	61.9	

Path	$\text{S}_{CT}(\pi\pi')$-11			
Root1(S_0)	-752.747361	-755.07946	14.4	
Root2 [$S_{CT}(\pi\pi')$]	-752.658116	-755.00387	61.9	

Path	$\text{S}_{CT}(\pi\pi')$-12			
Root1(S_0)	-752.747884	-755.07981	14.2	
Root2 [$S_{CT}(\pi\pi')$]	-752.657514	-755.00335	62.2	

Path	$\text{S}_{CT}(\pi\pi')$-13			
Root1(S_0)	-752.747934	-755.07997	14.1	
Root2 [$S_{CT}(\pi\pi')$]	-752.658076	-755.00380	61.9	

Path	$\text{S}_{CT}(\pi\pi')$-14			
Root1(S_0)	-752.747388	-755.07942	14.4	
Root2 [$S_{CT}(\pi\pi')$]	-752.658273	-755.00384	61.9	

Path	$\text{S}_{CT}(\pi\pi')$-15			
Root1(S_0)	-752.746823	-755.07891	14.8	
Root2 [$S_{CT}(\pi\pi')$]	-752.658542	-755.00389	61.8	

Path	$\text{S}_{CT}(\pi\pi')$-16			
Root1(S_0)	-752.745208	-755.07751	15.6	
Root2 [$S_{CT}(\pi\pi')$]	-752.659162	-755.00402	61.8	
Path–S_{CT(ππ')}–17				
------------------------------	---------	---------	-----	
Root1(S₀)	-752.763311	-755.07568	16.8	
Root2[S_{CT(ππ')}]	-752.662832	-755.00690	60.0	

Path–S_{CT(ππ')}–18			
Root1(S₀)	-752.762518	-755.07511	17.2
Root2[S_{CT(ππ')}]	-752.663646	-755.00763	59.5

Path–S_{CT(ππ')}–19			
Root1(S₀)	-752.740625	-755.07476	17.4
Root2[S_{CT(ππ')}]	-752.664031	-755.01124	58.5

Path–S_{CT(ππ')}–20			
Root1(S₀)	-752.737269	-755.07238	18.9
Root2[S_{CT(ππ')}]	-752.665993	-755.01124	57.2

Path–S_{CT(ππ')}–21			
Root1(S₀)	-752.735553	-755.07112	19.6
Root2[S_{CT(ππ')}]	-752.667073	-755.01202	56.7

S_{CT(ππ')}–Min/STC(S₁/T₁)			
Root1(S₀)	-752.758081	-755.05558	29.4
Root2[S_{CT(ππ')}]	-752.701186	-755.01780	53.1
Root1[T₁(³ππ')]	-752.672899	-755.01797	53.0

Path–S_{CT(ππ')}–23			
Root1	-752.733426	-755.04982	33.0
Root2	-752.677971	-755.01602	54.2

Path–S_{CT(ππ')}–24			
Root1(S₀)	-752.723932	-755.04356	36.9
Root2[S_{CT(ππ')}]	-752.677195	-755.01422	55.4

Path–S_{CT(ππ')}–25			
Root1(S₀)	-752.683958	-755.02582	48.1
Root2[S_{CT(ππ')}]	-752.675327	-755.01327	56.0
CI(S_{CT}/S_0)			
------------------	-------	-------	
Root1(S_0)	-752.662018	-755.00295	62.4
Root2[$S_{CT}(1\pi\pi')$]	-752.652155	-754.99734	66.0
Path–$T_1(3\pi\pi')$–1			
Root1[$T_1(3\pi\pi')$]	-752.673463	-755.01621	54.1
Path–$T_1(3\pi\pi')$–2			
Root1[$T_1(3\pi\pi')$]	-752.671521	-755.01424	55.3
Path–$T_1(3\pi\pi')$–3			
Root1[$T_1(3\pi\pi')$]	-752.672098	-755.01542	54.6
$T_1(3\pi\pi')$–Min			
Root1[$T_1(3\pi\pi')$]	-752.672319	-755.01791	53.0
Table S12. Absolute energies (A.E., Hartree) and relative energies (R.E., kcal mol$^{-1}$) for meta-Br-PPPD along the relaxation pathway in $S_{CT}(1\pi\pi^*)$ and $T_1(3\pi\pi^*)$ state. The corresponding ground state energy is also given. The minimum energy profiles have been plotted in Figure S1.

Path		RASSCF	CASPT2
	A.E.	A.E.	R.E.
S_0			
Root1(S_0)	-752.771747	-755.10032	0.00
Root2 [$S_{CT}(1\pi\pi^*)$]	-752.633401	-754.98759	70.7
Path $-S_{CT}(1\pi\pi^*)-1$			
Root1(S_0)	-752.771536	-755.10027	0.1
Root2 [$S_{CT}(1\pi\pi^*)$]	-752.638583	-754.99145	68.3
Path $-S_{CT}(1\pi\pi^*)-2$			
Root1(S_0)	-752.770612	-755.09949	0.5
Root2 [$S_{CT}(1\pi\pi^*)$]	-752.643138	-754.99466	66.3
Path $-S_{CT}(1\pi\pi^*)-3$			
Root1(S_0)	-752.768370	-755.09723	1.9
Root2 [$S_{CT}(1\pi\pi^*)$]	-752.648409	-754.99781	64.3
Path $-S_{CT}(1\pi\pi^*)-4$			
Root1(S_0)	-752.765939	-755.09503	3.3
Root2 [$S_{CT}(1\pi\pi^*)$]	-752.651404	-754.99974	63.1
Path $-S_{CT}(1\pi\pi^*)-5$			
Root1(S_0)	-752.762874	-755.09229	5.0
Root2 [$S_{CT}(1\pi\pi^*)$]	-752.653740	-755.00109	62.3
Path $-S_{CT}(1\pi\pi^*)-6$			
Root1(S_0)	-752.758186	-755.08800	7.7
Root2 [$S_{CT}(1\pi\pi^*)$]	-752.655935	-755.00198	61.7
Path $-S_{CT}(1\pi\pi^*)-7$			
Root1(S_0)	-752.752110	-755.08262	11.1
Root2 [$S_{CT}(1\pi\pi^*)$]	-752.657156	-755.00233	61.5
Path $\text{S}_{\text{CT}}(\pi\pi^*)$			
---	---	---	
Root1(S_0)	-752.745906	-755.07744	14.4
Root2 [S_{\text{CT}}(\pi\pi^*)]	-752.657955	-755.00256	61.3

Path $\text{S}_{\text{CT}}(\pi\pi^*)$			
Root1(S_0)	-752.745616	-755.07733	14.4
Root2 [S_{\text{CT}}(\pi\pi^*)]	-752.658362	-755.00299	61.3

Path $\text{S}_{\text{CT}}(\pi\pi^*)$			
Root1(S_0)	-752.744845	-755.07698	14.6
Root2 [S_{\text{CT}}(\pi\pi^*)]	-752.659472	-755.00410	60.4

Path $\text{S}_{\text{CT}}(\pi\pi^*)$			
Root1(S_0)	-752.744319	-755.07672	14.8
Root2 [S_{\text{CT}}(\pi\pi^*)]	-752.660146	-755.00477	60.0

Path $\text{S}_{\text{CT}}(\pi\pi^*)$			
Root1(S_0)	-752.743671	-755.07634	15.0
Root2 [S_{\text{CT}}(\pi\pi^*)]	-752.660867	-755.00545	59.5

Path $\text{S}_{\text{CT}}(\pi\pi^*)$			
Root1(S_0)	-752.742954	-755.07593	15.3
Root2 [S_{\text{CT}}(\pi\pi^*)]	-752.661635	-755.00618	59.1

Path $\text{S}_{\text{CT}}(\pi\pi^*)$			
Root1(S_0)	-752.742137	-755.07547	15.6
Root2 [S_{\text{CT}}(\pi\pi^*)]	-752.662433	-755.00695	58.6

Path $\text{S}_{\text{CT}}(\pi\pi^*)$			
Root1(S_0)	-752.741188	-755.07485	16.0
Root2 [S_{\text{CT}}(\pi\pi^*)]	-752.663260	-755.00772	58.1
Path−$S_{CT}(\pi^\pi^\ast)$−17			
-------------------------	---	---	---
Root1(S_0)	-752.740343	-755.07454	16.2
Root2[$S_{CT}(\pi^\pi^\ast)$]	-752.663924	-755.00868	57.5

Path−$S_{CT}(\pi^\pi^\ast)$−18			
Root1(S_0)	-752.739315	-755.07368	16.7
Root2[$S_{CT}(\pi^\pi^\ast)$]	-752.664711	-755.00921	57.5

Path−$S_{CT}(\pi^\pi^\ast)$−19			
Root1(S_0)	-752.737096	-755.07218	17.7
Root2[$S_{CT}(\pi^\pi^\ast)$]	-752.666127	-755.01069	56.2

Path−$S_{CT}(\pi^\pi^\ast)$−20			
Root1(S_0)	-752.735906	-755.07125	18.2
Root2[$S_{CT}(\pi^\pi^\ast)$]	-752.667089	-755.01133	55.8

Path−$S_{CT}(\pi^\pi^\ast)$−21			
Root1(S_0)	-752.734533	-755.07020	18.9
Root2[$S_{CT}(\pi^\pi^\ast)$]	-752.667906	-755.01198	55.4

Path−$S_{CT}(\pi^\pi^\ast)$−22			
Root1(S_0)	-752.733460	-755.06945	19.4
Root2[$S_{CT}(\pi^\pi^\ast)$]	-752.668519	-755.01259	55.1

Path−$S_{CT}(\pi^\pi^\ast)$−23			
Root1(S_0)	-752.732510	-755.06876	19.8
Root2[$S_{CT}(\pi^\pi^\ast)$]	-752.668869	-755.01296	54.8

$S_{CT}(\pi^\pi^\ast)$−Min / STC (S_1/T_1)			
Root1(S_0)	-752.731441	-755.06791	20.3
Root2[$S_{CT}(\pi^\pi^\ast)$]	-752.669481	-755.01345	54.5
Root1($T_1(2\pi^\pi^\ast)$)	-752.675123	-755.01731	52.1

Path−$S_{CT}(\pi^\pi^\ast)$−25			
Root1(S_0)	-752.752287	-755.06013	25.2
Root2[$S_{CT}(\pi^\pi^\ast)$]	-752.678711	-755.00820	57.8
Path $- S_{CT}(1\pi\pi^*)$	26		
-----------------------------	----		
Root1(S_0)	-752.731478	-755.04213	36.5
Root2[$S_{CT}(1\pi\pi^*)]$	-752.671678	-755.00092	62.4

Path $- S_{CT}(1\pi\pi^*)$	27		
Root1(S_0)	-752.672663	-754.98988	69.2
Root2[$S_{CT}(1\pi\pi^*)]$	-752.654809	-754.98391	73.0

CI(S_{CT}/S_0)
Root1(S_0)
Root2[$S_{CT}(1\pi\pi^*)$]

Path $- T_1(3\pi\pi^*)$	1		
Root1[$T_1(3\pi\pi^*)$]	-752.674743	-755.01662	52.5

Path $- T_1(3\pi\pi^*)$	2		
Root1[$T_1(3\pi\pi^*)$]	-752.671485	-755.01306	54.8

Path $- T_1(3\pi\pi^*)$	3		
Root1[$T_1(3\pi\pi^*)$]	-752.667623	-755.01570	53.1

$T_1(3\pi\pi^*)$ Min
Root1[$T_1(3\pi\pi^*)$]
Table S13. Absolute energies (A.E., Hartree) and relative energies (R.E., kcal mol⁻¹) for complex 1 in the \(7(S_0/F)_0\), \(7(S_1(1\pi\pi^*)/F)_0\) and \(9(3\pi\pi^*/F)_0\) states along the relaxation pathway obtained by using 14 roots state-averaged CASPT2 calculations. The corresponding energy profiles are plotted in Figure 3 of the main article.

Critical points	Complex 1	RASSCF	CASPT2	
		A.E.	A.E.	R.E.
\(7(S_0/F)_0\)	\(7(S_0/F)_0\)	\(-3398.152917\)	\(-3404.73065\)	0.0
Root1	\(-3398.152138\)	\(-3404.72962\)	0.6	
Root2	\(-3398.148891\)	\(-3404.72560\)	3.2	
Root3	\(-3398.148235\)	\(-3404.72458\)	3.8	
Root4	\(-3398.146006\)	\(-3404.72607\)	4.1	
Root5	\(-3398.147147\)	\(-3404.72547\)	4.5	
Root6	\(-3398.146553\)	\(-3404.72274\)	5.0	
Root7	\(-3398.034092\)	\(-3404.62686\)	65.1	
Root8	\(-3398.033465\)	\(-3404.62686\)		
Root9	\(-3398.030349\)	\(-3404.62686\)		
Root10	\(-3398.029675\)	\(-3404.62686\)		
Root11	\(-3398.029495\)	\(-3404.62686\)		
Root12	\(-3398.026611\)	\(-3404.62686\)		
Root13	\(-3398.027966\)	\(-3404.62686\)		
Root14	\(-3398.027966\)	\(-3404.62686\)		

Path \(7(S_1/F)_0\)\(\rightarrow\)1

Critical points	Complex 1	RASSCF	CASPT2	
		A.E.	A.E.	R.E.
Root1	\(-3398.154954\)	\(-3404.73065\)	0.0	
Root2	\(-3398.154183\)	\(-3404.72962\)	0.6	
Root3	\(-3398.150936\)	\(-3404.72560\)	3.2	
Root4	\(-3398.150312\)	\(-3404.72458\)	3.8	
Root5	\(-3398.150052\)	\(-3404.72407\)	4.1	
Root6	\(-3398.148982\)	\(-3404.72274\)	4.5	
Root7	\(-3398.036276\)	\(-3404.62888\)	63.9	
Root8	\(-3398.035619\)	\(-3404.62888\)		
Root9	\(-3398.031861\)	\(-3404.62888\)		
Root10	\(-3398.031622\)	\(-3404.62888\)		
Root11	\(-3398.030534\)	\(-3404.62888\)		
Root12	\(-3398.029967\)	\(-3404.62888\)		
Root13	\(-3398.028611\)	\(-3404.62888\)		
Root14	\(-3398.027966\)	\(-3404.62888\)		

Path \(7(S_1(1\pi\pi^*)/F)_0\)\(\rightarrow\)1

Critical points	Complex 1	RASSCF	CASPT2	
		A.E.	A.E.	R.E.
Root1	\(-3398.128437\)	\(-3404.724216\)	4.0	
Root2	\(-3398.127715\)	\(-3404.724216\)	4.0	
Root3	\(-3398.124367\)	\(-3404.724216\)	4.0	
Root4	\(-3398.123783\)	\(-3404.724216\)	4.0	
Root5	\(-3398.123542\)	\(-3404.724216\)	4.0	
Root6	\(-3398.122457\)	\(-3404.724216\)	4.0	
Root7	\(-3398.121958\)	\(-3404.724216\)	4.0	
Root8	\(-3398.038749\)	\(-3404.62933\)	63.6 (480 nm)	
Root9	\(-3398.038124\)	\(-3404.62933\)	63.6 (480 nm)	
9(3ππ⁻/F)₀⁻¹³				
-----------------	--------	--------	--------	
Root1	-3398.033988	-3404.63173	62.1	
Root2	-3398.033325	-3404.63086	62.6	
Root3	-3398.030120	-3404.62685	65.1	
Root4	-3398.029522	-3404.62576	65.8	
Root5	-3398.029294	-3404.62550	66.0	
Root6	-3398.028161	-3404.62448	66.6	
Root7	-3398.027598	-3404.62373	67.1	
Root8	-3397.981101			
Root9	-3397.980391			
Root10	-3397.977038			
Root11	-3397.976455			
Root12	-3397.976235			
Root13	-3397.975118			
Root14	-3397.974619			

Path 9(3ππ⁻/F)₀⁻¹			
Root1	-3398.039474	-3404.63261	61.5
Root2	-3398.038795		
Root3	-3398.035572		
Root4	-3398.034960		
Root5	-3398.034736		
Root6	-3398.033603		
Root7	-3398.033041		
Root8	-3397.972992		
Root9	-3397.972255		
Root10	-3397.968911		
Root11	-3397.968311		
Root12	-3397.968086		
Root13	-3397.967016		
Root14	-3397.966528		

9(3ππ⁺/F)₀ Min			
Root1	-3398.038773	-3404.63350	61.0
Root2	-3398.038101		
Root3	-3398.034899		
Root4	-3398.034291		
Root5	-3398.034064		
Root6	-3398.032933		
Root7	-3398.032373		
Root8	-3397.972687		
Root9	-3397.971960		
Root10	-3397.968637		
Root11	-3397.968040		
Root12	-3397.967817		
Root13	-3397.966746		
--------	--------------		
Root14	-3397.966261		
Table S14. Absolute energies (A.E., Hartree) and relative energies (R.E., kcal mol$^{-1}$) for complex 1 in the 7(S$_0^*/F$)$_0$ and 5(S$_0^*/D$)$_0$ states along the relaxation pathway obtained by using 7 or 5 roots state-averaged CASPT2 calculations. The corresponding energy profiles are plotted in Figure 3 of the main article.

Critical points	Complex 1	RASSCF	CASPT2	
		A.E.	A.E.	R.E.
7(S$_0^*/F$)$_0$ − Min				
Root1 7(S$_0^*/F$)$_0$	−3398.151722	−3404.73042	0.0	
Root2	−3398.150954			
Root3	−3398.147719			
Root4	−3398.147066			
Root5	−3398.146843			
Root6	−3398.145989			
Root7 7(S$_0^*/F$)$_0$	−3398.145401			
Path 5(S$_0^*/D$)$_0$−1				
Root1 5(S$_0^*/D$)$_0$	−3398.057670	−3404.63514	59.8	
Root2	−3398.057598			
Root3	−3398.057338			
Root4	−3398.056458			
Root5	−3398.056291			
Path 5(S$_0^*/D$)$_0$−2				
Root1 5(S$_0^*/D$)$_0$	−3398.059538	−3404.64025	56.6	
Root2	−3398.059463			
Root3	−3398.059202			
Root4	−3398.058326			
Root5	−3398.058143			
5(S$_0^*/D$)$_0$−4				
Root1 5(S$_0^*/D$)$_0$	−3398.067729	−3404.64687	52.4	
Root2	−3398.067655			
Root3	−3398.067395			
Root4	−3398.066531			
Root5	−3398.066345			
5(S$_0^*/D$)$_0$ − Min				
Root1 7(S$_0^*/F$)$_0$	−3398.173462	−3404.72572	3.0	
Root2 7(S$_0^*/F$)$_1$	−3398.172768	−3404.72484	3.5	
Root3 7(S$_0^*/F$)$_2$	−3398.169483	−3404.72080	6.0	
Root4 7(S$_0^*/F$)$_3$	−3398.168870	−3404.71969	6.7	
Root5 7(S$_0^*/F$)$_4$	−3398.168558	−3404.71913	7.1	
Root6 7(S$_0^*/F$)$_5$	−3398.167533	−3404.71841	7.5	
Root7 7(S$_0^*/F$)$_6$	−3398.166956	−3404.71760	8.0	
Table S15. Absolute energies (A.E., Hartree) and relative energies (R.E., kcal mol⁻¹) for complex 2 along the relaxation pathway in the $^7(S_0/F_0)$ and $^9(3ππ*/F_0)$ states obtained by using 14 roots state–averaged CASPT2 calculations. The corresponding energy profiles are plotted in Figure 3 of the main article.

Critical points	Complex 2	RASSCF	CASPT2	
		A.E.	A.E.	R.E.
$^7(S_0/F_0)$−Min				
Root1 $^7(S_0/F_0)$	-3435.870790	-3442.86191	0.0	
Root2 $^7(S_0/F_4)$	-3435.869498			
Root3 $^7(S_0/F_1)$	-3435.866503			
Root4 $^7(S_0/F_2)$	-3435.865781			
Root5 $^7(S_0/F_3)$	-3435.865558			
Root6 $^7(S_0/F_5)$	-3435.864786			
Root7 $^7(S_0/F_9)$	-3435.864288			
Root8 $^7(S_1(1ππ*/F_0)$	-3435.753031	-3442.76348	61.8 (463 nm)	
Root9	-3435.751881			
Root10	-3435.749028			
Root11	-3435.748298			
Root12	-3435.746088			
Root13	-3435.747319			
Root14	-3435.746762			
$^9(3ππ*/F_0)$−Min				
Root1 $^9(3ππ*/F_0)$	-3435.758215	-3442.76714	59.5	
Root2	-3435.756961			
Root3	-3435.754026			
Root4	-3435.753344			
Root5	-3435.753068			
Root6	-3435.752128			
Root7	-3435.751632			
Root8	-3435.701840			
Root9	-3435.700517			
Root10	-3435.697471			
Root11	-3435.696767			
Root12	-3435.696570			
Root13	-3435.695614			
Root14	-3435.695192			
Table S16. Absolute energies (A.E., Hartree) and relative energies (R.E., kcal mol\(^{-1}\)) for complex 3 in the \(^7\langle S_0/F\rangle_0\), \(^7\langle S_1(1\pi\pi^*)/F\rangle_0\) and \(^9\langle 3\pi\pi^*/F\rangle_0\) states along the relaxation pathway obtained by using 14 roots state-averaged CASPT2 calculations. The corresponding energy profiles are plotted in Figure 3 of the main article.

Critical points	Complex 3	RASSCF	CASPT2	
	\(^7\langle S_0/F\rangle_0\) \(-\) Min			
Root1	\(^7\langle S_0/F_0\rangle\)	-3267.264125	-3273.94838	0.0
Root2	\(^7\langle S_0/F_4\rangle\)	-3267.263150	-3273.94736	0.6
Root3	\(^7\langle S_0/F_1\rangle\)	-3267.261949	-3273.94546	1.8
Root4	\(^7\langle S_0/F_2\rangle\)	-3267.260896	-3273.94444	2.5
Root5	\(^7\langle S_0/F_3\rangle\)	-3267.260313	-3273.94349	3.1
Root6	\(^7\langle S_0/F_5\rangle\)	-3267.260026	-3273.94326	3.2
Root7	\(^7\langle S_0/F_6\rangle\)	-3267.259969	-3273.94303	3.4
Root8		-3267.142934		
Root9	\(^7\langle S_1(1\pi\pi^*)/F\rangle_0\)	-3267.141990	-3273.84819	62.9 (454nm)
Root10		-3267.140855		
Root11		-3267.139796		
Root12		-3267.139142		
Root13		-3267.138834		
Root14		-3267.138679		
	\(^7\langle S_1(1\pi\pi^*)/F\rangle_0\) \(-\) Min			
Root1		-3267.234669		
Root2		-3267.233650		
Root3		-3267.232556		
Root4		-3267.231448		
Root5		-3267.230846		
Root6		-3267.230493		
Root7		-3267.230416		
Root8		-3267.144196		
Root9	\(^7\langle S_1(1\pi\pi^*)/F_0\rangle\)	-3267.143216	-3273.85363	59.5
Root10		-3267.142128		
Root11		-3267.141095		
Root12		-3267.140522		
Root13		-3267.139957		
Root14		-3267.139647		
	\(^9\langle 3\pi\pi^*/F\rangle_0\) \(-\) Min			
Root1	\(^9\langle 3\pi\pi^*/F_0\rangle\)	-3267.138964	-3273.85105	61.1
Root2	\(^9\langle 3\pi\pi^*/F_1\rangle\)	-3267.137973	-3273.84993	61.8
Root3	\(^9\langle 3\pi\pi^*/F_2\rangle\)	-3267.136892	-3273.84828	62.8
Root4	\(^9\langle 3\pi\pi^*/F_3\rangle\)	-3267.135872	-3273.84716	63.5
Root5	\(^9\langle 3\pi\pi^*/F_4\rangle\)	-3267.135322	-3273.84645	64.0
Root6	\(^9\langle 3\pi\pi^*/F_5\rangle\)	-3267.134732	-3273.84578	64.4
Root7	\(^9\langle 3\pi\pi^*/F_6\rangle\)	-3267.134432	-3273.84548	64.6
Root8		-3267.068724		
Root9		-3267.067709		
Root	Value			
-------	-------------			
Root 10	-3267.066618			
Root 11	-3267.065510			
Root 12	-3267.064900			
Root 13	-3267.064553			
Root 14	-3267.064495			

$\frac{(\beta \pi \pi^* / F)_{0-13} - \text{Min}}{\beta \pi \pi^*/F}$	Value		
Root 1 $\frac{(\beta \pi \pi^* / F)_{0}}{\beta \pi \pi^*/F}$	-3267.147006	-3273.85792	56.8
Root 2	-3267.145978		
Root 3	-3267.145044		
Root 4	-3267.144003		
Root 5	-3267.143247		
Root 6	-3267.143095		
Root 7	-3267.142854		
Root 8	-3267.089798		
Root 9	-3267.088708		
Root 10	-3267.087652		
Root 11	-3267.086628		
Root 12	-3267.085992		
Root 13	-3267.085752		
Root 14	-3267.085679		
Table S17. Absolute energies (A.E., Hartree) and relative energies (R.E., kcal mol\(^{-1}\)) for the optimized structures of complex 4 along the relaxation pathway in the \(^7(S_0/F)\) and \(^9(3\pi\pi^*/F)\) states obtained by using 14 roots state-averaged CASPT2 calculations. The corresponding energy profiles are plotted in Figure 3 of the main article.

Critical points	Complex 4	RASSCF	CASPT2	
		A.E.	A.E.	R.E.
\(^7(S_0/F)\) 0−Min				
Root1 \(^7(S_0/F_0)\)	-3583.513484	-3590.61563	0.0	
Root2 \(^7(S_0/F_4)\)	-3583.512612			
Root3 \(^7(S_0/F_1)\)	-3583.511040			
Root4 \(^7(S_0/F_2)\)	-3583.510771			
Root5 \(^7(S_0/F_3)\)	-3583.510463			
Root6 \(^7(S_0/F_5)\)	-3583.510447			
Root7 \(^7(S_0/F_0)\)	-3583.509895			
Root8 \(^7(S_1(1\pi\pi^*)/F)\)	-3583.393478	-3590.51635	62.3 (459 nm)	
Root9	-3583.392587			
Root10	-3583.390999			
Root11	-3583.390727			
Root12	-3583.390506			
Root13	-3583.390407			
Root14	-3583.389896			
\(^9(3\pi\pi^*/F)\) 0−Min				
Root1 \(^9(3\pi\pi^*/F_0)\)	-3583.394500	-3590.52722	55.5	
Root2	-3583.393558			
Root3	-3583.391930			
Root4	-3583.391614			
Root5	-3583.391394			
Root6	-3583.391055			
Root7	-3583.390553			
Root8	-3583.326571			
Root9	-3583.325658			
Root10	-3583.324075			
Root11	-3583.323744			
Root12	-3583.323465			
Root13	-3583.323201			
Root14	-3583.322720			
3.9 Cartesian Coordinates

a) antenna PPPD

\(S_0 \) - Min

Element	X	Y	Z
N	3.619019594	-1.993887644	0.041572265
O	1.504822465	2.236726756	-0.244204849
O	-1.499185457	2.259251879	-0.19629320
H	1.610135278	-1.791768839	-0.151467536
H	3.783141055	1.842924387	0.12367590
H	5.660961925	-1.994679042	0.227780584
H	5.870127292	0.467054084	0.28993873
H	-0.013312687	-0.650519483	0.154905892
H	-1.620597737	-1.691510816	-0.68486714
H	-3.679574357	1.821221731	0.561096803
H	-3.698733263	-2.971772550	-0.54072459
H	-5.779693488	0.539627865	0.72651170
H	-5.800662882	-1.872780229	0.17354975
C	1.268929239	1.041749101	-0.10925965
C	2.514526185	0.15206963	0.007934595
C	2.525312352	1.243855334	-0.039883041
C	3.748243038	0.771104551	0.107600203
C	4.789281507	-1.365089894	0.16125944
C	4.903238933	0.004057472	0.196431489
C	-0.01185897	0.401418885	-0.037043879
C	-1.246336080	1.060844621	-0.10321698
C	-2.491343056	0.167271912	-0.031259315
C	-2.516306321	-1.192782538	-0.350730034
C	-3.697662880	0.770734434	0.344479985
C	-3.702501872	-1.926497424	-0.280762165
C	-4.864943933	0.049277747	0.42689135
C	-4.884070826	-1.310092122	0.116017699

\(S_1 (\pi \pi^+)^- \) - Min

Element	X	Y	Z	
N	3.514335253	-2.002461147	0.063081003	
O	1.424628103	2.300000167	-0.237001016	
O	-1.455375106	2.283792167	-0.1991220016	
H	1.539680111	-1.744473125	-0.112082006	
H	3.922877282	1.850801133	0.089101008	
H	5.576259401	-2.087200152	0.237265015	
H	5.886474424	0.408084032	0.26002120	
H	0.019412000	-0.625234043	0.167632012	
H	-1.594215113	-1.659471820	-0.689989050	
H	-3.73483268	1.814352129	0.570658041	
H	-3.635295261	-2.970222216	-0.546623038	
H	-5.799236416	0.471557033	0.727956052	
H	-5.756357417	-1.926964138	0.168907012	
C	1.358941098	1.091430076	-0.11091009	
C	2.514593178	0.221986014	-0.02912002	
C	2.466794180	-1.213570086	-0.017794003	
C	3.813619273	0.788196055	0.088102006	
C	4.730743241	-1.422612102	0.167774012	
C	4.904319354	-0.017678002	0.180134015	
C	0.018294001	0.440075029	-0.217681003	
C	-1.285528095	1.088138081	-0.107854007	
C	-2.500661680	0.165974015	-0.033080002	
C	-2.493247179	-1.17653082	-0.35498023	
C	-3.720198268	0.765970548	0.346516026	
---	---	---	---	---
C	-3.661324262	-1.932475138	-0.285689022	
C	-4.875074352	0.008147001	0.425684033	
C	-4.854035350	-1.342039097	0.111883009	

\[T_1 (^{13}\text{C}-\text{N})-\text{Min} \]

N	3.783596274	-1.767410127	0.044313001	
O	1.305066092	2.343248168	-0.123877007	
O	-1.569836113	2.166771545	-0.144050011	
H	0.016459000	-0.670929049	0.017056002	
H	1.768451125	-1.740255127	-0.043463005	
H	3.710350269	2.071470418	0.001494000	
H	5.838398422	-1.631691117	0.123605010	
H	5.851897422	0.846762060	0.096988008	
H	-1.525728109	-1.892595134	-0.229050017	
H	-3.557702547	-3.227682300	-0.124964011	
H	-3.820772737	1.680513122	0.121802008	
H	-5.766602415	-2.130798155	0.105750007	
H	-5.884761424	0.342701023	0.227310007	
C	1.251032088	-0.919803107	-0.075216005	
C	2.501536180	0.304440021	-0.021066001	
C	2.639419191	-1.110060079	-0.006485006	
C	3.723594268	0.999674070	0.014769004	
C	4.918027352	0.308999021	0.067272007	
C	4.921754353	-1.068340777	0.082763004	
C	-0.125920000	0.396283030	-0.056880006	
C	-1.325077093	0.964965070	-0.105075006	
C	-2.461678179	-1.379689101	-0.120741008	
C	-2.513787183	0.022690011	-0.048910006	
C	-3.624163260	-2.149331517	-0.065299007	
C	-3.783596274	0.999674070	0.014769004	
C	4.918027352	0.308999021	0.067272007	

\[\text{Cl}(\text{S}_1/\text{S}_0) \]

N	4.328666309	1.622549115	0.592687044		
O	1.057947074	-1.437494106	-0.685608050		
O	-0.895157065	-0.145548012	1.823549129		
H	2.402025171	2.160202153	0.711078049		
C	3.178737228	-1.765416129	-0.675284051		
C	5.996634010	-1.276076090	-0.426458029		
C	6.250178450	0.960575068	0.420315032		
C	-0.292122018	0.802974060	-1.344250999		
C	-2.588574185	2.183549157	-0.799140060		
C	-2.931445211	-1.616608116	1.146326083		
C	-4.937498355	2.029681414	-1.480507109		
C	-5.263785380	-1.778466127	0.431315029		
H	-6.300826252	0.046681003	-0.05562061		
C	1.230137091	-0.286360200	-0.231001014		
C	2.542286183	0.144274012	-0.017265000		
C	3.051048218	1.349361010	0.444459030		
C	3.529674255	-0.827685061	-0.321572023		
C	4.853653348	-0.546924039	-0.179227011		
C	5.226389376	0.697007052	0.286873019		
C	-0.186260002	0.519575037	-0.295825021		
C	-1.124060708	0.257740101	0.671815050		
C	-2.571422185	0.296547020	0.252167019		
C	-3.150852227	1.312786094	-0.508808037		
C	-3.363727243	-0.806920056	0.583861039		
-----	-----	-----	-----	-----	-----
C	-4.497702324	1.227312089	-0.906723065		
C	-4.687172338	-0.900238066	0.179021013		
C	-5.269380381	0.119984009	-0.566866041		

STC(S1/T1)

N	4.336544314	1.636199120	0.596264044		
O	1.018344073	-1.463440105	-0.694250049		
C	-0.877543062	-0.137983010	1.817007133		
H	2.378379171	2.158334158	0.709171053		
H	3.191593229	-1.775158129	-0.677196047		
H	5.622531406	-1.275324092	-0.566866041		
H	-0.348116025	0.885916064	-1.266237092		
H	-2.571150188	2.173001568	-0.795785055		
H	-2.925502212	-1.602411115	1.158834081		
H	-4.924815352	2.033249145	-1.480227105		
H	-5.258578376	-1.768588129	0.445755033		
H	-6.288977451	0.054620003	-0.881394063		
C	1.210648085	-0.290555019	0.531479038		
C	2.553855183	0.133761012	-0.020769000		
C	3.049197220	1.363124096	0.445920303		
C	3.538947255	-0.829373062	-0.322479023		
C	4.868802348	-0.545010400	-0.175464010		
C	5.228785374	0.711562051	0.292356021		
C	-0.023558003	0.531479038	-0.278323018		
C	-1.112783082	0.249075016	0.579755048		
C	-2.564512183	-0.288894021	0.240349015		
C	-3.149308226	1.311338096	-0.511138036		
C	-3.363201241	-0.806341056	0.584908043		
C	-4.490778325	1.232842086	-0.904850686		
C	-4.680031334	-0.89896062	0.182529013		
C	-5.260437381	0.124101008	-0.665982040		

Complex 1

S0/F0 - Min

N	10.103333407	25.292269148	-1.408298153		
C	6.319031358	24.552722077	6.488052932		
C	6.377221609	23.150770781	6.451621851		
C	6.763047011	25.275791950	5.418998851		
C	6.883983587	22.50357861	5.356216034		
C	7.289075545	24.619299862	4.289904658		
C	7.359172480	23.235285928	4.243074567		
C	7.90120718	22.445187350	3.069957023		
C	8.41586375	23.115107684	1.957075413		
C	8.975769298	22.437534582	0.850616608		
C	9.534368553	23.23165006	-0.31096883		
C	9.610651459	24.602171559	-0.36550347		
C	10.01120633	22.521906905	-1.42625047		
C	10.513477271	23.207271851	-2.50024940		
C	10.536096556	24.602182814	-2.443790379		
O	7.826459693	21.210129718	3.184425555		
O	9.062124135	21.211580193	0.727682827		
H	5.919972794	25.051606069	7.35352708		
H	6.021143488	22.58168348	7.29213846		
H	6.722440426	26.35037080	5.43190082		
H	6.914587940	21.438932292	5.310608761		
H	7.625523905	25.216064645	3.465225048		
S_{i}/F_{0}-Min

N 10.086076021 25.321637740 -1.454680010
C 6.317484367 24.656037670 6.512563903
C 6.345973455 23.248303688 6.503011423
C 6.801202649 25.342852022 5.408522930
C 6.838456643 22.55908785 5.433838547
C 7.307902105 24.678240127 4.30978313
C 7.34308048 23.251723073 4.280281426
C 7.837518788 22.46219974 3.19338669
C 8.434143641 23.17405921 1.943049935
C 8.97086696 22.489036086 0.807488143
C 9.535974818 23.26398143 -0.353547490
C 9.604629613 24.653975122 -0.423742423
C 10.020188056 22.549759445 -1.458552100
C 10.521190151 23.24571206 -2.539203545
C 10.529936028 24.630926202 -2.489700792
O 7.806867641 21.259650681 3.196617592
O 9.084153361 21.27052696 0.706299944
H 5.928952593 25.18888321 7.361361231
H 5.975483821 22.706318196 7.357019210
H 6.783086855 26.419920497 5.404586549
H 6.848017077 21.483275584 5.431849719
H 7.662786157 25.261672083 3.481825889
H 8.435582987 24.239881272 1.922584995
H 9.262910864 25.268237870 0.387801202
H 10.01082563 21.473662571 -1.445754155
H 10.897163588 22.732680928 -3.405075439
H 10.912161035 25.205625418 -3.314410030
N 2.307585188 21.07897165 -0.924932467
N 6.513460636 18.595894988 3.560730805
N 10.375071131 18.594666323 0.346781080
N 14.562586246 21.064726363 4.885380312
C 2.435500077 22.30937917 -0.375397393
C 3.305145671 20.208901233 -0.650749388
C 3.506452041 22.700831983 0.41620092
C	4.265192244	17.721876935	4.986475334
C	4.375036423	19.044178784	4.585140286
C	4.417011530	20.504237193	0.138737405
C	4.511906822	21.78620852	0.674283736
C	4.731236647	13.81362071	0.08448109
C	4.925056943	15.19223995	0.351460690
C	5.281120353	16.83682176	4.658914918
C	5.340443573	18.12993331	0.200391301
C	5.517471434	19.49782753	0.41847704
C	5.49870002	19.44036399	3.876477074
C	5.770764728	13.04459725	-0.414440017
C	5.61482177	17.75319771	0.12289796
C	5.37350628	17.30643855	3.951131103
C	5.396168409	17.23574858	0.41866804
C	7.007937638	13.62274680	-0.646595165
C	7.20391860	14.97071483	-0.373534075
C	9.660070404	14.96153805	4.284762055
C	9.861678499	13.61577121	4.59379758
C	10.47627920	17.22785021	3.501461112
C	10.52268456	17.30191058	-0.042600611
C	10.706040549	15.74739108	3.79565068
C	11.099102604	13.03531713	4.31540921
C	11.39106652	19.43525177	0.022013943
C	11.36545575	19.49197701	3.48631541
C	11.53207052	18.12311156	3.727631002
C	11.59157278	16.83185314	-0.76182968
C	11.94614894	15.15493064	3.56486161
C	12.139658183	13.80699529	3.81961629
C	12.378169815	21.77894687	3.26270681
C	12.465219837	20.49470925	3.79576315
C	12.50534115	19.03632213	-0.69801493
C	12.606305816	17.71267405	-1.10048152
C	13.379391677	22.69283079	3.536298067
C	13.567326541	20.19657973	4.59754480
C	14.441319866	22.29821822	4.339440014
O	6.611200108	19.97914337	0.92178999
O	7.568103951	17.57172684	0.83979535
O	9.306908619	17.56689471	3.073260063
O	10.28764316	19.97462078	2.967818554
H	1.632143882	23.01020747	-0.59061312
H	3.193886666	19.22757098	-1.10277674
H	3.396950716	17.38432012	5.54172920
H	3.547641796	23.70298240	0.62129977
H	3.603204571	19.76711633	4.81164252
H	3.765181023	13.36218314	0.276111306
H	4.10891323	15.74732960	0.749777073
H	4.413890903	17.76250508	-0.190830148
H	5.230939983	15.70524701	4.94467762
H	5.367655793	22.04974540	1.28539452
H	5.615469525	20.46328565	3.536404056
H	5.616557524	11.99342479	-0.62493427
H	7.188691399	16.64860009	3.667744775
H	7.821931523	13.03152536	-1.040912218
H	8.167440276	15.42300090	-0.560669942
H	8.702095552	15.41313165	4.473161554
H	9.046941929	13.01896198	4.93841397
H	9.691732786	16.64916360	0.249724496
H	11.252856223	11.98277647	4.518550817
H	11.285198107	20.455951547	0.371021515
	Coordinates	Value	
	X	Y	Z
H	11.528263844	22.043292854	2.644536907
H	11.636523011	15.789515480	-1.046977150
H	12.450595632	17.754213178	4.135977839
H	12.762926639	15.745320865	3.607995353
H	13.279772767	19.754761974	-0.929925471
H	13.343270211	23.696571239	3.136813652
H	13.488100192	17.372038050	-1.663870603
H	13.667126608	19.214124623	5.048744685
H	15.241764835	22.997827290	4.567642781
Eu	8.439468937	19.299507738	1.958111346
T_{1f}/F_{0-Min}			
N	10.021095717	25.372231519	-1.408371196
C	6.357284454	24.585620328	6.531679309
C	6.390771097	23.179028534	6.479718014
C	6.820633170	25.31247723	5.457993652
C	6.882202117	22.537580740	5.372252511
C	7.326994630	24.648541826	4.325750411
C	7.368537129	23.277826968	4.267726596
C	7.904960370	22.490979754	3.080921581
C	8.46719838	23.12300332	1.935630823
C	9.004472391	22.458132606	0.819002718
C	9.528027449	23.270707640	-0.346198680
C	9.549263025	24.650256572	-0.381357458
C	10.042212440	22.602287648	-1.477951807
C	10.52790129	23.330990480	-2.528534226
C	10.486687737	24.72944752	-2.440165790
O	7.789916231	21.277907507	3.221008361
O	9.103645578	21.240025645	0.682870807
C	5.971230331	25.084561506	7.402863761
C	6.028023586	22.608079795	7.316607383
C	6.800414334	26.387756099	5.478060625
C	6.892240366	21.465144129	5.332873597
H	7.680607590	25.239800494	3.503289144
C	8.474181117	24.191637828	1.938577541
C	9.180082226	25.230325566	0.439532247
H	10.057018830	21.530364183	-1.48558466
H	10.919026173	22.85850177	-3.40695277
H	10.85798721	25.33027193	-3.25308786
C	2.330581553	21.060878704	-1.00802277
N	6.505493939	18.11647373	3.582562388
C	10.385956248	18.577307288	0.352026068
N	14.540852915	21.070064629	4.916856929
C	2.450435168	22.290872025	-0.469332530
C	3.323499078	20.194735804	-0.708933405
C	3.508541916	22.696821464	0.334889883
C	4.260497018	17.736271651	5.016622985
C	4.368708522	19.057797664	4.611978442
C	4.422283395	20.497665283	0.095916811
C	4.509553497	21.784873055	0.619440214
C	4.723018366	13.810497118	0.126664941
C	4.922150543	15.157830534	0.37913379
C	5.275091998	16.853198465	4.684761269
C	5.345994383	18.125988925	0.181565471
C	5.516723140	19.494439709	0.421019219
C	5.489477053	19.455622483	3.897619657
C	5.755273519	13.037456604	-0.384174142
C	6.159874987	15.748294107	0.131323256
Atom	X	Y	Z
------	-----------	-----------	-----------
C	6.369358522	17.321199469	3.973571854
C	6.395229363	17.228717167	0.421881889
C	6.972503957	13.624732737	4.579334196
C	10.477635398	17.27402754	3.497352632
C	10.593308080	17.289521437	-0.047391744
C	10.70607129	15.747786319	3.794614073
C	11.051765098	17.228717167	0.421881889
C	11.354398754	19.492252063	3.503737309
C	11.533211778	18.123200865	3.724541924
O	6.591024966	19.972222729	0.950211714
O	7.562385302	17.56396125	3.012968274
H	1.651082828	22.996288342	-0.705364660
O	8.714784551	15.423824992	4.502779589
H	9.062522235	13.032341302	4.985268871
H	9.708176747	16.626143716	0.245915452
Eu	8.445893947	19.306111061	1.952377637
Element	X	Y	Z
---------	---------	---------	---------
C	11.531708460	18.121342331	3.726507156
C	11.583911764	16.825310495	3.726507156
C	11.946538771	15.150206804	3.570944820
C	12.140409688	13.801986036	3.832939386
C	12.371650870	21.774720017	3.247422080
C	12.461404506	20.493386451	3.785469128
O	6.614383945	19.973622678	0.920643131
O	7.567026895	17.76623109	0.840913317
O	8.162154202	15.412873490	0.290290859
H	1.637800109	23.006970912	-0.595736126
H	3.197643609	19.220413266	-1.098051574
H	3.557735275	23.703933395	0.808373535
H	3.608964485	19.767340478	4.807906686
H	3.760253308	13.356132747	0.290290859
H	4.107763806	15.744911226	0.757503981
H	4.414798828	17.760245482	-1.095634455
H	5.23909730	15.795637336	4.948859876
H	5.379531250	22.047135231	1.273571910
H	5.627654324	20.460409585	3.525356119
H	5.607740653	11.986088820	-0.611363646
H	7.191717562	16.649470183	3.665985821
H	7.813179408	13.020766206	-1.036050444
H	8.162771949	15.412883490	-0.561325248
H	8.702884280	15.412754106	4.479262349
H	9.04864705	13.021166343	4.956707647
H	9.685514064	16.643574084	0.252553462
H	11.254727642	11.983719569	4.543461032
H	11.26954025	20.450165285	0.369128564
H	11.516826774	22.03829984	2.634736062
H	11.629204040	15.78311965	-1.042094072
H	12.452344008	17.755458401	-4.312749143
H	12.762872430	15.739207864	3.174209895
H	13.106708867	13.352385351	3.646013010
H	13.266796732	19.751020002	-0.932182153
H	13.338220299	23.690970585	3.108063780
H	13.459142264	17.367322680	-1.663808955
H	13.666795956	19.217658793	5.040334693
H	15.242801535	22.997111027	4.533660680
Eu	8.440641551	19.295623948	1.954667651

b) antenna para-Br-PPPD

So-Mn

Element	X	Y	Z
N	4.850033733	-2.316309775	-0.368846137
O	0.503563043	2.684911644	-0.147025099
O	3.404581298	2.175713329	-0.062655562
H	-0.342433461	-1.260553231	0.060778362
H	-1.783707009	2.731937975	-0.157262546
H	-2.632762983	-2.102965642	0.124183025
H	-4.107651923	1.902769011	-0.093992458
H	1.448793093	-0.443916708	-0.007935394
H	2.931717071	-1.751786407	-0.743230965
S\(_1^{(\pi\pi^*)}\)-Min

N
-5.195116376
-1.998251145
1.144502083

O
-0.661522050
2.41909174
1.23454088

O
-2.781181199
1.468430104
-1.033259077

H
0.225639015
-0.962449070
-0.726084050

H
1.902694138
2.560581184
1.100734081

H
2.432099176
-1.602483116
-1.490371105

H
4.126267299
1.881007136
0.371623026

H
-1.518957107
-0.473230032
1.32150093

H
-3.27086234
-1.539791111
1.61051118

H
-5.047382365
0.823565061
-1.470889106

H
-7.127218513
-2.314294166
0.551938041

H
-7.126658511
-0.509241036
-1.153071082

C
0.860183063
0.887117064
0.268678022

C
1.050119077
-0.332196024
-0.47860033

C
2.028017148
1.651213117
0.546331038

C
3.204813167
-0.701560051
-0.921872065

C
3.268031237
1.284613095
0.141845009

C
3.419378248
0.088598009
-0.619042045

C
-0.401349029
1.35384095
0.687627052

C
-1.561271112
0.366640028
0.624010045

C
-2.740474196
0.601638045
-0.187027015

C
-4.088224296
-1.269223091
0.968926067

C
-3.972227283
-0.239972019
0.036704004

C
-5.100616369
0.034904002
-0.74565052

C
-6.246581447
-1.713065126
0.390747026

C
-6.243950452
-0.69333050
-0.568168039

Br
5.157937372
-0.458535034
-1.177576084

T\(_1^{(\pi\pi^*)}\)-Min

N
-4.818948348
-2.385788171
0.153827011

O
-0.603272044
2.709042195
0.108701008

O
-3.415753246
2.136926155
0.051873002

H
0.39786024
-1.258364093
-0.007781001

H
1.842454134
2.805210201
0.058470006

H
2.631739189
-2.063094149
-0.108253007

H
4.12006295
1.959307139
-0.045577005

H
-1.447609107
-0.457846034
0.062257005

H
-2.86878205
1.857132135
0.328897022
Element	X	Y	Z
H	-5.619540406	1.360173097	-0.210571013
H	-6.822888492	-2.735080197	-0.033895004
H	-7.435795536	-0.341450027	-0.278602021
C	0.871260061	0.883008066	0.037137003
C	1.157585085	-0.527215039	-0.014030002
C	2.016184147	1.747470125	0.021641000
C	2.453000175	-1.002892071	-0.072231006
C	3.294455237	1.272163094	-0.036440000
C	3.532120255	-1.084040047	-0.084077004
C	-0.419498030	1.486596108	0.096778004
C	1.623612115	0.594348041	0.087460008
C	3.022637215	1.000465073	0.089688008
C	3.857042806	-1.462643106	0.18395012
C	-0.804082959	-0.092472004	0.052976003
C	-6.064844437	-0.191395140	-0.011515003
Br	5.326313381	-0.771343057	-0.165837011

Cl(S/0)

Element	X	Y	Z
N	-5.833729417	-1.477652108	1.408388103
O	-0.841800060	1.504042108	0.904224068
O	-2.441710178	-0.367270024	-1.684636121
H	1.229139089	-1.485928106	-0.934939066
H	1.151068082	2.258774164	1.085520077
H	3.483684251	-1.026476072	-1.598860114
H	3.520944255	2.547689183	0.659278047
H	-1.616377114	-0.948293070	1.572484116
H	-3.935355282	-2.143374153	1.628096115
H	-4.642258334	0.650351044	-1.550159112
H	-7.697654553	-0.677113051	1.12572609
H	-6.977094505	0.774024054	-0.765716056
C	0.933056068	0.411380028	0.068331007
C	1.483071119	-0.587290045	-0.614240042
C	1.483071119	1.547261110	0.512195036
C	2.49447213	-0.327683026	-0.991520073
C	2.994211261	1.709142124	0.289199023
C	3.610270262	0.827888059	-0.598523043
C	-0.373519026	0.453436035	0.455969032
C	-1.437630104	-0.647407046	0.486412033
C	-2.581845188	-0.668080048	-0.510249039
C	-4.512653273	-1.504899111	1.010265071
C	-4.36844292	-0.893540595	-0.073450003
C	-4.960711355	0.032602002	-0.72912053
C	-6.676555483	-0.694701051	0.763170503
C	-6.270859453	0.110994007	-0.290450019
Br	5.374983385	1.140934084	-1.203391086

STC(S/1)

Element	X	Y	Z
N	-5.195116376	-1.998251145	1.144502083
O	-0.661522050	2.413909174	1.234350888
O	-2.781118199	1.468430104	-1.033259077
H	0.225639015	-0.962449070	-0.726084050
H	1.902694138	2.560581184	1.100734081
H	2.432099176	-1.602483116	-1.490371105
H	4.126267299	1.881007136	0.371622026
H	-1.518957107	-0.473230032	1.321350093
H	-3.270860234	-1.539791111	1.610051118
	X	Y	Z
---	--------------	--------------	--------------
C	67.8871704	0.8871704	6.67333583
C	10.19865253	13.50284804	6.94685609
C	10.19865253	14.50284804	3.59442258
C	11.862481653	13.862481653	0.31059495
C	12.362481653	13.862481653	0.31059495
C	11.362481653	14.50284804	0.31059495
C	10.9735597	13.862481653	0.31059495
C	9.37228875	13.862481653	0.31059495
C	9.26228875	13.862481653	0.31059495
C	9.15228875	14.50284804	0.31059495
C	9.04228875	13.862481653	0.31059495
N	15.715534733	14.562481653	0.31059495
N	15.549451718	10.793451718	0.31059495
N	13.42621066	6.395427004	0.31059495
C	10.96932390	9.995291420	0.31059495
H	0.072152024	12.38845093	0.31059495
H	9.151099548	13.57208667	0.31059495
H	0.852924737	14.562481653	0.31059495
H	0.852924737	14.562481653	0.31059495
H	1.837316852	14.40579138	0.31059495
N	15.715534733	14.562481653	0.31059495
N	15.549451718	10.793451718	0.31059495
N	13.42621066	6.395427004	0.31059495
C	10.96932390	9.995291420	0.31059495
H	0.072152024	12.38845093	0.31059495
H	9.151099548	13.57208667	0.31059495
H	0.852924737	14.562481653	0.31059495
H	0.852924737	14.562481653	0.31059495
H	1.837316852	14.40579138	0.31059495

Complex 2

$S_{\text{so}}/F_{\text{so}}$ - Min

	X	Y	Z
C	67.8871704	0.8871704	6.67333583
C	10.19865253	13.50284804	6.94685609
C	11.862481653	13.862481653	0.31059495
C	12.362481653	13.862481653	0.31059495
C	11.362481653	14.50284804	0.31059495
C	10.9735597	13.862481653	0.31059495
C	9.37228875	13.862481653	0.31059495
C	9.26228875	13.862481653	0.31059495
C	9.15228875	14.50284804	0.31059495
C	9.04228875	13.862481653	0.31059495
N	15.715534733	14.562481653	0.31059495
N	15.549451718	10.793451718	0.31059495
N	13.42621066	6.395427004	0.31059495
C	10.96932390	9.995291420	0.31059495

S67
Atom	X	Y	Z
C	20.426675271	16.413456383	5.657368823
C	20.589801482	14.046193909	6.360187658
C	19.420502799	11.596913935	2.484500181
C	19.248348385	13.904122200	6.045660606
C	19.084758371	16.247058169	5.555958702
C	18.519795357	10.512286583	2.15751260
C	18.476803029	14.991319813	5.646066060
C	17.500539595	15.662960292	1.07511773
C	17.345119847	9.501660487	6.540777671
C	17.080621300	10.671601768	2.476915679
C	16.992699925	14.618816250	1.729749725
C	16.995255722	14.788947655	5.314663833
C	16.839129409	10.654571665	5.947444207
C	16.67274702	16.763251806	0.72698351
C	16.499616086	8.403712906	6.742211584
C	16.21565267	9.591501789	2.256415654
C	15.127672633	15.88044342	5.390987689
C	14.536807608	16.732652703	1.179591387
C	14.177113493	8.534338215	6.33871057
C	14.923811227	15.630943247	1.900128236
C	14.83556468	9.743454703	2.431405473
C	14.741213958	9.71167599	5.748378614
C	14.750602764	15.717783829	5.20732376
C	14.25058752	7.43960138	1.47807807
C	14.11894515	18.019738298	6.131172239
O	13.827458400	8.599686018	2.15303155
C	13.784046294	16.807880912	5.413165391
C	12.55682602	8.695629424	2.59029789
C	12.500823299	16.783737059	4.87979155
C	12.156112276	6.527836668	1.67849723
C	12.05417467	18.94323464	5.78705317
C	11.685666543	7.64696149	2.350996069
C	11.62476635	17.84132284	5.06790866
H	16.953651010	11.82760150	2.895312708
C	16.627580094	13.591495579	5.01040559
C	14.305407929	10.84417558	2.840048507
C	14.23386224	14.59158365	4.84385664
H	21.432929042	12.36796193	2.48387798
H	20.952660205	8.313454096	1.15351882
C	20.89667304	17.38658325	5.78212518
H	21.183269724	13.96394987	6.67486758
C	18.988706668	12.512617299	2.86367083
H	18.790798055	12.928571432	6.11498673
C	18.518492233	17.11069829	5.236291976
H	18.53611343	8.47184912	1.51741211
H	18.385632526	9.40787448	6.32265359
H	18.527337334	15.66564624	0.66884594
H	17.601258866	13.750276092	1.96434274
H	17.459716154	11.519510327	5.76338217
H	17.043085429	17.612402068	0.16289441
H	16.866288114	7.520208943	7.20338147
H	16.604252495	8.653887420	1.92234293
H	16.50726790	16.845446413	5.67741310
H	15.262065397	7.318954829	1.10289680
H	15.10054288	18.115381906	6.58058874
H	14.682510156	17.549516861	0.95092657
H	14.484733044	7.714281657	6.472246164
H	13.910458399	15.57098321	2.271964764
Element	X Coordinate	Y Coordinate	Z Coordinate
---------	--------------	--------------	--------------
C	17.01345259	14.784010078	5.313074219
C	16.85607137	10.660685709	5.940824573
C	16.700397465	16.765607137	5.940824573
C	16.528375753	10.86030846	5.313074219
C	16.230790493	16.63418026	2.260771744
C	16.14918167	15.857050563	5.313074219
C	15.392414025	16.734318023	1.994087474
C	15.20305983	8.530630415	6.330161273
C	14.949762754	15.628914593	1.994087474
C	14.849579100	9.750329027	2.43834440
C	14.762519121	9.703630864	5.746292026
C	14.771345845	15.71739836	5.192740789
C	14.272463335	7.43467158	1.493244321
C	14.15479176	18.024583451	6.115362423
C	13.89454384	8.599177717	2.16324740
C	13.812702909	16.87487815	5.399273308
C	12.574263990	8.697371777	2.59427630
C	12.526623920	16.79709308	4.872146039
C	12.17661246	6.528601419	1.67847053
C	12.09084967	18.958785330	5.783084793
C	11.703621712	7.649520045	2.355763364
C	11.654555604	17.854997287	5.063968537
O	16.710989176	11.835301793	2.897351311
O	16.640185080	13.584877247	5.019107568
O	14.31062949	10.84800236	2.859369709
O	14.28325986	14.587100017	4.849634569
H	21.450502853	12.371717096	2.471382697
H	20.96015777	8.30683780	1.176138220
H	20.913861559	17.37394057	5.829824491
H	21.186129445	13.175904385	6.69329005
H	19.007706999	12.524583312	2.846432562
H	18.801356035	12.916300002	6.103642745
H	18.540340408	17.107392572	5.265076630
H	18.550709298	8.471426798	1.53706683
H	18.409817762	9.476675656	6.814087750
H	18.553585997	15.66066893	0.682540367
H	17.626629872	13.759680444	1.975482954
H	17.472209431	11.526855956	5.760722536
H	17.071475598	17.616474283	0.18439617
H	16.901025886	7.517304962	7.18043044
H	16.618406742	8.661886718	1.92596427
H	16.531742120	16.845354460	5.652892131
H	15.285371543	7.316880027	1.122382199
H	15.139877672	18.117585338	6.56355809
H	14.710858277	17.551250573	1.00491005
H	14.513591376	7.707972165	6.46214735
H	13.934086269	15.563213496	2.27755350
H	13.743359221	9.815106720	5.401663866
H	12.246290822	9.592838624	3.10887067
H	12.225886287	15.913977821	4.320602447
H	11.513276998	5.690151924	1.489543826
H	11.424247923	19.80239476	5.946341140
H	10.649996963	17.828198630	4.663708391
H	10.672333905	7.695727666	2.678727419
Eu	14.902965001	12.717684074	3.882354952

C) antenna meta-Br-PPPDD

S_{o-Min}

S70
Atom	X	Y	Z
N	-4.82692070	-0.237624926	-0.242321618
O	-0.521525357	2.684266995	-0.129237546
O	-3.433725937	2.143473453	-0.081386852
H	0.369666859	-1.255082300	0.104692313
H	1.764435733	2.765894205	-0.115862722
H	4.091567233	1.963567333	-0.036726663
H	4.560814871	-0.464146884	0.113894777
H	-1.458676769	-0.465673899	0.010946079
H	-2.880801493	-1.843073838	-0.439560600
H	-5.580247943	1.359770308	0.294895960
H	-6.830098124	-2.716599058	-0.030843133
H	-7.423287236	-0.334587711	0.329728598
C	0.888100106	0.836291626	-0.013543757
C	1.157635696	-0.533185740	0.071367998
C	1.976978648	1.717084789	-0.051023921
C	2.478280342	-0.975784896	0.116051074
C	3.274907578	1.262866892	-0.006349825
C	3.551376798	-0.100577363	0.078481759
C	0.519842695	1.463431226	-0.071153893
C	1.645158467	0.584015316	-0.046961078
C	-2.988124847	1.003810479	-0.065696334
C	-3.861077465	-1.450253421	-0.250407918
C	-4.062188675	-0.095130512	-0.056278233
C	-5.395343289	0.312859496	0.153905472
C	-6.59444326	-1.961427473	-0.035833613
C	-6.397141090	-0.615323479	0.169003915
Br	2.614206186	-2.509675180	0.233172070

$S_1(\pi\pi^*)-\text{Min}$

Atom	X	Y	Z
N	-5.157386372	-1.929587137	-1.201521085
O	-0.644497047	2.484619177	-1.007937072
O	-3.048182222	1.799005131	0.828003059
H	0.278058022	-1.064745075	0.650945046
H	1.889542136	2.622622190	-0.906062064
H	4.128149298	1.878783137	-0.34212025
H	4.794323200	-0.366558027	0.743866052
H	-1.498353109	-0.543522038	0.883782062
H	-3.313509238	-1.266674092	-1.736314127
H	-5.121607370	0.773675056	1.541238109
H	-7.023704505	-2.449683175	-0.532206037
H	-7.096973509	-0.734981055	1.258766088
C	0.871620060	0.882537061	-0.195059015
C	1.081713080	-0.405310032	0.422379030
C	2.032771144	1.664031118	-0.449256032
C	2.365228169	-0.789091058	0.743422051
C	3.284070234	1.251021092	-0.134591010
C	3.502321252	-0.019685002	0.489870304
C	-0.407741029	1.384751700	-0.539143038
C	-1.598734117	0.443779032	-0.436593033
C	-2.872240205	0.805852060	0.159527012
C	-4.11095295	-1.122130083	-1.033172075
C	-4.037193289	-0.134832008	-0.04389003
C	-5.137215368	0.010356999	0.787414058
C	-6.191984447	-1.781368130	-0.379228028
C	-6.230237448	-0.822336058	0.626750046
Br	2.614206186	-2.509675180	1.573452113

$T_1(\pi\pi^*)-\text{Min}$
Element	X	Y	Z
N	-4.823693014	-2.387112294	-0.062379271
O	-0.597204911	2.719461975	-0.025229076
O	-3.423367472	2.138611748	-0.004401225
H	0.3728303174	-1.262199565	0.047748002
H	1.826642773	2.792644944	-0.042773824
H	4.108800629	1.957663032	-0.039628301
H	4.569206989	-0.504754544	0.008049383
H	-1.456790570	-0.497734570	0.023287826
H	-2.856273313	-1.867715823	-0.082021775
H	-5.635331448	1.366782626	0.071476378
H	-6.198768545	-2.734897411	-0.03967346
H	-7.454061274	-0.336433626	0.050474106
O	0.866233734	0.878645766	0.003721767
O	1.152366133	-0.527712052	0.029228095
C	2.008061662	1.736120152	-0.021491936
C	2.461347235	-0.969739598	0.029592036
C	3.285785626	1.261936119	-0.01939977
C	3.567255555	-0.123760091	0.006896787
O	0.596053045	1.844217130	-0.048658799
C	0.320878023	-3.562937257	0.154355013
C	1.653487119	-5.62091404	-0.107380007
Br	-2.776160751	-2.866554391	0.066626622

STC(S1//S0)

Element	X	Y	Z
N	4.130532298	-3.389507245	-0.173113013
O	0.596033045	1.844217130	-0.426459029
O	-0.058363006	-1.233564090	0.402447029
H	0.844157063	1.663969120	3.655928262
H	2.812303020	0.657161047	0.770803058
H	4.017191289	-1.377342099	-0.02823002
H	0.320878023	-3.562937257	0.154355013
H	1.653487119	-5.62091404	-0.107380007
H	4.145273297	-5.423845389	-0.30516025
H	-0.771920056	3.269477235	0.124187001
H	-1.238031087	5.315461385	3.799645273
H	-1.665291121	5.170963372	1.36111100
C	0.029966001	3.603142626	3.773093270
C	0.293055021	2.422828176	1.73091124
C	0.360989024	2.427157174	3.121856224
C	0.746454051	1.538488113	0.788665055
C	1.712280124	0.384269029	0.71256050
C	1.161169081	-0.994194069	0.34181026
C	2.025361144	-2.221187159	0.095345044
C	3.400014245	-2.259721626	-0.036624003
C	1.388180099	-3.490080250	0.058338003
C	2.134399153	-4.651433334	-0.087338006
C	3.521012225	-4.54711329	-0.199582015
C	-0.591651042	3.386336246	1.157568083
C	-0.834486058	4.526041326	3.218403232
Br	0.573652041	3.797280192	5.589104401

STC(S1//T1)
N -5.157386372 -1.929587137 -1.201521085
O -0.644497047 2.484619177 -1.007937072
O -3.048512222 1.799005131 0.828003059
H 0.278058022 1.064745075 0.650945046
H 1.889542136 2.622622190 -0.906062064
H 4.128419298 1.878783137 -0.344212025
H 4.479432320 -0.366580277 0.743860052
H -1.498353109 -0.543522038 -0.883782062
H -3.313509238 -1.266749092 -1.736314127
H -5.121607370 0.773675056 1.541238109
H -7.023704505 -2.449683175 -0.532206037
H -7.096735099 -0.734981055 1.256766088
C 0.871620060 0.882537061 -0.195059015
C 1.081713080 -0.405310032 0.422379030
C 2.032771144 1.664031118 -0.449256032
C 2.365228169 -0.789091058 0.743422051
C 3.284070234 1.251021092 -0.134591010
C 3.502321252 -0.019685002 0.489870344
C -0.407741029 1.384757100 -0.539143038
C -1.598734117 0.443779032 -0.436930333
C -2.872240205 0.805852060 0.159527012
C -4.111052959 -1.121300831 -1.031720757
C -4.307193289 -0.134832008 0.003889003
C -5.137215368 0.010356999 0.787414058
C -6.191984444 -1.781368130 -0.379226028
C -6.230237448 -0.822336058 0.626750046
Br 2.614206186 -2.509675180 1.573452113

Complex 3

S_{0}/F_{0} = \text{Min}

N 10.467170955 -0.913760365 10.723803770
Br 5.722611413 2.814460505 1.021479972
Br -0.624051845 3.343579142 5.262129277
Br 0.092835306 -2.423655772 4.050366591
C 11.413930216 -2.156963557 8.922646544
C 11.368521320 -1.782608310 8.109585334
C 10.470678511 -1.602033114 8.032882477
C 9.587273292 -0.422046728 9.908069314
C 9.529207588 -0.723856653 8.518675415
C 9.225110667 0.839523963 0.923523242
C 9.07590955 0.589057343 3.365855340
C 8.673723423 0.114121408 6.320156553
C 8.437933206 -0.104414105 7.687495555
C 8.238354695 -1.504025910 1.303720796
C 7.962198715 0.993520673 4.090155991
C 7.681244650 0.685879751 5.484791193
C 7.096827213 1.924510840 2.001774444
C 6.924056000 1.684515622 3.331412040
O 7.406103432 0.207852415 8.313903999
O 6.550030769 0.955234167 5.868063820
H 12.150727375 -2.856774005 8.575231816
H 12.070895769 -2.180785455 10.943496086
H 10.475144555 -1.892068534 6.998893004
H 10.112241127 0.512439398 1.481940505
H 9.858310608 0.067471703 3.880581812
H 9.640266594 -0.113088060 5.924990828
H 8.883623441 0.280997818 10.308726343
H 8.325493000 1.702954523 0.253298220

S73
H 2.146429956 -2.599695188 14.220611825
H 1.931099938 -0.575907341 5.459304895
H 1.584931714 1.102559880 0.814354557
H 1.715681326 -1.344221895 12.13047074
H 1.565151714 0.378222226 10.94034486
H 1.516204909 2.132573852 6.830770894
H 0.336986422 -0.941663067 5.459304895
H 0.121436008 2.259483960 10.87571584
Eu 5.216407278 1.041429774 7.836869562

Si/Fo-Min
N 10.498828158 -0.895215063 10.741576473
Br 5.728538410 2.840440404 1.011885174
Br -0.591649544 3.330289840 5.233545754
Br 0.061834102 -2.413818171 4.101284942
C 11.43296921 -2.136199356 8.932655741
C 11.38851920 -1.746529126 10.261626737
C 10.494931355 -1.612915819 8.065426248
C 9.59742888 -0.409663067 9.909325111
C 9.540571289 -0.26116150 8.552621417
C 9.249978164 0.869255061 1.988245742
C 9.12422758 -2.413818171 3.33620242
C 8.703513927 0.084454408 6.359806588
C 8.452793610 -0.117837909 7.73064257
C 8.255153697 1.525039708 1.276640891
C 7.944866171 0.985015971 4.037498988
C 7.636184449 0.701462550 5.385309865
C 7.105178413 1.91845341 1.98820404
C 6.92191997 1.685179121 3.30691740
O 7.414264631 0.206592317 8.307356498
O 6.564112975 0.917317368 5.88578626
C 12.175365576 -2.834218205 8.595224317
C 12.10562871 -2.136760453 10.96589993
H 10.492512655 -1.912792236 7.031430805
H 10.140746630 0.556914741 1.470502807
H 9.915994114 0.071507806 3.83427776
H 9.674881496 -0.158272613 5.962055128
H 8.902129241 0.29813824 10.311070143
H 8.352792799 1.728576026 0.22844717
H 6.04110234 2.018542446 3.821773375
N 6.253475150 2.574965983 9.66428149
N 5.333405383 -1.798805732 13.47218768
N 4.68350436 7.145964416 4.49639524
C -1.405571599 3.54801240 8.016391377
C -1.204726089 3.08458519 9.363945475
C -0.404174830 2.99973318 7.120813912
C -0.037625201 2.47188580 9.08392605
C 7.512871239 4.033396792 11.698796642
C 7.46941340 2.643915293 11.751382044
C 6.908718597 4.681056435 10.635799768
C 6.83299292 1.959499442 10.731245272
C 6.691951482 6.822787490 5.815306016
C 6.292152652 3.927320783 9.642622994
C 6.336276456 5.514022595 6.08744739
C 5.851184122 7.592695447 5.023751564
C 5.155231970 5.006803958 5.538507998
C 5.07918762 1.109106681 12.340519086
C 4.765649245 3.561552157 5.835885322
C 4.370810816 5.860623322 4.774132644
C 4.255073105 -2.318524567 14.104388213
C 3.962048083 2.880362107 4.89587385
C 3.793422371 -0.899345164 11.813243251
C 3.628619859 -0.057346806 10.55376278
C 3.523461153 1.551412913 5.101845769
C 2.950392413 -2.179447859 13.650952385
C 2.432537875 -1.39737601 2.771252299
C 2.14637694 -1.459155405 12.493853497
C 1.59715413 -0.741995533 1.867291037
C 1.854386732 3.051104819 6.934099298
C 0.956097969 2.129168653 8.891994941
C 0.761665572 -2.399646074 7.540313440
C 5.203930474 3.051104819 9.770598003
C 3.832786776 3.821816569 6.111347338
C 3.265279333 1.816500631 8.494543112
H -2.315619067 3.830914173 7.668390553
H -1.970893443 -3.58836539 10.078167726
H 8.006233677 4.598771633 12.481940097
H 7.912169669 2.095710550 12.57230204
H 7.608678145 7.244176824 6.20490449
H 6.912179998 5.760057816 10.562045958
H 6.754458887 0.883529263 10.737424273
H 6.968599702 4.876764751 6.693319982
H 5.811060617 4.394582215 8.79266932
H 6.10392337 8.623297721 4.790431142
H 5.930535129 -0.701333949 11.823921153
H 5.350505084 -1.992273342 7.908443769
H 4.537019929 -1.643797021 6.608829077
H 4.460212719 -2.875305607 15.01546280
H 3.612775562 3.414009946 4.035254691
H 3.426531147 5.514599594 4.362772211
H 2.974563415 2.758089662 2.447913474
H 2.134086856 -2.634644489 14.19643823
H 1.935580937 -0.581143042 5.484299593
H 1.500588806 1.130388883 0.85705960
H 1.703620625 -1.347863900 12.124515675
H 1.561772610 0.400991331 10.955720790
H 1.534177509 2.134484552 6.827586691
H 0.245844616 -0.903924463 1.545426309
H 0.10076405 2.277746063 10.859596679
Eu 5.206909277 1.043532677 7.844361362

T/Fo-Min
N 10.502793257 -0.943255165 10.752889785
Br 5.734431915 2.844184502 1.018097175
Br -0.608205744 3.332027341 5.234510574
Br 0.077029506 -2.425154777 4.061241892
C 11.507881530 -2.125724351 8.948251742
C 11.440484325 -1.783307929 10.262048539
C 10.551060585 -1.599007315 8.055376278
C 9.622803491 -0.457343231 9.840768415
C 9.566711486 -0.740262852 8.540149613

S76
O 3.818956173 0.825073058 6.103663542
O 3.255156233 2.812144531 8.493796612
H -2.332703766 3.821018673 7.669207450
H -1.985100841 3.351054739 10.743294775
H 7.998850275 4.598514331 12.501592402
H 7.897655168 2.097387549 12.585441007
H 7.597969464 7.250392243 6.217584349
H 6.90666197 7.650935143 10.579993862
H 6.750642388 0.886247366 10.743294775
H 6.961287299 4.886269552 6.899775822
H 5.806210020 4.403583615 8.807277934
H 6.105752038 8.633852923 4.800159047
H 6.975240265 -0.692631562 11.841093553
H 5.346255786 -1.991374746 7.915974168
H 4.523882225 -1.654348519 6.618647479
H 4.414030119 -2.854080704 15.035949890
H 3.605489600 3.421040547 4.301182889
H 3.425779748 5.524191800 4.357227815
H 2.984569015 2.276296261 2.43901876
H 2.106946353 -2.615038191 14.20641123
H 1.922626541 -0.516249434 5.466426949
H 1.548918514 1.127438815 0.827550259
H 1.687841523 -1.340641949 12.124728272
H 1.544576713 0.397649429 10.951990900
H 1.519527311 2.132905852 6.82933690
H 0.29392532 -0.924320468 1.502080607
H 0.088617006 2.273507866 10.858145680
Eu 5.201042574 1.041885475 7.848234463

S$_3^8$D$_6$ - Min

N 10.534692257 -0.881204164 10.770974476
Br 5.758588814 2.906354209 1.062419378
Br -0.568145840 3.292588035 5.184477771
Br 0.053534402 -2.420576977 4.104140794
C 11.530846229 -2.104698752 8.986259046
C 11.469269926 -1.734251526 10.293020542
C 10.53673163 -1.596824613 8.087600881
C 9.647274975 -0.416144131 9.953620114
C 9.585245289 -0.733506052 8.55798217
C 9.270959068 0.903657763 1.972557340
C 9.114517154 0.602156443 3.33055738
C 8.707763628 0.106757107 6.318079654
C 8.514263315 -0.155897110 7.763920457
C 8.28318995 1.587596412 1.297763895
C 7.978717973 0.983460169 4.011263888
C 7.715368566 0.662207848 5.442635489
C 7.134967716 1.974807540 2.005357747
C 6.95902001 1.698830724 3.328355337
O 7.437719333 0.198724213 8.356299800
O 6.565165754 0.901736464 5.83745619
H 12.293064085 -2.784029400 8.649589220
H 12.177754678 -2.103228253 11.012461090
H 10.596323262 -1.911340338 7.058465407
H 10.15897534 0.595243542 1.450776603
H 9.897905010 0.054767903 3.822277475
H 9.678054597 -0.106711106 5.914043527
H 8.933717545 0.283618420 10.344936345
H 8.384593606 1.821515733 0.257056718
H 6.069672037 2.015825645 3.845882977

S78
N	6.233034049	2.579801786	9.684718198		
N	5.285699281	-1.829739730	13.472041467		
N	4.703134038	7.136856714	4.472190720		
C	-1.421728201	3.325147237	7.954484973		
C	-1.238327887	3.064146620	9.306001270		
C	-0.402988231	2.973910913	7.077202711		
C	-0.072900077	2.467038287	9.766417201		
C	7.492778538	4.047740898	11.715702241		
C	7.450154036	2.652492589	11.769793638		
C	6.914306944	4.687746437	10.649924064		
C	6.814650689	1.965983430	10.749939374		
C	6.700568382	8.166608889	5.804166020		
C	6.275372552	3.932317984	9.659789298		
C	6.342387554	5.509297498	6.079618140		
C	5.865646320	7.584218466	5.003676061		
C	5.162539574	5.001890161	5.542547999		
C	5.030613634	-1.128232682	12.344783890		
C	4.770452243	3.556793858	5.826507872		
C	4.829005156	5.853642024	4.756042640		
C	4.201226203	-3.348881471	14.094086514		
C	3.975004384	2.866865304	4.879547853		
C	3.758888369	-0.906867964	11.815347851		
C	3.602765158	-0.052331303	10.562106359		
C	3.519816952	1.543622709	5.09476267		
C	2.899213210	-1.198798760	8.036351580		
C	2.411061774	1.395429298	2.770346000		
C	2.673334690	-1.466207205	12.485303299		
C	2.568974834	0.909369665	4.074386692		
C	2.376018972	0.587283742	10.31813241		
C	2.265155862	1.481673526	9.25340367		
C	1.569113913	0.751220853	1.87096437		
C	1.845739431	-0.218191517	4.46865324		
C	0.86505161	-0.384060303	2.25002736		
C	1.016150871	-0.845521059	3.55087457		
C	0.938893470	2.124838550	8.873429373		
C	0.766720757	2.385972372	7.517285641		
O	5.200412673	3.052684619	6.927486196		
O	4.988599060	-1.259755290	7.386873433		
O	4.624877830	0.046727605	9.781601302		
O	3.823164074	0.816053660	6.104101340		
O	3.254473732	1.820858292	8.501185911		
H	-2.331017966	3.788807072	7.589649646		
H	-2.017984043	3.334175742	10.007125120		
H	7.983124073	4.607434132	12.499680098		
H	7.989976667	2.105767351	12.591549608		
H	7.61494250	7.239080281	6.198256144		
H	6.895140395	5.766511714	10.575234061		
H	6.742915485	0.888161263	10.756808073		
H	6.971968801	4.873976749	6.691694884		
H	5.793750716	4.398531718	8.809781836		
H	6.127936039	8.613091818	4.770582246		
H	5.87996026	-0.720068152	11.835290352		
H	5.349406094	-1.990183642	7.925211973		
H	4.543967825	-1.659405915	6.615437574		
H	4.39032918	-2.915381311	15.000818077		
H	3.624901960	3.407025497	4.019852490		
H	3.438326746	5.508104594	4.34897413		
H	2.94967610	2.275488862	2.446129877		
H	2.077963649	-2.649459898	14.176936218		
------	------	------	------	------	------
H	1.935142038	-0.592819941	5.481234593		
H	1.463289205	1.135680481	0.863940561		
H	1.664990818	-1.34516497	12.11725874		
H	1.533940311	0.414201331	10.957014088		
H	1.544914611	2.122863153	6.81836591		
H	0.216044141	-0.89828764	1.554762811		
H	0.051044903	2.77798762	10.82605777		
Eu	5.193811573	1.040610873	7.856923564		

Complex 4

S_0^2/F_0^2 – Min

N	19.166281180	10.614148464	6.812805988		
Br	12.079645270	7.33965826	7.25673124		
Br	21.825433570	14.54359246	0.355137027		
Br	13.317953557	12.10936973	-5.61934505		
C	20.200350855	11.27936981	6.36886860		
C	20.339044633	11.69770564	5.04072536		
C	19.337250189	11.39970821	4.15883900		
C	18.185320807	10.36430942	5.94877329		
C	18.201076208	10.7116970	4.61256502		
C	17.102073933	10.36233944	3.62775216		
C	15.835843383	9.98776211	4.09332919		
C	14.743177661	9.69283049	3.22512533		
C	13.426301667	9.26021266	3.84124775		
C	13.364954863	8.60219519	5.04413826		
C	12.222616580	9.54137158	3.15363028		
C	12.119040722	8.23555293	5.57340003		
C	11.009568990	9.17863146	3.69119176		
C	10.95008486	8.50708173	4.92858585		
O	17.442781853	10.43008463	2.44270387		
O	14.750759162	9.75848830	1.99650604		
H	20.973401207	11.49668152	7.08484708		
H	21.216480126	12.23276448	4.72688138		
H	19.39773698	11.68523563	3.12416192		
H	17.364513648	9.77717880	6.35759557		
H	15.637664523	10.29893324	5.14277737		
H	14.25821312	8.35757160	5.83422699		
H	12.27262381	10.06472642	2.21961836		
H	10.094930326	9.41096378	3.17649302		
H	10.005859719	8.22293909	5.35192608		
N	22.438834517	11.09644400	1.06293777		
N	18.290876216	7.70041245	1.46108800		
N	14.045994409	8.73984352	-1.36774820		
N	10.736944770	12.36906888	-1.28416129		
C	23.405597583	11.30853114	0.12998841		
C	23.165196168	11.34936761	-1.24100059		
C	21.89697272	11.17486060	-1.76940223		
C	21.18801523	10.93008418	0.56943629		
C	20.844168301	10.96159219	-0.78519685		
C	20.62482382	7.21447618	1.27942189		
C	20.697114867	7.00410250	2.65034893		
C	20.051023143	15.11939639	-0.10681710		
C	19.415608899	7.554903042	0.70507205		
C	19.377320994	10.75263797	-1.15444463		
C	19.843654828	16.39127780	-0.62346843		
C	19.544830707	7.12350615	3.41690248		
C	18.93958261	11.17412280	-2.39837297		
C	19.015857668	14.21644762	0.05332140		
Element	X (Å)	Y (Å)	Z (Å)		
---------	-------	-------	-------		
C	18.353	7.461	9023	2.80449001	
C	18.551	16.745	10603	-0.987418669	
C	17.945	1.584	6032	-5.266569778	
C	17.594	5.266	569778	8902497	
C	17.130	1.652	281080	0.792849555	
C	17.732	14.562	607249	-0.342944524	
C	16.888	13.456	16356	-0.232990419	
C	16.020	12.099	074071	-6.63531776	
O	18.630	10.174	72632	-2.730765598	
O	17.056	12.917	81248	999944	
O	16.908	11.406	72825	-3.82654973	
O	15.225	11.903	7252156	-5.51396589	
O	14.490	12.624	997309	-0.76569057	
O	13.973	8.772	184132	-2.730765598	
O	13.111	9.013	252150	-2.634693987	
O	12.884	8.894	743639	-3.82654973	
O	12.008	8.042	81775	0.84653625	
C	11.590	9.013	252150	-2.634693987	
C	11.667	8.965	15944	-1.249342791	
C	11.588	13.999	82407	-2.861117804	
C	10.560	10.509	925455	-1.988368543	
C	10.217	8.491	147310	-0.720457452	
C	9.692	11.444	230235	-0.28707862	
C	8.416	11.424	68124	0.51148037	
C	23.986	11.499	96927	-1.929689041	
C	21.627	11.182	826906	-2.77071899	
C	21.498	7.175	16313	0.648670346	
C	21.641	6.743	3028183	3.115887026	
C	20.396	10.746	761373	1.287941794	
C	20.670	17.082	157331	-0.73959453	
C	19.615	11.647	825237	-3.07965572	
C	19.266	7.736	325355	-0.34464525	
C	19.558	6.956	81603	4.486188321	
C	19.180	13.233	90750	0.46988073	
C	19.017	11.452	410424	-5.18905874	
C	18.034	12.075	823970	-7.35252130	
C	18.362	17.730	115976	-1.38100299	
C	17.408	7.560	717446	3.323577639	
C	16.516	16.137	798561	-1.17172586	
C	15.580	12.371	324590	-7.587690547	
C	15.159	14.597	523052	-1.21501386	
C	15.131	11.405	969220	-3.424987246	
C	14.924	8.665	286925	-3.231865332	
C	13.693	14.415	456635	-2.802417203	
C	12.738	8.893	376342	-4.46496732	
C	13.060	7.555	82428	0.42839713	
C	12.160	11.548	970132	-0.017264604	
C	11.376	14.718	861157	-3.641442961	
C	10.631	9.113	863255	-3.130595126	
C	10.778	9.033	954850	-0.634419846	
C	9.546	13.364	123059	-2.659519089	
Eu	16.472	10.178	946235	0.304313622	

S81
Atoms	X	Y	Z
N	19.17235680	10.63109683	6.844236391
Br	12.053395168	7.404248835	7.32699330
Br	21.818326471	15.53200446	0.35837426
Br	13.134346060	12.117322272	-5.62139406
C	20.211172756	11.28792913	6.40293563
C	20.361282666	11.69289340	5.07045064
C	19.367821293	11.40045809	4.17792402
Br	18.195774101	10.351274445	5.97631852
Br	18.224162511	10.708594771	4.63566523
Br	17.148137236	10.36235947	3.64938682
C	15.828028238	9.986755119	4.09885797
C	14.671704585	9.627192209	3.22882093
C	13.421896668	9.239776965	3.85099607
Br	13.340597961	8.627771853	3.15778029
C	13.340597961	8.627771853	3.15778029
C	12.095578688	7.826124988	5.63011730
C	10.982112899	7.14070959	3.71560886
C	10.918027087	7.521538913	4.98453195
O	17.460261451	10.429612351	2.47054478
O	14.740173363	9.814010805	1.98032941
C	22.421770614	11.107547098	1.06854417
N	18.291658818	7.703916451	1.43595540
N	14.071490412	8.759529228	-1.37729979
N	10.738873875	12.355218688	-1.30491296
C	23.392928285	11.378287174	0.13991480
C	23.157391685	11.357450313	-1.23397889
C	21.864414722	11.181039504	-1.70493422
C	21.174371222	10.9378564866	0.56670545
C	20.835469107	10.96681387	-0.78783538
C	20.62385658	7.200875315	1.24364489
C	20.698325290	6.981878002	2.61074769
C	20.044286441	15.113208789	-0.70470109
C	19.413872695	7.561362944	0.67378651
C	19.393596969	10.75507877	-1.15696885
C	19.835722225	16.38411827	-0.62529584
C	19.546304106	7.094796098	3.38077734
C	18.935273265	11.177110003	-2.40104657
C	19.009205070	14.209018520	0.04766405
C	18.355306222	7.442246334	2.77575589
C	18.542903632	16.73243506	-0.99187076
C	17.947357889	11.58659637	-5.26439807
C	17.589261163	10.989068269	-2.75105200
C	17.396195950	11.93861260	-6.49048369
C	17.725735473	14.550091345	-0.35125462
C	17.499428957	15.825756739	-0.86834026
C	17.128541633	11.395223218	-4.15403499
C	16.683285202	13.441633667	-0.24417621
C	16.025286953	12.105936272	-6.63679978
C	15.759234322	11.560705733	-4.29343511

S82
