Integrable operators and squares of Hankel matrices

Andrew McCafferty

Department of Mathematics and Statistics, Lancaster University, Lancaster, LA1 4YF
(a.mccafferty@lancaster.ac.uk)

Abstract

In this note, we find sufficient conditions for an operator with kernel of the form
\[A(x)B(y) - A(x)B(y)/(x - y) \] (which we call a Tracy–Widom type operator) to be the square of a Hankel operator. We consider two contexts: infinite matrices on \(\ell^2 \), and integral operators on the Hardy space \(H^2(T) \). The results can be applied to the discrete Bessel kernel, which is significant in random matrix theory.

Keywords: discrete-time Lyapunov equation, Tracy–Widom operator, Hankel operator

2000 Mathematics subject classification: 47B35, 15A52

1 Introduction

In random matrix theory it is natural (see, e.g. [1]) to consider integrable operators \(T \), where the kernel of \(T \) is
\[\sum_{j=1}^{n} \frac{A_j(z)B_j(w)}{z - w}, \]
and \(\sum_{j=1}^{n} A_j(z)B_j(z) = 0 \). Here we are concerned with a special class of such operators, namely those with kernel of the form
\[K(x, y) = \frac{A(x)B(y) - A(y)B(x)}{x - y} \quad (x \neq y), \]
which we shall refer to as Tracy–Widom operators. The variables \(x \) and \(y \) may be non-negative integers, as in the discrete kernels considered in section 2, continuous real parameters, as in e.g. [2], or may live on the circle, as in section 3. We look for conditions under which these operators can be expressed as \(\Gamma^2 \) or \(\Gamma^*\Gamma \), where \(\Gamma \) is a Hankel operator. In particular we recover a result of Borodin et al [3], showing that the discrete Bessel kernel can be written as
\[\sqrt{\theta} J_x(2\sqrt{\theta})J_{y+1}(2\sqrt{\theta}) - J_y(2\sqrt{\theta})J_{x+1}(2\sqrt{\theta}) = \sum_{k=0}^{\infty} J_{x+k+1}(2\sqrt{\theta})J_{y+k+1}(2\sqrt{\theta}). \]

We can then read off information about \(K \) from knowledge of the Hankel operator \(\Gamma \). For example, a trace formula follows immediately, and the spectrum of \(K \) can be calculated from the spectrum of \(\Gamma \) (which in many cases is easier to calculate). Megretski, Peller and Treil [4] have characterised the self-adjoint bounded linear operators that are unitarily equivalent to Hankel operators: we apply their results to gain spectral information about the operators \(K \).
2 Discrete integrable operators

Define \(\mathbb{N}_0 = \mathbb{N} \cup \{0\}\). We consider infinite matrices with kernel \(K(x,y)\), where \(K(x,y)\) is defined by (2).

Recall that a Hankel matrix \(\Gamma_{\phi} = [\phi(m+n)]_{m,n \geq 0}\) with \((\phi(k)) \in \ell^2\) has square

\[
\Gamma_{\phi}^2 = \left[\sum_{k=0}^{\infty} \phi(m+k)\phi(n+k) \right]_{m,n=0}^{\infty}.
\]

Nehari’s theorem (see, e.g. [5, p. 3]) states that \(\Gamma_{\phi}\) is a bounded operator on \(\ell^2(\mathbb{N}_0)\) if and only if \((\phi(n))\) are the positive Fourier coefficients of some function in \(L^\infty(T)\). We write the kernel \(K(x,y)\) in matricial form,

\[
K(x,y) = \frac{1}{x-y} \langle Fa(x), a(y) \rangle, \quad (x \neq y)
\]

\[
a(x) = \begin{bmatrix} A(x) \\ B(x) \end{bmatrix}, \quad F = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix},
\]

and look for sufficient conditions under which we can construct a function \(\phi : \mathbb{N}_0 \to \mathbb{C}\) with \((\phi(j)) \in \ell^2\), such that

\[
K(x,y) = \sum_{k=0}^{\infty} \phi(x+k)\phi(y+k), \quad (x \neq y).
\]

Definition 2.1 Let \(S\) be the shift operator on \(\ell^2(\mathbb{N}_0)\), so that \(Sf(x) = f(x-1)\) (where we define \(f(-1) = 0\)), and let \(R\) be the adjoint shift operator \(Rf(x) = f(x+1)\). The forward difference operator \(\Delta\) is defined by \(\Delta f(x) = f(x+1) - f(x)\). Notice that \(\Delta = R_x - I\). Where there are several variables, we write \(R_x, \Delta_y\) and so on.

As usual, \(A^T\) is the transpose of a matrix \(A\), while \(B^*\) denotes the adjoint of an operator \(B\).

Lemma 2.2 (Lyapunov equation) Suppose that \(R\) and \(B\) are bounded linear operators on \(\ell^2\) such that

\[
\sum_{j=0}^{\infty} \langle R^j BB^* (R^*)^j \xi, \xi \rangle < \infty \quad \text{for all } \xi \in \ell^2,
\]

so that the series

\[
K = \sum_{j=0}^{\infty} R^j BB^* (R^*)^j
\]

is convergent in the weak operator topology. Then

\[
K - RKR^* = -BB^*.
\]

Proof. Clear from calculation of the left hand side of (7). \(\blacksquare\)

In the following Lemma, we state explicitly the specialisation of the above result to discrete kernels.

Lemma 2.3 Let \(\Phi(x,y)\) be any function \(\Phi : \mathbb{N}_0^2 \to \mathbb{C}\), and suppose \(\phi : \mathbb{N}_0 \to \mathbb{C}\) is such that \((\phi(j)) \in \ell^2\). Then

\[
\Phi(x,y) = \sum_{k=0}^{\infty} \phi(x+k)\phi(y+k) \quad \text{for all } x,y \in \mathbb{N}_0
\]
if and only if
\[(\Delta_x S_y + \Delta_y)\Phi(x, y) = -\phi(x)\phi(y) \quad \text{for all } x, y \in \mathbb{N}_0 \quad (9)\]

and
\[\Phi(x, y) \to 0 \quad \text{as } x \text{ or } y \to \infty. \quad (10)\]

Proof. Suppose (8) holds. Then we have
\begin{align*}
(\Delta_x S_y + \Delta_y) \sum_{k=0}^{\infty} \phi(x+k)\phi(y+k) &= (S_x S_y - I) \sum_{k=0}^{\infty} \phi(x+k)\phi(y+k) \\
&= \sum_{k=0}^{\infty} (\phi(x+k+1)\phi(y+k+1) - \phi(x+k)\phi(y+k)) \\
&= -\phi(x)\phi(y),
\end{align*}
so that (9) holds. By the Cauchy-Schwarz inequality, and since \((\phi(j)) \in \ell^2\), we have
\[\Phi(x, y) = \sum_{k=0}^{\infty} \phi(x+k)\phi(y+k) \leq \left(\sum_{k=0}^{\infty} \phi(x+k)^2 \right)^{1/2} \left(\sum_{k=0}^{\infty} \phi(y+k)^2 \right)^{1/2} \to 0 \quad \text{as } x \text{ or } y \to \infty, \quad (12)\]
which is condition (10). Conversely, suppose that we have (9) and (10), and let
\[G(x, y) = \Phi(x, y) - \sum_{k=0}^{\infty} \phi(x+k)\phi(y+k). \quad (13)\]
By (13), we have
\[(\Delta_x S_y + \Delta_y)G(x, y) = 0 \quad \text{for all } x, y \in \mathbb{N}_0,
\]
so that \(G(x, y) = G(x+1, y+1)\) for all \(x, y \in \mathbb{N}_0\). We then use the hypothesis (10) and the estimate in (12) to show that \(G(x, y) \to 0 \) as \(x \) or \(y \to \infty\), and hence that \(G\) is identically zero for all non-negative integers \(x\) and \(y\), so that (8) holds. \(\blacksquare\)

Theorem 2.4 Let \(K(x, y)\) be as defined in (8), with \((a(x))_{x=0}^{\infty} = ([A(x), B(x)]^T)_{x=0}^{\infty} \) a sequence of 2 \(\times\) 1 real vectors such that
\[\sum_{x \geq 0} \|a(x)\|^2 < \infty. \quad (14)\]
Suppose that there exists a sequence of 2 \(\times\) 2 real matrices \(S_x\) such that \(a(x+1) = S_x a(x)\) for all \(x \in \mathbb{N}_0\) and that
\[C = \frac{S_y^T F S_x - F}{x - y} \quad (15)\]
is a constant matrix. Then \(C\) is symmetric. Suppose further that \(C\) has eigenvalues \(\lambda \in \mathbb{R} \setminus \{0\}\) and 0, and let \([\alpha, \beta]^T\) be a real unit eigenvector corresponding to \(\lambda\). Then
\[K(x, y) = -\text{sgn}(\lambda) \sum_{k=0}^{\infty} \phi(x+k)\phi(y+k) \quad \text{for } x, y \in \mathbb{N}_0 \quad (x \neq y), \quad (16)\]
where
\[\phi(x) = |\lambda|^{1/2} (\alpha A(x) + \beta B(x)) \quad (17)\]
and \((\phi(x)) \in \ell^2\).
Proof. We set

$$C = \frac{S^T F S_x - F}{x - y} \tag{18}$$

where C is constant by hypothesis, so that we can exchange the roles of x and y, and find that $C^T = C$. We have, for $x \neq y$,

$$\begin{align*}
(\Delta_x S_y + \Delta_y) K(x, y) &= (S_x S_y - I) \frac{1}{x - y} \langle F a(x), a(y) \rangle \\
&= S_x \frac{1}{x - y - 1} \langle F a(x), S_y a(y) \rangle - \frac{1}{x - y} \langle F a(x), a(y) \rangle \\
&= \frac{1}{x - y} \langle S_x a(x), S_y a(y) \rangle - \frac{1}{x - y} \langle F a(x), a(y) \rangle \\
&= \frac{1}{x - y} \langle (S_y F S_x - F) a(x), a(y) \rangle \\
&= \langle C a(x), a(y) \rangle. \quad (19)
\end{align*}$$

Since C is real and symmetric, and by hypothesis has eigenvalues $\lambda \neq 0$ and 0, there exists a real orthogonal matrix U of unit eigenvectors such that

$$U^T C U = \begin{bmatrix}
\lambda & 0 \\
0 & 0
\end{bmatrix}. \quad (20)$$

We have

$$\begin{align*}
(\Delta_x S_y + \Delta_y) K(x, y) &= \langle C a(x), a(y) \rangle \\
&= \left\langle U \begin{bmatrix}
\lambda & 0 \\
0 & 0
\end{bmatrix} U^T a(x), a(y) \right\rangle \\
&= \lambda \left\langle \begin{bmatrix}
1 & 0 \\
0 & 0
\end{bmatrix} U^T a(x), U^T a(y) \right\rangle \\
&= \lambda \left\langle \begin{bmatrix}
1 & 0 \\
0 & 0
\end{bmatrix} U^T a(x), \begin{bmatrix}
1 & 0 \\
0 & 0
\end{bmatrix} U^T a(y) \right\rangle \\
&= \text{sgn}(\lambda) \phi(x) \phi(y), \quad (21)
\end{align*}$$

where

$$\begin{bmatrix}
\phi(x) \\
0
\end{bmatrix} = \begin{bmatrix}
|\lambda|^{1/2} & 0 \\
0 & 0
\end{bmatrix} U^T a(x). \quad (22)$$

Note that $(\phi(x)) \in \ell^2$ by the condition $\sum_{x \geq 0} \|a(x)\|^2 < \infty$, since U is a constant matrix. It is also clear that $K(x, y) \to 0$ as x or $y \to \infty$, by the same condition on $a(x)$. We now let $[\alpha, \beta]^T$ be a real unit eigenvector of C corresponding to λ, and the result follows by Lemma 2.3.

Corollary 2.5 Let $K(x, y)$ be as defined in (9), with $(a(x))_{x=0}^\infty = ([A(x), B(x)]^T)_{x=0}^\infty$ a sequence of 2×1 real vectors such that

$$\sum_{x \geq 0} \|a(x)\|^2 < \infty. \quad (23)$$
Suppose that \(a(x+1) = (Lx + M)a(x) \) (for all \(x \in \mathbb{N}_0 \)), where \(L \) and \(M \) are real constant \(2 \times 2 \) matrices that satisfy
\[
\begin{aligned}
\det L &= 0 \\
\det M &= 1 \\
M^T FL \text{ is symmetric, and has eigenvalues } \lambda \in \mathbb{R} \setminus \{0\} \text{ and } 0.
\end{aligned}
\]
Let \([\alpha, \beta]^T \) be a real unit eigenvector of \(M^T FL \) corresponding to \(\lambda \). Then
\[
K(x, y) = -\text{sgn}(\lambda) \sum_{k=0}^{\infty} \phi(x+k)\phi(y+k) \quad \text{for all } x, y \in \mathbb{N}_0 \quad (x \neq y),
\]
where \(\phi(x) = |\lambda|^{1/2}(\alpha A(x) + \beta B(x)) \), and \((\phi(x)) \in l^2 \).

Proof. We have \(M^T FM = F \det M \) (indeed, this is true for any \(2 \times 2 \) matrix) and hence \(M^T FM = F \). Likewise \(L^T FL = 0 \). Setting \(S_x = Lx + M \) as in Theorem 2.4, we now have
\[
\frac{S_x^T FS_x - F}{x - y} = \frac{(L_y + M)^T F(L_x + M) - F}{x - y} = \frac{M^T FLx - (M^T FL)^T y}{x - y} \quad \text{(since } F^T = -F) \]
\[
= \frac{M^T FL(x - y)}{x - y} \quad \text{(since } M^T FL \text{ is symmetric by hypothesis)}
\]
\[
= M^T FL.
\]
Hence \(C = (S_x^T FS_x - F)/(x - y) \) is a constant matrix. Thus, together with the summability criterion on the sequence \((a(x)) \), the hypotheses of Theorem 2.4 are all satisfied, so we have the result.

Example 2.6

Let \(J_{\nu}(z) \) be the Bessel functions of the first kind of order \(\nu \), and write \(J_x = J_x(2\sqrt{\theta}) \), where \(\theta \) is a positive real parameter. The discrete Bessel kernel
\[
J(x, y; \theta) = \sqrt{\theta} \frac{J_x J_{y+1} - J_y J_{x+1}}{x - y}
\]
arises in the study of various discrete-variable random matrix models, as in [6] and [3]. Note that \(J_x \) is an entire function of \(x \), so that \(J(x, x; \theta) \) is well-defined via L’Hopital’s rule. In the notation of Corollary 2.5 we take
\[
a(x) = \begin{bmatrix} \sqrt{\theta} J_x \\ J_{x+1} \end{bmatrix}.
\]
The standard formula (see [3, p. 379])
\[
e^{2t \sin \theta} = J_0(2t) + 2 \sum_{m=1}^{\infty} J_{2m}(2t) \cos 2m\theta + 2i \sum_{m=1}^{\infty} J_{2m-1}(2t) \sin(2m - 1)\theta
\]
and Parseval’s identity can be used to show that \(J_0(2t)^2 + 2 \sum_{m=1}^{\infty} J_m(2t)^2 = 1 \) for all real \(t \), and hence that the sequence \((J_x)_{x=0}^{\infty} \) is square summable. Thus the condition \(\sum_{x \geq 0} \|a(x)\|^2 < \infty \) is satisfied.

The 3-term recurrence relation for the Bessel functions
\[
J_{x+2}(2z) - \frac{x+1}{z} J_{x+1}(2z) + J_x(2z) = 0
\]
becomes
\[
a(x + 1) = \begin{bmatrix} \sqrt{\theta} J_{x+1} \\ J_{x+2} \end{bmatrix} = \begin{bmatrix} 0 & \sqrt{\theta} \\ -\frac{1}{\sqrt{\theta}} & \frac{x+1}{\sqrt{\theta}} \end{bmatrix} \begin{bmatrix} \sqrt{\theta} J_x \\ J_{x+1} \end{bmatrix},
\] (30)
and so we have \(a(x + 1) = (Lx + M)a(x) \), where
\[
L = \begin{bmatrix} 0 & 0 \\ 0 & \frac{1}{\sqrt{\theta}} \end{bmatrix}
\]
and
\[
M = \begin{bmatrix} 0 & \sqrt{\theta} \\ -\frac{1}{\sqrt{\theta}} & \frac{1}{\sqrt{\theta}} \end{bmatrix}.
\]

It is clear that these matrices satisfy \(\det L = 0 \) and \(\det M = 1 \), and we have
\[
M^TFL = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix},
\]
so we pick the unit eigenvector \([\alpha, \beta]^T = [0, 1]^T\). Thus, the function \(\phi(x) \) in Corollary 2.5 is \(J_{x+1}(2\sqrt{\theta}) \), and we recover a result of Borodin et al in [3]
\[
J(x, y; \theta) = \sum_{k=0}^{\infty} J_{x+k+1}(2\sqrt{\theta}) J_{y+k+1}(2\sqrt{\theta}), \quad x, y \in \mathbb{N}_0,
\] (31)
without their use of asymptotic formulae for the Bessel functions.

The preceding results are identities of kernels for \(x \neq y \). Evidently, the sum in the right-hand side of (16) makes sense for \(x = y \), and hence gives one possible extension of the left-hand side to the case \(x = y \). We use the extension to define an operator \(K \) with matrix given by \(K(x, y) \).

Proposition 2.7 Suppose that the vector \([A(x), B(x)]^T \) satisfies the conditions of Theorem 2.4 so that \(K(x, y) = \sum_{k=0}^{\infty} \phi(x+k)\phi(y+k) \). Suppose also that \(\sum_{n=0}^{\infty} n\phi(n)^2 < \infty \). Then the operator \(K \) represented by the matrix \([K(x, y)]_{x, y=0}^{\infty} \) is trace class and has trace:
\[
\text{trace } K = \sum_{x=0}^{\infty} (x + 1)\phi(x)^2.
\] (32)

Proof. The summability condition on \(\phi \) ensures that \(\Gamma_\phi \) is Hilbert-Schmidt, which implies that \(K = \Gamma_\phi^2 \) is trace-class. We have
\[
\text{trace } K = \sum_{x=0}^{\infty} K(x, x) = \sum_{x=0}^{\infty} \sum_{k=0}^{\infty} \phi(x+k)^2
\] (33)
from which the result follows immediately.

Definition 2.8 For a compact and self-adjoint operator \(W \) on a Hilbert space \(H \), the spectral multiplicity function \(\nu_W(\lambda) : \mathbb{R} \to \{0, 1, \ldots\} \cup \{\infty\} \) is given by
\[
\nu_W(\lambda) = \dim \{ x \in H : Wx = \lambda x \} \quad (\lambda \in \mathbb{R}).
\] (34)
We now give the consequences of a result of Peller, Megretski and Treil in [4] in the case of discrete integrable operators.

Proposition 2.9 Suppose that Γ_ϕ and K are as in Proposition 2.7. Then Γ_ϕ and K are compact and self-adjoint, and

- (i) $\nu_K(0) = 0$ or $\nu_K(0) = \infty$;
- (ii) for $\lambda > 0$, $\nu_K(\lambda) < \infty$ and $\nu_K(\lambda) = \nu_{\Gamma_\phi}(\sqrt{\lambda}) + \nu_{\Gamma_\phi}(-\sqrt{\lambda})$;
- (iii) if $\nu_K(\lambda)$ is even, then $\nu_{\Gamma_\phi}(\sqrt{\lambda}) = \nu_{\Gamma_\phi}(-\sqrt{\lambda})$;
- (iv) if $\nu_K(\lambda)$ is odd, then $\left|\nu_{\Gamma_\phi}(\sqrt{\lambda}) - \nu_{\Gamma_\phi}(-\sqrt{\lambda})\right| = 1$.

Proof. (i) follows from Beurling’s theorem (see [5], page 15), while (ii) is elementary. Peller, Megretski and Treil show in [4] that for any compact and self-adjoint Hankel operator Γ, the spectral multiplicity function satisfies $|\nu_{\Gamma}(\lambda) - \nu_{\Gamma}(-\lambda)| \leq 1$. Using this, and (ii), statements (iii) and (iv) follow immediately.

Remark 2.10 The Carleman operator $\Gamma : L^2(0, \infty) \to L^2(0, \infty)$ is given by

$$\Gamma f(x) = \int_0^\infty \frac{1}{x+t} f(t) \, dt,$$

so Γ^2 has kernel of Tracy-Widom type

$$\Gamma^2 f(u) = \int_0^\infty \frac{\log u - \log t}{u-t} f(t) \, dt.$$

Carleman showed that Γ is a positive self-adjoint Hankel operator with continuous spectrum $[0, \pi]$ of multiplicity two (see [5, p. 442]), so the Tracy–Widom type operator Γ^2 has spectrum $[0, \pi^2]$, also of multiplicity two. This contrasts with (iii) and (iv) of Proposition 2.9.

3 Integrable operators on H^2

Let H^2 be the usual Hardy space on the unit circle T, with orthonormal basis $\{1, z, z^2, \ldots\}$, and let $R_+ : L^2 \to H^2$ and $R_- : L^2 \to L^2 \ominus H^2$ be the Riesz orthogonal projection operators. We let M_ϕ denote multiplication by ϕ, and define the Toeplitz operator on H^2 with symbol ϕ to be $T_\phi = R_+ M_\phi R_+$. Let $J : L^2 \to L^2$ be a flip operator, whose operation on a function $f \in H^2$ is $J f(z) = \bar{f}(\bar{z})$. Note that J maps H^2 onto $L^2 \ominus H^2$ (and vice versa) and that $J^2 = I$. The Hankel operator Γ_ϕ on H^2 with symbol $\phi \in L^\infty$ is then

$$\Gamma_\phi = JR_- M_\phi.$$

We let the integral operator W on $L^2(T)$ have kernel

$$W(e^{i\theta}, e^{i\phi}) = \frac{f(e^{i\theta})g(e^{i\phi}) - f(e^{i\phi})g(e^{i\theta})}{1 - e^{i(\theta - \phi)}},$$

where W operates on a function $f \in L^2(T)$ in the usual way:

$$Wf(e^{i\theta}) = \frac{1}{2\pi} \int_T W(e^{i\theta}, e^{i\phi}) f(e^{i\phi}) \, d\phi.$$
Lemma 3.1 Suppose that $f, g \in L^\infty$ have $\bar{f} = g$. Then W defines a bounded and self-adjoint operator on L^2. Further, $R_+ W R_+ : H^2 \to H^2$ satisfies

$$R_+ W R_+ = \Gamma_f^* \Gamma_f - \Gamma_g^* \Gamma_g.$$ \hspace{1cm} (40)

Moreover, when f is continuous, $R_+ W R_+$ is compact.

Proof. The condition $\bar{f} = g$ gives immediately $W(e^{i\theta}, e^{i\phi}) = W(e^{i\phi}, e^{i\theta})$, and so W is self-adjoint. It can easily be seen that the Riesz projection R_+ has distributional kernel $1/(1 - e^{i(\theta - \phi)})$, and so W decomposes as

$$W = M_g [M_f, R_+] - M_f [M_g, R_+],$$ \hspace{1cm} (41)

where all the operators are bounded. A simple calculation now shows that

$$R_+ W R_+ = (T_{gf} - T_g T_f) - (T_{fg} - T_f T_g),$$ \hspace{1cm} (42)

and we apply the standard formulae $T_{hk} - T_h T_k = \Gamma_{h(z)} \Gamma_k(z)$ and $\Gamma_h^* = \Gamma_{\bar{h}(\bar{z})}$ (see [9, p. 253]) to get equation (40). The last statement follows by Hartman’s theorem: the Hankel operators on the right-hand side of (40) are compact when f is continuous.

Remark 3.2 We continue functions $f \in L^2$ to harmonic functions on \mathbb{D} by means of the Poisson kernel, as in [5, p. 718].

Proposition 3.3 Suppose $f = \bar{g} \in L^\infty$, where g is holomorphic inside \mathbb{D}. Then

$$R_+ W R_+ = \Gamma_f^* \Gamma_f.$$ \hspace{1cm} (43)

Further, if $R_+ W R_+$ has finite rank, then f is rational.

Proof. Take $f = \bar{g}$ in Lemma 3.1 to obtain the first part of the result. For the second part, note that

$$\text{Range}(R_+ W R_+) = \text{Ker}(\Gamma_f^* \Gamma_f) = \text{Ker}(\Gamma_f) = \text{Range}(\Gamma_f^*),$$ \hspace{1cm} (44)

and apply Kronecker’s theorem: Γ_k has finite rank if and only if k is rational, so $\Gamma_{\bar{f}(\bar{z})}$ has finite rank if and only if $\bar{f}(\bar{z})$ is rational, which implies that f is rational.

Acknowledgements

I would like to thank my supervisor, Gordon Blower for his patience in many discussions. Thanks are also due to Steve Power for helpful suggestions. I am funded by the EPSRC’s Doctoral Training Account scheme.

References

[1] C.A Tracy and H. Widom, Level-spacing distributions and the Airy kernel, Comm. Math. Phys. 159 (1994), 151-174
[2] G. Blower, Operators associated with Soft and Hard Spectral Edges from Unitary Ensembles, J. Math. Anal. Appl. 2007.

[3] A. Borodin, A. Okounkov, G. Olshanski, Asymptotics of Plancherel measures for symmetric groups, J. Amer. Math. Soc. 13 (2000) 481-515.

[4] A.V. Megretskii, V.V. Peller, and S.R. Treil, The inverse spectral problem for self-adjoint Hankel operators, Acta Math. 174 (1995), no. 2, 241-309.

[5] V.V. Peller, Hankel Operators and Their Applications, Springer, New York, 2003.

[6] K. Johansson, Discrete Orthogonal Polynomial ensembles and the Plancherel measure, Ann. Math. (2) 153 (2001), no. 2, 259-296.

[7] S.C. Power, Hankel Operators on Hilbert Space, Research Notes in Math., 64, Pitman Adv. Publ. Progr., Boston-London-Melbourne, 1982.

[8] E.T. Whittaker and G.N. Watson, A Course of Modern Analysis, Cambridge University Press, 4th ed. 1963.

[9] N.K. Nikolski, Operators, Functions and Systems: an easy reading, vol. 2 American Mathematical Society, Providence, R.I., 2002.