Lumbar Laminectomy in the Outpatient Setting Is Associated With Lower 30-Day Complication Rates

Teja R. Karukonda, MD, Nickolas Mancini, BS, Austen Katz, BA, Mark P. Cote, PT, DPT, MS, CTR, and Isaac L. Moss, MD, MASc, FRCSC

Abstract

Study Design: Retrospective cohort study.

Objectives: To compare the incidence of complications in patients undergoing single-level and 2-level lumbar laminectomy in either the inpatient or outpatient settings.

Methods: Patients who underwent single-level and 2-level lumbar laminectomy were identified in the ACS NSQIP database from the years 2006 to 2015. Independent patient variables were recorded, including demographics and preoperative health characteristics. Logistic regression was used to determine the risk of postoperative complications for both a 1- and 2-level lumbar laminectomy as well as to identify independent risk factors for a complication. Comparisons were made between 2 groups: (1) inpatient and (2) outpatient as determined by billing data.

Results: A total of 18,076 single- and 2-level lumbar laminectomy cases were identified with 10,743 (59.4%) inpatient procedures and 7,333 (40.6%) outpatient procedures. The incidence of any postoperative complication was significantly lower in the outpatient group than in the inpatient group among all cohorts including 1-level lumbar laminectomy (1.9% vs 6.7%), 2-level lumbar laminectomy (3.17% vs 7.38%), as well as in the combined cohort of 1- and 2-level laminectomies (2.47% vs 7.01%). Significant independent risk factors for complications after lumbar laminectomy were identified, including body mass index (BMI) >30 kg/m², age ≥55 years, a functional status of partially dependent, chronic obstructive pulmonary disease (COPD), chronic steroid use, American Society of Anesthesiologists (ASA) class 3 or 4, and operative time >90 minutes.

Conclusions: This study reports a lower overall complication rate in the 30-day postoperative period following 1- and 2-level lumbar laminectomy performed in an outpatient versus inpatient setting. Significant risk factors for complications included BMI >30 kg/m², age ≥55 years, a functional status of partially dependent, COPD, chronic steroid use, ASA class 3 or 4, and operative time >90 minutes.
To the best of our knowledge, no large studies have examined the difference in complications rates between lumbar laminectomies performed in the inpatient and outpatient settings. The purpose of this study was to compare the incidence of complications in patients undergoing single- and 2-level lumbar laminectomy in either the inpatient or outpatient settings. We queried the American College of Surgeons (ACS) National Surgical Quality Improvement Program (NSQIP) database to identify all single- and 2-level lumbar laminectomy cases performed between 2006 and 2015. We hypothesized that there would be a significantly lower 30-day complication rate when the procedure was performed in an outpatient setting as compared to those performed in an inpatient setting.

Materials and Methods

The ACS NSQIP database provides surgical outcomes data from over 400 participating hospitals throughout the United States. Perioperative data, including patient demographics, preoperative comorbidities, and operative variables are collected prospectively by trained, on-site, surgical clinical reviewers and postoperative 30-day outcomes across 21 categories of morbidity and mortality are recorded. Data collection continues for 30 days regardless of date of discharge or inpatient status. Data quality is ensured with routine auditing with an overall interrater disagreement rate reported to be approximately 2%. Patients who underwent single- and 2-level lumbar laminectomy were identified in the ACS NSQIP database from the years 2006 to 2015 using the Current Procedural Terminology (CPT) codes 63 047 and 63 048 as the primary procedural code. Patients who underwent 2-level lumbar laminectomy were identified by using the CPT codes 63 047 and 63 048 as secondary procedural codes. Patients were excluded if they had more than 2 laminectomy codes (63 047 or 63 048) or any other CPT codes that were not directly associated with the primary laminectomy codes. Cases with any evidence of fusion were excluded from the study. Independent patient variables were recorded including demographics and preoperative health characteristics. Patient demographics included age and sex. Preoperative health characteristics included body mass index (BMI), World Health Organization (WHO) obesity classification, American Society of Anesthesiologists (ASA) class, functional status (independence), smoking status, and comorbidities. BMI was calculated for each patient using their recorded height and weight and this was then used to stratify patients based on the WHO classification for obesity. Comorbidities included were diabetes, dyspnea, chronic obstructive pulmonary disease (COPD), ascites, congestive heart failure (CHF), hypertension, renal failure, use of steroids, and cancer. Inpatient vs. outpatient status was determined based on hospital billing defined in the NSQIP database.

Postoperative endpoints included death, pulmonary complications (pneumonia, intubation, or ventilator requirement), deep vein thrombosis (DVT) or pulmonary embolism (PE), wound complications (superficial wound infection, deep surgical site infection, organ space surgical site infection, or dehiscence), sepsis, or septic shock, cardiac complication (cardiac arrest or myocardial infarction), return to the operating room within 30 days, blood transfusions (intra- or postoperative), or urinary tract infection (UTI). Major complications were defined as any septic, cardiac, or pulmonary complications as well as DVT, PE, return to the operating room, and death. Minor complications were defined as any wound complications, UTI, or blood transfusions.

Differences in demographics and comorbidities between the inpatient and outpatient groups were analyzed using an independent t test for continuous variables or Pearson’s chi-square test for categorical variables. Given that the decision to perform a laminectomy in either an in- or outpatient setting may be partially dependent on the presence of covariates, propensity scores were calculated. Univariate logistic regression was used to identify predictors of treatment (in- vs outpatient). Age, BMI, diabetes, smoking, dyspnea, functional status, CHF, steroid use, disseminated cancer, ASA class, and level of laminectomy (1 vs 2) were all found to be associated with treatment and were therefore used to generate propensity scores. To assess the quality of the matching, the comparison of demographics and comorbidities between the inpatient and outpatient groups was repeated. Following propensity score matching, univariate logistic regression models were constructed to identify potential predictors of morbidity. Logistic regression was then carried out on the entire cohort (unadjusted) and matched sample (adjusted) to determine the risk of postoperative complications for the entire group and for with patients grouped according to the level lumbar laminectomy (1 vs 2). Variables that were predictive at P < .10 were considered in the multivariate model. In addition, variables with a known association with morbidity, for example, smoking, were also considered in the multivariate model. A multivariate logistic regression model was created using the matched sample to identify independent risk factors for a complication. Results are reported as odds ratio with corresponding 95% confidence intervals. A P value of <.05 was considered statistically significant. All statistical analysis was performed using Stata 15 (StataCorp, 2017, Stata Statistical Software: Release 15, College Station, TX).

Results

A total of 18 076 single- and 2-level lumbar laminectomy cases were identified with 10 743 (59.4%) inpatient procedures and 7333 (40.6%) outpatient procedures. The proportion of outpatient surgery increased exponentially over time from 2006 to 2015 whereas the proportion of inpatient surgery increased linearly to the point where the proportion of outpatient surgery exceeded that of inpatient surgery in 2015 (Figure 1). Patients who underwent outpatient surgery were younger and had lower obesity classifications (all unadjusted P < .001). In addition, patients who underwent outpatient surgery had lower rates of diabetes, dyspnea, CHF, hypertension, steroid use, and cancer when compared with patients undergoing inpatient surgery. They also had higher rates of smoking and functional
independence as compared with patients undergoing inpatient surgery. More ASA class 1 and 2 patients underwent outpatient surgery whereas more ASA class 3 and 4 patients underwent inpatient surgery. Propensity score matching eliminated statistically significant differences between the groups with respect to age, BMI, smoking, dyspnea, functional status, CHF, steroid use, and disseminated cancer. Differences between the groups in the proportion of patients with diabetes, renal failure, ASA class, and level of laminectomy were reduced with the propensity matching however the adjusted p values remained statistically significant. To account for these differences, these variables were considered in the multivariate model (Table 1).

Among single-level lumbar laminectomy cases, the incidence of any postoperative complication was significantly lower in the outpatient group than in the inpatient group (1.9% vs 6.7%) with a propensity-adjusted odds ratio (OR) of 0.28, 95% confidence interval (CI) 0.22 to 0.36, \(P < .001 \). Other postoperative endpoints that were found to be significantly less likely in the outpatient cohort included any major complication (0.90% vs 3.75%, OR 0.24, 95% CI 0.17-0.35, \(P < .001 \)), any pulmonary complication (0.15% vs 0.93%, OR 0.16, 95% CI 0.09-0.3).

Figure 1. Single- and 2-level lumbar laminectomies performed in the inpatient and outpatient settings over the study time frame from 2006 to 2015. The number of inpatient procedures exceeded that of outpatient procedures throughout this time period until the year 2015 when more single- and 2-level lumbar laminectomies were performed in the outpatient setting than in the inpatient setting.

Table 1. Patient Demographics and Comorbidities With Propensity-Adjusted \(P \) Values.

Characteristic	All Patients, %	Inpatients, %	Outpatients, %	Unadjusted \(P \) Value	Propensity-Adjusted \(P \) Value
Overall, n	18 076	10 743	7333	\(<.001\)	\(.110 \)
Age-group (years)				\(<.001\)	\(.110 \)
<55	24.0	22.2	26.6	\(<.001\)	\(.110 \)
\(\geq 55 \)	76	78	73	\(<.001 \)	\(.110 \)
Sex				\(<.001 \)	\(.180 \)
Female	41	42	41	\(.150 \)	\(.180 \)
BMI (kg/m\(^2\))				\(<.001 \)	\(.204 \)
Nonobese (<30)	52	51	53	\(<.001 \)	\(.204 \)
Obese I (30-34.9)	27	27	27	\(<.001 \)	\(.204 \)
Obese II (35-39.9)	13	14	12	\(<.001 \)	\(.204 \)
Obese III (\(\geq 40 \))	8	7	7	\(<.001 \)	\(.204 \)
Diabetes	20	21	18	\(<.001 \)	\(.019 \)
Smoking	18	17	20	\(<.001 \)	\(.501 \)
Dyspnea	6.2	6.6	5.6	\(<.001 \)	\(.358 \)
Functional status	97	96	98	\(<.001 \)	\(.059 \)
COPD	4.6	4.7	4.5	\(<.001 \)	\(.620 \)
Ascites	0.03	0.02	0.004	\(<.001 \)	\(.375 \)
CHF	0.27	0.34	0.16	\(<.001 \)	\(.426 \)
Hypertension	61	62	58	\(<.001 \)	\(.059 \)
Renal failure	0.07	0.09	0.03	\(<.001 \)	\(.016 \)
On steroids	3.7	4.0	3.3	\(<.001 \)	\(.678 \)
Cancer	0.24	0.30	0.15	\(<.001 \)	\(.334 \)
ASA	\(\leq 2 \)	51	48	\(<.001 \)	\(.024 \)
\(\geq 3 \)	49	52	46	\(<.001 \)	\(.08 \)
Levels\(^a\)				\(<.001 \)	\(.008 \)
One	53	50	47	\(<.001 \)	\(.008 \)
Two	47	50	43	\(<.001 \)	\(.008 \)

Abbreviations: BMI, body mass index; COPD, chronic obstructive pulmonary disease; CHF, congestive heart failure; ASA, American Society of Anesthesiologists class score.

\(^a\) Levels corresponds to single- or 2-level laminectomy.
Among 2-level lumbar laminectomy cases, the incidence of any postoperative complication was once again, significantly lower in the outpatient group compared with the inpatient group (3.17% vs 2.47%, OR 0.44, 95% CI 0.30-0.63, P < .001). Other postoperative endpoints that were found to be significantly less likely in the outpatient cohort included any major complication (1.59% vs 3.22%, OR 0.52, 95% CI 0.37-0.73, P < .001), wound complications (1.62% vs 2.27%, OR 0.66, 95% CI 0.46-0.94, P = .021), sepsis or septic shock (0.29% vs 0.85%, OR 0.36, 95% CI 0.17-0.78, P = .009), return to the operating room (0.44% vs 1.04%, OR 0.43, 95% CI 0.23-0.80, P = .008), blood transfusion (0.16% vs 2.32%, OR 0.07, 95% CI 0.03-0.18, P < .001), and UTI (0.67% vs 1.42%, OR 0.56, 95% CI 0.33-0.95, P = 0.032). Other study outcomes trended toward lower incidences of complications in the outpatient cohort but did not reach statistical significance (Table 3).

Table 2. Unadjusted and Propensity Adjusted, Unmatched and Matched, Complication Rates Between Inpatient and Outpatient Single-level Lumbar Laminectomy Groups.

Characteristic (N)	Inpatient, %	Outpatient, %	Logistic Regression	Propensity-Adjusted
	Unmatched	Matched	Unmatched	Matched
	(5442)	(3757)	(4178)	(4155)
Complication (%)				
Major*	7.1	6.7	2.0	1.9
Death	3.69	3.75	0.96	0.90
Pulmonary	0.06	0.02	0.05	0.02
Stroke	0.77	0.93	0.14	0.15
Thromboembolicb	0.13	0.07	0.14	0.05
Wound	1.7	1.6	0.26	0.27
Sepsis/septic shock	0.75	0.88	0.19	0.19
Cardiac	0.29	0.40	0.07	0.05
Reoperation	1.6	1.72	0.29	0.24
Blood transfusion	1.89	1.91	0.12	0.12
UTI	1.62	1.52	0.31	0.29

Abbreviations: CI, confidence interval; OR, odds ratio; UTI, urinary tract infection.

aMajor indicates any septic, cardiac, or pulmonary complication as well as deep venous thrombosis, pulmonary embolism, reoperation, or death.
bIncludes deep venous thrombosis or pulmonary embolism.

0.07-0.37, P < .001), thromboembolic event including DVT or PE (0.27% vs 0.71%, OR 0.37, 95% CI 0.19-0.75, P = .006), sepsis or septic shock (0.19% vs 0.88%, OR 0.22, 95% CI 0.10-0.49, P < .001), any cardiac complication (0.05% vs 0.40%, OR 0.11, 95% CI 0.03-0.47, P = .003), return to the operating room (0.24% vs 1.72%, OR 0.15, 95% CI 0.08-0.30, P < .001), blood transfusion (0.12% vs 1.91%, OR 0.06, 95% CI 0.02-0.15, P < .001), and UTI (0.29% vs 1.52%, OR 0.17, 95% CI 0.09-0.31, P < .001) (Table 2).

Discussion

An expanding body of literature exists demonstrating the increasing prevalence and safety of outpatient spine surgery.1-11 Despite the growing interest in performing spine
procedures in the outpatient setting, concerns remain regarding the safety of this approach. In this study, we have shown that outpatient single- and 2-level lumbar laminectomies are associated with lower overall perioperative complication rates when compared with the procedure performed in the inpatient setting.

By analyzing a large prospective multicenter database, we identified a cohort of 18,076 patients who underwent single- and 2-level lumbar laminectomies from the years 2006 to 2015. When matched, we found that amongst the single-level laminectomy cases, the overall risk of developing any 30-day postoperative complication was 6.7% in the inpatient group versus only 1.9% in the outpatient group. Among the 2-level laminectomy cases, the overall risk of developing any 30-day postoperative complication was 7.38% versus only 3.17% in the outpatient group. When the 2 cohorts were combined, these results persisted with an overall risk of developing any 30-day postoperative complication of 7.01% in the inpatient group versus only 2.47% in the outpatient group. It is true that in this study, outpatients were younger, less obese, and had fewer comorbidities. While the difference in complication rates between the inpatient and outpatient cohorts could be attributed

Table 3. Unadjusted and Propensity Adjusted, Unmatched and Matched, Complication Rates Between Inpatient and Outpatient Combined (Single- and 2-level) Lumbar Laminectomy Groups.

Characteristic (N)	Unmatched (Inpatient, %)	Matched (Inpatient, %)	Unmatched (Outpatient, %)	Matched (Outpatient, %)	Logistic Regression OR (95% CI)	Propensity-Adjusted OR (95% CI)
Complication (any)	7.77 (3542) 7.38 (3561)	3.18 (3173) 3.17 (3163)	0.39 (0.31-0.49) <.001	0.42 (0.33-0.54) <.001		
Majora 3.48 (322) 3.58 (359)	0.06 (6) 0.06 (6)	0.06 (6) 0.06 (6)	0.44 (0.32-0.61) <.001	0.52 (0.37-0.73) <.001		
Death 0.82 (62) 0.62 (63)	0.38 (38) 0.38 (38)	0.46 (0.24-0.87) 0.16	0.64 (0.31-1.32) .224			
Pulmonary 0.19 (19) 0.24 (24)	0.19 (19) 0.19 (19)	1.01 (0.37-2.78) .994	0.87 (0.29-2.58) .799			
Stroke 0.88 (80) 0.80 (80)	0.5 (51) 0.5 (54)	0.57 (0.32-1.01) 0.54	0.65 (0.34-1.21) .174			
Thromboembolicb 2.21 (227) 2.27 (227)	1.61 (161) 1.62 (162)	0.72 (0.52-1.01) 0.55	0.66 (0.46-0.94) .021			
Wound 0.97 (85) 0.85 (85)	0.28 (28) 0.29 (29)	0.29 (0.14-0.59) 0.001	0.36 (0.17-0.78) .009			
Sepsis/septic shock 0.54 (38) 0.32 (32)	0.32 (32) 0.32 (32)	0.58 (0.28-1.19) 0.137	0.79 (0.34-1.78) .551			
Cardiac 0.94 (1.04) 0.94 (1.04)	0.44 (44) 0.44 (44)	0.47 (0.26-0.85) 0.13	0.43 (0.23-0.80) .008			
Reoperation 2.6 (2.32) 2.6 (2.32)	0.16 (16) 0.16 (16)	0.06 (0.02-0.14) <.001	0.07 (0.03-0.18) <.001			
Blood transfusion 1.44 (1.42) 1.44 (1.42)	0.69 (69) 0.67 (67)	0.48 (0.30-0.77) 0.001	0.56 (0.33-0.95) .032			

Abbreviations: CI, confidence interval; OR, odds ratio; NA, not applicable; UTI, urinary tract infection.

*Major indicates any septic, cardiac, or pulmonary complication as well as deep venous thrombosis, pulmonary embolism, reoperation, or death.

*b Includes deep venous thrombosis or pulmonary embolism.

Table 4. Unadjusted and Propensity Adjusted, Unmatched and Matched, Complication Rates Between Inpatient and Outpatient Combined (Single- and 2-level) Lumbar Laminectomy Groups.

Characteristic (N)	Unmatched (Inpatient, %)	Matched (Inpatient, %)	Unmatched (Outpatient, %)	Matched (Outpatient, %)	Logistic Regression OR (95% CI)	Propensity-Adjusted OR (95% CI)
Complication (any)	7.45 (10743) 7.01 (7299)	2.50 (7333) 2.47 (7299)	0.32 (0.27-0.38) <.001	0.34 (0.29-0.41) <.001		
Majora 3.59 (351) 3.51 (351)	1.22 (122) 1.19 (119)	0.33 (0.27-0.42) <.001	0.38 (0.30-0.49) <.001			
Death 0.06 (02) 0.05 (05)	0.05 (05) 0.04 (04)	0.98 (0.82-3.46) .971	3 (0.31-28.86) .341			
Pulmonary 0.80 (82) 0.82 (82)	0.24 (24) 0.25 (25)	0.31 (0.18-0.51) <.001	0.3 (0.17-0.52) <.001			
Stroke 0.16 (17) 0.16 (17)	0.11 (11) 0.11 (11)	0.69 (0.30-1.60) 0.385	0.63 (0.24-1.69) .362			
Thromboembolicb 0.87 (67) 0.67 (67)	0.37 (37) 0.37 (37)	0.42 (0.27-0.64) <.001	0.50 (0.31-0.79) .003			
Wound 2.1 (1.99) 1.99 (1.99)	1.36 (136) 1.36 (136)	0.65 (0.51-0.82) <.001	0.70 (0.54-0.91) .008			
Sepsis/septic shock 0.86 (87) 0.87 (87)	0.23 (23) 0.23 (23)	0.27 (0.16-0.45) <.001	0.28 (0.16-0.48) <.001			
Cardiac 0.42 (0.39) 0.18 (0.16)	0.43 (0.23-0.80) .008	0.38 (0.20-0.75) .005				
Reoperation 1.27 (1.41) 1.41 (1.41)	0.35 (35) 0.33 (33)	0.28 (0.18-0.42) <.001	0.24 (0.16-0.38) <.001			
Blood transfusion 2.24 (2.1) 2.1 (2.1)	0.14 (14) 0.14 (14)	0.06 (0.03-0.11) <.001	0.07 (0.03-0.12) <.001			
UTI 1.53 (1.47) 1.47 (1.47)	0.48 (48) 0.45 (45)	0.31 (0.21-0.44) <.001	0.31 (0.21-0.45) <.001			

Abbreviations: CI, confidence interval; OR, odds ratio; UTI, urinary tract infection.

*Major indicates any septic, cardiac, or pulmonary complication as well as deep venous thrombosis, pulmonary embolism, reoperation, or death.

*b Includes deep venous thrombosis or pulmonary embolism.
to the differences in the baseline comorbidity burden, age, and obesity profile between the 2 cohorts, the significant difference in complication rates persisted after propensity score adjustment suggesting that this may only be partially responsible for these findings. Interestingly, the proportion of outpatient surgery increased exponentially over the years 2006 to 2015 with the proportion of outpatient surgery finally exceeding that of inpatient surgery beginning in 2015. This was noted despite the fact that the overall health of the population as indicated by ASA and comorbidities remained relatively unchanged. These results suggest that not only does lumbar laminectomy performed in the outpatient setting have no association with increased morbidity relative to the inpatient setting, but that increased age, BMI, ASA class 3 or 4, and a preoperative hematocrit of less than 36 were all independent risk factors of increased LOS. Increased age, BMI, ASA class 3 or 4, and steroid use were risk factors for readmission. Fu et al identified Charlson Comorbidity Index 4 or greater, ASA class 3 or greater, chronic steroid use, hypertension, male sex, and BMI >30 kg/m² as independent risk factors for any post discharge complication after ACDF in their NSQIP study. Pugely et al found that age >70 years, diabetes, previous wound infection, transfusion, and operative time >150 minutes were all independent risk factors of any complication after lumbar discectomy.

Although the NSQIP database does not include cost data, the cost of inpatient versus outpatient spine surgery has been reported in the literature. Silvers et al reported an estimated annual cost savings of over $100 million dollars with the performance of ACDF in the outpatient setting in 1996. With increasing performance of this procedure in the outpatient setting in more recent years, there has been a projected increase in the cost savings as well. Bekelis et al reported a lower cost of lumbar discectomy performed in the outpatient versus inpatient setting ($13,107 vs $29,906). Purger et al reported a significantly lower overall cost with ACDF performed in the outpatient setting compared with inpatient setting when accounting for the initial procedure as well as all 90-day charges related to complications, readmissions, and reoperations within that time frame ($33,362 vs $74,667). While there is a relative lack of comparative cost data on outpatient versus inpatient lumbar laminectomy in the literature, the available evidence for other spine procedures suggests that the performance of this procedure in the outpatient setting could result in substantial cost savings.

Despite the fact that outpatient lumbar laminectomy appears to be safe, there is a concern that the diagnosis and treatment of certain complications could be delayed. Helseth et al reported on a series of 1449 patients who underwent cervical and lumbar spine surgery in the outpatient setting. Postoperative hematomas were found in 9 of 1449 patients (0.6%), 2 after cervical and 7 after lumbar surgery. Eight of the 9 patients were

Table 5. Independent Risk Factors for Any 30-day Complication After Lumbar Laminectomy as Defined by Multivariable Logistic Regression.

Characteristic	OR	P	95% CI
Setting			
Inpatient	0.40	<.001	0.32-0.50
Outpatient	0.40	<.001	0.32-0.50
Age			
55 years	1.28	.041	1.01-1.61
BMI			
>30 kg/m²	1.23	.027	1.02-1.49
Functional status			
Partially dependent	2.36	.003	1.34-4.18
Comorbidities			
COPD	1.59	.013	1.10-2.29
On steroids	3.38	<.001	2.39-4.79
ASA 3 or 4	1.74	<.001	1.43-2.12
Operative			
Operating room time >90 min	1.86	<.001	1.50-2.30

Abbreviations: CI, confidence interval; OR, odds ratio; BMI, body mass index; COPD, chronic obstructive pulmonary disease; ASA, American Society of Anesthesiologists class score.
discovered immediately after surgery and treated with clot removal prior to discharge home the day of surgery. The final patient underwent a single-level lumbar discectomy and woke up with acute abdominal pain due to a retroperitoneal hematoma diagnosed on computed tomography scan. He was transfused 2 units of packed red blood cells and fully recovered without further surgery. Another patient underwent a single-level lumbar discectomy and woke up with acute abdominal pain due to a retroperitoneal hematoma diagnosed on computed tomography scan. He was transfused 2 units of packed red blood cells and fully recovered without further surgery.5 Best and Sasso1 reported on 1 patient who underwent a single-level lumbar discectomy and woke up with acute abdominal pain due to a retroperitoneal hematoma diagnosed on computed tomography scan. He was transfused 2 units of packed red blood cells and fully recovered without further surgery.5 Best and Sasso1 reported on 1 patient who underwent a single-level lumbar discectomy and woke up with acute abdominal pain due to a retroperitoneal hematoma diagnosed on computed tomography scan. He was transfused 2 units of packed red blood cells and fully recovered without further surgery.5 Best and Sasso1 reported on 1 patient who underwent a single-level lumbar discectomy and woke up with acute abdominal pain due to a retroperitoneal hematoma diagnosed on computed tomography scan. He was transfused 2 units of packed red blood cells and fully recovered without further surgery.5

Another factor that may have affected the results of our study were potential differences in surgical technique used in the inpatient versus outpatient setting. Unfortunately, we were unable to account for minimally invasive surgery (MIS) versus open approaches for laminectomy as we were only able to screen for the procedure using CPT codes in the NSQIP database and there are no separate CPT codes for MIS techniques. This would be relevant in that there is a trend in the literature for shorter postoperative recovery time, shorter time to mobilization, and decreased postoperative pain with MIS techniques for spine surgery.32-35 Despite these differences in recovery, there was no difference in complication rates based on surgical technique, and thus it is unlikely to impact the findings of this study. In addition, differences in postoperative pain management between inpatient and outpatient cohorts could have impacted the observed results in that opioid use is associated with adverse effects including gastrointestinal dysfunction, respiratory depression, and urinary retention.36,37 Furthermore, postoperative pain has been shown to be a common cause for unplanned 30-day readmission as well as increased length of postoperative hospital stay.27 Importantly, without an adequate pain control regimen, patients undergoing laminectomy in the outpatient setting would require hospitalization for pain control (as previously noted).1 Multimodal pain management regimens have been shown to allow for improved pain control with decreased use of opioids and their associated adverse effects.36,37 Unfortunately, methods of postoperative pain management were not available for review in the NSQIP database and if a difference existed between the inpatient and outpatient cohorts, this may have played a role in the observed complication rate.

The strengths of the NSQIP database include prospective data collected on a large number of patients included over multiple centers in the United States allowing for high-powered analysis with greater generalizability.12 In addition, trained, on-site, surgical clinical reviewers collect the perioperative data in the NSQIP database, which increases the reliability and sensitivity of the database for the assessment of postoperative complications when compared with other databases.12

Other weaknesses of this study include the possibility of selection bias. The outpatient cohort was younger, less obese, and had fewer comorbidities (Table 1) compared with the inpatient cohort.38-31 In addition, NSQIP data is collected prospectively and, as such, patients are not randomized, which could also introduce bias. Despite these weaknesses, the significant difference in complication rates between the 2 cohorts persisted after propensity-matched analysis, which has been shown in other studies to approach the statistical power of a randomized study.32
In conclusion, this study demonstrated that single- and 2-level lumbar laminectomy performed in the outpatient setting did not confer an increased 30-day risk of complications when compared with the procedures performed in the inpatient setting. In fact, performance of these procedures in the outpatient setting appeared to be associated with a lower overall complication rate in the 30-day postoperative period. In addition, this study identified multiple independent risk factors for any complication following lumbar laminectomy. This data suggests that outpatient lumbar laminectomy is a viable and potentially safer option than inpatient lumbar laminectomy in appropriately selected patients. Future studies are needed assessing patient satisfaction and perception of outpatient versus inpatient surgery.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD
Teja R. Karukonda, MD [https://orcid.org/0000-0003-2001-6475]

References
1. Best NM, Sasso RC. Outpatient lumbar spine decompression in 233 patients 65 years of age or older. Spine (Phila Pa 1976). 2007;32:1135-1139.
2. Idowu OA, Boyajian HH, Ramos E, Shi LL, Lee MJ. Trend of spine surgeries in the outpatient hospital setting versus ambulatory surgical center. Spine (Phila Pa 1976). 2017;42:E1429-E1436.
3. Gray DT, Deyo RA, Kreuter W, et al. Population-based trends in volumes and rates of ambulatory lumbar spine surgery. Spine (Phila Pa 1976). 2006;31:1957-1964.
4. Baird EO, Brietzke SC, Weinberg AD, et al. Ambulatory spine surgery: a survey study. Global Spine J. 2014;4:157-160.
5. Helseth Ø, Lied B, Halvorsen CM, Ekseth K, Helseth E. Outpatient cervical and lumbar spine surgery is feasible and safe: a consecutive single center series of 1449 patients. Neurosurgery. 2015;76:728-738.
6. Munnich EL, Parente ST. Procedures take less time at ambulatory surgery centers, keeping costs down and ability to meet demand up. Health Aff (Millwood). 2014;33:764-769.
7. Ahn J, Bohl DD, Tabaracaee E, Basques BA, Singh K. Current trends in outpatient spine surgery. Clin Spine Surg. 2016;29:384-386.
8. Pugely AJ, Martin CT, Gao Y, Mendoza-Lattes SA. Outpatient surgery reduces short-term complications in lumbar discectomy: an analysis of 4310 patients from the ACS-NSQIP database. Spine (Phila Pa 1976). 2013;38:264-271.
9. Fu MC, Gruskay JA, Samuel AM, et al. Outpatient anterior cervical discectomy and fusion is associated with fewer short-term complications in one- and two-level cases: a propensity-adjusted analysis. Spine (Phila Pa 1976). 2017;42:1044-1049.
10. Khanna R, Kim RB, Lam SK, Cybulski GR, Smith ZA, Dahdaleh NS. Comparing short-term complications of inpatient versus outpatient single-level anterior cervical discectomy and fusion: an analysis of 6940 patients using the ACS-NSQIP Database. Clin Spine Surg. 2018;31:43-47.
11. McGirt MJ, Godil SS, Asher AL, Parker SL, Devin CJ. Quality of analysis of anterior cervical discectomy and fusion in the outpatient versus inpatient setting: an analysis of 7288 patients from the NSQIP database. Neurosurg Focus. 2015;39:E9. doi:10.3171/2015.9.FOCUS15335
12. American College of Surgeons. User Guide for the. 2013 ACS NSQIP Participant Use Data File. https://www.facs.org/~media/files/quality%20programs/nsqip/2013_acs_nsqip_puf_user_guide.pdf. Accessed April 30, 2019.
13. World Health Organization. Obesity: Preventing and Managing the Global Epidemic. Geneva, Switzerland: World Health Organization; 2000.
14. Arshi A, Wang C, Park HY, et al. Ambulatory anterior cervical discectomy and fusion is associated with a higher risk of revision surgery and perioperative complications: an analysis of a large nationwide database. Spine J. 2018;18:1180-1187. doi:10.1016/j.spinee.2017.11.012
15. Shapiro FE, Punwani N, Urman RD. Office-based surgery: embracing patient safety strategies. J Med Pract Manage. 2013;29:72-75.
16. Basques BA, Varthi AG, Golinvaux NS, Bohl DD, Grauer JN. Patient characteristics associated with increased postoperative length of stay and readmission after elective laminectomy for lumbar spinal stenosis. Spine (Phila Pa 1976). 2014;39:833-840.
17. Silvers HR, Lewis PJ, Suddaby LS, Asch HL, Clabeaux DE, Blumenson LE. Day surgery for cervical microdiscectomy: is it safe and effective? J Spinal Disord. 1996;9:287-293.
18. Martin CT, D’Oro A, Buser Z, et al. Trends and costs of anterior cervical discectomy and fusion: a comparison of inpatient and outpatient procedures. Iowa Orthop J. 2018;38:167-176.
19. Mullins J, Pojskic M, Boop FA, Arnaoutovic KI. Retrospective single-surgeon study of 1123 consecutive cases of anterior cervical discectomy and fusion: a comparison of clinical outcome parameters, complication rates, and costs between outpatient and inpatient surgery groups, with a literature review. J Neurosurg Spine. 2018;28:630-641.
20. Bekeris K, Missios S, Kakoulides G, Rahmani R, Simmons N. Selection of patients for ambulatory lumbar discectomy: results from four US states. Spine J. 2014;14:1944-1950.
21. Purger DA, Pendharkar AV, Ho AL, et al. Outpatient vs inpatient anterior cervical discectomy and fusion: a population-level analysis of outcomes and cost. Neurosurgery. 2018;82:454-464.
22. Sivaganesan A, Hirsch B, Phillips FM, McGirt MJ. Spine surgery in the ambulatory surgery center setting: value-based advancement or safety liability? Neurosurgery. 2018;83:159-165.
23. Mobbs RJ, Li J, Sivabalan P, Raley D, Rao PJ. Outcomes after decompressive laminectomy for lumbar spinal stenosis: comparison between minimally invasive unilateral laminectomy for
bilateral decompression and open laminectomy. *J Neurosurg Spine*. 2014;21:179-186.

24. Ge DH, Stekas ND, Varlotta CG, et al. Comparative analysis of two transforaminal lumbar interbody fusion techniques: open TLIF versus Wiltse MIS TLIF. *Spine (Phila Pa 1976)*. 2019;44:E555-E560.

25. Vora D, Kinnard M, Falk D, et al. A comparison of narcotic usage and length of post-operative hospital stay in open versus minimally invasive lumbar interbody fusion with percutaneous pedicle screws. *J Spine Surg*. 2018;4:516-521.

26. Kurd MF, Kreitz T, Schroeder G, Vaccaro AR. The role of multimodal analgesia in spine surgery. *J Am Acad Orthop Surg*. 2017;25:260-268.

27. Devin CJ, McGirt MJ. Best evidence in multimodal pain management in spine surgery and means of assessing postoperative pain and functional outcomes. *J Clin Neurosci*. 2015;22:930-938.

28. Buerba RA, Fu MC, Gruskay JA, Long WD 3rd, Grauer JN. Obese class III patients at significantly greater risk of multiple complications after lumbar surgery: an analysis of 10387 patients in the ACS NSQIP database. *Spine J*. 2014;14:2008-2018.

29. Marquez-Lara A, Nandyala SV, Sankaranarayanan S, Noureldin M, Singh K. Body mass index as a predictor of complications and mortality after lumbar spine surgery. *Spine (Phila Pa 1976)*. 2014;39:798-804.

30. Seicean A, Alan N, Seicean S, et al. Impact of increased body mass index on outcomes of elective spinal surgery. *Spine (Phila Pa 1976)*. 2014;39:1520-1530.

31. Balabaud L, Pitel S, Caux I, et al. Lumbar spine surgery in patients 80 years of age or older: morbidity and mortality. *Eur J Orthop Surg Traumatol*. 2015;25(suppl 1):S2015-S2012.

32. D’Agostino RB Jr. Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. *Stat Med*. 1998;17:2265-2281.