Evaluation of the Histopathological Features of Early-stage Invasive Ductal Breast Carcinoma by 18Fluoride-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography

18Flor-flordeoksiglukoz Pozitron Emisyon Tomografi/Bilgisayarlı Tomografi ile Erken Evre İnvaziv Duktal Meme Karsinomunun Histopatolojik Özelliklerinin Değerlendirilmesi

©Copyright 2021 by Turkish Society of Nuclear Medicine
Molecular Imaging and Radionuclide Therapy published by Galenos Yayınevi.

Abstract

Objectives: This study investigates the relationship between 18fluoride-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) parameters and histopathological features in patients with early-stage invasive ductal breast carcinoma (IDBC).

Methods: Patients with early-stage IDBC who underwent 18F-FDG PET/CT scan for staging were included in this retrospective study. The status of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2, Ki-67 proliferative index, and grades of tumors were recorded. The conventional metabolic parameters [maximum standard uptake value (SUV_{max}) and average standard uptake value] and volume-based parameters [metabolic tumor volume (MTV) and total lesion glycolysis] of the primary tumor were obtained from the 18F-FDG PET/CT images. The associations and correlations between the 18F-FDG PET/CT parameters and histopathological features were assessed.

Results: One hundred forty-three patients were included. 18F-FDG PET/CT parameters, other than MTV, were significantly associated with the ER and PR status and Ki-67 index, while T-staging was significantly associated with all 18F-FDG PET/CT parameters. In the axillary lymph node (ALN) involvement, no significant difference was found in the 18F-FDG PET/CT parameters. In terms of the pathological stage, a significant difference was found in all 18F-FDG PET/CT parameters. 18F-FDG PET/CT parameters, other than MTV, were significantly higher in non-luminal breast tumors than luminal tumors and in high-grade tumors than low-grade ones. Triple-negative tumors had the highest 18F-FDG PET/CT parameter, but the difference was insignificant for MTV. The SUV_{max} had the strongest correlation with Ki-67 proliferative index.

Conclusion: Tumors with aggressive histopathological features had higher 18F-FDG PET/CT parameter values. This study suggests that 18F-FDG PET/CT may provide prognostic information in patients with early-stage IDBC.

Keywords: Breast cancer, metabolic tumor volume, total lesion glycolysis, 18fluoride-fluorodeoxyglucose, positron emission tomography/computed tomography

Öz

Amaç: Bu çalışmada, erken evre invaziv duktal meme karsinomunun histopatolojik özellikleri ile 18florür-florodeoksiglukoz (18F-FDG) pozitron emisyon tomografi/bilgisayarlı tomografi (PET/BT) parametreleri arasındaki ilişki incelendi.

Yöntem: Bu retrospektif çalışmaya evreleme için 18F-FDG PET/CT tarama yapılan erken evre invaziv duktal meme karsinomlu hastalar dahil edildi. Primer tümörün östrojen reseptör (ER), progesteron reseptör (PR) durumları ve insan epidermal büyüme faktörü-2, Ki-67 proliferatif indeksi, ve histolojik dereceleri kaydedildi. Primer tümörün geleneksel metabolik parametreleri maksimum standart alım degerleri

Address for Correspondence: Mustafa Erol MD, University of Health Sciences Turkey, Konya City Hospital, Clinic of Nuclear Medicine, Konya, Turkey
Phone: +90 531 797 26 11 E-mail: mustafaeor082@hotmail.com ORCID ID: orcid.org/0000-0003-3121-5330
Received: 25.12.2020 Accepted: 06.04.2021

©Copyright 2021 by Turkish Society of Nuclear Medicine
Molecular Imaging and Radionuclide Therapy published by Galenos Yayınevi.
Introduction

Breast cancer (BC) is the most widely diagnosed form of cancer and the second cause of cancer-related death in women (1). The most common pathological subtype is invasive ductal breast carcinoma (IDBC), which is associated with different prognostic behaviors concerning molecular subtypes (2). The size and grade of tumors, hormonal receptor status, human epidermal growth factor receptor-2 (HER-2) expression, Ki-67 proliferative index, axillary lymph node (ALN) involvement, and distant metastasis are important for the prognosis and treatment of IDBC (3,4).

18F-Fluoride-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) has been widely used for the staging, restaging, assessment of treatment response, and prediction of prognosis in BC (5). Several studies have previously evaluated the relationship between the maximum standard uptake value (SUV\textsubscript{max}) and clinicopathological factors in BC (6,7,8,9,10,11), while the metabolic tumor volume (MTV) or total lesion glycolysis (TLG), called volume-based PET parameters, shows the total tumor burden and tumor metabolism. The prognostic value of these parameters was significantly associated with BC subtypes and prognosis in many studies (12,13,14,15,16,17).

This study aimed to evaluate the relationship between the 18F-FDG PET/CT parameters [SUV\textsubscript{max}, average standard uptake value (SUV\textsubscript{avg}), MTV, and TLG] and histopathological features (pathologic T size, pathological stage, ALN involvement, hormone receptor expressions, HER-2 receptor expression, Ki-67 proliferative index, and molecular subtypes) in IDBC.

Materials and Methods

The Local Ethics Committee of KTO Karatay University Faculty of Medicine approved this study under the decision number: 2020/10. Written informed consent was obtained from all patients. The data of patients with histopathologically documented and surgically excised IDBC, who underwent a preoperative 18F-FDG PET/CT between July 2013 and December 2019, were analyzed. Patients with the following features were excluded from the study: Multifocal or multicentric tumors; bilateral breast tumors; chest wall, surrounding muscle, or skin tissue involvement; distant metastasis; missing clinical data; those with a history of any therapeutic intervention before surgery (e.g., chemotherapy, radiotherapy, and hormone therapy). Moreover, in this study, the largest diameter of the evaluated lesions required to be larger than 10 mm to decrease the partial volume effect.

Imaging and Analysis of 18F-FDG PET/CT

Before the 18F-FDG injection, the patients were fasted for at least six hours to ensure that the blood glucose levels were below 150 mg/dL. The scan was performed 60 min after the intravenous injection. The region of interest (ROI) around the primary tumor was drawn by manual adjustment to exclude structures showing physiological 18F-FDG uptake around the tumor. The tumor was completely covered in three planes. SUV\textsubscript{max} was obtained by manually drawing the ROI from the slice with the highest uptake of 18F-FDG in the primary tumor. MTV was obtained using a 42% threshold of SUV\textsubscript{max}. TLG was calculated by multiplying SUV\textsubscript{avg} by MTV.

Histopathological Analysis and Molecular Subtypes

Patients included in this study underwent surgery or ALN dissection. The pathological data of the tumors, such as size, grade, pathological stage, and other prognostic parameters, were obtained from the records. The tumor has been staged according to the Bloom-Richardson grading system updated by Elston and Ellis (18). The pathological prognostic staging was performed according to the eighth edition of...
the American Joint Committee on Cancer’s Staging Manual (19). The status of the estrogen receptor (ER), progesterone receptor (PR), and HER-2 expression and the Ki-67 proliferative index were evaluated immunohistochemically. The fluorescence in situ hybridization method was used to confirm the presence of HER-2 expression, when the scores were 2+ (20). The molecular subtypes of the ER, PR, and HER-2 expression status were determined. The proliferative index was considered high when the Ki-67 was ≥14% and low when it was <14%. The subjects were classified according to the molecular subtypes as recommended in the 12th International Breast Conference (2). The molecular subtypes were divided into two groups: Luminal (luminal A, luminal B HER-2-negative, and luminal B HER-2-positive subtypes) and non-luminal [HER-2-positive and triple-negative (TN) subtypes].

Statistical Analysis

The statistical analyses were performed using IBM SPSS Statistics for Windows (ver. 21, IBM Corp., Armonk, NY). The normality of the distribution of the continuous data was evaluated. The continuous data were expressed as medians or mean ± standard deviations, where appropriate. The categorical data were shown as frequencies and percentages. For comparing continuous data, non-parametric tests were used. The relationship between the continuous data was evaluated using a Spearman correlation test. A p value less than 0.05 was considered statistically significant.

Results

One hundred forty-three female patients with IDBC and a mean age of 52.43±11.79 years (range: 29-81 years) were included. Table 1 shows the characteristics of the patients. Table 2 shows the relationship between the histopathological features and 18F-FDG PET/CT parameters. Fifty-nine (41.3%) tumors were stage T1c, and 84 (58.7%) tumors were stage T2. The median values of all 18F-FDG PET/CT parameters were higher in the T2 group than the T1c group (p<0.001 for all comparisons).

All 18F-FDG PET/CT parameters were almost similar across ALN states. The SUV$_{\text{max}}$, SUV$_{\text{avg}}$, and TLG were higher in high-grade tumors (p<0.001 for all comparisons). Moreover, high-grade tumors had higher MTV, but the difference was insignificant.

The SUV$_{\text{max}}$, TLG, and SUV$_{\text{avg}}$ were higher in hormone-receptor-negative tumors compared with the positive ones. The MTV was also higher in hormone-receptor-negative tumors compared with the positive ones, but the differences were insignificant. HER-2-positive tumors had higher SUV$_{\text{avg}}$ and SUV$_{\text{max}}$ than the negative ones (p=0.046 and p=0.04, respectively). The TLG and MTV were higher in HER-2-positive tumors compared with the negative ones, but the differences were insignificant. Figure 1 shows the transaxial slice of PET/CT images of a patient with IDBC (histologic grade 3; ER-positive, PR-positive, and HER-2-positive).

Luminal A was found in 33 patients (23.1%); luminal B HER-2-negative, 61 patients (42.7%); luminal B HER-2-positive, 28 patients (19.6%); HER-2-positive, 10 patients (7.0%); and TN, 11 patients (7.7%).

Table 1. Patients’ characteristics

Characteristics	n
Number of patients	143
Age, mean	52.43±11.79
Pathological tumor stage	
T1c	59 (41.3%)
T2	84 (58.7%)
Grade of tumor	
I	17 (11.9%)
II	77 (53.8%)
III	49 (34.3%)
Axillary lymph node status	
Positive	78 (54.5%)
Negative	65 (45.5%)
ER status	
Positive	122 (85.3%)
Negative	21 (14.7%)
PR status	
Positive	114 (79.7%)
Negative	29 (20.3%)
HER-2 status	
Positive	38 (26.6%)
Negative	105 (73.4%)
Ki-67 index	
≥14	101 (70.6%)
<14	42 (29.4%)
Molecular subtypes	
Luminal A	33 (23.1%)
Luminal B HER-2-negative	61 (42.7%)
Luminal B HER-2-positive	28 (19.6%)
HER-2-positive	10 (7.0%)
TN	11 (7.7%)
Pathological N (pN)	
N0	65 (45.5%)
Nmi	3 (2.1%)
N1	54 (37.7%)
N2	13 (9.1%)
N3	8 (5.6%)
Pathological stage	
I	34 (23.7%)
II	88 (61.6%)
III	21 (14.7%)

ER: Estrogen receptor, PR: Progesterone receptor, HER-2: Human epidermal growth factor receptor-2; Nmi: Nodal micrometastasis, TN: Triple-negative.
2-positive, 28 patients (19.6%); HER-2-positive, 10 patients (7.0%); TN, 11 patients (7.7%). The SUV\textsubscript{max}, SUV\textsubscript{avg}, and TLG were different among the five molecular subtypes (p<0.001, p<0.001, and p=0.010, respectively). Although MTV varied among the molecular subtypes, the difference was insignificant. All 18F-FDG PET/CT parameters were the highest in TN groups in terms of the molecular subtypes. In the post-hoc analysis, the luminal A group had a significantly lower SUV\textsubscript{max} (p=0.026 and p<0.001, respectively) and SUV\textsubscript{avg} (p=0.001 and p=0.001, respectively) than the HER-2-positive and TN groups. The luminal B HER-2-negative group had a significantly lower SUV\textsubscript{max} (p=0.006) and SUV\textsubscript{avg} (p=0.007) than the TN group. TLG was significantly lower in the luminal A group compared with the TN group (p=0.015). Among the 18F-FDG PET/CT parameters, TLG had the strongest correlation with the tumor’s diameter (r=0.679; p<0.001). Moreover, SUV\textsubscript{avg} had a modest correlation with Ki-67 (r=0.472; p<0.001). The group with Ki-67 <14% had a significantly higher SUV\textsubscript{avg}, SUV\textsubscript{max}, and TLG compared with that with Ki-67 >14% (p=0.001, p=0.001, and p=0.002, respectively). The MTV was higher in the group with Ki-67 ≥14% compared with that with Ki-67 <14%, but the difference was statistically insignificant.

There was a difference in the volumetric parameters (MTV and TLG) in the pathological stage (p<0.001 for both comparisons). Other PET parameters also varied significantly (SUV\textsubscript{max} and SUV\textsubscript{avg}; p=0.013 and p=0.028, respectively). In the post-hoc analysis, stage-I and stage-II tumors showed differences in terms of SUV\textsubscript{max} (p=0.01), SUV\textsubscript{avg} (p=0.026), MTV (p<0.001), and TLG (p<0.001), and stage-I and stage-III tumors showed differences in terms of MTV (p=0.008) and TLG (p=0.001).

Table 2. Associations between the histopathological features and 18F-FDG PET/CT parameters

Pathological tumor stage	SUV\textsubscript{max} median	SUV\textsubscript{avg} median	MTV median	TLG median
T1c	6.02	3.87	1.59	5.77
T2	10.58	<0.001	3.48	22.15
p value	<0.001	<0.001	<0.001	<0.001
Axillary lymph node status				
Positive	7.99	5.00	2.72	12.04
Negative	8.17	4.94	2.06	10.81
p value	0.913	0.955	0.627	0.504
Pathological stage				
I	6.45	4.13	1.44	6.05
II	9.13	5.92	2.95	18.46
III	9.13	5.62	3.11	17.18
p value	0.013	0.028	<0.001	<0.001
Grade of tumor				
I	5.98	3.72	1.95	6.25
II	6.78	4.34	2.41	10.34
III	13.02	8.07	2.87	20.06
p value	<0.001	<0.001	0.294	<0.001
ER status				
Positive	6.88	4.47	2.24	10.15
Negative	17.07	10.55	3.75	28.84
p value	<0.001	<0.001	0.269	0.001
PR status				
Positive	6.88	4.47	2.28	10.67
Negative	13.02	8.07	2.87	18.31
p value	0.001	0.001	0.819	0.049
HER-2 status				
Positive	11.55	7.05	2.49	12.04
Negative	7.11	4.57	2.41	10.53
p value	0.04	0.046	0.773	0.340
Ki-67 index				
≥14	10.4	6.36	2.75	15.27
<14	6.05	3.66	2.06	6.83
p value	<0.001	<0.001	0.410	0.002
Molecular subtypes				
Luminal A	6.36	3.83	2.25	6.89
Luminal B HER-2-negative	7.05	4.54	2.32	11.95
Luminal B HER-2-positive	11.04	6.32	2.09	11.57
HER-2-positive	13.19	8.16	3.05	18.78
TN	21.29	13.24	5.22	50.21
p value	<0.001	<0.001	0.855	0.010
Molecular group				
Luminal	6.89	4.47	3.75	10.16
Non-luminal	17.07	10.55	3.75	28.85
p value	<0.001	<0.001	0.269	0.001

SUV\textsubscript{max}: Maximum standard uptake value, SUV\textsubscript{avg}: Average standard uptake value, MTV: Metabolic tumor volume, TLG: Total lesion glycolysis, ER: Estrogen receptor, PR: Progesterone receptor, HER-2: Human epidermal growth factor receptor-2, 18F-FDG: Fluoride-fluorodeoxyglucose, PET: Positron emission tomography, CT: Computed tomography, TN: Triple-negative.

Figure 1. A 55-year-old patient with invasive ductal breast carcinoma (histologic grade 3; ER-positive, 90%; PR-positive, 40%; HER-2-positive). Intense 18F-FDG uptake was seen in the primary tumor (SUV\textsubscript{max}: 16.13, SUV\textsubscript{avg}: 9.63, MTV: 2.78, and TLG: 26.73)

ER: Estrogen receptor; PR: Progesterone receptor; HER-2: Human epidermal growth factor receptor-2; 18F-FDG: Fluoride-fluorodeoxyglucose; MTV: Metabolic tumor volume, TLG: Total lesion glycolysis, SUV\textsubscript{max}: Maximum standardized uptake value, SUV\textsubscript{avg}: Average standard uptake value.
Table 3 shows the comparison of the area-under-the-curve (AUC) values of \(^{18}\)F-FDG PET/CT parameters for the histopathological features of BC. The AUC values were similar in all tested features except for MTV. Of note, the AUC of SUV\(_{max}\) was the largest for ER and PR status, Ki-67 index, and molecular group. Considering the HER-2 status, TLG had the largest AUC.

Discussion

IDBC is a heterogeneous group of tumors (21). Several studies have reported a correlation between the parameters of \(^{18}\)F-FDG PET/CT and the histopathological features of BC (12,22,23,24). However, most of them evaluated different histological subtypes of BC and reported highly variable results. This study showed that tumors with aggressive histopathological features are associated with high \(^{18}\)F-FDG PET/CT parameters in IDBC.

An independent prognostic factor for BC is the tumor’s size. Moreover, poor histopathological differentiation and larger tumor size are related to an increased metastasis risk in BC (25). While some studies reported the correlation between the tumor’s size and \(^{18}\)F-FDG PET/CT parameters (9,23,26,27,28), others did not report such an association (8,10,29). In this study, the T-stage groups were associated with all \(^{18}\)F-FDG PET/CT parameters. Our patient population was predominantly composed of individuals with pathological T2-stage tumors, and there were no T3 tumors in this series.

Studies showed that the negative ER status was associated with higher \(^{18}\)F-FDG PET/CT parameters (12,24,26). In line with these studies, we found significantly higher \(^{18}\)F-FDG PET/CT parameters in ER-negative patients than ER-positive patients, but the difference was statistically insignificant for MTV. According to the studies by Kajáry et al. (12) and Groheux et al. (24), a negative PR status was associated with higher SUV\(_{max}\), MTV, and TLG. Conversely, according to the study by Kaida et al. (23), there was no association between PR status and any volumetric parameters (MTV and TLG). In the present study, there was a significant association between the ER or PR status and the \(^{18}\)F-FDG PET/CT parameters, except for MTV. Some studies (12,30) have reported significant associations between HER-2 status and \(^{18}\)F-FDG PET/CT parameters, but others did not report such an association (24,29). All \(^{18}\)F-FDG PET/CT parameters were higher in HER-2-positive tumors than the negative ones, but significant associations were observed only for SUV\(_{max}\) and SUV\(_{avg}\) in the present study.

A higher histological grade is associated with aggressive behavior (24). Several studies have demonstrated a significant relationship between the histological grade and \(^{18}\)F-FDG PET/CT parameters (9,10,12,26,31,32,33). Similarly, in the present study, there was a significant association between tumor’s grade and all \(^{18}\)F-FDG PET/CT parameters, except for MTV. Several studies have demonstrated a positive correlation between the Ki-67 index levels and \(^{18}\)F-FDG PET/CT parameters (9,26,29,32). Similarly, in our study, a positive correlation was observed between the Ki-67 levels and SUV\(_{max}\), SUV\(_{avg}\), and TLG. When the patients were grouped for their Ki-67 levels, the higher-level group had a significantly higher SUV\(_{max}\), SUV\(_{avg}\), and TLG. Our results showed that, among the \(^{18}\)F-FDG PET/CT parameters, SUV\(_{max}\) had the strongest correlation with Ki-67.

Table 3. Comparison of the AUC values of the \(^{18}\)F-FDG PET/CT parameters for predicting prognostic factors

	AUC	95% confidence interval	p value
ER negativity			
SUV\(_{max}\)	0.795	0.72-0.86	<0.001
SUV\(_{avg}\)	0.799	0.72-0.86	<0.001
MTV	0.576	0.49-0.66	0.386
TLG	0.724	0.64-0.80	<0.001
PR negativity			
SUV\(_{max}\)	0.701	0.62-0.77	<0.001
SUV\(_{avg}\)	0.703	0.62-0.78	<0.001
MTV	0.514	0.43-0.60	0.849
TLG	0.619	0.53-0.70	0.054
HER-2 positivity			
SUV\(_{max}\) max	0.612	0.58-0.69	0.041
SUV\(_{avg}\) max	0.610	0.52-0.69	0.046
MTV	0.484	0.40-0.60	0.779
TLG	0.619	0.47-0.64	0.347
High Ki-67 index			
SUV\(_{max}\)	0.702	0.62-0.78	<0.001
SUV\(_{avg}\)	0.710	0.63-0.79	<0.001
MTV	0.544	0.46-0.63	0.391
TLG	0.669	0.58-0.74	<0.001
Non-luminal group			
SUV\(_{max}\)	0.780	0.72-0.86	<0.001
SUV\(_{avg}\)	0.799	0.72-0.86	<0.001
MTV	0.576	0.49-0.68	0.386
TLG	0.724	0.64-0.80	<0.001

AUC: Area-under-the-curve, ER: Estrogen receptor, PR: Progesterone receptor, SUV\(_{max}\): Maximum standard uptake value, SUV\(_{avg}\): Average standard uptake value, MTV: Metabolic tumor volume, TLG: Total lesion glycolysis.
Written informed consent was obtained from all patients. The Local Ethics Committee approved this study under the decision number: 2020/10.

Informed Consent: Written informed consent was obtained from all patients.

Peer-review: Externally peer-reviewed.

Authorship Contributions
Surgical and Medical Practices: M.İ.E.K., Concept: M.E., H.Ö., Design: M.E., H.Ö., Data Collection or Processing: M.İ.E.K., Analysis or Interpretation: M.E., H.Ö., M.İ.E.K., Analysis or Interpretation: M.E., Literature Search: M.E., Writing: M.E.

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: The authors declared that this study has received no financial support.

References
1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019;69:7-34.
2. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thürlimann B, Senn HJ; Panel members. Strategies for subtypes-dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 2011;22:1736-1747.
3. Banerjee M, George J, Song EY, Roy A, Hyniuk W. Tree-based model for breast cancer prognostication. J Clin Oncol 2004;22:2567-2575.
4. Kwast AB, Voogd AC, Menke-Pluijmers MB, Linn SC, Sonke GS, Kieneman LA, Siesling S. Prognostic factors for survival in metastatic breast cancer: Evidence-based recommendations in initial staging. Tumour Biol 2017;39:1010428317728285.
5. Caresea Aroztegui AP, García Vicente AM, Alvarez Ruiz S, Delgado Bolton RC, Orcajo Rincon J, García Garzon JR, de Arcocha Torres M, Garcia-Velloslo MJ; Oncology Task Force of the Spanish Society of Nuclear Medicine and Molecular Imaging. 18F-FDG PET/CT in breast cancer: Evidence-based recommendations in initial staging. Tumour Biol 2017;39:1010428317728285.
6. Song BI, Hong CM, Lee HJ, Kang S, Jeong SY, Kim HW, Chae YS, Park JY, Lee SW, Ahn BC, Lee J. Prognostic Value of Primary Tumor Uptake on F-18 FDG PET/CT in Patients with Invasive Ductal Breast Cancer. Nucl Med Mol Imaging 2011;45:117-124.

Studies have reported that molecular subtypes are associated with a variable prognosis, for example, the worst for TN and HER-2-positive and the best for luminal A (12,26,34). Concerning the molecular subtypes, Kajáry et al. (12), Groheux et al. (24), and Önner et al. (26) reported significant associations with SUV$_{\text{max}}$, SUV$_{\text{avg}}$, and TLG. Similarly, in our study, there was a significant relationship between the molecular subtypes and 18F-FDG PET/CT parameters, except for MTV. In the luminal A subtype, cellular proliferation genes are expressed at low levels. Conversely, the HER-2 gene promotes both cancer growth and progression, and the rates of recurrence and mortality are higher in the HER-2-positive subtype (35). TN BC is the most aggressive subtype and is associated with a worse prognosis (36). In this study, the lowest SUV$_{\text{max}}$, SUV$_{\text{avg}}$ and TLG were observed in the luminal A group, while the highest was in the TN group. In this line, Önner et al. (26) and Kajáry et al. (12) observed the lowest SUV$_{\text{max}}$, SUV$_{\text{avg}}$, MTV, and TLG in the luminal A group and the highest SUV$_{\text{max}}$, MTV, and TLG in the TN group. In this study, SUV$_{\text{max}}$, SUV$_{\text{avg}}$, and TLG were significantly higher in the non-luminal group. Regarding MTV, the median values of MTV were similar in both groups. Similarly, previous studies reported that 18F-FDG parameters were significantly higher in the non-luminal groups (12,24,26).

We performed receiver operating characteristic analyses to find which 18F-FDG PET/CT parameters reflected the pathological features better. The AUC values of SUV$_{\text{max}}$, SUV$_{\text{avg}}$, and TLG were high in all pathological variables (ER, PR, and HER-2 status, Ki-67 index, and molecular subtypes). The largest AUC value was seen for SUV$_{\text{avg}}$ in terms of the ER and PR status, Ki-67 index, and molecular groups and for TLG in terms of the HER-2 status. This was incompatible with some recent studies (12,23). We think that these differences are due to different SUV$_{\text{max}}$ threshold values used in MTV calculation. Kaida et al. (23) used a threshold of 50% of peak SUV within the lesions for calculating MTV and reported that TLG reflected the tumor metabolism with histopathological features better than SUV$_{\text{max}}$ or MTV. However, in another study using 2.5 as the SUV$_{\text{max}}$ threshold value in MTV calculation, a high AUC value could not be achieved with MTV. There is a lack of consensus on methods for calculating the volumetric parameters in the literature (12,23,24,26,37,38). In solid tumors such as BC, some authors recommend using 42% of tumor SUV$_{\text{max}}$ as a threshold to represent the glycolytic activity (37,38). So, we used 42% as the threshold for the present study.

Study Limitations
The limitations of this study include being retrospective and having low patients in the groups. Moreover, we cannot predict the findings of this study in patients with advanced IDCBC.

Conclusion
The findings of this study showed that tumors with aggressive histopathological features are associated with high 18F-FDG PET/CT parameters, and therefore, 18F-FDG PET/CT imaging can be used as an aid in predicting the prognosis in early-stage IDCBC.

Ethics
Ethics Committee Approval: The Local Ethics Committee of KTO Karatay University Faculty of Medicine approved this study under the decision number: 2020/10.

Informed Consent: Written informed consent was obtained from all patients.

Peer-review: Externally peer-reviewed.
36. Caudle AS, Yu TK, Tucker SL, Bedrosian I, Litton JK, Gonzalez-Angulo AM, Hoffman K, Meric-Bernstam F, Hunt KK, Buchholz TA, Mittendorf EA. Local-regional control according to surrogate markers of breast cancer subtypes and response to neoadjuvant chemotherapy in breast cancer patients undergoing breast conserving therapy. Breast Cancer Res 2012;14:R83.

37. Hatt M, Cheze-Le Rest C, Aboagye EO, Kenny LM, Rosso L, Turkheimer FE, Albarghach NM, Metges JP, Pradier O, Visvikis D. Reproducibility of 18F-FDG and 3'-deoxy-3'-18F-fluorothymidine PET tumor volume measurements. J Nucl Med 2010;51:1368-1376.

38. Marinelli B, Espinet-Col C, Ulaner GA, McArthur HL, Gonen M, Jochelson M, Weber WA. Prognostic value of FDG PET/CT-based metabolic tumor volumes in metastatic triple negative breast cancer patients. Am J Nucl Med Mol Imaging 2016;6:120-127.