Herbal Drugs from Sudan: Traditional Uses and Phytoconstituents
Mohamed Gamaleldin Elsadig Karar, Nikolai Kuhnert

Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany

ABSTRACT
Sudan folklore medicine is characterized by a unique combination of Islamic, Arabic, and African cultures. In poor communities, traditional medicine has remained as the most reasonable source of treatment of several diseases and microbial infections. Although the traditional medicine is accepted in Sudan, to date there is no updated review available, which focuses on most effective and frequently used Sudanese medicinal plants. Thus, this review aims to summarize the published information on the ethnomedical uses of medicinal plants from Sudan, preparation methods, phytochemistry, and ethnopharmacology. The collected data demonstrate that Sudanese medicinal plants have been reported to possess a wide range of traditional medicinal uses including different microbial infections, gastrointestinal disorders, malaria, diabetes, rheumatic pain, respiratory system disorders, jaundice, urinary system inflammations, wounds, cancer, and different microbial infections. In most cases, the pharmacological studies were in agreement with traditional uses. Moreover, several bioactive compounds such as flavonoids, saponins, alkaloids, steroids, terpenes, tannins, fatty acids, and essential oils have been identified as active constituents. Although this review demonstrates the importance of ethnomedicines in the treatment of several diseases in Sudan, further researches to validate the therapeutic uses and safety of these plants through phytochemical screening, different biological activity assays, and toxicological studies are still needed.

Key words: Antimicrobial agents, biological activity, medicinal plants, phytoconstituents, Sudan, traditional medicine

INTRODUCTION
Traditional medicine has been used for the treatment of human illnesses since long time and is mainly based on components derived from natural products, from herbs, plants, and animals. Medicinal natural products are very frequently used in Sudan and also are widely consumed in Africa and all over the world. About 80% of the populations in African countries depend on traditional medicine for their primary health care.[1] In Sudan, 90% of Sudanese population depends mainly on traditional medicine since admission to hospitals and obtaining modern synthetic drugs are limited and a high percentage of the population is nomads.[2,3] Sustainability of the use of medicinal plants is an important concern. The demand for medicinal plants is increasing in Africa as the population grows and pressure on medicinal plant resources will become greater than ever. Interest in plant-derived medicines has also increased in the developed countries among the pharmaceutical companies.[4] In contrast, due to their minor side effects, the medicinal plants are widely used to treat many human diseases.[5] The increasing cost of health care and the failure of allopathic medicine to treat some diseases have also participated to the increasing consumption of traditional medicine to fight disease. Until now, there is no pharmacopoeia or formal training for the traditional medical healers in Sudan, and their knowledge is completely based on acquired folklore and local traditions. Medicinal plants with a long history of safe and efficient use are likely to have a pharmaceutical outcome.[6] However, almost all of the medicinal herbal products are unlicensed and are not required to demonstrate efficacy, safety, or quality. Unknown consequences of some of medicinal plants have been detected. Examples of toxic reactions, allergic reactions, drug interactions, drug contamination, and mistaken plant identities are provided.[7] This review describes the traditional uses of 48 medicinal plants from Sudan. These plants are distributed into 26 families. The most common families are Fabaceae (12 species) followed by Combretaceae (4 species), Capparidaceae and Capparaceae (3 species each), Meliaceae, Asclepiadaceae, Anacardiaceae, and Malvaceae (2 species each), and other families are represented with one species each [Table 1]. Different plant parts including leaf, stem, root, fruit, seed and bark, aerial part, and whole plant are used in the preparation of medicines. There is a distinct preference for leaf (25%), fruit (23%), and stem (17%) materials [Figure 1]. Drugs were prepared mostly through decoction (19 species) and maceration (13 species). However, other techniques such as infusion (8 species), poultice and smoke (7 species each), powder and paste (6 species each), directly (2 species), and mucilaginous and desert (1 species each) are also employed [Figure 2]. Prepared remedies are administered or prescribed in several ways including orally, nasally, or anally. The majority of the species are extensively used in traditional medicine against infections, inflammation, diabetes, bleeding, malaria,
diarrhea, and digestive disorders. A summary of the most important Sudanese medicinal plants, their botanical families, local names, and traditional usage is presented in Table 1.

The Convention on Biological Diversity (CBD) was opened for signature in 1992 and entered into force in December 1993. It was signed by Sudan in June 1992 and ratified in October 1995, addressing at global level the entire spectrum of biological diversity, the sustainable use thereof and the fair and equitable sharing of the benefits accruing from that use.[71] All plants mentioned in this study are native to Sudan. In this review, we have considered the medicinal plants from the whole Sudan as one single country; however, in July 2011, Sudan was split into two countries (Sudan and South Sudan). The main question now: How will the medicinal plants and forests of the previous United Sudan be divided between the two new countries and which of the two new countries will benefit from legal protection as laid out by CBD?

OVERLAP BETWEEN FOOD AND MEDICINE IN SUDAN

Overlap between food and medicine is a common phenomenon in Sudan. Many plant substances are used as both foods and medicines. For example, the plants Capsicum frutescens, Ziziphus spina-christi, Cymbopogon proximus, Grewia tenax, Hyphaene thebaica, Hibiscus sabdariffa, Trigonella foenum-graecum, Tamarindus indica, and Sesamum indicum are not only known herbal medicines but also foods, drink, and/or flavorings.[8-11,23,42,52,53,55,59-63,72,73] Moreover, in Sudan and many other countries, foods containing biologically active natural constituents are eaten regularly. For instance, luteolin is a known biologically active flavonoid found in celery, green pepper, thyme, chamomile tea, perilla, carrots, peppermint, olive oil, rosemary, navel oranges, oregano, and other foods.[74,75]

PHYTOCHEMISTRY AND PHARMACOLOGICAL PROPERTIES

The traditional medicinal applications of Sudanese plants have encouraged many pharmacological investigations. Several extracts and purified compounds have been assessed for their biological activities, especially antibacterial, antioxidant, antimalarial, antifungal, anti-inflammatory, anticancer, and antidiabetic activities [Figure 3]. There appears to be an interest in developing novel drugs for many diseases from these plants due to their different classes and high contents of phytoconstituents based on natural products as lead structures. The active components in herbal medicines are directly associated with their ability to treat or prevent ailments. Phenolics, alkaloids, tannins, flavonoids, saponins, and steroids are the most bioactive compounds identified in these plants. Table 2 lists some the available pharmacological studies, bioactive constituents, and assays based on folk knowledge of the most active and frequently used Sudanese medicinal plants.

ANTIMICROBIAL, PHYTOCONSTITUENTS, AND TRADITIONAL MEDICINAL USES OF SOME SELECTED SUDANESE PLANTS

Several pharmacological studies have demonstrated the antimicrobial activities of the medicinal plants, supporting its traditional uses. Phytochemical studies on these plants have demonstrated the occurrence of many classes of bioactive compounds, including flavonoids, terpenes, lignans, proanthocyanidines, and chlorogenic acids, among others [Table 2]. In the following section, selected medicinal plants are described in more details with respect to the traditional uses, phytoconstituents, and antimicrobial activities.

Azadirachta indica A. Juss. (Meliaceae)

Azadirachta indica is widely used in folkloric medicine for the treatment of variety of diseases in remote areas of Sudan. For instance, the decoction of leaves and roots is used for snake, scorpion bites and intestinal spasm, respectively.[8] The infusion of the leaves is used for treating malaria, fever, and jaundice [Table 1].[10] Furthermore, the powder of the dried leaves is mixed with water and taken to treat freckles and to increase appetite.[297,298] A. indica has also been scientifically proved for its antibacterial,[129] antiparasitic,[125] neuroprotective,[125] antimalarial,[186,126]
MOHAMED GAMALELDIN ELSADIG KARAR and NIKOLAI KUHNERT: Herbal Drugs from Sudan

Table 1: Sudanese medicinal plants, their local names, and traditional usage

Plant name	Family	Local Sudanese names	Part used	Preparation	Traditional medicine uses	References
A. javanica (Burm. F.) Juss. Ex Schult.	Amaranthaceae	Umm Shara	Whole plant	Poultice	For swellings, wounds and as a potent	[8,9]
A. leiocarpos (DC.) Guill. and Perr.	Combretaceae	Sahab	Stem bark	Decoction	Against cough, dysentery, and giardiasis	[10]
A. senegal (L.) Willd.	Fabaceae	Al-Talih	Stem	Smoke, decoction	Against jaundice, rheumatic pain and as mouth deterrent	[8,11-14]
A. hispidum Schrank.	Asteraceae	Hourab	Aerial part	Decoction	Antimarial	[15,16]
A. senegalensis (Pars.) Lam.	Capparidaceae	Al-Garad	Fruits, stem	Powder	Against diabetes chronic renal failure, ulcers, and diarrhea	[11,17]
A. nilotica (L.) Willd. ex Del.	Fabaceae	Al-Gongelez	Paste, smoke	Antipyretic, malarial, hepatitis C virus, molluscicidal, colds, and pharyngitis	[10,18-22]	
A. bracteolata Lam.	Aristolochiaceae	Um-Galagil	Fruits, roots	Maceration	Antimarial, tumor, scorpion bite, and HIV-1	[15,16,23-25]
A. digitata L.	Bombacaceae	Al-Gongelez	Fruits	Decoction	Against diarrhea, malaria, cold, and amoebic dysentery	[10,26]
A. polycantha Willd.	Fabaceae	Abu-Sineina/ Kakamoat	Leaves, smoke, powder	Antimarial, headache, and against jaundice	[8,16,23]	
A. sinkatana Rey.	Liliaceae	Al-Handal	Fruits, seeds, roots	Smoke, infusion, decoction	Against jaundice, rheumatic pain, dysentery, sexual debility, and schistosomiasis	[10,14]
A. amara (Roxb.) Boiv.	Fabaceae	Arrada	Leaves	Poultice, directly (seeds)	Against constipation, anthemlinitic, skin diseases, colon inflammation, fever, diabetic and hemorrhoids	[29,30]
A. indica A. Juss.	Meliaceae	Al-Neem	Leaves, roots, seeds, roots	Paste, decoction	Against jaundice, mouth inflammation, pain, and wounds	[9,14,30]
C. edulis (Frosk) Edgew.	Capparidaceae	Al-Tundub	Stem	Poultice, directly (seeds)	Antimarial, fever, jaundice, helminthisis, and skin diseases	[8,10,31,32]
C. occidentalis L.	Leguminosae	Al-Soreib	Leaves	Infusion, decoction	Antimarial and jaundice	[8,9,33]
G. villosa Willd.	Tiliaceae	Alikiko	Seeds, roots, stems	Decoction	Against cancer	[10]
C. quadrangularis L.	Vitaceae	Al-Salaaalaa	Leaves, seeds, roots	Maceration, poultice, smoke	Antimarial, bone fracture, acne, evil eye, and tuberculosis	[10,34]
C. colocythis (L.) Schrad.	Cucurbitaceae	Al-Handal	Fruits, seeds, roots	Smoke, poultice, directly (seeds)	Against eczema, diabets, constipation, swellings, and scabies	[9,35,36]
C. hartmannianum Schweinf.	Combretaceae	Al-Habiel	Bark, stem, leaves	Infusion	Antibacterial, jaundice, wounds, and fever	[8,27]
C. procura (Ait.) Ait. F.	Asclepiadaceae	Al-Ushar	Leaves	Infusion, paste	Against jaundice, scorpion bites, thorn injuries, rheumatic and as mouth deterrent	[9,11,14]
C. zambesicus Muell-Arg.	Euphorbiaceae	Habat	Seeds	Decoction	Antimicrobial, antimalarial, HIV-1 and cough	[15,24,35,37-40]
E. abyssinica L.	Fabaceae	Al-Malook	Bark, seeds	Decoction	Antimicrobial and jaundice and rheumatic pain	[10,41]
E. cretica L.	Zygophyllaceae	Umm-Shuwaika	Whole plant	Smoke, powder	Against heartburn, muscular pains, spasm and as purgative	[8,9,42]
L. pyrotechnica (Forsk.) DC.	Asclepiadaceae	Ajwam	Stem, root	Maceration, smoke	Antimicrobial, antimalarial, HIV-1 and cough	[9,11]
M. crassifolia Forsk.	Capparaceae	Sarah	Stem	Smoke	Antimicrobial and jaundice	[9]
M. angolensis DC.	Capparaceae	Shager-Elzaraf	Leaves	Maceration	Against breast tumor	[10]
S. persica L.	Salvadoraceae	Al-Miswak/ Arak	Stems, fruits, leaves	Paste, directly (stem)	Against breast tumor, scurvy, and mouth infection	[24,35,41,43-47]
S. alexandrina Mill. (C. senna L.)	Fabaceae	Sena-Maka	Fruits	Decoction	Against constipation and GIT disorders	[11,42,48-50]
K. africana (Lam.) Benth.	Bignoniaceae	Um-Shitour	Fruits, seeds	Smoke, paste	Against breast tumor, hypertension and diabetes	[10]

Contd..
Table 1: Contd...

Plant name	Family	Local Sudanese names	Part used	Preparation	Traditional medicine uses	References
C. glandulosa Forssk.	Capparaceae	Kurmut	Whole plant	Poultice	Against swelling and rheumatic pain	[8,9,14,42]
K. senegalensis (Desr.) A. Juss.	Meliaceae	Mahogany	Stem bark	Decoction, maceration	Antimalarial, diabetes, hepatic inflammation, sinusitis, skin diseases, stomach complaints, and trachoma	[10,11]
D. melanoxylon Guill. and Perr	Fabaceae	Al-Babanoose	Leaves	Infusion	Against heart pain and rheumatic pain	[8,14]
T. brownii Freyn.	Combretaceae	Al-Sobagh	Bark, stem	Maceration	Against cough, bronchitis, back pains, and rheumatic pain	[9,11,51]
C. proximus (Hochst. ex A. Rich) Stapf.	Poaceae	Mahareb	Leaves	Decoction	Against renal colic, fever, spasm, prostate inflammation and helminthiasis	[30,52]
G. tenax (Forssk.) Fiori.	Tiliaceae	Godeim	Fruits	Powder, maceration, infusion, poultice	Antimalarial, skin diseases, and for anemia	[9,53,54]
S. birrea (A. Rich.) Hochst.	Anacardiaceae	Humeid	Stem bark	Powder	Antihelminthics, spasms, diarrhea, and wounds	[10,11,14]
H. thebaica (L.) Mart.	Aracaceae	Doum	Fruits	Maceration	Against splenomegaly, trachoma, and wounds	[11,55]
G. bicolor Juss.	Malvaceae	Basham	Roots	Decoction, poultice	Against postural skin lesions and to facilitate labor	[56]
G. senegalensis J. F. Gmel.	Combretaceae	Karkade	Leaves, roots	Maceration	Antimalarial, fever, leprosy, dysentery, respiratory infections, GIT disorders, chest infection, and rheumatic pain	[8,57,58]
B. salicifolia Oliv.	Capparidaceae	Hilla	Seeds	Decoction, dessert	Against stomach ailments, diabetic, as food additive and to increase lactating and contraceptive	[62]
H. subdariffa L.	Malvaceae	Tella	Bark	Maceration	Against cough and malaria	[51]
C. ochracea L.	Combretaceae	Karkade	Sepals	Maceration, decoction	Against hypertension, colds, fever, antispasmodic and antimicrobial	[30,59-61]
T. indica L.	Fabaceae	Ardeh	Fruits	Infusion	Against constipation, fever, malaria and jaundice	[10,23,63]
O. insignis Del.	Anacardiaceae	Tagul	Bark, roots	Decoction	Against pharyngitis and stomach ache	[10,51]
C. obtusifolia L.	Fabaceae	Kewal	Leaves	Paste	Diuretic, anti-HIV-1 and jaundice	[24,25,64]
B. aegyptiaca (L.) Del	Balanitaceae	Al-Laloub	Fruits, seeds, leaves	Maceration	Against constipation, jaundice, dysentery, rheumatic pain, diabetic, helminthics, tumors, and wounds	[8,9,14,42,65-67]
O. basilicum L.	Lamiaceae	Al-Rehan	Fruits, leaves	Infusion	Against jaundice and as demulcent	[8]
A. senegalensis Pers.	Annonaceae	Giishta	Fruits, leaves	Decoction	Against sleeplessness, antacne, antihelminthic, and arthritis	[68-70]

HIV-1=Human immunodeficiency virus type 1, GIT=Gastrointestinal, A. javanica=Aerva javanica, A. leiocharp=Anogeissus leiocharp, A. seyal=Acacia seyal, A. hispida=Acanthospermum hispida, A. nilotica=Acacia nilotica, A. Senegal=Acacia Senegal, A. bracteata=Aristolochia bracteata, A. digitata=Adansonia digitata, B. senegalensis=Guiera senegalensis, C. decidua=Capparis decidua, A. polyacantha=Acacia polyacantha, A. sinkatana=Aloe sinkatana, A. amara=Ablizia amara, A. indica=Azadirachta indica, C. occidentalis=Cassia occidentalis, G. villosa=Grewia villosa, C. quadrangularis=Cissus quadrangularis, C. colynthis=Citrullus colocynthis, C. hartmannianum=Combretum hartmannianum, C. procer=Calotropis procer, C. zambesica=Coron zambesicus, E. abyssinica=Erythrina abyssinica, F. retica=Fagonia retica, L. pyrotechnica=Leptadenia pyrotechnica, M. crassifolia=Maerua crassifolia, M. angolensis=Maerua angolensis, S. persica=Salvadora persica, S. alexandra=Senna alexandrina, C. africana=Kigelia africana, C. glutinosa=Caolaba glutinosa, K. senegalensis=Khaia senagalensis, D. melanoxylon=Dalbergia melanoxylon, T. brownii=Terminalia brownii, C. proximus=Cymbopogon proximus, G. tenax=Grewia tenax, S. birrea=Sclerocarya birrea, H. thebaica=Hyphaene thebaica, G. bicolor=Grewia bicolor, G. senegalensis=Guiera senegalensis, B. salicifolia=Boscia salicifolia, H. subdariffa=Hibiscus subdariffa, T. foenum-graecum=Trigonella foenum-graecum, T. indica=Tamarindus indica, O. insignis=Ozoroa insignis, C. obtusifolia=Cassia obtusifolia, B. aegyptiaca=Balantia aegyptiaca, O. basilicum=Ocimum basilicum, A. senegalensis=Anonna senegalensis, C. senegalensis=Caosia senegalensis, S. persica=Salvadora persica.
anti-inflammatory,[127] acaricidal,[121] and antinociceptive[127] effects. Several bioactive compounds have been isolated from different parts of A. indica [Table 2]. Nimbin and nimbidin representing the main phytoconstituents isolated from the seed of the plant, which have showed several biological properties including antibacterial, antifungal, and anti-inflammatory.[119]

Khaya senegalensis (Desr.) A. Juss. (Meliaceae)

Khaya senegalensis is extensively used as a traditional medicine in rural areas of Sudan for various ailments [Table 1]. Abuzeid *et al.*[299] described that chloroform extracts of the bark and leaf of *K. senegalensis* exhibited a significant inhibitory effect on *Mycobacterium tuberculosis*. Strong antibacterial activities for different bark extracts against *Salmonella enterica*, *Staphylococcus aureus*, *Streptococcus pyogenes*, *Salmonella typhi*, *Shigella dysenteriae*, *Klebsiella pneumoniae*, and *Pseudomonas aeruginosa* [Table 2] were also reported.[210] In addition, the plant has anti-inflammatory, antidiarrheal, antioxidant, antidiabetic, anticancer, and anthelmintic activities.[205,206,208,209] The observed biological activities might be due to the presence of saponins, tannins, flavonoids, terpenoids, alkaloids, anthroquinones, limonoids, khayanolides, and *p*-anilinophenol, which have been identified in this plant [Table 2].

Table 2: Main phytochemistry constituents, bioactivity, and pharmacological studies based on folk knowledge of the most active Sudanese medicinal plants

Plant scientific name	Phytochemistry constituents	Pharmacological activity/assay	References
A. javanica (Burm. F.) Juss. Ex Schult	3-Hydroxy-4 methoxybenzaldehyde, ursolic acid, (E)-N-(4-hydroxy-3-methoxynaphthenyl)-3-(4-hydroxy-3-ethoxyphenyl) acryl amide, ecysteroids, β-ecdysone, 5-β-2-deoxyintegristerone A, 24-epi-makisterone A, isorhamnetin 3-O-β-[4'''-p-coumaroyl-α-rhamnosyl (1→6) galactoside]	Enzyme inhibition for ulcer (+)⁰ Antibacterial activity (ADM)⁰	
E. coli (+)			
K. pneumonia (+)			
P. aeruginosa (+)			
S. aureus (+)			
S. typhi (−)			
S. epidermidis			
Methicillin-resistant *S. aureus* (+)			
Antifungal (−)⁰ Anthelmintic effect against *H. contortusc*			
Egg hatch inhibition (+)			
Larval development viability (+)			
Anthelmintic effect⁰			
O. ochengi (+)			
C. elegans (+)			
Anthelmintic effect⁰			
Strongyloides papillosus (+)			
G. pachycelis (+)			
Cooperia curticei (+)			
Oesophagostomum columbianum (+)	[76-79]		
A. leiocarpus (DC.) Guill. and Perr.	Alkaloids, tannins, flavonoids, saponins, phlobatannins, terpenes, ellagic, gentisic and gallic acids	Anthelmintic effect against *H. contortusc*	
Egg hatch inhibition (+)			
Larval development viability (+)			
Anthelmintic effect⁰			
O. ochengi (+)			
C. elegans (+)			
Anthelmintic effect⁰			
Strongyloides papillosus (+)			
G. pachycelis (+)			
Cooperia curticei (+)			
Oesophagostomum columbianum (+)	[80-85]		
A. seyal Del.	Gum arabic: Complex polysaccharides containing calcium, magnesium, potassium salts, protein, gallic, ellagic and chlorogenic acids	Antimalarial activity (−)⁰ Brine shrimp toxicity (−)⁰	[12,86-89]
A. hispidum Schrank.	Phytosterols, lactones sesquiterpenoids beta-caryophyllene, α-bisabolol, germacrene D	Antiplasmodial activity⁰ Growth inhibition assay (*P. falciparum*) (+)	
Antibacterial activity (ADM and BMM)⁰			
E. coli (−)			
S. aureus (−)			
Molluscicidal effect⁰			
B. peregrine (+)			
Antitrypanosomal activity⁰			
T. brucei brucei (+)			
Antileishmanial activity⁰			
L. mexicana mexicana (+)	[90-94]		
A. senegal (L.) Willd	Gum arabic, n-alkanes, fatty alcohols, fatty acids	Antibacterial activity (ADM and BMM)⁰	
E. coli (−)
S. aureus (−)
S. typhi (−)
Antifungal activity (ADM)
C. albicans (+)
A. niger (+) | [87-89,95,96] |

Contd..
Table 2: Contd...

Plant scientific name	Phytochemistry constituents	Pharmacological activity/assay	References
A. nilotica (L.) Willd. ex Del.	Alkaloids, flavonoids, tannins and saponins, gallic acid, kaempferol, umbelliferone, niloticane	Antibacterial activity (ADM and BMM)\(^c\)	
 - *E. coli* (+)
 - *S. aureus* (+)
 - *S. typhi* (+)
Antifungal activity (ADM)\(^c\)
 - *C. albicans* (+)
 - *A. niger* (+)
Antimutagenic activity (+)\(^p\)
Cytotoxic activity (+)\(^p\)
Antioxidant activity (DPPH) (+)\(^p\)
Anti-inflammatory activity (+)\(^c\) | [18-20,95,97,98] |
| *A. bracteolata* Lam. | Alkaloids, saponins, glycosides, steroids, tannins; phenolics, aristolochic acid, leucasin | Wound healing effect (+)\(^c\)
Antidote activity (+)\(^p\) | [99,100] |
| *A. digitata* L. | Terpenoids, flavonoids, sterols, vitamins, amino acids, carbohydrates, lipids, isopropyl myristate, nonanal, procyanidins, tannins, phlobatannins, cardiac glycosides, saponins | Analgesic effect (+)\(^c\)
Antipyretic activity (+)\(^c\)
Antibacterial activity (MIC)\(^c\)
 - *E. coli* (+)
 - *P. aeruginosa* (−)
 - *B. subtilis* (+)
 - *Salmonella* sp. (+)
 - *B. anthracis* (+)
Antifungal activity\(^c\)
 - *C. albicans* (−)
 - *Mucor* sp. (−)
Antiviral activity (MIC) (+)\(^c\)
Antibacterial activity (MIC)\(^p/c\)
 - *B. cereus* (+)
 - *K. pneumonia* (+)
 - *E. coli* (+) | [101-107] |
| *B. senegalensis* (Pers.) Lam. | Glucosinolates, glucocapparin, protein, carbohydrates, fatty acids: palmitic, stearic, and linoleic acids | Insecticidal activity\(^c\)
 - *C. serratus* (+)
 - *C. maculatus* (+)
Antihemolytic activity (+)\(^p\) | [28,108-110] |
| *C. decidua* (Frossk) Edgew. | Fatty acids, flavones, alkaloids, isothiocyanate glucoside | Antidiabetic activity (+)\(^p\)
 - *A. flavus* (−)
Antibacterial activity (MIC)\(^p/c\)
 - *B. cereus* (+)
 - *K. pneumonia* (+) | [111-113] |
| *A. polyacantha* Willd. | Amino acids, tannins, phenolics | Anthelmintic assay\(^c\)
 - *C. elegans* (+)
Antimalarial activity\(^c\)
 - *P. falciparum* (−) | [84,85,114-116] |
| *A. sinkatana* Rey. | Anthraquinones, monosaccharides, anthrones, aloin, aloinoside, microodontin | Antidiabetic activity\(^c\)
 - Hemoglobin-δ-gluconolactone assay (+)
 - BSA assay (+) | [29,117,118] |
| *A. amara* (Roxb.) Boiv. | Budmunchianine A, steroids, alkaloids, saponins, tannins, cardiac glycosides, carbohydrates, flavonoids, terpenoids, glycosides, quinones | Antibacterial activity (MIC)\(^p/c\)
 - *A. flavus* (+)
Antifungal activity (MIC)\(^c\)
 - *Fusarium laceratum* (+)
 - *A. flavus* (−) | [119,120] |

Contd..
Table 2: Contd...

Plant scientific name	Phytochemistry constituents	Pharmacological activity/assay	References
A. indica J.Juss.	Nimbidin, nimbin, nimbolide, gedunin, mahmoodin, octadecanoic acid-3,4-tetrahydrofurran diester, azadirachtin, limonoids, triterpenoids, tetranortriterpenoids, azadiracthlide, aeroxazadiracthltide, polysaccharides, condensed tannins: gallic acid, gallocatechin, epicatechin, catechin, epigallocatechin	Brine shrimp toxicity (−)↑	
Antiparasitic activity↑			
S. scabiei (+)			
Myobia musculi Schranck (+)			
Myocoptes musculinus Koch (+)			
Neuroprotective effects (↑)↑			
Antimalarial activity↑			
P. falciparum (+)			
Anti-inflammatory (↑)↑			
Antinociceptive (↑)↑			
Antibacterial activity (ADM)↑			
E. coli (−)			
Acaricidal activity			
S. scabiei var. *cuniculi* (+)↑	[32,86,121-130]		
C. occidentalis L.	Emodin, chrysophanol, saponins, flavonoids, tannins, resins, anthraquinones, cardiac glycosides, chrysoeriol, essential oils, funiculosin, quercetin, rhein, rubrofusarin, sitosterols, tannins, xanthorine	Anthelmintic activity↑	
H. gallinarum (+)			
R. tetragona (+)			
Catatropis sp. (+)			
Anti-inflammatory (↑)↑			
Anticancer↑			
Chymotrypsin inhibitory activity (+)			
Hepatoprotective effect (↑)↑			
Antioxidant (DPPH) (↑)↑			
Antibacterial activity↑			
B. subtilis (+)			
E. coli (−)			
P. aeruginosa (−)			
S. aureus (−)	[131-137]		
G. villosa Willd.	Harman, harmine, harmol, harmalol, harmaline, monosaccharides, hydrocarbons, sterols, α-amyрин, uvaol, ursoolic acid, hydroxyuvaol, quinovic acid, β-sitosterol-3-O-glucoside	Anticancer (+)↑	
Antioxidant (DPPH) (↑)↑	[138-142]		
C. quadrangularis L.	Steroids, terpenoids, quercetin, resveratrol, sterols, Vitamin C, tannins, iridoids 6-O-[2,3-dimethoxy]-trans-cinnamoyl catalpol, 6-O-meta-methoxy-benzoyl catalpol, iridoid picroside, quadrangularin A, pallidol, quercitrin, β-sitosterol, β-sitosterol glycoside	Antihemorrhoid effect (↑)↑	
Fatty liver disease (↑)↑			
Antibacterial activity↑			
B. subtilis (+)			
B. cereus (+)			
S. aureus (+)			
Antioxidant (DPPH) (↑)↑			
Antiviral activity↑			
HSV 1 and HSV 2 (+)			
Anticancer activity (↑)↑			
Antioxidant (DPPH) (↑)↑			
Antidiabetic (↑)↑			
Hypolipidemic (seed bowder) (+)			
Antibacterial↑			
S. aureus (+)			
Anti-inflammatory activity (↑)↑			
Analgesic activity (↑)↑	[143-148]		
C. colocynthis (L.) Schrad.	Tannins, saponins, cucurbitacins, cucurbitacin glucosides, phenolic acids: ferulic, vanillic, *p*-coumeric, gallic and *p*-hydroxy benzoic acids, chlorogenic acid, flavonoids: quercetin, myricetin, catechin	Contd..	[36,149-154]
Table 2: Contd...

Plant scientific name	Phytochemistry constituents	Pharmacological activity/assay	References
C. hartmannianum Schweinf.	Flavonoids, phenanthrene, tannins, unsaturated sterol, triterpenes, saponins, carbohydrates	Antimalarial activity^c	
P. falciparum (+)			
Antiviral activity^c			
HIV-1 reverse transcriptase inhibitory assay (−)			
Anticancer activity^c			
Tyrosine kinase inhibitory assay (+)			
Antitrypanosomal activity^c			
Trypanosoma brucei rhodesiensi (−)			
T. cruzi (−)			
Antioxidant (DPPH) (+)^c			
Anticercarial activity (+)^c	[34,155-158]		
C. procera (Ait.) Ait. f.	Phenolics, flavonoids, flavonoid glycosides, latex, cardenolides, triterpenoids, alkaloids, resins, anthocyanins, tannins, saponins	Antioxidant (DPPH) (+)^c	
Antibacterial activity (ADM and MIC)^c			
B. pumilus (+)			
E. coli (−)			
Antifungal activity^c			
A. niger (−)			
F. oxysporum (+)			
Anthelmintic activity^c			
H. contortus (+)	[159-162]		
C. zambesicus Mull-Arg.	Diterpenoids, crotozambefurans, crotonadiol, abiatane diterpenoids, quinines, triterpenoids, flavonoids, labdane, clerodane, trachylobane diterpenes, quercetin-3-O-β-6″ (p-coumaroyl) glucopyranoside-3′-methyl ether, tiliroside, apigenin-6-C-glucoside	Antimalarial activity^c	
P. falciparum (+)			
Anticancer activity^c			
Tyrosine kinase inhibitory assay (+)			
Antiviral activity			
HIV-1 reverse transcriptase inhibitory assay (−)			
Antidiabetic activity (−)^c			
Kidney protective effect (−)^c			
Antioxidant (DPPH) (+)^c			
Anti-inflammatory (−)^c			
Analgesic (+)^c			
Antipyretic (+)^c			
Anticancer activity^c			
Antibacterial activity (ADM)^c			
B. megaterium (+)			
Antitrypanosomal activity^c			
T. brucei brucei (+)			
Cytotoxic activity (+)^p			
Anti-HIV-1 (+)^p			
Activity against *M. tuberculosis* (+)^c			
Antimalarial activity^c			
P. falciparum (+)			
Antidiabetic activity (+)^p			
Anticancer activity^c			
Anthelmintic activity^c			
Endocrinological effects (+)^p			
Analgesic (+)^c			
Antipyretic (+)^c			
Anticancer activity^c			
Antithrombogenic effect^c	[34,38,39,163-166]		
E. abyssinica L.	Alkaloids: erythraline, erysocine, erysotrine, 8-oxoerythraline and 11-methoxyersodine, abyssinone –V		
Coumestan: Erythribyssin N, benzofurans: erythribyssin F, erythribyssin H, sigmoidin K, isosojagol, eryvarin Q, eryroegin F, eryvarin R	Tyrosine kinase inhibitory assay (+)		
Antiviral activity			
HIV-1 reverse transcriptase inhibitory assay (−)			
Antidiabetic activity (−)^c			
Kidney protective effect (−)^c			
Antioxidant (DPPH) (+)^c			
Anti-inflammatory (−)^c			
Analgesic (+)^c			
Antipyretic (+)^c			
Anticancer activity^c			
Antibacterial activity (ADM)^c			
B. megaterium (+)			
Antitrypanosomal activity^c			
T. brucei brucei (+)			
Cytotoxic activity (+)^{yp}			
Anti-HIV-1 (+)^{yp}			
Activity against *M. tuberculosis* (+)^c			
Antimalarial activity^c			
P. falciparum (+)			
Antidiabetic activity (+)^p			
Anticancer activity^c			
Anthelmintic activity^c			
Endocrinological effects (+)^p			
Analgesic (+)^c			
Antipyretic (+)^c			
Anticancer activity^c			
Antithrombogenic effect^c	[34,167-171]		
F. cretica L.	Triterpenene, saponins, saponins glycosides, linoleic acid, methyl triacontanoate, taraxerol, β-amyrin acetate, oleanolic aldehyde acetate, octacosonic acid, triacontanoic acid, taraxerone	Anticaleral activity^c	
 Anthelmintic activity^c
 Endocrinological effects (+)^p | [172-179] |

Contd..
Table 2: Contd...

Plant scientific name	Phytochemistry constituents	Pharmacological activity/assay	References
L. pyrotechnica (Forssk. DC.)	Flavonoids, flavonoids glycosides: kaempferol-3-O-α-1-rhamnopyranosyl (1″→6″)-O-β-D-glucopyranoside, kaempferol-3-O-β-D-rhamnopyranosyl (1″→6″)-O-β-D-glucopyranoside, teixasin-7-O-β-D-glucopyranoside, kaempferol-3-O-β-D-gluco pyranoside, kaempferol, carbohydrates, glycosides, saponins, pregnane glycosides, alkaloids: pyridine, pyrrole, pyrazine and indole types	Antibacterial activity (ADM)\(^c\)	
S. aureus (+)			
S. epidermidis (+)			
Anticancer activity\(^c\)			
Potato disc assay (+)			
Antioxidant (DPPH and ABTS)\(^c\)			
Anti-inflammatory			
Lipoxygenase inhibitory activity (+)	[180-184]		
M. crassifolia Forssk.	Linoleic acid, 1, 23 dimethoxy tricosa-6-one, triacontane, ceryl alcohol, lupeol palmitate, lupeol acetate, β-sitosterol palmitate, α-amyrin, 6-N-methyl-9-β-D-glucoside adenine, 3,4,5-trimethoxyphenol-1-O-β-D-glucopyranoside, guaiacglycerol, ionol glucoside	Antibacterial activity (ADM)\(^c\)	
P. aeruginosa (−)			
Antimalarial activity\(^c\)			
P. falciparum (−)			
Antitrypanosomal activity\(^c\)			
T. brucei brucei (−)			
T. cruzi (−)	[185-190]		
M. angolensis DC.	Tannins, saponins, flavonoids, cardiac glycosides, alkaloids: l-stachydrine and l-3-hydroxystachydrine	Anxiolytic effect (+)\(^c\)	
Sedative effect (+)\(^c\)			
Antioxidant (DPPH) (+)\(^c\)			
Antibacterial activity (ADM)\(^c\)			
S. aureus (+)			
S. pyogenes (+)	[191-194]		
S. persica L.	2-acetyl-3-methylindole, sodium 1-O-benzyl-β-D-glucopyranoside-2-sulphate (salvadoside), 5,5′-dimethoxylicariciselin 4,4′bis-O-β-D-glucopyranoside (salvadora), syringin, liriodendrin, sitosterol 3-O-glucopyranoside	Antimalarial activity\(^c\)	
P. falciparum (+)			
Antioxidant (DPPH) (+)\(^c\)			
Antitrypanosomal activity\(^c\)			
T. brucei rhodesiense (−)			
T. cruzi (−)			
Antifungal activity\(^c\)			
C. albicans (+)	[34,45,46,155]		
S. alexandrina Mill. *(C. senna* L.)	Anthranoids, madagascin (3-isopentenyloxyemodin), 3-geranyloxyemodine	Laxative effect\(^c\)	
Cytotoxic activity (−)\(^c\)			
Carcinogenic effect (−)\(^c\)			
Antioxidant (DPPH) (+)\(^c\)			
Anticandidal activity\(^c\)			
C. albicans strains (+)\(^c\)			
Antiulcerogenic (+)\(^c\)			
Anti-inflammatory activity (+)\(^c\)			
Antioxidant (DPPH) (+)\(^c\)	[195-198]		
K. Africana (Lam.) Benth.	Limonoids, alkaloids, lapachols, phenolic acids, irridoids, flavonoids, naphthoquinones, steroids		[199-202]
C. glandulosa Forssk.	Alkaloids, terpenes, sterols, flavonoids: kaempferol-4′-phenoxy-3,3′,5′-trimethylether, rhamnocitrin-4′- (4-hydroxy-3-methoxy) phenoxy-3-methyl ether, rhamnocitrin-3-O-neohesperidose-4′-O-rhamnoside, 4-methoxy-benzyledehyde, kaempferol-3-methylthether, stachydrine		[203,204]
Table 2: Contd...

Plant scientific name	Phytochemistry constituents	Pharmacological activity/assay	References
K. senegalensis (Desr.) A. Juss.	Saponins, tannins, aldehyde, phlobatannins, flavonoids, terpenoids, alkaloids, cardiac glycoside, anthroquinones, limonoids, khayanolides, p-anilinophenol	Anti-inflammatory activity (+)	
Antidiarrheal effects (+)			
Antioxidant (DPPH) (+)			
Antibacterial activity (ADM/MIC)			
S. enterica (+)			
S. aureus (+)			
S. pyogenes (+)			
S. typhi (+)			
S. dysenteriae (+)			
K. pneumonia (+)			
P. aeruginosa (+)			
Anticancer activity (+)			
MCF-7, SiHa and Caco-2			
Anthelmintic activity (+)			
Antidiabetic activity (+)	[205-210]		
D. melanoxylon Guill. and Perr	Flavonoids, terpenes, alkaloids, steroidal saponins, tannins, phenols, quinines	Antimalarial activity	
P. falciparum (−)			
Antibacterial activity (ADM)			
B. subtilis (+)			
E. coli (+)			
K. pneumonia (−)			
P. aeruginosa (+)			
Salmonella typhimurium (−)			
S. aureus (+)			
Y. pestis (−)			
Antifungal activity			
C. albicans (+)			
A. niger (+)	[211-213]		
T. brownii Fresen.	Terminalianone, triterpenoids, ellagic acid derivatives	Antibacterial activity (ADM)	
S. aureus (+)			
E. coli (+)			
P. aeruginosa (+)			
K. pneumonia (±)			
S. typhi (+)			
B. anthracis (+)			
Antifungal activity			
C. albicans (+)			
C. neoformans (+)	[214-216]		
C. proximus (Hochst. ex A. Rich) Stapf.	Essential oils: Piperitone, elemol, eudesmol, terpineol, limonene	Brine shrimp toxicity (−)	
Anti-inflammatory activity (−)			
Antibacterial activity (ADM)			
B. cereus (+)			
S. choleraesuis (+)			
Antioxidant (DPPH) (+)			
Antifungal activity			
C. albicans (−)			
C. utilis (−)			
S. cerevisiae (−)	[217,218]		
G. tenax (Forsk.) Fiori.	Flavonoids, flavonoid glycosides, phenolic acids; β-sitosterol, β-sitosteryl acetate, β-amyrin, β-amyrin acetate; 5 α, 8 α-epidioxyergosta-6,22-diene-3 β-ol; 5 α, 8 α-epidioxyergosta-6,9 (11),22-trien-3 β-ol, α-taraxerol, betulin, stigmasterol, oleanolic acid, stigmastanol 3-O-β-D-glucoside	Hepatoprotective effect (+)	
Antibacterial activity (ADM)			
S. aureus (−)			
S. typhi (−)			
S. dysenteriae (−)			
V. cholerae (−)			
E. coli (−)	[219-221]		
Plant scientific name	Phytochemistry constituents	Pharmacological activity/assay	References
-----------------------	----------------------------	-------------------------------	------------
S. birrea (A.Rich.) Hochst.	Procyanidins, tannins, alkaloids, quercetin 3-O-α- (5”-galloyl)-arabinofuranoside, epicatechin derivatives	Antioxidant (DPPH) (+) ¹ Antioxidant activity ² Antidiabetic activity ³ Antibacterial activity (ADM) ⁴ B. subtilis (+) E. coli (+) K. pneumonia (+) S. aureus (+) Antidiarrheals activity (+)	[155,222-225]
H. thebaica (L.) Mart.	Minerals, proteins, fatty acids, essential oils, linoleic acid, saponins, coumarins, hydroxycinnamates, flavonoids	Antioxidant (DPPH) (+) ² Antihypertensive effect (+) ³ Antibacterial activity (ADM) ⁴ S. aureus (+) B. subtilis (+) E. coli (−) L. monocytogenes (−) P. aeruginosa (+) S. typhi (+) Antifungal activity ⁵ A. niger (+) C. albicans (+)	[226-229]
G. bicolor Juss.	Tannines, triterpenoids: lupeol, etulin, β-sitosterol, β-sitosterol-3-O-glucoside; alkaloids: harmaran, 6-methoxyharman, 6-hydroxyharman	Anthelmintic assay ⁶ C. elegans (+) Antibacterial activity (ADM) ⁴ P. aeruginosa (+) E. coli (+) S. aureus (+) B. subtilis (+)	[56,84,230]
G. senegalensis J.F.Gmel.	Resins, alkaloids, tannins, saponins, glycosides, terpenes, galloylquinic acids, flavonoids: catechin, myricitrin, rutin, quercetin	Antioxidant (DPPH) (+) ² Antitrypanosomal activity ⁷ T. brucei brucei (+) Antimalarial activity ⁸ P. falciparum (+) Acaricidal activity ⁹ H. anatolicum (+)	[126,155,231-234]
B. salicifolia Oliv.	Boscialin, boscialin 4’-O-glucoside, flavonoids: rhamnocitrin 3-O-β-neohesperidoside, rhamnetin 3-O-β-neohesperidoside, rhamnocitrin 3-O-β-glucopyranoside	Antimalarial activity ⁹ P. falciparum (+) P. berghei (+)	[235-237]
H. siphonifera L.	Organic acids: Hydroxycitric acid, hibiscus acid; phenolic acids: Protocatechueic acid, chlorogenic acids, anthocyanins, polysaccharides, flavonoids	Antibacterial activity ⁷ S. aureus (+) K. pneumonia (+) P. aeruginosa (+) A. baumannii (+) Antifungal activity ⁹ C. albicans (−) Antipyretic activity (+) ⁸ Anti-inflammatory activity (+) ⁸ Antioxidant (DPPH) (+) ² Antidiabetic activity (+) ³ Anticancer activity (+) ⁹ Antihypertensive activity (+) ⁹ Hepatoprotective effect (+) ⁹	[61,98,238-246]

Contd..
Table 2: Contd...

Plant scientific name	Phytochemistry constituents	Pharmacological activity/assay	References
T. foenum-graecum L.	Tannin, protein, lipids, glycolipids, phospholipids	Antidiabetic activity (+)⁺ Wound healing activity (+)⁺ Larvicidal activity (+)[−] Antimalarial activity (+)[−] Anti-snake venom effects (+)[−] Immunomodulatory effects (+)[−] Antidiabetic activity (+)[−]	[247-252]
T. indica L.	Polysaccharides, phenolic acids, flavonoids, anthocyanidins, tannins	Antimalarial activity (−)^c Brine shrimp toxicity (−)^c Wound healing effects (+)^c Antioxidant (DPPH) (+)^c Anti-snake venom effects (+)^c Immunomodulatory effects (+)^c Antidiabetic activity (+)^c	[86,253-258]
O. insignis Del.	Triucallane triterpenes, alk (en) yl phenols, macrolide, 6-pentadecysaliclyc acid, tannins, flavonoids, cardiac glycosides, steroids, alkaloids	Anthelmintic effect (+)^c Cytotoxic activity (+)^c Antifouling activity (+)^c Antileishmanial[−] L. donovani (−)^c Antitrypanosomal[−] *T. brucei brucei* (−)^c Antitumor activity (−)[−] Antitrypanosomal[−] *E. coli* *S. typhi* *V. cholerae* *K. pneumonia*	[259-267]
C. obtusifolia L.	Polysaccharides: galactomannan, homogalacturonan; anthraquinones, benzyl-β-resorcylate glycosides, flavonoids, triterpenoids, anthrones	Antioxidant (DPPH) (+)⁺ Hypolipidemic activity (+)[−] Neuroprotective effect (+)[−] α-Amylase activity (−)[−] Lipase activity (−)[−] Protease activity (−)[−] Antitumor activity (+)[−] Antihypertensive effect (+)[−] Laxative effect (−)[−] Antidiabetic activity (+)[−] Molluscicidal activity (+)[−] Antioxidant (DPPH) (+)[−] Anticancer activity (+)[−] Antidiabetic activity (+)[−] Larvicidal activity (+)[−] Anti-inflammatory (−)[−] Antinociceptive (−)[−] Antioxidant[−] ORAC assay (+) and DPPH (+)	[268-275]
B. aegyptiaca (L.) Del	Balanitins, saponins, yamogenin glycosides, ascorbic acid, coumarins, alkaloids, flavonoids, flavonoid glycosides: isorhamnetin-3-O-robinobioside, isorhamnetin-3-O-rutinoside	Molluscicidal activity (+)[−] Antioxidant (DPPH) (+)[−] Anticancer activity (+)[−] Antidiabetic activity (+)[−] Larvicidal activity (+)[−] Anti-inflammatory (−)[−] Antinociceptive (−)[−] Antioxidant[−] ORAC assay (+) and DPPH (+)	[276-281]
O. basilicum L.	Phenolic acids: rosmarinic, chicoric, caffeic and caftaric acids; anthocyanins, polysaccharides< Essential oils: methyl chavicol, eugenol, linalool, camphor and methyl cinnamate	Antimarial activity[−] Antibacterial activity (ADM and MIC)[−] Antifungal activity (ADM and MIC)[−] B. theobromae Rhizopus solani[−] Antibacterial activity (ADM and MIC)[−] Antifungal activity (ADM and MIC)[−] A. niger M. muscor F. solani B. theobromae Rhizopus solani[−]	[282-290]
Table 2: Contd...

Plant scientific name	Phytochemistry constituents	Pharmacological activity/assay	References
A. senegalensis Pers.	Alkaloids, sapogenins, tannins, flavonoids, terpenes: germacrene D, β-caryophyllene, α-humulene	Antitypanosomal activity*[^8]	[70,291-296]

[^8]: Assays carried out for isolated compounds.

[^6]: Assays carried out for plant crude extracts.

[^7]: Assays carried out for plant essential oils. ADM = Agar diffusion method.

BM = Broth microdilution method, DPPH = 1,1-Diphenyl-2-picrylhydrazyl, MIC = Minimum inhibition concentration, HSV = Herpes simplex-virus type 1.

BSA = Glucose-bovine serum albumin, *A. javanica* = Aerva javanica, *A. leucopappus* = Anogeissus leucopappus, *A. seyal* = Acacia seyal, *A. hispidum* = Acanthopanax hispidum, *A. nilotica* = Acacia nilotica, *A. Senegal* = Acacia Senegal, *A. bracteata* = Aristolochia bracteata, *A. digitata* = Adansonia digitata, *B. senegalensis* = Boisca senegalensis, *C. decidua* = Capparis decidua, *A. polyantha* = Acacia polyantha, *A. kirkiana* = Acacia kirkiana, *A. amara* = Albizia amara, *A. indicia* = Azadirachta indica, *C. occidentalis* = Cassia occidentalis, *G. vullosa* = Grewia vullosa, *C. quadrangularis* = Cissus quadrangularis, *C. colynctis* = Citrus colynctis, *C. hartmannianum* = Combretum hartmannianum, *P. procera* = Cardioficus procera, *C. zambesicus* = Calospermum zambesicus, *E. abyssinica* = Erythrina abyssinica, *F. cretica* = Fagonia cretica, *L. pyrotechnica* = Leptadenia pyrotechnica, *M. crassifolia* = Maerua crassifolia, *A. angolensis* = Maerua angolensis, *S. persica* = Salvia persica, *S. alexandrina* = Senna alexandrina, *K. Africana* = Kigelia Africana, *C. glandulosa* = Cadaba glandulosa, *K. senegalensis* = Khaya senegalensis, *D. melanoxylon* = Dalbergia melanoxylon, *T. brownii* = Terminalia brownii, *C. proximus* = Cymbopogon proximus, *G. tenax* = Grewia tenax, *B. aegyptiaca* = Boscia aegyptiaca, *G. bilicola* = Grewia bicolor, *S. senegalensis* = Saxaul senegalensis, *B. salicifolia* = Bosia salicifolia, *H. brownii* = Hibiscus brownii, *C. foenum-graecum* = Trigonella foenum-graecum, *T. indica* = Tamarindus indica, *O. insignis* = Ozoroa insignis, *C. obtusifolia* = Cassia obtusifolia, *B. apiculata* = Balanites apiculata, *O. basilicum* = Ocimum basilicum, *A. senegalensis* = Annona senegalensis, *E. coli* = Escherichia coli, *K. pneumoniae* = Klebsiella pneumonia, *P. aeruginosa* = Pseudomonas aeruginosa, *S. aureus* = Staphylococcus aureus, *S. typhi* = Salmonella typhi, *A. flavus* = Aspergillus flavus, *C. albicans* = Candida albicans, *E. coli* = Escherichia coli, *K. pneumoniae* = Klebsiella pneumonia.

Ocimum basilicum L. (Lamiaceae)

Ocimum basilicum is considered as one of the major genera of the Lamiaceae family. It grows in several regions all over the world. In Sudan, *O. basilicum* grows in the wild and is also cultivated in Northern and Central Sudan.[^50] Traditional healers in the remote areas of Sudan use *O. basilicum* in the form of infusion against jaundice and as demulcent.[^9][^9]

The essential oil of the plant is used in perfumery and in food industry as flavoring agent, as well as in dental and oral products.[^100][^100] *O. basilicum* has shown several biological properties, including antimicrobial, antimalarial, and antioxidant activities.[^282][^282] These pharmaceutical activities could be attributed to essential oil constituents, such as eugenol, linalool, camphor, methyl chavicol, and methyl cinnamate [Table 2].

Calotropis procera (Ait.) Ait. f. (Asclepiadaceae)

Conventionally, in Sudan, *Calotropis procera* is used in the form of infusion to treat jaundice, thorn injuries and as mouth detergent, while the paste of the plant is used against scorpion bites and rheumatic pain [Table 1]. *C. procera* has shown antibacterial, antioxidant, antifungal, and antihelmintic activities.[^127][^127] Saponins, tannins, alkaloids, flavonoids classes of compounds are likely to contribute to the reported effects.[^142]

Hibiscus sabdariffa L. (Malvaceae)

H. sabdariffa is considered one of the medicinal plants having great interest among all Sudanese communities. It has been used in ethnomedicine as herbal drinks in cold and hot beverages and as an herbal medicine. *H. sabdariffa* natural habitat is Southern Sudan, but it is cultivated in many parts of the Sudan. The maceration and decoction of the plant are used against hypertension, colds, fever and as anti-inflammatary and antimicrobial agent [Table 1]. In addition, *H. sabdariffa* calyces are boiled with sugar to produce a drink known as “Karkade.” Pharmacological studies have demonstrated that *H. sabdariffa* extracts showed antibacterial,[^240] antifungal,[^242] antioxidant,[^244] anticancer,[^6][^6][^245] anti-inflammatory,[^241] and hepatoprotective effects.[^243] However, the plant extract did not inhibit the growth of fungi of Candida albicans.[^240] The interesting biological effects might be associated with the presence of phenolic acids, organic acids, and anthocyanins reported in different parts of the plant.[^2]

Ziziphus spina-christi (L.) Desf. (Rhamnaceae)

Z. spina-christi is a tropical tree of Sudanese origin. The plant has very interesting historical and religious aspects. It is repeatedly mentioned in Muslim as well as Christian traditions and was recorded by pilgrims visiting the Holy Land on numerous occasions. The boiled water extracts of the leaves of *Z. spina-christi* are used by Muslims in the cleaning of a dead body before burial suggesting antibacterial properties. In addition, the plant has been used in mummification by the ancient Egyptians.[^102][^103] It has been suggested that the plant material referred to in the Bible as the “bramble” or “thorns” (Judges 9:14-15), “thorns” (Matthew 27:27-29), and “crown of thorn” (John 19:3-5) might have been derived from *Z. spina-christi*.[^104][^105] The Holy Quran mentions the Lote tree (Cedar) 3 times (XXIV: 16; XIII: 13-18; LVII: 28-32), which was frequently identified as *Z. spina-christi*. Accordingly, this species is highly respected throughout the Middle East, has been widely used as a food and as medicinal as well as an environmental protection plant since ancient times, and is still in use until now.[^102][^107]

Z. spina-christi is commonly used in ethnomedicine for the treatment of many illnesses such as digestive disorders, weakness, hepatic disorders, obesity, urinary problems, diabetes, skin infections, fever, diarrhea, or insomnia.[^308] In Sudanese ethnomedicine, the leaves of *Z. spina-christi*
are used for the treatment of malaria.[23] In addition, Michel \textit{et al.} reported an antidiabetic activity of the leaves of \textit{Z. spina-christi} due to their saponin and polyphenol contents,[110] which was supported in pharmacological studies by Glombitza \textit{et al.}, indicating that extracts of \textit{Z. spina-christi} leaves or its main saponin glycoside, christinin-A, improved glucose utilization in diabetic rats.[311] Furthermore, \textit{Z. spina-christi} leaves and fruits are reported to possess antibacterial activity,[312,313] as well as antifungal activity on plant pathogens.[314] In addition, Adzu \textit{et al.} found that root bark extracts showed significant antinociceptive activity in mice and rats.[315]

The phytochemical studies of the \textit{Z. spina-christi} have demonstrated that peptide and cyclopeptide alkaloids such as spinanine-A, tanines, essential oil such as geranyl acetate, methyl hexadecanoate, and methyl octadecanoate, sterols such as β-sitosterol, triterpenoid sapogenins, and saponins such as betulinic acid, flavonoids such as rutin and quercetin derivatives are the main phytoconstituents of this plant.[316,317]

\textbf{Mimosa pigra (Fabaceae)}

\textit{Mimosa pigra} (giant sensitive plant) is a woody shrub, native to the American tropics. Besides its native area, it is very invasive and damaging to agriculture and conservation. In particular, it is problematic in Australia, Africa, and Southeast Asia.[318] It has been introduced to Sudan and its neighboring countries.[319] Apart from this, \textit{M. pigra} is used in the traditional medicine in tropical Africa, Indonesia, Madagascar, and South America for heart problems, head colds, diarrhea, toothaches, eye medicine, and its antimicrobial activity.[320,321] Rakotomalala \textit{et al.} demonstrated the beneficial effect of the leaves of the plant for pulmonary hypertension.[322]

Different phytochemistry constituents including tryptophan, myricetin 3-O-rhamnoseside, quercetin 3-O-hexoside, quercetin 3-O-pentoside, quercetin 3-O-rhamnoseside, kaempferol 3-O-rhamnoseside, kaempferol, apigenin, acacetin, quercetin 3-rutinoside, quercetin 3, 7-diharmnoseside, kaempferol 3,7-diharmnoseside and luteolin 7-arabinoside, quercetin 7-methyl ether, and saponin have been previously described as occurring in \textit{M. pigra}.[322-324]

\textbf{Ixora coccinea L. (Rubiaceae)}

\textit{Ixora coccinea} is a flowering plant native to India and Sri Lanka. \textit{I. coccinea} is used in traditional Sudanese and ayurvedic medicinal systems for the treatment for diarrhea, fever, headache, skin diseases, eye trouble, wounds, sores, and ulcers.[325] Recent reports show that \textit{I. coccinea} has an antidiabetic,[326] antibacterial,[327] anticancer,[328] analgesic, anti-inflammatory,[329] antidiarrheal,[330] hepatoprotective,[331] cardioprotective,[332] antimutagenic,[333] wound healing,[334] and anticancer activities.[335] \textit{I. coccinea} is a source of peptides,[336] triterpenoids,[337] and fatty acids.[338] Recently, we have reported different phenolics in the stem and leaves of \textit{I. coccinea} including chlorogenic acids, proanthocyanidins, flavonoids, and flavonoid glycosides,[339] in addition to the similar bioactive compounds identified previously.[340]

\textbf{Ambrosia maritima L. and Sonchus oleraceus L. (Asteraceae)}

\textit{Ambrosia maritima} and \textit{Sonchus oleraceus}, two multipurpose medicinal plants, are widely distributed weed in Sudan, Senegal, and neighboring countries.[341,342] These plants are extensively used to treat several diseases including virus infections across the African continent.[22,341,342] In Sudan and other countries, \textit{A. maritima} dried herb is used for treatment of hypertension, diabetes, bronchial asthma, spasms, frequent urination, urinary tract infections, and elimination of kidney stones.[37,343,344] This plant is also applied as a molluscicidal component for controlling of the intermediate hosts of Fasciola and Schistosoma.[145] Moreover, some authors have previously reported the antiviral and antifungal activities of \textit{A. maritima}.[22,341] On the other hand, the vegetative shoots of \textit{S. oleraceus} have been frequently used by traditional healers to treat diabetes, diarrhea, pneumonia, and hepatitis.[342,346] Moreover, the plant has cholagogue, laxative, and emollient properties.[347] The antidiabetic, antibacterial, anti-inflammatory, and antioxidant properties of \textit{S. oleraceus} were also reported.[342,348,349] Several bioactive phytoconstituents have been identified in \textit{A. maritima} and \textit{S. oleraceus} including phenols, flavonoids, proanthocyanidins, alkaloids, tannins, terpenes, and steroids.[341,346,351-356]

\textbf{CONCLUSIONS}

In this review, we have showed that local people in Sudan are still relying on traditional medicines to treat several diseases and microbial infections. The information collected in this article demonstrated the existing traditional uses of the most important Sudanese medicinal plants and summarized recent research into the phytochemistry and pharmacology of these plants. The extracts and isolated compounds have been found to possess various biological activities, particularly in the area of antimicrobial, antidiabetic, anticancer, anti-inflammatory, and antioxidant. Although increasing interest has encouraged more studies on the phytochemistry and pharmacology of the Sudanese medicinal plants, there are still many parts where the present knowledge could be improved, for instance, systematic toxicity and safety evaluation, the detailed quantitative data for the bioactive compounds and investigation the structure activity relationships of the isolated and purified active compounds. Moreover, most of the pharmacological studies on medicinal plants have been carried out \textit{in vitro}. Thus, the effectiveness of plant extracts and isolated compounds needs to be further investigated for their efficacy and safety using \textit{in vivo} assays; consequently, benefits could be fairly shared among Sudanese local peoples according to the CBD. It is concluded that traditional medicine should be considered seriously in future researches and projects designed to produce lead compounds and/or biologically active molecules from plant sources.

\textbf{Acknowledgments}

The authors are thankful to Jacobs University Bremen for providing facilities to perform this study.

\textbf{Financial support and sponsorship}

Financial support from Deutscher Akademischer Austauschdienst (DAAD) is gratefully acknowledged.

\textbf{Conflicts of interest}

There are no conflicts of interest.

\textbf{REFERENCES}

1. Maroyi A. Traditional use of medicinal plants in south-central Zimbabwe: Review and perspectives. J Ethnobiol Ethnomed 2013;9:31.
2. Elegarni AA, El-Nima EI, ElTohami MS, Muddathir AK. Antimicrobial activity of some species of the family Combretaceae. Phytother Res 2002;16:555-61.
3. Koko WS, Galal M, Khalid HS. Fasciolicidal efficacy of \textit{Albuna anthelmintica} and \textit{Balanites aegyptiaca} compared with albendazole. J Ethnopharmacol 2000;71:247-52.
4. Hostettmann K, Marston A, Nâjikio K, Woffender JL. The potential of African plants as a source of drugs. Curr Org Chem 2000;4:973-1010.
5. Bagel S, Eredemoglu SB. Determination of mineral and trace elements in some medicinal herbs and their infusions consumed in Turkey. Sci Total Environ 2006;359:82-9.
6. Tabuti JR. Herbal medicines used in the treatment of malaria in Budiope County, Uganda. J Ethnopharmacol 2000;71:247-52.
7. Ernst E. Harmless herbs? A review of the recent literature. Am J Med 1998;104:170-8.
MOHAMED GAMALELDIN ELSDADIG KARAR and NIKOLAI KUHNERT: Herbal Drugs from Sudan

64. Dirah HA. Kawa! meat substitute from fermented Cassia obtusifolia leaves. Econ Bot 1984;38:342-9.
65. Beit-Yanai E, Ben-Shabat S, Goldschmidt N, Chapagain BP, Liu RH, Wiesman Z. Antiproliferative activity of steroidal saponins from Balanites aegyptica: An in vitro study. Phytochem Lett 2011;4:43-7.
66. Goula C, Mégalizzi V, De Nève N, Sauvage S, Ribaucour F, Guissou P, et al. Balanitis-6 and -7: Dioseryl saponins isolated from Balanites aegyptica Del. display significant anti-tumor activity in vitro and in vivo. Int J Oncol 2008;32:5-15.
67. Sarker SD, Bartholomew B, Nash RJ. Alkaloids from Balanites aegyptica. Fitoterapia 2000;71:328-30.
68. Iqweh AC, Onabanjo AO. Chemotherapeutic effects of Annona senegalensis in Trypanosoma brucei. Ann Trop Med Parasitol 1989;83:527-52.
69. Gilele ZO, Adesina SK. Nigerian flora and its pharmaceutical potential. J Ethnopharmacol 1897;19:1-15.
70. Bako S, Bafur M, John I, Bala E. Ethnopharmacological and phytochemical profile of some savanna plant species in Nigeria. Int J Bot 2005;1:147-50.
71. Gurib-Fakim A. Medicinal plants: Traditions of yesterday and tomorrow of molasses. Mol Aspects Med 2006;27:1-93.
72. Anilakumar KR, Pal A, Khanum F, Bawa AS. Nutritional, medicinal and industrial uses of sesame (Sesamum indicum L.) seeds – An overview. Agric Conpectus Sci 2010;76:159-68.
73. Neuvinger HD. African Ethnobotany: Poisons and Drugs. Chemistry, Pharmacology, Toxicology. Germany: Chapman and Hall; 1996. p. 864-8.
74. López-Lázaro M. Distribution and biological activities of the flavonoid lunetin. Mini Rev Med Chem 2009;9:316-9.
75. Shimoi K, Okada H, Furugori M, Goda T, Suzuki M, Takase S, Suzuki M, et al. In vitro antiparasitic activity of phenolic acids from the axlewood tree (Anogeissus leiocarpus). J Ethnopharmacol 2014;158:100-8.
76. Saini ML, Saini R, Roy S, Kumar A. Comparative pharmacognostical and antimicrobial studies of Acacia species (Mimosaceae). J Med Plants Res 2008;2:378-86.
77. Ali HA, Mayes RW, Hector BL, Orskov ER. Assessment of n-alkanes, long-chain fatty acids and long-chain fatty acids as diet composition markers: The concentrations of these compounds in rangeland species from Sudan. Anim Feed Sci Technol 2005;121:257-71.
78. Kaur K, Michael H, Arora S, Härkönen P, Kumar S. In vitro bioactivity-guided fractionation and characterization of phenolic inhibitory fractions from Acacia nilotica (L. I Wild.) ex del. J Ethnopharmacol 2005;99:353-60.
79. Shahat AA. Procyanidins from Adansonia digitata. J Med Plants Res 2005;9:316-9.
80. Cisse M, Sakho M, Dornier M, Diop CM, Reynes M, Sock O. Characterization of the baobab tree fruit and study of its processing into nectar. Fruits 2009;64:19-34.
81. Upadhyay RK, Ahmad S, Tripathi R, Rohtagi L, Jain SC. Screening of antimicrobial potential of Acacia nilotica against Ehrlich ascites carcinoma cells. FEMS Lett 1998;438:220-4.
82. Bieth Y, Bouquet V, Muller T, Paillet C, Merle T, Bonnaud J, et al. In vivo antiproliferative activity and chemotherapeutic effects of Boscia senegalensis (Per.) Lam ex Poir. on Carcino saritum (Ost) p.stored of ground nuts. J Agric Res 2011;6:6348-53.
83. Shehata AA, Procyandins from Adansonia digitata. Pharm Bio 2008;6:445-50.
84. Berto J, Hannaert V, Chataigné G, Hérent MF, Quetin-Leclercq J. In vitro and in vivo evaluation of polyherbal formulation against Russell’s Viper and Cobra Venom. J Ethnopharmacol 2014;157:245-8.
85. Zainul MM, Zainudin M, Abu Bakar M, Ali S. Anthelmintic activity of two sesquiterpenic lactones isolated from Acanthospermum hispidum. J Ethnopharmacol 2012;141:411-7.
86. Alves MA, Pichão S, Bortosky S, Cartagena E, Bardon A. Bioactivity of the essential oil of an argentinian collection of Acanthospermum hispidum (Asteraceae). Nat Prod Commun 2012;7:245-8.
87. Ali R, Zainul MM, Abu Bakar M, Ali S. Antioxidant activity of two sesquiterpenic lactones isolated from Acanthospermum hispidum. J Ethnopharmacol 2012;141:411-7.
88. Alves MA, Pichão S, Bortosky S, Cartagena E, Bardon A. Bioactivity of the essential oil of an argentinian collection of Acanthospermum hispidum (Asteraceae). Nat Prod Commun 2012;7:245-8.
89. Zainul MM, Zainudin M, Abu Bakar M, Ali S. Antioxidant activity of two sesquiterpenic lactones isolated from Acanthospermum hispidum. J Ethnopharmacol 2012;141:411-7.
90. Alves MA, Pichão S, Bortosky S, Cartagena E, Bardon A. Bioactivity of the essential oil of an argentinian collection of Acanthospermum hispidum (Asteraceae). Nat Prod Commun 2012;7:245-8.
91. Koukoukoulis Koussousouda F, Abeda AA, Nouzargani A, Mombouli JL, Ouamba JM, Kun J, et al. In vitro evaluation of antiparasitic activity of extracts of Acanthospermum hispidum DC (Asteraceae) and Ficus thonnini Brown (Moraceae), two plants used in traditional medicine in the Republic of Congo. Afr J Tradit Complement Altern Med 2012;10:270-6.
92. Galon H, Bero J, Tchinda AT, Gbaguidi F, Gbenou J, Moudachirou M, et al. Antiparasitic activities of two sesquiterpenic lactones isolated from Acanthospermum hispidum D.C. J Ethnopharmacol 2012;141:411-7.
93. Alves MA, Pichão S, Bortosky S, Cartagena E, Bardon A. Bioactivity of the essential oil of an argentinian collection of Acanthospermum hispidum (Asteraceae). Nat Prod Commun 2012;7:245-8.
94. Berto J, Hannaert V, Chataigné G, Hérent MF, Quetin-Leclercq J. In vitro antiproliferative activity and chemotherapeutic effects of Boscia senegalensis (Per.) Lam ex Poir. on Carcino saritum (Ost) p.stored of ground nuts. J Agric Res 2011;6:6348-53.
95. Shehata AA, Procyandins from Adansonia digitata. Pharm Bio 2008;6:445-50.
96. Berto J, Hannaert V, Chataigné G, Hérent MF, Quetin-Leclercq J. In vitro and in vivo evaluation of polyherbal formulation against Russell’s Viper and Cobra Venom. J Ethnopharmacol 2014;157:245-8.
97. Zainul MM, Zainudin M, Abu Bakar M, Ali S. Anthelmintic activity of two sesquiterpenic lactones isolated from Acanthospermum hispidum. J Ethnopharmacol 2012;141:411-7.
98. Alves MA, Pichão S, Bortosky S, Cartagena E, Bardon A. Bioactivity of the essential oil of an argentinian collection of Acanthospermum hispidum (Asteraceae). Nat Prod Commun 2012;7:245-8.
99. Zainul MM, Zainudin M, Abu Bakar M, Ali S. Anthelmintic activity of two sesquiterpenic lactones isolated from Acanthospermum hispidum. J Ethnopharmacol 2012;141:411-7.
100. Alves MA, Pichão S, Bortosky S, Cartagena E, Bardon A. Bioactivity of the essential oil of an argentinian collection of Acanthospermum hispidum (Asteraceae). Nat Prod Commun 2012;7:245-8.
101. Zainul MM, Zainudin M, Abu Bakar M, Ali S. Anthelmintic activity of two sesquiterpenic lactones isolated from Acanthospermum hispidum. J Ethnopharmacol 2012;141:411-7.
102. Alves MA, Pichão S, Bortosky S, Cartagena E, Bardon A. Bioactivity of the essential oil of an argentinian collection of Acanthospermum hispidum (Asteraceae). Nat Prod Commun 2012;7:245-8.
115. Rubarza CD, Shem MN, Otseya R, Bakengesa SS, Ichinohe T, Fujihara T. Polyphenolics and tannins effect on in vitro digestibility of selected Acacia species leaves. Anim Feed Sci Technol 2005;119:129-42.

116. Gessler MC, Nkunya MH, Mwasumbi LB, Heinrich M, Tanner M. Screening Tanzanian medicinal plants for antimarial activity. Acta Trop 1994;56:65-77.

117. Elhassan GO, Adhikari A, Youssuf S, Hafizur Rahman M, Khalid A, Omer H, et al. Phytochemistry and antiagglutination activity of Aloe sinkatanaka Reynolds. Phytochemistry Lett 2012;5:725-8.

118. Grace OM, Dzaic A, Jager AK, Nyberg NT, Onder A, Ronsted N. Monosaccharide analysis of succulent leaf tissue in Aloe. Phytochemistry 2013;93:79-87.

119. Thippeswamy S, Mohana DC, Abhishek RU, Manjunath K. Efficacy of bioactive compounds isolated from Albizia amara and Albizia saman as source of antifungal and antiflailxogogenic agents. J Verbrauch Lebensm 2013;8:297-305.

120. Praveen P, Thippeswamy S, Mohana DC, Manjunath K. Antimicrobial efficacy and phytocchemical analysis of Albizia amara (Roxb.) Boiv. indigenous medicinal plant against some human and plant pathogenic bacteria and fungi. J Pharm Res 2011;4:832-5.

121. Chen ZZ, Deng YX, Yin ZQ, Wei Q, Li M, Ja BY, et al. Studies on the acaricidal mechanism of the active components from neem (Azadirachta indica) oil against Sarcoptes scabiei var. cuniculi. Vet Parasitol 2014;204:323-9.

122. Melwita E, Ju Y. Separation of azadirachtin and other limonoids from crude neem oil via solvent precipitation. Sep Purif Technol 2010;84:219-24.

123. Tabassam SM, Iqbal Z, Jabbar A, Sindhu ZU, Chattha AI. Efficacy of crude neem seed kernel extracts against natural infestation of Sarcoptes scabiei var. ovis. J Ethnopharmacol 2008;115:284-7.

124. dos Santos AC, Rodrigues OG, de Lagoo LV, dos Santos SB, de Guerra RM, Feitosa ML, et al. Use of neem extract in the control of acarids by Myobia musculi Schrank (Acari: Miobidae) and Mycoptes musculi Koch (Acari: Lophostrobiidae) in mice (Mus musculus var. albinra L). Neotrop Entomol 2006;35:269-72.

125. Abdel Moneim AE. Azadirachta indica attenuates cislative-induced neurotoxicity in rats. Indian J Pharmacol 2014;46:316-21.

126. Verbangsa RS, Lucantoni L, Oudekoog RK, Da DE, Yao FA, Yemore KB, et al. Transmission blocking activity of Azadirachta indica and Guiera senegalensis extracts on the sporogonic development of Plasmodium falciparum field isolates in Anopheles coluzzii mosquitoes. Parasite Vectors 2014;7:185.

127. Soares DG, Godin AM, Menezes RR, Nogueira RD, Britto AM, Melo IS, et al. Anti-inflammatory and antinociceptive activities of azadirachta in mice. Planta Med 2014;80:830-6.

128. Kurimoto S, Takaishi Y, Ahmed FA. Kashiwada Y. Triterpenoids from the fruits of Azadirachta indica (Meliaceae). Fitoterapia 2014;92:200-5.

129. Aslam F, Rehman K, Asghar M, Sarwar M. Antibacterial activity of various phytoconstituents of Azadirachta indica. Pak J Agric Sci 2009;46:209-13.

130. Dallak M. In vivo, hypolipidemic and antioxidant effects of Citrullus colocynthis pulp extract in alloin-induced diabetic rats. Afr J Biotechnol 2011;10:9898-903.

131. Bashir AK, Turner TD, Ross MS. Phytochemical investigation of Grewia villosa roots. 1. Fitoterapia 1982;53:67-70.

132. Bashir AK, Ross MS, Turner TD. Phytochemical investigation of Grewia villosa roots. 2. Fitoterapia 1982;53:71-4.

133. Saponihong T, Kaaeexprum WR, Tongumpai S, Nusuetrong P, Meksuriyen D. Cissus quadrangularis ethanol extract upregulates superoxide dismutase, glutathione peroxidase and endorphelial nitric oxide synthase expression in hydrogen peroxide-injured human EC/VSM cells. J Ethnopharmacol 2012;143:664-72.

134. Adesanya SA, Nia R, Martin MT, Boukamoua N, Montagnac A, Pais M. Stilbene derivatives from Cissus quadrangularis. J Nat Prod 1999;62:1694-5.

135. Chidambaram J, Carani Venkataraman A. Cissus quadrangularis stem alleviates insulin resistance, oxidative injury and fatty liver disease in rats fed high fat plus fructose diet. Food Chem Toxicol 2010;48:2021-9.

136. Kashikar ND, George I. Antibacterial activity of Cissus quadrangularis Linn. Indian J Pharm Sci 2006;68:245.

137. Singh G, Rawat V, Maurya R. Constituents of Cissus quadrangularis. Nat Prod Res 2007;21:522-8.

138. Balsalamraman P, Jayalakshmi K, Vidhya N, Prasad R, Sheerif AK, Kathiravan G, et al. Antiviral activity of ancient system of ayurvedic medicinal plant Cissus quadrangularis L. (Vitaceae). J Basic Clin Pharm 2009;1:37-40.

139. Chen JC, Chu MH, Nie RL, Cordell GA, Gu S. Curcubitacins and curcubinate glycosides: Structures and biological activities. Nat Prod Rep 2005;22:389-99.

140. Marzouk B, Marzouk Z, Halou E, Fenina N, Bouroua A, Aouni M. Phoenolic profile and antioxidant activity of various extracts from Cistus collocythis (L.) from the Pakistan flora. Ind Crop Prod 2013;45:16-22.

141. Ofusori DA, Komolafe OA, Adewole OS, Obuotor EM, Fakunle JB, Ayoka AO. Effect of ethanolic extracts as antimicrobial agents. J Pure Appl Microbiol 2012;6:1433-6.

142. Albagouri AH, Elegami AA, Koko WS, Osman EE, Dahab MM. Phytochemical investigation of Cassia occidentalis plant extracts. Asian J Chem 2010;3:332-6.

143. Bashir AK, Turner TD. Antimicrobial activity of Cistus ladaniferus L. flowers in sheep. J Ethnopharmacol 2005;102:256-61.

144. Bashir AK, Turner TD. Antimicrobial activity of Cassia occidentalis L. Schweinf. Carbohydr Res 2002;367:219-24.

145. Silva MC, da Silva AB, Teixeira FM, de Sousa PC, Rondon RM, Honório Júnior JE, et al. Therapeutic and biological activities of Cassia occidentalis (Linn.) Schrad against Staphylococcus aureus. J Med Plants Res 2010;4:2321-6.

146. Marzouk B, Marzouk Z, Halou E, Fenina N, Bouroua A, Aouni M. Screening of analgesic and anti-inflammatory activities of Cistus collocythis from Southern Tunisia. J Ethnopharmacol 2010;128:15-9.

147. Taha E, Marod A, Abouelhawa S, El-Gedawy M, Sorour M, Mattheus B. Antioxidant activity of extracts from six different Sudanese plant materials. Eur J Lipid Sci Technol 2010;112:1263-9.

148. Ali HA, Ahmed OI, Khalid SA. LC/MSD/MS metabolites profiling, radical scavenging and antimicrobial activities of Combretum hernmannianum Schweinf. Planta Med 2009;75:1078.

149. Albagouri AH, Elegami AA, Woko WS, Osman EE, Dahab MM. In vitro antitrichoalicular activities of some Sudanese medicinal plants of the family Combretaceae. J For Prod Ind 2014;3:93-9.

150. Anderson DM, Bell PC. Studies on uronic acid materials: Part 50. Analytical and structural features of the gum exudate from Combretum hernmannianum Schweinf. Carbohydr Res 1976;49:3419-2.

151. Ahmad N, Arwar F, Hamedd M, Boyce MC. Antioxidant and antimicrobial attributes of ancient system of ayurvedic medicinal plant Cistus ladaniferus L. (Labiatae). J Ethnopharmacol 2005;102:256-61.

152. Bashir AK, Turner TD. Antimicrobial activity of Cassia occidentalis L. Schweinf. Carbohydr Res 2002;367:219-24.

153. Bashir AK. The alkaloids of Grewia villosa root. Fitoterapia 1987;58:141-2.

154. Duda N, Raza A, Hofesh N, Roerenzweig N, Aharon R, Fischer R, et al. Antioxidant activity and phenol content of plant germplasm originating in the Dead Sea area. Isr J Plant Sci 2008;56:227-32.
MOHAMED GAMALELDIN ELSADIG KARAR and NIKOLAI KUHNERT: Herbal Drugs from Sudan

164. Okoson JE, Nwafor PA, Noah K. Nephroprotective effect of Croton zambesicus root extract against gentamicin-induced kidney injury. Asian Pac J Trop Med 2011;4:969-72.

165. Aderogba MA, McGaw LJ, Bezabih M, Abarag BM. Isolation and characterisation of novel antioxidant constituents of Croton zambesicus leaf extract. Nat Prod Res 2011;25:1242-33.

166. Okoson JE, Nwafor PA. Anti-inflammatory, analgesic and antipyretic activities of ethanolic root extract of Croton zambesicus. Pak J Pharm Sci 2010;23:385-92.

167. Nasimolino J, Kensa SG, Gathumbi PK, Makanya AN, Kagira JM. Erythrina abyssinica prevents meconepheleisis in chronic Trypanosoma brucei brucei mouse model. Metab Brain Dis 2014;29:509-60.

168. Mohammed MM. Anti-HIV-1 and cytotoxicity of the alkaloids of Erythrina abyssinica Lam. growing in Sudan. Nat Prod Res 2013;27:295.

169. Bulumela L, Krimihuya C, Tabuthi JR, Waako P Magadula JJ, Otieno N, et al. The efficacy of the crude root bark extracts of Erythrina abyssinica on rifampicin resistant Mycobacterium tuberculosis. Afr Health Sci 2011;11:587-93.

170. Kebene JS, Nidal PK, Sabah AQ. Synergism of artemisinin with albendazole-V from Erythrina abyssinica (Lam. ex) against Plasmodium falciparum parasites: A potential anti-malarial combination therapy. J Med Plants Res 2011;5:1355-60.

171. Nguyen PH, Nguyen TN, Dao TT, Kang HW, Idineth DT, Mbafor JT, et al. AMP-activated protein kinase (AMPK) activation by benzoazaines and coumarins isolated from Erythrina abyssinica. J Nat Prod 2010;73:598-602.

172. Zaki MA, Abd Slam RM, Hetta MH, Muhammad I. Reversed phase centrifugal preparative chromatography for the isolation of triterpenone saponins glycosides from Fagonia cretica. Planta Med 2012;78:1269.

173. Hussain A, Zia M, Mirza B. Cytotoxic and antitumor potential of Fagonia cretica L. Turk J Biol 2007;31:19-24.

174. Asif Saeed M, Wahid Sabir A. Effects of Fagonia cretica L. constituents on various haematological parameters in rabbits. J Ethnopharmacol 2003;85:195-200.

175. Abdel-Khalik SM, Miyase T, Meleek FR, el-Ashahi HA. Further saponins from Fagonia cretica. Pharmazie 2001;56:247-50.

176. Saeed MA, Khan Z, Sabir AW. Effects of Fagonia cretica L. constituents on various endocrinological parameters in rabbits. Turk J Biol 1999;22:187-97.

177. Lam M, Wolff K, Griffiths H, Carmichael A. Correction: An aqueous extract of Fagonia cretica induces DNA damage, cell cycle arrest and apoptosis in breast cancer cells via FADD and p53 expression. PLoS One 2014;9:e103665.

178. Razi MT, Asad MH, Khan T, Chaudhary MZ, Ansari MT, Arshad MA, et al. Antihypertrophic potentials of Fagonia cretica against Naja naja karachiensis (black Pakistan cobra) venom. Nat Prod Res 2011;25:1902-7.

179. Anjum MI, Ahmed E, Jabbar A, Malik A, Ashraf M, Moazzam M, et al. Antibacterial constituents from Fagonia cretica. J Chem Soc Pak 2007;29:634-9.

180. Munazir M, Gureshi R, Arshad M, Gufran M. Antibacterial activity of root and fruit extracts of Leptadenia pyrotechnica (Asclepiadaceae) from Pakistan. Pak J Bot 2012;44:1209-13.

181. Moustafa MM, Khodair AM, Saleh MA. Potato disc bioassay and cytotoxic effect of Leptadenia pyrotechnica. Afr J Pharm Sci Assiut Univ 1995;18:27-31.

182. Kigelia africana and its active constituents on various (Lam.) against Plasmodium falciparum. J Nat Prod 2010;73:180-6.

183. Al Sahli AA, Abdulkhair WM. Inhibition of beta-lactamase enzyme of Escherichia coli by palmidin. J Food Composit Anal 1998;11:221-30.

184. Cook JA, Vanderjagt DJ, Pastuszyn A, Mounkaila G, Glew RH. Nutrient content of two Capparidaceae from Burkina Faso. J Appl Pharm Sci 2013;3:36-42.

185. Ngishi H, Maoka T, Njeltekela M, Yasui J, Juman S, Mtbaj M, et al. New chromosome...
derivative terminalanone from African plant Terminalia brownii Fresen (Combretaceae) in Tanzania. J Asian Nat Prod Res 2011;13:281-3.

216. Machumi F, Zhang J, Midwo JO, Jacob MR, Khan SL, Tekwani BL, et al. Antiparasitic and antimicrobial constituents from Terminalia brownii. Panta Med 2013;79:981.

217. Al-Taweel AM, Fayzy GA, Perveron S, El Tahir KE. Gas chromatographic mass analysis and further pharmacological actions of Cymbopogon proximus essential oil. Drug Res (Stuttg) 2012;63:484-8.

218. Selim SA. Chemical composition, antioxidant and antimicrobial activity of the essential oil and methanol extract of the Egyptian lemongrass Cymbopogon proximus Stapf. Grasses Aceites 2011;62:55-61.

219. Ahmed E, Sharif A, Hussain S, Malik A, Hassan MJ, Munawar MA, et al. Phytochemical and antimicrobial studies of Grewia texana. J Chem Soc Pak 2011;33:676-81.

220. Al-Said MS, Mothana RA, Al-Sohabani MO, Rafalullah S. Ameliorative effect of Grewia texana (Forssk) Foert fruit extract on CCl4-induced oxidative stress and hepatotoxicity in rats. J Food Sci Food Sci (Jodhpur) 1999;76:7200-6.

221. Malik F, Hussain S, Mirza T, Harneed A, Ahmad S, Riaz H, et al. Screening for antimicrobial activity of thirty-three medicinal plants used in the traditional system of medicine in Pakistan. J Med Plants Res 2011;5:3092-60.

222. Mousrino NM, van Tonder JJ, Steenkamp V. In vitro antibacterial activity of Scenocarya biterea and Zaphybus mucronatus. Nat Prod Commun 2013;8:1279-84.

223. McGaw LJ, Jager AK, van Staden J. Antibacterial, antihelminthic and anti-amoebic activity in South African medicinal plants. J Ethnopharmacol 2000;72:247-63.

224. Watt JM, Breyer-Brandwijk MG. The Medicinal and Poisonous Plants of Southern and Eastern Africa. Being an Account of their Medicinal and Other Uses. Chemical Composition, Pharmacological Effects, and Toxicology in Man and Animal. 2nd ed. Edinburgh: E. & S. Livingstone Ltd.; 1962. p. 1452.

225. Braca A, Polis M, Sanogo R, Sanou H, Morelli I, Pizza C, et al. Chemical composition and antioxidant activity of phenolic compounds from wild and cultivated Scenocarya biterea (Anacardiaceae) leaves. J Agric Food Chem 2002;51:6689-95.

226. Hsu B, Coupar IM, Ng K. Antibacterial activity of hot water extract from the fruit of the Doum palm, Hyphaene thebaica. Food Chem 2006;98:317-28.

227. Cook JA, Vandeberg DJ, Pastuszy A, Mounkaila G, Glew RS, Millson M, et al. Nutrient and chemical composition of 13 wild plant foods of Niger. J Food Compost Anal 2000;13:83-92.

228. Sharaf A, Sorour A, Youssef A, Gomaa N. Some pharmacological studies on Hibiscus sabdariffa Linn. J Ethnopharmacol 2008;115:223‑31.

229. Liu K, Tsao S, Yin M. In vitro antibacterial activity of roselle calyx and protocatechuic acid. Phytother Res 2005;19:942-5.

230. Toloque M. Cytotoxicity and antibacterial activity of methanolic extract of Hibiscus sabdariffa. J Med Plants Res 2007;1:9-13.

231. Reammongkol V, Itharat A. Antipyretic activity of the extracts of Hibiscus sabdariffa calyces L in experimental animals. Songklanakarin J Sci Technol 2007;29:29-38.

232. Mohd-Esa N, Hern FS, Ismail A, Yee CL. Antioxidant activity in different parts of roselle (Hibiscus sabdariffa L) extracts and potential exploitation of the seeds. Food Chem 2010;122:1055-60.

233. Ali B, Mousa H, El-Mougy S. The effect of a water extract and anthocyanins of Hibiscus sabdariffa L. on paracetamol-induced hepatotoxicity in rats. Phytother Res 2003;17:56-9.

234. Peng C, Chuyu C, Chan K, Chan T, Wang C, Huang C. Hibiscus sabdariffa polyphenol extract inhibits hyperglycemia, hyperlipidemia, and glycogen-oxidative stress while improving insulin resistance. J Agric Food Chem 2011;59:9901-9.

235. Lin H, Chan K, Sheu J, Hsu H, Wang C, Chen J. Hibiscus sabdariffa leaf induces apoptosis of human prostate cancer cells in vitro and in vivo. Food Chem 2012;132:880-91.

236. Inuwa I, Ali BI, Al-Lawati I, Beegam S, Ziaa A, Blunden G. Long-term ingestion of Hibiscus sabdariffa calyx extract enhances myocardial capillarization in the spontaneously hypertensive rat. Exp Biol Med (Maywood) 2012;237:563-9.

237. Alarcon-Aguilar FJ, Roman-Ramos R, Perez-Gutierrez S, Aguilar-Contreras A, Contreras-Weber CC, Flores-Saenz JL. Study of the anti-hyperglycemic effect of plants used as anti-diabetics. J Ethnopharmacol 1998;61:101-10.

238. Hemavathy J, Prabhakar JV. Lipid composition of fenugreek (Trigonella foenum-graecum L) seeds. Food Chem 1989;31:1-7.

239. Morthry R, Prabhu KM, Murthy PS. Mechanism of antioxidant action, efficacy and safety profile of Gil purified from fenugreek (Trigonella foenum-graecum Linn) seeds in diabetic animals. Indian J Exp Biol 2010;48:1119-22.

240. Kokai A, Kotkan T, Bagoi E, Akçura M, Hayta S, Bakoglu A, et al. Chemical analyses of the seeds of some forage legumes from Turkey. A chemotaxonomic approach. Grasses Aceites 2011;82:383-9.

241. Sumitra M, Manikandan P, Suguna L, Chelitar G. Study of dermal wound healing activity of Trigonella foenum-graecum seeds in rats. J Clin Biochem Nutr 2000;28:59-67.

242. Harve G, Karimath V. Larvicidal activity of plant extracts used alone and in combination with known synthetic larvicidal agents against Aedes aegypti. Indian J Exp Biol 2004;42:1216-9.

243. Bin Mohamad MY, Akram HB, Bero DN, Rahman MT. Tamarind seed extract enhances epidermal wound healing. Int J Biol 2011;4:81.

244. Sandesh P, Velu V, Singh RP. Antioxidant activities of tamarind (Tamarindus indica) seed cot extract using in vitro and in vivo models. J Food Sci Technol 2011;48:1965-73.

245. Usharanidhi S, Nagaraju S, Harish Kumar K, Vedavathi M, Madhia DK, Kemparaju K, et al. The anti-snake venom properties of Tamarindus indica (leguminosae) seed extract. Phytother Res 2006;20:85-8.

246. Sreelektha TT, Vijayakumar T, Ankanthi R, Vijayan KK, Nair MK. Immunomodulatory effects of a polyasaccharide from Tamarindus indica. Anticancer Drugs 1993;4:209-12.

247. Mali R, Jana D, Das UK, Ghosh D. Antidiabetic effect of aqueous extract of seed of Tamarindus indica in streptozotocin-induced diabetic rats. J Ethnopharmacol 2004;92:85-91.

248. Sudjaraen Y, Haubner R, Würstle G, Hull WE, Erben G, Spieghelhalder B, et al. Isolation and structure elucidation of phenolic antioxidants from Tamarindus indica (L.) seeds and pericarp. Food Chem Toxicol 2005;43:1673-82.

249. Ng'ang'a MM, Hussain H, Chhabra S, Langat-Thouwa C, Krohn K. Chemical constituents from the root bark of Ozoroa insignis. Biochem Syst Ecol 2009;37:116-9.

250. Abreu PJ, Liu Y. Ozoroa alkaloid, a new macroclide from Ozoroa insignis. Fitoterapia 2007;78:388-9.

251. Liu Y, Abreu P. Tiranuclea triterpenes from the roots of Ozoroa insignis. Phytochemistry 2006;67:1309-15.

252. Rea AJ, Schmidt JM, Setzer WN, Sibanda T, Taylor G, Gwebu ET. Cytotoxic activity of Ozoroa insignis from Zimbabwe. Fitoterapia 2003;74:73-5.

253. Molgaard P, Nielsen SB, Rasmussen DE, Drummond RB, Makaza N, Andreassen J. Anthelmintic screening of Zimbabwean plants traditionally used against schistosomiasis. J Ethnopharmacol 2001;74:257-64.

254. He WD, Van Puyvelde L, Bosselaers J, De Kimpe N, Van der Flas M, Roymans A, et al. Activity of 6-pentadecyloic acid from Ozoroa insignis against marine crustaceans. Pharm Biol 2002;40:74-6.

255. Sawadogo WR, Le Dourou G, Maciak A, Bories C, Loiseau PM, Figadere B, et al. In vitro
antileishmanial and antitrypanosomal activities of five medicinal plants from Burkina Faso. Parasitol Res 2012;110:1799-83.

268. Coubalay AV, Hashim R, Sulaiman SF, Sulaiman O, Ang LZ, Ooi KL. Bioprospecting medicinal plants for antioxidant components. Asian Pac J Trop Med 2014;7:5563-9.

269. Haule EE, Mushi MJ, Nondo RS, Mwamgongo DT, Munnah RL. A study of antimicrobial activity, acute toxicity and cytoprotective effect of a polyherbal extract in a rat ethanol-HCl gastric ulcer model. BMC Res Notes 2012;5:546.

270. Huang Y, Chow C, Tsal Y. Composition, characteristics, and, in vitro physiological effects of the water-soluble polysaccharides from Cassia seed. Food Chem 2012;134:1967-72.

271. Ju MS, Kim HG, Choi JG, Ryu JH, Hur J, Kim YJ, et al. Cassia semen, a seed of Cassia obtusifolia, has neuroprotective effects in Parkinson's disease models. Food Chem Toxicol 2010;48:2037-44.

272. Patil UK, Saraf S, Dixit VK. Hypolipidemic activity of seeds of cassia torn Linn. J Ethnopharmacol 2004;90:249-52.

273. Cong O, Shang M, Dong Q, Liao W, Xiao F, Ding K. Structure and activities of a novel heterosylan from Cassia obtusifolia seeds and its sulfated derivative. Carbohydr Res 2010;345:285-9.

274. Shang M, Zhang X, Dong Q, Yao J, Liu Q, Ding K. Isolation and structural characterization of the water-extractable polysaccharides from Cassia obtusifolia seeds. Carbohydr Poly 2012;90:166-9.

275. Chen X, Teng L, Chu Y, Wang X, Zhang L, Ma X, et al. Identification and characterization of anthraquinones in Cassia torn L. by liquid chromatography connected with time of flight mass spectrometry and ion trap mass spectrometry. Asian J Chem 2013;25:7840-2.

276. Vadivel V, Kunnyanga CN, Biesalski HK. Antioxidant potential and type II diabetes-related enzyme inhibition of Cassia obtusifolia L: Effect of indigenous processing methods. Food Bioprocess Technol 2012;5:2867-9.

277. Wu X, Ruan J, Yang WC, Wu Z, Lou J, Duan H, et al. Three new acetylated benzyl-beta-resorcylic glycosides from Cassia obtusifolia. Fitoterapia 2012;83:168-9.

278. Dawidar AE, Mortada MM, Raghhi HM, Abdel-Mogib M. Molluscicidal activity of Balanites aegyptiaca L.: Effect of indigenous processing methods. Food Chem 2014;164:518-26.

279. Liu HW, Nakanishi K. The structures of balanitins, potent molluscicides isolated from Balanites aegyptiaca N. Murad W, Azizullah A, Adnan M, Tariq A, Khan KU, Waheed S, et al. Antimicrobial and antioxidant properties in purple basil (Ocimum basilicum), its essential oil and its aqueous extracts. J Ethnopharmacol 2002;76:77-81.

280. Shang M, Zhang X, Dong Q, Yao J, Liu Q, Ding K. Isolation and structural characterization of the water-soluble polysaccharides from Cassia seed. Food Chem Toxicol 2010;48:2037-44.

281. Shang M, Zhang X, Dong Q, Yao J, Liu Q, Ding K. Isolation and structural characterization of the water-extractable polysaccharides from Cassia obtusifolia seeds. Carbohydr Poly 2012;90:166-9.

282. Chen X, Teng L, Chu Y, Wang X, Zhang L, Ma X, et al. Identification and characterization of anthraquinones in Cassia torn L. by liquid chromatography connected with time of flight mass spectrometry and ion trap mass spectrometry. Asian J Chem 2013;25:7840-2.

283. Vadivel V, Kunnyanga CN, Biesalski HK. Antioxidant potential and type II diabetes-related enzyme inhibition of Cassia obtusifolia L: Effect of indigenous processing methods. Food Bioprocess Technol 2012;5:2867-9.

284. Wu X, Ruan J, Yang WC, Wu Z, Lou J, Duan H, et al. Three new acetylated benzyl-beta-resorcylic glycosides from Cassia obtusifolia. Fitoterapia 2012;83:168-9.

285. Dawidar AE, Mortada MM, Raghhi HM, Abdel-Mogib M. Molluscicidal activity of Balanites aegyptiaca L.: Effect of indigenous processing methods. Food Chem 2014;164:518-26.

286. Liu HW, Nakanishi K. The structures of balanitins, potent molluscicides isolated from Balanites aegyptiaca N. Murad W, Azizullah A, Adnan M, Tariq A, Khan KU, Waheed S, et al. Antimicrobial and antioxidant properties in purple basil (Ocimum basilicum), its essential oil and its aqueous extracts. J Ethnopharmacol 2002;76:77-81.

287. Shang M, Zhang X, Dong Q, Yao J, Liu Q, Ding K. Isolation and structural characterization of the water-extractable polysaccharides from Cassia obtusifolia seeds. Carbohydr Poly 2012;90:166-9.

288. Chen X, Teng L, Chu Y, Wang X, Zhang L, Ma X, et al. Identification and characterization of anthraquinones in Cassia torn L. by liquid chromatography connected with time of flight mass spectrometry and ion trap mass spectrometry. Asian J Chem 2013;25:7840-2.

289. Vadivel V, Kunnyanga CN, Biesalski HK. Antioxidant potential and type II diabetes-related enzyme inhibition of Cassia obtusifolia L: Effect of indigenous processing methods. Food Bioprocess Technol 2012;5:2867-9.

290. Wu X, Ruan J, Yang WC, Wu Z, Lou J, Duan H, et al. Three new acetylated benzyl-beta-resorcylic glycosides from Cassia obtusifolia. Fitoterapia 2012;83:168-9.
