A SMALLER COUNTEREXAMPLE TO THE LANDO CONJECTURE

V. Belousov

Abstract. The following conjecture was proposed in 2010 by S. Lando.

Let M and N be two unions of the same number of disjoint circles in a sphere. Then there exist two spheres in 3-space whose intersection is transversal and is a union of disjoint circles that is situated as M in one sphere and as N in the other. Define union M of disjoint circles to be situated in one sphere as union M_1 of disjoint circles in the other sphere if there is a homeomorphism between these two spheres which maps M to M_1.

In this paper we prove that there exists pair of sets of 7 circles in sphere, that is a counterexample to the Lando conjecture. This is proved using the Avvakumov Theorem. We conjecture that there exists no pair (M,N) that is counterexample and M contains 6 or less circles.

Definitions.

Let p and q be two sets of edges of a tree Y.

The set p is on the same side of q (in this tree Y) if $p \cap q = \emptyset$ and for each two vertices of edges of p there is a path in the tree connecting these two vertices, and containing an even number of edges of q. Sets p and q are unlinked (in this tree) if p is on the same side of q and q is on the same side of p.

For vertex P of graph we denote as δP all edges whose end is P.

Let K and K' be two trees with the same number of edges. Let h be a bijection (i.e. one-to-one correspondence) between their edges.

Then h is called realizable if $h(\delta A)$ and $h(\delta B)$ are unlinked for each two vertices A and B in K such that the path joining A and B contains even number of edges.

Graphs K and K' are friendly if such a bijection exists.

Figure 1: Graphs H and G.

Let graph G be a graph that has vertices A, C_i, A', C'_i and edges $C_3 C'_3, AC_i, A'C'_i, i = 1, 2, 3$. Let graph H be a graph that has vertices B, D, P_i, Q_i and edges $BD, BP_i, P_i Q_i, i = 1, 2, 3$.

1 This paper is prepared under the supervision of Arkadiy Skopenkov and is submitted to the Moscow Mathematical Conference for High-School Students. Readers are invited to send their remarks and reports on this paper to mmks@mccme.ru
Theorem 1. Graphs G and H are unfriendly.

Let state a result that shows why this theorem is interesting. Suppose that M is a union of disjoint circles in sphere S^2. Define (‘dual to M’) graph $G = G(S^2; M)$ as follows. The vertices are the connected components of $S^2 \setminus M$. Two vertices are connected by an edge if the corresponding connected components are neighbors.

Aavakumov Theorem. [A] Let M and N be two unions of the same number of disjoint circles in a sphere S^2. Then there exist two spheres in 3-space whose intersection is transversal and is a union of disjoint circles that is situated as M in one sphere and as N in the other if and only if the graph dual to M and N are friendly.

This theorem implies that friendliness is symmetric. This will be used in the proof.

Suppose ϕ is a realizable bijection between edges of G and H. For edges e_1,e_2,e_3,\ldots,e_n of graph G by $h(e_1,e_2,e_3,\ldots,e_n)$ we denote subgraph formed by $\phi(e_1),\phi(e_2),\phi(e_3),\ldots,\phi(e_n)$ in graph H. And for edges e_1,e_2,e_3,\ldots,e_n of graph H by $g(e_1,e_2,e_3,\ldots,e_n)$ we denote subgraph formed by $\phi(e_1),\phi(e_2),\phi(e_3),\ldots,\phi(e_n)$ in graph G.

Proposition 1. Both graphs $H_1 := h(AC_1, AC_2, AC_3)$ and $H_2 := h(A'C'_1, A'C'_2, A'C'_3)$ are connected.

Proof. Let prove the connectedness for H_1, and for H_2 the proof is analogous.

If H_1 is not connected then one of edges from $H \setminus H_1 = h(AC_1', AC_2', AC_3', C_3C_3')$ belongs to path connecting two edges from H_1. Vertices A and C_3' are linked by a path of even length.

So $h(A'C_3')$ doesn’t belong to any path that joins a pair of edges of graph H_1. Analogically $h(A'C_3')$ doesn’t belong to any path that joins a pair of edges of graph H_1. Vertices A and C_3' are linked by a path of even length too. Hence,

1. Case 1. Neither $h(C_3C_3')$ nor $h(A'C_3')$ don’t belong to any path that joins a pair of edges of graph H_1;
2. Case 2. $h(C_3C_3')$ and $h(A'C_3')$ belong to path that joins a pair of edges J_1,J_2 of graph H_1.

In the first case the graph H_1 is connected.

In the second case $J_1,h(C_3C_3'),h(A'C_3'),J_2$ form a path of length 4. Without loss of generality this path is $Q_1P_1BP_2Q_2$. Hence path, that links edges J_1 and $H_1 - J_1 - J_2$, intersect only one of edges $h(C_3C_3'),h(A'C_3')$. Which is impossible.

QED

Proposition 2. Vertex B is an endpoint of edge $h(C_3C_3')$.

Proof. Vertices B and Q_i are linked by a path of even length. $g(BD, BP_1, BP_2, BP_3) = g(\delta B)$ is unlinked with any edge $g(P_iQ_i)$ in G. This implies $g(\delta B)$ is connected. There are only 2 connected subgraphs with 4 edges in G up to automorphism of G:

The first subgraph, say X, has vertices C_1, C_2, C_3, A, C_3' and its edges are precisely the edges of G with both ends in X.

The second subgraph, say Y, has vertices C_1, A, C_3, C_3', A' and its edges are precisely the edges of G with both ends in Y.

Since C_3C_3' is fixed under Aut(G) and C_3C_3' is contained both in X and Y, one of edges BD, BP_1, BP_2, BP_3 is $h(C_3C_3')$.

QED

Proof of theorem 1. Suppose graphs G and H are friendly. Then there exists a realizable bijection ϕ between edges of G and H.

According to proposition 1 graph $H - h(C_3C_3')$ is a union of two connected graphs with 3 edges. According to proposition 2 one of these graphs contains at least two of the edges P_iQ_i.
as his edge. Without loss of generality let \(P_1Q_1 \) and \(P_2Q_2 \) be in \(h(AC_1, AC_2, AC_3) = H_1 \). But then the length of the path linking \(Q_1, Q_2 \) is 4. Since there are only 3 edges in \(H_1 \), this is impossible.

QED

References

[A] S. Avvakumov, A counterexample to the Lando conjecture on intersection of spheres in 3-space, http://arxiv.org/pdf/1210.7361v2.pdf

For related results see:

[B] A. Rukhovich, On intersection of two embedded spheres in 3-space, http://arxiv.org/abs/1012.0925

[C] S. Avvakumov, A. Berdnikov, A. Rukhovich and A. Skopenkov, How do curved spheres intersect in 3-space, or two-dimensial meandra, http://www.turgor.ru/lktg/2012/3/3-len_si.pdf

[D] T. Hirasa, Dissecting the torus by immersions, Geometriae Dedicata, 145:1 (2010), 33-41

[E] T. Nowik, Dissecting the 2-sphere by immersions, Geometriae Dedicata 127, (2007), 37-41, http://arxiv.org/abs/math/0612796