Overexpression of SRS5 improves grain size of brassinosteroid-related dwarf mutants in rice (*Oryza sativa* L.)

Shuhei Segami1,2, Kana Takehara1, Tatsuya Yamamoto1, Shintaro Kido1, Saki Kondo1, Yukimoto Iwasaki1) and Kotaro Miura*1)

1) Faculty of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
2) Present address: Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Shakudo, Habikino, Osaka 583-0862, Japan

Grain size is a trait that is important for rice (*Oryza sativa* L.) yield potential. Many genes regulating grain size have been identified, deepening our understanding of molecular mechanisms of grain size determination in rice. Previously, we cloned *SMALL AND ROUND SEED 5* (*SRS5*) gene (encoding alpha-tubulin) from a small and round seed mutant and revealed that this gene regulates grain length independently of the brassinosteroid (BR) signaling pathway, although BR-related mutants set small grain. In this study, we showed that overexpression of *SRS5* can promote grain length and demonstrated that the overexpression of *SRS5* in BR-related mutants rescued the shortened grain length, which is an unfavorable phenotype in the yield potential of BR-related mutants, while preserving the useful semi-dwarf and erect leaf phenotypes.

Key Words: *Oryza sativa* L., grain size, SRS5, brassinosteroid, molecular breeding.

Introduction

Grain size is an important trait that determines rice (*Oryza sativa* L.) yield potential. Many genes regulating grain size in rice were identified by quantitative trait locus analysis, namely, *GS3*, *GW2*, *qSW5/GW5*, *GS5*, *GW8*, *GL3.1*, *TGW6*, *GW6a*, and *GL7/GW7* (Fan et al. 2006, Ishimaru et al. 2013, Li et al. 2011, Qi et al. 2012, Shomura et al. 2008, Song et al. 2007, 2015, Wang et al. 2012, 2015a, Wang et al. 2015b, Weng et al. 2008, Zhang et al. 2012). Other genes regulating grain size were cloned from short grain rice mutants, *d1*, *brd1*, *d2*, *d11*, *d61*, *srs1*, *srs3*, *Srs5*, *Sg1*, and *tud1* (Abe et al. 2010, Ashikari et al. 1999, Fujisawa et al. 1999, Hong et al. 2002, 2003, Hu et al. 2013, Kitagawa et al. 2010, Nakagawa et al. 2012, Segami et al. 2012, Tanabe et al. 2005, Yamamuro et al. 2000), and recently, *GLW7* was identified by a genome-wide association study (Si et al. 2016). These genes are classified into two groups, those controlling cell elongation (*GL7/GW7*, *D2*, *D11*, *D61*, *BRD1*, *SRS1*, *SRS3*, *SRS5*, and *GLW7*) and those controlling cell division (*GS3*, *GW2*, *qSW5/GW5*, *GS5*, *GW8*, *GL3.1*, *TGW6*, *D1*, *SG1*, and *TUD1*). Among these genes, GW8 protein was reported to directly interact with the promoter of *GW7*, negatively regulating *GW7* expression (Wang et al. 2015a). The GLW7 protein was similarly reported to directly interact with the promoter of SRS5 and positively regulate the SRS5 expression (Si et al. 2016). However, Si et al. (2016) did not present genetic evidence that correlates the higher expression of *SRS5* with increased grain length that they observed. Previously, we reported that short grain and dwarf phenotypes of the *Srs5* (encoding alpha-tubulin) mutant and brassinosteroid (BR)-related mutants were controlled by independent signal transduction pathways (Segami et al. 2012). Semi-dwarfism in BR-related mutants renders them resistant to lodging and their erect leaves improve their photosynthetic ability. Thus, in barley (*Hordeum vulgare*), a change in one amino acid due to a single nucleotide substitution in *HvBRI1*, the homologous gene of *D61*, creates a mutant with low sensitivity to BR and semi-dwarf stature and erect leaves, which is widely used as a high yielding variety (Chono et al. 2003). In rice, a mild mutation in the BR biosynthetic gene *OsDWARF4* that does not affect grain size was reported to increase grain yield under conditions of high density and high fertilizer concentrations but not under normal conditions (Sakamoto et al. 2006). Because of the pleiotropic effect of genes on reduced grain size, BR-related mutants have been used only rarely in rice breeding programs.
In the present study, we produced a plant overexpressing SRS5 to test whether higher expression of SRS5 increases grain length and grain yield potential. Further, since SRS5 promotes grain length via a pathway independent from BR-related genes, we hypothesized that overexpression of SRS5 in the BR-related mutant background will improve grain length, while preserving useful dwarfism and erect leaf phenotypes.

Materials and Methods

Plant materials and growth conditions

A japonica rice cultivar, Taichung 65, was used as wild-type (WT) plant. The BR biosynthesis mutant *d2-2* and BR insensitive mutant *d61-2* were obtained by MNU treatment of Taichung 65. All transgenic plants were grown in a closed greenhouse under natural sunlight. Room temperature was maintained at 30°C from 09:00 to 18:00 and 25°C from 18:00 to 09:00.

Production of transgenic plants

Total RNA was extracted from ripening spikelets of WT plants and used to synthesize cDNA. The coding sequence of SRS5 was amplified by PCR using this cDNA as a template and the primers cacc + SRS51stATG-F: 5′-CACC ATGAGGGAGTGCATCTCGAT-3′ and SRS5-3UTR-R: 5′-CGCCAACTAAAGGTCACAAT-3′. The amplicon was subcloned into an entry vector pENTR/D-TOPO (Invitrogen, Carlsbad, CA, USA). The DNA fragment containing the full-length SRS5 cDNA in pENTER/D-TOPO was inserted into a binary vector p2KG by the gateway method described in the manual of the pENTR/D-TOPO cloning kit (Invitrogen, USA). The SRS5 cDNA, controlled by the ubiquitin promoter in p2KG, was introduced into the *Agrobacterium tumefaciens* strain EHA105 (Hood *et al.* 1993) by electroporation and transformed into the WT, *d2-2*, and *d61-2* as reported previously (Ashikari *et al.* 2005). The WT, *d2-2*, and *d61-2* containing empty vectors were used as controls. Over 30 plants were obtained from each regenerated plant. Of those, over 10 plants carrying the transgene were selected by PCR using hygromycin resistance gene (*HPT*)-specific primers, HPT-L: 5′-CGTATATGCTCCGCATTGGT-3′ and HPT-R: 5′-ATTTGTGTACGCCCGACAGT-3′.

RT-PCR analysis

Total RNA was extracted from ripening spikelets using an RNeasy Mini Kit (QIAGEN, Hilden, Germany), and cDNAs were synthesized from the total RNA using a SuperScript III system (Invitrogen, USA). To quantify the SRS5 mRNA, real-time reverse transcription PCR (RT-PCR) was conducted using SYBR Premix Ex Taq II (TAKARA Bio, Inc., Tokyo, Japan). The primer set RT-alpha-tub-F: 5′-ATGAGGGAGTGCATCTCGAT-3′ and RT-alpha-tub-R: 5′-CGCCAACTAAAGGTCACAAT-3′ was used to quantify the

Fig. 1. Grain phenotypes of the wildtype (WT) overexpressing SRS5. Grain morphology of the WT transformed with empty vector (Empty) (A) and the WT overexpressing SRS5 (SRS5oe) (B). Relative expression of SRS5 was calculated using *OsUbi1* as internal control (C). Relative amount of SRS5 was normalized by Empty. Comparison of the grain length (D), grain width (E), grain thickness (F), and 1000-grain weight (G) of Empty and SRS5oe. The analysis was based on 10 Empty and 13 SRS5oe. Error bars indicate standard deviation. The results of the Student’s *t*-test are indicated above the graph bars. **: p < 0.01, n.s.: not significant (p > 0.05).
Overexpression of SRS5 improves grain size of rice BR mutants

Overexpression of SRS5 improves grain size of rice BR mutants BS

395

Using HPT-specific primers (data not shown). All of the selected plants overexpressing SRS5 (SRS5oe) produced longer grains than those of the control plants that were transformed with empty vectors (Fig. 1A, 1B). Real time quantitative RT-PCR analysis detected a twofold higher expression of SRS5 in SRS5oe plants (Fig. 1C). Overexpression of SRS5 affected grain length, but not grain width and grain thickness (Fig. 1D–1F). The 1000-grain weight of SRS5oe was also higher than that of the WT (Fig. 1G). These results support the presumption stated by Si et al. (2016) that the higher expression of SRS5 promotes longitudinal grain elongation.

Overexpression of SRS5 does not affect useful traits of BR-related mutants

To test whether overexpression of SRS5 in the BR-related mutant background can improve grain size while using HPT-specific primers (data not shown). All of the selected plants overexpressing SRS5 (SRS5oe) produced longer grains than those of the control plants that were transformed with empty vectors (Fig. 1A, 1B). Real time quantitative RT-PCR analysis detected a twofold higher expression of SRS5 in SRS5oe plants (Fig. 1C). Overexpression of SRS5 affected grain length, but not grain width and grain thickness (Fig. 1D–1F). The 1000-grain weight of SRS5oe was also higher than that of the WT (Fig. 1G). These results support the presumption stated by Si et al. (2016) that the higher expression of SRS5 promotes longitudinal grain elongation.

Overexpression of SRS5 leads to longer grain in rice

To confirm whether higher expression of SRS5 increases grain length and grain yield potential, we produced plants overexpressing SRS5 controlled by the OsUbi1 promoter and selected at least 10 transgene-inserted plants by PCR using HPT-specific primers (data not shown). All of the selected plants overexpressing SRS5 (SRS5oe) produced longer grains than those of the control plants that were transformed with empty vectors (Fig. 1A, 1B). Real time quantitative RT-PCR analysis detected a twofold higher expression of SRS5 in SRS5oe plants (Fig. 1C). Overexpression of SRS5 affected grain length, but not grain width and grain thickness (Fig. 1D–1F). The 1000-grain weight of SRS5oe was also higher than that of the WT (Fig. 1G). These results support the presumption stated by Si et al. (2016) that the higher expression of SRS5 promotes longitudinal grain elongation.

Results

Overexpression of SRS5 leads to longer grain in rice

To confirm whether higher expression of SRS5 increases grain length and grain yield potential, we produced plants overexpressing SRS5 controlled by the OsUbi1 promoter and selected at least 10 transgene-inserted plants by PCR using HPT-specific primers (data not shown). All of the selected plants overexpressing SRS5 (SRS5oe) produced longer grains than those of the control plants that were transformed with empty vectors (Fig. 1A, 1B). Real time quantitative RT-PCR analysis detected a twofold higher expression of SRS5 in SRS5oe plants (Fig. 1C). Overexpression of SRS5 affected grain length, but not grain width and grain thickness (Fig. 1D–1F). The 1000-grain weight of SRS5oe was also higher than that of the WT (Fig. 1G). These results support the presumption stated by Si et al. (2016) that the higher expression of SRS5 promotes longitudinal grain elongation.

Overexpression of SRS5 does not affect useful traits of BR-related mutants

To test whether overexpression of SRS5 in the BR-related mutant background can improve grain size while

Fig. 2. Gross morphology and leaf angle of SRS5oe in brassinosteroid (BR)-related mutant background. Gross morphologies of the wildtype (WT) (A), d2-2 (C), and d61-2 (E) background transformed with empty vector used as control (Empty). Gross morphologies of SRS5 overexpression (SRS5oe) in WT (B), d2-2 (D), and d61-2 (F) background. Leaf angle of the flag leaf at ripening stage of Empty in WT (G), d2-2 (I), and d61-2 (K) background. Leaf angle of the flag leaf at ripening stage of SRS5oe in WT (H), d2-2 (J), and d61-2 (L) background. Relative expression of SRS5 was calculated using OsUbi1 as internal control (M). Relative amount of SRS5 was normalized by Empty. Comparison of plant height (N) and leaf angle (O). The analyses were based on 10 Empty and 13 SRS5oe in the WT background, 10 Empty and 13 SRS5oe in the d2-2 background, and 10 Empty and 11 SRS5oe in the d61-2 background. Error bars indicate standard deviation. The results of the Student’s t-test are indicated above the graph bars. **: p < 0.01, *: 0.01 < p < 0.05, n. s.: not significant (p > 0.05).
Discussion

In this study, we demonstrated that overexpression of SRS5 in the WT as well as in the BR-related mutant background increases grain length and yield potential. These results are consistent with the hypothesis that higher expression of SRS5 has a potential to promote grain size (Si et al. 2016) and that SRS5 regulates grain length via cell elongation independently from the BR signaling transduction pathway (Segami et al. 2012). Therefore, when novel genes regulating grain size are identified, it is important to analyze genetic interactions between novel and known genes. If the genes are completely epistatic and one masks the effect of the other, their interaction would contribute to our understanding of the molecular mechanisms of grain size regulation. If the genes are not epistatic, or they are partially epistatic, we can utilize these genes simultaneously in the gene-pyramiding approach, as we demonstrated in this study. Although a number of genes regulating grain size are identified, their genetic interactions are rarely demonstrated. Therefore, it is important to clarify genetic interactions of known genes regulating grain size for cloning of novel genes in future studies.
Overexpression of SRS5 improves grain size of rice BR mutants

Acknowledgments

We thank Dr. H. Kitano for providing seeds of mutant plants and Dr. K. Shimamoto for providing the p2KG vector. This study was supported by the JSPS KAKENHI, Grant Numbers 26712001 and 26450008.

Literature Cited

Abe, Y., K. Mieda, T. Ando, I. Kono, M. Yano, H. Kitano and Y. Iwasaki (2010) The SMALL AND ROUND SEED5 (SRS5/DEP2) gene is involved in the regulation of seed size in rice. Genes Genet. Syst. 85: 327–339.

Ashikari, M., J. Wu, M. Yano, T. Sasaki and A. Yoshimura (1999) Rice gibberellic-insensitive dwarf mutant gene Dwarf 1 encodes the alpha-subunit of GTP-binding protein. Proc. Natl. Acad. Sci. USA 96: 10284–10289.

Ashikari, M., H. Sakakibara, S. Lin, T. Yamamoto, T. Takashi, A. Nishimura, E.R. Angeles, Q. Qian, H. Kitano and M. Matsukawa (2005) Cytokinin oxidase regulates grain production. Science 309: 741–745.

Chono, M., I. Honda, H. Zeniya, K. Yoneyama, D. Saisho, K. Takeda, S. Takatsuto, T. Yoshino and Y. Watanabe (2003) A semidwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor. Plant Physiol. 133: 1209–1219.

Fan, C., X. Ying, H. Mao, T. Lu, B. Han, C. Xu, X. Li and Q. Zhang (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112: 1164–1171.

Fujisawa, Y., T. Kato, S. Ohki, A. Ishikawa, H. Kitano, T. Sasaki, T. Aasahi and Y. Iwasaki (1999) Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice. Proc. Natl. Acad. Sci. USA 96: 7575–7580.

Hong, Z., M. Ueguchi-Tanaka, S. Shimizu-Sato, Y. Inukai, S. Fujioka, Y. Shimada, S. Takatsuto, M. Agetsuma, S. Yoshida, Y. Watanabe et al. (2002) Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J. 32: 495–508.

Hong, Z., M. Ueguchi-Tanaka, K. Umemura, S. Uozu, S. Fujioka, S. Takatsuto, S. Yoshida, M. Ashikari, H. Kitano and M. Matsukawa (2003) A rice brassinosteroid-deficient mutant, ebisu dwarf (d2) is caused by a loss of function of a new member of cytochrome P450. Plant Cell 15: 2900–2910.

Hood, E.E., S.B. Gelvin, L.S. Melchers and A. Hoekema (1993) New helper plasmids for gene transfer to plants. Transgenic Res. 2: 208–218.

Hu, X., Q. Qian, T. Xu, Y. Zhang, G. Dong, T. Gao, Q. Xie and Y. Xue (2013) The U-Box E3 ubiquitin ligase TUD1 functions with a heterotrimeric G α subunit to regulate brassinosteroid-mediated growth in rice. PLoS Genet. 9: e1003591.

Ishimaru, K., N. Hirotsu, Y. Madokra, N. Murakami, N. Hara, H. Onodera, T. Kashiwagi, K. Ujiie, B. Shimizu, A. Onishi et al. (2013) Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat. Genet. 45: 707–711.

Kitagawa, K., S. Kurinami, K. Oki, Y. Abe, T. Ando, I. Kono, M. Yano, H. Kitano and Y. Iwasaki (2010) A novel kinesin 13 protein regulating rice seed length. Plant Cell Physiol. 51: 1315–1329.

Li, Y., C. Fan, Y. Xing, Y. Jiang, L. Luo, L. Sun, D. Shao, C. Xu, X. Li, J. Xiao et al. (2011) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat. Genet. 43: 1266–1269.

Qi, P., Y. Lin, X. Song, J. Shen, W. Huang, J. Shan, M. Zhu, L. Jiang, J. Gao and H. Lin (2012) The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Res. 22: 1666–1680.

Sakamoto, T., Y. Morinaka, T. Ohnishi, H. Sunohara, S. Fujioka, M. Ueguchi-Tanaka, M. Mizutani, K. Sakata, S. Takatsuto, S. Yoshida et al. (2006) Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat. Biotechnol. 24: 105–109.

Segami, S., I. Kono, T. Ando, M. Yano, H. Kitano, K. Miura and Y. Iwasaki (2012) Small and round seed 5 gene encodes alpha-tubulin regulating seed cell elongation in rice. Rice (N Y) 5: 4.

Shomura, A., T. Izawa, K. Ebana, T. Ebihara, H. Kanegae, S. Konishi and M. Yano (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat. Genet. 40: 1023–1028.

Si, L., J. Chen, X. Huang, H. Gong, J. Luo, Q. Hou, T. Zhou, T. Lu, J. Zhu, Y. Shangguan et al. (2016) OsSPL13 controls grain size in cultivated rice. Nat. Genet. 48: 447–456.

Song, X.J., W. Huang, M. Shi, M. Zhu and H. Lin (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat. Genet. 39: 623–630.

Song, X.J., T. Kuroha, M. Ayanosu, T. Furuta, K. Nagai, N. Komeda, S. Segami, K. Miura, D. Ogawa, T. Kamura et al. (2015) Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice. Proc. Natl. Acad. Sci. USA 112: 76–81.

Tanabe, S., M. Ashikari, S. Fujioka, S. Takatsuto, S. Yoshida, M. Yano, A. Yoshimura, H. Kitano, M. Matsukawa, Y. Fujisawa et al. (2005) A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell 17: 776–790.

Wang, S., K. Wu, Q. Yuan, X. Liu, Z. Liu, X. Lin, R. Zeng, H. Zhu, G. Dong, Q. Qian et al. (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat. Genet. 44: 950–954.

Wang, S., S. Li, Q. Liu, K. Wu, J. Zhang, S. Wang, Y. Wang, X. Chen, Y. Zhang, C. Gao et al. (2015a) OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat. Genet. 47: 949–954.

Wang, Y., G. Xiong, J. Hu, L. Jiang, H. Yu, J. Xu, Y. Fang, L. Zeng, E. Xu, J. Xu et al. (2015b) Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat. Genet. 47: 944–948.

Weng, J., S. Gu, X. Wan, H. Gao, T. Guo, N. Su, C. Lei, X. Zhang, Z. Cheng, X. Guo et al. (2008) Isolation and initial characterization of GW5, a major QTL associated with rice grain weight and width. Cell Res. 18: 1199–1209.

Yamamuro, C., Y. Ibara, X. Wu, T. Noguchi, S. Fujioka, S. Takatsuto, M. Ashikari, H. Kitano and M. Matsukawa (2000) Loss of function of a rice brassinostroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12: 1591–1606.

Zhang, X., J. Wang, J. Huang, H. Lan, C. Wang, C. Yin, Y. Wu, H. Tang, Q. Qian, J. Li et al. (2012) Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc. Natl. Acad. Sci. USA 109: 21534–21539.