Strain engineering a persistent spin helix with infinite spin lifetime

Xue-Zeng Lu and James M. Rondinelli*

Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA

Email: jrondinelli@northwestern.edu

Abstract

Persistent spin textures (PSTs) in solid-state materials arise from a unidirectional spin-orbit field in momentum space and offer a route to deliver long carrier spin lifetimes sought for future quantum microelectronic devices. Nonetheless, few three-dimensional materials are known to host PSTs owing to crystal symmetry and chemical requirements. There are even fewer examples demonstrated experimentally. Here we report that high-quality persistent spin textures can be obtained in the polar point groups containing an odd number of mirror operations. We use representation theory analysis and electronic structure calculations to formulate general discovery principles to identify PSTs hidden in known complex ternary layered and perovskite structures with large electric polarizations. We then show some of these materials exhibit PSTs without requiring any special crystalline symmetries. This finding removes the limitation imposed by mirror-symmetry protected PSTs that has limited compound discovery. Our general design approach enables the pursuit of persistent spin helices in materials exhibiting the C_{3v} crystal class adopted by many quantum materials exhibiting large Rashba coefficients.
Introduction

A persistent spin texture (PST) in momentum space enables an infinite spin lifetime for a spin-wave mode called a persistent spin helix (PSH) [1–5], which makes it a useful spin texture to protect against spin-decoherence in spin field-effect transistors [6] and spin Hall effect applications [7]. In the PSH state, spin scattering is essentially quenched because the effective field governing the spin precession of the itinerant electrons is momentum independent. This feature leads to SU(2) symmetry of the spin components for the PSH, allowing precession in the same direction after a scattering event and potentially infinite spin lifetimes, because the SU(2) symmetry is robust to spin-independent disorder, including Coulomb and other many-body interactions [1].

In contrast, any effective momentum-dependent field removes SU(2) symmetry, such as Dresselhaus and Rashba interactions, permitting scattering effects to always reduce the spin lifetime through the Dyakonov-Perel (DP) spin relaxation mechanism at low temperatures [6]. Although the PST is a highly sought spin texture for the aforementioned reasons, few materials with PSTs in the bulk are known [8]. GaAs/AlGaAs [2,9] and InGaAs/InAlAs [10,11] heterostructures can exhibit PSTs by tuning the width of the quantum wells and carrier concentration; however, these artificial structures require atomic precision during growth and carefully controlled carrier densities. The PST mechanism in these main group semiconductor heterostructures arises from a balance between the strength of the Dresselhaus [12] and Rashba [13] spin splitting of the electronic bands, which are both correlated to the spin-orbital interaction (SOI) and require broken inversion symmetry [1,5,9–11], to impose an effective momentum-dependent magnetic field, $B(k) \equiv B(k) \cdot S$, on the spins.
Recently, another mechanism for PSTs was proposed [14–29], which although remains to be confirmed experimentally [30], permits bulk materials to exhibit the spin texture without requiring the balancing of Dresselhaus and Rashba interactions through interface design. This symmetry-protected PST (SP-PST) was predicted to occur when a nonsymmorphic symmetry operation (e.g., glide operation composed of a mirror plane and translation) commutes with the effective SOI field, $B(k)$, in a material without inversion symmetry [16]; however, as we demonstrated recently [31], this is a sufficient but not necessary condition. These minimal ingredients enable a unidirectional spin orientation at the band-edges in the electronic structure (spin-momentum locking), which in the absence of SOI would exist as a Kramers’s degeneracy. We also demonstrated that any noncentrosymmetric material with high a symmetry k point exhibiting C_{2v} little group symmetry with an even number of mirror operations intersecting at that position in the Brillouin zone can be a potential PST material [31]. This understanding can guide identification of crystals exhibiting PSTs in other achiral polar groups. This finding should allow us to surpass the apparent limitation of PSTs appearing as recent serendipitous discoveries in monoclinic and orthorhombic crystal systems [20]. Indeed, high-quality PST materials in the monoclinic crystal system are still missing, and surprisingly, there are no reported PST materials from among the ferroelectric trigonal crystal system. Therefore, apart from the previous significant efforts in exploring PSTs in space groups with an even number of mirror symmetries, finding more materials/crystal classes with an odd number of mirror symmetries (i.e., monoclinic and trigonal crystal systems) showing PST would further enable experimental demonstration.

Here we use $k \cdot p$ models and first-principles calculations to show that PSTs can exist in polar structures of the trigonal crystal system. The PST is confined either along k paths with (symmetry protection) or without (symmetry unconstrained) mirror elements. Our main finding
from our $\mathbf{k} \cdot \mathbf{p}$ model is that PSTs occur at the conduction band edge, if the conduction band minimum appears near the midway point of the k-path across the high symmetry k point with C_s symmetry (with 1 mirror operation, m) in the trigonal noncentrosymmetric crystal classes. We predict Tl$_3$SbS$_3$ and LiNbO$_3$ satisfy this requirement and exhibit PSTs. Furthermore, thin film versions of these two compounds subjected to coherent epitaxial constraints undergo a symmetry reduction from C_{3v} crystal class with 3 mirror operations to C_s. The PSTs persist in thin films of these materials and their quality is enhanced, which we quantify using multiple criteria. The monoclinic Cm structure of Tl$_3$SbS$_3$ thin films supports a nearly perfect PST without any spin deviation that also simultaneously spans a large area of the Brillouin zone. These features enable access to the PST via through chemical doping. Our study provides a promising route to find the persistent spin helix in 3D polar phases with long spin lifetimes.

Computational Methods

Our total energy calculations were based on density functional theory (DFT) within the generalized gradient approximation (GGA) utilizing the revised Perdew-Becke-Erzenhof functional for solids (PBEsol) [32] implemented in the Vienna Ab Initio Simulation Package (VASP) [33–35]. We used a 550-eV plane wave cutoff energy for all calculations and the projector augmented wave (PAW) method [36] with Li 1s and 2s electrons, Rb 4s, 4p and 5s electrons, Tl 5d, 6s and 6p electrons, Nb 4p, 4d and 5s electrons, Ta 5p, 5d and 6s electrons, Sb 5s and 5p electrons, O 2s and 2p electrons, and S 3s and 3p electrons treated as valence states. Gaussian smearing (0.10 eV width) is used for the Brillouin-zone integrations. The k-point sampling was tested and converged for the different cells. The convergence thresholds for electronic relaxation and structure relaxation are 10^{-7} eV and -0.005 eV/Å, respectively. We tested the effects of SOC
in the relaxation and found only tiny changes to the atomic structure; therefore, SOC effects were not included in structure relaxations.

Results and discussion

Identification of PST in the trigonal system

We consider trigonal systems, because they host common polar phases [23,37,38], such as in multiferroic BiFeO₃ [39] and polar chalcogenides Ag₃AsS₃ [40] with R3c symmetries. Furthermore, a recent report showed a rational way to discover materials with strong Rashba coefficients, where commonly identified materials with large Rashba coefficients were found to exhibit space groups in trigonal and hexagonal crystal systems and corresponding C₃ᵥ or C₆ᵥ point groups (i.e., 20 out of 34 space groups) [41]. This contrasts with 6 out of 34 space groups found in monoclinic and orthorhombic crystal systems having C₂ᵥ or Cᵥ point groups. Therefore, it is important to formulate a strategy to search and sort which compounds in the trigonal crystal system will exhibit PSTs to enable their discovery.

The symmetry operations of the R3c phase with C₃ᵥ point group in Supplementary Table 1 allow us to deduce that there may be three unidirectional spin directions for the PST, which are along the [110], [100] and [010] directions of the hexagonal cell. The corresponding k-paths for the [110], [100] and [010] directions are \{[k,−k,kₓ],[1/2,1/2,kₓ], [−1/2,−1/2, kₓ]\}, \{[k,−2k,kₓ],[μ,0,kₓ]\}, and \{[2k,−k,kₓ],[0,ν,kₓ]\}, respectively, where μ and ν can take values of ±1/2. If we further constrain our investigation to the \(kₓ − kᵧ\) plane, which will help keep the SU(2) symmetry and long spin lifetime under minimization of the commutator relations in Ref. [31], we find that the k-paths for the [110], [100] and [010] unidirectional spin directions are \([k,−k,0], [k,−2k,0]\) and \([2k,−k,0]\), respectively. Next, we assess whether symmetry requires
the electronic bands to remain degenerate along these k paths. For the $[k, -k, 0]$, $[k, -2k, 0]$, and $[2k, -k, 0]$ paths, the little-group symmetries of k are m_{110}^r, m_{100}^r and m_{010}^r, respectively. Because there is no $\mathcal{T}G$ in the little group leading to $(\mathcal{T}G)^2 \psi = -\psi$, there is no space-group symmetry protecting the Kramers degeneracy of the band edges by SOC effects for the three paths; therefore, the bands no longer touch along band trajectories in the $k_x - k_y$ plane.

Next, we derive $k \cdot p$ models for each C_{3v} and C_s symmetries, because a k-path with the mirror symmetry in the trigonal system, such as one of $[k, -k, 0]$, $[k, -2k, 0]$, and $[2k, -k, 0]$, will connect the C_{3v} and C_s k points that we use to represent, for example, the zone center, Γ, and the zone boundary, Y, respectively. The detailed derivation of the $k \cdot p$ models are provided in the Supplementary Note 1 and Supplementary Tables 2-10. The $k \cdot p$ model with C_{3v} symmetry, spin-orbital coupling terms up to the third order in k, and constrained in the $k_x - k_y$ plane is:

$$
\mathcal{H}_\Gamma = \alpha_1 k_x \sigma_y + \alpha_2 k_y \sigma_x + \alpha_3 k_x \sigma_x + \alpha_4 k_y \sigma_y + \beta_1 (k_x^3 - 3k_xk_y^2)\sigma_z + \beta_2 (k_x^3 + k_xk_y^2)\sigma_y + \beta_3 (k_y^3 + k_yk_x^2)\sigma_x + \beta_4 (k_x^3 + k_xk_y^2)\sigma_x + \beta_5 (k_y^3 + k_yk_x^2)\sigma_y
$$

(1)

The same constraints applied to C_s symmetry give:

$$
\mathcal{H}_Y = \gamma_1 k_y \sigma_x + k_x (\gamma_2 \sigma_y + \gamma_3 \sigma_z)
$$

(2)

where α, β and γ are the spin-orbital coupling coefficients and using a Cartesian coordinate system. The matrix form for the wavefunctions including the spins for \mathcal{H}_Γ and \mathcal{H}_Y are:

$$
\psi_\Gamma = \begin{pmatrix}
\bar{E}_2 \\
\bar{E}_1 \\
\bar{E}_1 \\
\bar{E}_2
\end{pmatrix}
$$

and

$$
\psi_Y = \begin{pmatrix}
\bar{E}_2 \\
\bar{E}_1
\end{pmatrix}
$$

(3)
where \bar{E}^2, \bar{E}^1, and \bar{E}_1 in ψ_Γ are irreducible representations (irreps) of the double point group $3m$ (Supplementary Note 1). \bar{E}_1^1 and \bar{E}_1^2 are the two components of the two-dimensional irrep \bar{E}_1. \bar{E}^2 and \bar{E}^1 in ψ_Y are irreps of the double point group m. Here, we only consider the symmetries of the wavefunctions and not their exact forms. ψ_Γ transforms as a $D^{3/2}$ representation and (\bar{E}^2/\bar{E}^1) transform as a $D^{1/2}$ representation. With the Clebsch–Gordan (C-G) coefficients, we can have the following for ψ_Γ:

$$\bar{E}^2 = \eta_1^1 A_1 \bar{E}^2 + \eta_2^1 E^1 \bar{E}^2_1 + \eta_3^1 E^2 \bar{E}_1^1$$

$$\bar{E}^1 = -\eta_1^1 A_1 \bar{E}^1 + \eta_2^1 E^1 \bar{E}^2_1 + \eta_3^1 E^2 \bar{E}_1^1$$

$$\bar{E}_1^1 = \eta_2^1 E^2 \bar{E}^1_1$$

$$\bar{E}_1^2 = \eta_2^2 E^1 \bar{E}^1_1$$

(4)

where A_1 and E are the irreps of the double point group $3m$. \bar{E}^1 and \bar{E}^2 are the two components of the two-dimensional irrep E. Similarly, we obtain for ψ_Y:

$$\bar{E}^2 = \eta_1^3 A_1 \bar{E}^1 + \eta_2^3 A_2 \bar{E}^2_1$$

$$\bar{E}^1 = -\eta_1^3 A_1 \bar{E}^2 + \eta_2^3 A_2 \bar{E}_1^1$$

(5)

where A_1 and A_2 are the irreps of the double point group m and η is a constant.

The above results can be applied to any space group with C_3v point symmetry. Through a detailed analysis of the polar structures of the trigonal system, we notice that there are two different trigonal polar space groups with the symmetries, that is:

Set 1: P3m1, P31m, R3m
Set 2: \(P3c1, P31c, R3c\)

In Set 1, there are no glide (translation plus mirror) operations in the primitive cell. In Set 2, there are nonsymmorphic (glide) symmetries. After we obtain the symmetries of the wavefunctions about the \(\Gamma\) point, it can be seen that in both wavefunctions represented by irrep \(\overline{E}^2\) and \(\overline{E}^1\), the \(d\) orbitals can be occupied by \(\frac{1}{2}\)-spin up (i.e., \(\overline{E}^2\)) and \(\frac{1}{2}\)-spin down (i.e., \(\overline{E}^1\)) at the same time. Furthermore, there is no symmetry constraint on making the spin-dependent \(d\) orbitals occupancies of \(E^1\) (occupied by \(\frac{1}{2}\)-spin up) equal to \(E^2\) (occupied by \(\frac{1}{2}\)-spin down). Therefore, if \(k_y\sigma_y\) exists, such as along the \(k_y\) path with mirror symmetry, then \(\sigma_y\) cannot be cancelled by any of the \(d\) orbitals of the same atom. Moreover, it is known that the spin in the \(k_y\) path will be constrained to be along the \(k_x\) direction by the mirror operation. So, \(\sigma_y\) is either cancelled between two different atoms or there is no orbital having spin along \(\sigma_y\). There are two atoms that can be connected by the mirror symmetry in \(R3c\), therefore, if no \(\sigma_y\) occurs along the \(k_y\) path, there will remain orbitals having spins along \(\sigma_y\) at each atom leading to a reduction of spin magnitude along \(\sigma_x\) (i.e., the PST direction). In \(R3m\), the mirror symmetry will transform one atom to itself, which will result in a situation in which there is no orbital having spin along \(\sigma_y\). Thus, if there are PSTs in both \(R3c\) and \(R3m\), the quality of the PST as determined by the symmorphic mirror symmetry in \(R3m\) should be better than that in \(R3c\). Regarding the \(Y\) point, there is no \(\sigma_y\) allowed in the \(k_y\) path as indicated in Eq. (2), therefore, there is no significant reduction of the spin magnitude along \(\sigma_x\) in \(R3c\).

Next, we derive whether PSTs exists in the \(R3c\) and \(R3m\) space groups. From Eqs. (1) and (2), we can see the spin direction will be uniform, that is, along the \(\sigma_x\) direction in the \(k_y\) path, regardless of the high-symmetry point considered. This is the same result as that in \(C_{2v}\), because of the mirror symmetry in the \(k_y\) path. The main difference between \(C_{3v}\) and \(C_{2v}\) is that the spin
deviation part led by k_x, which is present in the Hamiltonian having C_{2v} symmetry and contributes to the term $k_x \sigma_y$ about both Γ and Y, adds additional terms of the form $\beta_1 (k_x^3 - 3k_x k_y^2) \sigma_z + \beta_2 (k_x^3 + k_x k_y^2) \sigma_y + \beta_5 k_y k_x^2 \sigma_y$ around Γ and $\gamma_3 k_x \sigma_z$ around Y in C_{3v}. These terms are responsible for the spin deviation. From Eqs. (1) and (2), the spin-deviation angles (θ_y, θ_z) about Γ and Y with respect to σ_x are

$$(\arctan \left(\frac{k_x (a_1 + \beta_2 k_y^2)}{k_y (a_2 + \beta_3 k_y^2) + k_x (a_3 + \beta_4 k_y^2)} \right), \arctan \left(\frac{-3 \beta_1 k_x k_y^2}{k_y (a_2 + \beta_3 k_y^2) + k_x (a_3 + \beta_4 k_y^2)} \right))$$

and

$$(\arctan \left(\frac{\gamma_2 k_x}{\gamma_1 k_y} \right), \arctan \left(\frac{\gamma_3 k_x}{\gamma_1 k_y} \right))$$

respectively. Then, a small deviation is expected to occur somewhere along the k_y path away from both the Γ and Y points, i.e., around the midway point of the k_y path, because large k_y minimizes the spin-deviation angles (θ_y, θ_z). This conclusion is also consistent with the results derived by solving Eq. (2) (see Methods). Last, if the SOC parameters in the directions of σ_y and σ_z are also small, the angles (θ_y, θ_z) would further decrease. If the third-order terms are ignored in Eq. (1), we can obtain spin-deviation angles that reduce to

$$(\arctan \left(\frac{\alpha_1 k_x}{\alpha_2 k_y + \alpha_3 k_x} \right), 0)$$

which is similar to the spin deviation present in the C_{2v} Hamiltonian. The PST phenomena were reported previously for materials with C_{2v} and C_s point groups. Here, the k_y path having the mirror symmetry in the C_{3v} point group resembles the points having C_{2v} symmetry and point having C_s symmetry. This simplification can be more effective when the k point is around the midway point of the k_y path, where the spin deviation angles (θ_y, θ_z) are also minimal.

Validation of the $k \cdot p$ model

We now apply these guidelines to materials with C_{3v} point group symmetry and compute the spin textures using density functional theory (DFT) calculations. We first choose RbNbO$_3$ with $R3m$ symmetry and LiTaO$_3$ with $R3c$ symmetry, whose primitive structures in real and reciprocal
space shown in Figures 1a, 1b, 2a and 2b. Both compounds are insulators and have conduction band minimum (CBM) at Γ (Figures 1c and 2c). The conduction band edges of both compounds indicate the PSTs occur along the k_x direction (Figures 1d and 2d), because there is a mirror symmetry in the k_y path. The length of the arrows for the spin textures in Figures 1d and 2d indicate that the spin amplitude along the k_x direction in RbNbO$_3$ is larger than that in LiTaO$_3$. This result is consistent with our $k \cdot p$ model, which finds that the spins along the k_y direction on the two Ta atoms with opposite directions are allowed and reduce the spins magnitude along the k_x direction (i.e., PST direction), when closer to the Γ point. Another conclusion from our $k \cdot p$ model analysis is that the PST can also occur at the midway point of the k_y path from Γ to Y as shown in Figures 1d and 2d. The PST areas with deviation angles ($5^\circ, 5^\circ$) for the two materials are enclosed by the orange lines. If we want to access the PST and its associated helix experimentally, one additional requirement must be satisfied. The PST region should be located around the CBM to enable its access through n-type doping. Although we find the PST in both RbNbO$_3$ and LiTaO$_3$ materials, this requirement is not satisfied. The PSTs will be difficult to access because the PST region is at a much higher energy than the CBM.

Identification of PSTs in Tl$_3$SbS$_3$ and LiNbO$_3$

We now apply our group theory analysis and $k \cdot p$ model to Tl$_3$SbS$_3$ with a polar $R3m$ ground-state structure [42] (Figures 3a and 3b). Our computed electric polarization is approximately $23 \, \mu C \, cm^{-2}$. The band structure of Tl$_3$SbS$_3$ reveals it has a DFT indirect band gap of 0.88 eV in bulk with the CBM along the A' − Z path (Figure 3c). We find A' − Z: $(1/6,1/6,1/6) \rightarrow (1/2,1/2,-1/2)$ at a $k_z = \frac{1}{2}$ (fractional coordinate) plane (Figure 3c), which exhibits a mirror symmetry perpendicular to x, can be transformed to a $[k,-k,1/2]$ path in a hexagonal system. Following the group analysis above, the unidirectional spin direction should then be along the x
direction since the mirror symmetry is perpendicular to x. Indeed, Figure 3d shows there is a PST with a unidirectional spin direction along the x direction for bands dispersing along the k_y direction. Since the PST region is at a $k_z = \frac{1}{2}$ plane, the spin deviation is unaffected by k_z. Because space group $R3m$ has 3-fold rotational symmetry, we expect three directions in the Brillouin zone exhibit a PST, which are symmetry-related to each other, and provide persistent spin helices (PSHs).

To determine the spin lifetime for the PSHs in Tl$_3$SbS$_3$, we adopt a Hamiltonian with C_s symmetry, because the PST region is located around the middle of the k_y path with a mirror operation. The SOC strength in the PST region along k_y are $\gamma_1 = 0.69$ eV Å and those along k_x are $\gamma_2 = 0.06$ eV Å and $\gamma_3 = 0.71$ eV Å. Figure 3d shows that the PST persists and spans an area from the CBM to 45 meV above it. Simultaneously, the spin deviation away from the x direction is also less than $(5^\circ, 5^\circ)$. With the SOC parameters and a Fermi wavelength $k_F = 0.025$ Å$^{-1}$, we compute the spin lifetime $\tau_s \approx 1$ ps for the PSH mode and the characteristic spin lifetime is $\tau_{PSH} = 8.8$, where

$$T_{PSH} = \frac{\pi \hbar}{\gamma_1 k_F}.$$

The spin lifetime in Tl$_3$SbS$_3$ is much shorter compared to canonical materials such as GaAs/AlGaAs (≈ 200) [43].

To further enhance the quality of the PST in Tl$_3$SbS$_3$, we need to eliminate the influence of the SOC terms along k_x. Often when investigating Rashba, Dresselhaus, and persistent spin textures in quantum-well materials, $k \cdot p$ models in two-dimensions are invoked and the average momentum along the out-of-plane direction of a confined electron gas or thin film/heterostructure is set to zero within a mean-field approximation. The consequence is that odd order SOC terms in the Hamiltonian can be neglected. In a similar way, we build a thin film with k_x along the out-of-plane direction and a mirror symmetry in the in-plane direction. Since k_y and k_z then become the
in-plane reciprocal lattice vectors for the thin film, we explore the SOC terms along both k_y and k_z directions. Based on C_s symmetry, we have $\gamma_1'k_z\sigma_x$ in \mathcal{H}_Y, which also supports the uniform spin direction along the k_x direction same as that led by the SOC effects along the k_y direction [Eq. (2)]. Therefore, a thin film on (011) TbAlO$_3$ substrate with its out-of-plane (in-plane) direction aligned along k_x (k_y and k_z) of the bulk structure (see Figures 4a and 4b) will support a uniform spin direction along the out-of-plane direction with zero spin deviation. This behavior is demonstrated by our direct DFT calculations (Figure 4d) with strains along the a and b directions of 1.8% and -0.2%, respectively. We find a perfect PST spanning a large portion of the Brillouin zone and a high energy range above the CBM.

If we further redefine the in-plane direction (k'_x) of the thin film to be along $\gamma_1 k_y + \gamma_1' k_z$ of the bulk state, which is a direction about 34° away from k_z direction. Then, the CBM occurs along this direction in the thin film as seen in the $\Gamma - L$ path of the band structure (Figure 4c). The SOC parameter is 1.71 eV Å around the CBM along the $\Gamma - L$ path, which is comparable to other predicted PST materials with strong SOC coefficients, such as that of 1.9 eV Å in BiInO$_3$. We emphasize that the Tl$_3$SbS$_3$ film is the best three-dimensional material to the date showing a perfect PST without any spin deviation. Our finding stems from careful analyses of trigonal polar groups and reducing the C_3v crystal class to C_s by engineering an epitaxial thin film using demonstrated approaches [39] applied to realize monoclinic BiFeO$_3$. Figure 4b shows that a Tl$_3$SbS$_3$ film has Cm symmetry and the computed polarization for this phase is about 23 μC cm$^{-2}$ along the b direction. Because there is no spin deviation, the spin lifetime will ideally diverge toward infinity at low temperatures until another spin-scattering mechanism becomes operative. Alternative to the thin film geometry [44], this optimal PST may also be observed in bulk Tl$_3$SbS$_3$ along the k_x direction via laser-induced formation of surface nanolayers [45].
A PSH state with the spin-spiral plane perpendicular to the unidirectional effective field has long been pursued [5]. By solving a microscopic spin-diffusion equation in quantum-well structures, previous studies found an enhanced spin lifetime \(\tau_s \) occurs at a “magic” wavevector of \(2q \) where \(q \) corresponds to the shifting vector induced by the Kramers degeneracy from time reversal symmetry on the Fermi surface [1,5]. This well-known PSH state at \(2q \) occurs as a consequence of the \(C_{2v} \) or \(C_s \) symmetry of the SOC Hamiltonian—the only two previously known symmetries of the SOC Hamiltonian that can produce the PSH state with a long spin lifetime [5,20].

This PSH mode is due to a PST spin texture that occurs in a \(k \) path starting from a high symmetry \(k \) point having \(C_{2v} \) or \(C_s \) symmetry, resulting in a uniform spin direction that is in a direction perpendicular to the \(k \) path [31]. However, there exists a \(k \) path under \(C_s \) symmetry, which may induce a spin texture: \(k_x(\gamma_2 \sigma_y + \gamma_3 \sigma_z) \) such that \(k_x \) does not contain a mirror plane. In this new defined spin texture, the spin texture in the plane perpendicular to \(k_x \) depends on the ratio of \(\gamma_2/\gamma_3 \). This special situation can occur because of the SOC strengths along \(k_y \) are smaller than those along the \(k_x \) direction. Therefore, we call the PST along a \(k \) path without mirror symmetry as a Type-II or accidental PST to contrast it with Type-I PSTs that are enforced along a \(k \) path with a mirror symmetry.

Next, we will elucidate how a Type-II PST occurs in the important optoelectronic material LiNbO\(_3\) [46] (Figure 5a), for which we calculate an electric polarization of \(68 \, \mu \text{C cm}^{-2} \). Our computed polarization is slightly underestimated compared with the experimentally observed polarization [47] (77 \(\mu \text{C cm}^{-2} \)). Figure 5c shows that the CBM is not along a high symmetry \(k_y \) path having the mirror symmetry but is at different \(k \) point compared to LiTaO\(_3\) where the CBM is in the \(k_y \) path. The location of the CBM in the LiNbO\(_3\) is consistent with the previous calculations [48]. Since we are interested in the \(k_x - k_y \) plane for searching for possible PSTs,
regions, we construct a thin film LiNbO$_3$ geometry with Cc symmetry ($a \approx b = 3.68\text{Å}$) (see Figure 5d), which should be accessible in experiment using demonstrated growth approaches [39] to realize Cc BiFeO$_3$. The computed polarization for the film is 71 μC cm$^{-2}$ along a direction 37° from the c direction in the (110) plane. We find that the CBM is located at a point in the k_x path along [110] direction in the thin film. We further interpolate the band structure in a $k_x - k_y$ plane at $k_z = 0$ by carrying out Wannier90 + SOC calculations (Supplementary Figure 1), which further supports our identification of the CBM the minimum energy along the k_x path.

Surprisingly, although the k_x path only possesses the identify operation, there is still a region showing uniform spin direction determined by $\gamma_2 \sigma_y + \gamma_3 \sigma_z$. This Type II PST region also has a sizable area as shown in Figure 5f, enclosed by the (orange) boundary line demarcating the spin deviation from a direction determined by $\gamma_2 \sigma_y + \gamma_3 \sigma_z$ (i.e., $-\arctan(\gamma_3/\gamma_2)=33^\circ$ from the k_y direction) is also less than 10°. The SOC strength in the PST region along k_y is $\gamma_1 = 0.14$ eV Å and along k_x it is $\gamma_2 = 0.51$ eV Å and $\gamma_3 = 0.33$ eV Å in the Cc structure. With these SOC parameters and a Fermi wavelength of 0.04 Å$^{-1}$, we compute the spin lifetime for the PSH mode in LiNbO$_3$ to be 11 ps and $\frac{\tau_s}{\tau_{PSH}} = 127$. Therefore, a possibly better PST in the polar structure with C_{3v} symmetry can be obtained by reducing its symmetry to C_s in a thin film, while there is no PST accessible in bulk $R3c$ structure.

Conclusion

We proposed a strategy to identify and design optimal PSTs in bulk crystals based on polar space groups showing an odd number of mirror operations. We showed that compounds with point groups C_{3v} may also exhibit PSTs, which expands the phenomenon to more readily n-type dopable chalcogenide compounds and perovskite oxides with $R3c$ and $R3m$ symmetries. We also found that using strain to reduce the crystalline symmetry is a useful strategy for improving the
performance of bulk PSTs and unlocking hidden Type-II (or accidental) PSTs in thin films of many previously identified Rashba compounds [23,42]. This approach brings PST properties to more complex crystal structures and chemistries with strong Rashba coefficients and/or topological insulator and Weyl semimetal phases. Noncentrosymmetric compounds with high symmetry wavevectors in reciprocal space exhibiting C_3 point symmetry are an important initial phase space to search for PSTs in known materials. Last, our study demonstrates a new type of PST that does not require symmetry protection, which will bring further opportunities to find high quality PSHs in future spin-orbitronic devices.

Acknowledgements

X.-Z.L. and J.M.R. were supported by the National Science Foundation (NSF) under DMR-2104397. DFT calculations were performed on the CARBON cluster at the Center for Nanoscale Materials at Argonne National Laboratory and the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by NSF (ACI-1548562). Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

References

[1] B. A. Bernevig, J. Orenstein, and S. C. Zhang, Exact SU(2) Symmetry and Persistent Spin Helix in a Spin-Orbit Coupled System, Physical Review Letters 97, 236601 (2006).

[2] J. D. Koralek, C. P. Weber, J. Orenstein, B. A. Bernevig, S. C. Zhang, S. MacK, and D. D. Awschalom, Emergence of the Persistent Spin Helix in Semiconductor Quantum Wells, Nature 458, 610 (2009).

[3] J. Schliemann, J. C. Egues, and D. Loss, Nonballistic Spin-Field-Effect Transistor, Physical Review Letters 90, 4 (2003).

[4] A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine, New Perspectives for Rashba Spin-Orbit Coupling, Nat Mater 14, 871 (2015).
[5] J. Schliemann, *Colloquium: Persistent Spin Textures in Semiconductor Nanostructures*, Reviews of Modern Physics 89, (2017).

[6] M. I. Dyakonov, *Spin Relaxation of Conduction Electrons in Noncentrosymmetric Semiconductors*, Soviet Physics Solid State 13, 3023 (1972).

[7] S. Datta and B. Das, *Electronic Analog of the Electro-optic Modulator*, Applied Physics Letters 56, 665 (1998).

[8] F. Dettwiler, J. Fu, S. Mack, P. J. Weigele, J. C. Egues, D. D. Awschalom, and D. M. Zumbühl, *Stretchable Persistent Spin Helices in GaAs Quantum Wells*, Physical Review X 7, 031010 (2017).

[9] M. P. Walser, C. Reichl, W. Wegscheider, and G. Salis, *Direct Mapping of the Formation of a Persistent Spin Helix*, Nature Physics 2012 8:10 8, 757 (2012).

[10] M. Kohda et al., *Gate-Controlled Persistent Spin Helix State in (In,Ga)As Quantum Wells*, Physical Review B - Condensed Matter and Materials Physics 86, 081306 (2012).

[11] A. Sasaki, S. Nonaka, Y. Kunihashi, M. Kohda, T. Bauernfeind, T. Dollinger, K. Richter, and J. Nitta, *Direct Determination of Spin-Orbit Interaction Coefficients and Realization of the Persistent Spin Helix Symmetry*, Nature Nanotechnology 2014 9:9 9, 703 (2014).

[12] G. Dresselhaus, *Spin-Orbit Coupling Effects in Zinc Blende Structures*, Physical Review 100, 580 (1955).

[13] E. I. Rashba, *Properties of Semiconductors with an Extremum Loop .I. Cyclotron and Combinational Resonance in a Magnetic Field Perpendicular to the Plane of the Loop*, Sov. Phys. Solid. State 2, 1109 (1960).

[14] M. A. U. Absor, F. Ishii, H. Kotaka, and M. Saito, *Persistent Spin Helix on a Wurtzite ZnO(101¯0) Surface: First-Principles Density-Functional Study*, Applied Physics Express 8, 073006 (2015).

[15] N. Yamaguchi and F. Ishii, *Strain-Induced Large Spin Splitting and Persistent Spin Helix at LaAlO3/SrTiO3 Interface*, Applied Physics Express 10, 123003 (2017).

[16] L. L. Tao and E. Y. Tsymbal, *Persistent Spin Texture Enforced by Symmetry*, Nature Communications 2018 9:1 9, 1 (2018).

[17] C. Autieri, P. Barone, J. Sławińska, and S. Picozzi, *Persistent Spin Helix in Rashba-Dresselhaus Ferroelectric CsBiNb2 O7*, Physical Review Materials 3, 084416 (2019).

[18] H. Djani, A. C. Garcia-Castro, W. Y. Tong, P. Barone, E. Bousquet, S. Picozzi, and P. Ghosez, *Rationalizing and Engineering Rashba Spin-Splitting in Ferroelectric Oxides*, Npj Quantum Materials 2019 4:1 4, 1 (2019).

[19] F. Jia, S. Hu, S. Xu, H. Gao, G. Zhao, P. Barone, A. Stroppa, and W. Ren, *Persistent Spin-Texture and Ferroelectric Polarization in 2D Hybrid Perovskite Benzylammonium Lead-Halide*, J Phys Chem Lett 11, 5177 (2020).
M. Adhib Ulil Absor, I. Santoso, N. Yamaguchi, and F. Ishii, *Spin Splitting with Persistent Spin Textures Induced by the Line Defect in the 1T Phase of Monolayer Transition Metal Dichalcogenides*, Physical Review B **101**, 155410 (2020).

X. Li, S. Zhang, H. Huang, L. Hu, F. Liu, and Q. Wang, *Unidirectional Spin-Orbit Interaction Induced by the Line Defect in Monolayer Transition Metal Dichalcogenides for High-Performance Devices*, Nano Letters **19**, 6005 (2019).

H. Lee, J. Im, and H. Jin, *Emergence of the Giant Out-of-Plane Rashba Effect and Tunable Nanoscale Persistent Spin Helix in Ferroelectric SnTe Thin Films*, Applied Physics Letters **116**, 022411 (2020).

L. G. D. da Silveira, P. Barone, and S. Picozzi, *Rashba-Dresselhaus Spin-Splitting in the Bulk Ferroelectric Oxide BiAlO3*, Physical Review B **93**, 245159 (2016).

L. L. Tao and E. Y. Tsymbal, *Perspectives of Spin-Textured Ferroelectrics*, Journal of Physics D: Applied Physics **54**, 113001 (2021).

M. Adhib Ulil Absor, A. Lukmantoro, I. Santoso, U. Gadjah Mada, and S. Utara BLS, *Full-Zone Persistent Spin Textures with Giant Spin Splitting in Two-Dimensional Group IV-V Compounds*, (2022).

N. Yang, G. Gou, X. Lu, and Y. Hao, *Linear Dichroism and Polarization Controllable Persistent Spin Helix in Two-Dimensional Ferroelectric ZrO12 Monolayer*, Nano Research 2022 1 (2022).

J. Ji, F. Lou, R. Yu, J. S. Feng, and H. J. Xiang, *Symmetry-Protected Full-Space Persistent Spin Texture in Two-Dimensional Materials*, Physical Review B **105**, L041404 (2022).

H. J. Zhao, H. Nakamura, R. Arras, C. Paillard, P. Chen, J. Gosteau, X. Li, Y. Yang, and L. Bellaiche, *Purely Cubic Spin Splittings with Persistent Spin Textures*, Physical Review Letters **125**, 216405 (2020).

L. Zhang et al., *Room-Temperature Electrically Switchable Spin– Valley Coupling in a van Der Waals Ferroelectric Halide Perovskite with Persistent Spin Helix*, Nature Photonics (2022).

M. Acharya, S. Mack, A. Fernandez, J. Kim, H. Wang, K. Eriguchi, D. Meyers, V. Gopalan, J. Neaton, and L. W. Martin, *Searching for New Ferroelectric Materials Using High-Throughput Databases: An Experimental Perspective on BiAlO3and BiInO3*, Chemistry of Materials **32**, 7274 (2020).

X. Z. Lu and J. M. Rondinelli, *Discovery Principles and Materials for Symmetry-Protected Persistent Spin Textures with Long Spin Lifetimes*, Matter **3**, 1211 (2020).

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, *Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces*, Physical Review Letters **100**, 136406 (2008).

G. Kresse and J. Furthmüller, *Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set*, Physical Review B **54**, 11169 (1996).

G. Kresse and J. Furthmüller, *Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set*, Computational Materials Science **6**, 15 (1996).
[35] G. Kresse and D. Joubert, From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method, Physical Review B 59, 1758 (1999).

[36] P. E. Blöchl, Projector Augmented-Wave Method, Physical Review B 50, 17953 (1994).

[37] H. J. Zhao, P. Chen, C. Paillard, R. Arras, Y. W. Fang, X. Li, J. Gosteau, Y. Yang, and L. Bellaiche, Large Spin Splittings Due to the Orbital Degree of Freedom and Spin Textures in a Ferroelectric Nitride Perovskite, Physical Review B 102, 041203 (2020).

[38] A. Fernandez, M. Acharya, H.-G. Lee, J. Schimpf, Y. Jiang, D. Lou, Z. Tian, and L. W. Martin, Thin-Film Ferroelectrics, Advanced Materials 2108841 (2022).

[39] J. Wang et al., Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures, Science (1979) 299, 1719 (2003).

[40] M. G. Vergniory, L. Elcoro, C. Felser, N. Regnault, B. A. Bernevig, and Z. Wang, A Complete Catalogue of High-Quality Topological Materials, Nature 2019 566:7745 566, 480 (2019).

[41] C. Mera Acosta, E. Ogoshi, A. Fazzio, G. M. Dalpian, and A. Zunger, The Rashba Scale: Emergence of Band Anti-Crossing as a Design Principle for Materials with Large Rashba Coefficient, Matter 3, 145 (2020).

[42] A. Olsen, P. Goodman, and H. J. Whitfield, The Structure Tl3SbS3, Tl3SbSe3, Tl3SbS3–xSex, and Tl3Sb3yAs1–ySe3, Journal of Solid State Chemistry 60, 305 (1985).

[43] X. Liu and J. Sinova, Unified Theory of Spin Dynamics in a Two-Dimensional Electron Gas with Arbitrary Spin-Orbit Coupling Strength at Finite Temperature, Physical Review B - Condensed Matter and Materials Physics 86, 174301 (2012).

[44] G. F. Harrington, A. Cavallaro, D. W. McComb, S. J. Skinner, and J. A. Kilner, The Effects of Lattice Strain, Dislocations, and Microstructure on the Transport Properties of YSZ Films, Physical Chemistry Chemical Physics 19, 14319 (2017).

[45] K. Ozga, A. O. Fedorchuk, A. M. El-Naggar, A. A. Albassam, and V. Kityk, Formation of Surface Nanolayers in Chalcogenide Crystals Using Coherent Laser Beams, Physica E: Low-Dimensional Systems and Nanostructures 97, 302 (2018).

[46] Chapter 1 Thin Films of Lithium Niobate : Potential (n.d.).

[47] L. Hafid and F. M. Michel-Calendini, Electronic Structure of LiNbO3: Densities of States, Optical Anisotropy and Spontaneous Polarisation Calculated from the Xα Molecular Orbital Method, Journal of Physics C: Solid State Physics 19, 2907 (1986).

[48] A. Jain et al., Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation, APL Materials 1, 011002 (2013).
Figure 1. a The trigonal cell of RbNbO$_3$ with $R3m$ symmetry along the 3-fold axis. The mirror symmetries are also shown. b The Brillouin zone of the trigonal cell reciprocal lattice vectors (g$_1$, g$_2$, g$_3$). The high symmetry k points are shown in red with values specified in Supplementary Table 11. c The band structure of the trigonal cell. The energy is given with respect to the CBM. d The spin textures in the $k_z = 0$ (fractional coordinate) plane of the lowest conduction band around the $\Gamma - Y$ path. The arrows indicate the spin direction. The color scale represents the degree of spin deviation out of the xy plane (i.e., along the k_z direction). The area within the orange lines indicates spin deviations less than $(5^\circ, 5^\circ)$.
Figure 2. **a** The trigonal cell of LiTaO$_3$ with $R3c$ symmetry along the 3-fold axis. The mirror symmetries are also shown. **b** The Brillouin zone of the trigonal cell with reciprocal lattice vectors (g_1, g_2, g_3). The high symmetry k points are shown in red with values specified in Supplementary Table 11. **c** The band structure of the trigonal cell. The energy is given with respect to the CBM. **d** The spin textures in the $k_z = 0$ (fractional coordinate) plane of the lowest conduction band around the $\Gamma - Y$ path. The arrows indicate the spin direction. The color scale represents the degree of spin deviation out of the xy plane (i.e., along the k_z direction). The area within the orange lines indicates spin deviations less than $(5^\circ, 5^\circ)$.

Figure 3. a The trigonal cell of Tl$_3$SbS$_3$ with $R3m$ symmetry along the 3-fold axis. The mirror symmetries are also shown. b The Brillouin zone of the trigonal cell with reciprocal lattice vectors (g_1, g_2, g_3). The high symmetry k points are shown in red and specified in Supplementary Table 12. c The band structure of the trigonal cell. The energy is given with respect to the CBM. d The spin textures in the $k_x = 1/2$ (fractional coordinate) plane of the lowest conduction band around the $A-Z$ path. The arrows indicate the spin direction. The color scale represents the degree of spin deviation out of the xy plane (i.e., along the k_z direction). The area within the orange lines indicates spin deviations less than $(5^\circ, 5^\circ)$.

21
Figure 4.

a Orientation for building thin films from Tl₃SbS₃ with a trigonal cell and $R3m$ symmetry. The black arrow indicates the film direction.

b The structure of Tl₃SbS₃ film with Cm symmetry. The Brillouin zone of the film is the same as that of the trigonal cell. The values of the high symmetry k points are specified in Supplementary Table 13.

c The band structure of the film. The energy is given with respect to the CBM.

d The energy surface of the lowest conduction band spanning a $k_x - k_y$ plane around the A – Z path. The arrows indicate the spin direction. The color scale represents the band energies. All the spins are oriented along the k_z direction.
Figure 5. a) The trigonal cell of LiNbO₃ with $R3c$ symmetry along the 3-fold axis. The mirror symmetries are also shown. b) The Brillouin zone of the trigonal cell with reciprocal lattice vectors (g_1, g_2, g_3). The high symmetry k points are shown in red with values specified in Supplementary Table 14. c) The band structure of the trigonal cell. The energy is given with respect to the CBM. d) The structure of a LiNbO₃ film with Cc symmetry. The Brillouin zone of the film is the same as that of the trigonal cell. The values of the high symmetry k points are shown in Supplementary Table 15. e) The band structure of the film. f) The spin textures in the $k_z = 0$ (fractional coordinate) plane of the lowest conduction band around the $\Gamma - Y$ path. The arrow indicates the spin direction. The color scale represents the degree of spin deviation out of the xy plane (i.e., along the k_z direction). The area within the orange lines indicates spin deviations less than $(5°, 5°)$. The arrow indicates the spin direction (in the yz plane) projected into the $k_z = 0$ plane, whose components along k_x and k_y in the plot are along the Cartesian y and z directions, respectively. The color scale represents the degree of spin deviation out of the yz plane (i.e., along the k_x direction), that is, $90°$ indicates the spin is in the yz plane. The area within the orange lines indicates spin deviation towards the k_x direction is less than $10°$.