In vitro screening of antifungal activity of marine sponge extracts against five phytopathogenic fungi

Belkassem El Amraoui1,2*, Majida El Wahidi1 and Aziz Fassouane1

Abstract
The aim of our research is the screening of extracts of marine sponges for their antifungal activity against phytopathogenic fungi. The in vitro screening of hydroalcoholic and organic extracts of ten marine sponges from Atlantic coast of Morocco against five phytopathogenic fungi (Fusarium oxysporum f.sp. melonis, Fusarium oxysporum f.sp. radicis-lycopersici, Fusarium oxysporum f.sp. ciceris, Botrytis cinerea and Penicillium digitatum) showed that only two sponges (Haliclona viscosa and Cynachirella tarentina) are active against all phytopathogenic fungi studied.

Keywords: Antifungal activity; Porifera; Cynachirella; Marine sponges; Haliclona

Introduction
Agriculture in Morocco is an important economic sector, with 40% of the population living on its revenues. The agricultural area is estimated to be 9.5 million hectares. Fungi are the main responsible agents for losses in agriculture and horticulture and can infect any part of the plant (Messiaen et al. 1991). The fight against these fungi is based on the use of chemical pesticides. However, chemical pesticides sprayed into the air or discharged into the soil can be harmful to the environment and to humans as well.

More than 15,000 natural products were isolated between 1965 and 2005 from marine organisms (Blunt et al. 2007). One of the main factors contributing to this trend is related to modern technology, and ocean biodiversity has become more accessible (Battershill et al. 2005).

Most marine invertebrates, which lack defence structures, have developed chemical defence systems in producing toxic secondary metabolites (Anderson et al. 1994; Aratake et al. 2009).

The sponges, which have a very primitive origin, adopted and developed a cemical very powerful defence (Sipkema et al. 2005) and are the source of many chemical compounds with various biological activities, including antitumor (Acosta and Rodriguez 1992; Carmely et al. 1989), antiviral (Carter and Rinehart Jr 1978) antialgal (Wright et al. 2011), anti-inflammatory (Randazzo et al. 2001), antiparasitic (Galeano et al. 2011; Kossuga et al. 2008), antibacterial (Ankisetty and Slattery 2012; El Amraoui et al. 2014) and antifungal activities (Clark et al. 2001; El-Amraoui et al. 2013; Sata et al. 1999). These compounds also show the chemical diversity, and are composed among others of unusual nucleosides (Bergmann and Feeney 1951; Wang et al. 2009), peptides (Sjogren et al. 2006), and fatty acids (Carballeira et al. 2007; Carballeira and Pagan 2001; Pham et al. 1999).

Sponges consist not only of sponge tissue but also of microorganisms, which represent 50% of their mass. So, is that the antifungal that is secreted by the sponge or a microorganism associated with this sponge? The isolation of microorganisms associated to sponges and screening of antifungal metabolites produced by these microorganisms may provide an answer.

In Morocco, the research of the metabolism products of medicinal plants and other groups of terrestrial or marine organisms are intensified to explore the possible use of metabolites in different areas. Despite the richness and biodiversity of the Moroccan sea, invertebrates and algae from seabed are poorly studied.

In this study, we report the antifungal activity of ethanol and dichloromethane extracts of ten marine sponges collected from Coastal Atlantic of El Jadida (Morocco)
to select the most active species, which could be utilized to purify antifungal compounds.

Results and discussion

The identification of sponge species and their sampling sites are summarized in Table 1. The results of the screening of antifungal activity of sponge extracts against phytopathogenic fungi are summarized in Table 2.

Among 20 extracts tested, only three extracts (15%), showed antifungal activity against the studied phytopathogenic fungi.

Organic and hydroalcoholic extracts of *H. viscosa* exhibit antifungal activity whereas in *C. tarentina*, only the organic extract is active. This inhibition’s effect can be shown in Figure 1.

The sponge genus *Haliclona* is known for its high chemical various secondary metabolites with interesting biological activities (Faulkner 2002) including the antifungal (Barrett et al. 1996; Clark et al. 2001; El-Wahidi et al. 2013), antileishmanial (Dube et al. 2007), antioxidant (Regoli et al. 2004), cytotoxic (Fusetani et al. 1989) and other activities (Lakshmi et al. 2009; Randazzo et al. 2001).

Up to now, the researches conducted on *H. viscosa* led to the isolation of a number of alkaloids. Fusetani et al. 1989 have isolated two cytotoxic compounds, haliclamine A and B from *H. viscosa*. Volk and Kock 2003 have isolated viscosamine, then viscosaline in Volk and Kock 2004. Recently, two forms of viscosaline have been isolated (Schmidt et al. 2012). In addition to this, two other alkaloids, haliclamine C and D, were isolated from *H. viscosa* (Volk et al. 2004).

Lately, we have isolated a new product called haliscosamine from *H. viscosa* (El-Amraoui et al. 2013). This product is active against yeasts involved in human pathology. The chemistry of *Cinachyrella tarentina* sponge is rarely studied (El-Amraoui et al. 2010; El-Wahidi et al. 2011). This sponge was discovered in Italy (Pulitzer-Finali 1983), and now, we have collected this sponge from the Deauville beach, El Jadida, Morocco (El-Amraoui et al. 2010).

Conclusion

Preliminary results have shown that Moroccan sponges constitute a potential source of compounds, which can be used for crop protection. *Haliclona viscosa* and *Cinachyrella tarentina* have an interesting antifungal potential. Thus, these sponges provide a potential source of antifungal compound to fight against plant diseases and should be investigated for isolation of this natural compound.

Materials and methods

Phytopathogenic strains

Strain of *Fusarium oxysporum* f.sp. *melonis* (FOM 20474 CECT) was obtained from Coleccion Espanola de Cultivos Tipo (Suárez-Estrella et al. 2007), *Fusarium oxysporum* f.sp. *radicis-lycopersici* (FORL), *Fusarium oxysporum* f.sp. *ciceris* (FOC) and were obtained from the laboratory of Plant Pathology, Faculty of Sciences (El Jadida, Morocco), *Botrytis cinerea* (BC630) was obtained from biology-biochemistry department, Reims Champagne-Ardenne University, France and *Penicillium digitatum* (PD001),

Table 1 Sponge’s identification and their sampling sites

Sampling sites	References	Sponges species
Site n°1	EM6	Cliona celata
Site n°2	EM8	Cinachyrella tarentina
Site n°3	EM7	Ircinia oros
	EM11	Ircinia spinulosa
	EM12	Ircinia dendroides
	EM13	Haliclona mediterranea
	EM14	Haliclona viscosa
Site n°4	EM5	Axinella polyoides
Site n°5	EM3	Haliclona enamela
	EM10	Cliona viridis

The geographical location and depth of sampling sites are shown in Figure 2.

Table 2 Antifungal activity of the marine sponge extracts

Marine sponges	Extract	Inhibition diameter (mm)			
	FOM	FORL	FOC	BC	PD
Axinella polyoides	B	-	-	-	-
	C	-	-	-	-
Haliclona enamela	B	-	-	-	-
	C	-	-	-	-
Haliclona mediterranea	B	-	-	-	-
	C	-	-	-	-
Haliclona viscosa	B	20	16	19	21
	C	17	14	17	20
Cinachyrella tarentina	B	-	-	-	-
	C	14	15	15	17
Cliona celata	B	-	-	-	-
	C	-	-	-	-
Cliona viridis	B	-	-	-	-
	C	-	-	-	-
Ircinia dendroides	B	-	-	-	-
	C	-	-	-	-
Ircinia spinulosa	B	-	-	-	-
	C	-	-	-	-
Ircinia oros	B	-	-	-	-
	C	-	-	-	-

DESOGERME SP VEGETAUX® (100 μg) 28 26 28 29 34

- : negative activity; FOM: *Fusarium oxysporum* f.sp. *melonis*; FORL: *Fusarium oxysporum* f.sp. *radicis-lycopersici*; FOC: *Fusarium oxysporum* f.sp. *ciceris*; BC: *Botrytis cinerea*; PD: *Penicillium digitatum*.
isolated from an infected orange, were used throughout this study.

Sponge materials

Ten marine sponges were collected from five sites of the littoral Atlantic coast of El Jadida (Morocco). Figure 2 shows the locations and depths of sampling sponges. All the sponges were identified by Dr. Maria-Jesús Uriz, Research Professor at the Centro de Estudios Avanzados de Blanes (CEAB) and Consejo Superior de Investigaciones Científicas (CSIC) Spain by morphological characteristics and molecular methods (El-Amraoui et al. 2010). The collected materials were immediately frozen at -4°C for one night prior to extraction.

Preparation of the extracts

Each sponge (100 g wet weight) was thawed, and extracted with ethanol (3×100 ml). The ethanol was evaporated at reduced pressure. The suspension was completed with sterile water to 100 ml and extracted with CH_2Cl_2 (3×100 ml). The CH_2Cl_2 extract was dried on anhydrous sodium sulphate (Na_2SO_4), then filtered and concentrated at reduced pressure to give a C extract.

The aqueous phase was lyophilised and dissolved twice in absolute ethanol, then filtered and concentrated at reduced pressure to give a B extract (El-Amraoui et al. 2010).

DESOGERME SP VEGETAUX

DESOGERME SP VEGETAUX* (LAKORALE, Morocco), used in this study as a positive control, is an algacide, fungicide and bactericide product used in Morocco both to remove algae, fungi and bacteria in irrigation systems and also to disinfect soil. It consists of 20 g/L of polyhexamethylene bioguanidine hydrochlorique, and 50 g/L of N-alkyl dimethyl benzyl ammonium chloride.

In vitro antifungal activity

The antifungal activity was assessed in vitro by agar disc-diffusion test.
Agar disc-diffusion test
This test uses Potato Dextrose Agar (PDA) as medium [Difco]. Conidial suspension was prepared from a 5-d-old fungal culture and adjusted with Malassez's cellulase in sterile water in order to obtain a final concentration of 10^3 conidia/mL. Each disk received 100 μg of sponge extract (20 μL of each extract at 5 mg/mL were added to each cellulose disc) and was applied on the test media which were previously inoculated with each test strain (El-Amraoui et al. 2010). Plates were first kept at 4°C for at least two hours to allow the diffusion of chemicals, and then incubated at 28°C. Inhibition zones were measured after 24 h of incubation (Galeano and Martínez 2007). Standard disks of DESOGERME SP VEGETAUX® (100 μg) served as positive antifungal control. All the assays were carried out in triplicate.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
All authors read and approved the final manuscript.

Acknowledgements
We thank Dr. Maria-Jesús Uriz, Research Professor at the Centro de Estudios Avanzados de Blanes (CEAB), Spain for sponge identification, F. Suárez-Estrella of Almèria University, Spain who provide us with a Fusarium oxysporum fsp. melonis strains, Mr. Aziz Aziz Professor at the Reims Champagne-Ardèche University, France who provide us with a Botrytis cinerea strains and M. Mouchene, director of the agricultural department in LACORALE society who provided us with a DESOGERME SP VEGETAUX®.

Received: 26 January 2014 Accepted: 20 October 2014
Published: 24 October 2014

References
Acosta AL, Rodriguez AD (1992) 11-oxoaerothionin: a cytotoxic antitumor bromotyrosine-derived alkaloid from the Caribbean marine sponge Aplysina lacunosa. J Nat Prod 55(7):1007–1012
Anderson AP, Beveridge AA, Capon R (1994) Pharmacological properties of the natural product furuspong-1. Clin Exp Pharmacol Physiol 21(2):945–953
Anisieyev S, Stattery M (2012) Antibacterial secondary metabolites from the cave sponge Xestospongia sp. Mar Drugs 10:1037–1043
Aratake S, Trianto A, Hanif N, de Voogd NJ, Tanaka J (2009) A new antifungal pentacyclic alkaloid from a marine sponge, Xestospongia sp. Xestosterol esters of brominated acetylenic fatty acids from the marine sponge Xestospongia testudinaria. Mar Drugs 10:1037–1043

Carter GT, Rinehart KL Jr (1978) Acamidines, novel antiviral and antimicrobial compounds from the sponge Acansus exhausus (de Laubenfels). J Am Chem Soc 100:4302–4304
Clark RJ, Garson MJ, Hooper JN (2001) Antifungal alkyl amino alcohols from the tropical marine sponge Haliclonia n. sp. J Nat Prod 64(12):1568–1571, doi:10.1021/np005928w
Dube A, Singh N, Saxena A, Laksimi V (2007) Antileishmanial potential of a marine sponge, Haliclonia exigua (Kirkpatrick) against experimental visceral leishmaniasis. Parasitol Res 102(1):317–324
El-Amraoui B, El-Amraoui M, Cohen N, Fassouane A (2014) Antifungal and antibacterial activity of marine microorganisms. Ann Pharm Fr 72:107–111
El-Amraoui B, Biard JF, Uriz MJ, Rifaï S, Fassouane A (2010) Antifungal and antibacterial activity of Porifera extracts from the Moroccan Atlantic coasts. J Mycol Med 20(1):70–74, http://dx.doi.org/10.1016/j.jmymed.2009.11.001
El-Amraoui B, Biard JF, Fassouane A (2013) Haliclonias: a new antifungal sphingosine derivative from the Moroccan marine sponge Haliclonia visciosa. Springerplus 2:252, doi:10.1186/2193-1801-2-536
El-Wahidi M, El-Amraoui B, Biard JF, Uriz MJ, Fassouane A, Bambaoud T (2011) Variation saisonnière et géographique de l’activité antifongique des extrait de deux éponges marines récoltées sur le littoral atlantique d’El Jadda, Maroc. Journal de Mycologie Médicale/Journal de Medical Mycology 21(1):28–32, http://dx.doi.org/10.1016/j.jmymed.2010.11.005
El-Wahidi M, El-Amraoui B, Fassouane A, Bambaoud T (2013) Isolément bio-diligé d’un antifongique à partir de Haliclonia enemala récoltée du port de Jorf Lasfar, Maroc. Journal de Mycologie Médicale/J Med Mycolog/doi:10.1016/j.jmymed.2013.04.006
Faulkner DJ (2002) Marine natural products. Nat Prod Rep 19:1–48
Fusetani N, Yasumuro K, Matsunaga S, Hirota H (1989) Haliclamines A and B, cytotoxic macroyclic alkaloids from a sponge of the genus Haliclonia. Tetrahedron Lett 30:6891–6894
Galeano E, Martínez A (2007) Antimicrobial activity of marine sponges from Urabo Gulf, Colombian Caribbean region. J Mycol Med 17:21–24
Galeano E, Thomas OP, Robledo S, Munoz D, Martinez A (2011) Antiparasitc bromotyrosine derivatives from the marine sponge Verongula rigida. Mar Drugs 9(10):1902–1913, doi:10.3390/md91001902 marinbed-09-01902
Kossuga MH, Nascimento AM, Reimao JQ, Tempone AG, Tanaka J (2009) Halipeptins A and B: two novel potent anti-inflammatory cyclic depsipeptides from the Vanuatu marine sponge Plakortis anguolispicalteus collected in Brazil. J Nat Prod 71(10):1333–1339, doi:np10075256
Laksmhi V, Sivastava S, Kumar Mishra S, Misra S, Verma M, Misra-Bhattacharya S (2009) In vitro and in vivo antifungal potential of marine sponge, Haliclonia exigua (Kirkpatrick), against human lymphatic filarial parasite Brugia malayi: antifilarial activity of H. exigua. Parasitol Res 105(5):1295–1301
Messiaen CM, Blancard J, Rouxel F, Lafon R (1991) Les maladies des plantes marines. INRA, Paris, p 552
Pham NB, Butler MS, Hooper JN, Moni RW, Quinn RJ (1999) Isolation of xestosterol esters of brominated acetylenic fatty acids from the marine sponge Xestospongia testudinaria. J Nat Prod 62(10):1439–1442, doi:np9901635
Pullter-Finali G (1983) A collection of Mediterranean Demospongiae (Porifera) with, in appendix, a list of the Demospongiae hitherto recorded from the Mediterranean sea. Annales del Museo Civico di Storia Naturale di Genova 84:445–621
Raddzio A, Bifuclo G, Gannici N, Bucco M, Debitus C, Cirino G, Gomez-Paloma L (2001) Halipeptins A and B: two novel potent anti-inflammatory cyclic depsipeptides from the Vanuatu marine sponge Haliclonia species. J Am Chem Soc 123(44):10870–10876
Regoli F, Nigro M, Chierici E, Cerrano C, Schiapparelli S, Totti C, Bavestrello G (2004) Antivariatic, antineuroinflammatory, and cytotoxic polypeptides from the marine sponge Plakortis anguolispicalteus collected in Brazil. J Nat Prod 67(11):1623–1628, doi:np010246x
Sata NU, Matsunaga S, Fusetani N, Van Soest RW (1999) Aurantosides D, E, and F: novel depsipeptides from the Antarctic porifera Acarnus erithacus. J Nat Prod 62(10):1439–1442, doi:np9900021
Schmidt G, Timm C, Grube A, Volk CA, Kock M (2012) Viscosalines B(1,2) and E, two novel Balkan marine sponge sphingosine derivatives. J Org Chem 77(13):6214–6220, doi:10.1021/jo3012977
Sectorex T, El-Amraoui B, Biard JF, Fassouane A, Kecim A, Bambaoud T (2011) Variations saisonnière et géographique de l’activité antifongique des extrait de deux éponges marines récoltées sur le littoral atlantique d’El Jadda, Maroc. Journal de Mycologie Médicale/Journal de Medical Mycology 21(1):28–32, http://dx.doi.org/10.1016/j.jmymed.2010.11.005
Sectorex T, El-Amraoui B, Fassouane A, Bambaoud T (2013) Isolément bio-diligé d’un antifongique à partir de Haliclonia enemala récoltée du port de Jorf Lasfar, Maroc. Journal de Mycologie Médicale/J Med Mycolog/doi:10.1016/j.jmymed.2013.04.006

http://www.springerplus.com/content/3/1/629
Page 4 of 5
Sjogren M, Johnson AL, Hedner E, Dahlstrom M, Goransson U, Shirani H, Bergman J, Jonsson PR, Bohlin L (2006) Antifouling activity of synthesized peptide analogs of the sponge metabolite barettin. Peptides 27(9):2058–2064, doi:10.196-9781(06)00159-8
Suárez-Estrella F, Vargas-García C, Lopeza MJ, Capelb C, Morenoa J (2007) Antagonistic activity of bacteria and fungi from horticultural compost against Fusarium oxysporum fsp. melonis. Crop Prot 26:46–53
Volk CA, Kock M (2003) Viscosamine: the first naturally occurring trimeric 3-alkyl pyridinium alkaloid. Org Lett 5(20):3567–3569
Volk CA, Kock M (2004) Viscosaline: new 3-alkyl pyridinium alkaloid from the Arctic sponge Haliclona viscosa. Org Biomol Chem 2(13):1827–1830
Volk CA, Lippert H, Lichte E, Köck M (2004) Two New Haliclamine from the Arctic Sponge Haliclona viscosa. Eur J Org Chem 14:3154–3158
Wang B, Dong J, Zhou X, Lee KJ, Huang R, Zhang S, Liu Y (2009) Nucleosides from the marine sponge Haliclona sp. Z Naturforsch C 64(1–2):143–148
Wright AD, McCluskey A, Robertson MJ, MacGregor KA, Gordon CP, Guenther J (2011) Anti-malarial, anti-algal, anti-tubercular, anti-bacterial, anti-photosynthetic, and anti-fouling activity of diterpene and diterpene isonitriles from the tropical marine sponge Cymbastela hooperi. Org Biomol Chem 9:400–407

Cite this article as: El Amraoui et al. In vitro screening of antifungal activity of marine sponge extracts against five phytopathogenic fungi. SpringerPlus 2014 3:629.

Submit your manuscript to a SpringerOpen journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at springeropen.com