Effect of Core Stability Exercise and Vitamin D Intake on Liver Enzymes Activities in Women With Chronic Low Back Pain

Seyyed Javad Hashemi Sangatrashani, *Masoumeh Habibian, Seyyed Jafar Moosavi

1. Department of Physical Education, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran.

Background: Deficiency or insufficient level of vitamin D is very common in patients with liver disease, and is closely related to musculoskeletal pains, including low back pain.

Objective: The current study aims to investigate of the activity of liver enzymes in women with chronic low back pain following core stability exercises and vitamin D intake.

Method: This clinical trial was conducted on 48 women (Mean±SD of age=36.59±5.50 years) in 2019 selected by using a convenience sampling method. They were randomly divided into four groups of control, vitamin D, exercise and combined (exercise +vitamin D). The last two exercise groups performed 8 weeks of core stability exercises with different intensities. The vitamin D and combined groups received 50,000 IU/week of vitamin D for 8 weeks. Alanine aminotransferase (ALT), Aspartate aminotransferase (AST) and Alkaline phosphatase (ALP) activities were measured before and after the interventions. Data were analyzed by using paired t-test and one-way ANOVA.

Finding: Eight weeks of core stability exercises, vitamin D intake, and the combined exercise and vitamin D supplementation caused a significant reduction in the activity of AST, ALT, and ALP enzymes. The combined intervention induced more reduction in the AST and ALP activities compared to other two groups received exercise and supplementation alone, and the decrease in ALT activity following the combined intervention was higher compared to the exercise group.

Conclusion: It seems that the core stability exercises, vitamin D intake, and combination of exercise and vitamin D supplementation can improve liver function in women with chronic low back pain who have vitamin D deficiency by reducing the activity of liver enzymes. The combined intervention has greater effectiveness in improving liver function.

Extended Abstract

1. Introduction

Chronic low back pain is an outstanding physical problems is correct in industrialized and developing countries [1]. Self-medication for low back pain is a barrier to its effective diagnosis and management [2]. Deficiency or insufficient level of vitamin D can cause or worsen low back pain and muscle spasm [3]. In addition, vitamin D deficiency is associated with chronic musculoskeletal pain including low back pain [4]. More than 90% of vitamin D is synthesized under ultraviolet radiation in human skin [5]. The vitamin D receptors in non-parenchymal cells of the liver, and the local conversion of absorbed vitamin D to

* Corresponding Author:
Masoumeh Habibian
Address: Department of Physical Education, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran.
Tel: +98 (11) 42155025
E-Mail: habibian_m@yahoo.com
its active form in adrenal and liver tissues indicate a possible effect of vitamin D on liver function [6, 7]. Vitamin D deficiency is a risk factor for hepatocellular carcinoma [8] which inhibits the formation of collagen type I in hepatic satellite cells [9].

Circulating and tissue levels of transaminase enzymes including Alanine Aminotransferase (ALT), Aspartate Aminotransferase (AST), and Alkaline phosphatase (ALT), are used as sensitive indicators of liver function [10]. Epidemiological studies have shown an association between low serum levels of vitamin D and non-alcoholic fatty liver disease [11, 12]. In addition, vitamin D deficiency is very common in patients with liver disease. Both cholestatic and non-cholestatic liver disease can lead to vitamin D deficiency [13]. Physical activity and exercise can reduce the fat of liver tissue in patients with non-alcoholic fatty liver, and the prevalence of fatty liver is lower in people with high physical activity [14]. However, low back pain itself can lead to inactivity and obesity, and obesity has a negative impact on the effectiveness of exercise therapy program for people with chronic nonspecific low back pain [18]. Exercise therapies, especially core stability exercises, are known to be the best method to control chronic nonspecific low back pain [1]. The present study aims to evaluate the serum transaminases activity in women with chronic low back pain following a core stability exercise program and vitamin D intake.

2. Materials and Methods

This clinical trial was conducted on 48 adult women with chronic low back pain selected by using a convenience sampling method. They randomly divided into four groups of Control, Supplementation, Exercise, and Exercise+Supplementation. The last two exercise groups performed 8 weeks of core stability exercises. The exercise protocol includes six movements of lower abdominal hollowing, supine, bridging, quadruped, dead bug and plank with different intensities, gradually increased to a higher level after each person reached a steady state at one level. The Supplementation and Exercise+Supplementation groups received 50,000 IU/week vitamin D, while the control group consumed oral paraffin per week. At baseline, the subjects’ pain was measured using the Visual Analog Scale (VAS). The levels of 25-hydroxyvitamin D, ALT, AST and ALP were measured before and after the interventions. Data were analyzed by paired t-test and ANOVA considering a significance level of P<0.05.

3. Results

The demographical characteristics, pain intensity and vitamin D status of the study groups are presented in Table 1. Based on the results, the vitamin D level in 74.26% of the subjects was <20 ng/mL, and in 25.64% it was 20-30 ng/mL.

Eight weeks of core stability exercises, vitamin D intake and the combined intervention caused a significant reduction in AST, ALT and ALP activities. Combination of exercise and supplementation induced more reduction in the AST and ALP activities compared to other two groups received exercise and supplementation alone; the decrease in ALT activity in the combined group was higher than in the exercise group (Table 2).

4. Conclusion

In this study, 8 weeks of core stability exercises, vitamin D intake, and combined exercise and vitamin D supplementation reduced the AST, ALT, and ALP activities in women with low back pain who had vitamin D deficiency. The effect of combined intervention on reducing the activity of AST and ALP enzymes was higher compared to other two groups received exercise and supplementation alone, and its effect on reducing the activity of ALT was higher compared to the exercise group. Vitamin D receptors are expressed in hepatic satellite cells and vitamin D has anti-proliferative

Table 1. Demographical and clinical characteristics of the participants

Group	Mean±SD	Height (cm)	Weight (kg)	Age (year)	Pain Level	25-hydroxyvitamin D (ng/mL)
Exercise		167.5±9.28	71.9±10.13	36.6±5.44	6.5±1.27	12.30±6.15
Vitamin D		161.7±7.30	66.0±8.70	35.5±6.79	5.8±1.62	13.6±6.19
Combined		166.1±8.91	68.0±6.20	39.3±3.68	7.0±1.05	13.1±6.50
Control		161.7±5.31	67.1±7.90	34.5±5.50	6.2±1.39	12.5±6.24
and anti-fibrogenic properties on these cells by inhibiting the Transforming Growth Factor-β (TGF-β)/SMAD pathway, which is one of the strongest anti-fibrogenic pathways in the liver. Vitamin D can also suppress the expression of collagen types I and III by inhibiting the activity of TGF-β signaling pathway mediated by hepatocyte cells [28].

Exercise can improve steatosis through hepatic lipid metabolism by increasing the metabolism of fatty acids and hepatic lipids. Exercise increases oxidation of non-esterified fatty acids and reduces hepatic glucose production by activating hepatic and intramuscular Adenosine Monophosphate-activated Protein Kinase (AMPK) [15]. In addition, AMPK suppresses the proliferation of hepatic satellite cells [32].

It seems that core stability exercises, vitamin D intake, and combination of exercise and vitamin D supplementation may improve liver function in women with chronic low back pain by reducing liver enzymes activities. The combined intervention had greater effectiveness in improving liver function.

Ethical Considerations

Compliance with ethical guidelines

All procedures in this study were according to the guidelines of Islamic Azad University of Qaemshahr Branch by observing the ethical points, and maintaining the safety and health of the subjects. A written informed consent was signed by all participants. They were free to leave the study at any time. This paper was approval by Ethics Committee of the Islamic Azad University of Babol Branch (Code: IR.IAU.BABOL.REC.1398.086).

Table 2. Comparison of changes in enzyme levels at baseline and 8 weeks after intervention

Variables	Groups	Mean±SD	Changes (%)	P*	
			Pre-test	Post-test	
AST (U/L)	Exercise	25.40±5.52	20.90±4.15	-16.97±7.40*	<0.001
	Vitamin D	24.30±4.71	20.40±3.44	-15.44±5.53*	<0.001
	Combined	24.10±5.61	17.50±2.59	-25.81±9.17*	<0.001
	Control	24.11±3.44	23.83±3.05	0.89±3.84	0.366
ALT (U/L)	Exercise	18.40±4.27	16.5±3.79	-12.03±7.40*	0.003
	Vitamin D	20.00±5.08	16.70±3.89	-15.99±7.76*	0.001
	Combined	18.40±3.17	14.20±2.09	-22.32±6.60*	<0.001
	Control	18.89±3.89	18.97±3.72	0.63±2.90	0.680
ALP (U/L)	Exercise	128.40±21.20	117.20±18.73	-8.63±5.25*	<0.001
	Vitamin D	125.60±18.43	118.00±15.71	-5.85±2.63*	<0.001
	Combined	126.00±20.94	107.60±17.17	-14.35±2.39*	<0.001
	Control	127.33±19.96	127.16±21.27	-0.15±1.18	0.747

*Paired t-test; *Significant difference compared to control group; †Significant difference compared to exercise group; &Significant difference compared to supplementation group

Funding

This study was extracted from the MA. thesis of first author, Department of Physical Education, Qaemshahr Branch, Islamic Azad University, Qaemshahr.

Authors’ contributions

All authors have equally contributed to the preparation of this article.

Conflicts of interest

The authors declared no conflict of interest.
مطالعه فعالیت ترانس آمینازها در زنان مبتلا به کمردرد متعاقب تمرینات ثبات دهنده مرکزی و مصرف ویتامین D

سید جواد هاشمی سنتونشانی ۱، مصطفی حبیبیان ۱، سید جعفر موسوی ۱

۱ گروه تربیت بدنی و ویتامین D، ۲ مشکوک‌آگاهان، ۳ گروه تربیت بدنی و ویتامین D

چکیده

در پژوهش حاضر با هدف بررسی فعالیت ترانس آمینازهای سرمی در زنان مبتلا به کمردرد مزمن متعاقب یک دوره تمرینات ثبات دهنده مرکزی و مصرف ویتامین D انجام شد.

مواد و روش ها

به بیماران مبتلا به کمردرد مزمن در سال ۱۳۹۸ و به روش نمونه گیری ۴۸ نفر انتخاب شدند. گروه‌های دو ترکیبی (تمرین+ویتامین D)، ترکیبی، ویتامین D در هفته (به مدت هشت هفته) دریافت کردند. فعالیت آنزیم‌های آلانین آمینوترانسفراز (ALT)، و آلکالین فسفات (ALP) قبل و پس از مداخله ها تعیین شد. برای آنالیز داده‌ها از آزمون‌های تی زوجی (الکالین فسفات) و آسپارتات آمینوترانسفراز (AST) و آنالیز واریانس یک طرفه استفاده شد.

یافته‌ها

گروه ترکیبی ALT در مقایسه با دو مداخله دیگر منجر شد و کاهش فعالیت ALP و AST مداخله ترکیبی به کاهش بیشتری در فعالیت ALT. P<0.05 (در مقایسه با گروه تمرین بیشتر بود.

نتیجه‌گیری

تمرین ویاتوری و مصرف ویتامین D ممکن است از طریق کاهش فعالیت آنزیم‌های کبدی به نظر می‌رسد تمرینات ورزشی، مصرف ویتامین D و ترکیبی با اثربخشی بیشتری مشاهده شود و مداخله ترکیبی با اثربخشی بیشتری مشاهده شود.

کلیدواژه‌ها: فعالیت ورزشی، کبد، کمردرد مزمن، ترانس آمینازها سرمی، ویتامین D

مقدمه

کمردرد مزمن از چالش برانگیزترین مشکلات پزشکی در کشورهای صنعتی و در حال توسعه است و به علت شیوع بالا، هزینه‌های اقتصادی سنگینی را بر خانواده‌ها، جامعه و دولت تحمیل می‌کند. حدود ۵۰ درصد از پزشگان در برخی از دوره‌های زندگی این دو درک می‌کنند که افرادی که دارای کمردرد مزمن هستند، به علت شیوع بیشتر اختلال وضعیت ویتامین D، کمبود و یا نارسایی ویتامین D می‌باشند. افرادی که دارای کمردرد مزمن هستند، سطح پوست‌های فرابنفش بیشتری دارند و به خاطر این واقعه، نیاز به بروز انحلال کبدی به وجود می‌آید. در حالی‌که علت اصلی پوست‌های فرابنفش برزیلی به ویتامین D مربوط می‌باشد، در حالی‌که علت اصلی پوست‌های فرابنفش برزیلی به ویتامین D مربوط می‌باشد.

مقدمه

کمردرد مزمن از چالش برانگیزترین مشکلات پزشکی در کشورهای صنعتی و در حال توسعه است و به علت شیوع بالا، هزینه‌های اقتصادی سنگینی را بر خانواده‌ها، جامعه و دولت تحمیل می‌کند. حدود ۵۰ درصد از پزشگان در برخی از دوره‌های زندگی این دو درک می‌کنند که افرادی که دارای کمردرد مزمن هستند، به علت شیوع بیشتر اختلال وضعیت ویتامین D، کمبود و یا نارسایی ویتامین D می‌باشند. افرادی که دارای کمردرد مزمن هستند، سطح پوست‌های فرابنفش بیشتری دارند و به خاطر این واقعه، نیاز به بروز انحلال کبدی به وجود می‌آید. در حالی‌که علت اصلی پوست‌های فرابنفش برزیلی به ویتامین D مربوط می‌باشد، در حالی‌که علت اصلی پوست‌های فرابنفش برزیلی به ویتامین D مربوط می‌باشد.

مقدمه

کمردرد مزمن از چالش برانگیزترین مشکلات پزشکی در کشورهای صنعتی و در حال توسعه است و به علت شیوع بالا، هزینه‌ای قابل توجهی را بر خانواده‌ها، جامعه و دولت تحمیل می‌کند. حدود ۵۰ درصد از پزشگان در برخی از دوره‌های زندگی این دو درک می‌کنند که افرادی که دارای کمردرد مزمن هستند، به علت شیوع بیشتر اختلال وضعیت ویتامین D، کمبود و یا نارسایی ویتامین D می‌باشند. افرادی که دارای کمردرد مزمن هستند، سطح پوست‌های فرابنفش بیشتری دارند و به خاطر این واقعه، نیاز به بروز انحلال کبدی به وجود می‌آید. در حالی‌که علت اصلی پوست‌های فرابنفش برزیلی به ویتامین D مربوط می‌باشد، در حالی‌که علت اصلی پوست‌های فرابنفش برزیلی به ویتامین D مربوط می‌باشد.

مقدمه

کمردرد مزمن از چالش برانگیزترین مشکلات پزشکی در کشورهای صنعتی و در حال توسعه است و به علت شیوع بالا، هزینه‌ای قابل توجهی را بر خانواده‌ها، جامعه و دولت تحمیل می‌کند. حدود ۵۰ درصد از پزشگان در برخی از دوره‌های زندگی این دو درک می‌کنند که افرادی که دارای کمردرد مزمن هستند، به علت شیوع بیشتر اختلال وضعیت ویتامین D، کمبود و یا نارسایی ویتامین D می‌باشند. افرادی که دارای کمردرد مزمن هستند، سطح پوست‌های فرابنفش بیشتری دارند و به خاطر این واقعه، نیاز به بروز انحلال کبدی به وجود می‌آید. در حالی‌که علت اصلی پوست‌های فرابنفش برزیلی به ویتامین D مربوط می‌باشد، در حالی‌که علت اصلی پوست‌های فرابنفش برزیلی به ویتامین D مربوط می‌باشد.
مواد و روش‌های اجرایی پژوهش

مقدمه‌ی این مطالعه دانستنی به شکل فعال آن در بافت‌های D موضعی ویتامین D کبدی است و احتمال ویتامین D کبدی می‌تواند به عنوان یک شاخص پیش‌بینی و شدت انواع بیماری‌های کبدی است که نوعی سرمی به عنوان یک شاخص پیش‌بینی و شدت انواع بیماری‌های خیزشی می‌باشد. با این حال، سرپوشیده‌نشدن در موارد غیرکلئری کبدی و مشکل‌های خونریزی و نسبت جنسیتی ویتامین D مطلوب نیز ارائه‌ی یک کارسینومی D منجر به کمبود ویتامین D می‌باشد.

پُرگرد ویتامین D کبدی می‌باشد که در سلول‌های ماهواره‌ای و شیب‌های مزمن سرما به عنوان یک شاخص پیش‌بینی و شدت انواع بیماری‌های بیماری‌های کبدی می‌باشد.

الاپ‌مان یک شاخص پیش‌بینی و شدت انواع بیماری‌های مختلف است که به علاوه کمبود ویتامین D ویتامین D از هر دو بیماری کبدی کلئری و غیرکلئری می‌توانند منجر به کمبود ویتامین D شوند. به علاوه کمبود ویتامین D در بیماران چرب غیرالکلی با سطوح پایین مبتلا به کبد چرب غیرالکلی با سطوح پایین. به علاوه کمبود ویتامین D ویتامین D می‌باشد که در بیماران مبتلا به بیماری‌های کبدی بسیار رایج است. از سویی هر دو بیماری کبدی کلئری و غیرکلئری می‌توانند منجر به کمبود ویتامین D شوند.

کتینگ [15] تأثیر گذارد. تمرینات تناوبی پُرگرد و چاقی همچنین سطوح بالا، گزارش شده ویتامین D ویتامین D به ویژه در جمعیت شهری گزارش شده است. علاوه بر این، کمبود ویتامین D ویتامین D می‌باشد که در بیماران مبتلا به کمردرد مزمن غیراختصاصی مطالعات مروری نشان داده اند که درمان‌های مبتنی بر ورزش بهترین ماره جهت کنترل کمردرد خیزشی است. اینکه آینده درک کمردرد و سطوح ALT ۱۲ از هفته تمرین استقامتی مشاهده نکردند. این می‌تواند عملکرد کبدی را تحت تأثیر قرار می‌دهد [16].
بزرگسال مبتلا به کمردرد مزمن انجام شد. آزمودنی‌های با طرح پیش و پس آزمون همراه با گروه کنترل روی زنان آمینازها سرمی در زنان مبتلا به کمردرد متعاقب یک IRCT20190831044650N1 انجام شد. سید جواد هاشمی سنگتراشانی و همکاران. مطالعه عملکرد ترانس آمینازها در زنان مبتلا به کمردرد متعاقب تمرینات ثبات دهنده مرکزی و مصرف ویتامین D.
پروتکل تمرینی آزمودنی های گروه تمرین و ترکیبی شامل مقدار درد قابل تصور را مشخص می‌کند. نمره مقیاس دیداری درد اندازه‌گیری شد. این مقیاس دیداری حساس فیزیوتراپی و فیزیولوژی ورزشی با رعایت نکات اخلاقی، حفظ نحوه همکاری خود در این پروتکل و تکمیل نمونه‌نامه کتبی انجام شد. داوطلبین پس از آگاهی کامل از چگونگی آزمودنی به طور دردسترس و هدفمند انتخاب شدند.

جدول 1. متغیرهای استاندارد شاخص‌های آنریوی، وزن، کیفیت ویتامین D و آزمودنی‌های تحقیق

گروه	کیفیت ویتامین D (گی‌گرم/میلی‌لیتر)	وزن (کیلوگرم)	سن (سال)
کنترل 1	6/5	68/77	30/36
کنترل 2	7/6	70/84	32/38
کنترل 3	8/7	80/94	34/40
کنترل 4	9/8	90/100	35/41

جدول 2. تعادل آزمودنی های گروه‌های تحقیق در سطوح مختلف ویتامین D

سطح نرمال	سطح بالا	سطح زیرالاکتیو	کنترل 1	کنترل 2	کنترل 3	کنترل 4
0	10	2	1	2	1	2

مهمان و داوطلبین که مبتلا به کمرکش و درد کمر می‌باشند، دوره حاوی قرار گرفتن در گروه کنترل 1، کنترل 2، 3 و 4 نمی‌سازند (شکل شماره 1). داوطلبین یکی از آن‌ها کامل یک کنترل کننده کنترل کنند و بقیه تیمار می‌پذیرند. به این ترتیب، تعداد آزمودنی در گروه‌های تمرین و ترکیبی به‌طور راه‌اندازی و تخصیص به‌طور تصادفی توزیع شده و همچنین داوطلبان به‌طور تصادفی به سه گروه تصادفی تقسیم می‌شوند. سپس به سه مقطع شیوه، اولیه، متوسط و نهایی تقسیم می‌شوند.

مراجع:

1. Groenu C, Sliwinski A, van der Graaf CJ, et al. Effect of vitamin D on bone mineral density in postmenopausal women: a randomized, double-blind, placebo-controlled trial. J Bone Miner Res. 2010;25(4):697-704.
2. Meunier PJ, Blettner M, Sirinek H, et al.随机ised, controlled, confirmatory study of the effect of vitamin D on bone mineral density in postmenopausal women. J Bone Miner Res. 2001;16(1):93-100.
3. Khan I, Kanis JA, O'Mahony D, et al. Vitamin D and bone health in elderly people: the addition of vitamin D and calcium to usual care in elderly people with low vitamin D status: a randomised controlled trial. Osteoporos Int. 2009;20(11):1779-86.
4. Janssen I, Doherty M, O'Neill A, et al. Vitamin D and bone health in elderly people: the addition of vitamin D and calcium to usual care in elderly people with low vitamin D status: a randomised controlled trial. Osteoporos Int. 2010;21(7):1275-84.
5. Meunier PJ, Blettner M, Sirinek H, et al. Randomised, controlled, confirmatory study of the effect of vitamin D on bone mineral density in postmenopausal women. J Bone Miner Res. 2001;16(1):93-100.
6. Khan I, Kanis JA, O'Mahony D, et al. Randomised, controlled, confirmatory study of the effect of vitamin D on bone mineral density in postmenopausal women. J Bone Miner Res. 2009;20(11):1779-86.
7. Janssen I, Doherty M, O'Neill A, et al. Randomised, controlled, confirmatory study of the effect of vitamin D on bone mineral density in postmenopausal women. J Bone Miner Res. 2010;21(7):1275-84.
8. Meunier PJ, Blettner M, Sirinek H, et al. Randomised, controlled, confirmatory study of the effect of vitamin D on bone mineral density in postmenopausal women. J Bone Miner Res. 2001;16(1):93-100.
آزمودنی ها توصیه شد رژیم غذایی معمولی خود را در طی هفته پایه و بید از هفت هفته در هفته همراه با غذا به صورت یک سو کور مصرف می کردند. به بود، به مدت هشت هفته و یک بار خوراکی ساخت شرکت داروسازی زهراوی ایران را که از نظر رو به کنترل پرل حاوی پارافین زمان انقباض با استفاده از زمان استراحت ثانیه در هفته سوم بود که تا ثانیه در هفته سوم بود که تا ثانیه در هفته سوم بود که. *

شماره 24

جدول گ مطالعه درون گروهی و بین گروهی تغییرات مختلفهای مورد مطالعه در سطوح پایه و بید از 8 هفته

متغیر	میانگین خلاصه استاندارد	گروه ها	پیش آزمون	پیش آزمون
ALT				
تنیم				
پیش آزمون				
جدول 5. نتایج آزمون های کمکی میکنگ و مید و تغییرات آن در متغیرهای تحقیق

متغیرها	تمرین + ویتامین D	تمرین	کنترل
تغییرات میکنگ	+0.47	+0.26	+0.13
تغییرات ALP	+5.08	+3.04	+1.24
تغییرات ALT	+7.58	+3.58	+2.41

در تحقیق جامعی از همکاریهای متغیرهای کمنگ و ALP و ALT، میزان فعالیت آنزیمی کمینگ با کمک ویتامین د از میانگین ممزه به کمتر میزان ممزه تغییر نشده است (P<0.01). در حالی که تغییرات فعالیت آنزیمی کمینگ در گروه تمرین و کنترل به ترتیب +0.47 و +0.13 بوده است، در گروه تمرین ویتامین د تغییرات +0.47 و +0.26 بوده است. در جدول شماره 2، میزان تغییرات ALP و ALT در سه گروه تمرین + ویتامین D، تمرین و کنترل مشخص است. در جدول شماره 3، میزان تغییرات ALP و ALT در سه گروه تمرین + ویتامین D، تمرین و کنترل مشخص است.

حقوق در حال اتمام...
کبدی می‌شود

مهر و آبان

341

مهر و آبان

4

مژمن بود؛ به طوری که تأثیر مداخله ترکیبی بر کاهش فعالیت در زنان مبتلا به کمردرد کبدی متعاقب هشت هفته تمرینات منتخب ثبات دهنده مرکزی و در ناحیه احشایی شده منجر شود. کاهش چاقی احشایی و تشدید و میتوکندری هپاتوسیت‌ها، به سوخت و ساز بیشتر ذخایر چربی تکثیر سلول‌های کبدی و عضلانی سبب افزایش اکسیداسیون در بیماران مبتلا به استئاتوهپاتیت غیرالکلی و کاهش فعالیت کیلوگرم / مترمربع پس از هشت هفته تمرینات مقاومتی با سه همچنین کاهش

14. Abd El-Kader
15. Adenosine Monophosphate-activated Protein Kinase is an enzyme (AMPK)
16. Akt
17. β-DG
18. TGF-β
19. 13D
20. 13D
21. D
22. D
23. D
24. D
25. 13D
26. 13D
27. 13D
28. 13D
29. 13D
30. 13D
31. 13D
32. 13D
از سوی دیگر فعالیت‌ها ورزشی ممکن است به واسطه تنظیم مثبت و یا منفعت‌طلبانه D منجر به بهبود منافع‌های کبدی در زنان مبتلا به کمردرد در تحقیق حاضر به واسطه استقرار بیشتر از احتمال داخلی ترمیمی D تأثیر قطعی ترمیمی D بر بهبود منافع‌های کبدی به واسطه تقویت مکانیسم‌های مطلوب به حیث این مطالعه در بحث قابل انطباق است. تحقیق حاضر حاصل اجسام نخستین تحقیقاتی است که از قبیل عناصر D آزمودنی‌ها، جنسیت، سن، سنی محدود و طول درمانی که برای بیشترین کاهش دارای سطح نرمال ویتامین D شدند. این افراد که به شکل شرط‌های مبتنی بر کاهش منافع‌های کبدی Operation D تأثیر مثبتی را نپذیرفتند. این در حالی بود که تأثیر ترمیمی ALP و AST ترکیبی در مقایسه با سایر مداخله‌های ترمیمی دارای نتایج بیشتری بود. نتایج بهبود فعالیت ALP، AST و ALT در مراحل بالا نشان می‌دهد که افراد مبتلا به کمردرد، با حفظ وضعیت نرمال ویتامین D و یا ترکیبی که از آن دارای منافع‌های کبدی مثبت است، بهترین استراتژی برای بهبود کمردرد به حساب می‌آورد. این مطالعه در طراحی و اجرای همه بخش‌های پژوهش به طور یکسان مشارکت داشته‌اند. همچنین هیچ تعارض منافعی در این مقاله وجود نداشت.

توجه مطالعات

پایه‌گذاری اصول اخلاقی پژوهشی

این مطالعه طراحی گرایشی به شماره IR.IAU.Babol. REC.3/98.086 از دانشگاه آزاد اسلامی واحد قائم‌شهر در دانشکده علوم انسانی و دانشجویی در آزمون‌های پژوهشی شرکت کردند. پژوهش بر اساس فرآیند علمی تحقیقاتی و اصول‌های اخلاقی تحقیقاتی صورت گرفت. کلیه پژوهشگران و زیر نظر تخصصی دانشگاه آزاد اسلامی و دانشکده علوم انسانی با راه‌نکات اخلاقی حفظ ایمنی و سلامت آزمودنی‌ها انجام شد.

مشارکت‌نوبه‌داشتنگان

شماره 24 دوره 1399 مهر و آبان

ضروری به نظر می‌رسد.
References

[1] Xu HW, Yi Y, Zhang SB, Hu T, Wang SJ, Zhao WD, et al. Does vitamin D status influence lumbar disc degeneration and low back pain in postmenopausal women? A retrospective single-center study. Menopause. 2020; 27(5):586-92. [DOI:10.1097/GME.0000000000001499] [PMID]

[2] Lodh M, Goswami B, Mahajan RD, Sen D, Jajodia N, Roy A. Assessment of vitamin D status in patients of chronic low back pain of unknown etiology. Indian J Clin Biochem. 2015; 30(2):174-9. [DOI:10.1007/s12291-014-0435-3] [PMID] [PMCID]

[3] Cai C. Treating vitamin D deficiency and insufficiency in chronic neck and back pain and muscle spasm: A case series. Perm J. 2019; 23:18-241. [DOI:10.7812/TPP/18.241] [PMID] [PMCID]

[4] Ghiati B, Bansal D, Kanukula R, Gudala K, Sachdeva N, Dhatt SS, et al. Vitamin D supplementation in patients with chronic low back pain: An open label, single arm clinical trial. Pain Physician. 2017; 20(1):E99-105. [DOI:10.3607/ppj.2017.1.E99] [PMID] [PMCID]

[5] Wiciński M, Adamkiewicz C, Adamkiewicz M, Śniegocki M, Podhorecka M, Szychta P, et al. Impact of vitamin D on physical exercise efficiency and exercise performance- a review. Nutrients. 2019; 11(11):2826. [DOI:10.3390/nu11112826] [PMID] [PMCID]

[6] Putz-Bankuti C, Pilz S, Stojakovic T, Scharnagl H, Pieber TR, Trauner M, et al. Association of 25-hydroxyvitamin D levels with liver dysfunction and mortality in chronic liver disease. Liver Int. 2012; 32(5):845-51. [DOI:10.1111/j.1478-3231.2011.02735.x] [PMID]

[7] Zügli S, Furrincieli D, Housset C, Chignard N. Vitamin D and the vitamin D receptor in liver pathophysiology. Clin Res Hepatol Gastroenterol. 2011; 35(4):295-302. [DOI:10.1016/j.clinre.2011.02.003] [PMID]

[8] Guo GY, Shi YQ, Wang L, Ren X, Han ZY, Guo CC, et al. Serum vitamin D level is associated with disease severity and response to ursodeoxycholic acid in primary biliary cirrhosis. Aliment Pharmacol Ther. 2015; 42(2):221-30. [DOI:10.1111/apt.13244] [PMID]

[9] Potter JJ, Liu X, Koteish A, Mezey E, 1,25-dihydroxyvitamin D3 and its nuclear receptor repress human α1(I) collagen expression and type I collagen formation. Liver Int. 2013; 33(5):677-86. [DOI:10.1111/liv.12122] [PMID] [PMCID]

[10] Habibzadeh Bziani F, Habibian M, Farzaneh P. Effect of 8 weeks aerobic exercise and vitamin C on liver transaminases activities in obese 8-11 years girls. J Gorgan Univ Med Sci. 2017; 19(1):25-32. [In Persian] http://goums.ac.ir/journal/article-1-3014-en.html

[11] Targher G, Day CP, Bonora E. Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. N Engl J Med. 2010; 363(14):1341-50. [DOI:10.1056/NEJMra0912063] [PMID]

[12] Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. The diagnosis and management of non-alcoholic fatty liver disease: Practice guideline by the American Association for the study of liver diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology. 2012; 55(6):2005-23. [DOI:10.1002/hep.25762] [PMID]

[13] Skaaby T, Husemoven LLN, Borglykke A, Jørgensen T, Thuesen BH, Pisinger C, et al. Vitamin D status, liver enzymes, and incident liver disease and mortality: A general population study. Endocrine. 2014; 47(1):213-20. [DOI:10.1007/s12020-013-0107-8] [PMID]

[14] Aliè M, Matinhomaee H, Azarbajani&M, Peer M. The effect of different resistance training intensities on liver function in obese men. J Sport Biosci. 2017; 9(1):75-92. [In Persian] http://jbsb.isb.197.169:1010]

[15] Abd El-Kader SM, Al-Jiffri OH, Al-Shreef FM. Liver enzymes and psychological well-being response to aerobic exercise training in patients with chronic hepatitis C. Afr Health Sci. 2014; 14(2):414-9. [DOI:10.4314/ahs.v14i2.18] [PMID] [PMCID]

[16] Keating SE, Machan EA, O’Connor HT, Gerofi JA, Sainsbury A, Caterson ID, et al. Continuous exercise but not high intensity interval training improves fat distribution in overweight adults. J Obes. 2014; 2014:834865. [DOI:10.1155/2014/834865] [PMID] [PMCID]

[17] Sadeghi S, Asad MR, Ferdosi MH. The effect of twelve weeks endurance training on liver enzymes levels in Iranian obese women. J Res Sport Med Technol. 2017; 15(13):49-60. [In Persian] http://jsmt.khu.ac.ir/article-1-5137-en.html

[18] Naderi E. Does obesity affect the efficacy of therapeutic exercise on pain intensity and disability in patients with chronic non-specific low back pain? J Anesthesiol Pain. 2017; 8(2):71-83. [In Persian] http://jap.iums.ac.ir/article-1-5317-en.html

[19] Alper BS, Shah A, Malone-Moses M, Rahman EW, Ehrlich A. Point-of-care application of: Guidelines and evidence on acupuncture for chronic low back pain. Eur J Integr Med. 2016; 8(4):326-8. [DOI:10.1016/j.eujim.2016.07.029]

[20] Hijnajaf S, Mohammadi F, Azizi M. Effect of aerobic interval exercise training on serum levels of 25-hydroxyvitamin D and indices anthropometry in overweight and obesity patients. Jundishapur Sci Med J. 2018; 17(1):37-48. [In Persian] http://jsmj.ajums.ac.ir/article_59633.html?lang=en

[21] Al Faraj S, Al Mutairi Kh. Vitamin D deficiency and chronic low back pain in Saudi Arabia. Spine (Phila Pa 1976). 2003; 28(2):177-9. [DOI:10.1097/00007632-200301150-00015] [PMID]

[22] Izadi A, Aliasghari F, Pourghassem Gargari B, Ebrahimi S. Strong association between serum vitamin D and vaspin levels, AIP, VAI and liver enzymes in NAFLD patients. Int J Vitam Nutr Res. 2020; 90(1-2):59-66. [DOI:10.1024/0300-9831/a000443] [PMID]

[23] Komolmit P, Kimtrakool S, Suksawatamnuay S, Thanapirom K, Komolmit P, et al. Vitamin D supplementation improves serum markers associated with hepatic fibrogenesis in chronic hepatitis C patients: A randomized, double-blind, placebo-controlled study. Sci Rep. 2017; 7(1):8905. [DOI:10.1038/s41598-017-09512-7] [PMID] [PMCID]

[24] Nadjarzadeh A, Jani N, Keshnevisan M, Malajafar A, Falahzadeh H, Khabiri F, et al. Effects of low caloric diet with and without vitamin D supplementation on anthropometric parameters in patients with non-alcoholic fatty liver. Toloo-e- Behdasht. 2016; 14(6):410-22. [In Persian] http://tbj.ssu.ac.ir/article-1-2031-en.html
[25] Papapostoli I, Lammert F, Stokes CS. Effect of short-term Vitamin D correction on hepatic steatosis as quantified by Controlled Attenuation Parameter (CAP). J Gastrointestin Liver Dis. 2016; 25(2):175-81. [DOI:10.15403/jgld.2014.1121.252.cap] [PMID]

[26] Pilz S, Putz-Bankuti C, Gaksch M, Spindelboeck W, Haselberger M, Rainer F, et al. Effects of vitamin D supplementation on serum 25-hydroxyvitamin D concentrations in cirrhotic patients: A randomized controlled trial. Nutrients. 2016; 8(5):278. [DOI:10.3390/nu8050278] [PMID] [PMCID]

[27] Tabrizi R, Moosazadeh M, Lankarani KB, Akbari M, Heydari ST, Kolahdooz F, et al. The effects of vitamin D supplementation on metabolic profiles and liver function in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis of randomized controlled trials. Diabetes Metab Syndr. 2017; 11 Suppl 2:S975-82. [DOI:10.1016/j.dsx.2017.07.025] [PMID]

[28] Zhuang P, Sun S, Dong R, Chen G, Huang Y, Zheng S. Associations between vitamin D and liver function and liver fibrosis in patients with biliary Atresia. Gastroenterol Res Pract. 2019; 2019:4621372. [DOI:10.1155/2019/4621372] [PMID] [PMCID]

[29] Finkelmeier F, Kronenberger B, Zeuzem S, Piiper A, Waidmann O. Low 25-hydroxyvitamin D levels are associated with infections and mortality in patients with cirrhosis. PLoS One. 2015; 10(6):e0132119. [DOI:10.1371/journal.pone.0132119] [PMID] [PMCID]

[30] Aghah M, Daryanoosh F, Moeini M, Mohamadi M, Fatahi MR. The effect of 12 weeks vitamin E supplementation and aerobic training on liver enzymes of non-alcoholic steatohepatitis patients. Armaghane Danesh. 2017; 21(10):964-75. [In Persian] http://armaghanj.yums.ac.ir/article-1-1481-en.html

[31] Kaki A, Galedari M. The effect of 12 weeks high intensity interval training and resistance training on liver fat, liver enzymes and insulin resistance in men with nonalcoholic fatty liver. Jundishapur Sci Med J. 2017; 16(5):493-503. [In Persian] [DOI:10.22118/JSMJ.2017.53990]

[32] Kistler KD, Brunt EM, Clark JM, Diehl AM, Sallis JF, Schwimmer JB, et al. Physical activity recommendations, exercise intensity, and histological severity of nonalcoholic fatty liver disease. Am J Gastroenterol. 2011; 106(3):460-8. [DOI:10.1038/ajg.2010.488] [PMID] [PMCID]

[33] Nabizadeh Haghighi A, Shabani R. Comparing effects of medication therapy and exercise training with diet on liver enzymes levels and liver sonography in patients with Non-Alcoholic Fatty Liver Disease (NAFLD). J Fasa Univ Med Sci. 2016; 5(4):488-500. [In Persian] http://journal.fums.ac.ir/article-1-774-en.html

[34] Moosavi SJ, Habibian M, Farzaneh P. The effect of regular aerobic exercise on plasma levels of 25-hydroxy vitamin D and insulin resistance in hypertensive postmenopausal women with type 2 diabetes. Razi J Med Sci. 2016; 22(141):80-90. [In Persian] http://rjms.iums.ac.ir/article-1-3402-en.html
