AN EFFICIENT ONE POT SYNTHESIS OF 2-ARYL BENZOXAZOLE BY USING SiO\textsubscript{2}/MgSnO\textsubscript{3} AS A HETEROGENEOUS RECYCLABLE CATALYST

S. S. Sagar1,✉ and R. P. Chavan2

1Department of Chemistry, I. C. S. College, Khed, Dist. Ratnagiri-415709, Maharashtra, India
2Department of Chemistry, Satish Pradhan Dnyanasadhana College, Thane-400604, Maharashtra, India

Corresponding Author: ssssachin1984@gmail.com

ABSTRACT

A highly effective, novel and fast processing method are reported the various derivatives of 2-aryl benzoxazole were prepared by using a catalytic amount of Silica containing MgSnO\textsubscript{3} (SiO\textsubscript{2}/MgSnO\textsubscript{3}). Low catalytic loading of silica-containing MgSnO\textsubscript{3} is found to be an economical and reusable catalyst for the reaction. The obtained percent yield of the product was satisfactory with a good experimental setup and the final products are pure and facile. The catalyst can be reused several times without loss of product yield and activity.

Keywords: 2-Aryl benzoxazoles, SiO\textsubscript{2}/MgSnO\textsubscript{3}, Recyclable Catalyst.

INTRODUCTION

A Heterocyclic compound like benzoxazole, benzthiazole and benzimidazole derivatives have massive significance in chemical, adhesive, dyestuff, polymers, pharmaceutical and agricultural industries.1-3 These derivatives have huge importance due to biological and pharmacological activities such as antihypertensive, antiepileptic, antimicrobial, antiviral and many more activities.5-18 Because of such significance, the synthesis of benzoxazole and its derivatives has been an attractive goal for organic as well as medicinal chemists. According to the literature survey, it is found that several synthetic methods are present for benzoxazole.

Many traditional routes are used for the synthesis of various substituted benzoxazole, many other substituents such as –Cl, -SH, and –SCH\textsubscript{3} or OPh with an amine are also synthesized.19-22 Many drawbacks occurred due to these traditional routes such as multiple steps required for preparation, harsh reagent utilization, the formation of undesirable by-products, several intermediate formations etc. After traditional routes, the second widely followed methods are developed by oxidative cyclization of the phenolic Schiff bases by using wide varieties of oxidizing agents such as Mn(OAc)\textsubscript{3}, DDQ, NiO\textsubscript{2}, ZrOCl\textsubscript{2}.8H\textsubscript{2}O, PCC-supported silica gel, Dess–Martin reagent, BaMnO\textsubscript{4} and Pb(OAc)\textsubscript{2}.23-30 On the other hand, some methods have been reported for the synthesis of benzoxazole using diverse catalysts and other reagents viz, silica-supported NaHSO\textsubscript{4}, CuOTf\textsubscript{3}, InOTf\textsubscript{3}, SnCl\textsubscript{2}, BF\textsubscript{3}.OEt\textsubscript{2}, DMBQ, Indion 190 resin, silica-supported sulphuric acid, Co-complex.31-40

Nowadays, the synthesis of 1, 3-benzoxazoles and their derivatives by using silica supported CuO, NPs, ZnO, CeO\textsubscript{2} NPs and various nanoparticles.41-48 These methods were found to be an interesting approach due to the presence of large as well as reactive surface areas, good selectivity for reactions with mild conditions, easy separation of the product and catalyst and reusability of the catalyst.

Most of these reported methods suffer from many drawbacks for the synthesis of benzoxazole derivatives, some of the drawbacks such as harmful solvents used in reactions, prolong reaction time with fewer product yields, tedious work-up procedures, use of expensive reagents attracts more attention to overcome.

To overcome these drawbacks, there is a need to develop a new catalyst for the synthesis of benzoxazole derivatives which shows a simple work-up procedure, less toxicity, good recovery and recyclability. Many organic conversions have been developed by using metal oxides, mixed metal and supported metal for the supported metal mixed oxide composites for the directed synthesis. With the presence of new and innovative strategies, here have been developed new synthesis methods for benzoxazole and its derivatives which are simpler than earlier.

\textit{Rasayan J. Chem.}, 14(1), 186-193(2021)

\url{http://dx.doi.org/10.31788/RJC.2021.1415898}

This work is licensed under a CC BY 4.0 license.
Therefore, in the present study, we report the synthesis of benzoazoles by using substituted aryl aldehydes and 2-amino phenol in the presence SiO$_2$/MgSnO$_3$ nanocrystalline catalyst (Scheme-1). This method was successfully utilized in several organic conversions to minimize unwanted waste which causes environmental pollution. With high thermal stability, a large surface area, easy recovery of the catalyst and good reaction capacity at normal temperature, such a catalyst and a method received more attention.

EXPERIMENTAL

All chemicals and solvents were purchased from Aldrich Chemical Co. Ltd and used without purification. The given product yield mentions after the purification of the isolated products.

Synthesis of the SiO$_2$/MgSnO$_3$ Composite Catalyst

In the present work, we have synthesized SiO$_2$/MgSnO$_3$ composite nanoparticles by a hydrothermal method. In this method, 1:1 ratio of SiO$_2$ and MgSnO$_3$ was taken in Teflon autoclave along with 2N NaOH. The obtained product was kept in the oven for 24 hrs, after 24 hrs reaction mixtures were filtered, washed and dried for 2 hrs. Finally, polycrystalline powder of SiO$_2$/MgSnO$_3$ composite nanoparticles obtained was used for further characterization and used as a catalyst for degradation of dye industrial wastewater. Here MgSnO$_3$ was synthesized using the reported method.

General Procedure for the Synthesis of 2-aryl benzoxazole

In a typical run, 2-aminophenol (1.2 mol), and aryl aldehydes (1.1 mol) were allowed to react in presence of methanol along with SiO$_2$/MgSnO$_3$ (0.4 mol) nanoparticles at 80°C for 20-30 min. The obtained mixture was checked by TLC method to get the presence of methanol along with the isolated products. The recovered catalyst was washed using methanol and dried to reuse for further successive reactions. The pure products were confirmed by analytical techniques such as FT-IR, NMR and Mass spectrometry.

![Scheme-1: Synthesis of 2-aryl benzoxazole](image)

Spectral Data of Selected Compounds

2-Phenyl-1,3-benzoxazole (1)

FT-IR (KBr): 3449, 1664, 1590, 1121, 1048, 940 cm$^{-1}$; 1H NMR (300 MHz, DMSO-d_6): δ 7.11 – 7.89 (m, 4H), 7.34-7.87 (m, 5H); 13C NMR (75 MHz, DMSO-d_6): δ 112.72, 121.80, 127.06, 129.97, 132.91, 142.02, 152.31; Mass m/z: 196 (M+1).

2-(3-nitrophenyl)-1,3-benzoxazole (2)

FT-IR (KBr): 3322, 1650, 1550, 1450, 1350, 1275, 748 cm$^{-1}$; 1H NMR (300 MHz, DMSO-d_6): δ 7.34-8.20 (m, 4H), 7.14 (dd, $J = 2.1 \& 8.4$ Hz, 1H), 7.23 (dd, $J = 2.1 \& 8.4$ Hz, 1H), 7.31-7.37 (m,2H); 13C NMR (75 MHz, DMSO-d_6): δ 111.12, 115.21, 124.23, 125.43, 126.74, 128.32, 131.73, 136.30, 139.21, 142.21, 150.21; Mass m/z: 241.32 (M+1).

2-(4-chlorophenyl)-1,3-benzoxazole (3)

FT-IR (KBr): 3330, 1650, 1632, 1486, 1390, 748 cm$^{-1}$; 1H NMR (300 MHz, DMSO-d_6): δ 7.29-7.47 (m, 4H), 7.53 (d, $J = 8.1$ Hz, 2H), 7.73 (d, $J = 8.1$, 2H); 13C NMR (75 MHz, DMSO-d_6): δ 115.53, 119.06, 121.90, 122.67, 126.74, 127.81, 129.86, 135.30, 139.90, 143.82, 152.73; Mass m/z: 231.21 (M+2).

2-(4-bromophenyl)-1,3-benzoxazole (4)

FT-IR (KBr): 3448, 1622, 1610, 1467, 1390, 840 cm$^{-1}$; 1H NMR (300 MHz, DMSO-d_6): δ 7.21-8.48 (m, 4H), 7.51 (d, $J = 8.4$ Hz, 2H), 7.87 (d, $J = 8.4$, 2H); 13C NMR (75 MHz, DMSO-d_6): δ 112.21, 132.91, 142.02, 152.31; Mass m/z: 241.32 (M+1).
ONE POT SYNTHESIS OF 2-ARYL BENZOXAZOLE

S. S. Sagar and R. P. Chavan

118.23, 120.76, 124.54, 128.98, 129.81, 132.86, 138.30, 139.90, 142.82, 151.87; Mass m/z: 272.12 (M+1).

2-(4-fluorophenyl)-1,3-benzoxazole (5)
FT-IR (KBr): 3330, 1642, 1587, 1490, 13870, 683 cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆): δ 7.08-7.34 (m, 4H), 7.48 (d, J = 8.2 Hz, 2H), 7.59 (d, J = 8.2, 2H); ¹³C NMR (75 MHz, DMSO-d₆): δ 111.87, 117.76, 122.24, 122.67, 125.39, 128.81, 130.84, 133.94, 136.90, 142.82, 148.54; Mass m/z: 213.45.

2-(4-methoxyphenyl)-1,3-benzoxazole (6)
FT-IR (KBr): 3229, 1673, 1610, 1532, 1128, 950 cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆): δ 3.65 (s, 3H, CH₃), 7.16 (d, J = 8.2 Hz, 2H), 7.27 (d, J = 8.4 Hz, 2H), 7.34-8.03 (m, 4H); ¹³C NMR (75 MHz, DMSO-d₆): δ 32.81, 112.64, 115.83, 120.35, 122.82, 124.11, 128.30, 132.64, 148.84, 156.46, 158.89; Mass m/z: 226.13.

2-(4-hydroxyphenyl)-1,3-benzoxazole (7)
FT-IR (KBr): 3390, 1687, 1634, 1450, 1392, 1122 cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆): δ 7.17-7.64 (m, 4H), 7.34 (d, J = 8.1 Hz, 2H), 7.59 (d, J = 8.1, 2H); ¹³C NMR (75 MHz, DMSO-d₆): δ 111.89, 116.48, 120.65, 123.85, 126.43, 128.72, 129.91, 133.30, 137.90, 142.91, 154.10; Mass m/z: 212.32.

2-(4-N,N-dimethyl-phenyl)-1,3-benzoxazole (8)
FT-IR (KBr): 3489, 1673, 1642, 1550, 1223, 1182 cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆): δ 7.13-7.43 (m, 4H), 7.64 (d, J = 8.2 Hz, 2H), 7.66 (d, J = 8.2, 2H); ¹³C NMR (75 MHz, DMSO-d₆): δ 116.53, 120.06, 122.98, 124.67, 126.81, 128.62, 131.65, 136.87, 138.94, 146.61, 154.74; Mass m/z: 239.12.

RESULTS AND DISCUSSION

Figure-1 shows the XRD pattern of SiO₂/MgSnO₃ composite nanoparticles. The crystal structure of MgSnO₃ nanoparticles is cubic and all peaks well match with JCPDS data card no-28-625. The presence of strong and sharp diffraction peaks with 2θ angles are found at 25.34, 28.31, 34.87, 36.12, 38.32, 42.93, 52.49, 62.32, 74.71 and 75.29 corresponds to 110, 100, 200, 111, 200, 111, 220, 110 and 311 crystal planes shows the presence of cubic Sn-O. The diffraction peaks of SiO₂ can be observed in the entire sample well match with JCPDS data which confirmed the formation of SiO₂/MgSnO₃ composite nanoparticles.

Figure-2 shows the SEM analysis of SiO₂/MgSnO₃ nanoparticles. The SEM analysis shows the formation of spherical self-aligned, uniform and crystalline nanoparticles. The SEM analysis also indicates that after the addition of SiO₂ in MgSnO₃, the surface morphology may affect however there is no large effect occurred on particle size. The aggregate sizes of the nanoparticles were relatively uniform in the range of 20-100 nm.
In Fig.-3, the TEM image along with SAED pattern was recorded for the sample SiO$_2$/MgSnO$_3$ composite nanoparticles. TEM shows the presence of elliptical nanoparticles; however some cubic-shaped crystallites are also present. The dark spot in the TEM micrograph can be alluded to SiO$_2$/MgSnO$_3$ composite nanoparticles as SAED pattern associated with such spots which are associated with tetragonal SiO$_2$/MgSnO$_3$ geometry and are agree with XRD data.

Figure-4 shows the N$_2$ adsorption-desorption isotherm along with BJH pore size distribution of synthesized SiO$_2$/MgSnO$_3$ composite nanoparticles. This isotherm shows that the sample has typical IV N$_2$ adsorption-desorption isotherms with H_1 hysteresis which indicates the presence of cylindrical mesopores in the sample. The BJH pore size distribution reveals that the sample has a narrow pore diameter. Based on the isotherms, the surface area (S_{BET}), pore volume (V_P) and pore diameter (d_p) were found 31.25 cm2/gm, 0.247 cc/g and 45.12 Å respectively.

To determine the most promising reaction conditions for the synthesis of 2-aryl benzoxazole and its derivatives by evaluating the catalytic efficiency of SiO$_2$/MgSnO$_3$ catalyst; initially, a model study was carried out by using p-methoxy benzaldehyde as a model substrate for the synthesis of 2-aryl benzoxazole (Scheme-1).

To evaluate and enhance the effectiveness of SiO$_2$/MgSnO$_3$ with a different catalyst, we tried MgO, SnO$_2$, MgSnO$_3$ and SiO$_2$/MgSnO$_3$ for the cyclization reaction of 2-aminophenol and 2-methoxy benzaldehyde. MgO and SnO$_2$ both gave poor yield as compared to SiO$_2$/MgSnO$_3$, whereas MgSnO$_3$ gave a good yield but required more time as compared to SiO$_2$/MgSnO$_3$ (Table-1).
Thus, it is found that SiO$_2$/MgSnO$_3$ was superior for the cyclization reaction of 2-aryl benzoxazole with a good yield in a short time. To optimize the amount of catalyst required for the cyclization, we tried various mol equivalents of the catalyst compared with the amount of 2-amino phenol (Table 2). The result was found that when the reaction was carried out by 0.4 mol equivalent of SiO$_2$/MgSnO$_3$ catalyst, the cyclization gave 94% yield in 20 minutes.

When cyclization reaction was carried out in presence of different solvents such as DMF, methanol, ethanol, acetonitrile, dichloromethane, the result found that methanol gave the better result as compared to another solvent (Table 3). Also, the reaction temperature was varied and found that at 80$^\circ$C the reaction was completed in a short time with high yield.

To estimate the generalization of the procedure, several diversified examples illustrating the present method for the synthesis of 2-aryl benzoxazole was studied (Table 4). The cyclization reaction 2-amino phenol was checked by treating with a wide range of electron-donating (such as –OH, -MeO, -NH$_2$, -CH$_3$) or electron-withdrawing (-NO$_2$, -X) substituted aldehydes in presence of SiO$_2$/MgSnO$_3$ catalyst. When the reaction was carried out, it was found that, the aromatic aldehydes with electron-donating groups react faster as compared to electron-withdrawing groups. Also Found that, the reaction of substituted aldehydes with 2-amino phenol in presence of methanol and SiO$_2$/MgSnO$_3$ (0.4 mol) at 80$^\circ$C temperature gave an excellent yield of 2-arnino benzoxazole. The results obtained are given in table 4. All the products obtained were characterized by IR, 1H NMR, 13C NMR and Mass spectroscopy.
Table-4: Synthesis of 2-aryl benzoxazoles in presence of SiO$_2$/MgSnO$_3$

Entry	Substituted Aldehydes	Time (Min)	Isolated Yield (%)
1.		40	87
2.		35	89
3.		40	83
4.		45	81
5.		35	87
6.		20	95
7.		30	91
8.		20	90

The reusability of catalyst was checked for the synthesis of 2-aryl benzoxazole as shown in table 5. After the successive run, from the reaction mixture, the catalyst was recovered, washed with acetone several times and dried in an oven at 120$^\circ$C for 3 hrs. Before use and tested for its activity in the subsequent run. The catalyst was tested for 5 runs and found that the catalyst gave very good reusability property.

Table-5: Reaction Run in the Presence of a Recycled Catalyst

Entry	Catalyst Run	Time (Min)	Yield*
1.	1	20	93
2.	2	20	93
3.	3	20	92
4.	4	20	89
5.	5	20	90

*All reactions (Table.1-4) are carried at 80$^\circ$C using SiO$_2$/MgSnO$_3$.

S. S. Sagar and R. P. Chavan
CONCLUSION

In Conclusion, we have developed an efficient and simple alternative for the synthesis of 2-aryl benzoxazole using SiO₂/MgSnO₃ catalyst at 80°C temperature. Noticeable advantages of this new method are simple procedure, easy workup procedure, short reaction time with good yield, use of cheap, non-toxic, environmentally benign nature make it an attractive process and the employment of a cost-effective catalyst.

REFERENCES

1. Z. Tian, W. Plata, A. Bhatia, *Tetrahedron Letters*, 46(48), 8341, (2005).
2. P. Vicini, A. Geronikaki, M. Incerti, *Bioorganic & Medicinal Chemistry*, 11(22), 4785 (2003), DOI: 10.1016/s0968-0896(03)00493-0
3. D. Murugesan, S. Palaniappan, Y. Perumal *Biomedicine & Pharmacotherapy*, 63, 11(2009)
4. R. R. Survé, S. T. Sankpal *Rasayan Journal of Chemistry*, 13(1), 282(2020), DOI:10.3178/RJC.2020.1315532
5. K. Jain, A. Shah, J. Bariwal, *Bioorganic & Medicinal Chemistry*, 15, 1181(2007), DOI: 10.1016/j.bmc.2006.07.068
6. K. Walczynski, R. Gury, H. Timmerman, *IL Farmaco*, 54 684(1999), DOI:10.1016/S0014-827X(99)00081-6
7. K. Tsurumi, Y. Hiramatsu, M. Hayashi, I. Yamaguchi, *Arzneimittel-forschung*, 70, 261(1973)
8. N. Siddiqui, A. Rana, S. Khan, *Bioorganic & Medicinal Chemistry Letters*, 17, 4178(2007), DOI: 10.1016/j.bcl.2007.05.048
9. I. Yildiz-Oren, I. Yalcin, E. Aki-Saner, *European Journal of Medicinal Chemistry*, 39, 291(2004), DOI:10.1016/j.ejmech.2003.11.014
10. R. Mccracken, W. Stillwell, *International Journal of Parasitology*, 21, 99(1991), DOI:10.1016/0020-7519(91)90125-Q
11. X. Wang, Z. Li, Y. Da, J. Chen, T. Wei, *Synthetic Communication*, 29, 4153 (2007)
12. C. J. O’Donnell, B. N. Rogers, B. S. Bronk, D. K. Bryce, J. W. Coe, *Journal of Medicinal Chemistry*, 53, 1222(2010), DOI: 10.1021/jm0901575
13. M. Cheung, P. Harris, M. Hasegawa, S. Ida, K. Kano, PCT WO, 02/44156A2(2002)
14. D.Clark, P.Eastwood, N.Harris, C.McCarthey, A.Morley, PCT WO, 00/49005(2000)
15. P.Muller, R.Huranus, R.Maier, M. Mark, S. Eisele, R.Budzinski, L.Thomas, G. Hallermayer, US Patent, US 5918907 (1999)
16. Y. Sato, M. Yamada, K. Kobayashi, K.Iwamatsu, F. Konno, EP806419 A1(1997)
17. D. Surleraux, S. Vendeville, W. Verschueren, M. De Bethune, WO 02/092595A1(2002)
18. A. Laibekman, H.M.Jantzen, L. Conley, L. Fretto, R. Scarborough, US 6667306B1(2003)
19. C. D. Cox, M. J. Breslin, D. B. Whitman, J. D. Schreier, G. B. McGauhey, M. J. Bogusky, A. J. Roecker, S. P. Mercer, R. A. Bednar, W. Lemaire, J. G. Bruno, D. R. Reiss, C. M. Harrell, K. L. Murphy, S. L. Garso, S. M. Doran, T. Pruksaritanont, P. J. Coleman, *Journal of Medicinal Chemistry*, 53, 5320(2010), DOI: 10.1021/jm100541e
20. M. Seefelder, D. Leuchs, 1962. GB 913910.
21. L. Katz, M. Cohen, *Journal of Organic Chemistry*, 19, 758(1954)
22. M. Yamato, Y. Takeuchi, K. Hattori, K. Hashigaki, *Chemical and Pharmaceuticul Bulletin*, 32, 3053(1984)
23. R. S. Varma, D. Kumar, *Journal of Heterocyclic Chemistry*, 35, 1539(1998), DOI:10.1002/jhet.5570350656
24. J. Chang, K. Zhao, S. Pan, *Tetrahedron Letters*. 43, 951(2002), DOI:10.1016/s0040-4039(01)02302-4
25. K. H. Park, K. Jun, S. R. Shin, S.W. Oh, *Tetrahedron Letters*, 37, 8869(1996), DOI:10.1016/s0040-4039(96)02070-9
26. K. Nakagawa, H. Onoue, J. Sugita, *Chemical and Pharmaceutical Bulletin*, 12, 1135(1964), DOI:10.1248/CPB.12.1135
27. I. M. Baltork, A. R. Khosropour, S. F. Hojati, *Catalysis Communication*, 8, 1865(2007)
28. C. Praveen, K. H. Kumar, D. Muralidharan, P. T. Perumal, *Tetrahedron*, 64, 2369(2008), DOI:10.1016/j.tet.2008.01.004
29. D. S. Bose, M. Idrees, *Synthesis*, 3, 398(2010), DOI:10.1055/s-0029-1217136
30. R. G. Srivastava, P. S. Venkataramani, *Synthetic Communication*, 18, 1537(1988), DOI:10.1080/0397918808081311
31. F. F. Stephens, J. D. Bower, *Journal of the Chemical Society*, 2971(1949), DOI: 10.1039/jr9490002971
32. K. Ravi Kumar, P. V. V. Satyanarayana, B. Srinivasa Reddy, *Der Pharma of Chemica*, 4, 761(2012)
33. V. S. Padalkar, V. D. Gupta, K. R. Patangare, V. S. Patil, P. G. Umap, N. Sekar, *Green Chemistry Letters & Reviews*, 5, 139(2012), DOI:10.1080/17518253.2011.585666
34. I. M. Baltork, M. Moghadam, S. Tangestaninejad, V. Mirkhani, M. A. Zolfigol, S. F. Hojati, *Journal of the Iranian Chemical Society*, 5, 65(2008), DOI: 10.1016/j.catcom.2007.02.020
35. D. Kumar, S. Rudrawar, A.K. Chakraborti, *Australian Journal of Chemistry*, 61, 881(2008), DOI: 10.1071/CH08193
36. M. M. Guru, M. A. Ali, T. Punniyamurthy, *Organic Letters*, 13, 1194(2011), DOI: 10.1021/ol2000809
37. P. Saha, T. Ramana, N. Purkait, A. Ali, R. Paul, T. Punniyamurthy, *Journal of Organic Chemistry*, 74, 8719(2009), DOI:10.1021/jo9001813g
38. C. S. Cho, D. T. Kim, J. Q. Zhang, S. L. Ho, T. J. Kim, S. C. Shim, *Journal Heterocyclic Chemistry*, 39, 421(2002), DOI:10.1002/jhet.5570390229
39. R. R. Nagawade, D. B. Shinde, *Russian Journal of Chemistry*, 42, 453(2006), DOI:10.10134/s1070428006030201
40. A. J. Blacker, M. M. Farah, S.P. Marsden, O. Saidi, *Tetrahedron Letters*, 50, 6106(2009), DOI: 10.1016/j.tetlet.2009.08.042
41. Y. Endo, J. E. Backvall, *Chemistry - A European Journal*, 18, 13609(2012), DOI:10.1002/CHEM.201202187
42. D. Yang, P. Liu, N. Zhang, W. Wei, M. Yue, J. You, H. Wang, *ChemCatChem*, 6, 3434(2014), DOI:10.1002/CCTC.201402628
43. Y. Kawashita, N. Nakamichi, H. Kawabata, M. Hayashi, *Organic Letters*, 5, 3713(2003), DOI:10.1021/ol035393w
44. R. G. Xing, Y. N. Li, Q. Liu, Q. Y. Meng, J. Li, X. X. Shen, Z. Liu, B. Zhou, X. Yao, Z. L. Liu, *European Journal of Organic Chemistry*, 6627(2010), DOI: 10.1002/EJOC.201000985
45. D. Suress, A. Dhakshinamoorthy, K. Pitchumani, *Tetrahedron Letters*, 54, 6415(2013), DOI:10.1016/j.tetlet.2013.09.039
46. S. Banerjee, J. Das, S. Santra, *Tetrahedron Letters*, 50, 124(2009), DOI: 10.1016/j.tetlet.2008.10.110
47. S. M. Inamdar, V. K. More, S. K. Mandal, *Tetrahedron Letters*, 54, 579(2013), DOI: 10.1016/j.tetlet.2014.11.091
48. S. Banerjee, S. Payra, A. Saha, G. Sereda, *Tetrahedron Letters*, 55, 5515(2014), DOI: 10.1016/j.tetlet.2014.07.123

[RJC-5898/2020]