Dense subgraphs in the H-free process

Lutz Warnke
University of Oxford

21st Postgraduate Combinatorics Conference
Random graph processes

Random graph process
(a) Start with empty graph on n vertices
(b) Add edges, one at a time, chosen uniformly at random from all remaining pairs.

Random H-free graph process
(a) Start with empty graph on n vertices
(b) Add edges, one at a time, chosen uniformly at random from all remaining pairs that do not complete a copy of H.

Basic questions:
(1) Final number of edges?
 (Erdős-Suen-Winkler, 1995)
(2) Subgraph counts?
Properties of the H-free process

In this talk H satisfies some ‘density condition’

Final number of edges

- known for the K_3-free process up to constants (Bohman, 2009)
- known for the H-free process only up to log-factors (Osthus-Taraz, 2001)

Subgraph counts

- Comparable to normal random graph during the first m steps, where

\[m \approx \delta n^{2-1/d_2(H)} (\log n)^{c(H)} \]

(Bohman-Keevash, 2009+)
- Behaviour in later steps remains open
Recap: Small subgraphs in $G(n, i)$

Maximum Density

For a graph F it is determined by ‘densest subgraph’:

$$m(F) := \max_{J \subseteq F, e_J \geq 1} \left\{ \frac{e_J}{v_J} \right\}.$$

Small subgraphs theorem (Bollobás)

Suppose we have a fixed graph F and $i = n^{2-1/\alpha}$. Then we have a ‘threshold phenomenon’ in $G(n, i)$:

$$\text{whp} \begin{cases}
\text{no copy of } F & \text{if } m(F) > \alpha \\
\text{‘many’ copies of } F & \text{if } m(F) < \alpha
\end{cases}$$
Results of Bohman-Keevash

Fixed subgraphs in the H-free process

Bohman-Keevash showed that for fixed F with $H \not\subseteq F$, in the graph produced by the H-free process after the first $m = \delta n^{2-1/d_2(H)}(\log n)^{c(H)}$ steps:

\[
\text{whp } \begin{cases}
\text{no copy of } F & \text{if } m(F) > d_2(H) \\
\text{‘many’ copies of } F & \text{if } m(F) < d_2(H)
\end{cases}
\]

$$\Rightarrow$$ H-free process ‘looks’ almost like a normal random graph, but it has no copies of H!

What happens in later steps?

• can ‘very dense’ subgraphs appear?
Previous results

\textbf{K_3-free process (Gerke-Makai, 2010+)}

There exists $c > 0$ such that whp any fixed F with

\[m(F) \geq c \]

does not appear in the K_3-free process.

\[\implies \text{No ‘very dense’ subgraphs in later steps!} \]

\textbf{What happens in the H-free process?}

- what about graphs with $v_F = \omega(1)$ vertices?
Our result

H-free process (W., 2010+)

There exists $c(H), d(H) > 0$, such that the H-free process has whp no subgraph J with density

$$m(J) \geq c(H)$$

on $v_J \leq n^{d(H)}$ vertices.

\implies No ‘very dense’ subgraphs in later steps, even if they are ‘large’ (‘many’ vertices)!

Remarks

- extends/generalizes results for K_3-free process
- tight up to the constant:
 - whp fixed F with $m(F) < d_2(H)$ appear
Proof idea

Goal:
- whp no copy of J appears in the H-free process

Main idea
- We prove that whp already after the first m steps:
 - for every possible placement of J, at least one of its pairs is ‘closed’ (i.e. can not be added in later steps)

Proof Strategy
- Show that whp in each step there are ‘many’ pairs that would close at least one pair of J
- Avoiding those pairs in all m steps is ‘very unlikely’
Summary

For H that satisfies some ‘density condition’:

The H-free process contains no ‘very dense’ subgraphs

- Whp the H-free process has no subgraphs J on $v_J \leq n^{d(H)}$ vertices with density $m(J) \geq c(H)$

Conjecture (W., 2010+)

- The H-free process contains whp no copy of a fixed graph F with $m(F) > d_2(H)$.