The Use of Echocardiography in the Critically Ill; The Role of FADE (Fast Assessment Diagnostic Echocardiography) Training

Susan Marum* and Susanna Price

UCII, Instituto Português de Oncologia Francisco Gentil, Lisbon

Abstract: Echocardiography (echo) is a powerful technique that permits direct visualization and assessment of all the cardiac structures and assessment of the patients’ haemodynamic status at the bedside. Echo allows detection of valvular disease, evaluation of ventricular function and the pericardium, detection of intracardiac/intrapulmonary shunts, and can be used to calculate flows and relative pressures between the cardiac chambers. This rapid point-of-care haemodynamic evaluation provides information to guide therapeutic interventions, including volume resuscitation, instigation of vasoactive therapy and/or referral for specialist cardiac/surgical intervention. Although there is abundant evidence in the cardiology literature regarding the use of echo, data in the critical care arena is less well defined, but emerging. The use of echo by intensive care doctors is likely to become routine, and therefore training for intensivists in this technique needs to be developed and supported. The Portuguese Working Group on Echocardiography has developed a skill-based program, FADE (Focused Assessment Diagnostic Echocardiography) in order to train clinicians in the use of bedside ultrasound as a diagnostic and monitoring tool for the critically ill.

Keywords: Echocardiography, FADE, visualisation, haemodynamic status, intrapulmonary.

INTRODUCTION

Although regarded classically as the domain of cardiologists, in recent years the use of echo has extended to other specialties, in particular anaesthesia. Here, the requirement to perform a transoesophageal echo (TOE) in order to monitor cardiac surgery provided the impetus to develop specific training for cardiothoracic anaesthetists in the technique. Currently accreditation in TOE exists from a number of bodies, and in certain countries this accreditation is mandatory to obtain a consultant post. The importance of echocardiography in the intensive care unit (ICU) has been recognized by a number of scientific societies (ASE, BSE, ILCOR, ESC, WINFOCUS), and the advantages are summarized in Table 1. Despite the potential uses, obtaining training in echocardiography remains a challenge for most intensivists, and the first accreditation in intensive care echocardiography was only piloted in 2010 by the British Society of Echocardiography (BSE). This accreditation recognizes that the questions faced by intensive care physicians are different from those in the out-patient echocardiography department, even for relatively common indications, such as the assessment of valvular pathology and ventricular function. Further, the technical challenges presented by intensive care unit (ICU) imaging are substantial, including sub-optimal lighting conditions, challenges in patient positioning, patient weight gain (oedema and/or surgical emphysema), chest drains, abdominal/chest dressings, positive pressure ventilation and rapidly changing haemodynamic support and ventilatory settings.

Table 1. The Advantages and Disadvantages in Performing Echocardiography in the ICU

Advantages	Disadvantages
The information is acquired in real-time	Does not provide potential for continuous monitoring
No health care practitioners are needed other than the performing physician	In several patients it is not possible to acquire all the classic echocardiographic views

Table 2 summarises the most frequent questions to which an echocardiogram can give an answer in the ICU. The information is based on the possibilities of image acquisition in the ICU setting, where as a rule, examinations are performed in non-ideal conditions and non-ideal patients as already mentioned. In a recent work published by our group we observed that cardiac chamber dimensions could be obtained in 97.8% of the patients, cardiac output in 86.7%, left ventricular shortening fraction in 95.2%, and inferior vena cava evaluation in 65%. Conditions affecting echocardiographic performance are characterized: weight gain (excessive fluids and generalized oedema), presence of chest tubes, and presence of abdominal bandages (affecting subcostal views). This data was in general confirmed by other authors [1].

Finally, there is no agreed minimum dataset for all intensive care echocardiography studies, as the groups of patients admitted relating to the specific ICU (i.e. trauma/general medical/ cardiac surgical) demand particular expertise. Thus, although many recommendations support the principle of
training in echocardiography for ICU physicians, the prefer-
etial approach (TTE vs. TOE) and the minimum dataset are
by definition not uniform. Further, there are marked national
differences in training and accreditation programs – even for
cardiologists (Fig. 1).

In Portugal there is no National accreditation in echocar-
diography, with the only option for training being to under-
take a fellowship/training programme in another country. In
this paper we outline a Portuguese training programme
which follows the classification recommended by the
ASE[2,3], WINFOCUS and the French Echo group[4,5] (Tables
3 & 4)). These delineate three levels of training/competence:
Level 1 –basic, Level 2 – advanced, Level 3 – highly skilled.
In terms of defining content, the global initiative Winfocus
has gathered specialists from different countries and pub-
lished a comprehensive description of the syllabus that cor-
responds to each step of training in echo for the intensivist[6].
The widespread acceptance of such formative programmes is
the key for critical care echo. Further, extension of ultra-
sonographic evaluation to the lungs is considered to be an
important skill for the ICU clinician.

LUNG ULTRASOUND

The validity of lung ultrasound beyond assessment of
pleural fluid is not yet widely recognised, however, there is
huge potential for this imaging modality in the critically ill.
Indeed, the reported sensitivity and specificity of lung US in
the diagnosis of pleural fluid and pneumothorax is signifi-
cantly higher than that of plain chest radiography, and ap-
proaches that of CT scanning. In addition to its diagnostic
value, thoracic US can be used to guide drainage of pleural
collections and pneumothorax.

The stages involved in lung US of the critically ill have
been well described by Daniel Lichtenstein[7] and its poten-
tial use is outlined in Table 5.

Table 2. Information Frequently Requested from Echocardi-
go-graphy in the General Intensive care

Information	Echocardiographic View
LV systolic function	Paraesternal long axis and short axis view, 2, 3 and 4-chamber view
Cardiac output	4-chamber view
Right heart assessment	Paraesternal long axis and short axis view, 4-chamber view
Pericardial disease	Paraesternal long axis and short axis view, subcostal view
Valvular disease	Paraesternal long axis and short axis view, 4-chamber view, subcostal view
Volume status and responsiveness	4-chamber view, inferior vena cava

Fig. (1). An integrative model of interaction between several specialties during echocardiography training acquisition.
Table 3. The Formative Program Based on the Recommendations of the American Echocardiography Society

Level 1	Basic experience, includes the performance of 150 transthoracic examinations, and a minimum period of 3 months.
Level 2	Experience toward autonomous echocardiography performance. Requires an additional 150 transthoracic examinations in a 3-month period.
Level 3	Advanced performance, requires an additional performance of 450 echocardiograms in a 6-month period.

Table 4. The training in Echocardiography for the French Society of Intensive Care

Level 1	Introduction to the technique, during a 3-month period and performance of 120 examinations
Level 2	Autonomous performance of echocardiograms, during a 3-month period and 120 examinations. Introduction of specific training for the Intensive Care physician
Level 3	Training in transesophageal echocardiography during a 3-month period and 120 examinations. Introduction of specific training for the Intensive Care physician

Table 5. Possibilities of Thoracic Ultrasound

- Diagnosis of pleural effusion
- Quantification of pleural effusion
- Characterization of pleural effusion
- Identification of pleural masses
- Identification of parenchymal disease (infection or masses)
- Identification of pulmonary oedema

THE FADE PROGRAMME

FADE is a formative programme dedicated to training to Level 1 competency in echocardiography and chest ultrasound for the intensive care clinician. Over a two-day course, a combination of blended learning techniques are employed, including: hands-on training on live models, performance of studies on the ICU, theoretical lectures, and clinical case discussions of recorded examinations. The first day introduces the principles of the basic echocardiography examination in normal models, and the second focuses on the use of echocardiography in the management of the haemodynamically unstable patient. Following attendance at the FADE course, trainees undertake additional mentored study in order to demonstrate competency in acquisition and interpretation of TTE views in a critical/emergency setting. This enables them to identify major causes of hypotension, shock, respiratory failure and recognise when referral for a second opinion is indicated. The program is outlined in detail in Table 6.

Table 6. FADE PROGRAMME

Day	Theoretical Training	Practical Training
Day 1	Physics of ultrasound	Hands-on training
		PLAX
		PSAX
		A4Ch
		SC
		US anatomy of the heart & lungs:
		PLAX/PSAX, A4Ch, SC, IVC, thoracic
		Basic assessment:
		LV function (global & regional)
		RV function
		Valves
		Pericardium
		IVC
		CO
		Pitfalls of assessment in the critically ill
		Lung US:
		Pleural effusion
		Pneumothorax
		Day 2
		LV in the ICU; sepsis & related syndromes
		ICU hands-on training;
		Supervised studies
		in the ICU including measurement of CO,
		combined with clinical discussion
		IPPV and the heart
		Interpretation of recorded clinical cases
		IVC and derived parameters
		Echo in shock states
		Dynamic indices of volaemia
		Weaning from mechanical ventilation
		Assessment
		Interpretation of snapshot images
		within clinical context
		Obtaining echocardiographic views in live models

CONCLUSION

Although evidence that ICU echo is valuable is emerging, training of intensive care clinicians in this technique still remains challenging. Training and accreditation programmes aiming to deliver Level 1 competencies tailored to national requirements and sensitivities are emerging in many countries (i.e. FATE: Denmark, FEEL-United Kingdom, FEEL:
Germany, French ICU echo: France). In Portugal the FADE programme has been developed in order to address this challenge, providing a two-day training program as an introduction and opening the path to Level I of the recognised competencies in critical care ultrasound.

REFERENCES

[1] Marcelino PA, Marum SM, Fernandes AP, Germano N, Lopes MG. Routine transthoracic echocardiography in a general Intensive Care Unit: an 18 month survey in 704 patients. Eur J Intern Med 2009; 20(3): e37-42.

[2] Ehler D, Carney DK, Dempsey AL, et.al. Guidelines for cardiac sonographer education: Report of the American Society of Echocardiography Sonographer Education and Training Committee. J Am Soc Echocardiography 2001; 14: 77-84.

[3] Quiñones M, et al. ACC/AHA Clinical Competence Statement on Echocardiography. A Report of the American College of Cardiology/American Heart Association/American College of Physicians–American Society of Internal Medicine Task Force on Clinical Competence JACC 2003; 41:687-708.

[4] Vignon P, Dugard A, Abraham J et al. Focused training for goal-oriented hand-held echocardiography performed by non-cardiologist residents in the intensive care unit. Intensive Care Med 2007; 33: 1795-99.

[5] Cholley B, Vieillard-Baron A, Mebazaa A. Echocardiography in the ICU: time for widespread use. Intensive Care Med 2005; 32: 9-10.

[6] Price S, Via G, Sloth E, Guarracino F, Breitkreutz R, Catena E, Talmor D. Echocardiography practice, training and accreditation in the intensive care: document for the World Interactive Network Focused on Critical Ultrasound (WINFOCUS). Cardiovasc Ultrasound 2008; 6: 49.

[7] Lichtenstein D, Mezière G.A. Relevance of Lung Ultrasound in the Diagnosis of Acute Respiratory Failure: The BLUE Protocol. Chest 2008; 134: 117-125.