Predictions of a simple parametric model of hierarchical black hole mergers

Parthapratim Mahapatra, Debatri Chattopadhyay, Anuradha Gupta, Marc Favata, B. S. Sathyaprakash, and K. G. Arun

1Chennai Mathematical Institute, Siruseri, 603103, India
2School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, United Kingdom
3Department of Physics and Astronomy, The University of Mississippi, University, Mississippi 38677, USA
4Department of Physics & Astronomy, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043, USA
5Institute for Gravitation and the Cosmos, Department of Physics, Penn State University, University Park, PA 16802, USA
6Department of Astronomy and Astrophysics, Penn State University, University Park, PA 16802, USA

(Dated: May 13, 2024)

The production of black holes with masses between \( \sim 50M_\odot \)–\( 130M_\odot \) is believed to be prohibited by stellar processes due to (pulsational) pair-instability supernovae. Hierarchical mergers of black holes in dense star clusters are proposed as a mechanism to explain the observations of binary black holes with component masses in this range by LIGO/Virgo. We study the efficiency with which hierarchical mergers can produce higher and higher masses using a simple model of the forward evolution of binary black hole populations in gravitationally bound systems like stellar clusters. The model relies on pairing probability and initial mass functions for the black hole population, along with numerical relativity fitting formulas for the mass, spin, and kick speed of the merger remnant. We carry out an extensive comparison of the predictions of our model with \texttt{clusterBHBdynamics} (cBHBd) model, a fast method for the evolution of star clusters and black holes therein. For this comparison, we consider three different pairing functions of black holes and consider simulations from high- and low-metallicity cluster environments from cBHBd. We find good agreements between our model and the cBHBd results when the pairing probability of binaries depends on both total mass and mass ratio. We also assess the efficiency of hierarchical mergers as a function of merger generation and derive the mass distribution of black holes using our model. We find that the multi-modal features in the observed binary black hole mass spectrum—revealed by the non-parametric population models—can be interpreted by invoking the hierarchical merger scenario in dense, metal-rich, stellar environments. Further, the two subdominant peaks in the GWTC-3 component mass spectrum are consistent with second and third-generation mergers in metal-rich, dense environments. With more binary black hole detections, our model could be used to infer the black hole initial mass function and pairing probability exponent.

I. INTRODUCTION

Understanding the formation channels of binary black holes (BBHs) is one of the primary science goals of gravitational wave (GW) astronomy. The proposed formation scenarios of BBHs are broadly divided into two categories: isolated field binary evolution [1–5] and dynamical binary formation in dense stellar environments [9–18]. Among the \( \sim 90 \) BBHs reported in the third LIGO-Virgo-KAGRA (LVK) gravitational-wave transient catalog (GWTC-3) [19], a few binaries [1] have at least one component’s mass in the “upper mass gap” (between \( \sim 50–130M_\odot \)). It is widely believed that this region is forbidden by stellar evolution due to pair-instability or pulsational pair-instability supernovae [20, 26] and the result of fundamental physics at play in the evolution of massive stars [27].

An alternate pathway to populate the upper mass gap is hierarchical assembly via multiple generations of BBH mergers [28, 31]. In this scenario progenitor black holes (BHs) do not originate directly from the collapse of massive stars, but rather from the remnants of previous generations of BBH mergers. Kimball et al. [35] found evidence for hierarchical BBH mergers in the GWTC-2 catalog. Because BBH mergers generically result in GW recoil [36, 37], this requires an astrophysical environment (such as a star cluster) with a sufficiently large escape speed to retain the merger remnants [38, 39]. Nuclear star clusters (NSCs) and gaseous active galactic nuclei (AGN) disks are the most promising sites for repeated mergers due to their larger escape speeds [40–45]. However, a subclass of globular clusters (GCs) may also facilitate hierarchical mergers of BBHs [46, 47]. Additionally, repeated mergers offer a natural explanation for the existence of intermediate mass black holes of a few hundred solar masses [48].

The state-of-the-art \( N \)-body simulation codes, such as the \texttt{NBODY6} and \texttt{NBODY7b} [49, 50], are used to model the long-term evolution of star clusters and make theoretical predictions for the dynamical formation channel. These \( N \)-body simulation codes incorporate the extensive stellar evolution prescription [51, 52], as well as the gravitational dynamics, to higher post-Newtonian accuracy [53, 56]. The comparatively more-rapid and less detailed

\footnote{ppmp75@cmi.ac.in}

There are 8 (3) compact binaries in the GWTC-3 catalog for which the mass posteriors of at least one of the companions exceed 50\( M_\odot \) (60\( M_\odot \)) at 90% credibility.
Monte-Carlo codes such as MOCCA [57] and CMC [58] have been also developed to study the formation of BBHs in dense star cluster. However, neither direct N-body nor Monte-Carlo codes have the ability to accurately model nuclear clusters, which may get as massive as $10^8 M_\odot$. This further motivates the use of semi-analytical models [41, 42, 59], which, while losing the intricate details and micro-physics of N-body models, reproduce the overall cluster evolution along with its BH population as predicted from N-body models. These models allow us to venture into the realm of massive globular and nuclear star clusters.

Previous semi-analytical models studied the observed BH remnant retention probability using numerical relativity (NR) fitting formulas [46, 60]. They also modeled the properties of second or higher generation BHs (e.g., the mass ratio, chirp mass, spin magnitudes, effective spin parameter, etc. [39, 61–64]). These studies found that the characteristics of different BH merger generations are largely governed by the relativistic orbital and merger dynamics rather than the astrophysical environments in which they merge (see Gerosa and Fishbach 65 for a review of this topic). However, models of hierarchical mergers must consider the astrophysical environment’s efficiency at retaining post-merger remnants, to ensure they are available for next generation mergers.

Recently Zevin and Holz 66 studied the impact of the host environment on the mass distributions of hierarchically-assembled BHs. They generate merger trees that start with first-generation (1g) BH seeds, and grow them by merging BHs in series while estimating the remnants’ properties using NR fits [67]. They studied three different kinds of binary mergers: 1g+Ng, Ng+Ng, and Mg+Ng, with $M \leq N$. Here Ng refers to the BH generation. For example, a 1g+1g merger produces a 2g remnant, which can then form a binary with a new 1g BH (1g+2g), another 2g BH (2g+2g), or with a higher generation BH (e.g., 2g+3g; see Fig. 1). Zevin and Holz 66 found that once the escape speed of the host environment reaches $\sim 300$ km/s, the fraction of hierarchically-assembled binaries with total masses greater than $100 M_\odot$ exceeds the observed upper limit of the LVK mass distribution (see Fig. 4 of Zevin and Holz 66). They argued that hierarchical formation in such environments should be inhibited by some unknown mechanism to avoid this conflict termed as the “cluster catastrophe”. However, the study is hindered by several significant uncertainties that includes: (a) the initial properties of star clusters [e.g., Ref. 68], (b) the absence of considerations for binary-single [69, 70] and binary-binary interactions (potentially ejecting black holes and hence decreasing the total number of hierarchical mergers [e.g., Refs. 71, 72]), (d) the absence of a varying initial black hole mass function for the clusters that take into account the variation of cluster’s metallicity [18, 74] and age [75]; and (e) the lack of inclusion of the change in the cluster dynamics due to the growth a massive black hole at its center [70]. These limitations result in numerous caveats for

![1g Progenitor BHs](image1)

![2g Progenitor BHs](image2)

![3g Progenitor BHs](image3)

![4g Progenitor BHs](image4)

**FIG. 1.** A schematic depiction of the hierarchical merger process. First generation progenitor BHs form from stellar collapse. A fraction of that seed population form the first generation BBHs (1g+1g). If their merger remnants are retained by their environment (i.e., not ejected via GW recoil), they enter the 2g progenitor BH population. A fraction of the 2g population then forms binaries with other 2g BH remnants or with members of the 1g population. The subsequent merger remnants that are retained form the 3g progenitor population, which can then form 1g+3g, 2g+3g, and 3g+3g binaries. The diagram shows the process up to the formation of the 4g progenitor population.

The main goal of this work is to develop a simple model (analogous to those developed in Gerosa and Berti 39, 61, Doctor et al. 64, Gupta et al. 81) to investigate the hierarchical merger process in bound environments like massive star clusters (which can retain a large fraction of higher generation mergers). We will refer to this as a *Simple Parametric model for Hierarchical Mergers* or simply SPHM. We also compare our results with those from *clusterBHBdynamics* (cBHBd), a rapid
N-body code for evolving BH populations in dense star clusters, to assess the reliability of the SPHM. We then use the SPHM to study the efficiency of hierarchical BH growth by calculating the retention probability of BBH remnants produced by different merger generations, accounting for the cluster escape speeds. This code allows us to infer the properties of multiple BBH merger generations, including their mass distributions. These properties can be computed as a function of different pairing probability functions, which depend on the total mass and mass ratio of the binaries [82-83], as well as the mass and spin distributions of the first generation progenitor BHs. Finally, we also compare the predicted mass spectrum from SPHM with the GWTC-3 mass distribution [84]. We find that the hierarchical merger scenario can explain the multiple peaks in the mass spectrum, as revealed by non-parametric population models [86, 87].

This paper is organized as follows. Section II outlines in detail the assumptions that go into the SPHM. The formation and forward evolution of BBHs are discussed in Sec. III. Comparisons with the cBHBd model is reported in Sec IV. SPHM predictions for the efficiency of hierarchical mergers in star clusters are discussed in Sec. V. BH mass spectrum predictions are discussed in Sec. VI. Section VII presents conclusions and future directions.

II. MODEL ASSUMPTIONS

Given the component masses and spin vectors of the BBH components, SPHM uses NR fitting formulas to predict the final mass, final spin, and kick imparted to the merger remnant due to the radiated GW energy, angular momentum, and linear momentum [86, 87]. To analyze a population of BBHs, these NR fits are supplemented with an initial mass function for the primary BH mass \( m_1 \) and a pairing probability function \( p^\text{pair}(m_2|m_1) \), where \( m_2 \) is the secondary mass. The pairing probability phenomenologically determines the probability of forming a BBH with masses \( m_1 \) and \( m_2 \) in a particular cluster environment [86, 87]. These ingredients allow us to set up and forward evolve the population through multiple generations of mergers.

The SPHM starts with a population of BHs in a bound environment that, for simplicity, we refer to as a cluster. This might be a GC, a NSC, or an AGN disk. The cluster is described solely by its escape speed \( V_\text{esc} \) in our model. The initial “first generation” (1g) BH population is described completely by their initial mass and spin distributions. We then pair these 1g BHs via a pairing probability function \( p^\text{pair}(m_2|m_1) \) to form a population of bound BBHs. (The details are described further below.) The mass, spin, and kick of the resulting BH merger remnants from this population are determined via NR fitting formulas.

Figure I provides a schematic illustration of how SPHM evolves the BH population. A cluster retains a merger remnant if its kick speed \( V_\text{kick} \) is less than the cluster’s escape speed. Hence, the first iteration of SPHM produces a subpopulation of second generation (2g) BHs (i.e., 1g+1g merger remnants) that are retained by the cluster. These 2g BHs are subsequently paired up with either 1g or other 2g BHs. The second iteration of SPHM produces 3g progenitor BHs (retained products of 1g+2g or 2g+2g mergers). A third iteration produces 4g progenitor BHs (via 1g+3g, 2g+3g or 3g+3g mergers), and so on, as the model is iterated further. Our goal is to study, as a function of the merger generation, the fraction of binaries retained in clusters and the properties of the remnant BH population (especially its mass distribution). The SPHM makes the following assumptions about the mass and spin distributions of the 1g BH population and the pairing probability function.

A. Mass distribution

The mass distribution of 1g progenitor BHs is assumed to follow a power-law distribution with a smooth tapering at the lower end of the distribution [91, 92]:

\[
p(m) \propto m^{-\alpha} S(m|m_{\min}, \delta_m) H(m_{\max} - m),
\]

where \( H \) is the Heaviside step function and \( m_{\min} \) and \( m_{\max} \) are the minimum and maximum masses of the power-law component of the 1g progenitor BH mass function. Instead of a step-function at the low-mass end of the BH mass spectrum, we use a smoothing function \( S(m | m_{\min}, \delta_m) \) [93] which smoothly rises from 0 to 1 over the interval \((m_{\min}, m_{\min} + \delta_m)\):

\[
S(m | m_{\min}, \delta_m) = \begin{cases} 
0, & \text{for } m < m_{\min}, \\
1, & \text{for } m_{\min} \leq m < m_{\min} + \delta_m, \\
\frac{f(m - m_{\min}, \delta_m) + 1}{\delta_m}, & \text{for } m_{\min} \leq m < m_{\min} + \delta_m,
\end{cases}
\]

with

\[
f(m', \delta_m) = \exp \left( \frac{\delta_m}{m' + \delta_m - \delta_m} \right).
\]

Note that \( \delta_m = 0 \) recovers the distribution with a sharp cut-off at \( m = m_{\min} \). The spectral index \( \alpha \), the tapering parameter \( \delta_m \), and the minimum and maximum allowed masses \( m_{\min} \) and \( m_{\max} \) fully define the mass distribution of 1g progenitor BHs. These parameters depend on the initial stellar mass function, the stellar evolution process (e.g., wind prescription, natal kick distribution, etc.), and the cluster properties (such as metallicities, cluster mass, and virial radius).

B. Spin distribution

The uncertainties in the spin magnitudes of BHs from stellar evolution and core-collapse supernova models are
still too large to predict the 1g progenitor BH spin distributions. Efficient angular momentum transport via the magnetic Tayler instability leads to low birth spins for BHs \cite{96, 98}. Here, we assume a uniform distribution between [0, 0.2] for the dimensionless spin magnitude \( \chi \) of 1g BHs. Spin tilt angles for all BH generations and population models are isotropically drawn over a sphere \cite{99, 100}. Note that spin tilt angles are chosen at binary separations \( \sim 10M \), where NR simulations typically start (see Barausse and Rezzolla \cite{101} and Sec. 2.1 of Gerosa and Sesana \cite{102}).

### C. Pairing function

Dynamical interactions in dense clusters produce more equal-mass mergers (see Sec. IVB and Fig. 9 of Rodriguez et al.\cite{99}). For binary-single and binary-binary encounters in dense clusters, binaries are prone to exchanging components, preferentially expelling less-massive components in favor of more massive companions \cite{103, 104}. Additionally, the merger probability in dense clusters depends on the total mass \( M_{\text{tot}} \) of the binary as dynamical interactions favor binaries with larger \( M_{\text{tot}} \) due to the well-known effect of “mass segregation” \cite{105, 106}. Binaries merging in AGN disks typically have lower mass ratios (i.e., \( q \equiv m_2/m_1 \ll 1 \)) as migration traps within AGN disks give rise to interactions that lead to unequal-mass binaries (McKernan et al.\cite{83} Bellovary et al.\cite{107} see also Fig. 3 of Yang et al.\cite{108} and as well as Figs. 3 and 5 of Li\cite{109}).

Here we consider three types of pairing probability functions: one that depends only on the mass ratio \( q \), one that depends only on the total mass \( M_{\text{tot}} \), and one that depends on both \( q \) and \( M_{\text{tot}} \), where, as before, \( q \equiv m_2/m_1 \leq 1 \). In the first case, we assume the pairing probability depends only on the mass ratio via \cite{84, 85, 86, 87}:

\[
p_{\text{pair}}(m_2|m_1) \propto q^\beta, \tag{4}
\]

where \( \beta \geq 0 \) is the sole parameter that governs the pairing probability between two BHs in a cluster. For positive values of \( \beta \), the pairing function in Eq. \ref{eq:4} favors the formation of comparable-mass binaries. But it does not account for mass segregation.

Next, we consider the pairing function that depends only on the total mass via \cite{83, 110}:

\[
p_{\text{pair}}(m_2|m_1) \propto M_{\text{tot}}^\beta. \tag{5}
\]

For \( \beta > 0 \), the pairing function in Eq. \ref{eq:5} prefers the formation of massive binaries and hence captures the mass segregation.

Finally, we also consider the pairing probability function that depends on both \( q \) and \( M_{\text{tot}} \):

\[
p_{\text{pair}}(m_2|m_1) \propto q^\beta M_{\text{tot}}^\beta. \tag{6}
\]

This pairing function\footnote{It is natural to choose two different exponents for \( q \) and \( M_{\text{tot}} \) in Eq. \ref{eq:6}. But here we have chosen the same exponent for both \( q \) and \( M_{\text{tot}} \) to simplify the model. Our goal is to construct a simple model for hierarchical mergers in dense stellar environments that effectively captures several well-known physical processes in clusters with moderate accuracy.} captures the preference for forming both equal-mass binaries and massive BH binaries in the cores of dense clusters. In all of the three cases above (Eqs \ref{eq:4} \& \ref{eq:5} and \ref{eq:6}) the normalization factor depends on \( m_{\text{min}} \) and \( m_{\text{max}} \) via the condition \( \int_{m_{\text{min}}}^{m_{\text{max}}} dm_1 \int_{m_{\text{min}}}^{1} dq p_{\text{pair}} = 1 \), where \( q_{\text{min}} = m_{\text{min}}/m_{\text{max}} \). For all the pairing functions, \( \beta = 0 \) corresponds to random pairing \cite{83} and preferences the formation of unequal-mass binaries.

The pairing of BHs in dense clusters depends on the cluster properties (e.g., metallicities, evolution history, initial cluster mass, and virial radius) and different types of dynamical encounters inside the cluster core \cite{47}. The parameter \( \beta \) captures these physical processes and is (in principle) a function of the above-mentioned cluster parameters. Here we assume that the cluster properties (along with \( V_{\text{esc}} \)) do not evolve over the timescale of the entire hierarchical merger process. In reality, the pairing probability may depend on the cluster’s dynamical age \cite{18, 41, 47}. By the time much higher generation BBHs have formed (e.g., 10th generation), the cluster should have evolved significantly from its initial stage. In that case, one should incorporate the evolution of the star clusters in the computation. For example, after 1 Gyr of evolution, the cluster compactness (compactness is defined as the ratio of the total cluster mass and its half-mass radius) reduces by a factor of \( \sim 5 \) (see Fig. (7) of \cite{41}). The escape speed of a cluster is proportional to the square root of its compactness (See Eq. (29) of \cite{41}). Therefore, after 1 Gyr of evolution, the escape speed of a cluster reduces by \( \sim 45\% \). On the other hand, the hierarchical growth of BBHs in massive clusters such as NSCs can reach up to as high as the 8th generation (See Fig. (12) of \cite{31}) within 1 Gyr of evolution. Here, we restrict ourselves to the formation of third-generation BBHs.

### D. Other assumptions

The SPH also assumes that multi-body interactions play a negligible role in ejecting BHs and altering the fraction of BHs that are retained. Dynamical ejection is an important effect in clusters with low escape speeds such as young star clusters \cite{111} and GCs. For example, simulations of Milky Way type GCs \( (V_{\text{esc}} \sim 30 \text{ km/s}) \) found that roughly \( \sim 50\% \) of cluster BBHs merge after being ejected from the cluster by dynamical 3-body interactions (see Sec. 9.1 of Kremer et al. \cite{112}). However, GCs are more massive at their birth \cite{113} and would
have retained most of their BBHs. Additionally, Miller and Lauerburg [7] and Antonini and Rasio [40] argued that dynamical ejections in NSCs can be safely ignored due to their larger escape speeds (see also Antonini et al. [29] at present day the GCs have escape speeds $\sim 2 - 180$ km/s, whereas the NSCs have escape speeds $\sim 10 - 1000$ km/s). For astrophysical environments that facilitate hierarchical mergers (those with $V_{\text{esc}} \geq 200$ km/s; Mahapatra et al. [46]), ignoring dynamical ejections is a reasonable assumption. The position of the BBH within the cluster, along with any sinking due to dynamical friction, are likewise ignored. Inclusion of these effects will reduce the efficiency of hierarchical mergers; hence our estimates should be seen as upper limits.

III. EVOLVING THE BBH POPULATION

To evolve our BBH population we begin by randomly drawing $\sim 10^6$ BH pairs from the previously described mass and spin distributions. Each pair is characterized by mass and spin parameters $\{m_{1g}, \chi_{1g}, m_{2g}, \chi_{2g}\}$, with “1” denoting the heavier “primary.” A pool of $1g+1g$ binaries inside a cluster with escape speed $V_{\text{esc}}$ is then constructed by sampling over these pairs with a weight proportional to $p_{\text{pair}}$ (using either Eq. 4, 5, or 6).

We then estimate the final mass $m_f$, spin $\chi_f$, and kick $V_{\text{kick}}$ of each binary’s merger remnant using NR fits. (These fits were developed in Campanelli et al. [52], Barausse et al. [92], and Hofmann et al. [67]; see also Appendix A of Mahapatra et al. [46].) This produces the first generation $1g+1g$ merger remnants. If a $1g+1g$ remnant is retained in the cluster, it can take part in further mergers. The necessary condition for the retention of a remnant in a cluster is that the GW kick imparted to the remnant should be less than the escape speed of the host cluster ($V_{\text{kick}} < V_{\text{esc}}$). Hence, the probability of repeated mergers in a cluster is directly proportional to the retention probability: the probability that a member of the population has $V_{\text{kick}} < V_{\text{esc}}$. Mahapatra et al. [46] estimated the retention probability of GWTC-2 BBH events inside clusters with different escape speeds via the cumulative distribution function (CDF) of the kick posteriors (see Sec. 2 of Mahapatra et al. [46]). Here the retention probability of $1g+1g$ mergers is calculated from the kick CDF of the population of $1g+1g$ merger remnants. The retention probability for $1g+1g$ remnants (and for future merger generations) can then be quantified as a function of the cluster escape speed. The retained $1g+1g$ remnants will produce the population for the second generation ($2g$) progenitor BHs.

There are two possibilities for second generation mergers: $1g+2g$ or $2g+2g$ binaries that are formed according to the pairing probability function. The properties and retention probabilities of the resulting mergers are computed as described above, with further details in the Sec. 1 of Supplemental Material. The retained remnants form the third generation ($3g$) progenitor BH population. From there, the third generation of binaries is paired via three possible combinations: $1g+3g$, $2g+3g$, and $3g+3g$. The subpopulation that is retained after these $3g$ binaries merge forms the $4g$ progenitor BBH population. The Sec. 1 of Supplemental Material describes the steps of the forward evolution in an algorithmic way. In principle, this process goes on until there are no more BHs left in the cluster and/or inefficiency in pairing halts the process. Considering the limited number of high-mass BHs in the current LVK observational sample, we stop our iteration when $4g$ progenitor BHs are formed. Our forward-evolution model of the BBH population closely follows [39, 41, 42, 44, 81].

IV. COMPARISON WITH CBHBd

In this section, we compare the prediction of the mass spectrum for various BBH generations from the SPHM with the fast semi-analytic cluster population model CBHBd [11, 17].

A. CBHBd model

The semi-analytical code CBHBd [34, 41, 47, 113] relies on Henon’s principle [115], which states that—following core-collapse—the rate of heat generation in the cluster’s core is a constant fraction of the total cluster energy per half-mass relaxation time. In the ‘balanced evolution’ phase of the cluster, the heat is produced by the hard BH binaries in the core [116]. The evolution of the BH population—which primarily segregates to the cluster core—is therefore linked with the global properties of the host cluster, since the hardening of BH binaries through dynamical interactions in the core acts as a heat source for the cluster.

The CBHBd model approximates the cluster as a two-component system i.e., the cluster is composed of two types of members: (a) BHs and (b) all other stellar remnants and remaining small still-evolving stars [3]. It further assumes that the cluster’s primary heat source is a single BH-BH binary at the core hardened through binary-single encounters. It is also assumed that the binding energy of the binary increases by a fraction of 0.2 during the binary-single interactions. After each encounter of the double BH with a single BH, the fractional decrease of the binary semi-major axis is computed and checked if the double BH merges inside or outside the cluster after getting ejected out. If the BH binary merges inside the cluster, its recoil kick is also calculated to check

\[3\] This is a reasonable assumption because the time scale of stellar evolution $\sim O(\text{Myrs})$ is much smaller compared to the time scale for cluster evolution $\sim O(100\text{Myrs})$ — $O(\text{Gyrs})$ [51].
if the remnant is retained to further partake in forming BH pairs. Simultaneously, the cluster’s global properties are also evolved from its initial state. The initial conditions of the cluster are specified by three parameters: the cluster mass, the cluster density, and the total mass of all BHs in the cluster. The latter is derived using the realistic initial mass function of stars and the single stellar evolution code. The detailed steps of the time evolution of the cluster properties are provided in Sec. (2.3) of Antonini and Gieles [31]. The generation of the initial BH mass function, the double BH pairing prescription and BH binary-single encounters are chalked in the paragraphs below. Therefore, adopting a reliable model for cluster evolution, realistic initial black hole mass distribution, and model of black hole dynamics in clusters, cBHBD predicts double black hole formation, evolution, and merger rates in star clusters.

The masses of the BH stellar progenitors are sampled from the Kroupa initial mass function, \( p(m_\star) \propto m_\star^{-2.3} \) [94, 117], with \( m_\star \) corresponding to initial stellar masses in the range \( 20M_\odot \sim 130M_\odot \). For a given cluster metallicity \( Z \), the individual stars are evolved to BHs using the Single Stellar Evolution (SSE) prescriptions [51]: this includes updated directives for stellar winds and mass loss [118] and the pair–instability process in massive stars [119]. A Maxwellian distribution with dispersion of 265 km/s [120] (and scaled down by fallback mass [121]) is used to calculate the natal kicks of BHs.

The pairing probabilities for BH binaries and binary-single encounters are given by a metallicity-dependent initial BH mass function that is a power law distribution; see Antonini et al. [47] and Chattopadhyay et al. [34] for more details [4]. The binary energy loss (via hardening from binary-single encounters) depends on the single-to-binary mass ratio [34, 122, 123]. The cBHBD model accounts for the dynamical ejection of BHs through binary-single encounters, as well as binary hardening and merger through binary-single encounters as detailed in Antonini et al. [47] and Chattopadhyay et al. [34]. While binary-binary encounters are not accounted for, Barber et al. [124] has shown that clusters with initial escape speeds \( \gtrsim 100 \) km/s have negligible binary-binary interactions and are dominated by binary-single encounters. Moreover, the simultaneous evolution of the host cluster and its BH population in cBHBD has been assessed against direct N-body models [41].

**B. Comparison setting**

Here, we have adopted data from the cBHBD model for two different values of the cluster metallicity, \( Z = 0.00015 \) and \( Z = 0.0225 \). The initial cluster mass is \( M_{cl,0} = 2 \times 10^5 M_\odot \) and the initial half-mass density is \( \rho_{h,0} = 10^7 M_\odot \text{ pc}^{-3} \). This chosen model is the “Fiducial” of [34], which roughly matches the Milky Way nuclear cluster after one Hubble time of evolution [see Fig. 19 of Ref. [94]]. The cluster mass \( M_{cl,0} \) post mass-segregation (at core collapse) is calculated to be about

---

4 If two BHs with masses \( m_1 \) and \( m_2 \) form a binary, the probabilistic pairings are given by \( p(m_1) \propto m_1^{\lambda_1} \) (which determines which massive BH \( m_1 \) is likely to be in a binary) and \( p(q) \propto q^{\lambda_2} \) (which dictates the mass-ratio of the binary BH with \( m_1 \) as primary, hence picking the value of \( m_2 \) with \( \lambda_1 = 8 + 2\lambda \) and \( \lambda_2 = 3.5 + \lambda \). The probability of this binary encountering another BH with mass \( m_3 \) is given by \( p(m_3) \propto m_3^{\lambda_3} \), with \( \lambda_3 = 0.5 + \lambda \). Here, \( \lambda \) is an eighth-order polynomial fit to the cluster metallicity as given by Chattopadhyay et al. [34].

5 Since we assume the model to be a nuclear cluster, only stellar evolution mass loss and cluster expansion due to core dynamics is included; mass-loss due to stripping by a host galaxy is not included.
FIG. 3. Comparison of the BBH distributions for the binary’s primary mass (first column) and mass ratio (last column) for different BBH generations as computed via the SPHM and cBHBd models. Here, the SPHM assumes the $M_{\text{tot}} - q$-based pairing function in Eq. 6. The different colored curves show the different generations of BBH mergers. The solid-colored curves are derived from the SPHM (with $\beta$-values as indicated in the plot titles), while the dashed-colored curves are derived from the cBHBd model (for the indicated metallicity values). See Sec. IV B for more details. We see that the results of the SPHM are in reasonably good agreement with cBHBd results overall.

half of the cluster’s initial mass, $M_{\text{cl,0}} \approx 10^7 M_\odot$, while the half-mass density at core-collapse is found to be $\rho_{h,0} \approx 2 \times 10^6 M_\odot \text{pc}^{-3}$. Therefore, the net escape speed of the cluster at the onset of the dynamical regime (post-core-collapse) is $\sim$ 400 km/s (calculated using Eq. (29) of Antonini and Gieles [41]). For comparison with the SPHM, we have extracted the mass distributions of 1g+1g, 1g+2g, and 1g+3g BBH mergers from the cBHBd model for the two different values of the cluster metallicity mentioned above. We likewise generate the same mass distributions using the SPHM. We first calculate the initial mass distribution of BHs inside a cluster with an escape speed of 400 km/s corresponding to the cBHBd data. The cluster members (i.e., stellar and BH populations inside the cluster) are obtained from SSE assuming a Kroupa initial mass function and the previously mentioned stellar evolution processes. While estimating the initial mass distribution of BHs, we incorporate the ejection of BHs from the cluster by natal kicks. Once we get the data for the initial mass distribution of BHs inside the cluster, we fit this to the function in Eq. [1]. The fitted initial mass distribution and the actual ini-
tial mass distribution obtained from the SSE code are shown in Fig. 2. We find that Eq. 1 with parameters $\alpha = 2, \delta_m = 14M_\odot, m_{\text{min}} = 5M_\odot$, and $m_{\text{max}} = 42M_\odot$ provides a reasonably good fit to the initial mass distribution of BHs in a cluster with metallicity $Z = 0.00015$. Similarly, we also obtain the set of parameters that gives a good fit for high metallicity initial mass functions for $Z = 0.015, 0.0225$. The best-fit parameters are presented in Fig. 2.

Next, we adopt these values of $\alpha, m_{\text{min}}, m_{\text{max}},$ and $\delta_m$ (with $V_{\text{esc}} = 400$ km/s) in SPHM and produce the mass distribution of different BBH mergers for the three different types of pairing probability functions (discussed in Sec. II C) for each pairing probability function we consider a few values for the pairing exponent $\beta$ from the range $0 \leq \beta \leq 16$. We then compare the distributions of primary mass and mass ratio from the SPHM with the cBBHd model for $1g+1g, 1g+2g,$ and $1g+3g$ BBH mergers for the two types of clusters. We report our findings from these comparisons in the next section.

C. Results of the comparison for different pairing functions

We now compare the results of the mass distributions of different generations of mergers from SPHM with cBBHd for different pairing functions. Though we have performed extensive comparisons, for the convenience of presentation, we show only those results that give good agreement between the two models. A brief discussion of the level of disagreements and potential reasons are summarized for each pairing. Also note that the fits presented are based on trial and error and not from a systematic fit as the objective here is to show that by tweaking the free parameters of SPHM, we can closely match the results from cBBHd.

1. Pairing based on mass ratio

We first compare the primary mass and the mass ratio distributions for different BBH generations as computed via the SPHM and cBBHd models, where SPHM assumes the $q$-based pairing given in Eq. 4. For the low metallicity-case ($Z = 0.00015$), the mass spectrum of different BBH generations from the SPHM does not agree with the results of cBBHd; there is a marginal agreement for $Z = 0.0225$. In low metallicity clusters, the initial BH mass distribution is broad (between $\approx 5M_\odot - 45M_\odot$ for $Z = 0.00015$); there the effect of mass segregation allows only the massive BHs to sink into the cluster core and form binaries. As the $q$-based pairing does not account for the mass segregation, the SPHM with $q$-based pairing does not agree with the cBBHd model when $Z = 0.00015$. In high metallicity clusters, the initial mass functions of BHs are relatively narrower (between $\approx 5M_\odot - 15M_\odot$ for $Z = 0.0225$). In that case, the mass segregation is less significant as there is not much diversity in the range of initial BH masses. Therefore, the SPHM with $q$-based pairing marginally agrees with the cBBHd model when $Z = 0.0225$.

2. Pairing based on total mass

Next, we make the same comparisons between the two models when the SPHM assumes the $M_{\text{tot}}$-based pairing function in Eq. 5. Here, we find that the primary mass distributions from the SPHM agree well with the cBBHd model for metallicity $Z = 0.00015$ when $6 < \beta < 10$. However, the mass ratio distributions from these two models do not agree with each other for $Z = 0.00015$. For $Z = 0.0225$, there is again marginal agreement between the two models. Moreover, for high metallicity clusters, the type of pairing does not yield significantly different results. This is unsurprising, given that these clusters produce relatively lower-mass black holes, resulting in a narrow initial black hole mass spectrum. As a result, all models tend to agree with each other.

3. Pairing based on mass ratio and total mass

Lastly, we compare the mass spectrum of SPHM and cBBHd model when the SPHM uses the pairing probability function given by Eq. 6. Here, we find good agreement between these two models for both the metallicities. This is because the pairing function in Eq. 6 captures both the formation of equal-mass binaries from three-body interactions and the mass segregation effect to a greater extent than the previous two pairing functions. Here, $\beta = 8$ and $\beta = 4$ provide the best agreement between the SPHM and cBBHd models for $Z = 0.00015$ and $Z = 0.0225$, respectively. We have shown the agreement between these two models in Fig. 3.

Independently, we have also forward evolved the data of the initial mass distribution of BHs inside the cluster (directly derived from the SSE package with various stellar physics inputs mentioned in the first paragraph of Sec. IV B) using the SPHM with the three pairing functions. For the pairing functions in Eq. 6, we also find good agreement between the SPHM and the cBBHd model for both the metallicities, $Z = 0.00015$ and $Z = 0.0225$.

To summarize, we find that good agreements in the mass spectrum and the mass ratio distributions from the SPHM with the pairing function of Eq. 6 when compared against the cBBHd code for representative cases of low and

---

6 As our goal in this section is to assess the agreement between the SPHM and the cBBHd model, we considered only some representative values of the model exponents and have not attempted to see how these exponents map onto microphysical parameters such as metallicity.
high metallicities. Having established this agreement, we will use only the SPHM model from now on.

V. EFFICIENCY OF HIERARCHICAL MERGERS

In this section we study the retention probability for BBH mergers as a function of a cluster’s escape speed and for six sets of model parameters. For the 1g BH progenitor mass function we choose $\delta_m = 5M_\odot$, $m_{\text{min}} = 5M_\odot$, and $m_{\text{max}} = 40M_\odot$. We also consider six different combinations for the parameters $(\alpha, \beta)$ entering the initial mass function and the pairing probability: $(2, 6)$, $(5, 6)$, $(10, 6)$, $(6, 0)$, $(6, 5)$, $(6, 10)$. Using these model parameters, we forward evolve the BBH populations with the SPHM assuming the pairing function in Eq. [9]. We estimate the retention probability of different merger generations in clusters as a function of the cluster escape speed $V_{\text{esc}}$. The calculation of the retention probability is explained in the second paragraph of Sec. III.

Figure 4 shows the retention probability versus cluster escape speed for different types of mergers. The figure suggests that a cluster with a 400 km/s escape speed has a retention probability between 25% and 95%, depending on the merger type and the assumptions about the 1g progenitor population. Among mergers that involve a particular generation (e.g., $2g+2g$ and $1g+2g$, which both have 2g BHs as components), unequal mass mergers have higher retention probabilities than equal mass mergers. For example, in second generation mergers $1g+2g$ mergers have higher retention probabilities than $2g+2g$ mergers. This is due to the lower kick speeds in asymmetric BBH mergers. We find that the retention probabilities of merger remnants fall off as we proceed from first-generation mergers to higher-generation mergers due to larger spin magnitudes of the higher-generation BHs. However, the retention probabilities increase for asymmetric mergers in higher generations. For example, $1g+3g$ mergers have greater retention probabilities than $1g+2g$ mergers in most of the cases.

A crucial question is how abundant are star clusters that have escape speeds of at least 400 km/s. From current observations the escape speed distributions at present-day ($z = 0$) for GCs and NSCs peak at $\sim 30$ km/s and $\sim 150$ km/s, respectively [10, 125, 126]. (See Fig. 3 of Antonini and Rasio [40] note that these escape speed estimates are from the cluster center for GCs, whereas for NSCs they are defined at the half-mass cluster radius.) Using these present-day escape speed distributions, we find that the retention probability of merger remnants falls off from $\sim 50\%$ ($\sim 10\%$) to $\sim 11\%$ ($\sim 1\%$) as we proceed from first generation mergers to higher generation mergers in NSCs (GCs). However, star clusters were more massive and denser at higher redshifts; the corresponding higher escape speeds will increase the retention probability. For instance, at birth GCs have masses that are on average a factor of $\sim 4.5$ times larger than their present day masses [113], increasing their escape speeds by a factor $\sim \sqrt{4.5} \approx 2.1$. Our current understanding of the redshift evolution of clusters is limited. Future observations may help us map the hierarchical merger efficiency vs. redshift if we can confidently identify a subpopulation of mergers as having hierarchical origins.

VI. PREDICTED MASS DISTRIBUTION

The SPHM predicts the mass spectrum of various BH generations as a function of the model parameters $(\alpha, \beta, \delta_m, m_{\text{min}}, m_{\text{max}})$ and choice of pairing probability function. This allows us to compare model predictions from the SPHM with the GWTC-3 results. Currently, two types of phenomenological population models—parametric models and non-parametric models—are applied to the GW data to understand the properties of the BBH population. Parametric population models have specific functional forms based on certain astrophysical motivations. On the other hand, the non-parametric population models (e.g., the Flexible Mixture/FM model, Tiwari [127, 128] and the Power Law + Spline/PS model,
The FM model fitted to GWTC-3 events predicts multiple peaks in the component mass spectrum. This was first identified in the GWTC-2 population [29] by Tiwari and Fairhurst [50]. The dominant peak occurs at $\sim 9M_\odot$, with two subdominant peaks at $\sim 17M_\odot$ and $\sim 32M_\odot$ (see Fig. 11 of Abbott et al. [85]). Tiwari and Fairhurst [50] speculated that these multi-modal features could be imprints of the hierarchical merger scenario in dense stellar environments. Here, we computed the mass spectrum of higher generation mergers from the SPHM with the following values of the model parameters: $\alpha = 12$, $\beta = 6$, $\delta_m = 10M_\odot$, $m_{\text{min}} = 5M_\odot$, and $m_{\text{max}} = 20M_\odot$. We considered the two pairing probability functions in Eq. [5] and Eq. [6]. In Fig. [5] we compare our predictions of the primary mass spectrum (for both pairing functions) to those of the FM model (solid black). The left panel in Fig. [5] assumes the $M_{\text{tot}}$-based pairing function, whereas the right panel assumes the pairing function in Eq. [6]. Intriguingly, the dominant peak is consistent with the $1g+1g$ mergers of the SPHM. The secondary and tertiary peaks are consistent with mergers involving $2g$ ($1g+2g$ and $2g+2g$ mergers) and $3g$ ($1g+3g$, $2g+3g$, and $3g+3g$ mergers) BHs, respectively. These curves assume a uniform spin distribution; but we have verified that using a beta distribution for the spins does not produce any visible change in the plots.

Note that the above adopted parameters for the BH initial mass function resembles the population present...
in clusters with higher metallicities ($0.015 < Z < 0.0225$; see Fig. 3). Therefore, the hierarchical merger scheme could potentially explain the multi-modality in the GWTC-3 mass spectrum if the observed BBHs primarily originate from high metallicity clusters under the assumptions of this study. We also find similar features when we compare the chirp mass distribution of the GWTC-3 population (Fig. 2 of Abbott et al. [85]) with the chirp mass distribution of higher generation mergers as predicted by the SPHM.

The multi-modal features in the mass spectrum of the BBH population—unveiled by the non-parametric population models—can therefore be interpreted by invoking the hierarchical merger scenario in dense high-metallicity stellar environments. The occurrence of multiple peaks in the mass spectrum is attributed to the different merger generations within the hierarchical merger scenario. Under the assumption that the distinct peaks in the observed component mass spectrum arise from different generations of mergers, the SPHM can be used to quantify the contribution of each merger type to the observed mass spectrum. To do this, we consider three mass ranges that broadly capture the first, second, and third peaks: $5M_\odot$–$13M_\odot$, $13M_\odot$–$25M_\odot$, and $25M_\odot$–$44M_\odot$. The fractions of Mg+Ng mergers that lie inside these mass ranges are shown in Table I. Assuming the pairing function of Eq. [5] (or Eq. [6]), we find that 90% (or 98%) of the 1g+1g BBHs have primary masses between $5M_\odot$–$13M_\odot$: 94% (or 99%) of the 1g+2g mergers and 93% (or 99%) of the 2g+2g mergers have primary masses in the range $13M_\odot$–$25M_\odot$: 89% (or 77%) of the 1g+3g mergers, 90% (or 77%) of the 2g+3g mergers, and 90% (or 98%) of the 3g+3g mergers have primary masses within the $25M_\odot$–$44M_\odot$ mass range. According to the SPHM, this suggests that the first peak is dominated by 1g+1g mergers, the second is dominated by 1g+2g and 2g+2g mergers, and the third peak is dominated by 1g+3g, 2g+3g and 3g+3g mergers. For instance, the SPHM interprets GW190412 [130] as a 1g+3g merger which is consistent with the findings of Rodriguez et al. [131], where GW190412 was explained as a 1g+3g merger in massive super star clusters with high metallicities ($Z \sim 0.02$) and large central escape speeds ($V_{esc} \sim 300$ km/s).

Despite the small sample size of the currently observed BBH population ($\sim$ 84 BBH mergers), these findings strongly suggest that the multiple peaks in the observed mass spectrum could originate from different generations of mergers in high-metallicity clusters ($0.015 < Z < 0.0225$). With the expected detection of several hundred BBHs in future observing runs, these peaks—if real—will be much better resolved, allowing for more precise vetting of the model predictions. Additional detections will also help infer the values of the $\alpha$ and $\beta$ power-law exponents. These are fundamental quantities that govern the formation and pairing of BHs in dynamical formation scenarios.
VII. CONCLUSIONS AND CAVEATS

We have proposed a computationally inexpensive parametric model \textit{SPHM} to study the forward evolution of the binary black hole population in massive star clusters. The free parameters of the \textit{SPHM} are broadly related to the physics and astrophysics of star formation and binary pairing/dynamical exchange in dense stellar environments. Though the \textit{SPHM} neglects physical phenomena such as BH ejections due to multi-body interactions and the evolution of clusters, the free parameters of the model are sensitive to cluster metallicity, escape speed and mass segregation. We compared predictions from the SPRM with the \textit{cBHBd} model for a few representative configurations and found good agreement; this suggests that our model (\textit{SPHM}) can effectively capture some of the generic features of the hierarchically-formed stellar mass BBH population in massive clusters.

Major findings of this work include:

(i) Comparing our results with those for representative configurations from \textit{cBHBd}, we find that the mass spectrum for hierarchical mergers is well-approximated by \textit{SPHM} by tuning the various parameters of the model.

(ii) The retention probabilities of BBHs in dense clusters decrease significantly as we go from first generation to higher generation mergers. However, higher generation asymmetric merger types (e.g., 1g+2g, 1g+3g, etc.) have higher retention probabilities than those of the same type (e.g., 2g+2g, 3g+3g etc.), leading to an increased likelihood of such mergers. The retention probability of merger remnants falls off from $\sim 59\%$ ($\sim 10\%$) to $\sim 11\%$ ($\sim 1\%$) as we proceed from first generation to higher generation mergers in NSCs (GCs).

(iii) Finally, by applying our model \textit{SPHM} to the BBH detections to date, we find the model parameters that fit the observed mass spectrum. These parameters suggest that, if hierarchical mergers are responsible for the multiple peaks, these mergers should be occurring in clusters with high metallicity ($0.015 < Z < 0.0225$). This metallicity range is significantly higher than the majority of globular clusters in our Galaxy [123]. However, the Milky Way nuclear star cluster may very well have a large fraction of stars with super-solar metallicities [132][134].

The agreement between \textit{SPHM} and \textit{cBHBd} suggests that it should be possible to develop a hierarchical Bayesian framework to constrain the properties of dynamically formed BBHs using the \textit{SPHM}. More specifically, we can treat the free parameters ($\alpha$, $\delta_m$, $m_{\min}$, $m_{\max}$, $\beta$) of the \textit{SPHM} along with branching ratios for the different merger generations (controlling the population shape) as “hyperparameters” of the BBH population. We can estimate these hyperparameters from the observed BBH catalog using a hierarchical Bayesian inference scheme that accounts for observational biases. The inference of these hyperparameters will help constrain (i) the mass and spin distributions of first-generation black holes, (ii) the relative merger rates of the different generations of BBH, and (iii) the properties of host astrophysical environments (like metallicity, escape speed etc.).

A. Caveats and possible extensions of the model

Despite the agreement with \textit{cBHBd} and the GWTC-3 mass spectrum, our model neglects several important physical ingredients that affect the modelling of dense clusters. The most important of these include:

(i) A major shortcoming of the model is that it is not dynamical. That is, the model does not consider the time evolution of the binary population or the star clusters. In particular, we do not account for the delay times between BBH mergers or the time taken for a remnant BH to form a next generation binary.

(ii) Similarly, our model does not account for the expected redshift evolution of star cluster properties. The cluster escape speed plays a particularly important role in our model. Our conclusions only apply for processes that take place on timescales shorter than the time for the escape speed to vary significantly. Hence, evolving our model beyond the 3rd or 4th generations may not produce reliable results.

(iii) Lastly, our model does not distinguish between different types of BBH formation mechanisms that may happen in a cluster (e.g., capture, 3-body interactions, etc.) and the branching ratios between those models.

There are natural extensions of our model that may improve agreement with N-body simulation results. Including the delay time distribution of the binaries is one obvious ingredient to consider. Here we focuses on the mass spectrum of hierarchically-formed stellar mass BBHs. One can also include additional free parameters in our model to constrain the spin distributions of hierarchical-formed BBHs. We also assumed that all BBHs have circular orbits. One can introduce more free parameters in the model to study the eccentricity distributions of hierarchical-formed BBHs. These issues will be pursued in future work.

As is often the case, simple models are able to phenomenologically capture effects of complex phenomena. Our model seems to be in this category. It provides a computationally inexpensive method for carrying out statistical analyses of BBH population data. However, more rigorous comparisons of this model with N-body models will be required in order to reliably map the best-fit parameters to cluster properties which is planned as a follow up project.

ACKNOWLEDGEMENTS

This material is based upon work supported by the NSF’s LIGO Laboratory, which is a major facility fully funded by the National Science Foundation (NSF). K.G.A. acknowledges support from the Department of Science and Technology and Science and Engineering Research Board (SERB) of India via the following
also acknowledge NSF support via NSF awards AST-2205920 and PHY-2308887 to A.G., NSF CAREER award PHY-1653374 to M.F., and PHY-207638, AST-2307147, PHY-2308886, and PHYS-2309064 to B.S.S. This research has made use of data obtained from the Gravitational Wave Open Science Center (www.gw-openscience.org), a service of LIGO Laboratory, the LIGO Scientific Collaboration and the Virgo Collaboration. Virgo is funded by the French Centre National de Recherche Scientifique (CNRS), the Italian Istituto Nazionale della Fisica Nucleare (INFN), and the Dutch Nikhef, with contributions by Polish and Hungarian institutes. This manuscript has the LIGO preprint number P2200265. The data underlying this article will be shared on reasonable request to the corresponding authors.

[1] M. Dominik, E. Berti, R. O’Shaughnessy, I. Mandel, K. Belczynski, C. Fryer, D. E. Holz, T. Bulik, and F. Pannarale, Astrophys. J. 806, 263 (2015), arXiv:1405.7016 [astro-ph.HE].
[2] K. Belczynski, D. E. Holz, T. Bulik, and R. O’Shaughnessy, Nature 534, 512 (2016), arXiv:1602.04531 [astro-ph.HE].
[3] S. E. Woosley, Astrophys. J. Lett. 824, L10 (2016), arXiv:1603.00511 [astro-ph.HE].
[4] P. Marchant, N. Langer, P. Podsiadlowski, T. M. Tauris, and T. J. Moriya, Astron. Astrophys. 588, A50 (2016), arXiv:1601.03718 [astro-ph.SR].
[5] S. E. de Mink and I. Mandel, Mon. Not. Roy. Astron. Soc. 460, 3545 (2016), arXiv:1603.02291 [astro-ph.HE].
[6] S. F. Portegies Zwart and S. McMillan, Astrophys. J. Lett. 528, L17 (2000), arXiv:astro-ph/9910061.
[7] M. C. Miller and V. M. Lauburg, Astrophys. J. 692, 917 (2009), arXiv:0804.2783 [astro-ph].
[8] J. M. B. Downing, M. J. Benacquista, M. Giersz, and R. Spurzem, Mon. Not. Roy. Astron. Soc. 407, 1946 (2010), arXiv:0901.0546 [astro-ph.SR].
[9] C. L. Rodriguez, M. Morscher, B. Battabiraman, S. Chatterjee, C.-J. Haster, and F. A. Rasio, Phys. Rev. Lett. 115, 051101 (2015), [Erratum: Phys.Rev.Lett. 116, 029901 (2016)], arXiv:1505.00792 [astro-ph.HE].
[10] J. R. Hurley, A. C. Sippel, C. A. Tout, and S. J. Aarseth, PASA 33, e036 (2016), arXiv:1607.00641 [astro-ph.GA].
[11] R. M. O’Leary, Y. Meiron, and B. Kocsis, Astrophys. J. Lett. 824, L12 (2016), arXiv:1602.02809 [astro-ph.HE].
[12] C. L. Rodriguez, S. Chatterjee, and F. A. Rasio, Phys. Rev. D 93, 084029 (2016), arXiv:1602.02444 [astro-ph.HE].
[13] C. L. Rodriguez, P. Amaro-Seoane, S. Chatterjee, K. Kremer, F. A. Rasio, J. Samsing, C. S. Ye, and M. Zevin, Phys. Rev. D 98, 123005 (2018), arXiv:1811.04926 [astro-ph.HE].
[14] C. Petrovich and F. Antonini, Astrophys. J. 846, 146 (2017), arXiv:1705.05848 [astro-ph.HE].
[15] M. Arca-Sedda and A. Gualandris, Mon. Not. Roy. Astron. Soc. 477, 4423 (2018), arXiv:1804.06116 [astro-ph.GA].
[16] G. Fragione and B. Kocsis, Phys. Rev. Lett. 121, 161103 (2018), arXiv:1806.02351 [astro-ph.GA].
[17] M. Zevin, J. Samsing, C. Rodriguez, C.-J. Haster, and E. Ramirez-Ruiz, Astrophys. J. 871, 91 (2019), arXiv:1810.00901 [astro-ph.HE].
[18] D. Chattopadhyay, J. Hurley, S. Stevenson, and A. Raidani, Mon. Not. Roy. Astron. Soc. 513, 4527 (2022), arXiv:2202.08924 [astro-ph.GA].
[19] R. Abbott et al., arXiv e-prints , arXiv:2111.03606 (2021), arXiv:2111.03606 [gr-qc].
[20] W. A. Fowler and F. Hoyle, Astrophys. J. Suppl. 9, 201 (1964).
[133] T. Do, G. David Martinez, W. Kerzendorf, A. Feldmeier-Krause, M. Arca Sedda, N. Neumayer, and A. Gualandris, Astrophys. J. Lett. 901, L28 (2020), arXiv:2009.02335 [astro-ph.GA].

[134] Z. Chen, T. Do, A. M. Ghez, M. W. Hosek, A. Feldmeier-Krause, D. S. Chu, R. O. Bentley, J. R. Lu, and M. R. Morris, Astrophys. J. 944, 79 (2023), arXiv:2212.01397 [astro-ph.GA].
Appendix: Supplemental Material

1. Summary of our BBH population evolution scheme

In this Supplement, we provide additional details and a step-by-step schematic procedure illustrating how we form binary black holes, pair them, and forward evolve the binary population.

1. Using the 1g BH mass [see Eq. (1)] and spin distributions as described in Sec. II, we draw a set of 1g BH mass values \( m_j \) and spin values \( \chi_j \), where \( j = 1 \ldots 2N \) and \( N \sim 10^6 \). This yields a set of unpaired 1g BHs characterized by their masses and spins \( \Theta_j^{1g} = [m_j, \chi_j] \),

\[
\{\Theta_j^{1g}\} = \{\Theta_1^{1g}, \Theta_2^{1g}, \ldots, \Theta_N^{1g}\}. \tag{A.1}
\]

2. These BHs are now randomly paired to create a list of \( N \) 1g+1g BH/BH pairs with parameters

\[
\{\theta_i^{1g+1g}\} = \{\theta_1^{1g+1g}, \theta_2^{1g+1g}, \ldots, \theta_N^{1g+1g}\}, \tag{A.2}
\]

where \( \theta_i^{1g+1g} = [m_1^{(i)}, m_2^{(i)}, \chi_1^{(i)}, \chi_2^{(i)}] \) are the parameters for the \( i \)th 1g+1g BH/BH pair.

3. From this set of binary parameters we compute the pairing probability for each pair using Eq. (4), (5), or (6). For illustration here, we will use the pairing in Eq. (4). (For other pairing scenarios the steps are very similar). From the set of binary parameters we compute the mass ratio for each pair

\[
\{\eta_i^{\text{pair}}\} = \{\eta_1^{\text{pair}}, \eta_2^{\text{pair}}, \ldots, \eta_N^{\text{pair}}\}
\]

with

\[
A = \frac{1}{\sum_{i=1}^{N} \eta_i^{\beta}}. \tag{A.3}
\]

4. These 1g+1g BH/BH pairs are then drawn in proportion to their pairing probabilities \( p_i^{\text{pair}} \) to form 1g+1g BHs. For a cluster with \( N \) 1g+1g binaries, the effective number of binaries with the parameter combination \( \theta_i^{1g+1g} \) is then \( Np_i^{\text{pair}} \). However, in practice no BH pairs are thrown away in the pairing process, they are simply down weighted according to their \( p_i^{\text{pair}} \) value. Binning this list for a particular parameter (e.g., the primary mass) then allows one to construct histograms as a function of the 1g+1g binary parameters for a given cluster.

5. For each of the \( N \) 1g+1g binaries, we use NR fitting formulas \cite{39, 40, 41} to calculate the final mass \( M_f \), final spin \( \chi_f \), and kick magnitude \( V_{\text{kick}} \) of the merger remnants resulting from each binary pair:

\[
\{M_f\} = \{M_f(\theta_1^{1g+1g}), M_f(\theta_2^{1g+1g}), \ldots, M_f(\theta_N^{1g+1g})\}, \tag{A.4}
\]

\[
\{\chi_f\} = \{\chi_f(\theta_1^{1g+1g}), \chi_f(\theta_2^{1g+1g}), \ldots, \chi_f(\theta_N^{1g+1g})\}, \tag{A.5}
\]

\[
\{V_{\text{kick}}\} = \{V_{\text{kick}}(\theta_1^{1g+1g}), V_{\text{kick}}(\theta_2^{1g+1g}), \ldots, V_{\text{kick}}(\theta_N^{1g+1g})\}. \tag{A.6}
\]

6. Consider \( K \) clusters with escape speeds \( \{V_k^{\text{esc}}\} = \{V_1^{\text{esc}}, V_2^{\text{esc}}, \ldots, V_K^{\text{esc}}\} \). For each cluster with value \( V_k^{\text{esc}} \) in the list, we compare with the kick of all binaries in \( \{V_{\text{kick}}\} \) and remove those binaries for which \( V_i^{\text{kick}} > V_k^{\text{esc}} \). This results in a list of 2g BH progenitors with mass and spin parameters \( \{\Theta_i^{2g}\} = \{\Theta_1^{2g}, \Theta_2^{2g}, \ldots, \Theta_N^{2g}\} \), where \( \Theta_i^{2g} = [M_i, \chi_i] \), \( N - N' \) is the number of 1g+1g binaries that are ejected by \( V_k^{\text{esc}} \), and \( N' \) is the number that are retained. The retention probability for 1g+1g BBHs is given by \( N'/N \), i.e., the fraction of binaries with \( V_i^{\text{kick}} < V_k^{\text{esc}} \). We repeat this exercise for all values of \( V_k^{\text{esc}} \) up to \( V_K^{\text{esc}} \). Each of the \( K \) clusters with a given escape speed value carries its own list of retained 2g BH remnants with parameters \( \{\Theta_i^{2g}\} = \{\Theta_1^{2g}, \Theta_2^{2g}, \ldots, \Theta_N^{2g}\} \), these represent the mass and spin distributions for the 2g progenitor BHs. Note that the spin tilt angles are always drawn isotropically over a sphere as mentioned in Sec. II.

In the next generation there are two possibilities: 1g+2g and 2g+2g binaries. To construct the 1g+2g BBH population we draw \( N \) 1g+2g BH/BH pairs, \( \{\theta_j^{1g+2g}\} = \{\theta_1^{1g+2g}, \theta_2^{1g+2g}, \ldots, \theta_N^{1g+2g}\} \), where \( \theta_j^{1g+2g} \) is drawn from the 1g BH population and \( \theta_j^{2g} \) is drawn from the 2g BH population (i.e., from the population of retained 1g+1g remnants, \( \{\Theta_i^{2g}\} \)). Then we repeat the steps 3, 4, 5, and 6 to estimate the properties of 1g+2g BHs and their remnants. We similarly estimate the properties of 2g+2g BBHs. Retained remnants from 1g+2g and 2g+2g mergers will form the 3g progenitor BH population, \( \{\Theta_i^{3g}\} \). Repeating the algorithm allows us to estimate the properties of third generation binaries and their remnants.