INTRODUCTION

Definition and classification of complex body wall defects (CBWD) is a matter of continuous debate in human medical literature (Luebke, Reiser, & Pauli, 1990; Martínez-Frías, 1997, 2000a; Patten et al., 1986; Rittler et al., 2019; Russo, d’Armiento, Angrisani, & Vecchione, 1993; Sahinoglu et al., 2007). One definition used for CBWD is body stalk anomaly (BSA), which it is characterized by a large abdominal wall closing defect, a short umbilical cord (UC), and other defects, such as sharp angulation of the spine (Goldstein, Winn, & Hobbins, 1989). For some authors BSA is not associated with craniofacial or limb defects (Goldstein et al., 1989; Lockwood, Scioscia, & Hobbins, 1986), for some others BSA is associated with cranial malformations and limb defects (Paul, Zosmer, Jurkovic, & Nicolaides, 2001; Zeidler et al., 2014). Patten et al. (1986) and Van Allen et al. (1987) proposed limb body wall complex (LBWC) to be named BSA (Bijok et al., 2017), and LBWC was included in the body stalk complex or Cyllosomas group (Saritha & Sumangala, 2013). The term LBWC has been most commonly used when two of
three of the following defects are present: thoraco and/or abdominoschisis, cranial defects/encephalocele with facial clefts, and limb anomalies (Patten et al., 1986; Van Allen et al., 1987). The fact that there is phenotypic overlap between BSA and LBWC (Chen et al., 2007) might explain why LBWC was considered equivalent to BSA. The use of
Defects	P184	P160	P168	P208	P240	P17	P79	P278							
Body wall	LAB (right)	LAB (right)	THO/AB	THO/AB	THO/AB	THO/AB	THO/AB	THO/AB							
Eviscerated organs	OA														
UC	Disperse umbilical vessels														
Limbs	Anomalous rotation and arthrogryposis and ankyloses in pelvic limbs	Left thoracic limb amelia	Anomalous rotation and arthrogryposis and ankyloses in pelvic limbs	Anomalous rotation and arthrogryposis and ankyloses in pelvic limbs	Amelio left thoracic limb	Left pelvic limb phocomelia	Right thoracic limb amelia	Left thoracic limb phocomelia in pelvic limbs							
Spine	Extreme scoliosis	Extreme scoliosis	Extreme right lateral retroflexion	Extreme retroflexion	Extreme retroflexion										
Thorax	Cleft sternum	No ribs articulating	Costal defect	Cleft sternum	No ribs articulating	Costal defect	Cleft sternum	(bifid)	Cleft sternum	No ribs articulating	Costal defect	Cleft sternum	(bifid)	Three first pair of ribs articulating	Costal defect
Heart	Ecopic	Dorsoventrally compressed	Ecopic	Dorsoventrally compressed	Ecopic	Dorsoventrally compressed	90° rotated	Dorsoventrally compressed	Patent ductus arterius						
Respiratory system	Collapsed trachea	Hypoplastic lungs	Abnormal lobation	Accessory lobe absent											
Diaphragm	Rudimental	Rudimental	Absent	Absent	Absent	Absent									
Digestive system	Anomalous liver	Anal atresia	Collapsed esophagus	Anomalous liver lobation	Polycystic liver	Atresic colon	Collapsed esophagus	Anomalous liver lobation	Anal atresia						
Urinary tract	Persistent urogenital sinus	Unilateral left kidney agenesis	Persistent urogenital sinus	Hydro ureters	Absent urinary bladder	Persistent urogenital sinus	Hydro ureters	Right kidney	Hydro nephrons	Left kidney hypoplastic	Absent urinary bladder	Right kidney anomalous			

(Continues)
these terms is still under debate, moreover some authors state that BSA and LBWC are distinct conditions on the same spectrum, and some others have presented criteria on how to differentiate the two (Bijok et al., 2017; Murphy & Platt, 2011; Rittler et al., 2019).

There is a congenital disorder described in veterinary medicine that it might be included in the CBWD group, the *Schistosomus reflexus* (SR) which its defining features include spinal inversion, exposure of the abdominal viscera because of a fissure of the ventral abdominal wall, pelvic limb ankyloses, positioning of the thoracic limbs adjacent to the skull, and lung and diaphragm hypoplasia (Laughton, Fisher, Halina, & Partlow, 2005; Martín-Alguacil & Avedillo, 2020; Mateo & Camón, 2008). Notter described SR in pig in 1927, to date there is not a description of SR in man. Martín-Alguacil and Avedillo (2020) in a recent study proposed a general classification for body wall defects, including SR and BSA in the pig. The aim of this study is to go over a group of malformative syndromes with compound anomaly pattern in body wall closing defects in pigs. To present a comparative anatomical description of CBWD in pigs and men, showing both similarities as well as different anomalies presentation. And to establish a unified criterion for classification and diagnosis.

MATERIALS AND METHODS

All malformations included in this study were found sporadically during 2002–2018. Animals were obtained from a swine farming association from Toledo (Spain), grouping 15 pig production facilities, with an annual average census of 6,500 breeding sows in close production cycle. A total of eight piglets presenting extreme curved spine with large abdominal organs evisceration were selected for the study. All animals were legally procured in accordance with the regulations and laws of the European Union (86/609/EEC) and Spain (RD 223/1998) for the care, use, and housing of animals in research. The study was conducted in the Laboratory for the study of Congenital Malformations (Anatomy and Embryology Department), School of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain. Detailed gross evaluation of the eight specimens was carried out using conventional anatomical methods. To evaluate the morphology of the umbilical arteries, a section of the arteries was stained with hematoxylin and eosin and microscopically evaluated. The study was completed by X-ray examination.

RESULTS

Eight crossbred (*Landrace—Large White—Pietrain*) still-born piglets, and the only abnormal members of their litter,
seven females and 1 male, were selected for the study and presented in Figure 1. A summary of all the anomalies identified in the eight pigs is showed in Table 1. After careful inspection no craniofacial abnormalities were observed, except for piglet 160 that showed cleft palate (secondary palatoschisis). Two piglets (P160 and P184) presented right lateral abdominoschisis with evisceration of all the abdominal organs and extreme scoliosis (Figure 1a,b). The large closing abdominal wall defect extends from the intact thorax until the pelvis ending just cranial to the genital tubercle. Nonunion of the pelvic symphysis was present. Abdominal organs were completely exposed into a big extraembrionary coelom cavity only covered by chorion. A thoracoabdominoschisis was observed in the other six pigs with evisceration of all the thoracic and the abdominal organs (Figure 1c–h). The sterna were cleft and the large closing ventral wall defect extend until the pelvis ending just cranial to the genital tubercle and nonunion of the pelvic symphysis was present in the six pigs. There was not UC in the studied piglets and the umbilical vessels were found dispersed. Single umbilical artery (SUA) was identified in P208 and P240. Left umbilical artery was hypoplastic in all the other cases. The amniotic membrane was attached to the skin margin of the thoracoabdominal or abdominal fissure. No amniotic bands were identified. Abdominal wall was reduced to a narrow band of skin reflected dorsally in all the piglets.

Limbs and internal organs anomalies were considered structural on the basis of embryological failures. And were considered nonstructural anomalies when they were thought to be caused by amniotic bands actions, and/or fetal movement restrictions, including arthrogryposis. Amelia and/or pelvic limbs phocomelia were considered as structural anomalies, and thoracic limbs phocomelia, arthrogryposis, ankyloses, and/or anomalous rotation as nonstructural. A classification for the studied CBWD in the pig is proposed and presented in Figure 2.

FIGURE 2 Schematic classification for CBWD studied in the pig. AA, anal atresia; BSA, body stalk anomalies; IOD, internal organs defects; LBWC, limb body wall complex; SPD, spinal defect; UCD, umbilical cord defect.

4 | DISCUSSION

BSA is considered when there is a body wall defect, skeletal abnormalities, and the umbilical cord is absent or rudimentary. Russo et al., (1993) described two phenotypes for LBWC: a placentocranial adhesion phenotype and placentoabdominal adhesion phenotype. They reported eight placentoabdominal adhesion phenotype cases without craniofacial defects, with urogenital anomalies, anal atresia, and abdominal placental attachment, together with a persistence of the extraembryonic coelom and lower limbs anomalies, in which seven were females and one was a male. Some authors mentioned that LBWC did not show any sex predilection (Saritha & Sumangala, 2013) in current studied group there were seven females and only one male affected. All the studied piglets presented the BSA features and five of them LBWC placentoabdominal adhesion phenotype features, with multiple congenital malformations such as curved and deformed appearance of the spine associated with UC abnormalities, abdominal placental attachment, anal atresia, visceral evisceration, genital and/or urinary defects, and different limb defects. The UC was absent in all the piglets, with umbilical vessels dispersed on the amniotic membrane. Two piglets showed SUA and one umbilical vein, and unilateral hypoplasia of an umbilical artery was observed in all the other piglets. The presence of only two umbilical vessels was also described by Russo et al. (1993) in the eight placentoabdominal adhesion phenotype cases.

Rittler et al. (2019) after evaluating 450 cases concluded that amniotic bands are responsible of limb partial amputation especially in upper limbs, observing that phocomelia in hind limbs predominated in cases without amniotic bands, although they only considered amelia as structural defect. Arthrogryposis is characterized by multiple congenital contractures in at least two different parts of the body (Hall & Vincent, 2003). Congenital contractures generally
occur because of decrease in fetal movement (Haliloglu & Topaloglu, 2013; Hall & Vincent, 2003).

The eight piglets showed anal atresia, it was confirmed by Martínez-Friás (1997) that the presence of anal atresia is very frequent in body stalk anomalies. Furthermore they confirmed that the association of anal atresia, spine defects, renal/urinary tract defects, and genital defects constitutes a group of defects that tended to be present together in the same child because they are pathogenically related, and since they are of blastogenetic origin they constitute a primary polytopic developmental field (Martínez-Friás, Bermejo, & Rodríguez-Pinilla, 2000b). All the studied piglets presented either renal or urinary anomalies and/or genital anomalies confirming the association of defects in BSA as a primary polytopic developmental field. The presence of midline cleft palate in P160 can be explained by amniotic bands action during early embryo development (Gupta, Venkatesan, Chandra, Rajeswari, & Devi, 2015; Muraskas, McDonnell, Chudik, Salyer, & Glyn, 2003). However, the presence of amniotic bands was not observed. Palatoschisis can also occur as a result of failure of structures to migrate or converge in the midline since the more usual clefts represent a failure of structures to merge at the midline (Light & Ogden, 1993).

A classification for BSA, attending to the type of wall defect and limb defects is proposed (Figure 2). All cases presented herein were considered BSA, all fetus displayed a large ventral wall defect with spinal and UC defects, and anal atresia and/or genitourinary defects. We propose the following classification: four different types for BSA: BSA Type I: piglets with spinal and UC defects, anal atresia, thoracoabdominoschisis, thoracic defects, (cleft sternum, costal defects, respiratory and cardiac defects), structural limb defects, digestive system, and genitourinary tract defects (P17, P79, P240, and P278); BSA Type II: cases with spinal and UC defects, anal atresia, thoracoabdominoschisis, thoracic defects (cleft sternum, costal defects, respiratory and cardiac defects), nonstructural limb defects, digestive system, and genital and/or urinary tract defects (P168 and P208); BSA Type III: cases with spinal and UC defects, anal atresia, abdominoschisis, structural limb defects, digestive system, and genital and/or urinary tract defects (P160); and BSA Type IV: cases with spinal and UC defects, anal atresia, abdominoschisis, nonstructural limb defects, digestive system, and genital and/or urinary tract defects (P184). After reviewing the medical literature and studying the current cases, we consider true LBWC only the BSA that additionally presented structural limb defects. Thus, we differentiate two types of LBWC; LBWC Type I: characterized by structural limb defect and thoracoabdominoschisis, and LBWC Type II: characterized by structural limb defect and abdominoschisis. SR syndrome described in veterinary medicine presenting thoracoabdominoschisis and nonstructural limb defect was classified as BSA Type II. The final classification and diagnosis for all cases is presented in Figure 2, and in Table 1.

The proposed classification is based on anatomical features and on the presumptive etiology of the limb defects as unifying criterion for a precise diagnosis of CBWD when limbs are affected as in BSA, LBWC, and SR.

ACKNOWLEDGMENTS
No funding sources supported this work.

CONFLICT OF INTEREST
The authors have no potential conflict of interests.

AUTHOR’S CONTRIBUTION
Nieves Martín-Alguacil has made substantial contributions to conception and design, analysis, and interpretation of data. And also has been involved in drafting and revising the manuscript for intellectual content. Luis Avedillo has made substantial contributions to acquisition and interpretation of data. And also has contributed to the revision of the manuscript content. Both authors gave the final approval of the version to be published. And agreed to be accountable for all aspects of the work. And if necessary, they ensure that questions related to the accuracy or integrity of any part of the work will be appropriately investigated and resolved.

ETHICAL STATEMENT
All animals were legally procured in accordance with the regulations and laws of the European Union (Directive 86/609/EEC) and Spain (RD 223/1998) for the care, use, and housing of animals in research. The study was approved by the Complutense University of Madrid Bioethics Committee.

ORCID
Nieves Martín-Alguacil https://orcid.org/0000-0001-6676-5506
Luis Avedillo https://orcid.org/0000-0002-3944-6080

REFERENCES
Bijok, J., Massalska, D., Kucińska-Chahwan, A., Posiewka, A., Ilnicka, A., Jakiel, G., & Roszkowski, T. (2017). Complex malformations involving the fetal body wall - definition and classification issues. Prenatal Diagnosis, 37, 1033–1039. https://doi.org/10.1002/pd.5141
Chen, C. P., Lin, C. J., Chang, T. Y., Hsu, C. Y., Tzen, C. Y., & Wang, W. (2007). Second-trimester diagnosis of limb-body wall complex with literature review of pathogenesis. Genetic Counseling, 18, 105–112.
Goldstein, I., Winn, H. N., & Hobbins, J. C. (1989). Prenatal diagnostic criteria for body stalk anomaly. American Journal of Perinatology, 6, 84–85. https://doi.org/10.1055/s-2007-999552
Gupta, K., Venkatesan, B., Chandra, T., Rajeswari, K., & Devi, T. K. (2015). Amniotic band syndrome with sacral agenesis and umbilical...
cord entrapment: A case report emphasizing the value of evaluation of umbilical cord. Journal of Radiology Case Report, 9, 12–19. https://doi.org/10.3941/jcr.v9i3.2115

Hallilou, G., & Topalouglu, H. (2013). Arthrogriposis and fetal hypomobility syndrome: Handbook of clinical neurology. Amsterdam, the Netherlands: Elsevier BV.

Hall, J. G., & Vincent, A. (2003). Arthrogriposis: Neuromuscular diseases of infancy, childhood, adolescence – A clinician’s approach. Boston: Butterworth-Heinemann Medical.

Laughton, K. W., Fisher, K. R., Halina, W. G., & Partlow, G. D. (2005). Schistosomus reflexus syndrome: A heritable condition in ruminants. Anatomia, Histologia, Embryologia: Journal of Veterinary Medicine Series C, 34, 312–318. https://doi.org/10.1111/j.1439-0264.2005.00624.x

Light, T. R., & Ogden, J. A. (1993). Congenital constriction band syndrome. Pathophysiology and treatment. The Yale Journal of Biology and Medicine, 66, 143–155.

Lockwood, C. J., Sciscia, A. L., & Hobbins, J. C. (1986). Congenital absence of the umbilical cord resulting from maldevelopment of embryonic body folding. American Journal of Obstetrics and Gynecology, 155, 1049–1051. https://doi.org/10.1016/0002-9378(86)90345-5

Luebke, H. J., Reiser, C. A., & Pauli, R. M. (1990). Fetal disruptions: Assessment of frequency, heterogeneity, and embryologic mechanisms in a population referred to a community-based stillbirth assessment program. American Journal of Medical Genetics, 36, 56–72. https://doi.org/10.1002/ajmg.1320360113

Martín-Alguacil, N., & Avedillo, L. (2020). Body wall defects: Gastroschisis and omphalocele in pigs (Sus scrofa domesticus). Journal of Comparative Pathology, 175, 69–74. https://doi.org/10.1016/j.jcpa.2019.12.003

Martín-Alguacil, N., & Avedillo, L. (2020). Body wall defects: Gastroschisis and omphalocoele in pigs (Sus scrofa domesticus). Journal of Comparative Pathology, 175, 69–74. https://doi.org/10.1016/j.jcpa.2019.12.003

Martínez-Frías, M. L. (1997). Epidemiological characteristics of amniotic band sequence (ABS) and body wall complex (BWC): Are they two different entities? American Journal of Medical Genetics, 73, 176–179. https://doi.org/10.1002/(SICI)1096-8628(1997121)73:2<176:AID-AJMG12>3.0.CO;2-N

Martínez-Frías, M. L., Bermejo, E., & Rodríguez-Pinilla, E. (2000a). Body wall defects, body wall defects, amniotic bands with and without body wall defects, and gastroschisis: Comparative epidemiology. American Journal of Medical Genetics, 92, 13–18. https://doi.org/10.1002/(SICI)1096-8628(20000501)92:1<13:AID-AJMG3>3.0.CO;2-2

Martínez-Frías, M. L., Bermejo, E., & Rodríguez-Pinilla, E. (2000b). Anal atresia, vertebral, genital, and urinary tract anomalies: A primary polytopic developmental field defect identified through an epidemiological analysis of associations. American Journal of Medical Genetics, 95, 169–173. https://doi.org/10.1002/1096-8628(20001113)95:5<169:AID-AJMG15>3.0.CO;2-Z

Mateo, I., & Camón, J. (2008). Schistosoma reflexum in a cat: Insights into aetipathogenesis. Journal of Feline Medicine Surgery, 10, 376–379. https://doi.org/10.1016/j.jfms.2007.12.010

Murasaki, J. K., McDonnell, J. F., Chudik, R. J., Salyer, K. E., & Glyn, L. (2003). Amniotic band syndrome with significant orofacial clefts and disruptions and distortions of craniofacial structures. Journal of Pediatric Surgery, 38, 635–638. https://doi.org/10.1053/jpsu.2003.50141

Murphy, A., & Platt, L. D. (2011). First-trimester diagnosis of body wall anomaly using 2- and 3-dimensional sonography. Journal of Ultrasound in Medicine, 30, 1739–1743. https://doi.org/10.7863/jum.2011.30.12.1739

Notter, C. (1927). Schistosome in pigs. Virchows Archiv für Pathologische Anatomie und Physiologie und für Klinische Medizin, 264, 280–298.

Patten, R. M., Van Allen, M., Mack, L. A., Wilson, D., Nyberg, D., Hirsch, J., & Viamont, T. (1986). Limb-body wall complex: In utero sonographic diagnosis of a complicated fetal malformation. AJR American Journal of Roentgenology, 146, 1019–1024. https://doi.org/10.2214/ajr.146.5.1019

Paul, C., Zosmer, N., Jurkovic, D., & Nicolaides, K. (2001). A case of body wall anomaly at 10 weeks of gestation. Ultrasound in Obstetrics and Gynecology, 17, 157–159. https://doi.org/10.1046/j.1469-0705.2001.00248.x

Rittler, M., Campaña, H., Poletta, F. A., Santos, M. R., Gili, J. A., Pawluk, M. S., … Lopez-Camelo, J. S. (2019). Limb body wall complex: Its delineation and relationship with amniotic bands using clustering methods. Birth Defects Research, 111, 222–228. https://doi.org/10.1002/bdr2.1442

Russo, R., d’Armiento, M., Angrisani, P., & Vecchione, R. (1993). Limb-body wall complex: A critical review and a nosological proposal. American Journal of Medical Genetics, 47, 893–900. https://doi.org/10.1002/ajmg.1320470617

Sahinoglu, Z., Uludogan, M., Arik, H., Aydin, A., Kucukbas, M., Bilgic, R., & Toksoy, G. (2007). Prenatal ultrasonographical features of limb body wall complex: Review of etiopathogenesis and a new classification. Fetal and Pediatric Pathology, 26, 135–151. https://doi.org/10.1080/15513810701563728

Sarítha, S., Gouri, G., & Sumangala, S. (2013). Limb body wall complex or body wall complex or clefts and disruptions and distortions of craniofacial structures. A case report. International Journal of Research in Medical Sciences, 1, 132–137. https://doi.org/10.5455/ijrms.20130519

Van Allen, M. L., Curry, C., Gallagher, L., & Reynolds, J. F. (1987). Limb body wall complex: I. Pathogenesis. American Journal of Medical Genetics, 28, 529–548. https://doi.org/10.1002/ajmg.1320280302

Zeidler, S., Oudeslujs, G. G., Schoonderwaldt, E. M., & Van Bever, Y. (2014). Early prenatal disruption: a foetus with features of severe limb body wall sequence, body stalk anomaly and amniotic bands. Journal of Genetic Counseling, 25, 315–320.

How to cite this article: Martín-Alguacil N, Avedillo L. Body wall anomalies in pig—Definition and classification. Mol Genet Genomic Med. 2020;8:e1227. https://doi.org/10.1002/mgg3.1227