Continuous Automatic Measurement of Water Uptake and Water Loss of Cut Flower Stems

Peitao Lü, Xinmin Huang, and Hongmei Li
College of Life Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, P.R. China

Jiping Liu
College of Life Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, P.R. China; College of Horticulture, South China Agricultural University, Guangzhou 510642, P.R. China; and The University of Queensland, Centre for Native Floriculture, School of Land, Crop and Food Sciences, Gatton, Queensland 4343, Australia

Shenggen He
College of Life Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, P.R. China

Daryl C. Joyce
The University of Queensland, Centre for Native Floriculture, School of Land, Crop and Food Sciences, Gatton, Queensland 4343, Australia

Zhaoqi Zhang
College of Horticulture, South China Agricultural University, Guangzhou 510642, P.R. China

Abstract. In studying the postharvest water relations of cut flowers, researchers aim to determine rates of water uptake and water loss along with changes in fresh weight. An automatic apparatus was devised for continuous monitoring of these indices. The novel apparatus consists of two balances automatically recording mass at a relatively high data acquisition rate (min⁻¹), a personal computer, two containers, and plastic tubing. The apparatus is accurate, labor-saving, and real-time. It enabled dynamic synchronous recording of water uptake as well as fresh weight of the cut flower stem, from which precise water uptake loss rates during vase life can be accurately determined. Rates of water uptake and water loss of individual cut rose (Rosa hybrida cv. Movie Star) stems were measured using the apparatus under alternating 12-h light and dark periods. Both water uptake and water loss rates fluctuated with the light to dark shift over 120 h of observation. Stem fresh weight increased rapidly over the first 40 h of vase period and decreased gradually thereafter. Cut lily (Lilium hybrida cv. Yellow Overlord) stems showed similar trends in water uptake and water loss rate to cut rose stems. The accuracy and sensitivity of the new apparatus was validated by comparison with manual weighing using a balance at 2-h intervals under alternating 12-h light and dark periods over 108 h. The apparatus described here constitutes a suitable method for direct measurement of water uptake and fresh weight, including capturing relatively rapid water balance responses to changes in the postharvest environment.

Received for publication 2 Sept. 2010. Accepted for publication 16 Dec. 2010.
This research was supported by the grants from Natural Science Foundation of China (No. 30771519 and 31071829) and Natural Science Foundation of Guangdong Province (No. 825102250100002 and 10151022501000035).
*To whom reprint requests should be addressed; e-mail heshenggen@yahoo.com.cn.
in a rubber plug fitting the neck of the vase. To ensure complete filling of the vase with DI water, the source was elevated until water spouted from the gap between the wall of the plug hole and the cut flower stem. This operation assured fluid connectivity within the apparatus.

Water uptake was measured as the residual mass of water in the source on Balance 2. On the assumption that the mass of the vase filled with DI water was constant on Balance 1, the fresh weight (FW) of the individual cut flower stem was synchronously measured. Real-time data for residual water mass in the source representing water uptake and FW of cut flower stems were directly collected at 1-min intervals by running a specifically developed software program (A&D Company Limited, Tokyo, Japan) on the PC connected to both balances.

Experimental design and measurements

Three experiments were conducted in a vase life evaluation room at 22 ± 2°C, 60 ± 10% relative humidity, and 12 μmol·m⁻²·s⁻¹ light intensity (cool white fluorescent tubes) under a daily light period of 12 h. DI water was used in the source in Expts. 1, 2, and 3 not renewed in the course of individual experiments.

Expt. 1: measurement of water uptake and fresh weight of cut rose using the continuous automatic apparatus. Water uptake (residual weight of the cut stem and vase) and FW were automatically recorded for an individual cut rose stem at intervals of 1 min. Water uptake rate and FW were recorded for an individual cut lily stem at intervals of 1 min. Water uptake rate and water loss rate were calculated for intervals of 60 min as described for Expt. 1 and under alternate 12-h light and dark periods over 108 h of observation. In parallel for 108 h, 15 cut rose stems were placed into individual 180-mL glass vessels (vases) each containing 150 mL of DI water as the vase solution. FWs of the cut rose stems and weights of vases without the cut flowers were recorded at 2-h intervals using an analytical balance (FX-300i; AND Company, Japan). Average water uptake rate was calculated by the formula: water uptake rate (g/stem/h) = (S₂ – S₁)/2, where S₁ is the weight of vase solution (g) at t = hour 2, 4, 6, etc.; and S₂ is the weight of vase solution (g) at the previous 2 h. Average water loss rate was calculated by the formula: water loss rate (g/stem/h) = (C₂ – C₁)/2; where C₁ is the combined weights of the cut stem and vase (g) at t = hour 2, 4, 6, etc.; and C₂ is the combined weights of the cut stem and vase (g) at the previous 2 h (He et al., 2006). Vases for Expt. 3 were arranged on benches in a randomized complete block design. The resultant data were presented as mean ± SE for 15 replicates.

Expt. 2: measurement of water uptake and fresh weight of cut lily using the continuous automatic apparatus. Water uptake and FW were recorded for an individual cut lily stem at intervals of 1 min. Water uptake rate and water loss rate were calculated for intervals of 60 min as described for Expt. 1 and under alternate 12-h light and dark regimes over 120 h. The dynamic synchronous data of residual water in source (A) and fresh weight (B) were directly recorded at intervals of 1 min over the 720-min duration experiment. Water uptake rate (C) and water loss rate (D) were determined at intervals of 30 min. The bar in each panel indicates light (open block) and dark (solid block) periods.

Results and Discussion

Dynamics of change in water uptake and fresh weight of cut rose and lily stems. The typical time curves for water uptake and fresh weight changes of cut rose and lily stems are presented in Figures 2 and 3, respectively. Water uptake by stems of both cut flower species declined with increasing vase time (Figs. 2A and 3A). FW of the cut rose stem increased rapidly over the first 40 h of vase life and then decreased gradually with slight diurnal fluctuations (Fig. 2B). FW of the cut lily stem remained almost constant over the first 24 h of vase life and then decreased gradually (Fig. 3B).

Water uptake rate and water loss rate change of cut rose and lily stems. Water uptake rate by the individual cut rose stem generally increased to a peak approximately midway during 12 h of light after 12 h in the dark. However, water uptake rate was much reduced during the dark periods and reached the trough roughly midway during 12 h of dark (Fig. 2C). Generally, water uptake rate was lowest during 2 to 4 h after the beginning of the dark period followed by a gradual
During the first day (0 to 24 h) of the vase time, highest water uptake rate was in the light and lowest in the dark (Fig. 2C). However, water uptake rate in the light during the second day frequently exceeded rates on the first day. Thereafter, water uptake rates in the light progressively declined daily. Water uptake rates declined in the dark, trending to decrease only slightly over nights 1 through 3. Highest total water uptake rate was during the second day (24 to 48 h) as a result of higher water uptake rate on this day being highest throughout both the light and dark periods. Water uptake rate and the magnitude of alternated light and dark period differences diminished over the period of study. Water loss rates by the cut individual rose showed a parallel pattern to water uptake rates (Fig. 2D). These findings are in general agreement with those of Carpenter and Rasmussen (1973), Doi et al. (1999), and Uda et al. (1995). Overall, except for transient perturbations of stomatal function presumably associated with stem recutting and placement into vase water, the data suggest a progressive dampening of a circadian rhythm in stomatal function over time in the vase.

Although dampened, trends in the rates of water uptake and water loss of the cut lily flower were generally similar to those of the cut rose. Highest water uptake rates were typically in the light and typically lowest in the dark on 24 h cycles over 6 d (Fig. 3C). Water loss rate in darkness was notably lower than that in the light (Fig. 3D). With alternating 12-h light and dark periods over vase time, water uptake rates during the light periods progressively declined toward levels in the dark.

Stomata on leaves normally react to light by opening (Kim and Lee, 2007; Seo et al. 2008; van Doorn, 1997) such that light promotes water loss (Kofranek and Haley, 1972). Carpenter and Rasmussen (1973) reported that roses held under constant light or alternating 12 h light and 12 h dark lost five times more water than those held in complete darkness. However, de Stigter (1980) found that water uptake of cut roses held in darkness did not decline with time. In the present study, using the CAA, effects of light on water uptake and water loss through regulation of stomatal behavior on cut rose and lily flower leaves were sensitively detected.

Validation of the continuous automatic apparatus. High correspondence with rose for both water uptake rate and water loss rate curves as determined between the CAA versus the conventional weighing method was evident (compare Figs. 4A and 4B). Like in Expt. 1, the highest water uptake and water loss rates by roses were recorded in the light and lowest rates in the dark (Fig. 4A–B).

Absolute water uptake rate and water loss rate per stem will depend on each individual cut flower. The averaged water uptake of 15 cut rose stems (conventional weighing method) was consistently slightly less than that of the individual cut rose stem in the CAA. Aside from this being a difference associated with individual stems, it could conceivably have been the result of the water level difference (pressure head) between the source and the vase of the CAA system, which was 1 to 2 cm. Nonetheless, similar patterns in fluctuations for water uptake rate and water loss rate by the individual rose (CAA) and the 15 cut roses (conventional) validate the use of the CAA as a sensitive monitor of responses to external environmental variables, in this case light (Fig. 4A–B). Future work with the CAA might usefully investigate temperature and humidity influences.

In conclusion, the CAA is a demonstrably accurate (i.e., high precision) and temporally sensitive (viz. short sampling intervals) device for measuring water uptake and water loss by individual cut flower stems. The apparatus is comprised of readily available laboratory materials and instruments and so is neither prohibitively expensive nor technically complex.

Literature Cited

Carpenter, W.J. and H.P. Rasmussen. 1973. Water uptake rates by cut roses (*Rosa hybrida*) in light and dark. J. Amer. Soc. Hort. Sci. 98:309–313.

de Stigter, H.C.M. 1980. Water balance of cut and intact ‘Sonja’ roses plants. Z. Pflanzenphysiol. 99:131–140.

Doi, M., M. Miyagawa-Namao, K. Inamoto, and H. Imanishi. 1999. Rhythmic changes in water uptake, transpiration and water potential of cut roses as affected by photoperiods. J. Jpn. Soc. Hort. Sci. 68:861–867.

He, S., D.C. Joyce, and D.E. Irving. 2006. Competition for water between inflorescences and leaves in cut flowering stems of *Grevillea ‘Crimson Yul-lo’*. J. Hort. Sci. Biotechnol. 81:891–897.

Kim, D.J. and J.S. Lee. 2007. Current theories for mechanism of stomatal opening: Influence of blue light, mesophyll cells, and sucrose. J. Plant Biol. 50:523–526.

Kofranek, A.M. and A.H. Haley, 1972. Conditions for opening cut chrysanthemum flower buds. J. Amer. Soc. Hort. Sci. 97:578–584.
Liu, J., S. He, Z. Zhang, J. Cao, P. Lv, S. He, G. Cheng, and D.C. Joyce. 2009. Nano-silver pulse treatments inhibit stem-end bacteria on cut gerbera cv. Ruikou flowers. Postharvest Biol. Technol. 54:59–62.

Lü, P., S. He, J. Liu, J. Cao, and D.C. Joyce. 2009. A new apparatus for continuous automatic measurement of water relations in stems of cut flowers, p. 314–315. In: Intl. Conf. Plant Vascular Biol. and Agr. 2009 Abst. Book, Beibei, China.

Macnish, A.J., R.T. Leonard, and T.A. Nell. 2008. Treatment with chlorine dioxide extends the vase life of selected cut flowers. Postharvest Biol. Technol. 50:197–207.

Seo, J., H.Y. Lee, H. Choi, Y. Choi, Y. Lee, Y.-W. Kim, S.B. Ryu, and Y. Lee. 2008. Phospholipase A₂β mediates light-induced stomatal opening in Arabidopsis. J. Expt. Bot. 59:3587–3594.

Uda, A., K. Fukushima, and Y. Koyama. 1995. Effects of temperature and light and dark conditions on wilting of cut roses. Bull. Hyogo. Pre. Agr. Inst. (Agr.) 43:101–106.

van Doorn, W.G. 1997. Water relations of cut flowers. Hort. Rev. (Amer. Soc. Hort. Sci.) 18:1–85.