On Interpretability Between Some Weak Essentially Undecidable Theories

Lars Kristiansen\(^{1,2(\pi)}\) and Juvenal Murwanashyaka\(^1\)

\(^1\) Department of Mathematics, University of Oslo, Oslo, Norway
\{larsk,juvenalm\}@math.uio.no
\(^2\) Department of Informatics, University of Oslo, Oslo, Norway

Abstract. We introduce two essentially undecidable first-order theories \(WT\) and \(T\). The intended model for the theories is a term model. We prove that \(WT\) is mutually interpretable with Robinson’s \(R\). Moreover, we prove that Robinson’s \(Q\) is interpretable in \(T\).

1 Introduction

A first-order theory \(T\) is undecidable if there is no algorithm for deciding if \(T \vdash \phi\). If every consistent extension of an undecidable theory \(T\) also is undecidable, then \(T\) is essentially undecidable.

We introduce two first-order theories, \(WT\) and \(T\), over the language \(L_T = \{⊥, ⟨·, ·⟩, ⊑\}\) where \(⊥\) is a constant symbol, \(⟨·, ·⟩\) is a binary function symbol and \(⊑\) is a binary relation symbol. The intended model for these theories is a term model: The universe is the set of all variable-free \(L_T\)-terms. Each term is interpreted as itself, and \(⊑\) is interpreted as the subterm relation (\(s\) is a subterm of \(t\) iff \(s = t\) or \(t = \langle t_1, t_2\rangle\) and \(s\) is a subterm of \(t_1\) or \(t_2\)).

The non-logical axioms of \(WT\) are given by the two axiom schemes:

\[(WT_1)\]
\[s \neq t\]

where \(s\) and \(t\) are distinct variable-free terms.

\[(WT_2)\]
\[∀x [x ⊑ t ↔ \bigvee_{s ∈ S(t)} x = s]\]

where \(t\) is a variable-free term and \(S(t)\) is the set of all subterms of \(t\). There are no other non-logical axioms except those given by these two simple schemes, and at a first glance \(WT\) seems to be a very weak theory. Still it turns out that Robinson’s essentially undecidable theory \(R\) is interpretable in \(WT\), and thus it follows that also \(WT\) is essentially undecidable. The theory \(T\) is given by the four axioms:

\(T_1\) \[∀xy [⟨x, y⟩ \neq ⊥]\]
\(T_2\) \[∀x_1x_2y_1y_2 [⟨x_1, x_2⟩ = ⟨y_1, y_2⟩ → (x_1 = y_1 ∧ x_2 = y_2)]\]
\(T_3\) \[∀x [x ⊑ ⊥ ↔ x = ⊥]\]
\(T_4\) \[∀xyz [x ⊑ ⟨y, z⟩ ↔ (x = ⟨y, z⟩ ∨ x ⊑ y ∨ x ⊑ z)]\]
It is not difficult to see that T is a consistent extension of WT. Thus, since WT is essentially undecidable, we can conclude right away that also T is essentially undecidable. Furthermore, since every model of the finitely axiomatizable theory T is infinite, T cannot be interpretable in WT, and the obvious conjecture would be that T is mutually interpretable with Robinson’s Q.

The Axioms of R

\[
\begin{align*}
R_1 & \quad \pi + m = \bar{n} + \bar{m} ; \\
R_2 & \quad \pi \times m = \bar{nm} ; \\
R_3 & \quad \forall x[x \leq \bar{n} \rightarrow x = 0 \lor \ldots \lor x = \bar{n}] ; \\
R_4 & \quad \forall x[x \leq \bar{n} \lor \bar{n} \leq x] \\
\end{align*}
\]

The Axioms of Q

\[
\begin{align*}
Q_1 & \quad \forall xy[Sx = Sy \rightarrow x = y] ; \\
Q_2 & \quad \forall x[Sx \neq 0] ; \\
Q_3 & \quad \forall x[x \neq 0 \rightarrow \exists y[x = Sy]] ; \\
Q_4 & \quad \forall x[x + 0 = x] ; \\
Q_5 & \quad \forall xy[x + Sy = S(x + y)] ; \\
Q_6 & \quad \forall x[x \times 0 = 0] ; \\
Q_7 & \quad \forall xy[x \times Sy = (x \times y) + x] ; \\
Q_8 & \quad \forall xy[x \leq y \leftrightarrow \exists z[x + z = y]]
\end{align*}
\]

Fig. 1. The axioms of R are given by axiom schemes where $n, m \in \mathbb{N}$ and \bar{n} denotes the n^{th} numeral, that is, $\bar{0} \equiv 0$ and $\bar{n} + \bar{1} \equiv S\bar{n}$.

The seminal theories R and Q are theories of arithmetic. The theory R is given by axiom schemes, and Q is a finitely axiomatizable extension of R, see Fig. 1 (Q is also known as Robinson arithmetic and is more or less Peano arithmetic without the induction scheme). It was proved in Tarski et al. [9] that R and Q are essentially undecidable. Another seminal essentially undecidable first-order theory is Grzegorcyk’s TC. This is a theory of concatenation. The language is \{*, α, β\} where α and β are constant symbols and * is a binary function symbol. The standard TC model is the structure where the universe is \{a, b\} (all finite nonempty strings over the alphabet \{a, b\}), * is concatenation, α is the string a and β is the string b. It was proved in Grzegorzyk and Zdanowski [3] that TC is essentially undecidable. It was later proved that TC is mutually interpretable with Q, see Visser [10] for further references. The theory $WTC^{-\epsilon}$ is a weaker variant of TC that has been shown to be mutually interpretable with R, see Higuchi and Horihata [4] for more details and further references. The axioms of TC and $WTC^{-\epsilon}$ can be found in Fig. 2.

The overall picture shows three finitely axiomatizable and essentially undecidable first-order theories of different character and nature: Q is a theory of arithmetic, TC is a theory of concatenation, and T is a theory of terms (it may also be viewed as a theory of binary trees). All three theories are mutually interpretable with each other, and each of them come with a weaker variant given by axiom schemes. These weaker variants are also essentially undecidable and mutually interpretable with each other.

The theory T has, in contrast to Q and TC, a purely universal axiomatization, that is, there are no occurrences of existential quantifiers in the axioms. Moreover, its weaker variant WT has a neat and very compact axiomatization compared to R and $WTC^{-\epsilon}$.
The Axioms of WTC$^{-\epsilon}$

\[\text{WT}_1^{-\epsilon} \forall x y z [\{ x \equiv (y \equiv z) \} \rightarrow (x \equiv y \equiv z)] ;
\]
\[\text{WT}_2^{-\epsilon} \forall x y z [x \equiv (y \equiv z) \rightarrow (x \equiv y) \lor (x \equiv z) \lor (y \equiv z)] ;
\]
\[\text{WT}_3^{-\epsilon} \forall x y [\alpha \equiv x \lor \alpha \equiv y] ;
\]
\[\text{WT}_4^{-\epsilon} \forall x y [\beta \equiv x \lor \beta \equiv y] ;
\]
\[\text{WT}_5^{-\epsilon} \alpha \equiv \beta
\]

where \(x \equiv y\) is defined by

\[x = y \lor \exists z_1 z_2 [z_1 \equiv x \land (z_1 \equiv x) \land z_2 = y \lor (z_1 \equiv x) \land z_2 = y \lor (z_1 \equiv x) \land z_2 = y].\]

The Axioms of TC

\[\text{TC}_1 \forall x y z [x \equiv (y \equiv z) \lor (x \equiv y) \lor (x \equiv z)] ;
\]
\[\text{TC}_2 \forall x y z [x \equiv (y \equiv z) \rightarrow (x \equiv y) \lor (x \equiv z)] ;
\]
\[\text{TC}_3 \forall x y [\alpha \equiv x \lor \alpha \equiv y] ;
\]
\[\text{TC}_4 \forall x y [\beta \equiv x \lor \beta \equiv y] ;
\]
\[\text{TC}_5 \alpha \equiv \beta
\]

Fig. 2. WTC$^{-\epsilon}_1$ and WTC$^{-\epsilon}_2$ are axiom schemes where \(t \in \{a, b\}^+\) and \(t\) is a term inductively defined by: \(\alpha \equiv 1\), \(\beta \equiv 2\), \(\alpha u \equiv 3\), \(\beta u \equiv 4\).

Another interesting theory which is known to be mutually interpretable with Q, and thus also with TC and T, is the adjunctive set theory AST. More on AST and adjunctive set theory can be found in Damnjanovic [2]. For recent results related to the work in the present paper, we refer the reader to Jerabek [5], Cheng [1] and Kristiansen and Murwanashyaka [7].

The rest of this paper is fairly technical, and we will assume that the reader is familiar with first-order theories and the interpretation techniques introduced in Tarski et al. [9]. In Sect. 2 we prove that R and WT are mutually interpretable. In Sect. 3 we prove that Q is interpretable in T. We expect that T can be interpreted in Q by standard techniques available in the literature.

2 R and WT Are Mutually Interpretable

The theory R$^\sim$ over the language of Robinson arithmetic is given by the axiom schemes

\[\text{R}_1^{-\epsilon} \bar{n} + \bar{m} = \bar{n} + \bar{m} ;
\]
\[\text{R}_2^{-\epsilon} \bar{n} \times \bar{m} = \bar{m} \bar{n} ;
\]
\[\text{R}_3^{-\epsilon} \bar{n} \neq \bar{m} \text{ for } n \neq m ;
\]
\[\text{R}_4 \forall x [x \leq \bar{n} \leftrightarrow x = 0 \lor \ldots \lor x = \bar{n}]
\]

where \(n, m \in \mathbb{N}\). Recall that \(\bar{n}\) denotes the \(n^{th}\) numeral, that is, \(\bar{0} \equiv 0\) and \(\bar{n + 1} \equiv \bar{n} \bar{1}\).

We now proceed to interpret R$^\sim$ in WT. We choose the domain \(I(x) \equiv x = x\) (thus we can just ignore the domain). Furthermore, we translate the successor function \(S(x)\) as the function given by \(\lambda x. \langle x, \bot \rangle\), and we translate the constant 0 as \(\langle \bot, \bot \rangle\). Let \(\bar{n}^*\) denote the translation of the numeral \(\bar{n}\). Then we have \(\bar{n + 1}^* \equiv \langle \bar{n}^*, \bot \rangle\). It follows from WT1_1 that the translation of each instance of \(\text{R}_3^{-\epsilon}\) is a theorem of WT since \(\bar{m}^*\) and \(\bar{n}^*\) are different terms whenever \(m \neq n\).
We translate \(x \leq y \) as \(x \subseteq y \land x \neq \bot \). It is easy to see that

\[
WT \vdash \forall x [x \subseteq \pi^* \land x \neq \bot \iff \bigvee_{s \in T(n)} x = s]
\]

(1)

where \(T(n) = S(\pi^*) \setminus \{ \bot \} \) and \(S(\pi^*) \) denotes the set of all subterms of \(\pi^* \). We observe that \(T(n) = \{ k^* \mid k \leq n \} \) and that (1) indeed is the translation of the axiom scheme \(R_4^- \). Hence we conclude that the translation of each instance of \(R_4^- \) is a theorem of \(WT \).

Next we discuss the translation of +. The idea is to obtain \(n + i \) through a formation sequence of length \(i \). Such a sequence will be represented by a term of the form

\[
\langle \ldots (\langle \langle \pi^*, 0^* \rangle, \langle n + 1^*, 1^* \rangle), \langle n + 2^*, 2^* \rangle, \ldots, \langle n + i^*, i^* \rangle) \rangle
\]

(2)

Accordingly we translate \(x + y = z \) by the predicate \(add(x, y, z) \) given by the formula

\[
(y = 0^* \land z = x) \lor \left\{ y \neq 0^* \land \exists W [\langle x, 0^* \rangle \subseteq W \land \forall X \forall Y \subseteq y [\langle X, Y \rangle \subseteq W \land Y \neq y \land Y \neq \bot \implies (\langle \langle X, \bot \rangle, \langle Y, \bot \rangle \rangle \subseteq W \land (\langle Y, \bot \rangle = y \rightarrow \langle X, \bot \rangle = z))] \right\}
\]

Lemma 1. For any \(m, n \in \mathbb{N} \), we have

\[
WT \vdash \forall z [add(\pi^*, \overline{m}^*, z) \iff z = \overline{n + m}^*]
\]

Proof. First we prove that \(WT \vdash add(\pi^*, \overline{m}^*, \overline{n + m}^*) \). This is obvious if \(m = 0 \). Assume \(m > 0 \). Let

\[
S_0^n \equiv \langle \pi^*, 0^* \rangle \quad \text{and} \quad S_{i+1}^n \equiv \langle S_i^n, \langle n + i + 1^*, i + 1^* \rangle \rangle
\]

and observe that \(S_i^n \) is of the form (2). We will argue that we can choose the \(W \) in the definition of \(add(x, y, z) \) to be the term \(S_i^n \).

So let \(W = S_i^n \). By the axioms of \(WT \), we have \(\langle \pi^*, 0^* \rangle \subseteq W \). Assume

\[
\langle X, Y \rangle \subseteq W \land Y \neq y = \overline{m}^* \land Y \subseteq \overline{y} = \overline{m}^* \land Y \neq \bot.
\]

By the axioms of \(WT \), we have that \(Y \subseteq \overline{m}^* \land Y \neq \overline{m}^* \land Y \neq \bot \) imply \(Y = k^* \) for some \(k < m \). Since \(\langle X, Y \rangle \subseteq W \), we know by \(WT_2 \) that \(\langle X, Y \rangle \) is one of the subterms of \(W \). By \(WT_1 \) and the form of \(S_i^n \), we conclude that \(X = \overline{n + k}^* \).

Furthermore, the form of \(S_i^n \) and \(WT_2 \) then ensures that \(\langle \langle X, \bot \rangle, \langle Y, \bot \rangle \rangle \subseteq W = S_i^n \). Moreover, if \(\langle Y, \bot \rangle = \overline{m}^* \), then by \(WT_1 \), we must have \(k = m - 1 \), and thus, \(\langle X, \bot \rangle = \langle n + (m - 1)^*, \bot \rangle = \overline{n + m}^* \). This proves that we can deduce \(add(\pi^*, \overline{m}^*, \overline{n + m}^*) \) from the axioms of \(WT \), and thus we also have

\[
WT \vdash \forall z [z = \overline{n + m}^* \rightarrow add(\pi^*, \overline{m}^*, z)].
\]
Next we prove that the converse implication \(add(\pi^*, m^*, z) \rightarrow z = n + m^* \) follows from the axioms of WT (and thus the lemma follows). This is obvious when \(m = 0 \). Assume \(m \neq 0 \) and \(add(\pi^*, m^*, z) \). Then we have \(W \) such that \(\langle \pi^*, 0^* \rangle \subseteq W \) and

\[
\forall X \forall Y \subseteq m^* \left[\langle X, Y \rangle \subseteq W \wedge Y \neq m^* \wedge Y \neq \bot \rightarrow \left(\langle \langle X, \bot \rangle, \langle Y, \bot \rangle \rangle \subseteq W \wedge (\langle Y, \bot \rangle = \bar{m^*} \rightarrow \langle X, \bot \rangle = z) \right) \right]. \tag{3}
\]

Since \(\langle n, \bar{0}^* \rangle \subseteq W \) and (3) hold, we have \(\langle n + k + \bar{1}^*, k + \bar{1}^* \rangle \subseteq W \) for any \(k < m \). It also follows from (3) that \(z = n + k + \bar{1}^* \) when \(m = k + 1 \). \(\square \)

It follows from the preceding lemma that there for any \(n, m \in \mathbb{N} \) exists a unique \(k \in \mathbb{N} \) such that \(WT \vdash add(\pi^*, m^*, k^*) \). We translate \(x + y = z \) by the predicate \(\phi_+ \) where \(\phi_+(x, y, z) \) is the formula

\[
(\exists u[add(x, y, u)] \wedge add(x, y, z)) \lor (\neg \exists u[add(x, y, u)] \wedge z = \bot). \tag{4}
\]

The second disjunct of (4) ensures the functionality of our translation, that is, it ensures that \(WT \vdash \forall xy \exists! x \phi_+(x, y, z) \) (the same technique is used in [6]). By Lemma 1, we have \(WT \vdash \phi_+(\bar{\pi^*}, \bar{m^*}, \bar{n + m^*}) \). This shows that the translation of any instance of the axiom scheme \(R_2^- \) can be deduced from the axioms of WT.

We can also achieve a translation of \(x \times y = z \) such that the translation of each instance of \(R_2^- \) can be deduced from the axioms of WT. Such a translation claims the existence of a term \(S^n_m \) where

\[
S^n_1 \equiv \langle \bar{\pi^*}, \bar{1^*} \rangle \quad \text{and} \quad S^n_{i+1} \equiv \langle S^n_i, \langle (i+1)\bar{\pi^*}, (i+\bar{1^*}) \rangle \rangle
\]

and will more or less be based on the same ideas as our translation of \(x + y = z \). We omit the details.

Theorem 2. \(R \) and WT are mutually interpretable.

Proof. We have seen how to interpret \(R^- \) in WT. It follows straightforwardly from results proved in Jones and Shepherdson [6] that \(R^- \) and \(R \) are mutually interpretable. Thus \(R \) is interpretable in WT. A result of Visser [11] states that a theory is interpretable in \(R \) if and only if it is locally finitely satisfiable, that is, each finite subset of the non-logical axioms has a finite model. Since WT clearly is locally finitely satisfiable, WT is interpretable in \(R \). \(\square \)

3 \(Q \) is Interpretable in \(T \)

The language of the arithmetical theory \(Q^- \) is \(\{0, S, M, A\} \) where 0 is a constant symbol, \(S \) is a unary function symbol, and \(A \) and \(M \) are ternary predicate symbols. The non-logical axioms of the first-order theory \(Q^- \) are the the following:

- **A** \(\forall xy z_1 z_2 [A(x, y, z_1) \land A(x, y, z_2) \rightarrow z_1 = z_2] \);
- **M** \(\forall xy z_1 z_2 [M(x, y, z_1) \land M(x, y, z_2) \rightarrow z_1 = z_2] \);
- **Q_1** \(\forall xy [x \neq y \rightarrow Sx \neq Sy] \);
- **Q_2** \(\forall x [Sx \neq 0] \);
- **Q_3** \(\forall x [x = 0 \lor \exists y [x = Sy]] \);
- **G_4** \(\forall x [A(x, 0, x)] \);
- **G_5** \(\forall xyu [\exists z [A(x, y, z) \land u = Sz] \rightarrow A(x, Sy, u)] \);
- **G_6** \(\forall x [M(x, 0, 0)] \);
- **G_7** \(\forall xyu [\exists z [M(x, y, z) \land A(z, x, u)] \rightarrow M(x, Sy, u)] \).
Svejdar [8] proved that Q^- and Q are mutually interpretable. We will prove that Q^- is interpretable in T.

The first-order theory T^+ is T extended by the two non-logical axioms

$$T_5 \forall x[x \subseteq x] \quad \text{and} \quad T_6 \exists x y z[x \subseteq y \land y \subseteq z \rightarrow x \subseteq z].$$

Lemma 3. T^+ is interpretable in T.

Proof. We simply relativize quantification to the domain

$$I = \{ x \mid x \subseteq x \land \forall u v[u \subseteq v \land v \subseteq x \rightarrow u \subseteq x] \} .$$

Suppose $x_1, x_2 \in I$. We show that $\langle x_1, x_2 \rangle \in I$. Since $\langle x_1, x_2 \rangle = \langle x_1, x_2 \rangle$, we have $\langle x_1, x_2 \rangle \subseteq \langle x_1, x_2 \rangle$ by T_4. Suppose now that $u \subseteq v \land v \subseteq \langle x_1, x_2 \rangle$. We need to show that $u \subseteq \langle x_1, x_2 \rangle$. By T_4 and $\forall u \subseteq \langle x_1, x_2 \rangle$, at least one of the following three cases holds: (a) $v = \langle x_1, x_2 \rangle$, (b) $v \subseteq x_1$, (c) $v \subseteq x_2$. Case (a): Since $u \subseteq v$ and $v = \langle x_1, x_2 \rangle$, we have $u \subseteq \langle x_1, x_2 \rangle$ by our logical axioms. Case (b): $u \subseteq v \land v \subseteq x_1$ implies $u \subseteq x_1$ since $x_1 \in I$. By T_4, we have $u \subseteq \langle x_1, x_2 \rangle$. Case (c): We have $u \subseteq \langle x_1, x_2 \rangle$ by an argument symmetric to the one used in Case (b). Hence, $\forall u v[u \subseteq v \land v \subseteq \langle x_1, x_2 \rangle \rightarrow u \subseteq \langle x_1, x_2 \rangle]$.

This proves that I is closed under $\langle \cdot, \cdot \rangle$. It follows from T_3 that $\bot \in I$, and thus I satisfies the domain condition. Clearly, the translation of each non-logical axiom of T^+ is a theorem of T.

We now proceed to interpret Q^- in T^+. We choose the domain N given by

$$N(x) \equiv x \neq \bot \land \forall y \subseteq x[y = \bot \lor \exists z[y = \langle z, \bot \rangle]] .$$

Lemma 4. We have (i) $T^+ \vdash N(\langle \bot, \bot \rangle)$, (ii) $T^+ \vdash \forall x[N(x) \rightarrow N(\langle x, \bot \rangle)]$ and (iii) $T^+ \vdash \forall y z[N(y) \land z \subseteq y \rightarrow (z = \bot \lor N(z))]$.

Proof. It follows from T_1, T_3 and T_4 that (i) holds. In order to see that (ii) holds, assume $N(x)$ (we will argue that $N(\langle x, \bot \rangle)$ holds). Suppose $y \subseteq \langle x, \bot \rangle$. Now, $N(\langle x, \bot \rangle)$ follows from

$$y = \bot \lor \exists z[y = \langle z, \bot \rangle] .$$

(5)

Thus it is sufficient to argue that (5) holds. By T_4, we know that $y \subseteq \langle x, \bot \rangle$ implies $y = \langle x, \bot \rangle \lor y \subseteq x \lor y \subseteq \bot$. The case $y = \langle x, \bot \rangle$: We obviously have $\exists z[y = \langle z, \bot \rangle]$ and thus (5) holds. The case $y \subseteq x$: (5) holds since $N(x)$ holds. The case $y \subseteq \bot$: We have $y = \bot$ by T_3, and thus (5) holds. This proves (ii).

We turn to the proof of (iii). Suppose $N(y) \land z \subseteq y$ (we show $z = \bot \lor N(z)$). Assume $w \subseteq z$. By T_6, we have $w \subseteq y$, moreover, since $N(y)$ holds, we have $w = \bot \lor \exists u[w = \langle u, \bot \rangle]$. Thus, we conclude that

$$N(z) \forall w \subseteq z[w = \bot \lor \exists u[w = \langle u, \bot \rangle]] .$$

(6)

Now

$$z = \bot \lor \{ z \neq \bot \land \forall w \subseteq z[w = \bot \lor \exists u[w = \langle u, \bot \rangle]] \}$$

follows tautologically from (6).

□
We interpret 0 as $\langle \bot, \bot \rangle$. We interpret the successor function Sx as $\lambda x.\langle x, \bot \rangle$. To improve the readability we will occasionally write $\hat{0}$ in place of $\langle \bot, \bot \rangle$, $\hat{S}t$ in place of $\langle t, \bot \rangle$ and $t \in N$ in place of $N(t)$. We will also write $\exists x \in N[\eta]$ and $\forall x \in N[\eta]$ in place of, respectively, $\exists x[\eta(x) \land \eta]$ and $\forall x[\eta(x) \rightarrow \eta]$. Furthermore, $Qx_1, \ldots, x_n \in N$ is shorthand for $Qx_1 \in N \ldots Qx_n \in N$ where Q is either \forall or \exists.

Lemma 5. The translations of Q_1, Q_2 and Q_3 are theorems of T^+.

Proof. The translation of Q_1 is $\forall x, y \in N[x \neq y \rightarrow \hat{S}x \neq \hat{S}y]$. By T_2, we have $x \neq y \rightarrow \hat{S}x \neq \hat{S}y$ for any x, y, and thus, the translation of Q_1 is a theorem of T^+.

The translation of Q_2 is $\forall x \in N[\hat{S}x \neq \hat{0}]$. Assume $x \in N$. Then we have $x \neq \bot$, and by T_2, we have $\hat{S}n \equiv \langle x, \bot \rangle \neq \langle \bot, \bot \rangle \equiv \hat{0}$.

The translation of Q_3 is $\forall x \in N[x = \hat{0} \lor \exists y \in N[x = \hat{S}y]]$. Assume $x \in N$, that is, assume

$$x \neq \bot \land \forall y \subseteq x\lbrace y = \bot \lor \exists z[y = \langle z, \bot \rangle] \rbrace . \quad (7)$$

By T_5, we have $x \subseteq x$. By (7) and $x \subseteq x$, we have

$$x \neq \bot \land \exists y \subseteq x\lbrace y = \bot \lor \exists z[x = \langle z, \bot \rangle] \rbrace$$

and then, by a tautological inference, we also have $\exists z[x = \langle z, \bot \rangle]$. Thus, we have z such that $\langle z, \bot \rangle \equiv \hat{S}z = x \in N$. By Lemma 4 (iii), we have $z = \bot \lor z \in N$. If $z = \bot$, we have $x = \langle \bot, \bot \rangle \equiv \hat{0}$. If $z \in N$, we have $z \in N$ such that $x = \hat{S}z$. Thus, $T^+ \vdash \forall x \in N[x = \hat{0} \lor \exists y \in N[x = \hat{S}y]]$.

Before we give the translation of A, we will provide some intuition. The predicate $A(a, b, c)$ holds in the standard model for Q^- iff $a + b = c$. Let $\tilde{0} \equiv \hat{0}$ and $\tilde{n} + 1 \equiv \hat{S}\tilde{n}$, and observe that $a + b = c$ iff there exists an L_T-term of the form

$$\langle \ldots \langle \langle \langle \langle \bot, \hat{0} \rangle, \langle a + 1, \hat{1} \rangle \rangle, \langle a + 2, \hat{2} \rangle \rangle \ldots, \langle a + b, \hat{b} \rangle \rangle \quad (8)$$

where $c = a + b$. We will give a predicate ϕ_A such that $\phi_A(\tilde{a}, \tilde{b}, w)$ holds in $T^+ \iff w$ is of the form (8). Thereafter we will use ϕ_A to give the translation Ψ_A of A.

Let $\phi_A(x, y, w) \equiv \langle y = \tilde{0} \rightarrow w = \langle \bot, \langle x, \tilde{0} \rangle \rangle \rangle \land \exists w' \exists z \in N[w = \langle w', \langle z, y \rangle \rangle] \land \forall u \forall Y, Z \in N[\theta_A(u, w, Y, Z)]$

where $\theta_A(u, w, Y, Z) \equiv \langle u, \langle Z, Y \rangle \rangle \subseteq w \lor Y \neq \hat{0} \rightarrow \exists v \exists Y' Z' \in N[Z = \hat{S}Z' \land Y = \hat{S}Y' \land u = \langle v, \langle Z', Y' \rangle \rangle \land (Y' = \tilde{0} \rightarrow (Z' = x \land v = \bot))]$.

The translation $Ψ_A$ of A is $Ψ_A(x, y, z) ≡$

$$\exists w[φ_A(x, y, w) \land \exists w'[w = \langle w', ⟨z, y⟩\rangle] \land ∀u[φ_A(x, y, u) → u = w]] .$$

Lemma 6.

$$T^+ ⊢ ∀x ∈ N ∀w[φ_A(x, 0, w) ← w = ⟨⊥, ⟨x, 0⟩⟩] .$$

Proof. We assume $x ∈ N$ and prove the equivalence

$$φ_A(x, 0, w) ← w = ⟨⊥, ⟨x, 0⟩⟩$$

(9)

The left-right direction of (9) follows straightforwardly from the definition of $φ_A$. To prove the right-left implication of (9), we need to prove $φ_A(x, 0, ⟨⊥, ⟨x, 0⟩⟩).$

It is easy to see that $φ_A(x, 0, ⟨⊥, ⟨x, 0⟩⟩)$ holds if

$$∀u∀Y, Z ∈ N[θ_A(u, ⟨⊥, ⟨x, 0⟩⟩), Y, Z]$$

(10)

holds, and to show (10), it suffices to show that

$$x, Y, Z ∈ N \text{ and } ⟨u, ⟨Z, Y⟩⟩ ⊑ ⟨⊥, ⟨x, 0⟩⟩ \text{ and } Y \neq 0$$

(11)

is a contradiction. (If (11) is a contradiction, then (10) will hold as the antecedent of $θ_A$ will be false for all $x, Y, Z ∈ N$ and all u.)

By T_4 and $⟨u, ⟨Z, Y⟩⟩ ⊑ ⟨⊥, ⟨x, 0⟩⟩$ we have to deal with the following three cases: (a) $⟨u, ⟨Z, Y⟩⟩ = ⟨⊥, ⟨x, 0⟩⟩$, (b) $⟨u, ⟨Z, Y⟩⟩ ⊑ ⊥$ and (c) $⟨u, ⟨Z, Y⟩⟩ ⊑ ⟨x, 0⟩$. Case (a): We have $Y = 0$ by T_2, but we have $Y \neq 0$ in (11). Case (b): We have $⟨u, ⟨Z, Y⟩⟩ = ⊥$ by T_3, and this contradicts T_1. Case (c): By T_4, this case splits into the three subcases: (a') $⟨u, ⟨Z, Y⟩⟩ = ⟨x, 0⟩$, (b') $⟨u, ⟨Z, Y⟩⟩ ⊑ x$ and (c') $⟨u, ⟨Z, Y⟩⟩ ⊑ 0$. Case (a'): We have $⟨u, ⟨Z, Y⟩⟩ = ⟨x, ⟨⊥, ⊥⟩⟩$ since 0 is shorthand for $⟨⊥, ⊥⟩$. Thus, by T_2, we have $Z = ⊥$ and $Y = ⊥$. This contradicts $Y, Z ∈ N$. Case (b'): We have $⟨u, ⟨Z, Y⟩⟩ ⊑ x$ and $x ∈ N$. By Lemma 4 (iii), we have $⟨u, ⟨Z, Y⟩⟩ = ⊥$ or $⟨u, ⟨Z, Y⟩⟩ ∈ N$. Now, $⟨u, ⟨Z, Y⟩⟩ = ⊥$ contradicts T_1. Furthermore, by our definitions, $⟨u, ⟨Z, Y⟩⟩ ∈ N$ implies that

$$∀y_0 ⊑ ⟨u, ⟨Z, Y⟩⟩[y_0 = ⊥ \lor ∃z_0 [y_0 = ⟨z_0, ⊥⟩]] .$$

By T_5, we have $⟨u, ⟨Z, Y⟩⟩ = ⊥ \lor ∃z_0[⟨u, ⟨Z, Y⟩⟩ = ⟨z_0, ⊥⟩]$, and this yields a contradiction together with T_1 and T_2. Case (c') is similar to Case (a'), but a bit simpler. This completes the proof of the lemma. □

Lemma 7.

$$T^+ ⊢ ∀x, y ∈ N ∀zw′[w = ⟨w′, ⟨z, y⟩⟩ \land φ_A(x, y, w) → φ_A(x, ˙S y, ⟨w, ⟨˙S z, ˙S y⟩⟩)] .$$

Proof. We assume

$$x, y ∈ N \text{ and } w = ⟨w′, ⟨z, y⟩⟩ \text{ and } φ_A(x, y, w) .$$

(12)
We need to prove $\phi_A(x, \hat{S}y, \langle w, \langle \hat{S}z, \hat{S}y \rangle \rangle)$

$$(\hat{S}y = \hat{0} \rightarrow w = \langle \bot, (x, \hat{0}) \rangle) \land$$

$$\exists w_0 \exists z_0 \in N[\langle w, \langle \hat{S}z, \hat{S}y \rangle \rangle = \langle w_0, \langle z_0, \hat{S}y \rangle \rangle] \land$$

$$\forall u \forall Y, Z \in N[\theta_A(u, \langle w, \langle \hat{S}z, \hat{S}y \rangle \rangle, Y, Z)]$$

First we prove

$$z \in N \text{ and } \hat{S}z \in N$$

By our assumptions (14), we have $z = z_1$, and thus $z \in N$. By Lemma 4 (ii), we have $\hat{S}z \in N$. This proves (14).

The second conjunct of (13) follows straightforwardly from (14), (simply let z_0 be $\hat{S}z$ and let w_0 be w). The first conjunct follows easily from T_2 and the assumption $y \in N$. Thus, we are left to prove the third conjunct of (13), namely

$$\forall u \forall Y, Z \in N[\langle u, \langle Z, Y \rangle \rangle \sqsubseteq \langle w, \langle \hat{S}z, \hat{S}y \rangle \rangle \land Y \neq \hat{0} \rightarrow$$

$$\exists v \exists Y'Z' \in N[Z = \hat{S}Z' \land Y = \hat{S}Y' \land u = \langle v, \langle Z', Y' \rangle \rangle \land$$

$$(Y' = \hat{0} \rightarrow (Z' = x \land v = \bot))].$$

In order to do so, we assume

$$Y, Z \in N \text{ and } \langle u, \langle Z, Y \rangle \rangle \sqsubseteq \langle w, \langle \hat{S}z, \hat{S}y \rangle \rangle \text{ and } Y \neq \hat{0}$$

and prove

$$\exists v \exists Y'Z' \in N[Z = \hat{S}Z' \land Y = \hat{S}Y' \land u = \langle v, \langle Z', Y' \rangle \rangle \land$$

$$(Y' = \hat{0} \rightarrow (Z' = x \land v = \bot))].$$

By our assumptions (16), we have $\langle u, \langle Z, Y \rangle \rangle \sqsubseteq \langle w, \langle \hat{S}z, \hat{S}y \rangle \rangle$, and then T_4 yields three cases: (a) $\langle u, \langle Z, Y \rangle \rangle = \langle w, \langle \hat{S}z, \hat{S}y \rangle \rangle$, (b) $\langle u, \langle Z, Y \rangle \rangle \sqsubseteq w$ and (c) $\langle u, \langle Z, Y \rangle \rangle \sqsubseteq \langle \hat{S}z, \hat{S}y \rangle$. We prove that that (17) holds in each of these three cases.

Case (a): By T_2, we have $u = w$, $Z = \hat{S}z$ and $Y = \hat{S}y$. By (14), we have $z \in N$.

By (12), we have $y \in N$. Moreover, by (12), we also have $u = w = \langle w', \langle z, y \rangle \rangle$. Thus there exist v and $Y', Z' \in N$ such that

$$Z = \hat{S}Z' \land Y = \hat{S}Y' \land u = \langle v, \langle Z', Y' \rangle \rangle.$$
We are dealing with a case where the antecedent of (18) holds, and thus (17) holds.

Case (c): This case is not possible. By T_4, this case splits into the subcases:

(a') $\langle u, \langle Z, Y \rangle \rangle = \langle \hat{S}z, \hat{S}y \rangle$, (b') $\langle u, \langle Z, Y \rangle \rangle \subseteq \hat{S}z$ and (c') $\langle u, \langle Z, Y \rangle \rangle \subseteq \hat{S}y$.

We prove that each of these subcases contradicts our axioms. Case (a'): Recall that $\hat{S}y$ is shorthand for $\langle y, \bot \rangle$. Thus, by T_2, we have $Y = \bot$. This contradicts the assumption (12) that $Y \in N$. Case (b'): By Lemma 4 (iii), we have $\langle u, \langle Z, Y \rangle \rangle = \bot \lor N(\langle u, \langle Z, Y \rangle \rangle)$. Now, $\langle u, \langle Z, Y \rangle \rangle = \bot$ contradicts T_1. Furthermore, $N(\langle u, \langle Z, Y \rangle \rangle)$ implies that there is z_0 such that $\langle u, \langle Z, Y \rangle \rangle = \langle z_0, \bot \rangle$.

By T_2, we have $\langle Z, Y \rangle = \bot$. This contradicts T_1. Case (c') is similar to Case (b'). This proves that (17) holds, and thus we conclude that the lemma holds. □

Lemma 8.

$$T^+ \vdash \forall x, y \in N \forall w[\phi_A(x, \hat{S}y, w) \rightarrow \exists u \in N \exists w'[w = \langle w', \langle u, \hat{S}y \rangle \rangle \land \phi_A(x, y, w')]].$$

Proof. Let $x, y \in N$ and assume $\phi_A(x, \hat{S}y, w)$. Thus, we have w' and $z \in N$ such that

$$w = \langle w', \langle z, \hat{S}y \rangle \rangle \text{ and } \forall u \forall Y, Z \in N[\theta_A(u, w, Y, Z)] \quad (19)$$

Use the assumptions (19) to prove that $\phi_A(x, y, w') \equiv$

$$(y = \hat{0} \rightarrow w' = \langle \bot, \langle x, \hat{0} \rangle \rangle) \land \exists w'' \exists z \in N[w' = \langle w'', \langle z, y \rangle \rangle] \land \forall u \forall Y, Z \in N[\theta_A(u, w', Y, Z)] \quad (20)$$

holds. We omit the details. □

Lemma 9. The translations of A, G_4 and G_5 are theorems of T^+.

Proof. The translation of the axiom A is

$$\forall x, y, z_1, z_2 \in N[\Psi_A(x, y, z_1) \land \Psi_A(x, y, z_2) \rightarrow z_1 = z_2] .$$

Assume $\Psi_A(x, y, z_1)$ and $\Psi_A(x, y, z_2)$. Then it follows straightforwardly from the definition of Ψ_A and T_2 that $z_1 = z_2$. Hence the translation is a theorem of T^+.

The translation of G_4 is $\forall x \in N[\Psi_A(x, \hat{0}, x)]$, that is

$$\forall x \in N \exists w[\phi_A(x, \hat{0}, w) \land \exists w'[w = \langle w', \langle x, \hat{0} \rangle \rangle] \land \forall u[\phi_A(x, \hat{0}, u) \rightarrow u = w]] .$$

We have

$$T^+ \vdash \phi_A(x, \hat{0}, \langle \bot, \langle x, \hat{0} \rangle \rangle) \text{ and } T^+ \vdash \forall u[\phi_A(x, \hat{0}, u) \rightarrow u = \langle \bot, \langle x, \hat{0} \rangle \rangle]$$

by Lemma 6, and it easy to see that the translation of G_4 is a theorem of T^+.

The translation of G_5 is

$$\forall x, y, u \in N[\exists z \in N[\Psi_A(x, y, z) \land u = \dot{S}z] \rightarrow \Psi_A(x, \dot{S}y, u)] .$$

(21)

In order to prove that (21) can be deduced from the axioms of T^+, we assume $\Psi_A(x, y, z) \land u = \dot{S}z$. Then we need to prove $\Psi_A(x, \dot{S}y, \dot{S}z) \equiv$

$$\exists w[\phi_A(x, \dot{S}y, w) \land \exists w'[w = \langle w', \langle \dot{S}z, \dot{S}y \rangle \rangle \land$$

$$\forall u[\phi_A(x, \dot{S}y, u) \rightarrow u = w]] .$$

(22)

By our assumption $\Psi_A(x, y, z)$ there is a unique w_1 such that $\phi_A(x, y, w_1)$ and $w_1 = \langle w_0, \langle z, y \rangle \rangle$ for some w_0. By Lemma 7, we have $\phi_A(x, \dot{S}y, \langle w_1, \langle \dot{S}z, \dot{S}y \rangle \rangle)$. Thus, we have w_2 such that $\phi_A(x, \dot{S}y, w_2)$ and $w_2 = \langle w_1, \langle \dot{S}z, \dot{S}y \rangle \rangle$. It is easy to see that (22) holds if w_2 is unique. Thus we are left to prove the uniqueness of w_2, more precisely, we need to prove that

$$\forall W_2[\phi_A(x, \dot{S}y, W_2) \rightarrow W_2 = w_2] .$$

(23)

In order to prove (23), we assume $\phi_A(x, \dot{S}y, W_2)$ (we will prove $W_2 = w_2 = \langle w_1, \langle \dot{S}z, \dot{S}y \rangle \rangle$). By our assumption $\phi_A(x, \dot{S}y, W_2)$ and Lemma 8, we have $u_0 \in N$ and W_1 such that $W_2 = \langle W_1, \langle w_0, \dot{S}y \rangle \rangle$ and $\phi_A(x, y, W_1)$. We have argued that there is a unique $w_1 = \langle w_0, \langle z, y \rangle \rangle$ such that $\phi_A(x, y, w_1)$ holds. By this uniqueness, we have $W_1 = w_1 = \langle w_0, \langle z, y \rangle \rangle$. So far we have proved

$$w_2 = \langle \langle w_0, \langle z, y \rangle \rangle, \langle \dot{S}z, \dot{S}y \rangle \rangle$$

and then we are left to prove that $u_0 = \dot{S}z$. By our assumption $\phi_A(x, \dot{S}y, W_2)$, we have v and $Z', Y' \in N$ such that $u_0 = \dot{S}Z', \dot{S}y = \dot{S}Y'$ and $W_1 = \langle v, \langle Z', Y' \rangle \rangle$. Thus, $\langle v, \langle Z', Y' \rangle \rangle = \langle w_0, \langle z, y \rangle \rangle$. By T_2, we have $z = Z'$, and thus, $u_0 = \dot{S}Z' = \dot{S}z$. This proves that (23) holds.

We will now give the translation Ψ_M of M. Let $\phi_M(x, y, w) \equiv$

$$\langle y = \dot{0} \rightarrow w = \langle \bot, \langle \dot{0}, \dot{0} \rangle \rangle \rangle \land \exists w' \exists z \in N[w = \langle w', \langle z, y \rangle \rangle \rangle \land$$

$$\forall w \forall Y, Z \in N \theta_M(u, w, Y, Z)$$

where $\theta_M(u, w, Y, Z) \equiv$

$$\langle u, \langle Z, Y \rangle \rangle \subseteq w \land Y \neq \dot{0} \rightarrow \exists v \exists Y', Z' \in N[\Psi_A(Z', x, Z) \land$$

$$Y = \dot{S}Y' \land u = \langle v, \langle Z', Y' \rangle \rangle \rangle \land (Y' = \dot{0} \rightarrow Z' = \dot{0} \land v = \bot)] .$$

We let $\Psi_M(x, y, z) \equiv$

$$\exists w[\phi_M(x, y, w) \land \exists w'[W = \langle w', \langle z, y \rangle \rangle \land \forall u[\phi_M(x, y, u) \rightarrow u = w]] .$$
The translations of M, G_6 and G_7 are
\[
M \forall x, y, z_1, z_2 \in N[\Psi_M(x, y, z_1) \land \Psi_M(x, y, z_2) \rightarrow z_1 = z_2] \\
G_6 \forall x \in N[M(x, 0, 0)] \\
G_7 \forall x, y, u \in N[\exists z \in N[\Psi_M(x, y, z) \land \Psi_A(z, x, u)] \rightarrow \Psi_M(x, \dot{S}y, u)] .
\]

The proof of the next lemma follows the lines of the proof of Lemma 9. We omit the details.

Lemma 10. The translations of M, G_6 and G_7 are theorems of T^+.

Theorem 11. Q is interpretable in T.

Proof. It is proved in Svejdar [8] that Q is interpretable in Q^-. It follows from the lemmas above that Q^- is interpretable in T^+ which again is interpretable in T. Hence the theorem holds. \Box

References

1. Cheng, Y.: Finding the limit of incompleteness I. arXiv:1902.06658v2
2. Damnjanovic, Z.: Mutual interpretability of Robinson arithmetic and adjunctive set theory. Bull. Symb. Logic **23**, 381–404 (2017)
3. Grzegorczyk, A., Zdanowski, K.: Undecidability and concatenation. In: Ehrenfeucht, A., et al. (eds.) Andrzej Mostowski and Foundational Studies, pp. 72–91. IOS, Amsterdam (2008)
4. Higuchi, K., Horihata, Y.: Weak theories of concatenation and minimal essentially undecidable theories. Arch. Math. Logic **53**, 835–853 (2014). https://doi.org/10.1007/s00153-014-0391-x
5. Jerabek, E.: Recursive functions and existentially closed structures. J. Math. Logic (2019). https://doi.org/10.1142/S0219061320500026
6. Jones, J., Shepherdson, J.: Variants of Robinson’s essentially undecidable theory R. Archiv für mathematische Logik und Grundlagenforschung **23**, 61–64 (1983)
7. Kristiansen, L., Murwanashyaka, J.: First-order concatenation theory with bounded quantifiers. Arch. Math. Logic (accepted)
8. Svejdar, V.: An interpretation of Robinson arithmetic in its Grzegorczyk’s weaker variant. Fundamenta Informaticae **81**, 347–354 (2007)
9. Tarski, A., Mostowski, A., Robinson, R.M.: Undecidable Theories. North-Holland, Amsterdam (1953)
10. Visser, A.: Growing commas. A study of sequentiality and concatenation. Notre Dame J. Formal Logic **50**, 61–85 (2009)
11. Visser, A.: Why the theory R is special. In: Tennant, N. (ed.) Foundational Adventures. Essays in Honour of Harvey Friedman, pp. 7–23. College Publications, UK (2014)