Distortion Characteristics and Experimental Research on Transformer Windings under Harmonic Condition

Zhongdong Yin1 and Wensi Wei1

1State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (North China Electric Power University), 102206 Changping District Beijing, China

1920115131@qq.com

Abstract. Firstly, the limitations of the existing transformer harmonic models both at home and abroad are analyzed. Based on this, the influence of the skin effect and the proximity effect on the windings under harmonics conditions is considered. Based on the electromagnetic field principle, the paper analyses the distortion characteristics of winding resistance parameters, introduces the AC power group coefficient and establishes of winding harmonic loss model. Compared with the traditional engineering calculation method, we can see that the theoretical model proposed in this paper can improve the accuracy and make the transformer winding loss calculation more accurate, Therefore, the model has certain guiding value for engineering calculation.

1. Introduction

The operation of power transformers is not only affected by the harmonics of the power grid, but also is one of the most important harmonic sources in the power system due to the nonlinearity of the iron core. Harmonic current flowing through the transformer will make the transformer temperature increases and the total loss increases, which not only will cause damage to the transformer insulation, but also lead to transformer load capacity decline, thus it affects its safety and stable operation. Due to the effective use of transformers for a long time, even very small losses, the annual energy consumption is also huge. The total transformer losses account for about 8% of the total generating capacity, and most of them are transformer harmonic losses. According to a Japanese company reports that when the transformer harmonic current reaches 10% of rated current, the transformer loss than the rated loss of 10%.

Research of China's harmonic loss model of the transformer is less, the main use of conventional IEEE transformer model[1-3]. These models do not deal with the resistance parameters of the transformer windings in the harmonic environment or do not handle well enough and are often calculated by multiplying the DC resistance instead of the AC resistance. This simplification has little effect on the circuit calculation with fundamental only, but under harmonic conditions the equivalent resistance of the transformer windings at different frequencies is much larger than the DC resistance due to skin and proximity effects, making the calculation model inaccurate. In addition, useing improved parameter method about the transformer harmonic loss calculation is easy to implement and more widely, the calculation is relatively simple, but can not well reflect the phase angle between the voltage and current Change, in practice, it can be used as a quick estimate method[4-8].

Based on the Maxwell's equations and the Poynting's theory, this paper considers winding.

Project Supported by China Electric Power Research Institute, Laboratory Open Fund(YD83-17-003)
parameter distortion under harmonic current about skin effect and proximity effect, introduces the AC winding coefficient, and establishes the winding loss calculation model to make the harmonic loss more accurate calculate. In addition the paper sets up the experiment platform, carry out the transformer winding resistance measurement experiment and observe the variation of harmonic resistance with frequency, at last, compared with the calculation model and the DC resistance used to study the equivalent AC resistance model , We can see that the calculation model of harmonic loss in this paper is more accurate.

2. Analysis of Transformer Winding Harmonic Loss
Transformer windings through the exchange of current, if you need to accurately calculate the transformer losses according to the winding layer of wire as a whole analysis considering skin effect and proximity effects. Set the transformer winding radius of r, the axial direction of z, the current direction of flow ϕ, the establishment of coordinate system. as shown in figure 1. Such as i_k, i_ϕ, i_r, k, ϕ, r direction of the current, H_- and H_+ are the magnetic field strength which parallel to the transformer winding inner and outer surface. Assuming that the current flowing through the circular conductor inside the winding satisfies the relationship of the electric field intensity E (ϕ axis direction) and the magnetic field strength H of the winding layer in the cylindrical coordinates[9-11]

$$\frac{\partial H_+}{\partial r} = \sigma E_\phi$$

$$\frac{1}{r} \frac{\partial}{\partial r} (r E_\phi) = -j \omega \mu H_\phi$$

Where: σ is the conductivity of copper conductor; μ is the permeability of copper conductor; ω is the angular frequency.

Since the magnetic field strength and electric field strength are all functions of the windings axis distance r at any point on the windings, the solution Bessel function equation is obtained:

$$H(r) = c_1 J_0 (mr) + c_2 K_0 (mr)$$

$$E(r) = -m / \gamma \left[c_1 J_1 (mr) - c_2 K_1 (mr) \right]$$

Where J_0 and J_1 are Bessel functions of the first kind, K_0 and K_1 are Bessel functions of the second kind, and the coefficients c_1 and c_2 are determined by the boundary conditions.

Figure 1. Hollow cylindrical conductor

Figure 1 is the coordinate system of hollow cylindrical conductor. For a layer of winding. Since the electric field strength E and the magnetic field strength H are orthogonal, the energy flux per unit area passing through a unit time is represented by the Poynting vector as $E (r) \times H (r)$. From the energy loss point of view, Layer winding unit length of energy:

The total dissipative power of the n_{th} winding is
\[P_c = P_a + P_{ac} = \frac{N^2 T m}{\sigma w} \left[\frac{(2n^2 - 2n + 1) \coth(md_n)}{n^2 - n} \left(\sqrt{1 + d_n/r_n^+} + \sqrt{1 - d_n/r_n^-} \right) \right] \]

(5)

Where \(W \) is the width of the winding; \(N \) is the number of turns of the coil contained in each winding; \(d_n \) is the thickness of the \(n \)th winding; and \(r_n \) is the distance between the \(n \)th winding and the winding axis. The use of Taylor expansion of equation (5) to simplify, available \(n \)-layer winding loss:

Assuming that the thickness of each layer of the winding is \(d \), the loss of the \(n \)-th layer winding can be obtained by using the Taylor expansion of equation (5).

\[P_n = \text{Re} \left\{ \frac{N^2 T m}{\sigma w} \left[\frac{\coth(md)}{2(n^2 - n) \tanh(md/2)} \right] \right\} \]

(6)

Assuming that the direct current in the windings is \(I \), the DC power loss per unit length of the \(n \)-th winding is:

\[F_{hr} = \frac{R_{ac}}{R_{dc}} \]

(7)

\[F_{hr} = \text{Re} \left\{ K_h (1+j) \left[\frac{\coth(K_h(1+j))}{2(n^2 - 1) \tanh(K_h/2)} + \frac{9}{45} K_h^4 \right] \right\} \]

(8)

Where: \(K_h \) is the ratio of the thickness \(d \) of the winding layer to the skin depth \(\delta \) of the \(h \)th harmonic

\[K_h = \frac{d}{\delta_h} \]

and \(N \) is the number of winding layers.

The formula (8) series expansion to simplify, get the first \(h \) harmonic AC resistivity:

\[F_{hr} = 1 + \frac{5n^2 - 1}{45} K_h^4 \]

(9)

The total harmonic loss caused by the transformer winding is:

\[P_{cu} = I_{ac}^2 R_{ac} + R_{ac} \sum_{h=1}^{\infty} F_{hr} I_h^2 \]

(10)

3. Experimental Research on Transformer Wingding Harmonic Resistance

In order to effectively carry out the transformer harmonic loss test research. This paper is based on the laboratory of power quality comprehensive experiment research platform. The platform grid simulator can simulate the output voltage harmonics. The tested transformer used in this experiment is SG-150/0.38 dry isolation transformer. Experiment platform is shown in Figure 2.

![Experiment platform](image-url)
Carrying on short circuit test, the transformer side of the grid simulator, issued by the network simulator each harmonic voltage, the secondary short, respectively, measuring the number of different harmonics, different harmonic voltage transformer copper loss. In order to observe the change of the harmonic resistance of the transformer with the change of the frequency of the harmonic current, the harmonic voltages of 1, 3, 5, 7... 49 times are respectively applied to the transformer to measure the RMS current flowing through the transformer and the active current flowing through the primary side of the transformer Power, calculate the transformer active power loss and then calculate the harmonic resistance value. It is easy to carry out experiments and as far as possible to avoid errors. In this experiment, take the transformer through the ends of the active power in addition to the square of the current form harmonic transformer winding resistance calculation. In this paper, the measurements are measured at room temperature 20 ℃, the experimental results are shown in Table 1.

Frequency	Voltage RMS/V	Current RMS/A	power/W	Measuring resistance/Ω
1	7.380	4.892	32.984	1.379
3	10.35	4.521	30.56	1.489
5	12.266	4.410	28.756	1.479
7	17.3	4.741	40.404	1.794
9	15.67	3.86	33.44	2.3115
11	14.014	3.944	42.61	2.7393
13	9.150	4.305	62.021	3.3465
15	13.46	4.25	72.7	4.025
17	11.632	4.974	124.05	5.014
19	13.270	5.406	169.01	5.796
21	13.262	4.352	131.65	6.958
23	14.50	4.560	169.78	8.165
25	15.052	4.962	232.18	9.43
27	14.79	4.05	173.54	10.58
29	14.712	4.044	189.52	11.845
31	17.652	4.713	314.2	14.145
33	20.345	4.832	351.741	15.065
35	23.044	4.935	408.9074	16.79
37	18.780	4.166	323.334	18.63
39	18.5	4.0	314.824	19.6765
41	16.938	3.375	233.8211	20.5275
43	22.878	4.183	398.4178	22.77
45	23.502	3.994	391.112	24.518
47	24.051	3.904	410.3164	26.9215
49	24.444	3.886	443.184	29.348

Figure 3. The relationship between harmonic equivalent resistance and frequency

Figure 3 shows the relationship between the equivalent harmonic resistance of the winding and the number of harmonics. It can be seen that the equivalent resistance of the winding increases obviously
with the increase of the number of harmonics, showing a positive correlation, indicating that the resistance is affected by the skin Effects and proximity effects and gradually increase.

Table 2 is a partial treatment of the experimental measurements to calculate the AC group coefficient that is the ratio of the value of each harmonic resistance and DC resistance, and use the formula (9) to calculate the harmonic coefficient of each AC group, and compared.

Table 2. Comparison of Experiment and Theoretical Calculation of AC Power Factor

Frequency	Measuring resistance/Ω	Experiment AC resistance coefficient	Skin depth/mm	Theory AC resistance coefficient	\sqrt{n}
1	1.379	1.02	14.2	1.011	1
3	1.489	1.22	8.2	1.2	1.73205
5	1.479	1.286	6.35	1.276	2.2361
7	1.794	1.56	5.37	1.54	2.6457
9	2.3115	2.01	4.73	1.9	3
11	2.7393	2.382	4.28	2.34	3.3166
13	3.3465	2.91	3.94	2.865	3.6056
15	4.025	3.5	3.67	3.4774	3.873
17	5.014	4.36	3.444	4.2	4.123
19	5.796	5.04	3.26	4.98	4.359
21	6.958	6.05	3.1	5.8664	4.582576
23	8.165	7.1	2.96	6.8545	4.795832
25	9.43	8.2	2.84	7.91	5
27	10.58	9.2	2.733	9.056	5.196152
29	11.845	10.3	2.64	10.252	5.385165
31	14.145	12.3	2.55	11.63	5.567764
33	15.065	13.1	2.472	13.035	5.744563
35	16.79	14.6	2.4	14.546	5.91608
37	18.63	16.2	2.334	16.144	6.082763
39	19.6765	17.11	2.3	17.06	6.244998
41	20.5275	17.85	2.274	17.807	6.403124
43	22.77	19.80	2.22	19.503	6.557439
45	24.518	21.32	2.17	21.268	6.708204
47	26.9215	23.41	2.12	23.25	6.855655
49	29.348	25.52	2.07	25.478	7

Figure 4. Comparison between the calculated value of the theoretical formula and the experimental measurement value.

Figure 5. The calculated value of the theoretical formula is compared with the \sqrt{n} times DC resistance value.
Figure 4 compares the AC resistivity measured in the experiment with the AC resistivity in the theoretical formula proposed in this paper. As the number of harmonic currents flowing through the transformer windings increases, the harmonic resistance increases more significantly. The figure shows that although the theoretical formulas in this paper are underperforming at low frequencies, the overall trend is more in line with the facts. And at high frequencies, i.e., the skin effects and proximity effects become more pronounced, the theoretical calculations proposed in this paper are more accurate.

Figure 5 is calculated by the theoretical formula of the AC power coefficient and the previous study of the DC resistance to the equivalent AC resistance comparison can be seen from the figure, the harmonic less than 20 times, the transformer winding resistance by The effect of skin effect and adjacent effect is not obvious, and the change of resistance value is insignificant, and the difference between the two methods is insignificant. However, when the harmonic frequency is higher than 20 times, as the harmonic frequency increases, the skin is affected by skin effect and The effect of the proximity effect is more pronounced, and the harmonic resistance increases significantly. It can be seen from the figure that the equivalent resistivity of the theoretical calculation model is more accurate than the equivalent DC resistance is more reasonable.

4. Conclusion
Based on the Maxwell's equations and the Poynting's theorem, this paper considers the winding parameter distortion characteristics under harmonic currents and the skin effect and the proximity effect, introduces the AC winding coefficient and the consumption and builds the winding loss calculation model, Calculate. And set up the experimental platform, the harmonic current in the background of the transformer winding resistance measurement experiment, observation of harmonic resistance with frequency variation, compared with the calculation model and the model has been studied, we can see the harmonic loss calculation model more accurate This model has certain guiding value for engineering calculation.

Acknowledgments
Project Supported by China Electric Power Research Institute, Laboratory Open Fund(YD83-17-003)

References
[1] GAO Jie. Journal World. Comparison and Simulation of Transformer Harmonic Loss Calculation Methods . 14 (14): 133-134.(2016)
[2] Liu Shuming, Shi Hong, Feng Lei. Electric Power Automation Equipment. A model of transformer harmonic loss considering skin effect and proximity effect . 35 (3): 133-139.(2015)
[3] CAI Guowei, KONG Lingguo, PAN Chao, WANG Jiyuan, YANG Deyou. Power System Technology. Analysis of Harmonic Loss of Transformer Based on Frequency-varying Characteristics . 5 (11): 120-124.(2011)
[4] Li Qionglin, Zou Lei, Liu Huijin, Cui Xue, Zhang Zhenan, Fei Shangbei. Power System Technology, Calculation and Experimental Study of Harmonic Losses in Power Transformer. 37 (12): 3521-3527.(2013)
[5] Ding Yang, Xu Changbao, Li Huaiyu, Feng Cheng, Feng Donghan. Electric Energy and Energy Efficiency Technology, Computing Harmonic Loss of Transformer Considering Skin Effect. (23): 63-68. (2015)
[6] Zhao Jie. Electronic Technology and Software Engineering, Analysis of Harmonic Losses Based on Transformer and Influencing Factors. (23): 128. (2015)
[7] Jia Jingran, Duan Xiaobo, Lu Jinling, Zhou Wen. Hebei Electric Power Technology, A Review on the Calculation Methods of Transformer Harmonic Loss. 34 (04): 37-41. (2015)
[8] Xie Bingruo, Chen Qiefu, Kang Chonghao, et al. Proceedings of the CSEE, Modeling and impedance parameter design of multi-winding transformer based on combined field-circuit coupling method. 29 (9): 104-111.(2009)
[9] Makram E F, Thompson R L, Girgis A A. IEEE Trans on Power Systems, A new laboratory experiment for transformer modeling in the presence of harmonic distortion using a computer controlled harmonic generator. (1988)

[10] Wang X, Cheng Z, Lin L, et al. Compel International Journal of Computations & Mathematics in Electrical, Calculation and validation of iron loss in laminated core of power and distribution transformers. 33(1/2):137-146. (2014)

[11] Guo J, Li L. Electric Power Science & Engineering. Calculation and Measurement of Eddy Current and loss in Magnetic Shielding Model of Power Transformer. 2012.