Investigação de Transições Estruturais e da Reatividade Sobre Peróxidos de Tsa1p (Thiol Specific Antioxidant Protein 1) de *Saccharomyces cerevisiae*

Tese apresentada ao Programa de Pós-Graduação Interunidades em Biotecnologia USP/Instituto Butantan/IPT, para obtenção do Título de Doutor em Biotecnologia.

São Paulo
2015
CARLOS ABRUNHOS A TAIRUM JUNIOR

Investigação de Transições Estruturais e da Reatividade Sobre Peróxidos de Tsa1p (Thiol Specific Antioxidant Protein 1) de *Saccharomyces cerevisiae*

Tese apresentada ao Programa de Pós-Graduação Interunidades em Biotecnologia USP/Instituto Butantan/IPT, para obtenção do Título de Doutor em Biotecnologia.

Área de concentração: Biotecnologia

Orientador: Prof. Dr. Marcos Antonio de Oliveira

Versão corrigida. A versão original eletrônica encontra-se disponível tanto na Biblioteca do ICB quanto na Biblioteca Digital de Teses e dissertações da USP (BDTD)

São Paulo
2015
Tairum Junior, Carlos Abrunhosa.
Investigação de transições estruturais e da reatividade sobre peróxidos de Tsa1p (Thiol Specific Antioxidant Protein 1) de Saccharomyces cerevisiae / Carlos Abrunhosa Tairum Junior. -- São Paulo, 2015.

Orientador: Prof. Dr. Marcos Antonio de Oliveira.

Tese (Doutorado) -- Universidade de São Paulo. Instituto de Ciências Biomédicas. Programa de Pós-Graduação Interunidades em Biotecnologia USP/IPT/Instituto Butantan. Área de concentração: Biotecnologia. Linha de pesquisa: Biologia molecular.

Versão do título para o inglês: Investigation of structural transitions and reactivity over hydroperoxides of Tsa1p (Thiol Specific Antioxidant Protein 1) from Saccharomyces cerevisiae.

1. Peroxirredoxina 2. Estrutura cristalográfica 3. Triade catalítica 4. Levedura I. Oliveira, Prof. Dr. Marcos Antonio II. Universidade de São Paulo. Instituto de Ciências Biomédicas. Programa de Pós-Graduação Interunidades em Biotecnologia USP/IPT/Instituto Butantan III. Título.
Candidato(a): Carlos Abrunhosa Tairum Junior.

Título da Tese: Investigação de transições estruturais e da reatividade sobre peróxidos de Tsa1p (Thiol Specific Antioxidant Protein 1) de Saccharomyces cerevisiae.

Orientador(a): Prof. Dr. Marcos Antonio de Oliveira.

A Comissão Julgadora dos trabalhos de Defesa da Tese de Doutorado, em sessão pública realizada a/........../.........., considerou

() Aprovado(a) () Reprovado(a)

Examinador(a): Assinatura: ..
Nome: ..
Instituição: ..

Examinador(a): Assinatura: ..
Nome: ..
Instituição: ..

Examinador(a): Assinatura: ..
Nome: ..
Instituição: ..

Examinador(a): Assinatura: ..
Nome: ..
Instituição: ..

Presidente: Assinatura: ..
Nome: ..
Instituição: ..
Dedico este trabalho aos meus pais, Marcia e Tadeu.
Agradecimentos

Aos membros da banca de defesa da tese, por participar da avaliação do meu trabalho, podendo contribuir para a melhora da qualidade dos meus resultados.

À Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) e o Conselho Nacional de Desenvolvimento Científico (CNPq) pelo auxílio financeiro, e ao CEPID-Redoxoma e ao Temático L-asparaginase pelo suporte financeiro para a execução deste trabalho.

Ao Programa de Pós Graduação Interunidades em Biotecnologia – Universidade de São Paulo, Instituto Butantan e Instituto de Pesquisas Tecnológicas, pela formação e pela oportunidade de cursar pós-graduação.

À Universidade Estadual Paulista – Campus Experimental do Litoral Paulista, por ceder a estrutura física para a execução deste trabalho.

Aos membros da banca de qualificação: Profª. Drª Andrea Balan, Prof. Dr. Adalberto Pessoa Jr e Prof. Dr. José Ribamar Ferreira Jr, por todas as valiosas sugestões que foram feitas a este trabalho.

Ao pessoal do Robolab, em especial à Givanil, pelas triagens de condições de cristalização e ao Laboratório Nacional de Luz Síncrontron (LNLS), pelos experimentos de difração de raios-X.

Ao Prof. Dr. Flávio Augusto de Souza Berchez, pela oportunidade de realizar o estágio de aprimoramento em docência, mesmo não sendo da mesma área, mas o qual foi muito útil para mim.

Ao Dr. Francisco Javier Medrano Martín, pela contribuição com experimentos de cristalografia e pelas inúmeras conversas com dicas e sugestões para melhorar a execução dos experimentos.

Ao Henrique Gaeta, à Caroline Fabri e ao Prof. Dr. Marcos Toyama, do Laboratório de Química de Proteínas e Bioquímica Metabólica, pela imensa contribuição em experimentos de cromatografia de exclusão molecular.

Ao Prof. Dr. Denis Moledo de Souza Abessa, pela indicação no início do trabalho, e a todos os membros do Laboratório do Núcleo de Estudos em Poluição e Ecotoxicologia Aquática (NEPEA), por permitir o uso do laboratório e pelas risadas quando ia usar a centrífuga.

Ao pessoal do Laboratório de Genética e Biologia Molecular de Oxidantes e Radicais Livres: Renata, Alegria, Simone, Andressa, Zé Renato, Karen, Diogo, José Freire, Fernando e Vanessa, por sempre me ajudarem com experimentos ou quando eu estava perdido no laboratório, por me ajudarem a achar tudo que eu sempre precisei levar para São Vicente e pela amizade.

Ao Prof. Dr. Luis Eduardo Soares Netto, por ser praticamente meu coorientador, por me ajudar em diversas oportunidades, por ceder o seu laboratório por inúmeras vezes e por sempre colaborar para a melhoria do trabalho. Muito obrigado por tudo, Luis.
Ao Prof. Dr. Fernando José Zara, pelos experimentos de microscopia eletrônica e ao Dr. Bruno Horta, por me ensinar diversas técnicas e contribuir decisivamente para a conclusão do artigo.

À Profª. Drª Ohara Augusto, por ceder seu laboratório para o uso do stopped flow e ao Dr. Robert Ryan Geyer, por realizar comigo todos os experimentos de fluorescência. Thanks Ryan!

A todos que já passaram ou ainda estão no Labimes neste longo período em que eu trabalho lá: Vanessa, Rafaela, Isabela, Carla, Mayara, Jacqueline, Gabriela Cruz, Lívia, Sérgio, Werner, Gabriela Novaes, Beatriz, Nicholas, e especialmente à Renata Bannitz Fernandes, pela companhia sempre, à Larissa Shiboka, por colaborar com a organização do lab, à Cinthia, por apresentar os melhores seminários, ao Andrey Buzina, pelos cafés de todas as tardes, ao Breyer, pelas diversas contribuições em experimentos e ao Leonardo Gnomo, pela grande amizade. Obrigado a todos vocês, pelo companheirismo e por tornar o ambiente de trabalho mais agradável.

Aos meus orientados: Luisa Tavares, Aline Ishikawa, e especialmente ao Rolando Papeixe lé, por sua loucura que proporciona tantas risadas, ao Felipe Tropeço Zurlo, por ser extremamente confiável e pelo empenho e à Melina Cardoso, pela sua eficiência e estar sempre meio assustada. Obrigado por permitirem que eu passasse para vocês um pouco do que eu aprendi, por me ajudarem em diversos momentos e por me ensinarem também como orientar é difícil e ao mesmo tempo prazeroso.

Ao meu orientador, Marcos Antonio de Oliveira, por não ser apenas orientador, mas também um grande amigo, sempre pronto a ajudar, sempre preocupado se está tudo bem. Muito obrigado por tudo e, para não perder o costume, quero dizer que é um prazer inenarrável trabalhar com você. Espero que eu consiga ser metade do que você é como professor, orientador e ser humano que eu já vou estar muito feliz. Valeu, Marcão!

Aos meus irmãos Tarsila e Bruno, à Francisca e aos meus avós Neyde e Francisco, por serem parte importante da minha vida.

À Lucia e ao Ricardo, por terem mais uma vez me recebido em casa e pelas diversas risadas.

Ao Theo, pela companhia nos jogos do Santos e pelos muitos anos de amizade.

Aos meus pais, Marcia e Tadeu, por apoiarem todas as minhas decisões e por darem todo o suporte para eu chegar até aqui. Sem vocês não teria como fazer tudo isso e agradeço muito por tudo que vocês já fizeram e ainda fazem por mim. Amo vocês!

À minha linda namorada Renata, por ser quem você é: a pessoa mais especial de todas, que eu admiro muito e tenho como exemplo de perseverança e disciplina. Obrigado por sempre estar ao meu lado e me ajudar em todos os momentos, sejam eles bons ou ruins, em casa ou no trabalho. Você é uma inspiração para mim e quero que você esteja para sempre ao meu lado.
“We must not forget that when radium was discovered no one knew that it would prove useful in hospitals. The work was one of pure science. And this is a proof that scientific work must not be considered from the point of view of the direct usefulness of it. It must be done for itself, for the beauty of science, and then there is always the chance that a scientific discovery may become like the radium a benefit for humanity.”

Marie Curie (1921)
Resumo

Tairum Junior CA. Investigação de Transições Estruturais e da Reatividade Sobre Peróxidos de Tsa1p (Thiol Specific Antioxidant Protein 1) de Saccharomyces cerevisiae. [tese (Doutorado em Biotecnologia)]. São Paulo: Instituto de Ciências Biomédicas, Universidade de São Paulo; 2015.

Peroxirredoxinas (Prx) do tipo 2-Cys típicas constituem um grupo de enzimas antioxidantes homodiméricas que podem atuar na decomposição de hidroperóxidos, como chaperonas moleculares e na transdução de sinal. Estas enzimas desempenham um papel importante no combate a radicais livres e na regulação de processos celulares. Além disso, as Prx possuem dois aminoácidos altamente conservados próximos à CysP, representados por uma treonina (ou serina) e uma arginina, que conjuntamente são denominados de tríade catalítica.

As 2-Cys Prx típicas apresentam homodímeros como unidade mínima, porém podem apresentar-se na forma decamérica, pela formação de um pentâmero de homodímeros e, sob altas concentrações de hidroperóxidos, as enzimas de eucariotos sofrem oxirredução, o que leva à formação de complexos de alto peso molecular com atividade de chaperona e implicados na transdução de sinal. Este trabalho teve como objetivos determinar o papel de resíduos da tríade catalítica e de resíduos relacionados com a estrutura e função de Tsa1 de Saccharomyces cerevisiae por meio de mutações sítio dirigidas, além de realizar esforços para obter a estrutura cristalográfica desses mutantes, de modo a se conseguir uma melhor compreensão da interferência causada pelas mutações na estrutura. Inicialmente, a estrutura de Tsa1C47S foi determinada e a partir dela foi possível realizar diversas análises estruturais, bem como avaliar quais resíduos de aminoácidos seriam pertinentes para maiores investigações. A análise dos resultados revelou que os mutantes Tsa1E50A e Tsa1R146Q não apresentam atividade peroxidásica dependente de Trx, indicando que os resíduos Glu50 e Arg146 são fundamentais para que ocorra a interação entre Tsa1 e Trx, sendo que esta investigação representou a primeira abordagem estrutural da redução de 2-Cys Prx pelas Trx. Também foi investigada a importância do resíduo Asp141, que é conservado entre as 2-Cys Prx, e mostrou ter um papel considerável no processo de redução por Trx e DTT. O papel dos aminoácidos da tríade catalítica foi avaliado por meio dos mutantes Tsa1T44A, Tsa1T44S, Tsa1T44V, Tsa1R123K e Tsa1R123G. Foi demonstrado que a Arg123 é fundamental para a reatividade, enquanto a Thr44 realiza uma interação do tipo CH-π com uma tirosina do dímero adjacente. Foi observado que a presença desta interação é fundamental para que a Tsa1 se mantenha em decâmero, o qual mostrou relação com a máxima atividade peroxidásica da enzima, enquanto a enzima dimérica apresentou grande perda de atividade, indicando uma clara relação entre estrutura e função. Adicionalmente, demonstramos que todos os mutantes gerados neste trabalho que tiveram a atividade reduzida, também apresentaram uma menor suscetibilidade à superoxidação da CysP. Desta forma, é possível concluir que há uma relação direta entre estado oligomérico e reatividade de Tsa1, o que também influencia em outros processos relacionados a esta enzima.

Palavras-chave: Peroxirredoxinas. Estrutura cristalográfica. Triade catalítica. Oligomerização.
Abstract

Tairum Junior CA. Investigation of Structural Transitions and Reactivity over Hydroperoxides of Tsa1p (Thiol Specific Antioxidant Protein 1) from *Saccharomyces cerevisiae* [Ph. D. thesis (Biotechnology)]. São Paulo: Instituto de Ciências Biomédicas, Universidade de São Paulo; 2015.

Peroxiredoxins (Prx) of 2-Cys typical type are a subfamily of homodimeric antioxidants enzymes that can act on the decomposition of hydroperoxides, as molecular chaperones and in signal transduction. These enzymes decompose hydroperoxides using a highly reactive cysteine residue (peroxidatic cysteine - CysP). Additionally, Prx contain two highly conserved amino acids near CysP represented by a threonine (or serine) and arginine which together are called catalytic triad. Besides the CysP, these enzymes possess a second cysteine residue (resolving cysteine - CysR) which forms an intermolecular disulfide with CysP during the redox cycle that is often reduced by the enzyme thioredoxin (Trx). As mentioned above, Typical 2-Cys Prx present homodimer as minimal unit, but may be in the decameric form, by the formation of a pentamer of dimers and, under high concentrations of hydroperoxides, CysP of eukaryotic enzymes are overoxidized, leading to the formation of high molecular weight complexes with chaperone activity and involved in signal transduction. This study aimed to determine the roles of the catalytic triad residues and of the residues related to the structure and function of the *Saccharomyces cerevisiae* Tsa1 by site directed mutagenesis, besides making efforts to obtain the crystallographic structure of these mutants in order to achieve a better understanding of the interference caused by mutations in the structure. Initially the structure of the Tsa1C47S was determined and from it was possible to conduct several structural analyzes and assess which amino acid residues would be relevant for further investigations. The results analysis revealed that Tsa1E50A and Tsa1R146Q mutants do not present Trx-dependent peroxidase activity, indicating that Glu50 and Arg146 residues are critical to Trx-Prx interaction, which represented one of the first structural approaches to the understanding of molecular aspects of the Prx reduction by Trx. Also, it was investigated the importance of the Asp141 residue, which is conserved among Typical 2-Cys Prx, and showed significantly to affect the reduction process by Trx and DTT. The role of the catalytic triad amino acids was evaluated by using the mutants Tsa1T44A, Tsa1T44S, Tsa1T44V, Tsa1R123K and Tsa1R123G. It was shown that Arg123 is essential for reactivity while Thr44 performs a CH-π type interaction with a tyrosine in the adjacent dimer. It was observed that the presence of this interaction is necessary for the Tsa1 remains in decamer, which was related to the maximum peroxidase activity of the enzyme, while the dimeric enzyme showed great loss of activity, indicating an evident relationship between structure and function. Additionally, we demonstrated that all mutant enzymes generated in this study which had reduced activity also showed a lower susceptibility to CysP overoxidation. Thus, it is possible to conclude that there is a direct relationship between oligomeric state and reactivity of Tsa1, which also influences other processes related to this enzyme.

Keywords: Peroxiredoxins. Crystallographic structure. Catalytic triad. Oligomerization.
Lista de Figuras

Figura 1 - Via de oxirredução entre peróxido, Prx e o sistema tiorredoxina (Trx, TrxR e NADPH) 18
Figura 2 - Ciclo catalítico das 2-Cys Prx típicas ... 19
Figura 3 - Alinhamento das sequências de aminoácidos de enzimas da família 2-Cys Prx típicas (AhpC/Prx1) ... 21
Figura 4 - Mecanismos propostos para explicar a alta reatividade das Prx 22
Figura 5 - Alternância estrutural de 2-Cys Prx típicas .. 24
Figura 6 - Estrutura cristalográfica de Tsa1C47S de S. cerevisiae .. 38
Figura 7 - Interações polares entre resíduos do sítio ativo das Prx na forma FF e LU 40
Figura 8 - Avaliação da reatividade sobre H2O2 e da redução pelo sistema Trx ou DTT de Tsa1WT, Tsa1E50A e Tsa1R146Q .. 42
Figura 9 - Cromatografia de exclusão molecular (SEC) de Tsa1WT e mutantes Tsa1E50A e Tsa1R146Q. A linha sólida indica o padrão de eluição no estado reduzido, enquanto a linha pontilhada indica o estado oxidado para Tsa1WT (A), Tsa1E50A (B) e Tsa1R146Q (C). As enzimas foram aplicadas no sistema contendo coluna Phenomenex BioSep-SEC-S4000 e foram eluídas com fluxo de 0.5 ml/min, sendo a absorbância medida a 280 nm. Os padrões de peso molecular utilizados foram ferritina (440 kDa), albumina sérica bovina (132 e 66 kDa), ovalbumina (43 kDa), anidrase carbônica (29 kDa) e α-lactalbumina (14.2 kDa), conforme indicado pelas setas pretas no topo da figura. 44
Figura 10 - Ensaio de estado estacionário de consumo de NADPH para Tsa1 e mutantes Tsa1E50A, Tsa1R146Q e Tsa1E50A/R146Q ... 45
Figura 11 - Perfis de cromatografia de exclusão molecular de Tsa1WT e mutantes de Thr44 e Arg123 nos estados reduzido e oxidado .. 47
Figura 12 - Estabilização da estrutura decamérica de Tsa1C47S e a interação Cδ–H–π entre a Thr44 e Tyr77 .. 48
Figura 13 - Determinação do pKd da Cysp de Tsa1 e mutantes de Thr44 e Arg123 51
Figura 14 - Possíveis interações responsáveis pela estabilização do tiolato da Cysp na ausência de Thr44 .. 52
Figura 15 - Avaliação da redução de Tsa1 e mutantes de Thr44 e Arg123 por DTT 53
Figura 16 - Análise cinética de estado estacionário da redução pelo sistema Trx usando quantidades variáveis de Trx1 para Tsa1 e mutantes de Thr44 .. 55
Figura 17 - Redução de Tsa1 e mutantes de Thr44 por Trx1 em SDS-PAGE não redutor 56
Figura 18 - SDS-PAGE não redutor apresentando resultado do ensaio de oxidação de Tsa1 e mutantes de Thr44 por H2O2 .. 57
Figura 19 - SDS-PAGE não redutor apresentando resultado do ensaio de oxidação de Tsa1 e mutantes de Thr44 por CHP .. 58
Figura 20 - Diferenças da emissão de fluorescência intrínseca de Trp entre os estados reduzido e oxidado de amostras de Tsa1 .. 59
Figura 21 - Caracterização estrutural e funcional de Tsa2 e dos mutantes Tsa1Y77A e Tsa1S78D 63
Figura 22 - Caracterização do mutante Tsa1S78V .. 64
Figura 23 - Resultado de ensaio de superoxidação em SDS-PAGE para Tsa1^{WT}, Tsa1^{E50A}, Tsa1^{R146Q} e Tsa1^{E50A/R146Q}.

Figura 24 - Resultado de ensaio de superoxidação dos mutantes de Thr⁴⁴ com H₂O₂ em SDS-PAGE.

Figura 25 - Resultado de ensaio de superoxidação dos mutantes de Thr⁴⁴ com CHP em SDS-PAGE.

Figura 26 - Resiliência da emissão de fluorescência de Tsa1 é dependente da concentração de hidroperóxido.

Figura 27 - Análises estruturais entre os estados FF e LU e a relação com os resíduos de Trp.

Figura 28 - Resultado em SDS-PAGE de ensaio de superoxidação dependente de Trx de Tsa1^{WT}, Tsa1^{S78V} e Tsa1^{S78D}.

Figura 29 - Ensaios utilizando sistema Trx e avaliando a inibição do consumo de NADPH devido à superoxidação de Tsa1^{WT} e Tsa1^{S78V}.

Figura 30 - Cromatografia de exclusão molecular de Tsa1^{175ΔCT}.

Figura 31 - Ensaio de superoxidação dependente de Trx de Tsa1^{WT} e Tsa1^{175ΔCT} por SDS-PAGE não redutor.

Figura 32 - Ensaios de inibição do consumo de NADPH de Tsa1^{WT} e Tsa1^{175ΔCT}.

Figura 33 - Análises estruturais do resíduo Asp¹⁴¹ de Tsa1 e comparação com outras estruturas de 2-Cys Prx típicas.

Figura 34 - Caracterização funcional do mutante Tsa1^{D141N}.

Figura 35 - Ensaios de cinética de estado estacionário de consumo de NADPH com Tsa1^{WT} e Tsa1^{D141N} com concentrações variadas de Prx.

Figura 36 - Atividade peroxidásica dependente de Trx de Tsa1^{WT} e mutante Tsa1^{D141N}.

Figura 37 - Difração dos cristais de Tsa1^{R146Q} em baixa resolução (3.7 Å).

Figura 38 - Difração dos cristais e modelagem inicial de Tsa1^{R146Q}.

Figura 39 - Cristais obtidos após refinamento com aditivo de Tsa1^{R146Q} previamente oxidados com H₂O₂.

Figura 40 - Cristais de Tsa1^{R146Q} obtidos em colaboração com o Dr. Francisco Javier Medrano Martin do CIB.
Lista de Tabelas

Tabela 1. Porcentagem de similaridade e identidade em relação a Tsa1 de enzimas homólogas...... 21
Tabela 2 - Oligonucleotídeos utilizados para obtenção dos mutantes. .. 30
Tabela 3 - Parâmetros enzimáticos para Tsa1^{WT} e mutantes de Thr⁴⁴ utilizando concentrações crescentes dos substratos H₂O₂ e CHP ... 54
Tabela 4 - Parâmetros enzimáticos para Tsa1^{WT} e mutantes de Thr⁴⁴ utilizando concentrações crescentes de Trx1. .. 55
Tabela 5 - Constantes aparentes de pseudo-primeira ordem para Tsa1 e mutantes de Thr⁴⁴ sobre H₂O₂ e CHP .. 59
Tabela 6 - Cristais de Tsa1^{E50A} obtidos após o refinamento das condições onde foram obtidos microcristais na triagem inicial. ... 88
Tabela 7 - Microcristais de Tsa1^{T44V} obtidos na triagem inicial e suas respectivas condições. 92
Tabela 8 - Microcristais de Tsa1^{T44V} obtidos após o refinamento das condições onde foram obtidos microcristais na triagem inicial e suas respectivas condições. ... 93
Tabela 9 - Microcristais de Tsa1^{Y77A} obtidos na triagem inicial e suas respectivas condições. 94
Tabela 10 - Síntese dos resultados majoritariamente observados e mais relevantes deste trabalho. 97
Lista de Abreviaturas

AhpC alquil hidroperóxido redutase subunidade C
AhpE alquil hidroperóxido redutase subunidade E
AhpF alquil hidroperóxido redutase subunidade F
Ask1 apoptose signaling kinase 1 (quinase sinalizadora de apoptose 1)
Bcp proteína comigratória com bacterioferritina
Cat Catalase
CD dicroísmo circular
CHP hidroperóxido de cumeno
CysP cisteína peroxidásica
CysR cisteína de resolução
DTNB ácido 5,5'-ditiobis(2-nitrobenzóico)
DTPA ácido dietileno triamino pentacético
DTT 1,4-ditiotreitol
EDTA ácido etilenodiaminotetra-acético
FAD flavina adenina dinucleotídeo
FF fully folded (totalmente enovelado)
GPx glutatonia peroxidase
Hepes ácido 4-(2-hidroxietil)piperazina-1-etanosulfônico
HPLC cromatografia líquida de alta eficiência (High Performance Liquid Chromatography)
HRP peroxidase de raiz forte (Horseradish peroxidase)
IPTG isopropil β-D-1-tiogalactopiranosídeo
MAPK mitogen-activated protein kinases (proteína quinase ativada por mitógeno)
MES ácido 2-(N-morfolino) etanosulfônico
NADPH b-nicotinamida adenina dinucleotídeo 2'-fosfato reduzido
NF-κB fator nuclear kappa B
NEM N-etilmaleimida
LB meio de cultura Luria-Bertani
LU locally unfolded (parcialmente desenovelado)
OD600 densidade óptica no comprimento de onda de 600 nm (optical density)
PDB Protein Data Bank
PEG polietileno glicol
PMSF fluoreto de fenilmetilsulfonila
Prx Peroxirredoxina
PrxQ peroxirredoxina Q
SDS dodecil sulfato de sódio
SDS-PAGE eleetroforese em gel de poliacrilamida sob condição desnaturante
SEC cromatografia de exclusão molecular
STAT3 signal transducer and activator of transcription 3 (ativador de transcrição e transdutor de sinal 3)
TBHP tert-butilhidroperóxido
TCEP cloridrato de tris(2-carboxietil)fosfina
TEMED Tetrametiletilenodiamina
Tris tris(hidroximetil) aminometano
TpX tiorredoxina peroxidase
Trx Tiorredoxina
TrxR tiorredoxina redutase
Tsa thiol-specific antioxidant
WT selvagem (wild type)
Sumário

1 INTRODUÇÃO .. 16

1.1 PERÓXIDO DE HIDROGÊNIO E SUA ATUAÇÃO INTRACELULAR ... 16

1.2 PEROXIRREDOXINAS E O SISTEMA TORREDOXINA .. 17

1.3 CICLO CATALÍTICO E ATIVIDADE ENZIMÁTICA DAS 2-CYS PRX ... 19

1.4 CARACTERÍSTICAS ESTRUTURAIS DAS 2-CYS PRX TÍPICAS ... 22

1.5 SUPEROXIDação DA CYSp E TRANSIÇÕES FUNCIONAIS DAS 2-CYS PRX TÍPICAS 25

1.6 PEROXIRREDOXINAS EM SACCHAROMYCES CEREVISIAE .. 26

2 OBJETIVOS ... 28

3 JUSTIFICATIVA .. 28

4 MATERIAIS E METODOLOGIA ... 29

4.1 REAGENTES ... 29

4.2 MEIOS DE CULTURA PARA BACTÉRIAS ... 29

4.3 LINHAGENS DE ESCHERICHIA COLI .. 29

4.4 PLASMÍDEOS .. 29

4.5 MUTAGÊNÉSIS SÍTIO DIRIGIDA .. 30

4.6 PREPARAÇÃO E TRANSFORMAÇÃO DE BACTÉRIAS ELECTROCOMPETENTES 30

4.7 EXPRESSÃO E PURIFICAÇÃO EM BACTÉRIAS DE PROTEÍNAS SELVAGENS E MUTANTES 31

4.8 QUANTIFICAÇÃO DE PROTEÍNAS ... 31

4.9 ESPECTROSCOPIA DE DIFRAÇÃO CIRCULAR .. 31

4.10 DETERMINAÇÃO DO ESTADO OLIGOMÉRICO POR CROMATOGRAFIA DE EXCLUSÃO MOLECULAR ... 32

4.11 AVALIAÇÃO DA ATIVIDADE ANTIOXIDANTE E OBTEÇÃO DE PARÂMETROS CINÉTICOS 32

4.12 DETERMINAÇÃO DO pKα DA CYSp .. 33

4.13 DETERMINAÇÃO DA CONSTANTE DE SEGUNDA ORDEM POR COMPETIÇÃO COM HRP 33

4.14 DETERMINAÇÃO DAS CONSTANTES CINÉTICAS POR FLUORESCÊNCIA INTRÍNSECA 34

4.15 ANÁLISE DA REDUÇÃO/OXIDAÇÃO DE TSA1 ATRAVÉS DE SDS-PAGE 34

4.16 ANÁLISE DE SUPEROXIDação DE TSA1 E MUTANTES EM SDS-PAGE 35

4.17 CRISTALIZAÇÃO DE PROTEÍNAS ... 35

4.18 CRISTALGRAFIA DE RAIOS X, MODELAGEM PROTEICA E ANÁLISE DOS DADOS ESTRUTURAIS 35

5 RESULTADOS E DISCUSSÃO ... 37

5.1 REFINAMENTO DA ESTRUTURA DE TSA1C47S E ANÁLISES ESTRUTURAIS 37

5.1.1 Características da estrutura cristalográfica de TSA1C47S .. 37

5.1.2 Análise in silico de aminoácidos conservados e estabilização do estado FF 39

5.1.3 Avaliação dos efeitos das substituições Glu50→Ala e Arg146→Gln em TSA1 sobre a atividade peroxidásica com \(\text{H}_2\text{O}_2 \) e na redução por Trx ou DTT ... 40

5.1.4 Avaliação dos efeitos das mutações sobre a estrutura quaternária de TSA1E50A e TSA1R146D ... 43

5.1.5 Análise da atividade peroxidásica dependente de tiol do duplo mutante TSA1E50A/R146D 44

5.2 INVESTIGAÇÃO DO PAPEL FUNCIONAL E ESTRUTURAL DA THR44 E ARG123 DA TRÍADE CATALÍTICA DE TSA1 DE S. CEREVISIAE. ... 46

5.2.1 Análise da interferência das mutações na THR44 e na ARG123 nas estruturas secundária e quaternária de TSA1 ... 46

5.2.2 Determinação do \(\text{pK}_a \) de Cysp .. 49

5.2.3 Avaliação da atividade peroxidásica dependente de tiol utilizando DTT 52

5.2.4 Análise da atividade tiol peroxidásica dependente de Torredoxina .. 54

5.2.5 Análise da atividade peroxidásica através da formação do dissulfeto 57

5.2.6 Avaliação da reatividade sobre \(\text{H}_2\text{O}_2 \) e CHP por meio de alterações de fluorescência 58
5.2.7 Análises complementares relacionadas à transição dímero-decâmero

5.3 Avaliação de aspectos relacionados à susceptibilidade à superoxidação de Tsa1 e enzimas mutantes

5.3.1 Avaliação da relação entre superoxidação e a transição FF-LU

5.3.2 Avaliação do papel de Thr44 na superoxidação de CysP, utilizando o sistema Trx

5.3.3 Avaliação da superoxidação de CysP por meio de ensaios envolvendo alterações de fluorescência do triptofano

5.3.4 Influência do estado oligomérico no processo de superoxidação

5.3.5 Análise da importância da cauda C-terminal de Tsa1 no processo de superoxidação

5.4 Investigação do envolvimento de Asp141 na reatividade e redução de Tsa1

5.4.1 Análise do posicionamento do resíduo Asp141 de Tsa1 em ortólogos

5.4.2 Avaliação da atividade sobre H2O2 e redução por DTT do mutante Tsa1D141N

5.4.3 Análise da interação de Tsa1D141N com Trx e obtenção dos parâmetros cinéticos

5.5 Cristalização de Tsa1 carregando substituições de aminoácidos que afetam a estrutura ou atividade da proteína

5.5.1 Cristalização dos mutantes Tsa1E50A e Tsa1R146Q

5.5.2 Cristalização dos mutantes Tsa1T44V e Tsa1Y77A

6 Considerações finais

7 Perspectivas

REFERÊNCIAS

APÊNDICES

A Tairum CA, Oliveira MA, Horta BB, Zara FJ, Netto LES. Disulfide biochemistry in 2-Cys peroxiredoxin: Requirement of Glu50 and Arg146 for the reduction of yeast Tsa1 by thioredoxin. J Mol Biol. 2012;424(1-2):28–41

B Tairum CA, Santos MC, Breyer CA, Geyer RR, Nieves CJ, Portillo-Ledesma S, Ferrer-Sueta G, Toledo Jr JC, Toyama MH, Augusto O, Netto LES, Oliveira MA. Thr44 of Tsa1 from yeast, a residue of the peroxiredoxin catalytic triad, is involved in the association between quaternary structure and hydroperoxide reactivity

C Lopes AM, Nascimento LO, Ribeiro A, Tairum CA, Breyer CA, Oliveira MA, Monteiro G, Souza-Motta CM, Magalhães PO, Avendaño JGF, Cavaco-Paulo AM, Mazzola PG, Rangel-Yagui CO, Sette LD, Converti A, Pessoa-Júnior A. Therapeutic L-asparaginase: upstream, downstream and beyond

D de Paula CP, Santos MC, Tairum CA, Oliveira MA. Functional characterization and heterologous expression of a new rhodanase like protein from Xylella fastidiosa
1 INTRODUÇÃO

1.1 Peróxido de hidrogênio e sua atuação intracelular

Durante o metabolismo normal dos seres aeróbicos, alguns compostos como o peróxido de hidrogênio (H$_2$O$_2$), o radical ânion superóxido (‘O$_2$–) e o radical hidroxila (*OH) são naturalmente formados, podendo ter os seus níveis aumentados quando há a exposição destes organismos a uma condição de estresse (Halliwell, Gutteridge, 2007). O acúmulo destes compostos representa risco para as células em virtude do potencial que estas moléculas apresentam em danificar componentes celulares e todos os tipos de macromoléculas biológicas, direta ou indiretamente, além de estar relacionadas com diversas doenças genéticas degenerativas e processos inflamatórios (Halliwell, Gutteridge, 2007; Stadtman, 1990). Neste contexto, vale salientar que de 1 a 3% de todo o oxigênio utilizado na cadeia de transporte de elétrons escapa na forma de radical ânion superóxido e peróxido de hidrogênio (Halliwell, Gutteridge, 2007). Estes, através de reações químicas na presença de metais, como as de Fenton (1) e Harber-Weiss (2), podem gerar o radical hidroxila, o qual é extremamente tóxico por ser altamente reativo (Halliwell, Gutteridge, 2007).

$$\text{Fe(III)} + \text{OH}^- + \cdot\text{OH} \rightarrow \text{Fe(II)} + \text{O}_2 + \text{H}_2\text{O} \quad (1)$$

$$\cdot\text{O}_2^- + \text{H}_2\text{O}_2 \rightarrow \text{O}_2 + \cdot\text{OH} + \text{OH}^- \quad (2)$$

Apesar da capacidade de reagir com íons metálicos, formando espécies altamente tóxicas, diversos estudos demonstram que algumas células possuem complexos enzimáticos que tem por função produzir peróxido de hidrogênio (H$_2$O$_2$) de forma endógena (Bao et al., 2009; Dickinson, Srikun, Chang, 2010; González-Flecha, Demple, 1995; Goodarzi et al., 2014). A produção de H$_2$O$_2$ ocorre de forma transiente em resposta à ativação de receptores da superfície celular, sendo capazes de modificar a função enzimática de diversas proteínas através da oxidação de resíduos de aminoácidos, em especial cisteínas e metioninas; a oxidação destes aminoácidos causa a ativação/inativação de fatores de transcrição, de canais de membrana e de enzimas metabólicas, além de atuar modulando vias dependentes de cálcio e fósforo (Fourquet et al., 2008; Kang et al., 2005; Murphy et al., 2011; Rhee, 2006). Desta forma, o H$_2$O$_2$ atua como segundo mensageiro nos processos de proliferação, diferenciação e migração celular (Kang et al., 2005; Rhee, 2006). Acredita-se que o nível de H$_2$O$_2$ intracelular gerado em resposta à estimulação seja da ordem de micromolar e, mesmo que por um curto período de tempo de vida, represente risco à célula, visto que podem reagir com metais de transição e serem convertidos em espécies radiculares altamente citotóxicas (Halliwell, Gutteridge, 2007; Murphy et al., 2011).
1.2 Peroxirredoxinas e o sistema Tiorredoxina

Para evitar o acúmulo de H₂O₂ nas células, os organismos produzem uma série de enzimas capazes de decompor esta molécula (Halliwell, Gutteridge, 2007). Dentre as enzimas celulares com esta função, as mais representativas são as catalases (Cat), as glutatiana peroxidases (GPx) e as peroxirredoxinas (Prx), sendo que as últimas destacam-se pela abundância e grande reatividade com o substrato (Cox, Winterbourn, Hampton, 2010; Kang et al., 2005).

As peroxirredoxinas foram descritas por um grupo de pesquisa que buscava purificar a enzima glutamina sintase, a qual perdia sua atividade durante alguns passos do processo em que DTT e β-mercaptoetanol eram utilizados. Entretanto, quando se utilizava extrato proteico da levedura *Saccharomyces cerevisiae*, a glutamina sintase não perdia a atividade na presença de DTT e β-mercaptoetanol. Isto sugeriu a existência de algum componente proteico na levedura que conferia proteção contra a inativação pela oxidação, o qual revelou ser uma proteína de aproximadamente 25 kDa (Kim, Rhee, Stadtman, 1985). Contudo, o efeito protetor desta enzima foi detectado somente quando se utilizava algum composto tiólico como doador de elétrons (DTT, β-mercaptoetanol, tioglicerol ou glutatiana); quando se adicionava um doador de elétrons não tiólico, como o ascorbato, nenhuma atividade de proteção foi observada (Kim, Rhee, Stadtman, 1985). Devido a estas características, a proteína foi denominada como *Thiol Specific Antioxidant protein 1* (Tsa1).

Ao contrário de outras enzimas envolvidas na decomposição do peróxido de hidrogênio, como catalase, As Prx não possuem grupamentos prostéticos e são capazes de utilizar um resíduo de cisteína presente em seu sítio ativo, denominado de cisteína peroxidásica (Cysₚ), para a redução dos peróxidos (Chae, Uhm, Rhee, 1994; Netto et al., 1996). Atualmente, as Prx são consideradas enzimas ubíquas, uma vez que são largamente distribuídas entre os organismos, desde Archaea até eucariotos superiores (Barranco-Medina et al., 2008; Dubbs, Mongkolsuk, 2007; Nakamura et al., 2008; Tovar-Méndez et al., 2011). Além da grande distribuição entre diferentes organismos, estas proteínas apresentam várias isoformas na célula e, adicionalmente ao citosol, podem ser encontradas em diversos compartimentos celulares, como mitocôndria, núcleo, cloroplasto e peroxissomo (Bang, Oh, Choi, 2012; Barranco-Medina et al., 2008; Cox, Winterbourn, Hampton, 2010; Kim et al., 2009; Tovar-Méndez et al., 2011).

Algumas Prx apresentam somente uma cisteína envolvida no ciclo catalítico (Prx monotiólíticas) (Pedrajas et al., 2000). Contudo, grande parcela das Prx possui um segundo resíduo de cisteína (Prx ditiólíticas), denominado cisteína de resolução (Cysᵣ) que forma uma ponte dissulfeto com a Cysₚ após a redução do hidroperóxido (Kang et al., 2005; Oliveira et al., 2007; Wood et al., 2003). Baseado nas características descritas acima, as Prx monotiólíticas foram classificadas como 1-Cys, enquanto as ditiólíticas foram divididas como 2-
Cys típicas, quando o dissulfeto formado é intermolecular, ou seja, cada cisteína se encontra em um dos monômeros do dímero, e 2-Cys atípicas, quando o dissulfeto formado é intramolecular, ou seja, ambas as cisteínas se encontram na mesma cadeia polipeptídica (Chae, Uhm, Rhee, 1994; Rhee, Chae, Kim, 2005). Posteriormente, uma nova classificação foi proposta para as peroxirredoxinas, considerando as características estruturais e a sequência de aminoácidos localizados no bolsão do sítio ativo das enzimas e em grande proximidade da cisteína reativa, para a qual foram determinadas seis subfamílias: Prx6, BCP/PrxQ, Tpx, Prx5, AhpE e AhpC/Prx1 (Nelson et al., 2011). Dentre estas subfamílias, em AhpC/Prx1 se incluem as 2-Cys típicas, que é o foco deste estudo.

Logo após o descobrimento da primeira Prx (Tsa1), estudos demonstraram que o redutor fisiológico endógeno desta enzima é a proteína Tiorredoxina (Trx) (Chae, Chung, Rhee, 1994), fato o qual faz com que muitas Prx homólogas de Tsa1 sejam denominadas Tiorredoxina Peroxidases (TPx) (Flohé, Harris, 2007; Rhee, Chae, Kim, 2005). Trx são proteínas de baixo peso molecular (~ 12 kDa) que possuem em seus sítios ativos duas cisteínas vicinais utilizadas para reduzir seus alvos biológicos (Vignols et al., 2005). Adicionalmente à redução das Prx, as Trx estão envolvidas em diversos outros processos biológicos como crescimento celular, inibição de apoptose, ativação de transcrição, síntese de DNA e manutenção da viabilidade celular, através da redução de enzimas de reparo (Day et al., 2012; Karplus, Poole, 2012; Vignols et al., 2005).

Ao reduzir as Prx ou outro substrato proteico, as cisteínas das Trx se tornam oxidadas em dissulfeto e são reduzidas pela Tiorredoxina Redutase (TrxR) (Miranda-Vizuete et al., 1999; Oliveira et al., 2010; Vignols et al., 2005). As TrxR catalisam a redução do dissulfeto da Trx oxidada utilizando uma molécula de nicotinamida adenina dinucleotídeo fosfato (NADPH) via dois centros redox: um FAD e um segundo centro contendo duas cisteínas vicinais. Neste contexto, o FAD transfere equivalentes redutores da molécula de NADPH para as cisteínas reativas e destas para as cisteínas oxidadas de Trx (Figura 1). NADPH, TrxR e Trx compõem o denominado sistema Tiorredoxina (Dai et al., 1996; Lennon, Williams, Ludwig, 2000; Oliveira et al., 2010; Waksman et al., 1994).
1.3 Ciclo Catalítico e Atividade Enzimática das 2-Cys Prx

A redução dos peróxidos se inicia com um passo comum a todas as Prx: o ataque da Cysₚ presente no sítio ativo, que se encontra na forma desprotonada (denominada tiolato, Cysₚ⁻S⁻), a um átomo de oxigênio do peróxido, que leva à clivagem heterolítica da ligação O-O, liberando uma molécula de água ou um álcool (no caso da redução de peróxidos orgânicos). Esta reação foi definida como uma substituição nucleofílica bimolecular do tipo Sₙ₂ (Hall et al., 2010), ou seja, sem que haja a geração de intermediários estáveis. Como produto desta reação, é formada cisteína peroxidásica ácido sulfênico (Cysₚ⁻SOH) a qual, no caso das 2-Cys Prx típicas, se condensa com o H de uma segunda cisteína, denominada cisteína de resolução (Cysᵣ⁻SH) - o que leva à formação de um dissulfeto intermolecular e liberação de H₂O (Chae, Uhm, Rhee, 1994; Hall et al., 2010; Netto et al., 1996). Contudo, para que ocorra a formação do dissulfeto nas 2-Cys Prx típicas, é necessário que ocorra a alternância entre dois estados estruturais, denominados “Fully Folded” (FF), o qual é observado quando a cisteína peroxidásica está no estado reduzido ou superoxidada, e “Locally Untfolded” (LU), que representa o desenovelamento de uma porção da α-hélice onde se encontra a Cysₚ, permitindo a aproximação com a Cysᵣ e a formação do dissulfeto (Wood, Poole, Karplus, 2003). Por fim, para concluir o ciclo, o dissulfeto intermolecular é reduzido, normalmente pela torredoxina (Chae, Chung, Rhee, 1994), e há o reenovelamento da α-hélice onde se encontra a Cysₚ, voltando ao estado inicial (Figura 2).

Figura 2 - Ciclo catalítico das 2-Cys Prx típicas. Após a redução do hidroperóxido pela Cysₚ (1), esta passa ao estado de Cysₚ⁻SOH. Para que ocorra a formação do dissulfeto intermolecular, é necessário que a porção final da α-hélice onde se encontra a Cysₚ se desenovele (FF→LU), para que aconteça a aproximação com a Cysᵣ e formação do dissulfeto, com liberação de uma molécula de água (2). Para concluir o ciclo, há a redução do dissulfeto por algum doador de elétrons tiólico (3) e o reenovelamento da α-hélice onde se encontra a Cysₚ. Compilado de Hall et al., (2011).
Os primeiros trabalhos que mediram a eficiência catalítica das Prx para decomposição de H₂O₂ obtiveram valores na ordem de 10⁵ M⁻¹s⁻¹, os quais eram menores do que aqueles observados para a catalase (~10⁶ M⁻¹s⁻¹) e para glutatona peroxidase (~ 10⁸ M⁻¹s⁻¹) (Hillar et al., 2000; Hofmann, Hecht, Flohé, 2002; Kirkman et al, 1999). Porém, estudos posteriores demonstraram que a eficiência catalítica das 2-Cys Prx típicas pode alcançar valores na ordem de 10⁷ M⁻¹s⁻¹ (Ogusucu et al., 2007; Parsonage et al., 2005). A alta eficiência catalítica, associada ao grande número de cópias dentro das células, torna as Prx responsáveis pela decomposição da maior parte do H₂O₂ presente nos diferentes compartimentos celulares (Cox, Winterbourn, Hampton, 2010). Além de reduzir o H₂O₂, já foi demonstrado que as Prx são capazes de decompor com elevada eficiência hidroperóxidos orgânicos e peróxidos de nitrito (Ferrer-Sueta, Radi, 2009; Horta et al., 2010; Jönsson, Ellis, Poole, 2007). Também foi verificado que Prx2 e Prx3 de humanos são capazes de remover peróxidos de aminoácidos e proteínas com eficiência mais modesta quando comparada a outros peróxidos (entre 10² e 10⁴ M⁻¹s⁻¹), mas ainda assim revelando que as Prx podem atuar em uma grande variedade de substratos (Peskin et al., 2010).

Um dos motivos que explica parcialmente porque os tióis da maioria das proteínas possuem baixa reatividade sobre hidroperóxidos é o fato de estes estarem protonados em pH fisiológico (Cys-SH), apresentando pKₐ de aproximadamente 8.5, o mesmo da cisteína livre (Ferrer-Sueta et al., 2011; Hall et al., 2010; Ogusucu et al., 2007), enquanto o pKₐ da forma desprotonada da cisteína peroxidásica (Cysₚ-S⁻) fica em torno de 5.4 (Ogusucu et al., 2007). Contudo, esse menor valor de pKₐ da CysP representa um incremento de apenas uma ordem de grandeza na reatividade deste resíduo (Karplus, Hall, 2007).

Através de estudos teóricos, foi verificado que a alta reatividade das Prx se deve à manutenção do estado de transição da reação de decomposição do H₂O₂, a qual é do tipo SN₂ (Hall et al., 2010). Este estado de transição é mantido devido a características inerentes ao microambiente proteico no sítio ativo das Prx, como o posicionamento da Cysₚ na porção amino terminal de uma α-hélice, além da presença de um resíduo de Thr (ou Ser, em alguns casos) presente no motivo universal das 2-Cys Prx, representado por P-X-X-T/S-X-X-C e um resíduo de arginina altamente conservado próximo espacialmente, mas não sequencialmente, da Cysₚ (Figura 3, Tabela 1) (Karplus, Hall, 2007; Wood et al., 2003). Estes três resíduos altamente conservados (Thr, Cys e Arg) formam a chamada tríade catalítica (Flohé et al., 2011; Fourquet et al., 2008; Rhee, Chae, Kim, 2005).

Através de estudos teóricos foi proposto que a Thr e a Arg da tríade catalítica realizam ligações polares que direcionam e aumentam eletrofilicidade do H₂O₂ para que ocorra o ataque por parte do tiolato, além de desprotonar a Cysₚ (Figura 4A). Adicionalmente, as interações existentes entre estes resíduos, além de permitirem que a reação SN₂ ocorra,
estabilizam o tiolato catalítico na ausência do substrato, gerando especificidade na sua reatividade (Ferrer-Sueta et al., 2011; Portillo-Ledesma et al., 2014) (Figura 4B).

Figura 3 - Alinhamento das sequências de aminoácidos de enzimas da família 2-Cys Prx típicas (AhpC/Prx1). Os aminocírdidos conservados da tríade catalítica (Thr, Cys e Arg), além da Prolina encontrada no motivo P-X-X-T/S-X-X-C estão assinalados por caixas coloridas, evidenciando o alto grau de conservação em grupos bastante distintos evolutivamente.

Tabela 1. Porcentagem de similaridade e identidade em relação a Ts1 de enzimas homólogas.
Enzima/Organismo

Tsa2 S. cerevisiae
Prdx2 H. sapiens
Prdx1 D. melanogaster
Trypx T. brucei
Bas1 H. vulgar
AhpC E. coli
AhpC S. typhimurium
Prx A. pernix
Além dos estudos teóricos citados anteriormente, trabalhos demonstram que a cisteína peroxidásica é de vital importância na catálise (Chae, Chung, Rhee, 1994; Flohé et al., 2002; König et al., 2003). Em relação à arginina da tríade catalítica, estudos também demonstram que a substituição deste resíduo pode abolir ou reduzir drasticamente a atividade peroxidásica (Flohé et al., 2002; König et al., 2003; Nagy et al., 2011). Por outro lado, até o momento, apenas um trabalho atentou para os efeitos da substituição da treonina de forma experimental (Flohé et al., 2002). Neste trabalho os autores realizaram mutações pontuais da treonina da tríade catalítica da tryparreodoxina peroxidase, uma 2-Cys Prx de *Leishmania donovani*. Quando foi feita a substituição da treonina por valina, a proteína tornou-se praticamente inativa, apesar de não ocorrer qualquer alteração na estrutura secundária da enzima, enquanto que a mutação por serina demonstrou aumento de ~80% na eficiência da decomposição do hidroperóxido de tert-butil (TBHP) (Flohé et al., 2002).

1.4 Características estruturais das 2-Cys Prx típicas

As 2-Cys Prx típicas apresentam uma grande complexidade no que concerne à estrutura quaternária. A unidade mínima destas enzimas é o homodímero, o que se explica pela sua funcionalidade, uma vez que a cisteína peroxidásica de um monômero interage com a cisteína de resolução de outro monômero, mas ambas no mesmo dímero, totalizando dois sítios ativos por dímero (Chae, Uhm, Rhee, 1994). Estes homodímeros são capazes de se agrupar em decâmeros do tipo (α2)5, formando um pentâmero de dímeros, e ainda assim manter a atividade peroxidásica (Wood et al., 2002). Pouco se sabe sobre que fatores determinam este processo de oligomerização, mas acredita-se que pH, força iônica e estado
redox possam ser algumas das variáveis responsáveis por este processo de oligomerização (Kitano et al., 1999; Kristensen, Rasmussen, Kristensen, 1999; Parsonage et al., 2005).

Ainda é pouco conhecido também se há algum mecanismo que mantenha dímeros e decâmeros em equilíbrio e o porquê de existirem duas formas oligoméricas desempenhando função peroxidáscica. Contudo, já foi verificado para AhpC de Salmonella typhimurium que, no estado reduzido, a AhpC mantém-se como decâmero, enquanto tende a se dissociar em dímeros quando é oxidada por H₂O₂ (Parsonage et al., 2005). Adicionalmente, foi verificado nesta AhpC e em PrxIV de Homo sapiens, através de mutações que impedem a formação de decâmeros, que a perda da capacidade de oligomerização em decâmeros está associada à diminuição da atividade peroxidáscica (Parsonage et al., 2005; Wang et al., 2012), indicando que a presença de decâmeros possa representar uma vantagem do ponto de vista funcional.

Adicionalmente, além das 2-Cys Prx típicas serem encontradas em dímeros e em decâmeros, também já foram observadas espécies de alto peso molecular quando as enzimas foram submetidas a estresse oxidativo ou térmico, as quais passam a ter função de chaperona molecular (Jang et al., 2004; Moon et al., 2005; Saccoccia et al. 2012, 2014). Embora os mecanismos e as condicionantes para a associação dos decâmeros sejam pouco conhecidos, sabe-se que os complexos de alto peso molecular (HMW) formados são heterogêneos e intrinsecamente dependentes da Prx de origem. De fato, já foram detectados complexos de alto peso molecular na forma de esferas, com diâmetro heterogêneo, ou tubulares por empilhamento de decâmeros, sendo que o número de subunidades empilhadas é variável (Jang et al., 2004; Saccoccia et al., 2012).

Em relação ao ciclo catalítico, um aspecto estrutural relevante a se considerar a respeito das 2-Cys Prx típicas é que estas apresentam a Cysₚ na região distal de uma α-hélice (Wood, Poole, Karplus, 2003). Este posicionamento é fundamental ao se considerar a necessidade de ocorrer alternância entre dois estados estruturais para a formação de um dissulfeto entre as cisteínas envolvidas na catálise nas proteínas deste grupo: o estado “Fully Folded” (FF) foi descrito em estruturas cristalográficas de proteínas reduzidas, com a Cysₚ substituída por Ser, ou onde a Cysₚ está superoxidadada (Cysₚ-SO₂H), como a Prx2 do humano (Wood, Poole, Karplus, 2003) (Figuras 5A e 5C). Quando a proteína é oxidada, para que se forme o dissulfeto, ocorre o desenovelamento parcial da α-hélice que contém a Cysₚ, caracterizando o estado estrutural denominado “Locally Unfolded” (LU), o qual permite a aproximação das cisteínas catalíticas e a consequente formação do dissulfeto (Figuras 5B e 5D) (Wood, Poole, Karplus, 2003).

Embora esta alternância entre os estados FF e LU seja observada para todas as 2-Cys Prx típicas, uma diferença estrutural marcante nas enzimas de eucariotos em relação à de procariotos é a presença de uma cauda C-terminal, a qual foi relacionada ao processo de
superoxidação da Cys$_P$, cujos mecanismo e função serão mais bem explorados na próxima seção. Brevemente, enquanto a maior parte das enzimas de eucariotos apresenta uma cauda C-terminal, a qual contém um motivo Y-F interagindo com um motivo G-G-L-G (Figuras 5A e 5B), as AhpC de procariotos não apresentam esta cauda C-terminal, tampouco os motivos Y-F e G-G-L-G (Figuras 5C e 5D) (Wood, Poole, Karplus, 2003). Esta diferença é comumente associada à suscetibilidade à superoxidação da Cys$_P$, visto que este fenômeno não é observado em enzimas de procariotos (Hall, Karplus, Poole, 2009; Perkins, Poole, Karplus, 2014; Wood, Poole, Karplus, 2003). A razão pela qual esta característica estrutural seria responsável pela suscetibilidade à superoxidação da Cys$_P$ seria que a interação entre os motivos Y-F e G-G-L-G causaria um atraso no desenovelamento da α-hélice onde se encontra a Cys$_P$, com consequente atraso da formação do dissulfeto, facilitando a oxidação da Cys$_P$-SOH por outra molécula de hidroperóxido, favorecendo a formação de Cys$_P$-SO$_2$H (Hall, Karplus, Poole, 2009).

Figura 5 - Alternância estrutural de 2-Cys Prx típicas. Em Prx2 de H. sapiens (A), o estado estrutural FF ocorre quando a enzima se encontra no estado superoxidado, como apresentado, mas também ocorre quando a enzima encontra-se reduzida. Por outro lado, a decomposição de uma molécula de hidroperóxido permite a formação de ponte dissulfeto intermolecular entre a Cys$_P$ (denominada de C$_P$ na figura) e a cisteína de resolução (C$_{R}$), com desenovelamento de uma porção da α-hélice (em azul) (B), levando à enzima ao estado LU. Em AhpC de S. typhimurium também é observado o estado FF, e neste caso a enzima encontra-se com a Cys$_P$ substituída por uma serina, mimetizando a proteína reduzida (C) e a formação do dissulfeto intermolecular leva a o desenovelamento parcial da α-hélice onde se encontra a C$_P$ (D). Prx2 de H. sapiens apresenta os motivos G-G-L-G (em amarelo) (A) em um prolongamento de um loop vicinal à α-hélice que contém a Cys$_P$ e também o motivo Y-F (aminoácidos representados por balls and sticks em (A), o que não é observado na enzima da bactéria (G)). Compilado de Wood, Poole, Karplus, 2003.
1.5 Superoxidação da Cysₚ e transições funcionais das 2-Cys Prx típicas

Além de serem potentes peroxidases, alguns trabalhos têm demonstrado que as 2-Cys Prx típicas também são capazes de atuar como mediadoras da sinalização redox, regulando os níveis de H₂O₂ endógeno (Hall, Karplus, Poole, 2009; Wood et al., 2003) e como chaperona molecular (Jang et al., 2004; Lim et al., 2008; Saccoccia et al., 2012, 2014; Trotter et al., 2008). A alteração de funções das Prx é frequentemente atribuída a modificações estruturais promovidas por estresse térmico ou por superoxidação da cisteína peroxidásica a cisteína ácido sulfínico (Cysₚ-SO₂H) ou, até mesmo, cisteína ácido sulfônico (Cysₚ-SO₃H), o que resulta em perda da sua atividade peroxidásica (Jang et al., 2004), uma vez que a Trx não é capaz de reduzir as Prx que se encontram superoxidadas. Entretanto, foi observada em alguns organismos uma rota alternativa através da qual ocorre a redução de Cysₚ-SO₂H a Cysₚ-SOH pela sulfirredoxina (Srx), porém de forma lenta e com o consumo de ATP (Biteau, Labarre, Toledano, 2003; Jönsson, Johnson, Lowther, 2008; Lowther, Haynes, 2011; Perkins, Poole, Karplus, 2014; Rhee, Chae, Kim, 2005).

Alguns trabalhos propõem que a superoxidação da Cysₚ é dependente não apenas de uma alta quantidade de peróxido, mas também da presença de um agente redutor, como a tiorredoxina (Baker, Poole, 2003; Jang et al., 2004; Moon et al., 2005; Puerto-Galan et al., 2015). Contudo, há trabalhos no qual é observada a superoxidação da Cysₚ, mesmo na ausência de redutor (Haynes et al., 2013; Pace et al., 2013). De fato, o papel da Trx no processo de superoxidação parece residir no transição do estado LU para FF, uma vez que a Trx reduz o dissulfeto e fornece Cysₚ reduzida, a qual pode ser novamente oxidada e promove uma competição entre as reações de formação do dissulfeto ou de Cysₚ-SO₂H/Cysₚ-SO₃H (Nelson et al., 2013; Rhee, Chae, Kim, 2005). Desta forma, o que parece ocorrer é que a tiorredoxina agiria como um facilitador do processo de superoxidação da Cysₚ, ou seja, este ocorreria de forma mais eficiente na presença de Trx, embora também possa ocorrer em menor escala sem a presença do redutor.

Embora possa parecer que o processo de superoxidação da Cysₚ seja um fator desfavorável, não só por representar a inibição da atividade peroxidásica da enzima, mas também do ponto de vista energético, uma vez que é necessário gasto de ATP e a reação para recuperar esta enzima é lenta (Biteau, Labarre, Toledano, 2003), alguns aspectos evidenciam a importância do processo de superoxidação. Além da alternância para a função de chaperona molecular (Jang et al., 2004; Lim et al., 2008; Saccoccia et al., 2012, 2014), outro aspecto importante é o fato de a redução das Prx implicar no acúmulo de Trx na forma oxidada, o que é fundamental em diversos processos de transdução de sinal, os quais não ocorrem quando a Trx se encontra reduzida (Holmgren et al., 2005; Perkins, Poole, Karplus, 2014). A oxidação direta da Trx por hidroperóxidos é lenta (Chae, Chung, Rhee, 1994) e, pelo fato de as Prx serem altamente abundantes no ambiente celular, podendo representar...
1% das proteínas solúveis na célula (Ghaemmaghami et al., 2003), acredita-se que possuem grande relevância na oxidação das Trx in vivo.

Desta forma, foi verificado que a inativação de Prx de *Schizosaccharomyces pombe* permitiu que a Trx permanecesse reduzida e, assim, atuasse em mecanismos de reparo (Day et al., 2012). Neste contexto, outro exemplo se trata da ativação do NF-κB pela Trx1, o qual precisa ter os resíduos de cistina reduzido para que ocorra a ligação da subunidade p50 à sequência de DNA alvo (Hayashi, Ueno, Okamoto, 1993; Matthews et al. 1992). Em mamíferos, apenas Trx1 reduzida é capaz de se ligar a MAPKKK Ask1 (Apoptose signaling kinase), uma proteína envolvida na sinalização de apoptose, inibindo a sua atividade de quinase, enquanto a oxidação de Trx1 leva à dissociação física do complexo e, consequentemente, à ativação de Ask1 (Liu et al., 2000). Recentemente também foi demonstrada a presença de uma interação física por meio de um dissulfeto transitório entre Prx2 e STAT3 (Signal transducer and activator of transcription 3), proteína que está envolvida na ativação de fatores de crescimento. Neste trabalho foi observado que a oxidação de STAT3 por Prx2 leva à formação de oligômeros de STAT3, os quais possuem reduzida atividade transcricional e, para que a enzima possa voltar a sua atividade máxima, é necessária sua redução pelo sistema tiorredoxina. Sendo assim, a superoxidação de Prx2 impede a formação do complexo STAT3-Prx2, impactando de forma direta e significativa as vias dependentes de STAT3 (Sobotta et al., 2015). De forma geral, pode-se dizer que a inativação das Prx por superoxidação pode fazer com que ocorra um acréscimo na concentração local de peróxidos que poderiam reagir com outros alvos, além de aumentar a quantidade de Trx reduzida, impactando nas vias de sinalização redox-dependentes (Day et al., 2012; Wood, Poole, Karplus, 2003).

1.6 Peroxirredoxinas em *Saccharomyces cerevisiae*

Em *Saccharomyces cerevisiae* são observadas cinco isoformas de peroxirredoxinas em distintos compartimentos celulares: Tsa1, Tsa2 e Ahp1 no citosol, Prx1 na mitocôndria e nTpx no núcleo (Park et al., 2000). Nesta levedura, as três isoformas cítosólicas são pertencentes à classe das 2-Cys Prx típicas. Entretanto, é notável a diferença de abundância no ambiente celular entre elas, uma vez que, enquanto Tsa1 apresenta na fase log de crescimento celular ~ 378.000 moléculas, estando entre as 10 proteínas mais abundantes da célula, as demais isoformas apresentam um número de cópias, ainda que bastante significativo, muito mais modesto: Tsa2 apresenta ~ 4.800 moléculas e Ahp1 ~ 16.200 moléculas (Ghaemmaghami et al., 2003). Adicionalmente, somente Tsa1 e Tsa2 são capazes de formar decâmeros do tipo [(α2)5] e complexos de elevada massa molecular com função de chaperona (Jang et al., 2004; Moon et al., 2005; Saccoccia et al., 2012, 2014).
As isoformas citosólicas Tsa1 e Tsa2 compartilham na sua estrutura primária 86% de identidade e 96% de similaridade e, por conta desta característica, alguns autores sugerem que elas possuam funções redundantes (Pedrajas et al., 2000). Entretanto, enquanto Tsa1 apresenta naturalmente um resíduo de treonina na tríade catalítica, Tsa2 possui uma serina. Isto parece implicar em uma diferença entre os valores de pK_a de Cys$_P$ de Tsa1 e Tsa2 (5.4 e 6.3, respectivamente). Contudo, nenhuma abordagem experimental foi efetuada até o momento para investigar este ponto (Ogusucu et al., 2007). Cabe ressaltar que, uma vez que esta escala é logarítmica, isto significa que Tsa1 pode possuir uma reatividade sobre hidroperóxidos $\sim 10 \times$ superior a de Tsa2. Neste sentido, esta substituição pode ter implicações funcionais relevantes, uma vez que a transição estrutural peroxidase \rightarrow chaperona, é dependente da superoxidação de Cys$_P$.

Dentre as Prx citosólicas de *S. cerevisiae*, Tsa1 desperta interesse, não apenas pela sua alta abundância, mas também por apresentar atividade em vias de sinalização (Hall, Karplus, Poole, 2009; Wood et al., 2003), além de apresentar grande homologia com proteínas de eucariotos superiores, como as Prx1 e Prx2 de humano (60% de identidade e 77% de similaridade com Prx1 e 67% de identidade e 77% de similaridade com Prx2). Desta forma, Tsa1 de *S. cerevisiae* tem sido bastante utilizada como modelo para a compreensão de diversos processos celulares e em patologias como câncer e Alzheimer.
2 OBJETIVOS

Os objetivos deste trabalho foram:

i) Obtenção da estrutura refinada de Tsα1^{C47S}, análises estruturais e realização de ensaios funcionais.

ii) Investigação do papel funcional da Thr⁴⁴ e Arg¹²³ da tríade catalítica.

iii) Avaliação de aspectos relacionados com a suscetibilidade à superoxidação de Tsα1.

iv) Investigação do envolvimento de Asp¹⁴¹ na reatividade e redução de Tsα1.

v) Cristalização de Tsα1 carreando substituições de aminoácidos que afetam a estrutura ou atividade da proteína.

3 JUSTIFICATIVA

As Prx 2-Cys típicas possuem um papel fundamental na homeostase celular através da redução de diversos tipos de hidroperóxidos e atividade de chaperona, além de estarem envolvidas em processos biológicos de grande importância como crescimento celular e apoptose. Acredita-se que a atividade peroxidásica destas proteínas seja fortemente influenciada por três resíduos de aminoácidos, denominados de tríade catalítica, representados pela Cys_π em conjunto com um resíduo de Thr (ou Ser) e outro de Arg, que se encontram espacialmente em grande proximidade no sítio ativo destas enzimas. Adicionalmente, ao reduzir moléculas de hidroperóxidos, estas enzimas se alternam entre dois estados estruturais denominados FF e LU, e postula-se que esta transição é intimamente relacionada com a alternância da atividade peroxidásica para a atividade de chaperona e transdução de sinal REDOX. Apesar da importância destas proteínas, informações experimentais sobre os determinantes moleculares envolvidos na transição FF/LU, bem como estudos aprofundados da importância dos aminoácidos da tríade catalítica na manutenção da estrutura quaternária e processo de superoxidação são poucos na literatura.

Adicionalmente, Tsα1 de <i>S. cerevisiae</i> foi a primeira peroxirredoxina descrita em meados da década de 1980 e, apesar da existência de diversas investigações científicas que abordam aspectos funcionais desta proteína, dados estruturais em alta resolução ainda são bastante escassos. Soma-se o fato de Tsα1 de <i>S. cerevisiae</i> apresentar grande homologia com proteínas de eucariotos superiores, tornando esta enzima um modelo importante para estudos futuros no que concerne ao entendimento de doenças genéticas de agregação proteica e proliferação celular desordenada como Alzheimer e câncer.
4 MATERIAIS E METODOLOGIA

4.1 Reagentes
Triptona, extrato de levedura, cloreto de sódio, cloreto de potássio, cloreto de magnésio, sulfato de magnésio, ágar, etanol, isopropanol, ácido acético, ácido sulfúrico, ácido clorídrico, PEG, glicose, peróxido de hidrogênio, peróxido de cumeno, peróxido de tert-butil, brometo de etídeo, acrilamida, bisacrilamida, persulfato de amônia, TEMED, glicina, SDS, fosfato de sódio, Tris, Hepes, fluoreto de sódio, IPTG, TCEP, Imidazol, sulfato de níquel, cloreto de cobalto, DTPA, EDTA, concentradores Amicon Ultra adquiridos junto a Sigma-Aldrich e Merck Millipore. Marcadores de peso molecular, agarose, DTT, oligonucleotídeos, colunas PD10, colunas de purificação HiTrap e kit Big Dye Terminator v3.1 Cycle Sequencing adquiridos junto a Life technologies, Thermo Scientific e GE Healthcare. O kit QuikChange II XL Site-Directed Mutagenesis foi adquirido junto à Agilent Technologies, e os kits Additive Screen e Ionic Liquid Screen foram adquiridos junto à Hampton Research.

4.2 Meios de Cultura Para Bactérias
Luria-Bertani low salt (LB): 1% triptona; 0.5% extrato de levedura; 0.5% NaCl. Quando utilizados para seleção de mutantes, foram adicionados 100 μg de ampicilina/ml. O meio de cultura sólido foi preparado adicionando-se ágar (concentração final = 2%).
SOC: 2% triptona; 0.5% extrato de levedura; 10 mM NaCl; 2.5 mM KCl; 10 mM MgCl₂; 10 mM MgSO₄; 20 mM glicose.

4.3 Linhagens de Escherichia coli
DH5α - F’ (Z80dlacZ_(lacZ)M15)_(lacZYA-argF)U169 recA1 endA1 hsdR17 (rK’,mK’);
DH10B – F mcrA Δ (mrr-hsdRMS-mcrBC) φ80dlacZΔM15 ΔlacX74 deoR recA1 endA1 araΔ139 D (ara, leu) 7697 galK1’ rpsL nupG.
XL1Blue - (genotype: recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F’ proAB laclqZΔM15 Tn10 (Tetr)])..
BL21(DE3) - [F’, amp T, hsdSb (rB’ mB’), gal, dcm (DE3) (Novagen)] ; B84 DE3 [F’, met amp T, hsdSb (rB’ mB’)], gal, dcm (DE3).
Tuner (DE3) – F’ ompT hsdSb(rB’ mB’) gal dcm lacY1(DE3) (Novagen).

4.4 Plasmídeos
Os plasmídeos de expressão de bactérias utilizados foram pET15b e pET17 (Novagen - Merck Millipore).
4.5 Mutagênese sítio dirigida

As mutações Tsa1^{E50A}, Tsa1^{R146Q}, Tsa1^{E50A/R146Q}, Tsa1^{D141N}, Tsa1^{T44A}, Tsa1^{T44S}, Tsa1^{T44V}, Tsa1^{R123G}, Tsa1^{R123K}, Tsa1^{Y77A}, Tsa1^{S78D}, Tsa1^{S78V} e Tsa1^{175ΔCT} foram efetuadas utilizando o kit <i>QuikChange II XL Site-Directed Mutagenesis</i> (Agilent Technologies), seguindo as orientações do fabricante. A confirmação das mutações foi efetuada por reação de sequenciamento utilizando o kit BigDye Terminator v3.1 Cycle Sequencing (Life Technologies - Applied Biosystems) em sequenciador automático ABI 3730 DNA Analyser (Life Technologies - Applied Biosystems). As sequências dos oligonucleotídeos utilizados são apresentadas na tabela 2.

Tabela 2 - Oligonucleotídeos utilizados para obtenção dos mutantes.

Oligonucleotídeos	Sequência
Mutagênicos	
Tsa1^{T44AF}	5' TGGCCTTCGCTTCTGCTGT 3'
Tsa1^{T44AR}	5' ACGACGAAGGGAAGGCAC 3'
Tsa1^{144F}	5' TGGCCTTCGCTTCTGCTGT 3'
Tsa1^{144R}	5' ACGACGAAGGGAAGGCAC 3'
Tsa1^{E50AF}	5' TGGCCTTCGCTTCTGCTGT 3'
Tsa1^{E50AR}	5' ACGACGAAGGGAAGGCAC 3'
Tsa1^{Y77AF}	5' GACTCGAAGGCGACATGGGT 3'
Tsa1^{Y77AR}	5' GACTCGAAGGCGACATGGGT 3'
Tsa1^{S78DF}	5' TGCCAAAAGGCCATTACGTGT 3'
Tsa1^{S78DR}	5' TGCCAAAAGGCCATTACGTGT 3'
Tsa1^{R123G}	5' GCCAAACCTCGCAAGCTGCTACC 3'
Tsa1^{R123R}	5' GCCAAACCTCGCAAGCTGCTACC 3'
Tsa1^{R146AF}	5' GCAATGTTTGCGGATTTGAGCA 3'
Tsa1^{R146AR}	5' GCAATGTTTGCGGATTTGAGCA 3'
Tsa1^{D141AF}	5' ACCATTAACATCTTCGTTGCTTC 3'
Tsa1^{D141AR}	5' ACCATTAACATCTTCGTTGCTTC 3'
Tsa1^{175ΔCTF}	5' ATTTAGGTGACACTATAGTATG 3'
Tsa1^{175ΔCTR}	5' ATTTAGGTGACACTATAGTATG 3'

Sequenciamento

| T7 Promoter | 5' ATTTAGGTGACACTATAGTATG 3' |
| T7 Terminator | 5' ATTTAGGTGACACTATAGTATG 3' |

4.6 Preparação e transformação de bactérias eletrocompetentes

Os procedimentos para a preparação e transformação de bactérias eletrocompetentes foram realizados de acordo com o proposto por Ausubel et al., (2008).
4.7 Expressão e purificação em bactérias de proteínas selvagens e mutantes

Inicialmente, linhagens de *E. coli* BL21(DE3) ou Tuner (DE3) contendo plasmídeos com os genes de interesse foram inoculadas em 20 ml de meio LB contendo 100 μg/ml de ampicilina e cultivadas por 16 horas/ 37 °C/ 250 rpm em agitador orbital. Após este período, a cultura foi transferida para 1 litro de meio LB/Ampicilina, cultivada até OD₆₀₀ ~ 0.6. Neste momento, foi adicionado IPTG para concentração final de 1 mM. Após 3 horas de indução a 37 °C/ 250 rpm, as células foram sedimentadas por meio de centrifugação por 30 min/ 4 ºC/ 3200 RCF e ressuspenderam em tampão fosfato de sódio 20 mM (pH 7.4). Para melhorar a produção da proteína de interesse, dependendo do mutante (e.g. Tsa1^{T44V} e Tsa1^{E50A}), as condições de indução foram 12 horas/ 16 ºC/ 150 rpm, com 0.3 mM de IPTG.

O rompimento das células foi realizado por sonicação (30% de amplitude) e os ácidos nucleicos foram removidos por meio de tratamento com sulfato de estreptomicina (concentração final = 1%) por 20 minutos. Após este período, o extrato foi centrifugado por 45 min/ 4 ºC/ 18500 RCF, o precipitado descartado e os extratos proteicos livres de ácidos nucleicos coletados. Uma vez que as proteínas foram expressas em vetores que adicionam cauda de histidina, a purificação foi efetuada por cromatografia de afinidade por metais (IMAC) em colunas HisTrap HP (utilizando níquel) ou HiTrap TALON Crude (utilizando cobalto) (GE Healthcare) em gradiente de Imidazol (20 a 500 mM para HisTrap HP e 5 a 300 mM para HiTrap TALON Crude) com auxílio de bomba peristáltica.

A qualidade da purificação das proteínas foi avaliada por SDS-PAGE em condições redutoras. Após estes procedimentos, as proteínas foram dessalinizadas através de cromatografia de filtração em gel utilizando a coluna PD10 (GE Healthcare) e concentradas por centrifugação (4 ºC/ 4000 rpm) utilizando concentradores Ultracel YM-30 (Millipore).

4.8 Quantificação de proteínas

As amostras com as proteínas em alto grau de pureza foram quantificadas através da absorbância dos resíduos de triptofano (λ = 280 nm) e o coeficiente de extinção molar atribuído a cada uma das enzimas foi calculado através da ferramenta ProtParam (http://web.expasy.org/protparam/) (ε_{Tsa1} = 23950 – não há alteração nesse valor para nenhum dos mutantes; ε_{Trx1} = 9970; ε_{TrxR1} = 24410).

4.9 Espectroscopia de dicroísmo circular

Os espectros de dicroísmo circular foram obtidos utilizando cubeta de 0.1 cm de caminho óptico, contendo 10 μM de proteína previamente oxidada com 1.2 equivalente de H₂O₂ em tampão 10 mM Tris-HCl (pH 7.4) e 100 mM NaF. Os ensaios foram executados a 25 ºC em espectropolarímetro Jasco J-810 (Jasco Inc.). Os espectros encontrados na seção de resultados representam a média de 8 varreduras entre os comprimentos de onda de 190
a 260 nm. O conteúdo de estrutura secundária foi estimado usando o software CDDN 2.1 (Böhm, Muhr, Jaenicke, 1992)

4.10 Determinação do estado oligomérico por Cromatografia de Exclusão Molecular

Parte dos ensaios de cromatografia de exclusão molecular (Seção 5.1.4) foram realizados por HPLC analítico utilizando o sistema Shimadzu série VP equipado com injetor Rheodyne e detectores de arranjo de fotodiodes Shimadzu mod. SPD- M10Avp (Shimadzu Corporation, Kyoto, Japão). As amostras (15 μM em 5 mM Tris–HCl pH 7.4), tratadas com 5 mM TCEP ou 1.2 equivalente de H₂O₂ por 30 minutos em temperatura ambiente, foram separadas por um sistema contendo a coluna Phenomenex BioSep-SEC-S4000 (300 x 7,8 nm, 5 μm, faixa de separação 15 a 1500 kDa, Phenomenex Inc.) com fluxo de 0.5 ml/min em tampão Hepes-NaOH (pH 7.0) e 50 mM NaCl. O padrão de eluição foi monitorado no comprimento de onda de 280 nm. Os padrões utilizados (GE Healthcare e Sigma-Aldrich) foram a tireoglobulina (669 kDa), ferritina (440 kDa), catalase (232 kDa), aldolase (158 kDa), albumina sérica bovina (132 e 67 kDa), conalbumina (75 kDa), ovalbumina (43 kDa), anidrase carbônica (29 kDa) e α-lactalbumina (14 kDa). Os cromatogramas foram analisados usando o software Class-VP (Shimadzu Corporation).

Os demais experimentos de SEC foram realizados em HPLC analítico Jasco LC-2000 Plus equipado com injetor PU 2880 Plus e detector PDA MD 2018 (Jasco Inc.). As amostras (50 μM em 100 mM Tris–HCl pH 7.4, tratadas com 50 mM TCEP ou 1.2 equivalente de H₂O₂ por 30 min em temperatura ambiente) foram separadas por sistema contendo coluna Phenomenex BioSep-SEC-S4000 (7.8 x 300 mm, 5 μm, faixa de separação 15 - 1500 kDa, Phenomenex Inc.) usando fluxo de 1 ml/min em Tris-HCl (pH 7,4) e 50 mM NaCl. O padrão de eluição foi monitorado por absorbância (λ = 280nm). As proteínas utilizadas como padrão de massa molecular foram: tireoglobulina bovina (670 kDa), gamma-globulina bovina (158 kDa), ovalbumina (44 kDa), mioglobina (17 kDa) e vitamina B₁₂ (1.4 kDa) (Bio-Rad). Os cromatogramas foram analisados usando o software Jasco BORWIN, versão 1.50 (Jasco).

4.11 Avaliação da atividade antioxidante e obtenção de parâmetros cinéticos

A atividade antioxidante de Tsa1 e mutantes foi medida espectrofotometricamente pela oxidação do DTT (ε₃10nm =110) (Iyer, Klee, 1973), ou pelo consumo de NADPH (ε₃40nm= 6220) utilizando o sistema tiorrédoxina (Trx1 ou Trx2 e TrxR1) de S. cerevisiae (Munhoz, Netto, 2004). Os parâmetros cinéticos foram determinados a partir do ajuste das velocidades iniciais das reações com variação da concentração de substrato (H₂O₂ ou CHP e Trx1 ou Trx2) por Michaelis-Menten utilizando o software GraphPad Prism 5 (GraphPad Software Inc.).
4.12 Determinação do pK_a da Cysₚ

Para determinar o pK_a da cisteína peroxidásica de Tsa1 e mutantes foram calculadas as velocidades iniciais de reação com o reagente de Ellman (DTNB) em diferentes pHs (adaptado de Sardi et al., 2013). A enzima foi previamente reduzida com 100 mM de DTT e o excesso retirado por três procedimentos subsequentes de filtração em gel pela coluna PD10 (GE Healthcare). Em seguida, 10 µM de Tsa1 foi adicionada a 100 µM de DTNB em diferentes tampões: acetato de sódio (pH 4.0 – 5.5), MES (pH 6.0 – 6.5) e Tris (pH 7.0 – 8.0) com concentração final 100 mM/0.5 M de NaCl. A reação foi monitorada a 412 nm.

Para os mutantes Tsa1^{R123G} e Tsa1^{R123K} os valores de pK_a da Cysₚ foram determinados através da emissão de fluorescência devido à reação de alquilação da Cysₚ por monobromobimano (MBBr) ($\lambda_{\text{exc}} = 396$ nm; $\lambda_{\text{em}} = 482$ nm). Para tanto, as enzimas (2 µM) previamente reduzidas como descrito nesta seção foram tratadas com 10 µM de MBBr nos mesmos tampões utilizados para a reação com DTNB. A emissão de fluorescência foi acompanhada por 60 minutos e as inclinações das curvas geradas foram utilizadas para o cálculo das velocidades iniciais. Os valores referentes às velocidades obtidas em cada ponto foram ajustados em curva de Henderson-Hasselbalch, através do software GraphPad Prism 5 (GraphPad Software, Inc.).

4.13 Determinação da constante de segunda ordem por competição com HRP

A constante de segunda ordem para H_2O_2 foi determinada através do ensaio de competição por peróxido de hidrogênio com horseradish peroxidase (HRP). Amostras de Tsa1 selvagem e mutantes (Tsa1^{ES0A}, Tsa1^{R146Q} e Tsa1^{D141N}) foram previamente tratadas com DTT 100 mM por 1 hora e o excesso foi removido por três procedimentos subsequentes de dessalinização, por meio de cromatografia de filtração em gel utilizando a coluna PD10 (GE Healthcare). Em seguida, a 20 µM de Tsa1 foi adicionado DTNB 1 mM em tampão denaturante (Uréia 8M, DTPA 1 mM e Tris-HCl 30 mM, pH 7.0). Após 15 minutos de reação, mediu-se a absorbância a 412 nm para verificação da formação de TNB e cálculo da quantidade de cisteínas livres, sendo considerados aceitáveis valores acima de 90%. A quantificação da concentração do H_2O_2 foi realizada de acordo com Toledo et al., (2011).

Para o ensaio de competição por H_2O_2 com HRP foram utilizados 8 µM de HRP em tampão fosfato de Sódio 100 mM, DTPA 0.1 mM com concentrações variadas de Tsa1 (0-16 µM), para os quais foram medidos os espectros de absorção nos comprimentos de onda entre 300 e 700 nm a 30 ºC. Na sequência, foi adicionado 2 µM de H_2O_2 e após 30 segundos os espectros de absorção nos comprimentos de onda entre 300 e 700 nm foram medidos novamente, de modo a se verificar o delta de absorbância entre a HRP férrica e a sua forma oxidada, denominada composto I. Foram considerados para o cálculo da constante de segunda ordem os valores de absorbâncias nos comprimentos de onda 403
nm (quando houve predominância na formação do composto I) e 398 nm (quando houve predominância do composto II).

4.14 Determinação das constantes cinéticas por fluorescência intrínseca

Tsa1 e mutantes foram reduzidos por 100 mM de DTT por 1 hora, o qual foi depois removido por três procedimentos de filtração em gel utilizando colunas PD10 (GE Healthcare). A eficiência da redução foi avaliada com o auxílio de DTNB acompanhando a formação de TNB ($\lambda=412$ nm) em tampão denaturante, e cálculo da quantidade de cisteínas livres, sendo considerados aceitáveis valores acima de 90%. As enzimas em tampão 40 mM fosfato de sódio (pH 7.4) foram rapidamente misturadas com H$_2$O$_2$ ou CHP em excesso (10 equivalentes) a 30 ºC em espectrofluorímetro Applied Photophysics SX-17MV acoplado a stopped flow com tempo de mistura menor que 2 ms. Os comprimentos de onda utilizados foram 280 nm para excitação e 340 nm para emissão.

4.15 Análise da redução/oxidação de Tsa1 através de SDS-PAGE

Para avaliar a redução por SDS-PAGE não redutor, as proteínas foram previamente reduzidas com DTT 100 mM por 1 hora a temperatura ambiente, e o excesso de DTT foi removido por dessalinização por cromatografia de filtração em gel utilizando a coluna PD10 (GE Healthcare). Em seguida, 20 μM de Tsa1, em tampão fosfato de sódio 50 mM/NaCl 50 mM foi oxidada com 1.2 equivalentes de H$_2$O$_2$ por 5 minutos e, após este tempo, foi adicionado 1 mM de DTT ou 1.2 equivalente de Trx. Aliquotas foram retiradas antes da adição de redutor e com a presença deste após terem decorrido 0.5, 1.0, 3.0, 5.0, 15, 30 e 60 minutos em temperatura ambiente. Outra abordagem foi avaliar a redução através da variação da concentração do redutor; neste caso, as amostras previamente oxidadas foram reduzidas em concentrações variadas de DTT (0 a 1000 equivalentes molares) ou Trx (0 a 25 eq. molares) por 1 minuto em temperatura ambiente.

Na análise da oxidação, as enzimas foram previamente reduzidas com 100 mM DTT por 1 hora a temperatura ambiente, e o excesso de DTT retirado como descrito nos procedimentos anteriores. As enzimas reduzidas em fosfato de sódio 50 mM/NaCl 50 mM foram então oxidadas com três equivalentes molares de H$_2$O$_2$ ou CHP em temperatura ambiente e aliquotas foram retiradas ao longo do tempo (0 - 600 segundos). No caso de enzimas em que o processo de oxidação é mais lento, foram realizados experimentos com concentrações superiores de hidroperóxidos (até 500 equivalentes molares). As reações foram interrompidas adicionando-se tampão contendo 4% de SDS, de modo à denaturar a proteína, e 50 mM N-etilmaleimida (NEM) para alquilar as cisteínas reduzidas e evitar formação de dissulfetos arteficiais. Posteriormente as amostras foram fervidas por 3 minutos em banho-maria a 90 ºC antes de serem aplicadas em SDS-PAGE em condições
não redutoras. Os resultados foram revelados através de coloração por *coomassie blue*. Todos os ensaios em gel foram repetidos ao menos 3 vezes.

4.16 Análise de superoxidação de Tsa1 e mutantes em SDS-PAGE

O ensaio para verificação da formação de espécies superoxidadas foi realizado através da reação de Tsa1 ou mutantes (10 µM) com o sistema Trx de *S. cerevisiae* (1 µM de Trx1, 0.3 µM de TrxR e 150 µM de NADPH), além de concentrações variadas de peróxidos (H₂O₂ ou CHP) em tampão contendo 50 mM fosfato de sódio (pH 7.4) e 50 mM NaCl. Após 15 minutos a 30 ºC, as reações foram interrompidas pela adição de tampão Tris-HCl 62.5 mM (pH 6.8) contendo 4% SDS e 50 mM NEM. As amostras foram fervidas em banho-maria a 90 ºC por 3 minutos e submetidas à SDS-PAGE em condições não redutoras. Os resultados foram revelados através de coloração por *coomassie blue*. Todos os ensaios em gel foram repetidos ao menos 3 vezes.

4.17 Cristalização de proteínas

Após a purificação das proteínas mutantes, foram realizados ensaios iniciais de crescimento de cristais utilizando a infraestrutura do Laboratório Nacional de Luz Síncrotron (LNLS) com o auxílio dos robôs Matrix Maker (Emerald Biosystems) e Honeybee 963 (Genome Solutions) empregando os kits PACT (Nextal/Qiagen), JCSG (Nextal/Qiagen), SaltRx (Hampton Research), Precipitant Synergy (Emerald BioSystems), Crystal Screen 1 e 2 (Hampton Research) e Wizard 1 e 2 (Emerald Biostructures) seguindo as orientações dos fabricantes, pelo método de gota sentada a 20 ºC. Inicialmente a concentração de todas as proteínas foi 10 mg/ml em tampão 5 mM Tris-HCl pH 7.4 em diferentes condições redox, de modo a tornar o estado da enzima mais homogêneo. As condições iniciais que apresentaram formação de microcristais foram refinadas quanto à concentração de precipitante, concentração da proteína e pH da solução, no Laboratório de Biologia Molecular Estrutural (LABIMES) da UNESP-CLP. Foram também realizadas triagens de aditivos com os kits Additive Screen (Hampton Research) e Ionic Liquid Screen (Hampton Research).

4.18 Cristalografia de Raios X, modelagem proteica e análise dos dados estruturais

Os experimentos preliminares de difração de raios X foram realizados nas linhas DB03-MX1 ou DB03-MX2 do Laboratório Nacional de Luz Síncrotron (LNLS). Todas as medidas foram feitas em temperatura criogênica (110 K) através de fluxo de nitrogênio líquido sobre as amostras. Os dados de difração de raios-X que apresentaram qualidade e resolução adequadas foram coletados e processados utilizando os programas Mosflm (Leslie, 1992) e Scala (Evans, 1993). A substituição molecular foi efetuada com o auxílio do
AmoRe (Navaza, 1994). Para a construção de modelos teóricos foi utilizado o programa Modeller 8.0v2 (Sali, Blundell, 1993). Para os refinamentos foi utilizado o Refmac5.0 (Murshudov, Vagin, Dodson, 1997) e o programa Coot (Emsley, Cowtan, 2004) para visualização, substituição de aminoácidos e ordenação de moléculas no interior dos mapas de densidade eletrônica. A análise estereoquímica dos modelos refinados foi efetuada utilizando os programas Procheck (Laskowski et al., 1993) e Whatcheck (Hooft et al., 1996). As representações gráficas foram geradas com os programas Pymol (DeLano, 2002).
5 RESULTADOS E DISCUSSÃO

Para facilitar a apresentação dos resultados e da discussão, esta seção será dividida em 5 subseções de acordo com os tópicos a serem abordados. A primeira (seção 5.1) representa um resumo do artigo publicado, apresentado no Apêndice A (Journal of Molecular Biology, v.424, p.28-41, 2012), contendo dados adicionais que não foram incluídos no artigo. Adicionalmente, está apresentada uma tabela comparativa entre os mutantes a qual sintetiza os principais resultados obtidos, para facilitar a compreensão. Esta tabela encontra-se na seção 6 (Considerações finais).

5.1 Refinamento da estrutura de Tsa1C47S e análises estruturais.

5.1.1 Características da estrutura cristalográfica de Tsa1C47S

Para a determinação da estrutura cristalográfica de Tsa1 de S. cerevisiae foi necessário utilizar uma enzima carreando a substituição de Cys por serina, uma vez que apesar de diversas tentativas e diferentes abordagens para a obtenção de cristais usando a proteína selvagem, nenhum dos cristais obtidos apresentaram difração em alta resolução. O cristal de Tsa1C47S de S. cerevisiae foi obtido na seguinte condição: citrato de sódio pH 4.2, 10% p/v de PEG 3000, 10 mM de NaCl, 100 mM de NaF (aditivo) e reduzida com DTT (Oliveira et al., 2007). Este cristal apresentou difração com resolução de 2.8 Å, sendo possível realizar a substituição molecular utilizando as coordenadas de Prx2 de H. sapiens (código PDB = 1QMV) (Oliveira et al., 2007; Schröder et al., 2000). O modelo inicial de Tsa1C47S obtido pelo protocolo de substituição molecular possuía fatores de R_{factor} igual a 47.42 e de R_{free} igual a 49.01 e um decâmero foi observado como unidade assimétrica (monômeros A-J). Após os ciclos de refinamento necessários, o modelo final obtido apresenta $R_{factor} = 20.13$ e $R_{free} = 27.33$, o que revela um bom refinamento da estrutura, uma vez que esta divergência está em níveis aceitáveis até mesmo para estruturas menores e/ou com resolução superior do que a obtida para Tsa1C47S.

A estrutura do monômero de Tsa1C47S de S. cerevisiae é do tipo α/β, formada por sete α-hélices e sete fitas-β que se ordenam da porção N-terminal para a C-terminal da seguinte forma: β1-β2-α1-β3-α2-β4-α3-α4-β5-α5-β6-β7-α6-α7. O modelo final de Tsa1C47S (Figura 6A, código PDB = 3SBC) conta com 1952 resíduos de aminoácidos. Deste total, 41 resíduos de aminoácidos de lisina ou arginina presentes na estrutura da enzima, tiveram que ser assinalados como alaninas, devido à ausência de densidade eletrônica para a cadeia lateral. Os resíduos de arginina e lisina apresentam cadeias laterais longas e estão presentes em altas quantidades em Tsa1, sendo que boa parte deles está localizada na superfície da proteína, onde a cadeia lateral tende a ser mais móvel. Foi possível assinalar também 505 moléculas de H$_2$O e no sítio ativo de sete dos dez monômeros (B, D, E, F, G, I e J) foi
encontrada densidade eletrônica correspondente a uma molécula de DTT reduzida, o qual foi utilizado no tratamento prévio da amostra para cristalização (Figura 6B). Este resultado é importante uma vez que, desta forma, foi possível fazer uma comparação com a estrutura de Prx6 de *Aeropyrum pernix*, a qual foi descrita contendo uma molécula de peróxido de hidrogênio no sítio ativo (Nakamura et al., 2010) (Figura 6C). Neste trabalho, o átomo de oxigênio do hidroperóxido proximal a Cys_P foi denominado de O_A, enquanto o distal foi denominado O_B. Neste contexto a análise da estrutura de Tsa₁^{C47S} revelou que um dos átomos de enxofre da molécula de DTT observada próxima ao sítio ativo da estrutura cristalográfica de Tsa1 mimetiza a posição do oxigênio O_A da molécula de H₂O₂ da Prx6 de *Aeropyrum pernix* (Nakamura et al., 2010) (Figura 6C).

Figura 6 - Estrutura cristalográfica de Tsa₁^{C47S} de *S. cerevisiae*. (A) Visão geral da estrutura decamérica com a molécula de DTT reduzida no sítio ativo de alguns monômeros. Os monômeros de cada um dos cinco dímeros estão coloridos em azul e cinza. As porções N-terminal e C-terminal estão identificadas em um dos dímeros por “N-T” e “C-T”, respectivamente. As moléculas de DTT estão representadas como esferas e coloridas por CPK (C = verde, N = azul, O = vermelho e S = laranja). (B) Mapa 2Fo–Fc é apresentado em azul e contornado a 1.3 σ. O mapa claramente mostra a presença de uma densidade no sítio ativo, à qual foi atribuída a molécula de DTT reduzida. (C) Comparação da ligação da molécula de DTT em Tsa₁^{C47S} de *S. cerevisiae* com a ligação do peróxido de hidrogênio em ApPrx de *Aeropyrum pernix* (apenas os oxigênios são apresentados; O_A representa o oxigênio proximal, enquanto O_B representa o oxigênio distal em relação ao Sγ da Cys_P, conforme proposto por Hall et al. (2010). A estrutura de Tsa₁^{C47S} está colorida em verde escuro e a Prx de *A. pernix* está representada em cinza claro (PDB = 3A2V). Os átomos estão coloridos da seguinte maneira: N = azul; O = vermelho; S = laranja. A numeração dos aminoácidos é relativa à Tsa1 de *S. cerevisiae*.

A presença de uma molécula de DTT reduzida na estrutura cristalográfica de Tsa₁^{C47S} é diferente do observado para outras estruturas. A estrutura cristalográfica de PrxV de *H. sapiens*, assim como Tsa₁^{C47S} de *S. cerevisiae*, apresenta molécula de DTT no sítio ativo, porém no estado oxidado (Hall et al., 2010). Ainda, um dos átomos de oxigênio presentes na molécula de DTT oxidada de PrxV mimetiza a posição do átomo O_A do peróxido de
hidrogênio observado na estrutura cristalográfica da Prx6 de *A. pernix* (Nakamura et al., 2010), diferentemente do observado em Tsa1^{C47S} de *S. cerevisiae*, na qual a molécula de DTT reduzida tem o enxofre em posição similar ao H₂O₂. Adicionalmente, outros ligantes além do DTT (etanodiol, glicerol, acetato, citrato, benzoato, sulfato e formato) também foram observados no sítio ativo de estruturas cristalográficas com ao menos um átomo de oxigênio mimetizando a posição do H₂O₂ encontrado na estrutura de Prx6 de *A. pernix* (Hall et al., 2010). Contudo, vale ressaltar que entre estas estruturas, apenas as classes Prx6, BCP/PrxQ, Tpx e Prx5 estão representadas, sendo que a estrutura cristalográfica de Tsa1^{C47S} de *S. cerevisiae* representa a primeira 2-Cys Prx Típica (*AhpC-Prx1*) a contar com um ligante em seu sítio ativo, contribuindo para um melhor entendimento da ligação do substrato ao sítio ativo nesta classe de Prx.

5.1.2 Análise in silico de aminoácidos conservados e estabilização do estado FF

A análise comparativa entre a estrutura de Tsa1^{C47S} e outras estruturas homólogas revelou interações polares entre aminoácidos presentes no sítio ativo que aparentam ser importantes no ciclo catalítico e na transição entre os estados FF e LU. Como pode ser observado nas figuras 3, 7A, 7B e 7C há um resíduo de glutamato (Glu⁵⁰ em Tsa1 de *S. cerevisiae*) amplamente conservado dentre as Prx que se localiza na mesma α-hélice (α2 em Tsa1 de *S. cerevisiae*) que contém a Cys_P (Cys_P⁴⁷ em Tsa1 de *S. cerevisiae*). Este resíduo de glutamato interage com a Arg¹²³ da tríade catalítica (fita-β6) e com outro resíduo de arginina (Arg¹⁴⁶ em Tsa1 de *S. cerevisiae*) também bastante conservado, presente em um loop (*loop 13*) entre a fita-β7 e a α-hélice 6.

Confirmando a importância destes resíduos, estudos envolvendo Prx2 e Prx3 de humanos mostraram que quando os resíduos de arginina (Arg¹²³ e Arg¹⁴⁶ em Tsa1 de *S. cerevisiae*) são substituídos, ocorre decaimento na atividade peroxidásica em cinco ordens de grandeza, chegando a sete ordens de grandeza para os duplos mutantes (Nagy et al., 2011). Além da atividade peroxidásica, estes resíduos parecem estar diretamente relacionados com a atividade de chaperona molecular desempenhado pelas Peroxirredoxinas (Aran et al., 2011). Outro aspecto importante a ser salientado é que ocorre perda das interações entre o glutamato e as argininas mencionados quando há a alternância entre os estados FF e LU (Figuras 7C e 7D). Desta forma, a substituição destes resíduos altamente conservados poderia levar a alterações significativas na estabilidade da região do sítio ativo da enzima, podendo interferir na reatividade com o substrato, na formação da ponte dissulfeto intermolecular entre Cys_P e Cys_R, no processo de superoxidação da Cys_P e na redução pelo sistema Trx.
Figura 7 - Interações polares entre resíduos do sítio ativo das Prx na forma FF e LU. (A) Mutante Tsa1C47S de S. cerevisiae (azul) no estado FF (PDB = 3SBC). (B) Prx2 de H. sapiens (vermelho) no estado FF (PDB = 1QMV). (C) Mutante Prx2C52S de R. norvegicus também em FF (laranja) (PDB = 2Z9S). (D) Prx2 de R. norvegicus no estado LU (dourado) apresentando um dissulfeto entre as cisteínas catalíticas (PDB = 1QQ2). Conforme pode ser observado em (C) e (D), as interações polares que existem no sítio ativo no estado FF são desfeitas no estado LU. As estruturas estão representadas em cartoon e aminoácidos envolvidos em interações polares são representados por balls and sticks. Os átomos estão coloridos por CPK da seguinte forma: O = vermelho, N = azul escuro e S = laranja claro. Os átomos de C estão coloridos em cor semelhante ao apresentado para o restante de cada estrutura. O asterisco em vermelho denota que o aminoácido pertence ao monômero adjacente. Os resíduos são representados pelo código de uma letra. Os modelos gráficos foram gerados pelo programa Pymol (www.pymol.org).

5.1.3 Avaliação dos efeitos das substituições Glu50→Ala e Arg146→Gln em Tsa1 sobre a atividade peroxidásica com H2O2 e na redução por Trx ou DTT

Considerando a possível importância e os poucos estudos relacionados aos resíduos Glu50 e Arg146, foram realizadas mutações sítio dirigidas em Tsa1 de S. cerevisiae, gerando as proteínas mutantes Tsa1E50A e Tsa1R146Q, a fim de verificar possíveis alterações estruturais e funcionais nestas enzimas. Para verificar se as mutações tiveram efeito na reatividade sobre H2O2, foram realizados ensaios de competição por peróxido com a heme-peroxidase HRP (Ogusucu et al., 2007; Toledo et al., 2011). Este ensaio consiste em mensurar o consumo de uma concentração limitada de H2O2 por HRP em reações contendo concentrações crescentes de Tsa1WT, Tsa1E50A e Tsa1R146Q. Desta forma, quanto maior for o consumo de H2O2 por parte da Prx, menor terá sido o consumo por parte da HRP, o que reflete em maior absorbância da HRP reduzida e (uma vez que menos moléculas de HRP decompõem o peróxido). O valor da constante de segunda ordem obtido para Tsa1WT foi de
1.8 x 10^7 M⁻¹s⁻¹, o que está de acordo com o observado anteriormente para esta enzima (2.2 x 10^7 M⁻¹s⁻¹) (Ogusucu et al. 2007). Para os mutantes, os valores obtidos apresentaram queda na reatividade com H₂O₂, sendo 1.9 x 10⁶ M⁻¹s⁻¹ para Tsa1⁵⁵⁰A e 3.6 x 10⁶ M⁻¹s⁻¹ para Tsa1⁴⁶⁰Q (Figura 8A).

A diminuição em uma ordem de grandeza na reatividade dos mutantes indica que deve ter ocorrido um enfraquecimento do mecanismo de manutenção do estado de transição, no qual a Cysₚ é mantida em tiolato e há o direcionamento do H₂O₂ para o sítio ativo (Ferrer-Sueta et al., 2011; Hall et al., 2010). Como mencionado anteriormente, o estado de transição é alcançado com a participação de dois resíduos altamente conservados: uma treonina (Thr⁴⁴ em levedura) e uma arginina (Arg¹²³ em levedura), sendo que a última interage com o Glu⁵⁰, e este com a Arg¹⁴⁶. Desta forma, a mutação por aminoácidos em que as interações deixariam de existir parece fazer com que a primeira arginina (Arg¹²³ em levedura), possivelmente por um posicionamento diferente deste resíduo em relação ao observado para Tsa1⁰⁰⁰, deixe de atuar de forma eficiente na manutenção do estado de transição. Entretanto, estes dados contrastam fortemente com os observados em mutação similar nas Prx2 e Px3 de humanos, a qual resultou em grande decréscimo da atividade enzimática (constante na ordem de 10² M⁻¹s⁻¹) (Nagy et al., 2011). Entre as possíveis razões para a variação entre os resultados obtidos para Tsa1 de S. cerevisiae e os de Prx2 e Px3 de H. sapiens, pode-se citar a metodologia utilizada para os mutantes (competição por HRP para Tsa1 através de diferença na absorbância e competição por catalase avaliada por SDS-PAGE para Prx2 e Px3) e em diferenças na sequência dos resíduos de aminoácidos no bolsão do sítio ativo (Tsa1 apresenta uma isoleucina na posição 39, a qual é substituída por uma tirosina nas enzimas de H. sapiens – Tyr⁴² em Prx2 e Tyr¹⁰⁰ em Px3).

Sabendo que as mutações interferiram de forma branda na reatividade sobre hidroperóxidos, foi analisado se o passo da redução foi afetado pelas mutações. Desta forma, foram realizados ensaios de redução de peróxido de hidrogênio utilizando o sistema Tiorredoxina de S. cerevisiae (Trx2 e TrxR1) e NADPH, o qual teve seu consumo monitorado através da absorbância a 340 nm (Munhoz, Netto, 2004). Estes ensaios revelaram que os mutantes apresentaram atividade praticamente nula com o sistema redutor endógeno, mesmo quando foi utilizada alta concentração de redutor (10 equivalentes molares de Trx2 em relação a Tsa1) (Apêndice A – Figura 3), indicando uma possível mudança estrutural relevante na região da superfície de Tsa1 onde há interação com a Trx, ocasionada pelas mutações (Figura 8B). Contudo, quando foi realizado ensaio utilizando DTT como agente redutor, independentemente se o substrato para Tsa1 era H₂O₂ (Figura 8C) ou TBHP (Apêndice A - Figura 3F) as mutantes apresentaram atividade similar.
Figura 8 - Avaliação da reatividade sobre H$_2$O$_2$ e da redução pelo sistema Trx ou DTT de Tsa1WT, Tsa1E50A e Tsa1R146Q. (A) As constantes de segunda ordem de Tsa1WT (●), Tsa1E50A (▲) e Tsa1R146Q (●) foram calculadas a partir da inclinação da reta obtida da dispersão dos pontos considerando a concentração de Tsa1 e o valor obtido no ensaio de competição cinética de HRP. O eixo Y à esquerda é relativo à atividade de Tsa1WT, enquanto o eixo Y à direita refere-se à atividade dos mutantes. (B) A atividade peroxidásica dependente de Trx foi monitorada através da oxidação do NAPDH (A$_{340}$ nm), indicando o consumo do H$_2$O$_2$. Para Tsa1WT (●), foi observada atividade peroxidásica dependente de Trx, o que não foi observado para os mutantes Tsa1E50A (▲) ou Tsa1R146Q (●). Como controle, reações sem Tsa1 foram monitoradas (■). (C) A atividade peroxidásica dependente de DTT foi monitorada através da formação do dissulfeto do DTT, o qual absorve a 310 nm. Diferentemente do observado para o ensaio dependente de Trx, os mutantes (Tsa1E50A = ▲ e Tsa1R146Q = ●) apresentaram atividade similar a Tsa1WT (●).

A atividade peroxidásica para Tsa1E50A e Tsa1R146Q observada pelo ensaio utilizando DTT como redutor (Figura 8C), confirmou os resultados obtidos por competição por HRP (Figura 8A), ou seja, as mutações não aboliram a capacidade de decomposição de hidroperóxidos por estas enzimas. Contudo, houve uma abrupta perda de eficiência no ciclo catalítico utilizando o sistema redutor biológico (Figura 8B). Uma possível explicação para a diferença observada nos ensaios com DTT e com o sistema Trx é que as mutações nos resíduos Glu50 e Arg146 não afetaram de forma considerável o mecanismo de interação da proteína com moléculas pequenas, explicando a presença de reatividade sobre H$_2$O$_2$ e a redução por DTT, uma molécula de baixa massa molecular (154,25 Da), que pode possuir maior acessibilidade e facilidade na interação com o dissulfeto de Tsa1. Em contrapartida, por se tratar de uma biomolécula de maior peso molecular (11.235 Da), a interação entre Tsa1 e Trx é mais complexa, exigindo interações específicas entre os aminoácidos de suas superfícies, as quais podem ter sido perturbadas em razão das mutações.
A diferença na redução por DTT e Trx foi também avaliada por ensaios utilizando SDS-PAGE em condições não redutoras. Esta avaliação foi possível pelo fato do dímero de Tsa1 formar dissulfetos intermoleculares quando oxidado, apresentando uma banda referente ao dímero em SDS-PAGE não redutor, enquanto a enzima reduzida apresenta-se como monômero. Sendo assim, Tsa1 e mutantes foram previamente oxidadas com 1.2 equivalentes molar de H$_2$O$_2$, e depois tratadas com DTT (300 equivalentes moleares) ou Trx (1 equivalente molar). Em períodos pré-determinados, foram retiradas alíquotas da reação e estas foram interrompidas pela adição de tampão contendo SDS e NEM. Os resultados confirmaram os experimentos de cinética de estado estacionário utilizando Trx ou DTT, uma vez que não foi detectada redução dos dissulfetos de Tsa1E50A e Tsa1R146Q por Trx (Apêndice A – Figura 4D-4F), enquanto a redução por DTT foi similar à de Tsa1WT (Apêndice A – Figura 4A-4C). Vale ressaltar ainda que foi possível verificar através de análises estruturais que os resíduos Glu50 e Arg146 ficam expostos na superfície de 2-Cys Prx no estado LU, indicando a grande importância desta conformação na interação com a Trx (Apêndice A – Figura 7).

De forma complementar, utilizando-se o mesmo princípio, Tsa1 foi previamente reduzida com DTT e, após o excesso de DTT ser retirado, a enzima foi oxidada com variadas concentrações de H$_2$O$_2$ e as alíquotas foram coletadas ao longo do tempo. Com isto, foi possível verificar que a formação do dissulfeto intermolecular entre a Cys$_p^{47}$ e a Cys$_R^{170}$ foi prejudicada para os mutantes, especialmente para Tsa1E50A (Apêndice A – Figura S6). O atraso na formação do dissulfeto interfere na redução pelo sistema Trx, já que a superfície da Tsa1 no estado LU em dissulfeto é preferencialmente reconhecida pela Tiorredoxina, enquanto o DTT é capaz de reduzir mais eficientemente a Cys$_p$-SOH do que o dissulfeto (König et al., 2003).

5.1.4 Avaliação dos efeitos das mutações sobre a estrutura quaternária de Tsa1E50A e Tsa1R146Q

A fim de verificar alterações na estrutura quaternária dos mutantes Tsa1E50A e Tsa1R146Q, foram realizados experimentos de cromatografia de exclusão molecular (SEC). Para Tsa1WT e mutantes foi verificado que, independentemente do estado redox, as enzimas apresentavam-se em decâmeros. Os perfis de eluição de Tsa1WT indicaram ainda que a proteína encontra no estado reduzido eluiu mais lentamente que a proteína oxidada com H$_2$O$_2$, a qual apresenta dissulfeto intermolecular, indicando que a forma reduzida é mais compacta que a forma oxidada (Figura 9A). Entretanto, quando as mesmas condições foram aplicadas aos mutantes Tsa1E50A e Tsa1R146Q, não foram detectadas mudanças estruturais entre as formas reduzida e oxidada (Figura 9B e 9C). Adicionalmente, foi observado que o tempo de eluição dos mutantes é semelhante à forma oxidada de Tsa1WT.
Figura 9 - Cromatografia de exclusão molecular (SEC) de Tsa1^{WT} e mutantes Tsa1^{E50A} e Tsa1^{R146Q}. A linha sólida indica o padrão de eluição no estado reduzido, enquanto a linha pontilhada indica o estado oxidado para Tsa1^{WT} (A), Tsa1^{E50A} (B) e Tsa1^{R146Q} (C). As enzimas foram aplicadas no sistema contendo coluna Phenomenex BioSep-SEC-S4000 e foram eluídas com fluxo de 0.5 ml/min, sendo a absorbância medida a 280 nm. Os padrões de peso molecular utilizados foram ferritina (440 kDa), albumina sérica bovina (132 e 66 kDa), ovalbumina (43 kDa), anidrase carbônica (29 kDa) e α-lactalbumina (14.2 kDa), conforme indicado pelas setas pretas no topo da figura.

Estes resultados indicam que as mutações parecem interferir na estabilização do estado FF de Tsa1, pelo fato de as proteínas mutantes Tsa1^{E50A} e Tsa1^{R146Q} parecerem estar em um estado semelhante à LU (Tsa1^{WT} oxidada), independente do grau de oxidação. Do ponto de vista experimental, este trabalho demonstra que a cromatografia de exclusão molecular pode atuar como uma ferramenta útil e mais simples que a ultracentrifugação, a qual é normalmente utilizada na abordagem de grau oligomérico relacionado ao estado redox (Parsonage et al., 2005; Wood et al., 2002).

5.1.5 Análise da atividade peroxidásica dependente de tiól do duplo mutante Tsa1^{E50A/R146Q}

Apesar dos dados apresentados a seguir não comporem o artigo publicado, também foi construído o duplo mutante Tsa1^{E50A/R146Q} que agrega as mutações que afetam fortemente a interação com Trx. Para este mutante, foram avaliados os efeitos da dupla substituição sobre a atividade peroxidásica da enzima. Inicialmente, foram realizados ensaios de oxidação de DTT com Tsa1^{E50A/R146Q}, a fim de verificar se esta enzima possui atividade peroxidásica dependente de tióis sobre H₂O₂, a qual foi observada como sendo similar à observada para Tsa1^{WT} (dado não apresentado). Também foi executado o ensaio de consumo de NADPH através do sistema Tiornredoxina de S. cerevisiae, para verificar se a interação com Trx também é afetada para o duplo mutante. Como controle, este ensaio foi novamente realizado para os mutantes simples (Tsa1^{E50A} e Tsa1^{R146C}). Nas condições 1 μM de Tsa1, 1 μM de Trx1, 0.3 μM de TrxR1, 150 μM de NADPH e 200 μM de H₂O₂, os mutantes carreando uma única substituição (Tsa1^{E50A} ou Tsa1^{R146Q}) mais uma vez apresentaram atividade praticamente nula, muito semelhante ao controle negativo da reação, sendo o mesmo observado para o duplo mutante (Figura 10A). Contudo, ao se
realizar o mesmo ensaio, mas desta vez com a concentração de Tsa1 mais elevada (9.3 μM), foi observada atividade bastante similar entre os mutantes Tsa1^{R146Q} e Tsa1^{E50A/R146Q}, sendo esta menor do que a observada para Tsa1^{WT} (Figura 10B). Nesta condição, o mutante Tsa1^{E50A} apresentou atividade reduzida, mas maior do que a observada quando a concentração de Tsa1 utilizada foi 1 μM (Figura 10B).

Figura 10 - Ensaio de estado estacionário de consumo de NADPH para Tsa1 e mutantes Tsa1^{E50A}, Tsa1^{R146Q} e Tsa1^{E50A/R146Q}. O ensaio de consumo de NADPH foi realizado utilizando o sistema Trx de levadura foi monitorado a 340 nm e mantido a 30 °C utilizando concentração baixa de Tsa1 (1 μM) (A) ou alta (9.3 μM) (B). As reações foram realizadas em tampão contendo 50 mM Hepes-NaOH (pH 7.4), 100 μM DTPA e 1 mM azida sódica. As concentrações utilizadas de proteínas foram: Trx1 = 1 μM; TrxR1 = 0.3 μM. Também foi utilizado 150 μM de NADPH e a reação foi iniciada pela adição de H_{2}O_{2} (200 μM). Nos gráficos: ■ = controle negativo (sem a adição de enzima); ■ = Tsa1^{WT}; ● = Tsa1^{E50A}; ▲ = Tsa1^{R146Q}; x = Tsa1^{E50A/R146Q}.

Uma possível explicação para a diferença observada nas duas condições experimentais pode estar relacionada com o estado oligomérico de Tsa1. Um dos fatores que pode influenciar diretamente no estado oligomérico das Prx é a concentração da enzima (Wood et al., 2002). Desta forma, em concentrações baixas (menores que 2.5 μM) (Figura 10A), as Prx encontram-se preferencialmente no estado dimérico, enquanto em concentrações mais elevadas (acima de 2.5 μM) (Figura 10B), observa-se a formação de decâmeros (Wood et al., 2002). Deste modo, as mutações parecem ter alterado a estrutura da enzima de modo que a redução do dímero pela tiorredoxina foi mais afetada em relação ao decâmero.

Quanto aos resultados apresentados nesta seção, pode-se afirmar que a determinação da estrutura cristalográfica de Tsa1 foi bastante relevante, uma vez que se trata de uma das Prx mais estudadas no âmbito funcional, mas que ainda não contava com estudos estruturais de alta resolução. Funcionalmente, os resultados apresentados também revelam novos aminoácidos cujas substituições resultam em leves alterações na estrutura quaternária, mas que influenciam de modo decisivo na interação com Trx. Vale salientar que estes resultados são importantes do ponto de vista funcional, visto que a atividade da enzima e o processo de redução pela Tiorredoxina estão diretamente relacionados ao grau oligomérico em Tsa1, aspecto que será explorado posteriormente (Seção 5.2).
5.2 Investigação do papel funcional e estrutural da Thr44 e Arg123 da tríade catalítica de Tsa1 de *S. cerevisiae*.

As Peroxirredoxinas diferem de outras enzimas antioxidantes pela presença de um resíduo de cisteína altamente reativo e estritamente conservado na porção amino terminal, sendo que sua reatividade está relacionada com uma rede de interações com dois resíduos também amplamente conservados: uma treonina (substituída por uma serina em algumas 2-Cys Prx típicas) e uma arginina. Juntos, estes aminoácidos formam a tríade catalítica. O papel da treonina da tríade catalítica na atividade das Prx foi proposto através de suposições baseadas na estrutura das Prx e modelos teóricos. Contudo, poucos trabalhos realizaram mutações para comprovar as propostas teóricas e nenhum trabalho atentou para o papel estrutural destes aminoácidos. Desta forma, para este trabalho, foram realizadas mutações sítio dirigidas a fim de gerar os mutantes Tsa1T44A, Tsa1T44S e Tsa1T44V, e verificar a ocorrência de possíveis alterações estruturais e funcionais causadas pelas mutações. Adicionalmente, foram gerados os mutantes Tsa1R123G e Tsa1R123K, como forma de controle, visto que foi verificado anteriormente na literatura que a substituição desse resíduo diminui significativamente ou abole a atividade peroxidásica das Prx, de forma dependente de qual aminoácido foi utilizado na substituição (Aran et al., 2011; Nagy et al., 2011).

5.2.1 Análise da interferência das mutações na Thr44 e na Arg123 nas estruturas secundária e quaternária de Tsa1

Inicialmente, foram realizados experimentos de espectroscopia de dicroísmo circular para verificar se houve alteração relevante na estrutura secundária dos mutantes Tsa1T44A, Tsa1T44S, Tsa1T44V, Tsa1R123G e Tsa1R123K. Ao se realizar comparações com dados obtidos de Tsa1WT, foi possível verificar que as mutações não afetaram a estrutura secundária, já que todos os perfis de dicroísmo circular dos mutantes são muito semelhantes ao da enzima selvagem (Apêndice B – Figura 1).

Após verificar que a estrutura secundária não havia sido comprometida pelas mutações, foi verificado se o mesmo era observado para a estrutura quaternária. Para Tsa1WT, verificou-se que no estado reduzido há predominância de decâmeros (Figura 11A – linha sólida) enquanto, quando oxidada, é possível verificar uma mistura entre espécies diméricas e decaméricas (Figura 11A – linha pontilhada). O mutante Tsa1T44A mostrou padrão semelhante à enzima selvagem (Figura 11B). De forma bastante contrastante, o mutante Tsa1T44V apresentou-se predominantemente na forma dimérica (Figura 11D) e o mutante Tsa1T44S apresentou somente decâmeros, independentemente do estado redox (Figura 11C). Em relação aos mutantes de arginina, Tsa1R123K apresentou-se majoritariamente como decâmero (Figura 11F) e Tsa1R123G forma decâmeros e dímeros quando reduzida, mas predominam dímeros quando ela é oxidada (Figura 11E).
Figura 11 - Perfis de cromatografia de exclusão molecular de Tsa1WT e mutantes de Thr44 e Arg123 nos estados reduzido e oxidado. Amostras foram reduzidas com 50 mM TCEP (linhas sólidas) ou previamente reduzidas com 50 mM TCEP e então oxidadas com 1,2 equivalente molar de H2O2 (linhas pontilhadas) por 30 minutos em temperatura ambiente. Tsa1WT (A), Tsa1T44A (B), Tsa1T44S (C), Tsa1T44V (D), Tsa1R123G (E) e Tsa1R123K (F) em concentração de 50 μM foram injetadas em HPLC com a coluna Phenomenex BioSep-SEC-S4000, em um fluxo de 1ml/min. O padrão de peso molecular: tireoglobulina bovina (670 kDa), gama-globulina bovina (158 kDa), ovalbumina (44 kDa), mioglobulina (17 kDa) e vitamina B12 (1.4 kDa) estão marcados no topo da figura.

Neste contexto, os dados de SEC revelaram que as maiores alterações na estrutura quaternária foram oriundas da substituição da Thr44, especificamente por serina ou valina. Para entender quais as razões da alteração na estrutura quaternária de Tsa1, foi avaliada a posição da Thr44 na estrutura cristalográfica de Tsa1C47S. Esta análise revelou que o resíduo de Thr44 está localizado na interface do decâmero, interagindo com a CysP e realizando uma interação do tipo CH-π com um resíduo de tirosina (Tyr77) do dímero adjacente (Figura 12). Quando foram analisadas as estruturas primárias de outras estruturas de 2-Cys Prx típicas, foi possível constatar que o resíduo de Tyr77 presente em Tsa1 é altamente conservado, podendo ser substituído em outras enzimas por fenilalanina, ou seja, outro resíduo de
aminoácido que apresenta anel aromático, cujo centroide também pode interagir com o CH$_3$ da treonina do sítio catalítico.

Figura 12 - Estabilização da estrutura decamérica de Tsa1$_{C47S}$ e a interação C8–H-π entre a Thr44 e Tyr77. (A) Homodímero de Tsa1 representado em cartoon com um monômero colorido em verde e o outro em vermelho. (B) Decâmero de Tsa1 com os homodímeros representados em verde e vermelho. (C) Interações moleculares entre aminoácidos da interface entre os dímeros envolvidos na manutenção do decâmero de Tsa1$_{C47S}$. Os monômeros estão apresentados em diferentes cores e os resíduos de aminoácidos envolvidos na estabilização do decâmero estão representados por esferas. A estabilização do decâmero é realizada por uma série de interações não covalentes que envolvem os resíduos Phe21, Leu41, Phe43, Thr44, Phe45, Tyr77, Ser78, Asn104, Glu117 e Val183. (D) Posicionamento da Thr44 entre a Cys$_{P}^{47}$ e a Tyr77, enquanto o lado oposto está envolvido na ligação polar com o S$_{γ}$ da Cys$_{P}^{47}$, que é estabilizada pelo grupamento guanidina da Arg123. Em (C) e (D), os átomos de carbono estão representados pela mesma cor da cadeia polipeptídica em que se encontram; para os restantes: N = azul, O = vermelho e S = laranja.

Adicionalmente, ao se comparar a estrutura cristalográfica de diversas 2-Cys Prx típicas, verificou-se que o posicionamento da treonina e da tirosina é similar ao verificado em Tsa1 (Apêndice B – Figura S2). Por outro lado, a análise de estruturas no estado reduzido e oxidad pode revelar que enquanto as enzimas estão em FF (reduzida) existe uma rede de ligações de hidrogênio entre Tyr77 - Thr44 - Cys$_{P}^{47}$ - Arg123, a qual é rompida quando as enzimas estão em LU, ou seja, no estado oxidado (Apêndice B - Figuras 4C-4F). Neste contexto, as transições estruturais entre FF-LU contribuiriam para um desarranjo desta rede, uma vez que a dinâmica para a formação do dissulfeto romperia a associação dos decâmeros, formando dímeros. Ainda, vale ressaltar que o decâmero é mantido por uma rede de interações fracas envolvendo os resíduos de aminoácidos Phe21, Leu41, Phe43.
Phe45, Ser78, Asn104, Glu117 e Val183, tal como a interação CH-\pi entre a Tyr77 e a Thr44, as quais somadas tornam o decâmero estável.

Desta forma, os dados de SEC foram analisados à luz da seguinte hipótese: enquanto a enzima está reduzida, o grupamento tiol da Cys\textsubscript{P}47 de Tsa1 é fixado por ligações de hidrogênio com o grupo hidroxila da Thr44 e o desprotonamento da Cys\textsubscript{P}47 é realizado pelo grupamento guanidina da arginina. Após o ataque ao hidroperóxido, quando é formado Cys\textsubscript{P}-SOH, as ligações de hidrogênio com Thr44 e Arg123 são rompidas, o que culmina no desenovelamento da \alpha-hélice onde a Cys\textsubscript{P} se encontra. Esta reestruturação levaria a um choque estérico do C\gamma\textsubscript{2} da Thr44 com o anel aromático de Tyr77 do dímero adjacente, auxiliando na dissociação do decâmero. Dentro deste panorama, a mutação desta Thr por Ala pode resultar em posicionamento no estado oxidado de modo que afete a manutenção do decâmero, de forma similar ao verificado para a enzima selvagem. Já a substituição da Thr44 por Val, apesar de ambos os aminoácidos serem isoestéricos (Val possui um C\gamma\textsubscript{1} substituindo o O\gamma\textsubscript{1}), pode haver uma repulsão da Val por parte da Cys\textsubscript{P}, o que causa o choque estérico entre o C\gamma\textsubscript{2} da Val e o anel aromático de Tyr77 do dímero adjacente, impedindo o estabelecimento ou formação do decâmero. De forma contrária, a presença de uma Ser no lugar da Thr44, devido à ausência do C\gamma\textsubscript{2} (o qual é presente em Thr e Val), faz com que não haja o choque com a Tyr77, permitindo assim que o decâmero se mantenha estável, mesmo com a transição para o estado LU.

Quanto aos mutantes da Arg da tríade catalítica, vale ressaltar que este aminoácido está posicionado mais internamente na estrutura da enzima. Em todo caso, é possível afirmar que a mutação por Lys poderia resultar em uma interação com a Thr44 que a torne menos móvel em relação à selvagem, visto que, apesar da presença de dímeros, há uma forte prevalência de decâmeros. De forma oposta, com a mutação por Gly, a Thr44 deve ter ficado mais móvel, permitindo a presença de dímero e decâmeros quando reduzida, mas apenas dímeros quando oxidada. Entretanto, maiores investigações são necessárias para melhor compreensão dos resultados.

5.2.2 Determinação do \textit{pK}_a de Cys\textsubscript{P}

Após realizar as análises estruturais em Tsa1 e mutantes, foram calculados os valores de \textit{pK}_a da Cys\textsubscript{P} de cada enzima. Para tanto, foi padronizado um ensaio que consiste em calcular a velocidade da reação de Tsa1 com o reagente de Ellman (DTNB) em diferentes pHs (adaptado de Sardi et al., 2013). Desta forma, foram realizados testes iniciais com Tsa1WT e obteve-se um valor de \textit{pK}_a de 5.6 (Figura 13A), muito próximo ao descrito previamente na literatura utilizando a metodologia de cinética competitiva com HRP em variados pHs (Ogusucu et al., 2007). Uma vez padronizada a metodologia, foi determinado o
pKₐ da Cysₚ dos mutantes: Tsa₁^{T44A} = 5.2 (Figura 13B), Tsa₁^{T44S} = 6.0 (Figura 13C) e Tsa₁^{T44V} = 5.4 (Figura 13D). Os dados indicam que a substituição da Thr^{44} surtiu um leve efeito no pKₐ da Cysₚ. Nesse sentido, vale ressaltar o mutante Tsa₁^{T44S}, o qual torna Tsa₁ mais semelhante a Tsa₂, e que apresentou o maior valor de pKₐ entre os mutantes, próximo ao valor observado anteriormente para Tsa₂ (6.3) (Ogusucu et al., 2007). Esta diferença nos valores observados entre Tsa₁ e Tsa₁^{T44S} é um indicativo que a substituição de Thr^{44} em Tsa₁ por Ser^{44} em Tsa₂ contribui para a diferença no pKₐ existente entre Tsa₁ e Tsa₂ (Ogusucu et al., 2007). No entanto, nos parece provável que aminoácidos adicionais que são distintos entre Tsa₁ e Tsa₂ (Ile^{39} e Pro^{143} em Tsa₁ são naturalmente substituídos por Val^{39} e Ser^{143} em Tsa₂) também podem estar envolvidos nesta divergência.

Para a determinação dos valores de pKₐ da Cysₚ dos mutantes Tsa₁^{R123K} e Tsa₁^{R123G}, não foi possível verificar as inflexões das curvas quando foi feita a reação com o reagente de Ellman, indicando que o pKₐ da Cysₚ deve ter sido bastante alterado para estes mutantes. Cabe mencionar que a metodologia utilizando o reagente de Ellman possui limitações, visto que este não permanece estável em pH básico. Para contornar estas limitações, foi utilizado o reagente monobromobimano (MBBr) para o cálculo do pKₐ destas enzimas (Sardi et al., 2013). Neste caso, foi possível verificar que os valores de pKₐ para os mutantes de Arg são mais elevados do que para os mutantes de Thr, sendo determinado 8.0 para Tsa₁^{R123G} e 7.5 para Tsa₁^{R123K} (Figuras 13E e 13F, respectivamente).
Figura 13 - Determinação do pK_a da Cys$_P$ de Tsa1 e mutantes de Thr44 e Arg123. As enzimas Tsa1WT (A) e mutantes Tsa1T44A (B), Tsa1T44S (C), Tsa1T44V (D), Tsa1R123G (E) e Tsa1R123K (F) foram previamente reduzidas com 100 mM de DTT e o excesso retirado por gel filtração. Em seguida, 10 µM de Tsa1 foi adicionada com 100 µM de DTNB (A-D) em variados tampões (acetato de sódio pH 4.0 – 5.5; MES pH 6.0 – 6.5; Tris – pH 7.0 – 8.0) com concentração final 100 mM e 0.5 M de NaCl. As reações foram monitoradas a 412 nm e mantidas a 30 ºC. Para os mutantes de Arg123 (E-F), as enzimas (2 µM) foram adicionadas a 10 µM de monobromobimano, e a emissão de fluorescência ($\lambda_{exc} = 396$ nm; $\lambda_{em} = 482$ nm) foi monitorada por 30 minutos. No gráfico, os valores referentes às velocidades obtidas em cada ponto foram ajustados em curva de Henderson-Hasselbalch, através do software GraphPad Prism 5.

Estes resultados indicam que a Thr da tríade catalítica não é essencial para a manutenção da Cys$_P$ em tiolato, como proposto na literatura (Flohé et al., 2011). Entretanto, algum outro aminoácido do microambiente do sítio ativo pode auxiliar na desprotonação da Cys$_P$. Por exemplo, a análise do microambiente do sítio ativo da estrutura de Tsa1C47S indica que a carboxila da cadeia principal da Leu41 se encontra a uma distância em relação ao O$_\gamma$ da Ser que substitui a Cys$_P$ (3.8 Å) similar à observada em relação ao O$_\gamma$ de Thr44 (4.0 Å), sendo que estas distâncias em enzimas selvagens de outros organismos é ainda menor (Figura 14).
Figura 14 - Possíveis interações responsáveis pela estabilização do tiolato da CysP na ausência de Thr^{44}.
Os detalhes do bolsão sítio ativo de 2-Cys Prx evidenciam as distâncias do grupo carboxila da cadeia lateral da Thr da tríade catalítica e a distância do grupo carboxila da cadeia principal do resíduo de Leu conservado entre as 2-Cys Prx. As estruturas são representadas por sticks com os átomos de carbono coloridos em azul em S. cerevisiae Tsa1 (A), salmão em Prx2 de H. sapiens (B), magenta em Prx4 de H. sapiens (C) e em branco em Prx1 de R. norvegicus (D). Os outros átomos seguem o padrão: N = azul, O = vermelho e S = laranja. Os gráficos moleculares foram gerados com o auxílio do software PyMOL (www.pymol.org) e coordenadas utilizadas foram 3SBC (Tsa1 de S. cerevisiae), 1QMV (Prx2 de H. sapiens), 3TKR (Prx4 de H. sapiens) e 2Z9S (Prx1 de R. norvegicus).

5.2.3 Avaliação da atividade peroxidásica dependente de tióil utilizando DTT

A atividade tióil peroxidásica de Tsa1 e dos mutantes de Thr^{44} e Arg^{123} foi inicialmente avaliada por meio de ensaio de oxidação de DTT, utilizando H_{2}O_{2} e CHP como substratos oxidantes. A taxa de DTT oxidado após 5 minutos de reação da enzima selvagem com H_{2}O_{2} ou CHP foi utilizada como padrão para comparação com os outros mutantes (100%). Desta forma, adicionalmente a Tsa1^{WT}, os mutantes Tsa1^{T44A} e Tsa1^{T44S} apresentaram atividade para ambos os hidroperóxidos. O mutante Tsa1^{T44V} apresentou atividade com H_{2}O_{2}, mas não com CHP. Já o mutante Tsa1^{R123K} apresentou atividade residual com H_{2}O_{2}, a qual não foi detectada para o mutante Tsa1^{R123G}, enquanto ambos mutantes tiveram atividade praticamente abolida com CHP (Figura 15A). Vale ressaltar que este ensaio não representa a melhor abordagem para realizar inferências quantitativas sobre a atividade, visto que algumas variantes, como a velocidade de redução da Prx em dissulfeto podem interferir no resultado.

A manutenção da atividade peroxidásica no mutante Tsa1^{T44S} já era esperada, visto que esta substituição ocorre naturalmente em outras 2-Cys Prx típicas, como a Tsa2 de S.
cerevisiae. Também era esperada a grande perda de atividade quando foi substituída a Arg da tríade catalítica (seja por Gly ou Lys), pois já havia sido anteriormente observada a importância deste resíduo na atividade catalítica (Aran et al. 2011; Nagy et al. 2011). Contudo, a presença de atividade para os mutantes Tsa1T44A e Tsa1T44V indica que o O_γ da Thr/Ser pode auxiliar, mas não é fundamental para a atividade catalítica.

Outra abordagem utilizada para verificar se os mutantes de Thr44 tiveram a redução prejudicada foi avaliar a reação utilizando SDS-PAGE não redutor. Neste caso, as enzimas Tsa1, Tsa1T44A, Tsa1T44S e Tsa1T44V foram previamente oxidadas com 1.2 equivalente molar de H$_2$O$_2$ e reduzidas com concentrações crescentes de DTT por 1 minuto (1 a 1000 equivalentes molares de DTT). Conforme pode ser observado nas figuras 15B-15E, não foi observada diferença marcante entre Tsa1 e os mutantes, indicando que a redução do dissulfeto é feita de forma eficiente, independentemente do resíduo pelo qual a Thr44 foi substituída.

![Figura 15 - Avaliação da redução de Tsa1 e mutantes de Thr44 e Arg123 por DTT. (A) O ensaio de estado estacionário de oxidação de DTT por Tsa1 e mutantes foi realizado com 12.5 μM de enzima, 2 mM de H$_2$O$_2$ ou CHP, 10 mM de DTT em tampão contendo 10 mM Hapes-NaOH (pH 7.4), 100 μM DTPA e 1 mM azida sódica. As reações foram monitoradas espectrofotometricamente ($\lambda = 310$ nm) a 30 °C. As barras pretas representam o percentual de oxidação do DTT comparado à enzima selvagem após 5 minutos de reação com H$_2$O$_2$, enquanto as barras cinza representam o mesmo, mas para reação com CHP. O desvio padrão de cada reação é exibido pelas barras de erro. (B-E) Redução de Tsa1 e mutantes por DTT em SDS-PAGE não redutor. Tsa1WT (B), Tsa1T44A (C), Tsa1T44S (D) e Tsa1T44V (E) (10 μM) foram previamente oxidadas com 1.2 equivalente molar de peróxido de hidrogênio por 30 minutos a temperatura ambiente e reduzidas novamente por 1 minuto com concentrações crescentes de DTT, conforme indicado na parte superior dos géis. A lane 1 contém a proteína oxidada com 1.2 equivalente molar de peróxido de hidrogênio e as lanes 2-8 apresentam o produto da reação de redução com concentrações variáveis de DTT. A letra “D” na esquerda dos géis representa a posição do dímero, enquanto “M” representa a posição do monômero.]
5.2.4 Análise da atividade tiól peroxidásica dependente de Tiorredoxina

Visando aprofundar as análises dos efeitos das mutações sobre a atividade dependente de tióis de Tsa1, foi avaliada a redução dos mutantes de Thr^{44} de Tsa1 utilizando o redutor endógeno Trx1, por meio da realização de ensaio de consumo de NADPH, o qual utiliza o sistema Trx e concentrações variáveis de H_{2}O_{2} ou CHP. Os resultados obtidos estão apresentados em curvas de Michaelis-Menten (Apêndice B – Figura 6) e os parâmetros cinéticos calculados estão apresentados na Tabela 3.

	H_{2}O_{2}	CHP				
	K_{M} (µM)	k_{cat} (s^{-1})	k_{cat}/K_{M} (M^{-1}s^{-1})	K_{M} (µM)	k_{cat} (s^{-1})	k_{cat}/K_{M} (M^{-1}s^{-1})
Tsa1^{WT}	27.6	0.55	1.9 × 10^{4}	8.8	0.73	8.2 × 10^{4}
Tsa1^{T44A}	77.3	0.68	8.8 × 10^{3}	334.3	0.73	2.2 × 10^{3}
Tsa1^{T44S}	48.6	0.73	1.5 × 10^{4}	9.1	0.74	8.2 × 10^{4}
Tsa1^{T44V}	519.9	0.38	7.3 × 10^{2}	N/D	N/D	N/D

Os parâmetros cinéticos obtidos para Tsa1^{WT} foram similares aos verificados previamente na literatura (Munhoz, Netto, 2004). Conforme pode ser observado na Tabela 3, o mutante Tsa1^{T44S} apresentou resultados bastante similares em relação a Tsa1^{WT}, especialmente quando foi utilizado CHP como substrato, mas com exceção do K_{M} para H_{2}O_{2}, que foi maior para o mutante (Tsa1^{WT} = 27.6; Tsa1^{T44S} = 48.6). Neste contexto, este resultado é discordante do observado para a enzima Tryparredoxina de Leishmania donovani, a qual teve a Thr da tríade catalítica substituída por Ser e apresentou elevação na atividade peroxidásica com outro peróxido orgânico (tert-butil hidroperóxido) (Flohé et al., 2002), enquanto os dados aqui apresentados não indicam maior atividade com peróxido orgânico relacionado à presença de Ser no sítio ativo.

Para Tsa1^{T44A}, foi verificada queda de uma ordem de grandeza em comparação com Tsa1^{WT} para ambos os hidroperóxidos, devido ao acentuado aumento do K_{M} para este mutante: comparado a Tsa1^{WT} - o K_{M} foi ~ 3 × maior para reação com H_{2}O_{2} e 38 × maior para reação com CHP. Por fim, o mutante Tsa1^{T44V} apresentou valor de K_{M} ~ 19 × para a reação com H_{2}O_{2} maior do que o obtido para Tsa1^{WT}, o que refletiu em queda de duas ordens de grandeza na eficiência catalítica deste mutante. A reação deste mutante com CHP foi bastante reduzida (Apêndice B – quadro da Figura 6D), impossibilitando que fossem calculados os parâmetros cinéticos.

De forma complementar, para avaliar se as mutações afetaram o reconhecimento da Trx1 sobre a forma oxidada dos mutantes de Tsa1, foram realizados ensaios de oxidação de
NADPH variando a concentração de Trx1, para obter parâmetros cinéticos desta reação. A análise dos resultados (Figura 16) indica que as mutações aparentemente não afetaram a eficiência com que a Trx1 reduz a Tsa1, e os valores cinéticos obtidos (Tabela 4) revelaram que as eficiências catalíticas dos mutantes foram bem próximas das verificadas para a proteína selvagem. Esses resultados permitem afirmar que as mutações afetaram somente a reatividade da Tsa1 sobre seus substratos oxidantes, e não sua redução pelo seu substrato redutor endógeno, contrastando com os resultados encontrados para os mutantes Tsa1E50A e Tsa1R146Q (Seção 5.1 e Apêndice A). Isto indica que a topologia da enzima na região de interação com Trx de mutantes na posição Thr44 não foi significativamente afetada.

Os parâmetros cinéticos obtidos para esta reação são apresentados na tabela 4.

Figura 16 - Análise cinética de estado estacionário da redução pelo sistema Trx usando quantidades variáveis de Trx1 para Tsa1 e mutantes de Thr44. Para cada reação, Tsa1WT (A) e os mutantes Tsa1T44A (B), Tsa1T44S (C) e Tsa1T44V (D) (9.3 μM) foram incubadas com TrxR1 (0.3 μM) NADPH 150 μM e concentrações crescentes de Trx1 (0.1 – 8 μM), em Hepes-NaOH 50 mM (pH 7.4), 0.1 mM de DTPA e 1 mM de azida sódica, à temperatura de 30 °C. O H2O2 (5 mM) foi adicionado para iniciar as reações, as quais foram monitoradas por espectrofotometria a 340 nm.

Tabela 4 - Parâmetros enzimáticos para Tsa1WT e mutantes de Thr44 utilizando concentrações crescentes de Trx1. Os parâmetros foram determinados a partir de dados obtidos em ensaios de oxidação de NADPH. As condições de ensaio com concentrações crescentes de Trx1 foram: Tsa1 ou mutantes (9.3 μM), H2O2 (5 mM), TrxR1 (0.3 μM), NADPH (150 μM) e Trx1 (0.1 – 8 μM).

Trx1	Vmax (μM/s)	Km (μM)	kcat (s⁻¹)	kcat/Km (M⁻¹s⁻¹)
Tsa1WT	0.89	0.54	0.10	1.7 × 10⁵
Tsa1T44A	0.90	0.20	0.10	4.7 × 10⁵
Tsa1T44S	1.11	0.62	0.12	1.9 × 10⁵
Tsa1T44V	0.77	0.66	0.08	1.2 × 10⁵
Do mesmo modo que foi feito utilizando DTT como redutor, foi realizado ensaio em SDS-PAGE não redutor para verificar se houve alteração na redução do dissulfeto com concentrações variadas de Trx1. Neste caso, Tsa1 foi previamente reduzida com DTT e oxidada com 1.2 equivalente molar de H₂O₂, sendo posteriormente reduzida com concentrações variadas de Trx (2.5 a 25 μM de Trx1) por 1 minuto. O resultado mostrou que, assim como foi verificado com o DTT (Figuras 15B-15E), não houve diferença na redução de Tsa1 e dos mutantes quando a enzima já se encontrava em dissulfeto (Figura 17).

![Figura 17 - Redução de Tsa1 e mutantes de Thr44 por Trx1 em SDS-PAGE não redutor.](image)

Para os mutantes Tsa1^{R123K} e Tsa1^{R123G} também foram realizados os ensaios de consumo de NADPH e, conforme esperado, a atividade apresentada foi praticamente abolida. Como um controle adicional, foi realizado o ensaio de oxidação com H₂O₂ em SDS-PAGE não redutor, no qual foi possível confirmar que a atividade destes mutantes é extremamente baixa em relação à enzima selvagem (Apêndice B – Figura 7). Em virtude de a atividade apresentada por estes mutantes ser residual, não foram realizados outros experimentos para estes mutantes.
5.2.5 Análise da atividade peroxidásica através da formação do dissulfeto

Com a finalidade de verificar se as mutações afetaram a formação do dissulfeto em Tsa1 e mutantes da Thr44, foram realizados ensaios de oxidação com hidroperóxidos no qual o resultado foi verificado por SDS-PAGE em condição não redutora. As enzimas previamente reduzidas com DTT foram oxidadas com H2O2 ou CHP (Figuras 18 e 19) e alíquotas retiradas em tempos variados ao longo de 10 minutos, sendo possível verificar qual período era necessário para que toda a enzima estivesse em dissulfeto. Como pode ser verificado nas Figuras 18D e 19D, apenas o mutante Tsa1T44V teve atraso significativo na formação do dissulfeto para ambos os hidroperóxidos, visto que após 90 segundos de reação ainda era possível detectar a banda referente ao monômero, o qual representa a enzima reduzida, confirmando que esse mutante apresentou significativa redução na atividade peroxidásica. Para Tsa1WT (Figuras 18A e 19A) e mutantes Tsa1T44A (Figuras 18B e 19B) e Tsa1T44S (Figuras 18C e 19C), pode-se verificar uma rápida formação de dissulfeto, com a maior parte da enzima oxidada com menos de 10 segundos de reação.

Figura 18 - SDS-PAGE não redutor apresentando resultado do ensaio de oxidação de Tsa1 e mutantes de Thr44 por H2O2. As enzimas Tsa1WT (A), Tsa1T44A (B), Tsa1T44S (C), Tsa1T44V (D) em concentração de 10 μM foram previamente reduzidas com DTT e então tratadas com três equivalentes de H2O2. Os ensaios foram executados em temperatura ambiente em 10 mM Hepes-NaOH (pH 7.4), 100 μM DTPA, 1 mM azida sódica. As reações foram interrompidas pela adição de tampão contendo NEM (50 mM), 4% SDS, 10% glicerol e 62.5 mM Tris-HCl (pH 6.8) nos períodos de tempo indicados na parte superior da figura. D = dímero e M = monômero.
5.2.6 Avaliação da reatividade sobre H_2O_2 e CHP por meio de alterações de fluorescência

Adicionalmente aos ensaios de cinética de estado estacionário (ensaio de oxidação de DTT e ensaio de consumo de NADPH), também foi verificada a atividade dos mutantes por meio de alterações na fluorescência intrínseca de resíduos de Trp da enzima. De fato, ensaios deste tipo podem gerar informação bastante precisa da reatividade da Cys sobre hidroperóxidos, uma vez que não envolvem interferentes como transferência de elétrons entre enzimas e formação de dissulfetos, os quais são existentes nos ensaios de oxidação do DTT ou NADPH.

Para tanto, inicialmente foi avaliada a variação na intensidade de fluorescência emitida por Tsa1WT dependente do estado redox após excitação a 280 nm. O resultado indicou que há variação significativa, ocorrendo diminuição da emissão quando a proteína é oxidada com H_2O_2 e pico de emissão por volta do comprimento de onda de 340 nm (Figura 20A). Em seguida, fixando o $\lambda_{excitação}$ em 280 nm e o $\lambda_{emissão}$ em 340 nm, foi verificada emissão da fluorescência de Tsa1 previamente reduzida e então oxidada com H_2O_2 e CHP ao longo do tempo. Como pode ser observado na figura 20B, a inclinação da curva é proporcional à quantidade de hidroperóxido utilizado, sendo possível calcular a velocidade da reação. Desta forma, foram obtidas as constantes aparentes de pseudo-primeira ordem para Tsa1WT, Tsa1T44A, Tsa1T44S e Tsa1T44V com H_2O_2 e CHP (Tabela 5).
Figura 20 - Diferenças da emissão de fluorescência intrínseca de Trp entre os estados reduzido e oxidado de amostras de Tsa1. (A) Espectro de fluorescência de amostra reduzida de Tsa1 (linha preta) e diminuição de fluorescência como uma função da oxidação de H$_2$O$_2$ (1,2 equivalente) (linha vermelha). A fluorescência é recuperada após a redução por DTT (linha azul). (B) Inclinação da diminuição da fluorescência em função da concentração de hidroperóxido (2 μM = azul, 3 μM = vermelho, 4 μM = preto).

Tabela 5 - Constantes aparentes de pseudo-primeira ordem para Tsa1 e mutantes de Thr44 sobre H$_2$O$_2$ e CHP. Os ensaios foram realizados em tampão fosfato 40 mM, pH 7,4 a 30 °C. O comprimento de onda de excitação foi 280 nm e o de emissão foi 340 nm.

Constante aparente de pseudo-primeira ordem	H$_2$O$_2$ (M$^{-1}$s$^{-1}$)	CHP (M$^{-1}$s$^{-1}$)
Tsa1WT	5.0×10^7	3.3×10^7
Tsa1T44S	2.3×10^7	1.4×10^7
Tsa1T44A	4.0×10^4	8.6×10^4
Tsa1T44V	ND	ND

Como pode ser observado na tabela 5, a constante obtida para Tsa1WT é similar à observada anteriormente na literatura pelo método de competição por HRP, na ordem de 10^7 M$^{-1}$s$^{-1}$ (Ogusucu et al., 2007; Tairum et al., 2012 - Apêndice A). Contudo, a metodologia com HRP não permite que seja calculada a constante com peróxido orgânico, como é o caso do CHP, o qual apresentou $k = 3.3 \times 10^7$ M$^{-1}$s$^{-1}$, um valor bastante elevado, similar ao verificado para a redução de H$_2$O$_2$. É importante ressaltar que este resultado representa a primeira vez que foi determinada constante de Tsa1 de S. cerevisiae para peróxido orgânico, e o alto valor obtido indica que esta enzima apresenta um papel fisiológico relevante na decomposição desta classe de hidroperóxidos. Para o mutante Tsa1T44S, a constante obtida também foi elevada, apresentando $k_{H_2O_2} = 2.3 \times 10^7$ M$^{-1}$s$^{-1}$ e $k_{CHP} = 1.4 \times 10^7$ M$^{-1}$s$^{-1}$ o que já era esperado, visto que esse mutante apresentou comportamento similar a Tsa1WT nos outros ensaios realizados e, como mencionado anteriormente, essa mutação aparece naturalmente em outras 2-Cys Prx típicas, como a Tsa2 de levedura. Vale ressaltar que Tsa2 também teve constante determinada por competição por HRP na mesma ordem de grandeza (Ogusucu et al., 2007).
O mutante Tsa1T44A apresentou queda nas constantes aparentes de pseudo-primeira ordem de três ordens de grandeza em relação à enzima selvagem (4.0 \times 10^4 para H\textsubscript{2}O\textsubscript{2} e 8.6 \times 10^4 para CHP). Este resultado indica que a enzima Tsa1 mantém-se ativa, apesar da ausência do O\textsubscript{γ} da Thr/Ser (Tsa1T44A), embora a eficiência seja bastante reduzida, o que indica que a presença da Thr/Ser auxilia na manutenção do estado de transição que torna as Prx altamente reativas (Hall et al., 2010). No caso de Tsa1T44V, diferentemente de todas as outras enzimas mutantes testadas neste trabalho, não foi possível realizar o cálculo das constantes, uma vez que a emissão de fluorescência por parte desta enzima apresentou um comportamento errático (dados não apresentados). As causas deste comportamento não são claras e variáveis como grau oligomérico e reatividade podem ter influenciado no comportamento observado para a enzima mutante.

5.2.7 Análises complementares relacionadas à transição dímero-decâmero

Finalizados os ensaios para a obtenção das constantes aparentes de pseudo-primeira ordem, um aspecto importante é que para o mutante Tsa1T44V não foi possível determinar estes valores, diferentemente do observado para Tsa1T44A, a qual também representa uma substituição por aminoácido de característica hidrofóbica. Além da reatividade, outra característica pela qual esses mutantes diferem de Tsa1WT reside na estrutura quaternária: enquanto Tsa1T44V se apresenta quase exclusivamente na forma dimérica, Tsa1T44A é capaz de formar dímeros e decâmeros dependendo do estado redox, de forma similar ao verificado em Tsa1WT (Figura 11). Desta forma, além da ausência do O\textsubscript{γ} da Thr/Ser, o estado oligomérico poderia influenciar diretamente na atividade peroxidásica da enzima. Esta hipótese foi anteriormente proposta em AhpC de Salmonella typhimurium, para a qual foi verificado que a mutação de uma Thr (na posição 77, encontrada na interface dos dímeros) por um Asp torna a enzima dimérica independentemente do estado redox. Ainda, apesar de não estar em contato direto com nenhum aminoácido do sítio ativo, a substituição por Asp também resultou em uma queda de duas ordens de grandeza na atividade peroxidásica, o que pode indicar a necessidade de decamerização para a atividade peroxidásica atingir seu nível máximo (Parsonage et al., 2005).

Para avaliar se existe relação direta entre o estado oligomérico e a atividade peroxidásica em Tsa1 de S. cerevisiae, foi gerado o mutante Tsa1Y77A, visto que, conforme apresentado anteriormente, a Tyr77 do dímero adjacente interage diretamente com a Thr44 do sítio catalítico, e poderia apresentar o mesmo efeito observado em Tsa1T44V, ou seja, prevalência de dímeros e redução da atividade peroxidásica. Como controle, foi gerado o mutante Tsa1S78D, visto que a Ser78 de Tsa1 se encontra na mesma posição espacial observada para a Thr77 de AhpC de S. typhimurium e não realiza interações polares com os aminoácidos do sítio ativo. Desta forma, qualquer alteração na atividade não seria causada
por perda de interação direta com elementos da tríade catalítica, como ocorre entre a Thr44 e a Tyr77.

Através de cromatografia de exclusão molecular, foi verificado que os mutantes Tsa1Y77A (Figura 21A) e Tsa1S78D (Figura 21B) se apresentam como enzimas diméricas, nos estados oxidado ou reduzido, confirmando que a presença da Tyr77 e da Ser78 é importante para a manutenção da estrutura decamérica. Quando foi realizado ensaio de oxidação de NADPH, verificou-se que ambos os mutantes tiveram atividade praticamente abolida (Figuras 20D e 20E), de modo que não foi possível determinar os parâmetros cinéticos. A explicação para esta perda de atividade poderia ser: 1) as mutações desestabilizaram o sítio ativo da enzima dimérica, reduzindo drasticamente a atividade peroxidásica, ou 2) a interação entre Tsa1 dimérica e a Trx não é eficiente. Para esclarecer este ponto, foram determinadas as constantes aparentes de pseudo-primeira ordem por fluorescência intrínseca do Trp com H2O2 e CHP. Os resultados obtidos demonstram que os dois mutantes tiveram queda da reatividade para ambos os peróxidos (Tsa1Y77A = 1.4 × 104 para H2O2 e para 1.4 × 103 para CHP; Tsa1S78D = 4.0 × 104 para H2O2 e 5.0 × 101 para CHP). Também foi avaliada a oxidação da proteína por peróxido de hidrogênio e detecção por SDS-PAGE não redutor. Os resultados revelam que a formação do dissulfeto é bastante lenta para Tsa1Y77A (Figura 21F) e Tsa1S78D (Figura 21G), sendo observadas espécies monoméricas mesmo após 10 minutos de reação, o que indica forte perda de atividade peroxidásica e formação de dissulfeto, o que está de acordo com as constantes aparentes de pseudo-primeira ordem determinadas.

Com estes resultados, é possível afirmar que as substituições Y77A e S78D de Tsa1 interferem na decamerização da enzima, o que parece levar ao decréscimo na atividade enzimática, mesmo quando há a presença de todos os resíduos da tríade catalítica (CysP, Thr e Arg). A razão por que isto ocorre deve residir, ao menos em parte, na interferência do posicionamento de aminoácidos que ocorre no sítio ativo quando a enzima se encontra em decâmero, mas que é perdido na forma dimérica. Uma possibilidade de resíduo com posição alterada seria a Thr44 da tríade catalítica, visto que as análises do sítio ativo apresentadas neste trabalho indicam que a sua posição é mantida por uma interação do tipo CH-π com a Tyr77 do dímero adjacente (Figura 12D). Desta forma, a perda da estrutura decamérica deve tornar a Thr44 mais móvel, interferindo na manutenção do estado de transição. Vale ainda ressaltar que este resultado difere do que foi observado anteriormente na literatura para AhpC de S. typhimurium (Parsonage et al., 2005) e PrxIV de humano (Wang et al., 2012), para as quais foi feita mutação que tornou as enzimas diméricas e, apesar de diminuição na atividade peroxidásica, esta não foi praticamente abolida como observado para Tsa1.

Uma segunda questão levantada diz respeito ao mutante Tsa1T44S, que de forma contrastante ao observado em Tsa1T44V, Tsa1Y77A e Tsa1S78D apresentou-se apenas como
decâmero. Como Tsa2 de S. cerevisiae apresenta naturalmente a substituição da Thr⁴⁴ da tríade catalítica por Ser⁴⁴, foi realizada cromatografia de exclusão molecular para verificar se Tsa2 e Tsa1⁴⁴S se comportavam de forma similar. Os resultados obtidos revelaram que Tsa2 também se mostrou exclusivamente como decâmero (Figura 21C) e apresentou atividade peroxidásica dependente de Trx com H₂O₂ (Figura 21H) e CHP (Figura 21I) similar a Tsa1WT e Tsa1⁴⁴S (k = 2.8 × 10⁴ para H₂O₂ e k = 1.7 × 10⁵ para CHP). Nos ensaios de fluorescência intrínseca do Trp o mesmo foi observado, com Tsa2 apresentando reatividade sobre ambos os hidroperóxidos na ordem de 10⁷ M⁻¹s⁻¹. Desta forma é possível inferir que a presença de uma Ser na posição 44 de Tsa2 pode representar um papel fundamental para a estabilização da enzima no estado decamérico, o qual pode ser constitutivo, acarretando em diferenças no processo de superoxidação e transdução de sinal efetuadas pelas Prx.

De fato, em investigação conduzida pelo doutorando Carlos Alexandre Breyer, foi demonstrado que Tsa2 é mais resistente à superoxidação por hidroperóxidos (dados não apresentados), o que pode estar relacionado, em parte, com sua possível decamerização constitutiva. Vale ressaltar que a presença de uma Ser em substituição à Thr na tríade catalítica é observada principalmente em algumas AphC de bactérias. Adicionalmente, a presença de duas enzimas muito semelhantes em levedura, mas com esta diferença no estado quaternário pode representar variação de função entre elas, sendo que Tsa1 pode passar a atuar em vias de sinalização quando em condições de estresse oxidativo, enquanto Tsa2 poderia manter-se como peroxidase de modo a regular a concentração dos hidroperóxidos. Os dados apresentados até este ponto compõem manuscrito que será submetido para publicação no The Journal of Biological Chemistry (Apêndice B).
Adicionalmente aos dados contidos no manuscrito (Apêndice B), foram efetuadas análises visando um maior entendimento de aspectos de oligomerização e atividade de Tsa1. Como mencionado anteriormente, a substituição de Thr^{77} por Asp em AhpC de S. typhimurium desestabiliza o decâmero. Por outro lado, também foi verificado para esta enzima que a mutação deste resíduo por Val tem efeito oposto, ou seja, ocorre estabilização do decâmero, sem que ocorra alteração na atividade peroxidásica (Parsonage et al., 2005). Neste contexto, foi construído o mutante Tsa1^{S78V}, para comparar os efeitos de substituição equivalente entre procariotos e eucariotos.
Inicialmente, a estrutura quaternária foi avaliada por meio de cromatografia de exclusão molecular da enzima previamente tratada com 50 mM de DTT ou 1.2 equivalente molar de H₂O₂ por 1 hora à temperatura ambiente. O resultado demonstra que o mutante Tsa₁^S78V apresentou pico referente à massa molecular aproximada de 200 kDa para ambos os estados redox, o que representa o decâmero (Figura 22A e 22B). Este experimento foi repetido com variação de concentração das enzimas (2, 10 e 100 μM), visto que este é um dos fatores que pode influenciar na oligomerização das 2-Cys Prx típicas, mas os resultados se mantiveram os mesmos em todas as concentrações testadas, para ambos os estados redox (dados não apresentados). Os dados obtidos estão em concordância com o observado anteriormente para AhpC de S. typhimurium e demonstram a importância da Ser⁷⁸ no processo de oligomerização, uma vez que a presença de um Asp nesta posição favorece a formação de dímeros, enquanto uma Val nesta posição tende à formação/estabilização de decâmeros (Parsonage et al., 2005). Também foi avaliada a atividade tiol dependente utilizando o sistema Trx de S. cerevisiae e H₂O₂ como substrato (Figura 22B), no qual foi possível verificar que, assim como em AhpC de S. typhimurium, os parâmetros cinéticos como Kₘ e Vₘₐₓ demonstram um leve aumento na afinidade pelo substrato (Kₘ₉₉ = 26.6 μM e Kₘ₉₉₄S78V = 18.1 μM) e velocidade de decomposição de peróxidos (Vₘₐₓ₉₉ = 0.55 μM/s e Vₘₐₓ₉₉₄S78V = 0.62 μM/s), resultando em um pequeno aumento da atividade enzimática de Tsa₁^S78V (kₗₐₜ/Kₘ₉₉₄S78V = 3.4 × 10⁴ M⁻¹ s⁻¹) em relação à enzima selvagem (kₗₐₜ/Kₘ₉₉ = 1.7 × 10⁴ M⁻¹ s⁻¹).

Figura 22 - Caracterização do mutante Tsa₁^S78V. A enzima (10 μM) foi reduzida com 50 mM de DTT (A) ou oxidadada com 1.2 equivalente molar de H₂O₂ (B) por 1 hora à temperatura ambiente. Tsa₁^S78V apresentou-se na forma decamérica tanto na forma reduzida (linha pontilhada) quanto no forma oxidada (linha sólida). A eluição dos componentes foi realizada com Tris-HCl 0.1M pH 7.4 a 1ml.min⁻¹ e foram monitoradas por UV a 280 nm. O padrão de peso molecular está apresentado em cinza e no topo de ambas as figuras conforme segue: tireoglobulina bovina (670 kDa), gama-globulina bovina (158 kDa), ovalbumina (44 kDa), mioglobulina (17 kDa) e vitamina B₁₂ (1.4 kDa). (C) Análise cinética de estado estacionário do mutante Tsa₁^S78V (1 μM) em reação contendo: Trx1 (2 μM), TrxR1 (0.3 μM), Hepes-NaOH pH 7.4 (10 mM), NADPH (150 μM) e concentrações variáveis de H₂O₂ (40-500 μM) para cálculos das constantes cinéticas. Os ensaios foram realizados em temperatura de 30 ºC e acompanhados espectrofotometricamente a 340nm. Os valores de velocidade inicial foram plotados em curva de Michaelis-Menten.
Por fim, é possível afirmar que, coletivamente, os resultados apresentados nesta seção revelam a importância da Thr44 da tríade catalítica na alternância do estado oligomérico, por meio de interações diretas com a Tyr77 do dímero adjacente, e, consequentemente, na reatividade de Tsa1. A transição entre dímeros e decâmeros deve ocorrer devido a oscilações no posicionamento deste aminoácido que ocorrem durante a transição entre FF e LU. Vale salientar que este ponto não foi abordado até o presente momento na literatura e pode ser bastante relevante no que diz respeito ao entendimento do equilíbrio entre dímeros e decâmeros, com implicações fisiológicas, visto que cada uma das formas oligoméricas pode desempenhar função diferente dentro da célula. No caso de S. cerevisiae, o fato de Tsa1 apresentar-se como dímero e/ou decâmero, enquanto Tsa2 é observada apenas na forma decamérica, pode indicar funções biológicas complementares, apesar da grande similaridade existente entre as enzimas.
5.3 Avaliação de aspectos relacionados com a suscetibilidade à superoxidação de Tsa1 e enzimas mutantes

5.3.1 Avaliação da relação entre superoxidação e a transição FF-LU

Uma característica importante no que se refere à função das Prx diz respeito à superoxidação da Cysₚ, a qual está relacionada, entre outros aspectos, com a função de chaperona molecular e sinalização celular. Um dos fatores que podem influenciar de forma direta neste processo nas 2-Cys Prx típicas é a transição entre os estados FF e LU, visto que, após a oxidação da Cysₚ a Cysₚ-SOH, há duas possibilidades: pode ocorrer a formação do dissulfeto intermolecular entre Cysₚ e Cysᵢ, com liberação de uma molécula de água, ou a Cysₚ-SOH reage com outra(s) molécula(s) de hidroperóxido(s), tornando-se superoxidadado em Cysᵢ-SO₂H ou Cysᵢ-SO₃H. Desta forma, uma diminuição na velocidade de formação do dissulfeto causada por alguma alteração no mecanismo de transição entre FF-LU poderia causar uma maior tendência à superoxidação da Cysₚ.

Para verificar a relação entre a transição FF-LU e a superoxidação da Cysₚ de Tsa1, foram utilizadas as enzimas Tsa¹WT, Tsa¹E₅₀A, Tsa¹R₁₄₆Q ou Tsa¹E₅₀A/R₁₄₆Q, visto que esses mutantes apresentaram diferença na interação com Trx e/ou formação do dissulfeto intermolecular. Os ensaios foram realizados utilizando o sistema Trx de levedura, visto que na presença do redutor o processo de superoxidação é mais eficiente (Jang et al., 2004; Saccoccia et al., 2012), e concentrações crescentes de H₂O₂ (50 μM a 20 mM), seguido por análise em SDS-PAGE em condições não redutoras. Neste contexto, a presença de bandas com peso molecular referente ao monômero de Tsa1 em altas concentrações de H₂O₂ representa a ocorrência de superoxidação, uma vez que, quando a cisteína é superoxidadada em cisteína ácido sulfínico ou cisteína ácido sulfônico, não é capaz de formar ligação dissulfeto com a cisteína de resolução. Vale ressaltar que este tipo de análise, apesar de não distinguir dímeros de decâmeros ou espécies de massa molecular mais elevada, é bastante útil para investigar de forma indireta a superoxidação das 2-Cys Prx típicas.

Os resultados obtidos indicam que para Tsa¹WT (Figura 23A), em baixas concentrações de peróxidos (50 e 100 μM) observam-se bandas referentes ao monômero, indicando que a enzima está reduzida. Em concentrações intermediárias (200 e 500 μM), são observadas somente bandas diméricas, indicando que nestas concentrações Tsa1 se encontra oxidada em dissulfeto. Em concentrações maiores (acima de 750 μM), além das espécies diméricas, ou seja, em dissulfeto, são detectadas bandas referentes ao monômero de forma crescente e dependente da concentração de hidroperóxido, o que revela a formação de espécies superoxidadas.

As enzimas mutantes Tsa¹E₅₀A, Tsa¹R₁₄₆Q e Tsa¹E₅₀A/R₁₄₆Q apresentam padrão distinto na variação entre monômero e dímero daquele observado para Tsa¹WT, sendo que mesmo
na concentração máxima de hidroperóxido utilizada no ensaio (20 mM) não é observada banda que indique superoxidação para estes mutantes (Figura 23B-23D). Para Tsa1^{E50A} (Figura 23B), apenas em concentrações bastante elevadas (acima de 3 mM) observa-se formação de dissulfeto. Tal resultado indica que a reação é tão lenta que apenas em concentrações muito elevadas é possível verificar a reação de forma mensurável. Já para os mutantes Tsa1^{R146Q} e Tsa1^{E50A/R146Q} (Figuras 23C e 23D), é possível verificar que há predominância de bandas referentes a dímeros a partir de 200 e 500 μM, respectivamente, e que estas se mantêm até 20 mM, indicando que a superoxidação não ocorre nos mutantes da mesma maneira que em Tsa1^{WT}.

![Figura 23](image_url)

Figura 23 - Resultado de ensaio de superoxidação em SDS-PAGE para Tsa1^{WT}, Tsa1^{E50A}, Tsa1^{R146Q} e Tsa1^{E50A/R146Q}. Para verificar formação de espécies superoxidadas, Tsa1^{WT} (A), Tsa1^{E50A} (B), Tsa1^{R146Q} (C) e Tsa1^{E50A/R146Q} (D) e o sistema Trx de S. cerevisiae foram mantidos em tampão fosfato de sódio 50 mM/NaCl 50 mM contendo azida sódica 1 mM e DTPA 0.1 mM. Foram adicionadas concentrações crescentes de H₂O₂ (50 a 20000 μM, indicadas na parte superior das figuras) e após 15 minutos em temperatura ambiente, as reações foram interrompidas pela denaturação das enzimas através da adição de tampão contendo SDS 4%, sendo também adicionado NEM 50 mM, de forma a evitar a formação de dímeros inespecíficos. Os géis foram corados por coomassie blue. As legendas apresentadas na esquerda do gel representam: M = monômero, D = dímero.

Uma explicação possível para o fenômeno observado neste experimento é em função da diminuição da reatividade sobre H₂O₂, aliada à perda da eficiência na interação Tsa1-Trx, dificultando o processo de superoxidação potencializado pela Trx. Vale ressaltar que, para Tsa1^{E50A}, apesar de ter um grande decréscimo na formação do dissulfeto intermolecular (Apêndice A – Figura S6), o que seria um fator potencialmente favorável à superoxidação da Cys_P, não foi observado um maior número de espécies superoxidadas. Desta forma, mais estudos precisam ser realizados para uma melhor compreensão de como as mutações afetaram no processo de superoxidação.
5.3.2 Avaliação do papel de Thr44 na superoxidação de Cys\textsubscript{Prx} utilizando o sistema Trx

Para verificar a importância da Thr44 no processo de superoxidação da Cys\textsubscript{Prx} de Tsa1, foram realizados experimentos com os mutantes da Tsa1T44A, Tsa1T44S e Tsa1T44V. Para tanto, foram realizadas reações contendo o sistema Trx com concentração variada de H\textsubscript{2}O\textsubscript{2} ou CHP, as quais foram submetidas à SDS-PAGE em condições não redutoras, conforme apresentado na seção 5.3.1, através do monitoramento da forma dimérica e monomérica das 2-Cys Prx típicas. Os resultados obtidos estão apresentados na figura 24 para reação com H\textsubscript{2}O\textsubscript{2} e na figura 25 para CHP.

Figura 24 - Resultado de ensaio de superoxidação dos mutantes de Thr44 com H\textsubscript{2}O\textsubscript{2} em SDS-PAGE. Para verificar formação de espécies superoxidadas, Tsa1WT (A), Tsa1T44A (B), Tsa1T44S (C) e Tsa1T44V (D) e o sistema Trx de S. cerevisiae foram mantidos em tampão fosfato 50 mM/NaCl 50 mM contendo azida sódica 1 mM e DTPA 0.1 mM. Foram adicionadas concentrações crescentes de H\textsubscript{2}O\textsubscript{2} (25 a 10000 μM, indicadas na parte superior das figuras) e após 15 minutos em temperatura ambiente, as reações foram interrompidas pela desnaturação das enzimas através da adição de tampão contendo SDS 4%, sendo também adicionado NEM 50 mM, de forma a evitar a formação de dímeros inespecíficos. Os géis foram corados por coomassie blue. Nas legendas ao lado esquerdo: M = monômero, D = dimero.
Figura 25 - Resultado de ensaio de superoxidação dos mutantes de Thr⁴⁴ com CHP em SDS-PAGE. Para verificar a formação de espécies superoxidadas, Tsa^{WT}¹ (A), Tsa^{T44A} (B), Tsa^{T44S} (C) e Tsa^{T44V} (D) e o sistema Trx de <i>S. cerevisiae</i> foram mantidos em tampão fosfato 50 mM/ NaCl 50 mM contendo azida sódica 1 mM e DTPA 0.1 mM. Foram adicionadas concentrações crescentes de CHP (25 a 10000 μM, indicadas na parte superior das figuras) e após 15 minutos em temperatura ambiente, as reações foram interrompidas pela desnaturação das enzimas através da adição de tampão contendo SDS 4%, sendo também adicionado NEM 50 mM, de forma a evitar a formação de dímeros inespecíficos. Os géis foram corados por coomassie blue e as legendas do lado esquerdo da figura representam: M = monômero, D= dímero.

Os ensaios de superoxidação demonstraram que enquanto a mutação por Ser apresentou uma diminuição da formação de espécies superoxidadas em relação à enzima selvagem (Figuras 24A, 24C, 25A e 25C), as mutações por Ala e Val tornaram as enzimas resistentes ao processo de superoxidação, já que mesmo em concentrações bastante altas de peróxido de hidrogênio ou peróxido de cumeno não foram observadas bandas referentes ao monômero (Figuras 24B, 24D, 25B e 25D). Para Tsa^{WT} e Tsa^{T44S}, com 1 mM e 10 mM de H₂O₂, respectivamente, foram observadas bandas referentes às espécies superoxidadas (Figuras 24A e 24C). Quando o substrato utilizado foi o peróxido de cumeno, embora não seja possível precisar com os géis obtidos, ocorre a formação de espécies superoxidadas a partir da concentração de 125 μM (Figura 25A e 25C). Desta forma, estes resultados estão de acordo com trabalhos de outros autores os quais afirmam que a superoxidação é mais favorável quando este peróxido orgânico é o substrato utilizado (Baker, Poole, 2003; Nelson et al., 2013; Reyes et al., 2011).

Os dados obtidos parecem importantes visto que, como mencionado anteriormente, a superoxidação de Cys_p está relacionada com eventos de sinalização celular e também com a transição funcional peroxidase → chaperona molecular (Jang et al., 2004; Moon et al., 2005; Perkins, Poole, Karplus, 2014; Saccoccia et al., 2012, 2014; Trotter et al., 2008). Entretanto, o resíduo conservado de treonina da tríade catalítica nunca havia sido relacionado com este processo. Uma hipótese para a resistência à superoxidação seria a diminuição da atividade peroxidásica, a qual consequentemente reduziria também o
processo de superoxidação. Desta forma, o processo de superoxidação só parece ocorrer quando a enzima mantém a sua atividade peroxidásica em nível bastante alto, uma vez que o único mutante em que foi observada a superoxidação (Tsa1T44S) possui constante na ordem de 10^{-7} M$^{-1}$s$^{-1}$. Ainda, vale destacar o fato que o mutante Tsa1T44S apresenta maior resistência à superoxidação do que a enzima selvagem. Como este resíduo é naturalmente encontrado em Tsa2 de levedura, isto pode refletir em uma maior resistência à superoxidação nesta enzima, a qual desempenharia provavelmente um papel fisiológico diferente de Tsa1 na célula.

5.3.3 Avaliação da superoxidação de Cys$\,_{P}$ por meio de ensaios envolvendo alterações de fluorescência do triptofano

Os ensaios realizados para a determinação das constantes aparentes de pseudo-primeira ordem utilizando a fluorescência intrínseca do Trp com excesso de hidroperóxidos revelaram um padrão diferente na curva de decaimento da fluorescência para as enzimas com alta reatividade, na ordem de 10^{-7} M$^{-1}$s$^{-1}$ (Figura 26A). Nestes casos, foi possível verificar que, após a abrupta queda na fluorescência, causada pela oxidação da Cys$\,_{P}$, ocorre um aumento na emissão de fluorescência, sendo que a inclinação da curva é dependente da quantidade de hidroperóxidos utilizada nos ensaios (Figura 26B).

Figura 26 - Resiliência da emissão de fluorescência de Tsa1 é dependente da concentração de hidroperóxido. Para exemplificar o fenômeno observado nos ensaios para obtenção das constantes de pseudo-primeira ordem de Tsa1 sobre hidroperóxidos, em (A) Tsa1WT foi previamente reduzida com 20 mM DTT por 30 minutos à temperatura ambiente e o excesso foi removido por filtração em gel. Na reação, foram rapidamente misturados 4 (azul), 10 (vermelho) ou 20 μM (verde) de peróxido de hidrogênio a 1 μM de Tsa1WT em tampão fosfato 40 mM (pH 7.4), obtendo uma queda abrupta seguida pelo aumento da emissão de fluorescência. O comprimento de onda de excitação foi de 280 nm e a emissão foi monitorada em 340 nm. (B) Os valores de k_{obs} obtidos foram plotados em relação à concentração de H$_2$O$_2$ utilizada, apresentando padrão linear, indicando que inclinação da curva é dependente da concentração de hidroperóxido utilizada.

Para o entendimento deste fenômeno, foram realizadas análises estruturais de modo a verificar o posicionamento dos resíduos de Trp na estrutura. Recentemente, foi demonstrado que AhpC de S. typhimurium apresenta três Trp, sendo que dois deles (Trp51 e Trp169) são
amplamente conservados (Parsonage et al., 2015). Ainda, os autores deste trabalho propõem que a alteração da emissão de fluorescência por parte do Trp81 está relacionada com o posicionamento do hidroperóxido no sítio ativo antes do ataque da Cys\textsubscript{P}, enquanto o Trp169 está relacionado com um aumento de pequena amplitude e bastante lento da emissão da fluorescência após a queda inicial abrupta. Como a AhpC de S. typhimurium não apresenta superoxidação e este retorno da curva não é dependente da concentração de hidroperóxido, os autores postularam que este aumento lento representa a formação do dissulfeto intermolecular (Parsonage et al., 2015).

Em Tsa1, também são observados três resíduos de Trp (Trp82, Trp160 e Trp172), sendo que os Trp82 e Trp172 são conservados e homólogos aos de Trp81 e Trp169 de AhpC de S. typhimurium. Devido ao enovelamento da enzima, o resíduo Trp82 fica espacialmente próximo a Cys\textsubscript{P} (\textasciitilde 4.0 \textAA), de forma muito similar ao observado em AhpC de S. typhimurium (Figura 27A). Já o resíduo de Trp172 fica a uma distância maior que 7.0 \textAA da Cys\textsubscript{R} em Tsa1, enquanto em AhpC essa distância é menor que 4.0 \textAA (Figura 27B). Neste contexto, assim como em AhpC, o Trp82 deve de fato responder pelo rápido decaimento de fluorescência em razão do ataque da Cys\textsubscript{P} ao hidroperóxido. Contudo, o papel do Trp172 deve ser diferente entre as enzimas, especialmente quando se leva em consideração que em Tsa1 a resiliência da fluorescência mostrou-se dependente da concentração de hidroperóxido e consideravelmente rápida (Figura 26).

Adicionalmente, como apresentado anteriormente, as 2-Cys Prx típicas apresentam dois estados estruturais relacionados aos estados redox de suas cisteínas: FF, quando as cisteínas estão reduzidas ou superoxidadas, e LU, quando as enzimas apresentam-se oxidadas e formam um dissulfeto intermolecular (Figura 5). Desta forma, é possível associar as alterações na fluorescência com o enovelamento da \(\alpha\)-hélice onde se encontra a Cys\textsubscript{P}; no estado reduzido (FF), há maior emissão de fluorescência, enquanto no estado oxidado (LU), ocorre o decaimento da fluorescência. Neste contexto, uma análise comparativa das estruturas cristalográficas de Tsa\textsubscript{1}C47S na qual a Cys\textsubscript{P} foi substituída por Ser (Figura 27C) com Prx4 selvagem de humanos (Figura 27D) demonstra que ambas as enzimas se encontram no estado FF, e as interações de polares entre aminoácidos do sítio ativo são equivalentes. Ainda, quando se faz a comparação com Prx2 de humanos, na qual a Cys\textsubscript{P} se encontra em cisteína ácido sulfínico (Cys\textsubscript{P}-SO\textsubscript{2}H), a enzima também se apresenta no estado FF, o qual é estabilizado por interações adicionais de caráter polar com a Arg da tríade catalítica (Figura 27E).
Figura 27 - Análises estruturais entre os estados FF e LÚ e a relação com os resíduos de Trp. Posicionamento dos resíduos de Trp das estruturas de Tsa1 (PDB = 3SBC, vermelho escuro) e de AhpC de S. typhimurium (PDB = 4MA9, azul claro) vicinais à Cys₉ (A) e Cys₉ (B). Em (A), os posicionamentos dos resíduos não variam entre os dois organismos. Em (B) é possível observar que o posicionamento do Trp¹⁷² de Tsa1 e Trp¹⁶⁹ de AhpC S. typhimurium é similar, diferentemente do observado para as Cys. Ainda, não é observado resíduo equivalente a o Trp¹₆₀ de Tsa1 em AhpC de S. typhimurium. As estruturas estão representadas em cartoon e os aminoácidos Cys, Ser, Trp e Phe estão representados por balls and sticks. Em (A) e (B) os asteriscos correspondem à numeração em AhpC de S. typhimurium. (C) Mutante Tsa¹⁴⁴S de S. cerevisiae (azul) (PDB = 3SCC). (D) Estrutura de Prx4 reduzida de H. sapiens (amarelo) (PDB = 3TKR). (E) Estrutura de Prx2 de H. sapiens (vermelho) (PDB = 1QMV) na qual a Cys₉ se apresenta superoxidada em Cys₉-SO₂H. O asterisco em vermelho (*) denota que o amino ácido pertence ao monômero adjacente. Em todos os modelos, as proteínas estão representadas em cartoon e apresentam a forma FF. Aminoácidos envolvidos em interações polares são representados em balls and sticks e, com exceção dos átomos de C que estão coloridos em cor semelhante ao apresentado para o restante de cada estrutura, os átomos estão coloridos da seguinte forma: O = vermelho, N = azul escuro e S = laranja claro.

Desta forma, considerando-se a dependência entre a inclinação da curva de retorno de fluorescência e a concentração de hideróxido, a conformação em FF das enzimas reduzidas e superoxidadas, e a capacidade de Tsa1 ser superoxidada, parece bastante factível que a resiliência da fluorescência em altas concentrações de hideróxidos possa representar o processo de superoxidação de Cys₉ em Tsa1. Sendo assim, foi possível determinar as constantes de pseudo-primeira ordem para a superoxidação de Tsa¹WT como

\[
k = 1.4 \times 10^6 \text{ para } \text{H}_2\text{O}_2 \quad \text{e} \quad k = 2.0 \times 10^8 \text{ M}^{-1}\text{s}^{-1} \text{ para CHP. Para Tsa¹T₄₄S as constantes obtidas foram } k = 9.3 \times 10^5 \text{ e } k = 1.2 \times 10^6 \text{ M}^{-1}\text{s}^{-1} \text{ para } \text{H}_2\text{O}_2 \text{ e CHP, respectivamente.}
\]

Sendo assim, os resultados indicam, de forma mais sutil do que o verificado nos ensaios de SDS-PAGE não redutor, que a Tsa1 é um pouco mais suscetível à
superoxidação do que Tsa1T44S, sugerindo que a presença de uma serina no sítio ativo pode ter papel regulatório neste processo. Vale ressaltar que as duas abordagens diferem, uma vez que os ensaios em SDS-PAGE utilizam o sistema redutor (Trx, TrxR e NADPH), enquanto o experimento de fluorescência analisa apenas a superoxidação sem que haja a redução, a qual aparentemente é necessária para uma maior eficiência do processo, podendo explicar porque o resultado foi mais evidente na primeira abordagem. Do ponto de vista funcional, a importância desta regulação estaria em uma distribuição de funções quando a célula se encontra em condições de estresse oxidativo, em que a superoxidação levaria a Tsa1 a desempenhar papel de chaperona molecular, enquanto Tsa2 permaneceria ativa para a redução dos hidroperóxidos. Entretanto, uma vez que existem outros aminoácidos que diferem entre as duas proteínas, é de grande importância averiguar o perfil de fluorescência em decorrência da concentração de hidroperóxidos para Tsa2, para que se possa chegar a qualquer conclusão pertinente.

Os resultados aqui obtidos demonstram que a treonina da tríade catalítica pode ter papel importante no processo de superoxidação, visto que a mudança por resíduos com características físico-químicas distintas praticamente aboliu este processo, mesmo com um substrato tão propenso à superoxidação como o CHP. Adicionalmente, este fenômeno também ganha importância uma vez que já foi proposto que a superoxidação de CysP resulta em um grande aumento na quantidade de Trx reduzida, a qual é essencial em outros papéis biológicos como a regulação do ciclo celular e em mecanismos de reparo (Day et al., 2012).

5.3.4 Influência do estado oligomérico no processo de superoxidação

Outra variável que apresenta influência sobre a atividade peroxidásica e pode também interferir no processo de superoxidação e na transição funcional peroxidase → chaperona é o estado oligomérico. Sendo assim, os mutantes Tsa1S78D e Tsa1S78V, os quais influenciam no estado oligomérico sem influenciar diretamente nas interações polares presentes no sítio ativo, foram avaliados quanto à suscetibilidade a superoxidação. Os mutantes foram expostos a concentrações crescentes de H₂O₂ ou CHP (25 μM – 10 mM), juntamente com o sistema Trx e excesso de NADPH, e os resultados foram avaliados por SDS-PAGE não redutor. Os resultados revelaram que o mutante Tsa1S78V (Figuras 28C e 28D) apresenta um comportamento muito similar ao obtido para a enzima selvagem (Figuras 28A e 28B), ou seja, formação de espécies superoxidadas com alta concentração de H₂O₂, porém maior suscetibilidade quando tratada com CHP.

O mutante Tsa1S78D não apresentou espécies superoxidadas quando o H₂O₂ foi utilizado como substrato oxidante (Figura 28E). Entretanto, quando foram utilizadas altas concentrações de CHP (1–10 mM) foram detectadas espécies superoxidadas (Figura 28F).
Este resultado é contrastante com os resultados anteriormente observados para Tsa1^{T44A} e Tsa1^{T44V}, que também possuem baixa reatividade e a interação com Trx é prejudicada, mas não apresentam superoxidação com CHP (Figuras 25B e 25D). Vale ressaltar que, diferentemente dos mutantes citados, Tsa1^{S78D} não interfere diretamente nas interações polares presentes no sítio catalítico. Sendo assim, apesar deste mutante não formar decâmeros e apresentar uma drástica diminuição na reatividade, o estado oligomérico não parece ser vital para o processo de superoxidação.

![Figura 28 - Resultado em SDS-PAGE de ensaio de superoxidação dependente de Trx de Tsa1^{WT}, Tsa1^{S78V} e Tsa1^{S78D}](image)

SDS-PAGE contendo o resultado de ensaio de superoxidação para Tsa1^{WT} (A) e (B), Tsa1^{S78V} (C) e (D) e Tsa1^{S78D} (E) e (F) utilizando o sistema tioredoxinina e quantidades variáveis de peróxido de hidrogênio (A), (C) e (E) ou CHP (B), (D) e (F) (as concentrações estão discriminadas na parte superior da figura). As reações continham: Tsa1^{WT}, Tsa1^{S78V} ou Tsa1^{S78D} (1 µM) ,Trx1 (2 µM) ,TrxR (0.3 µM) NADPH (150 µM) e Hepes-NaOH (50 mM, pH7.4), DTPA (100 µM) e de azida sódica (1 mM) e concentrações variáveis de H₂O₂ e CHP (25 µM-10 mM). Após as reações de superoxidação (15 minutos a temperatura ambiente) as amostras foram tratadas com NEM para evitar a formação de dissulfetos inespecíficos e com SDS, para denaturação das enzimas e interrupção das reações. No lado esquerdo da figura, D = dímero e M = monômero.

Para complementar os resultados obtidos por SDS-PAGE não redutor, foi também realizado ensaio utilizando o sistema Trx em duas concentrações de H₂O₂ e CHP (200 e 500 µM), e a oxidação do NADPH foi monitorada espectrofotometricamente, de modo que a inibição da reação indica a superoxidação da Cys_P. Para o mutante Tsa1^{S78D}, não foi observada atividade detectável, provavelmente em razão da interação comprometida entre o mutante e Trx (dados não apresentados). Já para o mutante Tsa1^{S78V}, o perfil de superoxidação se mostrou muito similar ao da proteína selvagem (Figura 29), ou seja, houve aumento da inibição com o aumento da concentração de H₂O₂ (Figuras 29A e 29B) e grande
inibição para CHP em ambas as concentrações (Figuras 29C e 29D). Estes dados estão de acordo com os resultados observados por SDS-PAGE não redutor (Figura 28). Adicionalmente, os resultados demonstram que a mutação da Ser^78 por Val não interferiu na superoxidação da Cys_T, indicando que a presença exclusiva de decâmeros para Tsa1 não interfere neste processo.

Figura 29 - Ensaios utilizando sistema Trx e avaliando a inibição do consumo de NADPH devido à superoxidação de Tsa1^{WT} e Tsa1^{S78V}. A oxidação do NADPH foi monitorada (λ=340 nm) para avaliar a inibição da atividade peroxidásica dependente de Trx das proteínas Tsa1^{WT} e Tsa1^{S78V} utilizando H_2O_2 (A) e (B) ou CHP (C) e (D) nas concentrações de 200 μM (A) e (C) ou 500 μM (B) e (D). Os ensaios foram monitorados espectrofotometricamente pela oxidação de NADPH. As reações foram realizadas a 30 °C em volume final de 100 μl contendo Hepes-NaOH (50 mM, pH 7.0); DTPA (100 μM) azida sódica (1 mM), Trx1 (1 μM), TrxR1 (0.3 μM), NADPH (150 μM). Tsa1^{WT} está representada por quadrados cheios (■) e Tsa1^{S78V} por quadrados vazados (□).

Um aspecto relevante a ser salientado é que quando o substrato oxidante utilizado foi CHP, uma rápida inibição do consumo de NADPH foi observada, para ambas as enzimas logo nos momentos iniciais da reação, o que sugere superoxidação da Cys_T. Isto indica que hidroperóxidos orgânicos podem ter papel importante na célula na transição funcional peroxidase → chaperona no interior da célula. Neste contexto, uma possível explicação para a maior suscetibilidade a superoxidação por CHP poderia ser uma diferença no turnover, o qual é medido pelo valor de k_cat. Ou seja, quanto maior for o valor desta constante, maior é a concentração de substrato formado por segundo, (mais turnover ocorrem por segundo), e
maior seria a probabilidade de ocorrer o ataque de uma segunda molécula de hidroperóxido. Para Tsa1 WT, o valor obtido para H₂O₂ \((K_{cat,H2O2} = 0.55) \) foi menor que o observado para CHP \((K_{cat,CHP} = 0.73) \), evidenciando uma das razões pelas quais pode haver maior superoxidação por CHP.

Outra possibilidade não excludente para explicar esta observação seria a diferença no grupo abandonador. Desta forma, enquanto o grupo abandonador do H₂O₂ é uma molécula de H₂O, o que permitiria uma transição mais rápida FF→LU e consequente formação de dissulfeto, no caso do CHP, além da função peróxido, existe uma grande quantidade de carbonos \((C_6H_5C(CH_3)_2OOH) \). Estes devem interagir com porções hidrofóbicas no bolsão do sítio ativo, o que pode causar um atraso na transição FF→LU, permitindo o ataque de outra molécula de CHP à Cysₚ, culminando com sua superoxidação.

5.3.5 Análise da importância da cauda C-terminal de Tsa1 no processo de superoxidação

Diferentemente do observado para as 2-Cys Prx típicas de eucariotos, a maior parte destas enzimas em procariotos são resistentes a superoxidação, sendo denominadas de “robustas”. Um dos possíveis fatores envolvidos nesta diferença seria a presença de uma cauda C-terminal em eucariotos que atrasaria a formação do dissulfeto intermolecular, a qual não é observada em AhpC de procariotos (Wood, Poole, Karplus, 2003). Para averiguar o papel desta cauda na porção C-terminal em Tsa1, foi gerado o mutante Tsa1175ΔCT, o qual não possui os últimos 20 aminoácidos presentes na extremidade C-terminal da enzima.

Inicialmente, para avaliar os efeitos da deleção na estrutura quaternária da enzima, foram realizados experimentos de cromatografia de exclusão molecular, para as quais foram feitos tratamentos com 50 mM de DTT ou 1.2 equivalente molar de H₂O₂ por 1 hora à temperatura ambiente. O resultado demonstra que Tsa1175ΔCT apresenta-se com um único pico correspondente ao decâmero independentemente do estado redox (Figura 30), diferentemente da enzima selvagem, que é decamérica quando reduzida e uma mistura de dímeros e decâmeros quando oxidad (Figura 11A). Neste contexto, fica claro que a deleção da cauda C-terminal influenciou o estado oligomérico da enzima. Este resultado é bastante inesperado, pois as 2-Cys Prx típicas de procariotos, as quais não possuem a cauda C-terminal, apresentam grau oligomérico similar ao verificado para as enzimas de eucarioto (Parsonage et al., 2005), o que indica que a formação do oligômero em Tsa1 é regulada por uma série de interações na interface entre os dímeros.
Figura 30 - Cromatografia de exclusão molecular de Tsa1\(^{175\Delta CT}\). A enzima (10 μM) foi reduzida com 50 mM de DTT ou oxidada com 1.2 equivalente molar de H\(_2\)O\(_2\) por 1 hora à temperatura ambiente. Apenas o pico referente à forma decamérica, tanto no estado reduzido (A) quanto no estado oxidado (B) foi observado para Tsa1\(^{175\Delta CT}\). A eluição dos componentes foi realizada com Tris-HCl 0.1M pH 7.4 a 1ml.min\(^{-1}\) e foi monitorada por UV a 280 nm.

Em seguida, visando verificar se a cauda C-terminal é de fato importante no processo de superoxidação da Cys\(_P\) de Tsa1, foi realizado o ensaio de superoxidação com sistema Trx e a detecção realizada por SDS-PAGE não redutor. Como apresentado na figura 31C, é possível observar que mesmo em altas concentrações de H\(_2\)O\(_2\) (10 mM) não são detectadas formas superoxidadas de Tsa1\(^{175\Delta CT}\), o que é bastante contrastante com o observado para a enzima selvagem (Figura 31A), a qual apresenta superoxidação a partir de 1 mM de H\(_2\)O\(_2\). Já quando foi utilizado CHP, foi possível constatar que ocorre superoxidação de Cys\(_P\) de Tsa1\(^{175\Delta CT}\), mas apenas na concentração de 10 mM, e de forma muito sutil (Figura 31D). Estes resultados indicam que há menor suscetibilidade a superoxidação, conferida pela retirada da porção C-terminal da enzima.
Figura 31 - Ensaio de superoxidação dependente de Trx de Tsa1^{WT} e Tsa1^{175ΔCT} por SDS-PAGE não redutor. Resultados em SDS-PAGE de ensaio de superoxidação utilizando o sistema tiorredoxina e quantidades variáveis de H_{2}O_{2} (A) e (B) ou CHP (C) e (D). As reações continham: Tsa1^{WT} (A) e (B) ou Tsa1^{175ΔCT} (C) e (D) a 10 µM, Trx1 (2 µM), TrxR (0.3 µM) NADPH (150 µM), Hepes-NaOH (50 mM, pH 7.4), DTPA (100 µM) e azida sódica (1 mM) e concentrações crescentes de H_{2}O_{2} e CHP (25 µM-10 mM, indicadas na parte superior das figuras). Após as reações de superoxidação (15 minutos a temperatura ambiente) as amostras foram tratadas com NEM para evitar a formação de dissulfetos inespecíficos e com SDS, para que houvesse desnaturação das enzimas e a reação fosse finalizada. A legenda à esquerda da figura denota D = dímero e M = monômero.

Adicionalmente, foram realizados ensaios com o sistema Trx de levedura, com o monitoramento da oxidação do NADPH a 340 nm. Neste caso, foram utilizados 200 ou 500 µM de H_{2}O_{2} ou CHP, de modo a verificar se havia inibição com o aumento da concentração de hidroperóxido, devido à superoxidação da Cys_P. Os resultados indicam que a remoção da cauda C-terminal resulta em uma enzima com maior capacidade de decompor ambos hidroperóxidos em relação à enzima selvagem, principalmente H_{2}O_{2}, o que é evidenciado pelo maior consumo de NADPH nas reações com Tsa1^{175ΔCT} (Figuras 32A e 32B). Para Tsa1^{175ΔCT} não foi observado decréscimo no consumo de NADPH quando a concentração foi aumentada de 200 para 500 µM (Figuras 32A e 32B), ao passo que para a proteína selvagem é possível detectar inibição da atividade mesmo com concentração de 200 µM (Figura 32A) e forte aumento da inibição do consumo de NADPH quando a concentração utilizada foi de 500 µM (Figura 32B). Isto ocorre devido a uma parcela maior de Cys_P estar inativada em comparação à Tsa1^{175ΔCT}, impedindo que haja interação com o hidroperóxido. Na reação com o peróxido orgânico (CHP), o mutante Tsa1^{175ΔCT} apresenta atividade peroxidásica acentuada em concentração de 200 µM quando comparada à enzima selvagem (Figura 32C) e um grande decréscimo no consumo quando foram aplicadas doses de 500 µM de CHP, enquanto a enzima selvagem indica suscetibilidade ainda maior à superoxidação da Cys_P, mesmo com concentração de 200 µM (Figura 32D).
Figura 32 - Ensaios de inibição do consumo de NADPH de Tsa1WT e Tsa1175ΔCT. A oxidação do NADPH foi monitorada (λ=340 nm) para avaliar se houve a inibição da atividade peroxidásica dependente de Trx das proteínas Tsa1WT e Tsa1175ΔCT utilizando H2O2 (A) e (B) ou CHP (C) e (D) nas concentrações de 200 μM (A) e (C) ou 500 μM (B) e (D). Os ensaios foram monitorados espectrofotometricamente pela oxidação de NADPH, as reações foram realizadas a 30 °C em volume final de 100 μl contendo Hepes-NaOH (50 mM, pH 7,0); DTPA (100 μM) azida sódica (1 mM), Trx1 (1 μM), TrxR1 (0,3 μM), NADPH (150 μM). Tsa1WT está representada por quadrados cheios (■) e Tsa1175ΔCT por quadrados vazados (□).

Estes resultados são coerentes com o proposto anteriormente na literatura, na qual se afirma que a cauda C-terminal é responsável por tornar as 2-Cys Prx típicas de eucariotos mais suscetíveis à superoxidação (Wood, Poole, Karplus, 2003). Os dados do presente trabalho demonstram que o mutante Tsa1175ΔCT não apresentou espécies superoxidadas mesmo com altas doses de H2O2 (10 mM no ensaio em SDS-PAGE não redutor e 500 μM no ensaio de inibição do consumo de NADPH). No que se refere ao CHP, apenas com altas doses do hidroperóxido foi possível observar um inibição inicial da atividade da enzima, evidenciando a importância da cauda C-terminal neste processo.
5.4 **Investigação do envolvimento de Asp¹⁴¹ na reatividade e redução de Tsa1**

Conforme apresentado na seção 5.1, foram investigados resíduos envolvidos na manutenção do estado FF (Glu⁵⁰ e Arg¹⁴⁶). De forma complementar, nesta seção serão apresentados os estudos referentes a um resíduo adicional potencialmente envolvido na manutenção do estado LU. Neste contexto, foi identificado o resíduo Asp¹⁴¹, o qual é altamente conservado entre diversas 2-Cys Prx típicas, sendo substituído em alguns casos por Glu, o qual apresenta características físico-químicas muito semelhantes ao Asp. Este aminoácido parece ser relevante na manutenção do estado LU devido à realização de interações salinas com a Arg da tríade catalítica, as quais não ocorrem quando a enzima está em FF. Uma vez que podem auxiliar na estabilização do estado LU, estas interações podem ter importância na redução de Tsa1 por Trx. Neste contexto, foi produzido o mutante Tsa¹⁴¹N e os resultados da sua avaliação estrutural e funcional são apresentadas a seguir.

5.4.1 **Análise do posicionamento do resíduo Asp¹⁴¹ de Tsa1 em ortólogos**

Dentro das investigações visando o aprofundamento do conhecimento das características estruturais dos estados FF e LU, foi feita uma análise detalhada do sítio ativo da estrutura cristalográfica de Tsa1 de levedura (PDB = 3SBC), sendo possível constatar a presença de um resíduo de Asp (posição 141) cuja cadeia lateral efetua ligações polares com um resíduo de Arg (posição 135, no monômero adjacente) e com o nitrogênio da cadeia principal do resíduo Leu¹⁴² na mesma unidade monomérica (Figura 33A). Comparando-se com a estrutura de Prx2 de *R. norvegicus* no estado reduzido, ou seja, em FF (PDB = 2Z9S), observa-se novamente a presença de um Asp, na mesma posição (146 em rato) e realizando interações polares semelhantes (Figura 33C). Contudo, quando se observa a estrutura de rato no estado oxidado, ou seja, no estado LU (PDB = 1QQ2), verifica-se que as interações são diferentes, sendo que os oxigênios da cadeia lateral (O₁ e O₂) do Asp¹⁴⁶ estabelecem pontes salinas com o Nε e NH₁ da Arg¹₂₈ (Arg¹₂₃ em levedura), a qual pertence à tríade catalítica (Figura 33E).

Quando se analisa da estrutura cristalográfica de AhpC de *S. typhimurium* verifica-se a presença de um resíduo de Glu (138 em *S. typhimurium*), o qual possui características físico-químicas semelhantes ao Asp, na mesma posição espacial em que se encontra o Asp¹⁴⁶ em Prx2 de *R. norvegicus*, tanto no estado FF (PDB = 1N8J) (Figura 33G), quanto no estado LU (PDB = 1YEP) (Figura 33I). Verifica-se ainda que também ocorre a interação com a Arg da tríade catalítica na enzima no estado LU (119 em *S. typhimurium*), indicando que a interação desta Arg com um aminoácido polar de carga negativa pode ser um processo importante na estabilização do estado LU, podendo influenciar na interação com a Trx.
Figura 33 - Análises estruturais do resíduo Asp\(^{141}\) de Tsa1 e comparação com outras estruturas de 2-Cys Prx típicas. Comparação da posição do resíduo Asp\(^{141}\) de Tsa1 de levedura (PDB = 3SBC) (A) com o Asp\(^{146}\) de Prx2 de rato no estado FF (reduzido) (PDB = 229S) (C) e LU (oxidado) (PDB = 1QQ2) (E), e com o Glu\(^{138}\) de AhpC de S. typhimurium no estado FF (reduzido) (PDB = 1N8J) (G) e LU (oxidado) (PDB = 1YEP) (I), bem como dos resíduos que interagem com o Asp/Glu e as Ser que substituem as Cys nos mutantes ou dissulfetos. As superfícies moleculares dos dímeros correspondentes são apresentadas em (B), (D), (F), (H) e (J), respectivamente. Todos os modelos foram criados através do programa PyMol (www.pymol.org). Em (A), (C), (E), (G) e (I) os aminoácidos são apresentados em balls and sticks e estão coloridos por CPK, sendo que (*) indica que o resíduo pertence ao monômero adjacente. Em (B), (D), (F), (H) e (J) a superfície está colorida em cinza claro, os resíduos de Asp ou Glu estão em vermelho, e os dissulfetos ou as Ser que substituem as Cys estão coloridas em laranja.
Ainda analisando a estrutura, mas desta vez a superfície molecular, verifica-se que o Asp/Glu não se encontra no bolsão do sítio ativo quando as enzimas estão no estado FF (Figuras 33B, 33D e 33H), embora se encontrem próximo a ele. No estado LU, o Asp\(^{146}\) de Prx2 de rato se encontra mais próximo ao dissulfeto (Figura 33F), em relação ao Glu\(^{138}\) de AhpC (Figura 33J). Apesar de não estarem muito próximos ao dissulfeto, ainda assim estes resíduos podem ser importantes no processo de redução das Prx por Trx (no caso Prx2 de *R. norvegicus*) ou por AhpF (no caso da AhpC), uma vez que a interação entre duas enzimas tende a ser composta por uma gama de interações entre as cadeias laterais dos seus resíduos e é necessária a estabilização estrutural no estado LU para que ocorra a redução de forma eficiente.

5.4.2 Avaliação da atividade sobre H\(_2\)O\(_2\) e redução por DTT do mutante Tsa\(^{D141N}\)

Para se verificar o papel do resíduo Asp\(^{141}\) de Tsa1 na atividade catalítica, na formação do dissulfeto intermolecular (estabilização do estado LU) e na redução por Trx ou DTT, foi realizada mutação por Asn, um aminoácido polar e com volume similar à Asp, mas sem carga. Inicialmente, foi realizado ensaio de competição por H\(_2\)O\(_2\) com HRP, e a constante de segunda ordem obtida foi \(3.2 \times 10^6\) M\(^{-1}\) s\(^{-1}\) (Figura 34A), indicando que houve perda na reatividade em somente uma ordem de grandeza em relação ao selvagem (Figuras 8A e Tabela 6). Este resultado é inesperado, uma vez que a cadeia principal de Asp\(^{141}\) não está diretamente ligada ao sítio ativo (Figura 34A). Contudo, uma possível explicação é que a cadeia lateral deste resíduo mantém a Leu\(^{142}\) numa posição que parece estar estabilizando a cadeia lateral da Arg\(^{123}\) da tríade catalítica. A cadeia lateral da Asn, que substitui o Asp\(^{141}\), por não possuir carga, pode fazer com que haja indiretamente uma mudança no posicionamento da Arg\(^{123}\) da tríade, afetando a reatividade.

Sabendo-se que a reatividade sobre H\(_2\)O\(_2\) foi comprometida pela mutação, foi verificado se existe alteração no tempo de formação do dissulfeto. Para tanto foi realizado ensaio de oxidação por H\(_2\)O\(_2\) e aliquotas foram coletadas em diferentes períodos de tempo, sendo a detecção efetuada em SDS-PAGE não redutor. O resultado demonstra a presença de uma banda referente a espécies monoméricas presente após 10 segundos de reação (Figura 34C). Este resultado indica um pequeno atraso na formação do dissulfeto em relação à enzima selvagem (Figura 34B), o qual deve ter ocorrido em virtude da diminuição da reatividade de Tsa\(^{D141N}\) (o qual foi observado pelo ensaio de HRP) ou por uma alteração na dinâmica da formação do dissulfeto.

Em seguida, foi realizado o ensaio de atividade tiól peroxidásica acompanhando a oxidação de DTT. O resultado obtido neste ensaio indicou que Tsa\(^{D141N}\) é reduzida por DTT de forma pouco eficiente (Figura 34D). Para confirmar este resultado, foi realizado ensaio de
redução por DTT em SDS-PAGE não redutor, o qual apresentou que após 5 minutos da adição do redutor ainda é possível ver uma suave banda referente ao monômero (Figura 34F), enquanto Tsa1WT já aparece completamente reduzida após 30 segundos de ensaio (Figura 34E). Os resultados indicam que está havendo interferência da mutação na redução por DTT, uma vez que a redução se mostrou bastante inefficiente.

Figura 34 - Caracterização funcional do mutante Tsa1D141N. (A) A constante de segunda ordem de Tsa1D141N (○) foi calculada a partir da inclinção da reta obtida da dispersão dos pontos considerando a concentração de Tsa1 e o valor obtido no ensaio de competição cinética de HRP foi $3.2 \times 10^4 \text{M}^{-1} \text{s}^{-1}$. A análise da oxidação e formação do dissulfeto de Tsa1WT (B) e Tsa1D141N (C) foi realizada em SDS-PAGE não redutor corado por coomassie blue. As enzimas (10 μM) em tampão fosfato de sódio 50 mM / NaCl 50 mM, previamente reduzidas com DTT, foram oxidadas com 5 equivalentes molares de H2O2, em temperatura ambiente. Ao longo dos tempos marcados acima da figura dos géis, alíquotas foram retiradas e colocadas em tampão contendo 4% SDS e 50 mM de NEM. As letras à esquerda das figuras indicam D = dímero e M = monômero. (D) Para o ensaio de estado estacionário por DTT foram adicionados 12.5 μM de Tsa1 em tampão Hepes-NaOH 10 mM (pH 7.4) contendo 100 μM de DTPA e 1 mM de azida sódica, juntamente com 10 mM de DTT e a reação foi iniciada com a adição de 2 mM de H2O2. Os símbolos utilizados foram: ● = controle negativo; □ = Tsa1WT, ▲ = Tsa1D141N. A redução por DTT em gel foi realizada para Tsa1WT (E) e Tsa1D141N (F). As enzimas foram oxidadas com 1.2 equivalentes molar de H2O2 em tampão fosfato de sódio 50 mM / NaCl 50 mM. Posteriormente, foram adicionados 300 equivalentes molares de DTT em relação às enzimas e foram coletadas amostras ao longo tempo, (conforme apresentado acima da figura do gel), as quais tinham a reação interrompida pela adição de 4% SDS e 50 mM NEM para alquilação. As amostras foram então aplicadas em SDS-PAGE em condições não redutoras. À esquerda da figura, D = dímero e M = monômero. O gel foi corado por coomassie blue.

5.4.3 Análise da interação de Tsa1D141N com Trx e obtenção dos parâmetros cinéticos

Dando prosseguimento às análises, foram realizados ensaios para verificar se a mutação afetou a interação com Trx, por meio do ensaio de oxidação do NADPH utilizando o sistema Trx de S. cerevisiae. Com concentração de 1 μM, a atividade para Tsa1D141N foi bastante reduzida quando comparada com a Tsa1WT, quase similar ao controle negativo,
independentemente se foi utilizado H$_2$O$_2$ (Figura 35A) ou CHP (Figura 35C). Contudo, quando se foi utilizada a Tsa$_1^{D141N}$ em concentração mais elevadas (9.3 μM) e mantendo-se a concentração da Trx$_1$ em 1 μM, Tsa$_1^{D141N}$ apresentou aproximadamente metade da atividade detectada para selvagem com ambos os hidroperóxidos (Figuras 35B e 35D). Este resultado, similarmente ao observado anteriormente para outros mutantes de Tsa1, pode sofrer influência do estado oligomérico, uma vez que em concentrações maiores as Prx tendem a estar em decâmero (Wood et al., 2002) indicando assim que a mutação afetou a redução de forma mais aguda quando esta se encontra em dímero.

![Figura 35](image-url)

Figura 35 - Ensaios de cinética de estado estacionário de consumo de NADPH com Tsa$_1^{WT}$ e Tsa$_1^{D141N}$ com concentrações variadas de Prx. O consumo de NADPH foi monitorado a 340 nm, utilizando baixas concentrações de enzimas (1 μM), e H$_2$O$_2$ (A) ou CHP (C) ou altas concentrações de enzima (9.3 μM) para H$_2$O$_2$ (B) e CHP (D). Nas reações, foram utilizados 1 μM de Trx$_1$; 0.3 μM de TrxR$_1$; 150 μM de NADPH; em tampão Hepes-NaOH 50 mM (pH 7,4) contendo 100 μM de DTPA e 1 mM de azida sódica. Para se iniciar a reação foi adicionado 200 μM de H$_2$O$_2$ ou de CHP. ● = controle negativo; ■ = Tsa$_1^{WT}$; ▲ = Tsa$_1^{D141N}$. As barras de erro indicam o desvio padrão observado para cada um dos pontos.

Para investigar se o motivo para a reação não ocorrer quando a enzima se encontra em baixa concentração é devido a um alto valor de K$_M$ com a Tiorredoxina, e não devido a uma interação deficitária com o dímero, foi realizado um ensaio cinético com variação na concentração da Trx2. Desta forma, o ensaio foi realizado com 1 μM de Tsa1, mas com concentrações crescentes de Trx2 (1, 2, 5 e 10 equivalentes molares de Trx2 em relação à Tsa1), sendo H$_2$O$_2$ o substrato oxidante. O resultado indicou que mesmo com o excesso de
10 vezes de Trx2 em relação ao mutante de Tsa1, não ocorreu a reação de maneira eficiente (Figura 36), estando a curva muito semelhante à observada para o controle da reação.

Figura 36 - Atividade peroxidásica dependente de Trx de Tsa1^{WT} e mutante Tsa1^{D141N}. A atividade peroxidásica dependente de Trx foi monitorada através da oxidação do NAPDH (A_{340nm}). Com baixa concentração (1 μM), o mutante Tsa1^{D141N} não apresentou atividade peroxidásica, independentemente da concentração de Trx2, diferentemente do observado para Tsa1^{WT}. As concentrações de Trx2 utilizadas foram 1 μM (A), 2 μM (B), 5 μM (C) e 10 μM (D). Foram utilizados na reação 0,3 μM de TrxR1; 150 μM de NADPH; 200 μM de H₂O₂ em tampão Hepes-NaOH 50 mM (pH 7,4), 100 μM de DTPA e 1 mM de azida sódica. ■ = Controle negativo; ▲ = Tsa1^{WT}; △ = Tsa1^{D141N}. As barras de erro indicam o desvio padrão observado para cada um dos pontos.

Por fim, com o intuito de se obter os parâmetros cinéticos de Tsa1^{D141N}, foi realizado um ensaio com variação na concentração de H₂O₂, com a Tsa1^{D141N} em concentração de 9,3 μM, visto que apenas nesta condição foi verificada atividade peroxidásica. O valor obtido de K_M foi 421.3 μM, indicando que a mutação afetou consideravelmente a interação com o substrato. Os valores de V_{max} (1.0 μM/s), k_{cat} (0.1 s⁻¹) foram similares aos determinados para Tsa1^{WT} em outros experimentos. Por fim, devido ao alto valor de K_M, a constante catalítica (k_{cat}/K_M) foi de 2.7 x 10², evidenciando a redução da eficiência catalítica da enzima.

Em suma, os resultados apresentados nesta seção demonstram que o resíduo de aminoácido Asp¹⁴¹ é importante para atividade tiól peroxidásica de Tsa1, muito provavelmente afetando de forma indireta o posicionamento da Arg¹²³ da tríade catalítica. Os
dados de ensaio acoplado com Trx só indicaram atividade quando a concentração de enzima utilizada foi alta, revelando que na condição padrão do ensaio (1 μM de enzima) a atividade é negligenciável. Uma vez que foi demonstrado neste trabalho que para os mutantes de Thr⁴⁴ as substituições que interferem na decamerização da enzima afetam de maneira significativa sua atividade, a realização de experimentos de cromatografia de exclusão molecular parece importante para uma melhor compreensão dos efeitos da mutação. Outro aspecto importante a ser realizado é a determinação das constantes de pseudo-primeira ordem de decomposição de hidroperóxidos através de alterações de fluorescência para se entender melhor o impacto da substituição do resíduo Asp¹⁴¹, uma vez que já é sabido que quando a reatividade da enzima é muito baixa (< 10⁴ M⁻¹s⁻¹), a metodologia de competição com HRP pode não ser a mais apropriada. Por fim, vale salientar que a investigação do impacto deste resíduo de Asp na atividade de 2-Cys Prx típicas nunca foi estudada, o que abre novas perspectivas de investigações.
5.5 Cristalização de Tsa1 carreando substituições de aminoácidos que afetam a estrutura ou atividade da proteína

Durante o desenvolvimento do doutoramento também foram executados procedimentos experimentais para determinação de condições de cristalização visando à resolução da estrutura cristalográfica dos mutantes Tsa1E50A, Tsa1R146Q, Tsa1T44V e Tsa1Y77A. Os resultados obtidos serão apresentados nesta seção.

5.5.1 Cristalização dos mutantes Tsa1E50A e Tsa1R146Q

Para Tsa1E50A e Tsa1R146Q foram realizadas tentativas de obtenção da estrutura cristalográfica devido à perda da interação destes mutantes com Trx, mas sem haver queda significativa da reatividade sobre H$_2$O$_2$. Inicialmente, foram realizados testes de expressão para a obtenção das enzimas em concentração apropriada para o processo de cristalização (~10 mg/ml). Para o mutante Tsa1R146Q a expressão é bastante eficiente, sendo possível obter, em média, aproximadamente 18 mg de proteína com elevado grau de pureza (> 95%, a partir de 1 litro de cultura, com indução por 3 horas, a 37 ºC, 250 rpm e 1 mM de IPTG). Contudo, estas condições não foram favoráveis para a obtenção de altas quantidades da enzima Tsa1E50A, uma vez que esta proteína apresenta maior insolubilidade, provavelmente em razão do enovelamento ser deficiente. Portanto, para expressão de Tsa1E50A, foram testadas diferentes condições variando o tempo de indução (3 ou 12 horas), concentração de IPTG (1 mM ou 0.3 mM), temperatura (37 ºC, 28 ºC ou 18 ºC) e aeração (150 ou 250 rpm). A melhor condição obtida foi a indução da expressão por 12 horas, a 18 ºC e 150 rpm, com 0.3 mM de IPTG, para a qual foi possível obter, em média, aproximadamente 10 mg com elevado grau de pureza a partir de 1 litro de cultura.

As triagens iniciais de cristalização foram realizadas utilizando a estrutura do Robolab, dentro do LNBIo (Laboratório Nacional de Biociências), no CNPEM (Centro Nacional de Pesquisas em Energia e Materiais). A concentração inicial das proteínas foi 10 mg/ml em Tris-HCl 5 mM (pH 7.4). As amostras foram divididas em duas aliquotas as quais foram tratadas com 1 mM de DTT ou 1 mM de H$_2$O$_2$. Este procedimento é realizado para tentar assegurar a uniformidade estrutural das proteínas, uma vez que estas enzimas são redox sensíveis e, como mostrado durante todo este trabalho, podem sofrer alterações conformacionais quando oxidadas ou reduzidas.

Para Tsa1E50A, as três melhores condições observadas na triagem inicial (dados não apresentados) foram refinadas através da variação do pH (6.5 - 9.0) e na concentração de PEG-3350 (10 - 25%), de modo a obter cristais de dimensões apropriadas para experimentos de difração de raios-X. Os melhores cristais e suas respectivas condições estão apresentados na Tabela 6. Para a obtenção dos cristais, a proteína (10 mg/ml em 5 mM Tris-HCl, pH 7.4) foi anteriormente tratada com 1 mM de H$_2$O$_2$ ou 1 mM de DTT por 1
hora a 25 °C. As gotas continham 6 μl de proteína e 6 μl de solução de cristalização e foram obtidas pela metodologia da gota pendurada, realizadas no Labimes da UNESP-CLP. Contudo, nenhum dos cristais presentes nestas condições apresentou difração em experimentos realizados no Laboratório Nacional de Luz Síncrontron (LNLS).

Para Tsa1^{ES6A}, as melhores condições na triagem inicial foram obtidas com tampão contendo 12% p/v PEG-8000, 200 mM de MgCl₂, e 100 mM de acetato de sódio em pH 5.0 (Figura 37A) ou 5.5 (Figura 37B) tratados com 1 mM de H₂O₂. Os cristais foram submetidos a experimentos de difração de raios-X na linha de luz DB03-MX1 do LNLS. Contudo, a resolução máxima obtida foi baixa (~ 3.7 Å) (Figura 37C) e, desta forma, não foram efetuadas coletas dos dados de difração.

Tabela 6 - Cristais de Tsa1^{ES6A} obtidos após o refinamento das condições onde foram obtidos microcristais na triagem inicial.
Condição

Tampão
Precipitante
Sal
Tampão
Precipitante
Sal
Tampão
Precipitante
Sal
Tampão
Precipitante
Sal
Tampão
Precipitante
Sal
Os cristais de Tsa1R146Q foram obtidos através do método de gota pendurada nas condições de 100 mM de acetato de sódio, 12% p/v PEG-8000 e 200 mM de cloreto de magnésio com pH variando em 5.0 (A) e 5.5 (B) tratados com 1 mM de H2O2. O padrão de dispersão foi registrado pela placa de captação de imagem MARCCD (C). Os cristais foram crioprotegidos com PEG-400 (20%) e submetidos à difração de raios-X da linha de luz DB03-MX1. A melhor difração obtida foi a 3.7Å.

Posteriormente, foram realizados refinamentos adicionais e um cristal foi obtido na condição 100 mM ácido cítrico/fosfato de sódio pH 6.0; 6% p/v de PEG – 8000; 200 mM cloreto de magnésio e tratao com 1 mM de H2O2 (Figura 38A). Este cristal difraturou até ~2.4 Å e o conjunto de dados contendo 360 imagens (Figura 38B) foi coletado e indexado no programa iMosflm (Leslie, 1992). O grupo espacial foi determinado como P1 com parâmetros de célula unitária a = 39.35; b = 130.43; c = 132.20; α = 89.93; β = 89.95 e γ = 89.99. Após procedimento de substituição molecular utilizando a estrutura cristalográfica de Tsa1C47S (PDB = 3SBC), foi obtido um modelo inicial representado por um dímero e, após refinamento utilizando o programa Refmac (Murshudov, Vagin, Dodson, 1997) e modelagem/deleção de resíduos, foi obtido um modelo com fatores iniciais de Rfactor = 55.30 e Rfree = 60.18 (Figura 38C). No entanto, a qualidade do conjunto de dados foi bastante baixa, impedindo a continuidade da modelagem e refinamento da estrutura.
Visando melhorar a qualidade dos cristais e, consequentemente, dos dados de difração, foram realizadas triagens de cristalização com a mesma solução utilizada para a obtenção do cristal que apresentou difração de aproximadamente 2,4 Å (100 mM ácido cítrico/fosfato de sódio pH 6.0; 6% p/v de PEG – 8000; 200 mM MgCl₂ tratado com 1 mM de H₂O₂). Adicionalmente, foram utilizados 96 aditivos distintos do kit Additive Screen (Hampton Research) e 24 aditivos do Ionic Liquid Screen (Hampton Research). Desta forma, foram obtidos cristais em mais três condições, as quais contêm como aditivo 10 mM de cloreto de sódio diidratado (Figura 39A), 30% p/v 1,6 – diaminohexano (Figura 39B) ou 100 mM de sal de ATP disódio sal diidratado (Figura 39C).

Cristais referentes às três condições demonstradas na figura 39 apresentaram difração em alta resolução, tendo sido feita então a coleta das imagens. Contudo, em virtude de os cristais apresentarem-se agrupados, é possível que, no momento em que os cristais foram coletados da gota de cristalização, tenha sido capturado um grupo de cristais, e não apenas um cristal, o que seria o correto. Desta forma, os dados não foram indexáveis, impossibilitando a obtenção da estrutura cristalográfica desta enzima.

Adicionalmente, visando à obtenção destas estruturas cristalográficas, foi estabelecida colaboração com o Dr. Francisco Javier Medrano Martín, do Centro de Investigaciones Biologicas, (CIB, Madri). O Dr. Francisco Martín, juntamente com o doutorando Carlos Alexandre Breyer realizaram experimentos para obtenção de cristais de Tsa₁^{R146Q}. Inicialmente foi feito um refinamento com variação do pH do tampão acetato de sódio (5.0 a 5.6), da concentração do PEG-400 (0 a 10%) e da concentração de etanol (2.5 a 10%), além do tratamento com H₂O₂, sendo a melhor condição obtida com 0.1M acetato de sódio pH 5.6, 5% p/v PEG-400 e 10% v/v etanol (Figura 40A). Para estas condições foram testados 96 aditivos do kit Additive Screen (Hampton Research), sendo obtidos cristais de boa qualidade quando foi utilizado 7% v/v 1-Butanol (Figura 40B) e 40% v/v 1,1,1,3,3,3-Hexafluoropropano (Figura 40C). Ainda, foram testados 96 detergentes variados para a obtenção de cristais mais bem formados. Os melhores cristais foram
encontrados quando se utilizou n-Octyl-β-D-thiomaltoside (Figura 40D), FOS-Choline ®-12 (Figura 40E) e CYCLOFOS™-3 (Figura 40F).

Figura 40 - Cristais de Tsa1

5.5.2 Cristalização dos mutantes Tsa1 T44V e Tsa1 Y77A

Os mutantes Tsa1 T44V e Tsa1 Y77A, os quais se mostraram exclusivamente como dímeros, foram escolhidos para tentativa de obtenção da estrutura cristalográfica. Para ambos os mutantes foi feita a triagem inicial e o refinamento das condições utilizando a estrutura do Robolab, do LNBio, vinculado ao CNPEM.

Ambas as enzimas não apresentavam rendimento satisfatório para a expressão em concentração suficiente para a execução de experimentos de cristalização. Sendo assim, ambas foram transformadas na linhagem Tuner DE3 e, nesta linhagem, a indução foi efetuada por 3 horas, a 37 °C, 250 rpm e 1 mM de IPTG, com um rendimento satisfatório (aproximadamente 10 mg de enzima a partir de 1L de cultura) e alto grau de pureza (>95%). Para Tsa1 T44V, foi feita a triagem inicial com a proteína em concentração de 7 mg/ml, em três tratamentos: 0.7 mM DTT, 0.7 mM H2O2 e 0.07 mM CHP. As soluções de cristalização e os microcristais obtidos são apresentados na tabela 7.
A melhor condição obtida na triagem inicial foi obtida com 100 mM CHES pH 9.5, 10% p/v PEG-8000 e 200 mM NaCl. Sendo assim, esta condição foi refinada utilizando novamente a estrutura do Robolab, do CNPEM e as melhores condições estão apresentadas na tabela 8. Apesar da presença de diversos microcristais nestas condições, estes ainda não estão com dimensões satisfatórias para serem submetidos a experimentos de difração de raios-X na linha W01B-MX2 do Laboratório Nacional de Luz Síncrotron, pois são muito pequenos e/ou mal formados. Neste contexto, novos refinamentos com a presença de aditivos devem ser executados.
Para o mutante Tsa1^{Y77A} também foi realizada triagem inicial para verificar quais condições são favoráveis para obtenção de cristais que posteriormente possam ser
submetidos à linha de luz de difração de raios-X. Os microcristais obtidos e as condições de cada uma deles são apresentados na tabela 9. Neste caso também é necessário que as condições sejam refinadas para obtenção de melhores cristais.

Tabela 9 - Microcristais de Tsa1\(^{Y77A}\) obtidos na triagem inicial e suas respectivas condições.
Condição

Tampão
Precipitante
Sal
Tampão
Precipitante
Sal
Tampão
Precipitante
Sal
Tampão
Precipitante
Sal

Os resultados apresentados nesta seção revelam as diversas abordagens para obtenção de cristais, incluindo uma colaboração internacional com o Dr. Francisco Javier Medrano Martin. Como pode ser observado, apesar do esforço empregado para obtenção de cristais passíveis de difração, não foi possível obter sucesso com as abordagens empregadas. Cabe ressaltar que na estrutura obtida e refinada (Tsa1\(^{C47S}\)) foi necessária a substituição da Cys\(P\) por serina, um procedimento recorrente em cristalografia e que visa impedir a formação de dissulfetos inespecíficos. Contudo, para os mutantes Tsa1\(^{E50A}\), Tsa1\(^{R146Q}\), Tsa1\(^{T44V}\) e Tsa1\(^{Y77A}\) não foi efetuada uma segunda mutação de modo a não interferir de forma substancial nos efeitos das mutações investigadas. No entanto, os resultados obtidos neste trabalho indicam que os tratamentos prévios efetuados com DTT ou hidroperóxidos talvez não sejam efetivos para gerar espécies homogêneas destas proteínas, as quais são essenciais para o sucesso da cristalização.
De acordo com o observado nos experimentos de SEC, o tratamento com DTT é capaz de produzir espécies mais homogêneas (normalmente decâméricas) do que o tratamento com peróxido de hidrogênio (o qual apresenta mistura entre dímeros e decâmeros). Entretanto, quando se leva em conta o tempo necessário para o crescimento de cristais (de semanas a meses) e a espera pelo tempo de coleta (também semanas ou meses) pode ocorrer a total oxidação do DTT (Hall et al. 2010) ou mesmo a oxidação de cisteínas da enzima (Schröder et al. 2000). Adicionalmente, vale salientar que os experimentos envolvendo SEC realizados no âmbito deste projeto revelaram que, ao menos para a enzima selvagem, a oxidação pode produzir diferenças entre os decâmeros (Figura 9) ou mesmo uma variedade de espécies oligoméricas (Figura 11).

Em razão da complexidade estrutural das proteínas deste trabalho, é provável que as distintas formas oligoméricas que podem acontecer no decorrer dos experimentos de cristalização possam ter efeito decisivo no sucesso dos experimentos. Desta forma, abordagens envolvendo duplos mutantes carreando a substituição de Cys em conjunto com E50A, R146Q, T44V ou Y77A, podem ser uma alternativa para o sucesso da obtenção dos cristais. Outra abordagem seria a obtenção de proteínas Tsa1E50A, Tsa1R146Q, Tsa1T44V e Tsa1Y77A oxidadas em dissulfeto, estando então inertes a modificações oxidativas e, consequentemente, a alterações estruturais. Para isto, poderiam ser realizados experimentos com baixas doses de hidroperóxidos e em pH 4.0, pois uma vez que o pK\textsubscript{a} da Cys\textsubscript{P} é ~5.6, em pH ácido a Cys\textsubscript{P} estaria menos reativa, possibilitando a formação de proteínas em dissulfeto. Ainda, este procedimento poderia ser acompanhado pela metodologia de DTNB e averiguação do grau oligomérico por SEC.

Adicionalmente, embora os mutantes Tsa1T44V e Tsa1Y77A se apresentem somente como dímeros, fazendo com que as observações efetuadas acima possam parecer sem sentido, vale salientar que mutantes de AhpC de S. typhimurium que se apresentaram como dímeros em experimentos de sedimentação por ultracentrifugação (T77D e T77I), apresentam estrutura cristalográfica na forma decâmérica. Neste contexto, é pertinente salientar que aspectos como superoxidação e alterações estruturais são praticamente ausentes nas 2-Cys Prx típicas de procariotos, mas existem nas representantes de eucariotos, o que insere um grau de dificuldade maior para a determinação de estruturas de enzimas de eucariotos.
6 CONSIDERAÇÕES FINAIS

Neste trabalho foi determinado o modelo cristalográfico de Tsa1_{C47S} de *S. cerevisiae*, a qual foi a primeira Prx descrita e representa um modelo de estudos funcionais e estruturais em eucariotos, sendo possível obter um melhor entendimento dos mecanismos estruturais envolvidos no processo de catálise e nas funções de sinalização celular e chaperona molecular apresentadas pelas Prx. Ainda, devido à grande identidade e similaridade com Prx homólogas de humanos, pode ser alvo para estudos de drogas, visto que as estas enzimas apresentam papel importante em doenças como câncer e mal de Alzheimer.

Baseado na estrutura cristalográfica de Tsa1_{C47S} foi possível identificar que os resíduos Glu^{50} e Arg^{146}, até então pouco estudados, estão próximos ao sítio ativo. Ensaios com os mutantes Tsa1_{E50A} e Tsa1_{R146Q} confirmaram a importância destes resíduos, uma vez que estão envolvidos na reatividade de Tsa1, na transição dos estados estruturais, na redução por Trx e no processo de superoxidação.

O papel da treonina que compõe a tríade catalítica conservada nas Prx também foi investigado neste trabalho. Foi demonstrado de forma experimental que o resíduo de treonina é importante para a alta reatividade da enzima e na suscetibilidade à superoxidação, embora a sua substituição por serina, a qual ocorre naturalmente em algumas Prx, possa representar uma vantagem fisiológica. Ainda, foi possível revelar um papel até então desconhecido para Thr^{44} no processo de oligomerização, o que se mostrou importante do ponto de vista funcional, já que a perda da estrutura decamérica em variados mutantes gerou enzimas com a atividade reduzida. Adicionalmente, também foi demonstrada a importância do resíduo de Tyr^{77}, o qual também nunca havia sido avaliado em trabalhos anteriores presentes na literatura, e o qual foi demonstrado nesta tese que a interação direta deste aminoácido com a Thr da tríade catalítica, por meio de uma interação CH-π, exerce forte influência na estabilidade do decámero e afeta de forma bastante significativa as propriedades catalíticas da enzima.

O papel do resíduo Asp^{141} foi abordado pela primeira vez, apesar do seu alto grau de conservação e aparente importância na manutenção do estado LU. Nesta tese foi verificado que o mutante Tsa1_{D141N} apresenta baixa redução por DTT e Trx, mas sem haver uma grande perda na atividade peroxidásica sobre H_{2}O_{2}.

Neste trabalho ainda foram apresentados experimentos de cristalização visando à determinação da estrutura de mutantes de Tsa1 utilizados neste projeto. Por meio destes foi possível observar a dificuldade de se obter amostras homogêneas de Tsa1, o que é fundamental para a obtenção de cristais com alta qualidade, mesmo quando é feito tratamento com DTT ou algum hidroperóxido. Desta forma, outras abordagens devem ser empregadas para obtenção de melhores resultados.
Por fim, abaixo é apresentada uma tabela que sintetiza os principais resultados obtidos para os mutantes neste trabalho, de modo a facilitar a compreensão do papel de cada resíduo em Tsa1.

Tabela 10. Síntese dos resultados majoritariamente observados e mais relevantes deste trabalho.

Enzima	Reatividade com H$_2$O$_2$ (M$^{-1}$s$^{-1}$)	Reatividade com CHP (M$^{-1}$s$^{-1}$)	Estado oligomérico	Suscetibilidade à superoxidação	Capacidade de redução por Trx
Tsa1WT	5.0×10^7	3.3×10^7	Decâmero	Sim	Sim
Tsa1E50A	$1.9 \times 10^8*$	N/D	Decâmero	Não	Não
Tsa1R146Q	$3.6 \times 10^8*$	N/D	Decâmero	Não	Não***
Tsa1T44A	4.0×10^4	8.6×10^4	Decâmero	Não	Sim
Tsa1T44S	2.3×10^7	1.4×10^7	Decâmero	Sim	Sim
Tsa1T44V	N/D	N/D	Decâmero/Dímero	Sim	Não
Tsa1Y77A	1.4×10^4	1.4×10^3	Dímero	N/D	Não
Tsa1S78D	4.0×10^4	4.0×10^1	Dímero	Não	Não
Tsa1S78V	N/D	N/D	Decâmero	Sim	Sim
Tsa1R123G	N/D	N/D	Decâmero/Dímero**	N/D	Não
Tsa1R123K	N/D	N/D	Decâmero/Dímero**	N/D	Não***
Tsa1D141N	N/D	N/D	N/D	N/D	Não***
Tsa1S78V	N/D	N/D	Decâmero	Não	Sim
Tsa1Y77A	N/D	N/D	Decâmero	Não	Sim
Tsa1S78V	N/D	N/D	Decâmero	Não	Sim

* Valor obtido por ensaio de competição com HRP
** Forma predominante
*** Nas condições padrão do ensaio (1μM de Tsa1; 2 μM de Trx1; 0.3 μM de TrxR; 200 μM de hidroperóxido e 150 μM NADPH)
7 PERSPECTIVAS

Diversas perspectivas de pesquisa foram abertas pelo trabalho desenvolvido nesta tese, sendo que as consideradas mais significativas são listadas a seguir e estarão abordadas em projeto de pós-doutoramento.

- **Determinação das constantes de pseudo-primeira ordem da redução por Trx de Tsa1 e dos mutantes Tsa1\(^{E50A}\) e Tsa1\(^{R146Q}\):** Este tópico visa complementar os estudos publicados no *Journal of Molecular Biology*, v.424, p.28-41, 2012, onde foi demonstrado que apesar dos mutantes Tsa1\(^{E50A}\) e Tsa1\(^{R146Q}\) serem reduzidos por DTT, eles são altamente refrativos a redução por Trx. Entretanto, no trabalho publicado não foi possível determinar de forma satisfatória as constantes de redução. Adicionalmente, até o presente momento nenhum trabalho atentou para a determinação das constantes de redução de 2-Cys Prx por Trx. Cabe ressaltar que este trabalho já foi iniciado utilizando Trx1 selvagem (que não apresenta emissão de fluorescência por Trp) e Tsa1 selvagem, com resultados preliminares indicando taxas de redução na ordem de \(10^6\)M\(^{-1}\)s\(^{-1}\). Por fim, de forma complementar, as constantes para decomposição de H\(_2\)O\(_2\) e CHP dos mutantes Tsa1\(^{E50A}\) e Tsa1\(^{R146Q}\) serão realizadas, de modo a confirmar os resultados obtidos por competição com HRP.

- **Conclusão das análises bioquímicas e estruturais do mutante Tsa1\(^{D141N}\):** Serão determinadas as constantes para decomposição de H\(_2\)O\(_2\) e CHP do mutante Tsa1\(^{D141N}\) por fluorescência. A avaliação dos efeitos da mutação na estrutura secundária da enzima será realizada por meio de espectroscopia de dicroísmo circular, enquanto a análise da estrutura quaternária será feita por meio de espalhamento dinâmico de luz, cromatografia de exclusão molecular e, se necessário, microscopia eletrônica de transmissão.

- **Obtenção de cristais e determinação de estrutura cristalográfica de Tsa1 selvagem e de mutantes:** Será efetuada a cristalização de duplos mutantes Tsa1\(^{C47S/E50A}\), Tsa1\(^{C47S/R146Q}\), Tsa1\(^{C47S/T44V}\), Tsa1\(^{C47S/T44S}\) e Tsa1\(^{C47S/Y77A}\) em condições oxidantes e redutoras. Também adotaremos a abordagem do tratamento de proteína selvagem ou de mutantes com substituições únicas (Tsa1\(^{T44S}\), Tsa1\(^{T44V}\), Tsa1\(^{E50A}\), Tsa1\(^{Y77A}\), Tsa1\(^{D141N}\) e Tsa1\(^{R146Q}\)), utilizando baixas doses de peróxidos e em pH ácido (4.0-4.5) visando à obtenção de proteínas diméricas e em dissulfeto. Cabe ressaltar que Tsa1\(^{C47S}\) cristalizou em pH 4.2 e se apresentava bem estruturada. Como controles, a quantidade de cisteínas livres será acompanhada pela metodologia de DTNB e averiguação do grau oligomérico por SEC.

- **Aprofundamento das análises de superoxidação por fluorescência intrínseca dos resíduos de Trp:** Neste contexto, para determinar quais os resíduos de Trp possuem...
atividade óptica relacionada aos fenômenos detectados (atividade peroxidásica, formação do dissulfeto, superoxidação da CysP), os resíduos serão substituídos por Phe (Tsa1W82F, Tsa1W160F e Tsa1W172F). Após estes estudos, serão determinadas as constantes de superoxidação de todos os mutantes utilizados nesta tese de doutoramento. Cabe ressaltar que este trabalho se encontra iniciado e conta com a colaboração do Prof. Dr. Luis Eduardo Soares Netto (IB-USP-SP), do Dr. Robert Ryan Geyer e da Prof. Dra. Ohara Augusto (IQ-USP-SP).

- **Obtenção de linhagens Δtsa1 BY4754 transformadas com mutantes de Tsa1:**
 Linhagens Δtsa1 BY4754 serão utilizadas para a transformação utilizando plasmídeos de levedura carreando insertos tsail44V, tsait50A, tsaiY77A, tsaiD141N e tsaiR146Q. Alternativamente, serão criados cassetes dos genes para a transformação por recombinação homóloga. Os objetivos deste trabalho serão o de investigar os efeitos fisiológicos nas células de levedura contendo as enzimas mutantes. Neste contexto serão investigados efeitos no crescimento aeróbico e fermentativo, suscetibilidade a diferentes hidroperóxidos, suscetibilidade a choque térmico entre outros.

- **Análise do efeito das mutações mais relevantes realizadas neste trabalho na enzima de H. sapiens Prx2:** Visando investigar as razões de diferenças observadas nas taxas de decomposição de hidroperóxidos entre Tsa1 de levedura e Prx2 de humanos. De fato os mutantes Prx2E54A e Prx2R150Q já foram obtidos e a padronização da expressão e purificação está em andamento. No trabalho publicado no *Journal of Molecular Biology*, v.424, p.28-41, 2012, uma das possibilidades aventadas para a diferença na decomposição de H2O2 foi a substituição de Ile39 de Tsa1 por um resíduo de Tyr43 em Prx2 de humanos. Neste contexto também será gerado Prx2Y43I. Na caracterização destes mutantes de Prx2 humanas, serão utilizadas diversas abordagens bioquímicas e estruturais para a caracterização. Cabe salientar que apesar da grande importância de Prx2 em diversos processos celulares, poucos estudos abordam mutagênese sitio dirigida e análise de atividade para esta proteína. Neste sentido, abordagens envolvendo análises de proteínas humanas podem significar publicações em periódicos de maior seletividade e impacto, além de possibilitar uma linha de pesquisa para minha carreira científica.

- **Procedimentos envolvendo a cristalização da proteína selvagem Prx2 e mutantes:**
 Prx2 e os mutantes Prx2E54A, Prx2R150Q Prx2Y43 serão executados utilizando as abordagens citadas acima para Tsa1 e mutantes.
REFERÊNCIAS

Aran M, Ferrero D, Wolosiuk A, Mora-García S, Wolosiuk RA. ATP and Mg$^{2+}$ promote the reversible oligomerization and aggregation of chloroplast 2-Cys peroxiredoxin. J Biol Chem. 2011;286(26):23441–51.

Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, et al. Current Protocols in Molecular Biology. Methods Enzymol. New York: John Wiley & Sons Inc; 2008.

Baker LMS, Poole LB. Catalytic mechanism of thiol peroxidase from Escherichia coli: Sulfenic acid formation and overoxidation of essential Cys61. J Biol Chem. 2003;278:9203–11.

Bang YJ, Oh MH, Choi SH. Distinct characteristics of two 2-cys peroxiredoxins of Vibrio vulnificus suggesting differential roles in detoxifying oxidative stress. J Biol Chem. 2012;287:42516–24.

Bao L, Avshalumov M V, Patel JC, Lee CR, Miller EW, Chang CJ, et al. Mitochondria are the source of hydrogen peroxide for dynamic brain-cell signaling. J Neurosci. 2009;29(28):9002–10.

Barranco-Medina S, Kakorin S, Lázaro JJ, Dietz K-J. Thermodynamics of the Dimer-Decamer Transition of Reduced Human and Plant 2-Cys Peroxiredoxin. Biochemistry. 2008;47(12):7196–204.

Biteau B, Labarre J, Toledano MB. ATP-dependent reduction of cysteine – sulphenic acid by S. cerevisiae sulphiredoxin. Nature. 2003;425:980–4.

Böhm G, Muhr R, Jaenicke R. Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Eng. 1992;5(3):191–5.

Chae HZ, Chung SJ, Rhee SG. Thioredoxin-dependent peroxide reductase from yeast. J Biol Chem. 1994a;269(44):27670–8.

Chae HZ, Uhm TB, Rhee SG. Dimerization of thiol-specific antioxidant and the essential role of cysteine 47. Proc Natl Acad Sci U S A. 1994b;91:7022–6.

Cox AG, Winterbourn CC, Hampton MB. Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem J. 2010;425(2):313–25.

Dai S, Saarinen M, Ramaswamy S, Meyer Y, Jacquot JP, Eklund H. Crystal structure of Arabidopsis thaliana NADPH dependent thioredoxin reductase at 2.5 A resolution. J Mol Biol. 1996;264:1044–57.

Day AM, Brown JD, Taylor SR, Rand JD, Morgan BA., Veal EA. Inactivation of a Peroxiredoxin by Hydrogen Peroxide Is Critical for Thioredoxin-Mediated Repair of Oxidized Proteins and Cell Survival. Mol Cell; 2012;45(3):398–408.

* De acordo com:
International Committee of Medical Journal Editors. [Internet]. Uniform requirements for manuscripts submitted to biomedical journals. [2011 Jul 15]. Available from: http://www.nlm.nih.gov/bsd/uniform_requirements.html.
DeLano WL. The PyMOL Molecular Graphics System. DeLano Sci San Carlos, CA. 2002;

Dickinson BC, Srikun D, Chang CJ. Mitochondrial-targeted fluorescent probes for reactive oxygen species. Curr Opin Chem Biol. 2010;14(1):50–6.

Dubbs JM, Mongkolsuk S. Peroxiredoxins in bacterial antioxidant defense. Subcell Biochem. 2007;44:143–93.

Emsley P, Cowtan K. Coot: Model-building tools for molecular graphics. Acta Crystallogr Sect D Biol Crystallogr. International Union of Crystallography; 2004;60:2126–32.

Evans PR. Data reduction. Proc CCP4 Study Weekend Data Collect Process. 1993;114–22.

Ferrera-Sueta G, Manta B, Botti H, Radi R, Trujillo M, Denicola A. Factors affecting protein thiol reactivity and specificity in peroxide reduction. Chem Res Toxicol. 2011;24(4):434–50.

Ferrera-Sueta G, Radi R. Chemical biology of peroxynitrite: Kinetics, diffusion, and radicals. ACS Chem Biol. 2009;4(3):161–77.

Flohé L, Budde H, Bruns K, Castro H, Clos J, Hofmann B, et al. Tryparedoxin peroxidase of Leishmania donovani: molecular cloning, heterologous expression, specificity, and catalytic mechanism. Arch Biochem Biophys. 2002;397(2):324–35.

Flohé L, Harris JR. History of the peroxiredoxins and topical perspectives. Subcell Biochem. 2007;44:1–25.

Flohé L, Toppo S, Cozza G, Ursini F. A Comparison of Thiol Peroxidase Mechanisms. Antioxid Redox Signal. 2011;15(3):763–80.

Fourquet S, Huang M-E, D’Autreaux B, Toledano MB. The dual functions of thiol-based peroxidases in H$_2$O$_2$ scavenging and signaling. Antioxid Redox Signal. 2008;10(9):1565–76.

Ghaemmaghami S, Huh W-K, Bower K, Howson RW, Belle A, Dephoure N, et al. Global analysis of protein expression in yeast. Nature. 2003;425(6959):737–41.

González-Flecha B, Demple B. Metabolic Source of Hydrogen Peroxide in Aerobically Growing Escherichia coli. J Biol Chem. 1995;270:13681–7.

Goodarzi M, Moosavi-Movahedi AA, Habibi-Rezaei M, Shourian M, Ghourchian H, Ahmad F, et al. Hemoglobin fructation promotes heme degradation through the generation of endogenous reactive oxygen species. Spectrochim Acta Part A Mol Biomol Spectrosc. 2014;130:561–7.

Hall A, Karplus PA, Poole LB. Typical 2-Cys peroxiredoxins - Structures, mechanisms and functions. FEBS J. 2009;276(9):2469–77.

Hall A, Nelson K, Poole LB, Karplus PA. Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins. Antioxid Redox Signal. 2011;15(3):795–815.

Hall A, Parsonage D, Poole LB, Karplus PA. Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization. J Mol Biol. 2010;402(1):194–209.
Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. 4th ed. Oxford: Oxford University Press; 2007.

Hayashi T, Ueno Y, Okamoto T. Oxidoreductive regulation of nuclear factor kappa B. Involvement of a cellular reducing catalyst thioredoxin. J Biol Chem. 1993;268(15):11380–8.

Haynes AC, Qian J, Reisz JA, Furdui CM, Lowther WT. Molecular basis for the resistance of human mitochondrial 2-Cys peroxiredoxin 3 to hyperoxidation. J Biol Chem. 2013;288(41):29714–23.

Hillar A, Peters B, Pauls R, Loboda A, Zhang H, Mauk AG, Loewen PC. Modulation of the Activities of Catalase–Peroxidase HPI of Escherichia coli by Site-Directed Mutagenesis. Biochemistry. 2000;39(19):5868–75.

Hofmann B, Hecht H-J, Flohé L. Peroxiredoxins. Biol Chem. 2002;383(3-4):347–64.

Holmgren A, Johansson C, Berndt C, Lönn ME, Hudemann C, Lillig CH. Thiol redox control via thioredoxin and glutaredoxin systems. Biochem Soc Trans. 2005;33(Pt 6):1375–7.

Hooft RW, Vriend G, Sander C, Abola EE. Errors in protein structures. Nature. 1996. p. 272.

Horta BB, Oliveira MA, Discola KF, Cussiol JRR, Netto LES. Structural and biochemical characterization of peroxiredoxin QB from Xylella fastidiosa: Catalytic mechanism and high reactivity. J Biol Chem. 2010;285(21):16051–65.

Iyer KS, Klee WA. Direct spectrophotometric measurement of the rate of reduction of disulfide bonds. J Biol Chem. 1973;248(2):707–10.

Jang HH, Lee KO, Chi YH, Jung BG, Park SK, Park JH, et al. Two enzymes in one: Two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell. 2004;117(5):625–35.

Jönsson TJ, Ellis HR, Poole LB. Cysteine reactivity and thiol-disulfide interchange pathways in AhpF and AhpC of the bacterial alkyl hydroperoxide reductase system. Biochemistry. 2007;46:5709–21.

Jönsson TJ, Johnson LC, Lowther WT. Structure of the sulphiredoxin-peroxiredoxin complex reveals an essential repair embrace. Nature. 2008;451(7174):98–101.

Kang SW, Rhee SG, Chang T-S, Jeong W, Choi MH. 2-Cys peroxiredoxin function in intracellular signal transduction: therapeutic implications. Trends Mol Med. 2005;11(12):571–8.

Karplus PA, Hall A. Structural survey of the peroxiredoxins. Subcell Biochem. 2007;44:41–60.

Karplus PA, Poole LB. Peroxiredoxins as Molecular Triage Agents. Sacrificing Themselves to Enhance Cell Survival During a Peroxide Attack. Mol Cell. 2012;45(3):275–8.

Kim K, Rhee SG, Stadtman ER. Nonenzymatic cleavage of proteins by reactive oxygen species generated by dithiothreitol and iron. J Biol Chem. 1985;260:15394–7.
Kim K, Yu M, Han S, Oh I, Choi YJ, Kim S, et al. Expression of human peroxiredoxin isoforms in response to cervical carcinogenesis. Oncol Rep. 2009;21:1391–6.

Kirkman, HN, Rolfo M, Ferraris AM, Gaetani GF. Mechanisms of Protection of Catalase by NADPH: Kinetics and Stoichiometry. J Biol Chem. 1999;274(20):13908–14.

Kitano K, Niimura Y, Nishiyama Y, Miki K. Stimulation of Peroxidase Activity by Decamerization Related to Ionic Strength: AhpC Protein from Amphibacillus xylanus. J Biochem. 1999;126(2):313–9.

König J, Lotte K, Plessow R, Brockhinke A, Baier M, Dietz K-J. Reaction mechanism of plant 2-Cys peroxiredoxin. Role of the C terminus and the quaternary structure. J Biol Chem. 2003;278(27):24409–20.

Kristensen P, Rasmussen DE, Kristensen BI. Properties of thiol-specific anti-oxidant protein or calpromotin in solution. Biochem Biophys Res Commun]. 1999;262(1):127–31.

Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr. 1993;26:283–91.

Lennon BW, Williams CH, Ludwig ML. Twists in catalysis: alternating conformations of Escherichia coli thioredoxin reductase. Science. 2000;289(5482):1190–4.

Leslie AGW. JOINT CCP4 and ESF - EACBM NEWSLETTER on PROTEIN CRYSTALLOGRAPHY. 1992;26.

Lim JC, Choi H-I, Park YS, Nam HW, Woo HA, Kwon K-S, et al. Irreversible oxidation of the active-site cysteine of peroxiredoxin to cysteine sulfonic acid for enhanced molecular chaperone activity. J Biol Chem. 2008;283(43):28873–80.

Liu H, Nishitoh H, Ichijo H, Kyriakis JM. Activation of apoptosis signal-regulating kinase 1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor thioredoxin. Mol Cell Biol. 2000;20(6):2198–208.

Lowther WT, Haynes AC. Reduction of cysteine sulfinic acid in eukaryotic, typical 2-Cys peroxiredoxins by sulfiredoxin. Antioxid Redox Signal. 2011;15(1):99–109.

Matthews JR, Wakasugi N, Virelizier JL, Yodoi J, Hay RT. Thioredoxin regulates the DNA binding activity of NF-kappa B by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res. 1992;20(15):3821–30.

Miranda-Vizuete A, Damdimopoulos AE, Pedrajas JR, Gustafsson J-A, Spyrou G. Human mitochondrial thioredoxin reductase cDNA cloning, expression and genomic organization. Eur J Biochem. 1999;261:405–12.

Moon JC, Hah Y-S, Kim WY, Jung BG, Jang HH, Lee JR, et al. Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to H2O2-induced cell death. J Biol Chem [Internet]. 2005;280(31):28775–84.

Munhoz DC, Netto LES. Cytosolic Thioredoxin Peroxidase I and II Are Important Defenses of Yeast against Organic Hydroperoxide Insult. J Biol Chem. 2004;279(34):35219–27.
Murphy MP, Holmgren A, Larsson N-G, Halliwell B, Chang CJ, Kalyanaraman B, et al. Unraveling the biological roles of reactive oxygen species. Cell Metab. 2011;13(4):361–6.

Murshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr Sect D Biol Crystallogr. 1997;53:240–55.

Nagy P, Karton A, Betz A, Peskin AV., Pace P, O'Reilly RJ, et al. Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide: A kinetic and computational study. J Biol Chem. 2011;286:18048–55.

Nakamura T, Kado Y, Yamaguchi T, Matsumura H, Ishikawa K, Inoue T. Crystal structure of peroxiredoxin from Aeropyrum pernix K1 complexed with its substrate, hydrogen peroxide. J Biochem. 2010;147(1):109–15.

Nakamura T, Yamamoto T, Abe M, Matsumura H, Hagihara Y, Goto T, et al. Oxidation of archaeal peroxiredoxin involves a hypervalent sulfur intermediate. Proc Natl Acad Sci U S A. 2008;105(17):6238–42.

Navaza J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. Sect. A Found. Crystallogr. 1994. p. 157–63.

Nelson KJ, Knutson ST, Soito L, Klomsiri C, Poole LB, Fetrow JS. Analysis of the peroxiredoxin family: using active-site structure and sequence information for global classification and residue analysis. Proteins. 2011;79(3):947–64.

Nelson KJ, Parsonage D, Karplus PA, Poole LB. Evaluating peroxiredoxin sensitivity toward inactivation by peroxide substrates. Methods Enzymol. 2013;527:21–40.

Netto LES, Chae HZ, Kang SW, Rhee SG, Stadtman ER. Removal of hydrogen peroxide by thiol-specific antioxidant enzyme (TSA) is involved with its antioxidant properties. TSA possesses thiol peroxidase activity. J Biol Chem. 1996;271(26):15315–21.

Ogusucu R, Rettori D, Munhoz DC, Netto LES, Augusto O. Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: rate constants by competitive kinetics. Free Radic Biol Med. 2007;42(3):326–34.

Oliveira MA, Discola KF, Alves SV, Medrano FJ, Guimarães BG, Netto LES. Insights into the specificity of thioredoxin reductase-thioredoxin interactions. A structural and functional investigation of the yeast thioredoxin system. Biochemistry. 2010;49(15):3317–26.

Oliveira MA, Genu V, Discola KF, Alves SV, Netto LES, Guimarães BG. Crystallization and preliminary X-ray analysis of a decameric form of cytosolic thioredoxin peroxidase 1 (Tsa1), C47S mutant, from Saccharomyces cerevisiae. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2007;F63(Pt 8):665–8.

Pace PE, Peskin A V, Han M-H, Hampton MB, Winterbourn CC. Hyperoxidized peroxiredoxin 2 interacts with the protein disulfide- isomerase ERP46. Biochem J. 2013;453(3):475–85.

Park SG, Cha MK, Jeong W, Kim IH. Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae. J Biol Chem. 2000;275(8):5723-32.
Parsonage D, Nelson KJ, Ferrer-Sueta G, Alley S, Karplus PA, Furdui CM, et al. Dissecting Peroxiredoxin Catalysis: Separating Binding, Peroxidation, and Resolution for a Bacterial AhpC. Biochemistry. 2015;54(7):1567–75.

Parsonage D, Youngblood DS, Sarma GN, Wood ZA, Karplus PA, Poole LB. Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin. Biochemistry. 2005;44(1):10583–92.

Pedrajas JR, Miranda-Vizuete A, Javanmardy N, Gustafsson JÅ, Spyrou G. Mitochondria of Saccharomyces cerevisiae contain one-conserved cysteine type peroxiredoxin with thioredoxin peroxidase activity. J Biol Chem. 2000;275(21):16296–301.

Perkins A, Poole LB, Karplus PA. Tuning of Peroxiredoxin Catalysis for Various Physiological Roles. Biochemistry. 2014;53:7693–705.

Peskin A V, Cox AG, Nagy P, Morgan PE, Hampton MB, Davies MJ, et al. Removal of amino acid, peptide and protein hydroperoxides by reaction with peroxiredoxins 2 and 3. Biochem J. 2010;432(2):313–21.

Portillo-Ledesma S, Sardi F, Manta B, Tourn MV, Clippe A, Knoops B, et al. Deconstructing the Catalytic Efficiency of Peroxiredoxin-5 Peroxidatic Cysteine. Biochemistry. 2014;53(38):6113-25.

Puerto-Galan L, Perez-Ruiz JM, Guinea M, Cejudo FJ. The contribution of NADPH thioredoxin reductase C (NTRC) and sulfiredoxin to 2-Cys peroxiredoxin overoxidation in Arabidopsis thaliana chloroplasts. J Exp Bot. 2015; Available from: http://jxb.oxfordjournals.org/lookup/doi/10.1093/jxb/eru512

Reyes AM, Hugo M, Trostchansky A, Capece L, Radi R, Trujillo M. Oxidizing substrate specificity of Mycobacterium tuberculosis alkyl hydroperoxide reductase E: Kinetics and mechanisms of oxidation and overoxidation. Free Radic Biol Med. 2011;51(2):464–73.

Rhee SG. H$_2$O$_2$, a necessary evil for cell signaling. Science. 2006;312(5782):1882–3.

Rhee SG, Chae HZ, Kim K. Peroxiredoxins: A historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med. 2005;38(12):1543–52.

Saccoccia F, Angelucci F, Boumis G, Desiato G, Miele AE, Bellelli A. Selenocysteine robustness versus cysteine versatility: a hypothesis on the evolution of the moonlighting behaviour of peroxiredoxins. Biochem Soc Trans. 2014;42:1768–72.

Saccoccia F, Di Micco P, Boumis G, Brunori M, Koutris I, Miele AE, et al. Moonlighting by different stressors: Crystal structure of the chaperone species of a 2-Cys peroxiredoxin. Structure. 2012;20(3):429–39.

Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234:779–815.

Sardi F, Manta B, Portillo-Ledesma S, Knoops B, Comini MA, Ferrer-Sueta G. Determination of acidity and nucleophilicity in thiols by reaction with monobromobimane and fluorescence detection. Anal Biochem. 2013;435(1):74–82.
Schröder E, Littlechild JA, Lebedev AA, Errington N, Vagin AA, Isupov MN. Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 1.7 Å resolution. Structure. 2000;8(6):605–15.

Sobotta MC, Liou W, Stöcker S, Talwar D, Oehler M, Ruppert T, et al. Peroxiredoxin-2 and STAT3 form a redox relay for H₂O₂ signaling. Nat Chem Biol. 2015;11(1):64–70.

Stadtman ER. Metal ion-catalyzed oxidation of proteins: Biochemical mechanism and biological consequences. Free Radic Biol Med. 1990;9:315–25.

Tairum CA, Oliveira MA, Horta BB, Zara FJ, Netto LES. Disulfide biochemistry in 2-Cys peroxiredoxin: Requirement of Glu50 and Arg146 for the reduction of yeast Tsa1 by thioredoxin. J Mol Biol. 2012;424(1-2):28–41.

Toledo JC, Audi R, Ogusucu R, Monteiro G, Netto LES, Augusto O. Horseradish peroxidase compound I as a tool to investigate reactive protein-cysteine residues: from quantification to kinetics. Free Radic Biol Med. 2011;50(9):1032–8.

Tovar-Méndez A, Matamoros MA, Bustos-Sanmamed P, Dietz K-J, Cejudo FJ, Rouhier N, et al. Peroxiredoxins and NADPH-dependent thioredoxin systems in the model legume Lotus japonicus. Plant Physiol. 2011;156(3):1535–47.

Trotter EW, Rand JD, Vickerstaff J, Grant CM. The yeast Tsa1 peroxiredoxin is a ribosome-associated antioxidant. Biochem J. 2008;412:73–80.

Vignols F, Bréhélin C, Surdin-Kerjan Y, Thomas D, Meyer Y. A yeast two-hybrid knockout strain to explore thioredoxin-interacting proteins in vivo. Proc Natl Acad Sci U S A. 2005;102(46):16729–34.

Waksman G, Krishna TS, Williams CH, Kuriyan J. Crystal structure of Escherichia coli thioredoxin reductase refined at 2 Å resolution. Implications for a large conformational change during catalysis. J Mol Biol. 1994;236:800–16.

Wang X, Wang L, Wang X, Sun F, Wang C. Structural insights into the peroxidase activity and inactivation of human peroxiredoxin 4. Biochem J. 2012;441(1):113–8.

Wood ZA, Poole LB, Karplus PA. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science. 2003a;300:650–3.

Wood ZA, Poole LB, Hantgan RR, Karplus PA. Dimers to doughnuts: Redox-sensitive oligomerization of 2-cysteine peroxiredoxins. Biochemistry. 2002;41:5493–504.

Wood ZA, Schröder E, Harris JR, Poole LB. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci. 2003b;28(1):32–40.
Tairum CA, Oliveira MA, Horta BB, Zara FJ, Netto LES. Disulfide biochemistry in 2-Cys peroxiredoxin: Requirement of Glu50 and Arg146 for the reduction of yeast Tsa1 by thioredoxin. J Mol Biol. 2012;424(1-2):28–41
Disulfide Biochemistry in 2-Cys Peroxiredoxin: Requirement of Glu50 and Arg146 for the Reduction of Yeast Tsa1 by Thioredoxin

Abstract

2-Cys peroxiredoxin (Prx) enzymes are ubiquitously distributed peroxidases that make use of a peroxidatic cysteine (CysP) to decompose hydroperoxides. A disulfide bond is generated as a consequence of the partial unfolding of the α-helix that contains CysP. Therefore, during its catalytic cycle, 2-Cys Prx alternates between two states, locally unfolded and fully folded. Tsa1 (thiol-specific antioxidant protein 1 from yeast) is by far the most abundant Cys-based peroxidase in Saccharomyces cerevisiae. In this work, we present the crystallographic structure at 2.8 Å resolution of Tsa1(C47S) in the decameric form [(α2)5] with a DTT molecule bound to the active site, representing one of the few available reports of a 2-Cys Prx (AhpC-Prx1 subfamily) (AhpC, alkyl hydroperoxide reductase subunit C) structure that incorporates a ligand. The analysis of the Tsa1(C47S) structure indicated that Glu50 and Arg146 participate in the stabilization of the CysP α-helix. As a consequence, we raised the hypothesis that Glu50 and Arg146 might be relevant to the CysP reactivity. Therefore, Tsa1(E50A) and Tsa1(R146Q) mutants were generated and were still able to decompose hydrogen peroxide, presenting a second-order rate constant in the range of 10^6 M$^{-1}$ s$^{-1}$. Remarkably, although Tsa1(E50A) and Tsa1(R146Q) were efficiently reduced by the low-molecular-weight reductant DTT, these mutants displayed only marginal thioredoxin (Trx)-dependent peroxidase activity, indicating that Glu50 and Arg146 are important for the Tsa1–Trx interaction. These results may impact the comprehension of downstream events of signaling pathways that are triggered by the oxidation of critical Cys residues, such as Trx.

Introduction

Peroxiredoxins (Prxs) constitute a large family of thiol-specific antioxidant proteins that catalyze the reduction of hydrogen peroxide and organic hydroperoxides to water and alcohols, respectively.\cite{1,2,3} With second-order rate constants in the range of 10^6–10^8 M$^{-1}$ s$^{-1}$,\cite{4,5,6,7,8,9} This range represents an extraordinary catalytic efficiency, as free cysteine presents a second-order rate constant of approximately 10^1 M$^{-1}$ s$^{-1}$.\cite{10} Prxs are ubiquitously distributed among prokaryotic and eukaryotic organisms, and most of these enzymes utilize thioredoxin (Trx) as an electron donor.\cite{11,12} This reductive step of the catalytic cycle is less thoroughly characterized. The few available studies indicated that the second-order rate constant for the reduction of Prx by Trx lies in the range of 10^6 M$^{-1}$ s$^{-1}$.\cite{13}

Prxs are subdivided into subfamilies that present very divergent amino acid sequences but those that uniformly possess at least one conserved cysteine residue at the active site (the peroxidatic cysteine,
CysP). This residue is responsible for the nucleophilic attack on the hydroperoxide and then becomes oxidized into a sulfenic acid (CysP-SOH). All of the Prx enzymes possess a catalytic triad composed of CysP, a threonine (or a serine) and an arginine. The CysP and the Thr(Ser) residues are part of the Pro-X-X-Thr(Ser) X-X-CysP conserved motif, whereas the entirely conserved Arg is distantly localized in the Prx primary structure. These residues were proposed to stabilize the side chain of CysP in the thiolate form (CysP-S⁻) at physiological pH, thereby increasing its nucleophilicity. However, the augmentation of thiolate availability would account for an increase in cysteine reactivity of only a factor of 10. Arg and Thr residues, among others, most likely stabilize the transition state between thiolate and peroxide in an SN2 substitution type of reaction.

Most Prxs of all the subfamilies characterized thus far are found as homodimers and can be classified by the number of cysteinyl residues that are involved in catalysis as either 1-Cys Prx or 2-Cys Prx. The 2-Cys Prxs can be further subdivided in two classes based on the formation of either intermolecular or intramolecular disulfide bonds, which are known as typical and atypical 2-Cys Prx, respectively. Additionally, the Prxs can be classified according to their amino acid sequence conservation and/or structural features. In the last proposal, the Prxs can be separated into six subfamilies (AhpC-Prx1, Prx6, Prx5, Tpx, BCP/PrxQ and AhpE) (AhpC, alkyl hydroperoxide reductase subunit C), most of which contain a second cysteine residue that is known as the resolving cysteine (CysR). This residue reacts with the CysP-SOH, generating, in the case of the AhpC-Prx1 subfamily, an inter-subunit disulfide bond that is usually reduced by Trx. Proteins belonging to the AhpC-Prx1 subfamily play a central role in redox signaling, some of them endowed with chaperone activity besides the well-described thiol-peroxidase activity. The peroxidase and chaperone activities of mammalian Prx1 and Prx2 are regulated posttranslationally by means of phosphorylation and oxidation. Acetylation is another posttranslational...

Fig. 1. Tsa1C47S structure. (a) Overall view of decameric structure with DTT in the active site of some monomers. The monomers of each one of the five domain-swapped dimers are depicted in blue and light gray, and the N-terminal and C-terminal portions are identified in the monomers of the upper dimer as N-T and C-T, respectively. The DTT molecules are represented by spheres and colored by CPK (Corey–Pauling–Koltun) (C, green; N, blue; O, red; S, orange). (b) 2Fₒ − Fc map is shown in light blue and contoured at 1.3σ. The map clearly shows the presence of a strong density at the active site attributed to a reduced DTT molecule. (c) Comparison of DTT binding in Tsa1C47S with hydrogen peroxide binding in ApPrx (only the oxygen atoms of hydrogen peroxide are depicted; OA is the proximal atom, whereas OB is the distal atom relative to the position of the Sγ of CysP, as proposed by Hall et al.26). The Tsa1C47S structure is represented in dark green, and the A. pernix Prx is represented in light gray (PDB code 3A2V). Nitrogen atoms are depicted in blue, oxygen atoms are depicted in red and sulfur atoms are depicted in pale orange. The amino acids are numbered relative to the Tsa1 protein.
modification that appears to regulate Prx activity and that may have also effects on redox signaling.22

Several typical 2-Cys Prx dimers of the AhpC-Prx1 subfamily can assemble as $[(\alpha_2)_5]$ or larger complexes in a reversible and regulated manner, a process that was implicated in their ability to function as molecular chaperones.23,24 Several characteristics of this redox mechanism have been revealed, although some of the structural intermediates involved remain unknown.24,25 When the enzyme is in the reduced state, the catalytic cysteines are too distant (~10 Å) to form a disulfide bond; thus, a molecular remodeling of the α-helix that contains CysP takes place through two structural states that are designated fully folded (FF) and locally unfolded. These localized remodeling processes have been implicated in triggering larger quaternary transitions that may have also effects on redox signaling.22

Overall structure of Tsa1C47S

The Tsa1C47S crystallographic model was obtained by molecular substitution and showed initial values of $R_{merge}=47.42$ and $R_{free}=49.01$, presenting a decamer as an asymmetric unit (Fig. 1a). The final model exhibits $R_{merge}=20.13$, $R_{free}=27.33$ and a total of 1951 amino acids, 41 of which were marked as alanine due to the lack of electronic density corresponding to their side chains. All of these amino acids are actually lysine and glutamic acid, which are very common in this protein, particularly at the surface. In the active site of nine monomers, strong electron densities were found and were attributed to DTT molecules, likely derived from the crystallization mother liquor solution. However, only DTT molecules that showed a good fit to the electron density (six molecules) along crystallographic refinement were maintained until the end of the procedure (Fig. S1). In addition to the DTT molecules, 360 water molecules were assigned in the final model. The complete crystallization data and the refinement statistics are presented in Table 1.

Table 1. Collection parameters and crystallographic data statistics

Space group	C2
Unit cell parameters a, b, c (Å)	239.98, 51.96, 192.35
β (°)	92.33
Resolution limits (outer shell) (Å)	50.00–2.80
No. of unique reflections	58,102
Completeness (%)	97.58 (92.44)
R_{sym} (%)	10.5 (42.4)
$\langle I/\sigma(I) \rangle$	13.7 (3.2)
Reflections	
Working	55,105
Test	2933
Non-hydrogen atoms	
Protein	15,208
Waters	360
DTT	48
R_{factor}/R_{free} (%)	20.1/27.3
r.m.s.d.	
Bonds (Å)	0.01
Angles (°)	1.78
Average B-factor	
Main chain	13.06
Side chains and waters	13.38
Ramachandran analysis (%)	
Most favored regions	86.6
Additional allowed regions	13.4
Generously allowed regions	0
Disallowed regions	0
PDB code	3SBC

The values in parentheses refer to the highest-resolution shell. a $R_{sym} = \Sigma_{hkl} I_{hkl} - \langle I_{hkl} \rangle / \Sigma_{hkl} I_{hkl}$.

The Saccharomyces cerevisiae Tsa1 (thiol-specific antioxidant protein 1 from yeast) was the first eukaryotic Prx characterized,1,2 and several studies have been performed to assess the function and structure of this protein.23–26 Based on data that were generated on the genomic scale, Tsa1 represents 91% of all Cys-based peroxidases in yeast.27–32 Furthermore, Tsa1 plays a central role in the response of yeast to different types of stresses,33–38 being able of activating transcription factors.35 Despite the known importance of this enzyme, no high-resolution structural data are available for Tsa1. In this work, we describe the crystallographic structure at 2.8 Å resolution of Tsa1C47S from S. cerevisiae in a decameric form $[(\alpha_2)_5]$ that is maintained primarily by hydrophobic interactions. Additionally, DTT molecules have been found in six out of ten catalytic pockets, representing one of the few available structures of an AhpC-Prx1 enzyme complexed with a ligand. Furthermore, the analysis of the structure of Tsa1C47S in the FF state may be relevant to the active-site configuration and CysP reactivity. The hypotheses raised by these analyses were tested by site-directed mutagenesis, enzymatic assays and size-exclusion chromatography. Remarkably, although the DTT peroxidase activities of Tsa1E50A and Tsa1R146G were similar to that of the wild-type Prx, these mutant enzymes displayed only marginal Trx-dependent peroxidase activity. The disulfides of Tsa1E50A and Tsa1R146G were only slightly reduced by Trx, indicating that Glu50 and Arg146 play a central role in the interaction of Tsa1 with Trx. In contrast, the second-order rate constants for the reactions of these mutant enzymes with hydrogen peroxide slowed down only approximately 10-fold compared to wild-type Tsa1.

Results

The Tsa1C47S crystallographic model was obtained by molecular substitution and showed initial values of $R_{merge}=47.42$ and $R_{free}=49.01$, presenting a decamer as an asymmetric unit (Fig. 1a). The final model exhibits $R_{merge}=20.13$, $R_{free}=27.33$ and a total of 1951 amino acids, 41 of which were marked as alanine due to the lack of electronic density corresponding to their side chains. All of these amino acids are actually lysine and glutamic acid, which are very common in this protein, particularly at the surface. In the active site of nine monomers, strong electron densities were found and were attributed to DTT molecules, likely derived from the crystallization mother liquor solution. However, only DTT molecules that showed a good fit to the electron density (six molecules) along crystallographic refinement were maintained until the end of the procedure (Fig. S1). In addition to the DTT molecules, 360 water molecules were assigned in the final model. The complete crystallization data and the refinement statistics are presented in Table 1.

The Tsa1 decamer is composed of five swapped dimers, constituting an $[(\alpha_2)_5]$ structure (Fig. 1a). The five homodimers are kept together by
noncovalent bonds (hydrophobic and polar interactions) among the amino acid residues located at the dimeric interface and constitute the peroxidatic units of the 2-Cys Prx. Each Tsa1C47S monomer presented the expected Trx fold and is composed of a central seven-strand β-sheet surrounded by seven α-helices. The stabilization of the decameric structure occurs by van der Waals, hydrophobic and polar interactions, primarily involving Phe21, Leu41, Phe43, Thr44, Phe45, Tyr77, Ser78, Ser79, Leu80, Ala81, Asn104, His105, Glu117 and Val183.

The DTT molecule is positioned in a cavity that is formed between the two subunits at the active-site entry. The conformation of DTT molecule varies among the six active sites (Figs. S1 and S2). A representative DTT molecule modeled at the electron density is presented in Fig. 1b. Despite the differences in DTT conformations in the six active-site pockets, in all cases, one sulfur (S1) and one oxygen (O1) atoms of the DTT molecules always adopt a conserved orientation relative to Arg123 and Ser47 residues (Figs. S1 and S2). It is possible that the DTT molecule in the Tsa1C47S structure is also mimicking hydrogen peroxide, as proposed before for other ligands complexed with Prxs.17 This proposal is based on the structure of a decameric ApPrx (Prx6 from Aeropyrum pernix), whose crystals were soaked with hydrogen peroxide.39

In the case of the Tsa1C47S structure, one sulfur atom (S1) of the DTT molecule appears to adopt a position similar to that of the proximal oxygen atom (the oxygen atom closer to the sulfur atom of CysP, so-called Oₐ in Ref. 17) of the hydrogen peroxide molecule, and the positions of the residues in the active site are found to be in similar positions between the two enzymes (Fig. 1c). In Tsa1C47S, distinct features of the enzyme–ligand structures are as follows: (i) DTT is in the reduced state, and (ii) an S atom is placed in the position of Oₐ, whereas in the other ligands analyzed before,17 an O atom is observed. Perhaps, in the Tsa1C47S mutant with a –SH group replaced by a –OH group that makes room for a –SH ligand.

In the ApPrx structure,39 the hydrogen peroxide molecule is stabilized by several interactions with the amino acids of the active site, including the canonical Arg residue (Arg123 in Tsa1; Arg126 in ApPrx) of the catalytic triad. Arg residue of the catalytic triad can assume two configurations (named position I or position II), which are associated with the presence of a second Arg residue (Arg146 in Tsa1) that is conserved in several of the Prx subfamilies (AhpC-Prx1, Prx6 and AhpE).17 An Arg-Glu-Arg hydrogen-bonding network leads the guanidinium group of the active-site Arg to be in position I. Indeed, Arg123 (which belongs to the catalytic triad) is in position I in the yeast Tsa1C47S structure presented here (Fig. 1b).

Fig. 2. Polar interactions in the active site of AhpC-Prx1 enzymes in the FF state (a–d). The models are represented as cartoons, whereas the amino acids involved in polar interactions are represented in ball and stick. Except for C atoms, which are colored in a half-tone corresponding to the related structure, the atoms are color-coded as follows: O atoms are represented in red, N atoms are represented in dark blue and S atoms are represented in light orange. The red asterisk (*) denotes that the amino acid belongs to the adjacent monomer, and the red characters denote the distance in angstroms between the atoms involved in polar interactions. (a) *S. cerevisiae* Tsa1C47S (blue, PDB code 3SBC). (b) *H. sapiens* Prx4 in reduced form (yellow, PDB code 2PN8). (c) *H. sapiens* TPxB/Prx2 (red, PDB code 1QMV) in which the CysP is over-oxidized to CysP-SO₂H. (d) Mutant Prx1C52S *R. norvegicus* (orange, PDB code 2Z9S).
Electrostatic interactions of Glu50 with Arg123 and Arg146 and active-site configuration

The Ser47 residue (equivalent to CysP in the wild-type protein) is located at the first turn of α-helix 2, while the Cys170 residue (CysR) is positioned in a loop, between α-helix 6 and α-helix 7. The distance between the distal atoms of the side chains of amino acids 47 and 170 (Oγ and Sγ) is about 10.0 Å, which would be too far away to form a disulfide bond (~2.0 Å) in the wild-type protein. In the crystal structure of Tsa1C47S, α-helix 2 is in the FF state, as was observed in the crystal structure of Tsa1C47S, α-helix 2 is in the FF state, as was observed.

Fig. 3. Steady-state kinetic analyses of Tsa1, Tsa1E50A and Tsa1R146Q. (a–d) Trx-dependent peroxidase activity was followed by the oxidation of NADPH (A340 nm) at 30 °C in a 100-μl volume containing 150 μM NADPH; 200 μM hydrogen peroxide; 1 (a), 2 (b), 5 (c) or 10 μM (d) S. cerevisiae Trx1; 0.2 μM S. cerevisiae TrxR1 and 1 μM wild-type Tsa1 (●), Tsa1E50A (▲) or Tsa1R146Q (♦). As a control, samples without the Tsa1 addition were also monitored (■). (e and f) DTT peroxidase activity of Tsa1 and mutants. The rates of DTT oxidation were evaluated by the formation of its disulfide, which absorbs at 310 nm. The reactions were conducted at 30 °C, in 100 mM phosphate-buffered saline (pH 7.0), 1 mM DTPA and 10 mM DTT and using 12.5 μM Tsa1 or mutant proteins. Reactions were initiated by the addition of peroxides (2 mM). The activity toward hydrogen peroxide and t-BOOH was determined to be 10.9 and 3.6 μM min⁻¹ μM⁻¹, respectively, for Tsa1 [(e) and (f); (●)]. For the mutants Tsa1E50A (▲) and Tsa1R146Q (♦), the activity toward hydrogen peroxide was 9.1 and 10.0 μM min⁻¹ μM⁻¹ (e) and toward t-BOOH was 2.7 and 3.6 μM min⁻¹ μM⁻¹ (f), respectively. All these experiments were repeated at least three times.
for the AhpC-Prx1 subfamily structures in the reduced or over-oxidized enzymes.20,26,39

As frequently found in other Prx structures, Arg123 is located near Ser47 (Fig. 1c). In the wild-type protein, this residue likely stabilizes the thiolate form of CysP₄₇. In this analysis, we emphasize the presence of a Glu (Glu50 in yeast Tsa1) that is also near CysP₄₇, in the same α-helix (Fig. 2a). Glu50 interacts with Arg123 and Arg146 through polar interactions. Arg123 and Arg146 are located in a loop between β-sheet 7 and α-helix 6 (Fig. 2a). A comparison with related eukaryotic 2-Cys Prx structures in the FF state revealed that equivalent residues occupy the same relative positions and interact with equivalent amino acids, and the distances are also highly similar (Homo sapiens Prx4, Fig. 2b; H. sapiens Prx2, Fig. 2c and Rattus norvegicus Prx1, Fig. 2d). Indeed, the sequence alignment of several AhpC-Prx1 enzymes revealed that Glu50, Arg123 and Arg146 residues are conserved in all of the proteins in this subclass, as shown before.20 Residues corresponding to Arg146 in Tsa1 were previously implicated in the reactivity of human Prx2 and Prx3 toward peroxides. Therefore, we decided to further investigate the effects of these residues on Tsa1 peroxidase activity.

The Glu50Ala and Arg146Asn Tsa1 variants are slightly reduced by the yeast Trx system but are efficiently reduced by DTT

Next, the effects of Glu50 and Arg146 mutations on the Trx-dependent peroxidase activities were evaluated. Remarkably, under the experimental conditions used here, Tsa1^{E50A} and Tsa1^{R146Q} displayed only marginal Trx-peroxidase activity, whereas Tsa1 decomposed peroxides as expected (Fig. 3a–d). To shed light on this phenomenon, we also evaluated Tsa1, Tsa1^{E50A} and Tsa1^{R146Q} peroxidase activities using DTT, instead of Trx, as the reducing agent. In this case, not only Tsa1 but also Tsa1^{E50A} and Tsa1^{R146Q} presented similar DTT-dependent peroxidase activity toward hydrogen peroxide or t-butyl hydroperoxide (t-BOOH) (Fig. 3e and f). Therefore, it appears that Glu50 and Arg146 are particularly important for the ability of Trx to reduce the Tsa1 disulfide bond, suggesting that protein–protein interactions may play a role in this specificity. Previously, the same phenomenon was described for Tsa1^{C170S} variants, that is, this variant presents DTT-dependent peroxidase activity but not Trx-dependent peroxidase activity.1 Remarkably, wild-type Tsa1 displayed high affinity for Trx2 (K_M ~1 μM) (Fig. S3), and single substitutions of Glu50 or Arg146 were enough to almost abolished Trx peroxidase activity.

Since the NADPH-TrxR1-Trx (TrxR1, Trx r₁ from S. cerevisiae) and DTT oxidation assays (Fig. 3) are steady-state kinetic approaches, we cannot discard several possibilities such as that mutations may somehow disturb the active‐site microenvironment, decreasing the reactivity of CysP₄₇ toward hydroperoxides, and/or that the CysP₄₇-CysR₁₇₀ disulfides in the Tsa1^{E50A} and Tsa1^{R146Q} proteins are inefficiently reduced by Trx. It is important to mention that Cys⁴⁷P-Cys¹⁷⁰R disulfide formation can be divided into two steps: (1) thiolate oxidation to sulfenic acid (Cys⁴⁷P^S− + ROOH → Cys⁴⁷P^{SOH} + H₂O) and (2) condensation (Cys⁴⁷P^{SOH} + Cys¹⁷⁰R^{SH} → Cys⁴⁷P^SS−S−Cys¹⁷⁰R) and both could be affected by the referred mutations.

Therefore, SDS-PAGE experiments were conducted to specifically evaluate the reduction step of Tsa1 and its mutants. Indeed, the oxidized forms of the proteins run as a dimer in nonreducing SDS-PAGE, whereas the reduced forms run as a monomer.6,18 Tsa1, Tsa1^{E50A} and Tsa1^{R146Q} were pre-oxidized with 1.2 eq of hydrogen peroxide and treated afterward with DTT (300 eq) or Trx1 (1 eq) for different time intervals (Fig. 4). Our results revealed...
that all of the proteins were reduced by DTT to approximately the same extent (Fig. 4a–c), which is in agreement with the data obtained by the steady-state approach (Fig. 3). In contrast, although Trx1 efficiently reduced Tsa1 (Fig. 4a–d), the mutants Tsa1E50A and Tsa1R146Q were resistant to reduction by Trx (Fig. 4e and f).

Determination of the rate constant for the reactions between hydrogen peroxide and Tsa1E50A and Tsa1R146Q

After examining the roles of Glu50 and Arg146 in Tsa1 reduction by thiols, we analyzed their effects on Tsa1 oxidation by hydrogen peroxide. Horseradish peroxidase (HRP) competition assays revealed that Tsa1 presents a high reactivity toward hydrogen peroxide with a second-order rate constant equal to $2.2 \times 10^7 \text{ M}^{-1} \text{s}^{-1}$. In agreement, we redetermined the second-order rate constant of Tsa1 with hydrogen peroxide and found a similar value ($2.0 \times 10^7 \text{ M}^{-1} \text{s}^{-1}$; Fig. 5). In contrast, the second-order rate constants for the reaction of hydrogen peroxide with Tsa1E50A and Tsa1R146Q were $2.0 \times 10^6 \text{ M}^{-1} \text{s}^{-1}$ and $4.0 \times 10^6 \text{ M}^{-1} \text{s}^{-1}$, respectively (Fig. 5). Therefore, Tsa1E50A and Tsa1R146Q were still able to efficiently reduce hydrogen peroxide but with reactivities that are 1 order of magnitude lower than that of the wild-type protein. Taken together, our results indicated that the E50A and R146Q substitutions primarily affected the reduction of Tsa1, whereas the reactivity toward hydrogen peroxide was less impaired.

Evaluation of the effects of E50A and R146Q substitutions on the topology of Tsa1 surface

Effects of Glu50 or Arg146 substitution on protein shape were analyzed by size-exclusion chromatography. Under the experimental conditions employed in this study, the elution profile indicated that Tsa1 was predominantly present as a decamer, independently of the oxidation state (Fig. 6a). However, the reduced decameric form of Tsa1 eluted slightly slower than the corresponding oxidized decameric form (Fig. 6a), which may reflect slight differences in the protein shape. Moreover, the quaternary structures were also evaluated by transmission electron microscopy, indicating again that Tsa1 was a decamer in both experimental conditions (Fig. S4).

In these studies, Tsa1 was employed at 15 μM concentrations, which, in principle, would disfavor the formation of dimers that are present at concentrations below 2.5 μM.40 In any case, it was interesting to observe the change in retention time associated with the redox state. In contrast to the wild-type enzyme, the Tsa1E50A and Tsa1R146Q mutants displayed an identical elution profile in both oxidizing and reducing conditions (Fig. 6b and c), suggesting that these residues may play a role on redox change of the topology of Tsa1 decamer.

Indeed, comparing the surface area of Ahpc-Prx1 enzymes in reduced (Fig. 7a, c and e) with disulfide (Fig. 7b, d and f) states, it is evident that only the latter ones present a protuberance that contains the catalytic Cys, as well as residues equivalent to Glu50 and to Arg146 in Tsa1, consistent with their involvement in the Tsa1 reduction by Trx. The partially unfolded α-helix may produce an optimal surface for Trx recognition that involves exposition of Glu50, Arg146 and Cys170 (Fig. 7b, d and f), as also indicated by the fact that mutation of these residues impair its reduction by Trx (Figs. 3a–d and 4d–f and Ref. 1). In contrast, disulfide reduction by a small molecule, such as DTT, was not affected by these mutations (Figs. 3e and f and 4a–c) likely because no steric barriers are present and/or no protein–protein interactions are required. It is noteworthy to
mention that the electrostatic surfaces change considerably, as rat Prx1 switches from locally unfolded and FF states (Fig. S5), which may also have a relationship with the Prx–Trx protein–protein interactions.

Discussion

Prx enzymes, and particularly 2-Cys Prxs belonging to the AhpC-Prx1 subclass, are receiving increased attention as peroxide sensors due to their high reactivity and abundance, among other reasons.12,14,41 The data presented here are in line with the transition-state model presented before.17 According to this model, a second Arg residue (Arg146 in Tsa1) would not be directly involved in the stabilization of the transition state because it is far away from the reactive cysteine and the ligand molecule (~8 Å in Tsa1). Instead, Arg146 is involved in salt interactions with a glutamate (Glu50 in Tsa1) (Fig. 2a) that apparently precludes its direct interaction with the substrate or the leaving group. Therefore, Arg146 would indirectly assist the catalytic Arg (Arg123 in Tsa1) in adopting an orientation close to the S atom in the reactive Cys and to the proximal O atom of the peroxide substrate.17

One contribution of this work was the demonstration that Glu50 and Arg146, fully conserved in AhpC-Prx1 subfamily, are relevant for disulfide reduction by Trx (Figs. 3 and 4). In contrast, mutations of Glu50 and Arg146 had lower effect on the oxidation of Tsa1 by hydrogen peroxide (Fig. 5), which is in contrast with the profound impact of similar substitutions on the second Arg residue in mammalian Prx2 and Prx3.18 Consistent with our data, replacement of the second Arg residue (Arg163 in a barley 2-Cys Prx) with a glutamine provoked a decrease in the enzymatic activity of only 1 order of magnitude.42

Therefore, to shed light on this discrepancy, we measured Tsa1 oxidation by another means: a nonreducing SDS-PAGE assay, taking advantage that disulfide form of 2-Cys Prx migrate as covalent dimer.18 Since the first time point (10 s), Tsa1R146Q appeared only in the disulfide form (Fig. S6b and f), which is consistent with the HRP competition assay that provided second-order rate constant values in the range of \(10^6 \text{ M}^{-1} \text{s}^{-1}\) for the reaction of Tsa1R146Q (Fig. 5). However, in the case of Tsa1E50A, the formation of the covalent dimer was estimated to be in the \(10^3 \text{ M}^{-1} \text{s}^{-1}\) range (Fig. S6a and e), which is in contrast with the HRP competition assay (Fig. 5). One possible explanation for this apparent discrepancy is that the reaction between the sulfenic acid (CysP-SOH) and the CysR-SH would be slowing down the formation of the disulfide in Tsa1E50A. Indeed, this effect by the resolution reaction was observed for mammalian Prx5, whose corresponding mutant, with no resolving Cys (Prx5C151S), displays a much higher reactivity than the wild-type variant.8

The different effects related to the mutation of the second Arg residue could be related to different amino acid replacements. In Tsa1 and in 2-Cys Prx from plants,12 the second Arg residue was replaced by a Gln, whereas in human Prx2 and Prx3, the
equivalent Arg residue was replaced by Ala, His, Lys or Gly. Alternatively, these differences could also be due to the particularities of each Prx enzyme. One possibility in this regard is related to the presence of Ile39 in Tsa1, whereas human Prx2 and Prx3 present a Tyr (Tyr43 in Prx2 and Tyr100 in Prx3) and ApPrx possesses a His (His56) (see Fig. S7, black arrow). More studies are required to fully understand the role of the second Arg residue in the catalysis by different Prx enzymes.

The relevance of Tsa1 reduction by Trx in redox signaling triggered by hydrogen peroxide may be high because it produces oxidized Trx. Several signal transduction pathways are activated by the oxidized form but not by the reduced form of Trx. The direct oxidation of Trx by hydroperoxides is slow, and Prxs likely catalyze this reaction in vivo.

\[\text{AhpC} - \text{Prx1} \rightarrow \text{Trx(SH)}_2 + \text{ROOH} \rightarrow \text{Trx(–SS–)} + \text{ROH} + \text{H}_2\text{O} \]

This view was recently supported by the finding that inactivation of Prx from \textit{Schizosaccharomyces pombe} allowed reduced Trx to repair other damaged proteins. Furthermore, only reduced Trx1 and Trx2 bind Ask-1, inhibiting its kinase activity. The oxidation of Trx1 leads to the physical dissociation of the complex and, consequently, to the activation of Ask-1. Another example is the activation of NF-kB by Trx1. The binding of subunit p50 to its target sequence in the DNA requires the reduction of a single cysteiny1 residue by Trx1.

In mammals, redox processes mediated by AhpC-Prx1 enzymes (Prx1, Prx2, Prx3 and Prx4) have been implicated in diseases, such as several kinds of cancer, cardiovascular dysfunction and neurodegenerative diseases, which may also be related to Trx redox status. Other physiological processes, such as circadian cycles, depend on AhpC-Prx1 enzymes, hydrogen peroxide and Trx. The local inactivation of Prx by over-oxidation and/or phosphorylation under stressful conditions may increase the local concentration of peroxides that could then react with other targets and may also increase the levels of reduced Trx, impacting redox-dependent signaling pathways.

Materials and Methods

Expression, purification and crystallization

The procedures concerning Tsa1 crystals expression and purification have been reported previously but will be described in this section for clarity. The optimal Tsa1 crystallization condition was obtained from a DTT-treated protein with a drop volume of 8.0 μl. The reservoir solution (3.6 μl of sodium citrate at pH 4.2 and 10% polyethylene glycol 3000) was mixed with an equal volume of protein solution, and 0.8 μl of 0.1 M sodium fluoride was used as additive. The best Tsa1 crystals reached their maximum dimensions after 72 h.

Data collection and processing

Selected crystals were cryoprotected using the reservoir solution supplemented with 25% glycerol, cooled to 110 K in a nitrogen gas stream and submitted to X-ray diffraction. The data were collected using synchrotron radiation at the protein crystallography beamline D03B of the \textit{Laboratório Nacional de Luz Síncrotron}, Campinas, Brazil, which is a monochromatic beamline with a maximum photon flux of 1.3–1.6 Å. The wavelength of the incident X-ray was set to 1.431 Å, and a MARCCD detector was employed to record the oscillation data with Δφ = 1.0°, covering a total oscillation range of 240°. The data sets were processed using the program MOSFLM, and the resulting intensities were scaled and merged using the program SCALA from the CCP4 package. The best crystal diffracted to 2.8 Å resolution and belongs to the monoclinic space group C2 with unit cell parameters \(a = 239.98 \text{ Å}, \ b = 51.96 \text{ Å}, \ c = 192.35 \text{ Å} \) and \(β = 92.33° \). A total of 230,659 measured reflections were merged into 58,182 unique reflections with an \(R_{\text{sym}} \) of 10.5 (Table 1).

Structure solution, refinement and analysis

The structure of one monomer from \textit{H. sapiens} Prx2 (TPxB) decamer was used as the search model in molecular replacement protocols [66% amino acid sequence identity; Protein Data Bank (PDB) code 1OMV]. The orientations and the positions of the molecules in the asymmetric unit were found using MOLREP, and the molecular replacement solution displayed 10 monomers in the asymmetric unit, in agreement with the Matthews coefficient calculation, which may also be related to Trx redox status. Other physiological processes, such as circadian cycles, depend on AhpC-Prx1 enzymes, hydrogen peroxide and Trx.

The refinement of the Tsa1 structure was performed using REFMAC 5.0, and a TLS atomic displacement model was used in the later stages of the structure refinement. The program Coop was used for the visual inspection and the manual model building between the refinement cycles. The stereochemical quality of the final models was assessed by PROCHECK. The molecular interactions were checked by visual inspection, and structural alignments were performed using the program COOT. The molecular graphic figures were generated using the program PyMOL.

Site-directed mutagenesis

Site-directed mutagenesis was performed using the QuickChange® Site-Directed Mutagenesis Kit (Stratagene–Agilent Technologies, Santa Clara, CA, USA). The plasmid pET15b/Tsa1 carrying the wild-type gene served as a template for generating the single mutants by PCR. Annealing and synthesis were performed at 50 °C for 1 min and at 68 °C for 10 min, respectively. The cycle
number was 20 for generating the E50A and R146Q variants. The pairs of oligonucleotides utilized for the Glu50 and Arg146 substitutions were Tsa1E50AF (5′TGTCCAACCGCAATCATTGCT) and Tsa1E50AR (5′AGCAATGATTGCGGTTGGACA) as well as Tsa1R146QF (5′CCAGTCGGTCAGAACGTTGAC) and Tsa1R146QR (5′GTCAACGTTCTGACCGACTGG).

The methylated original plasmid was removed by digestion with DpnI, and *Escherichia coli* XL1-Blue cells were transformed and grown at 37 °C in LB (Luria–Bertani) medium containing 100 μg ml⁻¹ of ampicillin. The plasmids were extracted by alkaline lysis, and the purified plasmids were sequenced with the DYEnamic™ ET Dye Terminator Kit using the automatic sequencer MegaBACE (GE Healthcare). The recombinant wild-type and mutant Tsa1 species were prepared essentially as described by Oliveira et al.⁶ The protein concentration was determined by the Bradford method and based on the molar extinction coefficient computed from the amino acid composition using the software ProtParam at ExPASy†.

Size-exclusion chromatography

Size-exclusion chromatography was performed by analytical HPLC using a Shimadzu VP series equipped with a Rheodyne injector and a Photodiode Array detector (Shimadzu model SPD-M10Avp; Shimadzu Corporation, Kyoto, Japan). The proteins were eluted at a flow rate of 0.5 ml min⁻¹ using a 0.5 ml min⁻¹ buffer (pH 8.5) containing 50 mm potassium phosphate and 0.1% 2-mercaptoethanol. The concentration of the eluted protein was determined with a Shimadzu UV-1601PC Spectrophotometer, and the purity was assessed by SDS–PAGE.
expressed and purified as previously described. The Tsa1E50A and Tsa1R146Q (43 kDa), carbonic anhydrase (29 kDa) and (132 and 67 kDa), conalbumin (75 kDa), ovalbumin (232 kDa), aldolase (158 kDa), bovine serum albumin (66 kDa), ferritin (440 kDa), catalase (232 kDa), aldolase (158 kDa), bovine serum albumin (132 and 67 kDa), conalbumin (75 kDa), ovalbumin (43 kDa), carbonic anhydrase (29 kDa) and α-lactalbumin (14.2 kDa) were used as standards (GE Healthcare). The chromatograms were analyzed using the Class-VP software (Shimadzu Corporation). The Tsa1, Tsa1^{ES0A}, and Tsa1^{R146G} proteins were previously reduced with 10 mM tris(2-carboxyethyl)phosphine (TCEP) for 30 min at room temperature, and the excess TCEP was removed using HiTrap desalting columns (GE Healthcare). The redox treatments were 5 mM TCEP and 1.2 molar equivalents of hydrogen peroxide.

Competitive kinetics with HRP

The second-order rate constant of the reaction of hydrogen peroxide and Tsa1 (2.2 × 10⁷ M^{−1} s^{−1}) was previously determined by competition with HRP. In this study, we have determined the rate constants for mutant proteins reacting with hydrogen peroxide, and as a positive control, we determined again the corresponding rate constant of the wild-type protein. In reaction mixtures containing 0.1 M sodium phosphate buffer (pH 7.4), 0.1 mM diethylenetriamine pentaacetic acid (DTPA), 8.0 μM HRP and various concentrations of reduced Tsa1^{ES0A} and Tsa1^{R146G} (4–16 μM), hydrogen peroxide was added to a final concentration of 4.0 μM at 37 °C. The extent of the conversion to compound I was determined by measuring the absorbance at 398 nm (Δε₃₉₈ = 42,000 M^{−1} cm^{−1}) before and after 1 min of adding hydrogen peroxide.

Determination of Trx peroxidase activity

The Trx peroxidase activity was determined by monitoring the decrease of absorbance at 340 nm due to the oxidation of NADPH in a Trx-Trx reductase coupled assay, as previously described, but now with an excess of reducing proteins in terms of their specific units. For this purpose, Trx2 and TrxR1 from *S. cerevisiae* were expressed and purified as previously described. The reaction was carried out at 30 °C in 100 μl containing 150 μM NADPH, 200 μM hydrogen peroxide, 1 μM Tsa1 (or Tsa1^{ES0A} or Tsa1^{R146G}), 1 μM *S. cerevisiae* Trx2 and 0.2 μM *S. cerevisiae* TrxR1 in 50 mM Hepes–HCl buffer (pH 7.0). The reaction was initiated by the addition of hydroperoxide, and the peroxidase activity was monitored at 340 nm. As a control, samples without the addition of Tsa1 were also monitored.

DTT peroxidase assay

This method is based on the observation that oxidized DTT absorbs UV light. Disulfide DTT formation was followed by an increase in absorbance at 310 nm at 30 °C. For this assay, 12.5 μM Tsa1 (or Tsa1^{ES0A} or Tsa1^{R146G}) was incubated for 10 min with 10 mM DTT and 2 mM hydrogen peroxide or t-BOOH in 10 mM Hepes–HCl (pH 7.4), 1 mM sodium azide and 100 μM DTPA.

Tsa1 reduction assay

This assay is based on the observation that 2-Cys Prxs run as dimers in nonreducing 12% SDS-PAGE. Wild-type and mutant proteins were initially treated with hydrogen peroxide and TRxR in equimolar concentrations. The reduction by DTT or TRx was followed by a transition from dimeric to monomeric bands in nonreducing SDS-PAGE assays. The reaction was stopped with buffer containing 4% SDS, 10% glycerol and 62.5 mM Tris–HCl (pH 6.8). Proteins were alkylated with N-ethyl maleimide (50 mM) prior to dilution in the gel-loading buffer to avoid artifactual disulfides.

Accession numbers

Coordinates and structure factors have been deposited in the PDB, according to the following information:

PDB ID: 3SBC; RCSB (Research Collaboratory for Structural Bioinformatics) ID: RCSV065995

Title: Crystal structure of *Saccharomyces cerevisiae* TSA1C47S mutant protein

Authors: C. A. Tairum, Jr., B. B. Horta, F. J. Zara, M. A. Oliveira & L. E. S. Netto.

Acknowledgements

We thank Daniella Rodrigues, Rafael H. Bagini, Simone Vidigal Alves and Andressa Sakugawa for experimental support; Ohara Augusto (Universidade de São Paulo, Brazil) and Gerardo Ferrer-Sueta (Udelar) for critical revision of this manuscript and Madia Trujillo (Udelar) and Martin Hugo (Udelar) for helpful discussions. The authors are members of the Instituto Nacional de Ciência e Tecnologia de Processos Redox em Biomedicina Redoxoma (Fundaçao de Amparo à Pesquisa do Estado de São Paulo/Conselho Nacional de Desenvolvimento Cientifico e Tecnológico/Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) (grant numbers 2008/57721-3 and 2008/573530). This work was also supported by grants 07/58147-6 and 07/50930-3 from the Fundação de Amparo à Pesquisa do Estado de São Paulo and by the Brazilian Synchrotron Light Laboratory (Laboratório Nacional de Luz Síncrotron) (D03B-CPR-1795).

Supplementary Data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.jmb.2012.09.008
References

1. Chae, H. Z., Chung, S. J. & Rhee, S. G. (1994). Thioredoxin-dependent peroxide reductase from yeast. J. Biol. Chem. 269, 27670–27678.

2. Netto, L. E. S., Chae, H. Z., Kang, S. W., Rhee, S. G. & Stadtman, E. R. (1996). Removal of hydrogen peroxide by thiol specific antioxidant (Tsa) is involved with its antioxidant properties. Tsa possess thiol peroxidase activity. J. Biol. Chem. 271, 15315–15321.

3. Wood, Z. A., Schröder, E., Robin-Harris, J. & Poole, L. B. (2003). Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 1, 32–40.

4. Dubuisson, M., Vander-Stricht, D., Clippe, A., Etienne, F., Nauser, T., Kissner, R. et al. (2004). Human peroxiredoxin 5 is a peroxynitrite reductase. FEBS Lett. 571, 161–165.

5. Parsonage, D., Youngblood, D. S., Sarma, G. N., Wood, Z. A., Karplus, P. A. & Poole, L. B. (2005). Analysis of the link between enzymatic activity and oligomeric state in AhpC, a bacterial peroxiredoxin. Biochemistry, 44, 10593–10592.

6. Peskin, A. V., Low, F. M., Paton, L. N., Maghazl, G. J., Hampton, M. B. & Winterbourn, C. C. (2007). The high reactivity of peroxiredoxin 2 with H₂O₂ is not reflected in its reaction with other oxidants and thiol reagents. J. Biol. Chem. 282, 11885–11892.

7. Ougusucu, R., Rettori, D., Munhoz, D. C., Netto, L. E. & Augusto, O. (2007). Reactions of yeast thioredoxin peroxidase I and II with hydrogen peroxide and peroxynitrite. Rate constants by competitive kinetics. Free Radical Biol. Med. 42, 326–334.

8. Trujillo, M., Clippe, A., Manta, B., Ferrer-Sueta, G., Smeets, A., Declercq, J. P. et al. (2007). Pre-steady state kinetic characterization of human peroxiredoxin 5: taking advantage of Trp84 fluorescence increase upon oxidation. Arch. Biochem. Biophys. 467, 95–106.

9. Manta, B., Hugo, M., Ortiz, C., Ferrer-Sueta, G., Trujillo, M. & Denicola, A. (2009). The peroxidase and peroxynitrite reductase activity of human erythrocyte peroxiredoxin 2. Arch. Biochem. Biophys. 484, 146–154.

10. Horta, B. B., Oliveira, M. A., Cussiol, J. R., Discola, K. F. & Netto, L. E. (2010). Structural and biochemical characterization of peroxiredoxin Qβ from Xylella fastidiosa. J. Biol. Chem. 285, 16051–16065.

11. Winterbourn, C. C. & Metodiewa, D. (1999). Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radical Biol. Med. 27, 322–328.

12. Rhee, S. G., Chae, H. Z. & Kim, K. (2005). Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radical Biol. Med. 15, 1543–1552.

13. Piñeyro, M. D., Arcari, T., Robello, C., Radi, R. & Trujillo, M. (2011). Tryparedoxin peroxidases from Trypanosoma cruzi: high efficiency in the catalytic elimination of hydrogen peroxide and peroxynitrite. Arch. Biochem. Biophys. 507, 287–295.

14. Fourquet, S., Huang, M. E., D’Autreux, B. & Toledano, M. B. (2008). The dual functions of thiol-based peroxidases in H₂O₂ scavenging and signaling. Antioxid. Redox Signal. 9, 1565–1576.

15. Flohé, L., Toppo, S., Cozza, G. & Ursini, F. (2011). A comparison of thiol peroxidase mechanisms. Antioxid. Redox Signal. 15, 763–780.

16. Ferrer-Sueta, G., Manta, B., Botti, H., Radi, R., Trujillo, M. & Denicola, A. (2011). Factors affecting protein thiol reactivity and specificity in peroxide reduction. Chem. Res. Toxicol. 24, 434–450.

17. Hall, A., Parsonage, D., Poole, L. B. & Karplus, P. A. (2010). Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization. J. Mol. Biol. 402, 194–209.

18. Nagy, P., Karton, A., Betz, A., Peskin, A. V., Pace, P., O’Reilly, R. J. et al. (2011). Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide. J. Biol. Chem. 286, 18048–18055.

19. Copley, S. D., Novak, W. R. & Babbitt, P. C. (2004). Divergence of function in the thioredoxin fold superfamily: evidence for evolution of peroxiredoxins from a thioredoxin-like ancestor. Biochemistry, 43, 13981–13995.

20. Nelson, K. J., Knutson, S. T., Soito, L., Klomsmi, C., Poole, L. B. & Fetrow, J. S. (2011). Analysis of the peroxiredoxin family: using active site structure and sequence information for global classification and residue analysis. Proteins, 79, 947–964.

21. Woo, H. A., Yim, S. H., Shin, D. H., Kang, D., Yu, D. Y. & Rhee, S. G. (2010). Inactivation of peroxiredoxin I by phosphorylation allows localized H₂O₂ accumulation for cell signaling. Cell, 140, 517–528.

22. Seo, J. H., Lim, J. C., Lee, D. Y., Kim, K. S., Piszczech, G., Nam, H. W. et al. (2009). Novel protective mechanism against irreversible hyperoxidation of peroxiredoxin: Nα-terminal acetylation of human peroxiredoxin II. J. Biol. Chem. 284, 13455–13465.

23. Jiang, H. H., Lee, K. O., Chi, Y. H., Jung, B. G., Park, S. K., Park, J. H. et al. (2004). Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell, 117, 625–635.

24. Schröder, E., Littlechild, J. A., Lebedev, A. A., Errington, N., Vagin, A. A. & Isupov, M. N. (2000). Crystal structure of decameric 2-Cys peroxiredoxin.
31. Ghaemmaghami, S., Huh, W. K., Bower, K., Howson, T. A., Nelson, K., Poole, L. B. & Karplus, P. A. (2011). Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins. Antioxid. Redox Signal. 15, 795–815.

27. Park, S. G., Cha, M. K., Jeong, W. & Kim, I. H. (2000). Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae. J. Biol. Chem. 275, 5723–5732.

28. Oliveira, M. A., Genu, V., Discola, K. F., Alves, S. V., Netto, L. E. & Guimarães, B. G. (2007). Crystalization and preliminary X-ray analysis of a decameric form of cytosolic thioredoxin peroxidase 1 (Tsa1). C7457s mutant, from Saccharomyces cerevisiae. Acta Crystallogr., Sect. F: Struct. Biol. Cryst. Commun. 63, 665–668.

29. Lim, J. C., Choi, H., Park, Y. S., Nam, H. W., Woo, H. A., Kwon, K. et al. (2008). Irreversible oxidation of the active-site cysteine of peroxiredoxin to cysteine sulfonic acid for enhanced molecular chaperone activity. J. Biol. Chem. 283, 28873–28880.

30. Molin, M., Yang, J., Hanzén, S., Toledano, M. B., Labarre, J. P. & Nyström, T. (2011). Life span extension and H2O2 resistance elicited by caloric restriction links redox state to function. FEBS J. 278, 5573–5583.

31. Ghaemmaghami, S., Huh, W. K., Bower, K., Howson, T. A., Nelson, K., Poole, L. B. & Karplus, P. A. (2011). Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins. Antioxid. Redox Signal. 15, 795–815.

27. Park, S. G., Cha, M. K., Jeong, W. & Kim, I. H. (2000). Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae. J. Biol. Chem. 275, 5723–5732.

28. Oliveira, M. A., Genu, V., Discola, K. F., Alves, S. V., Netto, L. E. & Guimarães, B. G. (2007). Crystalization and preliminary X-ray analysis of a decameric form of cytosolic thioredoxin peroxidase 1 (Tsa1). C7457s mutant, from Saccharomyces cerevisiae. Acta Crystallogr., Sect. F: Struct. Biol. Cryst. Commun. 63, 665–668.

29. Lim, J. C., Choi, H., Park, Y. S., Nam, H. W., Woo, H. A., Kwon, K. et al. (2008). Irreversible oxidation of the active-site cysteine of peroxiredoxin to cysteine sulfonic acid for enhanced molecular chaperone activity. J. Biol. Chem. 283, 28873–28880.

30. Molin, M., Yang, J., Hanzén, S., Toledano, M. B., Labarre, J. P. & Nyström, T. (2011). Life span extension and H2O2 resistance elicited by caloric restriction links redox state to function. FEBS J. 278, 5573–5583.
hydrogen peroxide signaling. Science, 300, 650–653.
53. Leslie, A.G.W. (1992). Joint CCP4/ESF-EAMBCB. Newsletter on Protein Crystallography 26, Daresbury Laboratory, Warrington, UK.
54. Kabsch, W. (1988). Evaluation of single-crystal X-ray diffraction data from a position-sensitive detector. J. Appl. Crystallogr. 21, 916–924.
55. Blessing, R. H. (1995). An empirical correction for absorption anisotropy. Acta Crystallogr., Sect. A: Found. Crystallogr. 51, 33–38.
56. Collaborative Computational Project, Number 4. (1994). The CCP4 suite: programs for protein crystallography. Acta Crystallogr., Sect. D: Biol. Crystallogr. 50, 760–763.
57. Vagin, A. & Teplyakov, A. (1997). MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30, 1022–1025.
58. Matthews, B. W. (1968). Solvent content of protein crystals. J. Mol. Biol. 33, 491–497.
59. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. (1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr., Sect. D: Biol. Crystallogr. 53, 240–255.
60. Winn, M. D., Isupov, M. N. & Murshudov, G. N. (2001). Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr., Sect. D: Biol. Crystallogr. 57, 122–133.
61. Emsley, P. & Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr., Sect. D: Biol. Crystallogr. 60, 2126–2132.
62. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291.
63. DeLano, W. L. (2002). The PyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA.
64. Toledo, J. C., Jr, Audi, R., Ogusucu, R., Monteiro, G., Netto, L. E. & Augusto, O. (2011). Horseradish peroxidase compound I as a tool to investigate reactive protein-cysteine residues: from quantification to kinetics. Free Radical Biol. Med. 50, 1032–1038.
65. Oliveira, M. A., Discola, K. F., Alves, S. V., Medrano, F. J., Guimarães, B. G. & Netto, L. E. (2010). Insights into the specificity of thioredoxin reductase–thioredoxin interactions. A structural and functional investigation of the yeast thioredoxin system. Biochemistry, 49, 3317–3326.
66. Hillas, P. J., del Alba, F. S., Oyarzabal, J., Wilks, A. & Ortiz De Montellano, P. R. (2000). The AhpC and AhpD antioxidant defense system of Mycobacterium tuberculosis. J. Biol. Chem. 275, 18801–18809.
Supplementary Material

Disulfide Biochemistry in 2-Cys Peroxiredoxin: Requirement of Glu50 and Arg146 for the reduction of yeast Tsa1 by thioredoxin.

Carlos Abrunhosa Tairum Jr¹, Marcos Antonio de Oliveira¹*, Bruno Brasil Horta²
Fernando José Zara³, Luis Eduardo Soares Netto²*

¹Departamento de Biologia, Universidade Estadual Paulista, São Vicente, Brazil
²Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
³Departamento de Biologia Aplicada à Agropecuária, Universidade Estadual Paulista Júlio de Mesquita Filho, Campus Jaboticabal, São Paulo, Brazil

Figure S1. Fo–Fc maps are shown in light blue and contoured at 1.3 σ. The map clearly shows the presence of a strong density at the active site attributed to a reduced DTT molecule.
Figure S2. Superposition of the DTT molecules at the active sites of Tsa1C47S structure. Two different views of DTT positioning in the Tsa1C47S active site are presented in panels A and B. In both figures, the protein segment containing the Ser47 (Cys\textsubscript{P} in wild type protein) is shown as a *ribbon* and colored in dark green. The residues Pro40, Thr44, Ser47, Glu50, Arg123 and Arg146 and DTT molecule are represented as *sticks* and the atoms are color-coded as follows: C = dark green (enzymes) or C = light blue (DTT), O= red, N=blue and S=sulfur.

Figure S3. Kinetics of Tsa1 reduction by Trx2. NADPH assay was performed with increasing concentrations of Trx2. The reaction was carried out at 30 °C in 100 µl containing 150 µM NADPH, 200 µM hydrogen peroxide, 1 µM Tsa1 and 0.2 µM TrxR1 from *S. cerevisiae* in 50 mM HEPES-HCl buffer (pH 7.0). The results were fitted to Michaelis-Menten curve (GraphPad Prism5) and the determined K_M was 0.9 µM and the V_{max} 80.8 µM/s.
Figure S4. Transmission electron microscopy of Tsa1 and mutants. Prior to the microscopy procedures, 15 μM of Tsa1 (A), Tsa1^{E50A} (B) and Tsa1^{R146Q} (C) were reduced with 30 eq. of DTT, and the samples were desalted and concentrated to 15μM. An aliquot was oxidized with 2 eq. of hydrogen peroxide. Afterwards, the samples were placed individually on glow-discharged, collodion-amyl acetate carbon-coated copper grids, and the proteins were negatively stained with 2% (w/v) uranyl acetate. The transmission electron microscope images were obtained with a Phillips CM 100 EM at an acceleration voltage of 100 kV. The electron micrographs were taken using Kodak type 4489 at a magnification of 44,000 ×. White arrows indicate the decameric form of the enzymes.

Figure S5. Differences of the electrostatic surfaces among reduced and oxidized forms of R. norvegicus Prx1. Molecular surfaces of the Prx1 from R. norvegicus in the reduced (FF state, PDB code 2Z9S) (A) and in the oxidized states (LU state, 1QQ2) (B) mapped by electrostatic surface potentials (red, negatively charged; blue, positively charged). The orientation of the molecules is the same used for the generation of graphics, and redox structural changes are responsible for the differences presented.
Figure S6 – Kinetics of disulfide formation in Tsa1 mutants followed by non-reducing SDS-PAGE. (A) A representative non-reducing SDS-PAGE showing the oxidation of Tsa1^{E50A} (10 μM) by hydrogen peroxide (300 μM). (B) A representative non-reducing SDS-PAGE showing the oxidation of Tsa1^{R146Q} (3 μM) by hydrogen peroxide (10 μM). (C) A calibration was performed to validate the densitometry assay. Known Tsa1^{R146Q} quantities were added, which are described below the gel. (D) Densitometry of the bands corresponding to the monomer in the SDS-PAGE was obtained with TotalLab software (TotalLab Limited, Newcastle, UK), using rolling bar as the method for subtracting the background. Thus, it was possible to analyze the data kinetically, as is depicted in panels (E) and (F), for the reactions described in panels (A) and (B), respectively. The plot relating k_{obs} and hydrogen peroxide concentration (G) indicated substrate inhibition, probably by Cys overoxidation. Taking the first three points into account, we estimated that the second-order rate constant for disulfide formation in Tsa1^{E50A} is 0.8×10^3 M$^{-1}$ s$^{-1}$. The similar reaction between Tsa1^{R146Q} and hydrogen peroxide appeared to be too fast to be measured using this assay.
Figure S7 - Amino acid sequence alignment of AhpC-Prx1 enzymes. Alignment was performed using Clustal X algorithm (figure generated by Jalview software). Ap = Aeropyrum pernix, Hs = Homo sapiens, Hv = Hordeum vulgare and Sc = Saccharomyces cerevisiae. The secondary structure of Tsa1 is indicated above the sequence alignment (orange arrows representing β-sheets and green rectangles for α-helices). Strictly conserved residues are shaded in blue, and the black arrow indicates the Tsa1 isoleucine residue that is changed to a histidine in A. pernix or a tyrosine in human Prx2 and 3. The red arrows denote the residues of Glu50 and Arg146, and the blue arrow the catalytic Arg123 residue. The residue numbering is relative to the yeast Tsa1 protein.
APÊNDICE B

Tairum CA, Santos MC, Breyer CA, Geyer RR, Nieves CJ, Portillo-Ledesma S, Ferrer-Sueta G, Toledo Jr JC, Toyama MH, Augusto O, Netto LES, Oliveira MA. Thr44 of Tsa1 from yeast, a residue of the peroxiredoxin catalytic triad, is involved in the association between quaternary structure and hydroperoxide reactivity
THR44 OF TSA1 FROM YEAST, A RESIDUE OF THE PEROXIREDOXIN CATALYTIC TRIAD, IS INVOLVED IN THE ASSOCIATION BETWEEN QUATERNARY STRUCTURE AND HYDROPEROXIDE REACTIVITY†

Carlos A. Tairum Jr1*, Melina Cardoso Santos1*, Carlos A. Breyer1, Robert Ryan Geyer2, Cecilia J. Nieves3, Stephanie Portillo-Ledesma3, Gerardo Ferrer-Sueta3, José Carlos Toledo Jr.4, Marcos H. Toyama1, Ohara Augusto2, Luis E. S. Netto5§ & Marcos A. Oliveira1§

† This work was supported by grants 07/50930-3 and 13/07937-8 from the Fundação de Amparo à Pesquisa do Estado de São Paulo

1 Departamento de Biologia, Universidade Estadual Paulista Júlio de Mesquita Filho, Campus do Litoral Paulista São Vicente, Brazil, 11330-900.
2 Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil, 05508-090.
3 Faculdad de Ciencias – Universidad de la Republica – Montevideo - Uruguay
4 Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP – USP), 14040-90.
5 Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil, 05508-090.
* These authors contributed equally to this work.
§ To whom correspondence should be addressed: Luis E. S. Netto, phone: 55-11-3091 7589, fax: 55-11-3091 7553 and Marcos A. de Oliveira, phone: 55-13-35697120 and 35697148, fax: 55-13-35697146. E-mail: mao@clp.unesp.br.

Abbreviations used: Prx, peroxiredoxin, TsA1, Thiol-specific antioxidant protein 1 from yeast, ROS, reactive oxygen species; Trx, thioredoxin; TrxR, thioredoxin reductase; HRP, horseradish peroxidase, CHP, cumene hydroperoxide; NEM, N-ethylmaleimide; IPTG, isopropyl-1-thio-β-D-galactopyranoside; PMSF, phenylmethyl sulfonyl fluoride; IMAC, immobilized metal affinity chromatography; DTT, 1,4-dithiothreitol; DTPA, diethylenetriaminepentaacetic acid; mBBr, Monobromobimane

Keywords: Peroxiredoxin, Saccharomyces cerevisiae, Catalytic Triad, Reactivity, Disulfide formation/reduction, oligomerization
Abstract: Typical 2-Cys Peroxiredoxins (Prx) from the Prx1/AhpC sub-group are proteins which use a ubiquitously conserved reactive cysteine residue, named peroxidatic cysteine (Cys\textsubscript{P}), to decompose hydroperoxides with second-order rate constants in the 10^6 - 10^8 M-1 s-1 range. Their basic functional units are (α2) homodimers that can associate themselves as (α2)5 decamers. During catalysis, Cys\textsubscript{P} is oxidized to sulfenic acid (Cys\textsubscript{P}-SOH) and then condenses with a second Cys residue (resolving cysteine - Cys\textsubscript{R}) from the adjacent monomer to form an intermolecular disulfide. A partial unfolding of Cys\textsubscript{P} containing α-helix is required for disulfide formation, then Prx1/AhpC enzymes alternate between two states: locally unfolded (LU) and fully folded (FF) states, which affect the stabilities of their oligomeric states. Cys\textsubscript{P}, a Thr (or Ser) and an Arg, compose the so-called catalytic triad and are conserved in all Prx described to date. Whereas Arg residues are clearly involved in the Cys\textsubscript{P} reactivity, the roles of Thr (or Ser) in catalysis are less understood. In this work, we investigated the effects of substitutions on Thr44 and Arg123 members of the catalytical triad in Tsa1, a typical 2-Cys Prx from *Saccharomyces cerevisiae*. Size exclusion chromatography and dynamic light scattering analyses revealed that all mutations in Thr44 (to Ser, Ala or Val) resulted in remarkable differences in the stabilities of dimer and decamer conformations. Most contrasting effects were observed for Tsa1T44V that appeared mainly as dimers independently of the redox state, while Tsa1T44S substitution resulted in strong decamer stabilization. As a general trend, mutations favoring the dimer structure provoked decreased peroxiredoxin reactivity towards both hydrogen peroxide and cumene peroxide. These results suggested that Thr44 play a role, linking oligomeric state with peroxidase activity. To test this hypothesis, a Tsa1 mutant carrying a substitution of Ser78 by an Asp was constructed since it was previously described that similar mutations in orthologous proteins disrupt decamers into dimers. According to our prediction, Tsa1S78D appeared only as dimers and its peroxidase activity was strongly impaired. Visual inspection of Tsa1 structure revealed an unusual type of hydrogen bond (CH-π) between Thr44 of a dimer with Tyr77 of adjacent dimer and this non covalent bond is highly conserved among decamer structures of Prx1/AhpC proteins. Therefore, Tsa1Y77A mutant was constructed and appeared as dimer and displayed reduced peroxidase activity, suggesting that Thr44 - Tyr77 interaction is relevant for decamer stabilization. In the case of Arg substitutions, the peroxidase activity was drastically affected (Tsa1R123K) or even abolished (Tsa1R123G), both mutant proteins migrated preferentially as decamers in size exclusion experiments. Together the results presented here indicated that the strict conserved Arg residue is directly involved in the extraordinary reactivity of peroxiredoxins, whereas the conserved Thr (or Ser) residue displays mixed roles in the organization of 2-Cys Prx quaternary structure and probably in reactivity towards hydroperoxide.
Introduction

Typical 2-Cys peroxiredoxins (Prx) from the Prx1/AhpC sub-group comprise a large class of thiol-specific antioxidant enzymes able to reduce hydroperoxides with high efficiency (10^6-$10^8 \text{ M}^{-1} \text{s}^{-1}$) and specificity ($I$-$5$). In the catalysis, the typical 2-Cys Prx use one conserved cysteine residue, called peroxidatic cysteine (Cys$_P$), which is responsible for the reduction of hydroperoxide, forming a sulfenic acid in the Cys$_P$ (Cys$_P$-SOH). The basic units of these enzymes are (α2) homodimers and during the catalytic cycle a second Cys residue, the so-called resolving cysteine (Cys$_R$) reacts with the Cys$_P$ in sulfenic acid form of the adjacent monomer to form an inter-molecular disulfide bond (reviewed in 6,7). A partial unfolding of the α helix containing Cys$_P$ is required for the inter-molecular disulfide formation. Thioredoxin (Trx) is commonly the electron donor to reduce the disulfide (6,7). Therefore, during catalytical cycle Prx1/AhpC enzymes assume two structural states: fully folded (FF) and locally unfolded (LU) (25). Alternatively, Cys$_P$-SOH can react with other hydroperoxide molecules giving rise to hyper-oxidized states such as sulfinic (Cys$_P$-SO$_2$H) and sulfonic (Cys$_P$-SO$_3$H$^-$) acids. These over-oxidized forms are not reducible by Trx. Cys$_P$-S$_2$OH can be reduced back to Cys$_P$-SOH by sulfiredoxin catalyzed reaction in a process dependent on ATP (6).

Cys$_P$ is located in the first turn of an α-helix, surrounded by the Thr (or Ser, in some cases) and the Arg (8,9). The three residues compose the so called Prx catalytic triad, which is implicated in the reactivity and specificity of Prx towards hydroperoxides (6,7). Transient interactions in the active site of Prxs are thought to play crucial roles, by stabilizing the transition state of a S_N2 type of reaction (10,11). In the transition state, the nucleophilicity of the thiolate and the electrophilicity of the hydroperoxide are both increased (10). Some studies revealed the importance of Arg residue to Prx reactivity, since the substitution of the residue profoundly affects Cys$_P$ reactivity (12-16). In contrast, studies involving the substitution of the conserved Thr residue are very scarce (15,16).

Another intriguing feature of Prx1/AhpC enzymes is their ability to switch among distinct quartenary structures, which appear to be affected by redox state and other conditions (6,9,17,18). The basic functional units of Prx1/AhpC enzymes are α2 homodimers that can associate in (α2)5 decamers, i.e. pentamers of dimers. The factors governing the stabilities and possible significance of these distinct quartenary structures are still elusive. In the bacterial AhpC from *Salmonella typhimurium*, decamerization was associated with increase in the peroxidase activity (1). In any case, reduced or hyper-oxidized AhpC/Prx1 enzymes...
appear preferentially as decamers (or even higher molecular weight complexes), whereas inter-molecular disulfide destabilize decamers into dimers (1,19-21).

Saccharomyces cerevisiae presents two very similar cytosolic 2-Cys Prx enzymes, named Tsa1 and Tsa2 (96% of similarity and 86% of identity) (22,23). One of the few differences between these two enzymes resides in the fact that Tsa1 possesses a Thr residue in the catalytic triad (Thr44), whereas Tsa2 presents a serine residue (Ser44). We had observed before that Tsa1 and Tsa2 reactivities towards hydrogen peroxide are very similar (2.2 × 10^7 M^-1 s^-1 to Tsa1 and 1.3 × 10^7 M^-1 s^-1 to Tsa2), but their Cys pKₐ values differs significantly (5.4 and 6.3, respectively), which could be at least in part related with the Thr-Ser substitution (2).

In this work, the role of the catalytic triad residues Thr44 and Arg123 of yeast Tsa1 were evaluated by site-directed mutagenesis. Remarkably, replacements of Thr44 to distinct residues provoked different stabilities in the quaternary structures: Tsa1WT, Tsa1T44A and Tsa1T44S were detected predominantly as decamers, while Tsa1T44V was observed mainly as dimers. In the case of Tsa1R123G and Tsa1R123K, dimers and decamers were detected, exhibiting small differences on dimer-decamer transition relative to the wild type enzyme. The analysis of previous crystallographic structures in FF state (reduced) revealed that Thr44 is located at the interface between two dimers, making intermolecular CH-π hydrogen bond by the Cγ with a Thr/Phe residue of the adjacent dimer. Together, the results presented here indicated that Thr44 displays mixed roles in the organization of Tsa1 quaternary structure and in hydroperoxide reduction.
Experimental Procedures

Site directed mutagenesis - The pET15b/TsaI plasmid was used as template to generate the individual TsaI mutants carrying Thr44 substitutions to Ala (TsaIT44A), Ser (TsaIT44S) and Val (TsaIT44V); Arg123 to Gly (TsaIR123G) and Lys (TsaIR123K); Tyr77 to Ala (TsaIY77A) and Ser78 to Asp (TsaIS78D). The mutagenesis protocols were performed according manufacturer instructions, using Quick Change II Kit (Stratagene) and the following primers:

- TsaIT44A_F (5’TGGCCTTCTCGCTTCTGTG 3’), TsaIT44A_R (5’ACAGACGAAGCGAAGGCCA 3’);
- TsaIT44S_F (5’TGGCCTTCTCGCTTCTGTG 3’), TsaIT44S_R (5’TACAGACGAAACTGAAGGCCA 3’);
- TsaIT44V_F (5’TGGCCTTCTCGCTTCTGTG 3’), TsaIT44V_R (5’TACAGACGAAACTGAAGGCCA 3’);
- TsaIR123K_F (5’GTCGCCCTTGAAAGGTTTGTTC 3’), TsaIR123K_R (5’GAACAAACCTTCAAGGCAC 3’);
- TsaIR123G_F (5’GTCGCCCTTGAAAGGTTTGTTC 3’), TsaIR123G_R (5’GAACAAACCTTCAAGGCAC 3’);
- TsaIS78D_F (5’TCCGAATACGACCTTTTGGCA 3’), TsaIS78D_R (5’TGGCCTTCTCGCTTCTGTG 3’), TsaIY77A_F (5’GACTCCGAAGCCTCCCTTTTG 3’), TsaIY77A_R (5’C AAAAGGAGGCTCCCTTTTG 3’).

The reaction products were treated with DpnI to remove methylated original plasmids and E. coli XL1-Blue strain was used as host in the transformations. Single colonies were selected and their plasmids extracted and sequenced with BigDye Terminator v3.1 Cycle Sequencing Kit using the automatic sequencer ABI 3730 DNA Analyser (Life Technologies - Applied Biosystems) to confirm codons substitutions. The plasmids carrying the point mutations were transformed in E. coli BL21 (DE3) strain by electroporation.

Protein expression and purification - Single colonies of E. coli BL21 (DE3) strain containing the pET15b/tsaI, pET15b/tsaIT44A, pET15b/tsaIT44S, pET15b/tsaIT44V pET15b/tsaIR123K, pET15b/tsaIY77A, pET15b/tsaIS78D or pPROEx/tsa2 plasmids were inoculated in LB medium (20 ml) containing 0.1 mg ampicillin/mL overnight at 37 °C/250 rpm, transferred to 1 liter of fresh LB medium, and cultured further until OD$_{600}$ reached 0.6–0.8. Then the expression of all proteins was induced by the addition of 0.3 mM IPTG at 37°C/3hs/250 rpm in orbital shaker. Cells were harvested by centrifugation and cell pellets were resuspended in start buffer (50 mM sodium phosphate buffer, pH 7.4, 500 mM NaCl, 20 mM imidazole and 2 mM PMSF) and disrupted by sonication. The cell extracts were kept in ice during streptomycin sulfate (1%) treatment for 20 min. The supernatants were clarified by centrifugation, homogenized by filtration and purified by IMAC using HisTrap column (GE
Imidazole was removed by gel filtration using PD10 desalting column (GE Healthcare) and the purity of recombinant proteins was verified by SDS-PAGE.

Protein quantification - The purified enzymes were quantified by the molar extinction coefficient for reduced *S. cerevisiae* Tsa1 and mutants ($\varepsilon_{280} = 23,950 \text{ M}^{-1} \text{ cm}^{-1}$) obtained using the ProtParam tool (http://www.expasy.ch/tools/protparam.html).

Protein reduction – Wild type and mutant proteins were initially reduced with 50mM TCEP in 50 mM sodium phosphate buffer (pH 7.4) 50 mM NaCl, 100 μM DTPA and 1 mM sodium azide, for 30 minutes, at room temperature. In some cases TCEP was replaced by DTT (100mM). After reduction, excess of TCEP or DTT was eliminated using a PD10 column (GE Healthcare).

Circular dichroism spectroscopy of Tsa1WT and mutants carrying Thr44 substitutions - The CD spectra of Tsa1WT and mutant proteins were obtained using a 0.1 cm path length cuvette containing 10 μM of protein sample in 10 mM Tris buffer (pH 7.4) and 100 mM NaF. The assays were carried out at 25 °C in a Jasco J-810 spectropolarimeter (Jasco Inc.). Spectra were presented as an average of eight scans recorded from 190 to 260 nm. The content of secondary structures in each protein was estimated using the CDNN 2.1 software (24).

Size-exclusion chromatography - Size-exclusion chromatography was performed by analytical HPLC (Jasco LC-2000Plus) equipped with a PU 2880 Plus injector and a PDA MD 2018 detector (Jasco). The samples (50 μM in 100 mM Tris-HCl at pH 7.4) were separated by a system containing a Phenomenex BioSep-SEC-S3000 column (7.8 × 300 mm, 5 μm, resolution range of 15 to 2000 kDa, Phenomenex, Inc., Torrance, California, USA) using a flow of 1.0 mL/min in Tris-HCl buffer (pH 7.4) and 50 mM NaCl. The elution profile was monitored by absorbance ($\lambda = 280$nm). Bovine thyroglobulin (670 kDa), bovine gamma globulin (158 kDa), ovalbumin (44 kDa), myoglobin (17 kDa) and vitamin B$_12$ (1.35 kDa) were used as molecular standards (Bio-Rad). The chromatograms were analyzed using Jasco BORWIN, version 1.50, software (Jasco). The REDOX treatments for Tsa1WT and mutant proteins were 50 mM TCEP or 1.2 molar equivalents of hydrogen peroxide for 30min/25°C.
Determination of Trx-linked peroxidase activity of Tsa1 mutants – Thioredoxin peroxidase activities were monitored by NADPH oxidation in a coupled assay (25). *S. cerevisiae* Tsa1^{WT} and mutants (1.0 μM) were incubated with Trx1 (2 μM), TrxR1 (0.3 μM) and NADPH (150 μM) in 50 mM HEPES buffer (pH 7.4) containing sodium azide (1mM) and DTPA (100 μM), at 30°C. Reactions were initiated by addition of hydrogen peroxide or cumene hydroperoxide (CHP). All kinetic data were analyzed by non-linear regression using Michaelis-Menten equation (GraphPad Prism 5 software, GraphPad Software, Inc., San Diego).

Determination of the pK_a of the peroxidatic cysteine of Tsa1^{WT} and mutants by mBBr and Trp fluorescence – Ionization constants of Cys residues in Tsa1 and mutants were measured through the pH-dependent variation of initial rate of reaction with mBBr as previously described (27). Briefly, the initial rate of the reaction between 2 μM Tsa1 and 2 μM mBBr was monitored through the initial slopes of fluorescence emission vs. time in a buffer containing 30 mM Tris, 15 mM MES and 15 mM acetic acid, 120 mM NaCl and 100 μM DTPA at pHs from 3.5 to 9.2. The slopes were plotted vs. pH and fitted to a two pK_a function:

\[
slope = \frac{a_1}{1 + \frac{K_{a1}}{[H^+]}} + \frac{a_2}{1 + \frac{K_{a2}}{[H^+]}} + \frac{a_3}{1 + \frac{K_{a3}}{[H^+]}}
\]

where \(a_1\), \(a_2\) and \(a_3\) are the pH-independent slopes of the reaction of the three acid-base species involved: diprotonated, monoprotonated and deprotonated respectively. \(K_{a1}\) and \(K_{a2}\) are the ionization constants. Additionally, the variation of tryptophan fluorescence with pH was used to estimate the ionization of the peroxidatic cysteine, Trp⁸² is located at less than 5 Å from the Cys⁴⁷ side chain and it is probably responsible for the redox-sensitive fluorescence change. The titration of Tsa1 with HCl causes a partially irreversible decrease in Trp emission with a concomitant blue shift. Solutions of 2 μM Tsa1 in a buffer containing 5 mM Tris, 2.5 mM MES and 2.5 mM acetic acid, 145 mM NaCl and 100 μM DTPA were titrated with the addition of small volumes of 200 mM HCl, taking at least 20 spectra from pH 7.4 to 3.2. Both the decrease in intensity and the blue shift (measured as the spectral center of mass) was monitored, plotted vs. pH and fitted to a single ionization equation:

\[
Y = Y_b \left(\frac{K_a}{K_a + [H^+]} \right) + Y_a
\]

where \(Y_a\) and \(Y_b\) are the signals (either intensity or spectral center of mass) corresponding to the acidic and basic species, respectively.
Kinetics of Tsa1 oxidation using an intrinsic fluorometric approach - Reduced Tsa1 WT, Tsa1 T44A, Tsa1 T44S, Tsa1 T44V, Tsa1 Y77A, Tsa1 S78D, Tsa1 R123G, Tsa1 R123K and Tsa2 enzymes (1µM) in 40 mM sodium phosphate buffer (pH 7.4) were rapidly mixed with either H₂O₂ or CHP in excess (10 µM) in an Applied Photophysics SX-17MV stopped-flow spectrophotometer with a mixing time of < 2 ms. The exponential fit provides pseudo-first order constants, which are plotted against hydrogen peroxide and CHP concentrations to obtain the second order apparent rate constants.

Non-reducing SDS PAGE assays – To study reduction of peroxiredoxins by DTT and Trx1, wild-type Tsa1 and mutant proteins were initially treated with hydrogen peroxide at 1.2 molar ratios in 50 mM sodium phosphate buffer (pH 7.4) containing 50 mM NaCl, 100 µM DTPA and 1 mM sodium azide. Next, the enzymes were reduced by increasing concentrations of DTT (10 µM to 10 mM) or Trx (2.5 to 25 µM) during 1 minute. The reaction was stopped with denaturing buffer (4% SDS, 10% glycerol and 62.5 mM Tris-HCl pH 6.8) together with alkylation by NEM (50 mM). Oxidized Tsa1 WT (intermolecular disulfide) runs as a dimer in non-reducing 12% SDS-PAGE, whereas reduced Tsa1 WT (dithiol) runs as a monomer in the same conditions. In order to evaluate the disulfide formation in the Tsa1 WT and mutants, the proteins were initially reduced as described above. The oxidation assays were performed using 10 µM of protein and 30 µM of H₂O₂, in 100 µL of final volume at room temperature, in buffer 50 mM sodium phosphate (pH 7.4) containing NaCl 50 mM, 100 µM DTPA and 1 mM sodium azide. The reactions were stopped with 10 µL of denaturing buffer and 50 mM NEM to alkylate the enzymes thiols and avoid the formation unspecific disulfide bonds (28) at the intervals of 0, 10, 30, 60, 90, 120, 300 and 600 seconds. Results were evaluated by non-reducing SDS-PAGE revealed with Coomassie blue.

Analysis of crystallographic structures - C-H-π interactions were determined using distances and angles calculated by Discovery Studio 4.0 program (http://accelrys.com/products/discovery-studio) in Prx structures. The molecular 3D representations were generated using Pymol (http://www.pymol.org) and Discovery Studio 4.0.
Results

Structural characterization of Tsa1 mutants - Initially, to evaluate if the Thr44 or Arg123 amino acids substitutions provoked large perturbations on the Tsa1 structure, circular dichroism (CD) analysis were carried out. All CD spectra indicated that the amino acid substitutions did not provoke major perturbations in the overall secondary structures (Figure 1). The CD spectra for all enzymes are consistent with α helix content of about 33% and about 20% of β sheet, which is agreement with Tsa1 crystallographic data (25).

Next, we evaluated the effects of Thr44 substitutions on the Tsa1 quaternary structure, employing size exclusion chromatography (SEC). Samples were reduced with TCEP (50 mM) or previously reduced with TCEP (50 mM) and then oxidized with H$_2$O$_2$ (1.2 eq.). Under reducing conditions, Tsa1WT, Tsa1T44A and Tsa1T44S eluted as decamers (Figure 2A, 2B and 2C, solid lines), whereas Tsa1T44V eluted as a mixture of dimers and decamers, with dimeric forms being clearly predominant (Figure 2D, solid line). As expected, the oxidized (disulfides) samples favor dimerization in relation to the reduced forms (Figure 2, dashed lines), with the exception of Tsa1T44S that migrated exclusively as decamers in both oxidizing and reducing conditions (Figure 2C, dashed line). In contrast, Tsa1T44V migrated mainly as dimer (Figure 2D, dashed line). With intermediate behavior, equivalent amounts of dimers and decamers of Tsa1WT and Tsa1T44A were detected in oxidizing conditions (Figure 2A and 2B, dashed lines), In summary, Thr mutations provoked dramatic effects on quaternary structure stabilization: T44S substitution favoring decamerization and T44V favoring dimerization. In the case of the Arg123 mutations, changes in SEC profiles were milder. Tsa1R123K eluted almost exclusively as a decamer (Figure 2F) and Tsa1R123G migrated mainly as dimer in oxidizing conditions (Figure 2E).

Since Thr44 substitutions provoked major effects on quaternary structure, Tsa1 crystallographic structure (25) was re-analyzed (Figure 3A and 3B). In reduced form, the α(2)s decamer is stabilized by several non-covalent interactions at the dimer-dimer interface (D interface) (Figure 3C). Specifically related with Thr44 residue, its Cγ atom is involved as a H-bond donor to the π-system of Tyr77 (Figure 3D). CH-π bond is a non-conventional hydrogen bond that plays important contributions in protein structure and function (reviewed in 29,30).

In fact, in all D interfaces of Tsa1 structure, Thr44 and Tyr77 interact by CH-π hydrogen bonds (Figure 4A), since the angles (113.23 - 134.40°) and distances (3.30 - 3.68 Å) involved are consistent with this kind of interaction (29,30). Analysis of additional 2-Cys Prx
(AhpC/Prx1) crystallographic structures in FF state, revealed that CH-π hydrogen bonds are highly conserved (Figure 4B-F).

While one end of Thr44 is involved in the decamer stabilization, the opposite side of this residue, through its Oγ performs a polar interaction with the Sγ of Cys$_P$, which in turn is also stabilized by polar contacts with the guanidine group of Arg123 (Figure 3D, 4B). We hypothesized that the substitution of the Thr by a Val may destabilize the decamer structure, by affecting CH-π hydrogen bond, which in turn would also destabilize other neighbor bonds in the dimer-dimer interface. Besides Thr44 - Tyr77 pair, other non-covalent interactions involved in decamer stabilization (Figure 3C) would also be disturbed by the Thr44 - Val substitution.

Remarkably, Tyr77 in Tsa1 is highly conserved among 2-Cys Prx. In some cases, Tyr77 is substituted by a Phe residue, which also has an aromatic ring and therefore can accept H bonds by electrons of a π-system (Figure 4, Figure S1). In addition, the inspection of crystallographic structures revealed similar geometries of the Tyr/Phe towards Thr/Ser residues of the catalytic triad, characteristic of the reported CH-π interactions (Figure 4, Figure S2) (29,30). Finally, it is also important to strength that the catalytic triad of Tsa1 is located near to D interface that is delimited by the Tyr77 (Supplementary material, Figure S3), therefore Thr44 provide a physical interaction between the catalytic center and the dimer-dimer interface.

The prevalence of Tsa1T44S as a decamer under both reducing and oxidizing conditions (Figure 2C) is possibly related with a steric hindrance Cγ of Thr44 with the π-system of Tyr77. In contrast, the side chain of Ser44 is shorter, allowing better orientation of the CH-π hydrogen bond. It is important to mention that Thr to Ser substitutions are found naturally in several prokaryotic 2-Cys Prx and in yeast Tsa2 (Figure S1).

Effects of the Thr substitution on Cys$_P$ pK$_a$ - Next, the effects of Thr44 and Arg123 substitutions on the pK$_a$ values of Cys$_P$ were evaluated by DTNB alkylation and mBBR (Figure 5) methods (26,27). The pK$_a$ value for the wild type enzyme was determined as 5.6 (Figure 5A), closely to the result described before using another methodology (2). In the case of Tsa1T44A and Tsa1T44V mutants, the value obtained was 5.2 and 5.4, respectively (Figure 5B and 5D). On the other hand, the T44S substitution resulted in a pK$_a$ increase to 6.0 (Figure 5C), which contributes to previous observations that the natural substitution of Thr by a Ser in
the *S. cerevisiae* Tsa2 may account for the Cys₉₉ pKₐ differences among the two enzymes (2). The Arg¹²³ substitutions resulted in a significant increase of the Cys₉₉ pKₐ values to the mutants Tsa¹R¹²³G (8.0) and Tsa¹R¹²³K (7.5) (Figures 5E and 5F, respectively), indicating that Arg¹²³ plays a major role to the stabilization of Cys₉₉ in thiolate form.

Evaluation of Tsa¹ reactivity in mutants carrying Thr⁴⁴ and Arg¹²³ substitutions

After establishing that the thioredoxin at 2 μM was not limiting the enzymatic catalysis (Figure S4), we performed NADPH oxidation assay using variable amounts of hydrogen peroxide or cumene hydroperoxide (CHP). Tsa¹WT and Tsa¹T⁴⁴S presented similar catalytic efficiencies to hydrogen peroxide (Figure 6A and 6C, Table 1) and Tsa¹T⁴⁴A presented a slight decrease (Figure 6B, Table 1). In contrast, Tsa¹T⁴⁴V presented a very high Kₘ (701.3 μM) and a two orders decrease in the catalytic efficiency for hydrogen peroxide (Figure 6D, Table 1). In human PrxV, T⁴⁴V mutation also decreases the specific activity towards hydrogen peroxide by a factor of 10³ (16).

In the case of CHP reduction, again Tsa¹WT and Tsa¹T⁴⁴S presented very similar kinetic parameters (Insets Figures 6A and 6C, Table 1). In contrast to hydrogen peroxide reduction, Tsa¹T⁴⁴A presented very high Kₘ (334.3 μM) for CHP and consequently a forty-fold decrease in the catalytic efficiency (Inset Figure 5B, Table 1). In the case of Tsa¹T⁴⁴V mutant, an even more drastic drop in the decomposition of CHP was observed (Inset Figure 5D). Similar results were observed for *L. donovani* TXNPx (15). Therefore, mutations eliminating -OH side chain group impair more the reduction of CHP than the reduction of hydrogen peroxide.

In the case of Arg¹²³ mutants, in agreement with previous reports (12,15,16), Tsa¹R¹²³G and Tsa¹R¹²³K displayed only residual thioredoxin peroxidase activities (Figure 7A). As an independent confirmatory assay, we evaluated disulfide formation in Tsa¹R¹²³G and Tsa¹R¹²³K of pre-reduced samples treated with hydrogen peroxide in non-reducing SDS -PAGE. Disulfide bond was rapidly formed in Tsa¹WT (10 seconds or less; Figure 7B). In contrast, replacement of Arg¹²³ resulted in a profound delay in the disulfide formation, since monomeric bands were still detected even after 10 minutes of reaction with H₂O₂ (Figure 7C and 7D). Therefore, contrary to the substitutions of Thr⁴⁴, both substitutions of Arg¹²³ resulted in great drop of Tsa¹ reactivities towards hydroperoxides.

We also evaluated the effects of Thr mutations by non-reducing SDS-PAGE. Reduced proteins were oxidized with three equivalents of hydrogen peroxide or CHP and the
appearance of dimers were followed. Consistent with the thioredoxin/thioredoxin reductase coupled assay (Figure 6), among the three mutants only TsaT44V presented a significant delay in disulfide formation for both hydrogen peroxide and CHP (Figures S5 and S6).

To investigate the effects of Thr44 substitution on Tsa1 reduction by DTT or by Trx1, non-reducing SDS PAGE was again employed (17). In this case, pre-oxidized enzymes were treated with different amounts of DTT (1-100 eq) or Trx (1-25 eq) at short intervals. Reduction of wild type and mutant proteins proceed similarly during the 1 minute interval, using DTT or Trx1 (Supplementary material, Figures S7 and S8, respectively) as reducing agents, indicating that residues at position 44 had a minor role in reduction step.

Determination of second order apparent rate constants between hydroperoxides and Tsa1 proteins - Next, rate constants for oxidation of Tsa1 proteins were determined taking advantage of redox changes in their intrinsic fluorescence. In pseudo first-order conditions (excess of peroxide), a two phase kinetics was observed for wild type Tsa1 (Figure 8A). In the first phase, the drop in fluorescence is very rapid (first 5 ms) and the second phase results in a slower increase in fluorescence. Interestingly, both phases are dependent on peroxide concentration (Figures 8B-D), indicating that they correspond to the oxidation of CysP to sulfenic acid (first phase) and then to sulfinic acid (second phase). Recently, a similar kinetic profile was described for a 2-Cys Prx (AhpC) from *Salmonella typhimurium* (31). However, for AhpC, only the first phase, but not the second, is dependent on peroxide concentration. The data for AhpC is consistent with the second phase being related to the condensation reaction between sulfenic acid and CysR, giving rise to the intermolecular disulfide. This difference on the dependence of peroxide for the slow phase might be related to the fact that AhpC is resistant to overoxidation, whereas Tsa1 is sensitive (32). Furthermore, the positions of Trp residues close to the reactive Cys are striking distinct between AhpC and Tsa1 (Figure 8E-F).

Remarkably, none of the Tsa1 mutants for Thr44 displayed the increase in fluorescence in the second phase. This might be attributable to increase resistance to overoxidation in the mutants by still not clear mechanisms. Therefore, we could only determine the second order rate constant for the overoxidation of Tsa1WT, which is 4.8 \(10^6\) M\(^{-1}\) s\(^{-1}\).

The oxidation constants \(k_{ox}\) of Tsa1WT and Tsa1T44S by hydrogen peroxide were similar and in the \(10^7\) M\(^{-1}\) s\(^{-1}\) range (Table 2). For Tsa1T44A and Tsa1T44V, decreases in
reactivities were observed, and once again the valine mutant was the less reactive (Table 2). Nevertheless, the Tsa1T44A was still quite reactive, one thousand times faster than free Cys (33). When organic hydroperoxide was used as substrate, again Tsa1WT and Tsa1T44S displayed again similar k_{ox} in the $10^7 \text{M}^{-1}\text{s}^{-1}$ range (Table 2), while mutants Tsa1T44A and Tsa1T44V presented diminished reactivities (Table 2).

Therefore, throughout this work the same trend was observed whatever the approach was followed: mutation of Thr44 by Val decreased the ability of Tsa1 to reduce hydroperoxide in several orders of magnitude, whereas T44A provoked a less pronounced effect. These results indicate the importance of a polar group (hydroxyl) in the catalysis. Nevertheless, since mutants Tsa1R123G and Tsa1R123K displayed only residual activity, Arg123 appears to play a major role in Tsa1 reactivity.

Relationships between quaternary structures and catalytic activities of 2-Cys Prx– Until know, we have learned that Thr44 has mixed roles on decamer stabilization and on activation of CysP. We attempt to analyze separately these two processes, investigating other Tsa1 mutants and also yeast Tsa2 that shares 86% of amino acid identity with Tsa1. In Tsa2, Thr44 is naturally substituted by Ser (2). A mutant carrying the Y77A substitution (Tsa1Y77A) was produced, based on the observation that Tyr77 interacts directly with Thr44 at the dimer-dimer interface (Figure 3D).

Similar to the Tsa1T44S mutant, Tsa2 migrated exclusively as decamer independently of redox state the enzyme (Figure 9A), whereas Tsa1Y77A only eluted as a dimer (Figure 9B). Once again these results indicated that Thr44 and especially Ser stabilize Tsa1 in the decamer state. The peroxidase activity of Tsa1Y77A was strongly affected, which is in agreement with the Tsa1T44V results (Figure 6C). In contrast, Tsa2 efficiently reduced organic hydroperoxide and hydrogen peroxide (Figure 9D and 9E, Table 2).

Next, we decided to generate Tsa1S78D, based on the information that in the 2-Cys Prx from S. typhimurium (named AhpC), the substitution of Thr78 provoked major alterations in oligomeric state (1). Thr78 is located in the decameric interface of the enzyme but do not have direct interactions with the active site residues, including CysP. In the bacterial enzyme, substitution of Thr78 by an aspartic acid avoided the decamer formation (1). In Tsa1, a Ser78 is homologous to Thr78 of AhpC from S. typhimurium. As predicted, Tsa1S78D mutant is a dimer independent of the redox state (Figure 9F). Additionally, the peroxidase activity of the Tsa1S78D was only residual in the Trx coupled assay (Figure 9G) and second order rate constants were extremely low (Table 2). As an independent and confirmatory assay, non-
reducing SDS PAGE revealed that disulfide formation in Tsa1Y77A and Tsa1S78D were very slow (Figure 9 H and I).

Taken together, results described here indicated that as a general trend decamerization favors the peroxidase activity of Tsa1, which is in line with observations with other 2-Cys Prx, especially AhpC (1). In this process of decamerization, Thr44 represents a physical link between dimer-dimer interactions (through CH-\pi bond) and Cys\textsubscript{p}.

References

1. Parsonage, D., Youngblood, D. S., Sarma, G. N., Wood, Z. A., Karplus, P. A., and Poole, L. B. (2005) Analysis of the Link between Enzymatic Activity and Oligomeric State in AhpC. Biochemistry. 44, 10583–10592

2. Ogusucu, R., Rettori, D., Munhoz, D. C., Netto, L. E. S., and Augusto, O. (2007) Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: rate constants by competitive kinetics. Free Rad. Biol. Med. 42, 326–34

3. Cox, A. G., Peskin, A. V., Paton, L. N., Winterbourn, C. C., and Hampton, M. B. (2009) Redox potential and peroxide reactivity of human peroxiredoxin 3. Biochemistry. 48, 6495–501

4. Horta, B. B., Oliveira, M. A., Discola, K. F., Cussiol, J. R. R., and Netto, L. E. S. (2010) Structural and biochemical characterization of peroxiredoxin Qbeta from Xylella fastidiosa: catalytic mechanism and high reactivity. J. Biol. Chem. 285, 16051–16065

5. Peskin, A. V., Low, F. M., Paton, L. N., Maghzal, G. J., Hampton, M. B., and Winterbourn, C. C. (2007) The high reactivity of peroxiredoxin 2 with H2O2 is not reflected in its reaction with other oxidants and thiol reagents. J. Biol. Chem 282, 11885–11892

6. Rhee SG, Woo HA, Kil IS, Bae SH. (2012) Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J Biol Chem. 287, 4403-10.

7. Wood, Z. a, Schröder, E., Robin Harris, J., and Poole, L. B. (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28, 32–40.

8. Flohé, L., Toppo, S., Cozza, G., and Ursini, F. (2011) A Comparison of Thiol Peroxidase Mechanisms. Antioxid. Redox Signal. 15, 763–768

9. Hall, A., Nelson, K., Poole, L.B., and Karplus P.A. (2011) Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins. Antioxid. Redox Signal. 15, 795-815

10. Hall, A., Parsonage, D., Poole, L. B., and Karplus, P. A. (2010) Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization. J. Mol. Biol. 402, 194–209
11. Ferrer-Sueta, G., Manta, B., Botti, H., Radi, R., Trujillo, M., and Denicola, A. (2011) Factors affecting protein thiol reactivity and specificity in peroxide reduction. *Chem. Res. Toxicol.* **24**, 434–450.

12. Montemartini, M., Kalisz, H. M., Hecht, H. J., Steinert, P., and Flohé, L. (1999) Activation of active-site cysteine residues in the peroxiredoxin-type tryparedoxin peroxidase of *Crithidia fasciculata*. *Eur. J. Biochem.* **264**, 516–524.

13. Nagy, P., Karton, A., Betz, A., Peskin, A. V., Pace, P., O’Reilly, R. J., Hampton, M. B., Radom, L., and Winterbourn, C. C. (2011) Model for the exceptional reactivity of peroxiredoxins 2 and 3 with hydrogen peroxide: a kinetic and computational study. *J. Biol. Chem.* **286**, 18048–18055.

14. König, J., Lotte, K., Plessow, R., Brockhinke, A., Baier, M., and Dietz, K.-J. (2003) Reaction mechanism of plant 2-Cys peroxiredoxin. Role of the C terminus and the quaternary structure. *J. Biol. Chem.* **278**, 24409–24420.

15. Flohé, L., Buddle, H., Bruns, K., Castro, H., Clos, J., Hofmann, B., Kansal-Kalavar, S., Krumme, D., Menge, U., Plank-Schumacher, K., Sztajer, H., Wissing, J., Wylegalla, C., and Hecht, H. J. (2002) Tryparedoxin peroxidase of Leishmania donovani: molecular cloning, heterologous expression, specificity, and catalytic mechanism. *Arch. Biochem. Biophys.* **397**, 324–335.

16. Portillo-Ledesma, S., Sardi, F., Manta, B., Tourn, M. V., Clippe, A., Knoops, B., Alvarez, B., Coitiño, E. L., and Ferrer-Sueta, G. (2014) Deconstructing the catalytic efficiency of peroxiredoxin-5 peroxidatic cysteine. *Biochemistry*. 53:6113-6125.

17. Barranco-Medina S, Lázaro JJ, Dietz KJ. (2009) The oligomeric conformation of peroxiredoxins links redox state to function. *FEBS Lett.* **583**, 1809-16.

18. Jang HH, Lee KO, Chi YH, Jung BG, Park SK, Park JH, Lee JR, Lee SS, Moon JC, Yun JW, Choi YO, Kim WY, Kang JS, Cheong GW, Yun DJ, Rhee SG, Cho MJ, Lee SY. (2004) Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. *Cell.* **117**, 625-35.

19. Matsumura, T., Okamoto, K., Iwahara, S., Hori, H., Takahashi, Y., Nishino, T., and Abe, Y. (2008) Dimer-oligomer interconversion of wild-type and mutant rat 2-Cys peroxiredoxin: disulfide formation at dimer-dimer interfaces is not essential for decamerization. *J. Biol. Chem.* **283**, 284–293.

20. Wang, X., Wang, L., Wang, X., Sun, F., Wang, C.C. (2012) Structural insights into the peroxidase activity and inactivation of human peroxiredoxin 4. *Biochem. J.* **441**, 113-118.

21. Saccoccia F., Di Micco P., Boumis G., Brunori M., Koutris I., Miele, A.E., Morea V., Sriratana P., Williams D.L., Belloli, A. (2012) Moonlighting by different stressors: Crystal structure of the chaperone species of a 2-Cys peroxiredoxin. *Structure.* **20**, 429–439.
22. Wong, C.M., Zhou Y, Ng, R.W., Kung, H.F., and Jin, D.Y. (2002) Cooperation of yeast peroxiredoxins Tsa1p and Tsa2p in the cellular defense against oxidative and nitrosative stress. *J. Biol. Chem.* **277**, 5385-5394

23. Munhoz, D. C., and Netto, L.E.S. (2004) Cytosolic Thioredoxin Peroxidase I and II Are Important Defenses of Yeast against Organic Hydroperoxide Insult. *J. Biol. Chem.* **279**, 35219–35227

24. Bohm, R., Muhr, R., and Jaenicke, R. (1992) Quantitative analysis of protein far UV circular dichroism spectra by neural networks. *Protein Eng.* **5**, 191–195

25. Tairum, C. A., de Oliveira, M. A., Horta, B. B., Zara, F. J., and Netto, L. E. S. (2012) Disulfide biochemistry in 2-cys peroxiredoxin: requirement of glu50 and arg146 for the reduction of yeast tsal by thioredoxin. *J. Mol. Biol.* **424**, 28–41

26. Karala, A.R., Lappi, A.K., and Ruddock, L. W. (2010) Modulation of an active-site cysteine pKa allows PDI to act as a catalyst of both disulfide bond formation and isomerization. *J. Mol. Biol.* **396**, 883–892

27. Sardi, F., Manta, B., Portillo-Ledesma, S., Knoops, B., Comini, M.A., and Ferrer-Sueta, G. (2013) Determination of acidity and nucleophilicity in thiols by reaction with monobromobimane and fluorescence detection. *Anal. Biochem.* **435**, 74–82

28. Hansen, R.E., and Winther, J.R. (2009) An introduction to methods for analyzing thiols and disulfides: Reactions, reagents, and practical considerations. *Anal. Biochem.* **394**, 147-58

29. Weiss, M.S., Brandl, M., Sühnel, J., Pal, D., and Hilgenfeld, R. (2001) More hydrogen bonds for the (structural) biologist. *Trends Biochem. Sci.* **9**, 521-523

30. Nishio, M., Umezawa, Y., Fantini, J., Weiss, M.S., and Chakrabarti, P. (2014) CH-π hydrogen bonds in biological macromolecules. *Phys. Chem. Chem. Phys.* **16**, 12648-12683

31. Parsonage, D., Nelson, K.J., Ferrer-Sueta, G, Alley, S., Karplus, P.A., Furdui, C.M., and Poole, L.B. (2015) Dissecting Peroxiredoxin Catalysis: Separating Binding, Peroxidation, and Resolution for a Bacterial AhpC. *Biochemistry.* **54**,1567-75.

32. Wood, Z.A., Poole, L.B., and Karplus, P.A. (2003) Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. *Science.* **300**, 650-653.

33. Winterbourn, C. C., and Metodiewa, D. (1999) Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. *Free Rad. Biol. Med.* **27**, 322-328.
Table 1. Apparent Michaelis-Menten parameters for Tsa1WT and mutants. Mono-substrate approach was employing varying hydroperoxide concentrations. Rates were followed by NADPH oxidation. Tsa1WT or mutants (1.0 μM), Trx1 (2μM), TrxR1 (0.3 μM), NADPH (150 μM) and H\textsubscript{2}O\textsubscript{2} or CHP. The experiments were performed at 30 °C. The results presented here are relative to three independent experiments to each protein using triplicates.

	H\textsubscript{2}O\textsubscript{2}			CHP		
	Km (µM)	k\textsubscript{cat} (s-1)	k\textsubscript{cat}/Km (M-1s-1)	Km (µM)	k\textsubscript{cat} (s-1)	k\textsubscript{cat}/Km (M-1s-1)
Tsa1WT	27.58 ± 5.18	0.55 ± 0.02	2.0 ± 0.3 × 104	8.79 ± 0.05	0.72 ± 0.1	8.19 ± 1.1 × 104
Tsa1T44A	77.28 ± 12.21	0.68 ± 0.03	8.8 ± 0.2 × 103	334.3 ± 102.70	0.73 ± 0.1	2.18 ± 0.28 × 103
Tsa1T44S	48.64 ± 8.77	0.73 ± 0.03	1.5 ± 0.2 × 104	9.09 ± 3.40	0.74 ± 0.1	8.14 ± 1.4 × 104
Tsa1T44V	519.9 ± 82.26	0.38 ± 0.01	7.3 ± 1.4 × 102	-	-	-
Table 2. Correlation of the oligomeric state and peroxidatic activity.

Oligomerization State	Peroxidase Activity	Second order apparent rates				
	Trx System	(M\(^{-1}\)s\(^{-1}\))				
	Reduced	Oxidized	H\(_2\)O\(_2\)	CHP	H\(_2\)O\(_2\)	CHP
Tsa1\(^{WT}\)	Decamer	Dimer/Decamer	1.9 × 10\(^4\)	8.2 × 10\(^4\)	5.0 × 10\(^7\)	3.3 × 10\(^7\)
Tsa1\(^{T44A}\)	Decamer	Dimer*/Decamer	8.8 × 10\(^3\)	2.2 × 10\(^3\)	4.0 × 10\(^4\)	8.6 × 10\(^4\)
Tsa1\(^{T44S}\)	Decamer	Decamer	1.5 × 10\(^4\)	8.2 × 10\(^4\)	2.3 × 10\(^7\)	1.4 × 10\(^7\)
Tsa1\(^{T44V}\)	Dimer*/Decamer	Dimer	7.3 × 10\(^2\)	0.0	ND	ND
Tsa1\(^{R123G}\)	Dimer/Decamer*	Dimer	0.0	0.0	ND	ND
Tsa1\(^{R123K}\)	Dimer/Decamer*	Dimer/Decamer*	ND	ND	ND	ND
Tsa1\(^{Y77A}\)	Dimer	Dimer	0.0	0.0	1.4 × 10\(^4\)	1.3 × 10\(^3\)
Tsa1\(^{S78D}\)	Dimer	Dimer	0.0	0.0	4.0 × 10\(^1\)	4.0 × 10\(^1\)
Tsa2\(^{WT}\)	Decamer	Decamer	2.8 × 10\(^4\)	1.7 × 10\(^5\)	1.3 × 10\(^7\) (‡)	ND

*Denote the predominant quaternary species; ND= Not Determined e; ‡ Determined by HRP competition assay.
Figures

Figure 1. CD spectra of native samples of Tsa1WT and mutants containing Thr^{44} and Arg^{123} substitutions. Spectra of the enzymes Tsa1^{WT} (A), Tsa1^{T44A} (B), Tsa1^{T44S} (C), Tsa1T44V (D), Tsa1R123G (E) and Tsa1R123K (F). The proteins concentration used in experiments were 10μM in 10 mM Tris buffer (pH 7.4) and 100 mM sodium fluoride. All spectra were recorded at 25°C and corrected against the buffer. The graphical representations are averages from eight consecutive scans.
Figure 2. Size Exclusion Chromatography (SEC) profiles of Tsa1WT and mutants in reduced and oxidized states. Samples were reduced with TCEP (50 mM; solid lines) or previously reduced with TCEP (50 mM) and then oxidized with hydrogen peroxide (1.2 molar equivalents; dashed lines) by 30 min at 25°C. Tsa1WT (A), Tsa1T44A (B), Tsa1T44S (C), Tsa1T44V (D), Tsa1R123G (E) and Tsa1R123K (F) at 50 μM were injected into HPLC system with Phenomenex BioSep-SEC-S3000 column with a flow rate of 1 mL/min. The molecular standards: bovine thyroglobulin (670 kDa), bovine gamma globulin (158 kDa), ovalbumin (44 kDa), myoglobin (17 kDa) and vitamin B\textsubscript{12} (1.35 kDa) are assigned on the top of the figure.
Figure 3. Decameric Tsa1C47S structure and decamer stabilization. A) Tsa1 homodimer represented in cartoon with a monomer colored in green and the other in red. B) Tsa1 decamer with the homodimers represented in green and red. C) Molecular interactions involved in the maintenance of the decamer Tsa1C47S. The monomers are presented in different colors and amino acid residues involved in the decamer stabilization are represented with spheres. The C atoms are represented by colors similar to the polypeptide chain to which they belong, the others follow the pattern: N = blue, O = red and S = orange. The decamer stabilization is achieved by a number of non covalent interactions that involve Phe21, Leu41, Phe43, Thr44, Phe45, Tyr77, Ser78, Asn104, Glu117 and Val183 residues. D) Thr44 C-H interaction with π bond of the Tyr77 of the adjacent dimer. The opposite side of Thr44 is involved with polar interactions with CP Sγ, which in turn is stabilized by guanidine group of the Arg123. The catalytic triad and Tyr77 residues are represented by CPK following the pattern: C = green, N = blue, O = red and S = orange. The carbon atoms of the Tyr77 are colored in red.
Figure 4. Cα–H–π hydrogen bond between Thr and Tyr (or Phe) in reduced (FF state) or disulfide (LU state) forms of typical 2-Cys Prxs. A) Diagram of Thr44 and Tyr77 from Tsa1 dimer-dimer interface, depicting the corresponding Cα–H–π hydrogen bond. The graphic representation and the distances/angles were accessed using the program Discovery Studio 4.0 (Accelrys Software Inc., Discovery Studio Modeling Environment, Release 4.0, San Diego: Accelrys Software Inc., 2013). The distances and the angles are representative of the dimers interfaces in Tsa1 decamer. B) Catalytic triad residues (Cys, Arg and Thr) and Cα–H–π hydrogen bonds between Thr and Phe/Tyr residues of several 2-Cys Prx crystallographic structures. The enzymes are on FF state and depicted by different colors as follow: AhpC from Salmonella typhimurium (yellow; pdb code: 4MA9), PrxII from Leishmania major (brown; 4K1F), Prx from Schistosoma mansoni (white; 3ZTL), Prx4 from Pseudosciaena crocea (cyan; 3QPM). Sulfinilate form of the Homo sapiens Prx2 (red; 1QMV), Prx1 mutant (C51S) from Rattus norvegicus (dark green; 2Z9S) and Tsa1 mutant (C47S) from S. cerevisiae (dark blue; 2Z9S). The crystallographic structures of 2-Cys Prx in FF state of the wild type enzymes from S. typhimurium (C; 4MA9) and human Prx4 (E; 3TKP) shows and intimate hydrogen bond network between Phe-Thr-Cys$^\alpha$-Arg which is lost with the disulfide formation LU state (D and F, respectively). The structures are represented in cartoon and the residues of the catalytic triad and the conserved Tyr/Phe are represented by spheres are CPK with carbon atoms in same color of the cartoon representations. The other atoms follow the pattern: N = blue, O = red and S = orange.
Figure 5. Determination of the Cys pKₐ of Tsa₁⁰⁰ WT and mutants of Thr⁴⁴ and Arg¹²³. The pKₐ values of the peroxidatic cysteine of Tsa₁⁰⁰ WT (A), Tsa₁⁴⁴A (B), Tsa₁⁴⁴S (C) and Tsa₁⁴⁴V (D) were measured by the reduction rates of DTNB to TNB. The buffer used was sodium acetate for pH values between 4.0 and 5.5, sodium citrate for pH values between 6.0 and 6.5 and Tris-HCl for pH values over 7.0. The reactions containing buffer (100 mM), NaCl (500 mM) and Tsa₁ (10µM) were started with the addition of DTNB 100µM and measured spectrophotometrically for three minutes at 412 nm. The pKₐ determination to the mutants carrying Arg¹²³ substitutions Tsa₁¹²³G (E) and Tsa₁¹²³K (F) was effected by the mmBr method. The pKₐ calculation was performed by the program Graph Pad 5.
Figure 6. Steady state kinetics analysis of reduction by Trx system of Tsa1 and mutants using variable amounts of hydrogen peroxide or cumene hydroperoxide (CHP). Tsa1WT and Thr44 mutants were incubated with Trx system (Prx = 1 μM; Trx1 = 2 μM; TrxR1 = 0.3 μM) and NADPH 150 μM in 50 mM HEPES (pH 7.4), 100 μM DTPA and 1 mM sodium azide at temperature of 30°C and variable concentrations of hydroperoxides as indicated in the x axis. The reactions were monitored spectrophotometrically at 340 nm. Tsa1WT (A), Tsa1T44S (B) Tsa1T44A (C) and Tsa1T44V (D). In the inset, reactions using CHP instead of hydrogen peroxide are represented under the same experimental conditions, except to Tsa1T44V since that the mutants do not presented NADPH consumption. An example using 200 μM of CHP is presented in D (inset, ■). As a positive control, reactions with Tsa1 were also monitored (●).
Figure 7. Evaluation of the Arg mutants reactivities

A) Trx-dependent coupled peroxidase assay. Reactions were followed by the oxidation of NADPH (Abs$_{340}$ nm) at 30°C in a 100μl volume containing 150 μM NADPH; 200 μM hydrogen peroxide; 2 μM of *S. cerevisiae* Trx1; 0.3 μM of *S. cerevisiae* TrxR1 and 1 μM Tsa1WT (■), Tsa1R123G (×) or Tsa1R123K (▲). As a control, reactions without the Tsa1 were also monitored (●).

(B) to (D) non reducing SDS-PAGE assay for disulfide formation. The pre-reduced and desalted enzymes (B = Tsa1WT; C = Tsa1R123G and D = Tsa1R123K) at 10 μM were treated with three equivalents of H$_2$O$_2$. The experiments were performed at 25°C in 10 mM HEPES (pH 7.4), 100 μM DTPA, 1 mM sodium azide. Reactions were stopped by addition of buffer containing NEM (50 mM) 4% SDS, 10% glycerol, 62.5 mM Tris-HCl (pH 6.8) at the times indicated at the top of the figure (10-600 sec). D = dimer and M = monomer.
Figure 8. Hydroperoxide reduction by Tsa1 followed by intrinsic fluorescence. A) Determination of pseudo first order rates of hydrogen peroxide and cumene hydroperoxide (CHP) decomposition by fluorometric assay. Samples were previously reduced with 20 mM DTT for 30 minutes at room temperature and the excess was removed by gel filtration. Then, 10 equivalents of H₂O₂ (blue trace) or CHP (red trace) was added to 2 µM of Tsa1WT in phosphate buffer (40mM) pH=7.4. The excitation wavelength was 280 nm and the emission was monitored in 340 nm. The values of k_oxy were obtained by double exponential curve. B) Oxidation of Tsa1 (1µM) by growing levels of hydrogen peroxide (0,25; 0,5; 1; 2 and 4µM). (C) Same as (B) but in another time scale, where the dependence of the first phase on hydrogen peroxide concentrations is evident. (D) Same as (B), but using higher levels of hydrogen peroxide. Dependence of the second phase on hydrogen peroxide concentrations is evident. (E) Structural comparison of Trp residues between Tsa1 (3SBC, red) and AhpC S. typhimurium (4MA9, light blue) vicinal to Cys₄₇ where and Cys₄₆ (D). Striking differences are found in the position of Tsa1 Trp₁⁷₂ and Cys₄₇ and Trp₁⁶⁹ and Cys₁₆₅ of S. typhimurium. Furthermore, an additional Trp residue in Tsa1 is found very close to Cys₁₆₅. The residues numbering refer to Tsa1 residues and those between parentheses and containing an asterisk are relative to S. typhimurium AhpC residues. The structures are represented in cartoon and Trp, Cys₄₇ and Cys₁₆₅ residues are represented by ball and stick and colorized in CPK with carbon atoms with the same color of the cartoon representations. The other atoms follow the pattern: N = blue, O = red and S = orange.
Figure 9. Biochemical and oligomeric characterization of Tsa2, Tsa1^{Y77A} and Tsa1^{S78D}. Peroxiredoxin enzymes were reduced and oxidized as described in figure. The reduced and oxidized Tsa2 (A, solid and dashed lines, respectively) and Tsa1^{Y77A} (B, solid and dashed lines, respectively) at 50 μM concentration were injected into a HPLC system equipped with a Phenomenex BioSep-SEC-S3000 column with a flow rate of 1 mL/min. The thioredoxin linked peroxidase of the mutant Tsa1^{Y77A} (C) over hydrogen peroxide was evaluated by the NADPH oxidation assay. Tsa1^{WT} (■) or Tsa1^{Y77A} (▲) (1.0 μM) were incubated in a mixture containing TrxR1 (0.3 μM) and NADPH (150 μM) in HEPES (50 mM, pH 7.4), DTPA (100 μM) and sodium azide (1 mM) at 30°C. Reactions were initiated by the addition of 200 μM of hydrogen peroxide. As a control, reactions without the Tsa1 were also monitored (●). Steady state kinetic analysis of Tsa2 using hydrogen peroxide (D) or CHP (E). Experimental conditions: Prx = 1 μM; Trx1 = 2 μM; TrxR1 = 0.3 μM; NADPH = 150 μM in 50 mM HEPES (pH 7,4), 100 μM DTPA and 1 mM sodium azide at temperature of 30°C. (F). SEC profiles of Tsa1^{S78D} in reduced (solid line) and oxidized (dashed lines) states. The molecular standards used in SEC experiments were: bovine thyroglobulin (670 kDa), bovine gamma globulin (158 kDa), ovalbumin (44 kDa) and myoglobin (17 kDa) and are assigned as black arrows on the top of the figure. (G) Trx coupled assay using Tsa1^{S78D} and the yeast thioredoxin system. The solid lines are relative to the wild-type Tsa1 and the dashed lines to Tsa1^{S78D} mutant. The reactions containing Tsa1^{WT} (■) or Tsa1^{R123K} (▲), were performed as
previously described by Tsa1^{Y77A}. As negative control, the absorbance of reactions without enzyme were also monitored (●). ^H - ^I non reducing SDS-PAGE assay for disulfide formation after H₂O₂ treatment of the Tsa1^{Y77A} (^H) and Tsa1^{S78D} (^I) for different periods of time. The experimental conditions were the same as presented in figure 7. The times are indicated at the top of the figure (10-600sec) and left legends are: D = dimer and M = monomer.
SUPPLEMENTARY MATERIAL

THR^{44} OF TSA1 FROM YEAST, A RESIDUE OF THE PEROXIREDOXIN CATALYTIC TRIAD, IS INVOLVED IN THE ASSOCIATION BETWEEN QUATERNARY STRUCTURE AND HYDROPEROXIDE REACTIVITY†

Carlos A. Tairum Jr^{1*}, Melina Cardoso Santos^{1*}, Carlos A. Breyer^{1}, Robert Ryan Geyer^{2}, Cecilia J. Nieves^{3}, Stephanie Portillo-Ledesma^{3}, Gerardo Ferrer-Sueta^{3}, José Carlos Toledo Jr.^{2}, Toyama, M.H^{1}. Ohara Augusto^{2}, Luis E. S. Netto^{3§} & Marcos A. Oliveira^{1§}

† This work was supported by grants 07/50930-3 and 13/07937-8 from the Fundação de Amparo à Pesquisa do Estado de São Paulo

1 Departamento de Biologia, Universidade Estadual Paulista Júlio de Mesquita Filho, Campus do Litoral Paulista São Vicente, Brazil, 11330-900.
2 Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil, 05508-090.
3 Faculdad de Ciencias – Universidad de la Republica – Montevideo - Uruguay
4 Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP – USP), 14040-90.
5 Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil, 05508-090.

*To whom correspondence should be addressed: Luis E. S. Netto, phone: 55-11-3091 7589, fax: 55-11-3091 7553 and Marcos A. de Oliveira, phone: 55-13-35697120 and 35697148, fax: 55-13-35697146. E-mail: mao@clp.unesp.br.
Figure S1. Sequence alignment of several 2-Cys Prx reveals catalytic triad Thr/Ser and Phe/Tyr. Amino acid sequence alignment of 2-Cys peroxiredoxins using ClustalX (figure generated by Jalview). Identical residues are shaded in blue and sequence similarity is indicated by a blue gradient based on the conservation of physicochemical characteristics. The species abbreviation initials are given in italics and are as follows: *Escherichia coli* = AHPC_ECOLI (NCBI accession number: P0AE08.2); *Salmonella typhimurium* = AHPC_SALTY (P0A251.2); *Bacillus subtilis* = AHPC_BACSU (P80239.2); *Staphylococcus aureus* = AHPC_STAAS (Q6GC91.1); *Leishmania major* = PRX_LEISH (XP_001683326.1); *Trypanosoma cruzi* = PRX_TRYCRU (CA06923.1); *Crithidia fasciculata* = TRYPCRIT (AAC72300.1); *Trypanosoma brucei* = TDX_TRYBR (Q26695.1); *Plasmodium vivax* = PRX_PLASM (XP_001616002.1); *Saccharomyces cerevisiae* = TSA1_YEAST (P34760.3) and TSA2_YEAST (Q04120.3); *Candida albicans* = TSA1_CANAL (Q9Y7F0.1); *Schizosaccharomyces pombe* = TSA1_SCHPO (O74887.1); *Larimichthys crocea* = PRX_LARIC (377656258); *Mus musculus* = PRX1_MOUSE (P35700.1); *Rattus norvegicus* = PRX1_RAT (Q63716.1); *Homo sapiens* = PRX1_HUMAN (Q06830.1), PRX2_HUMAN (P32119.5) and PRX4_HUMAN (Q13162.1). The green box denotes the catalytic triad Thr/Ser and the red box the Tyr/Phe.
Hydrophobic interactions to decamer stabilization between catalytic triad Thr/Ser and Tyr/Phe in prokaryotic and eukaryotic 2-Cys Prx. Crystallographic structures of prokaryotic 2-Cys Prx AhpC from *Salmonella typhimurium* of the wild type enzyme (A; pdb code: 4MA9), and mutant C46S (B; 1N8J), PrxII from *Leishmania major* (C; 4K1F), *Plasmodium vivax* 2-Cys Prx (D; 2I81), *Schistosoma mansoni* PrxI (E; 3ZTL) and *Pseudosciaena crocea* Prx (F; 4K1F). *Homo sapiens* Prx (G; 3TKR), mutant Prx1 (C51S) from *Rattus norvegicus* (H; 2Z9S) and sulfinilate form of the human Prx2 (I; 1QMV). Position of Thr/Ser in C-H π bond with the aromatic ring Tyr/Phe of the adjacent dimer. The structures are represented in cartoon and the residues of the catalytic triad and the conserved Tyr/Phe are represented by spheres in CPK with carbon atoms in half tone of the cartoon representations. The other atoms follow the pattern: C=green, N = blue, O = red and S = orange.
Figure S3. Position of the catalytic triad and Tyr77 at *S. cerevisiae* Tsa1 molecular surface. A monomer of obligate homodimer is colorized in white and the other in light blue. The dashed lines delimit the homodimers evidencing the D interface. The surface of the Arg123 is represented in blue, the C$_P$ in orange and Thr44 in red. The Tyr77 of the adjacent dimer is colorized in magenta.

Figure S4. Dependence on thioredoxin of the peroxidase activity of Tsa1. Hydrogen peroxide reduction rates were obtained in reaction mixtures containing NADPH (150μM), 0.3 TrxR (1μM), Tsa1 (1μM), in HEPES 50mM (pH=7.4) and sodium azide (1mM) and DTPA (100μM), using variable concentrations Trx1 (0.1, 0.25, 0.5, 1.0, 2.0, 4.0, 6.0 and 8.0μM). The reactions were performed at 30°C.
Figure S5. SDS-PAGE presenting H$_2$O$_2$ oxidation assay results of Tsa1 and mutants. Tsa$_1^{\text{WT}}$ (A), Tsa$_1^{T44A}$ (B), Tsa$_1^{T44S}$ (C) and Tsa$_1^{T44V}$ (D) (10 μM) were treated with three equivalents of H$_2$O$_2$. Assays were performed at RT in 10 mM HEPES (pH 7.4), 100 µM DTPA, 1mM sodium azide. Reactions were stopped by addition of buffer containing NEM (50 mM) 4% SDS, 10% glycerol, 62.5 mM Tris-HCl (pH 6.8) at the times indicated at the top of the figure. D = dimer and M = monomer.

Figure S6. SDS-PAGE presenting oxidation of Tsa1 and mutants by CHP. Reactions of Tsa$_1^{\text{WT}}$ (A) and mutants Tsa$_1^{T44A}$ (B), Tsa$_1^{T44S}$ (C) and Tsa$_1^{T44V}$ (D) (10 μM) were treated with three equivalents of CHP. Assays were performed at RT in 10 mM HEPES (pH 7.4), 100 µM DTPA, 1mM sodium azide. Reactions were stopped by addition of buffer containing NEM (50 mM) 4% SDS, 10% glycerol, 62.5 mM Tris-HCl (pH 6.8) at the times indicated at the top of the figure. D = dimer and M = monomer.
Figure S7. Reduction of Tsa1 and mutants by DTT in SDS-PAGE. DTT-reduced Tsa1^{WT} (A), Tsa1^{T44A} (B), Tsa1^{T44S} (C) and Tsa1^{T44V} (D) (10 μM) were previously oxidized with 1.2 eq. of hydrogen peroxide for 30 minutes at RT and reduced again for 1 minute at different concentrations of DTT as described in the upper part of the gels. Lane 1 contains the protein oxidized with 1.2 eq of hydrogen peroxide and lanes 2-8 the product of reduction reaction with variable amounts of DTT. External left subtitles are: D = dimer and M = monomer.

Figure S8. Reduction of Tsa1 and mutants by Trx1 in SDS-PAGE. Trx-reduced Tsa1^{WT} (A), Tsa1^{T44A} (B), Tsa1^{T44S} (C) and Tsa1^{T44V} (D) (10 μM) were previously oxidized with 1.2 eq. of hydrogen peroxide for 30 minutes at RT and reduced again for 1 minute at different concentrations of Trx1 as described in the upper part of the gels. Lane 1 contains the protein oxidized with 1.2 eq hydrogen peroxide. D = dimer, M = monomer and T=thioredoxin.
APÊNDICE C

Lopes AM, Nascimento LO, Ribeiro A, Tairum CA, Breyer CA, Oliveira MA, Monteiro G, Souza-Motta CM. Magalhães PO, Avendaño JGF, Cavaco-Paulo AM, Mazzola PG, Rangel-Yagui CO, Sette LD, Converti A, Pessoa-Júnior A. Therapeutic L-asparaginase: upstream, downstream and beyond.
THERAPEUTIC L-ASPARAGINASE: UPSTREAM, DOWNSTREAM AND BEYOND

André Moreni Lopes¹, Laura de Oliveira Nascimento², Artur Ribeiro³, Carlos Abrunhosa Tairum-Jr⁴, Carlos Alexandre Breyer⁴, Marcos Antonio de Oliveira⁴, Gisele Monteiro¹, Cristina Maria de Souza-Motta⁵, Pêrola de Oliveira Magalhães⁶, Jorge Gonzalo Fariñas Avendaño⁷, Artur Manuel Cavaco-Paulo³, Priscila Gava Mazzola⁸, Carliota de Oliveira Rangel-Yagui⁹, Lara Durães Sette⁹, Attilio Converti¹⁰, Adalberto Pessoa- Junior¹

¹Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences – University of São Paulo, Brazil.
²Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas – UNICAMP, Brazil.
³Centre of Biological Engineering (CEB), School of Engineering – University of Minho, Portugal.
⁴Campus Litoral Paulista, São Vicente Unit, São Paulo State University – UNESP, Brazil.
⁵Department of Mycology – Federal University of Pernambuco, Brazil.
⁶Department of Pharmacy, School of Health Sciences, University of Brasilia – UnB, Brazil.
⁷Department of Chemical Engineering, Faculty of Engineering and Science – University of La Frontera, Chile.
⁸Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas – UNICAMP, Brazil.
⁹Department of Biochemistry and Microbiology, Institute of Biosciences, São Paulo State University – UNESP, Brazil.
¹⁰Department of Civil, Chemical and Environmental Engineering – University of Genoa, Italy.

Corresponding author:
André Moreni Lopes – e-mail: andreml@usp.br
Department of Biochemical and Pharmaceutical Technology,
School of Pharmaceutical Sciences –
University of São Paulo
Av. Prof. Lineu Prestes, 580, B16
Cidade Universitária - 05508-000 - São Paulo/SP, Brazil.
Phone: 55-11-3091-3862 - Fax: 55-11-3815-6386.
Abstract
L-asparaginase (L-asparagine amino hydrolase, E.C.3.5.1.1) is an enzyme clinically accepted as an antitumor agent to treat acute lymphoblastic leukemia and lymphosarcoma. It catalyzes L-asparagine hydrolysis to L-aspartic acid and ammonia, and L-asparagine effective depletion results in cytotoxicity to leukemic cells. L-asparaginase (L-ASNase) production by microbial systems had attracted considerable attention, owing to its cost effectiveness and eco-friendliness. A wide range of microorganisms including filamentous fungi, yeasts and bacteria have proven to be good sources of this enzyme. The focus of this review is to provide a thorough review on L-ASNase microbial production. More specifically, it focuses on microbial producers, conditions for L-ASNase production by fermentation, protein engineering, downstream processes and biochemical characteristics. The influence of physicochemical characteristics on L-ASNase stability, bioavailability, toxicity and allergy potential are also discussed.

Keywords: L-asparaginase; antineoplastic activity; microbial L-asparaginase production; acute lymphoblastic leukemia; biopharmaceutical.
Introduction

L-Asparaginase (L-ASNase) is an enzymatic drug and an essential component of the combination chemotherapy against diseases such as acute lymphoblastic leukemia (ALL), lymphosarcoma, Hodgkin’s disease, acute myelogenous leukemia, acute myelomonocytic leukemia, chronic lymphocytic leukemia, reticulosarcoma and melanosarcoma (1-4). This drug depletes L-asparagine in blood, blocking protein synthesis and inhibiting DNA and RNA synthesis in cancer cells. As a result, cell functions are impaired resulting in apoptosis (5).

Normal cells, however, are able to synthesize L-asparagine and are less affected by its depletion by treatment with L-ASNase. Nonetheless, when used for long-term treatment, it may cause hypersensitivity leading to allergic reactions such as skin rashes, respiratory disorders, low blood pressure, sweating and loss of consciousness (6) as well as anaphylaxis (4). Different L-ASNase preparations from Escherichia coli (native (EcA) and PEGylated form) or Erwinia chrysanthemi (native form (ErA)) are available on the market (7). Additionally, a PEGylated recombinant E. chrysanthemi-derived L-ASNase is currently in Phase I clinical trials (8).

Microbial production and purification of E. coli L-ASNase were first reported by Mashburn and Wriston (9), who proved that the enzyme exerted the same therapeutic effect as guinea pig serum (10); L-asparagine has also shown to be a fundamental nutritional requirement for the in vitro growth of both Walker carcinosarcoma 256 and leukemic mice cells.

In recent years, there has been increased interest in L-ASNase use to treat ALL in adults, particularly young adults (11). Out of the 4,000 ALL cases
diagnosed annually in the United States, approximately two-thirds are children and adolescents, making ALL the most common cancer among this age group (3,12). Long-term improvement in children was reported to be around 80%, and the overall survival rate 90%, while in adults these figures were 38 and 50%, respectively (13,14).

In Brazil, 5,050 new cases of leukemia in men and 4,320 in women were estimated for 2014, corresponding to an estimated risk of 5.2 new cases per 100,000 men and 4.2 per 100,000 women. In recent decades, there has been considerable progress in leukemia treatment. However, because of issues related to the access to treatment, a significant difference in survival has been observed among populations. The five-year survival rate is 43% in United States and Western Europe, 25% in Japan, 24% in South America, 19% in India, 15% in Thailand, and 14% in sub-Saharan Africa. In areas with access to treatment, the five-year survival rate in children can reach 80% (15,16).

L-ASNase is widely distributed in nature, being found not only in microorganisms, but also in plants and in tissues (liver, pancreas, brain, ovary or testes, kidneys, spleen and lungs) of several animals like fishes, mammals and birds. However, microbial sources are a better choice than animals and plants, considering the ability of microorganisms to grow easily on rather simple and inexpensive substrates. Furthermore, these offer easy optimization of culture conditions for enzyme bulk production, easy genetic modification to increase the yield, economically-viable extraction and purification, good stability and consistency (17), coupled with the ex situ preservation.
Taking into account this scenario, the aim of this paper is to provide a thorough review L-ASNase microbial production. More specifically, it focuses on microorganisms, conditions for L-ASNase production by both submerged and solid-state fermentation, its applications, biochemical characteristics and manipulation and downstream processes.

Upstream processing – L-Asparaginase production

Bacterial fermentation

Although several species of bacteria are reported to produce L-ASNase, *E. coli* and *E. chrysanthemi* are at present the main microbial agents for industrial-scale production. L-ASNases from these microorganisms have similar mode of action, antineoplastic activity and toxicity, but are serologically and biochemically distinct and have different pharmacokinetic profiles (18).

L-ASNase has mainly been produced by bacterial or fungal submerged fermentation (SF). Experimental evidence has shown that this production is greatly influenced by various factors such as type and concentration of carbon and nitrogen sources, pH, temperature, fermentation time, aeration, and mainly microbial agent (19-21).

A comprehensive review on the main aspects of L-ASNase production by bacterial SF under different conditions has recently been published by Kumar & Sobha (18), to which the reader is invited to refer. Therefore, a simple list of the most significant bacteria able to extracellularly express the enzyme is provided (Supplementary Table 1).
Supplementary Table 1. Main bacteria employed in submerged fermentation for L-asparaginase production.

Taxon	Reference	Taxon	Reference
Actinomycetes (Marine)	(19)	*Pseudomonas* spp.	(35)
Bacillus spp.		*P. aeruginosa*	
B. cereus	(22)	*P. aurantiaca*	(36)
B. licheniformis	(23)	*P. stutzeri*	(37)
B. subtilis	(24)	*Staphylococcus* spp.	(38)
Enterobacter spp.		*Streptomyces* spp.	
E. aerogenes	(25)	*S. albidoflavus*	(39)
E. cloacae	(26)	*S. gulbargensis*	(40)
Erwinia spp.		*S. longsporusflavus*	(41)
E. aroidae	(27)	*S. phaeochromogenes*	(42)
E. carotovora	(28)	*S. plicatus*	(43)
E. chrysanthemi	(29)	*Thermus* spp.	
Escherichia coli	(30)	*T. thermophilis*	(44)
Helicobacter spp.		*Vibrio* spp.	
H. pylori	(31)	*V. fisheri*	(34)
Nocardia spp.		*V. hawyeri*	(44)
N. asteroides	(32)	*V. proteus*	(45)
Photobacterium spp.		*Wolinella* spp.	
P. carotovorum	(33)	*W. succinogenes*	(46)
Pectobacterium spp.		*Yersinia* spp.	
P. leiongnathi	(34)	*Y. pseudotubercolosis*	(47)
P. phosphoreum		*Zymomonas* spp.	
		Z. mobilis	(48)

Members of the Enterobacteriaceae family are undoubtedly the best L-ASNase producers among eubacteria. The addition of 6% \(n\)-dodecane under dissolved oxygen levels above 80% increased *E. coli* cell concentration by 12.7% and L-ASNase activity (up to 60.80 IU/mL) by 21% (49). Among the other Enterobacteriaceae, when 10 g/L lactose or cheese whey was used as carbon source for bench-scale batch cultivation of *Erwinia aroidae*, the addition of asparagine and yeast extract or tryptone remarkably stimulated L-ASNase production (27,50). Also the Gram-negative, rod-shaped bacterium *Enterobacter cloacae* was able to successfully utilize L-asparagine either as the sole carbon and nitrogen source or in combination with L-fructose, D-galactose, sucrose or maltose and expressed L-ASNase intracellularly (26). L-ASNase production was also reported in *Enterobacter aerogenes* cultured on different carbon sources such as glucose, lactose, mannitol and glycerol.
(25,35,51), but its activity was lower (0.60 U/mL) compared with the earlier mentioned Enterobacteriaceae.

Another eubacterium able to express high levels of L-ASNase is *Pectobacterium carotovorum* MTIC 1428 (52); when grown under optimized conditions on a medium containing glucose, yeast extract, peptone and L-asparagine, it exhibited a maximum activity of 15.39 U/mL (specific activity of 27.88 U/mg) after only 12 h along with the highest volumetric productivity (1,282 U/mLh) reported in the literature, to the best of our knowledge.

Although reports on L-ASNase production by filamentous bacteria are quite scarce, some of them, especially marine actinomycetes, were shown to be effective producers of this enzyme, among which is the thermophilic soil isolate S3 that displayed a L-ASNase activity of no less than 49.20 U/mL at pH 7.5 and 50°C (19). These results open a new scenario in the search for more heat-resistant L-ASNases from thermophilic bacteria.

In recent years, solid-state fermentation (SSF) has emerged as a valid alternative to SF for the production of extracellular enzymes (53), because it allows employing agroindustrial wastes as nutrient sources and holds potential for the production of secondary metabolites, especially in developing countries (54). In comparison with SF, only few reports are available on SSF for L-ASNase production, mainly using agroindustrial wastes, among which are soy bean meal (19,55,56), rice bran (53), gram husk and coconut (57). The most significant results found in the literature on SSF for the production of L-ASNase by bacteria are summarized in Supplementary Table 2.
Supplementary Table 2. Summary of fermentation conditions and results of L-asparaginase production by bacteria in solid state fermentation.

Microorganism	Substrates/Conditions	L-asparaginase production	Reference
Pseudomonas aeruginosa 50071	Soy bean meal 20 g/L; moisture content 50%; casein hydrolysate 3.11% (w/v); corn steep liquor 3.68% (w/v); pH 7.0; 37°C; 96 h.	11.15 IU/mg of proteins	(55)
	Soy bean meal 22 g/L; moisture content 40%; pH 7.4; 37°C; 96 h.	17.90 IU/mg of proteins; 165.1 IU/mL of crude extract 2,322 U/gds	(56)
Bacillus circulans MTCC 8574	Red gram husk; moisture content 99.5%; glucose 0.234% (w/w); L-asparagine 0.248% (w/w); pH 7.0; 36.3°C; 24 h.	2,322 U/gds	(57)
Serratia marcescens SB08	Rice bran 10 g; moisture content 40%; L-asparagine 0.01%; yeast extract 0.5%; pH 7.0; 30°C; 36 h.	79.84 U/gds	(53)
Serratia marcescens NCIM 2919	Sesame oil cake 40 g/L; moisture content 68.64%; glucose 3.1% (w/w); NaNO₃ 1.01% (w/w); pH 7.0-7.5; 30°C; 48 h.	110.8 U/gds	(58)
	Coconut oil cake 6 g; moisture content 40%; pH 6; 37°C.	3.87 U/gds	(59)

*Units are different because studies report values expressed in different units. IU = international unit and gds = grams of dried substrate.

To provide only the most significant examples, optimization of SSF for the production of L-ASNase by *Pseudomonas aeruginosa* and *Serratia marcescens* has been reported by several authors. El-Bessoumy et al. (56) obtained, under optimal conditions, L-ASNase activity of 165.1 IU/mL (specific activity of 17.90 IU/mg) after 96 h of fermentation by *P. aeruginosa* 50071 in a medium with 40% moisture content containing 22 g/L soy bean meal, at pH 7.4 and 37°C. When 3.11% (w/v) casein hydrolysate and 3.68% (w/v) corn steep liquor were added as supplementary nutrients to the same medium (20 g/L soy bean meal), but with higher moisture content (50%), this strain exhibited, under comparable conditions (pH 7.0; 37°C; 96 h), 38% lower specific activity (55), which confirms the influence of both environmental and nutritional conditions on SSF performance.
Fungi fermentation

Because all available L-ASNase therapeutic preparations are from prokaryotic sources, anaphylactic and other immunological side effects as well as enzyme inactivation are frequent events. In this sense, the search for L-ASNase sources from eukaryotic microorganisms can lead to enzymes with lower side effects to humans (60). To achieve this purpose, the use of screening techniques is an important step of any prospecting process, which can be made based on function-driven analysis (e.g. color changes, fluorescence, presence of inhibition zones) or on sequence-driven analysis (e.g. gene detection by PCR, hybridization with specific probes). For both approaches high-throughput screening or medium-throughput screening has to be considered when a high number of biological material or targets is the prospection focus (61).

Endophytic fungi have been reported as interesting L-ASNase producers. Theantana et al. (62,63), who investigated the main fungi present in Thailand medicinal plants, found the main producers of this enzyme in the genera *Colletotrichum, Eupenicillium, Fusarium, Penicillium,* and *Talaromyces.* Marine environment as well appears to be a prolific source of L-ASNase-producing fungi. Thirunavukkarasu et al. (64) found that this enzyme is secreted by seaweeds endophytes of the genera *Alternaria, Chaetomium, Cladosporium, Colletotrichum, Curvularia, Nigrospora, Paecilomyces, Phaeotrichononis, Phoma* and *Pithomyces.* Sudha (65) reported that 17 fungal strains recovered from mangrove soil were able to produce L-ASNase, and Sundaramoorthi et al. (66) selected 5 fungal strains isolated from different soils from Arabian Sea that exhibited the same activity.
A list of yeasts and filamentous fungi able to produce L-ASNase in SF is provided in Supplementary Table 3.

Supplementary Table 3. Main yeasts and filamentous fungi employed for L-asparaginase production in submerged fermentation.

Taxon	Reference	Taxon	Reference
Aspergillus spp.		Fusarium spp.	
A. niger	(21,67)	F. moniliforme	(72)
A. tamari	(6)	F. semitectum	(67)
A. terreus	(20)	Paecilomyces spp.	(73)
A. flavus	(67)	Penicillium spp.	
Bipolaris spp.	(68)	P. chrysogenum	
Candida spp.		P. crustosum	(67)
C. utilis	(69)	P. digitatum	(60)
Cladosporium spp.	(70)	P.olsonii	(67)
Cylindrocarpon spp.		Rhodosporidium spp.	
C. obtusisporum	(71)	R. toruloides	(74)

Tippani and Sivadevuni (72) detected L-ASNase activities of 404.0 and 376.0 IU/mL for *Fusarium semitectum* and *Fusarium moniliforme* using proline and glucose as nitrogen and carbon sources, respectively, while maximum production by *Fusarium oxysporum* (360.0 IU/mL) occurred with sodium nitrate. These results appear to be a clear proof of the leading role of nutritional factors in SF by fungi.

As far as the members of the *Aspergillus* genus are concerned, *Aspergillus niger* (75), *Aspergillus terreus* and *Aspergillus tamari* (6) were shown to have great potential to produce L-ASNase. Limiting the comparison only to the best results collected in the literature, *A. terreus* MTCC 1782 exhibited L-ASNase activity in the range 16.05-43.99 IU/mL when cultivated for 58-96 h in SF on Czapek-Dox medium (pH 6.0-6.3) supplemented with L-asparagine, L-proline, glucose or sucrose at 30-35°C and 140-160 rpm (20,76). Lower L-ASNase activity was reported for *A. niger* (5.45 IU/mL) in the same medium (pH 6.5) supplemented with glucose and L-asparagine at 35°C and 120 rpm after 96 h (21) as well as for *A. flavus* (1.76 IU/mL) in a glucose-
asparagine medium (pH 4.5) supplemented with starch under static conditions at 30°C (77).

As regards to other fungal genera, Bipolaris BR438 isolated from brown rice was pointed out by Lapmak et al. (68) as the best L-ASNase producer among other genera such as Acremonium, Aspergillus, Cochliobolus, Curvularia, Fusarium, Hansfordia and Phaeotrichoconis, exhibiting a L-ASNase activity of 6.30 IU/mL when cultivated in the Czapek-Dox medium containing 1% L-asparagine and 0.4% glucose at 30°C for 72 h.

Regarding solid-state fermentation by fungi, several studies attempted to maximize L-ASNase production using different substrates and conditions, whose results are summarized in Supplementary Table 4. As can be seen, the best enzyme producers in SSF belong to the Aspergillus genus. Rani et al. (78) obtained maximum specific activity of 70.67 U/g with Aspergillus sp. KUFS20 using orange peel as a substrate, while A. terreus MTCC 1782 yielded no less than 253.0, 110.0 and 85.00 U/g on moistened pomegranate, wheat bran and coconut oil cake, respectively, after 72-120 h (79). Mishra (75) obtained, under aerobic conditions, a maximum L-ASNase specific activity of 40.90 U/g using bran of Glycine max, with 70% moisture content and mean particle size in the range 1205-1405 μm, after 96 h of SSF by A. niger at pH 6.5 and 30°C.
Supplementary Table 4. Summary of fermentation conditions and results of L-asparaginase production by filamentous fungi in solid state fermentation.

Microorganism	Substrates/Conditions	L-asparaginase production	Reference
Aspergillus niger	Bran of *Glycine max*; moisture content 70%; pH 6.5; 30°C; 96 h. Column bioreactor; sesame (black) oil cake; aeration of 0.4 vvm; bed thickness of 22 cm; 32°C.	40.90 U/gds	(75)
		344.0 U/gds	(80,81)
Fusarium equiseti	Soya bean meal; particle size 3 mm; 0.5% glucose; 0.5% (NH₄)₂SO₄; 0.5% yeast extract; moisture 70%; 20% (v/v) inoculum; 45°C; 48 h	8.51 IU/mL of crude extract	(82)
Aspergillus sp.	Orange peel; 0.01 M Phosphate buffer; moisture 50%; inoculum 10⁶ spores/mL; pH 6.2; 30°C; 96 h.	70.67 U/gds	(78)
KUFS20			
Aspergillus terreus	Moistened pomegranate; inoculum 10⁷ spores/mL; 30°C; 120 h. Moistened wheat bran; inoculum 10⁷ spores/mL; 30°C; 72 h. Moistened coconut oil cake; inoculum 10⁷ spores/mL; 30°C; 120 h.	253.0 U/gds	(79)
MTCC 1782		110.0 U/gds	
		85.00 U/gds	

Notes: Units are different because studies report values expressed in different units. IU = international unit and gds = grams of dried substrate.

The highest L-ASNase specific activity was reported for *A. niger* (344.0 U/g) cultivated in SSF on agro-wastes in a column bioreactor using sesame (black) oil cake as a substrate at 32°C, 0.4 vvm aeration and 22 cm bed thickness (80,81).

Although these results, taken together with those of SSF by bacteria, are very promising from the L-ASNase activity viewpoint, now SSF appears to be very far from being able to satisfy the high purity requirements of L-ASNase pharmaceutical and medical applications.

Downstream processing

Protein precipitation

Separation by precipitation from aqueous extract is the most traditional method to recover and purify biomolecules (83). This method
results in a temporary disruption of protein secondary and tertiary structures, causing its precipitation. It is a technique easy to scale-up, with simple equipment requirements, low costs and possibility to use a large number of precipitants. Moreover, the precipitant agent can be recycled in the final process by distillation, evaporation, or heat drying, thus reducing the environmental impact associated to its disposal.

Recovering L-ASNase from different sources often employs precipitation as a purification step. Several authors have purified L-ASNase to apparent homogeneity by (NH₄)₂SO₄ precipitation (19,37,40,75,84,85). In general, partial purification starts with the addition of finely powdered (NH₄)₂SO₄ to crude extract up to saturation. Salt concentration ranges from 35 to 100%, resulting in different yields, depending on the L-ASNase source. Moorthy et al. (85) were able to reach up to 96.2% enzyme recovery with 10.9 purification fold after precipitation when L-ASNase was produced by Bacillus sp. using glucose as carbon source. Salt precipitation is usually followed by centrifugation and column filtration for higher yield and purification. L-ASNase production and purification from *Streptomyces gulbargensis* yielded 50.6%, with 1.8 purification fold. Purification was increased to 26.9-fold after precipitate was collected by centrifugation and dialyzed against buffer followed by Sepharcryl S-200 column filtration (40). Similar strategy was employed by El-Bessoumy et al. (56) in the attempt to produce, isolate and purify L-ASNase from *P. aeruginosa* after solid-state fermentation. Purification after (NH₄)₂SO₄ precipitation resulted in 5.2-fold purification and increased over 5 times after gel filtration through Sephadex G-100.
Precipitation is usually combined with traditional techniques to enhance L-ASNase purification fold and process yield. Innovative purification steps should be investigated as an alternative, aiming faster and less expensive purification processes.

Liquid-liquid extraction

One interesting alternative to be exploited in separation science for biomolecules extraction/purification refers to liquid-liquid extraction (LLE) by aqueous two-phase systems (ATPS). LLE is the transfer of certain components from one phase to another when immiscible or partially soluble liquid phases are brought into contact with each other (86). ATPS can be obtained when mixtures of water-soluble polymers are combined with another polymer or with certain inorganic salts above critical concentrations. ATPS can also be formed from surfactant solutions (micellar systems, reversed micellar systems), as well as block copolymers. Protein partitioning in two-phase systems depends mainly on its physicochemical properties such as isoelectric point, surface hydrophobicity, molar mass and on the medium characteristics among which are polymer or surfactant type and concentration, pH, type and concentration of salt (87).

Few attempts were made to employ ATPS to extract L-ASNase. Qin and Zhao (88) described a combined strategy to release and separate L-ASNase from *E. coli* ATCC 11303 cells with aqueous two-phase micellar systems (ATPMS). Cells treated with 9.4% (w/v) K$_2$HPO$_4$ and 15% (w/v) Triton X-100 at 25°C for 15–20 h released nearly 80% of the enzyme, while keeping whole. For this system (surfactant/phosphate/water), phase
separation into a micelle-rich top phase and a salt-rich bottom phase was observed above critical micelle concentration (CMC). According to those authors, Triton X-100 micelles might insert into the two-layer membrane structure and cause the release of intracellular material, including L-ASNase. Also, most of the released enzyme was recovered in the bottom, phosphate-rich phase. In spite of the potential application of ATPMS to release/purify L-ASNase, no data on purification factor or contaminants/whole cell partitioning behavior was presented.

Jian-Hang et al. (89) proposed another strategy combining cell disruption by high-pressure homogenization and product capture by ATPMS for the extraction of intracellular L-ASNase from E. coli. They employed triblock copolymers of poly (propylene oxide) (PPO) and poly (ethylene oxide) (PEO), PEO–PPO–PEO, to form primary ATPS for enzyme purification. In a side-by-side comparison with the conventional process, including cell disruption, centrifugal clarification and subsequent ATPMS, purification of L-ASNase via this novel in situ ATPMS process resulted in increased enzyme yield (from 52 to 73%) and specific activity (from 78.60 to 94.80 U/mg).

However, ATPS still need further investigation to be employed for commercial L-ASNase purification, but the results already obtained with this technique point out to its potential.

Chromatography

Intravenous enzymes preparations such as L-ASNase require high level of purity, thus a sequence of purification processes is necessary. High degree of enzyme purity is also important from the viewpoint of process
control, but steps required for purification, in general, result in enzyme activity loss and increase in the final cost (90).

L-ASNase from *P. aeruginosa* 50071 obtained by SSF was purified by (NH₄)₂SO₄ fractionation, Sephadex G-100 gel filtration and CM-Sephadex C50 ionic exchange, and the specific activity increased from 17.90 (crude extract) to 1,900 IU/mg (final preparation) (56). Similar method was used by Singh et al. (91) to purify extracellular L-ASNase from the protease-deficient *Bacillus aryabhattai* ITBHU02 strain. After (NH₄)₂SO₄ fractionation and DEAE-Sepharose fast flow and Seralose CL-6B column chromatographies, the enzyme was 68.9-fold purified with specific activity of 680.47 U/mg. Warangkar and Khobragade (92), who extracted and purified L-ASNase from *E. carotovora* by (NH₄)₂SO₄ fractionation (60-70%), followed by chromatography steps using Sephadex G-100, CM cellulose, and DEAE Sephadex, observed an increase in the enzyme specific activity from 1.36 to 1,034 IU/mg, with a minimum mass loss and a final recovery of 36.5%.

Penicillium digitatum was also used to produce extracellular L-ASNase. After protein precipitation and desalting, gel filtration chromatography with Sephadex G-25, followed by Sephadex G-100, resulted in a 60.9-fold purification. Loureiro et al. (93) purified L-ASNase from *Aspergillus* sp. by ion exchange chromatography (DEAE Sepharose) followed by gel filtration (Sephacryl S-200HR) at different flows, resulting in a 12% final yield and a 7.72 purification factor. An additional purification step by reapplying the pooled fraction to the same Sephacryl S-200HR column resulted in even lower yields (7.28%) with a purification factor of 10.7.
In a recent work, L-ASNase was obtained from the genus *Cladosporium*. Precipitation followed by DEAE cellulose ion exchange and subsequent size exclusion chromatography ensured a final specific activity of 83.3 U/mg (70).

L-asparaginase formulation

L-Asparaginase PEGylation

The conjugation of proteins with polyethylene glycol (PEG) or PEGylation has become a well-established technology in the field of biopharmaceutical formulations to increase the half-life of bioproducts. It reduces the urinary excretion of a biomolecule (94) as well as its enzymatic degradation due to the increased steric bulk (95). In addition, PEGylated bioproducts often exhibit a reduced affinity for the target receptor compared with the native precursor, which can lead to a lower clearance by target-mediated clearance mechanisms. Finally, the addition of a PEG moiety can have beneficial effects on the immunological profile of a biomolecule by reducing its ability to raise antibodies in humans (96).

Since PEG polymers are highly hydrated, with two to three water molecules per ethylene glycol unit, their hydrodynamic radii are approximately 5-10-fold greater than would be predicted by their nominal molecular weight (97), underlying a dramatic increase in the effective molecular size of the PEG-protein conjugate. PEG provides protein protection from proteases and peptidases, by impairing access of proteolytic enzymes. Conjugation with PEG creates a hydrated shell surrounding proteins, and the degree of hydration depends on PEG configuration, with higher hydration levels for
branched configuration when compared with random coil configuration (98). This dynamic hydrated PEG shell is responsible for the protection from proteolysis. Despite this, the high flexibility of PEG backbone chain usually enables high affinity interactions between enzyme and substrate. Consequently, PEGylated therapeutic proteins retain efficacy while acquiring greater stability in plasma (99).

PEG-L-ASNase was approved by the US Food and Drug Administration (FDA) in 1994 for the treatment of patients exhibiting hypersensitivity to the native *E. coli* enzyme and in 2006 was FDA-approved as a first line treatment for patients with ALL. *E. coli* L-ASNase was one of the first PEGylated proteins, and the process employed was a random one, where several PEG chains of 5 kDa are coupled to the enzyme surface. As a result, polydispersity is considerable in PEG-L-ASNase formulations (100). In addition, enzyme PEGylation is often accompanied by loss of biological activity, owing to sterical hindrance of the active site. Site-specific modifications, however, might lead to a better preservation of the native enzyme activity in the conjugate (95). In spite of these drawbacks, PEG-L-ASNase formulations have longer half-life compared with native enzymes (5 times longer than *E. coli* enzyme and 9 times longer than *Erwinia* enzyme) (101) and increased thermodynamic stability (102).

The degree to which PEGylation reduces L-ASNase immune response is unclear and there are reports where patients developed hypersensitivity to the PEGylated form. Recently, the presence of antibodies against PEG was described in some patients with undetectable L-ASNase activity after receiving PEG-L-ASNase. These anti-PEG were indicated as the cause of the
rapid clearance of the conjugates and the absence of enzyme activity in the serum (103).

Associated with the longer half-life of PEG-L-ASNase in serum and as a result of the enzyme action, an increase in ammonia blood concentration to clinical significant levels was reported. Hyperammonemia after L-ASNase therapy was first reported by Leonard and Kay in 1986 (104); nevertheless, L-ASNases preparations used (EcA and ErA) had short half-life, and ammonia was rapidly removed from circulation. Due to the prolonged PEG-L-ASNase half-life, ammonia concentration may not return to normal between doses, and ammonia toxicity may accumulate with appearance of symptoms suggestive of hyperammonemia that disappeared after cessation of enzyme administration (104). Therefore, despite the benefits of conjugating therapeutic proteins with PEG, drug pharmacodynamics and pharmacokinetics have to be well characterized in order to ensure therapeutics efficiency with minimal negative side effects.

Freeze-dried formulations

Parenteral enzyme formulations must comply with their specifications during long-term storage. Water-dispersed enzymes, however, might be degraded through peptide bond hydrolysis and deamination, among other reactions, favored by a temperature increase (105). L-ASNase is susceptible to these water-related reactions, which decrease its long-term or even short-term stability. For example, it was shown that ErA and EcA partial deamination changes their isoelectric point and plasma half-life, although with no changes in enzymatic activity (84).
Freeze-drying can avoid most water-related reactions by sublimating water from the frozen product under vacuum and also allows sterile drying, without heating or chemical sterilization. The process, however, is subject to stress by other operations such as cold denaturation; freeze denaturation and osmotic pressure due to dehydration and cryoconcentration (105), whose respective relevance can be evaluated by splitting the process into freezing and drying.

Concerning the freezing process, ErA activity is lost up to 40% when the enzyme is subject to freeze-thaw cycling, restored 24 h after freeze-thaw at -20°C and partially restored when the freezing temperature reaches -40°C. Transient activity loss depends on the tetramer dissociation rate (84), whereas cleavage of dissociated monomers leads to aggregation and permanent activity loss (106). Reconstituted EcA (Elspar®) was shown to retain *in vitro* activity after cold storage for at least 14 days (4°C) and freezing (-20°C) for at least 6 months, besides resisting repeated freeze-thaw cycles (107). Moreover, the presence of mannitol in Elspar® formulation may contribute to prevent cold denaturation.

Freeze-drying without protectants is rarely an option for proteins. Hellman et al. (108) tested several protectants at different concentrations, which had been submitted to the same freeze-drying procedure as ErA. Glucose, mannose and sorbitol showed 100% tetramer and activity retention after reconstitution at pH 10, while 20 and 50% retentions were observed in the absence of any protectant and in the presence of mannose (which is present in commercial formulations), respectively. Protein retention reached a maximum value when the enzyme was freeze dried without protectants and
reconstituted at pH 7.5. Conversely, Izutsu et al. (109) observed 50% activity retention with the naked enzyme and proposed mannitol as a good protectant under natural conditions, as long as amorphous form is maintained. Such discordance might be related to differences in the freeze-drying protocol employed by these research-groups, specially the freezing step, in that the former froze the product at -35°C for 24 h, while the latter quickly froze with liquid nitrogen.

The collapse temperature is an essential parameter for freeze-drying; formulations must in fact be dried below their collapse temperature in order to maintain stability, easiness of reconstitution and dried cake form. Adams and Ramsay (110) characterized ErA formulations with a variety of protectants regarding collapse temperature, cake structure and activity/tetramer retention. Lactose was shown to be the most suitable protectant among those tested, together with lactose/mannitol combination. These authors performed a cycle optimization to reduce the drying time, based on the collapse temperature. Lactose suitability as a protectant during ErA freeze-drying confirmed the results of a previous study, which demonstrated the potential of other disaccharides as enzyme stabilizers such as trehalose and maltose (111).

Lyoprotection mechanisms are not fully elucidated. A diffused hypothesis is that the protectant substitutes water in the protein hydration shell. Based on this theory, Ward et al. (112) proposed that L-ASNase would be protected with one molecule of a protectant per highly polar residue, and their model was able to estimate saccharide concentration, but failed to predict PEG amount.
Instead of adding protectants, it is possible to conjugate them to improve thermostability, among other properties. For instance, PEGylated EcA recovered 100% activity when reconstituted after freeze-drying (102). EcA conjugation with inulin, on the other hand, led to improvement in freeze-thawing resistance without any significant change in freeze-drying (113).

Freeze-drying literature concerning EcA is scarce and outdated, while ErA is more explored. Papers are generally broken into formulation screening or process parameters, with large disparities in freeze-drying methodology. Patents were deposited but, for obvious reasons, information is not straightforward. So far, no models were adequate enough to predict freeze-drying behavior of protein solutions, and for this reason empirical testing is still necessary to achieve an adequate formulation.

Structural features, undesirable characteristics and protein engineering of bacterial L-asparaginases

Despite being a widely-used drug, L-ASNase possesses a secondary L-glutaminase activity (L-GLNase), and several side effects are associated with L-ASNase-based treatments, including immunological reactions, hepatotoxicity, neurotoxicity, coagulation abnormalities, among others. Additionally, its administration to patients often results in a rapid decay of circulating L-ASNase levels, leading to high administration frequency. Determination of crystallographic structure of several L-ASNases has assisted decisively in a better comprehension of the enzyme features and the catalytic process. Besides, these data have currently enabled approaches involving the
rational enzyme engineering based on structural data and in silico approaches, aiming to obtain more efficient and specific bacterial L-ASNases.

Enzyme structure and catalytic mechanism

EcA was the first bacterial L-ASNase whose high-resolution crystallographic structure was determined (114). Structural studies revealed a well-organized homotetrameric enzyme, with each monomer containing ~330 amino acids arranged in two domains (N- and C-terminal), both belonging to the α/β class. The N-terminal domain comprises the residues 1-190 and is connected to the smaller C-terminal domain (213-326) by a large linker (191-212) (Supplementary Figure 1A). Monomers are able to associate tightly to each other forming intimate dimers characterized by an extensive interface among the subunits that are held together by several interactions, mainly van der Walls and electrostatic ones (Supplementary Figure 1B). Finally, the association of two dimers results in the tetrameric biological unit, kept together by similar molecular interactions found in the homodimers (Supplementary Figure 1C) (114,115). Several macromolecular L-ASNase structures are available at PDB databank (116), including ErA (117,118), which shares high structural similarities to the *E. coli* counterpart (r.m.s.d = 0.89) (Supplementary Figure 1D).
L-ASNases active site is located at the interface of the intimate dimers and each one has two active site pockets formed by amino acids arising from both subunits (114,120). Structural and functional studies revealed that three amino acids, named catalytic triad and represented by the polar amino acids Thr-Lys-Asp (Thr^{89}, Lys^{162} and Asp^{90} in EcA) are essential for the enzyme activity (115).

Determination of L-ASNase structures with ligand molecules at the active site revealed that an intricate hydrogen network is established with...
ligands (Supplementary Figure 2 A and B) and discloses two additional residues of importance to catalytic mechanism (Thr\(^{12}\) and Tyr\(^{25}\) in EcA) (121). These residues are located in a large loop (amino acids 10-32 in EcA) that operates as a lid for the active site, probably assisting the correct substrate binding which favors catalysis (Supplementary Figure 2 C and D).

Figure 2. L-ASNases: active site pocket structural features and ligand binding. The active site region of EcA (blue) (A) and ErA (green) (B) reveals extensive structural similarities of the amino acids involved in catalysis (Thr\(^{12}\), Tyr\(^{25}\), Thr\(^{89}\), Asp\(^{90}\) and Lys\(^{162}\) in *E. coli*, and Thr\(^{15}\), Tyr\(^{29}\), Thr\(^{95}\), Asp\(^{96}\) and Lys\(^{168}\) in *E. chrysanthemi*). Detail of the active site region of EcA (C) and ErA (D) showing the position of the loop at the entrance of the active site pocket. The representations are in cartoon and the catalytic amino acids are represented by ball and stick and colorized by CPK (O = red, N = blue, C = same color of the enzyme). For the ligands aspartate (C) and SO\(_4\) (D) carbon atoms are in yellow, sulfur in orange, oxygen in red and nitrogen in blue. The graphic models were generated by PyMOL (119) using the coordinates 3ECA (*E. coli*) and 107J (*E. chrysanthemi*).

In-vivo side effects and enzyme instability

L-ASNase administration can promote a number of harmful side effects including immunological responses, ranging from allergic reactions to fatal
anaphylactic shock (122). The immunological side effects of L-ASNases can be partially minimized using enzymes from different bacteria (e.g. replacing EcA for ErA) or the PEGylated enzyme (1). In addition, new experimental protocols of enzyme encapsulation into erythrocytes or entrapping into liposomes were tested, and lower side effects were observed (123-125). Another problem in therapeutics is associated with the enzyme clearance from the bloodstream. Recently, the L-ASNase clearance was associated with the action of cysteine proteases (126,127) as asparagine endopeptidase (AEP) and cathepsin B. In this context, the proteolytic cleavage may be responsible to expose L-ASNase additional epitopes, which are involved in the patients’ immune response and encapsulation partially avoids the immunogenic response (125,127).

An important side effect is related with the nonspecific L-ASNase amidohydrolase activity. Patients treated with bacterial enzymes also exhibit low levels of L-glutamine (Gln) in the bloodstream, and some works highlight the Gln depletion and toxicity related to it (127). Despite the significantly lower k_m of L-ASNase amidohydrolase activity to Asn (30-fold lower in EcA) (1), Gln represents 50% of all free amino acids in the body being an important nitrogen source (128). In fact, the main consequence of L-glutaminase activity of L-ASNases is the decrease in protein synthesis, which has been directly associated with several side effects such as immunosuppression, thromboembolisms and neurological disorders.

Mutational studies and rational enzyme engineering
Several mutational approaches were performed in L-ASNase aiming to investigate aspects such as catalysis, substrate binding, turnover and affinity, antigenicity, oligomerization, among others, being one of the most engineered proteins to date. Supplementary Table 5 the effects of amino acids mutations in EcA.

Supplementary Table 5. Summary of the amino acid mutations and the functional/structural effects over *E. coli* L-ASNase.

Amino acid	Substitution(s)	Functional and or structural effects	Reference
G11	V11 or L11	Catalysis almost abolished	(129)
T12	A12	L-ASNase activity reduced to 0.01%	(130)
T12	A12	L-ASNase activity reduced to 0.04%	(131)
T24	S12	Normal activity but altered substrate specificity	
N24	G24	Decrease of the L-ASNase and L-GLNase activity	
N24/R195	A24 or T24	AEP resistant enzyme	
N24/R195	A24/S195	Decay of the L-ASNase activity/slight decrease of the L-GLNase activity	(127)
N24/R195	T24/S195	Abolishment of L-ASNase activity/slight decrease of the L-GLNase activity	(127)
N24/R195	A24/L250	Abolishment of L-ASNase activity/slight decrease of the L-GLNase activity	(127)
Y25	F25	High decrease of L-GLNase activity	(115)
Y25	A, H or F	L-ASNase activity reduced to 0.1-0.2%	(132)
G57	A57	Little effect on substrate specificity/Reduction in the activity with AHA, Asn and Gln	
G57	V57 or L57	Strong reduction in *k*_{cat} for all substrates/Low alteration in the substrate specificity	
Q59	G59 or A59	Strong increase in the *K_m* values for AHA/Increase of binding constants for aspartate/Interference in the L-GLNase activity to larger extent than the turnover of AHA or Asn.	(129)
Q59	E59	Reduction in *k*_{cat} for aspartic β-hydroxamate (AHA), Asn and Gln to about 10% of the wild-type/No differences between the L-ASNase and L-GLNase activities.	
Q59	L59	High decrease of L-GLNase activity/slight effect over L-ASNase	
Q59	N59	Decrease (− 80%) of L-GLNase and L-ASNase activities	
Q59	H59	Decrease (− 50%) of L-GLNase and L-ASNase activities	
Q59	L, F, C, T, S, Y, W, V, I, A, M, P, G, R or K	High decrease of L-GLNase activity	(133)
W66	Y66	Death of ALL cells more efficiently/Induction of apoptosis in lymphocytes derived from ALL patients/Rapid depletion of asparagine/Down-regulation of the transcription of asparagine synthase	(134)
W66/Y25	Y66/W25	Decrease of *k*_{cat} to Asn/Reduction of active site loop movement	(135)
W66/Y176	Y66/W176	Resistant to chemical denaturation/ Increase of V_{max}/K_m to AHA	(136)
W66/Y181	Y66/W181	Higher susceptibility to chemical and thermal denaturation	
H87	A87, L87, K87	No substantial changes of K_m; Moderate decrease of *k*_{cat} to Asn	(137)
G88	A88 or I88	Asn catalysis almost abolished	(129)
T89	V89	Aspartate Aspartyl moiety was found covalently bound to Thr-12	(120)
D90	E90	kcat decreased and Km increase to Asn	(138)
T119	A119	Decrease of Asn activity without markedly affecting substrate binding	(131)
S122	A122	No effect	
Y176	F176	Killed the ALL cells more efficiently/Induced more apoptosis in lymphocytes derived from ALL patients/Rapid depletion of	(134,136)
asparagine and down-regulation of the transcription of asparagine synthetase/Decrease of L-GLNase activity/ Increase of V_{max}/K_{m} to AHA

Y176	S176	Decrease of L-GLNase activity/ Increase of V_{max}/K_{m} to AHA
Y181	S181 or C181	Instability of tetramer (132)
H183	L193	Sensitive to urea (137)
R195/K196/	A195/A196/	Reduction in antigenicity (139)
H197	A197	No substantial changes of K_{m}; Moderate decrease of k_{cat} (137)
N248	D248 or E248	Reduction in K_{m} to Asn
N248	A248	Loss of transition state stabilization of Gln hydrolysis twice as high as that for asparagine and more than three times higher than the value for AHA (129)
N248	G, D, Q or E	Moderate reduction of maximum velocity of Asn hydrolysis/Strong impairment of Gln turnover.
Y250	F250	No effect (132)
K288	R288	Decrease of L-GLNase activity
K288/Y176	S288/F176	Reduction of antigenicity and immunogenicity/Rapid depletion of asparagine and down-regulation of the transcription of asparagine synthetase/Decrease of L-GLNase activity (134)
K288/Y176	R288/F176	Decrease of L-GLNase activity
Y289	F289	No effect (132)
Y326	Stop	Instability of tetramer

In fact, excluding the pioneering studies involving covalent modifications by inhibitors, peptide sequencing and other techniques to determine amino acids involved in catalysis (130,137), the vast majority of the site mutagenesis approaches were performed after the determination of EcA crystallographic structures. These include structures presenting ligands at the active site pocket (115), demonstrating the importance of protein structure knowledge to rationally evaluate the amino acids involved in substrate binding and catalysis as well to plan replacements strategies.

As can be seen in Supplementary Figure 3, the amino acids substitutions that affect kinetic parameters of bacterial L-ASNAses are concentrated, in the active site vicinity, at the intimate dimer interface (Supplementary Figure 3A and 3B). However, it is possible to notice that the dimer complementary region, which also is part of the active site pocket, lacks mutational studies (Supplementary Figure 3C and 3D). This observation is
important, since the active site volume is closely related to substrate(s) binding, aspects that will be addressed posteriorly.

![diagram](image)

Figure 3. *E. coli* ASNase surface structural representations of mutational approaches affecting enzyme activity. In A) and B) are represented the EcA dimer with a monomer colorized in gray and the another in dark blue, revealing the positions of amino acids which substitutions resulted in altered enzyme activity over the substrates (orange) (e.g. Asn, Gln and AHA). Amino acids involved in catalytic activity are colorized in red (Thr, Tyr, Thr, Asp or Lys). C) and D) EcA monomer representations showing the amino acids in the monomers interfaces. Molecular graphics were generated using PDB coordinates 3ECA (*E. coli*).

The molecular surface mapping of amino acids substitutions that cause alterations on enzyme stability reveals that several amino acids are located at enzyme surface, some of them between the dimers (Asn, Asp and Tyr) or tetramer contacts (Asn, Asn, Lys, Tyr and Lys) (Supplementary Figure 4). Rational efforts were also performed aiming to enhance enzyme stability and half-life. Replacement of the Asn by Ala or Thr, located in the lid
loop containing Tyr^{25}, increased enzyme stability, rendering higher resistance to AEP and increasing enzymatic activity (127).

Figure 4. EcA structural surfaces representations of mutational approaches affecting enzyme stability and antigenicity. In A) and B) are represented the EcA intimate dimer showing the surface mapping of amino acids whose replacement increase or decrease the thermal or proteolytic enzyme stability (green and salmon, respectively) or antigenicity reduction (yellow). The asterisk (*) denotes amino acids substitutions performed in other bacterial species. C) and D) EcA monomer representations showing the amino acids in the monomers interfaces. In E) and F) are represented the tetramer interface with a dimer colorized in grey and dark blue and another in black and light blue. Molecular graphics were generated using PDB coordinates 3ECA (E. coli).
Regarding antigenicity, hydrophilic protein regions associated with long side chain-amino acids are closely related to antigenic sites. Studies involving antigenicity of EcA showed that several amino acids fit into the characteristics described above (Tyr176, Arg195, Lys196, His197 and Lys288) (Supplementary Figure 4 A-D) (134,139). Additionally, approaches using two distinct techniques to identify immunogenic peptides report an EcA fragment containing several bulky amino acids as the most immunogenic (140). Interestingly, the analysis of EcA tetramer structure reveals that some amino acids involved in antigenicity are buried in the enzyme structure (Supplementary Figure 4 E and F). It is likely that, at very low concentrations such as those used in therapy, in addition to the tetrameric form, there are significant amounts of dimers with additional residues accessible as previously demonstrated in vitro (140).

Recently, Mehta et al. (134) demonstrated that EcA double substitution of Lys288Ser/Tyr176Phe decreases significantly the enzyme immunogenicity, since the patient antibodies binding was reduced to less than 40%. As expected, Lys288 is located at the tetramer surface (Supplementary Figure 4E and 4F), but curiously Tyr76 (Supplementary Figure 4A and 4B) is buried between the dimers of the tetramer. Again the tetramer dissociation may be related with this phenomenon.

As described previously, several L-ASNase undesirable characteristics have been ascribed to L-GLNase activity of L-ASNase (129,133,134,141). In ErA, substitution of Glu63 and Ser254 led to a decrease in L-GLNase activity (129). In EcA, substitution of the Asp248 by Ala revealed an effective decrease
in L-glutamine hydrolysis (129). However, the mutant also showed a significant decrease in L-asparagine hydrolysis (about ~12% of the wild type).

A latter study using molecular dynamics simulations combined with structural analysis and site directed mutagenesis, demonstrated that the double substitution Asn24Ala and Tyr250Leu results in negligible L-glutaminase activity and ~30% decrease of the L-asparaginase activity. As mentioned before, Asn24 is located close to Tyr25 from the lid loop (Supplementary Figure 5A) and its substitution by Ala or Thr is related with proteolytic resistance to AEP. L-GLNase activity decrease was associated with the active site cavity volume (Asn24Ala, substitution) and tetramer compactness (Tyr250Leu, substitution) (127). It is important to mention that to the EcA mutants the cytotoxicity was significantly lower than to the wild type enzyme. The authors argued that EcA dual activity is also associated with therapeutic toxicity, since mutants with lower L-GLNase activity also exhibited lower cytotoxicity (127).

Chan and coworkers (133) also investigated additional factors of cytotoxicity of EcA mutants deficient in L-GLNase activity. Molecular dynamics simulation approaches combined with saturation site directed mutagenesis allowed to the authors to identify an EcA glutamine residue (Gln59) in the active site pocket that is able to perform saline interactions with the ligand (Supplementary Figure 5B). It was demonstrated that the mutant enzyme carrying the Gln59 substitution by a Leu (EcAQ59L) results in an enzyme that retains ~60% of L-ASNase activity, but no detectable L-GLNase activity.
The mutant EcA^{Q59L} was able to kill efficiently cell lines that possess low levels of asparagine synthetase (ASNS), but did not present cytotoxicity in cell lines expressing ASNS (133). ASNS is able to catalyze the conversion of aspartate and glutamine to asparagine and glutamate in an ATP-dependent reaction, thus supplying ALL cells with Asn. Some studies report that to some ALL patients who developed L-ASNase resistant forms of the disease may be correlated with ASNS up-regulation (142). Nevertheless, the demonstration that EcA variants without L-GLNase activity are able to kill cancer cells with low ASNS levels is very important and may represent a promising therapy with less side effects for patients affected by tumors with this characteristic (133).
Recently, Verma et al. (136) showed that substitution of EcA Tyr176Phe and Trp66Tyr residues promotes a substantial decrease of L-GLNase activity but L-ASNase activity remains similar to the wild type enzyme. Tyr176 and Trp66 are very far from the enzyme active site, at both dimers and (Supplementary Figure 4). So, the effects of their replacements were related to an intricate network of indirect molecular interactions, which affects the enzyme quaternary folding with consequences in its activity. In subsequent studies, it was demonstrated that the mutant enzymes EcAW66Y, EcAY176F and EcAK288S/Y176F are able to down regulate ASNS expression when compared with wild type enzyme, however the reasons for this phenomenon are not yet understood (134).

The studies presented in this section provide amazing examples of how EcA rational protein engineering can assist in a better understanding of catalytic mechanisms, substrate binding, enzyme folding and their relationship with cytotoxicity and immunogenicity. Engineered enzymes or new variants derived from studies presented here may have high potential for future alternative therapeutic treatments using recombinant L-ASNAses. Additional studies involving structure determination and analysis of mutant enzymes with improved properties should provide a better understanding of EcA functional and structural features and open perspectives of creating new enzymes with personalized characteristics for different groups of patients. Additionally to the rational modification based on structure analysis, emerging approaches based on computational analyses involving molecular dynamics, docking of substrates, among others in silico techniques, has proven to be very important to guide the rational enzyme modifications.
Concluding remarks and future perspectives

Due to L-ASNase importance in the treatment of several types of cancers, in particular leukemia, it is essential to search for new sources of this enzyme in order to increase its availability as a drug and reduce side effects. Considering the advantages of the use of microorganisms in bioprocesses and that very little is known on the huge magnitude of microbial diversity, they may be considered a target source of genomic innovation, including new L-ASNases with improved properties compared with those currently employed in therapy. In this sense, our group is currently working on the screening of new microorganisms producing L-ASNase, with bioprospecting groups of fungi from diverse biomes such as Cerrado (Brazilian Savannah), semi-arid of Brazilian Northeast and Antarctic.

Rational protein engineering based on protein structure is another promising strategy to produce L-ASNases with improved pharmacodynamics, pharmacokinetics and toxicological profiles. Indeed, approaches involving site directed mutagenesis of residues in the active site were able to produce recombinant enzymes with moderate L-ASNase activity, but negligible L-GLNase activity. Additional procedures involving the introduction of structural disulfides and deletion of proteases cleavage sites may allow for the production of more robust enzymes. Our group is working on a better structural and kinetic characterization of *S. cerevisiae* L-ASNases, as well as, on the rational engineering of the yeast enzymes by means of site-directed and random mutations. There is little information on *S. cerevisiae* L-ASNase and, giving the ease of cultivation and possibility of genetic manipulation, we
believe that *S. cerevisiae* L-ANSase deserves to be better investigated as an alternative to the existing sources of this therapeutic protein.

One interesting technological approach that may contribute to improve L-ASNase production by recombinant microorganisms is the Metabolic Flux Analysis (MFA), a powerful tool to estimate the metabolic state constrained by exchange of nutrient fluxes between cells and the environment (143). This analysis has been successfully used to identify key nodes in the primary metabolism, which are characterized by significant changes to the partitioning of the flux under different conditions, and thus it can be considered as a potential control point manipulation (144,145). Additionally, *Pichia pastoris*, which has been developed as an excellent host for heterologous genes using alcohol oxidase as a promoter, has potential for high cell density cultivations with high levels of protein expression and efficient secretion (146). Therefore, MFA applied to L-ASNase production by recombinant *P. pastoris* is an interesting alternative to be investigated, with determination of optimal culture conditions in terms of temperature, methanol concentration and pH. This may be done through modeling of metabolic fluxes related to methanol-metabolizing pathway, which is important in the induction of the heterologous protein as well as yeast growth (147).

The information gathered here also demonstrates a gap on novel alternatives and optimized protocols for L-ASNase bioproduction and purification. Therefore, our group is also carrying out research on this topic, with special focus on the cultivation parameters and novel purification strategies such as liquid-liquid extraction with ionic liquids. We hope that, in a
near future, novel alternatives to bacterial L-ASNases can be available for ALL treatment, with better therapeutic results and less side effects.

Acknowledgments

This research was supported by grants from Brazil, specifically the CAPES (#2805/2010), CNPq (#552652/2011-3) and FAPESP (#2013/08617-7).

Declaration of Interest

The authors report no declarations of interest.

References

1 Avramis VI, Tiwari PN. (2006). Asparaginase (native ASNase or pegylated ASNase) in the treatment of acute lymphoblastic leukemia. Int J Nanomed, 1, 241–54.
2 Kumar K, Kaur J, Walia S, et al. (2014). L-Asparaginase, an effective agent in the treatment of acute lymphoblastic leukemia. Leukemia Lymphoma, 55, 256–62.
3 Pui CH, Evans WE. (2006). Treatment of acute lymphoblastic leukemia. N Engl J Med, 354, 166–78.
4 Verna N, Kumar G, Anand S. (2007). L-asparaginase: a promising chemotherapeutic agent. Crit Rev Biotechnol, 27, 45–62.
5 Bussolati O, Belletti S, Uggeri J, et al. (1995). Characterization of apoptotic phenomena induced by treatment with L-asparaginase in NIH3T3 cells. Exp Cell Res, 220, 283–91.
6 Sarquis MI, Oliveira EM, Santos AS, et al. (2004). Production of L-asparaginase by filamentous fungi. Mem Inst Oswaldo Cruz, 99, 489–92.
7 Tong WH, Pieters R, Kaspers GJ, et al. (2014). A prospective study on drug monitoring of PEG-L-asparaginase and Erwinia asparaginase and asparaginase antibodies in pediatric acute lymphoblastic leukemia. Blood, 123, 2026–33.
8 http://www.clinicaltrials.gov/show/NCT01551524. Accessed on May 29th, 2014.
9 Mashburn LT, Wriston JC. (1963). Tumor inhibitory effect of L-asparaginase. Biochem Biophys Res Commun, 12, 50–55.
10 Jain R, Zaidi KU, Verma Y, et al. (2012). L-asparaginase: a promising enzyme for treatment of ALL. People’s J Sci Res, 5, 29–35.
11 Rytting ME. (2012). Role of L-asparaginase in acute lymphoblastic leukemia: focus on adult patients. Blood Lymphatic Cancer: Targets Ther, 2, 117–24.
12 Apostolidou E, Swords R, Alvarado Y, et al. (2007). Treatment of ALL: a new era. Drugs, 67, 2153–71.
13 De Bont JM, van der Holt B, Dekker AW, et al. (2004). Significant difference in outcome for adolescents with ALL treated on pediatric vs adult protocols in the Netherlands. Leukemia, 18, 2032–5.
14 Pui CH, Howard SC. (2008). Current management and challenges of malignant disease in the CNS in pediatric leukemia. Lancet Oncol, 9, 257–68.
15 Datasus. (2013). Brazilian health ministry. Secretariat of health surveillance. Department of analysis of health situation. System of mortality information (SIM). Brasilia, DF, Brazil. Available at: http://www.datasus.gov.br. Accessed on December 10th, 2013.
16 INCA. National Cancer Institute José Alencar Gomes da Silva, (2014). Available at: http://www.inca.gov.br/estimativa/2014/sintese-de-resultados-comentarios.asp. Accessed on May 27th, 2014.
17 Thakur M, Lincoln L, Niyonzima FN, et al. (2014). Isolation, purification and characterization of fungal extracellular L-asparaginase from Mucor hiemalis. J Biocatal Biotransformation, 2, 12–4.
18 Kumar DS, Sobha K. (2012). L-Asparaginase from microbes: a comprehensive review. Adv Bio Res, 3, 137-57.
19 Basha NS, Rekha R, Komala M, et al. (2009). Production of extracellular anti-leukaemic enzyme L-asparaginase from marine actinomycetes by solid state and submerged fermentation: purification and characterisation. Trop J Pharm Res, 8, 353–60.
20 Gurunathan B, Sahadevan R. (2012). Optimization of culture conditions and bench-scale production of L-asparaginase by submerged fermentation of *Aspergillus terreus* MTCC 1782. J Microbiol Biotechnol, 22, 923–9.

21 Zia MA, Bashir R, Ahmed I, et al. (2013). Production of L-asparaginase from *Aspergillus niger* using agro wastes by-products in submerged fermentation process. Jurnal Teknologi, 62, 47–51.

22 Thenmozhi C, Sankar R, Karuppiyah V, et al. (2011). L-asparaginase production by mangrove derived *Bacillus cereus* MAB5: optimization by response surface methodology. Asian Pac J Trop Med, 4, 486–91.

23 Mahajan RV, Saran S, Kameswaran K, et al. (2012). Efficient production of L-asparaginase from *Bacillus licheniformis* with low-glutaminase activity: Optimization, scale up and acrylamide degradation studies. Bioresour Technol, 125, 11–6.

24 Fisher SH, Wray LV Jr. (2002). *Bacillus subtilis* 168 contains two differentially regulated genes encoding L-asparaginase. J Bacteriol, 184, 2148–54.

25 Geckil H, Gencer S. (2004). Production of L-asparaginase in *Enterobacter aerogenes* expressing *Vitreoscilla* hemoglobin for efficient oxygen uptake. Appl Microbiol Biotechnol, 63, 691–7.

26 Nawaz MS, Zhang D, Khan AA, et al. (1998). Isolation and characterization of *Enterobacter cloacae* capable of metabolizing asparagine. Appl Microbiol Biot, 50, 568–72.

27 Alegre RM, Minim LA. (1993). Cheese whey utilization for L-asparaginase production from *Erwinia aroideae* NRRL B-138 in pilot plant. Arq Biol Tecnol, 36, 525–34.

28 Kotzia GA, Labrou NE. (2005). Cloning, expression and characterisation of *Erwinia carotovora* L-asparaginase. J Biotechnol, 119, 309–23.

29 Kotzia GA, Labrou NE. (2007). L-Asparaginase from *Erwinia chrysanthemi* 3937: cloning, expression and characterization. J Biotechnol, 127, 657–69.

30 Kenari SLD, Alemzadeh I, Maghsodi V. (2011). Production of L-asparaginase from *Escherichia coli* ATCC 11303: Optimization by response surface methodology. Food Bioprod Process, 89, 315–21.
31 Gladilina IuA, Sokolov NN, Krasotkina JV. (2009). Cloning, expression, and purification of *Helicobacter pylori* L-asparaginase. Biomed Khim, 3, 89–91.

32 Gunasekaran S, McDonald L, Manavathu M, et al. (1995). Effect of culture media on growth and L-asparaginase production in *Nocardia asteroides*. Biomed Lett, 52, 197–201.

33 Kumar S, Venkata Dasu V, Pakshirajan K. (2010). Localization and production of novel L-asparaginase from *Pectobacterium carotovorum* MTCC 1428. Proc Biochem, 45, 223–9.

34 Ramaiah N, Chandramohan D. (1992). Production of L-asparaginase from marine luminous bacteria. Indian J Mar Sci, 21, 212–4.

35 Geckil H, Gencer S, Ates B, et al. (2006). Effect of *Vitreoscilla* hemoglobin on production of a chemotherapeutic enzyme, L-asparaginase, by *Pseudomonas aeruginosa*. Biotechnol J, 1, 203–8.

36 Lebedeva ZI, Berezov TT. (1997). Improved method of purification and properties of glutaminase-asparaginase from *Pseudomonas aurantiaca* 548. B Exp Biol Med, 124, 1156–8.

37 Manna S, Sinha A, Sadhukhan R, et al. (1995). Purification, characterization and antitumor activity of L-asparaginase isolated from *Pseudomonas stutzeri* MB-405. Curr Microbiol, 30, 291–8.

38 Prakasham RS, Rao ChS, Rao RS, et al. (2007). L-asparaginase production by isolated *Staphylococcus* sp.–6A: design of experiment considering interaction effect for process parameter optimization. J Appl Microbiol, 102, 1382–91.

39 Narayana KJP, Kumar KG, Vijayalakshmi M. (2008). L-asparaginase production by *Streptomyces albidoflavus*. Indian J. Microbiol, 48, 331–6.

40 Amena S, Vishalakshi N, Prabhakar M, et al. (2010). Production, purification and characterization of L-asparaginase from *Streptomyces gulbargensis*. Braz J Microbiol, 41, 173–78.

41 Abdel-Fatah MK. (1997). Studies on the asparaginolytic enzymes of streptomyces II Purification and characterization of L-asparaginase from *Streptomyces longsporusflavus* (F-15) strain. Egypt J Microbiol, 31, 303–22.

42 Abdel-Fatah MK, Abdel-Mageed AR, Abdel-All SM, et al. (1998).
Purification and characterization of L-asparaginase produced by *Streptomyces phaeochromogenes* FS-39. J Drug Res, 22, 195–212.

43 Koshi A, Dhevendaran K, Georgekutty MI, et al. (1997). L-Asparaginase in *Streptomyces plicatus* isolated from the alimentary canal of the fish, *Gerres filamentosus* (Cuvier). J Mar Biotechnol, 5, 181–5.

44 Pritsa AA, Kyriakidis DA. (2001). L-asparaginase of *Thermus thermophilus*: purification, properties and identification of essential amino acids for its catalytic activity. Mol Cell Biochem, 216, 93–101.

45 Sinha A, Manna S, Rey SK, et al. (1991). Induction of L-asparaginase synthesis in *Vibrio proteus*. Indian J Med Res, 93, 289–92.

46 Lubkowski J, Palm GJ, Gilliland GL, et al. (1996). Crystal structure and amino acid sequence of *Wolinella succinogenes* L-asparaginase. Eur J Biochem, 241, 201–7.

47 Sidoruk KV, Pokrovsky VS, Borisova AA, et al. (2011). Creation of a producer, optimization of expression, and purification of recombinant *Yersinia pseudotuberculosis* L-asparaginase. B Exp Biol Med, 152, 219–23.

48 Pinheiro IO, Araujo JM, Ximenes ECPA, et al. (2001). Production of L-asparaginase by *Zymomonas mobilis* strain CP4. Biomater Diagn, 6, 243–4.

49 Wei DZ, Liu H. (1998). Promotion of L-asparaginase using n-dodecane. Biotechnol Tech, 12, 129–31.

50 Minim LA, Alegre M. (1992). Production of enzyme L-asparaginase from *Erwinia aroideae*. Arq Biol Tecnol, 35, 277–83.

51 Geckil H, Ates B, Gencer S, et al. (2005). Membrane permeabilization of gram-negative bacteria with potassium phosphate/hexane aqueous phase system for the release of L-asparaginase: an enzyme used in cancer therapy. Process Biochem, 40, 573–9.

52 Kumar S, Pakshirajan K, Venkata Dasu V. (2009). Development of medium for enhanced production of glutamine-free L-asparaginase from *Pectobacterium carotovorum* MTCC 1428. Appl Microbiol Biotechnol, 84, 477–86.

53 Venil C, Lakshmanaperumalsamy P. (2009). Solid-state fermentation for production of L-asparaginase in rice bran by *Serratia marcescens* SB08.
Internet J Microbiol, 7, 1.

54 Sangeetha PT, Ramesh MN, Prapulla SG. (2004). Production of fructosyl transferase by *Aspergillus oryzae* CFR202 in solid-state fermentation using agricultural by-products. Appl Microbiol Biotechnol, 65, 530–7.

55 Abdel-Fattah YR, Olama ZA. (2002). L-asparaginase production by *Pseudomonas aeruginosa* in solid-state culture: evaluation and optimization of culture conditions using factorial designs. Process Biochem, 38, 115–22.

56 El-Bessoumy AA, Sarhan M, Mansour J. (2004). Production, isolation, and purification of L-asparaginase from *Pseudomonas aeruginosa* 50071 using solid-state fermentation. J Biochem Mol Biol, 37, 387–93.

57 Hymavathi M, Sathish T, Rao CS, et al. (2009). Enhancement of L-asparaginase production by isolated *Bacillus circulans* (MTCC 8574) using response surface methodology. Appl Biochem Biotechnol, 159, 191–8.

58 Vuddaraju SP, Nikku MY, Chaduvula AIR, et al. (2010). Application of statistical experimental designs for the optimization of medium constituents for the production of L-asparaginase by *Serratia marcescens*. J Microbial Biochem Technol, 2, 89–94.

59 Ghosh S, Murthy S, Govindasamy S, et al. (2013). Optimization of L-asparaginase production by *Serratia marcescens* (NCIM 2919) under solid state fermentation using coconut oil cake. Sust Chem Proc, 1, 1–8.

60 Shrivastava A, Khan AA, Shrivastav A, et al. (2012). Kinetic studies of L-asparaginase from *Penicillium digitatum*. Prep Biochem Biotechnol, 42, 574–81.

61 Sette LD, Pagnocca FC, Rodrigues A. (2013) Microbial culture collections as pillars for promoting fungal diversity, conservation and exploitation. Fungal Genet Biol, 60, 2–8.

62 Theantana T, Hyde KD, Lumyong S. (2007). Asparaginase production by endophytic fungi isolated from some Thai medicinal plants. KMITL Sci Tech J, 7, 13–8.

63 Theantana T, Hyde KD, Lumyong S. (2009). Asparaginase production by endophytic fungi from Thai medicinal plants: citotoxicity properties. Internat J Integr Biol, 7, 1–8.
64 Thirunavukkarasu N, Suryanarayanan TS, Murali TS, et al. (2011). L-asparaginase from marine derived fungal endophytes of seaweeds. Mycosphere, 2, 147–55.
65 Sudha SS. (2009). Marine environment: A potential source for L-asparaginase producing microorganisms. IUP J Biotechnol, 3, 57–62.
66 Sundaramoorthi C, Rajakumari R, Dharamsi A, et al. (2012). Production and immobilization of L-asparaginase from marine source. Int J Pharm Pharm Sci, 4, 229–32.
67 Alhussaini MS. (2013). Mycobiota of wheat flour and detection of α-amylase and L-asparaginase enzymes. Life Sci J, 10, 1112–22.
68 Lapmak K, Lumyong S, Thongkuntha S, et al. (2010). L-asparaginase production by Bipolaris sp. BR438 isolated from brown rice in Thailand. Chinag Mai J Sci, 37, 160–4.
69 Kil JO, Kim GN, Park I. (1995). Extraction of extracellular L-asparaginase from Candida utilis. Biosc Biotechnol Biochem, 59, 749–50.
70 Kumar NSM, Manonmani HK. (2013). Purification, characterization and kinetic properties of extracellular L-asparaginase produced by Cladosporium sp. World J Microbiol Biotechnol, 29, 577–87.
71 Raha SK, Roy SK, Dey SK, et al. (1990). Purification and properties of an L-asparaginase from Cylindrocarpon obtusisporum MB-10. Biochem Int, 21, 987–1000.
72 Tippani R, Sivadevuni G. (2012). Nutritional factors effecting the production of L-asparaginase by the Fusarium sp. Afr J Biotechnol, 11, 3692–6.
73 Gupta N, Dash JS, Basak UC. (2009). L-asparaginases from fungi of Bhitarankika mangrove ecosystem. AsPac J Mol Biol Biotechnol, 17, 27–30.
74 Ramakrishnan MS, Joseph R. (1996). Characterization of an extracellular asparaginase of Rhodosporidium toruloides CBS14 exhibiting unique physicochemical properties. Can J Microbiol, 42, 316–25.
75 Mishra A. (2006). Production of L-asparaginase, an anticancer agent, from Aspergillus niger using agricultural waste in solid state fermentation. Appl Biochem Biotechnol, 135, 33–42.
76 Gurunathan B, Renganathan S. (2011). Design of experiments and
artificial neural network linked genetic algorithm for modeling and optimization of L-asparaginase production by Aspergillus terreus MTCC 1782. Biotechnol Bioproc Eng, 16, 50–8.

77 Patro KRP, Basak UC, Mohapatra AK, et al. (2014). Development of new medium composition for enhanced production of L-asparaginase by Aspergillus flavus. J Environ Biol, 12, 167–74.

78 Rani SA, Sundaram L, Vasantha PB. (2012). Isolation and screening of L-asparaginase producing fungi from soil samples. Int J Pharm Pharm Sci, 4, 279–82.

79 Nair A, Kumar R, Agalya Devi R, et al. (2013). Screening of commonly available solid process residues as substrate for L-asparaginase production by Aspergillus terreus MTCC 1782. Res J Pharm Biol Chem Sci, 4, 1731–7.

80 Uppuluri KB, Reddy DSR. (2009). Optimization of L-asparaginase production by isolated Aspergillus niger using sesame cake in a column bioreactor. J Pure Appl Microbiol, 3, 83-90.

81 Uppuluri KB, Dasari RKVR, Sajja V, et al. (2013). Optimization of L-asparaginase production by isolated Aspergillus niger C4 from sesame (black) oil cake under SSF using Box-Behnken design in column bioreactor. Int J Chem React Eng, 11, 103–9.

82 Hosamani R, Kaliwal BB. (2011). L-Asparaginase - an anti-tumor agent production by Fusarium equiseti using solid state fermentation. Int J Drug Discov, 3, 88–99.

83 Golunski S, Astolfi V, Carniel N, et al. (2011). Ethanol precipitation and ultrafiltration of inulinases from Kluyveromyces marxianus. Sep Purif Technol, 78, 261–5.

84 Gervais D, Allison N, Jennings A, et al. (2013). Validation of a 30-year-old process for the manufacture of L-asparaginase from Erwinia chrysanthemi. Bioprocess Biosyst Eng, 36, 453–60.

85 Moorthy V, Ramalingam A, Sumantha A, et al. (2010). Production, purification and characterisation of extracellular L-asparaginase from a soil isolate of Bacillus sp. Afr J Microbiol Res, 4, 1862–7.
86 Dutra-Molino JV, Araujo Feitosa V, Lencastre-Novaes LC, et al. (2014). Biomolecules extracted by ATPS: practical examples. Rev Mex Ing Quim, 13, 359–77.
87 Albertsson PA. (1986). Partition of proteins in liquid polymer-polymer two-phase systems. In: Partition of cell particles and macromolecules, 3rd ed. New York: Wiley Intersciences; 709–71.
88 Qin M, Zhao F. (2003). L-asparaginase release from Escherichia coli cells with aqueous two-phase micellar systems. Appl Biochem Biotech, 110, 11–21.
89 Jian-Hang Z, Xi-Luan Y, Hong-Jun C, et al. (2007). In situ extraction of intracellular L-asparaginase using thermoseparating aqueous two-phase systems. J Chromatogr A, 1147, 127–34.
90 Gräslund S, Nordlund P, Weigelt J, et al. (2008). Protein production and purification. Nat methods, 5, 135–46.
91 Singh Y, Gundampati RK, Jagannadham MV, et al. (2013). Extracellular L-asparaginase from a protease-deficient Bacillus aryabhattai ITBHU02: purification, biochemical characterization, and evaluation of antineoplastic activity in vitro. Appl Biochem Biotechnol, 171, 1759–74.
92 Warangkar SC, Khobragade CN. (2010). Purification, characterization, and effect of thiol compounds on activity of the Erwinia carotovora L-asparaginase. Enzyme Res, 1, 1–10.
93 Loureiro CB, Borges KS, Andrade AF, et al. (2012). Purification and biochemical characterization of native and pegylated form of L-asparaginase produced by Aspergillus terreus: evaluation in vitro of antineoplastic activity. Adv Microbiol, 2, 138–45.
94 Yang BB, Lum PK, Hayashi MM, et al. (2004). Polyethylene glycol modification of filgrastim results in decreased renal clearance of the protein in rats. J Pharm Sci, 93, 1367–73.
95 Veronese FM, Pasut G. (2005). PEGylation, successful approach to drug delivery. Drug Discov Today, 10, 1451–8.
96 Mehvar R. (2000). Modulation of the pharmacokinetics and pharmacodynamics of proteins by polyethylene glycol conjugation. J Pharm Sci, 3, 125–36.
97 Harris JM, Chess RB. (2003). Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov, 2, 214–21.
98 Tirosh O, Barenholz Y, Katzhendler J, et al. (1998). Hydration of polyethylene glycol-grafted liposomes. Biophys J, 74, 1371–9.
99 Fishburn CS. (2008). The pharmacology of PEGylation: balancing PD with PK to generate novel therapeutics. J Pharm Sci, 10, 4167–83.
100 Pasut G, Sergi M, Veronese FM. (2008). Anti-cancer PEG-enzymes: 30 years old, but still a current approach. Adv Drug Deliver Rev, 60, 69–78.
101 Dinndorf PA, Gootenberg J, Cohen MH, et al. (2007). FDA Drug approval summary: Pegasparagase (Oncaspar®) for the first-line treatment of children with acute lymphoblastic leukemia (ALL). Oncologist, 12, 991–8.
102 Soares AL, Guimarães GM, Polakiewicz B, et al. (2002). Effects of polyethylene glycol attachment on physicochemical and biological stability of E. coli L-asparaginase. Int J Pharm, 237, 163–70.
103 Pasut G, Veronese FM. (2009). PEG conjugates in clinical development or use as anticancer agents: An overview. Adv Drug Deliver Rev, 61, 1177–88.
104 Heitink-Pollé KM, Prinsen BH, de Koning TJ, et al. (2013). High incidence of symptomatic hyperammonemia in children with acute lymphoblastic leukemia receiving pegylated asparaginase. J Inherit Metab Dis, 7, 103–8.
105 Singh SK, Kolhe P, Wang W, et al. (2009). Large-scale freezing of biologics - a practitioner's review, part one: fundamental aspects. BioProcess Int, 7, 32–44.
106 Jameel F, Bogner R, Mauri F, et al. (1997). Investigation of physicochemical changes to L-asparaginase during freeze-thaw cycling. J Pharm Pharmacol, 49, 472–7.
107 Wypij JM, Pondenis, HC. (2013). E. coli-derived L-asparaginase retains enzymatic and cytotoxic activity in vitro for canine and feline lymphoma after cold storage. Vet Med Int, doi:10.1155/2013/786162.
108 Hellman K, Miller DS, Cammack KA. (1983). The effect of freeze-drying on the quaternary structure of L-asparaginase from Erwinia carotovora. Biochim Biophys Acta, 12;749, 133–42.
109 Izutsu K, Yoshioka S, Terao T. (1994). Effect of mannitol crystallinity on the stabilization of enzymes during freeze-drying. Chem Pharm Bull, 42, 5–8.
110 Adams GD, Ramsay JR. (1996). Optimizing the lyophilization cycle and the consequences of collapse on the pharmaceutical acceptability of Erwinia L-asparaginase. J Pharm Sci, 85, 1301–5.
111 Adams GD, Irons LL. (1993). Some implications of structural collapse during freeze-drying using Erwinia caratovora L-asparaginase as a model. J Chem Technol Biotechnol, 58, 71–6.
112 Ward KR, Adams GD, Alpar HO, et al. (1999). Protection of the enzyme L-asparaginase during lyophilisation a molecular modelling approach to predict required level of lyoprotectant. Int J Pharm, 187, 153–62.
113 Tabandeh MR, Aminlari M. (2009). Synthesis, physicochemical and immunological properties of oxidized inulin-L-asparaginase bio conjugate. J Biotechnol, 141, 189–95.
114 Swain AL, Jaskólski M, Housset D, et al. (1993). Crystal structure of Escherichia coli L-asparaginase, an enzyme used in cancer therapy. Proc Natl Acad Sci USA, 90, 1474–8.
115 Jaskólski M, Kozak M, Lubkowski J, et al. (2001). Structures of two highly homologous bacterial L-asparaginases: a case of enantiomorphic space groups. Acta Crystallogr D, 57, 369–77.
116 http://www.rcsb.org. Accessed on July 17th, 2014.
117 Lubkowski J, Dauter M, Aghaiypour K, et al. (2003). Atomic resolution structure of Erwinia chrysanthemi L-asparaginase. Acta Crystallogr D, 59, 84–92.
118 Sanches M, Barbosa JA, Oliveira RT, et al. (2003). Structural comparison of Escherichia coli L-asparaginase in two monoclinic space groups. Acta Crystallogr D, 59, 416–22.
119 http://www.pymol.org. Accessed on June 10th, 2014.
120 Palm GJ, Lubkowski J, Derst C, et al. (1996). A covalently bound catalytic intermediate in Escherichia coli asparaginase: crystal structure of a Thr-89-Val mutant. FEBS Lett, 390, 211–6.
121 Michalska K, Jaskolski M. (2006). Structural aspects of L-asparaginases, their friends and relations. Acta Biochim Pol, 53, 627–40.
122 Rizzari C, Conter V, Starý J, et al. (2013). Optimizing asparaginase therapy for acute lymphoblastic leukemia. Curr Opin Oncol, 1, 1–9.
123 Agrawal V, Woo JH, Borthakur G, et al. (2013). Red blood cell-encapsulated L-asparaginase: potential therapy of patients with asparagine synthetase deficient acute myeloid leukemia. Protein Peptide Lett, 20, 392–402.
124 Kwon YM, Chung HS, Moon C, et al. (2009). L-Asparaginase encapsulated intact erythrocytes for treatment of acute lymphoblastic leukemia (ALL). J Control Release, 139, 182–9.
125 Patel N, Krishnan S, Offman MN, et al. (2009). A dyad of lymphoblastic lysosomal cysteine proteases degrades the antileukemic drug L-asparaginase. J Clin Invest, 119, 1964–73.
126 Asselin BL, Whitin JC, Coppola DJ, et al. (1993). Comparative pharmacokinetic studies of three asparaginase preparations. J Clin Oncol, 11, 1780–86.
127 Offman MN, Krol M, Patel N, et al. (2011). Rational engineering of L-asparaginase reveals importance of dual activity for cancer cell toxicity. Blood, 17, 1614–21.
128 Ramya LN, Doble M, Rekha VP, et al. (2012). L-asparaginase as potent anti-leukemic agent and its significance of having reduced glutaminase side activity for better treatment of acute lymphoblastic leukaemia. Appl Biochem Biotechnol, 167, 2144–59.
129 Derst C, Henseling J, Röhm KH. (2000). Engineering the substrate specificity of Escherichia coli asparaginase II. Selective reduction of glutaminase activity by amino acid replacements at position 248. Protein Sci, 9, 2009–17.
130 Harms E, Wehner A, Aung HP. Röhm KH. (1991). A catalytic role for threonine-12 of E. coli asparaginase II as established by site-directed mutagenesis. FEBS letters, 285, 55-8.
131 Derst C, Henseling J, Röhm KH. (1992). Probing the role of threonine and serine residues of E. coli asparaginase II by site-specific mutagenesis. Protein Eng, 8, 785-9.
132 Derst C, Wehner A, Volker Specht V, et al. (1994). States and functions of tyrosine residues in *Escherichia coli* asparaginase II. Eur J Biochem, 224, 533–40.

133 Chan WK, Lorenzi PL, Anishkin A, et al. (2014). The glutaminase activity of L-asparaginase is not required for anticancer activity against ASNS-negative cells. Blood, 123, 3596–606.

134 Mehta RK, Verma S, Pati R, et al. (2014). Mutations in subunit interface and B-cell epitopes improve antileukemic activities of *Escherichia coli* asparaginase-II. J Biol Chem, 289, 3555–70.

135 Aung HP, Bocola M, Schleper S, et al. (2000). Dynamics of a mobile loop at the active site of *Escherichia coli* asparaginase. Biochim Biophys Acta, 1481, 349–59.

136 Verma S, Mehta RK, Maiti P, et al. (2014). Improvement of stability and enzymatic activity by site-directed mutagenesis of *E. coli* asparaginase II. Biochim Biophys Acta, 1844, 1219–30.

137 Wehner A, Harms E, Jennings MP, et al. (1992). Site-specific mutagenesis of *Escherichia coli* asparaginase II. Eur J Biochem, 208, 475–80.

138 Borek D, Kozak M, Pei J, et al. (2014). Crystal structure of active site mutant of antileukemic L-asparaginase reveals conserved zinc-binding site. Febs J, 281, 4097–111.

139 Jianhua C, Yujun W, Ruibo J, et al. (2006). Probing the antigenicity of *E. coli* L-asparaginase by mutational analysis. Mol Biotechnol, 33, 57–65.

140 Werner A, Röhm, KH, Müller, HJ. (2005). Mapping of B-cell epitopes in *E. coli* asparaginase II, an enzyme used in leukemia treatment. Biol Chem, 386, 535-40.

141 Aghaiypour K, Wlodawer A, Lubkowski J. (2001). Structural basis for the activity and substrate specificity of *Erwinia chrysanthemi* L-asparaginase. Biochemistry, 40, 5655–64.

142 Richards NG, Kilberg MS. (2006). Asparagine synthetase chemotherapy. Annu Rev Biochem, 75, 629–54.

143 Antoniewicz MR. (2013). Dynamic metabolic flux analysis – tools for probing transient states of metabolic networks. Curr Opin Biotechnol, 24, 973–8.
Boghigian BA, Seth G, Kiss R, et al. (2010). Metabolic flux analysis and pharmaceutical production. Metab Eng, 12, 81–95.

Goudar CT, Biener RK, Piret JM, et al. (2014). Metabolic flux estimation in mammalian cell cultures. Methods Mol Biol, 1104, 193–209.

Cregg JM, Cereghino JL, Shi J, et al. (2000). Recombinant protein expression in *Pichia pastoris*. Mol Biotechnol, 16, 23–52.

Anasontzis GE, Penã MS, Spadiut O, et al. (2014). Effects of temperature and glycerol-and methanol-feeding profiles on the production of recombinant galactose oxidase in *Pichia pastoris*. Biotechnol Prog, 30, 728–35.
de Paula CP, Santos MC, Tairum CA, Oliveira MA. Functional characterization and heterologous expression of a new rhodanase like protein from *Xylella fastidiosa*.
FUNCTIONAL CHARACTERIZATION AND HETEROLOGOUS EXPRESSION OF A NEW RHODANENSE LIKE PROTEIN FROM XYLELLA FASTIDIOSA.

Carla Peres de Paulaa, Melina Cardoso dos Santosa, Carlos A. Tairum Jr and Marcos Antonio de Oliveiraa

aDepartamento de Biologia, Universidade Estadual Paulista, Campus do Litoral Paulista São Vicente, Brazil.

* To whom correspondence should be addressed: mao@clp.unesp.br

Structural Molecular Biology Laboratory
Universidade Estadual Paulista
Praça Infante Dom Henrique S/N

Abbreviations used: Grx, glutaredoxin; Rho, rhodanese; ORFs, open reading frames; ROS, reactive oxygen species; Grx, glutaredoxin; Trx, thioredoxin; TrxR, thioredoxin reductase; GR, glutathione reductase; GSH, glutathione; t-BOOH, t-butyl hydroperoxide; DTNB, 5,5'-dithio-bis (2-nitrobenzoic acid); NEM, N-ethylmaleimide; IPTG, isopropyl-1-thio-b-d-galactopyranoside; DTT, 1,4-dithiothreitol; DTPA, diethylenetriaminepentaacetic acid; HPLC, high performance liquid chromatography.

Keywords: Glutaredoxin (Grx), Reactive Oxygen Species (ROS), Glurho, Rhodanese (Rho), \textit{Xylella fastidiosa}.

Abstract: The Xylella fastidiosa is a phytopathogen and the causal agent of diseases in several commercial plants, accounting for high financial losses. The genome analysis of X. fastidiosa ORFs revealed a new putative gene, present in all strains sequenced to date, whose product may possess three domains: the N-terminal domain has a high similarity with the monothiol glutaredoxins (Grx), which are related to several redox processes. The C-terminal portion presents similarity to Rhodaneses (Rho), involved in the sulfur (S) metabolism and the central region presents similarity to Fe-S cluster superfamily. Due to these characteristics this ORF was nominated glurho. The ORF translation revealed N-terminal and the C-terminal domains also contain two cysteines residues (Cys33 and Cys366), which are essential to Grx and Rho activity in enzymes described to date, indicating that both domains may be functional. Additionally, proteomic studies revealed that the Glurho protein is highly expressed in X. fastidiosa inside the cell and in its biofilm. Since that reactive oxygen species and cyanide production by the host are very common processes in defense against pathogen infection and predation, this protein may play a key role in bacterial protection and resistance against the host defenses. In this work, we performed databases searches, which revealed that Glurho homologues are only present in prokaryotes, most of which are pathogenic to plants and animals, due to these characteristics, Glurho protein may represent promising targets for therapeutical drugs. Corroborating with this view, individual sequence alignment with well characterized glutaredoxins, Fe-S cluster containing proteins and rhodanases, revealed that the domains share low identity with their counterparts, but the Grx and rhodanese domain possess very conserved domains related to the biochemical activity of the proteins. In order to characterize the biochemical properties of Glurho, the recombinant enzyme was expressed as His-tagged protein and purified by immobilized metal affinity chromatography (IMAC) to homogeneity. To evaluate the activity, supposedly conferred by Grx domain, the disulfide reduction and peroxidase activity glutathione dependent assays were performed but none activity was detected. However, enzymatic evaluation of the rhodanese function revealed that Glurho protein is able to detoxify efficiently cyanide to thiocianate in vitro with higher efficiency (5 \times) than bovine rhodanese. We also demonstrated that the cysteines residues are essential to rhodanese activity, since the NEM akylation annihilated enzyme activity. Finally, the substitution of the cysteine residue from rhodanese domain (Cys366) by a serine abolished the rhodanese activity, indicating that the residue is essential to the enzyme functionality. Meanwhile the Cys33 replacement by serine increased the rates of the rhodanese activity in 3-fold. We also investigate the in vivo effects of KCN tolerance by the heterologous enzyme expression in E. coli BL21 (DE3) cells, which revealed that Glurho is able to protect the bacterial cells against high concentrations of cyanide. However, contrastingly with the in vitro rhodanase mutants biochemical data, the E. coli BL21 (DE3) cells expressing GlurhoC33S and GlurhoC266S, indicating that in vivo cyanide resistance phenotype is dependent of Cys33 integrity.
Introduction

Xylella fastidiosa is a gram-negative bacterium which infect the plant xylem of many taxonomic groups of economic importance such as citrus, alfalfa, coffee, grape, almond, peach and pear [1–4]. The bacterium is transmitted by contaminated plants through cicada, a specific vector which the mechanism of interaction with the host is until now poorly unknown [2,5,6].

The *X. fastidiosa* genomes contains several genes related to virulence, adhesion and response to plant defenses, among them, several genes related to the ROS metabolism represented by antioxidant enzymes [7–10]. Smolka *et al.* [11], using two-dimensional gel electrophoresis allied to mass spectrometry, demonstrated that a substantial amount of antioxidant proteins are expressed in high concentrations in the strain of the *X. fastidiosa* 9a5c. Among them, the ORF XF2394, a hypothetical protein, was detected in large amounts in both, intracellular and extracellular contents. The sequence analysis of the ORF XF2394 using CDD program (http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml), revealed that it possesses three domains: the N-terminal domain has a high similarity to the monothiol glutaredoxins, which are related to several redox processes; the C-terminal portion presents similarity to Rhodaneses, involved in the sulfur (S) and cyanide (CN⁻) metabolism; and the central region is similar to Fe-S cluster biosynthesis superfamily, related to sulfur assimilation and oxidative stress defense. Due to these features, in this study we have named *Glurho* (for Glutarhodanese) the product of the ORF.

Glutaredoxins (Grx) are low molecular weight oxidoreductases (~12KDa) that have at least a cysteine residue in its active site used in oxireduction processes [12,13]. Grx proteins can be classified according to the number of cysteine residues as dithiolic (Cys-X-X-Cys
motif) or monothiolic (Cys-X-X-Ser) [12,14–17]. Using the reactive cysteines, dithiol Grxs perform thiol-disulfide exchanges reducing their disulfide containing substrates. The reduction mechanism requires glutathione (GSH), glutathione reductase (GR) and NADPH reducing equivalents [18,19]. Additionally, to the disulfide reduction, it has been demonstrated that some yeast Grx are able to act as glutathione peroxidases, revealing an additional protective role of these enzymes to the organisms [20,21].

The X. fastidiosa Glurho protein presents resemble monothiol glutaredoxins which is characteristic of [19] which is highly conserved from bacteria to humans [16,22]. Therefore it is possible that the monothiol glutaredoxin domain of Glurho could exhibit the same mechanism of action of dithiol glutaredoxins since the reduction mechanism of Grxs may be monothiolic even to some dithiolic Grx [19,23].

Relative to the central domain in Glurho the iron-sulfur assembly proteins, a variety of proteins widely distributed in nature, from bacteria to mammals, are able to syntetathize the Fe-S cluster [74,75]. They serve a variety of biological roles, including electron transport, catalytic, structural, and sensory roles [76]. The free iron can generate oxygen radicals via Fenton-like reactions that may result in damage macromolecules [74,75,76]. The connection between Fe metabolism and oxidative stress during infection of pathogens has been demonstrated, since some microorganisms require the enzymes necessary for the synthesis of Fe-S to respond to oxidative stress or in the case of phytopathogen Erwinia chrysanthemi maintain a strong virulence. As the Grx proteins the Fe-S activity is also centered in conserved cysteine residues [74,75,76].

It is well known that the synthesis of CN⁻, together with ROS production represent defense strategies widely used by plants against pathogens and predators [24–26]. Among the enzymes involved in detoxification of CN⁻, the rhodanese (Rho) are one of the most
extensively studied since they are widely distributed in nature [27–29]. The enzyme is able to catalyze the reaction between thiosulfate and cyanide leading to the formation of sulfite and the less toxic thiocyanate [28]. In bacteria, such as *Escherichia coli*, the most studied representative rhodanese protein is GlpE, which has been proposed to possess great importance on organism homeostasis since plays essential biochemical roles acting as thiosulfate-cyanide sulfurtransferase [30].

The Glurho rhodanese-like domain contains a cysteine residue at C-terminal portion on the position 266, which might be involved in cyanide (CN⁻) detoxification and/or sulfur metabolism [27,28,31,32]. Although almost all rhodanese researches focus on cyanide resistance, the occurrence of so many rhodanses-like proteins suggests alternative functions, including sulfur and selenium metabolism and biosynthesis of prosthetic groups in iron-sulfur proteins [28,31–33].

Cipollone, *et al.* 2007 [28] divided the rhodanese superfamily into 4 groups according to some common characteristics. Although the amino acids can differ significantly at the sequence level, the three-dimensional structure has common characteristics even among different organisms [28]. The Group 3 is represented by enzymes containing the catalytic rhodanese domain combined with other globular protein domain. In this case the involvement of a rhodanese domain in a given process seems to be related to the functional properties of the accompanying domain [36–38].

Protein domains represent the basic evolutionary units that form proteins. The duplication and exchange by recombination and fusion, followed by divergence are the most frequently mechanisms for protein evolution [39]. Thus, the recombination of existing domains may be a major mechanism that modifies protein function and increases proteome complexity. The fusion of the proteins related to consecutive metabolic steps seems to be of
great importance for some pathogens. An important example is the Trx System, which is constituted by two enzymes: the thioredoxin (Trx) and thioredoxin reductase (TrxR), a ubiquitously system spread among all organisms [40–43] responsible for the reduction of the peroxirredoxins, which are very important enzymes to the cell redox homeostasis [44–46].

Curiously, in some pathogens the two enzymes of Trx system are fused. In *Mycobacterium leprae* thioredoxin reductase is a natural hybrid that contains a Trx molecule attached to the C-terminal portion [47]. The alkyl hydroperoxide reductase F (AhpF), found in several bacteria such as *Salmonella typhymurium*, is also a modified TrxR, which has an additional N-terminal domain (NTD), produced by the fusion of two thiorredoxin molecules [48]. AhpF belong to the AhpR complex that is formed by the AhpF and the peroxiredoxin AhpC. In fact AhpF is an enzyme specialized in AhpC reduction [49]. In both the cases, it has been shown that these fused enzymes are of great importance in resistance to pathogen infection and establishment in the host [50,51]. Thus, the *X. fastidiosa* Glurho appears to be a unique protein found only among prokaryotes which can be involved in the resistance of pathogens and vectors of plant defenses. Additionally, it can be related to the sulfur metabolism and training of clusters Fe-S [28,32,52].

Since reactive oxygen species and cyanide production by the host are very common processes in defense against pathogen infection and predation, this protein may play a key role in bacterial protection. In this work, we show that Glurho homologues are only present in prokaryotes, most of which are pathogenic to animals and plants, due to these characteristics, Glurho protein may represent promising targets for therapeutical drugs. Corroborating with this view, individual sequence alignment of Glurho domains with proteins Grx, Fe-S cluster assembling proteins and rhodaneses of several organisms, revealed that the domains share low identity with their counterparts. In order to characterize the biochemical properties of Glurho,
the recombinant enzyme was expressed as His-tagged protein and purified to homogeneity. To evaluate the activity, supposedly conferred by Grx domain, the disulfide glutathione dependent reduction and peroxidase activity assays were performed but none activity was detected. However, enzymatic evaluation of the rhodanese function revealed that Glurho protein is able to transfer efficiently sulfur to cyanide forming thiocianate in vitro with higher efficiency (5 ×) than the well-known bovine rhodanese. We also demonstrated that the cysteines residues are essential to rhodanese activity, since the NEM alkylation annihilated enzyme activity. The substitution of the cysteine residue from rhodanese domain (Cys^{266}) by a serine abolished the rhodanese activity, revealing that the Cys^{266} residue is essential to the enzyme functionality. Curiously, the Cys^{33} replacement by serine increased the rhodanese activity in 3-fold, suggesting a regulatory role of the residue. We also investigate the in vivo effects of KCN tolerance by the heterologous enzyme expression in E. coli cells, which revealed that Glurho is able to protect the bacterial cells against cyanide compounds even at high concentrations (1.5 mM). However, contrastingly with the in data cells expressing Glurho^{C33S} and Glurho^{C266S} were very susceptible to KCN toxicity, indicating that in vivo cyanide resistance phenotype is dependent of Cys^{33} integrity.
Materials and methods

glurho amplification, cloning and sequence - The open reading frame (ORF) XF2394 (NCBI accession number: KIA57599.1) was amplified by PCR using with template genomic DNA from *X. fastidiosa* 9a5c strain. The oligonucleotides XF2394_F-5’-CGCGATCCATATGATGCCGCAGTGCGGTTTTTCTGC-3’ and XF2394_R-5’-CGCAAGCTTGATCCTCAATACTTCCGACACACTGC-3’ containing *Nde* I and *Bam* HI cloning adapters (underlined sequence) were designed based on gene sequence presents at *X. fastidiosa* database (http://www.xylella.lncc.br/). Amplified DNA fragments was digested with *Nde* I and *Bam* HI and cloned into *Nde*-Bam HI-digested pET15b vector. An *E. coli* DH5α strain was transformed with the construct and cells and cultured to increase plasmid production. The resulting pET15b/Glurho vector was sequenced in an ABI 3730 DNA Analyzer using the BigDyeTerminator v3.1 Cycle Sequencing Kit (Applied Biosystems). The plasmids containing the correct constructs were used to transform *E. coli* BL21 (DE3) strains.

Site Directed Mutagenesis

The pET15b/Glurho plasmids were used to generate the two individually Glurho mutant proteins carrying cysteines (Cys33 and Cys266) substitutions to serines. The substitutions were performed using the Quick Change II kit (Stratagene) and the mutagenic primers GlurhoC33S_F (5’ ATGCCGCAGTCCGTTTTTCT 3’), GlurhoC33S_R (5’ AGAAAAACCAGACTGCAGCAT 3’); GlurhoC266S_F (5’ GCTTTCTTGTCTATCCACGCGC 3’) and GlurhoC266S_R (5’ GCCGTGATGAGACAAGAATGC 3’). The reaction products were used to transform *E. coli* XL1-Blue strain and single colonies were grown on liquid media during 16hs and then the
plasmids were extracted, purified and sequenced to confirm the codons substitutions, and used to transform *E. coli* BL21 (DE3) strains.

Protein Expression and purification

Single colonies of *E. coli* BL21 (DE3) strains containing the pET15b/glurho, pET15b/glurhoC33S and pET15b/glurhoC266S plasmid were inoculated in LB medium (20 ml) containing 0.1 mg ampicillin/ml and grown overnight at 37 °C. Afterwards the cell cultures were transferred to 1 liter of fresh LB medium, and grown until OD$_{600}$ reached 0.6–0.8. The expression of the recombinant proteins were induced by the addition of 0.3 mM IPTG, and the cells were maintained at 18 °C/16hs/250 rpm in a orbital shaker. After this period, cells were harvested by centrifugation, and the pellets were resuspended in start buffer (50 mM sodium phosphate buffer, pH 7.4, containing 50 mM NaCl, 20 mM imidazole and 2 mM phenylmethyl sulfonyl fluoride (PMSF) and the cells were disrupted by sonication. The cell extracts were kept in ice during streptomycin sulfate 1% treatment for 20 min. The supernatants were clarified by centrifugation, homogenized by filtration and purified by nickel affinity chromatography using the HisTrap column (GE Healthcare) by imidazole gradient (50-500 mM). The GlurhoWT, GlurhoC33S and GlurhoC266S recombinant proteins were predominantly eluted at 500 mM imidazole fractions. Imidazole was removed using a PD10 desalting column (GE Healthcare) and purified proteins were kept in 50 mM sodium phosphate buffer (pH 7.4) containing 50 mM NaCl. The enzymes purity were confirmed by SDS–PAGE and the concentrations were determined by the molar extinction coefficient for reduced *X. fastidiosa* Glurho ($\varepsilon_{280} = 25.565 \text{ M}^{-1} \text{ cm}^{-1}$) using the ProtParam tool (http://www.expasy.ch/tools/protparam.html)
Evaluation of the Glutaredoxin Disulfide Reduction Activity

The Grx activity conferred by Glurho was evaluated by the standard assay for Grxs which measures the ability of the protein to reduce the mixed disulfide formed between a GSH molecule and β-hydroxyethyl disulfide (HED) spectrophotometrically (λ=340 nm) at 30 ºC [53]. The reaction mixture containing 0.1 M Tris-HCl pH 7.4; 1 mM GSH; 6 μg/ml GR and 0.7 mM HED was incubated at 30 ºC for three minutes for the formation of the mixed HED disulfide and then 0.2 mM NADPH was added, the reaction was started by the addition of Glurho 1 µM and followed by the decrease in the absorbance at 340 nm due to the oxidation of NADPH during 250 seconds.

An additional disulfide reduction assay was performed using as substrate mixed disulfide already formed between Cys and GSH (Cys-S-SG). The reaction mixture containing GSH 1 mM, GR 6μg/ml, Tris-HCl pH7.4 at 100 mM, NADPH 0.2 mM, Cys-SSG 100μM and Glurho protein at 1 µM was measured spectrophotometrically (λ=340 nm). The mix solution containing all the reagents except the NADPH and the Cys-SSG disulfide was incubated at 37 ºC for 1 minute and then the NADPH was added, after the stabilization the Cys-SSG disulfide was added and the absorbance was recorded by 250 seconds to evaluate the NADPH oxidation.

Evaluation of Glurho GSH dependent Peroxidase Activity

The GSH dependent peroxidase activity of Glurho with t-BOOH was evaluated in vitro by NADPH oxidation assay. The components of the reactions were 0.4 mM NADPH, 1 mM GSH, 6 μg/ml Glutathione reductase, 1μM Glurho and 1 mM t-BOOH. The reactions were performed in buffer Tris HCl, 1mM (pH 7.4) in a final volume of 1 ml. The reaction was started by the addition of Glurho and the absorbance at 340 nm was recorded for 200 seconds.
Evaluation of DTT dependent peroxidase activity

The rate of DTT oxidation catalyzed by Glurho in the presence of the \(\text{H}_2\text{O}_2 \) as substrate was evaluated by monitoring the change in absorbance at 310 nm for 250 seconds due to formation of the DTT disulfide \[54 \]. The assay contained: 100 mM Tris-HCl pH 7.4, \(\text{H}_2\text{O}_2 \) 1 mM, Glurho 1 µM, and 10 mM DTT in a 1 ml quartz cuvette at 37 °C.

Cyanide sulfurtransferase activity

To evaluate the rhodanese activity of Glurho, Glurho\(^{C266S}\) and Glurho\(^{C33S}\) proteins to convert \(\text{CN}^- \) to \(\text{SCN}^- \) was accomplished spectrophotometrically as described previously \[55,56 \]. The reaction consisted of potassium phosphate (\(\text{KH}_2\text{PO}_4 \)) 40 mM, KCN 50 mM, sodium thiosulfate (\(\text{Na}_2\text{S}_2\text{O}_3 \)) 50 mM and Milli Q water in 1 ml of reaction. The reactions were initiated with the addition of 0-1.2 µM of Glurho, Glurho\(^{C33S}\) or Glurho\(^{C266S}\) and after 5 minutes the reactions were stopped by adding formaldehyde 2.5%, and then by adding ferric nitrate (100g of \(\text{Fe(NO}_3)_3.9\text{H}_2\text{O} \) and 200 ml of 65% \(\text{HNO}_3 \) per 1500 ml) in a final volume of 3ml. In the reaction the cyanide is converted to thiocyanate that in acidic conditions and in the presence of \(\text{Fe}^{+3} \) results in a red intermediated, which is quantified spectrophotometrically \((\lambda=460 \text{ nm})\). As a positive control were used the same concentrations of bovine rhodanese and to the negative control no enzyme was added to reaction mixtures.

Glurho heterologous expression in KCN\(^-\) containing media

Cultures of \(E. \text{coli} \) BL21 (DE3) harboring the plasmid pET15b (empty vector) and pET15b/Glurho, pET15b /Glurho\(^{C266S}\) and pET15b /Glurho\(^{C33S}\) (recombinant vectors) were
grown in LB medium containing 100µg ampicillin/ml overnight at 37 °C/ 250 rpm. After this period the cultures were transferred to 15 ml of fresh LB broth and the cell culture were grown until OD$_{600}$ reached 0.6–0.8. The cultures in exponential phase were diluted to OD$_{600}$ = 0.02 with or without IPTG 0.1 mM and were exposed to 0.3 mM, 1.3 mM, 1.5 mM and 2.5 mM of KCN− during 24h, and the OD$_{600}$ of the cultures were recorded.

Evaluation of sulfur acceptors

To evaluate the Glurho sulfur transfer activity, NADPH oxidation assay was performed. The assays were performed in a final volume of 1 ml containing potassium phosphate buffer, 50 mM (pH=7.4); *E. coli* TrxR, 0.2 µM; NADPH, 150 µM; *X. fastidiosa* Tsnc or *E. coli* Trx, 10 µM. The reactions were initiated by the addition of sodium thiosulfate, 80 mM and Glurho, 10 µM, and the absorbance was monitored spectrophotometrically (λ=340 nm) by 150 seconds.

Assessment of secondary structure by circular dichroism spectroscopy

Secondary structural elements of Glurho and mutants were determined experimentally by circular dichroism (CD) using a Jasco J-720 spectropolarimeter (Jasco, Easton, MD). Purified recombinant wild type and mutant enzymes (10 µM) in 10 mM NaH$_2$PO$_4$ buffer (pH 7.5) were used for the Far-UV CD analysis from 195 to 260 nm at 20°C in a 0.1-cm-gap cuvette. The molar ellipticity values (θ) were calculated using a molar concentration of and the number of 328 amino acids. The Glurho and mutants secondary structures content were determinate using the K2D software (42).
Results and discussion

X. fastidiosa Glurho homologues are restricted to prokaryotes

The homology analysis of Glurho protein with translated genebank sequences using the program BlastX (http://blast.ncbi.nlm.nih.gov/Blast.cgi) revealed that this protein is present only in a small group of organisms (21), excluding the X. fastidiosa strains, all of them are prokaryotes (Fig. 1). Our results also shows that the vast majority of organisms that possess the glurho gene belongs to the genus Xanthomonas and are causative agents of several diseases in plants. Additionally, some human pathogens of the Stenotrophomonas genus, the causative agent of respiratory diseases, also possesses homologues to Glurho. The remaining species are found from environmental genomic projects and biological data are unavailable.

Sequence alignment and conserved domain analysis

As mentioned before, the analysis of Glurho using the conserved domain database, (www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml) [57] revealed that Glurho protein is formed by three distinct domains comprising a Grx like (N-terminal), Fe-S cluster assembly (central) and a rhodanese like domains (C-terminal). To investigate the conservation of these putative domains we performed alignments of the Glurho protein with well-characterized counterparts of other organisms. The alignment of the Grx like domain revealed that the Grx domain is very conserved among eukaryotes and prokariotes, including the catalytic cysteine which is embedded in the CGFS motif (Fig. 2A, red asterisk), characteristic of monothiolic glutaredoxins [19,58]. The Fe-S cluster assembly like domain, is not very conserved among the organisms and the alignment was performed using only bacterial counterparts. An important observation is the fact that Fe-S cluster assembly like domain of Glurho do not
posses multiple cysteine residues as the other proteins analyzed (Figure 2B, green asterisk). As an example, the *Escherichia coli* ISCa (Iron-Sulfur Cluster Assembly protein) presents three cysteine residues that are essential to the assembly of Iron-Sulfur cluster, since their substitutions to serines abolishes the protein activity [59–61]. Therefore, despite the similarity presented with Fe-S cluster assembly detected by the CCD database, this domain does not appear to be functional. Finally, the analysis of the primary sequence of the rhodanese-like domain, shows that the similarities with other rhodaneses are very low. However, the conserved cysteine residue essential to enzyme activity is present at Glurho domain (Cys266) (Fig. 2C, blue asterisk). Since that the *in silico* analysis suggests that at least two domains may be functional, we decided to express and purify the recombinant Glurho protein to assess its biochemical properties.

Glurho is not effective in disulfide reduction or hydroperoxide decomposition.

Initially, we tested the oxidoreductase activity of the Glurho Grx domain, using the standard assay of the mixed disulfide disulfide reduction formed between β-hydroxyethyl disulfide (HED) and glutathione (β-ME-SG) [23,62]. Our results demonstrate that no significative differences were observed between the negative control (without protein) and the reaction containing Glurho, indicating that Glurho is not able to reduce the β-ME-SG disulfide (Figure S1A). Since that β-ME-SG disulfide uses a synthetic compound (HED), we also tested the Glurho oxidoreductase activity using as substrate a mixed disulfide between cysteine and glutathione (Cys-S-SG), which may resemble more substantially the endogenous substrate of the Grx, however, no activity was detected (Figure S1B). Despite that Gluro Grx domain not having shown activity as a disulfide reductase, is well known that some monothiolic Grx presents low or null affinity in reducing mixed glutathione disulfides, which
seems to be related to slight structural differences at their active sites environment [19]. Additionally, recent studies performed by Li and colleagues 2010, [63] using structural comparisons and sequence alignments of monothiol and dithiol Grx, showed that all monothiol Grx (such as those with the catalytic motif CGFS), possess an insertion of 5 amino acids, not conserved in sequence, in close vicinity in the sequence to the catalytic cysteine. In fact all monothiolic Grx that have these five additional amino acids, coincidentally do not possess activity in the HED assay [63]. On the other hand, dithiol Grx as well some monothiol ones, as the yeast ScGrx6, ScGrx7 and poplar GrxS12, whose lacks the 5 additional amino acids exhibit activity in the HED assay. The analysis of the protein sequence of the Glurho Grx like domain makes clear the existence of the additional amino acids close to the CGFS motif (Figure 2A), indicating that the absence of disulfide reductase activity may rely in this structural feature.

It was previously demonstrated that the yeast glutaredoxins Grx1 and Grx2 can directly reduce hydroperoxides acting as glutathione peroxidases [21]. Furthermore grx1 and grx2 yeast mutants are sensitive to oxidative stress induced by hydroperoxides [21]. Therefore peroxidase activity assays were carried out to verify the possibility of the Grx domain of Glurho to act as GSH dependent peroxidase. To test the peroxidase activity over over organic peroxide (tert-buty1 hydroperoxide) we employed the NADPH oxidation assay using glutathione reductase (GR) and GSH. The results demonstrated that Glurho was not able to decompose the t-BOOH (Figure S1C). We also tested the peroxidase activity using the dithiolic reductant DTT, by the oxidation of DTT assay using hydrogen peroxide as substrate. However no enzymatic activity over hydroperoxide decomposition was detected (Figure S1D). Together our results demonstrated that Glurho is not effective as a peroxidase.
Glurho is able to convert cyanide to promote cyanide detoxification

Rhodaneses are a group of enzymes that uses a cysteine residue to catalyze the reaction between thiosulfate and cyanide leading to the formation of sulfite and thiocyanate [27,28,30]. To evaluate the rhodanese activity of Glurho we employed the method described by Westley (1981) in which the thiocyanate formation in acidic conditions and in the presence of Fe$^{3+}$ results in a red colored intermediate that can be quantified spectrophotometrically. The reactions were carried out using growing Glurho concentrations and our results demonstrated that the thiocyanate formation increases proportionally with Glurho concentration (Fig. 3A).

Since that the Glurho presented rhodanese activity, we also decided to compare the Glurho rhodanese activity with one of the most well studied enzymes of this class: the bovine liver rhodanese (Rhobov) [56,64]. For this purpose, equivalent concentrations of the enzymes (1 μM) were used in the thiocyanate formation assay and reactions were stopped after five minutes. Our results demonstrated that the *X. fastidiosa* Glurho exhibited a specific activity five folds higher than the Rhobov (Fig. 3B). These results are very interesting since that cyanide production in response to grazing and predation by a variety of plants are well known [70,71], and Glurho may act as an defense front to enable the insect resistance to plant defenses. In fact some species that are infected by *X. fastidiosa* like almond, alfalfa and peach trees are able to produce cyanogenic compounds in their stem (e.g. prussic acid) [72]

Evaluation of additional sulfur acceptors

It has been demonstrated that the additionally to the cyanide, the rhodaneses are able to exerts the sulfurtransferase activity over another substrates [32,36,37,38]. Recent studies demonstrated that the thioredoxin (Trx) is an efficient rhodanese sulfur acceptor [65]. In this
case, the sulfur atom form a mixed disulfide with Trx cysteine which is reduced by the thioredoxin reductase enzyme (TrxR) using reducing equivalents from NADPH, producing hydrogen sulfide (H₂S) (Figure S2A). To evaluated if Glurho is able to act as sulfurtransferase to the Trx, we performed a NADPH oxidation assay, using *E. coli* Trx and *E. coli* TrxR or Tsnc, a Trx from *X. fastidiosa*. The results demonstrated that EcTrx and Tsnc were not able to accept sulfur atoms from Glurho (Figure S2B).

Although the results have shown that Glurho is not capable to transferring sulfur atoms to *E. coli* Trx, the results are inconclusive to Tsnc. Since that the *E. coli* TrxR was used in the NADPH oxidation assay, the sulfur transfer by Glurho to the Tsnc could have occurred but was not detected due to a inefficiency of the *E. coli* TrxR to reduce *X. fastidiosa* Tsnc, because the proteins are from different species, a phenomena related before [73].

In reason of observations presented above, additional cyanide sulfurtransferase assays were performed using higher Tsnc concentrations (1 or 2 molar equivalents). In addition to Tsnc, the low molecular weight thiolic compounds DTT and GSH were also tested as sulfur acceptors. The sulfur transfer to the potential acceptors catalyzed from Glurho would lead to a decrease of thiocyanate formation due to the competition with KCN⁻ for sulfur atoms. The results revealed the reduction of thiocyanate formation when DTT (Figure S3C) and GSH (Figure S3B) are added to the reactions, while no differences were observed when Tsnc is added (Figure S3A), indicating that Tsnc is not able to accept sulfur atoms from Glurho. On the other hand, the Glurho was able to exert the sulfurtransferase activity over thiolic compounds, which may indicate that the CN⁻ may not be the sole substrate for the enzyme.

Cysteines integrity is essential for Glurho sulfurtransferase activity
As mentioned before, all the rhodaneses described to date uses a cysteine residue to capture a sulfur atom and transfer to their substrates [27,28,30,56,64]. To confirm that the Glurho activity is centered on a cysteine residue, previously to ferrithiocianate assay, the enzyme cysteines were alkylated using N-ethylmaleimide (NEM). Our results revealed that the cysteine alkylation abolished entirely the rhodanese activity (Fig. 4A), confirming that the cysteines integrity is essential to the enzymatic properties of Glurho.

Since that the Cys266 residue is inserted in rhodanese domain is reasonable to think that it is responsible for the sulfutransferase activity of Glurho (Fig. 2C). Moreover, since there is no activity was detected for the oxidoreductase domain Grx, it is possible that the residue Cys33 may play a structural role in the enzyme. Thus their replacement could affect the enzyme structure reducing or even eliminating their activity. In order to unequivocally identify the Cys266 as the residue as responsible for rhodanese activity and assess whether Cys33 exerts a structural role on Glurho, we have performed site directed mutagenesis replacing individually the cysteines residues by serines.

Therefore the sulfutransferase activity assay was performed to evaluate the enzyme activity of the mutants GlurhoC33S and GlurhoC266S compared to the wild type protein. As expected, the rhodanese activity of GlurhoC266S was virtually abolished (Fig. 4B). On the other hand the GlurhoC33S presented an unexpected increase of the rhodanese specific activity 3-fold higher than the wild type enzyme (Fig. 4B).

The higher rhodanese activity of the GlurhoC33S mutant, indicates that despite the Cys33 of the Grx domain do not play roles in oxidoreductase processes or over the enzyme structure, it may play a regulatory role in enzyme rhodanese activity. An example is Thil, a bifunctional enzyme required for the biosynthetic pathway of 4-thiouridine, a modified base present in certain bacterial tRNAs and Thiazole moiety of Thiamine [24]. Most of the protein
related to ThiI family presents an N-terminal THUMP domain involved in a variety of RNA modifications and a C-terminal rhodanese domain. In the reaction mechanism proposed for ThiI, desulferase (IscS) first catalyses the transfer of sulfur from a free Cys to the Cys catalytic residue of the rhodanese of ThiI (Cys456), and then residue Cys344 acts as a nucleophile forming a Cys456-Cys344 disulfide releasing 4-thiouridine [36,37,38].

Since the enzyme ThiI also represents a rhodanese fusion protein with two domains containing cysteines, which have as intermediate a disulfide between the cysteines of both domains. Therefore, the Glurho Cys33 could form a disulfide as an intermediate in the cycle of sulfur transfer to the CN$^-$, and thus modulate the activity of the enzyme. In this context, the disulfide would need to be reduced to the enzyme could perform another round of sulfur transfer. To test this hypothesis assays were conducted, fixing Glurho concentration varying the time of the experiment without the addition of a reductant. As can be seen in Figure 5, even without the presence of a reducing agent the amount of formed thiocyanide increased with time, indicating that no disulfides are formed between Cys33 and Cys266.

Heterologous expression of Glurho confers high cyanide resistance to E. coli cells

It has been reported 1 mM of cyanide causes significant inhibition of aerobically growing of _E. coli_. Therefore, to verify any protective effect of Glurho against cyanide toxicity, exponential phase cultures of _E. coli_ BL21 (DE3) containing the empty vector (pET15b) or carrying the plasmid with _glurho_ gene (pET15b /Glurho) were adjusted to OD$_{600}$ = 0.01 and challenged with 1.5 mM of KCN in the presence of IPTG (0.1mM). Since that the basal expression levels of heterologous proteins are significantly high in _E. coli_ BL21 (DE3) cells, we also performed the same experiment without the IPTG addition [77]. After 24 hours of growing of the cells cultures the optical density of the cells cultures were measured. The
results demonstrated that optical density of the cultures cells carrying the recombinant vector but uninduced with IPTG, presented growing rates 83% higher than the cells carrying the empty vector. To IPTG induced cells the rates where 91% higher than the cells carrying the empty vector, indicating that cyanide resistance are dependent of recombinant protein inside the cell (Fig. 11A).

The ability to cyanide detoxification in vivo of GlurhoC33S and GlurhoC266S were also tested using the same conditions described before to non-IPTG induced cells. Curiously, the E. coli cells strains carrying the recombinant vectors with cysteine substitutions (pET15b/GlurhoC33S and pET15b/GlurhoC266S) were not able to confer any resistance to the cells under inhibitory cyanogenic conditions (Fig.11B). Indicating that the Cys33 may play an important role in cyanide resistance in vivo.

Concluding Remarks

In this work, we performed the first characterization of the Glurho a multi domain enzyme, presenting homologues only in prokaryotes, most of which are pathogenic to animals and plants. Despite that no classical oxidoreductase or structural role was detected to Grx domain, the evaluation of the rhodanese function revealed that Glurho is able to detoxify efficiently cyanide to thiocianate in vitro with higher efficiency (5 ×) than bovine rhodanese. Since X. fastidiosa is a 2-host pathogen the high resistance to cyanide may be very important to the insect vector, since some X. fastidiosa target plants produces cyanogenic compounds as a way to protect themselves from insect predation. Additional importance to the Glurho sulfurtransferase activity may be related to the large amounts of sulfur on X. fastidiosa’s biofilm [35] and the presence of Glurho on extracellular environment [11], which may indicate an important role on bacterial addesion and maintenance on xylem vessel. Curiously,
the *glurho* gene position on *X. fastidosa* genome are very close to several genes related to biofilm extracellular polysaccharides (EPS) biosynthesis such as Xanthan gum [66, 67].

Additional importance, also be related to the fact that the integrity of both cysteines residues is essential to rhodanese activity *in vivo*. The necessity of the Cys\(^{33}\) to cyanide resistance *in vivo* still needs research to the understanding it role to the cell defenses. However, it is interesting to mention that some members of the monothiol Grxs family, including yeast Grx3 and Grx4, were recently shown to form [2Fe-2S]-bridged homodimers using as Fe ligands the active site cysteines residue assisted by two GSH molecules [58]. These unusual GSH-linked Fe-S clusters in monothiol Grxs provide a direct link between iron homeostasis with Fe-S cluster assembly and thiol redox regulation. Finally, by all the arguments presented above, the *glurho* protein may be an important pathogen enzyme involved several strategies for the attack and neutralization of host defenses.

Acknowledgments

This work was supported by grants 07/50930-3 from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, as part of Projeto Milênio Redoxoma).
References

1 Purcell AH & Hopkins DL (1996) Fastidious xylem-limited bacterial plant pathogens. *Annual review of phytopathology* **34**, 131–51.

2 Chatterjee S, Almeida RPP & Lindow S (2008) Living in two worlds: the plant and insect lifestyles of *Xylella fastidiosa*. *Annual review of phytopathology* **46**, 243–71.

3 Shi X, Bi J, Morse JG, Toscano NC & Cooksey D a (2010) Differential expression of genes of *Xylella fastidiosa* in xylem fluid of citrus and grapevine. *FEMS microbiology letters* **304**, 82–8.

4 Ramirez J, Lacava P & Miller T (2007) Detection of the bacterium, *Xylella fastidiosa*, in saliva of glassy-winged sharpshooter, *homalodisca vitripennis*. *Journal pf Insect Science* **8**, 1–40.

5 Newman KL, Almeida RPP, Purcell AH & Lindow SE (2004) Cell-cell signaling controls *Xylella fastidiosa* interactions with both insects and plants. *Proceedings of the National Academy of Sciences of the United States of America* **101**, 1737–42.

6 Killiny N & Almeida RPP (2009) *Xylella fastidiosa* afimbrial adhesins mediate cell transmission to plants by leafhopper vectors. *Applied and environmental microbiology* **75**, 521–8.

7 Simpson AJG (2000) The genome sequence of the plant pathogen *Xylella fastidiosa*. *Nature* **406**, 151–59.

8 Akaike T, Sato K, Ijiri S, Miyamoto Y, Kohno M, Ando M & Maeda H (1992) Bactericidal activity of alkyl peroxyl radicals generated by heme-iron-catalyzed decomposition of organic peroxides. *Arch Biochem Biophys* **1**, 55–63.

9 Tenhaken R, Levine A, Brisson LF, Dixon RA & Lamb C (1995) Function of the oxidative burst in hypersensitive disease resistance. *Proceedings of the National Academy of Sciences of the United States of America* **92**, 4158–4163.

10 Cussiol JRR, Alves SV, de Oliveira MA & Netto LES (2003) Organic hydroperoxide resistance gene encodes a thiol-dependent peroxidase. *The Journal of biological chemistry* **278**, 11570–8.

11 Smolka MB, Martins-de-Souza D, Martins D, Winck FV, Santoro CE, Castellari RR, Ferrari F, Brum IJ, Galembeck E, Della Coletta Filho H, Machado MA, Marangoni S & Novello JC (2003) Proteome analysis of the plant pathogen *Xylella fastidiosa* reveals major cellular and extracellular proteins and a peculiar codon bias distribution. *Proteomics* **3**, 224–37.

12 Discola KF (2009) Caracterização estrutural e funcional das glutaredoxinas ditiólicas de *saccharomyces cerevisiae*. , 1–201.

13 Gallogly MM, Starke DW & Mieyal JJ (2009) Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation. *Antioxidants & redox signaling* **11**, 1059–81.

14 Meyer Y, Reichheld JP & Vignols F (2005) Thioredoxins in Arabidopsis and other plants. *Photosynthesis research* **86**, 419–33.
15 Vieira Dos Santos C & Rey P (2006) Plant thioredoxins are key actors in the oxidative stress response. *Trends in plant science* 11, 329–34.

16 Alves R, Vilaprinyo E, Sorribas A & Herrero E (2009) Evolution based on domain combinations: the case of glutaredoxins. *BMC evolutionary biology* 9, 66.

17 Lillig CH, Berndt C & Holmgren A (2008) Glutaredoxin systems. *Biochimica et biophysica acta* 1780, 1304–17.

18 Holmgren A, Johansson C, Berndt C, Lönn ME, Hudemann C & Lillig CH (2005) Thiol redox control via thioredoxin and glutaredoxin systems. *Biochemical Society transactions* 33, 1375–7.

19 Herrero E & de la Torre-Ruiz Ma (2007) Monothiol glutaredoxins: a common domain for multiple functions. *Cellular and molecular life sciences : CMLS* 64, 1518–30.

20 Leeper T, Zhang S, Van Voorhis WC, Myler PJ & Varani G (2011) Comparative analysis of glutaredoxin domains from bacterial opportunistic pathogens. *Acta crystallographica. Section F, Structural biology and crystallization communications* 67, 1141–1147.

21 Collinson EJ, Wheeler GL, Garrido EO, Avery AM, Avery SV & Grant CM (2002) The yeast glutaredoxins are active as glutathione peroxidases. *The Journal of biological chemistry* 277, 16712–7.

22 Molina-Navarro MM, Casas C, Piedrafita L, Bellí G & Herrero E (2006) Prokaryotic and eukaryotic monothiol glutaredoxins are able to perform the functions of Grx5 in the biogenesis of Fe/S clusters in yeast mitochondria. *FEBS letters* 580, 2273–80.

23 Li L, Cheng N, Hirschi KD & Wang X (2010) Structure of Arabidopsis chloroplastic monothiol glutaredoxin AtGRXcp. *Acta crystallographica. Section D, Biological crystallography* 66, 725–32.

24 Wäspi U, Misteli B, Hasslacher M, Jandrositz A, Kohlwein SD, Schwab H & Dudler R (1998) The defense-related rice gene Pir7b encodes an alpha/beta hydrolase fold protein exhibiting esterase activity towards naphthol AS-esters. *European journal of biochemistry / FEBS* 254, 32–37.

25 Wagner UG, Hasslacher M, Griengl H, Schwab H & Kratky C (1996) Mechanism of cyanogenesis: the crystal structure of hydroxynitrile lyase from Hevea brasiliensis. *Structure (London, England : 1993)* 4, 811–22.

26 Zagrobelny M, Bak S & Möller BL (2008) Cyanogenesis in plants and arthropods. *Phytochemistry* 69, 1457–68.

27 Cipollone, R. Ascenzi, P. Frangipani, E. Visca P (2006) Cyanide detoxification by recombinant bacterial rhodanese. *Chemosphere* 63, 942–949.

28 Cipollone R, Ascenzi P & Visca P (2007) Common themes and variations in the rhodanese superfamily. *IUBMB life* 59, 51–9.

29 Papenbrock J, Guretzki S & Henne M (2011) Latest news about the sulfurtransferase protein family of higher plants. *Amino acids* 41, 43–57.
30 Ray WK, Zeng G, Potters MB, Mansuri a M & Larson TJ (2000) Characterization of a 12-kilodalton rhodanese encoded by glpE of Escherichia coli and its interaction with thioredoxin. *Journal of bacteriology* **182**, 2277–84.

31 Pagani S, Bonomi F & Cerletti P (1984) Enzymic synthesis of the iron-sulfur cluster of spinach ferredoxin. *European journal of biochemistry / FEBS* **142**, 361–6.

32 Bonomi F, Pagani S, Cerletti P & Cannella C (1977) Rhodanese-Mediated sulfur transfer to succinate dehydrogenase. *European journal of biochemistry / FEBS* **72**, 17–24.

33 Bordo D & Bork P (2002) The rhodanese/Cdc25 phosphatase superfamily. *EMBO reports* **3**, 741–746.

34 Cooper RM, Resende MLV, Flood J, Rowan MG, Beale MH & Potter U (1996) Detection and cellular localization of elemental sulfur in disease-resistant genotypes of Theobroma cacao. *Nature* **379**, 159–162.

35 Leite B, Ishida ML, Alves E, Carrer H, Pascholati SF & Kitajima and EW (2002) Genomics and X-ray microanalysis indicate that Ca 2+ and thiols mediate the aggregation and adhesion of Xylella fastidiosa. *Brazilian Journal of Medical and Biological Research* **35**, 645–650.

36 Martinez-Gomez NC, Palmer LD, Vivas E, Roach PL & Downs DM (2011) The Rhodanese Domain of ThiI Is Both Necessary and Sufficient for syntesis.pdf. *Journal of bacteriology* **193**, 4582–4587.

37 Mueller EG, Palenchar PM & Buck CJ (2001) The role of the cysteine residues of ThiI in the generation of 4-thiouridine in tRNA. *The Journal of biological chemistry* **276**, 33588–95.

38 Palenchar PM, Buck CJ, Cheng H, Larson TJ & Mueller EG (2000) Evidence that ThiI, an enzyme shared between thiamin and 4-thiouridine biosynthesis, may be a sulfurtransferase that proceeds through a persulfide intermediate. *The Journal of biological chemistry* **275**, 8283–6.

39 Vogel C, Teichmann S a & Pereira-Leal J (2005) The relationship between domain duplication and recombination. *Journal of molecular biology* **346**, 355–65.

40 World CJ, Yamawaki H & Berk BC (2006) Thioredoxin in the cardiovascular system. *Journal of molecular medicine (Berlin, Germany)* **84**, 997–1003.

41 Gelhaye E, Rouhier N, Navrot N & Jacquot JP (2005) The plant thioredoxin system. *Cellular and molecular life sciences : CMLS* **62**, 24–35.

42 Gustafsson TN, Sahlin M, Lu J, Sjöberg B-M & Holmgren A (2012) Bacillus anthracis Thioredoxin Systems, Characterization and Role as Electron Donors for Ribonucleotide Reductase. *The Journal of biological chemistry* **287**, 39686–97.

43 Koháryová M KM (2008) Oxidative stress and thioredoxin system. *Gen Physiol Biophys.* **27**, 71–84.

44 Jang HH, Lee KO, Chi YH, Jung BG, Park SK, Park JH, Lee JR, Lee SS, Moon JC, Yun JW, Choi YO, Kim WY, Kang JS, Cheong G-W, Yun D-J, Rhee SG, Cho MJ & Lee SY (2004) Two
enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. *Cell* **117**, 625–35.

45 Hall A, Karplus A & Poole LB (2009) Typical 2-Cys Peroxiredoxins: Structures, mechanisms and functions. *FEBS J.* **276**, 2469–2477.

46 Rouhier N, Gelhaye E, Gualberto JM, Jordy M, Fay ED, Hiratsawa M, Duplessis S, Lemaire SD, Frey P, Martin F, Manieri W, Knaff DB, Jacquot J, Poincare H, R VFN & Mole IDB (2004) Poplar Peroxiredoxin Q. A Thioredoxin-Linked Chloroplast Antioxidant Functional in Pathogen Defense 1. *Plant physiology* **134**, 1027–1038.

47 Wieles B, van Noort J, Drijfhout JW, Offringa R, Holmgren A & Ottenhoff TH (1995) Purification and functional analysis of the Mycobacterium leprae thioredoxin/thioredoxin reductase hybrid protein. *The Journal of biological chemistry* **270**, 25604–25606.

48 Poole LB (2005) Bacterial defenses against oxidants: mechanistic features of cysteine-based peroxidases and their flavoprotein reductases. *Archives of biochemistry and biophysics* **433**, 240–54.

49 Poole LB, Reynolds CM, WoodZA, Karplus PA, Ellis HR & Calzi ML (2000) AhpF and other NADH: peroxiredoxin oxidoreductases, homologues of low Mr thioredoxin reductase. *European journal of biochemistry* **267**, 6126–6133.

50 Wieles B, Ottenhoff TH, Steenwijk TM, Franken KL, de Vries RR & Langermans J a (1997) Increased intracellular survival of Mycobacterium smegmatis containing the Mycobacterium leprae thioredoxin-thioredoxin reductase gene. *Infection and immunity* **65**, 2537–41.

51 Hébrard M, Viala JPM, Méresse S, Barras F & Aussel L (2009) Redundant hydrogen peroxide scavengers contribute to Salmonella virulence and oxidative stress resistance. *Journal of bacteriology* **191**, 4605–14.

52 Pagani S, Bonomi F & Cerletti P (1984) Enzymic synthesis of the iron-sulfur cluster of spinach ferredoxin. *European journal of biochemistry / FEBS* **142**, 361–6.

53 Holmgren A & Aslund F (1995) Glutaredoxin. *Methods in Enzymology* **252**, 283–292.

54 Iyer, Subramonia K & Klee WA (1973) Spectrophotometric of Reduction Measurement of Disulfide the Rate. *The Journal of biological chemistry* **248**, 2–5.

55 Nandi DL & Westley J (1998) Reduced thioredoxin as a sulfur-acceptor substrate for rhodanese. *The international journal of biochemistry & cell biology* **30**, 973–7.

56 Westley J (1981) Thiosulfate: Cyanide Sulfurtransferase (Rhodanese). *Methods in Enzymology* **77**, 285–291.

57 Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczynski CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita R a, Zhang D, Zhang N, Zheng C & Bryant SH (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. *Nucleic acids research* **39**, D225–9.
58 Li H, Mapolelo DT, Dingra NN, Naik SG, Lees NS, Hoffman BM, Riggs-Gelasco PJ, Huynh BH, Johnson MK & Outten CE (2009) The yeast iron regulatory proteins Grx3/4 and Fra2 form heterodimeric complexes containing a [2Fe–2S] cluster with cysteinyl and histidyl ligation. Biochemistry 48, 9569–81.

59 Py B & Barras F (2010) Building Fe-S proteins: bacterial strategies. Nature reviews. Microbiology 8, 436–46.

60 Xu XM & Møller SG (2011) Iron-sulfur clusters: biogenesis, molecular mechanisms, and their functional significance. Antioxidants & redox signaling 15, 271–307.

61 Wu Y & Outten FW (2009) IscR controls iron-dependent biofilm formation in Escherichia coli by regulating type I fimbria expression. Journal of bacteriology 191, 1248–57.

62 Mesecke N, Mittler S, Eckers E, Herrmann JM & Deponte M (2008) Two novel monothiol glutaredoxins from Saccharomyces cerevisiae provide further insight into iron-sulfur cluster binding, oligomerization, and enzymatic activity of glutaredoxins. Biochemistry 47, 1452–63.

63 Li H, Mapolelo DT, Dingra NN, Naik SG, Lees NS, Brian M, Riggs-gelasco PJ, Huynh BH, Johnson MK & Outten E (2010) The Yeast Iron Regulatory Proteins Grx3/4 and Fra2 Form Heterodimeric Complexes Containing a [2Fe–2S] Cluster with Cysteinyl and Histidyl Ligation. Biochemistry 48, 9569–9581.

64 Russell J, Weng L, Keim PS & Heinrikson RL (1978) The Covalent Structure of Bovine Liver Rhsdanese. The Journal of biological chemistry 253, 8102–8108.

65 Nandi DL, Horowitz PM & Westley J (2000) Rhodanese as a thioredoxin oxidase. The international journal of biochemistry & cell biology 32, 465–73.

66 Torres PS, Malamud F, Rigano L a, Russo DM, Marano MR, Castagnaro AP, Zorreguieta A, Bouarab K, Dow JM & Vojnov A a (2007) Controlled synthesis of the DSF cell-cell signal is required for biofilm formation and virulence in Xanthomonas campestris. Environmental microbiology 9, 2101–9.

67 Milani CJE, Aziz RK, Locke JB, Dahesh S, Nizet V & Buchanan JT (2010) The novel polysaccharide deacetylase homologue Pdi contributes to virulence of the aquatic pathogen Streptococcus iniae. Microbiology (Reading, England) 156, 543–54.

68 Munch R (2003) PRODORIC: prokaryotic database of gene regulation. Nucleic Acids Research 31, 266–269.

69 Killiny N, Prado SS & Almeida RPP (2010) Chitin utilization by the insect-transmitted bacterium Xylella fastidiosa. Applied and environmental microbiology 76, 6134–40.

70 Wittstock U, & Gershenzon J. (2002) Constitutive plant toxins and their role in defense against herbivores and pathogens. Current opinion plant biology. 4, 300-7.

71 Ballhorn DJ, Kautz S, Heil M, Hegeman C (2009) Cyanogenesis of wild lima bean (Phaseolus lunatus L.) is an efficient direct defence in nature. AD. PLoS One. 5, e5450.
72 Knowles CJ Microorganisms and cyanide (1976) *Bacteriology reviews*. **40**, 652-80.

73 Oliveira MA, Discola KF, Alves SV, Medrano FJ, Guimarães BG & Netto LE (2010) Insights into the specificity of thioredoxin reductase-thioredoxin interactions. A structural and functional investigation of the yeast thioredoxin system. *Biochemistry*. **49**, 3317-26.

74 Almeida CC, Romão CV, Lindley PF, Teixeira M, Saraiva, LM (2006) The role of the hybrid cluster protein in oxidative stress defense. *The journal of biological chemistry*. **281**, 32445-50.

75 Anand A, Duk BT, Singh S, Akbas MY, Webster DA, Stark BC, Dikshit, KL (2010) Redox-mediated interactions of VHb (Vitreoscilla haemoglobin) with OxyR: novel regulation of VHb biosynthesis under oxidative stress. *Biochemical journal*. **426**, 271-80.

76 Boughammoura A, Matzanke BF, Böttger L, Reverchon S, Lesuisse E, Expert D, Franza T (2008) Differential role of ferritins in iron metabolism and virulence of the plant-pathogenic bacterium *Erwinia chrysanthemi* 3937. *The journal of bacteriology*. **190**, 1518-30.

77 Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. *Applied Microbiology Biotechnology*. **72**, 211-22.
Figures and Legends

Figure 1
Figure 1 - Sequence alignment of Glurho homologues. The deduced amino acid sequences were obtained at the ncbi genebank (http://www.ncbi.nlm.nih.gov), the sequence alignment was performed using the Clustal W2 (www.ebi.ac.uk/Tools/msa/clustalw2) and the alignment scoring and graphical representation was performed using the Jalview (www.jalview.org). Identical residues are shaded in purple and sequence similarities are indicated by a purple gradient based on the conservation of physicochemical characteristics of the amino acids. The abbreviations used to organisms and proteins are as follow: GLP1 – Glurho protein from X. fastidiosa; GLP2 – Glutaredoxin-like protein from X. campestris pv. Campestris; GLP3 – Glutaredoxin-like protein from X. campestris musacearum; GLP4 – Glutaredoxin-like protein from X. gardneri; GLP5 – Glutaredoxin-like protein from X. vesicatoria; GLP6 – Glutaredoxin-like protein from X. Oryzae oryzicola; GLP7 – Glutaredoxin-like protein from X. Orzyae oryzae; GLP8 – Glutaredoxin-like protein from X. fuscans aurantifolii; GLP9 – Glutaredoxin-like protein from X. campestris pv. musacearum; GLP10 – Glutaredoxin-like protein from X. axonopodis pv. citri; GLP11– Glutaredoxin-like protein from X. axonopodis pv. punicae; GLP12 – Glutaredoxin-like protein from X. citri pv. mangiferaeindicae; GLP13 – Glutaredoxin-like protein from X. sacchari; GLP14 – Glutaredoxin-like protein from X. albilineans; GLP15 – Glutaredoxin-like protein from X. translucens pv. graminis; GLP16 – Glutaredoxin-like protein from Stenotrophomonas maltophilia; GLP17– Glutaredoxin-like protein from Stenotrophomonas sp.; GLP18 – Glutaredoxin-like protein from Pseudomonas geniculata; GLP19– Glutaredoxin-like protein from Pseudomonas spadix; GLP20 – Glutaredoxin-like protein from Pseudoxanthomonas suwonensis; GLP21 – Glutaredoxin-like protein from Rhodanobacter sp.; GLP22 – Glutaredoxin-like protein from Frateuria aurantia; GLP23 – Glutaredoxin-like protein from Haliangium ochraceum; GLP24 – Glutaredoxin-like protein from Plesiocystis pacifica; GLP25 – Glutaredoxin-like protein from Sorangium cellulosum.
Figure 2 - Similarity analysis of Glurho domains. To perform the analysis the Glurho X. fastidiosa deduced amino acid sequence of the protein was divided in three independent segments as defined by the CCD database. Protein sequences of well known Grx, Fe-S cluster assembly and rhodanese representatives were obtained at the ncbi database (http://www.ncbi.nlm.nih.gov), the sequence alignment was performed using the Clustal W2 (www.ebi.ac.uk/Tools/msa/clustalw2) and the alignment scoring and graphical representation was performed using the Jalview (www.jalview.org). Identical residues are shaded in red, green and blue, to Grx, Fe-S cluster assembly and rhodanese, respectively. Sequence similarities are indicated by a gradient based of the conservation of physicochemical characteristics of the amino acids. A) Alignment of amino acid sequences of monothiol from S. cerevisiae (Grx6p and Grx7p), Poplar (GrxS12) E. coli (Grx4) H. sapiens (Grx5), A. thaliana (Grxcp) and Grx domain of Glurho from X. fastidiosa. Identical amino acids are highlighted in red and catalytic motif is pointed out (CGFS). B) Amino acid sequences alignment of proteins related to Fe-S clusters biosynthesis, Polymorphum gilvum (HesB), Methylocystis sp. (ISCA), Anaeromyxobacter dehalogenans (HesB / YADR / YfhF) and Fe-S biosynthesis domain of Glurho from X. fastidiosa. Identical amino acids are highlighted in red and the catalytic motif is pointed out (CGFS). C) Amino acid alignment sequences of Bos Taurus Rodanases (Rhobov), E. coli, (PspE), E. albertii (GlpE), and Rho domain of Glurho from X. fastidiosa. Identical amino acids are highlighted in red and the catalytic motif is pointed out (CHHG in the case of Glurho). The red, green and blue asterisks highlight characteristic cysteines residues of glutaredoxins, Fe-S assembly proteins and rhodanese, respectively. The black bar near to the Grx motif is relative to the insertion of monothiolic Grx.
Figure 3

A) Thiosulfate: Cyanide Sulfurtransferase activity

B) Rhobov versus Glurho

Figure 3 – Evaluation of Glurho rhodanese activity. A) Determination of Thiosulfate – cyanide sulfurtransferase activity by Glurho. The reactions were performed in 1ml containing 40 mM potassium phosphate, 50 mM cyanide, 50 mM sodium thiosulfate and Milli Q water (q.s.p). The reactions were initiated by adding 0-1.2 µM of the enzyme. After 5 minutes the reaction were stopped by adding formaldehyde 2.5% (300µl), and then by adding ferric nitrate (100g of Fe(NO$_3$)$_3$.9H$_2$O and 200 ml of 65% HNO$_3$) (200µl). The ferrithiocyanide formation was determinate spectrophotometrically (λ=460nm). B) Comparative rhodanese activity of Glurho and bovine rhodanese (Rhobov). The reaction was carried out in the same conditions described above for 1min using 1 µM of Glurho or 1 µM of Rhobov. In both assays no enzyme was added to control reactions. All assays were performed in triplicate for three times.
Figure 4 – Involvement of Cys-33 and Cys-266 in Glurho sulfurtransferase activity. A) Determination of Glurho\textsubscript{C33S} and Glurho\textsubscript{C266S} sulfurtransferase activity. The assays were performed in 1ml containing 40 mM potassium phosphate, 50 mM potassium cyanide, 50 mM sodium thiosulfate and Milli Q water (q,s,p). The reactions were initiated by adding 1 µM of the wild type Glurho enzyme or Glurho\textsubscript{C33S} and Glurho\textsubscript{C266S}. After five minutes (the reactions were stopped by adding formaldehyde 2.5% (300µl), followed by ferric nitrate (100g of Fe(NO\textsubscript{3})\textsubscript{3}.9H\textsubscript{2}O and 200 ml of 65% HNO\textsubscript{3}) (200µl). The ferrithiocyanide formation was determinate spectrophotometrically (λ=460nm). The assays were performed in triplicate for three times.
Figure 5 – Evaluation of thiocyanate formation catalyzed by Glurho at different time intervals. The reactions were performed in 1ml containing 40 mM potassium phosphate, 50 mM potassium cyanide, 50 mM sodium thiosulfate and Milli Q water (q.s.p). The reactions were initiated by adding 1 µM of the Glurho enzyme. After different period of times (1, 5, 10, 20 and 30 minutes) the reactions were stopped by adding formaldehyde 2.5% (300µl), followed by ferric nitrate (100g of Fe(NO$_3$)$_3.9$H$_2$O and 200 ml of 65% HNO$_3$) (200µl). The ferrithiocyanide formation was determine spectrophotometrically (λ=460nm).
Figure 6. CD spectra of reduced and oxidized samples of Tsa1WT and mutants containing Thr44 and Arg123 substitutions. Spectra in the reduced form with 5 mM of TCEP (solid line) and treated with 1.2 eq of hydrogen peroxide (dashed line) of the enzymes Tsa1WT (A), Tsa1T44A (B), Tsa1T44S (C), Tsa1T44V (D), Tsa1R123G (E) and Tsa1R123K (F). The proteins concentration used in experiments were 10μM in 20 mM sodium fluoride buffer (pH 7.4). All spectra were recorded at 25°C and corrected against the buffer. The graphical representations are averages from eight consecutive scans.
Size-exclusion chromatography - Size-exclusion chromatography was performed by analytical HPLC using a Jasco series equipped with a PU 2880 Plus injector and a PDA MD 2018 detector (Jasco). The samples (15 μmol in 100 mM Tris-HCl at pH 7.4) were separated by a system containing a Phenomenex BioSep-SEC-S3000 column (7.8 × 300 mm, 5 μm, resolution range of 15 to 2000 kDa, Phenomenex, Inc., Torrance, California, USA) using a flow of 0.5 mL/min in Tris-HCl buffer (pH 7.4) and 50 mM NaCl. The elution profile was monitored at a wavelength of 280 nm. Bovine thyroglobulin (670 kDa), bovine gamma globulin (158 kDa), ovalbumin (44 kDa), myoglobin (17 kDa) and vitamin B$_{12}$ (1.35 kDa) were used as molecular standards (Bio-Rad). The chromatograms were analyzed using the Class-VP software (Shimadzu Co.). The REDOX treatments for Tsa1 and mutant proteins were 5 mM TCEP or 1.2 molar equivalents of hydrogen peroxide for 2hs/30°C.
Figure 11 - Only the heterologous expression of intact Glurho protein confers to *E. coli* cells a high resistance to cyanide. A) Cell cultures of *E. coli* BL21 (DE3) containing the empty plasmid (pET15B) or harboring pET15b/Glurho in exponential phase were diluted to OD\(_{600}\)=0.1, exposed to KCN (1.3 mM) and grown at 37°C, with the addition or not of IPTG 0.1mM to evaluate the protective effect of basal expression on cell. The growth rate was determined after 24 hs. B) Effects of cysteines substitutions over the cyanide resistance of *E. coli* cells harboring the pET15b/Glurho\(^{C33S}\) or pET15b/Glurho\(^{C266S}\) plasmids. Comparative resistance of *E. coli* cells containing pET15B, pET15b/Glurho, pET15b/Glurho\(^{C33S}\) or pET15b/Glurho\(^{C266S}\). The experimental conditions were the same as presented in (A). All assays were performed in triplicate for three times.
SUPPLEMENTARY MATERIAL

FUNCTIONAL CHARACTERIZATION AND HETEROLOGOUS EXPRESSION OF A NEW RHODANESE LIKE PROTEIN FROM XYLELLA FASTIDIOSA.

Carla Peres de Paulaa, Melina Cardoso dos Santosa, Carlos A. Tairum Jr. and Marcos Antonio de Oliveiraa *

aDepartamento de Biologia, Universidade Estadual Paulista, Campus do Litoral Paulista São Vicente, Brazil.

* To whom correspondence should be addressed: mao@clp.unesp.br

Structural Molecular Biology Laboratory
Universidade Estadual Paulista
Praça Infante Dom Henrique S/N

A) HED Reduction assay

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{HED_reduction_assay.png}
\caption{HED Reduction assay.}
\end{figure}

B) Cys-SSG Reduction assay

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Cys_SSG_reduction_assay.png}
\caption{Cys-SSG Reduction assay.}
\end{figure}

C) NADPH Oxidation assay

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{NADPH_oxidation_assay.png}
\caption{NADPH Oxidation assay.}
\end{figure}

D) DTT Oxidation Assay

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{DTT_oxidation_assay.png}
\caption{DTT Oxidation Assay.}
\end{figure}

Figure S1 - Evaluation of glutaredoxin activity by different assays. A) HED assay. The Glurho ability to reduce the mixed disulfide formed between GSH and \(\beta\)-hydroxyethyl disulfide (HED) was measured spectrophotometrically (\(\lambda=340\)nm). The reactions mixtures containing 0.1 M Tris-HCl (pH 7.4); 1mM GSH; 6 \(\mu\)g/ml GR and 0.7 mM HED were incubated at 30°C for three minutes for the formation of the HED mixed disulfide and then 0.2 mM NADPH was added, the reaction was started...
by the addition of Glurho and followed by the decrease in the absorbance at 340 nm due to the NADPH oxidation.

B) Cys-SSG reduction assay. The Glurho ability to reduce the mixed disulfide formed between GSH and Cys was monitored spectrophotometrically (λ = 340 nm) in 1 ml reaction containing: 1 mM GSH, Gr 6 µg/ml, 100 mM Tris-HCl (pH 7.4), 0.2 mM of NADPH, 100 µM of Cys-SSG and 1 µM of Glurho.

C) NADPH oxidation assay. The t-BOOH decomposition was measured spectrophotometrically (λ=340 nm) due to the oxidation of NADPH, the reaction contained: 0.1 M Tris-HCl (pH 7.4); 1 mM GSH; 6 µg/ml GR, 0.2 mM NADPH, 1 µM of Glurho and 1 mM of t-BOOH.

D) Evaluation of thiol peroxidase activity by DTT oxidation assay. The H₂O₂ decomposition assay was measured spectrophotometrically (λ=310 nm), graphic of absorbance x time was obtained from the DTT oxidation. The reaction contained: 10 mM of DTT, 100 mM Tris-HCl (pH 7.4), 1 mM of H₂O₂ and 1 µM of Glurho. The blank squares (□) represent the complete reaction whereas the black squares (■) are relative to the negative controls (with no addition of Glurho). All the experiments were performed using triplicates.

Figure S2 – Evaluation of E. coli Trx and X. fastidiosa as sulfur acceptor to Glurho.

A) Mechanism of sulfur transfer by rhodanases to Trx. Schematic representation of rhodanese sulfur transference from thiosulfate (S₂O₅²⁻) using Trx as acceptor. Initially, the rhodanese captures the sulfur and transfer to the Trx that becomes oxidized and releases a hydrogen sulfide. The oxidized Trx is reduced by the TrxR using NADPH reducing equivalents. B) Glurho NADPH oxidation assay. The evaluation of Glurho uses the protein Trx was monitored spectrophotometrically (λ= 340 nm) by the NADPH oxidation assay for 120 seconds. The reaction was performed in 1 ml containing: potassium phosphate buffer 50 mM, TrxR (E. coli) 0.2 µM, NADPH 150 µM, X. fastidiosa Trx (Tsnc) 10 µM or E. coli Trx 10 µM, 80 mM of sodium thiosulfate and 10 µM of Glurho. The black circles (●) are relative to the negative control reaction (without Glurho). The black squares (■) are relative to the reaction using X. fastidiosa Trx (Tsnc) and white squares (□) the reactions performed with E. coli Trx. The assays were performed in triplicate.
Figure S3 – Evaluation of Glurho sulfur transferase activity to thiolic acceptors. Evaluation of sulfurtransferase activity of Glurho over X. fastidiosa Trx (TsnC) (A) or the low molecular weight thiolic compounds GSH (B) or DTT (C). The reactions were performed essentially as described in Material and Methods to ferrithiocyanide assay. As the positive control just Glurho (1µM) was added to the reactions and for negative control only the thiolic compounds. The ferrithiocyanide formation was determinate spectrophotometrically (λ=460nm). Were tested 1 or 2 molar equivalents of each thiolic compound. The results are representative of three independent experiments.