ON COFINITELY WEAK RAD-SUPPLEMENTED MODULES

FIGEN ERYILMAZ AND ŞENOL EREN

Abstract. In this paper, necessary and sufficient conditions for a quotient module are found to be a cofinitely weak Rad-supplemented module under which circumstances. Nevertheless, some relations are investigated between cofinitely Rad-supplemented modules and cofinitely weak Rad-supplemented modules. Lastly, we show that an arbitrary ring R is a left Noetherian V–ring if and only if every weak Rad-supplemented R–module is injective.

1. Introduction

Throughout the paper, R will be an associative ring with identity, M will be an R–module and all modules will be unital left R–modules unless otherwise specified. By $N \leq M$, we mean that N is a submodule of M. Recall that a submodule L of M is small in M and denoted by $L \ll M$, if $M \neq L + K$ for every proper submodule K of M. A submodule S of M is said to be essential in M and denoted by $S \leq M$, if $S \cap N \neq 0$ for every nonzero submodule $N \leq M$. We write $\text{Rad}(M)$ for the Jacobson radical of a module M. An R–module M is called supplemented, if every submodule N of M has a supplement in M, i.e. a submodule K is minimal with respect to $M = N + K$. K is supplement of N in M if and only if $M = N + K$ and $N \cap K \ll K$ [16].

If $M = N + K$ and $N \cap K \ll M$, then K and N are called weak supplements of each other. Also M is called a weakly supplemented module if every submodule of M has a weak supplement in M [13, 18]. By using this definition, Büyükaşk and Lomp showed in [6] that a ring R is left perfect if and only if every left R–module is weakly supplemented if and only if R is semilocal and the radical of the countably infinite free left R–module has a weak supplement. Furthermore Alizade and Büyükaşk showed that a ring R is semilocal if and only if every direct product of simple modules is weakly supplemented [3].

In [17], Xue introduced Rad-supplemented modules. Let M be an R–module. Let M be an R–module, N and K be any submodules of M with $M = N + K$. If $N \cap K \leq \text{Rad}(K)$
(N ∩ K \leq \text{Rad}(M))$, then K is called a \textit{(weak) Rad-supplement} of N in M. Besides, M is called \textit{(weakly) Rad-supplemented} module provided that each submodule has a (weak) Rad-supplement in M. For characterizations of Rad-supplemented and weak Rad-supplemented modules, we refer to [15] and [17]. Since the Jacobson radical of a module is the sum of all small submodules, every supplement is a Rad-supplement.

Certain modules whose maximal submodules have supplements are studied in [1]. Also in the same paper, cofinitely supplemented modules are introduced. A submodule N of M is said to be \textit{cofinite} if $\frac{M}{N}$ is finitely generated. M is called \textit{cofinitely (weak) supplemented} if every cofinite submodule has a (weak) supplement in M [1, 2]. Nevertheless, it is known by [1, Theorem 2.8] and [2, Theorem 2.11] that an R–module M is cofinitely (weak) supplemented if and only if every maximal submodule of M has a (weak) supplement in M. Clearly, supplemented modules are cofinitely supplemented and weakly supplemented modules are cofinitely weak supplemented ones.

M is called \textit{cofinitely Rad-supplemented} if every cofinite submodule of M has a Rad-supplement [5]. Since every submodule of a finitely generated module is cofinite, a finitely generated module is Rad-supplemented if and only if it is cofinitely Rad-supplemented. According to [12], if every cofinite submodule of M has a Rad-supplement that is a direct summand of M, then M is called a \textit{cofinitely \textit{Rad-supplemented}} module.

In a present paper [10], a module is called \textit{cofinitely weak Rad-supplemented} if every cofinite submodule has a weak Rad-supplement and \textit{totally cofinitely weak Rad-supplemented} if every submodule is \textit{cofinitely weak Rad-supplemented}. Also it is proved in [10] that any arbitrary sum of cofinitely weak Rad-supplemented modules is a cofinitely weak Rad-supplemented module. Clearly this implies that any finite direct sum of cofinitely weak Rad-supplemented modules is also cofinitely weak Rad-supplemented. We will show that an infinite direct sum of totally cofinitely weak Rad-supplemented modules is totally cofinitely weak Rad-supplemented under certain conditions. Also we will prove that every torsion module over a Dedekind domain is a cofinitely weak Rad-supplemented module and find some conditions to show when any module over a Dedekind domain is cofinitely weak Rad-supplemented.

2. Main Results

Following [5], a module M is called \textit{w–local} if it has a unique maximal submodule.

\textbf{Theorem 1.} Every \textit{w–local} module is cofinitely weak Rad-supplemented.

\textit{Proof.} Let M be a module and U be a cofinite submodule of M. Since $\frac{M}{U}$ is finitely generated, it has a maximal submodule such as P^ℓ. Therefore P is a maximal
submodule of M. Then we have $U + M = M$ and $U \cap M = U \subseteq P = \text{Rad}(M)$. Hence M is cofinitely weak Rad-supplemented.

Recall that a module M is called refinable (or suitable), if for any submodules $U, V \leq M$ with $U + V = M$, there exists a direct summand U_1 of M with $U_1 \leq U$ and $U_1 + V = M$.

Theorem 2. Let M be a refinable R-module. Then the following are equivalent:

(i) M is \oplus-cofinitely Rad-supplemented,
(ii) M is cofinitely Rad-supplemented,
(iii) M is cofinitely weak Rad-supplemented.

Proof. The implications $(i) \Rightarrow (ii) \Rightarrow (iii)$ are obvious.

$(iii) \Rightarrow (i)$ Let M be a cofinitely weak Rad-supplemented module and N be a cofinite submodule of M. Then, we have $M = N + K$ and $N \cap K \leq \text{Rad}(M)$ where K is a submodule of M. Since M is a refinable module, it has a direct summand L such that $L \leq K$ and $M = L + N$. Following this, $N \cap L \leq N \cap K \leq \text{Rad}(M)$ implies that L is weak Rad-supplement of N. By using [14, Proposition 4], we get that L is Rad-supplement of N. Therefore, M is \oplus-cofinitely Rad-supplemented.

A ring R is called a left V-ring if every simple left R-module is injective.

Theorem 3. For an arbitrary ring R, the following are equivalent:

(i) Every weakly Rad-supplemented R-module is injective,
(ii) R is a left Noetherian V-ring.

Proof. $(i) \Rightarrow (ii)$ Assume that M is a \oplus-supplemented R-module. Since M is weak Rad-supplemented, it is an injective module. By Proposition 5.3 in [11] we get that R is a left Noetherian V-ring.

$(ii) \Rightarrow (i)$ Let M be a weakly Rad-supplemented module. Since R is a left Noetherian V-ring, we get $\text{Rad}(M) = 0$ by Villamayor theorem in [7]. Then, M is semisimple and so \oplus-supplemented. Again using Proposition 5.3 in [11], we obtain M is an injective module.

Corollary 1. Let R be a commutative ring. Then, every weakly Rad-supplemented R-module is injective if and only if R is semisimple.

Proof. Suppose that every weakly Rad-supplemented module is injective. By using the preceding theorem, we can say that R is a left Noetherian V-ring. Thus, R is semisimple by Proposition 1 and first corollary of [7]. The other side of the proof is obvious by [16, 20.3].

Theorem 4. Let M be a module and N be a submodule of M. If every cofinite submodule containing N of M has a weak Rad-supplement in M, then $\frac{M}{N}$ is cofinitely weak Rad-supplemented.
Proof. Let \(\frac{U}{N} \) be a cofinite submodule of \(\frac{M}{N} \). Since \(\frac{(U)}{(N)} \cong \frac{M}{U} \), we get that \(U \) is a cofinite submodule of \(M \) containing \(N \). Hence, we can find a submodule \(V \) of \(M \) such that \(M = U + V \) and \(U \cap V \leq \text{Rad}(M) \). By using Proposition 3.2 of [15], we can deduce that \(\frac{(U+N)}{N} \) is a weak Rad-supplement of \(\frac{U}{N} \) in \(\frac{M}{N} \). Therefore, \(\frac{M}{N} \) is a cofinitely weak Rad-supplemented module.

Remark. While a quotient module of a module is a cofinitely weak Rad-supplemented module, it may not be a cofinitely weak Rad-supplemented module. For example, \(\mathbb{Z}/2\mathbb{Z} \) isn’t cofinitely weak Rad-supplemented but \(\mathbb{Z}/p\mathbb{Z} \) is cofinitely weak Rad-supplemented for any prime number \(p \).

Proposition 1. Let \(M \) be a cofinitely weak Rad-supplemented \(R \)-module. Then every Rad-supplement in \(M \) is cofinitely weak Rad-supplemented.

Proof. Let \(V \) be a Rad-supplement of \(U \) in \(M \). That means \(M = U + V \) and \(U \cap V \leq \text{Rad}(V) \). Since \(\frac{M}{V} = \frac{(U+V)}{V} \cong \frac{V}{V} \), we get that \(\frac{V}{V} \) is a cofinitely weak Rad-supplement of \(\frac{U}{V} \) in \(\frac{M}{V} \). Therefore, \(\frac{M}{V} \) is cofinitely weak Rad-supplemented by [10, Proposition 6]. Theorem 4 in the same paper implies that \(V \) is cofinitely weak Rad-supplemented.

Theorem 5. Let \(R \) be a Dedekind domain and \(M \) be a torsion \(R \)-module. Then \(M \) is cofinitely weak Rad-supplemented.

Proof. By [3, Corollary 2.7], we have \(\frac{M}{\text{Rad}(M)} \) is semisimple and so cofinitely weak Rad-supplemented.

Theorem 6. Let \(R \) be a Dedekind domain, \(\frac{M}{\text{Rad}(M)} \) be finitely generated and \(\text{Rad}(M) \leq M \). If \(\text{Rad}(M) \) is cofinitely weak Rad-supplemented, then \(M \) is cofinitely weak Rad-supplemented.

Proof. Suppose that \(\frac{M}{\text{Rad}(M)} \) is generated by \(m_1 + \text{Rad}(M), m_2 + \text{Rad}(M), \ldots, m_n + \text{Rad}(M) \). Then, for finitely generated submodule \(K = Rm_1 + Rm_2 + \ldots + Rm_n \), we have \(M = \text{Rad}(M) + K \) and \(K \cap \text{Rad}(M) \) is finitely generated as \(K \) is finitely generated. So \(K \cap \text{Rad}(M) \ll M \) by Lemma 2.3 in [3]. That is to say, \(K \) is a weak supplement of \(\text{Rad}(M) \) of \(M \). Since \(\text{Rad}(M) \leq M \), we get \(\frac{M}{\text{Rad}(M)} \) is torsion. Besides this, Proposition 9.15 of [4] implies that \(\text{Rad} \left(\frac{M}{\text{Rad}(M)} \right) = 0 \). Hence \(\frac{M}{\text{Rad}(M)} \) is semisimple by Corollary 2.7 in [3]. If we consider \(0 \to \text{Rad}(M) \to M \to \frac{M}{\text{Rad}(M)} \to 0 \), then \(M \) is cofinitely weak Rad-supplemented by Theorem 7 in [10].

Proposition 2. Let \(R \) be a non-semilocal commutative domain. If \(M \) is totally cofinitely weak Rad-supplemented, then \(M \) is torsion.

Proof. Suppose that \(\text{Ann} (m) = 0_R \) for some \(m \in M \). Then we have \(Rm \cong R_R \). Since \(Rm \) is cofinitely weak Rad-supplemented, \(R_R \) is also (cofinitely) weak Rad-supplemented. Then by 17.2 of [8], \(R \) is a semilocal ring which gives a contradiction. Thus, \(M \) is a torsion module.
Theorem 7. Let R be an arbitrary ring and $M = \bigoplus_{i \in I} M_i$ such that M_i is totally cofinitely weak Rad-supplemented for all $i \in I$. If $U = \bigoplus_{i \in I} (U \cap M_i)$ for every submodule U of M, then M is totally cofinitely weak Rad-supplemented.

Proof. Assume that U is a submodule of M and V is a cofinite submodule of U where $U = \bigoplus_{i \in I} (U \cap M_i)$. Since $V = \bigoplus_{i \in I} (V \cap M_i)$ and $\frac{U}{V} \cong \bigoplus_{i \in I} \left(\frac{U \cap M_i}{V \cap M_i} \right)$, we get that $V \cap M_i$ is a cofinite submodule of $U \cap M_i$ for all $i \in I$. We know that $U \cap M_i$ is cofinitely weak Rad-supplemented. Therefore $V \cap M_i$ has a weak Rad-supplement K_i in $U \cap M_i$ for all $i \in I$. Let $K = \bigoplus_{i \in I} K_i$. Then we obtain $U = V + K$ and $V \cap K \leq \text{Rad}(U)$. As a result, U is cofinitely weak Rad-supplemented and so M is totally cofinitely weak Rad-supplemented. \hfill \square

Let R be a Dedekind domain and M be an R–module. By Ω, we denote the set of all maximal ideals of R. The submodule $T_P(M) = \{ m \in M | P^n m = 0 \text{ for some } n \geq 1 \}$ is called the P–primary part of M.

Theorem 8. Let R be a non-semilocal Dedekind domain. Then, M is a totally cofinitely weak Rad–supplemented module if and only if M is torsion and $T_P(M)$ is totally cofinitely weak Rad-supplemented for every $P \in \Omega$.

Proof. Assume that M is a totally cofinitely weak Rad-supplemented module. Then M is torsion by Proposition 2. On the other hand $T_P(M)$ is totally cofinitely weak Rad-supplemented for every $P \in \Omega$. Because every submodule of a totally cofinitely weak Rad-supplemented module is a totally cofinitely weak Rad-supplemented module.

Conversely, we can write $M = \bigoplus_{P \in \Omega} T_P(M)$ by Proposition 6.9 in [9]. Let N be a submodule of M. Since M is torsion, N is also a torsion module. By using the same proposition, we can write that $N = \bigoplus_{P \in \Omega} T_P(N)$. Therefore, $\bigoplus_{P \in \Omega} T_P(N) = \bigoplus_{P \in \Omega} (N \cap T_P(M))$ and $T_P(M)$ is totally cofinitely weak Rad-supplemented for every $P \in \Omega$. As a result, M is totally cofinitely weak Rad-supplemented by the preceding theorem. \hfill \square

Theorem 9. Any torsion module over a Dedekind domain is totally cofinitely weak Rad–supplemented.

Proof. Let R be a Dedekind domain, M be a torsion R–module and N be a submodule of M. Due to Corollary 2.7 of [3], $\frac{N}{\text{Rad}(N)}$ is semisimple and so it is cofinitely weak Rad–supplemented. Therefore N is cofinitely weak Rad–supplemented by Theorem 4 of [10]. \hfill \square

References

[1] Alizade, R., Bilhan G. and Smith, P.F., Modules whose maximal submodules have supplements, Comm. Algebra, (2001), 29(6), 2389-2405.
ON COFINITELY WEAK RAD-SUPPLEMENTED MODULES 97

[2] Alizade, R. and Büyükaşık, E., Cofinitely weak supplemented modules, Comm. Algebra, (2003), 31(11), 5377-5390.
[3] Alizade, R. and Büyükaşık, E., Extensions of weakly supplemented modules, Math. Scand., (2008), 103(2), 161-168.
[4] Anderson, F.W. and Fuller, K.R., Rings and Categories of Modules, New York, Springer-Verlag, 1974.
[5] Büyükaşık, E. and Lomp, C., On a recent generalization of semiperfect rings, Bull. Aust. Math. Soc., (2008), 78(2), 317-325.
[6] Büyükaşık, E. and Lomp, C., Rings whose modules are weakly supplemented are perfect. Applications to certain ring extensions, Math. Scand., (2009), 105(1), 25-30.
[7] Byrd, K. A., Rings whose quasi-injective modules are injective, Proc. Amer. Math. Soc., (1972), 33, 235-240.
[8] Clark, J., Lomp, C., Vajana, N., Wisbauer, R., Lifting modules, 1st. ed., Birkhauser Verlag Basel, Boston-Berlin, 2006.
[9] Cohn, P.M., Algebra, Vol.2, Wiley&Sons, 1989.
[10] Eryilmaz, F.Y. and Eren, Ş., Totally cofinitely weak Rad-supplemented modules, Int. J. Pure Appl. Math., (2012), 80(5), 683-692.
[11] Idelhadj, A. and Tribak, R., On some properties of ⊕-supplemented modules, Int. J. Math. Math. Sci., (2003), 69, 4373-4387.
[12] Koşan, M.T., Generalized cofinitely semiperfect modules, Int. Electron J. Algebra, (2009), 5, 58-69.
[13] Lomp, C., On semilocal modules and rings, Comm. Algebra,(1999), 27(4), 1921-1935.
[14] Türkmen, E. and Pancar, A., Some properties of Rad-supplemented modules, Int. J. of Phy. Sci., (2011), 6(35), 7904-7909.
[15] Wang, Y. and Ding, N., Generalized supplemented modules, Taiwanese J. Math., (2006), 10(6), 1589-1601.
[16] Wisbauer, R., Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991.
[17] Xue, W., Characterizations of semiperfect and perfect rings, Publ. Math.,(1996), 40(1), 115-125.
[18] Zöschinger, H., Invarianten wesentlicher überdeckungen, Math. Ann., (1978), 237(3), 193-202.

Current address: Figen ERYILMAZ: Ondokuz Mayıs University, Faculty of Education, Department of Mathematics Education, 55139 Kurupelit, Samsun-TURKEY.
E-mail address: fyuzbasi@omu.edu.tr

Current address: Şenol EREN: Ondokuz Mayıs University, Faculty of Sciences and Arts, Department of Mathematics, 55139 Kurupelit, Samsun-TURKEY.
E-mail address: seren@omu.edu.tr