INTRODUCTION

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the two most common neurodegenerative disorders. Neuropathologically, AD is characterized by the presence of extracellular amyloid-β plaques and intracellular tau-associated neurofibrillary tangles, whereas PD involves deposition of α-synuclein-containing Lewy bodies. Though AD and PD are considered distinct neurodegenerative entities, there is evidence for Lewy body pathology in AD2 and Alzheimer-type pathology in PD3 suggesting overlap between these two disorders. Importantly, although tau-associated pathology is considered a hallmark of AD, genome-wide association studies (GWAS) in PD have identified several polymorphisms within the A allele of rs393152 within the extended MAPT region on chromosome 17 (meta-analysis P-value across five independent AD cohorts = 1.65 x 10^-7). In independent datasets, we found a dose-dependent effect of the A allele of rs393152 on intra-cerebral MAPT transcript levels and volume loss within the entorhinal cortex and hippocampus. Our findings identify the tau-associated MAPT locus as a site of genetic overlap between AD and PD, and extending prior work, we show that the MAPT region increases risk of Alzheimer’s neurodegeneration.

Molecular Psychiatry (2015) 20, 1588–1595; doi:10.1038/mp.2015.6; published online 17 February 2015
in and around the tau-encoding microtubule-associated protein gene (MAPT)1,5 indicating that similar biochemical perturbations may contribute to both AD and PD.6 Furthermore, prior reports investigating the genetic relationship between MAPT and AD risk have been conflicting, with some studies finding a positive association7,8 and other studies showing no association,9,10 indicating that the role of the MAPT gene in influencing Alzheimer’s neurodegeneration is still largely unknown.

Combining GWAS from two disorders provides insights into genetic pleiotropy (defined as a single gene or variant being associated with more than one distinct phenotype) and could elucidate shared pathobiology. Here, using summary statistics (P-values) from large genetic studies,10-14 we sought single nucleotide polymorphisms (SNPs) associating with both AD and PD.

METHODS

Participant samples

We obtained complete GWAS results in the form of summary statistics from the PD International Parkinson’s Disease Genetics Consortium (IPDGC) and AD Alzheimer’s Disease Genetics Consortium (ADGC). The PD GWAS summary statistic results from IPDGC consisted of 5333 cases and 12 019 controls obtained from five studies with genotyped and imputed data at 7 689 524 SNPs (Table 1a, for additional details, see International Parkinson Disease Genomics Consortium10). The AD GWAS summary statistic data from ADGC consisted of 11 840 cases and 10 931 controls obtained from 15 studies with genotyped and imputed data at 2 324 889 SNPs (Table 1a, for additional details, see Naj et al.11). The ADGC GWAS summary statistic data were co-varied for age, sex and number of apolipoprotein E (APOE) alleles.

To test for replication, we also assessed the P-values of the PD genome-wide significant SNPs in four separate AD cohorts, namely the Genetic and Environmental Risk in Alzheimer’s Disease (GERAD) sample, a cohort of AD cases and controls drawn from the population of Iceland (deCODE cohort), a small cohort of mild cognitive impairment or AD cases and controls drawn from the population of Norway (Oslo), and the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. The AD GWAS summary statistic results from the GERAD consortium were obtained from 13 studies and consisted of 3941 cases (62.7% female) and 8888 older controls (57.8% females) greater than 85 years of age (for additional details, see Jonsson et al.13,14).

The AD GWAS summary statistic data from the CHARGE consortium were obtained from four studies and included 1315 AD cases (62.1% female) and 21 766 controls (56.9% female) (for additional details, see Lambert et al.15). A total of 5571 controls from the PD IPDGC GWA were also present in the AD GERAD GWA. The AD GWAS summary statistic data drawn from the Icelandic population (deCODE) included 3759 AD cases (65.8% female) and 8888 older controls (57.8% females) greater than 85 years of age (for additional details, see Jonsson et al.13,14).

For the gene expression analyses, we used publicly available, geno-
typed (performed on the Affymetrix GeneChip Human Mapping 500K Array Set platform (Santa Clara, CA, USA) and RNA expression data (performed on the Illumina HumanRefseq-8 Expression BeadChip system (San Diego, CA, USA)) from neuropathologically confirmed 176 late-onset AD cases (mean age = 83.4 years, s.d. = 6.6) and 188 controls (mean age = 81.2 years, s.d. = 9.1) from the Gene Expression Omnibus (GEO) data set GSE15222.11 We additionally evaluated genotype and imaging data obtained from 311 older participants (174 healthy older controls, 311 individuals with mild cognitive impairment, and 135 individuals with probable AD) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI —see Table 1b and Supplementary Methods). We restricted our analyses to those participants with available genotype and quality-assured baseline and follow-up MRI scans (6 months to 3.5 years, mean of 2.02 years, s.d. = 0.80 years) available as of April 2011. We assessed longitudinal sub-regional change in grey matter volume (atrophy) on serial 2471 T1-weighted MRI scans using a modified version of the FreeSurfer software package (for additional details, see Supplementary Methods).

Statistical analyses

We used stepwise gatekeeper hypothesis testing17 to identify SNPs associating with both PD and AD. We restricted our analyses to only those SNPs assayed in both GWASs from the IPDGC and the ADGC Consortia. First, we identified ‘pruned’ SNPs (removing all SNPs with r² > 0.2, within 1 Mb of a given SNP) that were significant at a genome-wide level (P < 5 × 10⁻⁸) within PD. Next, we evaluated the P-values of these PD genome-wide significant SNPs within the AD ADGC GWAS APOE, age and sex co-varied summary statistic P-values) and applied a Bonferroni correction to control for multiple comparisons. Note that because the SNPs were a priori selected independently of the P-values from AD ADGC, the proper Bonferroni correction is in terms of the number of PD genome-wide significant SNPs. Therefore, the P-value threshold for detecting significant ADGC loci controls for the number of PD genome-wide significant SNPs rather than P < 5 × 10⁻⁸. It is important to note that this stepwise gatekeeper hypothesis testing approach implies a strict control for family-wise error rate in a multiple testing framework.17

RESULTS

Genetic overlap between AD and PD at the A allele of rs393152

We found eight SNPs on four chromosomes that were genome-wide significant in PD, thus requiring a Bonferroni-corrected P-value significance threshold of 0.00625 (Table 2). Across all eight SNPs, we found that the A allele of rs393152, within the CHR17 region on chromosome 17 (within the extended MAPT locus) and with a minor allele frequency of 23.1%, significantly increased AD

| Table 1a. Characteristics of Parkinson’s disease (IPDGC) and primary Alzheimer’s disease (ADGC) genome-wide association study participants evaluated in this manuscript |
|-------------------|-----------------|-----------------|-----------------|
| | IPDGC Cases | IPDGC Controls | ADGC Cases | ADGC Controls |
| N | 5233 | 12019 | 11840 | 10931 |
| Age at assessment (mean) | 75.5 ± 7.3 | 75.4 ± 7.7 | 75.6 ± 7.3 | 76.0 ± 7.7 |
| % Women | 56% | 48% | 48% | 48% |
| % APOE ε4 carriers | N/A | N/A | 51.6 ± 26.7 | N/A |

Abbreviations: ADGC, Alzheimer’s Disease Genetics Consortium; APOE, Apolipoprotein E; IPDGC, International Parkinson’s Disease Genetics Consortium; N/A, not applicable.

| Table 1b. Demographic, clinical and imaging data for all ADNI participants evaluated in this study |
|-------------------|-----------------|-----------------|-----------------|
| | HC (n = 174) | MCI (n = 311) | AD (n = 135) |
| Age, mean (s.d.) | 75.0 (5.1) | 75.4 (7.7) | 76.2 (6.5) |
| Female, % | 56% | 48% | 48% |
| Education years, mean (s.d.) | 15.7 (2.9) | 14.9 (2.9) | 14.9 (2.9) |
| CDR-SB, mean (s.e.) | 0.03 (0.11) | 0.42 (0.5) | 0.42 (0.5) |
| APOE ε4 carriers (%) | 25 | 69 |
| Entorhinal cortex APIC | −0.57 (2.5) | −2.10 (1.6) | −2.92 (1.7) |
| Hippocampus APIC, mean (s.d.) | −0.90 (1.1) | −3.45 (1.9) |

Abbreviations: AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; APIC, annualized percent change; APOE, Apolipoprotein E; CDR-SB, Clinical Dementia Rating-Sum of Boxes score; HC, cognitively normal older adults; MCI, mild cognitive impairment.
We conducted an inverse variance-weighted meta-analysis\(^{18}\). We replicated the directionality of effect for the A allele of rs393152 within the ADGC cohort (\(P\)-value = 1.17 \times 10^{-4}, odds ratio (OR) for the minor allele = 0.90, 95\% confidence interval (CI) = 0.86–0.95) (Table 2; Figure 1). In a replication analysis, we found that the A allele of rs393152 also significantly increased AD risk within the GERAD (one-tailed \(P\)-value = 0.0048, OR for the minor allele = 0.92, 95\% CI = 0.86–0.98), deCODE (one-tailed \(P\)-value = 0.017, OR for the minor allele = 0.92, 95\% CI = 0.85–0.99) and Oslo cohorts (one-tailed \(P\)-value = 0.047, OR for the minor allele = 0.85, 95\% CI = 0.71–1.02). We replicated the directionality of effect for the A allele of rs393152 within the CHARGE cohort (one-tailed \(P\)-value = 0.318, OR for the minor allele = 0.97, 95\% CI = 0.85–1.10). We conducted an inverse variance-weighted meta-analysis\(^{18}\) and found a two-tailed meta-analysis \(P\)-value of 1.65 \times 10^{-4} (meta analysis OR = 0.91, 95\% CI = 0.88–0.94) (Figure 1).

We evaluated the statistical power for detecting an association of rs393152 with AD across the discovery (ADGC) and the combined, meta-analysis AD cohorts (ADGC+GERAD+deCODE+Oslo+CHARGE). Using a GWAS threshold of \(P < 5 \times 10^{-8}\), the power within ADGC was 0.028 and within the meta-analysis cohort was 0.36, demonstrating that even the combined cohort consisting of 21,289 AD cases and 51,263 controls was underpowered to detect an association between AD and rs393152 using a standard GWAS approach. However, leveraging PD such that power is computed conditional on discovery in the PD sample (stepwise gatekeeper hypothesis testing), by using \(P < 0.00625\) (where Bonferroni corrected \(P\) = 0.05/number of genome-wide significant SNPs in PD), the power within ADGC was 0.854 and within the meta-analysis cohort was 0.998 indicating that restricting evaluation to only PD-significant SNPs results in considerable increase in statistical power for AD gene discovery.

We also calculated the sample size needed to detect rs393152 (\(IC^1 \Theta^{-1}(5 \times 10^{-8})^2/\Theta^2(0.00625)^2\), where \(\Theta^1\) is the inverse standard normal cumulative distribution function) and found that in comparison with our discovery cohort, 4.5 times as many subjects would be needed to detect rs393152 using a standard GWAS approach at the same alpha/Type I error.

On the basis of the 1000 Genomes Project LD structure, we found that rs393152 was in \(r^2\) LD > 0.8 with a number of variants within the MAPT gene on chromosome 17 (Figure 2a). Fine mapping showed that rs1981997 constituted the peak of the AD association signal within MAPT (\(r^2 = 1.0\) with rs393152 in HapMap2; Figure 2b). Across the ADGC (risk allele = A, two-tailed \(P\)-value = 9.54 \times 10^{-5}, OR = 0.90, 95\% CI = 0.85–0.95), GERAD (one-tailed \(P\)-value = 0.006, OR = 0.92, 95\% CI = 0.86–0.98), deCODE (one-tailed \(P\)-value = 0.018, OR = 0.92, 95\% CI = 0.84–0.99), Oslo (one-tailed \(P\)-value = 0.047, OR = 0.85, 95\% CI = 0.71–1.03) and CHARGE (one-tailed \(P\)-value = 0.0327, OR = 0.96, 95\% CI = 0.84–1.08) cohorts, the leading SNP in the MAPT region, rs1981997, demonstrated a similar meta-analysis \(P\)-value to rs393152 (two-tailed meta-analysis \(P\)-value of 1.29 \times 10^{-7}, see Supplementary Figure 4) providing further evidence that our AD/PD pleiotropic variant was tagging the MAPT gene and not a false-positive result. We also note that rs393152 has been previously shown to tag the H1 haplotype at the MAPT locus (\(r^2 = 0.761\)).\(^{5}\) Because of the extensive LD structure in this region, we cannot exclude the possibility that other genes, besides MAPT, are the pathologically relevant genes. However, MAPT is biologically the most plausible candidate.

Non-polygenic pleiotropy between AD and PD

We further investigated whether the observed genetic overlap between AD and PD was polygenic and generalizable across a number of loci or non-polygenic and driven by the MAPT locus alone. Using recently developed statistical methods to evaluate pleiotropic effects,\(^{19}\) we investigated relative ‘enrichment’ of pleiotropic SNPs in AD (APOE, age and sex co-varied summary statistic \(P\)-values from ADGC) as a function of significance in PD (summary statistic \(P\)-values from IPDGC) (for additional details, see Supplementary Methods). Removing the MAPT-associated genetic signal, consisting of all SNPs in \(r^2 > 0.2\) (based on 1000 Genomes Project LD structure) within 1 Mb of MAPT variants, resulted in considerable attenuation of genetic enrichment (Supplementary Figures 1a and d) indicating that the observed pleiotropy between AD and PD was non-polygenic and likely confined to the MAPT region. Similarly, after ‘pruning’ (removing SNPs in \(r^2 > 0.2\)) all available ADGC SNPs, we found a single pleiotropic locus on chromosome 17 between AD and PD that was in \(r^2 = 1.0\) with

Table 2. Summary of evaluated loci

SNP	Chr	Nearest gene	Minor allele frequency	Risk allele for PD	PD \(P\)-value	Risk allele for AD	ADGC \(P\)-value	Other genes in genomic region defined by LD
rs9917256	2	STK39	0.1365	A	1.62 \times 10^{-9}	A	0.79	DGKQ, TIMEM175
rs11248051	4	GAK	0.1299	T	3.50 \times 10^{-8}	T	0.19	AKD39890, MMRN1
rs4698412	4	BST1	0.4344	A	2.03 \times 10^{-8}	G	0.031	CR605611
rs356220	4	SNCA	0.4869	T	1.47 \times 10^{-25}	C	0.014	AK123890, AK123890
rs3857059	4	SNCA	0.0684	G	1.66 \times 10^{-14}	A	0.78	AKD39890, MMRN1
rs2197120	4	SNCA	0.1995	G	6.29 \times 10^{-10}	G	0.99	AKD39890, MMRN1
rs12603319	17	FBXW10	0.2192	T	1.144 \times 10^{-8}	T	0.39	AK123890, MMRN1
rs393152	17	CRHR1	0.231	A	2.22 \times 10^{-18}	A	1.17 \times 10^{-6}	ARHGAP27, KANSL1, LOC100128977, LOC55132, LOC644172, MAPT, MGC57346, PLKHM1

Abbreviations: AD, Alzheimer’s disease; ADGC, Alzheimer’s Disease Genetics Consortium; LD, linkage disequilibrium; PD, Parkinson’s disease; SNP, single nucleotide polymorphism.
MAPT. Though some genetic enrichment was still present after removing the MAPT-associated SNPs, we found a similar pattern in PD SNP enrichment conditioned on AD (Supplementary Figure 2).

AD-PD pleiotropic locus correlates with MAPT transcript levels
We assessed the relationship between the AD-PD pleiotropic locus on chromosome 17 and MAPT transcript levels within the brain (target id = GI.8400714-A and reference sequence = NM_016841.1 in GSE15222, for additional details, see Webster et al.16 and Myers et al.23). As rs393152 was not available in the GEO dataset, we focused on rs422112 within the CRHR1 locus on chromosome 17, the best available proxy (closest distance and \(r^2 > 0.98 \)) for rs393152. We used an additive model with minor allele (T) counts coded as 0, 1 and 2. Given the allele frequencies and near-complete LD between rs393152 and rs422112, the ‘A’ allele of rs393152 tags the ‘C’ allele of rs422112 and the ‘G’ allele of rs393152 tags the ‘T’ allele of rs422112. Using linear regression, co-varying for the effects of age at death, APOE ε4 carrier status, diagnosis (AD cases vs controls), brain tissue region (frontal, parietal, temporal or cerebellar), postmortem interval, interval source of sample and hybridization date, we evaluated the relationship between rs422112 and MAPT transcript expression levels. Across all cases and controls, we found a strong association between the T allele of rs422112 and decreased MAPT transcript expression levels (standardized \(\beta \)-coefficient = −0.27, t-statistic = −6.61, \(P \)-value = 1.45 \times 10^{-10}), which corresponds to presence of the A allele of rs393152 and increased MAPT transcript expression (Figure 3). Subgroup analyses demonstrated similar results within the AD cases and controls (see Supplementary Results). We further assessed the specificity of our findings by evaluating the relationship between the AD-PD pleiotropic locus and transcript levels of synaptophysin (SYP), a neuronal protein, and synuclein (SNCA), a neural protein associated with tau and PD. In contrast to MAPT transcript levels, we found no relationship between rs422112 and transcript levels of either SYP or SNCA (see Supplementary Results and Figure 3). We additionally performed a ‘locus-wide association study’ testing all SNPs in the MAPT region for association with MAPT transcript expression levels. SNPs in \(r^2 > 1.0 \) with rs393152 constituted the peak of the association signal (\(P < 1.0 \times 10^{-6} \)) with MAPT transcript expression levels (Figure 4). We also evaluated the relationship between SNPs in LD with rs393152 and transcript levels of other chromosome 17 genes within the larger MAPT region that were available within GSE15222.16 As illustrated in Supplementary Figures 3a and f, SNPs in LD with rs393152 did not demonstrate significant association with transcript levels of other genes within the MAPT region further illustrating the specificity of our MAPT findings.

AD-PD pleiotropic locus correlates with longitudinal brain atrophy
Using linear mixed effects models, we assessed the relationship of rs393152 with longitudinal brain atrophy specifically within the entorhinal cortex and hippocampus, two medial temporal lobe regions selectively affected in the earliest stages of AD.24 These models co-varied for the effects of baseline age, sex, education, group status (healthy older control vs mild cognitive impairment vs AD), disease severity (Clinical Dementia Rating-Sum of Box score) and APOE ε4 carrier status. We used an additive model with major allele (A) counts coded as 0, 1, and 2. Across all available ADNI participants, we found that the A allele of rs393152 was significantly associated with increased atrophy rates (volume loss) of the entorhinal cortex (standardized \(\beta \)-coefficient = −0.003, s.e. = 0.001, \(P \)-value = 0.0071) and hippocampus (standardized \(\beta \)-coefficient = −0.003, s.e. = 0.001, \(P \)-value = 0.0031).

AD-PD pleiotropic locus demonstrates larger effect among APOE ε4 non-carriers
We further assessed the relationship between rs393152, MAPT transcript expression levels and medial temporal lobe atrophy separately among APOE ε4 carriers (presence of at least one ε4
allele) and non-carriers (absence of at least one ε4 allele). Using the linear regression and mixed effects model framework described above, we found a stronger effect between rs393152 and MAPT transcript expression levels among APOE ε4 non-carriers (standardized β-coefficient = −0.22, s.e. = 0.04, P-value = 1.1 × 10\(^{-6}\)) than the APOE ε4 carriers (standardized β-coefficient = −0.14, s.e. = 0.04, P-value = 0.001). Similarly, we found a stronger effect between rs393152 and medial temporal lobe atrophy among APOE ε4 non-carriers (entorhinal cortex: standardized β-coefficient = −0.002, s.e. = 0.001, P-value = 0.04; hippocampus: standardized β-coefficient = −0.003, s.e. = 0.001, P-value = 0.01) than among APOE ε4 carriers (entorhinal cortex: standardized β-coefficient = −0.003, s.e. = 0.002, P-value = 0.07; hippocampus: standardized β-coefficient = −0.003, s.e. = 0.002, P-value = 0.07) (Figure 5).

DISCUSSION

In this study, we leveraged gene variants associating with PD to search for variants that associate with AD. We found a gene variant that was in strong LD with markers in the MAPT gene on chromosome 17 and that was previously associated with PD. This SNP was significantly associated with longitudinal atrophy of the entorhinal cortex and hippocampus and demonstrated a strong association with MAPT transcript levels within the brain. Considered together, our findings point to the tau-associated MAPT locus as a site genetic overlap between AD and PD.

These results indicate that leveraging the genetic signal in one phenotype may improve statistical power for gene discovery in a second, related phenotype. Rather than evaluating all possible AD susceptibility loci, we restricted our analyses to only those eight SNPs that were below genome-wide threshold in PD. As such, detection of AD susceptibility loci only among genome-wide significant PD susceptibility loci obviates the need for applying a P < 5 × 10\(^{-8}\) threshold and constitutes stepwise gatekeeper hypothesis testing. This two-stage stepwise gatekeeper framework is conceptually similar to the ‘proxy-phenotype’ method, which has recently been utilized to identify common variants associated with cognitive performance. It is important to note that this approach does not lower the statistical ‘bar’ for gene discovery and maintains a constant Type I error rate. By exploiting the statistical power from PD, we were able to identify one SNP within the CRHR1 locus on chromosome 17 (meta-analysis P-value = 1.65 × 10\(^{-7}\), OR = 0.91, 95% CI = 0.88–0.94) that was significantly associated with increased AD risk. Importantly, the use of this stepwise, pleiotropic approach, where power is computed conditional on discovery in the PD sample, resulted in considerable improvement in statistical power for AD gene detection. In contrast, using a standard GWAS approach, neither the discovery ADGC cohort nor the combined meta-analysis
cohort were sufficiently powered to detect rs393152. Given the comparable sample sizes with our current study, it is likely that the original AD GWASs11,12,26,27 and even the recent meta-analysis (stage 1)15 were underpowered to detect MAPT-associated signal in AD.

There are several indications that the detected pleiotropy within chromosome 17 represents biological signal and not analysis artifacts or type 1 error. First, the use of APOE co-varied SNPs from the ADGC minimizes concerns that the detected SNPs represent spurious association resulting from the known large effect of APOE on AD risk (for an example of this, see Wijsman et al.28). Importantly, our findings indicate the presence of genetic signal independent of the chromosome 19 APOE cluster. Second, rs393152 was significantly associated with AD risk in three independent AD replication cohorts and demonstrated equivalent effect sizes in all five AD cohorts. Third, the identified pleiotropic locus was in r^2 LD > 0.8 with a number of variants within the tau-encoding MAPT gene on 17q21 indicating that the detected signal was specific to the MAPT region. Fourth, the leading AD-associated SNP in the MAPT region (rs1981997, r^2 LD = 1.0 with rs393152 in the HapMap 2) demonstrated a similar meta-analysis P-value to rs393152 providing further evidence that our AD/PD pleotropic SNP was not a false-positive result. Finally, the A allele of rs393152 showed a dose-dependent effect specifically with MAPT transcript levels within the brain and was significantly associated with longitudinal medial temporal lobe atrophy, an established endophenotype of Alzheimer’s neurodegeneration.

These single locus results point to shared pathobiology between AD and PD. Although we cannot exclude the possibility that other genes at this chromosome 17 locus are the pathologically relevant genes, our data are biologically plausible and consistent with prior experimental evidence establishing the role of MAPT in neurodegenerative diseases.29 The pleiotropic variant we found, rs393152, tags the H1 haplotype at the MAPT locus,5 which has been associated with a number of tauopathies including corticobasal degeneration, progressive supranuclear palsy and PD.5,29 Furthermore, broadly consistent with a prior study,30 our results suggest non-extensive, non-polygenic pleiotropy between AD and PD localized to the MAPT cluster on chromosome 17.

Despite a number of prior studies,7–9,31 the role of MAPT in AD is still unclear. Extending prior work suggesting a significant relationship between the MAPT H17 (within the GERAD cohort) and H226 (within the ADGC cohort) haplotypes and AD risk, our findings indicate that the A allele of rs393152, which tags the H1 haplotype at the MAPT locus,5 increases risk for AD. Building on prior research demonstrating a robust association between a variant in the H2 haplotype and reduced MAPT brain expression...
levels,8 we found a dose-dependent effect of the A allele of rs393152 (Figure 3) on intracranial MAPT gene expression. In contrast, we found no association between rs393152 and transcript levels of either synaptophysin or synuclein indicating the specificity of the relationship between the identified AD-PD pleiotropic locus and MAPT transcript expression. Our gene expression findings are consistent with prior work demonstrating a significant relationship between the H1 haplotype and MAPT levels.23,32 However, a previous study33 of exon levels from multiple human brain regions found no association between the H1c subhaplotype and MAPT expression indicating that additional work using large samples is needed to systematically investigate the H1/H2 sub-haplotypes and MAPT brain expression levels. Additionally, building on prior work detecting smaller grey matter volumes within cognitively normal34 and cognitively impaired carriers of the MAPT H1 haplotype,35 we found a significant relationship between the A allele of rs393152 and longitudinal atrophy of the entorhinal cortex and hippocampus, two medial temporal lobe regions selectively affected with tau-associated neuro fibrillary pathology in the earliest stages of AD. Considered together, this suggests that the PD-associated MAPT region influences Alzheimer’s neurodegeneration likely via tau-related mechanisms.

From an AD perspective, these results highlight the importance of considering tau. Recent evidence indicates that dominantly inherited mutations in MAPT cause forms of frontotemporal dementia with parkinsonism28 and a rare MAPT genetic variant (p.A152T) increases risk for AD and frontotemporal dementia syndromes,36 and tau modulates amyloid-\beta-associated Alzheimer’s neurodegeneration.37 Consistent with this work, our present results indicate that tau-associated polymorphisms impact MAPT transcript levels and affect medial temporal lobe volume loss. When considered together with prior CSF,38–40 and imaging research,41,42 our findings suggest that data from GWAS, expression quantitative trait loci and structural imaging measures may better elucidate underlying pathobiology than any of these markers by themselves. These results also demonstrate the utility of using entorhinal cortex and hippocampal atrophy rates as endophenotypes to identify and confirm AD risk variants.

In this study, the diagnosis of AD and PD was based on clinical evaluations, without histopathological confirmation. Postmortem evidence indicates the co-occurrence of A-synuclein, tangle and amyloid pathology.43 Therefore, one concern is that concomitant Parkinson’s pathology may have contributed to our MAPT-associated effect in AD. In a small cohort of autopsy-confirmed AD cases and controls, we replicated the directionality and magnitude of the A allele of rs393152 (Supplementary Figure 5) indicating that our AD-associated findings are not due to concomitant PD pathology. Furthermore, building on prior genetic work,44 among APOE ε4 non-carriers, we found a stronger relationship between rs393152 and both gene expression levels and medial temporal lobe atrophy (Figure 5) suggesting that MAPT may predominantly influence Alzheimer’s neurodegeneration in a smaller subset of individuals who do not possess APOE ε4 alleles.45 One additional caveat, we note that because we primarily evaluated summary statistics from the discovery and replication cohorts, additional work with raw genotype data is needed to determine whether the AD-associated MAPT effect varies based on APOE ε4 carrier status. Another concern is the potential ‘contamination’ of PD samples with other tauopathies (such as progressive supranuclear palsy and corticobasal degeneration) strongly associated with MAPT. Using neuropathologically confirmed PD cases, a recent study46 found a significant association between rs393152 and idiopathic PD indicating that our current findings are unlikely due to contamination with unrecognized cases of progressive supranuclear palsy or corticobasal degeneration.

From a translational perspective, this work illustrates that data from large GWAS and a pleiotropic framework can provide important insights into the relationships between various diseases. Complementary to recently developed polygenic pleiotropic methods,19–22 the analytic framework used in this manuscript is useful for detecting non-polygenic pleiotropy and can be integrated with other biomarkers to test biologically driven hypotheses. The combination of genetic, molecular and neuroimaging measures may be additionally helpful for detecting and quantifying the biochemical effects of therapeutic interventions.

CONFLICT OF INTEREST

Disclosures Dr. Anders M. Dale is a founder of and holds equity in CorTechs Labs, Inc, and serves on its Scientific Advisory Board. He is also a member of the Scientific Advisory Board of Human Longevity, Inc (HLI), and receives funding through research agreements with General Electric Healthcare (GEHC) and Medtronic, Inc. The terms of these arrangements have been reviewed and approved by the University of California, San Diego in accordance with its conflict of interest policies. Dr. Linda K. McEvoy has stock options in CorTechs Labs, Inc. Dr. James B. Brewer holds stock options in CorTechs Labs, Inc and serves on the advisory board and receives financial support from the Eli Lilly Biomarker Unit (Amyvid). Dr. Brewer also receives research support from General Electric and Janssen Alzheimer Immunotherapy.

ACKNOWLEDGMENTS

We would like to thank Drs. Irene Litvan, Subhojit Roy and Marilyn Albert for helpful comments on an earlier version of this manuscript. This research was supported by grants from the National Institutes of Health (R01AG031224, K01AG029218, K20NS067427, T32 EB005970, U01AG032984, U24-AG041689, and R01 MH100351), the Research Council of Norway (#213837, #225989, #223273, #237250/EU/JPN0), the South East Norway Health Authority (2013-123), the Norwegian Health Association and the KG Jebsen Foundation. AJS was supported by NIH grants RC2DA029475 and R01HD061414 and the Robert J. Glushko and Pamela Samuelson Graduate Fellowship. Please see Supplementary Acknowledgements for ADGC and ADNI funding sources.

REFERENCES

1. Nussbaum RL, Ellis CE. Alzheimer’s disease and Parkinson’s disease. N Engl J Med 2003; 348: 1356–1364.
2. Uchikado H, DelleDonne A, Ahmed Z, Dickson DW. Lewy bodies in progressive supranuclear palsy present an independent disease process. J Neuropathol Exp Neurol 2006; 65: 387–394.
3. Mann DM, Jones D. Deposition of amyloid (A4) protein within the brains of persons with dementing disorders other than Alzheimer’s disease and Down’s syndrome. Neurosci Lett 1990; 109: 68–75.
4. Satake W, Nakabayashi Y, Mizuta I, Hirota Y, Ito C, Kubo M et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet 2009; 41: 1303–1307.
5. Simón-Sánchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, Berg D et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 2009; 41: 1308–1312.
6. Shulman JM, De Jager PL. Evidence for a common pathway linking neurodegenerative diseases. Nat Genet 2009; 41: 1261–1262.
7. Gerrish A, Russo G, Richards A, Moskvina V, Ivanov D, Harold D et al. The role of variation at APOE, PSEN1, PSEN2, and MAPT in late onset Alzheimer’s disease. J Alzheimers Dis 2012; 28: 377–387.
8. Allen M, Kachadoorian M, Quickall Z, Zou F, Chai HS, Younkin C et al. Association of MAPT haplotypes with Alzheimer’s disease risk and MAPT brain gene expression levels. Alzheimers Res Ther 2014; 6: 39.
9. Mukherjee Q, Kauwe JS, Mayo K, Morris JC, Goate AM. Haplotype-based association analysis of the MAPT locus in late onset Alzheimer’s disease. BMC Genet 2007; 8: 3.
10. International Parkinson Disease Genomics Consortium, Nalls MA, Plagnol V, Hernandez DG, Sharma M, Sheerin UM, Saad M et al. Imputation of summary statistics from genome-wide association studies. Lancet 2011; 377: 641–649.
11. Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J et al. Common variants at M5A4A/M5A4G, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 2011; 43: 436–441.
12. Harold D, Abraham R, Hollingsworth P, Sims R, Gerrish A, Hamshere ML et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 2009; 41: 1088–1093.
to determine if these 2 diseases share a common genetic risk. JAMA Neurol 2013; 70: 1268–1276.
31 Abraham R, Sims R, Carroll L, Hollingworth P, O’Donovan MC, Williams J, Owen MJ. An association study of common variation at the MAPT locus with late-onset Alzheimer’s disease. Am J Med Genet B Neuropsychiatr Genet 2009; 150B: 1152–1155.
32 Zou F, Chai HS, Younkin CS, Allen M, Crook J, Pankratz VS et al. Brain expression genome-wide association study (eGWAS) identifies human disease-associated variants. PLoS Genet 2012; 8: e1002707.
33 Trabzuni D, Wray S, Vandrovcova J, Ramasamy A, Walker R, Smith C et al. MAPT expression and splicing is differentially regulated by brain region: relation to genotype and implication for tauopathies. Hum Mol Genet 2012; 21: 4094–4103.
34 Canu E, Boccardi M, Ghidoni R, Benussi L, Testa C, Pievani M et al. H1 haplotype of the MAPT gene is associated with lower regional gray matter volume in healthy carriers. Eur J Hum Genet 2009; 17: 287–294.
35 Gori J, Cervantes S, Arrondo G, Lamet I, Pastor P, Pastor MA. Selective brain gray matter atrophy associated with APOE ε4 and MAPT H1 in subjects with mild cognitive impairment. J Alzheimer’s Dis 2013; 33: 1009–1019.
36 Coppola G, Chinn Nathambi S, Lee JJ, Dombroski BA, Baker MC, Soto-Ontolaza Al et al. Evidence for a role of the rare p.A152T variant in MAPT in increasing the risk for FTD-spectrum and Alzheimer’s diseases. Hum Mol Genet 2012; 21: 3500–3512.
37 Huang Y, Mucke L. Alzheimer mechanisms and therapeutic strategies. Cell 2012; 148: 1204–1222.
38 Fagan AM, Roe CM, Xiong C, Mintun MA, Morris JC, Holtzman DM. Cerebrospinal fluid tau/beta-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults. Arch Neurol 2007; 64: 343–349.
39 Li G, Sokal I, Quinn JF, Leverenz JB, Brodey M, Schellenberg GD et al. CSF tau/Abeta42 ratio for increased risk of mild cognitive impairment: a follow-up study. Neurology 2007; 69: 631–639.
40 Desikan RS, McEvoy LK, Thompson WK, Holland D, Brewer JB, Aisen PS et al. Amyloid-β-associated clinical decline occurs only in the presence of elevated P-tau. Arch Neurol 2012; 69: 709–713.
41 Desikan RS, McEvoy LK, Thompson WK, Holland D, Roddye JC, Blennow K et al. Amyloid-β-associated volume loss occurs only in the presence of p-tau. Ann Neurol 2011; 70: 657–661.
42 Desikan RS, McEvoy LK, Holland D, Thompson WK, Brewer JB, Aisen PS et al. Apolipoprotein E (varepsilon)4 does not modulate amyloid-β-associated neurodegeneration in preclinical Alzheimer disease. Am J Neuroradiol 2013; 34: 505–510.
43 Sutherland GT, Siebert GA, Kril JJ, Mellick GD. Knowing me, knowing you: can a knowledge of risk factors for Alzheimer’s disease prove useful in understanding the pathogenesis of Parkinson’s disease? J Alzheimer’s Dis 2011; 25: 395–415.
44 Myers AJ, Kaley M, Marlowe L, Pittman AM, Lees AJ, Fung HC et al. The H1c haplotype at the MAPT locus is associated with Alzheimer’s disease. Hum Mol Genet 2005; 14: 2399–2404.
45 Charlesworth G, Gandhi S, Bras JM, Barker RA, Burn DJ, Chinnery PF et al. Tau acts as an independent genetic risk factor in pathologically proven PD. Neurobiol Aging 2012; 33: e7–11.
46 Wijesingam E, Pankratz ND, Choi Y, Rothstein JH, Faber KM, Cheng R et al. Genome-wide association of familial late-onset Alzheimer’s disease replicates BIN1 and CLU and nominates CUGBP2 in interaction with APOE. PLoS Genet 2011; 7: e1001308.

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)