ANTIBIOTIC SUSCEPTIBILITY PROFILE OF KLEBSIELLA PNEUMONIAE STRAINS ISOLATED FROM DRINKING AND SURFACE WATER

Dejan Dobrijević1, Anika Trudić1,2, Vlada Borčić1, Maja Bekut1

1 Faculty of Medicine, University of Novi Sad, Novi Sad
2 Institut for Pulmonary Diseases of Vojvodina, Center for Microbiology, Sremska Kamenica

Presence of Klebsiella pneumoniae (K. pneumoniae) in drinking and surface water indicates fecal contamination of human or animal origin. K. pneumoniae has the ability to acquire and transfer resistance genes. Isolates found in the environment may represent a reservoir of these genes, which can be transmitted among different bacterial species. The aim of the study was identification and testing susceptibility of K. pneumoniae to antibiotics after isolation from drinking and surface water. Prospective study (conducted from October the 1st 2015 to December the 31st 2015) included 1276 samples of drinking and surface water. The samples were processed by membrane-filter technique. Standard biochemical tests were used for identification of K. pneumoniae. Antimicrobial susceptibility was determined by disk-diffusion method. K. pneumoniae was found in 2.98% (38/1276) of samples, from both surface 42.11% (16/38) and drinking water 57.89% (22/38). Tested strains were resistant to ampicillin, but resistance to other antibiotics was not confirmed. K. pneumoniae could be found in drinking water samples, indicating potential fecal contamination.
стенција на друге антибиотике није забележена. *K. pneumoniae* се може наћи у пијаћој води упркос пречишћавању и хлоринацији. У нашем испитивању, изоловани сојеви су били осетљиви на уобичајено коришћене антибиотике, без стечених детерминанти резистенције.

Кључне речи: *Klebsiella pneumoniae*, осетљивост на антибиотике, пијаћа вода, површинска вода.

УВОД

Микробиолошки исправна вода за пиће је есенцијална за здравље људи и њену доступност је главна брига сваке заједнице. Кон-тaminaција различитим патогеним указује на неадекватну обраду, због чега вода за пиће подложе строгој микробиолошкој контроли и хигијенским исправностима.

Површинске воде, као што су реке, често садрже велики број патогених микроорганизама, чије је присуство, у највећој мери, потекло деловања људи. Представљају природно место за отпадне продукте различитих индустрија, болничких установа и фармацевтских компанија, површинске воде чине повољну средину за пролиферацију фекалних колиформних бактерија.

На лаз колиформних бактерија у води (Escherichia coli, Klebsiella spp., Enterobacter spp., Citrobacter spp., Serrattia spp.) указује да постоји фекална контаминација људског или животињског порекла. Иако ови микроорганизми представляју део физиолошке флоре доних партија интестиналног тракта и премирано нису патогени, ипак могу да изазову различита обољења.

Klebsiella pneumoniae (*K. pneumoniae*) је фекална, колиформна бактерија из фамилије Enterobacteriaceae, која се описује као једна од најчешћих узрокчика болничких и ваљболничких инфекција, јер се лако преноси контактном и путем заражене хране и воде. Она бактерија има велику способност стичања и преноса гена резистенције. Изолати који се нађу у животној средини, представљају резервоар тих гена, који се даље могу преносити и на друге бактеријске врсте. Тиме се резистентни сојеви могу јавити, не само у болничким срединама, у којима су најчешћи узрок селективног притиска насталог нерационалном употребом антибјотику, већ и у оштрој популацији. Лечење инфекција узрокованих резистентним сојевима је све већи јавно-здравствен проблем како би се предузео избор релевантних и ефикасних антибактеријалних агента, без ипак коришћења чињеници неуспешности химиотерапије.
Стењивост сјева Klebsiella pneumoniae изолованих из воде за пиће и површинских вода на антибиотике

МАТЕРИЈАЛ И МЕТОДЕ

Узорковање воде

Спроведена је проспективна студија која је обухватала 1276 узорака сакупљених у периоду од три месеца (од 1.10.2015. до 31.12.2015. године). Узорци површинских вода су прикупљени из неколико река, са више различитих места која се уобичајено користе као пунктови за санитарна испитивања. Из поједињених река је узет већи број узорака са различитих места речног корита, при чему је из већих река узет већи број узорака. Узорци пијаће воде су узети из неколико извора (централне и локалне водоводне мреже и јавни водни објекти - бунари, каптиране чесме и отворена изворишта) како би се покрили сви могући начини водоснабдевања. Даље су узорци пијаће воде класификовани према начину обраде воде пре употребе. Сви узорци описани у раду су изабрани методом случајног одабира од већег броја узорака коришћених за рутинске анализе.

Узорци су сакупљани у стерилин, затворене боце користећи стандардну технику у складу са ISO 5667-1, ISO 5667-2 и ISO 5667-3. Све боце су транспортирани у фрижидеру на температури од 4°C у року од 2 до 4 сата од узорковања. Испитивање је обављено на одељењу за санитарну бактериологију Центра за хигијену Института за јавно здравље Војводине у Новом Саду.

Изолација бактерија

Као метода за доказивање укупних и фекалних колиформних бактерија коришћена је мембран-фильтр техника. Апарат за филтрацију (Sartorius Membranfilter, Немачка) је ка-

CITIES TO EXPAND RAPIDLY INSIDE HOSPITALS, BUT ALSO IN NATURAL SURROUNDINGS SUCH AS AN AQUEOUS ENVIRONMENT, AND ITS POTENTIAL RESISTANCE TO NATURAL AND SYNTHETIC ANTIMICROBIAL DRUGS, CLASSIFIES K. PNEUMONIAE AS HIGHLY DANGEROUS MICROORGANISM, PARTICULARLY WHEN IT COMES TO VULNERABLE GROUPS SUCH AS IMMUNOCOMPROMISED PATIENTS. THE AIM OF THIS STUDY WAS TO INVESTIGATE PRESENCE OF K. PNEUMONIAE IN SAMPLES OF SURFACE AND DRINKING WATER AS WELL AS TO TEST SENSITIVITY OF ISOLATES TO ANTIMICROBIAL DRUGS.

MATERIAL AND METHODS

Sampling of water

A prospective study that included 1276 samples collected in a period of three months (from 01 October 2015 until 31 December 2015) was conducted. Samples of surface waters were collected from several rivers and from several different places established as sampling points for sanitary testings. In cases of some rivers several samples were taken from different parts of the same riverbed, with larger number of samples in cases of bigger rivers. Samples of drinking waters were taken from several sources (central and local water supplying network and public water supplying objects - wells, capped faucet and open springs) in order to cover all possible water supplying sources. Further on, drinking water samples were classified according to the treatment method before its use. All of the processed samples in this paper were chosen randomly from a larger group of samples used for routine analyses.

The samples were collected in sterile sealed bottles using standard technique in accordance with ISO 5667-1, ISO 5667-2 and ISO 5667-3. All bottles were transported in a refrigerator at 4°C within 2 to 4 hours of sampling. The testing was conducted in the Department for sanitary bacteriology of the Center for Hygiene in Institute of Public Health of Vojvodina, Novi Sad.

Isolation of the bacteria

Membrane-filter technique was used as a method for detection of total and fecal coliform bacteria. Apparatus for filtration (Sartorius Membranfilter, Germany) had a capacity of 500 ml (Figure 1). Sterile nitrocellulose membranes of 50 mm in diameter with pore diameters of 0.45 µm (Millipore, USA) were used. Before the start of
Дејан Добријевић, Аника Трудић, Владан Борчић, Мaja Бекут

Изолација <i>Klebsiella pneumoniae</i>

За укупне колиформне бактерије се користи ендо-агар који се инкубира на температури од 37°С у току 24 часа, а за фекалне колиформне бактерије МекКонки агар који се инкубира на 44°С у току 24 часа. МекКонки агар и ендо-агар су подлоге на којима <i>Klebsiella pneumoniae</i> расте у виду појединачних, крупних, лактоза-позитивних колонија, величине до 3 mm. Колоније су конвексне у М форми.

Биохемијска идентификација <i>Klebsiella pneumoniae</i>

Биохемијски тестови коришћени за идентификацију <i>K. pneumoniae</i> су подразумевали: тест ферментације децстрозе и лактозе, способност коришћења цитрата, тест разлагања урее, реакцију метил-црвено, тест стварања водоник-сулфида, тест покретљивости и тест стварања индола из триптофана.

Тестирање антибиотске осетљивости

За сваки идентификовани сорта израђен је антибиограм. Коришћена је бактеријска су-

the water filtration all parts of the apparatus were sterilized.

Volume of the water samples was 100 ml. In order to perform faster and more efficient filtration vacuum pump was used. Upon completion of filtration the membrane was aseptically removed and placed in the Petri dish.

Изолација <i>Klebsiella pneumoniae</i>

For examination of total coliform bacteria, endo agar was incubated at 37° C for 24 hours, whereas for the fecal coliform bacteria MacConkey agar was incubated at 44° C for 24 hours. MacConkey agar and endo agar are substrates on which <i>Klebsiella pneumoniae</i> grows in single large lactose-positive colonies of up to 3 mm in diameter. The colonies are convex in M shape.

Biochemical identification of <i>Klebsiella pneumoniae</i>

Biochemical tests used to identify <i>K. pneumoniae</i> included: fermentation test of dextrose and lactose, ability to utilize citrates, test of urea decomposition, the reaction of methyl red, test of hydrogen sulphide production, motility test and test of indole production from tryptophan.

Antibiotic susceptibility testing

For each identified strain an antibiogram was made. The bacterial suspension prepared from a pure culture, which was no more than 24 hours
Осетљивост сојева Klebsiella pneumoniae изолованих из воде за пиће и површинских вода на антибиотике

спензија припремана од чисте културе, не старије од 24 часа (Слика 2), густине 0,5 МекФарланд стандарда.

Након инокулације на површину Милер-Хинтон агара, стерилном пинцетом су стављени дискови са антибиотицима (BIO-RAD, Француска) (Табела 1), а затим су плоче инкубиране у току 18-24 часа на 35-37°C. За испитивање антибиотске осетљивости су коришћени стандарди и препоруке Европског комитета за испитивање антимикробне осетљивости (EUCAST).

After inoculation on the surface of Mueller-Hinton agar, discs with antibiotics (Bio-Rad, France) were placed with sterile forceps (see Table 1) and then the plates were incubated for the next 18-24 hours at 35-37°C. For the testing of antibiotics, standards and recommendations of the European Committee for antimicrobial susceptibility testing (EUCAST) were used.

Слика 2. Чиста култура Klebsiella pneumoniae на крвном агару (лево) и на ендо-агару (десно)

Figure 2. Mono-cultures of Klebsiella pneumoniae on blood agar (left) and endo-agar (right)

Табела 1. Приказ антибиотика коришћених за испитивање антимикробне осетљивости

класа антибиотика	назив антибиотика	концентрација антибиотика по диску
пеницилинин	ампицилин	10 µg
пеницилинин + инхибитори бета- лактамаза	амоксицилин + клавуланска киселина	30 µg
	пиправацилин + тазобактам	30 + 6 µg
цефалоспорини	цефуроксим	30 µg
	цефтринаксон	30 µg
	цефепим	30 µg
карбапенеми	имипенем	10 µg
	меропенем	10 µg
	ертапенем	10 µg
	дорипенем	10 µg
аминогликозиди	гентамицин	10 µg
	амикацини	30 µg
флуорисани хинолони	ципрофлоксацини	5 µg
антагонисти фолата	сулфаметоксазол + триметоприм	25 µg
Table 1. Overview of antibiotics used for antimicrobial susceptibility testing

class of antibiotics	used antibiotic	concentration of antibiotic per disc
penicillins	ampicillin	10 µg
penicillins + beta-lactamase inhibitors	amoxicillin + clavulanic acid	30 µg
	piperacillin + tazobactam	30 + 6 µg
cephalosporins	cefuroxime	30 µg
	ceftriaxone	30 µg
	cefepime	30 µg
carbapenems	imipenem	10 µg
	meropenem	10 µg
	ertapenem	10 µg
	doripenem	10 µg
aminoglycosides	gentamicin	10 µg
	amikacin	30 µg
fluoroquinolones	ciprofloxacin	5 µg
	levofloxacin	5 µg
folate antagonists	sulfamethoxazole + trimethoprim	25 µg

RESULTS

Presence of *K. pneumoniae* was confirmed in 2.98% (38/1276) of tested water samples. Out of total number of positive samples, 42.11% (16/38) were surface waters and 57.89% (22/38) were drinking waters.

Presence of *K. pneumoniae* has been confirmed in 16 samples of surface waters (originating from 6 different rivers). In Table 2 the samples positive on presence of *K. pneumoniae* are presented, depending on the river where the sample was taken (Table 2).

K. pneumoniae was also found in the samples of drinking water. Drinking waters were classified depending on whether the water was purified/unpurified and chlorinated/unchlorinated. In the Table 3 samples positive on the presence of *K. pneumoniae* are shown with reference to the mode of water treatment (Table 3).

In all tested *K. pneumoniae* isolates resistance to ampicillin was found. Resistance to other tested antibiotics was not proved. *K. pneumoniae* isolates were sensitive to penicillins with beta-lactamase inhibitors, cephalosporins, carbapenems, aminoglycosides, fluorinated quinolones and folate antagonists (Table 4).
Осетљивост сојева *Klebsiella pneumoniae* изолованих из воде за пиће и површинских вода на антибиотике

место узорковања	број позитивних узорака	број тестираних узорака	процент позитивних узорака
Дунав	7	303	2,31
Бегеј	3	76	3,95
Нера	2	37	5,41
Моравица	2	41	4,88
Тиса	1	183	0,55
Тамиш	1	96	1,04
Σ	16	736	2,18

*Table 2. The samples of surface water in which *K. pneumoniae* was found classified by sampling points*

начин третмана воде	број позитивних узорака	број тестираних узорака	процент позитивних узорака
непречишћена и нехлорисана	16	109	14,68
пречишћена и нехлорисана	3	72	4,17
непречишћена и хлорисана	1	152	0,66
пречишћена и хлорисана	2	207	0,97
Σ	22	540	4,08

*Table 3. The samples of drinking water in which *K. pneumoniae* was found, classified by water treatment method*

класа антибиотика	назив антибиотика	С(%)	Р(%)
пеницилина	ампицилин	0	100
пеницилинин + инхибитори бета-лактамаза	амоксицилин + клавуланска киселина	100	0
		100	0
	пиперацилин + тазобактам	100	0
цефалоспорини		100	0
	цефуросим	100	0
	цефтриаксон	100	0
	цефепим	100	0
карбапенеми		100	0
	имипенем	100	0
	меропенем	100	0
	ертапенем	100	0
Table 4. The presence of sensitive (S) and resistant (R) isolates to different antibiotics

Antibiotic class	Antibiotic	S(%)	R(%)
penicillins	ampicillin	0	100
penicillins + beta-lactamase inhibitors	amoxicillin + clavulanic acid	100	0
	piperacillin + tazobactam	100	0
cephalosporins	cefuroxime	100	0
	ceftriaxone	100	0
	cefepime	100	0
carbapenems	imipenem	100	0
	meropenem	100	0
	ertapenem	100	0
	doripenem	100	0
aminoglycosides	gentamicin	100	0
fluoroquinolones	ciprofloxacin	100	0
	levofloxacin	100	0
folate antagonists	sulfamethoxazole + trimethoprim	100	0

DISCUSSION

Detection of *K. pneumoniae* in the water is an indicator of fecal contamination. If it is isolated from a sample of drinking water, it can indicate poor treatment of water in terms of purification and chlorination. Certain strains show significant resistances to chlorination which is mediated through a number of mechanisms, such as change of bacterial cell lipid membrane which can consequently bring into question the adequacy of chlorination as a method for treatment of drinking water\(^\text{16}\). As it was expected, the highest number of positive drinking water samples belonged to the group of unpurified and unchlorinated waters. However, in our examination, 2 of the drinking water samples, that were positive on *K. pneumoniae*, were previously purified and chlorinated and 1 sample was from unpurified and chlorinated water, which raises doubts about the effectiveness of this method. The newest approach to effective inactivation of persistent pathogens in water is oxidation with titanium dioxide\(^\text{16,19}\).

...
стеније који се могу пренети на клинички значајне бактерије. Гени могу да се преносе, не само унутар исте, већ и на различите бактеријске врсте. Стога клинички значајни сојеви, ако се нађу у таквој средини, могу стећи резистентност на антибиотике са којима накада нису интераговали12,14,20. Посебно пажњу привлачи чињеница да су бројне бета-лактамазе (цефалоспориназе, карбапенемазе), као и други ензими одговорни за резистенцију, који се уобичајено не налазе код K. pneumon-iaе, идентификовани код ове бактеријске врсте много пре у односу на остале припаднике ентеробактерија. Овај процес је двосмеран, у бактеријама као што су Escherichia coli, Pseudomonas spp. и Acinetobacter spp. се често налазе гени резистенције за које је молекуларним методама утврђено да су пореклом из Klebsiella spp.10.

Гени резистенције су убикинитарни и по- тичу из древних времена14. Бактерије које настањују водену средину и датирају милионима година пре антибиотске ере носе у себи гене који су одговорни за настанак резистенције на неке од есецијалних антибиотика за данашњу медицину21,22. Неколико студија је показало да поједине бактерије, које се при људно налазе у води, могу продуктовати антибиотске супстанце као ендогна метаболити који преносе у воденој средини и ступају у контакт са бактеријама присутним у том екосистему. На те метаболите бактерије могу стећи резистенцију која може бити укрштена са неком значајном групом антибиотика коришћених у савременој терапији инфекција12,23. У многим студијама је потврђено присуство резистентних изолата K. pneumoniae, посебно у одводним цевима болница. На основу епидемиолошких студија се сукоби да те клетије потичу из спољања средине, а да одатле носе и резистенцију10,24.

Утицај човека на развој резистенције непобитно је огroman. Још од периода индустријализације па све до данас, у спољашњу средину су испуштене милијарде тона антибиотика, што омогућава бактеријама у таквој средини да развивија механизме борбе против њих14. Хоспитализовани пацијенти су често колонизовани резистентним бактеријским сојевима, који у реке могу доспети преко отпадних болничких вода. Испуштање отпадних продуката из болничких установа, по себи је интересантно и са аспекта фармакокинетике одређених антибиотика, који се излажују из организма непромењени те испуштањем отпадних вода, испуштамо и анти-

For many years aquatic environment remained unrecognized as a potential source of resistance genes that can be transferred to clinically relevant bacteria. Genes can be transmitted not only within the same species, but also between different bacterial species. Therefore, clinically relevant strains, when found in suitable environment, can acquire resistance to antibiotics with whom they have never previously interacted12,14,20. It is especially interesting that numerous beta-lactamases (cephalosporinas, carbapenemas), as well as other enzymes which are responsible for the resistance and which are usually not found in K. pneumoniae, can be identified in these bacterial strains more frequently than in other species of enterobacteria. This is a two-way process: in bacteria such as Escherichia coli, Pseudomonas spp. and Acinetobacter spp. resistance genes originating from Klebsiella spp. can often be found (identified by molecular methods)10.

Resistance genes are ubiquitous and they date from ancient times14. The bacteria that inhabit the aquatic environment and are dating millions of years before the antibiotic era, carry certain genes which are responsible for development of resistance towards some of the antibiotics essential for modern therapy21,22. Several studies showed that some bacteria, which are naturally found in water, can produce antibiotic substances as secondary metabolites which may persist in aquatic environment and come into contact with the bacteria present in that specific ecosystem. Bacteria can acquire resistance to these metabolites and this can be an opportunity for cross-resistance with important groups of antibiotics used in modern medicine12,23. Many studies have confirmed presence of resistant isolates of K. pneumoniae, especially in hospital drainage pipes. Based on epidemiological studies it is believed that these Klebsiella spp. are originating from the external environment, from where they also received these resistance genes10,24.

Human impact on the development of resistance is clearly enormous. Since the period of industrialization and until today, billions of tons of antibiotics were released into the environment, allowing the bacteria to develop mechanisms to struggle against them14. Hospitalized patients are often colonized with resistant bacterial strains, which could enter into rivers through hospital waste water. Therefore the disposal of waste products from hospitals is particularly interesting from the aspect of the pharmacokinetics of certain
биотике11,14. Берглунд и сарадници25 су испитујући реку Стогон у Шведској квинтифициравали ципрофлоксацин, кларитромицин и клиндамицин на горњим границама дозвољеним за третирање отпадне воде, а значајно преко дозвољене границе потврђено је присуство триметоприма у концентрацији од 24 ng/L. У току 2013. године на северу Пакистана у 6 различитих река квинтифицирано је 8 врста антибиотика у концентрацијама и до 49000 ng/L.26

Употреба антибиотика у индустрији меса постала је једна од главних мета за борбу против резистенције због огромних количина утрошенih из године у годину. У Данској је у току 2010. године 71% свих антибиотика коришћено за животињску примену. Конзумацијом оваквог меса непотребно се уносе велике количине антибиотика које, осим што направљавају физиолошки састав интестиналне микрофлоре, путем фекалних отпадних вода досељавају у спољашњу средину14.

У овој студији нису пронађени резистентни сореви у испитиваним узорцима из различитих река (Дунав, Тиса, Бегеј, Нера, Тамиш, Моравица) и извора пијаће воде. Утврђена је једино резистенција на ампицилин. Ова резистенција је интринзичка и посредована хромозомским бета-лактамазама10. По стоје индиције да би резултати били дугачки ако би се испитиво у поновило у неком другом периоду године, јер је састав површинских вода веома варијаблан и зависи од бројних фактора као што су динамика испуштања отпадних вода, количина падавина, поплаве, температура и слино5. Само присуство K. pneumoniae у води овара могућност да ти сорев стекне одређени ген резистенције27,31. Скарийачан и сарадници1 су испитивали бактериолошку исправност реке Кавери у Индији утврдили да је 93,5% соречева мултирезистентно, а испитиване клебијеле су показале резистенцију на чак 26 различитих антибиотика. Клебијеле из реке Дамбовите у Румунији показале су отпорност на 16 антибиотика, а 60% соречева је било мултирезистентно25. У Турској, у реци Сехан, изоловане клебијеле су показале резистенцију на ампицилин, стрептомицин, цефазолин и ко-тримоксазол27. У реци Мхлатхузе у Јужноафричкој Републици нађене су клебијеле које су резистентне на 10 различитих антибиотика29. Компарацију са студијама у нашој земљи није могуће направити услед недостатка података о бактериолошком саставу антибиотика. These antibiotics are excreted from the body in unchanged form and disposal of waste waters also consequently expose the environment to these antibiotics11,14. Berglund and coworkers25 have examined Stângân river in Sweden and quantified ciprofloxacin, clarithromycin and clindamycin on the upper limits allowed for treated waste water and confirmed the presence of trimethoprim in levels significantly above the limit, precisely in a concentration of 24 ng/L. In 2013, in the North of Pakistan in 6 different rivers, 8 antibiotics were quantified in concentrations up to 49000 ng/L.26

Use of antibiotics in the meat industry has become one of the main targets for combat against antibiotic resistance due to the enormous quantity of drugs used on a yearly basis. In Denmark during 2010, 71% of all antibiotics were used for treatment of animals. Consumption of such meat can unnecessarily expose an individual to large amount of antibiotics. Besides the fact that they impair physiological intestinal microflora, they can be transferred to local environment through fecal waste water14.

In our study, resistant strains were not found in the tested samples gained from different rivers (Danube, Tisa, Begej, Nera, Tamis, Moravica) or in the samples of drinking water and only resistance to ampicillin was determined with statistical significance. This resistance is intrinsic and mediated via chromosomal beta-lactamases10. There are indications that the results would be different if the study was repeated at some other time of the year because the composition of the surface waters is very variable and depends on the numerous factors such as the dynamics of disposal, rainfall, flooding, temperature and others5. The mere presence of K. pneumoniae in water creates opportunity for these strains to acquire a certain genes of resistance27,31. Skariyachan and coworkers7 examined bacteriological quality of the river Kaveri in India and found that 93.5% of strains were multiresistant and Klebsiella spp. strains, which were examined in this study, showed resistance to as many as 26 different antibiotics. Strains from Dambovita River in Romania have shown resistance to 16 antibiotics and 60% of them were multiresistant27. In Turkey, in the river Seihan, isolated strains showed resistance to ampicillin, streptomycin, cefazolin and co-trimoxazole28. In river Mhlatheuz in South Africa, the detected strains were resistant to 10 different antibiotics29. Comparison with studies in our
површинских вода у доступној литератури.

Конзумирање хигијенски неисправне воде или контакт са контаминираним површинским водама могу довести до колонизације интензивног тракта патогеним, резистентним бактеријским сајевима код потпуно здравих људи, који никада нису боравили у болници, нити узимали антибиотике14. Инфекције резистентним сајевима постају све већи терапијски проблем, што води до повећања морбидитета, мортализитета, и повећања трошкова лечења30.

Бактеријски геном је велики и хиперваријабилен и то нам отежава да дефинишемо где и када је тачно дошло до стварања и преноса гена резистенције. Важно је разумети значај водене средине у настанку и еволуцији гена резистенције. Потребно је смањити употребу антибиотика у хуманој и ветеринарској медицини. Међутим, само смањење селективног притиска антибиотика неће довести до смањења резистенције уколико се резистентни сајеви буду константно појављивали из различитих извора. Због тога је неопходна стална контрола и микробиолошко испитивање узорац управо из водене средине. Важно је схватити да еволуција резистенције није локални, већ међународни проблем. У томе главну улогу имају путовања и глобална трговина храном14. Свеоншто надзор је кључ борбе са овим проблемом, због чега је Светска здравствена организација 7. априла 2011. године у Женеви донела одлуку о покретању пројекта "No action today - No cure tomorrow". Ова иницијатива има за циљ смањење употребе антибиотика у болничким и ванболничким условима, као и у месној индустрији14,31.

Овим радом указујемо на значај мониторинга резистенције у воденој средини. Тај мониторинг мора бити континуиран и захтева велике напоре бројних грана науке и индустрије, али једини синергистичком деловањем различитих сектора може се доћи до приметних промена на овом пољу.

Наши студија је указала на присуство K. pneumoniae и у водама за пиће и у површинским водама. Овај условно патогени микроорганизам је доказан упркос примене адекватних мера за његову елиминацију. Овим се указује на значај константне микробиолошке контроле, али и поставља питање адекватности примењених санитарних мера. Упркос чињеници да су изолати били очекивано осетљивости и без стечени резистенције, идеални резултати би показали country is not possible due to lack of data of the bacteriological composition of surface waters in the available literature.

Consumption of hygienically inadequate water or contact with contaminated surface waters can lead to colonization of intestinal tract with pathogenetic, resistant bacterial strains in completely healthy individuals who have never been hospitalized or taken antibiotics14. Infections with resistant strains are becoming an increasing therapeutic problem, which can lead to increased morbidity, mortality and costs of treatment30.

Bacterial genome is large and hypervariable, so it is difficult to define exact place and time of the creation and transfer of resistance genes. It is necessary to understand the importance of the aquatic environment in the development and evolution of resistance genes. Moreover it is mandatory to reduce usage of antibiotics in human and veterinary medicine. However, reducing only the selective pressure of antibiotics will not lead to reduction of resistance if the resistant strains are constantly appearing from different sources. That is why constant control and microbiological testing of samples from the water environment must be performed. It is important to understand that resistance evolution is not local, but international problem, in which the main focus is on travelling and global food market14. Overzealous control is the key to overcome this problem. Therefore the World Health Organization on April the 7th, 2011 in Geneva decided to launch the project "No action today - No cure tomorrow". This initiative aims to reduce the use of antibiotics in hospitals, community and in the meat industry14,31.

This paper highlights the importance of monitoring the bacteria resistance in aqueous media. This monitoring should be continuous and it requires great effort by many branches of science and industry. However, it is clear that only synergistic efforts of different sectors can bring notable changes in this field.

Our study pointed to the presence of K. pneumoniae both in drinking and surface waters. This opportunistic pathogen is detected despite the implementation of appropriate measures for its elimination. This indicates the importance of constant microbiological control, but also raises the question of the appropriateness of sanitary measures. Despite the fact that the isolates were of expected sensitivity and without acquired resistance, ideal results would show absolute absence...
of strains of *K. pneumoniae* from drinking and surface waters. The mere presence of this microorganism in the water creates an opportunity of acquiring resistance genes at any moment by different mechanisms and further transfer of the genes to other bacterial species.

ЛИТЕРАТУРА

1. Gunnarsdottir M, Gardarssona S, Bartramb J. Developing a national framework for safe drinking water- Case study from Iceland. Int J Hyg Environ Heal. 2015; 218(2): 196-202.

2. Shahid N, Zia Z, Shahid M, et al. Assessing Drinking Water Quality in Punjab, Pakistan. Pol J Environ Stud. 2015; 24(6): 597-2606.

3. Kostyla C, Bain R, Cronk R, Bartram J. Seasonal variation of fecal contamination in drinking water sources in developing countries: A systematic review. Sci Total Environ. 2015; 514: 333-43.

4. Cabral JP. Water microbiology- bacterial pathogens and water. Int J Environ Res. 2010;7(10): 3657-703.

5. Tran NH, Gin KY, Ngo HH. Fecal pollution source tracking toolbox for identification, evaluation and characterization of fecal contamination in receiving urban surface waters and groundwater. Sci Total Environ. 2015; 538: 38-57.

6. Gazzaz NM, Yusoff MK, Ramli MF, Aris AZ, Juahir H. Characterization of special patterns in river water quality using chemometric pattern recognition techniques. Mar Pollut Bull. 2012; 64(4): 688-98.

7. Skariyachan S, Mahajanakatti AB, Grandhi NJ, et al. Environmental monitoring of bacterial contamination and antibiotic resistance patterns of the fecal coliforms isolated from Cauvery River, a major drinking water source in Karnataka, India. Environ Monit Assess. 2015;187(5):279. doi: 10.1007/s10661-015-4488-4. Epub 2015 Apr 21.

8. Shaw JL, Monis P, Weyricha LS, et al. Using ampiclon sequencing to characterize and monitor bacterial diversity in drinking water distribution systems. Appl Environ Microbiol 2015; 81(18): 1613-73.

9. Brooks G, Caroll K, Butel J, Morse S, Javetz, Melnick, & Adelberg's Medical Microbiology. 24thed. New York: McGraw-Hill; 2007.

10. Tofteland S, Naseer U, Lislavand JH, Sundsfjord A, Samuelsen O. A Long-Term Low-Frequency Hospital Outbreak of KPC-Producing Klebsiella pneumoniae Involving Intergenic Plasmid Diffusion and a Persisting Environmental Reservoir. Plos Med. 2013;8(3):e59015. doi: 10.1371/journal.pone.0059015. Epub 2013 Mar 11.

11. Bergeron S, Boopathy R, Nathaniel R, Corbin A, LaFleur G. Presence of antibiotic resistant bacteria and antibiotic resistance genes in raw source water and treated drinking water. Int Biodeter Biodegr. 2015; 102: 370-4.

12. Caniça M, Manageiro V, Jones-Dias D, et al. Current perspectives on the dynamics of antibiotic resistance in different reservoirs. Res Microbiol. 2015;166(7):594-600.
formulation facilities – a study in Pakistan. PloS One. 2013;8(6):e62712. doi: 10.1371/journal.pone.0062712

27. Marinescu F, Marutescu L, Savin I, Lazar V. Antibiotic resistance markers among Gram-negative isolates from waste water and receiving rivers in South Romania. Rom Biotech Lett. 2015; 20(1): 155-69.

28. Matyar F, Gülnaz O, Güzeldag G, et al. Antibiotic and heavy metal resistance in Gram-negative bacteria isolated from the Seyhan Dam Lake and Seyhan River in Turkey. Ann Microbiol. 2014;64(3): 1033-40.

29. Lin J, Biyela PT, Puckree T. Antibiotic resistance profiles of environmental isolates from Mhlathuze River, KwaZulu-Natal (RSA). Water SA. 2014; 30(1): 23-8.

30. Carlet J, Collignon P, Golgmann D, et al. Society's failure to protect a precious resource: antibiotics. Lancet. 2011; 378 (9788): 369-71.

31. Leung E, Weil DE, Raviglione M, World Health Organization World Health Day Antimicrobial Resistance Technical Working Group. The WHO policy package to combat antimicrobial resistance. Bull World Health Organ. 2011;89(5): 390-2.