Energetics and reactivity of small beryllium deuterides

Ivan Sukuba1,2 • Alexander Kaiser1 • Stefan E. Huber1 • Jan Urban2 • Michael Probst1

Received: 15 November 2016 / Accepted: 4 May 2017 / Published online: 16 June 2017
© The Author(s) 2017. This article is an open access publication

Abstract Enthalpies and free energies of reaction for small neutral and charged beryllium deuterides BeD, BeD2, and BeD3 that have been calculated are reported for a temperature range of 0 K to 1000 K. We discuss probable dissociation channels and possible ways of producing BeD by localizing the relevant transition states and by calculating corresponding rate constants. BeD and BeD+ are found to be the most stable ones among the considered compounds. BeD2 and BeD+2 are more likely to decompose into Be0,+ + D2 than into BeD0,+ + D. The metastable BeD3 and BeD+3 predominantly decompose into BeD0,+ + D2. In light of our results on the reaction energetics, we can interpret the pathways for production of BeD via BeD2 and BeD3 intermediates observed in molecular dynamics simulations.

Keywords Beryllium deuterides · Dissociation · ITER · Reactivity · Quantum-chemical calculations · Molecular dynamics

Introduction

The development of new technologies for controlled fusion caused beryllium compounds, especially hydrides that can be created by D/T bombardment from plasma, to become one focus of materials research. In the ITER reactor, beryllium is planned to be the first-wall material, and hence it will be directly exposed to particles, predominantly deuterons, that escape the confinement as is already observed in the JET tokamak with ITER-like walls [1, 2]. For many years, plasma-wall interactions (PWI) have been extensively studied experimentally as well as theoretically. The main source of experimental data concerning beryllium-deuterium interactions are linear devices like PISCES-B [3, 4] or tokamaks [5–7]. However, the underlying processes like sputtering, transport and deposition are hard to reproduce and quantify experimentally. Modeling and theoretical approaches to obtain data for codes like Wall-DYN [8], ERO [9] or SDTrimSP [10, 11] are therefore developed to get insight into such processes. Theoretical studies of plasma wall interactions involve the description of the interaction of surfaces with the fusion plasma [12], the characterization of elementary processes [13] as well as the validation of experimental results [14, 15]. Experimental results of plasma-surface interactions confirm the complexity of the whole process. Concerning beryllium experiments, there is evidence of the formation of BeD molecules and of a linear drop of the BeD:Be ratio with increasing temperature in the temperature range of 500–700 K while no larger molecules like BeD2 or BeD3 were observed [7]. In contrast, molecular dynamics (MD) simulations employing analytical bond-order potentials (ABOP) [16, 17], as well as multiscale modeling extrapolated from them [18] predict BeD2 and BeD3 as the main eroded species for the same
temperature range [19]. Since at lower temperatures (<500 K) MD simulations were in agreement with experiment, a more complete description of the possible fragmentation processes is needed from both the energetic and kinetic points of view. Dissociation and reactivity of beryllium hydrides and their isotopes were briefly discussed by Safi et al. [19] and Virot et al. [20] on the basis of standard thermodynamic data and possible reaction channels were given for the dissociation of BeD₂ and BeD₃ at various temperatures. The dissociation and ionization rates for primary reactions of BeD due to electron collisions were reported by Björkas et al. [18]. In the present work, we employ quantum chemical methods including comparisons between various levels of theory and we study the reaction kinetics to determine the reactivity of different channels. Highly accurate data have been published before on the beryllium hydrogen systems: BeH as well as BeH₂ have received a significant amount of interest as a test system for quantum chemical methods including non-standard ones [21–29]. The multi-reference averaged coupled-pair functional method (MR AC2P) [21] was used to calculate the accurate ground state potential energy functions, vibration-rotation energy levels for BeH, BeD, and BeT and their ions, which agree excellent-ly with spectroscopic experimental data, i.e., the equilibrium bond length $R_e = 1.341$ Å [22, 23]. Non-Born-Oppenheimer variational calculations employing explicitely correlated Gaussian basis functions were performed in order to determine the ionization energy of BeH and the dissociation energies of BeH and BeH⁺ [24]. Penotti’s [26] non-orthogonal single and multi-configurational calculations with a highly optimized even-tempered STO basis set yielded a value of $R_e = 1.329$ Å for the D_{eh} geometry of the BeH₂ molecule. A value of 2053.0 cm⁻¹ was obtained for the harmonic symmetric-stretch frequency. Very precise results for the BeH system also included non-adiabatic effects and extrapolation of the basis set up to the $spdfgh$ level as well as extrapolation of correlation effects to the full configuration interaction (FCI) limit [28]. An equilibrium distance of $R_e = 1.341$ Å and a ground state frequency of $\omega_e = 2062.1$ cm⁻¹ were reported. Hinze et al. [29] published potential energy surfaces (PESs) for BeH₂ and BeH⁺ obtained with the multi-reference configuration interaction method (MRCI) and documented the insertion reaction of Be into H₂. Koput and Peterson [30] obtained vibrational and rotational energy levels of beryllium dihydride and of its isotopes from an accurate potential energy surface using CCSD (T) and extrapolation to the full basis set limit. The IR emission spectra for BeH and BeH₂ were measured by Bernath and coworkers [31–34]. They obtained $R_e = 1.342$ Å, $\omega_e = 2061.4$ cm⁻¹ for BeH, and $R_e = 1.326$ Å, $\omega_e = 2255.2$ cm⁻¹ for the asymmetric stretch for BeH₂.

Reaction enthalpies for the dissociation channels of the BeD₃ molecule were calculated in ref. [19] and the thermodynamic stability of neutral and anionic BeH₃ was analyzed in ref. [35]. The knowledge of the whole reaction network is necessary for understanding the chemical behavior of the Be/H system. This work aims to describe the fragmentation and reactivity of small beryllium deuterides in the temperature range 0–1000 K and is based on quantum-chemistry calculations and transition state theory. We report a stability analysis, thermodynamic data of neutral and charged BeD₁–₃ molecules, the standard enthalpies and free energies of reaction for their possible dissociation channels, and their corresponding dissociation energies. Calculated transition states and activation energies can be used to estimate reaction rate constants. Furthermore, reaction schemes for the production of BeD from beryllium surfaces exposed to D irradiation as extracted from MD simulations are discussed.

Computational methods

Quantum-chemical calculations

The optimized structures and vibrational frequencies of the beryllium hydrides were obtained by the Gaussian-4 (G4) [36] method and by density functional theory (DFT). We compared different DFT functionals: the often used hybrid functional B3LYP-D [37, 38], the B97D functional and the meta-GGA M06 functional [39]. The first two functionals contain Grimme’s GD3 empirical dispersion parameters [40]. We also employed the double hybrid B2PLYPD [41, 42] functional which includes dispersion and density corrections by second-order Møller–Plesset perturbation theory (MP2) [43]. Furthermore, we optimized the predicted structures by coupled cluster calculations with single and double substitutions and non-iteratively included triple excitations (CCSD(T)) [44] with all electrons correlated. All calculations were performed with Dunning’s correlation consistent core-valence quadruple zeta (aug-cc-pCVQZ) basis set [45], the sole exception being the pre-defined G4 method, and employed the GAUSSIAN 09 software package [46]. Different scaling factors are recommended for some of the methods used throughout this study [47]. However, we report unscaled frequencies here with the intention to introduce as little empiricism as possible.

Thermodynamics

In order to qualitatively examine the reactivity of small beryllium deuterides (hydrides), we first calculated the standard enthalpies and the standard free energies of the
reactants and products of the dissociation channels (Eq. 1). The standard enthalpies (the free energies) of reaction were calculated as a difference of the sum of electronic energy ϵ_0, zero-point energy ϵ_{ZPE} and thermally corrected enthalpies (free energies) of products and reactants [48]:

$$\Delta_r H(T) = \sum_{\text{products}} (\epsilon_0 + \epsilon_{ZPE} + H_{\text{corr}}(T)) - \sum_{\text{reactants}} (\epsilon_0 + \epsilon_{ZPE} + H_{\text{corr}}(T))$$

and similarly for $\Delta_r G(T)$. Only calculated values were used to obtain $\Delta_r H$ and $\Delta_r G$. Subsequently, equilibrium constants, K_{EQ}, were obtained from the standard free energies of reactions:

$$K_{EQ}(T) = e^{\frac{-\Delta_r G(T)}{RT}}$$

The standard enthalpies of formation of molecules at 298.15 K, $\Delta_r H(M)$, were calculated using experimental enthalpies of formation for elements, $\Delta f H_{\text{corr}}^0(X)$ and their corresponding thermal corrections, $H_{\text{corr}}^0 - 298.15$, (see Table 1) and the procedure suggested by McQuarrie [48]:

$$\Delta_r H(M) = \Delta_f H_{0K}(M) + H_{\text{corr}}^0 - 298.15(M) - \sum_{\text{atoms}} x \Delta_f H_{0K}^x(X) - D_0(M)$$

where D_0 is the dissociation energy which is equal to the atomization energy for a number of x atoms of the type X in molecule M. We compared the selected methods by comparing thermodynamic data of the BeH and the BeH$_2$ molecules with experimental data from the NIST-JANAF database [49]. The results are shown in Table 2. All methods predict values of $\Delta_r H$ for BeH rather close to the experimental value of 321 ± 30 kJ mol$^{-1}$ (3.3 ± 0.3 eV) [49], with CCSD(T) differing the most by 19 kJ mol$^{-1}$ (0.2 eV). $\Delta_r H$ for BeH$_2$ is significantly underestimated compared to the experimental value of from the NIST-JANAF thermochemical Tables [49]. Spectroscopic values for BeH and BeH$_2$ are retrieved from ref. [32, 33]. ω_a for BeH$_2$ corresponds to the asymmetric stretching vibration and ω_b to the bending vibration.

Table 1

Method	Δ_H	R_e	ω_a	ω_b	ω_c	ω_d	ω_e
B3LYP-D	307.86	1.340	2062.4	133.7	1324	2263.5	724.8
B97D	328.60	1.367	1936.8	140.90	1337	2201.8	706.0
B2PLYPD	316.65	1.338	2084.9	144.90	1323	2278.4	726.8
M06	313.34	1.341	2089.0	128.77	1326	2264.4	705.2
G4	331.52	1.344	2064.5	158.93	1327	2275.6	746.3
CCSD(T)	340.23	1.342	2062.4	168.31	1327	2257.2	717.1
Exp.	321 ± 30	1.342	2061.4	125.52	1326	2255.2	706.3
The ratio \(Q_r / K_{EO} \) determines the direction of reaction: if \(Q_r > K_{EO} \), the reaction favors the reactants; if \(Q_r < K_{EO} \), the products are preferable. The reaction is in equilibrium for \(Q_r = K_{EO} \). The reaction quotients were not calculated nor otherwise included for studied dissociation channels in this work.

Localizing transition states and calculating rate constant

Approximate transition states geometries were at first guessed instead of using computational methods such as QST2 [51]. These structures were then optimized using the B3LYP-D functional. It was checked by vibrational frequency analysis that a transition state has only one imaginary frequency, with modes corresponding to the reaction path. In addition, IRC calculations were performed to ensure that the obtained transition states connect the local minima on the PES which refer to reactants and products for the considered reactions. Subsequently, obtained structures were optimized by the CCSD(T) method. The rate constants were determined only for dissociation channels with \(\log(K_{EO}) > -5 \) for any point in the temperature range from 0 to 1000 K because those are the reactions most affecting plasma-wall interactions. In case of reactions with \(\log(K_{EO}) < -5 \) nearly only reactants will appear in the equilibrium mixture [48]. We used transition state theory (TST) to estimate the reaction rate constants for temperature \(T \) by employing the Eyring–Polanyi Eq. [52]:

\[
\ln \frac{k_T}{T} = \ln \frac{k_B T}{h} + \frac{\Delta H^\ddagger}{R} + \frac{\Delta S^\ddagger}{R} - \frac{\Delta G^\ddagger}{RT} \tag{6.a}
\]

\[
\ln \frac{k_T}{T} = \Delta H^\ddagger \frac{1}{T} + \ln \frac{k_B}{h} + \frac{\Delta S^\ddagger}{R} \tag{6.b}
\]

where \(k_B \) is the Boltzmann constant, \(R \) the gas constant, \(h \) the Planck constant, \(c \) the concentration, \(n \) the order of reaction, and \(\Delta G^\ddagger \) is the free energy of activation. We set \(c \) to 1 for results in the present work. The linear form of this equation (Eq. 6.b), where \(\Delta H^\ddagger \) and \(\Delta S^\ddagger \) are the enthalpy and entropy of activation, was used to present the calculated rate constants. From the rate constants, we are able to determine the reaction schemes for

Table 3

BeH\textsuperscript{\textdagger}	BeH\textsuperscript{\textdagger\textdagger}	BeH\textsubscript{2}I	BeH\textsubscript{2}II	BeH3	BeH\textsuperscript{3\textdagger\textdagger}	BeH\textsuperscript{3\textdagger\textdagger\textdagger}
\(R_e \)						
B3LYP-D	1.313	1.408	1.411	93.3	1.877	23.6
B97D	1.324	1.424	1.427	99.2	1.921	23.1
B2PLYPD	1.310	1.407	1.403	86.5	1.403	86.5
M06	1.307	1.397	1.404	89.5	1.883	23.5
G4	1.320	1.477	1.416	94.6	1.855	23.8
CCSD(T)	1.311	1.412	1.399	80.1	1.817	24.3
unmixed reactants and products in their standard states at the pressure of 1 atm and thus can predict the feasibility of the studied reactions based on the data from computational electronic structure methods and the rules of chemical kinetics.

Molecular dynamics simulations

We studied the sputtering of BeD by low energy D irradiation from pure Be surfaces by means of molecular dynamics (MD) simulations using the same procedure as in ref. [15]. The D⁺ bombardment was simulated with the DL_POLY 3.9 software [53] which was extended to include ABOP potentials [54]. The details and parameters of the Be-H potentials are given in ref. [17]. The hexagonal closed packed Be surface (0001) with 3718 atoms (30×30×40 Å) was equilibrated by slowly heating the samples to 300 K at a rate of 50 K/ps. Subsequently, 1000 cumulative D impacts with 7, 10, and 20 eV were performed from a distance of 5 Å perpendicular to the center of the surface. A single impact lasted 7 ps and was divided into two parts: the first 3 ps consist of the impact itself followed by 4 ps of relaxation of the cell to remove extra energy from the system. Each step lasted 0.5 fs. The surface was randomly shifted in x- and y-directions after each impact. We compared the sputtering yields with other work (see Fig. 1) and extracted data about single sputtering events to look closer at the mechanisms.

Table 4 Dissociation energy D_0 and enthalpy of formation for the neutral beryllium deuterides. The electron affinity EA of BeH and BeH₃ are also listed. All values are in kJ mol⁻¹

Method	BeD	BeD₂	BeD₃	BeH⁺ → BeH⁻	BeH₃⁺ → BeH₃⁻			
	D_0	ΔH	D_0	ΔH	D_0	ΔH	EA	EA
B3LYP-D	233.6	308.4	625.6	132.8	680.5	295.8	50.9	275.1
B97D	212.7	329.3	618.2	140.3	668.4	307.9	70.9	273.1
B2PLYPD	207.4	334.6	597.0	161.4	633.6	342.6	39.4	267.8
M06	224.9	317.1	614.5	143.9	658.4	317.7	44.6	276.0
G4	228.2	313.8	630.6	127.9	661.4	314.9	63.0	286.2
CCSD(T)	198.1	340.7	591.0	167.4	628.1	348.1	51.8	278.0

Table 5 Dissociation energy D_0 and enthalpy of formation for the cationic beryllium deuterides. All values are in kJ mol⁻¹

Method	BeD⁺	BeD₂⁺	BeD₃⁺	BeD⁺				
	D_0	ΔH						
B3LYP-D	292.7	395.7	395.7	1148.8	482.6	1177.2	831.8	1045.1
B97D	316.8	414.3	414.3	1124.7	483.5	1776.4	853.6	1023.5
B2PLYPD	301.3	361.5	361.5	1140.2	472.8	1189.7	835.8	1041.0
M06	289.6	363.3	363.3	1151.9	465.8	1195.0	822.2	1054.8
G4	306.6	379.5	379.5	1134.9	477.1	1182.4	832.8	1044.3
CCSD(T)	296.8	370.5	370.5	1144.7	471.1	1188.1	828.7	1048.2

Results and discussion

Stability analysis

We obtained optimized geometries of neutral and charged BeH, BeH₂, and BeH₃ molecules from the various functionals, the G4, and CCSD(T) methods. Concerning BeH₂ the optimized structures all have negative electron affinities with an absolute value of 5–32 kJ mol⁻¹ (0.1–0.3 eV), i.e., an energy is required to attach an electron. They are thus thermodynamically unstable and were removed from further analysis. Be, H, and H₂ are also included in this analysis. The structural properties of H₂, BeH, and BeH₂ are given in Table 2, the ones for the remaining molecules are summarized in Table 3. Dissociation energies and enthalpies of formation for neutral and positive ions of beryllium deuterides are given in Tables 4 and 5, respectively.

The bond lengths for BeH range from 1.338 to 1.367 Å, with CCSD(T) and M06 being closest to the experimental value of 1.342 Å [32]. The bond length of the respective cation is shorter by 0.03 ± 0.01 Å on average, whereas the bond length of the respective anion is longer by 0.08 ± 0.03 Å. The Be-H bond lengths of neutral BeH₂ range from 1.323 to 1.337 Å. Again, the CCSD(T) and M06 values agree excellently with the experimental bond length of 1.326 Å [33]. All methods predict two bent structures for BeH⁺, with H-Be-H angles of ∼90° (I) and ∼24° (II), and a multiple saddle point
for the symmetric linear structure (Be-H: ~1.46 Å). The bent structure (II) corresponds to the global minimum. Furthermore, only CCSD(T) predicts another local minimum (III) for the asymmetric linear structure (Be-H: 1.323 Å, 1.716 Å). Their structures are depicted in Fig. 2. This is in contrast with the potential energy surface of BeH$_2^+$ produced at CMRCI/cm3-pVTZ level of theory in ref. [29], where only the linear asymmetric structure is reported beside the van der Waals minimum. However, only BeH$_2^+$ II is below the dissociation limit for Be$^+$ + H$_2$. Furthermore, we optimized the equilibrium geometries of the other local minima for BeH$_2$ and BeH$_2^+$ of the same publication [29] with B3LYP-D and CCSD(T) to compare and validate our approach for transition state search. The the results are in good agreement (see Table 6), except for the fact mentioned above concerning the non-existence of an asymmetric linear structure of BeH$_2^+$ for B3LYP-D. All methods yield similar structures for neutral and ionic BeH$_3$ molecules (see Fig. 3). The angle formed between B3LYP-D. All methods yield similar structures for neutral and ionic BeH$_3$ molecules (see Fig. 3). The angle formed between various BeH$_3$ species are depicted in Fig. 2. Gaydon [48], 208.4 ± 1.0 kJ mol$^{-1}$ (2.16 ± 0.01 eV) by Colin [50], or the estimation of 230 kJ mol$^{-1}$ (2.4 eV) in ref. [55]. The dissociation energy D_0 for BeH is in the range from ~198 to 231 kJ mol$^{-1}$ (2.0–2.4 eV) which agrees with experimental values of 221 ± 30 kJ mol$^{-1}$ (2.3 ± 0.3 eV) reported by Gaydon [48], 208.4 ± 1.0 kJ mol$^{-1}$ (2.16 ± 0.01 eV) by Colin [50], or the estimation of 230 kJ mol$^{-1}$ (2.4 eV) in ref. [55]. BeD$_2$ and BeD$_3$ yield considerably higher atomization energies of 591–631 kJ mol$^{-1}$ (6.1–6.5 eV) and 628–680 kJ mol$^{-1}$ (6.4–7.1 eV). A similar trend is seen for positive ions, with 290–317 kJ mol$^{-1}$ (3.0–3.3 eV), 362–414 kJ mol$^{-1}$ (3.6–4.3 eV), 822–855 kJ mol$^{-1}$ (8.5–8.9 eV) for BeD$^+$, BeD$_2^+$ I, and BeD$_3^+$, respectively. We did not calculate D_0 and enthalpies of formation of negative ions. The electron affinities (EA) of BeH and BeH$_3$ were calculated (see Table 4). BeH (BeH$_2$) gains about 50 (275) kJ mol$^{-1}$ by electron attachment to form BeH$^-$ (BeH$_3^-$). The latter value agrees excellently with the calculations in ref. [35]. There is data for photodetachment of BeH$^-$ forming BeH$_2$ via the reaction BeH$^- + H^+ \rightarrow$ BeH$_2$ [56]. The authors measured the enthalpy of reaction to be 1630 ± 13 kJ mol$^{-1}$ which agrees with our calculated value of 1640–1665 kJ mol$^{-1}$. The standard enthalpies of formation are similar for BeD and BeD$_3$ yielding about 300–350 kJ mol$^{-1}$ (3.1–3.6 eV). They are higher than the one for BeD$_2$, for which ΔH° is about 130–170 kJ mol$^{-1}$ (1.4–1.8 eV). The enthalpies of formation of beryllium deuterides are higher than for beryllium hydrides by ~3 to 10 kJ mol$^{-1}$ (and almost the same numbers apply for cations). Overall, B3LYP-D results in higher dissociation energies than CCSD(T). This is not the case for the enthalpies of formation. The B2PLYPD functional yields values that are very close to those obtained with CCSD(T).

Table 6 Bond lengths and angles of corresponding optimized structures obtained by B3LYP-D and CCSD(T) methods compared with data from ref. [29]

	BeH$_2^+$linear	BeH$_2(\text{linear})$	BeH$_2^+(\text{linear})$	BeH$_3^+(\text{linear})$	BeH$_3^+(\text{linear})$		
	Be-H	Be-H	H-Be-H	R$_1$	R$_2$	R$_1$	H-Be-H
B3LYP-D	1.324	1.433	42.3	--	--	1.877	23.6
CCSD(T)	1.327	1.438	39.7	1.323	1.716	1.817	24.3
CASSCF	1.330	1.445	40.0	1.320	1.731	1.798	24.6
CMRCI	1.330	1.442	39.8	1.327	1.723	1.794	24.7

Thermodynamics

Standard enthalpies ΔH° and the free energies ΔG° of reaction were calculated for all possible dissociation channels of the stable neutral and ionic beryllium deuterides in the temperature range from 0 to 1000 K. We selected reaction channels (Eqs. 7 and 8) with log(K_{EQ})>5 for a further analysis of reaction pathways. The temperature dependences of the free energies of reaction are shown in Fig. 4 for the dissociation of neutral and cationic beryllium deuterides as calculated with B3LYP-D and CCSD(T). We calculated the enthalpies and the free energies of reactions for BeD and BeD$^+$ based on very accurate data extracted from MR ACPF calculations by Koput [22] which serve as benchmark values for our results. ΔH° at 298.15 K and ΔG° at 298.15 K and 1000 K obtained by different methods are provided for neutral molecules and cations in Tables 7 and 8, respectively. The MR ACPF enthalpies and free energies of the reactions 7.a and 8.a are very close to G4 and CCSD(T) values yielding differences up to 5 kJ mol$^{-1}$ for G4 and CCSD(T) indicating that BeD and BeD$^+$ do not yield strong multi-referential character of the wave functions.
in equilibrium. However, this will be discussed in more detail in the next section which is dedicated to transition states.

\begin{align*}
BeD(g) &\rightarrow Be(g) + D(g) \quad (7.a) \\
BeD_2(g) &\rightarrow Be(g) + D_2(g) \quad (7.b) \\
BeD_2(g) &\rightarrow BeD(g) + D(g) \quad (7.c) \\
BeD_3(g) &\rightarrow BeD_2(g) + D_2(g) \quad (7.d) \\
BeD_3(g) &\rightarrow BeD_2(g) + D(g) \quad (7.e) \\
BeD^+(g) &\rightarrow Be^+(g) + D(g) \quad (8.a) \\
BeD_2^+(g) &\rightarrow Be^+(g) + D_2(g) \quad (8.b) \\
BeD_3^+(g) &\rightarrow BeD^+(g) + D(g) \quad (8.c) \\
BeD_3^+(g) &\rightarrow BeD_2^+(g) + D_2(g) \quad (8.d)
\end{align*}

Almost all studied dissociation channels have equilibrium constants very close to 0 ($K_{EQ} < 1$); the reactants dominate in the mixtures and an increase of the concentration of products leads to the production of more reactants. Reaction 7.c has a rather high ΔH° value of 395 kJ mol$^{-1}$ for G4 and 411 kJ mol$^{-1}$ for B97D (4.1–4.3 eV) at 298.15 K. BeD$_2$ more likely dissociates into Be and D$_2$ with ΔH° (298.15 K) = 188.0 kJ mol$^{-1}$ for B3LYP-D. The change of standard free energy predicts log(K_{EQ}) > −5 for more than ~800 K. For BeD$_3$, both channels (7.d and 7.e) have similar characteristics with $\Delta G^\circ (T)$ close to 0 kJ mol$^{-1}$ already at 0 K. $\Delta G^\circ (T)$ for dissociation of BeD lies in the range of 203–237 kJ mol$^{-1}$ (2.1–2.5 eV) at 298.15 K. BeD$^+$ has the highest $\Delta G^\circ (T)$ of the reported cations. 8.b is the preferable channel of the two most likely ways of the dissociation of BeD$_2$ as the others all have a log(K_{EQ}) < −5. This reaction has log(K_{EQ}) > −5 from ~500 K on.

Reactivity of beryllium deuterides

The structural properties and the free energy of activation ΔG^\ddagger of transition states obtained using the CCSD(T) method for the forward and reverse reactions along each channel are presented in Tables 9 and 10, respectively. Their structures are depicted in Fig. 5. Reaction rate constants can be calculated
using Eq. 6. The rate constants in the linear form of the Eyring-Polanyi equation for channels with identified transition states of Eqs. 7 are plotted in Fig. 6.

BeD and BeD⁺

We did not find any transition state concerning the dissociation of BeH or BeH⁺ in line with earlier studies [22–24].

BeD₂ and BeD₂⁺

A more complex behavior is found for the reactivity of neutral and cationic BeD₂. Beryllium dihydride can dissociate into Be + D₂ through the transition state TS₁, which corresponds to the one found in ref. [29]. No transition state was found for the other channel (7.c) in the ground state, but we localized one (TS₂) in the triplet state. CCSD(T) yields the same transition state structures as B3LYP-D. Both transition states are very close in energy and in the region where the ground state potential energy surface intersects the one of the triplet state. Therefore, their activation free energies are similar and rather high, ~380 kJ mol⁻¹ (3.9 eV), with regard to the BeD₂ ground state. TS₂ is about 55 kJ mol⁻¹ (0.6 eV) higher than the triplet state local minima and about 30 kJ mol⁻¹ (0.3 eV) below the plateau of the excited Be + D₂ complex. We assume that the channel resulting in Be + D₂ is preferable in general, however, in a fusion plasma environment the required excitation energy is easily reachable and dissociation into BeD + D is therefore

Table 7 Changes of the enthalpy of reaction at 298.15 K and changes of the free energy of reaction at 298.15 and 1000 K for the dissociation of neutral beryllium deuterides obtained from various methods. MR ACPF values are calculated from data in ref. [22]. All values are in kJ mol⁻¹. The threshold temperature Tₖ for crossing the log(Kₑₑ) > −5 limit is also given.

Method	BeD(g)→Be(g)+D(g)	BeD₂(g)→Be(g)+D₂(g)	BeD₂⁺(g)→Be(g)+D⁺(g)	BeD₂⁺(g)→BeD⁺(g)+D(g)
ΔH	ΔG	ΔH	ΔG	
T[K]	298.15	1000	298.15	1000
B3LYP-D	237.3	155.2	98.9	89.8
B97D	193.6	145.6	76.3	63.6
B2PLYPD	228.6	146.4	85.2	72.2
M06	231.9	149.7	104.6	93.8
G4	211.0	126.1	62.5	50.9
CCSD(T)	204.5	122.8	59.9	48.7
MR ACPF	206.6	131.9	--	--
Tₖ[K]	~800	~1000	already at 0	~200

Table 8 Changes of the standard enthalpy of reaction at 298.15 K and changes of the standard free energy of reaction at 298.15 and 1000 K for dissociation of cationic beryllium deuterides obtained or crossing log(Kₑₑ) > −5 limit is also presented from various methods. MR ACPF values are calculated from data in ref. [23]. All values are in kJ mol⁻¹. The values for the bent structure of BeD₂⁺ are used here. The threshold temperature Tₖ for crossing the log(Kₑₑ) > −5 limit is also given.

Method	BeD⁺(g)→Be⁺(g)+D⁺(g)	BeD⁺(g)→Be⁺(g)+D⁺(g)	BeD⁺(g)→Be⁺(g)+D⁺(g)	BeD⁺(g)→Be⁺(g)+D⁺(g)
ΔH	ΔG	ΔH	ΔG	
T[K]	298.15	1000	298.15	1000
B3LYP-D	296.4	202.2	25.5	19.4
B97D	320.5	226.5	35.0	13.9
B2PLYPD	293.0	198.7	37.8	3.2
M06	310.3	216.1	39.8	5.6
G4	304.8	210.8	35.9	10.6
CCSD(T)	300.5	206.3	41.0	12.6
MR ACPF	301.9	215.5	--	--
Tₖ[K]	~300	~400	~500	~500
also possible. The difference of ΔG‡ for the two transition states, ~ 20 kJ mol$^{-1}$ (0.2 eV) in the range 0–1000 K, favors decomposition into BeD + D. The reverse reaction 7.b has a high barrier as well, ~ 260 kJ mol$^{-1}$ (2.7 eV) at 298.15 K and ~ 320 kJ mol$^{-1}$ (3.3 eV) at 1000 K. We could not identify any transition state for channels 8.b and 8.c with CCSD(T). Still, BeD$_2^+$ is predicted to dissociate into Be$^+$ + D$_2$ due to the negative free reaction energy already at 300 K.

BeD$_3$ and BeD$_3^+$

The BeD$_3$ molecule is metastable. We found a two-step reaction mechanism for reaction 7.d. However, the intermediate (IM) and the transition state TS$_4$ (see Fig. 4) are very close in energy and similar in structure and are also lower in energy than the local minima at higher temperatures. Thus, they make the decomposition into BeD + D$_2$ more likely than the competing reaction 7.c. The free activation energies, ΔG‡, for these barriers are ~ 14 kJ mol$^{-1}$ (0.1 eV) at 298.15 K and ~ 0.5 kJ mol$^{-1}$ (0.01 eV) at 298.15 for TS$_3$ and TS$_4$, respectively. B3LYP-D predicts the same characteristics of the transition states as CCSD(T). We did not identify any transition state for the reaction in Eq. 8.d. In fact, BeD$_3^+$ seems to dissociate most likely into BeD$^+$ + D$_2$ as this channel is energetically preferable (ΔG‡ ~ 0 at 1000 K).

The transition states found using B3LYP-D and CCSD(T) were also investigated for their multi-referential character using the D$_1$ and T$_1$ diagnostics [57, 58]. The results are in excellent agreement with those of higher-order correlation methods if D$_1 < 0.03$. If D$_1 < 0.05$, the method still performs well. However, a multi-reference character of the ground-state introduced by strong orbital relaxation effects is indicated by larger values of D$_1$. Similarly, if T$_1 > 0.02$, the system should be investigated by a multi-reference electron correlation method. The conclusion of the D$_1$ and T$_1$ diagnostics for BeH molecules is as follows: all equilibrium structures have D$_1$ less than 0.03 and T$_1 < 0.02$, except asymmetric linear BeD$_2^+$ (T$_1 = 0.02$, D$_1 = 0.08$), thus CCSD(T) should describe their ground states reliably. Far from equilibrium and for some transition states these diagnostics yield higher values, indicating that single-reference methods could become inadequate for describing these states. This concerns only transition states for neutral and positive BeH$_2$ (T$_1 \sim 0.35$, D$_1 \sim 0.08$). Transition states related to BeH$_3$ molecules yield D$_1 < 0.03$, with minimum and maximum values of 0.015 and 0.029, respectively, and T$_1 \sim 0.01$. Further investigations are required to scrutinize how the various PESs and energetics are affected by more accurate correlation and multi-referential character, which we plan to do in a following work.

Production of BeD

Analysis of our MD simulations yields that sputtering of BeD can often be described by the following reactions (9.a and 9.b)

Table 9 Bond lengths and angles of the transition states obtained by CCSD(T) for studied dissociation channels in Eqs. 7 and 8. The lengths are given in Å, angles in degrees. These structures are presented in Fig. 5.

	BeH$_2$	BeH$_3$			
	TS$_1$	TS$_2$	TS$_3$	TS$_4$	IM
Be-H1	1.379	1.344	1.323	1.340	1.339
Be-H2	1.646	2.827	1.403	1.852	1.714
Be-H3	---	---	1.498	1.917	1.776
H1-Be-H2	43.5	67.5	161.2	109.5	113.5
H1-Be-H3	---	---	123.4	86.3	87.9

Table 10 Activation energies ΔG^\ddagger corresponding to the transition states TS for the dissociation channels of the beryllium deuterides at 298.15 K, 600 K, and 1000 K for the forward and reverse reactions obtained by the CCSD(T) method.

Transition state	Forward ΔG^\ddagger [kJ mol$^{-1}$]	Reverse ΔG^\ddagger [kJ mol$^{-1}$]
	T [K] 298.15 600 1000	T [K] 298.15 600 1000
BeD$_2$(g) → Be(g) + D$_2$(g)	TS$_1$ 392.6 385.8 377.8	TS$_1$ 263.1 286.0 317.9
BeD$_2$(g) → BeD(g) + D(g)	TS$_2$ 377.4 362.9 344.6	TS$_2$ 18.5 41.4 73.8
BeD$_3$(g) → BeD(g) + D$_2$(g)	TS$_3$ 13.4 16.3 22.4	TS$_3$ 48.9 82.0 127.2
BeD$_3$(g) → BeD$_2$(g) + D(g)	TS$_4$ -0.5 -1.3 -0.6	TS$_4$ 34.9 64.4 104.2

Fig. 5 Structures of the transition states for dissociation channels 7.b-d

ionic reaction \(\text{Be}^+ + \text{D}_2 \) was shown to dominate the production of \(\text{BeD}^+ \) inside a plasma column. Based on our calculated posed reactions in Eq. 9. \(\text{BeD}_2 \) and \(\text{D}_2 \) can easily form the \(\text{Be} \) g

and derive rates for the considered reactions. \(\text{BeD} \) and \(\text{BeD}^+ \)

methods. Transition state theory was used to determine the a n d e r g i e s o f r e a c t i o n a so b t a i n e d b y q u a n t u m - c h e m i c a l

wees, standard enthalpies of formation, and standard enthalpies

lium deuterides based on calculated thermodynamic proper-

we report reaction schemes of the dissociation of small beryl-

Conclusions

We report reaction schemes of the dissociation of small beryl-

Cu reactant and product energetics, which are the most stable species, unlikely to further dissociate into their components. \(\text{BeD}_2 \) and \(\text{BeD}^+ \) are more likely to decompose into \(\text{Be} + \text{D}_2 \) than into \(\text{BeD} + \text{D} \). \(\text{BeD}_3 \) and \(\text{BeD}^+_3 \) are metastable against their dissociation into \(\text{BeD} + \text{D}_2 \).

Concerning the source of beryllium hydride production, we performed MD simulations of low energy D irradiation on Be surfaces to obtain the details of the sputtering events and analyzed these events from thermodynamic and kinetic points of view. The analysis of the MD trajectories confirms that the formation of \(\text{BeD} \) occurs along the reaction pathways that have been suggested before.

References

1. Pitts RA, Carpentier S, Escourbiac F, Hirai T, Komarov V, Kukushkin AS, Lisgo S, Loarte A, Merola M, Mitteau R, Raffray AR, Shimada M, Stangeby PC (2011) Physics basis and design of the ITER plasma-facing components. J Nucl Mater 415:S957–S964

2. Doerner RP, Baldwin MJ, Buchenauer D, De Temmerman G, Nishijima D (2009) The role of beryllium deuteride in plasma-beryllium interactions. J Nucl Mater 390–391:681–684. doi:10.1016/j.jnucmat.2009.01.187

3. Nishijima D, Doerner RP, Baldwin MJ, De Temmerman G (2009) Erosion yields of deposited beryllium layers. J Nucl Mater 390–391:132–135. doi:10.1016/j.jnucmat.2009.01.144

4. Dittmar T, Baldwin MJ, Doerner RP, Nishijima D, Oberkofer M, Schwarz-Selingar T, Tabarés F (2011) Interaction of high flux deuterium/nitrogen plasmas with beryllium. Phys Scr 145:4009. doi:10.1088/0031-8949/145/14009

5. Oberkofer M, Linsmeier C (2010) Properties of nitrogen-implanted beryllium and its interaction with energetic deuterium. Nucl Fusion 50:125001. doi:10.1088/0029-5515/50/12/125001

6. Oberkofer M, Reinelt M, Linsmeier C (2011) Retention and release mechanisms of deuterium implanted into beryllium. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 269:1266–1270. doi:10.1016/j.nimb.2011.10.058

7. Stamp MF, Krieger K, Brezinek S (2011) Measurements of beryllium sputtering yields at JET. J Nucl Mater 415:S170–S173. doi:10.1016/j.jnucmat.2010.12.038

Acknowledgment

Open access funding provided by Austrian Science Fund (FWF). All authors contributed equally to the paper.

This work was supported by the Austrian Science Fund (FWF): P28979-N27 and was carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. The computational results presented have been achieved (in part) using the HPC infrastructure LEO of the University of Innsbruck. The work was also funded by Scientific Grant Agency of Ministry of Education SR and Slovak Academy of Sciences (VEGA): 1/0878/15.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
8. Schmid K, Krieger K, Lisgo SW, Meisl G, Brezinsek S, Contributors JET (2015) WALLDY simulations of various impurity migration in JET and extrapolations to ITER. Nucl Fusion 55: 53015. doi:10.1088/0029-5515/55/5/53015

9. Kirschen A, Philippini V, Winters J, Kögl U (2002) Simulation of the plasma-wall interaction in a tokamak with the Monte Carlo code ERO-TEXTOR. Nucl Fusion 40:989–1001. doi:10.1088/0029-5515/40/5/311

10. Möller W, Eckstein W, Biersack JP (1988) Tridyn-binary collision simulation of atomic processes and dynamic composition changes in solids. Comput Phys Commun 51:355–368. doi:10.1016/0010-4655(88)90148-8

11. Eckstein W, Doehmen R, Mutzke A, Schneider R (2007) SDDTrimSP: a Monte-Carlo code for calculating collision phenomena in randomized targets. Max-Planck-Institut für Plasmaphysik, Garching

12. Björkas C, Borodin D, Kirschner A, Janev RK, Nishijima D, Doerner R, Nordlund K (2013) Molecules can be sputtered also from pure metals: sputtering of beryllium hydride by fusion plasma-wall interactions. Plasma Phys Control Fusion 55:74004. doi: 10.1088/0741-3335/55/7/074004

13. Borodin D, Kirschner A, Carpenter-Chouchana S, Pitts RA, Lisgo S, Björkas C, Stangeby PC, Elder JD, Galonska A, Matveev D, Philippini V, Samm U (2011) ERO code benchmarking of ITER first wall beryllium erosion/re-deposition against LIM predictions. Phys Scr T145:14008. doi:10.1088/0031-8949/2011/145/14008

14. Doerner RP, Björkas C, Nishijima D, Schwarz-Selinger T (2013) Erosion of beryllium under high-flux plasma impact. J Nucl Mater 438:Suppl:S272–S277. doi:10.1016/j.jnucmat.2013.01.045

15. Björkas C, Vörter K, Nordlund K, Nishijima D, Doerner R (2009) Chemical sputtering of Be due to D bombardment. New J Phys 11:123017. doi:10.1088/1367-2630/11/12/123017

16. Juslin N, Erhart P, Träskelin P, Nord J, Henriksson KOE, Nordlund K, Salonen E, Albe K (2005) Analytical interatomic potential for modeling nonequilibrium processes in the W-C-H system. J Appl Phys 98:1–12. doi:10.1063/1.2149492

17. Björkas C, Juslin N, Timko H, Vörter K, Nordlund K, Henriksson K, Erhart P (2009) Interatomic potentials for the be-C-H system. J Phys Condens Matter 21:445002. doi:10.1088/0953-8984/21/44/445002

18. Björkas C, Borodin D, Kirschner A, Janev RK, Nishijima D, Doerner R, Nordlund K (2013) Multiscale modeling of BeD release and transport in PISCES-B. J Nucl Mater 438:Suppl:S276–S279. doi:10.1016/j.jnucmat.2013.01.039

19. Safi E, Björkas C, Lasas A, Nordlund K, Sukuba I, Probst M (2015) Atomic simulations of the effect of reactor-relevant parameters on be sputtering. J Nucl Mater 465:805–809

20. Viro F, Barrachin M, Souvi S, Cantrel L (2014) Theoretical prediction of thermodynamic properties of tritiated beryllium molecules and application to ITER source term. Fusion Eng Des 89:1454–1500. doi:10.1016/j.fusengdes.2014.01.031

21. Szalay PG, Bartlett RJ (1993) Multi-reference averaged quadratic coupled-cluster method: a size-extensive modification of multi-reference CI. Chem Phys Lett 214:481–488. doi:10.1016/0009-2614(93)80560-3

22. Koput J (2013) Ab initio ground-state potential energy functions of beryllium monohydride ions: BeH+ and BeH-. J Chem Phys. doi:10.1063/1.4820403

23. Koput J (2011) The ab initio ground-state potential energy function of beryllium monohydride. BeH. J Chem Phys. doi:10.1063/1.3671610

24. Bubin S, Adamowicz L (2007) Calculations of the ground states of BeH and BeH+ without the born-Oppenheimer approximation. J Chem Phys doi:10.1063/1.2736699

25. Smith GS, Johnson QC, Smith DK, Cox DE, Snyder RL, Zhou R-S, Zalkin A (1988) The crystal and molecular structure of beryllium hydride. Solid State Commun. 67:491–494. doi:10.1016/0038-1098(88)90168-6

26. Penotti FE (2006) Electronic structure of BeH2. Int J Quantum Chem 106:1153–1159. doi:10.1002/qua.20868

27. Klein RA, Zottola MA (2006) Pople versus Dunning basis-sets for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: the role of exact exchange. J Chem Phys 118:1158–1161. doi:10.1063/1.1528606

28. Hintze J, Fridrich O, Sundermann A (2017) A study of some unusual hydrides: BeH2, BeH+6 and SH6. doi:10.1080/0026897990483007

29. Koput J, Peterson KA (2006) Ab initio prediction of the potential energy surface and vibration-rotation energy levels of BeH2. J Chem Phys 125:44306. doi:10.1063/1.2212932

30. Bernath PF, Shaye, A, Tereszchuk K, Colin R (2002) The vibration-rotation emission spectrum of free BeH2. Science 297:1323–1324. doi:10.1126/science.1074580

31. Shaye, A, Tereszchuk K, Bernath PF, Colin R (2003) Infrared emission spectra of BeH and BeD. J Chem Phys 118:1158–1161. doi:10.1063/1.1528606

32. Shaye, A, Tereszchuk K, Bernath PF, Colin R (2003) Infrared emission spectra of BeH2 and BeD2. J Chem Phys 118:3622–3627. doi:10.1063/1.1539850

33. Wang X, Andrews L (2005) One-dimensional BeH2 polymers: Infrared spectra and theoretical calculations. Inorg Chem 44:610–614. doi:10.1021/ic040846b

34. Boldyrev AI, Simons J (1993) Vertical and adiabatic ionization potentials of MH--K+1 anions. Ab initio study of the structure and stability of hypervalent MHk+1 molecules. J Chem Phys 99:4628. doi:10.1063/1.466061

35. Curtiss LA, Redfern PC, Raghavachari K (2007) Gaussian-4 theory. J Chem Phys 127:1039/B704725H

36. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter 37:789–789

37. Grimme S, Antony J, Ehrlisch S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 130:154104. doi:10.1063/1.3382344

38. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements; two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Accounts 120:215–240. doi:10.1007/s00214-007-0310-x

39. Grimme S (2006) Semiempirical hybrid density functional with perturbative second-order correlation. J Chem Phys doi:10.1063/1.2149854

40. Schwabe T, Grimme S (2007) Double-hybrid density functionals with long-range dispersion corrections: higher accuracy and extended applicability. Phys Chem Chem Phys 9:3397–3406. doi:10.1039/B704725H

41. Head-Gordon M, Pople JA, Frisch MJ (1988) MP2 energy evaluation by direct methods. Chem Phys Lett 153:503–506. doi:10.1016/0009-2614(88)85250-3

42. Pople JA, Head-Gordon M, Raghavachari K (1987) Quadratic configuration interaction. A general technique for determining electron correlation energies. doi:10.1063/1.453520
45. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023. doi:10.1063/1.456153

46. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JI, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian Inc, Wallingford

47. Merrick JP, Moran D, Radom L (2007) An evaluation of harmonic vibrational frequency scale factors. J Phys Chem A 111:11683–11700. doi:10.1021/jp073974n

48. McQuarrie DA, Simon JD (1999) Molecular Thermodynamic. University Science books, Sausalito, CA

49. Chase JMW (1998) NIST-JANAF thermochemical tables: fourth edn, Monograph 9 (part I and part II). NIST

50. Colin R, De Greef D (1975) The absorption Spectrum of the BeH and BeD molecules in the vacuum ultraviolet. Can J Phys 53:2142–2169. doi:10.1139/p75-262

51. Peng C, Schlegel HB (1993) Combining synchronous transit and quasi-Newton methods for finding transition states. Israel J. Chem. 33:449–454

52. Atkins P, Paula J (2006) Physical chemistry, 8th edn. Oxford University Press

53. Todorov IT, Smith W, Trachenko K Dove MT (2006) J Mater Chem 16:1911–1918

54. Sukuba I (2015) A computational study of interactions in Be-W-D system relevant to fusion reactors. Dissertation, Comenius University

55. Nishijima D, Doerner RP, Baldwin MJ, De Temmerman G, Hoffmann EM (2008) Properties of BeD molecules in edge plasma relevant conditions. Plasma Phys Control Fusion 50:125007. doi:10.1088/0741-3335/50/12

56. Rackwitz, R.; Feldman, D.; Kaiser, H.J.; Heinicke, E. (1977) Photodetachment bei einigen zweiatomigen negativen hydridionen: BeH-, MgH-, CaH-, ZnH-, PH-, AsH-. Z. Naturforsch 32a: 594.

57. Nielsen IMB, Janssen CL (1998) New diagnostics for coupled-cluster and Möller-Plesset perturbation theory. Chem Phys Lett 290(4–6):423–430. doi:10.1016/S0009-2614(99)00770-8

58. Lee TJ, Taylor PR (1989) A diagnostic for determining the quality of single-reference electron correlation methods. Int J Quantum Chem 23:199–207