The Genetic Basis of Plant Functional Traits and the Evolution of Plant-Environment Interactions

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation
Guilherme Pereira, Caio and David L. Des Marais. "The Genetic Basis of Plant Functional Traits and the Evolution of Plant-Environment Interactions." International Journal of Plant Sciences 181, 1 (January 2020): http://dx.doi.org/10.1086/706190 © 2019 The University of Chicago

As Published
http://dx.doi.org/10.1086/706190

Publisher
University of Chicago Press

Version
Author’s final manuscript

Citable link
https://hdl.handle.net/1721.1/126590

Terms of Use
Creative Commons Attribution-Noncommercial-Share Alike

Detailed Terms
http://creativecommons.org/licenses/by-nc-sa/4.0/
The genetic basis of plant functional traits and the evolution of plant-environment interactions

Caio Guilherme Pereira & David L. Des Marais*

Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
*Corresponding author: D.L. Des Marais, dldesmar@mit.edu, +1 (617) 258-6482

Manuscript (Word Count)	Figures and Tables
Main Body (including references and legends): 10683	Number of figures: 0
Abstract: 278	Number of tables: 4
Introduction: 904	Number of Supplementary Information (SI) Files: 0
Tools and Methods: 2491	References: 7628 (229 works)
Genetics of plant functional traits: 5960	
Synthesis and Future Directions: 1065	

Manuscript (Word Count)

Synthesis and Future Directions: 1065	
References: 7628 (229 works)	

Figures and Tables

Number of figures: 0	Number of supplementary information (SI) Files: 0
Number of tables: 4	

Abstract:

Introduction:

Tools and Methods:

Genetics of plant functional traits:

Synthesis and Future Directions:

References:

7628 (229 works)
Abstract
Leaves are the most conspicuous organs of plants and their form and function are key determinants of plant ecology. Moreover, energy captured by leaves through photosynthetic carbon reduction forms the base of nearly every terrestrial ecosystem. As such, the morphology and physiology of leaves have been a central focus of research on plant ecophysiology, development, and evolution. We review recent research on the genetic basis of leaf structure and nutrient profile, as well as stomatal patterning as exemplar traits for understanding the evolution of plant functional traits. We discuss available and emerging methods for determining the genetic basis of plant traits and then present a synthetic assessment of the molecular basis of each trait and the extent to which patterns of natural diversity are relevant to eco-evolutionary analysis. Overall, we find that research on the three traits has emerged from different sub-disciplines in biology. We have a deep understanding of the developmental genetics of leaf size and stomatal patterning and, to a lesser degree, leaf shape, though research on these has been limited to a small number of plant species. By contrast, there is a deep literature describing natural genetic diversity of leaf nitrogen content due, in part, to the ease of measuring this trait in large genetic mapping populations. The molecular control of leaf P concentration, on the other hand, has been severely understudied. For all three traits, there are few examples of studies that have empirically linked molecular genetic variation in specific genes with phenotypic diversity observed in natural populations of plants. We conclude by discussing present challenges with synthesizing different traditions in genetics, physiology, development and evolution and prospects for progress in the coming years.

Introduction
Evolution by natural selection requires that individuals in a population express heritable differences in a trait that affects reproductive success. This central principle of organic evolution places an understanding of the genetic basis of adaptive traits as a central goal for modern biology (Orr 2005). More broadly, determining the causal link between genetic variants -- specific differences among individuals in their genetic make-up -- and phenotypic variation -- comprising any trait from the level of gene expression to whole organisms -- is a common goal of many fields of biology (Rockman 2008). Medical genetics aims to identify variants in the human population that affect health outcomes, including both variants that directly cause heritable disease or those that determine the efficacy of medical intervention. Agricultural genetics is concerned with identifying the genetic basis of yield-enhancing traits that might be used in marker-assisted selection breeding strategies or, increasingly, through biotechnology. Evolutionary biologists both contribute to and benefit from conceptual, empirical, and analytical advancements in these related fields to understand the so-called genotype to phenotype map.
“Adaptation” can refer either to the traits that are adaptive or the process of evolving traits that are adaptive. In either usage, herein we restrict adaptation to refer to heritable traits that increase the relative fitness of an individual relative to other individuals in a population. Using this distinction, studying the genetics of adaptation often entails identifying the specific genes or genetic features responsible for the expression of an adaptive trait, and variants which describe phenotypic differences in a population. It is generally unknown what fraction of genes involved in the expression of an adaptive trait were specifically targeted by natural selection during the evolution of that trait. It remains a considerable challenge to formally demonstrate that gene A was shaped by natural selection in the evolution of trait B, though substantial progress has been made to this end over the past 20 years as tools from genomics and molecular genetics have become accessible in an increasing number of plant species. Presently, the “gold standard” for causally linking genetic and phenotypic variation is the direct integration of genetic material from a genotype possessing a trait or trait value with one lacking it using either genetic crosses and/or stable genetic transformation (e.g. Prasad et al. 2012, Des Marais et al. 2014). The gold-standard for demonstrating the adaptive value of a trait is direct measurement of fitness measured in the natural environment, ideally over multiple seasons (e.g. Anderson et al. 2014), although phylogenetic tests for adaptation are also useful for many evolutionary questions (Ackerly 2004). An additional approach for detecting the role of natural selection in shaping a trait is to compare phenotypic divergence among populations as compared to neutral genetic divergence among populations, the so-called QST/FST approach (Leinonen et al. 2013).

Our reliance on a formal definition of an adaptation is motivated by the sustained interest in plant functional traits as key determinants of organismal ecology and by the relevance of functional traits for applied plant science (Ackerly et al. 2000). Writing nearly 20 years ago, Ackerly and Monson (2003) highlighted an empirical and conceptual gap between plant ecology and physiology on the one hand and plant evolutionary biology on the other. Ackerly and Monson specifically noted the paucity of studies documenting the “fitness consequences, heritability, genetic architecture, and phylogenetic distribution” of physiological traits in plants. Understanding the fitness and heritability of functional traits is greatly facilitated by first studying the genetic architecture of the trait in question: which and how many genetic loci drive natural variation in a trait? Are traits genetically correlated with one another, are these correlations positive or negative, and do the correlations arise due to genetic linkage or pleiotropic effects of individual loci? By studying the genetic basis of traits directly related to plant-environment interactions, including physiological traits, a researcher might isolate the effects of individual functional traits and natural variation in those traits so as to determine their ecological and evolutionary significance. Genetic analysis can also determine whether evolving combinations of traits and trait values which might appear ecologically beneficial are, in fact, difficult to realize due to genetic linkage or pleiotropy.
In the current review, we use leaves as a means to explore our understanding of the genetic basis of plant functional traits and discuss new and emerging tools related to these efforts. Throughout, we highlight three principle themes that have facilitated the study of the genetic basis of plant functional trait evolution over the past 20 years. The first is the continual expansion of detailed molecular studies in a few genetic model systems which provides a fundamental understanding of how plant cells and tissues develop and how they function under variable environmental conditions. The second major development is the expansion of genomic and other -omic technologies and their application to an ever-expanding number of plant species of ecological and evolutionary interest. While considerable limitations to -omic approaches persist for many plant species, we anticipate that such barriers to functional inference will continue to erode in the coming years. The third major theme is the growing synergy and cross-talk between the disciplines of molecular genetics, systems biology, quantitative genetics, evolutionary genetics, and ecological genetics. In particular, the expanded study of natural variants by molecular geneticists – including association mapping analyses based on large panels of natural variants – creates a natural first step to uncover the role played by evolutionary and ecological processes in shaping plant functional traits.

Tools and methods for reconstructing the genetic basis of adaptive change

An essential first step in reconstructing the genotype to phenotype map is perhaps obvious but often overlooked: determining whether observed phenotypic variation in a trait is heritable or, conversely, what proportion of phenotypic variation is expressly due to the effects of environmental variation. Heritability measures the proportion of total phenotypic variance observed in a population (V_P) that can be attributed to genetic effects, or V_G, and ranges from zero -- when there is no variance component attributable to genetics -- and one -- when there the effect of genotype on population variance is complete. Formally speaking, a trait is heritable if heritability is statistically greater than zero. The importance of heritability to evolutionary studies is readily appreciated by considering the classic breeder’s equation which states that the change in trait value after one bout of selection – one generation – is the product of heritability and the strength of selection imposed. If heritability is zero then selection has no power to affect trait values; if heritability is one then selection may be very efficient. V_G may itself be partitioned into additive effects, the dominance of alleles, epistatic effects, and epigenetic effects, among others, but we will not further consider those effects here. A second component of phenotypic variance is the effect of the environment, V_E, or phenotypic plasticity. Phenotypic plasticity is commonly observed in studies of plant-environment interaction (Bradshaw 1965) and can often be a confounding effect in ecological studies. Formally speaking, phenotypic plasticity is the capacity of a single genotype to manifest a range of trait values and can, itself, be genetically determined. That is, the ability to respond plastically to the
environment is determined by the genetic make-up of a plant and this ability varies among individuals. This variation in plasticity among individuals in a population is the third critical component of total phenotypic variation, genotype by environment interaction (Des Marais et al. 2013); the proportion of phenotypic variance attributable to GxE is denoted V_{GxE}. Partitioning these variance components can be readily accomplished using classical quantitative genetic approaches (Cheverud 2006). Note that V_G, or any other component of V_P, can be observed in any kind of trait regardless of the role of past or ongoing adaptation.

Our extended discussion of the components of population-level phenotypic variation highlight the complicated role played by the environment in ecological genetic studies. Within a generation, the environment may shape the distribution of phenotypes in a population if there is environmental heterogeneity and if individuals in a population express phenotypic plasticity in some traits. Note that this type of variation could be observed even among genotypically identical individuals if environmental gradients are particularly steep, or if individuals germinate at different times of year when conditions differ. If GxE is prevalent in populations, within-generation phenotypic variation will also be driven by the effects of environmental variation interacting with genetic variation. Both of these properties of individuals are relevant for ecological studies but the effects of phenotypic plasticity are often underappreciated in ecological studies (Miner et al. 2005). As we turn to studying plant functional traits on evolutionary time scales, the environment will shape the frequencies of genetic variants affecting these traits between generations. Here, the phenotypic variation observed in populations will change through time owing to natural selection acting on heritable trait differences, V_G, on heritable differences in response to the environment, V_{GxE}, and due to the effects of neutral genetic drift on either. With the exception of the still poorly-understood trait effects manifested through transgenerational epigenetics (Richards et al. 2010), phenotypic diversity manifested strictly as V_E will not participate in evolutionary change because, by definition, this phenotypic component is not heritable.

Molecular tools for studying the genotype-phenotype map

With this quantitative genetic perspective on phenotypic variation as a background, what methods do we have available for identifying the genetic basis of plant functional traits? Two general strategies have been exploited to date. The first is to study natural genetic variation in genes previously identified and characterized in model systems. This body of work builds on decades of forward- and reverse-genetic studies of species such as *Arabidopsis thaliana* (Provart et al. 2015), maize (Strable and Scanlon 2009), poplar (Douglas 2017), *Solanum* (Kimura and Sinha 2008) and *Nicotiana* (Lewis 2011), among several other species. An advantage of these approaches is that considerable effort is usually made to understand the mechanisms through which a specific gene or pathway directly impacts cell function, and then
impacts higher-order tissue and whole-plant function. Empirical approaches include measuring the phenotypic effects of partial or complete loss-of-function of a gene, the effects of the over-expression of a gene, where, when, and under what conditions a gene is transcriptionally active and how the resulting protein’s activity may be regulated, and interactions between the target gene or protein and other genes or proteins. Through forward genetic screens – where researchers measure a trait of interest in large populations of synthetic mutants and then identify the mutants causing trait diversity – a study might reveal a considerable number of genes that play a role in the expression of some phenotype (at least those for which mutations are not lethal).

New tools from systems biology also provide a means to link genes with phenotypic traits in plants. One approach identifies correlations among transcriptomic, metabolomic, or phenomic data collected across a time series comprising, for example, a developmental transition or the application of an environmental challenge (e.g. Greenham et al. 2017). This approach is facilitated by recent developments in the inference of gene co-expression networks (Langfelder and Horvath 2008, Stone and Ayroles 2009), comparison of co-expression networks to identify topological differences between two classes of samples (e.g. control or treatment, proximal or distal leaf blade, prior to or following flowering; Langfelder et al. 2011, Ritchie et al. 2016), and correlations between groups of co-expressed genes and other traits (Langfelder and Horvath 2008). These and related systems biology approaches are particularly valuable for understanding what cellular processes are involved in metabolic, developmental, or physiological traits of interest and in developing lists of candidate genes for further study though considerable additional work is required to causally associate candidate genes with phenotypes. Such approaches are also very resource intensive and fully realizing the interpretation of systems biology data requires a well-annotated reference genome sequence.

These highly reductionist studies are of some relevance for the study of the evolution of plant functional traits. First, the functional information gleaned from such studies may provide context when orthologous genes are discovered to be associated with traits in other species (see below). Second, researchers working in non-model plants may use a “candidate gene” approach, specifically querying diverse species or populations for the role played by orthologous genes known to play a role in determining the phenotype of interest in model species.

Studies of gene function using natural variants
Molecular genetic approaches provide a “parts-list” of genes and genetics mechanisms that control the expression of traits. Directly applying such lists to evolutionary studies is challenging because, in the case of forward- and reverse-genetic methods, the studies typically rely on artificially induced genetic modifications which may not represent the types of mutations that segregate in natural populations. In the

...
In the case of systems biology, well-annotated reference genomes are generally required to make meaningful functional inference. Accordingly, a suite of linkage mapping tools is typically preferred by evolutionary biologists for reconstructing the genotype-phenotype map. Here, we briefly outline these approaches and note exciting new developments since the earlier treatment of this subject by Remmington and Purugganan (2003).

The fundamental goal in linkage mapping is to identify a statistical association between a genetic marker and a trait of interest by exploiting the genetic linkage between a marker and the genetic variant which is actually responsible for causing trait differences among two or more focal genotypes. The value of this approach is that, given sufficient statistical power in the sampling design, genotype-phenotype associations can be made for traits with varied genetic architectures spanning from simple one locus-two allele models to the effects of multiple loci across the genome. Key determinants of power for such tests include the magnitude of the trait difference between genotypes, the relative contributions of individual loci to phenotypic traits, the size of the mapping population, the extent of linkage disequilibrium in the mapping population, and the heritability of the trait. Limitations of linkage mapping arise largely from these determinants of statistical power: inability to detect loci which affect traits but in very small or environmentally-dependent ways (Manolio et al. 2009), the confounding effects of demography on traits that are spatially structured across a landscape (Barton et al. 2019), or the effects of loci with multiple independent variants (Monroe et al. in press).

Linkage mapping experiments may provide insight into the number of genetic loci controlling natural variation in a trait and their relative effect sizes, the direction of additive effects of a locus (e.g. the allele A from parent 1 increases a trait value as compared to the effect of the allele B from parent 2), the possible interactions between loci in driving trait variation (epistatic effects), and the effect of individual loci on multiple traits (pleiotropy). These data might be used to infer whether natural selection shaped the evolution of that trait since the divergence of the studied genotypes (Orr 1998) or whether selection on one trait could lead to indirect selection on a second, genetically correlated trait (Lande and Arnold 1983). While loci identified in these screens merely represent regions of the genome that are associated with some trait difference, additional genetic analysis can uncover the actual genetic variant driving phenotypic diversity in the trait of interest. Evolutionary questions for which determining the identity of causal variants is needed have been recently debated and enumerated (Rockman 2012, Lee et al. 2014, Rausher and Delph 2015).

Quantitative trait locus (QTL) mapping is one straightforward method to identify genetic loci associated with trait differences in a population. In its simplest instantiation, two parents that express heritable difference in a trait are first crossed to create a F1 hybrid. The F1 is then self-fertilized to create an F2 population or, in the case of self-incompatible plants, two F1s from separate biparental crosses may
be crossed to each other to generate F2s. (Many other strategies for creating a mapping population exist; for a general treatment see Falconer and Mackay, 1996). Recombination in the F1 germline results in a diversity of allelic combinations in the F2 population and it is these recombinant chromosomes that allow the researcher to identify statistical associations between genetic markers and trait values. A large panel of anonymous markers is then scored for each member of the F2 population. Historically, markers included amplified fragment length polymorphisms, microsatellite loci, or restriction fragment length polymorphisms. Today, next generation sequencing technologies are commonly used to score many thousands of single nucleotide polymorphism (SNPs) using techniques such as Restriction-site Associated DNA sequencing (RAD tags; Andrews et al. 2016)) or low coverage whole genome re-sequencing (so-called genotyping by sequencing, or GBS, approaches; Elshire et al. 2011, Huang et al. 2011). Both of these genotyping approaches are now routinely employed for diverse plant species, often without a reference genome sequence available. With a linkage map derived from these markers in hand, a researcher measures the trait of interest in each member of the mapping population and uses any of a number of statistical packages to identify associations between trait values and individual or groups of genetic markers (Van Eeuwijk et al. 2010). A key point, here, is that the genetic markers are merely genetically linked to (i.e. in linkage disequilibrium with) the genetic variant(s) which actually drive the observed phenotypic variation.

One exciting extension of QTL mapping is to identify genetic variants associated with heritable variation in transcript abundance (Kliebenstein 2009). This expression QTL (eQTL) mapping treats the abundance of each expressed transcript as a quantitative trait, and then identifies genetic markers associated with variation in transcript abundance between the parent genotypes. Making meaningful functional inference from eQTL analyses typically requires a well-annotated reference genome sequence for one of the parent genotypes; in principle, eQTL studies can be undertaken in any plant for which a linkage mapping population and reference transcriptome are available. Researchers may combine eQTL studies with QTL analysis of plant functional traits and use co-segregation between the two to identify a shortlist of possible genes involved in driving trait variation. Importantly, careful statistical consideration of environmental variation now allows for such studies to be carried out using field-grown samples (Lovell et al. 2018).

Conventional QTL mapping is typically undertaken with two (in the case of self-compatible plants) or four (in the case of self-incompatible plants) parents and therefore reflects a very limited sample of the diversity present in a natural population. Moreover, because only a few genetic crosses are made in the process of generating a mapping population, there is little opportunity for recombination to break up genetic linkages present in the parental genomes; blocks of chromosomes which show a statistical association with trait values are often quite large (i.e. there is low resolution of the genotype-
phenotype map). Association mapping using large populations of wild-collected accessions is an increasingly feasible means of identifying genetic loci associated with ecologically interesting traits (Charpentier et al. 2014). Here, hundreds to thousands of individuals are genotyped via GBS or RAD and then measured for the trait(s) of interest grown in a common garden or greenhouse setting. Considerable recent effort has improved the statistical procedures needed for these types of inference, particularly with respect to reducing the confounding effects of demography and natural selection on genotype-phenotype associations, though some challenges remain (Barton et al. 2019). Because the evolutionary history of recombination in natural populations tends to reduce linkage disequilibrium, the marker loci are typically more closely (on the chromosome) associated with the causal variant driving phenotypic variation in the trait of interest than in biparental QTL studies. Studying variation in natural populations also affords the researcher the prospect of simultaneously identifying statistical a genetic variant associated with a studied trait, the frequency of the variant in the population, and the role played by natural selection in maintaining the variant in the population (Josephs et al. 2017).

Additional methods for determining trait-marker associations are available. One commonly used approach in species for which genetic crosses are readily made is bulk segregant analysis. Here, a very large F2 population is generated and then measured for the trait of interest (Siepel et al. 2011). Pools of DNA from individuals representing the tails (high- and low-trait values) of the phenotypic distribution are then “bulked” and sequenced on a next-generation sequencing platform. Statistical associations are identified between each trait state – e.g. large or small leaves – and SNPs identified as characteristic of each bulk pool. This is a quick and relatively low-cost means of identifying marker-trait associations but is typically only possible for one trait at a time (unless traits show very high correlation).

Genetics and the evolution of plant functional traits

Decades of research on the model plant *Arabidopsis thaliana* (hereafter “Arabidopsis”) have provided us with a parts list of genes involved in nearly every aspect of its development, physiology, and interaction with the abiotic and biotic environment (Provant et al. 2015). To this end, we have a general idea of what types of genes and molecular pathways are involved in the expression of most herbaceous plant functional traits; it is perhaps trivial to point out that evolution likely shaped many if not most of these genes at some point in the history of life. As scientists interested in the mechanisms of evolution and how evolution shapes and is shaped by ecological interactions of plants, we are principally interested in the genetic control of phenotypic variation in plant functional traits within and between closely related species. Here, we present three broad features of leaves as exemplar traits for understanding the genetic basis of the evolution of plant functional traits: leaf structure, leaf nutrients, and stomata. Throughout, we highlight
how integration between molecular genetics, quantitative genetics, genomics, and evolutionary genetics provide novel insight into the evolution of plant functional traits in diverse species.

Leaf structure

Leaves are the primary structures responsible for photosynthetic carbon assimilation in plants (Lambers et al. 2008). This process, in which plants efficiently convert sunlight into chemical energy, is strongly influenced by structural features including the ratio of mass to area and the shape of the leaf, both of which show an exceptional variability among plants (Efroni et al. 2010). Canopy structure and the angle of the leaf relative to the stem are also critical determinants of photosynthesis, but here we will focus on leaves themselves.

Adaptive importance of natural variation in leaf structure

Within-species natural diversity in leaf shape, encompassing aspects of dissection, lobing, and ratio of leaf length to width, has been documented in many species of plants (e.g. Wyatt and Antonovics 1981, Andersson 1991, Atwell et al. 2010, Chitwood et al. 2012, Campitelli and Stinchcombe 2013). One remarkable morphometric analysis in wine grape identified reasonably high heritabilities (0.2-0.46) for several aspects of leaf shape. High heritabilities (0.4-0.6) have also been identified for traits such as leaf length, width, and perimeter in *Populus deltoides* (Xia et al. 2018). These high heritabilities suggest that ample genetic diversity of shape exists to allow selection to act and, while variation in leaf shape is widely interpreted as being adaptive (Brown and Lawton 1991, Schuepp 1993), we are aware of only one species for which a role for contemporary natural selection has been formally implicated in driving natural diversity of leaf shape (Bright and Rausher 2008).

A second aspect of leaf structure, leaf mass per area (LMA) and its inverse specific leaf area (SLA), has been studied extensively as it relates to plant ecological strategies because it represents a key axis of the so-called leaf economic spectrum (LES; Wright et al. 2004) and because LMA/SLA feature prominently in models of the determinants of relative growth rate (Rees et al. 2010). The LES provides a unifying framework that explains the covariation of multiple traits across vascular plant taxa, from plants with longer-lived leaves in which there is a high investment in structure and defense (and therefore have higher LMA, lower CO₂ permeability, and lower mass-based rates of photosynthesis and respiration), to plants with low-cost, short-lived leaves that photosynthesize at very high rates, but are vulnerable to herbivory and physical damage (Reich et al. 1999, Wright et al. 2004).

Much of the LES literature considers these trade-offs across a broad sampling of botanical diversity, though within-species variation in LMA and its response to environmental variation have also been well documented (Edwards et al. 2011, Des Marais et al. 2012, Donovan et al. 2014, McKown et al. 2014, Muir et al. 2014, Des Marais et al. 2017). LMA/SLA changes in response to soil drying (Des Marais et al.
2012, Donovan et al. 2014), nutrient levels (Donovan et al. 2014), to a combination of soil drying and elevated air temperature (Des Marais et al. 2017) and, in perennials, among years and seasons within years (McKown et al. 2014). LMA also changes during development of a single annual plant (Donovan et al. 2014). In line with the large role played by the environment in the expression of LMA, considerable variation in heritability within a single species has been reported for this trait (e.g. 0.121 – 0.820 in *Populus trichocarpa* (McKown et al. 2014); 0.003-0.234 in *Brachypodium distachyon* (Des Marais et al. 2017). As such, several authors have recommended caution when interpreting the ecological significance of LMA as a point estimate for a species (Poorter et al. 2009, Donovan et al. 2014).

Quantitative genetic perspectives on leaf structure

Loci driving differences in leaf dissection between two species of *Solanum* (formerly *Lycopersicon*) were identified using QTL mapping in introgression lines, revealing 22 separate loci (Holtan and Hake 2003). 22 significant QTL is an unusually large number of loci to be identified in a cross and speaks both to the number of genes describing differences in the trait between the species and the high power of detecting loci of small effect in this type of crossing design. A large number of small-effect loci affecting leaf shape traits were also identified in a *Populus deltoides* F1 mapping population (Xia et al. 2018).

A central question in the evolution of adaptive traits is whether genetic correlations among traits might constrain the efficacy of selection acting on individual traits. Working with inbred lines segregating natural genetic diversity of two closely related species of *Solanum*, Muir and colleagues found low, non-significant genetic correlations between leaf area and leaf thickness, stomatal density and the ratio of stomata on abaxial and adaxial leaf surfaces (Muir et al. 2014). Heritability of these traits was found to be small, though significantly non-zero, suggesting that natural selection could act on these traits, and the low genetic correlations among traits might allow selection to act on each trait separately. These authors also identified two QTL which together explain less than one percent of the variation observed in leaf area differences between the two species. This architecture suggests that either leaf area differences are controlled by many loci of very small (in this study, undetectable) effect, that leaf area is strongly affected by the environment, or likely a combination of the two. By contrast, analysis of genetic trait co-variance in *Populus trichocarpa* identified very high genetic correlations among leaf traits (0.6-0.9 among leaf width, area, and dry weight) and very low correlation between leaf traits and physiological parameters such as water use efficiency and leaf water potential (Chhetri et al. 2019). Working in an Arabidopsis biparental mapping population, Juenger et al. found similarly high genetic correlations among leaf traits but low, generally non-significant correlations between leaf traits and floral traits (Juenger et al. 2005).

The preceding experiments relied on biparental crosses; as such they represented a limited within-species sampling of trait diversity and had relatively low power to resolve the genomic position of
putatively causal loci. In Arabidopsis, GWAS analysis using a panel of 95 inbred natural accessions genotyped at 250,000 SNPs revealed candidate loci associated with 107 different traits, including leaf serration (Atwell et al. 2010). Although population structure – many inbred lines in the panel share recent common ancestry – significantly limits our ability to distinguish true SNP-trait associations in Arabidopsis, the authors note that many of the top SNP-trait associations are in genes with a previously demonstrated role in expression of the traits. Chitwood and colleagues present a comprehensive genetic analysis of leaf shape, identifying strong genetic correlations between major axes of variation in shape such as lobing with degree leaf hirsuteness and several fruit characters (Chitwood et al. 2014). GWAS analysis reveals just a few candidate loci associated with variation in leaf traits in this system, perhaps missing many loci of smaller effect that cannot be detected using this type of analysis.

Molecular genetic perspectives on leaf structure

Leaf growth is determined by two partially overlapping phases: cell division, in which the leaf primordium goes through multiple divisions and the cells proliferate while remaining relatively small, and cell expansion, in which these new cells increase in size and volume (Donnelly et al. 1999, Breuninger and Lenhard 2010). Gonzales et al. (2012) argue that leaf development is a much more complicated process, and that is the succession of five distinct yet overlapping phases (initiation, cell division, transition, cell expansion, and meristemoid division) that determine leaf size. Analyses of transgenic lines and mutants suggest that all these phases contribute, albeit to different extents, to leaf growth.

The initiation, division, and transition phases are all associated with cell proliferation. Basically, the initiation phase governs the differentiation of specific cells in the shoot apical meristem into leaf primordium and, with it, the initial number of cells available to form leaf tissues. The cell division phase determines the rate of mitotic events and the transition controls the precise duration of the latter. In the initiation phase, two possibly interconnected factors might influence leaf size: meristem size and the number of cells recruited at the leaf primordium. During this phase, several genes involved with the progression of the cell cycle, the window during which cell divisions occur, and the regulation of plant hormones involved in cell division and/or differentiation have been identified as components whose expression can affect leaf size (see Table 1 for a list of specific genes).

The following phase, cell division, also has a significant impact on leaf size. The idea is that, given a constant period in which new cells are formed, higher division rates will invariably lead to a higher number of cells and, consequently, a larger leaf area. Several genes have been identified to regulate this process, e.g. the ANAPHASE PROMOTING COMPLEX 10 (APC10), a subunit of the APC/C protein complex that coordinates mitotic events and leads to higher cell division rates when overexpressed (Capron et al. 2003, Eloy et al. 2011). (Again, see Table 1 for a more comprehensive list of genes involved in this process). The transition phase will also affect leaf size due to its control over the arrest of
cell proliferation and the developmental shift from cell division to expansion. It has been shown, for
example, that the overexpression of GRF-INTERACTING FACTORS (GIFs) leads to larger leaves due
to both an increase in cell division rates and a later exit from this phase (Lee et al. 2009). Multiple factors
ranging from miRNAs (Liu et al. 2009, Wang et al. 2011) to transcription factors (Palatnik et al. 2003)
have been associated with cell division timing and its effect on leaf size.

Once cell division ceases, growth is maintained primarily through cell expansion: an increase in cell
turgor leads to the relaxation of the cell wall that is immediately accompanied by the synthesis of new
wall components. Genes associated with wall loosening and wall synthesis have all been identified as
regulators of the expansion process (Scheible and Pauly 2004, Cosgrove 2005, Mansoori et al. 2015, Hu
et al. 2018; see Table 2). During the expansion process, stem-like cells known as meristemoids are also
undergoing division and differentiation into highly specialized cells such as stomatal guard cells. We
discuss the molecular mechanisms associated with stomata control later in this review, but it is important
to point out that some genes involved in stomata development, such as PEAPOD (PPD; White 2006,
Wang et al. 2016), have been shown to significantly affect leaf size.

Because plants are modular organisms, the overlap of leaves along the canopy is not uncommon and
the form of a leaf – more specifically the leaf index (the ratio of leaf length to leaf width) – might have a
significant effect on leaf overlap (Takenaka 1994). Four regulating systems govern leaf index, two
associated with the polarized growth in the leaf length and two associated with leaf width (Tsukaya
2006). On the leaf length axis, ROTUNDIFOLIA4 (Narita et al. 2004, Ikeuchi et al. 2011) controls the
number of cells along the longitudinal plane by affecting positional cues and cell proliferation rates whilst
ROT3 (Tsuge et al. 1996, Kim et al. 1999) regulates the growth of these cells. In terms of growth in the
leaf-width plane, ANGUSTIFOLIA3 (Tsuge et al. 1996, Kim et al. 2002), which is thought to be
associated with microtubule arrangement regulation, and both the SPIKE1 (Qiu et al. 2002) and AtHB13
(Hanson et al. 2001) which are related to cytoskeletal organization, have been described as having
essential roles in cell expansion. The precise genetic mechanisms behind cell proliferation at the lateral
axis remain unclear, yet there is evidence from comparative studies that such a control does exist
(Kuwabara et al. 2001). In addition to these mechanisms governing polarized growth, there are several
genes involved with leaf initiation and cell commitment that also play a critical role in leaf shape
development (see Table 3 for details). Variation in leaf dissection observed between two species of
Solanum (wild tomatoes) is controlled by a KNOX ortholog (Kimura et al. 2008), suggesting one way in
which these canonical leaf patterning genes might be deployed in different plant species to generate the
spectacular diversity of leaf form observed in nature.

Beyond the two-dimensional realm of leaf size/shape, leaf thickness and leaf-tissue density are also
important aspects determining LMA. The ANGUSTIFOLIA (AN) gene, for example, is associated with the
control of LMA because of its effect on leaf thickness. Leaves of *angustifolia* mutants are narrower but thicker than the wild-types ones, a consequence of the improper control of polarity-specific cell elongation. Consequently, *an* mutants have a much higher LMA than wild-type plants (Tsukaya 2003); a similar phenomenon is observed in *rot3* (Tsuge et al. 1996) and *curly-leaf* (Kim et al. 1998) mutants. QTL studies have also helped us to identify candidate genes involved with the control of leaf thickness, including *ERECTA* (*ER*). Interestingly, *ER* was identified in a genetic screen for factors associated with drought-resistance in cotton, even though water limitation is not usually correlated with leaf thickness (Levi et al. 2009). Still, it has been suggested that water limitation may have an impact on LMA, largely because of its effect of leaf-tissue density. Several studies point towards water stress as a factor leading to leaves with smaller mesophyll cells, thicker walls (Utrillas and Alegre 1997), and higher contents of carbon and sugars (Fredeen et al. 1991).

Much of the preceding work relates generally to the developmental control of leaf architecture and, indeed, few molecular genetic studies specifically measure traits such as LMA/SLA that so dominate the ecological literature. We aimed to bridge this gap using a systems biology approach and a panel of natural accession of Arabidopsis to identify molecular determinants of SLA (Des Marais et al. 2012). By assessing genetic correlations between SLA and transcriptional modules we generated a list of candidate genes associated with natural genetic diversity in SLA. As compared to earlier work in Arabidopsis which largely relies on synthetic loss of function mutants and transgenic overexpression lines, described above, our study was able to reveal natural variants affecting SLA; additional work is needed to causally link these variants to SLA (e.g, by swapping putatively causal alleles among accessions via transgenics) and to assess whether such variation has an adaptive role in the field.

Priorities and future work on the genetics and evolution of leaf structure

In summary, there is an extensive literature on the genetic basis of leaf development and, more specifically, on the control of leaf size. Still, most of these studies focus simply on the mechanism through which specific genes affect cell and tissue function, with virtually none assessing adaptive value or even genetic variation within populations. Whilst these studies are extremely important in clarifying the identity, and underlying mechanisms, of genes associated with a particular trait, they leave major gaps. First, the studied genotypes are usually extreme, arising from mutants showing either overexpression or complete loss-of-function, which makes it difficult to predict whether small differences in expression rates, natural allelic variants, or point mutations would be reflected in ecologically relevant phenotypic differences. Second, it is unclear whether variation in leaf traits that affect photosynthetic performance (generally estimated from single, isolated measurements) ultimately affect fitness and, therefore, are subject to selection. GWAS studies, as conducted in Arabidopsis or poplar (Atwell et al. 2009).
Leaf nutrient relations

Nitrogen (N) is arguably the most important element in the context of plant functional ecology. It is a key component of Rubisco (D-ribulose 1,5-bisphosphate carboxylase/oxygenase), the enzyme responsible for carbon reduction in plants and, as such, it plays a significant role in the coordination of the LES (Spreitzer and Salvucci 2002). Estimates suggest that > 50% of the leaf N may be invested in Rubisco and other components of the photosynthetic machinery (Makino et al. 1994, Yin et al. 2018) and, not surprisingly, several studies show that photosynthetic rates scale linearly with leaf N concentration (in either an area or a mass basis (Reich et al. 1999, Wright et al. 2004).

Phosphorus (P) is also an essential plant nutrient that can limit productivity in a range of terrestrial ecosystems (Vitousek et al. 2010, Veneklaas et al. 2012). The nature of this limitation, however, is very different than that of N. Soil P is derived primarily from rock weathering, meaning that the P concentration in the soil is highly dependent on the rock parent material and, once exhausted, this P cannot be readily replenished (Walker and Syers 1976). Because of this, P limitation is usually pervasive in the old, climatically buffered infertile landscapes of the southern hemisphere (Hopper 2009). In these regions, the long-term absence of glaciation events, associated with the geological stability, allowed the deep weathering of the soils that have become severely P impoverished (Hopper 2009). The gradual depletion of P sources through geological time and the relative absence of catastrophic events that could lead to extinction favoured the selection of nutritional and other biological traits associated with coping with P-limiting conditions, and plants that evolved in these regions display a number of adaptations related to functioning at low leaf P concentration.

Adaptive importance of natural variation in leaf nutrient relations

Patterns of within-species variation in leaf N have been studied extensively in both natural and crop species. Heritability for leaf N content for plants grown in either controlled or natural environments are typically moderate: 0.4 for leaf nitrate and 0.6 for leaf free amino acids in Arabidopsis (Loudet et al. 2003), 0.19-0.35 for total leaf N on a mass basis among several environmental treatments in Brachypodium distachyon (Des Marais et al. 2017), 0.4 for leaf % N in Pinus taeda (Cumbie et al. 2011), and 0.21 on either area or mass basis in Populus trichocarpa (McKown et al. 2014).

Proteaceae species that naturally occur at P-poor soils of South-Western Australia, for example, extensively replace phospholipids with galactolipids and sulfolipids during leaf development (Lambers et al. 2012). They also preferentially allocate P to photosynthetically active cells (Guilherme Pereira et al. 2010, Chhetri et al. 2019), or systems biology studies exploiting natural diversity (e.g. Des Marais et al. 2012), may offer a bridge between molecular and ecological studies in this regard.
2018, Hayes et al. 2018) and function at extremely low levels of ribosomal RNA (rRNA) (Sulpice et al. 2014), the largest organic P fraction in leaves (Veneklaas et al. 2012). Combined, such traits allow them to function at lower leaf P concentration, decreasing these species’ requirement for P. Whilst most studies have focused on the physiological processes associated with these traits, there is evidence that at least a few of these may be under genetic control. It has been shown, for example, that the number of rRNA genes show variation among species, among individuals of the same species, and even among different tissues within the same individual (Rogers and Bendich 1987). These authors proposed that this variation is the result of differential rates of unequal recombination events in the rRNA region of the genome. Interestingly, stress may affect recombination rates and, therefore, rRNA gene copy number as was observed among wild populations of wheat (Rogers and Bendich 1987), with changes in temperature and rainfall regime (Flavell et al. 1986), and in flax, with changes in fertilizer treatment (Cullis 1977). Whilst a high copy number of rRNA genes might be associated the production of large amounts of rRNA, which can represent up to ~50% of the organic P pool in the leaves (Veneklaas et al. 2012), the correlation between gene copy number and leaf P is merely speculative and further studies are required to elucidate if such relationship exists.

Quantitative genetic perspectives on leaf nutrient relations

Genetic studies on the control of leaf N published on the last 15 years reveal two trends. First, that QTL associated with leaf N concentration and content, as well as those involved in the control of NO₃⁻ accumulation (the largest fraction of total leaf N), have generally large effects on phenotypic variation, typically explaining more than 20% of the phenotypic variation observed. Second, QTL x environment interactions were frequently observed.

Genome-wide association studies (GWAS) have also been conducted to identify the genetic components associated with the control of leaf N. Zhang et al. (2015), for example, identified several genes involved with NO₃⁻ accumulation in maize (namely a chlorophyll a,b-binding protein, a glutamate synthetase, an NADP-malate dehydrogenase, and a phosphoenolpyruvate carboxylase kinase) through the use of Nested Association Mapping, a technique in which QTL mapping is combined with the very high resolution of GWAS. In a different study, Yang et al. (2015) identified several loci related to leaf color ratios in rice, parameters that have been shown – in this and previous studies – to significantly correlate with leaf NO₃⁻ content. In fact, one of the identified loci was co-located with the rice NITRATE TRANSPORTER 1 gene, supporting the relationship between leaf color ratio and N metabolism.

Loudet et al. (2003) identified several QTLs representing at least 18 genes associated with total N, nitrate (NO₃⁻), and free amino acid content in Arabidopsis. Interestingly, Loudat et al. (2003) suggests that, because of the co-localization of several QTLs explaining variations in total N and NO₃⁻, it is
possible that the leaf N variation could be essentially explained by variations in NO$_3$- content. Similarly, Mickelson et al. (2003) identified 8 QTLs that explained 29% of the variation on total leaf N concentration in barley, with the support interval of several of them overlapping with those of QTLs relevant for NO$_3$- content and remobilization. Hirel et al. (2001) found 5 QTLs which collectively explain 28% of phenotypic variation in NO$_3$- content in maize, with at least two being putatively involved in the control of NO$_3$- accumulation. Curiously, whilst Gallais and Hirel (2004) describe co-localization between several QTLs and maize genes, which might suggest association, the gene(s) regulating NO$_3$- content in maize - like in Arabidopsis and barley - remain largely unknown. Identifying these genes would provide invaluable information on the molecular mechanisms underpinning NO$_3$- storage and leaf N regulation.

Using a different model system, Brouillette et al. (2007) identified several QTLs for leaf nutrient concentration in early-generation hybrids between *Helianthus annuus* and *Helianthus petiolaris*. In this study, they found that a large number of QTL with small effect explained most of the variation in leaf chemistry, with the notable exception of leaf N, where two QTL explained ~25% of phenotypic variation. In a similar study, Rönnberg-Wästljung et al. (2005) found eight QTL that explained over 20% of the variation in leaf N content in a *Salix dasyclados* and *Salix viminalis* hybrid population grown under contrasting water regimes. It is important to note that the interspecific genetic crossing strategy used by Brouillette et al. (2007) and Rönnberg-Wästljung et al. (2005) likely underestimates the effect of these QTL in natural populations of the parental *Helianthus* and *Salix* species.

There are only a few quantitative genetic studies on factors controlling leaf P concentration, content, and remobilization, with most of them focusing on model species. Bentsink *et al.* (2003) for example, identified 5 QTLs that collectively explained 33% of the variation in inorganic phosphorus (P$_i$) accumulation in Arabidopsis leaves, with a single QTL accounting for ~88% of the this variation alone. In fact, the same QTL mapping has been identified in several other RIL populations of Arabidopsis with the Ler accession as a parent (Vreugdenhil et al. 2004, Waters and Grusak 2008, Ghandilyan et al. 2009, Prinzenberg et al. 2010); a vacuolar membrane ATPase subunit is considered the most likely candidate gene underlying its large effect (Prinzenberg et al. 2010). In *Brassica rapa*, Zhao et al. identified two QTL that collectively explained ~38% of the variation in leaf P among a RIL population (Zhao et al. 2008). Similarly, Norton *et al.* dentified two QTL for leaf P concentration in rice, each of them explaining about ~10% of the variation in leaf [P] in the studied RIL population (Norton et al. 2010).

Molecular genetic perspectives on leaf nutrient relations

In contrast with a robust literature using QTL mapping approaches to identify loci associated with variation in leaf N and P concentrations, there are relatively few examples of forward-and-reverse genetic studies on the mechanisms controlling leaf N concentration per se. Coschigano et al. (1998) suggested that *FERREDOXIN-DEPENDENT GLUTAMATE SYNTHASE 1* (*GLU1*) might play an important role in
primary N assimilation in leaves of Arabidopsis, a conclusion based on the differences between wild-type and glu1 mutants in chlorophyll concentration. Whilst this study only provides indirect evidence of GLU1 involvement in N assimilation, given that the authors never analyzed leaf N concentration and/or content per se, the results are consistent with other studies. GLU1 is intimately associated with photorespiration in Arabidopsis, and glu1 mutants showing 5% of the wild-type levels of GLU1 activity develop serious N-deficiency symptoms when grown under conditions conducing to photorespiration, but not when growing at 1% CO$_2$ (Somerville and Ogren 1980). In fact, the relationship between N assimilation and photorespiration have been both demonstrated experimentally – with Arabidopsis and wheat shoots (Rachmilevitch et al. 2004) – and through mathematical modelling (Busch et al. 2018). The identification of GLU1 and other genes involved in the coordination of leaf N assimilation via the photorespiratory pathway is particularly important in the context of climate change, where increasing atmospheric [CO$_2$] might affect the photosynthesis/photorespiration balance and lead to N limitation even in N-rich soils.

Moving on towards forward-and-reverse genetic studies on the mechanisms governing leaf [P], these are even more scarce than those on quantitative genetics, and almost exclusively limited to Arabidopsis. Poirier et al. (1991), for example, isolated an Arabidopsis mutant that accumulated only 5% of the P, and between 24–44% of the total leaf P of wild-type plants (Poirier et al. 1991). This deficiency was caused by a mutation at a locus designated pho1, which controlled the xylem loading of P, even though the P-uptake rates were similar between pho1 and wild-type plants at a wide range of P supplies. Later on, Delhaize and Randall (Delhaize and Randall 1995) identified a new mutation at a locus designated pho2. In this case, mutants showed three times more P in their leaves than wild-type plants, mostly as P$_i$, apparently due to a deregulation over the amount of P$_i$ that is normally accumulated at shoots of Arabidopsis. Finally, Duan et al. (2008) showed that AtSPX3 might significantly influence leaf P concentration. In their study, partial repression of AtSPX3 by RNA interference under P-limiting conditions led to an increase of ~12.5% and ~65% in total leaf [P] and leaf [P$_i$], respectively.

Stomata

Leaf stomata are the primary structures that facilitate gas exchange between plants and the environment and the most direct means through which water may leave above-ground plant tissues. Accordingly, their structure, function, and evolution has received considerable interest (Franks and Beerling 2009, Kim et al. 2010, Dow and Bergmann 2014, Muir 2015). The rate of CO$_2$, O$_2$, and water vapor exchange between the atmosphere and the leaf interior is determined developmentally via the size of individual stomatal pores and their density on the leaf surface and dynamically through changes in the turgor pressure of the two guard cells which flank the stomatal opening.

Adaptive significance of natural variation in stomatal traits
There exists considerable variation in stomata size, shape, density, location, and behavior both within and between species (Tardieu and Simonneau 1998, Oren et al. 1999, Franks and Farquhar 2007, Muir 2015, Dittberner et al. 2018) which is frequently associated with aspects of plant ecology and evolution (Franks and Beerling 2009, Bartlett et al. 2016). Here we focus on within-species variation as this variation is the raw substrate for evolution by natural selection. In Arabidopsis, stomatal density and size show very high heritability (0.59 and 0.56, respectively; Dittberner et al. 2018) which is reflected in clear response of these and physiologically related traits such as water use efficiency to natural selection (e.g. Dudley 1996). Stomatal density and stomatal length also have moderate heritability in Populus trichocarpa, in the range 0.34-0.41 depending on which sides of the leaf are measured (McKown et al. 2014). Interestingly, stomatal density was strongly correlated with many climate parameters at the site of origin of the studied P. trichocarpa varieties. While stomatal density and size show strong heritability under constant environments, these characters do also show considerable plasticity in response to environmental cues such as atmospheric CO$_2$ concentration (Lake and Woodward 2008). Developing a better understanding of mechanisms driving genetic diversity in stomatal response to the environment – and the ecological relevance of this GxE -- may allow us to better model and mitigate the response of plant populations to climate change (Ainsworth and Rogers 2007, Monroe et al. 2018).

Quantitative genetic perspectives on stomata

Muir et al. identified 23 QTL associated with differences in stomatal density between two Solanum species (Muir et al. 2014). This is a remarkable number of QTL to be detected in a single mapping population and speaks both to the high heritability of stomatal density in this cross, as well as the high statistical power of their mapping strategy. These authors were also able to ascertain that natural selection was likely driving the phenotypic divergence in stomatal density as well as stomatal ratio (the proportion of stomata found on the abaxial and adaxial surfaces of leaves) between the two parents.

Despite the high heritability of stomatal characters in Arabidopsis, no loci were associated with natural genetic variation in density and just two were associated with size in a large Arabidopsis GWAS panel (Dittberner et al. 2018). Two processes might explain the challenge with identifying loci describing variation in stomatal size and density. First, many loci of independently small effect might be responsible for phenotypic variation in these traits. The fairly simple genetic basis of the stomatal patterning in Arabidopsis, described below, suggests that this is likely not the case. Alternatively, many independent mutations affecting stomatal patterning may segregate in Arabidopsis, thus occurring at very low frequencies and thereby limiting the power of GWAS to identify statistical associations between SNPs and trait values. Such recurrent mutations in a small set of causal loci have been observed in other traits in Arabidopsis (e.g. Monroe et al. 2016) and have, more generally, been identified as a likely cause of “missing heritability” (i.e. that it can be difficult to account for all of the loci which contribute to the
observed heritability in a trait (Manolio et al. 2009). By contrast, McKown and colleagues identified 18 genes in *P. trichocarpa* with significant associations to at least one stomatal character using a GWAS approach (McKown et al. 2014). GWAS analysis suggests a strong role for the *P. trichocarpa* ortholog of the stomatal patterning gene SPEECHLESS (see below) in determining the density and location of stomata in this species, with striking geographical correspondence between allelic diversity at SPEECHLESS and climate (McKown et al. 2019).

The ecological genetics of stomatal size and behavior have been studied extensively as they relate to Water Use Efficiency (WUE), which measures the amount fixed carbon per unit of water used. WUE is widely studied from a quantitative genetic perspective because proxies of WUE such as the ratio of 12C to 13C isotopes are fairly easy to measure (Farquhar and Richards 1984). As such, natural diversity in WUE is well documented in many plant species (Hubick and Farquhar 1989, Quisenberry and McMichael 1991, Geber and Dawson 1997, Van den Boogard et al. 1997) and, in some cases, QTL describing the genetic basis of these traits are known (Juenger et al. 2005, Brendel et al. 2007, Des Marais et al. 2016). Building on earlier QTL analyses which identified five QTL describing genetic variation in WUE between two *A. thaliana* ecotypes (Juenger et al. 2005), we identified a SNP which causes an amino acid substitution affecting WUE (Des Marais et al. 2014). This study demonstrated that a natural variant in a signaling protein, AtMPK12, alters the size and hormonal response of guard cells, increasing stomatal conductance and thereby reducing both WUE and whole plant transpiration efficiency. Further work on this system demonstrated that the AtMPK12 allele conferring low water use efficiency experiences a selective advantage when grown with competitors, likely because the allele causes plants to be greedy with water use, though it suffers a fitness penalty when water is limiting (Campitelli et al. 2016).

Molecular genetic perspectives on stomata

The development of guard cells is best understood in the model plants *A. thaliana* and *Brachypodium distachyon*. In Arabidopsis, guard cells arise from epidermal precursor cells during leaf development through a series of cell divisions regulated by three transcription factors, SPEECHLESS (SPCH), MUTE, and FAMA (reviewed by Lau and Bergmann 2012). Each of these transcription factors is itself under tight regulatory control, ensuring proper size for each stomate, proper spacing between stomata, and, thus, genetic control the ideal rate stomatal conductance, g_{max}, for the present environment. An interesting feature of guard cell development is that the precursor of mature guard cells, known as meristemoid cell, is able both to control its own fate and regulate the fate of adjacent cells, thus ensuring that its neighbors do not also develop into guard cells (Robinson et al. 2011). In the model grass *B. distachyon*, orthologs of several genes involved in Arabidopsis stomatal development also regulate guard cell fate, though some of these genes have unique functions or interact with one another differently than
Guard cell development is a plastic trait; plants can adjust the density of stomata on a leaf cell to match maximum stomatal conductance to water availability, light level or intrinsic variation in the demand for photosynthetic carbon reduction (e.g. Lampard et al. 2008). Remarkably, changes in guard cell size and spacing – and thus stomatal conductance – are accompanied by changes in the internal structure of leaves in an apparent effort to coordinate gas exchange and water loss to optimize both photosynthetic carbon reduction and plant water status (Dow et al. 2017).

Guard cells are also a model system for understanding environmentally responsive plant cell signaling. Guard cell turgor pressure, and thus stomatal aperture, responds to environmental parameters including water availability, light level and quality, atmospheric CO$_2$ concentration, ozone, and pathogens, as well as a large number of internal cues (Nilson and Assmann 2007, Kim et al. 2010). The cascade of cell signaling processes resulting in stomatal closure in response to abscisic acid (ABA) is exceptionally well-characterized in Arabidopsis (Kim et al. 2010). ABA is perceived in cells by a group of PYR/PYL receptor proteins which act to suppress the activity of PP2CA protein phosphatases (Park et al. 2009). In the absence of PP2C inhibition (Mustilli 2002), the OST1 protein positively regulates the production of reactive oxygen species (Pei et al. 2000) which begins a cascade of cellular events ultimately resulting in depolarization of guard cell membrane (reviewed by Ward et al. 2009).

Synthesis and Future Directions

Several interesting themes emerge from the preceding discussion. First, the types of studies which contribute to our understanding of the genetic basis of each trait vary considerably (Table 4). In the case of leaf structure, dozens of specific genes which control the thickness, density, and overall area of leaves have been isolated and characterized through molecular genetics analysis (Tables 1&2), though nearly all of this work relies on Arabidopsis as a model plant and few studies have dissected the genetic control of within-species phenotypic diversity in these traits. There is likewise detailed understanding of the molecular control of stomatal development as well as the physiological response of stomatal aperture to environmental cues. Phenotypic diversity in stomatal size and density has been well-documented but few studies have investigated the genetic basis of this diversity either within or between species or determined whether this diversity has any selective effect. Molecular control of plant nitrogen status has been studied largely in the context of uptake and assimilation and, to some degree, resorption during senescence. The molecular control of leaf nitrogen concentration and content *per se* – a central component of the LES – is less well understood. Similarly, there are very few studies on the molecular control of leaf P concentration and content. Of these four traits, we have the most comprehensive picture of the genetic architecture of leaf N, perhaps because it is readily scored in large mapping populations.
Writing in this journal in 2003, Remington and Purugganan noted the paucity of research on the genetic architecture of traits in wild plant populations and outlined a strong case for studying “the extent and molecular basis of evolutionary genetic correlations between plant growth measures … and ecophysiological traits such as efficiency of photosynthesis and resource use” (Remington and Purugganan 2003). At that time, evolutionary quantitative genetics in non-model species was largely restricted to low-resolution QTL analyses which could assess how many loci were associated with phenotypic differences between two parents and the relative effect size and direction of loci. In 2003, there was little prospect for identifying the specific genes and variants underlying detected QTL or driving genetic correlations between traits of non-model species. Their prediction that association mapping would become an essential tool for understanding the genotype to phenotype map was prescient, and subsequent advances in genome sequencing and GWAS methods now allow for fine chromosomal resolution of the statistical association between genetic variants and traits of interest, as discussed above.

With these advances in generating genotypic marker data and GWAS methodology, collecting and analysing phenotypic data in high throughput is now the primary limitation for most studies. An additional, related limitation is annotating the functions of genes and other features in genome sequences. As a sobering point of reference, in our best-studied plant species Arabidopsis thaliana, just 16% of 27,655 genes annotated in the reference genome have been annotated through the efforts of direct experimental analysis (The Arabidopsis Information Resource). We anticipate that progress on improving genome annotation and genotype-phenotype mapping will come from a suite of new phenomic tools (e.g. Chen et al. 2014, Fahlgren et al. 2015) that facilitate standardized measurement of ecologically relevant traits in high throughput. Of particular interest are tools for measuring traits directly related to ecophysiology, including parameters of photosynthesis (e.g. Meacham-Hensold et al. 2019, Rungrat et al. in press). An enduring challenge will be accurately measuring and analysing parameters related to growth and biomass partitioning, especially for root traits. Some novel methods for measuring roots in situ are coming online but most still remain labor intensive and expensive (Araus and Cairns 2014). Completely realizing the ecological and evolutionary context of plant growth regulation will require considerable advances in these types of phenomic approaches.

Despite these challenges, we foresee increasing conceptual synergy and convergence of methods between the fields of molecular genetics, physiology and development, and ecological genetics. Multiple studies have leveraged our rich understanding of Arabidopsis molecular genetics in field studies which assess the environmental dependence of traits such as flowering time and fitness (Agren et al. 2013), and infer the history of natural selection acting on putatively functional variants (Fournier-Level et al. 2011, Exposito-Alonso et al. 2018) or the association between climate and variants (Hancock et al. 2011, Lasky et al. 2012, Lasky et al. 2014). In some cases, specific genetic variants in genes of known function have
been experimentally demonstrated to underlie loci identified in the field (e.g. Park et al. 2018). While Arabidopsis is a powerful system for these types of integrated studies, its short life cycle, self-fertile reproductive system, and extremely broad ecological distribution are not likely representative of most plants. Several emerging ecological genetic systems should allow us to explore the molecular, ecophysiological, and developmental basis of plant functional traits in plants with diverse ecologies and life histories. Key aspects of these models will be good genomic resources, a tractability of experimental validation of gene function in vivo, and prospects for ecological analysis under realistic field settings. Studies of wild relatives of well-studied crop species, such as rice, sunflower, tomato, will likely be of great value in this regard, as will several emerging model wild species including Brachypodium (Vogel 2016), Mimulus (Wu et al. 2008), Panicum (Lowry et al. 2014), Populus (Douglas 2017), and Setaria (Brutnell et al. 2015).

Considering the significant challenges with identifying and validating the genetic basis of ecologically plant traits, and in linking these genetic mechanisms to the action of natural selection, we advocate a careful consideration of what traits are of specific interest to a given research question and a clear hypothesis that requires linking genotype to phenotype. Probably the most essential message in this regard is for researchers to ask first what trait they are studying and whether existing literature can help deconstruct the trait into readily assayed constituent traits. As one example cited above, Water Use Efficiency is a highly complex trait affected by leaf and stomatal architecture, the rate of carbon assimilation, plant hydraulics, and the response of guard cells to environmental cues. Each of these traits very likely impact plant ecology in ways beyond their effect on WUE and any one of them may well be the target of contemporary or past selection in nature. Advancing our mechanistic understanding of the evolution of plant functional traits will require careful consideration of the complexity of plant form and function and continue synthesis of molecular, ecological, and quantitative genetics.

References

Ackerly, D. D. (2004). "Adaptation, niche conservatism, and convergence: Comparative studies of leaf evolution in the California chaparral." American Naturalist 163: 654-671.

Ackerly, D. D., S. A. Dudley, S. E. Sultan, J. Schmitt, J. S. Coleman, C. R. Linder, D. R. Sandquist, M. A. Geber, A. S. Evans, T. E. Dawson and M. J. Lechowicz (2000). "The Evolution of Plant Ecophysiological Traits: Recent Advances and Future Directions." BioScience 50: 979-995.

Ackerly, D. D. and R. K. Monson (2003). "Waking the sleeping giant: The evolutionary foundations of plant function." International Journal of Plant Science 164(3 (Suppl.)): S1–S6.
Agren, J., C. G. Oakley, J. K. McKay, J. T. Lovell and D. W. Schemske (2013). "Genetic mapping of adaptation reveals fitness tradeoffs in Arabidopsis thaliana." Proceedings of the National Academy of Science 110(52): 21077-21082.

Ainsworth, E. A. and A. Rogers (2007). "The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions." Plant Cell Environ 30(3): 258-270.

Alvey, L. and N. P. Harberd (2005). "DELLA proteins: integrators of multiple plant growth regulatory inputs?" Physiologia Plantarum 123(2): 153-160.

Anastasiou, E., S. Kenz, M. Gerstung, D. MacLean, J. Timmer, C. Fleck and M. Lenhard (2007). "Control of plant organ size by KLUH/CYP78A5-dependent intercellular signaling." Developmental Cell 13(6): 843-856.

Anderson, J. T., C. R. Lee and T. Mitchell-Olds (2014). "Strong selection genome-wide enhances fitness trade-offs across environments and episodes of selection." Evolution 68(1): 16-31.

Andersson, S. (1991). "Geographical variation and genetic analysis of leaf shape in Crepis tectorum (Asteraceae)." Plant Systematics and Evolution 178: 247–258.

Andrews, K. R., J. M. Good, M. R. Miller, G. Luikart and P. A. Hohenlohe (2016). "Harnessing the power of RADseq for ecological and evolutionary genomics." Nature Reviews Genetics 17(2): 81-92.

Araus, J. L. and J. E. Cairns (2014). "Field high-throughput phenotyping: the new crop breeding frontier." Trends Plant Sci 19(1): 52-61.

Atwell, S., Y. S. Huang, B. J. Vilhjalmsson, G. Willems, M. Horton, Y. Li, D. Meng, A. Platt, A. M.

Tarone, T. T. Hu, R. Jiang, N. W. Muliyati, X. Zhang, M. A. Amer, I. Baxter, B. Brachi, J. Chory, C.

Dean, M. Debieu, J. de Meaux, J. R. Ecker, N. Faure, J. M. Kniskern, J. D. Jones, T. Michael, A.

Nemri, F. Roux, D. E. Salt, C. Tang, M. Todesco, M. B. Traw, D. Weigel, P. Marjoram, J. O.

Borevitz, J. Bergelson and M. Nordborg (2010). "Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines." Nature 465(7298): 627-631.

Autran, D., C. Jonak, K. Belcram, G. T. S. Beemster, J. Kronenberger, O. Grandjean, D. Inze and J. Traas (2002). "Cell numbers and leaf development in Arabidopsis: a functional analysis of the STRUWWELPETER gene." Embo Journal 21(22): 6036-6049.

Barrada, A., M. Djendli, T. Desnos, R. Mercier, C. Robaglia, M.-H. Montané and B. Menand (2019). "A TOR-YAK1 signaling axis controls cell cycle, meristem activity and plant growth in Arabidopsis." Development 146(3): dev171298.

Bartlett, M. K., T. Klein, S. Jansen, B. Choat and L. Sack (2016). "The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought." Proc Natl Acad Sci U S A.

Barton, N. H., J. Hermisson and M. Nordborg (2019). "Population Genetics: Why structure matters." eLife 8: e45380.
Bentsink, L., K. Yuan, M. Koornneef and D. Vreugdenhil (2003). "The genetics of phytate and phosphate accumulation in seeds and leaves of Arabidopsis thaliana, using natural variation." Theor Appl Genet 106(7): 1234-1243.

Berger, D. and T. Altmann (2000). "A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana." Genes & Development 14(9): 1119-1131.

Bradshaw, A. D. (1965). "Evolutionary significance of phenotypic plasticity in plants." Adv. Genet. 13: 115-155.

Brendel, O., D. Le Thiec, C. Scotti-Saintagne, C. Bodénès, A. Kremer and J.-M. Guehl (2007). "Quantitative trait loci controlling water use efficiency and related traits in Quercus robur L." Tree Genetics & Genomes 4(2): 263-278.

Brenner, W. G., E. Ramireddy, A. Heyl and T. Schmulling (2012). "Gene regulation by cytokinin in Arabidopsis." Frontiers in Plant Science 3.

Breuninger, H. and M. Lenhard (2010). "Control of tissue and organ growth in plants." Current Topics in Developmental Biology 91: 185-220.

Bright, K. L. and M. D. Rausher (2008). "Natural selection on a leaf-shape polymorphism in the ivyleaf morning glory (Ipomoea hederacea)." Evolution 62(8): 1978-1990.

Brouillette, L. C., D. M. Rosenthal, L. H. Rieseberg, C. Lexer, R. L. Malmberg and L. A. Donovan (2007). "Genetic architecture of leaf ecophysiological traits in Helianthus." Journal of Heredity.

Brown, V. K. and J. H. Lawton (1991). "Herbivory and the evolution of leaf size and shape." Philos Trans R Soc Lond B 333: 265–272.

Brutnell, T. P., J. L. Bennetzen and J. P. Vogel (2015). "Brachypodium distachyon and Setaria viridis: Model Genetic Systems for the Grasses." Annu Rev Plant Biol 66: 465-485.

Busch, F. A., R. F. Sage and G. D. Farquhar (2018). "Plants increase CO2 uptake by assimilating nitrogen via the photorespiratory pathway." Nat Plants 4(1): 46-54.

Campitelli, B. E., D. L. Des Marais and T. E. Juenger (2016). "Ecological interactions and the fitness effect of water-use efficiency: Competition and drought alter the impact of natural MPK12 alleles in Arabidopsis." Ecol Lett 19: 424-434.

Capron, A., L. Okresz and P. Genschik (2003). "First glance at the plant APC/C, a highly conserved ubiquitin-protein ligase." Trends in Plant Science 8(2): 83-89.

Chapin III, F. S., E. D. Schulze and H. A. Mooney (1990). "The ecology and economics of storage in plants." Annual Review of Ecology and Systematics 21: 423-447.
Charpentier, A., D. Garant and L. E. B. Kruuk, Eds. (2014). *Quantitative genetics in the wild*. Oxford, Oxford University Press.

Chen, D., K. Neumann, S. Friedel, B. Kilian, M. Chen, T. Altmann and C. Klukas (2014). "Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis." *Plant Cell* **26**(12): 4636-4655.

Cheverud, J. (2006). Genetic architecture of quantitative variation. *Evolutionary genetics: Concepts and case studies*. C. W. Fox and J. B. Wolf. Oxford, Oxford University Press: 288-309.

Chhetri, H. B., D. Macaya-Sanz, D. Kainer, A. K. Biswal, L. M. Evans, J. G. Chen, C. Collins, K. Hunt, S. S. Mohanty, T. Rosenstiel, D. Ryno, K. Winkeler, X. Yang, D. Jacobson, D. Mohnen, W. Muchero, S. H. Strauss, T. J. Tschapinski, G. A. Tuskan and S. P. DiFazio (2019). "Multitrait genome-wide association analysis of *Populus trichocarpa* identifies key polymorphisms controlling morphological and physiological traits." *New Phytol* **223**(1): 293-309.

Chitwood, D. H., L. R. Headland, R. Kumar, J. Peng, J. N. Maloof and N. R. Sinha (2012). "The developmental trajectory of leaflet morphology in wild tomato species." *Plant Physiol* **158**(3): 1230-1240.

Chitwood, D. H., A. Ranjan, C. C. Martinez, L. R. Headland, T. Thiem, R. Kumar, M. F. Covington, T. Hatcher, D. T. Naylor, S. Zimmerman, N. Downs, N. Raymundo, E. S. Buckler, J. N. Maloof, M. Aradhya, B. Prins, L. Li, S. Myles and N. R. Sinha (2014). "A modern ampelography: a genetic basis for leaf shape and venation patterning in grape." *Plant Physiol* **164**(1): 259-272.

Clark, S. E., R. W. Williams and E. M. Meyerowitz (1997). "The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis." *Cell* **89**(4): 575-585.

Clay, N. K. and T. Nelson (2005). "The recessive epigenetic swellmap mutation affects the expression of two step II splicing factors required for the transcription of the cell proliferation gene STRUWWELPETER and for the timing of cell cycle arrest in the Arabidopsis leaf." *Plant Cell* **17**(7): 1994-2008.

Coschigano, K. T., R. Melo-Oliveira, J. Lim and G. M. Coruzzi (1998). "Arabidopsis gls mutants and distinct Fd-GOGAT genes: Implications for photorespiration and primary nitrogen assimilation." *Plant Cell* **10**(5): 741-752.

Cosgrove, D. J. (2005). "Growth of the plant cell wall." *Nature Reviews Molecular Cell Biology* **6**(11): 850-861.

Cullis, C. A. (1977). "Molecular aspects of the environmental induction of heritable changes in flax." *Heredity* **38**(2): 129-154.
Cumbie, W. P., A. Eckert, J. Wegrzyn, R. Whetten, D. Neale and B. Goldfarb (2011). "Association genetics of carbon isotope discrimination, height and foliar nitrogen in a natural population of Pinus taeda L." Heredity (Edinb) 107(2): 105-114.

Delhaize, E. and P. J. Randall (1995). "Characterization of a Phosphate-Accumulator Mutant of Arabidopsis thaliana." Plant physiology 107(1): 207-213.

Deprost, D., L. Yao, R. Sormani, M. Moreau, G. Leterreux, M. Nicolai, M. Bedu, C. Robaglia and C. Meyer (2007). "The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation." Embo Reports 8(9): 864-870.

Des Marais, D. L., L. C. Auchincloss, E. Sukamtoh, J. K. McKay, T. Logan, J. H. Richards and T. E. Juenger (2014). "Variation in MPK12 affects water use efficiency in Arabidopsis and reveals a pleiotropic link between guard cell size and ABA response." Proceedings of the National Academy of Sciences 111(7): 2836-2841.

Des Marais, D. L., K. H. Hernandez and T. E. Juenger (2013). "Genotype-by-environment interaction and plasticity: exploring genomic responses of plants to the abiotic environment." Annual Review ofEcology, Evolution and Systematics 44: 5-29.

Des Marais, D. L., J. R. Lasky, P. E. Verslues, T. Z. Chang and T. E. Juenger (2017). "Interactive effects of water limitation and elevated temperature on the physiology, development and fitness of diverse accessions of Brachypodium distachyon." New Phytol 214(1): 132-144.

Des Marais, D. L., J. K. McKay, J. H. Richards, S. Sen, T. Wayne and T. E. Juenger (2012). "Physiological genomics of response to soil drying in diverse Arabidopsis accessions." Plant Cell 24(3): 893-914.

Des Marais, D. L., S. Razzaque, K. M. Hernandez, D. F. Garvin and T. E. Juenger (2016). "Quantitative trait loci associated with natural diversity in water-use efficiency and response to soil drying in Brachypodium distachyon." Plant Science 251: 2-11.

De Veylder, L., G. T. S. Beemster, T. Beeckman and D. Inze (2001). "CKS1At overexpression in Arabidopsis thaliana inhibits growth by reducing meristem size and inhibiting cell-cycle progression." Plant Journal 25(6): 617-626.

Disch, S., E. Anastasiou, V. K. Sharma, T. Laux, J. C. Fletcher and M. Lenhard (2006). "The E3 ubiquitin ligase BIG BROTHER controls Arabidopsis organ size in a dosage-dependent manner." Current Biology 16(3): 272-279.

Dittberner, H., A. Korte, T. Mettler-Altmann, A. P. M. Weber, G. Monroe and J. de Meaux (2018). "Natural variation in stomata size contributes to the local adaptation of water-use efficiency in Arabidopsis thaliana." Mol Ecol 27(20): 4052-4065.
Donnelly, P. M., D. Bonetta, H. Tsukaya, R. E. Dengler and N. G. Dengler (1999). "Cell cycling and cell enlargement in developing leaves of Arabidopsis." Developmental Biology 215(2): 407-419.

Donovan, L. A., C. M. Mason, A. W. Bowsher, E. W. Goolsby, C. D. A. Ishibashi and W. Cornwell (2014). "Ecological and evolutionary lability of plant traits affecting carbon and nutrient cycling." Journal of Ecology 102(2): 302-314.

Douglas, C. J. (2017). Populus as a Model Tree. Comparative and Evolutionary Genomics of Angiosperm Trees. A. Groover and Q. Cronk, Springer, Cham: 61-84.

Dow, G. J. and D. C. Bergmann (2014). "Patternning and processes: how stomatal development defines physiological potential." Curr Opin Plant Biol 21: 67-74.

Dow, G. J., J. A. Berry and D. C. Bergmann (2017). "Disruption of stomatal lineage signaling or transcriptional regulators has differential effects on mesophyll development, but maintains coordination of gas exchange." New Phytologist 216(1): 69-75.

Duan, K., K. Yi, L. Dang, H. Huang, W. Wu and P. Wu (2008). "Characterization of a sub-family of Arabidopsis genes with the SPX domain reveals their diverse functions in plant tolerance to phosphorus starvation." The Plant Journal 54(6): 965-975.

Dudley, S. A. (1996). "Differing Selection on Plant Physiological Traits in Response to Environmental Water Availability: A Test of Adaptive Hypotheses." Evolution 50(1): 92-102.

Edwards, C. E., B. E. Ewers, D. G. Williams, Q. Xie, P. Lou, X. Xu, C. R. McClung and C. Weinig (2011). "The genetic architecture of ecophysiological and circadian traits in Brassica rapa." Genetics 189(1): 375-390.

Efroni, I., Y. Eshed and E. Lifschitz (2010). "Morphogenesis of Simple and Compound Leaves: A Critical Review." Plant Cell 22(4): 1019-1032.

Eloy, N. B., M. D. Lima, D. Van Damme, H. Vanhaeren, N. Gonzalez, L. De Milde, A. S. Hemerly, G. T. S. Beemster, D. Inze and P. C. G. Ferreira (2011). "The APC/C subunit 10 plays an essential role in cell proliferation during leaf development." Plant Journal 68(2): 351-363.

Elshire, R. J., J. C. Glaubitz, Q. Sun, J. A. Poland, K. Kawamoto, E. S. Buckler and S. E. Mitchell (2011). "A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species." PLoS One 6(5): e19379.

Exposito-Alonso, M., H. A. Burbano, O. Bossdorf, R. Nielsen and D. Weigel (2018). "A map of climate change-driven natural selection in Arabidopsis thaliana." BioRxiv: 10.1101/321133.

Fahlgren, N., M. Feldman, M. A. Gehan, M. S. Wilson, C. Shyu, D. W. Bryant, S. T. Hill, C. J. McEntee, S. N. Warnasooriya, I. Kumar, T. Ficor, S. Turnipseed, K. B. Gilbert, T. P. Brutnell, J. C. Carrington, T. C. Mockler and I. Baxter (2015). "A Versatile Phenotyping System and Analytics Platform Reveals Diverse Temporal Responses to Water Availability in Setaria." Mol Plant 8(10): 1520-1535.
Falconer, D. S. and T. F. C. Mackay (1996). *Introduction to Quantitative Genetics*. Essex, England, Addison Wesley Longman Limited.

Farquhar, G. D. and R. A. Richards (1984). "Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes." *Australian Journal of Plant Physiology* **11**: 539-552.

Feng, G. P., Z. X. Qin, J. Z. Yan, X. R. Zhang and Y. X. Hu (2011). "Arabidopsis ORGAN SIZE RELATED1 regulates organ growth and final organ size in orchestration with ARGOS and ARL." *New Phytologist* **191**(3): 635-646.

Farquhar, G. D. and R. A. Richards (1984). "Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes." *Australian Journal of Plant Physiology* **11**: 539-552.

Feng, G. P., Z. X. Qin, J. Z. Yan, X. R. Zhang and Y. X. Hu (2011). "Arabidopsis ORGAN SIZE RELATED1 regulates organ growth and final organ size in orchestration with ARGOS and ARL." *New Phytologist* **191**(3): 635-646.

Flavell, R. B., M. O'Dell, P. Sharp, E. Nevo and A. Beiles (1986). "Variation in the Intergenic Spacer of Ribosomal DNA of Wild Wheat, *Triticum dicoccoides*, in Israel." *Molecular Biology and Evolution* **3**(6): 547-547.

Fournier-Level, A., A. Korte, M. D. Cooper, M. Nordborg, J. Schmitt and A. M. Wilczek (2011). "A map of local adaptation in *Arabidopsis thaliana*." *Science* **334**(6052): 86-89.

Franks, P. J. and D. J. Beerling (2009). "Maximum leaf conductance driven by CO$_2$ effects on stomatal size and density over geologic time." *Proc Natl Acad Sci U S A* **106**(25): 10343-10347.

Franks, P. J. and G. D. Farquhar (2007). "The mechanical diversity of stomata and its significance in gas-exchange control." *Plant Physiol* **143**(1): 78-87.

Fredeen, A. L., J. A. Gamon and C. B. Field (1991). "Responses of photosynthesis and carbohydrate-partitioning to limitations in nitrogen and water availability in field-grown sunflower." *Plant, Cell and Environment* **14**: 963-970.

Gallais, A. and B. Hirel (2004). "An approach to the genetics of nitrogen use efficiency in maize." *Journal of Experimental Botany* **55**(396): 295-306.

Geber, M. A. and T. Dawson (1997). "Genetic variation in stomatal and biochemical limitations to photosynthesis in the annual plant, *Polygonum arenastrum*." *Oecologia* **109**: 535-546.

Ghandilyan, A., N. Ilk, C. Hanhart, M. Mbengue, L. Barboza, H. Schat, M. Koornneef, M. El-Lithy, D. Vreugdenhil, M. Reymond and M. G. Aarts (2009). "A strong effect of growth medium and organ type on the identification of QTLs for phytate and mineral concentrations in three *Arabidopsis thaliana* RIL populations." *J Exp Bot* **60**(5): 1409-1425.

Gonzalez, N., H. Vanhaeren and D. Inze (2012). "Leaf size control: complex coordination of cell division and expansion." *Trends in Plant Science* **17**(6): 332-340.

Greenham, K., C. R. Guadagno, M. A. Gehan, T. C. Mockler, C. Weinig, B. E. Ewers and C. R. McClung (2017). "Temporal network analysis identifies early physiological and transcriptomic indicators of mild drought in *Brassica rapa*." *eLife* **6**: e29655.
Guilherme Pereira, C., P. L. Clode, R. S. Oliveira and H. Lambers (2018). "Eudicots from severely phosphorus-impoverished environments preferentially allocate phosphorus to their mesophyll." New Phytologist 218(3): 959-973.

Hancock, A. M., B. Brachi, N. Faure, M. W. Horton, L. B. Jarymowycz, F. G. Sperone, C. Toomajian, F. Roux and J. Bergelson (2011). "Adaptation to climate across the Arabidopsis thaliana genome." Science 334(6052): 83-86.

Hanson, J., H. Johannesson and P. Engstrom (2001). "Sugar-dependent alterations in cotyledon and leaf development in transgenic plants expressing the HDZhdip gene ATHB13." Plant Molecular Biology 45(3): 247-262.

Hayes, P. E., P. L. Clode, R. S. Oliveira and H. Lambers (2018). "Proteaceae from phosphorus-impoverished habitats preferentially allocate phosphorus to photosynthetic cells: An adaptation improving phosphorus-use efficiency." Plant Cell Environ 41(3): 605-619.

Hirel, B., P. Bertin, I. Quillere, W. Bourdoncle, C. Attagnant, C. Dellay, A. Gouy, S. Cadiou, C. Retallediau, M. Falque and A. Gallais (2001). "Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize." Plant Physiology 125(3): 1258-1270.

Holst, K., T. Schmulling and T. Werner (2011). "Enhanced cytokinin degradation in leaf primordia of transgenic Arabidopsis plants reduces leaf size and shoot organ primordia formation." Journal of Plant Physiology 168(12): 1328-1334.

Holtan, H. E. E. and S. Hake (2003). "Quantitative Trait Locus Analysis of Leaf Dissection in Tomato Using Lycopersicon pennellii Segmental Introgression Lines." Genetics 165: 1541–1550.

Hong, S. Y., O. K. Kim, S. G. Kim, M. S. Yang and C. M. Park (2011). "Nuclear import and DNA binding of the ZHD5 transcription factor Is modulated by a competitive peptide inhibitor in Arabidopsis." Journal of Biological Chemistry 286(2): 1659-1668.

Hopper, S. D. (2009). "OCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes." Plant and Soil 322(1): 49-86.

Horvath, B. M., Z. Magyar, Y. X. Zhang, A. W. Hamburger, L. Bako, R. G. Visser, C. W. Bachem and L. Bogre (2006). "EBP1 regulates organ size through cell growth and proliferation in plants." EMBO Journal 25(20): 4909-4920.

Hu, H. Z., R. Zhang, Z. S. Tao, X. K. Li, Y. Y. Li, J. F. Huang, X. X. Li, X. Han, S. Q. Feng, G. M. Zhang and L. C. Pen (2018). "Cellulose Synthase Mutants Distinctively Affect Cell Growth and Cell Wall Integrity for Plant Biomass Production in Arabidopsis." Plant and Cell Physiology 59(6): 1144-1157.
Hu, Y., H. M. Poh and N. H. Chua (2006). "The Arabidopsis ARGOS-LIKE gene regulates cell expansion during organ growth (vol 47, pg 1, 2006)." *Plant Journal* **47**(3): 490-490.

Hu, Y. X., O. Xie and N. H. Chua (2003). "The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size." *Plant Cell* **15**(9): 1951-1961.

Huang, X., Y. Zhao, X. Wei, C. Li, A. Wang, Q. Zhao, W. Li, Y. Guo, L. Deng, C. Zhu, D. Fan, Y. Lu, Q. Weng, K. Liu, T. Zhou, Y. Jing, L. Si, G. Dong, T. Huang, T. Lu, Q. Feng, Q. Qian, J. Li and B. Han (2011). "Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm." *Nat Genet* **44**(1): 32-39.

Hubick, K. T. and G. D. Farquhar (1989). "Carbon isotope discrimination and the ratio of carbon gained to water lost in barley cultivars." *Plant Cell and Environment* **12**: 795-804.

Ikeuchi, M., T. Yamaguchi, T. Kazama, T. Ito, G. Horiguchi and H. Tsukaya (2011). "ROTUNDIFOLIA4 Regulates Cell Proliferation Along the Body Axis in Arabidopsis Shoot." *Plant and Cell Physiology* **52**(1): 59-69.

Jackson, D., B. Veit and S. Hake (1994). "Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot." *Development* **120**(2): 405-413.

Josephs, E. B., J. R. Stinchcombe and S. I. Wright (2017). "What can genome-wide association studies tell us about the evolutionary forces maintaining genetic variation for quantitative traits?" *New Phytol* **214**(1): 21-33.

Juenger, T., J. M. Perez-Perez, S. Bernal and J. L. Micol (2005). "Quantitative trait loci mapping of floral and leaf morphology traits in *Arabidopsis thaliana*: evidence for modular genetic architecture." *Evolution and Development* **7**(3): 259-271.

Juenger, T. E., J. McKay, N. Hausmann, J. Keurentjes, S. Sen, K. Stowe, T. Dawson, E. Simms and J. Richards (2005). "Identification and characterization of QTL underlying whole-plant physiology in *Arabidopsis thaliana*: delta 13C, stomatal conductance and transpiration efficiency." *Plant, Cell and Environment* **28**: 697-708.

Keegstra, K. and N. Raikhel (2001). "Plant glycosyltransferases." *Current Opinion in Plant Biology* **4**(3): 219-224.

Kessler, S. and N. Sinha (2004). "Shaping up: the genetic control of leaf shape." *Current Opinion in Plant Biology* **7**(1): 65-72.

Kim, G. T., K. Shoda, T. Tsuge, K. H. Cho, H. Uchimiya, R. Yokoyama, K. Nishitani and H. Tsukaya (2002). "The ANGUSTIFOLIA gene of Arabidopsis, a plant CtBP gene, regulates leaf-cell expansion, the arrangement of cortical microtubules in leaf cells and expression of a gene involved in cell-wall formation." *Embo Journal* **21**(6): 1267-1279.
Kim, G. T., H. Tsukaya, Y. Saito and H. Uchimiy (1999). "Changes in the shapes of leaves and flowers upon overexpression of cytochrome P450 in Arabidopsis." Proceedings of the National Academy of Sciences of the United States of America 96(16): 9433-9437.

Kim, G. T., H. Tsukaya and H. Uchimiya (1998). "The CURLY LEAF gene controls both division and elongation of cells during the expansion of the leaf blade in Arabidopsis thaliana." Planta 206: 175-183.

Kim, T.-H., M. Bohmer, H. Hu, N. Nishimura and J. I. Schroeder (2010). "Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling." Annual Reviews of Plant Biology 61: 561-591.

Kimura, S., D. Koenig, J. Kang, F. Y. Yoong and N. Sinha (2008). "Natural variation in leaf morphology results from mutation of a novel KNOX gene." Curr Biol 18(9): 672-677.

Kimura, S. and N. Sinha (2008). "Tomato (Solanum lycopersicum): A Model Fruit-Bearing Crop." CSH Protoc 2008: pdb emo105.

Kliebenstein, D. (2009). "Quantitative genomics: analyzing intraspecific variation using global gene expression polymorphisms or eQTLs." Annu Rev Plant Biol 60: 93-114.

Krzek, B. A. (1999). "Ectopic expression AINTEGUMENTA in Arabidopsis plants results in increased growth of floral organs." Developmental Genetics 25(3): 224-236.

Kurepa, J., S. Wang, Y. Li, D. Zaitlin, A. J. Pierce and J. A. Smalle (2009). "Loss of 26S proteasome function leads to increased cell size and decreased cell number in Arabidopsis shoot organs." Plant Physiology 150(1): 178-189.

Kuwabara, A., H. Tsukaya and T. Nagata (2001). "Identification of Factors that Cause Heterophylly in Ludwigia arculata Walt. (Onagraceae)." Plant Biol (Stuttg) 3: 98-105.

Lake, J. A. and F. I. Woodward (2008). "Response of stomatal numbers to CO2 and humidity: control by transpiration rate and abscisic acid." New Phytologist 179(2): 397-404.

Lambers, H., G. R. Caorthray, P. Giavalisco, J. Kuo, E. Laliberte, S. J. Pearse, W. R. Scheible, M. Stitt, F. Teste and B. L. Turner (2012). "Proteaceae from severely phosphorous-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus-use-efficiency." New Phytol 196(4): 1098-1108.

Lambers, H., F. S. Chapin III and T. L. Pons (2008). Plant Physiological Ecology. New York, NY, Springer.

Lampard, G. R., C. A. MacAlister and D. C. Bergmann (2008). "Arabidopsis Stomatal Initiation Is Controlled by MAPK-Mediated Regulation of the bHLH SPEECHLESS." Science 322(5904): 1113-1116.
Lande, R. and S. J. Arnold (1983). "The measurement of selection on correlated characters." *Evolution* **37**: 1210-1226.

Langfelder, P. and S. Horvath (2008). "WGCNA: an R package for weighted correlation network analysis." *BMC Bioinformatics* **9**: 559.

Langfelder, P., R. Luo, M. C. Oldham and S. Horvath (2011). "Is my network module preserved and reproducible?" *PLoS Comput Biol* **7**(1): e1001057.

Lasky, J. R., D. L. Des Marais, D. B. Lowry, I. Povolotskaya, J. McKay, J. H. Richards, T. H. Keitt and T. E. Juenger (2014). "Natural variation in abiotic stress responsive gene expression and local adaptation to climate in *Arabidopsis thaliana*." *Molecular Biology and Evolution* **31**: 2283-2296.

Lasky, J. R., D. L. Des Marais, J. K. McKay, J. H. Richards, T. E. Juenger and T. H. Keitt (2012). "Characterizing genomic variation of *Arabidopsis thaliana*: the roles of geography and climate." *Mol Ecol* **21**: 5512-5529.

Lau, O. S. and D. C. Bergmann (2012). "Stomatal development: a plant's perspective on cell polarity, cell fate transitions and intercellular communication." *Development* **139**(20): 3683-3692.

Lee, B. H., J. H. Ko, S. Lee, Y. Lee, J. H. Pak and J. H. Kim (2009). "The Arabidopsis GRF-INTERACTING FACTOR Gene Family Performs an Overlapping Function in Determining Organ Size as Well as Multiple Developmental Properties." *Plant Physiology* **151**(2): 655-668.

Lee, Y. W., B. A. Gould and J. R. Stinchcombe (2014). "Identifying the genes underlying quantitative traits: a rationale for the QTN programme." *AoB Plants* **6**(0): plu004.

Leinonen, T., R. J. McCairns, R. B. O'Hara and J. Merila (2013). "Q(ST)-F(ST) comparisons: evolutionary and ecological insights from genomic heterogeneity." *Nat Rev Genet* **14**(3): 179-190.

Levi, A., A. H. Paterson, V. Barak, D. Yakir, B. Wang, P. W. Chee and Y. Saranga (2009). "Field evaluation of cotton near-isogenic lines introgressed with QTLs for productivity and drought related traits." *Molecular Breeding* **23**: 179-195.

Lewis, R. S. (2011). *Nicotiana*. *Wild Crop Relatives: Genomic and Breeding Resources*. C. Kole. Berlin, Springer: 185-208.

Hu, Y. X., O. Xie and N. H. Chua (2003). "The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size." *Plant Cell* **15**(9): 1951-1961.

Levi, A., A. Paterson, V. Barak, D. Yakir, B. Wang, P. Chee and Y. Saranga (2009). "Field evaluation of cotton near-isogenic lines introgressed with QTLs for productivity and drought related traits." *Molecular Breeding* **23**(2): 179-195.

Lima, M. D., N. B. Eloy, M. C. Bottino, A. S. Hemerly and P. C. G. Ferreira (2013). "Overexpression of the anaphase-promoting complex (APC) genes in *Nicotiana tabacum* promotes increasing biomass accumulation." *Molecular Biology Reports* **40**(12): 7093-7102.
Liu, D. M., Y. Song, Z. X. Chen and D. Q. Yu (2009). "Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis." Physiologia Plantarum **136**(2): 223-236.

Loudet, O., S. Chaillou, P. Merigout, J. Talbotec and F. Daniel-Vedele (2003). "Quantitative trait loci analysis of nitrogen use efficiency in Arabidopsis." Plant Physiology **131**(3): 1508-1508.

Lovell, J. T., J. Jenkins, D. B. Lowry, S. Mamidi, A. Sreedasyam, X. Weng, K. Barry, J. Bonnette, B. Campitelli, C. Daum, S. P. Gordon, B. A. Gould, A. Khasanova, A. Lipzen, A. MacQueen, J. D. Palacio-Mejia, C. Plott, E. V. Shakirov, S. Shu, Y. Yoshinaga, M. Zane, D. Kudrna, J. D. Talag, D. Rokhsar, J. Grimwood, J. Schmutz and T. E. Juenger (2018). "The genomic landscape of molecular responses to natural drought stress in Panicum hallii." Nat Commun **9**(1): 5213.

Lowry, D. B., K. D. Behrman, P. Grabowski, G. P. Morris, J. R. Kiniry and T. E. Juenger (2014). "Adaptations between ecotypes and along environmental gradients in Panicum virgatum." Am Nat **183**(5): 682-692.

MacAlister, C. A., K. Ohashi-Ito and D. C. Bergmann (2007). "Transcription factor control of asymmetric cell divisions that establish the stomatal lineage." Nature **445**(7127): 537-540.

Makino, A., H. Nakano and T. Mae (1994). "Responses of ribulose-1,5-bisphosphate carboxylase, cytochrome f, and sucrose synthesis enzymes in rice leaves to leaf nitrogen and their relationships to photosynthesis." Plant Physiology **105**: 173-179.

Manolio, T. A., F. S. Collins, N. J. Cox, D. B. Goldstein, L. A. Hindorff, D. J. Hunter, M. I. McCarthy, E. M. Ramos, L. R. Cardon, A. Chakravarti, J. H. Cho, A. E. Guttmacher, A. Kong, L. Kruglyak, E. Mardis, C. N. Rotimi, M. Slatkin, D. Valle, A. S. Whittemore, M. Boehnke, A. G. Clark, E. Eichler, G. Gibson, J. L. Haines, T. F. Mackay, S. A. McCarroll and P. M. Visscher (2009). "Finding the missing heritability of complex diseases." Nature **461**(7265): 747-753.

Mansoori, N., J. Timmers, T. Desprez, C. L. Alvim-Kamei, D. C. T. Dees, J. P. Vincken, R. G. F. Visser, H. Hofte, S. Vernhettes and L. M. Trindade (2015). "KORRIGAN1 Interacts Specifically with Integral Components of the Cellulose Synthase Machinery (vol 9, e112387, 2014)." PloS One **10**(10).

McGinnis, K. M., S. G. Thomas, J. D. Soule, L. C. Strader, J. M. Zale, T. P. Sun and C. M. Steber (2003). "The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase." Plant Cell **15**(5): 1120-1130.

McKown, A. D., R. D. Guy, J. Klapste, A. Geraldes, M. Friedmann, Q. C. Cronk, Y. A. El-Kassaby, S. D. Mansfield and C. J. Douglas (2014). "Geographical and environmental gradients shape phenotypic trait variation and genetic structure in Populus trichocarpa." New Phytol **201**(4): 1263-1276.
McKown, A. D., R. D. Guy, L. Quamme, J. Klapste, J. La Mantia, C. P. Constabel, Y. A. El-Kassaby, R. C. Hamelin, M. Zifkin and M. S. Azam (2014). "Association genetics, geography and ecophysiology link stomatal patterning in *Populus trichocarpa* with carbon gain and disease resistance trade-offs." *Mol Ecol* **23**(23): 5771-5790.

McKown, A. D., J. Klapste, R. D. Guy, O. R. A. Corea, S. Fritsche, J. Ehlting, Y. A. El-Kassaby and S. D. Mansfield (2019). "A role for SPEECHLESS in the integration of leaf stomatal patterning with the growth vs disease trade-off in poplar." *New Phytol*.

Meacham-Hensold, K., C. M. Montes, J. Wu, K. Guan, P. Fu, E. A. Ainsworth, T. Pederson, C. E. Moore, K. L. Brown, C. Raines and C. J. Bernacchi (2019). "High-throughput field phenotyping using hyperspectral reflectance and partial least squares regression (PLSR) reveals genetic modifications to photosynthetic capacity." *Remote Sensing of Environment*.

Miner, B. G., S. E. Sultan, S. G. Morgan, D. K. Padilla and R. A. Relyea (2005). "Ecological consequences of phenotypic plasticity." *Trends Ecol Evol* **20**(12): 685-692.

Mizukami, Y. and R. L. Fischer (2000). "Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis." *Proceedings of the National Academy of Sciences of the United States of America* **97**(2): 942-947.

Monroe, G., T. Powell, N. Price, J. L. Mullen, A. Howard, K. Evans, J. T. Lovell and J. K. McKay (in press). "Drought adaptation in *Arabidopsis thaliana* by extensive genetic loss-of-function." *eLife*.

Monroe, J. G., D. W. Markman, W. S. Beck, A. J. Felton, M. L. Vahsen and Y. Pressler (2018). "Ecoevolutionary Dynamics of Carbon Cycling in the Anthropocene." *Trends Ecol Evol* **33**(3): 213-225.

Monroe, J. G., C. McGovern, J. R. Lasky, K. Grogan, J. Beck and J. K. McKay (2016). "Adaptation to warmer climates by parallel functional evolution of CBF genes in *Arabidopsis thaliana*." *Mol Ecol* **25**(15): 3632-3644.

Muir, C. D. (2015). "Making pore choices: repeated regime shifts in stomatal ratio." *Proc Biol Sci* **282**(1813): 20151498.

Muir, C. D., R. P. Hangarter, L. C. Moyle and P. A. Davis (2014). "Morphological and anatomical determinants of mesophyll conductance in wild relatives of tomato (*Solanum* sect. *Lycopersicoides*; Solanaceae)." *Plant, Cell and Environment* **37**: 1415-1426.

Muir, C. D., J. B. Pease and L. C. Moyle (2014). "Quantitative genetic analysis indicates natural selection on leaf phenotypes across wild tomato species (*Solanum* sect. *Lycopersicon*; Solanaceae)." *Genetics* **198**(4): 1629-1643.
Mustilli, A. C. (2002). "Arabidopsis OST1 Protein Kinase Mediates the Regulation of Stomatal Aperture by Abscisic Acid and Acts Upstream of Reactive Oxygen Species Production." The Plant Cell Online 14(12): 3089-3099.

Nadeau, J. A. and F. D. Sack (2002). "Control of stomatal distribution on the Arabidopsis leaf surface." Science 296(5573): 1697-1700.

Narita, N. N., S. Moore, G. Horiguchi, M. Kubo, T. Demura, H. Fukuda, J. Goodrich and H. Tsukaya (2004). "Overexpression of a novel small peptide ROTUNDIFOLIA4 decreases cell proliferation and alters leaf shape in Arabidopsis thaliana." The Plant Journal 38(4): 699-713.

Nilson, S. E. and S. M. Assmann (2007). "The Control of Transpiration. Insights from Arabidopsis." Plant Physiology 143: 19-27.

Norton, G. J., C. M. Deacon, L. Xiong, S. Huang, A. A. Meharg and A. H. Price (2010). "Genetic mapping of the rice ionome in leaves and grain: identification of QTLs for 17 elements including arsenic, cadmium, iron and selenium." Plant and Soil 329(1): 139-153.

Oren, R., J. S. Sperry, G. G. Katul, D. E. Pataki, B. E. Ewers, N. Phillips and K. V. R. Schäfer (1999). "Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit." Plant, Cell and Environment 22: 1515-1526.

Orr, H. A. (1998). "Testing natural selection vs. genetic drift in phenotypic evolution using quantitative trait locus data." Genetics 149: 2099-2104.

Orr, H. A. (2005). "The Genetic Theory of Adaptation: A Brief History." Nature Reviews Genetics 6: 119-127.

Palatnik, J. F., E. Allen, X. L. Wu, C. Schommer, R. Schwab, J. C. Carrington and D. Weigel (2003). "Control of leaf morphogenesis by microRNAs." Nature 425(6955): 257-263.

Park, S., S. J. Gilmour, R. Grumet and M. F. Thomashow (2018). "CBF-dependent and CBF-independent regulatory pathways contribute to the differences in freezing tolerance and cold-regulated gene expression of two Arabidopsis ecotypes locally adapted to sites in Sweden and Italy." PLoS One 13(12): e0207723.

Park, S. Y., P. Fung, N. Nishimura, D. R. Jensen, H. Fujii, Y. Zhao, S. Lumba, J. Santiago, A. Rodrigues, T. F. Chow, S. E. Alfred, D. Bonetta, R. Finkelstein, N. J. Prowart, D. Desveaux, P. L. Rodriguez, P. McCourt, J. K. Zhu, J. I. Schroeder, B. F. Volkman and S. R. Cutler (2009). "Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins." Science 324(5930): 1068-1071.

Pei, Z.-M., Y. Murata, G. Benning, S. Thomine, B. Klusener, G. J. Allen, E. Grill and J. I. Schroeder (2000). "Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells." Science 406: 731-734.
Poirier, Y., S. Thoma, C. Somerville and J. Schiefelbein (1991). "Mutant of Arabidopsis Deficient in Xylem Loading of Phosphate." *Plant Physiology* 97(3): 1087.

Poorter, H., Ü. Niinemets, L. Poorter, I. J. Wright and R. Villar (2009). "Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis." *New Phytologist* 182(3): 565-588.

Prasad, K. V., B. H. Song, C. Olson-Manning, J. T. Anderson, C. R. Lee, M. E. Schranz, A. J. Windsor, M. J. Clauss, A. J. Manzaneda, I. Naqvi, M. Reichelt, J. Gershenzon, S. G. Rupasinghe, M. A. Schuler and T. Mitchell-Olds (2012). "A gain-of-function polymorphism controlling complex traits and fitness in nature." *Science* 337(6098): 1081-1084.

Prinzenberg, A. E., H. Barbier, D. E. Salt, B. Stich and M. Reymond (2010). "Relationships between Growth, Growth Response to Nutrient Supply, and Ion Content Using a Recombinant Inbred Line Population in Arabidopsis." *Plant Physiology* 154(3): 1361.

Provart, N. J., J. Alonso, S. M. Assmann, D. Bergmann, S. M. Brady, J. Brkljacic, J. Browse, C. Chapple, V. Colot, S. Cutler, J. Dangl, D. Ehrhardt, J. D. Friesner, W. B. Frommer, E. Grotewold, E. Meyerowitz, J. Nemhauser, M. Nordborg, C. Pikaard, J. Shanklin, C. Somerville, M. Stitt, K. U. Torii, J. Waese, D. Wagner and P. McCourt (2015). "50 years of Arabidopsis research: highlights and future directions." *New Phytol*.

Qiu, J. L., R. Jilk, M. D. Marks and D. B. Szymanski (2002). "The Arabidopsis SPIKE1 gene is required for normal cell shape control and tissue development." *Plant Cell* 14(1): 101-118.

Quisenberry, J. E. and B. L. McMichael (1991). "Genetic variation among cotton germplasm for water-use efficiency." *Environmental and Experimental Botany* 31: 433-460.

Rachmilevitch, S., A. B. Cousins and A. J. Bloom (2004). "Nitrate assimilation in plant shoots depends on photorespiration." *Proceedings of the National Academy of Sciences of the United States of America* 101(31): 11506-11510.

Raissig, M., E. Abrash, A. Bettadapur, J. Vogel and D. Bergmann (2016). "Grasses use an alternatively wired bHLH transcription factor network to establish stomatal identity." *Proc Natl Acad Sci U S A*.

Rausher, M. D. and L. F. Delph (2015). "Commentary: When does understanding phenotypic evolution require identification of the underlying genes?" *Evolution*.

Rees, M., C. P. Osborne, F. I. Woodward, S. P. Hulme, L. A. Turnbull and S. H. Taylor (2010). "Partitioning the components of relative growth rate: how important is plant size variation?" *Am Nat* 176(6): E152-161.

Reich, P. B., D. S. Ellsworth, M. B. Walters, J. M. Vose, C. Gresham, J. C. Volin and W. D. Bowman (1999). "Generality of leaf trait relationships: A test across six biomes." *Ecology* 80(6): 1955-1969.

Remington, D. L. and M. D. Purugganan (2003). "Candidate Genes, Quantitative Trait Loci, and Functional Trait Evolution in Plants." *International Journal of Plant Science* 164(3 Suppl.): S7-S20.
Richards, C. L., O. Bossdorf and M. Pigliucci (2010). "What Role Does Heritable Epigenetic Variation Play in Phenotypic Evolution?" BioScience 60(3): 232-237.

Ritchie, S. C., S. Watts, L. G. Fearnley, K. E. Holt, G. Abraham and M. Inouye (2016). "A scalable permutation approach reveals replication and preservation patterns of network modules in large datasets." Cell Syst 3(1): 71-82.

Robinson, S., P. Barbier de Reuille, J. Chan, D. Bergmann, P. Prusinkiewicz and E. Coen (2011). "Generation of spatial patterns through cell polarity switching." Science 333(6048): 1436-1440.

Rockman, M. V. (2008). "Reverse engineering the genotype-phenotype map with natural genetic variation." Nature 456: 738-744.

Rockman, M. V. (2012). "The QTN program and the alleles that matter for evolution: all that’s gold does not glitter." Evolution 66: 1-17.

Rogers, S. O. and A. J. Bendich (1987). "Heritability and Variability in Ribosomal RNA Genes of Vicia faba." Genetics 117(2): 285-295.

Rojas, C. A., N. B. Eloy, M. D. Lima, R. L. Rodrigues, L. O. Franco, K. Himanen, G. T. S. Beemster, A. S. Hemerly and P. C. G. Ferreira (2009). "Overexpression of the Arabidopsis anaphase promoting complex subunit CDC27a increases growth rate and organ size." Plant Molecular Biology 71(3): 307-318.

Ronnberg-Wastljung, A. C., C. Glynn and M. Weih (2005). "QTL analyses of drought tolerance and growth for a Salix dasyclados x Salix viminalis hybrid in contrasting water regimes." Theoretical and Applied Genetics 110(3): 537-549.

Rungrat, T., A. A. Almonte, R. Cheng, P. J. Gollan, T. Stuart, E.-M. Aro, J. O. Borevitz, B. Pogson and P. B. Wilson (in press). "A Genome-Wide Association Study of Non-Photochemical Quenching in response to local seasonal climates in Arabidopsis thaliana." Plant Physiology.

Rymen, B., F. Fiorani, F. Kartal, K. Vandepoele, D. Inze and G. T. S. Beemster (2007). "Cold nights impair leaf growth and cell cycle progression in maize through transcriptional changes of cell cycle genes." Plant Physiology 143(3): 1429-1438.

Scheible, W. R. and M. Pauly (2004). "Glycosyltransferases and cell wall biosynthesis: novel players and insights." Current Opinion in Plant Biology 7(3): 285-295.

Schuepp, P. H. (1993). "Leaf boundary layers." New Phytologist 125: 477–507.

Schruff, M. C., M. Spielman, S. Tiwari, S. Adams, N. Fenby and R. J. Scott (2006). "The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs." Development 133(2): 251-261.

Siepel, A., P. M. Magwene, J. H. Willis and J. K. Kelly (2011). "The Statistics of Bulk Segregant Analysis Using Next Generation Sequencing." PLoS Computational Biology 7(11).
Somerville, C. R. and W. L. Ogren (1980). "Inhibition of photosynthesis in Arabidopsis mutants lacking leaf glutamate synthase activity." *Nature* **286**(5770): 257-259.

Sonoda, Y., K. Sako, Y. Maki, N. Yamazaki, H. Yamamoto, A. Ikeda and J. Yamaguchi (2009). "Regulation of leaf organ size by the Arabidopsis RPT2a 19S proteasome subunit." *Plant Journal* **60**(1): 68-78.

Spreitzer, R. J. and M. E. Salvucci (2002). "RUBISCO: Structure, Regulatory Interactions, and Possibilities for a Better Enzyme." *Annu. Rev. Plant Biol.* **53**(1): 449-475.

Stone, E. A. and J. F. Ayroles (2009). "Modulated modularity clustering as an exploratory tool for functional genomic inference." *PLoS Genet* **5**(5): e1000479.

Strable, J. and M. J. Scanlon (2009). "Maize (Zea mays): A Model Organism for Basic and Applied Research in Plant Biology." *Cold Spring Harbor Protocols* **4**(10): 1-9.

Sulpice, R., H. Ishihara, A. Schlereth, G. R. Cawthray, B. Encke, P. Giavalisco, A. Ivakov, S. Arrivault, R. Jost, N. Krohn, J. Kuo, E. LalibertÉ, S. J. Pearse, J. A. Raven, W.-R. Scheible, F. Teste, E. J. Veneklaas, M. Stitt and H. Lambers (2014). "Low levels of ribosomal RNA partly account for the very high photosynthetic phosphorus-use efficiency of Proteaceae species." *Plant, Cell & Environment* **37**(6): 1276-1298.

Sun, Y., Q. W. Zhou, W. Zhang, Y. L. Fu and H. Huang (2002). "ASYMMETRIC LEAVES1, an Arabidopsis gene that is involved in the control of cell differentiation in leaves." *Planta* **214**(5): 694-702.

Takenaka, A. (1994). "Effects of Leaf Blade Narrowness and Petiole Length on the Light Capture Efficiency of a Shoot." *Ecological Research* **9**(2): 109-114.

Talbert, P. B., H. T. Adler, D. W. Parks and L. Comai (1995). "The REVOLUTA gene is necessary for apical meristem development and for limiting cell divisions in the leaves and stems of Arabidopsis thaliana." *Development* **121**(9): 2723-2735.

Tardieu, F. and T. Simonneau (1998). "Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours." *Journal of Experimental Botany* **49**: 419-432.

The Arabidopsis Information Resource (TAIR). from https://www.arabidopsis.org/portals/genAnnotation/genome_snapshot.jsp.

Torii, K. U., N. Mitsukawa, T. Oosumi, Y. Matsuura, R. Yokoyama, R. F. Whittier and Y. Komeda (1996). "The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats." *Plant Cell* **8**(4): 735-746.

Tsuge, T., H. Tsukaya and H. Uchimiya (1996). "Two independent and polarized processes of cell elongation regulate leaf blade expansion in Arabidopsis thaliana (L) Heynh." *Development* **122**(5): 1589-1600.
Tsukaya, H. (2003). "Organ shape and size: a lesson from studies of leaf morphogenesis." Current Opinion in Plant Biology 6: 57-62.

Tsukaya, H. (2006). "Mechanism of leaf-shape determination." Annual Review of Plant Biology 57: 477-496.

Utrillas, M. J. and L. Alegre (1997). "Impact of water stress on leaf anatomy and ultrastructure in Cynodon dactylon (L.) Pers under natural conditions." International Journal of Plant Sciences 158: 313-324.

Vain, T., E. F. Crowell, H. Timpano, E. Biot, T. Desprez, N. Mansoori, L. M. Trindade, S. Pagant, S. Robert, H. Hofte, M. Gonneau and S. Vernhettes (2014). "The Cellulase KORRIGAN Is Part of the Cellulose Synthase Complex." Plant Physiology 165(4): 1521-1532.

Van den Boogard, R., D. Alewijnse, E. J. Veneklaas and H. Lambers (1997). "Growth and water-use efficiency of 10 Triticum aestivum cultivars at different water availability in relation to allocation of biomass." Plant Cell and Environment 20: 200-210.

Van Eeuwijk, F. A., M. C. Bink, K. Chenu and S. C. Chapman (2010). "Detection and use of QTL for complex traits in multiple environments." Current Opinion in Plant Biology 13: 193-205.

Veneklaas, E. J., H. Lambers, J. Bragg, P. M. Finnegan, C. E. Lovelock, W. C. Plaxton, C. A. Price, W. R. Scheible, M. W. Shane, P. J. White and J. A. Raven (2012). "Opportunities for improving phosphorus-use efficiency in crop plants." New Phytol 195(2): 306-320.

Vitousek, P. M., S. Porder, B. Z. Houlton and O. A. Chadwick (2010). "Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions." Ecol Appl 20(1): 5-15.

Vogel, J., Ed. (2016). Genetics and Genomics of Brachypodium. Plant Genetics and Genomics: Crops and Models. Switzerland, Springer.

Vreugdenhil, D., M. G. M. Aarts, M. Koornneef, H. Nelissen and W. H. O. Ernst (2004). "Natural variation and QTL analysis for cationic mineral content in seeds of Arabidopsis thaliana." Plant, Cell & Environment 27(7): 828-839.

Walker, T. W. and J. K. Syers (1976). "The fate of phosphorus during pedogenesis." Geoderma 15(1): 1-19.

Wang, L., X. L. Gu, D. Y. Xu, W. Wang, H. Wang, M. H. Zeng, Z. Y. Chang, H. Huang and X. F. Cui (2011). "miR396-targeted AtGRF transcription factors are required for coordination of cell division and differentiation during leaf development in Arabidopsis." Journal of Experimental Botany 62(2): 761-773.

Wang, Z. B., N. Li, S. Jiang, N. Gonzalez, X. H. Huang, Y. C. Wang, D. Inze and Y. H. Li (2016). "SCFSAP controls organ size by targeting PPD proteins for degradation in Arabidopsis thaliana." Nature Communications 7.
Ward, J. M., P. Maser and J. I. Schroeder (2009). "Plant ion channels: gene families, physiology, and functional genomics analyses." Annu Rev Physiol 71: 59-82.

Waters, B. M. and M. A. Grusak (2008). "Quantitative trait locus mapping for seed mineral concentrations in two Arabidopsis thaliana recombinant inbred populations." New Phytol 179(4): 1033-1047.

Werner, T., V. Motyka, V. Laucou, R. Smets, H. Van Onckelen and T. Schmulling (2003). "Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity." Plant Cell 15(11): 2532-2550.

Werner, T., V. Motyka, M. Strnad and T. Schmulling (2001). "Regulation of plant growth by cytokinin." Proceedings of the National Academy of Sciences of the United States of America 98(18): 10487-10492.

White, D. W. R. (2006). "PEAPOD regulates lamina size and curvature in Arabidopsis." Proceedings of the National Academy of Sciences of the United States of America 103(35): 13238-13243.

Wright, I. J., P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch, F. Bongers, J. Cavender-Bares, T. Chapin, J. H. Cornelissen, M. Diemer, J. Flexas, E. Garnier, P. K. Groom, J. Gulias, K. Hikosaka, B. Lamont, T. Lee, W. Lee, C. Lusk, J. J. Midgley, M. L. Navas, U. Niinemets, J. Oleksyn, N. Osada, H. Poorter, P. Poot, L. Prior, V. I. Pyankov, C. Roumet, S. C. Thomas, M. G. Tjoelker, E. J. Veneklaas and R. Villar (2004). "The worldwide leaf economics spectrum." Nature 428(6985): 821-827.

Wu, C. A., D. B. Lowry, A. Cooley, K. Wright, Y.-W. Lee and J. H. Willis (2008). "Mimulus is an emerging model system for the integration of ecological and genomic studies." Heredity 100: 220-230.

Wyatt, R. and J. Antonovics (1981). "Butterflyweed re-revisited: spatial and temporal patterns of leaf shape variation in Asclepias tuberosa." Evolution 35: 529–542.

Xia, W., Z. Xiao, P. Cao, Y. Zhang, K. Du and N. Wang (2018). "Construction of a high-density genetic map and its application for leaf shape QTL mapping in poplar." Planta 248(5): 1173-1185.

Yang, W. N., Z. L. Guo, C. L. Huang, K. Wang, N. Jiang, H. Feng, G. X. Chen, Q. Liu and L. Z. Xiong (2015). "Genome-wide association study of rice (Oryza sativa L.) leaf traits with a high-throughput leaf scorer." Journal of Experimental Botany 66(18): 5605-5615.

Yin, X., A. H. C. M. Schapendonk and P. C. Struik (2018). "Exploring the optimum nitrogen partitioning to predict the acclimation of C3 leaf photosynthesis to varying growth conditions." Journal of Experimental Botany 70: 2435-2447.
Yoshida, H., K. Hirano, T. Sato, N. Mitsuda, M. Nomoto, K. Maeo, E. Koketsu, R. Mitani, M. Kawamura, S. Ishiguro, Y. Tada, M. Ohme-Takagi, M. Matsuoka and M. Ueguchi-Tanaka (2014). "DELLA protein functions as a transcriptional activator through the DNA binding of the INDETERMINATE DOMAIN family proteins." Proceedings of the National Academy of Sciences of the United States of America 111(21): 7861-7866.

Zhang, N. Y., Y. Gibon, J. G. Wallace, N. Lepak, P. H. Li, L. Dedow, C. Chen, Y. S. So, K. Kremling, P. J. Bradbury, T. Brutnell, M. Stitt and E. S. Buckler (2015). "Genome-Wide Association of Carbon and Nitrogen Metabolism in the Maize Nested Association Mapping Population." Plant Physiology 168(2): 575-583.

Zhao, J., D. C. Jamar, P. Lou, Y. Wang, J. Wu, X. Wang, G. Bonnema, M. Koornneef and D. Vreugdenhil (2008). "Quantitative trait loci analysis of phytate and phosphate concentrations in seeds and leaves of Brassica rapa." Plant Cell Environ 31(7): 887-900.
Symbol	Gene name	Control of leaf size	Reference(s)
CKX1-6	CYTOKININ OXIDASE/DEHYDROGENASE 1-6	Overexpression leads to a decrease in number and size of meristematic cells, as well as a decrease in leaf expansion rate/duration	Werner et al. (2001; 2003) Holst et al. (2011) Brenner (2012)
CKS1	CYCLIN-DEPENDENT KINASE SUBUNIT 1	Overexpression causes inhibition of cell-cycle progression, leading to reduced meristem size	De Veylder et al. (2001)
SWP	STRUWWELPETER	*struwwelpeter* mutants shows a shorter window of cell-proliferation at the leaf primordium stage	Autran et al. (2002) Clay & Nelson (2005)
REV1	REVOLUTA	rev-1 mutants cannot properly limit cell divisions at the leaf meristem, which leads to larger leaves	Talbert et al. (1995)
APC10	ANAPHASE PROMOTING COMPLEX 10	Overexpression leads to increased cell division rates at the early stages of leaf development	Capron et al. (2003) Eloy et al. (2011)
CDC27a	CELL DIVISION CYCLE PROTEIN 27 HOMOLOG A	Overexpression leads to increased cell-division rates during the entire life cycle of the plant	Rojas et al. (2009) Lima et al. (2013)
GIF1-3	GRF-INTERACTING FACTORS 1-3	*gif1/2/3* triple mutants show reductions in cell proliferation rates at the leaf primordium stage	Lee et al. (2009)
CDK	CYCLIN-DEPENDENT KINASES	Downregulation leads to problems with cell-cycle progression, causing a reduction in cell number	Rymen et al. (2007)
KRP	KIP-RELATED PROTEIN	Expression leads to a negative regulation of CDK and, consequently, a decrease in final leaf area	Rymen et al. (2007)
DELLA	DELLA PROTEINS	Overexpression inhibits both cell proliferation and expansion, leading to reduced final organ size	Alvey & Harberd (2005) Yoshida et al. (2014)
SLY1	SLEEPY1	Involved with the gibberellic acid (GA)-mediated degradation of growth repressing DELLA proteins	McGinnis et al. (2003)
TCP4	TEOSINTEBRANCHED1/ CYCLOIDEA/PCF4	Coordinates cell division/differentiation in leaves through transcriptional regulation of miR319	Palatnik et al. (2003)
GRF1-4/7-9	GROWTH-REGULATING FACTORS 1-4/7-9	Coordinates window during which cell divisions occurs through interactions with miR396	Kim et al. (2003) Liu et al. (2009) Wang et al. (2011)
ANT	AINTEGUMENTA	Overexpression leads to increased organ size due to increased cell division during late development	Krizek (1999) Mizukami & Fischer (2000)
AIL6	ANT-LIKE PROTEIN 6	AIL6 is suggested to act alongside ANT to control leaf development; *ail6* mutants show small leaves	Krizek (1999)
ARGOS	AUXIN-REGULATED GENE INVOLVED IN ORGAN SIZE	Overexpression leads to a prolonged cell division period, which leads to organs with more cells	Hu et al. (2003)
DA1	UBIQUITIN-ACTIVATED PEPTIDASE	*da1*-1 allele affects both DA1 and DAR, leading to longer cell proliferation period and larger leaves	Li et al. (2008)
DAR	DA1-RELATED PROTEIN	DAR is suggested to act redundantly with DA1 in controlling cell proliferation during organogenesis	Li et al. (2008)
EOD1	ENHANCER OF DA1-1; BIG BROTHER	EOD1 acts as a repressor of plant growth; down-regulation leads to increased leaf and petal size	Disch et al. (2006)
KLU	KLUH; CYP78A5	Overexpression of KLU leads to a longer window of cell proliferation, thus producing larger organs	Anastasiou et al. (2007)
ARF2	AUXIN RESPONSE FACTOR 2	ARF2 regulate the expression of genes associated with cell division/expansion in response to auxin	Schruff et al. (2006)
EBP1	ErbB-3 BINDING PROTEIN 1	Promotes cell proliferation and influences cell-size threshold for division during early development	Horváth et al. (2006)
Table 2 - Genes involved in the control of leaf size through regulation of cell expansion and meristemoid division phases, with mechanisms and references.

Symbol	Gene name	Control of leaf size	Reference(s)
EXP	EXPANSIN	Involved in the dissociation of microfibril that is necessary for wall-loosening and cell expansion	Cosgrove (2005)
CES A	CELLULOSE SYNTHASE	Encode components of the cellulose-synthesizing complex necessary for production of the cell wall	Cosgrove (2005)
CSL	CESA-LIKE PROTEINS	Involved in the synthesis of xyl glucan, xy lan, mannan and other β-D-glycans of the cell wall	Richmond & Somerville (2000)
			Cosgrove (2005)
KOR1-3	KORRIGAN 1-3	Encodes three functionally different membrane-bound endo-1,4-β-D-glucanases	Vain et al. (2014)
			Mansoori et al. (2014)
GT	GLYCOSYLTRANSFERASES	Involved in the biosynthesis of multiple cell-wall polysaccharides	Keegstra & Raikhel (2001)
			Scheible & Pauly (2004)
ARL	ARGOS-LIKE PROTEIN	Overexpression leads to larger cotyledons and leaves through mediation of hormone signaling	Hu et al. (2006)
			Feng et al. (2011)
TOR	TARGET OF RAPAMYCIN KINASE	Involved in the promotion of cell expansion in response to favorable environmental conditions	Deprost et al. (2007)
			Barrada et al. (2019)
ZHD5	ZINC FINGER HOMEODOMAIN 5	Overexpression leads to plants with high growth rates and large leaves; the mechanism is unclear	Hong et al. (2011)
RTP2a	REGULATORY PARTICLE AAA-ATPase 2a	Involved with endoreplication, increased ploidy levels, and larger cell volume in Arabidopsis	Kurepa et al. (2009)
			Sonoda et al. (2009)
SPCH	SPEECHLESS	Controls asymmetric divisions which are needed for the establishment of stomatal lineage cells	MacAlister et al. (2007)
TMM	TOO MANY MOUTHS	Involved in the signalling pathway that regulates the differentiation of stomatal lineage cells	Nadeau & Sack (2002)
			Dow et al. (2017)
SDD1	STOMATAL DENSITY AND DISTRIBUTION 1	Negative regulator of the differentiation process that lead to stomatal guard cell formation	Berger & Altmann (2002)
PPD	PEAPOD	Negative regulator of meristemoid proliferation	White (2006)
			Wang et al. (2016)
Table 3 - Genes involved in the control of leaf shape, with mechanisms and references.

Symbol	Gene name	Control of leaf shape	Reference(s)
ROT3	ROTUNDIFOLIA 3	Encodes a plant-type cytochrome P450 involved in the control of cell expansion in the leaf-length direction	Tsuge et al. (1996) Kim et al. (1999)
ROT4	ROTUNDIFOLIA 4	Involved in the control of cell number along the body axis by affecting positional cues and proliferation rates	Narita et al. (2004) Ikeuchi et al. (2011)
AN3	ANGUSTIFOLIA3	Involved in the expansion of cells along the leaf-width direction via regulation of microtubule arrangement	Tsuge et al. (1996) Kim et al. (2002)
SKP1	SPIKE1	Involved in the control of leaf cell expansion through regulation of cytoskeletal organization	Qiu et al. (2002)
HB13	HOMEODOMAIN LEUCINE ZIPPER CLASS I PROTEIN (HD-Zip I)	Encodes a transcription factor involved in the sucrose-mediated control of leaf lateral expansion	Hanson et al. (2001)
CLV1-3	CLAVATA 1-3	Encodes putative receptor kinases associated with shoot apical meristem activity and maintenance	Clark et al. (1997) Kessler & Sinha (2004)
WUS	WUSCHEL	Involved in the organization of undifferentiated cell population and shoot apical meristem maintenance	Laux et al. (1996) Kessler & Sinha (2004)
KN1	KNOTTED1	Involved in the maintenance of the shoot apical meristem identity; member of the KNOX family	Jackson et al. (1994) Kessler & Sinha (2004)
STM1	SHOOTMERISTEMLESS1	Encodes a gene required for shoot apical meristem formation during embryogenesis	Jackson et al. (1994) Kessler & Sinha (2004)
RS1	ROUGHSHEATH1	Involved in the maintenance of the shoot apical meristem identity	Kessler & Sinha (2004)
PHAN	PHANTASTICA	PHAN is involved in the development of the adaxial domain of leaves; phan mutants lack adaxial cell types	Kessler & Sinha (2004)
AS1	ASYMETRIC LEAVES1	Involved in the negative regulation of KNOX genes; as1 mutants have prominent lateral outgrowths or lobes	Sun et al. (2002) Kessler & Sinha (2004)
CLF	CURLY LEAF	CLF affects cell division at earlier stages and elongation throughout the development of leaf primordia.	Kim et al. (1998)
ER	ERECTA	Encodes a putative protein kinase that participates in the coordination of cell growth patterns	Torii et al. (1996) Levi et al. (2009)
Table 4 – Leaf functional traits analysed in this review with a summary of their ecological relevance, the research focus over the previous 15 years, a list of the most studied taxa, and some of the outstanding questions.

	Leaf structure	Leaf nutrients	Stomata
Ecological relevance	Plant growth, productivity	Photosynthesis, plant growth, productivity	Photosynthesis
Focus in the last 15 years	Molecular	QTL & GWAS	Physiology / Molecular
Most widely studied taxa	*Arabidopsis thaliana*	*Arabidopsis thaliana,* barley, maize, rice, wheat	*Arabidopsis thaliana,* *Brachypodium distachyon*
Outstanding questions	Adaptive value; genetic variation within populations	Identity of genes and mechanisms that drive phenotypic variation	Integration of physiology and population genetics