GLOBAL WELL-POSEDNESS OF THE TWO-DIMENSIONAL HORIZONTALLY FILTERED SIMPLIFIED BARDINA TURBULENCE MODEL ON A STRIP-LIKE REGION

LUCA BISCONTI
Università degli Studi di Firenze
Dipartimento di Matematica e Informatica “U. Dini”
Via S. Marta 3, I-50139 Firenze, Italia

DAVIDE CATANIA
SMARTest — Università eCampus
and
Università degli Studi di Brescia, Sezione Matematica (DICATAM)
Via Valotti 9, I-25133 Brescia, Italia

(Communicated by Russell Johnson)

Abstract. We consider the 2D simplified Bardina turbulence model, with horizontal filtering, in an unbounded strip-like domain. We prove global existence and uniqueness of weak solutions in a suitable class of anisotropic weighted Sobolev spaces.

1. Introduction. In the present paper we give some results mainly connected with the regularity and the long-time behavior of the viscous simplified Bardina turbulence model (with horizontal filtering) in a strip-like region \(\Omega \subseteq \mathbb{R}^2 \), aimed at proving existence and uniqueness of weak solutions in a suitable class of weighted Sobolev spaces.

The Bardina closure model for turbulence was introduced in 1980 by J. Bardina, J. H. Ferziger and W. C. Reynolds in reference [7], and later simplified and analyzed in references [28] and [16]. Indeed, the 3D simplified Bardina turbulence system was proposed in reference [28] as a regularization model, for small values of the scale parameter \(\alpha \), of the 3D Navier–Stokes equations for the purpose of numerical simulations. Analysis of the global behavior of the pertinent solutions in a bounded domain, with periodic boundary conditions, appears in reference [16]. Global well-posedness for the 2D simplified Bardina model was established in reference [17]. Again, in space-periodic domains, the inviscid simplified Bardina model is a regularizing system for the 3D Euler equations; this because it is globally well-posed and it approximates the 3D Euler equations without adding spurious regularizing terms (see reference [28]).

The behavior of the solutions for the simplified Bardina model (in both 2D and 3D cases) changes considerably depending on whether the integration domain is

2000 Mathematics Subject Classification. Primary: 76D05, 35B65; Secondary: 35Q30, 76F65, 76D03.

Key words and phrases. Simplified Bardina model, Navier-Stokes equations, turbulent flows, Large Eddy Simulation (LES), anisotropic filters, unbounded domains, global attractor.
bounded. This is a basic point in studying general properties as regularity on the long-time period and dynamics (in particular, existence of attractors). More generally, this remark applies to the solutions of a broader class of dissipative systems (see, e.g., references [4, 21, 30, 31, 35]). In fact, unlike the case of bounded domains, for some types of solutions to PDEs in unbounded regions (such as spatially periodic patterns, travelling waves, etc...), we can not expect to have uniform control on the energy; rather we may have energy blow up. Again, due to the unboundedness of \(\Omega \), compactness for the semigroup solution operator can not be retrieved by using standard Sobolev embeddings (there are no compact inclusions). Hence, in this case, the standard choices for bounded domains of the phase space, as \(L^p(\Omega), W^{k,p}(\Omega) \) or \(H^p(\Omega) \), \(1 \leq p < +\infty, k \in \mathbb{N} \), do not appear appropriate.

Even in the promising situation in which the solutions are bounded as \(|x| \to +\infty \) in \(\Omega \), i.e. they belong to \(L^\infty(\Omega) \), the study of their behavior is not necessarily simplified since this space is analytically awkward to use: on one hand, strong requirements on the initial data are needed to have solutions in such a space; on the other hand, the study of dynamics in this phase space results to be more intricate since one does not have at disposal analytical semigroups, maximal regularity properties for semigroups, etc.

A reasonable alternative is using weighted Sobolev spaces (see, e.g., references [1, 6, 30]) that, in principle, can contain sufficiently regular, spatially bounded solutions on the long-time period. In such a situation it is possible to study the semigroup generated by the considered system and to check whether it admits a global attractor in a suitable weighted phase space. A main advantage of this approach is that weighted Sobolev spaces are rather handy to use since they enjoy regularity, interpolation and embedding properties which are similar to those of the usual Sobolev spaces \(W^{k,p}(\Omega) \) for bounded domain.

However, proving estimates in such spaces is more complicated than in the standard ones and, for our analysis, we find convenient to follow the same path as in reference [5] (see also [19, 31]). In so doing, we consider the 2D Navier–Stokes system in terms of a stream function \(v \), and derive formally the 2D simplified Bardina with horizontal filtering.

We now introduce the considered 2D simplified Bardina for the potential \(v \) connected with the vector field \(\mathbf{v} = (v_1, v_2) \) (here, \(\mathbf{v} \) is a regularizing vector field associated with the velocity field, \(\mathbf{u} \), of the 2D Navier–Stokes equations (3) below, i.e. \(\mathbf{v} \approx \mathbf{u} \) and \(v_1 = \partial_2 v, v_2 = -\partial_1 v \)), on the strip-like region \(\Omega \subset \mathbb{R}^2 \), i.e.:

\[
\begin{align*}
(1 - \alpha^2 \partial_t^2) \Delta \partial_t v + B(v, v) - \nu(1 - \alpha^2 \partial_t^2) \Delta^2 v &= g, \quad x \in \Omega \text{ and } t \in \mathbb{R}^+, \\
v|_{t=0} &= v_0(x), \\
v(x, t) &= 0, \quad \nabla v(x, t) = 0, \quad \partial_1 \nabla v(x, t) = 0, \quad x \in \partial \Omega \text{ and } t \in \mathbb{R}^+,
\end{align*}
\]

(1)

where \(B(v, v) := \partial_2 v \partial_1 \Delta v - \partial_1 v \partial_2 \Delta v \), \(\alpha > 0 \) is a scale parameter, \(\nu > 0 \) is the kinematic viscosity, \(g \) is a forcing term, and the domain \(\Omega \) is defined by the following inequalities (see references [5, 19, 31]):

\[
b_1(x_1) \leq x_2 \leq b_2(x_1), \quad x_1 \in \mathbb{R},
\]

(2)

where \(b_1 \) and \(b_2 \) are twice continuously differentiable functions bounded over the entire \(x_1 \)-axis according to

\[
-M \leq b_1(x_1) \leq x_2 \leq b_2(x_1) \leq M, \quad x_1 \in \mathbb{R},
\]

\[
|b_i'(x_1) + b_i(x_1)| \leq c, \quad i = 1, 2.
\]
We now formally derive system (1) and, in so doing, we follow the standard approach based on the use of smoothing differential filters and connected with the LES family of α-models, which have been extensively studied by many authors (see, e.g., references [8, 9, 12, 16, 18, 20, 22, 26, 28, 29, 32]).

Let us take into account the 2D Navier–Stokes equations in the space periodic setting $\Omega = \mathbb{T}^2$ (although it would be sufficient to consider periodicity only in the x_1-direction), i.e.

\[\partial_t u + \nabla \cdot (u \otimes u) - \nu \Delta u + \nabla \pi = f(x, t), \quad x \in \Omega \text{ and } t \in \mathbb{R}^+, \]
\[\nabla \cdot u = 0, \quad x \in \Omega \text{ and } t \in \mathbb{R}^+, \]
\[u|_{t=0} = u_0, \quad x \in \Omega, \]

where $u(x, t) = (u_1, u_2)$ is the velocity field, $\pi(x, t)$ denotes the pressure, $f(x, t) = (f_1, f_2)$ is the external force, and $\nu > 0$ the kinematic viscosity.

First, we rewrite Navier–Stokes equations (3) in the terms of the vorticity $\omega := \text{curl} u := \partial_1 u_2 - \partial_2 u_1 \in \mathbb{R}$. Then, we introduce the stream function ω associated to the velocity field u, i.e. a scalar function $\omega \in \mathbb{R}$ such that $u = \text{curl} \omega = (\partial_2 \omega, -\partial_1 \omega) \in \mathbb{R}^2$ (notice that $\xi = -\Delta \omega$), to get

\[\Delta \partial_t \omega + B(\omega, \omega) - \nu \Delta^2 \omega = g, \]
\[\omega|_{t=0} = \omega_0, \]

where the bilinear operator B is as above (i.e. $B(\omega, \omega) = \partial_2 \omega \partial_1 \Delta \omega - \partial_1 \omega \partial_2 \Delta \omega$) and $g = \partial_2 f_1 - \partial_1 f_2$.

For a function w, we introduce the horizontal filter (related to the horizontal Helmholtz operator), given by

\[A_h = I - \alpha^2 \partial^2_1, \quad \text{and} \quad \overline{w} := A_h^{-1} w. \]

As discussed in references [2, 25, 27], from the point of view of the numerical simulations, this filter is less memory consuming with respect to the standard one. Further, another interesting feature of this filter is that, even in the case of domains which are not periodic in the vertical direction, there is no need to introduce artificial boundary conditions for the Helmholtz operator (see, e.g., references [2, 8, 11, 10, 13]).

We set $v := \overline{w}$ (and $(v_1, v_2) = v := \overline{w}$, with $v_1 = \partial_2 v$, $v_2 = -\partial_1 v$) and solve the interior closure problem by using the approximations

\[\overline{B(\omega, \omega)}^h \approx B(\overline{\omega}, \overline{\omega}^h) =: \overline{B(v, v)^h}, \]

to get the following initial value problem:

\[\Delta \partial_t v + \overline{B(v, v)}^h - \nu \Delta^2 v = \overline{\pi}^h, \]
\[v|_{t=0} = \overline{\omega}^h. \]

By applying the operator $A_h = I - \alpha^2 \partial^2_1$ to the above system, term by term, and considering the obtained equations on the channel-like domain described by (2) (introducing suitable boundary conditions), we get (1). Here and in the sequel, for simplicity, we always assume that $g(x, t) = g(x)$.

Set the following anisotropic Sobolev spaces:

\[H^{2,h}_0 = \{ f \in W^{1,2}(\Omega) : \partial_1 \nabla f \in L^2(\Omega), \nabla \cdot f = 0 \text{ and } f|_{\partial \Omega} = 0 \}, \]

and

\[H^{3,h} = \{ f \in W^{2,2}(\Omega) : \partial_1 \Delta f \in L^2(\Omega) \}. \]
As first step in our analysis we provide an existence theorem to (1) in standard anisotropic Sobolev spaces. In this case we deal with a proper class of weak solutions to the considered problem (see Definition 3.1 below). This result reads as follows.

Theorem 1.1. Let $v_0 \in H^{3,h} \cap H^{2,h}_0$ and $g \in L^2$. Then, there exists a unique weak solution v of the problem (1).

In the main theorem of the paper we show that the global weak solution $v = v(t)$ in Theorem 1.1 is actually defined in a suitable class of anisotropic weighted Sobolev spaces (see Theorem 3.2 below). In proving this result we do not follow directly the scheme behind the standard Aubin–Lions lemma, rather we use a different compactness method (see [33, Corollary 2.34], see also Lemma 5.2 below) by which we perform our analysis on approximating open bounded subsets O compactness method (see [33, Corollary 2.34], see also Lemma 5.2 below) by which we perform our analysis on approximating open bounded subsets O of Ω. This result allows us to surmount the difficulties due to the boundary conditions and the unboundedness of the considered domain Ω.

We do not claim an optimality result for the considered weak solutions and the related phase space. We just prove existence and well-posedness in a space sufficiently smooth to allow us, in a forthcoming paper, the analysis of the existence of a possible global attractor. In fact, the regularity provided by Theorem 3.2 seems to be sufficient to adapt, to the present framework, the standard splitting of the semigroup $S(t)$, associated with (1), as $S(t) = S_1(t) + S_2(t)$, where $S_1(t)$ is precompact and $S_2(t)$ decays at infinity (see, e.g., reference [34], and also [19]).

Plan of the paper. In Section 2 we introduce the main notation and we also give some preliminary results. In Section 3 we give the precise definition of weak solution, we state our main result (Theorem 3.2) and we also present some remarks on the properties of the weight functions used to define the weighted Sobolev spaces used in Theorem 3.2. In Section 4, we study problem (1) in suitable Sobolev weighted spaces proving existence of weak solutions. Section 5 is devoted to the proof of Theorem 1.1. Finally, the appendix is dedicated to the properties of the weight functions used to define the weighted Sobolev spaces used in Theorem 3.2.

2. Notation and preliminary results. In what follows, we denote by $L^p := L^p(\Omega)$, and $W^{k,p} := W^{k,p}(\Omega)$, with $H^k := H^{k,2}$, $k,p \in \mathbb{N}$, the usual Lebesgue and Sobolev spaces, respectively. Also, we denote by (\cdot, \cdot) and $\|\cdot\|$ the standard L^2-inner product and norm in $L^2(\Omega)$, respectively. We denote by $(H^k)'$ the dual space to H^k, $k,p \in \mathbb{N}$, and this notation will be adapted in a straightforward manner, when it makes sense, to the further spaces that will be introduced in the sequel.

Given a Banach space X, for $p \in [1, \infty)$, we denote the usual Bochner spaces $L^p(0,T;X)$ with associated norm $\|f\|_{L^p(0,T;X)}^p := \int_0^T \|f(s)\|_X^p \, ds$ (the lower bound of $\|f(s)\|_X$ if $p = \infty$, with $\|\cdot\|_X$ the norm of X.

Hereafter, C will denote a dimensionless constant which might depend on the shape of the domain Ω and that may assume different values, even in the same line.

Let us introduce the following function spaces:

$$H := \{f \in L^2(\Omega) : \nabla \cdot f = 0 \text{ and } f = 0 \text{ on } \partial \Omega\},$$

$$H^{1,h} := \{f \in L^2(\Omega) : \partial_1 f \in L^2(\Omega)\},$$

$$H^{2,h} := \{f \in H^{1,h} : \partial_1 \nabla f \in L^2(\Omega)\},$$

$$H^{3,h} := \{f \in H^{2,h} : \partial_1 \Delta f \in L^2(\Omega)\},$$

and $H^{l,h}_0 := H^{l,h} \cap H$, $l = 1, 2, 3$.

1864 LUCA BISCONTI AND DAVIDE CATANIA
2.1. Weighted Sobolev spaces: Basic properties and related inequalities.

Here, we consider a family of functions \(\phi_p(x, \alpha_1, \alpha_2, \epsilon, \rho, \gamma) = \phi(x, \alpha_1, \alpha_2, \epsilon, \rho, \gamma) \) enjoying the following properties, analogue to those listed in reference [19, §2.2, (A)], pg. 383 (see also [5]):

\[
\begin{align*}
\phi & \geq 1, \quad \phi(x, \alpha_1, \alpha_2, \epsilon, \rho, \gamma) = \phi(\epsilon x, \alpha_1, \alpha_2, 1, \rho, 1)^\gamma, \\
\phi(x, \alpha_1, \alpha_2, 1, \rho, \gamma) & \text{ does not depend on } \rho \text{ if } |x| \leq \rho, \\
\phi(x, \alpha_1, \alpha_2, 1, \rho, \gamma) & = \phi(\rho + 1, \alpha_1, \alpha_2, 1, \rho, \gamma) \text{ as } |x| \geq \rho + 1, \\
\phi(x, \alpha_1, \alpha_2, \epsilon, \rho, \gamma) & \geq \phi(x, \alpha_1, \alpha_2, \epsilon, \rho_1, \gamma) \text{ for } \rho_1 \geq \rho_2 \geq 1, \gamma \geq 0, \\
\lim_{\rho \to +\infty} \phi(x, \alpha_1, \alpha_2, 1, \rho, \gamma) & = (1 + |x_1|^{\alpha_1} + |x_2|^{\alpha_2})^{\frac{\gamma}{2}} =: \phi(x, \alpha_1, \alpha_2, 1, \gamma/2),
\end{align*}
\]

where we have introduced the anisotropic weight function \(\phi(x, \alpha_1, \alpha_2, \epsilon, \rho, \gamma) = (1 + \epsilon x_1^{\alpha_1} + |x_2|^{\alpha_2})^{\gamma} \) (see, e.g., references [5, 19, 21]), which is suitable for the anisotropic Sobolev spaces we will consider in the sequel (see the definition of \(H^{l,h}_\gamma, l = 1, 2, 3, \) below). Notice that \(\alpha_1, \alpha_2, \epsilon, \rho, \gamma \) are all scalar quantities.

For the remainder of the paper we always assume \(\alpha_1 = 3, \alpha_2 = 2 \) and we use the compact notations \(\phi := \phi(x, \epsilon, \gamma) := \phi(x, 3, 2, \epsilon, \gamma) \) and \(\varphi := \varphi(x, \epsilon, \rho, \gamma) := \varphi(x, 3, 2, \epsilon, \rho, \gamma) \).

Again, arguing as in references [5, 19], we take \(\psi := \varphi^{1/2} \). Notice that we can choose \(\varphi \) so that

\[
|\partial^{\beta} \psi|^2 \leq C|\beta|^2 \psi^2 \text{ for every multi-index } \beta = (\beta_1, \beta_2), \ |\beta| \leq 3 \text{ and } \beta_2 \leq 2. \tag{6}
\]

This property will play a crucial role in the subsequent computations.

We denote by \(H^1_\gamma := H^1_\gamma(\Omega) \) the space of functions equipped with the following norm:

\[
\|v\|_{H^1_\gamma}^2 := \sum_{|\beta| \leq l} \|\partial^{\beta} v\|_{H^1_\gamma}^2,
\]

where

\[
\|v\|_{H^1_\gamma}^2 := \int_{\Omega} |v|^2 (1 + |x_1|^3 + |x_2|^2)^\gamma dx, \gamma > 0 \text{ and } \partial^{\beta} := \frac{\partial^{\beta_1 + \beta_2}}{\partial x_1^{\beta_1} \partial x_2^{\beta_2}}, (\beta_1, \beta_2) \in \mathbb{N}^2.
\]

Using the above notation, we introduce the further spaces

\[
\begin{align*}
H_{\gamma} := H_{0,\gamma} & := \{ f \in H : \|f\|_{H^1_\gamma} < +\infty \}, \\
H^{1,h}_{\gamma} & := \{ f \in H : \|\partial_1 f\|_{H^1_\gamma} < +\infty \}, \\
H^{2,h}_{\gamma} & := \{ f \in H^{1,h}_{\gamma} \cap H : \|\partial_1 \nabla f\|_{H^1_\gamma} < +\infty \}, \\
H^{3,h}_{\gamma} & := \{ f \in H^{2,h}_{\gamma} \cap H : \|\partial_1 \Delta f\|_{H^1_\gamma} < +\infty \}. \tag{7}
\end{align*}
\]

Let us recall the following results taken from [5] (see also [19]).

Proposition 1. If \(v \in H^1_0(\Omega) \), we get

\[
\|\psi \nabla v\| - \|\nabla (\psi v)\| \leq C\epsilon\|\psi v\|. \tag{8}
\]

If \(v \in H^2_0 \), we find also

\[
\|\psi \Delta v\| - \|\Delta (\psi v)\| \leq C\epsilon\|\psi v\| + \psi\|\nabla v\|. \tag{9}
\]

Next, we have a weighted version of the classical Poincaré inequality.
Proposition 2. Let $v \in H^1_0$ with $v|_{\partial \Omega} = 0$. Then it holds true that
\[\|\psi v\| \leq 2\lambda_1^{-1}\|\psi \nabla v\|. \] (10)

Let ϵ in the definition of φ be sufficiently small. Let $v \in H^2 \cap H^1_0$. Then
\[\|\psi \nabla v\| \leq 2\lambda_1^{-\frac{1}{2}}\|\psi \Delta v\|. \] (11)

Proposition 3. It holds true that
\[\|v\|_{1,\gamma} \leq \|\psi \nabla v\| \forall v \in H^1_\gamma, \; v|_{\partial \Omega} = 0, \] (12)
and
\[\|v\|_{2,\gamma} \leq \|\psi \Delta v\| \forall u \in H^2_\gamma, \; u|_{\partial \Omega} = 0. \] (13)

We also have the following controls in the L^4-norm.

Proposition 4. Let $v \in H^1_\gamma$, with $v|_{\partial \Omega} = 0$. Then
\[\|\psi v\|_{L^4} \leq C\|\nabla (\psi v)\| \leq C\|\psi \nabla v\| + C\|v \nabla \psi\| \leq C\|\psi \nabla v\| + C\epsilon \|v\|. \] (14)

Further, if $v \in H^2_\gamma$, with $v|_{\partial \Omega} = 0$, we find
\[\|\psi \nabla v\|_{L^4} \leq C\|\psi \nabla v\| + C\|\psi \Delta v\|. \] (15)

3. Weak solutions and existence results. Consider the simplified-Bardina model (1). Observe that the bilinear form
\[B(u, v) := \partial_2 v \partial_1 \Delta u - \partial_1 v \partial_2 \Delta u = \partial_1 (\partial_2 v \Delta u) - \partial_2 (\partial_1 v \Delta u) \]
is such that
\[(B(u, v), w) = \int \partial_1 (\partial_2 v \Delta u) w - \partial_2 (\partial_1 v \Delta u) w = \int \partial_1 v \Delta u \partial_2 w - \partial_2 v \Delta u \partial_1 w \]
\[= -\int \partial_1 w \Delta u \partial_2 v - \partial_2 w \Delta u \partial_1 v = -(B(u, w), v), \]
and
\[(B(u, v), v) = 0, \]
where the second line is obtained integrating by parts and exploiting the boundary conditions. Here and in the sequel, unless otherwise stated, we drop the measure dx in the space-integrals to keep the notation as compact as possible.

We now give the following definition.

Definition 3.1. Given $v_0 \in H^{3, h} \cap H^{2, h}_0$ and $g \in L^2(\Omega)$, we say that $v \in L^\infty_{\text{loc}}(\mathbb{R}; H^{2, h}_0 \cap H^{3, h})$ is a weak solution of (1) if $v_t \in L^2_{\text{loc}}(\mathbb{R}; H^{2, h})$ and
\[(\nabla v, \Delta h) + \alpha^2 (\partial_t \nabla v, \partial_1 \nabla h) + \nu (\Delta v, \Delta h) + \nu \alpha^2 (\partial_1 \Delta v, \partial_1 \Delta h) = (B(v, v), h) - (g, h) \]
for every $h \in H^{2, h}_0 \cap H^{3, h}(\Omega)$, for a.e. $t \in \mathbb{R}$ (and the initial datum is assumed in weak sense).

In the next section we give a proof of Theorem 1.1 that guarantees existence and uniqueness of a weak solution to problem (1).

The anisotropic weighted Sobolev spaces introduced in (7) provide the appropriate functional framework for studying the existence of weak solutions to (1) enjoying extra regularity properties. Then, in Section 5 we prove our main result, that reads as follows.
Theorem 3.2. Let \(g \in H_{0,\gamma} \). For any \(v_0 \in H^{3,h}_\gamma \cap H^2_h \) and \(T > \tau \) given, the weak solution \(v \) of (1) provided by Theorem 1.1 is such that \(v \in L^\infty(\tau, T; H^{3,h}_\gamma) \cap L^2(\tau, T; H^2_h) \cap C(\tau, T; H^1_h) \) and \(v_t \in L^2(\tau, T; H^1_h) \).

Corollary 1. Under the hypotheses of Theorem 3.2 we find \(v \in L^\infty(0, \infty; H^{3,h}_\gamma) \cap L^2(0, \infty; H^2_h) \cap C(0, \infty; H^1_h) \) and \(v_t \in L^2(0, \infty; H^1_h) \).

4. Existence in anisotropic Sobolev spaces. This section is devoted to the proof of Theorem 1.1, which provides the existence of a unique weak solution of the problem (1). Since the proof follows standard methods, we proceed formally in order to find appropriate a priori estimates. A rigorous proof can be easily obtained by introducing a Galerkin approximation (see, e.g., references [19, 31] for a similar situation; see also [13, 14]) and finding similar estimates.

With these premises, the proof of Theorem 1.1 follows.

Proof of Theorem 1.1. Testing formally (1) against \(v \), we get

\[
\frac{1}{2} \frac{d}{dt} \| \nabla v(t) \|^2 + \alpha^2 \| \partial_t \nabla v(t) \|^2 + \nu (\| \Delta v(t) \|^2 + \alpha^2 \| \partial_t \Delta v(t) \|^2) \leq \| g \|.
\]

Since \(|(g, v)| \leq \lambda_1^{-1} \| g \| \cdot |\Delta v| \leq \frac{1}{2 \lambda_1^2} \| g \|^2 + \frac{\nu}{2} |\Delta v|^2 \), we deduce

\[
\frac{d}{dt} (\| \nabla v(t) \|^2 + \alpha^2 \| \partial_t \nabla v(t) \|^2) + \nu (\| \Delta v(t) \|^2 + \alpha^2 \| \partial_t \Delta v(t) \|^2) \leq \frac{1}{\nu \lambda_1^2} \| g \|^2,
\]

which implies

\[
\| \nabla v(t) \|^2 + \alpha^2 \| \partial_t \nabla v(t) \|^2 + \nu \int_0^t (\| \Delta v(s) \|^2 + \alpha^2 \| \partial_t \Delta v(s) \|^2) ds \leq \frac{1}{\nu \lambda_1^2} \| g \|^2 + \| \nabla v(0) \|^2 + \alpha^2 \| \partial_t \nabla v(0) \|^2,
\]

so that \(v \in L^\infty_{loc}(0, \infty; H^{3,h}_\gamma) \cap L^2_{loc}(0, \infty; H^2_h \cap H^{3,h}_\gamma) \).

By multiplying (1) by \(v_t \) and integrating over \(\Omega \), we get

\[
\nu \frac{d}{dt} (\| \Delta v \|^2 + \alpha^2 \| \partial_t \Delta v \|^2) + \| \nabla v_t \|^2 + \alpha^2 \| \partial_t \nabla v_t \|^2 \leq |(g, v_t)| + |(B(v, v), v_t)|.
\]

We have \(|(g, v_t)| \leq \lambda_1^{-1} \frac{1}{2} \| g \| \cdot \| \nabla v_t \| \leq \frac{\| g \|^2}{\lambda_1^2} + \frac{\| \nabla v_t \|^2}{4} \) and, thanks to the Hölder, the Gagliardo–Nirenberg and the Young inequalities, we have also

\[
|\langle (B(v, v), v_t) \rangle| \leq \| \partial_v v_t \|_L^\infty \| \Delta v \| \| \partial_t v_t \| + \| \partial_v v \|_L^4 \| \Delta v \| \| \partial_t v_t \|_L^4
\leq \| \partial_t \Delta v \| \| \Delta v \| \| \nabla v_t \| + C \| \Delta v \|^2 \| \partial_t \nabla v_t \|
\leq \frac{\| \nabla v_t \|^2}{4} + \frac{\alpha^2}{2} \| \partial_t \nabla v_t \|^2 + C \nu (\| \Delta v \|^2 + \alpha^2 \| \partial_t \Delta v \|^2) \| \Delta v \|^2,
\]

for a suitable constant \(C = C(\lambda_1, \alpha, \nu) > 0 \). Plugging this estimate in (17), we obtain

\[
\nu \frac{d}{dt} (\| \Delta v(t) \|^2 + \alpha^2 \| \partial_t \Delta v(t) \|^2) + \| \nabla v_t(t) \|^2 + \alpha^2 \| \partial_t \nabla v_t(t) \|^2 \leq C \| g \|^2 + C \nu (\| \Delta v(t) \|^2 + \alpha^2 \| \partial_t \Delta v(t) \|^2) \| \Delta v(t) \|^2.
\]

Since we have already proved that \(v \in L^2_{loc}(H^2) \), an application of the Grönwall lemma gives the claimed regularity of \(v \) (here we use the full regularity of \(v_0 \)), and consequently by the previous inequality, the regularity of \(v_t \).
Notice that the proof of the uniqueness of weak solutions is quite standard and very similar to the proof of uniqueness for the case of a bounded domain (mainly because of the validity of the Poincaré inequality) and this last part of the proof is left to the reader.

5. Weak solutions in anisotropic weighted Sobolev spaces. In what follows we prove the main result: Theorem 3.2. Let us consider the weight function \(\phi = (1 + |x_1|^3 + |x_2|^2)^\gamma, \gamma > 0 \), introduced in Subsection 2.1, and the approximating function \(\varphi = \varphi(x, \epsilon, \rho, \gamma) \) with \(\psi = \varphi^\frac{1}{2} \).

We state the following technical lemma.

Lemma 5.1. Under the assumption \(\gamma \leq 2/3 \), setting \(\psi = \varphi^{1/2} \), we get
\[
|\partial^\beta \psi|^2 \leq C \epsilon^{||\beta||} \psi, \quad \beta = (\beta_1, \beta_2), \quad 0 < ||\beta|| \leq 3, \quad \beta_2 \leq 2.
\]

The precise construction of the weight function \(\varphi \) and the proof of this lemma are postponed to Appendix A. For the remainder of the paper we always assume that \(\gamma \leq 2/3 \).

In the proof of existence in weighted spaces, we shall use a Lemma (see also [23, Theorem 2.2] and [3]) to overcome the difficulties arising because of the unboundedness of the strip-like region \(\Omega \).

Lemma 5.2 (Corollary 2.34, [33]). Let \(\Theta \) be a bounded set of \(\mathbb{R}^d \), \(X \subset E \) Banach spaces (where the symbol \(\subset \) denotes a compact injection). Consider \(1 \leq p < q \leq +\infty \). Suppose that \(\mathcal{F} \subset L^p(\Theta; E) \) satisfies

(i) \(\forall \mathcal{W} \in \Theta, \limsup_{k \to 0, f \in \mathcal{F}} \|\tau_k f - f\|_{L^p(\mathcal{W}; E)} = 0 \) (where \(\tau_k f \) is the translation given by \(\tau_k f(x) = f(x + k) \)),

(ii) \(\mathcal{F} \) is bounded in \(L^q(\Theta; E) \cap L^1(\Theta, X) \).

Then, \(\mathcal{F} \) is precompact in \(L^p(\Theta; E) \).

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. Since \(H_{\gamma}^{3,h} \cap H_0^{2,h} \) is separable and the set \(\mathcal{V} = \{ v \in C_0^\infty(\Omega) : \nabla \cdot v = 0 \} \) is dense in \(H_{\gamma}^{3,h} \cap H_0^{2,h} \), there exists a sequence of linearly independent elements \(\{ w_1, w_2, \ldots \} \subset \mathcal{V} \) which is complete in \(H_{\gamma}^{3,h} \cap H_0^{2,h} \). Denote \(H_m := \text{span}\{ w_j \}_{j=1,\ldots,m} \) and consider the projector \(P_m(v) = \sum_{j=1}^m (v, w_j) w_j \). A function
\[
v^m = \sum_{j=1}^m a_j^m(t) w_j(x)
\]
is an \(m \)-approximate solution of Equation (1) if
\[
(\nabla v^m_t, \nabla w_j) + \alpha^2 (\partial_t \nabla v^m_t, \partial_t \nabla w_j) + \nu (\Delta v^m_t, \Delta w_j) + \nu \alpha^2 (\partial_t \Delta v^m_t, \partial_t \Delta w_j)
= (B(v^m_t, v^m_t), w_j) - (g, w_j)
\]
for every \(j = 1, \ldots, m \). The existence of solutions is guaranteed by the Peano theorem.

We split the proof in a number of steps.

1. We establish suitable a priori estimates for \(\{ v^m \} \) in the space \(L^\infty_\text{loc}(0, \infty; H_{\gamma}^{3,h}) \cap L^2_\text{loc}(0, \infty; H_{\gamma}^{2,h}) \).
2. We show that \(\{v^m\} \) satisfies condition (ii) of Lemma 5.2: \(\mathcal{F} := \{v^m|_\mathcal{O}\} \) is bounded in \(L^\infty(\tau, T; H^{2,h}_\gamma(\mathcal{O})) \cap L^1(\tau, T; H^{3,h}_\gamma(\mathcal{O})) \), where \(\mathcal{O} \) is any open subset in \(\Omega \) and \(\Theta := (\tau, T) \), \(0 < \tau < T \).

3. We show that \(\{v^m\} \) satisfies condition (i) of Lemma 5.2:
\[
\lim_{k \to 0} \sup_{m \in \mathbb{N}} \|\tau_k v^m - v^m\|_{L^2(\tau, T-k; H^{2,h}_\gamma(\mathcal{O}))} = 0.
\]

4. We apply Lemma 5.2 and extract a subsequence still denoted by \(v^m|_\mathcal{O} \) converging to some \(v \) in \(L^2(\tau, T; H^{2,h}_\gamma(\mathcal{O})) \).

5. The limiting function \(v \) is a weak solution.

6. By interpolation, we obtain the time continuity of \(v \) with values in \(H^{1,h}_\gamma(\Omega) \).

STEP 1: Establishing a priori estimates in \(L^\infty_{\text{loc}}(0, \infty; H^{2,h}_\gamma) \cap L^2_{\text{loc}}(0, \infty; H^{3,h}_\gamma) \).

Here, we proceed again formally by dealing with \(v \) and the equation satisfied by it. However, the a priori estimates that we are about to derive can be rigorously justified. Indeed, a rigorous proof uses \(v^m \) instead of \(v \) and \(w_j \) as test functions, as it will be made in the second and third steps below.

We multiply equation (1) by \(\psi v^2 \) in \(L^2(\Omega) \) and use integration by parts to get

\[
\frac{1}{2} \frac{d}{dt} \left(\|\psi \nabla v\|^2 + \alpha^2 \|\psi \partial_\nu \nabla v\|^2 \right) + \nu \|\psi \Delta v\|^2 + \nu \alpha^2 \|\psi \partial_1 \Delta v\|^2
\]

\[
= (B(v, v) - g, v \psi^2) - \int (\nabla v_t) v \nabla \psi^2 + \alpha^2 \int (\partial_1^2 \nabla v_t) v \nabla \psi^2
\]

\[
- \alpha^2 \int \partial_1 \nabla v_t (\nabla v) \partial_1 \psi^2 - \nu \int (\Delta v) v \Delta \psi^2 - 2\nu \int \Delta v (\nabla v) \nabla \psi^2
\]

\[
- 2\nu \alpha^2 \int \partial_1 \Delta v (\partial_1 \nabla v) \nabla \psi^2 - \nu \alpha^2 \int \partial_1 \Delta v (\partial_1 v) \Delta \psi^2
\]

\[
- \nu \alpha^2 \int \partial_1 \Delta v (\Delta v) \partial_1 \psi^2 - 2\nu \alpha^2 \int \partial_1 \Delta v (\nabla v) \partial_1 \nabla \psi^2 - \nu \alpha^2 \int (\partial_1 \Delta v) v \partial_1 \Delta \psi^2
\]

\[
= (B(v, v) - g, v \psi^2) + \sum_{j=1}^{10} L_j.
\]

In particular, we have used that

\[
- \int (\partial_1^2 \Delta v) v \psi^2 = \int \partial_1 \Delta^2 v (\partial_1 v) \psi^2 + \int (\partial_1 \Delta^2 v) v \partial_1 \psi^2
\]

\[
= - \int \partial_1 \nabla \Delta v (\partial_1 \nabla v) \psi^2 - \int \partial_1 \nabla \Delta v (\partial_1 v) \nabla \psi^2
\]

\[
- \int \partial_1 \nabla \Delta v (\nabla v) \partial_1 \psi^2 - \int (\partial_1 \nabla \Delta v) v \partial_1 \nabla \psi^2
\]

\[
= \int \partial_1 \Delta v (\partial_1 \Delta v) \psi^2 + \int \partial_1 \Delta v (\partial_1 \Delta v) \nabla \psi^2 + \int \partial_1 \Delta v (\partial_1 v) \Delta \psi^2
\]

\[
+ \int \partial_1 \Delta v (\Delta v) \partial_1 \psi^2 + 2 \int \partial_1 \Delta v (\partial_1 \nabla v) \nabla \psi^2 + \int \partial_1 \Delta v (\partial_1 \nabla v) \Delta \psi^2
\]

and noticed that all boundary terms are zero.
Proceeding as in reference [19], we immediately have the existence of a constant $C = C(\lambda_1, \nu, \alpha) > 0$ such that

$$
(B(v, v), v^2) = \int \left[\partial_1 v \Delta v \partial_2 (v^2) - \partial_2 v \Delta v \partial_1 (v^2) \right] \\
= \int \left[\partial_1 v \Delta v \partial_2 v^2 - \partial_2 v \Delta v \partial_1 v^2 \right]
\leq 2 \|v\|_{L^\infty} \|\psi \Delta v\| \|v \nabla v\| \\
\leq \epsilon \|\psi \Delta v\|^2 + C\epsilon \|v \nabla v\|^2
$$

and

$$
\left| (g, v^2) \right| \leq C\|\psi g\|^2 + \epsilon \nu \|\psi \Delta v\|^2,
$$

where to control v in L^∞-norm we use Agmon’s inequality and the regularity provided by Theorem 1.1.

Then, we estimate the terms L_i, $i = 1, \ldots, 10$. Let us start with L_1, to get

$$
|L_1| \leq \left| \int \nabla v_1 v \nabla v^2 \right| \\
\leq \left| \int v_1 \nabla \nabla v^2 \right| + \left| \int v_1 \Delta v^2 \right|
\leq C\epsilon \int |\psi \nabla v| |v_1| + C\epsilon^2 \int |\psi v| |v_1| \\
\leq C\epsilon (\|\psi \nabla v\|^2 + \|v_1\|^2)
$$

where we used the relation (18). Similarly, we also have that

$$
|L_2| \leq \alpha^2 \left| \int \partial_1 v_1 \nabla v \nabla v^2 \right| + \alpha \left| \int \partial_1 v_1 \nabla v \nabla v \nabla \psi \right| \\
\leq \alpha^2 \left| \int \partial_1 v_1 \nabla v \nabla v \nabla \psi \right| + \alpha \left| \int \partial_1 v_1 \nabla v \nabla \psi \right| \\
\leq C\alpha \epsilon \|\partial_1 v_1\|^2 + C\epsilon \|\psi \partial_1 \nabla v\|^2 + \|\psi \nabla v\|^2).
$$

Also in this case we conclude by using (18). For the term L_3 we have

$$
|L_3| \leq \alpha^2 \left| \int \partial_1 v_1 \nabla v \nabla \psi \right| \\
\leq \alpha \left| \int \partial_1 v_1 \nabla v \nabla \psi \right| + \left| \int \partial_1 v_1 \nabla v \partial_1 \nabla \psi \right| \\
\leq C\alpha \epsilon \|\partial_1 v_1\|^2 + C\epsilon \|\psi \partial_1 \nabla v\|^2 + \|\psi \nabla v\|^2).
$$

Next, for the terms L_4 and L_5, using the same inequalities we get

$$
|L_4| \leq 2\nu \int |\Delta v| |v||\Delta v|^2 | \leq 2\nu^2 \int |\psi \Delta v||\psi v| \leq \epsilon^2 \nu \|\psi \Delta v\|^2 + C\epsilon \|\psi \nabla v\|^2,
$$

and

$$
|L_5| \leq 2\nu \left| \int \nabla v \Delta v \nabla \psi \right| \leq C\epsilon \|\psi \Delta v\|^2 + \epsilon \nu \|\psi \nabla v\|^2.
$$
Again, for the terms L_6, L_7 and L_8 we have

$$|L_6| \leq \nu \alpha^2 \left| \int \partial_1 \nabla v \partial_1 \Delta v \nabla \psi \right| + \nu \alpha^2 \left| \int \partial_1 \nabla v \partial_1 \Delta v \nabla \psi \right|$$

$$\leq \nu \alpha^2 \| \partial_1 \Delta v \|_2^2 + C \epsilon \| \partial_1 \nabla v \|_2^2,$$

$$|L_7| \leq \nu \alpha^2 \left| \int \partial_1 \Delta v \partial_1 v \Delta \psi \right| \leq \nu \alpha^2 \epsilon \int \| \partial_1 \partial_1 \| \| \partial_1 v \|$$

$$\leq \epsilon^2 \nu \alpha^2 \| \partial_1 \Delta \psi \|_2^2 + C \epsilon \alpha^2 \nu \| \nabla v \|_2^2$$

and

$$|L_8| \leq \nu \alpha^2 \left| \int \partial_1 \Delta v \Delta v \partial_1 v \Delta \psi \right| \leq \nu \alpha^2 \epsilon \int \| \partial_1 \Delta v \| \| \partial_1 v \|$$

$$\leq \frac{\nu \alpha^2 \epsilon}{2} \| \partial_1 \Delta v \|_2^2 + \frac{\nu \alpha^2 \epsilon}{2} \| \partial_1 v \|_2^2.$$

Finally, for the last two terms, exploiting similar estimates, we get

$$|L_9| \leq \nu \alpha^2 \epsilon^2 \int \| \partial_1 \Delta v \| \| \partial_1 \nabla \psi \| \leq \epsilon^2 \nu \alpha^2 \| \partial_1 \Delta v \|_2^2 + C \epsilon \| \nabla v \|_2^2$$

and

$$|L_{10}| \leq \nu \alpha^2 \left| \int \partial_1 \Delta v \| \| v \| \| \partial_1 \Delta \psi \| \right| \leq \nu \alpha^2 \epsilon^2 \int \| \partial_1 \nabla v \| \| \psi \|$$

$$\leq \epsilon^3 \nu \alpha^2 \| \partial_1 \Delta \psi \|_2^2 + C \epsilon \| \nabla v \|_2^2.$$

Using (19) along with the estimates (20)–(22) we get

$$\frac{1}{2} \frac{d}{dt} \left(\| \nabla v \|_2^2 + \alpha^2 \| \partial_1 \nabla v \|_2^2 \right) + \nu \| \partial_1 \nabla v \|_2^2 + \nu \alpha^2 \| \partial_1 \Delta v \|_2^2$$

$$\leq \epsilon \left(\| v \|_2^2 + \epsilon^2 \| \partial_1 v \|_2^2 + \epsilon \| \nabla v \|_2^2 \right)$$

$$+ \alpha \| \nabla v \|_2^2 + C \| \nabla \psi \|_2^2 + C \| \nabla g \|_2^2.$$

By making use of the control on $\| v \|$ and $\| \partial_1 v \|$ provided by Theorem 1.1 together with the Grönwall inequality, we get the claimed regularity on v, i.e. $v \in L^\infty(0, \infty; H^2_\gamma(\Omega)) \cap L^2(0, \infty; H^3_\gamma(\Omega))$, concluding STEP 1.

Before proceeding with the next steps, we open a parenthesis to outline the scheme behind the remaining part of the proof. Until now, we have used v in place of v^m for a matter of convenience; however, in view of extracting a convergent subsequence of $\{v^m\}$, here below we will employ this latter notation. From the above estimates, we can extract a subsequence of $\{v^m\}$, still denoted by $\{v^m\}$, such that

$$v^m \rightharpoonup \tilde{v} \text{ weak-star in } L^\infty(\tau, T; H^2_\gamma(\Omega)),$$

$$v^m \rightharpoonup \tilde{v} \text{ weak in } L^2(\tau, T; H^3_\gamma(\Omega)).$$

Moreover, as a consequence of the estimates in the proof of Theorem 1.1 we also have that

$$v^m \rightarrow \tilde{v} \text{ strong in } L^2(\tau, T; H^2_\gamma(\Omega)).$$

To conclude our argument, obtaining that $\{v^m\}$ is relatively compact in the space $L^2(\tau, T; H^2_\gamma(\Omega))$, we would need some control on dv^m/dt.

When it is possible to choose a special basis $w_j \in C^\infty(\Omega)$ to generate the Galerkin elements $v^m(x, t) = \sum_{j=1}^m a_j^m(t)w_j(x)$, $m \in \mathbb{N}$, such that a uniform control
If we use Lemma 5.2, we do not obtain a result on the whole domain Ω. Actually, consider, the situation is quite intricate and a different approach is needed. There exists a subsequence of \(v^n \) where the convergence is strong.

The boundedness of \(\Omega \) and the peculiar boundary conditions that we are considering, make the situation quite intricate and a different approach is needed. If we use Lemma 5.2, we do not obtain a result on the whole domain \(\Omega \). Actually, what we are going to prove is the following: for any bounded open set \(\Omega \subset \Omega \), there exists a subsequence of \(\{v^m\} \) (depending on \(\Omega \) and relabeled \(\{v^m|_\Omega\} \)) satisfying

\[
v^m|_\Omega \to v|_\Omega \quad \text{in} \quad L^2(\tau,T;H^{2,h}_\gamma(\Omega)), \tag{24}
\]

where the convergence is strong.

Since we also have that \(\{v^m\} \) is weakly convergent to \(\tilde{v} \) in \(L^2(\tau,T;H^{3,h}) \), due to the uniqueness of the limit it follows that \(\tilde{v}|_\Omega = v|_\Omega \) for every bounded subset \(\Omega \subset \Omega \). This fact along with (24) will be enough to prove that \(\tilde{v} \) is a weak solution to (1) defined in \(L^2_{\text{loc}}(0,\infty;H^1_\gamma) \cap L^2_{\text{loc}}(0,\infty;\gamma) \). Indeed, to conclude our analysis on \(\Omega \times (\tau,T) \), and to prove that the weak formulation for \(v^m \) is stable when \(m \to +\infty \), we consider a proper family of test functions with separate variables and bounded supports (see, e.g., reference [3]). Let \(\{w_j\}_{j=1,...,m} \) be the basis of the space \(H_m \) approximating \(H^{3,h}_\gamma \cap \gamma \), for \(m \in \mathbb{N} \). Let \(\sigma = \sigma(t) \) be a continuously differentiable function on \([\tau,T] \) with \(\sigma(T) = 0 \). Then, we set the following weak formulation (where \(w_j(x)\sigma(t) \) are the tests) on \(\Omega \times (\tau,T) \):

\[
\int_\tau^T (\psi \nabla v_t^m, \psi \nabla w_j)\sigma dt + \alpha^2 \int_\tau^T (\psi \partial_1 \nabla v_t^m, \psi \partial_1 \nabla w_j)\sigma dt + \nu \int_\tau^T (\psi \nabla v^m, \psi \Delta w_j)\sigma dt + \nu\alpha^2 \int_\tau^T (\psi \partial_1 \nabla v^m, \psi \partial_1 \Delta w_j)\sigma dt + \int_\tau^T (\psi B(v^m, v^m), \psi w_j)\sigma dt
\]

for all \(j = 1, \ldots, m \). Using Lemma 5.2 (the intersection \(\supp w_j \cap \Omega \) is bounded) we will prove that the above relation passes to the limit as \(m \to +\infty \).

To proceed to the next steps, and prove that Lemma 5.2 applies to our case, we set \(X = H^{3,h}_\gamma(\Omega) \), \(E = H^{2,h}_\gamma(\Omega) \), where \(\Omega \) is any open set included in \(\Omega \). Also, we choose \(p = 2, q = +\infty \) and, as already mentioned, we denote by \(\Theta = (\tau,T) \subset \mathbb{R} \) the time interval, and by \(\mathcal{F} = \{v^m|_\Omega\} \) the approximating sequence.

STEP 2: The approximating sequence \(\{v^m\} \) satisfies condition (ii) in Lemma 5.2. The boundedness of \(v^m \) in \(L^2(\tau,T;H^{2,h}_\gamma(\Omega)) \cap L^1(\tau,T;H^{3,h}_\gamma(\Omega)) \), \(\Omega \subset \Omega \) open and bounded, follows directly from the boundedness of \(v^m \) in \(L^2_{\text{loc}}(0,\infty;H^2_\gamma) \cap L^2_{\text{loc}}(0,\infty;\gamma) \) proved in STEP 1. This concludes STEP 2.

STEP 3: The approximating sequence \(\{v^m\} \) satisfies condition (i) in Lemma 5.2.

First, we will prove that \(\{v^m|_\Omega\} \) is relatively compact in \(L^2(\tau,T;H^{2,h}_\gamma(\Omega)) \) for all bounded subsets \(\Omega \subset \Omega \) by using Lemma 5.2. We only have to check that \(\{v^m\} \) satisfies condition (i) in Lemma 5.2, i.e.,

\[
\lim \sup_{k \to 0} \frac{1}{m} \|v^m - v^m|_{L^2(\tau,T-k;H^{2,h}_\gamma(\Omega))}\| = 0.
\]

Also here, to keep the notation as compact as possible, we write \(v \) in place of \(v^m \). Consider \(k > 0 \) arbitrarily small and set \(V_k(t) \) := \(v(t + k) - V(t) \). We take the
product of (1) against $-\psi^2 w_j$, integrate in time over $(t, t+k) \subset (\tau, T)$; subsequently, we multiply it by

$$a_j(t+k) - a_j(t),$$

and by summing over j, we reach (here below, we reintroduce the dx in the space-depending integrals)

$$\|\psi \nabla V_k(t)\|^2 + \alpha^2 \|\psi \partial_1 \nabla V_k(t)\|^2$$

$$= -\nu \int_t^{t+k} \int \psi \Delta v \psi \Delta V_k(t)dxds - \nu \alpha^2 \int_t^{t+k} \int \psi \partial_1 \Delta v \partial_1 \Delta V_k(t)dxds$$

$$+ \int_t^{t+k} (B(v, v) - g, V_k(t)\psi^2)ds - \int \nabla V_k(t) \nabla \psi^2 dx$$

$$+ \alpha^2 \int_t^{t+k} \partial_1^2 \nabla V_k(t) \nabla \psi^2 dx - \alpha^2 \int_t^{t+k} \partial_1 \nabla V_k(t) \nabla \psi^2 dx$$

$$- \nu \int_t^{t+k} \int \partial_1 \Delta v \partial_1 \nabla V_k(t) \nabla \psi^2 - \nu \alpha^2 \int_t^{t+k} \int \partial_1 \Delta v \partial_1 \nabla V_k(t) \Delta \psi^2 dxds$$

$$- \nu \alpha^2 \int_t^{t+k} \int \partial_1 \Delta v \nabla V_k(t) \partial_1 \psi^2 dxds - \nu \alpha^2 \int_t^{t+k} \int \partial_1 \Delta v \nabla V_k(t) \partial_1 \nabla \psi^2 dxds$$

$$- \nu \alpha^2 \int_t^{t+k} \int \partial_1 \Delta v \nabla V_k(t) \partial_1 \Delta \psi^2 dxds$$

from which, integrating on $(\tau, T-k)$ in dt, we get

$$\int_{\tau}^{T-k} \|\psi \nabla V_k(t)\|^2 dt + \alpha^2 \int_t^{T-k} \|\psi \partial_1 \nabla V_k(t)\|^2 dt$$

$$= -\nu \int_{\tau}^{T-k} \int_t^{t+k} \int \psi \Delta v \psi \Delta V_k(t)dxdsdt$$

$$- \nu \alpha^2 \int_{\tau}^{T-k} \int_t^{t+k} \int \psi \partial_1 \Delta v \partial_1 \Delta V_k(t)dxdsdt$$

$$+ \int_{\tau}^{T-k} \int_t^{t+k} (B(v, v) - g, V_k(t)\psi^2)dsdt + \int_{\tau}^{T-k} \sum_{j=1}^{10} J_j.$$

For the terms in the right-hand side of the above equality, exploiting Fubini’s theorem along with the properties of the following functions

$$\pi = \begin{cases}
\tau & \text{if } s \leq \tau \\
\nu & \text{if } \tau < s \leq T-k \\
T-k & \text{if } s > T-k
\end{cases}$$

and

$$s - k = \begin{cases}
\tau & \text{if } s - k \leq \tau \\
s - k & \text{if } \tau < s - k \leq T-k \\
T-k & \text{if } s - k > T-k
\end{cases}$$

which are used to change the order of integration, we get

$$\nu \left| \int_{\tau}^{T-k} \int_t^{t+k} \int \psi \Delta v(s) \psi \Delta V_k(t)dxdsdt \right|$$

$$\leq \nu \int_{\tau}^{T-k} \int_t^{t+k} \|\psi \Delta v(s)\| \|\psi \Delta V_k(t)\| dsdt$$
Now, by exploiting (14), we have

\[\nu \int_{\tau}^{T-k} \| \psi \Delta V_k(t) \| \int_{t}^{t+k} \| \psi \Delta v(s) \| ds dt \leq \nu \int_{\tau}^{T} \| \psi \Delta v(s) \| \int_{s-k}^{s} \| \psi \Delta V_k(t) \| ds dt \]

\[\leq \nu \int_{\tau}^{T} \| \psi \Delta v(s) \| \left(\int_{s-k}^{s} 1 dt \right)^{1/2} \left(\int_{s-k}^{s} \| \psi \Delta V_k(t) \|^2 dt \right)^{1/2} \]

\[\leq 2\nu k^{1/2} (T - \tau)^{1/2} \| \psi \Delta v \|^2_{L^2(\tau; T; L^2)} \left(\int_{\tau}^{T} \| \psi \Delta v(s) \|^2 ds \right)^{1/2} \]

\[\leq 2\nu k^{1/2} (T - \tau)^{1/2} \| \psi \Delta v \|^2_{L^2(\tau; T; L^2)} \leq C \nu k^{1/2} (T - \tau)^{1/2}. \]

With similar computations, we also obtain the inequality

\[\nu \alpha^2 \int_{\tau}^{T-k} \int_{t}^{t+k} \left| \psi \partial_1 \Delta v \partial_1 \Delta V_k(t) \right| dx ds dt \]

\[\leq 2\nu \alpha^2 k^{1/2} \| \psi \partial_1 \Delta v \|^2_{L^2(\tau; T; L^2)} (T - \tau)^{1/2} \leq C \nu \alpha^2 k^{1/2} (T - \tau)^{1/2}. \]

Now, by exploiting (14), we have

\[\left| \int_{\tau}^{T-k} \int_{t}^{t+k} (B(v, v), \psi^2 V_k(t)) ds dt \right| \]

\[\leq \left| \int_{\tau}^{T-k} \int_{t}^{t+k} \left[\partial_1 v \Delta V_k(t) \partial_2 \psi^2 - \partial_2 v \Delta V_k(t) \partial_1 \psi^2 \right] dx ds dt \right| \]

\[+ \left| \int_{\tau}^{T-k} \int_{t}^{t+k} \left[\partial_1 v \Delta v \psi^2 \partial_2 V_k(t) - \partial_2 v \psi^2 \partial_1 V_k(t) \right] dx ds dt \right| \]

\[\leq C \epsilon \int_{\tau}^{T-k} \int_{t}^{t+k} \| \Delta v \| (\| \nabla \partial_1 v \| + \| \nabla \partial_2 v \|) (\| \psi \nabla V_k(t) \| + \epsilon \| \psi V_k(t) \|) ds dt \]

\[+ C \int_{\tau}^{T-k} \int_{t}^{t+k} \| \psi \Delta v \| (\| \nabla \partial_1 v \| + \| \nabla \partial_2 v \|) (\| \psi \Delta V_k(t) \| + \epsilon \| \psi \nabla V_k(t) \|) ds dt \]

\[\leq C k^{1/2} (T - \tau)^{1/2} (\| v \|^2_{L^2(\tau; T; H^1)} + \| v \|^2_{L^2(\tau; T; H^2)}) \]

\[\leq C k^{1/2} (T - \tau)^{1/2}. \]

Now, we estimate the terms \(J_i, \ i = 1, \ldots, 10. \) Let us start with \(J_1 \) to get

\[\int_{\tau}^{T-k} |J_1| dt \leq \epsilon \int_{\tau}^{T-k} \| \psi \nabla V_k(t) \| \| \psi V_k(t) \| dx dt \leq \epsilon \sqrt{\frac{2}{\lambda_1}} \int_{\tau}^{T-k} \| \psi \nabla V_k(t) \|^2 dt. \quad (27) \]
For the terms J_2 and J_3 we have
\[
\int_{\tau}^{T-k} |J_2| dt \leq \alpha^2 \epsilon \int_{\tau}^{T-k} \int |\psi \partial_1 \nabla V_k(t)| |\psi \partial_1 V_k(t)| dt
\]
\[+ \alpha^2 \epsilon \int_{\tau}^{T-k} \int |\psi \partial_1 \nabla V_k(t)| |\psi V_k(t)| dt\]
\[\leq C \alpha^2 \epsilon \int_{\tau}^{T-k} \|\psi \partial_1 \nabla V_k(t)\|^2 dt\]
\[+ C \alpha^2 \epsilon \int_{\tau}^{T-k} \|\psi \partial_1 \nabla V_k(t)\| \|\psi \nabla V_k(t)\| dt\] \hspace{1cm} (28)
and
\[
\int_{\tau}^{T-k} |J_3| dt \leq \alpha^2 \epsilon \int_{\tau}^{T-k} \int |\psi \partial_1 \nabla V_k(t)| |\psi \nabla V_k(t)| dx dt\]
\[\leq C \alpha^2 \epsilon \int_{\tau}^{T-k} \|\psi \partial_1 \nabla V_k(t)\| \|\psi \nabla V_k(t)\| dt\]
\[\leq C \alpha^2 \epsilon \int_{\tau}^{T-k} \|\psi \partial_1 \nabla V_k(t)\|^2 dt\]
\[+ C \alpha^2 \epsilon (T - \tau)^{1/2} \|\psi \nabla v\|_{L^\infty(\tau,T;L^2)} \|\psi \nabla v\|_{L^2(\tau,T;L^2)}\] \hspace{1cm} (29)
Next, for the terms J_4 and J_5 we have
\[
\int_{\tau}^{T-k} |J_4| dt \leq \nu \int_{\tau}^{T-k} \int_t^{t+k} \int \Delta v V_k(t) \Delta v^2 dx ds dt\]
\[\leq \nu \int_{\tau}^{T-k} \int_t^{t+k} \|\Delta v(s)\| \|\psi V_k(t)\| ds dt\]
\[\leq C \nu \epsilon k^{1/2} (T - \tau)^{1/2} \|v\|_{L^2(\tau,T;L^2)}^2,\]
where we used again (18), and
\[
\int_{\tau}^{T-k} |J_5| dt \leq 2 \nu \epsilon \int_{\tau}^{T-k} \int_{t}^{t+k} \|\psi \Delta v(s)\| \|\psi V_k(t)\| ds dt\]
\[\leq 4 \nu \epsilon k^{1/2} \|v\|_{L^2(\tau,T;H^1)} \int_{\tau}^{T} \|\psi \Delta v(s)\| ds\]
\[\leq C \nu \epsilon k^{1/2} (T - \tau)^{1/2} \|v\|_{L^2(\tau,T;H^1)}^2.\]
J_6 is estimated as follows:
\[
\int_{\tau}^{T-k} |J_6| dt \leq 2 \nu \alpha^2 \epsilon \int_{\tau}^{T-k} \int_{t}^{t+k} \|\psi \partial_1 \Delta v\| \|\psi \partial_1 \nabla V_k(t)\| ds dt\]
\[\leq 4 \nu \epsilon k^{1/2} \alpha^2 \|v\|_{L^2(\tau,T;H^2_{\psi})} \int_{\tau}^{T} \|\psi \partial_1 \Delta v(s)\| ds\]
\[\leq C \nu \epsilon k^{1/2} (T - \tau)^{1/2} \alpha^2 \|v\|_{L^2(\tau,T;H^2_{\psi})}^2.\]
In a very similar way we also get
\[
\int_{\tau}^{T-k} |J_\tau| dt \leq \nu c \alpha^2 Ck^{1/2} \|v\|_{L^2(\tau,T;H^1_\gamma)} \int_{\tau}^{T} \|\psi \partial_1 \Delta v(s)\| ds,
\]
\[
\int_{\tau}^{T-k} |J_5| dt \leq \nu c \alpha^2 Ck^{1/2} \|v\|_{L^2(\tau,T;H^1_\gamma)} \int_{\tau}^{T} \|\psi \partial_1 \Delta v(s)\| ds,
\]
\[
\int_{\tau}^{T-k} |J_0| dt \leq \nu c \alpha^2 Ck^{1/2} \|v\|_{L^2(\tau,T;H^1_\gamma)} \int_{\tau}^{T} \|\psi \partial_1 \Delta v(s)\| ds,
\]
and
\[
\int_{\tau}^{T-k} |J_{10}| dt \leq \nu c \alpha^2 Ck^{1/2} \|v\|_{L^2(\tau,T;L^2)} \int_{\tau}^{T} \|\psi \partial_1 \Delta v(s)\| ds.
\]
Whence, for \(i = 7, 8, 9, 10 \), we have that
\[
\int_{\tau}^{T-k} |J_i| dt \leq C k^{1/2} (T - \tau)^{1/2} \|v\|^2_{L^2(\tau,T;H^1_\gamma)}.
\]
To conclude we reabsorb the terms (27), (28) and (29) in the left-hand side of (25). Then, by using standard manipulations along with the above estimates, we get
\[
\int_{\tau}^{T-k} \|\psi \nabla V_k(t)\|^2 dt + \alpha^2 \int_{\tau}^{T-k} \|\psi \partial_1 \nabla V_k(t)\|^2 dt \leq C (T - \tau)^{1/2} k^{1/2} \to 0 \quad \text{as } k \to 0,
\]
which concludes STEP 3.

STEP 4: Application of Lemma 5.2 to \(\{v^m|_O\} \).

By Lemma 5.2, we deduce that \(\{v^m|_O\} \) is relatively compact in \(L^2(\tau,T;H^2_\gamma(O)) \), and we can extract a subsequence, still denoted by \(\{v^m|_O\} \), that strongly converges in \(L^2(\tau,T;H^2_\gamma(O)) \) for all \(O \subset \Omega \). Therefore, \(v^m \to v \) in \(L^2(\tau,T;H^2_\gamma(\Omega)) \), locally in \(\Omega \) for a suitable \(v \).

By STEP 1 we have that \(\{v^m\} \) is also bounded in \(L^2(\tau,T;H^3_\gamma) \) (let us recall that \(v^m|_O \) is the restriction of \(v^m \) to \(O \), and hence \(v^m \to \tilde{v} \) weakly in \(L^2(\tau,T;H^3_\gamma(\Omega)) \)). Thus, due to the uniqueness of the limit, we find \((\tilde{v})|_O = v \) on every ball \(O \subset \Omega \). Therefore, \(v \) is defined on \(\Omega \) and \(v \in L^2(\tau,T;H^3_\gamma(\Omega)) \).

STEP 5: The limiting function \(v \) is a weak solution.

We show that \(v \) is a weak solution of problem (1). Hence, we have to check that, for any \(w_j \in H^2_\gamma \cap H^1_0 \) (the elements of the basis for the considered test functions), the weak formulation for \(v^m \) passes to the limit as \(m \to +\infty \). It is enough to verify that the nonlinear term passes to the limit, i.e., setting \(\Omega' = \text{supp } w_j \cap \Omega \), we take into account the difference
\[
\left| \int_{\tau}^{T} (B(v^m, v^m), \psi^2 w_j) dt - \int_{\tau}^{T} (B(v, v), \psi^2 w_j) \sigma dt \right|
\]
\[
= \int_{\tau}^{T} (B(v^m, v^m - v), \psi^2 w_j) \sigma dt + \int_{\tau}^{T} (B(v^m - v, v), \psi^2 w_j\sigma) dt
\]
\[
= \int_{\tau}^{T} \int_{\Omega} \left[\partial_1 (v^m - v) \Delta v^m \partial_2 (\psi^2 w_j) - \partial_2 (v^m - v) \Delta v^m \partial_1 (\psi^2 w_j) \right] \sigma dx dt
\]
\[
+ \int_{\tau}^{T} \int_{\Omega} [\partial_1 v \Delta (v^m - v) \partial_2 (\psi^2 w_j) - \partial_2 v \Delta (v^m - v) \partial_1 (\psi^2 w_j)] \sigma dx dt
\]
\[
\int_T^T \int_{\Omega'} \left[\partial_1 (v^m - v) \Delta v^m \partial_2 (\psi^2 w_j) - \partial_2 (v^m - v) \Delta v^m \partial_1 (\psi^2 w_j) \right] \sigma \, dx \, dt \\
+ \int_T^T \int_{\Omega'} \left[\partial_1 v \Delta (v^m - v) \partial_2 (\psi^2 w_j) - \partial_2 v \Delta (v^m - v) \partial_1 (\psi^2 w_j) \right] \sigma \, dx \, dt.
\]

We estimate singularly the above terms, so that
\[
\left| \int_T^T \int_{\Omega'} \left[\partial_1 (v^m - v) \Delta v^m \partial_2 (\psi^2 w_j) \right] \sigma \, dx \, dt \right| \\
\leq C \int_T^T \int_{\Omega'} |\partial_1 (v^m - v)| |\psi \Delta v^m| |\psi w_j| \sigma \, dx \, dt \\
\leq C \int_T^T \int_{\Omega'} |\psi \Delta v^m| \|\partial_1 (v^m - v)\|_{L^4} \|\psi w_j\|_{L^4} \sigma \, dx \, dt \\
\leq C \|w_j\|_{H^3} \int_T^T \|\psi \Delta v^m\| \|\partial_1 \nabla (v^m - v)\| \sigma \, dx \, dt.
\]

Again, for the second term we find
\[
\left| \int_T^T \int_{\Omega'} \partial_2 (v^m - v) \Delta v^m \partial_1 (\psi^2 w_j) \sigma \, dx \, dt \right| \\
\leq C \int_T^T \int_{\Omega'} |\partial_2 (v^m - v)| |\psi \Delta v^m| |\psi w_j| \sigma \, dx \, dt \\
+ C \int_T^T \int_{\Omega'} |\partial_1 (v^m - v)| |\psi \partial_2 \Delta v^m| |\psi w_j| \sigma \, dx \, dt \\
\leq C \|\psi w_j\|_{L^\infty} \int_T^T \|\partial_1 \nabla (v^m - v)\| \|\psi \Delta v^m\| \sigma \, dx \, dt \\
+ \int_T^T \int_{\Omega'} \left[\partial_1 v \nabla (v^m - v) \partial_2 (\psi^2 w_j) - \partial_2 v \nabla (v^m - v) \partial_1 (\psi^2 w_j) \right] \sigma \, dx \, dt
\]

and
\[
\left| \int_T^T \int_{\Omega'} \partial_1 v \nabla (v^m - v) \partial_2 (\psi^2 w_j) \sigma \, dx \, dt \right| \\
\leq C \int_T^T \int_{\Omega'} |\partial_1 v| |\nabla (v^m - v)| \|\psi \partial_2 w_j + \epsilon \psi w_j\| \sigma \, dx \, dt \\
+ C \int_T^T \int_{\Omega'} |\partial_1 v| |\nabla (v^m - v)| \left(|\epsilon \psi w_j| + |\epsilon \psi \partial_2 w_j| + |\epsilon \psi \nabla w_j| + |\psi \partial_2 \nabla w_j| \right) \sigma \, dx \, dt \\
\leq C \int_T^T \|\nabla (v^m - v)\| \|\psi \partial_1 \nabla v\|_{L^4} \left(\|\psi \partial_2 w_j\|_{L^4} + \|\epsilon \psi w_j\|_{L^4} \right) \sigma \, dx \, dt \\
+ \int_T^T \int_{\Omega'} \left(\|\psi \partial_1 v\|_{L^\infty} \|\nabla (v^m - v)\| \left(\|\epsilon \psi w_j\| + \|\epsilon \psi \partial_2 w_j\| + \|\epsilon \psi \nabla w_j\| + \|\psi \partial_2 \nabla w_j\| \right) \sigma \, dx \, dt \\
\leq C \|w_j\|_{H^3} \int_T^T \|\nabla (v^m - v)\| \left(\|\psi \partial_1 \nabla v\| + \|\psi \partial_1 \Delta v\| \right) \sigma \, dx \, dt.
\]

Analogously, we have
\[
\left| \int_T^T \int_{\Omega'} \partial_2 v \Delta (v^m - v) \partial_1 (\psi^2 w_j) \sigma \, dx \, dt \right|
\]
Clearly, under this hypothesis we also have that $C\epsilon$ is satisfied provided that $\frac{1}{\gamma} \leq 2$. More in general, taking $C \leq \epsilon^{\frac{1}{2}}$, we conclude that $v, \partial_1 v \in L^2(0,T; H^1_\gamma(\Omega))$. By interpolation, we conclude that $v, \partial_1 v \in C([0,T]; L^2_\gamma(\Omega))$, which is the claim.

Appendix A. Properties of the weight function. First, we introduce the function $\phi(x, \epsilon, \gamma) = \phi(x, 3, 2, \epsilon, \gamma) = (1 + |x_1|^3 + |x_2|^3)^\gamma$ and observe that

$$|\partial^\beta \phi| \leq C|\beta|^{1/2} \phi^{1/2},$$

(31)

for every multi-index $\beta = (\beta_1, \beta_2)$, $0 < |\beta| \leq 3$ and $\beta_2 \leq 2$, provided $0 < \gamma \leq 2/3$.

Actually, $|\partial_1 \phi| \leq 3\epsilon^{1/2}$ if and only if

$$|\partial_1 (1 + |x_1|^3 + |x_2|^2)^\gamma| = \frac{3\gamma \epsilon |x_1|^2}{(1 + |x_1|^3 + |x_2|^2)^{1-\gamma}} \leq 3\epsilon (1 + |x_1|^3 + |x_2|^2)^{\gamma/2},$$

which is satisfied provided that

$$2 \leq 3 \left(1 - \frac{1}{2} \gamma\right) \iff 0 < \gamma \leq \frac{2}{3}. \quad (32)$$

Clearly, under this hypothesis we also have that $|\partial_2 \phi| \leq 3\epsilon^{1/2}$.

Moreover, we have that the following relation holds true:

$$|\partial_1^2 (1 + |x_1|^3 + |x_2|^2)^\gamma| \leq \frac{6\epsilon^2 |x_1|^3}{(1 + |x_1|^3 + |x_2|^2)^{1-\gamma}} + \frac{9(1 - \gamma) \epsilon^2 |x_1|^4}{(1 + |x_1|^3 + |x_2|^2)^{2-\gamma}} \leq 15\epsilon^2 (1 + |x_1|^3 + |x_2|^2)^{\gamma/2},$$

provided that $\gamma \leq 4/3$. Under this last condition one can easily check that $|\partial^\beta \phi| \leq C|\beta|^{1/2} \phi^{1/2}$ for every multi-index $\beta = (\beta_1, \beta_2)$, $|\beta| \leq 2$. More in general, taking $\gamma \leq 2/3$, as in (32), we have (31).

Now, consider the map $g(\tau)$, $\tau \geq 0$ (see reference [5, (3.5), p. 561]), given by

$$g(\tau) = 1/4 + \tau^2, \quad 0 \leq \tau \leq 1/2$$

$$g(\tau) = \tau, \quad 1/2 \leq \tau \leq \rho$$

$$g(\tau) = \rho + 1/2 - (\rho + 1 - \tau)^2/2, \quad \rho \leq \tau \leq \rho + 1$$

$$g(\tau) = \rho + 1/2, \quad \tau \geq \rho + 1,$$

(33)
and obviously \(g(\tau) = \tau \) when \(\rho = +\infty, \tau \geq 1/2 \).

Define the weight function \(\varphi \) as
\[
\varphi(x_1, x_2, \epsilon, \rho, \gamma) := \left(g\left((1 + |x_1|^2 + |x_2|^2)^{1/2} \right) \right)^{2\gamma};
\]

then it holds true that
\[
\lim_{\rho \to +\infty} \varphi(x_1, x_2, \epsilon, \rho, \gamma) = (1 + |x_1|^2 + |x_2|^2)^{\gamma}.
\]

We are ready to show Lemma 5.1.

Sketch of the proof of Lemma 5.1. This is due, essentially, to the fact that \(0 \leq g' \leq 1 \), \(g'(\tau) \equiv 0 \) when \(\tau > \rho + 1 \), to \(g(\tau) \sim \tau \) when \(1/2 \leq \tau \leq \rho + 1 \), and to the properties of the weight \(\phi \) when \(\gamma \leq 2/3 \).

Take
\[
\tau = \phi(x, 3, 2, \epsilon, 1/2) = (1 + |x_1|^2 + |x_2|^2)^{1/2}
\]

and begin by considering \(|\beta| = 1 \), with \(\partial^\beta = \partial_1 \) (the case of \(\partial^\beta = \partial_2 \) is easier and left to the reader). We want to prove that
\[
|\partial_1 \varphi| = 2\gamma g(\phi)^{2\gamma-1}g'(\phi)|\partial_1 \phi| \leq C\epsilon \varphi^{1/2},
\]

where \(\phi := \phi(x, 3, 2, 1/2) \).

From \(|\partial_1 \phi| = 3\epsilon|x_1|^2/2 \phi \leq C\epsilon|x_1|^1/2 \) and the definition (33), we get
\[
|\partial_1 \varphi| \leq \begin{cases}
\gamma \epsilon C(1/4 + \phi^2)^{2\gamma-1}|x_1|^{1/2}, & 0 \leq \phi \leq 1/2 \\
\gamma \epsilon C\phi^{2\gamma-1}|x_1|^{1/2}, & 1/2 \leq \phi \leq \rho \\
\gamma \epsilon C\left(\rho + 1/2 - (\rho + 1 - \phi)^2/2 \right)^{2\gamma-1} (\rho + 1 - \phi)|x_1|^{1/2}, & \rho \leq \phi \leq \rho + 1 \\
0 & \phi \geq \rho + 1.
\end{cases}
\]

Consider the case of \(\partial_1 \varphi \) when \(\rho \leq \phi \leq \rho + 1 \), the others are similar.

The condition \(|\partial_1 \varphi| \leq C\epsilon \varphi^{1/2} \) yields if we show that
\[
\gamma \epsilon \left(\rho + 1/2 - (\rho + 1 - \phi)^2/2 \right)^{2\gamma-1} (\rho + 1 - \phi)|x_1|^{1/2} \leq C\left(\rho + 1/2 - (\rho + 1 - \phi)^2/2 \right)^{\gamma},
\]

i.e.
\[
\gamma \left(\rho + 1/2 - (\rho + 1 - \phi)^2/2 \right)^{\gamma-1} (\rho + 1 - \phi)|x_1|^{1/2} \leq C.
\]

Hence, recalling that \(\rho \leq \phi \leq \rho + 1 \), we obtain
\[
\frac{(\rho + 1 - \phi)|x_1|^{1/2}}{\left(\rho + 1/2 - (\rho + 1 - \phi)^2/2 \right)^{1-\gamma}} \leq \frac{|x_1|^{1/2}}{\rho^{1-\gamma}} \leq \frac{\phi^{1/3}}{\rho^{1-\gamma}} \leq \frac{(1 + \rho)^{1/3}}{\rho^{1-\gamma}}
\]

which is bounded for \(\gamma \leq 2/3 \). Then, relation (35) follows.

Now, consider the case of the second derivatives (actually we take into account just the mixed partial derivatives \(\partial^\beta \varphi = \partial_1^2 \varphi \)). We have that
\[
\partial_2 \left(2\gamma g(\phi)^{2\gamma-1}g'(\phi)\partial_1 \phi\right) = 2\gamma(2\gamma - 1)g(\phi)^{2\gamma-2}(g'(\phi))^2 \partial_2 \phi \partial_1 \phi + 2\gamma g(\phi)^{2\gamma-1}g''(\phi)\partial_2 \phi \partial_1 \phi + 2\gamma g(\phi)^{2\gamma-1}g'(\phi)\partial_2^2 \phi =: A_1 + A_2 + A_3.
\]

Let \(\rho \leq \phi \leq \rho + 1 \). In what follows we develop the calculations only for this case; the others are similar, if not more elementary.
We prove that $|A_i| \leq C \varepsilon^{2\frac{1}{3}}$, for $i = 1, 2, 3$. First consider A_1. Recalling that x_2 is bounded, we have that

$$|A_1| \leq C \varepsilon^2 g(\phi)^{2\gamma - 2} (\rho + 1 - \phi)^2 |\epsilon x_1|^{1/2} \leq C \varepsilon^2 g(\phi)^{2\gamma - 2} |\epsilon x_1|^{1/2},$$

and hence condition $|A_1| \leq C \varepsilon^2$ follows by requiring

$$\varepsilon^2 g(\phi)^{2\gamma - 2} |\epsilon x_1|^{1/2} \leq C \varepsilon^2 g(\phi)^\gamma \text{ or equivalently } g(\phi)^{\gamma - 2} |\epsilon x_1|^{1/2} \leq C,$$

with $\rho \leq \phi \leq \rho + 1$. Exploiting the same computations as in (36), we obtain

$$\frac{|\epsilon x_1|^{1/2}}{(\rho + 1/2 - (\rho + 1 - \phi)^2/2)^{2-\gamma}} \leq \frac{|\epsilon x_1|^{1/2}}{\rho^2-\gamma} \leq \frac{\phi^{1/3}}{\rho^{2-\gamma}} \leq (1 + \rho)^{1/3} \leq C,$$

where the last inequality is satisfied for $\gamma \leq 5/3$.

As for A_2, one can see that $|A_2| \leq C \varepsilon^2 g(\phi)^{2\gamma - 1} |\epsilon x_1|^{1/2}$. So $|A_2| \leq C \varepsilon^2$ if

$$\varepsilon^2 g(\phi)^{2\gamma - 1} |\epsilon x_1|^{1/2} \leq C \varepsilon^2 g(\phi)^\gamma \text{ or equivalently } g(\phi)^{\gamma - 1} |\epsilon x_1|^{1/2} \leq C,$$

which is certainly verified under the assumption that $\gamma \leq 2/3$.

Since $|A_3| \leq C g(\phi)^{2\gamma - 1} |\partial_x^2 \phi|$, the condition $|A_3| \leq C \varepsilon^{2\gamma / 3}$ is satisfied provided that

$$\varepsilon^2 g(\phi)^{2\gamma - 1} |\epsilon x_1|^2 |\epsilon x_2| \leq C \varepsilon^2 g(\phi)^\gamma, \text{ that is } g(\phi)^{\gamma - 1} |\epsilon x_1|^2 |\epsilon x_2| \leq C. \quad (38)$$

We conclude using the fact that $\gamma \leq 2/3$ and that

$$\frac{|\epsilon x_1|^2 |\epsilon x_2|}{\phi^3} \leq \frac{\phi^{7/3}}{\phi^3} \leq 1.$$

Using the previous computations along with the fact that $g''(\tau) \equiv 0$, the general case (18) follows directly. \qed

Acknowledgments. The authors are members of INdAM and GNAMPA. The first author was partially supported by the project GNAMPA 2015 “Dinamiche non autonome, sistemi hamiltoniani e teoria del controllo”.

REFERENCES

[1] F. Abergel, Existence and finite dimensionality of the global attractor for evolution equations on unbounded domains, *J. Diff. Equ.*, **83** (1990), 36–54.

[2] H. Ali, Approximate deconvolution model in a bounded domain with vertical regularization, *J. Math. Anal. Appl.*, **408** (2013), 355–363.

[3] C. T. Anh and P. T. Trang, On the 3D Kelvin-Voigt-Brinkman-Forchheimer equations in some unbounded domains, *Nonlinear Anal.*, **89** (2013), 36–54.

[4] P. Anthony and S. Zelik, Infinite-energy solutions for the Navier-Stokes equations in a strip revisited, *Commun. Pure Appl. Anal.*, **13** (2004), 1361–1393.

[5] A. V. Babin, The Attractor of a Navier-Stokes system in an unbounded channel-like domain, *J. Dyn. Diff. Equ.*, **4** (1992), 555–584.

[6] A. V. Babin and M. I. Vishik, Attractors of partial differential evolution equations in an unbounded domain, *Proc. Roy. Soc. Edinburgh Sect. A.*, **116** (1990), 221–243.

[7] J. Bardina, J. H. Ferziger and W. C. Reynolds, Improved subgrid scale models for large eddy simulation, *American Institute of Aeronautics and Astronautics*, **80** (1980), AIAA, 80–1357.

[8] L. C. Berselli, Analysis of a large eddy simulation model based on anisotropic filtering, *J. Math. Anal. Appl.*, **386** (2012), 149–170.

[9] L. C. Berselli and L. Bisconti, On the structural stability of the Euler-Voigt and Navier-Stokes-Voigt models, *Nonlinear Anal.*, **75** (2012), 117–130.

[10] L. C. Berselli and D. Catania, On the Boussinesq equations with anisotropic filter in a vertical pipe, *Dyn. Partial Differ. Equ.*, **12** (2015), 177–192.
[11] L. C. Berselli and D. Catania, On the well-posedness of the Boussinesq equations with anisotropic filter for turbulent flows, Z. Anal. Anwend., 34 (2015), 61–83.
[12] L. Bisconti, On the convergence of an approximate deconvolution model to the 3D mean Boussinesq equations, Math. Methods Appl. Sci., 38 (2015), 1437–1450.
[13] L. Bisconti and D. Catania, Remarks on global attractors for the 3D Navier-Stokes equations with horizontal filtering, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 59–75.
[14] L. Bisconti and P. M. Mariano, Existence results in the linear dynamics of quasicrystals with phason diffusion and nonlinear gyroscopic effects, Multiscale Model. Simul., 15 (2017), no. 2, 745–767.
[15] C. Cao, D. D. Holm and E. S. Titi, On the Clark-α model of turbulence: global regularity and long-time dynamics, J. Turbul., 6 (2005), paper 20, 11 pp.
[16] Y. Cao, E. M. Lunasin and E. S. Titi, Global well-posedness of three-dimensional viscous and inviscid simplified Bardina turbulence models, Commun. Math. Sci., 4 (2006), 823–848.
[17] Y. Cao and E. S. Titi, On the rate of convergence of the two-dimensional α-models of turbulence to the Navier-Stokes equations, Numer. Funct. Anal. Optim., 30 (2009), 1231–1271.
[18] D. Catania, A. Morando and P. Trebeschi, Global attractor for the Navier-Stokes equations with horizontal filtering, Nonlinear Differ. Equ. Appl., 22 (2015), 811–848.
[19] A. O. Çelebi, V. K. Kalantarov and M. Polat, Global attractors for 2D Navier-Stokes-Voight equations in an unbounded domain, Appl. Anal., 88 (2009), 381–392.
[20] A. Cheskidov, D. D. Holm, E. Olson and E. S. Titi, On a Leray-α model of turbulence, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), 629–649.
[21] M. A. Efendiev and S. V. Zelik, The attractor for nonlinear reaction-diffusion system in an unbounded domain, Comm. Pure Appl. Math., 54 (2001), 625–688.
[22] C. Foias, D. D. Holm and E. S. Titi, The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory, J. Dynam. Differ. Equ., 14 (2002), 1–35.
[23] M. J. Garrido-Atienza and P. Marín-Rubio, Navier-Stokes equations with delays on unbounded domains, Nonlinear Anal., 64 (2006), 1100–1118.
[24] F. Gazzola and V. Pata, A uniform attractor for a non-autonomous generalized Navier–Stokes equation, J. Anal. Appl., 16 (1997), 435–449.
[25] M. Germano, Differential filters for the large eddy simulation of turbulent flows, Phys. Fluids, 29 (1986), 1755–1757.
[26] A. A. Ilyin, E. M. Lunasin and E. S. Titi, A modified-Leray–α subgrid scale model of turbulence, Nonlinearity, 19 (2006), 879–897.
[27] W. Layton and R. Lewandowski, A simple and stable scale-similarity model for large Eddy simulation: Energy balance and existence of weak solutions, App. Math. Letters, 16 (2003), 1205–1209.
[28] W. Layton, R. Lewandowski, On a well-posed turbulence model, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 111–128.
[29] W. J. Layton, C. C. Manica, M. Neda and L. G. Rebholz, Numerical analysis and computational comparisons of the NS-alpha and NS-omega regularizations, Comput. Methods Appl. Mech. Engr., 199 (2010), 916–931.
[30] A. Miranville and S. Zelik, Attractors for Dissipative Partial Differential Equations in Bounded and Unbounded Domains, Handbook of differential equations: evolutionary equations, Vol. IV, 103–200, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2008.
[31] M. Polat, Global attractors for a generalized 2D parabolic system in an unbounded domain, Appl. Anal., 88 (2009), 63–74.
[32] L. G. Rebholz, Conservation laws of turbulence models, J. Math. Anal. Appl., 326 (2007), 33–45.
[33] J. Simon, Equations de Navier-Stokes, Cours de DEA 2002-2003, Universitéé Blaise Pascal, Clermont-Ferrand, Available from: http://www.lma.univ-bpclermont.fr/simon/.
[34] R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Second edition, Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1997.
[35] S. Zelik, Spatially nondecaying solutions of the 2D Navier–Stokes equation in a strip, Glasg. Math. J., 49 (2007), 525–588.

Received December 2016; revised January 2017.
E-mail address: luca.bisconti@unifi.it
E-mail address: davide.catania@unibs.it