Pt(II) versus Pt(IV) in Carbene Glycoconjugate Antitumor Agents: Minimal Structural Variations and Great Performance Changes

Alfonso Annunziata, Angela Amoresano, Maria Elena Cucciolito, Roberto Esposito, Giarita Ferraro, Ilaria Iacobucci, Paola Imbimbo, Rosanna Lucignano, Massimo Melchiorre, Maria Monti, Chiara Scognamiglio, Angela Tuzi, Daria Maria Monti, Antonello Merlino,* and Francesco Russo*

Cite This: Inorg. Chem. 2020, 59, 4002–4014

ACCESS Metrics & More | Article Recommendations | Supporting Information

ABSTRACT: Octahedral Pt(IV) complexes (2Pt−R) containing a glycoconjugate carbene ligand were prepared and fully characterized. These complexes are structural analogues to the trigonal bipyramidal Pt(II) species (1Pt−R) recently described. Thus, an unprecedented direct comparison between the biological properties of Pt compounds with different oxidation states and almost indistinguishable structural features was performed. The stability profile of the novel Pt(IV) compounds in reference solvents was determined and compared to that of the analogous Pt(II) complexes. The uptake and antiproliferative activities of 2Pt−R and 1Pt−R were evaluated on the same panel of cell lines. DNA and protein binding properties were assessed using human serum albumin, the model protein hen egg white lysozyme, and double stranded DNA model systems by a variety of experimental techniques, including UV−vis absorption spectroscopy, fluorescence, circular dichroism, and electrospray ionization mass spectrometry. Although the compounds present similar structures, their in-solution stability, cellular uptake, and DNA binding properties are diverse. These differences may represent the basis of their different cytotoxicity and biological activity.

INTRODUCTION

The improvement of the anticancer performance of metal-based agents is an important task of modern chemistry. Among the numerous strategies aimed at enhancing both activity and selectivity of these molecules, conjugation with biologically active molecular fragments targeting tumor cells is very promising. In this context, our group has recently investigated Pt(II) complexes in 18 e− trigonal bipyramidal geometry (tbp) containing a sugar-based axial ligand (1 in Figure 1). This choice simultaneously exploited: (i) the importance of the oxidation state (II), (ii) the stability of the coordinative saturation, and (iii) the possible target recognition of the sugar fragment mediated by the Warburg effect. During these studies, interesting results have been obtained with a cationic complex containing a glycoconjugate carbene (1Pt−Glu in Figure 2) that showed a cytotoxic effect on cancer cells 2 orders of magnitude higher than cisplatin. Moreover, a significant selectivity was found for cancer cells (SVT2 and A431) with respect to immortalized cells (BALB/c-3T3 and HaCaT).11

Figure 1. Sketch of the glycoconjugate tbp platinum(II) complex (1).

Figure 2. Formula of the glycoconjugate tbp platinum(II) complex 1Pt−Glu.
Other evidence that disclosed straight consequences upon small variations of the coordination environment accompanied this gratifying result: the simple substitution glucose → galactose (epimers at C4) or the removal of the protecting groups rendered the complex significantly less effective. The results were framed in the light of the key-role played by the sugar portion, whose nature and polarity can affect internalization, the metallo-drug cellular pathway, and target recognition.\(^{15−17}\)

Since fine modulations in the chemical properties of the investigated glycoconjugated Pt(II)-based carbene compounds are associated with significant differences in their biological properties, we have planned to verify the consequences of the change in the oxidation state of Pt on the biological activity of these compounds, preparing Pt(IV) analogues. This study allows a rather rare "true" comparison within the Pt(II)/Pt(IV) analogues.\(^{18−21}\) In fact, while literature data widely demonstrated that Pt(IV) pro-drugs are competitive with Pt(II) agents,\(^{22−25}\) it should be underlined that the transition to the higher oxidation state involves large structural variations (e.g., from square-planar to octahedral geometry), which makes a direct comparison between analogous Pt(IV) and Pt(II) compounds less homogeneous and more difficult to interpret. Therefore, the availability of species in the two different states of oxidation, but with an overlapping coordination environment, would provide an unprecedented opportunity to access more information about the mechanisms of action that strongly enhance the biological performance of the former one.

Hence, this work reports synthesis, spectroscopic, and structural characterization of octahedral Pt(IV) complexes (2Pt→R; Figure 4), along with a thorough comparative study of their chemical stability in different experimental conditions and of biological properties, comprising cytotoxic activity, cellular uptake, interaction with DNA and proteins.

RESULTS

Synthesis and Structural Characterization of Complexes 2Pt→R.

Scheme 1 displays the synthesis of complexes 2Pt→R. The aquo-precursor 2Pt→H₂O was obtained by suspending 2Pt→I in a solution containing silver triflate in acetone or methanol. The precipitated AgI was filtered off, and an equivalent of the appropriate silver carbene R−Ag−Br was added to the solution. The mixture was stirred for 3 days in acetone or in methanol. The precipitated AgBr was removed by filtration, and the 2Pt→R complexes were crystallized, either with the hydroxyls in acetylated form, when the reaction was carried out in acetone, or deprotected, when the solvent was methanol. In this second case, the acetyl groups undergo transesterification catalyzed by the Lewis acidity of the Ag(I) ion present in the reaction system.

The complexes display octahedral geometry with the equatorial plane defined by the bidentate ligand 1,10-phenanthroline (dmphen), which is necessary to ensure the stability of the mixed Pt carbene and the whole structure approximates to a Pt(IV)-cyclopentadienyl radical (1\(^-\)).

In line with the premises, NMR spectroscopy and X-ray diffraction disclosed the stringent structural analogy with the corresponding trinuclear bis(bipyridine) Pt(II) species (1Pt→R) complexes.\(^{11}\) Instead, the biological studies revealed deep changes in the cytotoxic properties: 2Pt→Glu as well as the other Pt(IV) complexes did not show satisfactory activity and selectivity toward cancer cells, confirming that minimal structural variations heavily affect the performance. These conflicting results were a stimulus for a comparative study between 1Pt→Glu and 2Pt→Glu to gain insights about the effects of the formal difference in the oxidation state and to

![Figure 3. Structural analogy between trigonal bipyramidal (1) and octahedral (2) complexes](https://dx.doi.org/10.1021/acs.inorgchem.9b03683)

Figure 3. Structural analogy between trigonal bipyramidal (1) and octahedral (2) complexes. This assumption suggested the design of new cationic complexes of Pt(IV) containing two methyl ligands in equatorial positions and the glycoconjugate carbene in one axial site (2Pt→R in Figure 4).

![Figure 4. Formula of the glycoconjugate octahedral platinum(IV) complexes 2Pt→R.](https://dx.doi.org/10.1021/acs.inorgchem.9b03683)

Figure 4. Formula of the glycoconjugate octahedral platinum(IV) complexes 2Pt→R. Labeling of the complexes: Glu = glucose, Gal = galactose, and dep = deprotected.

two methyl groups substitute ethylene: the structural analogy becomes even more evident considering that the strong Pt-to-ethylene π-backdonation in 1, typical of trigonal bipyramidal complexes,\(^{38}\) results in a partial sp\(^2\) → sp\(^3\) rehybridization of the alkenes carbons, and the whole structure approximates to a Pt(IV)-cyclopentadienyl radical (1\(^-\)).

In line with the premises, NMR spectroscopy and X-ray diffraction disclosed the stringent structural analogy with the corresponding trinuclear bis(bipyridine) Pt(II) species (1Pt→R) complexes.\(^{11}\) Instead, the biological studies revealed deep changes in the cytotoxic properties: 2Pt→Glu as well as the other Pt(IV) complexes did not show satisfactory activity and selectivity toward cancer cells, confirming that minimal structural variations heavily affect the performance. These conflicting results were a stimulus for a comparative study between 1Pt→Glu and 2Pt→Glu to gain insights about the effects of the formal difference in the oxidation state and to
resonances were found at the expected frequencies in the carbon spectra ($\textit{J}_{\text{Pt-C}}$ ca. 600 Hz).

The single crystal X-ray analysis confirmed that compound 2Pt–Gal contains a cationic carbene complex of Pt(IV) with...
The compound crystallizes in the triclinic \(P1 \) space group with four independent pairs of cations and anions in the unitary cell. All bond lengths and angles are in the expected range. No significant differences in the geometric parameters were found between the four independent pairs of molecular ions; only one pair is reported in Figure 6. The Pt atom adopts a fairly regular octahedral geometry with the bidentate phen ligand and two methyl groups in the equatorial plane. The two Pt–Me distances (2.05(2) and 2.07(2) Å) are in line with previous literature data.\(^3\)\(^9\) The axial positions are occupied by the central carbon atom of the carbene ligand and by a third methyl group. The crystal structure of \(2\text{Pt}^{-}\text{Gal} \) revealed a close analogy with \(1\text{Pt}^{-}\text{Glu} \) reported previously.\(^1\)\(^1\) Despite the different oxidation state of platinum, the coordination environment in \(2\text{Pt}^{-}\text{Gal} \) overlaps well with that observed in the structure of \(1\text{Pt}^{-}\text{Glu} \). The glycoconjugate carbene groups also overlap well, apart from the changed axial or equatorial position in the ring. The galactosyl group at the N2 atom is in the usual chair conformation with three equatorial and one axial substituents. At variance with \(1\text{Pt}^{-}\text{Glu} \), a not flat shape is adopted by the galactosyl group due to the axial substituent that is placed far away from the phen ligand plane to avoid steric effects. A less evident bowlike distortion of the phen bidentate ligand is observed with respect to \(1\text{Pt}^{-}\text{Glu} \), with the dihedral angle between the mean planes of the outer rings ranging from 8(2)\(^\circ\) to 11(2)\(^\circ\) in the four independent cations. In the crystal, the triflate anions are placed in the neighborhood of Pt(IV), with a mean Pt–O (triflate) distance of 5.91(3) Å. The crystal packing is dominated by electrostatic interactions and is also stabilized by weak C–H···O interactions.

In-Solution Studies. Relevant aspects of the in-solution behavior of \(2\text{Pt}^{-}\text{Glu} \) were studied by \(^1\)H NMR and UV–vis absorption spectroscopy in comparison to \(1\text{Pt}^{-}\text{Glu} \).\(^1\)\(^1\) UV–vis spectra of \(2\text{Pt}^{-}\text{Glu} \) were recorded in aqueous media (10% DMSO/90% PBS (pH 7.4) and 50% DMSO/50% PBS (pH 7.4)) and pure DMSO and reported in Figures 7A,B and S10. Interestingly, \(1\text{Pt}^{-}\text{Glu} \) and \(2\text{Pt}^{-}\text{Glu} \) showed very different stabilities. \(1\text{Pt}^{-}\text{Glu} \) is stable in aqueous media, while it exchanges ethylene and dmphen ligands for a solvent molecule in pure DMSO.\(^1\)\(^1\) On the contrary, \(2\text{Pt}^{-}\text{Glu} \) does not show appreciable changes in pure DMSO, while it undergoes spectral changes with time in aqueous media. The presence of isosbestic points in the spectral profiles of \(2\text{Pt}^{-}\text{Glu} \) in mixed DMSO/PBS solutions (Figures 7B and S10) confirmed the occurrence of a ligand exchange process.

Similar results were observed by \(^1\)H NMR. The analysis of the NMR spectra in 10% DMSO/90% PBS (pH 7.4) indicates that \(2\text{Pt}^{-}\text{Glu} \) undergoes hydrolysis of the carbene moiety, yielding a hydroxyl Pt species (\(2\text{Pt}^{-}\text{OH} \) in Scheme 2) and the imidazolinium salt.\(^\text{40-42} \) The process is complete within 24 h (Figure S11). The two products were identified by comparing their NMR spectra with those of authentic samples. An influence of pH was observed; as in D2O, the same process occurred slowly. On the other hand, \(1\text{Pt}^{-}\text{Glu} \) is stable over days under the same experimental conditions.\(^1\)\(^1\)

Interaction with DNA. The interaction of \(2\text{Pt}^{-}\text{Glu} \) with DNA was studied by fluorescence, circular dichroism, electro-
spray ionization mass spectrometry, and 1H NMR, in comparison to that of 1Pt−Glu.11

The binding of 2Pt−Glu to calf-thymus DNA (ctDNA) was first evaluated by using the ethidium bromide (EtBr) displacement fluorescence assay (Figure S12). Results of the fluorescence assay indicate that 2Pt−Glu does not displace EtBr from the ctDNA major groove, as is observed also in the case of 1Pt−Glu and differently from cisplatin and the dmphen ligand.11

Then, CD spectra of ctDNA in the presence of 2Pt−Glu in different molar ratios were registered and compared to the spectrum of drug-free DNA (Figure 8).

Figure 8. CD spectra of ctDNA (200 μM in 0.01 M ammonium acetate buffer, pH 7.5) in the absence (black line) and in the presence of 2Pt−Glu with different DNA to metal molar ratios (1:0.5 green line, 1:1 orange line, and 1:2 purple line).

The CD spectra of ctDNA present the typical features of the right-handed B form of DNA, in agreement with literature data.11 In the presence of 2Pt−Glu, the intensities of both positive and negative bands shift to lower ellipticity values, as is observed for 1Pt−Glu.11

Successively, to shed light on the binding of the two compounds to a DNA model system at molecular level, the binding of 1Pt−Glu and 2Pt−Glu to a 20 mer double stranded oligonucleotide (dsDNA) was investigated by electrospray mass spectrometry. ESI-MS spectra of 1Pt−Glu and 2Pt−Glu are reported in Figure 9A,B, respectively, and all signals detected are summarized in Table 1. In both cases, one molecule of each Pt compound binds the dsDNA, as demonstrated by the presence of the species at molecular weights of 13 096.53 ± 2.20 Da and 13 071.34 ± 0.87 Da (Table 1), ascribable to dsDNA bound to one molecule of 1Pt−Glu and one of 2Pt−Glu, respectively (Figure 9).

These data suggest that the Pt compounds share common features in binding the dsDNA. Moreover, the behavior of the two molecules is different from that observed in the reaction of the same DNA model system with cisplatin. Indeed, when the dsDNA was incubated with cisplatin, under the same experimental conditions, up to three cisplatin molecules bound the dsDNA. However, upon binding, each cisplatin molecule lost both Cl− ligands, and some of them were replaced by other fragments (i.e., acetate ions, Figure S13 and Table S1).

From these data, it appears that 2Pt−Glu is more stable in aqueous media in the presence of DNA. ESI spectra also revealed a difference in the binding affinity of 1Pt−Glu and 2Pt−Glu toward ssDNA. In the case of 2Pt−Glu, two additional peaks were detected at 6817.08 ± 0.46 and 7087.04 ± 0.42 Da (Figure 9B). These peaks are indicative of a partial binding of 2Pt−Glu to ssDNA. This ssDNA is in equilibrium with dsDNA and is already detectable in the ESI spectrum in the absence of 2Pt−Glu (data not shown). No additional peaks were observed in the ESI spectra collected upon incubation of 1Pt−Glu with dsDNA under the same experimental conditions.

To further confirm that DNA was able to increase the stability of the Pt compounds, a time course in the UV−vis spectra of 2Pt−Glu and 1Pt−Glu in the presence of DNA was performed (Figure 10). The UV−vis spectra remain unchanged during the time course, with a minimal shift of the maximum absorption peak from 273 to 270 nm observed only after 7 days. This experiment confirmed that 2Pt−Glu is more stable in aqueous media in the presence of DNA.

Figure 9. ESI-MS spectra of dsDNA incubated with (A) 1Pt−Glu and (B) 2Pt−Glu.
Finally, to obtain further insights into the reactivity of the complexes with DNA, the interaction of 1Pt−Glu and 2Pt−Glu with 2-deoxyguanosine monophosphate (dGMP) was investigated by 1HN M R .

Interactions with Proteins. The possible interaction of 1Pt−Glu and 2Pt−Glu with the model protein hen egg white lysozyme (HEWL) and with human serum albumin (HSA) was then studied by UV−vis absorption spectroscopy and

Table 1. Results of ESI-MS Analysis of Species Formed upon Reaction of DNA with 1Pt−Glu and 2Pt−Glu

metal complex	signal (m/z)	signal charge	exp MW (Da)	theoretical MW (Da)	species
1Pt−Glu	1195.36	A (−5)	5982.9 ± 0.80	5983.9	ssDNA₁
	1494.45	A (−4)			
	1993.02	A (−3)			
	1249.57	B (−5)	6254.45 ± 0.50	6255.1	ssDNA₂
	1562.22	B (−4)			
	1358.99	C (−9)	12240.33 ± 0.30	12239	dsDNA
	1528.98	C (−8)			
	1747.71	C (−7)			
	2039.04	C (−6)			
	1454.43	D (−9)	13096.53 ± 2.20	13097.8	dsDNA + 1 (1Pt−Glu)
	1636.21	D (−8)			
	1869.85	D (−7)			
	2182.45	D (−6)			
2Pt−Glu	1195.42	A (−5)	5982.15 ± 0.03	5983.9	ssDNA₁
	1494.52	A (−4)			
	1041.25	B (−6)	6253.58 ± 0.27	6255.1	ssDNA₂
	1249.65	B (−5)			
	1562.47	B (−4)			
	1358.87	C (−9)	12238.82 ± 0.27	12239	dsDNA
	1528.80	C (−8)			
	1747.43	C (−7)			
	1135.23	E (−6)	6817.08 ± 0.46	6816.15	ssDNA₁ + 1 (2Pt−Glu)
	1362.28	E (−5)			
	1703.24	E (−4)			
	1180.24	F (−6)	7087.04 ± 0.42	7087.35	ssDNA₂ + 1 (2Pt−Glu)
	1416.32	F (−5)			
	1451.31	G (−9)	13071.34 ± 0.87	13071.3	dsDNA + 1 (2Pt−Glu)
	1632.80	G (−8)			
	1868.53	G (−7)			

The m/z values detected in MS spectra and their relative charges as well as experimental (exp) and theoretical (theor) monoisotopic mass values and the corresponding ion species are reported. ssDNA = single stranded DNA; dsDNA = double stranded DNA.

Figure 10. Time course UV−vis spectra of 50 μM 1Pt−Glu (A) and 50 μM 2Pt−Glu (B) in 10% DMSO/90% PBS (pH 7.4) in the presence of ctDNA.
circular dichroism. UV–vis spectra of the two compounds in the absence and in the presence of HEWL and HSA were collected over 7 days under different experimental conditions (Figures 11 and S14).

The analysis of the spectral profiles shows that both 1Pt–Glu and 2Pt–Glu are rather stable in the presence of the two proteins. The comparison between these spectra and those collected for the compounds in the absence of the proteins
Table 2. IC_{50} Values (μM) Obtained for Pt Compounds on A431, SVT2, BALB/c-3T3, and HaCaT Cells after 48 h of Incubationa

cell line	2Pt−Glu	2Pt−Glu−dep	2Pt−Gal	2Pt−OH	1Pt−Glu11	cisplatin11
HaCaT	43.8 ± 4.3	55 ± 9	>125	13.6 ± 1.6	13 ± 1.7	6.6 ± 0.3
A431	43.8 ± 2.8	41.8 ± 1.7	>125	14.9 ± 0.6	0.40 ± 0.01	39 ± 12
BALB/c-3T3	196 ± 14	59.6 ± 2.6	>125	7.2 ± 0.7	6.3 ± 0.4	240 ± 47
SVT2	176 ± 13	122 ± 5	>125	6.4 ± 0.6	0.65 ± 0.07	195 ± 7

aThe IC_{50} values for 1Pt−Glu and cisplatin are from ref 11.

(Figure 7) indicates that the incubation of 2Pt−Glu with HEWL or with HSA increases the in-solution stability of this metallodrug in the aqueous media, in agreement with what is observed in the presence of DNA.

To evaluate in detail the potential interaction of 1Pt−Glu and 2Pt−Glu with HEWL and HSA, the secondary structure content of the two proteins was evaluated by CD spectroscopy at increasing concentrations of the metal compounds. Far UV-CD spectra were collected upon 24 h of incubation at room temperature. CD spectra reported in Figure 12 show a decrease of the molar ellipticity at increasing concentrations of 1Pt−Glu and 2Pt−Glu for both HEWL and HSA. This is indicative of a potential binding of the Pt compounds to the proteins.

Cytotoxicity and Cellular Uptake Experiments. Finally, in order to inspect any biological difference between 1Pt−Glu and 2Pt−Glu, the cytotoxicity of 2Pt−Glu and its derivatives was assessed by the MTT assay. The same panel of cells used to study the biological activity of 1Pt−Glu were used. Cells were incubated with increasing concentrations of the Pt compounds, and then, cell survival was evaluated after 48 h of incubation. The IC_{50} values are reported in Table 2, and the results previously obtained with 1Pt−Glu and cisplatin are reported for comparison.11 No cytotoxic activity was reported for 2Pt−Gal, up to 125 μM, evidencing a close analogy with its analogue 1Pt−Gal, which was considerably less active and selective than 1Pt−Glu.11 These data suggest that the cytotoxic activity of these classes of compounds (1Pt−R and 2Pt−R) is strictly dependent on the sugar portion and very sensible upon its small variations. Surprisingly, 2Pt−Glu showed a completely different behavior with respect to 1Pt−Glu, as it was about 100 times less toxic than 1Pt−Glu and it completely lost its selectivity for the cancer cells analyzed. As 2Pt−Glu can be hydrolyzed in aqueous buffer to form 2Pt−OH, the latter compound was tested for its cytotoxicity. 2Pt−OH was found to be more toxic than 2Pt−Glu on immortalized cells, but still no selectivity was observed.

Thus, a different mechanism of action occurring between the two drugs was hypothesized, and their uptake in A431 cells was analyzed. Cancer cells were incubated with either 1Pt−Glu or 2Pt−Glu at the concentrations needed to reach the IC_{50} values. Cisplatin was used as a reference. After a 48 h incubation, the Pt content was measured by ICP-MS. The amount of Pt uptake in A431 cells was 0.65 ± 0.15 for 1Pt−Glu with respect to 0.39 ± 0.09 for 2Pt−Glu and 0.79 ± 0.25% for cisplatin. These data indicate that in the case of 1Pt−Glu the percentage of Pt internalized by the cells is about 2 times higher than that found in the case of the cells treated with 2Pt−Glu. Noteworthy, in the case of 1Pt−Glu, the amount of Pt needed to reach the IC_{50} is about 100 times lower than that needed with 2Pt−Glu.

Attempts to Reduce 2Pt−Glu In Vitro. To explain the decrease in the cytotoxic activity observed for 2Pt−R compared to 1Pt−R, we focused on the activation of Pt(IV) prodrugs, which are known to undergo a reduction in the biological environment, releasing the Pt(II) active species.30,43 In vitro reduction was attempted using ascorbic acid and glutathione, which are the most abundant reducing agent in intracellular media. 2Pt−Glu (1 mM) was incubated at 37 °C in 90% PBS (pD 7.4)/10% DMSO with different excesses (2−25 mM) of the reducing agent, and 1H NMR spectra were recorded at different times of incubation. In these conditions, no sign of reduction was observed for 2Pt−Glu or for its hydrolysate form 2Pt−OH (Scheme 2). Furthermore, no coordination of glutathione ligands was observed, despite the known ability of sulfur ligands to coordinate in the axial positions of coordinately saturated complexes.34

The lack of chemical reduction of 2Pt−Glu and 2Pt−OH is in agreement with the positions of their reduction peaks in the cyclic voltammograms, which are significantly more negative than those of Pt(IV) complexes containing chloride, acetate, or hydroxide ligands.35 In DMSO, peaks of reduction were observed at −1.54 and −1.89 V for 2Pt−Glu and −1.40, −1.59, and −1.89 V for 2Pt−OH (Figures S15 and S16 and Table S3). This trend is in accord with those observed for organometallic Pt(IV) compounds containing aryl substituents, which do not undergo chemical reduction as well.46

\section*{DISCUSSION}

Recently, we described novel five-coordinate Pt(II) compounds bearing glycoconjugate carbene ligands, which were characterized and evaluated as potential anticancer compounds in vitro.7 One of these agents (1Pt−Glu in Figure 2) showed promising in vitro cytotoxic activity and high selectivity toward malignant cells. Since fine variations in its structure were associated with significant differences in the biological properties, we were also intrigued to assess the influence of the oxidation state of the metal, another factor of great impact on the biological properties of the complexes. The starting point of the present work was that the effect of the metal oxidation state could be assessed only with other structural aspects being equal. This perspective cannot be easily realized as the unprecedented influence of

\[\text{Pt(OH}_2\text{)}_{2}\text{Glu} \]

Finally, the cyclic voltammogram of the hydrolysate form

\[\text{Pt(OH)}_{2}\text{Glu} \]

associated with significant differences in the biological properties, we were also intrigued to assess the influence of the oxidation state of the metal, another factor of great impact on the biological properties of the complexes. The starting point of the present work was that the effect of the metal oxidation state could be assessed only with other structural aspects being equal. This perspective cannot be easily realized as the unprecedented influence of

\[\text{Pt(OH}_2\text{)}_{2}\text{Glu} \]

Finally, the cyclic voltammogram of the hydrolysate form

\[\text{Pt(OH)}_{2}\text{Glu} \]

associated with significant differences in the biological properties, we were also intrigued to assess the influence of the oxidation state of the metal, another factor of great impact on the biological properties of the complexes. The starting point of the present work was that the effect of the metal oxidation state could be assessed only with other structural aspects being equal. This perspective cannot be easily realized as the unprecedented influence of

\[\text{Pt(OH}_2\text{)}_{2}\text{Glu} \]

Finally, the cyclic voltammogram of the hydrolysate form

\[\text{Pt(OH)}_{2}\text{Glu} \]

associated with significant differences in the biological properties, we were also intrigued to assess the influence of the oxidation state of the metal, another factor of great impact on the biological properties of the complexes. The starting point of the present work was that the effect of the metal oxidation state could be assessed only with other structural aspects being equal. This perspective cannot be easily realized as the unprecedented influence of

\[\text{Pt(OH}_2\text{)}_{2}\text{Glu} \]

Finally, the cyclic voltammogram of the hydrolysate form

\[\text{Pt(OH)}_{2}\text{Glu} \]

associated with significant differences in the biological properties, we were also intrigued to assess the influence of the oxidation state of the metal, another factor of great impact on the biological properties of the complexes. The starting point of the present work was that the effect of the metal oxidation state could be assessed only with other structural aspects being equal. This perspective cannot be easily realized as the unprecedented influence of

\[\text{Pt(OH}_2\text{)}_{2}\text{Glu} \]

Finally, the cyclic voltammogram of the hydrolysate form

\[\text{Pt(OH)}_{2}\text{Glu} \]

associated with significant differences in the biological properties, we were also intrigued to assess the influence of the oxidation state of the metal, another factor of great impact on the biological properties of the complexes. The starting point of the present work was that the effect of the metal oxidation state could be assessed only with other structural aspects being equal. This perspective cannot be easily realized as the unprecedented influence of

\[\text{Pt(OH}_2\text{)}_{2}\text{Glu} \]

Finally, the cyclic voltammogram of the hydrolysate form

\[\text{Pt(OH)}_{2}\text{Glu} \]

associated with significant differences in the biological properties, we were also intrigued to assess the influence of the oxidation state of the metal, another factor of great impact on the biological properties of the complexes. The starting point of the present work was that the effect of the metal oxidation state could be assessed only with other structural aspects being equal. This perspective cannot be easily realized as the unprecedented influence of

\[\text{Pt(OH}_2\text{)}_{2}\text{Glu} \]

Finally, the cyclic voltammogram of the hydrolysate form

\[\text{Pt(OH)}_{2}\text{Glu} \]

associated with significant differences in the biological properties, we were also intrigued to assess the influence of the oxidation state of the metal, another factor of great impact on the biological properties of the complexes. The starting point of the present work was that the effect of the metal oxidation state could be assessed only with other structural aspects being equal. This perspective cannot be easily realized as the unprecedented influence of

\[\text{Pt(OH}_2\text{)}_{2}\text{Glu} \]

Finally, the cyclic voltammogram of the hydrolysate form

\[\text{Pt(OH)}_{2}\text{Glu} \]
The experimental data illustrated in this work disclose relevant analogies and differences between the two classes. In full agreement with the initial expectations, their structures are nearly superimposable, and the close similarity of the NMR signals (Figure 5) confirms the similitude between the coordination environments. This returns a practically coincident molecular volume, despite the different oxidation state. However, this latter difference clearly reflects the in-solution behavior: only 1Pt–Glu is sensitive to DMSO, a coordinating aprotic solvent, probably due to the aptitude of the Pt(IV) coordination aplanar solvent, probably due to the aptitude of the equatorial neutral ligand ethene to act as a leaving group. The situation is reversed in the presence of water, a weaker ligand for platinum with respect to DMSO. In this condition, the Pt(IV)–carbene bond of 2Pt–Glu is responsive (Scheme 2). It is plausible that the high formal charge present on the metal center favors the attack of OH⁻ ions that replace the hydrocarbyl ligand. This result is consistent with the poor selectivity toward cancer cells of 2Pt–Glu, as the loss of the sugar fragment can have important effects on the internalization of the complex.

The stability of 1Pt–Glu and 2Pt–Glu toward hydrolysis is enhanced by ct-DNA and proteins: in the presence of these macromolecules, we had no evidence of structural variations of the complexes (Figures 10 and 11). Furthermore, both complexes retain their identity when interacting with DNA (Table 1), while cisplatin undergoes substitution of one chloride for other ligands. This finding confirms the higher general stability of coordinatively saturated species with respect to cisplatin. Although the two compounds show a diverse preference between the single and double strand of DNA, this behavior does not offer the cue to clarify the clear difference in activity. A possible explanation can be found first by considering the different degree of internalization displayed by the complexes. The percentage of cellular uptake of 2Pt–Glu is lower than that of either 1Pt–Glu or cisplatin. This limitation is accompanied by the stability of the Pt(IV) complex in the presence of either glutathione or ascorbate, which are used on a regular basis to verify the tendency of platinum(IV) complexes to undergo reduction.15 These literature studies, carried out mainly on complexes containing Pt–Cl bonds, hypothesize that the efficient reduction occurs upon the formation of chloride bridges with the reductant, an event that neither 2Pt–Glu nor its hydrolysis product 2Pt–OH (Scheme 2) can give rise to. Therefore, on the basis of the established supposition that Pt(IV) agents need reduction to be effective, it can be assumed that another major reason for the poor activity of 2Pt–Glu is the lack of reduction in the cytosolic environment; thus, no active species are able to initiate the cytotoxic process.

EXPERIMENTAL SECTION

Reagents and solvents were purchased from Sigma-Aldrich and were used without further purification. NMR spectra were acquired on a 400 Bruker Avance Ultrasound 400 and on a 500 Varian Inova, located at the Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Napoli (Italy). The solvents were CDCl₃, CHCl₃, or CD₂Cl₂ as internal standards, and D₂O (4.80 ppm as internal standard), and CDOD (CD₃OD, δ 3.30; CD₂OD, δ 4.90, and 195PtCl₃, δ 0, as internal standards). The following abbreviations were used for describing NMR multiplicities: s, singlet; d, doublet; dd, double doublet; triplet; app, apparent; m, multiplet; ABq, AB quartet; Me, methyl. Electrochemical measurements were recorded on a Reference 3000 Gamry instrument controlled by Framework software. Data analyses were performed with EChem Analyst electrochemical software. Precursors 2Pt–I⁻, 15 Glu–Ag–Br, 49,50 and Gal–Ag–Br 49 were synthesized as described in the literature.

Synthesis of 2Pt–Glu and 2Pt–Galan. The precursor 2Pt–I⁻ (0.40 g, 0.256 mmol) was suspended into a solution of silver triiodide (0.066 g, 0.256 mmol) in acetone (2 mL). After 10 min of stirring, AgI was filtered off on Celite. The filtrate was added to a solution of the appropriate R–Ag–Br (0.153 g, 0.256 mmol) in acetone (2 mL). The mixture was stirred and protected from light for 3 days at RT. Then, solid was filtered off, and the solvent was removed under vacuum, yielding a yellow oil. The product was purified by SiO₂ chromatography using 97:3 dichloromethane/methanol. 2Pt–Glu: (yield 96%) 1H NMR, CDCl₃, δ 9.36 (m, 2H, H-2 phen and H-9 phen), 8.81 (d, 1H, H-4 and H-7 phen), 8.29 (dd, 1H, H-3 or H-8 phen), 8.25 (dd, 1H, H-6 or H-5 phen), 8.22 (ABq, 2H, H-5 and H-6), 7.00 (d, 1H, H-4 or H-5 imidazole), 6.82 (d, 1H, H-5 or H-6 imidazole), 6.58 (s, 1H, H₁₋₄₋₅₋₆₋₇ = 8.6 Hz, H-1 glucose), 5.18 (2H, H-2 and H-3 glucose), 5.06 (1H, H₁₋₄₋₅₋₆₋₇ = 9.8 Hz, H-4 glucose), 4.20 (2H, H-6 and H-6’ glucose), 4.01 (1H, H-5 glucose), 3.23 (s, 3H, Me imidazole), 2.11 (s, 3H, OAc), 2.10 (s, 3H, OAc), 1.98 (s, 3H, OAc), 1.20 (s, 3H, OAc), 1.41 (s, 3H, H₁₋₄₋₅₋₆₋₇ = 70 Hz), 1.34 (s, 3H, H₁₋₄₋₅₋₆₋₇ = 70 Hz), 0.08 (s, 3H, H₁₋₄₋₅₋₆₋₇ = 55 Hz). 13C NMR, CDCl₃, δ 173.1 (J₁₋₄₋₅₋₆₋₇ = 648 Hz), 170.5, 169.9, 168.5, 168.2, 148.0, 147.6, 146.0, 140.0, 139.4 (x2), 131.8 (x2), 128.9, 128.6, 122.6, 122.3, 121.8, 120.8 (J₁₋₄₋₅₋₆₋₇ = 322 Hz), 117.9, 85.3, 74.5, 72.4, 69.0, 68.2, 65.9, 61.6, 37.7, 20.7, 20.6, 19.4, 18.9, 5.3 (J₁₋₄₋₅₋₆₋₇ = 6.1 Hz); 6.86 (J₁₋₄₋₅₋₆₋₇ = 6.8 Hz). 195Pt NMR, CDCl₃, δ 668 Hz. 31PF NMR, CDCl₃, δ 777 Hz.

Synthesis of 2Pt–Glu–dep. The same procedure as above was adopted using methanol instead of acetone. The complex was purified by recrystallization from methanol/diethyl ether (yield 94%). 1H NMR, CDCl₃, δ 9.42 (2H, H-2 phen and H-9 phen), 8.87 (m, 2H, H-4 and H-7 phen), 8.27 (2H, H-5 and H-6 phen), 8.19 (dd, 1H, H-3 or H-8 phen), 8.14 (dd, 1H, H-6 or H-5 phen), 7.28 (d, 1H, H-4 or H-5 imidazole), 7.09 (d, 1H, H-5 or H-4 imidazole), 4.86 (d, 1H, H₁₋₄₋₅₋₆₋₇ = 6.3 Hz, H-1 glucose), 3.63 (m, 1H, H-6 glucose), 3.49 (m, 1H, H-6’ glucose), 3.59 (s, 3H, Me imidazole), 3.25 (s, 3H, H-2 and H-4 glucose), 2.71 (t, 1H, H-3 glucose), 2.66 (m, 1H, H-5 glucose), 1.46 (s, 3H, H₁₋₄₋₅₋₆₋₇ = 69 Hz), 1.42 (s, 3H, H₁₋₄₋₅₋₆₋₇ = 69 Hz), 0.03 (s, 3H, H₁₋₄₋₅₋₆₋₇ = 53 Hz). 15C NMR, CDCl₃, δ 170.8 (J₁₋₄₋₅₋₆₋₇ = 645 Hz), 148.9, 148.5, 146.1, 139.2, 131.8, 131.9, 131.7, 128.4, 128.6, 124.2, 125.3, 124.0 (J₁₋₄₋₅₋₆₋₇ = 327 Hz), 118.7, 84.3, 75.3, 70.7, 67.3, 67.0, 61.3, 37.6, 20.8, 20.7, 20.4, 20.5, 5.4 (J₁₋₄₋₅₋₆₋₇ = 508 Hz), 6.86 (J₁₋₄₋₅₋₆₋₇ = 659 Hz), 6.65 (J₁₋₄₋₅₋₆₋₇ = 658 Hz). 195Pt NMR, CDCl₃, δ 777 Hz. 31PF NMR, CDCl₃, δ 668 Hz.

X-ray Crystallography. Single crystals of 2Pt–Glu were obtained under slow diffusion of diethyl ether stratified on a dichloromethane solution of the complex at room temperature. Data were measured at room temperature using a Bruker-Nonius KappaCCD four-circle diffractometer (graphite monochromated Mo Kα radiation, λ = 0.71073 Å).
The CD spectra of ct-DNA were registered from 220 to 320 nm on a spectra were recorded at an excitation at 545 nm. The spectra were fluorometer at 25 °C using a 25 mM ascorbic acid or 2 mM glutathione. The solutions were incubated at 37 °C, and spectra were measured over time around 7 days.

The interaction with 2-deoxyguanosine monophosphate was studied by adding a dGMP solution in PBS (25 mM) to the appropriate volumes of 1Pt−Glu and 2Pt−Glu in DMSO-d to obtain final concentrations of 1 mM for the complexes and 4 mM for dGMP. Solutions were incubated at 37 °C, and spectra were recorded over 7 days.

Electrochemical Studies. Electrochemical data were obtained by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) under N2 at 20 °C using DMSO as solvent and [Et4N][BF4] (0.10 M) as supporting electrolyte. CV and DPV were performed in a three-electrode cell configuration consisting of a working glassy carbon (GC) electrode and two platinum wires as counter electrode and

Inorganic Chemistry pubs.acs.org/IC

Electrophoresis and Mass Spectrometry.

A 20 mer double strand DNA (dsDNA) was obtained by an annealing procedure starting from two complementary single-stranded DNAs (ssDNAs) with nucleotide base sequences corresponding to 3′-CCCA CCC GGA CCC CGT ACC TG-S′ for single strand 1 (ssDNA1) and to 3′-CAT GTA CGG GTG CCC GGT GG-S′ for single strand 2 (ssDNA2). The annealing reaction was carried out in water, mixing the single stranded oligonucleotides in an equal molar amount for 2 min at 95 °C and then cooling the mixture at room temperature for 45 min. 1Pt−Glu and 2Pt−Glu were dissolved in dimethyl sulfoxide (DMSO) (Bioshop, Burlington, ON, Canada) to a final concentration of 25 nmol/μL. Pt complexes were incubated with ssDNA in 10-fold molar excess at room temperature for 24 h. Sample solutions were diluted 1:10 in 15 mM ammonium acetate buffer at pH 6.8; spectra were recorded in negative mode using a Q-Tof Premier (Waters, Milford, MA, USA) mass spectrometer. The acquisition was executed by direct injection at a 10 μL min⁻¹ flow rate spanning the m/z range from 1000 to 3000. The capillary voltage was fixed to 2.7 kV, and source and desolvation gas temperatures were set to 70 °C. Raw data were processed by MassLynx 4.1 (Waters, Milford, MA, USA) software.

Cytotoxicity and Uptake Experiments. Human A431 epidermoid carcinoma, murine BALB/c-3T3, and SVT2 fibroblasts were from ATCC. Human HaCaT keratinocyte cells were from Innoprot. Cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) (Sigma-Aldrich, St Louis, MO, USA) supplemented with 10% fetal bovine serum (HyClone), 2 mM l-glutamine, and antibiotics, all from Sigma-Aldrich, under a 5% CO2 humidified atmosphere at 37 °C. To test the cytotoxicity of 2Pt−Glu and its derivatives, cells were seeded at a density of 2.5 × 10⁵ cells per well in 96-well plates. Twenty-four hours after seeding, increasing concentrations of compounds were added to the cells (0.1−125 μM). Cell viability was assayed by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay after 48 h, as previously described.11 Cell survival was expressed as the percentage of viable cells in the presence of the Pt drug compared to the controls, represented by untreated cells and cells supplemented with identical volumes of DMSO (maximum 1% final volume). Each sample was tested in three independent analyses, each carried out in triplicate. To study the uptake of Pt drugs, A431 cells were incubated for 48 h in the presence of each drug, tested at the IC₅₀ concentration. At the end of the incubation, Pt content was quantified by ICP-MS following a method previously reported.12 Briefly, Pt concentration was measured with three replicates using an Agilent 7700 ICP-MS instrument (Agilent Technologies) equipped with a frequency-matching radio frequency (RF) generator and third generation Octopole Reaction System (ORS3), operating with helium gas in ORF and the following parameters: RF power: 1550 W; plasma gas flow: 14 L min⁻¹; carrier gas flow: 0.99 L min⁻¹; He gas flow: 4.3 mL min⁻¹. 109Rh was used as an internal standard (final concentration: 50 μg L⁻¹). Standard solutions have been prepared in 5% nitric acid at four different concentrations (1, 10, 50, and 100 μg mL⁻¹).
quasi-reference electrode. Prior to voltammetric experiments, the working electrode was polished with alumina, rinsed twice with water and acetone, and then dried. The analytes were introduced into the cell with a concentration of 1 mM. In CV, the scanning rate was 0.01 V s⁻¹, and in DPV, the pulse size was 0.025 V. All potentials are referred to the ferrocene/ferrocenium (Fc/Fc⁺) couple.

CONCLUSION

Here, we report the biological activities of Pt compounds with different oxidation states and almost indistinguishable structural features. Despite the evident similarity, the complexes have different properties, and the Pt(IV) species have been shown to be less cytotoxic than the corresponding Pt(II) compound. The reasons of the poor activity and selectivity displayed by the Pt(IV) complex have been investigated through several techniques by evaluating the structural and stability properties, cellular uptake, and the interaction with macromolecules. Similarities and differences between the two types of complexes have been disclosed and discussed in terms of their chemical properties.

Although the set of results were collected in vitro and therefore in conditions different from the complex living systems, they constitute pieces useful for reconstructing the colorful mosaic related to understanding the mechanism of action of platinum-based agents.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.inorgchem.9b03683.

NMR spectra of the complexes, crystal data and additional molecular views, additional UV–Vis and fluorescence spectra, ESI-MS data, CV and DPV voltammograms, and reduction peaks (PDF)

Accession Codes

CCDC 1972544 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

Daria Maria Monti — Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italy; orcid.org/0000-0002-1136-0576; Email: mdmonti@unina.it

Antonello Merlino — Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italy; orcid.org/0000-0002-1045-7720; Email: antonello.merlino@unina.it

Francesco Ruffo — Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italy; orcid.org/0000-0003-1624-079X; Email: ruffo@unina.it

Authors

Alfonso Annunziata — Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italy

Angela Amoresano — Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italy

Maria Elena Cucciolito — Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italy; CIRCC, 70126 Bari, Italy

Roberto Esposito — Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italy; CIRCC, 70126 Bari, Italy; orcid.org/0000-0002-2063-9050

Giara Ferraro — Dipartimento di Chimica Ugo Schiff, Università di Firenze, Sesto Fiorentino, Florence 50019, Italy

Ilaria Iacobucci — Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italy

Paola Ibbimbo — Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italy

Rosanna Lucignano — Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italy

Massimo Melchiorre — ISUSCHEM, 60134 Napoli, Italy

Maria Monti — Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italy

Chiara Scognamiglio — Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italy

Angela Tuzi — Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italy

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.inorgchem.9b03683

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

F.R. thanks MIUR for financial support (PRIN2015 - Prot. 20154X9ATP).

REFERENCES

(1) Zhang, P.; Sadler, P. J. Advances in the Design of Organometallic Anticancer Complexes. J. Organomet. Chem. 2017, 839, 5–14.
(2) Johnstone, T. C.; Suntharalingam, K.; Lippard, S. J. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs. Chem. Rev. 2016, 116 (5), 3436–3486.
(3) Alonso-de Castro, S.; Cortajarena, A. L.; López-Gallego, F.; Salassa, L. Bioorthogonal Catalytic Activation of Platinum and Ruthenium Anticancer Complexes by FAD and Flavoproteins. Angew. Chem., Int. Ed. 2018, 57 (12), 3143–3147.
(4) Kenny, R. G.; Marmion, C. J. Toward Multi-Targeted Platinum and Ruthenium Drugs—A New Paradigm in Cancer Drug Treatment Regimens. Chem. Rev. 2019, 119 (2), 1058–1137.
(5) Ceballos, J.; Schwalfenberg, M.; Karagozias, G.; Reckzeh, E. S.; Sievers, S.; Ostermann, C.; Pahl, A.; Sellstedt, M.; Nowacki, J.; Carnero Corrales, M. A.; Wilke, J.; Laraia, L.; Tsachapalda, K.; Metz, M.; Sehr, D. A.; Brand, S.; Winklhofer, K.; Janning, P.; Ziegler, S.; Waldmann, H. Synthesis of Indomorphin Pseudo-Natural Product Inhibitors of Glucose Transporters GLUT-1 and −3. Angew. Chem., Int. Ed. 2019, 58 (47), 17016–17025.
Derivatives as a New Class of Promising Anti-Cancer Agents. Liang, H. Complexes of Platinum(II/IV) with 2-Phenylpyridine Chem. Commun. 2019, 55 (43), 6106–6109.

Cuccioni, M. E.; D’Amora, A.; De Feo, G.; Ferraro, G.; Giorgio, A.; Petruk, G.; Monti, D. M.; Merlino, A.; Ruffo, F. Five-Coordinate Platinum(II) Compounds Containing Sugar Ligands: Synthesis, Characterization, Cytotoxic Activity, and Interaction with Biological Macromolecules. Inorg. Chem. 2018, 57 (6), 3133–3143.

Cuccioni, M. E.; De Luca Bossa, F.; Esposito, R.; Ferraro, G.; Iadonisi, A.; Petruk, G.; D’Elia, L.; Romanetti, C.; Traboni, S.; Tuzi, A.; Monti, D. M.; Merlino, A.; Ruffo, F. C-Glycosylation in Platinum-Based Agents: A Viable Strategy to Improve Cytotoxicity and Selectivity. Inorg. Chem. Front. 2018, 5 (11), 2921–2933.

(21) Tan, M.-X.; Wang, Z.-F.; Qin, Q.-P.; Huang, X.-L.; Zou, B.-Q.; E. K.-H.; Ang, W. H.; Gibson, D.; Pastorin, G. Dual-Targeting Dual-Platinum(II) Complexes: Synthesis and in Vitro Cytotoxicity of a Kiteplatin-Ibuprofen Pt(IV) Prodrug. Dalton Trans. 2018, 47 (15), S252–S258.

Bouché, M.; Bonnefont, A.; Achard, T.; Bellemín-Lapraz, N. Exploring Diversity in Platinum(IV) N-Heterocyclic Carbene Complexes: Synthesis, Characterization, Reactivity and Biological Evaluation. Dalton Trans. 2018, 47 (33), 11491–11502.

Curti, A.; Denora, N.; Iacobazzi, R. M.; Ditaranto, N.; Hoeschele, J. D.; Margiotta, N.; Natîle, G. Synthesis, Characterization, and in Vitro Cytotoxicity of a Ketiplatin-Ibuprofen Pt(IV) Prodrug. Inorg. Chim. Acta. 2018, 472, 221–228.

Yempala, T.; Babu, T.; Karmakar, S.; Nemirovski, A.; Ishan, M.; Gandin, V.; Gibson, D. Expanding the Arsenal of Pt(IV) Anticancer Agents: Multi-Action Pt(IV) Anticancer Agents with Bioactive Ligands Possessing a Hydroxy Functional Group. Angew. Chem., Int. Ed. 2019, 58 (50), 18218–18223.

Kastner, A.; Poetsch, I.; Mayr, J.; Burda, J. V.; Roller, A.; Heffter, P.; Keppler, B. K.; Kowol, C. R. A Dogma in Doubt: Hydrolysis of Equatorial Ligands of Pt(IV) Complexes under Physiological Conditions. Angew. Chem., Int. Ed. 2019, 58 (22), 7464–7469.

Wang, H.; Yang, X.; Zhao, C.; Wang, P. G.; Wang, X. Glucose-Conjugated Platinum(IV) Complexes as Tumor-Targeting Agents: Design, Synthesis and Biological Evaluation. Bioorg. Med. Chem. 2019, 27 (8), 1639–1645.

Kostrunova, H.; Petrussella, E.; Gibson, D.; Kasparkova, J.; Brabc, V. An Anticancer Pt(IV) Prodrug That Acts by Mechanisms Involving DNA Damage and Different Epigenetic Effects. Chem. - Eur. J. 2019, 25 (20), 5235–5245.

Chen, C. K. J.; Hambly, T. W. The Impact of Highly Electron Withdrawing Carboxylato Ligands on the Stability and Activity of Platinum(IV) pro-Drugs. Inorg. Chim. Acta 2019, 494, 84–90.

Xu, Z.; Li, C.; Zhou, Q.; Deng, Z.; Tong, Z.; Tse, M. K.; Zhu, G. Synthesis, Cytotoxicity, and Mechanistic Investigation of Platinum(IV) Anticancer Complexes Conjugated with Poly(ADP-Ribose) Polymerase Inhibitors. Inorg. Chem. 2019, 58 (23), 16279–16291.

Yao, H.; Xu, Z.; Li, C.; Tse, M. K.; Tong, Z.; Zhu, G. Synthesis and Cytotoxic Study of a Platinum(IV) Anticancer Prodrug with Selectivity toward Luteinizing Hormone-Releasing Hormone (LHHR) Receptor-Positive Cancer Cells. Inorg. Chem. 2019, 58, 11076–11084.

Ravera, M.; Gabano, E.; McGlinchey, M. J.; Osella, D. A View on Multi-Action Pt(IV) Antitumor Prodrugs. Inorg. Chem. Acta 2019, 492, 32–47.

Liu, F.; Dong, X.; Shi, Q.; Chen, J.; Su, W. Improving the Anticancer Activity of Platinum(IV) Prodrugs Using a Dual-Targeting Strategy with a Dichloroacetate Axial Ligand. Rsc Adv. 2019, 9 (39), 22240–22247.

Calvanese, L.; Cuccioni, M. E.; D’Amora, A.; D’Auria, G.; Esposito, A.; Esposito, R.; Falcigno, L.; Ruffo, F. Recognition of Prochiral Sulphides in Five-Coordinate Pt(II) Complexes: Prochiral...

Inorganic Chemistry
Sulfides in Five-Coordinate Pt IV Complexes. Eur. J. Inorg. Chem. 2015, 2015 (24), 4068–4075.

(39) Esposito, R.; Calvanese, L.; Cuciolito, M. E.; D’Auria, G.; Falcigno, L.; Fiorini, V.; Pezzezza, P.; Roviello, G.; Stagni, S.; Talarico, G.; Ruffo, F. Oxidative Coupling of Imino, Amide Platinum(II) Complexes Yields Highly Conjugated Blue Dimers. Organometallics 2017, 36 (2), 384–390.

(40) Baquero, E. A.; Flores, J. C.; Perles, J.; Gómez-Sal, P.; de Jesús, E. Water-Soluble Mono- and Dimethyl N-Heterocyclic Carbene Platinum(II) Complexes: Synthesis and Reactivity. Organometallics 2015, 34 (24), 5759–5766.

(41) Astakhov, A. V.; Khazipov, O. V.; Degtyareva, E. S.; Khristalev, V. N.; Chernyshev, V. M.; Ananikov, V. P. Facile Hydrolysis of Nickel(II) Complexes with N-Heterocyclic Carbene Ligands. Organometallics 2015, 34 (19), 5470–5482.

(42) Li, D.; Ollevier, T. Mechanism Studies of Oxidation and Hydrolysis of Cu(I)-NH and Ag-NHC in Solution under Air. J. Organomet. Chem. 2020, 906, 121025.

(43) Wexselblatt, E.; Gibson, D. What Do We Know about the Reduction of Pt(IV) pro-Drugs. J. Inorg. Biochem. 2012, 117, 220–229.

(44) Albano, V. G.; Monari, M.; Orabona, I.; Panunzi, A.; Roviello, G.; Ruffo, F. Synthesis and Characterization of Trigonal-Bipyramidal Platinum(II) Olefin Complexes with Chalcogenide Ligands in Axial Positions. X-Ray Molecular Structures of \([\text{Pt(SMe)}_2(Dmphen)-\text{Diphenyl Fumarate})]\), Its Cationic Dipositive Derivative \([\text{Pt-(SMe)}_2(Dmphen)\text{Diphenyl Fumarate})][\text{BF}_4]_2\), and Free Diphenyl Fumarate. Organometallics 2003, 22 (6), 1223–1230.

(45) Zhang, J. Z.; Wexselblatt, E.; Hambley, T. W.; Gibson, D. Pt(IV) Analogs of Oxaliplatin That Do Not Follow the Expected Correlation between Electrochemical Reduction Potential and Rate of Reduction by Ascorbate. Chem. Commun. 2012, 48 (6), 847–849.

(46) Escolla, A.; Crespo, M.; López, C.; Quirante, J.; Jayaraman, A.; Polat, I. H.; Badia, J.; Baldomà, L.; Cascante, M. On the Stability and Biological Behavior of Cyclometallated Pt(IV) Complexes with Halido and Aryl Ligands in the Axial Positions. Bioorg. Med. Chem. 2016, 24 (22), 5804–5815.

(47) Aye, K.-T.; Canty, A. J.; Crespo, M.; Puddephatt, R. J.; Scott, J. D.; Watson, A. A. Alkyl Halide Transfer from Palladium(IV) to Platinum(II) and a Study of Reactivity, Selectivity, and Mechanism in This and Related Reactions. Organometallics 1989, 8 (6), 1518–1522.

(48) Nishioka, T.; Shibata, T.; Kinoshita, I. Sugar-Incorporated N-Heterocyclic Carbene Complexes. Organometallics 2007, 26 (5), 1126–1128.

(49) Cuciolito, M. E.; Trinchillo, M.; Ianniotti, R.; Palumbo, R.; Tesauro, D.; Tuzi, A.; Ruffo, F.; D’Amora, A. Sugar-Incorporated N-Heterocyclic-Carbene-Containing Gold(I) Complexes: Synthesis, Characterization, and Cytotoxic Evaluation: Sugar-Incorporated N-Heterocyclic-Carbene-Containing Gold(I) Complexes: Synthesis, Characterization, and Cytotoxic Evaluation. Eur. J. Inorg. Chem. 2017, 2017 (42), 4955–4961.

(50) SADABS User Manual: Bruker Nonius BV: Delft, The Netherlands, 2002.

(51) Altomare, A.; Burla, M. C.; Camalli, M.; Casarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. SIR 97: A New Tool for Crystal Structure Determination and Refinement. J. Appl. Crystallogr. 1999, 32 (1), 115–119.

(52) Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71 (1), 3–8.

(53) Farrugia, L. J. WinGX and ORTEP for Windows: An Update. J. Appl. Crystallogr. 2012, 45 (4), 849–854.

(54) Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. Mercury CSD 2.0 - New Features for the Visualization and Investigation of Crystal Structures. J. Appl. Crystallogr. 2008, 41 (2), 466–470.

(55) Pontillo, N.; Pane, F.; Messori, L.; Amoresano, A.; Merlino, A. Cisplatin Encapsulation within a Ferritin Nanocage: A High-Resolution Crystallographic Study. Chem. Commun. 2016, 52 (22), 4136–4139.