Poster Session I

T138. ACOUSTIC PATTERNS IN SCHIZOPHRENIA: A SYSTEMATIC REVIEW AND META-ANALYSIS

Alberto Parola*, Arndis Simonse, Vibeka Bliksted, Riccardo Fusaroli

1University of Turin; 2Aarhus University

Background: Individuals with schizophrenia are characterized as presenting atypical voice patterns: poverty of speech, increased pauses, distinctive pitch (mean and variability). Voice atypicalities may play a role in the social impairment experienced by patients, and could constitute a window into motor, cognitive, emotional and social components of the disorder. Indeed, they have already been generally associated with negative symptoms. However, the state of the evidence for atypical voice patterns and their relation to clinical features is uncertain. Studies using clinical rating scales indicate that voice alterations are severe across many voice properties. In contrast, quantitative acoustic studies seem to have found less robust and more variable results limited to specific features. We therefore systematically reviewed the literature quantifying acoustic patterns in schizophrenia, and performed a meta-analysis of the evidence. We aimed at identifying evidence for acoustic markers of schizophrenia and its clinical features, needs for further research and barriers to collective advancements on these issues.

Methods: We adopted the “PRISMA Statement” guidelines for transparent reporting of a systematic review. The literature search was conducted on PubMed and Google Scholar (details and pre-registration at https://goo.gl/H1yDpm). Study selection was conducted according to the following inclusion criteria: (a) empirical study, (b) quantification of acoustic features in the vocal production of participants with schizophrenia, (c) sample including at least two individuals with schizophrenia, (d) inclusion of a comparison group, or an assessment of variation in acoustic features in relation to severity of clinical features. We identified 54 studies as eligible for inclusion and contacted all authors to obtain missing estimates and individual-level data, where possible. 34 studies availed enough information to be included in a meta-analysis. The meta-analysis consisted of mixed effects regression models, one per each relevant acoustic feature.

Results: Of the 37 authors contacted, 59% responded and 5% provided at least some of the requested data. Chief reasons of denials were: i) data loss (n = 8), ii) effort required (n = 5), iii) ethical concerns with data sharing (n = 8), iv) difficulty to collect data (n = 5), v) recent data collection (n = 5), vi) failure to contact authors (n = 5). 14 studies were included in our analysis. We found significant meta-analytic effects of schizophrenia in percentage of spoken time (n = 6, d = 1.16, 95% CIs: -2.06 -0.27) and proportion of pauses (n = 5, d = 0.56, 95% CIs: 0.15 0.96). After controlling for influential studies, we found significant differences also in pitch mean (n = 5, d = 0.40, 95% CIs: 0.12 0.68) and pitch variability (n = 6, d = -0.46, 95% CIs: -0.70 -0.23). No effects were found for pause duration (n = 7), speech rate (n = 9), speech duration (n = 5) and pitch intensity (n = 5). We found evidence for publication bias for studies investigating pause duration and pitch variability.

Discussion: The classification performance was driven by a rsFC pattern including areas involved in memory processing, such as hippocampus and cingulate gyrus (Allen et al., 2007) as well as regions related to language processing, such as the supramarginal gyrus (Li et al., 2009). The negative correlation of rsFC-based decision scores with RAVLT measures shows that patients whose verbal learning and memory is more severely impaired exhibit a more distinctive rsFC pattern than patients with less impaired verbal memory.

Key concerns on the meta-analysis are: i) small sample sizes, ii) heterogeneity of task and acoustic processing methods, iii) lack of demographic and clinical individual-level data necessary to control for confounds (e.g. medication and relation to clinical features).

Discussion: We found clear effects of increased pause behavior in schizophrenia and less clear effects of pitch. However, the magnitude of these abnormalities is limited and contrast with the large effect sizes reported by studies using clinical rating scales. Future research should focus on larger sample sizes, systematic assessment of multiple acoustic features and multiple speech tasks, standardized acoustic processing methods, and individual level data available. More reflection is needed on how to make data sharing possible within privacy and ethical constraints.

T139. ELECTRORETINOGRAM ABNORMALITIES IN SCHIZOPHRENIA PATIENTS WITH VISUAL HALLUCINATIONS

Vincent Laprevote*, Florent Bernardin, Thomas Schwitzer, Raymond Schwan

Centre Psychothérapeutique de Nancy

Background: Retinal dysfunctions have been integrated in cognitive models of visual hallucinations in several pathologies such as Parkinsonian syndromes or eye diseases. Besides, structural abnormalities of the retinal ganglion cells are documented in schizophrenia and have been associated to visual hallucinations (VH) in neurological disorders. We aim to study functional abnormalities of retinal ganglion cells in schizophrenia patients with VH.

Methods: We measured the activity of retinal ganglion cells using electroretinogram according to ISCEV criteria. We compared the amplitude and implicit time of the P50 and the N95 waves of the pattern electroretinogram in schizophrenia patients with VH (VH group, n = 7), Auditory Hallucinations or no hallucination (AH/NH group, n = 8) and controls (n = 30).

Results: Preliminary findings show a significant increase of the N95 implicit time in the HV group compared with controls (p = .05). No difference was found between the HV and HA/NH groups but a gradient appeared to emerge between the 3 groups.

Discussion: Functional impairment of the retinal ganglion cells appears to be more pronounced in schizophrenia patients with VH. The increase of N95 implicit time may be interpreted as a dysfunction of retinal ganglion cells rather than a cell loss. These preliminary results need to be confirmed with a larger sample.

T140. RESTING STATE NETWORKS ALTERATION IN SCHIZOPHRENIA

Gianluca Mingoa*, Igor Nenadic

1RWTH Aachen University; 2Jena University Hospital

Background: While functional MRI and PET studies have shown altered task-related brain activity in schizophrenia, recent studies suggest that such differences might also be found in the resting state (RS). Here we used ICA based analysis to investigate RS fMRI data to compare connectivity of 11 syndromes or eye diseases. Besides, structural abnormalities of the retinal ganglion cells are documented in schizophrenia and have been associated to visual hallucinations (VH) in neurological disorders. We aim to study functional abnormalities of retinal ganglion cells in schizophrenia patients with VH.

Methods: We measured the activity of retinal ganglion cells using electroretinogram according to ISCEV criteria. We compared the amplitude and implicit time of the P50 and the N95 waves of the pattern electroretinogram in schizophrenia patients with VH (VH group, n = 7), Auditory Hallucinations or no hallucination (AH/NH group, n = 8) and controls (n = 30).

Results: Preliminary findings show a significant increase of the N95 implicit time in the HV group compared with controls (p = .05). No difference was found between the HV and HA/NH groups but a gradient appeared to emerge between the 3 groups.

Discussion: Functional impairment of the retinal ganglion cells appears to be more pronounced in schizophrenia patients with VH. The increase of N95 implicit time may be interpreted as a dysfunction of retinal ganglion cells rather than a cell loss. These preliminary results need to be confirmed with a larger sample.

Abstracts for the Sixth Biennial SIRS Conference
Abstracts for the Sixth Biennial SIRS Conference

T141. CHARACTERIZATION OF HEMODYNAMIC ALTERATIONS IN SCHIZOPHRENIA AND BIPOLAR DISORDER AND THEIR EFFECT ON RESTING-STATE FUNCTIONAL CONNECTIVITY

Wenjing Yan¹, Lena Palaniyappan*², Peter Liddle³, Gopikrishna Deshpande⁴
¹Auburn University; ²University of Western Ontario; ³University of Nottingham

Background: Schizophrenia (SZ) and bipolar disorder (BP) have both common and distinct clinical symptomatology. Their neural bases have been explored using functional connectivity between brain regions using resting-state functional magnetic resonance imaging (rs-fMRI). However, rsfMRI is an indirect measure of neural activity and is modeled as a convolution of the hemodynamic response function (HRF) and latent neural activity. The HRF varies across both individuals and different brain regions within an individual. Consequently, it is plausible for two brain regions to appear synchronized in the BOLD space while being desynchronized in latent neural space and vice versa.

Methods: In order to address this issue, we estimated voxel-specific HRFs by deconvolving rs-fMRI time series obtained from SZ (N=19), BP (N=35) and matched healthy individuals (N=34). The shape of the HRF was significantly different between the three groups in many regions previously implicated in SZ and BP. Specifically, we found voxels within the medio-dorsal, habenular and central lateral nuclei of the thalamus to have HRFs with aberrations in all three of its shape parameters: time to peak, response height and full width half max. Therefore, we defined this region as the seed, estimated seed-based functional connectivity maps in all three groups and characterized pairwise differences between them. Further, we performed a 2-way ANOVA and estimated regions exhibiting an interaction between the group and deconvolution factors.

Results: We found voxels within the medio-dorsal, habenular and central lateral nuclei of the thalamus to have HRFs with aberrations in all three of its shape parameters: time to peak, response height and full width half max. Results indicated that functional connectivity differences between the groups are inferred significantly differently with raw BOLD and deconvolved latent neural time series. Since the variability of the HRF could be driven by both neural and non-neural factors, we feel that it is preferable to estimate functional connectivity using deconvolved data.

Discussion: Neurochemicals such as GABA, glutamate and nitric oxide have a role in controlling neurosignaling pathways underlying neurovascular coupling and hence the HRF. Previously documented alterations of these neurochemicals in SZ and BP could, at least in part, explain the significant differences in HRF shapes observed between the groups. Functional connectivity group differences obtained from raw BOLD data must be interpreted cautiously in the light of systematic HRF differences between groups.

T142. PARIETAL CONNECTIVITY IN SCHIZOPHRENIA AND PSYCHOTIC BIPOLAR DISORDER: A COMBINED STRUCTURAL AND DYNAMIC FUNCTIONAL CONNECTIVITY STUDY

Tushar Das¹, Peter Liddle², Lena Palaniyappan*¹
¹University of Western Ontario; ²University of Nottingham

Background: The role of parietal lobe in psychotic disorders is poorly understood. In independent previous studies, we have observed that (1) the severity of disorganization is associated with reduced cerebral blood flow to bilateral parietal angular gyrus in patients with schizophrenia (2) disorganization is more pronounced in patients who have morphological abnormalities in left parietal supramarginal gyrus (3) the global connectivity of right parietal supramarginal region is reduced in schizophrenia compared to bipolar disorder with psychosis. We aimed to delineate the nature of parietal dysconnectivity in the 2 major psychotic disorders and to study the relationship between the syndrome of disorganization and structural and functional connectivity of the parietal lobe with rest of the brain. We also related parietal connectivity to the global assessment of functional status (GAF scores) and processing speed scores among patients with schizophrenia.

Methods: We recruited 16 subjects with psychotic bipolar disorder and 34 subjects with established schizophrenia, age- and sex- matched with 32 healthy controls. Both patient groups were medicated, and were in a clinically stable state. Diffusion Tensor Imaging (DTI) and resting state fMRI data were obtained using a 3T MRI scanner. Using 90 regions as defined in the AAL atlas, deterministic tractography was performed (FSL v5.0 and TrackVis). For each of the 90*90 connections, fractional anisotropy weighted by number of streamlines, and normalised by average fiber length was used as the index of structural connectivity. 90*90 functional connectivity values were also obtained for each subject using the fMRI data (SPM8 and DPARSF). Dynamic connectivity (variance) was estimated using a sliding window approach (13 bins; 240 time points; TR=2.5s). The primary variable of interest across the 2 imaging modalities was the graph metric of weighted average degree from all parietal lobe nodes in the AAL atlas with all other nodes of the brain. Using ANOVA, we compared the degree of parietal connectivity among the 3 groups of subjects. Three multiple regression analyses were conducted to assess relationships between parietal connectivity (degree of right and left structural and dynamic functional connectivity) and severity of disorganization, processing speed (digit symbol substitution test -DSST) and GAF scores.

Results: The 3 groups differed significantly on the degree of left parietal structural connectivity (F=6.5, p=0.002, HC>B=SCZ) and on the degree of left (F=6.4, p=0.003; BIP=HC>SCZ) as well as right parietal (F=5.2, p=0.008; BIP=SCZ>HC) dynamic functional connectivity. Parietal dysconnectivity predicted the severity of disorganisation (model F=4.1, p=0.01) in SCZ. Disorganization was particularly associated with reduced left parietal structural (β=−0.45, p=0.02) and dynamic connectivity (β=0.40, p=0.04) but not with the right parietal dysconnectivity. DSST scores were associated with reduced left parietal structural connectivity (β=0.44, p=0.04). GAF was increased in patients with higher right parietal dynamic functional connectivity (β=0.38, p=0.04).

Discussion: Both structural and dynamic functional parietal dysconnectivity are seen in the 2 major psychotic disorders - schizophrenia and bipolar...