NORMALISERS OF ABELIAN IDEALS OF A BOREL SUBALGEBRA AND
\[\mathbb{Z} \]-GRADINGS OF A SIMPLE LIE ALGEBRA

DMITRI I. PANYUSHEV

ABSTRACT. Let \(g \) be a simple Lie algebra and \(\mathfrak{A}b \) the poset of all abelian ideals of a fixed Borel subalgebra of \(g \). If \(a \in \mathfrak{A}b \), then the normaliser of \(a \) is a standard parabolic subalgebra of \(g \). We give an explicit description of the normaliser for a class of abelian ideals that includes all maximal abelian ideals. We also elaborate on a relationship between abelian ideals and \(\mathbb{Z} \)-gradings of \(g \) associated with their normalisers.

INTRODUCTION

Let \(g \) be a complex simple Lie algebra with a triangular decomposition \(g = u \oplus t \oplus u^- \), where \(t \) is a fixed Cartan subalgebra and \(b = u \oplus t \) is a fixed Borel subalgebra. A subspace \(a \subset b \) is an abelian ideal if \([b, a] \subset a \) and \([a, a] = 0 \). Then \(a \subset u \). The general theory of abelian ideals of \(b \) is based on their relations with the so-called minuscule elements of the affine Weyl group \(\hat{W} \), which is due to D. Peterson (see Kostant’s account in [6]). The subsequent development has lead to a number of spectacular results of combinatorial and representation-theoretic nature, see e.g. [2, 3, 4, 7, 8, 10, 13, 14].

The normaliser of \(a \) in \(g \), denoted \(n_g(a) \), contains \(b \), i.e., it is a standard parabolic subalgebra of \(g \). In this note, we study the normalisers of abelian ideals using the corresponding minuscule elements of \(\hat{W} \) and \(\mathbb{Z} \)-gradings of \(g \).

Let \(\Delta \) be the root system of \((g, t) \), \(\Delta^+ \) the set of positive roots corresponding to \(u \), \(\Pi \) the set of simple roots in \(\Delta^+ \), and \(\theta \) the highest root in \(\Delta^+ \). Then \(W \) is the Weyl group and \(g_\gamma \) is the root space for \(\gamma \in \Delta \). We write \(\mathfrak{A}b = \mathfrak{A}b(g) \) for the set of all abelian ideals of \(b \) and think of \(\mathfrak{A}b \) as poset with respect to inclusion. Since \(a \in \mathfrak{A}b \) is a sum of certain root spaces of \(u \), we often identify such an \(a \) with the corresponding subset \(I = I_a \) of \(\Delta^+ \).

Let \(\mathfrak{A}b^o \) denote the set of nonzero abelian ideals and \(\Delta^+_I \) the set of long positive roots. In [8, Sect. 2], we defined a surjective mapping \(\tau : \mathfrak{A}b^o \to \Delta^+_I \) and studied its fibres. If \(\tau(a) = \mu \), then \(\mu \in \Delta^+_I \) is called the rootlet of \(a \). Letting \(\mathfrak{A}b_\mu = \tau^{-1}(\mu) \), we get a partition of \(\mathfrak{A}b^o \) parameterised by \(\Delta^+_I \). Each fibre \(\mathfrak{A}b_\mu \) is a sub-poset of \(\mathfrak{A}b \). By [8, Sect. 3], the poset \(\mathfrak{A}b_\mu \) has a unique minimal and unique maximal element for any \(\mu \in \Delta^+_I \). These are denoted by \(a(\mu)_{\text{min}} \) and \(a(\mu)_{\text{max}} \), respectively. The corresponding sets of positive roots are \(I(\mu)_{\text{min}} \) and \(I(\mu)_{\text{max}} \). The abelian ideals of the form \(a(\mu)_{\text{min}} \) (resp. \(a(\mu)_{\text{max}} \)) will be referred to as
the root-minimal (resp. root-maximal). The set of globally maximal abelian ideals coincides with \(\{ a(\alpha)_{\max} \mid \alpha \in \Pi_l \} \), where \(\Pi_l = \Delta_l^+ \cap \Pi \) [8, Cor. 3.8].

If \(p \supset b \), then a Levi subalgebra \(l \) of \(p \) is said to be standard, if \(l \supset t \). Set \(p[\mu]_{\min} = n_g(\alpha(\mu)_{\min}) \) and \(p[\mu]_{\max} = n_g(\alpha(\mu)_{\max}) \). Write \(\Pi[\mu]_{\min} \) for the simple roots of the standard Levi subalgebra of \(p[\mu]_{\min} \), and likewise for ‘max’. Our main results are the following:

I. We explicitly describe \(\Pi[\mu]_{\min} \) for any root-minimal ideal \(a(\mu)_{\min} \). The answer is given in terms of the element \(w_\mu \in W \) that takes \(\theta \) to \(\mu \) and has minimal possible length, see Theorem 2.3. The elements \(w_\mu \) have already been considered in [8], and we also provide here new properties of them. Furthermore, if \(\theta \) is fundamental and \(\alpha_\theta \in \Pi \) is such that \((\theta, \alpha_\theta) \neq 0 \), then \(\alpha_\theta \) is long and we prove that \(\Pi \setminus \Pi[\alpha_{\min}] \) consists of the simple roots that are adjacent to \(\alpha_\theta \) in the Dynkin diagram (Proposition 2.4).

II. We give a new characterisation of normalisers of arbitrary \(b \)-stable subspaces of \(u \) (Theorem 3.3) and then explicitly describe the normalisers of the globally maximal abelian ideals, i.e., we determine \(\Pi[\alpha]_{\max} \) for all \(\alpha \in \Pi_l \) (Theorem 3.9). This is based on a relationship between \(a(\alpha)_{\min} \) and \(a(\alpha)_{\max} \) for \(\alpha \in \Pi_l \) [10, Theorem 4.7], which allows us to retrieve information on \(\Pi[\alpha]_{\max} \) from that on \(\Pi[\alpha]_{\min} \).

III. In Section 4, we relate \(a \in \mathfrak{Ab}(g) \) to the \(\mathbb{Z} \)-grading of \(g \) corresponding to \(n_g(\alpha) \). Let \(\mathfrak{Par}(g) \) denote the set of all standard parabolic subalgebras of \(g \). By Peterson’s theorem [6], \#\(\mathfrak{Ab}(g) = 2^{rk g} \), hence the sets \(\mathfrak{Ab}(g) \) and \(\mathfrak{Par}(g) \) are equipotent. There is the natural mapping \(f_1 : \mathfrak{Ab}(g) \to \mathfrak{Par}(g) \) that takes \(a \) to \(n_g(\alpha) \). By [12], \(f_1 \) is a bijection if and only if \(g = sl_{n+1} \) or \(sp_{2n} \). Using the \(\mathbb{Z} \)-grading associated with \(p \in \mathfrak{Par}(g) \), we define here the natural mapping \(f_2 : \mathfrak{Par}(g) \to \mathfrak{Ab}(g) \) and prove that \(f_2 \) is a bijection if and only if \(g = sl_{n+1} \) or \(sp_{2n} \); furthermore, \(f_2 = f_1^{-1} \) for these two series (Theorem 4.5). We say that \(a \in \mathfrak{Ab} \) is reflexive, if \((f_2 \circ f_1)(a) = a \). Then all abelian ideals for \(sl_{n+1} \) and \(sp_{2n} \) are reflexive. We also prove that \(a(\alpha)_{\min} \) and \(a(\alpha)_{\max} \) \((\alpha \in \Pi_l) \) are always reflexive and characterise them in terms of the corresponding \(\mathbb{Z} \)-gradings (see Theorem 4.2 and Remark 4.6). Finally, we conjecture that the sets \(\text{Im}(f_1 \circ f_2) \) and \(\text{Im}(f_2 \circ f_1) \) are always equipotent and the maps \(f_1 \) and \(f_2 \) induce the mutually inverse bijections between them.

We refer to [1, 5] for standard results on root systems and (affine) Weyl groups.

Acknowledgements. The research was carried out at the IITP RAS at the expense of the Russian Foundation for Sciences (project № 14-50-00150).

1. Preliminaries on minuscule elements and normalisers of abelian ideals

We equip \(\Delta^+ \) with the usual partial ordering ‘\(\preceq \)’. This means that \(\mu \preceq \nu \) if \(\nu - \mu \) is a non-negative integral linear combination of simple roots. If \(M \) is a subset of \(\Delta^+ \), then \(\min(M) \) and \(\max(M) \) are the minimal and maximal elements of \(M \) with respect to “\(\preceq \)”.
Any b-stable subspace $c \subset u$ is a sum of certain root spaces in u, i.e., $c = \bigoplus_{\gamma \in I} g_{\gamma}$. The relation $[b, c] \subset c$ is equivalent to that $I = I_\nu$ is an upper ideal of the poset (Δ^+, \leq), i.e., if $\nu \in I$, $\gamma \in \Delta^+$, and $\nu \preceq \gamma$, then $\gamma \in I$. We mostly work in the combinatorial setting, so that a b-ideal $c \subset u$ is being identified with the corresponding upper ideal I of Δ^+. The property of being abelian additionally means that $\gamma' + \gamma'' \not\in \Delta^+$ for all $\gamma', \gamma'' \in I$.

We recall below the notion of a minuscule element of \widehat{W} and their relation to abelian ideals. We have $\Pi = \{\alpha_1, \ldots, \alpha_n\}$, the vector space $t_\mathbb{R} = V = \bigoplus_{i=1}^n \mathbb{R}\alpha_i$, the Weyl group W generated by simple reflections s_1, \ldots, s_n, and a W-invariant inner product $(,)$ on V. Letting $\widehat{V} = V \oplus \mathbb{R}\delta \oplus \mathbb{R}\lambda$, we extend the inner product $(,)$ on \widehat{V} so that $(\delta, V) = (\lambda, V) = (\delta, \delta) = (\lambda, \lambda) = 0$ and $(\delta, \lambda) = 1$. Set $\alpha_0 = \delta - \theta$, where θ is the highest root in Δ^+. Then
\[
\widehat{\Delta} = \{\Delta + k\delta \mid k \in \mathbb{Z}\} \text{ is the set of affine (real) roots;}
\]
\[
\widehat{\Delta}^+ = \Delta^+ \cup \{\Delta + k\delta \mid k \geq 1\} \text{ is the set of positive affine roots;}
\]
\[
\widehat{\Pi} = \Pi \cup \{\alpha_0\} \text{ is the corresponding set of affine simple roots;}
\]
\[
\mu^\vee = 2\mu/(\mu, \mu) \text{ is the coroot corresponding to } \mu \in \widehat{\Delta}.
\]

For each $\alpha_i \in \widehat{\Pi}$, let $s_i = s_{\alpha_i}$ denote the corresponding reflection in $GL(\widehat{V})$. That is, $s_i(x) = x - (x, \alpha_i)\alpha_i^\vee$ for any $x \in \widehat{V}$. The affine Weyl group, \widehat{W}, is the subgroup of $GL(\widehat{V})$ generated by the reflections s_0, s_1, \ldots, s_n. The extended inner product $(,)$ on \widehat{V} is \widehat{W}-invariant. The inversion set of $w \in \widehat{W}$ is $N(w) = \{\nu \in \widehat{\Delta}^+ \mid w(\nu) \in -\widehat{\Delta}^+\}$. Note that if $w \in W \subset \widehat{W}$, then $N(w) \subset \Delta^+$.

Following Peterson, we say that $w \in \widehat{W}$ is minuscule, if $N(w) = \{ -\gamma + \delta \mid \gamma \in I_w \}$ for some $I_w \subset \Delta$. One then proves that (i) $I_w \subset \Delta^+$, (ii) I_w is (the set of roots of) an abelian ideal, and (iii) the assignment $w \mapsto I_w$ yields a bijection between the minuscule elements of \widehat{W} and the abelian ideals, see [6], [2, Prop. 2.8]. Conversely, if $a \in \mathfrak{nil}$ and $I = I_a$, then $w_a \in \widehat{W}$ stands for the corresponding minuscule element. Clearly, $\dim a = \#I_a = \#N(w_a)$.

Given $a \in \mathfrak{nil}^0$ and $w_a \in \widehat{W}$, the rootlet of a is defined by
\[
\tau(a) = w_a(\alpha_0) + \delta = w_a(2\delta - \theta).
\]

By [8, Prop. 2.5], we have $\tau(a) \in \Delta^+_t$ and every $\mu \in \Delta^+_t$ occurs in this way.

Let l be the standard Levi subalgebra of $p = n_\mathfrak{g}(a)$ and $\Pi(l) \subset \Pi$ the set of simple roots of l. By [9, Theorem 2.8], the set $\Pi(l)$ is determined by w_a as follows:
\[
\alpha \in \Pi(l) \iff w_a(\alpha) \in \widehat{\Pi}.
\]

(Actually, this result of [9] has been proved for any b-stable subspace $c \subset u$ in place of α. To this end, one also needs a more general theory of elements of \widehat{W} associated with arbitrary b-stable subspaces of u [2].)

An advantage of our situation is that, for the root-minimal abelian ideals $a = a(\mu)_{\text{min}}$, there is a simple formula for w_a, which allows us to describe the corresponding normaliser in terms of μ. We also need the following facts:
It is known that \(\#\tau^{-1}(\mu) = 1 \) (i.e., \(a(\mu)_{\text{min}} = a(\mu)_{\text{max}} \)) if and only if \((\theta, \mu) \neq 0 \) [8, Theorem 5.1].

- \(a \) is root-minimal if and only if \(I_\alpha \subset \mathcal{H} := \{ \gamma \in \Delta^+ \mid (\gamma, \theta) \neq 0 \} \) [8, Theorem 4.3].

In what follows, it will be important to distinguish the cases whether \(\theta \) is fundamental or not, and whether \((\theta, \mu) = 0 \) or not. Recall that \(\theta \) is fundamental if and only if \(\Delta \) is not of type \(A_n \) or \(C_n \). One also has \(\#(\Pi \cap \mathcal{H}) = \begin{cases} 2 & \text{for } A_n \\ 1 & \text{for all other types} \end{cases} \). For the classical series, we use the standard notation and numbering for \(\Pi \), which seems to be the same in all sources. For instance, for \(A_n \), we have \(\alpha_i = \varepsilon_i - \varepsilon_{i+1} \) \((i = 1, \ldots, n)\), whence \(\Pi \cap \mathcal{H} = \{\alpha_1, \alpha_n\} \). For \(E_6 \), our numbering is \(1\ldots3\ldots4\ldots5\ldots6 \); hence \(\Pi \cap \mathcal{H} = \{\alpha_6\} \).

For \(\gamma \in \Delta \) and \(\alpha \in \Pi \), \([\gamma : \alpha]\) stands for the coefficient of \(\alpha \) in the expression of \(\gamma \) via \(\Pi \).

2. Normalisers of the root-minimal abelian ideals

In this section, we describe normalisers of the root-minimal abelian ideals for all \(\mu \in \Delta_1^+ \).

There is a unique element of minimal length in \(W \) taking \(\theta \) to \(\mu \) [8, Theorem 4.1], which is denoted by \(w_\mu \). The ideal \(a(\mu)_{\text{min}} \) is completely determined by \(w_\mu \). Namely, \(w_\mu s_0 \in \hat{W} \) is the minuscule element corresponding to \(a(\mu)_{\text{min}} \) [8, Theorem 4.2]. We begin with two useful properties of the elements \(w_\mu \).

Lemma 2.1. If \(\beta \in \Pi \) and \((\beta, \mu) = 0 \), then \(w_\mu^{-1}(\beta) \in \Pi \) and \((w_\mu^{-1}(\beta), \theta) = 0 \).

Proof. It is known that \(N(w_\mu^{-1}) = \{ \gamma \in \Delta^+ \mid (\gamma, \mu^\vee) = -1 \} \) [8, Theorem 4.1(2)]. Therefore \(w_\mu^{-1}(\beta) \in \Delta^+ \). Assume that \(w_\mu^{-1}(\beta) = \gamma_1 + \gamma_2 \) is a sum of positive roots. Then \(\beta = w_\mu(\gamma_1) + w_\mu(\gamma_2) \). Without loss of generality, one may assume that \(-\nu_1 := w_\mu(\gamma_1) \) is negative. Then \(\nu_1 \in N(w_\mu^{-1}) \), hence \((-\nu_1, \mu^\vee) = 1 \). Consequently, \((\gamma_1, \theta^\vee) = 1 \). On the other hand, \(0 = (\mu, \beta) = (\theta, \gamma_1 + \gamma_2) \) and therefore \((\theta, \gamma_2) < 0 \), which is impossible. Thus, \(w_\mu^{-1}(\beta) \) must be simple and \((w_\mu^{-1}(\beta), \theta) = (\beta, \mu) = 0 \). \(\square \)

Lemma 2.2. Suppose that \(\theta \) is fundamental and \(\alpha_\theta \in \Pi \) is not orthogonal to \(\theta \). If \((\theta, \mu) > 0 \) and \(\theta \neq \mu \), then \(w_\mu^{-1}(\theta) = \theta - \alpha_\theta \); or, equivalently, \(w_\mu(a_\theta) = \mu - \theta \).

Proof. It is well known and easily verified that \(\alpha_\theta \) is long and \([\theta : \alpha_\theta] = 2 \) (cf. also Theorem 4.1(ii)). If \(\mu \in \mathcal{H} \setminus \{\theta\} \), then \([\mu : \alpha_\theta] = 1 \). By [11, Section 1], multiplicities of the simple reflections in any reduced expression of \(w_\mu \) are the same, and they are determined by the coefficients of \(\theta - \mu \). In particular, \(s_{\alpha_\theta} \) occurs only once, since \([\theta - \mu : \alpha_\theta] = 1 \) and \(\alpha_\theta \) is long. Moreover, the reduced expressions of \(w_\mu \) are in bijections with the “root paths” connecting \(\theta \) with \(\mu \) inside \(\Delta_1^+ \). Since \(\theta \) is fundamental, the passage \(\theta \sim s_{\alpha_\theta}(\theta) \) is the only step down from \(\theta \) inside \(\Delta_1^+ \). Hence any root path leading to \(\mu \) starts with this step. Therefore, every reduced expression of \(w_\mu \) begins with \(s_{\alpha_\theta} \), and one can write \(w_\mu = w's_{\alpha_\theta} \), where \(w' \) does not contain factors \(s_{\alpha_\theta} \). Therefore, \(w_\mu^{-1}(\theta) = s_{\alpha_\theta}w'^{-1}(\theta) = s_{\alpha_\theta}(\theta) = \theta - \alpha_\theta \). \(\square \)
Remark. This is a generalisation of [11, Lemma 4.3], where the similar assertion is proved for \(\mu = \alpha_\theta \).

Recall that \(\Pi[\mu]_{\min} \subset \Pi \) is the set of simple roots for the standard Levi subalgebra of \(\mathfrak{p}[\mu]_{\min} \). Since \(\theta \) is not fundamental if and only if \(\Delta = A_n \) or \(C_n \), the following result covers all the possibilities for \(\mu \).

Theorem 2.3. For any \(\mu \in \Delta^+ \), the set \(\Pi[\mu]_{\min} \) has the following description.

(i) \(\Pi[\mu]_{\min} \cap \theta^\perp = \{ w_\mu^{-1}(\beta) \mid \beta \in \Pi & (\beta, \mu) = 0 \} = \{ \alpha \in \Pi \mid w_\mu(\alpha) \in \Pi & (\alpha, \theta) = 0 \} \).

(ii) If \((\mu, \theta) = 0\), then \(\Pi[\mu]_{\min} = \{ w_\mu^{-1}(\beta) \mid \beta \in \Pi & (\beta, \mu) = 0 \} \). In particular, \(\Pi[\mu]_{\min} \subset \theta^\perp \).

(iii) Suppose that \((\mu, \theta) \neq 0\) (i.e., \(\mu \in \mathcal{H} \)) and \(\mu \neq \theta \).
 a) if \(\theta \) is fundamental, then \(\Pi[\mu]_{\min} = \{ \alpha_\theta \} \cup \{ w_\mu^{-1}(\beta) \mid \beta \in \Pi & (\beta, \mu) = 0 \} \), where \(\alpha_\theta \) is the only simple root such that \((\theta, \alpha_\theta) \neq 0\);
 b) if \(\Delta = C_n \), then there is no such long roots \(\mu \);
 c) if \(\Delta = A_n \) and \(\mu = \alpha_1 + \cdots + \alpha_i = \gamma_i \) \((i < n)\) or \(\alpha_j + \cdots + \alpha_n = \gamma_j \) \((j > 1)\), then
 \[\Pi[\gamma_i]_{\min} = \{ \alpha_n \} \cup \{ w_\mu^{-1}(\beta) \mid \beta \in \Pi & (\beta, \gamma_i) = 0 \} = \Pi \setminus \{ \alpha_1, \alpha_i \} \text{ and} \]
 \[\Pi[\gamma_j]_{\min} = \{ \alpha_1 \} \cup \{ w_\mu^{-1}(\beta) \mid \beta \in \Pi & (\beta, \gamma_j) = 0 \} = \Pi \setminus \{ \alpha_j, \alpha_n \} \].

(iv) If \(\mu = \theta \), then \(\Pi[\theta]_{\min} = \{ \beta \in \Pi \mid (\beta, \theta) = 0 \} \).

Proof. Since \(w_\mu s_0 \in \hat{W} \) is the minuscule element corresponding to \(I(\mu)_{\min} \), the general theory of normalisers of \(t \)-stable subspaces of \(\mathfrak{u} \) asserts that

\((\text{2.1}) \quad \alpha \in \Pi[\mu]_{\min} \iff w_\mu s_0(\alpha) \in \hat{\Pi}, \)

see [9, Theorem 2.8]. Here one has to distinguish two possibilities:

1. \(w_\mu s_0(\alpha) \in \Pi; \)
2. \(w_\mu s_0(\alpha) = \alpha_0 = \delta - \theta. \)

- Suppose that \(w_\mu s_0(\alpha) = \beta \in \Pi. \) Then \(w_\mu^{-1}(\beta) = s_0(\alpha) \in \Delta. \) Hence \(s_0(\alpha) = \alpha \) and therefore \((\theta, \alpha) = 0\) and \((\beta, \mu) = (w_\mu(\alpha), w_\mu(\theta)) = 0\). Thus, if \(\alpha \in \Pi[\mu]_{\min} \) satisfies (1), then \(w_\mu(\alpha) = \beta \in \Pi \) and \((\beta, \mu) = (\theta, \alpha) = 0\).

Conversely, if \(\beta \in \Pi \) and \((\beta, \mu) = 0\), then Lemma 2.1 shows that \(\alpha := w_\mu^{-1}(\beta) \in \Pi \) and \((\alpha, \theta) = 0\). Hence (1) is satisfied for \(\mu \) and \(\alpha \).

- Suppose that \(w_\mu s_0(\alpha) = \alpha_0 = \delta - \theta. \) Then \(w_\mu^{-1}(\delta - \theta) = s_0(\alpha). \) Therefore, \(\alpha \in \Pi_t \) and \(s_0(\alpha) \neq \alpha, \) i.e., \((\alpha, \theta) \neq 0\). More precisely, \(\delta - w_\mu^{-1}(\theta) = \delta - (\theta - \alpha), \) hence \(w_\mu^{-1}(\theta) = \theta - \alpha. \) The last equality can be rewritten as \(\theta = \mu - w_\mu(\alpha). \) Therefore, \((\mu, \theta) \neq 0\) and \(\mu \neq \theta. \) Hence equality (2) can only occur for \(\mu \in \mathcal{H} \setminus \{ \theta \} \) and \(\alpha \in \mathcal{H}. \) Furthermore, if \(\theta \) is fundamental, then one must have \(\alpha = \alpha_\theta. \) By Lemma 2.2, the equality \(w_\mu^{-1}(\theta) = \theta - \alpha_\theta \) is then satisfied and we conclude that \(\alpha_\theta \in \Pi[\mu]_{\min}. \)

This proves parts (i),(ii),(iii).
Parts (iiib) is clear, and (iiic) is obtained by a direct calculation.

(iv) Here $a(\theta)_{\text{min}} = g_\theta$, and the assertion is obvious. \hfill \Box

Theorem 2.3 provides a complete description of $\Pi[\mu]_{\text{min}}$ for all $\mu \in \Delta^+$. But for some long simple roots, the assertion can be made even more precise.

Proposition 2.4. If θ is fundamental and $(\theta, \alpha_\theta) \neq 0$, then $\Pi[\alpha_\theta]_{\text{min}} = \{\alpha_\theta\} \cup \{\beta \in \Pi : (\beta, \alpha_\theta) = 0\}$. Therefore, $\Pi \setminus \Pi[\alpha_\theta]_{\text{min}}$ consists of the simple roots that are adjacent to α_θ in the Dynkin diagram.

Proof. By Theorem 2.3(iii), we have $\Pi[\alpha_\theta]_{\text{min}} = \{\alpha_\theta\} \cup \{w^{-1}_\alpha(\beta) : \beta \in \Pi \setminus (\beta, \alpha_\theta) = 0\}$. Therefore, we are to prove that w^{-1}_α permutes the simple roots orthogonal to α_θ. If $\beta \in \Pi$ and $(\beta, \alpha_\theta) = 0$, then we already know that $w^{-1}_\alpha(\beta) \in \Pi$. Next, using Lemma 2.2 with $\mu = \alpha_\theta$, we obtain

$$(w^{-1}_\alpha(\beta), \alpha_\theta) = (\beta, w^{-\alpha_\theta}_\alpha(\alpha_\theta)) = (\beta, w^{-\alpha_\theta}_\alpha(\alpha_\theta)) = - (\beta, \theta).$$

Since $\beta \neq \alpha_\theta$ and θ is fundamental, this must be zero. \hfill \Box

The minuscule elements for the root-maximal abelian ideals do not admit a simple formula. Therefore, we cannot explicitly describe $p[\mu]_{\text{max}}$ for all $\mu \in \Delta^+$. However, if $\mu \in \Pi_l$, then $a(\mu)_{\text{min}}$ is closely related to $a(\mu)_{\text{max}}$, and such a situation is considered in the next section.

3. Normalisers of Some Root-Maximal Abelian Ideals

We begin with a new property of the normaliser of an arbitrary b-stable subspace of u. Let $c \subset u$ be such a subspace and I_c the corresponding set of positive roots. Being a standard parabolic subalgebra, $n_g(c)$ is fully determined by the simple roots of the standard Levi subalgebra or, equivalently, by the set of simple roots α such that $g^{-\alpha}_\theta \not\in n_g(c)$. The following is proved in [12, Theorem 3.2].

Theorem 3.1. For any b-stable subspace $c \subset u$ and $\alpha \in \Pi$, we have

$$g^{-\alpha}_\theta \not\in n_g(c) \iff \exists \gamma \in \min(I_c) \text{ such that } \gamma - \alpha \in \Delta^+ \cup \{0\}.$$

The point of this result is that it suffices to test only the minimal roots of I_c. Note that if $\gamma - \alpha$ is a root, then $\gamma - \alpha \in \Delta^+ \setminus I_c$. Our new observation is that it is equally suitable to test only the maximal roots of $\Delta^+ \setminus I_c$. To this end, we first provide an auxiliary assertion.

Lemma 3.2. Suppose that $\mu \in \Delta^+$ and $\alpha, \bar{\alpha}$ are different simple roots. If $\mu + \alpha, \mu + \bar{\alpha} \in \Delta$, then $\mu + \alpha + \bar{\alpha} \in \Delta$.

Theorem 3.3. Suppose that \(\mu \) automatically.

\[\text{Proof.} \]
The implication "\(\Rightarrow \)" is obvious.

"\(\Leftarrow \)". If \(g_{-\alpha} \notin n_{\theta}(c) \), then there is \(\mu \in \min(I_c) \) such that \(\mu - \alpha \in (\Delta^+ \setminus I_c) \cup \{0\} \).

- If \(\mu - \alpha \in \max(\Delta^+ \setminus I_c) \), then \(\gamma = \mu - \alpha \), and we are done;

- If \(\mu - \alpha \) is nonzero and not maximal in \(\Delta^+ \setminus I_c \), then there is an \(\tilde{\alpha} \in \Pi \) such that \(\mu - \alpha + \tilde{\alpha} \in \Delta^+ \setminus I_c \). Applying Lemma 3.2 to \(\mu - \alpha \) shows that \(\mu + \tilde{\alpha} \) is a root and then automatically, \(\mu + \tilde{\alpha} \in I_c \). Thus, the pair \(\{\mu - \alpha, \mu\} \) can be replaced with the "higher" pair \(\{\mu - \alpha + \tilde{\alpha}, \mu + \tilde{\alpha}\} \). Eventually, we obtain a pair whose lower root is maximal in \(\Delta^+ \setminus I_c \).

- If \(\mu = \alpha \), then \(I_c \) contains all positive roots with nonzero coefficient of \(\alpha \). Since \(\Delta^+ \setminus I_c \neq \emptyset \), there exists a \(\nu \in \Delta^+ \setminus I_c \) such that \(\nu + \alpha \) is a root, necessarily in \(I_c \). If \(\nu \notin \max(\Delta^+ \setminus I_c) \), then we can perform the induction procedure of the previous paragraph. \(\square \)

In the setting of abelian ideals, there is a special case in which \(\max(\Delta^+ \setminus I_c) \) is related to the minimal roots of another ideal.

Proposition 3.4 ([10, Theorem 4.7]). For any \(\tilde{\alpha} \in \Pi_I \), one has

\[\gamma \in \min(I(\tilde{\alpha})_{\min}) \iff \theta - \gamma \in \max(\Delta^+ \setminus I(\tilde{\alpha})_{\max}). \]

In particular, if \(\text{rk} \Delta > 1 \) (i.e., \(I(\tilde{\alpha})_{\min} \neq \{\theta\} \)), then \(\max(\Delta^+ \setminus I(\tilde{\alpha})_{\max}) \subset H \setminus \{\theta\} \).

In the rest of this section, we only consider the abelian ideals with rootlet \(\tilde{\alpha} \in \Pi_I \). Using Theorem 3.3 and Proposition 3.4, we are going to compare the normalisers \(p[\tilde{\alpha}]_{\max} = n_{\theta}(a(\tilde{\alpha})_{\max}) \) and \(p[\tilde{\alpha}]_{\min} = n_{\theta}(a(\tilde{\alpha})_{\min}) \). We write \(S[\tilde{\alpha}]_{\max} \) and \(S[\tilde{\alpha}]_{\min} \), respectively, for the simple roots that do not belong to their standard Levi subalgebras. In other words, \(S[\tilde{\alpha}]_{\min} := \Pi \setminus \Pi[\tilde{\alpha}]_{\min} \), and likewise for ‘max’.

Theorem 3.5. For any \(\tilde{\alpha} \in \Pi \), we have \(S[\tilde{\alpha}]_{\max} \subset S[\tilde{\alpha}]_{\min} \) and thereby \(p[\tilde{\alpha}]_{\max} \supset p[\tilde{\alpha}]_{\min} \).
Proof. If \(g \neq s t_2 \), then \([u, u] \neq 0\). Hence \(a(\tilde{\alpha})_{\max} \neq u \), i.e., \(I(\tilde{\alpha})_{\max} \neq \Delta^+ \). Therefore, \(\alpha \in S[\tilde{\alpha}]_{\max} \) if and only if there exists \(\gamma \in \max(\Delta^+ \setminus I(\tilde{\alpha})_{\max}) \) such that \(\gamma + \alpha \in I(\tilde{\alpha})_{\max} \) (Theorem 3.3). Then \(\gamma \in \mathcal{H} \setminus \{\theta\} \) (Proposition 3.4) and hence \(\gamma + \alpha \in \mathcal{H} \cap I(\tilde{\alpha})_{\max} = I(\tilde{\alpha})_{\min} \) [10, Proposition 3.2]. By Proposition 3.4, we have \(\nu := \theta - \gamma \in \min(I(\tilde{\alpha})_{\min}) \) and \(\nu - \alpha = \theta - (\gamma + \alpha) \) is either a root or zero. In both cases, applying Theorem 3.1 to \(\nu \), we conclude that \(\alpha \in S[\tilde{\alpha}]_{\min} \). \[\square \]

Actually, there is a more precise statement.

Theorem 3.6. Excluding the case in which \(\Delta \) is of type \(A_n \) with \(\tilde{\alpha} = \alpha_1 \) or \(\alpha_n \), we have \(S[\tilde{\alpha}]_{\max} = S[\tilde{\alpha}]_{\min} \cap \theta^\perp \).

Proof. 1. Suppose that \(\alpha \in S[\tilde{\alpha}]_{\max} \) and \(\gamma \in \max(\Delta^+ \setminus I(\tilde{\alpha})_{\max}) \) is such that \(\gamma + \alpha \in I(\tilde{\alpha})_{\max} \). As explained in the previous proof, we then have \(\nu = \theta - \gamma \in \min(I(\tilde{\alpha})_{\min}) \subset \mathcal{H} \) and \(\nu - \alpha \in \Delta^+ \cup \{0\} \). Consider these two possibilities for \(\nu - \alpha \).

(i) \(\nu = \alpha \). Then \(\alpha \in I(\tilde{\alpha})_{\min} \), which is only possible if \(\tilde{\alpha} = \alpha \), since \(I(\tilde{\alpha})_{\min} \subset \{\mu \in \Delta^+ | \mu \succ \tilde{\alpha}\} \) [10, Proposition 3.4]. Therefore \(\tilde{\alpha} = \alpha, \tilde{\alpha} \in \mathcal{H} \), and \([\theta : \tilde{\alpha}] = 1 \). All this only occurs for \(\Delta \) of type \(A_n \) with \(\tilde{\alpha} = \alpha_1 \) or \(\alpha_n \).

(ii) \(\nu - \alpha \in \Delta^+ \). Then \(\nu - \alpha \in \mathcal{H} \), since \((\nu - \alpha) + (\gamma + \alpha) = \theta \). That is both \(\nu \) and \(\nu - \alpha \) belong to \(\mathcal{H} \setminus \{\theta\} \). Hence \((\theta, \alpha) = 0 \).

2. Conversely, assume that \(\alpha \in S[\tilde{\alpha}]_{\min} \cap \theta^\perp \). That is, \((\theta, \alpha) = 0 \) and for some \(\nu \in \min(I(\tilde{\alpha})_{\min}) \), we have \(\nu - \alpha \in \Delta^+ \cup \{0\} \).

For \(\nu = \alpha \), we argue as in part 1(i). If \(\nu - \alpha \in \Delta^+ \), then both \(\gamma = \theta - \nu \) and \(\gamma + \alpha \) are roots, and \(\gamma \in \max(\Delta^+ \setminus I(\tilde{\alpha})_{\max}) \) in view of Proposition 3.4. Hence \(\alpha \in S[\tilde{\alpha}]_{\max} \). \[\square \]

Remark 3.7. Recall that \(a(\tilde{\alpha})_{\min} = a(\tilde{\alpha})_{\max} \) if and only if \((\tilde{\alpha}, \theta) \neq 0 \), i.e., \(\tilde{\alpha} \in \mathcal{H} \) [8, Theorem 5.1(i)]. If this is the case (and \(\Delta \neq A_n \)), then Theorem 3.6 implies that \(S[\tilde{\alpha}]_{\max} = S[\tilde{\alpha}]_{\min} \subset \theta^\perp \). In the distinguished case of \((A_n, \alpha_1 \text{ or } \alpha_n) \), we have \(a(\alpha_1)_{\min} = a(\alpha_1)_{\max} \) and \(S[\alpha_1]_{\min} = \{\alpha_1\} \), whereas \(\Pi \cap \mathcal{H} = \{\alpha_1, \alpha_n\} \).

Corollary 3.8. If \(I(\tilde{\alpha})_{\min} \neq I(\tilde{\alpha})_{\max} \), then \(p[\tilde{\alpha}]_{\min} \neq p[\tilde{\alpha}]_{\max} \).

Proof. Since \(I(\tilde{\alpha})_{\min} \neq I(\tilde{\alpha})_{\max} \), we have \((\tilde{\alpha}, \theta) = 0 \). Then \(\Pi[\tilde{\alpha}]_{\min} \subset \theta^\perp \) by Theorem 2.3(ii). Then \(S[\tilde{\alpha}]_{\min} \subset \Pi \cap \mathcal{H} \), and \(S[\tilde{\alpha}]_{\max} \cap \mathcal{H} = \varnothing \) in view of Theorem 3.6. That is, \(S[\tilde{\alpha}]_{\min} \neq S[\tilde{\alpha}]_{\max} \). \[\square \]

Combining Theorems 2.3 and 3.6 yields a complete description of the normaliser for the maximal abelian ideals \(a(\tilde{\alpha})_{\max} \), which turns out to be more uniform than that for \(a(\tilde{\alpha})_{\min} \). In the rest of the section, we write \(\bar{w} \) in place of \(w_{\tilde{\alpha}} \).

Theorem 3.9. (i) Excluding the case in which \(\Delta \) is of type \(A_n \) with \(\tilde{\alpha} = \alpha_1 \) or \(\alpha_n \), we have

\[
\Pi[\tilde{\alpha}]_{\max} = (\Pi \cap \mathcal{H}) \biguplus \{\bar{w}^{-1}(\beta) | \beta \in \Pi \& (\beta, \tilde{\alpha}) = 0\}.
\]
(ii) In particular, if \((\theta, \tilde{\alpha}) = 0\), then \(\Pi[\tilde{\alpha}]_{\text{max}} = (\Pi \cap \mathcal{H}) \sqcup \Pi[\tilde{\alpha}]_{\text{min}}\).

(iii) In particular, if \(\theta\) is fundamental and \((\theta, \tilde{\alpha}) \neq 0\), then

\[
\Pi[\tilde{\alpha}]_{\text{max}} = \Pi[\tilde{\alpha}]_{\text{min}} = \{\tilde{\alpha}\} \sqcup \{\beta \in \Pi \mid (\beta, \tilde{\alpha}) = 0\}.
\]

Let us say that \(\beta \in \Pi\) is admissible (for \(\tilde{\alpha}\)) if \((\beta, \tilde{\alpha}) = 0\). It follows from Theorem 2.3 that an admissible root always gives rise to a simple root of the Levi subalgebra of \(\mathfrak{p}[\tilde{\alpha}]_{\text{min}}\). Furthermore, if \(\theta\) is fundamental and \((\tilde{\alpha}, \theta) \neq 0\), then \(\tilde{\alpha}\) also belongs to \(\Pi[\tilde{\alpha}]_{\text{min}}\).

Example 3.10. (1) \(\Delta = A_n, \tilde{\alpha} = \alpha_2\). Here \(\tilde{w} = s_1s_3 \ldots s_n\) and the admissible roots are \(\alpha_4, \ldots, \alpha_n\). One has \(\tilde{w}^{-1}(\alpha_i) = \alpha_{i-1}\) for them. Hence \(\Pi[\alpha_2]_{\text{min}} = \{\alpha_3, \alpha_4, \ldots, \alpha_{n-1}\}\) and \(S[\alpha_2]_{\text{min}} = \{\alpha_1, \alpha_2, \alpha_n\}\). Then \(S[\alpha_2]_{\text{max}} = \{\alpha_2\}\).

More generally, for \(\tilde{\alpha} = \alpha_i\) \((2 \leq i \leq n - 1)\), one obtains \(S[\alpha_i]_{\text{min}} = \{\alpha_1, \alpha_i, \alpha_n\}\) and \(S[\alpha_i]_{\text{max}} = \{\alpha_i\}\).

(2a) \(\Delta = D_4, \tilde{\alpha} = \alpha_1\). Here \(\tilde{w} = s_2s_3s_4s_2\) and the admissible roots are \(\alpha_3, \alpha_4\). One has \(\tilde{w}^{-1}(\alpha_3) = \alpha_4\) and \(\tilde{w}^{-1}(\alpha_4) = \alpha_3\). Hence \(S[\alpha_1]_{\text{min}} = \{\alpha_1, \alpha_2\}\) and \(S[\alpha_1]_{\text{max}} = \{\alpha_1\}\).

(2b) \(\Delta = D_4, \tilde{\alpha} = \alpha_2\). There is no admissible roots here, hence \(\tilde{w}\) is not really needed. Since \((\alpha_2, \theta) \neq 0\), we have \(S[\alpha_2]_{\text{min}} = S[\alpha_2]_{\text{max}} = \{\alpha_1, \alpha_3, \alpha_4\} = \Pi \setminus (\Pi \cap \mathcal{H})\).

(3) \(\Delta = C_n, \tilde{\alpha} = \alpha_n\) (the only long simple root). Here \(\tilde{w} = s_{n-1} \ldots s_2s_1\) and the admissible roots are \(\alpha_1, \ldots, \alpha_{n-2}\). One has \(\tilde{w}^{-1}(\alpha_i) = \alpha_{i+1}\) for them. Hence \(\Pi[\alpha_n]_{\text{min}} = \{\alpha_2, \alpha_3, \ldots, \alpha_{n-1}\}\) and \(S[\alpha_n]_{\text{min}} = \{\alpha_1, \alpha_n\}\). Then \(S[\alpha_n]_{\text{max}} = \{\alpha_n\}\).

(4a) \(\Delta = E_6, \tilde{\alpha} = \alpha_3\). Here \(\tilde{w} = s_6s_4s_5s_3s_1s_2s_4s_3s_6\) and the admissible roots are \(\alpha_1, \alpha_5\). One has \(\tilde{w}^{-1}(\alpha_1) = \alpha_4\) and \(\tilde{w}^{-1}(\alpha_5) = \alpha_2\). Hence \(S[\alpha_3]_{\text{min}} = \{\alpha_1, \alpha_3, \alpha_5, \alpha_6\}\) and \(S[\alpha_3]_{\text{max}} = \{\alpha_1, \alpha_3, \alpha_5\}\).

(4b) \(\Delta = E_6, \tilde{\alpha} = \alpha_2\). Here \(\tilde{w} = s_3s_6s_4s_5s_3s_1s_2s_4s_3s_6\) and the admissible roots are \(\alpha_4, \alpha_5, \alpha_6\). One has \(\tilde{w}^{-1}(\alpha_4) = \alpha_3, \tilde{w}^{-1}(\alpha_5) = \alpha_2\) and \(\tilde{w}^{-1}(\alpha_6) = \alpha_5\). Hence \(S[\alpha_2]_{\text{min}} = \{\alpha_1, \alpha_4, \alpha_6\}\) and \(S[\alpha_2]_{\text{max}} = \{\alpha_1, \alpha_4\}\).

4. Normalisers of Abelian Ideals and \(\mathbb{Z}\)-Gradings

In this section, we elaborate on a relationship between the abelian ideals, their normalisers and the associated \(\mathbb{Z}\)-gradings. Any subset \(S \subset \Pi\) gives rise to a \(\mathbb{Z}\)-grading of \(\mathfrak{g}\). Set

\[
\deg(\alpha) = \begin{cases}
0, & \alpha \in \Pi \setminus S \\
1, & \alpha \in S
\end{cases},
\]

and extend it to the whole of \(\Delta\) by linearity. Then the \(\mathbb{Z}\)-grading \(\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}(i)\) is defined by the requirement that \(t \subset \mathfrak{g}(0)\) and \(\mathfrak{g}_\gamma \subset \mathfrak{g}(\deg(\gamma))\) for any \(\gamma \in \Delta\). Set \(\mathfrak{g}(\geq j) = \bigoplus_{i \geq j} \mathfrak{g}(i)\). If we wish to make the dependance on \(S\) explicit, then we write \(\mathfrak{g}(i; S)\) and \(\mathfrak{g}(j; S)\).

Let \(\mathfrak{p}\) be a standard parabolic subalgebra, \(\mathfrak{l}\) the standard Levi subalgebra of \(\mathfrak{p}\), and \(\Pi(\mathfrak{l})\) the set of simple roots of \(\mathfrak{l}\). Then \(S = S(\mathfrak{p}) = \Pi \setminus \Pi(\mathfrak{l})\) determines the \(\mathbb{Z}\)-grading associated
with \(p \), and we also write \(p = p(S) \). In this case, \(g(0; S) = 1 \), \(g(\geq 0; S) = p \), and \(g(\geq 1; S) \) is the nilradical of \(p \).

The height of a \(\mathbb{Z} \)-grading is the maximal \(i \) such that \(g(i) \neq \{0\} \). For \(S = \Pi \setminus \Pi(1) \), we also say that it is the height of \(p(S) \), denoted \(\text{ht}(p(S)) \). It is easily seen that \(\text{ht}(p(S)) = \deg(\theta) = \sum_{\alpha \in \mathcal{S}[\theta : \alpha]}\). Clearly, if \(j \geq \frac{\text{ht}(p)}{2} + 1 \), then \(g(\geq j) \) is an abelian ideal of \(b \).

Convention. If \((\theta, \tilde{\alpha}) \neq 0 \), then \(I(\tilde{\alpha})_{\text{min}} = I(\tilde{\alpha})_{\text{max}} \). In this case, we omit the subscripts ‘min’ and ‘max’ from the notation for all relevant objects; that is, we merely write \(p[\tilde{\alpha}], \mathcal{S}[\tilde{\alpha}] \), etc.

Theorem 4.1. Suppose that \(\theta \) is fundamental, with the corresponding \(\alpha_\theta \in \Pi \).

(i) \(\mathcal{S}[\alpha_\theta] = \{ \beta \in \Pi \setminus \{ \alpha_\theta \} \mid (\beta, \alpha_\theta) \neq 0 \} \), the set of all simple roots adjacent to \(\alpha_\theta \);

(ii) \(\alpha_\theta \) is long, \([\theta : \alpha_\theta] = 2 \), and \(\text{ht}(p[\alpha_\theta]) = 3 \);

(iii) \(a(\alpha_\theta) = g(\geq 2; \mathcal{S}[\alpha_\theta]) \).

Proof. (i) It is already proved in Proposition 2.4.

(ii) If \(\theta \) is fundamental, then \((\theta, \alpha_\theta^\vee) = 1 = (\alpha_\theta, \theta^\vee) \). Hence \(\alpha_\theta \) is necessarily long. Furthermore,

\[
(\theta, \theta) = (\theta, \sum_{\alpha \in \Pi}[\theta : \alpha]\alpha) = [\theta : \alpha_\theta](\theta, \alpha_\theta) = \frac{1}{2}[\theta : \alpha_\theta](\theta, \theta).
\]

Hence \([\theta : \alpha_\theta] = 2 \). Finally,

\[
1 = (\theta, \alpha_\theta^\vee) = 2[\theta : \alpha_\theta] - \sum_{\beta \text{ adjacent}}[\theta : \beta],
\]

where the sum ranges over the simple roots \(\beta \) adjacent to \(\alpha_\theta \) in the Dynkin diagram. Therefore, \(3 = \sum_{\beta \text{ adjacent}}[\theta : \beta] = \text{ht}(p[\alpha_\theta]) \).

(iii) A general description of the minimal roots for all root-minimal ideals \(a(\mu)_{\text{min}} \) is provided in [8, Prop. 4.6]. In the situation with \(\mu = \alpha_\theta \), this yields

\[
\text{min}(I(\alpha_\theta)) = \{ w_{\alpha_\theta}^{-1}(\alpha_\theta + \beta_i) \mid \beta_i \in \Pi \& \beta_i \text{ is adjacent to } \alpha_\theta \}.
\]

Set \(\nu_i = w_{\alpha_\theta}^{-1}(\alpha_\theta + \beta_i) = \theta + w_{\alpha_\theta}^{-1}(\beta_i) \) and write \(\nu_i = m\alpha_\theta + \sum_j m_j \beta_j + \text{(others)} \). Then \(m = 1 \), since \(m = (\nu_i, \theta^\vee) = (\theta + w_{\alpha_\theta}^{-1}(\beta_i), \theta^\vee) = 2 - 1 = 1 \). Next, using Lemma 2.2 with \(\mu = \alpha_\theta \), we obtain

\[
(\nu_i, \alpha_\theta^\vee) = (\theta + w_{\alpha_\theta}^{-1}(\beta_i), \alpha_\theta^\vee) = 1 + (\beta_i, \alpha_\theta^\vee - \theta^\vee) = 1 - 1 = 0.
\]

On the other hand,

\[
(\nu_i, \alpha_\theta^\vee) = 2m - \sum_j m_j.
\]

Therefore, \(\sum_j m_j = 2 \) and all minimal roots belong to \(g(2; \mathcal{S}[\alpha_\theta]) \). Since \(g(\geq 2; \mathcal{S}[\alpha_\theta]) \) is an abelian ideal and \(a(\alpha_\theta) \) is maximal abelian, we must have \(g(\geq 2; \mathcal{S}[\alpha_\theta]) = a(\alpha_\theta) \).

Theorem 4.1 is a particular case of the following general assertion.
Theorem 4.2.

(i) For any $\tilde{\alpha} \in \Pi_l$ and $n_{\tilde{\alpha}} := [\theta : \tilde{\alpha}]$, we have $\text{ht}(\mathfrak{p}[\tilde{\alpha}]_{\text{max}}) = 2n_{\tilde{\alpha}} - 1$ and $a(\tilde{\alpha})_{\text{max}} = g(\geq n_{\tilde{\alpha}}; S[\alpha]_{\text{max}})$.

(ii) If $(\tilde{\alpha}, \theta) = 0$ (and hence $S[\tilde{\alpha}]_{\text{max}} \neq S[\tilde{\alpha}]_{\text{min}}$), then $\text{ht}(\mathfrak{p}[\tilde{\alpha}]_{\text{min}}) = 2n_{\tilde{\alpha}} + 1$ and $a(\tilde{\alpha})_{\text{min}} = g(\geq n_{\tilde{\alpha}} + 1; S[\tilde{\alpha}]_{\text{min}})$.

Proof. Our proof for both parts consists of a case-by-case verification. Using explicit information on $\min(I(\tilde{\alpha})_{\text{min}})$ and $\min(I(\tilde{\alpha})_{\text{max}})$ or results of Section 3, we explicitly determine $S[\tilde{\alpha}]_{\text{min}}$ and $S[\tilde{\alpha}]_{\text{max}}$. This yields the associated \mathbb{Z}-gradings and height of all parabolics involved. The minimal roots of $I(\tilde{\alpha})_{\text{min}}$ can be determined with the help of [8, Prop. 4.6], whereas the minimal roots of $I(\tilde{\alpha})_{\text{max}}$ (“generators”) are indicated in [12, Tables I, III]. Then one verifies that the sets $\min(I(\tilde{\alpha})_{\text{min}})$ and $\min(I(\tilde{\alpha})_{\text{max}})$ always coincide with the set of minimal roots of $g(\geq n_{\tilde{\alpha}} + 1; S[\tilde{\alpha}]_{\text{min}})$ and $g(\geq n_{\tilde{\alpha}}; S[\tilde{\alpha}]_{\text{max}})$, respectively. □

Remark 4.3. We can directly explain the following outcome of Theorem 4.2:

If $(\tilde{\alpha}, \theta) = 0$, then $\text{ht}(\mathfrak{p}[\tilde{\alpha}]_{\text{min}}) = \text{ht}(\mathfrak{p}[\tilde{\alpha}]_{\text{max}}) + 2$.

For, by Theorem 3.9(ii), we know that $S[\tilde{\alpha}]_{\text{min}} = (\Pi \cap \mathcal{H}) \cup S[\tilde{\alpha}]_{\text{max}}$. Hence

$$\text{ht}(\mathfrak{p}[\tilde{\alpha}]_{\text{min}}) - \text{ht}(\mathfrak{p}[\tilde{\alpha}]_{\text{max}}) = \sum_{\beta \in \Pi \cap \mathcal{H}} n_{\beta}.$$

If θ is fundamental, then $\Pi \cap \mathcal{H} = \{\alpha_\theta\}$ and $n_{\alpha_\theta} = 2$ (Theorem 4.1(ii)). For A_n, we have $\Pi \cap \mathcal{H} = \{\alpha_1, \alpha_n\}$ and $n_{\alpha_1} + n_{\alpha_n} = 2$. This does not apply to C_n, where $(\tilde{\alpha}, \theta) \neq 0$ for the unique long simple root $\tilde{\alpha}$.

Example 4.4. If $n_{\tilde{\alpha}} = 1$, then $I(\tilde{\alpha})_{\text{max}} = \{\gamma \in \Delta^+ \mid [\gamma : \tilde{\alpha}] = 1\}$ and $\mathfrak{p}[\tilde{\alpha}]_{\text{max}}$ is the maximal parabolic subalgebra with $S[\tilde{\alpha}]_{\text{max}} = \{\tilde{\alpha}\}$. Here $\text{ht}(\mathfrak{p}[\tilde{\alpha}]_{\text{max}}) = 1$. Hence Theorem 4.2(i) is satisfied here. Furthermore, if θ is fundamental and $(\tilde{\theta}, \alpha_\theta) \neq 0$, then $\tilde{\alpha} \neq \alpha_\theta$ (because $n_{\alpha_\theta} = 2$), $(\tilde{\theta}, \tilde{\alpha}) = 0$, and $S[\tilde{\alpha}]_{\text{min}} = \{\tilde{\alpha}, \alpha_\theta\}$, see Theorem 3.9(ii). Therefore $\text{ht}(\mathfrak{p}[\tilde{\alpha}]_{\text{min}}) = 3$, and I can prove a priori that $a(\tilde{\alpha})_{\text{min}} = g(\geq 2; \{\tilde{\alpha}, \alpha_\theta\})$. (As this is not a decisive step, the proof is omitted.)

That is, in principle, there is a better proof of Theorem 4.2 if $n_{\tilde{\alpha}} = 1$ or $\tilde{\alpha} = \alpha_\theta$.

Now, we consider arbitrary abelian ideals of \mathfrak{b}. Let $\mathfrak{Par}(\mathfrak{g}, \mathfrak{b}) = \mathfrak{Par}(\mathfrak{g})$ be the set of all standard parabolic subalgebras of \mathfrak{g}. If $\mathfrak{a} \in \mathfrak{Ab}(\mathfrak{g})$, then $n_{\mathfrak{a}}(\mathfrak{a}) \in \mathfrak{Par}(\mathfrak{g})$. It is proved in [12] that the assignment $\mathfrak{a} \mapsto f_1(\mathfrak{a}) = n_{\mathfrak{a}}(\mathfrak{a})$ sets up a bijection $\mathfrak{Ab}(\mathfrak{g}) \xrightarrow{f_1} \mathfrak{Par}(\mathfrak{g})$ if and only if Δ is of type A_n or C_n (i.e., θ is not fundamental).

Here we extend that observation by looking at a natural mapping in the opposite direction. For $\mathfrak{p} \in \mathfrak{Par}(\mathfrak{g})$ and the associated \mathbb{Z}-grading, we set

$$f_2(\mathfrak{p}) = g(\geq [\text{ht}(\mathfrak{p})/2] + 1) \in \mathfrak{Ab}(\mathfrak{g}).$$

This mapping occurs implicitly in Theorem 4.2, where $\text{ht}(\mathfrak{p})$ appears to be always odd.
Theorem 4.5.

(i) If Δ is of type A_n or C_n, then $f_2 : \mathcal{P}ar(g) \to \mathcal{A}b(g)$ is a bijection. Moreover, $f_2 = f_1^{-1}$;

(ii) If θ is fundamental, then f_2 is not a bijection. In fact, there is a uniform construction of two different $p_1, p_2 \in \mathcal{P}ar(g)$ such that $f_2(p_1) = f_2(p_2)$.

Proof. (i) First, we recall the (slightly modified) construction of the bijection f_1 for A_n. For $a \in \mathcal{A}b(sl_{n+1})$, let $\min(I_a) = \{\gamma_1, \ldots, \gamma_k\}$ with $\gamma_i = \alpha_{i_1} + \alpha_{i_2} + \cdots + \alpha_{i_j}$, where $i_1 \leq j$. Assuming that $i_1 \leq i_2 \leq \ldots \leq i_k$, we actually obtain the restrictions

$$1 \leq i_1 < i_2 < \cdots < i_k \leq j_1 < \cdots < j_k \leq n$$

and thereby the bijection between $\mathcal{A}b(sl_{n+1})$ and the subsets of $[n] = \{1, \ldots, n\}$. Here one obtains a subset of odd (resp. even) cardinality if $i_k = j_1$ (resp. $i_k < j_1$). Moreover, if $p = n_g(a)$, then it follows from Theorem 3.3.1 that $S = S(p) = \{\alpha_{i_1}, \alpha_{i_2}, \ldots, \alpha_{i_k}, \alpha_{j_1}, \ldots, \alpha_{j_k}\}$, modulo the possible coincidence of i_k and j_1.

Suppose that $p \in \mathcal{P}ar(sl_{n+1})$ and $\#S$ is odd, $S \sim \{t_1, t_2, \ldots, t_{2k-1}\} \subset [n]$, with $t_1 < \cdots < t_{2k-1}$. Then $ht(p) = 2k - 1$ and the minimal roots of $g(\geq k; S)$ are in a bijection with the shortest intervals of $[n]$ that contain k elements of S. Therefore, these minimal roots are

$$\gamma_1 = \alpha_{t_1} + \alpha_{t_2} + \cdots + \alpha_{t_k}$$
$$\gamma_2 = \alpha_{t_2} + \alpha_{t_3} + \cdots + \alpha_{t_{k+1}}$$
$$\cdots$$
$$\gamma_k = \alpha_{t_k} + \alpha_{t_{k+1}} + \cdots + \alpha_{t_{2k-1}}$$

and it is immediate that, for the abelian ideal $a = f_2(p)$ generated by $\gamma_1, \ldots, \gamma_k$, we have $f_1(a) = p$.

If $\#S$ is even, $S \sim \{t_1, t_2, \ldots, t_{2k}\} \subset [n]$, then $ht(p) = 2k$ and the minimal roots of $g(\geq k + 1; S)$ are

$$\gamma_1 = \alpha_{t_1} + \alpha_{t_2} + \cdots + \alpha_{t_{k+1}}$$
$$\gamma_2 = \alpha_{t_2} + \alpha_{t_3} + \cdots + \alpha_{t_{k+2}}$$
$$\cdots$$
$$\gamma_k = \alpha_{t_k} + \alpha_{t_{k+1}} + \cdots + \alpha_{t_{2k}}$$

Here again one obtains $a = f_2(p)$ such that $f_1(a) = p$.

We omit the part related to C_n, since it goes along the same lines, using the explicit description of f_1 given in [12, Theorem 3.3]. The point is that the unfolding $C_n \sim A_{2n-1}$ (see picture below) yields the identification of $\mathcal{A}b(sp_{2n})$ and $\mathcal{P}ar(sp_{2n})$ with the symmetric (with respect to the middle) subsets of $[2n-1]$, and one can use a symmetrised version of the previous argument.

(ii) Our goal is to produce two different subsets $S_1, S_2 \subset \Pi$ such that $p(S_1)$ and $p(S_2)$ give rise to the same abelian ideal. Below we use Theorem 4.1 and its proof.
As usual, α_θ is the only simple root that is not orthogonal to θ. Let S_1 be the set of all simple roots adjacent to α_θ and $S_2 = S_1 \cup \{\alpha_\theta\}$. Then $p(S_1) = p[\alpha_\theta], \text{ht}(p[\alpha_\theta]) = 3$, and $a(\alpha_\theta) = g(\geq 2; S_1)$. Since $n_{\alpha_\theta} = 2$, we have $\text{ht}(p(S_2)) = 2 + \text{ht}(p[\alpha_\theta]) = 5$ and $g(\geq 3; S_2)$ is an abelian ideal. The proof of Theorem 4.1 shows that if $\nu_i \in \min(I(\alpha_\theta))$, then $[\nu_i : \alpha_\theta] = 1$ and $\sum_{\beta \in S_1}[\nu : \beta] = 2$. Hence $g_{\nu_i} \in g(3; S_2)$ and $a(\alpha_\theta) \subset g(\geq 3; S_2)$. As $a(\alpha_\theta)$ is maximal abelian, one has the equality and therefore $f_2(p(S_1)) = f_2(p(S_2))$.

Remark 4.6 (Some speculations). Set $F = f_1 \circ f_2$ and $F = f_2 \circ f_1$. We say that $a \in \mathbb{Ab}(g)$ is reflexive, if $\tilde{F}(a) = a$; likewise, $\mathfrak{P}(g)$ is reflexive, if $F(\mathfrak{p}) = \mathfrak{p}$. It is easily seen that $F(\mathfrak{p}) \supseteq \mathfrak{p}$ for all \mathfrak{p}, while it can happen that $\tilde{F}(a) \not\supset a$ for some a (e.g. if $g = E_6$).

For \mathfrak{sl}_{n+1} and \mathfrak{sp}_{2n}, all abelian ideals are reflexive, whereas this is certainly not the case for the other simple types. However, Theorem 4.2 implies that the ideals $a(\tilde{\alpha})_{\text{min}}$ and $a(\tilde{\alpha})_{\text{max}}$ ($\tilde{\alpha} \in \Pi_l$) are always reflexive. It might be interesting to explicitly determine all reflexive abelian ideals.

Our calculations with g up to rank 4 suggest that it also might be true that (the restrictions of) f_1 and f_2 induce the mutually inverse bijections between $\text{Im}(\tilde{F}) \subset \mathbb{Ab}(g)$ and $\text{Im}(F) \subset \mathfrak{Par}(g)$; in particular, $\#\text{Im}(F) = \#\text{Im}(\tilde{F})$. But the equality $\#\text{Im}(f_1) = \#\text{Im}(f_2)$ is false in general (e.g. for $g = so_9$).

We also conjecture that $\text{Im}(F) = \{\mathfrak{p} \mid F(\mathfrak{p}) = \mathfrak{p}\}$ and $\text{Im}(\tilde{F}) = \{a \mid \tilde{F}(a) = a\}$; in other words, $F^2 = F$ and $\tilde{F}^2 = \tilde{F}$ in the rings of endomorphisms of the finite sets $\mathfrak{Par}(g)$ and $\mathbb{Ab}(g)$, respectively.

References

[1] N. Bourbaki. “Groupes et algèbres de Lie”, Chapitres 4, 5 et 6, Paris: Hermann 1975.
[2] P. Cellini and P. Papi. ad-nilpotent ideals of a Borel subalgebra, *J. Algebra*, **225** (2000), 130–141.
[3] P. Cellini and P. Papi. ad-nilpotent ideals of a Borel subalgebra II, *J. Algebra*, **258** (2002), 112–121.
[4] P. Cellini and P. Papi. Abelian ideals of Borel subalgebras and affine Weyl groups, *Adv. Math.*, **187** (2004), 320–361.
[5] J.E. Humphreys. “Reflection Groups and Coxeter Groups”, Cambridge Univ. Press, 1992.
[6] B. Kostant. The set of abelian ideals of a Borel subalgebra, Cartan decompositions, and discrete series representations, *Intern. Math. Res. Notices*, (1998), no. 5, 225–252.
[7] B. Kostant. Powers of the Euler product and commutative subalgebras of a complex simple Lie algebra, *Invent. Math.*, **158** (2004), no. 1, 181–226.
[8] D. Panyushev. Abelian ideals of a Borel subalgebra and long positive roots, *Intern. Math. Res. Notices*, (2003), no. 35, 1889–1913.
[9] D. Panyushev. Normalizers of ad-nilpotent ideals, *Europ. J. Combin.*, **27** (2006), 153–178.
[10] D. Panyushev. Abelian ideals of a Borel subalgebra and root systems, *J. Eur. Math. Soc.*, **16**, no. 12 (2014), 2693–2708.
[11] D. Panyushev. Minimal inversion complete sets and maximal abelian ideals, *J. Algebra*, **445** (2016), 163–180.
[12] D. Panyushev and G. Röhrle. Spherical orbits and abelian ideals, *Adv. Math.*, **159** (2001), 229–246.
[13] E. Sommers. B-stable ideals in the nilradical of a Borel subalgebra, *Canad. Math. Bull.*, 48 (2005), 460–472.

[14] R. Suter. Abelian ideals in a Borel subalgebra of a complex simple Lie algebra, *Invent. Math.*, 156 (2004), 175–221.

Institute for Information Transmission Problems of the R.A.S., Bolshoi Karetnyi per. 19, 127051 Moscow, Russia

E-mail address: panyushev@iitp.ru