Photometry of neglected open clusters in the first and fourth Galactic quadrants

Giovanni Carraro,1,2⋆† Kenneth A. Janes3⋆ and Jason D. Eastman3,4⋆

1Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile
2Astronomy Department, Yale University, PO Box 208101, New Haven, CT 06520-8101, USA
3Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215, USA
4Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210, USA

Accepted 2005 August 23. Received 2005 August 18; in original form 2005 July 27

ABSTRACT
CCD BVI photometry is presented for eight previously unstudied star clusters located in the first and fourth Galactic quadrants: AL 1, BH 150, NGC 5764, Lynga 9, Czernik 37, BH 261, Berkeley 80 and King 25. Colour–magnitude diagrams of the cluster regions suggest that several of them (BH 150, Lynga 9, Czernik 37, BH 261 and King 25) are so embedded in the dense stellar population toward the galactic centre that their properties, or even their existence as physical systems, cannot be confirmed. Lynga 9, BH 261 and King 25 appear to be slight enhancements of dense star fields, BH 150 is probably just a single bright star in a dense field and Czernik 37 may be a sparse, but real cluster superimposed on the galactic bulge population. We derive preliminary estimates of the physical parameters for the remaining clusters. AL 1 appears to be an intermediate-age cluster beyond the solar circle on the far side of the galaxy and the final two clusters, NGC 5764 and Berkeley 80, are also of intermediate age but located inside the solar ring. This set of clusters highlights the difficulties inherent in studying the stellar populations toward the inner regions of the galaxy.

Key words: open clusters and associations: general – open clusters and associations: individual: AL 1 – open clusters and associations: individual: Berkeley 80 – open clusters and associations: individual: NGC 5764 – open clusters and associations: Czernik 37.

1 INTRODUCTION
According to the recent Galactic open clusters compilation by Dias et al. (2002, http://www.astro.iag.usp.br/wilton), 1632 open clusters are known to exist in the Milky Way disc. Unfortunately, basic parameters like distance, reddening and age are available for fewer than half the clusters in this sample. This fact obviously limits the use of open clusters as probes of the structure and evolution of the Galactic disc. A large observational effort is clearly needed to improve on this situation.

This is particularly important for sparse, loose star clusters, which are hard to distinguish from the rich Galactic field and may be very close to the dissolution phase (Bonatto, Bica & Pavani 2004).

The statistics of open cluster ages are dramatically skewed towards young star clusters, which are both more numerous and often more visible (Wielen 1971). However, in recent years new efforts have been done to provide observational material for intermediate-age and old star clusters (Kaluzny 1994; Phelps, Janes & Montgomery 1994; Hasegawa et al. 2004; Carraro et al. 2005a, and references therein). All this new observational material will surely result in a revision of the open cluster age distribution and typical lifetime.

In this paper we present the first photometric study of eight overlooked, faint and highly contaminated open clusters located in the fourth and first Galactic quadrant having 305° ≤ l ≤ 49° and −5.2 ≤ b ≤ +5.9 (see Table 1) and provide homogeneous derivation of basic parameters using the Padova (Girardi et al. 2000) family of isochrones.

The plan of the paper is as follows. Section 2 describes the observation strategy and reduction technique. Section 3 deals with the colour–magnitude diagrams (CMDs) and illustrates the derivation of the clusters’ fundamental parameters. Finally, Section 4 provides a detailed discussion of the results.

2 OBSERVATIONS AND DATA REDUCTION
CCD BVI observations were carried out with the CCD camera onboard the 1.0-m telescope at Cerro Tololo Interamerican Observatory (CTIO, Chile), on the night of 2005 June 6. With a pixel size of 0.469 arcsec, and a CCD size of 512 × 512 pixel, this samples a 4.1 × 4.1 arcmin² field on the sky.

© 2005 The Authors. Journal compilation © 2005 RAS

Downloaded from https://academic.oup.com/mnras/article-abstract/364/1/179/1148955 by guest on 29 July 2018
The details of the observations are listed in Table 2 where the observed fields are reported together with the exposure times, the average seeing values and the range of air masses during the observations. Figs 1–8 show deep images in the area of the clusters we observed. The data have been reduced with the IRAF1 packages CCDRED, DAOPHOT, ALLSTAR and PHOTCAL using the point spread function (PSF) method (Stetson 1987). The night turned out to be photometric and very stable. We derived calibration equations for all the 80 standard stars observed during the night in the Landolt (1992) fields PG 1047+003, MarkA, PG 1323-085, PG 1633+099, PG 1657+078 and PG 2213-006 (see Table 2 for details). Together with the clusters, we observed two control fields 20 arcmin South of King 25, at 19:24:34.9, +13:22:15.3 (J2000.0), and 10 arcmin North of Lynga 9, at 16:20:40.8, −48:21:45.1 (J2000.0), to deal with field star contamination. In fact these are the only two clusters that extend beyond the field covered by the CCD. Exposure of 600 s in V and I were secured for these fields.

The calibration equations are of the form

\[b = B + b_1 + b_2 \times X + b_3(B - V), \]

\[v = V + v_1 + v_2 \times X + v_3(B - V), \]

\[v = V + v_{1}\times X + V_{1}\times (V - I), \]

\[i = I + i_1 + i_2 \times X + i_3(V - I), \]

where \(B, V, I \) are standard magnitudes, \(b, v, i \) are the instrumental ones and \(X \) is the air mass; all the coefficient values are reported in Table 3. The standard stars in these fields provide a very good colour coverage. The final global rms (calibration plus DAOPHOT internal errors) are 0.033, 0.031 and 0.031 for the \(B, V \) and \(I \) filters, respectively (Patat & Carraro 2001).

We generally used the third equation to calibrate the \(V \) magnitude in order to get the same magnitude depth both in the cluster and in the field. The limiting magnitudes are \(B = 21.9, V = 22.5 \) and \(I = 21.8 \). Moreover, we performed a completeness analysis following the method described in Baume, Vazquez & Carraro (2004). It turns out that our sample has completeness level larger than 50 per cent down to \(B = 20.0, V = 21.0 \) and \(I = 20.5 \).

The final photometric catalogs for coordinates, \(B, V \) and \(I \) magnitudes and errors consist of 3392, 1949, 1537, 1373, 1178, 3729, 1738 and 883 stars for AL 1, BH 150, NGC 5764, Lynga 9, Czernik 37, BH 261, Berkeley 80 and King 25, respectively, and are made available in electronic form at the WEBDA2 site maintained by J.-C. Mermilliod.

The calibration equations are available in electronic form at the WEBDA site maintained by J.-C. Mermilliod.

1 IRAF is distributed by NOAO, which are operated by AURA under cooperative agreement with the NSF.

2 http://obswww.unige.ch/webda/navigation.html
Open clusters in the first and fourth Galactic quadrant

Figure 1. $I = 1200$ s image of A-L 1. North is up, east on the left and the covered area is 4.1×4.1 arcmin2.

Figure 2. $I = 600$ s image of Berkeley 80. North is up, east on the left and the covered area is 4.1×4.1 arcmin2.

Figure 3. $I = 600$ s image of NGC 5764. North is up, east on the left and the covered area is 4.1×4.1 arcmin2.

Figure 4. $I = 600$ s image of Czernik 37. North is up, east on the left and the covered area is 4.1×4.1 arcmin2.

3 COLOUR–MAGNITUDE DIAGRAMS AND CLUSTER PARAMETERS

In this section we describe cluster CMDs and derive their basic parameters.

We first evaluated the CMD data as well as images from the 2-Micron All-Sky Survey (2MASS) all-sky data release (available at www.ipac.caltech.edu/2mass/releases/allsky) to explore the existence of the clusters as physical systems. The 2MASS K_s images are substantially less affected by reddening than the visual images, which means that in some cases, the confusion from background galactic stars can be higher, but the background should often also be less variable.

Distance moduli, reddenings and ages of the confirmed clusters have been derived by matching the observed CMDs to isochrones from the Padova group (Girardi et al. 2000) by eye, paying particular attention to the shape of the main sequence (MS), the position of the brightest MS stars, the turn-off point and the location of evolved stars, if present.

To infer the heliocentric distances we adopted $R_V = A_V/E(B-V) = 3.1$.

The theoretical isochrones are available for a wide range of metallicities. We have adopted for all clusters those with a solar value because of a lack of firm photometric or spectroscopic determinations of metallicities of individual clusters. The effect of metallicity has been frequently considered in literature: increasing it shifts the isochrones fitting towards older ages, larger distances and smaller reddening.

The results are summarized in Table 4, where the basic parameters are listed together with their uncertainties. The latter correspond to the dispersion of the derived values.
the shift allowed to isochrone fitting before a mismatch is clearly perceived by eye inspection.

3.1 AL 1

This cluster was discovered by Andrews & Lindsay (1967) and then independently by van den Bergh & Hagen (1975) who named it BH 144. It is described as a faint, moderately populated object, with a diameter of 1.5 arcmin, clearly visible both on red and on blue plates (see Fig. 1). The 2MASS K_s image also shows the cluster just at the limiting magnitude of the image. Its CMDs are shown in Fig. 9, lower panels. Both the left-hand and central panel clearly show the presence of a strong contamination by the Galactic disc in a form resembling a MS. The cluster lies on the left of the disc MS. The evolved region is also complicated by foreground contamination. However, a selection in radius (0.6 arcmin) makes the cluster emerging. A suggested match to an 800-Myr isochrone yields a reddening $E(B-V) = 0.35$ and a distance modulus $(m-M) = 17.2$. This implies a distance from the Sun of 19.9 kpc.

3.2 Berkeley 80

This cluster was detected by Setteducati & Weaver (1960). Dias et al. (2002) report a diameter of 4 arcmin for Berkeley 80 (see also Fig. 2). A small group of stars is visible at this position on the

b_1	b_2	b_3
3.573 ± 0.009	0.25 ± 0.02	-0.155 ± 0.008
v_1	v_2	v_3
3.447 ± 0.005	0.16 ± 0.02	-0.019 ± 0.005
$v_{1,2}$	$v_{2,2}$	$v_{3,2}$
3.448 ± 0.005	0.16 ± 0.02	-0.016 ± 0.005
i_1	i_2	i_3
4.338 ± 0.005	0.08 ± 0.02	-0.022 ± 0.005
Open clusters in the first and fourth Galactic quadrant

Table 4. Parameters of the studied clusters. The coordinate system is such that the Y axis connects the Sun to the Galactic Centre, while the X axis is positive in the direction of galactic rotation. Y is positive toward the Galactic anticentre, and X is positive in the first and second Galactic quadrants (Lynga 1982).

Name	$E(B-V)$ (mag)	$(m-M)$ (mag)	d_\odot (kpc)	X_\odot (kpc)	Y_\odot (kpc)	Z_\odot (kpc)	R_{GC} (kpc)	Age (Myr)
AL 1	0.34±0.05	17.2±0.2	16.9	−13.8	−9.8	−950	13.9	800±200
NGC 5764	1.00±0.05	15.3±0.2	2.8	−1.7	−2.2	290	7.1	200±100
Berkeley 80	1.10±0.05	14.8±0.2	3.3	1.7	−2.8	−70	7.3	300±100
Czernik 37	Possible cluster							
BH 150	No cluster							
BH 261	No cluster							
Lynga 9	Spiral arm?							
King 25	No cluster							

Figure 9. CMDs of the stars in the field of AL 1, Berkeley 80 and NGC 5764. Left panels: all the stars in the V versus $(B-V)$ diagrams. Central panels: all the stars in the V versus $(V-I)$ diagrams. Right panels: Stars lying within r arcmin from the cluster centre (indicated for each cluster). The dashed line is the empirical ZAMS from Schmidt-Kaler (1982), whereas the solid lines are isochrones from Girardi et al. (2000) for the solar metallicity and the indicated age.

2MASS K_s image. Its CMDs are shown in Fig. 9, middle panels, and resemble somewhat the CMD of NGC 5764 (see Fig. 9). A possible match to a 300-Myr isochrone suggests a reddening $E(B-V) = 1.1$ and a distance modulus $(m-M) = 14.8$. This implies a distance from the Sun of 3.3 kpc.

3.3 NGC 5764

This cluster is also listed as BH 167 by van den Bergh & Hagen (1975) who described it as a very poorly populated object, with a diameter of 2.5 arcmin, visible only on blue plates. The cluster is also visible on our I-band image (see Fig. 3) and the 2MASS K_s image. Its CMDs are shown in Fig. 9, upper panels. Because of its distance from the Galactic plane, this cluster better emerges from the background, showing a clear MS from $V = 14$ to 19. The right-hand panel of Fig. 9 shows the central 1-arcmin region of the cluster region matched to a 200-Myr isochrone, yielding a reddening $E(B-V) = 1.0$ and a distance modulus $(m-M) = 15.3$. This implies a distance from the Sun of 2.8 kpc.

3.4 Czernik 37

Czernik (1966) described this as a cluster with diameter of 3 arcmin and fewer than 50 stars (see also Fig. 4). The cluster is also listed
3.5 BH 150

van den Bergh & Hagen (1975) described this cluster as a faint, poorly populated object, with a diameter of 2.5 arcmin, visible only on blue plates, but questionable in the red plate. In Fig. 5 and the 2MASS K_s image a bright star appears right at the cluster position, which may cause the impression of a small cluster. Its CMDs are shown in Fig. 10, middle panels. The CMDs for this region are dominated by the galactic plane population along this line of sight. The evidence for a cluster at this position is weak at best.

3.6 BH 261

This possible cluster was discovered by van den Bergh & Hagen (1975), who describe it as a moderately populated cluster having a diameter of 1.5 arcmin, clearly visible both on red and on blue plates. Fig. 6 shows no indication of a cluster, nor is there any sign of a cluster on the 2MASS K_s image. Its CMDs are shown in the upper panels of Fig. 10. The galactic contribution is very large and the field is very rich. There probably is no cluster at this position.

3.7 Lynga 9

This asterism was first noted by Lynga (1964), and later by van den Bergh & Hagen (1975), who named it BH 189, and described it as a moderately populated cluster having a diameter of 6 arcmin, clearly visible both on red and on blue plates (see Fig. 7). The 2MASS images show no indication of a cluster. Its CMDs are shown in Fig. 11, together with a comparison field (upper right panel) taken 10-arcmin away from the cluster centre (see Section 2).

Since we have the comparison field images for Lynga 9, it is possible to go into somewhat greater depth in our analysis of Lynga 9 than we can with the other clusters. Assuming that the overall distribution of stars in the field region is the same as the galactic background in the cluster field, it is possible to subtract possible field stars from the cluster region with the following simple procedure. For each star in the field region, we simply deleted whatever star in the cluster region is closest in colour and magnitude to the target field star. If the general background of stars is the same in the field region and the cluster region, and if there really is a cluster, this process would leave an excess of stars in the cluster field, most of which would presumably be cluster stars.

In the case of Lynga 9, the star-subtraction process eliminates all stars in the cluster region except for a few stars at the top of the ‘main sequence’ and a group of stars that resemble a red giant clump at $V = 15.5$ and $V - I = 2.5$. Fainter than about $V = 16$, the field region and the cluster region are virtually identical. If the apparent ‘clump’ stars really were red giants, there would have to be a corresponding well-populated MS in the cluster region. So there just cannot be an ordinary cluster there.

So what is that clump of stars? There certainly is the appearance of a sparse cluster on the red and blue sky survey images, but the 2MASS images show no indication of a cluster at all. However, a $K_s, J - K$ CMD for a field with a 10-arcmin radius around the cluster shows a prominent population of stars near $K = 12$ and $J - K = 1.5$, together with a sequence of stars extending brighter and to the blue (Fig. 12).

This large infrared clump so visible in Fig. 12 is not the same as the Lynga 9 clump that appears in Fig. 11; the Lynga 9 clump stars are all right at the top of the extension to the infrared (IR) clump near $K = 10$, represented by ‘+’ signs in Fig. 12. Furthermore, the IR feature is distributed far more widely than the cluster region to at least a degree away in each direction from the Lynga 9 position.

A possible explanation for Lynga 9 is that in this direction, near the galactic plane, looking towards the galactic centre, the star density increases rapidly with distance. So the apparent ‘main sequence’ consists of stars roughly at the far distance along the line of sight. At some distance along this line of sight, there may be a dense cloud, or possibly an entire spiral arm, obscuring the view beyond. The ‘clump’ stars of Fig. 11 (as well as the much larger group of stars that show up in the 2MASS data) may consist of early-type stars behind, or more likely embedded in, this extended cloud region. What appears to be a cluster could be just a small window where the obscuration is somewhat lower so that some of the brighter stars in the cloud become visible. In all three of the Lynga 9 diagrams, including the offset field, there is a sequence parallel to the apparent MS – the colours of this sequence are consistent with being stars of the same type as the ‘clump’, but just more heavily reddened.

Figure 10. CMDs of the stars in the field of Czernik 39, BH 150 and NGC 261. Left panels: all the stars in the V versus $(B - V)$ diagrams. Right panels: all the stars in the V versus $(V - I)$ diagrams.
Open clusters in the first and fourth Galactic quadrant

Comparison Fields

Figure 11. CMDs of the stars in the field of Lynga 9 and and King 25 and their offset fields. Left panels: all the cluster stars in the \(V \) versus \((B-V)\) diagram. Middle panels: all the cluster stars in the \(V \) versus \((V-I)\) diagram. Right panels: all the field stars in the \(V \) versus \((V-I)\) diagram.

Figure 12. \(K \) versus \(J-K \) cmd for 2MASS stars within a 10-arcmin field of view around the Lynga 9 position. The plus signs indicate the Lynga 9 ‘clump’ stars from Fig. 11 with \(V \) between 14.5 and 16.5 and \(V-I \) between 2 and 3.

3.8 King 25

This cluster was detected by King (1966), who suggests it has a diameter of 5 arcmin, and is moderately populated (see Fig. 8). There is no suggestion of a cluster on the 2MASS images. Its CMDs are shown in Fig. 11, together with a comparison field (upper right panel) taken 10-arcmin apart from the cluster centre (see Section 2). Although the King 25 comparison field CMD appears different from that of the cluster field, the cluster CMD strongly resembles those of several of the other clusters in the this sample. The broad ‘main sequence’ is likely to be entirely, or primarily the rich Milky Way background. There probably is no cluster.

4 DISCUSSIONS AND CONCLUSIONS

The derived parameters of the program clusters are listed in Table 4. Together with reddening, distance, age and the corresponding uncertainties, we list the Galactocentric distance, derived by assuming \(R_\odot = 8.5 \) kpc and the Galactocentric rectangular coordinates \(X_\odot \), \(Y_\odot \) and \(Z_\odot \). The adopted reference system is centred on the Sun, with the \(X \) and \(Y \) axes lying on the Galactic plane and \(Z \) perpendicular to the plane. \(X \) points in the direction of the Galactic rotation, being positive in the first and second Galactic quadrants; \(Y \) points towards the Galactic anticentre, being positive in the second and third quadrant; finally, \(Z \) is positive towards the north Galactic pole (Lynga 1982).

AL 1 and NGC 5764 are located much further from the plane than the thin disc mean scaleheight; this is particularly interesting for NGC 5764, whose age is unexpected for a cluster located 300 pc above the plane. AL 1 is a very interesting object, of intermediate age, in the fourth quadrant, but very far from the galactic centre and from the galactic plane.

Berkeley 80 (see Fig. 7) and NGC 5764 (see Fig. 3) have elongated shapes that might indicate they are undergoing strong tidal interaction with Milky Way.
This work highlights the difficulties of working with open clusters towards the inner regions of the galaxy. The star densities are large, and increasing rapidly with distance. That causes the appearance of a MS on all of the CMDs in this paper, resulting simply from the geometry of the situation. Furthermore, patchy obscuration is likely to play a role in creating apparent ‘clusters’ that are not physical associated groups of stars.

Nevertheless, in recent work (Carraro et al. 2005a; Carraro, Mendez & Costa 2005b; Carraro et al. 2005c) we have discovered a considerable number of neglected intermediate-age open clusters, which are going to significantly modify the open cluster age distribution and probably the typical open cluster lifetime as presently known.

ACKNOWLEDGMENTS

The observations presented in this paper have been carried out at Cerro Tololo Interamerican Observatory (CTIO, Chile). CTIO is operated by the Association of Universities for Research in Astronomy, Inc. (AURA), under a cooperative agreement with the National Science Foundation as part of the National Optical Astronomy Observatory (NOAO). The work of G. Carraro is supported by Fundación Andes. This study made use of Simbad and WEBDA data bases. This publication makes use of data products from the 2-Micron All-Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Centre/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation.

REFERENCES

Andrews A. D., Lindsay E. M., 1967, Irish Astron. J., 8, 126
Baume G., Vazquez R. A., Carraro G., 2004, MNRAS, 355, 475
Bonatto C., Bica E., Pavani D. B., 2004, A&A, 427, 485
Carraro G., Geisler D., Baume G., Vazquez R. A., Moitinho A., 2005a, MNRAS, 360, 655
Carraro G., Mendez R. A., Costa E., 2005b, MNRAS, 356, 647
Carraro G., Baume G., Vazquez R. A., Moitinho A., Geisler D., 2005c, MNRAS, 362, 649
Czernik M., 1966, Acta Astron., 16, 93
Dias W. S., Alessi B. S., Moitinho A., Lepine J. R. D., 2002, A&AS, 141, 371
Girardi L., Bressan A., Bertelli G., Chiosi C., 2000, A&AS, 141, 371
Hasegawa T., Malasan H. L., Kawatika H., Obayashi H., Kurabayashi T., Nakai T., Hyakkai M., Arimoto N., 2004, PASJ, 56, 295
Kaluzny J., 1994, A&AS, 108, 151
King I., 1966, PASP, 78, 81
Landolt A. U., 1992, AJ, 104, 340
Lynga G., 1964, Lund Medd. Astron. Obser. Ser. II, 140, 1
Lynga G., 1982, A&A, 109, 213
Patat F., Carraro G., 2001, MNRAS, 325, 1591
Phelps R. L., Janes K. A., Montgomery K. A., 1994, AJ, 107, 1079
Schmidt-Kaler Th., 1982, in Schaifers K., Voigt H. H., eds, Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, Group VI, Vol. 2(b). Springer-Verlag, Berlin, p. 14
Setteducati A. E., Weaver M. F., 1960, Newly Found Stellar Clusters. Radio Observatory Lab., Berkeley, CA
Stetson P. B., 1987, PASP, 99, 191
van den Bergh S., Hagen G. L., 1975, AJ, 80, 11
Wien R., 1971, A&A, 13, 309

This paper has been typeset from a \TeX/\LaTeX file prepared by the author.