Annotation and Classification of Evidence and Reasoning Revisions in Argumentative Writing

Tazin Afrin, Elaine Wang, Diane Litman, Lindsay C. Matsumura, Richard Correnti
Learning Research and Development Center
University of Pittsburgh
Pittsburgh, Pennsylvania 15260
tazinafrin@cs.pitt.edu, ewang@rand.org
{dlitman, lclare, rcorrent}@pitt.edu

Abstract
Automated writing evaluation systems can improve students’ writing insofar as students attend to the feedback provided and revise their essay drafts in ways aligned with such feedback. Existing research on revision of argumentative writing in such systems, however, has focused on the types of revisions students make (e.g., surface vs. content) rather than the extent to which revisions actually respond to the feedback provided and improve the essay. We introduce an annotation scheme to capture the nature of sentence-level revisions of evidence use and reasoning (the ‘RER’ scheme) and apply it to 5th- and 6th-grade students’ argumentative essays. We show that reliable manual annotation can be achieved and that revision annotations correlate with a holistic assessment of essay improvement in line with the feedback provided. Furthermore, we explore the feasibility of automatically classifying revisions according to our scheme.

1 Introduction
Automated writing evaluation (AWE) systems are intended to help improve students’ writing by providing formative feedback to guide students’ essay revision. Such systems are only effective if students attend to the feedback provided and revise their essays in ways aligned with such feedback.

To date, few AWE systems assess (and are assessed on) the extent to which students’ revisions respond to the feedback provided and thus improve the essay in suggested ways. Moreover, we know little about what students do when they do not revise in expected ways. For example, most natural language processing (NLP) work on writing revision focuses only on annotating and classifying revision purposes (Daxenberger and Gurevych, 2013; Zhang et al., 2017), rather than on assessing the quality of a revision in achieving its purpose. A few studies do focus on revision quality, but without relating revisions to feedback (Tan and Lee, 2014; Afrin and Litman, 2018).

In this study, we take a step towards advancing automated revision analysis capabilities. First, we develop a sentence-level revision scheme to annotate the nature of students’ revision of evidence use and reasoning (hereafter, we refer to this as the ‘RER scheme’) in a text-based argumentative essay writing task. By evidence use, we refer to the selection of relevant and specific details from a source text to support an argument. By reasoning, we mean an explanation connecting the text evidence to the claim and overall argument. Table 4 shows examples of evidence and reasoning revisions from first draft to second draft. Next, we demonstrate inter-rater reliability among humans in the use of the RER scheme. In addition, we show that only desirable revision categories in the scheme relate to a holistic assessment of essay improvement in line with the feedback provided. Finally, we adapt word to vector representation features to automatically classify desirable versus undesirable evidence revisions, and examine how automatically predicted evidence revisions relate to the holistic assessment of essay improvement.

2 Related Work
Automated revision detection work has centered on classifying edits on largely non-content level features of writing, such as spelling and morphosyntactic revisions (Max and Wisniewski, 2010), error correction, paraphrase or vandalism detection (Daxenberger and Gurevych, 2013), factual versus fluency edits (Bronner and Monz, 2012), and document- versus word-level revisions (Roscoe et al., 2015). Other research has focused on patterns of revision behavior, for example, the
addition, deletion, substitution, and reorganization of
information (Zhang, 2020). However, these
categories center on general writing features and
behaviors. In the context of AWE systems, this
could be seen as a limitation because feedback is
most useful to students and teachers alike when it
is keyed to critical features of a genre – such as
claims, reasons, and evidence use in argumenta-
tive writing – that are most challenging to teach
and learn.

Some research has begun to take up the chal-
lenge of investigating student revision for ar-
gumentative writing (Zhang and Litman, 2015;
Zhang et al., 2017). Results show a high
level of agreement for human annotation and
some relationship to essay improvement, though
not at the level of individual argument el-
ements (Zhang and Litman, 2015). Existing
schemes also lack in specificity, e.g., they do not
distinguish between desirable and undesirable re-
visions for each argument element in terms of im-
proving essay quality.

Prior work on assessing revision quality
has evaluated revision in general terms (e.g.,
strength (Tan and Lee, 2014) or overall improve-
ment (Afrin and Litman, 2018)), but without con-
sideration of the feedback students were provided.
We instead focus on analyzing revisions in re-
sponse to feedback from an AWE system. Al-
though prior studies have focused on all revi-
sion categories (e.g., claim, evidence, and word-
usage (Zhang and Litman, 2015)), we focus on
only evidence and reasoning revisions that corre-
spond to the scope of the AWE system’s feedback.
Also, we focus not only on why the student made a
revision (e.g., add evidence) but also analyze if the
revision was desirable or not (e.g., relevant versus
irrelevant evidence).

3 Corpus

Our corpus consists of the first draft (Draft1) and
second draft (Draft2) of 143 argumentative essays.
The corpus draws from our effort to develop an
automated writing evaluation system - eRevise,
to provide 5th- and 6th-grade students feedback
on a response-to-text essay (Zhang et al., 2019;
Wang et al., 2020). The writing task administra-
tion involved teachers reading aloud a text while
students followed along with their copy. Then, stu-
dents were given a writing prompt\(^1\) to write an ar-

gumentative essay.

Each student wrote Draft1 and submitted their
essay to the AWE system. Students then received
feedback focused specifically on the use of text ev-
evidence and reasoning. Table 1 shows the top-level
feedback messages\(^2\) that the system provided. Fi-

No.	Feedback Message
1	Use more evidence from the article
2	Provide more details for each piece of evidence you use
3	Explain the evidence
4	Explain how the evidence connects to the main idea & elaborate

Table 1: Top-level feedback from the AWE system.

nally, students were directed to revise their essay
in response to the feedback, yielding Draft2.

As part of a prior exploration of students’ im-
plementation of the system’s feedback, this cor-
pus of 143 essays was coded holistically on a scale
from 0 to 3 for the extent to which use of evidence
and reasoning improved from Draft1 to Draft 2
in line with the feedback provided (Wang et al.,
2020)\(^3\). A code, or score, of 0 indicated no at-
ttempt to implement the feedback given; 1= no
perceived improvement in evidence use or reason-
ing, 2= slight improvement; and 3= substantive im-
provement. Note again that this score represents a
subjective, holistic (i.e., not sentence-level) assess-
ment of whether Draft2 improved in evidence use
and/or reasoning specifically in alignment with the
feedback that a particular student received. We re-
fer to this as ‘improvement score’ in the rest of
the paper.

3.1 Preparing the corpus for annotation

On average, Draft1 essays contain 14 sentences
and 253 words, and Draft2 essays contain 18 sen-
tences and 334 words. To prepare the corpus for
annotation, we first segmented each Draft1 and
Draft2 essay into sentences, then manually aligned
them at sentence-level. For example, if a sentence
is added to Draft2, it is aligned with a null sentence

\(^1\) “Based on the article, did the author provide a convincing argument that winning the fight against poverty is achievable in our lifetime? Explain why or why not with 3-4 examples from the text to support your answer.”

\(^2\) See (Zhang et al., 2019) for detailed feedback messages.

\(^3\) In the prior study, two researchers double-coded 35 of the 143 essays (24 percent). Cohen’s kappa was 0.77, indicating ‘substantial’ agreement (McHugh, 2012).
in Draft1. If a sentence is deleted from Draft1, it is aligned with a null sentence in Draft2. A modified sentence, or a sentence with no change in Draft2, is aligned with the corresponding sentence in Draft1. Based on this alignment, we then extracted the 1475 sentence pairs where students made either additions, deletions, or modifications as revisions. The remaining 1362 aligned sentences had no changes between drafts and were thus not extracted as revisions.

Each revision was next manually annotated for its revision purpose according to the scheme proposed in (Zhang and Litman, 2015), which categorizes revisions into surface versus content changes. Surface revisions are changes to fluency or word choice, convention or grammar, and organization. Content revisions are meaningful textual changes such as claim or thesis, evidence, reasoning, counter-arguments etc. From among these revisions, only evidence and reasoning revisions are used for the current study, due to their alignment with the AWE feedback messages in Table 1.

Table 2 shows the descriptive statistics of the essay corpus at the sentence-level. The second column shows the total and average number of sentences for Draft2. The third column shows that, on average, about 9 sentences per essay were unchanged. The final column shows that, on average, 10 sentences per essay were revised. Out of those 10 sentences, only two to three sentences were revised with respect to evidence, and another two to three sentences with respect to reasoning, on average over all 143 students. This indicates that students engaged in very limited revisions of evidence and reasoning, even when provided feedback targeted to these argument elements.

Table 3 shows the statistics for the students who did revise their essay. Note that out of 143 students, 50 students (35%) did not make any evidence-use revisions; 32 students (22%) did not make any reasoning revisions. Only 10 students

#Sentence	Draft2	#No Change	#Revision
Total	2652	1362	1475
Avg.	18.545	9.524	10.315

Table 2: Essay statistics (N=143).

#Revision	Evidence (N=93)	Reasoning (N=111)	Other (N=129)
Total	386	389	700
Min	0	0	0
Max	36	17	21
Avg.	4.151	3.505	5.426

Table 3: Revision statistics.

(7%) did not make any evidence or reasoning revisions. 4 students (3%) did not make any revision at all. From these students we extracted 386 evidence revisions and 389 reasoning revisions, a total of 775 sentence-level revisions. We do not consider the other 700 revisions (claim, word-usage, grammar mistakes, etc.) in this study.

To better understand how students did revise, whether their revisions were desirable, and whether desirable revisions relate to a measure of essay improvement that includes alignment with feedback, we developed a revision categorization scheme and conducted the analysis described below.

4 Revision Categorization (RER Scheme)

We propose a new scheme for annotating revisions of evidence use and reasoning (RER scheme) that will be useful for assessing the improvement of the essay in line with the feedback provided. The initial set of codes drew from the qualitative exploration of students’ implementation of feedback from our AWE system (Wang et al., 2020), in which the authors inductively and holistically coded how students successfully and unsuccessfully revised their essays with respect to evidence use and reasoning. For example, students sometimes added evidence that repeated evidence they had already provided in Draft1. Or they successfully modified sentences to better link the evidence to the claim.

Both the initial set of codes and our AWE system’s feedback messages were informed by writing experts and research suggesting that strong argument writing generally features multiple pieces of specific evidence that are relevant to the argument and clear explication (or reasoning) of how the evidence connects to the claim and helps to support the argument (see, for example, (De La Paz et al., 2012; O’Hallaron, 2014; Wang et al., 2018)).

For the present study, two annotators read
In the story, “A Brighter Future,” the author convinced me that “winning the fight against poverty is achievable in our lifetime.”

In the story, “A Brighter Future,” the author of the story convinced me that winning the fight against poverty is achievable in our lifetime.

I think that in Sauri, Kenya [where poverty is all around], people were in poverty.

In the story it states “The Yala sub-District Hospital has medicine.”

For example, we have good food and clean water

This shows that there was a change at the hospital because they had medicine which is good for the peoples health when they get sick.

Table 4: Example revisions from aligned drafts of an essay and application of RER codes.

Draft1	Draft2	Operation	Purpose	RER code
In the story, “A Brighter Future,” the author convinced me that “winning the fight against poverty is achievable in our lifetime.”	In the story, “A Brighter Future,” the author of the story convinced me that winning the fight against poverty is achievable in our lifetime.	Modify	Fluency	
I think that in Sauri, Kenya [where poverty is all around], people were in poverty.	Add Claim			
In the story it states “The Yala sub-District Hospital has medicine.”	Add Evidence Relevant			
For example, we have good food and clean water	Delete Evidence Irrelevant			
This shows that there was a change at the hospital because they had medicine which is good for the peoples health when they get sick.	Add Reasoning Linked to Claim and Evidence			

through each extracted evidence or reasoning-related revision in the context of the entire essay. They labeled each instance of revision with a code. The annotators iteratively expanded or refined the initial codes until they finalized a set of codes for evidence use revisions and another for reasoning revisions (see sections 4.1 and 4.2). Together these two sets comprise the RER scheme. Subsequently, the two annotators applied the RER scheme to all instances of evidence use or reasoning-related revisions in all 143 students’ essays. Annotators selected the best code; no sentence received more than one code.

Table 4 presents an example of corpus preparation (Operation and Purpose, section 3.1) and RER coding (see below) as applied to an excerpted essay and its revision. Table 5 presents an example of each code, though for parsimony, we only present additive revisions – not deletions or modification, as these are less common. Table 6 shows the distribution for each RER code.

4.1 Revision of evidence use

Revisions related to evidence are characterized by one of the following five codes. All codes apply to added, deleted, or modified revisions, except ‘Minimal’, which only applies to modified evidence. Relevant applies to examples or details that support (i.e., are appropriate and related to) the particular claim. Irrelevant applies to examples or details that are unnecessary, impertinent to, or disconnected from the claim. They do not help with the argument. Repeat evidence applies to examples or details that were already present in Draft1; students are merely repeating the information. Non-text based applies to examples or details outside of the provided text. Minimal applies to minor modifications to existing evidence that may add some specificity, but do not affect the argument much.

4.2 Revision of reasoning

Reasoning revisions are characterized by one of the following six codes. All codes apply to added, deleted, or modified revisions, except ‘Minimal’, which only applies to modified reasoning. Linked claim-evidence (LCE) applies to an explanation that connects the evidence provided with the claim. Not LCE applies to an explanation that does not connect the evidence provided with the claim. Paraphrase evidence applies to an attempt at explanation that merely paraphrases the evidence rather than explain or elaborate upon it. Generic applies to a non-specific explanation that

733 of the essays, or 23 percent, were double-coded for reliability, see Section 5 for kappa score.
is reused multiple times, after each piece of evidence (e.g., “This is why I am convinced that we can end poverty.”) Commentary applies to an explanation that is unrelated to the main claim or source text; most of the time, it comes from the writer’s personal experience. Minimal applies to minor modifications that do not affect the argument much.

5 Evaluation of the RER Scheme

We evaluated our annotated corpus to answer the following research questions (RQ):

RQ1: What is the inter-rater reliability for annotating revisions of evidence use and reasoning?

RQ2: Is the number of each type of revision related to essay ‘improvement score’?

RQ3: Is there any difference in the ‘improvement score’ based on the kinds of revisions?

RQ4: Is there a cumulative benefit to predicting essay ‘improvement score’ when students made multiple types of revisions?

To answer RQ1, we calculated Cohen’s kappa for inter-rater agreement on the 33 essays (23 percent) that were double-coded. Our results show that we were able to achieve substantial inter-rater agreement on reasoning (k = .719) and excellent inter-rater agreement for evidence use (k = .833) (see, e.g., (McHugh, 2012)).

To answer RQ2, we calculated the Pearson correlation between the raw number of revisions per code to the ‘improvement score’ described in Section 3. Table 7 shows that the total number of evidence-related revisions was not significantly correlated with ‘improvement score’ (r = .15), while the total number of reasoning revisions was (r = .30). Table 7 also shows that positive correlations were found for added evidence or reasoning (r = .17 and .40, respectively), whereas deletions and modification were not significantly correlated.

Looking at the correlations for our proposed RER codes (which sub-categorize the Evidence and Reasoning codes (Zhang and Litman, 2015)), we see that the RER codes yield more and generally stronger results. We found that, as hypothesized, adding relevant pieces of evidence was significantly positively correlated with the ‘improvement score’, while the addition of irrelevant evidence, non-text based evidence or repeating prior evidence were all unrelated to this score. Similarly, we found that adding reasoning that linked evidence to the claim (LCE) was significantly correlated with the ‘improvement score’ and so was paraphrasing evidence. Other reasoning codes, as expected, were not significantly related to the ‘improvement score’. We did not initially consider paraphrases as a desirable type of revision; yet, this code showed a significant positive correlation. While unexpected, we were not altogether surprised as two of the feedback messages (shown in Table 1) did explicitly ask for students to put ideas into their own words (see (Zhang et al., 2019) for details). Although addition of evidence and reasoning revisions demonstrated correlation to the ‘improvement score’, deletions and modifications did not show any intuitive correlation. We suspect that this is due to the comparatively small number of delete and modify revisions.

To answer RQ3, we performed one-way ANOVAs for different levels of the ‘improvement score’ (0=no attempt, 1=no improvement, 2=slight improvement, 3=substantive improvement, aligned with feedback provided) comparing means of the number of revisions added, modified, or deleted. ANOVAs showed overall significance for the categories shown in Table 8. Tukey post-hoc analyses showed that students whose essays substantively improved made more revisions in which they added or modified relevant pieces of evidence. Students who substantively improved also added or modified their reasoning linking evidence to their claims (LCE) more than students in all other groups. Finally, students with slightly improved essays added more explanations not linking evidence to claim (Not-LCE) than did students who made no attempt at revision or whose essays substantively improved.

To answer RQ4, we examined three stepwise linear regression models to understand whether adding more revision codes had a cumulative influence explaining more variance in ‘improvement score’. Model_E included only revisions related to evidence use. Model_R included only revisions related to reasoning. Model_ER included all evidence use and reasoning revisions. As shown in Table 9, Model_ER shows significant positive coefficients for the addition of relevant evidence, reasoning that links evidence to the claim (LCE), and reasoning that paraphrases evidence. The positive relationship shows that more of these kinds of revisions are more likely to lead to a higher ‘improvement score’. Note that the order of the coefficients is related to the magnitude of the r-squared they ex-
Evidence	Example of “Add” Revision (“Modify” for Minimal Revision)
*Relevant	To support the point that conditions in Sauri were bleak, a student added this new example: “The hospitals don’t have the medicine for their sick patients so therefore they can get even more ill and eventually die [if] the [immune] system is not strong enough.”
Irrelevant	To support the claim that winning the fight against poverty is possible, the student wrote, “Students could not attend school because they did not have enough money to pay the school fee.” This does not support the claim.
Repeat Evidence	“Malaria causes adults to get sick and cause children to die” was added as sentence #27 in a student’s Draft2, but sentence #5 already said, “Around 20,000 kids die a day from malaria and the adults get very ill from it.”
Non-Text-Based	Student provided example of an uncle living in poverty, rather than draw from examples in the source text about poverty in Kenya.
Minimal	In Draft1, the student wrote, “Now during the project there are no school fees, the schools serve the students lunch, and the attendance rate is way up.” In Draft2, the student specified “Millennium Villages” project.

Reasoning	
*LCE	The student argued that we can end poverty because Sauri has already made significant progress. After presenting the evidence about villagers receiving bednets to protect against malaria, the student added, “This shows that the people of Sauri have made progress and have taken steps to protect everyone using the bed nets and other things.”
Not LCE	The student claims that Sauri is overcoming poverty. After presenting the evidence that “Each net costs $5,” the student wrote, “This explain how low prices are but we may not get people to lower them more.”
Paraphrase	After presenting the evidence that “People’s crops were dying because they could not afford the necessary fertilizer,” the student added, “This evidence shows that the crops were dying and the people could not get the food that they needed because the farmers could not afford any fertilizer…”
Generic	After the first piece of evidence, the student added, “This evidence helps the statement that there was a lot of poverty.” Then after the second piece of evidence, the student added almost the same generic sentence, “This statement also supports that there were a lot of problems caused by poverty.”
Commentary	After a piece of evidence, a student wrote, “We think that we are poor because we can not get toys that we want, but we go to school and its not free.”
Minimal	In Draft1, the student wrote, “I believe that because it states that we have enough hands and feet to get down and dirty and help these kids that are suffering.” In Draft2, the student only added “and are in poverty” to the end of the sentence.

* indicates desirable revision, as the revision has hypothesized utility in improving the assigned essay in alignment with provided feedback given in Table 1. Other codes may also be desirable given a different writing task with different feedback (e.g., students may be asked to provide non-text-based evidence from their own experience).

Table 5: Example of each RER code.
RER Code	Add	Delete	Modify	Total
Evidence	265	63	58	386
Relevant	159	50	30	239
Irrelevant	26	9	8	43
Repeat Evidence	70	4	0	74
Non-Text-Based	10	0	0	10
Minimal	0	0	20	20
Reasoning	270	59	60	389
LCE	90	18	13	121
Generic	20	0	1	21
Paraphrase	50	10	5	65
Not LCE	62	11	12	85
Commentary	48	20	7	75
Minimal	0	0	22	22
Total	535	122	118	775

Table 6: RER code distribution (N=143).

RER Code	Add	Delete	Modify	Total
Evidence	0.17*	0.00	0.13	0.15
Relevant	0.25**	0.02	0.09	0.20**
Irrelevant	0.05	-0.00	0.07	0.06
Repeat Evidence	0.01	-0.06	–	0.00
Non-Text-Based	0.07	–	–	0.07
Minimal	–	–	0.06	0.06
Reasoning	0.40**	0.09	-0.10	0.30**
LCE	0.45**	0.05	0.09	0.41**
Generic	-0.03	–	-0.04	-0.04
Paraphrase	0.22**	0.09	0.02	0.22**
Not LCE	0.09	0.00	-0.07	0.04
Commentary	-0.02	0.08	-0.08	0.01
Minimal	–	–	-0.14	-0.14

Table 7: Revision correlation to ‘Improvement Score’. (N=143, * p< .05, ** p< .01)
We did not perform any parameter tuning. We extract representations, for the predicted code, ‘Relevant’ evidence prediction, and by our definition in Section 4.1 ‘Relevant’ evidence supports the claim, we also consider the given source text (A) in extracting features.

Features. We explore Word2vec as features for our classification task. We extract representations of S1, S2, and A using the pre-trained GloVe word embedding (Pennington et al., 2014). For each word representation (w) we use the vector of dimension 100, \(w = [v_1, \ldots, v_{100}] \). Then the sentence or document vector (d) is calculated as the average of all word vectors \(d = [d_1, \ldots, d_{100}] \), where \(d_i = \text{mean}(v_{i1}, \ldots, v_{in}) \), for n words in the document. Following this method we extract vectors \(d_{s1}, d_{s2}, \) and \(d_a \) for S1, S2, and A respectively. Finally, we take the average of those 3 vectors to represent the feature vector, \(f = [f_1, \ldots, f_{100}] \), where \(f_j = \text{mean}(d_{s1j}, d_{s2j}, d_{aj}) \).

For machine learning, we use off-the-shelf Logistic Regression (LogR) from the scikit-learn toolkit. We did not perform any parameter tuning or feature selection. In an intrinsic evaluation, we compare whether there are significant differences between the classifier’s performance and a majority baseline in terms of average un-weighted precision, recall and F1, using paired sample t-tests over 10-folds of cross-validation. In an extrinsic evaluation, we repeat the Pearson correlation study in Section 5 for the predicted code, ‘Relevant’ evidence.

Intrinsic evaluation.

Table 10 presents the results of the binary classifier predicting ‘Relevant’

We also explored n-gram features from a previous revision classification task (Zhang and Litman, 2015). Our classification algorithm performed better with word2vec features.

Our classification algorithm performed better with word2vec features.

We also explored Support Vector Machines (SVM) but Logistic Regression outperformed SVM in our experiment.

Table 9: Stepwise linear regression results predicting ‘Improvement Score’. (N=143, * p < .05, ** p < .01)

Evidence:	Add Relevant	Modify Relevant	Total Relevant
Relevant	3* > 1	3* > 2	
Reasoning:			
LCE	3* > 0.1,2	3* > 1	3* > 0.1,2
Not LCE	2* > 0.3	2* > 0.3	

Table 10: 10-fold cross-validation result for classifying Evidence as ‘Relevant’ or not. (N=386, ** p < .01)

Evidence:	Add	Delete	Modify	Total
Relevant				
Reasoning:				
LCE				
Not LCE				

Table 11: Correlation of predicted ‘Relevant’ evidence to ‘Improvement Score’. (N=143, * p < .05, ** p < .01)

plain - thus linked claim and evidence (LCE) has the strongest relationship with the score. Meanwhile, deleting relevant pieces of evidence has a negative relationship when adjusting for the other covariates in the model, which means that, all else being equal, this is an undesirable revision.

6 Automatic RER Classification

The ultimate goal for developing the RER scheme is to implement it in an AWE system to provide feedback to students about revision outcome not only at the essay-level but also at a more actionable, sentence-level. While the previous section demonstrated the utility of the RER scheme, this section explores its automatic classification. Since our overall revision dataset is small, we focus on the simplified task of developing a binary classifier to predict whether an Evidence revision is ‘Relevant’ or not. ‘Relevant’ is both the most frequent RER code and relates positively to the improvement score.

The input is a revision sentence pair – the sentence from Draft1 (S1) and its aligned sentence from Draft2 (S2). The pair can have 3 variations: (null, S2) for added sentences, (S1, null) for deleted sentences, and (S1, S2) for modified sentences. Since we are focusing on ‘Relevant’
evidence. The results show that the logistic regression classifier significantly outperforms the baseline using our features for all metrics.

Extrinsic evaluation. Table 11 shows the Pearson correlation of ‘Relevant’ evidence to ‘Improvement Score’ using ‘Gold’ human labels (repeated from Table 7) versus predicted labels from the majority and logistic regression classifiers. First, the number of ‘Add Relevant’ revisions, whether gold or predicted, significantly correlates to improvement. While it is not surprising that the correlation is lower for LogR than for Gold (upper bound), it is unexpected that LogR and Majority (baseline) are the same. This likely reflects the Table 7 result that adding any type of Evidence, relevant or not, correlates with improvement. In contrast, the predicted models are not yet accurate enough to replicate the statistical significance of the ‘Gold’ correlation between improvement and ‘Total Relevant’ revisions.

7 Discussion

In our corpus, students revised only about half of the sentences from Draft1 to Draft2. Among the revisions, only a small proportion focused on evidence or reasoning, despite feedback targeting these argument elements exclusively. This resonates with writing research (though not in the context of AWE) showing that students often struggle to revise (Faigley and Witte, 1981; MacArthur, 2018), and that novice writers – like our 5th- and 6th-graders – tend to focus on local word- and sentence level problems rather than content or structure (MacArthur et al., 2004; MacArthur, 2018). When novices do revise, their efforts frequently result in no improvement or improvement only in surface features (Patthey-Chavez et al., 2004).

We knew of no revision schemes that assessed the extent to which evidence use and reasoning-related revisions aligned with desirable features of argumentative writing (i.e., showed responsiveness to system feedback to use more relevant evidence, give more specific details, or provide explanations connecting evidence to the claim); hence, we developed the RER scheme. The scheme – along with the reliability we established and the positive correlations we demonstrated between its sentence-level application and a holistic assessment of essay improvement in line with provided feedback – is an important contribution because the codes are keyed to critical features of the argument writing genre. Therefore, it is more useful than existing schemes that focus on general revision purposes (surface vs. content) or operations (addition, deletion, modification) for assessing the quality of students’ revisions.

This assessment capability is important for at least two related reasons. First, an AWE system is arguably only effective if it helps to improve writing in line with any feedback provided. It is easier to attribute other types of revisions or improvements to the general opportunity to revisit the essay than to any inputs the system provides to students. For argument writing (and our AWE system), then, it is necessary, to be able to identify specific revision behaviors related to evidence use and reasoning. With the RER scheme, we were able to distinguish among revision behaviors. On the whole, predictably undesirable revisions (e.g., deleting relevant evidence) were not correlated with the ‘improvement score’.

Second, gaining insight into how students specifically revise evidence use and reasoning can help hone the content of AWE feedback so that it better supports students to make desirable revisions that impact the overall argument quality. From our coding, we learned that students make deletion or modification revisions less frequently; rather they tend to make additions, even if they do not improve the essay. We also learned that repeating existing evidence accounted for about 19 percent of the evidence-use revisions. We could refine our feedback to preempt students from making these undesirable revisions. Or, once automated revision detection is implemented, we could develop a finer-grained set of feedback messages to provide students to guide their second revision (i.e., production of Draft 3).

Finally, our study takes a step towards advancing automated revision detection for AWE by developing a simple machine learning algorithm for classifying relevant evidence. However, it is important to note that the classifier’s input is currently based on the gold (i.e., human) alignments of the essay drafts and the gold revision purpose labels (e.g., Evidence). An actual end-to-end system would have lower performance due to the propagation of errors from both alignment and revision purpose classification. In addition, due to the small size of our current corpus, our classification study was simplified to focus on evidence rather than both evidence and reasoning, and to focus on
binary rather than 5-way classification. Although our algorithm is thus limited to predicting only relevant evidence, the classifier nonetheless outperforms the baseline given little training data.

8 Conclusion and Future Work

We developed the RER scheme as a step towards advancing automated revision detection capabilities of students’ argument writing, which is critical to supporting students’ writing development in AWE systems. We demonstrated that reliable manual annotation can be achieved and that the RER scheme correlates in largely expected ways with a holistic assessment of the extent to which revisions address the feedback provided. We conclude that this scheme has promise in guiding the development of an automated revision classification tool.

Although the RER scheme was developed with a specific corpus and writing assignment, we believe some of the categories (e.g., reasoning linked to claim and evidence) can easily be adapted to data we have from other revision tasks. With more data, we also plan to improve the current classification method with state-of-the-art machine learning models, and extend the classification for all categories.

Acknowledgments

The research reported here was supported, in whole or in part, by the Institute of Education Sciences, U.S. Department of Education, through Grant R305A160245 to the University of Pittsburgh. The opinions expressed are those of the authors and do not represent the views of the Institute or the U.S. Department of Education.

References

Tazin Afrin and Diane Litman. 2018. Annotation and classification of sentence-level revision improvement. In Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 240–246, New Orleans, Louisiana.

Amit Bronner and Christof Monz. 2012. User edits: classification using document revision histories. In Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics. EACL ’12, pages 356–366, Avignon, France. Association for Computational Linguistics.

Johannes Daxenberger and Iryna Gurevych. 2013. Automatically classifying edit categories in wikipedia revisions. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, EMNLP ’13, pages 578–589, Seattle, Washington, USA. Association for Computational Linguistics.

Susan De La Paz, Ralph Ferretti, Daniel Wissinger, Laura Yee, and Charles MacArthur. 2012. Adolescents’ disciplinary use of evidence, argumentative strategies, and organizational structure in writing about historical controversies. Written Communication, 29(4):412–454.

Lester Faigley and Stephen Witte. 1981. Analyzing revision. College Composition and Communication, 32(4):400–414.

Charles MacArthur, Steve Graham, and Karen Harris. 2004. Insights from Instructional Research on Revision with Struggling Writers, pages 125–137. Springer.

Charles A MacArthur. 2018. Evaluation and revision. Best practices in writing instruction, 287.

Aurélien Max and Guillaume Wisniewski. 2010. Mining naturally-occurring corrections and paraphrases from Wikipedia’s revision history. In Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10), Valletta, Malta. European Language Resources Association (ELRA).

Mary McHugh. 2012. Interrater reliability: The kappa statistic. Biochem Med (Zagreb), 22:276–82.

Catherine L O’Hallaron. 2014. Supporting fifth-grade ells’ argumentative writing development. Written Communication, 31(3):304–331.

Genevieve Patthey-Chavez, Lindsay Clare Matsumura, and Rosa Valdés. 2004. Investigating the process approach to writing instruction in urban middle schools. Journal of Adolescent and Adult Literacy, 47:462–477.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove: Global vectors for word representation. In Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543.

Rod D Roscoe, Erica L Snow, Laura K Allen, and Danielle S McNamara. 2015. Automated detection of essay revising patterns: Applications for intelligent feedback in a writing tutor. Technology, Instruction, Cognition and Learning, 10(1):59–79.

Chenhao Tan and Lillian Lee. 2014. A corpus of sentence-level revisions in academic writing: A step towards understanding statement strength in communication. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, volume 2: Short Papers, pages 403–408, Baltimore, MD, USA.
Elaine Lin Wang, Lindsay Clare Matsumura, and Richard Correnti. 2018. Student writing accepted as high-quality responses to analytic text-based writing tasks. *The Elementary School Journal*, 118:357–383.

Elaine Lin Wang, Lindsay Clare Matsumura, Richard Correnti, Diane Litman, Haoran Zhang, Emily Howe, Ahmed Magooda, and Rafael Quintana. 2020. erevis(ing): Students’ revision of text evidence use in an automated writing evaluation system. *Assessing Writing*, 44:100449.

Fan Zhang, Homa Hashemi, Rebecca Hwa, and Diane Litman. 2017. A corpus of annotated revisions for studying argumentative writing. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 1568–1578. Association for Computational Linguistics.

Fan Zhang and Diane Litman. 2015. Annotation and classification of argumentative writing revisions. In *Proceedings of the 10th Workshop on Innovative Use of NLP for Building Educational Applications*, pages 133–143, Denver, Colorado. Association for Computational Linguistics.

Haoran Zhang, Ahmed Magooda, Diane Litman, Richard Correnti, Elaine Lin Wang, Lindsay Clare Matsumura, Emily Howe, and Rafael Quintana. 2019. erevise: Using natural language processing to provide formative feedback on text evidence usage in student writing. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 33, pages 9619–9625.

Zhe Victor Zhang. 2020. Engaging with automated writing evaluation (AWE) feedback on L2 writing: Student perceptions and revisions. *Assessing Writing*, 43:100439.