β2-adrenoceptor Activation Stimulates IL-6 Production via PKA, ERK1/2, Src, and Beta-arrestin2 Signaling Pathways in Human Bronchial Epithelia

Rui Gang Zhang
Guangdong Medical University

Ya Niu
Guangdong Medical University

Ke Wu Pan
The Chinese University of Hong Kong

Hao Pang
Guangdong Medical University

Chung Ling Chen
Guangdong Medical University

Chung Yin Yip
The Chinese University of Hong Kong

WING HUNG KO (✉ whko@cuhk.edu.hk)
The Chinese University of Hong Kong https://orcid.org/0000-0002-2041-402X

Research

Keywords: β2-adrenoceptor, IL-6, bronchial epithelia, PKA, ERK1/2, β-arrestin2

DOI: https://doi.org/10.21203/rs.3.rs-543615/v1

License: ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: β₂-adrenoceptor agonists are widely used to treat asthma because of their bronchodilation effects. However, a recent study describing a side effect of aggravating eosinophilic inflammation in the mouse airway epithelia by β₂-adrenoceptor agonists could impact the future clinical use of these bronchodilators. We previously reported that isoprenaline, via the apical and basolateral β₂-adrenoceptor, induced Cl⁻ secretion by activating cyclic AMP (cAMP)-dependent pathways in human bronchial epithelia. Despite these results, whether and how the β₂-adrenoceptor-mediated cAMP-dependent pathway contributes to pro-inflammatory cytokine release in human bronchial epithelia remains poorly understood.

Methods: We investigated β₂-adrenoceptor-mediated signaling pathways involved in the production of two pro-inflammatory cytokines, interleukin (IL)-6 and IL-8, in 16HBE14o- human bronchial epithelia. The effects of isoprenaline or formoterol were assessed in the presence of protein kinase A (PKA), exchange protein directly activated by cAMP (EPAC), Src, and extracellular signal-regulated protein kinase (ERK)1/2 inhibitors. The involvement of β-arrestin2 was examined using siRNA knockdown.

Results: Both isoprenaline and formoterol (both β₂ agonists) induced IL-6, but not IL-8, release, which could be inhibited by ICI 118551 (β₂ antagonist). The PKA-specific inhibitor, H89, partially inhibited IL-6 release. Another intracellular cAMP receptor, EPAC, was not involved in IL-6 release. Isoprenaline-mediated IL-6 secretion was attenuated by dasatinib, a Src inhibitor, and PD98059, an ERK1/2 inhibitor. Isoprenaline treatment also led to ERK1/2 phosphorylation. In addition, knockdown of β-arrestin2 by siRNA specifically suppressed cytokine release when a high concentration of isoprenaline (1 mM) was used.

Conclusion: Our results suggest that activation of the β₂-adrenoceptor in 16HBE14o- cells stimulated the PKA/Src/ERK1/2 and/or β-arrestin2 signaling pathways, leading to IL-6 release. Therefore, our data reveal that β₂-adrenoceptor signaling plays a role in the immune regulation of human airway epithelia.

Full Text

This preprint is available for download as a PDF.

Figures
Figure 1

Isoprenaline induces IL-6 and IL-8 release. a – b. 16HBE14o- cells were treated with different concentrations of isoprenaline for 6 hrs. IL-6 (a) and IL-8 (b) release were quantified by ELISA. Each column represents the mean ± S.E. (n=5-7; *p < 0.05 compared with control (ctl) group; one-way ANOVA with Dunnett’s post hoc test). c. Cells were pretreated with prazosin (1 µM) or propranolol (10 µM) for 2 hrs, and then the cells were stimulated with isoprenaline in the presence of the inhibitors prior to quantification of IL-6 secretion by ELISA. Each column represents the mean ± S.E. (n=4-6; *p < 0.05 compared with the same concentration of isoprenaline in the control group without inhibitor; Student’s t-test).
Figure 6

Effect of isoprenaline on ERK1/2 phosphorylation. a. 16HBE14o- cells were stimulated with different concentrations of isoprenaline for 5 min. b. Cells were treated with DMSO or PD98059 (10 μM) for 15 min followed by isoprenaline (10 μM) stimulation for 5 min. Representative images of western blots are shown. n=3.

Figure 7

β-arrestin2 mediates isoprenaline-induced IL-6 release. a. The efficiency of β-arrestin2 knockdown (KD) was verified by real-time PCR (n=3). The expression of β-arrestin2 mRNA was normalized by the level of GAPDH mRNA. b. The effect of β-arrestin2 KD on isoprenaline-induced IL-6 release was examined. Each data point represents the mean ± S.E. n=5; *p < 0.05 compared with the same concentration of isoprenaline between the control (ctl siRNA) and KD groups (β-702 arrestin2 siRNA), as calculated by the Student’s t-test.