On classical string solutions in $\text{AdS}_5 \times S^5$

E. M. Murchikova

Blackett Laboratory, Imperial College, London SW7 2AZ, U.K.
SINP, Moscow State University, Moscow, 119991, Russia

Abstract

We discuss some new simple closed bosonic string solutions in $\text{AdS}_5 \times S^5$ that may be of interest in the context of AdS/CFT duality. In the first part of this work we consider solutions with two spins (S_1, S_2) in AdS_5. Starting from the flat-space solutions and using perturbation theory in the curvature of AdS_5 space, we construct leading terms in the small two-spin solution. We find corrections to the leading Regge term in the classical string energy and uncover a discontinuity in the spectrum for certain type of a solution. We then analyze the connection between small-spin and large-spin limits of string solutions in AdS_5. We show that the $S_1 = S_2$ solution in AdS_5 found in earlier papers admits both limits only in the simplest cases of the folded and rigid circular strings. In the second part of the paper we construct a new class of chiral solutions in $R_4 \times S^5$ for which embedding coordinates of S^5 satisfy the linear Laplace equations. They generalize the previously studied rigid string solutions. We study in detail a simple nontrivial example.
1 Introduction

Semiclassical string solutions is a useful tool for probing AdS/CFT correspondence \([1, 2, 3, 4]\). In the closed-string sector, AdS energy of a closed string expressed in terms of spin \(S^1\) and string tension \(T = \frac{\sqrt{s}}{2\pi}\), i.e. \(E(S_1, J_m; \lambda)\), gives the strong-coupling limit of the scaling dimension of the corresponding gauge-theory operator (see, e.g., [5, 6]). Also, in the open string sector, solutions ending at the boundary of AdS\(5\) describe the strong coupling limit of the associated Wilson loops \([7, 8]\).

In this paper we present some new classical solutions for a closed bosonic string in the AdS\(5 \times S^5\). We shall first consider strings with two spins in AdS\(5\) part of AdS\(5 \times S^5\). A natural ansatz for describing a rigid “rotating” string solution is \([4]\) (0 ≤ \(\sigma < 2\pi\)):

\[
Y_0 + i Y_5 = y_0(\sigma) \, e^{i\kappa \tau}, \quad Y_1 + i Y_2 = y_1(\sigma) \, e^{i\omega_1 \tau}, \quad Y_3 + i Y_4 = y_2(\sigma) \, e^{i\omega_2 \tau},
\]

Here \(Y_P\) are embedding coordinates of \(R^{2,4}\) with the metric \(\eta_{PQ} = (-1, +1, +1, +1, +1, -1)\); \(Y_P Y^P = -1\). A general approach to finding such rigid string solutions was developed in \([9]\). Using the reduction of the conformal-gauge string sigma model to the 1D Neumann integrable model, one finds that the equations for \(y_0, y_1, y_2\) are those of a harmonic oscillator constrained to move on a 2d hyperboloid — an integrable system with two integrals of motion \(b_1, b_2\) with \(b_1 + b_2 = \kappa^2 + \omega_1^2 + \omega_2^2\). In general, the solutions are expressed in terms of hyperelliptic functions and thus are not easy to analyze. There are few special cases when they simplify — when the hyperelliptic surface degenerates into an elliptic one and \(y_0(\sigma)\) can be expressed in terms of the standard elliptic functions. Two such cases, \(\omega_1 = \omega_2\), corresponding to \(S_1 = S_2\) solution, and its boosted analog with \(\kappa = \omega_2 \neq \omega_1\) were studied in \([10]\). The existence of simple but more general solution with two unequal spins is an open question. Recent study of \(\mathcal{N} = 4\) SYM states dual to minimal energy spinning string configuration with two spins \((S_1, S_2)\) with \(\frac{S_1}{S_2}\) fixed using the asymptotic Bethe ansatz (ABA) \([11]\) suggests that such simple solution might indeed exist. In the large-spin limit the energy of the \(S_1 = S_2\) solution \([10]\) matched the strong-coupling ABA result of \([11]\).

Aiming at a better understanding of two-spin solutions in AdS\(5\), here we first study the case of small strings or small-spin limit. Starting from the flat-space case, in which the general two-spin solutions are \([9]\)

\[
\kappa^2 = n_1^2 a_1^2 + n_2^2 a_2^2
\]

\[
y_1^{\text{flat}} = a_1 \sin(n_1 \sigma) \quad y_2^{\text{flat}} = a_2 \sin(n_2(\sigma + \sigma_0))
\]

\[
\omega_1 = n_1, \quad \omega_2 = n_2, \quad n_i = \text{integer}
\]

and performing perturbation with respect to the curvature of AdS\(5\), we find the corrections to the flat-space expression for the classical energy \(E(S_1, S_2; \lambda)\). We uncover a discontinuity in the spectrum of classical strings with equal and unequal winding numbers in the \(Y_1 Y_2\) and \(Y_3 Y_4\) planes \((n_1\) and \(n_2)\). It may indicate that there are deep differences between solutions with \(n_1 \neq n_2\) and more symmetrical ones with \(n_1 = n_2\). We then investigate the connection between small- (flat-space) and large-spin limits of two-spin string solutions in AdS\(5\). In the particular cases of \(\omega_1 = \omega_2\) and \(\kappa = \omega_2 \neq \omega_1\) the general solutions in AdS\(5\) were found in \([10]\). It was discussed there, for the \(\kappa = \omega_2 \neq \omega_1\) case, that strings which admit a large-spin limit do not have the small-spin one and vice-versa. For \(\omega_1 = \omega_2\), we find that apart from the trivial cases of folded and circular strings, the general rigid solution with

\[1\] The generic states of bosonic string in AdS\(5 \times S^5\) may be labeled by the values of three \(SO(2, 4)\) Cartan generators \((E, S_1, S_2)\) and three \(SO(6)\) Cartan generators \((J_1, J_2, J_3)\). We will be interested in “spinning” string solutions that have nonzero value of these charges.
$S_1 = S_2$ in AdS$_5$ admitting the large-spin limit does not have a small-spin limit. For more general two-spin solutions, having both limits might still be possible.

In the second part of the paper we consider another simple class of string solutions — chiral solutions in $R_t \times S^5$. Such solutions obey an additional constraint

$$\partial_+ X_M \partial_- X_M = 0,$$

(1.3)

where X_M are embedding coordinates of R^6 with the Euclidean metric δ_{MN}; $X_M X_M = 1$ and $\partial_\pm = \partial / \partial \sigma_\pm = \frac{1}{2} (\partial / \partial \tau \pm \partial / \partial \sigma)$. Then the classical string equations in the conformal gauge become

$$\partial_+ \partial_- X_M = 0.$$

(1.4)

The simplest solution of this kind is [12],

$$Y_0 + iY_5 = e^{i\kappa \tau}, \quad X_1 + iX_2 = a_1 e^{im_1 \sigma_+}, \quad X_3 + iX_4 = a_2 e^{im_2 \sigma_+}, \quad X_5 + iX_6 = a_3 e^{im_3 \sigma_+},$$

(1.5)

where \(\sum_{i=1}^3 a_i = 1 \) and \(m_i \) are integers. It was recently used in [13] as a model of a quantum string state with “small” quantum numbers. We expect that more general chiral solutions may also find useful applications.

Here we consider the following ansatz

$$X_1 + iX_2 = a_1 e^{iF_1(\sigma_+)} = a_1, \quad X_3 + iX_4 = a_2 e^{iF_2(\sigma_+)} = a_2,$$

$$X_5 + iX_6 = a_3 e^{iF_3(\sigma_-)} = a_3$$

(1.6)

and obtain the general solution for the functions $F_i(\sigma_{\pm})$. A particular simple nontrivial case

$$F_1(\sigma_+) = \alpha \cos n\sigma_+, \quad F_2(\sigma_+) = \alpha \sin n\sigma_+, \quad F_3(\sigma_-) = m\sigma_-$$

(1.7)

we analyze in detail. It reduces to (1.6) in the limit $n \to 0$. Note that chiral solutions treat τ and σ on an equal footing, i.e. nontrivial dependence on τ implies that the shape of the string is not rigid, in general, so such solutions are similar to “pulsating” ones.

The rest of the paper is organized as follows. In section 2 we discuss basics of bosonic string solutions in AdS$_5 \times S^5$: action in the conformal gauge, equations of motion, etc. Section 3 is dedicated to small-string solutions in AdS$_5$. In section 4 we consider the relation between string solutions admitting small- and large-spin limits in AdS$_5$. In particular, we discuss the small-spin limit of exact solutions with two equal spins. Section 5 is devoted to the chiral solutions in $R_t \times S^5$. In Appendix A we give an overview of circular and folded string solutions in AdS$_5$. In Appendix B curvature corrections to the folded string solution displaced from the center of AdS$_5$ are discussed. In Appendixes C and D we present technical details of the calculation of spins for chiral solutions corresponding to (1.7).

2 Closed bosonic string in AdS$_5 \times S^5$

We will be interested in the classical bosonic solutions for a closed string in AdS$_5 \times S^5$

$$I_B = \frac{1}{2} T \int d\tau \int_0^{2\pi} d\sigma (L_{AdS} + L_S), \quad T = \frac{R^2}{2\pi \alpha'}, \quad \frac{\sqrt{\lambda}}{2\pi},$$

(2.1)
The classical equations of motion following from (2.1) are

\[L_{\text{AdS}} = -\partial_a Y_P \partial^a Y^P - \bar{\Lambda}(Y_P Y^P + 1), \quad L_S = -\partial_a X_M \partial^a X_M + \Lambda(X_M X_M - 1). \] (2.2)

Here \(X_M, M = 1, \ldots, 6 \) and \(Y_P, P = 0, \ldots, 5 \) are embedding coordinates of \(\mathbb{R}^6 \) with the Euclidean metric \(\delta_{MN} \) in \(L_S \) and of \(\mathbb{R}^{2,4} \) with \(\eta_{PQ} = (-1,+1,+1,+1,-1) \) in \(L_{\text{AdS}}, \) respectively (\(Y_P = \eta_{PQ} Y^Q \)). \(\Lambda \) and \(\bar{\Lambda} \) are the Lagrange multipliers imposing the two hypersurface conditions \(Y_P Y^P = -1 \) and \(X_M X_M = 1 \). The action (2.1) is to be supplemented with the conformal gauge constraints

\[Y_P(\tau, \sigma + 2\pi) = Y_P(\tau, \sigma), \quad X_M(\tau, \sigma + 2\pi) = X_M(\tau, \sigma). \] (2.4)

The classical equations of motion following from (2.1) are

\[\partial^a \partial_a Y_P - \bar{\Lambda} Y_P = 0, \quad \bar{\Lambda} = \partial^a Y_P \partial_a Y^P, \quad Y_P Y^P = -1, \]

\[\partial^a \partial_a X_M + \bar{\Lambda} X_M = 0, \quad \bar{\Lambda} = \partial^a X_M \partial_a X_M, \quad X_M X_M = 1. \] (2.5)

The action is invariant under the \(SO(2,4) \) and \(SO(6) \) rotations with correspondent conserved (on-shell) charges

\[S_{PQ} = \sqrt{\bar{\Lambda}} \int_0^{2\pi} \frac{d\sigma}{2\pi} (Y_P Y_Q - Y_Q Y_P), \quad J_{MN} = \sqrt{\bar{\Lambda}} \int_0^{2\pi} \frac{d\sigma}{2\pi} (X_M X_N - X_N X_M). \] (2.6)

We are interested in finding “spinning” string solutions that have nonzero values of these charges.

It is useful to solve the constraints

\[Y_P Y^P = -1 \quad X_M X_M = 1 \] (2.7)

by choosing an explicit parametrization of the embedding coordinates \(Y_P \) and \(X_M \), for example

\[\begin{align*}
Y_{05} &= Y_0 + iY_5 = \cosh \rho e^{i\psi}, \\
Y_{12} &= Y_1 + iY_2 = \sinh \rho \cos \theta e^{i\phi_1}, \\
Y_{34} &= Y_3 + iY_4 = \sinh \rho \sin \theta e^{i\phi_2}, \\
X_{12} &= X_1 + iX_2 = \sin \gamma \cos \psi e^{i\phi_1}, \\
X_{34} &= X_3 + iX_4 = \sin \gamma \sin \psi e^{i\phi_2}, \\
X_{56} &= X_5 + iX_6 = \cos \gamma e^{i\phi_3}.
\end{align*} \] (2.8)

Then the corresponding metrics take the form

\[\begin{align*}
&d^2s_{\text{AdS}_5} = -\cosh^2 \rho \ dt^2 + \rho^2 + \sinh^2 \rho \ (d\theta^2 + \cos^2 \theta \ d\phi_1^2 + \sin^2 \theta \ d\phi_2^2) \quad (2.10) \\
&d^2s_{S^5} = \cos^2 \gamma \ d\varphi_1^2 + \gamma^2 + \sin^2 \gamma \ (d\psi^2 + \cos^2 \psi \ d\varphi_1^2 + \sin^2 \psi \ d\varphi_2^2). \quad (2.11)
\end{align*} \]

The Cartan generators of \(SO(2,4) \) corresponding to the three linear isometries of the \(\text{AdS}_5 \) metric are the translations in the \(\text{AdS} \) time \(t \) and two angles \(\phi_a \) :

\[S_0 \equiv S_{05} \equiv E = \sqrt{\bar{\Lambda}}E, \quad S_1 \equiv S_{12} = \sqrt{\bar{\Lambda}}S_1, \quad S_2 \equiv S_{34} = \sqrt{\bar{\Lambda}}S_2. \] (2.12)
The Cartan generators of \(SO(6) \) corresponding to the three linear isometries of the \(S^5 \) metric are the translations in the three angles \(\varphi_a \):

\[
J_1 \equiv J_{12} = \sqrt{\lambda} J_1, \quad J_2 \equiv J_{34} = \sqrt{\lambda} J_2, \quad J_3 \equiv J_{56} = \sqrt{\lambda} J_3. \tag{2.13}
\]

In this paper we also use the other type of embedding coordinates in \(\text{AdS}_5 \):

\[
Y_{05} = y_0 e^{it}, \quad Y_{12} = y_1 e^{i\phi_1}, \quad Y_{34} = y_2 e^{i\phi_2}, \tag{2.14}
\]

where \(y_1 = \sinh \rho \cos \theta \), \(y_2 = \sinh \rho \sin \theta \) and \(y_0 = \sqrt{1 + y_1^2 + y_2^2} = \cosh \rho \). \hspace{1cm} (2.15)

The corresponding \(\text{AdS}_5 \) metric takes the form

\[
ds^2_{\text{AdS}_5} = -(1 + y_1^2 + y_2^2) dt^2 - \frac{(y_1 dy_1 + y_2 dy_2)^2}{1 + y_1^2 + y_2^2} + dy_1^2 + dy_2^2 + y_1^2 d\phi_1^2 + y_2^2 d\phi_2^2. \tag{2.16}
\]

Coordinates (2.8) we call “circular”, coordinates (2.14) — “Cartesian”.

3 Small rigid strings in \(\text{AdS}_5 \)

Aiming at a better understanding of two-spin solutions in \(\text{AdS}_5 \), in this section we study the case of small strings.

3.1 Rigid string ansatz

Our aim here is to study closed strings with two spins, i.e. rotating in \(\phi_{1,2} \). A natural ansatz for describing such solutions is the “rigid” string ansatz \([4] \) \((0 \leq \sigma < 2\pi) \):

\[
t = \kappa \tau, \quad \phi_1 = \omega_1 \tau, \quad \phi_2 = \omega_2 \tau, \quad \kappa, \omega_1, \omega_2 = \text{const}
\]

\[
y_1 = y_1(\sigma), \quad y_2 = y_2(\sigma) \quad \text{or} \quad \rho = \rho(\sigma), \quad \theta = \theta(\sigma). \tag{3.1}
\]

In the “circular” coordinates, the string equations of motion and the conformal constraint for this ansatz read

\[
(\theta' \sinh^2 \rho)' = (\omega_1^2 - \omega_2^2) \sin \theta \cos \theta \sinh^2 \rho \tag{3.2}
\]

\[
\rho'' - \cosh \rho \sinh \rho (\kappa^2 + \theta'^2 - \omega_1^2 \cos^2 \theta - \omega_2^2 \sin^2 \theta) = 0 \tag{3.3}
\]

\[
\rho'^2 - \kappa^2 \cosh^2 \rho + \sinh^2 \rho (\kappa^2 + \omega_1^2 \cos^2 \theta + \omega_2^2 \sin^2 \theta) = 0. \tag{3.4}
\]

Note, that these equations are not independent, for example, (3.3) is a linear combination of (3.2) and (3.4)’s first derivative.

In the “Cartesian” coordinates, the string equations of motion and the conformal constraint read

\[
\frac{y_1 y_1' + y_2 y_2'}{1 + y_1^2 + y_2^2} y_1 + \frac{(y_1 y_2' - y_2 y_1')^2 + y_1^2 + y_2^2}{(1 + y_1^2 + y_2^2)^2} y_1 - y_1'' + (1 + \omega_1^2) y_1 = 0 \tag{3.5}
\]

\[
\frac{y_1 y_1' + y_2 y_2'}{1 + y_1^2 + y_2^2} y_2 + \frac{(y_1 y_2' - y_2 y_1')^2 + y_1^2 + y_2^2}{(1 + y_1^2 + y_2^2)^2} y_1 - y_2'' + (1 + \omega_2^2) y_2 = 0 \tag{3.6}
\]

\[
(y_2 y_1 - y_1 y_2')^2 + (y_1')^2 + (y_2')^2 = (1 + y_1^2 + y_2^2) (\kappa^2 (1 + y_1^2 + y_2^2) - \omega_1^2 y_1^2 - \omega_2^2 y_2^2). \tag{3.7}
\]
We may rewrite this system in a more compact form (with only independent equations present):

\[
\begin{align*}
(y_2' - y_1') &= (\omega_1^2 - \omega_2^2) y_1 y_2 \\
(y_2' y_2 - y_1' y_1 + y_1 y_2) (y_2' + y_1') &= (1 + y_1^2 + y_2^2) (\kappa^2 (1 + y_1^2 + y_2^2) - \omega_1^2 y_1^2 - \omega_2^2 y_2^2),
\end{align*}
\]

where (3.8) is the difference between (3.5) and (3.6).

A general approach to finding such rigid string solutions in AdS_5 (and S^5) was developed in [7] using the reduction of the conformal-gauge string sigma model to the 1D Neumann integrable model[^2]. Starting with the $R^{2,4}$ embedding coordinates (2.14) one finds that the equations for y_0, y_1, y_2 are those of a harmonic oscillator constrained to move on a 2d hyperboloid — an integrable system with two integrals of motion b_1, b_2 with $b_1 + b_2 = \kappa^2 + \omega_1^2 + \omega_2^2$. In general, the solutions are expressed in terms of hyperelliptic functions and thus are not easy to analyze. There are few special cases when they simplify — when the hyperelliptic surface degenerates into an elliptic one and $y_0(\sigma)$ can be expressed in terms of the standard elliptic functions. Two of such cases, $\omega_1 = \omega_2$, corresponding to $S_1 = S_2$ solution, and its boosted analog with $\kappa = \omega_2 \neq \omega_1$ were studied in [10]. The existence of simple but more general solution with two unequal spins is an open question. Recent study of $\mathcal{N} = 4$ SYM states dual to minimal energy spinning string configuration with two spins (S_1, S_2) with $\frac{S_1}{S_2}$ fixed using ABA [11] suggests that such simple solution might indeed exist.

Here we study small strings with two-spin solutions in AdS_5, starting from the flat-space solutions and using perturbation theory in the curvature of AdS_5.

3.2 Flat-space limit

In this section, we review the flat-space limit for closed strings in AdS_5. Let us start from the expression for the metric in “circular” coordinates

\[
ds_{AdS_5}^2 = -\cosh^2 \left(\frac{\theta}{R} \right) dt^2 + d\rho^2 + R^2 \sinh^2 \left(\frac{\theta}{R} \right) (d\theta^2 + \cos^2 \theta \, d\phi_1^2 + \sin^2 \theta \, d\phi_2^2). \tag{3.10}
\]

Here R is the radius of curvature of AdS_5.

If the size of the string is small $\rho = \epsilon \tilde{\rho} \ll R$, $\epsilon \ll 1$, one can perform an expansion ($R = 1$):

\[
ds_{AdS_5}^2 = \epsilon^2 (-dt^2 + \rho^2 + \tilde{\rho}^2 \, d\Omega_3) + \epsilon^4 \tilde{\rho}^2 \left(-dt^2 + \frac{1}{3} \tilde{\rho}^2 d\Omega_3 \right) + O(\epsilon^6), \tag{3.11}
\]

where $t = \tilde{t}$, $d\Omega_3 = d\theta^2 + \cos^2 \theta \, d\phi_1^2 + \sin^2 \theta \, d\phi_2^2$. The leading term represents the metric of flat $R^{1,4}$ Minkowski space.

A similar expansion can be performed in terms of the “Cartesian” coordinates. In the limit of small strings

\[
y_1 = \epsilon \tilde{y}_1, \quad y_2 = \epsilon \tilde{y}_2, \quad \epsilon \ll 1, \tag{3.12}
\]

where ϵ defines the size of the string with respect to the radius of curvature, we have

\[
ds_{AdS_5}^2 = \epsilon^2 (-dt^2 + d\tilde{y}_1^2 + d\tilde{y}_2^2 + \tilde{y}_1^2 d\phi_1^2 + \tilde{y}_2^2 d\phi_2^2) - \epsilon^4 \left((\tilde{y}_1^2 + \tilde{y}_2^2) dt^2 + \tilde{y}_1 d\tilde{y}_1 + \tilde{y}_2 d\tilde{y}_2 \right) + O(\epsilon^4), \tag{3.13}
\]

[^2]: A more general rigid string ansatz, where in addition to $\rho = \rho(\sigma)$, $\theta = \theta(\sigma)$ one has $\phi_1 = \omega_1 \tau + \alpha_1(\sigma)$, $\phi_2 = \omega_2 \tau + \alpha_2(\sigma)$ and where the corresponding 1D system is the Neumann-Rosochatius one, was considered in [12].
where $dt = e^d\tau$. Again, the leading term is the metric of flat $R^{1,4}$ Minkowski space.

In this paper we will mainly work with the expansion (3.13).

In the flat-space limit the string equations of motion and conformal constraint for the ansatz (3.1) become

$$
\begin{align*}
\ddot{y}_1' + \omega_1^2 y_1 &= 0 & \ddot{y}_2' + \omega_1^2 y_2 &= 0 \\
(\ddot{y}_1')^2 + \omega_1^2 y_1^2 - \kappa_1^2 &= 0 & (\ddot{y}_2')^2 + \omega_2^2 y_2^2 - \kappa_2^2 &= 0
\end{align*}
$$

(3.14)

The solutions of these equations are \cite{9}

$$
\ddot{y}_1 = \tilde{y}_1^{\text{flat}} = a_1 \sin(n_1 \sigma) & \ddot{y}_2 = \tilde{y}_2^{\text{flat}} = a_2 \sin(n_2 (\sigma + \sigma_0)) \\
\omega_1 = n_1, & \omega_2 = n_2
$$

where n_i are integers and σ_0 is a constant phase shift. The energy and spins are given by

$$
E = \kappa, \quad S_i = \frac{n_i a_i^2}{2}, \quad \text{i.e.} \quad E = \sqrt{2(n_1 S_1 + n_2 S_2)}
$$

or, restoring λ,

$$
E = \sqrt{\lambda} \kappa, \quad S_i = \sqrt{\lambda} \frac{n_i a_i^2}{2}, \quad \text{i.e.} \quad E = \sqrt{2\lambda(n_1 S_1 + n_2 S_2)}.
$$

To get the states on the leading Regge trajectory (having minimal energy for given values of the spins) one is to choose $n_1 = n_2 = 1$.

Note, that in the case $n_1 = n_2$ and $2\sigma_0 \neq \pi n$ there are also non-Cartan components of the spin present. We have not mentioned them above, as such solutions can always be rotated to λ.

$$
\begin{align*}
y_1^{\text{flat}} &= a \sin(n \sigma), & \ddot{y}_2^{\text{flat}} &= b \cos(n \sigma) \\
\omega_1 = \omega_2 = n, & \kappa^2 = n^2(a^2 + b^2)
\end{align*}
$$

i.e. ones without non-Cartan components.

3.3 Curvature corrections to the flat-space solutions in AdS$_5$

Expansions (3.11) and (3.13) suggest the possibility that solutions in full AdS$_5$ may be constructed as

$$
y_1(\sigma) = \epsilon \ y_1^{\text{flat}} + \epsilon^3 z_1(\sigma) + \epsilon^5 z_3(\sigma) + \ldots \\
y_2(\sigma) = \epsilon \ y_2^{\text{flat}} + \epsilon^3 z_2(\sigma) + \epsilon^5 z_4(\sigma) + \ldots
$$

(3.20)

Let us set, for simplicity, $n_1 = n_2 = n = 1$ and rotate (3.15) by an angle $\beta \ (\beta \neq \frac{\pi}{2} m, \ m \in \mathbb{Z})$ in $Y_1 Y_3$ and $Y_2 Y_4$ planes

$$
\begin{pmatrix}
a_1 \sin(\sigma) \\
a_2 \sin(\sigma + \sigma_0)
\end{pmatrix}
\rightarrow
\begin{pmatrix}
\sqrt{(a \cos \beta - b \sin \beta \cos \sigma_0)^2 + (b \sin \beta \sin \sigma_0)^2} \sin(\sigma - \varphi_1) \\
\sqrt{(a \sin \beta + b \cos \beta \cos \sigma_0)^2 + (b \cos \beta \sin \sigma_0)^2} \cos(\sigma - \varphi_2)
\end{pmatrix},
$$

(3.16)

where

$$
\begin{align*}
\sin \varphi_1 &= \frac{b \sin \beta \sin \sigma_0}{\sqrt{(a \cos \beta - b \sin \beta \cos \sigma_0)^2 + (b \sin \beta \sin \sigma_0)^2}} \\
\sin \varphi_2 &= \frac{a \sin \beta + b \cos \beta \cos \sigma_0}{\sqrt{(a \sin \beta + b \cos \beta \cos \sigma_0)^2 + (b \cos \beta \sin \sigma_0)^2}}
\end{align*}
$$

(3.17) (3.18)

When $\varphi_1 = \varphi_2 = \varphi_0$ or equivalently $\tan 2\beta = \frac{a}{b \cos \sigma_0}$, the rotated solution is indeed of the form (3.19) with $\sigma \rightarrow \sigma - \varphi_0$.

\footnote{Let us set, for simplicity, $n_1 = n_2 = n = 1$ and rotate (3.15) by an angle $\beta \ (\beta \neq \frac{\pi}{2} m, \ m \in \mathbb{Z})$ in $Y_1 Y_3$ and $Y_2 Y_4$ planes}
where the first term corresponds to the flat-space solution (3.15), while the others may be found by using perturbation theory in the curvature of AdS$_5$.

Here we will be interested in the first subleading corrections only.

Let us look for a solution of (3.8), (3.9) in the form:

\[
y_1(\sigma) = \epsilon a \sin(n_1 \sigma) + \epsilon^3 z_1(\sigma),
\]
\[
y_2(\sigma) = \epsilon b \sin(n_2(\sigma + \sigma_0)) + \epsilon^3 z_2(\sigma),
\]

(3.21)

where \(n_{1,2} \in \mathbb{Z}\) and

\[
\omega_1 = n_1(1 + \epsilon^2 \tilde{\omega}_1), \quad \omega_2 = n_2(1 + \epsilon^2 \tilde{\omega}_2),
\]
\[
\kappa = \epsilon \kappa_0 + \epsilon^3 \kappa_1, \quad \kappa^2_0 = a^2 n_1^2 + b^2 n_2^2.
\]

(3.22)

Here \(\tilde{\omega}_i\), and \(\kappa_i\) are curvature corrections to \(\omega_i\) and \(\kappa\), respectively.

From (3.8), (3.9) one obtains the following system of equations:

\[
-b \sin((\sigma + \sigma_0)n_2) (n_1^2 z_1 + z_1''(\sigma)) + a \sin(n_1) (n_2^2 z_2 + z_2''\sigma)
\]
\[
= 2ab \sin((\sigma + \sigma_0)n_2) \sin(n_1)((n_2^2 \tilde{\omega}_1 - n_2^2 \tilde{\omega}_2))
\]
\[
2a (\cos(n_1 \sigma)n_1 z_1' + \sin(n_1 \sigma)n_1^2 z_1) + 2b (\cos(n_2(\sigma + \sigma_0))n_2 z_2' + \sin(n_2(\sigma + \sigma_0))n_2^2 z_2)
\]
\[
= 2\chi + \frac{1}{4}(a^2 n_1 \sin(2n_1 \sigma) + b^2 n_2 \sin(2n_2(\sigma + \sigma_0)))^2
\]
\[
+a^2 \sin^2(n_1 \sigma) [a^2 n_1^2 + b^2 n_2^2 - 2a^2 n_1^2 \tilde{\omega}_1] + b^2 \sin^2(n_1(\sigma + \sigma_0)) [a^2 n_1^2 + b^2 n_2^2 - 2b^2 n_2^2 \tilde{\omega}_2].
\]

(3.23)

Here \(\chi^2 = \kappa^2_1 \kappa_0^2\). The equations for \(z_1\) and \(z_2\) may be separated in the following way. Differentiate both sides of (3.24). The left-hand side reads

\[
\left(a (\cos(n_1 \sigma)n_1 z_1' + \sin(n_1 \sigma)n_1^2 z_1) + b (\cos(n_2(\sigma + \sigma_0))n_2 z_2' + \sin(n_2(\sigma + \sigma_0))n_2^2 z_2) \right)'
\]
\[
= a \cos(n_1 \sigma)n_1 \left(n_1^2 z_1 + z_1'' \right) + b \cos(n_2(\sigma + \sigma_0))n_2 \left(n_2^2 z_2[s] + (z_2)''[s] \right).
\]

(3.25)

Then, compare (3.25) with the left-hand side of (3.24). After some rearrangements we obtain

\[
z_1'' + n_1^2 z_1 = 2a \sin(n_1 \sigma) \left[a^2 n_1^2 \cos^2(n_1 \sigma) + b^2 n_2 \cos^2(n_2(\sigma + \sigma_0)) - n_1^2 \tilde{\omega}_1 \right]
\]
\[
z_2'' + n_2^2 z_2 = 2b \sin(n_2(\sigma + \sigma_0)) \left[a^2 n_1^2 \cos^2(n_1 \sigma) + b^2 n_2 \cos^2(n_2(\sigma + \sigma_0)) - n_2^2 \tilde{\omega}_2 \right].
\]

(3.26)

(3.27)

These equations can be readily solved:

- If \(n_1 = n_2 = n\) one finds

\[
z_1 = C_1 \sin(n \sigma) + C_2 \cos(n \sigma)
\]
\[
- \frac{1}{4} a n \sigma \left[(a^2 + 2b^2 - 4\tilde{\omega}_1) \cos(n \sigma) - b^2 \cos(n \sigma + 2n \sigma_0) \right]
\]
\[
- \frac{1}{16} a^2 \sin(3n \sigma) + b^2 \sin(3n \sigma + 2n \sigma_0) + 2b^2 \sin(n \sigma + 2n \sigma_0)
\]
\[
- 2 \sin(n \sigma) \left(a^2 + 2b^2 - 4\tilde{\omega}_1 \right)
\]
\[
z_2 = C_3 \cos(n \sigma) + C_4 \sin(n \sigma)
\]
\[
- \frac{1}{4} b n \sigma \left[(b^2 + 2a^2 - 4\tilde{\omega}_2) \cos(n \sigma + n \sigma_0) - a^2 \cos(n \sigma - n \sigma_0) \right]
\]
\[
- \frac{1}{16} b^2 \sin(3n \sigma + 3n \sigma_0) + a^2 \sin(3n \sigma + n \sigma_0) + 2a^2 \sin(n \sigma - n \sigma_0)
\]
\[
- 2 \sin(n \sigma + n \sigma_0) \left(b^2 + 2a^2 - 4\tilde{\omega}_2 \right).
\]

(3.28)
Here $C_i \ (i = 1, 2, 3, 4)$ are integration constants.

The closed-string periodicity condition (2.4) requires $z_1, \ z_2$ being periodic in σ, i.e. the linear terms must vanish:

$$
(a^2 + 2b^2 - 4\tilde{\omega}_1) \cos(n\sigma) - b^2 \cos(n\sigma + 2n\sigma_0) = 0
$$

$$
(b^2 + 2a^2 - 4\tilde{\omega}_2) \cos(n\sigma + n\sigma_0) - a^2 \cos(n\sigma - n\sigma_0) = 0.
$$

(3.29)

These equations can be solved for constant values of $\tilde{\omega}_1, \tilde{\omega}_2$ only

- in the elliptic string case, when $2\sigma_0n = \pi + 2\pi m, \ m \in \mathbb{Z}$,

$$
\tilde{\omega}_1 = \frac{1}{4}(a^2 + 3b^2), \quad \tilde{\omega}_2 = \frac{1}{4}(3a^2 + b^2).
$$

(3.30)

This case is considered in section 3.4.

- in the folded string case, when $2\sigma_0n = 2\pi m, \ m \in \mathbb{Z}$

$$
\tilde{\omega}_1 = \tilde{\omega}_2 = \frac{1}{4}(a^2 + b^2).
$$

(3.31)

This case is considered in section 3.5.

The restriction on σ_0 might first look surprising. One can always rotate (3.15) with arbitrary σ_0 to (3.19) (see section 3.2) and, using the method given above, find the curvature corrections to any flat-space solution with $n_1 = n_2$. However, rotating back, we would not remain in the framework of the rigid string ansatz as the frequencies ω_1 and ω_2 are now different (see (3.30)).

- If $n_1 \neq n_2$ one finds

$$
z_1 = C_1 \sin(n_1\sigma) + C_2 \cos(n_1\sigma)
$$

$$
+ \frac{ab^2}{4(n_1^2 - n_2^2)}\left[- \cos(n_1\sigma) \sin(2n_2(\sigma + \sigma_0))n_1n_2 + \cos(2n_2(\sigma + \sigma_0)) \sin(n_1\sigma)n_2^2\right]
$$

$$
- \frac{a^3}{16}\left[\sin(3n_1\sigma) - 2\sin(n_1\sigma) \frac{a^2n_1^2 + 2b^2n_2^2 - 4n_1^2\tilde{\omega}_1}{n_1^2} + 4n_1\sigma \cos(n_1\sigma) \frac{a^2n_1^2 + 2b^2n_2^2 - 4n_1^2\tilde{\omega}_1}{n_1^2}\right]
$$

$$
z_2 = C_3 \cos(n_2(\sigma + \sigma_0)) + C_4 \sin(n_2(\sigma + \sigma_0))
$$

$$
- \frac{ba^2}{4(n_1^2 - n_2^2)}\left[- \cos(n_2(\sigma + \sigma_0)) \sin(2n_1(\sigma + \sigma_0))n_1n_2 + \cos(2n_1(\sigma + \sigma_0)) \sin(n_2(\sigma + \sigma_0))n_1^2\right]
$$

$$
- \frac{b^3}{16}\left[\sin(3n_2(\sigma + \sigma_0)) - 2\sin(n_2(\sigma + \sigma_0)) \frac{b^2n_2^2 + 2a^2n_1^2 - 4n_2^2\tilde{\omega}_2}{n_2^2} - 4n_2\sigma \cos(n_2(\sigma + \sigma_0)) \frac{b^2n_2^2 + 2a^2n_1^2 - 4n_2^2\tilde{\omega}_2}{n_2^2}\right].
$$

(3.32)

Here $C_i \ (i = 1, 2, 3, 4)$ are integration constants.

The closed-string periodicity condition (2.4) requires the linear terms vanish:

$$
a^2n_1^2 + 2b^2n_2^2 - 4n_1^2\tilde{\omega}_1 = 0, \quad b^2n_2^2 + 2a^2n_1^2 - 4n_2^2\tilde{\omega}_2 = 0.
$$

(3.33)
Then (for any value of σ_0) we have

$$\tilde{\omega}_1 = \frac{a^2 n_1^2 + 2b^2 n_2^2}{4n_1^2}, \quad \tilde{\omega}_2 = \frac{2a^2 n_1^2 + b^2 n_2^2}{4n_2^2}.$$ (3.34)

This case is considered in section 3.6.

In fact, the restriction on σ_0 in the $n_1 = n_2$ case singles out the solutions with zero non-Cartan components of spin. Indeed, for $n_1 \neq n_2$ there are no such components for any value of σ_0, while for $n_1 = n_2$ they vanish only if $2\sigma_0 = \pi m$.

Only flat-space solutions with zero non-Cartan components of spin receive curvature corrections in the framework of the rigid string ansatz. An attempt to find the corrections to the solutions with nonvanishing non-Cartan components leads out of the rigid string ansatz.

3.4 The elliptic string solution ($n_1 = n_2$)

Curvature corrections to the string solution with $n_1 = n_2 = n$ and $2\sigma_0 n = \pi + 2\pi m$, $m \in \mathbb{Z}$ are (see (3.28), (3.30))

$$z_1 = C_1 \sin(n\sigma) + C_2 \cos(n\sigma) - \frac{1}{16}a (a^2 - b^2) \sin(3n\sigma)$$
$$z_2 = C_3 \cos(n\sigma) + C_4 \sin(n\sigma) + \frac{1}{16}b (b^2 - a^2) \cos(3n\sigma).$$ (3.35)

Here vanishing of non-Cartan components of spin requires $aC_4 = -bC_2$.

Recall that in order to get from the system (3.23), (3.24) to (3.26), (3.27), we take a derivative from (3.24), thus we must check if it is satisfied. Substituting (3.35) into (3.24), one finds

$$-16 \chi - 3n^2 (a^2 - b^2)^2 + 16n^2 (aC_1 + bC_3) = 0.$$ (3.36)

Then the classical energy of the string reads

$$E_{n_1=n_2} = \sqrt{2n(S_1 + S_2)} \left[1 + \frac{3}{8n} (S_1 + S_2) + \frac{1}{2n} \frac{S_1 S_2}{S_1 + S_2} + O(S_i S_j) \right].$$ (3.37)

or, restoring λ,

$$E_{n_1=n_2} = \sqrt{2n\sqrt{\lambda}(S_1 + S_2)} \left[1 + \frac{3}{8n\sqrt{\lambda}} (S_1 + S_2) + \frac{1}{2n\sqrt{\lambda}} \frac{S_1 S_2}{S_1 + S_2} + O(\lambda^{-1}) \right].$$ (3.38)

This expression is a generalization of circular and folded string cases (for a review see Appendix A and references therein). In the limit $S_1 = S$, $S_2 = 0$, it gives the small-spin expansion of the classical energy of the folded string (see (A.14))

$$E = \sqrt{2nS} \left(1 + \frac{3S}{8n} + O(S^2) \right);$$ (3.39)

in the limit $S_1 = S_2 = S$ — the small-spin expansion of the classical energy of the circular string (see (A.5))

$$E = 2\sqrt{nS} \left(1 + \frac{S}{n} + O(S^2) \right).$$ (3.40)
3.5 The folded string solution \((n_1 = n_2)\)

Curvature corrections to the string solution with \(n_1 = n_2 = n\) and \(2\sigma_0 n = \pi + 2\pi m\), \(m \in \mathbb{Z}\) are (see (3.28), (3.31))

\[
z_1 = C_1 \sin(n\sigma) + C_2 \cos(n\sigma) - \frac{1}{16} a \left(a^2 + b^2 \right) \sin(3n\sigma) \\
z_2 = C_3 \cos(n\sigma) + C_4 \sin(n\sigma) - \frac{1}{16} b \left(b^2 + a^2 \right) \cos(3n\sigma).
\]

(3.41)

Here vanishing of non-Cartan components of spin requires \(aC_4 = -bC_2\).

From (3.24), one obtains the constraint on \(C_i\):

\[-16\chi - 3n^2 \left(a^2 + b^2 \right)^2 + 16n^2 \left(aC_1 + bC_3 \right) = 0.\]

(3.42)

Then the classical energy of the string reads

\[
E = \sqrt{2nS} \left(1 + \frac{3}{8} S + O(S^2) \right) \quad \text{or} \quad E = \sqrt{2n\sqrt{\lambda}S} \left(1 + \frac{3}{8n\sqrt{\lambda}} S + O(\lambda^{-1}) \right),
\]

(3.43)

i.e. coincides with the small-spin expansion of the classical energy of the folded string (A.14).

3.6 \(n_1 \neq n_2\) solutions

Curvature corrections to the string solution with \(n_1 \neq n_2\) and arbitrary phase shift \(\sigma_0\) are (see (3.32), (3.34))

\[
z_1 = C_1 \sin(n_1\sigma) + C_2 \cos(n_1\sigma) \\
+ \frac{ab^2}{4 \left(n_1^2 - n_2^2 \right)} \left[-\cos(n_1\sigma) \sin(2n_2(\sigma + \sigma_0))n_1n_2 + \cos(2n_2(\sigma + \sigma_0)) \sin(n_1\sigma)n_2^2 \right] \\
- \frac{a^3}{16} \sin(3n_1\sigma)
\]

\[
z_2 = C_3 \sin(n_2(\sigma + \sigma_0)) + C_4 \cos(n_2(\sigma + \sigma_0)) \\
+ \frac{ba^2}{4 \left(n_2^2 - n_1^2 \right)} \left[-\cos(n_2(\sigma + \sigma_0)) \sin(2n_1\sigma)n_1n_2 + \cos(2n_1\sigma) \sin(n_2(\sigma + \sigma_0))n_1^2 \right] \\
- \frac{b^3}{16} \sin(3n_2(\sigma + \sigma_0)).
\]

(3.44)

From (3.24), one obtains the constraint on \(C_i\):

\[-16\chi - 3 \left(a^4 n_1^2 + b^4 n_2^2 \right) + 16 \left(a n_1^2 C_1 + b n_2^2 C_3 \right) = 0.\]

(3.45)

Then the classical energy of the string reads

\[
E_{n_1 \neq n_2} = \sqrt{2n_1S_1 + 2n_2S_2} \left[1 + \frac{3}{8} \frac{(S_1 + S_2)^2}{n_1S_1 + n_2S_2} + \frac{1}{2} \frac{S_1S_2}{n_1S_1 + n_2S_2} \left(\frac{n_1}{n_2} + \frac{n_2}{n_1} - \frac{3}{2} \right) + O(S_iS_j) \right]
\]

or, restoring \(\lambda\),

\[
E_{n_1 \neq n_2} = \sqrt{2 \sqrt{\lambda}(n_1S_1 + n_2S_2)} \left[1 + \frac{3}{8\sqrt{\lambda}} \frac{(S_1 + S_2)^2}{n_1S_1 + n_2S_2} + \frac{1}{2\sqrt{\lambda}} \frac{S_1S_2}{n_1S_1 + n_2S_2} \left(\frac{n_1}{n_2} + \frac{n_2}{n_1} - \frac{3}{2} \right) + O(\lambda^{-1}) \right].
\]

(3.46)

(3.47)
Note, that in the limit \(n_1 = n_2 = n \) expression (3.47) becomes

\[
E_{n_1 \neq n_2}^{n_1 = n_2} \sqrt{2\sqrt{\lambda n}(S_1 + S_2)} \left[1 + \frac{3}{8n\sqrt{\lambda}} \left(\frac{S_1 + S_2}{S_1 + S_2} \right)^2 + \frac{1}{2n\sqrt{\lambda}} \frac{S_1 S_2}{S_1 + S_2} \left(\frac{1}{2} \right) + O(\lambda^{-1}) \right],
\]

which differs from (3.38) by the factor of 1/2 in the third term in the brackets.

This discontinuity may indicate that there are deep differences between solutions with \(n_1 \neq n_2 \) and more symmetrical ones with \(n_1 = n_2 \).

4 Small-string limit of the exact string solutions in AdS_5

In this section we investigate the connection between small- (flat-space) and large-spin limits of two-spin string solutions in AdS_5. In the particular cases of \(\omega_1 = \omega_2 \) and \(\kappa = \omega_2 \neq \omega_1 \) the general solutions in AdS_5 were found in [10]. It was discussed there, for \(\kappa = \omega_2 \neq \omega_1 \) case, that strings which admit large-spin limit do not have the small-spin one and vice-versa. Thus we study only solutions with \(\omega_1 = \omega_2 \), corresponding to \(S_1 = S_2 \) case.

When \(\omega_1 = \omega_2 = \omega \), string sigma model equations reduce to

\[
\theta' = \frac{c}{\sinh^2 \rho},
\]

\[
\rho'^2 = \kappa^2 \cosh^2 \rho - \frac{c^2}{\sinh^2 \rho} - \omega^2 \sinh^2 \rho,
\]

where \(c \) is an integration constant. The solution for \(\rho \) is [10]

\[
\cosh \rho = \frac{\sqrt{a_-}}{\text{dn}[\sqrt{a_-(\omega^2 - \kappa^2)}] \sigma, \frac{a_+ - a_-}{a_+}}.
\]

Here

\[
a_{\pm} = \frac{2\omega^2 - \kappa^2 \pm \sqrt{\kappa^4 - 4c^2(\omega^2 - \kappa^2)}}{2(\omega^2 - \kappa^2)}
\]

define the size of the string: \(\sqrt{a_-} \leq \cosh \rho \leq \sqrt{a_+} \). Parameters \(\kappa, \omega, c \) are related to \(a_{\pm} \) as

\[
c^2 = (a_+ - 1)(a_- - 1)(\omega^2 - \kappa^2), \quad \kappa^2 = \omega^2 \frac{a_+ + a_- - 2}{a_+ + a_- - 1}.
\]

Solution (4.3) is valid for \(\sqrt{a_-} \leq \cosh \rho \leq \sqrt{a_+} \) only.

Let us expand (4.3) in the small-string limit.

When the size of the string is small with respect to the curvature of AdS_5 space (\(R = 1 \)), one has

\[
a_+ = \cosh \rho_{max} = 1 + \epsilon^2 a_+^2 + \epsilon^4 A + O(\epsilon^6), \\
\rho_{max} = 1 + \epsilon^2 b_+^2 + \epsilon^4 B + O(\epsilon^6)
\]

\(\epsilon \ll 1 \).

In what follows we omit orders higher than \(\epsilon^4 \).

In that limit the elliptic modulus of \(\text{dn} \) in (4.3) is small

\[
\frac{a_+ - a_-}{a_+} = \frac{\epsilon^2 (a_+^2 - b_+^2) + \epsilon^4 (A - B)}{1 + \epsilon^2 a_+^2 + \epsilon^4 A} \sim \epsilon^2 \ll 1,
\]
so we can perform an expansion
\[\cosh \rho = 1 + \epsilon^2 \frac{1}{2} (a^2 \sin^2 (W \sigma) + b^2 \cos^2 (W \sigma)) + \epsilon^4 \frac{1}{8} \left[W(a^4 - b^4) \right] \sin (2W \sigma) - \frac{1}{4} (a^2 - b^2)^2 \sin^2 (2W \sigma) \]
\[- (a^4 - 4A) \sin^2 (W \sigma) - (b^4 - 4B) \cos^2 (W \sigma) \quad (4.7) \]

Here \(W^2 = \omega^2 - \kappa^2 \). To satisfy the closed-string periodicity condition, the \(\epsilon^2 \) and \(\epsilon^4 \) terms must both be periodic. There are two options:

- **W** is an integer. Then the \(\epsilon^2 \) term is periodic and the linearity in the \(\epsilon^4 \) term cancels if \(a = b \).
- **W** has the form \(W = W_0 + \epsilon^2 W_1 \). Then from (4.7) we have

\[
\cosh \rho = 1 + \epsilon^2 \frac{1}{2} (a^2 \sin^2 (W_0 \sigma) + b^2 \cos^2 (W_0 \sigma)) + \epsilon^4 \frac{1}{8} \left[(a^2 - b^2)(4W_1 + m(a^2 + b^2)) \right] \sin (2W_0 \sigma) - \frac{1}{4} (a^2 - b^2)^2 \sin^2 (2W_0 \sigma) \]
\[- (a^4 - 4A) \sin^2 (W_0 \sigma) - (b^4 - 4B) \cos^2 (W_0 \sigma) \]

The \(\epsilon^2 \) term is periodic if \(W_0 \) is an integer and the linearity in the \(\epsilon^4 \) term cancels if \(a = b \) or

\[W_1 = -\epsilon^2 \frac{1}{4} W_0 (a^2 + b^2). \quad (4.8) \]

The case \(a = b \) brings us to the trivial limit of the circular string, so we will not discuss it here. Let us investigate the other option.

Assuming that \(W \) has the form (4.9), we get

\[
\cosh \rho = 1 + \epsilon^2 \frac{1}{2} (a^2 \sin^2 (W_0 \sigma) + b^2 \cos^2 (W_0 \sigma)) - \epsilon^4 \frac{1}{8} \left[\frac{1}{4} (a^2 - b^2)^2 \sin^2 (2W_0 \sigma) \right. \]
\[+ (a^4 - 4A) \sin^2 (W_0 \sigma) + (b^4 - 4B) \cos^2 (W_0 \sigma) \left] . \quad (4.10) \]

Making use of (4.1) and (4.11), one obtains the following equation for \(\theta \)

\[
\theta' = \frac{\tilde{c} \epsilon^2}{\sinh^2 \rho} = \frac{\tilde{c}_0 + \epsilon^2 \tilde{c}_1}{\frac{a^2 \sin^2 (W_0 \sigma) + b^2 \cos^2 (W_0 \sigma)}{4 \sin^2 (W_0 \sigma) + 2B \cos^2 (W_0 \sigma) - (a^2 - b^2)^2 \cos^2 (W_0 \sigma) \sin^2 (W_0 \sigma)}} \]
\[-\epsilon^2 \frac{2A \sin^2 (W_0 \sigma) + 2B \cos^2 (W_0 \sigma) - (a^2 - b^2)^2 \cos^2 (W_0 \sigma) \sin^2 (W_0 \sigma)}{2(a^2 \sin^2 (W_0 \sigma) + b^2 \cos^2 (W_0 \sigma))^2} \quad (4.11) \]

where

\[c = \tilde{c} \epsilon^2 = \epsilon^2 \tilde{c}_0 + \epsilon^4 \tilde{c}_1. \quad (4.12) \]

Its solution is

\[\theta (\sigma) = \theta_0 (\sigma) + \epsilon^2 \theta_1 (\sigma), \quad (4.13) \]
where

\[
\theta_0(\sigma) = \frac{\tilde{c}_0}{W_0} \arctan \left(\frac{a}{b} \tan(W_0\sigma) \right);
\]
\[
\theta_1(\sigma) = \frac{\tilde{c}_0}{4W_0} \left(\frac{a^2 + b^2}{a^2 - b^2} - \frac{2A}{a^2} - \frac{2B}{b^2} + \frac{4\tilde{c}_1}{c_0} \right) \arctan \left(\frac{a}{b} \tan(W_0\sigma) \right)
\]
\[
- \frac{\tilde{c}_0}{4W_0} \left(\frac{a^2 + b^2}{a^2 - b^2} - \frac{2A}{a^2} + \frac{2B}{b^2} \right) \frac{\cos(W_0\sigma)\sin(W_0\sigma)}{a^2\sin^2(W_0\sigma) + b^2\cos^2(W_0\sigma)} - \frac{\tilde{c}_0}{2W_0} \arctan \left(\tan(W_0\sigma) \right) .
\] (4.14)

This expression, as well as (4.3) and (4.8), is valid for \(0 \leq W_0\sigma \leq \frac{\pi}{2}\) only. Within this interval \(\theta\) may change only by a rational value of \(\pi\): \(0 \leq \theta \leq \frac{\pi}{k}\theta\) and may not gain any small corrections, otherwise the solution would not satisfy the closed-string periodicity condition. We must have that \(\theta_1(W_0\sigma = 0) = \theta_1(W_0\sigma = \frac{\pi}{2})\). The latter gives the following constraint on \(\tilde{c}_i, A, B\)

\[
4\tilde{c}_1/c_0 = 2 \left(\frac{A}{a^2} + \frac{B}{b^2} \right) - (a - b)^2.
\] (4.15)

So far we have not used the relations given in (4.5). Substitution of (4.9) and (4.12) into (4.5) gives

\[
4\tilde{c}_1/c_0 = 2 \left(\frac{A}{a^2} + \frac{B}{b^2} \right) - (a - b)^2 + ab.
\] (4.16)

Comparing this to (4.15), one finds

\[
ab = 0,
\]

which implies \(a = 0\) or \(b = 0\) and brings us to the limit of folded string.

Apart from the trivial cases of folded and circular strings, we find that the general rigid solution with \(\omega_1 = \omega_2 (S_1 = S_2)\) in \(AdS_5\) admitting the large-spin limit does not have a small-spin limit. For more general two-spin solutions it might still be possible to have both limits.

5 Chiral solutions for a bosonic string in \(R_t \times S^5\)

In this section we discuss chiral solutions in \(R_t \times S^5\). Such solutions obey an additional constraint

\[
\partial_+ X_M \partial_- X_M = 0, \tag{5.1}
\]

where \(X_M\) are embedding coordinates of \(R^6\) with the Euclidean metric \(\delta_{MN}; X_M X_M = 1\) and

\[
\partial_\pm = \frac{\partial}{\partial \sigma_{\pm}} = \frac{1}{2} \left(\frac{\partial}{\partial \tau} \pm \frac{\partial}{\partial \sigma} \right), \quad \sigma_{\pm} = \tau \pm \sigma.
\]

We will discuss the string located at the center of \(AdS_5\) and rotating in \(S^5\), trivially embedded in \(AdS_5\) as \(Y_5 + iY_0 = e^{it}\), with the global AdS time being \(t = \kappa \tau\) and \(Y_1, ..., Y_4 = 0\) (see (2.5)).

The classical string equations in conformal gauge become\(^4\)

\[
\partial_- \partial_+ X_M = 0 \tag{5.4}
\]
\[
\partial_- X_M \partial_+ X_M = 0 \tag{5.5}
\]
\[
\kappa^2 = 4\partial_\pm X_M \partial_\pm X_M \tag{5.6}
\]

\(^4\) Chiral solutions may also be considered via Pohlmeyer reduction \(^[14]\). For example, let only four of \(X^M\)'s are
The simplest solution of this kind is [12],

\[\kappa = 2a_3m_3, \quad X_1 + iX_2 = a_1e^{im_1\sigma_\pm}, \quad X_3 + iX_4 = a_2e^{im_2\sigma_\pm}, \quad X_5 + iX_6 = a_3e^{im_3\sigma_\pm}, \]

where \(\sum_{i=1}^{3} a_i = 1 \) and \(m_i \) are integers. It was recently used in [13] as a model of a quantum string state with “small” quantum numbers. We expect that more general chiral solutions may also find useful applications.

Let us consider the ansatz

\begin{align*}
X_{12} = X_1 + iX_2 &= a_1e^{iF_1(\sigma_+)} \\
X_{34} = X_3 + iX_4 &= a_2e^{iF_2(\sigma_+)} \\
X_{56} = X_5 + iX_6 &= a_3e^{iF_3(\sigma_-)}
\end{align*}

(5.7)

where \(\sum_{i=1}^{3} a_i = 1 \). To satisfy periodicity condition, \(F_1, F_2 \) must have the form

\[F_i(\sigma_+) = m_i\sigma_+ + \sum_n f_n^{(i)} \cos(n\sigma_+) + g_n^{(i)} \sin(n\sigma_+) \]

(5.8)

with \(f_n^{(i)}, g_n^{(i)} \) real and \(m_i \) integers.

From string equations (5.4), (5.5), (5.6) one finds

\[\kappa^2 = 4a_1^2(\partial_+ F_1)^2 + 4a_2^2(\partial_+ F_2)^2, \quad \kappa = 2m_3a_3, \]

(5.9)

\[F_3 = m_3\sigma_- \]

(5.10)

Let us assume that \(F_1 \) is an arbitrary function of the form (5.8) and then \(F_2 \) is expressed as

\[F_2(\sigma_+) = \pm \int \frac{1}{a_2} \sqrt{a_2^2m_3^2 - a_1^2(\partial_+ F_1)^2} d\sigma_+. \]

(5.11)

Being represented as an integral from the periodic function, \(F_2 \) possess periodic and linear terms only. So up to adjusting \(a_i \), it has the form (5.8).

The general solution for the ansatz (5.7) is

\begin{align*}
\kappa &= 2m_3a_3 \\
X_{12} &= a_1e^{iF_1(\sigma_+)} \\
X_{34} &= a_2e^{iF_2(\sigma_+)} \\
X_{56} &= a_3e^{im_3\sigma_-}
\end{align*}

(5.12)

nonzero. The reduced model corresponding to the string in \(R_4 \times S^3 \) [15] is the complex sine-Gordon (CSG) model

\[\tilde{L} = \partial_+ \alpha \partial_- \alpha + \tan^2 \alpha \partial_+ \theta \partial_- \theta + \frac{\kappa^2}{2} \cos 2\alpha. \]

(5.2)

The variables \(\alpha \) and \(\theta \) are expressed in terms of the \(SO(4) \) invariant combinations of derivatives of the original variables \(X_m \ (m = 1, 2, 3, 4) \)

\[\kappa^2 \cos 2\alpha = \partial_+ X_M \partial_- X_M, \quad \kappa^3 \sin^2 \alpha \partial_\pm \theta = \frac{1}{2} \tilde{M}^{MNKL} X_M \partial_+ X_N \partial_- X_K \partial_\pm X_L. \]

(5.3)

Chiral solutions meet particular case of \(\alpha = \frac{\pi}{4} \).
In general, the “phase function \(F_2 \)” resulting from the integration (5.11) is expressed in elliptic functions. There are few cases when it simplify to elementary ones. Two of them \(F_1(\sigma_+) = m_1 \sigma_+ \), \(F_2(\sigma_+) = m_2 \sigma_+ \) and \(F_1(\sigma_+) = \alpha \cos n\sigma_+ \), \(F_2(\sigma_+) = \alpha \sin n\sigma_+ \) are discussed below.

Note that chiral solutions treat \(\tau \) and \(\sigma \) on an equal footing, i.e. nontrivial dependence on \(\tau \) implies that the shape of the string is not rigid, in general, so such solutions are similar to “pulsating” ones.

5.1 Rigid chiral solutions

The simplest chiral solution from ansatz (5.7) corresponds to

\[
\begin{align*}
F_1(\sigma_+) &= m_1 \sigma_+, & F_2(\sigma_+) &= m_2 \sigma_+.
\end{align*}
\]

(5.13)

It reads [12]:

\[
\begin{align*}
\kappa &= 2a_3 m_3, & X_{12} &= a_1 e^{i m_1 \sigma_+}, & X_{34} &= a_2 e^{i m_2 \sigma_+}, & X_{56} &= a_3 e^{i m_3 \sigma_-},
\end{align*}
\]

(5.14)

where

\[
a_1^2 m_1^2 + a_2^2 m_2^2 = a_3^2 m_3^2
\]

(5.15)

with \(m_i \) integers and \(\sum_{i=1}^{3} a_i^2 = 1 \).

Comparing that to (3.1), we see that it is a rigid string solution. In fact, it is the only possible rigid chiral solution from ansatz (5.7).

For fixed \(m_i \), the energy is given by the standard flat-space linear Regge relation

\[
E = \sqrt{2(m_1 J_1 + m_2 J_2 + m_3 J_3)},
\]

(5.16)

where expressions for spins are

\[
J_1 = a_1^2 m_1,
J_2 = a_2^2 m_2,
J_3 = a_3^2 m_3.
\]

(5.17)

Restoring \(\lambda \), we get

\[
E = \sqrt{2\sqrt{\lambda}(m_1 J_1 + m_2 J_2 + m_3 J_3)},
\]

(5.18)

Note, that the non-Cartan components are zero only for \(m_1 \neq m_2 \). If \(m_1 = m_2 \) the solution can always be rotated to a two-spin one (\(S_2 = 0 \)).

5.2 Sine-cosine solutions

A particularly simple nontrivial solution from ansatz (5.7) corresponds to

\[
\begin{align*}
F_1(\sigma_+) &= \alpha \cos n\sigma_+, & F_2(\sigma_+) &= \alpha \sin n\sigma_+.
\end{align*}
\]

(5.19)
It reads
\[\kappa = 2m \sin \gamma \]
\[X_1 = \frac{1}{\sqrt{2}} \cos \gamma \sin \left[\sqrt{2} \frac{m}{n} \tan \gamma \cos(n\sigma) \right] \]
\[X_2 = \frac{1}{\sqrt{2}} \cos \gamma \sin \left[\sqrt{2} \frac{m}{n} \tan \gamma \sin(n\sigma) \right] \]
\[X_3 = \frac{1}{\sqrt{2}} \cos \gamma \cos \left[\sqrt{2} \frac{m}{n} \tan \gamma \cos(n\sigma) \right] \]
\[X_4 = \frac{1}{\sqrt{2}} \cos \gamma \cos \left[\sqrt{2} \frac{m}{n} \tan \gamma \sin(n\sigma) \right] \]
\[X_5 = \sin \gamma \cos(m\sigma) \]
\[X_6 = \sin \gamma \sin(m\sigma) \]

Here \(n, m \) are integers, \(a_1 = a_2 = \frac{1}{\sqrt{2}} \cos \gamma \neq 0, a_3 = \sin \gamma \neq 0 \). Snap shots of the string at \(\tau = 0 \) and \(\tau = \frac{\pi}{4} \) are given in figure 1. One could see how it changes shape: a bended circle at \(\tau = 0 \) and folded (in projection on \(X_1X_3X_5 \)) at \(\tau = \frac{\pi}{2} \).

![Figure 1: Shape of the string for \(n = 1, m = 1, \gamma = \frac{\pi}{4} \): a bended circle at \(\tau = 0 \) and folded (in projection on \(X_1X_3X_5 \)) at \(\tau = \frac{\pi}{2} \)](image)

The energy and spins are (see Appendix C):
\[\mathcal{E} = 2m \sin \gamma \]
\[J_1 = J_{12} = \frac{1}{2} m \sin(2\gamma) \quad \text{BesselJ}_1 \left[2 \frac{m}{n} \tan \gamma \right] \]
\[J_3 = J_{56} = m \sin^2 \gamma \]
For fixed \(n \) and \(m \) we find

\[
E = 2\sqrt{mJ_3}, \quad J_1 = \sqrt{J_3(m - J_3)} \text{BesselJ}_1 \left[\frac{2m}{n} \sqrt{\frac{J_3}{m - J_3}} \right],
\]

or, restoring \(\lambda \),

\[
E = 2\sqrt{m\sqrt{\lambda} J_3}, \quad J_1 = \sqrt{m\sqrt{\lambda} J_3} \left(1 - \frac{J_3}{m\sqrt{\lambda}} \right) \text{BesselJ}_1 \left[\frac{2m}{n} \sqrt{\frac{J_3}{1 - \frac{J_3}{m\sqrt{\lambda}}}} \right].
\]

(5.22)

The dependence \(J_1(J_3) \) is presented in figure 2.

![Figure 2: \(J_1(J_3) \) for \(n = 1, m = 3 \).](image)

Solution (5.20) does not admit large-spin limit, as the values of spins are bounded above:

\[
J_3 \leq J_{3,\text{max}} = m\sqrt{\lambda}, \quad J_1 \leq J_{1,\text{max}} \approx 0,6\frac{n\sqrt{\lambda}}{1 + \frac{n^2}{m^2}}.
\]

(5.24)

In the small-spin limit, expanding the Bessel function in the expression for \(J_1 \), we obtain

\[
E = 2\sqrt{m\sqrt{\lambda} J_3}, \quad J_1 = J_3 \frac{m}{n} \left(1 - \frac{1}{2} \frac{m^2}{n^2} \frac{J_3}{m\sqrt{\lambda}} + O(\lambda^{-1}) \right).
\]

(5.25)

Let us show that in the limit \(n \to 0 \), certain solutions of type (5.20) reduce to (5.14).
In that limit from (5.20) one finds

\[\kappa = 2m \sin \gamma \]
\[X_1 = \frac{1}{\sqrt{2}} \cos \gamma, \quad X_3 = \frac{1}{\sqrt{2}} \cos \gamma \]
\[X_2 = \frac{1}{\sqrt{2}} \cos \gamma \sin \left(\sqrt{2} m \tan \gamma \sigma_+ \right), \quad X_4 = \frac{1}{\sqrt{2}} \cos \gamma \cos \left(\sqrt{2} m \tan \gamma \sigma_+ \right) \]
\[X_5 = \sin \gamma \cos(m\sigma_-), \quad X_6 = \sin \gamma \sin(m\sigma_-) \]

(5.26)

Here we omitted the infinite phases in \(X_1 \) and \(X_3 \), coming from \(\cos(n\sigma +) \), as they do not contribute to the consideration.

Relations (5.26) look like ones describing rigid chiral solution with two spins. Indeed one could rewrite them as

\[\kappa = 2a_3 m \]
\[X_1 = a, \quad X_3 = a, \]
\[X_2 = a \sin(k\sigma_+), \quad X_4 = a \cos(k\sigma_+) \]
\[X_5 = c \cos(m\sigma_-), \quad X_6 = c \sin(m\sigma_-) \]

(5.27)

where \(a = \frac{1}{\sqrt{2}} \cos \gamma, \ c = \sin \gamma, \ k = \sqrt{2}m \tan \gamma \). However \(k \) is in general arbitrary, so (5.27) corresponds to the rigid chiral solutions only when

\[k = \sqrt{2}m \tan \gamma \text{ is integer.} \]

The expression for the AdS\(_5\) energy does not changes in \(n \to 0 \) limit. The spins transform to (use integral expressions from appendix C and restore \(m, n \neq 1 \))

\[\mathcal{J}_1 = \mathcal{J}_{12} \to 0, \quad \mathcal{J}_2 = \mathcal{J}_{34} \to 0, \quad \mathcal{J}_3 = \mathcal{J}_{56} = mc^2, \]
\[\mathcal{J}_{24} = \frac{\sqrt{2}}{2} m \tan \gamma \cos^2 \gamma \sin(n\sigma_+) \left\lfloor_{2\pi}^{2\pi n} \right. \to ka^2 \]

(5.28)

in exact agreement with (5.17).

Being expressed, as harmonic functions with the argument (5.8), solutions (5.7) are not easy to analyze in terms of stability. Straight forward analysis may be performed only for the rigid chiral solutions (5.14), which were proved stable in [12]. Thus one may also expect (5.20) to be stable, due to their relation to (5.14).

One may hope that generalization of \(F_1(\sigma_+) = \alpha \cos n\sigma_+ \) to

\[F_1(\sigma_+) = m_1 \sigma_+ + \beta_1 \sin(n_1 \sigma_+) \]

(5.29)

would also give a simple solution. However, in this case, from (5.19) we find that \(F_2 \) is expressed via elliptic functions \(E, F \) and \(\Pi \) all together. Finding another simple solutions from ansatz (5.20) is an open question.
Summary

In this paper we have discussed several classical solutions for a closed bosonic string in the $\text{AdS}_5 \times S^5$. First, we considered small rigid strings with two spins in the AdS_5 part of $\text{AdS}_5 \times S^5$. Starting from the flat-space solutions (3.15) and using perturbation theory in the curvature of AdS_5 space, we constructed leading terms in the small two-spin solution and found corrections to the leading Regge term in the classical string energy (3.38) and (3.47). We uncovered a discontinuity in the spectrum of classical strings with equal and unequal winding numbers in the $Y_1 Y_2$ and $Y_3 Y_4$ planes (n_1 and n_2). In the limit $n_1 = n_2$ the expression for $E_{n_1 \neq n_2}(S_1, S_2; \lambda)$ does not coincide with $E_{n_1 = n_2}(S_1, S_2; \lambda)$. We then investigated the connection between small-spin (flat-space) and large-spin limits of two-spin string solutions in AdS_5. For the $\omega_1 = \omega_2$ (i.e. $S_1 = S_2$) case we found that, apart from the trivial cases of folded and circular strings, the general rigid solution with $S_1 = S_2$ in AdS_5 admitting the large-spin limit does not have a small-spin limit.

In the second part of the paper we constructed a new class of chiral solutions in $R_t \times S^5$ for which the embedding coordinates of S^5 satisfy the linear Laplace equations (5.4). We used the ansatz (5.7) and obtained the general solution for it in the form (5.12). These solutions generalize the previously studied rigid string chiral solutions (5.14) [12]. We studied in detail a simple nontrivial example of these solutions (5.20).

There are a number of open questions that we leave for future investigation. It is of interest to find solutions in full AdS_5 which correspond to more general flat-space solutions than rigid and folded ones. The relation between small-spin and large-spin limits should be clarified. So far, it looks plausible that there is no connection between them apart from the trivial limits. The origin of the discontinuity in the spectrum of small-string solutions with $n_1 = n_1$ and $n_1 \neq n_1$ is also not quite clear. Another direction is to study possible applications of chiral solutions (5.12).

Acknowledgments

I am grateful to Arkady Tseytlin for many helpful discussions and consultations and Alin Tirziu for very useful remarks and communications. This work is supported by a grant of the Dynasty Foundation and in part by Scientific Schools SS—4142.2010.2.

A Appendix: Circular and folded strings in AdS_5

A.1 The circular string solution

A particular simple solution of equations (2.5), (2.3), (2.4) is the rigid circular rotating string [4][12][16]:

$$
Y_{05} = \frac{\sqrt{m^2 + w^2}}{\sqrt{2m}} e^{i \kappa \tau}, \quad Y_{12} = \frac{k}{2m} e^{i \omega \tau + im \sigma}, \quad Y_{34} = \frac{k}{2m} e^{i \omega \tau - im \sigma},
$$

(A.1)

where $w = \sqrt{m^2 + \kappa^2}$. It can also be rewritten in the form

$$
\tilde{Y}_{05} = \sqrt{1 + r^2} e^{i \kappa \tau}, \quad \tilde{Y}_{12} = r \cos(m \sigma) e^{i \omega \tau}, \quad \tilde{Y}_{34} = r \sin(m \sigma) e^{i \omega \tau},
$$

(A.2)

where $\omega = m \sqrt{1 + 2r^2}$ and $r = \sinh \rho_0 = \frac{e^\tau}{\sqrt{2m}}$ is a radius of the string. This is a consistent closed-string solution periodic in $0 \leq \sigma < 2\pi$.

20
The two spins of the string are equal \(S_1 = S_2 = S \) and are related to the energy by

\[
E = \kappa + \frac{2\kappa S}{\sqrt{\kappa^2 + m^2}}, \quad S = \frac{\kappa^2}{4m^2} \sqrt{m^2 + \kappa^2}.
\]

(A.3)

In the small-string limit (\(S \to 0 \)) the profile of the string reads

\[
Y_{05} \approx (1 + \frac{1}{2} \epsilon^2 \sigma^2) e^{i \sqrt{2} \epsilon \lambda^2}, \quad Y_{12} \approx a \cos(\sigma) e^{i m(1+\epsilon^2 \sigma^2) \tau}, \quad Y_{34} \approx a \sin(\sigma) e^{i m(1+\epsilon^2 \sigma^2) \tau}.
\]

(A.4)

The expression for the classical energy in this limit is

\[
E = 2 \sqrt{m S} \left(1 + \frac{S}{m} + O(S^2) \right) \quad \text{or} \quad E = 2 \sqrt{m \lambda S} \left(1 + \frac{S}{m \lambda} + O(\lambda^{-1}) \right).
\]

(A.5)

Here the classical energy contains nontrivial curvature corrections which modify the leading-order flat-space Regge behavior.

A.2 Folded string solution

Another simple solution of equations (2.5), (2.3), (2.4) is the classical solution for the folded string spinning in the \(AdS_3 \) part of \(AdS_5 \)

\[
ds^2 = -\cosh^2 \rho \ dt^2 + d\rho^2 + \sinh^2 \rho \ d\phi^2
\]

described by \([2, 17]\)

\[
t = \kappa \tau, \quad \phi = w \tau, \quad \rho = \rho(\sigma),
\]

(A.6)

where

\[
\rho^2 = \kappa^2 \cosh^2 \rho - w^2 \sinh^2 \rho.
\]

(A.7)

\(\rho \) varies from 0 to its maximal value \(\rho^* \)

\[
\coth^2 \rho^* = \frac{w^2}{\kappa^2} \equiv 1 + \frac{1}{l^2}.
\]

(A.8)

Thus \(l \) measures the length of the string. The solution of the differential equation (A.7), i.e.

\[
\rho' = \pm \kappa \sqrt{1 - l^{-2} \sinh^2 \rho}, \quad \rho(0) = 0
\]

(A.9)

can be written in terms of the Jacobi function \(\text{sn} \)

\[
\sinh \rho = l \text{sn}(\kappa l^{-1} \sigma, -l^2).
\]

(A.10)

The periodicity in \(\sigma \) implies the following condition on the parameters \([2]\)

\[
\kappa = l \ {}_2F_1(\frac{1}{2}, \frac{1}{2}; 1; -l^2).
\]

(A.11)

The classical energy \(E = \sqrt{\lambda} E \) and the spin \(S = \sqrt{\lambda} S \) are found to be

\[
E = l \ {}_2F_1(-\frac{1}{2}, \frac{1}{2}; 1; -l^2), \quad S = \frac{l^2}{2} \sqrt{1 + l^2} \ {}_2F_1(\frac{1}{2}, \frac{3}{2}; 2; -l^2).
\]

(A.12)
Here we will be interested in the short string limit $0 < \epsilon \ll 1$, $l = a\epsilon$ in which

$$\rho_\ast = a\epsilon - \frac{1}{6} \epsilon^3 a^3 + O(\epsilon^5). \quad (A.13)$$

In the strict limit $a = 0$ or $\kappa = 0$ we get $\rho = \rho_\ast = 0$, so that the string shrinks to a point with $E = 0$.

From (A.12) in the $\epsilon \ll 1$ or the small S limit we obtain

$$E = \sqrt{2S} \left(1 + \frac{3}{8} S + O(S^2)\right), \quad (A.14)$$

so the short string limit corresponds to $S \ll 1$ and the expansion of the energy looks like

$$E = \sqrt{2\sqrt{\lambda} S} \left(1 + \frac{3}{8}\sqrt{\lambda} S + O(S^{-1})\right). \quad (A.15)$$

Expanding the exact solution (A.10) in powers of ϵ we obtain

$$\sinh \rho = \epsilon a \sin \sigma - \epsilon^3 \frac{a^3}{16} (\sin(3\sigma) + \sin \sigma) + O(\epsilon^5) \quad (A.16)$$

or equivalently, changing phase $\sigma \rightarrow \frac{\pi}{2} - \sigma$

$$\sinh \rho = \epsilon a \cos \sigma - \epsilon^3 \frac{a^3}{16} (-\cos(3\sigma) + \cos \sigma) + O(\epsilon^5). \quad (A.17)$$

For the frequencies we have

$$\omega = 1 + \epsilon^2 \frac{a^2}{4} + O(\epsilon^4), \quad \kappa = \epsilon a - \epsilon^3 \frac{1}{4} a^3 + O(\epsilon^4). \quad (A.18)$$

B Appendix: Folded string displaced from the AdS$_5$ center ($n_2 = 0$).

The possibility omitted in section 3.3 is when one of the frequencies of the original flat-space solutions (n_i) is zero, while the “amplitude” $y_i = \text{const} \neq 0$. We will look for the solutions of (3.8), (3.9) in the form:

$$y_1(\sigma) = \epsilon a \sin(\sigma n) + \epsilon^3 z_1(\sigma)$$
$$y_2(\sigma) = \epsilon b + \epsilon^3 z_2(\sigma), \quad (B.1)$$

where $n \in \mathbb{Z}$ and

$$\omega_1 = n(1 + \epsilon^2 \tilde{\omega}_1), \quad \omega_2 = \epsilon \tilde{\omega}_2$$
$$\kappa = \epsilon \kappa_0 + \epsilon^3 \kappa_1, \quad \kappa_0^2 = a^2 n^2. \quad (B.2)$$

It follows from (3.13), that expansion of ω_2^2 must consist of the even powers of ϵ. So if $n_2 = 0$ the leading order of ω_2 is ϵ.

From (3.8), (3.9) one obtains the set of equations:

$$-b \left(n^2 z_1 + z_1''\right) + a \sin(n\sigma) z_2'' = 2ab \sin(n\sigma) (\tilde{\omega}_1 n^2 - \tilde{\omega}_2^2) \quad (B.3)$$
$$2an \left[\sin(n\sigma) n z_1 + \cos(n\sigma)z_1'\right] = 2\chi - b^2 \tilde{\omega}_1^2 + a^2 b^2 n^2$$
$$-2a^2 \tilde{\omega}_1 n^2 \sin^2(n\sigma) + 2a^4 n^2 \sin^2(n\sigma) - a^4 n^2 \sin^4(n\sigma). \quad (B.4)$$

5One may also consider perturbations under a flat-space solution with $n_1 = n_2 = 0$, i.e. a point-like string displaced from the center of AdS$_5$. There are no closed-string solutions in this limit.
Here $\chi^2 = \kappa_1^2 \kappa_0^2$. These system can be readily solved. The solution of (B.4) is straightforward:

$$z_1 = C_1 \cos(n\sigma) + an \sigma \cos(n\sigma) \left(\omega_1 - \frac{1}{4}a^2 \right) + \frac{\sin(n\sigma)}{2an^2} \left(2\chi - b^2 \omega_2^2 \right)$$

$$-a \sin(n\sigma) \left(\omega_1 - \frac{1}{2}(a^2 + b^2) \right) - \frac{1}{4}a^3 \sin^2(n\sigma) \cos(n\sigma).$$

Employing the closed-string periodicity condition (2.4), one finds

$$\tilde{\omega}_1 = \frac{a^2}{4}.$$ (B.6)

Then the solution for z_2 is

$$z_2 = C_2 + \sigma C_3 - \frac{1}{4}a^2 b \cos(2n\sigma) + \frac{b^2}{2} \left(a^2 \sigma^2 - \tilde{\omega}_2^2 \right).$$ (B.7)

Making use of the closed-string periodicity conditions, one finds

$$\tilde{\omega}_2 = \pm an, \quad C_3 = 0.$$ (B.8)

There is no additional constraints on the parameters C_1, C_2, χ, so the solution of (B.3), (B.4) is

$$z_1 = C_1 \cos(n\sigma) + \frac{1}{16}a^3 \left(3 \sin(n\sigma) - \sin(3n\sigma) \right) + \frac{\kappa_1 \sin(n\sigma)}{n}$$

$$z_2 = C_2 - \frac{1}{4}a^2 b \cos(2n\sigma)$$

$$\omega_1 = n(1 + \epsilon^2 \frac{a^2}{4}), \quad \omega_2 = \pm \epsilon an, \quad \kappa = \epsilon a n + \epsilon^3 \kappa_1.$$ (B.9)

It is not hard to see, that due to $\kappa \approx \omega_2$, non-Cartan components of the spin S_0i do not vanish. This solution can be rotated by boost to a folded string one.

C Appendix: Spins for the Sine-cosine solutions

In this section we will calculate the components of spin $J_{ij} = \int_{0}^{2\pi} \frac{d\sigma}{2\pi} [X_i \dot{X}_j - X_j \dot{X}_i]$ for the Sine-cosine solutions (5.20). Set for the simplicity $n = m_3 = 1$.

Cartan components of the spin are

$$J_1 = J_{12} = \int_{0}^{2\pi} \frac{d\sigma}{2\pi} [X_1 \dot{X}_2 - X_2 \dot{X}_1]$$

$$= \frac{1}{4} \sin(2\gamma) \int_{0}^{2\pi} \frac{d\sigma}{2\pi} \left[\sin(\tau + \sigma + \pi/4) \sin(2\tan \gamma \sin(\tau + \sigma + \pi/4)) \right.$$

$$\left. + \sin(\tau + \sigma - \pi/4) \sin(2\tan \gamma \sin(\tau + \sigma - \pi/4)) \right]$$

$$= \frac{1}{2} \sin(2\gamma) \int_{0}^{2\pi} \frac{d\zeta}{2\pi} \sin(2\tan \gamma \sin(\zeta)) = \frac{1}{2} \sin(2\gamma) \text{BesselJ}_1(2\tan \gamma)$$ (C.1)
(see Appendix D for a proof of the equality on the last line);

\[J_2 = J_{34} = \int_0^{2\pi} \frac{d\sigma}{2\pi} [X_3 \dot{X}_4 - X_4 \dot{X}_3] \]

\[= -\frac{1}{4} \sin(2\gamma) \int_0^{2\pi} \frac{d\sigma}{2\pi} \left[\sin(\tau + \sigma + \pi/4) \sin(2 \tan \gamma \sin(\tau + \sigma + \pi/4)) - \sin(\tau + \sigma - \pi/4) \sin(2 \tan \gamma \sin(\tau + \sigma - \pi/4)) \right] \]

\[= \frac{1}{4} \sin(2\gamma) \int_0^{2\pi} \frac{d\zeta}{2\pi} \left[\sin(\zeta) \sin(2 \tan \gamma \sin(\zeta)) - \sin(\zeta) \sin(2 \tan \gamma \sin(\zeta)) \right] = 0 ; \tag{C.2} \]

\[J_3 = J_{56} = \int_0^{2\pi} \frac{d\sigma}{2\pi} [X_5 \dot{X}_6 - X_6 \dot{X}_5] = \sin^2 \gamma . \tag{C.3} \]

Non-Cartan components of the spin are

\[J_{13} = \int_0^{2\pi} \frac{d\sigma}{2\pi} [X_1 \dot{X}_3 - X_3 \dot{X}_1] = \frac{1}{2\sqrt{2}} \sin(2\gamma) \int_0^{2\pi} \frac{d\sigma}{2\pi} \sin(\tau + \sigma) = 0 ; \tag{C.4} \]

\[J_{24} = \int_0^{2\pi} \frac{d\sigma}{2\pi} [X_2 \dot{X}_4 - X_4 \dot{X}_2] = -\frac{1}{2\sqrt{2}} \sin(2\gamma) \int_0^{2\pi} \frac{d\sigma}{2\pi} \cos(\tau + \sigma) = 0 ; \tag{C.5} \]

\[J_{14} = \int_0^{2\pi} \frac{d\sigma}{2\pi} [X_1 \dot{X}_4 - X_4 \dot{X}_1] \]

\[= \frac{1}{2\sqrt{2}} \sin(2\gamma) \int_0^{2\pi} \frac{d\sigma}{2\pi} \left[\sin(\tau + \sigma - \pi/4) \cos(2 \tan \gamma \sin(\tau + \sigma - \pi/4)) + \sin(\tau + \sigma + \pi/4) \cos(2 \tan \gamma \sin(\tau + \sigma + \pi/4)) \right] \]

\[= \frac{1}{\sqrt{2}} \sin(2\gamma) \int_0^{2\pi} \frac{d\zeta}{2\pi} \sin(\zeta) \cos(2 \tan \gamma \sin(\zeta)) \]

\[= \frac{1}{\sqrt{2}} \sin(2\gamma) \int_0^{2\pi} \frac{d\zeta}{2\pi} \sum_{l=0}^{\infty} \frac{(-1)^l}{(2l)!} (2 \tan \gamma)^{2l} \sin^{2l+1}(\zeta) = 0 ; \tag{C.6} \]

\[J_{23} = \int_0^{2\pi} \frac{d\sigma}{2\pi} [X_2 \dot{X}_3 - X_3 \dot{X}_2] = \]

\[= \frac{1}{2\sqrt{2}} \sin(2\gamma) \int_0^{2\pi} \frac{d\sigma}{2\pi} \left[\sin(\tau + \sigma - \pi/4) \cos(2 \tan \gamma \sin(\tau + \sigma - \pi/4)) - \sin(\tau + \sigma + \pi/4) \cos(2 \tan \gamma \sin(\tau + \sigma + \pi/4)) \right] \]

\[= \frac{1}{2\sqrt{2}} \sin(2\gamma) \int_0^{2\pi} \frac{d\zeta}{2\pi} \left[\sin(\zeta) \cos(2 \tan \gamma \sin(\zeta)) - \sin(\zeta) \cos(2 \tan \gamma \sin(\zeta)) \right] = 0 . \tag{C.7} \]
Here we used that the integral over the period from odd powers of sine or cosine is zero \cite{18}:
\[
\int_{0}^{2\pi} d\zeta \sin^{2l+1} \zeta = 0, \quad \int_{0}^{2\pi} d\zeta \cos^{2l+1} \zeta = 0. \tag{C.8}
\]

To prove that \(J_{5j} = J_{6j} = 0, \ j = 1, 2, 3, 4 \), consider the following expansion of \(X_{ij} \):
\[
X_{12} = \sum_{l=0}^{\infty} g_l^{(1)} e^{il(\sigma+\tau)}, \quad X_{34} = \sum_{l=0}^{\infty} g_l^{(2)} e^{il(\sigma+\tau)}, \quad X_{56} = \sum_{l=0}^{\infty} h_l e^{il(\sigma-\tau)}. \tag{C.9}
\]

One can show that “cross-spins” (non-Cartan components of spins) between right- and left-chiral waves always vanish, i.e. for each pair of right- and left-chiral summands in (C.9):
\[
Z_1 + iZ_2 = Ge^{in(\sigma+\tau)}, \quad Z_3 + iZ_4 = He^{im(\sigma-\tau)}, \quad n, m = \text{integer} \tag{C.10}
\]

the correspondent contribution \((J_{ij}^Z) \) into \(J_{5j}, J_{6j}, j = 1, 2, 3, 4 \) is zero.

Let us calculate the following values
\[
J_{Z} = \int_{0}^{2\pi} \frac{d\sigma}{2\pi} [z_1 \dot{z}_2 - z_2 \dot{z}_1] = [J_{13}^Z - J_{24}^Z] + i[J_{23}^Z - J_{14}^Z]
\]
\[
= i \int_{0}^{2\pi} \frac{d\sigma}{2\pi} GH (m-n)e^{i\sigma(n-m)+i\tau(n+m)} = \begin{cases} 0, & \text{for } m = n \\ 0, & \text{for } m \neq n \end{cases} \tag{C.11}
\]

Cross-spins for each left-right chiral pair in the expansion (C.9) vanish. We have
\[
J_{5j} = J_{6j} = 0, \quad j = 1, 2, 3, 4. \tag{C.12}
\]

\section{Appendix: Bessel functions}

In this section we will prove the relation
\[
\text{BesselJ}_1(x) = \int_{-\pi}^{\pi} \frac{d\alpha}{2\pi} \sin \alpha \sin (x \sin \alpha). \tag{D.1}
\]

Two formulas from the theory of the Bessel functions are of use \cite{19}:

- Integral representation of the Bessel functions
\[
\text{BesselJ}_n(x) = \int_{-\pi}^{\pi} \frac{d\alpha}{2\pi} e^{-ix \sin \alpha + in\alpha}. \tag{D.2}
\]
• Recurrent formula
\[
\frac{d}{dx} \left(\frac{\text{Bessel}_\nu(x)}{x^\nu} \right) = \frac{\text{Bessel}_\nu(x)}{x^\nu} - \frac{\text{Bessel}_{\nu+1}(x)}{x^\nu}. \tag{D.3}
\]

Let us take a derivative from \(\text{Bessel}_0(x)\) in the integral representation:
\[
\frac{d}{dx} \text{Bessel}_0(x) = -i \int_{-\pi}^{\pi} \frac{d\alpha}{2\pi} \sin \alpha \ e^{-ix \sin \alpha} = \int_{-\pi}^{\pi} \frac{d\alpha}{2\pi} \left[-i \sin \alpha \cos (x \sin \alpha) - \sin \alpha \sin (x \sin \alpha) \right]. \tag{D.4}
\]
The Taylor expansion of \(\sin (x \sin \alpha)\) and \(\cos (x \sin \alpha)\) consist of odd and even powers of \(\sin \alpha\), respectively. Making use of (C.8), one finds
\[
\frac{d}{dx} \text{Bessel}_0(x) = - \int_{-\pi}^{\pi} \frac{d\alpha}{2\pi} \sin \alpha \sin (x \sin \alpha). \tag{D.5}
\]
Then by employing (D.3)
\[
\frac{d}{dx} \text{Bessel}_0(x) = - \text{Bessel}_1(x) \tag{D.6}
\]
and we end up with (D.1).

References

[1] D. E. Berenstein, J. M. Maldacena and H. S. Nastase, “Strings in flat space and pp waves from \(N = 4\) super Yang Mills,” JHEP 0204, 013 (2002) [arXiv:hep-th/0202021].

[2] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “A semi-classical limit of the gauge/string correspondence,” Nucl. Phys. B 636, 99 (2002) [arXiv:hep-th/0204051].

[3] S. Frolov and A. A. Tseytlin, “Semiclassical quantization of rotating superstring in \(\text{AdS}(5) \times \text{S}(5)\),” JHEP 0206, 007 (2002) [arXiv:hep-th/0204226].

[4] S. Frolov and A. A. Tseytlin, “Multi-spin string solutions in \(\text{AdS}(5) \times \text{S}5\),” Nucl. Phys. B 668, 77 (2003) [arXiv:hep-th/0304255].

[5] A. A. Tseytlin, “Spinning strings and AdS/CFT duality,” in “From Fields to Strings: Circumnavigating Theoretical Physics”, M. Shifman et al, eds. (World Scientific, 2004). vol. 2, 1648-1707. [arXiv:hep-th/0311130]. “Semiclassical strings and AdS/CFT,” in “Cargese 2004, String theory: From gauge interactions to cosmology”, 265-290 [arXiv:hep-th/0409296].

[6] J. Plefka, “Spinning strings and integrable spin chains in the AdS/CFT correspondence,” Living Rev. Rel. 8, 9 (2005) [arXiv:hep-th/0507136].

[7] J. M. Maldacena, “Wilson loops in large N field theories,” Phys. Rev. Lett. 80, 4859 (1998) [arXiv:hep-th/9803002]. L. F. Alday and J. M. Maldacena, “Gluon scattering amplitudes at strong coupling,” JHEP 0706, 064 (2007) [arXiv:0705.0303].

[8] L. F. Alday and R. Roiban, “Scattering Amplitudes, Wilson Loops and the String/Gauge Theory Correspondence,” Phys. Rept. 468, 153 (2008) [arXiv:0807.1889 [hep-th]].
[9] G. Arutyunov, S. Frolov, J. Russo and A. A. Tseytlin, “Spinning strings in AdS(5) x S5 and integrable systems,” Nucl. Phys. B 671, 3 (2003) [arXiv:hep-th/0307191].

[10] A. Tirziu and A. A. Tseytlin, “Semiclassical rigid strings with two spins in AdS5,” Phys. Rev. D 81, 026006 (2010), [arXiv:0911.2417 [hep-th]].

[11] L. Freyhult, A. Rej and S. Zieme, “From weak coupling to spinning strings,” JHEP 1002, 050 (2010) [arXiv:0911.2458 [hep-th]].

[12] G. Arutyunov, J. Russo and A. A. Tseytlin, “Spinning strings in AdS(5) x S5: New integrable system relations,” Phys. Rev. D 69, 086009 (2004) [arXiv:hep-th/0311004].

[13] R. Roiban and A. A. Tseytlin, “Quantum strings in AdS5 × S5: strong-coupling corrections to dimension of Konishi operator,” JHEP 0911, 013 (2009) [arXiv:0906.4294 [hep-th]].

[14] M. Grigoriev and A. A. Tseytlin, “Pohlmeyer reduction of AdS5 × S5 superstring sigma model,” Nucl. Phys. B 800, 450 (2008) [arXiv:0711.0155].

[15] K. Pohlmeyer, “Integrable Hamiltonian Systems And Interactions Through Quadratic Constraints,” Commun. Math. Phys. 46, 207 (1976).

[16] I. Y. Park, A. Tirziu and A. A. Tseytlin, “Semiclassical circular strings in AdS(5) and ‘long’ gauge field strength operators,” Phys. Rev. D 71, 126008 (2005) [arXiv:hep-th/0505130].

[17] A. Tirziu and A. A. Tseytlin, “Quantum corrections to energy of short spinning string in AdS5,” Phys. Rev. D 78, 066002 (2008), [arXiv:0806.4758 [hep-th]].

[18] I. S. Gradshteyn and I. M. Ryzhik, “Table of Integrals, Series, and Products”, 4th ed. (1980) Academic, San Diego, CA.

[19] G. N. Watson, “A Treatise on the Theory of Bessel Functions”, 2d ed. (1995) Cambridge University Press.