İÇİNDEKİLER/CONTENTS

A Different Insight into Neuromuscular Performance Evaluation: The Influence of Fatigue in Hamstrings:Quadriceps Ratio
Nöromüsküler Performans Değerlendirmesine Farklı Bir Bakış: Yorgunluğun Hamstring:Quadriiceps Oranı Üzerine Etkisi
Gökhan UMUTLU, Ayhan Taner ERDOĞAN .. 152

Sporda Psikolojik İhtiyaçlar Durum Ölçeği (SPİDÖ): Türkçe Uyarlaması, Geçerlik ve Güvenirlik Çalışması
Psychological Needs in Sports Status Scale (PNSS): Turkish Adaptation, Study of Validity and Reliability
Alpay BÜLBÜL, Gamze AKYOL .. 163

Do Children Engaged in Organized Sports Meet the Recommended Levels of Step Counts?
Organize Edilmiş Sporlara Katılan Çocuklar Önerilen Adım Sayısını Karşılıyor mu?
Necip DEMİRCİ, Ayda KARACA, Ş. Alpan ČINEMRE, Evrim ÜNVER .. 174

Covid-19 Vaka Örneği: KKTC’dede Futbol Süper Liglere Dönüş ve Sorunları
Covid-19 Case Study: Restart and its Problems in Football Super League in NCTR
Caner AÇIKADA, Arif SOLKANAT .. 185
A Different Insight into Neuromuscular Performance Evaluation: The Influence of Fatigue in Hamstrings:Quadriceps Ratio

Nöromüsküler Performans Değerlendirmesine Farklı Bir Bakış: Yorgunluğun Hamstring:Quadriiceps Oranı Üzerine Etkisi

1Gökhan UMUTLU
1Ayhan Taner ERDOĞAN
1School of Physical Education and Sports, Final International University, Cyprus.

ÖZ

Bu araştırmanın amacı, maksimum bireysel yorulma intolerans noktasında gerçekleştirilen bir egzersizin ardından ölçülen yorgunluk indeksi ve hamstrings-to-quadriceps parametrelerinin alternatifi bir H/Q yorgunluk yaklaşımları kullanarak (T_Lim^vVO_{2max}) belirlenmesi ve (H/Q) oranlarını denilen koşullarda gerçekleşten geleneksel (H/Q_C) yöntemleri ile karşılaştırması. Yorgunluk ve spor modalitesi etkisi olup olmadığını belirlemek için farklı spoların 37 erkek sporcu katıldı. Kişilerin maksimum bireysel yorulma intolerans naktası için tüm katılımcılar VO_{2max}, vVO_{2max}, ve T_Lim^vVO_{2max} testlerine tabii tutuldu. Analiz edilen H/Q verileri 180°/s açısal hızda belirlendi. Analiz sonuçlarına göre H/Q_{48,49,50} değerleri (H/Q_{Sağ}: 1.20–1.24, H/Q_{CR}: 0.57–0.62; p<0.05) ve H/Q_{48,49,50} değerleri (H/Q_{Left}: 1.17–1.34, H/Q_{CR}: 0.53–0.55; p<0.001) geleneksel yöntemlerden istatistiksel olarak daha yüksek bulundu. Bu sonuçlar doğrultusunda yorucu bir aktivite sonrasında elde edilen H:Q değerleri ve yorgunluk indeksi değerlerinin geleneksel ölçüm yöntemlerine kıyasla daha farklı sonuçlar ortaya çıkardığı ideri sürülebilir.

Anahtar Kelimeler: Egzersiz ölçüm testleri - Oksijen tüketimi - Spor, Yorgunluk indeksi, H/Q

ABSTRACT

The purpose of this investigation was to evaluate the differences among fatigue index and hamstrings-to-quadriceps (H/Q) peak moment ratios subsequent to an exhaustive running (T_Lim^vVO_{2max}) trial performed at maximum individual fatigue intolerance point using an alternative H/Q fatigue approach rather than other conventional (H/Q_C) methods of determining the hamstrings-to-quadriceps ratio under non-fatigued conditions. Thirty-seven male athletes from different sports participated to determine if there are differences due to the influences of fatigue and sports modality. VO_{2max}, vVO_{2max}, and T_Lim^vVO_{2max} were measured to determine maximum individual fatigue intolerance point with two preliminary test sessions. H/Q data analyzed were for angular velocities of 180°/s. H/Q_{48,49,50} calculated using the moment developed in repetitions 48-50 was significantly greater than other conventional methods (p<0.001). Significant differences were apparent among new and conventional methods (H/Q_{Right}: 1.20–1.24 vs. H/Q_{CR}: 0.57–0.62; p<0.05) and (H/Q_{Left}: 1.17–1.34 vs. H/Q_{CR}: 0.53–0.55; p<0.001), respectively. H/Q fatigue ratios following an exhaustive exercise offer different information compared to conventional methods of determining the hamstrings-to-quadriceps ratio under non-fatigued conditions.

Keywords: Exercise testing - Oxygen consumption - Sports, Fatigue index, H/Q.
INTRODUCTION

The term “body fatigue”, which in turn provokes a decrease in the ability to continue to maximum performance, refers to a homeostatic disturbance and exercise-induced reduction in maximal voluntary muscle force induced by physical activity (Gandemia, 2001). Muscular fatigue may cause significant muscular asymmetries that could lead athletes to injuries. Therefore, in order to identify muscle imbalances and establish injury prevention programs it is essential to assess the muscular function of elite athletes after muscular fatigue (Scattone-Silva et al., 2012).

Presumably, the hamstring-to-quadriceps-ratio (H/Q) may be the best method to evaluate the muscular injury risk caused by fatigue and muscular imbalances. The hamstrings-to-quadriceps muscle strength ratio calculated using peak moment strength parameters has been widely used as a complementary assessment tool in the evaluation of neuromuscular performance. Despite accumulated fatigue being an important risk factor for both hamstring strain and anterior cruciate ligament injuries in athletes conventional H/Q ratios and fatigue index methods which are the outcome of a test usually carried out using slow velocity, alternating knee extension and flexion focused contractions, are sometimes criticized since prevailing hamstring injuries occur when the knee joint angular velocity is high during the eccentric phase of running (Heiderscheit et al., 2005).

To date, several versions of these tests were developed but one possible problem with current versions of the H/Q ratio test is that conventional H/Q (H/Q_{CR}) tests underestimate other neuromuscular variables which could also influence the antagonist to agonist muscle relationship, such as muscle fatigue in the lower limbs, or muscle activation and are performed under non-fatigued conditions which may lead to imprecise results even though the H/Q ratio was previously demonstrated to be sensitive to experimentally imposed muscular fatigue (Ruas et al., 2019; Cohen, Zhao et al., 2015). Therefore, alternative tests need to be developed, or the H/Q ratio may need to be tested under different muscle contraction conditions to have a greater predictive potential.

Time to exhaustion (T_{Lim}) test protocols are performed at a constant speed or power output and participants are to maintain the test until volitional exhaustion at their vV{O2max} until they no longer continue the required work rate (Denadai and Denadai, 1998; Wilber and Moffatt, 1992). However, due to the concept of this constant activity a reduction in mechanical efficiency results in an increased local muscular fatigue (Figueiredo et al., 2011).

However, despite the prevalent use of screening tests used in the evaluation of lower extremity injury prevention and rehabilitation, the muscle imbalance, knee joint stability, muscle strength properties and functionality recent data have shown that anterior cruciate ligament (ACL) (re)injury rates have increased in recent years which possibly indicating an ineffectiveness of such tests to predict (re)injury mechanism (Ekstrand et al., 2001; Sanders et al., 2016). It is therefore important to offer alternative H/Q ratios as sensitive screening methods to predict (re)injury occurrence, monitor joint integrity, and identify the relevance of exercise type and intensity in observed H/Q ratios.

Studies to date calculated H/Q using various methods described previously (Weber et al., 2010; Thorstensson & Karlsson, 1976; Kawabata et al., 2000). However, despite the relevance of fatigue indexes during H/Q calculation there are wide range of differences among these equations as fatigue index commonly calculated as the percent decrease in the average moment over the last three or five repetitions relative to the percent decrease in the average moment over the first three or five repetitions. Considering the importance of fatigue in the assessment of H/Q ratio Pinto et al. (2018) developed an alternative fatigue index method where the percent decrease in the peak joint moment over the last three repetitions was compared to the maximal joint moment over 30 repetitions at an angular velocity of 300°·s⁻¹ (Pinto et al., 2018). Taking the intra-subject variability of initiation and heterogeneity in maintenance of force production over 30 repetitions
into consideration we tested an alternative method in this study to calculate fatigue index over 50 repetitions at an angular velocity of 180°·s⁻¹ and will be referred to as Equation A, which is a new method proposed in this study. Equation B and C are conventional methods used to calculate fatigue index parameters over a 50 repetition at an angular velocity of 180°·s⁻¹. Thus, we hypothesized that if neuromuscular fatigue in the quadriceps and hamstring muscles during fatigue test affect observed H/Q ratios the H/Q ratios calculated using this new alternative method subsequent to fatigue test would indicate higher H/Q ratios compared to other conventional methods. With this in mind, we aimed to evaluate the effect of fatigue on H/Q ratios subsequent to an exhaustive running (i.e. TLim at vVO2max) trial performed at maximum individual fatigue intolerance point using an alternative H/QFatigue approach rather than other conventional (H/QCR) methods of determining the hamstrings-to-quadriceps ratio under non-fatigued conditions.

METHODS

Participants: Thirty-seven athletes ages ranged 17 to 33 years (21.41±4.09) volunteered to participate in this study.

Test Procedures: The physical characteristics of participants in each group were presented in Table 1. All participants gave written informed consent prior to participating in the study approved by Mersin University Institutional Review Board in compliance (Protocol number: 156, date of approval: 05.06.2014) with the ethical standards of the Helsinki Declaration. All participants were familiarized to the experimental procedures and informed about equipment. The anthropometric parameters (body fat mass, lean body weight, weight) were assessed using Bioelectrical impedance analysis (Tanita 418-MA Japan) before VO2max and TLimVVO2max test sessions. Height was measured with a stadiometer in the standing position (Holtain Ltd. U.K.). Athletes performed two tests over a one-week interval with two separate visits to the laboratory. In the first visit, athletes underwent a progressive treadmill test to determine VO2max and vVO2max. In the following session, the TLimVVO2max test was carried out at a constant speed until volitional exhaustion. Preliminary testing sessions were applied in assessment of maximum fatigue intolerance point of each participant for running time to exhaustion. Heart Rate (HR) was also monitored and recorded throughout VO2max and TLim test sessions using 12-lead ECG.

Determination of VO2max, vVO2max, and TLim at vVO2max: VO2max, vVO2max, and TLimVVO2max were measured in a preliminary test session using a progressive exercise protocol on a treadmill. Oxygen consumption was measured breath by breath through a gas analyzer (CareFusion MasterScreen CPX, ABD) and subsequently averaged over 15-second intervals. Before each test, the automated gas analyzer was calibrated according to the manufacturer’s recommendations and using standard gases of known concentration.

All participants maintained standing position on the treadmill and were asked to hold the handrails before initializing device for a test session. Then, the treadmill speed was set to 5 km.h⁻¹ (0 % slope) and increased every minute by 1 km.h⁻¹. Following this warm-up process, the test was started when the speed reached at 8 km.h⁻¹. Throughout the tests, participants received verbal encouragements and they were asked to rate their perceived exertion on Borg’s scale at the end of each minute. The test continued until at least two of the following criteria were obtained: a plateau in VO2 despite an increase in running speed: a respiratory exchange ratio (RER) above 1.1; HR over 90 % of the predicted maximal HR. If the stage of 1 min could not be completed, the velocity of the previous stage was recorded as vVO2max. At the following week, athletes underwent a TLim test using vVO2max on a treadmill under the same laboratory conditions. Following a 15-min warm-up period at 60% vVO2max, the speed was immediately increased (in less than 20 s) up to vVO2max. Then, the participants were encouraged to run to their volitional exhaustion. The time from when the vVO2max was first attained

http://www.sbd.hacettepe.edu.tr
until participants’ volitional exhaustion was recorded to the nearest second as \(T_{\text{Lim}} \) \(v\text{VO}_2\text{max} \). The test was ended when the participants failed to continue running at the required velocity despite verbal encouragement.

Isokinetic Strength Testing: In assessment of isokinetic peak moments the participants were seated on the Cybex chair in upright position prior to isokinetic test session with the hips flexed at an angle of 90° and using pelvic and thigh straps the hips and thighs of participants were stabilized following treadmill \(T_{\text{Lim}} \) testing sessions. As part of the familiarization process, the participants were given standard verbal instructions regarding the procedures and then performed a maximum of five repetitions at angular velocities of 60°/s to determine isokinetic peak moment strength, and the results were stored for analysis. The participants were instructed to exert effort as hard and as fast as possible for all contractions.

Fatigue Testing Protocol: In order to determine conventional and H/Q\(^{\text{Fatigue}} \) all participants underwent a fatigue test protocol subsequent to \(T_{\text{Lim}} v\text{VO}_2\text{max} \) measurements. Participants performed 50 maximal bilateral knee extension and flexion repetitions at an angular velocity of 180°/s to induce the participants to fatigue. The participants were asked to perform as quickly as possible and to grasp the handles at the sides of the chair throughout the warm-up and the test. The knee moment of the limbs was measured through a range of motion from 90° (knee flexion) to 0° (full knee extension). Gravity correction was made prior to isokinetic test protocol sessions. The participants underwent the same protocol for both of their legs during all isokinetic testing sessions.

Equations used to calculate the knee extensor and flexor fatigue index are shown below:

Fatigue Index method	Equation
A	\([(\text{Mom}_{\text{max}} - P_{48,49,50}/\text{Mom}_{\text{max}})\times100]\)
B	\([(\text{PM}_{1-3} - P_{48,50}/\text{PM}_{1-3})\times100]\)
C	\([(\text{PM}_{1-5} - P_{46,50}/\text{PM}_{1-5})\times100]\)

Also, the equations used in the determination of hamstring-to-quadriceps ratio are shown below:

Strength Ratio (abbreviation)	Description	Equation
Fatigue Ratio\(^{(48,49,50)}\)	Fatigue ratio calculated using the 48th, 49th, and 50th repetitions (individual comparisons)	Knee Flexor Fl\(^{48,49,50}\)/ Knee Extensor Fl\(^{48,49,50}\)
Mean (48-50) Fatigue Ratio	Mean Fatigue Index value of the last three repetitions	Knee Flexor Fl\(^{48-50}\)/ Knee Extensor Fl\(^{48-50}\)
M-H/Q\(^{\text{CR}}\)	Maximal H/Q conventional ratio utilizing the maximum joint moment (\(\text{Moment}_{\text{max}} \))	Knee Flexor \(\text{Mom}_{\text{max}} \)/ Knee Extensor \(\text{Mom}_{\text{max}} \)
P\(^{(1-3)}\)− H/Q\(^{\text{CR}}\)	Mean Fatigue Index value of the first three repetitions	Knee Flexor PM\(^{1-3}\)/ Knee Extensor PM\(^{1-3}\)
P\(^{(1-5)}\)− H/Q\(^{\text{CR}}\)	Mean Fatigue Index value of the first five repetitions	Knee Flexor PM\(^{1-5}\)/ Knee Extensor PM\(^{1-5}\)
P\(^{(1)}\)− H/Q\(^{\text{CR}}\)	Joint moment of the first repetition	Knee Flexor PM\(^{1}\)/ Knee Extensor PM\(^{1}\)

http://www.sbd.hacettepe.edu.tr
Statistical Analysis: Descriptive statistics were used to summarize data. Shapiro Wilk test was applied to test the normal distribution. Since some of the variables were not distributed normally and sample size of the groups are not adequate for parametric test the Kruskal-Wallis H analysis was used to test the statistical significance and the Mann Whitney U test was used to determine any significant difference between branches. A paired sample t-test was used to compare Mommax and joint moments during the time to exhaustion tests subsequent to vVO2max. To test the reproducibility of the data collected subsequent to fatigue test protocol each repetition was compared to the maximum joint moment and the reproducibility was provided using the quotient of individual repetitions (48 to 50) to the maximum joint moment during fatigue test.

Intraclass Coefficient (ICC) and Intraclass Coefficient Confidence Intervals (ICC CI 95%) was determined to represent the proportion of variance in a set of scores that is attributable to the true score variance. The level of statistical significance was set at \(p<0.05 \) and \(p<0.001 \) for all comparisons and Bonferroni adjustment was applied. To describe differences related to equations, effect sizes were calculated as the difference between means divided by the pooled standard deviation. An effect size \(\geq 0.20 \) and \(<0.50 \) was considered small, \(\geq 0.50 \) and \(<0.80 \) medium, and \(\geq 0.80 \) large using Cohen's criteria. The statistical analysis was performed with SPSS version 20.0 (SPSS Inc., Chicago, IL, USA). GraphPad Software GraphPad Prism 6 was used for graphical expression.

RESULTS

Data of physiological characteristics of participants are shown as mean±standard deviation (Mean±SD) in Table 1.

	Cycling n=8	Martial Arts n=10	Soccer n=10	Track and Field n=9
Age (years)	24.75±5.28	20.60±3.47	21.30±3.62	19.44±2.46
Height (cm)	177.63±6.65	173.60±5.30	175.00±5.89	174.00±6.46
Weight vVO2max (kg)	70.21±7.37	68.90±10.54	60.57±6.81	64.71±6.26
LBM vVO2max (kg)	64.01±6.53	59.07±7.79	68.22±7.12	56.99±6.31
PFM vVO2max (%)	8.70±5.42	12.92±7.68	10.51±4.16	12.02±2.76
Weight TLim (kg)	69.53±9.25	69.03±10.91	68.22±7.12	64.68±6.16
LBM TLim (kg)	64.36±5.13	59.73±8.29	61.02±6.61	57.54±6.41
FM TLim (%)	10.06±6.13	13.78±7.29	10.51±4.16	11.12±2.96

LBM: Lean Body Mass, **PFM:** Percent Fat Mass. Subject characteristics were measured mean Mean±SD.

According to statistical analysis no significant differences were found in demographic and anthropometric parameters between groups (height \(\chi^2(3)=2.278, p=0.517 \), age \(\chi^2(3)=6.398, p=0.094 \), body weight \(\chi^2(3)=1.596, p=0.660 \), LBM \(\chi^2(3)=4.386, p=0.223 \), FM vVO2max \(\chi^2(3)=3.589, p=0.309 \), FM TLim \(\chi^2(3)=0.645, p=0.886 \), respectively. There was a significant difference in VO2max \(\chi^2(3)=14.153, p=0.03 \) and vVO2max \(\chi^2(3)=14.287, p=0.03 \) among groups (Table 2).
Table 2. Comparison of $vVO_{2\text{max}}$, T_{Lim}, $VO_{2\text{max}}$, HR, RE and RER measurements of the groups, Mean rank (Min-Max).

	Cycling $n=8$	Martial Arts $n=10$	Soccer $n=10$	Track and Field $n=9$
$vVO_{2\text{max}}$ (km.h$^{-1}$)	16.94 (14-18)	9.50 (13-17)	25.00* (15-18)	24.72* (16-19)
T_{Lim} (seconds)	22.00 (219-800)	17.85 (139-478)	16.05 (160-368)	20.89 (239-492)
$VO_{2\text{max}}$ (ml.kg$^{-1}$.min$^{-1}$)	19.94 (45.50-63.20)	8.35 (43.70-51.40)	24.05* (50.50-65.30)	24.39* (50.30-61.40)
HR (beat/min)	19.00 (163-197)	22.50 (177-194)	18.85 (175-197)	15.28 (167-192)
RPE	24.19 (13-19)	14.95 (11-17)	22.85 (13-19)	14.61 (7-17)
RER	12.38 (1.07-1.21)	20.55 (1.06-1.24)	23.60 (1.12-1.22)	18.06 (1.10-1.20)

HR: Heart rate, RPE: Rate of Perceived Exertion RER: Respiratory Exchange Ratio *p<0.05

Track and field athletes ($U=4.00, Z=-3.35, p=0.000$) and soccer players ($U=3.50, Z=-3.51, p=0.000$) had significantly higher $VO_{2\text{max}}$ values than martial arts athletes (Figure 1a). Mann-Whitney U test revealed that $vVO_{2\text{max}}$ values of track and field athletes ($U=6.50, Z=-3.21, p=0.001$) and soccer players ($U=9.50, Z=-3.14, p=0.001$) were significantly higher than martial arts athletes (Figure 1b).

Figure 1: Comparison of (a) $VO_{2\text{max}}$ and (b) $vVO_{2\text{max}}$ values among groups.

There were no significant differences between groups in $T_{\text{Lim}} (\chi^2(3) = 1.745, p=0.05)$. According to the results of the analysis, there were no significant differences among groups in terms of HR, RPE and RER. However, significant differences were apparent among conventional and new fatigue index methods (Table 3).
Table 3. Comparison of fatigue index parameters using new and conventional equations.

Method	Fatigue Index Extension (Right)	Fatigue Index Flexion (Right)
A vs. C	Mean±SD (%)	Mean±SD (%)
	Effect Size (95% CI)	Effect Size (95% CI)
A vs. B	Mean±SD (%)	Mean±SD (%)
	Effect Size (95% CI)	Effect Size (95% CI)

Note. p<0.05, **p<0.001. Subject characteristics were measured as Mean±SD.

Intraclass coefficient (ICC) and Intraclass coefficient confidence intervals (ICC CI 95%) was determined to represent the proportion of variance in a set of scores that is attributable to the true score variance. ICC was found 0.94 (95% CI, 0.74–0.99); 0.90 (95% CI, 0.55–0.98), and 0.74 (95% CI, 0.60–0.94) for knee extensor and 0.97 (95% CI, 0.88–0.99), 0.94 (95% CI, 0.77–0.99), and 0.90 (95% CI, 0.60–0.98) for knee flexor muscles for between the repetitions 48 to 50, respectively (Table 4).

Table 4. Intra-class coefficient (ICC) and intra-class coefficient confidence intervals used to determine the reproducibility between the repetitions 48 to 50.

Treadmill knee extensors	Mean±SD	ICC	ICC CI 95%	CV	SEM
[(Mom_max_P4/Mom_max)_100]	41.25±12.60	0.94	0.74–0.99	3.88%	3.27
[(Mom_max_P4/Mom_max)_100]	39.26±15.26	0.90	0.55–0.98	2.14%	3.90
[(Mom_max_P50/Mom_max)_100]	42.46±13.25	0.74	0.60–0.94	11.77%	2.95

Treadmill knee flexors	Mean±SD	ICC	ICC CI 95%	CV	SEM
[(Mom_max_P4/Mom_max)_100]	38.87±11.40	0.97	0.88–0.99	2.52%	4.07
[(Mom_max_P4/Mom_max)_100]	34.68±11.25	0.94	0.77–0.99	0.72%	4.00
[(Mom_max_P50/Mom_max)_100]	36.56±10.12	0.90	0.60–0.98	5.94%	3.31

Note. CV: The coefficient of variation, SEM: the standard error of the mean. Subject characteristics were measured mean Mean±SD.

Comparison of \(H/Q_{\text{Fatigue}}\) and \(H/Q_{\text{CR}}\) parameters: \(H/Q_{\text{Fatigue}}\) calculated using the moment developed in repetitions 48-50 was significantly greater than other conventional methods. The results of the Kruskal Wallis-H analysis revealed statistically significant differences among new and conventional equations with respect to \(H/Q\) absolute fatigue ratios \((H/Q_{\text{Right}}_{48,49,50}: 1.20–1.24\text{ vs. }H/Q_{\text{CR}}: 0.57–0.62; p<0.05)\) and \((H/Q_{\text{Left}}_{48,49,50}: 1.17–1.34\text{ vs. }H/Q_{\text{CR}}: 0.53–0.55; p<0.001)\) following \(T_{\text{Lim}}\) VO\(_{2\text{max}}\) tests, respectively (Figure 3 a,b,c,d).

http://www.sbd.hacettepe.edu.tr
Interaction between neuromuscular capacity and fatigue test performance subsequent to treadmill time to exhaustion test: Knee extensor 1st \((Z=-2.092, p=0.005)\) and 2nd \((Z=-2.208, p=0.041)\) repetitions and flexor moment in the 1st \((Z=-2.438, p=0.031)\) and 2nd \((Z=-2.045, p=0.028)\) repetitions were significantly lower than the maximal joint moment subsequent to treadmill time to exhaustion test (extension Mom\(_{\text{max}}\), mean from the 5th to the 7th repetitions, and flexion Mom\(_{\text{max}}\), mean from the 8th to the 10th repetitions), respectively. Extensor moments decreased by the 8th repetition and remained significantly decreased to the end of the fatigue testing by the 25th repetition while flexor moments decreased by the 14th repetition and remained significantly decreased by the 20th repetition to the end of the fatigue testing protocol when compared to the Mom\(_{\text{max}}\). There was also a heterogeneous intra-subject distribution in the initiation of maximum joint moments during fatigue test subsequent to time to exhaustion test (Table 5).

Table 5. Intra-subject variability in the initiation of maximum joint moment

Frequency distribution	Repetition
39%	8th repetition
25%	6th repetition
21%	5th repetition
9%	3rd repetition
6%	1st repetition

Note. The percent of frequency distribution indicates the repetition of which participants reached their maximum joint moment during fatigue test.
DISCUSSION

Running speed related hamstring injuries comprise a great deal of hamstring injuries in athletes and the data related to injury mechanism underlie that the incidence of hamstring injuries occur while the athlete is running at maximum or close to maximum speeds (Askling et al., 2007). Conventional hamstrings-to-quadriceps (H/Q) ratio, which is one of the most common evaluation methods, representing the concentric hamstrings (H$_{con}$) to quadriceps (Q$_{con}$) torque ratio (Kellis and Baltzopoulos, 1995).

It was reported that there is a relationship between stride frequency variations and running performance until time to exhaustion at the velocity of VO$_{2\text{max}}$ (Boram et al., 2018) and an improved strength in the lower-limb which would require less activation of extensors muscles per stride reducing the actual demand of number of motor units during this constant intensity (Støren et al, 2011). The results of another study showed a significant relationship ($P = 0.024$) between horizontal ground reaction force and the combination of biceps femoris EMG activity during the end of the swing and the knee flexors eccentric peak moment during running at maximum speed. It was also noted that subjects who produced the greatest amount of horizontal force were both able to highly activate their hamstring muscles just before ground contact and present high eccentric hamstring peak moment capability (Morin et al., 2015). Therefore, because great limb velocities prior to foot ground impact occur during sprinting, this swing-stance transition moment is of crucial importance for hamstrings as these muscle group support forces as high as eight times body weight (Sun et al., 2015).

On the other hand, to determine the magnitude of another crucial component among sports injuries Hayes et al. (2004) investigated the effects of fatigue on knee angle at contact and maximal knee flexion during stance in sub-maximal running in which participants increased flexion, a negative correlation was found between local muscle resistance of flexors and extensors of the hip and the kinematic changed in vVO$_{2max}$ (Hayes et al., 2004). Results indicated that less kinematic alteration occurs during the run and athletes with higher local muscle resistance are able to keep their running kinematic stable. Besides, Horita et al. (1999) claimed that athletes must perform a higher muscle workload to be able to provide stretching-shortening cycle at a given running velocity during the propulsion phase resulted in higher fatigue progression (Horita et al., 1999). Consequently, athletes must perform an extra effort during T$_{lim}$ at vVO$_{2max}$ unlike their regular performance routines and this excessive angular difference during constant loads may decrease fatigue resistance.

When the muscular involvement and biomechanical changes during running into consideration, branches such as soccer and track and field require an improved knee flexor muscle strength since eccentric muscle strength plays an essential role to maintain running performance at which vVO$_{2max}$ intensity (Figure 1b). Hayes et al. (2004) found statistically significant negative correlations between stride length and eccentric knee flexion (KFecc), ($r = -0.957$) during a run to exhaustion at vVO$_{2max}$ (Hayes et al., 2004). They reported that there is a strong relationship between local muscular endurance of the knee flexors with changes in running mechanics. It has been found in another study that the repeated transient impact of vertical ground reaction force causes an abrupt collision force equal to about 1.5- to 3-fold the body weight during running (Lieberman et al., 2010). Furthermore, Arampatzis et al. (1999) reported an increased mechanical power at the knee joint and muscles to be exposed to a heavier load with the increase in velocity (Arampatzis et al., 1999). Taking such repeated impacts into account it could be speculated that soccer and track and field athletes with higher local muscle resistance may have been fewer changes in kinematic variables during the run and enabled them to cope with lower limb muscle fatigue and prolonged time to exhaustion at their vVO$_{2max}$ (Table 2). This findings may arise a question whether the outcome data used to determine H/Q ratio derived under fatigued conditions present

http://www.sbd.hacettepe.edu.tr
consistency and reproducibility as power output in the lower extremity muscles especially in quadriceps and hamstring group muscles would decrease proportionally as a result of the fatigue due to the exhaustive exercise such as T\textsubscript{Lim} at \textit{vVO}\textsubscript{2max}. However, Coombs et al., 2005 observed no predictive potential of the test when performed during eccentric actions or at higher joint angular velocities which calls into question the predictive potential of several versions of the test (Coombs and Garbutt, 2002). On the other hand, the results of the study indicates that evaluation of H/Q ratio subsequent to time to exhaustion test offers a different insight into measured data following testing modalities which involves increased activation of knee flexor muscles (Figure 3a,b,c,d). Additionally, as shown in Figure 1(a) and Figure 1(b), soccer and track and field athletes showed greater \textit{VO}\textsubscript{2max} and \textit{vVO}\textsubscript{2max} and also increased H/Q discrepancy compared to other branches (Figure 3a,b). The significant asymmetries calculated through H/Q\textsubscript{Fatigue} intervention clearly indicates the heterogeneity of the data when H/Q evaluated under exact fatigue conditions. Based on the results of a research, the percent decline in H/Q\textsubscript{CR} and fatigue index from repetitions 28-30 were found significant and positive for the knee flexor moments while no significant correlations were observed for the changes in H/Q\textsubscript{CR} or FI of the knee extensors in repetitions 28 and 30. These findings indicate that knee extensor FI had a weak (or no) effect on the reductions in H/Q\textsubscript{CR} and the subjects who had a greater percent decline in H/Q\textsubscript{CR} also tended to demonstrate a greater fatigue in the knee flexors (Pinto et al., 2018). We found in our study that the magnitude and reproducibility of flexor muscles during T\textsubscript{Lim} at \textit{VO}\textsubscript{2max} was dominant even under fatigued conditions when we compared the individual repetitions between 48-50 to maximum joint moment during fatigue test ICC was found 0.97 (95% CI, 0.88–0.99), 0.94 (95% CI, 0.77–0.99), and 0.90 (95% CI, 0.60–0.98) for knee flexor muscles for between the repetitions 48 to 50, respectively (Table 4). Together with this findings it could be asserted that knee flexor fatigue may better explain the reductions in H/Q\textsubscript{CR} during a fatigue test than knee extensor fatigue. In accordance with this findings, the results of the current study indicates that the evaluation of the neuromuscular determinants such as fatigue index, H/Q ratio following exercise intensities where anaerobic metabolism prevails are also affected by fitness deficiency, and a poor aerobic and anaerobic capacity. These results clearly showed that H/Q ratio provides distinct data regarding actual neuromuscular performance or risk of injury if H/Q is determined after a fatigue test compared to other standard techniques (Table 3). On the other hand, the results of the frequency analysis indicated that all participants reached their maximal moment at different repetition. Only a 6% of the participants reached their maximum joint moment at their first repetition while 9% reached at 3rd, 21% at 5th, 25% at 6th and 39% at their 8th repetition (Table 5). It could be thus speculated that the wide range of intra-subject variability of initiation and maintenance of force production during the test which can affect the calculation of fatigue index as well as the changes in joint moment and H/Q ratio during the fatigue test. In terms of a precise evaluation, H/Q ratio and fatigue index rely mainly on the selection of the method to calculate the fatigue index such as fatigue rate, type of the exercise, and intensity. Thus, due to many factors which could possibly affect the observed data are being taken into account during the evaluation of neuromuscular performance this new approach may provide perhaps more precise information than other conventional methods while fatigue is an important factor in the evaluation of isokinetic testing performance, and consequently on the H/Q measurements.

CONCLUSION AND RECOMMENDATIONS

The results of this new proof-of-concept method and traditional equations demonstrated significant overall differences with respect to H/Q ratio and fatigue index under fatigued conditions in the functioning of the exercising leg muscles in the present study. This novel information may provide different information to organize exercise programs and form individual goals, to monitor improvements of athletes and to set training and testing regimes and enable them to control...
whether these measurements are indeed helping them to achieve their goals. To this end, it could be speculated that the assessment of H/Q ratio and fatigue index parameters under non-fatigued conditions may not mimic the actual muscular performance of the athletes and leads to an imprecise evaluation of fatigue index and hamstring to quadriceps ratio. With the light of the findings of this study, it is essential to highlight the need of integration of maximum strength training into programs to improve aerobic and anaerobic capacity as participants indicated higher H/Q ratios and increased fatigue indexes as a result of fatigue. More studies should be conducted to detect differences among different branches, which can provide a great deal of advantages in comparing physiological parameters and their effects on H/Q ratio and fatigue mechanism.

REFERENCES

1. Arampatzis A, Bridgeman GP, Metzler V. (1999). The effect of speed on leg stiffness and joint kinetics in human running. J Biomech. 32: 1349–1353.
2. Askling CM, Tengvar M, Saartok T, Thorstensson A. (2007). Acute first-time hamstring strains during high-speed running: a longitudinal study including clinical and magnetic resonance imaging findings. Am J Sports Med. 35:197–206.
3. Boram L, Boe B, Justus DO Young SK. (2018). The effect of stride frequency variations on running performance at the velocity of VO2max: Medicine & Science in Sports & Exercise 50:265-266.
4. Cohen DD, Zhao B, Okwera B, Matthews MJ, Delestrat A. (2015). Angle-specific eccentric hamstring fatigue after simulated soccer. Int J Sports Physiol Perform. 10: 325–331.
5. Coombs R, Garbutt G. (2002). Developments in the use of the hamstring/ quadriceps ratio for the assessment of muscle balance. J Sports Sci Med. 1:56.
6. Denadai BS, Denadai ML. (1998). Effects of caffeine on time to exhaustion in exercise performed below and above the anaerobic threshold. Braz J Med Biol Res. 31:581-585.
7. Ekstrand J, Walden M, Hagglund M. (2016). Hamstring injuries have increased by 4% annually in men’s professional football, since 2001: a 13-year longitudinal analysis of the uefa elite club injury study. Br J Sports Med. 50: 731–737.
8. Figueiredo P, Zamparo P, Sousa A, Vilas-Boas JP, Fernandes RJ. (2011). An energy balance of the 200 m front crawl race. Eur J Appl Physiol. 111(5): 767-77.
9. Gandemia SC. (2001). Spinal and supraspinal factors in human muscle fatigue. Physiol Rev. 81: 1725–89.
10. Hayes PR, Bowen SJ, Davies EJ. (2004). The relationships between local muscular endurance and kinematic changes during a run to exhaustion at VO2max. J Strength Cond Res. 18: 898-903.
11. Heiderscheit BC, Hoerth DM, Chumanov ES, Swanson SC, Thelen BJ, Thelen DG. (2005). Identifying the time of occurrence of a hamstring strain injury during treadmill running: a case study. Clin Biomech. 20:1072- 1078.
12. Horita T, Komi PV, Nicol C, Kyrolainen H. (1999). Effect of exhausting stretch-shortening cycle exercise on the time course of mechanical behaviour in the drop jump: possible role of muscle damage. The Journal of Strength and Conditioning Research. 79(2):160–7.
13. Kawabata Y, Senda M, Oka T, Yagata Y, Takahara Y, Nagashima H, Inoue H. (2000). Measurement of fatigue in knee flexor and extensor muscles. Acta Med Okayama. 54(2), 85-90.
14. Kellis E, Baltzopoulos V. (1995). Isokinetic eccentric exercise. Sports Med. 19: 202–222.
15. Lieberman DE, Venkadesan M, Werbel WA, Daoud AI, D’Andrea S, Davis IS, Mang’Eni RO, Pitsiladis Y. (2010). Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature. 463: 531–535.
16. Morin JB, Gimenez P, Edouard P, Arnal P, Jiménez-Reyes P, Samozino P et al. (2015). Sprint Acceleration Mechanics: The major role of hamstrings in horizontal force production. Front Physiol, 6: 404.
17. Pinto MD, Blazevich AJ, Andersen LL, Mil-Homens P, Pinto RS. (2018). Hamstring-to-quadriceps fatigue ratio offers new and different muscle function information than the conventional non-fatigued ratio. Scand J Med Sci Sports. 28: 282–293.
18. Ruas CV, Pinto RS, Haff GG, Lima CD, Pinto MD, Brown LE. (2019). Alternative methods of determining hamstrings-to-quadriceps ratios: A comprehensive review. Sports Medicine. 5:11.
19. Sanders TL, Maradit KH, Bryan AJ, Larson DR, Dahm DL, Levy BA et al. (2016). Incidence of anterior cruciate ligament tears and reconstruction: a 21- year population-based study. Am J Sports Med. 44: 1502–1507.
20. Scattone-Silva R, Lessi G, Lobato D, Serrão F. (2012). Acceleration time, peak torque and time to peak torque in elite karate athletes. Science & Sports. 27(4):e31-e7.
21. Støren Ø, Helgerud J, Hoff J. (2011). Running stride peak forces inversely determine running economy in elite runners. Journal of Strength and Conditioning Research, 25(1): 117-123.
22. Sun Y, Wei S, Zhong Y, Fu W, Li L, Liu Y. (2015). How joint torques affect hamstring injury risk in sprinting swing-stance transition. Med. Sci. Sports Exerc. 47: 373–380.
23. Thorstensson A, Karlsson J. (1976). Fatiguability and fibre composition of human skeletal muscle. Acta Physiol. Scand. 98:318–322.
24. Weber FS, Silva B, Radaelli R, Paiva C, Pinto RS. (2010). Avaliação iso- cinética em jogadores de futebol profissional e comparação do desempenho entre as diferentes posições ocupadas no campo. Rev Bras Med Esport. 16:264–268.
25. Wilber RL, Moffatt RJ. (1992). Influence of carbohydrate ingestion on blood glucose and performance in runners. Int J Sport Nat Exerc Metab. 2: 317-327.
Sporda Psikolojik İhtiyaçlar Durum Ölçeği (SPİDÖ): Türkçe Uyarlaması, Geçerlik ve Güvenirlik Çalışması

Psychological Needs in Sports Status Scale (PNSS): Turkish Adaptation, Study of Validity and Reliability

1Alpay BÜLBÜL
2Gamze AKYOL
1Sinop Üniversitesi, Spor Bilimleri Fakültesi, Beden Eğitimi ve Spor Öğretmenliği
2Hitit Üniversitesi, Spor Bilimleri Fakültesi, Beden Eğitimi ve Spor

ÖZ

Bu çalışmada Bhavsar vd., (2020) tarafından geliştirilen, Sporda Psikolojik İhtiyaçlar Durum Ölçeğinin (SPİDÖ) Türkçeye uyarlanması amaçlanmıştır. Toplam 29 soru 6 alt boyutta oluşan ölçeğin öncelikle madde analizi olarak, madde-toplam korelasyonunu hesaplanmıştır. Ayrıca SPİDÖ maddelerinin madde ayrıt ediciliğinin belirlenebilmesi için her bir alt boyuta ait ölçük puanları çoştan aza doğru sıralanıp, üstten %27’ye girenler üst grup, alttan %27’ye girenler alt grup olarak ayrılmıştır. Sonrasında maddelerin alt grup ile üst grup arasında farklılık gösterme durumu t testi ile incelenmiştir. SPİDÖ’nün alt boylulu yapısının veriye uyumunu incelemek amacıyla ölçek aracının, ölçülü yapıya ilişkin faktör yapısı belirlenir ve ölçekin orijinal formuna uygun olarak doğrulayıcı faktör analizi (DFA) yapılmıştır. Çok değişkenli normal dağılım varsayımı olmadığından, sağlam maksimum olabilirlik kestirimi (Robust Maximum Likelihood Estimation-RMLE) kullanılmıştır. SPİDÖ puanlarının güvenirliğini belirlemek amacıyla Cronbach alfa katsayısı yapılmıştır. Yapılan DFA sonucunda SPİDÖ ölçüsünden madde 10’un çıkarılarak, yani 28 madde olarak, Türkçe’ye uyarlanıp kullanılabileceği sonucuna ulaşılmıştır.

Anahtar Kelimeler: Spor psikolojisi, İhtiyaç, Yapı geçerliği, Güvenirlik

ABSTRACT

In this study, it is aimed to adapt the Psychological Needs In Sports Situation Scale (SPIDÖ) developed by Bhavsar et al. (2020) to Turkish. Firstly, the item-total correlation was calculated as item analysis of the scale which consists of 29 items and 6 factors. In addition, in order to determine the item distinctiveness of the SPIDÖ articles, the scale scores for each sub-dimension are already sorted towards the minimum, and those that enter 27% from the top are divided into the upper group and those that enter 27% from the bottom are divided into sub-groups. The differentiation of articles between the subgroup and the upper group was examined with the t test. In order to examine the compatibility of the six-dimensional structure of the SPIDÖ to the data, a confirmatory factor analysis (DFA) was performed in accordance with the original form of the scale, since the factor structure of the scale was determined. The Robust Maximum Likelihood Estimation (RMLE) was used. In order to determine the reliability of the sub-dimension scores of the SPIDÖ, the Cronbach alpha coefficient was used. As a result of the DFA, it was determined that article 10 could be removed from the SPIDÖ scale and adapted and used in Turkish as 28 articles.

Keywords: Sport psychology, Need, Structural validity, Reliability
GİRİŞ

Spor bireyin zihinsel, fiziksel ve sosyo-kültürel anlamda gelişmesini sağlayan karmaşık ve multi-disipliner bir olgudur. Spor evreni içerisinde bulunan spor elemanları, sporcular, yöneticiler veya sağlıklı yaşam maksadı ile sporu alışkanlık haline getiren bireyler, bu evrenin tüm etkilerine karşı较低る strukturların olanaklı olduğu belirtilmektedir. Özellikle amatör ve profesyonel sporculardan oluşan bir evrenin tüm etkilerin birincil yollarla tanıklık etmesi önemlidir. Özellikle amatör ve profesyonel sporculardan oluşan bir evrenin tüm etkilerin birincil yollarla tanıklık etmesi önemlidir. Özellikle amatör ve profesyonel sporculardan oluşan bir evrenin tüm etkilerin birincil yollarla tanıklık etmesi önemlidir. Özellikle amatör ve profesyonel sporculardan oluşan bir evrenin tüm etkilerin birincil yollarla tanıklık etmesi önemlidir.

Son zamanlarda araştırmacılar ayrıca, ihtiyaç duyulan memnuniyet ve hayat kırlığı durumlarının yanı sıra, sporcu motivasyonu ve refah/hastalığa daha kapsamlı bir anlamda olabilecek bir durumun, bu durumun psikolojik etkilerini değerlendirme ve değerlendirme becerileri gibi gruplar içerisinde bulunan bireylerin ortak etkileri alanlarındadır. Bireyler yakında sporcular kendileri içerisindeki, özellikle psikolojik ihtiyaçları hem aydınlık hem de karanlık taraflarına odaklanmıştır.

Psikolojik Memnuniyet (Tatmin), Hayat Kırlığı Ve Başarısızlık Durumları: ÖBT literatüründeki ilgili çalışmalar, temel psikolojik ihtiyaçların değerlendirilmesi son zamanlarda önemli hale gelmiştir. Bunun sebebi gelişen dünya içerisinde kaybolmamak ve tercih edilen bir birey olabilmek için, kişinin kendi eksikliklerini belirleyebilmesi ve iyileştirmesi gerektiğine dair bir önsöz olmayıp olmayan öncüleri (Chen ve diğ., 2015) kullanarak sonuç elde etmeye çalışılmışlardır. Bu öncüların önemini belirtir, bazı konusunun kişilerin işlevsellik aralardaki farklı ilişkileri arastırılmıştır (Bartholomew ve diğ., 2011).

Bununla beraber, ihtiyaç memnuniyeti puanlarının tükenme (Hodge ve diğ., 2008) ve fiziksel olarak iyi olmamak (Hodge ve diğ., 2008) olmaya ilgili ilgili değil. Örneğin, spor bağlamında, yüksek ihtiyaç memnuniyetinin, motivasyon (Ntoumanis ve Standage, 2009), olumsuz etki (Adie ve diğ., 2008), keyif (Mack ve diğ., 2011), ve olumlu gelişim deneyimleri (Taylor ve Bruner, 2012) gibi sonuçlarla pozitif ilişkili olduğu gösterilmiştir.

Bununla beraber, ihtiyaçtatımı ölçümleri ile ilgili düşük puanlar uyumsuz sonuçlar ile ilişkili bulunmuştur. Mesela spor bağlamında bakıldığında, ihtiyaç memnuniyeti puanlarının tükmeştır (Hodge ve diğ., 2008) ve fiziksel olarak iyi olmama (memnuniyetizlikten kaynaklanan kötü olma halı) belirtilerine birlikte (Reinboth ve diğ., 2004) olumsuz ilişkili olduğu da görülmüştür. Yani ihtiyaçtatımı ölçümlerinde elde edilen düşük ya da uyumsuz puanlar fiziksel ya da zihinsel bir probleme ilgili olduğu gibi ilgileriz olarak da nitelendirilebilmektedir. Sonuç olarak bu sonuç ortamı her zaman geçerli değildir ve bazı araştırmacılar düşük ihtiyaç memnuniyeti puanlarının memnuniyetizlikte ilgili olmamışı önemli sürmülerdir (Quested ve Duda, 2010; Reinboth ve Duda, 2006; Sheldon ve Bettencourt, 2002). Yeri gelmişken memnuniyetizlik durumu terimi, ağırlıklı olarak öz belirleme teorisi literatüründe (Bartholomew ve diğ., 2011; Cheon ve diğ., 2019; Costa ve diğ., 2015), tatminsızlığı belirtmek için kullanılmıştır. Bununla birlikte, bazı araştırmacılar,
Başarısızlık durumuna ilişkin deneyimlere atıfta bulunmak için memnuniyetsizlik terimini kullanmıştır (Neubauer ve Voss, 2016, 2018; Sheldon ve Hilpert, 2012).

Bartholomew ve diğ., (2011) başarısızlık ve memnuniyetsizlik durumları arasındaki ayrımı ilişkin kavramsal temelli bir argüman sunsa da, iki yapının benzersiz faktör yapısına ve öngörücü değere sahip olup olmadığını deneysel olarak test etmemiştirler. Bu duışuce Costa ve diğ., (2015) tarafından incelenmiştir. Araştırmacılar memnuniyetsizlik durumunun zapt edilmesine ilişkin öğeler geliştirmiş ve bunları değerlendirmişlerdir ve çok yöntemli faktör analiz (MTMM; CFA) kullanarak bu maddelerin kişiler arası ilişkiler bağlamında ihtiyaç duyulan başarısızlık durumundan farklı algılanabileceği göstermişlerdir.

İhtiyaç eksikliğinde (tatminsizlik) araştırılması gereken sebeplerin üçüncüüsü ise, ihtiyaç durumlarının sosyo- bağlamsal öncüllerinin incelenmesidir. Bireyin çevresinde algladığı sosyal faktörler, kişilerle ikili ilişkisini, kişinin temel psikolojik ihtiyaç tatminine yol açtığıda bu, memnuniyetsizlik durumunun farklı algılanabileceği göstermiştir (Cheon ve diğ., 2019). Başkalarından sağlanan ihtiyaç desteginin ihtiyaç tatmini yol açtığıda bu, memnuniyetsizlik gibi sinir bozucu sonuçlar da ortaya koymaktadır (Vansteenkiste ve Ryan, 2013). Tatminsizlik deneyimi sosyal faktörün bir kısmını başarısızlık durumunu yansıtmak için kullanılan kişiler arası davranışlardan kaynaklandığı düşünülmektedir (Cheon ve diğ., 2019).

Sporda tatminsizlik deneyiminin açıklayııcı örneği olarak şunlar verilebilir; bu kişiler bakış açılarının önemünden emin olmayan veya eğitim bölümlerinde belirli görevleri neden yerine getirdikleri konusunda belirsizlikler yaşayan (bağımsızlık eksikliği); yeterince motive olmamış hisseden ve istedikleri gibi gelişmiş ve başarmış hissetmeyen (yeterlilik eksikliği); ya da takımındaki diğer kişilerle pek fazla ortak noktaları yokmuş gibi hisseden, takım arkadaşlarıyla ilgilenmeyen ve tam anlamıyla “uygun olduklarını” düşünmeyen sporculardır (ilişki eksikliği).

Bu çalışmanın amacı, Bhavsar ve diğ., (2020) tarafından bireylerin sporda psikolojik ihtiyaçlarını değerlendirmek amacıyla son halini verilmiş olan ölçeğin, Türkçe’ye uyarlanması ve Türk literatüründeki önemi kazanmasıdır. Aynı zamanda araştırmacılar tarafından sporcuların yaşamış oldukları psikolojik ihtiyaç açıklıkları analiz edilerek, giderilmesini sağlamaktır.

YÖNTEM

Araştırma Grubu: Bu çalışma 2020-2021 yılında Türkiye’nin toplam 27 ilinde seçkisiz yöntem kullanarak ulaşılan, 303 sporcuğun katılımı ile gerçekleştirilmiştir. Katılımcıların özellikleri Tablo 1’de sunulmuştur.

Değişkenler	n	%
Cinsiyet		
Kadin	77	25,4
Erkek	226	74,6
Yaş		
15-20 yaş	182	60,1
21-25 yaş	56	18,5
26-30 yaş	25	8,3
31-35 yaş	26	8,6
36-40 yaş	14	4,6
Spor Yapma Düzeyi		
Üniversite	24	7,9
Kulüp	223	73,6
Bölgesel	26	8,6
Uluslararası	30	9,9
Haftalık antrenman yapma sayısı?		
2 antrenman	24	7,9
3 antrenman	48	15,8
4 antrenman	47	15,5
5 ve üzeri antrenman	184	60,7

http://www.sbd.hacettepe.edu.tr
Tablo 1 incelendiğinde katılımcıların %25,4’unun (n=77) kadın, %74,6’sının (n=226) erkek olduğu görülmektedir. Katılımcıların %60,1’i (n = 182) 15-20 yaş aralığında, %18,5’e (n = 56) 21-25 yaş aralığında, %8,3’ü (n = 25) 26-30 yaş aralığında, %8,6’sı (n = 26) 31-35 yaş aralığında ve %4,6’sı (n = 14) 36-40 yaş aralığında. Spor yapma düzeyi açısından incelendiğinde katılımcıların %7,9’unun (n = 24) üniversite düzeyinde, %73,6’sının (n = 223) kulüp düzeyinde, %8,6’sını (n = 26) bölgesel düzeyde %9,9’unun (n = 30) uluslararası düzeyde spor yaptığı belirlenmiştir. Katılımcıların %7,9’unun (n = 24) haftada iki antrenman, %15,8’si (n =48) haftada üç antrenman, %15,8’si (n =48) haftada üç antrenman, %15,8’si (n =47) haftada dört antrenman ve %60,7’si ise (n =184) haftada beş ve üzeri antrenman yapmaktadır.

Veri Toplama Araçları:

Sporda Psikolojik İhtiyaç Durumları Ölçeği (SPİDÖ): SPİDÖ, Bhavsar ve diğ., (2020) tarafından bireylerin sporda psikolojik ihtiyaçlarını değerlendirmek amacıyla geliştirilmiştir. SPİDÖ 29 maddeden ve altı boyuttan oluşmaktadır. Türk uyarlama çalışması yapılan bu ölçeğin boyutları bağımsızlık tatmini, bağımsızlık engellenmesi, yeterlilik tatmini, yeterlilik engellenmesi, ilişki tatmini ve ilişki engellenmesi şeklinde isimlendirilmiştir. Araştırmacılar bu yapının ortaya koyulmasında 24 model test etmiştir. Açımlayıcı faktör analizi sonucu altı faktörülü yapı elde edilmiş ve bu yapı doğrulayıcı faktör analizi (DFA) ile doğrulanarak, iyi düzeyde uyum indeksleri elde edilmiştir [χ2 (247) = 438.72, p < .001, CFI = .97, TLI = .95, SRMR = .02, RMSEA = .05 (90% CI .04, .06)] (Bhavsar vd., 2020). Standartlaştırılmış faktör yükleri istatistik olarak anlamlı bulunmuş ve .35 ile .86 arasında değişmektedir. Güvenirlik kanıtı için alt ölçek puanlarının iç tutarlılığı Raykov’un bileşik güvenirlik katsayısı değerlendirilmesi ile belirlenmiştir. Çalışmalarda, bağımsızlık tatmini, bağımsızlık engellenmesi, yeterlilik tatmini, yeterlilik engellenmesi, ilişki tatmini, ilişki engellenmesi alt ölçekleri için Raykov’un rho değerleri sırasıyla 0,73; 0,79; 0,76; 0,78; 0,89 ve 0,87 olarak hesaplanmıştır ve ölçekten elde edilen ölçümlerin iç tutarlığının yeterli düzeyde olduğu tespit edilmiştir.

Demografik Bilgi Formu: Bireylerin cinsiyetleri, yaş, spor yapma düzeyi vehaftalık antrenman sayısı hakkında bilgi toplamak amacıyla araştırmacılar tarafından Demografik Bilgi Formu oluşturulmuştur.

Verilerin Toplanması: Sporda psikolojik ihtiyaç durumlarını belirleme ölçeğini Türk literatürüne uyarlayabilmek için sorumlu yazar olan Bhavsar ve Daniel Gucciardi’den onay almıştır. Akabinde Türkçe çevirisini yapılan ve araştırmacılar tarafından ölçeğin aslında istenilen değişkenler esas alınarak hazırlanan demografik bilgiler anketi, Google Formlari üzerinde düzenlenerek veri havuzu oluşturulmuştur ve sporculara ulaştırılmıştır. Ortalama bir buçuk hafta sonunda toplam 303 veri elde edilmiştir.

Verilerin Analizi: SPİDÖ’nün Türk kültüründen uyarlanmasında veri girisi yapıldıktan sonra veri setinde kayıp değer ve yanlış veri görüşi olup olmadığı kontrol edilmiştir. Veri setinde herhangi bir kayıp veri ve yanlış veri görülmemiştir. Ölçeğin ilgili alt boyuttan yararlanmak için istenen değişkenler eşas alınarak hazırlanan demografik bilgiler anketi, Google Formlari üzerinden düzenlenerek veri havuzu oluşturulmuştur ve sporculara ulaştırılmıştır. Ortalama bir buçuk hafta sonunda toplam 303 veri elde edilmiştir.

Verilerin Analizi: SPİDÖ’nün Türk kültüründen uyarlanmasında veri girisi yapıldıktan sonra veri setinde kayıp değer ve yanlış veri gözükmemiştir. Veri setinde herhangi bir kayıp veri ve yanlış veri görülmemiştir. Ölçeğin ilgili alt boyuttan yararlanmak için istenen değişkenler eşas alınarak hazırlanan demografik bilgiler anketi, Google Formlari üzerinden düzenlenerek veri havuzu oluşturulmuştur ve sporculara ulaştırılmıştır. Ortalama bir buçuk hafta sonunda toplam 303 veri elde edilmiştir.

Verilerin Analizi: SPİDÖ’nün Türk kültüründen uyarlanmasında veri girisi yapıldıktan sonra veri setinde kayıp değer ve yanlış veri gözükmemiştir. Veri setinde herhangi bir kayıp veri ve yanlış veri görülmemiştir. Ölçeğin ilgili alt boyuttan yararlanmak için istenen değişkenler eşas alınarak hazırlanan demografik bilgiler anketi, Google Formlari üzerinden düzenlenerek veri havuzu oluşturulmuştur ve sporculara ulaştırılmıştır. Ortalama bir buçuk hafta sonunda toplam 303 veri elde edilmiştir.

Verilerin Analizi: SPİDÖ’nün Türk kültüründen uyarlanmasında veri girisi yapıldıktan sonra veri setinde kayıp değer ve yanlış veri gözükmemiştir. Veri setinde herhangi bir kayıp veri ve yanlış veri görülmemiştir. Ölçeğin ilgili alt boyuttan yararlanmak için istenen değişkenler eşas alınarak hazırlanan demografik bilgiler anketi, Google Formlari üzerinden düzenlenerek veri havuzu oluşturulmuştur ve sporculara ulaştırılmıştır. Ortalama bir buçuk hafta sonunda toplam 303 veri elde edilmiştir.

Verilerin Analizi: SPİDÖ’nün Türk kültüründen uyarlanmasında veri girisi yapıldıktan sonra veri setinde kayıp değer ve yanlış veri gözükmemiştir. Veri setinde herhangi bir kayıp veri ve yanlış veri görülmemiştir. Ölçeğin ilgili alt boyuttan yararlanmak için istenen değişkenler eşas alınarak hazırlanan demografik bilgiler anketi, Google Formlari üzerinden düzenlenerek veri havuzu oluşturulmuştur ve sporculara ulaştırılmıştır. Ortalama bir buçuk hafta sonunda toplam 303 veri elde edilmiştir.

Verilerin Analizi: SPİDÖ’nün Türk kültüründen uyarlanmasında veri girisi yapıldıktan sonra veri setinde kayıp değer ve yanlış veri gözükmemiştir. Veri setinde herhangi bir kayıp veri ve yanlış veri görülmemiştir. Ölçeğin ilgili alt boyuttan yararlanmak için istenen değişkenler eşas alınarak hazırlanan demografik bilgiler anketi, Google Formlari üzerinden düzenlenerek veri havuzu oluşturulmuştur ve sporculara ulaştırılmıştır. Ortalama bir buçuk hafta sonunda toplam 303 veri elde edilmiştir.

Verilerin Analizi: SPİDÖ’nün Türk kültüründen uyarlanmasında veri girisi yapıldıktan sonra veri setinde kayıp değer ve yanlış veri gözükmemiştir. Veri setinde herhangi bir kayıp veri ve yanlış veri görülmemiştir. Ölçeğin ilgili alt boyuttan yararlanmak için istenen değişkenler eşas alınarak hazırlanan demografik bilgiler anketi, Google Formlari üzerinden düzenlenerek veri havuzu oluşturulmuştur ve sporculara ulaştırılmıştır. Ortalama bir buçuk hafta sonunda toplam 303 veri elde edilmiştir.
sağlanmadığından sağlam maksimum olabilirlik kestirimi (Robust Maximum Likelihood Estimation-RMLE) kullanılmıştır. Analizde orijinal ölçügelari geliştirilen araştırmacılardan belirlenen alt faktörlü yapıyı doyurulmada yol diayagramı oluşturulmuş ve faktör kriya uyuşunluğu için standartlaştırılmış yüyler ve bazı model uyum indeksleri sunulmuştur. DFA sonuçunda elde edilen uyum iyiliği indeksi değerleri olan GFI, CFI ve NFI indeksleri için benzer ölçütlérer geçerlidir ve bu indekslerin 0,95 ile 1,00 arasında yer alması ise kabul edilebilir uyuymu göstermektedir (Hu ve Bentler, 1998). Araştırma kapsamından kullanılan uyum indekslerinin kabul düzeyleri ile ilgili bilgi SPİDÖ alt boyut puanlarının güvenirliliğini belirlemek amacıyla Cronbach alfa katsayısından yararlanılmıştır.

BULGULAR

SPİDÖ' den elde edilen ölçümlerin geçerliğini test edilmesinde faktör analizi öncesi de ölçgen madde toplam korelasyonları incelenmiştir. Ölçeğe ait maddelerin madde ayrı ediciliğini belirlemebilmise için çok puanları en üstten en alta doğru sıralanıp, üst %27 ve giren üst grup ve alt %27'ye giren alt grup olarak ayrılmıştır. Maddelerin alt grup ile üst grup arasında farklılık gösterme durumuna başımsız örneklemelere için t testi tekniği ile incelenmiştir. Ayrıca madde-toplam puan korelasyonu hesaplanmıştır. Sonuçları Tablo 2’de sunulmuştur.

Boyut	Madde No	Madde-Toplam Puan Koresasyonu	Düzeltilmiş Madde-Toplam Koresasyonu	Üst Grup	Alt Grup	
Bağımsızlık Tatmini	M1	0,737	0,558	4,87 0,38	3,04 1,34	11,920*
	M2	0,673	0,467	4,82 0,42	3,09 1,32	11,348*
	M3	0,687	0,397	4,90 0,30	2,18 1,32	18,251*
	M4	0,714	0,563	4,99 0,11	3,62 1,22	10,067*
	M5	0,687	0,511	4,98 0,16	3,55 1,34	9,550*
Bağımsızlık Engellenmesi	M6	0,774	0,576	4,02 1,01	1,10 0,43	25,498*
	M7	0,785	0,608	3,66 1,28	1,02 0,22	18,382*
	M8	0,763	0,556	3,93 1,04	1,05 0,31	24,019*
	M9	0,721	0,512	3,43 1,34	1,00 0,00	16,365*
	M10	0,126	-0,088	4,45 0,74	4,33 1,10	0,833
Yeterlik Tatmini	M11	0,683	0,387	4,93 0,26	2,67 1,23	16,273*
	M12	0,786	0,626	5,00 0,00	3,07 0,99	17,605*
	M13	0,743	0,600	4,96 0,19	3,76 1,03	10,488*
	M14	0,704	0,580	5,00 0,00	4,06 0,96	8,855*
	M15	0,801	0,680	5,00 0,00	3,56 1,00	13,996*
Yeterlik Engellenmesi	M16	0,813	0,655	3,07 1,46	1,00 0,00	12,900*
	M17	0,883	0,785	2,72 1,63	1,00 0,00	9,567*
	M18	0,805	0,647	2,96 1,45	1,00 0,00	12,241*
	M19	0,836	0,697	3,05 1,45	1,00 0,00	12,814*
İlişki Tatmini	M20	0,754	0,569	4,96 0,19	2,46 1,27	17,648*
	M21	0,731	0,536	5,00 0,00	2,62 1,26	17,045*
	M22	0,785	0,644	4,95 0,22	2,95 1,35	13,238*
	M23	0,748	0,579	5,00 0,00	2,96 1,26	14,620*
	M24	0,616	0,443	4,88 0,33	3,60 1,27	8,867*
İlişki Engellenmesi	M25	0,741	0,522	3,78 1,30	1,00 0,00	19,428*
	M26	0,847	0,741	3,49 1,08	1,00 0,00	20,858*
	M27	0,775	0,640	2,90 1,44	1,00 0,00	11,990*
	M28	0,786	0,658	2,91 1,40	1,00 0,00	12,398*
	M29	0,760	0,654	2,30 1,45	1,00 0,00	8,123*

*p<0,05

http://www.sbd.hacettepe.edu.tr
Tablo 2 incelendiğinde SPİDÖ’nün bağımsızlık tanımı boyutu madde toplam puan korelasyonlarının 0,67 ile 0,74 arasında değiştiği görülmektedir. Ayrıca bağımsızlık tanımı boyutu için düzeltilmiş madde-toplam puan korelasyonu değerlerinin, 0,40 ile 0,56 arasında değiştiği belirlenmiştir. Buna göre, uygulama yapılan ölçeğin bağımsızlık tanımı boyutundaki maddelerin tamaminin madde ayırt ediciliğine sahip olduğu yorumu yapılabilir. Üst grup ile alt grup arasında yapılan t testi sonucunda ise bağımsızlık tanımı boyutunda tüm maddeler için istatistiksel olarak anlamlı farklılık tespit edilmiştir (p<0,05). Buna göre, SPİDÖ bağımsızlık tanımı boyutunda yer alan maddelerin üst grupta yer alan bireyler ile üst grupta yer alan bireyleri ayırmada başarılı olduğu söylenebilir.

SPİDÖ bağımsızlık engellenmesi boyutu madde toplam puan korelasyonlarının 0,13 ile 0,78 arasında değiştiği görülmektedir. Ayrıca bağımsızlık engellenmesi boyutu için düzeltilmiş madde-toplam puan korelasyonu değerlerinin -0,088 ile 0,56 arasında değiştiği belirlenmiştir. Tablo 2’de görüldüğü gibi bağımsızlık engellenmesi boyutunda sadece madde 10 için madde-toplam puan korelasyonu 0,30’un altında olduğu görülmektedir. Buna göre, madde 10 dışında hazırlanan maddelerin amacına hizmet ettiği yorumu yapılabilir. Üst grup ile alt grup arasında yapılan t testi sonucunda ise bağımsızlık engellenmesi boyutunda madde 10 dışındaki maddeler için istatistiksel olarak anlamlı farklılık tespit edilmiştir (p<0,05). Madde 10 “Sporda ben; bana söyleneni yapmalıyım.” şeklindedir ve görevde dair zorunluluk algısı içermektedir. Buna göre, SPİDÖ bağımsızlık engellenmesi boyutunda yer alan madde 10 dışındaki maddelerin üst grupa yer alan bireyler ile üst grupta yer alan bireyleri ayırmada başarılı olduğu yorumu yapılabilir.

SPİDÖ’nün yeterlik tanımı boyutu madde toplam puan korelasyonlarının 0,68 ile 0,80 arasında değiştiği görülmektedir. Ayrıca yeterlik tanımı boyutu için düzeltilmiş madde-toplam puan korelasyonu değerlerinin, 0,39 ile 0,68 arasında değiştiği belirlenmiştir. Buna göre, hazırlanan maddelerin yeterlik tanımı boyutu altında bir hizmet ettiği yorumu yapılabilir. Üst grup ile alt grup arasında yapılan t testi sonucunda ise yeterlik tanımı boyutunda tüm maddeler için anlamlı farklılık tespit edilmiştir (p<0,05). Buna göre, SPİDÖ yeterlik tanımı boyutunda yer alan durumların üst grupta yer alan bireyler ile üst grupta yer alan bireyleri ayırmada başarılı olduğu yorumu yapılabilir. SPİDÖ’nün yeterlik engellenmesi boyutu madde toplam puan korelasyonlarının 0,80 ile 0,88 arasında değiştiği görülmektedir. Ayrıca yeterlik engellenmesi boyutu için düzeltilmiş madde-toplam puan korelasyonu değerlerinin 0,65 ile 0,78 arasında değiştiği belirlenmiştir. Buna göre, hazırlanan maddelerin amacına hizmet ettiği yorumu yapılabilir. Üst grup ile alt grup arasında yapılan t testi sonucunda ise yeterlik engellenmesi boyutunda tüm maddeler için istatistiksel olarak anlamlı farklılık tespit edilmiştir (p<0,05). Buna göre, SPİDÖ yeterlik engellenmesi boyutunda yer alan durumların üst grupta yer alan bireyler ile üst grupta yer alan bireyleri ayırmada başarılı olduğu yorumu yapılabilir.

SPİDÖ’nün ilişki tanımı boyutu madde toplam puan korelasyonlarının 0,62 ile 0,78 arasında değiştiği görülmektedir. Ayrıca ilişki tanımı boyutu için düzeltilmiş madde-toplam puan korelasyonu değerlerinin, 0,44 ile 0,64 arasında değiştiği belirlenmiştir. Buna göre, hazırlanan maddelerin amacına hizmet ettiği yorumu yapılabilir. Üst grup ile alt grup arasında yapılan t testi sonucunda ise ilişki tanımı boyutunda tüm maddeler için anlamlı farklılık tespit edilmiştir (p<0,05). Buna göre, SPİDÖ ilişki tanımı boyutunda yer alan durumların üst grupta yer alan bireyler ile üst grupta yer alan bireyleri ayırmada başarılı olduğu yorumu yapılabilir.

SPİDÖ’nün ilişki engellenmesi boyutu madde toplam puan korelasyonlarının 0,74 ile 0,85 arasında değiştiği görülmektedir. Ayrıca ilişki engellenmesi boyutu için düzeltilmiş madde-toplam puan korelasyonu değerlerinin, 0,52 ile 0,74 arasında değiştiği belirlenmiştir. Buna göre, hazırlanan maddelerin amacına hizmet ettiği yorumu yapılabilir. Üst grup ile alt grup arasında yapılan t testi sonucunda ise ilişki engellenmesi boyutunda tüm maddeler için istatistiksel olarak anlamlı farklılık tespit edilmiştir (p<0,05). Buna göre, SPİDÖ ilişki engellenmesi boyutunda yer alan durumların üst grupa yer alan bireyler ile üst grupta yer alan bireyleri ayırmada başarılı olduğu yorumu yapılabilir.
grupta yer alan bireyler ile üst grupta yer alan bireyleri ayırmada başarılı olduğu söylenebilir. Sonuç olarak, SPİDÖ maddelerinden sadece madde 10’un ölçekte kullanılması gerekliliği olmadığı yorumu yapılabilir.

SPİDÖ’nün altı boyutlu yapısını incelemek amacıyla doğrulayıcı faktör analizi yapılmıştır. DFA yapılırken uyum indekslerinden χ^2/df, CFI, GFI, NFI, SRMR ve RMSEA değerleri, faktör yük değerleri incelenerek model veri uyumu değerlendirilmiştir. İlk gerçekleştiilen DFA’da madde 10’un faktör yük değeri -0,13 ve hata varyansı değeri 0,98 olarak belirlenmiştir. Madde 10 dışında faktör yük değeri 0,30 altında ve hata varyansı 0,90’ın üstünde herhangi bir maddeye rastlanmamıştır. Bu nedenle madde 10 için analiz dışında bırakılarak analiz tekrarlanmıştır. Madde 10 analiz dışında bırakıldktan sonra gerçekleştiilen DFA sonucunda edileen uyum indeksi değeri, maksimum ve minumum faktör yük değerleri Tablo 3’de sunulmuştur. Ayrıca analiz sonucunda edilen diyagram Şekil 1’de sunulmuştur.

Tablo 3. SPİDÖ DFA’ne ait uyum indeksleri

DFA Sonuç Değerleri	χ^2/df	p	CFI	GFI	NFI	SRMR	RMSEA A	Faktör Yük Değeri	max	min
645,87	1,93	0,000	0,96	0,84	0,92	0,074	0,055	0,87	0,37	

Tablo 3 incelendiğinde χ^2/df değerinin 3’ten küçük olduğu görülüktedir ve buna göre modelin veriye çok iyi uyum gösterdiği söylenebilir (Kline, 2005). CFI değeri 0,96 ve NFI değeri 0,92 olarak bulunmuş ve bu değerlerin 0,90’nun üzerinde olması modelin veriye kabul edilebilip derece uyumun olduğunun göstergesi olarak kabul edilmektedir (Byrne, 2010). SRMR değerinin 0,08’den küçük olması ve RMSEA değerinin 0,06’dan küçük olması açısından da modelin veriye iyi uyum sağladığı söylenebilir (Hu ve Bentler, 1998). GFI değeri ise 0,84 olarak belirlenmiştir ve bu uyum indeksine göre model veri uyumunu olmadığı söylenebilir. Anderson ve Gerbing (1984)’in belirttiği gibi GFI değeri, özellikle küçük örneklem büyüklüklerinde artan model karmaşıklığı ile azalmaktadır. Örneklem büyüklüğünden bağimsız olmayan bu indeksin, altı boyutlu kurulan yapıda örneklem büyüklüğü çalışma kapsamında edilede örneklem nispeten daha büyük olduğu durumlarda artış göstereceği ön görülmektedir. Uyum indeksleri genel olarak değerlendirildiğinde madde 10 analiz dışında altı boyutlu modelin veriye uyum sağladığı görülmektedir. Ölceteksi tüm maddelerin faktör yük değerleri 0,30’dan yükseksektir. Buna göre, tüm maddelerin amaçına hizmet ettiği yorumu yapılabilir.

SPİDÖ alt boyut puanlarından ayı Cronbach alfa değeri Tablo 4’de sunulmuştur.

Tablo 4. Sporda psikolojik ihtiyaç durumları ölçeği cronbach alfa değeri

Madde Sayısı	Cronbach Alfa Değeri	
Bağımsızlık Tatmini	5	0,72
Bağımsızlık Engellenmesi	5	0,78
Yeterlik Tatmini	5	0,77
Yeterlik Engellenmesi	4	0,85
İlişki Tatmini	5	0,78
İlişki Engellenmesi	5	0,83

Tablo 4 incelendiğinde SPİDÖ alt boyut puanlarından elde edilen Cronbach alfa katsaylarının 0,70’den yüksek olduğu belirlenmiştir. Buna göre, elde edilen ölçümlerin güvenirlüğünün yüksek olduğu söylenebilir (Nunnaly, 1978).
SPİDÖ ölçme modeli diagramı

(BT: Bağımsız Tatmini, BE: Bağımsızlık Engellenmesi, YT: Yeterlik Tatmini, YE: Yeterlik Engellenmesi, IT: İlişki Tatmini, IE: İlişki Engellenmesi)

TARTIŞMA

Bu araştırmada Bhavsar ve diğ., (2020) tarafından geliştirilmiş SPİDÖ’nün uyarlama çalışması gerçekleştirilmiş ve Ölçeğin Türk kültüründe kullanımı için gerekli olan geçerlik ve güvenirlik kanıtları sunulmuştur. Geçerlik çalışmaları kapsamında toplam korelasyon hesaplanmıştır ve her bir alt boyuta ilişkin üst grup ve alt grup arasında farklılık gösterme durumu t testi ile incelenmiştir. SPİDÖ maddelerinden madde 10 dışında kalan diğer tüm maddelerin amaçına hizmet etmediği görülmüştür. Yapılan DFA sonucunda ölçeğin (madde 10’un çıkarılmasıyla) Türk kültüründe orijinal ölçekteki faktör yapısıyla aynı şekilde kullanılabileceği sonucuna ulaşılmıştır. DFA sonucu elde edilen uyum indeksleri altı faktörlü yapının kabul edilebilir bir uyum gösterdiğini ortaya koymustur.

SPİDÖ’nün bağımsızlık tatmini boyutu madde toplam puan korelasyonlarının 0,67 ile 0,74 arasında değiştiği görülmektedir. Ayrıca bağımsızlık tatmini boyutu için düzeltilmiş madde-toplam puan korelasyonu değerlerinin 0,40 ile 0,52 arasında değiştiği görülmektedir.
0,56 arasında değiştiği belirlenmiştir. Buna göre, uyarlamasını yapılan ölçeğin bağımsızlık tanımı boyutundaki maddelerin tamamının amacı hizmet ettiği yorumu yapılabilir. SPİDÖ’nün bağımsızlık engellenmesi boynuzu madde toplam puan korelasyonlarının 0,13 ile 0,78 arasında değiştiği görülmüştü. Ayrıca bağımsızlık engellenmesi boyutunu için düzeltilmiş madde-toplam puan korelasyon değerlerinin -0,088 ile 0,56 arasında değiştiği belirlenmiştir. Buna göre, SPİDÖ bağımsızlık engellenmesi boyutunda yer alan maddelerin alt grupta yer alan bireyler ile üst grupta yer alan bireyleri ayırmamış olduğu yorumu yapılabilir.

SPİDÖ’nün yeterlik tanımı boynuzu madde toplam puan korelasyonlarının 0,68 ile 0,80 arasında değiştiği görülmüştü. Ayrıca bağımsızlık engellenmesi boyutunu için düzeltilmiş madde-toplam puan korelasyon değerlerinin 0,65 ile 0,78 arasında değiştiği belirlenmiştir. SPİDÖ’nün ilişkili tanımı boynuzu madde toplam puan korelasyonlarının 0,62 ile 0,78 arasında değiştiği belirlenmiştir. Buna göre, hazırlanılan maddelerin amaç hizmet ettiği yorumu yapılabilir. SPİDÖ’nün ilişkili engellenmesi boynuzu madde toplam puan korelasyon değerlerinin 0,52 ile 0,74 arasında değiştiği belirlenmiştir. Buna göre, hazırlanılan maddelerin amaç hizmet ettiği yorumu yapılabilir. Sonuç olarak, SPİDÖ maddelerinde sadece madde 10’un amacına hizmet etmediği ve 10. Madde çıkarılınca yapılan istatistiksel analizler sonucunda tüm alt boynuz ve maddelerin ölçümdede başarılı olduğu sonucuna ulaşılmıştır.

SPİDÖ faktör analizi sonuçlarına göre; χ²/df değeri 3’ten küçük olarak tespit edilmiş, dolayısıyla modelin veriyle yüksek düzeyde uyum gösterdiği söylenebilmektedir. CFI değeri 0,96 ve NFI değeri 0,92 olarak bulunmuş ve bu değerlerin 0,90’nın üzerinde olması modelin veriye kabul edilebilir derece uyumunun göstergesi olarak kabul edilmiştir. SRMR değerinin 0,08’den küçük olması ve RMSEA değerinin 0,06’dan küçük olması açısından da modelin veriye uyum sağladığı söylenebilir. GFI değerleri ise 0,84 olarak bulunmuştur ve bu uyum indeksine göre model veriye uyum sağladığı söylenebilmektedir. GFI indeksinin verinin normal dağılım göstermediğini durumunda CFI ya göre daha fazla etkilenmektedir (Ainur ve diğ., 2017) ve araştırma kapsamında toplanan veri seti çoklu normal dağılım varsayımını sağlamadığından GFI değerine göre uyum sağlanması düğünülmüştür. Uyum indeksleri genel olarak değerlendirildiğinde madde 10 analiz dışındaki altı boynuzu modelin veriye uyum sağladığı görülmüştür. Ölçekteki tüm maddelerin faktör yük değerleri 0,30’dan büyükse, tüm maddelerin amacına hizmet ettiği yorumu yapılabilir.

SONUÇ ve ÖNERİLER

Bu araştırmada Bhavsar ve diğ., (2020) tarafından geliştirilmiş SPİDÖ’nün uyarlaması gerçekleştirilmiştir ve ölçünün Türk kültüründe kullanımı için gerekli olan geçerlik ve güvenirlik kanıtları sunulmuştur. Ölçük uyarlaması çalışmasında kattılanlardan, erkek dağılımının yüksek olması ve 15-20 yaş sporcuların çoğunluğa kuluç düzyeyeinde spor yapmaları ölçünün sınırlıklarını oluşturmuştur. Yaptığı DFA sonucunda ölçünün (madde 10’un çıkarılmasıyla) Türk kültüründe kullanlabilceğini sonucuna ulaşılmıştır. Psikoloji ihtiyaç üzerine araştırmacılar önerileri olarak şuhtar verilebilir;

- Çeşitli branş sporcularına SPİDÖ uygulanarak, sporcuların öz benlik değerleri incelenebilir,
- Yine farklı branşlar bu ölçük yardımıyla karşılaştırılacak, branş bazında sporcuların öz benlik değerleri üzerine araştırmalar yapılabilir,

http://www.sbd.hacettepe.edu.tr
Spor elemanları bu ölçeği kullanarak sporcuların tatmin, memnuniyet ve memnuniyetsiz düzeyini saptayabilirler.

Bundan sonra yapılacak çalışmalarında SPİDÖ’nün farklı örneklem ve yaş grupları üzerinde (gençler, yaşlılar, kadın ve erkekler vb.) tekrar DFA ile doğrulanarak ölçeğin geçerlik ve güvenirliğini arttıracağı düşünülmektedir.

REFERENCES

1. Adie JW, Duda JL, ve Ntoumanis N. (2008). Autonomy support, basic need satisfaction, and the optimal functioning of adult male and female sport participants: A test of basic needs theory. *Motivation and Emotion*, 32, 189–199. https://doi.org/10.1007/s11031-008-9095-z
2. Ainur AK, Sayang MD, Jannoo Z, ve Yap BW. (2017). Sample Size and Non-Normality Effects on Goodness of Fit Measures in Structural Equation Models. *Pertanika Journal of Science and Technology*, 25(2), 575-586.
3. Bartholomew KJ, Ntoumanis N, Ryan RM, Bosch JA, ve Thøgersen-Ntoumani C. (2011). Self-determination theory and diminished functioning: The role of interpersonal control and psychological need thwarting. *Personality and Social Psychology Bulletin*, 37, 1459-1473. https://doi.org/10.1177/0146320611219133
4. Bartholomew KJ, Ntoumanis N, Ryan RM, ve Thøgersen-Ntoumani C. (2011). Psychological need thwarting in the sport context: Assessing the darker side of athletic experience. *Journal of Sport & Exercise Psychology*, 33, 75–102. https://doi.org/10.1123/jsep.33.1.75
5. Bhavsar N, Bartholomew KJ, Quested E, Gucciardi DF, Thøgersen-Ntoumani C, Reeve J ve diğer. (2020). Measuring psychological need states in sport: Theoretical considerations and a new measure. *Psychology of Sport & Exercise* (47), 1-14.
6. Byrne BM. (2010). Structural equation modeling with AMOS: Basic concepts, applications, and programming. New York: Routledge.
7. Chen B, Moutardis A, Ryan RM, Sheldon KM, Soensens B, Van Petegem S ve diğer. (2015). Basic psychological need satisfaction, need frustration, and need strength across four cultures. *Motivation and Emotion*, 39, 216–236. https://doi.org/10.1007/s11031-014-9450-1.
8. Cheon SH, Reeve J, Lee Y, Ntoumanis N, Gillet N, Kim BR, ve diğer. (2019). Expanding autonomy psychological need states from two (satisfaction, frustration) to three (dissatisfaction): A classroom-based intervention study. *Journal of Educational Psychology*, 11, 685–702. https://doi.org/10.1037/edu0000306.
9. Costa S, Ntoumanis N, ve Bartholomew K. (2015). Predicting the brighter and darker sides of interpersonal relationships: Does psychological need thwarting matter? *Motivation and Emotion*, 39, 11–24. https://doi.org/10.1007/s11031-014-9427-0
10. Çakın M, Çelikten S, ve Gündüz T. (2020). Nicel veri analizi ve yorumlanması. B. Oral (Ed) ve A. Çoban (Ed), Karaman Uygulama Eğitiminde Bilimsel Araştırma Yöntemleri. Ankara: Pegem Akademi. 161-203.
11. Deci EL, ve Ryan RM. (1985). *Intrinsic Motivation And Self-Determination In Human Behavior.* New York: Plenum.
12. Deci EL, ve Ryan RM. (2000). The “what” and “why” of goal pursuits: Human needs and the self-determination of behavior.
13. Hodge K, Lonsdale C, ve Ng JYY. (2008). Burnout in elite rugby: Relationships with basic psychological needs fulfillment. *Journal of Sports Science*, 26, 835–844. https://doi.org/10.1080/02640410701784525
14. Hu LT, ve Bentler PM. (1998). Fit indices in covariance structure modeling: Sensitivity to under parameterized model misspecification. *Psychological Methods*, 3(4), 424-453.
15. Hu LT, ve Bentler PM. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. *Structural Equation Modeling*, 6(1):1-55.
16. Kline RB. (2005). *Principles And Practice Of Structural Equations Modeling*. New York: Guilford.
17. Ng JY, Lonsdale C ve Hodge K. (2011). The basic needs satisfaction in sport scale (BNSSS): Instrument development and initial validity evidence. *Psychology of Sport and Exercise*, 12, 257–264. https://doi.org/10.1016/j.psychsport.2010.10.006
18. Neubauer AB, ve Voss A. (2016). Validation and revision of a German version of the balanced measure of psychological needs scale. *Journal of Individual Differences*, 37, 56–72. https://doi.org/10.1027/1614-0001/a000188.
19. Neubauer AB, ve Voss A. (2018). The structure of need fulfillment: Separating need satisfaction and dissatisfaction on between- and within-person level. *European Journal of Psychological Assessment*, 34, 220–228. https://doi.org/10.1027/1015-7595/a000326.
20. Nunnally JC. (1978). *Psychometric Theory* (2nd ed.). New York: McGraw-Hill.
21. Ntoumanis N, ve Standage M. (2009). Prosocial and antisocial behaviour in sport: A self-determination theory perspective. *Journal of Applied Sport Psychology*, 21, 365–380. https://doi.org/10.1080/10412200903036040.
22. Mack DE, Wilson PM, Oster KG, Kowalski KC, Crocker PRE, ve Sylvester BD. (2011). Well-being in volleyball players: Examining the contributions of independent and balanced psychological need satisfaction. *Psychology of Sport and Exercise*, 12, 533–539. https://doi.org/10.1016/j.psychsport.2011.05.006.
23. Taylor IM, ve Bruner MW. (2012). The social environment and developmental experiences in elite youth soccer. *Psychology of Sp.*
24. Reinboth M, Duda JL, ve Ntoumanis N. (2004). Dimensions of coaching behavior, need satisfaction, and the psychological and physical welfare of young athletes. *Motivation and Emotion*, 28, 297–313. https://doi.org/10.1023/B:MOEM.0000040156.81924.b8
25. Reinboth M, ve Duda JL. (2006). Perceived motivational climate, need satisfaction and indices of well-being in team sports: A longitudinal perspective. *Psychology of Sport and Exercise*, 7, 269–286. https://doi.org/10.1016/j.psychsport.2005.06.002.
26. Sheldon KM, ve Bettencourt BA. (2002). Psychological need-satisfaction and subjective wellbeing within social groups. *British Journal of Social Psychology*, 41, 25–38. https://doi.org/10.1348/0144667021653036.
27. Sheldon KM, ve Hilpert JC. (2012). The Balanced Measure of Psychological Needs (BMPN) scale: An alternative domain general measure of need satisfaction. *Motivation and Emotion*, 36, 439–451. https://doi.org/10.1007/s11031-012-9279-4.
28. Tan Ş. (2016). SPSS Ve EXCEL Üygulamaları Temel İstatistik 1. Ankara: PegemAkademi.
29. Vansteenkiste M, ve Ryan RM. (2013). On psychological growth and vulnerability: Basic psychological need satisfaction and need frustration as a unifying principle. *Journal of Psychotherapy Integration*, 23, 263–280. https://doi.org/10.1037/a0032359.

http://www.sbd.hacettepe.edu.tr
EK 1. SPORDA PSİKOLOJİK İHTİYAÇLAR DURUM ÖlÇÇİ (SPİDÖ):

YÖNERGE: Lütfen aşağıda ifade edilen yargı seçeneklerine katılım düzeylerinden sizin için en uygun olan seçeneği, altındaki kutucuğa (X) işaret koyarak belirtiniz.

Soru	Kesinlikle Katılmıyorum	Katılmıyorum	Kararsızım	Katılıyorum	Kesinlikle Katılıyorum
1.	Eğitim aldığım ölçüde karar vermede özgür hissederim.				
2.	Bir şeylerin nasıl yapıldığı konusunda söyleyeceklerim vardır.				
3.	Antrenman yapma kararları konusunda özgürüm.				
4.	Kendi hayallerinin peşinden giderim.				
5.	Kendim olabileceğimi hissederim.				
6.	Başkaları ile benzer şekillerde davranışa konusunda zorlanmış hissederim.				
7.	Antrenman kararlarına uymada zorlanmış hissederim.				
8.	Seçmediğim antrenman görevlerini yapmada zorlanmış hissederim.				
9.	Aşırı derecede baskı hissederim.				
10.	Kendimi yeterli hissederim.				
11.	Yetenekli hissederim.				
12.	Zorlukların üstesinden gelebilirim.				
13.	Görevlerimi iyi yapabildiğim konusunda güvenli hissederim.				
14.	İyi olduğunu hissederim.				
15.	Başarısız hissederim.				
16.	İşe yaramaz hissederim.				
17.	Yetersiz hissederim.				
18.	Umutsuz hissederim.				
19.	Desteklenmiş hissederim.				
20.	Önemsenmiş hissederim.				
21.	Birilerine bağlı hissederim.				
22.	Çevre tarafından kabul edilmiş hissederim.				
23.	Etrafındaki insanları severim.				
24.	Benden hoşlanılmadığı himsederim.				
25.	Değişik hissederim.				
26.	Yalnız hissederim.				
27.	Önemsenmemiş hissederim.				
28.	Kovulmuş hissederim.				

http://www.sbd.hacettepe.edu.tr
Do Children Engaged in Organized Sports Meet the Recommended Levels of Step Counts?

Organize Edilmiş Sporlara Katılan Çocuklar Önerilen Adım Sayısını Karşılıyor mu?

1Necip DEMİRÇİ
1Ayda KARACA
2Ş. Alpan CİNEMRE
2Evrim ÜNVER

Division of Physical Activity and Health, Department of Recreation, Hacettepe University, Faculty of Sport Sciences, Ankara, Turkey
1Division of Movement and Training Sciences, Department of Exercise and Sport Sciences, Hacettepe University, Faculty of Sport Sciences, Ankara, Turkey

Yazışma Adresi
Corresponding Address:
Res. Asst. Necip DEMİRÇİ
ORCID: 0000-0003-0147-8332

Hacettepe University, Faculty of Sport Sciences, Department of Recreation, Division of Physical Activity and Health, Beytepe, Ankara

E-posta: necip démirci@hacettepe.edu.tr

Bü cáoşmanın amacı, organize edilmiş sporlara katılan çocukların, spesifik zaman dilimlerinde (toplam hafta, hafta içi, okul içi, okul dışi, hafta sonu, cumartesi, pazartesi, spor yapılan günler ve spor yapılan günlerin analizi) adım sayılarını incelemek ve adım saylarının önerilen düzeyi olup olmadığını belirlemektir. Bu çalışmaya gönüllü olarak 41 erkek ve 39 kız (11.97 ± 0.84 yaş) çocuk katılmıştır. Çocukların boy ve vücut ağırlıkları ölçümü ve ActiGraph wGT3x-BT marka akselerometreler, elastik kemer aracılığı ile çocukların akselerometre elini seçilmiş ve adımlarını belirlemiştir. Bu çalışma, katılımcılar arasında 7 gün boyunca etiklerini korumus, kuzen üzerindeki adımların akselerometre elini seçilmiş ve adımlarını belirlemiştir. Kız ve erkek çocukların spor yapılan günlerde attıkları adım sayılarını spor yapılan günlerin en yüksek olduğunu saptanmıştır (p < 0,05). Erkek çocukların okul içi ve okul dışına adım sayısının arasında fark elde edilmiş ve erkek çocukların adım sayısının kız çocukların adım sayısının比べlendiğinde daha yüksek olduğunu saptanmıştır (p < 0,05). Haftalık ortalamada adım sayısı bakımından kız çocukların %56.4’ü, erkek çocukların ise %51.2’si önerilen adım sayısını karşılamışlardır. Kız ve erkek çocukların spor yapılan günlerde attıkları adım sayılarının spor yapılan günlerin en yüksek olduğu saptanmıştır (p < 0,05). Hem kızların hem de erkeklerin hafta içi ve hafta dışına adım sayısının arasında fark elde edilmiş (p > 0,05). Haftalık ortalamada adım sayısı bakımından kız çocukların %56.4’ü, erkek çocukların ise %51.2’si önerilen adım sayısını karşılamışlardır. Kız ve erkek çocukların spor yapılan günlerde attıkları adım sayılarının spor yapılan günlerin en yüksek olduğu saptanmıştır (p < 0,05). Erkek çocukların haftalık ortalamada, hafta içi, okul içi, cumartesi günleri, spor yapılan ve spor yapılan günlerin adidasını ve kız çocukların ada saylarının arasında daha yüksek olduğu ortaya çıkmış (p < 0,05). Kız çocukların için önerilen adım sayısına ulaşma oranının en yüksek olduğu zaman diliminin (%84.6) spor yapılan günlerin olduğu görülür. Hem kız hem de erkek çocukların hafta içi ve hafta dışına adım sayısını hafta sonunun kıyaslal daha yüksek olduğu sonucu varılmıştır. Ayrıca kız ve erkek çocukların spor yapılan günlerde attıkları adım sayısı spor yapılan günlerin daha yüksek olduğu bulunmuştur.

Anahtar Kelimeler: Çocuklar, Adım sayısı, Okul içi, Okul dışi, Organize edilmiş sporlar

ÖZ

Bu çalışmanın amacı, organize edilmiş sporlara katılan çocukların, spesifik zaman dilimlerinde (toplam hafta, hafta içi, okul içi, okul dışi, hafta sonu, cumartesi, pazartesi, spor yapılan günler ve spor yapılan günlerinde) adım saylarının incelemek ve adım saylarının önerilen düzeyi olup olmadığını belirlemektir. Bu çalışmaya gönüllü olarak 41 erkek ve 39 kız (11.97 ± 0.84 yaş) çocuk katılmıştır. Çocukların boy ve vücut ağırlıkları ölçümü ve ActiGraph wGT3x-BT marka akselerometreler, elastik kemer aracılığı ile çocukların akselerometre elini seçilmiş ve adımlarını belirlemiştir. Bu çalışma, katılımcılar arasında 7 gün boyunca etiklerini korumus, kuzen üzerindeki adımların akselerometre elini seçilmiş ve adımlarını belirlemiştir. Kız ve erkek çocukların spor yapılan günlerde attıkları adım sayılarını spor yapılan günlerin en yüksek olduğunu saptanmıştır (p < 0,05). Erkek çocukların okul içi ve okul dışına adım sayısının arasında fark elde edilmiş ve erkek çocukların adım sayısının kız çocukların adım sayısının比べlendiğinde daha yüksek olduğunu saptanmıştır (p < 0,05). Haftalık ortalamada adım sayısı bakımından kız çocukların %56.4’ü, erkek çocukların ise %51.2’si önerilen adım sayısını karşılamışlardır. Kız ve erkek çocukların spor yapılan günlerde attıkları adım sayılarını spor yapılan günlerin en yüksek olduğu saptanmıştır (p < 0,05). Hem kızların hem de erkeklerin hafta içi ve hafta dışına adım sayısının arasında fark elde edilmiş (p > 0,05). Haftalık ortalamada adım sayısı bakımından kız çocukların %56.4’ü, erkek çocukların ise %51.2’si önerilen adım sayısını karşılamışlardır. Kız ve erkek çocukların spor yapılan günlerde attıkları adım sayılarının spor yapılan günlerin en yüksek olduğu saptanmıştır (p < 0,05). Erkek çocukların haftalık ortalamada, hafta içi, okul içi, cumartesi günleri, spor yapılan ve spor yapılan günlerin adidasını ve kız çocukların ada saylarının arasında daha yüksek olduğu ortaya çıkmış (p < 0,05). Kız çocukların için önerilen adım sayısına ulaşma oranının en yüksek olduğu zaman diliminin (%84.6) spor yapılan günlerin olduğu görülür. Hem kız hem de erkek çocukların hafta içi ve hafta dışına adım sayısının hafta sonunun kıyaslal daha yüksek olduğu sonucu varılmıştır. Ayrıca kız ve erkek çocukların spor yapılan günlerde attıkları adım sayısı spor yapılan günlerin daha yüksek olduğu bulunmuştur.

ABSTRACT

This study aimed to calculate the step counts of children who regularly participate in organized sports within specific time periods (weekend, weekday, school time, out-of-school, sports days, days without sports) and to determine whether they reach the recommended activity level. Forty-one boys and 39 girls (11.97±0.84 yrs. for all participants) participated in this study voluntarily. Step counts were determined by using ActiGraph wGT3x-BT. It was worn on their dominant wrist for seven days. An Independent Samples t-Test was used to examine the difference between the genders. A Paired-Samples t-Test was used to compare the step counts of specific periods in both boys and girls. There were significant differences in step counts between boys and girls in terms of the whole week, weekdays, school time, Saturdays, sports days, and non-sports days, and boys reached more step counts than girls (p<0.05). No significant difference was found between school time and out of school time for boys. Weekly average, 56.4% of girls and 51.2% of boys meet the recommended number of steps. The number of steps taken by both girls and boys during the sport days was more than non-sport days (p <0.05). Moreover, girls and boys on weekdays took more the number of steps than on a weekend (p <0.05). In conclusion, boys reached more number of steps than girls in terms of the weekly average, weekdays, school time, Saturday, sports days, and non-sports days. The period in which the rate of reaching the recommended step counts for girls was highest (84.6%) on sports days. Both girls and boys had higher step counts on weekdays than on the weekends. The number of steps for both girls and boys on sports days was more than non-sport days.

Keywords: Children, Step count, School time, Out-of-school time, Organized sports

Geliş Tarihi (Received): 19.08.2020
Kabul Tarihi (Accepted): 08.01.2021

Author Note: The study was prepared by Necip Demirci under the supervision of Associate Professor Dr. Ayda Karaca as a Master Thesis in the Department of Sport Sciences and Technology at Hacettepe University Institute of Health Sciences.
INTRODUCTION

It has been proved that having physical activity at the recommended level is beneficial for health (Brooke et al., 2014; Burns et al., 2015; Janssen and LeBlanc, 2010) and useful in the prevention of some chronic diseases (Centers for Disease Control and Prevention [CDC], 2017a). Physical activity level gradually decreases with age (Nader et al., 2008). Besides, biological, psychological, socio-cultural, and environmental factors influence the activity levels of children (Sterdt et al., 2014). It was seen that in Europe and North America, the majority of adolescents were unable to meet moderate and vigorous physical activity at the recommended level (Kalman et al., 2015), and sedentary lifestyle is increasing (Centers for Disease Control and Prevention [CDC], 2017b).

The World Health Organization (WHO) indicates that children at school-age should have a minimum of 60 minutes of moderate-to-vigorous physical activity each day (World Health Organisation [WHO], 2017). Moreover, the Turkish Physical Activity Guideline emphasized that high-intensity exercises should be added to the activity program to promote health benefits, and 12-18 aged children should be encouraged to sports such as jumping rope, volleyball, and basketball to improve bone health (Ministry of Health [MH], 2014).

Walking and running which is the most common form of physical activity are generally preferred in physical activity programs. For this reason, there have been many studies demonstrating that the step counts were measured with objective monitors such as a pedometer or accelerometer (Silva et al., 2018). Therefore, objectively measured step-based physical activity has been gradually used to examine children’s and adolescents’ daily ambulatory type activities. The step counts are used as a nationally representative normative step-defined value because the simplicity of step counts makes it an ideal measurement variable for being practical and being used in the comparison (Barreira et al., 2015). The accelerometer data used in the 2005–2006 NHANES survey in adolescents aged 12-17 years analyzed by Adams et al. (2013) reveal that girls taken 9,449 steps/day and boys taken 11,489 steps/day.

There are various cut-off points for the number of steps recommended for children (Brusseau and Kulinna, 2015; Duncan et al., 2007; Tudor-Locke et al., 2004). For example, a minimum of 11,000 (Vincent and Pangrazi, 2002), 12,000 (Tudor-Locke et al., 2009), 13,000 (Duncan et al., 2007) steps each day have been recommended for girls; while this is 13,000 (Vincent and Pangrazi, 2002), 15,000 (Tudor-Locke et al., 2009), or 16,000 (Duncan et al., 2007) steps for boys. However, the recommended number of steps for children may vary depending on their preferences regarding different physical activity domains such as school, transportation, and leisure time. Participating in sports regularly (Kwon et al., 2015), in-school and out-of-school (Brooke et al., 2014; Burns et al., 2015), on weekdays and weekends (Brooke et al., 2014; Duncan et al., 2007) is a factor that increases the level of activity in children. Although during school hours, physical education and other lessons contribute to children's physical activity, the results of several earlier studies indicated that the majority of children and adolescents do not meet the recommended activity thresholds (Spittaels et al., 2012).

When considered the studies conducted on evaluating the physical activity of children within specific periods in literature, studies with the subject showed that step counts of children were evaluated according to specific periods such as recess, out-of-school (Beighle et al., 2006), before school, lunch-time, after school (Tudor-Locke et al., 2011), in school, on weekend and weekdays (Wang et al., 2014; Hardman et al., 2009). However, to the authors’ knowledge, it was appeared not to be researched on children who regularly engaged in the organized sport of the step counts examined within specific periods in literature. The examination of the step counts taken on sports days will provide an opportunity to understand whether to role important in increasing the step counts of organized sports.
It is also known that children who do not take part in sports regularly are usually not active enough. Thus, regular exercise is effective for reaching the recommended activity levels (Kwon et al., 2015; Marques et al., 2016). Wickel and Belton (2016) suggested that it is beneficial to structure out-of-school time for increasing physical activity levels of children, such as participating in exercise and sports (Guagliano et al., 2013; Hebert et al., 2015). However, the fact that children take part in organized sports regularly but not every day may not necessarily mean that they reach the recommended level of activity. Parents may assume that their children who are attending organized sports only a few days a week are sufficiently active. But even children who participate in any organized sports are not active enough on days when they are not doing sports.

The purpose of this study was to determine the step counts of children who regularly exercise a few days a week, within specific periods (weekdays, weekends, school time, out-of-school, sports days, days without sports, etc.) and whether they meet the recommended activity level.

METHODS

Participants: In this study, data were collected from a total of 118 children (58 boys, 60 girls) with ActiGraph wGT3X-BT for seven days of the week. Accelerometer data collected at least four days on weekdays and one weekend day with a minimum of eight hours wearing time were accepted as the inclusion criteria of the study. However, due to data that does not meet the inclusion criteria, 38 children (17 boys and 21 girls) excluded from the study. Thus, the data included in the study were collected from 80 healthy (39 girls and 41 boys) children aged 11-13 years (mean age 11.97±.84 yrs) who participated in organized sports regularly. Descriptive statistics related to the age, gender, height, bodyweight, and body mass index (BMI) of the children are given in Table 1. Children who regularly participate in organized sports (football, basketball, volleyball) for 2-4 days per week for at least one month were included in the study. The percentage of children engaging in sports per each day of sports days was 16.25% on Monday, 53.75% on Tuesday, 40% on Wednesday, 60% on Thursday, 18.75% on Friday, 95% on Saturday, 83.75% on Sunday. Data was collected between March and May of 2017 at various sports clubs in Ankara. This study was approved by Hacettepe University Non-interventional Clinical Research Ethics Board (GO 17/100). All children and their parents were briefed on the measurement procedures and purposes of the study. Each participants’ parents signed informed consent. Therefore, the authors have written consents from the families, also consent was verbally obtained from each child.

Table 1. Characteristics of participants

	Girls (n=39)	Boys (n=41)
Age (year)	Mean 12.00	Mean 11.95
	SD 0.79	SD 0.89
Height (cm)	156.62	151.56
	8.83	8.98
Body Weight (kg)	49.79	43.99
	10.59	10.44
BMI	20.11	18.93
	2.98	2.99

Instrumentation: A Tanita Leicester portable stadiometer HR 001 (USA), which measures with 0.1 precision, was used for height measurement. A Tanita TBF-401A (USA) was used for bodyweight measurement. ActiGraph wGT3X-BT (Pensacola, USA) wireless accelerometers were used for determining the number of steps.
Data Collection: Height and weight were measured standing in light clothes, without shoes, at the indoor sport court, before wearing the ActiGraph wGT3X-BT. The children were asked to wear an ActiGraph wGT3X-BT on their dominant wrist for seven consecutive days except when showering, swimming, or taking part in any water activities. The epoch length was set at five seconds. Children who did not want to wear the accelerometer during bedtime were asked to remove it just before bedtime and put it back on as soon as possible after waking up in the morning. The first day, the children wore the accelerometers in the sports clubs, and the last day the devices were collected by the researchers at the sports clubs. It was observed that some children forgot to wear the device for some days. Accelerometer data were included in the study if it was collected at least four days on weekdays and one weekend day with a minimum of eight hours wearing time.

Time Period for Determining the Number of Steps:
- The average number of steps per day: The average number of steps was measured for a minimum of four weekdays and one weekend day.
- The average number of steps on weekdays: The average number of steps was measured for a minimum of four weekdays.
- The average number of steps on weekends: The average number of steps was measured for either Saturday or Sunday or the average number of steps on both days.
- The number of steps on Saturday: Total number of steps on Saturday.
- The number of steps on Sunday: Total number of steps on Sunday.
- The average number of steps during school time: The average number of steps was measured during school time on at least four weekdays.
- The average number of steps out-of-school time: The average number of steps was measured before school and after school on at least four weekdays.
- The average number of steps per day during sports days: The average number of steps per day was measured on the days that the children engaged in sports at a sports club.
- The average number of steps per day on non-sports days: The average number of steps per day was measured on the days that children did not engage in sports at a sports club.

The obtained data were recorded as an Excel file by using the Actilife 6 software for analysis. The number of steps taken during school time and out-of-school time were determined. The cut-off point values for the recommended number of steps were determined as >13,000 steps/day for girls and >16,000 steps/days for boys (Duncan et al., 2007). The reason for the choice as cut-off point values of the recommended step counts by Duncan et al. (2006) which has more the step counts than other the cut-off point value is to use for reducing the risk of excess body fat in children. Excess body fat is considered an independent risk factor for non-communicable chronic diseases, such as type II diabetes, high blood pressure, etc. (Alves et al., 2017).

Statistical Analysis: The descriptive statistics were calculated as the mean and standard deviation. For each variable, the normality and homogeneity of variances were tested. Because of the effectuation of parametric assumptions, the significance test of the difference between the two means in the independent groups was applied to examine the difference between the genders. The confidence interval in this study was 95%. A Paired-Samples t-Test was used in the dependent groups in both girls and boys to compare the step numbers of weekdays and weekends, sport and non-sport days, and school time and out-of-school periods. Effect sizes were calculated using Cohen’s d. Cohen’s criteria for small (>0.20), moderate (> 0.50), and large (>0.80) effect sizes were used to aid the interpretation of results (Cohen, 1988).
RESULTS

Table 2 represents the comparison of children’s number of steps by gender. The results revealed that there were statistically significant differences between boys and girls in terms of the weekly average, weekdays, school time, Saturday, sports days, and non-sports days (see Table 2) (p<0.05). It was found that boys made significantly more steps than girls on the weekly average, weekdays, school time, Saturday, sports days, and non-sports days (p<0.05) (Table 2). However, there was no statistically significant difference between the genders (p>0.05) in terms of the average number of steps out-of-school, on Sundays and weekend days (see Table 2).

Table 2. Comparison of children’s number of steps by gender

	Girls			Boys			
	n	Mean	SD	n	Mean	SD	p
Weekly Average	39	13242	2652	41	15762	2997	0.01*
Weekday	39	13760	2687	41	16580	3548	0.01*
School Time	39	6585	1707	41	8662	2375	0.01*
Out-Of-School	39	7307	1753	41	8089	2013	0.07
Weekend	33	12035	4231	36	13406	3056	0.13
Saturday	38	12521	5427	41	14982	4680	0.03*
Sunday	34	10999	4051	36	11922	3534	0.31
Sport Days	39	15663	3678	41	17654	4131	0.03*
Non-Sport Days	39	12374	2632	41	14984	3481	0.01*

* Significant difference in the step counts between girls and boys.

The period in which the rate of reaching the recommended number of steps for girls (minimum 13,000 steps/day) is highest (84.6%) on sports days. For boys, the achievement of the recommended number of steps (minimum 16,000 steps/day) is highest on sports days (61.0%) and on weekdays (63.4%) (see Table 3). On weekends, 66.7% of girls and 73.2% of boys do not meet the recommended number of steps. The rate of reaching the number of steps recommended on non-sport days was considerably less than on sports days. In girls, this rate was almost half (84.6% vs. 41.0%), while in boys, it was two thirds (61.0% vs. 41.5%) (see Table 3).

Table 3. Frequency distributions according to levels above and below the cut-off points of the children’s number of steps

	Girls	<13000#	≥13000‡	<16000§	≥16000β						
	n	f	%	n	f	%					
Weekly Average	39	17	43.6	22	56.4	41	20	48.8	21	51.2	
Weekday	39	13	33.3	26	66.7	41	15	36.6	26	63.4	
Weekend	39	26	66.7	13	33.3	41	30	73.2	11	26.8	
Saturday	38	23	59.0	15	41	38.5	41	23	56.1	18	43.9
Sunday	34	26	66.7	8	20.5	41	32	78.0	4	9.8	
Sport Days	39	6	15.4	33	84.6	41	16	39.0	25	61.0	
Non-Sport Days	39	23	59.0	16	41.0	41	24	58.5	17	41.5	

The cut-off point value reflects below of recommended step counts for girls.
‡ The cut-off point value reflects above of recommended step counts for girls.
§ The cut-off point value reflects below of recommended step counts for boys.
β The cut-off point value reflects above of recommended step counts for boys.

http://www.sbd.hacettepe.edu.tr
The difference in the number of steps for both girls and boys during the days when they were participating in sports and on days when they not do sports was more than 2500 steps (see Table 4) (p <0.001). While the effect size of the significant difference obtained was found to be a moderate effect for boys (Cohen’s d = 0.66), it was seen to have a greater effect in girls (Cohen’s d = 1.18). It was found that both girls and boys had higher step counts on weekdays than on the weekends (see Table 4) (p<0.01; p<0.001). The effect size of the significant difference between weekdays and weekends was found to be small for girls (Cohen’s d = 0.48) and moderate for boys (Cohen’s d = 0.73). While the step counts of girls in school were statistically higher than outside school (see Table 4) (p<0.04, Cohen’s d= 0.33), a significant difference was not found between the number of steps of school time and out-of-school for boys (see Table 4) (p >0.16), Cohen’s d= 0.22).

Table 4. Comparison of the average step counts for different periods in both boys and girls

	Girls			Boys			All Participants										
	n	Mean SD	p	d	n	Mean SD	p	d	n	Mean SD	p	d	n	Mean SD	p	d	Cohen'd Effect Size
Sport Days	39	15663 3678		0.001*	1.18***	41	17654 4131		0.001*	0.66**	80	16683 4018		0.001*	0.85***		
Non-Sport Days	39	12374 2632		0.01*	0.48#	41	14984 3481		0.001*	0.73**	80	13711 3345		0.001*	0.61**		
Weekday	39	13760 2687		0.01*	0.48#	41	16580 3548		0.001*	0.73**	80	15208 3563		0.001*	0.61**		
Weekend	33	12035 4231		0.04*	0.33#	36	13406 3056		0.16	0.22#	69	12750 3702					
School Time	39	6585 1707		0.04*	0.33#	41	8662 2375		0.16	0.22#	80	7649 2313					
Out-Of-School School	39	7307 1753		0.04*	0.33#	41	8089 2013		0.16	0.22#	80	7708 1919					

*Significant difference in the step counts between various time period.
Small effect size (>0.20), **moderate effect size (> 0.50), ***large effect size (>0.80)
d= Cohen’s d Effect Size

DISCUSSION

The purpose of the study was to determine the step counts of children aged 11-13 years who regularly exercise on some days of the week within specific time periods (weekdays, weekends, school time, out-of-school, sports days, days without sports, etc.) and whether they meet the recommended activity level. Many studies indicate that the level of physical activity of boys is higher than that of girls (Carson et al., 2015; Gauthier et al., 2012; Hebert et al., 2015; Martinez-Gomez et al., 2010; Michalopoulou et al., 2011; Ploeg et al., 2012; Sigmund et al., 2015; Tudor-Locke et al., 2008). The results indicated that boys were more active than girls and that their average step counts were about 2500 steps higher than those of girls (p <0.05) (see Table 2). This result is in line with the findings of the previous studies (Gauthier et al., 2012; Tudor-Locke et al., 2008; Vincent and Pangrazi, 2002). The reason for the difference among gender may seem to depend on the type and intensity of the activity. Boys’ vigorous physical activity levels are prone to higher than girls’ (Sherar et al., 2007). In the present study, the type and intensity of the activity may cause obtaining gender
differences when the step counts were considered to change depending on the type and intensity of the activity. Furthermore, Bailey et al. (2012) found that boys had higher moderate to vigorous physical activity levels than girls during school time (class time, lunch break, and school recess). Therefore, the result in favor of boys in terms of the step counts in school time in which was spent most of the day may be decisive in revealing gender difference. In this study, the average number of steps per day was found to be approximately 2300 steps more for girls and 2500 steps more for boys when compared with the study conducted by Michalopoulou et al. (2011). The reason for this difference might be that the children who took part in this study were participating in sports regularly for 2-4 days a week.

Martinez-Gomez et al. (2010) revealed that the percentage of girls who met the recommended level of physical activity was lower than that of boys (28.1% and 58.8%, respectively). As seen in the study conducted by Guagliano et al. (2013), the present study also concluded that engaging in regular sports activities makes a significant contribution to the achievement of the girls' number of steps (see Table 3). In this research, the percentage of meeting the recommended number of steps (for girls: ≥13,000 steps/day; for boys: ≥16,000 steps/day) was significantly higher in girls, especially on the days when they engaged in sports regularly (girls: 84.6%; boys: 61.0%). On non-sports days, this ratio dropped by about 40% for both genders (see Table 3). In this study, while girls were taking nearly 3,000 more steps on the days when they were playing sports than on the days without sports, boys took about 2500 steps more (see Table 4). This increase in both the rate of meeting the recommended number of steps and the number of steps taken during sports days reveals the importance of organized sports. Bulca et al. (2020) examining the step counts of Turkish Middle School Students found that the average number of steps taken on a weekday was 9154.1 steps/day for boys and 8735.7 steps/day for girls. Öztürk Erol et al. (2020) revealed that more than half of both girls (11660 steps/day) and boys (13607 steps/day) did not achieve recommended daily step counts on a weekly average. In another study conducted in Turkey, Saygün and Ceylan (2017) reveal that boys take on average 14287.53 steps/day and girls take 11879.05. It seems that both girls and boys of our study reached more step counts, compared to these studies conducted on Turkish children.

Similar to this study, previous studies have reported the number of weekday steps in children was higher than the number of steps on the weekend (Brooke et al., 2014; Brusseau et al., 2011; Kristensen et al., 2008; Sigmund et al., 2015). On weekends, children may spend more time on their homework or in front of a screen for entertainment. The higher number of steps on weekdays could be due to the fact that the children were active during school hours and were also training during the week. Studies examining the difference between the number of step counts taken Sunday and Saturday are quite limited. The findings obtained by Brusseau et al. (2011) demonstrated that children's number of step counts on Saturdays were more than Sundays. According to our estimation, it may be due to the fact that children spend more screen time and home on Sunday.

In the studies about children's school time and out-of-school physical activity levels, different findings have been found (Brooke et al., 2014). According to Silva et al. (2011), activity levels during school were significantly lower than out-of-school levels. Jauregui et al. (2011) stated that there was no difference between in-school and out-of-school physical activity (Brooke et al., 2014). The study of Long et al. (2013) on children aged 6-11 and 12-19 showed that the duration of in-school moderate-vigorous physical activity was higher than the duration of out-of-school MVPA. Ploeg et al. (2012) also stated that the number of in-school steps was higher than the number of out-of-school steps. In the present study, while the number of in-school steps for boys was higher than the number of out-of-school steps, the number of in-school steps for girls was lower than the number of out-of-school steps. Similar to the present study, Ploeg et al. (2012) emphasized that boys had higher step counts for school time and out-of-school than girls. The study conducted by Burns et al. (2015) indicated that the number of in-school steps had been effective in raising the daily step counts of children.

http://www.sbd.hacettepe.edu.tr
above the recommended levels. It has been observed that physical activity during school breaks accounts for approximately one-third of the recommended activity level of 60 minutes and that the number of steps of boys was greater than the number of steps of girls during breaks (Ridgers et al., 2005). Pelclová et al. (2010) indicated that post-school physical activity contributes to total physical activity in their study on 15-year-old adolescents. In this study, the absence of differences between genders in the number of out-of-school steps (see Table 2) may be due to both boys and girls participating in out-of-school sports activities. One of the most important findings of the present study was the increase in the average number of steps taken by both boys and girls during periods when days of organized sports were included.

There were some limitations in this study. Children engaged in organized sports (football, volleyball, basketball) for 2-4 days a week. The sample size of the study is relatively low, and the age range of children who participated in the study is relatively small (11-13).

There were some strengths in the present study. ActiGraph wGT3x-BT accelerometer is a valid and reliable instrument as an objective method for assessing children's physical activity. Moreover, the monitoring period of free-living physical activity is relatively long (5-7 days, minimum of four weekdays, and one weekend).

Future studies should focus on a larger sample group, a wider age group, more sports branches, two (wrist-worn and waist-worn) accelerometer attachments at the same time. Unstructured recess and lunchtime and physical education classes during school hours and also training hours during out-of-school hours should be examined.

CONCLUSION

It has been revealed that: 1) boys were more active than girls, 2) the average number of steps on weekdays was higher than on weekends, 3) the average number of steps on sports days was more than the average number of steps on non-sports days, 4) the average number of school time steps for boys was higher than the number of out-of-school steps, while the average number of out-of-school steps for girls was higher than the number of in-school steps, 5) the average number of steps and the percentage of steps to reach the recommended number of steps were higher for children (especially girls) when they participate in out-of-school sports activities, and also the participation in out-of-school sports activities is effective in increasing the number of daily steps of children.

Implications of the findings: Globally, 81% of adolescents aged 11–17 years do not meet the WHO global recommendations on physical activity for health. The report obtained by WHO in 2015 showed that inactivity prevalence was 85-89.9% for girls and 75-79.9% for boys in Turkey. Accordingly, the prevalence of meeting MVPA recommendations is needed to increase in Turkey. In our study, given the step counts of children who regularly exercise, results showed that they meet the recommended step counts. In the sport days, both girls and boys reached recommended level of step counts but in the non-sport days, they did not reach recommended level of step counts. On the other hand, the findings demonstrated that regularly done organized sport out of school contributes to reaching the recommended step counts. Thus, participation in sports of children should be encouraged by both their teachers and parents. The school time in which take a large part of the weekday has a crucial role to be reached in the targeted step counts of children on weekdays. Therefore, this study may point out that it should be arranged by policymakers of the lesson curriculum that is needed to be integrated physical activity into the classroom and access to equipment and organized activities during break-times.

Acknowledgements: The authors would like to thank all the children who participated in this study and their families. The authors also would like to thank the responsible individuals at the sports clubs for their tremendous contribution to collecting data.
Conflicts of Interest: The authors declare no conflict of interest.

REFERENCES

1. Adams MA, Johnson WD, Tudor-Locke C. (2013). Steps/day translation of the moderate-to-vigorous physical activity guideline for children and adolescents. International Journal of Behavioral Nutrition and Physical Activity, 10(1), 49.

2. Alves Junior CA, Mocellin MC, Gonçalves ECA, Silva DA, Trindade EB. (2017). Anthropometric indicators as body fat discriminators in children and adolescents: a systematic review and meta-analysis. Advances in nutrition, 8(5), 718-727.

3. Barreira TV, Schuna Jr JM, Mire EF, Broyles ST, Katzmarzyk PT, Johnson WD, et al. (2015). Normative steps/day and peak cadence values for united states children and adolescents: National Health and Nutrition Examination Survey 2005-2006. The Journal of Pediatrics, 166(1), 139-143.

4. Beighle A, Morgan CF, Le Masurier G, Pangrazi RP. (2006). Children’s physical activity during recess and outside of school. Journal of School Health, 76(10), 516-520.

5. Brooke HL, Corder K, Atkin AJ, van Sluijs EM. (2014). A systematic literature review with meta-analyses of within-and between-day differences in objectively measured physical activity in school-aged children. Sports Medicine, 44, 1427-1438.

6. Brusseau T, Kulina P, Tudor-Locke C, Van Der Mars H, Darst P. (2011). Children's step counts on weekend, physical education, and non-physical education days. Journal of Human Kinetics, 27, 123-134.

7. Brusseau TA, Kulina PH. (2015). An examination of four traditional school physical activity models on children's step counts and MVPA. Research Quarterly for Exercise and Sport, 86(1), 88-93.

8. Bulca Y, Bilgin E, Demirhan G. (2020). Öğrencilerinin fiziksel aktivite düzeylerini pedometre ile değerlendirilmesi. Spor Bilimleri Dergisi, 31(1), 1-8.

9. Burns RD, Brusseau TA, Hannon JC. (2015). Prediction of optimal daily step count achievement from segmented school physical activity. Advances in Public Health, 1-6.

10. Carson V, Staiano AE, Katzmarzyk PT. (2015). Physical activity, screen time, and sitting among US adolescents. Pediatric Exercise Science, 27(1), 151-159.

11. Centers for Disease Control and Prevention (CDC) (2017a). Trends in the Prevalence of Physical Activity and Sedentary Behaviours National YRBS: 1991-2015. 25.01.2019. https://www.cdc.gov/healthyyouth/data/pdf/trends/2015 us physical trend yrbs.pdf.

12. Centers for Disease Control and Prevention (CDC) (2017b). Physical activity, 15.12.2020, https://www.cdc.gov/physicalactivity/index.html

13. Cohen J. (1988). Statistical power analysis for the behavioral sciences 2nd edn. In: Erlbaum Associates, Hillsdale.

14. Colley RC, Janssen I, Tremblay MS. (2012). Daily step target to measure adherence to physical activity guidelines in children. Medicine and Science in Sports and Exercise, 44(5): 977–982.

15. Duncan JS, Schofield G, Duncan JK. (2007). Step count recommendations for children based on body fat. Preventive Medicine, 44(1), 42-44.

16. Gauthier AP, Laurence M, Thirkill L, Dorman SC. (2012). Examining school- based pedometer step counts among children in grades 3 to 6 using different timetables. Journal of School Health, 82(7), 311-317.

17. Guagliano JM, Rosenkranz RR, Kolt GS. (2013). Girls’ physical activity levels during organized sports in Australia. Medicine and Science in Sports and Exercise, 45(1), 116-122.

18. Hardman CA, Horne PJ, Rowlands AV. (2009). Children’s pedometer-determined physical activity during school-time and leisure-time. Journal of Exercise Science & Fitness, 7(2), 129-134.

19. Hebert JJ, Moller NC, Andersen LB, Wedderkopp N. (2015). Organized sport participation is associated with higher levels of overall health-related physical activity in children (CHAMPS Study-DK). PloS one, 10(8), e0134621.

20. Husu P, Vähä-Yypää H, Vasankari T. (2016). Objectively measured sedentary behavior and physical activity of Finnish 7-to 14-year-old children—associations with perceived health status: a cross-sectional study. BMC Public Health, 16(1), 1-10.

21. Janssen I, LeBlanc AG. (2010). Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. International Journal of Behavioral Nutrition and Physical Activity, 7(1), 40.

22. Jáuregui A, Villalpando S, Rangel-Baltazar E, Castro-Hernández J, Lara-Zamudio Y, Méndez-Gómez-Humarrán L. (2011). The physical activity level of Mexican children decreases upon entry to elementary school. Salud Publica de Mexico, 53(3), 228-236.

23. Kalman M, Inchley J, Sigmundova D, Iannotti RJ, Tynjälä JA, Hamrik Z, et al. (2015). Secular trends in moderate-to-vigorous physical activity in 32 countries from 2002 to 2010: a cross-national perspective. European Journal of Public Health, 25(suppl_2), 37-40.

http://www.sbd.hacettepe.edu.tr
24. Kristensen PL, Korsholm L, Møller N, Wedderkopp N, Andersen LB, Froberg K. (2008). Sources of variation in habitual physical activity of children and adolescents: The European youth heart study. The Scandinavian Journal of Medicine & Science in Sport, 18(3), 298-308.

25. Kwon S, Janz KF, Letuchy EM, Burns TL, Levy SM. (2015). Developmental trajectories of physical activity, sports, and television viewing during childhood to young adulthood: Iowa Bone Development Study. JAMA Pediatrics, 169(7), 666-672.

26. Long MW, Sobol AM, Cradock AL, Subramanian S, Blendon RJ, Gortmaker SL. (2013). School-day and overall physical activity among youth. American Journal of Preventive Medicine, 45(2), 150-157.

27. Marques A, Ekelund U, Sardinha LB. (2016). Associations between organized sports participation and objectively measured physical activity, sedentary time and weight status in youth. Journal of Science and Medicine in Sport, 19(2), 154-157.

28. Martinez-Gomez D, Ruiz JR, Ortega FB, Veiga OL, Moliner-Urdiales D, Mauro B, et al. (2010). Recommended levels of physical activity to avoid an excess of body fat in European adolescents: the HELENA Study. American Journal of Preventive Medicine, 39(3), 203-211.

29. Michalopoulou M, Gourgoulis V, Kourtessis T, Kambas A, Dimitrou M, Gretziou H. (2011). Step counts and body mass index among 9-14 year old Greek school children. American Journal of Preventive Medicine, 40(1), 215.

30. Ministry of Health (2014). Türkiye Fiziksel Aktivite Raporları. İkinci basım, Ankara: Sağlık Bakanlığı Türkiye Halk Sağlığı Kurumu.

31. Nader PR, Bradley RH, Houts RM, McRitchie SL, O'Brien M. (2008). Moderate-to-vigorous physical activity from ages 9 to 15 years. JAMA Pediatrics, 300(3), 295-305.

32. Öztürk Erol P, Enseler N, Yık T, Karaca, A. (2020). The Analysis of step count in 12-and 13-year-old children attending all-day or double-shift school: Tekirdağ province sample. Spor Hekimliği Dergisi, 55(2), 86-94.

33. Pelcová J, Ansari WE, Vašíčková J. (2010). Is participation in after-school physical activity associated with increased total physical activity? A study of high school pupils in the Czech Republic. International Journal of Environmental Research and Public Health, 7(7), 2853-2865.

34. Ploeg KAV, Wu B, McGavock J, Veugelers PJ. (2012). Physical activity among Canadian children on school days and nonschool days. Journal of Physical Activity and Health, 9(8), 1138-1145.

35. Ridgers ND, Stratton G, Faireough SJ. (2005). Assessing physical activity during recum using accelerometer. Preventive Medicine, 41(1), 102-107.

36. Saygun Ö, Ceylan Hİ. (2017). Ortaokul ve lise öğrencilerinin beden kitle indeksi ile günlük adım sayısının yaşa ve cinsiyete göre karşılaştırılması. International Journal of Sport, Exercise & Training Sciences, 3(4), 142-152.

37. Sherar LB, Esliger DW, Baxter-Jones AD, Tremblay MS. (2007). Age and gender differences in youth physical activity: does physical maturity matter?, Medicine & Science in Sports & Exercise, 39(5), 830-835.

38. Sigmund E, Sigmundová D, Baduřa P, Voráčová J. (2015). Relationship between Czech parent and child pedometer-assessed weekday and weekend physical activity and screen time. Central European Journal of Public Health, 23, 83.

39. Silva P, Santos R, Welk G, Mota J. (2011). Seasonal differences in physical activity and sedentary patterns: The relevance of the PA context. Journal of Sports Science and Medicine, 10(1), 66-72.

40. Silva SSM, Jayawardana MW, Meyer D. (2018). Statistical methods to model and evaluate physical activity programs, using step counts: A systematic review. PloS one, 13(11), 1-19.

41. Spitkaels H, Van Cauwenberghhe E, Verbestel V, De Meester F, Van Dyck D, Verloigne M, et al. (2012). Objectively measured sedentary time and physical activity time across the lifespan: a cross-sectional study in four age groups. International Journal of Behavioral Nutrition and Physical Activity, 9(1), 1-12.

42. Sterdt E, Liersch S, Walter U. (2014). Correlates of physical activity of children and adolescents: A systematic review of reviews. Health Education Research, 73(1), 72-89.

43. Tudor-Locke C, Pangrazi RP, Corbin CB, Rutherford WJ, Vincent SD, Raustorp A, et al. (2004). BMI-referenced standards for recommended pedometer-determined steps/day in children. Preventive Medicine, 38(6), 857-864.

44. Tudor-Locke C, Hatano Y, Pangrazi RP, Kang M. (2008) Revisiting “how many steps are enough?”. Medicine and Science in Sports and Exercise, 40(7), 537-543.

45. Tudor-Locke C, McClain JJ, Hart TL, Sisson SB, Washington TL. (2009). Expected values for pedometer-determined physical activity in youth. Research Quarterly for Exercise and Sport, 80(2), 164-174.

46. Tudor-Locke C, Craig CL, Beets MW, Belton S, Cardon GM, Duncan S, et al. (2011). How many steps/day are enough? for children and adolescents. International Journal of Behavioral Nutrition and Physical Activity, 8(1), 78.

47. Vincent SD, Pangrazi RP. (2002). An examination of the activity patterns of elementary school children. Pediatric Exercise Science, 14(4), 432-441.

http://www.sbd.hacettepe.edu.tr
48. **Wang JCK, Liu WC, Koh KT, Lim CBS.** (2014). Differences in daily step counts among primary, secondary, and junior college students in Singapore. *Journal of Youth Studies, 17*(2), 95-103.

49. **Wickel EE, Belton S.** (2016). School's out... now what? Objective estimates of afterschool sedentary time and physical activity from childhood to adolescence. *Journal of Science and Medicine in Sport, 19*(8), 654-658.

50. **World Health Organisation (WHO).** (2017). Global strategy on diet, physical activity and health, physical activity and young people. 24.11.2017, http://www.who.int/dietphysicalactivity/factsheet_young_people/en/.
Covid-19 Vaka Örneği: KKTC’de Futbol Süper Lig Ligi Dönüş ve Sorunları

Covid-19 Case Study: Restart and its Problems in Football Super League in NCTR

Bu çalışmanın amacı Covid-19 nedeniyle ara verilen KKTC Futbol Süper Ligine geriye kalan 8 maçın oynanması için ara, hazırlık periyodu ve yarışma periyodu sorunlarının incelenmesidir. Covid-19 nedeniyle 7 Mart 2020 ile 18 Mayıs 2020 tarihleri arasında 72 gün ara verilmiş, 16 takım ve 30 maçlı sezonun oynanan 22 maç sonrası geriye kalan 8 maç oynamamak zorunda kalmıştır. Burada örnek alınan bir lig takımda bu sürede içerisinde yapılan sorgulamada 3 oyuncu hiç antrenman yapamamış, 7 oyuncu ev/bahçede core antrenman, 4 oyuncu bisiklet antrenmanı ve 3 oyuncu koşu/kuvvet ve top antrenmanı yapmış. Bu sürede içerisinde 7 oyuncunun vücut ağırlıkları aynı kalmış, 5 oyuncunun artmış ve 5 oyuncunun ise vücut ağırlıkları azalmıştır. 72 günlük aranın arkasına 18 Mayıs ile 20 Haziran 2020 tarihleri arasında 33 günlük bir Hazırlık Periyodu uygulanmıştır. 21 Haziran-22 Temmuz 2020 tarihleri arasında 31 günlük bir Müsabaka Periyodu uygulanmış ve bu sürede içerisinde geriye kalan 8 maç oynamıştır. Normal olarak KKTC K-Pet Süper Ligi 15 Eylül 2019 ile Mayıs 2020 ortalarından 8 ayda sonlanması diğer liglerde 8 ay kalmıştır. Çok işsiz olan Covid-19 nedeniyle uzayan lig ve karşılaşılan sorunlar ulaşan literatür ışığında çözülmeye çalışılmıştır.

Anahtar Kelimeler: Covid-19, Ara, Hazırlık, Yarışma, Form

The aim of this work is to study the 8 matches problems encountered in the break, Preparation Period, Competition Period in NCTR Football K-Pet Super League due to Covid-19. It is forced to have a break for 72 days between 7th March 2020 to 18th May 2020 in 16 teams and 30 matches league after 22 plays with 8 matches to go after Covid-19. The example given in this article a questionnaire run among the 17 players. In the break 3 players had no training, 7 players had house/garden core training, 4 players had cycling training, and 3 players had runs/strength and ball training. 7 players had the same body weight, 5 players had an increase, and 5 players had their body weight decrease during this period. Preparation Period was given for 33 days duration between 18th May 2020 to 20th June 2020 after the 72 days of break. Between 21st June-22nd July 2020 for 31 days Competition Period with remaining 8 matches took place. For normal season NCTR Football Super League expected to take place between 15th September to the mid of the May 2020. The league extended till after the mid July 2020, and lasted for 11 months instead of 8 months. The problems were tried to be solved arising due to Covid-19 and extended period of the league in the light of the available literature.

Keywords: Covid-19, Break, Preparation, Competition, Taper
GİRİŞ

Pandemi nedeniyle Covid-19 dünya çapında olduğu gibi Kuzey Kıbrıs Türk Cumhuriyeti’ni de (KKTC) etkilemiş ve Futbol K-Pet Süper Ligine ara verilmiştir. 16 takım ve her devre 15 maç oynanan toplam 30 maçlık iki devreli Futbol K-Pet Süper Liginde; ikinci devrenin bitmesine 8 maç kala pandemi yüzden ara verilmiştir. Bunun sonucu olarak sağlamlıkta ilgili ve sosyal tedbirler alınmış, takım sporlarının beraber antrenman yapmak, kondisyon, teknik-taktik ve maç oynamak gibi öğeler yapılamamıştır. Buna bağlı olarak kondisyonel, maç ve teknik-taktikle ilgili özelliklere gerileme, beslenme ve hareketsizliğe bağlı kilo alma (Milsom ve diğ., 2015); yon değiştirme gibi fiziksel özellikler (Lee ve Mukherjee, 2019); oyuna ilgi becerileri, oyun yapısalı bulunan temas özellikleri ve oyuna ilişkin karar verme yetenekleri azaldığı varsayılmıştır (Wong ve diğ., 2010; Mujika ve Padilla, 2000).

Oyuncular, takım olarak herhangi bir şekilde antrenman yapmamış ve maç oynamamış, antrenman ve maç tesislerine gidememiş, herhangi bir şekilde antrenör eşliğinde antrenman yapamamış, kondisyonel ve sağlık konusunda (Dyk ve diğ., 2019; Malone ve diğ., 2018) herhangi bir yönendirme almamışlardır.

Oyuncular, lig maçları için özel fiziksel ve psikolojik hazırlık, bununla ilgili iyi planlanmış ve oynamacılık maçlara göre yapılandırılmış ve periyodize edilmiş antrenman programı içerisinde bulunmalıdır (Beltran-Valés ve diğ., 2020; Açıkada, 2018a; Açıkada, 2018b; Açıkada, 2018c; Kelly ve Coutts, 2007). Hazırlık, koruma ve dinlenme ve yenilenme evreleri normal bir sezonda anlaşılmış yapılandırılır. Normal şartlar altında uygulamada olan teknik direktör ve antrenörler yapılacak seyleri bir sistemik içerisinde yapabilecekleri kaynak ve bilgi bulabilmektedirler (Açıkada, 2018a; Açıkada, 2018b; Açıkada, 2018c;Kelly ve Coutts, 2007; Morgans ve diğ., 2011). Düzenli antrenman ve maç oynamanın, oyuncuların sezon boyu yoğunluk ve dinlenme ritmini daha iyi ayarlayabilmesi, daha iyi antrenman yapma ve devam ettirmeye önemli ölçüde yardım ettiğini göstermektedir (Aslan ve diğ., 2012; Helgerud ve diğ., 2001; Helgerud ve diğ., 2001); hız ve yön değişmeleri, topa ve topa, her yöne yapılan, değişik hızlarda ve mesafelerde sprint koşusu bulunurken bir oyundur (Bradley ve diğ., 2009; Di Salvo ve diğ., 2009). Futbol, aralı oyun yapısı nedeniyle daha çok anaerobik enerji sisteminin hareketlendiren bir dayanıklılık yapısına sahiptir (Dellal ve diğ., 2012; Helgerud ve diğ., 2001; Helgerud ve diğ., 2001; Helgerud ve diğ., 2001). Antrenman ortamında yapılan değişik uzunluklarda ve şiddetlerde sprint koşuları (Lee ve Mukherjee, 2019; futbol spesifik sprint koşullarının geliştirilmesini sağladığı görülmüştür (Mujika ve ark., 2009). Top sürme, çalmak ve adam eklemtmesi, şut, değişik şekillerde sıçrama (Stern ve diğ., 2020) ve bu hareketler için alt ve üst üyelerde kuvvet gerektiren bir spor dalıdır (Silva ve ark., 2011). Top sürmede, oyunun yapısına uygun dayanıklılık geliştirilmesinde diğer futbol antrenmanlarına ek olarak yapılan en az disorders kalıklık top sürme intervallerinin maksimal oksijen tüketiminin geliştirilmiş yardımcı olduğu ancak sürdürülür (McMillan ve diğ., 2005). Yapılan değişik çalışmalarda oyunun büyük bölümünde yürüme ve jog, orta hızda koşu, yüksek hızda koşu ve sprint (Bradley ve diğ., 2009; Aslan ve diğ., 2012) olduğu görülmüştür. Birincı yarıda çok hızlı oyun araları ortalaması 72 saniye olurken, ikinci yarıda bu süre en %15 artarak 77 saniye uzadığı, son 15 dakika içerisinde dinlenme süresinin 83 saniye olduğu görülmüştür (Bradley ve diğ., 2009). Yapılan çalışmalardan futbol spesifik çalışmalardan ve dar alan oyunların futbol özellikle fizik
yapımı geliştirdiği görülmüştür (Pellegrino ve diğ., 2020; Rodriguez-Fernandez ve diğ., 2020a; Rodriguez-Fernandez ve diğ., 2020b; Lopes ve diğ., 2020; Suraci ve diğ., 2019; Sanginer ve diğ., 2019; Selmi ve diğ., 2019; Caro ve diğ., 2019; Iacano ve diğ., 2019; Olthof ve diğ., 2019; Dalen ve diğ., 2019; William ve diğ., 2018; Aasgaard ve Kilding, 2018; Halouani ve diğ., 2014; Casamichana ve diğ., 2012; Koklu ve diğ., 2011; Mavili, 2010). Ayrıca, çalışmaların interval, sürat (Alexandre ve diğ., 2012; Dellal ve diğ., 2012), kuvvet ve sıçrama gibi hareketlerle değişik ve çeşitli olması; futbolda gelişimi tek düzeye antrenmanlara oranla daha olumlu yönde etkilediğini göstermiştir (Ferley ve diğ., 2020; Abrantes ve diğ., 2012). Oyun, 45’er dakikadan 90 dakika oynandığı için hareketlerin büyük kısmında dayanıklılık gerektirmektedir (Helgerud ve diğ., 2001; Silva ve diğ., 2011; Meckel ve diğ., 2012). Aerobik yapısı veya dayanıklılığı daha iyi olan oyuncuların hızlı oyun arkasına daha hızlı normale döndükleri ve bir sonraki anaerobik veya hızlı gerçekleşen beceriyi daha iyi yaptıkları görülmüştür (Helgerud ve diğ., 2001). Antrenman yapan ve maç oynayan oyuncuların futbol için daha kondisyonlu (Sanchez-Sanchez ve diğ., 2019) ve antrenman ve maç yaratığı fizyolojik sütünat algıla-zArzuğunu (RPE) daha az hissettiklerini görürmüyor (Brink ve diğ., 2010; Mohr ve diğ., 2005). Antrenman yapılmadığı zaman yağ harici kilonun azalması; antrenmanla-şızılığı bir göstergesi olarak değerlendirilmistir (Nunez ve diğ., 2019a). Vücut yağının arıtılması; antrenmanla-şızılığı ve kötü beslenmenin bir göstergesi olarak değerlendirilmistir (Milsom ve diğ., 2015). Antrenman yapılmaması uyluk kaslarında eksentrik ve konsentrik kuvvet oranının değişmesine (Nunez ve diğ., 2019b; Tessitore ve diğ., 2011; Mohr ve diğ., 2005) ve sakatlanma riskinin artmasına neden olabileceği şeklinde değerlendirilmiştir (Tessitore ve diğ., 2011). Ayrıca, kemik mineral yoğunluğu üzerinde olumsuz etkileri olabileceği şeklinde değerlendirilmiştir (Fredericson ve diğ., 2007).

Bu nedenle, bu çalışmada antrenmanların yapılamaması nedeniyle fiziksel özellikler ve fonksiyonel yapılarında varsıyan gerilemeler olduğu kabul edilmiş; geriye kalan maçların oynaması için hazır duruma gelmek gerekken antrenmanlar ele alınmaya çalışılmıştır. Bunuyaparken, oyunun yapıp dikkate alınır sahip olunması gereken fiziksel ve fonksiyonel özellikler düşünülmüştür. Futbol bir mücadele sporu olarak kabul edilmiş (Morgans ve diğ., 2011), bir periyodlama mantığı içerisinde yapılan antrenman örnekleri sunulmuştur. Ancak, oyuncuların durumunu değerlendirmek ve buna bağlı bireysel ve takım antrenmanı yapmak için Covid-19 nedeniyle herhangi bir test ve değerlendirme yapılamamıştır (Ziogas ve diğ., 2011; Impellizzeri ve diğ., 2005; Svensson ve Drust, 2005).

YÖNTEM

KKTC, K-Pet Süper Liginde 16 takım bulunmaktadır ve her devre 15 maç olmak üzere toplam 30 maç oynanmaktadır. Lig sonucunda son iki takım düşme direnç ve ligde oynanırken ligi ilk iki sıradan bitiren iki takım Süper Lige çıkmaktadır. Ayrıca, Süper Ligde bulunan ve son iki takımın üzerindeki 4 takım tek devreli ve lig usulü playout oynamakta ve sonuncu olan takım ligden düşme direnç 3. Takımı belirlemektedir. Bu örnekte yer alan takım 17 oyunu bulunmaktadır. Süper lig 15 Eylül 2019’da başlamış, oynanacak toplam 30 maç sonrası Mayıs 2020 ortalarında doğru bitmesi planlanırken kısmış ve Temmuz 2020’ye uzatlayarak toplam 11 ay sürmüştür. İkincisi de oyunun normal 7 maç sonrası geri kalan 8 maç 18 Haziran-22 Temmuz tarihlerini arasına dönemdek alınıyor. Covid-19 nedeniyle 7 Mart-18 Mayıs 2020 tarihleri arasında takım olarak antrenman yapamaması ve antrenmanlarara ara verilmiş. Bu sürec içerisinde takımda yer alan 3 oyuncunun hiçbir antrenman yapamazken; 7 oyuncu ev/bahçede core antrenmanı, 4 oyuncu bisiklet binerek antrenman yapmaya çalışmış, 3 oyuncu koşu/kuvvet ve top antrenmanı yapmıştır. Bu sürec içerisinde 7 oyuncunun vücut artışları dikkate alınmış, 5 oyuncunun vücut artışısı artmış, 5 oyuncunun ise vücut artışları azalmıştır (Tablo 1). Verilen örnekte yer alan takım teknik adamlar tarafından değerlendirilmediği ligde oynayan 16 takım içerisinde 7. güçlü takım olarak değerlendirilmiştir (Açıkada, 2018a; Açikada, 2018b; Açıkada, 2018c; Kelly ve Coutts, 2007; Morgans ve diğ., 2011). Geriye kalan 8 maç bu değerlendirmede
dikkate alınarak oynanacak takımlara göre yapılan periyodlamada buna göre yapılmıştır (Açıkada, 2018a; Açıkada, 2018b; Açıkada, 2018c; Kelly ve Coutts, 2007; Morgans ve diğ., 2011). Geriye kalan 8 maç 21 Haziran - 22 Temmuz 2020 tarihleri arasında oynanmıştır. Covid-19 nedeniyle ara verilen lig için hazırlık 18 Mayıs - 2 Haziran 2020 tarihleri arasında yapılmıştır.

Tablo 1. Covid-19 nedeniyle antrenman yapamayan sporcular

Oyuncuların Siniflaması	Sayı (N)
Hiçbirsey yapmayanlar	3
Ev/bahçede core antrenman yapar	7
Koşu/bisiklet yapar	4
Koşu/kuvvet/top antrenman yapar	3
Vücut ağırlığı aynı kalanlar	7
Vücut ağırlığı azalanlar	5
Vücut ağırlığı artanlar	5

Haziran ayı içerisinde 06.06.2020’de (skor 3-1) ve 13.6.2020’de (skor 3-2) iki tane hazırlık maçı yapılmış ve bunlar “müsabakaya özel antrenman” olarak değerlendirilmiş; hazırlık maçları için antrenman değiştirilmemiştir (Açıkada, 2018a). Eksik kalan maçlar, anılan tarihler içerisinde, bir hafta tek ve bir hafta çift maç oynamak şeklinde tamamlanmıştır.

Covid-19 nedeniyle takım olarak bir araya gelinemeyen ve beraber antrenman yapamayan 7 Mart - 18 Mayıs 2020 tarihleri arasında oyuncuların kondisyonlarının gerilememesi için evlerinde veya bahçede yapılmak üzere bir istasyon çalışması verilmiştir. Başta merkezi ve periferal (çevresel-bölgesel) dayanıklılığın geliştirilmesine yönelik haftalık bir istasyon çalışması yapılmıştır. İstasyon çalışması ve diğer çalışmalar için herhangi bir bireysel ve takım değerlendirmesi testi yapılamamış; genel ve ortalama bir antrenman programı verilmiştir (Roberson ve diğ., 2017; Myers ve diğ., 2015; Abel ve diğ., 2011; Taskin, 2009; Gotshalk ve diğ., 2004).

BULGULAR

Tablo 2: Covid-19 nedeniyle sporcuların evde veya bahçeyle yaptıkları istasyon çalışmaları
Beraber antrenman yapılan 7 Mart-18 Mayıs 2020 tarihleri arasında oyunların kondisyonlarının gerilemesini için verilen istasyon çalışması Tablo 2'de gösterilmiştir. Uygulanan istasyon çalışmalarını için herhangi bir ön test yapılamamış ve her oyuncu kendi hız değerlerine ve kondisyon düzeyine göre hareketleri yapmaya çalışmıştır.

Ekstremal kalan ve 21 Haziran-22 Temmuz 2020 tarihleri arasında oynanan 8 maç tarihleri Tablo 3'de verilmiştir. Bu program sırasında oynanacak olan 8 maçın tüm maçları Tablo 3'de verilmiştir ve sırasına göre sıralanmıştır. İstatistikler tablosu 2 ile gösterilmiştir. Uygulanan istasyon çalışmalar için herhangi bir ön test yapılamamış ve her oyuncu kendi hız değerlerine ve kondisyon düzeyine göre hareketleri yapmaya çalışmıştır.

Ara verilen ve oynanması planlanan 8 maç tarihleri 18 Mayıs-20 Haziran 2020 tarihleri arasında oynanması planlanmış ve Tablo 4'de verilmiştir. Bu program süresince her bir maçın ön, orta ve arka süreçleri vardır. Öncelikle maçın ön süresi (30 dakika), orta süresi (15 dakika) ve arka süresi (15 dakika) olarak bölünmüştür. Bu program süresince her bir maçın 60 dakika süresi vardır. Bu program süresince maçın 60 dakika süresi vardır.

Bu program süresince maçın 60 dakika süresi vardır.

Ara verilen ve oynanması planlanan 8 maç tarihleri 18 Mayıs-20 Haziran 2020 tarihleri arasında oynanması planlanmış ve Tablo 4'de verilmiştir. Bu program süresince her bir maçın ön, orta ve arka süreçleri vardır. Öncelikle maçın ön süresi (30 dakika), orta süresi (15 dakika) ve arka süresi (15 dakika) olarak bölünmüştür. Bu program süresince her bir maçın 60 dakika süresi vardır. Bu program süresince maçın 60 dakika süresi vardır.

Bu program süresince maçın 60 dakika süresi vardır.

Ara verilen ve oynanması planlanan 8 maç tarihleri 18 Mayıs-20 Haziran 2020 tarihleri arasında oynanması planlanmış ve Tablo 4'de verilmiştir. Bu program süresince her bir maçın ön, orta ve arka süreçleri vardır. Öncelikle maçın ön süresi (30 dakika), orta süresi (15 dakika) ve arka süresi (15 dakika) olarak bölünmüştür. Bu program süresince her bir maçın 60 dakika süresi vardır. Bu program süresince maçın 60 dakika süresi vardır.

Bu program süresince maçın 60 dakika süresi vardır.

Ara verilen ve oynanması planlanan 8 maç tarihleri 18 Mayıs-20 Haziran 2020 tarihleri arasında oynanması planlanmış ve Tablo 4'de verilmiştir. Bu program süresince her bir maçın ön, orta ve arka süreçleri vardır. Öncelikle maçın ön süresi (30 dakika), orta süresi (15 dakika) ve arka süresi (15 dakika) olarak bölünmüştür. Bu program süresince her bir maçın 60 dakika süresi vardır. Bu program süresince maçın 60 dakika süresi vardır.

Bu program süresince maçın 60 dakika süresi vardır.

Ara verilen ve oynanması planlanan 8 maç tarihleri 18 Mayıs-20 Haziran 2020 tarihleri arasında oynanması planlanmış ve Tablo 4'de verilmiştir. Bu program süresince her bir maçın ön, orta ve arka süreçleri vardır. Öncelikle maçın ön süresi (30 dakika), orta süresi (15 dakika) ve arka süresi (15 dakika) olarak bölünmüştür. Bu program süresince her bir maçın 60 dakika süresi vardır. Bu program süresince maçın 60 dakika süresi vardır.
Tablo 3. Oynanan lig maçları.

Maç Tarihleri	Ligdeki Sıralama Gereksiz Zorluk Puanları	Evde (E) veya Dışarda (D) Oynanma Bağlı Zorluk Puanları	Maçlar Arası Gün Sayıına Bağlı Zorluk Puanları	Toplam Zorluk Puanları
21.06.2020	14	E 1	E> 1	16
28.06.2020	12	D 3	7 2	17
01.07.2020	16	E 1	3 8	25
05.07.2020	4	D 3	4 8	15
10.07.2020	7	E 1	5 6	14
15.07.2020	8	D 3	5 6	17
19.07.2020	11	E 1	4 8	20
22.07.2020	5	D 3	3 8	16

Tablo 4. Evde ve dışarda oynanan maçlara ve maçlar arası gün sayısına göre takımın aldığı zorluk puanları

Ev / Deplasman Maç	Zorluk Puanı
Deplasman-Öniki	8
Deplasman-Üniki	2
Kendi Baharı (Ev)	1

Maçlar arası gün sayımı	Zorluk Puanı
4 gün & daha az	8
5 gün	6
6 gün	4
7 gün	2
8 gün & daha çok	1

Şekil 1. Maçlar arası gün sayısına bağlı mikrosiklus yapısı
Şekil 2. Antrenman ve periyodlama hedeflerine göre uygulanabileceği mezosiklüs örnekleri (Bompa ve Haff, 2009; Dick, 2007).

Şekil 3. Ara içerisinde uygulanan mezosiklüsler

Oynanan maçlarda 4 takım buradaki örneği verilen takımdan daha güçlü olurken, 4 takım daha zayıf bir takım olmuştur; mikrosiklüslerdeki antrenman programları, mezosiklüsler ve periyodizasyon buna göre yapılmıştır. Daha güçlü takımlarda antrenman yapmaya, daha zayıf takımlarda form tutmaya yönelik bir maç stratejisi benimsenmiştir (Açıkada, 2018a; Kelly ve Coutts, 2007). Şekil 4, hazırlan periyodunu gösteren beş mikrosiklüsü göstermektedir. Şekil 5, yarışma periyodunda bulunan 1:2 ve 1:1 yapısında 2 mezosiklüsteki toplam 5 mikrosiklüsü göstermektedir (Turner, 2011).
Şekil 4. Hazırlık periyodunda bulunan 3:2 yapısında beş mikrosiklus

Şekil 5: Yarışma periyodunda bulunan 1:2 ve 1:1 yapısında bulunan iki mezosiklusün toplam 5 mikrosiklusü (hafta)

TARTIŞMA

Meydana gelen Covid-19 pandemisi nedeniyle KKTC de etkilenmiş ve Futbol K-Pet Süper Ligi’ne ara verilmiştir. Söz konusu lig 16 takımlık bir lig olup; iki devreli ve her devre 15 maç oynanan toplam 30 maçlık bir yapı sergilemektedir. Pandemi nedeniyle ikinci devrenin son 8 maçında, 7 Mart ile 18 Mayıs tarihleri arasında, tüm dünya ülkelerinde olduğu gibi ara verilmek zorunda kalındı. Yine Avrupa Birliği ülkeleri ve Türkiye’de olduğu gibi eksik kalan 8 maçın oynanmasına KKTC Futbol Federasyonu tarafından karar verilmiş, 18 Mayıs-20 Haziran 2020 arasında Hazırlık Periyodu yapılması ve 21 Haziran-22 Temmuz 2020 tarihleri arasında Müsabaka Periyodunun yer almasına karar verilmiştir.

Ara verilen 72 gün içerisinde oyuncuların önemli bir kısmı aerobik kapasiteye bağlı aralı bir oyun yapısı, kuvvet, sürat, çabukluq, sçrama ve özel beceriler sergileyen futbolda önemli bir gerileme meydana geldiği varsayılır. Yapılan çalışmalar antrenmanlarda antrenmanlara ayrı verildiği zaman meydana gelen antrenmanla bağlı gelişmelerin gerildiği görülmektedir (Rodriguez-Fernandez ve diğ., 2020; Sousa ve diğ., 2018). Tekrarlı kısa sprintler futbolda performans belirleyen kondisyonel öğelerdir (Girard ve diğ., 2011; Rampinini ve diğ., 2007; Tomlin ve Wenger, 2001). Yapılan çalışmalar yön değiştirmeli koşuların yüksek şiddette koşulan sprint koşuları toplam mesafesi, toplam sprint futbol maçları sırasında
seregilenen performansla doğrudan ilişkili çıkmıştır (Rampinini ve diğ., 2007; Tomlin ve Wenger, 2001). Tekrarlı koşular; aerobik, an aerobik ve sprint yeteneklerini yarıştan kompleks yapılmış nedeniyle futbolda genel kondisyonu gösterir bir özelliklidir (Bishop ve diğ., 2011). Ayrıca, futbol oyunu sırasında, oyunun şiddetli oynanın anlarında, oyunun fiziolojik yapısına benzer özellikler sergiler (Spencer ve diğ., 2005). Bu nedenle, kondisyonu azaltmayı yaratan ve antrenman yapılması engelleyen durumlar tekrarlı koşuların gerilemesine neden olur. Gerek dinlenme ve yenilenme periyodunda antrenmanın ortadan kalkması (Caldwell ve Peters, 2009), gerekse bir nedenle antrenmanlara ara verilmesi ve kondisyonu azaltmanın meydana gelmesi; çoklu koşuların ve onu yaratan fiziolojik öğelerin gerilemesine neden olur (Christensen ve diğ., 2011; Thomassen ve diğ., 2010).

Antrenmanın kas kuvvetini ve nöral aktivasyonu artırdığı bilinmektedir (Folland ve Williams, 2007; Moritani ve de Vries, 1980). Kas kuvvetinin 2 hafta gibi çok kısa bir zamanda arttığını ve bu artışın nöral özelliklere bağlı meydana geldiğini, daha uzun süreli çalışmalara enine kesit alanının artmasıyla meydana gelen hipertrofik artmayla kas kuvvetinin arttıgı bilinmektedir (Moritani ve de Vries, 1980). Ayrıca, kuvvet artışı sırasında kas kuvvetinin kas özelliklere karsılık gelen enine kesit alanlarının artmasıyla meydana gelen hipertrofik artış, daha hızlı uygulamada artışı olduğu, 3 ay sonra bu değerler değişimlemekle beraber tendonlarda enine kesit alanlarının artması ve tendon sertliğini enine kesit alanlarının artmasıyla meydana geldiğini gözlemlemiştir. Yapılan çalışmalar tendon yapılarını ve kas morfolojisinin kuvvet antrenmanlarına uymaması çalışmalarda, kas fonksiyonunda kayıplar daha çok olmuştur (Kubo ve diğ., 2010). Bu nedenle, Covid-19, sporcuların kuvvet özelliklerinde gerilemeye ugramasına neden olduğu düşünülmektedir.

Futbolda fiziksel kondisyon; ağırlıklı olarak aerobik kondisyonu bağıdır. Oynamanın futbolun kalite ve lige bağlı olarak bir futbol maç sırasında 9 ile 14 km arasında değişik şiddetlerde koşulması fiziksel kondisyonu bağlandır (Marcos ve diğ., 2018; Bangsbo ve diğ., 1991; Barros ve diğ., 2007; Da Silva ve diğ., 2008; Mohr ve diğ., 2003). Aerobik kondisyon ve dayanıklılığın altın standardı sayılan maksimal oksijen kullanımı (VO2maks) futbolda önemli bir özellik kabul edilmektedir ve 50 ile 75 ml.kg-1.dk-1 değerlerde bulunmaktadır (Barros ve diğ., 2007; Stolen ve diğ., 2005; Wisloff ve diğ., 1998). Bu nedenle antrenmana ara vermek VO2maks’ta gerilemeye neden olmak ve oyun performansının azalmasına neden olmaktadır (Marcos ve diğ., 2018).

Hazırlık periyodunda ulaşılan kondisyon düzeyi ve içerikleri üzerine yapılan çalışmalar 2 haftada 1 yapılan kuvveti korumaya dönük çalışmaların bacak kuvvetinde azalmaya ve 40 metre sprint performansında gerilemeye neden olduğu görülülmektedir (Ronnestad ve diğ., 2011). Aynı çalışmada haftada 1 kuvvet antrenmanının ulaşılan kuvvet ve sprint düzeyini koruyupbeceğini göstermektedir (Ronnestad ve diğ., 2011). Buna ek olarak, hazırlık periyodunda geliştirilen kuvvet düzeyi ve maksimal kuvveti; sezon içerisinde azaltılan kuvvet antrenmanları ve oynamanın maçları veya futbol antrenmanlarının karşılamadığı görülmüştür (Anderson ve diğ., 2005; Graves ve diğ., 1988; Narici ve diğ., 1989; Oberg ve diğ., Ronnestad ve diğ., 2008). Bu nedenle, Covid-19 nedeniyle antrenman ve maçlar ara verilmesi ve antrenman yapamaması; kazanılan özelliklerin kaybedileceğinden hareketle, bu süre içerisinde istasyon çalışmaları önemlidir. Ancak, antrenman ve maçlar ara verilmesi; sakatlanma (Tessitore ve diğ., 2011), antrenman sıkılığının azaltılması, çok sayıda müsabaka-maça sayısı ve dinlenme-yenilenme periyodu ile meydana gelen antrenmanızalaşma ile açıklanmıştır.

Hazırlık periyodu yukarıda da ifade edildiği gibi 18 Mayıs-20 Haziran 2020 tarihleri arasında 33 gün uygulanmıştır. Bu uzunlukta bir süre bilindik bir hazırlık periyodu uznulugunda değildir ve sonuçları bilinmemektedir (Açıkada, 2018a;
Balyi ve diğ., 2013; Bompa ve Haff, 2009; Bompa, 1999; Dick, 2007). Hazırlık periyodu 3:2 yapısında bir mezosiiklüsden ve 5 mezosiiklüsden meydana gelmiştir (Turner, 2011). Bu yapı içerisinde maç yapısında oyunlar, aralı koşular, sürat, kuvvet, esneklik, teknik ve taktik çalışmaları gibi öğeler ele alınmıştır (Caterisano ve diğ., 2019; Kelly ve Coutts, 2007). Kısa bir hazırlık periyodu olmakla birlikte; içerisinde bulunan ay olarak yılın en sıcak ayları içerisine girilen bir evreyi oluşturmaktadır. Sıcak havanın artması ve maç yapmak kas kramplarına, sıcak sinkaplarına, sıcak hava bitkinliği, sıcak hava sakatlıkları gibi sorunlara neden olabilmektedir (Caterisano ve diğ., 2019; Armstrong ve diğ., 2007; Casa ve diğ., 2005; Epstein ve Roberts, 2011). Bu nedenle, hazırlık periyodu, geriye kalan 8 maçın oynanacağı 21 Haziran-22 Temmuz tarihleri için oyunları forma sokmalı ve bunun için yılın en sıcak aylarında antrenman yapabilir ve maç oynamabilir duruma gelmelidir (Caterisano ve diğ., 2019; Salo ve Riewald, 2008; Simoneau ve diğ., 1987). Ara verilen süre daha önce de üzerinde durulduğu gibi aerobik ve anaerobik özelliklerin gerilemesi için yeterli bir süredir (Nunez ve diğ., 2019b; Joo, 2018; Tessitore ve diğ., 2011; Mohr ve diğ., 2005; Mujika ve Padilla, 2000). Ara verme ve antrenmansızlaşma sporcular arasında farklı farklı olabilmektedir (Doma ve diğ., 2018; Hehdrich, 2015).

Daha önce bahsedildiği gibi başlangıç için bir test uygulaması ve oyuncuların mevcut değerleri ve takımın ortalama değerleri konusunda bir bulgu olmamış, ortalama bir antrenman programından hareket edilmek zorunda kalınmış.

Yapılan çalışmalar burada belirtilen türden ve sürelerle ara vermelerin arkasında aerobik ve anaerobik performans değerlerinde restoratif bir ilerleme etkisine neden olduğu görülmuştur (Joo, 2018; Mujika ve Padilla, 2000; Simoneau ve diğ., 1987). Meydana gelen restoratif gelişmeler kas kuvvetinde ve hipertrofik gelişmelerde de görülmüştür (Henwood ve Taaffe, 2008; Ogasawara ve diğ., 2011; Ogasawara ve diğ., 2013; Staron ve diğ., 1991; Taaffe ve Marcus, 1997). Aranan araların tekra antrenman yapmak kas kuvveti ve hipertrofik gelişimde özellikle etkili olmaktadır çünkü aşırı düzeyde atrofilerde (kas kaybı) bile kas hücreyi çekirdeği (miyonükleus) antrenman yaparken meydana gelen değişimi korumaktadır (Bruusgaard ve diğ., 2010; Gunderson, 2016). Miyonükleus, kas büyümesi için gerekli mekanizmayı sağlayan ve hareketsizlik veya antrenmansızlık döneminde meydana gelen kas miktarı kaybı (atrofi) miktarının yerine konmasını sağlamaktadır.

Müsabaka periodi 31 gün uzunluğunda ve 8 maç yapacak şekilde planlanmıştır. Bunun için belirlenen tarihlerde görev olarak aradaki gün sayısını, rakibin zorluk puanları, evde veya dışında olduğu dikkate alınmıştır (Cormak, 2001; Kelly ve Coutts, 2007). Banu bağlı olarak 5 mezosiiklüs bir yapı sergileyen 1:2 ve 1:1 yapısında iki mezosiiklüs yapılmış ve tüm maçlar bu mezosiiklüslere sağ çıkmıştır (Turner, 2011). Her mezosiiklüs içerisinde bir veya iki maç oynanacak şekilde planlama yapılmıştır. Form antrenmanları sırasında antrenmanın (hacim) azaltılması yorgunluk giderilmesi ve bir süperkompanse olma etkisi beklenmiştir; azaltılan antrenmanın konservasyonla eylemsiz etkisini yaratmaya çalıştırılması (Mujika ve Padilla, 2000a; Meura ve diğ., 2012), buパーツ engellemek ve antrenman mikrosiklüsleri içerisinde azaltılan antrenman etkisiini ortadan kaldırarak düzenlemeler yapılmıştır (Mujika ve Padilla, 2000b). İki haftalık (mezosiiklüs) form antrenmanlarının özellikle kas gücünü arttırmak için, ivmelenme ve futbol oyuncularında stres algısını azalttiği görülmüştür (Beltran-Valls ve diğ., 2020). Antrenman şiddeti ve sıkılığı yerine antrenman miktarı veya hacimde meydana gelen azalmalar; form antrenmanında daha etkili olduğu gösterilmiştir (Krespi ve diğ., 2020). İki haftalık mezosiiklüslere adımlama (Linear) form antrenmanlarının (Beltran-Valls ve diğ., 2020), üç haftalık mezosiiklüslere hizli eğrisel form antrenmanlarının (Krespi ve diğ., 2020) daha etkili olduğu gözlenmiştir.

KKTC K-Pet Futbol Süper Liginde 2020-2021 sezonunda 1. Futbol Liginde bulunan ilk iki sıradaki takım ve ilk iki takımın arka arkaya gelen ilk 4 takım lig usulü playout oynayarak birinci gelen takım yukarıya çıkan üçüncü takım olmuştur. Sonuncu olan takım ise üçüncü takım olarak aşağıdaki 1. Futbol Ligine düşmüştür.
SONUÇ ve ÖNERİLER

Oyuncular ve takım Covid-19 bağılı olarak verilen 72 günlük arada kondisyonel, maç ve teknik-taktikle ilgili özelliklerde gerileme, beslenme ve hareketsizliğe bağlı kilo alma gibi olumsuz etkenlerle karşılaşılmıştır. Bütün bunlara bağlı olarak kuvvet, yüksek sütürtte koşu yeteneği, güç, ivmelenme, yavaşlama, yön değiştirme gibi fizyoksel özellikleri; oyuna ilgili beceriler, oyun yapısalında zorunlu karar verme yetenekleri azaldığı varsayılabilir. Oyuncular, takım olarak herhangi bir şekilde antrenman yapamamış ve maç oynamamış, kondisyonel ve sağlık konusunda varsayılmıştır. Oyuncular, takım olarak herhangi bir şekilde antrenman yapamamış ve maç oynamamış, antrenman ve maç tesislerine gidememiş, herhangi bir şekilde antrenör eşliğinde antrenman yapamamış, kondisyonel ve sağlıklı konusunda herhangi bir yönlendirme alamamışlardır. Aramın arkaresine geriye kalan 8 maç oynamamış olan 33 günlük bir Hazırlık Periyodu verilmiş ve bu süre içerisinde oyunun aralı yapısında uygun aerobik yapı üzerine anaerobik kondisyon ve becerilerin gelişirileceği şekilde bir mezoziklüs ve mikrosiklüs yapı yapısı sergilenmiştir. Hazırlık periyodunu takibeden ve 8 maç yer aldığı 31 günlük Müsabaka Periyodunda karşılaşılan zorlukların zorluk puan değerlerine göre bir periyodlama ve buna uygun mezoziklüs ve mikrosiklüs yapı sergilenmiştir.

Bu örnekte açıklanan şekilde bir mezoziklüs ve mikrosiklüs yapıları uygulanmıştır. Farklı mezoziklüs ve mikrosiklüs yapıları da uygulanabilir.
22- Caldwell BP, Peters DM. (2009). Seasonal variation in physiological fitness of a semiprofessional soccer team. *J Strength Cond Res* 23: 1370–1377.

23- Caro, O, Zubillaga, A, Fradua, L, ve Fernandez-Navarro, J. (2019). Analysis of playing area dimensions in Spanish professional soccer: Extrapolation to the design of small-sided games with tactical applications. *J Strength Cond Res* XX(X): 000–000.

24- Casa DJ, Armstrong LE, Ganio MS, ve Yeargin SW. (2005). Exertional heat stroke in competitive athletes. *Carr Sport Med Rep* 4: 309–317.

25- Casamichana, D, Castellano, J, and Castagna, C. (2012). Comparing the physical demands of friendly matches and small-sided games in semiprofessional soccer players. *J Strength Cond Res* 26(3): 837–843.

26- Catersiano A, Decker D, Snyder B, Feigenbaum M, Glass R, House P ve diğer. (2019). CSCCs and NSCA Joint Consensus Guidelines for Transition Periods: Safe Return to Training Following Inactivity. *Strength and Conditioning Journal.* June 2019, Vol 41(3):1-23.

27- Christensen PM, Krustrup P, Gunnarsson TP, K Retheric K, Nybo L, Bangsbo J. (2011). V02 kinetics and performance in soccer players after training unatvity and inactivity. *Med Sci Sport Exerc* 43: 1716–1724.

28- Cormack S. (2001). The effect of regular travel on periodization. *Strength Cond Coach 9*; 19–24.

29- Daley, T, Sandmal, S, Stevens, TGA, Hjelde, GH, Kjosnes, TN, ve Wisloff, U. (2019). Differences in acceleration and high-intensity activities between small-sided games and peak periods of official matches in elite soccer players. *J Strength Cond Res* XX(X): 000–000.

30- Da Silva, CD, Bloomfield, J, ve Marincs, JC. (2008). A review of stature, body mass and maximal oxygen uptake profiles of u17, u20 and first division players in Brazilian soccer. *J Sports Sci Med 7*; 309–319.

31- Dellal, A, Varliette, C, Owen, A, Chirico, EN, ve Pialoux, V. (2012). Small-sided games versus interval training in amateur soccer players: Effects on the aerobic capacity and the ability to perform intermittent exercises with changes of direction. *J Strength Cond Res* 26(10): 2712–2720.

32- Dick FW. (2007). Sports Training Principles. 5th Edition. A & C Black (Publishers) Ltd, London.

33- Di Salvo V, Gregson W, Atkinson G, Tordoff P, Drust B. (2001). Effects of two different tapering protocols on fitness and physical match performance in elite soccer players. *J Strength Cond Res* 25(6): 1528–1538.

34- Domka K, Leicht A, Sinclair W, Schumann M, Damas F, Burt D ve diğer. (2018). Impact of exercise-induced muscle damage on performance test outcomes in elite female basketball players. *J Strength Cond Res 32*; 1731–1738.

35- Drust B, Reilly T, ve Cable NT. (2000). Physiological responses to laboratory-based soccer-specific intermittent and continuous exercise. *Journal of Sports Sciences, 18*, 885-892.

36- Epstein Y ve Roberts WO. (2011). The pathophysiology of heat stroke: An integrative view of the final common pathway. *Scand J Med Sci Sports, 21*: 742–748.

37- Ferley, DD, Scholten, S, ve Yukovich, MD. (2020). Combined sprint interval, plyometrics, and strength training in adolescent soccer players: effects on measures of speed, strength, power, change of direction, and anaerobic capacity. *J Strength Cond Res 34(4):957-968, 2020.*

38- Fredericson M, Chew K, Ngo J, Cleek T, Kiratli J, Cobb K. (2007). Regional bone mineral density in male athletes: a comparison of soccer players, runners and controls. *Br J Sports Med 2007:41* 664–668.

39- Folland, JP ve Williams, AG. (2007). The adaptations to strength training. *Sports Med 37*: 145–168.

40- Girard O, Mendez-Villanueva A, Bishop D. (2019). Repeated-sprint ability—Part I: Factors contributing to fatigue. *Sports Med 41*: 673–694.

41- Gotshalk, L.A., R.A. Berger, ve W.J. Kraemer. (2004). Cardiovascular responses to a high-volume continuous circuit resistance training protocol. *J Strength Cond Res. 18*(4):000-000.

42- Graves, JE, Pollock, ML, Leggett, SH, Braith, RW, Carpenter, DM, ve Bishop, LE. (1988). Effect of reduced training frequency on muscular strength. *Int J Sports Med* 9: 316–319.

43- Guntherness K. (2016). Muscle memory and a new cellular model for muscle atrophy and hypertrophy. *J Exp Biol 219*: 235–242.

44- Halounani, J, Chiourou, H, Gabbett, T, Chaouachi, A, ve Chamari, K. (2014). Small-sided games in team sports training: A brief review. *J Strength Cond Res 28*(12): 3594–3618.

45- Hedrick A. (2015). Conditioning for the no-huddle offense. *Strength Cond J 37*: 88.

46- Helgerud J, Engen LC, Wisloff U, ve Hoff J. (2001). Aerobic endurance training improves soccer performance. *Med. Sci. Sports Exerc., 33*, No. 11, pp. 1925–1931.

47- Henwood TR ve Taaffe DR. (2008). Detraining and retraining in older adults following long-term muscle power or muscle strength specific training. *J Gerontol A Biol Sci Med Sci 63*: 751–758.

48- Iacono, DA, Beato, M, ve Unnithan, V. (2019). Comparative effects of game profile–based training and small-sided games on physical performance of elite young soccer players. *J Strength Cond Res XX(X): 000–000.*

49- Impellizzeri FM, Rampini E, ve Marcora SM. (2005). Physiological assessment of aerobic training in soccer. *Journal of Sports Sciences, June 2005; 23*(6): 583 – 592.

50- Joo CH. (2018). The effects of short term detraining and retraining on physical fitness in elite soccer players. *PLoS One 13*: e0196212.

51- Kelly VG, Coutts AJ. (2007). Planning and Monitoring Training Loads During the Competition Phase in Team Sports. *National Strength and Conditioning Journal, Volume 29*, Number 4, pages 32–37, August 2007.

52- Loku, Y, Asei, A, Kokou, FU, Alemdaroglu, U, ve Dundar, U. (2011). Comparison of the physiological responses to different small-sided games in elite young soccer players. *J Strength Cond Res 25*(6):1522–1528.

53- Krespi, M, Sporis, G, ve Trajkovic, N. (2020). Effects of two different tapering protocols on fitness and physical match performance in elite junior soccer players. *J Strength Cond Res 34*(6): 1731–1740.

54- Kubo, K, Ikebukuro, T, Yata, H, Tsuchida, N, ve Kamehisa, H. (2010). Time course of changes in muscle and tendon properties during strength training and detraining. *J Strength Cond Res 24*(2): 322–331.

55- Lee M, Mukherjee S. (2019). Relationship of Training Load with High-intensity Running in Professional Soccer Players. *Int J Sports Med 2019; 40*: 336–343.

56- Lopes, RA, Aoki, MS, Carling, C, Vaz Ronque, ER, ve Moreira, A. (2020). Do changes in fitness status, testosterone concentration, and anthropometric characteristics across a 16-month training period influence technical performance of youth soccer players during small-sided-games? *J Strength Cond Res XX(X): 000–000,*
Mahieu, N, McNair, P, Couns, A, D’Haen, C, Vandermeulen, K, ve Witvrouw, E. (2008). Effect of eccentric training on the plantar flexor muscle-tendon tissue properties. Med Sci Sports Exerc 40: 117–123.

Malone S, Owen A, Mendes B, Hughes B, Collins K, Tim JG. (2018). High-speed running and sprinting as an injury risk factor in soccer: Can well-developed physical qualities reduce the risk? J Sci Med Sport 2018; 21: 257–262.

Marcos, MA, Koulia, PM, ve Anthos, ZL. (2018). Preseason maximal aerobic power in professional soccer players among different divisions. J Strength Cond Res 32(2): 356–363.

Mavili, D. (2010). Futbola Özugü Oyunlara Verilen Fizyolojik ve Kinematik Cevaplar. Hacettepe Üniversitesi, Sağlık Bilimleri Enstitüsü, Spor Bilimleri ve Teknoloji Programı Doktora Tezi, Ankara.

McMillan K, Helgerud J, Macdonald R, Hoff J. (2005). Physiological adaptations to soccer specific endurance training in professional youth soccer players. Br J Sports Med 2005;39:273–277.

MeekeL Y, Gelen Y, Nemet D, ve Eliakin A. (2012). Influence of short vs. long repetition sprint training on selected fitness components in young soccer players. J Strength Cond Res 26(7): 1845–1851.

Meura Y, Hanssowrth C, Mujika I. (2012). Tapering for competition: A review. Science & Sports, 27, 77-87.

Milson J, Naughton R, O’Boyle A, Iqbal Z, Morgans R, Drast B, Mortan JG. (2015). Body composition assessment of English Premier League soccer players: A comparative DXA analysis of first team, U21 and U18 squads. J Sports Sci 2015; 33: 1799-1806.

Mahr M, Krustup P, ve Bangsbo J. (2005). Fatigue in soccer: A brief review. Journal of Sports Sciences, June 2005; 23(6): 593 – 599.

Mehr, M, Krustup, P, ve Bangsbo, J. (2003). Match performance of hightandard soccer players with special reference to development of fatigue. J Sports Sci 21: 519–528.

Morgans R, Orme P, Anderson L, Drust B. (2014). Principles and practices of training for soccer. Journal of Sport and Health Science 3 (2014) 251-257.

Moritani, T ve deVries, H. (1980). Potential for gross muscle hypertrophy in older men. J Gerontol 35: 672–682.

Mujika I, Padilla S. (2000a). Detraining: Loss of Training-Induced Physiological and Performance Adaptations. Part I Short Term Insufficient Training Stimulus. Sports Med Aug; 30 (2): 79-87.

Mujika I, ve Padilla S. (2000b). Detraining: Loss of training-induced physiological and performance adaptations. Part II: Long term insufficient training stimulus. Sports Med 30: 145–154.

Mujika I, Santisteban J, ve Castagna C. (2009). In-season effect of short-term sprint and power training programs on elite junior soccer players. J Strength Cond Res 23(9): 2581–2587.

Myers, TR, Schneider, MG, Schmaler, MS, ve Hazell, TJ. (2015). Whole-body aerobic resistance training circuit improves aerobic fitness and muscle strength in sedentary young females. J Strength Cond Res 29(6): 1592–1600.

Narici, MV, Roi, Gs, Landoni, L, Minetti, AE, ve Cerretelli, P. (1989). Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps. Eur J Appl Physiol Occup Physiol 59: 310–319.

Nunez FJ, Munegia-Iuzquierdo D, Petri C, Suarez-Arrones L. (2019). Field Methods to Estimate Fat-free Mass in International Soccer Players. Int J Sports Med 2019; 40: 619–624.

Nunez FJ, de Hoyo M, Lopez ML, Sanudo B, Otero-Esquima C, Sanchez H ve dig. (2019). Eccentric-concentric Ratio: A Key Factor for Defining Strength Training in Soccer. Int J Sports Med 2019; 40: 796–802.

Oberg, BE, Möller, MH, Ekstrand, J, ve Gillquist, J. (1985). Exercises for knee flexors and extensors in uninjured soccer players: Effects of two different programs. Int J Sports Med 6: 151–154.

Ogasawara R, Yasuda T, Sakamaki M, Ozaki H, ve Abe T. (2011). Effects of periodic and continued resistance training on muscle CSA and strength in previously untrained men. Clin Physiol Funct Imag: 31: 399–404,

Ogasawara R, Yasuda T, Ishii N, ve Abe T. (2013). Comparison of muscle hypertrophy following 6-month of continuous and periodic strength training. Eur J Appl Physiol 113: 975–985.

Othof, SBH, Frencken, WGP, ve Lemmink, KAPM. (2019). A matchedderivative relative pitch area facilitates the tactical representativeness of small-sided games for the official soccer match. J Strength Cond Res 33(2): 523–530.

Pellegrino, CG, Paredes-Hernandez, V, Sanchez-Sanchez, J, Garcia-Unionae, J, ve Gallardo, L. (2020). Effect of the fatigue on the physical performance in different small-sided games in elite football players. J Strength Cond Res 34(8): 2338–2346.

Rampinini E, Bishop D, Marcora SM, D Ferrari Bravo D, Sass R, Impellizzeri FM. (2007). Validity of Simple Field Tests as Indicators of Match-Related Physical Performance in Top-Level Professional Soccer Players. Int J Sports Med 2007; 28: 228 – 235.

Roberson, KB, Chowdhari, SS, White, MJ, ve Signorile, JF. (2017). Loads and movement speeds dictate differences in power output during circuit training. J Strength Cond Res 31(10): 2765–2776.

Rodriguez-Fernandez, A, Villa, JG, Sanchez-Sanchez, J, ve Rodriguez-Marroyo, JA. (2020a). Effectiveness of a generic vs. specific program training to prevent the short-term detraining on repeated-sprint ability of youth soccer players. J Strength Cond Res 34(8): 2128–2135.

Rodriguez-Fernandez, A, Villa, JG, Sanchez-Sanchez, J, ve Rodriguez-Marroyo, JA. (2020b). Effectiveness of a generic vs. specific program training to prevent the short-term detraining on repeated-sprint ability of youth soccer players. J Strength Cond Res 34(8): 2128–2135.

Rønnestad, BR, Nymark, BS, ve Raastad, T. (2011). Effects of inseason strength maintenance training frequency in professional soccer players. J Strength Cond Res 25(10): 2653–2660.

Rønnestad, BR, Kvamme, NH, Sundal, A, ve Raastad, T. (2008). Short-term effects of strength and plyometric training on sprint and jump performance in professional soccer players. J Strength Cond Res 22: 773–780.

Sanchez-Sanchez, J, Ramirez-Campillo, R, Petisco, C, Gonzalez-Skoks, O, Rodriguez-Fernandez, A, Minano, J ve dig. (2019). Effects of repeated sprints with changes of direction on youth soccer player’s performance: impact of initial fitness level. J Strength Cond Res 33(10): 2753–2759.

Sangnier, S, Cotte, T, Brachet, O, Coquart, J, ve Tourny, C. (2019). Planning training workload in football using small-sided games density. J Strength Cond Res 33(10): 2801–2811.

Salo D ve Riewald SA. (2008). Complete Conditioning for Swimming. Champaign, IL: Human Kinetics.
90- Selmi, O, Gonç, alves, B, Levitt, DE, Oueguni, I, Sampaio, J, ve Bouassida, A. (2019). Influence of well-being indices and recovery state on the technical and physiological aspects of play during small-sided games. J Strength Cond Res XX(X): 000–000,
91- Silva JR, Magalhaes JF, Ascensoa AA, Oliveira EM, Seabra AF, ve Rebelo AN. (2011). Individual match playing time during the season affects fitness-related parameters of male professional soccer players. J Strength Cond Res 25(10): 2729–2739,
92- Simonneau JA, Lortie G, Boulay MR, Marcotte M, Thibault MC, ve Bouchard C. (1987). Effects of two high-intensity intermittent training programs interspersed by detraining on human skeletal muscle and performance. Eur J Appl Physiol 56: 516–521,
93- Sousa, AC, Neiva, HP, Gil, MH, Izquierdo, M, Rodriguez-Rosell, D, Marques, MC ve diğer. (2018). Concurrent training and detraining: the influence of different aerobic intensities. J Strength Cond Res XX(X): 000–000,
94- Spencer M, Bishop D, Dawson B, Goodman C. (2005). Physiological and metabolic responses of repeated-sprint activities specific to field-based team sports. Sports Med 35: 1025–1044,
95- Suchomel TJ, Nimphius S, Stone MH. (2016). The importance of muscular strength in athletic performance. Sports Med 2016; 46: 1419–1449,
96- Staron RS, Leonardi MJ, Karapondo DL, Malicky ES, Falkel JE, Hagerman FC ve diğer. (1991). Strength and skeletal muscle adaptations in heavy-resistance-trained women after detraining and retraining. J Appl Physiol 70: 631–640,
97- Stern, D, Gonzalo-Shok, O, Loturco, I, Turner, A, ve Bishop, C. (2020). A comparison of bilateral vs. unilateral-biased strength and power training interventions on measures of physical performance in elite youth soccer players. J Strength Cond Res 34(8): 2105–2111,
98- Stolen, T, Chamari, K, Castagna, C, ve Wisløff, U. (2005). Physiology of soccer: An update. Sports Med 35: 501–536,
99- Suraci, BR, Quigley, C, Thelwell, RC, ve Milligan, GS. (2019). A comparison of training modality and total genotype scores to enhance sport-specific biomotor abilities in under 19 male soccer players. J Strength Cond Res XX(X): 000–000,
100- Svensson M, ve Drust B. (2005). Testing soccer players. Journal of Sports Sciences, June 2005; 23(6):601-618.
101- Taaffe DR ve Marcus R. (1997). Dynamic muscle strength alterations to detraining and retraining in elderly men. Clin Physiol 17: 311–324,
102- Taskin, H. (2009). Effect of circuit training on the sprint-agility and anaerobic endurance. J Strength Cond Res 23(6): 1803–1810,
103- Terada, K, Kikuchi, N, Burt, D, Voisin, S, ve Nakazato, K. (2020). Low-load resistance training to volitional failure induces muscle hypertrophy similar to volume-matched, velocity fatigue. J Strength Cond Res XX(X): 000–000,
104- Terry PC, Walrond N, Carron AV. (1998). The influence of game location on athletes’ physiological state. Journal of Science and Medicine in Sport, 1, 29-37,
105- Tessitore A, Perroni F, Cortis C, Meusen R, Lupo C, ve Capranica L. (2011). Coordination of soccer players during pre-season training. J Strength Cond Res 25(11): 3059–3069,
106- Thomassen M, Christensen PM, Gunnarsson TP, Nybo L, Bangsbo J. (2010). Effect of 2-wk intensified training and inactivity on muscle Na1-K1 pump expression, phospholemman (FXYD1) phosphorylation, and performance in soccer players. J Appl Physiol 108: 898–905,
107- Tomlin DL, Wenger HA. (2001). The relationship between aerobic fitness and recovery from high intensity intermittent exercise. Sports Med 31: 1–11,
108- Turner A. (2011). The Science and Practice of Periodization: A Brief Review. National Strength and Conditioning Journal, February 2011, Vol 33(1):34-46,
109- van Dyk N, Behan FP, Whiteley R. (2019). Including the Nordic hamstring exercise in injury prevention programs halves the rate of hamstring injuries: A systematic review and meta-analysis of 8459 athletes. Br J Sports Med 2019; 53: 1362–1370,
110- William, S, Turner, AN, Weston, M, Russell, M, Johnston, MJ, ve Kilduff, LP. (2018). Neuromuscular, biochemical, endocrine, and mood responses to small-sided games’ training in professional soccer. J Strength Cond Res 32(9): 2569–2576,
111- Wilson JM, ve Wilson GJ. (2008). Practical Approach to the Taper. Strength and Conditioning Journal, Vol 30(2):10-17, April 2008,
112- Wisløff, U, Helgerud, J, ve Hoff, J. (1998). Strength and endurance of elite soccer players. Med Sci Sports Exerc 30: 462–467,
113- Wong P-L, Chaouachi A, Chamari K, Della A, ve Wisløff U. (2010). Effect of preseason concurrent muscular strength and highintensity interval training in professional soccer players. J Strength Cond Res 24(3): 653–660,
114- Ziegas GG, Patras KN, Stergiou N, ve Georgoulis AD. (2011). Velocity at lactate threshold and running economy must also be considered along with maximal oxygen uptake when testing elite soccer players during preseason. J Strength Cond Res 25(2): 414–419,