Chemical Synonyms, Molecular Structure and Toxicological Risk Assessment of Synthetic Textile Dyes: A Critical Review

Insaf Ayadi1, Yasmine Souissi1, Ines Jiasi1, Francisco Peixoto2 and Wissem Mnif3,4*

1Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia.
2Faculty of Sciences of Bizerte, Jarzouna - Bizerte - 7021, University of Carthage, Tunisia
3Université Libre de Tunis, Institut Polytechnique IP2, 32 Avenue Kheireddine Pacha 1002 Tunis-Tunisie
4Center for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
5Faculty of Sciences and Arts in Balgarn, PO Box 60 Balgarn- Sabt Al Alaya 61985, Bisha University, Saudi Arabia

Abstract

Textile industry has been considered for years to be one of the major sources of worldwide pollution problems. Huge amount of wastewater is generated at different stages of textile manufacturing. These waste products are mostly released in the environment without prior consideration. In Fact, they are highly contaminated with lot of chemicals including dyes. For this reason, the investigation of the effects of those compounds over the environment and human health has become a great interest. This review outlines the chemical synonyms, molecular structure and the toxicological effects of 85 textile dyes. The potential fate and effect of those substances on aquatic, human health and ecosystem are discussed in this article.

Keywords: Textile industry; Synthetic dyes; Toxicity; Toxicological effects

Introduction

Since the discovery of the brilliant fuchsia color, or mauve in 1856, thousands of synthetic dyes have been manufactured all over the world [1]. Actually, there are approximately 10,000 different synthetic dyes available in the market [2] with a global annual production of almost 800,000 tons [3]. Such dyes may be defined as colored matters and when applied they are to substrates may provide them with a permanent color that by any means will not be affected by sun rays, soap and water [1,4]. Specifically, every dye stuff consists of a group of atoms, called ‘chromophore’ that is responsible for the substrates’ coloration by absorbing certain wavelengths of light from the nearby ultraviolet region. It also contains an ‘auxochrome’ which helps the chromophore attach to the fiber by means of stable chemical bonds. The most important chromophores are: N=O, -NO2, -N=N-, -C=O, C=O, -C= N and (CH-CH) and the compounds that bear them are known as chromogens [4].

These organic chemicals are usually classified as azo, anthraquinone, vat, phthalocyanine, indigo, polymethine, carbonium and nitro dyes [5-7]. Azo dyes which have an azo bond (R1−N=N−R2), where R1 and R2 are aromatic groups, can be substituted by sulphonated groups. R1 and R2 represents the biggest and most versatile group and composes about one-half of all dyes produced [8,9]. However, anthraquinone dyes constitute the second most important category of textile dyes and are often used for dyeing cellulosic fabric (such as cotton), wool and polyamide fibers. It is to be noted that a large diversity of chemical structures of anthraquinone colorants exist [10]. Concerning the nitro dyes, it was the first to be manufactured and rarely used. In terms of its atomic structure, the nitroso dyes consist on an NO2 group in ortho-position to an electron-donating substituent such as usually NH2 and an OH group [11].

Each year, nearly 140 000 tons of synthetic dyes are lost into the environment because of the dyeing process [11,12]. The discharge of dye-containing effluents has obvious negative effects. Those effluents are characterized by strong colors, high pH variations, high chemical oxygen demand (COD) and increased biotoxicity against bacteria [13]. Even at very low concentration (10−50 mg/L) water-soluble dyes may, intensively, affect the aquatic organisms [14-16] and interfere with the transmission of sun beams into streams and, therefore, reduce photosynthetic activity [17]. It is worth noting that these chemicals show high neutrality to light, temperature and microbial attacks [18]. They are also known to be persistent in the environment [15].

There has been increasing concern in recent years the occurrence, fate and toxicity of textile dyes products in the environment. This paper is a state of the art on the toxicological effects of those chemical substances.

Harmful Effects of Textile Dyes and their Metabolite

Textile dyes extensively used in several manufacturing process have been proved to be harmful to the human health as well as to the environment. Moreover, these chemicals, especially the azo dyes, could raise potential environmental concerns considering their toxic, mutagenic and carcinogenic effects [19-22].

As the discharge of azo dyes into water bodies presents human and ecological risks, a few synthetic dyes have been tested in order to evaluate their potential toxicity. The results have shown that these dyes have toxic effects on a variety of organisms such us aquatic animals [23]. Appendix1 displays about 85 toxic textile dyes.

Textile dyes and its metabolite carcinogenic effect, mutagenic effect and DNA damages

It has been reported that dyes toxicity may happen due to either the direct action of the original compound or its intermediate metabolites such as naphthalene, benzidine and other aromatic amines.

*Corresponding author: Wissem Mnif, LR11-ES31 Laboratory of Biotechnology and Valorisation of Bio-GeoRessources, Higher Institute of Biotechnology of Sidi Thabet, BiotechPole of SidiThabet, 2020, University of Manouba, Tunis, Tel: +216-589473-71; E-mail: w_mnif@yahoo.fr

Received: February 03, 2016; Accepted: February 17, 2016; Published: February 25, 2016

Citation: Ayadi I, Souissi Y, Jiasi I, Peixoto F, Mnif W (2016) Chemical Synonyms, Molecular Structure and Toxicological Risk Assessment of Synthetic Textile Dyes: A Critical Review. J Develop Drugs 5: 151. doi:10.4172/2329-6631.1000151

Copyright: © 2016 Ayadi I, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
[24,25]. Those compounds are by-products of cleavage of azo bond by microorganisms, and reported to be carcinogenic and mutagenic [24,26]. They were proved to be more dangerous than the parent compound [27].

In this context, the benzidine-based azo Direct Red 28 intermediate metabolites, the benzidine and 4-aminophenyl were reported to be the real causes of its toxicity [25]. The reduction of textile azo dyes may breed DNA binding motifs [28,29] and may cause multiple toxic effects.

Along with the aforementioned problems, some dyes have been shown to have a propensity to bio accumulate in fish [15,30]. Moreover heavy-metal ions that are originally present in textile effluents have been detected to be higher in algae and plants which are exposed to such effluents [15]. Some experiments have revealed that wastewater generated by textile industry has high amount of Total Organic Carbon (TOC), high salt content and extremes in pH [31,32]. It was reported that high pH values are registered in reactive dye baths and low ones in acid dye baths. Lastly, it was observed that colored effluents decrease soil fertility and inhibit several plants (Appendix 1).

Conclusion

Environmental textile dyes hazards are associated to alarming human and animal’s health side effects. Through this study we tried to highlight the fact that textile dyes discharged into the environment have alarming effects as both parent compound of dyes and their breaking-down products. They induce various cytotoxic, genotoxic, mutagenic and carcinogenic effects. Even at low concentration, these substances are proved to be responsible for harmful effects. Therefore, textile dyes treatment before eventual release in the environment has become a serious preoccupation. Several physical, chemical and biological processes are nowadays used in order to remove those compounds. However, their efficiency discussed as the danger associated to the treatment and unknown is of real concern.

Acknowledgements

This study was funded by the Tunisian Ministry of Higher Education and Scientific Research. Thanks are also to Dr. Sharif Mohammad Shahidullah from Department of English, Faculty of Sciences and Arts in Balgarm, Bisha University, Saudi Arabia for his contribution on correction of English language.

References

1. Saratale RG, Saratale GD, Chand JS, Govindwar SP (2011) Bacterial decolorization and degradation of azo dyes: A review. J Taiwan Inst Chem Eng 42: 138-157.
2. Bazin I, Ibn Hâjed Hassine A, Haj Hamouda Y, Mnif W, Bartegi A, et al. (2012) Estrogenic and anti-estrogenic activity of 23 commercial textile dyes. Ecotoxicol Environ Saf 80: 131-136.
3. Agher M, Azim N, Bhatti HN (2009) Decolorization of practical textile industry effluents by white rot fungus Coriolus versicolor IBL-04. Biochemical Engineering Journal 47: 61-65.
4. Rai HS, Bhattacharyya MS, Singh J, Bansal TK, Vats P, et al. (2005) Removal of Dyes from the Effluent of Textile and Dyestuff Manufacturing Industry: A Review of Emerging Techniques with Reference to Biological Treatment. Crit Rev Envi Sci Tec 35: 219-238.
5. Abraham EN (1977) Dyes and their Intermediates. Edward Arnold Ltd., London.
6. Anliker R (1979) Ecotoxicology of dyestuffs-a joint effort by industry. Ecotoxicol Environ Saf 3: 59-74.
7. Sponza DT (2006) Toxicity studies in a chemical dye production industry in Turkey. J Hazard Mater 138: 438-447.
8. Méndez-Paz D, Orell F, Lema JM (2005) Anaerobic treatment of azo dye Acid Orange 7 under batch conditions. Enzyme and Microbial Technology 36: 264-272.
9. Mohan SV, Prasad KK, Rao NC, Sarma PN (2005) Acid azo dye degradation by free and immobilized horseradish peroxidase (HRP) catalyzed process. Chemosphere 58: 1097-1105.
10. Christie RM (2001) Colour Chemistry. Cambridge, United Kingdom: The Royal Society of Chemistry.
11. Zollinger H (1987) Synthesis, Properties of Organic Dyes and Pigments. In: Color Chemistry. New York, USA: VCH Publishers: 92-102.
12. Cooper P (1995) Colour in dyestuff effluent, the society of dyers and colourists, Oxford: Aden Press.
13. Walker GM, Weatherly LR (2000) Biodegradation and biosorption of acid anthraquinone dye. Environ Pollut 108: 219-223.
14. Anliker R (1977) Color chemistry and the environment. Ecotoxicol Environ Saf 1: 211-237.
15. Banat IM, Nigam P, Singh D, Marchant R (1996) Microbial decolorization of textile-dye-containing effluents: a review. Bioreourse Technology 58: 217-227.
16. Demirici O, Hamamci DA (2013) Antioxidant responses in Phanerochaete chrysosporium exposed to Astrazone Red FBL textile dye. Cell Biochemistry and function 31: 86-90.
17. Ciçeð F, Ozer D, Ozer A, Ozer A (2007) Low cost removal of reactive dyes using wheat bran. J Hazard Mater 146: 408-416.
18. Kokol V, Doliðka A, Eichlerová I, Baldrian P, Nerud F (2007) Decolorization of textile dyes by whole cultures of lachnodermia resinosum and by purified laccase and Mn-peroxidase. Enzyme Microbiol. Technol 40: 1673-1677.
19. Spadaro JT, Gold MH, Renganathan V (1992) Degradation of azo dyes by the lignin-degrading fungus Phanerochaete chrysosporum. Appl Environ Microbiol 58: 2397-2401.
20. Sponza DT, Iaik M (2005) Toxicity and intermediates of C.I. Direct Red 28 dye through sequential anaerobic/aerobic treatment. Proc Biochem 40: 2735-2744.
21. Lu K, Zhang XL, Zhao YL, Wu ZL (2010) Removal of color from textile dyeing wastewater by foam separation. J Hazard Mater 182: 928-932.
22. Nagel-Hassemer ME, Carvalho-Pinto CRS, Matias WG, Lapolli FR (2011) Removal of coloured compounds from textile industry effluents by UV/H2O2 advanced oxidation and toxicity evaluation. Environmental Technology 32: 1867-1874.
23. Young L, Yu J (1997) Ligninase-catalysed decolorisation of synthetic dyes. Water Research 31: 1187-1193.
24. Osugi ME, Umbuzeiro GA, De Castro FJ, Zanoni MV (2006) Photoelectrocatalytic oxidation of remazol turqoise blue and toxicological assessment of its oxidation products. J Hazard Mater 137: 871-877.
25. Bañana A, Jain M, Agrawal G, Chakrabarti T (2009) Bacterial reduction in genotoxicity of Direct Red 28 dye. Chemosphere 74: 1404-1406.
26. Rafi F, Cerniglia CE (1995) Reduction of azo dyes and nitroaromatic compounds by bacterial enzymes from the human intestinal tract. Environ Health Perspect 103 Supp 5: 17-19.
27. Wong PK, Yuen PY (1996) Decolorization and biodegradation of methyl red by Klebsiella pneumoniae RS-13. Water Research 30: 1736-1744.
28. Levine WG (1991) Metabolism of azo dyes: implication for detoxication and activation. See comment in PubMed Commons below Drug Metab Rev 23: 253-309.
29. Stiborová M, Frei E, Schneiser HH (1992) Comparison of cytochrome P-450- and peroxidase-mediated activations of carcinogenic azo dyes and N-nitrosamines. Gen Physiol Biophys 11: 489-498.
30. Anliker R, Clarke EA, Moser P (1981) Use of the partition coefficient as an indicator of bio-accumulation tendency of dyestuffs in fish. Chemosphere 10: 1867-1874.
31. Golov V, Vinder A, Simoni M (2005) Efficiency of the coagulation/ flocculation method for the treatment of dye bath effluents. Dyes and Pigments 67: 93-97.
32. Francisco E, Grossman MJ, Paschoal JA, Reyes FG, Durrant LR (2012) Decolorization and biodegradation of reactive sulfonated azo dyes by a newly isolated Brevibacterium sp. strain VN-15. Springerplus 1: 37.
33. Chou PH, Matsui S, Misaki K, Matsuda T (2007) Isolation and identification of Coriolus versicolor P-450- and peroxidase-mediated activations of carcinogenic azo dyes and N-nitrosamines. Gen Physiol Biophys 11: 489-498.
34. Franciscon E, Grossman MJ, Paschoal JA, Reyes FG, Durrant LR (2012) Decolorization and biodegradation of reactive sulfonated azo dyes by a newly isolated Brevibacterium sp. strain VN-15. Springerplus 1: 37.
35. Chou PH, Matsui S, Misaki K, Matsuda T (2007) Isolation and identification of xenobiotic aryl hydrocarbon receptor ligands in dyeing wastewater. Environ Sci Technol 41: 652-657.
34. Ab-Sabti K (2000) Chlorotriazine reactive Azo red 120 textile dye induces micronuclei in fish. Ecotoxicol Environ Saf 47: 149-155.

35. Tuabo MS, Angeli JP, Mantovani MS, Kramüller S, Umbuzeiro GA, et al. (2007) Genotoxic, mutagenic and cytotoxic effects of the commercial dye CI Disperse Blue 291 in the human hepatic cell line HepG2. Toxicol in Vitro 21: 1560-1565.

36. Umbuzeiro GA, Freeman HS, Warren SH, De Oliveira DP, Teraso Y, et al. (2005) The contribution of azo dyes to the mutagenic activity of the Cristasí River, Chemosphere 60: 55-64.

37. de Aragão Umbuzeiro G, Freeman H, Warren SH, Kummrow F, Claxton LD (2005) Mutagenicity evaluation of the commercial preparation CI Disperse Blue 291 using different protocols of the Salmonella assay. Food Chem Toxicol 43: 49-56.

38. Chequer FM, Angeli JP, Ferraz ER, Tuabo MS, Marcarini JC, et al. (2009) The azo dyes Disperse Red 1 and Disperse Orange 1 increase the micronuclei frequencies in human lymphocytes and in HepG2 cells. Mutat Res 676: 83-86.

39. Ferraz ER, Grando MD, Oliveira DP (2011) The azo dye Disperse Orange 1 induces DNA damage and cytotoxic effects but does not cause ecotoxic effects in Daphnia similis and Vibrio fisheri. J Hazard Mater 192: 628-633.

40. Gündögö A, Birhanli A, Ozmen M (2013) Biochemical response to exposure to six textile dyes in early developmental stages of Xenopus laevis. Environ Sci Pollut Res Int 20: 452-460.

41. Ayadi I, Monteirod SM, Regaya I, Coimbrad A, Fernandes F, et al. (2009) Biochemical and histological changes in the liver and gill of Nile tilapia Oreochromis niloticus exposed to Red 195 Dye. RSC Adv 5: 87168-87178.

42. Zeiger E, Anderson B, Haworth S, Lawlor T, Mortelmans K (1988) Salmonella mutagenicity tests: IV. Results from the testing of 300 chemicals. Environ Mol Mutagen 11 Suppl 12: 1-157.

43. Stiborová M, Martínek V, Rýdlová H, Hodek P, Frei E (2002) Sudan I is mutagenic to luminescent bacteria vibrio fischeri. Dyes and Pigments 55: 231-236.

44. An Y, Jiang L, Cao J, Geng C, Zhong L (2007) Sudan I induces genotoxic effects and oxidative DNA damage in HepG2 cells. Mutat Res 627: 164-170.

45. National Toxicology Program (1982) Carcinogenesis Bioassay of C.I. Solvent Yellow 14 (CAS No. 842-07-9) in F344/N Rats and B6C3F1 Mice (Feed Study). Natl Toxicol Program Tech Rep Ser 226: 1-164.

46. McGregor DB, Brown AG, Howeite S, Mcbride D, Riach C, et al. (1991) Responses of the L5178Y mouse Lymphoma cell forward mutation assay. V: Oxidative DNA damage and chromosomal aberrations in rat bone marrows. Cancer Res 51: 5678-5684.

47. Ben Mansour H, Mosrati R, Bariller D, Ghedira K, Bariller D, et al. (2009) In vitro mutagenicity of Acid Violet 7 and its degradation products by Pseudomonas putida mt-2: Correlation with chemical structures. Environ Toxicol Pharmacol 27: 231-236.

48. Ben Mansour H, Bariller D, Corrollor D, Ghedira K, Chekir-Ghedira L, et al. (2009) In vitro study of DNA damage induced by acid orange 52 and its biodegradation derivatives. Environ Toxicol Chem 28: 489-495.

49. Ben Mansour H, Mosrati R, Corrollor D, Ghedira K, Bariller D, et al. (2010) Acid violet 7 and its biodegradation products induce chromosome aberration, lipid peroxidation and cholinesterase inhibition in mouse bone marrow. Environ. Sci. Pollut. Res 17: 1371-1378.

50. Wang C, Yediler A, Linert D, Wang Z, Kettrup A (2002) Toxicity evaluation of reactive dye stuff, auxiliaries and selected effluents in textile finishing industry to luminescent bacteria vibrio fisheri, Chemosphere 48: 339-344.

51. Novotný C, Dias N, Kapanen A, Malachova K, Vándrová M, et al. (2006) Comparative use of bacterial, algal and protozoan tests to study toxicity of azo- and anilino dyes and benzidine. Toxicol Lett 165: 1650-1655.

52. Srivastava S, Sinha R, Roy D (2004) Toxicological effects of repeated doses of malachite green: a preliminary study. J. Fish Dis 14: 521-532.

53. Musa SO, Omorogie E (1999) Haematological changes in the mud?sh, Clarias gariepinus (Burchell) exposed to malachite green. J. Aquat Sci 14: 521-532.

54. Novotný C, Dias N, Kapanen A, Vándrová M, et al. (2006) Comparative use of bacterial, algal and protozoan tests to study toxicity of azo- and anilino dyes and benzidine. Toxicol Lett 165: 1650-1655.
76. Sharma MK, Sobti RC (2000) Rec effect of certain textile dyes in Bacillus subtilis. Mutat Res 465: 27-38.
77. Garner RC, Nutman CA (1977) Testing of some azo dyes and their reduction products for mutagenicity using Salmonella typhimurium TA 1538. Mutat Res 44: 9-19.
78. Tezcanli-Guyer G, Ince NH (2003) Degradation and toxicity reduction of textile dyestuff by ultrasound. Ultrason Sonochem 10: 235-240.
79. Ogugbue CJ, Oranusi NA (2005) Toxicity of azo dyes to the freshwater shrimp (Desmocaris trispinosa). International Journal of Natural And applied Sciences 1: 37- 44.
80. Verma Y (2008) Acute toxicity assessment of textile dyes and textile and dye industrial effluents using Daphnia magna bioassay. Toxicol Ind Health 24: 491-500.
81. Tammaro M, Monti-Bragadin C, Banfi E (1975) Mutagenic activity of anthraquinone derivatives used as dyes in a textile factory. Boll Ist Sieroter Milan 54: 105-107.
82. Ding F, Zhang L, Diao JX, Li XN, Ma L., et al. (2012) Human serum albumin stability and toxicity of anthraquinone dye alizarin complexone: an albumin-dye model. Ecotoxicol Environ Saf 79: 238-246.
83. IARC (1982) Some industrial chemicals and dyestuffs. IARC Monogr Eval Carcinog Risk Chem Hum 29: 1-398.
Appendix 1: Effects of different groups of Textile dyes, their synonyms and chemical structures: review of studies reported in the literature

No.	Chemical Name of Textile dye	Molecular structure	Toxicological effects
Divers toxicological effects			
1	Disperse Blue 56	![Disperse Blue 56](image)	Disperse Blue 56 is suggested to be a new class of xenobiotic AhR ligands which pose a danger to aquatic biota and human health. [33].
	Class: Anthraquinone		
	CAS No. 12217-79-7		
	Synonyms: C. I. Disperse Blue 56; C. I. 63285; Blue 2BLN; Latyl Blue BCN; Resolin Blue FBL; Samaron Blue FBL; Serilene Blue RL; Terasil Blue 3RL; Disperse Blue 2BLN		
	CB Number: CB7447884		
	Molecular Formula: C\(_{14}\)H\(_9\)BrN\(_2\)O\(_4\)		
	Formula Weight: 349.14		
	MOL File: 12217-79-7 mol		
2	Chlorotriazine Reactive Azo Red 120	![Chlorotriazine Reactive Azo Red 120](image)	Study proved the genotoxicity of this dye by induction of micronuclei in erythrocytes of Prussian carp *Carassius auratus gibelio* for three low doses of 1, 5, and 10 mg/L and time dependent manner [34].
	Class: Azo		
	CAS No. NA		
	Synonyms: NA		
	CB Number: CB11428606		
	Molecular Formula: NA		
	Formula Weight: NA		
	MOL File: Mol file		
Disperse Blue 291

Class: Single azo
CAS No. 56548-64-2
Synonyms: C. I. 113395; Balicron Blue 6G; Hisperse Navy C-6G; Viosperse Blue 5G; Ambicon Blue SEGBL; Disperse Navy Blue 5G; Terenix Navy Blue F3GL; Kiwalon Polyester Blue 5G; Disperse Navy Blue S-BGF300
CB Number: CB4798923
Molecular Formula: C$_{19}$H$_{21}$BrN$_6$O$_6$
Formula Weight: 509.31064
MOL File: 56548-64-2 mol

Induction of DNA breakage, induction of micronuclei, increase of apoptosis in human hepatoma cells HepG2 [35]. Mutagenic activity in the Salmonella assay [36,37].

Disperse Red 1

Class: Single azo
CAS No. 2872-52-8
Synonyms: C. I. 11110; C.I. 11015; WO 4; Disperse Red ZH; Celliton Red B; Solvent Red 14; 2-(Ethyl[4-[(E)-(4-nitrophenyl) diazenyl phenyl]amino) ethanol
CB Number: CB8135175
Molecular Formula: C$_{16}$H$_{18}$N$_4$O$_3$
Formula Weight: 314.34
MOL File: 2872-52-8 mol

DNA damage caused by Disperse Red 1 was demonstrated by the increase of the number of the micronuclei in human lymphocytes and in HepG2 cells at higher dose levels [38].
Disperse Orange 1

Class: Single azo
CAS No: 2581-69-3
Synonyms: C.I. 11080; C.I. Disperse Orange 1 (6CI,7CI,8CI); Voneryl Red 4G; Acetate Orange 5R; Palanil Orange 5R; Reliton Orange 5R; Resolin Orange 5R; Serisol Orange 5R; Disperse Orange 5R; Dispersol Orange A; Navilene Orange 5R; Acetate Orange 5R; Acetoquinone Light Orange 4RL; Celliton Discharge Orange 5RL; Celliton Fast Orange 5R; Cila Fast Orange 5R; Diacelliton Fast Orange R; Diacelliton Fast Orange RM/D; Disperse Orange 5R; Dispersol Fast Orange A; Dispersol Orange A; Dispersol Orange B-A; Dispersol Printing Orange A; Miketon Fast Orange 5R; Miketon Polyester Orange 5R; Navilene Orange 5R; Palanil Orange 5R; Reliton Orange 5R; Resolin Orange 5R; Seriline Orange 5R; Seriline Orange; Benzenamine,4-[(4-nitrophenyl)azo]-N-phenyl- (9CI); 4-(4-Nitrophenylazo)diphenylamine; 4-(p-Nitrophenylazo)diphenylamine;4-Anilino-4'-nitroazobenzene; 4-Nitro-4'-(phenylamino) azobenzene;
CB Number: CB3144969
Molecular Formula: C18H14N4O2
Formula Weight: 318.33
MOL File: 2581-69-3 mol

Increase the micronuclei frequencies in human lymphocytes and in HepG2 cells causing DNA damage at higher dose levels of this dye [38]. The dye showed genotoxic effects with respect to HepG2 cells at concentrations of 0.2, 0.4, 1.0, 2.0 and 4.0 μg/mL and induces DNA damage and cytotoxic effects but does not cause ecotoxic effects in *Daphnia similis* and *Vibrio fischeri* [39].

Astrazon Blue FGRL

Class : NA

Alterations of selected enzyme activities in practically, increase
CAS No. 105953-73-9	of glutathione reductase (GR) and glutathione s-transferase (GST) in *xenopus leavis* tadpoles at concentration 0.13 mg/L [40].
Synonyms: NA	
CB Number: CB11447524	
Molecular Formula: NA	
Formula Weight: NA	
MOL File: Mol file	

7	Astrazon Red FBL	Important decrease of catalase, glutathione reductase, glutathione s-transferase activities and glutathione levels in *Phanerochaete chrysosporium* [16]. Increase of Carboxylesterase (CaE), Lactate dehydrogenase (LDH) and glutathione s-transferase (GST) activities in *xenopus leaves* were determined at concentration 0.35 mg/L [40].
Class : Azo		
CAS No. 12221-69-1		
Synonyms: NA		
CB Number: CB9129319		
Molecular Formula: NA		
Formula Weight: 403.3194		
MOL File: Mol file		

8	Remazol Red RR	Clear increase of glutathione s-transferase (GST) activity at low concentrations 7.5, 16.9, 38.0 mg/L, and increase of Carboxylesterase (CaE) activity at higher concentrations 85.5, 192.3, 432.7, 973.5 mg/L in *Xenopus leavis* tadpoles [40].
Class : Azo		
CAS No. NA		
Synonyms: NA		
CB Number: CB21409093		
Molecular Formula: NA		
Formula Weight: NA		
MOL File: Mol file		
	Remazol Turquoise Blue G-A	Increase of glutathione s-transferase activity in *xenopus leavis* tadpoles determined at concentration 7 mg/L [40].
---	--------------------------	--
Class	Phthalocyanine	
CAS No.	12236-86-1/73049-92-0	
Synonyms	C.I. Reactive Blue 21; Reactive Turquoise Blue KN-G; Reactive Blue KN-G	
CB Number	CB01434912	
Molecular Formula	C₁₈H₁₅N₇OS	
Formula Weight	377.43	
MOL File	Mol file	
	![Chemical Structure](image)	

	Cibacron Blue FN-R	Inhibition of glutathione s-transferase and an increase of carboxylesterase (CaE) activities in *xenopus leavis* tadpoles at concentration 15.8 mg/L [40].
Class	NA	
CAS No.	NA	
Synonyms	NA	
CB Number	CB41433670	
Molecular Formula	NA	
Formula Weight	NA	
MOL File	Mol file	

	Cibacron Red FN-3G	Inhibition of glutathione s-transferase activities in *xenopus leavis* tadpoles at higher concentration 359 mg/L [40].
Class	NA	
CAS No.	NA	
Synonyms	NA	
CB Number	CB41413795	
Molecular Formula	NA	
Formula Weight	NA	
MOL File	Mol file	

| | Blue HFRL | Estrogenic potencies of the dye |
was evaluated by dose-response curves and compared to the dose-response curve of 17β-estradiol (E2), the reference compound. E2/dye competitive binding assays show activity of this dye indicating a mechanism of action common to E2. This result indicates that Blue HFRL is potential endocrine disrupting agents. The presence of some of this dye in textile industry wastewater may thus impact the aquatic ecosystem [2].

Benzopurpurine 4B

Class	Azo
CAS No.	992-59-6
Synonyms	Red 4B; C.I. 23500; Azamin 4B; Sultan 4B; Erie red 4B; Eclipse Red; Paper Red 4B; Purpurin 4B; Cotton Red 4B
CB Number	CB4710130
Molecular Formula	C_{34}H_{26}N_{6}Na_{2}O_{6}S_{2}
Formula Weight	724.72
MOL File	992-59-6.mol

Estrogenic potencies of the dye was evaluated by dose-response curves and compared to the dose-response curve of 17β-estradiol (E2), the reference compound. E2/dye competitive binding assays show activity of Benzopurpurine 4B indicating a mechanism of action common to E2. This result indicates that Blue HFRL is potential endocrine disrupting agents. The presence of some of this dye in textile industry wastewater may thus impact the aquatic ecosystem [2].
No.	Dye Name	Class	CAS No.	Synonyms	CB Number	Molecular Formula	Formula Weight	MOL File	Estrogenic Potencies
14	Everzol Navy Blue FBN	azo	93912-64-2	NA	NA	C_{37}H_{29}Cl_{10}O_{22}S_{7}Na_{6}	NA	Mol file	Estrogenic potencies of the dye was evaluated by dose-response curves and compared to the dose-response curve of 17β-estradiol (E2), the reference compound. E2/dye competitive binding assays show activity of Everzol Navy Blue FBN indicating a mechanism of action common to E2. This result indicates that Blue HFRL is potential endocrine disrupting agents. The presence of some of this dye in textile industry wastewater may thus impact the aquatic ecosystem [2].
15	Yellow Favina CXL	NA	NA	NA	NA	NA	NA	NA	Estrogenic potencies of the dye was evaluated by dose-response curves and compared to the dose-response curve of 17β-estradiol (E2), the reference compound. A weak estrogen agonist activity
No.	Chemical Name	Class	CAS No.	Synonyms	Molecular Formula	Formula Weight	MOL File	Notes	
-----	---------------------------------------	----------------	-------------	---	-----------------------------	----------------	--------------------	--	
16	Reactive Dyes Red 3BS	Single azo	93050-79-4	Reactive Red 195; C.I. Reactive Red 195; Reactive Red M-3BE; Reactive Red SP-3B; Reactive Brilliant Red ME-3BS; CINO.RED.195; Red F3B; Reactive Brilliant Red M-3BE	C₃₁H₁₉ClN₇O₁₉S₆	1136.31	93050-79-4.mol	Induction of estrogenic activity was evaluated by dose-response curves and compared to the dose-response curve of 17β-estradiol (E2), the reference compound [2]. Liver and gill tissues of Oreochromis niloticus showed several antioxidant activities of catalase (CAT), glutathione reductase (GR) and glutathione S-transferase (GST), and histopathological changes [41].	
17	Solvent Yellow 56	Single azo	2481-94-9	C-299; C.I. Solvent Yellow 56; DEAB; C.I. 11021; Yellow DE; Oil Yellow GA; Fat Yellow GGN; Oil Yellow DEA; Fat Yellow P; Solvent Yellow 2G; Solvent Golden Yellow R; Transparent Yellow 3R; Transparent Yellow; 5R Transparent plastic yellow 103; Oil Yellow 201; Ceres Yellow GGN; Fast Oil Yellow 64403; NSC 102374; Oil Yellow DE; Oil Yellow ENC; Oil Yellow NB; Oil sol Yellow DEA; Orient Oil Yellow GGS; Sico Fat Yellow P; Sudan Yellow GGN; Diethyl Yellow, Oil Yellow DE, 2481-94-9, Oil Yellow GA, Oil Yellow NB,	C₂₉H₁₉ClN₇O₁₉S₆	403.42	2481-94-9.mol	Estrogenic potencies of the dye was evaluated by dose-response curves and compared to the dose-response curve of 17β-estradiol (E2), the reference compound. A weak estrogen agonist activity was determined [2].	
Oil Yellow DEA; 4-diethylaminoazobenzene; p-(Diethylamino)azobenzene; N,N-Diethyl-4-(phenylazo)aniline; N,N-diethyl-4-aminoazobenzene; Aniline,N,N-diethyl-p-(phenylazo)- (6CI,7CI);4-(N,N-Diethylamino)azobenzene;4-(Phenylazo)-N,N-diethylaniline

CB Number: CB1688526
Molecular Formula: C\textsubscript{16}H\textsubscript{19}N\textsubscript{3}
Formula Weight: 253.34
MOL File: 2481-94-9.mol

Mutagenic and carcinogenic effect

18 **Sudan I**
Class: Azo
CAS No. 842-07-9
Synonyms: C.I. 12055; 1-Phenylazo-2-naphthol, Solvent Yellow 14; Sudan J; Soudan I; Carminaph; Scarlet B; NSC 11227; 1-Phenylazo-2-naphthol; Solvent Yellow 14; Grasal Orange; Spirit Orange; Sudan Yellow; Fast Orange; 1-phenylazo-2-hydroxynaphthalene; 1-phenylazo-2-naphthol; 1-phenylazo-2-naphthol, (E)-isomer; 1-phenylazo-2-naphthol, (Z)-isomer; 1-phenylazo-2-naphthol, 1-(15)N-labelled; 1-phenylazo-2-naphthol, 2-(15)N-labeled; 1-phenylazo-2-naphthol, ion(1-); 1-phenylazo-2-naphthol, sodium salt
CB Number: CB9489556
Molecular Formula: C\textsubscript{16}H\textsubscript{12}N\textsubscript{2}O

Mutagenicity to *salmonella typhimurium* [42]. Urinary bladder and liver carcinogen in mammals [43]. Dose-dependent increase of DNA migration and of micronuclei frequencies in human hepatoma HepG2 cells [44]. Carcinogenic in male and female F344/N rates: induction of liver neoplastic nodules [45]. Weak mutagenic activity in the mammalian mouse lymphoma assay [46].
Formula Weight:	248.28
MOL File:	842-07-9.mol

Disperse red 82
Class: Single azo
CAS No. 30124-94-8
Synonyms: C.I. 11140; Terasil Red 3BL; Begacron Red 3B; Disperse Red C3B; Balicron Red C-3B; C.I. Disperse Red 82; Tulaspeck Red 3B-PE; Disperse Rubine SE-BBL; C.I. Disperse Red 82 press cake; C.I. Disperse Red 82; Cibacet Red 3BL; Resolin Red BBL; Samaron Red BL; Serilene Red 3B-LS; Terasil Red 3BL; Benzonitrile,2-[[4-[bis[2-(acetyloxy)ethyl]amino]phenyl]azo]-5-nitro-(9CI);2-[[4-[Bis[2-(acetyloxy)ethyl]amino]phenyl]azo]-5-nitrobenzonitrile;2-[[4-[Bis(2-hydroxyethyl)amino]phenyl]azo]-5-nitrobenzonitrile diacetate(ester);3-Nitro-6-[(4-(N,N-diacetoxyethylamino)phenyl]azo]benzonitrile; N,N-Bis[2-(acetyloxy)ethyl]-4-[(2-cyano-4-nitrophenyl)azo]benzeneamine; 2-[[4-[Bis[2-(acetyloxy)ethyl]amino]phenyl]azo]-5-nitrobenzonitrile; 2-[2-acetoxyethyl-4-(2-cyano-3-nitro-phenyl)azo-3-methylphenyl]amino]ethyl acetate
CB Number: CB1237447

Disperse red 82 caused ambiguous increases in lymph node weight and cell number in the sensitisation protocol which were not reproduced in the sensitisation-challenge protocol, ruling out a relevant sensitising potential for this dye in NMRI mice [47].

![Disperse red 82 molecule](image-url)
| 20 | **Disperse yellow 3**
Class: Single azo
CAS No. 2832-40-8
Synonyms: C.I.11855; NCI-C53781; Disperse Dye Yellow G; Zlut di; Yellow Z; Artisil yellow G; Estone Yellow GN; Fenacet Yellow G; 4-(2-Hydroxy-5-methylphenylazo)acetanilide, N-[4-(2-Hydroxy-5-methylphenylazo)phenyl]acetamide
CB Number: CB9679814
Molecular Formula: C_{21}H_{21}N_{5}O_{6}
Formula Weight: 439.42134
MOL File: 30124-94-8.mol | Disperse yellow 3 caused ambiguous increases in lymph node weight and cell number in the sensitisation protocol which were not reproduced in the sensitisation-challenge protocol, ruling out a relevant sensitising potential for this dye in NMRI mice [47]. Caused a carcinogenic activity by increase of hepatocellular tumours and malignant lymphomas frequencies in female mice [48,49]. |
|---|---|---|
| 21 | **Direct black 38**
Class: Trisazo
CAS No. 1937-37-7
Synonyms: nsc 8679; nsc 47756; C.I. 30235; nci-c54557; Meta Black; AZO Black; Erie Black B; Erie Black; Black 2EMBL; Black 4EMBL; Direct Black BN; Direct Black BRN; Direct Black BX; Direct Black EX; Direct Black RN
CB Number: CB0745257
Molecular Formula: C_{34}H_{25}N_{9}Na_{2}O_{7}S_{2}
Formula Weight: 781.73 | Induction of hepatocellular carcinomas and mammary carcinomas in mice, mutagenicity activity to *salmonella typhimurium* with metabolic activation [50]. High incidence of urinary bladder cancer among exposed workers [51]. Liver carcinogen [52]. Mutagenic activity [53]. |
MOL File: 1937-37-7.mol
22 Reactive red 120
Class: Double azo
CAS No.: 61951-82-4
Synonyms: C.I. 292775; Procion Red HEB; Reactive red 120; Procion Red H-E3B; Cibacron Red 4G-E; C.I. Reactive Red 120; Kayacion Red E-S3B; Adiactive Red HE-3B; Chemitive Red HE3B; Reactive Brilliant Red KE-4B; Reactive Red KE-3B; Reactive Brilliant Red KE-3B; Basacid Red NB 510; Basilen Red E-B; Brilliant Red HE 3B; C.I. Reactive Red 120; Cibacron Brilliant Red 4G-E; Cibacron Red 4G-E; CibacronRed 4G-E01; Drimarene Brilliant Red A 4G; Eversion Red H-E 3B; Fastusol Red 53L; Helaktyn Red DE-BN; Intracron Brilliant Red 4G-E; Intracron Brilliant Red E3B; Kayacion Red E-S 3B; Procion Brilliant Red H-E 3B; Procion Red H-E 3B; Procion Red MX 3B; Reactive Red HE 3B; Red A; Red HE 3B; Suncion Red H-E/EL 3R; Sunfix Red HE 3B; Taifix Red HE3BT; AC1OB94O; AGN-PC-0CT42X; CTK8G2911; AG-G-26962; (3E)-5-[[4-chloro-6-[[4-chloro-6-[[7Z]-8-oxo-3,6-disulfo-7-[(2-sulfophenyl)hydrazinylidene]naphthalen-1-yl]amino]-1,3,5-triazin-2-yl]amino]anilino]-1,3,5-triazin-2-yl]amino]-4-oxo-3-[(2-sulfophenyl)hydrazinylidene]naphthalene-2,7-disulfonic acid; 5-[[4-chloro-6-[[4-chloro-6-[[8-oxo-3,6-disulfo-7-[(2-sulfophenyl)hydrazinylidene]naphthalen-1-yl]amino]-1,3,5-triazin-2-yl]amino]anilino]-1,3,5-triazin-2-yl]amino]-1,3,5-triazin-2-yl]amino]-1,3,5-triazin-2-yl]amino]-1,3,5-triazin-2-yl]amino]-1,3,5-triazin-2-yl]amino]

Toxicity to *Allium cepa* signifies that dye Red 120 exerts oxidative stress and subsequently toxic effect on the root cells whereas biodegradation metabolites of the dye are relatively less toxic in nature. Phytotoxicity studies also indicated that microbial treatment favors detoxification of Red 120 [54].
Induction of DNA damages in human hepatoma cells HepG2 in a dose dependent manner [55]. Dye tested positive in the Salmonella assay, and the suggestion was made that the compound induce mainly frame-shift mutations and that the enzymes nitroreductase and O-acetyl transferase play an important role in the observed effect. In addition, it was shown that the presence of the chlorine substituent in Disperse Red 13 decreased the mutagenicity, which shows the same structure as
	C.I. Basic red 18	**Disperse Red 13, but without the chlorine substituent**[56].
	Class: Single azo	**Dye tested for their mutagenicity on Ames strains of** *salmonella typhimurium*. C.I. Basic red 18 induced frame shift mutations [57].
	CAS No. 14097-03-1	**Orasol Navy blue 2RB induced frame shift mutations without metabolic activation**[57].
24	**Synonyms:** C.I.11085	**Induction of apoptosis in rainbow trout epithelial cell lines RTL - W1, RTgill -W1 and RTgutGC. Acid blue 80 appears to have the potential to be toxic at only very high concentrations [58]**.
	CB Number: NA	**Acid blue 80**
	Molecular Formula: C\textsubscript{19}H\textsubscript{25}Cl\textsubscript{2}N\textsubscript{5}O\textsubscript{2}	**Class:** Anthraquinone
	Formula Weight: 426.34	**CAS No. 4474-24-2**
	MOL File: Mol file	**Synonyms:** C.I. 61585; c -wr Blue 10; Endanil Blue B; Acid Blue 80; C.I. Acid Blue 80; Coomassie Blue B; Leather Blue RAW; Nylosan Blue C -l; Vicoacid Blue 80;
	Orasol Navy blue 2RB	**Acid blue 80**
25	**Class:** Azo	**Class:** Anthraquinone
	CAS No. 61969-42-4	**CAS No. 4474-24-2**
	Synonyms: Orasol Navy Blue 2RB; C.I. Solvent Blue 53; cobalt (2+) bis(2-[(2E)-2-(5-chloro-1-oxonaphthalen 2(1H)-ylidene)hydrazinyl]5-nitrophenolate)	**Synonyms:** C.I. 61585; c -wr Blue 10; Endanil Blue B; Acid Blue 80; C.I. Acid Blue 80; Coomassie Blue B; Leather Blue RAW; Nylosan Blue C -l; Vicoacid Blue 80;
	CB Number: CB71332857	**CB Number:** CB71332857
	Molecular Formula: C\textsubscript{32}H\textsubscript{18}Cl\textsubscript{2}CoN\textsubscript{6}O\textsubscript{8}	**Molecular Formula:** C\textsubscript{19}H\textsubscript{25}Cl\textsubscript{2}N\textsubscript{5}O\textsubscript{2}
	Formula Weight: 744.367	**Formula Weight:** 426.34
	MOL File: 61969-42-4.mol	**MOL File:** Mol file

Notes:
- *salmonella typhimurium* refers to *Escherichia coli* strain used in the Ames test.
- Orasol Navy blue 2RB and Acid blue 80 are used to induce apoptosis in rainbow trout epithelial cell lines.
- Acid blue 80 shows potential toxicity at very high concentrations.

Diagram:
- Disperse Red 13, but without the chlorine substituent.
- Orasol Navy blue 2RB.
- Acid blue 80.
Milling Fast Blue SBL; Alizarin E (PICCS);
Benzenesulfonic acid, 3,3'-(9,10-dihydro-9,10-dioxo-1,4-
anthracenediyl)diimino]bis[2,4,6-trimethyl-, disodium salt;
2-Mesitylenesulfonic acid, 4,4'-(1,4-anthaquinonylenediimino)di-, disodium salt; Acid
Anthraquinone Brilliant Blue; Acid Brilliant Blue
Anthraquinone; Acid Brilliant Blue RAWL; Alizarine Blue
BL; Alizarine Fast Blue R; Alizarine Milling Blue R;
Atlantic Alizarine; Milling Blue RB; Brilliant Alizarine
Milling Blue BL; C-WR Blue 10; C.I. 61585; C.I. Acid
Blue 80; Coomassie Blue B; Endanil Blue B; Nylosan Blue
C-L; Nylosan Blue F-L; Nylosan Blue F-L 150; Polar
Brilliant Blue RAW; Polar Brilliant Blue RAWL; Sandolan
Milling Blue N-BL; Sandolan Milling N-BL; Stenolana
Brilliant Blue BL; Weak Acid Brilliant Blue RAW;
Lanasyn Blue F-L 150; Benzenesulfonic acid, 3,3'-(9,10-
dihydro-9,10-dioxo-1,4-anthracenediyl)diimino]bis[2,4,6-
trimethyl-, disodium salt (TSCA, PICCS, ASIA-PAC);
Sodium 3,3'-(9,10-dioanthracene-1,4-diyl)diimino]bis[2,4,6-
trimethylbenzenesulphonate (EINECS); Acid Blue 80 (ENCS,);
Benzenesulfonic acid, 3,3'-(9,10-dihydro-9,10-dioxo-1,4-
anthracenediyl)diimino]bis[2,4,6-trimethyl-, disodium salt
(AICS)

CB Number: CB5331053

Molecular Formula: C$_{32}$H$_{28}$N$_2$Na$_2$O$_8$S$_2$

Formula Weight: 678.68
C.I. Direct Blue 218

Class: Double azo, Metal Complexes

CAS No.: 28407-37-6

Synonyms: Amanil Supra Blue 9GL; C.I. 24401; Carta Blue VP; Direct Blue 218; Fastusol Blue 9GLP; Intralite Blue 8GLL; Pontamine Bond Blue B; Pontamine Fast Blue 7GLN; Direct Blue 218; Direct Fast Blue 8GLL; Direct Blue 3GLST; Direct Blue 8GL; 1-Naphthol-3,6-disulfonic acid, 2,2'-(3,3'-dihydroxy-4,4'-biphenylylenebisazo)bis[8-amino-, dicopper deriv., tetrasodium salt (6CI); C.I. Direct Blue 218 (8CI); Copper,[tetrahydrogen-3,3'-(3,3'-dihydroxy-4,4'-biphenylylene)bis(azo)]bis[5-amino-4-hydroxy-2,7-naphtalenedisulfonato](4-)di-, tetrasodium salt (7CI); Cuprate (4-), [m-[[3,3'-(3,3'-dihydroxy[1,1'-biphenyl]-4,4'-diyl]bis(azo)]bis[5-amino-4-hydroxy-2,7-naphtalenedisulfonato]](8-)di-, tetrasodium; Cuprate(4-), [m-[[3,3'-(3,3'-di(hydroxy-kO)[1,1'-biphenyl]-4,4'-diyl]bis(azo-kO)][1,1'-biphenyl]-4,4'-diyl]bis[5-amino-4-(hydroxy-kO)-2,7-naphtalenedisulfonato]](8-)di-, tetrasodium (9CI)

CB Number: NA

Molecular Formula: C_{32}H_{16}Cu_2N_6Na_4O_{16}S_4

Formula Weight: 1087.82

MOL File: NA

High toxicity to *Daphnia magna* with a 48-h with LC50 range between 1.0 and 10.0 mg/L [59].

Direct blue 6

Class: Double azo

Induction of hepatocellular carcinomas in rats, teratogenic
CAS No. 2602-46-2		activity in rats when administered during the first half of pregnancy [50].
Synonyms: C.I.22610 ; Direct Blue 2B; Direct Blue 2BA	Molecular Formula: C_{32}H_{20}N_{6}Na_{4}O_{14}S_{4}	Acid Red 26 caused a carcinogenic effects proved by liquid chromatography/electrospray ionization mass spectrometry via negative/positive ion switching mode [60].
CB Number: CB3243835	Formula Weight: 932.763	
CB Number:	MOL File: Mol file	

Acid Red 26	Class : Single azo	
Acid Red 26	Synonyms: C.I. 16150; Scarlet 2R; Ponceau R; Acid Scarlet; Ponceaux RH; Ponceau 2R ; C.I. Acid Red 26 (7CI); C.I. Acid Red 26, disodium salt (8CI); Ponceau Xylidine (6CI); Acid Leather Red KPR; Acid Leather Red P 2R; Acid Leather Scarlet IRW; Acid Ponceau 2RL; Acid Ponceau Special; Acid Scarlet; Acid Scarlet 2R; Acid Scarlet 2RL; Ahcoid Fast Scarlet R; Am acid Lake Scarlet 2R; Borunil Ponceau A 2R;Calcolake Scarlet 2R;Certicol Ponceau MXS; Colorosacid Scarlet; D and C Red No. 5; Disodium salt of 1-(2,4-xylylazo)-2-naphthol-3,6-disulfonic acid; Edicol Supra Ponceau R; Food Red 5; Hexacol Ponceau 2R; Hexacol Ponceau MX; Hidacid Scarlet 2R; Japan Red No. 503; Kiton Ponceau R; Naphthalene Lake Scarlet R; Naphthalene Scarlet R; Naphthazine Scarlet 2RN; Neklacid Red RR; Pigment Ponceau R; Ponceau 2R;	
Ponceau 2RL; Ponceau 2RX; Ponceau BNA; Ponceau G; Ponceau PXM; Ponceau R; Ponceau RR; Ponceau RS; Ponceau Red R; Red No.503; Scarlet 2R; Scarlet 2RLBluish; Scarlet R; Tertracid Ponceau 2R; Xylidine Ponceau; Xylidine Red; 1695 Red; 1-(2,4-Xylylazo)-2-naphthol-3,6-disulfonic acid disodium salt; 2,7-Naphthalenedisulfonicacid,4-[(2,4-dimethylphenyl)azo]-3-hydroxy-,disodiumsalt; 3-hydroxy-4-(2,4-xyllylazo)-2,7-naphthalenedisulfonicacid,disodiumsalt; 3-hydroxy-4-(2,4-xyllylazo)-3,7-naphthalenedisulfonicacid,disodiumsalt; 2,7-Naphthalenedisulfonicacid, 4-[(2,4-dimethylphenyl)azo]-3-hydroxy-, disodium salt (9CI)		
CB Number: CB6198594		
Molecular Formula: C_{18}H_{14}N_{2}Na_{2}O_{7}S_{2}		
Formula Weight: 480.42		
MOL File: 3761-53-3.mol		

| Direct Red 28 |
| Class: Double azo |
| CAS No.: 573-58-0 |
| Synonyms: C.I. 22120; C.I. Direct Red 28, disodium salt (8CI); Direct Red C; Direct Red R; Atlantic Congo Red; Atul Congo Red; Azocard Red Congo; Benzo Congo Red; Brasilamina Congo 4B; C.I. 22120; C.I. Direct Red 28; Congo Red 4B; Congo Red 4BX; Congo Red CR; Congo Red H; Congo Red N; Congo Red R; Congo Red RS; Congo Red TS; Congo Red W; Congo Red WS; Congo Red sodium salt; Congo Red; Direct Scarlet 4B; Direct Red 28 caused a carcinogenic effects proved by liquid chromatography/electrospray ionization mass spectrometry via negative/positive ion switching mode [60]. |
| Scarlet 4BE; Haemomedical; Hemorrhagyl; Sodium diphenyl diazo-bis(alpha-naphthylaminesulfonate); Direct Red Y; Natrium-salz der diphenyl-bis-azo-bis-naphthylamin-4-sulfonsäure; Congo Red 4B; Cosmos Red; Cotton Red B; 3,3\'(4,4'-Biphenylenebis(azo))bis(4-amino-1-naphthalenesulfonic acid) disodium salt; Cotton Red C; Disodium 3,3\'(1,1'-biphenyl)-4,4'-diylbis(azo))bis(4-aminonaphthalene-1-sulphonate); 1-Naphthalenesulfonicacid, 3,3\'-[1,1'-biphenyl]-4,4'-diylbis(azo))bis(4-amino-, disodium salt(9CI) |
| CB Number: CB1261000 |
| Molecular Formula: C$_{32}$H$_{22}$N$_{6}$Na$_{2}$O$_{6}$S$_{2}$ |
| Formula Weight: 696.66 |
| MOL File: 573-58-0.mol |

31 **Basic Red 9**
Class: Triarylmethane
CAS No.: 569-61-9
Synonyms: C.I. Basic Red 9; C.I. 42500; C.L. 42510; Basic Fuchsin; Basic Parafuchsin; Basic Red 9; Magenta™ O; Parafuchsin hydrochloride; Paramagenta hydrochloride; Pararosaniline chloride; Pararosaniline hydrochloride; Fuchsin; Magenta; AFB Stain; Magenta 1; Fuchsinsp; Rosaniline; Pararosaniline hydrochloride; Parafuchsin; 569-61-9; Parafuchsine; Parafuchs; Hexazonium pararosaniline; Pararosaniline; Pararosaniline monoacetate; Pararosaniline monohydrochloride; Pararosaniline monohydroiodide; Pararosaniline monohydrobromide; Pararosaniline monochloride; Pararosaniline mononitrate; Pararosaniline monoperchlorate; Pararosaniline monophosphate; Pararosaniline monophosphate; Pararosaniline monopropionate; Pararosaniline monosulfonate; Pararosaniline monothionate; Pararosaniline monothionate; Pararosaniline monothionate; Pararosaniline monothionate; Pararosaniline monothionate.

DNA damage in bacteria, hypertrophy of thyroid in rats and mice [50].
Pararosaniline mononitrate; 4-((4-aminophenyl)(4-imino-2,5-cyclohexadien-1-ylidene)methyl)benzeneamine monohydrochloride ; alpha-(4-aminophenyl)-alpha-(4-imino-2,5-cyclohexadien-1-ylidene)-4-toluidine monohydrochloride
CB Number: CB1737503
Molecular Formula: C_{19}H_{17}N_{3}.ClH
Formula Weight: 323.82
MOL File: 569-61-9.mol

32	**C.I. Disperse Blue 373**
Class: Azo	
CAS No. 51868-46-3	
Synonyms: Disperse Blue 291G; Ccris 9042; Einecs 257-486-4; C.I. Disperse Blue 291G press cake; 2-Acetylamino-2'-bromo-4-diallylamino-5-methoxy-4',6'-dinitroazobenzene; 2'-(2-Bromo-4,6-dinitrophenylazo)-5'-diallylamino-4'-methoxyacetanilide;2'-(2-Bromo-4,6-dinitrophenylazo)-4'-methoxy-5'-diallylamino)acetanilide;2-(Acetylamino)-2'-bromo-4-(diallylamino)-4',6'-dinitro-5-methoxyazobenzene;N-[2-[(2-bromo-4,6-dinitrophenylazo)-5-(diallylamino)-4-methoxyphenyl]acetamide; C.I. Disperse Blue 373; CCRIS 9042; EINECS 257-486-4; 51868-46-3; n-[(e)-(2-bromo-4,6-dinitrophenyl)diazenyl]-5-(diprop-2-en-1-ylamino)-4-methoxyphenyl]acetamide; Acetamide, N-(2-((2-bromo-4,6-dinitrophenyl)azo)-5-(di-2-propenylamino)-4-methoxyphenyl)- ; N-(2-((2-Bromo-4,6-	
Mutagenic effects: 6300 revertants/µg for YG1041 with S9, responsibility for 55% of the mutagenic effects of the Drinking Water Treatment Plant sludge [37,61].	
CB Number: NA	Molecular Formula: C$_{21}$H$_{21}$BrN$_6$O$_6$
----------------	---
Mutagenic response, 280 revertants/µg for YG1041 with S9 [37,61].	Mutagenic response, 280 revertants/µg for YG1041 with S9 [37,61].
Formula Weight:	392.245
---------------	---------
MOL File:	12223-33-5.mol

Acid violet 7

Class: Single azo
CAS No.: 4321-69-1/4197-09-5

Synonyms: C.I. Acid Violet 7; C.I. 18055; Acid Red 6B; Acid Violet 6B; Acid Fast Red E 6B; Acid Fuchsine 6B; Pontacyl Carmine 6B; 1425 Red; 2,7-naphthalenedisulfonicacid,5-(acetylamino)-3-((4-(acetylamino)phenyl)azo);5-(acetylamino)-3-[[4-(acetylamino)phenyl]azo]-7-naphthalenedisulfonicacid; acetyl Red 6B; Acetyl Rose 5BL; Acetyl Rose 6BL; Acid Fast Red E6B; AC1NSFZG; 210668 Aldrich; 4321-69-1; 5-(Acetylamino)-3-[[4-(acetylamino)phenyl]azo]-4-hydroxy-2,7-naphthalenedisulfonic acid disodium salt; dipotassium 5-acetamido-3-[2-(4-acetamidophenyl)diazen-1-yl]-4-hydroxynaphthalene-2,7-disulfonate; disodium (3E)-5-acetamido-3-[(4-acetamidophenyl)hydrazinylidene]-4-oxonaphthalene-2,7-disulfonate

CB Number: CB0225054
Molecular Formula: C_{20}H_{16}N_{4}Na_{2}O_{9}S_{2}

Mutagenic, genotoxic and anti-butyrylcholinesterasic effects [62,63]. Induce chromosome aberration, lipid peroxidation and cholinesterase inhibition in mouse bone marrow [64].

![Chemical Structure of Acid Violet 7](image)
Eco toxicological effect

35	Reactive blue 160
Class:	Azo, Metal Complexes
CAS No.	71872-76-9
Synonyms:	C.I. 137160; C.I. Reactive Blue 160; Reactive Navy Blue KE-4BD; Reactive Blue KE-2B; Reactive Blue KE-RD; Blue H-ERD; Evercion Blue H-ERD; Procion Blue H-ERD; Blue H-ERD; Reactive Navy Blue KE-4BD; Blue KE-2B; Reactive blue 160; Procion Blue H-ERD; Reactive Blue HERD; C.I. Reactive Black 160; Benzoic acid, 2-3-4-chloro-6-4-4-chloro-6-(3-sulfophenyl)amino-1,3,5-triazin-2-ylamino-2,5-disulfophenylamino-1,3,5-triazin-2-ylamino-2-hydroxy-5-sulfophenylazophenylmethylazo-5-sulfo-, pentasodium salt; 2-[2-[2-[3-[4-Chloro-6-[[4-[[4-chloro-6-[[3-sulfophenyl]amino]-1,3,5-triazin-2-yl]amino]-2,5-disulfophenyl]amino]-1,3,5-triazin-2-yl]amino]-2-hydroxy-5-sulfophenyl]diazenyl[phenylmethyl]diazenyl]-5-sulfobenzoic acid sodium salt; Benzoic acid, 2-[[3-[[4-chloro-6-[[4-[[4-chloro-6-[[3-sulfophenyl]amino]-1,3,5-triazin-2-yl]amino]-2,5-disulfophenyl]amino]-1,3,5-triazin-2-yl]amino]-2-hydroxy-5-sulfophenyl]diazenyl[phenylmethyl]diazenyl]-5-sulfobenzoic acid sodium salt

Toxic effects were evaluated by bioluminescence test using bacteria *Vibrio fischeri* in LUMISTox 300 [65].
CB Number	Molecular Formula	Formula Weight	Toxic effects were evaluated by bioluminescence test using bacteria Vibrio fischeri in LUMISTox 300, with EC₅₀=22 mg/L [65].
CB1417515	C₃₈H₂₃Cl₂N₁₄Na₅O₁₈S₅	1309.84	
Ambifix yellow VRNL	NA	NA	
36	NA	NA	
Lanasyn yellow S2GL	NA	NA	Toxic effects were evaluated by bioluminescence test using bacteria Vibrio fischeri in LUMISTox 300, with EC₅₀=70 mgL⁻¹ [65].
37	NA	NA	
Reactive orange 16	**Disperse blue 3**		
-----------------------	--------------------		
Class: Single azo	**Class:** Anthraquinone		
CAS No.: 12225-83-1	**CAS No.: 2475-46-9**		
Synonyms: C.I. 17757; Ambifix Orange V3R; Orange KN-5R; Reactive Orange 3R; Remazol Brilliant Orange 3R; Reactive Brilliant Orange KN-5R; Reactive Orange KN-5R	**Synonyms:** C.I. Disperse Blue 3; C.I. 61505; Blue FFR; 1-ma-4oeaa; Abcol Blue BNG; Amacel Blue BNN; Disperse Blue K; Setacyl Blue BN; Setacyl Blue FG; Setacyl Blue RF; Artisil Blue BSG		
CB Number: CB6108027	**CB Number:** CB7372470		
Molecular Formula: C\(_{20}\)H\(_{17}\)N\(_3\)Na\(_2\)O\(_{11}\)S\(_3\)	**Molecular Formula:** C\(_{17}\)H\(_{16}\)N\(_2\)O\(_3\)		
Formula Weight: 617.54	**Formula Weight:** 296.32		
MOL File: Mol file	**MOL File:** 2475-46-9.mol		

Mutagenic effects were determined in the presence or absence of S9 metabolic activation [66].

Disperse blue 3 was toxic in the bacterial, algal and protozoan tests. This dye exhibited mutagenic effects after metabolic activation in vitro using Ames test with bacterium *Salmonella typhimurium* His(-) [66].
Remazol Brilliant Blue R		**Direct Blue 15**
Class: Anthraquinone	**Class**: Double azo	
CAS No.: 2580-78-1	**CAS No.**: 2429-74-5	
Synonyms: C.I. 61200;	**Synonyms**: C.I. 24400;	
C.I. Reactive Blue 19;	ncic 61290; Sky Blue 4B;	
Reactive Blue 19; Remazol	Paper Blue S; LIGHT BLUE;	
Brilliant Blue R; Remalzol	Direct Blue HH; Airedale	
Brilliant Blue R salt;	Blue D; AIREDALE BLUE D;	
2580-78-1; Sure CN29532;	AIZEN DIRECT SKY BLUE 5B;	
AGN-PC-0D6XTR; UNII-L51IMM	AIIZEN DIRECT SKY BLUE 5BH	
9UP9; Remalan Brilliant		
Blue R; Cavalite Brilliant		
Blue R; CCRIS 3736; C.I.		
61200; HSDB 5534; EINECS		
219-949-9; C.I. Reactive		Low toxicity was determined *in vitro* using Ames test with
Blue 19, disodium salt;		bacterium *Selenastrum capricornutum* [66].
disodium 1-amino-9,10-dioxo-		
4-[3-(2-sulfonatooxyethylsulfonyl)anilino]anthracene-2-sulfonate;		
122392-55-6; 2-(3-((4-Amino-9,10-di		
hydro-3-sulpho-9,10-dioxoanthracen-4-yl)amino)benzenesulphonyl)vinyl		
disodium sulphate; 2-Anthracenesulfonic acid, 1-amino-9,10-dihydro-4-(m		
((2-hydroxyethyl)sulfonyl)anilino)-9,10-dioxo-, hydrogen sulfate (ester), disodium salt		
CB Number:		Direct Blue 15 caused mutagenic
Molecular Formula: C$_2$H$_{16}$N$_2$Na$_2$O$_{11}$S$_3$		effects for TA1538 without
Formula Weight: 626.54		exogenous activation [67].
MOL File: NA		
DIMETHOXY-4,4'-BIPHENYLYLENE; NCI-C61290; NIAGARA BLUE 4B; NIAGARA SKY BLUE; NIPPON DIRECT SKY BLUE; NIPPON SKY BLUE; NITTO DIRECT SKY BLUE 5B; OXAMINE SKY BLUE 5B; PAPER BLUE S; PHENAMINE SKY BLUE A; PONTACYL SKY BLUE 4BX; PONTAMINE SKY BLUE 5BX; SHIKISO DIRECT SKY BLUE 5B; SKY BLUE 4B; SKY BLUE 5B; TERTRODIRECT BLUE F; VONDACEL BLUE HH

CB Number: CB6152242
Molecular Formula: C$_{34}$H$_{24}$N$_6$Na$_4$O$_{16}$S$_4$
Formula Weight: 992.8
MOL File: 2429-74-5.mol

Direct brown 31

Class: Multi-azo
CAS No.: 2429-81-4
Synonyms: C.I. 35660; C.I. Direct Brown 31 (7CI); C.I. Direct Brown 31,tetrasodium salt (8CI); Airedale Brown BSD; Amanil Fast Brown HP; Amanil Rayon Brown B; Atlantic Brown BCW; Atlantic Brown BP; Belamine Fast Brown BP; Benzani Brown BS; Benzo Deep Brown NZ; Calcomine Brown B; Calcomine Catechu 2B; Chlorazol Brown LF; Chocolate EMBL; Chrome Leather Brown BS; Cupranil Brown BCW; Cupranil Brown BCWR; Diaphtamine Fast Brown TB; Diazol Cutch F; Diazol Cutch FB; Diphenyl Brown BS; Diphenyl Brown TB; Diphenyl Fast Brown F; Direct Brown 31; Direct Brown

Direct brown 31 caused mutagenic response for TA98 without exogenous activation [67].
| Malachite Green | Class: Azo
CAS No. 569-64-2
Synonyms: Basic green 4; C.I. 42000; Malachite Green benzoate; Malachite Green chloride; Malachite Green, acetate salt; Malachite Green, hydrogen sulfate; Malachite Green, oxalate (1:1); Malachite Green, oxalate (2:1); (4-(4-(dimethylamino) alpha-phenylbenzylidene)-2,5-cyclohexadien-1-ylidene) dimethylammonium chloride;
CB Number: NA | Sinusoidal congestion and focal necrosis in rainbow trout liver increase of nuclear alterations and mitochondrial damage [68]. Anaemic response in Claris gariepinus (Burchell) in dose and time dependent manner, reduction in the Claris gariepinus neutrophils [69,70]. |
| Molecular Formula: **C_{23}H_{25}ClN_{2}**
Formula Weight: 364.91
MOL File: NA |
|---|---|---|
| **C.I. Disperse Violet 93**
Class: Single azo
CAS No. 52697-38-8
Synonyms: Violet 5BS; Einecs 258-110-1; Disperse Violet 93; C.I. Disperse Violet 93 press cake; 2-(2,4-dinitro-6-bromophenylazo)-5,N,N-diethylanilino-Acetanilide; 2'-(2-Bromo-4,6-dinitrophenyl)azo-5'-diethylamino]
acetanilide;2'(Acetilamino)-6-bromo-4'-(diethylamino)
2,4-dinitroazobenzene;2-(Acetylamino)-2'-bromo-4-
(diethylamino)-4',6'-dinitroazobenzene;Acetanilide, 2-(2,4-
dinitro-6-bromophenylazo)-5,N,N-diethylanilino-;
Acetamide, N-2-(2-bromo-4,6-dinitrophenyl)azo-5-
(diethylamino)phenyl
CB Number: CB1935921
Molecular Formula: C_{18}H_{19}BrN_{6}O_{5}
Formula Weight: 479.28466
MOL File: 52697-38-8.mol | Mutagenic response was confirmed in the *Salmonella/microsome* assay with the strains TA98 and YG1041 (4600 revertants/µg with the metabolic activation system S9) [61]. |
| **Acid orange 52**
Class: Single azo
CAS No. 547-58-0
Synonyms: C.I. 13025; Methyl Orange; Orange 3; Methyl Orange B; 4-Dimethylaminoazobenzene-4'-sulphonic acid sodium salt; Helianthin; Other CAS RN 1342-24-1; 66777-17-1 | Mutagenic effects were confirmed with the use of *Salmonella Typhimurium*: 755 revertants / plates for TA104 with S9, 639 revertants/ plates for TA102 with the metabolic activation system (S9), induction DNA damage in |
Sodium 4-{[4-(dimethylamino)phenyl]diazenyl}benzenesulfonate; Sodium 4-(4-dimethylaminophenylazo)benzenesulphonate; Tropaeolin D; p-((p-(Dimethylamino)phenyl)azo) benzenesulfonic acid sodium salt; Sodium 4-(Dimethylamino)azobenzene-4'-sulfonate; Sodium p-dimethylaminoazobenzensulfonate
CB Number: CB2264381
Molecular Formula: \(C_{14}H_{14}N_{3}NaO_{3}S\)
Formula Weight: 327.33
MOL File: NA

46 **Acid green 16**

| **Class:** Triarylmethane |
| **CAS No.** 12768-78-4 |
| **Synonyms:** C.I. 44025; Erio Green B; Erio Green; Green V; Acid Green ZH; Amido Green V; Alkali Green; C.I. Acid Green 16; Acid Green 16; C.I. Acid Green 16; Acid Green VS; Acid Green V; Acid Green V Naphthaline; Borunil Green A-FG; Covalene Brilliant Green G; Daiwa Green 70; Dinacid Green V; Dyasyn Acid Green V; Dyacid Green B; Dycosacid Green VS; Erio Green B; Everlan GreenEV; Hispacid Brilliant Green SA 2G; Ichoacid Green V; Lecotan Green J; Libacid Green LV; Merantine Green V; Naphthalene Green V; Naphthalene Green Y; Pacid Green V; Ratna Acid Green V; Sandolan Brilliant Green E-B; Simacid Acid Green; sodium 4-{[4-(diethylamino)phenyl][4-(diethyliminio)cyclohexa-2,5-|

vitro using DNA strand scission assay [71].

Mutagenicity testing using *Salmonella typhimurium*, strains TA98 and TA100 with metabolic activation (S9), revealed a mutagenic response of Acid green 16. Upon further testing with the mouse lymphoma assay (L5178Y/TK (+/-)) 67% (6 out of 9) of Ames-positive this dye proved to be mutagenic in this mammalian cell test [72].
CB Number	Molecular Formula	Formula Weight	MOL File	Description
CB4117605	C$_{31}$H$_{33}$N$_2$NaO$_6$S$_2$	616.72	12768-78-4.mol	Mutagenic response in *salmonella typhimurium* TA98 (Ames test) without metabolic activation (S9-mix), IR=111 with 5000 µg/plate [73].

47 Bemaplex Schwarz C-2B
Class: NA
CAS No. NA
Synonyms: NA
CB Number: NA
Molecular Formula: NA
Formula Weight: NA
MOL File: NA

48 Bleu Terasil 3R-02
Class: NA
CAS No. NA
Synonyms: NA
CB Number: CB21403475
Molecular Formula: NA
Formula Weight: NA
MOL File: NA

49 Brun Cibanone 2RMP
Class: NA
CAS No. NA
Synonyms: NA

Mutagenic activity in *salmonella typhimurium* TA98 (Ames test) without metabolic activation (S9-mix), IR =35.5. Mutagenicity of Bleu Terasil 3R-02 Ames-positive was confirmed in the mouse lymphoma assay (MLA) (OECD 476), IR 15.2 with 2,500 µg/mL without S9 [73].

Mutagenic effects in *salmonella typhimurium* TA98 (Ames test) without metabolic activation (S9-mix), IR=4.3 [73].
CB Number: CB81440504	Molecular Formula: NA	Formula Weight: NA	MOL File: NA
50 Brun Cibanone BR MD liq. 40%	Class: NA	CAS No. NA	Synonyms: NA
CB Number: CB71421588	Molecular Formula: NA	Formula Weight: NA	MOL File: NA
Mutagenic effects in salmonella typhimurium TA98 (Ames test) without metabolic activation (S9-mix), IR=6.6 [73].			

CB Number: CB81440504	Molecular Formula: NA	Formula Weight: NA	MOL File: NA
51 Evercion Navy Blue H-ER	Class: NA	CAS No. NA	Synonyms: NA
CB Number: CB11434171	Molecular Formula: NA	Formula Weight: NA	MOL File: NA
Mutagenic effects in salmonella typhimurium TA98 (Ames test) without metabolic activation (S9-mix), IR >132 [73].			
Lanasol Red 6G

Class: Single azo

CAS No. 85187-33-3/61969-27-5

Synonyms: C.I. 13429; Reactive Red PW-6G; C.I. Reactive Red 84; Reactive Red 84; AGN-PC-0JMK0; AC1L4N0W; CTK5F4446; EINECS 286-122-7; AG-K-39996; LS-54327; 2-Naphthalenesulfonic acid, 6-amino-5-((4-((2-bromo-1-oxo-2-propenyl)amino)-2-((4-methyl-3-sulfophenyl)sulfonyl)phenyl)azo)-, disodium salt; 2-Naphthalenesulfonic acid, 6-amino-5-((2-(4-((2-bromo-1-oxo-2-propen-1-yl)amino)-2-((4-methyl-3-sulfophenyl)sulfonyl)phenyl)diazenyl))-sodium salt (1:2); 2-Naphthalenesulfonic acid, 6-amino-5-[[2-[[4-((2-bromo-1-oxo-2-propen-1-yl)amino)-2-((4-methyl-3-sulfophenyl)sulfonyl)phenyl]diazenyl]-sodium salt (1:2); 61969-27-5; Disodium 6-amino-5-((4-((2-bromo-1-oxoallyl)amino)-2-((4-methyl-3-sulphonatophenyl)sulphonyl)phenyl)azo)naphthalene-2-sulphonate; disodium 6-amino-5-[[4-(2-bromoprop-2-enoylamino)-2-(4-methyl-3-sulphonatophenyl)sulphonyl]phenyl]diazenyl]naphthalene-2-sulfonate; disodium; 6-amino-5-[[4-(2-bromoprop-2-enoylamino)-2-(4-methyl-3-sulphonatophenyl)sulphonyl]phenyl]diazenyl]naphthalene-2-sulfonate

CB Number: CB1967621

Molecular Formula: C_{36}H_{19}BrN_{4}Na_{2}O_{9}S_{3}

Mutagenicity testing using Salmonella typhimurium, strains TA100 (Ames test) without metabolic activation, revealed a mutagenic response of Lanasol Red 6G, IR = 5.8 [73].
No.	Chemical	Class	CAS No.	Synonyms	CB Number	Molecular Formula	Formula Weight	MOL File	MUTAGENICITY TESTING
53	Lanasol Rot B	Double azo	6459-71-8	Cotton Ponceau; C.I. Acid Red 65; C.I.24830	CB71440552	C₄₃H₃₂N₄Na₄O₁₄S₄	1048.96	NA	Mutagenicity testing using *Salmonella typhimurium*, strains TA100 (Ames test) without metabolic activation, revealed a mutagenic response of Lanasol Rot B, IR= 3.6 [73].
54	Lumacron Black SEF 300%	NA	776331-50-1	NA	CB71416287	NA	NA	NA	Mutagenicity testing using *Salmonella typhimurium*, strains TA98 (Ames test) in the presence of metabolic activation confirmed a mutagenic response of this dye, IR= 41.8 [73].
55	Olive Cibanone 2R MD	NA	776331-77-2	NA	CB31447018	NA	NA	NA	Mutagenic effects in *salmonella typhimurium* TA98 (Ames test) without metabolic activation (S9-mix), IR=2.4 [73].
	Orange Minerprint 3RL		Orange Minerprint 3RL caused a mutagenic against effect in the bacterial strain TA98 (Ames test) without of metabolic activation (S9-mix), IR=10.7 [73].						
---	---------------------------	---	--						
Class	NA	CAS No.	NA						
Synonyms	NA	CB Number	CB21434820						
Molecular Formula	NA	Formula Weight	NA						
MOL File	NA								

	Lumacron Red PGA		Mutagenic effects in *salmonella typhimurium* strain TA98 (Ames test) with metabolic activation (S9-mix), IR=5.9 [73].
Class	NA	CAS No.	776331-72-7
Synonyms	NA	CB Number	CB11441461
Molecular Formula	NA	Formula Weight	NA
MOL File	NA		

	Rouge Imperon K-B		Mutagenic effects in *salmonella typhimurium* strain TA98 (Ames test) with metabolic activation (S9-mix), IR=9.0 [73].
Class	NA	CAS No.	NA
Synonyms	NA	CB Number	CB61415016
Molecular Formula	NA	Formula Weight	NA
MOL File	NA		

	Rouge Terasil P3G		Mutagenic effects in *salmonella typhimurium* strain TA98 (Ames test) with metabolic activation (S9-mix), IR=9.0 [73].											
Class	NA													
CAS No.	NA	Synonyms:	NA	CB Number:	CB91445405	Molecular Formula:	NA	Formula Weight:	NA	MOL File:	NA	test) without metabolic activation (S9-mix), IR=77.7 [73].		
---------	-----	-----------	-----	------------	-------------	--------------------	-----	----------------	-----	-----------	-----	--		
60	Sirius Grau K-CGL	Class:	NA	CAS No.	NA	Synonyms:	NA	CB Number:	CB01446621	Molecular Formula:	NA	Formula Weight:	NA	Mutagenic against effects in salmonella typhimurium strain TA98 (Ames test) without metabolic activation (S9-mix), IR= 6.0 [73].
61	Turquoise Cibacrone P-GR Liq. 50%	Class:	Phthalocyanine	CAS No.	61968-93-2	Synonyms:	C.I. Reactive Blue 72	CB Number:	CB51406462	Molecular Formula:	NA	Formula Weight:	NA	Mutagenic effects in salmonella typhimurium TA98 (Ames test) with metabolic activation (S9-mix), IR =2.6. Positive mutagenicity of Turquoise Cibacrone P-GR Liq. 50% Ames-positive was confirmed in the mouse lymphoma assay (MLA) (OECD 476), IR= 15.2 with 5,000 µg/mL with S9 [73].
62	Erionyl Bordeaux A-5B	Class:		CAS No.		Synonyms:		CB Number:		Molecular Formula:		Formula Weight:		Positive mutagenicity of Erionyl
Class: NA	CAS No. NA	Synonyms: NA	CB Number: CB41423415	Molecular Formula: NA	Formula Weight: NA	MOL File: NA	Bordeaux A-5B Ames-positive was confirmed in the mouse lymphoma assay (MLA) (OECD 476), IR= 9.5 with 625 µg/mL with S9 [73].							
----------	------------	--------------	------------------------	----------------------	---------------------	----------------	--							
63	Bemaplex Black C-2B	Class: NA	CAS No. 776334-28-2	Synonyms: NA	CBNumber: CB91432870	Molecular Formula: NA	Formula Weight: NA	Positive mutagenicity of Bemaplex Black C-2B Ames-positive was confirmed in the mouse lymphoma assay (MLA) (OECD 476), IR= 4.1 with 313 µg/mL without S9 [73].						
64	Astrazon Blue FGRL 200%	Class: NA	CAS No. NA	Synonyms: NA	CBNumber: CB71406976	Molecular Formula: NA	Formula Weight: NA	Positive mutagenicity of Astrazon Blue FGRL 200% Ames-positive was confirmed in the mouse lymphoma assay (MLA) (OECD 476), IR= 2.2 with 50 µg/mL without S9 [73].						
65	Astrazon Blue BG 200%01	Class: NA	CAS No. NA	Synonyms: NA	CBNumber:	Molecular Formula: NA	Formula Weight: NA	Positive mutagenicity of Astrazon Blue BG 200%01 Ames-positive was confirmed in						
Synonyms:	NA													
CBNumber:	CB41420393													
Molecular Formula:	NA													
Formula Weight:	NA													
MOL File:	NA													

the mouse lymphoma assay (MLA) (OECD 476), IR= 7.4 with 40 µg/mL without S9 [73].

66	Direct Blue 297
Class:	Double azo
CAS No.	100358-00-7
Synonyms:	C.I. Disperse Blue 297 ; 130640-96-9
CB Number:	NA
Molecular Formula:	C_{54}H_{30}N_{10}Na_{8}O_{28}S_{8}
Formula Weight:	1707.304354
MOL File:	NA

Direct Blue 297 at doses 40% and 80% LD_{50}/kg body weight, cause a significant decrease in the ratio of polychromatic to normochromatic erythrocytes in bone marrow of mice, which means that at the doses specified above they can affect the proliferation of the blood cells [74].

67	Direct Green 98
Class:	Azo
CAS No.	101507-77-1
Synonyms:	2,7-Naphthalenedisulfonic acid,3,3'-[1,2-ethenediy]bis[(3-sulfo-4,1-phenylene)azo]]bis[5-amino-4-hydroxy-6-[(4-nitrophenyl)azo]~; hexasodium salt
CB Number:	NA
Molecular Formula:	NA
Formula Weight:	NA
MOL File:	NA

Direct Green 98 at dose 80% LD_{50}/kg body weight, cause a significant decrease in the ratio of polychromatic to normochromatic erythrocytes in bone marrow of mice, which means that at the doses specified above they can affect the proliferation of the blood cells [74].
68	Rhodamine 6G	Caused mutagenic effects in *Salmonella typhimurium* strains TA1538, TA98, TA1537 and TA100 with metabolic activation S9, and single-strand breaks in Chinese hamster ovary cells at concentration of 9×10^{-5} M, as detected by alkaline sucrose sedimentation [75].
Class: Azo	Molecular Formula: $C_{28}H_{31}N_2O_3Cl$	
CAS No. 989-38-8	Formula Weight: 479.01	
Synonyms: Basic Red 1	MOL File: NA	
CB Number: NA	\[\text{\includegraphics[width=0.3\textwidth]{rhodamine6g.png}}\]	
69	Rhodamine B	Rhodamine B induce His* reversion mutations in *Salmonella* strains TA1538 and TA98 with doses ranging from 0.25 to 2.0 mg/plate and single-strand breaks in Chinese hamster ovary cells, as detected by alkaline sucrose sedimentation [75].
Class: Azo	Molecular Formula: $C_{28}H_{31}ClN_2O_3$	
CAS No. 81-88-9	Formula Weight: 479.01034	
Synonyms: Basic Violet 10; Brilliant Pink B; Tetraethylrhodamine; Rhodamine O; Rhodamine; Rheonine B; Rhodamine B; Rhodamine B acetate; Rhodamine B chloride; Rhodamine B dihydride; Basic Violet 10; Brilliant Pink B; 9-(2-Carboxyphenyl)-6-(diethylamino)-N,N-diethyl-3H-xanthen-3-iminium chloride;	MOL File: NA	
CB Number: CB7485569	\[\text{\includegraphics[width=0.3\textwidth]{rhodamineb.png}}\]	
70	Sulphur Red Brown 360	Mutagenic effects for dose ranges
NA		
Class: NA	CAS No. NA	of 50–250 µg/zone without metabolic activation (S9-mix) and 25–50 µg/zone with metabolic activation (S9-mix). Genotoxic effects were determined by *Bacillus subtilis* spore Rec assay in the presence and absence of metabolizing activation mixture (S9-mix) [76].
----------	------------	--
Synonyms: NA	CB Number: NA	
Molecular Formula: NA	Formula Weight: NA	
MOL File: NA		

Direct Scarlet 4BS

Class: Double azo	CAS No. 3441-14-3	
Synonyms: C.I.29160; Direct Red 23; Polycor Red SE; Scarlet 4BS; Direct Scarlet SE; Wogenal Scarlet CB; Benzo Scarlet 4BS; Fast scarlet 4BSA; Direct Fast Scarlet 4BS; disodium; 4-oxo-3-[[4-(2-oxoethylamino)phenyl]hydrazinylidene]-6-[[6E]-5-oxo-6-(phenylhydrazinylidene)-7-sulfononaphthalen-2-yl]carbamoylamino]naphthalene-2-sulfonate; CB Number: CB7307601	Genotoxic effects were determined by *Bacillus subtilis* spore Rec assay with and without of metabolizing activation mixture (S9-mix) [76].	
Molecular Formula: C_{35}H_{25}N_{7}Na_{2}O_{10}S_{2}	Formula Weight: 813.72	
MOL File: NA		
Jade Green 2G
Class: NA
CAS No. 25704-81-8
Synonyms: Ahcovat Jade Green 2G; Amanthrene Brilliant Green GG; Anthraquinone Brilliant Green Concentrate ZH; Atic Vat Jade Green 2G; Benzadone Jade Green 2G; Brilliant Green ZH; Caledon Jade Green 2G; Caledon Printing Jade Green 2G; Cibanone Brilliant Green F2GF; EINECS 247-192-4; Helanthrene Green 2G; Indanthren Brilliant Green 3GF; Indanthren Brilliant Green GG; Mikethrene Brilliant Green GG; Navinon Jade Green 2G; Nihonthrene Brilliant Green GG; Palanthrene Brilliant Green 3GF; Paradone Jade Green 2G; Pigment Anthraquinone Brilliant Green Conc. ZH; Pigment Brilliant Green Anthraquinone Conc. ZH; Ponsol Brilliant Green 2G; Romantrene Brilliant Green 2G; Romantrene Brilliant Green F2G; Sandothrene Brilliant Green N2GF; Solanthrene Brilliant Green J; Tinon Brilliant Green 2GF; Tyrian Brilliant Green 1-2G; Vat Brilliant Green ZH; Zelen kypova 2; Zelen kypova 2 [Czech]; Zelen ostanthrenova brilantni 2 G; Zelen ostanthrenova brilantni 2 G [Czech]; Anthra(9,1,2-cde)benzo(rst)pentaphene-5,10-dione, dibromo-16,17-dimethoxy-; Dibromo-16,17-dimethoxyanthra(9,1,2-cde)benzo(rst)pentaphene-5,10-dione; Dinaphtho(1,2,3-cd:3',2',1'-lm)perylene-5,10-dione, dibromo-16,17-dimethoxy
CB Number: CB0875174

Genotoxic effects were determined by *Bacillus subtilis* spore Rec assay. Jade Green 2G was less genotoxic in the absence of metabolizing activation mixture (S9-mix) mix, however, its genotoxic potential increased in the presence of S9 [76].
Molecular Formula: C$_{36}$H$_{18}$Br$_2$O$_4$		
Formula Weight: 674.3422		
MOL File: NA		
Reactofix Turquoise Blue 5GFL	Genotoxic effects in the *Bacillus subtilis* in the absence and presence of metabolizing activation mixture (S9-mix) at higher dose levels. Reactofix Turquoise Blue 5GFL was more genotoxic in the absence of S9 mixture [76].	
Class: Phthalocyanine		
CAS No. 12236-87-2		
Synonyms: C.I. Reactive Blue 25; Reactive Blue 25; Chemitective Turquoise Blue 5GH; Procion Brilliant Blue H 5G; Procion Turquoise H 5G; Reactive Turquoise Blue H 5G		
CB Number: CB31212425		
Molecular Formula: NA		
Formula Weight: NA		
MOL File: NA		

74	C.I. Solvent orange 7	Mutagenic effects in *Salmonella typhimurium* Strains TA98, TA1537 and TA1538, and in TA98 upon microsomal activation in a FMN-modified assay [77].
Class: Single azo		
CAS No. 3118-97-6		
Synonyms: C.I. 12140; Sudan II; Transparent Orange BL; Oil Scarlet; Oil Scarlet 6G; Sudan Orange RR; Oil Scarlet 203 (PSC); Akasol Scarlet 2G (CD); Calco Oil Scarlet BL (PYL); C.I. Solvent Orange 7 (8CI); 1-(2,4-Dimethylphenylazo)-2-naphthol; Solvent Orange 7; Sudan ii (C.I. 12140); 1-(2,4-xylidylazo)-2-naphthol; 1-[2,4-xyllylazo]-2-naphthol; Fat Ponceau; Calco Oil Scarlet ZBL; 1-[2,4-dimethylphenyl]hydrazono]naphthalen-2(1H)-one; (1E)-1-[2,4-dimethylphenyl]hydrazono]naphthalen-2(1H)-one; Solvent Orange 7		
CB Number: CB0451952	Molecular Formula: C₁₈H₁₆N₂O	Formula Weight: 276.3324	MOL File: NA
C.I. Basic Blue 3	**Class:** Oxazine	**CAS No.** 33203-82-6	**Synonyms:** Cationic Turquoise 2Z; C.I. 51004; C.I. 42775; CI Basic blue BG; Basic Blue 3; BB 3 dye; C.I. 51004 Basic Blue 3; C.I. Basic Blue 3; Blue de Lyon; Bleu Lumiere; Solvent Blue 3; 33203-82-6; Phenoxazin-5-ium, 3,7-bis(diethylamino)-, chloride; C20-H26-N3-O.Cl; ammonium, [7-(diethylamino)-3Hphenoxazine-3-ylidene]diethyl, chloride; ethanaminium; N-(7-(diethylamino)-3H-phenoxazin-3-ylidene]-N-ethyl-, chloride; 7-(N, N-diethylamino)phenoxazine-3-N, N-diethyliminium chloride; CCRIS 2449; EINECS 251-403-5; NSC 409100
CB Number: CB2273983	Molecular Formula: C₂₀H₂₆ClN₃O	Formula Weight: 359.9	MOL File: 33203-82-6.mol
Toxic effects in aquatic environment at both concentrations 20 and 30 mg/L [78].			
C.I. Basic Brown 4			
-----------------------	------------------		
Class: Double azo			
CAS No.: 8005-78-5 / 5421-66-9 / 104744-50-5 / 68425-18-3			
Synonyms: C.I. 21010; C.I. Basic Brown 4; Basic Brown RC; Bismarck Brown R; 2,4-Bis(2,4-diamino-5-methyl-1-benzenazo)toluene dihydrochloride; Basic Brown 4; Basic Brown RC; Bismarck Brown; Bismarck Brown R; Bismarck Brown RLNS; Bismarck Brown TSS; Nitrous acid, reaction products with 4-methyl-1,3-benzenediamine hydrochloride; 1,3-Benzenediamine, 4,4'-(4-methyl-1,3-phenylene)di(E)-2,1-diazenediyl]bis[6-methyl-, hydrochloride (1:2) ; 4,4'-(4-Methyl-1,3-phenylene)bis(azo)]bis(6-methyl-1,3-benzenediamine) dihydrochloride ; 4,4'-(4-Methylbenzene-1,3-diyl)di(E)diazen-2,1-diyl]bis(6-methylbenzene-1,3-diamine) dihydrochloride ; Bismark Brown 53 ; C.I. Basic Brown 4 (8CI) ; Vesuvine ; 2,4-Bis(2,4-diamino-5-methyl-1-benzenazo)toluene ; 4,4'-(4-methyl-1,3-phenylene)di-(E)-diazen-2,1-diyl]bis(6-methylbenzene-1,3-diamine) dihydrochloride.			
CB Number: NA			
Molecular Formula: C$_{21}$H$_{26}$Cl$_2$N$_8$			
Formula Weight: 461.39			
MOL File: NA			
Toxicity in aquatic environment at both concentrations 20 and 30 mg/L [78].			
Mordant Black 17

Class: Single azo

CAS No. 2538-85-4

Synonyms: Palatine Chrome Black 6BN ; C.I. 15705; Eriochrome Blue Black R; Zinchrome R; Palatine Chrome Black 6BN; Sodium 3-hydroxy-4-(2-hydroxy-1-naphthylazo)-1-naphthalenesulphonate; C.I. Mordant Black 17; Mordant Black 6BR; Mordant Black R; Acid Chrome Black R; Eriochrom Navy RN; RSS; Blue; F-240; Calcon; Calcone; Calcontm; Black R; Zinchrome R; C.I. Mordant Black 17, monosodium salt (8CI); Calcon; 1-(2-Hydroxy-1-naphthylazo)-2-naphthol-4-sulfonic acid zinc salt; 3-Hydroxy-4-(2-hydroxy-1-naphthylazo)-1-naphthalenesulfonic acid; Eriochrome blue-black R; Mordant Black 17; Zinchrome R; calcon(R); 1(2-hydroxy-1-naphthylazo)2*-naphthol-4-sulfonic; sodium 3-hydroxy-4-(2-hydroxy-1-naphthylazo)-1-naphthalenesulphonate; Mordant Black 17 (15705); CALCONE; Mordantblack; sodium (4E)-4-[(2-hydroxynaphthalen-1-yl)hydrazono]-3-oxo-3,4-dihydronaphthalene-1-sulfonate; sodium 3-hydroxy-4-[(E)-(2-hydroxynaphthalen-1-yl)diazynyl]naphthalene-1-sulfonate; sodium 3-hydroxy-4-[(2-hydroxy-1-naphthylazo)naphthalene-1-sulfonate;

CB Number: CB2853385

Molecular Formula: C$_{20}$H$_{13}$N$_2$NaO$_5$S

Formula Weight: 416.39

Toxicity was investigated to freshwater shrimp (*Desmocaris trispinosa*) exposed to various concentrations (0.1 mg/L-1000 mg/L) of Mordant Black 17. The 96h LC$_{50}$ for this dye obtained from the concentration-mortality probit graphs was 2.48 mg/L. The 96h LT$_{50}$ of the dyes were also determined from the time-mortality probit graphs. The toxicity of the dyes was ranked as: Mordant Black 17>Direct Red 2>Direct Blue 14>Reactive Red 4>Reactive Yellow 2 [79].
Toxicity was investigated to freshwater shrimp (*Desmocaris trispinosa*) exposed to various concentrations (0.1 mg/L-1000 mg/L) of Direct Red 2. The 96h LC₅₀ for this dye obtained from the concentration-mortality probit graphs was 4.96 mg/L. The 96h LT₅₀ of the dyes were also determined from the time-mortality probit graphs. The toxicity of the dyes was ranked as: Mordant Black 17>Direct Red 2>Direct Blue 14>Reactive Red 4>Reactive Yellow 2 [79].
| Direct Blue 14 | Toxicity was investigated to freshwater shrimp (*Desmocaris trispinosa*) exposed to various concentrations (0.1 mg/L-1000 mg/L) of Direct Blue 14. The 96h LC$_{50}$ for this dye obtained from the concentration-mortality probit graphs was 11.33 mg/L. The 96h LT$_{50}$ of the dyes were also determined from the time-mortality probit graphs. The toxicity of the dyes was ranked as: Mordant Black 17 > Direct Red |

| **DITOLYL BIS(azonaphthionic acid) ; Eclipse Red ; Erie Benzo 4BP ; Erie Red 4B ; Fast Scarlet ; Hispamin Red 4B ; Kayaku Benzopurpurine 4B ; Mitsui Benzopurpurine 4BX ; Paper Red 4B ; Paper Red 4BS ; Phenamine Purpurine 4B ; Purpurin 4B ; Purpurine 4B ; Red 4B ; Tertrodirect Red 4B;3,3'-(3,3'-dimethyl(1,1'-biphenyl)-4,4'-diyl)bis(azo))bis(4-amino-1-naphthalenesulfonic acid) disodium salt | CB Number: CB4710130
Molecular Formula: C$_{34}$H$_{26}$N$_6$Na$_2$O$_6$S$_2$
Formula Weight: 724.72
MOL File: Mol file |

| **Direct Blue 14** | Class: Double azo
CAS No. 72-57-1
Synonyms: C.I. 23850; Blue 3B; Trypan; Blue EMB; Parkipan; Benzo.Blue; Congo Blue; ncic 61289; Parki Blue; True Blue; Trypan Blue; 72-57-1; UNII-I2ZWO3LS3M; Vision Blue; Trypan Blue solution; Dianil blue; Blue Diamine; Blue Niagara; Blue Trypan; D.O.R.C. International Brand of; Trypan Blue; Diamine Blue; Niagara Blue; Trypan Blue; VisionBlue; Direct Blue NB-2BG
CB Number: CB8315001
Molecular Formula: C$_{34}$H$_{24}$N$_6$Na$_4$O$_{14}$S$_4$ |
| 80 | **Reactive Red 4**
 Family: Single azo
 CAS No.: 17681-50-4
 Synonyms: C.I. 18105; Tulaactiv Red H-7B; Cibacron Brilliant Red 3B-A; Cibacron Red 3BA; Reactive Red K-7B; C.I. Reactive Red 4; Cibacron Brilliant Red; Reactive Red 4; Chemactive Brilliant Red 7BH.; 3,5-triazin-2-yl]amino]-2-sulfophenyl]azo]-4-hydroxy-etyl]amino]-tetrasodium | **Toxicity** was investigated to freshwater shrimp (*Desmocaris trispinosa*) exposed to various concentrations (0.1 mg/L-1000 mg/L) of Reactive Red 4. The 96h LC$_{50}$ for this dye obtained from the concentration-mortality probit graphs was 11.47 mg/L. The 96 h LT$_{50}$ of the dyes were also determined from the time-mortality probit graphs. The toxicity of the dyes was ranked as: Mordant Black 17>Direct Red 2>Direct Blue 14>Reactive Red 4>Reactive Yellow 2 [79]. |
|---|---|---|
| **Formula Weight:** 960.81
 MOL File: 72-57-1.mol | **Family:** Single azo
 CAS No.: 17681-50-4
 Synonyms: C.I. 18105; Tulaactiv Red H-7B; Cibacron Brilliant Red 3B-A; Cibacron Red 3BA; Reactive Red K-7B; C.I. Reactive Red 4; Cibacron Brilliant Red; Reactive Red 4; Chemactive Brilliant Red 7BH.; 3,5-triazin-2-yl]amino]-2-sulfophenyl]azo]-4-hydroxy-etyl]amino]-tetrasodium | **Toxicity** was investigated to freshwater shrimp (*Desmocaris trispinosa*) exposed to various concentrations (0.1 mg/L-1000 mg/L) of Reactive Red 4. The 96h LC$_{50}$ for this dye obtained from the concentration-mortality probit graphs was 11.47 mg/L. The 96 h LT$_{50}$ of the dyes were also determined from the time-mortality probit graphs. The toxicity of the dyes was ranked as: Mordant Black 17>Direct Red 2>Direct Blue 14>Reactive Red 4>Reactive Yellow 2 [79]. |
| **Molecular Formula:** C$_{32}$H$_{19}$ClN$_8$Na$_4$O$_{14}$S$_4$
 Formula Weight: 995.21
 MOL File: 17681-50-4.mol | **Formulas:**
 [Chemical structure of Reactive Red 4] | **Formulas:**
 [Chemical structure of Reactive Red 4] |
Reactive Yellow 2

Class: Single azo

CAS No. 50662-99-2

Synonyms: C.I.18972; C.I. Reactive Yellow 2; Reactive Brilliant Yellow K-4GL; Reactive Yellow P-5G; Reactive Brilliant Yellow K-6G; Cibacron Brilliant Yellow 3G-P; Benzenesulfonic acid, 4-((4-chloro-6-((4-sulfophenyl)amino)-1,3,5-triazin-2-yl)amino)-2-(2-(1-(2,5-dichloro-4-sulfophenyl)-4,5-dihydro-3-methyl-5-oxo-1H-pyrrozol-4-yl)diazenyl)-, sodium salt (1:3); Benzenesulfonic acid, 4-((4-chloro-6-((4-sulfophenyl)amino)-1,3,5-triazin-2-yl)amino)-1,3,5-triazin-2-yl)amino)-2-(1-(2,5-dichloro-4-sulfophenyl)-4,5-dihydro-3-methyl-5-oxo-1H-pyrrozol-4-yl)azo), trisodium salt; Benzenesulfonic acid, 4-((4-chloro-6-((4-sulfophenyl)amino)-1,3,5-triazin-2-yl)amino)-2-(1-(2,5-dichloro-4-sulfophenyl)-4,5-dihydro-3-methyl-5-oxo-1H-pyrrozol-4-yl)azo), trisodium salt; Benzenesulfonic acid, 4-((4-chloro-6-((4-sulfoeph
CB Number: CB2383501	4,5-dihydro-1H-pyrazol-1-yl]benzenesulfonate	Aquatic toxicity of Remazol Parrot Green was evaluated in an acute toxicity study using Daphnia magna as an aquatic experimental animal model. The 48 h EC$_{50}$ value for this azo dye was 55.32 mg/L. The general criteria of toxicity classification showed that dye was minor acutely toxic having 48 h EC$_{50}$ in between 10 and 100 mg/L [80].
Molecular Formula: C$_{25}$H$_{15}$Cl$_3$Na$_3$O$_{10}$S$_3$	Formula Weight: 872.9642	
MOL File: Mol file	Remazol Parrot Green	

82 | Remazol Golden Yellow | |
Class: Azo	
CAS No. NA	
Synonyms: NA	
CB Number: NA	
Molecular Formula: NA	
Formula Weight: NA	
MOL File: NA	

Aquatic toxicity of Remazol Golden Yellow was evaluated in an acute toxicity study using Daphnia magna as an aquatic experimental animal model. The 48h EC$_{50}$ value for this azo dye was 46.84 mg/L. The general criteria of toxicity classification showed that dye was minor acutely toxic having 48 h EC$_{50}$ in between 10 and 100 mg/L [80].
Disperse Blue 1
Class: Anthraquinone
CAS No. 2475-45-8
Synonyms: C.I. 64500; NCI-C54900; Oracet Blue; Acetate Blue G; Acetate Blue 6; Amacel Blue GG; Fenacet Blue G; Nacelan Blue G; Celliton Blue G; Grasol Blue 2GS; 1,4,5,8-Tetraaminoanthraquinone
CB Number: CB9133956
Molecular Formula: C_{14}H_{12}N_{4}O_{2}
Formula Weight: 268.30
MOL File: 2475-45-8.mol

Disperse Blue 1, produces bladder tumors in rats. This compound is also a bacterial mutagen and thus a potential genotoxic [81].

Complication with human serum albumin (HAS) was unmasked by means of circular dichroism (CD), molecular modeling, steady state and time-resolved fluorescence, and UV/vis absorption measurements in aqueous solution at physiological at pH=7.4 [82,83].

Alizarin Complex one
Class: Anthraquinone
CAS No. 3952-78-1
Synonyms: Alizarin Fluorine Blue; Alizarin complexon; Alizarine complexon; Alizarine complexone; Alizarinkomplexon; Alizarine Fluorine Blue; 3-Aminomethylalizarin-N,N-diacetic acid; ((3,4-Dihydroxy-2-anthraquinonyl)methyl)iminodiacetic acid dihydrate; 1,2-Dihydroxy-anthrachinon-3-methyleniminodiessigsaeure; Alizarin complexon; Alizarinkomplexon; 3-Aminomethylalizarin-N,N-diacetic acid; Alizarin Fluorine Blue dihydrate; N-(Carboxymethyl)-N-(9,10-dihydro-3,4-dihydroxy-9,10-dioxo-2-anthracenyl) methyl)glycine; 2-[Carboxymethyl][3,4-dihydroxy-9,10-dioxoanthracen-2-yl] methyl]amino] acetic acid
CB Number: CB9321290
Molecular Formula: C_{19}H_{15}NO_{8}
Formula Weight: 385.32
MOL File: Mol file

*Dyes and information’s obtained by Sigma-Aldrich; Ever light Chemical SA; Chemical Book; dye World dye variety; Lookchem; Chemicaland21; Chemical compound - Molbase; ChemNet; ChemSpider; PubChem; ChemBlink; ChemSpider; Santa Cruz Biotechnology; CAMEO Chemicals | NOAA; ChemID plus; CSST; Textile Chemicals: Environmental Data and Facts; Xcolorpigment; Alfa aesar. *IR: Induction Rate (mutant frequency sample/mutant frequency control); NA: Not Available.*