Research Article

Genome-Wide Association Study of Antiphospholipid Antibodies

M. Ilyas Kamboh,1 Xingbin Wang,1 Amy H. Kao,2 Michael M. Barmada,1 Ann Clarke,3 Rosalind Ramsey-Goldman,4 Susan Manzi,2 and F. Yesim Demirci1

1 Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
2 Division of Rheumatology, Department of Medicine, West Penn Allegheny Health System, Pittsburgh, PA 15212, USA
3 Division of Clinical Immunology/Allergy, and Clinical Epidemiology, Department of Medicine, McGill University, Montreal, QC, Canada H3A 1A1
4 Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA

Correspondence should be addressed to M. Ilyas Kamboh; kamboh@pitt.edu

Received 5 November 2012; Revised 10 January 2013; Accepted 10 January 2013

Academic Editor: Ricard Cervera

Copyright © 2013 M. Ilyas Kamboh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. The persistent presence of antiphospholipid antibodies (APA) may lead to the development of primary or secondary antiphospholipid syndrome. Although the genetic basis of APA has been suggested, the identity of the underlying genes is largely unknown. In this study, we have performed a genome-wide association study (GWAS) in an effort to identify susceptibility locigenes for three main APA: anticardiolipin antibodies (ACL), lupus anticoagulant (LAC), and anti-\(\beta_2 \) glycoprotein I antibodies (anti-\(\beta_2 \)GPI).

Methods. DNA samples were genotyped using the Affymetrix 6.0 array containing 906,600 single-nucleotide polymorphisms (SNPs). Association of SNP with the antibody status (positive/negative) was tested using logistic regression under the additive model. Results. We have identified a number of suggestive novel loci with \(P < 0.05 \). Although they do not meet the conservative threshold of genome-wide significance, many of the suggestive loci are potential candidates for the production of APA. We have replicated the previously reported associations of HLA genes and \(APOH \) with APA but these were not the top loci.

Conclusions. We have identified a number of suggestive novel loci for APA that will stimulate follow-up studies in independent and larger samples to replicate our findings.

1. Introduction

Antiphospholipid antibodies (APA) are a heterogeneous group of antibodies that are detected in a variety of conditions, including primary antiphospholipid syndrome (APS) and systemic lupus erythematosus (SLE) [1]. The term antiphospholipid antibodies is a misnomer as APA present in autoimmune disease, like SLE, do not bind to phospholipids but recognize phospholipid-binding proteins [2]. Patients with persistent APA who develop pregnancy complications or thrombosis are considered to have primary APS and those who develop these complications in the presence of autoimmune disease are classified having secondary APS. Since the definition of APS is not limited to a single APA assay, it is required to measure more than one APA. Indeed, currently recognized laboratory criteria for APS include having one or more of three APA, including anticardiolipin antibodies (ACL), lupus anticoagulant (LAC), or anti-\(\beta_2 \) glycoprotein I antibodies (anti-\(\beta_2 \)GPI) in conjunction with the presence of thrombosis or pregnancy loss [3].

Although the genetic basis of APA [4] and APS [5] has been suggested, the underlying genetic factors have not been clearly established. Understanding the genetic bases of various APA may help to delineate the mechanisms for APS. The objective of this study was to perform a genome-wide association study (GWAS) in an effort to identify loci/genes for the three main APA, namely, ACL, LAC, and anti-\(\beta_2 \)GPI.
Table 1: Characteristics of study participants with three antiphospholipid antibodies in the GWAS dataset.

	ACL Positive	ACL Negative	LAC Positive	LAC Negative	Anti-β_2GPI Positive	Anti-β_2GPI Negative
Mean age ± SD	46.92 ± 11.41	46.19 ± 10.85	45.64 ± 11.35	46.40 ± 11.36	45.91 ± 10.68	46.79 ± 11.18
SLE cases (%)	58.5	58.1	70.8	56.3	71.3	51.9
Controls (%)	41.5	41.9	29.2	43.7	28.7	48.1

ACL: anticardiolipin antibodies; LAC: lupus anticoagulant; Anti-β_2GPI: anti-β_2 glycoprotein I antibodies.

2. Subjects and Methods

2.1. Subjects. A subset of individuals from our larger GWAS of SLE (unpublished data) that had the ACL (n = 670), LAC (n = 708), and anti-β_2GPI (n = 496) measurements available were used in this study. All individuals were women of European ancestry. The study participants included both SLE cases and controls and their characteristics are given in Table 1. Our controls were apparently healthy individuals that were recruited from blood bank. We measured APA in our controls but they were not characterized for primary APS due to our study design that is focused on identifying genes for SLE and APA. Furthermore, there were only 28 individuals with APS, and this small number was not considered to be appropriate for a GWAS analysis. All subjects provided written informed consent and the study was approved by the Institutional Review Board.

2.2. Antiphospholipid Antibodies. The presence of ACL (IgG > 15 GPL units, IgM > 10 MPL units, IncStar, Stillwater, MN, USA), LAC (partial thromboplastin time or Russell’s viper venom time with mix) and anti-β_2GPI (QUANTA Lite β_2GPI screen, INOVA Diagnostics, Inc. San Diego, CA, USA) was tested in sera or plasma obtained from the study subjects. The three APA (ACL, LAC, and anti-β_2GPI) were classified into antibody-positive and antibody-negative groups based on manufacturer’s protocols.

2.3. Genotyping and Quality Control (QC). DNA samples were genotyped using the Affymetrix Genome-Wide Human SNP Array 6.0 containing 906,600 SNPs at Expression Analysis, Durham, NC, USA. All samples used in this study passed strict quality control measurements in our larger GWAS. Exclusion criteria included samples with poor performance (<95% average call rate across the array), poorly performing markers (44,592 with <95% call rate across all samples genotyped), and markers with significant deviation from Hardy-Weinberg equilibrium (P ≤ 1E – 06) and with low minor allele frequency (MAF <0.01). Population stratification analysis was conducted using a multidimensional scaling method implemented in PLINK. SNPs falling within the genomic regions with abnormal linkage disequilibrium...
patterns and structural variations (hg18; chr2: 130–140 Mb, chr6: 24–36 Mb, chr8: 8–12 Mb, chr11: 42–58 Mb, and chr17: 40–43 Mb) were excluded from the principal component (PC) analysis but were included in subsequent association analysis. First 4 components were determined to be relevant for the determination of population origin based on visual examination of PC plots and were used as covariates in the association statistics.

2.4. Association Analysis. The three APA (ACL, LAC, and anti-β2 GPI) were classified into antibody-positive and antibody-negative groups based on manufacturer’s protocols. Association of SNPs with the antibody status was tested using logistic regression under the additive model. Considering the effect of SNPs on the antibody status may be confounded by the disease status (SLE) and other demographic variables (age, BMI, smoking), we used the stepwise regression method to select the most parsimonious set of covariates for each dependent variable. The analysis for each antibody was adjusted for the disease status (SLE) and the first four principal components. In addition, the ACL and LAC analyses were adjusted for smoking and BMI, respectively. R and/or PLINK statistical software programs were used for all analyses performed for this study.

3. Results

3.1. Quantile-Quantile Plots of the GWAS Data. The genome-wide association analysis was performed on 670 individuals with ACL, 708 individuals with LAC and 496 individuals with anti-β2 GPI (Table 1) who were genotyped using the Affymetrix Genome-Wide Human SNP Array 6.0. Figure 1 shows the quantile-quantile plots for comparisons of observed and expected P values distribution for ACL,
Table 3: Genetic loci associated with the occurrence of lupus anticoagulant (LAC) with $P < 1E-04^*$.

CHR	Gene	Lead SNP	BP	Total SNPs	MAF Negative	MAF Positive	OR	P
22	MICAL3	rs1978968	16828113	8	0.2144	0.3553	2.235	2.21E-06
2	FAM176A	rs17011455	75643997	1	0.01661	0.06967	5.211	4.70E-06
20	DSTN	rs7791782	17514069	2	0.07867	0.1721	2.628	6.54E-06
6	SUPT3H	rs9472374	44904278	1	0.01957	0.07083	4.77	1.14E-05
3	LRG1	rs4549225	66850149	10	0.3735	0.5246	1.867	1.54E-05
1	SMYD3	rs7527610	2.45E + 08	2	0.005236	0.04098	10.19	1.77E-05
14	PEL1	rs754314	55822350	8	0.04833	0.1167	3.111	2.13E-05
20	BFSP1	rs16999416	17488930	1	0.08494	0.1777	2.412	2.32E-05
16	NDRG4	rs11862356	57067820	1	0.05846	0.1393	2.745	2.40E-05
17	CDRT15P1	rs7208809	13678048	2	0.06806	0.1516	2.573	2.62E-05
22	FAM19A5	rs9615320	47219597	2	0.1065	0.2008	2.333	3.07E-05
6	SNRNAP4	rs17398435	7549105	1	0.06392	0.1446	2.589	3.45E-05
14	OTX2	rs12897597	56314078	1	0.1531	0.2667	2.097	3.53E-05
17	RBFox3	rs16972153	7419776	1	0.04974	0.1148	2.925	3.59E-05
16	MAF	rs9935211	78440577	5	0.05467	0.1311	2.692	4.18E-05
5	YTHDC2	rs6865651	1.13E + 08	2	0.1848	0.3058	2.005	4.32E-05
10	LDB3	rs4934256	88490345	2	0.05507	0.123	2.783	4.68E-05
9	KLFL4	rs1888617	1.1E + 08	1	0.2657	0.4009	1.935	4.92E-05
10	TACC2	rs12773310	1.24E + 08	6	0.3536	0.219	0.4945	5.19E-05
6	LY86	rs9328374	6536628	1	0.1875	0.307	1.989	5.40E-05
9	ZCCHC7	rs7031314	37366122	3	0.2204	0.3375	1.924	5.90E-05
3	SETD5	rs17050346	9456593	5	0.01926	0.06967	4.047	6.34E-05
4	COL25A1	rs13104799	1.1E + 08	6	0.2245	0.1107	0.4106	6.68E-05
7	C7orf58	rs12537243	1.2E + 08	1	0.09178	0.1736	2.289	7.22E-05
4	RBM46	rs7687314	1.5E + 08	6	0.4474	0.5902	1.808	7.25E-05
9	LOCI00506710	rs10973184	37056617	1	0.09895	0.1885	2.252	7.33E-05
3	EPFA6	rs4318565	97564200	1	0.03369	0.08607	3.32	7.77E-05
11	LOC283143	rs1393275	1.15E + 08	3	0.05026	0.1261	2.595	7.90E-05
18	MAPRE2	rs573269	30863716	1	0.3129	0.4385	1.816	8.05E-05
13	FARP1	rs285031	97580432	1	0.1489	0.2438	2.092	8.11E-05
10	ANXAP2	rs10822492	66751936	15	0.3439	0.219	0.5075	8.32E-05
6	TBCC	rs11759402	42831787	4	0.1658	0.2686	1.945	8.32E-05
4	LNX1	rs683173	54085908	4	0.1337	0.2377	1.962	8.80E-05
4	SLCTAII	rs10440463	1.39E + 08	3	0.2073	0.3238	1.88	8.85E-05
1	HHA1	rs1028383	2.09E + 08	1	0.2248	0.3475	1.882	9.29E-05
11	WTI	rs2207549	32325033	2	0.4202	0.2833	0.5274	9.37E-05
4	FAM19B	rs17036767	1.59E + 08	12	0.02747	0.08621	3.54	9.54E-05

*CHR: chromosome; Gene: a plausible biological candidate gene in the locus or the nearest annotated gene to the lead SNP; Lead SNP: most significant SNP in the gene region; BP: base-pair position of the lead SNP; Total SNPs: total number of SNPs with $P < 1E - 03$ in the gene region; MAF: minor allele frequencies in antibody-negative and antibody-positive groups; OR: odds ratio; P: P-values for the test.

LAC, and anti-β2-GPI. For all three APA, the distribution of observed P values conformed to the null distribution until the tail of the distribution where it deviated, indicating no evidence of significant population stratification but evidence of genetic association.

3.2. Association with Anticardiolipin Antibodies (ACL). Figure 2 shows the genome-wide P values for ACL in a Manhattan plot and the top loci with $P < 1E - 04$ are presented in Table 2. Three top SNPs with $P < 1E - 05$ were observed. The most significant SNP, rs6889746 ($P = 6.02E-06$), was located...
upstream of PELO (Pelota homolog) on chromosome 5q11.2. The next top SNP, rs6681460 ($P = 6.98E-06$), was present in SGIP1 (SH3-domain GRB2-like-intercation protein1) on chromosome 1p31.3. There was a total of 28 SNPs in this region with $P < 1E-03$. The next top SNP, rs12204683 ($P = 7.02E-06$), resided downstream of LCA5 on chromosome 6q14.1.

3.3. Association with Lupus Anticoagulant (LAC). The Manhattan plot for LAC is shown in Figure 3 and the top hits with $P < 1E-04$ are given in Table 3. The most significant SNP, rs1978968, was observed in MICAL3 on chromosome 22q11.21 ($P = 2.21E-06$) and there were additional 7 significant SNPs in this region with $P < 1E-03$. The next significant SNP was observed on chromosome 2p12 in FAM176A (rs17011455, $P = 4.70E-06$). However, no other SNP with $P < 1E-03$ was observed in this region. The third significant SNP, rs17791782, was observed in DSTN on chromosome 20p12.1 ($P = 6.54E-06$).

3.4. Association with Anti-β_2 Glycoprotein I Antibodies (Anti-β_2GPI). Five loci on four chromosomes were observed at
Figure 4: Manhattan plot showing the genome-wide association P values with anti-β_2 glycoprotein I antibodies (Anti-β_2GPI). Blue line indicates $P = 1 \times 10^{-4}$.

$P < 1 \times 10^{-05}$ for association with anti-β_2GPI (Figure 4, Table 4). The top SNP (rs10492418) at $P = 2.05 \times 10^{-06}$ was observed on chromosome 13q33.3 in MYO16. This chromosome also harbors another locus for anti-β_2GPI at 13q41.1 (rs9315762, $P = 6.68 \times 10^{-06}$), near a region expressing long intergenic nonprotein coding RNAs. The second most significant SNP was observed in PDE1C on chromosome 7p14.3 ($P = 2.88 \times 10^{-06}$). The third most significant SNP was observed upstream of TANK on chromosome 2q24.2 (rs2357982, $P = 3.38 \times 10^{-06}$) that also harbored 12 additional significant SNPs with $P < 1 \times 10^{-03}$.

3.5. Association with Presence of Two or More Antibodies. In addition to the single-antibody analyses described above, we also performed an association analysis between individuals who were positive for two or more antibodies ($n = 100$) versus individuals who were negative for all three antibodies ($n = 227$). Table 5 shows the results of top loci with $P < 1 \times 10^{-04}$. Interestingly, five of these loci (SESTD1, CACNB2, TANK, TMEM45B, and FMN1) overlapped with those observed in the anti-β_2GPI analysis (see Table 4) and two (DSTN and BESPI) overlapped with those observed in the LAC analysis (see Table 3). Although the most significant locus, DYNLRB2 ($P = 1.44 \times 10^{-06}$), was not among the top loci detected in any of the single-antibody analyses, the second most significant locus, SESTD1 ($P = 6.08 \times 10^{-06}$), also showed association with anti-β_2GPI.

3.6. Association of Extended Major Histocompatibility Complex (xMHC) Region and Apolipoprotein H (APOH) with APA. Previously, several studies have reported genetic association of the human leukocyte antigen (HLA) genes located at the MHC locus on chromosome 6p21 with the presence of APA [6]. Likewise, since β_2GPI is the main target antigen for APA, genetic variation in its gene, APOH, is expected to be associated with the occurrence of APA. Although no SNPs from either the HLA genes or APOH were among the top GWAS SNPs with $P < 1 \times 10^{-04}$ (Tables 2–5), the xMHC region revealed 104, 191, and 108 significant SNPs ($P < 0.05$) to be associated with ACL, LAC, and anti-β_2GPI, respectively. Table 6 lists significant SNPs with $P < 0.01$ in the MHC region for the three APA examined. Most significant SNPs were observed in or near HLA-DPBI, HLA-DPB2, HLA-DPA1, HLA-DQA1, HLA-DQA2, and HLA-DMA. Noteworthy, some SNPs were associated with more than one APA. For example, among the SNPs located upstream of HLA-DQA2, rs9275765 and rs9275772 were associated with ACL ($P = 7.86 \times 10^{-04}$) and anti-β_2GPI ($P = 3.15 \times 10^{-03}$), rs9275793 with LAC ($P = 8.84 \times 10^{-04}$) and anti-β_2GPI ($P = 3.10 \times 10^{-03}$), and rs9276298 with LAC ($P = 1.33 \times 10^{-03}$) and anti-β_2GPI ($P = 5.23 \times 10^{-03}$). Likewise, rs2395357 near HLA-DPB2 showed association with ACL ($P = 4.34 \times 10^{-04}$) and LAC ($P = 1.09 \times 10^{-02}$) and rs11539216 in HLA-DMA with ACL ($P = 9.96 \times 10^{-04}$) and LAC ($P = 9.29 \times 10^{-03}$). Of the 21 QC-passed SNPs present in or near APOH, six revealed nominal associations with anti-β_2GPI, and the Trp316Ser variant (rs1801690) was the most significant SNP ($P = 3.12 \times 10^{-03}$) (Table 7). Two additional SNPs also showed nominal associations with LAC ($P = 0.026, 0.027$).

4. Discussion

The persistent presence of APA, such as ACL, LAC, or anti-β_2GPI, may lead to the development of antiphospholipid syndrome (APS), which may occur alone (primary APS) or in the presence of an autoimmune disease (secondary APS). Although the genetic basis of APA and APS has been suggested [4, 5], the precise identity of the causative genes...
is largely unknown. Here we report the first GWAS focused on identifying the susceptibility loci/genes for the occurrence of three main APA, namely, ACL, LAC, and anti-\(\beta_2\)GPI.

Initially, we performed separate genome-wide analyses for the three APA because the antigen specificity of APA is highly heterogeneous and each APA may have different genetic determinants. This seems to be confirmed in our GWAS results where none of the top loci for the three APA overlapped (see Tables 2–4). However, a single-antibody analysis may include individuals in the antibody-positive group who are positive for more than one antibody in the antibody-positive group or may include individuals in the antibody-negative group who are positive for another antibody, which might have an effect on the genetic association outcome. In order to address this potential problem, we performed an additional genome-wide analysis on individuals who were positive for two or more APA as they presumably would have a higher genetic load of APA susceptibility genes and compared them with those who were negative for all three APA tested. Noteworthy, seven of the top loci observed in the latter analysis overlapped with the top loci observed in the individual analyses of anti-\(\beta_2\)GPI and LAC (see Table 5). Although none of the observed top loci in any analysis met the strict criteria for genome-wide level of significance (\(P < 5 \times 10^{-8}\)), we have identified a number of suggestive genomic regions with \(P < 10^{-5}\) that are worthy of follow-up studies in independent samples. They include loci harboring \(DYNLRB2\) (\(P = 1.44 \times 10^{-6}\)) and \(SESTD1\) (\(P = 9.93 \times 10^{-5}\)) for individuals positive for at least two APA; \(PELO\) (\(P = 6.02 \times 10^{-6}\)), \(SGIP1\) (\(P = 6.98 \times 10^{-6}\)), and \(LCA5\) (\(P = 7.02 \times 10^{-6}\)) for ACL; \(MICAL3\) (\(P = 2.21 \times 10^{-6}\)), \(FAM176A\) (\(P = 4.70 \times 10^{-6}\)), and \(DSTN\) (\(P = 6.54 \times 10^{-6}\)) for LAC; and \(MYO16\) (\(P = 2.05 \times 10^{-6}\)), \(PDE1C\) (\(P = 2.88 \times 10^{-6}\)), \(TANK\) (\(P = 3.38 \times 10^{-6}\)), \(FLJ42392\) (\(P = 6.86 \times 10^{-6}\)), and \(MACROD2\) (\(P = 6.86 \times 10^{-6}\)) for anti-\(\beta_2\)GPI.
Table 5: Genetic loci associated with the occurrence of two or more antiphospholipid antibodies (ACL, LAC, or Anti-β2GPI) with $P < 1E - 04^*$.

CHR	Gene	Lead SNP	BP	Total SNPs	MAF Negative	MAF Positive	OR	P
16	DYNLRB2	rs8060581	78750106	6	0.02466	0.1406	6.714	$1.44E - 06$
2	SESTD1	rs13403289	179924976	2	0.3857	0.5833	2.423	$6.08E - 06$
1	DNH14	rs3913653	22363694	11	0.543	0.3421	0.43	1.09E - 05
10	CACNB2	rs10828616	18710023	6	0.2175	0.3698	2.538	1.11E - 05
18	EBP4L3	rs7238186	5469093	2	0.213	0.3854	2.327	2.61E - 05
1	MAGI3	rs1102625	113750976	5	0.4355	0.6146	2.298	2.75E - 05
2	TANK	rs13010671	161593338	5	0.07442	0.1882	3.437	3.17E - 05
7	CNTNAP2	rs12113442	145329124	1	0.054	0.2188	2.938	3.43E - 05
18	ZNF519	rs80932288	13989380	4	0.2152	0.3646	2.326	4.85E - 05
3	FAM198A	rs7624799	43020807	3	0.1592	0.2969	2.466	5.00E - 05
20	DSTN	rs17791782	17514069	2	0.07883	0.1927	3.086	5.06E - 05
13	ANKR20A9P	rs7319595	18392986	1	0.1054	0.2188	2.938	3.43E - 05
15	TLE3	rs10518889	68337482	4	0.2838	0.4427	2.231	6.17E - 05
22	CUX1	rs427534	101673424	3	0.4439	0.2656	0.4569	7.28E - 05
11	PDGFD	rs4754095	31199305	2	0.1951	0.3474	2.408	8.89E - 05
10	SORCSI	rs4918273	108715485	11	0.3597	0.5319	2.064	8.92E - 05

*CHR: chromosome; Gene: a plausible biological candidate gene in the locus or the nearest annotated gene to the lead SNP; Lead SNP: most significant SNP in the gene region; BP: base-pair position of the lead SNP; Total SNPs: total number of SNPs with $P < 1E - 03$ in the gene region; MAF: minor allele frequencies in antibody-negative (negative for ALC, ACL and anti-β2GPI) and antibody-positive (positive for at least two of ALC, ACL or anti-β2GPI) groups; OR: odds ratio; P: P-values for the test.

While many of these loci are of unknown function in antibody production, some of them harbor candidate genes known to be involved in immune response and thus may be relevant to the production of APA. For example, DYNLRB2 is involved in immune signaling and genetic variation in this gene is associated with tuberculosis susceptibility [7]. SESTD1 binds several phospholipid species [8] and may thus serve as an autoantigen for APA. TANK (TRAF family member-associated NFKB activator) is believed to be important in type I interferon production [9] and has been suggested to play a role in hepatitis B and C infections [10, 11]. The MYO16 (myosin XVI) locus has recently been implicated in diabetic nephropathy [12–14]. Interestingly, the presence of APA or APS is a strong risk factor for nephropathy [15–17] and a recent study has suggested that anti-β2GPI may be protective against lupus nephritis and renal damage [18]. FAM176A (a.k.a TMEM166) has been implicated in autophagy and apoptosis [19], two mechanisms with suggested roles in autoimmunity [20, 21].

Before the GWAS era, the focus of genetic studies on APA was mainly on candidate genes, with a major emphasis on HLA genes located at the MHC locus and to some extent on APOH. Since none of our top hits included SNPs from either the HLA genes or APOH, we examined the extent of association signals in these genomic regions. Indeed, we found a number of promising significant SNPs near or in various HLA genes to be associated with ACL, LAC, and anti-β2GPI (see Table 6). Our findings are consistent with previous reports that also found multiple associations of HLA genes with these autoantibodies [6]. Previous findings regarding the association of APOH coding SNPs with APA have been inconsistent because of the conflicting reports.
Table 6: Significant SNPs with $P < 0.01$ in the MHC region on chromosome 6 for ACL, LAC, and Anti-β_2GPI*.

Gene	SNP	P
ACL		
HLA-DPB1	rs3128918	0.00028
HLA-DPB2	rs2395357	0.00043
HLA-DMA	rs11539216	0.00099
HLA-DQB2	rs10484564	0.00536
GNLI	rs9295888	0.00758
GNLI	rs9295873	0.00794
HLA-DOA	rs4713603	0.0081
RPP21	rs1548515	0.00842
GNLI	rs946607	0.00863
GNLI	rs17411480	0.00863
RPP21	rs9261821	0.00863
RPP21	rs9261850	0.00863
RPP21	rs9261854	0.00863
RPP21	rs9261855	0.00863
RPP21	rs1548513	0.00863
RPP21	rs9261925	0.00863
RPP21	rs9261926	0.00863
BRD2	rs17840186	0.00939
RPP21	rs9261799	0.00955

LAC		
TAP2	rs1044043	0.00029
HLA-DQA1	rs642093	0.00032
AIF1	rs2736177	0.00041
HLA-DQA2	rs9275765	0.00078
HLA-DQA2	rs9275772	0.00078
HLA-DQA2	rs9275793	0.00088
HLA-DQA1	rs9272346	0.00130
HLA-DQA2	rs9276298	0.00133
HLA-DQA1	rs9272219	0.00167
C6orf10	rs3129934	0.00168
HLA-DQA1	rs9272535	0.00179
HLA-DRB1	rs674313	0.00215
HLA-DRB1	rs502771	0.00227
HLA-DRB1	rs9270986	0.00250
AIF1	rs2857597	0.00257
HCG26	rs2516516	0.00282
HLA-DRB1	rs615672	0.00295
HLA-DRB1	rs502055	0.00300
HLA-DQA1	rs9272723	0.00329
LOC100294445	rs9276915	0.00352
C6orf10	rs2894254	0.00372
UBD	rs9368606	0.00403
C6orf15	rs2517448	0.00627
C6orf10	rs3132928	0.00640
HLA-H	rs3132722	0.00675
HLA-DQB1	rs2857210	0.00685
HLA-DRA	rs3129868	0.00731

Table 6: Continued.

Gene	SNP	P
Anti-β_2GPI		
HLA-DPB2	rs9277916	0.00147
HLA-DQA2	rs9275793	0.00310
HLA-DQA2	rs9275765	0.00315
HLA-DQA2	rs9275772	0.00315
HLA-DPA1	rs3130182	0.00331
HLA-DQA1	rs9469220	0.00372
HLA-DPB2	rs4711341	0.00378
HLA-DQA2	rs2647089	0.00463
HLA-DQA2	rs9276298	0.00523
HLA-DQA1	rs9275356	0.00526
HLA-DQA2	rs1761520	0.00710
HLA-DQA2	rs9275618	0.00807

*ACL: anticardiolipin antibodies; LAC: lupus anticoagulant; Anti-β_2GPI: anti-β_2 glycoprotein I antibodies; Gene: a plausible biological candidate gene in the locus or the nearest annotated gene to the SNP; SNP: single-nucleotide polymorphism; P: P-values for the test.

In conclusion, to the best of our knowledge, this is the first GWAS that has attempted to delineate the genetic basis of three main APA, namely, ACL, LAC, and anti-β_2GPI. Although we did not identify loci meeting the conservative threshold of genome-wide significance, we have identified a number of suggestive novel loci for APA that will stimulate further research in this field.
Table 7: Odds ratios and \(P \)-values for the association analysis of APOH SNPs on chromosome 17 with ACL, LAC, and anti-\(\beta_2 \)GPI*.

SNP	BP	ACL OR	ACL \(P \)	LAC OR	LAC \(P \)	Anti-\(\beta_2 \)GPI OR	Anti-\(\beta_2 \)GPI \(P \)
rs1801690	61638747	0.7655	0.4048	0.6444	0.2614	2.461	0.003122
rs17769836	61663751	0.8968	0.4457	1.004	0.9821	0.5978	0.004849
rs2873966	61642435	0.9519	0.7168	0.9858	0.9262	0.6224	0.005407
rs7215391	61662484	0.8932	0.4391	0.984	0.9227	0.6146	0.008069
rs8073418	61678134	0.9639	0.7759	0.8949	0.455	0.6661	0.01061
rs8064837	61673165	0.9833	0.8915	1.011	0.9388	1.404	0.002235
rs10491174	61685021	1.017	0.9335	0.765	0.2665	1.487	0.07256
rs2215413	61679959	0.9418	0.6397	0.847	0.2435	0.829	0.221
rs16958979	61654321	0.8586	0.5569	0.4332	0.02739	0.6146	0.008069
rs8178822	61655991	0.8748	0.6127	0.407	0.0258	1.379	0.2345
rs12452959	61635526	0.8991	0.5748	1.196	0.3965	1.275	0.2541
rs4791079	61640002	1.128	0.3573	1.206	0.2028	1.181	0.2802
rs3176975	61641219	0.9723	0.8552	0.9923	0.9649	1.209	0.2858
rs8066294	61673500	1.094	0.5597	1.014	0.9365	1.162	0.3981
rs17763430	61635203	0.998	0.9904	0.8987	0.581	0.8448	0.4051
rs17690171	61633319	0.9893	0.9435	1.172	0.3479	1.141	0.4528
rs16959003	61671199	1.105	0.6095	0.8378	0.4548	1.14	0.5639
rs7358666	61670208	1.206	0.3459	0.8419	0.4765	1.117	0.642
rs7208089	61689374	1.091	0.5465	0.7956	0.1906	1.08	0.6476
rs7222710	61630703	1.089	0.5011	1.016	0.9143	0.942	0.6896
rs6933	61638692	1.126	0.3408	1.068	0.6431	1.02	0.8948

*APOH: apolipoprotein H; SNP: single-nucleotide polymorphism; BP: base-pair position; OR: odds ratio; \(P \): \(P \)-values. ACL: anticardiolipin antibodies; LAC: lupus anticoagulant; Anti-\(\beta_2 \)GPI: anti-\(\beta_2 \) glycoprotein I antibodies.

- Follow-up studies in independent and larger sample sets to replicate our findings. The main limitations of our study include relatively small sample size and lack of a replication sample; however, our top SNPs provide a select group of suggestive candidate loci genes that can easily be tested for replication by other research groups, which would also enable a subsequent meta-analysis with increased power.

Conflict of Interests

The authors declare that they have no conflict of interests.

Acknowledgments

This study was supported by the US National Institutes of Health, Grants HL092397, HL088648, AR057028, AR046588, AR057338, HD066139, AR02318, AR30492, AR48098, AR30692, and RR025741, and by a Grant from the Lupus Foundation of America.

References

1. A. E. Gharavi, W. A. Wilson, and D. J. Wallace, “Antiphospholipid antibodies,” in Dubois’ Lupus Erythematosus, B. H. Hahn, Ed., vol. 5th, pp. 471–491, Williams & Wilkins, Baltimore, Md, USA, 1997.
2. R. A. S. Roube, “Update on antiphospholipid antibodies,” *Current Opinion in Rheumatology*, vol. 12, no. 5, pp. 374–378, 2000.
3. S. S. Pierangeli, P. G. De Groot, J. D. D’alote et al., “Criteria” aPL tests: report of a task force and preconference workshop at the 13th International Congress on Antiphospholipid Antibodies, Galveston, Texas, April 2010,” *Lupus*, vol. 20, no. 2, pp. 182–190, 2011.
4. C. Mackworth-Young, J. Chan, and N. Harris, “High incidence of anticardiolipin antibodies in relatives of patients with systemic lupus erythematosus,” *Journal of Rheumatology*, vol. 14, no. 4, pp. 723–726, 1987.
5. F. Matthey, K. Walshe, I. J. Mackie, and S. J. Machin, “Familial occurrence of the antiphospholipid syndrome,” *Journal of Clinical Pathology*, vol. 42, no. 5, pp. 495–497, 1989.
6. T. Horita and J. T. Merrill, “Genetics of antiphospholipid syndrome,” *Current rheumatology reports*, vol. 6, no. 6, pp. 458–462, 2004.
7. E. Png, B. Alisjahbana, E. Sahiratmadja et al., “A genome wide association study of pulmonary tuberculosis susceptibility in Indonesians,” *BMC Medical Genetics*, vol. 13, p. 5, 2012.
8. S. Miehe, A. Bieberstein, I. Arnould, O. Ihden, H. Rütten, and C. Strübing, “The phospholipid-binding protein SESTD1 is a novel regulator of the transient receptor potential channels TRPC4 and TRPC5,” *Journal of Biological Chemistry*, vol. 285, no. 16, pp. 12426–12434, 2010.
[9] L. Shitao, W. Lingyan, B. Michael et al., "Mapping of dynamic innate immunity protein interaction network regulating type I interferon production," *Immunity*, vol. 35, pp. 426–440, 2011.

[10] Q. L. Song, X. X. He, H. Yang et al., "Association of TANK gene polymorphism with outcomes of hepatitis B virus infection in a Chinese Han population," *Viral Immunology*, vol. 25, pp. 73–78, 2012.

[11] T. L. Mosbruger, P. Duggal, J. J. Goedert et al., "Large-scale candidate gene analysis of spontaneous clearance of hepatitis C virus," *Journal of Infectious Diseases*, vol. 201, no. 9, pp. 1371–1380, 2010.

[12] M. G. Pezzolesi, G. D. Poznik, J. C. Mychaleckyj et al., "Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus," *Nature Genetics*, vol. 40, pp. 1092–1097, 2008.

[13] S. Maeda, S. I. Araki, T. Babazono et al., "Replication study for the association between four loci identified by a genome-wide association study on European American subjects with type 1 diabetes and susceptibility to diabetic nephropathy in Japanese subjects with type 2 diabetes," *Diabetes*, vol. 59, no. 8, pp. 2075–2079, 2010.

[14] M. G. Pezzolesi, G. D. Poznik, J. Skupien et al., "An intergenic region on chromosome 13q33.3 is associated with the susceptibility to kidney disease in type 1 and 2 diabetes," *Kidney International*, vol. 80, no. 1, pp. 105–111, 2011.

[15] A. Gigante, M. L. Gasperini, R. Cianci et al., "Antiphospholipid antibodies and renal involvement," *American Journal of Nephrology*, vol. 30, no. 5, pp. 405–412, 2009.

[16] M. G. Tektonidou, "Renal involvement in the antiphospholipid syndrome (APS) - APS nephropathy," *Clinical Reviews in Allergy and Immunology*, vol. 36, no. 2-3, pp. 131–140, 2009.

[17] R. Silvarino, F. Sant, G. Espinosa et al., "Nephropathy associated with antiphospholipid antibodies in patients with systemic lupus erythematosus," *Lupus*, vol. 20, pp. 721–729, 2011.

[18] T. Mehrani and M. Petri, "IgM anti-β2 glycoprotein I is protective against lupus nephritis and renal damage in systemic lupus erythematosus," *Journal of Rheumatology*, vol. 38, no. 3, pp. 450–453, 2011.

[19] L. Wang, C. Yu, Y. Lu et al., "TMEM166, a novel transmembrane protein, regulates cell autophagy and apoptosis," *Apoptosis*, vol. 12, pp. 1489–1502, 2007.

[20] M. Pierdominici, M. Vomero, C. Barbati et al., "Role of autophagy in immunity and autoimmunity, with a special focus on systemic lupus erythematosus," *FASEB Journal*, vol. 26, pp. 1400–1412, 2012.

[21] L. E. Miñóz, K. Lauber, M. Schiller, A. A. Manfredi, and M. Herrmann, "The role of defective clearance of apoptotic cells in systemic autoimmunity," *Nature Reviews Rheumatology*, vol. 6, no. 5, pp. 280–289, 2010.

[22] A. -J. Chamorro, M. Marcos, J.-A. Miron-Canelo et al., "Val247Leu beta2-glycoprotein-I allelic variant is associated with antiphospholipid syndrome: systemic review and meta-analysis," *Autoimmunity Reviews*, vol. 11, pp. 705–712, 2012.

[23] D. K. Sanghera, D. R. Wagenknecht, J. A. McIntyre, and M. I. Kamboh, "Identification of structural mutations in the fifth domain of apolipoprotein H (β2-glycoprotein I) which affect phospholipid binding," *Human Molecular Genetics*, vol. 6, no. 2, pp. 311–316, 1997.