FOURIER UNIQUENESS IN \mathbb{R}^4

ANDREW BAKAN, HAAKAN HEDENMALM, ALFONSO MONTES-RODRÍGUEZ, DANYLO RADCHENKO, AND MARYNA VIAZOVSKA

ABSTRACT. We show an interrelation between the uniqueness aspect of the recent Fourier interpolation formula of Radchenko and Viazovska and the Heisenberg uniqueness for the Klein-Gordon equation and the lattice-cross of critical density, studied by Hedenmalm and Montes-Rodríguez. This has been known since 2017.

1. INTRODUCTION

1.1. Basic notation in the plane. We write \mathbb{Z} for the integers, \mathbb{Z}_+ for the positive integers, \mathbb{R} for the real line, and \mathbb{C} for the complex plane. We write \mathbb{H} for the upper half-plane $\{\tau \in \mathbb{C} : \text{Im} \tau > 0\}$. Moreover, we let $\langle \cdot, \cdot \rangle_d$ denote the Euclidean inner product of \mathbb{R}^d.

1.2. The Fourier transform of radial functions. For a function $f \in L^1(\mathbb{R}^d)$, we consider its Fourier transform (with $x = (x_1, \ldots, x_d)$ and $y = (y_1, \ldots, y_d)$)

$$\hat{f}(y) := \int_{\mathbb{R}^d} e^{-2\pi i \langle x, y \rangle} f(x) \, d\text{vol}_d(x), \quad d\text{vol}_d(x) := dx_1 \cdots dx_d.$$

If f is radial, then \hat{f} is radial too. A particular example of a radial function is the Gaussian

$$(1.2.1) \quad G_\tau(x) := e^{i \pi \tau |x|^2},$$

which decays nicely provided that $\text{Im} \tau > 0$, that is, when $\tau \in \mathbb{H}$. The Fourier transform of a Gaussian is another Gaussian, in this case

$$(1.2.2) \quad \hat{G}_\tau(y) := \left(\frac{\tau}{1} \right)^{-d/2} e^{-i \pi |y|^2/\tau} G_{-1/\tau}(y),$$

Here, it is important that $\tau \mapsto -1/\tau$ preserves hyperbolic space \mathbb{H}. In the sense of distribution theory, the above relationship extends to boundary points $\tau \in \mathbb{R}$ as well. We now consider the relationship

$$(1.2.3) \quad \Phi(x) := \int_{\mathbb{R}} G_\tau(x) \phi(\tau) \, d\tau = \int_{\mathbb{R}} e^{i \pi \tau |x|^2} \phi(\tau) \, d\tau, \quad x \in \mathbb{R}^d.$$

In terms of the Fourier transform, the relationship reads

$$\Phi(x) = \hat{\phi}_1 \left(-\frac{|x|^2}{2} \right),$$

where the subscript signifies that we are dealing with the Fourier transform on \mathbb{R}^1. This tells us that Φ is radial, but pretty arbitrary, if, say, $\phi \in L^1(\mathbb{R})$. In view of the functional identity (1.2.1), the Fourier transform of the radial function Φ equals

$$(1.2.4) \quad \hat{\Phi}(y) := \int_{\mathbb{R}} \hat{G}_\tau(y) \phi(\tau) \, d\tau = \int_{\mathbb{R}} \left(\frac{\tau}{1} \right)^{-d/2} G_{-1/\tau}(y) \phi(\tau) \, d\tau = \int_{\mathbb{R}} \left(\frac{\tau}{1} \right)^{-d/2} e^{-i \pi |y|^2/\tau} \phi(\tau) \, d\tau.$$
We now rewrite the relationships (1.2.3) and (1.2.4) using integration by parts. If ϕ is a tempered test function, integration by parts applied to (1.2.3) gives that

$$\Phi(x) = \frac{i}{\pi|x|^2} \int_{R^d} e^{i\tau|x|^2} \phi'(\tau) d\tau, \quad x \in \mathbb{R}^d \setminus \{0\}. \tag{1.2.5}$$

A similar application of integration by parts to (1.2.4) gives that

$$\hat{\Phi}(y) = \frac{1}{i|y|^2} \int_{R^d} \left(\frac{\tau}{1 + i|\tau|^2}\right) \phi(\tau) d\tau, \quad y \in \mathbb{R}^d \setminus \{0\}. \tag{1.2.6}$$

The setup. We consider \mathbb{R}^d only, and consider for $\psi \in L^1(\mathbb{R})$ the associated function

$$\Psi(x) = -\frac{1}{i|\tau|^2} \int_{R^d} e^{i\tau|x|^2} \psi(\tau) d\tau, \quad x \in \mathbb{R}^d \setminus \{0\}. \tag{2.1.1}$$

This is the same as the relation (1.2.5) only ψ replaces ϕ' while Ψ replaces Φ. For real τ, let H_τ denote the function

$$H_\tau(x) := \frac{e^{i\tau|x|^2}}{i|\tau|^2}, \quad x \in \mathbb{R}^d \setminus \{0\}, \tag{2.1.2}$$

which is locally integrable and decays at infinity. As such, it is a tempered distribution, and its Fourier transform equals

$$\hat{H}_\tau(y) = \frac{1 - e^{-i|y|^2/\tau}}{i|y|^2} = \frac{1}{i|y|^2} - H_{-1/\tau}(y). \tag{2.1.3}$$

This is the integrated version of the Fourier transformation law for Gaussians (1.2.2) in dimension $d = 4$. Indeed, if we differentiate with respect to τ in (2.1.3), we recover (1.2.2). In other words, differentiation with respect to τ gives us that $\hat{H}_\tau + H_{-1/\tau}$ is independent of τ. By letting τ tend to 0, the identification with the Newton kernel as in (2.1.3) follows from the Riemann-Lebesgue lemma. In view of (2.1.3), the Fourier transform of the function Ψ given by (2.1.1) is in the sense of distribution theory

$$\check{\Psi}(y) = -\int_{R^d} H_\tau(y) \psi(\tau) d\tau = -\frac{1}{i|y|^2} \int_{R} \psi(\tau) d\tau + \frac{1}{i|y|^2} \int_{R} e^{-i|\tau|^2/\tau} \psi(\tau) d\tau, \quad y \in \mathbb{R}^d \setminus \{0\}. \tag{2.1.4}$$

This formula extends (1.2.7).
2.2. Fourier uniqueness meets Heisenberg uniqueness and the Klein-Gordon equation. In [3], in the context of the Klein-Gordon equation in 1 + 1 dimensions, Hedenmalm and Montes found discrete uniqueness sets along characteristic directions, based on ideas from dynamical systems and ergodic theory. We apply the approach in [3], [4], [5], and [1] to obtain a uniqueness result for the pair \(\psi, \Psi \) connected by (2.1.1). Let \(H_1^1(\mathbb{R}) \) denote the Hardy space of the upper half-plane. It may be defined as the subspace of functions in \(L^1(\mathbb{R}) \) with Poisson harmonic extension to \(\mathbb{H} \) which is holomorphic.

Theorem 2.2.1. Let \(\psi \in L^1(\mathbb{R}) \) and \(\Psi \) be as above. If \(\Psi(x) = \hat{\Psi}(y) = 0 \) holds for all \(x, y \in \mathbb{Z}^4 \setminus \{0\} \), and if \(\Psi(x) = o(|x|^{-2}) \) as \(|x| \to 0 \), then \(\psi \in H_1^1(\mathbb{R}) \) and, as a consequence, \(\Psi(x) \equiv 0 \) on \(\mathbb{R}^4 \setminus \{0\} \).

Proof. In view of the assumption that \(\Psi(x) = o(|x|^{-2}) \) as \(|x| \to 0 \), it follows from (2.1.1) that \(\psi \in L^1(\mathbb{R}) \) annihilates the constant function 1. Moreover, by the Lagrange (or Jacobi) four squares theorem, each positive integer may be written as \(|x|^2 \) for some \(x \in \mathbb{Z}^4 \setminus \{0\} \). Consequently, we see from (1.2.5) and (1.2.7) that \(\psi \) also annihilates the subspace of \(L^\infty(\mathbb{R}) \) spanned by the functions \(e^{i\eta m^4} \) and \(e^{-i\eta n^4} \), where \(m, n \in \mathbb{Z}_+ \) and \(\tau \) is the real variable. By Theorem 1.8.2 in [4], which relies on methods developed in [5] and is motivated by [3], we may conclude that \(\psi \in H_1^1(\mathbb{R}) \). Finally, in view of the standard Fourier analysis characterization of \(H_1^1(\mathbb{R}) \), it follows from this and (1.2.7) that \(\Psi = 0 \) on \(\mathbb{R}^4 \setminus \{0\} \).

We return to the initial setup with \(\phi \) and \(\Phi \). We think of \(\phi' = \psi \) and \(\Phi = \Psi \). Let \(C_0(\mathbb{R}) \) denote the space of continuous functions on \(\mathbb{R} \) with limit value 0 at infinity. Then the condition in the origin in Theorem 2.2.1 may be replaced by \(\phi \in C_0(\mathbb{R}) \).

Corollary 2.2.2. Let \(\Phi \) be given by (1.2.5), where \(\phi \in C_0(\mathbb{R}) \) with \(\phi' \in L^1(\mathbb{R}) \) and \(d = 4 \). If \(\Phi(x) = \hat{\Phi}(y) = 0 \) for all \(x, y \in \mathbb{Z}^4 \setminus \{0\} \), then \(\phi' \in H_1^1(\mathbb{R}) \) and, as a consequence, \(\Phi(x) \equiv 0 \) on \(\mathbb{R}^4 \setminus \{0\} \).

Remark 2.2.3. The above theorem is a four-dimensional analogue of the uniqueness part of the Fourier interpolation formula found by Radchenko and Viazovska [6]. That work in its turn was motivated by Fourier interpolation formulæ associated with optimizing the Cohn-Elkies method for sphere packing [7], [2].

References

[1] Canto-Marín, F., Hedenmalm, H., Montes-Rodríguez, A., Perron-Frobenius operators and the Klein-Gordon equation. J. Eur. Math. Soc. (JEMS) 16 (2014), no. 1, 31-66.

[2] Cohn, H., Kumar, A., Miller, S. D., Radchenko, D., Viazovska, M., The sphere packing problem in dimension 24. Ann. of Math. (2) 185 (2017), no. 3, 1017-1033.

[3] Hedenmalm, H., Montes-Rodríguez, A., Heisenberg uniqueness pairs and the Klein-Gordon equation. Ann. of Math. 173 (2011), no. 3, 1507-1527.

[4] Hedenmalm, H., Montes-Rodríguez, A., The Klein-Gordon equation, the Hilbert transform, and dynamics of Gauss-type maps. J. Eur. Math. Soc. 22 (2020), 1703-1757.

[5] Hedenmalm, H., Montes-Rodríguez, A., The Klein-Gordon equation, the Hilbert transform, and Gauss-type maps: H\(^\infty\) approximation. J. Anal. Math., to appear.

[6] Radchenko, D., Viazovska, M., Fourier interpolation on the real line. Publ.Math. Inst. Hautes Études Sci. 129 (2019), 51-81.

[7] Viazovska, M., The sphere packing problem in dimension 8. Ann. of Math. (2) 185, no. 3, 1017-1033.

Bakan: Institute of Mathematics, National Academy of Sciences of Ukraine, Kyiv 01601, Ukraine
E-mail address: andrew.g.bakan@gmail.com

Hedenmalm: Department of Mathematics, KTH Royal Institute of Technology, S-10044 Stockholm, Sweden
E-mail address: haakanh@kth.se

Montes-Rodríguez: Department of Mathematical Analysis, University of Sevilla, Seville, Spain
E-mail address: amontes@us.es

Radchenko: Department of Mathematics, ETHZ, Rämistrasse 101, CH-8092 Zürich, Switzerland
E-mail address: danradchenko@gmail.com

Viazovska: Institute of Mathematics, EPFL, CH-1015 Lausanne, Switzerland
E-mail address: viazovska@gmail.com