Demystifying Dependency Bugs in Deep Learning Stack

Kaifeng Huang∗
Fudan University
China
Bihuan Chen†∗
Fudan University
China
Susheng Wu∗
Fudan University
China
Junming Cao∗
Fudan University
China
Lei Ma‡
The University of Tokyo
Japan
Xin Peng∗
Fudan University
China

ABSTRACT
Deep learning (DL) applications, built upon a heterogeneous and complex DL stack (e.g., Nvidia GPU, Linux, CUDA driver, Python runtime, and TensorFlow), are subject to software and hardware dependencies across the DL stack. One challenge in dependency management across the entire engineering lifecycle is posed by the asynchronous and radical evolution and the complex version constraints among dependencies. Developers may introduce dependency bugs (DBs) in selecting, using and maintaining dependencies. However, the characteristics of DBs in DL stack is still under-investigated, hindering practical solutions to dependency management in DL stack.

To bridge this gap, this paper presents the first comprehensive study to characterize symptoms, root causes and fix patterns of DBs across the whole DL stack with 446 DBs collected from Stack Overflow posts and GitHub issues. For each DB, we first investigate the symptom as well as the lifecycle stage and dependency where the symptom is exposed. Then, we analyze the root cause as well as the lifecycle stage and dependency where the root cause is introduced. Finally, we explore the fix pattern and the knowledge sources that are used to fix it. Our findings from this study shed light on practical implications on dependency management.

CCS CONCEPTS
• Software and its engineering → Software libraries and repositories.

KEYWORDS
dependency bug, deep learning stack, empirical study

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

1 INTRODUCTION
The significant breakthroughs in deep learning (DL) have brought great success to many DL-enabled applications, e.g., machine translation [30], medical diagnosis [43], voice assistants [21] and autonomous vehicles [12]. Such DL applications are built upon a heterogeneous and complex DL stack, including hardware (e.g., Nvidia GPU), OS (e.g., Linux), drivers (e.g., CUDA and cuDNN), runtime (e.g., Python) and libraries (e.g., TensorFlow). In other words, engineering DL applications requires software and hardware in the DL stack as prerequisite dependencies. One common challenge in engineering DL applications is dependency management across the DL stack [4, 13, 74], i.e., to properly manage versions and configurations of the software and hardware dependencies in the entire DL stack.

Motivation. Dependency management is challenging for three main reasons. First, software and hardware dependencies are complex, and evolve quickly in an asynchronous and radical way. Dependency complexity originates from two sources, i.e., deep stack and rich vendors. For example, many vendors provide DL libraries, e.g., Google’s TensorFlow, Facebook’s PyTorch and Microsoft’s CNTK. Besides, dependency evolution is performed at the vendor’s own pace and may introduce incompatible changes. For example, the micro-architecture of Nvidia GPU has evolved several generations over the years, from old versions such as Tesla to new versions such as Ampere. In the meantime, CUDA has evolved from version 1.0 to 11.6 to support different GPUs distinguished by compute capability, which ranges from 1.0 to 9.0. Therefore, developers may miss some dependencies, and build an incomplete stack, or have troubles in selecting, updating and migrating dependency versions.

Second, software and hardware dependencies need to satisfy complex version constraints to work together properly. For example, each TensorFlow version only works compatibly with certain cuDNN versions, CUDA versions and Nvidia GPU versions. A developer set up an environment with TensorFlow gpu version 1.2.0rc0, Python 3.5.2, CUDA 8.0.61, cuDNN 8.0 and a GPU card with compute capability 2.1 on Windows 7 [52]. The setup failed to recognize a valid GPU card as this TensorFlow version required a GPU card with compute capability 3.0 or higher. These version constraints are scattered across documentation of software and hardware. Therefore, developers may build an incompatible stack, or introduce incompatibilities when updating versions or deploying to a new environment.

Third, each dependency version may contain bugs or need proper configuration. While dependency version constraints are satisfied, there might be bugs in specific versions under certain circumstances. For
example, a developer created a Seq2Seq model using TensorFlow 1.5 but encountered an error [57]. It was caused by a bug only in TensorFlow 1.5, and could be alleviated by upgrading to 1.6 or downgrading to 1.4. In addition, there might be misconfigurations during the installation of dependencies. For example, some kernel modules are required to be signed on Secure Boot enabled systems when the Nvidia driver is installed. However, this may cause unknown errors raised from CUDA [51], which could be fixed by disabling Secure Boot. Therefore, developers might use a buggy dependency version or misconfigure a dependency version.

In summary, developers may introduce various dependency management problems in selecting, using and maintaining dependencies in the DL stack during the entire engineering lifecycle (i.e., environment setup, development, deployment and maintenance). We refer to these problems as dependency bugs (DBs).

Literature. On the one hand, a lot of advances have been made to investigate DBs in different ecosystems, e.g., Java [23, 65], C/C++ [31], JavaScript [44], Python [40, 64], Go [63], and Debian and Red Hat [6]. They only consider DBs at the homogeneous library layer. However, DBs in the DL ecosystem are different because they can occur across all the heterogeneous layers in the DL stack. On the other hand, a lot of efforts have been made to investigate characteristics (e.g., symptoms, root causes and fix patterns) of general bugs [25, 27, 28, 42, 76] and specific bugs [10, 14, 62, 73, 75] in DL applications. However, these studies are not specifically designed for DBs, and thus only uncover partial characteristics of DBs in DL stack. Therefore, although it is necessary to understand the characteristics of DBs in DL stack, no systematic study exists yet.

Our Study. To bridge this gap, we present the first comprehensive study to characterize DBs in DL stack. An overview of our study is presented in Fig. 1. After introducing the DL stack (see Sec. 2), we first collect 446 DBs from StackOverflow posts and GitHub issues, and then analyze these DBs to answer three RQs (see Sec. 3).

- **RQ1 Symptom:** What are the symptoms of DBs? At which lifecycle stages and dependencies are they exposed?
- **RQ2 Root Cause:** What are the root causes of DBs? At which lifecycle stages and dependencies are they introduced?
- **RQ3 Fix Pattern:** What are the fix patterns of DBs? Which knowledge sources are used to fix DBs?

Through these research questions, we aim to provide useful findings for developers and researchers (see Sec. 4, 5 and 6). For example, 38.8% of the DBs manifest DL specific errors or anomalies in software and hardware dependencies, behavior, model and data, mostly leading to crashes. Violation of constraints among software and hardware dependencies causes 79.8% of the DBs. Development is the most bug-affected lifecycle stage, which exposes 51.8% of the DBs, while environment setup is the most bug-prone lifecycle stage, which introduces 90.8% of the DBs. 227 (50.9%) of the DBs are not introduced and exposed in the same dependency. Changing dependency version and adding dependency are the most common fix patterns, which are leveraged to fix 70.0% and 11.9% of the DBs. Source code, documentation, issue tracker and other online resource are important knowledge sources of fixing DBs.

Our findings provide practical implications for developers and researchers on dependency management across the entire engineering lifecycle (see Sec. 7), e.g., construct dependency knowledge graph for the entire DL stack, recommend dependencies in the entire DL stack, detect, localize and fix dependency bugs, and upgrade and migrate dependencies. To demonstrate the usefulness of our implications, we design a prototype of DB detection and fixing.

In summary, our work makes the following contributions.

- We conduct the first comprehensive study to explore symptoms, root causes and fix patterns of 446 DBs in DL stack.
- We provide implications for developers and researchers on dependency management in engineering DL applications.

2 DEEP LEARNING STACK

Developers need to set up a DL environment before developing or deploying DL applications. The setup process often involves the following steps. First, developers need to choose a physical machine with GPUs and operating system installed. Besides, developers can use a virtual machine on the physical machine, or choose a virtual machine on the cloud supported by cloud service providers (e.g., Amazon SageMaker). Second, to fully empower upper libraries and DL applications, developers need to install the corresponding GPU drivers and GPU-accelerated SDKs (e.g., CUDA and cuDNN). Third, developers need to select a runtime environment based on the programming language that DL applications are developed with (e.g., Python and Java). Forth, a number of libraries should be leveraged to boost the development of DL applications from different perspectives. Finally, developers could develop and deploy DL applications on top of the software and hardware dependencies.

This setup process is complicated by involving a wide scope of software and hardware dependencies. To reduce the complexity and provide a complete solution, a DL stack is proposed by organizing dependencies into layers. For example, Patterson shows a generic program stack consisting of modeling code, framework, storage, driver, operating system and hardware [2]. By following the setup process and referencing the DL stack at Patterson Consulting [2], Intel [26], Huawei [24] and Nvidia [1], we summarize a DL stack in Fig. 1. It consists of five layers. From top to bottom, they are Application, Library, Runtime and Driver, OS/Container, and Hardware.

Specifically, the Application layer contains DL applications from various domains, e.g., autonomous driving. The Library layer contains the dependencies the upper-layer DL applications directly or transitively depend on. It covers a wide range of libraries, including frameworks (e.g., TensorFlow, PyTorch and CNTK) which provide abstraction and generic functionality implementation for DL algorithms, front-end libraries providing high-level abstraction or language bindings (e.g., Keras, ktrain and NeuPy), and other libraries in the ecosystem. The Runtime layer includes interpreters for dynamically typed languages (e.g., Python and JavaScript) and virtual machines for statically typed languages (e.g., Java and .Net). The Driver layer contains the dependencies for interacting with GPUS, including GPU drivers, computing platforms and GPU-accelerated SDKs (e.g., Nvidia GPU driver, CUDA and cuDNN). The Library layer can directly interact with the Runtime and Driver layer, and thus they are put at the same layer. The OS/Container layer contains operating systems, containers and other virtual environments (e.g., Ubuntu, Windows, macOS, Docker, and Amazon SageMaker). The Hardware layer contains fundamental hardware like CPU, GPU, mobile chips, and vendor-specific chips (e.g., Google’s TPU).
3 EMPIRICAL STUDY METHODOLOGY
We first introduce the design of our empirical study, and then present our process of data collection and data labeling.

3.1 Study Design
Our symptom analysis in RQ1 aims to characterize the observable consequences of DBs, which is helpful to assess impacts and provide insights for DB diagnosis and detection. Moreover, it aims to identify the lifecycle stage and dependency where the symptom is exposed, which is helpful to guide both developers and researchers to focus more effort on these bug-affecting stages and dependencies so as to achieve the most benefit for DB diagnosis and detection.

Our root cause analysis in RQ2 seeks to understand the fundamental nature of DBs, which is helpful to provide insights for DB detection and localization. Further, it seeks to locate the lifecycle stage and dependency where the root cause is introduced, which is helpful to guide both developers and researchers to spend more effort on these bug-prone stages and dependencies in order to achieve the most benefit for DB avoidance, detection and localization.

Our fix pattern analysis in RQ3 attempts to characterize the fixes of DBs, which is helpful to provide insights for DB fixing. Moreover, it explores the distribution of fix patterns for root causes as well as the knowledge sources that are used to fix DBs, which is helpful for both developers and researchers to achieve DB fixing in a more automated and effective fashion.

Comparison to DBs in Other Domains. Unlike general programming, DBs in deep learning exhibits a higher prevalence of low-level issues, e.g., driver configuration problems. To the best of our knowledge, there is no literature on DBs in high-performance computing or platform-specific binaries, which also encounter configuration problems that may be as prevalent as those found in deep learning. The existing literature covers a range of topics related to dependencies, including empirical studies on dependency smells [11, 29], dependency conflicts [6, 23, 44, 63–67] and dependency-related build failures [8, 36, 38, 40, 70]. During the analysis of RQ1, RQ2 and RQ3, we compare the symptoms, root causes and fix patterns and discuss the differences from existing literature.

3.2 Data Collection
To obtain a comprehensive understanding of DBs, we collect relevant posts on StackOverflow and relevant issues on GitHub. We selected StackOverflow and GitHub because i) they are popular sites containing a wide range of problems raised by world-wide developers in real-life development activities; and ii) they have a high potential to contain problems about the dependencies in the entire DL stack due to their diversity.

3.2.1 Collecting SO Posts. Our collection of SO posts has two steps. Step 1: Dependency Tag Selection. Developers often attach several tags to a post to indicate the topics or concepts related to the question. Therefore, tags can be used to select the posts that are relevant to dependency problems in DL stack, and we need to determine a set of tags that have a high coverage of the dependencies in DL stack. To this end, we first collected all the 21,978,327 posts from Stack Exchange Data Dump on December 20, 2021. Then, for each post with an accepted answer, we iterated its tag list, and searched for tags that co-occurred with the tag “deep learning” or “neural network”. In this way, we obtained an initial set of 1,576 tags. We did not directly use the tag “deep learning” or “neural network” to select posts as it may miss posts that were not tagged with “deep learning” and “neural network” but with other dependency related tags.

Next, two of the authors independently determined whether each of the 1,576 tags was related to the dependencies in DL stack by reading the excerpt provided by StackOverflow and online materials obtained by search engines. We used Cohen’s Kappa coefficient to measure agreement, and it reached 0.906. A third author was involved to resolve disagreements. Finally, we obtained 57 Library tags, 3 Driver tags, 59 Runtime tags, 23 OS/Container tags and 14 Hardware tags.

Moreover, we conducted a comprehensive analysis of these 156 tags on significance and relevance scores, following previous work [3, 7]. Out of these tags, 106 of them have non-zero scores in terms of both significance and relevance, while the remaining 50 tags have zero scores. These tags exhibit an average significance score of 0.040 and an average relevance score of 0.018. Compared with the thresholds used in previous work [3, 7], our results suggest that our set of DL stack tags is significant and relevant.

Step 2: Dependency Post Selection. We picked dependency-related posts in two steps. First, we chose from the 21,978,327 posts the ones whose tags contained one of the 57 Library tags and 3 Driver tags, or contained the tag “deep learning” or “neural network” as well as one of the 59 Runtime tags, 23 OS/Container tags and 14 Hardware tags. As Runtime, OS/Container and Hardware tags often have a weaker correlation with DL than Library and Driver tags, here we enforced their co-occurrence with either “deep learning” or “neural network” to reduce noisy posts. This led to 66,422 posts.
Second, to focus on high-quality posts, we removed 7,301 posts that did not have an accepted answer and 35,327 posts that did not contain dependency version information. The information of dependency versions was considered as important to determine root causes and fix patterns of DBs. We used regular expression matching to check the existence of version information. This restricted our selection to 3,814 posts.

3.2.2 Collecting GitHub Issues

Our collection of GitHub issues consists of two steps.

Step 1: GitHub Repository Selection. To obtain dependency-related issues, we need to select a set of repositories across the DL stack. However, GitHub mainly hosts repositories at the Application and Library layer. Therefore, we first searched the 57 Library tags in GitHub, which linked to 30 GitHub repositories. The repository size is smaller than the tag size as i) some tags share the same repository; ii) some repositories are archived; and iii) some libraries are not hosted on GitHub. Then, we selected the top 10 repositories in the Application layer by querying GitHub using “deep learning”.

Step 2: Dependency Issue Collection. We collected closed issues in the 40 selected repositories using GitHub API, which led to 154,299 issues. Similar to dependency post selection, we used regular expression matching to check the existence of version information in issues, which resulted in 37,795 issues. As the issue size is still large, we randomly sampled 1,763 issues with a confidence level of 99% and a margin of error of 3%.

3.2.3 DB Identification

We manually verified the 3,814 posts and 1,763 issues to reduce noise that was not about DBs in DL stack. In particular, two of the authors independently investigated each post and issue to identify DBs. The Cohen’s Kappa coefficient was 0.909. A third author was involved to resolve disagreements. Finally, we identified 446 DBs. 326 are from posts, and 120 are from issues.

3.3 Data Labeling

To answer the three research questions, we manually labeled each of the 446 DBs with respect to eight aspects, i.e., symptom, exposing stage and dependency, root cause, introducing stage and dependency, fix pattern, and knowledge source for fixing.

In particular, two of the authors first randomly sampled 100 DBs for a pilot labeling, following an open coding procedure [47]. They separately read all contents of a post or issue (including title, question/issue description, comments, answers, commits and reference links mentioned during discussion) and relied on search engines to carefully label DBs. Basically, the symptom of a DB was determined by analyzing the question/issue description. The root cause, fix pattern and knowledge source for fixing of a DB were inferred from the question/issue description, the fixing commit or the accepted answer. The exposing stage and dependency of a DB were determined by analyzing where its symptom was exhibited, while the introducing stage and dependency of a DB were determined by analyzing where its root cause was located. A group discussion was conducted to summarize the initial taxonomies.

Then, two of the authors independently labeled all the 446 posts based on the initial taxonomies, and finally reached Cohen’s Kappa coefficients of 0.967, 0.938, 0.930, 0.840, 0.870, 0.887, 0.813 and 0.858 for the eight aspects. A third author resolved disagreements in pilot and final labeling. The manual effort, involved in our data collection and labeling, required eight person-months.

4 RQ1: SYMPTOM ANALYSIS

We present the taxonomy of DB symptoms, and explore the stages and dependencies where symptoms are exposed.

4.1 Symptom Taxonomy

The taxonomy of DB symptoms is reported in Fig. 2. It is organized into five inner categories (i.e., Syntactic Error, DL Specific Error/Anomaly, Performance Anomaly, Termination and Warning) and eight leaf categories. The number in parentheses is the number of DBs exhibiting the corresponding symptom.

Syntactic Error. 226 (50.7%) of the DBs exhibit general syntactic errors that are similar to those in traditional programs. It is the most common symptom. Specifically, 114 (25.6%) of the DBs manifest `Element Not Found` errors; i.e., the used syntactic elements like module, class, function, key and attribute cannot be retrieved. Further, 36 (8.1%) of the DBs exhibit `Type Mismatch` errors; i.e., the variable type is inconsistent with the one that is expected. In addition, 25 (5.6%) and 18 (4.0%) of the DBs result in `Illegal Value` and `Illegal Argument` errors respectively, where a variable receives an illegal value, and a function call receives an illegal argument. Moreover, 13 (2.9%) of the DBs report `Undefined Variable` errors, denoting that the variable is not defined or initialized. Besides, some infrequent errors (e.g., compilation errors) are included in the `Others` category, which account for 20 (4.5%) of the DBs.

DL Specific Error/Anomaly. 173 (38.8%) of the DBs exhibit DL specific errors or anomalies. It is the second most common symptom, and is divided into five leaf categories. `Software Error/Anomaly` means errors or anomalies raised by software dependencies, accounting for 108 (24.2%) of the DBs. There are four cases. (1) 18 (4.0%) of the DBs exhibit software internal errors, indicated by an error message that contains the software name, e.g., CUDA_ERROR_UNKNOWN. (2) 59 (13.2%) of the DBs report that required software dependencies cannot be found. (3) 11 (2.5%) of the DBs manifest dependency initialization failures, indicating that required dependencies are not properly set up. (4) 20 (4.5%) of the DBs report that required software dependency versions do not match.

Moreover, `Hardware Error/Anomaly` denotes errors or anomalies raised by hardware dependencies; e.g., the GPU card is not correctly connected. It accounts for 14 (3.1%) of the DBs. Further, 23 (5.2%) of the DBs manifest `Behavior Anomaly`, e.g., abnormal accuracy metrics.
and unexpected return values of APIs. In addition, 18 (4.0%) of the DBs exhibit Model Error, which is indicated by an error message that contains model elements, e.g., computation operator missing, model save/load failure, tensor conversion error, and layer unrecognized. Besides, 10 (2.2%) of the DBs manifest Data Anomaly, reporting that input data has abnormal values or mismatched property (e.g., size).

Performance Anomaly, 21 (4.7%) of the DBs manifest abnormal performance with respect to execution time, memory usage and processor usage. Specifically, 10 (2.2%) of the DBs exhibit Long Execution Time; i.e., a program takes a long time to initialize or execute DL tasks, or even hangs in the middle of the execution. Further, 9 (2.0%) of the DBs cause Memory Anomaly, including abnormal memory utilization, memory leak, or even out of memory errors. Besides, two DBs result in Processor Anomaly (i.e., high GPU utilization).

Termination. 20 (4.5%) of the DBs caused the program directly terminated without any informative error code or error message. For example, it only reports a segmentation fault, or it simply reports that the task is killed or canceled.

Warning. 6 (1.3%) of the DBs show warning messages, including warnings about function change, version compatibility, and semantic mismatch in API arguments. For example, a version compatibility warning reveals that the installed version violates the working version requirements. These warnings forecast the potential DBs due to using versions with changed elements.

Comparison to DBs in Other Domains. Compared to previous work, distinct symptoms of the DBs in our study are highlighted in dotted rectangles in Fig. 2, which include Hardware Error/Anomaly, Model Error, Data Anomaly and Performance Anomaly. They account for 63 (14.1%) of the 446 DBs. These differences owe to the fact that previous work is focused on DBs raised in homogeneous dependencies in the Application and Library layer in traditional software applications, while DBs across heterogeneous dependencies are not studied. Our study investigates DBs across the whole DL stack to collect symptoms revealed not only in dependencies within one layer but also in dependencies across layers.

Summary. General syntactic errors and DL specific errors and anomalies are the most common symptoms, which account for 89.4% of the DBs and mostly cause crashes. Besides, 4.7% of the DBs slow executions down or consume high resources. These wide-ranging impacts motivate the importance of DBs.

4.2 Exposing Stage and Dependency

We identify the stage and dependency where the symptom of each DB is exposed, and analyze DB distribution over them.

Exposing Stage Analysis. We classify the entire lifecycle of engineering DL applications into four stages, i.e., environment setup, development, deployment, and maintenance. We report the DB distribution over the exposing stages in the right part of Fig. 3. Development is the most bug-affecting stage, where 231 (51.8%) of the DBs are exposed. This indicates that although the setup process of DL stack is presumably finished, more than half of the DBs will not occur until DL application development. Environment setup is the second most bug-affecting stage, where 168 (37.7%) of the DBs are exposed. It indicates that the setup of a feasible DL stack is not easy. Apart from the two dominating stages, deployment exposes 14 (3.1%) and maintenance exposes 11 (2.5%) of the DBs, which are relatively smaller than in environment setup and development. The remaining 22 (4.9%) DBs have no clear indication about the exposing stage, and thus are included in the Unknown category.

Exposing Dependency Analysis. We show the DB distribution over the exposing dependencies in the left part of Fig. 3, which is organized by the layer hierarchy in DL stack (see Sec. 2) with dominating dependencies separately highlighted. The Library layer is the most bug-affecting layer, where 383 (85.9%) of the DBs are exposed. Specifically, Keras, TensorFlow and PyTorch in the Library layer expose 65 (14.6%), 212 (47.5%) and 29 (6.5%) of the DBs respectively, which are the most bug-affecting libraries. This is reasonable as they are currently the most popular DL frameworks. The Application layer exposes 15 (3.4%) of the DBs, while the Driver layer exposes 14 (3.1%) of the DBs. CUDA and cuDNN both expose 6 (1.3%) of the DBs. Besides, there are at most 23 (5.2%) of the DBs that are exposed at the dependencies at the Runtime, OS/Container or Hardware layer. The Sankey diagram in Fig. 3 illustrates where the DBs exposed in a dependency are exposed across the lifecycle stages. The width of the flow is proportional to the number of DBs. Generally, a DB can be exposed at any dependency at any layer in DL stack at any stage of the engineering lifecycle. This indicates the complexity of DBs.

Summary. Library, Application and Driver are the most bug-affecting stack layers. Keras, TensorFlow and PyTorch are the most bug-affecting libraries.

5 RQ2: ROOT CAUSE ANALYSIS

We report the taxonomy of DB root causes, and analyze the stages and dependencies where root causes are introduced.

5.1 Root Cause Taxonomy

The taxonomy of DB root causes is shown in Fig. 4. We first classify the root causes based on the criterion that whether a DB is caused by one dependency (i.e., Intra-Dependency Cause) or by constraints among dependencies across DL stack (i.e., Inter-Dependency Cause). Then, we summarize six leaf categories.
with CUDA Toolkit 10.1. Thus, using pre-built TensorFlow 2.0 with Keras and the API addition, API replacement, API movement, API parameter list violates the version constraint that has to be satisfied for it to work with TensorFlow 2.0 requires CUDA Toolkit 10.0. Developers by choosing wrong software distribution. For example, the official pre-built TensorFlow 2.0 provides similar APIs, but Keras does not support TensorFlow 2.0. In selecting wrong software as dependency. For example, the DL frameworks TensorFlow and TensorFlow-gpu would cause a DB. 13 (2.9%) of the DBs are caused by Mismatched Hardware; i.e., the hardware does not meet requirements of dependencies in upper stack layers. For example, TensorFlow 1.6 used AVX feature of CPUs, which is supported by Sandy Bridge or newer CPU architectures. Hence, using TensorFlow with non-AVX CPUs would cause a DB. 2 (0.4%) of the DBs are caused by Disabled OS Privilege; i.e., permissions required by software dependencies are not allowed from the OS or container. For example, System Integrity Protection (SIP) is enabled on MacOS 10.11 to prevent unauthorized code execution, but SIP prevents a path variable from being overridden, causing dependencies not found.

Comparison to DBs in Other Domains. Compared to previous work, distinct root causes of the DBs in our study are highlighted in dotted rectangles in Fig. 4, which include Mismatched Hardware and Disabled OS Privilege. They account for 15 (3.4%) of the 446 DBs. It is worth mentioning that although most root causes are shared with previous work, the dependencies that cause DBs can be different (see Sec. 5.2) as our study further considers the Runtime, Driver, OS/Container and Hardware layers.

Summary. Violation of constraints among dependencies in DL stack causes 79.8% of the DBs, where incompatible software version is the major root cause. Moreover, bugs in software dependencies cause 11.9% of the DBs.

5.2 Introducing Stage and Dependency

We locate the stage and dependency where the root cause of each DB is introduced, and analyze DB distribution over them.

Introducing Stage Analysis. The taxonomy of stages is the same to the one in Sec. 4.2. We show the DB distribution over the introducing stages in the right part of Fig. 5. Environment setup is the most bug-prone stage, where 405 (90.8%) of the DBs are introduced, while no DB is introduced in development because the DL stack is already determined in environment setup. It indicates that the setup of a feasible DL stack is important but challenging. Besides, deployment and maintenance introduce 9 (2.0%) and 10 (3.2%) of the DBs. The remaining 22 (4.9%) DBs have no clear indication about the introducing stage, and thus are put in the Unknown category.

Figure 5: Introducing Dependency vs. Introducing Stage

CUDASoftware Toolkit 10.1 could cause a DB [55]. Further, 3 of the DBs are caused by selecting multiple conflicting software. For example, loading both TensorFlow and TensorFlow-gpu would cause a DB. 13 (2.9%) of the DBs are caused by Mismatched Hardware; i.e., the hardware does not meet requirements of dependencies in upper stack layers. For example, TensorFlow 1.6 used AVX feature of CPUs, which is supported by Sandy Bridge or newer CPU architectures. Hence, using TensorFlow with non-AVX CPUs would cause a DB. 2 (0.4%) of the DBs are caused by Disabled OS Privilege; i.e., permissions required by software dependencies are not allowed from the OS or container. For example, System Integrity Protection (SIP) is enabled on MacOS 10.11 to prevent unauthorized code execution, but SIP prevents a path variable from being overridden, causing dependencies not found.

Comparison to DBs in Other Domains. Compared to previous work, distinct root causes of the DBs in our study are highlighted in dotted rectangles in Fig. 4, which include Mismatched Hardware and Disabled OS Privilege. They account for 15 (3.4%) of the 446 DBs. It is worth mentioning that although most root causes are shared with previous work, the dependencies that cause DBs can be different (see Sec. 5.2) as our study further considers the Runtime, Driver, OS/Container and Hardware layers.

Summary. Violation of constraints among dependencies in DL stack causes 79.8% of the DBs, where incompatible software version is the major root cause. Moreover, bugs in software dependencies cause 11.9% of the DBs.

5.2 Introducing Stage and Dependency

We locate the stage and dependency where the root cause of each DB is introduced, and analyze DB distribution over them.

Introducing Stage Analysis. The taxonomy of stages is the same to the one in Sec. 4.2. We show the DB distribution over the introducing stages in the right part of Fig. 5. Environment setup is the most bug-prone stage, where 405 (90.8%) of the DBs are introduced, while no DB is introduced in development because the DL stack is already determined in environment setup. It indicates that the setup of a feasible DL stack is important but challenging. Besides, deployment and maintenance introduce 9 (2.0%) and 10 (3.2%) of the DBs. The remaining 22 (4.9%) DBs have no clear indication about the introducing stage, and thus are put in the Unknown category.

Figure 5: Introducing Dependency vs. Introducing Stage

CUDASoftware Toolkit 10.1 could cause a DB [55]. Further, 3 of the DBs are caused by selecting multiple conflicting software. For example, loading both TensorFlow and TensorFlow-gpu would cause a DB. 13 (2.9%) of the DBs are caused by Mismatched Hardware; i.e., the hardware does not meet requirements of dependencies in upper stack layers. For example, TensorFlow 1.6 used AVX feature of CPUs, which is supported by Sandy Bridge or newer CPU architectures. Hence, using TensorFlow with non-AVX CPUs would cause a DB. 2 (0.4%) of the DBs are caused by Disabled OS Privilege; i.e., permissions required by software dependencies are not allowed from the OS or container. For example, System Integrity Protection (SIP) is enabled on MacOS 10.11 to prevent unauthorized code execution, but SIP prevents a path variable from being overridden, causing dependencies not found.

Comparison to DBs in Other Domains. Compared to previous work, distinct root causes of the DBs in our study are highlighted in dotted rectangles in Fig. 4, which include Mismatched Hardware and Disabled OS Privilege. They account for 15 (3.4%) of the 446 DBs. It is worth mentioning that although most root causes are shared with previous work, the dependencies that cause DBs can be different (see Sec. 5.2) as our study further considers the Runtime, Driver, OS/Container and Hardware layers.

Summary. Violation of constraints among dependencies in DL stack causes 79.8% of the DBs, where incompatible software version is the major root cause. Moreover, bugs in software dependencies cause 11.9% of the DBs.
5.3 Introducing and Exposing Dependency

We further analyze where the DBs introduced in a dependency are exposed across the dependencies in DL stack. Overall, 227 (50.9%) of the DBs are not introduced and exposed in the same dependency. For example, 33 (7.4%) of the DBs introduced in TensorFlow are exposed in Keras, and 60 (13.5%) of the DBs introduced in CUDA and cuDNN are exposed in TensorFlow. At the stack layer level, 162 (36.3%) of the DBs are not introduced and exposed at the same stack layer. For example, 12 (2.7%) of the DBs introduced at the Hardware layer are exposed at the Library layer. These results indicate that DB localization need systematic knowledge of the entire DL stack.

6 RQ3: FIX PATTERN ANALYSIS

We present the taxonomy of DB fix patterns, and report their distribution for root causes and the knowledge source of fixing.

6.1 Fix Pattern Taxonomy

The taxonomy of DB fix patterns is listed in Fig. 6. It is grouped into four inner categories (i.e., Change Application Code, Change Dependency, Change DL Stack and Change Environment) and 15 leaf categories. A DB can be fixed by applying multiple fix patterns. Hence, the summation of the number of DBs in Fig. 6 is larger than 446.

Change Application Code. 62 (13.9%) of the DBs are fixed via changing the application code although their root causes are not introduced by the application. Specifically, Fixing API Usage is used to fix 43 (9.6%) of the DBs; i.e., the library API usage has to be changed with the incompatible library version evolution. Moreover, Adding Missing Code Logic is utilized to fix 8 (1.8%) of the DBs. In such cases, some library APIs are removed or the behavior of some library APIs is changed, and hence developers have to implement the code logic of these library APIs by themselves at the application code level. Further, Reformating Data is used to fix 7 (1.6%) of the DBs for making the data format compatible with the changed library APIs. Besides, Changing Hyper-Parameter (e.g., batch size and learning rate) is used to fix 4 (0.9%) of the DBs, because the constraints on hyper-parameters are changed with library version evolution.

Change Dependency. This is the most common fix pattern, which is leveraged to fix 407 (91.3%) of the DBs. In particular, Changing Dependency Version is used to fix 312 (70.0%) of the DBs, indicating that it is the most common pattern to fix DBs. Of these 312 DBs, upgrading dependency version is used in the fix of 188 DBs, and downgrading dependency version is used in the fix of 122 DBs. In 22 of the DBs, dependency version is changed but there is no clear indication in the posts/issues to determine upgrade or downgrade. Further, Adding Dependency is used to fix 53 (11.9%) of the DBs where some required dependencies are missing or not successfully installed. Moreover, Re-building Dependency is used to fix 30 (6.7%) of the DBs. In such cases, the source code of dependencies is re-built with other required dependencies to properly work with them, or the source code of dependencies is first changed (e.g., to fix bugs or to remove incompatibilities) and then re-built, potentially because of the huge maintenance effort in changing dependency versions. In addition, Changing Dependency Configuration is leveraged to fix 9 (2.0%) of the DBs, e.g., disabling SIP in MacOS. Besides, Removing Dependency is applied to fix 3 (0.7%) of the DBs in order to remove conflicted dependencies.

Change DL Stack. 30 (6.7%) of the DBs are fixed by changing the DL stack; i.e., some dependencies are switched to alternatives, and the DL stack becomes fundamentally different. It is divided into three leaf categories, i.e., Switching Software (libraries, drivers and runtimes), Switching Hardware and Switching OS, accounting for...
We report the distribution of patterns for root causes in Fig.6 where each cell denotes the number of DBs that are caused by a particular root cause. The DBs that have a strong correlation to the root causes and is involved in the fix pattern to use given a DB context. Specifically, Fixing Path Variable is used to fix 19 (4.3\%) of the DBs; i.e., the path variable is fixed to point to the correct directory that contains the required dependencies. Besides, Clearing Environment and Creating Environment are used to respectively fix 15 (3.4\%) and 7 (1.6\%) of the DBs. In these cases, the virtual environment (i.e., a directory that contains a specific collection of installed packages) of package managers (e.g., pip and conda) is cleared or created.

Notice that 389 (87.2\%) of the DBs can be fixed by applying one fix pattern, while 73 (16.4\%), 20 (4.5\%) and 3 (0.7\%) of the DBs can be fixed by combining two, three and four fix patterns at the same time. The summation here is larger than 446 as 37 DBs can be fixed by different combinations of fix patterns.

Comparison to DBs in Other Domains. Compared to previous work, distinct fix patterns of the DBs in our study are highlighted in dotted rectangles in Fig.6, which include Reformat Data, Change Hyper-Parameter, Switch Hardware, Switch OS, and Change Dependency Configuration. They are used to fix 32 (7.2\%) of the 446 DBs. Moreover, multiple fix patterns need to be combined to fix some DBs in DL stack, which is not the case in fixing dependency conflicts \cite{6, 23, 44, 63–67} where only one fix pattern is needed.

Summary. The most common fix pattern is to change dependency versions, which is used to fix 70.0\% of the DBs. Adding dependency is the second most common pattern, which is leveraged to fix 11.9\% of the DBs. 21.5\% of the DBs can be fixed by combining multiple fix patterns.

6.2 Distribution of Fix Patterns for Root Causes

We report the distribution of fix patterns for root causes in Fig.7, where each column denotes the number of DBs that are caused by a particular root cause and fixed by a particular fix pattern. Specifically, except for Switching Software, all fix patterns are utilized in fixing DBs that are caused by Incompatible Software Version for at least once. While Fixing API Usage and Changing Dependency Version are the two major fix patterns, there exist diverse ways to fix the most common root cause Incompatible Software Version. The challenge is to decide which fix pattern to use given a DB context.

Further, Changing Dependency Version is used in mitigating five root causes, and is involved in the fix for 312 (70.0\%) of the DBs. It has a strong correlation to the root causes Buggy Software Version and Incompatible Software Version. While the fix pattern itself is very simple, the key challenge is to determine which dependency version to use for addressing a DB. Besides, Adding Dependency, Rebuilding Dependency and Clearing Environment are the other three fix patterns spanning at least four root causes. Notice that Adding Dependency is the accompanied fix pattern for fixing DBs caused by Incompatible Software Version. For example, upgrading dependency version solves an Incompatible Software Version, but this upgraded dependency version may further depend on a new dependency.

Summary. Incompatible Software Version can be fixed by diverse patterns, whereas Fixing API Usage and Changing Dependency Version are the two major fix patterns. Changing Dependency Version is also the major fix pattern for Buggy Software Version.

6.3 Knowledge Source of DB Fixing

To fix a DB, developers usually rely on knowledge about DL stack, especially, dependency version constraints and dependency bugs. To characterize how fixes of DBs are derived, we investigate the knowledge sources that are used to fix DBs. We identify five knowledge sources. Multiple knowledge sources can be used in fixing one DB, and hence the summation of the number of DBs below is larger than 446.

Library Source Code. 52 (11.7\%) of the DBs are fixed after digging into the source code of libraries. The source code of libraries is a good knowledge source to know library version evolution, e.g., how a library API is renamed, and how a library API’s code logic is changed.

Dependency Documentation. 76 (17.0\%) of the DBs are fixed after looking into dependency documentation. Documentation of libraries, drivers and hardware often provide informative knowledge about dependency’s installation requirements and version constraints. For example, TensorFlow documentation lists both the hardware requirements and software requirements \cite{60}.

Notice that 389 (87.2\%) of the DBs can be fixed by applying one fix pattern, while 73 (16.4\%), 20 (4.5\%) and 3 (0.7\%) of the DBs can be fixed by combining two, three and four fix patterns at the same time. The summation here is larger than 446 as 37 DBs can be fixed by different combinations of fix patterns.

Comparison to DBs in Other Domains. Compared to previous work, distinct fix patterns of the DBs in our study are highlighted in dotted rectangles in Fig.6, which include Reformat Data, Change Hyper-Parameter, Switch Hardware, Switch OS, and Change Dependency Configuration. They are used to fix 32 (7.2\%) of the 446 DBs. Moreover, multiple fix patterns need to be combined to fix some DBs in DL stack, which is not the case in fixing dependency conflicts \cite{6, 23, 44, 63–67} where only one fix pattern is needed.

Summary. The most common fix pattern is to change dependency versions, which is used to fix 70.0\% of the DBs. Adding dependency is the second most common pattern, which is leveraged to fix 11.9\% of the DBs. 21.5\% of the DBs can be fixed by combining multiple fix patterns.

We report the distribution of fix patterns for root causes in Fig.7, where each column denotes the number of DBs that are caused by a particular root cause and fixed by a particular fix pattern. Specifically, except for Switching Software, all fix patterns are utilized in fixing DBs that are caused by Incompatible Software Version for at least once. While Fixing API Usage and Changing Dependency Version are the two major fix patterns, there exist diverse ways to fix the most common root cause Incompatible Software Version. The challenge is to decide which fix pattern to use given a DB context.

Further, Changing Dependency Version is used in mitigating five root causes, and is involved in the fix for 312 (70.0\%) of the DBs. It has a strong correlation to the root causes Buggy Software Version and Incompatible Software Version. While the fix pattern itself is very simple, the key challenge is to determine which dependency version to use for addressing a DB. Besides, Adding Dependency, Rebuilding Dependency and Clearing Environment are the other three fix patterns spanning at least four root causes. Notice that Adding Dependency is the accompanied fix pattern for fixing DBs caused by Incompatible Software Version. For example, upgrading dependency version solves an Incompatible Software Version, but this upgraded dependency version may further depend on a new dependency.

Summary. Incompatible Software Version can be fixed by diverse patterns, whereas Fixing API Usage and Changing Dependency Version are the two major fix patterns. Changing Dependency Version is also the major fix pattern for Buggy Software Version.

6.3 Knowledge Source of DB Fixing

To fix a DB, developers usually rely on knowledge about DL stack, e.g., dependency version constraints and dependency bugs. To characterize how fixes of DBs are derived, we investigate the knowledge sources that are used to fix DBs. We identify five knowledge sources. Multiple knowledge sources can be used in fixing one DB, and hence the summation of the number of DBs below is larger than 446.

Library Source Code. 52 (11.7\%) of the DBs are fixed after digging into the source code of libraries. The source code of libraries is a good knowledge source to know library version evolution, e.g., how a library API is renamed, and how a library API’s code logic is changed.

Dependency Documentation. 76 (17.0\%) of the DBs are fixed after looking into dependency documentation. Documentation of libraries, drivers and hardware often provide informative knowledge about dependency’s installation requirements and version constraints. For example, TensorFlow documentation lists both the hardware requirements and software requirements \cite{60}.
We discuss the implications of our study, demonstrate an application, and analyze the threats to our study.

7 IMPLICATION, APPLICATION AND THREAT

We discuss the implications of our study, demonstrate an application, and analyze the threats to our study.

7.1 Implication to Developers and Researchers

Application Developers. Our study uncovers the common DB symptoms that developers should be aware of when engineering DL applications for detecting potential DBs as early as possible. Our study also identifies the common root causes and fix patterns of DBs that could be useful for application developers to diagnose, localize, and fix DBs. Our study also shows the most bug-introducing and bug-affecting dependencies where application developers should pay more attention when installing, using or maintaining them so that most DBs could be avoided or detected at the first place. Moreover, our findings provide some engineering suggestions. Application developers should be trained to have a comprehensive understanding of the DL stack, as our study reports that a DB could be introduced or exposed across the entire DL stack and engineering lifecycle. In this way, application developers are equipped with the sufficient knowledge to deal with DBs. Application developers should carefully look into dependency documentation to learn version constraints, and be aware of the bugs and API changes in library version evolution. In this way, DBs caused by the most common root causes (i.e., Buggy Software Version and Incompatible Software Version) might be effectively reduced.

Library Developers. Our study reveals that around half of the DBs are not introduced and exposed in the same dependency. This requires library developers to write informative error messages in exposing dependencies to help indicate the root causes in introducing dependencies. In addition, our study identifies Incompatible Software Version as the common root cause and Change Dependency Version as the common fix pattern for DBs. This highlights the importance of providing precise version constraints by library developers to allow application developers to follow and thus prevent DB occurrences. Furthermore, if library developers integrate certain version constraint checking in dependency installation scripts and provide potential version constraint violation hints for application developers, it would eliminate DBs at the first place.

Researchers. Our findings provide future research implications in four directions. First, a dependency knowledge graph for the entire DL stack is needed to provide fundamental knowledge for the ease of dependency management. As uncovered by our root cause analysis, a diversity of dependency knowledge is involved in DBs, e.g., version constraints among software and hardware dependencies, bugs in dependencies, and API changes in version evolution. However, such knowledge is scattered across different sources, e.g., documentation, issue tracker and source code, as revealed by our investigation of the knowledge source of DB fixing. Online resources like StackOverflow posts and GitHub issues also provide practical solutions to fix DBs. Hence, the main challenges to construct the knowledge graph are that i) designing a high-level schema to fuse various knowledge, ii) leveraging various techniques like natural language processing and program analysis to automatically extract knowledge from different sources; and iii) developing graph analysis techniques for various dependency management tasks. This knowledge graph serves as the foundation of the following three research directions. Along this direction, Ye et al. [72] and Cheng et al. [15] construct a knowledge graph for the Library and Runtime layers for Python programs, but fail to support lower layers in the DL stack. Second, dependency recommendation techniques are needed. Our introducing stage analysis reveals that environment setup is the most bug-prone stage which introduces 90.8% of the DBs. Therefore, developers often face difficulties in setting up a feasible DL stack. Further, our root cause analysis shows that 70.0% of the DBs are caused by Incompatible Software Version, although dependency documentation provides prerequisite information about setting up dependencies and their version constraints. Therefore, developers might not always refer to the documentation. In that sense, dependency recommendation techniques become useful for developers to ease the setup of a feasible DL stack; i.e., given some dependencies installed, they recommend other dependencies to form a complete DL stack. For example, given the available hardware and OS, they suggest required dependencies in Driver, Runtime and Library layers.

Third, DB detection, localization and fixing techniques are needed. Our study indicates that 90.8% of the DBs are introduced in environment setup, while only 37.7% of the DBs are exposed in environment setup. Thus, it may indicate that many DBs stay undetected until later lifecycle stages. To detect or localize DBs as early as possible, one possible remedy is to identify the dependencies currently adopted in the DL stack, and then check against our dependency knowledge graph to detect potential dependency constraint violations. Here the challenge is to automatically identify all heterogeneous dependencies as well as their versions across the entire DL stack. Along this direction, Tan et al. [58] proposed a technique to identify homogeneous dependencies at the Application and Library layer. Moreover, as many DBs are caused by software bugs or API incompatibilities, fine-grained call graph analysis is needed to accurately detect and localize DBs, i.e., to decide whether such bugs or incompatible APIs are in the execution path and thus can be triggered. Besides, our study indicates that questioners are often unaware of the introducing dependencies of the DBs, which calls for automated DB localization techniques. Once a DB is localized, automated fixing techniques can use the fix patterns derived from our study to fix it. However, the challenge is to decide which fix pattern or combination of fix patterns is applicable and how a fix pattern is instantiated. A way is to use search-based approach

Summary. Library source code, dependency documentation, issue tracker, and other online resource are important knowledge sources that are directly leveraged to fix DBs.
by applying fix patterns to generate potential fixes and using the dependency knowledge graph to decide the fix fitness.

Fourth, dependency upgrading and migration techniques are needed. Our introducing stage analysis uncovers that some DBs are introduced in deployment and maintenance. More specifically, DL stack in deployment environment can be different from the one in development environment. Hence, dependency migration techniques are needed to check whether dependencies in development environment can be replaced with the ones in deployment environment. Besides, dependency versions can be upgraded for the benefit of fixed bugs and improved features. However, it may also introduce incompatibilities. Therefore, dependency upgrading techniques are needed to analyze API changes and assess the risk in terms of potential DBs and the effort in terms of potential code adaptation.

7.2 Application for Usefulness Demonstration

To demonstrate the usefulness of our implications, we design a prototype to automatically detect and fix DBs.

Prototype Design. Our prototype has one knowledge base, i.e., dependency constraint knowledge, and two components, i.e., DB detection and DB fixing. To collect dependency constraint knowledge, we target at the documentations of TensorFlow, Pytorch and Keras as i) they expose and introduce the most DBs at the Library layer; and ii) their documentations often list requirements for dependencies at lower layers, e.g., Python at the Runtime layer, CUDA and cudNN at the Driver layer, Linux at the OS/Container layer. We then manually extract dependency constraints from their online documentations via reading installation guides of each version, where they are either described in natural language or illustrated with a table. Each dependency constraint is denoted as a tuple \((\text{dep}_a, \text{dep}_b, \nu_a, \nu_{b1}, \nu_{b2})\) where version \(\nu_a\) of dependency \(\text{dep}_a\) depends on \(\text{dep}_b\) under the condition that the version of \(\text{dep}_b\) is within the range of \(\nu_{b1}\) and \(\nu_{b2}\). Our prototype successfully detects and fixes 8 of the 18 DBs.

Comparison with Related Tools

We find and review three closely related tools. DockerizeMe [22] is a tool to infer the dependencies needed to execute a Python code snippet without import error. The inference is based on a knowledge base which contains packages, their versions and resources, and the relationships between them. The knowledge base is built by applying static and dynamic analysis to top ten thousand Python packages on PyPI and applying association rule mining to public GitHub Python projects. PyEGo [72] extends the knowledge base of DockerizeMe by further including Python interpreters and system libraries, and achieves a better accuracy on inferring compatible dependencies. DockerizeMe and PyEGo mainly support packages installed by commands of `pip` and `apt`. Different from DockerizeMe and PyEGo, our prototype extracts dependencies and version constraints knowledge from official documentation, and supports package installation commands beyond `pip` and `apt`. While further work is needed to automate the knowledge extraction, our approach can offer more generalizability across different types of dependencies at different DL stack layers.

Effectiveness Evaluation. To evaluate our prototype, we reproduce DBs from our study and export them as Docker images. We randomly sample 80 DBs from our study, and successfully reproduce 18 DBs. The reasons of unsuccessful reproduction are twofold. First, the exposing or introducing dependency of DBs locate in Hardware or OS/Container which does not match with our machines. Second, only part of the DL stack is revealed in the posts or issues, and hence we fail to derive the full DL stack to reproduce DBs.

Our prototype successfully detects and fixes 8 of the 18 DBs. Three DBs caused by Mismatched Software, two DBs caused by Buggy Software Version and one DB caused by Unsuccessful Installation are not detected as our prototype is focused on violated version constraints. Of the twelve DBs caused by Incompatible Software Version, five DBs are detected and fixed using version constraint between TensorFlow and CUDA, two are detected and fixed using version constraint between CUDA and cuDNN, and one is detected and fixed using version constraint between TensorFlow and cuDNN. The other four DBs are not detected because the root cause dependencies are not in our scope of dependency constraint knowledge acquisition. These results demonstrate the potential of our prototype.

Moreover, we try to apply PyEGo and PyDFix to fix the 18 DBs. Notice that DockerizeMe is not selected because PyEGo has achieved better performance than it. We successfully run PyEGo against the...
we are interested to investigate how much e
whether a given DB is out of the scope of our prototype. Therefore,
we can conclude that PyDFix are unable to
x at least 13 of the DBs
18 DBs. It successfully detects and
xes only one DB. It successfully
detects 11 DBs, but generates wrong version recommendation on all of
them. Besides, it fails to detect the rest 6 DBs.
Unfortunately, we fail to launch PyDFix due to the limited setup documentation. How-
ever, PyDFix relies on analyzing error logs to fix DBs. Consequently,
we can conclude that PyDFix are unable to fix at least 13 of the DBs
since these DBs produce normal outputs instead of error logs. These
results indicate the potential of our prototype.

Human Study. We observe from our effectiveness evaluation
that our prototype takes 2 seconds for the DBs that are not success-
fully fixed, and these DBs are even not detected by our prototype. In
other words, it takes negligible time for our prototype to determine
whether a given DB is out of the scope of our prototype. Therefore,
we are interested to investigate how much effort can be saved for
developers for the DBs that are in the scope of our prototype.

To this end, we conduct a human study with 8 participants to
manually fix the 8 DBs that can be automatically fixed by our proto-
type. The participants are recruited voluntarily at our college who
are familiar with Linux shell and packages, and has sufficient back-
ground in deep learning. Four participants have worked on at least
one or two research projects that employ DL techniques, and the
other four participants have hands-on experience with open source
DL projects. The tasks are 8 reproduced DBs in a Docker envi-
ronment where the error trace of each DB could be invoked via a
command (i.e., `python script.py`). The participants are told that
the error is caused by a DB and they are required to locate and fix
the DBs with their expertise and any online resources. The order of
the tasks are randomized for each participant to avoid bias.

We use two indicators to compare participants’ manual fixes and
our automated fixes. The first indicator is the quality of the fix in
each task. We use 2 to indicate a successful and perfect fix, 1 to
indicate a successful but imperfect fix, and 0 to indicate an unsuc-
success fix. The success of the fix is judged by the dismissing of the
DB’s errors when re-launching scripts. The perfection and imper-
fec tion of the fix is judged by two of the authors on whether the fix
steps would have any side effect. After the discussion and mutual
agreement from two of the authors, a final quality is resolved. The
second indicator is the consumed time on finishing each task.

Fig. 8 shows the result of fix quality and time. In terms of quality,
all 8 participants obtain full score in 3 DBs. The rest 5 DBs are not
fixed successfully and perfectly by all. 19 participant-DB pairs are
not fully scored. Specifically, we assign 1 to 17 participant-DB pairs.
Of these 17 participant-DB pairs, 2 participant-DB pairs fix a DB by
using soft links to redirect the incorrect dependency into a correct
dependency and 3 participant-DB pairs fix a DB by replacing dy-
namic linked libraries (i.e., change a correct dependency’s file name
into the original one using `mv`). They are imperfect because such
tricks are unstable and confuse other users. The rest 12 participant-
DB pairs freshly reinstall TensorFlow using an up-to-date version.
We assign them to 1 because setting up a new environment carries
the risk of disrupting the initial environment, making it impractical
when there are multiple users and applications. We also assign 0 to 2
participant-DB pairs. They fail to fix as it still has the reported error.
In terms of time, none of the manual fix from 64 participant-DB
pairs surpasses our prototype. The manual fix takes averagely 8.8
times longer than our prototype. Generally, our prototype achieves
a higher quality of 2 against the human group with a score of 1.4,
and costs averagely 109.2 seconds against the human group with
averagely 963.0 seconds. Therefore, our prototype can be useful for
developers to provide high quality fix and greatly saving fixing time.

8 RELATED WORK

Dependency Bugs. Dependency bugs have been explored for dif-
ferent ecosystems, e.g., Debian and Red Hat [6], JavaScript [44], Java
[23, 38, 65–67], Python [40, 64], C/C++ [31] and Go [63]. To the best
of our knowledge, our work is the first to systematically investigate
dependency bugs in DL ecosystem.

Deep Learning Bugs. Empirical studies have been conducted to
characterize bugs in DL systems. Some are focused on a general scope
of bugs [25, 27, 28, 42, 76], and others are focused on a specific type
of bugs [10, 14, 62, 73, 75]. These studies uncover partial character-
istics of dependency bugs in DL stack. There lacks a comprehensive
study to characterize dependency bugs in DL stack, and our work
fills this gap. Several advances have also been made to detect DL
bugs, e.g., numerical bugs [68, 71, 77] and shape bugs [32, 33, 61, 69].
However, little attention has been received to detecting dependency
bugs in DL stack, and our work sheds light on it.

Empirical Studies about DL. Many studies have empirically in-
vestigated various aspects in developing, deploying and maintaining
DL systems [4, 5, 13, 16–18, 37, 39, 41, 45, 46, 59, 74] and DL fram-
eworks [19, 20, 34, 35, 58, 78]. These studies motivate the importance
of dependency management. For example, incompatible depend-
ency installation or environment setup is recognized as a common
challenge [4, 13, 74]. However, they lack an in-depth analysis of
the characteristics. Our work is inspired by them to systematically
characterize dependency bugs across the DL stack.

9 CONCLUSIONS

We have conducted the first comprehensive study to characterize
DBs across the entire DL stack. We provide useful findings to raise
the awareness of DBs in DL stack in the DL community, and provide
actionable implications for developers and researchers.

10 DATA AVAILABILITY

The data of our study is available at https://dl-dep.github.io.

ACKNOWLEDGMENTS

This work was supported by the National Key R&D Program of China
(2021ZD0112903) and the China Postdoctoral Science Foundation
(2022M720768).
REFERENCES

[1] 2022. Docker GPU. Retrieved March,2022 from https://developer.nvidia.com/blog/nvidia-docker-gpu-server-application-deployment-made-easy/

[2] 2022. Joss - A Practical Guide for Data Scientists Using JGPUs with Tensor-Flow. Retrieved March,2022 from http://www.pattersonconsultingtn.com/blog/datascience_guide_tensorflow_gpus.html

[3] Syed Ahmed and Mehdi Bagherzadeh. 2018. What do concurrency developers ask about? a large-scale study using stack overflow. In Proceedings of the 12th ACM/IEEE joint meeting on empirical software engineering and measurement. 1–10. https://doi.org/10.1145/3239235.3239524

[4] Moayad Alshangiti, Hithat Sapkota, Pradeep K Murukannaiah, Xumin Liu, and Qi Yu. 2019. Why is developing machine learning applications challenging? a study on stack overflow posts. In Proceedings of the ACM/IEEE International Symposium on Empirical Software Engineering and Measurement. 1–11. https://doi.org/10.1109/ESEM.2019.8870187

[5] Saleema Ameri, Andrew Begel, Christian Bird, Robert DeLine, Harold Gall, Ece Kamar, Nachiappan Nagappan, Besturma Nohosi, and Thomas Zimmermann. 2019. Software engineering for machine learning: A case study. In Proceedings of the IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice. 291–300. https://doi.org/10.1145/3380066.3383899

[6] Cyrille Artho, Kunisui Suzuki, Roberto Di Cosmo, Ralf Treinen, and Stefano Zacchiroli. 2012. Why do software packages conflict?. In Proceedings of the 9th IEEE Working Conference on Mining Software Repositories. 141–150. https://doi.org/10.1109/MSR.2012.6242074

[7] Mehdi Bagherzadeh and Raiff Khatchoudarian. 2019. Going big: a large-scale study on what big data developers ask. In Proceedings of the 2019 27th ACM joint meeting on european software engineering conference and symposium on the foundations of software engineering. 432–442. https://doi.org/10.1145/3338906.3338939

[8] Cor-Paul Bezemke, Shane McIntosh, Bram Adams, Daniel M German, and Ahmed E Haasen. 2017. An empirical study of unspecified dependencies in make-based build systems. Empirical Software Engineering 22, 6 (2017), 3117–3148. https://doi.org/10.1007/s10664-017-9519-8

[9] Aline Brito, Laerte Xavier, Andre Hora, and Marco Tulio Valente. 2018. APIDiff: Detecting API breaking changes. In Proceedings of the 25th IEEE International Conference on Software Analysis, Evolution and Reintegration. 507–511. https://doi.org/10.1109/SANER.2018.8302049

[10] Junming Cao, Bihuan Chen, Chao Sun, Longjie Hu, and Xin Peng. 2022. Understanding Performance Problems in Deep Learning Systems. In Proceedings of the ACM Joint European Software Engineering Conference and Symposium on the Foundations of the Software Engineering. https://doi.org/10.1145/3450250.3459123

[11] Yulu Cao, Lin Chen, Wanwang Yang, Ma Yanhui, Li Yuming, and Linzhang Wang. 2023. Towards Better Dependency Management: A First Look At Dependency Smells in Pytorch Projects. IEEE Transactions on Software Engineering 49, 4 (2023), 1741–1765. https://doi.org/10.1109/TSE.2022.3191553

[12] Chenyi Chen, Ari Seif, Alain Kornhauser, and Jianxiong Xiao. 2015. Deepdriving: Learning affordance for direct perception in autonomous driving. In Proceedings of the IEEE international conference on computer vision. 2722–2730. https://doi.org/10.1109/ICCV.2015.312

[13] Zhenpeng Chen, Yanbin Cao, Yuanqiang Liu, Haoyu Wang, Tao Xie, and Xuanzhe Stocco, and Paolo Tonella. 2020. Taxonomy of real faults in deep learning systems. In Proceedings of the 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. 510–520. https://doi.org/10.1109/ICSE-SEIP.2019.00042

[14] Junming Cao, Bihuan Chen, Bowen Shi, Ying Wang, Congying Xu, and Xin Peng. 2020. Interactive, effort-aware library version harmonization. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of the Software Engineering. 518–529. https://doi.org/10.1109/3368089.3409689

[15] Huawei. 2020. Overview of the Ascend AI Software Stack. https://support.huawei.com/zh-en/us/access-attalus32/attapadp_19_0001.html#atlaspd_19_0001__

[16] Nigarz Humbatova, Gunel Jahlangirova, Gabriele Babota, Vincenzo Riccio, Andrea Stocco, and Paolo Tonella. 2020. Taxonomy of real faults in deep learning systems. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering. 1110–1121. https://doi.org/10.1109/3377811.3380395

[17] Intel. 2020. Deep Learning Reference Stack. https://www.github.io/stacks/dlrs/index.html

[18] Md Juhurul Islam, Giam Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A comprehensive study on deep learning bug characteristics. In Proceedings of the 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. 510–520. https://doi.org/10.1109/ICSE-SEIP.2019.00047

[19] Md Juhurul Islam, Rangeet Pan, Giam Nguyen, and Hridesh Rajan. 2020. Repairing deep neural networks. Fix patterns and challenges. In Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering, 1135–1146. https://doi.org/10.1109/ICSE.2020.00116

[20] Abbas Javan Jafari, Diego Elias Costa, Rabe Abdalkareem, Emad Shihab, and Nikolaos Tsantalis. 2021. Dependency smells in Javascript projects. IEEE Transactions on Software Engineering 48, 10 (2021), 3790–3807. https://doi.org/10.1109/TSE.2021.306247

[21] Sathien Jeung, KyungHyun Cho, Roland Memisevic, and Yoshua Bengio. 2015. On Using Very Large Target Vocabulary for Neural Machine Translation. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing. 1–10. https://doi.org/10.3115/v1/p15-1001

[22] Zhiyu Jia, Shanshan Li, Tingting Yu, Chen Zeng, Yibing Shi, Xiaoqiong Shi, and Xiaodong Liu. 2021. DeepDui: Detecting Dependency Bugs to Prevent Compatibility Failures. In Proceedings of the IEEE/ACM 43rd International Conference on Software Engineering, 86–98. https://doi.org/10.1109/ICSE-SEIP.2021.00021

[23] Saffi Lagouvardos, Julian Dobby, Neville Griech, Anastasios Antoniadis, and Yannis Smaragdakis. 2020. Static analysis of shape in TensorFlow programs. In Proceedings of the 34th European Conference on Object-Oriented Programming. 1–29. https://doi.org/10.4230/LIPIcs.ECOOP.2020.15

[24] Chen Liu, Jie Lu, Guanwei Li, Ting Yuan, Lin Li, Feng Tang, Jun Yang, Liang You, and Jingling Xue. 2021. Detecting TensorFlow Program Bugs in Real-World Industrial Environment. In Proceedings of the 36th IEEE/ACM International Conference on Automated Software Engineering, 55–66. https://doi.org/10.1109/ASE51524.2021.9678491

[25] Jiakun Liu, Qiao Huang, Xin Xia, Emad Shihab, David Lo, and Shapening Li. 2020. Is using deep learning frameworks free? characterizing technical debt in deep learning frameworks. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering: Software Engineering in Society. 1–10. https://doi.org/10.1109/ICSE-SEIP.2019.00047

[26] Jiakun Liu, Qiao Huang, Xin Xia, Emad Shihab, David Lo, and Shapening Li. 2021. An Exploratory Study on Technical Debt Detection and removal of different types of technical debt in deep learning frameworks. Empirical Software Engineering 26, 2 (2021), 1–36. https://doi.org/10.1007/s10664-020-09917-5

[27] Yiling Lou, Zhenpeng Chen, Yanzun Cao, Dan Hao, and Lu Zhang. 2020. Understanding build issue correlation in practice: symptoms and fix patterns. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 617–628. https://doi.org/10.1109/3368089.3409670
Demystifying Dependency Bugs in Deep Learning Stack

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

[37] Yun Ma, Dongwei Xiang, Shuyu Zheng, Deyu Tian, and Xuande Liu. 2019. Moving deep learning into web browser: How far can we go? In Proceedings of the World Wide Web Conference. 1234–1244. https://doi.org/10.1145/3308858.3313609

[38] Christian Macho, Shane McIntosh, and Martin Pinger. 2018. Automatically repairing dependency-related build breakage. In Proceedings of the IEEE 25th International Conference on Software Analysis, Evolution and Reengineering. 106–117. https://doi.org/10.1109/SANER.2018.8380201

[39] Silverio Martínez-Fernández, Justus Bogner, Xavier Francc, Marc Orifici, Julian Siebert, Adam Trendowicz, Anna Maria Vollmer, and Stefan Wagner. 2022. Software Engineering for AI-Based Systems: A Survey. ACM Transactions on Software Engineering and Methodology 31, 2 (2022), 1–59. https://doi.org/10.1145/3487043

[40] Suchitka Mulderjee, Abigail Almanza, and Cindy Rubio-Gonzalez. 2021. Fixing dependency errors for Python build reproducibility. In Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis. 439–451. https://doi.org/10.1145/3460319.3464797

[41] Amin Nikanjam and Foutse Khomh. 2021. Design Smells in Deep Learning Programs: An Empirical Study. In Proceedings of the IEEE International Conference on Software Maintenance and Evolution. 332–342. https://doi.org/10.1109/ICSM52107.2021.00039

[42] Amin Nikanjam, Mohammad Mehdi Morovati, Foutse Khomh, and Houssen Ben Braiek. 2022. Faults in deep reinforcement learning programs: a taxonomy and a detection approach. Automated Software Engineering 29, 1 (2022), 1–32. https://doi.org/10.1145/3487045.3487051

[43] Ziad Obermeyer and Ezekiel J. Emanuel. 2016. Predicting the future—big data, machine learning, and clinical medicine. The New England journal of medicine 375, 13 (2016), 1218.

[44] Jeesh Patra, Poop N Dixit, and Michael Pradel. 2018. Conflictic finding and understanding errors between javascript libraries. In Proceedings of the 46th International Conference on Software Engineering. 741–751. https://doi.org/10.1145/3180155.3180184

[45] Hang Viet Pham, Shengshu Qian, Jianman Wang, Thibaud Lutellier, Jonathan Rosenthal, Lin Tan, Yaoliang Yu, and Nachiappan Nagappan. 2020. Problems and opportunities in training deep learning software systems: an analysis of variation. In Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering. 771–783. https://doi.org/10.1145/3384844.3346545

[46] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay Chandhary, Michael Young, Jean-François Crespo, and Dan Dennison. 2015. Hidden Technical Debt in Machine Learning Systems. In Proceedings of the 28th International Conference on Neural Information Processing Systems. 2503–2511.

[47] Carolyn B. Seaman. 1999. Qualitative methods in empirical studies of software engineering. Information and software technology 41, 5 (1999), 557–572. https://doi.org/10.1016/s0950-5849(99)00055-6

[48] StackOverflow. 2022. AVFX. Retrieved August 29, 2022 from https://stackoverflow.com/questions/51599488

[49] StackOverflow. 2022. AVFX. Retrieved August 29, 2022 from https://stackoverflow.com/questions/44273052

[50] StackOverflow. 2022. CuDNN Not Installed. Retrieved August 29, 2022 from https://stackoverflow.com/questions/43721690

[51] StackOverflow. 2022. Disable Secure Boot. Retrieved August 29, 2022 from https://stackoverflow.com/questions/6704622

[52] StackOverflow. 2022. GPU Device is not Found. Retrieved August 29, 2022 from https://stackoverflow.com/questions/44269047

[53] StackOverflow. 2022. Kerus and ifKeras. Retrieved August 29, 2022 from https://stackoverflow.com/questions/45454694

[54] StackOverflow. 2022. MacOs SIP. Retrieved August 29, 2022 from https://stackoverflow.com/questions/58610026

[55] StackOverflow. 2022. Switch Os for DistributedTensorFlow. Retrieved August 29, 2022 from https://stackoverflow.com/questions/52041077

[56] StackOverflow. 2022. Tensorflow Bug. Retrieved August 29, 2022 from https://stackoverflow.com/questions/48713355

[57] Xin Tan, Kai Gao, Minghui Zhou, and Li Zhang. 2021. An Exploratory Study of Deep Learning Supply Chain. In Proceedings of the IEEE/ACM 44th International Conference on Software Engineering. 201–212. https://doi.org/10.1145/3377811.3380362

[58] Yiming Tang, Raji Khatchadourian, Mehdi Bagherzadeh, Ria Singh, Ajiar Stewart, and Anita Raja. 2021. An empirical study of refactoring and technical debt in Machine learning systems. In Proceedings of the IEEE/ACM 43rd International Conference on Software Engineering. 238–250. https://doi.org/10.1145/3377811.3380335

[59] Yusheng Zhang, Yifan Chen, Sheng-Chi Cheung, Yingfei Xiong, and Li Zhang. 2019. An empirical study of refactorings and technical debt. In Proceedings of the 26th ACM Conference on Information and Software Engineering. 129–140. https://doi.org/10.1145/3213846.3213866

[60] Yusheng Zhang, Zhaoyao Ben, Lijin Chen, Yingfei Xiong, Sheng-Chi Cheung, and Tao Xie. 2020. Detecting numerical bugs in neural network architectures. In Proceedings of the 26th ACM Internation Conference on Software Engineering and Symposium on the Foundations of Software Engineering. 826–837. https://doi.org/10.1145/3380889.3409270

[61] Zejun Zhang, Yanning Yang, Xin Xia, David Lo, Xiaoxue Ren, and John Grundy. 2021. Unveiling the mystery of api evolution in deep learning frameworks: a case study of tensorflow 2. In Proceedings of the 43rd International Conference on Software Engineering: Software Engineering in Practice. 383–387. https://doi.org/10.1145/3487441.3487454