Lee-Yang edge singularity in the three-dimensional Gross-Neveu model at finite temperature

Anastasios C. Petkou† 1 and George Siopsis⋆ 2

† Department of Theoretical Physics, University of Kaiserslautern
Postfach 3049, 67663 Kaiserslautern, Germany;
⋆ Department of Physics and Astronomy, The University of Tennessee
Knoxville, TN 37996-1200 U.S.A.

Abstract

We discuss the relevance of the Lee-Yang edge singularity to the finite-temperature Z_2-symmetry restoration transition of the Gross-Neveu model in three dimensions. We present an explicit result for its large-N free-energy density in terms of $\zeta(3)$ and the absolute maximum of Clausen’s function.

The Gross-Neveu model in $d = 3$ dimensions provides a remarkable example of a second order temperature driven phase transition in a theory which also exhibits dynamical symmetry breaking. The latter property is purely quantum field theoretical while the former one involves classical thermal fluctuations. We consider here the standard Lagrangian

1 e-mail: petkou@physik.uni-kl.de
2 e-mail: gsiopsis@utk.edu
describing the Euclidean version of the Gross-Neveu model with $U(2N)$ symmetry [1–3]

$$\mathcal{L} = \bar{\psi}^a \partial \psi^a + \frac{G_0}{2N} (\bar{\psi}^a \psi^a)^2, \quad a = 1, 2, \ldots, N,$$

(1)

where G_0 is the coupling. The partition function for the theory can be written, after integrating out the fundamental four-component massless Dirac fermions $\bar{\psi}^a, \psi^a$, with the help of the auxiliary scalar field $\sigma(x)$ as [1–3]

$$Z_\sigma[G_0] = \int (D\sigma) e^{N \left[2 \text{Tr} \left[\ln(-\partial^2 + \sigma^2) \right] - \frac{1}{2G_0} \int d^3x \sigma^2(x) \right]}.$$

(2)

The model possesses a discrete Z_2 “chiral” symmetry as (1) is invariant under $\psi \rightarrow \gamma_5 \psi$. The usual $1/N$ expansion is generated if one expands as $\sigma(x) = \sigma_0 + O(1/\sqrt{N})$, provided that σ_0 satisfies the gap equation

$$\frac{\sigma_0}{G_0} = \int \frac{d^3p}{(2\pi)^3} \frac{4\sigma_0}{p^2 + \sigma_0^2}.$$

(3)

One renormalizes (3) by introducing an UV cut-off Λ as

$$\frac{1}{G_0} = \frac{1}{G_*} + \frac{1}{G_R} = 4 \int \frac{d^3p}{(2\pi)^3} \frac{1}{p^2 + \sigma_0^2},$$

(4)

and obtains the renormalized coupling $1/G_R = -M/\pi$, where M is the arbitrary mass scale introduced by renormalization. From (2) and (4) it is easy to calculate the leading-N renormalized “effective action” $V_R(\sigma_0; G_R)$ defined as

$$\int d^3x V_R(\sigma_0; G_R) = -\ln \left[\frac{Z_{\sigma_0}[G_R]}{Z_0[0]} \right],$$

(5)

where the subtraction on the r.h.s. of (5) ensures a finite result. The result is [2]

$$V_R(\sigma_0, G_R) = \frac{N}{2\pi} \left(\frac{2}{3} |\sigma_0|^3 - M\sigma_0^2 \right).$$

(6)

From (6) we can clearly separate three regimes:

A) For $M < 0$ the minimum of (6) is always at the origin and the theory is in the Z_2-symmetric phase with $\sigma_0 = 0$.

B) For $M > 0$ the minimum of (6) is at $\sigma_0 = M$, the theory is in the Z_2-broken phase and M can be identified as the mass of the elementary fermionic fields.

C) Finally, for $M = 0$,
the theory is at the critical point and it is a non-trivial three-dimensional conformal field theory (CFT).

Notice that the UV subtraction prescription in (5) has generated the $|\sigma_0|^3$ term in (6). This term manifests itself as the dominant contribution at the critical point $M = 0$. It is then conceivable that, to leading-N, the critical behavior of the model is somehow related to a ϕ^3 theory. Of course, the true critical ground state is at $\sigma_0 = 0$ which would correspond to the zero-coupling critical point of the ϕ^3 theory, or equivalently to a free-field theory. This is consistent with the well known mean field theory behavior, to leading-N, of all the critical quantities of the model [2].

On the other hand, it is well known [4, 5] that the IR limit of the theory with action

$$S = -\int \frac{1}{2} (\partial \phi)^2 + i(h - h_c)\phi + \frac{1}{3!}\lambda \phi^3 \right] d^d x,$$

(7)

dictates the critical behavior of an Ising model in a purely imaginary magnetic field ih_c as the critical temperature is approached from above (from the symmetric phase). This critical point (Lee-Yang edge singularity [6]) corresponds to a non-unitary theory as it involves an imaginary coupling constant λ.

If the critical behavior of the Gross-Neveu model is in any way related to a ϕ^3 theory, one would expect that the Lee-Yang singularity might become relevant as one approaches the critical point of the model from a suitable symmetric phase. To investigate such a possibility we introduce the ingredient of temperature T by putting the model (2) in a slab geometry with one finite dimension of length $L = 1/T$. A crucial point is that the renormalization (4) is unaffected, since renormalizing the theory in the bulk suffices to remove the UV-divergences for finite temperature [1]. However, the gap equation (3) now becomes

$$\frac{\sigma_0}{G_0} = \frac{4\sigma_0}{L} \sum_{n=0}^{\infty} \int_{\Lambda} \frac{d^2 p}{(2\pi)^2} \frac{1}{p^2 + \omega_n^2 + \sigma_0^2} + \frac{2\sigma_0^2}{\pi L} \int_{\Lambda} \frac{d^2 p}{(2\pi)^2} \frac{1}{p^2 + \omega_n^2 + \sigma_0^2} - \frac{2\sigma_0}{\pi L} \ln \left(1 + e^{-L\sigma_0}\right).$$

(8)

Then, from (2) and (8) we can explicitly calculate the leading-N renormalized “effective
action” \(V_R(\sigma_0, L; G_R) \) - now depending in addition on the “inverse” temperature \(L \) - as

\[
V_R(\sigma_0, L; G_R) = \frac{N}{2\pi L^3} \left[\frac{2}{3} \sigma_0^3 L^3 - M \sigma_0^2 L^3 + 4Li_3 \left(-e^{-L\sigma_0} \right) - 4 \ln \left(e^{-L\sigma_0} \right) Li_2 \left(-e^{-L\sigma_0} \right) \right]
\]

(9)

where \(Li_n(z) \) are the standard polylogarithms \([7]\). This “effective action” presents a remarkably explicit example of high-temperature symmetry restoration in a \textit{quantum} field theoretic system\(^3\) which is \textit{ordered} \((M > 0)\) at \(T = 0 \). The critical temperature is \(1/L_c = T_c = M/2 \ln 2 \) \([2]\).

When \(M = 0 \) in (9), then for all \(T > 0 \) we approach the critical point from the symmetric phase. This is the regime where we would expect the appearance of the Lee-Yang singularity. This seems rather difficult to imagine as, despite the appearance in (9) of the cubic term \(\sigma_0^3 \) as a result of the UV subtraction prescription (5), the coefficient of this term is real. Nevertheless, one can show that (9) for \(M = 0 \) is in fact an \textit{even} function of \(\sigma_0 \). To see this we express (9) in terms of Nielsen’s generalized polylogarithms \(S_{n,p}(z) \) \([8]\) as follows

\[
V_R(\sigma_0, L; 0) = \frac{2N}{\pi L^3} \left[S_{1,2}(z) + S_{1,2} \left(\frac{1}{z} \right) - \zeta(3) \right]
\]

(10)

\[
S_{1,2}(z) = \frac{1}{2} \int_0^z \ln^2(1 - y) \, dy
\]

(11)

\[
S_{1,2}(1) = 8 S_{1,2}(-1) = \zeta(3)
\]

(12)

where we have set \(z = -e^{-L\sigma_0} \). From (10) we see that \(V_R(-\sigma_0, L; 0) = V_R(\sigma_0, L; 0) \). This remarkable property means that although the \(L \to \infty \) \((T \to 0)\) behavior of (9) looks like its is dominated by the cubic term (with real coefficient and ground state at \(\sigma_0 = 0 \)), fluctuations become important for all \(T > 0 \) and completely change the relevant underlying effective potential. To this end we point out that the step from (9) to (10) involves an all order resummation in \(\sigma_0 \), drive the theory towards another critical point.

\(^3\)Notice that although we are dealing with symmetry restoration in two dimension, the Mermin-Wanger-Coleman theorem is not violated as the relevant symmetry is discrete \((\mathbb{Z}_2 \text{ here})\).
From (10). Then, from (10) we conclude that away from \(\sigma_0 = 0 \) the critical theory is described by an effective Hamiltonian which is an even function of \(\sigma_0 \). If we view now \(\sigma_0 \) as a scalar order parameter and couple it to an external magnetic field, the critical behavior of such a system in the high temperature phase can be shown to correspond to a \(\phi^3 \) theory with purely imaginary coupling [4]. The critical point is determined by the non-zero solution of the gap equation (8) as

\[
\sigma_0 \left[\sigma_0 + \frac{2}{L} \ln \left(1 + e^{-\sigma_0 L} \right) \right] = 0 \Rightarrow \sigma_0 = \pm \frac{2\pi}{3L} , \tag{13}
\]

where we restricted \(-i\pi < L\sigma_0 < i\pi\) to avoid the cut of the logarithm. The fact that \(\sigma_0 \) is now purely imaginary, however, does not affect the reality properties of the effective potential and we obtain

\[
V_R(\pm \frac{2\pi}{3L}, L; 0) = \frac{N}{2\pi L^3} \left[\frac{4}{3} \zeta(3) - \frac{8\pi}{3} \text{Cl}_2 \left(\frac{\pi}{3} \right) \right], \tag{14}
\]

where \(\text{Cl}_2(\theta) = \text{Im} \left[Li_2(e^{i\theta}) \right] \) is Clausen’s function [7]. It is amusing to point out that \(\text{Cl}_2(\pi/3) \approx 1.014942\ldots \) is the absolute maximum of Clausen’s function which is a well-documented numerical constant.

Our result (14) corresponds to the leading-\(N \) free-energy density of the Lee-Yang edge singularity in \(d = 3 \). The parameter \(N \) should not be confused with the number of components of the underlying order parameter [12], but should be regarded as a suitable expansion parameter such that (14) is the leading approximation to the exact value of the free-energy density. Moreover, our result (14) corresponds to a new CFT in three-dimensions. Indeed, on general grounds [9,10] one expects that the free-energy density of a CFT placed in a slab geometry with one finite dimension of length \(L \) behaves as

\[
f_L - f_\infty = -\tilde{c} \Gamma(d/2)\zeta(d)/\pi^{d/2}L^d . \]

In \(d = 2 \) the parameter \(\tilde{c} \) is proportional to the central charge and the conformal anomaly [11]. However, corresponding results in \(d > 2 \) are still unknown. In \(d = 3 \) one easily obtains \(\tilde{c} = 3N \) for the case of \(N \) free massless four-component Dirac fermions [3]. The value of \(\tilde{c} \) for the Lee-Yang edge singularity which can be read-off from (14) is larger than \(3N \), implying that the corresponding CFT is non-unitary. This is in accordance with the two-dimensional results [5].
In may cause some worry that we have connected the critical behavior of a unitary theory (Gross-Neveu) with a non-unitary one. Nevertheless, this is not a direct connection. Staying within the Gross-Neveu model and starting e.g. from the low temperature broken phase, we do not expect the appearance of the Lee-Yang critical behavior studied above. Namely, as we raise the temperature we simply expect that the Z_2 symmetry is restored at the critical temperature $T_c = M/2 \ln 2$ and then the system continues to be in the high-temperature symmetric temperature phase for all $T > T_c$. However, if we consider the Gross-Neveu model as a component of some enlarged theory, it is quite conceivable that the presence of other fields (e.g. gauge fields), or chemical potentials might account for a possible Lee-Yang critical behavior at $T > T_c$ as they could induce imaginary values for the minimum of the effective potential σ_0 [13]. Clearly, the enlarged system should still be described by a unitary theory. From this point of view, we expect our approach and results to be most suitable for discussing effects such as the recently studied symmetry nonrestoration [14], since the latter is related to an imaginary chemical potential. Our leading-N calculations reproduce the well-known mean field theory results for the Lee-Yang edge singularity critical exponents. It would then be interesting to extend our results to next-to-leading order in $1/N$ for comparison with existing numerical calculations [15].

Acknowledgments

A. C. P. is supported by Alexander von Humboldt Foundation and G. S. by the US Department of Energy under grant DE-FG05-91ER40627. A. C. P. would like to thank the University of Tennessee, Knoxville for its kind hospitality.

References

[1] J. Zinn-Justin, “Quantum field theory and critical phenomena”, 2nd ed. Clarendon Press, Oxford (1993).

[2] B. Rosenstein, B. J. Warr and S. H. Park, Phys. Rep. 205 (1991) 59.
[3] M. B. Silva Neto and A. C. Petkou, “On the free-energy density of three-dimensional CFTs and polylogarithms”, Phys. Lett. B456 (1999) 147, hep-th/9812166.

[4] M. E. Fisher, Phys. Rev. Lett. 40 (1978) 1610.

[5] J. L. Cardy, Phys. Rev. Lett. 54 (1985) 1354.

[6] T. D. Lee and C. N. Yang, Phys. Rev. 87 (1952) 404; 410.

[7] L. Lewin, “Polylogarithms and associated functions”, North Holland, Amsterdam (1988).

[8] K. S. Kolbig, SIAM, J. Math. Anal. 17 (1986) 1232.

O. M. Ogreid and P. Osland, “Summing one- and two-dimensional series related to the Euler series”, J. Comput. Appl. Math. 98 (1998) 245, hep-th/9801168.

[9] J. L. Cardy, Nucl. Phys. B290 (1987) 355.

[10] T. Appelquist, A. G. Cohen and M. Schmaltz, “A new constraint on strongly coupled field theories”, Phys. Rev. D60 (1999) 045003, hep-th/9901109.

T. Appelquist and M. Schwetz, “The 2+1 dimensional NJL model at finite temperature”, hep-ph/0007284.

[11] H. W. Blöte, J. L. Cardy and M. P. Nightingale, Phys. Rev. Lett. 56 (1986) 742; I. Affleck, Phys. Rev. Lett. 56 (1986) 746.

[12] It is well known that the critical properties of the Lee-Yang edge singularity do not depend on the number of components of the underlying order parameter see e.g. C. Itzykson and J. -M. Drouffe, “Statistical field theory”, Cambridge University Press, Cambridge (1989).

[13] G. Grignani, G. Semenoff, P. Sodano and O. Tirkkonen, “Charge screening and confinement in hot 3-D QED”, Nucl. Phys. B473 (1996) 143, hep-th/9512048,

H. R. Christiansen, A. C. Petkou, M. B. Silva Neto and N. D. Vlachos, “Thermodynamics of the 2+1 dimensional Gross-Neveu model with complex chemical potential”, Phys. rev. D62 (2000) 025018, hep-th/9911177.
[14] S.-I. Hong and J. B. Kogut, “Symmetry nonrestoration in a Gross-Neveu model with random chemical potential”, hep-th/0007216.

[15] Y. Park and M. E. Fisher, “Identity of the universal repulsive-core singularity with Yang-Lee criticality”, cond-mat/9907429.