Chemistry-driven changes strongly influence climate forcing from vegetation emissions

James Weber

Scott Archer-Nicholls, N. Luke Abraham, Youngsub Matthew Shin, Paul Griffiths, Daniel Grosvenor, Cat Scott & Alex Archibald
BVOC Emissions Changes

Forest Land Use Change

SSP projections
Riahi et al (2017)

Biosphere – Climate Feedbacks

Global Temperature
Atmospheric composition
BVOC Emissions
Sign and magnitude uncertain
Positive but magnitude uncertain
BVOCs and Atmospheric Composition

Positive forcing / warming

Negative forcing / cooling

+ BVOCs

Reaction with OH, O₃ and NO₃

- OH

+ CH₄ (via reduced OH)

+ O₃

Secondary Organic Aerosol (SOA)

Sulphate Aerosol?

SO₂ + OH → SO₄²⁻

Aerosol Scattering

Seeding Clouds

j.weber@sheffield.ac.uk
How does the model description of chemistry affect the climatic impact of BVOCs?
ST & CS2
CS2 only

isoprene

0.03 Sec_Org

Condensation to aerosol

Mechanistic Differences

HO$_2$

ISOPOOH

Isoprene Nitrate

Further chemistry

NO, NO$_3$

Methyl vinyl ketone & Methacrolein

Further chemistry

NO, NO$_3$, RO$_2$

HPALD, RO$_2$, HO$_3$

hv

Further chemistry, including HO$_x$ recycling

1,6 H-shift

0.13 Sec_Org

Condensation to aerosol, Nucleation of aerosol

\alpha\text{-}pinene

\beta\text{-}pinene

+ OH, O$_3$, NO$_3$

RO$_2$, RCHO & ROOH

Further chemistry

ST - 73 species, 305 reactions

CS2 - 228 species, 766 reactions
30-year Atmosphere-only runs in pre-industrial (1850) atmosphere

Run	Mechanism	BVOC Emissions
ST_{con}	ST	Control
ST_{2x}	ST	2x
$CS2_{\text{con}}$	CS2	Control
$CS2_{2x}$	CS2	2x

Radiative Forcing Components

Component	
CH_4	O_3
Aerosol Scattering	Cloud Changes
Mechanism Comparison

Components and Net Forcing

- Forcing / mWm^{-2}

Component	ST	CS2
O_3	50 ± 10	90 ± 10
CH_4	150 ± 15	250 ± 20
Aerosol Scattering (DRE)	-200 ± 50	-100 ± 20
Cloud Changes (CRE)	100 ± 15	50 ± 10
Net	300 ± 20	150 ± 10

43% lower in CS2

Global Temperature
BVOC Emissions
Greater OH reduction with ST ➔ greater increase in CH$_4$ lifetime (concentration)

Greater increase in O$_3$ in region with greatest radiative efficiency in ST than CS2 despite overall lower burden increase
Aerosol Scattering

Increase in SOA with $2x E_{BVOC}$... but less dispersed in CS2

Forcing from aerosol scattering

(c) IRF$_{DRE}$: ST$_\Delta$ -0.260 Wm$^{-2}$

(d) IRF$_{DRE}$: CS2$_\Delta$ -0.244 Wm$^{-2}$

Total forcing in ST is 1% weaker over land but 25% stronger over oceans than CS2
Cloud reflectivity (albedo) increases with cloud droplet number concentration (CDNC)

\[
\frac{dA}{dN} \approx \frac{A(1 - A)}{3N}
\]

Greatest impact where:

\(A \sim 0.5 \)

Low background CDNC

Credit: Pyle and Schmidt
Cloud albedo changes (2)

\[
\text{SO}_2
\xrightarrow{+ \text{OH}_\text{(g)}} \quad \text{H}_2\text{SO}_4 \
\xrightarrow{\text{condensation to existing aerosol}} \quad \text{New particle formation}
\]

\[
\quad \text{SO}_4^{2-} \quad \text{Increases aerosol mass concentration only}
\]

\[
\quad \text{Increases aerosol number and mass concentration}
\]

\[
\quad \text{CCN / CDNC}
\]

c.f. O’Connor et al (2021)
Cloud albedo changes (3)

Reduction in $\text{SO}_2 + \text{OH}$
Reduction in H_2SO_4
Reduction in new aerosol formation
lower CDNC

Reduction in cloud albedo and positive cloud forcing

+SOA

$\text{ST}_{2x} - \text{ST}_{con}$

- SO_4^{2-}

CDNC column

$\text{CS}_{2x} - \text{CS}_{2\ con}$

10^{10} droplets m$^{-2}$
Cloud Forcing

Greater cloud albedo reduction in ST → stronger positive forcing
Aerosol, chemistry and oxidants

More complex story when chemistry and oxidants considered.
Takeaways

1. Improvements to simulated chemistry can have wide-ranging impacts on climate via gas and aerosol phase processes.

2. This also invites assessment into the dependence of other natural chemistry-climate feedbacks on simulated chemistry (e.g., DMS).

3. The central role of oxidants suggests the climatic response to BVOC changes will also depend on the background atmospheric state.