Data Article

Dataset of molecular dynamics simulation trajectories of amino-acid solutions with various force fields, water models and modified force field parameters

Jiří Průša a,b, Michal Cifra a,*

a Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, Czech Republic
b University of Chemistry and Technology, Prague, Czech Republic

ABSTRACT

We present molecular dynamics (MD) trajectories of water solutions of eight zwitterionic amino-acids (L-form) glycine (GLY), alanine (ALA), proline (PRO), threonine (THR), leucine (LEU), glutamine (GLN), histidine (HIS) and tyrosine (TYR) using various force field (OPLS-AA, Amber99ff-SB, GROMOS96 54a7, CHARMM19) and water model (SPC/E, TIP3P) combinations. Additionally, we present OPLS-AA molecular dynamics (MD) trajectories for alanine (ALA), leucine (LEU), glutamine (GLN), and tyrosine (TYR) varying the values of major force field parameters: charge on all amino acid atoms, bond length (all amino acid bonds), Lennard-Jones potential epsilon parameter and stiffness of bond angles. Our data enable to uncover sensitivity of molecular dynamics derived analysis to variation of force field and water models and force field parameters. This data set was used to understand the effect of molecular dynamics parameters on dielectric properties of amino acid solutions [1].

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)
Specifications table

Subject	Chemistry, Biology
Specific subject area	Computational Molecular biophysics
Type of data	Molecular Dynamics (MD) simulations
How data were acquired	Classical MD simulation in explicit solvent
Data format	Raw (molecular dynamics trajectories - compressed GROMACS trajectory files (.xtc))
Parameters for data collection	NVT ensemble at 300 K
Description of data collection	Data were obtained from molecular dynamics simulations ran on CESNET MetaCentrum virtual organisation of the Czech National Grid Organization with GROMACS software version 5.1.1
Data source location	Institution: Institute of Photonics and Electronics of the Czech Academy of Sciences
	City/Town/Region: Prague
	Country: Czechia
Data accessibility	Data is stored in a public repository
	Repository name: Zenodo
	Data identification number: DOI 10.5281/zenodo.3676936
	Direct URL to data: http://dx.doi.org/10.5281/zenodo.3676936
Related research article	Authors: Jíří Průša 1,2, Michal Cifra 1
	Title: Computational dielectric spectroscopy of amino acid solutions: dissecting the effects of force field parameters
	Journal: Journal of Molecular Liquids
	10.1016/j.molliq.2020.112613

Value of the data

- Data enable understanding of the influence of force field parameters and water models on the outcome from the generated molecular dynamics trajectories.
- Computational chemists, physical chemists, chemical biologists, bioelectromagnetic engineers and biophysicists can benefit from the data
- The data can be further used to obtain insights into how the basic properties of small molecules affect fundamental physical and chemical features of water-based solutions

1. Data

All raw data are available in the Zenodo repository under following folder structure. Standard (unmodified) force field simulations are in the folder FF_COMPARE. The simulations with changed parameters of the force field are in folder CHANGED_PAR. These two main folders with trajectories contain directories named by amino-acid three letter code. Within the amino-acid directories, the trajectories together with .pdb file of the initial system are placed in TRAJ directory and appropriate topologies in TOP directory.

1.1. Raw data from molecular dynamics using seven force field-water model combination

We provide trajectories for glycine (GLY), alanine (ALA), proline (PRO), threonine (THR), leucine (LEU), glutamine (GLN), histidine (HIS) and tyrosine (TYR) for seven force field-water model combinations.

The path MDP/md.mdp points to file with the settings of the molecular simulation runs. The path for standard trajectories in xtc format is:

```
FF_COMPARE/AA-CODE/TRAJ/FF-NAME/WM-NAME/*.xtc
```

The path for the Initial coordinate files in .pdb format is:

```
FF_COMPARE/AA-CODE/TRAJ/FF-NAME/WM-NAME/*.pdb
```
2. Experimental design, materials, and methods

We performed all-atom MD simulations in explicit solvent of amino acids for various force fields and water models as well as using modified parameters of the OPLS force fields. The following combinations were explored:

- Charge on all amino acid atoms (AA): 5%, 2.5%, 2.5%, 5%
- Bond length (all amino acid bonds) (BOND): 5%, -2.5%, -2.5%, 5%
- Lenard-Jones epsilon parameter (LEU): -2.5%, 5%, 5%
- Stiffness of angles and dihedral angles (DAN): 5%, 10%, 5%

The path of files obtained using force fields with modified parameters is:

- CHANGED/AA-CODE/TRAJ/PARAMETER-CHANGED

Here for each condition we run three independent simulations with different randomly assigned starting configuration of the molecules in the box and different initial velocity assigned to each atom.

We provide trajectories for alanine (ALA), leucine (LEU), glutamine (GLN), and tyrosine (TYR) for OPLS-AAU force field with changed force field parameters. We explored the range of the following parameters:

- All-atom C α coordinates
- Trajectories for alanine (ALA), leucine (LEU), glutamine (GLN), and tyrosine (TYR)

The bold text in the file path is static and the rest is variable.

For OPLS, AMBER, CHARMM, CHARMM99, and CHARMM36-ME force field parameters, the name: “system-name”, “force-field-name”, “model-name” stands for “variable”, “parameter”, “force-field”. For AMBER models, excluding TIP3P, the force field used is OPLS-α.

Parameters obtained for alanine (ALA), leucine (LEU), glutamine (GLN), and tyrosine (TYR) are listed below:

- Charge on all amino acid atoms (AA): 5%, 2.5%, 2.5%, 5%
- Bond length (all amino acid bonds) (BOND): 5%, -2.5%, -2.5%, 5%
- Lenard-Jones epsilon parameter (LEU): -2.5%, 5%, 5%
- Stiffness of angles and dihedral angles (DAN): 5%, 10%, 5%
J. Průša and M. Cifra / Data in Brief 30 (2020) 105483

Fig. 1. Rotational diffusion relaxation time of alanine (ALA), tyrosine (TYR), leucine (LEU), glutamine (GLN), glycine (GLY), proline (PRO), histidine (HIS), and threonine (THR) for various force field–water model combination. The graphs are derived from the raw data presented in this article. See [1] for more details.

Force Field	Water Model
OPLS-AA/L	SPC/E
Amber99ff-SB	TIP3P
Amber99ff-SB	SPC/E
GROMOS96 54a7	TIP3P
CHARMM19	SPC/E
CHARMM27/CMAP	TIP3P

Each trajectory is 10 ns long (20 000 frames). 8 types of amino acids (GLY, ALA, PRO, THR, LEU, GLN, HIS, TYR) x 7 force fields–water model combinations x 10ns length of each trajectory = 560 ns total simulation length.

Additionally, we provide trajectories for alanine (ALA), leucine (LEU), glutamine (GLN), and tyrosine (TYR) for OPLS-AA/LL force field with modified force field parameters (charge on all amino acid atoms, bond length (all amino acid bonds), Lennard-Jones potential epsilon parameter, stiffness of angles and dihedral angles) as described in the Section 1.2.

Here for each condition we run three independent simulations. Therefore, 4 types of amino acids (ALA, LEU, GLN, TYR) x 4 force field modifications x 4 force field parameters x 10ns length of each trajectory x 3 repetitions = 1920 ns total simulation length.

2.1. Preparation of topologies

We used GROMOS, OPLS and CHARMM27 natively implemented in our GROMACS software version 5.1.1. Moreover, we have implemented CHARMM19 and AMBER parameters for zwitterionic amino acids [1].

2.2. MD simulations

All simulations were carried out with the same protocol. One molecule of the amino acid was placed in the middle of 32 × 32 × 32 Å³ water box, water molecules overlapping with amino acid were removed and the energy of the system was minimized by steepest descent algorithm. Thereafter we performed 10 ps equilibration part by pressure coupling with Parrinello-Rahman barostat [2] and increasing the temperature to 300K which was held constant by stochastic ve-
locity rescaling algorithm [3]. Last part of the equilibration was 300 ps long and, same as in the main production run, NVT condition (300 K) was held by Nosé-Hoover thermostat [4] with the box dimensions inherited from NpT equilibration part. All Cα atoms were restrained from moving during whole equilibration part. The main production run was 10 ns long with all bond length constrained applying SHAKE algorithm [5]. Time step for numerical solution (leap-frog algorithm [6]) of Newton’s equations of motions for both equilibration and simulation procedures was set to 2 fs. Evaluation of long-range electrostatics treated by Particle mesh Ewald (PME) method [7] the cut-off for van der Waals interaction and short-range electrostatic forces was set to 10 Å. The coordinates from trajectory were saved for every 0.5 ps for further analysis, thus yielding 20,000 frames from a single 10 ns trajectory.

Acknowledgments

Authors acknowledge the Czech Science Foundation, project no. 18-23597S for funding. Authors also participate in the COST CA15211 and exchange project between Czech and Slovak Academy of Sciences, no. SAV-18-11. Computational resources were supplied by the Ministry of Education, Youth and Sports of the Czech Republic under the Projects CESNET (Project No. LM2015042) and CERIT-Scientific Cloud (Project No. LM2015085) provided within the program Projects of Large Research, Development and Innovations Infrastructures.

References

[1] J. Pruša, M. Cifra, Dependence of amino-acid dielectric relaxation on solute-water interaction: molecular dynamics study, J. Molecul. Liqu. 303 (2020) 112613.
[2] M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: a new molecular dynamics method, J. Appl. Phys. 52 (1981) 7182–7190.
[3] G. Bussi, D. Donadio, M. Parrinello, Canonical sampling through velocity-rescaling, J. Chem. Phys. 126 (2007) 014101.
[4] W.G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A 31 (1985) 1695–1697.
[5] J.P. Ryckaert, G. Ciccotti, H.J.C. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes, J. Comput. Phys. 23 (1977) 327–341.
[6] W.F. Van Gunsteren, H.J.C. Berendsen, A Leap-frog Algorithm for Stochastic Dynamics, Molecular Simul. 1 (1988) 173–185.
[7] U. Essmann, et al., A smooth particle mesh Ewald method, J. Chem. Phys. 103 (1995) 8577–8593.