Approximately Lie ternary \((\sigma, \tau, \xi)\)-derivations on Banach ternary algebras

M. Eshaghi Gordji
Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran
e-mail: madjid.eshaghi@gmail.com

R. Farrokhzad
Department of Mathematics, Shahid Beheshti University, Tehran, Iran
e-mail: razieh.farokhzad@yahoo.com

S. A. R. Hosseinioun
Department of Mathematics, Shahid Beheshti University, Tehran, Iran
e-mail: ahosseinioun@yahoo.com

Abstract

Let \(A\) be a Banach ternary algebra over a scalar field \(\mathbb{R}\) or \(\mathbb{C}\) and \(X\) be a ternary Banach \(A\)-module. Let \(\sigma, \tau\) and \(\xi\) be linear mappings on \(A\), a linear mapping \(D: (A, [\[,\]_A]) \to (X, [\[,\]_X])\) is called a Lie ternary \((\sigma, \tau, \xi)\)-derivation, if

\[
D([abc]) = [D(a)bc]_X(\sigma, \tau, \xi) + [D(b)ac]_X(\sigma, \tau, \xi) + [D(c)ba]_X(\sigma, \tau, \xi),
\]

for all \(a, b, c \in A\), where \([abc]_{(\sigma, \tau, \xi)} = a\tau(b)\xi(c) - \sigma(c)\tau(b)a\).

In this paper, we investigate the generalized Hyers–Ulam–Rassias stability of Lie ternary \((\sigma, \tau, \xi)\)-derivations on Banach ternary algebras.

1. Introduction

In the 19th century, many mathematicians considered ternary algebraic operations and their generalizations. A. Cayley ([7]) introduced the notion of cubic matrix. It was later generalized by Kapranov, Gelfand and Zelevinskii in 1990 ([12]). Below, a composition rule includes a simple example of such non-trivial ternary operation:

\[
\{a, b, c\}_{ijk} = \sum_{i,j,k=1}^N a_{ij}b_{jm}c_{kn}, \quad i, j, k = 1, 2, ..., N.
\]

There are a lot of hopes that ternary structures and their generalization will have certain possible applications in physics. Some of these applications are (see [2,3],[5],[10],[13,14,15]). A ternary (associative) algebra \((A, [\[,\]])\) is a linear space \(A\) over a scalar field \(F = (\mathbb{R} or \mathbb{C})\) equipped with a linear mapping, the so-called ternary product, \([\[,\]]\): \(A \times A \times A \to A\) such that \([[abc]de] = [abd]ce\) for all \(a, b, c, d, e \in A\). This notion is a natural generalization of the binary case. Indeed if \((A, \odot)\) is a usual (binary) algebra then \([abc] := (a \odot b) \odot c\) induces a ternary product making \(A\) into a ternary algebra which will be called trivial. It is known that unital ternary algebras are trivial and finitely generated ternary algebras are ternary subalgebras of trivial ternary algebras [6]. There are other types of ternary algebras in which one may consider other versions of associativity. Some examples of ternary algebras are (i)
"cubic matrices" introduced by Cayley [7] which were in turn generalized by Kapranov, Gelfand and Zelevinskii [12]; (ii) the ternary algebra of polynomials of odd degrees in one variable equipped with the ternary operation \([p_1 p_2 p_3] = p_1 \odot p_2 \odot p_3\), where \(\odot\) denotes the usual multiplication of polynomials.

By a Banach ternary algebra we mean a ternary algebra equipped with a complete norm \(\|\cdot\|\) such that \(\|abc\| \leq \|a\|\|b\|\|c\|\). If a ternary algebra \((A,\{\})\) has an identity, i.e. an element \(e\) such that \(a = [ace] = [eca] = [cea]\) for all \(a \in A\), then \(a \odot b := [aeb]\) is a binary product for which we have

\[(a \odot b) \odot c = [aeb]ec = [aceb]c = a \odot (b \odot c)\]

and

\[a \odot e = [ace] = a = [eca] = e \odot a,\]

for all \(a, b, c \in A\) and so \((A,\{\})\) may be considered as a (binary) algebra. Conversely, if \((A,\{\})\) is any (binary) algebra, then \([abc] := a \odot b \odot c\) makes \(A\) into a ternary algebra with the unit \(e\) such that \(a \odot b = [aeb]\).

Let \(A\) be a Banach ternary algebra and \(X\) be a Banach space. Then \(X\) is called a ternary Banach \(A\)-module, if module operations \(A \times A \times X \to X\), \(A \times X \times A \to X\), and \(X \times A \times A \to X\) are \(\mathbb{C}\)-linear in every variable. Moreover satisfy:

\[[abc]_A \cdot dx\big|_X = [a[bed]_A x]\big|_X = [ab[cdx]_A]_X\]
\[[abc]_A \cdot xdf\big|_X = [a[bcx]_A d]\big|_X = [ab[cdx]_A]_X,\]
\[[xab]_A \cdot xcf\big|_X = [x[abc]_A d]\big|_X = [xa[bcx]_A]_X,\]
\[[axb]_A \cdot xcf\big|_X = [ax[bcx]_A d]\big|_X = [ab[cdx]_A]_X,\]
\[[abx]_A \cdot xcf\big|_X = [ab[bcx]_A d]\big|_X = [ab[cdx]_A]_X,\]

for all \(x \in X\) and all \(a, b, c, d \in A\), and

\[\max\{\|[xab]_A\|, [[axb]_A]_X, [[abx]_A]_X\} \leq \|a\|\|b\|\|x\|\]

for all \(x \in X\) and all \(a, b \in A\).

Let \(A\) be a normed algebra, \(\sigma\) and \(\tau\) two mappings on \(A\) and \(X\) be an \(A\)-bimodule. A linear mapping \(L : A \to X\) is called a Lie \((\sigma, \tau)\)-derivation, if

\[L([a, b]) = [L(a), b]_{\sigma, \tau} - [L(b), a]_{\sigma, \tau}\]

for all \(a, b \in A\), where \([a, b]_{\sigma, \tau}\) is \(\sigma\tau(b) - \sigma(b)\sigma\) and \([a, b]\) is the commutator \(ab - ba\) of elements \(a, b\).

Now, let \((A, [\cdot]_A)\) be a Banach ternary algebra over a scalar field \(\mathbb{R}\) or \(\mathbb{C}\) and \((X, [\cdot]_X)\) be a ternary Banach \(A\)-module. Let \(\sigma, \tau\) and \(\xi\) be linear mappings on \(A\). A linear mapping \(D : (A, [\cdot]_A) \to (X, [\cdot]_X)\) is called a Lie ternary \((\sigma, \tau, \xi)\)-derivation, if

\[D([abc]_A) = [[D(a)bc]_X]_{\sigma, \tau, \xi} + [[D(b)ac]_X]_{\sigma, \tau, \xi} + [[D(c)ba]_X]_{\sigma, \tau, \xi}\]

(1.1)

for all \(a, b, c \in A\), where \([abc]_{\sigma, \tau, \xi} = \sigma\tau(b)\xi(c) - \sigma(c)\tau(b)a\).

If a Banach ternary algebra \(A\) has an identity \(e\) such that \(\|e\| = 1\), as we said above, \(A\) may be considered as a (binary) algebra. Now let \(X\) be a ternary Banach \(A\)-module, then \(X\) may be considered as a Banach \(A\)-module by following module product:

\[a x = [aex]_X\]

\[x a = [xea]_X\]

for all \(a \in A, x \in X\).

Let \(A\) be a unital Banach ternary algebra and \(X\) be a ternary Banach \(A\)-module. If \(D : A \to X\) is a Lie ternary \((\sigma, \tau, \xi)\)-derivation such that \(\sigma, \tau\) and \(\xi\) are linear mappings on \(A\), additionally, \(\tau(e) = e\), then it is easy to prove that \(D\) is a Lie \((\sigma, \xi)\)-derivation.
The stability of functional equations was started in 1940 with a problem raised by S. M. Ulam [19]. In 1941 Hyers affirmatively solved the problem of S. M. Ulam in the context of Banach spaces. In 1950 T. Aoki [4] extended the Hyers' theorem. In 1978, Th. M. Rassias [16] formulated and proved the following Theorem:

Assume that E_1 and E_2 are real normed spaces with E_2 complete, $f : E_1 \to E_2$ is a mapping such that for each fixed $x \in E_1$ the mapping $t \to f(tx)$ is continuous on \mathbb{R}, and let there exist $\epsilon \geq 0$ and $p \in [0, 1]$ such that $\|f(x+y) - f(x) - f(y)\| \leq \epsilon(\|x\|^p + \|y\|^p)$ for all $x, y \in E_1$. Then there exists a unique linear mapping $T : E_1 \to E_2$ such that $\|f(x) - T(x)\| \leq \epsilon\|x\|^p(1 - 2^p)$ for all $x \in E_1$.

The equality $\|f(x+y) - f(x) - f(y)\| \leq \epsilon(\|x\|^p + \|y\|^p)$ has provided extensive influence in the development of what we now call Hyers–Ulam–Rassias stability of functional equations [8,11,15,17,18]. In 1994, a generalization of Rassias' theorem was obtained by Gavruta [9], in which he replaced the bound $\epsilon(\|x\|^p + \|y\|^p)$ by a general control function.

2. Lie ternary (σ, τ, ξ)–derivations on Banach ternary algebras

In this section our aim is to establish the Hyers–Ulam–Rassias stability of Lie ternary (σ, τ, ξ)–derivations.

Theorem 2.1. Suppose $f : A \to X$ is a mapping with $f(0) = 0$ for which there exist mappings $g, h, k : A \to A$ with $g(0) = h(0) = k(0) = 0$ and a function $\varphi : A \times A \times A \times A \to [0, \infty]$ such that

$$\bar{\varphi}(x, y, u, v, w) = \frac{1}{2} \sum_{n=0}^{\infty} \varphi(2^n x, 2^n y, 2^n u, 2^n v, 2^n w) < \infty$$

$$\|f(\lambda x + \lambda y + [uvw]_A) - \lambda f(x) - \lambda f(y) - [[f(u)v]x]_{(g, h, k)} + [[f(v)w]x]_{(g, h, k)} + [[f(w)u]x]_{(g, h, k)}\| \leq \varphi(x, y, u, v, w)$$

for all $\lambda \in \mathbb{T}^1 := \{\lambda \in \mathbb{C} : |\lambda| = 1\}$ and for all $x, y, u, v, w \in A$. Then there exist unique linear mappings σ, τ and ξ from A to A satisfying

$$\|g(x) - \sigma(x)\| \leq \bar{\varphi}(x, x, 0, 0, 0)$$

$$\|h(x) - \tau(x)\| \leq \bar{\varphi}(x, x, 0, 0, 0)$$

and

$$\|k(x) - \xi(x)\| \leq \bar{\varphi}(x, x, 0, 0, 0)$$

for all $x \in A$.

Proof. One can show that the limits

$$\sigma(x) := \lim_n \frac{1}{2^n} g(2^n x)$$

$$\tau(x) := \lim_n \frac{1}{2^n} h(2^n x)$$

$$\xi(x) := \lim_n \frac{1}{2^n} k(2^n x)$$
exist for all \(x \in A \), also \(\sigma, \tau \) and \(\xi \) are unique linear mappings which satisfy (2.4), (2.5) and (2.6) respectively (see [17]).

Put \(\lambda = 1 \) and \(u = v = w = 0 \) in (2.3) to obtain

\[
\|f(x + y) - f(x) - f(y)\| \leq \varphi(x, y, 0, 0, 0) \quad (x, y \in A).
\]

Fix \(x \in A \). Replace \(y \) by \(x \) in (2.8) to get

\[
\|f(2x) - 2f(x)\| \leq \varphi(x, x, 0, 0, 0).
\]

One can use the induction to show that

\[
\left\| \frac{f(2^k x)}{2^k} - \frac{f(2^q x)}{2^q} \right\| \leq \frac{1}{2^n} \sum_{k=q}^{p} \varphi(2^k x, 2^k x, 0, 0, 0) \quad (2.9)
\]

for all \(x \in A \), and all \(p > q \geq 0 \). It follows from the convergence of series (2.2) that the sequence \(\left\{ \frac{f(2^n x)}{2^n} \right\} \) is Cauchy. By the completeness of \(X \), this sequence is convergent. Set

\[
D(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}
\]

for all \(x \in A \). Putting \(u = v = w = 0 \) and replacing \(x, y \) by \(2^n x \) and \(2^n y \) in (2.3) respectively, and divide the both sides of the inequality by \(2^n \) we get

\[
\|2^{-n} f(2^n (\lambda x + \lambda y)) - 2^{-n} \lambda f(2^n x) - 2^{-n} \lambda f(2^n y)\| \leq \frac{1}{2^n} \varphi(2^n x, 2^n x, 0, 0, 0).
\]

Passing to the limit as \(n \to \infty \) we obtain \(D(\lambda x + \lambda y) = \lambda D(x) + \lambda D(y) \).

Put \(q = 0 \) in (2.9) to get

\[
\left\| \frac{f(2^k x)}{2^k} - f(x) \right\| \leq \frac{1}{2^n} \sum_{k=0}^{p-1} \varphi(2^k x, 2^k x, 0, 0, 0)
\]

for all \(x \in A \).

Taking the limit as \(p \to \infty \) we infer that

\[
\|f(x) - D(x)\| \leq \varphi(x, x, 0, 0, 0)
\]

for all \(x \in A \). Next, let \(\gamma \in \mathbb{C}(\gamma \neq 0) \) and let \(N \) be a positive integer number greater than \(|\gamma| \). It is shown that there exist two numbers \(\lambda_1, \lambda_2 \in \mathbb{T} \) such that \(2^N = \lambda_1 + \lambda_2 \), since \(D \) is additive, we have \(D(\frac{1}{2} x) = \frac{1}{2} D(x) \) for all \(x \in A \). Hence

\[
\begin{align*}
D(\gamma x) &= D(\frac{N}{2} \frac{\gamma}{N} x) = ND(\frac{1}{2} \frac{\gamma}{N} x) = \frac{N}{2} D(\frac{\gamma}{N} x) \\
&= \frac{N}{2} D(\lambda_1 x + \lambda_2 x) = \frac{N}{2} (D(\lambda_1 x) + D(\lambda_2 x)) \\
&= \frac{N}{2} (\lambda_1 + \lambda_2) D(x) = \frac{N}{2} \frac{\gamma}{N} D(x) = \gamma D(x)
\end{align*}
\]

for all \(x \in A \). Thus \(D \) is linear.

Suppose that there exists another ternary \((\sigma, \tau, \xi) \)-derivation \(D' : A \to X \) satisfying (2.7). Since \(D' (x) = \frac{1}{\lambda_0} D(2^n x) \), we see that

\[
\begin{align*}
\|D(x) - D'(x)\| &= \frac{1}{2^n} \|D(2^n x) - D'(2^n x)\| \\
&\leq \frac{1}{2^n} (\|f(2^n x) - D(2^n x)\| + \|f(2^n x) - D'(2^n x)\|) \\
&\leq 40 \frac{2^p}{2} \frac{2^n}{2^n} 2^{n(p-1)} |x|^p,
\end{align*}
\]

which tends to zero as \(n \to \infty \) for all \(x \in A \). Therefore \(D' = D \) as claimed. Similarly one can use (2.4), (2.5) and (2.6) to show that there exist unique linear mappings \(\sigma, \tau \) and \(\xi \) defined

by \(\lim_{n \to \infty} \frac{g(2^n x)}{2^n}, \lim_{n \to \infty} \frac{h(2^n x)}{2^n} \) and \(\lim_{n \to \infty} \frac{k(2^n x)}{2^n} \), respectively.

Putting \(x = y = 0 \) and replacing \(u, v, w \) by \(2^n u, 2^n v \) and \(2^n w \) in (2.3) respectively, we obtain

\[
\begin{align*}
\|f([2^n uw]_A) - &\, [f(2^n u)2^{2n} uv]_X]_{(g,h,k)} + [f(2^n v)2^{2n} uw]_X]_{(g,h,k)} + [f(2^n w)2^{2n} vu]_X]_{(g,h,k)} \| \\
\leq &\, \varphi(0, 0, 2^n u, 2^n v, 2^n w),
\end{align*}
\]

then

\[
\begin{align*}
\frac{1}{2^{2n}}\|f([2^n uw]_A) - &\, [f(2^n u)2^{2n} uv]_X]_{(g,h,k)} + [f(2^n v)2^{2n} uw]_X]_{(g,h,k)} + [f(2^n w)2^{2n} vu]_X]_{(g,h,k)} \| \\
\leq &\, \frac{1}{2^{2n}}\varphi(0, 0, 2^n u, 2^n v, 2^n w)
\end{align*}
\]

for all \(u, v, w \in A \), hence,

\[
\begin{align*}
&\lim_{n \to \infty} \frac{1}{2^{2n}}\|f([2^n uw]_A) - [f(2^n u)2^{2n} uv]_X]_{(g,h,k)} + [f(2^n v)2^{2n} uw]_X]_{(g,h,k)} \\
&\quad + [f(2^n w)2^{2n} vu]_X]_{(g,h,k)} \| \leq \lim_{n \to \infty} \frac{1}{2^{2n}}\varphi(0, 0, 2^n u, 2^n v, 2^n w) \\
&\quad = 0
\end{align*}
\]

therefore

\[
\begin{align*}
D([uw]_A) = &\, \lim_{n \to \infty} \frac{f([2^n uw]_A)}{2^{2n}} = \lim_{n \to \infty} \frac{f([2^n u2^n v2^n w]_A)}{2^{2n}} \\
= &\, \lim_{n \to \infty} \left(\frac{[f(2^n u)2^{2n} uv]_X]_{(g,h,k)} - [f(2^n v)2^{2n} uw]_X]_{(g,h,k)} - [f(2^n w)2^{2n} vu]_X]_{(g,h,k)} \right) \\
= &\, \lim_{n \to \infty} \left(\frac{f(2^n u)h(2^n v)k(2^n w) - g(2^n w)h(2^n v)f(2^n u) - f(2^n v)h(2^n u)k(2^n w)}{2^{2n}} \\
&\quad + \frac{g(2^n u)h(2^n v)f(2^n w) - f(2^n v)h(2^n u)k(2^n w) + g(2^n w)h(2^n u)f(2^n v)}{2^{2n}} \right) \\
= &\, (D(u)\tau(v)\xi(w) - \sigma(w)\tau(v)D(u)) - (D(v)\tau(u)\xi(w) - \sigma(w)\tau(u)D(v)) \\
&\quad - (D(w)\tau(u)\xi(v) - \sigma(u)\tau(v)D(w)) \\
= &\, ([D(u)\xi]_x]_{(\sigma, \tau, \xi)} - [D(v)\nu]_x]_{(\sigma, \tau, \xi)} - [D(w)\nu]_x]_{(\sigma, \tau, \xi)}
\end{align*}
\]

for each \(u, v, w \in A \). Hence, the linear mapping \(D \) is a Lie ternary \((\sigma, \tau, \xi)\)-derivation. \(\square \)

Corollary 2.2. Suppose \(f : A \to X \) is a mapping with \(f(0) = 0 \) for which there exist mappings \(g, h, k : A \to A \) with \(g(0) = h(0) = k(0) = 0 \) and there exists \(\theta \geq 0 \) and \(p \in [0, 1) \) such that

\[
\begin{align*}
\|f(\lambda x + \lambda y + [uw]_A) - &\, \lambda f(x) - \lambda f(y) - [f(u)\nu]_X]_{(g,h,k)} + [f(v)\nu]_X]_{(g,h,k)} \\
&\quad + [f(w)\nu]_X]_{(g,h,k)} \| \leq \theta(\|x\|^p + \|y\|^p + \|u\|^p + \|v\|^p + \|w\|^p),
\end{align*}
\]

\[
\begin{align*}
\|g(\lambda x + \lambda y) - &\, g(x) - g(y)\| \leq \theta(\|x\|^p + \|y\|^p) \\
\|h(\lambda x + \lambda y) - &\, h(x) - h(y)\| \leq \theta(\|x\|^p + \|y\|^p) \\
\|k(\lambda x + \lambda y) - &\, k(x) - k(y)\| \leq \theta(\|x\|^p + \|y\|^p)
\end{align*}
\]

for all \(\lambda \in \mathbb{T} = \{ \lambda \in \mathbb{C} : |\lambda| = 1 \} \) and for all \(x, y \in A \). Then there exist unique linear mappings \(\sigma, \tau \) and \(\xi \) from \(A \) to \(A \) satisfying \(\|g(x) - \sigma(x)\| \leq \frac{\theta\|x\|^p}{1 - 2^p}, \|h(x) - \tau(x)\| \leq \frac{\theta\|x\|^p}{1 - 2^p} \)

and \(\|k(x) - \xi(x)\| \leq \frac{\theta\|x\|^p}{1 - 2^p} \), and there exists a unique Lie ternary \((\sigma, \tau, \xi)\)-derivation \(D : A \to X \) such that

\[
\|f(x) - D(x)\| \leq \frac{\theta\|x\|^p}{1 - 2^p}, \quad x, y, z \in A
\]

(2.11)
for all \(x \in A \).

Proof. Put \(\varphi(x, y, u, v, w) = \theta(||x||^p + ||y||^p + ||u||^p + ||v||^p + ||w||^p) \) in Theorem 2.1. \(\square \)

Note that a linear mapping \(D : (A, [\cdot, \cdot]_A) \to (X, [\cdot, \cdot]_X) \) is called a Jordan Lie ternary \((\sigma, \tau, \xi)\)-derivation, if

\[
D([aaa]_A) = [[D(a)aa]x]_{(\sigma, \tau, \xi)} + [[D(a)aa]x]_{(\sigma, \tau, \xi)} + [[D(a)aa]x]_{(\sigma, \tau, \xi)}
\]

for all \(a \in A \),

Theorem 2.3. Suppose \(f : A \to X \) is a mapping with \(f(0) = 0 \) for which there exist mappings \(g, h, k : A \to A \) with \(g(0) = h(0) = k(0) = 0 \) and a function \(\varphi : A \times A \times A \to [0, \infty] \) such that

\[
\varphi(x, y, u) = \frac{1}{2} \sum_{n=0}^{\infty} \varphi(2^n x, 2^n y, 2^n u) < \infty \quad (2.12)
\]

\[
||f(\lambda x + \lambda y + [uuu]_A) - \lambda f(x) - \lambda f(y) - [[f(u)uu]x]_{(g, h, k)} + [[f(u)uu]x]_{(g, h, k)} + [[f(u)uu]x]_{(g, h, k)}|| \leq \varphi(x, y, u) \quad (2.13)
\]

for all \(\lambda \in T^1 := \{ \lambda \in \mathbb{C} : |\lambda| = 1 \} \) and for all \(x, y, u \in A \). Then there exist unique linear mappings \(\sigma, \tau \) and \(\xi \) from \(A \) to \(A \), and a unique Jordan Lie ternary \((\sigma, \tau, \xi)\)-derivation \(D : A \to X \) satisfying (2.4), (2.5), (2.6) and (2.7), respectively.

Proof. By the same reasoning as the proof of Theorem 2.1, the limits

\[
D(x) := \lim_n \frac{1}{2^n} f(2^n x)
\]

\[
\sigma(x) := \lim_n \frac{1}{2^n} g(2^n x)
\]

\[
\tau(x) := \lim_n \frac{1}{2^n} h(2^n x)
\]

\[
\xi(x) := \lim_n \frac{1}{2^n} k(2^n x)
\]

exist for all \(x \in A \), also \(\sigma, \tau, \xi \) and \(D \) are unique linear mappings which satisfy (2.4), (2.5), (2.6) and (2.7) respectively. Putting \(x = y = 0 \) and replacing \(u \) by \(2^n u \) in (2.13), we obtain
\[\|D([uuu]_A) - [D(u)uu]_X\|_{(\sigma,\tau,\xi)} - [D(u)uu]_X\|_{(\sigma,\tau,\xi)} - [D(u)uu]_X\|_{(\sigma,\tau,\xi)} \| \\
= \lim_{n \to \infty} \| \frac{f(2^{3n}[uuu]_A)}{2^{3n}} - (D(u)\tau(u)\xi(u) - \sigma(u)\tau(u)D(u)) \\
- (D(u)\tau(u)\xi(u) - \sigma(u)\tau(u)D(u)) - (D(u)\tau(u)\xi(u) - \sigma(u)\tau(u)D(u)) \| \\
= \lim_{n \to \infty} \| \frac{f(2^{3n}[uuu]_A)}{2^{3n}} \\
- (\frac{f(2^{n}u)h(2^{n}u)k(2^{n}u) - g(2^{n}u)h(2^{n}u)f(2^{n}u) - f(2^{n}u)h(2^{n}u)k(2^{n}u)}{2^{3n}} \\
+ \frac{g(2^{n}u)h(2^{n}u)f(2^{n}u) - f(2^{n}u)h(2^{n}u)k(2^{n}u) + g(2^{n}u)h(2^{n}u)f(2^{n}u)}{2^{3n}}) \| \\
= \lim_{n \to \infty} \| \frac{1}{2^{3n}} \varphi(0,0,2^{n}u) \\
= 0 \]

for each \(u \in A \). Hence, the linear mapping \(D \) is a Jordan Lie ternary \((\sigma,\tau,\xi)\)-derivation. \(\square \)

Corollary 2.4. Suppose \(f : A \to X \) is a mapping with \(f(0) = 0 \) for which there exist mappings \(g, h, k : A \to A \) with \(g(0) = h(0) = k(0) = 0 \) and there exists \(\theta \geq 0 \) and \(p \in [0,1) \) such that

\[
\|f(\lambda x + \lambda y + [uuu]_A) - \lambda f(x) - \lambda f(y) - ([f(u)uu]_X)_{(g,h,k)} + ([f(u)uu]_X)_{(g,h,k)} \| \leq \theta(\|x\|^p + \|y\|^p + \|u\|^p),
\]

\[
\|g(\lambda x + \lambda y) - \lambda g(x) - \lambda g(y)\| \leq \theta(\|x\|^p + \|y\|^p) \\
\|h(\lambda x + \lambda y) - \lambda h(x) - \lambda h(y)\| \leq \theta(\|x\|^p + \|y\|^p) \\
\|k(\lambda x + \lambda y) - \lambda k(x) - \lambda k(y)\| \leq \theta(\|x\|^p + \|y\|^p)
\]

for all \(\lambda \in \mathbb{T} = \{ \lambda \in \mathbb{C} : |\lambda| = 1 \} \) and for all \(x, y \in A \). Then there exist unique linear mappings \(\sigma, \tau \) and \(\xi \) from \(A \) to \(A \) satisfying \(\|g(x) - \sigma(x)\| \leq \frac{\theta\|x\|^p}{1-\frac{1}{2^p}} \), \(\|h(x) - \tau(x)\| \leq \frac{\theta\|x\|^p}{1-\frac{1}{2^p}} \) and \(\|k(x) - \xi(x)\| \leq \frac{\theta\|x\|^p}{1-\frac{1}{2^p}} \), and there exists a unique Jordan Lie ternary \((\sigma,\tau,\xi)\)-derivation \(D : A \to X \) such that

\[
\|f(x) - D(x)\| \leq \frac{\theta\|x\|^p}{1-\frac{1}{2^p}}
\]

(2.11)

for all \(x \in A \).

Proof. Put \(\varphi(x,y,u) = \theta(\|x\|^p + \|y\|^p + \|u\|^p) \) in Theorem 2.3. \(\square \)

References

[1] M. Amyari, Stability of Generalized Lie \((\sigma,\tau)\)-Derivations, *Tamsui Oxford J.Math.* 24 (4), (2008) 389-399.

[2] M. Amyari and M. S. Moslehian, Approximately homomorphisms of ternary semigroups, *to appear in Lett. Math. Phys.* 77 (2006) 1-9. MR2247457
[3] M. Amyari, C. Baak and M.S. Moslehian, Nearly ternary derivations, _Taiwanese J. Math._ 11, (2007), no. 5, 1417-1424.
[4] T. Aoki, On the stability of the linear transformation in Banach spaces, _J. Math. Soc. Japan._ 2, (1950) 64-66.
[5] F. Bagarello and G. Morchio, Dynamics of mean-field spin models from basic results in abstract differential equations, _J. Stat. Phys._ 66 (1992) 849-866. MR1151983 (93c:82034)
[6] N. Bazunova, A. Borowiec and R. Kerner, Universal differential calculus on ternary algebras, _Lett. Math. Phys._ 67 (2004), no. 3, 195-206.
[7] A. Cayley, On the 34 concomitants of the ternary cubic, _Am. J. Math._ 4, 1 (1881).
[8] S. Czerwik (ed), stability of Functional Equations of Ulam-Hyers-Rassias Type, _Hadronic Press_ (2003).
[9] P. Gavritu, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, _J. Math. Anal. Appl._ 184.
[10] R. Haag and D. Kastler, An algebraic approach to quantum field theory, _J. Math. Phys._ 5 (1964) 848-861. MR0165864 (1994) 431-436.
[11] S. M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, _Hadronic press, Palm Harbor, Florida_ (2001).
[12] M. Kapranov, I. M. Gelfand and A. Zelevinskii, Discriminants, Resultants and Multidimensional Determinants, _Birkhauser, Berlin_, 1994.
[13] R. Kerner, Ternary algebraic structures and their applications in physics, _Univ. P. M. Curie preprint, Paris_ (2000), http://arxiv.org/list/math-ph/0011
[14] R. Kerner, The cubic chessboard: Geometry and physics, _Class. Quantum Grav._ 14, A203 (1997).
[15] M. S. Moslehian, Ternary derivations, stability and physical aspects, _Acta Appl. Math._ 100 (2008), no. 2, 187-199.
[16] Th. M. Rassias, on the stability of the linear mapping in banach spaces, _Proc. Amer. Math. Soc._ 72 (1978) 297-300.
[17] Th. M. Rassias, on the stability of functional equations and a problem of Ulam, _Acta Appl. Math._ 62 (2000) 23-130.
[18] Th. M. Rassias (ed), Functional Equations and Inequalities, _Kluwer Academic Publishers, Dordrecht, Boston, London_ (2000).
[19] S. M. Ulam, Problems in Modern Mathematics, _Chapter VI, science ed._ Wiley, New York, 1940.