WEIGHTED VECTOR-VALUED ESTIMATES FOR A
NON-STANDARD CALDERÓN-ZYGMUND OPERATOR

GUOEN HU

ABSTRACT. In this paper, the author considers the weighted vector-valued
estimates for the operator defined by
\[T_A f(x) = \text{p. v.} \int_{\mathbb{R}^n} \frac{\Omega(x-y)(A(x) - A(y) - \nabla A(y))f(y)}{|x-y|^{n+1}} dy \]
and its corresponding maximal operator \(T_A^* \), where \(\Omega \) is homogeneous of
degree zero, has vanishing moment of order one, \(A \) is a function in \(\mathbb{R}^n \) such that
\(\nabla A \in \text{BMO}(\mathbb{R}^n) \). By a pointwise estimate for \(\| \{ T_A f_k(x) \} \|_{L^q} \),
the author obtains some quantitative weighted vector-valued estimate for \(T_A \) and \(T_A^* \).

1. Introduction

In the remarkable work [21], Muckenhoupt characterized the class of weights \(w \) such that the
Hardy-Littlewood maximal operator \(M \) satisfies the weighted \(L^p \) (\(p \in (1, \infty) \)) estimate
\[\| Mf \|_{L^{p, \infty}(\mathbb{R}^n, w)} \lesssim \| f \|_{L^p(\mathbb{R}^n, w)}. \] (1.1)
The inequality (1.1) holds if and only if \(w \) satisfies the \(A_p(\mathbb{R}^n) \) condition, that is,
\[[w]_{A_p} := \sup_Q \left(\frac{1}{|Q|} \int_Q w(x) dx \right) \left(\frac{1}{|Q|} \int_Q w^{-1/p}(x) dx \right)^{p-1} < \infty, \]
where the supremum is taken over all cubes in \(\mathbb{R}^n \), \([w]_{A_p} \) is called the \(A_p \) constant
of \(w \). Also, Muckenhoupt proved that \(M \) is bounded on \(L^p(\mathbb{R}^n, w) \) if and only if
\(w \) satisfies the \(A_p(\mathbb{R}^n) \) condition. Since then, considerable attention has been paid
to the theory of \(A_p(\mathbb{R}^n) \) and the weighted norm inequalities with \(A_p(\mathbb{R}^n) \) weights
for main operators in Harmonic Analysis, see [10, Chapter 9] and related references therein.

However, the classical results on the weighted norm inequalities with \(A_p(\mathbb{R}^n) \) weights
did not reflect the quantitative dependence of the \(L^p(\mathbb{R}^n, w) \) operator norm
in terms of the relevant constant involving the weights. The question of the sharp
dependence of the weighted estimates in terms of the \(A_p(\mathbb{R}^n) \) constant specifically
raised by Buckley [2], who proved that if \(p \in (1, \infty) \) and \(w \in A_p(\mathbb{R}^n) \), then
\[\| Mf \|_{L^p(\mathbb{R}^n, w)} \lesssim_{n, p} [w]_{A_p}^1 \| f \|_{L^p(\mathbb{R}^n, w)}. \] (1.2)
Moreover, the estimate (1.2) is sharp since the exponent \(1/(p-1) \) can not be replaced by a smaller one. Hytönen and Pérez [10] improved the estimate (1.2),

1991 Mathematics Subject Classification. 42B20.

Key words and phrases. singular integral operator, weighted vector-valued estimate, maximal
operator, sparse operator.

The research was supported by the NNSF of China under grant #11371370.
and showed that
\[(1.3) \quad \|Mf\|_{L^p(\mathbb{R}^n, w)} \lesssim_{n,p} \left([w]_{A_p} [w^{-\frac{1}{p-1}}]_{A_\infty} \right)^\frac{1}{p} \|f\|_{L^p(\mathbb{R}^n, w)}.
\]
where and in the following, for a weight \(u\), \([u]_{A_\infty}\) is defined by
\[[u]_{A_\infty} = \sup_{Q \subset \mathbb{R}^n} \frac{1}{u(Q)} \int_Q M(u \chi_Q)(x) \, dx. \]

It is well known that for \(w \in A_p(\mathbb{R}^n)\), \([w^{-\frac{1}{p-1}}]_{A_\infty} \lesssim [w]_{A_p}\). Thus, (1.3) is more subtle than (1.2).

The sharp dependence of the weighted estimates of singular integral operators in terms of the \(A_p(\mathbb{R}^n)\) constant was much more complicated. Petermichl \cite{Petermichl2006}
solved this question for Hilbert transform and Riesz transform. Hytönen \cite{Hytönen2010} proved that for a Calderón-Zygmund operator \(T\) and \(w \in A_2(\mathbb{R}^n)\),
\[(1.4) \quad \|Tf\|_{L^2(\mathbb{R}^n, w)} \lesssim_n [w]_{A_2} \|f\|_{L^2(\mathbb{R}^n, w)}.
\]
This solved the so-called \(A_2\) conjecture. Combining the estimate (1.4) and the extrapolation theorem in \cite{Grafakos2008}, we know that for a Calderón-Zygmund operator \(T\), \(p \in (1, \infty)\) and \(w \in A_p(\mathbb{R}^n)\),
\[(1.5) \quad \|Tf\|_{L^p(\mathbb{R}^n, w)} \lesssim_{n,p} [w]_{A_p}^{\max\{1, \frac{1}{p-1}\}} \|f\|_{L^p(\mathbb{R}^n, w)}.\]

In \cite{Grafakos2010}, Lerner gave a much simpler proof of (1.4) by controlling the Calderón-Zygmund operator using sparse operators.

Now let us consider a class of non-standard Calderón-Zygmund operators. For \(x \in \mathbb{R}^n\), we denote by \(x_j\) (1 \(\leq j \leq n\)) the \(j\)-th variable of \(x\). Let \(\Omega\) be homogeneous of degree zero, integrable on the unit sphere \(S^{n-1}\) and satisfy the vanishing condition that for all \(1 \leq j \leq n\),
\[(1.6) \quad \int_{S^{n-1}} \Omega(x') x'_j \, dx' = 0.\]

Let \(A\) be a function on \(\mathbb{R}^n\) whose derivatives of order one in \(\text{BMO}(\mathbb{R}^n)\). Define the operator \(T_A\) by
\[(1.7) T_A f(x) = \text{p.v.} \int_{\mathbb{R}^n} \frac{\Omega(x-y)}{|x-y|^{n+1}} (A(x) - A(y) - \nabla A(y)(x-y)) f(y) \, dy.\]

The maximal singular integral operator associated with \(T_A\) is defined by
\[T_A^* f(x) = \sup_{\epsilon > 0} |T_{A, \epsilon} f(x)|, \]
with
\[T_{A, \epsilon} f(x) = \int_{|x-y| \geq \epsilon} \frac{\Omega(x-y)}{|x-y|^{n+1}} (A(x) - A(y) - \nabla A(y)(x-y)) f(y) \, dy. \]

The operator \(T_A\) is closed related to the Calderón commutator, of interest in PDE, and was first consider by Cohen \cite{Cohen2001}. Cohen proved that if \(\Omega \in \text{Lip}_\alpha(S^{n-1})\) (\(\alpha \in (0, 1)\)), then for \(p \in (1, \infty)\), \(T_A\) is a bounded operator on \(L^p(\mathbb{R}^n)\) with bound \(C \|\nabla A\|_{\text{BMO}(\mathbb{R}^n)}\). In fact, the argument in \cite{Cohen2001} also leads to the boundedness on \(L^p(\mathbb{R}^n, w)\) \((w \in A_p(\mathbb{R}^n))\) for \(T_A\). Hofmann \cite{Hofmann2006} improved the result of Cohen and showed that \(\Omega \in \bigcup_{q \geq 1} L^q(S^{n-1})\) is a sufficient condition such that \(T_A\) is bounded on \(L^p(\mathbb{R}^n, w)\) for \(p \in (1, \infty)\). Hu and Yang \cite{Hu2010} established the endpoint estimate for \(T_A\), from which they deduced some weighted \(L^p\) estimates with general weights for \(T_A\).
The purpose of this paper is to establish refined weighted vector-valued estimates for the operators T_A and T_A^*. To formulate our result, we first recall some definitions. Let Ω be a bounded function on S^{n-1}. The L^∞ continuity modulus of Ω is defined by

$$\omega_\infty(t) = \sup_{|\rho| < t} |\Omega(\rho x') - \Omega(x')|,$$

where the supremum is taken over all rotations ρ on the unit sphere S^{n-1}, and $|\rho| = \sup_{x' \in S^{n-1}} |\rho x' - x'|$. Let $p, r \in (0, \infty)$ and w be a weight. As usual, for a sequence of numbers $\{a_k\}_{k=1}^\infty$, we denote $\|a_k\|_r = (\sum_k |a_k|^r)^{1/r}$. The space $L^p(I^r; \mathbb{R}^n, w)$ is defined as

$$L^p(I^r; \mathbb{R}^n, w) = \{ \{f_k\}_{k=1}^\infty : \|\{f_k\}\|_{L^p(I^r; \mathbb{R}^n, w)} < \infty \}$$

where

$$\|\{f_k\}\|_{L^p(I^r; \mathbb{R}^n, w)} = \left(\int_{\mathbb{R}^n} \|f_k(x)\|_r^p w(x) \, dx \right)^{1/p}.$$

The space $L^{p, \infty}(I^r; \mathbb{R}^n, w)$ is defined as

$$L^{p, \infty}(I^r; \mathbb{R}^n, w) = \{ \{f_k\}_{k=1}^\infty : \|\{f_k\}\|_{L^{p, \infty}(I^r; \mathbb{R}^n, w)} < \infty \}$$

with

$$\|\{f_k\}\|_{L^{p, \infty}(I^r; \mathbb{R}^n, w)} = \sup_{\lambda > 0} \lambda^p w \left(\{ x \in \mathbb{R}^n : \|f_k(x)\|_r > \lambda \} \right).$$

When $w \equiv 1$, we denote $\|\{f_k\}\|_{L^p(I^r; \mathbb{R}^n, w)} (\|\{f_k\}\|_{L^{p, \infty}(I^r; \mathbb{R}^n, w)})$ by $\|\{f_k\}\|_{L^p(I^r; \mathbb{R}^n)} (\|\{f_k\}\|_{L^{p, \infty}(I^r; \mathbb{R}^n)})$ for simplicity. Our first result can be stated as follows.

Theorem 1.1. Let Ω be homogeneous of degree zero, satisfy the vanishing moment (1.6), A be a function in $A_p(\mathbb{R}^n)$ whose derivatives of order one in $\text{BMO}(\mathbb{R}^n)$. Suppose that the L^∞ continuity modulus of Ω satisfies that

$$\int_0^1 \omega_\infty(t)(1 + |\log t|) \frac{dt}{t} < \infty,$$

then for $p, q \in (1, \infty)$ and $w \in A_p(\mathbb{R}^n)$,

$$\|\{T_A f_k\}\|_{L^p(I^r; \mathbb{R}^n, w)} + \|\{T_A^* f_k\}\|_{L^p(I^r; \mathbb{R}^n, w)}$$

$$\lesssim_{n, p} \|\nabla A\|_{\text{BMO}(\mathbb{R}^n)} w \max_{A_p} \left(|\sigma|_{A_\infty} \right) \|\{f_k\}\|_{L^p(I^r; \mathbb{R}^n, w)}.$$

with $\sigma = w^{-1/p^*}$. In particular,

$$\|\{T_A f_k\}\|_{L^{p, \infty}(I^r; \mathbb{R}^n, w)} + \|\{T_A^* f_k\}\|_{L^{p, \infty}(I^r; \mathbb{R}^n, w)}$$

$$\lesssim_{n, p} \|\nabla A\|_{\text{BMO}(\mathbb{R}^n)} w \max_{A_p} \left(|\sigma|_{A_\infty} \right) \|\{f_k\}\|_{L^{p, \infty}(I^r; \mathbb{R}^n, w)}.$$

Remark 1.2. Theorem 1.1 implies that for $p \in (1, \infty)$ and $w \in A_p(\mathbb{R}^n)$,

$$\|T_A f\|_{L^p(\mathbb{R}^n, w)} \lesssim_{n, p, q} \|\nabla A\|_{\text{BMO}(\mathbb{R}^n)} [w]_{A_p} \max_{A_p} \left(|\sigma|_{A_\infty} \right) \|f\|_{L^p(\mathbb{R}^n, w)}.$$

For the case $p \in (1, 2]$, this estimate is sharp in the sense that the exponent $2/p - 1$ can not be replaced by a smaller one, see Example 3.3. The quantitative bound in (1.9) is new, although we do not know if it is sharp for $p \in (2, \infty)$.

We are also interested in the weighted endpoint bounds for T_A and T_A^*. We have that...
Theorem 1.3. Let Ω be homogeneous of degree zero, satisfy the vanishing moment (1.6), A be a function in \mathbb{R}^n whose derivatives of order one in $\text{BMO}(\mathbb{R}^n)$. Suppose that Ω satisfies (1.2), then for $q \in (1, \infty)$ and $w \in A_1(\mathbb{R}^n)$,
\[
w(\{x \in \mathbb{R}^n : \|T_{\Omega} f_k\|_{L^q} > \lambda\}) + w(\{x \in \mathbb{R}^n : \|T_{\Omega} f_k\|_{L^q} > \lambda\}) \leq_n \|A\|_{\text{BMO}(\mathbb{R}^n)} [w]_{A_1} \Psi_2([w]_{A_1}) \int_{\mathbb{R}^n} \|f_k\|_{L^q} \log \left(e + \frac{\|f_k\|_{L^q}}{\lambda} \right) w(x) dx,
\]
with $\Psi_2(t) = \log^2 (e + t)$.

In what follows, C always denotes a positive constant that is independent of the main parameters involved but whose value may differ from line to line. We use the symbol $A \lesssim B$ to denote that there exists a positive constant C such that $A \leq CB$. Constant with subscript such as C_1, does not change in different occurrences. For any set $E \subset \mathbb{R}^n$, χ_E denotes its characteristic function. For a cube $Q \subset \mathbb{R}^n$ and $\lambda \in (0, \infty)$, we use $\ell(Q) (\text{diam} Q)$ to denote the side length (diameter) of Q, and λQ to denote the cube with the same center as Q and whose side length is λ times that of Q. For $x \in \mathbb{R}^n$ and $r > 0$, $B(x, r)$ denotes the ball centered at x and having radius r. For locally integrable function f and a cube $Q \subset \mathbb{R}^n$, $\langle f \rangle_Q = |Q|^{-1} \int_Q f(y) dy$.

2. Dominated by sparse operator

Recall that the standard dyadic grid in \mathbb{R}^n consists of all cubes of the form
\[2^{-k}([0, 1]^n + j), k \in \mathbb{Z}, j \in \mathbb{Z}^n.
\]
Denote the standard grid by \mathcal{D}.

As usual, by a general dyadic grid \mathcal{D}, we mean a collection of cube with the following properties: (i) for any cube $Q \in \mathcal{D}$, it side length $\ell(Q)$ is of the form 2^k for some $k \in \mathbb{Z}$; (ii) for any cubes $Q_1, Q_2 \in \mathcal{D}$, $Q_1 \cap Q_2 \in \{Q_1, Q_2, \emptyset\}$; (iii) for each $k \in \mathbb{Z}$, the cubes of side length 2^k form a partition of \mathbb{R}^n.

Let \mathcal{D} be a dyadic grid and $M_{\mathcal{D}}$ be the maximal operator defined by
\[M_{\mathcal{D}} f(x) = \sup_{Q \in \mathcal{D}} \langle |f| \rangle_Q.
\]

For $\delta > 0$, let $M_{\mathcal{D}, \delta} f(x) = \left\{ M_{\mathcal{D}}(|f|^{\delta})(x) \right\}^{1/\delta}$ and $M_{\delta} f(x) = \left\{ M(|f|^{\delta})(x) \right\}^{1/\delta}$. Associated with \mathcal{D}, define the sharp maximal function $M^\sharp_{\mathcal{D}}$ as
\[M^\sharp_{\mathcal{D}} f(x) = \sup_{Q \in \mathcal{D}} \inf_{c \in \mathbb{C}} \frac{1}{|Q|} \int_Q |f(y) - c| dy.
\]

For $\delta \in (0, 1)$, let $M^\sharp_{\mathcal{D}, \delta} f(x) = \left[M^\sharp_{\mathcal{D}}(|f|^{\delta})(x) \right]^{1/\delta}$. Repeating the argument in [27, p. 153], we can verify that, if Φ is a increasing function on $[0, \infty)$ which satisfies the doubling condition that
\[\Phi(2t) \leq C \Phi(t), t \in [0, \infty),
\]
then
\[
\sup_{\lambda > 0} \Phi(\lambda)|\{x \in \mathbb{R}^n : h(x) > \lambda\}| \lesssim \sup_{\lambda > 0} \Phi(\lambda)|\{x \in \mathbb{R}^n : M^\sharp_{\mathcal{D}, \delta} h(x) > \lambda\}|,
\]
provided that $\sup_{\lambda>0} \Phi(\lambda)|\{x \in \mathbb{R}^n : M_{\mathcal{G}}(h(x) > \lambda)\}| < \infty$, and
\begin{equation}
(2.2) \quad \sup_{\lambda>0} \Phi(\lambda)|\{x \in \mathbb{R}^n : M_{\mathcal{G}}(h(x) > \lambda)\}| \lesssim \sup_{\lambda>0} \Phi(\lambda)|\{x \in \mathbb{R}^n : M_{\mathcal{G}}^2(h(x) > \lambda)\}|
\end{equation}
provided that $\sup_{\lambda>0} \Phi(\lambda)|\{x \in \mathbb{R}^n : M_{\mathcal{G}}(h(x) > \lambda)\}| < \infty$, see also [23].

Let $\eta \in (0, 1)$ and \mathcal{S} be a family of cubes. We say that \mathcal{S} is η-sparse, if for each fixed $Q \in \mathcal{S}$, there exists a measurable subset $E_Q \subset Q$, such that $|E_Q| \geq \eta|Q|$ and $\{E_Q\}$ are pairwise disjoint. Associated with the sparse family \mathcal{S} and constants $\beta \in [0, \infty)$, we define the sparse operator $A_{\mathcal{S}, L(\log L)^\beta}$ by
\[
A_{\mathcal{S}, L(\log L)^\beta} f(x) = \sum_{Q \in \mathcal{S}} \|f\|_{L(\log L)^\beta, Q} \chi_Q(x),
\]
here and in the following, for $\beta \in [0, \infty)$,
\[
\|f\|_{L(\log L)^\beta, Q} = \inf \left\{ \lambda > 0 : \frac{1}{|Q|} \int_Q \frac{|f(y)|}{\lambda} \log^\beta \left(1 + \frac{|f(y)|}{\lambda} \right) dy \leq 1 \right\}.
\]
We denote $A_{\mathcal{S}, L(\log L)^\beta}$ by $A_{\mathcal{S}, L \log L}$ for simplicity.

Lemma 2.1. Let $p \in (1, \infty)$, $w \in A_p(\mathbb{R}^n)$ and $\sigma = w^{-1/(p-1)}$. Let \mathcal{S} be a sparse family. Then
\begin{equation}
(2.3) \quad \|A_{\mathcal{S}, L(\log L)^\beta} f\|_{L^p(\mathbb{R}^n, w)} \lesssim [w]_{A_p} \left([w]_{A_\infty}^{1/\sigma} + [\sigma]_{A_\infty}^{1/\sigma} \right) \|f\|_{L^p(\mathbb{R}^n, w)}.
\end{equation}

For the proof of Lemma 2.1, see [4].

As in [18], for a sublinear operator T, we define the associated grand maximal operator \mathcal{M}_T by
\[
\mathcal{M}_T f(x) = \sup_{Q \ni x} \sup_{\xi \in \partial Q} |T(f\chi_{\mathbb{R}^n \setminus 3Q})(\xi)|,
\]
where the supremum is taken over all cubes $Q \subset \mathbb{R}^n$ containing x.

Lemma 2.2. Let $q \in (1, \infty)$ and $Q_0 \subset \mathbb{R}^n$. Let T be a sublinear operator. Suppose that T is bounded on $L^q(\mathbb{R}^n)$. Then for a. e. $x \in Q_0$,
\[
\|\{T(f\chi_{3Q_0})(x)\}\|_{q^*} \leq C \|\{f(x)\}\|_{q^*} + \|\{\mathcal{M}_T(f\chi_{3Q_0})(x)\}\|_{q^*}.
\]

Proof. We employ the argument in [18]. Let $x \in \text{int}Q_0$ be a point of approximation continuity of $\|\{T_A(f\chi_{3Q_0})\}\|_{q^*}$. For $r > 0$, the set
\[
E_r(x) = \{y \in B(x, r) : \|\{T(f\chi_{3Q_0})(x)\}\|_{q^*} - \|\{T(f\chi_{3Q_0})(y)\}\|_{q^*} < \epsilon\}
\]
satisfies that $\lim_{r \to 0} \frac{|E_r(x)|}{|B(x, r)|} = 1$. Denote by $Q(x, r)$ the smallest cube centered at x and containing $B(x, r)$. Let $r > 0$ small enough such that $Q(x, r) \subset Q_0$. Then for $y \in E_r(x)$,
\[
\|\{T(f\chi_{3Q_0})(x)\}\|_{q^*} < \|\{T(f\chi_{3Q_0})(y)\}\|_{q^*} + \epsilon
\]
\[
\leq \|\{T(f\chi_{3Q(x,r)})(y)\}\|_{q^*} + \|\{\mathcal{M}_T(f\chi_{3Q_0})(x)\}\|_{q^*} + \epsilon.
\]
The boundedness on $L^q(\mathbb{R}^n)$ of T tells us that

$$
\| \{T(f_k \chi_{3Q_0})(x)\} \|_{L^q} \leq \left(\frac{1}{|E_s(x)|} \int_{E_s(x)} \| \{T(f_k \chi_{3Q(x,r)}(y))\} \|_{L^q}^\beta \, dy \right)^\frac{1}{\beta} + \| \{ \mathcal{M}(f_k \chi_{3Q_0})(x) \} \|_{L^q} + \epsilon \\
\leq C \left(\frac{1}{|3Q(x,r)|} \int_{3Q(x,r)} \| f_k(z) \|_{L^q}^\beta \, dz \right)^\frac{1}{\beta} + \| \{ \mathcal{M}(f_k \chi_{3Q_0})(x) \} \|_{L^q} + \epsilon.
$$

Letting $r \to 0$ then leads to the desired conclusion.

We are now ready to give our main result in this section.

Theorem 2.3. Let $q \in (1, \infty)$, $\beta \in [0, \infty)$, T be a sublinear operator and \mathcal{M} the corresponding grand maximal operator. Suppose that T is bounded on $L^q(\mathbb{R}^n)$, and for some constants $C_1 > 0$ and any $\lambda > 0$,

$$
\left| \left\{ y \in \mathbb{R}^n : \| \{ \mathcal{M}f_k(y) \} \|_{L^q} > \lambda \right\} \right| \leq C_1 \int_{\mathbb{R}^n} \frac{\| f_k(y) \|_{L^q}^\beta}{\lambda} \log^\beta \left(1 + \frac{\| f_k(y) \|_{L^q}}{\lambda} \right) \, dy.
$$

Then for $N \in \mathbb{N}$ and bounded functions f_1, \ldots, f_N with compact supports, there exists a $\frac{1}{10\beta}$-sparse family S such that for a.e. $x \in \mathbb{R}^n$,

$$
\| \{Tf_k(x)\} \|_{L^q} \lesssim \mathcal{A}_S \| f_k \|_{L(\log L)^{\beta}} \left(\| f_k \|_{L^q} \right)(x).
$$

Proof. We employ the ideas in [18]. We claim that for each cube $Q_0 \subset \mathbb{R}^n$, there exist pairwise disjoint cubes $\{ P_j \} \subset \mathcal{D}(Q_0)$, such that $\sum_j |P_j| \leq \frac{1}{4}|Q_0|$, and for a.e. $x \in Q_0$,

$$
\| \{T(f_k \chi_{3Q_0})(x)\} \|_{L^q} \chi_{Q_0}(x) \leq C \| f_k \|_{L(\log L)^{\beta}} \left(\| f_k \|_{L^q} \right) \chi_{Q_0}(x) + \sum_j \| \{T(f_k \chi_{3P_j})(x)\} \|_{L^q} \chi_{P_j}(x).
$$

Let $C_2 \in (1, \infty)$ be a constant which will be chosen later. It follows from (2.4) that

$$
\left| \left\{ x \in Q_0 : \| \{ \mathcal{M}(f_k \chi_{3Q_0})(x) \} \|_{L^q} > C_2 \| f_k \|_{L(\log L)^{\beta}} \right\} \right| \leq C_1 \int_{3Q_0} \frac{\| f_k(y) \|_{L^q}^\beta}{C_2 \| f_k \|_{L(\log L)^{\beta}} \| f_k \|_{L(\log L)^{\beta}} \chi_{3Q_0}} \log^\beta \left(1 + \frac{\| f_k(y) \|_{L^q}}{C_2 \| f_k \|_{L(\log L)^{\beta}} \chi_{3Q_0}} \right) \, dy
$$

$$
\leq C_1 \frac{C_2}{C_2^\beta} \int_{3Q_0} \frac{\| f_k(y) \|_{L^q}^\beta}{C_2 \| f_k \|_{L(\log L)^{\beta}} \chi_{3Q_0}} \log^\beta \left(1 + \frac{\| f_k(y) \|_{L^q}}{C_2 \| f_k \|_{L(\log L)^{\beta}} \chi_{3Q_0}} \right) \, dy
$$

$$
\leq 3^\beta \frac{C_1}{C_2^\beta} |Q_0|.
$$

Let

$$
E = \left\{ y \in Q_0 : \| f_k(y) \|_{L^q} > C_2 \| f_k \|_{L(\log L)^{\beta}} \chi_{3Q_0} \right\}
$$

$$
\cup \left\{ y \in Q_0 : \| \mathcal{M}(f_k \chi_{3Q_0})(y) \|_{L^q} > C_2 \| f_k \|_{L(\log L)^{\beta}} \chi_{3Q_0} \right\}.
$$

Then $|E| \leq \frac{1}{2^\beta+2} |Q_0|$ if we choose C_2 large enough.
Now on cube Q_0, we apply the Calderón-Zygmund decomposition to χ_E at level $\frac{1}{2^{n+1}}$, we then obtain pairwise disjoint cubes $\{P_j\} \subset \mathcal{D}(Q_0)$, such that
\[
\frac{1}{2^{n+1}} |P_j| \leq |P_j \cap E| \leq \frac{1}{2} |P_j|
\]
and $|E \setminus \bigcup_j P_j| = 0$. Observe that $\sum_j |P_j| \leq \frac{1}{2} |Q_0|$ and $P_j \cap E^c \neq \emptyset$. Therefore,
\[
\text{ess sup}_{x \in P_j} \| T(f_k \chi_{3Q_0 \setminus 3P_j}) \|_{L^4} \leq C_2 \| \{f_k\} \|_{L(\log L)^{\beta}; 3Q_0}.
\]
By Lemma 2.2, we also have that for $a.$ e. $x \in Q_0 \setminus \bigcup_j P_j$,
\[
\| T(f_k \chi_{3Q_0})(x) \|_{L^4} \leq C_2 \| \{f_k\} \|_{L(\log L)^{\beta}; 3Q_0}.
\]
Observe that
\[
\| T(f_k \chi_{3Q_0})(x) \|_{L^4} \chi_{Q_0}(x) \leq \| T(f_k \chi_{3Q_0})(x) \|_{L^4} \chi_{Q_0 \setminus \bigcup_j P_j}(x)
\]
\[
+ \sum_j \| T(f_k \chi_{3Q_0 \setminus 3P_j})(x) \|_{L^4} \chi_{P_j}(x) + \sum_j \| T(f_k \chi_{3P_j})(x) \|_{L^4} \chi_{P_j}(x)
\]
\[
\leq 2C_2 \| \{f_k\} \|_{L(\log L)^{\beta}; 3Q_0} + \sum_j \| T_A(f_k \chi_{3P_j})(x) \|_{L^4} \chi_{P_j}(x).
\]
The inequality (2.6) now follows directly.

We can now conclude the proof of Theorem 2.3. As it was proved in [13], the last estimate shows that there exists a $\frac{1}{2}$-sparse family $\mathcal{F} \subset \mathcal{D}(Q_0)$, such that for $a.$ e. $x \in Q_0$,
\[
\| T(f_k \chi_{3Q_0})(x) \|_{L^4} \chi_{Q_0}(x) \leq \sum_{Q \in \mathcal{F}} \| \{f_k\} \|_{L(\log L)^{\beta}, 3Q} \chi_Q(x).
\]
Recalling that $\{f_k\}_{1 \leq k \leq N}$ are functions in $L^1(\mathbb{R}^n)$ with compact supports, we can take now a partition of \mathbb{R}^n by cubes Q_j such that $\bigcup_{j=1}^{N} \text{supp } f_k \subset 3Q_j$ for each j and obtain a $\frac{1}{2}$-sparse family $\mathcal{F}_j \subset \mathcal{D}(Q_j)$ such that for $a.$ e. $x \in Q_j$,
\[
\| T(f_k \chi_{3Q_j})(x) \|_{L^4} \chi_{Q_j}(x) \leq \sum_{Q \in \mathcal{F}_j} \| \{f_k\} \|_{L(\log L)^{\beta}, 3Q} \chi_Q(x).
\]
Setting $\mathcal{S} = \{3Q : Q \in \bigcup_j \mathcal{F}_j\}$, we see that (2.3) holds for \mathcal{S} and $a.$ e. $x \in \mathbb{R}^n$. □

3. PROOF OF THEOREM 1.1

To prove our theorem 1.1 we will employ some lemmas.

Lemma 3.1. Let A be a function on \mathbb{R}^n with derivatives of order one in $L^q(\mathbb{R}^n)$ for some $q \in (n, \infty]$. Then
\[
|A(x) - A(y)| \lesssim |x - y| \left(\frac{1}{|I_x^y|} \int_{I_x^y} |\nabla A(y)|^q dy \right)^{\frac{1}{q}},
\]
where I_x^y is the cube centered at x and having side length $2|x - y|$.

For the proof of Lemma 3.1 see [6].

For a fixed $\beta \in (0, \infty)$, let $M_{L(\log L)^{\beta}}$ be the maximal operator defined by
\[
M_{L(\log L)^{\beta}} f(x) = \sup_{Q \ni x} \| f \|_{L(\log L)^{\beta}, Q},
\]
where the supremum is take over all cubes containing x. It is well known (see [23]) that for any $\lambda > 0$,

$$
(3.1) \quad |\{ x \in \mathbb{R}^n : M_{L(\log L)^\delta} f(x) > \lambda \}| \lesssim \int_{\mathbb{R}^n} \frac{|f(x)|}{\lambda} \log^\delta \left(1 + \frac{|f(x)|}{\lambda} \right) dx.
$$

Lemma 3.2. Let $l \in \mathbb{N}$ and $q \in (1, \infty)$. Then the maximal operator $M_{L(\log L)^l}$ satisfies that

$$
(3.2) \quad \left| \left\{ x \in \mathbb{R}^n : \| M_{L(\log L)^l} f_k(x) \|_{L^q} > \lambda \} \right| \lesssim \int_{\mathbb{R}^n} \frac{\| f_k(x) \|_{L^q}}{\lambda} \log^l \left(1 + \frac{\| f_k(x) \|_{L^q}}{\lambda} \right) dx.
$$

Proof. We only consider the case $l = 1$. The case $l \geq 2$ can be proved in the same way. As it was pointed out in [3] (see also [22]) that

$$
(3.3) \quad M_{L(\log L)^1} f(x) \approx M^2 f(x),
$$

with M^2 the operator M iterated twice. Thus, it suffices to show the operator M^1 satisfies (3.2). On the other hand, by the well known one-third trick (see [15, Lemma 2.5]), we only need to prove that, for each dyadic grid \mathcal{D}, the inequality

$$
(3.4) \quad \left| \left\{ x \in \mathbb{R}^n : \| M_\mathcal{D} (M_\mathcal{D} f_k)(x) \|_{L^q} > 1 \right\} \right| \lesssim \int_{\mathbb{R}^n} \| f_k(x) \|_{L^q} \log (1 + \| f_k(x) \|_{L^q}) dx.
$$

holds when $\{ f_k \}$ is finite. As in the proof of Lemma 8.1 in [7], we can very that for each cube $Q \in \mathcal{D}$, $\delta \in (0, \frac{1}{2})$ and $\lambda \in (0, 1),

$$
(3.5) \quad \inf_{c \in \mathbb{C}} \left(\frac{1}{|Q|} \int_Q \left\| \{ M_\mathcal{D} f_k(y) \} \right\|_{L^q} - c \right)^d dy \lesssim \left(\frac{1}{|Q|} \int_Q \left\| \{ M_\mathcal{D} (f_k \chi_Q)(y) \} \right\|_{L^q}^d dy \right)^\frac{1}{d} \lesssim \langle \| f_k \chi_Q \|_{L^q} \rangle_Q,
$$

where in the last inequality, we invoked the fact that $M_\mathcal{D}$ is bounded from $L^1(I^q, \mathbb{R}^n)$ to $L^{1, \infty}(I^q, \mathbb{R}^n)$. This, in turn, implies that

$$
(3.6) \quad M_{\mathcal{D}, \delta}^d (\| \{ M_\mathcal{D} f_k \} \|_{L^q})(x) \lesssim M_{\mathcal{D}} (\| \{ f_k \} \|_{L^q})(x).
$$

Again by the argument used in the proof of Lemma 8.1 in [7], we can verify that for each cube $Q \in \mathcal{D}$,

$$
\inf_{c \in \mathbb{C}} \frac{1}{|Q|} \int_Q \left\| \{ M_\mathcal{D} f_k(y) \} \right\|_{L^q} - c \left| dy \right| \lesssim \frac{1}{|Q|} \int_Q \left\| \{ M(f_k \chi_Q) \} \right\|_{L^q} \left| dy \right|.
$$

Therefore,

$$
(3.7) \quad M_{\mathcal{D}}^d (\| \{ M_\mathcal{D} f_k \} \|_{L^q})(x) \lesssim \sup_{Q \ni x} \langle (\| M_\mathcal{D} (f_k \chi_Q) \|_{L^q})_Q \rangle.
$$

Now we claim that for each cube $Q,

$$
(3.8) \quad \langle \| M(f_k \chi_Q) \|_{L^q} \rangle_Q \lesssim \| \{ f_k \} \|_{L^q} \|_{L(\log L)^1, Q}.
$$
Let $\Phi(t) = t \log^{-1}(e + t^{-1})$. If we can prove (3.8), it then follows from (2.1), (3.6), (2.2), (3.7) and (3.8) that

$$\left| \left\{ x \in \mathbb{R}^n : \| M_{\mathcal{G}}(M_{\mathcal{D}} f_k)(x) \|_{\mathcal{I}_b} > 1 \right\} \right| \lesssim \sup_{\lambda > 0} \Phi(\lambda) \left| \left\{ x \in \mathbb{R}^n : M_{\mathcal{D}_{\mathcal{G}}}^L \left(\left\{ \| M_{\mathcal{D}} f_k \|_{\mathcal{I}} \right\} (x) > \lambda \right) \right\} \right| \lesssim \sup_{\lambda > 0} \Phi(\lambda) \left| \left\{ x \in \mathbb{R}^n : M_{\mathcal{D}_{\mathcal{G}}}^L \left(\left\{ \| M_{\mathcal{D}} f_k \|_{\mathcal{I}_b} \right\} (x) > \lambda \right) \right\} \right| \lesssim \sup_{\lambda > 0} \Phi(\lambda) \left| \left\{ x \in \mathbb{R}^n : M_{\mathcal{D}_{\mathcal{G}}}^L \log \left(\left\{ \| f_k \|_{\mathcal{I}_b} \right\} (x) \right) > \lambda \right) \right| \lesssim \int_{\mathbb{R}^n} \| f_k(x) \|_{\mathcal{I}_b} \log \left(1 + \| f_k(x) \|_{\mathcal{I}_b} \right) dx,$$

which gives (3.4).

We now obtain that

$$\left| \left\{ x \in \mathbb{R}^n : \| M h_k(x) \|_{\mathcal{I}_b} > \lambda \right\} \right| \lesssim \frac{1}{\lambda^2} \int_{\{ \| h_k(y) \|_{\mathcal{I}_b} \leq \lambda \}} \| h_k(y) \|_{\mathcal{I}_b}^2 dy + \frac{1}{\lambda} \int_{\{ \| h_k(y) \|_{\mathcal{I}_b} > \lambda \}} \| h_k(y) \|_{\mathcal{I}_b} dy.
$$

We now obtain that

$$\int_Q \| M(f_k \chi_Q)(y) \|_{\mathcal{I}_b} dy = \int_{\{ y \in Q : \| M(f_k \chi_Q)(y) \|_{\mathcal{I}_b} \leq 1 \}} \| M(f_k \chi_Q)(y) \|_{\mathcal{I}_b} dy + \int_{\{ y \in Q : \| M(f_k \chi_Q)(y) \|_{\mathcal{I}_b} > 1 \}} \| M(f_k \chi_Q)(y) \|_{\mathcal{I}_b} dy \lesssim |Q| + \int_1^\infty \int_{\{ y \in Q : \| f_k(x) \|_{\mathcal{I}_b} \leq \lambda \}} \| f_k(x) \|_{\mathcal{I}_b} dy dx \frac{d\lambda}{\lambda^2} + \int_1^\infty \int_{\{ y \in Q : \| f_k(x) \|_{\mathcal{I}_b} > \lambda \}} \| f_k(x) \|_{\mathcal{I}_b} dy dx \frac{1}{\lambda} d\lambda \lesssim |Q|.$$

This establishes (3.8) and completes the proof of Lemma 3.2.

Let Ω be homogeneous of degree zero. For each j with $1 \leq j \leq n$, define the operator T_j as

$$T_j f(x) = \text{p.v.} \int_{\mathbb{R}^n} \frac{\Omega(x-y)(x_j - y_j)}{|x-y|^{n+1}} f(y) dy. \quad (3.9)$$
Lemma 3.3. Let \(q \in (1, \infty) \). \(T_A \) be the operator defined by (1.7). Under the hypothesis of Theorem 1.1, for each \(\lambda > 0 \),

\[
\| x \in \mathbb{R}^n : \| \{ T_A f_k(x) \} \|_q > \lambda \| \leq \lambda \int_{\mathbb{R}^n} \frac{\| \{ f_k(x) \} \|_q}{\lambda} \log \left(1 + \frac{\| f_k(x) \|_q}{\lambda} \right) \, dx.
\]

Proof. We will employ the argument from [H]. Applying the Calderón-Zygmund decomposition to \(\| f_k(x) \|_q \) at level \(\lambda \), we obtain a sequence of cubes \(\{ Q_j \}_j \) with disjoint interiors, such that

\[
\lambda < \langle \{ f_k \} \|_q \rangle_{Q_j} \leq 2^n \lambda,
\]

and \(\| f_k(x) \|_q \lesssim \lambda \) for a.e. \(x \in \mathbb{R}^n \setminus \bigcup_j Q_j \). Let

\[
g_k(x) = f_k(x) \chi_{\mathbb{R}^n \setminus \bigcup_j Q_j}(x) + \sum_j f_k(Q_j) \chi_{Q_j}(x),
\]

and

\[
b_k(x) = f_k(x) - g_k(x) = \sum_j (f_k(x) - \langle f_k \rangle_{Q_j}) \chi_{Q_j}(x) := \sum_j b_{k,j}(x).
\]

Let \(E_\lambda = \bigcup_n 4nQ_j \). By the fact that \(\| g_k \|_{L^\infty(\mathbb{R}^n)} \lesssim \lambda \) and the assumption (ii), we have that

\[
\left| \left\{ x \in \mathbb{R}^n : \| \{ T_A g_k(x) \} \|_q > \lambda/2 \right\} \right| \\
\lesssim |E_\lambda| + \left| \left\{ x \in \mathbb{R}^n \setminus E_\lambda : \| \{ T_A g_k(x) \} \|_q > \lambda/2 \right\} \right| \\
\lesssim \lambda^{-1} \| F_k \|_{L^1(\mathbb{R}^n \setminus E_\lambda)}.
\]

Thus, the proof of (3.10) can be reduced to showing that

\[
\left| \left\{ x \in \mathbb{R}^n \setminus E_\lambda : \| \{ T_A b_k(x) \} \|_q > \lambda/2 \right\} \right| \\
\lesssim \int_{\mathbb{R}^n} \frac{\| \{ f_k(x) \} \|_q}{\lambda} \log \left(1 + \frac{\| f_k(x) \|_q}{\lambda} \right) \, dx.
\]

We now prove (3.11). For each fixed \(j \), let

\[
A_j(y) = A(y) - \langle \nabla A \rangle_{Q_j} y.
\]

We can write

\[
T_A b_k(x) = \sum_j \int_{\mathbb{R}^n} \frac{\Omega(x-y)}{|x-y|^{n+1}} (A_j(x) - A_j(y)) b_{k,j}(y) \, dy \\
+ \sum_{i=1}^n \int_{\mathbb{R}^n} \Omega(x-y) \frac{x_i - y_i}{|x-y|^{n+1}} \sum_j (\partial_i A(y) - \langle \partial_i A \rangle_{Q_j}) b_{k,j}(y) \, dy \\
:= \sum_j T_A^i b_{k,j}(y) + \sum_{i=1}^n T_A^i b_k(y).
\]

Invoking Minkowski’s inequality, we see that for each \(j \),

\[
\| \{ b_{k,j}(x) \} \|_q \leq \left((\| b_k \|_q + \lambda) \chi_{Q_j} \right).
\]
By the vector-valued Calderón-Zygmund theory (see [1]), we see that for each fixed $1 \leq i \leq n$,

\begin{equation}
\left| \{ x \in \mathbb{R}^n : \| \{ T_A, \partial_y b(y) \} \|_{L^1} \geq \frac{\lambda}{\sqrt[4n]{4n}} \} \right|
\end{equation}

\begin{align*}
&\lesssim \lambda^{-1} \sum_j \int_Q |\nabla A(y) - \langle \partial_y A \rangle_Q| \| b_{k,j}(y) \|_{L^1} dy \\
&\lesssim \lambda^{-1} \sum_j |Q_j| |\nabla A(y) - \langle \partial_y A \rangle_Q|_{\exp, Q_j} \| b_{k,j} \|_{L^1} \| L_{\log, Q_j} \\
&\lesssim \int_{\mathbb{R}^n} \left\| f_k(x) \right\|_{L^1} \log \left(1 + \frac{\left\| f_k(x) \right\|_{L^1}}{\lambda} \right) dx.
\end{align*}

where

\(\| h \|_{\exp, Q_j} = \inf \left\{ t > 0 : \frac{1}{|Q_j|} \int_{Q_j} \exp \left(\frac{|h(y)|}{t} \right) dy \leq 2 \right\}, \)

and the second inequality follows from the generalization of Hölder’s inequality (see [26, p.64]), and the last inequality follows from the fact that

\(\| h \|_{L_{\log, Q_j}} \leq \lambda + \frac{\lambda}{|Q_j|} \int_{Q_j} \frac{|h(y)|}{\lambda} \log \left(1 + \frac{|h(y)|}{\lambda} \right) dy, \)

see [26, p. 69].

It remains to estimate \(T_A^i b_k \). For each fixed \(Q_j \), we choose \(x_j \in 3Q_j \setminus 2Q_j \). By vanishing moment of \(b_{j,k} \), we can write

\begin{align*}
|T_A^i b_{k,j}(x)| &\leq \frac{1}{|x - x_j|^{n+1}} \int_{\mathbb{R}^n} |A_j(x_j) - A_j(y)| |b_{j,k}(y)| dy \\
&+ \int_{\mathbb{R}^n} \left| \frac{\Omega(x-y)}{|x-y|^{n+1}} - \frac{\Omega(x-x_j)}{|x-x_j|^{n+1}} \right| |A_j(x) - A_j(y)| |b_{j,k}(y)| dy \\
&=: T_A^i b_{k,j}(x) + T_H^i b_{k,j}(x).
\end{align*}

By Lemma 3.1 we have that

\begin{align*}
\sum_j |T_A^i b_{k,j}(x)| &\lesssim \sum_j \frac{1}{|x - x_j|^{n+1}} |Q_j|^\frac{1}{4n} \| b_{k,j} \|_{L^1(\mathbb{R}^n)},
\end{align*}

which via Minkowski’s inequality implies that,

\begin{align*}
\left(\sum_k \left(\sum_j |T_A^i b_{k,j}(x)| \right)^{q} \right)^\frac{1}{q} &\lesssim \sum_j \frac{1}{|x - x_j|^{n+1}} |Q_j|^\frac{1}{4n} \left(\sum_k \| b_{k,j} \|_{L^1(\mathbb{R}^n)} \right)^\frac{1}{q} \\
&\lesssim \sum_j \frac{1}{|x - x_j|^{n+1}} |Q_j|^\frac{1}{4n} \| \{ b_{k,j} \} \|_{L^1(\mathbb{R}^n)}.
\end{align*}

Therefore,

\begin{equation}
\int_{\mathbb{R}^n \setminus E_\lambda} \left(\sum_k \left(\sum_j |T_A^i b_{k,j}(x)| \right)^{q} \right)^\frac{1}{q} dx \\
\lesssim \sum_j \int_{\mathbb{R}^n \setminus 4nQ_j} \frac{|Q_j|^\frac{1}{4n}}{|x - x_j|^{n+1}} dx \| \{ b_{k,j} \} \|_{L^1(\mathbb{R}^n)} \\
\lesssim \| \{ b_k \} \|_{L^1(\mathbb{R}^n)}.
\end{equation}
To estimate $|T_A^1 b_{k,j}(x)|$, we first observe that if $y \in Q_j$ and $x \in 2^{d+1}nQ_j \setminus 2^d nQ_j$ with $d \geq 2$, then by Lemma 3.1

$$|A_j(x) - A_j(y)| \lesssim |x - y| \left(\frac{1}{|I^y_j|} \int_{I^y_j} |\nabla A(y) - \langle \nabla A \rangle_{Q_j}| dy \right)^{\frac{1}{2}}$$

$$\lesssim |x - y| \left(\frac{1}{|I^y_j|} \int_{I^y_j} |\nabla A(z) - \langle \nabla A \rangle_{I^y_j}| dz \right)^{\frac{1}{2}}$$

$$+ |x - y| \|\langle \nabla A \rangle_{Q_j} - \langle \nabla A \rangle_{I^y_j} \right|$$

$$\lesssim d|x - y|.$$

This, via the continuity condition (1.8), implies that for each $δ < γ < 1$,

$$\sum_{d=2}^{\infty} d \int_{2^{d+1}nQ_j \setminus 2^{d} nQ_j} \frac{\Omega(x - y)}{|x - y|^{n+1}} dy \lesssim \frac{\Omega(x - x_j)}{|x - x_j|^{n+1}}. $$

On the other hand, another application of Minkowski’s inequality gives us that

$$\left(\sum_k \left(\sum_j |T_A^1 b_{k,j}(x)| \right)^{q} \right)^{\frac{1}{q}} \lesssim \sum_j \left(\sum_k |T_A^1 b_{k,j}(x)| \right)^{\frac{1}{q}}$$

$$\lesssim \sum_j \int \frac{\Omega(x - y)}{|x - y|^{n+1}} \|A_j(x) - A_j(y)\| \|b_{k,j}(y)\| dy.$$

We thus deduce that

$$\left(\sum_k \left(\sum_j |T_A^1 b_{k,j}(x)| \right)^{q} \right)^{\frac{1}{q}} \lesssim \sum_j \|b_{k,j}\| \|L^1(n; \mathbb{R}^n) \| \|b_k\| \|L^1(n; \mathbb{R}^n).$$

Combining the estimates (3.13) and (3.14) yields

$$\left(\sum_k \left(\sum_j |T_A^1 b_{k,j}(x)| \right)^{q} \right)^{\frac{1}{q}} \lesssim \|b_k\| \|L^1(n; \mathbb{R}^n),$$

which, via the estimates (3.12), leads to (3.11) and then completes the proof of Lemma 3.3.

Now let $γ \in (0, 1]$. We know from Theorem 1 in [12] that,

$$T_A^1 f(x) \lesssim \gamma M_A f(x) + M_{L \log L} f(x).$$

For fixed $0 < δ < γ < 1$, dyadic grid D and cube $Q \in D$. Again as in [7],

$$\inf_{c \in C} \left(\frac{1}{|Q|} \int_Q \|\{M_D, γf_k(y)\}\|_{l^q} - c \delta dy \right)^{\frac{1}{q}}$$

$$\lesssim \left(\frac{1}{|Q|} \int_Q \|\{M_D, γf_k(y)\}\|_{l^q} \right)^{\frac{1}{q}}$$

$$\lesssim \left(\frac{1}{|Q|} \int_Q \|\{f_k(y)\}\|_{l^q} \right)^{\frac{1}{q}}.$$
Our desired conclusion about \(T_A \) is bounded from \(L^1(\mathbb{R}^d; \mathbb{R}^n) \) to \(L^{1, \infty}(\mathbb{R}^d; \mathbb{R}^n) \). Recall that by (3.3) \(T_A \) is bounded from \(L^1(\mathbb{R}^d; \mathbb{R}^n) \) to \(L^{1, \infty}(\mathbb{R}^d; \mathbb{R}^n) \). By (2.1) and the argument used in the proof of Lemma 3.2, we get that

\[
\left| \left\{ x \in \mathbb{R}^n : \| \{ M_{\mathcal{S}, \gamma}(T_A f_k)(x) \} \|_{t_0} > 1 \right\} \right| \\
\leq \sup_{\lambda > 0} \Phi(\lambda) \left| \left\{ x \in \mathbb{R}^n : M_{\mathcal{S}, \gamma}^\mathcal{S}(\{ M_{\mathcal{S}, \gamma}(T_A f_k) \} \|_{t_0})(x) > \lambda \right\} \right| \\
\leq \sup_{\lambda > 0} \Phi(\lambda) \left| \left\{ x \in \mathbb{R}^n : \| T_A f_k \|_{t_0}(x) > \lambda \right\} \right| \\
\leq \sup_{\lambda > 0} \Phi(\lambda) \lambda^{-1} \sup_{s \geq 2^{d + \lambda}} \left| \left\{ x \in \mathbb{R}^n : \| T_A f_k(x) \|_{t_0} > s \right\} \right| \\
\leq \int_{\mathbb{R}^n} \| \{ f_k(x) \} \|_{t_0} \log \left(1 + \| f_k(x) \|_{t_0} \right) dx,
\]

where the second-to-last inequality follows from the inequality (11) in [12], and the last inequality follows from Lemma 3.3. This, together with the one-third trick and Lemma 3.2 leads to that

\[
\left| \left\{ x \in \mathbb{R}^n : \| T_A f_k(x) \|_{t_0} > \lambda \right\} \right| \\
\lesssim \int_{\mathbb{R}^n} \| \{ f_k(y) \} \|_{t_0} \log \left(1 + \| f_k(y) \|_{t_0} \right) dy.
\]

Proof of Theorem 1.1 Let \(q \in (1, \infty) \). Recall that \(T_A \) is bounded on \(L^q(\mathbb{R}^n) \). If we can prove that for all \(x \in \mathbb{R}^n \),

\[
\mathcal{M} T_A f(x) \leq C M_{L, 1} f(x) + T_A^* f(x),
\]

then by Lemma 3.2 and (3.15),

\[
\left| \left\{ x \in \mathbb{R}^n : \| M_{T_A f}(x) \|_{t_0} > 2\lambda \right\} \right| \lesssim \int_{\mathbb{R}^n} \| \{ f_k(y) \} \|_{t_0} \log \left(1 + \| f_k(y) \|_{t_0} \right) dy.
\]

This, via Theorem 2.3 implies that for bounded functions \(f_1, \ldots, f_N \) with compact supports, there exists a sparse family \(\mathcal{S} \), such that for a. e. \(x \in \mathbb{R}^n \),

\[
\| M_{T_A f}(x) \|_{t_0} \lesssim \mathcal{A}_{\mathcal{S}, 1} \log L(\| f_k \|_{t_0})(x).
\]

Our desired conclusion about \(T_A \) then follows from Lemma 2.1 directly.

We now prove (3.16). Let \(Q \subset \mathbb{R}^n \) be a cube and \(x, \xi \in Q \). Denote by \(B_x \) the ball centered at \(x \) and having diameter \(20 \text{diam } Q \). As in [18], we can write

\[
|T_A(f\chi_{\mathbb{R}^n \setminus 3Q})(\xi)| \leq |T_A(f\chi_{\mathbb{R}^n \setminus B_x})(\xi)| \leq |T_A(f\chi_{\mathbb{R}^n \setminus B_x})(\xi)|
\]

It is obvious that

\[
|T_A(f\chi_{\mathbb{R}^n \setminus B_x})(x)| \leq T_A^* f(x).
\]

Let \(A_{B_x}(y) = A(y) - \langle \nabla A \rangle_{B_x} y \). We have that

\[
A(\xi) - A(y) - \nabla A(y)(\xi - y) = A_{B_x}(\xi) - A_{B_x}(y) - \nabla A_{B_x}(y)(\xi - y).
\]
A trivial computation then leads to that
\[|T_A(f \chi_{B_x \setminus 3Q})(\xi)| \lesssim \int_{B_x \setminus 3Q} \frac{|A(\xi) - A(y) - \nabla A(y)(\xi - y)|}{|\xi - y|^{n+1}} |f(y)| dy \]
\[\lesssim \frac{1}{|B_x|^{1+\frac{3}{n}}} \int_{B_x \setminus 3Q} |A_{B_x}(\xi) - A_{B_x}(y)| |f(y)| dy \]
\[+ \frac{1}{|B_x|} \int_{B_x} |\nabla A(y) - m_{B_x}(\nabla A)| |f(y)| dy = I(\xi) + \Pi(\xi). \]

Note that for \(y \in B_x \setminus 3Q \) and \(\xi \in Q \), \(I_\xi^y \subset B_x \subset 4nI_\xi \). An application of Lemma 3.1 shows that
\[|A_{B_x}(\xi) - A_{B_x}(y)| \lesssim |B_x|^{\frac{3}{n}}, \]
and so
\[I(\xi) \lesssim \frac{1}{|B_x|} \int_{B_x} |f(y)| dy \lesssim Mf(x). \]

On the other hand, by the generalization of Hölder’s inequality and the John-Nirenberg inequality, we deduce that
\[\Pi(\xi) \lesssim \|f\|_{L_{\log, B_x}} \lesssim M_{L_{\log}} L f(x). \]

Therefore,
\[(3.19) \quad |T_A(f \chi_{B_x \setminus 3Q})(\xi)| \lesssim M_{L_{\log}} L f(x). \]

To estimate \(|T_A(f \chi_{R^d \setminus B_x})(x) - T_A(f \chi_{R^d \setminus B_x})(\xi)| \), we employ the ideas used in [10, 13]. Write
\[\left| \frac{\Omega(x - y)}{|x - y|^{n+1}} (A(x) - A(y) - \nabla A(y)(x - y)) \right| \]
\[- \frac{\Omega(\xi - y)}{|\xi - y|^{n+1}} (A(\xi) - A(y) - \nabla A(y)(\xi - y)) \]
\[\lesssim \left| \frac{\Omega(x - y)}{|x - y|^{n+1}} - \frac{\Omega(\xi - y)}{|\xi - y|^{n+1}} \right| |A_{B_x}(\xi) - A_{B_x}(y) - \nabla A_{B_x}(y)(\xi - y)| \]
\[+ \frac{\Omega(x - y)}{|x - y|^{n+1}} |A_{B_x}(x) - A_{B_x}(\xi) - \nabla A_{B_x}(y)(x - \xi)| \]
\[:= G(x, \xi) + H(x, \xi). \]

Another application of Lemma 3.1 gives us that for \(q \in (n, \infty) \),
\[|A_{B_x}(x) - A_{B_x}(\xi)| \lesssim |x - \xi| \left(\frac{1}{|I_\xi^y|} \int_{I_\xi^y} |\nabla A(z) - (\nabla A)_{B_x}| \, dz \right)^{1/q} \]
\[\lesssim |x - \xi| \left(1 + \left| (\nabla A)_{B_x} - (\nabla A)_{I_\xi} \right| \right) \]
\[\lesssim |x - \xi| \left(1 + \log \frac{\ell(Q)}{|x - \xi|} \right). \]
A trivial computation leads to that if $\xi \in Q\setminus \{x\}$, then
\[
\int_{\mathbb{R}^n \setminus B_x} H(x, \xi)|f(y)|dy \lesssim |x - \xi| \left(1 + \log \left(\frac{\ell(Q)}{|x - \xi|} \right) \right) \int_{\mathbb{R}^n \setminus B_x} \frac{|f(y)|}{|x - y|^{n+1}} dy \\
+ |x - \xi| \int_{\mathbb{R}^n \setminus B_x} \frac{|\nabla A(y) - \langle \nabla A \rangle_{B_x}|}{|x - y|^{n+1}} |f(y)|dy \\
\lesssim |x - \xi| \left(1 + \log \left(\frac{\ell(Q)}{|x - \xi|} \right) \right) Mf(x) \\
+ + M_{L \log Lf(x)} \lesssim M_{L \log Lf(x)}.
\]

For each $y \in 2^k B_x \setminus 2^{k-1} B_x$ with $k \in \mathbb{Z}$, we have by Lemma 4.1 that
\[
|A_{B_x}(\xi) - A_{B_x}(y) - \nabla A_{B_x}(y)(\xi - y)| \lesssim (k + |\nabla A(y) - \langle \nabla A \rangle_{B_x}|).
\]

This, in turn leads to that
\[
\int_{\mathbb{R}^n \setminus B_x} G(x, \xi)|f(y)|dy \lesssim \sum_{k=1}^{\infty} \int_{2^k B_x \setminus 2^{k-1} B_x} \frac{\Omega(x - y)}{|x - y|^{n+1}} - \frac{\Omega(\xi - y)}{|\xi - y|^{n+1}} \\
\times (k + |\nabla A(y) - \langle \nabla A \rangle_{B_x}|) |f(y)|dy \\
\lesssim M_{L \log Lf(x)}.
\]

Therefore, for each $\xi \in Q$,
\begin{equation}
T_A(f_{\chi_{\mathbb{R}^n \setminus B_x}}(x) - T_A(f_{\chi_{\mathbb{R}^n \setminus B_x}})(\xi)) \lesssim M_{L \log Lf(x)}.
\end{equation}

Combining the estimates (3.18)-(3.20) leads to that
\[
\text{ess sup}_{\xi \in Q} |T_A(f_{\chi_{\mathbb{R}^n \setminus 3Q}})(\xi)| \leq CM_{L \log Lf(x)} + T_A^*f(x).
\]

We turn our attention to $M_{T_A^*}$. Again, it suffices to verify that for bounded functions f_1, \ldots, f_N with compact supports, there exists a sparse family \mathcal{S}, such that for a.e. $x \in \mathbb{R}^n$,
\begin{equation}
\|\{T_A^*f_k(x)\}\|_{\mathcal{S}} \lesssim A_{S, L \log L}(\|f_k\|_W)(x),
\end{equation}

which, by Theorem 2.3, can be reduced to proving that
\begin{equation}
M_{T_A^*}f(x) \leq CM_{L \log Lf(x)} + T_A^*f(x).
\end{equation}

Let $Q \subset \mathbb{R}^n$ be a cube and $x, \xi \in Q$. Write
\[
|T_A^*(f_{\chi_{\mathbb{R}^n \setminus 3Q}})(\xi)| \leq |T_A^*(f_{\chi_{\mathbb{R}^n \setminus B_x}})(x) - T_A^*(f_{\chi_{\mathbb{R}^n \setminus B_x}})(\xi)| \\
+ |T_A^*(f_{\chi_{\mathbb{R}^n \setminus B_x}})(x) + |T_A^*(f_{\chi_{B_x \setminus 3Q}})(\xi)| \\
\lesssim \sup_{\epsilon > 0} |T_A, \epsilon(f_{\chi_{\mathbb{R}^n \setminus B_x}})(x) - T_A, \epsilon(f_{\chi_{\mathbb{R}^n \setminus B_x}})(\xi)| \\
+ T_A^*f(x) + M_{L \log Lf(x)}.
\]
A straightforward computation leads to that for each \(\epsilon > 0 \),
\[
|T_{A, \epsilon}(f \chi_{\mathbb{R}^n \setminus B_\epsilon})(x) - T_{A, \epsilon}(f \chi_{\mathbb{R}^n \setminus B_\epsilon})(\xi)| \\
\lesssim \int_{|x-y| > \epsilon, |\xi-y| < \epsilon} \frac{|\Omega(x-y)|}{|x-y|^{n+1}} |A(x) - A(y) - \nabla A(y)(x-y)||f\chi_{\mathbb{R}^n \setminus B_\epsilon}(y)|dy \\
+ \int_{|x-y| \leq \epsilon, |\xi-y| > \epsilon} \frac{|\Omega(\xi-y)|}{|\xi-y|^{n+1}} |A(\xi) - A(y) - \nabla A(y)(\xi-y)||f\chi_{\mathbb{R}^n \setminus B_\epsilon}(y)|dy \\
+ \int_{\mathbb{R}^n \setminus B_\epsilon} \frac{\Omega(x-z)}{|x-z|^{n+1}} A(x) - A(y) - \nabla A(y)(x-y)\|f(y)\|dy \\
= E_1 + E_2 + E_3.
\]
As in the proof of (3.20), we know that
\[
E_3 \lesssim M_L \log Lf(x).
\]
On the other hand, as in (3.19), we deduce that
\[
E_1 \lesssim \int_{\epsilon < |x-y| \leq 2\epsilon} \frac{|\Omega(x-y)|}{|x-y|^{n+1}} |A(x) - A(y) - \nabla A(y)(x-y)||f(y)||dy \\
\lesssim M_L \log Lf(x),
\]
and
\[
E_2 \lesssim \int_{\epsilon < |\xi-y| \leq 2\epsilon} \frac{|\Omega(\xi-y)|}{|\xi-y|^{n+1}} |A(\xi) - A(y) - \nabla A(y)(\xi-y)||f(y)||dy \\
\lesssim M_L \log Lf(x).
\]
(3.22) now follows from the estimates for \(E_1, E_2 \) and \(E_3 \). This completes the proof of Theorem 1.1 \(\square \)

Example 3.4. Let us consider the operator
\[
T_A f(x) = \int_{\mathbb{R}} \frac{A(x) - A(y) - A'(y)(x-y)}{(x-y)^2} f(y)dy.
\]
For \(A \) on \(\mathbb{R} \) such that \(A' \in \text{BMO}(\mathbb{R}) \), \(T_A \) is bounded on \(L^p(\mathbb{R}, w) \) for \(p \in (1, \infty) \) and \(w \in A_p(\mathbb{R}) \). Now let \(\delta \in (0, 1/2) \) and
\[
f(x) = x^{-1+\delta} \chi_{(0,1)}(x), \quad w(x) = |x|^{(p-1)/(1-\delta)}.
\]
It is well known that \(|w|_{A_p} \approx \delta^{-p+1} \) (see [2] [5]). Also, \(\|f\|_{L^p(\mathbb{R}^n, w)} = \delta^{-1} \). Let \(A(y) = y \log(|y|) \). We know that \(A'(y) = 1 + \log |y| \in \text{BMO}(\mathbb{R}) \). A straightforward computation leads to that for \(x \in (0, 1) \),
\[
T_A f(x) = \int_0^1 x \frac{\log x - y \log y - (1 + \log y)(x-y)}{(x-y)^2} y^{-1+\delta} dy \\
= x \int_0^1 \frac{\log x - y \log y}{(x-y)^2} y^{-1+\delta} dy - \int_0^1 \frac{1}{x-y} y^{-1+\delta} dy \\
= x^{-1+\delta} \int_0^1 \frac{\log y}{(1-t)^2} t^{-1+\delta} dt - x^{-1+\delta} \int_0^1 \frac{1}{1-t} t^{-1+\delta} dt.
\]
Recall that for $t \in (0, 1) \cup (1, \infty)$, $\log \frac{1}{t} \geq 1 - t$. Therefore, for $x \in (0, 1)$,

$$|T_A f(x)| \geq x^{-1+\delta} \int_0^1 \frac{\log \frac{1}{x} - 1 + t}{(1-t)^2} t^{-1+\delta} dt \geq x^{-1+\delta} \int_0^1 \left(\frac{\log \frac{1}{x} - 1}{1-t} \right) t^{-1+\delta} dt \geq x^{-1+\delta} \int_0^1 \left(\frac{1}{t} - 1 \right) t^{-1+\delta} dt \geq (\delta^{-2} - \delta^{-1}) x^{-1+\delta} \geq \frac{1}{2} \delta^{-2} x^{-1+\delta}.
$$

Therefore,

$$\|T_A f\|_{L^p(\mathbb{R}, w)} \geq \frac{1}{2} t^{-2} \|f\|_{L^p(\mathbb{R}, w)}.$$

This shows that the conclusion in Theorem 1.1 is sharp when $p \in (1, 2]$.

4. PROOF OF THEOREM 1.3

We begin with a lemma.

Lemma 4.1. Let $\beta \in [0, \infty)$, S be a sparse family and $A_{S,L, (\log L)^\beta}$ be the associated sparse operator. Then for $p \in (1, \infty)$, $\epsilon \in (0, 1)$ and weight u,

$$\|A_{S,L, (\log L)^\beta} f\|_{L^p(\mathbb{R}, u)} \lesssim p^{1+\beta} \|f\|_{L^p(\mathbb{R}, M_{L,(\log L)^{p-1+\epsilon}})}.$$

Proof. Denote by $A_{S,L, (\log L)^\beta}^*$ the adjoint operator of $A_{S,L, (\log L)^\beta}$. Then for suitable functions f and g, and any $s \in (1, \infty)$,

$$\left| \int_{\mathbb{R}^n} A_{S,L, (\log L)^\beta}^* f(x) h(x) dx \right| \leq \sum_{Q \in S} |Q| |\langle f \rangle_Q| Q \|h\|_{L^s(\mathbb{R}, M_{L,(\log L)^{p-1}})}$$

$$\lesssim \frac{1}{(s-1)^\beta} |Q| |\langle f \rangle_Q| \left(\frac{1}{|Q|} \int_Q |g(y)|^s dy \right)^{1 \over s}.$$

Repeating the argument used in the proof of Theorem 1.7 in [20], we deduce that for $p \in (1, \infty)$, $\epsilon \in (0, 1)$ and weight u,

$$\|A_{S,L, (\log L)^\beta}^* f\|_{L^{p'}(\mathbb{R}^n, (M_{L,(\log L)^{p-1+\epsilon}})^{1-p'})} \lesssim_n p^{1+\beta} \|f\|_{L^{p'}(\mathbb{R}^n, u^{1-p'})}.$$

This, via a duality argument, shows that

$$\|A_{S,L, (\log L)^\beta} f\|_{L^p(\mathbb{R}^n, u)} \lesssim_n p^{1+\beta} \left(\frac{1}{\epsilon} \right)^{1 \over p} \|f\|_{L^p(\mathbb{R}^n, M_{L,(\log L)^{p-1+\epsilon}})}.$$

This completes the proof of Lemma 4.1. □

The following Theorem is an improvement of Lemma 4.1 in [19], and the proof here is of independent interest.

Theorem 4.2. Let S be a sparse family and $\beta \in [0, \infty)$, $A_{S,L, (\log L)^\beta}$ be the associated sparse operator. Let $\epsilon \in (0, 1]$ and u be a weight. Then for each $\lambda > 0$,

$$u\{x \in \mathbb{R}^n : A_{S,L, (\log L)^\beta} f(x) > \lambda \} \lesssim \frac{1}{e^{1+\beta}} \int_{\mathbb{R}^n} \frac{|f(x)|}{\lambda} \log^{\beta} \left(e + \frac{|f(x)|}{\lambda} \right) M_{L,(\log L)^\beta} u(x) dx.$$
Proof. By the well known one-third trick, we may assume that $S \subset \mathcal{D}$ for some dyadic grid \mathcal{D}. Now let $M_{\mathcal{D}^q, L(\log L)^q}$ be the maximal operator defined by

$$M_{\mathcal{D}^q, L(\log L)^q}f(x) = \sup_{Q \subseteq \mathcal{D}^q} \|f\|_{L(\log L)^q, Q}.$$

Decompose the set $\{x \in \mathbb{R}^n : M_{\mathcal{D}^q, L(\log L)^q}f(x) > 1\}$ as

$$\{x \in \mathbb{R}^n : M_{\mathcal{D}^q, L(\log L)^q}f(x) > 1\} = \bigcup Q_j,$$

with Q_j the maximal cubes in \mathcal{D} such that $\|f\|_{L(\log L)^q, Q_j} > 1$. Therefore,

$$1 < \frac{1}{|Q_j|} \int_{Q_j} |f(y)| \log^\beta \left(e + |f(y)|\right) \, dy \lesssim 2^n.$$

Let

$$f_1(y) = f(y)\chi_{\mathbb{R}^n \setminus \bigcup Q_j}(y); f_2(y) = \sum_j f(y)\chi_{Q_j}(y);$$

and

$$f_3(y) = \sum_j \|f\|_{L(\log L)^q, Q_j} \chi_{Q_j}(y).$$

It is obvious that $\|f_1\|_{L^{\infty}(\mathbb{R}^n)} \lesssim 1$. Thus, by Lemma 4.1,

$$\|u\|_{L^{\infty}(\mathbb{R}^n)} \lesssim 1$$

(4.1) \quad \begin{align*}
\|u\|_{L^{\infty}(\mathbb{R}^n)} & \lesssim \|A_S, L(\log L)^q f_1(x) > 1/2\| \lesssim \|A_S, L(\log L)^q f_1\|_{L^q(\mathbb{R}^n, u)} \\
& \lesssim q^{q(1+\beta)} \left(\frac{1}{\epsilon}\right)^{\frac{q}{q-1}} \int_{\mathbb{R}^n} |f_1(y)|^q M_{L(\log L)^q} f_1 \, dy \\
& \lesssim \frac{1}{\epsilon^{1+\beta}} \int_{\mathbb{R}^n} |f_1(y)| M_{L(\log L)^q} u(y) \, dy,
\end{align*}

if we choose $q = 1 + \epsilon/2$.

Now let $E = \bigcup_j \bigcup Q_j$, and $u_E(y) = u(y)\chi_{\mathbb{R}^n \setminus E}(y)$. We can verify that

$$\|u\|_{L^{\infty}(\mathbb{R}^n)} \lesssim \sum_j \inf_{z \in Q_j} M_{u(z)}|Q_j| \lesssim \int_{\mathbb{R}^n} |f(y)| \log^\beta \left(e + |f(y)|\right) M_{u(y)} \, dy$$

and for each j and $\gamma \in [0, \infty)$

$$\sup_{y \in Q_j} M_{L(\log L)^\gamma} u_E(y) \approx \sup_{z \in Q_j} M_{L(\log L)^\gamma} u_E(z).$$

Note that $\|f_3\|_{L^{\infty}(\mathbb{R}^n)} \lesssim 1$ and

$$\|f_3\|_{L^1(\mathbb{R}^n, M_{L(\log L)^\gamma} u_E)} \lesssim \sum_j \inf_{z \in Q_j} M_{L(\log L)^\gamma} u_E(z) |Q_j| \|f\|_{L(\log L)^q, Q_j}$$

$$\lesssim \int_{\mathbb{R}^n} |f(y)| \log^\beta \left(e + |f(y)|\right) M_{L(\log L)^\gamma} u_E(y) \, dy.$$

If we can prove that for $x \in \mathbb{R}^n \setminus E$,

$$A_S, L(\log L)^q f_2(x) \lesssim A_S, L(\log L)^q f_3(x),$$

(4.3) [\text{Insert Equation Here}]
then by Lemma 4.1 and the inequality (4.3),

\(u \{ x \in \mathbb{R}^n \setminus E : \mathcal{A}_S, L(\log L)^\beta f_2(x) > 1 \} \)

\[\lesssim \| \mathcal{A}_S, L(\log L)^\beta f_3 \|_{L^q(\mathbb{R}^n, \gamma)}^q \]

\[\lesssim q^{q(1+\beta)} \left(\frac{1}{\epsilon} \right)^{\frac{\beta}{q'}} \| f_3 \|_{L^q(\mathbb{R}^n, M_{L(\log L)^{q-1+\epsilon/2}})}^q \]

\[\lesssim q^{q(1+\beta)} \left(\frac{1}{\epsilon} \right)^{\frac{\beta}{q'}} \int_{\mathbb{R}^n} |f(y)| \log^\beta (e + |f(y)|) M_{L(\log L)^{q-1+\epsilon/2}} u_B(y) \, dy \]

\[\lesssim \frac{1}{\epsilon^{1+\beta}} \int_{\mathbb{R}^n} |f(y)| \log^\beta (e + |f(y)|) M_{L(\log L)} u_B(y) \, dy, \]

again we choose \(q = 1 + \epsilon / 3 \). Our desired estimate for now follows from (4.1), (4.2) and (4.4) directly.

We now prove (4.3). For each fixed \(x \in \mathbb{R}^n \setminus E \) and each cube \(I \in \mathcal{D} \) containing \(x \), note that \(I \cap Q_j \neq \emptyset \) implies that \(Q_j \subset I \). Thus, for each \(\lambda > 0 \), a straightforward computation tells us that

\[\int_I \frac{|f_3(y)|}{\lambda} \log^\beta \left(e + \frac{|f_3(y)|}{\lambda} \right) \, dy \]

\[= \sum_{j : Q_j \subset I} \int_{Q_j} \frac{|f_3(y)|}{\lambda} \log^\beta \left(e + \frac{|f_3(y)|}{\lambda} \right) \, dy \]

\[\lesssim \sum_{j : Q_j \subset I} \frac{\| f \|_{L(\log L)^\beta, Q_j}}{\lambda} \log^\beta \left(e + \frac{\| f \|_{L(\log L)^\beta, Q_j}}{\lambda} \right) \]

\[\times \int_{Q_j} \frac{|f(y)|}{\| f \|_{L(\log L)^\beta, Q_j}} \log^\beta \left(e + \frac{|f(y)|}{\| f \|_{L(\log L)^\beta, Q_j}} \right) \, dy \]

\[\lesssim \sum_{j : Q_j \subset I} \frac{|Q_j|}{\lambda} \frac{\| f \|_{L(\log L)^\beta, Q_j}}{\lambda} \log^\beta \left(e + \frac{\| f \|_{L(\log L)^\beta, Q_j}}{\lambda} \right), \]

since for \(t_1, t_2 \in [0, \infty) \),

\[\log(e + t_1 t_2) \lesssim \log(e + t_1) \log(e + t_2). \]

On the other hand,

\[\int_I \frac{|f_3(y)|}{\lambda} \log^\beta \left(e + \frac{|f_3(y)|}{\lambda} \right) \, dy \]

\[= \sum_{j : Q_j \subset I} \int_{Q_j} \frac{|f_3(y)|}{\lambda} \log^\beta \left(e + \frac{|f_3(y)|}{\lambda} \right) \, dy \]

\[= \sum_{j : Q_j \subset I} |Q_j| \frac{\| f \|_{L(\log L)^\beta, Q_j}}{\lambda} \log^\beta \left(e + \frac{\| f \|_{L(\log L)^\beta, Q_j}}{\lambda} \right). \]

Therefore, for each \(x \in \mathbb{R}^n \setminus E \) and \(I \in \mathcal{D} \) containing \(x \),

\[\| f_2 \|_{L(\log L)^\beta, I} \lesssim \| f_3 \|_{L(\log L)^\beta, I}. \]

The inequality (4.3) follows directly. This completes the proof of Theorem 4.2. \(\square \)

Proof of Theorem 4.3. We only consider \(T_A \). The argument for \(T^*_A \) is similar. Applying the ideas used in [17, p.608] (see also the proof of Corollary 1.3 in [19],...
These estimates extend and improve the main results in [13] and [12].

\[\lambda > \]

Moreover, for each fixed \(\lambda > 0 \),

This, along with the inequality (3.17), leads to our desired conclusion for \(T_A \).

\[\square \]

Remark 4.3. Let \(\epsilon \in (0, 1] \) and \(u \) a weight. By Lemma 4.1, Theorem 4.2, the estimates (5.17) and (5.21), we know that for \(p \in (1, \infty) \),

\[\| T_A f_k \|_{L^p(\mathbb{R}^n)} + \| T_A^* f_k \|_{L^p(\mathbb{R}^n)} \leq \lambda \]

Moreover, for each fixed \(\lambda > 0 \),

\[\| \{ T_A f_k(x) \} \|_{L^1(\mathbb{R}^n, w)} \]

These estimates extend and improve the main results in [13] and [12].

References

[1] K. F. Anderson and R. T. John, Weighted inequality for vector-valued maximal functions and singular integrals, Studia Math. 69 (1980), 19-31.

[2] S. M. Buckley, Estimates for operator norms on weighted spaces and reverse Jensen inequalities, Trans. Amer. Math. Soc. 340 (1993), 253-272.

[3] N. Carozza and A. Passarelli di Napoli, Composition of maximal operators, Publ. Mat. 49 (2005), 73-91.

[4] J. Cohen, A sharp estimate for a multilinear singular integral on \(\mathbb{R}^n \), Indiana Univ. Math. J. 30 (1981), 693-702.

[5] D. Chung, M. Pereyra, and C. Pérez, Sharp bounds for general commutators on weighted Lebesgue spaces, Trans. Amer. Math. Soc. 364 (2012), 1163-1177.

[6] J. Cohen, A sharp estimate for a multilinear singular integral on \(\mathbb{R}^n \), Studia Math. 109 (1994), 105-131.

[7] G. Hu and D. Li, A Cotlar type inequality for the multilinear singular integral operators and its applications, J. Math. Anal. Appl. 290 (2004) 639-653.

[8] O. Dragicević, L. Grafakos, M. Pereyra and S. Petermichl, Extrapolation and sharp norm estimates for classical operators on weighted Lebesgue spaces, Publ. Mat. 49 (2005), 73-91.

[9] C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107-115.

[10] L. Grafakos, Modern Fourier analysis, GTM 250, 2nd Edition, Springer, New York, 2008.

[11] S. Hofmann, On certain non-standard Calderón-Zygmund operators, Studia Math. 109 (1994), 105-131.

[12] G. Hu and D. Yang, Sharp function estimates and weighted norm inequalities for multilinear singular integral operators, J. Math. Anal. Appl. 428 (2015), 605-626.

[13] A. K. Lerner, On pointwise estimate involving sparse operator, New York J. Math. 22 (2016), 341-349.
[19] A. K. Lerner, S. Obmrosi and I. Rivera-Rios, On pointwise and weighted estimates for commutators of Calderón-Zygmund operators, [arXiv:1604.01334].
[20] K. Li, C. Pérez, Isreal P. Rivera-Rios and L. Roncal, Improved weighted bounds for rough singular integral operators, [arXiv:1701.05170].
[21] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
[22] C. Pérez, Weighted norm inequalities for singular integral operators, J. London Math. Soc. 49(1994), 296-308.
[23] C. Pérez, Endpoint estimates for commutators of singular integral operators, J. Funct. Anal. 128 (1995), 163-185.
[24] S. Petermichl, The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical A_p characteristic, Amer. J. Math. 129 (2007), 1355-1375.
[25] S. Petermichl, The sharp weighted bound for the Riesz transforms, Proc. Amer. Math. Soc. 136 (4) (2008), 1237-1249.
[26] M. Rao and Z. Ren, Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker Inc., New York, 1991.
[27] E. M. Stein, Harmonic Analysis, Real Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ. 1993.

GUOEN HU, DEPARTMENT OF APPLIED MATHEMATICS, ZHENGZHOU INFORMATION SCIENCE AND TECHNOLOGY INSTITUTE, ZHENGZHOU 450001, P. R. CHINA
E-mail address: guoenx@163.com