SHORT COMMUNICATION

Molecular and immunohistochemical analysis of P53 in phaeochromocytoma

PLM Dahia¹, RCT Aguiar2*, AM Tsanaclis¹, I Bendit², SP Bydlowski², NMA Abelin¹ and SPA Toledo¹

¹Endocrine Genetics Unit, Division of Endocrinology, University of São Paulo School of Medicine, São Paulo, Brazil; ²Division of Haematology, University of São Paulo School of Medicine, São Paulo, Brazil. *Present address: Department of Haematology, Hammersmith Hospital, London, UK.

Summary We searched for mutations of the p53 gene in 25 phaeochromocytomas using polymerase chain reaction-single strand conformation polymorphism (PCR–SSCP) analysis of the entire conserved region of the gene, encompassing exons 4–8: expression of the p53 protein was assessed by immunohistochemistry. No mutations were found, while a polymorphism in codon 72 was observed. Immunohistochemistry revealed nuclear p53 overexpression in one tumour sample. We conclude that mutations of the ‘hotspot’ region of the p53 gene do not seem to play a role in the pathogenesis of phaeochromocytoma.

Keywords: phaeochromocytoma; p53 gene; mutation; immunohistochemistry; molecular screening; polymorphism

Although recent studies have identified the gene involved in familial forms of phaeochromocytoma (Viskochil et al., 1990; Latif et al., 1993; Mulligan et al., 1993), little is known about the molecular pathogenesis of the sporadic variants of the tumour. It has been shown that a number of phaeochromocytomas have loss of heterozygosity of chromosome 17p (Khosla et al., 1991). The p53 tumour-suppressor gene, located on this region (17p13), has been reported as the most frequent genetic abnormality seen in human malignancies (Hollstein et al., 1991). This gene codes for a phosphoprotein that is involved in cell cycle regulation (Lane, 1993; Zambetti and Levine, 1993). Variations in the gene structure that lead to impaired function of the p53 protein may confer genetic instability to the cell, favouring the development of neoplasia (Hollstein et al., 1991).

With the aim of determining the potential role of p53 in this tumour, we have searched for mutations in a series of phaeochromocytomas using polymerase chain reaction–single strand conformation polymorphism (PCR–SSCP) analysis of the ‘hotspot’ region of the gene; the expression of the p53 protein in tumour samples was also assessed by immunohistochemistry.

Materials and methods

Patients

We studied 25 phaeochromocytomas, of which only one was non-functional. The patients’ mean age was 31.4 years (range 9–64 years), with tumour size ranging from 4 to 11.5 cm (mean 7.2 cm). Four tumours were extra-adrenal. Three of the tumours were hereditary, originating from patients with neurofibromatosis, von Hippel–Lindau disease and familial phaeochromocytoma (without evidence of the complete multiple endocrine neoplasia 2A syndrome); the other 22 were sporadic forms. Twenty-one phaeochromocytomas were benign and four malignant.

PCR–SSCP analysis

We studied comparatively tumour and constitutive (leucocyte) DNA from all patients. Tumour specimens were obtained during surgery; a fragment was excised from the core of the tumour in order to avoid normal tissue contamination. DNA was extracted by the standard phenol–chloroform method (Sambrook et al., 1987). PCR of exons 5–8 was performed as previously described (Aguiar et al., 1995), using two sets of primers: TGCGAAGTCTGACTTTCATGCT (Hollstein et al., 1993). The PCR products were digested with a restriction enzyme or a combination of enzymes, separated by electrophoresis, and stained with ethidium bromide. The size of each fragment was determined by comparison with standard fragments, which were obtained from normal DNA.

Immunohistochemistry

A monoclonal antibody directed to both wild-type and mutant p53, DO-1 (kindly provided by Immunotech, Marsei--
recognising the N-terminal portion of the protein, was used in the formalin-fixed, paraffin-embedded phaeochromocytoma samples. The immunohistochemical reaction was performed as previously described (Tsanaclis et al., 1991), using the peroxidase–antiperoxidase complex method. The reaction was visualised by aminoethylcarbazole. A uterine sarcoma sample harbouring a p53 mutation was used as positive control. The bone marrow cytospin preparation of a chronic myeloid leukaemia patient harbouring a p53 mutation (the same used as a positive control of the SSCP) was a second positive control of the assay. In the negative control, the primary antibody was replaced by buffer alone.

DNA sequencing

Exons 4–8 of the sample showing abnormal pattern at immunohistochemistry were sequenced. Heminested primers, together with the primers used for the PCR-SSCP analysis, were used for sequencing exons 5, 6, 7 and 8 (exon 5 ACTGAATTCGGCCAGCTGCACCACATCG; exon 6 CTGGAGAGACGAACGGGCTG; exon 7 ACTGAATTCCAGGTGTCTCTGACCTGGGA; exon 8 TATAAGCTCTATCCGAGTATGGTAA). The PCR products of the four exons were gel-purified and directly sequenced with the Circum Vent thermal cycle DNA sequencing kit (New England Biolabs, Beverly, MA, USA), according to the manufacturer’s instructions. The exon 4 fragment was subcloned into the pCRII vector (Invitrogen, Leek, The Netherlands) and sequenced using the Sequenase 2.0 kit (US Biochemicals, Cleveland, OH, USA), according to the manufacturer’s guidelines. Both strands were analysed for confirmation of the findings.

Results

No specific mutations were found in the DNA from any of the analysed samples (Figure 1). A polymorphism was found in exon 4 (codon 72), identified by both SSCP conditions and restriction analysis with BsrUI. Six samples contained a proline (CCC); five, an arginine (CGC), and the remaining 14 were heterozygous, containing both proline and arginine at this position (Figure 2).

A single sample showed overexpression of p53 protein in the immunohistochemical analysis, disclosing the expected nuclear staining pattern in more than 10% of the cells (Figure 3). Exons 4, 5, 6, 7 and 8 were sequenced and no mutation was found. This sample contained a proline at codon 72 and was derived from a sporadic, benign extra-adrenal phaeochromocytoma.
Discussion

We found no mutations of the p53 gene in a representative population of pheochromocytomas. The only abnormal sample in our study at immunohistochemistry was derived from a benign, sporadic, extra-adrenal pheochromocytoma. Although an increased potential for malignant development in extra-adrenal pheochromocytomas has been suggested (Linnola et al., 1990), no metastases were found at surgery in this patient. Additionally, none of the four malignant pheochromocytomas here studied showed molecular or immunohistochemical abnormalities.

Three other studies have attempted to explore a possible role for p53 in pheochromocytomas (Yana et al., 1992; Yoshimoto et al., 1992; Lin et al., 1994). These studies produced conflicting results: two of these had results similar to our own, as no abnormalities in this gene were found (Yana et al., 1992, Yoshimoto et al., 1992). However, Lin et al. (1994) found an elevated frequency of p53 mutations, most of which were located in exon 4, in a small series of pheochromocytomas. The analysis of the exon 4 in our tumours did not show mutations. The polymorphism found in codon 72 has already been reported (Matlashewski et al., 1987) and the allelic frequency observed in our samples did not differ from that previously described (Weston et al., 1992; Zhang et al., 1992). Although the proline isoform of p53 protein was found to be twice as stable as the arginine variant in a cell line (Zhang et al., 1992), and a relative overrepresentation of the proline isoform in lung adenocarcinomas has been described (Weston et al., 1992), an attempt to associate a potential susceptibility with malignant phenotype conferred by any of the polymorphic variants has not been successful (Zhang et al., 1992). Interestingly, our abnormal sample at immunohistochemistry contained a proline at codon 72. No preferential allele incidence was observed in our malignant samples.

The finding of immunohistochemical overexpression of p53 protein in a single sample not harbouring mutation might result either from structural abnormalities outside the studied region or from abnormal stabilisation of the wild-type protein, leading to an increase in its half-life. The former condition occurs in less than 10% of various human tumours studied so far (Hollstein et al., 1991). Moreover, mutations outside the 'hotspot' region are more commonly of the nonsense type, as opposed to the usual missense mutations that occur in the 'hotspot' region between exons 5 and 8 (Bodner et al., 1992). These nonsense mutations are expected to form a truncated mutant protein, unable to react with p53 antibodies, in contrast with the p53 staining observed in our case. However, factors other than mutations may lead to p53 protein overexpression. These conditions are mostly related to stabilisation of the protein as a result of binding of p53 to cellular regulatory proteins, as mdm2 (Momand et al., 1992). Thus, based on our results, we conclude that mutations of the 'hotspot' region of p53 gene are unlikely to play an important role in the origin or development of pheochromocytoma.

Acknowledgements

The authors are indebted to Professor A Grossman for providing the conditions for analysis of exon 4 and for his helpful comments on the manuscript. To Dr SL Chew for critical review of the manuscript and to Drs M Ezabella, C Hayashida, B Mendonça, C Longui, D Maleri, J Praxedes, H Bernardes and A Pereira for their assistance with some of the tumour specimens. This work was supported in part by Fundação Faculade de Medicina. CAPES and FAPESP (No. 92 2548-5).

References

AGUIAR RCT, DAHIA PLM, BENDIT I, BEITLER B, DORLHIA-LACER P, BYDLOWSKY S AND CHAMONE D. (1995). Further evidence for the lack of correlation between the breakpoint site within M-BCR and CML prognosis and for the occasional involvement of p53 in transformation. Cancer. Genet. Cytogenet. (in press).

BODNER SM, MINNA JD, JENSEN SM, D'AMICO D, CARBONE D, MITSUZUMI T, FEDORKO J, BUCHHAGEN DL, NAU MM, GAZ-DAR AF AND LANNOLA R. (1992). Expression of mutation p53 proteins in human lung cancer correlates with the class of p53 gene mutation. Oncogene, 7, 743–749.

HOLLSTEIN M, SIDRANSKY D, VOGLSTEIN B AND HARRIS CC. (1991). p53 mutations in human cancers. Science, 253, 49–53.

KHOGLA S, PATEL VM, HAY JD, SCHALL DI, GRANT CS, VAN HEERDEN JA AND THIBODEAU SN. (1991). Loss of heterozygosity suggests multiple genetic alterations in pheochromocytomas and medullary thyroid carcinomas. J Clin Invest, 87, 1691–1697.

LAME DP. (1993). A death in the life of p53. Nature, 362, 786.

LATIF F, TORY K, GNARRA J, YAO M, DUH FM, ORCUTT ML, STACKHOUSE T, KUZMIN I, MODI W, GEIL L, SCHMIDT L, ZHOU F, LI H, WEI MH, CHEN F, GLENN G, CHAYKE P, WALTER MM AND WANG Y. (1993). Identification of the von Hippel Lindau disease tumor suppressor gene. Science, 260, 1317–1320.

LIN S-R, LEE Y-J AND TSAI JH. (1994). Mutations of the p53 gene in human functional adrenal neoplasms. J Clin Endocrinol Metab., 78, 483–491.

Linnola RI, KEISER HR, STEINBERG SM AND LACK EE. (1990). Histopathology of benign versus malignant sympathoadrenal paragangliomas: clinicopathologic study of 120 cases including unusual histologic features. Hum Pathol, 21, 1168–1175.

MATLASHEWSKY GI, TUCK S, PIM D, LAMB P, SCHNEIDER J AND CRAWFORD LV. (1987). Primary structure polymorphism at aminoacid residue 72 of human p53. Mol Cell Biol, 7, 961–963.

Momand J, Zambetti GP, OLSON DC, GEORGE D AND LEVINE AJ. (1992). The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell, 69, 1237–1245.

MULLIGAN LM, KWOK JBJ, HEALEY CS, ELDSON MJ, ENG C, GARDNER E, LOVE DR, MOLE SE, MOORE JK, PAPI L, PONDER MA, TELENIUS H, TUNNACLIFFE A AND PONDER BAI. (1993). Germine mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature, 363, 458–460.

SAMBRUK S, FRITSCHE J AND MANIATIS T. (1987). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, NY.

TSANACLIS AM, ROBERT F AND BREM S. (1991). The cycling pool of cells within human brain tumors: in situ cytokinetics using the monoclonal antibody Ki-67. Can J Neurol Sci, 18, 12–17.

VOKOCHIL D, BUCHBERG AM, XU G, CATHORN AM, STEVENS J, WOLFF RK, CULVER M, CAREY JC, COPELAND NG, JENKINS NA, WHITE R AND O'CONNELL P. (1990). Deletions and a transcriptional deletion of the p53 gene at the neuroblastoma type 1 locus. Cell, 62, 187–192.

WESTON A, PERRIN LS, FORRESTER K, HOOVER RN, TRUMP BF, HARRIS CC AND CAPORASO NE. (1992). Allelic frequency of a p53 polymorphism in human lung cancer. Cancer Epidemiol. Biomarkers Prevention, 1, 481–483.

YANA I, NAKAMURA T, SHI E, KARAKAWA K, KURAHASHI H, KURITA Y, KOBAYASHI T, MORI T, NISHISHO I AND TAKAI S. (1992). Inactivation of p53 is not required for tumorgenesis of medullary carcinoma of thyroid or pheochromocytoma. Jpn J Cancer Res, 83, 1113–1116.

YOSHIMOTO K, IWAKAHA H, FUKUDA A, TOSHIKAI S, SAITO S AND ITAKURA M. (1992). Role of p53 mutations in endocrine tumorgenesis: mutation detection by polymerase chain reaction-single strand conformation polymorphism. Cancer Res, 52, 5061–5064.

ZAMBITTI GP AND LEVINE AJ. (1993). A comparison of the biological activities of wild-type and mutant p53. FASEB J, 7, 855–865.

ZANG W, HU G AND DEISSEROTH A. (1992). Polymorphism at codon 72 of the p53 gene in human acute myelogenous leukemia. Gene, 117, 271–275.