Pharmacological modulation of myeloid-derived suppressor cells to dampen inflammation

Chiel van Geffen, Constantin Heiss, Astrid Deißler and Saeed Kolahian*

Institute of Laboratory Medicine, German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Phillipps University Marburg, Marburg, Germany

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population with potent suppressive and regulative properties. MDSCs' strong immunosuppressive potential creates new possibilities to treat chronic inflammation and autoimmune diseases or induce tolerance towards transplantation. Here, we summarize and critically discuss different pharmacological approaches which modulate the generation, activation, and recruitment of MDSCs in vitro and in vivo, and their potential role in future immunosuppressive therapy.

KEYWORDS
MDSC, pharmacotherapy, immune suppression, immunomodulation, inflammation

1. Introduction

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous immature immune cell population, originating from the common myeloid progenitor cell, with potent immunosuppressive effect on T cell proliferation and activity (1). MDSCs were first described in cancer patients and associated with increased tumor growth and T cell dysfunction (2). In this respect, MDSCs are mainly studied in the tumor microenvironment, where they inhibit the anti-tumor immune response and support tumor angiogenesis (1, 3). In the context of the tumor microenvironment, dampening MDSCs may decrease metastatic niche formation (3–5). However, MDSCs not only play a role in cancer but also in a variety of other pathological conditions associated with an inflammatory state, such as, chronic infections, autoimmunity, asthma, or obesity (6–9). In autoimmune diseases, MDSCs can be useful to protect against tissue damage driven by an imbalanced immune reaction. Furthermore, if the immune response needs to be dampened, e.g. after allograft transplantation, or in conditions such as graft-versus-host disease (GVHD), MDSCs' immunosuppressive potential might be beneficial. So far, the majority of imbalanced immune conditions are treated by corticosteroids and other immunosuppressive drugs which include substantial side effects. Therefore, MDSCs are a
promising therapeutic target due to their immunosuppressive properties (10). This review discusses pharmacological approaches involved in the generation, recruitment and activation of MDSCs, providing possible clues for novel cellular immunosuppressive therapies.

1.1 Subsets

Due to the heterogeneity of the MDSC population, most marker proteins are not unique to MDSCs nor universally expressed. Nevertheless, two major subtypes can be distinguished: polymorphonuclear (PMN-) and monocytic (M-) MDSCs based on their similarities to neutrophils and monocytes, respectively. In mice, PMN-MDSCs are defined as CD11b+ Ly-6G+ Ly-6C-low and M-MDSCs as CD11b+ Ly-6G+ Ly-6C-high, while in humans PMN-MDSCs express CD11b+ CD14+ CD15- or CD11b+ CD14 CD66b+ and M-MDSCs CD11b+ CD14+ HLA-DR-low CD15+. Only by means of these markers, PMN-MDSCs and M-MDSCs are undistinguishable from neutrophils and monocytes, respectively, and functional assays, such as T cell proliferation and cytokine release assays, are needed to evaluate the immunosuppressive activity (11). Unfortunately, MDSC heterogeneity as well as the significant overlap with more ‘conventional’ immune cell populations complicate the refinement of a universal distinctive MDSC signature. Quantitative tools, such as single-cell RNA sequencing and mass cytometry, as well as other advances contributing to the multi-omics approach, are starting to provide more insights into the phenotypic, morphological and functional heterogeneity of MDSCs (12). For example, CD84 and JAML were recently identified as a surface marker that helps to identify PMN-MDSCs in humans. LOX-1 can be found on heterogeneity of MDSCs. Recently, lectin-type oxidized low-density lipoprotein receptor 1 (LOX-1) has been described as a new marker for PMN-MDSCs in humans. LOX-1 can be found on macrophages, endothelial and smooth muscles cells, but importantly is not expressed on neutrophils and therefore presents a surface marker that helps to identify PMN-MDSCs (11). Furthermore, CD84 and JAML were recently identified as potential markers of MDSCs in breast cancer (13). Additionally, two arginase-1-expressing myeloid clusters were identified – Spp1+Apoe+C1qa+ and Gpmmb+Vegfa+Clec4d+Trem2+ – in murine tumors, where Trem2 was found to be associated with immunosuppressive function (14).

1.2 Origin and generation of MDSCs

During normal hematopoiesis common myeloid progenitor cells develop from hematopoietic stem cells and differentiate via immature myeloid cells into red blood cells, granulocytes, monocytes, thrombocytes and mast cells under the influence of growth factors, interleukins and other regulatory molecules. Under certain pathological conditions such as cancer, with chronic stimuli of a relatively low intensity, two signals are required for MDSCs proliferation. The first signal is responsible for stimulation of myelopoiesis with the inhibition of maturation and differentiation of progenitor cells and the expansion of immature myeloid cells while the second signal promotes the transformation into immunosuppressive MDSCs (15). Factors shown to be involved in MDSC expansion and activation include granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor (G-CSF), macrophage colony-stimulating factor (M-CSF), stem cell factor (SCF), cyclooxygenase (COX) 2, prostaglandins (PG), vascular endothelial growth factor (VEGF) and interleukin (IL-) 6 (1). The Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 3 pathway appears to be the most important regulator for MDSC expansion (1). For example, GM-CSF, G-CSF, and IL-6 induce the expansion of MDSCs through activation of STAT3 (15–18). The transcription factor interferon regulatory factor (IRF) 8 – downregulated by GM-CSF and G-CSF – acts as a STAT3- and STAT5-dependent negative regulator of MDSC generation (19). In addition, the β2-adrenergic receptor (AR) has been shown to play a role in MDSC generation and activation through STAT3 (20). Further underlining the importance of STAT3, several studies revealed that STAT3 inhibition dampened MDSCs in the tumor microenvironment and proved to be a useful anticancer therapy (21–23). Interferon (IFN-) γ activates the STAT1 pathway and leads to activation of MDSCs (24). Similarly, activation of the STAT6 pathway through IL-4 and IL-13 can induce immunosuppressive properties of MDSCs (15). Pro-inflammatory mediators such as tumor necrosis factor (TNF-) α, IL-1β, IL-12, PGE2 or Toll-like receptor (TLR) ligands enhance the immunosuppressive capacities of MDSCs through the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) pathway (25–30). In detail, activation of PGE2 receptor (EP) 2 and EP4 inhibits receptor-interacting protein kinase 3 (RIPK3), which in turn enhances the NF-kB pathway, as activated RIPK3 is involved in its downregulation (31). Furthermore, the endoplasmic reticulum (ER) stress response pathway ends up in the NF-kB pathway and promotes the activation of immunosuppressive MDSCs. The function of this pathway is to protect the cell from cellular stress like shortage of nutrients, hypoxia, or low pH (12). Furthermore, inhibition of the Notch pathway and activation of the adenosine receptor promote the expansion of MDSCs (32, 33). Those mechanisms create possible targets for in vitro and in vivo generation of MDSCs. MDSCs themselves are considered as immature cells with a high plasticity. Under hypoxic conditions, MDSCs are able to differentiate into tumor-associated macrophages, M2-like macrophages, inflammatory dendritic cells or fibrocytes (34). Hence, some researchers state that MDSCs are not a definitive cell group, but rather cells in transitory states, whose differentiation is ongoing.
1.3 Recruitment

Once generated, MDSCs are recruited to the site of activity by chemokines. The role of several cytokines, chemokines and their receptors in MDSC recruitment is reviewed elsewhere (35). These chemokines have been described to play an important role in MDSC recruitment through their interaction with corresponding G-protein coupled chemokine receptors: C-X-C motif ligand (CXCL)1/CXCL2/CXCL5 with C-X-C motif receptor (CXCR)2, CXCL8 with CXCR1/CXCR2, CXCL17 with CXCR8, C-C motif ligand (CCL)2/CCL12 withCCR2, CCL3/CCL4/CCL5 with CCR5, and CCL15 with CCR1. Specifically, CXCR2 appears to be critical for MDSC recruitment (4, 36–42).

1.4 Mechanisms of immunosuppressive activity

Activated MDSCs carry out their suppressive activity on T cell proliferation by different mechanisms, which were reviewed by Gabrilovich and Nagaraj (1). Upon upregulation of transcription factors like STAT1, 3, 6 and NF-κB, the expression of reactive oxygen species (ROS), arginase-1 (Arg-1), inducible nitric oxide synthase (iNOS), NF-κB and idoleamine 2,3-dioxygenase (IDO) is increased. Production of ROS by nicotiamide adenine dinucleotide phosphate (NADPH) oxidase suppresses T cell function by destroying proteins, lipids and inducing apoptosis among other mechanisms (43, 44). Both Arg-1 and iNOS deplete L-arginine – an amino acid essential for T cell metabolism – from the microenvironment and thus, inhibit T cell proliferation by suppressing T cell cycle progression (45). In addition, the iNOS product nitric oxide (NO) suppresses T cell function and induces apoptosis by itself through different mechanisms (1). Simultaneously, IDO inhibits T cell proliferation by depleting tryptophan from T cell metabolism as well as increasing regulatory T cells (Treg) recruitment (46). Shifting the T cell population towards immunosuppressive forkhead box (Fox) P3+ regulatory T cells (Treg) presents another effective way of immunosuppression (47, 48). In addition, MDSCs have been shown to suppress B cell responses (49). There are also subset specific differences: M-MDSCs mainly use NO produced by iNOS to suppress T cell function, while PMN-MDSCs express higher levels of ROS and peroxynitrite, a product from the reaction of NO and superoxide anion (50, 51). Both M- and PMN-MDSC secrete Arg-1 (50).

2. Pharmacological approaches to modulate MDSCs

There are in principle two main pharmacological approaches for MDSC generation: Expanding MDSCs ex vivo and adoptively transferring them into patients or stimulating endogenous MDSC expansion/activation. Possible pharmacological approaches for MDSCs generation, activation and recruitment are presented in Table 1 as well as Figure 1.

2.1 Adoptive transfer of in vitro/ex vivo generated/activated MDSCs

Non-stem cell-based cell therapies that use cells such as CAR-T cells, dendritic cells and natural killer cells are promising and rapidly evolving (92). MDSC cell therapy may be another promising strategy in this list, especially considering its potent immunosuppressive capacity and its role in maintaining immune tolerance in transplantation and autoimmunity. Several pre-clinical studies have shown promising therapeutic effects of the adoptive transfer of MDSCs in organ transplantation, autoimmune diseases as well as in a variety of other immune-related disorders, such as cyclosporin A-induced hypertension, heart failure and asthma (63, 69, 93–100). Here, we briefly discuss some of the cytokines and pharmacological compounds that have been identified to promote the generation and/or activation of MDSCs in vitro/ex vivo and were applied as MDSC cell therapy.

2.1.1 Cytokines

Park et al. demonstrated the beneficial role of in vitro generated MDSCs in the context of GVHD (101). Here, the highest efficiency of in vitro production of MDSCs from CD34+ human umbilical cord blood cells was achieved with a combination of GM-CSF and SCF, whereas G-CSF/SCF and M-CSF/SCF were less effective (101). Adoptively transferred MDSCs were shown to ameliorate GVHD and prolong survival in a murine xenogenic model of GVHD by promoting Tregs and inhibiting the T helper (Th) 1 and Th17-driven inflammatory responses (101). MDSCs generated with GM-CSF/SCF were shown to exhibit increased immunosuppressive activity after the transfer in vivo compared to MDSCs generated in the presence of either G-CSF/SCF or M-CSF/SCF (101). Hsieh et al. also showed beneficial effects of adoptive transfer of MDSCs in renal fibrosis and diabetic neuropathy in diabetic mice (102). Here, murine bone marrow-derived MDSCs were induced with GM-CSF, IL-1β and IL-6 in vitro. In addition, Yang et al. induced M-MDSCs with combinations of M-CSF/IFN-γ and M-CSF/TNF-α, respectively, and demonstrated prolonged skin allograft survival upon adoptive transfer (103, 104). In vivo generated MDSCs, induced by GM-CSF, G-CSF, and IL-6, efficiently ameliorated autoimmune arthritis in mice (105). Recently, another group demonstrated that the adoptive transfer of splenic CD11b+Gr-1+ MDSCs, obtained from G-CSF-treated donor mice, are capable of prolonging heart allograft survival (93).
As already discussed above, there are many cytokines and cytokine combinations identified to play important roles in MDSC generation and activation. Here it is important to consider that certain cytokine signaling is required to induce MDSCs, and the discussed pharmacological compounds are insufficient to induce in vitro/ex vivo MDSCs without additional cytokine signaling.

2.1.2 Glucocorticoids
Zhao et al. induced MDSCs in vitro by means of GM-CSF and dexamethasone (63). Adoptive transfer of dexamethasone-induced MDSCs into mice prolonged heart allograft survival, likely through increased levels of iNOS and increased number of Tregs (63). Indeed, dexamethasone is already an established immunosuppressive drug, and these findings show that a part of

Target	Potential pharmacological drug	Effect of potential drug on MDSCs	Murine model(s)	Reference
β2-AR	β2-AR agonists (Terbutalin)	Increased number	GVHD	(52)
Calcineurin	Calcineurin inhibitors (Cyclosporin A, Tacrolimus)	Increased number	Skin allograft	(53, 54)
CXCRI.2	CXCRI, CXCR2, CXCL17 agonists	Increased number	Pulmonary hypertension	(4, 36–40)
EP2/4	PGE2 (EP2/4 agonists)	Increased number	Asthma	(31, 55–57)
ERK1/2	Glucosamine	Increased number	–	(58)
ESR2	Quercetin	Increased number	Prostate carcinoma	(59, 60)
ETAR	ETAR antagonists (BQ123)	Increased number	Autoimmune hepatitis Colitis	(61, 62)
Glucocorticoid receptor	Glucocorticoids (Dexamethasone, Methylprednisolone)	Increased number	Cardiac/skin allograft	(63–65)
LILRB	Glatirameracetat	Increased number	Inflammatory bowel disease	(66, 67)
LRP2	Lactoferrin	Increased number	Autoimmune hepatitis Lung inflammation Necrotizing enterocolitis	(68)
mTOR	mTOR inhibitors (Rapamycin)	Increased number	Cardiac/corneal/skin allograft	(40, 48, 69–77)
RIPK3	RIPK3 inhibitors (GSK872)	Increased number	Autoimmune hepatitis Pneumonia Multiple sclerosis	(78–80)
STAT1, STAT5	Tofacitinib, IFN-γ	Increased number	Arthritis	(81, 82)
TLR2, TLR4	TLR2 ligands, TLR4 ligands (CFA-M. tuberculosis, MV-P. pentosaceus)	Increased number	Fibrosis Peritonitis Type-1-diabetes	(83–87)
Unclear	Cannabidiol	Increased number	Autoimmune hepatitis Multiple sclerosis	(88, 89)
Unclear	Claritromycin	Increased number	Post-influenza pneumonia Sepsis	(90)
Unclear	Taurodeoxycholate	Increased number	Sepsis	(91)

β2-AR, β2-adrenergic receptor; CFA, Complete Freund’s adjuvant; CXCRI, C-X-C chemokine receptor; EP, Prostaglandin E2 receptor; ERR, Extracellular signal-regulated kinase; ESR, Estrogen signaling receptor; ETAR, Endothelin A receptor; GVHD, Graft-versus-host disease; LILRB, Leukocyte immunoglobulin-like receptor B; LPS, Lipopolysaccharide; LRP, Lactoferrin receptor; mTOR, Mammalian target of rapamycin; MV, Membrane vesicles; RIPK3, Receptor-interacting protein kinase 3; STAT, Signal transducer and activator of transcription; TLR, Toll-like receptor.
its immunosuppressive activity is likely mediated by their effect on MDSCs.

2.1.3 Lactoferrin

Adoptive transfer of *in vitro* generated murine bone marrow-derived MDSCs treated with lactoferrin (LF) prolonged survival and ameliorated inflammation in necrotizing enterocolitis in newborn mice as well as concanavalin-induced hepatitis and ovalbumin-induced lung inflammation (68). Both *in vitro* and *in vivo* LF treatment increased MDSC numbers, likely via NF-kB activation, but only in infant mice due to decreased LF receptor (LRP) 2 expression in adults (68). However, *in vivo* administration of LF was shown to be much less effective in recruiting and activating MDSCs compared to the adoptive transfer of *in vitro* generated MDSCs using LF. This study demonstrates the potential of targeting NF-kB and LRP2 to recruit MDSCs (68).

2.1.4 PGE2

PGE2, in combination with GM-CSF and either IL-4 or IL-6, was found to efficiently induce MDSCs *ex vivo* (55, 100). From the four EP subreceptors (EP1-4) of PGE2, EP2 and EP4, and not EP1 and EP3, were found to induce MDSC development, hinting at an important role of the adenylate cyclase/cAMP/PKA/CREB signaling pathway (55, 100). Furthermore, the adoptive transfer of MDSCs generated in the presence of a selective EP4 receptor agonist dampened airway inflammatory features in a murine model of asthma (100).

2.1.5 Phorbol 12-myristate 13-acetate

The combination of M-CSF and PMA was recently shown to induce MDSCs *in vitro* (106). The adoptive transfer of PMA-induced MDSCs induced immune tolerance in a mouse skin transplantation model, by inhibiting the T cell response, promotion of cytokine secretion and inducing Tregs (106).
PMA significantly upregulated Arg-1 expression in MDSCs, and an Arg-1 inhibitor (nor-NOHA) diminished MDSC activity (106). This study confirms that in vitro induced-MDSCs may be promising targets for adoptive transfer to modulate immunosuppression, such as in organ transplantation.

2.1.6 Rapamycin

The mTOR inhibitor rapamycin is frequently used in immunosuppressive therapy following allograft transplantation in order to prevent allograft rejection. Rapamycin is also applied on drug-eluting stents to decrease stent stenosis, via its anti-proliferative properties. Nakamura et al. performed adoptive transfer of in vitro generated MDSCs, treated with rapamycin, directly into the coronary artery of heart allografts in mice (48). Administration of rapamycin-induced MDSCs prolonged skin allograft survival and demonstrated the possibility of local MDSC therapy. Adoptive transfer of rapamycin-treated MDSCs resulted in improved outcomes concerning acute kidney injury, with increased Tregs number and decreased pro-inflammatory cytokines compared to adoptive transfer of MDSCs not treated with rapamycin (40).

To this end, the in vitro/ex vivo generation and subsequent adoptive transfer of MDSCs has been established in animal models and most studies observe a beneficial effect in the treatment of inflammatory diseases, yet human studies are needed to further confirm the therapeutic concepts. However, at the time of writing this review, no clinical trials investigating MDSC adoptive transfer as a cell therapy have been performed nor were registered in the clinical trial databases of the National Institute of Health1 or the EU clinical trial register2. Nevertheless, the generation/expansion of endogenous MDSC, by administration of the right cytokine combination or potential medications, would be the more elegant way to generate, activate and recruit the MDSCs and dampen inflammatory diseases. We discuss the possibilities in the following chapter of this review.

2.2 In vivo generation, recruitment, and activation of MDSCs

2.2.1 Acetaminophen

Hsu et al. showed that the increase of intrahepatic MDSCs by a sublethal dose of acetaminophen was able to protect mice against subsequent lethal doses of acetaminophen, lipopolysaccharide (LPS)/D-galactosamine or concanavalin A (107). This finding was confirmed by a loss of protection after MDSC depletion (107). The observed protective effect was likely mediated by increased iNOS expression, as iNOS-expressing MDSCs were found to induce the apoptosis of activated neutrophils and decreased the intrahepatic infiltration of elastase-expressing neutrophils (107). Furthermore, the group of Hsu et al. were able to generate human PMBC-derived MDSCs with a similar phenotype (107).

2.2.2 Rapamycin and other mammalian target of rapamycin inhibitors

Besides the immune regulating features of rapamycin and its ability to generate MDSCs in vitro for cell therapy, rapamycin has also been linked to MDSC recruitment and activation in vivo. Nakamura et al. reported prolonged heart allograft survival in mice under Rapamycin administration, which was found to be related to increased number of MDSCs, particularly M-MDSCs, and iNOS expression (48). Zhang et al. showed that rapamycin treatment ameliorated acute kidney injury through the recruitment and activation of mainly PMN-MDSCs (40). A recent study by Scheurer et al. demonstrated that rapamycin administered after bone marrow transplantation promoted immunosuppressive properties of MDSCs and thus prevented GVHD (70). Furthermore, rapamycin treatment ameliorated heart failure in mice, likely through the induction of MDSCs, as MDSC depletion diminished this beneficial effect (69). Wei et al. treated cornea transplanted mice with eye drops containing rapamycin nano-micelles (71). An increased recruitment of MDSCs and expression of Arg-1 and iNOS was observed and was in line with a prolonged allograft survival. Also, immunological hepatic injury, rapamycin treatment was found to promote MDSC recruitment, generation, and activity, and ameliorated the disease (72). Recently, our group demonstrated the allograft survival prolonging properties of rapamycin in obese mice through increased M-MDSCs number and activity (73). Taken together, rapamycin seems to be an efficient inductor of MDSC generation and activation, with the advantage of already being approved for clinical use for certain diseases. Furthermore, a novel mTOR inhibitor, INK128, was shown to promote wound healing in streptozotocin-induced diabetic mice (74). mTOR deficiency in M-MDSCs was shown to induce tolerance of mouse cardiac allografts (75), while adoptive transfer of PMN-MDSCs lacking mTOR expression was shown to dampen acute GVHD (76), confirming the beneficial role of mTOR inhibition in promoting MDSC immune suppression.

However, the linking mechanism between mTOR and MDSCs is not fully understood. Nakamura et al. stated that mTOR inhibition could lead to increased activation of the Raf/MEK/ERK pathway, which caused MDSC recruitment and activation (48). Another possible mechanism responsible for MDSC activation is the downregulation of runt-related transcription factor 1 (runx1) gene expression (40). A third possible mechanism was recently described by Jia et al. who reported that AKT1, a known downstream target of mTOR, regulates MDSC immunosuppressive activities by suppressing hypoxia-inducible factor 1α-dependent glycolysis (77).
Therefore, further research is necessary to further clarify the underlying mechanism.

2.2.3 Glucocorticoids

Evidence emerged showing that glucocorticoids may also carry out their immunosuppressive effect through the induction as well as the recruitment of MDSCs. Mechanistically, the glucocorticoid receptor (GR) is critical for the immunosuppressive activity of MDSCs, as GR activation leads to the release of CXCR2, which is one of the main chemokines involved in the recruitment of MDSCs to areas of inflammation (64). Liao et al. demonstrated the same effects and mechanisms of dexamethasone administration in vivo in a mouse model of skin allograft transplantation (64). Another frequently used glucocorticoid is methylprednisolone. Direct correlations between methylprednisolone administration and increases in the number of MDSCs, particularly PMN-MDSCs, have recently been demonstrated in a murine model of multiple sclerosis (MS) and human MS patients by Wang et al. (65). Interestingly, a difference in MDSC immunosuppressive activity was observed in mice compared to human MS patients, whereas MDSCs show higher immunosuppressive activity in the latter upon treatment with methylprednisolone. This was revealed by measuring MDSC activity in experimental autoimmune encephalomyelitis (EAE) mice and MS patients, before and after methylprednisolone treatment (65). In mice, increased number of MDSCs were observed at the onset of EAE, but not after methylprednisolone pulse therapy. In contrast, in MS patients increasing MDSC numbers were observed in PBMCs after methylprednisolone application, and disease remission after treatment was correlated to the increased number of MDSCs (65). This highlights the complexity and importance of analyzing MDSC behavior, not only in mice, but also in humans. Furthermore, the mechanism of MDSC induction by glucocorticoids is linked to inhibition and downregulation of GR-β, which, if activated, antagonizes the effect of glucocorticoids (65). Mice only express one type of GR which might explain the higher MDSC activity observed in humans (63). Methylprednisolone is considered the main drug for chronic inflammatory conditions and is frequently used, not only in MS patients, but also in many other autoimmune or chronic inflammatory diseases like chronic obstructive pulmonary disease (COPD) and rheumatic diseases (108). Hence, methylprednisolone and the GR, with its different subtypes, may provide promising targets for further research.

2.2.4 Chemokines

CXCR1 and CXCR2, among others, are highly expressed on MDSCs and responsible for their recruitment. Blockage of CXCR1 and CXCR2 with selective antagonists was shown to severely decrease the number of MDSC infiltration in pulmonary hypertension and carcinomas (4, 37). Furthermore, intratracheal administration of recombinant mouse protein CXCL17 has been shown to result in the recruitment of MDSCs into the lungs of mice (36). Selective CXCR1, CXCR2 and CXCL17 agonists seem to be promising pharmacological drugs for increasing MDSC migration. However, these agonists need to be further studied in the context of MDSC recruitment. Recently, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) – an environmental pollutant and aryl hydrocarbon receptor (AhR) agonist – was shown to indirectly recruit MDSCs through strong induction of CXCR2 expression by down-regulating specific miRNAs (39). Upregulation of transcription factors responsible for CXCR2 ligands (CXCL1 and CXCL2) expression, like Snail, which acts through NF-κB pathway, also provides other possible targets related to chemokines (38). In addition, mTOR inhibition with rapamycin was found to result in increased CXCR2, CXCL1 and CXCL2 expression, which was directly linked to MDSC recruitment to the site of acute kidney injury (40). Overall, targeting chemokines and their receptors for MDSC recruitment seems promising, but the involved risks, as previously reported in cancer patients, should be taken into careful consideration (3–5). However, MDSCs primarily are involved in promoting pre-metastatic niche formation and not directly in tumor growth itself (109). Thus, the question can be raised whether it could be beneficial to use locally administered CXCR1 and CXCR2 ligands or CXCL17 only for tumor-free patients in sites of chronic inflammation. As administration of those ligands could increase the risk of pre-metastatic niche formation if tumor cells are present, but not if the patient is tumor-free. Alternatively, coating of allografts with chemokines and cytokines, e.g. GM-CSF and CXCL17, could be used to recruit MDSCs to the allograft and locally reduce the immune response.

2.2.5 Endothelin (ET) receptor antagonist

ET signaling mediates strong vasoconstrictor properties, and the ET_α receptor antagonist, BQ123, is an effective therapy for hypertension and obese cardiomyopathy (61). Recently, BQ123 was shown to induce PMN-MDSC-mediated immune suppression in dextran sulfate sodium-induced colitis, papain-induced pneumonia, and concanavalin A-induced hepatitis in mice (62). Both the treatment of BQ123, as well as the transfer of BQ123-induced PMN-MDSCs were effective in dampening inflammation (62). Further analysis showed that BQ123 mediates it effects through the IL13/STAT6/Arg1 signaling pathway (62).

2.2.6 β₂-agonists

Recently, one promising approach in endogenous MDSC generation was achieved with the help of β₂-AR agonists in a murine model of GVHD (52). Treatment with bambuterol – a prodrug of the selective β₂-agonist terbutaline – significantly increased the number of MDSCs and Tregs while effector T cells
were reduced and GVHD was ameliorated (52). All other mechanisms of action were excluded, and the central role of β2-AR was confirmed (52). Accordingly, in vitro cultivation of MDSCs is also increased by terbutaline (52). Terbutaline and other β2-agonists are used to treat asthma or COPD due to their bronchodilator effect. However, part of their beneficial role also might originate from MDSC generation.

2.2.7 TLR ligands

TLR4 signaling has been shown to play a crucial role in inducing MDSCs (83). In a study on acute type 1 diabetes using non-obese diabetic (NOD) mice, an agonistic TLR4 monoclonal antibody was found to have a protective effect through the induction of MDSCs (84). Furthermore, the adoptive transfer of ex vivo bone marrow cells, stimulated with TLR4 antibody, into NOD mice suppressed acute type 1 diabetes induction as well (84). TLR4 antibody was shown to alter TLR4 signaling, including NFkB signaling, resulting in the downregulation of inflammatory genes and proteins (84). Furthermore, TLR2 activation by Pam2CSK4 was found to enhance immunosuppressive activity of M-MDSCs by upregulating iNOS and NO production, partly through STAT3 activation (85). Successful in vivo generation of MDSCs was also achieved with administration of complete Freund’s adjuvant (CFA) containing heat-killed Mycobacterium (M.) tuberculosis in mice (86). Interestingly, a single dose of CFA increased the number of MDSCs but did not increase MDSC activity. However, a second dose of CFA was shown to increase MDSC activity as well. Here, M-MDSC accumulation and activation was found to be favored. M. tuberculosis was shown to play a pivotal role in the induction of MDSC accumulation by CFA, most likely through activation of TLR pathways such as TLR2 and TLR4 (86). Efficient MDSC boosting is also achieved using isolated membrane vesicles (MVs) of the common human gut bacterium P. pentosaceus via the TLR2 pathway (87). Alpdundar Bulut et al. observed upregulation of MDSC numbers, Arg-1 and IL-10 levels and M2-like macrophage differentiation in vitro as well as in several murine models modelling different inflammatory conditions (87). Isolated MV administration was shown to result in improved disease outcome (87). As the role of TLRs in MDSC induction is well documented, it appears to be a logical pharmacological target with potentially promising effects of TLR2/4 antibodies and/or agonists in promoting MDSCs and dampening inflammation (83).

2.2.8 PGE2/RIPK3 inhibitors

Increased PGE2 levels resulted in elevated activity and production of Arg-1, IL-6, VEGF, S100A9 and NO, while it also further inhibited RIPK3, creating a positive feedback loop for MDSC activation (31). Decreased receptor-interacting protein kinase 3 (RIPK3) expression was found to be correlated with increased MDSC number and activity in colorectal and hepatocellular carcinoma, likely mediated by the NF-κB/COX-2/PGE2 axis (31, 78). Inhibition of RIPK3 with GSK872 was shown to prevent immune-mediated hepatitis (79). The authors showed that RIPK3 inhibition led to an increase in MDSCs number, which likely mediated the observed protective effect, as it was lost after MDSC depletion (79). RIPK3 knockdown resulted in increased MDSC recruitment in a mouse model of hepatocellular carcinoma, which could be inhibited by a CXCR2 antagonist (78). All in all, these findings indicate that RIPK3 inhibition may be another promising pharmacological target to promote MDSC recruitment, likely via the NF-κB/COX-2/PGE2 and CXCR2 chemokine axis. Another possible MDSC activation mechanism linked to the NF-κB/COX-2/PGE2 axis may be the target of the PGE2 receptors EP2 and EP4. Both EP2 and EP4 receptors may be promising targets for research by inducing them via their transcription factors or activating them with agonists. The study of Jontvedt Jorgensen et al. highlighted the potential of using this axis as a therapeutic target, as they demonstrated reduced MDSC numbers in murine models of tuberculosis after COX-2 inhibitor administration (56). Recently, we showed that a selective EP4 agonist could generate and activate MDSCs and dampen airway inflammation in a murine model of asthma (57).

2.2.9 Tofacitinib

Tofacitinib is a JAK inhibitor approved for treatment of rheumatoid arthritis (RA), among others. Sendo et al. showed that tofacitinib promoted MDSC expansion and ameliorated chronic inflammation in a murine model of RA-associated interstitial lung disease (ILD) (81). Previously, the same group showed the increase of the number of MDSCs and the following improvement of RA upon tofacitinib administration (82). Tofacitinib treatment was found to inhibit phosphorylation of STAT1 and STAT5, while STAT3 levels remained constant which underlined the role of STAT3 in MDSC activation. The beneficial effect of tofacitinib in ILD may reveal the potential effect of JAK inhibitors on MDSC recruitment.

2.2.10 Quercetin

Quercetin, a natural substance found in many fruits and seeds, has already been shown to have anti-inflammatory properties in the context of autoimmune diseases such as rheumatoid arthritis and inflammatory bowel disease (110–112). Furthermore, Quercetin has been used as an anti-tumor therapy, due to its potential to induce tumor apoptosis and necrosis (59). Recently, Ma et al. showed a controversial correlation between MDSC regulation through quercetin and its antitumor properties (60). Quercetin treatment promoted PMN-MDSC expansion as well as its immunosuppressive activity in a murine model of prostate cancer (60). Mechanistically, quercetin binds to estrogen signaling receptors (ESR), especially ESR2, and exerts downstream phosphorylation of STAT3 in PMN-MDSCs and increased the expression of iNOS, NADPH oxidase and IDO. However, the
same study showed that quercetin induces apoptosis in M-MDSCs through the estrogen signaling pathway (60). Nevertheless, quercetin may be a promising compound for the selective induction and activation of PMN-MDSCs through ESR/STAT3 signaling pathway, further supplementing the anti-inflammatory properties associated with quercetin.

2.2.11 Cannabidiol

Recently, Elliott et al. showed that administration of cannabidiol – a non-psychoactive cannabinoid – ameliorated autoimmune encephalomyelitis in mice through the induction of MDSCs (88). Adoptive transfer of in vitro generated MDSCs, treated with CBD, was similarly found to improve encephalomyelitis, while MDSC depletion had the opposite effect. The same group demonstrated similar effects of CBD treatment in autoimmune hepatitis induced mice (89).

2.2.12 Clarithromycin

One study also revealed clarithromycin as a potential target for MDSC induction in vivo (90). Intraperitoneal and oral treatment with clarithromycin was shown to increase the number of MDSCs and prolong their survival in a murine model of LPS endotoxin shock and post-influenza pneumococcal pneumonia. In healthy humans, clarithromycin intake seems to enhance immunosuppressive activity of MDSCs (90).

2.2.13 Taurodeoxycholate

Chang, S. et al. indicated that TDCA – a taurine-conjugated bile acid – can be used to induce MDSCs (91). Here, administration of TDCA was found to improve survival in a mouse model of sepsis, likely through the generation and activation of MDSCs. Still, further research is needed to better understand the underlying mechanisms.

2.2.14 Cyclosporin A

Calcineurin inhibitors such as cyclosporin A or tacrolimus/FK506 are commonly used to treat autoimmune diseases and are administered to allograft recipients to prevent graft rejection. Calcineurin is released from its auto inhibitory loop upon T cell activation by antigen presentation and then dephosphorylates nuclear factor of activated T cells (NFAT) (53). NFAT migrates to the nucleus where it is responsible for the transcription of many pro-inflammatory genes, e.g. IL-2 (53). Besides NFAT, calcineurin inhibitors also target the mitogen-activated protein kinase (MAPK) pathway, and both these pathways play an important role in the myeloid cell lineage (53). The immunosuppressive properties of CsA could be linked to MDSC recruitment in vitro and in vivo (53). Daily treatment with CsA was found to increase MDSCs number, IDO and CXCR2 expression in a murine skin allograft transplantation model (53). Wang et al. suggested that the MDSC regulating effect of CsA is achieved by downregulation of NFATc1 (53). In addition, in skin grafted mice, the combined administration of GM-CSF and CsA was shown to increase MDSCs number and activity, by means of promoting iNOS expression (54). Therefore, calcineurin and NFAT appear to be interesting targets for MDSC regulation and induction.

2.2.15 Glucosamine

Glucosamine is an essential substrate for the glycosylation of proteins and lipids. Recently, glucosamine was shown to promote the generation of MDSCs from murine bone marrow cells in vitro as well as in mice treated for 14 days with intraperitoneal injections of glucosamine (58). Furthermore, glucosamine also increased MDSC activity confirmed by T cell suppression assays and increased levels of Arg-1 and iNOS expression (58). Further analysis showed this effect was likely mediated via the STAT3 and ERK1/2 pathways (58).

2.2.16 Glatirameracetet

GA has been found capable of promoting Tregs and Th2 lineage, while suppressing CD8+ T cell activity, and is therefore frequently used in relapsing-remitting MS (113). Recently, treatment with GA was demonstrated to increase the number and activity of MDSCs in a murine model of inflammatory bowel disease with improving health condition (66). The underlying mechanism was shown to involve binding of GA to the paired immunoglobulin (Ig) -like receptor B (PIR-B) in mice, or to the human ortholog leukocyte immunoglobulin-like receptor-B (LILRB) in humans (66). This interaction inhibited the STAT1 pathway and resulted in an increased IL-10 and TGF-β secretion (66). The results of inhibiting LILRBs in mice tumor models support this finding, since a decrease in MDSC number and STAT6 phosphorylation, a shift of the macrophage balance towards M2-like macrophages as well as increased STAT1/JAK activity had been observed, which all oppose MDSC promotion (67). As the regulation of the myeloid lineage is a highly complex net of signals in which the role of LILRBs is not fully explained yet, further research is needed.

2.3 Potential pharmacological targets on MDSCs in cancer

MDSCs accumulate in cancer and promote invasion, angiogenesis, metastasis formation and reduce the effectiveness of anti-tumor immunity (1, 3). Considering the negative role of MDSCs in the tumor microenvironment, one of the main goals of cancer research has been to suppress both MDSCs number and activity (1, 3). Many pharmacological targets have already been identified, which were shown to be involved in modulating the number and activity of MDSCs in different types of cancer, and were able to be targeted with different compounds (Table 2). As this review focusses on promoting MDSCs number and
activity instead of inhibiting, in order to promote the anti-inflammatory immunity, the suggested MDSC-suppressing drugs are of course not of interest. However, the same targets that are used to suppress MDSCs in the context of the tumor microenvironment, might also be targeted in the complete opposite direction, in order to promote MDSCs in the context of potentially beneficial anti-inflammatory immunity. Several pharmacological targets that were manipulated to reduce the number and/or activity of MDSCs in the context of cancer, such as TLR4, β2-AR, EP4 and CXCR2, have already been described as potential targets for promoting the number and/or activity of MDSCs, as discussed above. For example, a β2-AR blocker, propranolol, was shown to reduce MDSC number and activity (20), while a β2-AR agonist, terbutaline, was shown to have the opposite effect (52). Similarly, the EP4 receptor antagonists, E7046 and YY9001, were shown to reduce MDSC number and activity in the context of cancer (181, 182), while a EP4 receptor agonist, L-902,688, was shown to have the opposite effect in a murine model of asthma (57). However, there remain pharmacological targets of MDSC inhibition, which were identified in cancer research, that have so far not been studied in the context of MDSC promotion yet may provide efficient targets in novel anti-inflammatory therapies through generation and activation of these immune suppressive cells.

3 Discussion

Findings on the modulation of the generation, recruitment, and activation of MDSCs open the door to novel pharmacological approaches that can be used to dampen inflammation in a variety of diseases or conditions characterized by excessive and detrimental immune responses (such as autoimmune diseases, chronic inflammatory diseases, transplantation and GVHD). Taking all the mentioned mechanisms and the potential pharmacological targets into consideration, the in vitro generation of MDSCs combined with adoptive transfer (MDSC cell therapy) as well as the in vivo recruitment and activation of endogenous MDSCs seem to both be promising approaches. Nonetheless, cell therapies always bear additional risks, e.g. reaction of the immune system against transferred cells, and adverse side effects, and, as a result, need to be studied carefully before applying it to the clinical setting. Alternatively, the promotion of endogenous MDSCs could create safer, easier, and potentially equally or more efficient MDSC-targeted therapies in the future.

On the one hand, in vitro generation of MDSCs with the help of cytokines – like GM-CSF and IL-6 – or pharmacological compounds – such as PGE2 –, followed by adoptive transfer is an effective and increasingly established treatment in murine models of chronic inflammatory diseases, autoimmune diseases, and allograft transplantation. Here, it is possible to circumvent the potential systemic side effects of unspecific pharmacological compounds and transfer a purified subset of immunosuppressive cells to dampen inflammation. On the other hand, efficient endogenous MDSC generation and activation was achieved with a double CFA injection containing M. tuberculosis or MVs through the TLR pathway, mTOR inhibitor rapamycin, dexamethasone, GA, EP4 receptor agonist as well as with other medications (48, 56, 57, 63, 64, 66, 67, 79, 81, 82, 84, 86, 87). Furthermore, many chemokines, and their receptors, have been identified to be involved in MDSC recruitment, with the most noteworthy chemokine being CXCR2, with its most important ligands CXCL1 and CXCL2. CXCR2 ligands can be used to regulate the migration of generated MDSCs to the site of interest, e.g. the intestines in Crohn’s disease, or the lungs of asthmatic patients. In this context, allografts could be coated with chemokine agonists to promote local MDSC accumulation – similar to vascular stents coated with anticoagulants and anti-proliferative drugs, like rapamycin. However, the in vivo generation of endogenous MDSCs may be a more straightforward therapy compared to MDSC cell therapy, which would ideally be accomplished with a selective drug and pharmacological targets, in order to reduce possible side effects as much as possible.

The safety of adoptively transferred MDSCs is not very well known and remains one of the primary challenges in bringing MDSC therapy to a clinical setting (355). Similarly, the safety of inducing endogenous MDSCs remains largely unknown. One concern may be the immature characteristic of MDSCs, which makes them susceptible to the induction of differentiation into other immune cells, such as macrophages, neutrophils or DCs, depending on specific microenvironmental cues. The negative role of MDSCs in the context of cancer also raises the following questions: Can MDSC inducing therapy only be applied in patients who are “certainly tumor-free”? And if so, how is it possible to identify this patient group? Or is the expected beneficial effect so great that the increased risk of metastasis can be accepted? Is there a way to inhibit MDSCs in undesired parts of the body? As the vast majority of studies on MDSCs are cancer-related and the systemic MDSC induction has been linked to tumor progression, metastasis and impaired survival, a method of local induction of MDSCs would be necessary to reduce the risk of MDSC-induced cancer progression as well as potential other side effects of systemic immunosuppression, e.g. opportunistic infections.

The increasing number of potential pharmacological targets that have been shown to be involved in modulating the number and activity of MDSCs provide significant number of opportunities for novel pharmacological approaches. Especially considering the potential targets, which were previously mainly studied in the context of cancer (Table 2), to inhibit the MDSC response, where this effect may be reversed (e.g. changing from an agonist to antagonist or the other way around), in order to promote the MDSC response. The interest in the modulation of MDSC outside the context of cancer is also increasing, as the importance of MDSCs in many different immune-related
TABLE 2 Potential pharmacological targets on MDSCs in cancer.

Target	Potential pharmacological drug for cancer treatment	Effect of potential drug on MDSCs	Cancer type	Reference
A20	A20-siRNA	Reduced number	Lymphoma Melanoma	(114)
AMPKα	AMPK inhibitor (dorsomorphin-compound), metformin	Reduced number Reduced activity	Colon carcinoma Esophageal carcinoma Lung carcinoma Ovarian carcinoma	(115–118)
Arginase-1, L-Arginine	L-Arginine, Arginase inhibitor (NOR-NOHA, CB-1158), ODC inhibitor (DFMO)	Reduced number Reduced activity	Colon carcinoma Melanoma Mammary carcinoma Ovarian carcinoma	(119–123)
Aurora A	Aurora A inhibitor (alisertib)	Reduced number	Mammary carcinoma	(124)
Bcl-xl	Bcl-xl inhibitor (ABT-737)	Reduced number	Colon carcinoma Mammary carcinoma	(125)
β2-AR/β3-AR	β-AR-blocker (propranolol), β3-AR-blocker (SR59230A)	Reduced number Reduced activity	Colon carcinoma Fibrosarcoma Mammary carcinoma Melanoma	(20, 126–128)
Caspases	Ganoderic acid A, caspase 8 inhibitor (Z-IEPD-FMK)	Reduced number	Lung carcinoma Lymphoma	(129, 130)
CCL2/CCR2	CCR2 inhibitor (RS-102895, RS-504393), CCL2 inhibitor (BHC, propagermanium)	Reduced number	Basal cell carcinoma Bladder carcinoma Lung carcinoma Mammary carcinoma Rhabdomyosarcoma	(131–134)
CCL5/CCR5	CCL5 Ab, CCR5 inhibitor (Met-RANTES, Maraviroc)	Reduced number	Lymphoma Malignant melanoma Mammary carcinoma	(135–138)
CCRK	CCRK inhibitor	Reduced number	HCC	(139)
CD33	CD33 Ab (B1 836858), CD33/CD3-bispecific T-cell engager (AMG 330, AMV564)	Reduced number	Leukemia Melanoma	(140–142)
CD40	CD40 Ab	Reduced number Reduced activity	Colon carcinoma Gastric carcinoma Renal carcinoma	(143–146)
c-Rel (member of NF-kB family)	c-Rel inhibitor (R96A)	Reduced number	Lymphoma Melanoma Neuroblastoma Prostate carcinoma	(147)
CSF-1/CSF-1 receptor	CSF-1 receptor inhibitor (GW2580, pexidartinib, PLX647, PLX5622, BLZ945)	Reduced number	Melanoma Neuroblastoma Prostate carcinoma	(148–151)
CXCR1/2/CXCL1/2/5	CXCR1/CXCR2 inhibitor (SX-682), CXCR2 inhibitor (SB-265610, benzocyclic sulfone derivatives) CXCR2 Ab	Reduced number	Colon carcinoma Mammary carcinoma Rhabdomyosarcoma	(4, 41, 152–158)
CXCR4	CXCR4 inhibitor (TF22, plerixafor), poly polymerase inhibitor (olaparib), NAMPT inhibitor (FK866, MV87)	Reduced number	Colorectal carcinoma Fibrosarcoma Leukemia Mammary	(159–164)

(Continued)
Target	Potential pharmacological drug for cancer treatment	Effect of potential drug on MDSCs	Cancer type	Reference
	D1(like) receptor	Reduced activity	Pancreatic carcinoma	(165)
	Dopamine, D1-like receptor agonist (SKF38393)		HNSCC	
	D2 receptor	Reduced number	Lung carcinoma	(166)
	D2 receptor agonist (cabergoline)			
	Dectin-1	Reduced number	Lung carcinoma	(167)
	Dectin-1 agonist (WGP)			
	Dkk1/β-catenin Dkk1 Ab, galactosaminyltransferase	Reduced number	Bladder carcinoma	(168, 169)
	DNA synthesis Cytostatic drugs (gemcitabine, cisplatin, capecitabine, 5FU, lurbinefedtin, 6-thioguanine, decitabine)	Reduced number	Mammary carcinoma	(170–179)
	ENTPD2 ENTPD2 inhibitor	Reduced number	HCC	(180)
	EP4 receptor	Reduced number	Adenocarcinoma	(181, 182)
	EP4 receptor antagonist (E7046, YY001)	Reduced activity	Colon carcinoma	
	FAO FAO inhibitor	Reduced activity	Mammary carcinoma	
	Fey receptor	Reduced activity	Prostate carcinoma	
	FGL2 FGL2 Ab	Reduced number		
	G-CSF G-CSF Ab, polyacetylenic glycoside (BP-E-F1)	Reduced number	Colorectal carcinoma	(17, 186, 187)
	Glutaminase/ Glutathione/ glutathione synthase ATRA, glutaminase antagonist (JHU083)	Reduced number	Colorectal carcinoma	(188–195)
	GM-CSF GM-CSF Ab	Reduced number	Mammary carcinoma	(152, 196– 198)
	HDAC HDAC inhibitor (entinostat, valproic acid)	Reduced number	Lung carcinoma	(199–201)
	Histamine Histamine antagonist (ranitidine), HDC	Reduced number	Mammary carcinoma	(202, 203)

(Continued)
Target	Potential pharmacological drug for cancer treatment	Effect of potential drug on MDSCs	Cancer type	Reference
HMGB1	HMGB1 inhibitor (ethyl pyruvate, glycyrrhizin)	Reduced number	Lymphoma	(204)
			Mammary carcinoma	
			Colon carcinoma	
			Mammary carcinoma	
			Melanoma	
HOXA1	HOTAIRM1	Reduced activity	Lung carcinoma	(205)
IDO	IDO inhibitor (1-MT, INCB023843, EOS200271), IDO-vaccine, gemcitabine, superoxide dismutase mimetic	Reduced number	Colorectal carcinoma	(46, 206–212)
		Reduced activity	Lung carcinoma	
			Mammary carcinoma	
			Melanoma	
			Pancreatic carcinoma	
IFN-γ	IFN-γ Ab	Reduced number	Colon carcinoma	(213)
			Leukemia	
			Lymphoma	
			Melanoma	
IL-1β	IL-1 receptor antagonist, anti-IL-1β Ab	Reduced number	Gastric carcinoma	(27, 214, 215)
			Melanoma	
			Prostate carcinoma	
IL-4	IL-4 receptor-α blockade with RNA aptamer	Reduced activity	Fibrosarcoma	(216, 217)
			Mammary carcinoma	
IL-6	IL-6-neutralizing Ab/IL-6-silencing vector	Reduced number	HCC	(218–223)
			Lung carcinoma	
			Malignant melanoma	
			Prostate carcinoma	
IL-8	IL-8 Ab (HuMax-IL8)	Reduced number	Mammary carcinoma	(224, 225)
			Mammary carcinoma	
IL-10	IL-10 Ab, IL-10 receptor Ab	Reduced number	Mammary carcinoma	(226, 227)
		Reduced activity	Mammary carcinoma	
			Ovarian carcinoma	
IL-12	IL-12	Reduced number	Colon carcinoma	(228, 229)
		Reduced activity	Mammary carcinoma	
			Mammary carcinoma	
IL-13Rtn2	IL-13-PE (immunotoxin of IL-13 fused to the Pseudomonas exotoxin A)	Reduced number	HNSCC	(230)
IL-18	IL-18 Ab (SK113AE4)	Reduced number	Melanoma	(231–233)
		Multiple myeloma		
		Osteosarcoma		
IL-33	IL-33 Ab	Reduced number	Melanoma	(234)
iNOS	iNOS inhibitor (L-NIL, L-NAME)	Reduced number	Colon carcinoma	(51, 235, 236)
		Reduced activity	Lung carcinoma	
			Lymphoma	
			Malignant melanoma	
			Melanoma	
IRF-4	IL-4	Reduced number	Mammary carcinoma	(237–239)
		Reduced activity	Melanoma	

(Continued)
Target	Potential pharmacological drug for cancer treatment	Effect of potential drug on MDSCs	Cancer type	Reference
Jagged1/2	Anti-Jagged1/2-blocking Ab (CTX014)	Reduced number	Colon carcinoma	(240)
Kinases	Multikinase inhibitor (Sorafenib, Cabozantinib, BEZ235, Lenvatinib)	Reduced number	Lung carcinoma	(197, 241)
Lactate	Anti-LDH Ab, ketogenic diet for glucose depletion	Reduced number	Melanoma	(242)
LILRB	LILRB antagonist	Reduced number	Lung carcinoma	30352428
LXR	LXR agonist (RGX-104, GW3965)	Reduced number	Colorectal carcinoma	(243, 244)
MEK/BRAF	MEK inhibitor (trametinib, cobimetinib, GDC-0623), BRAF inhibitor (Vemurafenib)	Reduced number	Colon carcinoma	(245–247)
MIF	MIF inhibitor (Sulforaphane)	Reduced number	Colon carcinoma	(248)
mTOR	mTOR inhibitor (rapamycin, AZD2014, OSU-53)	Reduced number	Lung carcinoma	(249–252)
Myd88	Myd88 inhibitor (IMG2005, TJ-M2010-5)	Reduced number	Colorectal carcinoma	(253, 254)
NK1 receptor	Substance P	Reduced number	Mammary carcinoma	(255)
NOX2	NOX2 inhibitor	Reduced activity	Colon carcinoma	(44)
Osteactivin (DC-HIL)	Anti-DC-HIL Ab	Reduced activity	Colorectal carcinoma	(256)
P38 kinase	P38 inhibitor (LY2228820)	Reduced number	Lung carcinoma	(257, 258)
PD-L1	Anti-PD-L1 Ab	Reduced number	Colon carcinoma	(259–262)

(Continued)
Target	Potential pharmacological drug for cancer treatment	Effect of potential drug on MDSCs	Cancer type	Reference
PI3K	PI3K inhibitor (IPI-145, Alpelisib, quinic acid), Artemisinin	Reduced number	Melanoma, Ovarian carcinoma	(263–266)
PPARγ	PPARγ agonists	Reduced number Reduced activity	Lung carcinoma	(267, 268)
PNT	PNT inhibitor (CDDO-Me), PNT scavenger (MnTBAP)	Reduced number Reduced activity	Lung carcinoma, Melanoma, Thymoma	(51, 269)
Phosphatidylserine	Anti-phosphatidylserine Ab (Bavituximab)	Reduced number	Mammary carcinoma, Prostate carcinoma	(270, 271)
PDE-5	PDE-5 inhibitor (Sildenafil, Tadalafil), Paclitaxel	Reduced number Reduced activity	Colon carcinoma, Lymphoma, Melanoma	(235, 272–277)
PGE₁	Celecoxib, SC58125, SC58236 (cyclooxygenase 2 inhibitors), Indomethacin (IND), EP2/4 antagonist	Reduced number Reduced activity	Colon carcinoma, Lung carcinoma, Mammary carcinoma, Melanoma, Ovarian carcinoma, Pancreatic carcinoma	(41, 55–278–283)
Rac	Rac inhibitor (EHT-1864)	Reduced number	Colitis-associated carcinoma	(284)
RLH	RLH ligand (polyinosinic-polycytidylic acid (poly(I:C)))	Reduced activity	Pancreatic carcinoma	31694706
RORC1/RORγ	RORC1 inhibitor	Reduced number	Colon carcinoma, Lung carcinoma, Mammary carcinoma, Renal cell carcinoma, Sarcoma, Thymoma	(286, 287)
ROS	CDDO-Me (Triterpenoid), Doxorubicin	Reduced activity	Colon carcinoma, Lung carcinoma, Mammary carcinoma, Renal cell carcinoma, Sarcoma, Thymoma	(286, 287)
RTKs/BTK	RTK inhibitor (Sunitinib, nilotinib, dasatinib, sorafenib, UNC4241), BTK inhibitor (ibrutinib)	Reduced number Reduced activity	Cervical carcinoma	(288–301)
S100A8/9/RAGE	anti-S100A8/9 Ab, S100A9 inhibitor (Tasquinimod), Anti-RAGE Ab	Reduced number Reduced activity	Colon carcinoma, Gastric carcinoma, Lung carcinoma, Lymphoma, Mammary carcinoma, Sarcoma	(189, 302–309)

(Continued)
Target	Potential pharmacological drug for cancer treatment	Effect of potential drug on MDSCs	Cancer type	Reference
S1P	LCL521	Reduced activity	HNSCC	(310, 311)
SCARB1	Synthetic high-density lipoprotein-like nanoparticles	Reduced activity	Melanoma	(312)
Semaphorin 4D	Semaphorin 4D Ab	Reduced number Reduced activity	HNSCC	(313, 314)
SIRT1 via HIF-1α	SIRT1 activator (SRT1720), HIF-1α inhibitor (2-ME)	Reduced number	Lymphoma	(315)
STAT3	STAT3 inhibitor (SI-124, Statitic, AG490, Nifuroxazide, S3H, FLII32, BBI608, napabucasin, quercetin), Sunitinib (TKI), Curcumin, Notch signaling blocker (selective CK2 inhibitor (TBCA), (γ-secretase inhibitor (GSI-IX, DAPT))	Reduced number Reduced activity	Colon carcinoma Gastric carcinoma HCC HNSCC Lung carcinoma Lymphoma Mammary carcinoma Melanoma Ovarian carcinoma Pancreatic carcinoma Renal cell carcinoma Sarcoma	(23, 32, 46, 60, 316–331)
STING	STING agonist	Reduced number	Colorectal carcinoma Nasopharyngeal carcinoma	(211, 332)
TGF-β1	Anti-TGF-β1 Ab, TGF-β inhibitor (Pirfenidone)	Reduced number Reduced activity	HCC	(309, 333)
TLR1/2	TLR1/TLR2 agonist (synthetic bacterial lipoprotein), HSP70 ligand/blocker (A8 peptide)	Reduced number	Lung carcinoma Lymphoma Melanoma	(334, 335)
TLR4	TLR4-inducer (Asparagus polysaccharide, cinnamaldehyde)	Reduced number Reduced activity	Colon carcinoma Colorectal carcinoma	(336, 337)
TLR7/8	TLR7 agonist (imiquimod), TLR8 agonist (motolimod), TLR7/8 agonist (resiquimod)	Reduced number Reduced activity	HNSCC Melanoma	(338–342)
TLR9	TLR9 agonist (CpG), TLR9-targeted STAT3siRNA	Reduced number Reduced activity	Colon carcinoma Gastric carcinoma Prostatic carcinoma	(343, 344)
TNF/TNFR2	TNF Ab/inhibitor (XPro1595, etanercept, infliximab), TNFR2 inhibitor (TNFR2 antisense oligodeoxynucleotides, TNFR2-Fc fusion protein	Reduced number	Colon carcinoma Lung carcinoma Sarcoma	(345, 346)
TRAIL receptors	TRAIL receptor 2 agonist (DS-8273a)	Reduced number	Advanced stage solid tumors Lung carcinoma	(347, 348)
Nrf2	Nrf2 inducer (CDDO-Im)	Reduced activity	Lung carcinoma	(349)
VEGF/VEGF receptor	VEGF receptor inhibitor (SAR131675, pazopanib), VEGF Ab (bevacizumab)	Reduced number	Lung carcinoma Mammary carcinoma Prostate carcinoma	(350–354)
pathological conditions is being unraveled (356). Furthermore, transplantation research has also increased its attention towards MDSC immunomodulation as a promising candidate to increase tolerance and improve transplant outcome (357). Thus, the pharmacological approaches which can be applied in MDSC modulation, as discussed in this review, may provide novel opportunities in the future of tolerance-inducing agents in the context of transplantation.

Taken together, there are many different promising pharmacological targets to generate and activate MDSCs, and their beneficial potential in certain pathological conditions has been established in animal studies. Therefore, MDSC therapies may prove to be effective alternatives to other immunosuppressive therapies. The selective harnessing of regulatory immune cells, here expanding suppressive activity of MDSCs on T cells, may bring an advanced possibility to their beneficial potential in a number of pathological conditions (358). Furthermore, MDSC immunomodulation as a promising candidate to increase tolerance and improve transplant outcome (359).

Author contributions

SK conceptualized the review, CG, CH, AD and SK contributed to the original draft. CG and SK contributed to revising and final approval of the manuscript. All authors contributed to the article and approved the submitted version.

Funding

This study was funded by the Universities Giessen Marburg Lung Center (UGMLC) and the German Center for Lung Disease (DZL German Lung Center, no. 82DZL005B2), the Foundation for Pathobiology and Molecular Diagnostics grant and the fortune program of the University of Tuebingen (#2458-0-0, #2600-0-0) for SK. Open access was funded by the Open Access Publishing Fund of Philipps-Universität Marburg with support of the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) and the Open Access Publishing Fund of the University of Tübingen.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Gabrilovich DJ, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol (2009) 9(5):162–74. doi: 10.1038/nri2506.
2. Bronte V, Apolloni E, Cabrelle A, Ronca R, Serafini P, Zamboni P, et al. Identification of a CD11b(+)Gr-1(+)CD13(+) myeloid progenitor capable of activating or suppressing CD8(+) T cells. Blood (2000) 96(12):3838–46. doi: 10.1182/blood.V96.12.3838.
3. Talmadge JE, Gabrilovich DI. History of myeloid-derived suppressor cells. Nat Rev Cancer (2013) 13(10):739–52. doi: 10.1038/nrc3581.
inhibition induces bax-dependent apoptosis in liver tumor myeloid-derived suppressor cells. Cancer Res (2011) 129(12):5537–5541. doi: 10.1158/0008-5472.CAN-15-2528

19. Li W, Zhang X, Chen Y, Xie Y, Liu J, Feng Q, et al. G-Csf is a key modulator of mdsc and could be a potential therapeutic target in colitis-associated colorectal cancers. Protein Cell (2016) 7(2):130–40. doi: 10.1007/s13238-015-0237-2

20. Wright JD, Netherby C, Hensen ML, Miller A, Hu Q, Liu S, et al. Myeloid-derived suppressor cell development is regulated by a Stat/Irf-8 axis. J Immunol (2014) 298(1):93–122. doi: 10.1088/1361-6544/21/10/104404

21. Schroder M, Krotschel M, Conrad L, Naumann SK, Bachran C, Rolle A, et al. Genetic screen in myeloid cells identifies trf-alpha autocrine secretion as a factor increasing mdsc suppressive activity Via Nos2 up-regulation. Sci Rep (2018) 8(1):13399. doi:10.1038/s41598-018-31674-1

22. Porta C, Consommi FM, Morlacchi S, Sanguetti S, Bleve A, Totaro MG, et al. Tumor-derived prostaglandin E2 promotes PGE2-dependent differentiation of monocytes. Cancer Res (2020) 80(13):2874–8. doi: 10.1158/0008-5472.CAN-19-2843

23. Tsu S, Bhatag V, Cui G, Takashi S, Kurt-Jones EA, Rickman B, et al. Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes mdsc derived suppressor cells in mae. Cancer Cell (2008) 14(5):408–18. doi: 10.1016/j.ccr.2008.10.011

24. Hu CE, Gan J, Zhang RD, Cheng YR, Huang GJ. Up-regulated mdsc-derived suppressor cell contributes to hepatocellular carcinoma development by impairing dendritic cell function. Scand J Gastroenterol (2011) 46(2):156–64. doi: 10.3389/fimmu.2010.516450

25. Tennenbaum CS, Rayman PA, Pavicic PG, Kim JS, Wei W, Poleiko A, et al. Mediators of inflammation-driven expansion, trafficking, and function of tumor-derived mdcs. Cancer Immunol Res (2019) 7(10):1687–99. doi: 10.1158/2326-6066.CIR-18-0578

26. Choi JN, Sun EG, Cho SI. IL-12 enhances immune response by modulation of myeloid-derived suppressor cells in tumor microenvironment. Chonnam Med J (2019) 55(1):31–9. doi: 10.4066/cmj.2015.55.3.131

27. Yan G, Zhao H, Zhang Q, Zhou Y, Wu L, Lei J, et al. A Rdkp-Pgcz circuit mediates mdsc-derived suppressor cell-photolocated colorectal carcinogenesis. Cancer Res (2018) 78(19):5586–99. doi: 10.1158/0008-5472.CAN-17-3962

28. Cheng P, Kumar V, Liu H, Youn JJ, Fishman M, Sherman S, et al. Effects of notch signaling on regulation of myeloid cell differentiation in cancer. Cancer Res (2014) 74(11):1411–52. doi: 10.1158/0008-5472.CAN-13-1686

29. Mordoll S, Miele L. Targeting the adenosine A2b receptor in the tumor microenvironment overcomes local immunosuppression by myeloid-derived suppressor cells. Oncoimmunology (2014) 3:e27989. doi:10.1080/21624089.2013.830009

30. Li BH, Garski MA, Li ZP. Chemokines and their receptors promoting the recruitment of myeloid-derived suppressor cells into the tumor. Mol Immunol (2020) 177:201–15. doi: 10.1016/j.molimm.2019.11.014

31. Oliveira AC, Fu C, Lu Y, Williams MA, Pi L, Brantly ML, et al. Chemokine signaling axis between endothelial and myeloid cells regulates development of pulmonary hypertension associated with pulmonary fibrosis and hypoxia. Am J Physiol Lung Cell Mol Physiol (2015) 309(4):L434–L44. doi: 10.1152/ajplung.00359.2015

32. Taki M, Ahiko B, Baba T, Haminashi J, Yamaguchi K, Murakami R, et al. Snail promotes ovarian cancer progression by recruiting myeloid-derived suppressor cells Via Cxcr2 ligand upregulation. Nat Commun (2018) 9(1):1685. doi: 10.1038/s41467-018-03666-2

33. Neamah WH, Singh NP, Alghetaa H, Abdulla OA, Chatterjee S, Busbee PB, et al. Activation of mtor activation leads to massive mobilization of myeloid-derived suppressor cells Via Cxcr2 ligand upregulation. Cancer Res (2018) 78(19):5586–99. doi: 10.1158/0008-5472.CAN-17-3962

34. Li BH, Garski MA, Li ZP. Chemokines and their receptors promoting the recruitment of myeloid-derived suppressor cells into the tumor. Mol Immunol (2020) 177:201–15. doi: 10.1016/j.molimm.2019.11.014

35. Oliveira AC, Fu C, Lu Y, Williams MA, Pi L, Brantly ML, et al. Chemokine signaling axis between endothelial and myeloid cells regulates development of pulmonary hypertension associated with pulmonary fibrosis and hypoxia. Am J Physiol Lung Cell Mol Physiol (2015) 309(4):L434–L44. doi: 10.1152/ajplung.00359.2015

36. Taki M, Ahiko B, Baba T, Haminashi J, Yamaguchi K, Murakami R, et al. Snail promotes ovarian cancer progression by recruiting myeloid-derived suppressor cells Via Cxcr2 ligand upregulation. Nature Commun (2018) 9(1):1685. doi: 10.1038/s41467-018-03666-2

37. Neamah WH, Singh NP, Alghetaa H, Abdulla OA, Chatterjee S, Busbee PB, et al. Activation of mtor activation leads to massive mobilization of myeloid-derived suppressor cells Via Cxcr2 ligand upregulation. Cancer Res (2018) 78(19):5586–99. doi: 10.1158/0008-5472.CAN-17-3962

38. Taki M, Ahiko B, Baba T, Haminashi J, Yamaguchi K, Murakami R, et al. Snail promotes ovarian cancer progression by recruiting myeloid-derived suppressor cells Via Cxcr2 ligand upregulation. Cancer Res (2018) 78(19):5586–99. doi: 10.1158/0008-5472.CAN-17-3962

39. Neamah WH, Singh NP, Alghetaa H, Abdulla OA, Chatterjee S, Busbee PB, et al. Activation of mtor activation leads to massive mobilization of myeloid-derived suppressor cells Via Cxcr2 ligand upregulation. Cancer Res (2018) 78(19):5586–99. doi: 10.1158/0008-5472.CAN-17-3962

40. Zhang C, Wang S, Li J, Zhang W, Zheng L, Yang C, et al. The mtor signal inhibition combined with cpg immunostimulation activates antitumor immunity in tumor-bearing mice. Cancer Res (2011) 71(15):5101–10. doi:10.1158/0008-5472.CAN-10-2670

41. Mundy-Bosse BL, Lesinski GB, Jaime-Ramirez AC, Renninger K, Khan M, Kuppusamy P, et al. Myeloid-derived suppressor cell inhibition of the ifn response in tumor-bearing mice. Cancer Res (2011) 71(15):5101–10. doi:10.1158/0008-5472.CAN-10-2670

42. van Geffen ET, Biswas JK, Gupta K. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol (2019) 10.3389/jimmu.2019.01099.
and are in immunosuppressive drug cyclosporine A on myeloid-derived suppressor cells in UC, et al. Beta2-adrenergic receptor activation on donor cells ameliorates acute through independent nitric oxide-related pathways.

Subpopulations of myeloid-derived suppressor cells impair T cell responses in lung cancer through IL-12 secretion. J Immunol 2011; 186(1):54–60.

Myeloid-derived suppressor cells impair B cell responses in lung cancer through IL-12 secretion. J Leukoc Biol 2011; 89(6):1098–1105.

Granulocytic myeloid-derived suppressor cells potentiates myeloid-derived suppressor cell function in prolonging allograft survival via CD11b+lymphocyte cell-cycle progression. Blood 2007; 109(4):1568–73. doi: 10.1182/blood-2006-06-031856

Yi J, Du W, Yan F, Wang Y, Li H, Cao S, et al. Myeloid-derived suppressor cells suppress antitumor immune responses through ido expression and correlate with lymph node metastasis in patients with breast cancer. J Immunol 2013; 190(7):3783–97. doi: 10.4049/jimmunol.120449

Cyclooxygenase-2 inhibitors. J Clin Invest 2018; 124(6):2624–33. doi: 10.1172/JCI97570

van Geffen et al. 10.3389/fimmu.2021.00397-0

Frontiers inImmunology frontiersin.org19

Renz H, et al. Myeloid-derived suppressor cells dampen airway in inflammation in mice. Front Cell Dev Biol 2019; 7:36. doi: 10.3389/fcd.2019.00036

Liao J, Wang X, Bi Y, Shen B, Shao K, Yang H, et al. Dexamethasone acetate enhances myeloid-derived suppressor cell function via recognition of paired Ig-like receptor b. J Immunol 2018; 186(6):1727–34. doi: 10.4049/jimmunol.1701450

Chen HM, van der Touw V, Wang W, Kang K, Ma I, Satriawan J, et al. Blocking immunoinhibitory receptor Lirlb2 reprograms tumor-associated myeloid cells and promotes antigen immuno-tolerance. J Clin Invest (2018) 129(12):5647–62. doi: 10.1172/JCI82184

Yi J, Pergo M, Xiao Q, He Y, Fu S, He J, et al. Lactoferrin-induced myeloid-derived suppressor cell therapy attenuates pathologic inflammatory conditions in newborn mice. J Clin Immunol (2019) 129(6):4621–75. doi: 10.1007/s10875-019-01242-1

Zhou L, Xiao K, Yin B, Li H, Fan J, Zhu Y, et al. Cardioprotective role of myeloid-derived suppressor cells in heart failure. Circulation (2018) 138(2):181–97. doi: 10.1161/CIRCULATIONAHA.117.030811

Scheurer J, Reiser T, Leithauser F, Messmann J, Holzmann K, Debain KM, et al. Rapamycin-based graft-Versus-Host disease prophylaxis increases the immunosuppressivity of myeloid-derived suppressor cells without affecting T cells and anti-tumor cytotoxicity. Clin Exp Immunol (2020) 202(3):407–22. doi: 10.1111/ci.13496

Wei C, Wang W, Ma W, Wang X, Chi H, Zhang S, et al. Rapamycin non-micelle epithelial solution reduces conrallograft allograft rejection by potentiating myeloid-derived suppressor cells’ function. Front Immunol 2018; 9:2223. doi: 10.3389/fimmu.2018.02283

Zhang Y, Bi Y, Yang H, Chen X, Liu H, Lu Y, et al. Mtor limits the recruitment of CD11b+Gr1+Ly6chigh myeloid-derived suppressor cells in protecting against murine immunologic hepatic injury. J Leukoc Biol (2014) 95(6):961–70. doi: 10.1189/jlb.0913473

Deissler A, Della Penna A, van Geffen C, Gonzalez-Menendez I, Quintanilla-Martinez L, Gunther A, et al. Rapamycin delays allograft rejection in obese graft recipients through induction of myeloid-derived suppressor cells. Immunol Lett 2021; 236:1–11. doi: 10.1016/j.imlet.2021.05.003

Li Y, Xu Y, Liu X, Yan X, Lin Y, Tan Q, et al. Mtor inhibitor Ink128 promotes wound healing by regulating mdscs. Stem Cell Res Ther (2021) 12(1):170. doi: 10.1186/s13287-021-02266-y

Li J, Chen J, Zhang M, Zhang C, Wu R, Yang T, et al. The mtor deficiency in monocytic myeloid-derived suppressor cells protects mouse cardiac allografts by inducing allograft tolerance. Front Immunol 2021; 12:661338. doi: 10.3389/fimmu.2021.661338

Li X, Li Y, Yu Q, Xu L, Fu S, Wei C, et al. Mtor signaling regulates the development and therapeutic efficacy of pnn-mdscs in acute graft. Front Cell Dev Biol 2021; 9:749111. doi: 10.3389/fcell.2021.749111

Jia A, Wang W, Yang W, Li Y, Yang Q, Cao Y, et al. The kinase Akt1 potentiates the suppressive functions of myeloid-derived suppressor cells in inflammation and cancer. Cell Immunol 2015; 220(1–2):107–16. doi: 10.1016/j.cellimm.2015.09.006

Zhou M, Zhang H, Zhang C, Wu R, Yang T, et al. Mtor inhibitor Ink128 prevents immune-mediated hepatitis through a myeloid-derived suppressor cell dependent mechanism. Int J Biol Sci 2020; 16(11):199–213. doi: 10.7150/ijbs.65402

Lusthaus M, Maskereth N, Donin N, Fishelson Z. Receptor-interacting protein kinases 1 and 3, and mixed lineage kinase domain-like protein are activated by sublytic complement and participate in complement-dependent cytotoxicity. Front Immunol (2018) 9:306. doi: 10.3389/fimmu.2018.00306

Sendo S, Sargus J, Yamada H, Nishimura K, Morinobu A. Tofacitinib facilitates the expansion of myeloid-derived suppressor cells and ameliorates intestinal lung disease in skin mice. Arthritis Res Ther (2019) 21(1):184. doi: 10.1186/s13075-019-1963-2

Nishimura K, Sargus J, Matsuki F, Akahsi K, Kageyama G, Morinobu A. Tofacitinib facilitates the expansion of myeloid-derived suppressor cells and ameliorates arthritis in skin mice. Arthritis Rheumatol (2015) 67(4):893–902. doi: 10.1002/art.39007

Li J, Yang F, Wei F, Ren X. The role of toll-like receptor 4 in tumor microenvironment. Oncotarget (2017) 8(39):66656–67. doi: 10.18632/oncotarget.19105

Locke KCS, Kachapati K, Wu Y, Bednar AJ, Adams D, Patel C, et al. Endosomal sequestration of Th4 antibody induces myeloid-derived suppressor cells and reverses acute type 1 diabetes. Diabetes (2022) 71(3):470–82. doi: 10.2337/db21-0426

glucocorticoid receptor beta and S100a9 up-regulation. J Cell Med (2020) 24(1):13730–13. doi: 10.1111/jcm.13730

van der Touw V, Kang K, Luan Y, Ma G, Mai S, Qin L, et al. Glutaminase acetate enhances myeloid-derived suppressor cell function Via recognition of paired Ig-like receptor b. J Immunol (2018) 163(16):1727–34. doi: 10.4049/jimmunol.1701450

Chen HM, van der Touw V, Wang W, Yang X, Kang K, Ma I, Zhang J, et al. Blocking immunoinhibitory receptor Lirlb2 reprograms tumor-associated myeloid cells and promotes antigen immuno-tolerance. J Clin Invest (2018) 129(12):5647–62. doi: 10.1172/JCI82184

Taking advantage of myeloid-derived suppressor cells a key in developing anti-tumor drugs. J Cell Mol Med (2018) 22(1–2):466–76. doi: 10.1111/jcmm.15928
A next generation of cell-based therapeutics.

147. Sanz FM, et al. Ccr2

Suppression of proteoglycan-induced autoimmune arthritis by myeloid-derived suppressor cells in acetaminophen-induced murine liver failure. Front Immunol (2020) 11:574839. doi: 10.3389/fimmu.2020.01782

148. royler VG, et al. S pectorcin alleviates rheumatoid arthritis by inhibiting neutrophil inflammatory activities. J Nutr Biochem (2020) 84:108454. doi: 10.1016/j.jnubio.2020.108454

149. Jardal F, Ahmadzadeh A, lightesies T, Arayaens Z, Zabihiyeganeh M, Rahimi Foroushani A, et al. The effect of quercetin on inflammatory factors and clinical symptoms in women with rheumatoid arthritis: A double-blind, randomized controlled trial. J Am Coll Nutr (2017) 36(1):9–15. doi: 10.1080/07315724.2016.1140093

150. Comadala M, Camuscos D, Sierra S, Ballestre L, Xau J, Galcer J, et al. In vivo quercetin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the nf-kb pathway. Eur J Immunol (2015) 35(2):584–92. doi: 10.1002/eji.201442778

151. Lahote PH, Neubaus O, Benkskouscha M, Burger D, Holdfield R, Zamvill SS, et al. Glutamater acetate in the treatment of multiple sclerosis: Emerging concepts regarding its mechanism of action. CNS Drugs (2011) 25(5):401-14. doi: 10.1007/12885-010-00010-4

152. Shao B, Lei W, Mou M, Ju Y, Tong A, Ma X, et al. Inhibition of A20 expression in tumor microenvironment exerts anti-tumor effect through inducing myeloid-derived suppressor cells apoptosis. Sci Rep (2015) 5:16437. doi: 10.1038/srep16437

153. Trillo-Tinojo J, Sierra RA, Mohamed E, Cao Y, de Mingo-Pulido A, Galvzy DL, et al. Ampk alpha-1 intrinsically regulates the function and differentiation of tumor myeloid-derived suppressor cells. Front Immunol (2018) 9:2544–57. doi: 10.3389/fimmu.2018.02544

154. Jeong HJ, Lee HJ, Ko JH, Cho BJ, Park SY, Park JW, et al. Myeloid-derived suppressor cells mediate inflammation resolution in humans and mice with autoimmune uveoretinitis. J Immunol (2018) 200(4):1306–15. doi: 10.4049/ journal.1700616

155. Miñásker A, Mack M, Schmidt H, Trucz W, Djukic M, Zabel MD, et al. CCR2 +Ly6chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system. Brain (2009) 132(Pt 9):2487–500. doi: 10.1093/brain/awp144

156. Chaisson VL, Bounds KR, Chatterjee P, manandhar L, Pakanati AR, Chiasson VL, Bounds KR, Chatterjee P, Manandhar L, Pakanati AR, Flaherty ML, et al. Pam2 lipopeptides promote prostaglandin E2 receptor 4 expression in tumor microenvironment exerts anti-tumor effect through inducing myeloid-derived suppressor cells. Front Immunol (2016) 7:254–68. doi: 10.3389/fimmu.2016.00010

157. Yu C, Yin K, Tang X, Tian J, Zhang Y, Ma J, et al. Metformin inhibits the function of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. Biochim Pharmacol (2019) 120:105458. doi: 10.1016/j.bcp.2019.105458

158. Bak SP, Alonso A, Turk MJ, Berwin B. Murine ovarian cancer vascular leakiness requires arginase I activity for T cell suppression. Mol Immunol (2008) 462(1):258–68. doi: 10.1016/j.molimm.2008.08.266

159. Ye C, Geng Z, Dominguez D, Chen S, Fan J, Qin L, et al. Targeting ornithine decarboxylase by alpha-difluoromethylornithine inhibits tumor growth by impairing myeloid derived suppressor cells. J Immunol (2016) 196(2):915–23. doi: 10.4049/jimmunol.1500729

160. Steggerda SM, Bennett MK, Chen J, Embery E, Huang T, James JR, et al. Inhibition of arginase by cb-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment. J Immunother Cancer (2017) 5(1). doi: 10.1186/s40425-017-0308-4

161. Cao Y, Feng Y, Zhang Y, Zhu J, Xiu J, Jin F. L-arginine supplementation inhibits the growth of breast cancer by enhancing innate and adaptive immune responses mediated by suppression of mdscs in vivo. BMC Cancer (2016) 16:543. doi: 10.1186/s12885-016-2376-0

162. Satoh Y, Kotani H, Iida Y, Taniura N, Notsu Y, Harada M. Supplementation of l-arginine boosts the therapeutic efficacy of anticancer chemomunotherapy. Cancer Sci (2020) 111(7):2248–58. doi: 10.1111/cas.14490

163. Yin T, Zhao ZB, Guo J, Wang T, Yang JB, Wang C, et al. Aurora A inhibition eliminates myeloid cell-mediated immunosuppression and enhances the
efficacy of anti-PD-L1 therapy in breast cancer. Cancer Res (2019) 79(3):3431–44. doi: 10.1158/0008-5472.CAN-18-3397

125. Xu H, Bardhan K, Paschall AV, Yang D, Waller IL, Park MA, et al. Deregu-
ation of apoptotic factors bcl-xl and bax confers apoptotic resistance to myeloid-derived suppressor cells and contributes to their persistence in cancer. J Biol Chem (2013) 288(26):29190–15. doi: 10.1074/jbc.M112.434530

126. Romer RM, Fijan A, Peruzzi MA, Goinitis V, Johansen AZ, Theorell ML, Carretta, M, et al. Blockade of beta-adrenergic receptors reduces cancer growth and enhances the response to anti-Cd44 therapy by modulating the tumor microenvironment. Oncogene (2022) 41(9):1364–75. doi: 10.1038/s41388-021-02179-o

127. Mohammadpour H, MacDonald CR, McCarthy PL, Abrams SL, Repasky EA. Beta2-adrenergic receptor signaling regulates metabolic pathways critical to myeloid-derived suppressor cell function within the tissue. Cell Rep (2021) 37(4):109883. doi: 10.1016/j.celrep.2021.109883

128. Caldani M, Bruno G, Dal Monte M, Nassinì R, Fontanti F, Casini A, et al. Beta3–adrenergic receptor as a potential immuno-suppressor agent in melanoma. Br J Pharmacol (2017) 176(4):2509–24. doi: 10.1111/bjp.14660

129. Radwan FF, Hossain A, God JM, Leahpin, Nt Elbowing M, Nagarkar M, et al. Reduction of myeloid-derived suppressor cells and lymphoma growth by a natural triterpenoid. J Cell Biochem (2015) 116(1):102–14. doi: 10.1002/jcb.24946

130. Terlizzi M, Dr Crescenzo VG, Perillo G, Galleresi A, Pinto A, Sorrentino R. Pharmacological inhibition of caspase-8 limits lung tumour outgrowth. Br J Pharmacol (2018) 175(6):1292–305. doi: 10.1111/bjp.14405

131. Fan Q, Gu D, Liu H, Yang L, Zhang X, Yoder MC, et al. Defective tgf-beta signaling in bone marrow-derived cells prevents hedgehog-induced skin tumors. Cancer Res (2014) 74(2):471–83. doi: 10.1158/0008-5472.CAN-13-2134-T

132. Mu XY, Wang RJ, Yao ZX, Zheng Z, Jiang JT, Tan MY, et al. Rs 504393 inhibits m-dsc recruiting into immune microenvironment of bladder cancer after gectamicin treatment. Mol Immunol (2019) 109:149–98. doi: 10.1016/j.molimm.2019.02.014

133. Wang Y, Zhang X, Yang L, Xue J, Hu G. Blockade of Cd2 enhances immunotherapeutic effect of anti-Pd1 in lung cancer. J Bone Oncol (2018) 11:80. doi: 10.1016/j.jbonco.2018.01.002

134. >Matsuoka T, Noda M, Kogawa T, Kitagawa H, Hayashi N, Jomori T, et al. Phase I dose-escalation trial to repurpose propagermanium, an oral Ccl2 inhibitor, for gemcitabine treatment. Mol Immunol (2019) 109:190–8. doi: 10.1016/j.molimm.2019.02.014

135. Schlecker E, Stojanovic A, Eisen C, Quack C, Falk CS, Umansky V, et al. Targeting Cxcr2-mediated m-dsc tumor traficking enhances the response to anti-Ctla4 therapy by modulating the tumor microenvironment. J Immunol (2015) 38(6):2049. doi: 10.3389/fimmu.2022.933847

136. Zhang Y, Lv D, Kim HJ, Kurt RA, Bu W, Li Y, et al. A novel role of Cxcr2-mediated m-dsc tumor trafficking of Cxcr2-mediated mdsc in an aml mouse model. J Immunol (2019) 163(2):720–9. doi: 10.4049/jimmunol.1801018

137. Tang Q, Jiang J, Liu J. Cxcr3 blockade suppresses melanoma development through inhibition of the il-6-Stat3 pathway. Inflammation (2015) 38(6):2049–56. doi: 10.1007/s10753-015-0186-1

138. Ban Y, Mai J, Li X, Mitchell-Flack M, Zhang T, Zhang L, et al. Targeting autocrine Cxcr3-Cxcr5 axis reprograms immunosuppressive myeloid cells and reinvigorates antitumor immunity. Cancer Res (2017) 77(1):2457–68. doi: 10.1158/0008-5472.CAN-16-2913

139. Zhou J, Liu M, Sun H, Feng Y, Xu L, Chan AWH, et al. Hepatoma-intrinsic Klf4 inhibition of Cxcr2-mediated m-dsc tumor traficking enhances anti-Pd1 efficacy. Sci Transl Med (2016) 8(325):325ra67. doi: 10.1126/scitranslmed.3003974

140. Wang Y, Lu X, Dey P, Deng P, Wu CC, Jiang S, et al. Targeting yap-dependent m-dsc infiltration improves tumor progression. Cancer Discovery (2016) 6(1):80–95. doi: 10.1158/2155-2254.cd-15-0224

141. Dong Y, Fu R, Chen J, Zhang K, Ji M, Wang M, et al. Discovery of benzoyl sulfone derivatives as potent Cxcr2 antagonists for cancer immunotherapy. J Med Chem (2021) 64(22):16626–40. doi: 10.1021/acs.jmedchem.1c01219

142. Wang D, Sun H, Wei J, Cen B, Dubois RN. Cxcr2 is critical for premetastatic niche formation and metastasis in colorectal cancer. Cancer Res (2017) 77(13):3635–45. doi: 10.1158/0008-5472.CAN-16-3399

143. Shi H, Han X, Sun Y, Shang C, Wu M, Xu B, et al. Chemokine (C-X-C) motif ligand 1 and Cxcr2 produced by tumor promote the generation of myeloid-derived suppressor cells. Sci Transl Med (2018) 10(46):1–9. doi: 10.1126/scitranslmed.aat1195

144. Greene S, Robbins Y, Mylavarapu VK, Hynes AP, Schmitt NC, Friedman J, et al. Inhibition of mdsc trafficking with sx-682, a Cxcr1/2 inhibitor, enhances nk-cell immunotherapy in head and neck cancer models. Clin Cancer Res (2020) 26(6):1420–31. doi: 10.1158/1078-0432.CCR-19-2625

145. Dubekovskaya Z, Si Y, Chen X, Worthley DL, Renz BW, Urbanska AM, et al. Neural innervation stimulates splenic treg to arrest myeloid cell expansion and cancer. Nat Commun (2016) 7:10571. doi: 10.1038/ncomms10571

146. Hwang HS, Han AR, Lee JY, Park GS, Min WS, Kim HJ. Enhanced anti- leukemic effects through induction of immunomodulating microenvironment by blocking Cxcr4 and pd-l1 in an murine model. Mol Immunol (2019) 48(1):96–105. doi: 10.1016/j.molimm.2018.12.002

147. Sun R, Luo H, Ji S, Di Z, Zhou M, Shi B, et al. Otataparin suppresses m-dsc recruitment Via Sdf1alpha/Cxcr4 axis to improve the anti-tumor efficacy of car-t cells on breast cancer in mice. Mol Ther (2021) 29(1):60–74. doi: 10.1016/j.ymthe.2020.09.034

148. Bockorny B, Semenisty V, Macartura T, Borzanici E, Wolpin BM, Stemmer SM, et al. Bl-8040, a Cxcr4 antagonist, in combination with pembrolizumab and chemotherapy for pancreatic cancer: The combat trial. Nat Med (2020) 26(6):878–85. doi: 10.1038/s41591-020-0880-x

149. Ghonim MA, Ibba SV, Tarhuni AF, Errami Y, Luu HH, Dean MJ, et al. Targeting parp-1 with metronomic therapy modulates m-dsc suppressive function and enhances anti-Pd-1 immunotherapy in colon cancer. J Immunother Cancer (2020) 8(1):001643. doi: 10.1002/immub.2020.02.005

150. Travelli C, Consonni FM, Sangaletti S, Storti M, Morlacchi S, Grolla AA, et al. Nicotinamide phosphoribosyltransferase acts as a metabolic gate for...
mobilization of myeloid-derived suppressor cells. Cancer Res (2019) 79(9):3938–
51. doi: 10.1158/0008-5472.CAN-18-1544

16. Wu J, Zhang R, Yang T, Gong Z, Zhou J, Chen Y, et al. Dopamine inhibits the function of gr-1+CD11b+ myeloid-suppressed suppressor cells through D1-like receptors and enhances anti-tumor immunity. J Leukoc Biol (2015) 97(1):191–200. doi: 10.1189/jlb.A1113-62RR

17. Hoespeier LH, Wang Y, Sharma A, Javed N, Van Keulen VP, Wang E, et al. Dopamine D2 receptor agonists inhibit lung cancer progression by reducing angiogenesis and tumor infiltrating myeloid derived suppressor cells. Mol Oncol (2015) 9(1):270–81. doi: 10.1016/j.molonc.2014.08.008

18. Alheruti SH, Deng C, Liu M, Xu L, Luo F, Kloecker G, et al. Yeast-derived particulate beta-glucan treatment suppresses the suppression of myeloid-derived suppressor cells (Mds) by inducing polymorphonuclear mdsc apoptosis and monocytc mdsc differentiation to apc in cancer. J Immunol (2016) 196(5):2167–
80. doi: 10.4049/jimmunol.1501853

19. D’Amico L, Mahajan S, Capietto AH, Yang Z, Zamani A, Ricci B, et al. Dickkopf-related protein 1 (Dkk1) regulates the accumulation and function of myeloid derived suppressor cells in cancer. J Exp Med (2016) 213(5):827–40. doi: 10.1084/jem.20150950

20. Park MS, Yang AY, Lee JE, Kim SK, Roe JS, Park MS, et al. Galect3 suppresses lung cancer by inhibiting myeloid-derived suppressor cell infiltration and angiogenesis in a tnfr and c-met pathway-dependent manner. Cancer Lett (2021) 521:294–307. doi: 10.1016/j.canlet.2021.08.013

21. Sinha P, Clemens VK, Bunt SK, Abdelb SM, Ostrund-Rosenberg S. Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol (2007) 179(2):977–83. doi: 10.4049/
jimmunol.179.2.977

22. Ghanassi T, Vohra N, Kunney K, Weber A, Kodumudi K, Springett G, et al. Dendritic cell immunotherapy combined with ganciclovir chemotherapy enhances survival in a murine model of pancreatic carcinoma. Cancer Immunol Immunother (2013) 62(6):1083–91. doi: 10.1007/s00262-013-1407-9

23. Sasso MS, Lollo G, Pitore M, Solto S, Pinton L, Valpince S, et al. Low dose ganciclovir increases the anti-tumor activity of monocytes and myeloid-derived suppressor cells and potentiates cancer immunotherapy. Biomaterials (2016) 96:47–62. doi: 10.1016/j.biomaterials.2016.04.010

24. Peerboom DM, Alban TJ, Grabowski MM, Alvarado AG, Otros B, Bayik D, et al. Monocytic derived suppressor cells and potential cancer immunotherapies. Cancer Immunol Res (2018) 6(6):1200. doi: 10.1158/2326-6066.CIR-17-0296

25. Yuan SJ, Xu YH, Wang C, An HC, Xu HZ, Li K, et al. Dendroburacin-
Polyglyceryl-Nanodiamond conjugate is a cytostatic agent that evades chemoresistance and reverses cancer-induced immunosuppression in triple-negative breast cancer. J Nanobiotechnol (2019) 17(1):110. doi: 10.1186/s12951-019-0545-1

26. Vincent J, Mignot F, Chalmin F, Ladoire S, Bruchard M, Chevriaux A, et al. Hypoxia inducible factor hif-1 promotes myeloid-derived suppressor cells accumulation through mdsc glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. J Immunother Cancer (2015) 4(1):270–80. doi: 10.1186/s40425-015-0097-6

27. Haig WD, Jh Q, Miller A, Liu S, Abrams SL. Tumor-derived G-csf facilitates neoplastic growth through a granulocytic myeloid-derived suppressor cell-dependent mechanism. PloS One (2011) 6(11):e27690. doi: 10.1371/journal.pone.0027690

28. Wei WC, Lin SY, Lan CW, Huang YC, Lin CY, Hsiao PW, et al. Inhibiting mdsc differentiation from bone marrow by phytochemical pycnogenol drastically impacts tumor metastasis. Sci Rep (2016) 6:68663. doi: 10.1038/
scirep.2016.68663

29. Nefedova Y, Fishman M, Sherman S, Wang X, Beg AA, Gabrilovich DI. Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-suppressed suppressor cells. Cancer Res (2007) 67(22):1021–8. doi: 10.1158/0008-5472.Can-
307-2593

30. Chen X, Eksioglu EA, Zhou J, Zhang L, Djeu JF, Forbeny N, et al. Induction of myelodysplasia by myeloid-derived suppressor cells. J Clin Invest (2013) 123(11):4955–61. doi: 10.1172/JCI67580

31. Icelcan Z, Antonia S, Chiappori A, Chen DT, Gabrilovich D. Therapeutic regulation of myeloid-suppressed suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancer. Cancer Immunol Immunother (2013) 62(5):909–18. doi: 10.1007/s00261-013-1396-8

32. Long AH, Highfill SL, Cui Y, Smith JP, Walker AJ, Ramakrishna S, et al. Targeting myeloid derived suppressor cells with all-trans retinoic acid increases the efficacy of antiangiogenic therapy. Cancer Res (2018) 78(12):3220–32. doi: 10.1158/2326-6066.CIR-17-3415

33. Tobin RP, Jordan KR, Robinson WA, Davis D, Borges VF, Gonzalez R, et al. Targeting myeloid-derived suppressor cells using all-trans retinoic acid in melanoma patients treated with ipilimumab. Int Immunopharmacol (2016) 63:282–91. doi: 10.1016/j.intimp.2015.10.007

34. Mori K, Takahashi T, Ohno T, Morishita A, Shiraishi T, et al. Targeting glutamin metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. J Immunother Cancer (2020) 8(10):3865–84. doi: 10.1158/2326-6066.CIR-
313859

35. Morales JK, Kmicieck M, Knutson KL, Bear HD, Manihi MH. Gm-csf is one of the main breast tumor-derived soluble factors involved in the differentiation of Cd11b+Gr-1- bone marrow progenitor cells into myeloid-derived suppressor cells. Breast Cancer Res Treat (2010) 123(1):39–49. doi:10.1007/s10549-009-0622-8

36. Kapandire T, Garrekelaisha JI, Ma C, Chen C, Zhao F, Hewitt S, et al. Chemotherapy-induced inflammation responses accelerate the formation of immunosuppressive myeloid cells in the tissue microenvironment of human pancreatic cancer. Cancer Res (2015) 75(13):2629–40. doi: 10.1158/0008-5472.CAN-14-2921

37. Wang HF, Ning F, Liu ZC, Wu L, Li ZQ, Qi YF, et al. Histone deacetylase inhibitors deplete myeloid-suppressed suppressor cells induced by 411 mammary tumors in vivo and in vitro. Cancer Immunol Immunother (2015) 64(3):355–66. doi: 10.1007/s00262-016-1935-1

38. Onifilin A, Hashimoto AM, Damayanti N, Shen L, Adelayie-Ogala R, Arisa S, et al.atinium neutralizes myeloid-derived suppressor cells and antitumor effect of p1 inhibition in murine models of lung and renal cell carcinoma. Clin Cancer Res (2015) 21(17):5187–201. doi: 10.1158/1078-0432.CCR-17-0741

39. van Geffen et al. 10.3389/fimmu.2022.935847

40. Takeuchi S, Baghj M, Tsuchikawa T, Wada H, Nakamura T, Abe H, et al. Chemotherapy-induced inflammation responses accelerate the formation of immunosuppressive myeloid cells in the tissue microenvironment of human pancreatic cancer. Cancer Res (2015) 75(13):2629–40. doi: 10.1158/0008-5472.CAN-14-2921

41. Wang HF, Ning F, Liu ZC, Wu L, Li ZQ, Qi YF, et al. Histone deacetylase inhibitors deplete myeloid-suppressed suppressor cells induced by 411 mammary tumors in vivo and in vitro. Cancer Immunol Immunother (2015) 64(3):355–66. doi: 10.1007/s00262-016-1935-1
high myeloid derived suppressor cells by modulating the anti-apoptotic molecule et al. Ifn-gamma regulates survival and function of tumor-induced Cd11b+ gr-

10(5):571 colorectal cancer.

inhibitor combination therapy inhibits tumor progression in murine models of tumors by blocking myeloid-derived suppressor cells.

et al. Indoleamine 2,3-dioxygenase 1 inhibition targets anti-Pd1-Resistant lung j.cellimm.2021.104384 responses by promoting differentiation into monocytic myeloid-derived suppressor cells. Cancer Immunol Res (2014) 193(11):5453–60. doi: 10.4049/jimmunol.1401282

186(2):807 decreases tumor pim-tnks and reduces mesenchymalization of claudin-low triple-negative breast cancer. JCI Insight (2017) 2(21):e94396. doi: 10.1172/jci.insight.94296

Bilasuc M, Heery CR, Collins JM, Donahue RN, Palena C, Madan RA, et al. Phase I trial of human-iB (Rms-98625), an anti-Il-8 monoclonal antibody, in patients with metastatic or unresectable solid tumors. J Immune Ther (2019) 7(1):240. doi:10.4049/jimmunol.1001483

Steding CE, Wu ST, Zhang Y, feng MH, Elsey BD, Kao C. The role of interleukin-12 on modulating myeloid-derived suppressor cells, increasing overall survival and reducing metastasis. Immunity (2011) 133(2):221–38. doi: 10.1016/j.immuni.2011.06.024

Hall B, Nakashima H, Sun JZ, Sato Y, Bian Y, Hussain SR, et al. Targeting of interleukin-13 receptor Alpha2 for treatment of head and neck squamous cell carcinoma induced by conditional deletion of Tgf-beta and pten signaling. J Transl Med (2013) 11:45. doi:10.1186/1479-5876-11-45

Lim HX, Hong HJ, Cho D, Kim TS. Il-18 enhances immunosuppressive responses by promoting differentiation into monocytic myeloid-derived suppressor cells. Cancer Immunol Immunother (2011) 60(5):629–40. doi:10.1002/1878-0088.201108023.x

Guan J, Yang B, Peng Z, Dong D, Wei G, Wang Y. Inhibition of il-18-Mediated myeloid derived suppressor cell accumulation enhances anti-Pd1 efficacy against osteosarcoma cancer. J Bone Oncol (2017) 9:59–64. doi:10.1016/j.jbono.2017.01.002

Nakamura K, Kaseem S, Cleyner A, Chretien ML, Guillecy C, Putt EM, et al. Dysregulated Il-18 is a key driver of immunosuppression and a possible therapeutic target in the multiple myeloma microenvironment. Cancer Cell (2015) 33(4):634–48 e5. doi:10.1016/j.ccell.2015.02.007

Lim HX, Choi S, Cho D, Kim TS. Il-33 inhibits the differentiation and immunosuppressive activity of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. Immunity Cell Biol (2017) 95(1):119–107. doi:10.1038/ ics.2016.72

Capuano G, Rigamonti N, Grioni M, Freschi M, Bellone M. Modulators of arginine metabolism support cancer immuno-surveillance. BMC Immunol (2009) 10.1. doi:10.1186/1471-2415-10-1

Jayaraman P, Parikh F, Lopez-Rivera E, Hallaemich Y, Clark A, Ma G, et al. Tumor-expressed inducible nitric oxide synthase controls induction of functional myeloid-derived suppressor cells through modulation of vascular endothelial growth factor release. J Immunol (2012) 188(11):5765–76. doi:10.4049/jimmunol.1102055

Nam S, Kang K, Chae JS, Kim JW, Lee HG, Kim Y, et al. Interferon regulatory factor 4 (Irf4) controls myeloid-derived suppressor cell (Mdisc) differentiation and function. J Leukoc Biol (2016) 100(6):1273–84. doi:10.1189/jlb.100215-068RR

Yang Q, Xie H, Li X, Feng Y, Xie S, Qu J, et al. Interferon regulatory factor 4 regulates the development of polymorphonuclear myeloid-derived suppressor cells through the transcription of c-myc in cancer. Front Immunol (2021) 12:627972. doi:10.3389/fimmu.2021.627972

Parveen S, Siddharth S, Cheung LS, Kumar A, Shen J, Murphy JR, et al. Therapeutic targeting with db1-depletes myeloid suppressor cells in 4t1 triple-negative breast cancer model. Mol Oncol (2021) 15(5):1339–44. doi:10.1002/1878- 0629.12998

Sierra RA, Trillo-Tinoco J, Mohamed E, Yu I, Achiyt BR, Arbab A, et al. Anti-Jagged immunotherapy inhibits mds and overcomes tumor-induced tolerance. Cancer Res (2017) 77(20):5628–38. doi:10.1158/0008-5472.CAN-17- 0357

Cao M, Xu Y, Youn JL, Cabrera R, Zhang X, Gabrilovich D, et al. Kinase inhibitor sorafenib modulates immunosuppressive cells population in a murine
function of myeloid-derived suppressor cells. Myd88 signaling induces antitumor effects by skewing the immunosuppressive
impairing myeloid-derived suppressor cells. Cancer (2012) 20:1245–50. doi: 10.1158/2045-5925.CAN-13-0281.

2. Schilling B, Sucker A, Griewank K, Zhao F, Weide B, Gorgens A, et al. Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Cancer Lett (2013) 34:151–9. doi: 10.1016/j.canlet.2013.05.003.

3. Schilling B, Sucker A, Griewank K, Zhao F, Weide B, Gorgens A, et al. Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Cancer Lett (2013) 34:151–9. doi: 10.1016/j.canlet.2013.05.003.

4. Schilling B, Sucker A, Griewank K, Zhao F, Weide B, Gorgens A, et al. Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Cancer Lett (2013) 34:151–9. doi: 10.1016/j.canlet.2013.05.003.

5. Schilling B, Sucker A, Griewank K, Zhao F, Weide B, Gorgens A, et al. Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Cancer Lett (2013) 34:151–9. doi: 10.1016/j.canlet.2013.05.003.

6. Schilling B, Sucker A, Griewank K, Zhao F, Weide B, Gorgens A, et al. Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Cancer Lett (2013) 34:151–9. doi: 10.1016/j.canlet.2013.05.003.

7. Schilling B, Sucker A, Griewank K, Zhao F, Weide B, Gorgens A, et al. Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Cancer Lett (2013) 34:151–9. doi: 10.1016/j.canlet.2013.05.003.

8. Schilling B, Sucker A, Griewank K, Zhao F, Weide B, Gorgens A, et al. Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Cancer Lett (2013) 34:151–9. doi: 10.1016/j.canlet.2013.05.003.

9. Schilling B, Sucker A, Griewank K, Zhao F, Weide B, Gorgens A, et al. Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Cancer Lett (2013) 34:151–9. doi: 10.1016/j.canlet.2013.05.003.

10. Schilling B, Sucker A, Griewank K, Zhao F, Weide B, Gorgens A, et al. Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Cancer Lett (2013) 34:151–9. doi: 10.1016/j.canlet.2013.05.003.

11. Schilling B, Sucker A, Griewank K, Zhao F, Weide B, Gorgens A, et al. Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Cancer Lett (2013) 34:151–9. doi: 10.1016/j.canlet.2013.05.003.

12. Schilling B, Sucker A, Griewank K, Zhao F, Weide B, Gorgens A, et al. Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Cancer Lett (2013) 34:151–9. doi: 10.1016/j.canlet.2013.05.003.

13. Schilling B, Sucker A, Griewank K, Zhao F, Weide B, Gorgens A, et al. Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Cancer Lett (2013) 34:151–9. doi: 10.1016/j.canlet.2013.05.003.

14. Schilling B, Sucker A, Griewank K, Zhao F, Weide B, Gorgens A, et al. Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Cancer Lett (2013) 34:151–9. doi: 10.1016/j.canlet.2013.05.003.

15. Schilling B, Sucker A, Griewank K, Zhao F, Weide B, Gorgens A, et al. Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Cancer Lett (2013) 34:151–9. doi: 10.1016/j.canlet.2013.05.003.

16. Schilling B, Sucker A, Griewank K, Zhao F, Weide B, Gorgens A, et al. Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Cancer Lett (2013) 34:151–9. doi: 10.1016/j.canlet.2013.05.003.

17. Schilling B, Sucker A, Griewank K, Zhao F, Weide B, Gorgens A, et al. Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Cancer Lett (2013) 34:151–9. doi: 10.1016/j.canlet.2013.05.003.

18. Schilling B, Sucker A, Griewank K, Zhao F, Weide B, Gorgens A, et al. Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Cancer Lett (2013) 34:151–9. doi: 10.1016/j.canlet.2013.05.003.

19. Schilling B, Sucker A, Griewank K, Zhao F, Weide B, Gorgens A, et al. Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Cancer Lett (2013) 34:151–9. doi: 10.1016/j.canlet.2013.05.003.

20. Schilling B, Sucker A, Griewank K, Zhao F, Weide B, Gorgens A, et al. Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Cancer Lett (2013) 34:151–9. doi: 10.1016/j.canlet.2013.05.003.

21. Schilling B, Sucker A, Griewank K, Zhao F, Weide B, Gorgens A, et al. Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Cancer Lett (2013) 34:151–9. doi: 10.1016/j.canlet.2013.05.003.

22. Schilling B, Sucker A, Griewank K, Zhao F, Weide B, Gorgens A, et al. Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Cancer Lett (2013) 34:151–9. doi: 10.1016/j.canlet.2013.05.003.

23. Schilling B, Sucker A, Griewank K, Zhao F, Weide B, Gorgens A, et al. Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Cancer Lett (2013) 34:151–9. doi: 10.1016/j.canlet.2013.05.003.

24. Schilling B, Sucker A, Griewank K, Zhao F, Weide B, Gorgens A, et al. Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Cancer Lett (2013) 34:151–9. doi: 10.1016/j.canlet.2013.05.003.
mature less suppressive mdsc population. Front Immunol (2014) 5:567. doi: 10.3389/fimmu.2014.00567

282. Mao Y, Sarhan D, Steven A, Seliger B, Kissingl R, Lundquist A. Inhibition of tumor-derived prostaglandin-E2 blocks the induction of myeloid-derived suppressor cells and recovers natural killer cell activity. Clin Cancer Res (2014) 20(15):4096–106. doi: 10.1158/1078-0432.CCR-14-0635

283. Bluhdorn AG, Salameh M, Massanforni JD, Dament MJ, Bal de Kier Jolle E, Iasins MA, et al. Differential response of myeloid-derived suppressor cells to the nonsteroidal anti-inflammatory agent indomethacin in tumor-associated and tumor-free microenvironments. J Immunol (2013) 194(7):3452–62. doi: 10.4049/jimmunol.1401144

284. Gao Y, Xiong I, Wang I, Wen J, Zhi F. Inhibition of rac family protein impairs colitis and colitis-associated cancer in mice. Am J Cancer Res (2018) 8 (1):70–80.

285. Strauss L, Sangalletti S, Consoloni FM, Szebeni G, Morlachchi S, Totoaro MG, et al. RoceI regulates tumor-promoting “Emergency” granulo-monocytosis. Cancer Cell (2015) 28(2):253–69. doi: 10.1016/j.ccell.2015.07.006

286. Nagaraj S, Youn JIL, Weber H, Ilozan C, Lu L, Cotter MJ, et al. Anti-inflammatory trimericoid blocks immune suppressive function of mdscs and improves immune response in cancer. Clin Cancer Res (2010) 16(6):1812–23. doi: 10.1158/1078-0432.CCR-09-3272

287. Alzahed D, Trad M, Hanke NT, Larmontier CB, Janiakasvili N, Bonnotte B, et al. Donorobucin eliminates myeloid-derived suppressor cells and enhances the efficacy of adoptive T-cell transfer in breast cancer. Cancer Res (2014) 74(1):104–10. doi: 10.1158/0008-5472.CAN-13-1545

288. Ozzo-Choy J, Ma J, Ga J, Wang GX, Meseck M, Sung M, et al. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Immunol Immunother (2019) 68(9):2514–22. doi: 10.1007/s00262-019-02171-3

289. Holtzhausen A, Harris W, Ubil E, Hunter DM, Zhao J, Zhang Y, et al. Tam Family receptor kinase inhibition reverses mdsc-mediated suppression and augments anti-Pdl-1 therapy in melanoma. Cancer Immunol Immunother (2019) 7 (10):1672–86. doi: 10.1007/s00262-019-02171-3

290. Apelo AB, Nadal R, Tomita Y, Davarpanah NN, Cordero LM, Steinberg SM, et al. Cabozantinib in patients with platinum-refractory metastatic urothelial carcinoma: An open-label, single-centre, phase 2 trial. Lancet Oncol (2020) 21(8):1058–69. doi: 10.1016/S1470-2045(20)30202-3

291. Guislain A, Gadiot J, Kaiser A, Jordanova ES, Broeks A, Sanders J, et al. Tasquinimod modulates suppressive myeloid cells and enhances cancer immunotherapies in murine models. Cancer Immunol Immunother (2015) 64(12):1366–77. doi: 10.1007/s00262-015-1790-5

292. Li H, Han Y, Guo Q, Zhang M, Cao X. Cancer-expanded myeloid-suppressor cells induce anergy of t cells through membrane-bound tgf-beta 1. J Immunol (2009) 182(1):240–9. doi: 10.4049/jimmunol.182.1.240

293. Korbelik M, Banath J, Wang Z, Saw KM, Smuc ZM, BIELAWSKA A, et al. Interaction of acid ceramidase inhibitor Ldcs21 with tumor response to photodynamic therapy and photodynamic therapy-generated vaccine. Int J Cancer (2016) 138(6):1572–8. doi: 10.1002/ijc.30171

294. Liu F, Li X, Lu C, Bai A, BIELAWSKA J, BIELAWSKA A, et al. Ceramide activates lysoosomal cathepsin b and cathepsin d to attenuate autophagy and induces er stress to suppress myeloid-suppressor cells. Oncotarget (2016) 7(51):89075–27. doi: 10.18632/oncotarget.13438

295. Pfeilann P, Rhasnik D, Bryce PJ, Thaxton CS. Scavenger receptor type b1 and lipoprotein nanoparticle inhibit myeloid-suppressor cells. Mol Cancer Ther (2018) 17(3):686–97. doi: 10.1158/1535-7163.MCT-17-0981

296. Younis RH, Han KL, Webb TJ. Human head and neck squamous cell carcinoma-associated semaphorin 4d induces expansion of myeloid-suppressor cells. Cancer (2012) 118(3):1419–29. doi: 10.1049/jimmunol.1501293

297. Clavijo PE, Friedman J, Robbins Y, Moore EC, Smith E, Zauderer M, et al. Bracing myeloid-suppressor cells to suppress myeloid-suppressor cells. Cancer Res (2016) 76(2):957–66. doi: 10.1158/0008-5472.CAN-15-0822

298. Poschke I, Mougakaiakos D, Harmon J, MAUZER G, KIESLING R, IMMUNOSUPPRESSIVE CD14+HLA-DR-LOW cells in melanoma patients are STAT3hi and overexpress CD80, CD83, and dc-sign. Cancer Res (2010) 70 (11):4335–45. doi: 10.1158/0008-5472.CAN-09-3767

299. Tu SP, Jin H, SH JD, Zhu LM, Su Y, Lu G, et al. Carmunic induces the differentiation of myeloid-suppressor cells and inhibits their interaction with cancer cells and related tumor growth. Cancer Prev Res (Phila) (2012) 5 (2):205–15. doi: 10.1158/1940-6207.CAPR-11-0247
remodels the tumor microenvironment by antagonizing myeloid-derived suppressor cells and enhances stemness and mesenchymal properties in human pancreatic cancer. *Cancer Immunol Immunother* (2014) 63(5):513–28. doi: 10.1007/s00262-014-1527-x

32. Yu J, Wang Y, Yan F, Zhang P, Li H, Zhao H, et al. Noncanonical Nf-kappab activation mediates Stat3-stimulated ipo upregulation in myeloid-derived suppressor cells in breast cancer. *J Immunol* (2019) 193(3):2574–86. doi: 10.4049/jimmunol.1400833

33. Yang F, Hu M, Lei Q, Xu Y, Zhu Z, Song X, et al. Nifuroxizd induces apoptosis and impairs pulmonary metastasis in breast cancer model. *Cell Death Dis* (2015) 6:e1701. doi: 10.1038/cddis.2015.63

34. Yu Z, Ye T, Yu X, Lei Q, Fong Y, Xu Y, et al. Nifuroxizd exerts potent anti-tumor and anti-metastasis activity in melanoma. *Sci Rep* (2016) 6:20253. doi: 10.1038/srep20253

35. Ye TH, Yang FF, Zhub YX, Li YL, Lei Q, Song XJ, et al. Inhibition of Stat3 signaling pathway by nifuroxizd improves antitumor immunity and impairs colorectal cancer metastasis. *Cell Death Dis* (2017) 8(1):e2534. doi: 10.1038/ cddis.2016.452

36. Al-Khami AA, Zheng L, Del Valle L, Hossain F, Wyczewinska D, Zabalute J, et al. Exogenous lipid uptake induces metabolic and functional reprogramming of tumor-associated myeloid-derived suppressor cells. *Oncotarget* (2017) 8(10):134480. doi: 10.18632/oncotarget.134480

37. Bitsch R, Kuznar A, Orbay Kurf F, de la Torre C, Lasser S, Lepper A, et al. Stat3 inhibiter naphacabinabases mdsc immunosuppressive capacity and prolongs survival of melanoma-bearing mice. *J Immunother Cancer* (2022) 10(3):e004384. doi: 10.1158/2326-6066.JITC-21-00438

38. Liu D, You M, Xu Y, Li F, Zhang D, Li X, et al. Inhibition of curcumin on myeloid-derived suppressor cells is requisite for controlling lung cancer. *Int Immunopharmacol* (2016) 36:265–72. doi: 10.1016/j.intimp.2016.07.035

39. Tian S, Liao Z, Zhou Q, Huang X, Zheng P, Guo Y, et al. Curcumin inhibits the growth of liver cancer by inhibiting myeloid-derived suppressor cells in murine tumor tissues. *Oncol Lett* (2021) 21(4):286. doi: 10.3892/ol.2021.12547

40. Wang SH, Li QJ, Guo YH, Song YY, Liu PJ, Wang YC. The blockage of notch signalling promotes the generation of polymorphonuclear myeloid-derived suppressor cells with lower immunosuppression. *Front Immunol* (2021) 12:85. doi: 10.3389/fimmu.2021.00147

41. Arethakhy KS, Sosenko MA, Gogoleva VS, Zveravtsev RV, Qin Z, Nedospasova SA, et al. Tnf neutralization results in the delay of transplanta tumor growth and reduced mdsc accumulation. *Front Immunol* (2016) 7:147. doi: 10.3389/fimmu.2016.00147

42. Dominguez GA, Condantime T, Mynt S, Hashimoto A, Wang F, Liu Q, et al. Selective targeting of mdsc in cancer patients using ds-R273A, an agonistic ril-R2 antibody. *Clin Cancer Res* (2017) 23(12):2942–50. doi: 10.1158/1078-0432.CCR-16-1784

43. Hartwig T, Montinaro A, von Karstedt S, Sevko A, Sarinova S, Chakravarthi A, et al. The trail-induced cancer secrete promote a tumor-supportive immune microenvironment Via Ccr2. *Mol Cell* (2017) 65(4):730–42.e5. doi: 10.1016/j.molcel.2017.01.021

44. Hiramoto K, Satoh H, Suzuki T, Morugachi T, Pi J, Shimosegawa T, et al. Myeloid-lineage specific deletion of antioxidant system enhances tumor metastasis. *Cancer Prev Res (Phila)* (2014) 7(8):835–44. doi: 10.1158/1940-6207.CAPR-14-0094

45. Espagnolle N, Barron P, Mandron M, Blanc I, Bonnin J, Agnel M, et al. Specific inhibition of the vegf3-3 tyrosine kinase by sar135673 reduces peripheral and tumor associated immunosuppressive myeloid cells. *Cancers (Basel)* (2016) 4(1):47–90. doi: 10.3390/cancers04010047

46. Feng PH, Chen KY, Huang YC, Luo CS, Wu SM, Chen TT, et al. Bevacizumab reduces s100a9-positive mdsc linked to intracranial control in patients with egfr-mutant lung adenocarcinoma. *J Thorac Oncol* (2018) 13(7):958–67. doi: 10.1016/j.jto.2018.03.032

47. Maughan BL, Pal SK, Gill D, Boucher K, Martin C, Salgia M, et al. Modulation of premetastatic niche by the vascular endothelial growth factor receptor tyrosine kinase inhibitor paszopiban in localized high-risk prostate cancer followed by radical prostatectomy: A phase ii randomized trial. *Oncologist* (2018) 23(12):1413–151. doi: 10.1634/theoncologist.2018-0652

48. Fussa K, Atzori GM, Ruffini F, Scimeca M, Bonanno E, Cicconi R, et al. Targeting the vascular endothelial growth factor receptor tyrosine kinase inhibitor pazopiban in localized high-risk prostate cancer followed by radical prostatectomy: A phase ii randomized trial. *Oncologist* (2018) 23(12):1413–151. doi: 10.1634/theoncologist.2018-0652

49. Horiwaka N, Abiko K, Matsunara N, Baba T, Hamanshi J, Yamaguchi K, et al. Anti-vegf therapy resistance in ovarian cancer is caused by gm-csf induced myeloid-derived suppressor cell recruitment. *Br J Cancer* (2020) 122(6):778–88. doi: 10.1038/s41416-019-0725-x

50. Calac PM, Atri Gi M, Ruffini F, Scimeca M, Bonanno E, Cicconi R, et al. Targeting the vascular endothelial growth factor receptor 1 by the monoclonal antibody D16f7 to increase the activity of immune checkpoint inhibitors against cutaneous melanoma. *Pharmacol Res* (2020) 159:104957. doi: 10.1016/j.phrs.2020.104957

51. Grover A, Sansiero E, Timosenko E, Gabrilovich DI. Myeloid-derived suppressor cells: A propitious role for therapy. *Clin Cancer Discov* (2011) 1(1):299–306. doi: 10.1158/2159-8290.CD-11-0764

52. Vega L, Sansiero E, Gabrilovich DI. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. *Nat Rev Immunol* (2021) 21(8):485–98. doi: 10.1038/s41577-020-00498-y