A videogrammetric technique for measuring the vibration displacement of stay cables

ZHOU Xiaoqing*, XIA Yongb, WEI Zelongb and WU Qingxiongb,c

"College of Civil Engineering, Shenzhen University, 3688 Nanhai Road, Shenzhen 518060, China; bDepartment of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; cCollege of Civil Engineering, Fuzhou University, 2 Xue Yuan Road, University Town, Fuzhou 350108, China

(Received 3 July 2011; final version received 15 May 2012)

Stay cables in cable-stayed bridges are prone to large amplitude oscillations under external excitations. The vibration of the cables is predominantly measured by using accelerometers to measure the acceleration. The dynamic displacement is then usually obtained indirectly from the double integration of the acceleration data. This paper reports an experimental method of measuring the displacement of stayed cables using a digital video camera. With the newly developed videogrammetric technique, the video clips are transferred into image frames, from which the shape and location of the target are identified. The displacement time history is then captured. The technique is applied to a cable-stayed bridge to measure the dynamic displacement of stay cables. The displacement is then compared with the acceleration data in the frequency and time domains. The results show that the displacement measured by the digital video camera is comparable to the counterparts integrated from the acceleration data. The vibration frequencies identified from the acceleration are finally used to estimate the tension forces of the cables. The results show that the tension forces have insignificant changes after one year’s operation.

Keywords: stay cable; vibration; displacement measurement; videogrammetric technique; tension force

1. Introduction

Dynamic testing techniques, which use accelerometers to measure acceleration, have been widely developed and dominate vibration measurement. With these techniques, the dynamic velocity and displacement are usually obtained indirectly from the integration of the acceleration data, which introduces numerical problems such as baseline correction. Instruments that directly measure dynamic displacement include the laser Doppler vibrometer (LDV) and global positioning systems (GPSs).

The LDV is used to make noncontact measurements of the velocity of a surface. The LDV uses the Doppler principle to measure the velocity at the point where the laser beam is directed. The reflected laser light is compared with the incident light in an interferometer to give the Doppler-shifted wavelength. This shifted wavelength provides information on surface velocity in the direction of the incident laser beam. Some of the advantages of the LDV over the accelerometer are that the LDV can be directed at targets that are difficult to access or may be too small or too hot to attach a physical transducer. Abe et al. (1) and Kaito et al. (2) have applied LDVs to measure the vibration of bridge decks and stay cables.

Recently, a GPS has been utilized to measure displacement. However, its dynamic accuracy is not high enough in many applications. In addition, the GPS equipment needs to be installed on the object of interest, a difficult proposition for some objects, such as cables. Recently, noncontact measurement techniques such as photogrammetric and videogrammetric techniques have been developed with the advance of inexpensive and high-performance charge-coupled device cameras and associated imaging technologies. Bales (3) applied a close-range photogrammetric technique to several bridges to estimate crack sizes and measure deflection. Li and Yuan (4) developed a 3D photogrammetric vision system consisting of TV cameras and 3D control points for measuring bridge deformation. Olaszek (5) incorporated the photogrammetric principle with the computer vision technique to investigate the dynamic characteristics of bridges. Others applications include references (6–10).

This study aims to develop a videogrammetric technique to measure the dynamic displacement of stay cables in cable-stayed bridges. With this new approach, a digital video camera alone is used to capture the vibration of the stay cables therefore no equipment needs to be installed on the cables. The video clips are first transferred into image frames and the shape of the target is then recognized using image analysis. From the continuous image frames, the position and, thus, displacement history of the cables can be identified. The technique is employed to measure the dynamic displacement of stay cables in a cable-stayed bridge. The results are compared with those using accelerometers.

*Corresponding author. Email: xqzhou@szu.edu.cn

ISSN 1009-5020 print/ISSN 1993-5153 online
© 2012 Wuhan University
http://dx.doi.org/10.1080/10095020.2012.714105
http://www.tandfonline.com
2. Field measurement

2.1. The Jing Jiang bridge

The Jing Jiang bridge measured in this study is a cable-stayed type located between Jing Jiang City and Quan Zhou City, Fujian Province, China. The bridge has two spans, a 200 m main span and a 165 m side span, as shown in Figures 1 and 2. The tower is 132 m tall and 107.4 m above the deck level. There are 52 pairs of cables in total, 26 for each plane. The distance between the adjacent cables is 7 m, and the layout of the cables (M1~M26 and S1~S26) is illustrated in Figure 1.

2.2. Field testing

Sizeable vibration of some of the bridge cables has been observed. This test aims to measure the vibration of the cables using the proposed digital video camera technique in the frequency and time domains and to compare the results with those using conventional accelerometers. The frequency domain data will be used to calculate the tension force of the cables, then compared with those measured before the bridge was opened to the public in 2008 [11].

In a 2009 experiment, cable Nos M26 and S25 were measured. Two single-axis accelerometers (type INV9818) were mounted on the cables to measure the acceleration of the cables in the horizontal and transverse directions perpendicular to the longitudinal axis. A digital video camera was used to capture video clips of the target points mounted on the cables a few meters away from the camera. Figure 3 shows the setup of the measurement equipment.

2.3. Video processing

A video clip is taken of a black solid circle attached to the cable of interest. The motion tracking with the videogrammetric technique includes the following steps:

(1) Uncompress the video clip into an uncompressed format, as most video clips are recorded in a compressed format.
(2) Transfer the video clip into a series of still images (photos).
(3) Identify the shape (circle) in each image.
(4) Locate the centroid of the circle.

Figure 1. Configuration of the Jing Jiang bridge.

Figure 2. View of the Jing Jiang bridge.

Figure 3. Measurement equipment.
(5) Transfer the motion of the circle in pixel form into that in physical units (m or mm).

Step 3 above is the key step for obtaining accurate results. A few countermeasures are employed to improve the precision and efficiency of this step:

- The range of the circle is determined beforehand and the later image processing is limited to this area.
- Convert the grayscale image to a binary image, based on the threshold.
- Remove the small objects in the binary image, such that only the target remains.
- Morphologically close the image and smooth the boundary.
- Trace the boundary of the circle.

Figure 4 illustrates the procedures for processing the still images.

2.4. Experimental results

Figure 5 shows the measured acceleration and power spectral density (PSD) of cable M26. Here, X refers to the horizontal direction and Y is perpendicular to the X and longitudinal axes. It can be seen that the vertical acceleration is larger than the horizontal component. The PSD curves clearly show the peaks, which indicate the natural frequencies of the cable. However, the lowest frequency is not clearly identified.

For the same cable, the displacement response measured by the video camera is illustrated in Figure 6, together with the PSD. Similar to Figure 5, the measured vertical displacement is larger than the horizontal component, although both are not significant. The measurement had small drift in the vertical displacement. Nevertheless, the PSD curves clearly show the natural frequencies of the cable. The first three frequencies are 0.65, 1.26, and 1.89 Hz.

Cable S25 was also measured and the acceleration and displacement responses are illustrated in Figures 7 and 8, respectively. Similar to cable M26, the displacement PSD data have more noise than the acceleration counterpart, while the former has clearer peaks in the low-frequency range. The displacement of the cable shows a clear beating phenomenon in Figure 9. The reason for this requires further study.

The acceleration data measured by the accelerometers are integrated twice to obtain the displacement. Figure 10 compares the displacement of the cable as measured by the video camera and the results of the double integration of the corresponding acceleration, in both directions. For comparison, only the first few seconds of data are plotted here. It can be seen that the results agree very well for the displacement in the Y direction, the amplitude of which is about 10 mm. The results with small amplitude (0.5 mm) in the X direction reveal some differences.

3. Tension force

The frequencies of the cable, identified from the PSD of the vibration, can be employed to calculate the tension force using empirical formulae. If the effects of sag and bending rigidity are not considered, the relation between the tension force \(T \) and the first frequency \(f_1 \) is

\[
T = 4ml^2f_1^2, \tag{1}
\]

where \(m \) is the mass per unit length (kg/m) and \(l \) is the length of the cable.

When the sag effect is considered, Equation (1) can be corrected as

\[
T = 4ml^2f_1^2\left(1 + \frac{1}{2}\left(\frac{2\pi}{f_1}\right)^2\right) \tag{2}
\]

where \(\lambda = \frac{mg\cos\theta l}{T_0} \) is the Irvine parameter, \(T_0 \) is the initial tension, \(\theta \) is the angle between the cable axis and the bridge girder, \(A_c \) is the cross-sectional area of the cable, and \(E_{eq} = \frac{E}{1 + \nu \cos^2\theta} \) is the equivalent modulus.

When the sag and bending rigidity effects of the cable are both considered, empirical formulae (15) have been developed according to the magnitude of the sag.

(1) For a small sag (\(\Gamma \geq 3 \)), the first in-plane frequency \((f_1) \) is used to calculate the tension force as

\[
T = 4m(f_1l)^2\left[0.828 - 10.5\left(\frac{f_1}{f_1}\right)^2\right] \quad 0 \leq \xi \leq 6 \tag{3a}
\]
\[T = 4m(f_1l)\left[0.865 - 11.6\left(\frac{C}{f_1}\right)^2 \right] \quad 6 \leq \xi \leq 17 \]

\[T = 4m(f_1l)\left[1 - 2.20\frac{C}{f_1} - 0.550\left(\frac{C}{f_1}\right)^2 \right] \quad \xi \geq 17 \]

\[T = \frac{m(f_1l)^2}{0.882 - 85.0\left(\frac{C}{f_1}\right)^2} \quad 0 \leq \xi \leq 17 \]

(1) For a large sag \((\Gamma \leq 3) \), the second in-plane frequency \((f_2) \) is used.

Figure 5. Acceleration responses and PSD of cable M26.

Figure 6. Displacement responses and PSD of cable M26.

Figure 7. Acceleration responses and PSD of cable S25.
\[T = m(f_2l)^2 \left[1.03 - 6.33 \frac{C}{f_2} - 1.58 \left(\frac{C}{f_2} \right)^2 \right] \quad (4b) \]

\[17 \leq \xi \leq 60 \]

\[T = m(f_2l)^2 \left[1 - 4.40 \frac{C}{f_2} - 1.10 \left(\frac{C}{f_2} \right)^2 \right] \quad \xi \geq 60 \quad (4c) \]

Figure 8. Displacement responses and PSD of cable S25.

Figure 9. Beating phenomenon in the displacement of cable S25.

Figure 10. Comparison of the displacement of cable S20 as measured by the video camera and the accelerometer.

Table 1. Parameters of the cables.

No.	\(m \) (kg/m)	\(\phi \) (rad)	\(l \) (m)	Radius (m)	\(E \) (Pa)	\(A_c \) (m²)	\(f_1 \) (Hz)	\(f_2 \) (Hz)
S20	81.7	0.5189	163.068	0.143	2E+11	9.737E-03	0.8423	1.685
S25	91.3	0.5274	182.515	0.151	2E+11	1.089E-02	0.7477	1.480
S26	91.3	0.5303	186.430	0.151	2E+11	1.089E-02	0.7019	1.404
M26	85.9	0.4506	206.434	0.148	2E+11	1.020E-02	0.6256	1.251
M25	85.9	0.4568	199.545	0.148	2E+11	1.020E-02	0.7140	1.389
M24	85.9	0.4633	191.494	0.148	2E+11	1.020E-02	0.6866	1.389
Acknowledgments

Table 2. Tension of the cables.

No.	S20	S25	S26	M26	M25	M24
T (kN)	6032.7	6662.4	6123.1	5730.7	6851.4	5821.1
T (kN) in 2008	6144.7	6633.0	6323.0	5923.0	6099.0	6179.0
Error (%)	−1.96	0.44	−3.16	−3.25	12.34	5.79

where $\Gamma = \sqrt{\frac{mg^2}{12EI\theta^2}\cos^2\theta + \frac{0.33l+0.5}{0.31l-0.5}}$, $\zeta = l\sqrt{\frac{f_1}{2\pi}}$, $C = \sqrt{\frac{EI}{m}}$.

$\delta = \frac{\xi_0}{\xi} = \frac{1}{\cos^2\theta}$ and $d = \frac{w_0}{8\pi} \left[1 - \frac{8}{\zeta^2(1 - \sec \delta^2)}\right]$. The parameters and first frequencies of the cables are listed in Table 1. Based on the above equations, the tension forces were calculated and listed in Table 2. Compared with those measured in 2008 before the bridge was put into service, the tension forces vary from −6 to 12%, possibly due to load redistribution. However, the tension forces are regarded as safe in the safe region.

4. Conclusion

Although dynamic displacement is an important parameter in many applications, low cost, accurate measurement techniques are still not available. In this paper, a videogrammetric technique using a home-use digital video camera is developed to measure the dynamic displacement of cables. This preliminary study shows that the proposed videogrammetric technique is a potentially promising method of measuring the vibration of structures.

The accuracy of the measurement using this approach heavily depends on the camera resolution, the distance between the camera and the targeted structure, the frequency of the movement, and the climatic conditions. The video camera used in this study has a resolution of 640 × 480 pixels. If the target moves within a range of 64 mm, then the camera can achieve a resolution of about 0.1 mm. If a high-definition video camera (1920 × 1120 pixels) is used, the accuracy will be improved by two to three times. The climatic conditions do affect the video quality and, as a result, the image recognition.

The new technique can be used in the monitoring of cables in cable-stayed bridges, the main cables in suspension bridges, transmission lines, and other types of cable structure. With appropriate modification, it can also be applied to monitor other components of structures, for example, the decks of bridges or high-rise buildings.

Acknowledgments

Supported by the Research Grants Council of the Hong Kong Special Administrative Region of China (No. PolyU 5298/11E); the Hong Kong Polytechnic University (No. A-PD0H).

Notes on contributors

Zhou Xiaqing obtained her PhD Degree from Nanyang Technological University, Singapore and worked as a research associate at the University of Western Australia, Australia. She joined College of Civil Engineering, Shenzhen University, China in 2009 as an associate professor. Her major research interests include blast engineering, computational mechanics of concrete, and structural health monitoring.

Yong Xia obtained his PhD degree from Nanyang Technological University, Singapore and worked as a research associate at the University of Western Australia, Australia. He joined The Hong Kong Polytechnic University in 2006 and is now an associate professor. His major research interest is structural health monitoring.

Zelong Wei was a research assistant at The Hong Kong Polytechnic University.

Qingxiong Wu is now a professor at the Fuzhou University. His research interests are bridge engineering and cable dynamics.

References

(1) Abe, M.; Fujino, Y.; Kaito, K. Damage Detection of Civil Concrete Structures by Laser Doppler Vibrometry. Proceedings of the 19th International Modal Analysis Conference, Kissimmee, FL, February 5–8, 2001.
(2) Kaito, K.; Abe, M.; Fujino, Y. An Experimental Modal Analysis for RC Bridge Decks Based on Non-Contact Vibration Measurement. Proceedings of the 19th International Modal Analysis Conference, Kissimmee, FL, February 5–8, 2001.
(3) Bales, E.B. Close-Range Photogrammetry for Bridge Measurement. Transp. Res. Rec. 1985, 950, 39–44.
(4) Li, J.C.; Yuan, B.Z. Using Vision Technique for Bridge Deformation Detection. Proceedings of the International Conference on Acoustic, Speech and Signal Processing, New York, NY, April 11–14, 1988.
(5) Olaszek, P. Investigation of the Dynamic Characteristic of Bridge Structures. Using a Computer Vision Method. Measurement. 1999, 25, 227–236.
(6) Patsias, S.; Stasiewski, W.J. Damage Detection Using Optical Measurements and Wavelets. Struct. Health Monit. 2002, 1, 7–22.
(7) Fu, G.; Moosa, A.G. An Optical Approach to Structural Displacement Measurement and Its Application. J. Eng. Mech. 2002, 128, 511–520.
(8) Yoshida, J.; Abe, M.; Kumano, S.; Fujino, Y. Construction of a Measurement System for the Dynamic Behaviors of Membrane by Using Image Processing. International Conference on Textile Composites and Inflatable Structures, Barcelona, Spain, June 30–July 2, 2003.
(9) Chung, H.; Liang, J.; Kushiyama, S.; Shinozuka, M. Digital Image Processing for Non-Linear System Identification. Int. J. Non-Linear Mech. 2004, 39, 691–707.
(10) Ji, Y.F.; Chang, C.C. Non-Target Image-Based Technique for Bridge Cable Vibration Measurement. J. Bridge Eng. 2008, 13, 34–42.
(11) Wu, Q.X.; Chen, B.C.; Wang, W.P. Dynamic Behaviors of Quanzhou Jinjiang Bridge. J. Highway Transp. Res. Dev. 2010, 27 (4), 44–50.
(12) Fujino, Y.; Warnitchai, P.; Pacheco, B.M. An Experimental and Analytical Study of Autoparametric Resonance in a 3DOF Model of Cable-Stayed-beam. *Nonlinear Dyn.* 1993, 4, 111–138.

(13) Wu, Q.X.; Takahashi, K.; Okabayashi, T.; Nakamura, S. Response Characteristics of Local Vibrations in Stay Cables on an Existing Cable-Stayed Bridge. *J. Sound Vib.* 2003, 261 (3), 403–420.

(14) Pinto da Costa, A.; Martins, J.A.C.; Branco, F.; Lilien, J. L. Oscillations of Bridge Stay Cables Induced by Periodic Motions of Deck and/or Towers. *J. Eng. Mech.* 1996, 122, 613–622.

(15) Zui, H.; Shinke, T.; Namita, Y. Practical Formulas for Estimation of Cable Tension by Vibration Method. *J. Struct. Eng.* 1996, 122 (6), 651–656.