The Optical properties of Fe-Doped TiO₂ films prepared by Hydrothermal Technique

Sattar J. Hashim*, Odai N. Salman and Khaleel I. Hasson

Department of Applied Sciences, University of Technology, Baghdad, Iraq

Abstract

TiO₂ films doped with Fe at (0.1, 0.3, 0.7, 1.5 at %) were successfully deposited on the fluorine doped tin oxide (FTO)-glass substrate using hydrothermal technique. X-Ray Diffraction (XRD) analysis showed that the only phase obtained of TiO₂ is rutile. Moreover, the crystallography did not have remarkable change after doping. Ultra violet-visible (UV-vis) spectroscopy analysis show that the energy band gap value (Eₙ) decreases slightly with the increase of the doping concentration from 0.1 to 0.3 at%. The reflectivity measurements in general gave identical results but with higher values of Eₙ. Urbach energy for doping concentrations 0.7 and 1.5 at % is quite high and in the range 1-2 eV.

Keywords:
Titanium dioxide Fe doping
Hydrothermal deposition
Optical properties

DOI: 10.22401/ANJS.23.3.02

*Corresponding author: sattarjabir314@gmail.com

1. Introduction

Titanium dioxide (TiO₂) films attracted high attention in the last decades because of its easy manufacture, low cost, nontoxicity and its promising applications in third generation solar cells [1-2]. As a material, TiO₂ has unique chemical, physical, and optical characteristics such as a wide and direct bandgap, good photocatalytic activity, photostability, chemical stability, high melting point, and high refractive index [3-7].

The main forms of TiO₂ crystalline are anatase (A), brookite (B), and rutile (R) [8]. Both of A and R phases have a tetragonal crystal structure but B has an orthorhombic crystal system. The energy bandgaps of A-TiO₂, B-TiO₂ and, R-TiO₂ are 3, 3.31, 3 eV respectively. In addition to its bulk form, Titanium dioxide in the form of nanomaterials is utilized in many applications, for instance photocatalytic, gas sensor, pigments, and solid state solar cells [10-13]. The nanostructures of TiO₂ may be synthesized in the form of nanoparticles [14], nanorods, nanowalls [15], nanotubes [16], nanosheets [17] and nanofibers [18].

The main roles which governs the right choice of TiO₂ for each application are the structure, morphology and the crystalline size of the TiO₂. These parameters could be determined by the method of preparation [8-9]. There are many techniques to prepare TiO₂ such as chemical vapor deposition [20], atomic layer deposition [21], DC Reactive Magnetron Sputtering [22], chemical path deposition [23], electrochemical anodization [24], spray pyrolysis deposition [25], Solvothermal [26], Ion-Assisted Electron-Beam Evaporation [27], Hydrothermal deposition (HD) [28] etc. Here we used the hydrothermal technique to fabricate TiO₂ films in nanorod structures.

2. Experimental Work

FTO substrates (F:SnO₂ from DyeSol company TEC 8 with 600 nm in thickness, dimensions 2×2 cm) were ultrasonically cleaned for 15 min with acetone, ethanol, and double-distilled water (DDW) (purchased from a local store) and then the substrates kept to dry in air, after that they were put at 45° tilt-angle along a wall of Teflon-liner in a homemade stainless steel autoclave as shown in Figure 1.
Figure 1. Illustrative diagram of the autoclave used to deposit TiO$_2$ nanorods films.

At first a volume of 20 ml of DDW was mixed with 20 ml of hydrochloric acid (concentrated 37%) using magnetic stirrer for 5 min, the solution labeled is A1. After that, 1.017 ml and 1.033 ml of high purity of Titanium Butoxide as precursor of titanium oxide (purchased from Sigma Aldrich company, Germany) was mixed with A1 solution and then kept under stirrer for another 5 min. At this stage the solution is labeled A2. This is followed by adding Fe(NO$_3$)$_3$.9H$_2$O (HiMedia Laboratories Pvt. Ltd) as a precursor of Fe to A2 solution of ratios of Fe/Ti (0.1, 0.3, 0.7 and 1.5 at. %). The total solution is stirred again for 90 min. At first the mixture was white transparent but after adding the iron nitrate-nonahydrate it becomes green and transparent. After 90 minutes, the mixture of volume 20 ml is charged to a stainless autoclave. The autoclave and the substrate were put in an electric oven which was already preheated at 180 $^\circ$C (±3 ramp rate) for three hours. After that, the autoclave removed out of the oven and slowly cooled-down under stream of water and the FTO substrate brought out of the autoclave and rinsed with DDW many times to get rid of any extra reactants. Finally the samples were dried in air at room temperature for 15 min. The TiO$_2$ samples were characterized by XRD of Cu K$_α$ (λ = 0.15406 nm) in the 2$θ$ range 20 to 75$^\circ$ and step size 0.02$^\circ$, (College of Education Ibn al-Haytham). The Field Emission Scanning Electron Microscope (FESEM) equipment supported with Energy Dispersive Spectroscopy (EDS) is used to investigate the morphology of the TiO$_2$ films in the nanoscale and the composition of the films, respectively. (Razi Applied Science Foundation-Tehran, Iran). U-Vis spectroscopy (Shimadzu UV-1900i in our Nanoscale laboratory) visible spectrophotometer in the range (370-1100 nm) at the room temperature, and diffuse reflectance spectroscopy (DRS) (Avantes AvLight-DH-SBAL Al-Nahrain University-Chemistry Department) are implemented to determine the optical properties of the TiO$_2$ films. PerkinElmer LS55 spectrophoimeter equipped with 40 W Xenon lamp is used to obtain the photoluminescence (PL) spectrum. The detection wavelength range was in the range (325-1100 nm) and the laser excitation wavelength was 304 nm (Razi Applied Science Foundation-Tehran, Iran).

Figure 2. X-Ray diffractograms for the R-TiO$_2$ samples with pure and 1.5% Fe-doped TiO$_2$ deposited on the FTO-glass substrate by the hydrothermal method.

3. Results and Discussion
The XRD diffractogram for pure TiO$_2$ and 1.5%Fe doped TiO$_2$ nanorods are shown in figure 2. The peaks at $2θ$ = (35.946’, 62.673’, and 69.681’) are characteristic of the tetragonal rutile (R) TiO$_2$, and these are corresponding to the planes (101), (002) and (112), respectively. These peaks are agreeing well with those of (JCPDS 89-4920 card). Moreover, no another peak that related to A or B-TiO$_2$ or for Fe-atoms are observed. In Figure 2, we labeled the peaks of the FTO substrates by stars and the R-TiO$_2$ by the letter R. Similar results are reported by S. Manu et al. [29].
where A is the absorbance and t is the thickness of the films calculated from the FESEM measurements.

Figure 4 shows an explicit blue shift of the absorption coefficient. And by utilizing Equation (2) we can estimate the energy bandgap of the films by drawing $(a h \nu)^{2}$ against $h \nu$ as shown in Figure 5. The figure indicates that the bandgap of R-TiO$_2$ are of direct type. A similar direct bandgap of the undoped R-TiO$_2$ is also reported by C. Caoa et al. [30].

\begin{equation}
\alpha = \frac{A h \nu - E_g}{h \nu} \quad (2)
\end{equation}

where A is a constant, h the universal Plank’s constant, E_g the energy bandgap, ν the photon frequency. For direct transition $n = 1/2$.

We also note that the energy bandgap decreases slightly as the Fe dopant ratio is increased. The slight reduction in the bandgap is attributed to the fact that Fe atoms has enough energy to substitute titanium atoms in the TiO$_2$ lattice. This enhances transition of electrons from Fe-3d levels to the conduction band (CB) of TiO$_2$[7]. This indicates a formation of intermediate states (tails) between the conduction and the valance bands since Ti and Fe are different in Electronegativity (1.54 for Ti) and (1.83 for Fe). These states increase in density with the increase in concentration Fe dopant. In figure 6 we have presented the calculated Urbach energy tails (E_u) which describe the width of the extended states underneath the conduction band.

The results illustrate that with the low Fe concentration (0.1%) the E_u decreased and then increase with increasing Fe content in TiO$_2$ as indicated in Table 1. The increment in E_u at higher concentration (1.5%) may be due to generation of more defects that introduced with increasing Fe dopant concentration.

Also we use the diffuse reflectance spectroscopy to calculate the energy bandgap from the reflectance spectra. In general, the results extracted from reflectance spectra agree well with those found from UV-vis spectra as shown in Figure 7. However, the reflectance method gives energy gaps equal or greater than those calculated by UV-vis method. The results are introduced in Table 1.

Table 1. Energies band gap and Urbach of the samples by the UV-vis and Reflectance method.

Samples	E_g from UV-vis (eV)	E_g from reflectance (eV)	E_u (meV)
TiO$_2$	3.12	3.25	630.28
0.1% Fe-TiO$_2$	3.2	3.32	464.25
0.3% Fe-TiO$_2$	3	3	640.82
0.5% Fe-TiO$_2$	3.15	3.32	718.59
0.7% Fe-TiO$_2$	3.15	3.36	1098.41
1.5% Fe-TiO$_2$	3.0	3.28	1836.88
Figure 4. The Absorption coefficients of TiO$_2$ films prepared by Hydrothermal technique for the (a) TiO$_2$, (b) TiO$_2$-0.1%Fe(c) TiO$_2$-0.3%Fe, (d) TiO$_2$-0.5%Fe, (e) TiO$_2$-0.7%Fe and (f) TiO$_2$-1.5%Fe.
Figure 5. The energies bandgap of the samples (a) TiO$_2$, (b) 0.1% Fe-TiO$_2$, (c) 0.3% Fe-TiO$_2$, (d) 0.5% Fe-TiO$_2$, (e) 0.7% Fe-TiO$_2$ and (f) 1.5% Fe-TiO$_2$ from UV-visible measurements.
Figure 6. Urbach energy gap E_u for the samples (a) TiO_2, (b) TiO_2-0.1%Fe, (c) TiO_2-0.3%Fe, (d) TiO_2-0.5%Fe, (e) TiO_2-0.7%Fe and (f) TiO_2-1.5%Fe.

\begin{align*}
y &= 1.5866x + 6.7162 \\
E_u &= 1/1.5866 = 0.63027 \text{ eV}
\end{align*}

\begin{align*}
y &= 2.154x + 1.8332 \\
E_u &= 1/2.154 = 0.46425 \text{ eV}
\end{align*}

\begin{align*}
y &= 1.5605x + 4.5384 \\
E_u &= 1/1.5605 = 0.64082 \text{ eV}
\end{align*}

\begin{align*}
y &= 1.3916x + 4.3529 \\
E_u &= 1/1.3916 = 0.718597 \text{ eV}
\end{align*}

\begin{align*}
y &= 0.9104x + 6.0674 \\
E_u &= 1/0.9104 = 1.098418 \text{ eV}
\end{align*}

\begin{align*}
y &= 0.5444x + 7.188 \\
E_u &= 1/0.5444 = 1.836885 \text{ eV}
\end{align*}
Figure 8 reveals the PL-spectra for undoped and Fe-doped TiO$_2$ films. The films are excited using wavelength 304 nm which corresponds to photon energy of 4.08 eV. The figures reveal sharp peaks at 607 nm and small peak at 909 nm. It was reported that the first emission is due to direct transitions from higher states in the conduction band to lower states in the valance band. The weak one may be caused by electrons trapped by the oxygen vacancies [31]. A similar sharp peak was reported by R. S. Ningthoujam et al. in Eu doped TiO$_2$ films [32]. Noticeably, there is no broad emission band which belongs to the deep-level defects. As it can be seen from figures, the PL intensity at first decreases until it reaches its minimum value at Fe doping (0.1 at %), then increases as the Fe concentration increases. It is worthwhile to mention that at lower doping concentration, the recombination rate of electrons with holes is low. However, when ion concentration exceeds a certain limit it starts to aggregate and acts as recombination centers [33-35].
Figure 8. The PL spectra of (a) TiO$_2$, (b) TiO$_2$-0.1%Fe, (c) TiO$_2$-0.3%Fe, (d) TiO$_2$-0.5%Fe, (e) TiO$_2$-0.7%Fe and (f) TiO$_2$-1.5%Fe.
4. Conclusions

In the present work, doping of titanium dioxide films with Fe-dopants has been implemented successfully using hydrothermal technique. The crystalline structure did not apparently changed with the doping process in the doping range (0.1-1.5 at %). The optical properties measurements revealed a slight reduction in the bandgap energy for the samples doped with high Fe concentration. Doping of TiO2 with iron can be used actively and successfully to enhance its optical properties without deforming the crystallinity of the material.

5. References
[1] Xie, Y.; Wei, L.; Wei, G.; Li, Q.; Wang, D.; Chen, Y.; Yan, S.; Liu, G.; Mei, L.; Jiao, J.; “A self-powered UV photodetector based on TiO2 nanorod arrays”; J. Nanoscale Research Letters, 8:188, 2013.
[2] Can, Z.; Wanyu, D.; Hualin, W.; Weiping, C.; Dongying, J.; “Influences of working pressure on properties for TiO2 films deposited by DC pulse magnetron sputtering”; J. Environmental Sciences 21, 741-744, 2009.
[3] Kim, C.; Kim, K. S.; Kim, H. Y.; Han, Y. S.; “Modification of a TiO2 photoanode by using Cr-doped TiO2 with an influence on the photovoltaic efficiency of a dye sensitized solar cell”; J. Mater. Chem. 18, 5809-5814, 2008.
[4] Wisitsoraat, A.; Tuantranont, A.; Comini, E.; Sberveglieri, G.; Wlodarski, W.; “Characterization of n-type and p-type semiconductor gas sensors based on NiOx doped TiO2 thin films”; J. Thin Solid Films 517, 2775-2780, 2008.
[5] Morsy, F. A.; El-Sherbiny, S.; Samir, M.; Fouad, O. A.; “Application of nanostructured titanium dioxide pigments in paper coating: a comparison between prepared and commercially available ones”; Journal of Coatings Technology and Research 13.2, 307-316, 2016.
[6] Shifu, C.; Wei, L.; Sujuan, Z.; Yinghao, C.; “Preparation and activity evaluation of relative p-n junction photocatalyst Co-TiO2/TiO2”; J. Sol-Gel Sci. Technol. 54, 258-267, 2010.
[7] Dholam, R.; Patel, N.; Adami, M.; Miotello, A.; “Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst”; J. Hydrogen energy 34, 5337-5346, 2009.
[8] Reyes-Coronado, D.; Rodríguez-Gattorno, G.; Espinosa-Pesquera, M. E.; Cab, C.; de Coss, R. D.; Oskam, G.; “Phase-pure TiO2 nanoparticles: anatase, brookite and rutile”; J. Nanotechnology, 19(14) 145605, 2008.
[9] Mohammad A.; Behnajady, N.; Modirshahla, M.; Shokri, H.; Elham, H.; Zeinimezhad, A.; “The effect of particle size and crystal structure of titanium dioxide nanoparticles on the photocatalytic properties”; J. Environmental Science and Health Part A, 43(5), 460-467, 2008.
[10] Kim, C.; Kim, K. S.; Kim, H. Y.; Han, Y. S.; “Modification of a TiO2 photoanode by using Cr-doped TiO2 with an influence on the photovoltaic efficiency of a dye sensitized solar cell”; J. Mater. Chem. 18, 5809-5814, 2008.
[11] Wisitsoraat, A.; Tuantranont, A.; Comini, E.; Sberveglieri, G.; Wlodarski, W.; “Characterization of n-type and p-type semiconductor gas sensors based on NiOx doped TiO2 thin films”; Thin Solid Films 517, 2775-2780, 2008.
[12] Morsy, F. A.; El-Sherbiny, S.; Samir, M.; Fouad, O. A.; “Application of nanostructured titanium dioxide pigments in paper coating: a comparison between prepared and commercially available ones”; J. Coat. Technol. and Res. 13(2), 307-316, 2016.
[13] Shifu, C.; Wei, L.; Sujuan, Z.; Yinghao, C.; “Preparation and activity evaluation of relative p-n junction photocatalyst Co-TiO2/TiO2”; J. Sol-Gel Sci. Technol. 54, 258-267, 2010.
[14] Viana, M.M.; Soares, V. F.; Mohallem, N. D. S.; “Synthesis and characterization of TiO2 nanoparticles”; J. Ceramics International 36, 2047-2053, 2010.
[15] Wu, J. J.; Yu, C. C.; “Aligned TiO2 Nanorods and Nanowalls”; J. Phys. Chem. B, 108(11), 3377-3379, 2004.
[16] Jun, Y.; Parkwb, J. H.; Kang, M. G.; “The preparation of highly ordered TiO2 nanotube arrays by an anodization method and their applications”; J. Chem. Commun. 48, 6456–6471, 2012.
[17] Chen, J. Song and Lou, D. X. Wen. “Anatase TiO2 nanosheet: An ideal host structure for fast and efficient lithium insertion/extraction”; J. Electrochemistry communications, 11(12), 2332-2335, 2009.
[18] I-Doo Kim; Rothschild, A.; Hong Lee, B.; Young Kim, D.; Mu Jo, S.; Tuller, H. L.; “Ultrasensitive Chemiresistors Based on Electrospun TiO2 Nanofibers”; J. Nano Lett., 6(9), 2006.
[19] Lan, L.; Gao, Y.; Xia, X. H.; Deng, Q. R.; Shao, G.; “Phase selection and visible light photo-catalytic activity of Fe-doped TiO2 prepared by the hydrothermal method”; Materials Research Bulletin, 46(3), 442-446, 2011.
[20] Yeung, K. S.; Lam, Y. W.; “A Simple Chemical Vapor Deposition Method for Depositing Thin TiO2 Films”; J. Thin Solid Films, 109, 169-178, 1983.
[21] Shin, H.; Jeong, D.; Lee, j.; Sung, M. M.; Kim, J.; “Formation of TiO2 and ZrO2 Nanotubes Using Atomic Layer Deposition with Ultraprecise Control of Wall Thickness.” J. Advanced Materials, 14, 1197-1200, 2004.
[22] Lindgren, T.; Mwabora, J. M.; Avendan, E.; Jonsson, J.; Hoel, A.; Granqvist, C. G.; Lindquist, S. E.; “Photoelectrochemical and Optical Properties of...
Nitrogen Doped Titanium Dioxide Films Prepared by Reactive DC Magnetron Sputtering”; J. Phys. Chem. B, 107, 5709-5716, 2003.

[23] Mayabadia, A.H.; Wamana, V. S.; Kamblea, M.M.; Ghosha, S. S.; Gabhalea, B. B.; Rondiyaa, S.R.; Rokadea, A. V.; Khadtarea, S. S.; Satheb, V. G.; Pathanc, H. M.; Gosavic, S.W.; Jadkar, S. R.; “Evolution of structural and optical properties of rutile TiO\textsubscript{2} thin films synthesized at room temperature by chemical bath deposition method”; J. Physics and Chemistry of Solids, 75, 182-187, 2014.

[24] Wang, J.; Li, Z.; “Freestanding TiO\textsubscript{2} Nanotube Arrays with Ultrahigh Aspect Ratio via Electrochemical Anodization”; J. Chem. Mater, 20, 1257-1261, 2008.

[25] Okuya, M.; Nakade, K.; Kaneko, S.; “Porous TiO\textsubscript{2} thin films synthesized by a spray pyrolysis deposition (SPD) technique and their application to dye-sensitized solar cells”; J. Solar Energy Materials & Solar Cells, 70, 425-435, 2002.

[26] Yang, G.; Jiang, Z.; Shi, H.; Jones, M. O.; Xiao, T.; Edwards, P. P.; Yan, Z.; “Study on the Photocatalysis of F-S co-doped TiO\textsubscript{2} Prepared Using Solvothermal Method”; J. Applied Catalysis B: Environmental, 96, 458-465, 2010.

[27] Bhattacharyya, D.; Sahoo, N.K.; Thakur, S.; Das, N.C.; “Spectroscopic Ellipsometry of TiO\textsubscript{2} Layers Prepared by Ion-Assisted Electron-Beam Evaporation”; J. Thin Solid Films, 360, 96-102, 2000.

[28] Liu, B.; Aydil, E. S. “Growth of Oriented Single-Crystalline Rutile TiO\textsubscript{2} Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells”; J. Am. Chem. Soc. 131, 3985–3990, 2009.

[29] Manu, S.; Abdul Khader, M.; “Non-uniform distribution of dopant iron ions in TiO\textsubscript{2} nanocrystals probed by X-ray diffraction, Raman scattering, photoluminescence and photocatalysis”; J. Mater. Chem. C 3, 1846-1853, 2015.

[30] Caoa, C.; Hu, C.; Wang, X.; Wang, S.; Tian, Y.; Zhang, H.; “UV sensor based on TiO\textsubscript{2} nanorod arrays on FTO thin film”; J. Sensors and Actuators B 156, 114-119, 2011.

[31] Mali, S. S.; Shinde, P. S.; Betty, C. A.; Bhosale, P. N.; Lee, W. J.; Patil, P. S. “Nanocoral architecture of TiO\textsubscript{2} by hydrothermal process: synthesis and characterization”; J. Applied Surface Science, 257(23), 9737-9746, 2011.

[32] Ningthoujam, R. S.; Sudarshan, V.; Vatsa, R. K.; Kadam, R. M.; Gupta, A. “Photoluminescence studies on Eu doped TiO\textsubscript{2} nanoparticles”; J. Alloys and Compounds, 486(1-2), 864-870, 2009.

[33] Li, F. B.; Li, X. Z.; Ao, C. H.; Lee, S. C.; Hou, M. F. “Enhanced photocatalytic degradation of VOCs using Ln3+-TiO2 catalysts for indoor air purification”; J. Chemosphere, 59(6), 787-800, 2005.

[34] Choi, W.; Termin, A.; Hoffmann, M. R. “The role of metal ion dopants in quantum-sized TiO\textsubscript{2}: correlation between photoreactivity and charge carrier recombination dynamics”; J. Physical Chemistry, 98(51), 13669-13679, 2002.

[35] Liqiang, J.; Yichun, Q.; Baiqi, W.; Shudan, L.; Baojiqiang, J.; Libin, Y.; Jiazhong, S. “Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity”; J. Solar Energy Materials and Solar Cells, 90(12), 1773-1787, 2006.