On C^1-approximability of functions by solutions of second order elliptic equations on plane compact sets and C-analytic capacity

P. V. Paramonov1,2 · X. Tolsa3,4

Received: 3 November 2018 / Accepted: 3 December 2018 / Published online: 8 December 2018
© Springer Nature Switzerland AG 2018

Abstract
Criteria for approximability of functions by solutions of homogeneous second order elliptic equations (with constant complex coefficients) in the norms of the Whitney C^1-spaces on compact sets in \mathbb{R}^2 are obtained in terms of the respective C^1-capacities. It is proved that the mentioned C^1-capacities are comparable to the classic C-analytic capacity, and so have a proper geometric measure characterization.

Keywords Second order homogeneous elliptic operator · C^1-approximation · Localization operator of Vitushkin type · L-oscillation · LC^1-capacity · C-analytic capacity · Curvature of measure
1 Introduction

For the history of the subject under consideration we refer to the survey [1]. Let

\[L(x) = c_{11}x_1^2 + 2c_{12}x_1x_2 + c_{22}x_2^2, \quad x = (x_1, x_2) \in \mathbb{R}^2, \]

be any fixed homogeneous polynomial of second order in \(\mathbb{R}^2 \) (with constant complex coefficients \(c_{11}, c_{12}, c_{22} \)) that satisfies the ellipticity condition: \(L(x) \neq 0 \) for all \(x \neq 0 \). With the polynomial \(L(x) \) we associate the elliptic differential operator

\[\mathcal{L} = c_{11} \frac{\partial^2}{\partial x_1^2} + 2c_{12} \frac{\partial^2}{\partial x_1 \partial x_2} + c_{22} \frac{\partial^2}{\partial x_2^2}. \]

The basic examples: the Laplacian \(\Delta \) and the Bitsadze operator \(\overline{\Delta} = \partial^2/\partial \overline{z}^2 \) in \(\mathbb{R}^2 \) (\(z = x_1 + ix_2 \) is a complex variable). For an open set \(U \) in \(\mathbb{R}^2 \) set \(\mathcal{A}_L(U) = \{ u \in C^2(U) \mid Lu = 0 \text{ in } U \} \). The functions of this class we call \(\mathcal{L} \)-analytic in \(U \). It is well known that \(\mathcal{A}_L(U) \subset C^\infty(U) \) (see [2, Theorem 4.4.1]).

Denote by \(BC^1(U) \) (\(U \) is open in \(\mathbb{R}^2 \)) the space of complex valued functions \(f \) of class \(C^1(U) \) with finite norm

\[||f||_U = \max\{||f||_E, ||\nabla f||_U\}, \]

where \(||g||_E = \sup_{x \in E} |g(x)| \) is the uniform norm of the (vector-) function \(g \) on the set \(E \neq \emptyset \) (for \(U = \mathbb{R}^2 = E \) write \(BC^1, ||f||_1, ||g|| \) respectively).

Let \(X \neq \emptyset \) be a compact set in \(\mathbb{R}^2 \) and \(f \in BC^1 \). The main problem considered in this paper consists of the following.

To find conditions on \(L, X \) and \(f \) necessary and sufficient for existence of a sequence \(\{f_n\}_{n=1}^{+\infty} \subset BC^1 \) such that each \(f_n \) is \(\mathcal{L} \)-analytic in (its own) neighborhood of \(X \) and \(||f - f_n||_1 \to 0 \) as \(n \to +\infty \).

The class of all functions \(f \in BC^1 \) with this approximation property is denoted by \(\mathcal{A}_L^1(X) \). It is not difficult to show that the following condition always takes place: \(\mathcal{A}_L^1(X) \subset C^1_L(X) = BC^1 \cap \mathcal{A}_L(X) \). Therefore, the following \(C^1 \)-approximation problem for classes of functions naturally appears:

For which compact sets \(X \) one has \(\mathcal{A}_L^1(X) = C^1_L(X) \)?

Recall that analogous approximation problems in the spaces \(BC^m \) (see [3] for the definitions) are solved for all \(m > 0, m \neq 1 \) (even in \(\mathbb{R}^N, N \geq 3 \), [3–5]).

An open disc with center \(a \) and of radius \(r > 0 \) is denoted by \(B(a, r) \); also, for \(B = B(a, r) \) and \(\lambda > 0 \) by \(\lambda B \) we mean the disc \(B(a, \lambda r) \). Positive parameters (constants), which can depend only on \(\mathcal{L} \), will be designated by \(A, A_1, A_2, \ldots \) (they may be different in different occurrences).

Let \(\Phi(x) = \Phi_L(x) \) be the standard fundamental solution for the equation \(\mathcal{L}u = 0 \) (see [5, p. 161] and Section 2 below). We shall basically use the so-called \(\mathcal{L}C^1 \)-capacity, which is connected to the operator \(\mathcal{L} \) and the space \(BC^1 \). Namely, for a
bounded nonempty set $E \subset \mathbb{R}^2$ we let

$$\alpha_1(E) = \alpha_{1L}(E) = \sup_{T} \{|\langle T, 1 \rangle| : \text{Supp}(T) \subset E, \Phi \ast T \in C^1(\mathbb{R}^2), ||\nabla \Phi \ast T|| \leq 1\},$$

(1.1)

where $\langle T, \varphi \rangle$ means the action of the distribution T on the function $\varphi \in C^\infty$, $*$—convolution, and $\text{Supp}(T)$ is the support of the distribution (function, measure) T.

On the other hand, the L-Lipschitz capacity of E, denoted by $\gamma_1(E)$ or $\gamma_{1L}(E)$ is defined in the same way as $\alpha_1(E)$, but with the condition $\Phi \ast T \in C^1(\mathbb{R}^2)$ replaced by $\Phi \ast T \in \text{Lip}(\mathbb{R}^2)$.

Recall also the definition of the classic C-analytic capacity [6], basically used in the theory of uniform holomorphic approximations. For a bounded (nonempty) set $E \subset \mathbb{C}$,

$$\alpha(E) = \sup_{T} \{|\langle T, 1 \rangle| : \text{Supp}(T) \subset E, 1/z \ast T \in C(\mathbb{C}), \quad ||1/z \ast T|| \leq 1\}. \quad (1.2)$$

If in this supremum one replaces the condition $1/z \ast T \in C(\mathbb{C})$ by $1/z \ast T \in L^\infty(\mathbb{C})$, one gets the well known analytic capacity, $\gamma(E)$, which is specially useful in the study of removable singularities for bounded holomorphic functions [7].

Clearly, for a bounded open set E one has $\alpha_1(E) = \gamma_1(E)$ and $\alpha(E) = \gamma(E)$.

Our first main result is the following.

Theorem 1.1 There exist constants $A_1 \in (0, 1)$ and $A_2 \geq 1$ dependent only on L, such that

$$A_1 \alpha(E) \leq \alpha_1(E) \leq A_2 \alpha(E) \quad (1.3)$$

and

$$A_1 \gamma(E) \leq \gamma_1(E) \leq A_2 \gamma(E) \quad (1.4)$$

for any bounded set E.

Let us remark that the capacities α and γ admit a characterization in terms of measures with linear growth and finite curvature, by [8,9] [see (4.4) and (4.3)]. This characterization extends to α_1 and γ_1 by the last theorem. In particular, the capacities α_1 and γ_1 are countably semiadditive.

For the above mentioned elliptic polynomial $L(x), \ f \in C(\mathbb{R}^2)$ and a disc $B = B(a, r)$ define the so-called L-oscillation of f on B (see [3]):

$$O^L_B(f) = \frac{1}{2\pi r} \int_{\partial B} f(x) \frac{L(x - a)}{r^2} d\ell_x - \frac{c_{11} + c_{12}}{2\pi r^2} \int_B f(x) dx,$$

where ℓ is the Lebesgue measure (the length) on ∂B.

For instance, when $L(x) = x_1^2 + x_2^2$ (that is $L = \Delta$), we have (first time in analogous context appeared in [10]):

$$O^L_B(f) = \frac{1}{2\pi r} \int_{\partial B} f(x) \ell_x dx - \frac{1}{\pi r^2} \int_B f(x) dx,$$
and for \(L(x) = 4^{-1}(x_1 + ix_2)^2 = z^2/4 \) (e.g. \(L = \partial^2/\partial z \partial \bar{z} \)):
\[
O_B^L(f) = \frac{1}{8\pi i r^2} \int_{\partial B} f(z)(z - a) \, dz.
\]

Now we formulate our second main result. Fix a compact set \(X \subset \mathbb{R}^2 \) and \(f \in BC^1 \).

Without loss of generality we shall suppose that \(\text{Supp}(f) \) is compact, e.g. \(f \in C^1_0(\mathbb{R}^2) \).

Let \(\omega(g, r) \) be the modulus of continuity of the (vector-)function \(g \) on \(\mathbb{R}^2 \).

Theorem 1.2 The following conditions are equivalent:

(a) \(f \in A^1_{L}(X) \);

(b) there exist \(k \geq 1 \) and a function \(\omega(r) \to 0 \) as \(r \to 0^+ \) such that for each disk \(B = B(a, r) \) one has
\[
\left| O_{B(a, kr)}^L(f) \right| \leq \omega(r) \alpha_1(B(a, kr) \setminus X);
\]

(c) the property (b) holds for \(k = 1 \) and \(\omega(r) = A \omega(\nabla f, r) \).

The plan of the paper is the following: In Sect. 2 we give some preliminary results. In Sect. 3 we prove Theorem 3.1 (more general than Theorem 1.2). In Sect. 4 we prove Theorem 1.1 and recall the main properties of \(C \)-analytic capacity. In Sect. 5 we present some corollaries of our main results: the \(C^1 \)-approximation criteria for classes of functions and corresponding criteria for the \(C^1 \)-approximation by \(L \)-polynomials on plane compact sets. Theorems 1.2, 3.1, and 5.1 were obtained in the frameworks of the Project 17-11-01064 by the Russian Science Foundation.

2 Background

The next lemma is proved in [3].

Lemma 2.1 For \(a \in \mathbb{R}^2 \) and \(r \in (0, +\infty) \) let \(\psi_r^a(x) = (r^2 - |x - a|^2)/(4\pi r^2) \) in \(B = B(a, r) \) and \(\psi_r^a(x) = 0 \) outside of \(B(a, r) \). Then for all \(\varphi \in C^\infty(\mathbb{R}^2) \) one has:
\[
\int_B \psi_r^a(x) L \varphi(x) \, dx = O_B^L(\varphi),
\]
that is, the action \((L \psi_r^a, \varphi) \) of the distribution \(L \psi_r^a \) on the function \(\varphi \) is equal to \(O_B^L(\varphi) \) (and it can be continuously extended on all class of functions \(\varphi \in C(\mathbb{R}^2) \)).

For a given \(\varphi \in C_0^\infty(\mathbb{R}^2) \) define the Vitushkin type localization operator (see [5,6]) corresponding to the operator \(L \):
\[
f \mapsto \mathcal{V}_\varphi(f) = \Phi \ast (\varphi L f), \quad f \in C(\mathbb{R}^2).
\]

The basic property of this operator consists of the following simple fact: \(L(\mathcal{V}_\varphi(f)) = \varphi L f \), which means that \(L \)-singularities of \(\mathcal{V}_\varphi(f) \) are contained in the intersection of
the L-singularities of f and $\text{Supp} \varphi$. We now present one new property of operator V_φ connected to the possibility of its extension to some wider class of “indices” φ whenever $f \in C^1$. For a compact set $X \subset \mathbb{R}^2$ put $C^1(X) = C^1(\mathbb{R}^2)|_X$.

Lemma 2.2 Fix any function $\varphi \in C^1(\overline{B(a, r)})$, $\varphi = 0$ outside of $B(a, r)$. Then for each $f \in C^1(\mathbb{R}^2)$ the following properties hold:

(a) the function $V_\varphi(f) \in C^1(\mathbb{R}^2)$ is well defined and

$$||\nabla (V_\varphi(f))|| \leq A \omega(\nabla f, r) ||\nabla \varphi|| r;$$

(b) $\text{Supp}(L V_\varphi(f)) \subset \text{Supp}(L f) \cap \text{Supp}(\varphi)$;

(c) if $f \in C^2(\mathbb{R}^2)$ then $L(V_\varphi(f)) = \varphi L f$.

Proof We prove (a); (b) and (c) then follow from usual regularization arguments. From the last mentioned arguments we also can additionally suppose that $f \in C^\infty(\mathbb{R}^2)$. Then it can be easily seen that $V_\varphi(f) \in C^1(\mathbb{R}^2)$. Let $\omega_1(r) = \omega(\nabla f, r)$. Fix $x \in \mathbb{R}^2$ and for $y \in \mathbb{R}^2$ set

$$F(y) = f(y) - f(x) - \nabla f(x) \cdot (y - x), \quad \text{if } x \in B(a, 2r),$$

$$F(y) = f(y) - f(a) - \nabla f(a) \cdot (y - a), \quad \text{if } x \notin B(a, 2r).$$

Then $LF = L f$ and for all $y \in \overline{B(a, r)}$ we have:

$$|F(y)| \leq 3\omega_1(r)|y - x|, \quad |\nabla F(y)| \leq 3\omega_1(r), \quad \text{if } x \in B(a, 2r), \quad (2.2)$$

$$|F(y)| \leq r\omega_1(r), \quad |\nabla F(y)| \leq \omega_1(r), \quad \text{if } x \notin B(a, 2r). \quad (2.3)$$

Let $\partial_j g(y) = \partial g(y)/\partial y_j$ and $c_{21} = c_{12}$. Then

$$\varphi L F = L(\varphi F) - F L \varphi - 2 \sum_{i, j=1}^{2} c_{ij} \partial_i \varphi \partial_j F,$$

so, substituting the last equality to (2.1) and taking into account that $\varphi(x) F(x) = 0$, we obtain:

$$V_\varphi(f)(x) = \langle \Phi(x - y), \varphi(y) L F(y) \rangle - \langle \Phi(x - y), F(y) L \varphi(y) \rangle$$

$$- 2 \sum_{i, j=1}^{2} c_{ij} \langle \Phi(x - y), \partial_i \varphi(y) \partial_j F(y) \rangle.$$

From the equality $F \partial_i \partial_j \varphi = \partial_j (F \partial_i \varphi) - \partial_i \varphi \partial_j F$ we find that

$$- \langle \Phi(x - y), F(y) L \varphi(y) \rangle = \sum_{i, j=1}^{2} c_{ij} \left(\langle \partial_j \Phi(x - y), F(y) \partial_i \varphi(y) \rangle \right.$$

$$\left. + \langle \Phi(x - y), \partial_i \varphi(y) \partial_j F(y) \rangle \right),$$
which gives that
\[
V_\varphi(f)(x) = \sum_{i,j=1}^{2} c_{ij}(\langle \partial_j \Phi(x - y), F(y) \partial_i \varphi(y) \rangle - \langle \Phi(x - y), \partial_i \varphi(y) \partial_j F(y) \rangle),
\]
\[
\partial_k V_\varphi(f)(x) = \sum_{i,j=1}^{2} c_{ij}(\langle \partial_k \partial_j \Phi(x - y), F(y) \partial_i f(y) \rangle - \langle \partial_k \Phi(x - y), \partial_i \varphi(y) \partial_j F(y) \rangle).
\]

From the last equality it follows that it remains to estimate the following expressions:
\[
\langle \partial_k \partial_j \Phi(x - y), F(y) \partial_i \varphi(y) \rangle, \tag{2.4}
\]
and
\[
\langle \partial_k \Phi(x - y), \partial_i \varphi(y) \partial_j F(y) \rangle \tag{2.5}
\]
for all possible triples \(\{k, i, j\}\).

Since \(|\nabla \Phi(y)| \leq A/|y|\) (see Lemma 2.3 below), by (2.2) and (2.3) the absolute value in (2.5) can be easily estimated by the following convergent integral:
\[
A_1 ||\nabla \varphi|| \omega_1(r) \int_{B(a,r)} \frac{dy}{|x - y|} \leq A \omega_1(r) r ||\nabla \varphi||.
\]

It is not so directly simple to estimate (2.4), because the kernel
\[
|\partial_k \partial_j \Phi(x - y)| \simeq |x - y|^{-2}
\]
is not locally integrable with respect to the Lebesgue measure in \(\mathbb{R}^2\). Nevertheless, according to [5, Lemma 1.1], for the function \(\chi \in C^0(\mathbb{R}^2)\) (properly tending to 0 as \(y \to x\)) one has:
\[
\langle \partial_k \partial_j \Phi(x - y), \chi(y) \rangle = (v, p) \int K_{kj}(x - y) \chi(y) \, dy,
\]
where each \(K_{kj}\) is a standard (of class \(C^\infty\) outside 0, homogeneous of order \(-2\), with zero average over \(\partial B(0, 1)\)) Calderon-Zygmund kernel in \(\mathbb{R}^2\) with respect to Lebesgue measure. In our case, the function \(\chi(y) = F(y) \partial_i \varphi(y)\) tends to zero like \(|y - x|\) as \(y \to x\), because of (2.2) and since \(\varphi = 0\) outside of \(B(a, r)\).

Therefore, the last integral (in the principle value sense) as a matter of fact is absolutely convergent and can be estimated for \(x \in B(a, 2r)\) as follows (using (2.2)):
\[
\int |\partial_k \partial_j \Phi(x - y) F(y) \partial_i \varphi(y)| \, dy \leq A_1 \omega_1(r) ||\nabla \varphi|| \int_{B(a,r)} \frac{dy}{|x - y|} \leq A \omega_1(r) r ||\nabla \varphi||.
\]

For \(x \notin B(a, 2r)\) the corresponding estimate is trivial [by (2.3)]. Lemma 2.2 is proved.
Recall the basic properties for solutions of our main equation

\[\mathcal{L}u = c_{11} \frac{\partial^2 u}{\partial x_1^2} + 2c_{12} \frac{\partial^2 u}{\partial x_1 \partial x_2} + c_{22} \frac{\partial^2 u}{\partial x_2^2} = 0. \]

Let \(\lambda_1, \lambda_2 \) be the roots of the characteristic equation \(c_{11} \lambda^2 + 2c_{12} \lambda + c_{22} = 0 \). It follows from the ellipticity condition that \(\lambda_1, \lambda_2 \not\in \mathbb{R} \). Define

\[\partial_1 = \frac{\partial}{\partial x_1} - \lambda_1 \frac{\partial}{\partial x_2}, \quad \partial_2 = \frac{\partial}{\partial x_1} - \lambda_2 \frac{\partial}{\partial x_2} \quad \text{if} \quad \lambda_1 \neq \lambda_2, \]

or

\[\partial_1 = \frac{\partial}{\partial x_1} - \lambda_1 \frac{\partial}{\partial x_2}, \quad \partial_2 = \frac{\partial}{\partial x_1} + \lambda_1 \frac{\partial}{\partial x_2} \quad \text{if} \quad \lambda_1 = \lambda_2. \]

We then have the following decomposition of \(\mathcal{L} \):

\[\mathcal{L}u = \begin{cases} c_{11} \partial_1 (\partial_2 (u)), & \text{if } \lambda_1 \neq \lambda_2; \\ c_{11} \partial_1^2 (u), & \text{if } \lambda_1 = \lambda_2. \end{cases} \]

We also introduce the following new coordinates:

\[z_1 = \frac{\lambda_2}{\lambda_2 - \lambda_1} \left(x_1 + \frac{1}{\lambda_2} x_2 \right), \quad z_2 = \frac{\lambda_1}{\lambda_1 - \lambda_2} \left(x_1 + \frac{1}{\lambda_1} x_2 \right) \quad \text{if } \lambda_1 \neq \lambda_2, \]

or

\[z_1 = \frac{1}{2} \left(x_1 - \frac{1}{\lambda_1} x_2 \right), \quad z_2 = \frac{1}{2} \left(x_1 + \frac{1}{\lambda_1} x_2 \right) \quad \text{if } \lambda_1 = \lambda_2, \]

that satisfy the “orthogonality” relations:

\[\partial_1 z_1 = 1, \quad \partial_1 z_2 = 0, \quad \partial_2 z_1 = 0, \quad \partial_2 z_2 = 1. \]

Finally, we “identify” \(z = x_1 + ix_2 \) in \(\mathbb{C} \) and \(x = (x_1, x_2) \) in \(\mathbb{R}^2 \) in the sense that \(f(x) \) or \(f(z) \) will mean the same for any function \(f \). Notice that for \(s = 1 \) and \(s = 2 \) the linear transformations \(\Lambda_s(z) = z_s \) of \(\mathbb{R}^2 \) are nondegenerate. Nevertheless, we shall never use \(x \) as a complex variable, as well as the symbol \(x_s \) (not the same as \(x_s \)) will not be used.

The following well known results take place [11, Chapter IV, §6, (4.77)] (see also [12] for a simple direct proof).

Lemma 2.3 Let \(\mathcal{L} \) be as above. If \(\lambda_1 \neq \lambda_2 \) then there exist in \(\mathbb{C}\setminus\{0\} \) a fixed analytic branch \(\log(z_1 z_2^s) \) of the multivalued function \(\text{Log}(z_1 z_2^s) \) and a complex constant \(k_1 = k_1(\mathcal{L}) \neq 0 \) such that

\[\Phi(z) = \Phi_\mathcal{L}(z) = k_1 \log(z_1 z_2^s) \]
is a fundamental solution of \(L \), where \(\nu = 1 \) if \(\text{sgn}(\text{Im}\lambda_1) \neq \text{sgn}(\text{Im}\lambda_2) \), and \(\nu = -1 \) otherwise.

If \(\lambda_1 = \lambda_2 \), then \(\Phi_L(z) = k_1 \frac{z_1}{z_2} \) is a fundamental solution of \(L \), where \(k_1 = k_1(L) \neq 0 \).

Lemma 2.4 There is \(k_2 = k_2(L) > 1 \) with the following properties. Let \(T \) be a distribution with compact support in the disc \(B(a, r) \) and \(g = \Phi_L * T \).

If \(\lambda_1 \neq \lambda_2 \) then for \(|z - a| > k_2 r \) we have the expansion

\[
g(z) = c_0 \Phi(z - a) + \sum_{m=1}^{\infty} \frac{c_1}{(z - a)^m_1} + \sum_{m=1}^{\infty} \frac{c_2}{(z - a)^m_2},
\]

where \(c_0 = c_0(g) = \langle T, 1 \rangle \) and

\[
c_s = c_m(g, a) = -k_1 \frac{m^{s-1}}{m} \langle T, (w - a)^m_s \rangle, \quad s \in \{1, 2\}, \quad m = 1, 2, \ldots.
\]

If \(\lambda_1 = \lambda_2 \) then for \(|z - a| > k_2 r \) we have the expansion

\[
g(z) = c_0 \Phi(z - a) + \sum_{m=1}^{\infty} \frac{c_1}{(z - a)^m_1} + \sum_{m=1}^{\infty} \frac{c_2(z - a)_1}{(z - a)^m_2},
\]

where \(c_0 = c_0(g) = \langle T, 1 \rangle \) and

\[
c_1 = -k_1 \langle T(w), (w - a)_1(w - a)^{m-1}_2 \rangle,
\]

\[
c_2 = k_1 \langle T(w), (w - a)^m_2 \rangle, \quad m = 1, 2, \ldots.
\]

The series in (2.6) and (2.7) converge in \(C^\infty(\mathbb{C} \setminus B(a, k_2 r)) \).

Example 2.5 For the Laplacian \(L = \Delta \), one has \(\lambda_1 = i, \lambda_2 = -i, z_1 = z/2, z_2 = \bar{z}/2 \) and

\[
\partial_1 = \frac{\partial}{\partial x_1} - i \frac{\partial}{\partial x_2} = 2 \frac{\partial}{\partial x_1}, \quad \partial_2 = \frac{\partial}{\partial x_1} + i \frac{\partial}{\partial x_2} = 2 \frac{\partial}{\partial x_1}, \quad \Phi_\Delta(z) = \frac{1}{4\pi} \log \left(\frac{z\bar{z}}{4} \right).
\]

For the Bitsadze operator \(L = \frac{\partial^2}{\partial z^2} = \frac{1}{4} \left(\frac{\partial^2}{\partial x_1^2} + 2i \frac{\partial^2}{\partial x_1 \partial x_2} - \frac{\partial^2}{\partial x_2^2} \right) \), one gets \(\lambda_1 = \lambda_2 = -i, z_1 = \bar{z}/2, z_2 = z/2 \) and

\[
\partial_1 = 2 \frac{\partial}{\partial z}, \quad \partial_2 = 2 \frac{\partial}{\partial z}, \quad \Phi_L(z) = \frac{1}{\pi} \frac{\bar{z}}{z}.
\]

For a class \(\mathcal{I} \) of functions and \(\tau \geq 0 \) we denote by \(\tau \mathcal{I} \) the class \(\{ \tau g : g \in \mathcal{I} \} \). Rewrite the definition of \(\alpha_{1\mathcal{L}}(E) \) for a nonempty bounded set \(E \):

\[
\alpha_1(E) = \alpha_{1\mathcal{L}}(E) = \sup \{ \| \langle L g, 1 \rangle \| : g \in \mathcal{I}_1(E) \},
\]
where
\[
\mathcal{I}_1(E) = \{ \Phi \mathcal{L} \ast T \mid \text{Supp}(T) \subset E, \Phi \mathcal{L} \ast T \in C^1(\mathbb{R}^2), \|\nabla \Phi \ast T\| \leq 1 \}.
\]

Clearly, \(\alpha_1(B(a, r)) \leq Ar\) for each disc \(B(a, r)\), and this is the only property of \(\alpha_1\) that we need in this and the next section.

For \(g \in C^1(\mathbb{R}^2)\) define \(\nabla_c g = (\partial_1 g, \partial_2 g)\). Then \(|\nabla_c g|\) is comparable to \(|\nabla g|\) and \(\omega(\nabla_c g, r)\) is comparable to \(\omega(\nabla g, r)\).

The following lemma (where we use the notations of Lemma 2.4 above) is analogous to Lemma 3.3 and Corollary 3.4 in [13].

Lemma 2.6 Let \(E \subset B(a, r) \) and \(g \in \mathcal{I}_1(E)\). Then there are \(k_3 = k_3(\mathcal{L}) > 1\), \(k_4 = k_4(\mathcal{L}) > 1\) and \(A = A(\mathcal{L}) > 0\) such that
\[
|c_0(g)| \leq \alpha_1(E), \quad |c_m^s(g, a)| \leq A(k_3 r)^m \alpha_1(E), \quad s \in \{1, 2\}, \quad m = 1, 2, \ldots \tag{2.8}
\]
and for \(|z - a| > k_4r\) one has
\[
|\nabla_c g(z)| \leq \frac{A\alpha_1(E)}{|z - a|}; \tag{2.9}
\]
\[
|\nabla_c(g(z) - c_0 \Phi \mathcal{L}(z))| \leq \frac{Ar\alpha_1(E)}{|z - a|^2}; \tag{2.10}
\]
\[
|\nabla_c\left(g(z) - c_0 \Phi \mathcal{L}(z) - \frac{c_1^1}{(z - a)_1} - \frac{c_1^2}{(z - a)_2}\right)| \leq \frac{Ar^3}{|z - a|^3}, \quad \text{if } \lambda_1 \neq \lambda_2; \tag{2.11}
\]
\[
|\nabla_c\left(g(z) - c_0 \Phi \mathcal{L}(z) - \frac{c_1^1}{(z - a)_1} - \frac{c_2^2(z - a)_1}{(z - a)_2}\right)| \leq \frac{Ar^3}{|z - a|^3}, \quad \text{if } \lambda_1 = \lambda_2.
\]

Proof We give a short proof here for completeness, and only for the cases \(\lambda_1 \neq \lambda_2\). The cases \(\lambda_1 = \lambda_2\) can be done almost the same way. To check (2.8) fix \(m \geq 1\) and \(s\) and take \(g_m^s = \Phi \ast (T(w)(w - a)_s)^m\), where \(T = \mathcal{L} g\). Then \(|c_m^s| = |k_1|m^{-1}|c_0(g_m^s)|\). Take \(\chi \in C^1(B(a, 2r))\), \(\chi = 0\) outside of \(B(a, 2r)\), with \(\chi = 1\) in \(B(a, r)\) and \(|\nabla \chi| < 2/r\). Then \(g_m^s = \chi \nabla(\chi(w)(w - a)_s)^m g\). Since, clearly, \(|\nabla(\chi(w)(w - a)_s)^m|\| \leq A(k_3 r)^m\|\), it suffices to apply Lemma 2.2 and definition of \(\alpha_1(E)\). The remaining estimates in the last lemma can be now easily checked. In fact, let \(d_1 = \min\{|z_s| : |z| = 1, \ s \in \{1, 2\}\}\). One then can take \(k_4 = (k_3 + 1)/d_1\). \(\square\)

3 Proof of Theorem 1.2

We now formulate and prove some generalization of Theorem 1.2.
Fix any even function \(\varphi_1 \) in \(C(\mathbb{R}^2) \cap C^1(B(0,1)) \) with \(\text{Supp} \varphi_1 \) in \(\overline{B}(0,1) \) and with the property \(\int \varphi_1(x)dx = 1 \).

Set \(\varphi^a_r(x) = \varphi_1((x-a)/r^2) \) and \(\varphi_r = \varphi^0_r \). Clearly, \(\| \nabla \varphi^a_r \| = r^{-3} \| \nabla \varphi_1 \| \).

By analogy with [14, Theorem 2.2], the proof of Theorem 1.2 is based on the following result.

Theorem 3.1 For a compact set \(X \) and \(f \in C^1_0(\mathbb{R}^2) \) the following are equivalent:

(a) \(f \in A^1_c(X) \);
(b) there exist \(k \geq 1 \) and a function \(\omega(r) \to 0 \) as \(r \to 0+ \) such that for each disc \(B = B(a,r) \) one has

\[
\left| \int_{B(a,r)} \partial_1 f(x) \partial_2 \varphi^a_r(x)dx \right| \leq \omega(r)r^{-2} \alpha_1(B,a,r) < \infty.
\]

(c) the property (b) holds for \(k = 1 \) and \(\omega(r) = A \omega(\nabla f, r) \).

In particular, for \(\varphi_1 = 8\psi^0_1 \) (see Lemma 2.1) this theorem coincides with Theorem 1.2.

Proof of (a) \(\Rightarrow \) (c) in Theorem 3.1. Let \(f \in A^1_c(X) \) and take a sequence \(\{f_n\}_{n=1}^{\infty} \subset BC^1 \) such that each \(f_n \) is \(\mathcal{L} \)-analytic in (its own) neighborhood \(U_n \) of \(X \) and \(\| f - f_n \|_1 \to 0 \) as \(n \to +\infty \). By regularization arguments we can additionally suppose that each \(f_n \in C^\infty(\mathbb{R}^2) \). Fix \(B = B(a,r) \) and \(\epsilon \in (0,r/2) \). Then there is \(n_\epsilon \in \mathbb{N} \) such that for all \(n \geq n_\epsilon \) one has \(\| f - f_n \|_1 < \epsilon \), and then also \(\omega((\nabla f - \nabla f_n), r) < 2\epsilon \). So it is enough to prove the estimate

\[
\left| \int_{B(a,r)} \partial_1 f_n(x) \partial_2 \varphi^a_r(x)dx \right| \leq A \omega_n(r)r^{-2} \alpha_1(B,a,r) < \infty
\]

with \(A = A(\mathcal{L}) \) and \(\omega_n(r) = \omega(\nabla f_n, r) \), and then tend \(\epsilon \) to 0. Let \(h_n = \mathcal{V}_\varphi f_n \), where \(\varphi(x) = \varphi^a_{r-\epsilon}(x) \). By Lemma 2.2, \(h_n \in BC^1 \), \(\| \nabla h_n \| \leq A \omega_n(r) \| \nabla \varphi \| \) and \(h_n \) is \(\mathcal{L} \)-analytic outside some compact set \(E \subset B \setminus X \). By (1.1) and Lemma 2.2 we have

\[
|\langle \mathcal{L} h_n, 1 \rangle | = |\langle \varphi, \mathcal{L} f_n \rangle | = |c_{11}| |\langle \partial_2 \varphi, \partial_1 f_n \rangle | \leq A \omega_n(r) \| \nabla \varphi \| \alpha_1(B,a,r) \]

which ends the proof of (a) \(\Rightarrow \) (c).

Since (c) \(\Rightarrow \) (b) is evident, we pass to the following more complicated part of the proof.

Proof of (b) \(\Rightarrow \) (a) in Theorem 3.1.

We can suppose that for some \(R > 0 \) we have \(X \subset B(0, R) \) and \(f(z) = 0 \) for \(|z| > R \). In (3.1) we also take \(\omega(\delta) \geq \omega(\nabla f, \delta) \).

Fix \(\delta > 0 \) and any standard \(\delta \)-partition of unity \(\{(\varphi_j, B_j) : j = (j_1, j_2) \in \mathbb{Z}^2 \} \) in \(\mathbb{C} \). This means that \(B_j = B(a_j, \delta) \), where \(a_j = j_1 \delta + j_2 \delta \in \mathbb{C} \), \(\varphi_j \in C^\infty_0(B_j) \), \(0 \leq \varphi_j \leq 1 \), \(\| \nabla \varphi_j \| \leq A/\delta \), \(\sum_j \varphi_j = 1 \).

Now consider the new partition of unity \(\{(\psi_j, B'_j) \} \), where \(\psi_j = \varphi_\delta * \varphi_\delta * \varphi_j \), \(B'_j = B(a_j, 3\delta) \) (recall that \(\varphi_\delta = \varphi^0_\delta \)). Clearly, \(\psi_j \in C^\infty_0(B'_j) \) and \(\| \nabla \psi_j \| \leq A/\delta \). Define the so-called localized functions \(f_j = \Phi_L * (\psi_j \mathcal{L} f) \).
Lemma 3.2 The functions f_j satisfy the following properties:

1. $f_j \in A\omega(\nabla f, \delta)I_1(B_j' \setminus X^0)$;
2. $f = \sum_j f_j$ and the sum is finite ($f_j = 0$ if $B_j' \cap B(0, R) = \emptyset$);
3. if $\lambda_1 \neq \lambda_2$ then for $|z - a_j| > 3k_2\delta$ we have the expansion

$$f_j(z) = c_{0j} \Phi(z - a_j) + \sum_{m=1}^{\infty} \frac{c_{mj}^1}{(z - a_j)_1^m} + \sum_{m=1}^{\infty} \frac{c_{mj}^2}{(z - a_j)_2^m},$$

or for $\lambda_1 = \lambda_2$:

$$f_j(z) = c_{0j} \Phi(z - a_j) + \sum_{m=1}^{\infty} \frac{c_{mj}^1}{(z - a_j)_1^m} + \sum_{m=1}^{\infty} \frac{c_{mj}^2}{(z - a_j)_2^{m+1}},$$

where

$$c_{0j} = \int f(x) \mathcal{C}\psi_j(x) dx = -c_{11} \int \partial_1 f(x) \partial_2 \psi_j(x) dx,$$

$$c_{1j}^s = c_{11} \kappa_1 \nu^{s-1} \int \partial_s f(x) \partial_{(3-s)}(\psi_j(x)(z - a_j)_s) dx, \ s \in \{1, 2\}$$

with $\nu = -1$ whenever $\lambda_1 = \lambda_2$. Define $G_j = B(a_j, (k + 2)\delta) \setminus X$. Then

$$|c_{0j}| \leq A\omega(\nabla f, \delta)\alpha_1(G_j),$$

$$|c_{1j}^s| \leq A\omega(\nabla f, \delta)\delta\alpha_1(G_j), \ s \in \{1, 2\}.\ (3.5)$$

Proof Notice that the last two estimates are corollaries of (3.1), not only (2.8). We follow analogous proof for Lemma 2.5 in [14].

First we obtain (3.4) using (3.2), which follows from Lemma 2.4, the definition of f_j and integration by parts. Set $\varphi_j^* = \varphi_\delta * \varphi_j$. Then

$$\varphi_j^* \in C_0^\infty(B(a_j, 2\delta)), \ 0 \leq \varphi_j^* \leq 1, \ \psi_j = \varphi_\delta * \varphi_j^*.$$

By (3.1) and Fubini’s theorem

$$|c_{0j}| = |c_{11}| \left| \int \partial_1 f(x) \partial_2 \left(\int \varphi_\delta(x - y) \varphi_j^*(y) dy \right) dx \right|$$

$$\leq A_1 \left| \int \varphi_j^*(y) \omega(\delta)\delta^{-2} \alpha_1(B(y, k\delta) \setminus X) dy \right| \leq A\omega(\delta)\alpha_1(G_j).$$

In order to estimate $|c_{1j}^s|$ we first need to check that in (3.3) the function $\psi_j(x)(z - a_j)_s$ has the form $\varphi_\delta * \chi_j$, where $\chi_j \in C_0^\infty(B(a_j, 2\delta))$ and $||\chi_j|| \leq A\delta$. It can be done the same way as in [14, p. 1331] or [15, Lemma 3.4] using the Fourier transform. Then we proceed as in the first part of the proof. \qed
We are ready to describe the scheme for approximation of the function \(f = \sum f_j \) following and [13,15, §6].

Put \(J = \{ j \in \mathbb{Z}^2 : B_j' \cap \delta X \neq \emptyset \} \). For \(j \notin J \) by Lemma 3.2 (1), clearly, \(f_j \in A^1_{\mathcal{L}}(X) \), so these \(f_j \) don’t need to be approximated. Let now \(j \in J \). By definition of \(\alpha_1(G_j) \) (recall that \(G_j = B(a_j, (k+2)\delta) \setminus X \)) and by (3.4) we can find functions \(f_j^* \in A(\delta)I_1(G_j) \subset A^1_{\mathcal{L}}(X) \) such that \(c_0(f_j^*) = c_0(f_j) \). Put \(g_j = f_j - f_j^* \) (\(f_j^* = f_j, g_j \equiv 0 \) for \(j \notin J \)). Then

\[
||\nabla g_j|| \leq A(\delta); \quad c_0(g_j) = 0. \tag{3.6}
\]

Therefore, by (2.8) (with \(m = 1 \)) for \(E = G_j \) and \(g = f_j^* \) and by (3.5) we can write (clearly, \(c_1^s(g_j, a) = c_1^s(g_j) \) do not depend on \(a \)):

\[
|c_1^s(g_j)| \leq A(\delta)\delta \alpha_1(G_j), \quad s \in \{1, 2\}. \tag{3.7}
\]

Using (2.9)–(2.11) for \(g = g_j \) and \(E = B(a_j, (k+2)\delta) = B_j^* \), we obtain for \(|z - a_j| > p\delta \) (here \(p = \max\{k_2, k_3, k_4, k + 2\} + 1 \)):

\[
|\nabla g_j(z)| \leq \frac{A(\delta)\delta \alpha_1(G_j)}{|z - a_j|^2} + \frac{A(\delta)\delta^3}{|z - a_j|^3}. \tag{3.8}
\]

We need to introduce the following abbreviate notations. Recall that \(\delta \) is fixed and small enough.

For \(j \in J \) set \(\alpha_j = \alpha_1(G_j) \), so that all \(\alpha_j > 0 \). For \(I \subset J \) and \(z \in \mathbb{C} \) put

\[
B_i^* = \bigcup_{j \in I} B_j^*, \quad G_I = \bigcup_{j \in I} G_j, \quad \alpha_I = \sum_{j \in I} \alpha_j, \quad g_I = \sum_{j \in I} g_j,
\]

\[
I'(z) = \{ j \in I : |z - a_j| > p\delta \}, \quad S_I'(z) = \sum_{j \in I'(z)} \left(\frac{\delta \alpha_j}{|z - a_j|^2} + \frac{\delta^3}{|z - a_j|^3} \right).
\]

Set also \(S_I(z) = S_I'(z) \) if \(I = I'(z) \) and \(S_I(z) = S_I'(z) + 1 \) if \(I \neq I'(z) \). For \(I \subset J, l \in I \) and \(s \in \{1, 2\} \) define \(P_s(I, l) = \{ j \in I : j_{s-1} = l_{s-1} \} \).

Definition 3.3 Fix \(s \in \{1, 2\}, I \subset J \) and \(l \in I \). A subset \(L_s = L_s(l) \) of \(I \) is called a **complete s-chain in I with vertex l** if the following conditions are satisfied:

1. **L_s is s-directional and connected in I**; this means that \(L_s \subset P_s(I, l), j_s \geq j_s' \) for all \(j \in L_s, \) and for each \(j \in L_s \) and \(j' \in P_s(I, l) \) such that \(l_s \leq j' \leq j_s \) we have \(j' \in L_s \);
2. it is possible to represent \(L_s \) as \(L_s = L_s^1 \cup L_s^2 \cup L_s^3 \) with the following properties: for each \(j^0 \in L_s^\theta, \theta = 1, 2, 3, \) one has

\[
j_s^1 < j_s^2 < j_s^3 \quad \text{and} \quad |a_{j^1} - a_{j^3}| \geq q\delta,
\]

where \(q \geq 3p \) depending only on \(\mathcal{L} \) will be chosen later;
(3) for \(\theta = 1 \) and \(\theta = 3 \) we have \(\alpha_{L_1^3} \geq \delta \) and \(L_s \) is minimal with the properties above (then, clearly, \(\alpha_{L_s} \leq A\delta \)).

Definition 3.4 Let \(l \in I \subset J \). A set \(\Gamma \subset I \) is called a complete group in \(I \) with vertex \(l \) if there exist complete 1- and 2-chains \(L_1 \) and \(L_2 \) in \(I \) with vertex \(l \) such that \(\Gamma = L_1 \cup L_2 \).

Now we divide the set of indices \(J \) into a finite number of nonintersecting groups \(\Gamma^n, n \in \{1, \ldots, N\} \) by induction as follows. First define a natural order in \(J \): for \(j \neq j' \) in \(J \) write \(j < j' \) if \(j_2 < j_2' \) or \(j_2 = j_2' \) but \(j_1 < j_1' \). Now choose the minimal \(l_1 \) in \(J \). If there exists a complete group \(\Gamma = \Gamma_1 \cup \Gamma_2 \) in \(J \) with vertex \(l_1 \) we define \(\Gamma_1 = \Gamma \). If such \(\Gamma \) does not exist, we put \(\Gamma_1 = \Gamma_2(J, l) \) if \(L_1 \) does not exist and call \(\Gamma_1 \) incomplete 1-group, otherwise put \(\Gamma_1 = \Gamma_2(J, l) \) (if \(L_1 \) exists, but \(L_2 \) does not exist in the above sense) and call \(\Gamma_1 \) incomplete 2-group. If \(\Gamma_1, \ldots, \Gamma_n \) are constructed, take \(J^n = J \setminus (\Gamma_1 \cup \ldots \cup \Gamma^n) \) and make the same procedure for \(J^{n+1} \) instead of \(J \) defining \(\Gamma^{n+1} \). Let \(N \) be the maximal number with the property \(J^N \neq \emptyset \). Now we fix this partition \(\{ \Gamma^n \} = \{ \Gamma^n \}_{n=1}^N \) of \(J \).

For each group \(\Gamma = \Gamma^n \) (complete or not) by (3.6)–(3.8) one has:

\[
\alpha_\Gamma \leq A\delta \cdot c_0(\alpha) = 0, |c_s(\alpha)| \leq A\omega(\delta)\delta (s \in \{1, 2\}); \]
\[
|\nabla g_\Gamma(z)| \leq A\omega(\delta)S_\Gamma(z), ||\nabla g_\Gamma|| \leq A\omega(\delta), \]
\[
||S_\Gamma|| \leq A, ||S_{P_\Gamma}|| \leq A (s \in \{1, 2\}). \tag{3.9}
\]

Lemma 3.5 For each complete group \(\Gamma = \Gamma^n \) there exists \(h_\Gamma \in A\omega(\delta)I_1(G_\Gamma) \subset A^1_\mathcal{C}(X) \) such that

\[
c_0(h_\Gamma) = 0, c_s^1(h_\Gamma) = c_s^1(\alpha) (s \in \{1, 2\}).
\]

and for all \(z \in \mathbb{C} \)

\[
|\nabla h_\Gamma(z)| \leq A\omega(\delta)S_\Gamma(z).
\]

Proof We follow the idea in [14, Lemma 2.7]. Let \(\Gamma \) be a complete group in \(J \) with vertex \(l \) and complete 1- and 2-chains \(L_1 \) and \(L_2 \) respectively, and let \(L_1 = L_1^1 \cup L_2^1 \cup L_3^1 \) (like in definitions just above).

For each \(j \in \Gamma \) we can choose \(h_j \in 2I_1(G_j) \) with \(c_0(h_j) = \alpha_j = \alpha_1(G_j) \). Let \(T_j = \partial h_j \), so that \(\alpha_j = (T_j, 1) \). Fix \(j_1 \in L_1^1, j_2 \in L_2^1 \) and for \(\theta = 1 \) and \(\theta = 3 \) put:

\[
h^\theta = h_{j_\theta}, T^\theta = \partial h_{j_\theta}, a^\theta = a_{j_\theta}, G^\theta = G_{j_\theta}.
\]

Put \(M = |a_1^1 - a_3^1|/\delta \). Let \(\lambda_1 \in (0, 1) \) and \(\lambda_3 \in (0, 1) \) be such that \(\lambda^1 \alpha^1 = \lambda^3 \alpha^3 := \alpha \).

Define

\[
h^{13}(z) = h^{13}(j_1^1, j_3^1, \lambda^1, \lambda^3, z) = (\lambda^3 h^1(z) - \lambda^1 h^1(z))/M. \tag{3.10}
\]

Then, clearly, \(c_0(h^{13}) = 0 \) and by Lemma 2.4

\[
v^s k_1^{-1} M c_1^s(h^{13}) = (\lambda^3 T^3 - \lambda^1 T^1, z_s)
\]
Moreover, for $z \geq 146$ P. V. Paramonov, X. Tolsa

The last equality has to be checked: it is enough, instead of estimating $\langle \nabla z \rangle$, using finally, the following elementary trick:

$$\lambda(\theta)$$

between the sets of indices $\lambda(\theta)(\kappa)$, $\kappa \in \{1, \ldots, \kappa_j\}$, $\kappa_j \in \mathbb{N}$) with the following properties:

(a) $\lambda(j, \kappa) > 0$, $\sum_{\kappa=1}^{\kappa_j} \lambda(j, \kappa) \leq 1$ for each j;

(b) between the sets of indices

$$\Psi^{\theta} = \{(j, \kappa) : j \in L_1^{\theta}, 1 \leq \kappa \leq \kappa_j\}, \theta = 1 \text{ and } 3,$$

we have one to one correspondence

$$\psi^1 \ni (j^1, \kappa^1) \leftrightarrow (j^3, \kappa^3) \in \Psi^3,$$

for which $\lambda(j^1, \kappa^1) \alpha_{j^1} = \lambda(j^3, \kappa^3) \alpha_{j^3}$.

where $|R_{s^1}^{13}| \leq A\delta\alpha$, which follows from Lemma 2.4 and (2.8) with $m = 1$. Therefore,

$$\left(\frac{1}{z-a^1}, \frac{1}{z-a^3}\right) = \left(\frac{(a^3-a^1)_s}{(z-a^1)_s(z-a^3)_s}\right) \leq A|a^3-a^1|(|z-a^1|^{-2} + |z-a^3|^{-2}).$$

In fact the last can be done for the case $\lambda_1 = \lambda_2$ (see Lemma 2.3). The remaining case ($\lambda_1 = \lambda_2$) we propose to the reader’s control. Additionally notice that for the case when $|z-a^\theta| \leq p\delta, \theta = 1$ or $\theta = 3$, we have by (2.9) (since $|a^3-a^1| = M\delta \geq q\delta \geq 3p\delta$):

$$|\nabla h^{13}(z)| \leq \frac{\lambda^\theta}{p} + A\frac{\lambda^{4-\theta} \alpha^{4-\theta} \delta}{|z-a^{3-\theta}|^2}. \quad (3.13)$$

Now we construct a special linear combination (just a sum) of such functions $h^{13}(z) = h^{13}(j^1, j^3, \lambda^1, \lambda^3, z)$. It is easily seen that for each $j \in L_1^3 \cup L_1^3$ there exist $\lambda(j, \kappa)$ ($\kappa \in \{1, \ldots, \kappa_j\}, \kappa_j \in \mathbb{N}$) with the following properties:

$$= \lambda^3 \langle T^3, (z-a^3)_s \rangle + \lambda^3 \langle T^3, a^3_s \rangle$$

$$- \lambda^1 \langle T^1, (z-a^1)_s \rangle - \lambda^1 \langle T^1, a^1_s \rangle$$

$$= \alpha(a^3-a^1)_s + R_{s^1}^{13},$$

$$= k_1 M^{-1} \alpha(\nu(a^3-a^1)_1, (a^3-a^1)_2) + \delta\alpha O(1/M)$$

$$= k_1 \delta\alpha ((\nu(1+i0)_1, (1+i0)_2) + O(1/M)). \quad (3.11)$$

Moreover, for z with $|z-a^1| > p\delta$ and $|z-a^3| > p\delta$ we have by (2.10):

$$\nabla h^{13}(z) = \alpha M^{-1}(\nabla \Phi(z-a^3) - \nabla \Phi(z-a^1)) + \alpha \delta(\nu(|z-a^1|^2) + O(|z-a^3|^2))$$

$$= \alpha \delta(\nu(|z-a^1|^2) + O(|z-a^3|^2)). \quad (3.12)$$

The last equality has to be checked: it is enough, instead of estimating $|\nabla \Phi(z-a^1) - \nabla \Phi(z-a^3)|$, to estimate $|\partial_z \Phi(z-a^1) - \partial_z \Phi(z-a^3)|, s \in \{1, 2\}$ (see Lemma 2.3), using, finally, the following elementary trick:

$$\left| \frac{1}{(z-a^1)_s} - \frac{1}{(z-a^3)_s} \right| = \left| \frac{(a^3-a^1)_s}{(z-a^1)_s(z-a^3)_s} \right| \leq A|a^3-a^1|(|z-a^1|^{-2} + |z-a^3|^{-2}).$$

$\left(\frac{1}{z-a^1}, \frac{1}{z-a^3}\right) = \left(\frac{(a^3-a^1)_s}{(z-a^1)_s(z-a^3)_s}\right) \leq A|a^3-a^1|(|z-a^1|^{-2} + |z-a^3|^{-2}).$
(c) for θ = 1 and θ = 3

\[\sum_{(j, \kappa) \in \Psi^\theta} \lambda(j, \kappa) \alpha_j = \delta. \]

We define

\[h_1(z) = h_1(L_1, z) = \sum_{(j, \kappa) \in \Psi^1} \delta \frac{\delta(g(j^3, \kappa^3)h_{j^3} - \lambda(j^1, \kappa^1)h_{j^1})}{|a_{j^3} - a_{j^1}|}, \]

where \((j^3, \kappa^3)\) corresponds to \((j^1, \kappa^1)\) in the above sense. Each member of the last sum is precisely of the form (3.10) with \(\lambda(\theta) = \lambda(j^\theta, \kappa^\theta)\). Clearly, \(c_0(h_1) = 0\) and by (3.11) we have

\[\left(c_1(h_1), c_2(h_1) \right) = k_1 \delta^2 (\nu(1 + i0)_1, (1 + i0)_2 + O(1/M)). \quad (3.14) \]

Arguing the same way for the complete chain \(L_2\) of \(\Gamma\) we construct the function
\(h_2(z) = h_2(L_2, z)\) with the same properties as for \(h_1\), but

\[\left(c_1(h_2), c_2(h_2) \right) = k_1 \delta^2 (\nu(0 + i1)_1, (0 + i1)_2 + O(1/M)). \quad (3.15) \]

Now choose and fix \(q\) so large in Definition 3.3 that \(O(1/M) = O(1/q)\) does not “spoil” (in (3.14) and (3.15)) the linear independence of the vectors \(k_1 \delta^2((\nu(1 + i0)_1, (1 + i0)_2))\) and \(k_1 \delta^2((\nu(0 + i1)_1, (0 + i1)_2))\). Notice that (in \(\mathbb{C}^2\)) the vector \((\nu(1 + i0)_1, (1 + i0)_2)\) is collinear to \((\nu \lambda_2, -\lambda_1)\) (when \(\lambda_1 \neq \lambda_2\)) and to \((-1, 1)\) (if \(\lambda_1 = \lambda_2\)); the vector \((\nu(0 + i1)_1, (0 + i1)_2)\) is collinear to \((\nu, -1)\) (when \(\lambda_1 \neq \lambda_2\)) and to \((1, 1)\) (if \(\lambda_1 = \lambda_2\).

By (3.12), (3.13) and the property (c) just above, we have

\[|\nabla h_s(z)| \leq AS_{L_s}(z). \quad (3.16) \]

Taking into account the estimate \(|(c_1^1(g^\Gamma), c_1^2(g^\Gamma))| \leq A \omega(\delta) \delta^2\) (see (3.7) and Definition 3.3), (3.16), (3.14) and (3.15), we clearly can find the required \(h_{\Gamma}^s\) as an appropriate linear combination of functions \(h_1\) and \(h_2\).

It remains to show that the function \(\nabla \sum_{j \in J} f_j\) is uniformly approximated on \(\mathbb{C}\) with accuracy \(A \omega(\delta)\) by the function \(\nabla F\), where

\[F = \sum_n' \left(\sum_{j \in \Gamma^n} f_j + h_{\Gamma^n} \right) + \sum_n'' \sum_{j \in \Gamma^n} f_j^n, \]

where \(\sum_n'\) and \(\sum_n''\) are summations over all complete and incomplete groups respectively.
For the proof of this assertion it is sufficient to check that for each \(z \in \mathbb{C} \) we have
\[
|\nabla (F(z) - f(z))| \leq \sum_n |\nabla (g_{\Gamma^n}(z) - h_{\Gamma^n}(z))| + \sum_{n''} |\nabla g_{\Gamma^n}(z)| \leq A \omega(\delta).
\]

After that it will be enough let \(\delta \) tend to 0.

Now our situation is absolutely analogous to that of [13, pp. 200–203] (2-dimensional case); some simple details (of the following last part of the proof), dropped here, can be found there.

First, estimate the sum \(\sum_{n''} |g_{\Gamma^n}(z)|. \) This is very easy, because in each \(P_s(J, l) = \{ j \in J : j_{3-s} = l_{3-s} \} \) we can find at most one incomplete group \(\Gamma \) (\(s \)-incomplete chain \(L_s = \Gamma \)). Therefore, by (3.9) and (3) of Definition 3.3, we can majorize the considered sum by \(A \omega(\delta) \sum_{m=1}^{+\infty} m^{-2} \), and this is it.

The estimating of \(\sum_{n'} |\nabla (g_{\Gamma^n}(z) - h_{\Gamma^n}(z))| \) is more complicated. For each complete group \(\Gamma^n \) set \(\chi^n = g_{\Gamma^n} - h_{\Gamma^n}. \) Then we have by (3.9) and Lemma 3.5
\[
|\nabla \chi^n(z)| \leq A \omega(\delta) S_t^n(z), \quad c_0(\chi^n) = c^1_1(\chi^n) = c^2_1(\chi^n) = 0. \quad (3.17)
\]

It suffices to prove that
\[
\sum_n |\nabla \chi^n(z)| \leq A \omega(\delta)
\]
for each \(z \in \mathbb{C} \). From now on we fix \(z \in \mathbb{C} \); without loss of generality we can suppose that \(|z| < \delta \). All further constructions will be relative also to \(z \).

Let \(\Gamma^n = L^n_1 \cup L^n_2 \) (with vertex \(l^n \)) be a complete group. Put \(a^n = aL^n, M^n_s = \text{diam}(B_{L^n_s})/\delta, M^n = \max\{M^n_1, M^n_2\} \). Divide the collection of all complete groups into two classes.

Class (1) Here we take all complete groups \(\Gamma^n \) with \(M^n \leq |l^n|^{1/4} \).

Clearly, the latter is possible only if \(|z - a^n| \geq (|l^n| - 1)\delta \geq ((M^n)^4 - 1)\delta > 2pM^n\delta. \) Since \(\chi^n \in A\omega(\delta)\bar{\mathcal{I}}(B(a^n, M^n\delta)) \) and (3.17) holds, we have by (2.11):
\[
|\nabla \chi^n(z)| \leq A \omega(\delta) \left(\frac{M^n\delta}{|l^n|} \right)^3 \leq A \omega(\delta) \left(\frac{|l^n|^{-9/4}}{\delta} \right).
\]

Since in each annulus \(B(0, (m + 1)\delta) \setminus B(0, m\delta) \) \((m > p) \) we can find at most \(Am \) vertices of groups, we can see that
\[
\sum_n \sum_{(1)} |\nabla \chi^n(z)| \leq A \omega(\delta) \sum_{m > p} \left(m^{-5/4} \right) \leq A_1 \omega(\delta),
\]
where the last sum corresponds to all complete groups of the Class (1), which now is well estimated.

Class (2) Here we place all complete groups \(\Gamma^n \) for which \(M^n > |l^n|^{1/4} \). Fix such a group \(\Gamma^n \). Then, for some \(s = s^n \in \{1, 2\} \) we have \(M^n > |l^n|^{1/4} \). First we consider the
case when \(s^n = 1 \) is just one with the last property for \(\Gamma^n \). Clearly, then \(|l^n| > 2p\delta\), \(M^*_n \leq |l^n|^{1/4} \), so that

\[
S_{L_2^n}(z) \leq \frac{A\omega(\delta)\delta^2}{|z - al|^2},
\]

and then

\[
|\nabla \chi^n(z)| \leq A\omega(\delta)\left(\frac{\delta^2}{|z - al|^2} + S_{L_1^n}(z)\right).
\]

The same way we argue when \(s^n = 2 \) is just one with the property \(M^n_* > |l^n|^{1/4} \).

In any case we have the following lemma.

Lemma 3.6 Fix an integer \(m \), and let \(V_{ms} \) denote the collection of all complete groups \(\Gamma^n \) of the Class (2) with \(l_{3-s}^n = m \) and such that \(M^n_* > |l^n|^{1/4} \). Then

\[
\sum_{n \in V_{ms}} S_{L_2^n}(z) \leq A, \quad |m| < 2p,
\]

and

\[
\sum_{n \in V_{ms}} S_{L_2^n}(z) \leq Am^{-5/4}, \quad |m| \geq 2p.
\]

Proof For \(|m| < 2p\) this follows from the estimate \(|S_{P^*}(J, j)| \leq A\) for each \(j \in J \).

Let now \(|m| \geq 2p\). Since all \(L^n_s, n \in V_{ms} \), are pairwise “disjoint” and \(M^n_* > |l^n|^{1/4} \geq |m|^{1/4} \), we have

\[
\sum_{n \in V_{ms}} S_{L_2^n}(z) \leq A_1 \sum_{\tau \in \mathbb{Z}} \frac{\delta^2}{m^2\delta^2 + (|m|^{1/4}\tau)^2\delta^2} \\
\leq A_2|m|^{-1/2} \int_0^{+\infty} \frac{dt}{(|m|^{3/4})^2 + t^2} = A|m|^{-5/4}.
\]

\(\square \)

Summation by \(m \) and \(s \) now gives the desired estimate for \(\sum_n (2)|\nabla \chi^n(z)| \), corresponding to the Class (2). This ends the proof of Theorem 3.1.

4 Proof of Theorem 1.1

Observe that, by Lemma 2.3 we have \((\partial_1 \Phi(z), \partial_2 \Phi(z)) = k_1(1/z_1, \nu/z_2)\) if \(\lambda_1 \neq \lambda_2 \) or \((\partial_1 \Phi(z), \partial_2 \Phi(z)) = k_1(1/z_2, -z_1/z_2^2)\) otherwise. Define

\[
(K_1(z), K_2(z)) = \left(\frac{1}{z_1}, \frac{1}{z_2}\right) \quad \text{if} \ \lambda_1 \neq \lambda_2,
\]
and
\[
(K_1(z), K_2(z)) = \left(\frac{z_1}{z_2^2}, \frac{1}{z_2} \right) \quad \text{if } \lambda_1 = \lambda_2.
\]

Then, clearly, \(\alpha_1(E)\) is comparable to
\[
\alpha_{12}(E) = \alpha_{12L}(E) = \sup_{T} |\langle T, 1 \rangle| : \text{Supp}(T) \subset E, K_s * T \in C(\mathbb{R}^2),
\]
\[
||K_s * T|| \leq 1, s \in \{1, 2\},
\]
and \(\gamma_1(E)\) is comparable to
\[
\gamma_{12}(E) = \gamma_{12L}(E) = \sup_{T} |\langle T, 1 \rangle| : \text{Supp}(T) \subset E, K_s * T \in L_\infty(\mathbb{C}),
\]
\[
||K_s * T|| \leq 1, s \in \{1, 2\}.
\]

4.1 Preliminaries

We assume all measures to be positive, Borel and locally finite. A measure \(\mu\) in \(\mathbb{C}\) is said to have linear growth (or \(A_0\)-linear growth) if there exists some constant \(A_0 > 0\) such that
\[
\mu(B(z, r)) \leq A_0 r \quad \text{for all } z \in \mathbb{C}, r > 0.
\]

The maximal Hardy–Littlewood operator with respect to \(\mu\) applied to a signed measure \(\nu\) is defined by
\[
M_\mu \nu(z) = \sup_{r > 0} \frac{||\nu||(B(z, r))}{\mu(B(z, r))}.
\]

For a function \(f \in L^1_{loc}(\mu)\), we write
\[
M_\mu f(z) = \sup_{r > 0} \frac{1}{\mu(B(z, r))} \int_{B(z, r)} |f| d\mu.
\]

It is well known (see Chapter 2 of [16], for example) that \(M_\mu\) is bounded in \(L^p(\mu)\) for \(1 < p < \infty\) and also from the space of finite signed measures \(M(\mathbb{C})\) into \(L^{1,\infty}(\mu)\). The latter means that there exists some constant \(A\) such that
\[
\mu\left(\{ z \in \mathbb{C} : M_\mu \nu(z) > \lambda \} \right) \leq A \frac{||\nu||}{\lambda} \quad \text{for all } \lambda > 0 \text{ and all } \nu \in M(\mathbb{C}).
\]

Given a signed measure \(\nu\) and a kernel \(K(\cdot)\) which is \(C^1\) away from the origin and satisfies
\[
|K(z)| \leq \frac{A}{|z|}, \quad |\nabla K(z)| \leq \frac{A}{|z|^2} \quad \text{for } z \in \mathbb{C}\setminus\{0\},
\] (4.1)
we denote

\[T_Kv(z) = \int K(z-w) \, dv(w) \]

whenever the integral makes sense. For \(\varepsilon > 0 \) we consider the truncated version of \(T_K \):

\[T_{K,\varepsilon}v(z) = \int_{|z-w| > \varepsilon} K(z-w) \, dv(w), \]

and the maximal operator

\[T_{K,\ast}v(z) = \sup_{\varepsilon > 0} |T_{K,\varepsilon}v(z)|. \]

For a fixed positive Borel measure \(\mu \) and \(f \in L^1_{\text{loc}}(\mu) \), we write \(T_{K,\mu}f = T_K(f \mu) \), \(T_{K,\mu,\varepsilon}f = T_{K,\varepsilon}(f \mu) \), and \(T_{K,\mu,\ast}f = T_{K,\ast}(f \mu) \). We say that \(T_{K,\mu} \) is bounded in \(L^p(\mu) \) if the operators \(T_{K,\mu,\varepsilon} \) are bounded uniformly on \(\varepsilon > 0 \) in \(L^p(\mu) \), and we set

\[\|T_{K,\mu}\|_{L^p(\mu) \to L^p(\mu)} = \sup_{\varepsilon > 0} \|T_{K,\mu,\varepsilon}\|_{L^p(\mu) \to L^p(\mu)}. \]

Analogously, if

\[\mu\left(\{ z \in \mathbb{C} : |T_{K,\varepsilon}v(z)| > \lambda \} \right) \leq A \frac{\|v\|}{\lambda} \text{ for all } \lambda > 0, \text{ all } v \in M(\mathbb{C}) \text{ and all } \varepsilon > 0, \]

we say that \(T_K \) is bounded from \(M(\mathbb{C}) \) into \(L^{1,\infty}(\mu) \), and we denote by \(\|T_K\|_{M(\mathbb{C}) \to L^{1,\infty}(\mu)} \) the optimal constant \(A \).

For technical reasons we need to consider also smoothly truncated operators. We fix a radial \(C^\infty \) function \(\varphi \) which vanishes in \(B(0, 1/2) \) and equals 1 in \(\mathbb{C} \setminus B(0, 1) \), and for \(\varepsilon > 0 \) we set \(\varphi_\varepsilon(z) = \varphi(\varepsilon^{-1}z) \). We write

\[T_{K,(\varepsilon)}v(z) = \int \varphi \left(\frac{z-w}{\varepsilon} \right) K(z-w) \, dv(w) \]

and

\[T_{K,(\ast)}v(z) = \sup_{\varepsilon > 0} |T_{K,(\varepsilon)}v(z)| \]

and also \(T_{K,\mu,(\varepsilon)}f = T_{K,(\varepsilon)}(f \mu) \), \(T_{K,\mu,(\ast)}f = T_{K,(\ast)}(f \mu) \). If \(\mu \) has linear growth, it is immediate to check that there exists some constant \(A \) depending only on the kernel \(K \) such that

\[|T_{K,\mu,(\varepsilon)}f(z) - T_{K,\mu,\varepsilon}f(z)| \leq A M_\mu f(z) \text{ for all } z \in \mathbb{C} \text{ and } \varepsilon > 0. \] (4.2)
By the $L^p(\mu)$ boundedness of M_μ for $1 < p < \infty$, this implies that $T_{K,\mu}$ is bounded in $L^p(\mu)$ if and only if the operators $T_{K,\mu,(\varepsilon)}$ are bounded in $L^p(\mu)$ uniformly on $\varepsilon > 0$ (under the linear growth assumption for μ).

When K is the Cauchy kernel, that is, $K(z) = \frac{1}{z}$, we have that T_K is the Cauchy integral operator (or Cauchy transform) and we denote $T_K = C$ and $T_{K,\mu} = C_\mu$. Notice also that the kernels K_1 and K_2 defined above satisfy (4.1).

Given three pairwise distinct points $z, w, \xi \in \mathbb{C}$, we denote by $R(z, w, \xi)$ the radius of the circumference passing through z, w, ξ, with $R(z, w, \xi) = \infty$ if these points are aligned. Their Menger curvature is $c(z, w, \xi) = \frac{1}{R(z, w, \xi)}$. If two among the points coincide or the points are aligned, we write $c(z, w, \xi) = 0$. The curvature of the measure μ is defined by

$$c^2(\mu) = \int\int\int c(z, w, \xi)^2 \, d\mu(z) \, d\mu(w) \, d\mu(\xi).$$

This notion was introduced by Mark Melnikov in [17] while studying a discrete version of analytic capacity.

For a given compact set $E \subset \mathbb{C}$, let $\Sigma(E)$ be the set of Borel measures supported on E such that

$$\mu(B(z, r)) \leq r \quad \text{for all } z \in \mathbb{C}, \ r > 0.$$

Also, let $\Sigma_0(E)$ be the set of Borel measures $\mu \in \Sigma(E)$ such that

$$\lim_{r \to 0} \frac{\mu(B(z, r))}{r} = 0 \quad \text{for all } x \in \text{Supp} \, \mu.$$

In [9] it was shown

$$\gamma(E) \asymp \sup \{ \mu(E) : \mu \in \Sigma(E), \| C_\mu \|_{L^2(\mu) \to L^2(\mu)} \leq 1 \}$$

and in [8],

$$\alpha(E) \asymp \sup \{ \mu(E) : \mu \in \Sigma_0(E), \| C_\mu \|_{L^2(\mu) \to L^2(\mu)} \leq 1 \}$$

and

$$c_2(\mu) \leq \mu(E) \}.$$

Another result that will be needed for the proofs of $\gamma_1 \asymp \gamma$ and $\alpha_1 \asymp \alpha$ is the following:

Theorem 4.1 [18] Let μ be a locally finite Borel measure without point masses in \mathbb{C}. If the Cauchy transform C_μ is bounded in $L^2(\mu)$, then any singular integral operator $T_{K,\mu}$ associated with an odd kernel $K \in C^\infty(\mathbb{C} \setminus \{0\})$ satisfying

$$|z|^{1+j} |\nabla^j K(z)| \in L^\infty(\mathbb{C}) \quad \text{for all } z \neq 0 \text{ and } j = 0, 1, 2, \ldots$$
is also bounded on $L^2(\mu)$. Further, the norm of the operator $T_{K,\mu}$ in $L^2(\mu)$ is bounded by some constant depending only on the one of C_{μ} as an operator in $L^2(\mu)$ and on the numbers $\sup_{z \neq 0} |z|^{1+j} |\nabla^j K(z)|$, $j = 0, 1, 2 \ldots$.

4.2 Proof of $\gamma \gtrsim \gamma_{12}$ and $\alpha \gtrsim \alpha_{12}$

Let $E \subset \mathbb{C}$ be compact. By the definition of γ_{12}, there exists a distribution T supported on E such that $\|K_s * T\|_{L^\infty(\mathbb{C})} \leq 1$ for $s = 1, 2$ and $\gamma_{12}(E) \leq 2|\langle T, 1 \rangle|$, with K_1, K_2 as above. In particular, we have $\|K_2 * T\|_{L^\infty(\mathbb{C})} \leq 1$.

Consider the non-degenerate linear map in \mathbb{C} defined by $\Lambda_1(z) = z^2$. Let $\Lambda_1 T$ be the push-forward distribution defined by

$$\langle \Lambda_1 T, \varphi \rangle = \langle T, \varphi \circ \Lambda_1 \rangle \quad \text{for all } \varphi \in C^\infty(\mathbb{C}).$$

Notice that $\Lambda_1 T$ is supported on $\Lambda_1(E)$, and for the kernel

$$\tilde{K}_2(z) = K_2 \left(\Lambda^{-1}(z) \right) \quad \text{for all } z \in \mathbb{C} \setminus \{0\}$$

it is easy to check that

$$\left((\Lambda_1 T) * \tilde{K}_2\right)(z) = (T * K_2)(\Lambda^{-1}(z)).$$

Observe that $\tilde{K}_2(z)$ coincides with the Cauchy kernel $\frac{1}{z}$ and thus, by the definition of analytic capacity,

$$\gamma(\Lambda(E)) \geq |\langle (\Lambda_1 T), 1 \rangle| = |\langle T, 1 \rangle| \geq 2^{-1} \gamma_{12}(E).$$

Now we could use the fact that, by [19] for any bilipschitz mapping $f : \mathbb{C} \to \mathbb{C}$ one has $\gamma(f(F)) \asymp \gamma(F)$ for any compact set F, with the comparability constant depending just on the bilipschitz constant, and so

$$\gamma(\Lambda(E)) \asymp \gamma(E),$$

concluding the proof of $\gamma \gtrsim \gamma_{12}$.

An alternative argument which exploits the fact that Λ is a linear map is the following: by (4.3) we know that there exists some measure $\mu \in \Sigma(\Lambda(E))$ such that $\mu(\Lambda(E)) \asymp \gamma(\Lambda(E))$ and $c_2^2(\mu) \leq \mu(\Lambda(E))$. From the fact that

$$R(z, w, \xi) \asymp R(\Lambda(z), \Lambda(w), \Lambda(\xi)) \quad \text{for all } z, w, \xi \in \mathbb{C},$$

with the comparability constant depending just on Λ, we infer that the push-forward measure $\sigma = (\Lambda^{-1})_\sharp \mu$ satisfies $c_2^2(\sigma) \asymp c_2^2(\mu)$. Further, it is also easy to check that

$$\sigma(B(z, r)) \leq A_1 r \quad \text{for all } z \in \mathbb{C}.$$
Thus, for a suitable constant $c_0 > 0$ depending just on Λ, $c_0\sigma \in \Sigma(E)$ and $c^2(c_0\sigma) \leq c_0\sigma(E)$. Hence applying again (4.3), we derive

$$\gamma(E) \geq \sigma(E) = \mu(E) \geq \gamma(\Lambda(E)),$$

which together with (4.5) yields $\gamma(E) \geq \gamma_12(E)$.

The proof of the fact that $\alpha \geq \alpha_12$ is almost the same. The only required change is that above we have to require the function $K_s^* T$ to be continuous, which in turn implies that $(\Lambda_2 T) * \tilde{K}_2$ is continuous, and thus (4.5) holds with γ and γ_12 replaced by α and α_12, respectively. Then one concludes in the same way applying either the fact that $\alpha(\Lambda(E))$ is comparable to $\alpha(E)$ because Λ is bilipschitz (by applying [19] to α), or by following the last alternative argument, using (4.4) instead of (4.3).

4.3 Proof of $\gamma \succeq \gamma_12$

We need some auxiliary lemmas. The first one is based on some work which goes back to Davie and Oksendal, and its proof can be found with minor modifications in [20] (see Lemma 4.2 there and the definitions of the standard notations $\mathcal{M}(X), C_0(X), T_j^*$ just before it).

Lemma 4.2 Let μ be a Radon measure on a locally compact Hausdorff space X and let $T_j : \mathcal{M}(X) \to C_0(X), \quad j = 1, \ldots, d$ be linear bounded operators. Suppose that each transpose $T_j^* : \mathcal{M}(X) \to C_0(X)$ is bounded from $\mathcal{M}(X)$ to $L^{1, \infty}(\mu)$, that is to say that there exists a constant A such that

$$\mu\{x : |T_j^* \nu(x)| > \lambda\} \leq C \frac{\parallel \nu \parallel}{\lambda}$$

for $j = 1, \ldots, d$, $\lambda > 0$ and $\nu \in \mathcal{M}(X)$. Then, for each $\tau > 0$ and any Borel set $E \subset X$ with $0 < \mu(E) < \infty$, there exists $h : X \to [0, 1]$ in $L^\infty(\mu)$ satisfying $h(x) = 0$ for $x \in X \setminus E$,

$$\int_E h \, d\mu \geq \frac{1}{1 + \tau} \mu(E)$$

and

$$\parallel T_j(h \mu) \parallel_\infty \leq A(C, \tau, d), \quad \text{for} \quad j = 1, \ldots, d.$$

From this lemma we get the following.

Lemma 4.3 Let μ be a measure in \mathbb{C} with compact support which has A_0-linear growth. For $j = 1, \ldots, d$, let K^j be a kernel satisfying the conditions in (4.1), and denote $T^j = T^j_{K^j, \mu}, \quad T^j_{(\varepsilon)} = T^j_{K^j, \mu, (\varepsilon)}$. Suppose that T^j is bounded in $L^2(\mu)$, with norm at most C. Then for each $\tau > 0$ there exists some function $h : \text{Supp} \mu \to [0, 1]$
such that
\[\int h \, d\mu \geq \frac{1}{1 + \tau} \|\mu\|, \]
\[\|T^i h\|_{L^\infty(C)} \leq A(A_0, C, \tau, d) \quad \text{for } i = 1, \ldots, d, \]
and
\[\|T^j_{(\varepsilon)} h\|_{L^\infty(C)} \leq A(A_0, C, \tau, d) \quad \text{for } i = 1, \ldots, d \text{ and all } \varepsilon > 0. \]

Proof The arguments are very standard and we just sketch them. Since \(T^j \equiv T_{K^j,\mu} \) is bounded in \(L^2(\mu) \), then \(T_{K^j} \) (and its transpose) is bounded from \(M(C) \) into \(L^{1,\infty}(\mu) \) (see for example [21, Chapter 2]). Then we apply Lemma (4.2) to each smoothly truncated operator \(T^j_{(\varepsilon)} \) and we deduce the existence of a function \(h_\varepsilon : \text{Supp}\mu \to [0, 1] \) such that
\[\int h_\varepsilon \, d\mu \geq \frac{1}{1 + \tau} \|\mu\| \]
and
\[\|T^j_{(\varepsilon)} h\|_{L^\infty(C)} \leq A(A_0, C, \tau) \quad \text{for } j = 1, \ldots, d. \]

By a compactness argument in weak \(L^\infty(C) \) we deduce the existence of a single function \(h \) fulfilling the properties of the lemma.

We are ready to prove that \(\gamma \lesssim \gamma_{12} \) now. Let \(E \subset \mathbb{C} \) be compact. By (4.3) there exists a measure \(\mu \in \Sigma(E) \) such that \(\|C_\mu\|_{L^2(\mu)\to L^2(\mu)} \leq 1 \) and and \(\gamma(E) \asymp \mu(E) \). By Theorem 4.1, \(T_{K_1,\mu} \) and \(T_{K_2,\mu} \) are bounded in \(L^2(\mu) \). By (non-homogeneous) Calderón-Zygmund theory, then the operators \(T_{K^j} \) are bounded from \(M(C) \) to \(L^{1,\infty}(\mu) \) for \(s = 1, 2 \) (see [21, Chapter 2], for example). Then by Lemma 4.3 there exists some function \(h : E \to [0, 1] \) such that
\[\int h \, d\mu \geq \frac{1}{2} \|\mu\| \]
and
\[\|T_{K^{s,\mu}} h\|_{L^\infty(C)} \leq A \quad \text{for } s = 1, 2. \]

As a consequence, from the definition of \(\gamma_{12} \) we deduce that
\[\gamma_{12}(E) \gtrsim \int h \, d\mu \gtrsim \mu(E) \gtrsim \gamma(E), \]
which completes the proof of \(\gamma_{12} \gtrsim \gamma \). \(\square \)
4.4 Proof of $\alpha \lesssim \alpha_{12}$

Let $E \subset \mathbb{C}$ be compact. By (4.4) there exists a measure $\mu \in \Sigma_0(E)$ such that $\|C_\mu\|_{L^2(\mu)} \leq 1$ and and $\alpha(E) \asymp \mu(E)$. Again by Theorem 4.1, we know that $T_{K_1, \mu}$ and $T_{K_2, \mu}$ are bounded in $L^2(\mu)$. Our next objective is to find some function $h : E \to [0, 1]$, supported on E, such that $\int h \, d\mu \geq c \mu(E)$ (with $c = c(\mathcal{L}) > 0$),

$$\|T_{K_s, \mu} h\|_{L^1(\mathbb{C})} \leq 1 \quad \text{for } s = 1, 2 \text{ and all } \varepsilon > 0, \quad (4.7)$$

$$\|T_{K_s} h\|_{L^1(\mathbb{C})} \leq 1 \quad \text{for } s = 1, 2, \quad (4.8)$$

and such that moreover both $T_{K_1, \mu} h$ and $T_{K_2, \mu} h$ can be extended continuously to the whole \mathbb{C}. Note that once we prove the existence of h we are done, because from the definition of α_{12} we deduce that

$$\alpha_{12}(E) \gtrsim \int h \, d\mu \gtrsim \mu(E) \gtrsim \alpha(E),$$

as wished.

We will need a couple of additional auxiliary lemmas. The following result is proven (in more generality) in [22, Lemma 3]. The same result had been proved previously for the Cauchy transform in [8].

Lemma 4.4 Let μ be a measure in \mathbb{C} with compact support and linear growth and suppose that $\lim_{r \to 0} \frac{\mu(B(x, r))}{r} = 0$ for all $x \in \text{Supp}\mu$. Let K be an odd kernel (i.e., $K(-z) = -K(z)$ for all $z \neq 0$) satisfying the conditions in (4.1). Suppose that $T_{K, \mu}$ is bounded in $L^2(\mu)$. Then, given $\delta > 0$ we can find $F \subset \text{Supp}\mu$ with $\mu(\mathbb{C}\setminus F) < \delta$ such that

(a) $\lim_{r \to 0} \frac{\mu(B(x, r) \cap F)}{r} = 0$ uniformly on $x \in \mathbb{C}$,

(b) $\lim_{r \to 0} \|T_{K, \mu} \|_{L^2(\mu|B(x, r) \cap F) \to L^2(\mu|B(x, r) \cap F)} = 0$, uniformly on $x \in \mathbb{C}$.

The next lemma is proven in [22, Lemma 8], in a more general context too.

Lemma 4.5 Let μ be a measure in \mathbb{C} with compact support and linear growth. Let $F = \text{Supp}\mu$ and, for $j = 1, \ldots, d$, let K^j be a kernel satisfying the conditions in (4.1), and denote $T^j = T_{K^j, \mu}$, $T^j_{(\varepsilon)} = T_{K^j, \mu, (\varepsilon)}$ and $T^j_{(\ast)} = T_{K^j, \mu, (\ast)}$. Suppose that

(a) $\lim_{r \to 0} \frac{\mu(B(x, r))}{r} = 0$ uniformly on $x \in F$,

(b) $\lim_{r \to 0} \|T^j \|_{L^2(\mu|B(x, r)) \to L^2(\mu|B(x, r))} = 0$ uniformly on $x \in F$ for $j = 1, \ldots, d$.

Let f be a bounded function supported on F such that $\|T^j_{(\ast)} f\|_{L^\infty(\mathbb{C})} < \infty$ for all j, $\varepsilon > 0$. Then, given $0 < \tau \leq 1$, there exists $\delta > 0$ and a function g supported on F satisfying, for each $j = 1, \ldots, d$,

(i) $\int g \, d\mu = \int f \, d\mu$ and $0 \leq g \leq \|f\|_{L^\infty(\mu)} + \tau$,

(ii) $\|T^j_{(\ast)} g\|_{L^\infty(\mathbb{C})} \leq \|T^j_{(\ast)} f\|_{L^\infty(\mathbb{C})} + \tau$.

On C^1-approximability of functions by solutions of second…

(iii) \[|T^j_{(\varepsilon)} g(x) - T^j_{(\varepsilon)} g(y)| \leq \tau, \quad if \ |x - y| \leq \delta \text{ and } \varepsilon > 0, \]

(iv) and

\[|T^j_{(\varepsilon)} g(x) - T^j_{(\varepsilon)} g(y)| \leq \sup_{\varepsilon' > 0} |T^j_{(\varepsilon')} f(x) - T^j_{(\varepsilon')} f(y)| + \tau, \quad \forall x, y \in \mathbb{C}, \varepsilon > 0. \]

Let us remark that, in fact, in [22, Lemma 8] the lemma above is stated for the “sharply” truncated operators $T^j_{(\varepsilon)}$, instead of smoothly truncated ones $T^j_{(\varepsilon)}$. However, the same proof also works for the operators $T^j_{(\varepsilon)}$. An analog of the lemma above for the Cauchy transform (with $d = 1$) with smooth truncations is proven in [8, Lemma 3.3].

Construction of h We follow quite closely the arguments in [8, Lemma 3.4]. Let μ be as above, so that $\lim_{r \to 0} \mu(B(\varepsilon, r)) = 0$ for all $z \in \text{Supp} \mu$ and $T_1 = T_{K_1, \mu}$ and $T_2 = T_{K_2, \mu}$ are bounded in $L^2(\mu)$. By Lemma 4.4 there are subsets $F_j \subset E$ such that

\[\lim_{r \to 0} \|T_{K_1, \mu} \|_{L^2(\mu; B(x, r) \cap F_j)} = 0 \quad \text{uniformly on } x \in \mathbb{C} \quad \text{and} \quad \|T_{K_1, \mu} \|_{L^2(\mu; B(x, r) \cap F_j)} = 0. \]

(4.9)

uniformly on $x \in \mathbb{C}$ for $j = 1, 2$, such that the set $E := \cap F_j$ satisfies $\mu(F) \geq \mu(E)/2$.

By Lemma 4.3 there exists function h_1 supported on F, with $0 \leq h_1 \leq 1$, $\|T_{j,(\varepsilon)} h_1\|_{L^\infty(\mathbb{C})} \leq 1$ for $j = 1, 2$, and $\int h_1 \, d\mu \geq A^{-1} \mu(F)$. We set $\delta_1 = 1$.

For $n \geq 1$, we set $\tau_n = 2^{-n}$, and given a positive bounded function h_n supported on F and $\delta_n > 0$, by means of Lemma 4.5 we construct a function h_{n+1} also supported on F, so that $\int h_{n+1} \, d\mu = \int h_n \, d\mu$, $0 \leq h_{n+1} \leq \|h_n\|_{L^\infty(\mu)} + \tau_n$, such that for $j = 1, 2$,

\[\|T_{j,(\varepsilon)} h_{n+1}\|_{L^\infty(\mathbb{C})} \leq \|T_{j,(\varepsilon)} h_n\|_{L^\infty(\mathbb{C})} + \tau_n, \quad \text{and moreover} \]

\[|T_{j,(\varepsilon)} h_{n+1}(x) - T_{j,(\varepsilon)} h_{n+1}(y)| \leq \tau_n \quad \text{for } |x - y| \leq \delta_{n+1} \text{ and all } \varepsilon > 0 \quad (4.10) \]

(4.10)

(where $\delta_{n+1} \leq \delta_n$ is some constant small enough), and

\[|T_{j,(\varepsilon)} h_{n+1}(x) - T_{j,(\varepsilon)} h_{n+1}(y)| \leq \sup_{\varepsilon' > 0} |T_{j,(\varepsilon')} h_n(x) - T_{j,(\varepsilon')} h_n(y)| + \tau_n \quad (4.11) \]

(4.11)

for all $x, y \in \mathbb{C}, \varepsilon > 0$.

Let h be a weak * limit in $L^\infty(\mu)$ of a subsequence $\{h_{n_k}\}$. Clearly, h is a positive bounded function such that

\[\int h \, d\mu = \int h_1 \, d\mu \gtrsim \mu(F) \gtrsim \alpha(E) \quad (4.12) \]

(4.12)

Also, for each $\varepsilon > 0$ and $x \in \mathbb{C},$

\[T_{j,(\varepsilon)} h_{n_k}(x) \to T_{j,(\varepsilon)} h(x) \quad \text{as } k \to \infty. \]
Since
\[\|T_{j,(\varepsilon)} h_n\|_{L^\infty(\mathbb{C})} \leq \|T_{j,(\ast)} h_1\|_{L^\infty(\mathbb{C})} + \sum_{i=1}^{n-1} 2^{-i} \leq 2 \]

for all \(n \), we deduce \(\|T_{j,(\varepsilon)} h\|_{L^\infty(\mathbb{C})} \leq 2 \), which implies that
\[\|T_{j,\varepsilon} h\|_{L^\infty(\mathbb{C})} \lesssim 1 \quad \text{for all } \varepsilon > 0, \quad (4.13) \]
by (4.2).

On the other hand, by (4.10), if \(|x - y| \leq \delta_n \), then
\[|T_{j,(\varepsilon)} h_n(x) - T_{j,(\varepsilon)} h_n(y)| \leq 2^{-n} \]
for all \(\varepsilon > 0 \). From (4.11), for \(k \geq n \) we get
\[|T_{j,(\varepsilon)} h_k(x) - T_{j,(\varepsilon)} h_k(y)| \leq \sup_{\varepsilon' > 0} |T_{j,(\varepsilon')} h_n(x) - T_{j,(\varepsilon')} h_n(y)| + \sum_{i=n}^{k-1} 2^{-i} \leq 2^{-n+2}, \]
assuming \(|x - y| \leq \delta_n \). Thus,
\[|T_{j,(\varepsilon)} h(x) - T_{j,(\varepsilon)} h(y)| \leq 2^{-n+2} \quad \text{if } |x - y| \leq \delta_n. \quad (4.14) \]

Consider now the family of functions \(\{T_{j,(\varepsilon)} h\}_{\varepsilon > 0} \) on \(\bar{B}(0, R) \), where \(R \) is big enough so that \(E \subset B(0, \bar{R} - 1) \). This is a family of functions which is uniformly bounded and equicontinuous on \(\bar{B}(0, R) \), by (4.14). By the Ascoli-Arzelà theorem, there exists a sequence \(\{\varepsilon_n\}_n \), with \(\varepsilon_n \to 0 \), such that \(T_{j,(\varepsilon_n)} h \) converges uniformly on \(\bar{B}(0, R) \) to some continuous function \(g_j \). It is easily seen that \(g_j \) coincides with \(T_j h \) \(L^2 \)-a.e. in \(B(0, R) \) and \(\|g_j\|_{L^\infty(\bar{B}(0,R))} \leq 2 \). By continuity, it is clear then that \(g_j \) and \(T_j \mu \) coincide on \(\bar{B}(0, R) \) \(\setminus \) \(E \). Since \(T_j h \) is also continuous in \(\mathbb{C} \setminus \bar{B}(0, R - \frac{1}{2}) \), we deduce that the function which equals \(g_j \) on \(E \) and \(T_j h \) in the complement of \(E \) is continuous in the whole complex plane, as wished. Together with (4.12) and (4.13), this shows that \(c_0 h \) satisfies the required properties stated at the beginning of this section, for some constant \(c_0 > 0 \) depending at most on \(K_1 \) and \(K_2 \). \(\square \)

5 The \(C^1 \)-approximation criteria for classes of functions and the \(C^1 \)-approximation by \(L \)-polynomials

It is worth mentioning (see, for instance, [1, Theorem 1.12] and its proof) that the zero sets for capacity \(\alpha_1 \) (or \(\alpha \)) are precisely the sets of \(C^1 \)-removable singularities for solutions of the equation \(\mathcal{L} u = 0 \).

Standard arguments (see, for instance, [13, Proof of Theorem 6.1]) allow to deduce from Theorem 1.2 or Theorem 3.1 the following \(C^1 \)-approximation criterion for “classes of functions”.
Theorem 5.1 For a compact set X in \mathbb{C} the following conditions are equivalent:

(a) $A^1_L(X) = C^1_L(X)$;
(b) $\alpha_1(D \setminus X^0) = \alpha_1(D \setminus X)$ for any bounded open set D;
(c) there exist $A > 0$ and $k \geq 1$ such that

$$\alpha_1(B(a, \delta) \setminus X^0) \leq A\alpha_1(B(a, k\delta) \setminus X)$$

for each disc $B(a, \delta)$.

From the last theorem, Theorem 1.1 and Vitushkin’s criteria for uniform rational approximations (see [6, Ch. V, §2–3] or [14, §1], including the definitions of $R(X)$ and $A(X)$) the next corollary follows directly.

Corollary 1 For a compact set X in \mathbb{C} the following conditions are equivalent:

(a) $A^1_L(X) = C^1_L(X)$;
(b) $R(X) = A(X)$.

Applying [8, Theorem 1.3] and the previous result, we obtain also the following corollary.

Corollary 2 Let X be a compact set in \mathbb{C} with inner boundary $\partial_i X$. If $\alpha(\partial_i X) = 0$ then $A^1_L(X) = C^1_L(X)$.

For a compact set X in \mathbb{C} and a function f of class C^1 in some neighbourhood of X, define the C^1-Whitney norm of f on X [23]:

$$||f||_{1X} = \inf\{||F||_1 : F \in BC^1(\mathbb{C}), F|_X = f|_X, \nabla F|_X = \nabla f|_X\}.$$

Denote by \mathcal{P}_L the space of all polynomials p of real variables, such that $\mathcal{L}p \equiv 0$ (see [12, Proposition 2.1]). The following analog of the well known Mergelyan theorem [24] is a direct corollary of Theorems 1.1 and 5.1, the fact that $\alpha_1(D) \asymp \text{diam}(D)$ for any domain D (because the same holds for the capacity α), and Runge-type theorems (see [25, Theorem 3 and Proposition 2]).

Theorem 5.2 For a compact set X in \mathbb{C} the following conditions are equivalent:

(a) for each $f \in C^1_L(X)$ and $\varepsilon > 0$ there is $p \in \mathcal{P}_L$ with $||f - p||_{1X} < \varepsilon$;
(b) $\mathbb{C} \setminus X$ is connected.

This result strengthens [12, Theorem 1.1 (4)], since the norm $|| \cdot ||_{1X}$ is stronger than the norm

$$||f||_{1wX} = \max\{||f||_X, ||\nabla f||_X\},$$

considered in [12].

As a plan for our subsequent work in this themes we formulate the following conjecture.
Conjecture 1 Theorems 1.1 and 1.2 have their direct analogs for all dimensions (in \mathbb{R}^N for all $N \in \{3, 4, \ldots\}$). In analog of Theorem 1.1 we just have to take, instead of the capacities α and γ, the C^1- and Lip_1-harmonic capacities respectively (see [22]). In analog of Theorem 1.2 we define $\mathcal{O}_B^L(f)$ as in [3].

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Mazalov, M.Y., Paramonov, P.V., Fedorovskii, K.Y.: Conditions for C^m-approximability of functions by solutions of elliptic equations. Russ. Math. Surv. 67(6), 1023–1068 (2012)
2. Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Springer, Berlin (1983)
3. Paramonov, P.V.: Criteria for the individual C^m-approximability of functions on compact subsets of \mathbb{R}^N by solutions of second-order homogeneous elliptic equations. Sb. Math. 209(6), 857–870 (2018)
4. O’Farrell, A.G.: Rational approximation in Lipschitz norms—II. Proc. R. Irish. Acad. 79A(11), 103–114 (1979)
5. Verdera, J.: C^m-approximation by solutions of elliptic equations, and Calderon–Zygmund operators. Duke Math. J. 55, 157–187 (1987)
6. Vitushkin, A.G.: The analytic capacity of sets in problems of approximation theory. Russ. Math. Surv. 22(6), 139–200 (1967)
7. Ahlfors, L.: Bounded analytic functions. Duke Math. J. 14, 1–11 (1947)
8. Tolsa, X.: The semiadditivity of continuous analytic capacity and the inner boundary conjecture. Am. J. Math. 126(3), 523–567 (2004)
9. Tolsa, X.: Painleve’s problem and the semiadditivity of analytic capacity. Acta Math. 190(1), 105–149 (2003)
10. Melnikov, M.S., Paramonov, P.V., Verdera, J.: C^1-approximation and extension of subharmonic functions. Sb. Math. 192(4), 515–535 (2001)
11. Bitsadze, A.V.: Boundary-Value Problems for Second Order Elliptic Equations. North-Holland Series in Applied Mathematics and Mechanics, vol. 5. North-Holland, Amsterdam (1968)
12. Paramonov, P.V., Fedorovskii, K.Y.: Uniform and C^1-approximability of functions on compact subsets of \mathbb{R}^2 by solutions of second-order elliptic equations. Sb. Math. 190(2), 285–307 (1999)
13. Paramonov, P.V.: On harmonic approximation in the C^1-norm. Math. USSR Sb. 71(1), 183–207 (1992)
14. Paramonov, P.V.: Some new criteria for uniform approximability of functions by rational fractions. Sb. Math. 186(9), 1325–1340 (1995)
15. Mazalov, M.Y., Paramonov, P.V.: Criteria for C^m-approximability by bianalytic functions on plane compacts. Sb. Math. 206(2), 77–118 (2015)
16. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Cambridge Studies in Advanced Mathematics, vol. 44. Cambridge University Press, Cambridge (1995)
17. Melnikov, M.S.: Analytic capacity: discrete approach and curvature of a measure. Sb. Math. 186(6), 827–846 (1995)
18. Tolsa, X.: L^2 boundedness of the Cauchy transform implies L^2 boundedness of all Calderon–Zygmund operators associated to odd kernels. Publ. Mat. 48, 445–479 (2004)
19. Tolsa, X.: Bilipschitz maps, analytic capacity, and the Cauchy integral. Ann. Math. 162(3), 1241–1302 (2005)
20. Mattila, P., Paramonov, P.V.: On geometric properties of harmonic Lip_1-capacity. Pac. J. Math. 171(2), 469–490 (1995)
21. Tolsa, X.: Analytic Capacity, the Cauchy Transform, and Non-homogeneous Calderon–Zygmund Theory. Birkhauser, Basel (2014)
22. Ruiz de Villa, A., Tolsa, X.: Characterization and semiadditivity of the C^1 harmonic capacity. Trans. Am. Math. Soc. 362, 3641–3675 (2010)
23. Whitney, H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Am. Math. Soc. 36, 63–89 (1934)
24. Mergelyan, S.N.: Uniform approximation to functions of a complex variable. Uspehi Mat. Nauk. 7:2, 31–122 (1952). Am. Math. Soc. Transl. 3, 287–293 (1962)
25. Boivin, A., Paramonov, P.V.: Approximation by meromorphic and entire solutions of elliptic equations in Banach spaces of distributions. Sb. Math. 189(4), 481–502 (1998)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.