Case Report

Direct percutaneous embolization of intestinal lymphatic trunk for chylos ascites management following liver transplant

Sreeja Sanampudi, BS, Steven Krohmer, MD, Driss Raissi, MD

Abstract
Chylous ascites can be caused by infection, trauma, malignancy, or maybe a complication after major abdominal surgery including liver transplantation. We present a case of a patient who developed chylous ascites following his liver transplantation. He was subsequently treated with direct embolization of lymphatic trunk efferent branches with a mixture of N-butyl cyanoacrylate and lipiodol after the identification of a localized leak on a fluoroscopic lymphangiogram. To our knowledge, this is the first reported case of chylos ascites following liver transplantation that was treated with direct embolization of intestinal lymphatic trunk branches.

© 2019 The Authors. Published by Elsevier Inc. on behalf of University of Washington.
This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Introduction

The leakage of triglyceride rich fluid within the peritoneum can lead to chylos ascites. This can be secondary to congenital abnormalities, infection, trauma, cancer, or as a postoperative complication of major abdominal surgery such as liver transplantation [1]. While malignancy and cirrhosis are the most common causes of chylos ascites in developed countries, infectious etiologies remain the leading cause in developing countries [2,3]. In some cases, chylos ascites occurs as a rare complication of liver transplantation with the highest reported rate of 4.7% in a single study [1]. The treatment of chylos ascites is dependent on the underlying cause. Our report sheds light on chylos ascites secondary to a lymphatic leak following liver transplantation treated with direct embolization of the offending intestinal lymphatic vessels via direct percutaneous access into these vessels.

Case report

A 51-year-old man with history of chronic kidney disease, nonalcoholic steatohepatitis cirrhosis, status postorthotopic liver transplant presented (on post-transplant day 51) with 2 days duration of stabbing abdominal pain, increased abdominal swelling, and nausea. Prior to his hospital admission, the patient had undergone 3 paracenteses with drainage of
Fig. 1 – Planar images of Tc-99m lymphoscintigraphy scan 6-hour delay (A) and 22-hour delay (B) demonstrating unremarkable physiologic uptake of radiotracer in the lymphatic system with normal dynamics. No lymphatic leak or obstruction was visualized.

chylous fluid. The triglyceride content of fluid had decreased from 455mg/dL on the earliest paracentesis (on post-transplant day 21) to 228mg/dL (on post-transplant day 31) on the most recent one. There were 2 additional paracenteses that were performed after the patient was admitted to the hospital. The first paracentesis was performed with drainage of 1200 mL of chylous fluid that had a triglyceride level of 155 mg/dL (on hospital day 1). The patient was started on empiric valganciclovir and broad-spectrum antibiotics due to concern for opportunistic viral infection.

On hospital day 4, a second paracentesis was performed and it yielded 1500 mL of chylous fluid. Fluid cultures remained negative with no organisms identified. In addition, no leak or obstruction was identified on lymphoscintigraphy study that was performed on hospital day 6 (Fig. 1).

An ultrasound and fluoroscopy guided lymphangiogram of the abdomen and pelvis was performed to further evaluate the source of chylous ascites on hospital day 16. The procedure was performed using intranodal inguinal lymph node injection of lipiodol with 25 gauge needles under ultrasound guidance while monitoring the cephalad progression of contrast under fluoroscopy guidance (Fig. 2). Lymphangiography demonstrated filling of lymphatic ducts to the level of the superior endplate of L3 with nonvisualization of the cisterna chyli or the thoracic duct. Furthermore, a focus of contrast pooling was identified adjacent to a cluster of dilated vessels to the right side of T12-L1 level representing a lymphatic leak arising from the intestinal lymphatic trunk vessels (Fig. 3).

A 22-gauge Chiba needle was advanced into these dilated vessels and a 0.018” wire was advanced followed by a 2.7 French microcatheter advanced over the wire (Fig. 4). N-butyl cyanoacrylate was instilled through the microcatheter (1:6 ratio with lipiodol) for embolization. We elected to proceed with the direct embolization of intestinal lymphatic trunk vessels,
as the thoracic duct and cisterna chyli could not be visual-
ized. No lymphatico-venous anastomoses were identified dur-
ing the procedure. An abdominopelvic CT was performed 2
days afterwards due to concerns for abdominal pain. These
CT images (Fig. 5) demonstrate the embolized intestinal lym-
phatic vessels seen coursing alongside the right colonic wall.
The patient was discharged on postembolization day 4 (hos-
pital day 20).

Our patient had complete resolution of his chylous ascites
with no associated complication and no recurrence at a 1-year
follow-up. The patient is currently pursuing renal transplant
for chronic kidney disease.

Discussion

Chylous ascites following liver transplantation is an unusual
complication; with the highest reported rate of 4.7% in a sin-
gle large study [1,4]. There are 2 primary mechanisms through
which chylous ascites occurs postoperatively. The first mech-
nanism arises through an increased production of lymphatic
fluid caused by the underlying cirrhosis resulting in overflow
of the fluid into the abdominal cavity. The second mechanism
is due to improper drainage of the lymphatic fluid caused by
inadvertent damage to the lymphatic ducts in the periportal
and retrohepatic areas during surgical manipulation resulting
in a frank lymphatic leak [1].

The diagnosis of chylous ascites is most commonly made
following observation of milky intraperitoneal fluid with a
leukocyte count of ≥300 cells/mm³—predominantly lympho-
cytes, cholesterol ratio < 1, triglyceride ratio > 1 [1]. If a lym-
phatic leak is present, a lymphangiogram is considered the
gold standard imaging technique to precisely identify the lo-
cation of the leak [4]. Treatment is typically escalated from
conservative management with dietary restrictions by imple-
menting high protein, low fat diet to total parenteral nutri-
tion. Other treatment options include therapeutic paracen-
tesis and medical management with octreotide [5]. In addi-
tion, the creation of transjugular intrahepatic portosystemic
shunts or peritoneal-venous shunts have also been success-
fully pursued [3]. If a leak is identified through a lymphan-
giogram, there is an additional benefit of percutaneous em-
bolization of the leaking ducts via the same access [4]. The
last resort is surgical treatment if the above-mentioned op-
tions fail [5].

There have been numerous reports of identification of a
lymphatic leak through lipiodol lymphangiography followed
by CT-guided lymphatic duct embolization using N-butyl
cyanocrylate-lipiodol mixture alone or in combination with
metallic coils [6–8]. There is only 1 reported case of direct
catheterization of leaking lymphatic vessels with subsequent

Fig. 3 – Fluoroscopic spot image demonstrating the lymphatic leak (A) and identification of the leaking lymphatic vessels (B).

Fig. 4 – Fluoroscopic spot image demonstrating catheterization (black arrow) of the leaking abdominal lymphatic vessels.
embolization for chylous ascites [4]. Dinc et al identified a left lumbar trunk lymphatic leak via a standard intranodal lymph node inguinal injection lymphangiogram and initially performed a CT-guided percutaneous thoracic duct embolization and a left sided retroperitoneal drainage catheter was placed to manage the ongoing leak. However, given the lack of improvement, 20 days later they performed a direct embolization of the leaking lymphatic vessels via the drainage catheter access. The patient required a repeat embolization via the same access 3 months after the initial procedure with no recurrence of chylous ascites of up to 3 months follow-up. The patient expired 6 months after the initial procedure from chemotherapy related complications [4].

Similarly, in our patient, we performed direct embolization of the leaking lymphatic vessels. However, the embolization was successfully accomplished at the same time as the lymphangiogram under fluoroscopy guidance. Although the patient’s lymphatic leak could not be identified on lymphoscintigraphy, the leak was evident during lymphangiography as an area of contrast extravasation adjacent to irregularly dilated lymphatic vessels to the right side of L3 level.

Typically, right and left lumbar lymphatic trunks alongside the intestinal lymphatic trunk receive lymph from various nodes throughout the abdomen/pelvis and drain into the cisterna chyli, which in turn drains into the thoracic duct. The thoracic duct then empties into the venous system into the subclavian vein [2].

In our case, neither the cisterna chyli nor the thoracic duct was visualized, likely because the leak was caudal to the cisterna chyli, which is located around L1-L2 level. Thoracic duct embolization was not an option since it was not visualized under fluoroscopy, however, we do not believe it would have been successful nonetheless since the leakage of lymph is caudal to the cisterna chyli/thoracic duct and could potentially worsen the chylous ascites as seen in Dinc et al’s report. This highlights the need for better understanding of lymphatic vessel anatomy and its drainage dynamics.

Thoracic duct embolization for lymphatic leakage in the abdomen may not always be the best option or may not be feasible at all. Direct embolization of intestinal lymphatic vessels visualized via standard percutaneous intranodal inguinal lymph node lymphangiography maybe a good option in the management of chylous ascites.

Fig. 5 – Axial (A, B) and coronal (C, D) computed tomography images demonstrating the N-butyl cyanoacrylate glue and lipiodol mixture (white arrows) following embolization of the mesenteric lymphatic vessels along the right colon wall at multiple levels.

References

[1] Yilmaz M, Akbulut S, Isik B, Ara C, Ozdemir F, Aydin C, Kayaalp C, Yilmaz S. Chylous ascites after liver
transplantation: incidence and risk factors. Liver Transplant 2012;18:1046–52. https://doi.org/10.1002/lt.23476.

[2] Cardenas A, Chopra S. Chyloous ascites. Am J Gastroenterol 2002;97:1896–900. https://doi.org/10.1016/S0002-9270(02)04268-5.

[3] Salsamendi J, Gotes F, Mohan P, Fan J, Narayanan G. Transjugular intrahepatic portosystemic shunt for chyloous ascites in a patient with recurrent cirrhosis following liver transplantation. Radiol Case Rep 2017;12:84–6. https://doi.org/10.1016/j.radcr.2016.10.010.

[4] Dinc H, Oguz S, Sari A. A novel technique in the treatment of retroperitoneal lymphatic leakage: direct percutaneous embolization through the leakage pouch. Diagn Interv Radiol 2015;21:419–22. doi:10.5152/dir.2015.15027.

[5] Al-Busafi S, Ghali P, Deschenes M, Wong P. Chyloous ascites: evaluation and management. ISRN Hepatol 2014:240473. http://dx.doi.org/10.1155/2014/240473.

[6] Gaba RC, Owens CA, Bui JT, Carrillo TC, Knuttilen MG. Chyloous ascites: a rare complication of thoracic duct embolization for chylothorax. Cardiovasc Intervent Radiol 2011;34(Suppl 2):S245–9. http://dx.doi.org/10.1007/s00270-010-9900-4.

[7] Ching KC, Santos E, McCluskey K, Jeyabalan G. CT-guided injection of N-butyl cyanoacrylate glue for treatment of chyloous leak after aor-to-mesenteric bypass. Cardiovasc Intervent Radiol 2014;37:1103–6. http://dx.doi.org/10.1007/s00270-013-0811-z.

[8] Itou C, Koizumi J, Myojin K, Yamashita T, Mori N, Imai Y. A case of refractory chyloous ascites after nephrectomy successfully treated with percutaneous obliteration using adhesive glue. Jpn J Radiol 2013;31:71–4. http://dx.doi.org/10.1007/s11604-012-0146-8.