BILEPTON PRODUCTION IN $e^- \gamma$ COLLISIONS

Dang Van Soaa, Takeo Inamia, Hoang Ngoc Longb

a Department of Physics, Chuo University, Kasuga 1-13-27, Bunkyo, Tokyo 112, Japan
b The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy

Abstract

We study the production of bileptons, new gauge boson of lepton number two, in the minimal 3 - 3 - 1 model in high energy $e^- \gamma$ collisions. If the bilepton masses are in the range of 300 GeV the reaction will give observable cross-sections in the future colliders.

PACS number(s):12.10.-g, 12.60.-i, 13.10.+q, 14.80.-j.

Keywords: Extended gauge models, bileptons, collider experiments

1 Introduction

All models of physics beyond the standard model (SM) predict the existence of new particles. One of the more exotic of these is bilepton, a particle of lepton number 2. Bileptons occur in a few of models of new physics. One of them is the gauge models based on the SU(3)$_C \otimes$ SU(3)$_L \otimes$ U(1)$_N$ (3 - 3 - 1) gauge group [1-5]. These models contain a number of intriguing features: First, the models predict three families of quarks and leptons if the anomaly free condition on SU(3)$_L \otimes$ U(1)$_N$ and the QCD asymptotic freedom are imposed. Second, the Peccei-Quinn symmetry naturally occurs in these models [6]. The third interesting point is that one generation of quarks is treated differently from two others [7]. This could lead to a natural explanation for the unbalancingly heavy top quark.

It has recently been argued that, the 3 - 3 - 1 model arises naturally from gauge theories in spacetime with extra dimensions [8], where the scalar fields are the components in the extra space dimensions of a higher dimensional gauge field [9]. A few different versions of the 3 - 3 - 1 model have been proposed [10].

The production of doubly charged vector bileptons in high energy collisions has been widely discussed both in the generic model [11] and in the minimal model [12]. Recent investigations have indicated that signals of new gauge bosons in these models may be observed at the CERN LHC [13] or Next Linear Collider (NLC) [14]. Production of scalar leptoquarks [15] and constraints on extra gauge bosons [16] in $e\gamma$ collisions were studied. The potentiality of the projects of TESLA and CLIC based $e\gamma$ colliders were discussed in [17].

1 On leave of absence from Department of Physics, Hanoi University of Education, Hanoi, Vietnam
2 On leave of absence from Institute of Physics, NCST, P.O. Box 429, Bo Ho, Hanoi 10000, Vietnam
In [18] the trilinear gauge boson couplings were presented and production of bileptons in e^+e^- collisions was calculated. In this paper we turn our attention to the future perspective experiment, namely $e^-\gamma$ collision. Finally, the conclusions are presented in Sec. IV. This paper is organized as follows. In Sec.II we summarize the basic elements of the minimal 3 - 3 - 1 model. Sec.III is devoted to single bilepton production in $\gamma e^-\gamma$ collisions. Finally, the conclusions are presented in Sec. IV.

2 A review of the minimal 3 - 3 - 1 model

To frame the context, it is appropriate to recall briefly some relevant features of the minimal 3 - 3 - 1 model [1, 2]. The model treats the leptons as SU(3)$_L$ antitriplets [2, 5]

$$f_{aL} = \begin{pmatrix} e_{aL} \\ -\nu_{aL} \\ (e^c)_{aL} \end{pmatrix} \sim (1, 3, 0),$$

where $a = 1, 2, 3$ is the family index.

Two of the three quark generations transform as triplets of the SU(3)$_L$ and the third is treated differently. It belongs to an antitriplet.

$$Q_{iL} = \begin{pmatrix} u_{iL} \\ d_{iL} \\ D_{iL} \end{pmatrix} \sim (3, 3, -1/3),$$

$$u_{iR} \sim (3, 1, 2/3), d_{iR} \sim (3, 1, -1/3), D_{iR} \sim (3, 1, -1/3), \ i = 1, 2,$$

$$Q_{3L} = \begin{pmatrix} d_{3L} \\ -u_{3L} \\ T_L \end{pmatrix} \sim (3, 3, 2/3),$$

$$u_{3R} \sim (3, 1, 2/3), d_{3R} \sim (3, 1, -1/3), T_R \sim (3, 1, 2/3).$$

The nine gauge bosons $W^a(a = 1, 2, ..., 8)$ and B of SU(3)$_L$ and U(1)$_N$ are split into four light gauge bosons and five heavy gauge bosons after SU(3)$_L \otimes U(1)_N$ is broken to U(1)$_Q$. The light gauge bosons are those of the standard model, A, Z_1 and W^\pm. The new heavy gauge bosons are Z_2, Y^\pm and the doubly charged bileptons $X^{\pm\pm}$. They are expressed in terms of W^a and B as [5]

$$\sqrt{2} W_\mu^+ = W^{1}_\mu - iW^{2}_\mu, \sqrt{2} Y_\mu^+ = W^{6}_\mu - iW^{7}_\mu,$$

$$\sqrt{2} X^{\pm\pm}_\mu = W^{4}_\mu - iW^{5}_\mu,$$

$$A_\mu = s_W W_\mu^3 + c_W \left(\sqrt{3} t_W W_\mu^8 + \sqrt{1 - 3 t_W^2} B_\mu \right),$$

$$Z_\mu = c_W W_\mu^3 - s_W \left(\sqrt{3} t_W W_\mu^8 + \sqrt{1 - 3 t_W^2} B_\mu \right),$$

$$Z'_\mu = -\sqrt{1 - 3 t_W^2} W_\mu^8 + \sqrt{3} t_W B_\mu,$$
where we use the notation $c_W \equiv \cos \theta_W$, $s_W \equiv \sin \theta_W$ and $t_W \equiv \tan \theta_W$. The \textit{physical} states are mixtures of Z and Z':

\[
\begin{align*}
Z_1 &= Z \cos \phi - Z' \sin \phi, \\
Z_2 &= Z \sin \phi + Z' \cos \phi,
\end{align*}
\]

where ϕ is a mixing angle.

Desirable symmetry breaking $\text{SU}(3)_L \otimes \text{U}(1)_N \to \text{U}(1)_Q$ and fermion mass generation can be achieved by introducing three $\text{SU}(3)_L$ scalar triplets Φ, Δ, Δ' and a sextet η: \[\text{(5)}\]

\[
\begin{align*}
\text{SU}(3)_C \otimes \text{SU}(3)_L \otimes \text{U}(1)_N \\
\downarrow \langle \Phi \rangle \\
\text{SU}(3)_C \otimes \text{SU}(2)_L \otimes \text{U}(1)_Y \\
\downarrow \langle \Delta \rangle, \langle \Delta' \rangle, \langle \eta \rangle \\
\text{SU}(3)_C \otimes \text{U}(1)_Q,
\end{align*}
\]

where the scalar multiplets are expressed as

\[
\Phi = \begin{pmatrix}
\phi^{++} \\
\phi^+ \\
\phi^0
\end{pmatrix} \sim (1, 3, 1),
\]

\[
\Delta = \begin{pmatrix}
\Delta_1^+ \\
\Delta_1^0 \\
\Delta_2^-
\end{pmatrix} \sim (1, 3, 0),
\]

\[
\Delta' = \begin{pmatrix}
\Delta_0^+ \\
\Delta_0^- \\
\Delta'^{-+}
\end{pmatrix} \sim (1, 3, -1),
\]

\[
\eta = \begin{pmatrix}
\eta_1^{++} \\
\eta_1^+ \sqrt{2} \\
\eta_1^0 \sqrt{2} \\
\eta_0^+ \sqrt{2} \\
\eta_0^0 \\
\eta_0^+ \sqrt{2} \\
\eta_0^0 \sqrt{2}
\end{pmatrix} \sim (1, 6, 0).
\]

The sextet η is necessary to give masses to charged leptons \[\text{(5)}\]. The vacuum expectation value (VEV) $\langle \Phi^T \rangle = (0, 0, u/\sqrt{2})$ yields masses for the exotic quarks, the heavy gauge bosons Z_2 and $X^{\pm\pm}, Y^{\pm\pm}$. The masses of the standard gauge bosons and the ordinary fermions are related to the VEVs of the other scalar fields, $\langle \Delta^0 \rangle = v/\sqrt{2}, \langle \Delta'^0 \rangle = v'/\sqrt{2}$ and $\langle \eta^0 \rangle = \omega/\sqrt{2}, \langle \eta'^0 \rangle = 0$. In order to be consistent with the low energy phenomenology the mass scale of $\text{SU}(3)_L \otimes \text{U}(1)_N$ breaking has to be much larger than the electro-weak scale, i.e., $u \gg v, v', \omega$. The masses of gauge bosons are explicitly:

\[
m_W^2 = \frac{1}{4} g^2 (v^2 + v'^2 + \omega^2), \quad M_Y^2 = \frac{1}{4} g^2 (u^2 + v^2 + \omega^2), \quad M_X^2 = \frac{1}{4} g^2 (u^2 + v'^2 + 4\omega^2),
\]

and

\[
m_Z^2 = \frac{g^2}{4c_W^2} (v^2 + v'^2 + \omega^2) = \frac{m_W^2}{c_W^2}.
\]
\[M_{Z'}^2 = \frac{g^2}{3} \left[\frac{c_W^2}{1 - 4s_W^2} u^2 + \frac{1 - 4s_W^2}{4c_W^2} (v^2 + v'^0 + \omega^2) + \frac{3s_W^2}{1 - 4s_W^2} v'^2 \right]. \]

(7)

Expressions in (6) yields a splitting between the bileptons masses \[|M_X^2 - M_Y^2| \leq 3 m_W^2. \]

(8)

By matching the gauge coupling constants we get a relation between \(g \) and \(g_N \) – the coupling constants associated with SU(3)\(_L\) and U(1)\(_N\), respectively:

\[\frac{g_{2N}^2}{g^2} = \frac{6 s_W^2(M_{Z_2})}{1 - 4s_W^2(M_{Z_2})}, \]

(9)

where \(e = g s_W \) is the same as in the SM.

We now discuss the previous empirical estimates of the new gauge boson masses. Combining constraints from direct searches and neutral currents, one obtains a bound for the mixing angle \(\phi \) \[\frac{3}{5} \leq \phi \leq 7 \times 10^{-4} \] and \(M_{Z_2} \geq 1.3 \) TeV, respectively. Such a small mixing angle can safely be neglected. Adding the constraints from “wrong” muon decay experiments one obtains a bound for the mass of \(Y^+ \) as \(M_{Y^+} \geq 230 \) GeV. By computing the oblique parameters \(S \) and \(T \), a lower bound of 370 GeV for \(Y^+ \) is derived \[\frac{6 s_W^2(M_{Z_2})}{1 - 4s_W^2(M_{Z_2})}, \]

(9)

where \(e = g s_W \) is the same as in the SM.

Combining this with the mass splitting given in (8) one obtain a lower bound around 340 GeV for the mass of \(Y^+ \). With the new atomic parity violation in cesium, one gets a lower bound for the \(Z_2 \) mass \[M_{Z_2} > 1.2 \) TeV. From the symmetry breaking it follows that the masses of the new charged gauge bosons \(Y^\pm, X^{\pm\pm} \) are less than a half of \(M_{Z_2} \), the allowed decay \(Z_2 \to X^{++} X^{--} \) with \(X^{\pm\pm} \to 2l^\pm \) provides a unique signature in future colliders. Considering these results it is not inconceivable that the 3 - 3 - 1 models manifests itself already at the scale of \(O(1)\) TeV.

3 Single bilepton production in \(e^- \gamma \) collisions

In this paper we are interested in the production of new gauge bosons which exist in the 3 - 3 - 1 model in future high energy colliders. We focus on the single bilepton production in the electron-photon collision:

\[\gamma(p_1, \lambda) + e^-(p_2, \lambda') \to X^{--}(k_2, \tau) + e^+(k_1, \tau'), \]

(10)

\[\gamma(p_1, \lambda) + e^-(p_2, \lambda') \to Y^-(k_2, \tau) + \bar{\nu}_e(k_1, \tau'). \]

(11)

Here \(p_i, k_i \) stand for the momenta and \(\lambda, \lambda', \tau, \tau' \) the helicities of the particles, respectively.
3.1 Production of doubly charged bilepton

First, we consider the production of the doubly charged bilepton \((10)\). The amplitude for this process can be written as

\[
M^{X^-} = \frac{i e g}{\sqrt{2}} \epsilon^*_\mu(k_2)\epsilon_\nu(p_1)\sigma(k_1) A^{\mu\nu}(p_2),
\]

(12)

where \(\epsilon_\nu(p_1), \epsilon^*_\mu(k_2)\) are the polarization vectors of the photon \(\gamma\) and the \(X^-\) boson, respectively. At the tree level, there are three Feynman diagrams contributing to the reaction \((10)\), representing the \(s, u, t\) - channel exchange depicted in Figure 1.

![Figure 1: Feynman diagrams for \(e^-\gamma \rightarrow X^- e^+\)](image)

The \(A^{\mu\nu}\) for the three diagrams are given by

\[
A^{\mu\nu}_s = \gamma^\mu \gamma^5 \hat{q}_s \gamma^\nu, \quad A^{\mu\nu}_u = \gamma^\mu \hat{q}_u \gamma^\nu \gamma^5, \quad A^{\mu\nu}_t = \frac{2}{(q_t^2 - m_X^2)} \gamma^\alpha \gamma^5 [(k_2 - q_t)^\nu \gamma^{\alpha\nu} + (q_t + p_1)^\mu g^{\alpha\mu} - (p_1 + k_2)^\alpha g^{\nu\mu}].
\]

Here, \(q_s = p_1 + p_2 = k_1 + k_2, q_u = p_1 - k_1 = k_2 - p_2, q_t = p_1 - k_2 = k_1 - p_2,\) and \(s = (p_1 + p_2)^2\) is the square of the collision energy. We work in the center-of-mass frame and denote the scattering angle (the angle between momenta of the initial electron and the final positron) by \(\theta\).

We have evaluated the \(\theta\) dependence of the differential cross-section \(d\sigma/d\cos\theta\) and the energy and the bilepton mass dependence of the total cross-section \(\sigma\).

i) We show in fig.3 the behaviour of \(d\sigma/d\cos\theta\) at fixed energy. We have chosen a relatively low value of the bilepton mass \(M_X = 350\) GeV. The differential cross-section in fig.3 is at \(\sqrt{s} = 1000\) GeV, but the behaviour is similar at other values of \(\sqrt{s}\). Note that \(d\sigma/d\cos\theta\) is peaked in the backward and forward direction. This is due to the \(e^-\) pole term in the \(u\) - channel and the \(X^{++}\) pole term in the \(t\) - channel, respectively, in eqs. (14) and (15).

ii) The energy dependence of the cross-sections is shown in fig.4. The same value of the bilepton mass as in i), \(M_X = 350\) GeV, is chosen. The energy range is \(600\) GeV \(\leq \sqrt{s} \leq 2500\) GeV. The curve (a) is the total cross-section \(\sigma\), the curves (b), (c), and (d) representing cross-sections of the \(s, t\) and \(u\) - channels only, respectively. We see from the figure that the curve
(a) goes through the minimum value and then it increases smoothly with \sqrt{s}. At the minimum value, we get $\sigma \simeq 18.3$ pb, which is large enough to measure the X^{++} production. At TESLA based $e\gamma$ colliders, with $\sqrt{s} = 911$ GeV the measurable value of cross-section is $\sigma \geq 18.8$ pb. We emphasize that at high energies the s, t -channels give main contributions to the total cross -section. This is due to $\sigma_s \sim \frac{1}{m^2}$, $\sigma_t \sim \frac{1}{m^2} \times \text{Log}(s/m^2)$, while $\sigma_u \sim \frac{1}{s}$.

iii) The bilepton mass dependence of the cross-section for fixed energy typically, $\sqrt{s} = 2000$ GeV, is shown in fig.5. The mass range is 300 GeV $\leq M_X \leq 700$ GeV. The total cross-section decreases rapidly as M_X increases from 26 pb for $M_X = 300$ GeV to 4 pb for $M_X = 700$ GeV.

3.2 Production of singly charged bilepton

Next, we consider the production of singly charged bilepton and antineutrino. There are two Feynman diagrams contributing to reaction (11), representing the s, t - channel exchange shown in Fig.2

![Figure 2: Feynman diagram for $e^-\gamma\rightarrow Y^+\bar{\nu}_e$](image)

The corresponding amplitude $A^{\mu\nu}$ is given

$$A^{\mu\nu}_s = \gamma^\mu (1 - \gamma^5) \frac{q_s}{q_s^2} \gamma^\nu,$$

$$A^{\mu\nu}_t = \frac{1}{(q_t^2 - m_Y^2)} \gamma_\alpha (1 - \gamma^5) [(k_2 - q_t)^\nu g^{\mu\alpha} + (q_t + p_1)^\mu g^{\alpha\nu} - (p_1 + k_2)^\alpha g^{\mu\nu}].$$

The notations used here are the same as in the previous case. We give some estimates of the cross-section as follows

i) In fig.6 we plot $d\sigma/d\cos\theta$ as a function of $\cos\theta$ for the collision energy $\sqrt{s} = 1000$ GeV and the bilepton mass $M_Y = 300$ GeV. It is shown that $d\sigma/d\cos\theta$ is peaked in the forward direction, due to the Y^+ pole term in the t - channel, but it is flat in the backward direction.

ii) Fig.7 shows the dependence of the total cross section σ as a function of \sqrt{s}. The energy range is 600 GeV $\leq \sqrt{s} \leq 2500$ GeV. The curve (a) is the total cross-section σ, the curves (b) and (c) representing cross-sections of the s and t - channels, respectively. We can see from fig.7, if the bilepton mass is the same as fig.6, $M_Y = 300$ GeV, then the σ varies smoothly increase from 6 pb to 15.8 pb, which are easily measurable in the future colliders. At TESLA based $e\gamma$ colliders we get $\sigma \geq 9$ pb.

iii) The bilepton mass dependence of the cross-section at the energy $\sqrt{s} = 2000$ GeV is shown in fig.8. Similarly to fig.5, the total cross-section decreases as M_Y increases.
4 Conclusion

In conclusion, we have presented the minimal 3 - 3 - 1 model and the production of the doubly charged bilepton \(X^{--} \) and the singly charged one \(Y^- \) in the \(e^-\gamma \) reaction. We see that with the first process, the differential cross-section is peaked in both the backward and forward directions, while the second one, the reaction mainly occurs at small scattering angles. Based on the result it is shown that if the mass of bilepton is in a range of 300 GeV, then single bilepton production in \(e^-\gamma \) collisions may give observable value at moderately high energies. At TESLA and CLIC based \(e\gamma \) colliders, with the integrated luminosity \(L \simeq 9 \times 10^4 fb^{-1} \) one expects several thousand events.

Finally, we note that the second process is common for both the minimal version and the version with right-handed neutrinos, while the first one is characteristic for the minimal version.

One of the authors (D. V. S.) expresses sincere gratitude to the Nishina Memorial Foundation for the financial support. He would like to thank Department of Physics, Chuo University for the warm hospitality during his visit as a Nishina fellow. This work is supported in part by Research Grants of Japanese Ministry of Education and Science (Kiban C) and Chuo University grant for special research. Financial support from Swedish International Development Cooperation Agency (SIDA) through the Associateship Scheme of the Abdus Salam International Centre for Theoretical Physics, Trieste, Italy is acknowledged (H. N. L.).

References

[1] F. Pisano and V. Pleitez, Phys. Rev. D 46 (1992) 410; R. Foot, O.F. Hernandez, F. Pisano and V. Pleitez, Phys. Rev. D 47 (1993) 4158.
[2] P. H. Frampton, Phys. Rev. Lett. 69, (1992) 2889.
[3] R. Foot, H. N. Long and Tuan A. Tran, Phys. Rev. D 50 (1994) R34.
[4] H. N. Long, Phys. Rev. D 54 (1996) 4691.
[5] D. Ng, Phys. Rev. D 49 (1994) 4805.
[6] P. B. Pal, Phys. Rev. D 52 (1995) 1659.
[7] J. T. Liu and D. Ng, Z. Phys. C 62 (1994) 693; N. A. Ky, H. N. Long and D. V. Soa, Phys. Lett. B 486 (2000) 140.
[8] I. Antoniadis, K. Benakli, and M. Quiros, ETH-TH/01-10, CERN-TH/2001-202, New J. Phys. 3 (2002), 20; T. Li, L. Wei, Phys. Lett. B 545 (2002) 147; S. Dimopoulos, D. E. Kaplan and N. Weiner, Phys. Lett. B534 (2002) 124.
[9] H. Hatanaka, T. Inami and C. S. Lim, Mod. Phys. Lett. A13 (1998) 2601; H. Hatanaka, Prog. Theor. Phys. 102 (1999) 407; G. Dvali, S. Randjibar-Daemi and R. Tabbash, Phys. Rev. D65 (2002) 064021; N. Arkani-Hamed, A. G. Cohen and H. Georgi, Phys. Lett. B513 (2001) 232; A. Masiero, C. A. Scrucca, M. Serine and L. Silvestrini, Phys. Rev. Lett. 87 (2001) 251601.

[10] See for example, T. Kitabayshi and M. Yasue, Phys. Rev. D63 (2001) 095002; Phys. Lett. B508 (2001) 85; Nucl. Phys. B609 (2001) 61; Phys. Lett. B524 (2002) 308; L. A. Sanchez, W. A. Ponce and R. Martinez, Phys. Rev. D64 (2001) 075013; J. C. Montero, V. Pleitez and M. C. Rodriguez, Phys. Rev. D65 (2002) 035006; W. Ponce and Y. Giraldo, hep-ph/0201133

[11] F. Cuypers, S. Davidson, Eur. Phys. J. C 2 (1998) 503; F. Cuypers, M. Raidal, Nucl. Phys. B 501 (1997) 3; M. Raidal, Phys. Rev. D 57 (1998) 2013; T. G. Rizzo, Phys. Rev D 45 (1992) 42; T. G. Rizzo, Phys. Rev D 46 (1992) 910; N. Lepore et al., Phys. Rev D 50 (1994) 2031; Agrawal, P. Frampton, D. Ng, Nucl. Phys. B 386 (1992) 267. Int. J. Mod. Phys. A 15 (16) (2000).

[12] P. Frampton, Int. J. Mod. Phys. A 15 (2000) 2455.

[13] B. Dion et al., Phys. Rev. D 59 (1999) 075006.

[14] P. Frampton, A. Rasin, Phys. Lett. B 482 (2000) 129.

[15] O. J. P. Eboli et al., Phys. Lett. B 311 (1993) 147; H. Nadeau and D. London, Phys. Rev. D 47 (1993) 3742.

[16] Stephen Godfrey et al., Int. J. Mod. Phys. A15, (2000) 2623.

[17] Z. Z. Aydin et al., hep-ph/0208041; R. W. Assman et al., CERN 2000 - 008, p.6 (2000); J. Ellis, E. Keil, G. Rolandi, Options for Future Colliders at CERN, CERN- EP/98-03, CERN - SL/98-004 (AP), CERN - TH/98-33.

[18] H. N. Long and D. V. Soa, Nucl. Phys. B 601, (2001) 361.

[19] P. Gambino and A. Sirlin, Phys. Rev. Lett. 73 (1994) 621; Z. Hioki, Phys. Lett. B 340 (1994) 181; S. Dittmaier et al., Nucl. Phys. B 426 (1994) 249; Nucl. Phys. B 446 (1995) 334.

[20] P. Frampton and M. Harada, Phys. Rev. D 58 (1998) 095013.

[21] H. N. Long and L. P. Trung, Phys. Lett. B 502 (2001) 63.

[22] H. N. Long and T. Inami, Phys. Rev. D 61 (2000) 075002.
Figure 3: Differential cross-section of the process $e^-\gamma \rightarrow X^{-}e^+$ as a function of $\cos \theta$. The collision energy is taken to be $\sqrt{s} = 1000$ GeV and bilepton mass $M_X = 350$ GeV.

Figure 4: Cross-section of the process $e^-\gamma \rightarrow X^{-}e^+$ as a function of the collision energy \sqrt{s}. The bilepton mass is taken to be $M_X = 350$ GeV. The curve (a) is the total cross-section σ, the curves (b), (c), and (d) representing cross-sections of the s, t and u - channels, respectively.
Figure 5: Cross section of the process $e^- \gamma \rightarrow X^- e^+$ as a function of M_X. The collision energy is taken to be 2000 GeV.

Figure 6: Different cross section of the process $e^- \gamma \rightarrow Y^- \bar{\nu}_e$ as a function of $\cos\theta$, the collision energy $\sqrt{s} = 1000$ GeV.
Figure 7: Cross section of the process $e^-\gamma \to Y^-\tilde{\nu}_e$ as a function of \sqrt{s}, bilepton mass is taken to be 300 GeV. The curve (a) is the total cross-section σ, the curves (b) and (c) representing cross-sections of the s and t-channels, respectively.

Figure 8: Cross section of the process $e^-\gamma \to Y^-\tilde{\nu}_e$ as a function of M_Y. The collision energy is taken to be 2000 GeV.