Abstract. Pancreatic cancer is the most lethal common cancer with an estimated 5-year survival rate of 6-7% (across all stages). The only potential curative therapy is surgical resection in those with localized disease. Adjuvant (postoperative) therapy confers a survival advantage over postoperative observation alone. Neoadjuvant (preoperative) therapy offers the potential to downstage initially unresectable tumors for resection, sterilize resection margins and decrease locoregional recurrence, and identify a subset of patients with aggressive disease for whom surgery will not be beneficial. Induction chemotherapy followed by consolidation chemoradiation is another recommended approach in those with locally advanced disease. For those who cannot be downstaged, cannot tolerate surgery, or were diagnosed with metastatic disease, treatment remains palliative with chemotherapy being a critical component of this approach. Recently, intensive combination chemotherapy has been shown to improve survival rates in comparison to gemcitabine alone in advanced disease. The past few decades have afforded an accumulation of high-level evidence regarding neoadjuvant, adjuvant and palliative therapies in pancreatic cancer. There are numerous reviews discussing recent retrospective studies, prospective studies and randomized controlled trials in each of these areas. However, reviews of optimal and recommended treatment strategies across all stages of pancreatic cancer that focus on the highest levels of hierarchical evidence, such as meta-analyses, are limited. The discussion of novel therapeutics is beyond the scope of this review. However, an extensive and the most current collection of meta-analyses of first-line systemic and locoregional treatment options for all stages of pancreatic cancer to date has been accumulated.

Contents

1. Introduction
2. Localized and resectable pancreatic cancer (stage I or II)
3. Borderline resectable and locally advanced pancreatic cancer (stage III)
4. Advanced and metastatic pancreatic cancer (stage IV)
5. Conclusion

1. Introduction

Epidemiology. Although pancreatic cancer represents only 2.8% of all new cancer cases in the US, it is the fourth leading cause of cancer fatality in men and women (1). Of the estimated 48,960 new cases of pancreatic cancer in the U.S. in 2015, an estimated 40,560 are expected to succumb to the disease (2). Worldwide, pancreatic cancer is the eighth and ninth leading cause of cancer fatality in men and women, respectively, with an incidence of 2-8 cases per 100,000 people and a greater predilection in men and developed countries (3). Accounting for 85% of all types of pancreatic cancer, pancreatic ductal adenocarcinoma (PDAC) is often synonymous with pancreatic cancer and tends to occur more in the elderly (median age of 71 years at diagnosis) and at an advanced stage (<20% present with localized and resectable disease) (4,5). In total, 60-70 and 20-25% of pancreatic cancers occur in the head and body/tail of the pancreas, respectively, with symptoms and signs related to the location (5).

2. Localized and resectable pancreatic cancer (stage I or II)

Surgery. The only potential curative therapy for pancreatic cancer remains surgical resection in the 15-20% of cases meeting criteria for localized and resectable disease (stage I or II) following diagnosis (4-6). In particular, pancreaticoduodenectomy (the Whipple procedure) with standard lymphadenectomy and distal pancreatectomy with splenectomy are the surgeries of choice for cancers of the head/neck and body/tail, respectively (4-6). The median survival is 17-27 months in those with resected pancreatic cancer with 5-year survival rates of 15-20% (7,8). However, of the 15-20% of candidates who undergo surgical resection, 66-92%...
experience disease recurrence within 2 years of resection with local recurrence rates of 35-60% and systemic recurrence rates as high as 80-90% (8,9).

Adjuvant therapy. Adjuvant (postoperative) therapy in the form of chemotherapy or chemoradiotherapy has been shown to confer a survival advantage compared to postoperative observation alone (10-18). Meta-analyses of trials involving gemcitabine or 5-fluorouracil (5-FU)-based regimens show that adjuvant chemotherapy, when compared to postoperative observation alone, significantly improves survival [as much as 7 months in increased median overall survival (OS)] in those with negative-margin (R0) resections, although this effect is less pronounced in those with microscopically positive-margin (R1) resections (19-24). Following adjustment for confounding factors, adjuvant therapy with gemcitabine or 5-FU again provided an OS benefit over observation alone with hazard ratios (HRs) of 0.59 (95% confidence interval (CI), 0.41-0.83) and 0.65 (95% CI, 0.49-0.84), respectively (22). Significant differences in survival were not observed when comparing adjuvant gemcitabine and 5-FU arms (22). Results are more conflicting for adjuvant chemoradiotherapy as a majority of meta-analyses reveal that chemoradiation does not significantly confer a survival advantage over upfront surgery alone or those not receiving adjuvant chemoradiation, although it may provide a small survival benefit in those with R1 resections (Table I) (19,21,22,24-26). One meta-analysis was the first to use Bayesian analysis to demonstrate that adjuvant chemoradiation ± chemotherapy incurs greater toxicity yet does not confer a survival advantage compared to adjuvant gemcitabine or 5-FU alone (22).

Although the role of radiotherapy as a component of adjuvant therapy remains controversial, 6 weeks of 5-FU-based chemoradiation preceded, followed by maintenance chemotherapy remains an acceptable alternative form of adjuvant therapy (7,8,18,27,28). As thought previously, radiotherapy may further benefit a subset of patients undergoing R1 resections or at increased risk of locoregional recurrence (7,8). Currently, 6 months of adjuvant chemotherapy with gemcitabine or 5-FU remains the standard for adjuvant therapy in those with resected pancreatic cancer (8,13,29,30). Current trends in the treatment of resected pancreatic cancer in the US reflect on the recent publications of landmark trials as the use of adjuvant chemotherapy alone increased <250%, while the use of adjuvant chemoradiation decreased as much as 42%, although chemoradiotherapy remains in slightly greater use compared to chemotherapy for adjuvant therapy (31). Furthermore, although early initiation of postoperative chemotherapy was once emphasized, it has now been demonstrated that completion of all 6 cycles of adjuvant therapy, rather than time to initiation of therapy, is critical to the survival outcome, as no differences in outcome were observed in those in which adjuvant chemotherapy was delayed <12 weeks (32,33). Of note, a recent phase III trial failed to show significant differences in survival between adjuvant 5-FU with folinic acid and adjuvant chemoradiation including 5-FU, cisplatin, and interferon α-2b, while a Japan-based phase III trial showed that adjuvant S-1, an oral fluoropyrimidine, was superior to adjuvant gemcitabine, although metabolic differences between Asian and Caucasian ethnicities limit its application in the West for resected pancreatic cancer (34-36).

Neoadjuvant therapy. Evidence suggests that neoadjuvant (preoperative) therapy in localized pancreatic cancer (LPC) may improve rates of R0 resections, decrease locoregional recurrence, and identify a subset of patients (on restaging) with aggressive disease for whom surgery will not provide a survival benefit (4,7,8,37). Although ~25% of those who undergo upfront surgery for localized disease are unable to complete adjuvant therapy, neoadjuvant therapy ensures that almost all can receive some form of treatment, although it carries the risk of disease progression in delaying potentially curative resection (7,38,39). Neoadjuvant therapy with chemotherapy alone or predominantly 5-FU or gemcitabine-based chemoradiation ± preceding chemotherapy followed by resection offers survival rates that compare favorably to those observed with resection followed by adjuvant therapy (Table II) (37-41). Despite higher rates of perioperative mortality, neoadjuvant therapy followed by resection demonstrates superior cost-effectiveness with postoperative morbidity and mortality rates that are comparable to those observed with upfront surgery for LPC (42,43). Neoadjuvant therapy represents a rational alternative to a ‘surgery-first’ approach to LPC; however, is considered investigational due to the lack of complete and definitive data from phase III trials (8,44). There are ongoing phase III trials involving neoadjuvant therapy followed by surgery versus upfront surgery with adjuvant therapy and neoadjuvant therapy with adjuvant therapy versus adjuvant therapy alone (https://clinicaltrials.gov/).

3. Borderline resectable and locally advanced pancreatic cancer (stage III)

Neoadjuvant therapy. Approximately 30% of patients diagnosed with pancreatic cancer have locally advanced and unresectable disease (stage III) with a median survival of 8-12 months and 5-year survival rate of ~6% (4,7,45). Neoadjuvant therapy can potentially downstage tumors to increase R0 resection rates in a subset of patients with ‘borderline resectable’ disease, as well as downstage those with locally advanced disease for possible resection (7,8,45,46). In those with initially unresectable disease (borderline resectable/locally advanced), neoadjuvant therapy with chemotherapy alone or, more commonly, 5-FU or gemcitabine-based chemoradiation ± preceding induction chemotherapy ± sequential chemoradiation has produced, for the most part, resectability rates of 30-40% (although with higher perioperative morbidity and mortality rates compared to initially resectable tumor patients) and, when followed by surgery, survival times within the range of those observed with upfront surgery followed by adjuvant therapy for initially resectable disease (Table II) (38-40,47,49).

In borderline resectable disease, a majority of retrospective and prospective studies using variations of gemcitabine-based chemotherapy alone or gemcitabine, capecitabine, or 5-FU-based chemoradiation ± induction chemotherapy, have demonstrated resectability rates with high probability for R0 resections and survival times comparable to those in the meta-analyses described previously (Table II) (50,51). Some, however, have argued that radiographic downstaging following neoadjuvant therapy is uncommon in borderline resectable disease, despite high rates of R0 resections achieved in patients without evidence of radiographic response. Therefore, it has...
Study	Included trials	Analytic arm(s)	Main end point(s)	Findings	(Refs.)
Morganti et al 2014	Multicenter pooled analysis (955 patients)	A: CRT vs. OBS			
B: CRT±CT vs. CT	OS	A: OS, 39.5 vs. OS, 24.8 months (P<0.001)			
B: OS, 39.5 vs. OS, 27.8 months (P<0.001)	(25)				
Liao et al 2013	9 RCTs	A: CT (F) vs. OBS			
B: CT (G) vs. OBS					
C: CRT vs. OBS					
D: CRT+F vs. OBS					
E: CRT+G vs. OBS	OS	A: HR, 0.62 (95% CI, 0.42-0.88)			
B: HR, 0.59 (95% CI, 0.41-0.83)					
C: HR, 0.91 (95% CI, 0.55-1.46)					
D: HR, 0.54 (95% CI, 0.15-1.80)					
E: HR, 0.44 (95% CI, 0.10-1.81)	(22)				
Yu et al 2013	4 RCTs	CT (G) vs. OBS or CT (F/FA)	OS	Overall HR, 0.88 (95% CI, 0.72-0.94, P=0.014)	(23)
Ren et al 2012	15 RCTs	A: CT vs. OBS			
B: CRT vs. OBS	OS, DFS	A: OS OR, 1.98; P<0.001; DFS OR, 2.12; P<0.001			
B: OS OR, 0.99; P=0.93; DFS OR, 0.99; P=0.95	(24)				
Butturini et al 2008	4 RCTs	A: CT vs. OBS			
B: CRT vs. OBS	OS	A: R0 HR, 0.65 (95% CI, 0.53-0.80);			
R1 HR, 1.04 (95% CI, 0.78-1.40)					
B: R0 HR, 1.19 (95% CI, 0.95-1.49);					
R1 HR, 0.72 (95% CI, 0.47-1.10)	(21)				
Boeck et al 2007	5 RCTs	CT vs. OBS	Improvement in median survival	3-month improvement (95% CI, 0.3-5.7; P<0.03)	(20)
Khanna et al 2006	4 RCTs, 1 PS	A: CT±RT vs. OBS			
B: CRT vs. OBS	Improvement in 2-year survival	A: 12% improvement (95% CI, 3-21; P=0.011)			
B: 12% improvement (95% CI, 2-22; P=0.022)	(26)				
Stocken et al 2005	5 RCTs	A: CT vs. OBS			
B: CRT vs. OBS | OS | A: HR, 0.75 (95% CI, 0.64-0.90, P=0.001)
B: HR, 1.09 (95% CI, 0.89-1.32, P=0.43) | (19) |

*Following adjustment for confounding factors. CRT, chemoradiotherapy; OBS, observation; CT, chemotherapy; OS, overall survival; RCTs, randomized controlled trials; F, 5-fluorouracil; G, gemcitabine; HR, hazard ratio; CI, confidence interval; FA, folinic acid; DFS, disease-free survival; OR, odds ratio; R0, negative-margin resection patients; R1, microscopically positive-margin resection patients; PS, prospective study (non-randomized); RT, radiotherapy.
Study	Included trials	Analytic arm(s)	Main end point(s)	Findings (Refs.)
Petrelli et al 2014	2 phase II, 11 retrospective	FOLFIRINOX + CRT (BR/LAPC)	Resectability rate, R0 resection rate	43% resectable (95% CI, 32.8-53.3); 39.4% R0 resection rate (95% CI, 32.4-46.9) (49)
Xu et al 2014	1 PS, 2 retrospective	CRT vs. adjuvant CRT (LPC)	OS	Pooled HR 0.93 (95% CI, 0.69-1.25; P=0.62) (41)
Festa et al 2013	5 phase II, 5 PS	CT ± RT (BR)	Resectability rate, 1- and 2-year survival rate after resection	A: 1-year, 91.7% (95% CI, 75-100); 2-year 67.2% (95% CI, 38-87); 91% explored (95% CI, 83-97); 82% of explored resected (95% CI, 65-95) B: 1-year 86.3% (95% CI, 78-100); 2-year 54.2% (95% CI, 25-100); 39% explored (95% CI, 28-50); 68% of explored resected (95% CI, 53-82) (53)
Andriulli et al 2012	7 phase I/II, 10 phase II, 3 PS	A: CT (G) ± RT (LPC) B: CT (G) ± RT (BR/LAPC)	1- and 2-year survival rate after resection, resectability rate	A: 1-year, 91.7% (95% CI, 75-100); 2-year 67.2% (95% CI, 38-87); 91% explored (95% CI, 83-97); 82% of explored resected (95% CI, 65-95) B: 1-year 86.3% (95% CI, 78-100); 2-year 54.2% (95% CI, 25-100); 39% explored (95% CI, 28-50); 68% of explored resected (95% CI, 53-82) (38)
Assifi et al 2011	14 phase II	A: CT ± RT (LPC) B: CT ± RT (BR/LAPC)	Resectability rate, OS after resection	A: 65.8% resectable (95% CI, 55.4-75.6); median OS 23.0 months (11.7-34 months) B: 31.6% resectable (95% CI, 14.0-52.5); median OS 22.3 months (18-26.3 months) (40)
Laurence et al 2011	9 PS or retrospective	A: CRT vs. without CRT (LPC) B: CRT vs. without CRT (BR/LAPC) resection	1- and 2-year survival after resection	A: 1-year OR 0.49 (95% CI, 0.22-1.13; P=0.09) B: 1-year OR 0.56 (95% CI, 0.39-0.80; P=0.001); 2-year OR 1.03 (95% CI, 0.70-1.51; P=0.89) (48)
Gillen et al 2010	15 phase I, 13 phase I/II, 28 phase II, 14 cohort, 41 CS	A: CT ± RT (LPC) B: CT ± RT (BR/LAPC)	Resectability rate, OS after resection	A: 73.6% resectable (95% CI, 65.9-80.6); median OS 23.3 months (12-54 months) B: 33.2% resectable (95% CI, 25.8-41.1); median OS 20.5 months (9-62 months) (39)
Morganti et al 2010	10 PS, 3 retrospective	CRT (BR/LAPC)	Resectability rate, OS after resection	8.3-64.2% resectable (median 26.5%); median OS 23.6 months (16.4-32.3 months) (47)

Therapeutic arms are in the neoadjuvant setting, unless otherwise stated. FOLFIRINOX, 5-FU, leucovorin, irinotecan, and oxaliplatin; CRT, chemoradiotherapy; BR, borderline resectable pancreatic cancer; LPC, locally advanced pancreatic cancer; R0, negative-margin; CI, confidence interval; PS, prospective study; LPC, localized pancreatic cancer; OS, overall survival; HR, hazard ratio; CT, chemotherapy; RT, radiotherapy; G, gemcitabine; OR, odds ratio; CS, case series.
been proposed that resection should proceed following neoadjuvant therapy in the absence of disease progression or a decline in performance status (PS) (52,53). Regardless, neoadjuvant therapy, ideally in the context of a clinical trial, is now recommended for borderline resectable disease in the absence of treatment criteria that has yet to be clearly defined (8). Recently, more intensive neoadjuvant regimens involving induction gemcitabine/nab-paclitaxel or 5-FU, leucovorin, irinotecan and oxaliplatin (FOLFIRINOX) have been used (5,37,54). In particular, induction FOLFIRINOX + chemoradiation followed by surgery has shown a significantly increased survival rate compared to those with locally advanced/borderline resectable disease who received no neoadjuvant therapy (55). The ongoing Alliance A021101 multi-institutional trial (NCT01821612) using induction modified FOLFIRINOX (mFOLFIRINOX) and chemoradiotherapy followed by resection and adjuvant therapy will attempt to standardize a uniform definition of borderline resectable PDAC and criteria for assessing treatment efficacy.

Systemic and locoregional therapy. Low quality evidence from meta-analyses suggests that surgical resection appears to improve survival, decrease the length of hospital stay, and decrease costs compared to palliative treatment in select patients with locally advanced pancreatic cancer (LAPC) with venous involvement (56). Despite more aggressive approaches, such as pancreatectomy with arterial reconstruction (AR), having demonstrated improved survival over those without resection, higher perioperative morbidity/mortality rates and poorer long-term survival were observed with pancreatectomy + AR compared to pancreatectomy with venous reconstruction in those with LAPC (57). However, chemotherapy remains a critical component of the treatment approach for attempting to downstage locally advanced disease or palliative treatment of tumors that cannot be downstaged and resected, or those for which surgery is not an option. Early evidence demonstrated that chemotherapy (5-FU-based) improves survival compared to best supportive care alone, although 5-FU-based combination chemotherapy did not result in an increased survival compared to 5-FU alone in advanced pancreatic cancer (APC) (58). Gemcitabine widely became regarded as the preferred first-line therapy in APC due to its superiority over 5-FU (as discussed in the following) (59). A majority of meta-analyses on gemcitabine in combination with various agents, such as platinum, anthracyclines, camptothecin analogs, fluoropyrimidines, taxanes and molecular-targeted agents (MTAs), have since shown that gemcitabine-based combination therapy, in general, often results in greater toxicity yet appears to significantly improve OS, progression-free survival (PFS), and/or overall response rates (ORRs) compared to gemcitabine monotherapy in locally advanced/metastatic pancreatic cancer (Table III) (58,60-73).

Subgroup and pooled analyses further reveal that gemcitabine + fluoropyrimidine (particularly capecitabine) and gemcitabine + platinum combinations represent the gemcitabine-based doublets providing the most consistent survival benefits over gemcitabine alone (58,63-73). Of note, gemcitabine + cisplatin appears to offer little to no significant survival benefits versus gemcitabine monotherapy, although others have contended this claim (61,65,68,70,72,73). In addition, gemcitabine + camptothecin analog appears to only improve the ORR over single-agent gemcitabine (65). Although one subgroup analysis showed that gemcitabine + MTAs was the only combination resulting in a significant improvement in 6-month survival over gemcitabine alone, a number of meta-analyses have produced inadequate results with the exception of epidermal growth factor receptor (EGFR) inhibitors, such as erlotinib (discussed in the following) in locally advanced/metastatic disease (63,65,73-78). S-1 has been studied extensively in Japanese patients with pancreatic cancer (79-81). In the locally advanced setting, there is conflicting data to support the use of S-1 in combination with gemcitabine. Consensus remains that this is an active agent for Asian patients; however, it requires further validation prior to adoption in the US as pharmacogenomic differences between ethnicities have been noted and may explain the varying reports of efficacy and toxicity of S-1 and other 5-FU-based drugs (73).

In LAPC, survival trends favor gemcitabine-based combination regimens over gemcitabine alone (82). Combination therapy appears to have its greatest effects on survival in those with good PS [Eastern Cooperative Oncology Group (ECOG) scores of 0-1]; however, is relatively ineffective or even harmful in those with poor PS (ECOG ≥2) (68,70,72).

Due to the survival benefits demonstrated in borderline resectable/LAPC and metastatic pancreatic cancer (MPC), intensive regimens, such as FOLFIRINOX or gemcitabine/nab-paclitaxel, are now being recommended in those with good PS (ECOG 0-1), while gemcitabine monotherapy remains the mainstay of therapy in those with poor PS (ECOG ≥2); the National Comprehensive Cancer Network, however, states gemcitabine monotherapy as an acceptable option in those with good PS and LAPC (55,83-85). There are still no phase III trials comparing FOLFIRINOX to gemcitabine/nab-paclitaxel in LAPC. Other meta-analyses have addressed gemcitabine dosing, delivery of chemotherapy (intra-arterial versus venous), and innovative ablative therapies as additional avenues of clinical benefit in LAPC/APC (86-89).

The role of chemoradiation in the management of LAPC remains controversial. Key trials involving chemoradiotherapy have produced mixed results with regards to survival advantage versus standard therapies in LAPC/APC (90-96). Chemoradiation confers a survival advantage over best supportive care alone or radiotherapy alone; however, it is more toxic (97-99). Furthermore, meta-analyses demonstrate that primarily 5-FU or gemcitabine-based chemoradiotherapy ± prior induction chemotherapy ± maintenance chemotherapy offers comparable or even superior survival times compared to chemotherapy alone, although often with greater toxicities in LAPC (Table III) (97-101). Notably, one analysis showed better survival with gemcitabine-based chemoradiation compared to 5-FU-based chemoradiation, although other studies have argued that capecitabine or 5-FU are the preferred radiosensitizers in LAPC (84,98,102). Upfront chemoradiotherapy initially lost acceptability with the FFCD/SFRO trial when induction 5-FU + cisplatin chemoradiation followed by maintenance gemcitabine showed inferior survival and greater toxicity compared to gemcitabine alone (96). However, several
Table III. Meta-analyses of conventional systemic and locoregional therapy in locally advanced, advanced, or metastatic pancreatic cancer.

Study	Trials	Analytic arm(s)	Main end point(s)	Findings	(Refs.)
Bernstein et al 2014	6 RCTs	CRT vs. CT	OS	HR 0.88 (95% CI, 0.67-1.15; P=0.351)	(100)
Chan et al 2014	16 RCTs	Bayesian analysis	OS	Best regimen probability 83% FOLFIRINOX, 11% G-nab, 3% G + erlotinib	
Gresham et al 2014	23 RCTs	Combo-CT vs. G alone	OS	Combo-CT superior to G alone (including FOLFIRINOX and G-nab)	(115)
Li et al 2014	8 RCTs	G+fluorouracil drugs vs. G alone	OS, ORR	G + fluorouracil drugs significantly improved OS, ORR compared to G alone	(67)
Petrelli et al 2014	29 RCTs	Combo-CT vs. G alone	OS	HR 0.87 (95% CI, 0.81-0.93; P<0.0001)	(116)
Zhang et al 2014	3 RCTs	G-based CRT vs. G alone	OS	HR 0.84 (95% CI, 0.53-1.34; P=0.48)	(101)
Chen et al 2013	15 RCTs	A: CRT vs. RT	6-, 12- and 18-months OS	A: 6-, 12- and 18-months (all P<0.01)	(99)
		B: CRT vs. CT		B: 6-, 12- and 18-months (all P>0.05)	
Ciliberto et al 2013	34 RCTs	G-combo vs. G alone	OS	HR 0.93 (95% CI, 0.89-0.97; P=0.001)	(73)
Yang et al 2013	5 RCTs	G + erlotinib	PFS, OS	PFS 2.9-6 months; OS 5-12.5 months	(110)
Sun et al 2012	26 RCTs	G-combo vs. G alone	1-year OS	RR 0.90 (95% CI, 0.82-0.99; P=0.04)	(66)
Hu et al 2011	35 RCTs	G-combo vs. G alone	OS, PFS	OS OR 1.15 (P=0.011); PFS OR 1.27 (P<0.001)	(65)
Zhu et al 2011	3 RCTs	G-based CRT vs. F-based CRT	12-months OS	G-based CRT superior to F-based CRT, 12-months OS RR 1.54 (95% CI, 1.05-2.26; P=0.03)	(102)
Xie et al 2010	18 RCTs	Subgroup analysis of 5 G-combo regimens	6-months OS	G-C 6-months OS RR 0.85 (P=0.04); G-Ox 6-months OS RR 0.80 (P=0.001)	(72)
Cunningham et al 2009	3 RCTs	G-C vs. G alone	OS	HR 0.86 (95% CI, 0.75-0.98; P=0.02)	(71)
Huguet et al 2009	2 MAs, 13 RCTs	A: CRT vs. BSC or RT	OS	A: CRT superior to BSC or RT alone	(98)
	2 NRTs	B: CRT vs. CT		B: CRT not superior to CT	
Heinemann et al 2008	15 RCTs	G-combo vs. G alone	OS	HR 0.91 (95% CI, 0.85-0.97; P=0.004)	(70)
Sultana et al 2008	11 RCTs	Indirect analysis of 4 G-combo regimens OS	PFS/TTP	No significant difference in survival	(82)
Sultana et al 2008	51 RCTs	A: F-combo vs. F alone	PFS/TTP	A: TTP HR 1.02 (95% CI, 0.85-1.23)	(62)
		B: G-combo vs. G alone		B: PFS HR 0.78 (95% CI, 0.70-0.88)	
Banu et al 2007	23 RCTs	G-D vs. G alone	OS	12-months RRR 4% (95% CI, 1-7); 18-months RRR 2% (95% CI, 1-4), P<0.05 in both	(69)
Bria et al 2007	20 RCTs	G-combo vs. G alone	OS	No significant difference in survival	(64)
Heinemann et al 2007	2 RCTs	G-P vs. G alone	OS, PFS	OS HR 0.81 (P=0.031); PFS HR 0.75 (P=0.0030)	(68)
Sultana et al 2007	51 RCTs	A: CT vs. BSC	OS	A: HR 0.64 (95% CI, 0.42-0.98)	(58)
		B: F-combo vs. F alone		B: HR 0.94 (95% CI, 0.82-1.08)	
Sultana et al 2007	11 RCTs	A: CRT vs. RT	OS	A: HR 0.69 (95% CI, 0.51-0.94)	(97)
		B: CRT followed by CT vs. CT		B: HR 0.79 (95% CI, 0.32-1.95)	
Xie et al 2006	6 RCTs	G-DDP vs. G alone	OS, CBR	No significant difference in survival or CBR	(61)
studies revealed that induction gemcitabine-based chemo-
therapy followed by consolidation 5-FU, capecitabine or
gemcitabine-based chemoradiation, when there was no
evidence of disease progression after 2 months of initial
chemotherapy, provided favorable survival outcomes (even
greater than in those who received chemoradiation or chemo-
therapy alone) in LAPC (103-105).

The rationale for this approach is associated with the fact
that ~30% of those with LAPC have occult metastatic disease
diagnosis, and induction chemotherapy can identify the
subset of patients without metastatic disease who can benefit
from locoregional control or those with aggressive disease
who can be spared from resection and the toxicities of chemo-
radiotherapy (84,85). Ultimately, radiotherapy alone or upfront
chemoradiotherapy is not recommended as standard treat-
ment for LAPC, although upfront chemoradiotherapy is an
option in those with poorly controlled pain, bleeding or local
obstruction (84,85). Consolidation chemoradiation remains
a recommended option for those with LAPC and good PS
without evidence of disease progression following 2-6 cycles
or 3-4 months of induction chemotherapy, despite prelimi-
nary results from the phase III LAP 07 study indicating no
survival benefit with additional chemoradiation after induction
gemcitabine compared to chemotherapy alone (84-85,106).
Modern radiotherapy techniques with concurrent chemo-
therapy also represent a relatively cost-effective strategy in
improving clinical outcomes in LAPC (107).

4. Advanced and metastatic pancreatic cancer (stage IV)

Systemic therapy. The remaining ~50% of patients with
pancreatic cancer present with advanced or metastatic disease
(stage IV) with a median survival of 4-6 months and approxi-
mate 5-year survival rates of 1-2% (1,4,45). Treatment remains
palliative for this group with gemcitabine having been the
mainstay of therapy for the majority of the late 1990s and early
2000s; gemcitabine remains the first-line therapy in those with
poor PS and MPC. For the last 3 decades of the 20th century,
5-FU was superior to best supportive care (108). A seminal trial
in 1997 indicated a superior clinical benefit and a survival advan-
tage with gemcitabine (median OS, 5.65 months) compared to
5-FU (median OS, 4.41 months, P=0.0025) in APC (59). In
2007, gemcitabine/erlotinib showed a small survival benefit
leading to Food and Drug Administration approval of its use
in APC (109,110). Again, S-1 alone proved to be noninferior
to gemcitabine alone in an Asian-based phase III trial (111).
More recently, FOLFIRINOX and gemcitabine/nab-paclitaxel
both independently conferred significant survival advantages
over gemcitabine alone (112,113). Meta-analyses suggest
that FOLFIRINOX and gemcitabine/nab-paclitaxel have the
highest probabilities for being the two best regimens in terms
of OS and PFS for APC, despite their increased risk for greater
toxicities (Table III) (114-116). FOLFIRINOX demonstrates
favorable cost-effectiveness and greater quality adjusted
life-years compared to gemcitabine as first-line therapy (117).
FOLFIRINOX and gemcitabine/nab-paclitaxel appear to have
changed the standard of care, at least in those with good PS, as
2-year survival rates are now approaching 10% for either agent
in advanced/metastatic disease-survival rates that were rarely
observed previously (5).
5. Conclusion

Pancreatic cancer remains the most lethal of the common cancers with a 5-year survival rate across all stages of \(\approx 6.7\% \) (1). Meta-analyses confirm that adjuvant gemcitabine or 5-FU improves survival compared to surgery alone and remains the standard for adjuvant therapy in resected pancreatic cancer. Although the benefits from the addition of radiation therapy in the adjuvant setting are under debate, 5-FU-based or gemcitabine-based chemoradiation preceded or followed by 5-FU/leucovorin or gemcitabine remains an acceptable alternative form of adjuvant therapy in resected pancreatic cancer. Meta-analyses demonstrate high rates of resectability with neoadjuvant therapy (FOLFIRINOX + chemoradiation) in those with borderline resectable disease, although treatment criteria has yet to be clearly defined in this group. When applicable, neoadjuvant therapy in the context of a clinical trial is recommended for borderline resectable pancreatic cancer. For locally advanced and unresectable disease, meta-analyses confirm the benefits of combination chemotherapy over single-agent chemotherapy. FOLFIRINOX or gemcitabine with nab-paclitaxel are now being recommended in those with good PS while gemcitabine alone is recommended in those with poor PS in LAPC. Induction chemotherapy followed by chemoradiotherapy remains an option in certain patients with LAPC. In stage IV disease, meta-analyses confirm the survival benefits offered by FOLFIRINOX or gemcitabine with nab-paclitaxel compared to gemcitabine alone and are now treatment standards in those with good PS. Gemcitabine remains an option in patients with metastatic pancreatic cancer and poor PS. Despite the poor prognosis, development of novel therapeutic agents, advancements in diagnosis and prevention, and improvements in multidisciplinary care are underway in order to enhance outcomes in this area (4,5,7). Improved survival is currently being observed postoperatively and in advanced/metastatic disease with greater implementation of adjuvant and intensive multi-agent therapies, respectively. However, the results from ongoing clinical trials covering all stages of management in pancreatic cancer, including neoadjuvant, adjuvant and palliative therapy, are anticipated.

References

1. Howlader N, Noone AM, Krapcho M, Garshell J, Neyman N, Altekruse SF, et al (eds): SEER Cancer Statistics Review, 1975-2011, National Cancer Institute. Bethesda, MD. http://seer. cancer.gov/csr/1975_2011/ 2014. Accessed March 21, 2015.
2. Siegel RL, Miller KD and Jemal A: Cancer statistics, 2015. CA Cancer J Clin 65: 5-29, 2015.
3. Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D: Global cancer statistics. CA Cancer J Clin 61: 69-90, 2011.
4. Hidalgo M: Pancreatic cancer. N Engl J Med 362: 1605-1617, 2010.
5. Ryan DP, Hong TS and Bardeesy N: Pancreatic adenocarcinoma. N Engl J Med 371: 1039-1049, 2014.
6. Evans DB, Farnell MB, Lillemoe KD, Vollmer C Jr, Strasberg SM and Schulick RD: Surgical treatment of resectable and borderline resectable pancreas cancer: Expert consensus statement. Ann Surg Oncol 16: 1756-1744, 2009.
7. Wolfgang CL, Herman JM, Laheru DA, Klein AP, Erd ek MA, Fishman EK and Ruban HB: Recent progress in pancreatic cancer. CA Cancer J Clin 63: 318-348, 2013.
8. Abrams RA, Lowy AM, O'Reilly EM, Wolff RA, PicozzI VJ and Pisters PW: Combined modality treatment of resectable and borderline resectable pancreas cancer: Expert consensus statement. Ann Surg Oncol 16: 1751-1756, 2009.
9. Castellanos JA and Merchant NB: Intensity of follow-up after pancreatic cancer resection. Ann Surg Oncol 21: 747-751, 2014.
10. Kalser MH and Ellenberg SS: Pancreatic cancer. Adjuvant combined radiation and chemotheraphy following curative resection. Arch Surg 120: 890-903, 1985.
11. Bakkevold KE, Arnesjo B, Dahl O and Kambestad B: Adjuvant combination chemotheraphy (AMF) following radical resection of carcinoma of the pancreas and papilla of Vater-results of a controlled, prospective, randomized multicentre study. Eur J Cancer 29A: 698-703, 1993.
12. Gastrointestinal Tumor Study Group: Further evidence of effective adjuvant combined radiation and chemotherapy following curative resection of pancreatic cancer. Cancer 59: 2006-2010, 1987.
13. Oettle H, Naumann P, Höchhaus A, Hartmann JT, Gellert K, Ridwelski K, Niedergethmann M, Zülke C, Fahlike J, Arning MB, et al: Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: The CONKO-001 randomized trial. JAMA 310: 1473-1481, 2013.
14. Ueno H, Kosuge T, Matsuyama Y, Yamamoto J, Nakao A, Egawa S, Doi R, Monden M, Hatori T, Tanaka M, et al: A randomized phase III trial comparing gemcitabine with surgery-only in patients with resected pancreatic cancer. Japanese study group of adjuvant therapy for pancreatic cancer. Br J Cancer 101: 908-915, 2009.
15. Herman JM, Swartz MJ, Hsu CC, Winter J, Pawlik TM, Sugar E, Robinson R, Laheru DA, Jaffee E, Hruban RH, et al: Analysis of fluorouracil-based adjuvant chemotherapy and radiation after pancreaticoduodenectomy for ductal adenocarcinoma of the pancreas: Results of a prospective, randomized, controlled, prospective, randomized multicentre study at the Johns Hopkins Hospital. J Clin Oncol 26: 3503-3510, 2008.
16. Corsini MM, Miller RC, Haddock MG, Donohue JH, Farnell MB, Magorney DM, Jatoi A, McWilliams RR, Kim GP, Bhatia S, et al: Adjuvant radiotherapy and chemotherapy for pancreatic carcinoma: The mayo clinic experience (1975-2005). J Clin Oncol 26: 3511-3516, 2008.
17. Hsu CC, Herman JM, Corsini MM, Winter J, Callister MD, Haddock MG, Cameron JL, Pawlik TM, Schuldick RD, Wolfgang CL, et al: Adjuvant chemoradiation for pancreatic adenocarcinoma: The Johns Hopkins Hospital-Mayo clinic collaborative study. Ann Surg Oncol 17: 981-990, 2010.
18. Neoptolemos JP, Stocken DD, Friess H, Bassi C, Dunn JA, Hickey H, Beger H, Fernandez-Cruz L, Dervenis C, Lacaine F, et al: A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N Engl J Med 350: 1200-1210, 2004.
19. Stocken DD, Büchler MW, Dervenis C, Bassi C, Jekel H, Klinkenbijl JH, Bakkevold KE, Takada T, Amano H and Neoptolemos JP: Pancreatic Cancer Meta-analysis Group: Meta-analysis of randomized adjuvant therapy trials for pancreatic cancer. Br J Cancer 92: 1572-1585, 2005.
20. Boeck S, Ankerst DP and Heinemann V: The role of adjuvant chemotherapy for patients with resected pancreatic cancer: Systematic review of randomized controlled trials and meta-analysis. Oncology 72: 314-321, 2007.
21. Butturini G, Stocken DD, Wente MN, Jekel H, Klinkenbijl JH, Bakkevold KE, Takada T, Amano H, Dervenis C, Bassi C, et al: Influence of resection margins and treatment on survival in patients with pancreatic cancer: Meta-analysis of randomized controlled trials. Arch Surg 145: 75-83, 2008.
22. Liao WC, Chien KL, Lin YL, Wu MS, Lin JT, Wang HP and Tu YK: Adjuvant treatments for resected pancreatic adenocarcinoma: A systematic review and network meta-analysis. Lancet Oncol 14: 1095-1103, 2013.
23. Yu Z, Zhong W, Tan ZM, Wang LY and Yuan YH: Gemcitabine adjuvant therapy for resected pancreatic cancer: A meta-analysis. Am J Clin Oncol 38: 322-325, 2015.
24. Ren F, Xu YC, Wang HX, Tang L and Ma Y: Adjuvant chemotherapy, with or without postoperative radiotherapy, for resectable advanced pancreatic adenocarcinoma: Continue or stop? Pancreatology 12: 162-169, 2012.
25. Morganti AG, Falconi M, van Stiphout RG, Mattiucci GC, Alfieri S, Calvo FA, Dubois JB, Fastner G, Herman JM, Maidment BW III, et al: Multi-institutional pooled analysis on adjuvant chemoradiation in pancreatic cancer. Int J Radiat Oncol Biol Phys 90: 911-917, 2014.
26. Khanna A, Walker GR, Livingstone AS, Arheart KL, Rocha-Lima C and Koniaris LG: Is adjuvant 5-FU-based chemoradiotherapy for resectable pancreatic adenocarcinoma beneficial? A meta-analysis of an unanswered question. J Gastrointest Surg 10: 689-697, 2006.
27. Klinkenbijl JH, Jeekel J, Sahmoud T, van Pel R, Couvreur ML, Veenhof CH, Arnaud JP, Gonzalez DG, de Wit LT, Hennipman A and Wils J: Adjuvant radiotherapy and 5-fluorouracil after curative resection of cancer of the pancreas and peripancreatic region: Phase III trial of the EORTC gastrointestinal tract cancer cooperative group. Ann Surg 230: 776-784, 1999.

28. Regine WF, Winter KA, Abrams R, Safran H, Hoffman JP, Konski A, Benson AB, Macdonald JS, Rich TA and Willett CG: Fluorouracil based chemoradiation with either gemcitabine or fluorouracil after resection of pancreatic adenocarcinoma: 5-year analysis of the US intergroup/RTOG 9704 phase III trial. Ann Surg Oncol 18: 1319-1326, 2011.

29. Neoptolemos JP, Stocken DD, Bassi C, Ghaneh P, Cunningham D, Goldstein D, Padbury R, Moore MJ, Gallinger S, Mariette C, et al: Adjuvant chemotherapy with fluorouracil plus folinic acid vs. gemcitabine following resection of pancreatic adenocarcinoma: Meta-analysis of prospective studies. J Clin Oncol 30: 4077-4083, 2012.

30. Vallee JW, Palmer D, Jackson R, Cox T, Neoptolemos JP, Ghaneh P, Rawcliffe CL, Bassi C, Stocken DD, Cunningham D, et al: Optimal duration and timing of adjuvant chemotherapy after definitive surgery for ductal adenocarcinoma of the pancreas: Ongoing lessons from the ESPAC-3 study. J Clin Oncol 32: 504-512, 2014.

31. Schmidt J, Abel U, Debus J, Harig S, Hoffmann K, Herrmann T, Bartels D, Klein J, Mansmann U, Jäger D, et al: Open-label, multicenter, randomized phase III trial of adjuvant chemoradiotherapy plus interferon Alfa-2b versus fluorouracil and folinic acid for patients with resected pancreatic adenocarcinoma. J Clin Oncol 32: 245-250, 2013.

32. Festa V, Andriulli A, Valvano MR, Uomo G, Petrelli N, Corrao S and Koch M: Neoadjuvant chemoradiotherapy for patients with borderline resectable pancreatic cancer: A meta-analytical evaluation of prospective studies. JOP 14: 618-625, 2013.

33. Neoptolemos JP, Stocken DD, Turrisi A III, Benson AB, Macdonald JS, Rich TA and Wittenberg E: Neoadjuvant therapy for pancreatic cancer: Definitions, management and role of preoperative therapy. Ann Surg Oncol 13: 1035-1046, 2006.

34. Morganti AG, Massacesi M, La Torre G, Caravella L, Piscopo A, Tamburo R, Sofer T, Sullustino G, Ingrasso M, Macchia G, et al: Systematic review of resectability and survival after concurrent chemoradiation in primarily unresectable pancreatic cancer. Ann Surg Oncol 17: 194-205, 2010.

35. Laurence JM, Tran PD, Morarji K, Eslick GD, Lam VM and Sandroussi C: A systematic review and meta-analysis of survival and surgical outcomes following neoadjuvant chemotherapy for pancreatic cancer. J Gastrointest Surg 15: 2059-2069, 2011.

36. Pfizer F, Coim A, Borgonovo KF, Ghilardi M, Cabiddu M, Cremonesi M, Lonati V and Barni S: Resection rate with FOLFIRINOX-based neoadjuvant therapy in locally advanced borderline resectable pancreatic cancer: A pooled analysis of published data. Ann Oncol 25 (Suppl 4): iv240, 2014.

37. Katz MHG, Crane CH and Varadhachary G: Management of borderline resectable pancreatic cancer. Semin Radiat Oncol 24: 105-112, 2014.

38. Lopez NE, Prendergast C and Lowy AM: Borderline resectable pancreatic cancer: Definitions and management. World J Gastroenterol 20: 10740-10751, 2014.

39. Katz MHG, Fleming JB, Bhosale P, Varadhachary G, Lee JE, Wolff R, Wang H, Abbruzzese J, Pisters PW, Vauthey JN, et al: Response of borderline resectable pancreatic cancer to neoadjuvant therapy is not reflected by radiographic indicators. Cancer 118: 5479-5476, 2012.

40. Festa V, Andriulli A, Valvano MR, Uomo G, Perri F, Andriulli N, Corrao S and Koch M: Neoadjuvant chemoradiotherapy for patients with borderline resectable pancreatic cancer: A meta-analytical evaluation of prospective studies. JOP 14: 618-625, 2013.
62. Sultana A, Tudor Smith C, Cunningham D, Starling N, Neoptolomeos JP and Ghaneh P: Meta-analyses of chemotherapy for locally advanced and metastatic pancreatic cancer: Results of randomized controlled trials. Br J Cancer 109: 6-13, 2008.

63. Xie DR, Liang HL, Wang Y, Guo SS and Yang Q: Meta-analysis on inoperable pancreatic cancer: A comparison between gemcitabine-based combination therapy and gemcitabine alone. World J Gastroenterol 12: 6973-6981, 2006.

64. Bria E, Milella M, Gelibter A, Cuppone F, Pino MS, Ruggeri EM, Cavallo P, Terzoli E, Carinci F and Gianferreri D: Gemcitabine-based combinations for inoperable pancreatic cancer: Have we made real progress? A meta-analysis of 20 phase 3 trials. Cancer 110: 525-533, 2007.

65. Hu J, Zhao G, WangHX, Tang L, Xu YC, Ma Y and Zhang FC: A meta-analysis of gemcitabine chemotherapy for locally advanced and metastatic pancreatic adenocarcinoma. J Hematol Oncol 4: 11, 2011.

66. Sun C, Ansari D, Andersson R and Wu DQ: Does gemcitabine-based combination therapy improve the prognosis of unresectable pancreatic cancer? World J Gastroenterol 18: 4944-4958, 2012.

67. Li Q, Yan H, Liu W, Zhen H, Yang Y and Cao B: Efficacy and safety of gemcitabine-fluorouracil combination therapy in the management of advanced pancreatic cancer: A meta-analysis of randomized controlled trials. PLoS One 9: e104346, 2014.

68. Heinemann V, Labianca R, Hinke A and Louvet C: Increased survival of a gemcitabine analogue combined with gemcitabine as compared to single-agent gemcitabine in advanced pancreatic cancer: Pooled analysis of two randomized trials, the GERCOR/GISCAD intergroup study and a German multicenter trial. Ann Oncol 18: 1652-1659, 2007.

69. Baati E, de Fordor A, Landry M, Rougier P, Chatellier G, Andrieu JM and Oudard S: Meta-analysis of randomized trials comparing gemcitabine-based doublets versus gemcitabine alone in patients with advanced and metastatic pancreatic cancer. Drugs Aging 24: 865-879, 2007.

70. Heinemann V, Boeck S, Hinke A, Labianca R and Louvet C: Meta-analysis of randomized trials: Evaluation of benefit from gemcitabine-based combination chemotherapy applied in advanced pancreatic cancer. BMC Cancer 8: 82, 2008.

71. Cunningham D, Chau I, Stocken DD, Valle JW, Smith D, Steward W, Harper PG, Dunn J, Tudor-Smith C, West J, et al: Phase III randomized comparison of gemcitabine versus gemcitabine plus capcitabine in patients with advanced pancreatic cancer. J Clin Oncol 27: 5513-5518, 2009.

72. Xie DR, Yang Q, Chen DL, Jiang ZM, Bi ZF, Ma W and Zhang YD: Gemcitabine-based cytotoxic doublets chemotherapy for advanced pancreatic cancer: Updated subgroup meta-analysis of overall survival. Jpn J Clin Oncol 40: 432-441, 2010.

73. Ciliberto D, Bottà C, Correale P, Rossi M, Caraglia M, Tassone P and Tagliaferri P: Role of gemcitabine-based combination therapy in the management of advanced pancreatic cancer: A meta-analysis of randomized controlled trials. J Cancer 3: 129-134, 2012.

74. Eltawil KM, Renfrew PD and Molinari M: Meta-analysis of phase III randomized trials of molecular targeted therapies for advanced pancreatic cancer. HPB (Oxford) 14: 260-268, 2012.

75. Tian W, Ding W, Kim S, Xu X, Pan M and Chen S: Efficacy and safety profile of combining agents against epidermal growth factor receptor or vascular endothelium growth factor receptor with gemcitabine-based chemotherapy in patients with advanced pancreatic cancer: A meta-analysis. Pancreatology 13: 415-422, 2013.

76. Chen L, Zhang M and Luo S: Outcome of gemcitabine plus molecular targeted agent for treatment of pancreatic cancer: A meta-analysis of prospective phase III studies. Tumor Biol 35: 11551-11558, 2014.

77. Li Q, Yuan Z, Yan H, Wen Z, Zhang R and Cao B: Comparison of gemcitabine combined with targeted agent therapy versus gemcitabine monotherapy in the management of advanced pancreatic cancer. Clin Ther 36: 1054-1063, 2014.

78. Van Loon K, Espinoza AM, Fogeman DR, Flynn P, Ramanathan RK, Crane CH, Alberts SR and Benson AB II: Gemcitabine-based combinations for locally advanced and metastatic pancreatic cancer?: A pooled analysis of phase II trials of gemcitabine-containing doublets more bevacizumab. Pancreas 43: 343-349, 2014.

79. Yangamimoto H, Ishii H, Nakay K, Ozaka M, Ikarai T, Koike K, Ueno H, Ioka T, Saito S, Sho M, et al: Improved survival with combination gemcitabine and S-1 for locally advanced pancreatic cancer: Pooled analysis of three randomized trials. J Hepatobiliary Pancreat Sci 21: 761-766, 2014.
69. Chauvet F, Mornex F, Bonnetain F, Rouger P, Mariette C, Bouché O, Bosset JF, Aparicio T, Mineur L, Azzedine A, et al: Phase III trial comparing intensive induction chemoradiotherapy (60 Gy, infusional 5-FU and intermittent cisplatin) followed by maintenance gemcitabine with gemcitabine alone for locally advanced unresectable pancreatic cancer. Definitive results of the 2000-01 FFCD/SFRO study. Ann Oncol 19: 1592-1599, 2008.

70. Sultana T, Tudur Smith C, Cunningham D, Starling N, Tait D, Neoptolemos JP and Ghanem P: Systematic review, including meta-analyses, on the management of locally advanced pancreatic cancer using radiation/combined modality therapy. Br J Cancer 96: 1183-1190, 2007.

71. Huguet F, Girard N, Guerche CS, Henneguin C, Mornex F and Azria D: Chemoradiotherapy in the management of locally advanced pancreatic carcinoma: A qualitative systematic review. J Clin Oncol 27: 2269-2277, 2009.

72. Chen Y, Sun XJ, Jiang TH and Mao AW: Combined radiochemotherapy in patients with locally advanced pancreatic cancer: A meta-analysis. World J Gastroenterol 19: 7461-7471, 2013.

73. Bernstein M, Kaulisch A, Rosenstein M, Aparo S, Garg MK, Kalnicki S, Guha C and Ohri N: Chemotherapy alone versus chemoradiation for unresectable pancreatic cancer: A meta-analysis. Int J Radiat Oncol Biol Phys 90 (Suppl 2014): S363-S364, 2014.

74. Zhang X, Huang JJ, Feng D, Yang DJ, Wang CM and Cai QP: Is concomitant radiotherapy necessary with gemcitabine-based chemotherapy in pancreatic cancer? World J Gastroenterol 20: 17648-17655, 2014.

75. Zhu CP, Shi J, Chen YX, Xie WF and Lin Y: Gemcitabine in the chemoradiotherapy for locally advanced pancreatic cancer: A meta-analysis. Radiother Oncol 99: 108-113, 2011.

76. Huguet F, André T, Hammel P, Artru P, Balosso J, Selle F, Deniaud-Alexandre, Ruszniewski P, Troubl E, Labianca R, et al: Impact of chemoradiotherapy after disease control with chemotherapy in locally advanced pancreatic adenocarcinoma in GERCOR phase II and III studies. J Clin Oncol 25: 326-331, 2007.

77. Ko AH, Quivey JM, Venook AP, Bergsland EK, Dito E, Schillinger B and Tempeo MA: A phase II study of fixed-dose rate gemcitabine plus low-dose cisplatin followed by consolidative chemoradiation for locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys 68: 809-816, 2007.

78. Krishnan S, Rana V, Janjan NA, Varadhachary GR, Abbruzzese JL, Das P, Delcos ME, Gould MS, Evans DB, Wolff RA and Crane CH: Induction chemotherapy selects patients with locally advanced, unresectable pancreatic cancer for optimal benefit from consolidative chemoradiation therapy. Cancer 110: 47-55, 2007.

79. Hammel P, Huguet F, Van Laethem JL, Goldstein D, Glimelius B, Artru P, et al: Comparison of chemoradiotherapy (CRT) and chemotherapy (CT) in patients with a locally advanced pancreatic cancer (LAPC) controlled after 4 months of gemcitabine with or without erlotinib: Final results of the international phase III LAP 07 study. J Clin Oncol 31 (Suppl): LBA4003, 2013.

80. Murphy JD, Chang DT, Abelson J, Daly ME, Yeung HN, Nelson LM and Koong AC: Cost-effectiveness of modern radiotherapy techniques in locally advanced pancreatic cancer. Cancer 118: 1119-1129, 2012.

81. Fung MC, Takayama S, Ishiguro H, Sakata T, Adachi S and Morizane T: Chemotherapy for advanced or metastatic pancreatic cancer: Analysis of 43 randomized trials in 3 decades (1974-2002). Gan To Kagaku Ryoho 30: 1101-1111, 2003 (In Japanese).

82. Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S, Au JJ, Murawa P, Walde D, Wolff RA, et al: Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: A phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 25: 1960-1966, 2007.

83. Yang ZY, Yuan JQ, Di MY, Zheng DY, Chen JZ, Ding H, Wu XY, Huang YF, Mao C and Tang JL: Gemcitabine plus erlotinib for advanced pancreatic cancer: A systematic review with meta-analysis. PLoS One 8: e57528, 2013.

84. Ueno H, Iska T, Ikeda M, Ohkawa S, Yanagimoto H, Boku N, Fukutomi A, Sugimori K, Baba H, Yamao K, et al: Randomized phase III study of gemcitabine plus S-1, S-alone, or gemcitabine alone in patients with locally advanced and metastatic pancreatic cancer in Japan and Taiwan: GEST study. J Clin Oncol 31: 1640-1648, 2013.

85. Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, Adenis A, Raoul JL, Gourgou-Bourgade S, de la Fouchardière C, et al: FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 364: 1817-1825, 2011.

86. Von Hoff DD, Ervin T, Arena FP, Chioroan EG, Infante J, Moore M, Seay T, Tjulandin SA, Ma WW, Saleh MN, et al: Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 369: 1691-1703, 2013.

87. Chan K, Shah K, Lien K, Coyle D, Lam H and Ko YJ: A Bayesian meta-analysis of multiple treatment comparisons of systemic regimens for advanced pancreatic cancer. PLoS One 9: e018749, 2014.

88. Gresham GK, Wells GA, Gill S, Cameron C and Jonker DJ: Chemotherapy regimens for advanced pancreatic cancer: A systematic review and network meta-analysis. BMC Cancer 14: 471, 2014.

89. Petrelli F, Coinu A, Borgonovo K, Cabiddu M, Ghilardi M and Barni S: Polychemotherapy or gemcitabine in advanced pancreatic cancer: A meta-analysis. Dig Liver Dis 46: 452-459, 2014.

90. Attard CL, Brown S, Alloul K and Moore MJ: Cost-effectiveness of FOLFIRINOX for first-line treatment of metastatic pancreatic cancer. Curr Oncol 21: e41-e51, 2014.