U-Pb ages and Hf isotopic composition of zircons and whole rock geochemistry of volcanic rocks from the Fangniugou area: Implications for early-middle Paleozoic tectonic evolution in Jilin Province, NE China

Zuozhen HAN*,**, Zhigang SONG*, Chao HAN*, Wenjian ZHONG*, Mei HAN*, Junlei YAN***, Hui LIU*, Qingxiang DU*, Lihua GAO* and Jingjing LI*

*College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
**Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
***Shandong Zhaojin Geological Survey Company Limited, Shandong Zhaojin Group Company Limited, Yantai 265400, China

The Changchun–Yanjii suture in Jilin Province, NE China is generally interpreted to mark the closure position of the Paleo-Asian Ocean along the north margin of the North China Craton. However, the issue about the early-middle Paleozoic tectonic evolution in this region has long been debated. In order to provide evidence for resolving this issue, we carried out a geochemical and zircon U–Pb–Hf study on the Fangniugou and Taoshan volcanic rocks from the Fangniugou area of Jilin Province, in the Changchun–Yanjii suture zone. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) zircon U–Pb dating indicates that the Fangniugou volcanic rocks are products of at least two volcanic events (~ 425 and 390 Ma) and that episodes of magmatism existed in Jilin Province during the early-middle Paleozoic period. These rocks, in conjunction with relevant data from the literature, indicate that early-middle Paleozoic magmatism occurred along the Changchun–Yanjii suture. The volcanic rocks belong to medium- to high-K calc-alkaline series and display features of I-type granites of subduction-related igneous rocks. During the late Silurian-middle Devonian, the Y and Yb concentrations progressively decreased with time, accompanied by an increase in K2O concentrations and (La/Yb)N values, indicating a process of crustal thickening. This interpretation is supported by the presence of early Paleozoic arc igneous rocks and the formation of early Devonian molasse in central Jilin Province. Zircon grains separated from the rocks have high εHf(t) values and two-stage Hf model (TDM2) ages varying from +4.92–8.76 and 0.84–1.09 Ga, respectively. All these characteristics, in conjunction with trace element features, suggest that the late Silurian rocks were generated by partial melting of a depleted mafic lower crust in a subduction zone setting, whereas the middle Devonian rocks were derived from partial melting of a thickened lower crust the most probably related to a collisional event.

Keywords: Early-middle Paleozoic, Geochronology, Geochemistry, Volcanic rocks, NE China

INTRODUCTION

Northeastern (NE) China, which has been tectonically referred to as the Xing’an-Mongolia (or Xing-Meng) Orogenic Belt (XMOB) in the past, forms part of the eastern segment of the Central Asian Orogenic Belt, a region that experienced the amalgamation of multiple microcontinental blocks (Fig. 1a: the Erguna, Xing’an, Songliao-Xilinhot, Jiamusi, and Khanka blocks) (Şengör et al., 1993; Wu et al., 2007; Tang et al., 2013; Bi et al., 2014; Liu et al., 2017). Li (1998, 2006) described this amalgamated continent as the Burean-Jiamusi block or paleoplate. During the long tectonic history, the region between this amalgamated block and the North China Craton (NCC) had close relationships with the Paleozoic evolution of the eastern
segment of the Paleo-Asian Ocean (PAO), the Mesozoic-Cenozoic subduction of the Paleo-Pacific oceanic plate and the long-distance effect of the collisional orogeny of the Mongol-Okhotsk domain, which is considered as being a possible dynamic mechanism for Mesozoic magmatic activity and crustal shortening in NE China (Davis et al., 1998; Meng, 2006; Windley et al., 2007; Wu et al., 2007; Wilde and Zhou, 2015; Liu et al., 2017). Therefore, it is critical to understand the tectonic history of this area, which will shed light on the Paleozoic evolution of the eastern segment of the PAO.

The eastern segment of the northern margin of the NCC is adjacent to the south margin of the XMOB bounded by the Changchun–Yansi suture (Fig. 1a). The Changchun–Yansi suture is considered to mark the closure position of the PAO (Xiao et al., 2003, Li, 2006; Xiao et al., 2009; Liu et al., 2010; Cao et al., 2013; Xiao et al., 2015; Liu et al., 2017). This area is dominated by the Phanerozoic granitoids with minor mafic-ultramafic intrusives, and limited outcrops of Neoproterozoic–Cenozoic volcanics and sediments [Jilin Bureau of Geology and Mineral Resources (JBGMR), 1988; Wu et al., 2007, 2011]. Subjected by intensive alteration and destruction which were induced by late Paleozoic orogeny and the middle–late Cenozoic circum Pacific orogeny, as well as the inundation of large amount of granite, the early Paleozoic geologic masses occur as roof pendant. With the continuous improvement of zircon U–Pb dating technique, more and more strata (e.g., Hulan Group and Xiaertai Group) and plutons (e.g., Dayushan pluton and Huangnihe pluton), previously thought to be the products of Caledonian movement, have proven to be formed during the late Paleozoic or early Mesozoic (Jia et al., 2004; Zhang et al., 2004; Wu et al., 2007, 2011; Wang et al., 2015b). There-

![Figure 1.](image-url)
fore, the existence of early Paleozoic accretionary tectonic belt is being called into question (Wu et al., 2004). This issue restrains our recognition to the early Paleozoic tectonic evolution of the PAO.

In this contribution, we focus on the Fangniugou volcanic rocks and the Taoshan Formation, which were previously thought to be late Ordovician-Silurian (Fig. 1b), since these rocks are located along the Changchun-Yanjie suture and tectonically experienced the evolution of the PAO during the Paleozoic. Here, we present results of U-Pb dating and Hf isotopic composition of zircons, and whole-rock geochemical analyses of these volcanic rocks. These data provide new evidence for the existence of early-middle Paleozoic magmatism and enable us to further constrain the early-middle Paleozoic tectonic evolution of the eastern segment of the PAO.

GEOLOGICAL SETTING AND SAMPLE DESCRIPTION

The Fangniugou area is located in the Daheishan Horst, which connects the Solonker-Xar Moron-Changchun suture and Changchun-Yanjie suture (Fig. 1a). The previously established view was that several groups of early Paleozoic strata crop out in this area, including the Jingtai marbles, Fangniugou volcanic rocks, Taoshan Formation and Daheishan volcanic rocks (Fig. 1b). The Taoshan Formation is dominated by black graptolite-bearing slate, siltstone, tuffaceous siltstone and minor interbedded intermediate–acid volcanic rocks. It was previously identified as early Silurian in age on the basis of the recognition of graptolites from the slate (Peng et al., 1979). Zircon SHRIMP U-Pb data of volcanic rocks from the Taoshan Formation (collected from Daheishan and Duanjiadian) demonstrated that these volcanic rocks formed during the late Silurian (Jiang et al., 2014a). The U-Pb ages of inherited zircons from these volcanic rocks reflect multiple volcanic activities occurred during the middle Ordovician, late Ordovician, early Silurian and middle Silurian. The Jingtai marbles, Fangniugou volcanic rocks and Daheishan volcanic rocks are dominated by marble, calcareous sandstone, quartz schist and foliated volcanic rocks. The ages of these rocks were previously assigned to late Ordovician based on lithostratigraphic relationships and regional correlations (Jia, 1994; Wu, 1994; Jiang et al., 2014b). However, laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) zircon U-Pb dating of calcareous sandstone, quartz schist and volcanic rocks (Han et al., 2017; Han Z.Z et al., unpublished data, 2017) show that the ages of the Jingtai marbles and Daheishan volcanic rocks are Permian–Triassic. The above-mentioned geochronological data indicate that the previous age estimates of the Paleozoic strata in the study area are unreliable. To constrain the age of the Fangniugou volcanic rocks, which lack geochronological data, we collected magmatic zircons for U-Pb dating from two samples from the Fangniugou volcanic rocks. The samples are described below.

Sample HXT1 is a rhyodacite that was collected from Hongxiang village (Fig. 1b: 43°28′04″N, 125°08′51″E). The rock is greyish-green, displays a porphyritic texture and a massive structure (Figs. 2a and 2b). The phenocrysts are mainly K-feldspar, while the groundmass is composed of felsic minerals with sericitic alteration.

Sample LS1 is a rhyolite that was collected from ~ 0.4 km northeast of Liuyang village (Fig. 1b: 43°28′27″N, 124°59′39″E). This sample is dark grey in colour, with a porphyritic texture and a massive structure (Figs. 2c and 2d). The phenocrysts consist of quartz and sanidine, and the groundmass is composed of felsic minerals with spherulitic texture. Three samples from the HXT rhyodacite and three samples from the LS rhyolite were chosen for geochemical analyses. In addition, four volcanic samples from the Taoshan Formation outcropping in Daheishan (DH1 and DH2: ~ 413 Ma) and Duanjiadian (DJ1 and DJ2: ~ 392 Ma), the ages of which were obtained using SHRIMP U-Pb dating (Jiang et al., 2014a), were also collected for geochemical study. The DH samples were named as ignimbrite, while the DJ samples were described as foliated dacite from field observation (Figs. 2e and 2f). Their locations are shown in Figure 1b and their petrographic descriptions can be found in Jiang et al. (2014a).

ANALYTICAL METHODS

Zircon U-Pb analysis

Zircon grains were separated from whole-rock samples by conventional magnetic and heavy liquid techniques before hand-picked under a binocular microscope at Langfang Regional Geological Survey, Hebei Province, China. They were embedded in epoxy and polished down to half size and cleaned in an acid bath before analysis. Cathodoluminescence (CL) images were taken using JEOL JXA-8900RL scanning electron microscope at the State Key Laboratory of Continental Dynamics, Northwest University, Xi’an, China.

Zircon trace elements and U-Th-Pb isotopes were simultaneously determined using an Agilent 7500a ICP-MS equipped with a 193 nm laser ablation system GeoLas 2005 at the State Key Laboratory of Continental Dynamics, Northwest University, Xi’an, China. The instrument parameter and detail procedures were described by Yuan
et al. (2004). The laser spot size was 32 µm with a repetition rate of 6 Hz during the analyses. The zircon 91500 was used as an external standard for age calibration, and the NIST SRM 610 silicate glass was applied for instrument optimization. In addition, GJ–1 (Jackson et al., 2004) was treated as a secondary standard as an unknown. The weighted mean $^{206}\text{Pb}/^{238}\text{U}$ age for GJ–1 was 598.6 ± 5.2 Ma ($n = 12$), consistent within uncertainty with the recommended values (GJ–1: 599.81 ± 1.7 Ma, Jackson et al., 2004). The relative standard deviations of the reference values for 91500 were set at 2%, and the $^{207}\text{Pb}/^{206}\text{Pb}$ and $^{206}\text{Pb}/^{238}\text{U}$ ratios were calculated using GLITTER 4.0 (Van Achterbergh et al., 2001). Common Pb corrections were made following the method of Andersen (2002). Weighted mean ages and concordia diagrams were created using Isoplot 3.0 (Ludwig, 2003). The analytical data are presented with 1σ error boxes on the concordia plots and uncertainties in weighted mean ages are quoted at 95% confidence level (2σ). The zircon U–Pb age data and trace element data for two volcanic samples are presented in

Figure 2. Field photographs and photomicrographs of the volcanic rocks from the Fangniugou area in Jilin Province, NE China. (a) Outcrop of the HXT rhyodacite, (b) photomicrograph of the HXT rhyodacite, crossed polarized light, (c) outcrop of the LS rhyolite, and (d) photomicrograph of the LS rhyolite, crossed polarized light. (e) Outcrop of the DH rhyolitic ignimbrite and (f) outcrop of the DJ foliated dacite. Abbreviations: Q, quartz; Kfs, K-feldspar; Srt, sericitic alteration; Pl, plagioclase. Color version is available online from https://doi.org/10.2465/jmps.170708.
Zircon Hf isotopic analysis

Zircon Hf isotope analyses were conducted in the State Key Laboratory of Continental Dynamics, Northwest University, Xi’an, China, using a Nu Plasma HR multiple collector (MC)-ICP-MS coupled with Geolas 2005 laser-ablation system. The Hf analyses were made on the same spots previously used for U–Pb isotope dating with a spot size of 44 µm and a repetition rate of 10 Hz. Helium was used as the carrier gas to transport the ablated sample from the laser-ablation cell to the MC-ICP-MS torch and was mixed with argon. The analytical procedures are similar to those described by Xu et al. (2004). Interference of 176Lu on 176Hf was corrected by measuring the intensity of an interference-free 175Lu isotope and also a recommended 176Lu/175Lu ratio of 0.02655 to calculate 176Lu/177Hf ratios (Chu et al., 2002). Similarly, interference of 176Yb on 176Hf was corrected by measuring an interference-free 172Yb isotope and using a 176Yb/172Yb ratio of 0.5886 to calculate 176Yb/177Hf ratios (Chu et al., 2002). Zircon 91500 was used as the reference standard, with weighted mean 176Hf/177Hf ratio of 0.282314 ± 0.000011 (n = 34, 91500 was used as the reference standard, with weighted mean 176Hf/177Hf ratio of 0.282314 ± 0.000011 (n = 34, 91500 was used as the reference standard) and the present-day chondritic ratios of 176Hf/177Hf = 0.282785 and 176Lu/177Hf = 0.0336 (Bouvier et al., 2008) were adopted to calculate $\epsilon_{Hf}(t)$ values. Single-stage model ages (T_{DM1}) were calculated using a depleted mantle with a present-day 176Hf/177Hf ratio of 0.28325 and 176Lu/177Hf ratio of 0.0384 (Griffin et al., 2000). Two-stage model ages (T_{DM2}) were calculated using an assumed 176Lu/177Hf ratio of 0.015 (Rudnick and Gao, 2003) for the average continental crust.

Whole-rock geochemical analysis

The major and trace element concentrations of the whole-rock samples were determined at the Supervision and Inspection Center of Mineral Resources, the Ministry of Land and Resources of Jinan, China. The concentrations of SiO$_2$ and Al$_2$O$_3$ were analyzed using the gelatin coagulation gravimetric method and the xylenol orange method, respectively. The other major oxides and some trace elements, (Ba, Sr, V, and Cr) were determined by IRIS-Intrepid ICP atomic emission spectrometer (AES) using the standard analytical protocol of GB/T14506-2010 for the oxides. Detailed analytical procedures are similar to those described by Rudnick et al. (2004). Analytical uncertainties range from 1 to 5%. The other trace element concentrations were determined using an X-Series 2 ICP-MS, and the analytical procedures are similar to those described by Li (1997). All samples were crushed and powdered in an agate mortar. Precisely weighed sample powders (50 mg) were dissolved in Teflon bombs in HF + HNO$_3$. An internal standard solution containing the single-element Rh was used to monitor signal drift during counting. The USGS rock standards AGV-1, G-2, and W-2 and the Chinese national rock standards GSR-1 and GSR-3 were chosen for calibrating element concentrations of measured samples. Analytical uncertainties were generally less than 5%. The data are listed in Supplementary Tables S3 and S4 (Tables S3 and S4 are available online from https://doi.org/10.2465/jmps.170708).

ANALYTICAL RESULTS

Zircon U–Pb geochronology

Zircons from the samples in this study occur as euhedral to subhedral crystals (80–200 µm in length), with aspect ratios of ~ 1–2. CL imaging and LA-ICP-MS analysis revealed that these zircons show fine-scale oscillatory growth zoning (Fig. 3), high Th/U ratios (Table S1; available online from https://doi.org/10.2465/jmps.170708), and magmatic rare earth element (REE) patterns with steeply increasing from La to Lu, positive Ce and negative Eu anomalies (Fig. 4), indicating a magmatic origin (Hoskin and Ireland, 2000; Corfu et al., 2003; Hoskin and Schaltegger, 2003).

Fifty-eight zircon grains from sample HXT1 were analyzed, 57 of which are concordant with concordance within 90–110 percent (Table S1). Fifty-eight analyses yield 206Pb/238U ages of 421–489 Ma (Figs. 4a and 4c). Considering that the measuring points were on oscillatory zonings, the U–Pb ages should represent the crystalline age of zircons, and that the asymmetric distribution is caused by the captured zircons (Zhang et al., 2015; Du et al., 2017). The youngest group age of late Silurian gives a weighted mean age of 425 ± 4 Ma (MSWD = 0.04, n = 16), which is interpreted as the timing of the rhyolite eruption, whereas the remaining older ages reflect that continuous and multiple magmatic activities occurred in the study area from the early Ordovician to middle Silurian.

Twenty-seven spots were analyzed on 27 zircon grains from sample LS1, and the obtained 206Pb/238U ages are concordant or near concordant and range from 385 to 446 Ma (Figs. 4b and 4d). Similar to sample HXT1, the youngest group age of middle Devonian gives a weighted mean age of 390 ± 4 Ma (MSWD = 0.15, n = 12), which is interpreted as the timing of the rhyolite eruption. The re-
maining older ages reflect that continuous and multiple magmatic activities occurred in the study area from the late Ordovician to early Devonian.

Whole rock major and trace elements

Geochemically, the volcanic rocks in this study consist of dacite, rhyodacite and rhyolite as shown in the total alkalies versus SiO₂ (TAS) and Zr/Ti versus Nb/Y diagrams (Figs. 5a and 5b). The rocks contain SiO₂ = 69.06–74.90 wt%, K₂O + Na₂O (total alkaline) = 5.98–7.66 wt%, Al₂O₃ = 10.81–14.58 wt%, and Mg# = 37.51–47.24. In the K₂O versus SiO₂ diagram, these samples plot within the medium- and high-K calc–alkaline series (Fig. 5c). The A/NK and A/CNK values of all samples range from 1.03–1.65 and 0.93–1.34, respectively, and plot in the metaluminous and peraluminous fields in the A/NK versus A/CNK diagram (Fig. 5d).

All samples are characterized by enrichment of light rare elements (LREEs) and depletion of heavy rare earth elements (HREEs) [(La/Yb)N = 4.24–21.65, where the subscript N indicates normalized to chondrite] in the chondrite-normalized rare earth element diagram (Fig. 6a). They show weak negative Eu (δEu = 0.55–0.86) and Sr anomalies, which are thought to be caused by plagioclase fractionation, either in the solid residuum left by partial melting or via fractional crystallization (Green, 1994). In the primitive mantle normalized trace element spidergram, all samples show characteristics of enrichment of large ion lithophile elements (LILEs: e.g., Rb, Ba, Th, and U) and depletion of high field strength elements (HFSEs: e.g., Nb, Ta, P, and Ti) (Fig. 6b).
Hf isotopic composition

Hafnium isotope concentrations were collected for 17 zircon grains from sample HXT1 and 14 zircons from sample LS1 (Supplementary Table S5; available online from https://doi.org/10.2465/jmps.170708). The magmatic zircons from these samples have relatively homogeneous Hf isotopic compositions with initial $^{176}\text{Hf}/^{177}\text{Hf}$ ratios of 0.282674–0.282776, $\varepsilon_{\text{Hf}}(t)$ values of +4.92 to +8.76 and corresponding single-stage model ages (T_{DM1}) of 0.67–0.86 Ga and two-stage Hf model ages (T_{DM2}) of 0.84–1.09 Ga.

DISCUSSION

Ages of volcanic eruptions

Zircon crystals separated from the Fangniugou volcanic rocks are characterized by oscillatory growth zoning, high Th/U ratios (0.38–1.20), and magmatic REE patterns with positive Ce and negative Eu anomalies (Fig. 4), indicative of a magmatic origin. This indicates that the U-
Pb ages most likely represent the crystallization ages of the zircon grains. The zircon U–Pb dating undertaken during this study, together with the U–Pb ages of typical magmatic zircons from Taoshan meta-volcanic rocks (biotite schist and acidic ignimbrite) reported by Jiang et al. (2014a), indicates that the volcanic rocks in the Fangniugou area are products of at least two volcanic events, with one occurred during the late Silurian (~ 425 Ma), while the other one occurred during the middle Devonian (~ 390 Ma), rather than the late Ordovician or early Silurian as reported previously (Peng et al., 1979; JBGMR, 1988; Jia, 1994; Wu, 1994; Jiang et al., 2014b). Additionally, abundant zircon xenocrysts in these samples have ages of early Ordovician to middle Silurian, comparable to ages of recently recognized magmatic rocks (e.g., Zhangjiatuon tonalite and Xiaosuihe pyroxene andesite) in the adjacent area (Pei et al., 2016), although magmatic rocks forming at these phases are not exposed or have been destroyed at the present erosion level in the Fangniugou area.

Geochemical and isotopic constraints on petrogenesis of the volcanic rocks

The Fangniugou and Taoshan volcanic rocks are characterized by relatively high SiO₂ (68.45–74.90 wt%), Al₂O₃ (10.81–14.58 wt%) and low TiO₂ (0.13–0.55 wt%), MgO (1.38–2.23 wt%), and CaO (0.31–2.56 wt%). These rocks are metaluminous and peraluminous, with A/NK > 1.0 and A/CKN < 1.1 or close to 1.1 (except one 1.34). It is shown that Y and Th of these rocks positively correlate with Rb (Figs. 7a and 7b), P₂O₅ positively correlate with SiO₂, whereas Pb has a negative correlation with increasing SiO₂ (Figs. 7c and 7d). These features show affinity to I-type or A-type granites (Chappell and White, 1992; Li et al., 2007). In addition, the absence of mafic alkaline minerals (Fig. 3), together with relatively low contents of Zr, Nb, Y, La, Ce, Zn, and Ga, suggests that these rocks belong to I-type rather than A-type (Wu et al., 2003). These rocks are further characterized by low Mg₂# of 37.51–47.24 and TDM₂ model ages range from 1.09 to 0.84 Ga suggesting generation by partial melting of juve-
Figure 6. (a) Chondrite-normalized rare earth element patterns, (b) primitive mantle-normalized trace element spider diagram, (c) Sr/Y versus Y diagram (Defant and Drummond, 1990), and (d) (La/Yb)N versus YbN diagram (Martin et al., 2005). Chondrite and primitive mantle values are from Boynton (1984) and Sun and McDonough (1989), respectively. Symbols are as in Figure 5.

Figure 7. (a)-(b) Y versus Rb diagram, Th versus Rb diagram (Li et al., 2007) and (c)-(d) P2O5 versus SiO2 diagram and Pb versus SiO2 diagram (Chappell and White, 1992) showing that the rhyolitic rocks follow the trend of I-type. Symbols are as in Figure 5.
nile mafic crustal source rocks. This is supported by high ε_{Hf}(t) values varying from +4.92 to +8.76.

The Fangniugou and Taoshan volcanic rocks are medium- to high-K calc-alkaline rocks and enriched in LILs such as Cs, Rb, Th, and K with respect to the HFSEs, especially Nb, Ta, and Ti (Fig. 6b). Magmas with these chemical features are generally regarded to be generated in subduction-related environment or their protolith was produced in a subduction context (Rogers and Hawkesworth, 1989; Sajona et al., 1996; Hieu et al., 2016). In Sr/Y-Y and (La/Yb)_N-Yb_N diagrams, the late Silurian samples plot within the arc magmatic rocks field, whereas the middle Devonian samples plot within the adakite field (Figs. 6c and 6d). During the late Silurian-middle Devonian, the Y and Yb concentrations progressively decrease through time, accompanied by a commensurate increase in K₂O concentrations and (La/Yb)_N values (Figs. 5c, 6c, and 6d), indicating a process of crustal thickening, leaving a residue of garnet (Defant and Drummond, 1990; Castillo, 2006; Bao et al., 2017). This interpretation is also supported by the following lines of evidence. First, the regional unconformity between the late Silurian Xibiehe Formation, a molasse deposition of shallow marine facies, and the underlying early Paleozoic ophiolites and arc-island volcanic rocks and Caledonian granite implies that the continental crust accretion occurred during Caledonian in central Inner Mongolia (Zhang et al., 2010b). Second, the presence of early Paleozoic arc igneous rocks (Pei et al., 2016; Figs. 5–7) and the formation of early Devonian molasse in central Jilin Province suggest that early Paleozoic subduction and early Devonian collision occurred in this region (JBGMR, 1997). Third, the early Devonian Sandaogou alkaline complex of south Inner Mongolia and the late Devonian I–A-type rhyolites from Jifanggou Group of central Jilin Province formed in a post-collisional extensional environmental associated with collisional events along the northern margin of the NCC during the late early Paleozoic (Zhang et al., 2010a; Wang et al., 2015b). Fourth, the middle-late Devonian Wangjiagai Formation and Xiaosuixue Formation of central Jilin Province are composed mainly of marine clastic units and carbonate, which formed under a stable environment that related to a post-collisional extensional environment (JBGMR, 1988; Wang et al., 2015a). Fifth, the varied detrital zircon Hf isotopic compositions from the Devonian clastic rocks (e.g., Wangjiagai sandstone and Zhangjiatun rhyolitic breccias) of central Jilin Province imply two sources with ancient and juvenile features respectively (Fig. 8: Wang et al., 2015a; Pei et al., 2016). Therefore, we conclude that the Fangniugou area underwent a period of transition from subduction to collisional setting, and that the late Silurian rhyodacites were derived from partial melting of a depleted mafic lower crust in a subduction zone setting, whereas the middle Devonian rhyolites were derived from partial melting of a thickened lower crust, which was related to a collisional event.

Reworking of the crustal rocks to form the Fangniugou and Taoshan volcanic rocks perhaps took place during the Cambrian-Silurian as revealed by the large number of Cambrian-Silurian magmatic zircons from the samples. The crustal source rocks are probably dominant Mesoproterozoic in age as revealed by TDM2 model ages (1.09–0.84 Ga). This is totally compatible with the suggestion of Liu et al. (2010) that the Mesoproterozoic event is the magmatism for the formation of the protoliths of Phanerozoic igneous rocks in NE China.

Implications for early-middle Paleozoic tectonic evolution in Jilin Province

Zircon U–Pb ages for the Fangniugou volcanic rocks in this study, in combination with the previously published geochronological data, point to early-middle Paleozoic magmatism in the study area which produced the ~ 425 and ~ 390 Ma Fangniugou and Taoshan volcanic rocks. Such ages are comparable to the inferred ages of many igneous rocks along the Solonker–Xar Moron–Changchun–Yanji suture. Several papers have reported the occurrence of the early-middle Paleozoic magmatism along the Solonker suture in Inner Mongolia (Chen et al., 2000; Liu et al., 2003; Shi et al., 2005; Jian et al., 2008; Zhang...
and Jian, 2008; Xu et al., 2013; Qin et al., 2013). Early–middle Paleozoic magmatism that related to the subduction of the Paleo–Asian oceanic plate also was identified by SHRIMP/LA-ICP-MS U–Pb zircon concordia ages and whole-rock geochemistry of igneous rocks along the Changchun–Yanji suture in central Jilin Province and the Yanbian area (Fig. 9: Jiang et al., 2014a; Pei et al., 2016; Wang et al., 2016). In addition, the depleted mantle model ages (TDM2) obtained from zircon Hf isotopes indicate a crustal formation event during the Meso–Neoproterozoic in the study area. Zircon U–Pb age and geochemical characteristics of the Fangniugou and Taoshan volcanic rocks from our study suggest the presence of subduction-related magmatism during the late Silurian, followed by a collisional event during the middle Devonian in the region. This coincides with conclusion of Xiao et al. (2003), Pei et al. (2016) and Wang et al. (2016) that during the Cambrian–Silurian, the region along the Soloňker–Xar Moron–Changchun–Yanji suture was characterized by active continental margin tectonics, followed by an arc–continental collision during the middle Paleozoic (Xiao et al., 2009; Jian et al., 2008; Li et al., 2014).

CONCLUSION

The LA–ICP-MS zircon U–Pb dating indicates that the Fangniugou volcanic rocks in Jilin Province, NE China are products of at least two volcanic events (~ 425 and 390 Ma). These ages, together with previously reported U–Pb ages in the region, point to the existence of early–middle Paleozoic magmatism in Jilin Province along the Changchun–Yanji suture. The Fangniugou and Taoshan volcanic rocks belong to medium- to high-K calc-alkaline series and display features of I-type granites of subduction–related igneous rocks. Geochemical and Hafnium isotope characteristics suggest that the late Silurian rocks were generated by partial melting of a depleted mafic lower crust in a subduction zone setting, whereas the middle Devonian rocks were derived from partial melting of a thickened lower crust, which was related to a collisional event. The lower crusts are probably Meso–Neoproterozoic in age as identified by depleted mantle model (TDM2) ages.

ACKNOWLEDGMENTS

We are indebted to two anonymous reviewers, whose insightful and constructive reviews have greatly improved the paper. We thank the staff of the State Key Laboratory of Continental Dynamics, Northwest University, Xi’an, China, for their advice and assistance during zircon U–Pb and Hf-isotopic dating. We appreciate the Supervision and Inspection Center of Mineral Resources, the Ministry of Land and Resources of Jinan, China, for their assistance in the major and trace element analysis. This study was financially supported by the National Natural Science Foundation of China (Grants no. 41372108 and 41602110), Taishan Scholar Talent Team Support Plan for Advanced & Unique Discipline Areas, Major Scientific and Technological Innovation Projects of Shandong Prov-
Gehrels, G.E. (1998) The enigmatic Yinshan fold-and-thrust belt of northern China: new views on its intraplate contractional styles. Geology, 26, 43-46.

Defant, M.J. and Drummond, M.S. (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347, 662-665.

Du, Q.X., Han, Z.Z., Shen, X.L., Gao, L.H., Han, M., Song, Z.G., Li, J.J., Zhong, W.J., Yan, J.L. and Liu, H. (2017) Geochemistry and geochronology of Upper Permian–Upper Triassic volcanic rocks in eastern Jilin Province, NE China: implications for the tectonic evolution of the Palaeo-Asian Ocean. International Geology Review, 59, 368–390.

Green, T.H. (1994) Experimental studies of trace-element partitioning applicable to igneous petrogenesis at Sedona 16 years later. Chemical Geology, 117, 1–36.

Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., van Achterbergh, E., O’Reilly, S.Y. and Shee, S.R. (2000) The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64, 133-147.

Han, Z.Z., Song, Z.G., Gao, L.H., Han, M., Guo, Z.P., Zhong, W.J., Li, J.J., Ding, Q.X., Yan, J.L. and Liu, H. (2017) Late Paleozoic volcanic events and their tectonic significance of “Daheishan Horst” in Jilin, China. Earth Science Frontiers, 24, 186-201 (in Chinese with English abstract).

Hieu, P.T., Dung, N.T., Thuy, N.T.B., Minh, N.T. and Minh, P. (2016) U-Pb ages and Hf isotopic composition of zircon and bulk rock geochemistry of the Dai Loc granitoid complex in Kontum massif: Implications for early Paleozoic crustal evolution in Central Vietnam. Journal of Mineralogical and Petrological Sciences, 111, 326-336.

Hoskin, P.W.O. and Ireland, T.R. (2000) Rare earth element chemistry of zircon and its use as a provenance indicator. Geology, 28, 627-630.

Hoskin, P.W.O. and Schaltegger, U. (2003) The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53, 27-62.

Irvine, T.H. and Baragar, W.R.A. (1971) A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8, 523-548.

Jackson, S.E., Pearson, N.J., Griffin, W.L. and Belousova, E.A. (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in-situ U-Pb zircon geochronology. Chemical Geology, 211, 47-69.

JBGMR (Jilin Bureau of Geography and Mineral Resources) (1988) Regional Geology of Jilin Province. Geological Publishing House, Beijing, 1–698 (in Chinese with English abstract).

JBGMR (Jilin Bureau of Geography and Mineral Resources) (1997) Stratigraphy (Lithosrat) of Jilin Province. China University of Geosciences Press, Wuhan, 1-324 (in Chinese).

Jia, D.C. (1994) The petrochemical characteristics of the early Palaeozoic island arc rock series and its evolution in the Fanguigou area of Yitong County, Jilin Province. Jilin Geology, 13, 29-38 (in Chinese with English abstract).

Jia, D.C., Hu, R.Z., Lu, Y. and Qiu, X.L. (2004) Collision belt between the Khanka block and the North China block in the Yanbian Region, Northeast China. Journal of Asian Earth Sciences, 23, 211-219.

Jian, P., Liu, D.Y., Krönner, A., Windley, B.F., Shi, Y.Y., Zhang, F.Q., Shi, G.H., Miao, L.C., Zhang, W., Zhang, Q., Zhang, L.Q. and Ren, J.S. (2008) Time scale of an early to mid-Palaeozoic orogenic cycle of the long-lived Central Asian Oroc-
Geochronology and geochemistry of Fangniugou and Taoshan volcanics

Ludwig, K.R. (2003) User manual for ISOPLOT 3.00: a geochronological toolkit for microsoft excel. Berkeley Geochronology Centre Special Publication 4, 1-70.

Maniar, P.D. and Piccoli, P.M. (1989) Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101, 635-643.

Martin, H., Smith, R.H., Rapp, R., Moyen, J.F. and Champion, D. (2005) An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sialidot: relationships and some implications for crustal evolution. Lithos, 79, 1-24.

Meng, Q.R. (2003) What drove late Mesozoic extension of the northern China-Mongolia tract? Tectonophysics, 369, 155-174.

Pecceirollo, A. and Taylor, A.R. (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 88, 63-81.

Pei, F.P., Zhang, Y., Wang, Z.W., Cao, H.H., Xu, W.L., Wang, Z.J., Wang, F. and Yang, C. (2016) Early-Middle Paleozoic subduction-collision history of the south-eastern Central Asian Orogenic Belt: Evidence from igneous and metasedimentary rocks of central Jilin Province, NE China. Lithos, 261, 164-180.

Peng, Y.J. and Xie, J. (1979) Discovery and geological significance of early Silurian granitoid formation in the taoshan area of Yitong county, Jilin Province, Jilin Areal Geology 3, 1-15 (in Chinese with English abstract).

Qin, Y., Zhang, Y.H., Xing, J.L., Zhang, Q.W. and Liu, C.X. (2013) The identification of Early Paleozoic O-type adakitic rocks in Zhengxiangbaiqai area, Inner Mongolia and its significance. Earth Science Frontiers, 20, 106-114 (in Chinese with English abstract).

Rogers, G. and Hawkesworth, C.J. (1989) A geochronal traverse across the North Chinese Andes: evidence for crust generation from the mantle wedge. Earth and Planetary Science Letters, 91, 271-285.

Rudnick, R.L. and Gao, S. (2003) The composition of the continental crust. In The Crust (Rudnick, R.L. Ed.). Elsevier-Pergamon, Oxford, 1-64.

Rudnick, R.L., Gao, S., Ling, W.L., Liu, Y.S. and McDonough, W.F. (2004) Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton. Lithos, 77, 609-637.

Safran, F.G., Maury, R.C., Bellon, H., Cotton, J. and Defant, M. (1996) High field strength elements of Plio-Pleistocene island-arc basalts Zambanga Peninsula, Western Mindanao (Philippines). Journal of Petrology, 37, 693-726.

Sengor, A.M.C., Natal‘in, B.A. and Burttman, V.S. (1993) Evolution of the Altai tectonic collage and Palaeozoic crustal growth in Eurasia, Nature, 364, 299-307.

Shi, Y.R., Liu, D.Y., Zhang, Q., Jian, P., Zhang, F.Q., Miao, L.C., Shi, G.H., Zhang, L.Q. and Tao, H. (2005) SHRIMP dating of the Baiyinbaolidao adakitic rocks in southern Suzuoqi, Inner Mongolia. Acta Petrologica Sinica, 21, 143-150 (in Chinese with English abstract).

Sun, S.S. and McDonough, W.F. (1989) Chemical and isotopic systems of oceanic basalts: implications for mantle composition and processes. In Magmatism in Ocean Basins (Saunders, A.D. and Norry, M.J. Eds.). Geological Society, 42, Special Publications, London, 313-345.

Tang, J., Xu, W.L., Wang, F., Wang, W., Xu, M.J. and Zhang, Y.H. (2013) Geochronology and geochemistry of Neo-proterozoic magmatism in the Erguna Massif, NE China: Pterogenesis and implications for the breakup of the Rodinia supercontinent. Precambrian Research, 224, 597-611.

Van Achterbergh, E., Ryan, C.G., Jackson, S.E. and Griffin, W.L. (2001) Data reduction software for LA-ICP-MS. In Laser-ablation-ICP-MS Spectrometry in the Earth Sciences: Principles and Applications (Sylvestre, P.J. Ed.). Mineralogical Association of Canada, MAC Short Course Series, Ottawa, Ontario, 29, 239-243.

Wang, Z.J., Xu, W.L., Pei, F.P., Wang, Z.W. and Li, Y. (2015a) Geochronology and provenance of detrital zircons from late Palaeozoic strata of central Jilin Province, Northeast China: implications for the tectonic evolution of the eastern Central Asian Orogenic Belt. International Geology Review, 57, 211-228.

Wang, Z.W., Pei, F.P., Xu, W.L., Cao, H.H. and Wang, Z.J. (2015b)
Geochronology and geochemistry of Late Devonian and early Carboniferous igneous rocks of central Jilin Province, NE China: Implications for the tectonic evolution of the eastern Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 97, 260-278.

Wang, Z.W., Pei, F.P., Xu, W.L., Cao, H.H., Wang, Z.J. and Zhang, Y. (2016) Tectonic evolution of the eastern Central Asian Orogenic Belt: Evidence from zircon U-Pb-Hf isotopes and geochemistry of early Paleozoic rocks in Yanbian region, NE China. Gondwana Research, 38, 334-350.

Wilde, S.A. and Zhou, J.B. (2011) Geochronology of the Phanerozoic continental growth, and metallogeny and petrogenesis of the post-orogenic Cu-Ni sulfide-bearing mafic-ultramafic complexes in Jilin Province, NE China. Journal of Asian Earth Sciences, 23, 781-797.

Wu, F.Y.,itive granitoids from north Damaoqi, Inner Mongolia. Acta Geologica Sinica, 82, 778-787 (in Chinese with English abstract).

Wang, H.L., Sun, M., Sun, S. and Li, J.L. (2009) End-Triassic termination of the accretionary processes of the southern Altaids: implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. International Journal of Earth Sciences, 98, 1189-1217.

Xiao, W.J., Windley, B.F., Sun, S., Li, J.L., Huang, B.C., Han, C.M., Yuan, C., Chen, H.L., Sun, M., Sun, S. and Li, J.L. (2009) End-Permian to mid-Triassic termination of the accretionary processes of the southern Altai: implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. International Journal of Earth Sciences, 98, 1189-1217.

Xiao, W.J., Windley, B.F., Sun, S., Li, J.L., Huang, B.C., Han, C.M., Yuan, C., Sun, S., and Chen, H.L. (2015) A tale of amalgamation of three Permo-Triassic collage systems in central Asia: oroclines, sutures, and terminal accretion. Annual Review of Earth and Planetary Sciences, 43, 477-507.

Xu, B., Charvet, J., Chen, Y., Zhao, P. and Shi, G.Z. (2013) Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): framework, kinematics, geochemistry and implications for tectonic evolution of the Central Asian Orogenic Belt. Gondwana Research, 23, 1342-1364.

Xu, P., Wu, F.Y., Xie, L.W. and Yang, Y. (2004) Hf isotopic compositions of the standard zircons for U-Pb dating. Chinese Science Bulletin, 49, 1642-1648.

Yuan, H.L., Gao, S., Liu, X.M., Li, H.M., Günter, D. and Wu, F.Y. (2004) Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 28, 353-370.

Zhang, J.J., Wang, T., Zhang, L., Tong, Y., Zhang, Z.C., Shi, X.J., Gao, L., Huang, H., Yang, Q.D., Huang, W., Zhao, J.X., Ye, K. and Hou, J.Y. (2015) Tracking deep crust by zircon xenocrysts within igneous rocks from the northern Alxa, China: Constraints on the southern boundary of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 108, 150-169.

Zhang, W. and Jian, P. (2008) SHRIMP dating of early Paleozoic granitoids from north Damaoqi, Inner Mongolia. Acta Geologica Sinica, 82, 778-787 (in Chinese with English abstract).

Zhang, X.H., Zhang, H.F., Jiang, N., Zhai, M.G. and Zhang, Y.B. (2010a) Early Devonian alkaline intrusive complex from the northern Alxa, China: a petrological monitor of post-collisional tectonics. Journal of the Geological Society, 167, 717-730.

Zhang, Y.B., Wu, F.Y., Wilde, S.A., Zhai, M.G. and Zhang, Y.B. (2008) SHRIMP dating of early Paleozoic granitoids at Yanbian, Jilin Province, northeastern China. Journal of Asian Earth Sciences, 30, 542-556.

Manuscript received July 8, 2017
Manuscript accepted November 20, 2017
Manuscript handled by Jun-Ichi Kimura