Genetic of Alzheimer's Disease: A Narrative Review Article

*Mohammad KHANAHMADI, Dariush D.FARHUD, Maryam MALMIR

1. Dept. of Clinical Psychology, Allame Tabatabai University, Tehran, Iran
2. School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
3. Dept. of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran
4. Dept. of Exceptional Children Psychology, Science & Research Branch, Islamic Azad University, Tehran, Iran

*Corresponding Author: Email: m.khanahmadi80@gmail.com

(Received 19 Nov 2014; accepted 20 Apr 2015)

Abstract

Background: Alzheimer's disease (AD) is one of the most common problems for old peoples. Etiology of AD is not clear, but genetic factors play a major role in determining a person's risk to develop AD. Twin and family studies confirm that AD has a genetic basis. AD genetics has been split into two broad categories: early-onset and late-onset. EO-AD cases are inherited in an autosomal dominant pattern. In this form, dominant mutations in genes like APP, PSEN-1 and PSEN-2 associated with AD. This study aimed to consider the role of genetic in AD.

Method: At the first, most of the references in relation with genetic basis of AD searched from the following websites: PubMed, Science direct, Wiley & Sons (1995-2014). Then, the most common genes and their affects described briefly.

Results: Aging is the most obvious risk factor for developing AD. There is a genetic basis for AD, of course this relation is not complete but it is significant.

Conclusion: More than thousand genes studied in relation with Alzheimer's disease. Against the improvements in understanding different aspects of AD, the accurate genetic foundation of AD remain unclear.

Keywords: Alzheimer's disease (AD), Early-onset type (EOAD), Late-onset type (LOAD), Genetic factors

Introduction

Several factors lead to dementia. Alzheimer’s disease (AD) is the most common form of dementia (1). AD is the common form of neurodegenerative disease and the sixth leading cause of death in the elderly (2). AD includes two thirds of all dementia (3, 4). AD is a progressive and an age dependent disease (prevalence of AD increase with advancing age) that leads to the irreversible loss of neurons, particularly in the cortex and hippocampus (5). The clinical factors present progressive impairment in memory, judgment, decision making, orientation to physical surroundings, and language. AD affects about 15 million people around the world and by 2040. It is expected to rise to 80 million (6). About 10 percent of all people above 65 years and 50 percent above 85 years of age suffer from AD (7). Evaluation of the prevalence of AD differs according to the diagnostic criteria, the age of the population surveyed, and other factors like; geography and ethnicity (8, 9). Excluding persons with clinically questionable dementia, Alzheimer’s disease consists 1 percent among those 65 to 69 years of age. In addition, prevalence increases with age to 40 - 50 percent among persons 95 years of age and over (8). The mean age at the onset of dementia is around 80 yr (3). All findings indicate that AD increases with age and it progresses more differently in different cases. AD is a complex disease caused by a combination of age, genetic, and environmental factors. These factors trigger or increase the risk of developing
AD (10). There is not a clear causal factor for AD. The pathological factors of AD are; the existence of dense intraneuronal neurofibrillary tangles (composed of hyperphosporylated Tau protein) and extracellular amyloid plaques. Epidemiological researches show that increasing age and a positive family history of dementia are the definite risk factors for AD (7). Having an AD affected mother causes a greater risk than having an AD affected father (11). Women are at greater risk of developing AD and this has been correlated to postmenopausal estrogen decline (12). Cardiovascular disease patients and individuals with history of head injury show higher AD risk than normal controls. As it above described, there are many risk factors and no one is sufficient and enough. A family history of AD in the first degree relatives leads to a positive correlation with a fourfold increase in risk in developing the Alzheimer’s disease. It stated that there is a genetic basis in AD pathogenesis (13). The risk of AD increases with an affected first degree relatives (7).

Numerous genes that affect the risk of developing dementia have been identified and the biological systems of the disease are now beginning to be understood. Historically, AD genetics has been divided into two categories. First, rare autosomal dominant forms of the disease, typically of Early Onset AD (EOAD) (< 65 years); and second, the more common form of Late Onset AD (LOAD). LOAD as the most common form of AD (90 percent) in the population occurs individually and is initiated late in life (14). Therefore, this study aimed to consider the considerable genes that affect Alzheimer’s disease.

Methods

At first, most of the researches about "genes in AD" were searched from the following websites: PubMed, Science direct, Wiley & sons (1195-2014). Then, according to the existing researches, AD was divided into two parts: Early onset AD and late onset AD. Finally the genes based on each category were described.

Results

Early Onset Alzheimer Disease (EOAD)

EOAD only accounts for less than 10% of all people with AD, but clear genetic foundations have been shown to cause EOAD. In other word, there is a clear genetic ground for EOAD. According to the previous studies, associated genes with EOAD introduced separately:

Amyloid precursor protein (APP)

Down syndrome patients develop the clinical and pathological factors of AD when they live over 30 years then, chromosome 21 as a risk factor of AD is more investigated (14). The code of gene for the amyloid β precursor protein (βAPP) is localized on chromosome 21 in the region 21q11.2-q213 (15). This discovery helped researchers established association between APP gene and AD. The genes causing EOAD are shown in Table 1.

Gene	Protein	Location	Mutations	Molecular effects/pathogenic relevance
APP	Amyloid β-protein precursor	21q21	32	Increase in Aβ production or Aβ42/Aβ40 ratio
PSEN1	Presenilin 1	14q24	182	Increase in Aβ42/Aβ40 ratio
PSEN2	Presenilin 2	1q31	14	Increase in Aβ42/Aβ40 ratio

Both APP and Aβ are normal neuronal protein products. Aβ is produced by the sequential proteolytic activities known as γ-secretase and β-secretase. β-Secretase is known as β-site APP-cleaving enzyme1 (16). The γ-secretase function seems to originate from a transmembrane protein complex not only a single enzyme (17). Following β-secretase cleavage of APP, the function of γ-
secr etase produces the Aβ peptide that normally ranges from 38 to 43 amino acids in length. α-secretase as a third enzyme, is involved in normal APP processing. The cleavage local for α-secretase lies within the Aβ sequence and leads to non-amyloidogenic products.

All determined mutations in APP lie within β- or γ- secretase cleavage sites and they are showed in cell culture researches and transgenic mice to increase cleavage at these sites (18), that leads to an increased production of Aβ and Aβ 42 (amyloidogenic form of the peptide) (19, 20). Amyloid plaques include extracellular deposits of Aβ peptide.

Presenilin 1 & Presenilin 2

According to discovery of various pathogenic mutations in APP, it would be clear that APP mutations only explain small part of EOAD (21). Only 1 year after the discovery of the first APP mutation, another AD linkage region, at 14q24, is presented by four independent researches (22, 23). Three years later, researcher found the responsible gene (PSEN1) and determine the first mutation that causing AD (21). PSEN1 plays a vital role in mediating intra membrane and it encodes a highly conserved polytopic membrane protein (24). Mutations of PSEN1 result in advanced generation of Aβ 42 from APP. The increased rate of Aβ 42/Aβ 40 presents that the mutations alter the position of the γ-secretase cleavage of APP (25).

The PSEN1 gene includes 10 protein-coding exons. It also consists of 2 to 3 additional exons encoding the 5'-untranslated sites. Alternative splicing of exon-8 in this gene has been stated (21). The major RNA transcripts of PSEN1 gene are 2.7 and 7.5 kb. These are expressed in various locals of the human brain, skeletal muscle, kidney, pancreas, placenta and heart. The PSEN1 is a serpentine protein that includes 467 amino acids with nine transmembrane domains. This protein is cited in the nuclear envelope, endoplasmic reticulum and Golgi apparatus in mammalian cells (26).

PSEN2 is discovered soon after PSEN1 based on the existing data. PSEN2 (protein: PS2) is similar to PSEN1 at the genomic and protein level (27). This gene has been discovered to be sited on chromosome 1q. Mutations in PSEN2 will be resulted in LOAD. In comparing with APP or PSEN1 mutations, the disease will be progressed slowly.

The PSEN-2 gene includes 10 protein-coding exons and two other exons encoding the 5'-untranslated site. The PSEN-2 is also a serpentine protein that includes 448 amino acids with 6-9 transmembrane domains. In structure, the PSEN-2 is similar to PSEN-1, but the mutations are located in different codons in compare with the PSEN-1.

It is stated that about 1/3 of dominantly inherited AD cases are not related with discovered mutations in either the APP or PSEN genes. It implies the existence of further disease loci (28).

Tau

In 1980s, various researches discovered that the main protein combining neurofibrillary tangles (NFTs) was the microtubule-associated protein (tau) (29-31). Tau is one of the microtubules associated proteins that are considered to have an important role in the stabilization of neuronal microtubules. NFTs are accumulation of filamentous tau polymers that consist of a portion of the fibrilar pathologies in AD. The frequent tau capacities are not limited to AD only, but they are also characteristic of frontotemporal dementias, progressive supranuclear palsy and corticobasal degenerations.

Finding out of mutations in the tau gene is connected to chromosome 17 (FTDP-17) in familial frontotemporal dementia. It has thrown light on AD mechanisms (32). Tau is a phosphoprotein. It found in neurons in the peripheral and central nervous system where it is linked with microtubule binding and assembly in axons that are necessary for axoplasmic transport (33).

A few of tau isoforms are resulted from a single gene by alternative mRNA splicing. Tau has six main isoforms in the human brain (around 352 and 441 amino acid residues). It differs by having 3 or 4 semi-conserved repeats of 31 residues in the MT-binding assembly domain and 0-2 insertions in the N-terminal projection domain (34, 35). They differ from each other by the presence or
absence of three axons. The longest human brain tau isoform has 11 axons (36, 37). Tau plays a clear role in AD, but the mechanisms of tau that produce dysfunction and death of neurons remain incompletely understood.

Late Onset Alzheimer Disease
There are several genes that investigated in relation with late onset Alzheimer disease. Twenty important genes associated with Alzheimer disease are shown in Table 2. The important involved genes are described in below.

Table 2: Twenty important genes associated with Alzheimer Disease (49)

Gene symbol	Description	Category	Gene ID	
1	APP	Amyloid beta (A4) precursor protein	Protein-coding	GC21M027252
2	COL25A1	Collagen, type XXV, alpha 1	Protein-coding	GC04M109731
3	BPTF	Bromodomain PHD finger transcription factor	Protein-coding	GC17P065821
4	PSEN1	Presenilin 1	Protein-coding	GC14P073603
5	PSEN2	Presenilin 2	Protein-coding	GC01P227058
6	CLSTN1	Calsyntenin 1	Protein-coding	GC01M009789
7	APOE	Apolipoprotein E	Protein-coding	GC19P045408
8	GSK3B	Glycogen synthase kinase 3 beta	Protein-coding	GC05M119540
9	CHAT	Choline O-acetyltransferase	Protein-coding	GC10P050817
10	APBB1	Amyloid beta (A4) precursor protein-binding, family B, member 1 (Fe65)	Protein-coding	GC11M006414
11	PSENEN	Presenilin enhancer gamma secretase subunit	Protein-coding	GC19P036236
12	LRP1	Low density lipoprotein receptor-related protein 1	Protein-coding	GC12P057497
13	NCSTN	Nicastrin	Protein-coding	GC01P160313
14	CDK5R1	Cyclin-dependent kinase 5, regulatory subunit 1 (p35)	Protein-coding	GC17P030813
15	GSK3A	Glycogen synthasekinase 3 alpha	Protein-coding	GC19M042734
16	CASP3	Caspase 3, apoptosis-related cysteine peptidase	Protein-coding	GC04M185548
17	APBA1	Amyloid beta (A4) precursor protein-binding, family A, member 1	Protein-coding	GC09M072042
18	APBA2	Amyloid beta (A4) precursor protein-binding, family A, member 2	Protein-coding	GC15P029213
19	CASP2	Caspase 2, apoptosis-related cysteine peptidase	Protein-coding	GC07P142985
20	MAPT	Microtubule-associated protein tau	Protein-coding	GC17P043971

Apolipoprotein E (APOE)
APOE denotes gene and apoE denotes protein. APOE is a protein with roles in lipid metabolism and tissue repair. APOE has been reported to mediate neuronal protection, repair and remodeling through a number of mechanisms that include antioxidant effects, interactions with estrogen and modulation of synaptodendritic proteins. Three different APOE alleles (e2, e3 and e4) found in human brain that lead to three common isoforms (e2, e3 and e4) with frequencies of 7 percent, 78 percent and 15 percent, respectively (38). In most old adults the e3 allele is the most frequent, while e4 occurs more often slightly than e2 (39). APOE e4 allele is a major risk factor for AD and also overshadows the genetic susceptibility to the effects of several forms of brain injury (40,41). A study by Teasdale et.al (42) showed that individuals with history of head injury had a poor initial response than non-APOE e4 individuals. The largest study gathered data from 43 studies about APOE and AD. It involves information from 5930 AD patients and 8607 controls without dementia (11). Increasing e4 alleles in relation with dose - dependent increase was reported in this study. Findings have been supported by more recent meta-analysis that using largely overlapping data taken from the AlzGene database (43). De-
spite, the frequency of e4 allele in the general population, a few AD patients investigated with the APOE e2 allele (44). It can be concluded that APOE e2 allele is protective against the development of dementia (11, 43-45). The strength of the relationship varies among epidemiological studies. The APOE e4 allele is found to be neither necessary nor sufficient to cause AD.

Dynamin (DNM)

Another gene, DNM2 has been found in some studies to be related to LOAD in a Japanese population. However, the relation has been stated to be especially significant in subjects with non-APOE e4 carriers (46). In non-APOE e4 carriers two SNPs have been reported to be associated with LOAD, β-amyloid, which is stored in the AD brain interacts with dynamin 1 gene. DN2 gene is homologous to dynamin 1 and is located on chromosome 19p13.2 where a susceptibility region has been detected by linkage analysis. Expression of DNM2 as well as DNM1 is down regulated by β-amyloid in hippocampal neurons (47), suggestive of the involvement of dynamin proteins in the cascade of neurodegeneration caused by β-amyloid. Dynamin binding protein (DNMBP) gene cited on chromosome 10 has also been related to LOAD (48). Nevertheless, the mechanism by which the DNM2 gene causes the disease is not clear. Researchers have reported a decrease in the expression of hippocampal DNM2 mRNA, but it is not clear whether the decrease in the DNM2 expression is the cause or outcome of AD.

Associated chromosomes with AD

According to the data gathered from genome-wide linkage analysis and linkage disequilibrium studies, several studies have reported presence of candidate genes on multiple chromosomes, with highest Likelihood of Disease (LOD) score on chromosomes 12, 10, and 9. Among all the chromosomes, the linkage on chromosome 10, which has been presented in a number of non-overlapping samples, is the most prominent (49-52). Relation to chromosome 10q was expressed in a two-stage genome scan that involving 429 affected sibling pairs with probable or definite AD (53, 54). Significant signs about susceptibility region was identified on chromosome 10q21.2, with the most likely location of a risk gene at 78 cM. The study by Hamshere et al. did not show signs for a second locus on chromosome 10q25 - 26 as reported elsewhere (46, 50, 55).

Associations with chromosome 9 were described by Pericak - Vance and colleagues, firstly (56). They determined a high multipoint LOD score of 4.3 around 9p22.1 when limiting their analysis to sibling pairs with autopsy - confirmed AD. In addition, other researches determine that relation with this region is strongest in families with a minimum age of onset between 60-75 years (57). Practical support for this is complex. Some studies have showed evidences for a gene (or genes) in this region (52-54), while others have not (50, 51, 58).

Family and twin studies in AD

Twin studies aim to determine the genetic heritability of late - onset AD. Raiha et al. (59) performed a population - based study by using Finnish twins. Among 13,888 pairs, they found that the pair wise concordance among monozygotic (MZ) twins were 31 percent in compare with 9 percent among dizygotic (DZ) pairs. Swedish study of dementia on twins reported findings from twins who were developed apart, and a control group of pairs who were grew up together (60). The concordance rate for MZ twins for AD was 67 percent in compare with 22 percent among DZ twins, resulting in a heritability estimate of between 75% and 85%.

Series of studies performed to indicate the proportion of AD risk attributable to genetic factors. The studies expressed that combination of environmental and genetic risk factors increase susceptibility to LOAD. Totally, the risk of AD for individuals with history of first degree relatives is around 32% and 49%, approximately two to four times more than control groups (61-64).

In Table 3 a summary of findings on potential risk factors for AD is showed (65).
Table 3: Summary of potential risk factors for AD

Direction of association	Factors	Level of evidence
Increased risk	• APOE e4 genotype	Moderate
	• Conjugated equine estrogen with methyl progesterone	
	• Some non-steroidal anti-inflammatory drugs*	Low
	• Depressive disorder	
	• Diabetes mellitus	
	• Hyperlipidemia in mid-life	
	• Traumatic brain injury in males	
	• Pesticide exposure	
	• Never married, less social support	
	• Current tobacco use	
Decreased risk	• Mediterranean diet	Low
	• Folic acid	
	• HMG-CoA reductase inhibitors (statins)	
	• Higher levels of education	
	• Light to moderate alcohol intake	
	• Cognitively engaging activities	
	• Physical activity, particularly high levels	
No association	• Vitamin E	Moderate
	• Cholinesterase inhibitors*	
	• Anti-hypertensive medication	Low
	• Conjugated equine estrogen	
	• Omega-3 fatty acids	
	• Vitamins B12, C, beta-carotene	
	• Homocysteine	
	• Hypertension	
	• Obesity	
	• Metabolic syndrome	
	• Early childhood factors	
	• Occupational level	
	• Lead	
Inadequate evidence to assess association	• Saturated fat intake	Not applicable
	• Fruit and vegetable intake	
	• Trace metals	
	• High caloric intake	
	• Memantine	
	• Sleep apnea	
	• Anxiety disorders	
	• Resiliency	
	• Non-cognitive, non-physical leisure activities	
	• Agent Orange, Gulf War Syndrome	
	• Solvents, aluminum	
	• Genetic factors other than APOE	

Conclusion

Aging is the most obvious risk factor for developing AD. Moreover, several other possible biological (like; genetic alterations and polymorphisms, and abnormal immune or inflammatory responses) and environmental factors (like; education, traumatic injury, oxidative stress, drugs, and hormone...
Family and twin studies indicated that there is a genetic basis for AD, of course this relation is not complete but it is significant. Therefore, studies looked a specific gene for AD. Genes involved in these processes, including APP, Presenilin1, Presenilin1/2, APOE, DNM, and Tau and so on, play important roles in AD initiation and progression. Moreover, the progression of AD is so important. Therefore, the Alzheimer's disease progression is showed in Fig. 1.

Fig. 1: The Alzheimer's disease progression (68)

This diagram shows how AD-related changes may occur in the brain before symptoms of cognitive decline first appear in people with mild cognitive impairment (MCI). The curves show the sequence in which specific markers may play a role as people progress from normal cognition, to MCI, and to dementia. This model explains that in typical LOAD, tau changes may begin before amyloid changes, but that amyloid changes occur faster and are the first ones detectable. It suggests that amyloid accumulation drives of progression tau and other downstream events in the disorder (68). Despite the improvements in understanding different aspects of AD, the accurate risk factors of AD remain unclear. All of the findings that mentioned above are not generalized to all patients but included specific patients and none of theories alone is sufficient to explain the diversity of biochemical and pathological abnormalities of AD.

Ethical Consideration

Ethical issues (Including plagiarism, informed consent, misconduct, data fabrication and/or falsification, double publication and/or submission, redundancy, etc.) have been completely observed by the authors.

Acknowledgements

Iranian Academy of Medical Sciences, Tehran, Iran supported financially this study. The authors declare that there is no conflict of interests.

References

1. Nussbaum RL, Ellis CE (2003). Alzheimer’s disease and Parkinson’s disease. *N Engl J Med*, 348:1356-64.
2. Sparks DL, Sabbagh MN, Connor DJ, Lopez J, Launer LJ, Browne P, et al. (2005). Atorvas-
tamin for the treatment of mild to moderate Alzheimer Disease: Preliminary results. *Arch Neurol*, 62, 753 – 757.

3. Helmer C, Joly P, Letteineur L, Commenges D, Dartigues JF (2001). Mortality with dementia: results from a French prospective community-based cohort. *Am J Epidemiol*, 154: 642-8.

4. Aronson MK, Ooi WL, Geva DL, Masur D, Blau A, Frishman W (1991). Dementia: age dependent incidence, prevalence, and mortality in the old. *Arch Intern Med*, 151:989-92.

5. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM.(1984). Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. *Neurology*, 34:939-44.

6. Ferri CP, Prince M, Brayne C (2005). Global prevalence of dementia: a Delphi consensus study. *Lancet*, 366: 2112-7.

7. Turner RC (2006). Alzheimer’s disease. *Seminars in Neurol*, 26:499-506.

8. Hy LX, Keller DM.(2000). Prevalence of AD among whites: a summary by levels of severity. *Neurology*, 55: 198-204.

9. Hendrie HC, Ogunniyi A, Hall KS (2001). Incidence of dementia and Alzheimer disease in 2 communities: Yoruba residing in Ibadan, Nigeria, and African Americans residing in Indianapolis, Indiana. *JAMA*, 285:739-47.

10. Khanahmadi M, Malmir M, Farhoud DD (2014). Nutrition and its effect on Alzheimer's disease. Nutrition and Health, (in press)

11. Edland SD, Silverman JM, Peskind ER, Tsuang DJ, Wijsman E, Morris JC (1996). Increased risk of dementia in mothers of Alzheimer's disease cases: evidence for maternal inheritance. *Neurology*, 47:254-6.

12. Farrer LA, Cupples LA, Hainer JL (1997). Effect of age, sex and ethnicity on the association between apolipoprotein E genotype and Alzheimer's disease. A Meta-analysis consortium. *JAMA*, 278:1349-56.

13. Larson T, Sjogren T, Jacobson G.(1963). Snile dementia: a clinical sociomedical and genetic study. *Acta Psychiatr Scand*, 167(suppl.):1-259.

14. Hollingworth P, Williams J (2011). *Genetic risk factors for dementia*. Edited by Andrew EB & Neil WK, Blackwell publishing. p. 197-234.

15. Capone CT (2001). Down syndrome: Advances in molecular biology and the Neurosciences. *J Develop Behav*, 22:40-59.

16. Stockley JH, O'Neill C (2007). The proteins BACE1 and BACE2 and β-secretase activity in normal and Alzheimer's disease brain. *Biochem Soc Trans*, 35:574–576.

17. Verdile G, Gandy SE, Martins RN (2007). The role of presenilin and its interacting proteins in the biogenesis of Alzheimer’s beta amyloid. *Neurochem Res*, 32:609–623.

18. Lendon CI, Ashall F, Goate AM (1997). Exploring the etiology of Alzheimer disease using molecular genetics. *J Am Med Ass*, 277 (10), 825 – 831.

19. Citron M, Oltersdorf T, Haass C, McConlogue L, Hung AY, Seubert P, et al. (1992). Mutation of the beta-amyloid precursor protein in familial Alzheimer’s disease increases beta-protein production. *Nature*, 360 (6405), 672 – 674.

20. Suzuki T, Oishi M, Marshak DR, Czernik AJ, Nairn AC, Greengard P (1994). Cell cycle-dependent regulation of the phosphorylation and metabolism of the Alzheimer amyloid precursor protein. *EMBO J*, 13 (5), 1114 – 1122.

21. Sherrington R, Rogaei EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, et al. (1995). Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. *Nature*, 375 (6534), 754 – 760.

22. Schellenberg GD, Bird TD, Wijsman EM, Orr HT, Anderson I, Nemens E, et al. (1992). Genetic linkage evidence for a familial Alzheimer’s disease locus on chromosome 14. *Science*, 258 (5082):668–71.

23. Van Broeckhoven C, Backhovens H, Cruts M, De Winter G, Bruyland M, Cras P, et al. (1992). Mapping of a gene predisposing to early-onset Alzheimer’s disease to chromosome 14q24.3. *Nat Genet*, 2(4):335–9.

24. Steiner H, Fuhler R, Haass C (2008). Intramembrane proteolysis by gamma-secretase. *J Biol Chem*, 283(44):29627–31.

25. Scheuner D, Eckman C, Jensen M (1996). Secretry amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease in vivo by Presenilin 1 and 2 and APP linked to familial Alzheimer’s disease. *Nat Med*, 2(8):864-70.

26. Kovacs DM, Fausett HJ, Page KJ (1996). Alzheimer–associated presenilins 1 and 2: neu-
ronal expression in brain and localization to intracellular membranes in mammalian cells. *Nature Med.*, 2:224-9.

27. Levy-Lahad E, Wasco W, Pookaj P, Romano DM, Oshima J, Pettingell WH, et al. (1995). Candidate gene for the chromosome 1 familial Alzheimer's disease locus. *Science*, 269 (5226):973–7.

28. Campion D, Dumanchin C, Hannequin D, Dubois B, Belliard S, Puel M, et al. (1999). Early-onset autosomal dominant Alzheimer disease: Prevalence, genetic heterogeneity, and mutation spectrum. *Am J Hum Genetics*, 65 (3), 664 – 670.

29. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986). Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. *Proc Natl Acad Sci*, 83, 4913–4917.

30. Kosik KS, Joachim CL, Selkoe DJ (1986). Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. *Proc Natl Acad Sci*, 83, 4044–4048.

31. Wood JG, Mirra SS, Pollock NJ, Binder LI (1986). Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (tau). *Proc Natl Acad Sci*, 83(24):9773.

32. Hutton M, Lendon CL, Rizzu P (1998). Association of missense and 5’-splice site mutations in tau with the inherited dementia FTDP-17. *Nature*, 393:702-5.

33. Rosso SM, Van Swieten JC (2002). New development in frontotemporal dementia and Parkinsonism linked to chromosome 17. *Carr Opin Neurol*, 15:23-8.

34. Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989). Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. *Neuron*, 3:519–526.

35. Lee G, Cowan N, Kirschner M (1988). The primary structure and heterogeneity of tau protein from mouse brain. *Science*, 239:285–288.

36. Goedert M, Wischik CM, Crowther RA, Walker JE, Klug A (1988). Cloning and sequencing of C DNA encoding a core protein of the paired helical filament of Alzheimer disease, identification as microtubule associated protein Tau. *Proc Natl Acad Sci*, 85:4051-5.

37. Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1992). Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. *Neuron*, 3:519-26.

38. Roses AD (1996). Apolipoprotein E allele as a risk factor in Alzheimer's disease. *Annu Rev Med*, 47:387-400.

39. Hendrie HC (1998). Epidemiology of dementia and Alzheimer’s disease. *Am J Geriatr Psychia*, 6 (2 Suppl 1), S3 – S18.

40. Saunders AM, Strittmatter WJ, Schme Chel D (1993). Association of apolipoprotein E allele Σ4 with late onset familial and sporadic Alzheimer's disease. *Neurology*, 43:1467-72.

41. Horsburg K, McCarron MO, White F, Nicoll JA (2000). The role of apolipoprotein E in Alzheimer's disease, acute brain injury and cerebrovascular disease: evidence of common mechanisms and utility of animal models. *Neurobiol Aging*, 21:245-55.

42. Teasdale, GM, Wardlaw JM, White PM, Murray G, Teasdale E&M, Easton V (2005). The familial risk of subarachnoid haemorrhage. *Brain*, 128 (Pt 7), 1677 – 1685.

43. Bertram L, LillC M (2010). The genetics of Alzheimer disease: Back to the future. *Neuron*, 68 (2), 270 – 281.

44. Raber J, Huang Y, Ashford JW (2004). ApoE genotype accounts for the vast majority of AD risk and AD pathology. *Neurobiol Aging*, 25 (5), 641 – 650.

45. Talbot C, Lendon C, Craddock N, Shears S, Morris JC, Goate A (1994). Protection against Alzheimer's disease with apo E epsilon 2. *Lancet*, 343 (8910), 1432 – 1443.

46. Aidaralieva NJ, Kamino K, Kimara R, Yama, moto M (2008). Dynamin 2 gene is a novel susceptibility gene for late onset Alzheimer's disease in non-APOE E4 carriers. *J Hum Genet*, 53:296-302.

47. Kelly BL, Vasa R, Ferreira A (2005). β-amyloid induced dynamin I depletion in hippocampal neurons, *J Biol Chem*, 280:51746-53.

48. Kuwano R, Miyashita A, Arai H (2006). The Japanese Genetic Study consortium for Alzheimer's disease, Dynamin binding protein gene on chromosome 10q is associated with late onset of Alzheimer's disease. *Hum Mol Genet*, 15:2170-82.
49. Gene Cards (2014). *The human gene compendium*. http://www.genecards.org/index.php?path=/Search/keyword/Alzheimer.

50. Blacker D, Bertram L, Saunders AJ, Moscarillo TJ, Albert MS, Wiener H, et al. (2003). Results of a high-resolution genome screen of 437 Alzheimer's disease families. *Hum Mol Genet*, 12 (1), 23 – 32.

51. Lee JH, Mayeux R, Mayo D, Mo J, Santana V, Williamson J, et al. (2004). Fine mapping of 10q and 18q for familial Alzheimer's disease in Caribbean Hispanics. *Molecular Psychiatry*, 9 (11), 1042 – 1051.

52. Farrer LA, Bowirrat A, Friedland RP, Waraska K, Korczyn AD, Baldwin CT (2003). Identifi cation of multiple loci for Alzheimer disease in a consanguineous Israeli - Arab community. *Hum Mol Genet*, 12 (4), 415 – 422.

53. Kehoe P, Wavrant - De Vrieze F, Crook R, Wu WS, Holmans P, Fenton I, et al. (1999). A full genome scan for late onset Alzheimer’s disease. *Hum Mol Genet*, 8 (2), 237 – 245.

54. Myers A, Holmans P, Marshall H, Kwon J, Meyer D, Ramie D, et al. (2000). Susceptibility locus for Alzheimer's disease on chromosome 10. *Science*, 290 (5500), 2304 – 2305.

55. Li YJ, Scott WK, Hedges DJ, Zhang F, Gaskell PC, Nance MA, et al. (2002). Age at onset in two common neurodegenerative diseases is genetically controlled. *Am J Hum Genet*, 70 (4), 985 – 993.

56. Pericak - Vance MA, Grubber J, Bailey LR, Hedges D, West S, Santoro L, et al. (2000). Identifi cation of novel genes in late - onset Alzheimer’s disease. *Exp Gerontol*, 35 (9 – 10), 1343 – 1352.

57. Scott WK, Hauser ER, Schmechel DE, Welsh-Bohmer KA, Small GW, Roses AD, et al. (2003). Ordered - subsets linkage analysis detects novel Alzheimer disease loci on chromosomes 2q34 and 15q22. *Am J Hum Genet*, 73 (5), 1041 – 1051.

58. Sillen A, Forsell C, Lilius I, Axelman K, Bjork BF, Onkamo P, et al. (2006). Genome scans on Swedish Alzheimer’s disease families. *Molecular Psychiatry*, 11 (2), 182 – 186.

59. Raihan I, Kaprio J, Koskenvuo M, Rajala T, Sourander I. (1996). Alzheimer’s disease in Finnish twins. *Lancet*, 347 (9001), 573 – 578.

60. Gatz M, Pedersen NL, Berg S, Johansson B, Johansson K, Mortimer JA, et al. (1997). Heritability for Alzheimer’s disease: The study of dementia in Swedish twins. *J Gerontol Series A: Biological Sciences and Medical Sciences*, 52 (2), 117 – 125.

61. Breitner JC, Silverman JM, Mohs RC, Davis KL (1988). Familial aggregation in Alzheimer’s disease: Comparison of risk among relatives of early - and late - onset cases, and among male and female relatives in successive generations. *Neurology*, 38 (2), 207 – 212.

62. Canadian Study of Health and Aging (1994). The Canadian Study of Health and Aging: Risk factors for Alzheimer’s disease in Canada. *Neurology*, 44 (11), 2073 – 280.

63. Silverman JM, Smith CJ, Marin DB, Mohs RC, Propper CB (2003). Familial patterns of risk in very late - onset Alzheimer disease. *Arch General Psychiatry*, 60 (2), 190 – 197.

64. Silverman JM, Ciresi G, Smith CJ, Marin DB, Schneider - Beeri M (2005). Variability of familial risk of Alzheimer disease across the late life span. *Arch General Psychiatry*, 62 (5), 565 – 573.

65. Williams JW, Plassman BL, Burke J, Holsinger T, Benjamin S (2010). Preventing Alzheimer’s disease and Cognitive Decline. AHRQ publication, No.10-E005.

66. Hardy J (1997). The Alzheimer family of diseases: many etiologies, one pathogenesis? *Proc Natl Acad Sci*, 94:2095–2097.

67. Small GW (1998). The pathogenesis of Alzheimer’s disease. *J Clin Psychiatry*, 59 (Suppl 9):7–14.

68. Jack CJ, Knopman DS, Jagust WJ, et al. (2013). Update on hypothetical model of alzheimer’s disease. *Lancet Neurol*, 12(2): 207-216.