COPRIME MODULES AND OTHER RELATED TOPICS

A.M.Inaam and K.I. Rasha
Department of mathematics, college of education
Ibn-Al-Haitham, university of Baghdad.

Abstract. Let R be a commutative ring with unity and let M be a unitary R-module. In this paper we study the relationships between coprime modules and other kinds of modules.

1. Introduction
Let R be a commutative ring with unity and let M be an R-module. M is called coprime module (dual notion of prime modules) if \(R \, \text{ann} \, M = \sum R \, \text{ann} \, N \) for every proper submodule N of M [7].

Note that \(R \, \text{ann} \, \sum R \, \text{ann} \, \mathcal{M} = \mathcal{N} \). Equivalently M is coprime R-module if and only if M is second, see [17] (where M second if for every \(r \in R \), the homothety \(r^* \) on M is either zero or surjective where a homothety \(r^* \) on M means \(r^* \in \text{End}(M) \) and \(r^*(x) = r \, x \) for each \(x \in M \) [24].

The main purpose of this this paper is to study the relationships between coprime R-modules and other kinds of modules such as prime modules, Noetherian, Artinian, cohopfian, hopfian, anti-hopfian, fully stable and M-coprime modules and give the necessary and(or) sufficient condition under which these concepts with coprime R-modules are equivalent.

Recall that an R-module M is called a prime module if \(R \, \text{ann} \, \mathcal{N} = \sum R \, \text{ann} \, \mathcal{M} \) for all non-zero submodule N of M [12],[9]. Equivalently M is prime if for every \(r \in R \), the homothety \(r^* \) on M is either zero or injective [21, Proposition (1.1.15)].

Proposition (2.1) Let M be an R-module such that \(r \, M \cap \mathcal{N} = r \, \mathcal{N} \) for each proper submodule N of M; \(r \in R \). If M is prime, then M is coprime.

Proof: Let \(r \in \mathcal{M} \), then \(r \, M \subseteq \mathcal{N} \). Since \(r \, M \cap \mathcal{N} = r \, \mathcal{N} \), then \(r \, M = r \, \mathcal{N} \), hence for every \(m \in M \), there exists \(n \in \mathcal{M} \) such that \(r \, m = r \, n \), so \(r \, (m - n) = 0 \), that is \(r \in \sum R \, \text{ann} \, (m - n) \). But M is prime, so \(\text{ann} R \, \text{ann} \, (m - n) = \sum R \, \text{ann} \, \mathcal{M} \) by [21, proposition (1.1.15)]. Thus \(r \in \sum R \, \text{ann} \, \mathcal{M} \) and M is coprime. ■

We notice that the condition \(r \, M \cap \mathcal{N} = r \, \mathcal{N} \) for all proper submodule N of M can not be dropped from proposition (2.1), for example Z as Z-module is prime, but not coprime, where if \(N = 2Z \), then \(4Z \cap N \neq 4N = 8Z \).
Recall that an \(R \)-module \(M \) is said to be \textit{F-regular} if every submodule of \(M \) is pure, see [14], where a submodule \(N \) of \(M \) is called \textit{pure} if \(I \cap N = I \cap M \) for every ideal \(I \) of \(R \), and hence \(r \cdot M \cap N = r \cdot N \) for every \(r \in R \), see [14]. A ring \(R \) is regular (in sense of von Neumann) if \(I \cap J = I \cdot J \). Equivalently \(R \) is a regular ring if for any \(a \in R \) there exists \(x \in R \) such that \(a = a^2 x \).

Hence, we have the following result.

\textbf{Corollary (2.2):} Let \(M \) be a F-regular \(R \)-module. If \(M \) is prime, then \(M \) is coprime.

The following result shows that the concepts of coprime and prime are equivalent in the class of regular rings (in sense of von Neumann).

\textbf{Corollary (2.3):} Let \(R \) be a regular ring, then \(M \) is a prime \(R \)-module if and only if \(M \) is a coprime \(R \)-module.

\textbf{Proof:} Let \(M \) be a prime module, since \(R \) is regular, then every \(R \)-module is F-regular. Hence the result follows by corollary (2.2).

To prove the converse, let \(M \) be a coprime \(R \)-module, then \(\overline{R} = R / \text{ann}_R \) \(M \) is an integral domain, see [17, note (8)]. But \(R \) is a regular ring, so \(\overline{R} \) is a regular domain. Thus \(\overline{R} \) is a field, and hence by [3, Rem. and Ex. 1.1.3 (6)] \(M \) is a prime \(\overline{R} \)-module, which implies that \(M \) is a prime \(R \)-module. \(\square \)

Recall that an \(R \)-module \(M \) is called \textit{divisible} if for each non-zero divisor \(r \) of \(R \), \(r \cdot M = M \), see [22, p.32].

As another consequence of prop. (2.1), we have the following result.

\textbf{Corollary (2.4):} Let \(M \) be a prime module over an integral domain and every proper submodule of \(M \) is divisible, then \(M \) is coprime.

\textbf{Proof:} Let \(N \) be a proper submodule of \(M \). Then \(r \cdot N = N \) for each \(r \in R \), \(r \neq 0 \). Hence \(r \cdot M \cap N = r \cdot M \cap r \cdot N = r \cdot N \). Thus we have the result by proposition (2.1). \(\square \)

We notice that the condition every submodule of \(M \) is divisible can not be dropped for example:

\(Z \) as \(Z \)-module is prime, but not coprime and every submodule of \(Z \) is not divisible.

Recall that an \(R \)-module \(M \) is called \textit{semisimple} if every submodule \(N \) of \(M \) is a direct summand, see [19, p.107], where a submodule \(N \) of an \(R \)-module \(M \) is said to be \textit{direct summand} of \(M \) if and only if there exists a submodule \(K \) of \(M \) such that \(M = N \oplus K \), see [19,p.31], [6,p.61].

\textbf{Note (2.5):} A semisimple \(R \)-module need not be coprime, for example:
Z_{6} as Z-module is semisimple and not coprime.

Also, in the class of semisimple modules the concepts coprime and prime modules are equivalent.

Proposition (2.6): Let M be a semisimple R-module, then M is a prime R-module if and only if M is a coprime R-module.

Proof: Let M be a prime module, to prove M is a coprime module, let N be a proper submodule of M; that is there exists a submodule W of M such that $N \oplus W = M$. Since M is prime, then $\text{ann}_R M = \text{ann}_R W$. But $W \cong \frac{M}{N}$, so it is easy to check that $\text{ann}_R W = \frac{M}{N}$, and so $\text{ann}_R M = \frac{M}{N}$. Thus M is coprime.

To prove the converse, let N be a submodule of M, then there exists a submodule W of M such that $N \oplus W = M$; that is $N \cong \frac{M}{W}$ and $\text{ann}_R N = \frac{M}{W}$. Since M is a coprime R-module, then $\text{ann}_R \frac{M}{W} = \text{ann}_R M$, which implies that $\text{ann}_R M = \text{ann}_R N$. Thus M is a prime R-module. ■

Note that the condition of semisimple in proposition (2.6) is necessary for example: Z_{p^∞} is coprime, but it is not semisimple and not prime.

Compare the following result with proposition (1.1.6) in [21] (Let M be a prime R-module, let N be a proper submodule of M, if N is second, then N is prime).

Proposition (2.7): Let M be a coprime R-module and N be a proper submodule of M, if N is a prime R-submodule, then N is a coprime R-module.

Proof: Let $r \in R$ and let r^* be a homothety on N, to prove either $r \in \text{ann}_R N$ or r^* is surjective. Assume that $r \not\in \text{ann}_R N$, hence $r \not\in \text{ann}_R M$. But M is a coprime R-module, then by [17, corollary (9)] $r M = M$.

Let $y \in N$, then $y \in M = r M$, that is there exists $m \in M$ such that $y = r m$. But $r m \in N$ and N is a prime submodule, implies that $m \in N$ or $r \in [N : M]$. If $r \in [N : M]$, then $r M \subseteq N$, so $M = N$ which is a contradiction. Thus $m \in N$ and so $r^*(m) = r m = y$. Therefore r^* is surjective. ■
S.Yassemi introduced the following theorem without proof, we give its proof for completeness.

Theorem (2.8):[24] If M is a non-zero finitely generated coprime R-module, then M is prime.

Proof: To prove M is prime, we shall prove \(\text{ann}_R(x) = \text{ann}_R M \) for every \(x \in M, x \neq 0 \). It is clear that \(\text{ann}_R M \subseteq \text{ann}_R(x) \). Assume that \(\text{ann}_R(x) \nsubseteq \text{ann}_R M \) for some \(x \in M, x \neq 0 \), then there exists \(r \in R \) such that \(r \in \text{ann}_R(x) \) and \(r \notin \text{ann}_R M \). Since M is coprime and \(r \notin \text{ann}_R M \), then by[13, corollary (9)] \(r M = M \). But M is a finitely generated R-module, so by[18, p.50] there exists \(r' \in R \) such that \((1 - r r')M = 0\). Thus \(x = r' r x = 0 \) which is a contradiction, so \(r \in \text{ann}_R M \) and \(\text{ann}_R(x) = \text{ann}_R M \). ■

The condition M is finitely generated can not be dropped from theorem (2.8). Consider the Z-module \(\mathbb{Z}_{p^n} \), This module is coprime and it is not finitely generated. However it is not prime because if \(N = \langle \frac{1}{p^2} + Z \rangle \), then \(p^2 Z = \text{ann}_R N \neq \text{ann}_R M = (0) \).

Recall that an R-module M is said to be **Noetherian** if every submodule of M is finitely generated, see [8, Proposition. 6.2, p.75].

The following result follows directly from (2.8).

Corollary (2.9): Let M be a Noetherian R-module if M is coprime, then M is prime.

Proof: Since M is Noetherian, then M is finitely generated. Hence the result obtained by theorem (2.8). ■

Recall that a proper submodule N of an R-module M is called **fully invariant** if for each \(f \in \text{End}_R(M) \), \(f(N) \subseteq N \). M is called **duo** if every submodule of M is fully invariant, see [25].

Let M be an R-module, it is well known that we can consider M as E-module, where \(E = \text{End}_R(M) \) as follows for any \(f \in E, m \in M, f(m) \in M \)

To give the next result first we need the following lemmas.

Lemma (2.10): If M is a **duo** R-module, then every R-submodule is E-submodule.

Proof: The proof is obvious. ■

Lemma (2.11): Let M be a **duo** R-module, if M is a prime E-module, then M is a prime R-module.
Proof: Let N be an R-submodule. To prove $\text{ann}_R M = \text{ann}_R N$, let $r \in \text{ann}_R N$, then $r N = 0$. Define $f: M \rightarrow M$ by $f(m) = r m$. Hence $f(N) = r N = 0$. But by lemma (2.10), N is an E-submodule, thus $f \in \text{ann}_E M = \text{ann}_E N$ because M is a prime E-module. Then $f(M) = r M = 0$.

Thus $r \in \text{ann}_R M$.

Recall that an R-module is called finendo if M is finitely generated over endomorphism ring $\text{End}_R(M)$, see [15].

Corollary (2.12): Let M be a finendo duo coprime E-module, then M is a prime R-module.

Proof: Since M is finendo coprime E-module, then M is a finitely generated coprime E-module, hence by Theorem (2.8), M is a prime E-module, so that by lemma (2.11) M is a prime R-module.

Recall that an R-module M is called hopfian if for every $f \in \text{End}_R(M)$ f is surjective, then f is injective, see [16].

Proposition (2.13): If M is a hopfian coprime R-module, then M is prime.

Proof: Since M is a coprime R-module, then every non-zero homothety r^* is surjective. But M is a hopfian R-module, hence r^* is injective. Thus M is a prime R-module, see [21, proposition (1.1.15)].

Recall that an R-module M is said to be cohopfian if for every $f \in \text{End}_R(M)$, f is injective, then f is surjective, see [10].

The following theorem shows that cohopfian R-module is a sufficient condition for prime module to be coprime.

Proposition (2.14): Let M be a cohopfian R-module, if M is prime, then M is coprime.

Proof: Let $r \in R$, let r^* be a non-zero homothety on M. Since M is prime, then by [21, proposition (1.1.15)] r^* is injective. But M is cohopfian, hence r^* is surjective. Thus M is a coprime R-module.

From proposition (2.14) and Theorem (2.8) we have.

Corollary (2.15): If M is a finitely generated cohopfian R-module, then M is prime if and only if M is coprime.
Recall that an R-module M is called Artinian if M satisfies a decreasing chain conditions (dcc) on submodules of M.

S. Yassemi in [24] introduced the following result.

Proposition (2.16): Let M be an Artinian R-module, if M is prime, then M is coprime.

Since every Artinian is cohopfian, then we get the following directly by (2.15).

Corollary (2.17): If M is a finitely generated Artinian R-module, then M is prime if and only if M is coprime.

Now, we can give the following result.

Proposition (2.18): If M is a coprime E-module, then M is cohopfian, where $E = \text{End}_R(M)$.

Proof: Since M is a coprime E-module, then by [21, corollary (9)] either $f(M) = 0$ or $f(M) = M$ for all $f \in E$, that is either $f = 0$ or surjective. Thus every injective mapping is surjective; that is M is cohopfian. ■

Similarly, we have the following result.

Proposition (2.19): Let M be a prime E-module, then M is hopfian, where $E = \text{End}_R(M)$.

Proof: Let $f \in \text{End}_R(M)$ such that f is surjective to prove f is injective, let $m \in \ker f$, hence $f(m) = 0$. But M is a prime E-module, then by [21, proposition (1.1.15)] (0) is a prime E-submodule. It follows that either $m = 0$ or $f \in \text{ann}_EM = 0$. But $f \neq 0$, so $m = 0$. Therefore f is injective. ■

Recall that a non-simple R-module M is called antihopfian if $M \cong M / N$ for all proper submodule N of M, see [16].

Remark (2.20):

1. It is clear that every anti-hopfian R-module M is a coprime R-module, but the converse may not be true, since the Z-module Q is coprime, and it is not anti-hopfian because $Q \not\cong Q / Z$.

2. Every anti-hopfian R-module M is coprime E-module, where $E = \text{End}_R(M)$.

Proof: By [4, prop.1.3.1] every $f \in E$, $f = 0$ or f is surjective. Thus $f(M) = 0$ or $f(M) = M$; that is M is a coprime E-module, by [17, corollary (9)]. ■
Recall that if an R-module E is extension of an R-module M, then E is an essential extension of M, if for every non-zero submodule E' of E, $E' \cap M \neq 0$ [22, p.40].

We recall that an R-module is an injective hull (envelope) of an R-module M if and only if E is a minimal injective extension of M, where E is a minimal injective extension of M if:
1. E is injective.
2. Whenever E' is a proper submodule of E contains M, then E' is not injective, see [22, p.43].

We used the symbol \hat{M} to denote an injective hull of M.

To give the next result, we need the following remark.

Remark (2.21): Let M be a module over an integral domain, then \hat{M} is a coprime R-module.

Proof: Since \hat{M} is an injective and R is an integral domain, then by [17, corollary (33)] we have \hat{M} is a coprime R-module. ■

The following result shows that the injective hull of any coprime R-module is coprime.

Corollary (2.22): If M is a coprime R-module, then \hat{M} is a coprime R-module.

Proof: Since M is a coprime R-module, then $\overline{R} = R / \text{ann}_{R} M$ is an integral domain. Hence M is a module over an integral domain \overline{R}. Then by remark (2.21), \hat{M} is coprime \overline{R}-module, and by [17, corollary (11)] we have \hat{M} is a coprime R-module. ■

We notice that the converse of this corollary is not true in general as it is shown by the following example:

For the Z-module Z, $\hat{Z} = Q$ is a coprime Z-module, but Z is not coprime.

The following proposition shows that the converse of corollary (22) is true under certain condition.

Proposition (2.23): Let M be an R-module such that $[U : M] = [U : \hat{M}]$ for every proper submodule U of M, if \hat{M} is a coprime R-module, then M is coprime R-module.
Proof: \(\text{ann} M \subseteq [U : M] \) for every proper submodule \(U \) of \(M \). Since \(\hat{M} \) is coprime, then \([U : \hat{M}] = \text{ann} \hat{M} \). But by assumption \([U : M] = [U : \hat{M}] \), that is \(\text{ann} M \subseteq \text{ann} \hat{M} \). Thus \(\text{ann} M = \text{ann} \hat{M} = [U : \hat{M}] = [U : M] \). Therefore \(M \) is coprime. ■

Also, the converse of proposition (2.22) holds under the class of modules over regular ring.

Proposition (2.24): Let \(R \) be a regular ring. If \(\hat{M} \) is a coprime \(R \)-module, then \(M \) is a coprime \(R \)-module.

Proof: Follows by [17, proposition (16)]. ■

Recall that an \(R \)-module \(M \) is called **fully-stable** if each submodule \(N \) of \(M \) is stable, where a submodule \(N \) of \(M \) is called **stable** if \(f(N) \subseteq N \) for each \(R \)-homomorphism \(f \) from \(N \) into \(M \), see [1].

A module \(M \) is called **fully pseudo-stable** (abbreviated p-stable) if each submodule of \(M \) is pseudo-stable, where a submodule \(N \) of \(M \) is said to be pseudo-stable if \(f(N) \subseteq N \) for each \(R \)-monomorphism \(f : N \rightarrow M \), see [1, Definition 2.1, ch.2].

It is clear that every fully stable is fully p-stable, see [1].

Remarks (2.25):

1. fully-stable module may not be coprime module, for example: for all \(n \in \mathbb{Z}^+ \), \(Z_n \) is a fully-stable \(\mathbb{Z} \)-module by [1] but \(Z_n \) is a coprime \(\mathbb{Z} \)-module if and only if \(n \) is prime.
2. A coprime module may not be fully stable as the following example shows:

\(\mathbb{Q} / \mathbb{Z} \) as \(\mathbb{Z} \)-module is coprime by [21,corollary (2.1.13)]. But by [1, Ex. 1.2 (c), ch.1] it is not fully stable.

Recall that a module \(M \) over an integral domain \(R \) is **non-torsion** if there exists \(m \in M \) such that \(\text{ann}_R (m) = 0 \). Thus a torsion free \(R \)-module is non-torsion.

However, we have the following result.

Proposition (2.26): Let \(M \) be a non-torsion fully p-stable (stable) over an integral domain \(R \), then \(M \) is faithful coprime.

Proof: By [1, Theorem 1.5, ch.3] and [1, Corollary 1.6, ch.3] we have \(M \) is divisible and so by [17, remark (29)], we have the result. ■
Corollary (2.27): Let M be torsion free over an integral domain R. If \(M \) is fully stable (p-stable), then \(M \) is faithful coprime.

Recall that an R-module \(M \) is called **quasi-injective** if for every submodule \(N \) of \(M \), every R-homomorphism of \(N \) into \(M \) can be extended to an R-endomorphism of \(M \), see [15].

Next, we have the following.

Proposition (2.28): Let \(M \) be multiplication non-torsion over a Dedekind domain \(R \), then the following statements are equivalent:

1. \(M \) is a quasi-injective \(R \)-module.
2. \(M \) is a fully-stable \(R \)-module.
3. \(M \) is an injective \(R \)-module.
4. \(M \) is a divisible \(R \)-module.
5. \(M \) is a faithful coprime \(R \)-module.

Proof:

(1) \(\iff \) (2) follows by [1, Corollary 2.3, ch.3].

(2) \(\iff \) (3) follows by [1, Corollary 1.8, ch.3].

(3) \(\iff \) (4) \(\iff \) (5) see [17, Proposition (35)].

(3) \(\iff \) (1). It is obvious. ■

Notice that a fully stable module need not be prime module for example:
\(\mathbb{Z}_6 \) as \(\mathbb{Z} \)-module is fully stable and not prime.

Now, we have the following.

Theorem (2.29): Let \(M \) be a prime fully stable (P-stable) \(R \)-module. Then \(M \) is a coprime \(R \)-module.

Proof: Since \(M \) is a prime \(R \)-module, then \(\overline{R} = R / \text{ann}_R M \) is an integral domain and by [20], [11] \(M \) is a torsion free \(\overline{R} \)-module. But \(M \) is a fully stable (p-stable) \(\overline{R} \)-module, so \(M \) is a fully stable (p-stable) \(\overline{R} \)-module, by [1,Prop.2.12,ch.3]. Then by corollary (2.27) \(M \) is coprime \(\overline{R} \)-module. Thus by [17,corollary (11)] \(M \) is a coprime \(R \)-module. ■

To give our next result, we need the following lemma.

Lemma (2.30): If \(M \) is a fully stable prime \(R \)-module, then \(M \) is cyclic.
Proof: Since M is fully stable, then by [1, Prop. 2.5, ch.3], \(R \ann M : R \ann x \] \subseteq \[x : M \] for each \(x \) in M. But M is prime, so \(R \ann M = R \ann x \) for every \(x \in M, x \neq 0 \). Hence \([R \ann M : R \ann M] = [x : M] \); that is \(R = [x : M] \), which implies that \(M = (x) \). ■

Corollary (2.31): Let M be a fully stable R-module. Then the following statements are equivalent.
1. M is a prime R-module.
2. M is a cyclic coprime R-module.
3. M is a simple R-module.

Proof: (1) \(\rightarrow \) (2) follows by Theorem (2.29) and lemma (2.30).
(2) \(\rightarrow \) (3) follows by [17, Rem. and Ex. 3 (6)].
(3) \(\rightarrow \) (1). It is clear. ■

Recall that a submodule N of an R-module M is called annihilator submodule if \(N = \ann M \) for some ideal I of R, see [2].

Equivalently, \(N = \ann M \ann N \).

Next, we can give the following proposition.

Proposition (2.32): If every submodule of an R-module M is an annihilator submodule and \(R \ann M \) is a prime ideal, then M is a coprime module.

Proof: Let N be a proper submodule of M. Then \(N = \ann M \) for some ideal I of R. To prove \([N : M] = \ann M \), let \(r \in [N : M] \), then \(r M \subseteq N = \ann I \). Hence \(r I M = 0 \). Thus \(r I \subseteq \ann M \), which implies that \(r \in \ann M \) or \(I \subseteq \ann M \). If \(I \subseteq \ann M \), then \(I M = 0 \), and so \(M \subseteq \ann I = N \), so \(M = N \) which is a contradiction. Thus \(r \in \ann M \), so \([N : M] = \ann M \) and M is coprime. ■

Hence, we have the following result.

Corollary (2.33): Let M be a fully stable finitely generated module over a dedekind domain with \(R \ann M \) is prime, then M is coprime.

Proof: By [1, Corollary 1.22, ch.3] every submodule N of M is an annihilator submodule. Hence by proposition (2.32), M is coprime. ■
As another consequence of (2.32), we have the following result:

Corollary (2.34): If M is a finitely generated multiplication R-module over a Dedekind domain and \(\text{ann}_R M \) is a prime ideal, then the following statements are equivalent.

1. M is a fully-stable R-module.
2. For every submodule N of M, N is an annihilator.
3. M is a coprime R-module.
4. M is a q-injective R-module.

Proof:

(1) \(\Leftrightarrow \) (2) follows by [1, Corollary 1.22,ch.3].

(2) \(\rightarrow \) (3) follows by corollary (2.32).

(3) \(\rightarrow \) (4). M is a coprime multiplication R-module, implies M is simple. Hence M is q-injective.

(4) \(\rightarrow \) (1) follows by [1, Proposition 2.1,ch.3]. ■

Corollary (2.35): Let M be a finitely generated prime module over Dedekind domain, then the following statements are equivalent.

1. M is a fully stable.
2. For any submodule N of M, N is an annihilator submodule.
3. M is simple, (and hence it is coprime).
4. M is a multiplication q-injective R-module.

Proof:

(1) \(\Leftrightarrow \) (2). See [1, Proposition 1.22,ch.3].

(2) \(\rightarrow \) (3). Since M is a prime R-module, then for every non-zero submodule N of M \(\text{ann}_R M = \text{ann}_R N \). Hence M = \(\text{ann}_R M = \text{ann}_M \text{ann}_R N = N \). Thus M is a simple R-module, and so it is coprime.

(3) \(\rightarrow \) (4) is clear.

(4) \(\rightarrow \) (1) follows by [1, Corollary 2.3,ch.3]. ■

R.Ameri, Y.Talebi and M.Maghsoomi in [12] introduced the notion of M-coprime module by the following definition.
Definition (2.36): A module X is said to be M-coprime if $\text{Hom}_R(X,M) \neq 0$ and $\text{Tr}_R M (X) = \text{Tr}_R M (X/Y)$ for every submodule Y of X such that $\text{Hom}_R(X/Y,M) \neq 0$, where $\text{Tr}_R M (X) = \sum \{\text{Im} f; f \in \text{Hom}_R(X,M)\}$.

Recall that if M is an R-module and U is a non-empty set of R-modules, M is said to be generated by U if M is a summation of submodules which are homomorphic images of modules in U, see [19, Definition 3.3.1, p.52].

Examples (2.37):

1. Let M be the \mathbb{Z}-module \mathbb{Z}_6. If $U = \{\mathbb{Z}_6/\langle 2 \rangle, \mathbb{Z}_6/\langle 3 \rangle\}$, then it is clear that M is generated by U.

 However, M is not generated by $U = \{\mathbb{Z}_6/\langle 2 \rangle\}$.

2. Let $M = \mathbb{Z}_{p^e}$ as \mathbb{Z}-module. Let $U = \{ \mathbb{Z}_{p^e}/G \}$, where G is a submodule of \mathbb{Z}_{p^e}. $\mathbb{Z}_{p^e} \cong \mathbb{Z}_{p^e}/G$. Thus \mathbb{Z}_{p^e} is a generated by U.

3. Let $U = \{\mathbb{Z}_5/(0)\}$. \mathbb{Z}_5 is a generated by U.

4. Let $M = \mathbb{Z}_2 \oplus \mathbb{Z}_2$ and $N = \mathbb{Z}_2 \oplus \langle 0 \rangle$. $M/N \cong \mathbb{Z}_2$. M is generated by M/N.

R. Ameri, Y. Talebi and Maghsoomi in [5] gave the following:

Theorem (2.38): [5] Let M be an R-module. The following statements are equivalent.

1. M is M-coprime.

2. M is generated by every non-zero factor module of M.

Note that the second statement is given as a definition of "coprime module", see [23, Exc. (16), p.103].

However, we have the following.

Proposition (2.39): If M is M-coprime, then M is coprime R-module.

In order to prove this proposition, we state and prove the following lemma.

Lemma (2.40): If $f: X \longrightarrow Y$ is an epimorphism, where X and Y are two R-modules, then $\text{ann}_R(X) \subseteq \text{ann}_R(Y)$.

Proof: Clear. ■
Now, we are ready to prove proposition (2.39).

Proof: If M is M-coprime. Let N be a proper submodule of an R-module M, then M is generated by M / N. Thus $M = \sum_{i \in \Lambda} w_i$; Λ is some index set, where w_i is a homomorphic image of M / N. By lemma (2.40) we have for any $i \in \Lambda$ $\text{ann}(M / N) \subseteq \text{ann}w_i$. Thus $\text{ann}(M / N) \subseteq \bigcap_{i \in \Lambda} \text{ann}w_i = \text{ann}(\sum_{i \in \Lambda} w_i) = \text{ann}M$.

Thus $\text{ann}(M / N) \subseteq \text{ann}M$, that is $\text{ann}(M / N) = \text{ann}M$ and M is coprime.

We notice that the converse of proposition (2.39) is not true in general as the following example shows:

Consider the Z-module $M = \mathbb{Q} \oplus \mathbb{Z}_{p^n}$ and $N = \mathbb{Q} \oplus (0)$ be a submodule of M. M is coprime Z-module and $M / N \cong \mathbb{Q} / \mathbb{Z} \oplus \mathbb{Q}$. Thus M is not generated by $M / N = \{ Z_{p^n} \}$.

Recall that an R-module X is said to be comonoform if every non-zero homomorphism $f : X \rightarrow X / Y$ is epimorphism, where Y is any submodule of X, see [5].

According to the above definition we have.

Remark (2.41): Every comonoform R-module is coprime.

Proof: Since M is comonoform, then by [5, Corollary 2.9], M is M-coprime and by proposition (2.39) we have M is coprime.

We notice that the converse of remark (2.41) may be false as the following example shows:

Let M be the Z-module $\mathbb{Q} \oplus \mathbb{Q}$, M is a coprime Z-module. If $N = \mathbb{Z} \oplus (0)$, then $M / N = \mathbb{Q} \oplus \mathbb{Q} \cong \mathbb{Q} / \mathbb{Z} \oplus \mathbb{Q}$.

Define $f : M \rightarrow M / N$ by $f(a,b) = (a + \mathbb{Z},0)$, f is Z-homomorphism, but not epimorphism, so M is not comonoform.

REFERENCES

[1] M.S.Abass., (1990), "On Fully Stable Modules", Ph.D. Thesis, Univ.of Baghdad.
[2] Z. Abdul-Baste and P. F. Smith, (1988), "Multiplication Modules", Comm.in Algebra, Vol.16, pp. (755-779).
[3] H.M.Abdul-Razak, (1999), "Quasi-Prime Modules and Quasi-Prime Submodule", M.D. Thesis, Univ. of Baghdad.
[4] H.KH.Al-Awadi, (2000), "Anti-Hopfian Module and Restricted Anti-Hopfian", M.Sc. Thesis, Univ.of Baghdad.
[5] R.Ameri, Y.Talebi and M.Maghsoomi, (2008), "MX-Condition and Co-Prime Modules", International Journal of Algebra, Vol. 2, No.11, pp.(525-532).
[6] F.W.Anderson and K.R.Fuller,(1973),"Rings and Categories of Modules", Univ. of Oregon
[7] S.Annin, (2002), "Associated and Attached Primes Over Non Commutative Rings", Ph.D. Thesis, Univ.of Berkeley.
[8] M.F.Atiyah and I.G.Macdonald, (1969), "Introduction to Commutative Algebra", Univ.of Oxford
[9] J.A.Beachy, (1976), "Some Aspects of Non-Commutative Localization", Lecture Notes in Mathematics, Vo.545, Springer Verlage, Heildelberg, New York.
[10] G.F.Birkenmeier, (1976), "On The Cancellation of Quasi-Injetive Modules", Comm. In Algebra, Vol.49, No. 2, pp.(101-109).
[11] J.Dauns, (1980), "Prime Modules and One-Sided Ideals in 'Ring Theory and Algebra III"", (Proceedings of the third Oklahoma Conference), B.R.MCDonald (editor) (Dekker, New Yourk), pp.(301-344).
[12] G.Desale, W.K.Nicholson, (1981), "Endoprimitive Rings", J.Algebra, Vol.70, pp.(548-560).
[13] C.Faith, (1972), "Modules Finite Over Endomorphism Ring", Lecture Notes in Mathematics, Springer-Verlag, Heidelberg, New Yourk, Vol. 246.
[14] D.J.Fieldhouse, (1969), "PureTheories", Math. Ann.,Vol.184, pp.(1-18).
[15] M.Harda, (1965), "Note on Quasi-Injective Modules ", OsakaJ. Math, Vol.2, pp.(531-356).
[16] Y.Hirano and I.Mogani, (1986), "On Restricted Anti-Hopfian Modules", Math. J. Okayama Univ.,Vol.28, pp.(119-131).
[17] A.M.Inaam and K.I.Rasha, (2010),"Dual Notion of Prime modules",Ibn Al-Haitham journal for pure and applied science,Vol.23, No.3.pp.(226-236).
[18] I.Kaplanskj, (1974), "Commutative Rings", The Univ. of Chicago Press, Chicago & London
[19] F.Kasch, (1982), "Modules and Rings", Academic Press, London.
[20] C.P.Lu, (1984), "Prime Submodule of Modules", Comment, Math.Univ.St.Paul, Vol.23, No.1, pp. (61-69).

[21] K.I.Rasha, (2009), Dual Notions Of Prime Submodules And Prime Modules, (2009), M.Sc. Thesis, Univ. of Baghdad.

[22] D.W.Sharp and P.Vamous, (1972), "Injective Modules", Cambridge Univ. Press, London

[23] R.Wisbauer, (1996), "Modules and Algebras: Bimodule Structure and Group Actiona and Algebra ", Heinrich-Hein University Dusseldorf.

[24] S.M.Yassemi, (2001), "The Dual Notion of Prime Submodule", Arch.Math. (Bron), Vol.37, pp. (273-278).

[25] A.C. Özcan,A.Harmaci,(2006), "Duo Modules",Glasgow Math.j.48 (2006)533-545.