Supplementary Information

Rhodium Doping Augments Photocatalytic Activity of Barium Titanate: Effect of Electronic Structure Engineering

D Krishna Bhat**, Harsha Bantawal*a and U Sandhya Shenoy*b*

*a*Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore-575025, India.

bDepartment of Chemistry, College of Engineering and Technology, Srinivas University, Mukka, Mangalore-574146, India.

**Corresponding author E-mail address: denthajekb@gmail.com; sandhyashenoy347@gmail.com
Figure S1. pdos of 2 x 2 x 2 supercell of Rh doped BaTiO$_3$ (case A) with one Rh in Ti site (lavender) indicated as Rh* and another Rh in Ba site (pink).
Figure S2. Electronic structure and DOS of 2 x 2 x 2 supercell of Rh doped BaTiO$_3$ with two Rh in Ba sites.
Figure S3. XRD patterns of synthesized samples showing (110) peak shift to higher θ values.
Figure S4. XPS survey spectrum of 0.5 Rh.
Figure S5. Spot EDX of a) Ba, b) Ti, c) O and d) Rh in 0.5 Rh.
Figure S6. BET surface area analysis of BaTiO$_3$ (inset shows pore size distribution).
Figure S7. a) XRD of 0.9 Rh, b) UV and c) PL spectra of BaTiO$_3$ and 0.9 Rh and d) photocatalytic degradation of MB using 0.9 Rh.
Figure S8. Cyclic stability test of 0.5 Rh.
Table S1. Comparison of photocatalytic activity of 0.5 Rh sample with reported literatures.

Photocatalysts	Light source	Pollutant used	Degradation extent and Time	Reference
Rh doped BaTiO₃	Visible light source (High pressure 250 W Hg vapor lamp)	Methylene Blue	96 %, 120 min	Present work
N doped BaTiO₃	Visible light source (300 W Xe lamp, UV cutoff filter)	Rhodamine B	50 %, 240 min	Cao et al. 2014 [1]
BaTiO₃@g-C₃N₄ composite	Solar simulator (200 W Xe lamp)	Methyl orange	76 %, 360 min	Xian et al. 2015 [2]
BaTiO₃@graphene nanocomposite	Visible light source (500 W Xe lamp, UV cutoff filter)	Methylene blue	69.5 %, 480 min	Wang et al. 2015 [3]
Mn doped BaTiO₃	Visible light source (300 W Tungsten lamp)	Methylene blue	97.04 %, 360 min	Nageri and Kumar 2018 [4]
Auₓ/BaTiO₃ heterostructure	All spectrum light source (300 W Xe lamp, cutoff filter)	Methyl orange	80 %, 75 min, 97 %, 75 min	Xu et al. 2019 [5]
W doped BaTiO₃	18 UV lamps as UV light source and 2 metal halide lamps as visible light source	Tetracycline	UV-A light: 77 % visible light: 80 % in 180 min	Demircivi and Simsek 2019 [6]
Fe-Cr co-doped BaTiO₃	Solar simulator (Xe lamp)	Methyl orange	94 %, 90 min	Amaechi et al. 2019 [7]
Ce doped BaTiO₃	UV light source (254 nm) and visible light source (400–750 nm, 300 W tungsten-halogen lamp)	Methylene blue, Methyl violet, Congo red	90.2 %, 120 min, 82.4 %, 120 min, 78.5 %, 120 min	Senthilkumar et al. 2019 [8]
Cr³⁺ doped BaTiO₃	Solar simulator (150 W Xe lamp)	Methyl orange	87 %, 90 min	Amaechi et al. 2019 [9]
Ag doped BaTiO₃ composite	UV-vis light source (300 W Xe lamp)	Rhodamine B	61 %, 75 min, 83 %, 75 min	Xu et al. 2019 [10]
BaTiO₃@graphene oxide composite	UV-vis light source (Xe lamp)	Methylene blue	95 %, 180 min	Mengting et al. 2019 [11]
Fe doped BaTiO₃	Solar simulator (150 W Xe lamp)	Methyl orange	75 %, 90 min	Amaechi et al. 2019 [12]
BaTiO₃@carbon	18 UV lamps as Tetracycline	UV-A light: 96 %		Demircivi et
Fiber Catalyst	UV-A light source and 2 metal halide lamps as visible light source	% Visible light: 92% in 180 min	Xiao et al. 2020 [14]	
--------------------------------------	---	---------------------------------	------------------------	
N-Ni co-doped (Na_{0.5}Bi_{0.5})TiO_{3}-BaTiO_{3}	300 W Xe lamp (PLS-SXE300+/UV)	Rhodamine B Dibenzothiophene 92.4%, 80 min 90.37%, 150 min		
1. Cao, J.; Ji, Y.; Tian, C.; Yi, Z. Synthesis and Enhancement of Visible Light Activities of Nitrogen-Doped BaTiO$_3$. *J. Alloys Compd.* 2014, 615, 243-248.

2. Xian, T.; Yang, H.; Di, L. J.; Dai, J. F. Enhanced Photocatalytic Activity of BaTiO$_3$@g-C$_3$N$_4$ for the Degradation of Methyl Orange under Simulated Sunlight Irradiation. *J. Alloys Compd.* 2015, 622, 1098-1104.

3. Wang, R. X.; Zhu, Q.; Wang, W. S.; Fan, C. M.; Xu, A.W. BaTiO$_3$–Graphene Nanocomposites: Synthesis and Visible Light Photocatalytic Activity. *New J. Chem.* 2015, 39, 4407-4413.

4. Nageri, M.; Kumar, V. Manganese-Doped BaTiO$_3$ Nanotube Arrays for Enhanced Visible Light Photocatalytic Applications. *Mater. Chem. Phys.* 2018, 213, 400-405.

5. Xu, S.; Guo, L.; Sun, Q.; Wang, Z. L. Piezotronic Effect Enhanced Plasmonic Photocatalysis by AuNPs/BaTiO$_3$ Heterostructures. *Adv. Funct. Mater.* 2019, 29, 1808737.

6. Demircivi, P.; Simsek, E. B. Visible-Light-Enhanced Photoactivity of Perovskite-Type W-Doped BaTiO$_3$ Photocatalyst for Photodegradation of Tetracycline. *J. Alloys Compd.* 2019, 774, 795-802.

7. Amaechi, I. C.; Hadj Youssef, A.; Rawach, D.; Claverie, J. P.; Sun, S.; Ruediger, A. Ferroelectric Fe–Cr Codoped BaTiO$_3$ Nanoparticles for the Photocatalytic Oxidation of Azo Dyes. *ACS Appl. Nano Mater.* 2019, 2, 2890-2901.

8. Senthilkumar, P.; Jency, D. A.; Kavinkumar, T.; Dhayanithi, D.; Dhanuskodi, S.; Umadevi, M.; Manivannan, S.; Giridharan, N. V.; Thiagarajan, V.; Sriramkumar, M.; Jothivenkatachalam, K. Built-in Electric Field Assisted Photocatalytic Dye Degradation and Photoelectrochemical Water Splitting of Ferroelectric Ce Doped BaTiO$_3$ Nanoassemblies. *ACS Sustain. Chem. Eng.* 2019, 7, 12032-12043.

9. Amaechi, I. C.; Kolhatkar, G.; Youssef, A. H.; Rawach, D.; Sun, S.; Ruediger, A. B-Site Modified Photoferroic Cr$^{3+}$-Doped Barium Titanate Nanoparticles: Microwave-Assisted Hydrothermal Synthesis, Photocatalytic and Electrochemical Properties. *RSC Adv.* 2019, 9, 20806-20817.

10. Xu, S.; Liu, Z.; Zhang, M.; Guo, L. Piezotronics Enhanced Photocatalytic Activities of Ag-BaTiO$_3$ Plasmonic Photocatalysts. *J. Alloys Compd.* 2019, 801, 483-488.
11. Mengting, Z.; Kurniawan, T. A.; Fei, S.; Ouyang, T.; Othman, M. H. D.; Rezakazemi, M.; Shirazian, S. Applicability of BaTiO$_3$/Graphene Oxide (GO) Composite for Enhanced Photodegradation of Methylene Blue (MB) in Synthetic Wastewater under UV–Vis Irradiation. *Environ. Pollut.* 2019, 255, 113182.

12. Amaechi, I. C.; Youssef, A. H.; Kolhatkar, G.; Rawach, D.; Gomez-Yañez, C.; Claverie, J. P.; Sun, S.; Ruediger, A. Ultrafast Microwave-Assisted Hydrothermal Synthesis and Photocatalytic Behaviour of Ferroelectric Fe$^{3+}$-Doped BaTiO$_3$ Nanoparticles under Simulated Sunlight. *Catal. Today* 2019, DOI: https://doi.org/10.1016/j.cattod.2019.07.021.

13. Demircivi, P.; Gulen, B.; Simsek, E. B.; Berek, D. Enhanced Photocatalytic Degradation of Tetracycline using Hydrothermally Synthesized Carbon Fiber Decorated BaTiO$_3$. *Mater. Chem. Phys.* 2020, 241, 122236.

14. Xiao, H.; Luo, C.; Huangfu, G.; Guo, Y. Boosting the Photocatalytic Ability of Bandgap Engineered (Na$_{0.5}$Bi$_{0.5}$)TiO$_3$-BaTiO$_3$ by N-Ni Co-doping. *J. Phys. Chem. C* 2020, 124, 11810-11818.