Erosion wear response of epoxy composites filled with steel industry slag and sludge particles: A comparative study

Abhilash Purohit, Alok Satapathy

Department of Mechanical Engineering,
National Institute of Technology, Rourkela, Odisha, India

Corresponding author Email : mr.abhilash.purohit@gmail.com

Abstract: In the field of composite research, use of industrial wastes such as slag and sludge particles as filler in wear resistant polymer composites has not been very common. Owing to the very high cost of conventional filler materials in polymer composites, exploring the possibility of using low cost minerals and industrial wastes for this purpose has become the need of the hour. In this context this work explores the possibility of such polymer composites filled with low cost industrial wastes and presents a comparison of mechanical characteristics among three types of epoxy based composites filled with Linz-Donawitz sludge (LD sludge), blast furnace slag (BF slag) and Linz-Donawitz slag (LD slag) respectively. A comparative study in regard to their solid particle erosion wear characteristics under similar test conditions is also included. Composites with different weight proportions (0, 5, 10, 15 and 20 wt. %) of LD sludge are fabricated by solution casting technique. Mechanical properties such as micro-hardness, tensile strength and flexural strength of three types of composites have been evaluated as per ASTM test standards and solid particle erosion wear test is performed following a design of experiment approach based on Taguchi’s orthogonal array. Five control factors (impact velocity, erodent size, filler content, impingement angle and erodent temperature) each at five levels are considered to conduct erosion wear tests. The test results for epoxy-LD sludge composites are compared with those of epoxy-BF slag and epoxy-LD slag composites reported by previous investigators. The comparison reveals that epoxy filled with LD sludge exhibits superior mechanical and erosion wear characteristics among the three types of composites considered in this study. This work also opens up a new avenue for value added utilization of an abundant industrial waste in the making of epoxy based functional composites.

1. Introduction

The iron and steel industry is one of the most populated industries in India due to availability of raw materials in huge quantities. Every day enormous quantities of waste materials in the form of sludge and slag are produced from these industries. During the production of unit tonne of iron and steel, two to four tones of sludge and slag are being produced. The solid wastes that are generated during the production of iron and steel are Linz-Donawitz sludge (LDS), Linz-Donawitz slag (LD slag) and blast furnace slag (BF slag). The chemical compositions of these wastes differ widely but they have various recyclable elements such as iron, phosphorous, carbon, calcium, etc. BF slag is produced during the production of pig iron from iron ore in blast furnace. The main chemical components present in BF slag are SiO$_2$, CaO, Fe$_2$O$_3$, MgO, Al$_2$O$_3$ etc. Similarly, LD slag is generated from LD converter during the production of steel from pig iron and mainly contains silicon oxide, calcium oxide and iron oxide. LD sludge is generated after processing of the flue dust emerging from basic oxygen furnace. It mainly contains magnetite, hematite, wüstite or FeO, calcite and silica. Nowadays researchers are giving more attention towards the polymer matrix composites due to their superior mechanical and physical characteristics. They can also be used as wear resistance material in...
several low load applications. The wear resistance and mechanical properties of neat polymer can be improved by adding a reinforcing phase into the polymer matrix [1–5]. Many reports are available on utilization of polymers and their composites in erosive wear conditions [6-7]. Although a large number of filler materials are used as reinforcing phase in polymer composites for wear resistance application [8], employment of steel industry solid wastes in this context is very rare. The slag and sludge generated from iron and steel industry can be utilized as reinforcing phase in matrix to improve the mechanical and wear characteristics of the composite samples due to presence of hard phases like magnetite, hematite, wüstite, calcite and silica [9-11]. In view of this, this work reports on the comparative study of erosion wear response of steel industry wastes filled epoxy composites.

2. Materials and methods

2.1. Fabrication of composite

The fabrications of composite samples are done by solution casting technique. The hardener HY-951 and the epoxy resin LY-556 are mixed in a ratio of 1:10 by weight. Then the LD sludge particles are added in different proportions and properly mixed with the epoxy-hardener combination. The dough is then discharged into moulds of dissimilar shapes. The moulds are kept to cure for few hours at room temperature, after which the samples are collected by breaking the moulds. Finally, the composites are cut to the required dimensions as per the prescribed standards for the evaluation of mechanical and tribological properties.

2.2. Characterization

The mechanical characterization such as micro-hardness tests of the fabricated composite samples are conducted with the help of a Vaiseshika micro-hardness tester. For each composition of composite samples five experiments are carried out and the mean value is noted as the micro-hardness value for that particular composite. Three point bend and tensile tests of the composite samples are conducted in the UTM Instron 1195 as per ASTM D-2344 and D-638 respectively. Tensile tests are carried out on dog bone shaped specimen whereas; flexural tests are conducted on flat specimen with dimensions 150 mm × 20 mm × 5 mm. The flexural and tensile tests are repeated three times for each sample and the mean value is noted as the flexural and tensile strength of that specimen respectively.

2.3. Erosion wear test

The erosion tests are conducted using an erosion wear equipment shown in Figure 1 as per ASTM G76. It is composed of an erodent flow control knob, an air compressor, an erodent feeder, a nozzle, an erodent collector and a specimen holder. Angle of impingement can be changed by fixing the specimen holder at a prescribed angle. Erodent particles used in the erosion tests are dry silica sand (SiO₂) with average particle size ranging from 50 to 250 μm and are dried in an oven just before the tests.

The specimens of the composites for erosion tests are prepared with the thickness 5 mm and the wear faces being 20 mm × 20 mm. To conduct erosion tests, five major factors have been considered, they are filler content, impingement angle, impact velocity, erodent temperature and erodent size each at five levels as shown in Table 1. Taguchi’s L₂₅ experimental design is chosen to conduct the erosion wear tests. An electronic balance is used to measure the weight loss from the composite specimen after each test. Each test is repeated for three times and mean value is reported as the erosion rate of that specimen.

Table 1. Process parameters and levels for solid particle erosion tests

| Process parameters | Levels | Units |
|--------------------|--------|-------|
| Impact velocity    | I      | 32    | m/s |
|                    | II     | 40    |     |
|                    | III    | 48    |     |
|                    | IV     | 56    |     |
|                    | V      | 64    |     |
| Erodent angle      |        |       | degree |
|                    | I      | 0     |     |
|                    | II     | 5     |     |
|                    | III    | 10    |     |
|                    | IV     | 15    |     |
|                    | V      | 20    |     |
| Filler content     |        |       | wt. % |
|                    | I      | 0     |     |
|                    | II     | 50    |     |
|                    | III    | 100   |     |
|                    | IV     | 150   |     |
|                    | V      | 200   |     |
|                    |        | 250   | μm  |
3. Results and Discussion

3.1. Micro-Hardness, Tensile and Flexural Test Results

In the present work, the micro-hardness, tensile and flexural strength values of BF slag, LD sludge (LDS) and LD slag filled epoxy composites have been obtained and are given in Table 2. It is observed that the micro-hardness of the composites increases with increase in filler loading and this improvement is attributed to the hard phases present in the reinforcing fillers. The micro-hardness value of neat epoxy increases to 68.86% with addition of 20 wt. % LD sludge. Further, for same filler loading LD sludge filled epoxy composites show higher micro-hardness values than BF slag and LD slag filled epoxy composites. A marginal drop in tensile and flexural strength values is observed with increase in filler loading for all the three classes of composite samples reinforced with BF slag, LD sludge and LD slag. It is also examined that tensile and flexural strength of the LDS filled epoxy composites exhibit superior outcome than LD slag and BF slag reinforced composites.

Table 2. Comparison of Micro-hardness, flexural and tensile strength of three classes of composites

| Filler Content (wt. %) | Micro-hardness (GPa) | Tensile Strength (MPa) | Flexural Strength (MPa) |
|------------------------|----------------------|------------------------|------------------------|
|                        | EP-LD Slag          | EP-BF Slag             | EP-LD Sludge           |
| 0                      | 0.085               | 0.085                  | 0.085                  |
| 5                      | 0.096               | 0.098                  | 0.12                   |
| 10                     | 0.108               | 0.112                  | 0.181                  |
| 15                     | 0.162               | 0.174                  | 0.232                  |
| 20                     | 0.182               | 0.196                  | 0.273                  |

3.2. Erosion Wear Test Results

Table 3 shows the erosion rates for three different industrial wastes filled epoxy composites. Each row of the table corresponds to an experiment. Total 25 experiments are carried out as per Taguchi’s L25 orthogonal array. From the erosion rate data given in Table 3 it has been observed that wear resistance of all the three classes of composites increases with increase in filler loading. Further, LD sludge filled composite shows superior wear resistance property than that of other two classes of composites. Figure 2 shows variation in erosion rate for all the three classes of composites.

Table 3. The erosion wear test results for three classes of composites

| Specimen Chamber | Mixing Chamber | Erodant Flow | Control Knob | High Pressure Air | Heater | Conveyor Belt System for Erodant Flow | Erodant Feeder | Erodant Nozzle | Sample Holder | x, y and α-axis assembly | Erodant Collector | Air from Compressor | Orifice |
|------------------|----------------|--------------|--------------|------------------|--------|---------------------------------------|---------------|---------------|---------------|------------------------|----------------|----------------------|--------|
### 4. Conclusions

i. Fabrication of epoxy based composites reinforced with LD sludge is feasible through solution casting route.

ii. Superior mechanical properties are observed in case of LD sludge filler epoxy composites as compared to epoxy-LD slag and epoxy-BF slag composites.

iii. Solid particle erosion wear analysis reveals that wear resistance of neat epoxy improves with the addition of filler and epoxy-LD sludge composite confirmed better erosive wear characteristic than other two classes of composites.

---

**Figure 2.** Comparative plot for erosion rates of three classes composites for 25 experiments

| Test Run | Impact Velocity (m/s) | Impingement Angle (degree) | Filler Content (wt. %) | Erodent Size (μm) | Erodent Temperature (°C) | Erosion Rate (mg/kg) |
|----------|-----------------------|----------------------------|------------------------|-------------------|--------------------------|----------------------|
|          |                       |                            |                        |                   |                          | EP-LD sludge EP-LD slag EP-BF slag |
| 1        | 32                    | 30                         | 0                      | 50                | 30                       | 58.594 65.012 69.808 |
| 2        | 32                    | 45                         | 5                      | 100               | 40                       | 55.294 63.295 65.877 |
| 3        | 32                    | 60                         | 10                     | 150               | 50                       | 51.794 57.352 61.707 |
| 4        | 32                    | 75                         | 15                     | 200               | 60                       | 48.495 58.635 56.776 |
| 5        | 32                    | 90                         | 20                     | 250               | 70                       | 42.195 51.538 49.271 |
| 6        | 40                    | 30                         | 5                      | 150               | 60                       | 56.794 63.985 67.664 |
| 7        | 40                    | 45                         | 10                     | 200               | 70                       | 54.194 59.056 64.567 |
| 8        | 40                    | 60                         | 15                     | 250               | 30                       | 51.894 58.465 61.827 |
| 9        | 40                    | 75                         | 20                     | 50                | 40                       | 46.395 51.269 55.275 |
| 10       | 40                    | 90                         | 0                      | 100               | 50                       | 61.793 69.617 73.621 |
| 11       | 48                    | 30                         | 10                     | 250               | 40                       | 56.094 65.196 63.834 |
| 12       | 48                    | 45                         | 15                     | 50                | 50                       | 53.694 60.493 63.971 |
| 13       | 48                    | 60                         | 20                     | 100               | 60                       | 49.295 55.536 58.729 |
| 14       | 48                    | 75                         | 0                      | 150               | 70                       | 66.193 74.574 78.862 |
| 15       | 48                    | 90                         | 0                      | 200               | 30                       | 60.293 65.927 71.835 |
| 16       | 56                    | 30                         | 15                     | 100               | 70                       | 54.694 63.619 61.162 |
| 17       | 56                    | 45                         | 20                     | 150               | 30                       | 51.194 56.676 60.993 |
| 18       | 56                    | 60                         | 0                      | 200               | 40                       | 69.393 80.179 78.674 |
| 19       | 56                    | 75                         | 5                      | 250               | 50                       | 64.893 75.109 77.313 |
| 20       | 56                    | 90                         | 10                     | 50                | 60                       | 59.694 67.252 68.119 |
| 21       | 64                    | 30                         | 20                     | 200               | 50                       | 52.394 59.028 62.422 |
| 22       | 64                    | 45                         | 0                      | 250               | 60                       | 71.492 78.544 85.176 |
| 23       | 64                    | 60                         | 5                      | 50                | 70                       | 69.793 78.629 83.151 |
| 24       | 64                    | 75                         | 10                     | 100               | 30                       | 64.393 72.546 76.718 |
| 25       | 64                    | 90                         | 15                     | 150               | 40                       | 57.194 64.435 62.142 |

---

**Figure 2.** Comparative plot for erosion rates of three classes composites for 25 experiments
References

[1] Khruschov M M 1974 Wear 28 69.
[2] Lee G Y, Dharan C K H and Ritchie R O 2002 Wear 252 322.
[3] Harsha A P Tewari U S and Venkatraman B 2003 Wear 254 693.
[4] Ahmed S and Jones F R 1990 J. Mater. Sci. 25 4933.
[5] Basavarajappa S and Ellangovan S 2012 wear 296 491.
[6] Purohit A and Satapathy A 2017 Poly. Compos. doi: 10.1002/pc.24610.
[7] Bagci M 2016 Tribol. Int. 94 336.
[8] Katz H S and Mileski J V 1987 “Handbook of fillers for plastics”, A Von Nostrand Reinhold Book International Journal of Plastics Technology.
[9] Pati P R and Satapathy A 2013 International Journal on Mechanical Engineering and Robotics 1 39.
[10] Padhi P K and Satapathy A 2013 Tribology Transactions 56 789.
[11] Purohit A and Satapathy A 2016 J. Compos. Mater 51 899.