The Correlation of Climatic Factors with Incidence of Dengue Hemorrhagic Fever in Palembang Bari General Hospital

A Ghiffari¹, C Anwar²*, M Soleha³, T Prameswarie¹, D N Anggina⁴

¹Department of Parasitology, Universitas Muhammadiyah Palembang, Faculty of Medicine, Palembang, Indonesia
²Department of Parasitology, Universitas Sriwijaya, Faculty of Medicine, Palembang, Indonesia
³Medical Studies Program, Faculty of Medicine, Universitas Muhammadiyah Palembang
⁴Department of Public Health, Faculty of Medicine, Universitas Muhammadiyah Palembang

*chairil53@fk.unsri.ac.id

Abstract. An estimated 50 million dengue infections occur worldwide every year, nonetheless in Palembang that the death of dengue hemorrhagic fever (DHF) continues to be a public health problem. Several factors such as characteristic determinants and climate factors caused a high rate of DHF. The study aims to determine the correlation of patients’ characteristics and climatic factors with the incidence of DHF in the general hospital of RSUD Palembang Bari from January 2015 to August 2019. The study was an analytic observational study with a cross-sectional design, using 309 patients’ data and climatic factors obtained from the climate office of the BMKG of Palembang. The sampling technique using a simple random sampling method and the analysis using the chi-square test and the Spearman correlation test. The results showed that the characteristics of DHF patients were a median age of 14 years, dominated by male patients (57,3%), and secondary education level (33,8%). The climatic factors that correlate with the incidence of DHF (p = 0.032) were the air temperature, while other factors such as rainfall (p = 0.797) and relative humidity (p = 0.718) were not significant. The highest incidence of dengue during 2015-2019 occurred around March-April each year. It is necessary to routinely carry out breading place eradication practice 2-3 months before the surge.

1. Introduction

Dengue hemorrhagic fever (DHF) is a severe condition of dengue virus infection [1]. It is estimated that 50 million dengue virus infections occur worldwide [2], where 500,000 DHF cases caused 22,000 deaths every year [1]. With the high morbidity and mortality rates, DHF continues to be a public health problem especially in the equatorial countries where the climate factors suitable for transmission. Indonesia has the highest cases in the Southeast Asia region in 2012 with 45,964 cases and 408 people died [3]. The distribution DHF in Indonesia is evenly distributed in almost all provinces, where South Sumatra province was ranked 10th in 2016 with 3,851 cases and 25 of them died, and Palembang city with 932 sufferers and 2 of them died [4].

The high morbidity and mortality rate of dengue hemorrhagic fever is caused by several factors, including host factors and climate factors [5]. Host factor is various predisposing conditions in a human that can affect the occurrence of DHF [6], such as age, sex, education level, knowledge level, and behavior to prevent this disease. Climate factors can affect the occurrence of DHF, that rainfall, humidity, and ambient temperature are closely related to the life cycle of the mosquito virus vector [9].

DHF is a highly dangerous disease, and the risk factors should be identified and verified, to put proper mitigation.
2. Methods

The study used descriptive-analytic research with a cross-sectional design, that the secondary data were taken from the regional general hospital Bari (RSUD Palembang Bari) and the data from Meteorological, Climatological, and Geophysical Agency Center (BMKG) Kenten Palembang. Research’s data included in the study were on patients' characteristics and climate factors such as rainfall, humidity, and air temperature ranging between January 2015 and August 2019 collecting data. The ethical certificate was approved by the Ethics Committee of the Faculty of Medicine, University of Muhammadiyah Palembang.

2.1. Measuring Instruments

The instrument used was questionnaires. Medical records provide the data on patients' age, gender, and level of education. Simple random sampling was applied to a minimal sample size of 309 from a total of 1360 patients data. Randomization was using a simple application from the excel office®. Climate data were averaged monthly from the daily results, using the minimum and maximum points.

2.2. Statistics Analysis

The data obtained were analyzed using the SPSS program and displayed in tabular form. The relationship between the dependent variable and independent variables were determined by the Chi-square test ($\alpha = 0.05$). Further analysis using the chi-square test and the Spearman correlation. Further analysis tabular were prepared in the figure for better visualization.

3. Result and Discussion

The results were the characteristics of patients and average numbers of the climate factors, also the analysis of its relationship to DHF incidence.

| Table 1. The frequency distribution of age (N = 309) |
Variable	Frequency	Percentage
Toddler (3-4 years)	0	0
Child (5-11 years)	123	39.86%
Adolescent (12-16 years)	60	19.41%
Adult (17-59 years)	124	40.12%
Old (≥ 60 years)	2	0.64%

| Table 2. The frequency distribution based on gender (N = 309) |
Year	Male	Female		
	Frequency	Percentage	Frequency	Percentage
2015	34	55.7%	27	44.3%
2016	41	53.2%	36	46.8%
2017	36	69.2%	16	30.8%
2018	26	48.1%	28	51.9%
2019	40	61.5%	25	38.5%

| Table 3. The frequency distribution based on education level (N = 309) |
Year	Not Attending	Pre-School	Primary	Secondary	Tertiary					
Freq.	%									
2015	11	18	14	23	15	24.6	21	34.4	0	0
2016	23	29.9	12	15.6	14	18.2	26	33.8	2	2.6
2017	17	32.7	7	13.5	9	17.3	17	32.7	2	3.8
2018	8	14.8	24	44.4	8	14.8	14	25.9	0	0
2019	8	12.3	21	32.3	13	20	21	32.3	2	3.1
3.1. Questionnaires

Table 1 showed the frequency distribution of age, who dominated with the adult followed by the child age, with an average age of 14 years old. Table 2 showed the frequency distribution of gender, with more male patients than female. Table 3 showed the frequency distribution of the education level of patients, that the secondary school level with the highest percentage after the primary one, and no one in the tertiary education.

3.2. Tabular form Analysis

Figure 1 showed the relation between climate factors (rainfall, air temperature, and relative humidity) and the incidence of DHF. The air temperature weakly correlates with \(p = 0.007 \), while other non-significant \(p = 0.797 \) and \(p = 0.718 \), which are the rainfall and the relative humidity, respectively.

Year	Rainfall (mm)	Air Temperature (°C)	Humidity (%)	DHF Incidence
2015	180.08	27.71	89.4	61
2016	273.5	27.77	83	77
2017	199.16	27.53	83.66	52
2018	196.75	27.45	87.66	54
2019	185.9	27.88	86.6	65

Figure 1. The relation between climatic factors and DHF incidence in 2015-2019
Figure 2. Monthly mean of rainfall, temperature, humidity, and DHF incidence in 2015-2019

The incidence of DHF correlates with climate factors [11]. Climate is not directly influenced the incidence of DHF, albeit the optimal condition for the mosquitoes’ vector behavior. The average air temperature in Palembang is was 21.94-23.48°C per year, and there is a relation between relative humidity and the incidence of DHF ($p = 0.032$). A similar result was also from Surabaya city with a weak positive correlation ($r = 0.301$) [16]. The average temperature range is still the optimal temperature for *Aedes* mosquitoes to be able to breed and dengue virus development so that the incidence of DHF in Palembang is affected by the air temperature. As for rainfall and relative humidity with the incidence of DHF ($p = 0.797$ and $p = 0.718$) showed no significant relation. The average rainfall in Palembang is in the medium-high range, which means there was high rainfall and lasts for a long time which can cause flooding that several mosquito breeding will be reduced [17]. There is not much rainfall variance that is far enough, perhaps affecting the analysis regarding the incidence of DHF in Palembang. On contrary, results in Pekalongan Regency mentioned that the humidity in Pekalongan Regency is related to the incidence [18]. Air humidity of 71.9-83.5% is suitable condition for the dengue virus to travel from the stomach to the salivary glands of *Aedes* mosquitoes [20], while less optimal humidity of 60% will shorten the age of mosquitoes therefore interrupting the cycle of virus growth in the mosquito's body (the Ministry of Health of the Republic of Indonesia, 2010).

Limitation of the study were the site of collecting data and the randomization method. The general regional hospital treats only the severe patients due to its referral systems, while more DHF cases might happen in smaller hospitals which implied that the incidence rate might not the representative of the whole city case. Randomization was taken to simplify the analysis with a minimum number, due to the shortcoming of time and resources. Larger data could show a better result and deeper analysis regarding incidence and the climate factor correlation.

4. Conclusion

There is a significant correlation between the incidence of DHF in RSUD Palembang Bari to air temperature. It is recommended to carry out breeding place eradication practice 2-3 months before the surge when the highest incidence occurred around March-April each year.

Acknowledgment

The authors greatly thank the Ministry of Research, Technology, and Higher Education of the Republic of Indonesia for the grant. We are also grateful to the RSUD Bari Palembang and BMKG Kenten Palembang who permitted allowing us to research within the area.

References

[1] Sanyaolu A 2017 Global Epidemiology of Dengue Hemorrhagic Fever: An Update *J. Hum. Virol. Retrovirology*
[2] WHO 2011 *Comprehensive Guidelines for Prevention and Control of Dengue and Dengue Haemorrhagic Fever*

[3] WHO 2012 World Health Organization - Regional Office for South East Asia Region *World Heal. Organ. SEARO Dengue Situat. Updat.* 2012 1–2

[4] Dinas Kesehatan Provinsi Sumatera Selatan 2016 Profil Kesehatan Provinsi Sumatera Selatan Kesehatan

[5] Candra A 2016 Demam Berdarah Dengue: Epidemiologi, Patogenesis, dan Faktor Risiko Penularan *Aspirator*

[6] Fuadi F, Bahtera T and Wijayahadi N 2016 Faktor Risiko Bangkitan Kejang Demam pada Anak *Sari Pediatr.*

[7] Raihan R, Hadinegoro S R S and Tumbelaka A R 2016 Faktor Prognosis Terjadinya Syok pada Demam Berdarah Dengue *Sari Pediatr.*

[8] Parulian Manalu H S and Munif A 2016 Pengetahuan dan Perilaku Masyarakat dalam Pencegahan Demam Berdarah Dengue di Provinsi Jawa Barat dan Kalimantan Barat *ASPIRATOR : J. Vector-borne Dis. Stud.*

[9] K D R, Winahjui W S and Mukarrromah A 2012 Pemodelan Pengaruh Iklim Terhadap Angka Kejadian Demam Berdarah Dengue di Surabaya *J. Sains dan Seni ITS*

[10] Suryani E T 2018 The Overview of Dengue Hemorrhagic Fever Cases in Blitar City from 2015 to 2017 *J. Berk. Epidemiol.* 6 260–7

[11] Wowor R 2017 Pengaruh kesehatan lingkungan terhadap perubahan epidemiologi Demam Berdarah di Indonesia *e-Clinic* 5 105–13

[12] Hakim L and Kusnandar A J 2012 Hubungan status gizi dan kelompok umur dengan status infeksi virus Dengue *Aspirator* 4 34–45

[13] Mariko R, Hadinegoro S R S and Satari H I 2016 Faktor Prognosis Terjadinya Perdarahan Gastrointestinal dengan Demam Berdarah Dengue pada Dua Rumah Sakit Rujukan *Sari Pediatr.* 15 361

[14] Bakta N N Y K and Bakta I M 2015 Hubungan Antara Pengetahuan Dan Sikap Terhadap Perilaku Pemberantasan Sarang Nyamuk (PSN) Sebagai Pencegahan Demam Berdarah Dengue (DBD) Di Banjar Badung, Desa Melinggih, Wilayah Puskesmas Payangan Tahun 2014 *E-Jurnal Med. Udayana* 4 1–12

[15] Widiyaning M R, Syamsullhuda B M, Widjanarko B, Masyarakat F K and Diponegoro U 2018 Faktor-Faktor Yang Berhubungan Dengan Praktik Pencegahan Demam Berdarah Dengue (Dbd) Oleh Ibu Rumah Tangga Di Kelurahan Doplang, Purworejo *J. Kesehat. Masy.* 6 761–9

[16] Kurniawati N T and Yudhistuti R 2016 Hubungan iklim dan angka bebas jentik dengan kejadian demam berdarah Dengue di Puskesmas Putat Jaya *J. Ilm. Kesehat. Media Husada* 5 157–66

[17] Dini A M V, Fitriany R N and Wulandari R A 2010 Fakor Iklim dan Angka Insiden Demam Berdarah Dengue di Kabupaten Serang J. Kesehat.

[18] Baiti N, Santjaka A and Nugrahenti R M D 2018 Analisis dinamika penularan penyakit demam berdarah Dengue (DBD) di desa endemis kabupaten Pekalongan tahun 2014-2016 *Pena Med.* 8 64–75

[19] Kementrian Kesehatan RI 2010 Buletin Jendela Epidemiologi: Demam Berdarah Dengue *Bul. Jendela Epidemiol.*

[20] Nur Fitriana Arifin, Sakundarno Adi M, Suhartono S, Martini M, and Suwondo A 2017 Spatial And Temporal Determinants for Dengue Haemorrhagic Fever: A Descriptive Study In Tanjungpinang City, Indonesia *IOSR J. Dent. Med. Sci.* 16 34–8