Hint of relic gravitational waves in the Planck and WMAP data

Wen Zhao,1 Cheng Cheng,2,3 and Qing-Guo Huang2

1Key Laboratory for Researches in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui, 230026, China
2State Key Laboratory of Theoretical Physics, Institute of Theory Physics, Chinese Academy of Science, Beijing 100190, China
3University of the Chinese Academy of Sciences, Beijing 100190, China

Relic gravitational waves (RGWs) leave well-understood imprints on the anisotropies in the temperature and polarization of cosmic microwave background (CMB) radiation. In the TT and TE information channels, which have been well observed by WMAP and Planck missions, RGWs compete with density perturbations mainly at low multipoles. It is dangerous to include high-multipole CMB data in the search for gravitational waves, as the spectral indices may not be constants. In this paper, we repeat our previous work [W.Zhao & L.P.Grishchuk, Phys.Rev.D 82, 123008 (2010)] by utilizing the Planck TT and WMAP TE data in the low-multipole range \(\ell \leq 100\). We find that our previous result is confirmed with higher confidence. The constraint on the tensor-to-scalar ratio from Planck TT and WMAP TE data is \(r \in [0.06, 0.60] (68\% \text{ C.L.})\) with the maximum likelihood at around \(r \sim 0.2\). Correspondingly, the spectral index at the pivot wavenumber \(k_s = 0.002\text{Mpc}^{-1}\) is \(n_s = 1.13^{+0.07}_{-0.06}\), which is larger than 1 at more than 1\% level. So, we conclude that the new released CMB data indicate a stronger hint for the RGWs with the amplitude \(r \sim 0.2\), which is hopeful to be confirmed by the imminent BICEP and Planck polarization data.

PACS numbers: 98.70.Vc, 04.30.-w, 98.80.Cq

I. INTRODUCTION

The relic (primordial) gravitational waves generated in the early Universe is a basic prediction in the modern cosmology, which depends only on the validity of General Relativity and Quantum Mechanics. The relic gravitational waves (RGWs) leave the imprints in all the cosmic microwave background (CMB) radiation anisotropy power spectra, including the TT, TE, EE and BB. In the near future, these provide the unique way to detect it in the observations. If the amplitude of the RGWs is large, \(r > 1\), the CMB TT and TE information channels can dominate the detection, since the amplitudes of these spectra generated by RGWs are much larger than those of EE and BB. However, if \(r < 0.1\), these channels become useless due to the cosmic variance, and the detection can only be done through the B-mode polarization.

In the era before the release of the Planck polarization data, the detection (or constraint) of RGWs mainly depends on the CMB TT and TE channels, which has been done by many groups, including the WMAP and Planck teams. It is well known that the TT and TE power spectra generated by RGWs are significant only in the large scales, i.e. the low multipoles \(\ell \leq 100\). However, in the previous analyses, nearly all the groups utilized the full CMB data till to the very high multipoles (\(\ell_{\text{max}} \sim 1200\) for WMAP and \(\ell_{\text{max}} \sim 2500\) for Planck), and assumed density perturbations with a constant or a running spectral index. This can easily overlook the contribution of RGWs, due to the degeneracies among various cosmological parameters (in particular, the degeneracy between \(r\) and \(n_s\)).

In 2006, Baskaran, Grishchuk and Polnarev noticed that the WMAP TE data are systematically smaller than the predictions of the best-fit cosmological model, where the RGWs were absent, and argued that this might hint the existence of RGWs. In 2009, for the first time, one of us (W.Zhao) with Baskaran and Grishchuk carefully analyzed the three-year WMAP TE data in the low multipoles \(\ell \leq 100\), and gotten the constraints on the quadrupole ratio \(R = 0.149^{+0.247}_{-0.149}\) (note that the tensor-to-scalar ratio is \(r \simeq 2R\)). In addition, we have extended this analysis to the five-year and seven-year WMAP TT and TE data in the low multipoles \(\ell \leq 100\), and found that the indication of RGWs were stabilized: five-year data give \(R = 0.266 \pm 0.171\) and seven-year data yield \(R = 0.273^{+0.155}_{-0.156}\). In these analyses, we have adopted an approximate effective noises and the likelihood functions for the WMAP data, which are based on the exact Wishart distribution for the full-sky observables. However, these approximations were questioned by some authors (see for instance [12]). To clarify it, in paper [13], we adopted the commonly used CosmoMC numerical package to repeat the WMAP7 analysis. We found the maximize likelihood (ML) values are \(r = 0.285\) and \(n_s = 1.052\), and one-dimensional (1d) marginalized likelihood gives the constraints: \(r = 0.20^{+0.23}_{-0.20}\) and \(n_s = 1.064^{+0.058}_{-0.059}\). The CosmoMC approach reduced the confidence of the indications from approximately 2\% level to approximately 1\% level, but the indications do not disappear altogether.

Recently, Planck team released their CMB TT data, and shown some differences in the low multipoles compared with the WMAP data. In this paper, we shall repeat the analysis in [13] based on the combination of Planck TT data and nine-year WMAP TE data, and investigate the hint of RGWs in these new data, where the public
TABLE I: Results for n_s and r in Cases I-III

Case	n_s	r	n_s (1-d likelihood)	r (68% C.L.)
Case I ($n_t = -r/8$)	1.08	0.20	$1.13^{+0.12}_{-0.08}$	[0.06, 0.60]
Case II ($n_t = 0$)	1.09	0.25	$1.12^{+0.08}_{-0.06}$	[0.00, 0.52]
Case III ($n_t = n_s - 1$)	1.07	0.24	$1.11^{+0.07}_{-0.05}$	[0.05, 0.51]
RELIC GRAVITATIONAL WAVES PROVIDE THE UNIQUE ANTENNA TO STUDY THE EXPANSION HISTORY OF THE VERY EARLY UNIVERSE. THE DETECTION OF RGWS THROUGH THEIR IMPRINTS IN THE CMB TEMPERATURE AND POLARIZATIONS ANISOTROPIES IS THE ONLY POSSIBILITY IN THE NEAR FUTURE, WHICH HAS ALSO BEEN CONSIDERED AS ONE OF THE KEY TASKS FOR THE CURRENT AND FUTURE CMB OBSERVATIONS. IN THE WELL OBSERVED CMB TT AND TE INFORMATION CHANNELS, RGWS COMPETE WITH DENSITY PERTURBATIONS ONLY IN THE LOW-MULTIPOLE RANGE. SO, IT IS SENSIBLE TO UTILIZE ONLY THE LOW-MULTIPOLE DATA IN THE SEARCH OF RGWS, WHICH IS HELPFUL TO KEEP AWAY FROM THE UNWARRANTED ASSUMPTIONS ABOUT DENSITY PERTURBATIONS, AND AVOID THE OVERSIGHT OF RGWS IN THE DATA ANALYSIS. IN THIS PAPER, WE REPEATED OUR PREVIOUS ANALYSIS IN [13] BY CONSIDERING THE LOW-MULTIPOLE PLANCK TT DATA, AS WELL AS THE NINE-YEAR WMAP TE DATA. WE FOUND THAT, THE NEW DATA GIVE THE CONSTRAINT $r \in [0.06, 0.60]$ AT 68% CONFIDENCE LEVEL, WHICH DEVIATES FROM ZERO AT MORE THAN 1σ CONFIDENCE LEVEL. MEANWHILE, THE DATA FAVOR A BLUE TILTED SPECTRA OF PRIMORDIAL DENSITY PERTURBATIONS WITH THE SPECTRAL INDEX $n_s = 1.13^{+0.07}_{-0.08}$ IN THE LARGE SCALE. ALL THESE ARE CONSISTENT WITH WHAT WE FOUND IN [13]. WE HOPE THE FORTHCOMING CMB POLARIZATION DATA OF BICEP Experiment and Planck Mission could confirm our expectations.

Note: in the same day BICEP [20] released its data which indicates a discovery of the primordial gravitational waves with $r = 0.20^{+0.07}_{-0.05}$ and $r = 0$ disfavored at 7.0σ.

Acknowledgments: WZ would like to dedicate this article to his friend Leonid Petrovich Grishchuk, who passed away in 13th, September 2012. We acknowledge the use of Planck Legacy Archive, ITP and Lenovo Shenteng 7000 supercomputer in the Supercomputing Center of CAS for providing computing resources. WZ is supported by project 973 under Grant No.2012CB821804, by NSFC No.11173021, 11322324 and project of KIP of CAS. QGH is supported by NSFC No.10821504, 11322545, 11335012 and project of KIP of CAS.

[1] L. P. Grishchuk, Sov. Phys. JETP 40, 409 (1975), Ann NY Acad. Sci. 302, 439 (1977), JETP Lett. 23, 293 (1976).
[2] A. A. Starobinsky, JETP Lett. 30, 682 (1979).
[3] L. Knox and M. S. Turner, Phys. Rev. Lett. 73, 3347 (1994).
[4] W. Zhao, Phys. Rev. D 79, 063003 (2009).
[5] U. Seljak and M. Zaldarriaga, Phys. Rev. Lett. 78, 2054 (1997).
[6] M. Kamionkowski, A. Kosowsky and A. Stebbins, Phys. Rev. Lett. 78, 2058 (1997).
[7] D. Baskaran, L. P. Grishchuk and A. G. Polnarev, Phys. Rev. D 74, 083008 (2006).
[8] L. P. Grishchuk, in General Relativity and John Archibald Wheeler, edited by I. Ciufolini and R. Matzner (Springer, New York, 2000), pp. 151-199 [arXiv:0707.3319].
[9] W. Zhao, D. Baskaran and L. P. Grishchuk, Phys. Rev. D 79, 023002 (2009).
[10] W. Zhao, D. Baskaran and L. P. Grishchuk, Phys. Rev. D 80, 083005 (2009).
[11] W. Zhao, D. Baskaran and L. P. Grishchuk, Phys. Rev. D 82, 043003 (2010).
[12] E. Gjerlof and O. Elgaroy, Phys. Rev. D 83, 067031 (2011).
[13] W. Zhao and L. P. Grishchuk, Phys. Rev. D 82, 123008 (2010).
[14] Planck Collaboration. [arXiv:1303.5075]
[15] Planck Collaboration. [arXiv:1303.5076]
[16] C. L. Bennett et al. Astrophys. J. Suppl. 208, 20B (2013); G. Hinshaw et al. Astrophys. J. Suppl. 208, 19H (2013).
[17] A. Challinor. astro-ph/0403344.
[18] A. Challinor. astro-ph/0502093.
[19] C. Cheng, Q. G. Huang and W. Zhao, in preparation.
[20] BICEP2 Collaboration: P. A. R Ade et al. [arXiv:1403.3985]