All-optical generation of states for “Encoding a qubit in an oscillator”

H. M. Vasconcelos, 1,* L. Sanz, 2 and S. Glancy 3

1 Departamento de Engenharia de Telecomunicações, Universidade Federal do Ceará, Fortaleza, Brazil
2 Instituto de Física, Universidade Federal de Uberlândia, Uberlândia, Brazil
3 Mathematical and Computational Sciences Division, National Institute of Standards and Technology, Boulder, Colorado, USA

* Corresponding author: hilma@ufc.br

Both discrete and continuous systems can be used to encode quantum information. Most quantum computation schemes propose encoding qubits in two-level systems, such as a two-level atom or an electron spin. Others exploit the use of an infinite-dimensional system, such as a harmonic oscillator. In “Encoding a qubit in an oscillator” [Phys. Rev. A 64 012310 (2001)], Gottesman, Kitaev, and Preskill (GKP) combined these approaches when they proposed a fault-tolerant quantum computation scheme in which a qubit is encoded in the continuous position and momentum degrees of freedom of an oscillator. One advantage of this scheme is that it can be performed by use of relatively simple linear optical devices, squeezing, and homodyne detection. However, we lack a practical method to prepare the initial GKP states. Here we propose the generation of an approximate GKP state by using superpositions of optical coherent states (sometimes called “Schrödinger cat states”), squeezing, linear optical devices, and homodyne detection.

The Gottesman, Kitaev, and Preskill (GKP) scheme [1], constitutes a type of linear optical quantum computer as are other schemes based on the proposals of Knill, Laflamme, and Milburn [2] and schemes based on the proposal of Ralph et al. [3]. In the GKP scheme, the qubit is encoded in the continuous Hilbert space of an oscillator’s position and momentum variables. The GKP scheme is applicable to any type quantum harmonic oscillator, but we focus on an optical implementation in traveling modes. The GKP encoding provides a natural error-correction scheme to correct errors due to small shifts (applications of the displacement operator) on the conjugate quadrature variables x and p [1].

The ideal GKP logical 0 qubit state, $|0\rangle$, is defined as a state whose x-quadrature wave function is an infinite series of delta-function peaks occurring whenever $x = 2\sqrt{s}\pi$ for all integers s, while the ideal $|1\rangle$ x-quadrature wave function is displaced a distance $\sqrt{\pi}$ from the $|0\rangle$ state. Since these states are unphysical, GKP described approximate states whose x-quadrature wave function is a series of Gaussian peaks with width Δ, contained in a larger Gaussian envelope of width $1/k$.

The approximation of $|0\rangle$ has the wave function

$$\psi_{\text{GKP}}(x) = N \sum_{s=-\infty}^{\infty} e^{-\frac{1}{2}(2k\sqrt{s}\pi)^2} e^{-\frac{1}{2} \left(\frac{x - 2s\pi}{\sqrt{\pi}} \right)^2},$$

(1)

where N is a normalization factor. If Δ and k are small, then ψ_{GKP} will better approximate an ideal GKP state, and the wave function will have many sharp Gaussian peaks contained in a wide envelope. We can think of the deviation from an ideal GKP state as corresponding to nonzero probability that the state has suffered from errors causing displacement in the x or p variables. If all displacements are smaller than $\sqrt{\pi}/6$, then the errors will not increase during the error correction protocol. GKP states with $\Delta < 0.15$ and $k < 0.15$ will have a probability greater than 0.99 of being free of shift errors larger than $\sqrt{\pi}/6$ [4]. Fig. 1 shows an example of an approximate GKP state’s x-quadrature wave function.

Preparing GKP states is a difficult task, and no experiment has yet demonstrated preparation of such states. GKP proposed preparing these states by coupling an optical mode to an oscillating mirror in [1]. Another proposal was made by Travaglione and Milburn in [5], where the qubit states are prepared in the oscillatory motion of a trapped ion rather than the photons in an optical mode. Pirandola et al. [6] discusses the preparation of optical GKP states by use of a two mode Kerr interaction followed by a homodyne measurement of one of the modes. The same authors describe two proposals for generating GKP states in the position and momentum of an atom by using a cavity mediated interaction with light in [7, 8].

Here we propose the generation of an approximate GKP state by using superpositions of optical coherent states (“cat states”), linear optical devices, squeezing, and homodyne detection. The basic idea is: first, prepare two cat states (each of which contains two Gaussian peaks in its x-quadrature wave function), squeeze both

![Fig. 1. Approximate GKP state's x-quadrature wave function. This shows the logical 0 state $\psi_{\text{GKP}}(x)$ with $\Delta = k = 0.15$.](image-url)
cats (to reduce the width of the Gaussian peaks), interfere them at a beam splitter, then perform homodyne detection on one of the beam splitter’s output ports. Depending on the measurement result, we will find an approximate GKP state (with three Gaussian peaks) in the beam splitter’s other output port. This procedure can be repeated to produce states with larger numbers of Gaussian peaks.

A cat state is a superposition of coherent states such as:
\[|\psi_{\text{cat}}(\alpha)\rangle = \frac{|-\alpha\rangle + |\alpha\rangle}{\sqrt{2(1 + e^{-2|\alpha|^2})}}. \]
(2)

where \(\alpha \) is the amplitude of the coherent state, which may be complex, but we assume it is real below. Several experimental proposals to create cat states are reviewed in [9]. Cat states of this form have been created in several experiments with \(|\alpha| \) up to 1.75 and fidelities of 0.6 to 0.7 [10–15].

Cat states’ \(x \)-quadrature wave functions are superpositions of Gaussian peaks. To simplify notation, we denote a Gaussian with
\[G(x, V, \mu) = e^{-\frac{(x - \mu)^2}{2V^2}}. \]
(3)

These Gaussians represent wave functions, not probability distributions, so the unnormalized vacuum state is \(G(x, 1, 0) \). Suppose two modes, labeled 1 and 2, contain states with unnormalized wave functions \(G(x_1, V_1, \mu_1) \) and \(G(x_2, V_2, \mu_2) \). Modes 1 and 2 meet at a beam splitter with transmissivity 1/2, which performs the transformation:
\[x_1 \rightarrow \frac{1}{\sqrt{2}} (x_1 + x_2) \]
\[x_2 \rightarrow \frac{1}{\sqrt{2}} (x_1 - x_2). \]
(4)

After the beam splitter, we use a homodyne detector to measure mode 2’s \(p \)-quadrature. In the case that the measurement result is \(p_2 = 0 \), this entire procedure produces the transformation
\[G(x_1, V_1, \mu_1)G(x_2, V_2, \mu_2) \rightarrow \sqrt{V}G(x_1, V, \frac{\mu_1 + \mu_2}{\sqrt{2}}). \]
(5)

We can write Eq. (2) in the \(x \)-quadrature basis as:
\[\tilde{\psi}_{\text{cat}}(x, \alpha) = G(x, 1, -\sqrt{2}\alpha) + G(x, 1, \sqrt{2}\alpha), \]
(6)

where we use the tilde to signal that the state is not normalized. We now squeeze this state by an amount \(\zeta \), obtaining
\[\tilde{\psi}_{\text{sqcat}}(x, \alpha, \zeta) = G(x, e^{-2\zeta}, -\sqrt{2}\alpha e^{-\zeta}) + G(x, e^{-2\zeta}, \sqrt{2}\alpha e^{-\zeta}). \]
(7)

We will choose the cat state amplitude to be \(\alpha = \sqrt{2^{m-1} \pi \epsilon^{m}} \), where \(m \) is an integer greater or equal to 1, which we will later use to count iterations of our scheme.

With these choices,
\[\tilde{\psi}_{\text{sqcat}}(x, \sqrt{2^{m-1} \pi \epsilon^{m}}, \zeta) = G(x, e^{-2\zeta}, -\sqrt{2^m \pi}) + G(x, e^{-2\zeta}, \sqrt{2^m \pi}). \]
(8)

Suppose we have two copies of this squeezed cat in modes 1 and 2. They meet at a beam splitter with transmissivity 1/2, and the \(p \)-quadrature of mode 2 is measured to be \(p_2 = 0 \). If we choose \(m = 1 \), the resulting unnormalized state of mode 1 is
\[\tilde{\beta}(x_1, \zeta, m = 1) = G(x_1, e^{-2\zeta}, -2\sqrt{\pi}) + 2G(x_1, e^{-2\zeta}, 0) + G(x_1, e^{-2\zeta}, 2\sqrt{\pi}), \]
(9)

which we call the first binomial state and it is similar to an approximate GKP logical qubit 0, except only the central three peaks are present. The width of those peaks is controlled by the amount of squeezing \(\zeta \) applied to the original cat states.

Consider the order \(m \) binomial state given by
\[\tilde{\beta}(x, \zeta, m) = \sum_{n=0}^{2^m} \binom{2^m}{n} G(x, e^{-2\zeta}, 2\sqrt{\pi}(n - 2^{m-1})]. \]
(10)

This state is a series of Gaussian peaks separated by \(2\sqrt{\pi} \) along the \(x \)-quadrature axis, and the amplitudes of the peaks are given by the \((2^m)\)th row of Pascal’s Triangle (where row 0 contains only 1). We will show that given two copies of the order \(m \) binomial state, one can make the \(m + 1 \) order binomial state. We begin with the state of modes 1 and 2:
\[\tilde{\beta}(x_1, \zeta, m)\tilde{\beta}(x_2, \zeta, m) = \sum_{n_1=0}^{2^m} \sum_{n_2=0}^{2^m} \binom{2^m}{n_1} \binom{2^m}{n_2} \]
\[\times G(x_1, e^{-2\zeta}, 2\sqrt{\pi}(n_1 - 2^{m-1})) \]
\[\times G(x_2, e^{-2\zeta}, 2\sqrt{\pi}(n_2 - 2^{m-1})). \]
(11)

These two modes meet in a beam splitter of transmissivity 1/2, and we measure the \(p \)-quadrature, obtaining the result \(p_2 = 0 \). The new state is given by applying Eq. (5) to \(\tilde{\beta}(x_1, \zeta, m)\tilde{\beta}(x_2, \zeta, m) \). The result is
\[\sum_{n_1=0}^{2^m} \sum_{n_2=0}^{2^m} \binom{2^m}{n_1} \binom{2^m}{n_2} \]
\[\times G\left(x_1, e^{-2\zeta}, \sqrt{2\pi}(n_1 + n_2 - 2^m)\right). \]
(12)

After a little algebra and application of Vandermonde’s identity, we obtain
\[\sum_{q=0}^{2^{m+1}} \binom{2^{m+1}}{q} G\left(x_1, e^{-2\zeta}, \sqrt{2\pi}(q - 2^m)\right). \]
(13)

This state is equivalent to \(\tilde{\beta}(x_1, \zeta, m + 1) \), except that the Gaussian peaks are separated by only \(\sqrt{2\sqrt{\pi}} \) rather
has small peaks at π than 2π.

As m increases, these binomial states will approach the shape of a series of Gaussian peaks in a Gaussian envelope, like $\psi_{GKP}(x)$. In Fig. 2, we plot the probability for measuring a certain value $p_2 = R$ as a function of R when making the $m = 1$ binomial state from two cat states. If we measure $R = 0$, we obtain the wave function as shown in Fig. 2, whose Gaussian peaks’ widths are determined by the degree of squeezing applied to the initial cat states, and whose heights are proportional to the second row of Pascal’s triangle (1, 2, 1), as given by Eq. (10). In Fig. 3 we show the $m = 2$ binomial state.

Creating the order m binomial state requires a minimum of 2^m cats, but the true number may be much larger, because we require that $p_2 = 0$ at each measurement event. However, initial investigations indicate that some cases in which $p_2 \neq 0$ can be recovered by applying a p-quadrature displacement whose size depends on the measurement result. We plan to explore this further in a future work. Creating high quality states will require larger squeezing ζ and higher order m binomial states. We also plan to investigate the performance of these binomial states in the GKP encoding scheme as a function of ζ and m.

In this paper we began construction of GKP with a source of cat states. The most popular method to make cat states is by subtracting photon(s) from a squeezed vacuum state. It may be possible to alter the photon subtraction scheme to benefit our method to make GKP states.

Although our scheme is built of apparently simple, well understood optical operations, it will be difficult to achieve in an experiment. We expect that matching the transverse and longitudinal shapes of all of the optical modes, especially during the squeezing stage [16, 17], will be very difficult.

We thank Adam Meier, Yanbao Zhang, and Emanuel Knill for helpful discussion and comments. H. M. Vasconcelos thanks the PNPD program (CAPES) and FUNCAP for financial support. L. Sanz thanks INCT-IQ for financial support. This paper is a contribution by the National Institute of Standards and Technology of the United States of America and not subject to USA copyright.

References

1. D. Gottesman, A. Kitaev, J. Preskill, “Encoding a qubit in an oscillator”, Phys. Rev. A 64, 012310 (2001). http://arxiv.org/abs/quant-ph/0008040.
2. E. Knill, R. Laflamme, G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
3. T. Ralph, A. Gilchrist, G. Milburn, W. Munro, S. Glancy, “Quantum computation with optical coherent states,” Phys. Rev. A 68, 042319 (2003). http://arxiv.org/abs/quant-ph/0306004.
4. S. Glancy, E. Knill, “Error analysis for encoding a qubit in an oscillator,” Phys. Rev. A 73, 012325 (2006). http://arxiv.org/abs/quant-ph/0510107.
5. B. C. Travaglione, G. J. Milburn, “Preparing encoded states in an oscillator,” Phys. Rev. A 66, 052322 (2002). http://arxiv.org/abs/quant-ph/0205114.
6. S. Pirandola, S. Mancini, D. Vitali, P. Tombesi, “Constructing finite-dimensional codes with optical continuous variables,” Europhys. Lett. 68, 323–329 (2004). http://arxiv.org/abs/quant-ph/0402202.
7. S. Pirandola, S. Mancini, D. Vitali, P. Tombesi, “Generating continuous variable quantum codewords in the near-field atomic lithography,” J. Phys. B.39, 997–1009 (2006). http://arxiv.org/abs/quant-ph/0510053.
8. S. Pirandola, S. Mancini, D. Vitali, P. Tombesi, “Continuous variable encoding by ponderomotive interaction,” Eur. Phys. J. D 37, 283–290 (2006). http://arxiv.org/abs/quant-ph/0503003.
9. S. Glancy, H. M. Vasconcelos, “Methods for producing optical coherent state superpositions,” J. Opt. Soc. Am. B 25, 712–733 (2008). http://arxiv.org/abs/0705.2045.
10. A. Ourjoumtsev, S. Tualle-Brouri, J. Laurat, P. Grangier, “Generating Optical Schrödinger Kittens for Quantum Information Processing,” Science 312, 83–86 (2006).
11. T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, E. Knill, “Generation of optical Schrödinger cat states by number-resolved photon subtraction from squeezed vacuum,” http://arxiv.org/abs/1004.2727.

16. W. Wasilewski, A. Lvovsky, K. Banaszek, C. Radzewicz, “Pulsed squeezed light: Simultaneous squeezing of multiple modes,” Phys. Rev. A 73, 063819 (2006). http://arxiv.org/abs/quant-ph/0512215.

17. O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, I. A. Walmsley, “Tailored Photon-Pair Generation in Optical Fibers,” Phys. Rev. Lett. 102, 123603 (2009). http://arxiv.org/abs/0809.0071v2.