Interaction free and decoherence free states

Dariusz Chruściński, Anna Napoli, Marina Guccione, Paweł Należyty and Antonino Messina

1 Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland
2 Dipartimento di Fisica e Chimica via Archirafi 36, 90123 Palermo, Italy

E-mail: anna.napoli@unipa.it

Received 3 November 2014, revised 22 December 2014
Accepted for publication 26 February 2015
Published 23 June 2015

Abstract
An interaction free evolving state of a closed bipartite system composed of two interacting subsystems is a generally mixed state evolving as if the interaction were a c-number. In this paper we find the characteristic equation of states possessing similar properties for a bipartite system governed by a linear dynamical equation whose generator is sum of a free term and an interaction term. In particular in the case of a small system coupled to its environment, we deduce the characteristic equation of decoherence free states namely mixed states evolving as if the interaction term were effectively inactive. Several examples illustrate the applicability of our theory in different physical contexts.

Keywords: quantum dynamics, open quantum systems, generalized subradiant states

1. Introduction
The dynamics of a closed quantum system is fully determined by the system Hamiltonian \(H \). Usually, one has a natural splitting \(H = H_0 + H_I \), with \(H_0 \) being the free Hamiltonian and \(H_I \) the interaction term. If \(H_I \) is small with respect to \(H_0 \) one treats \(H_I \) as a perturbation term and performs well known perturbation expansion. In this paper we analyze a different problem: we look for states \(\psi \in \mathcal{H} \) such that

\[
e^{-iH_I t}\psi = e^{-i\omega t}e^{-iH_0 t}\psi,
\]

that is, up to a phase factor \(e^{-i\omega t} \) the total Hamiltonian \(H \) and the free part \(H_0 \) generate the same evolution of \(\psi \). Note, that when \([H_0, H_I] = 0 \), that is \(H \) defines a non-demolition Hamiltonian model, each eigenvector of \(H_0 \), i.e. \(H_I\psi_\alpha = \omega_\alpha \psi_\alpha \), satisfies (2). Indeed, one has

\[
e^{-i\omega t}\psi_\alpha = e^{-iH_0 t}e^{-iH_I t}\psi_\alpha = e^{-i\omega t}e^{-iH_0 t}\psi_\alpha.
\]

One might wonder whether one can relax commutation of \(H_0 \) and \(H_I \) and still have states satisfying condition (2). Recently it has been found [1] a positive answer to this question in the bipartite scenario. It was shown [1] that in the Hilbert space of some closed bipartite systems there exists a non-empty subspace \(H_{\text{IFE}} \) of \(\mathcal{H} \) constituted by eigenvectors of \(H_I \) generally evolving as if \(H_I \) were a c-number. The states belonging to \(H_{\text{IFE}} \) have been called interaction-free evolving states (IFE states in short) and when they belong to the kernel of \(H_I \) they evolve as if the two subsystems of \(S \) were fully decoupled. Generally speaking an IFE state is a non separable mixed state of \(S \) unitarily evolving in \(\mathcal{H} \) under the action of \(H_0 \) only and necessary a sufficient condition for the existence of pure or mixed IFE states of a given bipartite closed system have been reported in [1].

In this paper we generalize the concept of IFE states problem to arbitrary ‘systems’ whose dynamics is characterized by a linear first order homogeneous differential equation whose generator \(L \) allows to a natural splitting \(L = A + B \). We ask for the existence of states which are unaffected by \(B \), i.e. their evolution is fully determined by \(A \). In particular we explore the extension of the definition of IFE state to open quantum systems whose evolution is governed by the Markovian master equation. In this case \(B \)-part of \(L \) corresponds to the dissipative/decoherence part of the generator. States which are unaffected by \(B \) evolve in a unitary way without any decoherence effects. Due to such property, ‘IFE’ states in this context will be called decoherence-free states. It is clear that such states are closely related to well known concept of decoherence free subspaces [2–7] and subradiant states [8–12]. Our main result is the determination of characteristic equation of such mixed states for an open system. We illustrate the usefulness of our mathematical conditions explicitly.
constructing examples of both IFE and decoherence free states in various physical scenarios.

The paper is organized as follows: in the next section we provide the general scheme for evolution governed by the linear generator $L = A + B$ and define states which are interaction free or more precisely B-free. Section 3 analyzes the structure of IFE states in the interaction picture—it turns out that interaction picture evolution of IFE states is trivial. Section 4 shows how the Schrödinger evolution fits the general scheme. This section is illustrated by several examples. Section 5 generalizes Schrödinger evolution of a closed system to Markovian evolution of open quantum systems and introduces the concept of decoherence free states. Final conclusions are collected in section 6.

2. General scheme

Consider a linear dynamical equation

$$
\begin{align*}
x_t &= (A + B)x_t, \\
x_{t=0} &= x,
\end{align*}
$$

where x_t is a vector in a linear space W and $A, B : W \to W$ are linear operators. W might be interpreted as a space of states of some physical system and $L = A + B$ plays the role of the generator which is divided into two parts: A—usually referred as a ‘free’ part and B—referred as an ‘interaction’ part. Typically, in physical applications W is a Hilbert space H or an algebra of bounded operators $B(H)$ or a Banach space of trace class operators $T(H)$. The formal solution to (3) is given by $x_t = e^{(A+B)t}x$. We call x a B-free state if

$$
e^{(A+B)t}x = e^{At}x
$$

for all t.

Theorem 1. A state x is B-free if and only if

$$
x \in M := \operatorname{Ker} B \cap \operatorname{Ker} BA \cap \ldots \cap \operatorname{Ker} BA^{n-1},
$$

where $n = \dim W$.

Proof. Expanding $e^{(A+B)t}$ and e^{At} one finds that x is B-free iff

$$
\begin{align*}
&\left(1 + t(A + B) + \frac{t^2}{2} (A^2 + AB + BA + B^2) + \ldots \right) x \\
= &\left(1 + tA + \frac{t^2}{2} A^2 + \ldots \right) x,
\end{align*}
$$

for all t. It is clear that if $x \in M$ then (6) holds. Conversely, if condition (6) is satisfied, then differentiating both sides at $t = 0$ one finds

$$
(A + B)x = Ax,
$$

which shows that $x \in \operatorname{Ker} B$. Performing the 2nd derivative at $t = 0$ gives

$$
(A^2 + AB + BA + B^2)x = A^2x,
$$

and taking into account that $x \in \operatorname{Ker} B$ one finds that $x \in \operatorname{Ker} BA$. Continuing this process up to the nth derivative one finally recovers the definition of M.

Remark 1. It is clear that if $[A,B] = 0$, then $e^{(A+B)t} = e^{At}e^{Bt}$ and $M = \operatorname{Ker} B$. If $[A,B] \neq 0$, then M is a proper subspace of $\operatorname{Ker} B$. Note, that M is A,B-invariant, i.e. $AM \subset M$ and $BM \subset M$. One has

$$
[A,B]_{\mathcal{M}} = 0,
$$

i.e. A and B are partially commuting. In this case one has

$$
e^{(A+B)t} |_{M} = e^{At}e^{Bt} |_{M}.
$$

Remark 2. Interestingly, it was shown by Shemesh [13] that $M \neq 0$ if and only if there exists x_0 such that

$$
Ax_0 = a x_0, \\
Bx_0 = 0.
$$

Clearly, x_0 satisfying (9) is necessarily B-free

$$
e^{(A+B)t}x_0 = e^{At}x_0.
$$

Any B-free state x satisfies $Bx = 0$. However, in general it needs not be eigenvector of A.

Remark 3. Usually, one interprets A as the ‘free’ generator and B as the ‘interaction’ part. In this case B-free states may be called interaction-free (IFE) [1]. Actually, in [1] the following situation was considered: $W = H_1 \otimes H_2$ together with $A = H_1 \otimes I_2 + I_1 \otimes H_2$ and $B = H_1$ denotes the interaction Hamiltonian. The evolution of the interaction free state does not depend upon the interaction part H_1. The characteristic feature of IFE states is the conservation of energy of two subsystems

$$
\begin{align*}
&E_1(t) = \left\{ |\Psi_{12}(t)\rangle \right\} H_1 \otimes I_2 \left[|\Psi_{12}(t)\rangle \right], \\
&E_2(t) = \left\{ |\Psi_{12}(t)\rangle \right\} I_1 \otimes H_2 \left[|\Psi_{12}(t)\rangle \right],
\end{align*}
$$

that is, $E_1(t)$ and $E_2(t)$ are time-independent.

3. Interaction free states—interaction picture

Passing to the ‘interaction picture’

$$
y_t = e^{-At}x_t,
$$

one finds

$$
y_t = B(t)y_t, \\
y_{t=0} = x,
$$

where

$$
\langle x | H | x \rangle = 0.
$$

Finally, the interaction picture evolution of IFE states is trivial.
with the time-dependent B-part
$$B(t) = e^{-iBt}e^{Ht}.$$
(14)

The formal solution reads
$$y_i = T \exp \left(\int_0^t B(\tau)d\tau \right) x = \left(1 + \int_0^t dt_1 B(t_1) + \int_0^t dt_1 \int_0^{t_1} dt_2 B(t_1)B(t_2) + \ldots \right) x.$$
(15)

Proposition 1. A state x is B-free if $y_i = x$.

That is, the interaction picture solution y_i is trivial.

Proof. Using Baker–Campbell–Hausdorff formula
$$e^{-iBt}e^{Ht} = B + i[B, A] + \frac{i^2}{2} [[B, A], A]$$
$$+ \frac{i^3}{3!} [[[B, A], A], A] + \ldots$$
(17)

one easily checks that
$$B(t) \big|_M = e^{-iBt} e^{Ht} \big|_M = 0,$$
(18)

and hence states from M belong to the kernel of $B(t)$. \qed

Interaction picture may be also called a ‘B-picture’ (in B-picture the A part is eliminated). Equivalently, we may introduce an ‘A-picture’ by eliminating B part: introducing
$$z_i = e^{-iBt}x_i,$$
(19)

one finds
$$z_i = A(t)z_i,$$
(20)

with time-dependent A-part
$$A(t) = e^{-iAt}e^{Ht}.$$
(21)

Proposition 2. A state x is B-free if $z_i = x_i$.

That is, A-picture solution z_i coincides with the original solution x_i.

Again, BCH formula implies
$$A(t) \big|_M = A \big|_M,$$
(23)

and the result immediately follows.

\section{4. Schrödinger evolution}

Consider now the Schrödinger equation
$$i \dot{\psi}_i = (H_0 + H_1)\psi_i, \quad \psi_{i=0} = \psi.$$
(24)

Since any two normalized vectors ψ and ϕ such that $\phi = e^{i\alpha}\psi$ define the same physical state we call ψ an interaction free state if
$$e^{-i(H_0+H_1)t}\psi = e^{-i\alpha t}e^{-iH_1t}\psi,$$
(25)

for some real α. Let $H_i^{(\alpha)} = H_1 - \alpha I$.

Theorem 2 [1] A vector state ψ is interaction free if and only if
$$\psi \in M_\lambda := \text{Ker} H_1^{(\alpha)} \cap \text{Ker} H_0^{(\alpha)} \cap \ldots \cap \text{Ker} H_1^{(\alpha)} H_0^{(\alpha)-1},$$
(26)

where $n = \dim H$.

Clearly α defines an eigenvalue of H_1. Note that M_λ is non-trivial iff there exists common eigenvector of H_0 and H_1
$$H_0\psi_0 = \lambda_0\psi_0, \quad H_1\psi_0 = \alpha_0\psi_0.$$

Shemesh theorem [13] states that H_0 and H_1 have a common eigenvector if and only if
$$M = \bigcap_{i=0}^{n-1} \text{Ker} \left[H_0^k H_1^{(\alpha)} \right]$$
(27)

is a nontrivial subspace of H. If $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ defines the spectrum of H_1, then
$$M = M_{\alpha_1} \oplus \ldots \oplus M_{\alpha_n}.$$
(28)

The subspace M is a maximal common invariant subspace of H_0 and H_1. Taking
$$\psi = \psi_1 \oplus \ldots \oplus \psi_n,$$

with $\psi_k \in M_{\alpha_k}$ one finds
$$\psi_i = e^{-iH_0t} \left[e^{-i\alpha_1t}\psi_1 \oplus \ldots \oplus e^{-i\alpha_nt}\psi_n \right].$$
(29)

Note, that ψ_i belongs to M but ψ is not interaction free unless ψ belongs to a single ‘sector’ M_{α_k}.

Remark 4. Since H_0 and H_1 are Hermitian and commute on M there exists an orthonormal basis $\{\langle 1 \rangle, \ldots, \langle m \rangle \}$ on M such that
$$H_0 \big|_M = \sum_{k=1}^m a_k \langle k \rangle \langle k \rangle,$$
$$H_1 \big|_M = \sum_{k=1}^m b_k \langle k \rangle \langle k \rangle.$$
(30)

Note, that it is no longer true in the general case with arbitrary operators A and B unless they are normal. In the general case $A \big|_M$ and $B \big|_M$ have the same Jordan block structure.

Schrödinger evolution may be generalized for mixed states represented by density operators. Consider the von
Neumann equation
\[\dot{\rho}_i = (L_0 + L_i)\rho_i, \]
where \(L_0 \rho = -i[H_0, \rho] \) and \(L_i \rho = -i[H_i, \rho] \).

Proposition 3. A mixed state \(\rho \) is interaction free if and only if
\[\rho \in \mathcal{M} := \text{Ker}L_i \cap \text{Ker}L_jL_0 \cap \ldots \cap \text{Ker}L_1L_0^{-1}. \]

and \(\mathcal{M} \cap S(H) \neq 0 \), where \(S(H) = \{ \rho \mid \rho \geq 0, \text{tr} \rho = 1 \} \).

Note, that any interaction free state may be represented as follows
\[\rho = \rho_1 \oplus \ldots \oplus \rho_k, \]
where \(\rho_k \) is supported on \(\mathcal{M}_{\lambda_k} \). Indeed, one finds
\[\rho_i = e^{-iH_0t} \left[\mathcal{M}_{\lambda_i} \rho_1 e^{iH_0t} \right]_{\mathcal{M}_{\lambda_i}} \oplus \ldots \oplus e^{-iH_0t} \left[\mathcal{M}_{\lambda_k} \rho_k e^{iH_0t} \right]_{\mathcal{M}_{\lambda_k}}, \]
that is, \(\rho \) is supported on \(\mathcal{M} \) has block-diagonal structure. Diagonal blocks \(\rho_k \) are supported on \(\mathcal{M}_{\lambda_k} \) and each diagonal block evolves independently. One finds the similar block structure for \(H_0 \big|_\mathcal{M} \)
\[H_0 \big|_{\mathcal{M}} = h_1 \oplus \ldots \oplus h_n, \]
where
\[h_k := H_0 \big|_{\mathcal{M}_{\lambda_k}}. \]

Hence
\[\rho_k = e^{-i\delta_k t} \rho_1 e^{i\delta_k t} \oplus \ldots \oplus e^{-i\delta_k t} \rho_k e^{i\delta_k t}. \]

Note, that if \(\rho \) is pure, then \(\rho_k = \delta_{\lambda_k} \rho \) for some \(m \) and \(P = |\psi\rangle \langle \psi|\). In this case one has \(\rho_k = e^{-i\delta_k t} \rho_k e^{i\delta_k t} \).

Example 1. Let us consider a toy model, traceable back to the so-called intensity dependent Jaynes–Cummings models [14, 15], composed by a single bosonic mode coupled to a two level atom as described by the following Hamiltonian
\[H = \omega \left(a^\dagger a + (-1)^N \frac{1}{2} \sigma_z \right) = H_0 + H_I, \]
where \(H_0 = \omega a^\dagger a \), \(H_I = \omega \left(-1 \right)^N \frac{1}{2} \sigma_z \) and
\[N = \sigma_z + \frac{1}{2} (1 + \sigma_z). \]

and hence \(\mathcal{M} \) is a direct sum of eigenspaces of \(H_I \). Moreover, the number operator \(N \) commutes with the interaction Hamiltonian \([N, H_I] = 0 \). Note, that states \(| n, \sigma \rangle \) defined as
\[a^\dagger a | n, \sigma \rangle = n | n, \sigma \rangle, \]
\[\sigma_z | n, \sigma \rangle = \sigma | n, \sigma \rangle, \]
\[\sigma = \pm 1, \]
are common eigenstates of \(H_0 \) and \(H_I \). One has
\[N | n, + \rangle = (n + 1) | n, + \rangle, \quad N | n, - \rangle = n | n, - \rangle, \]
and hence
\[\left(-1 \right)^N | n, + \rangle = (-1)^{n+1} | n, + \rangle, \]
\[\left(-1 \right)^N | n, - \rangle = (-1)^n | n, - \rangle. \]

Finally
\[H_I | n, + \rangle = \frac{\omega}{2} (-1)^{n+1} | n, + \rangle \]
\[H_I | n, - \rangle = \frac{\omega}{2} (-1)^n | n, - \rangle, \]
which proves that \(H_I \) has only two eigenvalues \(\alpha_{\pm} = \pm \frac{\omega}{2} \), that is,
\[\mathcal{N}_{\alpha_{\pm}} = \text{span} \{ 2n + 1, \pm \}, \quad n = 0, 1, 2, \ldots \}
\[\mathcal{N}_{\alpha_{\pm}} = \text{span} \{ 2n, \pm \}, \quad n = 0, 1, 2, \ldots \}

Obviously, they are eigenspaces of the parity operator \((-1)^N \):
\[(-1)^N \mathcal{N}_{\alpha_{\pm}} = \pm \mathcal{N}_{\alpha_{\pm}}. \]

Clearly, both eigenvalues are infinitely degenerate:
\[\mathcal{N}_{\alpha_{\pm}} = \mathcal{N}_{\alpha_{\pm}}^0 \oplus \mathcal{N}_{\alpha_{\pm}}^1 \oplus \ldots, \]
where \(\mathcal{N}_{\alpha_{\pm}}^0 \approx \mathbb{C}^2 \) and \(\mathcal{N}_{\alpha_{\pm}}^n \approx \mathbb{C}^2 \) are defined by
\[\mathcal{N}_{\alpha_{\pm}}^0 = \text{span} \{ 2n + 1, \pm \}, \quad n = 0, 1, 2, \ldots \}
\[\mathcal{N}_{\alpha_{\pm}}^n = \text{span} \{ 2n, \pm \}, \quad n = 0, 1, 2, \ldots \}

Consider for example \(|\psi_I\rangle \in \mathcal{N}_{\alpha_{\pm}}, \) that is,
\[|\psi_I\rangle = \sum_n \left[a_n | 2n + 1, + \rangle + b_n | 2n + 1, - \rangle \right] \]
with \(\sum_n |a_n|^2 + |b_n|^2 = 1 \). In this case one finds for the evolution
\[e^{-ih_0 t} |\psi\rangle = e^{-i\omega t} e^{-iH_0 t} |\psi\rangle \]
\[e^{-i\omega t} \sum_n e^{-i(2n+1)t} \times \left[a_n | 2n + 1, - \rangle + b_n | 2n + 1, + \rangle \right]. \]

Clearly, \(e^{-it} |\psi\rangle \) defines a nontrivial trajectory in \(\mathcal{N}_{\alpha_{\pm}} \).

Example 2. Let us consider the two-mode Jaynes–Cummings model [16–18] described by the following Hamiltonian
\[H = \omega \left(a_1^\dagger a_1 + a_2^\dagger a_2 \right) + \omega_0 \frac{1}{2} \sigma_z \]
\[+ \sum_{i=1}^2 \gamma_i \left(a_i^\dagger \sigma_- + a_i \sigma_+ \right) \]
\[= H_0 + H_I. \]

For simplicity consider the resonant case, i.e. \(\omega_0 = \omega \). One easily checks that the free Hamiltonian \(H_0 \) and the interaction Hamiltonian \(H_I \) commute. Moreover the number operator \(N = a_1^\dagger a_1 + a_2^\dagger a_2 + \frac{1}{2} (1 + \sigma_z) \) is a constant of motion and
hence $[H, N] = 0$. One finds
\[
N \ket{n_1, n_2, +} = (n_1 + n_2 + 1) \ket{n_1, n_2, +},
N \ket{n_1, n_2, -} = (n_1 + n_2) \ket{n_1, n_2, -}
\] (44)
Starting from equation (44) it is easy to demonstrate that the eigenspace H_n corresponding to the eigenvalue n of N is $(2n + 1)$-dimensional. Let's indeed observe that the set $S = S_+ \cup S_-$ where
\[
S_+ = \set{\ket{n_1, n_2, +}, n_1 = 0...n} \times (i = 1, 2) \text{ with } n_1 + n_2 = n
\] (45)
contains $n + 1$ orthogonal states and
\[
S_- = \set{\ket{m_1, m_2, +}, m_1 = 0...n - 1} \times (i = 1, 2) \text{ with } m_1 + m_2 + 1 = n
\] (46)
which contains instead n states, forms a basis of H_n. We may diagonalize the interaction Hamiltonian H_I in any $(2n + 1)$-dimensional invariant subspace of N. Let us consider in particular the two Hilbert subspaces correspondent to $n = 1$ and $n = 2$ respectively. Diagonalizing H_I in the subspace with $n = 1$ we obtain three distinct eigenvalues, namely $(0, -\sqrt{\gamma_1^2 + \gamma_2^2}, \sqrt{\gamma_1^2 + \gamma_2^2})$. In the subspace with $n = 2$ we instead obtain the following eigenvalues
\[
\bigg\{0, -\sqrt{\gamma_1^2 + \gamma_2^2}, \sqrt{\gamma_1^2 + \gamma_2^2},
-\sqrt{2}\gamma_1^2 + \gamma_2^2, \sqrt{2}\gamma_1^2 + \gamma_2^2\bigg\}.
\]
Thus, if we consider the eigenvalue of H_I given by $\alpha = \sqrt{\gamma_1^2 + \gamma_2^2}$ we may easily construct the correspondent eigenvectors and thus we may explicitly give IFE states belonging to N_α that are not stationary states.

5. Markovian semigroup and decoherence free states

In this section we generalize the IFE states defined for unitary evolution to the evolution corresponding to quantum Markovian semigroup [19–23] (see also recent review [24]). A general quantum evolution of a system living in the Hilbert space H is described by a dynamical map, that is, a family of completely positive trace-preserving maps (CPTP) $\Lambda_t : \mathcal{B}(H) \to \mathcal{B}(H)$ such that $\Lambda_0 = I$ (an identity map). Let us recall that any dynamical map Λ_t may be realised as follows: one considers a composed system living in $H_{\text{total}} := H \otimes H_E$ and the unitary evolution in H_{total} generated by the total Hamiltonian H_{total}. Starting with the initial product state $\rho \otimes \sigma_E$ one defines a map
\[
\rho \to \Lambda_t \rho := \text{Tr}_E \left[U_t \rho \otimes \sigma_E U_t^\dagger\right],
\] (47)
where Tr_E denotes the partial trace over the environmental degrees of freedom and $U_t = \text{exp} (-itH_{\text{total}})$. By construction Λ_t is CPTP [21]. Let us observe that the reduced dynamics (after partial trace) is never unitary which shows that the system is open. Markovian semigroup is defined by the dynamical map Λ_t satisfying Markovian master equation
\[
\dot{A}_t = L A_t, \quad A_0 = I,
\] (48)
where L denotes the corresponding generator. The formal solution is given by $A_t = e^{Lt}$ and the semigroup property
\[
\Lambda_t \sigma A_t = L + t,
\] (49)
for arbitrary $t, \tau \geq 0$ immediately follows. It was proved by Gorini et al and Lindblad [19, 20] that the solution to (48) provides legitimate dynamical map iff the generator has the following form
\[
L \rho = -i[H_0, \rho] + \frac{1}{2} \sum_k \left([V_k, \rho V_k^\dagger] + [V_k^\dagger, \rho V_k]\right),
\] (50)
where H_0 denotes effective system Hamiltonian and V_k arbitrary noise operators. One has a natural splitting $L = L_0 + L_D$, where $L_0 \rho = -i[H_0, \rho]$ and L_D stands for the dissipative (or decoherence) part. Dissipative part is responsible for all dissipative/decoherence phenomena which can not be described by the unitary evolution.

We call ρ decoherence free state if
\[
e^{-i[H_0, \rho]} = e^{L_0 t} \rho = e^{-i\omega_0 \delta} \rho e^{i\omega_0 \delta},
\] (51)
for all $t \geq 0$. Decoherence free states evolve in a unitary way.

Proposition 4. A mixed state ρ is decoherence free if and only if
\[
\rho \in \mathcal{M} = \text{Ker} L_D \cap \text{Ker} L_D L_D^* \cap \mathcal{S}(H),
\] (52)
and where $\mathcal{S}(H) = \{\rho \mid \rho \geq 0, \text{tr} \rho = 1\}$.

Example 3. Consider pure decoherence of a qubit governed by
\[
H_0 = \omega \sigma_z, \quad L_D \rho = \gamma (\sigma_z \rho \sigma_z - \rho),
\] (53)
Note, that $[L_0, L_D] = 0$ and hence $\mathcal{M} = \text{Ker} L_D$. Denoting $R = \ket{k}\bra{k}$, where $\sigma_z \ket{0} = \ket{0}$ and $\sigma_z \ket{1} = -\ket{1}$, one finds
\[
\mathcal{M} \cap S(H) = \{\rho = p_0 R_0 + p_1 R_1 \mid p_0 + p_1 = 1\},
\] (54)
that is, any state being a convex combination of P_k is decoherence free. Note, that taking $H_0 = \omega \sigma_z$ one finds that L_0 and L_D no longer commute and $\mathcal{M} = 0$, that is, there is no decoherence free states.

Example 4. Pure decoherence model for a qubit may be generalized for an arbitrary qudit system: let $\{\ket{0}, ..., \ket{d - 1}\}$ be an orthonormal basis in d-dimensional Hilbert space H. Define a class of unitary Weyl operators
\[
U_{hm} \ket{k} = e^{i\omega m} \ket{m + k}, \quad \text{mod } d,
\] (55)
Phys. Scr. 90 (2015) 074040

D Chruściński et al

where \(\omega = \mathcal{e}^{2\pi i \alpha} \). These operators satisfy

\[
U_{mn}U_{rs} = \omega^{mn}U_{n+r,m+s},
\]

and the following orthogonality relation

\[
\text{tr} \left[U_{mn}^\dagger U_{kl} \right] = d \delta_{nk} \delta_{ml}.
\]

Note, that \(U_{00} = 1 \) and \(U_{n0} \) are diagonal and hence mutually commuting. Define

\[
H_0 = \sum_{n=1}^{d-1} E_n P_n,
\]

\[
L_{D\rho} = \sum_{n=1}^{d-1} \rho \left[U_{n0}^\dagger U_{n0} - \rho \right],
\]

(56)

with \(\gamma_n \geq 0 \), real energy levels \(E_n \), and \(P_n = |n\rangle \langle n| \). Note, that again \([L_0, L_{D\rho}] = 0\) and hence \(\mathcal{M} = \text{Ker} L_{D} \). One finds

\[
L_{D} |k\rangle \langle l| = \left\{ \sum_{n=0}^{d-1} \kappa_n \left(\omega^{n(k-l)} - 1 \right) \right\} |k\rangle \langle l|,
\]

and

\[
L_0 |k\rangle \langle l| = -i(E_k - E_l) |k\rangle \langle l|.
\]

Hence, \(L_0 |k\rangle = L_D |k\rangle \). The evolution of the initial density matrix \(\rho \) has the following form

\[
\rho(t) = D(t) \rho D(t)^\dagger,
\]

(57)

where \(D\rho \) denotes the Hadamard product and

\[
D_{kl}(t) = \exp \left[\sum_{n=0}^{d-1} \kappa_n \left(\omega^{n(k-l)} - 1 \right) \right].
\]

Note, that \(D_{kk}(t) = 1 \), and \(|D_{kl}(t)| < 1 \) for \(k \neq l \) due to \(\text{Re} \omega^{n(k-l)} < 1 \). Therefore, this model describes pure decoherence of a qudit. Finally, one finds

\[
\mathcal{M} \cap S(H) = \left\{ \rho = p_0 P_0 + \ldots + p_{d-1} P_{d-1} \big| p_0 + \ldots + p_{d-1} = 1 \right\},
\]

(58)

that is, any state being a convex combination of \(P_k \) is decoherence free.

Example 5. (Phase damping of harmonic oscillator). Let

\[
L\rho = -i[H_0, \rho] + \Gamma \left(a^\dagger a \rho - \frac{1}{2} \rho \right) - \frac{1}{2} \left(a^\dagger a \right)^2 \rho - \frac{1}{2} \left(a^\dagger a \right)^2.
\]

(59)

with \(H_0 = \omega a^\dagger a \). Again \([L_0, L_{D\rho}] = 0\). Note, that \(LN = 0 \) and hence \(N = a^\dagger a \) is a constant of motion. In the energy eigenbasis \(|m\rangle = |m| \) one has

\[
\rho = \sum_{n,m=0}^{\infty} \rho_{mn} |n\rangle \langle m|,
\]

(60)

and hence the dynamical map \(A_t = \mathcal{e}^{itL} \) reads

\[
A_t \rho = \sum_{n,m} \rho_{mn} A_t |n\rangle \langle m|.
\]

One finds

\[
L_D |n\rangle \langle m| = \left[-i\omega(n - m) - \frac{1}{2} (n - m)^2 \Gamma \right] |n\rangle \langle m|,
\]

(61)

and hence the off-diagonal elements are transformed according to

\[
\rho_{mn} \rightarrow \exp \left[\left(-i\omega(n - m) \right) - \frac{1}{2} (n - m)^2 \Gamma t \right] \rho_{mn},
\]

(62)

and asymptotically the density matrix is perfectly decohered in the energy eigenbasis. It is clear that states

\[
\rho = \sum_{n=0}^{\infty} \rho_{nn} |n\rangle \langle n|,
\]

(63)

are decoherence free.

6. Conclusions

In this paper we analyzed a class of linear dynamical equations with the generator \(L \) being a sum of two terms \(L = A + B \) (a ‘free’ part \(A \) and ‘interaction’ or ‘dissipation/ decoherence’ part \(B \)). We characterized a class of states which are insensitive to the \(B \) part. In the context of Schrödinger evolution of bipartite systems these states were already analyzed in [1] as Interaction Free States (IFE). We stress that this problem is very general and may be studied whenever the evolution of the system is linear and its generator has a natural splitting into two parts \(A + B \). Interestingly, the necessary and sufficient condition for the existence of such states (see theorem 1) is closely related to the existence of common eigenvectors of \(A \) and \(B \) [13]. We analyzed Schrödinger evolution of pure and mixed states governed by the Hamiltonian \(H = H_0 + H_f \) and dissipative evolution of density operator governed by the Markovian generator \(L = L_0 + L_D \), with \(L_0 \rho = -i[H_0, \rho] \) and \(L_D \) being a purely dissipative/ decoherence part. In the latter case we call state insensitive to \(L_D \)—decoherence free. It is clear that decoherence free free states have to be related to the well known concept of decoherence free subspaces [4]. This issue needs further investigation. It would be also interesting to generalize IFE states for the time-dependent case, i.e. either time-dependent Hamiltonian or time-dependent generator of open system evolution.

Acknowledgments

We thank Andrzej Jamiołkowski for pointing out [13]. DC was partially supported by the National Science Center project DEC-2011/03/B/ST2/00136.
References

[1] Napoli A, Guccione M, Messina A and Chruściński D 2014 Phys. Rev. A 89 062104
[2] Zanardi P and Rasetti M 1997 Phys. Rev. Lett. 79 3306
[3] Zanardi P and Rossi F 1998 Phys. Rev. Lett. 81 4752
[4] Lidar A and Whaley K B 2003 Decoherence-free subspaces and subsystems Irreversible Quantum Dynamics ed F Benatti and R Floreanini (Springer Lecture Notes in Physics vol. 622) (Berlin: Springer) pp 83–120
[5] Lidar D A and Brun T A (ed) 2013 Quantum Error Correction (Cambridge: Cambridge University Press)
[6] Schlosshauer M A 2007 Decoherence and the Quantum-to-Classical Transition (Berlin: Springer)
[7] Należyty P and Chruściński D 2013 Open Syst. Inf. Dyn. 20 1350014
[8] Dicke R H 1954 Phys. Rev. 93 99
[9] Gross M and Haroche S 1982 Phys. Rep. 93 301
[10] Benivegna G and Messina A 1989 J. Mod. Opt. 36 1205–11
[11] Nicolosi S, Napoli A, Messina, and A and Petruccione F 2004 Phys. Rev. A 70 022511
[12] Benivegna G and Messina A 1989 Europhys. Lett. 10 243
[13] Shemesh D 1984 Linear Algebra Appl. 62 11
[14] Buck B and Sukumar C V 1981 Phys. Lett. A 81 132
[15] Benivegna G, Messina A and Napoli A 1994 Phys. Lett. A 194 353
[16] Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89
[17] Gerry C C and Knight P L 2005 Introductory Quantum Optics (Cambridge: Cambridge University Press)
[18] Benivegna G and Messina A 1994 J. Mod. Opt. 41 907
[19] Gorini V, Kossakowski A and Sudarshan E C G 1976 J. Math. Phys. 17 821
[20] Lindblad G 1976 Comm. Math. Phys. 48 119
[21] Alicki R and Lendi K 1987 Quantum Dynamical Semigroups and Applications (Berlin: Springer)
[22] Breuer H-P and Petruccione F 2007 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[23] Chruściński D and Kossakowski A 2012 Europhys. Lett. 97 20005
[24] Chruściński D and Kossakowski A 2014 Eur. Phys. J. D 68 7
[25] Chruściński D 2014 Open Syst. Inf. Dyn. 21 1440004