A reliable strategy for slug flow attenuation in pipeline-riser systems

Adegboyega B Ehinmwowo$, E.T Evwierhoma$¹, Aliyu M. Aliyu$², Yahaya D. Baba$³

¹Chemical and Petroleum Department, University of Lagos
²Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom
³Department of Chemical and Biological Engineering, The University of Sheffield UK

*Corresponding Authors’ Address: aehinmowo@unilag.edu.ng

Abstract

Oil and gas activities across the globe now take place deep offshore. To operate in this harsh environment, there are numerous challenges. These can be in the form of high cost of production, space constraints, operational and technological demands. The co-transportation of oil and gas in same pipeline is one of the operational and technological approaches adopted in the industry to meet the transportation of produced crude. This approach comes with its attendant flow assurance difficulties. Slugging is one of such problems which can constitute operational hitches resulting in production reduction and sometimes eventual plant shutdown. Existing attenuation techniques are limited in various ways. Therefore, seeking a reliable solution to this problem is highly desired. In this study, an experimental study of multiple techniques for slug attenuation was attempted. A passive device-the intermittent slug absorber, topside choking and topside separator were investigated. The results show that a combination of the methods proves to be more effective compared to individual techniques. A significant reduction in riser-base pressure of up to 39% was achieved. This is advantageous and translates to an increase in oil recovery. Thus, the proposed strategy helps to achieve system stability and improved production at a lower cost.

Keyword: Decision matrix, slugging, flow assurance, slug mitigation, bifurcation map

1. Introduction

Flow assurance in petroleum production systems is of immense importance. The operators desire economical, environmentally safe, and continuous flow of oil and gas. A deviation from this could translate into billions of dollars loss which are either paid in fines or loss due to downtime. One of the flow assurance difficulties facing producers is slugging. This is an alternating flow of oil and gas characterised by pressure and flow fluctuation. This intermittence could result in a number of operational problems including topside separator’s trip and eventual shutdown. Existing efforts to curb this menace have either have limited applicability or negatively impact production [1–3]. There is therefore a continual search of techniques for its control and attenuation.

Substantial studies have been devoted to understanding slug flow phenomenon [4–13]. Others investigated the control and attenuation of slug flow and many approaches have been proposed [3,14–19].

These techniques have been classified as active and passive control strategies[20]. The active slug control involves the use of external influencer to achieve slug control while the passive methods achieve slug attenuation without any external influence.
The manual or automated choking and gas injection are good examples of active slug flow attenuation strategies. In manual choking and automated choking, the operator and the controller are the external influencer. For gas injection, the compressor system serves to externally influence the process. The literature is replete of existing works on active slug control and an attempt to review the progress made is made next.

The foundation works for the control and attenuation of slug flow were done between 70s and late 1980s. Significant efforts have been made after to optimise the proposed methods and new methods have been proposed recently. The use of choking as a slug control technique and its attendant downside of excessive back pressure resulting in flow capacity was reported [1,21,22]. This shortcoming has been further worked upon by automating the process and the results of such automation has shown that with the use of controllers, the pressure drop could be reduced and production could be positively enhanced [14,22–25].

The last two decades have witnessed noteworthy progress in developing control systems for slug attenuation. Both linear and non-linear control algorithms have been developed [26–32]. Although momentous advancements have been witnessed in the application of control techniques for slug attenuation, efforts are still ongoing in the areas of controllability, measurements and optimization of control systems [28,33].

Gas injection is another active slug mitigation approach that has been widely employed in the industry. Although, the related cost of gas injection could be extortionate, significant advancement have been recorded in this technique [34–37].

The passive slug control can be achieved by using many devices or techniques such as pipeline reduction [21], multiple risers [38], self-gas lift method [39,40], flow conditioners [41,42], bubble breaker [43], mixing device [44] and more recently the intermittent absorber[25,45].

Other techniques include the use of topside pipeline specially designed for slug attenuation [17], subsea separation [46], homogenization of multiphase flow using emulsifier[47] and the use of surfactants for slug attenuation [48]. Although this technique showed some promising results, its applicability is limited.

There is no doubt that significant progress has been made in slug flow attenuation. However, it has been reported recently that no single method can achieve excellent result. It was therefore, proposed that, to optimise slug flow attenuation, more than one technique must be employed [45,49]. Efforts are thus geared towards seeking strategies to attenuate slug flow at the same time meeting production system stability and enhancement.

In this study, a new strategy for slug mitigation has been presented. A passive device-the intermittent slug absorber and topside separator were investigated.

2. Materials and Method

The multiphase facilities at the Oil and Gas engineering Centre of Cranfield University was used for the experimental studies. The two-inch Pipeline-riser system part of a completely computerised high-pressure test experimental facility containing three major segments. The metering unit, the test segment which includes the horizontal pipe, vertical riser and the two-phase test separator, and the third segment where separation of the multiphase working fluids takes place in a horizontal
three-phase separator. Figure 1 shows the test area used for this study. The vertical two-phase test separator is of 1.2 m height and 0.5 m diameter where the fluids from the pipeline-riser systems are discharged. More details, operations and procedure for this facility can be found in [25]. In this study, bifurcation maps were developed for slug flow conditions using topside choke and separator gas outlet valves to study the attenuation capability of the device and the separator and their combined operation modes. This method has been previously adopted by Ehinmowo et al. [45] to investigated the potential use of intermittent absorbing device for hydrodynamic slug flow mitigation.

![Figure 1](image)

Figure 1 The test section of the Pipeline-riser system ((1) 40 m long purely horizontal pipe, (2) Vertical riser which is 11 m high, (3) horizontal section which is about 3 m, (4) the upstream isolation valve, (5) the intermittent absorber, (6) downstream isolation valves, (7) topside choke valve and (8) two-phase test separator)

Following the experimental work of Ehinmowo et al. [45], various flow conditions including slug flow and non-slugging regimes were investigated in this study. A representative slug flow condition of 1.95m/s and 1.0m/s superficial velocities (30 Sm3/hr and 2 kg/s) of air and water respectively was investigated for the combination of intermittent absorber and topside separator and their individual performances were investigated for slug flow mitigation.
3. Results and Discussion

Slug flow occurs within a wide range of conditions as shown in Figure 2. The slug flow condition chosen for attenuation occurs at the core of the map. The blue markers indicate conditions for slug flow while the red represent the non-slugging region. The slug flow region has been previously characterised and described [19], [50].

Figure 2 Flow regime map for the experimental study
Figure 3 shows the bifurcation plot for the case for topside choking for slug flow attenuation. The slug flow was stabilized at a bifurcation point of 31% valve opening. The riser-base base pressure at stability point was 3.21 barg. Similar results have been previously obtained \[25,45\]. The slug flow was attenuated but at a high pressure and small valve opening which is detrimental to production. It is therefore desired to have the slug flow stabilized at low pressure and large valve opening. This can be shown mathematically, by considering the general linear well model given in (1). This model described the oil production rate as a function of pressure drop across the production system \[25,51\].

\[
Q = K(\Delta P)
\]

(1)

The well production rate is \(Q\), \(\Delta P\) represents the pressure drop across the production system and can be given as equation (2). \(K\) is the productivity index

\[
\Delta P = (P_r - P_w)
\]

(2)

where \(P_r\) is the average reservoir pressure and \(P_w\) is the well head pressure. The well well head pressure is a function of all the pressure downstream including those contribute by the pressure drop across the line, equipment and choke valves.

From equation (1) therefore, it is clear that the lower the \(P_w\), the higher the \(Q\) which is the oil production.
Figure 4 Intermittent Absorber for slug flow mitigation

Figure 4 shows the bifurcation map for intermittent absorber for slug flow mitigation. Slugging disappears at 33% valve opening and a riser-base pressure value of 2.88 barg. This is a larger valve opening and lower pressure when compared with 31% for topside choking and 3.21 barg. The further 2% valve opening translated into a pressure difference of 0.33 barg. This is a gain in production as shown in equation (1) and similar quantification has been reported [25].

In a quest for optimized slug flow mitigation, the use of the gas outlet valve as the of parameter variation was attempted. Figure 5 shows the bifurcation map using this strategy.
The slug flow was stabilized at 32% valve opening and the riser base pressure value reduced to 2.1 barg. This bifurcation point was more desired when compared with topside pressure as the varying parameter, the result showed that the gas outlet valve was a more desirable one.

The focal objective of this study is to seek a reliable approach to attenuating slugging in pipeline-risers. Figure 6 shows the bifurcation plot for intermittent absorber combined with separator operation as slug control strategy. The slug flow mitigation was achieved at 35% valve opening and a very low riser-base pressure of 1.96 barg. This provides a huge profit of about 38.94% when compared with topside choking, 31.94% when compared with vessel added to topside choking and 6.67% when compared with separator gas outlet choking as the slug control technique.

This benefit of gas outlet valve choking over topside choking and topside choking coupled with intermittent absorber can be traced to additional volume provided by the separator which serves to provide attenuation capacity for the slug flow. These results showed that the combination of more than one technique is more reliable for slug flow attenuation compared with a single approach. This is in consonance with the previous observations of [49,52].

Figure 5 Separator gas outlet valve operation for slug flow attenuation
4. Conclusions

A reliable strategy for slug flow attenuation was investigated in this study. Based on the findings, the following deductions can be made.

- For effective mitigation of slug flow, a minimum of two techniques must be combined.
- The use of the separator gas outlet choking and intermittent absorber outperforms the combination of topside choking and intermittent absorber.
- The proposed strategy in this study can provide up to 39% reduction in riser-base pressure which signifies an increased oil production.

5. Recommendations

Although, the proposed strategy has been shown to outperform existing techniques, there is the need to further optimise the volume of the separator for enhanced performance.

A numerical study can also be carried out to further strengthened the understanding of the proposed techniques. This is a subject of future studies.
References

[1] Schmidt Z, Brill J P and Beggs H D 1979 Choking can eliminate severe pipeline slugging Oil Gas J. 12 230–8

[2] Farghaly M A 1987 Study of severe slugging in real offshore pipeline riser-pipe system 5th SPE Middle East Oil Show (Manama, Bahrain)

[3] Ehinmowo A B and Cao Y 2015 Stabilizing slug flow at large valve opening using active feedback control Proceedings of the 21st International Conference on Automation & Computing (University of Strathclyde, Glasgow, UK)

[4] Fabre J 1994 Advancements in Two-Phase Slug Flow Modeling University of Tulsa Centennial Petroleum Engineering Symposium

[5] Fabre J, Liné A and Gadoin E 1995 Void and pressure waves in slug flow IUTAM Symposium on Waves in Liquid/Gas and Liquid/Vapour Two-Phase Systems (Springer) pp 25–44

[6] Mandal T K, Das G and Das P K 2010 An appraisal of liquid–liquid slug flow in different pipe orientations Int. J. Multiph. Flow 36 661–71

[7] Mandal T K, Bhuyan M K, Das G and Das P K 2008 Effect of undulation on gas–liquid two-phase flow through a horizontal pipeline Chem. Eng. Res. Des. 86 269–78

[8] De Leebeeck A and Nydal O J 2010 Simulation of large amplitude waves in a slug tracking scheme compared to roll wave experiments at high pressure Int. J. Multiph. Flow 36 40–50

[9] Brauner N and Ullmann A 2004 Modelling of gas entrainment from Taylor bubbles. Part A: Slug flow Int. J. Multiph. Flow 30 239–72

[10] Al-Safran E M, Gokcal B and Sarica C 2011 Analysis and Prediction of Heavy Oil Two-Phase Slug Length in Horizontal Pipelines SPE Heavy Oil Conference and Exhibition (Society of Petroleum Engineers)

[11] Zhang H-Q, Wang Q, Sarica C and Brill J P 2003 Unified model for gas-liquid pipe flow via slug dynamics - Part 1: Model development J. Energy Resour. Technol. Trans. ASME 125 266–73

[12] Issa R I 2009 Simulation of intermittent flow in multiphase oil and gas pipelines Seventh International Conference on CFD in the Minerals and Process Industries CSIRO (Melbourne,Australia) p 1

[13] Issa R I and Kempf M H W 2003 Simulation of slug flow in horizontal and nearly horizontal pipes with the two-fluid model Int. J. Multiph. Flow 29 69–95

[14] Ogazi A I, Ogunkolade S, Cao Y, Lao L and Yeung H 2009 Severe slugging control through open loop unstable PID tuning to increase oil production 14th International Conference on Multiphase Technology (Cannes, France) pp 17–32

[15] Ehinmowo A B and Cao Y 2016 Stability analysis of slug flow control Syst. Sci. Control Eng.
[16] Ehinmowo A B, Ogunleye O O and Orodu O D 2016 Experimental investigation of hydrodynamic slug mitigation potential of an intermittent absorber Chem. Eng. Res. Des.

[17] Ehinmowo A B, Ogunbiyi A T, Onuh C Y, Orodu O O and Denloye A O 2016 Topside pipeline design for slug attenuation and increased oil production Int. J. Appl. Eng. Res. 11

[18] Ehinmowo A B, Ogunbiyi A T, Orodu O D, Aribike D S and Denloye A O 2016 Experimental investigation of hydrodynamic slug flow in pipeline-riser systems Int. J. Appl. Eng. Res.

[19] Ehinmowo A B, Cao Y and Yeung H C 2018 Slug Flow in Large Diameter Pipeline- riser Systems : Prediction and Mitigation 2 1–21

[20] Xing L 2011 Passive slug mitigation by applying wavy pipes (Bedford, UK: PhD Thesis, Cranfield University)

[21] Yocum B T 1973 Offshore riser slug flow avoidance: mathematical models for design and optimization SPE European Meeting (London, England)

[22] Schmidt Z 1977 Experimental study of two-phase slug flow in a pipeline-riser pipe system (Tulsa: University of Tulsa)

[23] Ogazi A, Cao Y, Yeung H and Lao L 2010 Slug control with large valve openings to maximize oil production SPE J. 15 812–21

[24] Ehinmowo A B and Cao Y 2015 Stabilizing slug flow at large valve opening using active feedback control 2015 21st International Conference on Automation and Computing (ICAC)

[25] Ehinmowo A B 2015 Stabilising slug flow at large valve opening using an intermittent absorber (PhD Thesis, Cranfield University, Bedfordshire, UK)

[26] Ogazi A I 2011 Multiphase severe slug flow control (Bedfordshire, Uk: PhD Thesis, Cranfield University)

[27] Storkaas E and Skogestad S 2003 Cascade control of unstable systems with application to stabilization of slug flow International Symposium on Advanced Control of Chemical Processes AdChem’03 (Hong Kong)

[28] Storkaas E 2005 Stabilizing control and controllability:control solutions to avoid slug flow in pipeline-riser systems (NTNU,Norway: Norwegian University of Science and Technology)

[29] Storkaas E and Skogestad S 2007 Controllability analysis of two-phase pipeline-riser systems at riser slugging conditions Control Eng. Pract. 15 567–81

[30] Tang Y and Danielson T 2006 Pipelines slugging and mitigation: case study for stability and production optimization SPE Annual Technical Conference and Exhibition (San Antonio, Texas, USA)

[31] Fard M P, Godhavn J-M and Sagatun S I 2006 Modeling of Severe Slug and Slug Control With OLGA SPE Prod. Oper. 381–7
[32] Kovalev K, Seelen M and Haandrikman G 2004 Vessel-Less S3: advanced solution to slugging pipelines SPE Asia Pacific Oil and Gas Conference and Exhibition (Perth, Australia: Society of Petroleum Engineers)

[33] Ehinmowo A B, Bishop S A and Jacob N M 2017 Prediction of Riser Base Pressure in a Multiphase Pipeline- Riser System Using Artificial Neural Networks 22 23–33

[34] Pots B, Bromilow I and Konijn M 1987 Severe slug flow in offshore flowline/riser systems SPE Prod. Eng. 2 319–24

[35] Schmidt Z, Doty D and Dutta-Roy K 1985 Severe slugging in offshore pipeline riser-pipe systems Old SPE J. 25 27–38

[36] Hill T J 1990 Gas injection at riser base solves slugging flow problems Oil Gas J. 26 88–92

[37] Henriot V, Courbot A, Heintze E and Moyeux L 1999 Simulation of process to control severe slugging: Application to the dunbar pipeline SPE Annual Technical Conference and Exhibition (Houston, Texas, USA)

[38] Prickaerts P, Haandrikman G and Henkes R 2013 Two-phase flow behaviour for a single flowline with a non-symmetric splitter to a dual riser 16th International Conference on Multiphase Production Technology (Cannes, France: BHR Group)

[39] Sarica C and Tengesdal J Ø 2000 A new technique to eliminate severe slugging in pipeline/riser systems SPE Annual Technical Conference and Exhibition (Dallas, Texas, USA)

[40] Tengesdal J Ø, Thompson L and Sarica C 2005 A design approach for a" self-lifting" method to eliminate severe slugging in offshore production systems Old Prod. Facil. 20 201–6

[41] Xing L, Yeung H, Shen J and Cao Y 2012 A new flow conditioner for mitigating severe slugging in pipeline/riser system Int. J. Multiph. Flow

[42] Adedigba A G 2007 Two-phase flow of gas-liquid mixtures in horizontal helical pipes (Bedford, UK: Cranfield University)

[43] Schrama E and Fernandes R 2005 The bubble breaker: Breaking up slug flow Into dispersed bubbly flow using a passive mechanical device 12th International Conference on Multiphase Production Technology (Barcelonna, Spain: BHR Group)

[44] Brasjen B J, Hansen J H, Schiferli W and Belfroid S P C 2013 Experimental investigation of terrain slugging formation ,evolution and potential for mitigation 16th International Conference on Multiphase Production Technology (Cannes, France: BHR Group)

[45] Ehinmowo A B, Ogunleye O O and Ordu O D 2016 Experimental investigation of hydrodynamic slug mitigation potential of an intermittent absorber Chem. Eng. Res. Des. 113 50–60

[46] Song S and Kouba G 2000 Fluids transport optimization using seabed separation J. energy Resour. Technol. 122 105–9
[47] Hassanein T and Fairhurst P 1998 Challenges in the mechanical and hydraulic aspects of riser design for deep water developments *Deepwater Technology Conference, Oslo, Norway*

[48] Sarica C, Begen P, Pereyra E and Kouba G 2014 Feasibility of surfactants as severe slugging suppression agents *9th North American Conference on Multiphase Technology (Banff, Canada: BHR Group)*

[49] Ehinmowo A . ., Evwierhoma E . and Femi-Jolayemi B 2018 Decision matrix for slug flow attenuation in pipeline-riser systems *Nigerian Society of Chemical Engineers 48th Annual Conference, 8-10 th November (Abeokuta: NSChE)*

[50] Ehinmowo A B, Ogunbiyi A T, Orodu O D, Aribike D S and Denloye A O 2016 Experimental investigation of hydrodynamic slug flow in pipeline-riser systems *Int. J. Appl. Eng. Res.* **11**

[51] Abou-Kassem S.M. Islam, M. Rafiq J H F A 2006 *Petroleum reservoir simulation - A basic approach* vol 1st (Houston, Texas, USA: Gulf Publishing Compan)

[52] Ehinmowo A B, Ogunleye O O and Orodu O D 2016 Experimental investigation of hydrodynamic slug mitigation potential of an intermittent absorber *Chem. Eng. Res. Des.* **113** 50–60