Complex Formation in a Liquid-Liquid Extraction System Containing Vanadium(IV/V), 2,3-Dihydroxynaphtahlene and Thiazolyl Blue

Galya K. Toncheva,1 Zlatimir T. Zhelev,1 Vassil B. Delchev1 and Kiril B. Gavazov2,*

1 Faculty of Chemistry, University of Plovdiv “Paisii Hilendarski”, Plovdiv 4000, Bulgaria
2 Faculty of Pharmacy, Medical University of Plovdiv, Plovdiv 4002, Bulgaria
* Corresponding author: E-mail: kgavazov@abv.bg

Abstract

Liquid-liquid extraction systems for V IV/V containing 2,3-dihydroxynaphtahlene (DN) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (thiazolyl blue, MTT) were studied. The optimum conditions for V IV and V V extraction were found. V IV is extracted in chloroform as a 1:2:2 complex (V:DN:MTT) with $\lambda_{\text{max}} = 570$ nm and $\varepsilon_{570} = 2.9 \times 10^4$ dm3 mol$^{-1}$ cm$^{-1}$. However, this wavelength was found unsuitable for precise spectrophotometric measurements due to time dependent absorbance changes. V V forms predominantly a 1:1:1 complex with $\lambda_{\text{max}} = 335$ nm. The calibration graph for this oxidation state is linear in the range of 0.06–1.5 µg cm$^{-3}$. The molar absorptivity, Sandell’s sensitivity and limit of detection were calculated to be 1.6×10^4 dm3 mol$^{-1}$ cm$^{-1}$, 3.2 ng cm$^{-2}$ and 0.02 µg cm$^{-3}$, respectively. The ground-state equilibrium geometries of the anionic parts of the extracted ion-associates, [VIVO(DN$_2$)$^-$] and [VVO$_2$(DN$_2$)$^-$], were optimized at the BLYP/6-31++G* level of theory.

Keywords: Vanadium(IV/V); 2,3-dihydroxynaphtahlene; ternary complex; liquid-liquid extraction; spectrophotometry; DFT calculations

1. Introduction

Vanadium is an essential trace element for living organisms and a pillar of modern technology with a potentially significant environmental impact due to human activity, such as the burning of fossil fuels, manufacturing of steel alloys, dyes, glass and ceramics, and application as a catalyst in various processes. Vanadium is the fifth most abundant transition element in the Earth’s crust with an average content of 0.014%. Natural sources of airborne vanadium include continental dust, volcanic activity, marine aerosols and wild forest fires.

It is known that prolonged exposure to vanadium increases the risk of lung cancer and can damage the intestinal, respiratory, central nervous and digestive systems. The amount of vanadium resorbed in the gastrointestinal tract is a function of the oxidation state and coordination environment. The most important oxidation states of vanadium are IV and V. The ability to switch easily between them, along with the stereochemical flexibility of this element are key factors that determine its role in biological systems.

Vanadium deficiency in animal species is related to stunted growth, impaired reproduction, altered red blood cell formation, disturbed iron metabolism and abnormalities in blood lipid levels. There is an opinion among health specialists that vanadium deficiency can affect humans in a similar way. Insufficiently studied issues concerning the balance between its toxicity and essentiality define the necessity for vanadium determination in various samples and call for investigations of coordination compounds, which have the potential to be used for V IV/V V speciation.

Many methods have been proposed for vanadium determination and speciation. Very sensitive and cost effective are the spectrophotometric methods based on ternary complexes with catechol type ligands. However, the mechanism of colour development in some of these methods is debatable because it is not clear whether...
the main spectral bands are due to the formation of coordination compounds or are products of reagent(s) oxidation and polymerization. On the other hand, it is difficult to find conditions for speciation analysis with such reagents as they are capable of reducing V^{IV} to V^{III}. In fact, little is known about the stabilizing effects of additional reagents on the initial oxidation state of vanadium in ternary complexes of this kind.

Several papers describe liquid-liquid extraction (LLE) of V^{IV} with 2,3-dihydroxynaphthalene (DN), a ligand incorporating a catechol moiety, the interest in which has been revived thanks to Tarafder et al. We found evidence for aggregation of the ternary complexes in the organic phase and shift light on the differences in the extraction mechanism for V^{IV} and V^{V}.

Here, we report results for LLE-chromogenic systems containing V^{IV} or V^{V}, DN and an alternative ion-association reagent: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium chloride (TTC). We found evidence for the formation of the ternary complexes in the organic phase and light on the differences in the extraction mechanism for V^{IV} and V^{V}.

Here, we report results for LLE-chromogenic systems containing V^{IV} or V^{V}, DN and an alternative ion-association reagent: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (thiazoly blue, MTT). MTT is a commercially available tetrazolium salt with many applications as a redox and ion-association reagent. MTT is known to have advantages over similar compounds in terms of stability and molar absorptivity of the obtained complexes and their applicability for V^{IV}/V^{V} speciation analysis.

2. Experimental Procedure and Theoretical Details

2.1. Reagents and Apparatus

Stock V^{IV} aqueous solution (ca. 5×10^{-2} mol dm$^{-3}$) was prepared from $\text{VOSO}_4 \cdot 5\text{H}_2\text{O}$ (purum, Fluka AG, Switzerland) and standardized by potassium permanganate titration. Working solutions at a concentration of 2×10^{-4} mol dm$^{-3}$ and pH ca. 3.0 were prepared daily by adding buffer solution, prepared by mixing 2.0 mol dm$^{-3}$ potassium dihydrogen phosphate and 2.0 mol dm$^{-3}$ disodium hydrogen phosphate, to stock solution. V^{IV} solution (2×10^{-3} mol dm$^{-3}$) was prepared by dissolving NH_4VO_3 (puriss. p.a., VEB Laborchemie Apolda, Germany) in water. Fresh DN chloroform solutions (2 $\times 10^{-3}$ mol dm$^{-3}$) were prepared daily from the solid reagent (purum, Fluka AG, Switzerland). The concentration of MTT (p.a., LOBA Feinchemie GmbH, Austria) was 3×10^{-3} mol dm$^{-3}$ (aqueous solution). The chloroform (p.a., Valerus, Bulgaria) was additionally distilled. The acidity of the aqueous medium was set by the addition of buffer solution, prepared by mixing 2.0 mol dm$^{-3}$ aqueous solutions of CH_3COOH and ammonium. pH was measured by a Hanna HI-83141 pH meter (Romania). Absorbance measurements were performed using a Camspec M508 spectrophotometer (United Kingdom), equipped with 1 cm path-length glass cells. Distilled water was used throughout the work.

2.2. Procedure

Aliquots of V^{IV} or V^{V} solution, buffer solution (1 cm3) and MTT solution were placed into 125 cm3 separation funnels. The volume was made to 10 cm3 with water. An aliquot of DN chloroform solution was added and the organic phase was made up to 10 cm3 with chloroform. The funnel was shaken for a fixed time period (10–240 s). After the separation of the phases, a portion of the organic extract was transferred through filter paper into the spectrophotometer cell. The absorbance was measured against chloroform or simultaneously prepared blank solution (containing all of the reagents with the exception of vanadium).

2.3. Theoretical Details

The structures of the anionic coordination compounds were optimized at the BLYP/6-31+G* level of theory as described in the literature. The charge and multiplicity for [$\text{V}^{\text{IV}}\text{O(DN)}^2\text{−}$]2− were set to –2 and doublet, respectively. The theoretical calculations were performed with the GAUSSIAN 09 program package. The results were visualized with the ChemCraft program.

3. Results and Discussion

The following variables were considered for the performed LLE-spectrophotometric optimisation experiments: organic solvent, wavelength for spectrophotometric measurements, pH, extraction time and concentration of the reagents.

3.1. Choice of Organic Solvent and Spectral Characteristics

Chloroform, dichloroethane, ethyl acetate and methyl isobutyl ketone were used in previous studies as extraction solvents for DN-containing complexes. Preliminary investigations showed that chloroform is the best solvent for the $\text{V}^{\text{IV/V}}$–DN–MTT species. Absorption spectra of these species are shown in Fig 1. Significant differences can be observed for the two oxidation states. The V^{IV} complex (spectrum 1) has two intensive maxima (at 330 and 560 nm), while the V^{V} complex (spectrum 2) is characterized by an intense maximum (at 335 nm). Another maximum for this oxidation state is at 680 nm; the corresponding band is broad and low intensive.

Spectra with a high DN concentration (1.6 \times 10$^{-3}$ mol dm$^{-3}$) are depicted in Fig. 1b. The spectral changes accompanying the increase of the DN concentration can be attributed to reduction of V^{V} to V^{IV}. However, this reduction is only partial: there is no complete matching of the two spectra as observed under similar conditions in
our previous studies21 for the couple VV-DN-TTC and VIV-DN-TTC.

It should be mentioned that the absorbance of the blank is not stable in time (Fig. 1c). The increase of the absorbance at 580 nm fits well to a second order polynomial equation: $y = -0.0001x^2 + 0.0138x + 0.1477$, $R^2 = 0.9996$. The observed instability can be attributed to aggregation of the DN-MTT species in the organic phase. To eliminate this factor, in our further studies, we measured the absorbance at wavelengths outside the range of instability.

3.2. Effect of pH

The effect of pH on the extraction is shown in Fig. 2. The absorbance of the VIV complex was measured at 335 nm (series 1) and 700 nm (series 1'). There are no significant differences in the pH profile for these wavelengths. This indicates that only one complex is extracted under the mentioned conditions (high DN concentration). Our further experiments were carried out at pH 5.0.

Series 2 represents the results for the complex obtained with VV. The course of the obtained curve is different, especially for the pH region above 5.5. This is in agreement with the concept that different complexes are formed with VIV and VV under the experimental conditions.

3.3. Effect of Extraction Time

The influence of extraction time on the absorbance was followed in the interval from 10 seconds to 4 minutes. The results show that the time of 1.5 min is sufficient for quantitative extraction. Extraction times longer than 2.5 min can lead to a slight decrease of the absorbance. Hence, we extracted for 2 min in the further experiments.

3.4. Effect of DN Concentration

The effect of DN concentration is shown in Fig. 3. Fig. 3a represents the results for VV. The absorbance at 335 nm is maximal when $c_{DN} \geq 6 \times 10^{-4}$ mol dm-3. Fur-
ther studies were performed at this DN concentration. Fig. 3b shows the results for V^IV. It is noteworthy that the saturation at the two wavelengths (335 and 700 nm) is achieved at different DN concentrations: 6×10^{-4} mol dm$^{-3}$ (for 335 nm) and 1.4×10^{-3} mol dm$^{-3}$ (for 700 nm). This can be explained with the formation of different ternary complexes (see below): a 1:1 (V^IV:DN) complex with λ_{max} close to 335 nm and a 1:2 (V^IV:DN) complex with absorbance bands at higher wavelengths ($\lambda_{\text{max}} = 570$ nm).

3.6. Molar Ratios, Formulae and Equations

To determine the DN : V molar ratios in the ternary complexes, we used two methods: the straight line method of Asmus40 and the mobile equilibrium method41 (Fig. 5). These methods give reliable results for relatively weak chemical bonds.42,43 The MTT : V molar ratios were determined by the Yoe & Jones method44 (Fig. 6). The method is applicable for strong bonds,42,43 for which the two above-mentioned methods are usually inappropriate.

The results given in Fig. 5 (full markers; lines 1 and 1’) show that there is a difference in the molar ratio for 335 nm (DN:V^IV = 1:1) and 700 nm (DN:V^IV = 2:1). Fig. 6a, in its turn, shows that the molar MTT:V^IV ratio is 2:1 independently of the wavelength. Therefore, the composition of the two ternary complexes is 1:1:2 (V^IV:DN:MTT; low DN concentration) and 1:2:2 (optimum conditions).

The following equation can be proposed for V^IV extraction under the optimum conditions (Table 1):

$$a)
\begin{align*}
&c_{\text{V(IV)}} = 2 \times 10^{-5} \text{ mol dm}^{-3} \\
&c_{\text{MTT}} = 3.5 \times 10^{-4} \text{ mol dm}^{-3} \\
&\lambda = 335 \text{ nm (1) or 700 nm (2)}.
\end{align*}
$$

b)

$$a)
\begin{align*}
&c_{\text{V(V)}} = 2 \times 10^{-5} \text{ mol dm}^{-3} (1) \text{ or } 4 \times 10^{-5} \text{ mol dm}^{-3} (2) \\
&c_{\text{MTT}} = 3.5 \times 10^{-4} \text{ mol dm}^{-3} (1) \text{ or } 1.0 \times 10^{-4} \text{ mol dm}^{-3} (2) \\
&\lambda = 335 \text{ nm (1) or 700 nm (2)}.
\end{align*}
$$

b)

$$a)
\begin{align*}
&c_{\text{V(V)}} = 3 \times 10^{-5} \text{ mol dm}^{-3} \\
&c_{\text{DN}} = 6.0 \times 10^{-4} \text{ mol dm}^{-3}, \text{ pH 5.5, } \lambda = 335 \text{ nm (1) and 650 nm (2)}.
\end{align*}
$$

b)

$$a)
\begin{align*}
&c_{\text{V(IV)}} = 2 \times 10^{-5} \text{ mol dm}^{-3} (1) \text{ or } 3 \times 10^{-5} \text{ mol dm}^{-3} (2) \\
&c_{\text{DN}} = 4.0 \times 10^{-4} \text{ mol dm}^{-3} (1) \text{ or } 1.6 \times 10^{-4} \text{ mol dm}^{-3} (2) \\
&\lambda = 335 \text{ nm (1) and 700 nm (2)}.
\end{align*}
$$
The optimised ground-state geometry of the anionic chelate, \([\text{VIVO}(\text{DN}^2-)\text{]}^2\), is shown in Fig. 7, structure I. In contrast to the \(\text{VIVO}^\text{IV}\) complex with DN and TTC21 for which a 1:2:1 composition has been determined (the anionic chelate in it contains one doubly deprotonated and one singly deprotonated ligand, structure II), the two DN ligands in the present research are doubly deprotonated. As a result, the four V–O bonds (with the oxygen atoms of DN) have equal length (2.020 Å) and the structure is more stable. The dihedral angle between the two planar DN ligands is higher than that described in the literature:21 (Fig. 7, structure II) and the structure is not twisted: \(\text{C}_{19}\text{O}_{24}\text{V}_{25}\text{O}_{22} = \text{C}_{5}\text{O}_{25}\text{V}_{23}\text{O}_{2} = \text{C}_{18}\text{O}_{23}\text{V}_{25}\text{O}_{21} = -152.7^\circ\). The corresponding angles for structure II are 144.0°, 158.7°, −134.3° and −129.5°.

The composition of the ternary complex of \(\text{VIVO}^\text{IV}\) is 1:1:1 (see Fig. 5, lines 2 and 2’, and Fig. 6b). Its extraction can be expressed by equation 2.

\[
\text{H}_2\text{VO}_4^-(\text{aq}) + \text{H}_2\text{DN}(\text{org}) + \text{MTT}^+ (\text{aq}) \rightleftharpoons \text{MTT}^+ [\text{VIVO}(\text{DN})] (\text{org}) + 2\text{H}_2\text{O} (\text{aq})
\]

(2)

Similar equation was proposed for the \(\text{VIVO}^\text{IV}–\text{DN}^\text{–TTC}\) system.21 However, it was considered only as a first stage of a series of processes leading ultimately to the formation of a \(\text{VIVO}^\text{IV}\) complex. In contrast to \((\text{TTT}^+)[\text{VIVO}_2(\text{DN})]^\text{2+}\) \((\text{MTT}^+) [\text{VIVO}_2(\text{DN})]\) is a stable ion-pair, less susceptible to oxidation-reduction events. Hence, MTT plays a stabilizing role on \(\text{VIVO}^\text{IV}\) in a higher degree than TTC.

The optimised ground-state geometry of \([\text{VO}_2(\text{DN})]^2\) is shown in Fig. 7, structure III. The complex is tetrahedral with distances \(\text{V}_{14–O_{11}} = \text{V}_{14–O_{12}} = 1.927\), \(\text{V}_{14–O_{13}} = 1.636\) and \(\text{V}_{14–O_{15}} = 1.641\).

Table 1. Optimum conditions for extraction of the ternary complexes

Parameter	Optimal value/range	\(\text{VIVO}^\text{IV}\)	\(\text{VIVO}^\text{V}\)	Figure
pH	5.0–5.2	4.8–5.5	Fig. 2	
Concentration of DN, mol L\(^{-1}\)	\(1.6 \times 10^{-3}\)	\(6 \times 10^{-4}\)	Fig. 3	
Concentration of MTT, mol L\(^{-1}\)	\(1.2 \times 10^{-4}\)	\(1 \times 10^{-4}\)	Fig. 4	
Extraction time, s	120	120	–	

Figure 5. Determination of the DN:VIVOIV (1:1’) and DN:VIVOV (2:2’) molar ratios by the mobile equilibrium method at different wavelengths. Straight line equations: 1) \(y = 0.97x + 4.45\); 1’) \(y = 2.01x + 6.66\); 2) \(y = 1.00x + 4.41\); and 2’) \(y = 1.09x + 3.64\).

Figure 6. Determination of the MTT:VIVOIV (a) and MTT:VIVOV (b) molar ratios by the Yoe & Jones method.
3. 7. Analytical Characteristics

Under the optimum conditions (Table 1), V^{IV} is extracted as an ion-association complex, $(\text{MTT})_2 [\text{VO(DN}_\text{2}^-)_2]$. Its molar absorptivity at λ_{max} ($\epsilon_{570} = 2.9 \times 10^4$ dm3 mol$^{-1}$ cm$^{-1}$; Fig. 1b), calculated from the absorbance measured immediately after the extraction, is higher than the molar absorptivities of similar complexes (Table 2). However, this wavelength was found unsuitable for precise spectrophotometric measurements due to the above-mentioned instability of the absorbance (Fig. 1c). Because of the relatively high DN concentration, the results for the second maximum ($\lambda = 335$ nm; $\epsilon_{335} = 1.9 \times 10^4$ dm3 mol$^{-1}$ cm$^{-1}$) were also not satisfactory (high absorbance of the blank; insufficient repeatability).

By comparing the conditions for V^{IV} and V^{V} (Table 1), it is noticeable that lower reagents concentrations are needed for quantitative extraction of V^{V}. It was found that the results are repeatable and the dependence between the absorbance at $\lambda_{\text{max}} = 335$ nm and concentration of V^{V} is linear ($R^2 = 0.9994$, $N = 10$) in a wide range (0.06–1.5 μg cm$^{-3}$). The regression equation was $A = 0.316y - 0.0002$. The standard deviations of the slope and intercept were 0.003 and 0.002, respectively. The limits of detection (LOD) and quantitation (LOQ) calculated as 3 and 10 times SD of the intercept divided by the slope were 0.02 μg cm$^{-3}$ and 0.06 μg cm$^{-3}$. The molar absorptivity and Sandell’s sensitivity were 1.6×10^4 dm3 mol$^{-1}$ cm$^{-1}$ and 3.2 ng cm$^{-2}$.

4. Conclusions

Vanadium(IV) and vanadium(V) form different chloroform-extractable ternary complexes with DN and MTT. Under the optimum conditions, V^{IV} is extracted as a 1:2:2 complex (V:DN:MTT) with $\lambda_{\text{max}} = 570$ nm. V^{V}, in its turn, forms a 1:1:1 complex with $\lambda_{\text{max}} = 335$ nm. This com-
plex is obtained under mild conditions (low concentration of the reagents and wide pH range) and can be used for spectrophotometric determination of vanadium. When the DN concentration is not very high, the well-documented in the literature $V^V \rightarrow V^{IV}$ reduction by DN (a catecholic type ligand) is not observed. This fact can be a starting point for future research on the development of a method for spectrophotometric determination of V^V and V^{IV} in their co-presence.

5. References

1. H. E. Michibata, Vanadium: biochemical and molecular biological approaches. Springer, Dordrecht-Heidelberg-London-New York, 2012. DOI:10.1007/978-94-007-0913-3
2. B. Gummiow, in: J. O. Nriagu, (Ed.): Encyclopedia of Environmental Health, Elsevier, Burlington, 2011; pp. 628–636. DOI:10.1016/B978-0-444-52272-6.00661-9
3. K. K. Chatterjee, Uses of Metals and Metallic Minerals, New Age International (P) Ltd. Publishers, New Delhi, India, 2007, pp. 227–275.
4. A. Padilla-Rodriguez, J. A. Hernández-Viezcas, J. R. Peralta-Videa, J. L. Gardea-Torresdey, O. Perales-Pérez, F. R. Román-Velázquez, Microchem. J. 2015, 118, 1–11. DOI:10.1016/j.microc.2014.07.011
5. Rehder, D., in: A. Sigel, H. Sigel, R. K.O. Sigel (Eds.): Interrelations between Essential Metal Ions and Human Diseases, Springer, 2013, pp. 139–169. DOI:10.1007/978-94-007-7500-8
6. V. Ugone, E. Garribba, G. Micera, D. Sanna, J. Chem. Educ. 2015, 92, 1098–1102. DOI:10.1021/ed500794m
7. D. Rehder, Metallonomics 2015, 7, 730–742. DOI:10.1039/C4MT00304G
8. K. Gruzewska, A. Michno, T. Pawelczyk, H. Bielarczyk, J. Physiol. Pharmacol. 2014, 65, 603–611.
9. Ghosh, R.; Banik, S., in: D. Bagchi, A. Swaroop (Eds.): Food Toxicology, CRC Press, Boca Raton, 2017, pp. 337–354.
10. M. J. C. Taylor, J. F. Staden, Analyst 1994, 119, 1263–1276. DOI:10.1039/AN9941901263
11. Z. L. Chen, G. Owens, Anal. Chim. Acta 2008, 607, 1–14. DOI:10.1016/j.aca.2007.11.013
12. K. Pyrzyńska, Microchim. Acta 2005, 149, 159–164. DOI:10.1007/s00604-004-0304-5
13. W. Y. He, K.-P. Wang, J.-Y. Yang, Toxicol. Environ. Chem. 2018. DOI:10.1080/02772248.2018.1428325
14. C. Agarwal, M. Deb, R. Mishra, Anal. Lett. 1990, 23, 2063–2075. DOI:10.1080/00032719008052550
15. C. Agarwal, K. S. Patel, R. K. Mishra, Bull. Chem. Soc. Jpn. 1991, 64, 2616–2618. DOI:10.1246/bcsj.64.2616
16. T. Prasada Rao, M. L. P. Reddy, A. R. Pillai, Talanta 1998, 46, 765–813. DOI:10.1016/S0039-9140(97)00262-2
17. Z. Marczenko, M. Balcerzak, Methody spektrofotometrii v UF i vidimoj oblastyakh v neorganicheskom analize (in Russian), Binom. Laboratoriya znanij, Moscow, 2007.
18. Gavazov, K. B., Acta Chim. Slov. 2012, 59, 1–17.
19. N. K. Temel, R. Gürkan, Acta Chim. Slov. 2018, 65, 138–149. DOI:10.17344/acsi.2017.3724
20. A. M. Nardillo, J. A. Catoggio, Anal. Chim. Acta 1975, 74, 85–99. DOI:10.1016/S0003-2670(01)82782-3
21. K. B. Gavazov, G. K. Toncheva, V. B. Delchev, Open Chem. 2016, 14, 197–205. DOI:10.1515/chem-2016-0022
22. K. Kustin, S.-T. Liu, C. Nicolini, D. Toppen, J. Am. Chem. Soc. 1974, 96, 7416–7417. DOI:10.1021/ja00831a600
23. J. H. Ferguson, K. Kustin, Inorg. Chem. 1979, 18, 3349–3357. DOI:10.1021/ic50202a015
24. K. Gavazov, Z. Simeonova, A. Alexandrov, Russ. J. Inorg. Chem. 2001, 46, 427–431.
25. S. Adediran, R. Pratt, Biochemistry 2008, 47, 9467–9474. DOI:10.1021/bi801153j
26. P. Racheva, K. Gavazov, V. Lekova, A. Dimitrov, J. Iran. Chem. Res. 2008, 5, 113–121.
27. Z. Simeonova, K. Gavazov, A. Alexandrov, Cent. Eur. J. Chem. 2006, 4, 258–266. DOI:10.2478/s11532-006-0011-7
28. V. Lekova, K. Gavazov, A. Dimitrov, P. Racheva, Sci. Res. Un. Plvdyov, Ser. C 2007, 6, 171–174.
29. R. K. Mondal, D. P. S. Rathore, P. K. Tarafder, in: National Seminar on Significant Advancements in Plasma/Flame/Associated Techniques and their Applications in Chemical Characterization of Atomic Minerals (SAP-2013), AMD Hyderabad, India, January 23–24 2013: AMD Hyderabad, India, pp. 83–84.
30. R. K. Mondal, D. P. S. Rathore, P. K. Tarafder, Explor. Res. Atomic Miner. 2013, 23, 113–116.
31. P. K. Tarafder, R. K. Mondal, Rev. Anal. Chem. 2011, 30, 73–81. DOI: 10.1515/REVAC.2011.016
32. P. K. Tarafder, S. K. Pradhan, R. K. Mondal, J. Radioanal. Nucl. Chem. 2016, 309, 1021–1028. DOI: 10.1007/s10967-016-4738-0
33. P. K. Tarafder, P. K. Ghosh, S. K. Pradhan, J. Radioanal. Nucl. Chem. 2017, 313, 353–360. DOI: 10.1007/s10967-017-5334-7
34. R. W. Sabnis, Handbook of biological dyes and stains: synthesis and industrial applications, Wiley, Hoboken, US, 2010, pp. 485–487. DOI: 10.1002/9780470586242
35. K. B. Gavazov, A. N. Dimitrov, V. D. Lekova, Russ. Chem. Rev. 2007, 76, 169–179. DOI: 10.1070/RC2007v076n02ABEH003655
36. K. B. Gavazov, V. D. Lekova, G. I. Patronov, Acta Chim. Slov. 2006, 53, 506–511.
37. P. V. Racheva, K. B. Gavazov, V. D. Lekova, A. N. Dimitrov, J. Anal. Chem. 2010, 65, 21–25. DOI: 10.1134/S1061934810010053
38. G. K. Toncheva, T. S. Stefanova, K. B. Gavazov, Oriental J. Chem. 2015, 31, 327–332. DOI: 10.13005/ojc/310137
39. S. Kostova, V. Stajkovska, A. Aleksandrov, Sci. Works Plodiv Univ. Chem. 2000, 29, 9–14.
40. E. Asmus, Fresenius’ J. Anal. Chem. 1960, 178, 104–116. DOI: 10.1007/bf00467200
41. Z. Zhiming, M. Dongsten, Y. Cunxiao, J.Rare Earths 1997, 15, 216–219.
42. M. I. Bulatov, I. P. Kalinkin, Prakticheskoe rukovodstvo po fotokolorimetriceskim i spektrofotometricheskim metodam analiza (in Russian), Khimiya, Leningrad, 1986.
43. K. B. Gavazov, Chemistry 2013, 22, 222–253.
44. J. H. Yoe, A. L. Jones, Ind. Eng. Chem. Anal. Ed. 1944, 16, 111–115. DOI: 10.1021/i560126a015

Povzetek
Proučili smo ekstrakcijski sistem tekočina–tekočina za \(\text{V}^{IV/V} \), ki vsebuje 2,3-dihidroksinaftalen (DN) in 3-(4,5-dimetiltiazol-2-il)-2,5-difenil-2\(\text{H} \)-tetrazolijski bromid (tiazolil modro, MTT). Določili smo optimalne pogoje za ekstrakcijo \(\text{V}^{IV/V} \) in \(\text{V}^{IV} \). \(\text{V}^{IV} \) smo ekstrahirali v kloroformu kot 1:2:2 kompleks (V:DN:MTT) z \(\lambda_{\text{max}} = 570 \text{ nm} \) in \(\varepsilon_{570} = 2.9 \times 10^4 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1} \), vendar ta valovna dolžina ni primerna za natančne spektrofotometrične meritve zaradi časovno odvisne spremembe absorbance. \(\text{V}^+ \) tvori predvsem 1:1:1 kompleks z \(\lambda_{\text{max}} = 335 \text{ nm} \). Za to oksidacijsko stanje je umeritvena krivulja linearna v območju 0.06–1.5 \(\mu g \text{ cm}^{-3} \). Vrednosti za molsko absorptivnost, Sandellovo občutljivost in mejo detekcije so 1.6 \(\times 10^4 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1} \), 3.2 ng cm\(^{-2}\) in 0.02 \(\mu g \text{ cm}^{-3}\). Osnovno stanje struktur anionov prisotnih v ravnotežju, \([\text{VIVO(DN}^2-\text{)}_2]^{2-}\) in \([\text{VO}_2(\text{DN}^2-\text{)})^+\), smo optimizirali na BLYP/6-31++G* nivoju teorije.