Use of 13C-NMR as complementar identification tool in essential oil analysis

José Wilson Alencaraa, Maria Goretti de Vasconcelos Silvab, Maria Iracema Lacerda Machadoa, Afrânio Aragão Craveiroa, Francisco José de Abreu Matosa and Ruy de Abreu Magalhãesa

aLaboratório de Produtos Naturais, bDepartamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Cx. postal 12.200 60.021-970, Fortaleza-CE, Brasil. E-mail: mgvsilva@ufc.br

Abstract. A program using 13C-NMR data was developed to improve GC/MS identifications of chemical constituents in essential oils. Compiled data uses 2290 and 2370 chemical shifts of 229 monoterpenes and 158 sesquiterpenes, respectively, stored into two reference libraries. Each carbon atom was codified using rules that correlates its chemical shift with structural features of the carbon hybridization and vicinity.

Keywords: Alpinia speciosa, Zingiberaceae, 13C-NMR spectroscopy, monoterpenes, sesquiterpenes, essential oils

1. Introduction

Isolation of individual components from essential oils for NMR analysis, is somewhat difficult, time consuming and is not practical for complex oils. On the other hand, NMR essential oil analysis as a mixture is problematic because the chance of superimposing chemical shifts increases with the mixture complexity. Furthermore, many of the absorptions belonging to compounds present in low yields are not detectable due to background superposition. This explains why 13C-NMR spectroscopy is largely used in identification and structural determination of pure compounds, but rarely applied when the analyte is a complex mixture like an essential oil [1–3]. It is also known that volatile oils constituents analysis only by mass spectroscopy, may present some problems [4], making desirable the use of other spectroscopic data to complement it. In this study is used GC/MS analysis of Alpinia speciosa essential oil presented in Table 3 with the help of an experimental procedure based on data of the 13C-NMR overall spectrum of the oil presented in Fig. 2. The 13C-NMR procedure compares each carbon chemical shift hybridization with the same parameters stored into libraries of mono and sesquiterpenes.

2. Experimental

2.1. Plant material

Alpinia speciosa leaves were collected in the Medicinal Plants Garden, Laboratory of Natural Products Universidade Federal do Ceará in Fortaleza-Ceará, Brazil. Voucher is deposited in “Herbário
Prisco Bezerra, Universidade Federal do Ceará under number 17624. Essential oil was first analysed using a HP-5971 GC/MS instrument equipped with a 25 m fused silica capillary SE-54 column (0.25 mm id), using helium as carrier gas (1 ml/min) and temperature programmed initially from 50 to 180°C at 4°C/min and then from 180 to 250°C at 20°C/min. 13C-NMR spectrum of the oil was obtained on a Brucker A200 instrument (200 MHz, 12 hours of acquisition).

2.2. Reference libraries

Two references libraries were compiled using 2290 encoded carbon atoms from 229 monoterpenes and 2370 encoded carbon atoms from 158 sesquiterpenes.

2.3. 13C-NMR experimental data

In the Proton-Noise-Decoupled (PND) 13C-NMR spectrum, recorded for Alpinia speciosa essential oil were detected 118 chemical shifts shown in Table 5. Chemical shifts hybridization patterns were deduced from Distortionless Enhancement by Proton Transfer (DEPT), at angles φ = 135° and φ = 90°.

2.4. Software

Computer programs to match experimental 13C-NMR oil chemical shifts and carbon hybridization against those existing in the reference libraries, were written using FoxPro for Windows language.

All carbon atoms in the reference libraries were stored using a general code represented by C.αααα.rrr.ββ.γγ using letters separated by dots into five sub-codes as described below: The sub-code C identifies the substitution carbon atom pattern according to the rules shown in Table 1.

The sub-code αααα represents the four substituents directly bonded to the carbon atom C, fulfilled using the C and heteroatoms sub-codes defined in Table 1 completing the four digits with zero if necessary.

The sub-code rrr was created to designate rings that the carbon atom participates. The first two digits indicate the ring size in the increasing order of the carbon number. The last digit in this sub-code defines the stereochemistry of ring junction using capital letters Z for cis and E for trans, respectively.

The sub-code ββ represents the two most important β effects induced by substituents linked to the carbon being analysed. When the hybridization of the selected C carbon is sp2, the two beta

C sub-code	Carbon type	Heteroatom sub-code	Number of carbon atoms	
1	sp primary carbon	RCH3	A	OH
2	sp secondary carbon	R2CH2	B	OR
3	sp tertiary carbon	R3CH	C	C=O
4	sp quaternary carbon	R4C		
5	sp2 carbon methylenic	=CH3		
6	sp2 carbon methenic	=CHR		
7	sp2 quaternary carbon	=CR2		
8	sp carbon methenic	≡CH		
9	sp carbon without protons	≡CR		
substituents effects to be considered are two atoms apart from this carbon as shown in the example below [9]:

\[
B' - A' - C = C - A - B
\]

\[
B = \beta_1 \text{ effect, } A' = \beta_2 \text{ effect, } B' = \beta_1 \text{ effect, } A = \beta_2 \text{ effect.}
\]

The first digit in sub-code \(\gamma \gamma \) represents the most important gamma substituent effect of carbon \(C \) and the second digit is reserved for the alpha (\(= a \)) or beta (\(= b \)) steric effect on this carbon.

Another example for the sesquiterpene caryophyllene oxide illustrates how the codes were constructed and stored in the library (see Table 2).

3. Results and discussion

3.1. Compound identification

The chemical composition of the *A. speciosa* essential was obtained by GC/MS library search best retrievals compatible with retention indices expressed as Kovats indices. Confirmations were made by visual comparison of each mass spectrum present in the oil with the corresponding mass spectrum in Refs [5–8] and by the \(^{13}\)C-NMR procedure described here.

Carbon number	Carbon atoms codes
1	3.4320.49E.72.40
2	2.3200.900.44.B0
3	2.4200.900.B1.40
4	4.3219.900.22.30
5	3.3220.900.21.70
6	2.3220.900.B7.1b
7	2.7220.900.35.B0
8	7.5320.900.32.40
9	3.7320.49E.54.1a
10	2.4300.400.73.50
11	4.3211.400.32.70
12	1.4000.000.33.30
13	1.4000.000.33.30
14	5.7000.000.32.30
15	1.4000.000.B3.20

Fig. 1. Caryophyllene oxide.
Table 3

C-atom	Code in the monoterpene library	Substitution pattern	Library stored chemical shifts	Experimental observed chemical shifts	Δ*
1	7.6610.600.66.70	s	135.0	135.1	0.1
2	6.7600.600.71.60	d	129.1	128.2	0.9
3	6.7600.600.77.10	d	126.3	125.9	0.4
4	7.6630.600.11.70	s	145.3	144.8	0.5
5	6.7600.600.73.10	d	126.3	125.9	0.4
6	6.7600.600.71.60	d	129.1	128.2	0.9
7	3.7110.060.66.60	d	33.9	33.5	0.4
8	1.3000.000.70.60	q	24.2	24.7	0.5
9	1.3000.000.70.00	q	24.2	24.7	0.4
10	1.7000.000.66.60	q	21.0	21.0	0.0

* Absolute differences between observed and stored chemical shifts.

3.2. 13C-NMR matching program

13C-NMR matching program applied to *A. speciosa* essential oil of were done when GC/MS identifications were already known. To illustrate how the program retrieves the library standards during comparisons, the chief constituent p-cymene and one of the minor constituents, caryophyllene oxide present in the oil were selected as example. As final result the program was able to detect all 13C-NMR absorptions of p-cymene and 14 from the 15 chemical shifts of caryophyllene oxide as illustrated in Tables 3 and 4.

3.3. Application of 13C-NMR matches to essential oil of *A. speciosa*

As stated before, compound identifications were first made by mass spectra library search by retrieving the best unknown structurally similar to the reference in the library, using GC/MS experimental data expressed in percent of agreement (0.0 = null match, 1.0 = full match), as shown in Table 5, column MIG.

3.4. 13C-NMR positive agreement

A positive 13C-NMR agreement results when the chemical shifts compared for a pair of carbon atoms in the library and in the oil have exactly the same hybridisation pattern and their absolute chemical shift difference is no more than 1.5 ppm. A compound full agreement occurs when all
Table 4

C-atom	Code in the sesquiterpene library	Substitution pattern	Library chemical shifts	Experimental chemical shifts	Δ*
1	3.4320.40Z.72.40	d	50.8	50.0	0.8
2	2.3200.900.44.B0	t	30.2	30.3	0.1
3	2.4200.900.B1.30	t	39.1	38.4	0.7
4	4.0321.39Z.22.30	s	59.9	58.9	1.0
5	3.8420.39Z.22.10	d	63.7	62.7	1.0
6	2.3200.900.B7.50	t	30.2	30.3	0.1
7	2.7200.900.53.B0	t	29.9	29.4	0.5
8	7.5320.900.32.40	s	151.8	150.7	0.9
9	3.7320.49Z.54.10	d	48.7	48.0	0.7
10	2.4300.400.73.50	t	39.8	39.0	0.8
11	4.3211.400.23.70	s	39.1		
12	1.4000.000.33.2b	q	29.8	29.8	0.0
13	1.4000.000.33.2a	q	21.7	20.7	1.0
14	5.7000.000.32.40	t	112.8	112.0	0.8
15	1.4000.000.33.20	q	17.0	16.8	0.2

* Absolute differences between observed and stored chemical shifts.

Table 5

Compound	KI Yield %	MTG	Match 1	Match 2
p-cymene	1011	33.1	1.0	1.0
1,8-cineole	1017	18.9	1.0	1.0
(E)-terpinen-4-ol	1173	18.8	1.0	1.0
Sabinene	963	8.2	1.0	1.0
(Z)-caryophyllene oxide	1556	2.4	0.9	0.9
α-thujene	921	2.1	0.9	0.9
Linalool	1084	1.8	0.9	0.8
β-pinene	966	1.6	1.0	0.8
α-terpineol	1176	1.1	0.9	0.9
α-pinene	927	0.9	1.0	0.8
(Z)-sabinene hydrate	1101	0.9	0.8	0.7
(E)-sabinene hydrate	1128	0.8	0.8	0.6
p-cymene-9-ol	1181	0.7	0.8	0.9
β-terpineol	1051	0.7	0.8	0.9
Piperitol	1196	0.3	0.8	0.7
(Z)-nerolidol	1527	0.3	1.0	0.9
β-caryophyllene	1410	0.2	0.9	0.7
Bornyl acetate	1269	0.2	0.9	0.7
Myrcene	978	0.2	1.0	0.6

3.5. 13C-NMR matches

The program make two runs using the positive agreement defined above. In the first run (match 1) 13C-NMR library reference compounds corresponding to those identified by GC/MS, independently
Table 6

Illustration how the 13C-NMR program subtracts chemical shifts in the spectrum of the oil and identifies the ten major constituents

PND	HYB	p-cym	1,8-cin	ter-4-ol	sab	car-ox	α-thuj	lin	β-pin	α-ter-ol	α-pin
132.8	s	132.8	132.8	*	–	–	–	–	–	sab	
150.7	s	150.7	150.7	150.7	150.7	150.7	*	–	–	β-pin	
148.8	s	148.8	148.8	148.8	148.8	148.8	148.8	148.8	148.8	β-ter-ol	
144.6	s	*	–	–	–	–	–	–	–	p-cym	
144.0	s	144.0	144.0	144.0	144.0	144.0	*	–	–	α-thuj	
143.3	s	143.3	143.3	143.3	143.3	143.3	143.3	143.3	143.3	α-pin	
135.1	s	*	–	–	–	–	–	–	–	p-cym	
130.1	s	130.1	130.1	130.1	130.1	130.1	130.1	130.1	130.1	130.1	
13.2	s	72.1	72.1	72.1	72.1	72.1	72.1	72.1	72.1	72.1	
71.7	s	71.7	*	–	–	–	–	–	–	1,8-cin	
71.4	s	71.4	71.4	71.4	71.4	71.4	*	–	–	lin	
71.1	s	71.1	71.1	71.1	71.1	71.1	71.1	71.1	71.1	α-ter-ol	
70.3	s	70.3	*	–	–	–	–	–	–	ter-4-ol	
69.0	s	59.0	59.0	59.0	59.0	*	–	–	–	car-ox	
37.2	s	37.2	37.2	37.2	–	–	–	–	–	sab	
144.7	d	144.7	144.7	144.7	144.7	144.7	144.7	144.7	144.7	144.7	
129.3	d	129.3	129.3	129.3	129.3	129.3	129.3	129.3	129.3	129.3	
128.2	d	–	–	–	–	–	–	–	–	9-ol	
127.8	d	*	–	–	–	–	–	–	–	p-cym	
125.9	d	125.9	125.9	125.9	125.9	125.9	125.9	125.9	125.9	125.9	
125.7	d	125.7	125.7	125.7	125.7	125.7	125.7	125.7	125.7	125.7	
125.4	d	*	–	–	–	–	–	–	–	p-cym	
124.6	d	124.6	124.6	124.6	124.6	124.6	124.6	124.6	124.6	124.6	
124.1	d	124.1	124.1	124.1	124.1	124.1	124.1	124.1	124.1	124.1	
123.7	d	123.7	123.7	123.7	123.7	123.7	123.7	123.7	123.7	123.7	
123.5	d	123.5	123.5	123.5	123.5	123.5	123.5	123.5	123.5	123.5	
120.5	d	120.5	120.5	120.5	120.5	120.5	120.5	120.5	120.5	120.5	
120.2	d	120.2	120.2	120.2	120.2	120.2	120.2	120.2	120.2	120.2	
120.0	d	120.0	120.0	120.0	120.0	*	–	–	–	α-ter-ol	
117.9	d	117.9	117.9	117.9	117.9	117.9	117.9	117.9	117.9	117.9	
115.4	d	115.4	115.4	115.4	115.4	115.4	115.4	115.4	115.4	115.4	
73.8	d	73.8	73.8	73.8	73.8	73.8	73.8	73.8	73.8	73.8	
72.8	d	72.8	72.8	72.8	72.8	72.8	72.8	72.8	72.8	72.8	
70.7	d	70.7	70.7	70.7	70.7	70.7	70.7	70.7	70.7	70.7	
67.7	d	67.7	67.7	67.7	67.7	67.7	67.7	67.7	67.7	67.7	
62.7	d	62.7	62.7	62.7	*	–	–	–	–	–	
61.1	d	61.1	61.1	61.1	61.1	61.1	61.1	61.1	61.1	61.1	
51.0	d	51.0	51.0	51.0	51.0	51.0	51.0	*	–	–	
50.0	d	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	
48.0	d	48.0	48.0	48.0	48.0	48.0	48.0	48.0	48.0	48.0	
46.3	d	46.3	46.3	46.3	46.3	46.3	46.3	46.3	46.3	46.3	
44.3	d	44.3	44.3	44.3	44.3	44.3	44.3	44.3	44.3	*	
43.8	d	43.8	43.8	43.8	43.8	43.8	43.8	43.8	43.8	43.8	
41.1	d	41.1	41.1	41.1	41.1	*	–	–	–	–	
40.0	d	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	*	
39.7	d	39.7	39.7	39.7	39.7	39.7	39.7	39.7	39.7	*	
36.4	d	36.4	36.4	36.4	36.4	36.4	36.4	36.4	36.4	36.4	
36.0	d	36.0	36.0	*	–	–	–	–	–	–	
32.5	d	*	–	–	–	–	–	–	–	p-cym	
Table 6 (Continued)

PND	HYB	p-cym	1,8-cin	ter-4-ol	sab	car-ox	α-thuj	β-pin	α-ter-ol	α-pin
32.2	d	32.3	*	--	--	--	--	--	--	--
31.9	d	31.9	31.9	31.9	31.9	*	--	--	--	--
31.5	d	31.5	31.5	31.5	*	--	--	--	--	--
30.6	d	30.6	30.6	30.6	30.6	30.6	30.6	30.6	30.6	30.6
30.3	d	30.3	30.3	30.3	30.3	30.3	30.3	30.3	30.3	30.3
30.1	d	30.1	30.1	30.1	30.1	*	--	--	--	--
29.2	d	29.2	29.2	*	--	--	--	--	--	--
29.1	d	28.1	28.1	28.1	28.1	28.1	28.1	28.1	28.1	28.1
26.8	d	26.8	26.8	26.8	26.8	26.8	26.8	26.8	26.8	26.8
26.2	d	26.2	26.2	26.2	26.2	26.2	26.2	26.2	26.2	26.2
18.7	d	18.7	18.7	18.7	18.7	18.7	18.7	18.7	18.7	18.7
112.0	t	112.0	112.0	112.0	112.0	112.0	112.0	112.0	112.0	112.0
110.6	t	110.6	110.6	110.6	110.6	110.6	110.6	*	--	--
107.8	t	107.8	107.8	107.8	107.8	107.8	107.8	107.8	107.8	107.8
105.5	t	105.5	105.5	105.5	105.5	105.5	105.5	*	--	--
101.2	t	101.2	101.2	*	--	--	--	--	--	--
44.7	t	44.7	44.7	44.7	44.7	44.7	44.7	44.7	44.7	44.7
41.6	t	41.6	41.6	41.6	41.6	41.6	*	--	--	--
39.0	t	39.0	39.0	39.0	39.0	39.0	39.0	39.0	39.0	39.0
38.4	t	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4
36.6	t	36.6	36.6	36.6	*	--	--	--	--	--
35.8	t	35.8	35.8	35.8	35.8	*	--	--	--	--
35.1	t	35.1	35.1	35.1	35.1	35.1	35.1	35.1	35.1	35.1
33.6	t	33.6	*	--	--	--	--	--	--	--
32.4	t	32.4	*	--	--	--	--	--	--	--
30.8	t	30.8	30.8	30.4	30.4	30.4	30.4	30.4	30.4	30.4
30.5	t	30.5	30.5	30.5	30.5	30.5	30.5	30.5	30.5	30.5
30.1	t	30.1	30.1	30.1	30.1	30.1	30.1	30.1	30.1	30.1
29.8	t	29.8	29.8	*	--	--	--	--	--	--
29.5	t	29.5	*	--	--	--	--	--	--	--
28.8	t	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8	28.8
28.6	t	28.6	28.6	28.6	28.6	28.6	28.6	28.6	28.6	28.6
28.4	t	28.4	28.4	28.4	28.4	28.4	28.4	28.4	28.4	28.4
28.1	t	28.1	28.1	*	--	--	--	--	--	--
27.2	t	27.2	27.2	27.2	27.2	27.2	27.2	27.2	*	--
26.6	t	26.6	*	--	--	--	--	--	--	--
26.5	t	26.5	26.5	26.5	26.5	26.5	26.5	26.5	26.5	26.5
26.3	t	26.3	26.3	26.3	26.3	26.3	26.3	26.3	26.3	26.3
26.2	t	26.2	26.2	26.2	26.2	26.2	26.2	26.2	26.2	26.2
26.0	t	26.0	26.0	26.0	*	--	--	--	--	--
25.6	t	25.6	25.6	25.6	25.6	25.6	25.6	*	--	--
24.6	t	24.6	*	--	--	--	--	--	--	--
23.3	t	23.3	*	--	--	--	--	--	--	--
22.8	t	22.8	22.8	22.8	22.8	22.8	22.8	22.8	*	--
22.1	t	22.1	22.1	22.1	22.1	22.1	22.1	22.1	*	--
20.7	t	20.7	20.7	20.7	20.7	*	--	--	--	--
15.2	t	15.2	15.2	*	--	--	--	--	--	--
29.2	q	29.2	*	--	--	--	--	--	*	--
29.0	q	29.0	*	--	--	--	--	--	--	--
27.5	q	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5
25.3	q	*	--	--	--	--	--	--	--	--
24.9	q	24.9	24.9	24.9	24.9	24.9	24.9	24.9	*	--
24.7	q	24.7	24.7	24.7	24.7	24.7	24.7	24.7	24.7	24.7
22.5	q	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5
21.0	q	21.0	21.0	21.0	*	--	--	--	--	--
of their yields in the oil, are matched against the overall spectrum of the oil. This inform how many absorptions of the compound being compared are present in the mixture. In the second run (match 2) comparisons follow decreasing order of the yields obtained by the GC/MS experiments shown in Table 5. When a positive agreement is found, the chemical shift just being compared is subtracted from the PND of the oil to avoid its use in a further comparison. Due to this approach, values in match 2 are represented by lower figures than those in match 1, but have the advantage of informing how many chemical shifts in the spectrum of the oil belong exclusively to the compound being matched (see Table 5, match 1 and match 2 columns).

Table 6 shows in the PND column, the 118 chemical shifts found in the 13C-NMR spectrum of the oil. When a chemical shift is present in all columns mean that this absorption does not belong to any of the ten major compounds listed on the head of Table 6. An asterisk in a given column means that the corresponding chemical shift belongs to the compound in the head of the column. An asterisk is always followed by minus (−) signal to indicate that chemical shift was subtracted from the PND, to avoid their use en another comparison. The last column in Table 6 shows abbreviations of all compounds identified in the oil as well as those not identified represented by the abbreviation unk.

4. Conclusions

From Table 5, considering this particular essential oil analysis, some conclusions may be anticipated:
1. Compounds with high GC/MS MIG values are the best candidates for confirmation using match 1 and match 2.
2. Compounds with high values for both MIG and match 1 may be considered unequivocally identified, i.e., sabinen, p-cymene, 1,8-cineole, terpinen-4-ol.
3. Figures with high MIG value, present in the oil in low yield − α-thujene, α-pinene, β-pinene, myrcene, linalool, α-terpineol – have their identifications confirmed by high value of match 1 (>0.70).
4. Even low values in match 2, but with significative figures in match 1 for compounds in low yield, are of great importance for identification purposes because identify in the mixture data belonging exclusively to the compound being compared.

References

[1] M. Corticchiato and J. Casanova, Analyse des Mélanges complexes par RMN de carbone 13, *Anal. Magazine* **20** (1992), 51–58.
[2] L. Weber and G. Haufe, Qualitative und quantitative Analyse von Monoterpenoiden Produktgemischen Mittels 13C-NMR Spektroskopie, *J. Prakt. Chem.* **330** (1988), 319–322.
[3] V. Formacek and K.-H. Rubecza, *Essential Oils Analysis by Capillary Gas Chromatography and Carbon-13 NMR Spectroscopy*, Wiley, New York, 1985.
[4] W. Herres, K.H. Rubecza and W.S. Schultze, in: *Progress in Essential Oil Research*, Walter Gruyter, Berlin, 1986.
[5] E. Stenhagen, S. Abrahamson and F.W. McLafferty, eds, *Registry of Mass Spectral Data*, Wiley, New York, 1974.
[6] R.S. Keller and G.W.A. Milne, *EPA/NIH Mass Spectral Data Base*, Government Printing Office, Washington, DC, 1974.
[7] R.P. Adams, *Ion Trap Mass Spectroscopy*, San Diego, 1992.
[8] R.P. Adams, *Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy*, Allured Publishing Corporation, IL, 1995.
[9] B. Shoulders and S.C. Welch, A very brief, rapid, simple, and unified method for estimating carbon-13 NMR chemical shifts, *J. Chem. Ed.* **64**(11) (1987).
Submit your manuscripts at
http://www.hindawi.com