Chapter 8

Limited Effects of Growth Hormone Replacement in Patients with GH deficiency During Long-Term Cure of Acromegaly

Agatha van der Klaauw, Jeroen Bax, Ferdinand Roelfsema, Marcel Stokkel, Gabe Bleeker, Nienke Biermasz, Johannes Smit, Johannes Romijn, Alberto Pereira

Submitted for publication
ABSTRACT

Objective
The aim of this study was to assess the effects of replacement with recombinant human growth hormone (rhGH) in patients with GH deficiency (GHD) after treatment of acromegaly.

Design
Intervention study.

Patients and methods
Sixteen patients (8 men, age 56 yrs), treated for acromegaly by surgery and radiotherapy, with an insufficient GH response to insulin-induced hypoglycaemia, were treated with 1 year of rhGH replacement. Study parameters were assessed at baseline and after 1 year of rhGH replacement. Study parameters were cardiac function, body composition, bone mineral density (BMD), fasting lipids, glucose, bone turnover markers, and Quality of Life (QoL).

Results
During rhGH replacement IGF-I concentrations increased from –0.4 ± 0.7 SD to 1.0 ± 1.5 SD (p=0.001), with a mean daily dose of 0.2 ± 0.1 mg in men and 0.3 ± 0.2 mg in women. Nonetheless, rhGH replacement did not alter cardiac function, lipid and glucose concentrations, body composition or QoL. Bone turnover markers (PINP and β crosslaps) levels increased (p=0.005 and p=0.021, resp.), paralleled by a small, but significant decrease in BMD of the hip.

Conclusion
The beneficial effects of rhGH replacement in patients with GHD during cure from acromegaly are limited in this study.
INTRODUCTION

Growth hormone deficiency (GHD) in adults is characterized by an adverse cardiovascular metabolic profile, altered body composition (reflected in reduced muscle strength and mass, and visceral obesity), decreased bone mass, decreased cardiac function and decreased quality of life (reviewed in (1)). Treatment with recombinant human growth hormone (rhGH) ameliorates symptoms and signs of the GHD syndrome in the short (2) and in the long-term (3;4). GHD is a well-known sequel of pituitary radiotherapy, e.g. for non-functioning adenomas, adrenocorticotrope hormone- or prolactin-secreting adenomas (5). Remarkably, GHD can also be induced by treatment of active acromegaly. We have documented a diminished GH increase to insulin-induced hypoglycemia during long-term follow-up in 36% of the patients with acromegaly after postsurgical radiotherapy (6).

Almost all randomized controlled studies on the efficacy of rhGH replacement in adult GHD have excluded patients previously treated for acromegaly. Nonetheless, two intervention studies have reported on the effects of rhGH replacement in patients with GHD after previous treatment of acromegaly. In a subanalysis of acromegalic patients with GHD extracted from the large KIMS database, 6 months of rhGH replacement had no significant beneficial effects in the acromegalic patients (7). In addition, a recent study compared the effects of 2 years of rhGH replacement on body composition, muscle strength, bone mass and metabolic parameters between 10 patients previously treated for acromegaly and 10 patients treated for non-functioning pituitary disease (8). At baseline, patients with acromegaly had decreased muscle endurance and increased LDL concentrations compared to the other patients, but after two years of rhGH replacement there were no differences between both groups (8).

The aim of this study was to evaluate 1 year of rhGH replacement on heart function, quality of life, glucose and lipid metabolism, body composition and bone mass and turnover in order to extend the exploration whether GH replacement is beneficial in acromegalic patients with GHD during long-term biochemical cure.

PATIENTS AND METHODS

Patients

We enrolled 16 acromegalic patients (8 men and 8 women), who developed GHD after combined pituitary surgery and radiotherapy in the study. Inclusion criteria were previous treatment for acromegaly by surgery and/or radiotherapy and an insufficient GH increase to insulin-induced hypoglycemia (short-acting insulin 0.05-0.1 U/kg body weight, blood samples drawn at 0, 20, 30, 45, 60 and 90 min; nadir glucose levels below 2.2 mmol/l) (9). The increase in GH concentrations was considered insufficient, when the peak GH response was below 3 μg/l (10).
Fifteen patients had been treated with primary surgery and secondary conventional radiotherapy (mean interval after radiotherapy 18 years (range 4-29 years). The other patient was diagnosed with pituitary apoplexy of a GH producing adenoma. Because GH concentrations remained elevated, he underwent surgery and subsequently developed complete anterior pituitary failure. Clinical details were published previously (11).

Additional hormone replacement therapy was kept stable for at least 3 months prior to study inclusion, and was only adjusted thereafter when necessary. The purpose, nature, and possible risks of the study were explained to all subjects and written informed consent was obtained. The study protocol was approved by the ethics committee of the Leiden University Medical Center.

Study design
Study parameters were assessed both at baseline and after 1 year of rhGH replacement. The following variables were measured: fasting concentrations of lipoproteins, glucose, and IGF-I, body composition, bone turnover markers and bone mass, echocardiography, and Quality of Life parameters.

Growth hormone vials of 1 ml were manufactured and provided by Novo Nordisk Pharma, Denmark. Growth hormone replacement dose was started at 0.2 mg/day and, subsequently, titrated in the first 12 weeks of the study to obtain an IGF-I concentration within the age- and gender-adjusted reference range, according to Growth Hormone Research Society guidelines (10).

The mean age of the patients was 56 years (range 34 to 75 years). The interval between radiotherapy and the start of the study was 18 yrs (range 4-29 yrs). TSH deficiency was present in 5 patients, ACTH deficiency in 9 patients, and LH-FSH deficiency in 8 patients (see Table 1).

Body composition
Body weight and height, waist circumference, hip circumference, systolic and diastolic blood pressure (SBP and DBP, respectively) were measured. Waist-hip (WH) ratio was calculated. Body weight was measured to the nearest 0.1 kg, and body height was measured barefoot to the nearest 0.001 m. Lean body mass and fat mass were measured with DXA (Hologic 4500; Hologic Inc., Waltham, MA, USA).

Markers for bone turnover and bone mass
The following serum markers of bone turnover were measured: N-terminal propeptides of type I collagen (PINP), as a marker for bone synthesis, and β-crosslaps as a marker for bone resorption. Bone mineral density (BMD) was measured by DXA (Hologic 4500; Hologic Inc., Waltham, MA, USA). Sites measured were the lumbar spine (L1-L4) and the femoral neck (left and right). Mean BMD of the left and right femoral neck was calculated. Mean T and Z scores were calculated for
total left and right hip using the NHANES reference values. The CV of BMD measurements was 1% and the machine was cross-calibrated at regular interval.

Echocardiography

Echocardiography was performed while the patients were in the left lateral decubitus position using a commercially available system (Vingmed Vivid-7, General Electric – Vingmed, Milwaukee, WI, USA). Standard parasternal (long- and short-axis) and apical views (2-, and 4-, and long-axis) were obtained. M-mode images were obtained from the parasternal long-axis views for quantitative assessment of LV dimensions (Inter-Ventricular Septum Thickness (IVST), Posterior Wall Thickness (PWT), LV End-Diastolic Diameter (LVEDD), LV End-Systolic Diameter (LVESD), Fractional Shortening (FS) and LV Ejection Fraction (LVEF) (12).

The following parameters of diastolic function were obtained: diastolic transmitral peak velocities (E and A wave) and the E/A ratio. Quantitative diastolic data were derived from tissue Doppler imaging (TDI). For TDI analysis, the digital cine loops were analyzed using commercial software (Echopac 6.1; General Electric-Vingmed). The sample volume (4 mm²) was placed in the LV basal portion of the septum (using the 4-chamber views). The following parameters (mean values calculated from 3 consecutive heartbeats) were derived: early diastolic velocity (E) , late diastolic velocity (A) and the E /A ratio. The severity of valvular regurgitation was assessed by 2 independent expert readers blinded to the clinical data on a qualitative scale of trace, mild, moderate, or severe, using previously described methods (13;14). Left ventricular mass (LVM) was calculated by the cube formula, and using the correction formula proposed by Devereux,

Table 8/1: Clinical characteristics of the 16 patients with growth hormone deficiency after acromegaly.

Age (yr)	Gender	Substitution therapy
1 65	Male	None
2 65	Male	None
3 59	Male	Thyroxine, Testosterone, Hydrocortisone
4 75	Female	Hydrocortisone
5 66	Female	None
6 62	Female	Hydrocortisone
7 66	Female	Thyroxine, Estradiol, Hydrocortisone
8 40	Female	Thyroxine, Estradiol, Hydrocortisone
9 43	Male	Testosterone
10 56	Male	Thyroxine, Testosterone, Hydrocortisone
11 48	Male	Thyroxine, Testosterone, Hydrocortisone
12 51	Female	None
13 34	Female	Hydrocortisone
14 74	Male	Testosterone
15 45	Male	Testosterone
16 50	Female	Hydrocortisone
et al. (15): $0.8 \times (1.04 \left((LVEDD + PWT + IVST)^3 - LVEDD^3 \right)) + 0.6$. The data were assessed by two independent observers, blinded for the clinical data of the patients.

Quality of life
Quality of Life was assessed using four different validated health-related quality of life questionnaires:

HADS (Hospital Anxiety and Depression Scale)
The HADS consists of 14 items pertaining to anxiety and depression. Each item is measured on a 4-point scale. Scores for the anxiety and depression subscale range from 0-21 and for the total score from 0-42. A high score points to more severe anxiety and depression (16).

MFI-20 (Multidimensional Fatigue Index)
The MFI-20 contains 20 statements to assess fatigue (17). Five different dimensions of fatigue (four items each) are calculated from these statements; 1) general fatigue; 2) physical fatigue; 3) reduced activity; 4) reduced motivation and 5) mental fatigue. Every statement is measured on a 5-point scale; scores vary from 0 to 20. Higher scores indicate higher experienced fatigue.

NHP (Nottingham Health Profile)
The NHP is frequently used in patients with pituitary disease to assess general well-being and QoL. The survey consists of 38 yes/no questions, which are subdivided in 6 scales assessing impairments, i.e. pain (8 items), energy level (3 items), sleep (5 items), emotional reactions (9 items), social isolation (5 items) and disability/functioning, i.e. physical mobility (8 items) (18;19). Subscale scores are calculated as a weighted mean of the associated items and are expressed as a value between 0 and 100. The total score is the mean of the 6 subscales.

QoL-AGDHA (Quality of Life-Assessment of Growth Hormone Deficiency in Adults)
This disease specific quality of life questionnaire has been developed specifically for the detection of deficits in needs achievements in areas which have shown to be commonly affected in adults with GHD (20). The questionnaire comprises 25 items, which are summed to form a total score. Higher numerical scores (to a maximum of 25) denote poorer quality of life.

Assays and dynamic tests
Growth hormone reserve was evaluated by the insulin tolerance test in fasting conditions (short-acting insulin 0.05-0.1 U/kg body weight, blood samples drawn at 0, 20, 30, 45, 60 and 90 min; the nadir glucose concentration should drop below 2.2 mmol/l) (9). The increase in GH concentration was considered insufficient, when the peak GH concentration was below 3 μg/l (10).
Serum IGF-I concentration was measured with the Immulite 2500 system (Diagnostic Products Corporation, Los Angeles, USA). The intra-assay variation was 5.0 and 7.5% at mean serum levels of 8 and 75 nmol/l, respectively. IGF-I levels are expressed as standard deviation-scores (SDS), using lambda-mu-sigma (LMS) smoothed reference curves based on measurements in 906 healthy individuals (21;22;22).

IGFBP-3 was measured using an immunometric technique on an IMMULITE Analyzer (Diagnostic Products Corporation, Los Angeles, USA). The lower limit of detection was 0.02 mg/l and inter-assay variation was 4.4 and 4.8% at 0.91 and 8.83 mg/l. A Hitachi P800 auto analyzer (Roche, Mannheim, Germany) was used to quantify serum concentrations of glucose, total cholesterol and TG. HDL was measured with a homogenous enzymatic assay (Hitachi 911, Roche, Mannheim, Germany). LDL cholesterol concentrations (LDL) were calculated using the Friedewald formula. C-crosslinking terminal telopeptide of type I collagen (β-crosslaps) and procollagen type I aminoterminal propeptide (PINP) by chemoluminescence immunoassay with the Modular Analytics E-170 system (Roche Diagnostics, Almere, The Netherlands).

Statistics
Statistical analysis was performed using SPSS for Windows, version 14.0 (SPSS Inc. Chicago, Illinois, USA). Results are scored as the mean ± standard deviation (SD), unless specified otherwise. The data were analyzed with the paired samples Student’s t-test. Statistical significance was set at P<0.05.

Table 8/2: Metabolic and anthropometric parameters before and after 1 year of rhGH replacement.
Before

Total cholesterol (mmol/l)
TG (mmol/l)
HDL-cholesterol (mmol/l)
LDL-cholesterol (mmol/l)
Glucose (mmol/l)
SBP (mm Hg)
DBP (mm Hg)
Waist circumference (cm)
WH ratio
LBM (kg)
Fat mass (kg)

TG: triglycerides; HDL High-Density Lipoprotein; LDL Low-Density Lipoprotein; SBP: Systolic Blood pressure; DBP: Diastolic blood pressure; WH ratio: Waist-to-Hip ratio; LBM: Lean Body Mass.
RESULTS

IGF-1 and IGFBP-3 concentrations

One year of rhGH replacement increased IGF-I SD scores and IGFBP-3 levels (baseline IGF-I SD score: -0.4 ± 1.7 and 1.0 ± 1.5 at 1 year, $p<0.001$; baseline IGFBP-3: 4.2 ± 1.2 mg/l and 5.2 ± 1.4 mg/l after 1 year, $p<0.001$).

Cardiovascular risk parameters and body composition

During rhGH replacement lipid profiles did not change. In addition, blood pressure (systolic and diastolic) and fasting glucose concentrations did not change (Table 2). Mean lean body mass increased by almost 4 kg and total fat mass decreased by approximately 3 kg, but these differences did not reach statistical significance.

Table 8/3: Bone markers and biochemical parameters of bone turnover before and after 1 year rhGH replacement.

Parameter	Before	After	P-value
PINP (ng/ml)	29.1 ± 19.5	44.3 ± 33.4	0.005
β crosslaps (ng/ml)	0.2 ± 0.1	0.3 ± 0.2	0.021
BMD lumbar spine (g/cm²)	1.1 ± 0.2	1.1 ± 0.2	NS
BMD femoral neck (g/cm²)	0.85 ± 0.17	0.81 ± 0.15	<0.001
T score total hip	-0.30 ± 1.5	-0.24 ± 1.4	NS
Z score total hip	0.26 ± 1.6	0.37 ± 1.5	NS

PINP: N-terminal propeptides of type I collagen; BMD: Bone Mineral Density.

Figure 8/1: Bone mineral density decreased in all patients during 1 year rhGH replacement ($n=16$, $P<0.001$).
Bone parameters
RhGH replacement increased plasma concentrations of bone turnover markers (PINP and β-crosslaps) in all patients (Table 3, Figure 1). During rhGH replacement bone mass at the lumbar spine remained unchanged in all patients, but decreased significantly at the femoral neck by 4% (Table 3, Figure 1).

Cardiac parameters and quality of life parameters
During rhGH replacement there were no significant changes in cardiac parameters or QoL parameters (Table 4 and 5).

DISCUSSION

In this prospective study, we evaluated the effect of rhGH treatment on a range of relevant parameters in GHD patients, previously treated for acromegaly. During rhGH replacement IGF-I concentrations increased into the age- and gender-adjusted normal range, but neither cardiac parameters, nor any of the cardiovascular risk parameters or quality of life parameters changed during rhGH treatment. Bone turnover markers increased during rhGH replacement, which was associated with a decrease of bone mineral density at the femoral neck of 4%, whereas the bone mass of the lumbar spine remained unchanged. These data indicate that the effects of rhGH treatment of GHD patients previously treated for acromegaly are limited.
Data on the manifestations of GHD after treatment for acromegaly are limited. Two previous studies reported several clinical manifestations in this particular patient group (7;8). The first study compared patients with GHD after treatment for acromegaly and Cushing’s disease with patients with GHD due to other etiologies (7). No differences in body mass index, waist-hip ratio, serum lipid concentrations, bone mineral density (at the lumbar spine and femoral neck), or IGF-I SD score were found in patients with GHD after acromegaly compared with patients with GHD due to other etiologies (7). In the second study, muscle strength, bone mass and metabolic indices were compared between 10 patients previously treated for acromegaly and 10 patients treated for non-functioning pituitary disease (8). Although there were no differences between both groups after two years of rhGH replacement, at baseline, patients with acromegaly had a decreased muscle endurance and increased LDL concentrations compared to the other patients, which points towards differences in their response to the treatment (8). For instance, body fat decreased and lean body mass increased in that study in the patients with non-functioning pituitary disease, whereas it did not change in the same number of patients with GHD after acromegaly simultaneously studied (8), in complete agreement with our findings.

In adult patients with GHD, rhGH replacement increases bone mineral density (23), left ventricular mass and stroke volume (24), lean body mass (1), and quality of life (25), whereas it improves the serum lipid profile (26). These effects are apparent within 6-12 months and are maintained during continued treatment with rhGH in the long-term (4;24;26-29). However, it appears that these abnormalities associated with GHD in adults are not always reversed.

Table 8/5: Quality of life parameters at baseline and after 1 year rhGH replacement in patients with GHD after previous treatment for acromegaly.

	Before	After	P-value
QoL NHP			
Energy	55.2 ± 38.2	41.8 ± 35.4	NS
Pain	19.4 ± 21.8	14.1 ± 18.8	NS
Emotional reaction	12.0 ± 16.4	13.2 ± 20.0	NS
Sleep	13.6 ± 26.9	14.1 ± 24.4	NS
Physical mobility	20.1 ± 20.8	16.0 ± 23.7	NS
Social isolation	12.0 ± 17.1	10.6 ± 17.1	NS
QoL MFI-20			
General fatigue	15.4 ± 4.5	14.2 ± 4.7	NS
Physical fatigue	12.9 ± 5.2	13.2 ± 5.2	NS
Reduction in activity	11.4 ± 4.9	11.8 ± 4.9	NS
Reduction in motivation	10.8 ± 4.4	10.1 ± 4.5	NS
Mental fatigue	9.3 ± 4.6	9.8 ± 4.3	NS
QoL HADS			
Anxiety	4.6 ± 2.4	4.9 ± 2.3	NS
Depression	6.0 ± 4.4	6.1 ± 4.3	NS
Total score	10.6 ± 5.0	11.0 ± 5.3	NS
QoL-AGDHA	7.6 ± 6.1	7.7 ± 5.9	NS

HADS, NHP, MFI-20, QoL-AGDHA higher scores: more impairment.
completely solely by rhGH replacement (29;30) and that some patients might benefit more from combined treatment of rhGH with, for instance, lipid-lowering agents and bisphosphonates (31;32).

In our study, parameters of both bone resorption and bone formation increased, paralleled by a net decrease in bone mineral density at the femoral neck, in agreement with the observed increase in bone turnover found during 2 years of rhGH replacement in these patients by Norrman et al. (8). In this latter study, however, no treatment differences in the response of bone mineral density between patients previously treated for acromegaly and patients previously treated for non-functioning pituitary disease were found (8). We could not find any data showing increase or decrease of bone mineral density in both patients treated for acromegaly and patients treated for non-functioning pituitary disease. It is important to note, however, that there are several small differences with our study. The patients in the study of Norrman et al. were included between 1991 and 1997. Hence, the initial dose previously applied before the consensus statement of the Growth Hormone Research Society in 1998 was first based on weight in some patients, but was subsequently gradually lowered when the weight based dose regime was abandoned. In addition, almost all patients studied (90%) were female (8). These differences could explain the discrepant effects of rhGH replacement found on bone mineral density between the present study and the study by Norrman et al. (8).

The decrease in BMD found in our study could point towards a different response to rhGH replacement in patients previously exposed to persistently increased GH concentrations. Alternatively, this observation may indicate that the possible beneficial effect of rhGH replacement on bone in these patients is insufficient to compensate the ongoing bone loss after previous GH excess in these specific patients. In active acromegaly, bone mineral density is increased (33) and this favorable effect seems to persist after successful biochemical cure (34). However, in patients with biochemical cure of acromegaly, radiotherapy was an independent negative predictor of bone mineral density at the femoral neck, which is probably related to the diminished GH secretion frequently observed after this treatment modality (34). Almost all patients in our cohort had been treated previously by radiotherapy. On the other hand, in patients with adult-onset GHD due to other etiologies, some, but not all, studies have found a decreased bone mass at the lumbar spine (reviewed in (1)). Replacement with rhGH in those patients seems to modestly increase bone mineral density after 1 year (27). However, the lack of the increase in BMD, usually seen during rhGH replacement but absent in our specific patients, is in accordance with the only other study performed in patients with GHD after treatment of acromegaly (7). Further longer-term studies are needed to clarify this issue.

Body composition did not change during rhGH replacement, whereas it has been consistently found to be altered by rhGH replacement in patients with GHD due to other diseases (an increase in lean body mass and a decrease in body fat (1)). However, the trends seen in our study point towards similar changes in body composition in patients previously treated for acromegaly. Interestingly, body fat decreased and lean body mass increased in the study of
Norman et al. in the patients with non-functioning pituitary disease, whereas it did not change in the same number of patients with GHD after acromegaly simultaneously studied (8). Replacement with rhGH did not improve QoL parameters. Various aspects of QoL seem to improve slightly during rhGH replacement in adults with GHD due to other diseases (25). Therefore, it is likely that other factors in our patients with GHD after treatment for acromegaly explain the lack of effect on QoL during rhGH replacement, such as persisting joint related complaints (35) and/or unfavorable late effects of previous radiotherapy (36).

Considering the beneficial effects of rhGH replacement in patients with GHD due to other causes than acromegaly, substitution in this particular subgroup is warranted. We did not find many marked beneficial effects of rhGH replacement in these patients. Higher, non-physiological, doses of rhGH could possibly result in detectable changes in the targeted parameters, as has been extensively documented in patients with GHD not pre-exposed to acromegaly. In clinical practice, however, current treatment guidelines from the Growth Hormone Research Society, advocate to titrate rhGH dose to target IGF-I concentrations within the normal age-related reference range, to ensure a therapeutic dose also in those patients with severe GHD, and avoid side effects of rhGH replacement.

In conclusion, the effects of rhGH replacement in patients with GHD after treatment for acromegaly seem to be limited. The observed effect on bone resorption and in bone mineral density might be affected by ongoing bone loss despite rhGH replacement seen in acromegaly after radiotherapy, or by the response to rhGH of bone after previous long-term exposure to GH excess. Larger long-term studies in this specific patient group are warranted to clarify the issue whether the effects of rhGH replacement in GHD might be altered by previous acromegaly. However, these patients will most probably become increasingly rare since the introduction of effective drug treatment for acromegaly.
REFERENCE LIST

1. de Boer H, Blok GJ, Van der Veen EA 1995 Clinical aspects of growth hormone deficiency in adults. Endocr Rev 16:63-86

2. Maison P, Demolis P, Young J, Schaisa G, Giudicelli JF, Chanson P 2000 Vascular reactivity in acromegalic patients: preliminary evidence for regional endothelial dysfunction and increased sympathetic vasoconstriction. Clin Endocrinol (Oxf) 53:445-451

3. Chrisoulidou A, Beshyah SA, Rutherford O, Spinks TJ, Mayet J, Kyd P, Anyaoku V, Haida A, Ariff B, Murphy M, Thomas E, Robinson S, Foale R, Johnston DG 2000 Effects of 7 years of growth hormone replacement therapy in hypopituitary adults. J Clin Endocrinol Metab 85:3762-3769

4. Goetherstrom G, Svensson J, Koranyi J, Alpsten M, Bosaeus I, Bengtsson B, Johannsson G 2001 A prospective study of 5 years of GH replacement therapy in GH-deficient adults: sustained effects on body composition, bone mass, and metabolic indices. J Clin Endocrinol Metab 86:4657-4665

5. Littley MD, Shalet SM, Beardwell CG, Ahmed SR, Applegate G, Sutton ML 1989 Hypopituitarism following external radiotherapy for pituitary tumours in adults. Q J Med 70:145-160

6. Biermasz NR, van Dulken H, Roelfsema F 2000 Long-term follow-up results of postoperative radiotherapy in 36 patients with acromegaly. J Clin Endocrinol Metab 85:2476-2482

7. Feldt-Rasmussen U, Abs R, Bengtsson BA, Benmmarker H, Bramnert M, Hernberg-Stahl E, Monson JP, Westberg B, Wilton P, Wuster C 2002 Growth hormone deficiency and replacement in hypopituitary patients previously treated for acromegaly or Cushing's disease. Eur J Endocrinol 146:67-74

8. Normman LL, Johannsson G, Sunnerhagen KS, Svensson J 2008 Baseline Characteristics and the Effects of Two Years of Growth Hormone (GH) Replacement Therapy in Adults with GH Deficiency Previously Treated for Acromegaly. J Clin Endocrinol Metab 93:2531-2538.

9. van der Klaauw AA, Pereira AM, van Thiel SW, Smit JW, Corssmit EP, Biermasz NR, Iranmanesh A, Veldhuis JD, Roelfsema F, Romijn JA 2006 GH deficiency in patients irradiated for acromegaly: significance of GH stimulatory tests in relation to the 24 h GH secretion. Eur J Endocrinol 154:851-858

10. Consensus guidelines for the diagnosis and treatment of adults with growth hormone deficiency: summary statement of the Growth Hormone Research Society Workshop on Adult Growth Hormone Deficiency 1998 J Clin Endocrinol Metab 83:379-381

11. Roelfsema F, van den BG, van Dulken H, Veldhuis JD, Pincus SM 1998 Pituitary apoplexy in acromegaly, a long-term follow-up study in two patients. J Endocrinol Invest 21:298-303

12. Schiller NB, Shah PM, Crawford M, DeMaria A, Devereux R, Feigenbaum H, Gutgesell H, Reichek N, Sahn D, Sahn, N 1989 Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr 2:358-367

13. Perry GJ, Helmcke F, Nanda NC, Byard C, Soto B 1987 Evaluation of aortic insufficiency by Doppler color flow mapping. J Am Coll Cardiol 9:952-959

14. Thomas JD 1997 How leaky is that mitral valve? Simplified Doppler methods to measure regurgitant orifice area. Circulation 95:548-550

15. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, Reichek N 1986 Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 57:450-458

16. Zigmond AS, Snaith RP 1983 The hospital anxiety and depression scale. Acta Psychiatr Scand 67:361-370

17. Smets EM, Garssen B, Bonke B, De Haes JC 1995 The Multidimensional Fatigue Inventory (MFI) psychometric qualities of an instrument to assess fatigue. J Psychosom Res 39:315-325

18. Hunt SM, McEwen J 1980 The development of a subjective health indicator. Sociol Health Illn 2:231-246

19. Hunt SM, McKenna SP, McEwen J, Backett EM, Williams J, Papp E 1980 A quantitative approach to perceived health status: a validation study. J Epidemiol Community Health 34:281-286
20. McKenna SP, Doward LC, Alonso J, Kohlmann T, Niero M, Prieto L, Wirén L 1999 The QoL-AGHDA: an instrument for the assessment of quality of life in adults with growth hormone deficiency. Qual Life Res 8:373-383
21. Cole TJ 1990 The LMS method for constructing normalized growth standards. Eur J Clin Nutr 44:45-60
22. Rikken B, van Doorn J, Ringeling A, Van den Brande JL, Massa G, Wit JM 1998 Plasma levels of insulin-like growth factor (IGF)-I, IGF-II and IGF-binding protein-3 in the evaluation of childhood growth hormone deficiency. Horm Res 50:166-176
23. Gotherstrom G, Bengtsson BA, Bosaeus I, Johannsson G, Svensson J 2007 Ten-year GH replacement increases bone mineral density in hypopituitary patients with adult onset GH deficiency. Eur J Endocrinol 156:55-64
24. Maison P, Chanson P 2003 Cardiac effects of growth hormone in adults with growth hormone deficiency: a meta-analysis. Circulation 108:2648-2652
25. Deijen JB, Arwert L, Witlox J, Drent ML 2005 Differential effect sizes of growth hormone replacement on Quality of Life, well-being and health status in growth hormone deficient patients: a meta-analysis. Health Qual Life Outcomes 3:63
26. Maison P, Griffin S, Nicoue-Beglah M, Haddad N, Balkau B, Chanson P 2004 Impact of growth hormone (GH) treatment on cardiovascular risk factors in GH-deficient adults: a Metaanalysis of Blinded, Randomized, Placebo-Controlled Trials. J Clin Endocrinol Metab 89:2192-2199
27. Davidson P, Milne R, Chase D, Cooper C 2004 Growth hormone replacement in adults and bone mineral density: a systematic review and meta-analysis. Clin Endocrinol (Oxf) 60:92-98
28. Gotherstrom G, Bengtsson BA, Bosaeus I, Johannsson G, Svensson J 2007 A 10-year, prospective study of the metabolic effects of growth hormone replacement in adults. J Clin Endocrinol Metab 92:1442-1445
29. van der Klaauw AA, Romijn JA, Biermasz NR, Smit JW, van Doorn J, Dekkers OM, Roelfsema F, Pereira AM 2006 Sustained effects of recombinant GH replacement after 7 years of treatment in adults with GH deficiency. Eur J Endocrinol 155:701-708
30. van der Klaauw AA, Biermasz NR, Feskens EJ, Smit JW, Roelfsema F, Corssmit EP, Pijl H, Romijn JA, Pereira AM 2007 The prevalence of the metabolic syndrome is increased in patients with GH deficiency, irrespective of long-term substitution with recombinant human GH. Eur J Endocrinol 156:455-462
31. Monson JP, Jonsson P, Koltowska-Haggstrom M, Kourides I 2007 Growth hormone (GH) replacement decreases serum total and LDL-cholesterol in hypopituitary patients on maintenance HMG CoA reductase inhibitor (statin) therapy. Clin Endocrinol (Oxf) 67:623-628
32. Biermasz NR, Hamdy NA, Janssen YJ, Roelfsema F 2001 Additional beneficial effects of alendronate in growth hormone (GH)-deficient adults with osteoporosis receiving long-term recombinant human GH replacement therapy: a randomized controlled trial. J Clin Endocrinol Metab 86:3079-3085
33. Colao A, Ferone D, Marzullo P, Lombardi G 2004 Systemic complications of acromegaly: epidemiology, pathogenesis, and management. Endocr Rev 25:102-152
34. Biermasz NR, Hamdy NA, Pereira AM, Romijn JA, Roelfsema F 2005 Long-term maintenance of the anabolic effects of GH on the skeleton in successfully treated patients with acromegaly. Eur J Endocrinol 152:53-60
35. Biermasz NR, Pereira AM, Smit JW, Romijn JA, Roelfsema F 2005 Morbidity after Long-term Remission for Acromegaly; Persisting Joint-Related Complaints Cause Reduced Quality of Life. J Clin Endocrinol Metab
36. van der Klaauw AA, Biermasz N, Hofhijzer HC, Pereira AM, Romijn JA 2008 Previous radiotherapy negatively influences quality of life during four years of follow-up in patients cured from acromegaly. Clin Endocrinol (Oxf), In press.