Supplement Article: The Impact, Experience, and Challenges of COVID-19: The Women’s Health Initiative

The Impact of the COVID-19 Pandemic on Older Women in the Women’s Health Initiative

Trang VoPham, PhD,1,2,* Holly R. Harris, ScD,1,2 Lesley F. Tinker, PhD,1 JoAnn E. Manson, MD, DrPH,3 Jaymie R. Meliker, PhD,4 Sylvia Wassertheil-Smoller, PhD,5 Aladdin H. Shadyab, PhD,6 Nazmus Saquib, PhD,7, Garnet L. Anderson, PhD,1 and Sally A. Shumaker, PhD8

1Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA. 2Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington, USA. 3Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. 4Program in Public Health, Department of Family, Population, and Preventive Medicine, Stony Brook University, Stony Brook, New York, USA. 5Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA. 6Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California, USA. 7Sulaiman Al Rajhi University, College of Medicine, Al Bukairiyah, Saudi Arabia. 8Social Sciences and Health Policy, Division of Public Health Sciences, Wake Forest School of Medicine, Winston Salem, North Carolina, USA.

*Address correspondence to: Trang VoPham, PhD, Epidemiology Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA. E-mail: tvopham@fredhutch.org

Received: September 8, 2021; Editorial Decision Date: February 22, 2022

Decision Editor: Lewis A. Lipsitz, MD, FGSA

Abstract

Background: The coronavirus disease 2019 (COVID-19) pandemic is a health crisis of which older adults are a high-risk group for severe illness and mortality. The objectives of this article are to describe the methods and responses to a COVID-19 survey administered by the Women’s Health Initiative (WHI) to assess the impact of the pandemic on older women.

Methods: WHI is an ongoing prospective cohort study that recruited 161,808 postmenopausal women from 1993 to 1998. From June 2020 to October 2020, participants in active follow-up were surveyed by mail, phone, or online to assess health and well-being, living situations, lifestyle, health care, and self-reported COVID-19 testing, treatment, and preventive behaviors.

Results: Of 64,061 eligible participants, 49,695 (average age 83.6 years ± 5.6) completed the COVID-19 survey (response rate 77.6%). Many participants reported very good or good well-being (75.6%). Respondents reported being very concerned about the pandemic (51.1%; more common in urban compared to rural areas), with 6.9% reporting disruptions in living arrangements and 9.7% reporting changes in medication access. Participants (54.4%) reported physical activity levels were much less or somewhat less compared to levels before the pandemic, and this was more pronounced in urban areas versus rural areas (55.3% vs 44.4%). Participants engaged in preventive behaviors including wearing a face mask (93.2%). A total of 18.9% reported testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), among whom 3.5% (n = 311) reported testing positive.

Conclusions: In this nationwide survey of older U.S. women, the COVID-19 pandemic was associated with impacts on health and well-being, living situations, lifestyle, health care access, and SARS-CoV-2 testing and preventive behaviors.

Keywords: Cohort study, Living arrangements, Well-being

By February 2022, there have been over 75 million cases of coronavirus disease 2019 (COVID-19) and over 888,000 COVID-19 deaths in the United States (1). Risk factors for severe illness from COVID-19 include older age (particularly ages 75 years and older), preexisting conditions (e.g., cancer, heart disease, chronic kidney disease, chronic obstructive pulmonary disease, and type 2 diabetes),
obesity, and smoking (2–5). While the reasons underlying the increased risk for older age groups are not fully understood, factors including high systolic blood pressure, frailty, obesity, and having multiple long-term conditions (eg, depression, heart disease) have been shown to explain some of the excess risk in COVID-19 mortality (3,6).

In addition to COVID-19 morbidity and mortality, the pandemic has been associated with disruptions in everyday life that have important implications for access to health care and medications, mental health, physical activity, and living situations (7–11). Older individuals represent an especially vulnerable population affected by disruptions due to COVID-19 such as social distancing and stay-at-home orders (8). To date, there has been limited research detailing the personal and economic consequences associated with the pandemic on older individuals in the United States. Starting in June 2020, the Women's Health Initiative (WHI), a nationwide prospective cohort of postmenopausal women, sent a survey to participants which included questions regarding their experiences related to the pandemic. The objectives of this article are to describe the survey methods and to report selected population characteristics and survey responses to describe the direct and indirect effects of the pandemic on the lives of older women, including disruptions in health and well-being, living situations, lifestyle factors, and health care, as well as self-reported COVID-19 testing, diagnoses, treatment, and preventive behaviors.

Method
Study Population
The WHI is a nationwide prospective cohort study funded by the National Heart, Lung, and Blood Institute that included clinical trials (CTs) and an observational study (OS) from 1993 to 2005 with overall objectives of identifying risk factors for and testing interventions to prevent the major causes of morbidity and mortality in postmenopausal women (12,13). Between 1993 and 1998, WHI investigators at 40 U.S. clinical centers enrolled 161 808 generally healthy postmenopausal women aged 50–79 years (12). At the conclusion of the CTs in 2005, CTs and OS participants were invited to consent for further follow up in the WHI Extension Studies. Throughout the WHI, these women have provided extensive information including demographics, medical history, diet, medication and supplement use, lifestyle, psychosocial and behavioral measures, selected environmental factors, as well as blood and buffy coat (DNA) samples. At the beginning of the pandemic, 64 061 women remained alive and were in active follow up. Annual follow-up rates have been very high (>86%) and passive follow-up through linkages to Medicare and the National Death Index (NDI) is conducted annually. The Institutional Review Board at each study site approved the protocols and participants provided written informed consent.

COVID-19 Survey
From June 2020 to October 2020, active WHI participants were sent a COVID-19 survey, which included questions on the following topics: changes in living arrangements; household composition; residence-based restrictions; severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus exposures, testing, diagnoses, medical care, and preventive behaviors; medications; health conditions; health care access; health and general well-being; pandemic-related concerns; communication with friends and family; lifestyle factors including alcohol consumption, smoking, and physical activity; and community actions to help during the pandemic (14). The survey was first administered online (using REDCap) to participants who provided email addresses, and subsequently by mail and phone. In June 2020, the first online survey invitations were sent to participants. Phone-based surveys (for those who are followed by phone) were initiated later in June. From July 2020 to August 2020, the paper version was mailed. In September 2020, a remail of the paper survey was sent to online and mail nonrespondents. Phone follow-up was conducted among nonrespondents (with a few exceptions) who were initially contacted by phone and those who had not responded to online and paper remailings. Budget limitations precluded phoning all nonrespondents to mail and online, so these efforts were directed at underrepresented minorities and those greater than 90 years of age to ensure representation of those important subgroups.

Statistical Analysis
Chi-square tests and t tests for categorical and continuous variables, respectively, were used to compare differences in WHI population characteristics and selected COVID-19 survey responses between survey respondents versus nonrespondents and by rural versus urban residence, region of residence, and/or time period of survey completion (surveys completed from June 2020 to August 2020 were classified as Summer 2020 and surveys completed from September 2020 to October 2020 were classified as Fall 2020). All questions included in the COVID-19 survey are available online (14). Questions allowing multiple responses are indicated in the Tables. The current ZIP code collected in the COVID-19 survey was used to determine rural/urban residence using U.S. Department of Agriculture Rural-Urban Commuting Area (RUCA) codes, which classify all ZIP codes into one of 10 main categories for metropolitan, micropolitan, small town, and rural commuting areas based on measures of population density, urbanization, and daily commuting (15). There are also 33 subcategories based on secondary commuting flows. Due to the small number of participants in the rural categories, we presented results for urban residence (RUCA codes for metropolitan: 1.0, 1.1, 2.0, 2.1, 3.0, 4.1, 5.1, 7.1, 8.1, 9.1, and 10.1) and rural residence (RUCA codes for micropolitan: 4.0, 4.2, 5.0, 5.2, 6.0, and 6.1; small rural town: 7.0, 7.2, 7.3, 7.4, 8.0, 8.2, 8.3, 8.4, 9.0, and 9.2; isolated small rural town: 10.0, 10.2, 10.3, 10.4, 10.5, and 10.6). There were 132 participants for whom RUCA codes were missing because of an invalid ZIP code (n = 129) or the RUCA code was 99 or zero population (n = 3). ZIP codes were also used to determine the U.S. Census region of residence (Northeast, South, Midwest, and West).

In addition, the current ZIP code was used to map the geographic distribution of participant responses to question 21 of the COVID-19 survey (“In general, how concerned are you about the COVID-19 pandemic?”) (14). As multiple participants may have resided in the same ZIP code, the mode response was determined for each ZIP code (not at all concerned, somewhat concerned, or very concerned). A total of 241 responses were excluded because the reported ZIP code was not available in the 2020 U.S. Census Bureau TIGER/Line shapefile boundaries for ZIP code Tabulation Areas (16). All spatial analyses were conducted using ArcGIS 10.7 (Esri, Redlands, CA).

Responses to 4 questions (27–30) of the COVID-19 survey were used to estimate the perceived stress scale construct, which measures the degree to which situations in one’s life are appraised as stressful. This was a 4-item version of the 14-item Perceived Stress Scale instrument (17), where the score values range from 0 to 16 (a higher score indicates greater perceived stress). In addition to the information
collected from the COVID-19 survey, the following variables are presented, which were collected using standardized questionnaires at baseline: age at survey completion (years; calculated using birthdate), ethnicity (non-Hispanic/Latina, Hispanic/Latina, unknown/not reported), race (American Indian/Alaska Native, Asian, Native Hawaiian/Other Pacific Islander, Black, White, more than 1 race, unknown/not reported), and education (less than high school, high school diploma or GED, some school after high school, and college degree or higher). We also used data from follow-up questionnaires collected prior to the COVID-19 survey to ascertain the following information: body mass index (BMI; kg/m²) from most recent data collection, alcohol consumption from most recent data collection, any cancer except nonmelanoma skin cancer, any fracture, autoimmune disease (includes lupus and rheumatoid arthritis), breast cancer, chronic obstructive pulmonary disease, coronary disease (includes myocardial infarction [MI], revascularization [percutaneous coronary intervention or coronary artery bypass grafting], angina, or heart failure), current depression (Burnam score ≥0.06 from most recent data collection) [18], lifetime depression (Burnam score ≥0.06 or antidepressant medication use reported at baseline or at any time during follow-up prior to the COVID-19 survey), MI, osteoarthritis, stroke, treated diabetes, and treated hypertension. Comorbidities were identified based on adjudicated events during follow-up or self-reported disease history [19].

We conducted sensitivity analyses using inverse probability weighting (IPW) to examine the potential impact of selection bias from women who did not respond to the COVID-19 survey. The inverse probability weights were estimated by regressing a binary response variable (responded to survey vs not) on a set of covariates including demographic characteristics, medical history, and psychosocial variables in a logistic regression model. Statistical tests were conducted in separate logistic regression models in which the response variable was urban versus rural residence (weighted as described above). All statistical tests were 2-sided and \(p < .05 \) was considered statistically significant. Statistical analyses were conducted using SAS 9.4 (Cary, NC).

Results

Population Characteristics

Table 1 shows population characteristics for the participants who completed the COVID-19 survey. Among 64,061 participants who were eligible for contact, a total of 49,695 participants responded to the survey (response rate 77.6%; Supplementary Figure 1). The majority of respondents completed the survey by mail (72.6%), followed by online (26.3%), and phone (1.1%). Most surveys were completed in August 2020 (54.1%). Overall, participants were on average 83.6 years old (±5.6) and had an average BMI of 26.1 kg/m² (±5.2). The majority of participants were non-Hispanic (96.9%, \(n = 48,151 \)), 2.9%, \(n = 1,444 \) were Hispanic, White (89.9%; 0.2%, \(n = 106 \) were American Indian/Alaska Native; 2.2%, \(n = 1,087 \) were Asian; 0.1%, \(n = 35 \) were Native Hawaiian/Other Pacific Islander; 5.6%, \(n = 2,792 \) were Black; 1.1%, \(n = 570 \) were more than 1 race), and/or had a college degree or higher (49.7%, \(n = 24,513 \)), 1.9%, \(n = 920 \) had less than a high school education; 13.5%, \(n = 6,680 \) had a high school diploma or GED; 34.9%, \(n = 17,244 \) had some school after high school). Women were more likely to have resided in the West region of the United States (29.4%), followed by the South (27.0%), Midwest (22.2%), and Northeast (21.3%). Participants residing in rural areas were slightly more likely to be White and/or live in the Midwest and less likely to have a college degree or higher compared to participants residing in urban areas (\(p < .0001 \)). Participants who did not complete the survey (\(n = 14,665 \)) were slightly older, more likely to be Black, and less likely to have a college degree or higher (\(p < .0001 \)).

Well-being, Living Situations, Medications, and Health Care

Many participants reported that their current level of well-being from March 2020 to October 2020 during the COVID-19 pandemic was very good (38.7%) or good (36.9%; Table 2). Supplementary Table 1 shows current level of well-being stratified by region of residence and season of survey completion. A relatively lower proportion of participants who responded to the survey in Fall 2020 compared to Summer 2020 reported an excellent, very good, or good current level of well-being (\(p < .0001 \)). Respondents reported being very concerned about the pandemic (51.1%), which was slightly more common in urban compared to rural areas (51.5% vs 46.7%; \(p < .0001 \)). Figure 1 shows the geographic distribution of the most frequently reported level of concern by participant ZIP code, many of which were characterized by responses of somewhat or very concerned. Respondents resided in all 50 states across the United States and Washington, DC. The following were reported by participants as major concerns: the nation and economy more generally (69.5%), risk of family or friends getting infected (67.3%), risk of themselves getting infected (62.1%), ability to be with family and friends (61.4%), and/or the health and safety of friends and family (58.8%; Table 2). Urban compared to rural residents were slightly more concerned with getting infection (62.4% vs 58.2%) and getting enough physical activity or exercise (24.0% vs 14.9%; \(p < .0001 \)). The average perceived stress scale among participants was 4.8 (±2.9; responses used to calculate perceived stress are presented in Supplementary Table 2). Approximately 6.9% of women reported a change in living arrangements since March 2020 due to the pandemic, which included having family or friends move in (18.2%) and/or they moved in with other family or friends (13.1%), the latter being more common among rural residents (Table 2). Some participants moved into a care facility (8.6%) and/or had a care provider coming to help (7.0%). Respondents in the fall compared to the summer were more likely to have reported moving in with other family or friends, have their care provider now coming to help (particularly in the Northeast and West), and/or moved into a care facility themselves (particularly in the Midwest and South; \(p < .0001 \); Supplementary Table 1). Living in a private home (where services and/or restrictions were not applicable) was more common among rural compared to urban participants (84.5% vs 75.8%; \(p < .0001 \)). For participants who did not live in a private home, 11.4% reported that their place of residence was not allowing visitors and 11.6% reported having food delivered to the home/apartment/room (Supplementary Table 3). Of the participants who had close family members in assisted living, skilled nursing, or a nursing home (8.9%), around 10.8% reported being able to visit them, with a higher proportion of respondents in the fall having reported being able to visit and the lowest proportions reported in the South (irrespective of time period; Supplementary Table 1).

The majority of participants reported taking prescription medications not related to COVID-19 (88.0%; Supplementary Table 3). A total of 9.7% of participants reported any change in how they received their medications since March 2020, with difficulties taking
Table 1. Population Characteristics for WHI Participants: Overall and by Rural/Urban Residence

	Overall (N = 49,695)	Rural Residence (N = 3,923)	Urban Residence (N = 45,640)	Did Not Complete Survey (N = 14,655)		
	N %	N %	N %	N %		
Age at survey completion (years), mean (SD)	83.6 5.6	83.3 5.5	83.6 5.6	.0009	86.5 6.0	.0001
70–74	993 2.0	81 2.1	907 2.0	.0611	167 1.1	.0001
75–79	12,324 24.8	1,028 26.2	11,261 24.7	3,518 24.0	4,059 27.7	.0001
80–84	16,083 32.4	1,284 32.7	14,754 32.3	3,540 24.2	1,416 9.7	.0001
85–89	12,160 24.5	937 23.9	11,191 24.5	4,059 27.7	1,416 9.7	.0001
90–94	6,445 13.0	484 12.3	5,949 13.0	3,540 24.2	1,416 9.7	.0001
≥95	1,690 3.4	109 2.8	1,578 3.5	4,059 27.7	1,416 9.7	.0001
Body mass index at survey completion (kg/m²), mean (SD)	26.1 5.2	26.5 5.3	26.0 5.2	<.0001	25.9 5.6	.0004
<25	23,154 47.8	1,669 43.5	21,437 48.2	5,735 50.1	3,495 30.5	.0001
25–<30	15,708 32.4	1,309 34.1	14,365 32.3	3,495 30.5	2,214 19.3	.0001
≥30	9,564 19.7	859 22.4	8,680 19.5	3,495 30.5	2,214 19.3	.0001
Ethnicity						
Non-Hispanic/Latina	48,151 96.9	3,878 98.9	44,159 96.8	14,030 95.7	3,495 30.5	.0001
Hispanic/Latina	1,444 2.9	41 1.0	1,385 3.0	590 4.0	35 0.2	.0001
Unknown/not reported	100 0.2	4 0.1	96 0.2	35 0.2	.0001	
Race						
American Indian/Alaska Native	106 0.2	22 0.6	83 0.2	40 0.3	35 0.1	.0001
Asian	1,087 2.2	18 0.5	1,068 2.3	309 2.1	18 0.1	.0001
Native Hawaiian/other Pacific Islander	35 0.7	3 0.1	32 0.1	18 0.1	3 0.1	.0001
Black	2,792 5.6	72 1.8	2,711 5.9	1,538 10.5	18 0.1	.0001
White	44,672 89.9	3,748 95.5	40,814 89.4	12,369 84.4	216 1.5	.0001
More than 1 race	570 1.1	46 1.2	521 1.1	216 1.5	200 1.1	.0001
Unknown/not reported	433 0.9	14 0.4	411 0.9	165 1.1	.0001	
Years of education						
Less than high school	920 1.9	79 2.0	839 1.9	598 4.1	39 0.1	.0001
High school diploma or GED	6,680 13.5	678 17.4	5,988 13.2	2,551 17.5	5,496 37.7	.0001
Some school after high school	17,244 34.9	1,530 39.2	15,662 34.6	5,922 40.7	5,496 37.7	.0001
College degree or higher	24,513 49.7	1,615 41.4	22,835 50.4	5,922 40.7	5,496 37.7	.0001
Month of survey completion*						
June	13,043 26.2	939 23.9	12,076 26.5	.0142	10,155 22.3	.0001
July	2,498 0.5	18 0.5	2,100 0.5	10,155 22.3	2,551 17.5	.0001
August	26,862 54.1	2,207 56.3	24,612 53.9	5,922 40.7	5,496 37.7	.0001
September	6,372 12.8	506 12.9	5,830 12.8	5,922 40.7	5,496 37.7	.0001
October	3,177 6.4	253 6.4	2,912 6.4	5,922 40.7	5,496 37.7	.0001
Survey mode						
Online	13,072 26.3	940 24.0	12,109 26.5	.0020	10,155 22.3	.0001
Paper	36,056 72.6	2,942 75.0	33,047 72.4	5,922 40.7	5,496 37.7	.0001
Phone	567 1.1	41 1.0	484 1.1	5,922 40.7	5,496 37.7	.0001
Region of residence						
Northeast	10,570 21.3	412 10.5	10,155 22.3	.0001	10,155 22.3	.0001
Midwest	11,025 22.2	1,580 40.3	9,445 20.7	.0001	10,155 22.3	.0001
South	13,374 27.0	1,051 26.8	12,323 27.0	5,922 40.7	5,496 37.7	.0001
West	14,597 29.4	880 22.4	13,717 30.1	5,922 40.7	5,496 37.7	.0001

Notes: SD = standard deviation; WHI = Women’s Health Initiative; GED = General Educational Development test.

*Survey completion in July is relatively lower compared to other months because the majority of online surveys were completed in June (initial REDCap invitations were sent June 5, 2020), a small number of phone follow-up results were completed in July (phone follow-up began on June 18, 2020), and due to the duration for mail responses to be sent and returned (paper surveys were mailed from July 13, 2020 to August 5, 2020).
medications due to delays in getting prescriptions filled (37.6%). Many participants had health care appointments scheduled from March 2020 up until survey completion (79.4%) that were affected by the pandemic. Of these women, nearly half reported appointment conversions to telephone or online, slightly over one third reported appointments being rescheduled, and about a quarter reported appointment cancelations (all of which were more commonly reported among urban compared to rural residents, \(p < .0001 \)). Although participants were more likely to report no difficulty in receiving routine care since March 2020 (75.5%), 21.9% reported some difficulty.

Pandemic-related Preventive Behaviors, New Actions, and Social Engagement

The majority of participants took steps since March 2020 to reduce risk of infection, including wearing a face mask in public (93.2%), washing hands frequently (90.6%), maintaining physical distance from people outside of their household (89.2%), avoiding shaking hands (80.8%), and/or staying at home (78.9%; Table 2). Rural participants were less likely to avoid in-person social/religious activities compared to urban participants (68.1% vs 74.6%; \(p < .0001 \)). Participants responding in the fall compared to the summer were slightly less likely to engage in steps since March 2020 to reduce risk of infection such as washing hands frequently and/or avoiding shaking hands (\(p < .0001 \); Supplementary Table 1). Respondents reported taking new actions to help family, friends, or their community during the pandemic, including contacting friends or family to keep in touch (71.0%), donating money (30.4%), making masks for others (11.3%), and/or getting food or medicine for others (10.0%). Over half of participants reported communicating with others outside of their home every day or several times per week (Table 2).

Lifestyle Factors: Alcohol Consumption, Smoking, and Physical Activity

Within the past 3 months of completing the survey, over half of respondents did not consume alcohol (52.2%), although 13.2% consumed an average of 5–7 drinks per week and 3.4% consumed an average of more than 7 drinks per week (Table 3). Alcohol consumption reported in the COVID-19 survey was lower (47.8%) compared to prior to the pandemic (72.7%; Supplementary Table 4), which did not meaningfully differ by rural versus urban residence. A small proportion of respondents (1.3%) reported currently smoking regular or electronic cigarettes during the pandemic.

Participants reported a level of physical activity or exercise that was much less (25.7%), somewhat less (28.7%), or about the same (37.3%) compared to before the pandemic (Table 3). In the past month of completing the survey, some women (23.2%) reported rarely or never walking outside of their homes (or equivalent) for at least 5 minutes without stopping, while 18.5% reported walking 7 or more times per week. Participants residing in urban compared to rural areas were more likely to report much less or somewhat less physical activity or exercise compared to before the pandemic (55.3% vs 44.4%; \(p < .0001 \)).

COVID-19 Testing, Diagnoses, and Treatment

Most participants were never exposed to another person diagnosed or suspected of having a SARS-CoV-2 infection (96.2%; Table 4). Five percent reported having a family member or close friend die from COVID-19. A total of 18.9% reported being tested for SARS-CoV-2, most of whom were tested using nasal swabs (86.6%) and/or were tested once (71.9%). A total of 3.5% of these participants (\(n = 311 \)) reported a positive test result, 79.6% of which were through nasal swabs. Of 71% of those who reported testing positive reported ever being hospitalized for COVID-19. Regarding temporal and regional differences in testing, a higher proportion of respondents in the fall compared to the summer reported testing for SARS-CoV-2 (\(p < .0001 \)), which was generally consistent across the Northeast, Midwest, South, and West regions of the United States (Supplementary Table 1).

Other information regarding participant characteristics or collected from the COVID-19 survey, including comorbidities (Supplementary Table 5), housing, medication, and social impacts (Supplementary Table 6), and COVID-19 health care (Supplementary Table 7), are included as Supplementary Material. Results were similar when applying IPW to address potential selection bias from nonrespondents (data not shown).

Discussion

In this nationwide survey of United States older women aged on average 83.6 years, we described survey methods and the experiences of the COVID-19 pandemic using a range of measures regarding health and well-being, living situations, lifestyle factors, and health care. Responses were collected from March 2020 to October 2020, which was during the first wave of the pandemic, although the impact of the pandemic (eg, infection rates and lockdown measures) varied from location to location across the United States (20). WHI participants were more likely to report very good or good levels of well-being, but in lower frequency in the fall compared to the summer. Respondents reported being very concerned about the pandemic (more commonly reported among urban residents), with many participating in preventive behaviors including wearing a face mask (which were more commonly practiced in the summer compared to the fall). The most common disruption in living arrangements included having family or friends move in, although a higher proportion of respondents in the fall compared to the summer reported moving into a care facility and/or having their care provider come to help. Many women reported changes in medication and health...
Current level of well-being	Overall (N = 49,695)	Rural Residence (N = 3,923)	Urban Residence (N = 45,640)	p Value
Excellent	4,915 (10.0)	390 (10.0)	4,512 (10.0)	.6576
Very good	19,045 (38.7)	1,543 (39.7)	17,465 (38.7)	
Good	18,151 (36.9)	1,414 (36.4)	16,680 (37.0)	
Fair	5,967 (12.1)	462 (11.9)	5,485 (12.2)	
Poor	901 (1.8)	62 (1.6)	838 (1.9)	
Very poor	171 (0.3)	16 (0.4)	155 (0.3)	

How concerned about the COVID-19 pandemic	Overall (N = 49,695)	Rural Residence (N = 3,923)	Urban Residence (N = 45,640)	p Value
Not at all concerned	3,245 (6.8)	297 (7.8)	2,937 (6.7)	<.0001
Somewhat concerned	20,247 (42.2)	1,726 (45.5)	18,454 (41.8)	
Very concerned	24,533 (51.1)	1,774 (47.6)	22,709 (51.5)	

Pandemic causing concerns about the following*	Overall (N = 49,695)	Rural Residence (N = 3,923)	Urban Residence (N = 45,640)	p Value
Risk of getting COVID-19 infection	30,849 (62.1)	2,283 (58.2)	28,476 (62.4)	<.0001
Risk of family/friends getting COVID-19 infection	33,448 (67.3)	2,570 (65.5)	30,806 (67.5)	.0109
Getting the health care I need	5,714 (11.5)	366 (9.3)	5,338 (11.7)	<.0001
Getting adequate food	3,813 (7.7)	224 (5.7)	3,578 (7.8)	<.0001
Getting enough exercise/physical activity	11,587 (23.3)	586 (14.9)	26,933 (59.0)	.0089
Getting the sleep I need	3,795 (7.6)	235 (6.0)	3,547 (7.8)	<.0001
Pandemic causing concerns about the following*	Overall (N = 49,695)	Rural Residence (N = 3,923)	Urban Residence (N = 45,640)	p Value
Financial security	5,168 (10.4)	344 (8.8)	4,807 (10.5)	.0005
Ability to be with family and friends	30,533 (61.4)	2,300 (58.6)	28,167 (61.7)	<.0001
Nation and economy more generally	34,561 (69.5)	2,723 (69.4)	31,764 (69.6)	.0839
Perceived stress scale, mean (SD)	4.8 (2.9)	4.6 (2.9)	4.8 (2.9)	.0023

Steps taken since March 2020 to reduce risk of infection by COVID-19*	Overall (N = 49,695)	Rural Residence (N = 3,923)	Urban Residence (N = 45,640)	p Value
Washing hands frequently	45,019 (90.6)	3,564 (90.8)	41,355 (90.6)	.5625
Trying not to touch face	35,157 (64.7)	2,440 (62.2)	32,617 (64.9)	.0006
Disinfecting surfaces frequently	25,227 (50.8)	1,960 (50.0)	23,267 (50.8)	.2951
Maintaining physical distance from people outside household	44,344 (89.2)	3,431 (87.5)	40,913 (89.4)	.0001
Wearing a face mask in public	46,309 (93.2)	3,607 (91.9)	42,692 (93.3)	.0009
Wearing gloves in public	9,517 (19.2)	555 (14.1)	8,962 (19.6)	<.0001
Avoiding in-person social/religious activities	36,786 (74.0)	2,630 (67.0)	34,136 (74.0)	.0001
Avoiding or limiting in-person shopping	34,828 (70.1)	2,630 (67.0)	32,122 (70.4)	<.0001
Avoiding shaking hands	40,159 (80.8)	3,072 (78.3)	36,999 (81.1)	<.0001
Staying home	39,210 (78.9)	3,022 (77.0)	36,085 (79.1)	.0028

Notes: COVID-19 = coronavirus disease 2019; SD = standard deviation.

*The COVID-19 survey allowed participants to mark multiple responses to this question.
Table 3. Lifestyle Factors During the COVID-19 Pandemic: Overall and by Rural/Urban Residence

	Overall (N = 49,695)	Rural Residence (N = 3,923)	Urban Residence (N = 45,640)	p Value		
	N	%	N	%	p value	
In past 3 months, average number of alcoholic drinks						
None	26,600	52.2	2,168	56.1	<.0001	
At most 1 drink each week	9,103	18.6	672	17.4	8,413	18.7
2–4 drinks per week	6,142	12.5	446	11.5	5,674	12.6
5–7 drinks per week	6,483	13.2	451	11.7	6,021	13.4
More than 7 drinks per week	1,674	3.4	127	3.3	1,544	3.4
Currently smoke regular or electronic cigarettes	618	1.3	50	1.3	565	1.3
Over past month, level of physical activity or exercise compared to average before pandemic						
Much less	12,568	25.7	733	19.0	11,809	26.3
Somewhat less	14,051	28.7	976	25.4	13,027	29.0
About the same	18,233	37.3	1,778	46.2	16,413	36.5
Somewhat more	3,226	6.6	281	7.3	2,937	6.5
Much more	852	1.7	80	2.1	768	1.7
How often walked outside home or equivalent for at least 5 minutes without stopping						
Rarely or never	11,290	23.2	888	23.2	10,376	23.2
1 time each week	5,084	10.4	420	11.0	4,649	10.4
2–3 times each week	11,392	23.4	882	23.0	10,471	23.4
4–6 times per week	11,959	24.5	955	24.9	10,978	24.3
7 or more times per week	9,038	18.5	683	17.8	8,333	18.6

Notes: COVID-19 = coronavirus disease 2019.
having moved into a care facility. Participants also reported lower levels of physical activity compared to before the pandemic, especially among women in urban areas. Although stay-at-home orders and closures of nonessential businesses, such as fitness centers, were implemented to reduce transmission of the virus and the overall burden of the pandemic, this disruption minimized opportunities for physical activity, which may have short- and long-term effects on health among older adults (33, 34). Reported levels of alcohol consumption were also lower compared to prior to the pandemic, which has been observed in research showing that U.S. adults aged 21 years and older who reported decreased alcohol consumption during the pandemic cited reasons related to diminished alcohol availability, less free time, and/or having less financial resources (35).

A small proportion of respondents (~10%) reported changes in how they were receiving their prescription drugs since March 2020, while a larger proportion of participants were affected by disruptions in health care appointments such as rescheduling or cancellations. Many reported conversions to telephone or online appointments, which was more common in urban areas. These results highlight geographic disparities in health care services, where telehealth and other technologies are more commonly provided in urban areas compared to rural areas due to barriers regarding the logistics of implementing telehealth, lack of partners or providers, and limited broadband access (36).

This study has several limitations. The generalizability of the results may be limited as WHI participants are generally healthier and of higher socioeconomic status compared to the general U.S. population and the majority of participants are White and/or non-Hispanic. Furthermore, other considerations potentially affecting generalizability include how 41.4% of participants (67,006/161,808) were deceased when COVID-19 survey administration commenced in June 2020 and how WHI participants who were most severely affected by COVID-19 illness may have been less likely to be able to complete the COVID-19 survey. Future research should explore pandemic-related disruptions reported in the WHI compared to other populations. However, given the small number of participants who did report a COVID-19 diagnosis, this is unlikely to have significantly affected our overall results. There are notable strengths, including robust data collection to assess the impact of the COVID-19 pandemic on a large number of measures regarding health and health care, living arrangements, lifestyle, and COVID-19 exposures and treatment. This survey was administered to a large number of older women residing across the United States, characterized by a diversity of rural and urban geographic locations.

Table 4. COVID-19 Exposures, Testing, and Medical Care: Overall and by Rural/Urban Residence

	Overall (N = 49,695)	Rural Residence (N = 3,923)	Urban Residence (N = 45,640)	p Value
Ever exposed to another person diagnosed or suspected of having COVID-19				.0825
No, not that I know of	47,137 (96.2)	3,744 (96.9)	43,265 (96.2)	
Yes, someone outside of household	1,495 (3.1)	97 (2.5)	1,396 (3.1)	
Yes, someone living with me	346 (0.7)	23 (0.6)	321 (0.7)	
Family member or close friend died of COVID-19				.0023
No	46,524 (95.0)	3,721 (96.0)	42,679 (94.9)	
Yes	2,447 (5.0)	154 (4.0)	2,287 (5.1)	
Tested for SARS-CoV-2				.0003
No	39,453 (80.5)	3,199 (82.5)	36,149 (80.4)	
Yes	9,241 (19.0)	646 (17.0)	8,572 (19.1)	
If tested, test method				.4283
Nasal swab	7,714 (86.6)	547 (87.7)	7,150 (86.5)	
Throat swab	902 (10.1)	53 (8.5)	845 (10.2)	.5906
Saliva test	281 (3.2)	22 (3.5)	259 (3.1)	.0146
Blood test	1,139 (12.8)	60 (9.6)	1,074 (13.0)	
If tested, number of times				.0066
1	6,480 (71.9)	486 (77.4)	5,977 (71.5)	
2	1,555 (17.1)	96 (15.3)	1,454 (17.4)	
3 or more	872 (9.7)	40 (6.4)	831 (9.9)	
Unsure	104 (1.2)	6 (1.0)	98 (1.2)	
If tested, positive test result				.1279
No	8,368 (94.0)	381 (93.3)	7,766 (94.1)	
Yes	311 (3.5)	19 (3.0)	290 (3.5)	
Unsure	223 (2.5)	23 (3.7)	200 (2.4)	
If positive result, which test(s) were positive				.8522
Nasal swab	222 (79.6)	13 (81.3)	207 (79.3)	.5070
Saliva test	7 (2.5)	0 (0.0)	7 (2.7)	.0995
Throat swab	22 (7.9)	3 (18.8)	19 (7.3)	.1518
Blood test	57 (20.4)	1 (6.3)	55 (21.1)	
Ever hospitalized for COVID-19				.6938
No	214 (71.6)	11 (64.7)	202 (72.1)	
Yes	81 (27.1)	6 (35.3)	75 (26.8)	
Unsure	4 (1.3)	0 (0.0)	3 (1.1)	

Notes: COVID-19 = coronavirus disease 2019; SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2.

The COVID-19 survey allowed participants to mark multiple responses to this question.
In conclusion, results from this nationwide survey of older U.S. women in the WHI showed that the COVID-19 pandemic was associated with impacts on health and well-being, living situations, lifestyle, health care access, and SARS-CoV-2 testing and preventive behaviors. Data collected from this COVID-19 survey can be combined with the extensive database of time-varying WHI information on health, including prior longitudinal questionnaires, linkages with Medicare, the NDI, and the WHI biorepository to enable the investigation of innovative research questions on the short- and long-term health impacts of the pandemic. Furthermore, a readadministration of this COVID-19 survey in late 2021 will provide additional information on the longer term impact of the pandemic and opportunities for future research.

Supplementary Material

Supplementary data are available at The Journals of Gerontology, Series A: Biological Sciences and Medical Sciences online.

Funding

We gratefully acknowledge the 161,808 women who enrolled in the Women’s Health Initiative almost 30 years ago, and those who are able to remain active and engaged partners in this journey to advance our understanding of the health and well-being of women. We are particularly grateful to the 49,695 women who participated in the WHI COVID-19 Survey - 1, launched during a disruptive period in their lives. Their generosity adds critical information on the impact of the pandemic on one of our most vulnerable populations. We also thank the WHI Clinical Coordinating Center at Fred Hutchinson Cancer Research Center for conducting the COVID survey and providing financial and statistical support for this effort, as well as the four WHI Regional Centers who assisted in conducting the COVID-19 Survey - 1 (Stanford School of Medicine, The Ohio State University College of Medicine, University at Buffalo School of Public Health & Health Professions, and Wake Forest University Health Sciences). Finally, we thank Wake Forest University Health Sciences for providing the financial support for publication costs that made this supplement possible.

Conflict of Interest

None declared.

Acknowledgments

T.V. wrote the initial draft of the manuscript, and provided interpretation of the data and results, provided revisions to the manuscript. H.R.H., L.F.T., J.E.M., J.R.M., S.W.-S., A.H.S., N.S., G.L.A., and S.A.S. provided critical revisions to the manuscript. H.R.H., L.F.T., J.R.M., S.W.-S., A.H.S., N.S., G.L.A., and S.A.S. provided interpretation of the data and results and critical revisions to the manuscript. We acknowledge the WHI Investigators, which can be found here: https://www-whi-org.s3-us-west-2.amazonaws.com/wp-content/uploads/WHI-Investigator-Short-List.pdf

References

1. Johns Hopkins University. Coronavirus Resource Center. 2022. Accessed February 1, 2022. https://coronavirus.jhu.edu

2. Mueller AL, McNamara MS, Sinclair DA. Why does COVID-19 disproportionately affect older people? Aging (Albany NY). 2020;12:9959–9981. doi:10.18632/aging.103344

3. Ho FK, Petermann-Rocha F, Gray SR, et al. Is older age associated with COVID-19 mortality in the absence of other risk factors? General population cohort study of 470,034 participants. PLoS One. 2020;15:e0241824. doi:10.1371/journal.pone.0241824

4. Centers for Disease Control and Prevention (CDC). Coronavirus disease 2019 (COVID-19). 2022. Accessed February 1, 2022. https://www.cdc.gov/coronavirus/2019-ncov/index.html

5. Yek C, Warner S, Wiltz J, et al. Risk factors for severe COVID-19 outcomes among persons aged ≥18 years who completed a primary COVID-19 vaccination series—465 health care facilities, United States, December 2020–October 2021. Morb Mortal Wkly Rep. 2022;71:19–25. doi:10.15585/mmwr.mm7101a4

6. Estiri H, Strasser ZH, Klann JG, Naseri P, Wagholikar KB, Murphy SN. Predicting COVID-19 mortality with electronic medical records. NPJ Digit Med. 2021;4:15. doi:10.1038/s41746-021-00383-x

7. Pfefferbaum B, North CS. Mental health and the COVID-19 pandemic. N Engl J Med. 2020;383:510–512. doi:10.1056/NEJMp2008017

8. Armitage R, Nellums LB. COVID-19 and the consequences of isolating the elderly. Lancet Public Health. 2020;5:e256. doi:10.1016/S2468-2667(20)30061-X

9. Tison GH, Avram R, Kuhar P, et al. Worldwide effect of COVID-19 on physical activity: a descriptive study. Ann Intern Med. 2020;173(9):767–770. doi:10.7326/M20-2665

10. The Lancet Infectious Disease. The intersection of COVID-19 and mental health. Lancet Infect Dis. 2020;20(11):1217. doi:10.1016/S1473-3099(20)30797-0

11. Lebrasseur A, Forlin-Bedard N, Lettre J, et al. Impact of the COVID-19 pandemic on older adults: rapid review. JMIIR. Agong. 2021;4:e26474. doi:10.2196/26474

12. Design of the Women’s Health Initiative Clinical Trial and Observational Study. The Women’s Health Initiative Study Group. Control Clin Trials. 1998;19:61–109. doi:10.1016/0197-2456(97)00078-0

13. Manson JE, Chlebowski RT, Stefanick ML, et al. Menopausal hormone therapy and health outcomes during the intervention and extended poststopping phases of the Women’s Health Initiative randomized trials. JAMA. 2013;310:1353–1368. doi:10.1001/jama.2013.278040

14. Women’s Health Initiative (WHI). WHI COVID-19 survey. 2020. Accessed July 1, 2021. https://www-whi-org.s3-us-west-2.amazonaws.com/wp-content/uploads/WHI-COVID-19-Survey.pdf

15. US Department of Agriculture (USDA). Rural-urban commuting area codes. 2020. Accessed July 1, 2021. https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes.aspx

16. US Census Bureau. TIGER/LINE Shapefiles (machine-readable data files). 2020. Accessed July 1, 2021. https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html

17. Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. J Health Soc Behav. 1983;24:385–396. doi:10.2307/2136404

18. Wasserman-SMöller S, Shumaker S, Ockene J, et al. Depression and cardiovascular sequelae in postmenopausal women. The Women’s Health Initiative (WHI). Arch Intern Med. 2004;164:289–298. doi:10.1001/archinte.164.3.289

19. Curb JD, McTiernan A, Heckbert SR, et al. Outcomes ascertainment and adjudication methods in the Women’s Health Initiative. Ann Epidemiol. 2003;13:512–518. doi:10.1016/S1047-2797(03)00483-6

20. Hassan EM, Mahmoud HN. Impact of multiple waves of COVID-19 on healthcare networks in the United States. PLoS One. 2021;16:e0247463. doi:10.1371/journal.pone.0247463

21. Isaacowitz DM, Livingstone KM, Castro VL. Aging and emotions: experience, regulation, and perception. Curr Opin Psychol. 2017;17:79–83. doi:10.1016/j.copsyc.2017.06.013

22. Czeisler ME, Lane RI, Petrosky E, et al. Mental health, substance use, and suicidal ideation during the COVID-19 pandemic—United States, June 24–30, 2020. Morb Mortal Wkly Rep. 2020;69:1049–1057. doi:10.15585/mmwr.mm7101a4

23. Chen LK. Older adults and COVID-19 pandemic: resilience matters. Arch Gerontol Geriatr. 2020;89:104124. doi:10.1016/j.archger.2020.104124

24. Webster JD, Westerhof GJ, Bohlmeyer ET. Wisdom and mental health across the lifespan. J Gerontol B Psychol Sci Soc Sci. 2014;69:209–218. doi:10.1093/geronb/gbs121

25. Fuller HR, Hussein-Zobel A. Lessons in resilience: initial coping among older adults during the COVID-19 pandemic. Gerontologist. 2021;61:114–125. doi:10.1093/geront/gnaa170

26. Li F, Luo S, Mu W, et al. Effects of sources of social support and resilience on the mental health of different age groups during the COVID-19 pandemic. BMC Psychiatry. 2021;21:16. doi:10.1186/s12888-020-03012-1

27. Gonzalez-Sanguino C, Ausin B, Castellanos MA, et al. Mental health consequences during the initial stage of the 2020 coronavirus pandemic (COVID-19) in Spain. Brain Behav Immun. 2020;87:172–176. doi:10.1016/j.bbi.2020.05.040
28. Klaiber P, Wen JH, DeLongis A, Sin NL. The ups and downs of daily life during COVID-19: age differences in affect, stress, and positive events. J Gerontol B Psychol Sci Soc Sci. 2021;76:e30–e37. doi:10.1093/geronb/gbaa096
29. Saltzman LY, Hansel TC, Bordnick PS. Loneliness, isolation, and social support factors in post-COVID-19 mental health. Psychol Trauma. 2020;12:S55–S57. doi:10.1037/tra0000703
30. Kim E, Shepherd ME, Clinton JD. The effect of big-city news on rural America during the COVID-19 pandemic. Proc Natl Acad Sci USA. 2020;117:22009–22014. doi:10.1073/pnas.2009384117
31. Haischer MH, Beilfuss R, Hart MR, et al. Who is wearing a mask? Gender-, age-, and location-related differences during the COVID-19 pandemic. PLoS One. 2020;15:e0240785. doi:10.1371/journal.pone.0240785
32. Callaghan T, Lueck JA, Trujillo KL, Ferdinand AO. Rural and urban differences in COVID-19 prevention behaviors. J Rural Health. 2021;37:287–295. doi:10.1111/jrh.12556
33. Hudson GM, Sprow K. Promoting physical activity during the COVID-19 pandemic: implications for obesity and chronic disease management. J Phys Act Health. 2020;17:9. doi:10.1123/jpah.2020-0318
34. Callow DD, Arnold-Nedimala NA, Jordan LS, et al. The mental health benefits of physical activity in older adults survive the COVID-19 pandemic. Am J Geriatr Psychiatry. 2020;28:1046–1057. doi:10.1016/j.jagp.2020.06.024
35. Grossman ER, Benjamin-Neelon SE, Sonnenschein S. Alcohol consumption during the COVID-19 pandemic: a cross-sectional survey of US adults. Int J Environ Res Public Health. 2020;17(24):9189. doi:10.3390/ijerph17249189
36. Demeke HB, Pao LZ, Clark H, et al. Telehealth practice among health centers during the COVID-19 pandemic—United States, July 11–17, 2020. Morb Mortal Wkly Rep. 2020;69:1902–1905. doi:10.15585/mmwr.mm6930a4