jpHMM at GOBICS: a web server to detect genomic recombinations in HIV-1

Ming Zhang1,2, Anne-Kathrin Schultz1, Charles Calet2, Carla Kuiken2, Thomas Leitner2, Bette Korber2,3, Burkhard Morgenstern1 and Mario Stanke1,*

1Institut für Mikrobiologie und Genetik, Abteilung Bioinformatik, Goldschmidtstraße 1, 37077 Göttingen, Germany, 2Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA and 3The Santa Fe Institute, Santa Fe, NM 87501, USA

Received February 14, 2006; Revised March 2, 2006; Accepted March 30, 2006

ABSTRACT

Detecting recombinations in the genome sequence of human immunodeficiency virus (HIV-1) is crucial for epidemiological studies and for vaccine development. Herein, we present a web server for subtyping and localization of phylogenetic breakpoints in HIV-1. Our software is based on a jumping profile Hidden Markov Model (jpHMM), a probabilistic generalization of the jumping-alignment approach proposed by Spang et al. The input data for our server is a partial or complete genome sequence from HIV-1; our tool assigns regions of the input sequence to known subtypes of HIV-1 and predicts phylogenetic breakpoints. jpHMM is available online at http://jphmm.gobics.de/.

INTRODUCTION

Currently, more than 150,000 partial or complete HIV genome sequences are available in the central HIV database at Los Alamos National Laboratory (1); these data are crucial for the development of drugs against AIDS. Analysis of HIV sequence data is challenging, however, since HIV is among the most genetically variable organisms known and recombinations of different HIV subtypes are very common (2). HIV-1 is divided into three major phylogenetic groups, one of which—the M group—is responsible for the AIDS pandemic (3,4). This group is classified into ten subtypes, some of which are further divided into sub-subtypes. Accurate classification of HIV-1 subtypes and recombinants is of crucial importance for epidemiological monitoring and drug development. Therefore, a number of software tools have been developed to classify HIV genome sequences and to identify phylogenetic breakpoints and subtypes in recombinant strains (5,6).

We recently developed a HMM-based method to compare nucleic acid sequences to a given multiple alignment A of a sequence family S for which a classification into subclasses is available (7). We called this method jumping profile Hidden Markov Model (jpHMM) since our approach is a probabilistic generalization of the jumping-alignment (JALI) algorithm proposed by Spang et al. (8,9). In JALI, a query sequence s is aligned to a multiple alignment A of a sequence family S = {s1, ..., sn}—but s is not aligned to the alignment A as a whole, but different parts of s can be aligned to different individual sequences sj from A.

Within an alignment of the query s to the sequence family S, ‘jumps’ are allowed between different sequences from S depending on where the strongest degree of similarity is found. For a jump between two sequences sj and sj, a penalty is imposed, similar to the familiar gap penalty used in standard sequence alignment. This approach is particularly useful if the query sequence s is a result of phylogenetic recombinations such that different parts of s are related to different sequences from the family S. JALI has been shown to perform well if an alignment A is to be searched against a sequence database (9).

In our jpHMM approach, we assume that a partition of the sequences from the family S into subclasses is given. Each subclass is modeled as a profile Hidden Markov Model (10). Within a subclass, the usual transitions between match, insert and delete states are possible, as in standard profile HMM theory—but in addition, our model allows transitions between profile HMMs corresponding to different subclasses, so a path through our model can switch back and forth between different subclasses. Jumps between subclasses are associated with so-called jump probabilities. A detailed description of this approach is given in Schultz et al. (7).

PREDICTION OF PHYLOGENETIC RECOMBINATION POINTS IN HIV-1 AT GOBICS

In (7), we found that jpHMM is a useful tool to predict phylogenetic breakpoints and subtypes in recombinant HIV and hepatitis C sequences (11). For HIV subtyping, we start with a pre-calculated multiple alignment of HIV-1 genome sequences consisting of all major subtypes and sub-subtypes; these (sub-)subtypes are modeled as profile HMMs in our

*To whom correspondence should be addressed. Tel: +1 831 459 5232; Fax: +1 831 459 1809

© 2006 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
jpHMM approach. It turned out that ‘jumps’ between these (sub-)subtypes correspond quite well to known phylogenetic breakpoints and (sub-)subtypes to which a query sequence \(s \) is aligned, reliably indicate the real (sub-)subtypes in recombinant HIV sequences. To evaluate our tool and to compare its prediction accuracy to competing methods such as Simplot (12) and RDP (13), we used a large set of real and simulated data from HIV-1 and hepatitis C. These test runs demonstrated that jpHMM is far more accurate than existing tools for phylogenetic breakpoint detection. Details of this program evaluation are described in (7).

To make jpHMM available to the HIV research community, we set up an easy-to-use WWW interface at Göttingen Bioinformatics Compute Server (GOBICS): http://jphmm.gobics.de. At our server, the user can paste or upload up to 5 full-length HIV-1 genome sequences that is to be searched for phylogenetic breakpoints and subtypes. Our server uses a pre-calculated multiple alignment of 309 HIV sequences from the major HIV (sub-)subtypes obtained from the HIV database at http://hiv.lanl.gov/content/hiv-db/ALIGN_CURRENT/ALIGN-INDEX.html. These sequences include nine subtypes \(A–D, F, G, H, J, K \), and a presumed recombinant \(01_AE \). Subtype \(A \) has two sub-subtypes, \(A_1 \) and \(A_2 \); similarly \(F \) has two sub-subtypes, \(F_1 \) and \(F_2 \). \(B \) and \(D \) could be regarded as sub-subtypes because their relative distance and relation are similar to \(A_1 \) and \(A_2 \), \(F_1 \) and \(F_2 \), respectively. But we still consider \(B \) and \(D \) as subtypes, not sub-subtypes because of historical reasons (14).

jpHMM result:

Sequence #1: 02_AG.NG.x.IBNG

This sequence is related to subtype: A1 G.

Fragment Start Position	Fragment End Position	Fragment Subtype
Position in the original sequence [text]		
1	329	N/A
330	1743	A1
1744	2722	G
2723	3732	A1
3733	4450	G
4451	5439	A1
5440	5726	G
5727	7766	A1
7767	8152	G
8153	8676	A1
8677	8938	G
8939	9201	N/A

Position based on HXB2 numbering [text]

Fragment Start Position	Fragment End Position	Fragment Subtype
472	789	N/A
790	2221	A1
2222	3197	G
3198	4207	A1
4208	4825	G
4926	5915	A1
5918	6199	G
6194	8280	A1
8261	8625	G
8626	9149	A1
9150	9411	G
9412	9673	N/A

Genome map (based on HXB2 numbering)

Figure 1. Sample output from our jpHMM web server. The output file contains a list of fragments from the input HIV-1 sequences that are assigned to different HIV subtypes, including predicted breakpoints. At the bottom of the file, a graphical representation of the input sequence is given where recombinant subtypes are color coded. Gray regions denote missing subtype information due to uninformative subtype models.
01_AE, though being called recombinant, contains the only information of subtype E. Thus we include 01_AE in the alignment. The alignment of these sequences has been carried out using HMMER (15) and subsequent manual improvement.

A hyperlink to the results of the program run is returned to the user by e-mail. The result file contains a list of fragments of the input sequence that are assigned to different subtypes and sub-subtypes, including predicted breakpoints between these fragments. In addition, the output file contains a graphical representation of the predicted recombinant fragments within the HIV-1 genome. A sample output file is shown in Figure 1. The predicted breakpoint positions are provided in two ways. One is based on the original sequence position, and the other is based on HXB2 numbering. HXB2 (GenBank accession number K03455) is the most commonly used reference strain for many different kinds of HIV-1 functional studies. The HXB2 numbering provided for the output breakpoints is especially useful to facilitate the identification of the precise location of interest in HIV sequences.

ACKNOWLEDGEMENTS

This project was funded in part by grant NIH Y1-AI-1500-01, the NIH-DOE interagency agreement, the HIV Immunology and Sequence Database and by BMBF grant 01AK803G (Medigrid) and DFG grant 1048/1-1 to BM. We thank Rasmus Steinkamp and Maike Tech for helping us with the web server at GOCIBS. Two anonymous referees made useful comments on the manuscript. Funding to pay the Open Access publication charges for this article was provided by the annual budget of BM’s research group.

Conflict of interest statement. None declared.

REFERENCES

1. Leitner,T., Foley,B., Hahn,B., Marx,P., McCutchan,F., Mellors,J., Wolinsky,S. and Korber,B. (eds) (2005) HIV Sequence Compendium 2005. Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, NM.
2. Hoelscher,M., Dowling,W.E., Sanders-Buell,E., Carr,J.K., Harris,M.E., Thomschke,A., Robb,M.L., Brix,D.L. and McCutchan,F.E. (2002) Detection of HIV-1 subtypes, recombinants, and dual infections in East Africa by a multi-region hybridization assay. AIDS, 16, 2055-2064.
3. Sharp,P.M., Shaw,G.M. and Hahn,B.H. (2005) Simian immunodeficiency virus infection of chimpanzees. J. Virol., 79, 3891–3902.
4. Robertson,D.L., Anderson,J.P., Bradac,J.A., Carr,J.K., Foley,B., Funkhouser,R.K., Gao,F., Hahn,B.H., Kalish,M.L., Kuiken,C. et al. (2000) HIV-1 nomenclature proposal. Science, 288, 55–57.
5. Martin,D. and Rybicki,E. (2000) RDP: detection of recombination among aligned sequences. Bioinformatics, 16, 3535–3540.
6. Spang,R., Rehmsmeier,M. and Stoye,J. (2005) Greater HIV genome diversities inferred from intersubtype recombinant sequences. AIDS Res. Hum. Retroviruses, 11, 1413–1416.
7. Schultz,A.-K., Zhang,M., Leitner,T., Kuiken,C., Korber,B., Morgenstern,B. and Stanke,M. A jumping profile Hidden Markov Model and applications to recombination sites in HIV and HCV genomes. BMC Bioinformatics, 7, 265.

As shown in (7), the overall prediction accuracy of our method is high compared with alternative approaches. Nevertheless, it would be useful for the user to assess the relative reliability of individual predicted breakpoints. In principle, this is possible by using posterior probabilities that can be calculated using the Forward and Backward algorithms as explained in (16). We are currently implementing these algorithms to estimate the (local) reliability of our predictions. This feature will be available on our web site in the near future.

For predicted recombinants, users of our software may want to know putative parental sequences. Our method cannot provide this information directly, since jPHMM compares input sequences to a model derived from a pre-calculated alignment of representative sequences. It is possible, however, to search predicted recombinant segments of input sequences against the HIV-1 database to retrieve potential parent sequences. We are planning to add this functionality to our web server soon.