Pharmacological advances for treatment in Duchenne muscular dystrophy
Simon Guiraud and Kay E Davies

Duchenne muscular dystrophy (DMD) is a lethal, X-linked muscle-wasting disease caused by lack of dystrophin, essential for muscle fibre integrity. Despite extensive preclinical studies, development of an effective treatment has proved challenging. More recently, significant progress has been made with the first drug approval using a genetic approach and the application of pharmacological agents which slow the progression of the disease. Drug development for DMD has mainly used two strategies: (1) the restoration of dystrophin expression or the expression of the compensatory utrophin protein as an efficient surrogate, and (2) the mitigation of secondary downstream pathological mechanisms. This review details current most promising pharmacological approaches and clinical trials aiming to tackle the pathogenesis of this multifaceted disorder.

Address
Medical Research Council Functional Genomics Unit at the University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford OX1 3PT, United Kingdom

Corresponding author: Davies, Kay E (kay.davies@dpag.ox.ac.uk)

Introduction
Duchenne muscular dystrophy is an X-linked recessive progressive wasting disorder caused by loss of function mutations in the dystrophin gene [1**]. DMD affects 1 in 5000 male births [2**] and is generally diagnosed between 2 and 5 years of age as motor developmental delay and abnormal gait, weakened proximal muscles and calf muscle pseudohypertrophy become apparent. Progressive muscle degeneration leads to loss of ambulation at 8–12 years with premature death at 20–30 years due to respiratory and cardiac complications [3].

The DMD gene, consisting of 79 exons, spanning 2.3 Mb of genomic DNA, is the largest known gene in humans [4] and shows one of the highest spontaneous mutation rates. About 68% of the mutations are ‘out of frame’ deletions disrupting the translational reading frame resulting in loss of dystrophin. ‘In-frame’ mutations result in truncated but semi-functional dystrophin proteins which lead to Becker muscular dystrophy (BMD, MIM #300376), a clinically milder disease [5]. Duplications represent 11% and small mutations 20% of DMD cases respectively [2**].

Dystrophin is a 427 kDa cytoplasmic protein, which is a vital component of the dystrophin-associated protein complex (DAPC) at the sarcolemma, connecting the internal cytoskeleton to the surrounding extracellular matrix. Dystrophin provides structural stability to the skeletal muscle, maintains strength and flexibility and protects the sarcolemma from contraction-induced injury [1**]. Absence of dystrophin and subsequent loss of the DAPC leads to progressive defects including perturbation of the calcium homeostasis, activation of proteases and pro-inflammatory cytokines, and mitochondrial dysfunction resulting in continual influx of inflammation, fibrosis, repeated cycles of necrosis and altered regeneration, with impaired vascular adaptation (Figure 1). The myofibres become more susceptible to contraction-induced injury, which results in premature death, muscle wasting and fatty tissue replacement [6].

Despite exhaustive clinical management and corticosteroid treatment, there is currently no effective treatment for DMD, although considerable progress has been made recently in genetic approaches [7,8]. However, only one exon skipping drug, Exondys51 (Sarepta Therapeutics), has been given conditional approval by the U.S. Food and Drug Administration (FDA) [9]. Translarna (PTC Therapeutics) for reading through of stop codons has received conditional approval from the European Medicines Agency (EMA) but not FDA. These drugs are mutation specific and effects on heart muscle have not been reported. Thus, a therapy which targets all limb, respiratory and cardiac muscles and applicable to all DMD patients is urgently needed.

Current pharmacological intervention for DMD can be categorized into two groups: (1) strategies targeting the primary defect and (2) approaches to mitigate secondary and downstream pathological mechanisms. In this review, we summarize the recent most promising pharmacological therapies for DMD that have been tested in clinical trials or are efficient in preclinical models.
Pathophysiological consequences of the dystrophin deficiency and current therapeutic intervention investigated. Loss of dystrophin and consequent loss of the DAPC enhances sarcolemma susceptibility to contraction-induced damage. Sarcolemmal lesions and possibly leaky Ca²⁺ channels increase calcium influx into dystrophic fibres. This leads to protease activation and free radical formation via cytosolic and mitochondrial sources triggering muscle degeneration with chronic inflammation. In parallel, defects in blood vessels trigger an ischemia and mitochondrial dysfunction which results in impaired ATP production and metabolic function. Drugs in green are currently being tested in clinical trials.

Pharmacological approaches that target the primary defect and aim to reconstruct the DAPC

Read-through of premature termination codons

Nonsense mutations generating stop codons leading to premature translational termination occur in 11% of the DMD cases [2⁹]. Aminoglycoside antibiotics such as gentamicin promote the insertion of alternative amino acids at the site of the mutated codon and demonstrated inconsistent increased dystrophin production and renal and otic toxicities in DMD trials [1⁰]. Translarna (formerly Ataluren, PTC124/PTC Therapeutics) is a first-in-class compound promoting nonsense read through. Following pre-clinical studies in mdx mice [1¹], a mouse model for DMD [1²], translarna was shown to be well-tolerated in patients. A Phase 2b trial demonstrated a slower disease progression and a non-significant improvement in a six minute walk test (6MWT) and served as the basis for EMA approval in July 2014. Unfortunately, a confirmatory Phase 3 clinical trial in 228 ambulatory DMD patients demonstrated a non-significant benefit in the 6MWT. Although PTC Therapeutics recently decided to discontinue current clinical development of ataluren in cystic fibrosis, the FDA has granted orphan drug designation to translarna and discussions are in progress for approval for DMD. Another read-through compound arbekacin sulfate NPC-14 acting as a protein 30S ribosomal subunit inhibitor is in a phase 2 trial in Japan. Other compounds such as the nonaminoglycoside RTC13/RTC14 [1²] and the gentamicin derivatives NB74 and NB84 show increased read-through efficacy and reduced toxicity in mdx myotubes [1³] but have not yet been tested in patients.

Utrophin

Utrophin is a structural and functional autosomal paralogue of dystrophin which shares 80% of homology with dystrophin and has functional redundancy [1⁴].
Ubiquitously expressed, utrophin is found abundantly in lung, kidney, liver, spleen, brain with lower levels in adult in skeletal muscle and heart [15]. During human skeletal muscle development, utrophin is highly expressed in utero and is progressively replaced at the sarcolema by dystrophin [16]. In adult skeletal muscles, utrophin is enriched at the neuromuscular and myotendinous junctions [17]. Two promoters, A and B have been reported where expression of utrophin A at the synapse and myotendinous junctions [15,18]. Urophin A is also found at the sarcolema in regenerating myofibres as a part of the repair process [19] and utrophin B is limited to endothelial cells and blood vessels [15]. In mdx muscles, utrophin, found in dystrophin-negative fibres, is increased (1.8-fold over normal levels) as a part of the natural repair process. This mechanism also occurs in DMD patients.

Urophin was proposed to act as a surrogate to compensate for the lack of dystrophin in DMD and the generation of transgenic mice overexpressing utrophin supports this view [20]. These transgenic mice also show that the continuous localization of utrophin along the sarcolema is key and that low increases of utrophin (1.5-fold) can be beneficial. The high level of utrophin observed in the transgenic mice is significantly less than the normal levels found in kidney and liver [20] and is not toxic in a broad range of murine tissues.

The use of small compounds which act through the promoter to modulate utrophin levels is thus a viable strategy for the therapy of DMD. Such small molecules have been shown to prevent pathology in the mdx mouse [21,22,23**]. Summit Therapeutics have completed Phase 1a and 1b clinical trials with ezutromid (formally known as SMT C1100) showing it to be well tolerated [24**,25]. Summit Therapeutics is currently carrying out a Phase 2 open-label clinical trial. Other molecules have been developed in the same chemical series as ezutromid and show efficacy in mdx mice [23**] validating the ezutromid drug series and this approach to utrophin modulation. Others drugs as AICAR [22], nabumetone, heregulin and resveratrol [26] were previously also described to modulate the utrophin promoter and to be efficient in mds mice but no clinical trials for DMD are reported.

Urophin expression is under transcriptional, as well as post-transcriptional control via several mechanisms and associated pharmacological agents to increase utrophin expression have been explored. Heregulin increases utrophin levels through epigenetic regulation of the utrophin-A promoter via activation of mitogen- and stress-activated protein kinase (MSK1/2) and phosphorylated histone H3 in an extracellular signal-regulated kinase (ERK)-dependent manner [27]. Urophin can also be increased by promotion of the slow oxidative phenotype. In slow fibre type I muscle, levels of utrophin are 3–4 fold higher than in fast fibre type II due to transcriptional and post-transcriptional modulation, controlled in part by the peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α)/estrogen related receptor alpha (ERRα)/nuclear respiratory factor 1 (NRF-1)/MTFα axis. Treatment with AICAR targeting peroxisome-proliferator-activated receptor beta/delta (PPAR-β/δ), 5' adenosine monophosphate activated kinase (AMPK) and sirtuin 1 (SIRT1) acting on the PGC-1α levels results in an upregulation of utrophin and functional benefits [28]. Other AMPK activators such as resveratrol [29], quercetin [30] and metformin [31] have also been described. PPAR-β/δ agonists such as GW501516, also promote the oxidative phenotype and stimulate utrophin A expression [27]. By activation of p38 MAP Kinase, heparin mediates a sequestration of the RNA-binding protein KSRP by the regulatory protein 14-3-3 resulting in post-transcriptional stabilisation of the utrophin mRNA [32**].

Another interesting novel therapeutic avenue is the regulation by miRNAs as let-7c, miR-150, miR-296-5p, miR-133b which have been reported previously to repress utrophin mRNA expression [33]. Upregulation of utrophin is also stimulated by NO synthase (nNOS) substrate L-arginine enhancing production of nitric oxide (NO) which inhibits the proteolytic activity of calpain [34]. Finally, there are also agents which act through utrophin stabilisation at the sarcolema: biglucan, a small Leucine Rich Proteoglycan (SLRP) directs the assembly of a utrophin associated complex, including nNOS, resulting in an increase of utrophin leading to significant improvement of muscle function in mds mice [35]. Over expression of sarcospan leads to activation of Akt and increased levels of CT GalNAc transferase (Galgt2) leading to α-dystroglycan (α-DG) glycosylation. This improves cell surface expression of utrophin by increasing transportation of utrophin-α-DG from endoplasmic reticulum/Golgi membranes [36]. Overexpression CT-GalNAc transferase is known to stabilise the utrophin protein complex [37]. Thrombospondin-4 selectively enhances vesicular trafficking of dystrophin-glycoprotein and integrin attachment complexes to stabilise sarcolemmal protein as utrophin [38]. Agents to promote utrophin expression via these mechanisms, could be used together as their effects would be predicted to be additive (see Figure 2 and Table 1).

Pharmacological approaches that target the secondary pathology down-stream of the dystrophin deficiency

Many pharmacological approaches to DMD target secondary pathology downstream of the dystrophin deficiency such as calcium dysregulation, oxidative stress and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, mitochondria
Therapeutic strategies and mechanisms to enhance utrophin-associated protein complex (UAPC) at the sarcolemma. Utrophin consists of an actin-binding N-terminal domain (NTD), hinge domains (H1–H4) and a cysteine-rich domain (CRD) adjacent to a carboxy-terminal domain (CTD). Spectrin repeats (R1–R24) make up the rod domain. Utrophin shares 80% sequence homology to dystrophin and is an efficient surrogate to compensate for the lack of dystrophin in dystrophic muscle. Different pathways have been targeted to increase utrophin.
dysfunction, fibrosis, muscle wasting and muscle ischemia. Here, we focus on some of the most advanced strategies.

Calcium dysregulation

Dystrophic deficiency results in membrane tears and leaky Ca\(^{2+}\) release channels which compromise the intracellular Ca\(^{2+}\) homeostasis leading to chronic inflammation, cycles of degeneration/regeneration and fibrosis [39]. AT-300 (Akashi Therapeutics) is a peptide which blocks mechanosensitive Ca\(^{2+}\) channels resulting in modest benefits in mdx mice [40]. Plans for clinical trials are in progress. Following post-translational modifications of the ryanodine receptor subtype 1 (RyR1), the intracellular calcium calstabin-RyR channel complex is dissociated in dystrophic muscles. Acting as a stabiliser, treatment with the small drug ARM210/S48168 (ARMGO Pharma) results in functional improvement in mdx mice, notably in the diaphragm (Capogrosso et al., abstract in Neuromuscul Disord. G.P.90 2014, 24:9–10). In dystrophin deficient tissue, activity of the Na\(^+\)/H\(^+\) exchanger type-1 (NEH-1) is increased resulting in Na\(^+\) overload which may contribute to the Ca\(^{2+}\) excess. A phase 1 trial is currently recruiting to study Rimeporide, a (NEH-1) inhibitor with anti-fibrotic and anti-inflammatory properties in mdx skeletal and cardiac muscles. Others strategies such as the hsp72 inducer BGP-15 are being investigated to rescue calcium homeostasis (Figure 1, Table 2).

Oxidative stress/ROS

Influx of Ca\(^{2+}\) enhances production of reactive oxygen species (ROS) leading to elevated oxidative stress [41*]. ROS exacerbates Ca\(^{2+}\) dysregulation, induces mitochondrial dysfunction and activates NF-κB and TGF-β pathways triggering inflammation. Initial results in DMD boys treated with Coenzyme Q10 [42], a hydrophobic antioxidant acting as an electron acceptor molecule for complexes I (NADH) and II (SDH) of the respiratory chain and binding the inner mitochondrial membrane, paved the way for the study of Raxone/idebenone, a synthetic derivative of Coenzyme Q10. Developed by Santhera Pharmaceuticals, this antioxidant stimulating mitochondrial electron reflux has been reported to be cardioprotective and to improve exercise performance in the mdx mouse. A recent phase 3 clinical trial demonstrated reduced loss of respiratory function in DMD patients [43**]. Various antioxidant therapies such as melatonin or N-acetylcysteine are currently being investigated (Table 2). Recently, simvastatin showed great promise in the mdx mice [44]. While lowering LDL cholesterol, simvastatin decreases oxidative stress by reduction of nicotinamide adenine dinucleotide phosphate-oxidase 2 (NOX2) levels, one major source of ROS. Whereas simvastatin is a common statin medication, used in children, it is essential to remember that muscle-related side effects occur with statin use and that this repurposed drug is under early investigation for DMD.

Mitochondrial dysfunction

Excessively elevated intracellular Ca\(^{2+}\) in DMD leads to mitochondrial dysfunction [45] impairing Ca\(^{2+}\) buffering from myofibres and organelles resulting in lower ATP production and increase of ROS. Mediated by cyclophilin D, formation of large mitochondrial permeability transition pores (MPTP) also cause permeabilisation of mitochondria. To overcome this defect, Alisporovir/Debio-25, an analogue of cyclosporine shown to inhibit cyclophilin D and prevent MPTP formation, was produced. Treatment in mdx demonstrated a greater efficacy than prednisone in reducing inflammation and macrophage infiltration in mdx mice [46]. Another strategy is Epicatechin (Cardero Therapeutics), a flavonoid released in response to exercise. Mimicking the effects of certain exercise regimens, Epicatechin promotes an oxidative phenotype through the NO/AMPK/SIRT1/PGC-1α pathway and results in mitochondrial biogenesis, reduction of oxidative stress, and an increase of utrophin and follistatin. Following promising results in seven BMD patients (NCT01856868), Cardero Therapeutics is currently recruiting for a Phase 1/2 trial in non-ambulatory DMD boys. Mitobridge is also developing small molecules which improve mitochondrial function (Table 2).

NF-κB pathways—anti-inflammatory agents

Following Ca\(^{2+}\) level increases leading to fibre necrosis, dystrophic muscles are infiltrated by T cells, macrophages and neutrophils. This inflammatory response is mediated by activation of the NF-κB pro-inflammatory pathway and elevated levels of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1) [47]. Currently, anti-inflammatory glucocorticoids such as prednisone and deflazacort, recently approved [48], are the current standard of care for DMD. Primarily acting through inhibition of the NF-κB pathway, steroids prolong ambulation by 2–5 years and modestly improve muscle strength and cardiopulmonary function but are often associated with significant side effects [49]. An alternative steroid, Vanorolone (VBP-15/Reveragen) has been developed without these side effects. Preclinical studies in mdx mice showed reduction of inflammation and an increased strength without the immunotoxicity [50]. Vanorolone is progressing to a phase 2a trial. Catabasis has developed another promising oral NF-κB modulator, the conjugate of salicylate and docosahexaenoic Edasalonexent (CAT-1004).

(Figure 2 Legend Continued) expression such as (1) utrophin modulation (ezutromid, heregulin), (2) promotion of the oxidative phenotype (AICAR, resveratrol, metformin, GW501516), (3) increasing the stability of existing mRNAs (heparin), (4) miRs-mediated inhibition, (5) NO-based therapy (L-arginine) and (6) membrane stabilisation/association of utrophin at the sarcolemma (biglycan).
Drug name	Company	Mechanism of action	Chemistry	Delivery route	Percentage of applicable patients	Current stage	Results to date	Clinical trial	References
Read-through of premature termination codons									
Gentamicin	Nationwide Children’s Hospital	Stop codon read-through	Antibiotic	IV	11%	Phase 1 (Conclude)	Preclinical (mdx)/ Clinical: Inconsistent dystrophin restoration, ↓ CK level, risk of renal failure and irreversible ototoxicity	NCT00451074 NCT00005574	[10]
Translarna (Ataluren)	PTC Therapeutics	Stop codon read-through	Small molecule	Oral	11%	Approved (UE)	Preclinical (mdx): ↓ dystrophin in skeletal and cardiac muscle over 2–8 weeks of treatment Clinical: Well tolerated, slowed loss of walking ability in DMD patients in 6MWT	NCT01557400	[11]
NPC-14 (Arbekacin Sulfate)	Kobe University	Stop codon read-through	Small molecule	Oral	11%	Phase 2 (Ongoing)	Preclinical (mdx): Partially restore dystrophin protein, ↓ CK levels, ↓ muscle strength and function	NCT01918384	[12]
RTC13/RTC14		Stop codon read-through	Small molecule	Oral	11%	Pre-clinical	Preclinical (cells): Educed cell toxic and superior readthrough efficiency than those of gentamicin		[13]
Utrophin upregulation									
Ezutromid	Summit Therapeutics	Modulation	Small molecule	Oral	100%	Phase 2	Preclinical (mdx): ↑ Utrophin (2x), ↑ Membrane stability, ↑ Regeneration, ↓ Inflammation, ↑ Muscle function Clinical (Phase 1): Safe and well-tolerated in adults and DMD patients	NCT02056808 NCT02383511 NCT02858362	[21,24**,25]
SMT022357	Summit Therapeutics UtroDMD Alliance	Modulation	Small molecule	Oral	100%	Pre-clinical	Preclinical (mdx): ↑ Utrophin (2.5x), ↑ Membrane stability, ↑ Regeneration, ↓ Inflammation, ↑ Muscle function		[23**]
Heregulin		Modulation	Peptide	IP	100%	Pre-clinical	Preclinical (mdx): ↑ Utrophin (2.7x), ↑ Membrane stability, ↑ Regeneration, ↓ Necrosis, ↑ Muscle function		[26,27]
AICAR		↑ oxidative phenotype	Small molecule	Oral	100%	Pre-clinical	Preclinical (mdx): ↑ Utrophin (1.25x), ↑ Membrane stability, ↑ Mitochondria function, ↑ Muscle function		[22,28]
Resveratrol		↑ oxidative phenotype	Small molecule	Oral	100%	Pre-clinical	Preclinical (mdx): ↑ Utrophin (1.5x), ↑ Membrane stability, ↑ Mitochondria function, ↑ Muscle function		[26,29]
Quertecin		↑ oxidative phenotype	Small compound	Oral	100%	Pre-clinical	Preclinical (mdx): ↑ Utrophin (1.4x), ↑ Membrane stability, ↓ cardiac pathology, protect respiratory function		[30]
Metformin	University Hospital, Basel, Switzerland	↑ oxidative phenotype	Small molecule	Oral	100%	Phase 1	Preclinical (mdx): ↑ Utrophin (1.5x)	NCT01995032 NCT02516085	[31]
GW501516		↑ oxidative phenotype (PPAR-γ/δ agonist)	Small molecule	Oral	100%	Pre-clinical	Preclinical (mdx): ↑ Utrophin (1.5x), ↑ Membrane stability, ↑ Muscle function		[27]
Treatment reduces muscle fibrosis and improves muscle mass in mdx mice and improved the more severe GRMD phenotype [51]. Following a successful phase 1 safety, pharmacokinetics, and pharmacodynamics trial in adult subjects [52], a phase 1/2 trial in 30 ambulatory DMD patients is in progress. Unfortunately, Catabasis recently reported that the drug failed to demonstrate a significant benefit after 12 weeks of treatment in DMD boys [53]. Although all these studies are promising, the complex role of NF-κB in many other tissues such as liver [54] could potentially lead to a negative outcome and highlights the importance of defining appropriate doses.

Histone deacetylase (HDAC) inhibitors

In dystrophin-deficient muscles, delocalization and down-regulation of nNOS leads to deficient S-nitrosylation and constitutive activation of Histone deacetylase 2 (HDAC2) [55]. Interruption of DAPC-NO signalling and hyperactivity of HDAC2 may contribute to the impairment of muscle regeneration and compromise microfibre adaptation to contraction. Therefore, approaches to counter upregulated histone deacetylase 2 (HDAC2) activity in dystrophic muscles with HDAC inhibitors (HDACi) are an interesting avenue. In mdx mice, exposure to HDACi result in functional and morphological beneficial effects and counters the disease progression [56]. Givinostat (Italfarmaco SpA) is a HDAC inhibitor efficient in animal models and currently being tested in a Phase 2 trial. One year of treatment, drug treatment was well-tolerated and resulted in positive histological effects [57**]. Nevertheless, off target effects, toxicity and long term consequences of such treatment on stem cell pool depletion need to be addressed.

TGF-β pathway—anti-fibrotic agents

Fibrosis is defined by excessive deposition of extracellular matrix protein in response to chronic tissue injury and inflammation. The transforming growth factor-β (TGF-β) pathway, which controls in part the fibrosis processes, is a major target of anti-fibrotic therapy. Halofuginone (HT-100/Akashi Therapeutics), showed antifibrotic, anti-inflammatory and muscle regenerative effects in mdx mice [58] but the Phase 2 study was suspended after the death of a DMD patient treated with the highest dose (Akashi Therapeutics press release: http://akashixr.com/news/dosing-and-enrollment-in-ht-100-trial-suspended). Other anti-fibrotic strategies as losartan/limsopril and tamoxifen are currently being investigated in clinical studies (Table 2).

Regulators of muscle growth/myostatin inhibitors

Myostatin, as a negative regulator of muscle mass, has been a target for therapeutic intervention with mixed success. Disruption of this highly conserved myokine results in a dramatic increase of muscle mass due to an increase of number and/or size of muscle fibres [59]. Antimyostatin molecules and/or those which reduce activity of
Drug name	Company	Mechanism of action	Chemistry	Delivery route	Percentage of applicable patients	Current stage	Results to date	Clinical trial	References
Calcium dysregulation									
Rimeporide	EsperRare Foundation	Na+/Ca2+ exchangers, Na+/H+ exchanger	Small molecule	Oral	100%	Phase 1b (Recruiting)	Pre-clinical (mdx):	NCT02710591	
AT-300/GsMTx4	Akashi Therapeutics	Calcium channel inhibitor	Small molecule	Injection	100%	Pre-clinical	Pre-clinical (mdx): Modest results (due to PK/dosing problem)	[40]	
ARM210/S48168		Stabilisation RyR1 complex	Small molecule	Oral	100%	Pre-clinical	Pre-clinical (mdx):		
BGP-15		Hsp 72 inducer	Small molecule	Oral	100%	Pre-clinical	Pre-clinical (mdx, mdx:crtr-/-): Muscle architecture,		
							Contractile function,		
							Muscle strength		
Oxidative-stress drugs									
Coenzyme Q10		Electron acceptor for NADH and SDH	Small molecule	Oral	100%	Phase 3 (Complete)	Clinical (Phase 3):	NCT00033189 NCT00308113 NCT00758225 NCT00654784 NCT01027884	
Raxone/Idebenone	Santhera Pharmaceuticals	Antioxidant	Small molecule	Oral	100%	Phase 3 (Complete)	Preclinical (mdx): Cardiac inflammation and fibrosis, Exercise performance		
Melatonin		Antioxidant	Small molecule	Oral	100%	Phase 1/2 (Complete)	Preclinical (mdx): CK levels, Force, improved muscle redox status		
N-Acetylcysteine		Antioxidant, ROS scavenger	Small molecule	Oral	100%	Pre-clinical	Clinical (Phase 1/2): Oxidative stress, Inflammation, CK levels, Necrosis, Regeneration, Utrophin, Muscle force	[43]**	
Simvastatin		LDL cholesterol	Small molecule	Oral	100%	Pre-clinical	Clinical (Phase 1/2): Oxidative stress, Inflammation, Fibrosis, CK levels, Muscle function (strength, fatigue)		
Mitochondria drugs	(+) Epicatechin	NO/AMPK/SIRT1/PGC-1α	Small molecule	Oral	100%	Phase 1/2 (Recruiting)	Preclinical: Utrophin, Folillatin, Mitochondrial biogenesis, Fibrosis	NCT02964377	
Debio-025	DebioPharm International SA Mitobridge	Inhibitor of mitochondrial pore, Cyclophilin inhibitor	Small molecule	Oral	100%	Pre-clinical	Preclinical (mdx): Inflammation and macrophage infiltration	[46]	
MTB-1							Preclinical (mdx): Inflammation, regeneration and fibrosis, Voluntary activity and endurance		
NF-κB pathway	Vamorolone (VBP-15)	NF-κB inhibition	Small molecule	Oral	100%	Phase 2 (Recruiting)	Preclinical (mdx): NF-κB activity, Inflammation, Membrane stability, Specific force, No side effect	NCT02415439 NCT02760264 NCT02760277	

[42] [43]** [44]** [46] [50]
Drug name	Company	Mechanism of action	Chemistry	Delivery route	Percentage of applicable patients	Current stage	Results to date	Clinical trial	References
Edasalonexent (CAT-1004)	Catabasis Pharmaceuticals	NF-κB inhibition	Small molecule	Oral	100%	Phases 1/2 (Ongoing)	Preclinical (GRMD): Diaphragm function Clinical (Phase 1): Safe and well-tolerated Clinical (Phase 1/2): No significant benefit after 12 weeks of treatment in DMD boys	NCT01440168	[51–53]
							NCT02439216		
HDAC drug	Givinostat	HDAC inhibitor	Small molecule	Oral	100%	Phase 1/2 (Ongoing)	Preclinical (mdx): Fibrosis and fatty infiltration, Membrane stability, Endurance performance Clinical (Phase 1/2): Well-tolerated and resulted in positive histological effects	NCT01761292	[56,57]
							NCT01847573		[58]
Anti-fibrotic/TGF-β drugs	Losartan	Angiotensin II type 1 receptor blocker	Small molecule	Oral	100%	Phase 2 (Complete)	Preclinical (mdx): Fibrosis, Calcification, Regeneration, CK level	NCT01982695	
	Nationwide Children’s Hospital						NCT01847573		
	Akashi Therapeutics						NCT01978366		
	F3-3019	Fibrogen	Monoclonal anti-CTGF antibody	Oral	100%	Pre-clinical	Preclinical (mdx): Fibrosis, Muscle exercise	NCT02835079	
	Tamofoxifen	Hadassah Medical Organization	Inhibition of TGF-β	Oral	100%	Phase 1 (Not yet open)	Preclinical (mdx): Fibrosis in diaphragm and heart, Muscle function		
Muscle grow/regeneration drugs	Domagrozumab (PF-06252616)	Pfizer	Human anti-myostatin monoclonal antibody	IV	100%	Phase 2 (Recruiting)	Preclinical (mdx): in body weight, muscle mass, weight and grip strength Preclinical (Cynomolgus monkeys): Muscle volume Clinical (Phase 1): Generally safe and well tolerated, Muscle mass by 6% in healthy subjects	NCT02310763	
	BMS-986089	Bristol-Myers Squibb	Human anti-myostatin adnectin	SC	100%	Phase 1/2 (Recruiting)	Preclinical (Cynomolgus monkeys): Muscle volume Clinical (Phase 1): Generally safe and well tolerated, Muscle mass by 5% in healthy subjects	NCT02145234	NCT02515669
			Antibody				Preclinical (mdx): Muscle mass, Muscle force, CK levels, Improve muscle histology Preclinical (Cynomolgus monkeys): Muscle volume Clinical (Phase 1/2, Becker patients): Muscle mass, stabilisation or improvement in 6MWT	NCT02354781	
	Follistatin	Nationwide Children’s Hospital	rAAV1.CMV. huFollistatin344	IM	<100%	Phase 1/2 (Recruiting)	Preclinical (mdx): Muscle mass, stabilisation or improvement in 6MWT		
Table 2 (Continued)

Drug name	Company	Mechanism of action	Chemistry	Delivery route	Study stage	Percentage of applicable patients	Current status	Delivery	Results to date	References	
Muscle ischemia	Eli Lilly and Company	PDE5 inhibitor	Small molecule	Oral	Phase 3 (Complete)	100%	Current phase 2 trials recruiting				[62,63]

Muscle ischemia

The absence of dystrophin leads to mislocalization of nNOS at the sarcolemma and reduction of the major isoforms of nitric oxide which are required to equilibrate muscle oxygenation and protect the exercising muscle against excessive sympathetic vasoconstriction through production of cyclic guanosine monophosphate (cGMP) [61]. Treatment with the phosphodiesterase-5 inhibitor (PDE5i) increases the intracellular cGMP level in vascular smooth muscle cells and leads to vasodilation. Preclinical data in mice and dogs show benefits in skeletal and cardiac muscles [62]. PDE5i Tadalafil alleviates muscle ischemia in BMD and DMD patients [63] but the largest DMD placebo-controlled Phase 3 trial involving 331 patients ages 7–14 showed no functional improvement after 48 weeks. Patients involved in this study may not have been engaged in enough daily leg exercise for tadalafil to impact use-dependent leg muscle injury. Further studies are needed.

Safety and pharmacokinetic/dynamic considerations

The majority of the pharmacological approaches described in this review employ non-selective strategies and act through on key target pathways such as NF-kB, HADAC or ROS. It is therefore essential to consider potential off-target effects in other tissues. Pharmacokinetic and pharmacodynamic considerations [64], in relationship with potential detrimental effects must be carefully assessed in all organs and drug-drug interactions need to be considered if they are used in conjunction with steroids which most boys will be taking. Genetic strategies such as viral delivery of dystrophin minigenes and exon skipping are tissue specific and therefore do not suffer from these issues. Nevertheless, there is little doubt that an effective treatment may well depend on a combination therapy, ideally a genetic approach together with the pharmacological approaches reviewed here.
Concluding remarks
Progressive and numerous pathophysiological consequences of the lack of dystrophin offer several downstream targets for DMD therapy which can be used in all patients whatever their mutation. Many strategies are showing promise in clinical trials. They may have limitations for long term use but used in combination, these drugs may well transform the quality of life for DMD boys in the future.

Conflict of interest
K.E.D. is a shareholder of Summit Therapeutics plc.

Acknowledgements
We acknowledge funding from the Medical Research Council, Muscular Dystrophy UK, Duchenne UK and Summit Therapeutics plc.

The authors apologize to all the authors whose work has not been cited due to space restrictions and thank all the collaborators who made possible the completion of the work reviewed here.

References and recommended reading
Papers of particular interest, published within the period of review, have been highlighted as:

● of special interest
◆ of outstanding interest

1. Guiraud S, Aartsma-Rus NM, Vieira KE, van Ommen GJ,◆ Kunkel LM: The pathogenesis and therapy of muscular dystrophies. Annu. Rev. Genom. Hum. Genet. 2015, 16:281-308.
A complete review about Duchenne muscular dystrophy from the identification of the dystrophin gene, the molecular basis and pathophysiology of the disease to the extensive pre-clinical development in different animal models to the current clinical trials in DMD patients.

2. Bladen CL et al.: The TREAT-NMD DMD Global Database: analysis of more than 7,000 Duchenne muscular dystrophy mutations. Hum. Mutat. 2015, 36:395-402.
A great study analyzing the type and frequency of patient-specific mutations with Duchenne muscular dystrophy.

3. Bach JR, O'Brien J, Krötenberg R, Alba AS: Management of end stage respiratory failure in Duchenne muscular dystrophy. Muscle Nerve 1987, 10:177-182.

4. Monaco AP, Neve RL, Colletti-Feener C, Bertelson CJ, Kurmit DM, Kunkel LM: Isolation of candidate cDNAs for portions of the Duchenne muscular dystrophy gene. Nature 1986, 323:646-650.

5. England SB, Nicholson LV, Johnson MA, Forrest SM, Love DR, Zubrzyka-Gaarn EE, Bulman DE, Harris JB, Davies KE: Very mild muscular dystrophy associated with the deletion of 46% of dystrophin. Nature 1990, 343:180-182.

6. Emery AE: Dystrophin function. Lancet 1990, 335:1289.

7. Guiraud S, Chen H, Burns DT, Davies KE: Advances in genetic therapeutic strategies for Duchenne muscular dystrophy. Exp. Physiol. 2015, 100:1458-1467.

8. Robinson-Hamm JN, Gersbach CA: Gene therapies that restore dystrophin expression for the treatment of Duchenne muscular dystrophy. Hum. Genet. 2016, 135:1029-1040.

9. Nils E, Aartsma-Rus A: Exon skipping: a first in class strategy for Duchenne muscular dystrophy. Expert Opin. Biol. Ther. 2016, 17:225-236.

10. Politano L, Nigro G, Nigro V, Piluso G, Papparella S, Paciello O, Comi L: Gentamicin administration in Duchenne patients with premature stop codon. Preliminary results. Acta Myol. 2003, 22:15-21.

11. Welch EM et al.: PTC124 targets genetic disorders caused by nonsense mutations. Nature 2007, 447:87-91.

12. Kayali R, Ku JM, Khotyot G, Jung ME, Prihodko O, Bertoni C: Read-through compound 13 restores dystrophin expression and improves muscle function in the mdx mouse model for Duchenne muscular dystrophy. Hum. Mol. Genet. 2012, 21:4007-4020.

13. Nudelman I, Glikin D, Smolkin H, Hainrichson M, Belakho V, Baasov T: Repairing faulty genes by aminoglycosides: development of new derivatives of genetic (G418) with enhanced suppression of diseases-causing nonsense mutations. Bioorg. Med. Chem. 2010, 18:3735-3746.

14. Love DR, Hill DF, Dickson G, Spurr NK, Byth BC, Marsden RF, Walsh FS, Edwards YH, Davies KE: An autosomal transcript in skeletal muscle with homology to dystrophin. Nature 1989, 339:55-58.

15. Weir AP, Burton EA, Harrod G, Davies KE: A- and B-utrophin have different expression patterns and are differentially up-regulated in mdx muscle. J. Biol. Chem. 2002, 277:45285-45290.

16. Tome FM, Matsumura K, Chevallay M, Campbell KP, Fardeau M: Expression of dystrophin-associated glycoproteins during human fetal muscle development: a preliminary immunocytochemical study. Neuromuscul. Disord. 1994, 4:343-348.

17. Nguyen TM, Ellis JM, Love DR, Davies KE, Gatter KC, Dickson G, Morris GE: Localization of the DMDL gene-encoded dystrophin-related protein using a panel of nineteen monoclonal antibodies: presence at neuromuscular junctions, in the sarcolemma of dystrophic skeletal muscle, in vascular and other smooth muscles, and in proliferating brain cell lines. J. Cell Biol. 1991, 115:1695-1700.

18. Burton EA, Tinsley JM, Holzfeind PJ, Rodrigues NR, Davies KE: A second promoter provides an alternative target for therapeutic up-regulation of utrophin in Duchenne muscular dystrophy. Proc. Natl. Acad. Sci. U. S. A. 1999, 96:14025-14030.

19. Hellwell TR, Man NT, Morris GE, Davies KE: The dystrophin-related protein, utrophin, is expressed on the sarcolemma of regenerating human skeletal muscle fibres in dystrophies and inflammatory myopathies. Neuromuscul. Disord. 1992, 2:177-184.

20. Tinsley J, Deconinck N, Fisher R, Kahn D, Phelps S, Gillis JM, Davies K: Expression of full-length utrophin prevents muscular dystrophy in mdx mice. Nat. Med. 1998, 4:1441-1444.

21. Tinsley JM et al.: Daily treatment with SMT1100, a novel small molecule utrophin upregulator, dramatically reduces the dystrophic symptoms in the mdx mouse. PLoS One 2011, 6: e19195.

22. Lubicic V, Miura P, Burt M, Boudreau L, Khogali S, Lunde JA, Renaud JM, Jasmin BJ: Chronic AMPK activation evokes the slow, oxidative myogenic program and triggers beneficial adaptations in mdx mouse skeletal muscle. Hum. Mol. Genet. 2011, 20:3478-3493.

23. Guiraud S et al.: Second-generation compound for the modulation of utrophin in the therapy of DMD. Hum. Mol. Genet. 2015, 24:4212-4224.
Pre-clinical evaluation of the new generation of utrophin modulators structurally close to ezutromid but with a better exposure profile. This study validated the ezutromid series.

24. Ricotti V, Spinty S, Roper H, Hughes I, Tejura B, Robinson N,◆ Layton G, Davies K, Muntoni F, Tinsley J: Safety, tolerability, and pharmacokinetics of SMT C1100, a 2-arylbenzoxazole utrophin modulator, following single- and multiple-dose administration to pediatric patients with duchenne muscular dystrophy. PLoS One 2016, 11:e0152840.
Safety profile of ezutromid (SMT C1100) in DMD patients.

25. Tinsley J, Robinson N, Davies KE: Safety, tolerability, and pharmacokinetics of SMT C1100, a 2-arylbenzoxazole utrophin modulator, following single- and multiple-dose administration to healthy male adult volunteers. J. Clin. Pharmacol. 2015, 55:698-707.
26. Moorwood G, Lozynska O, Suri N, Napper AD, Diamond GL, Khurana TS: Drug discovery for Duchenne muscular dystrophy via utrophin promoter activation screening. PLoS One 2011, 6: e26169.

27. Miura P, Chakkalakal JV, Boudreau L, Belanger G, Hebert RL, Renaud JM, Jasmin BJ: Pharmacological activation of PPARbeta/delta stimulates utrophin A expression in skeletal muscle fibers and restores sarcolemmal integrity in mature mdx mice. Hum. Mol. Genet. 2009, 18:4640-4649.

28. Lubjivic V, Khogali S, Renaud JM, Jasmin BJ: Chronic AMPK stimulation attenuates adaptive signaling in dystrophic skeletal muscle. Am. J. Physiol. Cell Physiol. 2012, 302:C110-21.

29. Gordon BS, Delgado Diaz DC, Kostek MC: Resveratrol decreases inflammation and increases utrophin gene expression in the mdx mouse model of Duchenne muscular dystrophy. Clin. Nutr. 2013, 32:104-111.

30. Ballmann C, Hollinger K, Selsby JT, Amin R, Quindry JC: Histological and biochemical outcomes of cardiac pathiology in mdx mice with dietary quercetin enrichment. Exp. Physiol. 2015, 100:12-22.

31. Lubjivic V, Jasmin BJ: Metformin increases peroxisome proliferator-activated receptor gamma Co-activator-1alpha and utrophin a expression in dystrophic skeletal muscle. Muscle Nerve 2015, 52:139-142.

32. Peladeau C, Ahmed A, Amirouche A, Crawford Parks TE, Bronicki LM, Lubjivic V, Renaud JM, Jasmin BJ: Combinatorial therapeutic activation with heparin and AICAR stimulates additive effects on utrophin A expression in dystrophic muscles. Hum. Mol. Genet. 2016, 25:24-43.

A very interesting pre-clinical study demonstrating the potential of combinatorial strategies/mechanisms to enhance utrophin expression.

33. Basu U, Lozynska O, Moorwood C, Patel G, Wilton SD, Khurana TS: Translational regulation of utrophin by miRNAs. PLoS One 2011, 6:e209376.

34. Vianello S et al.: Arginine butyrate: a therapeutic candidate for Duchenne muscular dystrophy. FASEB J. 2013, 27:2256-2269.

35. Amenta AR, Yilmaz A, Bogdanovich S, McKechnie BA, Abedi M, Khurana TS, Fallon JR: Biglycan recruits utrophin to the sarcolemma and counters dystrophic pathology in mdx mice. Proc. Natl. Acad. Sci. U. S. A. 2011, 108:762-767.

36. Gibbs EM, Marshall JL, Ma E, Nguyen TM, Hong G, Lam J, Spencer MJ, Crosbie-Watson RH: High levels of sarcospan are well tolerated and act as a sarcolemmal stabilizer to address skeletal muscle and pulmonary dysfunction in DMD. Hum. Mol. Genet. 2016, 25:5395-5406.

37. Durko M, Allen C, Nalbantoglu J, Karpati G: CT-GaiNac transferase overexpression in adult mice is associated with extrasympathetic utrophin in skeletal muscle fibres. J. Muscle Res. Cell Motil. 2010, 31:181-193.

38. Vanhoutte D et al.: Thrombospondin expression in myofibers stabilizes muscle membranes. eLife 2016, 5.

39. Blake DJ, Weir A, Newey SE, Davies KE: Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol. Rev. 2002, 82:291-329.

40. Yeung EW, Whitehead NP, Suchyna TM, Gottlieb PA, Sachs F, Allen DG: Effects of stretch-activated channel blockers on [Ca\(^{2+}\)]\(_m\) and muscle damage in the mdx mouse. J. Physiol. 2005, 562 (Pt. 2):387-398.

41. Allen DG, Whitehead NP, Froehner SC: Absence of dystrophin disrupts skeletal muscle signaling: roles of Ca\(^{2+}\), reactive oxygen species, and nitric oxide in the development of muscular dystrophy. Physiol. Rev. 2016, 96:253-305.

A very complete review defining the early damage pathways in Duchenne muscular dystrophy.

42. Spurrey CF et al.: CINRG pilot trial of coenzyme Q10 in steroid-treated Duchenne muscular dystrophy. Muscle Nerve 2011, 44:174-178.

43. Buysse GM et al.: Efficacy of idebenone on respiratory function in patients with Duchenne muscular dystrophy not using glucocorticoids (DELOS): a double-blind randomised placebo-controlled phase 3 trial. Lancet 2015, 385:1748-1757. Results of the phase 3 study demonstrating that idebenone treatment reduced the loss of respiratory function in DMD patients.

44. Whitehead NP, Kim MJ, Bible KL, Adams ME, Froehner SC: A new therapeutic effect of simvastatin revealed by functional improvement in muscular dystrophy. Proc. Natl. Acad. Sci. U. S. A. 2015, 112:12864-12869.

A surprising pre-clinical study demonstrating great benefits after treatment with Simvastatin.

45. Robert V, Massimino ML, Tosello V, Marsault R, Cantini M, Sorrentino V, Pozzan T: Alteration in calcium handling at the subcellular level in mdx myotubes. J. Biol. Chem. 2001, 276:4647-4651.

46. Wissing ER, Millay DP, Vaugnaiaux G, Molkentin JD: Debio-025 is more effective than prednisone in reducing muscular pathology in mdx mice. Neuromuscul. Disord. 2010, 20:753-760.

47. Messina S, Vita GL, Aguennouz M, Sframeli M, Romeo S, Rodolico C, Vita G: Activation of NF-kappaB pathway in Duchenne muscular dystrophy: relation to age. Acta Myol. 2011, 30:16-23.

48. Traynor K: Deflazacort approved for Duchenne muscular dystrophy. Am. J. Health Syst. Pharm. 2017, 74:368.

49. Moxley RT 3rd, Pandya S, Ciufardi E, Fox DJ, Campbell K: Change in natural history of Duchenne muscular dystrophy with long-term corticosteroid treatment: implications for management. J. Child Neurol. 2010, 25:1116-1129.

50. Heier CR et al.: VBP15, a novel anti-inflammatory and membrane-stabilizer, improves muscular dystrophy without side effects. EMBO Mol. Med. 2013, 5:1569-1585.

51. Hammers DW, Sleeper MM, Forbes SC, Coker CC, Jirousek MR, Zimmer M, Walter GA, Sweeney HL: Disease-modifying effects of orally bioavailable NF-kappaB inhibitors in dystrophin-deficient muscle. JCI Insight 2016, 1:e90341.

52. Donovan JM, Zimmer M, Offman E, Grant T, Jirousek M: A novel NF-kappaB inhibitor, edasalonexent (CAT-1004), in development as a disease-modifying treatment for patients with Duchenne muscular dystrophy: phase 1 safety, pharmacokinetics, and pharmacodynamics in adult subjects. J. Clin. Pharmacol. 2017, 57:627-639.

53. Catabasis Pharmaceuticals, Catabasis Pharmaceuticals Announces Top-Line Results for Part B of the MoveDMD® Trial for Edasalonexent (CAT-1004) in Duchenne Muscular Dystrophy. http://ir.catabasis.com/phoenix.zhtml?c=251269&p=irol-newsArticle&ID=2241021; 2017;

54. Taub R: Blocking NF-kappaB in the liver: the good and bad news. Hepatology 1998, 27:1445-1446.

55. Colussi C et al.: HDAC2 blockade by nitric oxide and histone deacetylase inhibitors reveals a common target in Duchenne muscular dystrophy treatment. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:19183-19187.

56. Minetti GC et al.: Functional and morphological recovery of dystrophic muscles in mice treated with deacetylase inhibitors. Nat. Med. 2006, 12:1147-1150.

57. Bettica P et al.: Histological effects of givonistat in boys with Duchenne muscular dystrophy. Neuromusc. Disord. 2016, 26:643-649. Histological results of the phase 2 study in DMD patients after one year of treatment with the HDAC inhibitor Givonistat.

58. Turgeman T, Hagai Y, Huebner K, Jassal DS, Anderson JE, Genin O, Nagler A, Halevy O, Pines M: Prevention of muscle fibrosis and improvement in muscle performance in the mdx mouse by halofuginone. Neuromusc. Disord. 2008, 18:857-868.

59. McPherron AC, Lawler AM, Lee SJ: Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 1997, 387:83-90.
60. Bogdanovich S, Krag TO, Barton ER, Morris LD, Whittenore LA, Ahima RS, Khurana TS: Functional improvement of dystrophic muscle by myostatin blockade. Nature 2002, 420:418-421.

61. Sander M, Chavoshan B, Harris SA, Iannaccone ST, Stull JT, Thomas GD, Victor RG: Functional muscle ischemia in neuronal nitric oxide synthase-deficient skeletal muscle of children with Duchenne muscular dystrophy. Proc. Natl. Acad. Sci. U. S. A. 2000, 97:13818-13823.

62. Hammers DW, Sleeper MM, Forbes SC, Shima A, Walter GA, Sweeney HL: Tadalafil treatment delays the onset of cardiomyopathy in dystrophin-deficient hearts. J. Am. Heart Assoc. 2016, 5.

63. Nelson MD, Rader F, Tang X, Tavyev J, Nelson SF, Miceli MC, Elashoff RM, Sweeney HL, Victor RG: PDE5 inhibition alleviates functional muscle ischemia in boys with Duchenne muscular dystrophy. Neurology 2014, 82:2085-2091. Proof of concept for PDE5i as a therapeutic approach in DMD patients.

64. Mahmood I, Green MD: Pharmacokinetic and pharmacodynamic considerations in the development of therapeutic proteins. Clin. Pharmacokinet. 2005, 44:331-347.