Completeness of the ring of polynomials

ANDERS THORUP
Department of Mathematics, University of Copenhagen

13 December 2013

Let k be an uncountable field. We prove that the polynomial ring $R := k[X_1, \ldots, X_n]$ in $n \geq 2$ variables over k is complete in its adic topology. In addition we prove that also the localization R_m at a maximal ideal $m \subset R$ is adically complete. The first result settles an old conjecture of C. U. Jensen, the second a conjecture of L. Gruson.

Our proofs are based on a result of Gruson stating (in two variables) that R_m is adically complete when $R = k[X_1, X_2]$ and $m = (X_1, X_2)$.

INTRODUCTION

1. Consider for a field k and a given integer $n \geq 0$ the polynomial ring $R := k[X_1, \ldots, X_n]$ in n variables, and its field of fractions $K := k(X_1, \ldots, X_n)$. Set $d = 0$ if k is finite and define d by the cardinality equation $|k| = \aleph_d$ if k is infinite. The following conjecture in its full generality was formulated by L. Gruson (priv. com., 2013).

Conjecture. In the notation above, $\text{Ext}^i_R(K, R) \neq 0 \iff i = \inf\{d + 1, n\}$.

The conjecture is trivially true for $n = 0$ where $R = K = k$ and the infimum equals 0. It is also true for $n = 1$ (where R is a PID. and the infimum equals 1; the Ext may be computed from the injective resolution $0 \to R \to K \to K/R \to 0$).

In addition, the conjecture is trivially true if $i = 0$, since the infimum equals 0 iff $n = 0$.

The conjecture has an obvious analogue obtained by replacing the polynomial ring $R = k[X_1, \ldots, X_n]$ by its localization R_m at a maximal ideal m.

2. In this note we consider the conjectures only for $i = 1$. They were formulated some 40 years ago, Conjecture 2b partly by Gruson [G, p. 254], and Conjecture 2a by C. U. Jensen [J, p. 833], inspired by the work of Gruson.

Conjectures. Let $R := k[X_1, \ldots, X_n]$ be the polynomial ring, and $m \subset R$ a maximal ideal. Then the following bi-implications hold:

2a. $\text{Ext}^1_R(K, R) \neq 0 \iff n = 1$ or $|k| \leq \aleph_0$.

2b. $\text{Ext}^1_{R_m}(K, R_m) \neq 0 \iff n = 1$ or $|k| \leq \aleph_0$.

2010 Mathematics Subject Classification. 13J10, 13B35.
3. The Ext’s in the conjectures make sense for a wider class of rings, and we fix for the rest of this paper an integral domain R with field of fractions K. We assume throughout that R is noetherian, and not a field; in particular, $\bigcap_{s \neq 0} sR = (0)$ and $\text{Hom}_R(K, R) = 0$. Let $S := R \setminus \{0\}$ be the set of non-zero elements of R, pre-ordered by divisibility: $s' \mid s$ iff $sR \subseteq s'R$. We denote by $\lim_S^{(i)}$ the ith derived functor of the limit functor \lim_S on the category of inverse S-systems of R-modules.

The modules $\text{Ext}^i_R(K, R)$ of the conjectures are related to the $\lim_S^{(i)}$ by well-known results, see [G, p. 251–52]: For $i \geq 2$ there are natural isomorphisms $\text{Ext}^i_R(K, R) \simeq \lim_S^{(i-1)} R/sR$, and for $i = 1$ there is an exact sequence,

$$0 \to R \xrightarrow{c(R)} \lim_{s \in S} R/sR \to \text{Ext}^1_R(K, R) \to 0. \tag{3.1}$$

The set of principal ideals sR for $s \in S$ is cofinal in the set of all non-zero ideals of R. Hence the topology defined by the ideals sR for $s \in S$ is the adic topology on R, and the limit in (3.1) is the adic completion of R; we denote it by \hat{R}, and we will simply call R complete if the canonical injection $c(R)$ in (3.1) is an isomorphism. As it follows from the exact sequence (3.1), R is complete iff $\text{Ext}^1_R(K, R) = 0$.

Since R is not a field it follows easily that the completion \hat{R} is uncountable. If the field k is finite or countable (and $n \geq 1$) then the polynomial ring $R = k[X_1, \ldots, X_n]$ and its localization R_m are countable, and hence they are not complete. In other words, the assertions of Conjectures 2a and 2b hold if $|k| < \aleph_0$. As noted above, they also hold when $n \leq 1$. So the remaining cases of the conjectures are the following.

Conjectures. Let $R := k[X_1, \ldots, X_n]$ be the polynomial ring where $|k| \geq \aleph_1$ and $n \geq 2$. Then:

3a. (C. U. Jensen [J, p. 833]) R is complete.

3b. The localization R_m of R at any maximal ideal $m \subset R$ is complete.

The main result of this paper is the verification of the two conjectures. In fact, both conjectures are implied by a single result.

Theorem 4. Assume that $|k| \geq \aleph_1$, that $n \geq 2$, and that $R = U^{-1}R_0$ is a localization of $R_0 = k[X_1, \ldots, X_n]$ with a multiplicative subset $U \subset R_0$. In addition, assume that every maximal ideal of R contracts to a maximal ideal of R_0. Then R is complete.

The key ingredient in our proof is the following local result in two variables.

Proposition 5. (L. Gruson [G, Proposition 3.2, p. 252]) Conjecture 3b holds for $n = 2$ and $m = (X_1, X_2)$.

Lemmas

6. Our argument is based on a series of lemmas, some of which are valid in a more general context, and we keep the setup of Section 3. First we compare for a multiplicative subset $T \subset R$ the completions of R and $T^{-1}R$. The ideals of $T^{-1}R$ generated by the elements of S form a cofinal subset of non-zero ideals. Hence
the inclusion \(R \hookrightarrow T^{-1}R \) is continuous, and there is an induced \(R \)-linear map of completions,

\[
\hat{R} = \lim_{s \in S} R/sR \to \lim_{s \in S} T^{-1}R/sT^{-1}R = \hat{T}^{-1}R.
\]

For \(s \in S \) let \(a_s \supseteq sR \) denote the ideal of \(R \) such that \(a_s/sR \) is the kernel of the map \(R/sR \to T^{-1}R/sT^{-1}R \). Then the kernel of the map (6.1) is the limit \(L := \lim_{s \in S} a_s/sR \). Clearly, for \(a \in R \) we have \(a \in a_s \) iff there exists an element \(t \in T \) such that \(ta \in sR \).

Lemma 7. Assume that \(R \) is a UFD, and let \(T \subseteq S \) be a multiplicative saturated subset. Consider the localization \(R \subseteq T^{-1}R \) and the induced map of completions \(\hat{R} \to \hat{T}^{-1}R \). Then the induced map is injective iff for every prime element \(t \in T \) there exists a prime element \(p \not\in T \) such that the ideal \((t, p)R \) is proper: \((t, p)R \subset R \).

Proof. Recall that saturation means that any divisor of an element of \(T \) belongs to \(T \) or, equivalently since \(R \) is a UFD, \(T \) is the submonoid of \(S \) generated by a subset of prime elements. Let \(P \) be the monoid generated by the prime elements outside \(T \). Moreover, let \(T_0 \) be the submonoid of \(T \) consisting of elements \(t \in T \) such that \((t, p)R = R \) for all \(p \in P \). For \(t \in T \) we write \(t_0 \) for the largest divisor in \(T_0 \) of \(t \), determined by a factorization \(t = t_0t' \) where \(t_0 \in T_0 \) and \(t' \) has all prime divisors outside \(T_0 \).

In this notation the Lemma asserts for the kernel \(L \) of the induced map that \(L = 0 \) iff \(T_0 \) contains no prime elements. Hence the assertion of the Lemma is a consequence of the following equation for the kernel:

\[
(7.1) \quad L \simeq \lim_{t_0 \in T_0} R/t_0R.
\]

To prove (7.1) note first that up to units in \(R^* \), the monoid \(S \) is the product of \(T \) and \(P \), and for \(s \in S \) we write \(s = tp \) for the corresponding factorization into factors \(t \in T \) and \(p \in P \). By unique factorization, it follows from the description of the ideal \(a_s \) above that \(a_s = pR \). Consequently,

\[
(7.2) \quad a_s/sR = pR/tpR \simeq R/tR.
\]

Under the isomorphisms (7.2), the transition map \(a_s/sR \to a_{s'}/s'R \) for \(s' | s \) is the map \(R/tR \to R/t'R \) induced by multiplication by \(p/p' \). It follows from (7.2) that

\[
(7.3) \quad L = \lim_{s \in S} a_s/sR \simeq \lim_{t \in T} \lim_{p \in P} R/tR.
\]

Fix \(t \in T \) and consider the inner limit in (7.3). We claim that

\[
(7.4) \quad \lim_{p \in P} R/tR = R/t_0R.
\]

The transition maps for the limit in (7.4) are multiplications by elements \(p \in P \) on the \(R \)-module \(R/tR \). By unique factorization, the multiplications are injective. Therefore, the limit is the intersection of the images of the multiplications.
Clearly, if \(t \in T_0 \) then the multiplications are bijective; hence the intersection is equal to \(R/tR \), and (7.4) holds since \(t = t_0 \). Assume next that \(t \) is a prime element outside \(T_0 \). Then multiplication by some \(p \in P \) has an image contained in a proper ideal of \(R/tR \). Hence the intersection of the images is contained in the intersection of the powers of a proper ideal of \(R/tR \). Since \(R/tR \) is an integral domain, the intersection equals 0 by Krull’s Intersection Theorem, and hence (7.4) holds since \(t_0 = 1 \).

In general, we factorize \(t = t_0 t' \) where \(t' \) has all prime divisors outside \(T_0 \), and use the exact sequence \(0 \rightarrow R/t'R \rightarrow R/tR \rightarrow R/t_0R \rightarrow 0 \). From the previous considerations it follows first that the intersection of the images on \(R/t'R \) is equal to 0, and next that the intersection of the images on \(R/tR \) maps isomorphically onto \(R/t_0R \). Hence (7.4) holds in general.

Clearly (7.4) and (7.3) imply (7.1).

Lemma 8. Assume for every maximal ideal \(m \) of \(R \) that the induced map \(\hat{R} \rightarrow \hat{R}_m \) is injective and that \(R_m \) is complete. Then \(R \) is complete.

Proof. By the second assumption, \(R_m = \hat{R}_m \). Hence, by the first assumption, \(\hat{R} \) embeds into \(\bigcap R_m = R \). Thus \(R = \hat{R} \).

Lemma 9. Assume that \(R \subseteq R' \) is a subring of an integral domain \(R' \) such that \(R' \) is integral over \(R \) and free as an \(R \)-module. Assume that \(R' \) is complete. Then \(R \) is complete.

Proof. Every non-zero ideal of \(R' \) contracts to a non-zero ideal of \(R \) since \(R' \) is integral over \(R \). In other words, the inclusion \(R \rightarrow R' \) is continuous. Hence there is an induced map of completions \(\hat{R} \rightarrow \hat{R'} \), and an induced \(R' \)-linear map \(R' \otimes_R \hat{R} \rightarrow \hat{R'} \).

We have to prove that the canonical injection \(c = c(R) : R \rightarrow \hat{R} \) is an isomorphism. Since \(R' \) is free over \(R \) it suffices to prove that the map \(R' \otimes_R c : R' \rightarrow R' \otimes_R \hat{R} \) is an isomorphism. Clearly, the canonical injection \(c(R') : R' \rightarrow \hat{R} \) factors:

\[
\begin{array}{ccc}
R' & \longrightarrow & R' \\
\downarrow & & \downarrow c(R') \\
R' \otimes_R \hat{R} & \longrightarrow & \hat{R}'.
\end{array}
\]

The bottom map is the canonical map \(R' \otimes_R \lim V_s \rightarrow \lim (R' \otimes_R V_s) \) defined for any inverse \(S \)-system of \(R \)-modules \((V_s) \). It is injective, since \(R' \) is free over \(R \). The right vertical map is an isomorphism by assumption. Therefore, \(R' \otimes_R c \) is an isomorphism.

Lemma 10. Assume that \(R \) is a localization of \(R_0 = k[X_1, \ldots, X_n] \) such that every maximal ideal of \(R \) contracts to a maximal ideal of \(R_0 \). Let \(\mathfrak{p} \subset R \) be a prime ideal of height at least 2. Then the induced map of completions \(\hat{R} \rightarrow \hat{R}_\mathfrak{p} \) is injective.

Proof. Indeed, as is well-known, the localization \(R \) is a UFD: its prime elements are, up to units in \(R^* \), those irreducible polynomials in \(R_0 \) that are non-units of \(R \). To apply Lemma 7, let \(t \) be a prime element in \(R \setminus \mathfrak{p} \). We have to prove that there exists a prime element in \(\mathfrak{p} \) such that the ideal \((t, p)R \) is proper. Take any maximal ideal \(\mathfrak{m} \subset R \) with \(t \in \mathfrak{m} \). Apply the following Sublemma to the contractions \(\mathfrak{m}_0 = R_0 \cap \mathfrak{m} \) and \(\mathfrak{p}_0 = R_0 \cap \mathfrak{p} \). It follows that there exists an irreducible polynomial \(p \) in \(\mathfrak{m}_0 \cap \mathfrak{p}_0 \). Then \(p \) is a prime element in \(\mathfrak{p} \), and \((t, p)R \) is a proper ideal, since \((t, p)R \subset \mathfrak{m} \).
Completeness of the ring of polynomials

Sublemma. Let $R = k[X_1, \ldots, X_n]$ be the polynomial ring, let $p \subset R$ be a prime ideal of height $h \geq 2$, and let $m \subset R$ be a maximal ideal. Then the intersection $p \cap m$ contains a prime ideal q of height $h - 1$. In particular, $m \cap p$ contains an irreducible polynomial.

Proof. The assertion is trivial if $p \subseteq m$ so we may assume that $p \not\subseteq m$. Assume first that k is algebraically closed. Then p is the ideal of an irreducible variety V, and m is the ideal of a point q. By assumption $q \not\in V$. Hence the linear join of q and V (the cone with base V and vertex q) is an irreducible subvariety W of dimension equal to $\dim V + 1$. Therefore, the ideal q of W is a prime ideal with the required properties.

The general case is reduced to the previous case as follows: Consider the embedding $R \hookrightarrow \bar{R}$ where \bar{R} is the polynomial ring over the algebraic closure of k. The embedding is integral, and \bar{R} is a UFD. Hence, by the usual dimension theory for polynomial rings, p and m are contractions of prime ideals \bar{p} and \bar{m} of \bar{R}; if $\bar{q} \subseteq \bar{p} \cap \bar{m}$ is a prime of height $h - 1$, then the contraction $q := R \cap \bar{q}$ has the required property.

Note 11. (1) The proof of Lemma 10 is particularly simple in the special case: $R = k[X_1, X_2]$, k is algebraically closed, and $p = (X_1, X_2)$. Indeed, for an irreducible polynomial t outside p take a zero $\alpha = (\alpha_1, \alpha_2)$ of t and take $p := \alpha_2X_1 - \alpha_1X_2$. Then t and p belong to the maximal ideal $m_\alpha = (X_1 - \alpha_1, X_2 - \alpha_2)$, and p is irreducible since $\alpha \not\in (0, 0)$. The special case is sufficient for a proof of Conjecture 3a alone, see Note 14(2).

(2) It is also worthwhile to note that the conclusion in Lemma 10 is wrong for prime ideals p of height 1: For $R = k[X_1, \ldots, X_n]$ and a prime ideal p of height 1, say $p = pR$, the induced map $\bar{R} \to \bar{R}_p$ is not injective. Indeed, the polynomial $p + 1$ is not a constant, and hence for any irreducible divisor t in $1 + p$ we have $t \not\in p$ and $(t, p)R = R$. Hence, by Lemma 7, the map is not injective.

Proofs of the main results

Lemma 12. Let $R := k[X_1, X_2]$ be the polynomial ring in two variables where $|k| \geq \aleph_1$, and let m be any maximal ideal of R. Then R and R_m are complete.

Proof. The second assertion is a generalization of Gruson's local result. First, if k is algebraically closed, then R_m is complete. Indeed, then $m = (X_1 - \alpha_1, X_2 - \alpha_2)$ with $\alpha_1, \alpha_2 \in k$, and the completeness of R_m follows from the local result (Proposition 5) by a change of coordinates.

To prove the results in general, embed k in the algebraic closure \bar{k}. Let $\bar{R} := \bar{k}[X_1, X_2]$, let $R' := R_m$ and $\bar{R}' := \bar{R}_m$. With $U := R \setminus m$ we have $R' = U^{-1}R$ and $\bar{R}' = U^{-1}\bar{R}$. The maximal ideals of \bar{R}' are the ideals generated by maximal ideals $\bar{m} \subset \bar{R}$ lying over m. Moreover, the localization of \bar{R}' at the maximal ideal $\bar{m}R'$ is equal to \bar{R}_m, and hence complete by the first case. In addition, the map of completions induced by $\bar{R}' \hookrightarrow \bar{R}_m$ is injective by Lemma 10. Therefore, by Lemma 8, the ring \bar{R}' is complete. Finally, $\bar{R}' = \bar{R} \otimes_R R'$ is integral and free over R'. Hence, by Lemma 9, R' is complete. Similarly, since \bar{R}_m is complete for all maximal ideals \bar{m} of R, it follows first that R is complete, and next the R is complete.

Theorem 13. Assume that $|k| \geq \aleph_1$, that $n \geq 2$, and that $R = U^{-1}R_0$ is a localization of $R_0 = k[X_1, \ldots, X_n]$ with a multiplicative subset $U \subset R_0$. In addition, assume that every maximal ideal of R contracts to a maximal ideal of R_0. Then R is complete.
Proof. Clearly R is a UFD, and hence equal to the intersection of the localizations R_q over all prime ideals q of height 1. Moreover, every height 1 prime ideal is contained in a height 2 prime ideal, since R is catenary and all maximal ideals have height $n \geq 2$. Therefore, R is the intersection over all prime ideals p of height 2:

$$R = \bigcap_{ht\ p=2} R_p.$$

For every prime ideal p of height 2 it follows from Lemma 10 that the induced map of completions $\hat{R} \to \hat{R}_p$ is injective. Therefore, by Equation (13.1), to prove that $R = \hat{R}$, it suffices to prove for every height 2 prime ideal p of R that R_p is complete. Clearly, the latter completeness follows from Lemma 12 using the following standard observation on localizations for $h = 2$: If R is a localization of $R_0 = k[X_1, \ldots, X_n]$ then any localization R_p at a prime ideal $p \subset R$ of height $h \geq 1$ may be obtained, after a renumbering of the variables, as the localization at a maximal ideal of the polynomial ring,

$$k(X_{h+1}, \ldots, X_n)[X_1, \ldots, X_h].$$

To justify the observation, note first that the prime ideal $p \subset R$ is generated by a prime ideal $p_0 \subset R_0$, and $R_p = (R_0)_{p_0}$. Hence we may assume that $R = k[X_1, \ldots, X_n]$. The quotient R/p has transcendence degree $n - h$ over k since p has height h. Consequently there are $n - h$ among the variables, say X_{h+1}, \ldots, X_n, whose classes modulo p are algebraically independent, or equivalently, such that $k[X_{h+1}, \ldots, X_n] \cap p = (0)$. Localization of R with the monoid of non-zero polynomials in X_{h+1}, \ldots, X_n yields the ring (13.2), and so R_p may be obtained by localization of (13.2) at the ideal generated by p. The latter ideal is a prime ideal of height h, and hence a maximal ideal. Thus the observation has been justified.

Note 14. (1) Clearly Theorem 13 implies the two conjectures 3a and 3b. In addition, it follows from the observation at the end of the previous proof that Conjecture 3b implies, when $|k| \geq \aleph_1$, that the localization R_p of $R := k[X_1, \ldots, X_n]$ at any prime ideal p of height $h \geq 2$ is complete. In particular, the rings in Theorem 13 do not exhaust the list of complete subrings of $k[X_1, \ldots, X_n]$.

(2) For a proof of Conjecture 3a alone, the arguments can be simplified. First, the proof of Lemma 12 for $R = k[X_1, X_2]$ uses only the special case of Lemma 10 mentioned in Note 11(1). Next, for $R = k[X_1, \ldots, X_n]$ with $|k| \geq \aleph_1$ and $n \geq 3$ a direct proof of completeness is the following:

Denote by $T_{12} \subset S$ the multiplicative subset of polynomials containing neither X_1 nor X_2, that is, T_{12} is the set of non-zero polynomials in $k[X_3, \ldots, X_n]$. Then the localization

$$T_{12}^{-1} R = k(X_3, \ldots, X_n)[X_1, X_2],$$

is complete by Lemma 12. Moreover, it follows immediately from Lemma 7 that the inclusion $R \subseteq T_{12}^{-1} R$ induces an injection on the completions; indeed, for any irreducible $t \in T_{12}$ take $p = X_1$. Similarly, with an obvious notation we obtain for any $i = 3, \ldots, n$ an inclusion $\hat{R} \subseteq T_{1i}^{-1} R$, and hence an inclusion,

$$\hat{R} \subseteq \bigcap_{i=2}^n T_{1i}^{-1} R.$$

Obviously, the intersection on the right side equals R. Thus $\hat{R} = R$.

References

[G] L. Gruson, *Dimension homologique des modules plats sur un anneau commutatif noethérien*, Symposia Mathematica, Vol. XI, Convegno di Algebra Commutativa, INDAM, Rome, 1971, Academic Press, London, 1973, pp. 243–254.

[J] C. U. Jensen, *On $\text{Ext}^1_R(A, R)$ for torsion-free A*, Bull. Amer. Math. Soc 78 (1972), 831–834.

Universitetsparken 5, DK–2100 Copenhagen, Denmark
E-mail address: thorup@math.ku.dk