The inflammatory microenvironment in colorectal Neoplasia

McLean, Mairi H.; Murray, Graeme I.; Stewart, Keith N.; Norrie, Gillian; Mayer, Claus; Hold, Georgina L.

Published in:
PLoS ONE

DOI:
10.1371/journal.pone.0015366

Publication date:
2011

Citation for published version (APA):
McLean, M. H., Murray, G. I., Stewart, K. N., Norrie, G., Mayer, C., Hold, G. L., Thomson, J., Fyfe, N., Hope, M., Mowat, N. A. G., Drew, J. E., & El-Omar, E. M. (2011). The inflammatory microenvironment in colorectal Neoplasia. PLoS ONE, 6(1), 1-8. [e15366]. https://doi.org/10.1371/journal.pone.0015366

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The Inflammatory Microenvironment in Colorectal Neoplasia

Mairi H. McLean¹, Graeme I. Murray², Keith N. Stewart², Gillian Norrie³, Claus Mayer⁴, Georgina L. Hold¹, John Thomson¹, Nicky Yfye², Mairi Hope¹, N. Ashley G. Mowat¹, Janice E. Drew⁵, Emad M. El-Omar¹*.

¹ Gastrointestinal Research Group, School of Medicine and Dentistry, Aberdeen University, Aberdeen, United Kingdom, ² Department of Pathology, Aberdeen University, Aberdeen, United Kingdom, ³ Colorectal Surgery Unit, Western General Hospital, Edinburgh, United Kingdom, ⁴ Biomathematics and Statistics Scotland, The Rowett Institute of Nutrition and Health, Aberdeen University, Aberdeen, United Kingdom, ⁵ The Rowett Institute of Nutrition and Health, Aberdeen University, Aberdeen, United Kingdom

Abstract

Colorectal cancer (CRC) is a major cause of mortality and morbidity worldwide. Inflammatory activity within the stroma of invasive colorectal tumours is known to be a key predictor of disease activity with type, density and location of immune cells impacting on patient prognosis. To date, there has been no report of inflammatory phenotype within pre-malignant human colonic adenomas. Assessing the stromal microenvironment and particularly, inflammatory activity within colorectal neoplastic lesions is central to understanding early colorectal carcinogenesis. Inflammatory cell infiltrate was assessed by immunohistochemistry in paired colonic adenoma and adjacent normal colonic mucosa samples, and adenomas exhibiting increasing degrees of epithelial cell dysplasia. Macrophage phenotype was assessed using double stain immunohistochemistry incorporating expression of an intracellular enzyme of function. A targeted array of inflammatory cytokine and receptor genes, validated by RT-PCR, was used to assess inflammatory gene expression. Inflammatory cell infiltrates are a key feature of sporadic adenomatous colonic polyps with increased macrophage, neutrophil and T cell (specifically helper and activated subsets) infiltration in adenomatous colonic polyps, that increases in association with characteristics of high malignant potential, namely, increasing degree of cell dysplasia and adenoma size. Macrophages within adenomas express iNOS, suggestive of a pro-inflammatory phenotype. Several inflammatory cytokine genes (CCL2, CCL3, CCL4, IL1β, CCL23, CXCL1, CXCL2, CXCL3, CXCL4, CXCL5) are dysregulated in adenomas. This study has provided evidence of increased inflammation within pre-malignant colonic adenomas. This may allow potential mechanistic pathways in the initiation and promotion of early colorectal carcinogenesis to be identified.

Introduction

Colorectal cancer (CRC) is a major health burden causing significant morbidity and mortality, with over a million cases diagnosed each year worldwide [1]. The majority of CRC is sporadic, that is, associated with no identifiable heritable genetic mutation. The accepted pathogenetic framework for this malignancy is the adenoma-carcinoma sequence [2]. In understanding pathogenesis of malignancy, the emphasis has previously rested on epithelial cell behaviour, but over the last decade, the focus has moved to the microenvironment as a whole and the importance of stromal cell and epithelial cell interaction is now widely recognised [3,4]. Inflammatory activity within the stroma of invasive colorectal tumours is known to be a key predictor of disease activity with type, density and location of immune cells impacting on patient prognosis [5]. The point at which this inflammatory infiltrate exerts influence on colorectal carcinogenesis is unknown. In breast cancer models, non-invasive tumour cells have been shown to recruit macrophages which induce angiogenesis and promote malignant transformation [6]. To date, there has been no report of inflammatory phenotype within pre-malignant human colonic adenomas. Assessing the stromal microenvironment and particularly, inflammatory activity within colorectal neoplastic lesions is central to understanding early colorectal carcinogenesis, and in particular, understanding the mechanisms involved in the transition of pre-invasive to invasive disease. The aim of this paper therefore was to define the inflammatory microenvironment within pre-malignant human adenomatous colonic polyps, and to investigate how this changes along with adenoma characteristics linked to high malignant potential.

Materials and Methods

Assessment of inflammatory cell phenotype

Inflammatory cell phenotype was assessed by immunohistochemistry on 65 colonic adenomatous polyps and 36 adjacent normal mucosal biopsies, obtained from 36 patients at CRC screening colonoscopy, as described previously [7]. The polyp
sample set was expanded to include 40 colonic adenomas exhibiting low grade dysplasia (LGD), 40 with high grade dysplasia (HGD) and 40 adenomatous polyps with supervening invasive adenocarcinoma (cancer polyps (CaP)) [7]. Each specimen was evaluated to confirm histological diagnosis by an experienced consultant gastrointestinal pathologist (GIM). The macroscopic size of each polyp was measured post fixation, providing a consistent measurement of size distribution between the 40 LGD polyps, 40 HGD polyps or the 40 CaP polyps. Tissue was stained using the Envision™ doublestain kit or CSA II biotin-free tyramide signal amplification (Dako, K1497), dependant on antibody requirements (Table 1). Primary antibody was applied for 60 minutes following antigen retrieval (Table 1), identified by peroxidase linked immunoreactivity. Sequential staining with CD68 detected macrophage infiltrate using an alkaline phosphatase linked detection signal. Staining was performed using either the G2 doublestain Envision™ kit or Envision™ doublestain kit, dependant on supplier availability (Dako, K5361 & K1395, respectively). Heat induced antigen retrieval was performed. Levamisole was added to the liquid permanent red chromagen to suppress endogenous alkaline phosphatase activity. Optimisation ensured no cross-reactivity or quenching of signal. The area of most positive macrophage infiltration within one HPF (×40 magnification), distinct from lymphoid aggregation, was identified under fluorescent light at 580 nm using a Texas red filter set and digitally imaged, and also captured under standard optical light. In relation to degree of cell dysplasia, the area of defined histological abnormality was marked and digitally imaged. The 2 images were imported into Corel Paint X3, version 13 and macrophage infiltrate assessed for expression of either iNOS or arginase I.

Assessment of macrophage phenotype

Macrophage phenotype was assessed in 42 adenomatous polyps and 25 adjacent normal mucosal biopsies (randomly selected from the larger prospectively collected sample set) and polyps of increasing epithelial cell dysplasia, as described above. A double stain immunohistochemical technique was used, incorporating detection of an intracellular enzymatic marker of macrophage function, namely iNOS (pro-inflammatory classically activated macrophage) or arginase I (alternatively activated macrophage) (9,10)(Table 1), identified by peroxidase linked immunoreactivity. Sequential staining with CD68 detected macrophage infiltrate using an alkaline phosphatase linked detection signal. Staining was performed using either the G2 doublestain Envision™ kit or Envision™ doublestain kit, dependant on supplier availability (Dako, K5361 & K1395, respectively). Heat induced antigen retrieval was performed. Levamisole was added to the liquid permanent red chromagen to suppress endogenous alkaline phosphatase activity. Optimisation ensured no cross-reactivity or quenching of signal. The area of most positive macrophage infiltration within one HPF (×40 magnification), distinct from lymphoid aggregation, was identified under fluorescent light at 580 nm using a Texas red filter set and digitally imaged, and also captured under standard optical light. In relation to degree of cell dysplasia, the area of defined histological abnormality was marked and digitally imaged. The 2 images were imported into Corel Paint X3, version 13 and macrophage infiltrate assessed for expression of either iNOS or arginase I.

Profiling inflammatory gene expression

Tissue representative of each stage of the adenoma-carcinoma sequence (normal mucosa, adenoma and adenocarcinoma) was obtained from 7 colectomy specimens as part of an ongoing CRC tissue specimen bank, as previously published [11]. Histological analysis confirmed pathological diagnosis. RNA was extracted

Table 1. Characteristics of the antibodies used for the immunohistochemical analysis of inflammatory cell infiltrate.

Inflammatory cell type	Inflammatory cell marker	Type	Antigen retrieval method*	Positive tissue control	Dilution	IHC detection protocol	Supplier	Code	Isotype/ Clone
T helper cell	CD4	mouse monoclonal	M20-high pH	Tonsil	1:100	Envision	Novocastra	NCL-CD4-If6	IgGσ, If6
cytotoxic T cell	CD8	mouse monoclonal	M20	Tonsil	1:160	Envision	Dako	M7103	IgG1, CB/144B
activated T cell	CD25	mouse monoclonal	M20	Tonsil	1:600	Tyramide signal amplification	Novocastra	NCL-CD25-305	IgG2a, 4C9
B cell	CD20	mouse monoclonal	M20	Tonsil	1:400	Envision	Dako	M0755	IgG1a, L26
Plasma cell	CD138	mouse monoclonal	M20	Tonsil	1:1000	Envision	Dako	M7077	IgG1, VS38C
NK cell	CD56	mouse monoclonal	M20	Appendix	1:150	Envision	Monosan	MON9006-1	IgG1
Macrophage	CD68	mouse monoclonal	T16/M20	Tonsil	1:300	Envision	Dako	M0814	IgG1a, KP[14]
Classically activated	iNOS	mouse monoclonal	M20	Appendix/colonorectal carcinoma	1:400	Tyramide signal amplification	BD biosciences	610328	6, IgG2a
Alternatively activated	Arginase I	rabbit polyclonal	M20	Liver	1:40	Envision	Santa Cruz	sc-20150	H-52
Neutrophil	Neutrophil elastase	mouse monoclonal	nil	Tonsil	1:100	Envision	Dako	M0752	IgG1a, NP57
Mast cell	Mast cell tryptase	mouse monoclonal	M20	Tonsil/Appendix	1:30,000	Envision	Dako	M7052	IgG1a, AA1

*M = heat induced by microwaving in 10mM citrate buffer, pH 6.0, T = enzymatic digestion performed at 37° C, in 0.2% trypsin, 0.1% calcium chloride solution, pH 7.8, numerical values = time for antigen retrieval.

doi:10.1371/journal.pone.0015366.t001
using the RNaseasy mini kit (Qiagen, Crawley, UK, 74104), incorporating Qiashredder column tissue homogenisation and on-column DNase digestion. Agilent BioAnalyzer® profiling assessed yield and quality of the extracted total RNA. 500ng of total RNA was used to synthesise biotinylated cRNA using the Oligo-GEArray Reagent kit (Superarray Biosciences, USA, GA-054). Following quality assessment by Nanodrop spectrophotometry® this was hybridised to a commercially available targetted Oligo-GEArray gene filter, Human Inflammatory Cytokines and Receptors (OHS-011, Superarray Bioscience, USA), representing 112 inflammatory cytokine and receptor genes. Array images were captured using a Fuji LAS1000 cooled CCD camera. Hybridised arrays from each patient were imaged together. Signal intensity was analysed using AIDA Image Analyser programme v3.21 (Raytest Isotopenmessgeräte GmBH, Straubenhardt, Germany).

Microarray data was validated by quantitative reverse transcription real-time PCR. Reverse transcription was performed using 500ng total RNA and random primers, catalyzed with SuperScript™ II reverse transcriptase (concentration 200units/500ng total RNA and random primers, catalyzed with SuperScript II reverse transcriptase (concentration 200units/500ng total RNA and random primers, catalyzed with SuperScript II reverse transcriptase (concentration 200units/500ng total RNA and random primers, catalyzed with Taq DNA polymerase). A 10 fold serial dilution standard curve was included for each gene of interest and both normalisers on each plate. Data was included if the PCR efficiency fell between 80% to 105%. A no template control was included. The PCR cycling programme (15 minutes, 95°C to activate the Taq polymerase, followed by 40 cycles of 95°C for 15 seconds, 55°C for 30 seconds and 2°C for 30 seconds) was followed immediately by a default melting curve program to 96°C. Sequence verification of PCR amplicons was performed by either cloning into pGEM®-T easy vector system (Promega, Southhampton, UK, A1360) and the universal M13 primer, or purification of RT-PCR product and sequencing using custom designed gene specific primers based on reference positions indicated from RefSeq accession number supplied with Superarray primer assays.

Statistical methods

Differences in inflammatory cell infiltrate between tissue types and in relation to adenoma size was assessed using paired t-tests. One way ANOVA assessed the relationship between inflammatory infiltrate and degree of dysplasia. One paired t test assessed macrophage phenotype. Both absolute and relative differences in function were tested in a one way ANOVA. SAS 9.1.3 for Windows XP (SAS Institute, Cary, NC, USA) was used for statistical analyses.

Gene array signal intensities were normalised to background signal, log-transformed and rescaled to ensure each data point lay between lowest and highest signal intensity. Data from short and long exposure images were analysed in combination and a weighted average generated. ANOVA was conducted with Patient as blocking variable. Gene expression signals between normal, adenoma and CRC were compared and greater than 2 fold difference in expression pattern identified. RT-PCR data was analysed using a paired t-test, incorporating the $2^{-\Delta\Delta C_T}$(Livak) method as previously published [12].

Statistical significance was set at $p<0.05$ throughout.

Ethics

Ethical approval for this study was obtained from Grampian Ethics Committee. Written informed consent was obtained from all participants.

Results

Assessment of inflammatory cell phenotype

Patient and adenoma characteristics are shown in Table 2. Macrophage ($p = 0.0002$), neutrophil ($p = 0.0001$), helper T cells

Table 2. Adenoma and patient characteristics.
Adenoma and patient characteristics

Colonic site
Polyp size
Histological classification
Degree of dysplasia
Source
Patient age (years)
Gender

*distal to splenic flexure.

doi:10.1371/journal.pone.0015366.t002
Assessment of macrophage phenotype

There were no iNOS positive pro-inflammatory macrophages in the normal colonic mucosal biopsies. In comparison, within paired adenomas, these cells were a key feature of the stroma with 84% (61%–93%) of the macrophage population expressing iNOS (p = 0.001) (Table 5). Arginase I expression within the macrophage population was not a prominent feature of either the normal mucosal biopsies or the adenomas. Overall, there appeared to be more arginase I expressing macrophages within the stroma of the polyps, when analysed as both the absolute number of arginase I positive cells and the percentage of arginase I positive cells within the total macrophage population, and this was statistically significant with p = 0.001 and p = 0.023, respectively, but the overall number of positive cells were low (Table 5). 43%, 67% and 34% of the total macrophage population expressed iNOS in the low grade dysplastic, high grade dysplastic and cancer polyp groups, respectively. This is compared to 12%, 5% and 15% of macrophage expressing arginase I. The difference in this pattern of enzymatic expression favours a pro-inflammatory phenotype. The relative proportion of iNOS expressing pro-inflammatory macrophages to arginase I expressing regulatory macrophages was greatest in the low grade dysplastic (p = 0.001) and high grade dysplastic groups (p = 0.001). The relative proportion of regulatory to pro-inflammatory macrophage was higher in the cancer polyp group suggesting that regulatory macrophage are more abundant within areas of invasive disease.

Profiling of inflammatory gene expression

The average age of the patients was 71 years (range 55–79). Five of the patients were male. Five of the cancers originated on the left side of colon. On staging, one was Duke’s A, 4 Dukes B and 2 Dukes C. All of the 9 differentially expressed genes are linked to inflammation and key cell functions important in tumour biology. IL-8 is a known potent chemoattractant of neutrophils and macrophages to areas of inflammatory activity. IL-8 is also mitogenic [13], angiogenic [14] and, through linked expression of MMPs, influences tumour cell motility such that invasion is enhanced [15]. CCL20 is a chemokine involved in directing lymphoid cell migration through binding to its receptor CCR6. CCR6 is significantly up-regulated in both colorectal cancer and associated liver metastases and data suggests that it plays a role in the recruitment of CCR6+ tumour cells to the site of distant metastases [16]. CXCL1 expression is up-regulated in colorectal adenomas and adenocarcinoma [17], inhibiting apoptosis and inversely

Inflammatory cell	Normal Colon	Adenomatous Polyp	Mean Difference (95% CI)	P-Value
T helper cell	13.19 (11.84)	21.80 (14.67)	8.61 (2.95, 14.27)	0.004
Cytotoxic T cell	6.25 (7.97)	6.00 (8.31)	−0.25 (−2.66, 2.16)	0.83
B cell	2.78 (6.56)	4.11 (7.31)	1.33 (−1.60, 4.27)	0.36
Activated T cell	2.32 (2.67)	7.69 (5.71)	5.33 (3.34, 7.72)	<0.0001
NK cell	0.19 (1.01)	2.11 (3.39)	1.92 (0.11, 3.72)	0.04
Macrophage	10.83 (10.20)	19.63 (10.69)	8.89 (4.50, 13.32)	0.0002
Mast cell	10.00 (5.35)	10.56 (9.63)	0.56 (−1.97, 3.40)	0.59
Neutrophil	1.56 (3.22)	14.83 (14.76)	13.28 (8.37, 18.19)	<0.0001
Plasma cell	5.50 (7.19)	6.00 (8.18)	0.50 (−2.61, 3.61)	0.75

In this analysis, the maximum infiltrate value was used for the polyp when more than 1 polyp existed. Numerical data represents mean cell counts (with mean of standard deviation).
linked to expression of fibulin-1, an extra-cellular matrix protein implicated in control of tumour cell migration. Wang et al. (2006) [18] reported that expression of CXCL1 induced by PGE2 was linked to angiogenesis in colorectal cancer in vitro and in vivo and thus provided a link between COX-2 up-regulation and chemokine induced tumour associated endothelial cell migration. Of interest, is the fact that expression of several chemokines was down-regulated in adenomas. CCL23 is an immune mediator involved in the chemotaxis of monocytes but not neutrophils [19]. CCL23 inhibits the release of neutrophils and monocytes from bone marrow, suggesting that it may be an important mediator in regulating bone marrow response during immune stimulation [20]. In addition, CCL23 confers angiogenic properties [21], mediated through up-regulation of MMP2 gene expression in endothelial cells [22]. CCL5 drives T cell and monocyte migration and activation, with increased expression linked to a number of malignancies [23,24]. CCL5 was not found to be up-regulated in colorectal cancer compared to adjacent normal mucosa by Baier and colleagues [25] and this would be in keeping with the present study. CCL19 and CCL21 are structurally related chemokines that share the common receptor, CCR7. They play a pivotal role in the development of secondary lymphoid tissue as seen in animal models of deficiency [26,27] and are involved in T cell activation through interaction with dendritic cells within secondary lymphoid organs. It is difficult to speculate on the biological ramifications of differential expression of each of these chemokines individually. However, the dysregulation of these inflammatory cytokine and chemokine genes in adenomatous polyps compared to adjacent

Table 4. Assessment of inflammatory cell infiltrate in colonic adenomas in relation to increasing degree of epithelial cell dysplasia (one way ANOVA).

Inflammatory cell	Low grade dysplasia	High grade dysplasia	Cancer polyps	P value
T helper cell	14.20 (40)	13.80 (40)	21.95 (38)	**0.009**
Activated T cell	4.95 (40)	5.43 (40)	8.26 (39)	0.06
Macrophage	40.37 (39)	55.89 (40)	82.33 (39)	**<0.0001**
Neutrophil	8.13 (40)	17.80 (40)	31.44 (39)	**<0.0001**

Numerical data denotes mean cell counts. () = n.
doi:10.1371/journal.pone.0015366.t004

Figure 1. Inflammatory cell infiltration in colorectal adenomas compared to normal colonic mucosa. Macrophage infiltrate was increased in polyps (B) compared to adjacent normal mucosa (A). Neutrophil infiltrate was increased in polyps (D) compared to adjacent normal mucosa (C). CD25+ activated T cells were increased in polyps (F) compared to adjacent normal mucosa (E). doi:10.1371/journal.pone.0015366.g001
normal mucosa complements the cellular findings of an active inflammatory stromal microenvironment and is worthy of further investigation. Several gene expression studies have previously been performed on normal and diseased colonic tissue. In general, a genome wide approach has been applied to identify genes dysregulated in malignant tissue that can be targeted in treatment strategies and for staging [28–30]. In contrast, there are fewer reports of gene expression studies in pre-malignant colorectal adenomas [31–34]. Each stage of the adenoma-carcinoma sequence may have an identifying gene signature primarily involving genes related to cell cycle, cell growth, RNA and protein processing and cell signalling. Sabates-Bellver et al. [35] assessed 32 pedunculated colorectal adenomas compared to normal mucosa and identified differential expression of several inflammatory genes in adenomas, corresponding to those identified from our data analysis. Specifically, CCL19 and CCL5 had reduced expression in polyp lesions. In addition, IL-8, CXCL1, CXCL2, CXCL3, and CCL20 had higher levels of expression in the polyps compared to normal, which is in keeping with the current study.

The gut exerts a continuous low grade ‘physiological’ mucosal inflammatory activity, in response to continual challenges from luminal contents, with T helper cell, macrophage, CD8+ T cells, and plasma cell infiltrates [36,37]. The normal mucosal biopsies in this study revealed mucosal immunoreactivity as expected. The demonstration that polyps harbour an increased cellular inflammatory infiltrate over and above what is expected in “normal” colonic tissue is an important finding. This study has shown that adenomatous polyps are rich with pro-inflammatory macrophage, neutrophil and T helper cell infiltration and these are likely to exert a significant influence on their surrounding microenvironment within the polyp lesion. NK cells were also found to be increased in polyp compared to normal mucosa. However, the majority of polyps did not have any evidence of CD56+ NK cell infiltrate and those that did had an average of only 5 positive cells/HPF. This only marginally achieved statistical significance (p = 0.04) and the relevance of this in the biological microenvironment is debatable and requires further evaluation.

Neutrophils are a source of N-nitrosamines, especially in the presence of colonic amine producing bacteria, and these are known to be carcinogenic [38,39]. Coussens et al. [40] showed that neutrophil and macrophage derived MMP-9 enhanced progression from dysplasia to overt malignancy through paracrine signalling in a mouse model of squamous skin cancer, with reduced MMP-9 delaying angiogenesis within dysplastic areas and reducing the incidence of invasive disease. In addition, inflammatory cells of haemopoietic origin, introduced by bone marrow transplant, were identified in hyperplastic, dysplastic and neoplastic skin lesions, and produced MMP-9 driven changes associated with early carcinogenesis. Our previous data showed that MMP-9 is expressed within adenomatous polyps [41]. Recently, Jablonska and colleagues [42] have demonstrated that endogenous IFNβ inhibits angiogenesis, by inhibiting pro-angiogenic genes within tumour associated neutrophils, in a transplantable mouse tumour model. Neutrophil elastase, secreted by neutrophils, is a main constituent of phagocytic response, degrading proteins within the local environment such as elastin, collagen and other constituents of extracellular matrix [43]. Elastase deficient mice have significantly reduced skin carcinoma load in response to repeated UV light or chemical exposure [44]. Administration of a specific

Table 5. Assessment of macrophage phenotype in colonic adenomas (n = 42) and adjacent normal mucosa (n = 25). (l) = 25th and 75th centiles.
Gene

CCL20
CXCL1
CXCL2
CXCL3
IL-8
CCL5
CCL19
CCL21
CCL23

Gene expression in normal colonic mucosa vs. pre-malignant adenomatous polyp (Ad) vs. invasive adenocarcinoma (CRC). Bold denotes genes with increased expression in neoplastic tissue compared to normal mucosa, and italics denotes genes with reduced expression in neoplastic tissue compared to normal mucosa. doi:10.1371/journal.pone.0015366.t006

Table 6. Differential expression of inflammatory genes in colorectal neoplastic progression.
Gene

CCL20
CXCL1
CXCL2
CXCL3
IL-8
CCL5
CCL19
CCL21
CCL23

Gene expression in normal colonic mucosa vs. pre-malignant adenomatous polyp (Ad) vs. invasive adenocarcinoma (CRC). Bold denotes genes with increased expression in neoplastic tissue compared to normal mucosa, and italics denotes genes with reduced expression in neoplastic tissue compared to normal mucosa. doi:10.1371/journal.pone.0015366.t006
neutrophil elastase inhibitor suppressed the proliferation and motility of a pancreatic cancer cell line [45], as well as squamous and adenocarcinoma cell lines of lung malignancy [46]. The underlying mechanism is unclear. Degradation of protein transcription factors may disrupt regulatory proteins of gene expression [44]. Reactive oxygen species derived from polymorphs can indirectly affect gene expression by, for example, modulating enzyme activity and promoting changes in transcription factor binding capacity. Neutrophil activation has been implicated in cell cycle G2/M arrest, dependent on expression of p53 and p21, and associated with DNA damage checkpoint mechanisms, in an in vitro co-culture model mimicking colitis [47].

Pro-inflammatory macrophages are a central and potent constituent of innate immunity. Within our cancer polyp group, the macrophage population appears to change with a reduced proportion of iNOS expressing classically activated cells. Macrophages are well recognised at sites of malignancy. Tumour associated macrophage have poor antigen presenting capabilities with a limited anti-tumour response. This reduced tumoricidal capacity has been linked to reduced iNOS expression [48] and would be in keeping with the current data.

There is pharmacological evidence for the role of inflammation in the development of colorectal neoplasia. Several large randomised controlled trials have shown that regular aspirin use can reduce the risk of CRC and adenoma development by up to 50% [49–52]. The use of aspirin or NSAIDs in our study population is unknown.

This study has defined the stromal microenvironment of premalignant colorectal adenomas and identified key inflammatory components involved in adenoma progression to invasive malignancy. It is clear from our data that a phenotypic and genotypic ‘switch’ occurs early in the adenoma-carcinoma sequence, with expression of inflammatory cytokines and chemokines dysregulated in the transition from normal mucosa to adenomatous polyp, rather than at the polyp to invasive disease transition. This data increases the understanding of the environmental influences within the adenoma in relation to disease progression and may have identified potential mechanistic pathways in the initiation and promotion of early colorectal carcinogenesis. Ultimately, this may identify phenotypic markers within adenomas which determine malignant potential.

Supporting Information

Table S1 RT-PCR validation of gene expression in normal colonic mucosa, adenomatous polyp and adenocarcinoma (CRC), normalised to expression of GAPDH and B2M. P value generated from 2 tailed t-test statistical analysis. Bold denotes genes with increased expression in neoplastic tissue compared to normal mucosa, and italics denotes genes with reduced expression in neoplastic tissue compared to normal mucosa.
Acknowledgments

The authors acknowledge the technical assistance of Andrew Darrouzet and Lawrence Barrera.

Author Contributions

Conceived and designed the experiments: MHM EEO GIM. Performed the experiments: MHM KNS JED NF GLH JT MH. Analyzed the data: GN CM MHM EEO GIM JED JT NAGM. Contributed reagents/materials/analysis tools: MHM GIM KNS NF JED JTG JTG. Wrote the paper: MHM GIM.

References

1. Cancer Research UK. Cancer statistics. Available at: www.cancerresearchuk.org.
2. Fornaz E, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61: 759–767.
3. Mantovani A, Romero P, Palacka AK, Marincola FM (2008) Tumour immunity: effector role to tumour and role of the microenvironment. Cancer 71: 771–783.
4. Loruso G, Riege C (2008) The tumour microenvironment and its contribution to tumor evolution toward metastasis. Histochim Cell Biol 130: 1091–1103.
5. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, et al. (2006) Tissue density and location of immune cells within human colorectal tumors predict clinical outcome. Science 313: 1966–1969.
6. DeNardo DG, Coussens LM (2007) Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res 9: 211–218.
7. Mez-Fernandez MH, Murray GF, Pyne N, Hold GL, Mozra N, et al. (2008) COX-2 expression in sporadic colorectal adenomatous polyps is linked to adenoma characteristics. Histopathology 52: 806–815.
8. Kumaaralasingham M, Rooney PH, Dunas SR, Teller C, Melvin WT, et al. (2003) Cytochrome p450 profile of colorectal cancer: identification of markers of prognosis. Clin Cancer Res 9: 3758–3765.
9. Munder M, Eichmann K, Moran JM, Centeno F, Soler G, et al. (1999) Th1/Th2-regulated expression of arginase isoforms in human macrophages and dendritic cells. Immunology 95: 373–377.
10. Mosser DM (2003) The many faces of macrophage activation. J Leukoc Biol 73: 209–212.
11. Duncan R, Carpenter B, Main LC, Telfer C, Murray GI (2008) Characterisation and protein expression profiling of annexins in colorectal cancer. Br J Cancer 98: 426–433.
12. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDelta C(T) method. Methods 25: 402–408.
13. Ishiko T, Suda M, Hiraoka H, Itoh O, et al. (2003) Human carcinoma express IL-8 and IL-8 receptor: their role and regulation in cancer biology. International Congress Series 1255: 327–332.
14. Kitadai Y, Chayama K, Kamohara H, Ikeda O, et al. (2005) Human CC chemokine CCL23/myeloid progenitor cell factor-kappaB. Clin Cancer Res 9: 3167–3175.
15. Mian BM, Dinney CP, Bermejo CE, Sweeney P, Tellez C, et al. (2003) Fully methylated single nucleotide polymorphism at hMSH2-dependent G2/M checkpoint arrest and replication errors at a (CA)13-sequence in severe combined immunodeficiency (scid) mice. Res Commun Mol Pathol Pharmacol 107: 159–163.
16. Ichikawa Y, Ishikawa T, Takahashi S, Hamaguchi Y, Morita T, et al. (2002) Inhibition of neutrophil elastase inhibitor (ONO-5046.Na) suppresses the proliferation, motility and invasion of human hepatoma cells. Mol Cancer Ther 6: 2948–2957.