Nicotine cigarette smoke is a large public health burden worldwide, contributing to various types of disease. Anti-tobacco media campaigns and control programs have significantly reduced smoking in the United States, yet trends for menthol cigarette smoking have not been as promising. Menthol cigarette smoking is particularly prevalent among young adults and African Americans, with implications for long-term impacts on health care. Continuing high rates of menthol cigarette addiction call into question the role of menthol in nicotine addiction. To date, a biological basis for the high rate of addiction and relapse among menthol cigarette smokers has not been defined. Studies have demonstrated a role for menthol in the metabolism of nicotine in the body. More recent findings now reveal an interaction between menthol and the nicotinic acetylcholine (nACh) receptor in cells. This receptor is central to the actions of nicotine in the brain, and plays an important role in nicotine addiction. The newly discovered effect of menthol on nACh receptors may begin to explain the unique addictive properties of menthol cigarettes.

Keywords: menthol, addiction research, African Americans, nicotinic receptors, tobacco
menthol cigarettes (Benowitz, 2008). Smoking menthol cigarettes appears to also increase systemic exposure to tobacco smoke toxins and other toxins such as carbon monoxide, possibly by affecting the metabolism of nicotine (Hoffman, 2011). Differences in nicotine metabolism prevail in the general population. These can be accounted for by genetics as well as environmental factors. African-Americans, in particular, appear to metabolize nicotine to its main metabolite cotinine more slowly, and to metabolize cotinine itself more slowly (Benowitz et al., 2011). Whether genetic and environmental factors also predispose individuals to an altered response to menthol is interesting to consider. A number of reviews have been published on this topic (Benowitz, 2009; Ahijevych and Garrett, 2010; Hoffman and Simmons, 2011), and therefore it will not be discussed in this article.

MENTHOL INTERACTS WITH THE NICOTINIC RECEPTOR

While nicotine is considered to mediate most of the pharmacological and addictive properties of tobacco via the actions of the nACh receptor in the brain (Albuquerque et al., 2009; Berrettini and Doyle, 2012; Picciotto and Kenny, 2013), a new line of evidence suggests that menthol also regulates nACh receptor activity (Ahijevych and Garrett, 2010; Fagan et al., 2010; Hoffman and Simmons, 2011). During the past year, work from various labs has shown that menthol can directly modulate the pharmacological actions of nicotine on the nACh receptor. In doing so, menthol is found to alter the effect of nicotine in neural cells (Hans et al., 2012; Ashoor et al., 2013). An additional new study reveals that the density of nACh receptors in the brain of menthol cigarette smokers is considerably higher than that of non-menthol smokers (Brody et al., 2013). Taken together, these emergent findings suggest a new framework for understanding the role of menthol in nicotine addiction.

Menthol directly regulates the actions of the nicotinic receptor in the cell

Prolonged cigarette smoking is associated with an increase in nACh receptor density throughout the brain (Picciotto and Kenny, 2013). This process of receptor “up-regulation” is likely to play an important role in the physiological underpinnings of nicotine addiction. A similar mechanism of receptor up-regulation occurs in rodents in response to chronic nicotine administration (Le Foll and Goldberg, 2009). This process accompanies a propensity to self-administer nicotine (Mozzetti et al., 2010) thus suggesting that these alterations in nACh receptor levels contribute to nicotine addiction. A new study by Brody et al. (2013) shows that smokers of menthol cigarettes also exhibit an up-regulation in nACh receptors throughout the brain. The up-regulation in nACh receptor levels is significantly higher, however, in smokers of menthol cigarettes than other types of cigarettes. Using positron emission tomography (PET) to visualize the density of α4β2 nACh receptors, the authors find that menthol smoking is associated with a 9–28% rise in the levels of these nACh receptors in regions such as the prefrontal cortex and corpus callosum.
Two other studies published this year by Hans et al. (2012) and Ashoor et al. (2013) highlight a shared mechanism of action for menthol on nACh receptors. These studies show that menthol directly attenuates the activation of the nACh receptor by nicotine. Single channel recordings, combined with whole cell patch clamp analysis, reveal that menthol decreases the ability of nicotine to activate the nACh receptor. In the case of the α4β2 nACh receptor, interaction with menthol appears to be most favorable when the receptor is in the closed state (Hans et al., 2012). Similar findings are reported for the α7 nACh receptor, which demonstrate that menthol inhibits the responsiveness of the receptor to nicotine in cells (Ashoor et al., 2013). The amount of menthol used in the above experiments is consistent with one report on the levels of menthol detected in the brain tissue of mice (Pan et al., 2012). Together, these studies corroborate menthol’s ability to regulate nACh receptors in the brain.

Structural modeling based on sequence homology and docking simulations was also provided in Ashoor et al. (2013). The computational perspective suggests two energetically favorable residues within the nACh receptor protein for menthol binding. The proximity of the two residues within the nACh receptor implies a possible menthol-binding site within the nACh receptor channel. Interestingly, this putative binding site appears well outside of the nicotine-binding pocket, and suggests that menthol can function as an allosteric modulator of the nACh receptor (Ashoor et al., 2013; Figure 2). The structural modeling data supports experimental evidence on the actions of menthol on the nACh receptor. In particular, studies show that menthol attenuates the nACh receptor channel response to nicotine in a dose-dependent, non-competitive manner, and does not interfere with the kinetics of the nACh receptor channel (Hans et al., 2012; Ashoor et al., 2013). Taken together, the findings prove that menthol modifies the responsiveness of the nACh receptor to nicotine, thereby potentially affecting nicotine’s action in the brain.

Menthol alters the addictive properties of nicotine

Nicotinic receptors play a key role in addiction by regulating the release of several important neurotransmitters in the brain (Picciotto and Kenny, 2013). Nicotine directly enhances dopamine levels in the mesolimbic system by interacting with nACh receptors on dopaminergic neurons in the ventral tegmental area (VTA). Nicotine can also regulate the release of glutamate and GABA by binding to nACh receptors within the VTA (Grabus et al., 2005; Maksou, 2008). The expression of nACh receptors in regions such as the nucleus accumbens, hippocampus, amygdala, and prefrontal cortex enables nicotine to influence brain functions that contribute to addiction, including memory and decision making. These receptors are also present on neurons that release other neurotransmitters, including opioids, norepinephrine, serotonin, and cannabinoids (Maksou, 2008). However, the role of these neurotransmitters in nicotine dependence is not clear.

Strong preclinical evidence suggests that β2, α4, α5, α6, and α7 containing nAChRs mediate the reinforcing effects of nicotine (Changoux, 2010). A genetic variation in the human α7 nACh receptor gene CHRNA7 has also been linked to tobacco dependence (Albuquerque et al., 2009; Berrettini and Doyle, 2012). Mice with a deletion of the α7, α4, or β2 gene are viable, but exhibit altered responses to nicotine (Stoker and Markou, 2013). In behavioral studies, activation of α7 as well as α4β2 nACh receptors strongly correlates with an animal’s propensity to self-administer nicotine (Le Foll and Goldberg, 2009). Thus, if menthol modulates the function of these nACh receptors, it is plausible that it also modifies the addictive properties of nicotine in the brain.

Figure 2 A role for menthol in modulating the activation of the α7 nACh receptor. (A) Nicotine is known to bind and activate the α7 nACh receptor channel at the plasma membrane. Upon binding nicotine, the nACh receptor channel opens conducting calcium (and sodium) into the cell. (B) New findings by Ashoor et al. (2013) reveal that nicotine does not activate the α7 nACh receptor channel to the same extent when co-applied with menthol. Similar findings have also been reported for α4β2 nACh receptors (Hans et al., 2013). Threonine 252 within the α7 nACh receptor has been suggested to contribute to menthol binding.
scenario, menthol can directly modulate the actions of nicotine on the α7nACh receptor as supported by findings in Ashoor et al. (2013). Electrophysiological data suggests that menthol attenuates the channel’s response to nicotine (Figure 2). At present however it is not certain that menthol does not alter the affinity of nicotine for the nACh receptor. Studies on the effect of menthol in a bungarotoxin binding to the α7 nACh receptor, suggest that menthol does not impact the binding of the receptor to this ligand (Ashoor et al., 2013). The findings, however, are based on patch-clamp experiments in oocytes and do not explore the effects of menthol on nACh receptor interaction with nicotine. The results therefore should be examined further in order to better understand how menthol modulates the activation of the nACh receptor by nicotine.

For the α7 nACh receptor channel, which opens with a strong inward depolarizing calcium (and sodium) current in response to nicotine (Albuquerque et al., 2009), simultaneous exposure to menthol is predicted to attenuate the channel response (Figure 2). Mechanistically, menthol can do this by potentiating the desensitization of the channel, or by inhibiting its full activation by the agonist. In either case, the short-term effect of weakening the α7 nACh receptor signal in neurons appears to correlate with a state of craving and an increase in motivation to smoke (as discussed below; Brunzell and McIntosh, 2012). In the long-term, menthol may promote up-regulation in nACh receptors in the brain. This is supported by the finding in Brody et al. (2013), which indicate higher levels of α4β2 receptors in the brain of menthol cigarette smokers relative to non-menthol smokers. The effects of menthol on nACh receptor expression may play a role in addiction to nicotine as well as in the difficulty to quit smoking menthol cigarettes.

How menthol can engage the brain’s reward pathway is an important scientific question to consider. The role of menthol cigarettes in increasing the reinforcing effects of nicotine has been recently explored in rodents (Abobo et al., 2012). Menthol has been found to alter the dopamine system in rodents by interacting with the dopamine uptake inhibitor bupropion (Umerez and Morita, 2003). Future studies in rodents, as well as humans, should shed light on the relevance and properties of the interaction between nACh receptors and menthol. Because a decrease in α7 nACh receptor function appears sufficient to alter the motivation to smoke, increases nicotine self-administration, and alter the function of the dopamine system in rodents (Brunzell and McIntosh, 2012), it is plausible that menthol can contribute to addiction by attenuating the nACh receptor.

CONCLUSION

Recent findings on the ability of menthol to modulate nACh receptors suggest an important role for this compound in smoking addiction. While compelling, these studies are not yet conclusive. Rather, these findings point to the need for more studies to determine if and how menthol affects the activity of nACh receptors in the brain. Experiments using subunit specific nACh receptor knockout mice are a clear next step in the pharmacological and behavioral analysis of menthol function. Ex vivo studies in cultured cells and brain slices are also important to confirm and characterize interactions between menthol and the nACh receptor. For example, studies that examine menthol’s effects on nicotine self-administration in rodents will enable the assessment of dopamine (and glutamate release) in the brain following the administration of nicotine or nicotine with menthol. Subunit specific knockout mice for the α4, β2, and α7 subunits as well as other nACh receptors (Chang, 2010), will permit testing of menthol’s effect on various types of receptors. Lastly, genetic testing for polymorphisms in nACh receptor genes in smokers may provide clues on why some people are more prone to menthol cigarette addiction. Findings on genetic variability in nicotine metabolism in African Americans clearly suggest a role for genes in (nicotine) addiction (Benowitz et al., 2011). Recent work has also linked variants in genes encoding the α3, α5, and β4 nACh receptor subunits to smoking risk in the general population (Wang et al., 2012). If menthol were indeed found to impact the function of nACh receptors, a clear discussion would then be warranted about the addictive properties and public health implications of menthol nicotine cigarettes.

ACKNOWLEDGMENTS

This work is supported by a YVTP Grant Award on Research on the Causes and Prevention of Youth Tobacco to Nadine Kabbani.

REFERENCES

Abobo, C. V., Ma, J., and Liang, D. (2012). Effect of menthol on nicotine pharmacokinetics in rats after cigarette smoke inhalation. *Nicotine Tob. Res.* 14, 861–880. doi: 10.1093/ntr/ntr027

Ahirony, K., and Garrett, B. E. (2010). The role of menthol in cigarettes as a reinforcement of smoking behavior. *Nicotine Tob. Res.* 12(suppl. 2), S110–S116. doi: 10.1093/ntr/nsp021

Albuquerque, E. X., Veltri, D., Albuquerque, E. X., Periera, E. F. R., Alkondin, M., and Rogers, S. W. (2009). Mammalian nicotinic acetylcholine receptors: from structure to function. *Physiol. Rev.* 89, 79–120. doi: 10.1152/physrev.00015.2008

Ashoor, A., Nordman, J. C., Wit, D., Yang, K. H. S., Al Kury, L., Shuba, Y., et al. (2013). Menthol binding and inhibition of α7 nicotinic acetylcholine receptors. PLoS ONE (in press).

Bensouzi, N. L. (2008). Clinical pharmacology of nicotine: implications for understanding, preventing, and treating tobacco addiction. *Clin. Pharmacol. Ther.* 83, 531–541. doi: 10.1038/sj.clpt.6100772

Bensouzi, N. L. (2009). Pharmacological role of nicotine: addiction, smoking-induced disease, and therapeutics. *Ann. Rev. Pharmacol. Toxicol.* 49, 57–71. doi: 10.1146/annurev.pharmtox.48.113006.094742

Bensouzi, N. L., Dais, K. M., Dempsey, D., Wilson, M., and Jacob, P. (2011). Racial differences in the relationship between number of cigarettes smoked and nicotine and carcinogen exposure. *Nicotine Tob. Res.* 13, 772–783. doi: 10.1093/ntr/ntr072

Berrettini, W. H., and Doyle, G. A. (2012). The CHRNA5-A3-B4 gene cluster in nicotine addiction. *Neuropsychopharmacol.* 37, 1134–1143. doi: 10.1038/npp.2011.299

Chang, J.-P. (2010). Nicotine addiction and nictonic receptors: lessons from genetically modified mice. *Nat. Rev. Neurosci.* 11, 389–401. doi: 10.1038/nrn2849

D’Sa, J., Boyle, B. G., Lien, R., Rode, P., and O’Connor, K. S. (2012). Cessation outcomes among treatment-seeking menthol and nonmenthol smokers. *Am. J. Prev. Med.* 43(suppl. 3), S242–S248. doi: 10.1016/j.amepre.2012.07.013

Du Prez, S. P., Fortmann, S. P., and Henriksen, L. (2013). Racial
Kabbani

Menthol interactions with nicotinic receptors

Grabus, S. D., Martin, B. R., and Imad Friend, K. (2002). Reductions in

Fagan, P., Moolchan, E. T., Hart, A., and Grundmann, O. (2013).

Rose, A., Lawrence, D., Shavers, V. L., et al. (2010). Nicotine depen-

D. (2012). Menthol suppresses nico-

dy and nicotine dependence. Sci. Signal. 5, ra91. doi: 10.1126/scisigna-

Hoffman, A. C. (2011). The health

differences in cigarette brand recog-

Heck, J. D. (2010). A review and

Damaj, M. (2005). Nicotine physical

Fagan, P., Moslehi, E. T., Hart, A., Rose, A., Lawrence, D., Shavers, V. L., et al. (2010). Nicotine depen-

Menthol – pharmacology of an important naturally medicinal" food. John Ess. Mol. Chem. 13, 124–131. doi:10.2174/1389557107804466466

Fried, K. (2002). Reductions in smoking prevalence and cigarette consumption associated with man-

Eur. J. Pharmacol. 469. doi: 10.1016/j.ejphar.2004.10.002

Janssens, A., and Voets, T. (2011). Lig-

Umezu, T., and Morita, M. (2003).

D. (2013). Flavored and nonfla-

Zhao, X., Barrett, J. E., et al. (2012).

Heffman, A. C. (2011). The health effects of menthol cigarettes as com-

Farco, J. A., and Grundmann, O. (2013). Menthol's discovered actions on the nico-

Maskos, U. (2008). The choliner-

Wong, J., and Kinnunen, T. (2012).

Wang, J.-C., Kapoor, M., and Goate, A. M. (2012). The genetics of substance dependence. Annu. Rev. Genomics Hum. Genet. 13, 241–263. doi: 10.1146/annurev-genom-090711-163844

Wesley, M. S., Coggin, C. R. E., and Lee, P. N. (2007). Possible effects on smokers of cigarette mentholation: a review of the evidence relating to key research questions. Regul. Tox-

Wang, J.-C., Kapoor, M., and Goate, A. M. (2012). The genetics of substance dependence. Annu. Rev. Genomics Hum. Genet. 13, 241–263. doi: 10.1146/annurev-genom-090711-163844

Conflict of Interest Statement: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential con-

Copyright © 2013 Kabbani. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and any copyright notices concerning any third-

This article was submitted to Frontiers in Neuropharmacology, a specialty of Frontiers in Pharmacology.

Citation: Kabbani N (2013) Not so cool? Menthol’s discovered actions on the nico-

Hoffman, A. C., and Mishic, D. (2011). Menthol cigarettes and smoking ces-

L., et al. (2010). Nicotine depen-

Heffman, A. C., and Mishic, D. (2011). Menthol cigarettes and smoking sen-

Le Foll, R., and Goldberg, S. R. (2009). Effects of nicotine in experiment-

Hoffman, A. C., and Simmons, D. (2011). Menthol cigarette smoking and nicotine dependence. Tob. Induc. Dis. 9(Suppl. 1), S5. doi:10.1186/1617-9625-9-S1-S5

Heffman, A. C., and Simmons, D. (2011). Menthol cigarette smoking and nicotine dependence. Tob. Induc. Dis. 9(Suppl. 1), S5. doi:10.1186/1617-9625-9-S1-S5

Heffman, A. C., and Simmons, D. (2011). Menthol cigarette smoking and nicotine dependence. Tob. Induc. Dis. 9(Suppl. 1), S5. doi:10.1186/1617-9625-9-S1-S5

Wang, J.-C., Kapoor, M., and Goate, A. M. (2012). The genetics of substance dependence. Annu. Rev. Genomics Hum. Genet. 13, 241–263. doi: 10.1146/annurev-genom-090711-163844

Wesley, M. S., Coggin, C. R. E., and Lee, P. N. (2007). Possible effects on smokers of cigarette mentholation: a review of the evidence relating to key research questions. Regul. Toxicol. Pharmacol. 47, 198–205. doi: 10.1016/j.yrtph.2006.09.004

Wilson, D. (2011). Advisory panel urges F. D. A to re-examine menthol in cigarettes. New York Times, 19th July.

Citation: Kabbani N (2013) Not so cool? Menthol’s discovered actions on the nico-

Hoffman, A. C., and Simmons, D. (2011). Menthol cigarette smoking and nicotine dependence. Tob. Induc. Dis. 9(Suppl. 1), S5. doi:10.1186/1617-9625-9-S1-S5

Heffman, A. C., and Simmons, D. (2011). Menthol cigarette smoking and nicotine dependence. Tob. Induc. Dis. 9(Suppl. 1), S5. doi:10.1186/1617-9625-9-S1-S5

Wang, J.-C., Kapoor, M., and Goate, A. M. (2012). The genetics of substance dependence. Annu. Rev. Genomics Hum. Genet. 13, 241–263. doi: 10.1146/annurev-genom-090711-163844

Wesley, M. S., Coggin, C. R. E., and Lee, P. N. (2007). Possible effects on smokers of cigarette mentholation: a review of the evidence relating to key research questions. Regul. Toxicol. Pharmacol. 47, 198–205. doi: 10.1016/j.yrtph.2006.09.004

Wilson, D. (2011). Advisory panel urges F. D. A to re-examine menthol in cigarettes. New York Times, 19th July.

"fphar-04-00095" — 2013/7/21 — 16:36 — page 5 — #5