Experimental investigation and Modeling of Drilling Process Parameters for MRR of Al6061/SiC/Gr composite using RSM

K. Asha, A. Muniappan*, N. Karunagaran and G. Bharathiraja
Department of Mechanical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
E mail: inspire.munish@gmail.com

Abstract: Material removal rate is an important factor in the manufacturing which affect mass production in turn reflects the profitability of the industry. This investigation is engaged to decide the ideal working parameters for the penetrating of Aluminum mixture composite. The crossover metal framework composite was produced by mix throwing process using particulates SiC and graphite each in Al6061 blend. The main cutting parameters, namely, speed of the spindle and rate of feed and types in coolant are considered in this study. In this work, the evaluations are created by a Box Behnken design (BBD) method. The procedural impact parameters on the reactions is assessed and ideal cutting conditions for augment the MRR were resolved utilizing reaction tables, reaction diagrams, collaboration tables, 3-D surface plot sand attractive quality examination. To approve, affirmation tests have been done and anticipated outcomes have been seen as in great concurrence with test discoveries.

1. Introduction
Metal Matrix Composites (MMC) is generally utilized composite materials in aviation, car, hardware and therapeutic ventures. The repetitive issue with MMCs is that they are hard to machine, because of the hardness and grating nature of the fortifying particles. Sharma et al. seen that during boring of graphite fortified aluminum lattice complexes, apparatus HSS life boring apparatus get expanded contrasted with the base amalgam as graphite being strong grease diminishes the erosion on instrument work interface [1-3]. Kunz et al. [4-6] found that fuse of graphite molecule into aluminum MMCs recover the machinability of the mixtures during penetrating of Al/Si Cp, Al/Si Cp–Gr and Al/Al2O3–Gr composite. Muniaraj et al. [7] investigated the boring procedure on Al/20%SiC/5%Gr and Al/20%SiC/10%Gr mixture composites created by vortex approach and inferred that for every acerbic condition, Al/20%SiC/10%Gr composite has lower surface harshness esteems than Al/20%SiC/5%Gr composite. Results demonstrated that incorporation of graphite as extra support in Al/Si Cp-fortified composite decreases the cutting power and further is noticed that more expansion of graphite diminishes the base completion. The present work is to present an effective approach for optimizing drilling parameters with response surface methodology. The experiment was carried out by varying spindle speed, feed rate and changing the coolant fluid. High speed steel was used as drill material. Kerosene, diesel and vegetable oil were used as coolant material. Surface roughness and material removal rate were measured after the experiment. Analyses were planned by reaction surface technique and there were 17 investigations.
2. Experimental work

Aluminum compound of AA6061 is utilized like a grid material. The Graphite (Gr) elements of size 20μm and silicon carbide (SiC) elements of normal size 20μm are utilized as the fortification materials for manufacture. The composites manufacture is completed with fixed amount of 5 wt.% of SiC and with Graphite 5 wt%. The composites were created by utilizing mix throwing strategy at ideal speed which guarantees the uniform dissemination of the fortifications in grid alloy. The explore was led in outspread penetrating machine. The procedure parameters picked dependent on writing study and conversation with subject specialists. The experimental setup was shown in fig 1. The tri controllable parameter level and plan framework are informed underneath in the Table1. Estimation of factual evacuation rate and harshness of surface were noted for each penetrating activity from estimating weight of work piece when the boring procedure. MRR values were spoken to in Table 2.

Real Factors	Parameters	Levels
SS	Spindle speed	300 400 500
FEED	Feed rate	0.20 0.25 0.30
CF	Cutting fluid	kerosene Diesel Vegetable oil

Figure 1. Drilling experimental setup.
3. Result and discussion

3.1. The process parameters effect on material removal rate

A different check for normality assumption is by building a probability which is normal plot residuals. The remaining dispersion is discovered ordinary, as this plot is a straight line appeared in Figure 1. It very well may be seen from Figure 2 & 3 that the anticipated qualities and the real qualities have a direct graph. The reaction surface is plotted to contemplate the impact of procedure factors on the material evacuation rate and is appeared in Figures 4 & 5. Normal probability plot are used to identify the effects of factor and is shown in Figure 4. Based on ‘Central limit theorem’ Normal probability plot is constructed. The procedure for constructing the normal probability plot is given elsewhere. As per the normal probability plot, points which are close to a line fitted to the middle group of points represent estimated factors which do not demonstrate any significant effect on the response variable. The reaction surface is plotted to examine the impact of procedure factors on the material expulsion rate and is appeared in Figures 4 & 5. From the figure 4 & 5, it is seen that MRR increment when the feed rate increases. [8-12]. This is because of volume cleared by the drill excessively directionally relative to bolster rate. Consequently, increment in feed rate builds the MRR.

Table 2. Experimental results MRR

S.NO	Spindle speed	Feed rate	Cutting fluid	MRR
1	400	0.3	kerosene	146.25
2	300	0.2	Diesel	75.16
3	400	0.25	Diesel	124.18
4	400	0.25	Diesel	125.96
5	400	0.2	kerosene	96.24
6	400	0.3	Vegetable oil	152.43
7	400	0.3	Diesel	149.75
8	500	0.2	Diesel	125.41
9	500	0.3	Diesel	191.52
10	400	0.25	Diesel	124.36
11	500	0.25	Vegetable oil	159.75
12	300	0.25	Vegetable oil	93.81
13	300	0.3	Diesel	107.63
14	400	0.3	Vegetable oil	152.43
15	300	0.25	Kerosene	86.79
16	500	0.25	Kerosene	154.79
17	400	0.25	Diesel	124.36
From ANOVA results, it is observed that speed of the spindle and rate of the feed are only the significant parameters on MRR. Cutting fluid is not significant parameter on MRR [13-15].

![Normal Plot of Residuals](image)

Figure 2. Normal plot of residuals.

![Predicted vs. Actual](image)

Figure 3. Predicted vs. Actual value.
3.2. Confirmation experiment

Relapse condition is utilized to anticipate the surface unpleasantness and MRR values. The normal estimations of the attributes were gotten and contrasted and the anticipated qualities. Anticipated and test esteems were plotted and it was appeared in figure 6 for MRR. The variety among exploratory and anticipated qualities were little [16]. So as to approve the outcomes acquired, three affirmation tests were led for every one of the reaction trademark MRR at ideal degrees of the procedure factors. The normal estimations of the qualities were gotten and contrasted and the anticipated qualities. Table 3. gives the estimations of test and anticipated qualities.

Figure 4. Contour plot for MRR.

Figure 5. 3D Surface Graph for MRR.
Table 3. Experimental results MRR.

Standard Order	Actual value	Predicted value
1	125.41	131.38
2	159.75	166.07
3	86.79	80.47
4	124.36	129.72
5	149.75	137.27
6	152.43	140.13
7	124.36	129.72
8	93.81	99.94
9	107.63	101.66
10	125.96	129.72
11	75.16	81.33
12	96.24	96.4
13	152.43	152.28
14	146.25	158.55
15	154.21	148.08
16	124.18	129.72
17	191.52	185.35

Figure 6. Experimental Vs. Predicted MRR.
4. Conclusion

After the trial directed, reaction factors were arranged and examination was led. After the parameters are optimized, ANOVA was performed to decide the general greatness of every parameter. The accompanying ends are drawn from the test examination of penetrating of Al6061-SiC-Graphite half and half metal grid composites. Increment in axle builds the material evacuation rate. Cutting liquid is certainly not a noteworthy parameter on MRR. The material evacuation rate (MRR) could be anticipated viably by applying speed of the spindle, rate of the feed, and kind of cutting liquid and their cooperation in the numerous relapse models. Rate of the feed is the most huge parameter used to foresee the material expulsion rate.

5. References

[1] S C Sharma, B M Girish, R S Kulkarni and R Kamath 1996 Drillability of zinc/graphitic meal matrix composites NMLTech. J. 38 107–11
[2] Kunz J M, Bampton C C 2001 Challenges to developing and producing MMCs for space applications J Materials and Design 53 22–5
[3] Paulo Davim J 2003 Study of drilling metal-matrix composites based on the Taguchi techniques. Journal of Material Processing Technology 1362 250-254
[4] Paulo Davim J 2002 Diamond tool performance in machining metal matrix composites. J Mater Process Techn. 128(100–5
[5] Basavarajappa S, Chandramohan G, Paulo Davim J, Prabu M, Mukund K, Ashwin and PrasannaKumar M 2008 Drilling of hybrid aluminium matrix composites International Journal Advanced Manufacturing Technology 35 1244–50
[6] Muthukrishnan N, Murugan M, Prahladarao K 2008 Machinability issues in turning of Al–SiC (10p) metal matrix composites. International Journal Advanced Manufacturing Technology 39 211–18
[7] Munia Raj A 2014 Experimental investigation and analysis of torque in drilling Al–15%SiC–4% graphite metal matrix composites using response surface methodology Indian Journal of Science and Technology 7 87–94
[8] Prasad SV,Asthana R., 2004 Aluminum metal–matrix composites for automotive applications: tribological considerations Tribology Letters 17 445 – 53.
[9] Tsao C C 2008 Comparison between response surface methodology and radial basis function network for core-center drill in drilling composite materials International Journal Advanced Manufacturing Technology 37 1061–68.
[10] Gupta M and Surappa M K 1997 Effect of interfacial Characteristic on the failure mechanism mode of SiC Reinforced aluminum based MMC Journal of Material Processing Technology 67 94-99.
[11] Karnik S R, Gaitonde V N, Campos Rubio, J Esteves Correia, A Abrão, A M Paulo Davim J 2008 Delamination Analysis in High Speed Drilling of Carbon Fiber reinforced Plastic (CFRP) Using Artificial Network Model Experimental and Statistical Study Materials Design 24 315-324.
[12] Tsao C and Hocheng H 2007 Effects of Specials Drills Bits on Drilling-induced Delamination of Composite Materials Int. Journal of Mechanical Tools Manufacture 46 1403-16.
[13] A Manna, B Bhattacharya 2003 A Study of machinability of Al–SiC-MMC J. Mater. Process. Technol 140 711–716
[14] K Palanikumar and J PauloDavim 2009 Assessment of some factors influencing tool wear on the machining of GlassFibre-reinforced Plastics by Coated Cemented CarbideTools , J. Mater. Process. Technol. 209 511–19
[15] L Savadamuthu, S Muthu and P Vivekanandan 2012 Optimization of Cutting Parameters for turning Process using Genetic Algorithm, *Eur J Sci Res*. **69-1** 73-80

[16] S C Sharma, B M Girish, R S Kulkarni and R Kamath 1996 Drillability of zinc/graphitic meal matrix composites *NMLTech. J*. **38** 107–111