Title: Rituximab and Pyoderma Gangrenosum. An investigation of disproportionality using a systems biology-informed approach in the FAERS Database.

Running Title: An investigation of risk using a systems biology approach in the FAERS Database.

Authors and affiliations:
Hillen JB*, Stanford T*, Ward M.1,2, Roughead EE1, Kalisch Ellett L1, Pratt N1.

1. Quality Use of Medicines and Pharmacy Research Centre, Clinical and Health Sciences, University of South Australia.
2. Pharmacy Education, Clinical and Health Sciences, University of South Australia.

Corresponding author: JB Hillen (Jodie.hillen@unisa.edu.au OR 0438 749 092, University of South Australia, Adelaide 5000. Australia). ORCID: 0000-0001-9296-9397.
Drug names in FAERS are not standardised. Fuzzy string matching of drug names (whether they be generic or branded), drug synonyms and misspellings which may include superfluous text is therefore required to ensure appropriate capture of AEs related to drugs of interest. The R package fuzzyfaers performs fuzzy string matching of drug names using as sequence of steps outlined in Figure A1.

Initially, for a given drug of interest, the comprehensive and freely available data provided by OHDSI (Observational Health Data Sciences and Informatics) common data model (CDM) vocabulary files are used to find drug synonyms automatically. OMOP Common Data Model – OHDSI. Then the FAERS data are queried to find potential valid drug representations. Potential matches are extracted from the database if they meet any of the following non-restrictive criteria for any of the synonyms of the drug: (a) within a soundex distance of two, (b) the first three letters are contained anywhere in the potential match, or (c) the last three letters are contained anywhere in the potential match. This list of potential matches containing many false positives are then read into R [3] allowing more a sophisticated assessment of drug name matches using a classification boundary based on regular expressions and full Damerau-Levenshtein distance [4]. An example of accepted and rejected potential matches is provided in Figure A2. From this list of drug matches, a manual review of the match statuses is undertaken (importantly, blinded to the AEs they are associated with) to finalise the records extracted from FAERS for the given drug.

Expert intervention is required to validate matches and non-matches found by fuzzyfaers (made more efficient by ordering by frequency and fuzzy matching similarity) prior to analysis of the captured data.

The instructions to install fuzzyfaers and the related infrastructure is available at https://github.com/tystan/fuzzyfaers

Figure A1: Schematic of the fuzzy matching process to obtain FAERS records associated with a given drug
Figure A2: Example fuzzy matching classification boundary based on regular expression matching and full Damerau-Levenshtein distance for “Abatacept” prior to manual verification.
Appendix B: Comparator medicines.

Table B1: Comparator medicines for main analysis.

Chemical: mAbs	Pharmacological: CD20s	Indication
abciximab	obinutuzumab	abatacept, alemtuzumab, acalabrutinib
adalimumab	ocrelizumab	acetaminophen, amifampridine, axicabtagene ciloleucel
alemtuzumab	ofatumumab	adalimumab, anthralin, bendamustine
basiliximab	rituximab	anakinra, apremilast, bortezomib
bevacizumab	tositumomab	anthralin, baclofen, brentuximab vedotin
certolizumab pegol		apremilast, cladribine, carboplatin
cetuximab	baricitinib	corticosterin, cisplatin
daclizumab	canakinumab	daclizumab, cyclophosphamide
golimumab	celecoxib	dalfampridine, cytarabine
infliximab	certolizumab pegol	dimethyl fumarate, dexamethasone
ixekizumab	corticostatin	dirosmel fumarate, doxorubicin
natalizumab	cyclosporine	fingolimod, filgrastim
obinutuzumab	denosumab	gabapentin, fludarabine
ocrelizumab	illofosin	glatiramer, gemcitabine
ofatumumab	etanercept	glatiramer, idelalisib
omalizumab	golimumab	glatiramer acetate, ibrutinib
palivizumab	hydroxychloroquine	immunoglobulin g, idelalisib
ranibizumab	ibuprofen	interferon beta-1a, felenalidomide
sarilumab	infliximab	interferon beta-1b, methotrexate
tocilizumab	ixekizumab	methylprednisolone, nivolumab
trastuzumab	teflunomide	mitoxantrone, obinutuzumab
ustekinumab	meloxicam	natalizumab, ofatumumab
	methotrexate	ocrelizumab, oxaliplatin
	methylprednisolone	peginterferon beta-1a, pegfilgrastim
naproxen	pregabalin	polatuzumab vedotin
prednisolone	siponimod	prednisolone
prednisone	teriflunomide	prednisone
pregabalin	procarbazine	
sarilumab	tisagenlecleucel	
secukinumab	venetoclax	
simethicone	vincristine	
sulfasalazin		
Table of Treatment Agents

	tacrolimus	
	teriparatide	
	tocilizumab	
	tofacitinib	
	upadacitinib	
	ustekinumab	

Numbers were too small (<3) for stratification by chemical or pharmacological characteristics for CD20s in RA, MS, or NHL.