PAT4 levels control amino-acid sensitivity of rapamycin-resistant mTORC1 from the Golgi and affect clinical outcome in colorectal cancer

S-J Fan1,3, C Snell2,3, H Turley2, J-L Li2, R McCormick2, SMW Perera1, S Heublein1, S Kazi1, A Azad1, C Wilson1, AL Harris2 and DCI Goberdhan1

Tumour cells can use strategies that make them resistant to nutrient deprivation to outcompete their neighbours. A key integrator of the cell’s responses to starvation and other stresses is amino-acid-dependent mechanistic target of rapamycin complex 1 (mTORC1). Activation of mTORC1 on late endosomes and lysosomes is facilitated by amino-acid transporters within the solute-linked carrier 36 (SLC36) and SLC38 families. Here, we analyse the functions of SLC36 family member, SLC36A4, otherwise known as proton-assisted amino-acid transporter 4 (PAT4), in colorectal cancer. We show that independent of other major pathological factors, high PAT4 expression is associated with reduced relapse-free survival after colorectal cancer surgery. Consistent with this, PAT4 promotes HCT116 human colorectal cancer cell proliferation in culture and tumour growth in xenograft models. Inducible knockdown in HCT116 cells reveals that PAT4 regulates a form of mTORC1 with two distinct properties: first, it preferentially targets eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1), and second, it is resistant to rapamycin treatment. Furthermore, in HCT116 cells two non-essential amino acids, glutamine and serine, which are often rapidly metabolised by tumour cells, regulate rapamycin-resistant mTORC1 in a PAT4-dependent manner. Overexpressed PAT4 is also able to promote rapamycin resistance in human embryonic kidney-293 cells. PAT4 is predominantly associated with the Golgi apparatus in a range of cell types, and in situ proximity ligation analysis shows that PAT4 interacts with both mTORC1 and its regulator Rab1A on the Golgi. These findings, together with other studies, suggest that differentially localised intracellular amino-acid transporters contribute to the activation of alternate forms of mTORC1. Furthermore, our data predict that colorectal cancer cells with high PAT4 expression will be more resistant to depletion of serine and glutamine, allowing them to survive and outgrow neighbouring normal and tumorigenic cells, and potentially providing a new route for pharmacological intervention.

Oncogene (2016) 35, 3004–3015; doi:10.1038/onc.2015.363; published online 5 October 2015

INTRODUCTION

During cancer growth, tumour cell adaptation is driven by adverse microenvironmental conditions such as hypoxia and starvation.1 Mechanistic target of rapamycin complex 1 (mTORC1) responds to both local nutrient status and growth factor signalling through phosphatidylinositol 3-kinase to regulate protein synthesis and cellular homeostasis, thereby modulating cancer cell growth, metabolism and metastasis.2–4 However, attempts to block tumour growth using the allosteric mTOR inhibitor rapamycin or its analogues have met with limited success.5 Although these drugs strongly reduce signalling to one of the two well-characterised mTORC1 targets, ribosomal protein p70-S6 kinase 1 (S6K1), they often have more limited effects on the other, eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1), a negative regulator of eukaryotic initiation factor 4E (eIF4E)6–7 implicated in metastatic growth.8,9 This resistance can sometimes be circumvented by using adenosine triphosphate (ATP)-competitive mTOR inhibitors,2–7 which also block the other mTOR kinase-containing complex, mTORC2. Nonetheless, how changes in mTOR structure10 or mTOR regulators modulate rapamycin sensitivity remains of considerable interest.

Members of the proton-assisted amino-acid transporter (PAT) or solute-linked carrier 36 (SLC36) family11 were identified as positive regulators of growth and mTORC1 signalling through an in vivo genetic overexpression screen in flies.12,13 These effects were shown to be conserved by characterisation of the two ubiquitously transcribed human PATs, PAT1 (SLC36A1) and PAT4 (SLC36A4).14 The prototypic PAT family member, PAT1, is a lysosomal amino-acid transporter (AAT).15,16 In rapidly growing cells, it is located at the surface of nutrient-rich late endosomal and lysosomal (LEL) compartments,13 where mTOR accumulates in response to amino-acid stimulation. The recruitment of mTOR requires assembly of a multiprotein complex, which includes Raptor, a heterodimeric pair of Ras-related Rag GTPases, the pentameric Ragulator, and the vacuolar-H+-ATPase proton pump at the compartment surface (reviewed in Bar-Peled and Sabatini2 and Malik et al.2,3). PAT1 also interacts with this complex to promote mTOR localisation on LELs and

1Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK and 2Molecular Oncology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK. Correspondence: Dr DCI Goberdhan, Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford OX1 3QX, UK. E-mail: deborah.goberdhan@dpag.ox.ac.uk
2These authors contributed equally to this work.

Received 30 March 2015; revised 14 August 2015; accepted 28 August 2015; published online 5 October 2015
subsequent mTORC1 signalling. Amino-acid sensing by the PATs may involve transport or signalling via a so-called ‘transceptor’ mechanism. \(^4,13,17\)

Recent studies have identified an AAT in the related SLC38 family, SLC38A9, which also interacts on LELs with the mTORC1-regulatory machinery, potentially in response to arginine, \(^18,19\) suggesting that different LEL-located, mTORC1-regulatory AATs may sense different amino acids. Furthermore, the identification of molecules such as Golgi-localised Rab1A, \(^20\) and ADP ribosylation factor Arf1 \(^21\) and phospholipase D \(^22,23\) as regulators of Rag-independent, mTORC1 activation, suggests that other amino-acid-sensing mechanisms remain to be discovered.

Here we investigate PAT4 function in colorectal cancer. Colorectal cancers are frequently rapamycin-resistant \(^6\) and often metastatic, seriously impacting on clinical outcome. \(^24,25\) We show that PAT4 upregulation is associated with cancer progression. By using an inducible PAT4 shRNA knockdown in HCT116 colorectal cancer cells, we find that PAT4 responds to two rapidly metabolised, non-essential amino acids, glutamine and serine, \(^26,27\) to drive rapamycin-resistant, mTORC1-mediated cell proliferation. Furthermore, we provide evidence that PAT4 interacts with Rab1A and mTORC1 on the Golgi, suggesting a role in amino-acid-sensing from this compartment.

RESULTS

Validation of a novel PAT4 monoclonal antibody

We generated a highly specific mouse monoclonal antibody against PAT4 (antibody Pat4/9/H10). Staining with this antibody revealed that PAT4 was localised to an asymmetric perinuclear region in formalin-fixed, paraffin-embedded 786-O renal cancer cells and from a GFP-PAT4-overexpressing HEK-293 cell line treated with PNGase F before electrophoresis to remove glycosyl groups. This resolves the crossreacting molecules seen in untreated cell lysates into more specific bands migrating at ~30 and 50 kDa, respectively, smaller than the predicted molecular weights of 55 kDa (PAT4) and 85 kDa (GFP-PAT4), a phenomenon also reported for other transmembrane proteins. \(^43\)

High PAT4 expression is associated with poor outcome in colorectal cancer patients

To test whether PAT4 expression is altered in human colorectal cancer, we stained primary tumour tissue microarrays from 107 patients, who had been treated by surgical resection only. The intensity of cytoplasmic staining was scored by a pathologist (CS) into three categories (Figures 2a and b; see Materials and methods), all of which were higher than normal colorectal epithelium. Statistical analysis showed no association between...
high PAT4 expression and standard clinical or pathological variables, including site of tumour, tumour stage, nodal or distal metastases, age, lymphatic, vascular or neural invasion, differentiation or gender (Supplementary Table S1).

In univariate analyses, high PAT4 levels (P = 0.01) as well as high tumour stage (P < 0.01), tumour stage score (P < 0.01), the presence of bowel perforation (P = 0.02), neural invasion (P < 0.01), nodal (P < 0.01) and synchronous metastasis (P < 0.01) significantly correlated with shorter relapse-free survival (Supplementary Table S2). Patients with cancers that had higher PAT4 expression had a significantly shorter mean relapse-free survival compared with those with lower levels (P < 0.01; Figures 2c and d). Additionally, higher PAT4 levels showed statistical significance in multivariate survival analysis (P < 0.01; Supplementary Table S3). The multivariate model included all variables significantly associated with relapse in univariate analysis, apart from overall stage, as this is calculated from tumour stage (T), nodal metastases (N) and distant metastases (M) stages. We conclude that increased PAT4 levels are associated with worse prognosis in patients with colorectal cancer.

PAT4 regulates HCT116 cell proliferation

To analyse PAT4 function in HCT116 colorectal cancer cells, we generated stably transduced cell lines, each carrying one of three different lentiviral constructs expressing a PAT4 short hairpin RNA (shRNA) under isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible control. For each construct, pooled cells representing many individual transduction events had reduced PAT4 transcript levels, as determined by quantitative real-time PCR.
PAT4 controls the amino-acid sensitivity of mTORC1 from the Golgi
S-J Fan et al
Oncogene (2016) 3004 – 3015

Figure 3. PAT4 regulates the growth of HCT116 cells in vitro and in vivo. (a) Proliferation of clones of HCT116 cells stably transduced with one of two independent IPTG-inducible shRNA constructs targeting PAT4, namely shPAT4(4.8) and shPAT4(7.1), or the IPTG-inducible non-targeting control construct (shNT) was measured in the presence and absence of IPTG (n = 3). (b) and (c) Mean growth curves (± s.e.m.) of human HCT116 tumour xenografts in immunodeficient mice carrying pools of cells transduced with shNT (b) with (empty circles) or without (filled squares) IPTG induction, or shPAT4-transduced HCT116 cells (c) with (empty squares, outlined in red) or without (filled squares) IPTG induction (n = 7). Data in (b) and (c) were analysed by unpaired two-tailed independent Student’s t-test. (d) and (e) Kaplan–Meier survival curves of seven animals with and without IPTG induction of shNT (d) and shPAT4-containing (e) HCT116 tumours; log-rank (Mantel–Cox) test: *P = 0.019 for (e). For shPAT4-inducible cells, all but one of the seven non-induced mice (filled squares) needed to be killed within 36 days (median survival time of 36 days), whereas all seven induced mice (empty squares, outlined in red) were killed from 38 days onwards with a median survival time of 50 days. Cell proliferation experiment was repeated three times. *P < 0.05, **P < 0.01.

PAT4 promotes human tumour growth in xenograft models
To assess the role of PAT4 in tumour growth, pooled clones of HCT116 cells carrying shPAT4(49 384) and shPAT4(49 387), were selected for further study. To induce a uniformly strong PAT4 knockdown, single-cell clones were isolated from another shRNA transduction, and named shPAT4(4.8) and shPAT4(7.1), respectively (Supplementary Figure S1B). In vitro culture of these clones together with HCT116 cells containing an IPTG-inducible, non-targeting shRNA (shNT) gene revealed that IPTG induction specifically inhibited proliferation of shPAT4-expressing cells (P < 0.05; Figure 3a) with no significant effect on cell death (Supplementary Table S4).

PAT4 regulates a rapamycin-resistant form of mTORC1
To determine how PAT4 knockdown might inhibit tumour growth, we analysed mTORC1 signalling in stably transfected HCT116 clones carrying inducible PAT4 shRNAs, shPAT4(4.8) and shPAT4(7.1), and in the non-targeting clone, shNT. PAT4 protein is expressed at much lower levels in HCT116 cells compared with 786-O cells, thus lysates from large pools of HCT116 cells were pretreated with PNGase F to detect PAT4, which resolved into a specific 30 kDa band that was clearly reduced after IPTG addition in knockdown cells (Figures 4a and b).

IPTG-induced PAT4 knockdown selectively reduced the most highly phosphorylated form of 4E-BP1, designated the γ-band on western blots, whereas levels of less phosphorylated forms increased (Figures 4c and f). Human 4E-BP1 has at least eight phosphorylation sites. Phosphorylation of 4E-BP1 at Ser65, a key phosphorylation site, is strongly decreased by PAT4 knockdown. In contrast, overall phosphorylation of p-T37/46-4E-BP1 was maintained, but phosphorylation of this residue (p-S65-4E-BP1) was strongly decreased by PAT4 knockdown selectively. Induction of PAT4 knockdown either had no effect on S6K1 (p-T389-S6K1) and S6 (p-S240/244-S6) phosphorylation (Figures 4c and d), or sometimes led to a modest reduction in p-S240/244-S6 (e.g., Figure 5a and Supplementary Figure S2C).

To confirm that PAT4 knockdown was not altering 4E-BP1 phosphorylation by inhibiting upstream phosphatidylinositols 3-kinase/Akt signalling, levels of phosphorylated mTORC2-regulated Akt (p-S473-AKT) were assessed; no change was observed (Figures 4c and d). Phosphorylation of extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (p-T202/Y204-ERK) by oncogenic forms of KRAS has also been associated with resistance to mTOR kinase inhibitors in colorectal...
PAT4 controls the amino-acid sensitivity of mTORC1 from the Golgi
S-J Fan et al

...reproduced in three separate experiments. An anti-tubulin antibody as a loading control. Effects were essentially unaffected by PAT4 (p-S473-AKT) and phospho-ERK (p-T202/Y204-ERK) levels are phosphorylated versus the S6K/S6 signalling arm of the mTORC1 pathway.

Oncogene (2016) 3004 – 3015 © 2016 Macmillan Publishers Limited
compared with either treatment alone (Figures 6d and e), supporting our conclusion that these amino acids are sensed by PAT4-regulated, rapamycin-resistant mTORC1.

Golgi-localised PAT4 interacts with mTORC1
Immunofluorescence staining of HCT116 cells revealed that PAT4 is concentrated on and adjacent to the trans-Golgi network (Figure 7a). A similar localisation was observed in 786-O cells (Supplementary Figure S5A). A previous report also suggested that overexpressed PAT4 in HEK-293T cells is not on LELs.32

Interestingly, although under normal culture conditions, most mTOR is localised around the LELs, some colocalisation with the trans-Golgi network was also observed (Figure 7b), raising the possibility that it might be associated with PAT4 in this compartment.

To investigate this further, we used rapamycin-resistant HEK-293 cells expressing GFP-tagged PAT4 (Figure 5d). GFP-PAT4 also localised on and around the trans-Golgi network (Figure 8a). Golgi-localised Rab1A, a monomeric GTPase involved in membrane trafficking events, has recently been implicated in amino-acid-dependent activation of mTORC1 from the Golgi.20 We tested
whether Rab1A might interact with PAT4. We used the proximity ligation assay (PLA), which detects specific protein–protein interactions in situ, when antibodies recognising these molecules are in close proximity. Although anti-Rab1A staining primarily localised to the cis-Golgi (Figure 8b), Rab1A and GFP antibodies produced a PLA signal on an adjacent compartment (Figure 8c), which was not present in cells that did not express GFP-PAT4 (Supplementary Figure S5B). This signal frequently overlapped with GFP-PAT4 and was partly within the trans-Golgi network (Figure 8d), suggesting that Rab1A and PAT4 can interact on the Golgi. In addition, PLA using either anti-mTOR (Figure 8e) or anti-Raptor (Figure 8f and Supplementary Figure S5C) antibodies with anti-GFP also produced a specific signal primarily in GFP-PAT4-containing compartments that included the trans-Golgi network. This indicates that mTORC1 interacts with PAT4 on the Golgi, consistent with the idea that PAT4 can regulate mTORC1 activity from this compartment.

DISCUSSION

Although resistance of mTORC1 to inhibitors can be partly explained by differential in vitro sensitivity of substrate target sites, increasing evidence indicates there are also different mTORC1 complexes in cancer cells, which may make them differentially sensitive to drugs such as rapamycin. In this study, we demonstrate that PAT4 regulates rapamycin-resistant mTORC1 in HCT116 cells and can induce increased rapamycin resistance when overexpressed in HEK-293 cells. PAT4 and rapamycin-resistant mTORC1 are essential for normal cell proliferation in vitro. Furthermore, PAT4 expression levels are predictive of early relapse in colorectal cancer, suggesting a pathophysiological role in the acquisition of more aggressive tumour phenotypes.

Our findings support a model in which rapamycin-resistant and -sensitive forms of mTORC1 can be independently controlled, and provide a new genetic tool to separate these two signalling functions (Figure 9). Rapamycin-resistant mTORC1 selectively, but...
PAT4 controls the amino-acid sensitivity of mTORC1 from the Golgi
S-J Fan et al

not exclusively, regulates 4E-BP1 hyperphosphorylation, which is also specifically targeted by P53 activation in murine erythroleukemia cells, further supporting the idea that it is a distinct complex. However, this selective effect (Figure 4 and Supplementary Figure S2C) is not universal. In other cell types, PAT4 primarily appears to regulate an mTORC1 complex controlling 4E-BP1 and S6K (Supplementary Figure S3; Heublein et al.), suggesting that cell-type-specific regulatory factors or PAT4 expression levels modulate this transporter’s specificity in controlling mTORC1. Indeed, it is only upon PAT4 overexpression that HEK-293 cells exhibit detectable PAT4-dependent rapamycin resistance (Figure 5d).

It has been suggested that PAT4 regulates mTORC1 signalling by transporting amino acids across the plasma membrane. However, this seems unlikely in our cell models for three reasons: first, cell surface PAT4 protein levels are very low (Figures 1a, 7 and 8); second, PAT4 appears to be a low-capacity transporter; third, it is difficult to explain how a cell surface transporter might affect only rapamycin-resistant mTORC1. We favour a model where PAT4 interacts with mTOR on the Golgi, although it may also regulate mTORC1 from other subcellular compartments.

Our study also revealed selective sensitivity of the mTORC1 target 4E-BP1 in HCT116 cells to reduction of two non-essential amino acids, glutamine and serine, but not to the mTORC1 regulator leucine, whose intracellular levels can be modulated by glutamine. The Arf1 GTPase, which regulates trafficking in multiple compartments, including the Golgi, has also recently been implicated in glutamine sensing by mTORC1. A key question is whether PAT4 and Arf1 are involved in a common mTORC1-regulatory mechanism. As PAT4’s amino-acid specificity is different to arginine-sensitive, mTORC1-regulatory SLC38A9 and PAT1, and PAT4, it seems likely that a range of AATs may determine the sensitivity of mTORC1 to different amino acids. The unique N-terminal domain of SLC38A9 appears to bind the Ragulator complex with higher affinity compared with other transporters. SLC38A9 also interacts at lower affinity with the vacuolar-H+ ATPase through sequences including its transmembrane domains, which share similarity with other SLC38 and SLC36 (PAT) family members. This may explain why several of these transporters can regulate mTORC1, but some, such as PAT4, cannot pull down other mTORC1 supercomplex components, even though PLA indicates they interact in situ.

The PAT4-dependent sensitivity of 4E-BP1 hyperphosphorylation to 4h of glutamine or serine starvation probably reflects the rapid metabolism of these two non-essential amino acids in HCT116 cells. Despite its name, when heterologously expressed in Xenopus oocytes, PAT4 can transport amino acids via a non-proton-coupled mechanism. It appears to have a very high substrate affinity, but low capacity, for proline and tryptophan. Several other amino acids, including glutamine and serine, bind with lower affinity, and can compete with high-affinity PAT4 substrates, although they may not be transported. This could provide a transport-independent, amino-acid-sensing ‘transceptor’ mechanism, in keeping with previous suggestions for the PATs. Cells would become more resistant to depletion of highly metabolised amino acids by expressing more PAT4, explaining the clinical data from colorectal cancer patients.

In conclusion, our study suggests that pharmacological inhibition of an upstream mTORC1 activator such as PAT4 in colorectal cancer could complement the actions of rapamycin, by blocking a rapamycin-resistant, 4E-BP1-selective pathway. PAT4 may also provide a new biomarker for more aggressive colorectal tumours that are rapamycin-resistant.

MATERIALS AND METHODS

Cell culture

HCT116 cells were cultured in McCoy’s 5A modified medium (Gibco, Invitrogen, Paisley, UK) containing 10% foetal calf serum (Gibco, Invitrogen), unless otherwise specified. The 786-O and HEK-293 cells were cultured in 10% foetal calf serum-containing Dulbecco’s modified Eagle’s medium. Cells were incubated at 37°C in 5% CO2. Rapamycin treatment was carried out 24 h after seeding. Cells were treated for 24 h typically, or 72 h for cell proliferation analysis, with 3 nM (HCT116) or 100 nM (HEK-293) rapamycin, diluted from a stock solution in dimethyl sulfoxide (R8781; Sigma, Gillingham, UK), or as specified for dose–response curves. Founder cell lines were obtained from ATCC (LG1 Standards, Teddington, UK) and used within 6 months of resuscitation (<25 passages). si435 used to knockdown PAT4 expression and the scrambled control siRNA (Figure 1) were previously described in Heublein et al.

Inducible shRNA-expressing lentiviruses

Sigma Mission lentiviral particles carrying the following clones: TRCN0000043984, 5'-CCGCGCTGGTAAAGTACGACAGTTCTCGAGAATCTCGTCTCAATTATCAAGAGTGTGGTTTG-3' (referred to as shPAT4(43 984)); TRCN0000043985, 5'-CCGCGCTGGGAGAAGTACGACAGTTCTCGAGAATCTCGTCTCAATTATCAAGAGTGTGGTTTG-3' (shPAT4(43 985)); TRCN0000043986, 5'-CCGCGCAGTATGTGACGGAAGTACGACAGTTCTCGAGAATCTCGTCTCAATTATCAAGAGTGTGGTTTG-3' (shPAT4(43 986)) and a non-targeting control construct (SHC312; shNT) in the pPTG-inducible lentiviral vector pLKO.1PPTG. 1xLacO were transduced into HCT116 cells. Although shPAT4(43 984) partially overlaps with siRNA (435), shPAT4(43 985) and (43 986) have no overlap with previously used siRNAs. For most experiments, clone shPAT4(7.1) produced a stronger knockdown compared with clone shPAT4(4.8), with greater effects on proliferation and mTORC1 signalling.
Generation and induction of shRNA lines

Cells were transduced with lentiviral vectors at a multiplicity of infection of three (viral particles to cells) in the presence of polybrene. Puromycin selection began 2 days after transduction to generate pools of cells derived from multiple transduction events. Single-cell clones were isolated soon after transduction using the limiting dilution method. IPTG (100 μM) was added for induction. IPTG-treated cells were preinduced for 5 days before plating.

Figure 8. PAT4 interacts with Rab1A and mTORC1 on the Golgi. (a) GFP-PAT4 fusion protein (green) in HEK-293 cells shows a similar subcellular localisation to HCT116 cells on the trans-Golgi (TGN46; red). An alternative cell at higher resolution is stained with the same markers in (d). (b) Rab1A (blue) is localised primarily on the cis-Golgi, labelled by the GM130 marker (red). (c) In situ PLA (red) reveals interaction between Rab1A (blue) and GFP-PAT4 (green) primarily associated with GFP-PAT4-containing compartments (overlap between GFP-PAT4 and PLA signal is yellow in merge, top right panel; arrow). The PLA signal is also adjacent and partially overlapping with compartments on which Rab1A is concentrated in merge of Rab1A and PLA, bottom right panel. Rab1A/PAT4 PLA signals are only observed in GFP-PAT4-expressing cells (see Supplementary Figure S5B). (d) Some of the GFP-PAT4/Rab1a PLA-positive interacting compartments (red) also appear to be partly or entirely labelled by trans-Golgi network marker TGN46 (blue; arrow), but not trans-Golgi regions lacking GFP-PAT4. (e) PLA (red) reveals an interaction between mTOR (blue) and GFP-PAT4 (green) partially overlapping with GFP-PAT4-containing compartments (yellow in merges containing green and red channels, including magnified image in top right panel; arrow). In the low magnification merge image, the two upper cells not expressing GFP-PAT4 do not give a PLA signal, indicating that this assay specifically detects the GFP-PAT4/mTOR interaction. Blue and red channel merge (lower right-hand panel) reveals that mTOR staining is often in close proximity to PLA signal, but is also found in many other locations within the cell. (f) PLA (red) reveals an interaction (red) between Raptor and GFP-PAT4 (green), in and adjacent to compartments containing GFP-PAT4 (yellow overlap in merges containing green and red channels, including magnified image in top right panel; arrow and arrowheads). Blue and red channel merge (lower right-hand panel) reveals that some PLA signals are adjacent or partially colocalise with the trans-Golgi (TGN, blue; arrowheads), whereas others do not (arrow). Raptor/GFP-PAT4 PLA signals are only observed in GFP-PAT4-expressing cells (see Supplementary Figure S5C). DAPI marks the nucleus in (a) (blue) and (b–f) (white) in the merge. Confocal channels are indicated as follows in the merged images: green (G), blue (B) and red (R). Scale bars are 5 μm.
Rapamycin-sensitive mTORC1

Amino acids	Other
PP242	rapamycin
4E-BP1	S6K
eIF4E	

Rapamycin-resistant mTORC1

Amino acids	Other
PP242	rapamycin
4E-BP1	S6K
eIF4E	

Figure 9. Schematic diagrams of rapamycin-sensitive and -resistant mTORC1 complexes in HCT116 cells. S6K and 4E-BP1, a negative regulator of eukaryotic initiation factor 4E (eIF4E), are the best characterised downstream targets of mTORC1. Although rapamycin treatment strongly inhibits S6K phosphorylation, it has a weaker effect on 4E-BP1 γ-band phosphorylation at Ser65. Less phosphorylated forms of 4E-BP1 bind to eIF4E, leading to translational repression. Reducing PAT4 activity primarily affects the rapamycin-resistant form of mTORC1. This leads to a reduction in a Ser65-phosphorylated form of 4E-BP1, but has less effect on S6K phosphorylation. Other AATs in the SLC36 (PAT) and/or SLC38 family are likely to be involved in rapamycin-sensitive mTORC1 regulation, for example, PAT1 and SLC38A9. PP242 is an mTORC1 ATP-kinase inhibitor that acts on both the rapamycin-sensitive and -resistant forms of mTORC1. Arrows signify positive signals and cross-bars mark inhibitory signalling events.

Amino-acid starvation media
Medium was based on Dulbecco's modified Eagle's medium (11995-065; Invitrogen), but made pH 7.0, so that different amino acids could be omitted individually. For glutamine, a medium lacking this amino acid was already available (McCoy's 5A without glutamine (M8403; Sigma)). Cells were starved of amino acids for 4 h.

Generation of GFP-PAT4 stable cell line
The PAT4 open reading frame from IMAGE Clone ID:531323 was recombined into a POPINE vector containing an in-frame C-terminal GFP sequence (POPINE-GFP; gift from J Beale and S Newstead). The following errors in the PAT4 cDNA sequence (compared with the annotated transcript sequence) were corrected using the Quickchange Site-Directed Mutagenesis Kit (Invitrogen): I209L (ATA -> GTA), H736P (ICT -> CAT) and J429L (ATA -> GTA). The PAT4-GFP fusion was amplified by PCR and cloned into pcDNA3.1 (+) vector at the KpnI and XbaI sites. Amplified PAT4 and GFP open reading frames were recloned into pcDNA3.1 (+) as a GFP-PAT4 fusion. HEK-293 cells were transfected with this construct or the empty pcDNA3.1 (+) vector using Lipofectamine 2000 (Invitrogen). Stably transfected cells were selected 48 h later using 800 μg/ml Geneticin (Gibco, Invitrogen), as described in Heublein et al. 14

Xenograft studies
All protocols were carried out under Project Licence 30/2771 following Home Office regulations 35 using 6–7-week-old female BALB/c SCID nu/nu mice (Harlan Sprague Dawley Inc., Bicester, UK). A total of 2.5 × 10^6 HCT116 cells in 50 μl serum-free medium and 50 μl Matrigel (BD Bioscience, Oxford, UK) were subcutaneously injected into one flank (seven mice per group; animals not randomized and investigator not blinded; numbers were based on previous xenograft studies). In all, 10 μM IPTG (Carbosynth Inc., Compton, UK) was added to drinking water of treated mice. Tumour growth was measured three times a week using calipers and volume calculated from the formula 1/2 length x width x height. The experiment was repeated and produced similar significant reductions in growth and effects on survival time.

Quantitative real-time PCR
RNA extraction and quantitative real-time PCR were carried out as described previously, 14 with Ct values for PAT4 normalised against the HPRT1 housekeeping gene.

PAT4 controls the amino-acid sensitivity of mTORC1 from the Golgi
S-J Fan et al

Cell proliferation analysis
Cell proliferation experiments, each using a minimum of three wells, were repeated three times. Where statistically significant results were found, these were observed on all occasions. Cells were counted according to the methodology described in Heublein et al. 14

Western blots
Protein lysates were routinely loaded on 10% polyacrylamide gels. For immunoblotting, the following primary antibodies were used at recommended dilutions: phospho-S6KThr380 (Cell Signalling Technology, Hitchin, UK) (CST; no. 9205), S6K1 (CST; no. 9202), phospho-Ser240/244-ribosomal S6 protein (CST; no. 2215), S6 ribosomal protein (CST; no. 2217), phospho-Ser65-4E-BP1 rabbit polyclonal (CST; no. 9451), 4E-BP1 (CST; no. 9644), phospho-Ser473-Akt (CST; no. 4695), phospho-Thr202/Tyr244-p47 Akt (CST; no. 9272), phospho-p70S6KThr (CST; no. 4470), p47/p-akt-mitogen-activated protein kinase (Akt1/2; CST; no. 4693) and α-tubulin (Sigma; no. T6199). They were detected with secondary antibodies (Promega, Southampton, UK; nos. W401B and W402B) and visualised using the SuperSignal West Pico Chemiluminescent Substrate Kit (Thermoscientific, Loughborough, UK). PAT4 was deglycosylated with PNGase F (New England Biolabs, Hitchin, UK; no. P0704) according to the manufacturer’s instructions.

Generation of PAT4 monoclonal antibody
A monoclonal antibody against PAT4 was created by immunising mice with a keyhole limpet haemocyanin-conjugated, cysteine-coupled peptide (Severn Biotech Ltd., Kidderminster, UK) based on an antigenic amino-acid sequence within the N terminus of PAT4 (REELMMDVRMLINE-C).

Immunohistochemistry
The following commercial primary antibodies were used: mTOR (CST; no. 9283; 1/100), LAMP2 mouse monoclonal (Abcam, Cambridge, UK; ab25631; 1/100), TGN46 sheep polyclonal (Novus Biologicals, Abingdon, UK; NB11-40767; 1/200), Rab1a rabbit monoclonal (CST; no. 13075; 1/100), GFP mouse monoclonal (Abcam; ab1218; 1/100), GM130 mouse polyclonal (Novus Biologicals; H00002801-B01P; 1/25), Raptor rabbit polyclonal (Merck Millipore, Watford, UK; 09-217; 1/100) and secondary antibodies raised in donkey (Jackson ImmunoResearch, West Grove, PA, USA; 1/500). Cells were processed and imaged as described in Ogmundsdottir et al. 13 and Sancak et al. 50 PLAs were performed using the Duolink In Situ Orange Starter Mouse/Rabbit Kit (DUO92102; Sigma) according to the manufacturer’s instructions.

For patient samples, slides were deparaffined and rehydrated with antigen retrieval performed using citrate buffer pH 6.0 (Sigma-Aldrich, Gillingham, UK) and a pressurised deparaffinising chamber (Biocare Medical, Concord, CA, USA). The intensity of cytoplasmic staining was assessed by a pathologist (CS) on a semiquantitative scale from 0 to 3. High levels of expression in tumour sections were scored 3, and lower levels of expression scored 0, 1 or 2.

Immunohistochemistry was carried out as described previously. 41 Paraffin-embedded tissue blocks from formalin-fixed tumour samples were sectioned, deparaffinised and rehydrated using standard techniques and 4 μm sections.

Patient material
Formalin-fixed and paraffin-embedded tissue was obtained with informed consent from 111 patients with colon cancer treated by surgical resection at the John Radcliffe Hospital (Oxford, UK) from 1997 to 2000. The sample size was limited to 107 by availability of tissue with full clinicopathological data, follow-up data and ethics approval. Use of tissue in this project was approved by the Oxford Centre for Histopathological Research Panel (Project number 12/A172) and the local Research Ethics Committee (C02.216). No patients received preoperative chemotherapy. The average age at the time of surgery was 71 years (range 37–96 years), 64 patients were male (58%) and the average follow-up time was 4.1 years (as of January 2009). Based on the tumour, nodal and distant metastases, cancer stage of patients at resection was as follows: 10 patients (9%) stage 1; 55 patients (49%) stage 2; 35 patients (32%) stage 3 and 11 patients (10%) stage 4. All resections resulted in clear margins. Relapse-free survival was defined as time between tumour resection and the first documented recurrence of tumour at any site. Patients who died from unrelated causes were excluded. Tissue microarrays were assembled as described previously 42 using two representative cores of tumour and two representative cores of adjacent normal colonic mucosal epithelium for each patient.
Statistics
All data (means ± s.e.m. (xenographs) or s.d. (in vitro)) were analysed using Excel or GraphPad Prism 5 (GraphPad Software, La Jolla, CA, USA). For tumour growth analysis, a parametric generalised linear model was performed using GraphPad Prism 4.0b software. For western blot analysis, cell proliferation and quantitative real-time PCR, statistical significance was determined using the Kruskal–Wallis one-way analysis of variance. All in vitro experiments were replicated on at least three occasions. For patient data, the test was used to determine association between PAT4 expression and categorical clinical variables (Supplementary Table S1). Cox regression analysis was used to determine prognostic factors in univariate (Supplementary Table S2) and multivariate survival models (Supplementary Table S3). The log-rank (Mantel-Cox) test was used to assess the significance of differences in relapse-free survival between Kaplan–Meier curves. Statistical analyses were performed using SPSS Statistics (Version 21.0, IBM, New York, NY, USA).

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGEMENTS
We thank Alan McIntrye, Elena Favaro, Thomas Roberts, Aaron Leiblich and Margret Ogmundsdottir for advice and technical help during this study, Katharine Carr, Kristie McCormick and Dan Stevens for critical reading of the manuscript and are especially grateful to Richard Boyd for facilitating key collaborative interactions. This work was supported by Cancer Research UK (C191591/A1681, C19591/A9093, C7713/A6174) and C38302/A12278 grants through the Cancer Research UK Oxford Centre Development Fund, the Wellcome Trust (WT093326MA), the BBSRC (BB/L007096/1), a Nuffield Medical Fellowship to CS, funding from the Studienstiftung des deutschen Volkes and the Max Weber Programm Bayern to SH, and a studentship from The British Province of the Society of Jesus (626791) to SMWP.

REFERENCES
1 Schulze A, Harris AL. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 2012; 491: 364–373.
2 Bar-Peled L, Sabatini DM. Regulation of mTORC1 by amino acids. Trends Cell Biol 2014; 24: 400–406.
3 Malik AR, Urbanska M, Macias M, Skalecka A, Jaworski J. Beyond control of protein transporters and their potential role in drug transport. J Biol Chem 2014; 289: 233–242.
4 Zaytseva YY, Valentino JD, Gulhati P, Evers BM. mTOR inhibitors in cancer therapy. Trends Biochem Sci 2014; 39: 319–329.
5 Jewell JL, Guan KL. Nutrient signaling to mTOR and cell growth. J Biol Chem 2014; 289: 319–329.
6 Maddocks OD, Berkers CR, Mason SM, Zheng L, Blyth K, Gottlieb E et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 2013; 493: 542–546.
7 Constantinou C, Clemens MJ. Regulation of the phosphorylation and integrity of protein synthesis initiation factor eIF4G and the translational repressor 4E-BP1 by mTORC1. Curr Opin Invest Drugs 2010; 11: 136–1367.
8 Zoncu R, Bar-Peled L, Markhard AL, Sabatini DM. Ragulator controls the amino-acid sensitivity of mTORC1 from the Golgi to the plasma membrane. Nature 2012; 485: 55–61.
9 Ogmundsdottir MH, Heublein S, Kazi S, Reynolds B, Visvalingam SM, Shaw MK et al. PAT-related amino acid transporters regulate growth via a novel mechanism that does not require bulk transport of amino acids. Development 2005; 132: 2365–2375.
10 Ogmundsdottir MH, Heublein S, Kazi S, Reynolds B, Visvalingam SM, Shaw MK et al. Proton-assisted amino acid transporter PAT1 complexes with RapGTPases and activates TORC1 on late endosomal and lysosomal membranes. Plos One 2012; 7: e36616.
11 Heublein S, Kazi S, Ogmundsdottir MH, Attwood EV, Kala S, Boyd CA et al. Proton-assisted amino acid transporters are conserved regulators of proliferation and amino-acid-dependent mTORC1 activation. Oncogene 2010; 29: 4068–4079.
42 Bubendorf L, Nocito A, Moch H, Sauter G. Tissue microarray (TMA) technology: miniaturized pathology archives for high-throughput in situ studies. J Pathol 2001; 195: 72–79.

43 Rath A, Gilbowicka M, Nadeau VG, Chen G, Deber CM. Detergent binding explains anomalous SDS–PAGE migration of membrane proteins. Proc Natl Acad Sci USA 2009; 106: 1760–1765.

Supplementary Information accompanies this paper on the Oncogene website (http://www.nature.com/onc)